The Effects of Age-Related Hearing Loss on the Brain and Cognitive Function

Kate Slade, Christopher J. Plack, and Helen E. Nuttall

Age-related hearing loss (ARHL) is a common problem for older adults, leading to communication difficulties, isolation, and cognitive decline. Recently, hearing loss has been identified as potentially the most modifiable risk factor for dementia. Listening in challenging situations, or when the auditory system is damaged, strains cortical resources, and this may change how the brain responds to cognitively demanding situations more generally. We review the effects of ARHL on brain areas involved in speech perception, from the auditory cortex, through attentional networks, to the motor system. We explore current perspectives on the possible causal relationship between hearing loss, neural reorganisation, and cognitive impairment. Through this synthesis we aim to inspire innovative research and novel interventions for alleviating hearing loss and cognitive decline.

The Ageing Ear: Tired of Listening?

ARHL, or presbycusis, is characterised by gradually developing high-frequency hearing loss, often accompanied by poor speech discrimination, and may begin to surface in the fourth decade of life [1]. The prevalence of ARHL increases with age, affecting >40% of people over 50 years old, rising to ~71% of people over 70 years [2]. For most people this is a relatively unremarkable part of the ageing process (Box 1), but some individuals with ARHL experience effort and difficulties in understanding speech, hindering communication and socialisation [3]. Increased listening effort may lead older adults to avoid social interaction, exacerbating loneliness and depression, and reducing well-being [4]. Recent research further shows that hearing loss is associated with cognitive decline and dementia [5,6]. However, although there is reasonable evidence for hearing loss as a marker for risk of cognitive decline, it is not yet clear whether there is a causal effect of hearing loss on cognitive decline. Collating the most recent evidence on how ARHL affects the brain provides valuable information on the possible underlying mechanisms and causal relationships between hearing loss, neural changes, and dementia.

This review discusses the physiology of ARHL, from the peripheral auditory system to the auditory cortex, and to global neural changes that accompany ARHL. We focus on the impact of these cortical changes on cognitive functioning during ageing, and explore the evidence for a possible causal relationship between ARHL-related changes in neural functioning and cognitive decline.

The Peripheral and Subcortical Auditory Systems in Age-Related Hearing Loss

ARHL is attributed to sensory, metabolic, or neural changes in the peripheral auditory system which affect hearing ability. Sensory ARHL is characterised by degeneration of outer and inner hair cells within the cochlea, of which the inner cells are responsible for the transduction of auditory signals. Atrophy originates in the basal end of the cochlea, and over time progresses to the apex. Basal atrophy manifests in the high-frequency hearing loss typical of sensory ARHL [7]. It has been suggested that degeneration of basal sensory receptor cells is often a consequence of accumulated environmental noise exposure rather than of ageing [8]. Sensory ARHL is quantifiable using pure-tone audiometry. The audiogram showing sensory ARHL will display normal

Highlights

Hearing loss has been identified as potentially the biggest modifiable risk factor for dementia and cognitive decline, but the causal link between these two conditions that affect older adults is not clear.

Age-related hearing loss presents as a constellation of dysfunctions that affect both the auditory periphery, the auditory cortex, and global cortical organisation.

There is evidence for compensatory neural resource allocation, suggestive of cognitive compensation, which may have a significant impact on cognitive functioning.

Several hypotheses have been proposed to explain the potential relationship between auditory and cognitive impairment: Some hypotheses suggest that the relationship is underpinned by general neurodegeneration in ageing; others suggest that auditory impairment and sensory deprivation are causally linked to cognitive impairment.

Limitations in the methods used for quantifying both age-related hearing loss and cognitive decline may lead to either over- or under-estimation of the association between age-related hearing loss and cognitive decline.

© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Metabolic (or strial) ARHL is characterised by atrophy of the stria vascularis, on the outer wall of the cochlear duct, which is responsible for metabolic processes in the cochlea. Degeneration of this structure decreases the endocochlear potential (EP), impairing the EP-dependent cochlear amplifier. The entire cochlea is affected, but the amplifier in particular is necessary for the perception of high-frequency sounds [11]. The audiogram in metabolic ARHL displays a constant hearing loss at lower frequencies, with a gradual increase in threshold at higher frequencies owing to the loss of EP [9,12]. The flat loss at lower frequencies and gradual sloping loss at higher frequencies in metabolic ARHL, compared with the normal lower-frequency thresholds and drastic sloping loss at higher frequencies in sensory ARHL, is key in differentiating between these two subtypes of hearing loss [9].

Neural ARHL is characterised by atrophy of the spiral ganglion cells, the first afferent neurons in the neural pathway from the ear to the brain. The audiogram is not affected until a critical number of cells have degenerated (80–90%) [13]. This type of hearing loss may precede sensory hair loss and is accompanied by a dramatic decrease in speech discrimination ability [14]. This neural degeneration may provide insight into why older adults with similar hearing acuity (measured by pure-tone audiometry) differ in their speech-in-noise perception [15] (Figure 1).

