Low temperature aging in a molecular glass: the case of cis-methyl formate

Andrew Cassidy, a, b, * Mads R. V. Jørgensen, b, c, d, Artur Glavic, a, d, Valeria Lauter, e, Oksana Plekan, f and David Field a

Glassy films of cis-methyl formate show spontaneous dipole orientation on deposition from the vacuum, the so-called ‘spontelectric effect’, creating surface potentials and electric fields within the films. We follow the decay of these fields, and their accompanying dipole orientation, on the hours timescale at deposition temperatures between 40 K and 55 K. Our data trace the low temperature ‘secondary decay’ mechanism, at tens of degrees below the glass transition temperature of 90 K. We show that secondary decay is due to molecular rotation, with associated activation energies lying between 0.1 and 0.2 eV. Diffusion is absent, as established from published neutron reflectivity data. Using an analytical model for the spontelectric effect, data are placed on a quantitative footing, showing that angular motion in excess of 50° reproduces the observed values of activation energies. Exploitation of the spontelectric effect is new in the study of glass aging and is shown here to give insight into the elusive processes which take place far from the molecular glass transition temperature.

Introduction

A very great array of materials have a glassy structure, in which constituents are arranged with little local or long-range order and in which species are kinetically trapped out of equilibrium. These materials are solids in the sense that they display resistance to deformation but, like liquids, they lack a crystal-line lattice. Glasses tend by their nature to be metastable. Individual constituents in molecular glasses, in their search for a lower energy state, can move by both diffusion and rotation, leading to aging. There is a very extensive literature in the area of glass relaxation, extending over many decades, which the liquid is too viscous to flow, on any useful laboratory timescale at deposition temperatures between 40 K and 55 K. Our data trace the low temperature ‘secondary relaxation’.7 The materials for consideration here are prepared at cryo-temperatures, some tens of degrees below Tg. Note that we study a molecular glass, as opposed to recently much-studied metallic glasses8–10 or network glasses.1 The work may shed some light on the origin of the so-called ‘shadow glass transition’ identified in metallic glasses, as this relates to deeply supercooled molecular glasses at low temperature well below Tg. Almost all glassy materials possess the potential for secondary relaxation.7 The materials for consideration here are prepared at cryo-temperatures, some tens of degrees below Tg. Note that we study a molecular glass, as opposed to recently much-studied metallic glasses8–10 or network glasses.1 The work may shed some light on the origin of the so-called ‘shadow glass transition’ identified in metallic glasses, as this relates to deeply supercooled processes.9 At all events we show unequivocally that low temperature structural relaxation is described by rotation of molecules about their fixed positions in the glass.11 The current work rests on published experimental data for cis-methyl formate, henceforth cis-MF.11 Material is in the form of a thin film, laid down by condensation from the gas. Tg is ~90 K for cis-MF 11 and we study so-called “secondary” structural changes in cis-MF deposited at temperatures between 40 K and 55 K, between 0.45–0.6 x Tg. The material is a few to a few tens of nm thick, corresponding to a few tens to several hundred monolayers (ML).

The special handle which we have on this system stems from the electrical characteristics of such films. It turns out that on deposition onto a sufficiently cold surface, that is, at deposition...
temperatures, $T_d \leq 90$ K, the molecular dipoles of this species spontaneously orient. In this connection, cis-MF evaporates from the substrate at 137 K. Spontaneous orientation at $T_d \leq 90$ K leads to a potential on the surface of the film, a phenomenon known as the ‘spontelectric effect’. This effect is a general phenomenon and cis-MF is only one species among many, both crystalline and glassy, which exhibit the spontelectric effect.12–15 Note that the presence of spontaneous molecular orientation implies that the structure of the material is to some extent organized and demonstrates long-range interaction between discrete molecular species. Moreover, it remains organized, but more weakly, even after relaxation, subsequent to deposition at low temperature.

