ImputAccur: fast and user-friendly calculation of genotype-imputation accuracy-measures

Thormann Kolja A ¹, Tozzi Viola ², Starke Paula ², Bickeböller Heike ², Baum Marcus ¹, Rosenberger Albert ²

1. Institute of Computer Science, Georg-August-University Göttingen, 37077 Göttingen, Germany
2. Department of Genetic Epidemiology, University Medical Center Göttingen, 37079 Göttingen, Germany

Abstract

Summary: *ImputAccur* is a software tool for genotype-imputation accuracy-measures. Imputation of untyped markers is a standard approach in genome-wide association studies to close the gap between directly genotyped and other known DNA variants. However high accuracy for imputed genotypes is fundamental. Several accuracy measures have been proposed, but unfortunately, they are implemented on different platforms, which is impractical. With *ImputAccur* the accuracy measures info, Iam-hiQ and r²based indices can be derived from standard output-files of imputation software. Sample/probe and marker filtering is possible. This allows e.g. accurate marker filtering ahead of data analysis. A Python code is available but also a stand-alone executable file.

Availability and Implementation: The source code (Python version 3.9.4), a stand-alone executable file, and example data for *ImputAccur* are freely available at

https://gitlab.gwdg.de/kolja.thormann1/imputationquality.git.

Supplementary Information: Supplementary information is available at *Bioinformatics* online.

Contact: arosenb@gwdg.de or koljaalexander.thormann@uni-goettingen.de
1. Introduction
Commercial single nucleotide polymorphism (SNP) microarrays are used to genotype DNA samples for genome-wide association studies (GWAS). Usually, between 300,000 and 4 million variants are genotyped. Imputation methods have been developed to close the gap between genotyped and existing DNA variants (Hickey et al., 2013; Das et al., 2018; Marchini and Howie, 2010). Most methods estimate a-posteriori genotype probabilities $p_{g,i,m}$ (one of three possible genotypes g) for each untyped SNP/variant/marker m and each individual i in the sample of interest. The resulting increased variant density improves the genomic coverage and may raise the power to detect associations with a trait (Winkler et al., 2014). Quality control of the imputation is essential, e.g. to exclude poorly imputed variants from statistical analysis. Several quality indices have been developed and are routinely applied in studies (Marchini and Howie, 2010; Das et al., 2018; Browning and Browning, 2009). These comprise inter alia MACH’s r^2, BEAGLES’s r^2, IMPUTE2’s info or the recently proposed Iam hiQ, including a regional classification across markers (Rosenberger et al., 2022). Unfortunately, these accuracy measurements are implemented on different platforms. With ImputAccur a comfortable use of all these indices is possible. Details and equations of these accuracy indices are summarized in a supplement.

2. Format specifications
ImputAccur requires the user to provide marker information (leading information) along with the estimated genotype probabilities (dosages) as an input-file, which is a plain text file (or zipped). These are standard files from imputation software. Each row contain information on one marker. The second and third columns should contain [2] a unique marker name and [3] its physical position (e.g. on the chromosome). Probabilities for the genotypes 0, 1 and 2 of each
sample/individual can be contained in 3 (summing to 1) or 2 (will amended to one) columns. Missing or inaccurate imputations are indicated by negative values. Hence, the number (no.) of rows in the input-file equals to the no. of genomic markers; the no. of columns equals to the no. of leading columns $+ \frac{2}{3}$ time the no. of samples/individuals.

An additional input-file for *ImputAccur* should be a parameter-file (params.txt), which is needed to specify the basic settings of the input-files (e.g. no. of leading columns, $2/3$ genotype probabilities) and for program control (e.g. name and path of input-file). There is also the option to specify files containing either markers (matching to marker names) or samples/individuals (numbers matching to column order in the input-file) to be excluded from the calculation.

3. **Launching the application**

To invoke the Python code of *ImputAccur* the user may use the following command structure:

```python
runfile('[NAME OF PROGRAM].py', args='-f params.txt')
```

Alternatively, one can run *ImputAccur* as executable file (*ImputAccur.exe*) or without the parameter-file (e.g. at a Windows operating system). The program will then ask for entering the parameters interactively.