Auditory perception involves not only peripheral ‘hearing’ and the transduction of sounds but also decoding and comprehension of the auditory message, which occurs in higher brainstem and cortical regions. Studies suggest that ageing may impact on supra-threshold auditory processes (which cannot be identified by a clinical audiogram), including temporal coding, which involves the synchronisation of neural firing to the temporal fine structure or temporal envelope of sound [16]. Animal models suggest that this temporal coding may be affected by age-related cochlear synaptopathy – the loss of connections between the sensory hair cells and the auditory nerve [17]. Brainstem temporal processing may also decline owing to age-related demyelination [18] and a reduction in neural inhibition [19]. Brainstem neural function can be measured using the auditory brainstem response (ABR), a measure of synchronous activation of successive nuclei

Box 1. Defining ARHL in Terms of Hearing Thresholds

Hearing thresholds are usually measured using pure-tone audiometry, which estimates the lowest detectable levels of pure tones at a range of frequencies. The pure-tone average (PTA) is the average of hearing-threshold levels at frequencies of 500 Hz, 1000 Hz, 2000 Hz, and 4000 Hz in the individual’s better ear. The World Health Organisation (WHO) defines the onset of mild hearing impairment as a PTA of ~20 dB HL [85]. Further hearing impairment categories are defined at subsequent 15 dB steps; a hearing threshold of >35 dB HL would quantify moderate hearing loss, >50 dB HL for moderately severe loss, >65 dB HL for severe loss, and >80 dB HL for profound hearing loss [86]. A person with normal hearing can hear tones in the frequency range 500–4000 Hz presented at 20 dB HL or softer. ARHL presents following cumulative effects of ageing on the sensory system [87] (Figure 1).

Pure-tone audiometry remains the primary, gold-standard method for quantifying ARHL in practice and research. It is employed to understand changes in cochlear function and structure. However, to understand hearing ability more generally, it is also necessary to evaluate an individual’s ability to function and participate in daily life activities [76]. Pure-tone thresholds do not account well for speech comprehension, which is a major complaint in ARHL [75]. There are numerous potential causes of damage to the peripheral and central auditory system, which can be categorised into various subtypes of ARHL. The damages can manifest not only in high-frequency threshold elevations but also in the perception of supra-threshold sounds [75].
within the auditory pathway in response to a brief click or tone. Amplitudes of ABR waves are reduced in older listeners [20]. The frequency-following response (FFR) is a sustained brainstem potential that reflects neural synchronisation to the frequency components of a sound wave. The FFR can be used to measure the temporal precision of subcortical neural coding of musical pitch and speech [21]. Research has demonstrated stronger FFR responses in younger compared with older listeners in response to speech stimuli [22,23], particularly speech in noise [24]. It is possible that age-related supra-threshold temporal processing deficits in the brainstem and
midbrain account in part for the speech-in-noise perception difficulties facing older listeners, which are not well predicted by pure-tone audiometry [10].

When the auditory periphery is damaged, the cochlea is less effective in converting sound into neural activity. A reduction in the precision of subcortical neural coding can also impact on the representation of sounds. The resultant auditory signal is therefore diminished, and this may significantly affect how the brain processes this information. One might hypothesise that this altered neural processing may in turn affect nonauditory cognitive processes as a result of atrophy, or cortical reorganisation, changing the way in which resources in the brain are allocated during perception and comprehension of speech.

The Auditory Cortex in Age-Related Hearing Loss

The auditory cortex encompasses several brain regions in the temporal lobes which are organised in a functional hierarchy for the processing of sound. The primary auditory cortex, at the bottom of this functional hierarchy located on Heschl’s gyrus, receives direct information from the cochlea via the ascending auditory pathway. The wider auditory cortex, extending from Heschl’s gyrus to the superior temporal gyrus, receives projections from the primary auditory cortex and is involved (among other functions) in sound localisation, as well as in integration with other sensory networks.
Anatomical Changes
Evidence indicates that older adults with hearing loss show a constellation of changes in primary auditory cortex. For example, dysfunctional neurotransmission as a result of decreased GABA levels has been observed in older adults with hearing loss compared with individuals with normal hearing [25]. However, there is evidence for a general age-related decline in GABA concentration in the auditory cortex that is independent of hearing loss [26]. As well as potential defective neurotransmission, there is evidence that diminished grey matter volume in the primary auditory cortex is associated with poorer hearing [27]. However, global decreases in grey matter volume, as well as cortical thinning and increased cerebrospinal fluid, are neural characteristics of general ageing [28,29]. An important question is whether deprivation of auditory input caused by ARHL exacerbates the brain atrophy typical of ageing, and whether this has consequences for cortical organisation. Studies provide evidence for a link between changes in brain morphology and ARHL (assessed using audiometric thresholds), including cortical thinning [30] and reduced grey matter volume in the auditory cortices [31,32]. There are two proposed explanations for the changes in brain morphology in older adults who display age-related hearing threshold elevations. The first is that there is a direct causal relationship between auditory impairment and declines in brain volume owing to auditory deprivation (sometimes referred to as the auditory deprivation hypothesis) [32]. The second is that ageing leads to concurrent declines in the auditory periphery and the CNS [33,34].

One longitudinal study provides evidence supporting the idea of a causal relationship between ARHL [quantified as a pure-tone average (PTA, see Glossary) of >25 dB hearing level (HL) in older adult participants] and neural atrophy in support of the auditory deprivation hypothesis. Differences in brain volume between older adults with normal versus clinically significant pure-tone hearing loss were not present in a baseline magnetic resonance imaging (MRI) scan. However, 6.4 years later, those with pure-tone hearing loss showed an accelerated decline in brain volume, especially in the right temporal lobe [35]. Nevertheless, others have contested the auditory deprivation hypothesis. Indeed, a more recent longitudinal study found no evidence that clinically significant pure-tone hearing loss affected brain morphology [33]. These inconsistent findings could be explained by the different longitudinal time-windows employed – 6.4 years in the former study compared with a shorter window ranging from ~1.3 to 5 years in the latter. It is possible that there is a causal relationship between clinically significant pure-tone hearing loss and reduced grey matter in the auditory cortex, but only presents after a longer time-period (~5 years).