Thus, following film formation, the surface potential on cis-MF is metastable and slowly decays in magnitude for $T_d = 40$ K to 55 K to a new but stable value, where stable signifies unchanging over a period of many hours. The temporal decay of the surface potential on cis-MF films follows the decay of average orientation of the constituent molecules and therefore allows us to monitor the molecular rotation. Changes of a few hundredths of a degree in average angle of dipole orientation with time are readily observable, where this net rotational motion constitutes the so-called ‘secondary relaxation process’. Thus, the time decay of electric fields in spontelectric films of cis-MF provides a means to probe relaxation pathways in a deeply cooled glass, providing real-time measurement of molecular relaxation.

For $T_d > 55$ K, the surface potential remains unchanged on a laboratory timescale up to $T_d = 77.5$ K.11 For films formed with $T_d \geq 80$ K, decay of orientation once again takes place, but now towards zero orientation on a long time scale. The highest value of T_d at which a surface potential can be detected is 90 K, coinciding with T_g. X-ray scattering measurements show that cis-MF crystallises at deposition temperatures of 90 K, very close to T_g.11 Thus crystallization corresponds to a loss of molecular orientation, in the case of cis-MF. Neutron scattering data show that relaxation at $T_d > 77.5$ K is attended by diffusion.11 This is accompanied by molecular rotation. For $T_d > 77.5$ K, we therefore encounter the ‘primary relaxation process’. At $T_d = 80$ K, the lower limit of measurement, self-diffusion causes a translational motion of 0.15 nm in 12 000 seconds. Neutron data at lower temperatures show that diffusion can be ruled out as a contributory mechanism to decay. Therefore at deeply supercooled temperatures, < 55 K, studied here, diffusion is absent and net molecular rotation, relative to the normal to the film, is the sole cause of secondary relaxation.

Qualitative studies of aging in cis-MF glasses, exploiting the spontelectric effect, have already been described.11 Relevant data are presented here in Fig. 1 and Table 1. In the present work, we place our interpretation of these low-temperature studies, for $T_d \leq 55$ K, on a firm analytical and quantitative basis. The rate of aging, measured by the rate of decay of surface potential, is observed to decrease with increasing T_d, between 40 K and 55 K corresponding to an increasing activation energy for the aging process over this temperature range. This increase may be reproduced by an established theoretical model for the spontelectric state and involves only molecular rotational motion. This generates a striking physical picture, in which low temperature aging occurs through molecules swinging on average through angles of $\approx 50^\circ$ from their steady state orientation, in order to effect the secondary aging process.

Experimental data

The technique of surface potential measurement has been described in detail in ref. 13. Briefly, films of cis-MF were...
prepared by standard background dosing techniques, on a polycrystalline gold substrate, cooled with a closed-cycle He cryostat. The surface potential was measured by interrogating the film with a low energy electron beam, with an energy resolution of ~1.5 meV, formed by photoionization of Ar at threshold (78.67 nm), using light from the ASTRID storage ring at Aarhus University. The maximum beam current was 200 fA, to avoid surface charging on the timescale of any experiment. The surface potential was measured by applying a bias potential to the target material and adjusting this bias in order to null the current. The value of the bias yields the potential on the film surface. The onset of current, of 2–3 fA, was detected by an ammeter connected to the back side of the film. Electric fields inferred in cis-MF films, and their time dependence, are shown in Fig. 1, for $T_d = 40, 45, 50$ and 55 K. Data are presented in Fig. 1, as a function of time and each data point in Fig. 1a represents a surface potential measurement recorded as the film thickness was increased. Since there are no substrate or epitaxial influences on the spontelectric effect, we do not anticipate any thickness effects.16

