Effects of gamma radiation and post-operative cisplatin injection on the incorporation of bone allografts in rats

Vyrva O.Ye.1, ORCID: 0000-0003-0597-4472, e-mail: dr.olegvyrra@gmail.com
Holovina Ya.O.1, ORCID: 0000-0002-1605-9109, e-mail: dr.yanina.golovina@gmail.com
Ashukina N.O.1, ORCID: 0000-0002-0478-7440, e-mail: nataliya.ashukina@gmail.com
Malyk R.V.2, ORCID: 0000-0001-9070-4834, e-mail: dr.roman.malyk@gmail.com
Danyshchuk Z.M.1, ORCID: 0000-0003-2968-3821, e-mail: zinada1962@gmail.com

1Sytenko Institute of Spine and Joint Pathology, National Academy of Medical Sciences of Ukraine, Kharkiv, Ukraine
2Kharkiv Medical Academy of Postgraduate Education, the Ministry of Health of Ukraine, Kharkiv, Ukraine

Влияние гамма-излучения и послеоперационного внутривенной введения цисплатина на инкорпорацию костных алоимплантатов у шкур

Вирва О.Є., Головіна Я.О., Ашукіна Н.О., Малик Р.В., Данищук З.М., 2021

Мета роботи – дослідити структуру кісткової тканини після імплантації в дистальній метафіз стегнової кістки щурів алогеневого кісткового матеріалу, стерилізованого за допомогою γ-випромінювання або шляхом просочування антибіотиком, та післяоперативного внутрішньоочеревинного введення цисплатина.

Матеріали та методи. Експеримент виконано на 20 самців білих щурів (вік на початок експерименту 5–6 міс., маса тіла – 365,8 ± 6,4 г). Усім щуром виконували діагностичні дефекти у дистальній метафізі стегнової кістки, а також післярезекційні дефекти довгих кісток у разі їхнього ураження пухлинами.

Результати та їх обговорення. Через 30 діб після операції найменша кількість кісткової тканини (11,79%) утворилася в дефектах щурів групи Дослід-1, яким було встановлено стерилізований за допомогою γ-випромінювання алоімплантат на фоні внутрішньоочеревинного введення цисплатина. Дещо кращий результат виявився у групі Дослід-2 (стерилізація за допомогою радіації або шляхом просочування антибіотиком).

Заключення. Найдобреюші результати були досягнуті у групі Дослід-2 (стерилізація за допомогою радіації γ-випромінювання) – 31,64%. У контрольних групах (внутрішньоочеревинне введення хлориду натрію) відносний обсяг кісткової тканини становив 16,7% (Контроль-1, радіаційне γ-випромінювання) і 31,55%, а найменшим – у групі Дослід-1 – 12,79%.

Ключові слова: гамма-випромінювання, ремоделювання кісткових алоімплантатів, стерилізація, γ-випромінювання, цисплатин, щури.

Висновки. Визначено, що за умов використання для пластики метафізарних дефектів алоімплантатів без уведення цитостатика, а найменшим у групі Дослід-1 – 31,55%, а найменшим – у групі Контроль-2 – 12,79%.
Шир – у випадку заміщення дефект алоімплантатом, стерилізованим за допомогою радіаційного у-випромінювання, на фоні введення цитостатичного препарату.

Для цитування:

Вирва О.Є., Головіна Я.О., Ашукіна Н.О., Малик Р.В., Данищук З.М. Вплив у-випромінювання та післяоперативного введення цисплатіну на інкорпорацію кісткових алоімплантатів у шурів. Український радіологічний та онкологічний журнал. 2021. Т. 29. № 3. С. 51–62. DOI: https://doi.org/10.46879/ukroj.3.2021.51-62

Key words:
bone allograft remodeling; sterilization; gamma radiation; cisplatin; rats.

For correspondence:
Holovina Yanina Oleksandrivna
State Organization «Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine», bone tumor department; 80, Puskinska Str, Kharkiv, Ukraine, 61024; e-mail: dr.yanina.golovina@gmail.com

© Vyrva O.Ye., Holovina Ya.O., Ashukina NO., Malyk RV., Danyshchuk Z.M., 2021

ABSTRACT

Background. The reconstruction of long bone defects that occur after resection of tumors is a problem that requires constant study. Bone allografts are often used in this scenario. Unfortunately, while they are prepared, allografts partially lose their strength and osteoinductive properties; their survivability in oncological patients is only 40% after 10 years. This is why the search for superior allograft treatment methods and the study of allograft remodeling and incorporation in oncological patients, whose state has been affected by radiation or chemotherapy, is an area of interest.

Purpose – study the structure of bone tissue in the distal metaphysis of a rat’s femur after allograft implantation (sterilized using gamma radiation or antibiotic saturation) and post-operative intraperitoneal cisplatin injection.

Materials and Methods. Experiments were performed on 20 male white rats aged 5–6 months at the beginning of the experiment and weighed 365.8 ± 6.4g. All rats underwent a surgery that created a defect in the distal metaphysis of the femur which was filled with a bone allograft treated with gamma radiation (Control-1 and Experimental-1 groups) or saturated with an antibiotic (Control-2 and Experimental-2 groups). 14 days after allograft implantation, animals from the control groups received an intraperitoneal injection of 2.0–2.4 ml of 0.9% NaCl, while animals from the experimental groups received 2.5mg/kg of cisplatin. Histological analysis and histomorphometry were completed 30 days after the surgery.