Functional Changes
In addition to structural changes in the cortex, older adults with clinically significant pure-tone hearing loss also display functional differences in auditory processing compared with younger adults with normal pure-tone thresholds. For example, functional MRI (fMRI) studies to determine age-related changes in the auditory cortex showed that the older adults with pure-tone threshold elevations exhibited increased activation in response to pink noise (i.e., 1/f noise) in the temporal lobes, particularly in the right hemisphere, compared with younger adults with normal audiometric thresholds who showed reduced activation and left lateralisation [36]. The authors suggested that this activation may be due to reduced inhibition associated with ageing, or potentially reflects a compensatory mechanism for elevated audiometric thresholds [36]. However, there were no significant differences in activation between older adults with mild (audiometric thresholds >20 dB HL at frequencies ≥4000 Hz) versus moderate (audiometric thresholds >20 dB HL at frequencies ≥1000 Hz) pure-tone hearing loss. The lack of an effect of hearing-loss severity on neural activity may cast doubt on the existence of a causal relationship between pure-tone hearing loss and neural changes. Other researchers who used more complex auditory stimuli, consisting of monosyllabic words, also found similar effects of age on auditory cortex activity, but age-related pure-
Pure-tone hearing loss (PTA 26–40 dB HL) did not significantly affect activation [37]. These data can be interpreted to support the theory that general ageing, or indeed other subtypes of hearing loss not identified by the audiogram, rather than clinically significant pure-tone hearing loss, leads to functional changes in the auditory cortex.

The perception, and particularly comprehension, of auditory information is reliant on integration among brain networks to interpret auditory stimuli. Studies have found important differences in functional connectivity among brain areas involved in auditory processing in older adults with ARHL, which may hinder speech perception [38]. Specifically, findings show reduced connectivity between visual and auditory sensory cortices in ARHL [39], as well as in the attention and default mode networks [40]. These data suggest that, in individuals with hearing loss, there are changes in the organisation of the cortical networks that support speech perception.

Nonauditory Cortical Reorganisation

In the following section of this review cortical reorganisation observed in ARHL is explored further. This section focuses on three brain networks that are known to support auditory perception – the attentional, visual, and motor networks. Evidence indicates that ARHL not only affects auditory brain areas but also nonauditory regions. This is because nonauditory regions are potentially up-regulated to support speech perception after hearing loss. It is possible that this suggested reorganisation of resources causes complications for cognitive and neural functioning.

Attentional Networks

The cingulo-opercular network is suggested to be of importance for speech processing in both normal-hearing and hearing-impaired individuals [41–43]. The cingulo-opercular network involves several brain areas, including the anterior insula, the anterior cingulate cortices, and the thalamus, that are thought to be involved in attention, which is advantageous for speech perception [43,44]. Morphological data indicate that individuals with ARHL display reduced volume in the anterior cingulate cortex (ACC) [45]. Research has investigated the relationship between ACC atrophy and the function of the cochlear amplifier – the main component of which is the outer hair cell that is responsible for sensitive frequency resolution. Dysfunction is measured by assessing the outer hair cell function of the cochlea receptor [45]. Greater atrophy of the ACC was observed in individuals with ARHL (PTA >20 dB HL) who also displayed cochlear amplifier dysfunction (assessed using distortion-product otoacoustic emissions, a type of sound generated by the outer hair cells), and this atrophy was related to greater memory impairments [45].

Evidence also suggests increased functional connectivity between auditory cortex and cingulo-opercular network in resting-state fMRI in ARHL, after controlling for variance in both age and cognitive functioning [46]. This provides some insight into potential compensatory neural activation associated with ARHL. It has been suggested that impaired auditory processing in ARHL leads to more effortful listening, which depletes the limited resource capacity available for both listening and nonauditory cognitive functions [47]. Researchers have proposed that activation of neural networks involved in effortful listening could contribute to the observed neural degeneration of these areas in ARHL, including for instance degeneration due to glutamate excitotoxicity of cingulate neurons [45].

Visual Networks

Older adults with hearing loss (mean PTA 38.4 dB HL) display a reduced ability to suppress activity in other sensory brain areas during auditory processing than those without hearing loss [48]. For example, increased visual cortex activation occurs during auditory word-recognition tasks when intelligibility is decreased (due to increased background noise) [48]. Furthermore,
there is evidence from resting-state fMRI for increased connectivity between auditory and visual cortices in ARHL (defined in terms of high frequency loss using PTA) [44]. It is likely that increased visual activation works to support the auditory system during interpretation of degraded auditory information. Individuals with ARHL also show increased activation in auditory areas during the presentation of visual stimuli [49], further highlighting the level of cortical reorganisation among visual and auditory areas associated with ARHL.