Analytical model

To progress, we need now to go more deeply into the nature of the spontelectric effect. We define a degree of dipole orientation as the average component of the dipole moment in the z-direction, normal to the plane of the film, divided by the total dipole moment of the species in the solid, that is, $\langle \mu_z \rangle / \mu$. Components in the x-y plane average to zero. For cis-MF, the positive end of the molecular dipole moment protrudes from the film surface, see Fig. 1b.17 Dipole orientation gives rise to a polarization electric field in the film in the z-direction, proportional to $\langle \mu_z \rangle / \mu$. There is no free charge in the system and therefore E_{spont} is constant. The value of E_{spont} is given by the measured surface potential divided by the known thickness of the film.13

A mean-field model for the spontelectric state is described in detail elsewhere.13 We use atomic units throughout. Briefly, the mean field Hamiltonian for the system, H_{MF}, is given by the energy of interaction of the average dipole in an effective field in the film. We write:

$$H_{MF} = \mu E_z = \mu \left(E_S \left(1 + \frac{\langle \mu_z \rangle}{\mu} \right)^2 - E_A \frac{(\langle \mu_z \rangle)^2}{\mu} \right)$$

where the effective field, E_z, involves (i) a term defining the interactions which bind layers together, expressed through a parameter E_S, associated with polarization, dispersion and covalent interactions, (ii) an explicit term involving the dipole–dipole interaction, written as $E_S(\langle \mu_z \rangle / \mu)^2$ and (iii) $-\mu E_A(\langle \mu_z \rangle / \mu)$, the energy associated with the interaction of the spontelectric field, created through dipole alignment, with the dipoles themselves. The spontelectric field is thus given by $E_{\text{spont}} = E_A(\langle \mu_z \rangle / \mu)$. Eqn (1) is a semi-empirical Hamiltonian containing three parameters E_S, ζ and E_A, which are averages over all the species in the film. The term $E_S(\langle \mu_z \rangle / \mu)^2$ tends to lock the dipolar molecules in their average orientation.

As incoming molecules are added, the film initializes itself in a dipole-oriented configuration, corresponding to a balance between the short range and long-range terms in H_{MF} and thermal agitation. The system is therefore seen as composed of an array of dipoles bathed in a mean field, E_z, with order opposed by thermal motions. This leads to a degree of dipole alignment represented by some value of $\langle \mu_z \rangle / \mu$, determined by the requirement for consistency of eqn (1) with the standard Langevin equation.18

This analysis yields:

$$\langle \mu_z \rangle / \mu = \coth \left(\frac{\mu E_S(1 + \zeta(\langle \mu_z \rangle / \mu)^2) - E_A \langle \mu_z \rangle}{T} \right)$$

$$-\left(\frac{\mu E_S(1 + \zeta(\langle \mu_z \rangle / \mu)^2) - E_A \langle \mu_z \rangle}{T} \right)^{-1}$$

The values of parameters E_S, E_A and ζ are determined empirically, by locating values which yield consistency, on a least squares basis, between measurements of $\langle \mu_z \rangle / \mu$, via $E_{\text{spont}} = E_A(\langle \mu_z \rangle / \mu)$, and values obtained from eqn (2). We note that analytically $E_A = 4\pi \mu / \Omega$, where Ω is the molecular volume. Since Ω may be estimated19 to only $\pm 12\%$, E_A is used as a fitting parameter. A post hoc check has been performed, showing that $E_A = 4\pi \mu / \Omega$ is satisfied at the $\sim 10\%$ level, using results in ref. 19. Values of the dipole moment in the solid, are strongly reduced compared to the gas phase, due to mutual depolarization in the solid. We use the standard expression $\mu = \mu_0(1 + 2k/s)$,11,20 where s is the average spacing between successive layers, k is the molecular polarizability, $k = 11.034$ and μ_0 is the gas phase dipole moment of the molecules involved. For cis-MF, $s = 0.244$ nm, $k = 5.25 \times 10^{-38}$ m3, $\mu_0 = 1.766$ D, giving $\mu = 0.354$ D.