Results. 30 days after the operation, the smallest relative area of bone tissue (11.79%) was observed in rats from the Experimental-1 group, with gamma radiation treated allografts and post-operative intraperitoneal cisplatin injections. A somewhat higher value was found in the Experimental-2 group (antibiotic saturation + cisplatin) – 31.64%. In the control groups, (intraperitoneal injection 0.9% NaCl), the relative area of bone tissue was 16.7% (Control-1, gamma radiation treatment) and 58.09% (Control-2, antibiotic saturation). The relative area of fibrous tissue was the largest in the Experimental-1 group – 31.55% and the smallest in the Control-2 group – 12.79%.

Conclusions. Allograft remodeling occurs along with the formation of bone and fibrous tissue when allografts are used to fill defects in the distal femoral metaphysis of rats. However, the relative percentages of those tissues depend on the allograft sterilization method and the use of cytostatic agents. The largest relative percentage of bone tissue (58.09%) was obtained using an allograft saturated with antibiotics and without the administration of cisplatin. The smallest (11.79%), on the other hand, occurred in gamma radiation treated allografts with cisplatin injected intraperitoneally after the operation.

For citation:
Vyrva O.Ye, Holovina Ya.O., Ashukina NO., Malyk RV., Danyshchuk ZM. Effects of gamma radiation and post-operative cisplatin injection on the incorporation of bone allografts in rats. Ukrainian journal of radiology and oncology. 2021;29(3):51–62. DOI: https://doi.org/10.46879/ukroj.3.2021.51-62

Зв’язок з науковими програмами, планами і темами

Стаття є фрагментом планової науково-дослідної роботи Державної установи «Інститут патології хребта та суглобів імені професора М.І. Ситенка Національної академії медичних наук України» «Розробити методики біореконструкції дефектів довгих кісток та суглобів при хірургічному лікуванні хворих з кістковими пухлинами», номер державної реєстрації: 0118U003215, шифр теми: ЦФ.2018.4.ХАМНУ, прикладна, термін виконання: 2018–2020 рр., керівник – головний лікар, завідувач відділу кісткової онкології, доктор медичних наук, професор Вирва О.Є.

Relationship with academic programs, plans and themes

The paper is part of the planned research project «To develop methodologies for bioreconstructing defects in long bones and joints during surgical treatment of patients with bone tumors» conducted by the Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine. State Registration Number: 0118U003215, topic code: ЦФ.2018.4.ХАМНУ, applied, term: 2018–2020, headed by Chief Medical Officer, Head of Bone Tumor Department. Doctor of Medical Sciences, Professor Vyrva O.Ye..
ВСТУП

Реконструкцію післяреакційних дефектів довгих кісток у разі їхнього ураження пухлинами є актуальною проблемою, що потребує постійного вивчення. Протягом декількох десятиліть у світі триває пошук «ідеального» імплантаційного матеріалу для цієї мети. Основними вимогами до імплантатів є їхня біоінертність, можливість замистити дефекти кісток різного розміру та форми, біосумісність із прилеглими тканинами реципієнта, міцність [1, 2]. Сьогодні використовують безліч технік для реконструкції великих дефектів кісток і суглобів. Серед них основними є кісткова пластика з використанням ауто-, ало- та ксенотранспланатів, дистракційний остеосинтез, заміщення дефектів біоматеріалами, модульне та індивідуальне ендопротезування [3–5].

Проте на сьогодні все більшою популярністю набувають комбіновані методи заміщення великих сегментарних дефектів кісток і суглобів, до яких належать: дистракційний остеогенез у поєднанні з кістковою аутопластикою, алоплазомозитне ендопротезування (allograft prosthesis composite – APC). Саме комбінація методик дозволяє звести до мінімуму недоліки їхньої переваги [6, 7]. Реконструкцію алотранспланатами дефектів кісток після видалення пухлин часто застосовують як досить ефективну методику хірургічного пікуючого хворих. Ця методика має певні переваги перед іншими (біологічна відновлення кісткової тканини, місць прикріплення м’язів до кістки), але відсоток ускладнень залежить високим, що обмежує можливості використання ало- транспланатів [8]. Найчастіше в онкологічних пацієнтів спостерігаються розвиток інфекційних ускладень (від 8,3 до 20 % [9–11]), переломи, утворення несправжніх суглобів (від 8 до 14%) і контрактур [12–14]. Рідше виникає розміцювання алотранспланату, що зумовлено погіршенням імунологічного стану хворих після поліхіміотерапії. За результатами різних досліджень, середній термін зрощення алотранспланату та кістки реципієнта становить близько 8 міс. [15, 16].

При заповненні великих за розмірами дефектів у кістковій онкології зазвичай використовують структурні та фрагментовані (гранулат, крихта) алоімплан- тати, які стерилізують за допомогою γ-випромінювання (15–35 kGy) [17], або низьких температур (fresh-frozen, temperatures below –75°C) [18]. Встановлено, що за умов використання fresh-frozen алотранспланатів підвищується ризик інфекційних ускладень [18], а оброблених за допомогою γ-випромінювання, особливо масивних, – ризик їхніх переломів. Оскільки радіація впливає на структурні властивості алотранспланатів, їх не рекомендується використовувати у випадках APC у вигляді масивних транспланатів. Удосконалення способів обробки кісткових ало- транспланатів, а також вивчення їхньої взаємодії з цитостатичними препаратами, є перспективним напрямком дослідження.

МЕТА РОБОТИ – дослідити структуру кісткової тканини після імплантації в дистальний метафіз стегнової кістки щурів алогенного кісткового матеріалу, стерилізованого за допомогою γ-випромінювання або шляхом просочування антибіотиком, а також вивчення внутрішньоочеревинного введення цисплатину.

