Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Original Research

Descriptive Analysis of Coronavirus Disease 2019 Air Medical Evacuations by Critical Care Air Transport Teams

Maj William T. Davis, MD 1,2,3,*, Maj Patrick C. Ng, MD 1,2,3, Julie E. Cutright, BSN 1, Shelia C. Savell, PhD 1, Allyson A. Arana, PhD 1, Brooks McCarvel 4, Lt Col Joseph K. Maddry, MD 1,2,3

1 United States Air Force 59th Medical Wing/ST En Route Care Research Center, Joint Base San Antonio, Fort Sam Houston, TX
2 Department of Emergency Medicine, Brooke Army Military Medical Center, Fort Sam Houston, TX
3 Department of Military and Emergency Medicine, Uniformed Services University, Bethesda, MD
4 United States Air Force Academy, Colorado Springs, CO

ABSTRACT

Objective: Preserving air medical evacuation capabilities for critically ill patients with coronavirus disease 2019 (COVID-19) required innovation for en route care logistics, training, and equipment. The aim of this study was to describe characteristics and in-flight interventions for patients with suspected COVID-19 requiring air medical evacuation by US Air Force critical care air transport teams (CCATTs).

Methods: We performed a retrospective chart review of patients with suspected COVID-19 requiring air medical evacuation by CCATT from April 2020 to February 2021. We included patients with an available CCATT medical record and transport with COVID-19 infection isolation precautions. CCATT medical records were the data source, and we performed descriptive analyses of patient characteristics and in-flight interventions.

Results: We reviewed 460 records and identified 16 patients for inclusion. The Transport Isolation System (50%) and Negatively Pressurized Conex (31%) were commonly used portable biocontainment units. The median patient age was 48.5 years, and 94% were male. All patients required oxygen supplementation, with 8 (50%) receiving mechanical ventilation. In-flight interventions among intubated patients (n = 8) included vasopressors (50%), paralytics (25%), and patient-ventilator asynchrony management (63%).

Conclusion: Patients with COVID-19 requiring CCATT transport were older than prior military en route care cohorts, and in-flight interventions for patient-ventilator asynchrony were commonly required during mechanical ventilation.

© 2021 Air Medical Journal Associates. Published by Elsevier Inc. All rights reserved.
The pandemic challenged the en route care community to transport large volumes of patients with effective infection isolation precautions during flight. In response to this need, the Air Force developed the Negatively Pressurized Conex and the Negatively Pressurized Conex-Lite to provide airborne isolation precautions during flight (Fig. 1).COVID-19 transports were augmented with a public health official and infectious disease specialist to assist with adherence to infection isolation precautions and protocols for enplaning, in-flight care, and deplaning. These personnel work closely with air medical evacuation crews who manage noncritically ill patients requiring air transport. Portable biocontainment units were a requirement for regulated transports of patients with confirmed or suspected COVID-19 in order to reduce risk of in-flight disease transmission to aircrew, medical personnel, and other passengers. Civilian transport services made similar efforts to augment critical care and infection isolation capabilities for interfacility transports of critically ill patients with COVID-19.

The aim of this study was to describe characteristics and in-flight interventions for patients with COVID-19 requiring air medical evacuation by CCATT. Describing critically ill patients with COVID-19 and resources used for air medical evacuation will help inform planning and delivery of future en route care for COVID-19 and other highly contagious diseases. It is imperative that we record lessons learned from the current pandemic to be better prepared to respond to future threats and preserve en route care capabilities while mitigating spread of infectious disease. The description of epidemiologic parameters of COVID-19 is important in the provision of critical information to inform modelers and policy makers.

Methods
We performed a retrospective analysis of patients requiring transport by US Air Force CCATT with concern for COVID-19 between March 2020 and February 2021. The US Air Force 59th Medical Wing Institutional Review Board approved this study.