The model embodied in eqn (1) and (2) has been shown to reproduce the values and temperature dependence of observed spontelectric fields in solid films of nitrous oxide, nitrous oxide diluted in xenon, cis-MF and CCl$_4$F$_2$ (Fig. $x + y = 4$).13,20–22 The model also underpins a description of the observed deposition temperature dependence of Stark shifts in IR spectra of films of N$_2$O, cis-MF and CO$_2$ in and Stark shifts of Wannier–Mott excitons in vacuum-ultraviolet spectra in solid ammonia films.25 This proving ground for the model involves the constraint that, in the absence of a phase change,22,25 the parameters E_S, E_A and ζ are independent of T_d. In the present case, fitting to experimental values of E_{spont} and $\langle \mu_z \rangle / \mu$ for $T_d = 40, 45$, 50 and 55 K is achieved by relaxing this constraint for ζ. Thus E_S and E_A are held constant at the values which satisfy data for the variation of spontelectric field and degree of dipole orientation of cis-MF between 57 K and 89–90 K, namely $E_S = 1.206 \times 10^7$ V m$^{-1}$, $E_A = 1.148 \times 10^9$ V m$^{-1}$. However ζ is allowed to vary between 40 K and 55 K, and no longer assumes the invariant value of 14500 assigned by the fit to data between 57 K and 89 K. The parameter ζ governs frustration of molecular rotation within the solid film, and determines, as mentioned, the tendency of orientation to be
The data in Fig. 1 show that at early times, molecules reorganize to some critical configuration leading to decay, there is a system feels its way through configuration space towards a configuration (Fig. 2 and eqn (4)), calculated to match the exponential behaviour with time, as observed in Fig. 1. Data yield values of the activation energy barriers as a function of T_d, as evaluated below, and given in Table 1. We also show that ζ, essentially measuring the resistance to rotation of any dipole in relation to another, and also a function of T_d (Table 2), must be related to the rate of decay of polarization and, via this, to the associated barriers, in a manner dictated by the spontaneous model outlined above.

Understanding the variation of the spontaneous field vs. time

The data in Fig. 1 show that at early times, molecules reorganize to increase the degree of dipole orientation, (μ_z/μ). Whilst the system feels its way through configuration space towards some critical configuration leading to decay, there is a ~30% increase in (μ_z/μ). Orientation then settles down to a maximum value, which is maintained for ~1000 seconds for $T_d = 40$ K up to ~4000 seconds for $T_d = 55$ K. Following a total time after the beginning of the experiment, t_{lag}, the orientation decays. The inverse of t_{lag} is taken as the rate coefficient for attainment of a gateway to decay, as we describe below.

We now set out to estimate the activation energy barriers to rotational motion from our experimental data. We calculate the barrier to overcome molecular locking for each film separately, where each film in Fig. 1, with its distinct T_d, is treated as a separate system. There are two independent sources for activation energies, the values of t_{lag} and the measured rate coefficients of decay (Fig. 1 and Table 1). Values of t_{lag} and its inverse are shown in columns 2 and 3 of Table 1. We express $1/t_{lag}$ as $A \cdot \exp \left(E^*/(kT_d) \right)$. The standard interpretation of the pre-exponential factor, A, is of a frequency factor representing the number of attempts, unhindered by an energy barrier, to perform the relevant process. Since we deal here with rotation, we have chosen A to be 5×10^6 s$^{-1}$, based upon a period of free rotation of MF estimated from values of the moment of inertia and rotational constants. In this connection, systematic errors in values of E^*, while dominated by uncertainty in A, turn out to be somewhat insensitive to the choice of A. For example $A = 5 \times 10^5$ s$^{-1}$, a figure more appropriate to a vibrationally driven system, would yield values of E^* which are only 12% larger.