INTRODUCTION

The reconstruction of long bone defects that occur after resection of tumors is a problem that requires constant study. For several decades, scientists all over the world are looking for the perfect implant material for this purpose. The main requirements for the bone implant include biointerface, the ability to replace defects of various sizes and shapes, compatibility with adjacent recipient tissue, and strength [1, 2]. Today, many different techniques are used to reconstruct large bone and joint defects. The main ones include filling the defects with autologous bone and joint defects, such as distraction osteogenesis using bone autografts and allograft prosthetics (APC), which are currently gaining in popularity. This combination of different methodologies makes it possible to minimize the disadvantages of each one and effectively utilize their advantages [6, 7].

Allograft reconstruction of bone defects that occur after tumor resection is a common and mostly successful method for surgically treating patients. This method has clear advantages over the rest (biological recovery of the bone tissue and neodermis attachment zones). However, the complications rate remains high, which limits the possibility of using allografts in this scenario [8]. The most common complications observed in oncological patients include infections (from 8.3% to 20% [9, 10, 11]), fractures, pseudoarthrosis (from 8% to 14%), and contractions [12–14]. More rarely, allograft resorption occurs, which is caused by a decline in the patient’s immunological status after polychemotherapy. As a result of several studies, the average length of time required for union between the allograft and recipient’s bone was determined to be approximately 8 months [15, 16].

In order to fill large bone defects, bone oncologists usually use structural and particulate (granular, bone chip) allografts that are sterilized using gamma radiation (15–35 kGy) [17], or low temperatures (fresh-frozen, temperatures below –75°C) [18]. It was determined that the use of fresh-frozen allografts increases the risk of infection [18], while sterilizing with gamma radiation increases the risk of allograft fracture. Since radiation affects the structure of the allograft, using large ones is not recommended in APC.

The refinement of treatment methods for bone allografts and study of their interaction with cytostatic drugs is a potential area for further research.

Objective – study the structure of bone tissue in the distal metaphysis of a rat’s femur after bone allograft implantation (sterilized using gamma radiation or antibiotic saturation) and post-operative intraperitoneal cisplatin injection.
Materials and Methods

Animals

The plan for the study was approved by the bioethics committee at the Sytynko Institute of Spine and Joint Pathology (Protocol No. 204 from 15.06.2020) in accordance with the Ukrainian Law «On the Protection of Animals from Brutal Treatment», the European Convention for the Protection of Vertebrate Animals used for Experimental and Other Scientific Purposes (Strasbourg, 1986) and Directive 2010/63/EU [20, 21].

Experiments were performed on 20 male white rats from the population of the experimental biological clinic of the Sytynko Institute of Spine and Joint Pathology. The animals were aged 5-6 months at the beginning of the experiment and weighed 365.8 ± 6.4 g. There were 5 rats in each cage, with surrounding temperatures of 22–24°C and a 12-hour light period, and access to food and water.

Study design

All rats underwent a surgery that created a defect in the distal metaphysis of the femur and were randomly divided into groups depending on the material used to fill the defect and whether cisplatin was used:

- Control-1 (n=5) and Experimental-1 (n=5) – allografts (diameter 2 mm, height 3 mm) sterilized with gamma radiation;
- Control-2 (n=5) and Experimental-2 (n=5) – allografts (diameter 2 mm, height 3 mm) saturated with Ceftriaxone.

14 days after allograft implantation, animals from the control groups received an intraperitoneal injection of 2.0–2.4 ml of 0.9% sodium chloride («Novofarm-Biosintes» LLC, Ukraine), while animals from the experimental groups received 2.5 mg/kg of cisplatin (EBEWE Pharma GmbH Nfg, KG, Austria) [22].

The animals were euthanized by administering a lethal dose of anesthetic (sodium thiopental, 90 mg/kg intramuscularly) 30 days after the surgery.

Preparation of bone allografts

Cancellous bone allografts (diameter 2 mm, height 3 mm) were prepared from the femoral and tibial metaphyses of 5 donor rats using previously defined methods [23]. Allografts were sterilized using gamma radiation (15–25 Kgy) or submerged for 24 hours in a 4°C Ceftriaxone solution («Kyivmedpreparat» PJSC in «ARTERIUM LTD», Ukraine) with 0.9% sodium chloride as the solvent. 1g of Ceftriaxone was dissolved per 10 ml of solvent.

Surgery

The operations were completed in aseptic and antiseptic conditions under general anesthesia (ketamine, 50 mg/kg) after the fur was shaved off the
Histology

Femurs that were operated on were taken out, cleaned of soft tissues, and stored in 10% neutral formaldehyde. After 4 days, the bones were placed in 10% formic acid to decalcify and a distal metaphysis with the implantation area was cut out of each bone. The distal metaphyses of the femurs were dehydrated in isopropyl alcohols of increasing concentration and a mixture of paraffin and xylene (1:1), and embedded into paraffin. Frontal histological sections 5–6 µm in width were stained using hematoxylin and eosin (H&E) and Van Gieson’s stain, and analyzed under a BX63 light microscope (Olympus, Japan). Digital images were obtained using a DP 73 camera (Olympus).

Histomorphometry

Using the «Cell Sens Dimention 1.8.1» software (Olympus, 2013), the areas of newly formed tissues (bone and fibrous) were measured in two central sections for each animal. After measurement, the percentage of bone tissue (B%) and fibrous tissue (F%) relative to the total area of the defect was calculated.

Statistical analysis

The results of the measurements are presented as medians (Me) and percentiles (25% and 75%). The Mann–Whitney U-test was used to analyze the effect of the allograft sterilization method (gamma radiations or Ceftriaxone saturation) on the relative areas of the newly-formed tissue in the defect. Statistical analysis was conducted using the IBM Statistics SPSS 23 software. The critical level of significance was accepted to be 0.05.
РЕЗУЛЬТАТИ ТА ЇХ ОБГОВОРЕННЯ

Під час гістологічного дослідження в дефектах стегнових кісток щурів груп Контроль-1, Дослід-1 і Дослід-2 виявлено фрагменти алотрансплантату, сполучну та новоутворену кісткову тканини (рис. 2).

