REMARKS ON THE INTERSECTION OF FILTERS

TOMEK BARTOSZYŃSKI

Abstract. We will show that the existence of an uncountable family of nonmeager filters whose intersection is meager is consistent with MA(Suslin).

1. Introduction

Suppose that F is a filter on ω. We identify elements of F with their characteristic functions and think of F as a subset of 2^ω. It is well known that if F is a nonprincipal filter (which we assume to be always the case) then F is meager or F does not have the property of Baire. Similarly, F has measure zero or is nonmeasurable. Since an intersection of filters is again a filter we want to know how many nonmeager filters one needs to intersect to produce a meager filter. Define

\[f_M = \min \{ |H| : \forall F \in H \text{ F is a filter without the Baire property and } \bigcap H \text{ has the Baire property} \} , \]

\[f_N = \min \{ |H| : \forall F \in H \text{ F is a nonmeasurable filter and } \bigcap H \text{ has measure zero} \} . \]

Theorem 1.1 (<4>). $t \leq f_M$. In particular, MA implies that the intersection of less than 2^{\aleph_0} filters without the Baire property does not have the Baire property.

In [3] Plewik found sharper estimates. In particular, he showed that $h \leq f_M \leq d$. Repicky improved the lower bound and showed that $g \leq f_M$, where $g = \min \{ |H| : \forall H \in H \text{ H is groupwise dense and } \bigcap H = \emptyset \}$. Recall that a family $H \subseteq [\omega]^\omega$ is groupwise dense if

1. $\forall x \in [\omega]^\omega \exists y \in [\omega]^\omega \text{ such that } x \neq y \in H$,
2. if $x \subseteq y$ and $y \in H$, then $x \in H$, and
3. for every partition of ω into finite sets, $\{ I_n : n \in \omega \}$, there is $a \in [\omega]^\omega$ such that $\bigcup_{n \in a} I_n \in H$.

For measure the situation is quite different.

Theorem 1.2 (Fremlin, [1]). Assume MA. Then there exists a family $\{ F_\xi : \xi < 2^{\aleph_0} \}$ of nonmeasurable filters such that $\bigcap_{\xi \in X} F_\xi$ is a measurable filter for every uncountable set $X \subseteq 2^{\aleph_0}$. In particular, MA implies that there exists a family of \aleph_1 nonmeasurable filters with measurable intersection.

The goal of this note is to show that the equality $f_M = \aleph_1$ is consistent with a relatively strong version of Martin’s Axiom.

Recall that a forcing notion (P, \leq) is Suslin if

1991 Mathematics Subject Classification. 04A20.
Key words and phrases. filter, meager.
Research partially supported by Idaho State Board of Education grant #95–041 and NSF grant DMS 95-05375.
1. \(\mathcal{P} \) is ccc,
2. \(\mathcal{P} \) is \(\Sigma_1 \),
3. relations \(\leq, \perp \) are \(\Sigma_1 \).

Let \(\text{MA}(\text{Suslin}) \) denote the Martin’s Axiom for Suslin partial orders. It is well known that \(\text{MA}(\text{Suslin}) \) implies that additivity of measure, b, etc. are all equal to \(2^{\aleph_0} \).

2. Consistency result

The goal of this section is to show \(\text{MA}(\text{Suslin}) \) is consistent with \(f_M = \aleph_1 \).

Theorem 2.1. There exists a model of \(V' \models ZFC \) and a family of filters \(\{ \mathcal{F}_\alpha : \alpha < 2^{\aleph_0} \} \in V' \) such that:

1. \(\mathcal{F}_\alpha \) is not meager for each \(\alpha \),
2. \(\bigcap_{\alpha \in X} \mathcal{F}_\alpha \) is meager for every uncountable set \(X \),
3. \(V' \models \text{MA}(\text{Suslin}) + 2^{\aleph_0} = \aleph_2 \).

Proof Let \((\mathcal{P}_\alpha, \mathcal{Q}_\alpha : \alpha < \omega_2) \) be a finite support iteration such that

1. \(\forces_{\mathcal{P}_\alpha} \mathcal{Q}_\alpha \) is Suslin,
2. if \(\alpha \) is a successor ordinal then \(\mathcal{Q}_\alpha \) adds a Cohen real.

The second requirement is purely technical, its purpose is to simplify notation later on.

By careful bookkeeping we can ensure that \(V^{\mathcal{P}_{\omega_2}} \models \text{MA}(\text{Suslin}) + 2^{\aleph_0} = \aleph_2 \).