Motor Networks
There is accumulating evidence that the articulatory motor cortex is involved in speech perception in young adults, particularly when speech perception is challenging [50]. It is possible that, when listening becomes more demanding, the individual relies on integration across numerous brain areas to understand the auditory message; for example, by recruiting the motor cortices to provide motor representations of speech. However, it is unclear how motor networks are utilised for speech perception in older adults with hearing loss. Two hypotheses have been suggested to account for auditory–motor integration during speech perception in ARHL. First, the motor compensation hypothesis suggests that activation of the motor networks compensates for impaired auditory processing in ARHL [51]. This hypothesis assumes that the articulatory motor cortex is upregulated during speech perception in persons with auditory deficits, and that this process compensates for impaired auditory function to aid speech perception. Second, the motor-decline hypothesis suggests that the impaired auditory periphery provides a reduced input to the auditory cortex, and consequent deficits in auditory processing reduce the input to the articulatory motor cortex [52].

Researchers have used brain stimulation, specifically transcranial magnetic stimulation (TMS) in combination with electromyography to measure motor evoked potentials (MEPs) recorded from the tongue, to investigate age- and hearing-related differences in excitability of the motor cortex [52]. The authors found that excitability of the articulatory motor cortex, that is involved in tongue control, was significantly reduced in older adults with ARHL compared with older and younger adults with normal hearing, in support of the motor decline hypothesis [52]. These results suggest that deficits in the auditory system may reduce the input available to the motor cortex. This provides evidence for a decline in auditory–motor processing that is not only associated with age-related changes in neural functioning but is specifically associated with hearing loss. In contrast to these findings supporting the motor decline hypothesis, fMRI studies have provided support for the alternative motor compensation hypothesis. Specifically, fMRI data indicate that older adults have increased activation of frontal speech motor areas in a listening task at signal-to-noise ratios ranging from −12 dB to 8 dB, compared with younger adults. The increased activity also correlated with improved performance on the listening task in older adults [51].

A possible explanation for the discrepancies between these studies could stem from their methodological differences. In part, in the fMRI study there was no comparison between older adults with and without hearing loss [51]. Although listening demand was manipulated artificially by changing the signal-to-noise ratio, it is not possible to draw definitive conclusions about the effects of ARHL on motor activation. Furthermore, the different methods, TMS in combination with electromyography and MEPs, as opposed to fMRI [blood oxygen-level dependent (BOLD) signal], reflect different types of neural activation. MEPs are signals recorded from peripheral muscles that quantify the cortical excitability of the motor cortex at the time of brain stimulation, whereas the BOLD signal provides a more indirect measure of neural activation, and is influenced by changes in cerebral blood flow, volume, and oxygen extraction. Because of these differences, MEPs may be more reflective of momentary neural activity, whereas fMRI data reflect activation over a longer time-period. The fMRI data also showed increased recruitment of frontal regions,
as well as motor areas, during listening [51]. This may suggest generalised recruitment of compensatory cognitive resources as opposed to specific motor compensation. Indeed, cognitive compensation is a widely recognised model in the context of cognitive ageing. There is evidence for cognitive compensation and neural upregulation across numerous sensory and motor domains [53], including sensorimotor ageing in Alzheimer’s disease [54].

Taken together, these findings indicate that the sensory deprivation associated with ARHL influences brain structure, function, and typical neural resource allocation. These changes may influence the cognitive and neural resources available to individuals with ARHL. It seems reasonable to hypothesise that changes in resource allocation may in turn affect daily cognitive processes and functioning beyond auditory processing.

The Relationship between Auditory and Cognitive Impairment

In recent years, the association between ARHL and cognitive decline has gained international recognition among leading medical organisations, who have identified ARHL as the largest potentially preventable risk factor for dementia [6,55]. Cumulative data from large cohort studies show that ARHL is associated with an increased rate of cognitive decline and an increased risk of developing dementia, and the likelihood increases with the severity of hearing loss [56–59]. These developments underscore the need for research efforts directed towards understanding the causal relationship between the damaged auditory system, neural changes observed in ARHL, and cognitive decline. In doing so, researchers can identify possible mechanisms underlying the association between hearing loss and increased cognitive decline, and these may inform avenues for early intervention. There are three dominant hypotheses in the ARHL and cognitive decline literature: (i) The common cause hypothesis, (ii) the information degradation hypothesis, and (iii) the sensory deprivation hypothesis [5,60,61], which are discussed in the following sections.

The Common Cause Hypothesis

The common cause hypothesis suggests that the comorbid manifestation of cognitive decline and ARHL is attributable to a common neurodegenerative pathology. This hypothesis is supported by evidence of parallel changes in several perceptual and cognitive domains in older adults; for example, reduced cognitive decline and reduced visual acuity [62]. In addition, the brain atrophy observed in both ageing and ARHL [26,33] may suggest that the concurrent manifestation is due to biological ageing which affects global functioning. However, there is also evidence that supports a causal relationship in which ARHL exacerbates cognitive decline in ageing: both the information degradation and sensory deprivation hypotheses support this view.

The Information Degradation Hypothesis

The information degradation hypothesis postulates that degraded auditory input, as a result of the impaired auditory periphery, places an increased demand on limited processing resources. Numerous models of working memory and cognitive resources share the common idea that these information processing resources are limited in the amount of information that can be attended to, held in memory, and used at any particular time [63]. Situations wherein speech quality is degraded by environmental noise, or hearing loss, increase the ‘listening effort’ for processing and comprehending the auditory signal. Therefore, limited cognitive resources are diverted from other cognitive tasks towards effortful listening [64,65], resulting in depleted cognitive resources. This resource reallocation has detrimental effects on cognitive functions, which could theoretically lead to cognitive decline [66]. Evidence suggests that older adults experience more effort during listening than younger adults, as measured using a dual-task paradigm in which poorer performance on the secondary task indicates increased effort allocated to difficult listening [67]. The findings suggest that, when listening is more difficult, it requires additional
cognitive resources to cope with the demand, which means that resources for other cognitive processes are depleted. Further evidence in support of this hypothesis comes from studies on the effects of hearing aids which help to restore auditory perception and thus reduce cognitive load. For example, a 6 month hearing aid intervention was found to significantly improve both perceived hearing disability and memory performance [58]. This hypothesis has also been explored as a ‘cognitive load’ hypothesis by other researchers [5,68].