RESULTS AND DISCUSSION

During histological study of the femoral defects of rats from the Control-1, Experimental-1, and Experimental-2 groups, fragments of the allograft, fibrous and newly-formed bone tissues were discovered (fig. 2).

| Рис. 2. Показана перебудова алоімплантату з утворенням цільної сполучної та новоутворені кісткової тканини у всіх групах. Сполучну тканину в ділянці дефекту кортексу виявлено у щурів груп Контроль-1, Дослід-1 і Дослід-2, а явища лізису навколо фрагментів алоїмплантату – у групі Дослід-1. У групі Контроль-2 показана перебудова алоімплантату з утворенням губчастої кісткової тканини пластинчастої структури, сформований кортекс і періост. Гематоксілін та еозин. A – allofraft, F – fibrous tissue, B – newly formed bone, γ-rays – γ-ray

*Fig. 2. The remodeling of allografts with the formation of dense fibrous tissue and bone tissue is shown in all groups, while fibrous tissue only formed in the area of the cortical defect in Control-1, Experimental-1, and Experimental-2 groups. Lysis formation only occurred around allograft fragments in the Experimental-1 group. In the Control-2 group, cancellous bone tissue of the lamellar structure and periosteum were formed. H&E.

A – allofraft, F – fibrous tissue, B – newly formed bone, γ-rays – gamma radiation.

Images from section B are fragments of images from section A*
Сполучна тканина була щільною, містіла фіброцити зі світлою цитоплазмою та гіперхромними ядрами, густина яких була високою. Новутворені кісткові trabecули розташовувалися по периферії дефекту, на межі з материнською кісткою, а у групах Контроль-1 і Дослід-2 вони також нашаровувалися на фрагменти алолімплантату. У новутворених кісткових trabecулах визначали остеоцити, розташовані в lacunaх, із гіперхромними ядрами та незначною за обсягом цитоплазмою. На зовнішній поверхні trabecул розташовувалися активні остеобласти, що свідчить про функціонально активні остеобласті, оброблених радіацією. З результатами гістоморфометрії встановлено, що з використанням алолімплантату, обробленого радіацією, В% була меншою за F%: у групі Контроль-1 – в 1,66 разу (p=0.004), Дослід-1 – у 2,8 разу (p<0,001). У групі Дослід-2, навпаки, показник В% перевищував F% в 1,9 разу (p<0,001) (рис. 3).

Відновлення кортексу не встановлено – у зоні дефекту відчуття була щільністю яскраво-червоного і жовтого кісткового мозку. Новоутворені trabecули формували сполучну тканину пластинчастої структури та густину яких була високою. Новоутворені trabecули у групах Контроль-1, Дослід-1 і Дослід-2 був з ознаками перебудови. У його розширених каналах проростали кровнооснащені судини, малодиференційовані клітини, утворювалися осередки пухкої сполучної тканини. Навколо окремих фрагментів алолімплантату у групі Дослід-1 спостерігали осередки лізису. Відновлення кортексу не встановлено – у зоні дефекту на цьому рівні розташовувалась цільна сполучна тканина (див. рис. 2).

Рис. 3. Відносна площа утворених у дефекті тканин. Дані подані як медиана та процентилі (25% і 75%)

Fig. 3. The relative percentages of tissues formed in the defect. The data is presented as median and percentiles (25% and 75%)

Алотрансплантат у групах Контроль-1, Дослід-1 і Дослід-2 був з ознаками перебудови. У його зон відкритих каналів проростали кровнооснащені судини, малодиференційовані клітини, утворювалися осередки пухкої сполучної тканини. Навколо окремих фрагментів алолімплантату у групі Дослід-1 спостерігали осередки лізису. Відновлення кортексу не встановлено – у зоні дефекту на цьому рівні розташовувалась цільна сполучна тканина (див. рис. 2).

Контроль-2 (алолімплантат стерилізовано радіацією, імплантуваний комбінованим радіаційним i випромінюванням, В% була меншою за F%: було 1.66 разу (p=0,001). У групі Дослід-2, навпаки, показник В% перевищував F% в 1.9 разу (p<0,001) (рис. 3).

The fibrous tissue was dense and contained large numbers of fibrocytes with light-colored cytoplasm and hyperchromic nuclei. Newly-formed bone trabeculae were located on the perimeter of the defect, specifically on the border of the host bone. In the Control-1 and Experimental-2 groups, the trabeculae also formed right on the surface of the allograft. Osteocytes with hyperchromic nuclei and cytoplasm of relatively small size were found in the lacunae of the trabeculae. Functionally active osteoblasts were located on the surface of the trabeculae, which is evidence for reparative osteogenesis occurring in those areas.

As a result of the histomorphometry, it was determined that when allografts were sterilized using gamma radiation, B% was lower than F%: by 1.66 times (p=0.004) in the Control-1 group, by 2.8 times (p<0.001) in the Experimental-1 group. On the contrary, in the Experimental-2 group, B% was higher than F% by 1.9 times (p<0.001) (fig.3).

The allografts in the Control-1, Experimental-1 and Experimental-2 groups showed evidence of remodeling. Blood capillaries and undifferentiated cells grew deep into the allograft, where loose fibrous tissue was also observed. Lysis was found around some of the allograft fragments in the Experimental-1 group. Recovery of the cortical layer of the distal femoral metaphysis was not observed – dense fibrous tissue was located in that area (fig. 2).