We queried the En Route Critical Care Pilot Unit Quality Improvement database for CCATT transport missions for patients with COVID-19. After receipt of potentially eligible patients, we searched the Theater Medical Data Store (TMDS) for CCATT medical records. For patients with CCATT medical records, the patient movement record from TRANSCOM Regulating and Command & Control Evacuation System and the CCATT medical record, Air Force Form 3899 (Appendix Figure 1), were reviewed. The inclusion criteria included 1) transport by CCATT, 2) an available CCATT medical record, and 3) COVID diagnosis or suspicion necessitating infection isolation precautions for transport. We excluded patients with no available CCATT medical record.

Data Sources
Trained research nurses with experience in CCATT medical records abstracted patient demographics, clinical characteristics, and in-flight events into an Access database (Microsoft Corporation, Redmond, WA). Demographic data included age, sex, and service status. Clinical characteristics included documented past medical history related to an increased risk for severe COVID-19 illness, the presence and method of COVID-19 diagnosis, and COVID-19 treatment pre-flight. Pre-flight and in-flight respiratory support characteristics were collected for each patient. The type of isolation system (if any) and in-flight pain and sedation doses were recorded.

All data recorded were based on documentation in the patient movement record or provider documentation in the 3899 form. Usual data quality measures, to include meetings between the principal investigator and abstractors to develop abstraction guidelines, regular discussions to clarify unclear entries, and quality assurance checking by a second team member, were used. The principal investigator
reviewed the free-text narrative of each record to provide a narrative summary of any in-flight events or COVID-19 management decisions.

Statistical Analysis

Descriptive analyses were performed for all data. Given the limited number of patients meeting the enrollment criteria, we calculated frequencies with percentages and medians with ranges or interquartile ranges for the majority of data elements.

Results

We reviewed 460 records from TMDS. The most common reasons for exclusion were lack of a 3899 CCATT medical record and canceled transports (Fig. 2). The initial search contained missions with CCATT augmentation for infection isolation precautions, but CCATT medical records were generated only for critically ill patients primarily assigned to CCATT. Thus, the high proportion of patients without a CCATT medical record was likely due to many patients requiring air transport with infection precautions but not being critically ill enough to require primary assignment to CCATT. We identified and analyzed 16 patients meeting the inclusion criteria.

The median age was 48.5 years, and most patients (94%) were male (Table 1). Diabetes (19%) was the most common comorbidity, but the majority of patients (63%) had no documented pre-existing medical conditions associated with an increased risk for severe COVID-19 illness. The majority of patients had positive COVID-19 polymerase chain reaction testing, but specific numbers are not currently approved for information release. Preflight fever (69%) was common.

Aircraft platforms included the C-17 (94%) and C-130J (6%). The Transport Isolation System was the most commonly used portable biocontainment unit (50% of flights) followed by the Negatively Pressurized Conex (31%). All patients required oxygen supplementation in-flight, with 50% receiving mechanical ventilation (Table 2). All patients (N = 16) received deep vein thrombosis prophylaxis. Among intubated patients (n = 8), in-flight interventions included vasopressor (63%) and paralytic (25%) administration. All intubated patients received continuous fentanyl and propofol infusions, with 25% of intubated patients also receiving ketamine infusions. Three patients required additional intravenous pushes of analgesedation in-flight (Table 3). Patient-ventilator asynchrony (PVA) was documented in 1 patient with a preflight pulmonary embolus diagnosis (Table 4). In-flight awake prone positioning was successfully implemented in 1 nonintubated patient with a high preflight oxygen requirement. One intubated patient had worsening respiratory status in-flight requiring up-titration of mechanical ventilation to 100% fraction of inspired oxygen and the initiation of chemical paralysis. One transport team successfully performed a flight line transfer of care from a stretcher to a litter at the back of the aircraft while maintaining infection isolation precautions for a critically ill patient with multiple tubes, lines, and drains.
Table 4
A Narrative Summary of Select Cases