The Sensory Deprivation Hypothesis

The sensory deprivation hypothesis shares some conceptual points with the information degradation hypothesis, but it distinctively emphasises that chronic reallocation of cognitive resources towards auditory perception over time owing to long-term sensory deprivation in ARHL leads to cognitive decline [60,66]. This hypothesis highlights that this extended deprivation leads to compensatory cortical reorganisation and neural alterations which hinder general cognitive and emotional processes in favour of auditory perception. Evidence supports the idea of cortical alterations in ARHL, including increased reliance on frontal brain regions during speech perception [51,69], as well as reduced grey matter in the auditory cortex with decreased hearing ability [33].

Researchers have expanded on the sensory deprivation hypothesis and have suggested that, although deprivation affects cognition directly through inadequate sensory input, it may also affect cognition indirectly through decreased socialisation and communication, or increased depression [70,71]. The hypothesis proposes that reduced social interaction associated with social isolation and depression may mediate the causal relationship between hearing loss and cognitive decline [71,72]. There is a significant association between depressive symptoms in those with ARHL, increased social isolation, and reduced quality of life [4,71,73]. In line with this perspective, the neural changes that result from ARHL, such as decreased ACC activation, may directly affect emotion and mood regulation [74]. Evidence also indicates that ACC volume correlates with depressive symptoms in individuals with ARHL [45]. Researchers also suggest that ageism and the stigma associated with ARHL and ageing may exacerbate depressive symptoms and reduce social interactions as a result of embarrassment or decreased self-perception of ability [75].

Concluding Remarks and Future Perspectives

In this review we have examined the evidence for the effects of ARHL on auditory and nonauditory brain areas, and the impact of these cortical changes on cognitive functioning during ageing. We explored changes in the peripheral and subcortical auditory system, the auditory cortex, as well as in attentional networks and the motor system. We also discussed current perspectives on the potential causal relationships between hearing loss, neural reorganisation, and cognitive impairment.

Owing to the potential life-changing impact of understanding the relationship between ARHL and dementia, it is essential to invest in research using methods that can determine causality. This should focus on the causal relationship between peripheral auditory demand, cortical reorganisation, and cognitive decline (see Outstanding Questions). There are limitations with the quantification of both hearing loss and cognitive ability in the current literature, and these lead to ambiguity in interpretation of the relationship between hearing loss and cognitive decline. ARHL is frequently quantified using pure-tone audiometry, which does not capture the difficulties older adults experience with speech in noise, or neural ARHL. This may lead to underestimation of the link between hearing loss and cognitive decline if the full effect of hearing loss on communication, and on the ability to function in daily life, is not captured [76]. Incorporating tests of speech understanding in noise into standard audiometric assessments may prove valuable in capturing speech understanding, as well as hearing acuity. Capturing the extent of communication difficulties in ARHL may help us to understand the potential contribution of such difficulties to cognitive decline.
function in ageing. There is evidence to suggest that extending the frequency range of clinical audiometry to assess hearing acuity above 8000 Hz may be beneficial in predicting ARHL in early life [77]. Furthermore, this extended high-frequency hearing acuity may be related to the ability to understand speech-in-noise in older adults [77,78].

It is also important to note that undiagnosed or untreated hearing loss may result in the misdiagnosis or overestimation of the level of cognitive impairment [5]. The source of this misdiagnosis could be reliance on verbal administration of cognitive assessments, which depends upon auditory processing. Therefore, it is possible that individuals with hearing loss misunderstand, or cannot fully hear the task instructions, causing them to perform poorly and result in a misdiagnosis of cognitive decline. Indeed research shows that, when the audibility of test items is reduced, or when noise exists in the testing environment, the scores on cognitive assessments are poorer [79–81]. Because listening with auditory impairment is effortful, older adults with hearing loss may perform worse on these auditory-based cognitive assessments because more cognitive resources are directed towards listening, leaving fewer resources available for the cognitive processing required to perform adequately. The hearing-dependant subtests within tests of cognitive function may significantly affect their sensitivity and specificity as a screening tool [82]. Research shows that omitting the hearing-dependant subtests in one example of these cognitive tests (the Montreal cognitive assessment) reduces the sensitivity in diagnosing mild cognitive impairment; this points at the potential consequences of testing individuals with untreated hearing loss, or testing in a noisy environment, on the accuracy of the these cognitive screening measures [82]. Of note, however, the relationship between hearing loss and cognitive decline has been demonstrated even when nonauditory tasks are used to quantify cognitive abilities [83,84] (Box 2).

As the population ages more rapidly than ever, the effects of hearing loss and cognitive decline on well-being and health resources have never been a more crucial matter. Research into the neural effect of hearing loss, and on the causal links between cortical reorganisation and cognitive decline, may prove invaluable in informing future intervention strategies for both ARHL and associated health issues. By identifying potential mediators or mechanisms underlying the association between hearing loss and cognitive decline, researchers can identify promising avenues for early intervention to mitigate the escalated cognitive decline that is observed alongside ARHL.