Turning to the second source of values of activation energy, data showing decay of orientation in Fig. 1 have been fit using $E_{spont}(t) = E_{spont}(t_0) \exp(-t/\tau) + a$ constant, the latter value discussed below. Here, τ is the elapsed time after t_{lag}, $E_{spont}(t_0)$ is the spontaneous field at the time of the start of decay, and τ is the decay constant, used to calculate the first order rate coefficient for the exponential decay process. We did attempt to fit the data with stretched exponentials, following $E_{spont}(t) = E_{spont}(t_0) \exp(-t/\tau)^{\beta} + a$ constant, as dynamics in supercooled glasses usually follow a stretched function, but these fits resulted in β values very close to 1. Hence, we used the normal exponential function to fit the data, meaning $\beta = 1$ throughout. This may be related to the short timescales over which aging is reported here. The resulting fits are shown as dashed lines in Fig. 1 and relevant values are shown in Table 1, column 5. The corresponding values of E^*, shown in column 6 follow directly, where we have assumed the same pre-exponential factor of 5×10^6 s$^{-1}$, as above. Note that we have not fitted the data for 55 K, since results, while showing decay, are insufficient to ascribe a reliable value of k_{rt}.

We suggest that the lag time before decay of orientation arises through essentially similar, though not identical, physical processes to the decay itself. There is a clear tendency for the rate coefficients associated with the lag time to be larger than those for decay, by factors of 2.19, 3.33 and 3.12 for 40 K, 45 K and 50 K respectively. This is reflected in the differences in E^* arising in the two sets of data in Table 1. These results support the hypothesis that dynamical events associated with the search for candidate configurations, which seed decay, and the mechanism of decay itself, follow similar but not identical pathways.

The electric fields in Fig. 1 do not decay to zero but rather to a constant value, as just noted. We find that the residual fields, at long time, average to 2.3 ± 0.3 mV per ML. Given that the layer spacing, s, is 0.244 nm,12 this is equivalent to a residual spontaneous field of 9.2 ± 1.2 × 104 V m$^{-1}$ and, recalling that $E_{spont} = (\mu_z/\mu)(E_\lambda)$, using $E_\lambda = 1.148 \times 10^5$ V m$^{-1}$, the residual orientation is 0.008. This is equivalent to an average angle to the horizontal plane of the film for a cis-MF molecular dipole of 0.46°. This may be compared to the steady-state angles to the horizontal, 90° − θ, before decay, in Table 2, column 4, of 1.057°, 1.007°, 1.034° and 0.873° for 40 K, 45 K, 50 K and 55 K respectively, where θ is given by $\cos^{-1}(\mu_z/\mu)$.
We now seek to make contact with the spontelectric model by establishing the relationship between activation energies E_{lag} and ζ. The torque on an average molecule, displaced from its steady state angle, θ_s, is proportional to the angular acceleration via the molecular moment of inertia, I. This torque is due to the net electric field on the dipole, given by the difference between E_z (eqn (1)) for $\langle \mu_z \rangle/\mu$ in the steady state and that engendered by some arbitrary rotation through an angle $|\theta - \theta_s|$. Thus the angular acceleration, Q, becomes $\langle \mu_z \rangle/\mu_E(\theta)\sin \theta - E_A(\theta)\sin \theta_s$ and the work done by the dipole against the field, that is, the energy required to achieve an angular displacement $|\theta - \theta_s|$, may be written as the integral of $Q I$ over θ.