The structure of the defect differed in the Control-2 group (allograft sterilized through saturation with antibiotic, intraperitoneal injection of 0.9% NaCl) in comparison with the other groups. Specifically, the allograft was almost completely remodeled, with cancellous bone tissue of the lamellar structure and red and yellow bone marrow forming in its place. Newly-formed bone trabeculae formed close to one another and perpendicular to the bone axis. A large number of brightly-colored osteocytes were found inside the trabeculae (fig. 2). As opposed to the other experimental groups, newly-formed bone tissue was also located in the cortical defect and was firmly connected
На відміну від інших експериментальних груп, новоутворена кісткова тканина розташовувалася також у дефекті кортексу, щільно контактуючи з материнським. В% новоутвореної кістки перевищувала показник в Контроль-1 групі в 3,46 разу (p<0,001) (рис. 3). Подекуди між новоутвореними трабекулами спостерігали сполучну ткань з невисокою щільністю клітин, відносна площа якої була меншою у 2,1 раз порівняно з показником в Контроль-1 групі (p<0,001) і в 4,54 раз порівняно з В% (p<0,001). Відмічали осередки періостального та ендостального кісткоутворення. Періост над ділянкою у Контроль-1 (p<0,001) і в 4,54 разу порівняно з В% якої була меншою у 2,1 раз порівняно з показником.

Загальні ознаки з’явилися також в жодному випадку. У материнській кістці в разі використання ціостата-тину відмічені явища деструкції – розшарування місць яка є одним із джерел для регенерації кістки [29]. Зустрічалися фрагменти кісткової тканини з невисокою щільністю клітин, відносна площа новоутворених трабекул спостерігали сполучну тканину з невисокою щільністю клітин, відносна площа новоутвореної кісткової тканини розташовувалася також в дефекті кортексу, щільно контактуючи з материнським. У дефекті кортексу, щільно контактуючи з материнським.

Обговорення
Кісткові аплоімплантати часто застосовують для реконструкції великих дефектів кісток після видалення пухлин, оскільки їх отримання ускладнює необхідність виконання додаткового болісного хірургічного втручання та проблеми із донорською ділянкою порівняно з аутол-огічим матеріалом. Проте, на жаль, під час виготов-лення кісткові апоімплантати частково втрачають властивості місць яка є одним із джерел для регенерації кістки [29]. Зустрічалися фрагменти кісткової тканини з невисокою щільністю клітин, відносна площа новоутвореної кісткової тканини розташовувалася також в дефекті кортексу, щільно контактуючи з материнським.

У материнській кістці в разі використання ціостата-тину відмічені явища деструкції – розшарування місць яка є одним із джерел для регенерації кістки [29]. Зустрічалися фрагменти кісткової тканини з невисокою щільністю клітин, відносна площа новоутвореної кісткової тканини розташовувалася також в дефекті кортексу, щільно контактуючи з материнським.

У проведеному дослідженні виявлена перебудова відновлена кісткового транспланту у залежності від спо-собу його стерилізації (γ-випромінювання або насичення антибіотиком), а також від використання цисплатину в післяоперативному періоді. Аллотранспланти розмі-щували в дірчастих дефектах, виконаних у дистальному метафізі стеноїв кістки щурів. Коли минуло 14 днів після імплантації, тваринам внутрішньочеревно вводили 2,0–2,4 мл розчину 0,9% натрію хлориду (групи Контроль-1 та Контроль-2) або 2,5 мг/кг цисплатину (групи Дослід-1 та Дослід-2).

Через 30 діб після операції виявлено перебудову аллотрансплантатів з утворенням сполучної та кісткової тканин, проте їхній вміст відрізнявся в досліджуваних групах. Зараз, найгірший результат з отримання від новоутвореної кісткової тканини (11,79%) отримано в групі Дослід-1, де в дефекті розміщувалися стерилізовані за допомогою γ-випромінювання алоімплантати на фоні внутрішньочеревного введення цисплатину. Це пояснюється негативним впливом відсутності двох чинників. З одного боку, відсутність γ-випромінювання призводить до зниження механічних характеристик та періоду виживання кісткових алоімплантатів, що зумовлено реакцією від неповного зниження колагену в кістковому матриксі [17, 19, 25]. З іншого боку, виявлено, що післяоперативне введення цисплатину суттєво зменшує розрізьблення алоімплантату у дефекті кістки [26], значно пригнічує кісткоутворення в разі дистракційного остеогенезу [27, 28]. Показано, що цисплатин інгібує проліферацію та стимулює апоптоз мезенхімальних стromalних клітин кісткового мозку, які є одним із джерел для регенерації кістки [29].

Discussion
Bone allografts are often used to reconstruct large bone defects that occur after tumor resection because the method using which allografts are obtained do not require additional painful surgery and makes it possible to avoid issues with the donor site, as opposed to auto- grafts. Unfortunately, while they are prepared, allografts partially lose their strength and osteoinductive properties; their survivability in oncological patients is only 40% after 10 years [11, 24]. This is why the search for superior allograft treatment methods and the study of allograft remodeling and incorporation in oncological patients, whose state has been affected by radiation or chemotherapy, is an area of interest.

This study evaluated the effect of different sterilization methods (gamma radiation or antibiotic saturation) and post-operative injections of cisplatin on the remodeling of allografts. Allografts were placed in the transcortical defects of distal femoral metaphyses in rats; 14 days after the operation, the animals received an intraperitoneal injection of 2.0 – 2.4 ml of 0.9% NaCl (Control-1 and Control-2 groups) or 2.5mg/kg of cisplatin (Experimental-1 and Experimental-2 groups).