References

1. Davis, A. et al. (2016) Aging and hearing health: the life-course approach. Gerontology 56, S256–S267
2. Action on Hearing Loss (2015) Hearing Matters, Action on Hearing Loss
3. Cardin, V. (2016) Effects of aging and adult-onset hearing loss on cortical auditory regions, Front. Neurosci. 10, 199
4. Rutherford, B.R. et al. (2019) Sensation and psychiatry: linking age-related hearing loss to late-life depression and cognitive decline. Am. J. Psychiatry 175, 215–224
5. Uchida, Y. et al. (2019) Age-related hearing loss and cognitive decline - the potential mechanisms linking the two. Auris Nasus Larynx 46, 1–9

Box 2. The Conceptualisation of ARHL: Considerations

Hearing loss is often considered to be an unavoidable part of the ageing process, or even a natural part of healthy ageing. However, ARHL does not affect us all: ~29% of people aged 70+ years do not experience this sensory affliction [2]. Therefore, it may be pertinent to distinguish between age per se as a cause of hearing loss and all cumulative causes of hearing loss over the lifespan that affect hearing acuity in older age. Potentially, a lifestyle in which damaging noise exposure is avoided could decrease the risk of developing hearing loss. Studies find that socioeconomic position (educational background, occupation, and income) is strongly associated with hearing loss, where those with lower levels of income and education have a higher risk of hearing loss [88,89]. These socioeconomic factors, as well as lifestyle variables (including increased body mass index, reduced physical activity, and increased smoking and alcohol intake) were as equally strongly associated with risk of hearing loss as was age [88]. These data are essential in identifying the potentially modifiable risk factors for hearing loss. It also suggests that a large proportion of hearing loss in older age may be preventable through lifestyle factors and management of socioeconomic and health inequality. To understand these complex age-related health issues fully, large longitudinal epidemiological studies are needed. Researchers have suggested that the term ‘lifestyle-related hearing loss’ is a more inclusive conceptualisation of the potentially preventable sensory deficit [88].
6. Livingston, G. et al. (2017) Dementia prevention, intervention, and care. Lancet 390, 2673–2734
7. Liberman, M.C. and Kujawa, S.G. (2017) Cochlear synaptopathy in acquired sensorineural hearing loss: manifesta-
tions and mechanisms. Hear. Res. 349, 138–147
8. Pichora-Fuller, M.K. and MacDonald, E. (2017) Sensory aging: hearing. In Reference Module in Neuroscience and Biobehavioral Psychology, Elsevier
9. Dubno, J.R. et al. (2013) Classifying human audiometric phenotypes of age-related hearing loss from animal models. J. Assoc. Res. Otolaryngol. 14, 687–701
10. Vergniolo, A.J. et al. (2012) The relationship between high-frequency pure-tone hearing loss, hearing in noise test (HINT) thresholds, and the articulation index. J. Am. Acad. Audiol. 23, 779–788
11. Keithley, E.M. (2019) Pathology and mechanisms of cochlear aging. J. Neurosci. Res. Published online May 7, 2019. https://doi.org/10.1002/jnr.24439
12. Friedman, R.D. et al. (2016) Age-related hearing loss: prevention of threshold decline, cell loss and apoptosis in spiral ganglion neurons. Aging 8, 2081–2099
13. Wu, P.Z. et al. (2019) Primary neural degeneration in the human cochlea: evidence for hidden hearing loss in the aging ear. Neuroscience 407, 8–20
14. Liberman, M.C. (2017) Noise-induced and age-related hearing loss: new perspectives and potential therapies. F1000Research 6, 527
15. Lopez-Poveda, E.A. (2014) Why do I hear but not understand? Stochastic under sampling as a model of degraded neural encoding of speech. Front. Neurosci. 8, 348
16. Rack, C.J. et al. (2014) Perceptual consequences of hidden hearing loss. Trends Hear. 18, 1–11
17. Parthasarathy, A. and Kujawa, S.G. (2018) Synaptopathy in the aging cochlea: characterizing early-neural deficits in auditory temporal envelope processing. J. Neurosci. 38, 7109–7119
18. Peters, A. (2009) The effects of normal aging on myelinated nerve fibers in monkey central nervous system. Front. Neuroanat. 3, 11
19. Caspary, D.M. et al. (2005) Age-related changes in the inhibitory response properties of dorsal cochlear nucleus output neurons: role of inhibitory inputs. J. Neurosci. 25, 10562–10569
20. Grose, J.H. et al. (2019) Age-related change in the auditory brainstem response and supranormal processing of temporal and spectral modulation. Trends Hear. 23, 1–11
21. Schoof, T. and Rosen, S. (2016) The role of age-related declines in subcortical auditory processing in speech perception in noise. J. Assoc. Res. Otolaryngol. 17, 441–460
22. Presacco, A. et al. (2019) Speech in noise representation in the aging midbrain and cortex: effects of hearing loss. PLoS One 14, e0213899
23. Roque, L. et al. (2019) Effects of age, cognition, and neural encoding on the perception of temporal speech cues. Front. Neurosci. 13, 749