4. **Example**

Assume your input-file (see example *test1* in the *Supplementary Information*) contains information of 7 SNPs in three leading columns and 3 genotype probabilities each of 5 samples/individuals. Hence, the file has 7 rows and $3+3\times5=18$ columns. Because the SNP rs00001, rs00003 and rs00004 are quality control markers, these are listed in the file *exclude_SNP.txt*. Because individual 1 and 2 are external controls, these are listed in *exclude_PROBE.txt*.
This is the input-file \((test1.imputed)\):

1 rs00001 913 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
2 rs00002 402 0.01 0.99 0.01 0.99 0.01 0.99 0.01 0.99 0.01 0.99 0.01 0.99 0.01 0.99 0.01 0.99 0.01 0.99 0.01 0.99
3 rs00003 644 0.333 0.334 0.333 0.333 0.334 0.333 0.333 0.333 0.333 0.334 0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.333
4 rs00004 222 0.25 0.5 0.25 0.25 0.5 0.25 0.25 0.5 0.25 0.25 0.5 0.25 0.25 0.5 0.25 0.25 0.5 0.25 0.25 0.5 0.25 0.25 0.5 0.25
5 rs00005 221 0.47 0.18 0.35 0.89 0.02 0.09 0.03 0.96 0.01 0.94 0.06 0.62 0.34 0.04 0.06
6 rs00006 955 0.975 0.002 0.023 0.52 0.154 0.326 0.309 0.21 0.481 0.48 0.509 0.011 0.969 0.004 0.027
7 rs00007 518 0.63 0.14 0.23 0.86 0.09 0.05 0.35 0.24 0.41 0.01 0.23 0.76 0.76 0.05 0.19

For this, one need to set the following program parameters in \(params.txt\) or during the execution:

\[-i\] test1.imputed
\[-l\] 3
\[-c\] 0
\[-p\] excluded_PROBE.txt
\[-m\] excluded_SNP.txt
\[-n\] SNP_no,SSSS,PPPPPP

This is the output \((test1.accuracy)\):

SNP_no	SNP	position	N	MAF	Iam helt	Iam hWE	hiQ	accuracy	info	r2MACH	r2BEAGLE
5	rs00005	221	5	26.0%	0.546	0.448	0.739	hot	0.099	0.319	0.113
2	rs00002	402	5	49.5%	0.97	0.968	0.929	tepid	0.98	0.0	-9
7	rs00007	518	5	40.3%	0.344	0.289	0.72	hot	-0.057	0.631	0.294
6	rs00006	955	5	26.1%	0.446	0.326	0.963	hot	-0.056	0.488	0.179

A regional classification across markers (as outlined by Rosenberger et al. (2022)) is given in the column accuracy.

5. Conclusion

\(ImputAccur\) is an easy-to-use software to determine multiple measures of accuracy for imputed genotypes and independent on the imputation platform used. This allows more flexibility in post-imputation variant filtering. Because it also delivers regional classification, poorly imputed chromosome segments can be identified.
Code availability
The source code (Python version 3.9.4), a stand-alone executive file and a user-manual of *ImputAccur* are freely available at https://gitlab.gwdg.de/kolja.thormann1/imputationquality.git.

Data Availability Statement
Example data are available in the same repository as the source code.

Funding information
This work was partially supported by the National Institutes of Health (7U19CA203654-02/397 114564-5111078 Integrative Analysis of Lung Cancer Etiology and Risk).

References
Browning,B.L. and Browning,S.R. (2009) A unified approach to genotype imputation and haplotype-phase inference for large data sets of trios and unrelated individuals. *Am J Hum Genet*, **84**, 210–223.

Das,S. et al. (2018) Genotype Imputation from Large Reference Panels. *Annu Rev Genomics Hum Genet*, **19**, 73–96.

Hickey,J.M. et al. (2013) Genotype imputation to increase sample size in pedigreed populations. *Methods Mol Biol*, **1019**, 395–410.

Marchini,J. and Howie,B. (2010) Genotype imputation for genome-wide association studies. *Nat Rev Genet*, **11**, 499–511.

Rosenberger,A. et al. (2022) Iam hiQ—a novel pair of accuracy indices for imputed genotypes. *BMC Bioinformatics*, **23**, 50.

Winkler,T.W. et al. (2014) Quality control and conduct of genome-wide association meta-analyses. *Nat Protoc*, **9**, 1192–212.