30 days after the operation, remodeled allografts, parts of which were replaced with bone and fibrous tissue, whose areas varied between groups, were observed in the defects. The worst result, from the perspective of bone tissue formation, (11.79%) was reached in the Experimental-1 group, when allografts were sterilized using gamma radiation and cisplatin was injected intraperitoneally after the operation. This finding can be explained by the influence of two negative factors. On one hand, it is known that sterilizing using gamma radiation leads to a decrease in biomechanical properties and lifespan of bone allografts, which is caused by the destruction of collagen in the bone matrix [17, 19, 25]. On the other hand, it was found that post-operative injection of cisplatin significantly decreases the resorption ability of the allograft and bone formation [26], and significantly reduces bone formation during distraction osteogenesis [27, 28]. It was demonstrated that cisplatin inhibits the proliferation and stimulates the apoptosis of mesenchymal stem cells of the bone marrow, which are one of the sources of bone regeneration [29]. Consequently, the removal of one of those factors made it possible to obtain an increased relative percentage of bone tissue: in the Experimental-2 group (antibiotic saturation + cisplatin) – 31.64%.

Original research
У результаті морфологічного дослідження визна-чено, що за умов використання для пластикі фізарних дефектів стегнової кістки щурів кісткових алоімплантатів відбувається їх перебудова з утворенням кісткової та сполучної тканини. Проте відносний вміст кісткової тканини значно знижується від шарових алотрансплантатів і використання цитостатика. Зокрема, найбільший вміст сполучної тканини (58,09%) виявлено в групі Контроль-1, де були відсутні обидва негативні чинники (внутрішньоочеревинне введення 0,9 % натрію хлориду + антибіотик). Це було очікувано найкращий результат.

Вміст сполучної тканини виявився найбільшим у групі Дослід-2 (стерилізація антибіотиком + цитостатик) – 31,64 %. Проте цей показник був значно меншим порівняно з групою Контроль-1 (58,09 %), де були відсутні обидва негативні чинники (внутрішньоочеревинне введення 0,9 % натрію хлориду + антибіотик). Це було очікувано найкращий результат.

Вміст сполучної тканини виявився найбільшим у групі Дослід-1 – 31,55 %. Це може бути зумовлено гострою запальною реакцією, яку викликають оброблені γ-випромінюванням алоімплантати після введення та яка може призвести до їхнього підійому і виявлення значної кількості сполучної тканини [30]. Науковець відомий вміст сполучної тканини спостерігали в групі Контроль-2 – 12,79 %.

Порівнюючи результати світових досліджень з отриманими в даному дослідженні, можна зробити висновок, що поєднання γ-випромінювання для стерилізації кісткових алотрансплантатів із застосуванням цитостатичного хіміоперепарату (цистатик) призводив до регенерації кістки. Доведено також негативний вплив цитостатиків на процес інкорпорації алотрансплантату (Дослід-1).

ВИСНОВКИ

As a result of the conducted study, it was determined that when allografts are used to fill defects in the distal femoral metaphysis of rats, allograft remodeling occurs along with the formation of bone and fibrous tissue. However, the relative percentages of these tissues depend on the allograft sterilization method and the use of cytostatic agents. The largest relative percentage of bone tissue (58.09%) was obtained using an allograft saturated with antibiotics and without the administration of cisplatin. The smallest (11.79%), on the other hand, occurred in gamma radiation treated allografts with cisplatin injected intraperitoneally after the operation.

REFERENCES

1. Sohn HS, Oh JK. Review of bone graft and bone substitutes with an emphasis on fracture surgeries. Biomaterials Research. 2019; Vol. 23. 9 p. DOI: 10.1186/s40824-019-0157-y
2. Baldwin P, Li DJ, Auston DA, Mir HS, Yoon RS, Koval KJ. Autograft, allograft, and bone graft substitutes: clinical evidence and indications for use in the setting of orthopaedic trauma surgery. Journal of Orthopaedic Trauma. 2019; 33(4):203-13. DOI: https://doi.org/10.1097/BOT.0000000000001420
3. Perez JR, Jose J, Mohile NV, Boden AL, Greif DN et al. Limb salvage reconstruction: Radiologic features of common reconstructive techniques and their complications. Journal of Orthopaedics. 2020; Vol. 21. P. 183–191. DOI: https://10.1016/j.jor.2020.03.043
4. Lesensky J, Prince DE. Distraction osteogenesis reconstruction of large segmental bone defects after primary tumor resection: pitfalls and benefits. European journal of orthopaedic surgery & traumatology: orthopedic traumatology. 2017; Vol. 27. № 6. P. 715–727. DOI: 10.1007/s00590-017-1995-5
5. Gautam D, Arora N, Gupta S, George J, Malhotra R. Megaprostheses Versus allo prostheses for the management of massive skeletal defects: a meta-analysis of comparative studies. Current reviews in Musculoskeletal Medicine. 2021; Vol. 14(3). P. 255–270. DOI: https://doi.org/10.1007/s12178-021-09707-6
6. Reif T, Schoch B, Spiguel A, Elhassan B, Wright T et al. A retrospective review of revision proximal humeral allograft-prosthetic composite procedures: an analysis of proximal humeral bone stock restoration. Journal of Shoulder and Elbow Surgery. 2020; 29(7). P. 1363–1358. DOI: https://doi.org/10.1016/j.jse.2019.10.029
7. Vyrva OE, Golovina YaA, Malyk RV. Allocomposite arthroplasty in the surgical treatment of patients with malignant tumors of the long bones.