24. Presacco, A. et al. (2016) Evidence of degraded representation of speech in noise, in the aging midbrain and cortex. J. Neurophysiol. 116, 2346–2355
25. Gao, F. et al. (2019) Decreased auditory GABA concentrations in presbycusis demonstrated by edited magnetic resonance spectroscopy. Neuroimage 108, 311–316
26. Lahwani, P. et al. (2019) Neural distinctiveness declines with age in auditory cortex and is associated with auditory GABA levels. Neuroimage 201, 116003
27. Allandani, D. et al. (2018) Brain volume differences associated with hearing impairment in adults. Trends Hear. 22, 1–8
28. Fjell, A.M. et al. (2008) One-year brain atrophy evident in healthy aging. J. Neurosci. 28, 12925–12931
29. Lockhart, S.N. and DeCarli, C. (2014) Structural imaging measures of brain aging. Neuron psychol. Rev. 24, 271–289
30. Giroud, N. et al. (2017) The impact of hearing aids and age-
related hearing loss on auditory plasticity across three months – an electroencephalographic study. Hear. Res. 353, 162–175
31. Rigters, S.C. et al. (2017) Hearing impairment is associated with smaller brain volume in aging. Front. Aging Neurosci. 9, 2
32. Rieusset, F. et al. (2019) Gray matter atrophy is associated with cognitive impairment in patients with presbycusis: a comprehensive morphometric study. Front. Neurosci. 12, 744
33. Eckert, M.A. et al. (2019) Age-related hearing loss associations with changes in brain morphology. Trends Hear. 23, 1–14
34. Peelle, J.E. and Wingfield, A. (2016) The neural consequences of age-related hearing loss. Trends Neurosci. 39, 486–497
35. Lin, F.R. et al. (2014) Association of hearing impairment with brain volume changes in older adults. Neuroimage 90, 84–92
36. Profant, O. et al. (2015) Functional changes in the human auditory cortex in aging. PLoS One 10, e0119692
37. Chen, X. et al. (2016) Language processing of auditory cortex revealed by functional magnetic resonance imaging in presbycusis patients. Acta Otolaryngol. 136, 113–119
38. Wokale, T. et al. (2019) Altered functional connectivity in patients with sloping sensorineural hearing loss. Front. Hum. Neurosci. 13, 284
39. Puschmann, S. and Thiel, C.M. (2017) Changed crossmodal functional connectivity in older adults with hearing loss. Cortex 86, 109–122
40. Huisen, F.T. and Schmidt, S.A. (2014) Using resting state func-
tional connectivity to unravel networks of tinnitus. Hear. Res. 321, 11–20
41. Vanden, K.I. et al. (2015) Cortical activity predicts which older adults recognize speech in noise and when. J. Neurosci. 35, 3929–3937
42. Peelle, J.E. (2018) Listening effort. Ear Hear. 39, 204–214
43. Eckert, M.A. et al. (2016) Is listening in noise worth it? The neurobiology of speech recognition in challenging listening conditions. Ear Hear. 37, 1015–1105
44. Power, J.D. and Petersen, S.E. (2013) Control-related systems in the human brain. Curr. Opin. Neurol. 23, 222–228
45. Belkhira, C. et al. (2019) Cingulate cortex atrophy is associated with hearing loss in presbycusis with cochlear amplifier dysfunction. Front. Aging Neurosci. 11, 97
46. Fitzhugh, M.C. et al. (2019) Functional connectivity of Heschl’s gyrus associated with age-related hearing loss: a resting-state fMRI study. Front. Psychol. 10, 2469
47. Fortunato, A. et al. (2018) A review of new insights on the asso-
ciation between hearing loss and cognitive decline in ageing. Acta Otolaryngol. 138, 155–166
48. Vanden, K.I. et al. (2016) Cingulo-opercular function during word recognition in noise for older adults with hearing loss. Exp. Aging Res. 42, 86–106
49. Campbell, J. and Sharma, A. (2014) Cross-modal re-
organization in adults with early stage hearing loss. PLoS One 9, e95594
50. Nuttall, H.E. et al. (2016) The effect of speech distortion on the excitability of articularatory motor cortex. Neuroimage 128, 218–226
51. Du, Y. et al. (2016) Increased activity in frontal motor cortex compensates impaired speech perception in older adults. Nat. Commun. 7, 12241
52. Panouillas, M.T.N. and Möttönen, R. (2018) Decline of auditory-motor speech processing in older adults with hearing loss. Neurosci. Aging 72, 89–97
53. Cabeza, R. et al. (2018) Maintenance, reserve and compensation: the cognitive neuroscience of healthy aging. Nat. Rev. Neurosci. 19, 701–710
54. Albers, M.W. et al. (2015) At the interface of sensory and motor dysfunctions and Alzheimer’s disease. Alzheimers Dement. 11, 70–86
55. National Institute for Health and Care Excellence (2018) Hearing Loss in Adults: Assessment and Management. NICE
56. Lin, F.R. et al. (2011) Hearing loss and incident dementia. Arch. Neurol. 68, 214–220
57. Lin, F.R. et al. (2012) Hearing loss and cognitive decline in older adults. Ear. Lubbe, JAMA Intern. Med. 173, 293–299
58. Deaf, J.A. et al. (2017) Hearing impairment and incident demen-
tia and cognitive decline in older adults: the health ABC study. J. Gerontol. A Biol. Sci. Med. Sci. 72, 703–709
59. Gurgel, R.K. et al. (2014) Relationship of hearing loss and dementia. Otol. Neurotol. 35, 775–781