Narrative Case Descriptions	Fentanyl	Propofol	Ketamine
1. Nonintubated patient with concomitant pulmonary embolism developed chest pain during flight with associated ST depressions. Pain resolved spontaneously, and electrocardiography improved postflight.	8 (100)	8 (100)	2 (25)
2. Nonintubated patient with preflight oxygen saturation of 87% on 6 L/min was transitioned to awake prone positioning. He tolerated in-flight prone positioning for 3 hours and had an increased oxygen requirement to 8 L/min after transition to supine positioning.	100 µg/h (75-500)	43 µg/kg/min (20-60)	18.5 µg/kg/min (17-20)
3. Intubated patient with high preflight sedation requirement required in-flight initiation of chemical paralysis and an increase of ventilation support to 100% fraction of inspired oxygen and positive end-expiratory pressure of 14 cm H₂O.	1 (12.5)	3 (37.5)	2 (25)
4. Intubated patient with 5 medication drips required flight line transfer of care on flight line from wheeled stretcher to medical litter.	2	3 (1-3)	6 (5-7)
5. Point-of-care ultrasound was used in flight to guide fluid management after 1 patient developed hypoxia and tachycardia during flight.	37.5 µg (25-50)	20 mg (10-40)	100 mg (100-150)

As noted in Table 4, 1 case required transferring a fully loaded critical care patient to a different litter on the flight line at the back of the aircraft. Prior case series have noted the importance of a CCATT capability to be able to safely transition and package patients in a variety of operational conditions to include flight line transfers. CCATT teams performing COVID-19 transports receive additional training to transition usual en route critical care skills to the infection isolation environment to include a portable biocontainment unit and additional personal protective equipment. The successful and safe transfer of this patient represents a successful validation of these training efforts. Retention of these skills as COVID-19 transports decline for CCATT will be a future challenge for skill sustainment training platforms.

Limitations

Limitations of our study include a lack of data regarding COVID-19 transmission among medical crew and aircrew performing these evacuations, but military publications have suggested that transport using these precautions is safe. We lack clinical outcomes for these patients after transport, but flight care records indicated that the patients were transferred to definitive care in stable condition. The small sample size as a result of this very specialized population of air transport patients does not allow for inferential statistics. CCATTs were part of an augmentation package for COVID-19 transports, but we were only able to include patients with a CCATT medical record in TMDS. This may result in missing some COVID-19 patients who received en route critical care from CCATT.

Conclusions

Patients with COVID-19 requiring CCATT transport were older than prior military en route care cohorts, and in-flight interventions for PVA were commonly required for patients receiving mechanical ventilation.

Supplementary materials

Supplementary material associated with this article can be found in the online version at https://doi.org/10.1016/j.amj.2021.09.005.
7. Allen R, Wanersdorfer K, Zebley J, Shapiro G, Coullahan T, Sarani B. Interhospital transfer of critically ill patients because of coronavirus disease 19–related respiratory failure. *Air Med J*. 2020;39:498–501.
8. Garfinkel E, Lopez S, Troncoso R, et al. A critical care transport program’s innovative approach to safety during the coronavirus disease 2019 pandemic. *Air Med J*. 2021;40:112–114.
9. Troncoso RD, Garfinkel EM, Leon D, et al. Decision making and interventions during interfacility transport of high-acuity patients with severe acute respiratory syndrome coronavirus 2 infection. *Air Med J*. 2021;40:220–224.
10. Elharrar X, Trigui Y, Dols AM, et al. Use of prone positioning in nonintubated patients with COVID-19 and hypoxemic acute respiratory failure. *JAMA*. 2020;323:2336–2338.
11. Caputo ND, Strayer RJ, Levitan R. Early self-proning in awake, non-intubated patients in the emergency department: a single ED’s experience during the COVID-19 pandemic. *Acad Emerg Med*. 2020;27:375–378.
12. Maddry JK, Ball EM, Cox DB, Flarity KM, Bebarta VS. En route resuscitation - utilization of CCATT to transport and stabilize critically injured and unstable casualties. *Mil Med*. 2019;184:e172–e176.