СПИСОК ВИКОРИСТАНОЇ ЛІТЕРАТУРИ

1. Sohn HS, Oh JK. Review of bone graft and bone substitutes with an emphasis on fracture surgeries. Biomaterials Research. 2019;23(9). (In English). DOI: https://doi.org/10.1186/s40824-019-0157-y
2. Baldwin P, Li DJ, Auston DA, Mir HS, Yoon RS, Koval KJ. Autograft, allograft, and bone graft substitutes: clinical evidence and indications for use in the setting of orthopaedic trauma surgery. Journal of Orthopaedic Trauma. 2019;33(4):203–13. (In English). DOI: https://doi.org/10.1097/BOT.0000000000001420
3. Perez JR, Jose J, Mohile NV, Boden AL, Greif DN et al. Limb salvage reconstruction: Radiologic features of common reconstructive techniques and their complications. Journal of Orthopaedics. 2020;21:183–191. DOI: https://doi.org/10.1016/j.jor.2020.03.043
4. Lesensky J, Prince DE. Distraction osteogenesis reconstruction of large segmental bone defects after primary tumor resection: pitfalls and benefits. European journal of orthopaedic surgery & traumatology: orthopedic traumatology. 2017;27(6):715–27. (In English). DOI: https://doi.org/10.1007/s00590-017-1995-5
5. Gautam D, Arora N, Gupta S, George J, Malhotra R. Megaprostheses Versus allo prostheses in the management of massive skeletal defects: a meta-analysis of comparative studies. Current reviews in Musculoskeletal Medicine. 2021;14(3):255–70. (In English). DOI: https://doi.org/10.1007/s12178-021-09707-6
6. Reif T, Schoch B, Spiguel A, Elhassan B, Wright T et al. A retrospective review of revision proximal humeral allograft-prosthetic composite procedures: an analysis of proximal humeral bone stock restoration. Journal of Shoulder and Elbow Surgery. 2020;29(7):1353–58. (In English). DOI: https://doi.org/10.1016/j.jse.2019.10.029
7. Vyrva OE, Golovina YaA, Malyk RV. Allocomposite arthroplasty in the surgical treatment of patients with malignant tumors of the long bones.
честивими опілками дільних костей. Ортопедап, травматолог, протезувальник. 2015. № 2. С. 120–125. DOI: https://doi.org/10.15674/0030-5987/20152120-125
8. Gharagedaghi M., Peivandi M.T., Maztomi H.R., Hasan M. et al. Evaluation of clinical results and complications of structural allograft reconstruction after bone tumor surgery. Arch Bone Joint Surg. 2016. Vol. 4(3). P. 236–242. URL: https://pubmed.ncbi.nlm.nih.gov/27517069/
9. Misaghi A, Goldin A, Awad M, Kulidjian AA. Osteosarcoma: a comprehensive review. SICTO-J. 2018;4:12. (In English). DOI: https://doi.org/10.1051/sicot/2017028
10. MacDonald DJ, McGuire MH. Complications with large fragment allografts. Complications of Limb Salvage: Prevention, Management and Outcom. 1991. P. 25–27.
11. AponteTinao LA, Ayerza MA, Albergo JF, Farfalli GL. Do massive allograft reconstructions for tumors of the femur and tibia survive 10 or more years after implantation? Clinical Orthopaedics and Related Research. 2020. Vol. 478(3). P. 517–524. DOI: https://doi.org/10.1097/ CORR.0000000000001000014
12. Hornick J.F., Gebhardt M.C., Tomford W.W., Sorger J.J., Zavattal M. et al. Factors affecting nonunion of the allograft-host junction. Clinical Orthopaecs and Related Research. 2001. № 382. P. 87–98. DOI: https://doi.org/10.1097/00003086-20011000-00014
13. Li, J., Chen, G., Lu, Y., Zhu, H., Ji, C., Wang, Z. Factors influencing osseous union following surgical treatment of bone tumors with use of the Capanna Technique. The Journal of Bone and Joint Surgery. American volume. 2019. Vol. 101(22). P. 2036–2043. DOI: https://doi.org/10.2106/JBJS.19.00380
14. Struckmann V., Schmidmaier G., Bertert F., Kneser U., Kremer T. Reconstruction of extended bone defects using massive allografts combined with surgical angiogenesis: a case report. Clinical Orthopaedics and Related Research. 2017. Vol. 7(1). e10 р. DOI: https://doi.org/10.1097/ CORR.0000000000001806
15. Ogirk P.T., Teunissen F.R., Masser J.R., Raskin K.A., Schwab J.H. Allograft reconstruction of the humerus: Complications and revision surgery. Journal of Surgical Oncology. 2019. Vol. 119(3). P. 329–335. DOI: https://doi.org/10.1002/jso.25309
16. Віра О.Є., Головіна Р.О., Мільчук Р.В., Головіна О.О. Системний огляд та метагенерування результатів модулювального й алломономного захисту від змивування інфекції в кістково-суглобових ділянках після ревізії рухомих частин кісткового конструкту. Ортопедап, травматологія і проємологія. 2020. № 2. С. 15–16. DOI: https://doi.org/10.15674/0030-5987/202025-15
17. Нговеро К., Сібіра Г.С., Форвуд М.Р. Вплив гамма-іонізації на біологію і біомеханіку алогенного біоматеріалу: пат. 119699 Україна: № а201709455; заявл. 27.09.2017; опубл. 25.09.2019, Бюл. № 14. DOI: https://doi.org/10.1007/s11999-015-4589-y
18. Gundle KR. CORR Insights®: Do massive allograft reconstructions for tumors of the femur and tibia survive 10 or more years after implantation? Clinical Orthopaedics and Related Research. 2020;478(3):517–24. (In English). DOI: https://doi.org/10.1097/CORR.0000000000001000014
19. Li, J., Chen, G., Lu, Y., Zhu, H., Ji, C., Wang, Z. Factors influencing osseous union following surgical treatment of bone tumors with use of the Capanna Technique. The Journal of Bone and Joint Surgery. American volume. 2019. Vol. 101(22). P. 2036–2043. DOI: https://doi.org/10.2106/JBJS.19.00380
Кожен автор засвідчує відсутність фінансової підтримки або комерційного зв'язку з фармацевтичними компаніями.