Let \(Z = \{ X_\alpha : \alpha < \omega_2 \} \) be the sequence of Cohen reals added by \(\mathcal{Q}_\alpha \)'s (represented as elements of \([\omega]^{\omega_1} \)).

Lemma 2.2. \(Z \) is a generalized Luzin set. In particular, every subset of \(Z \) of size \(\aleph_2 \) in nonmeager.

Proof Suppose that \(A \subseteq [\omega]^{\omega_1} \) is a Borel meager set. Let \(\gamma \) be such that \(A \in V[\mathcal{P}_\gamma \cap G] \). Then \(X_\alpha \not\in A \) for \(\alpha > \gamma \). \(\square \)

Lemma 2.3. If \(\alpha_1 < \alpha_2 < \cdots < \alpha_n < \omega_2 \) then \(X_{\alpha_1} \cap X_{\alpha_2} \cap \cdots \cap X_{\alpha_n} \) is a Cohen real over \(V[G \cap \mathcal{P}_{\alpha_1-1}] \).

Proof Let \(\varphi : [\omega]^{\omega_1} \to [\omega]^{\omega_1} \) be defined as \(\varphi(X_1, \ldots, X_n) = X_1 \cap \cdots \cap X_n \). Suppose that \(A \subseteq [\omega]^\omega \) is a meager Borel set in \(V[G \cap \mathcal{P}_{\alpha_1-1}] \). Then \(B_0 = \varphi^{-1}(A) \) is a meager set. Let

\[
C_0 = \{ X : \langle X_2, \ldots, X_n \rangle : \langle X, X_2, \ldots, X_n \rangle \in B_0 \} \text{ is meager} \}.
\]

\(C_0 \) is a comeager set so \(X_{\alpha_1} \in C_0 \).

Let

\[
B_1 = \{ \langle X_2, \ldots, X_n \rangle : \langle X_{\alpha_1}, X_2, \ldots, X_n \rangle \in B_0 \}.
\]

\(B_1 \) is a meager set coded in \(V[G \cap \mathcal{P}_{\alpha_1}] \subseteq V[G \cap \mathcal{P}_{\alpha_2-1}] \). We apply the construction above to get the set

\[
C_1 = \{ X : \langle X_3, \ldots, X_n \rangle : \langle X, X_3, \ldots, X_n \rangle \in B_1 \} \text{ is meager} \},
\]

and continue in this fashion.

It follows that \(\langle X_{\alpha_1}, X_{\alpha_2}, \ldots, X_{\alpha_n} \rangle \not\in \varphi^{-1}(A) \) which finishes the proof. \(\square \)

Let \(\{ Z_\alpha : \alpha < \omega_2 \} \) be a partition of the set \(\{ \alpha : \alpha = \beta + 1, \beta < \omega_2 \} \) into disjoint cofinal sets.
Let F_β be a filter generated by sets $\{X_\alpha : \alpha \in Z_\beta\}$. Since X_α's are Cohen reals each F_β is indeed a filter.

Note that $F_\beta \supseteq \{X_\alpha : \alpha \in Z_\beta\}$. Thus it follows from 2.2 that F_β is not meager for every $\beta < \omega_2$.

Theorem 2.4. $\bigcap_{\alpha \in X} F_\alpha$ is the filter of cofinite sets for every uncountable set $X \subseteq \omega_2$.

Proof For simplicity assume that $X = \omega_1$. The proof of the general case is the same.

Suppose that $X \in \bigcap_{\xi < \omega_1} F_\xi$ and $|\omega \setminus X| = \aleph_0$.

For each $\xi < \omega_1$ we can find $\alpha_1^\xi < \alpha_2^\xi < \cdots < \alpha_n^\xi \in Z_\xi$ such that

$$X_{\alpha_1^\xi} \cap X_{\alpha_2^\xi} \cap \cdots \cap X_{\alpha_n^\xi} \subseteq^* X.$$

By passing to a subsequence we can assume that $n^\xi = n$ for all $\xi < \omega_1$. Moreover, we can assume that n is minimal, that is,

$$\forall \xi < \omega_1 \quad X_{\alpha_1^\xi} \cap X_{\alpha_2^\xi} \cap \cdots \cap X_{\alpha_n^\xi} \subseteq^* X.$$

Let γ be the least ordinal such that $\{\xi < \omega_1 : \alpha_n^\xi < \gamma\}$ is uncountable. By the minimality of n, γ is a limit ordinal and $\text{cf}(\gamma) = \aleph_1$. By passing to a subsequence again we can assume that

1. $\alpha_n^\xi < \gamma$ for all $\xi < \omega_1$,
2. $\forall \delta < \gamma \exists \alpha \forall \xi > \alpha \alpha_1^\xi > \delta$ (since Z_α's are disjoint).