60. Lindenberger, U. and Baltes, P.B. (1994) Sensory functioning and intelligence in old age: a strong connection. Psychol. Aging 9, 359–365
61. Schneider, B.A. and Pichora-Fuller, M.K. (2000) Implications of perceptual deterioration for cognitive aging. In Handbook of Aging and Cognition (2nd edn) (Oraic, F.M., and Salthouse, T.A., eds), pp. 155–219, Lawrence Erlbaum Associates
62. Fischer, M.E. et al. (2016) Age-related sensory impairments and risk of cognitive impairment. J. Am. Geriatr. Soc. 64, 1981–1987
63. Wingfield, A. (2016) Evolution of models of working memory and cognitive resources. Ear Hear. 37, 355–43S
64. Tun, P.A. et al. (2009) Aging, hearing acuity, and the attentional costs of effortful listening. Psychol. Aging 24, 761–766
65. Wingfield, A. et al. (2005) Hearing loss in older adulthood: what it is and how it interacts with cognitive performance. Curr. Dir. Psychol. Sci. 14, 144–148
66. Humes, L.E. et al. (2015) Are age-related changes in cognitive function driven by age-related changes in sensory processing? Attent. Percept. Psychophys. 75, 508–524
67. Ward, K.M. et al. (2017) Age-related differences in listening effort during degraded speech recognition. Ear Hear. 38, 74–84
68. Weinstein, B.E. (2019) The cost of age related hearing loss: to treat or not to treat? Speech Lang. Hear. 22, 9–15
69. Rosemann, S. and Theil, C.M. (2018) Audio-visual speech processing in age-related hearing loss: stronger integration and increased frontal lobe recruitment. Neuromage 175, 425–437
70. Stahl, S.M. (2017) Does treating hearing loss prevent or slow the progress of dementia? Hearing is not all in the ears, but who’s listening? CNS Spectr. 22, 247–250
71. Dawes, P. et al. (2015) Hearing loss and cognition: the role of hearing aids, social isolation and depression. PLoS One 10, e0119616
72. Whitson, H.E. et al. (2016) American geriatrics society and national institute on aging bench-to-bedside conference: sensory impairment and cognitive decline in older adults. J. Am. Geriatr. Soc. 66, 2052–2058
73. Panza, F. et al. (2016) Sensory frailty: age-related hearing loss and the risk of cognitive impairment and dementia in later life. Ther. Adv. Chronic Dis. 10, 2040822318811000
74. Hussain, F.T. et al. (2014) The effect of mild-to-moderate hearing loss on auditory and emotion processing networks. Front. Syst. Neurosci. 8, 10
75. Pichora-Fuller, M.K. et al. (2015) Hearing, cognition, and healthy aging: social and public health implications of the links between age-related declines in hearing and cognition. Semin. Hear. 36, 122–139
76. Meyer, C. et al. (2016) What is the international classification of functioning, disability and health and why is it relevant to audiology? Semin. Hear. 37, 163–186
77. Zadeh, L.M. et al. (2019) Extended high-frequency hearing enhances speech perception in noise. Proc. Natl. Acad. Sci. U. S. A. 116, 23753–23759
78. Beisser, J. et al. (2015) Speech-in-speech listening on the LISN-s test by older adults with good audiograms depends on cognition and hearing acuity at high frequencies. Ear Hear. 36, 24–41
79. Jorgensen, L.E. et al. (2016) The effect of decreased audiability on MMSE performance: a measure commonly used for diagnosing dementia. J. Am. Acad. Audiol. 27, 311–323
80. Dupuis, K. et al. (2019) Effects of hearing and vision impairments on the Montreal Cognitive Assessment. Aging. Neuropsychol. Cogn. 22, 413–437
81. Lim, M.Y.L. and Luo, J.H.Y. (2018) Screening an elderly hearing impaired population for mild cognitive impairment using minimal state examination (MMSE) and Montreal cognitive assessment (MoCA). Int. J. Geriatr. Psychiatry 33, 972–979
82. Al-Yaayer, F. et al. (2019) The Montreal Cognitive Assessment after omission of hearing-dependent subtests: psychometrics and clinical recommendations. J. Am. Geriatr. Soc. 67, 1689–1694
83. Wong, L.L.N. et al. (2014) Screening of cognitive function and hearing impairment in older adults: a preliminary study. Biomed. Res. Int. 2014, 867852
84. Jayakody, D.M.P. et al. (2018) A novel study on association between untreated hearing loss and cognitive functions of older adults: baseline non-verbal cognitive assessment results. Clin. Otoscopy 43, 162–191
85. World Health Organization (2000) Deafness and Hearing Loss, WHO
86. Humes, L.E. (2019) The World Health Organization’s hearing-impairment grading system: an evaluation for unaided communication in age-related hearing loss. Int. J. Audiol. 58, 12–20
87. Bowl, M.R. and Dawson, S.J. (2018) Age-related hearing loss. Cold Spring Harb. Perspect. Med. 9, a033217
88. Tsimplida, D. et al. (2019) Socioeconomic and lifestyle factors associated with hearing loss in older adults: a cross-sectional study of the English Longitudinal Study of Ageing (ELSA). BMJ Open 9, e013000
89. Scholes, S. et al. (2018) Socioeconomic differences in hearing among middle-aged and older adults: cross-sectional analyses using the Health Survey for England. BMJ Open 8, e019615
90. International Organization for Standardization (2017) ISO 7029: Acoustics – Statistical Distribution of Hearing Thresholds Related to Age and Gender, ISO