ВІДОМОСТІ ПРО АВТОРІВ

Вирва Олег Євгенович — доктор медичних наук, професор, головний лікар, завідувач відділу кісткової онкології Державної установи «Інститут патології хребта та суглобів імені професора М.І. Ситенка Національної академії медичних наук України»; вул. Пушкінська, буд. 80, м. Харків, Україна, 61024; e-mail: dr.olegvyrva@gmail.com

Головіна Яніна Олександрівна — кандидат медичних наук, старший науковий співробітник відділу кісткової онкології Державної установи «Інститут патології хребта та суглобів імені професора М.І. Ситенка Національної академії медичних наук України»; вул. Пушкінська, буд. 80, м. Харків, Україна, 61024; e-mail: dr.yanina.golovina@gmail.com

Ашукіна Наталія Олександрівна — кандидат біологічних наук, старший науковий співробітник відділу кісткової онкології Державної установи «Інститут патології хребта та суглобів імені професора М.І. Ситенка Національної академії медичних наук України»; вул. Пушкінська, буд. 80, м. Харків, Україна, 61024; e-mail: nataliya.ashukina@gmail.com

Конфлікт інтересів

Кожен автор засвідчує відсутність фінансової підтримки або комерційного зв'язку з фармацевтичними компаніями, виробниками біомедичних пристроїв, іншими організаціями, що можуть бути зацікавлені в результатіх досліджень. Кожен автор засвідчує відсутність фінансової підтримки або комерційного зв'язку з фармацевтичними компаніями, виробниками біомедичних пристроїв, іншими організаціями, що можуть бути зацікавлені в результатіх досліджень.

Список літератури

28. Li Z., Meyers C.A., Chang L., Lee S., Tomlinson R. et al. Fracture repair requires TrkA signaling by skeletal sensory nerves. *The Journal of clinical investigation*. 2019. Vol. 129(12). P. 5137–5150. DOI: https://doi.org/10.1172/JCI128428

29. Ke B., Shi L., Xu Z., Wu G., Gong Y., Zhu L. et al. Flavored Guilu Erxian decoction inhibits the injury of human bone marrow mesenchymal stem cells induced by cisplatin. *Cellular and Molecular Biology*. 2018. Vol. 64(6). P. 58–64.

30. Russell N., Oliver R.A., Walsh W.R. The effect of sterilization methods on the osteoconductivity of allograft bone in a critical-sized bilateral tibial defect model in rabbits. *Biomaterials*. 2013. Vol. 34(33). P. 8185–8194. DOI: https://doi.org/10.1016/j.biomaterials.2013.07.022

Фондовання видатками Державного бюджету України.

Інформація про фінансування

Фінансування видатками Державного бюджету України.

Подяка

Автори вдячні Оксані Майбороді, яка надала технічну підтримку в підготовці алотрансплантатів; Михайлу Іващенку, який редагував рукопис англійською.

Внесок автора:

Внесок автора: розроблення дизайну дослідження та хімічне корегування остаточного варіанту статті.

Внесок автора:

Внесок автора: розроблення дизайну дослідження, планування та виконання експериментів на тваринах.

Внесок автора:

Внесок автора: виконання істотологічного аналізу та інтерпретація отриманих результатів; написання першого варіанту рукопису.

Моб.: +38 (067) 508-38-79
e-mail: nataliya.ashukina@gmail.com

tel.: +38 (050) 402-72-43.

Моб.: +38 (050) 323-04-82
e-mail: dr.olegvyrva@gmail.com
Малик Роман Васильович — кандидат медичних наук, асистент кафедри травматології та ортопедії Харківської медичної академії післядипломної освіти Міністерства охорони здоров’я України; вул. Пушкінська, буд. 80, м. Харків, Україна, 61024; e-mail: dr.roman.malyk@gmail.com
моб.: +38 (050) 515-05-50

Внесок автора: планування та виконання експериментів на тваринах.

Малик Roman Vasylyovych — Candidate of Medical Sciences, Assistant of Orthopaedics, Traumatology Department, Kharkov Medical Academy of Postgraduate Education of the Ministry of Health of Ukraine; 80, Pushkinska Str., Kharkiv, Ukraine, 61024; e-mail: dr.roman.malyk@gmail.com
tel.: ++38 (050) 515-05-50

Author’s contribution: carried out the experiments.

Данищук Зінаїда Миколаївна — науковий співробітник лабораторії морфології сполучної тканини Державної установи «Інститут патології хребта та суглобів імені професора М.І. Ситенка Національної академії медичних наук України»; вул. Пушкінська, буд. 80, м. Харків, Україна, 61024; e-mail: zinada1962@gmail.com
моб.: +38 (099) 935-42-57

Внесок автора: виконання гістоморфометрії та інтерпретація отриманих результатів.

Данищук Zinaida Mykolayvna — Researcher of The Laboratory of Connective Tissue Morphology, Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine; 80, Pushkinska Str., Kharkiv, Ukraine, 61024; e-mail: zinada1962@gmail.com
tel.: +38 (099) 935-42-57

Author’s contribution: performed the histomorphometry and interpreted the data.

Рукопис надійшов-Manuscript was received 21.09.2021
Отримано після рецензування-Received after review 28.09.2021
Прийнято до друку-Accepted for printing 29.09.2021
Опубліковано-Published 29.09.2021