We will show that $X \notin V[P_\delta \cap G]$ for all $\delta < \omega_2$ and this contradiction will finish the proof.

For $\xi < \omega_1$ let $X_\xi = X_{\alpha_1^\xi} \cap X_{\alpha_2^\xi} \cap \cdots \cap X_{\alpha_n^\xi}$. By the assumption $X_\xi \subseteq^* X$ for all $\xi < \omega_1$.

Lemma 2.5. $X \notin V[P_\gamma \cap G]$.

Proof Arguing as in 2.3 and using 2.3 and condition (2) above, we show that $\{X_\xi : \xi < \omega_1\}$ is a Luzin set in $V[P_\gamma \cap G]$. Since the set $\{Z \in [\omega]^{\omega} : Z \subseteq^* X\}$ is meager it follows that $\{\xi : X_\xi \subseteq^* X\}$ is countable. □

Lemma 2.6. $X \notin V[P_\delta \cap G]$ for $\gamma < \delta < \omega_2$.

Proof We will work in a model $V' = V[P_\delta \cap G]$. Suppose that the lemma is false. Let \dot{X} be a P_{γ, ω_2}-name for X. Let M be a countable elementary submodel of $H(\chi)$ containing \dot{X} and P_{ω_2}. Define a finite support iteration $(P_\alpha(M), \dot{Q}_\alpha(M) : \alpha < \omega_2)$ as follows:

$$\vdash \alpha \dot{Q}_\alpha = \begin{cases} \dot{Q}_\alpha & \text{if } \alpha \in M \\ \emptyset & \text{if } \alpha \notin M \end{cases} \quad \text{for } \alpha < \omega_2.$$

Let $P = \lim P_\alpha(M)$.

P is isomorphic to a countable iteration of Suslin forcings. It may not be Suslin itself but it has enough absoluteness properties to carry out the rest of the proof (see 2 or 3 lemma 9.7.4). In particular, P has a definition that can be coded as a real number.

From Suslinness it follows that $P \leq P_{\omega_2}$ and that \dot{X} is a P-name.
Let $N \prec \mathbf{H}(\chi)$ be a countable model containing M, \hat{X} and P. Since $\{X_\xi : \xi < \omega_1\}$ is a Luzin set in \mathbf{V}' we can find ξ such that $Y = X_\xi$ is a Cohen real over N. By the assumption $\Vdash Y \subseteq^* \hat{X}$.

By absoluteness, $N[Y][G \cap N[Y]] \models Y \subseteq^* \hat{X}[G \cap N[Y]]$ and therefore

\[N[Y] \models "\Vdash Y \subseteq^* \hat{X}". \]

Represent Cohen algebra as $C = [\omega]^{< \omega}$ and let \dot{Y} be the canonical name for a Cohen real. There is a condition $p \in C$ such that

\[N \models p \Vdash C \models "\Vdash \dot{Y} \subseteq^* \dot{X}". \]

Let $Y' = p \cup ((\omega \setminus Y) \setminus \text{max}(p))$. Y' is also a a Cohen real over N and since $p \subseteq Y'$ we get that $N[Y'] \models "\Vdash Y' \subseteq^* \dot{X}"$. It follows that

\[N[Y'][G \cap N[Y']] \models Y' \subseteq^* \dot{X}[G \cap N[Y']]. \]

Note that $\dot{X}[G] = \dot{X}[G \cap N[Y']] = \dot{X}[G \cap N[Y]]$. Thus $\mathbf{V}[G] \models Y \cup Y' \subseteq^* \dot{X}[G]$ which means that $\dot{X}[G]$ is cofinite. Contradiction. \qed

References

[1] Tomek Bartoszyński and Haim Judah, Set Theory: on the structure of the real line, A.K. Peters, 1995.
[2] Haim Judah and Saharon Shelah, Suslin forcing, The Journal of Symbolic Logic 53 (1988), 1188–1207.
[3] Szymon Plewik, Ideals of the second category, Fundamenta Mathematicae 138 (1991), no. 1, 23–26.
[4] Michel Talagrand, Compacts de fonctions mesurables et filtres non mesurables, Studia Mathematica 67 (1980), no. 1, 13–43 (French).