Using eqn (1) and $\cos^{-1}(\langle \mu_z \rangle/\mu) = \theta$, the product $Q I$ is given by

$$\mu\{E_{S}(1 + \zeta \cos^2 \theta) - E_A \cos \theta\} \sin \theta$$

$$- \{E_{S}(1 + \zeta \cos^2 \theta_s) - E_A \cos \theta_s\} \sin \theta_s$$

(3)

The work done in rotation between θ and θ_s is then given by the integral of (3) over a suitable range of angles, and is equal to the required energy to achieve some angular displacement $|\theta - \theta_s|$. In this connection, we note that E_{S}, E_A and ζ are inherently average values, independent of θ. We therefore seek to find the limit, θ_M, such that the integral of (3) over θ is equal to the relevant value of E_{lag} or E^* in Table 1. Essentially, we propose that configurations associated with θ_M become the gateway to subsequent decay of the orientation, within the glassy structure, to some new value of orientation, the events reflected in the data in Fig. 1. Thus every molecule which undergoes angular motion $|\theta_M - \theta_s|$ ultimately undergoes decay of orientation. In this model, a specific physical environment is associated with secondary decay. This carries with it the requirement that values of $|\theta_M - \theta_s|$ be very similar for different values of T_d. This is based on the very similar average orientations for T_d between 40 K and 55 K, which requires that the average environment of any species changes little over this temperature range.

The definite integral of (3), equal to E_{lag} or E^*, may be written:

$$\mu\left\{\frac{1}{2}E_A \cos^2 \theta - \frac{1}{3}E_S(3 \cos \theta + \zeta \cos^3 \theta)\right\}$$

$$+ \theta\{E_A \cos \theta_s - E_{S}(1 - \zeta \cos^2 \theta_s)\} \sin \theta_s$$

(4)

where this expression is to be taken between the limits θ_s and θ_M. The absolute value of (4) is plotted, in eV, vs. the limit θ_M between zero and 180° in Fig. 2 for $T = 40$ K, with $\zeta = 8532$ and $T = 50$ K, with $\zeta = 10275$ (Table 2), as illustrative examples. Given a desired value of activation energy, or work expended, on the vertical axis, one may read off the corresponding rotation angle from values on the horizontal axis. In Fig. 2, a molecule oriented in the plane of the film is represented by 90° and thus a 50° twist corresponds to an angle on the horizontal axis of Fig. 2 of 40° or 140°. These latter values can be seen by inspection to correspond to values of activation energy for 40 K and 50 K in Table 1.

Angular motions are the result of random fluctuations in the environment of any species and may occur in either sense. There is some small asymmetry around θ_s arising from the form of eqn (3), since molecules are at an average angle of $\sim 1^\circ$ to the plane of the film. Excursions involving purely the upper hemisphere require marginally lower $|\theta_M - \theta_s|$, such that the energy change equals any specified value. This arises since the direction of the dipole relative to the spontelectric field reverses as the molecule rotates through the plane of the film. Thus, net resistance to angular motion is a little greater in upper hemisphere motion. This gives rise to two sets of values of $|\theta_M - \theta_s|$, in columns 5 and 6 of Table 2, representing the slightly asymmetrical nature of the motion.

Table 2 shows values of $|\theta_M - \theta_s|$ derived from both E_{lag} derived from values of t_{lag} and E^*, derived from the decays shown in Fig. 1. Results demonstrate that values of $|\theta_M - \theta_s|$ are indeed very similar for different values of T_d, as the model requires. In Fig. 3a and b, we compare observed and predicted values of E_{lag} and E^*, respectively. Results demonstrate how the spontelectric model may reproduce the temperature dependence of energy barriers for the secondary relaxation process in this glassy material. This provides a quantitative affirmation that the secondary aging process arises through rotation of constituent molecules about their fixed positions.

We also note that higher values of $T_d (>55$ K) may be fit individually with specific values of ζ, to yield larger values for the lag in decay or time constants for the decay of the spontelectric field in cis-MF. For example at $T_d = 60$ K, $\zeta = 1.77 \times 10^4$ fits experimental measurement of the spontelectric field precisely, rather than the global vale of 1.45×10^4 used to fit all higher temperature data. A value of $\zeta = 1.77 \times 10^4$ gives $E^* = 0.248$ eV and a rate coefficient for decay of 8×10^{-11} s$^{-1}$, a factor of 4×10^{-5} times smaller than that for 50 K. Moving to 65 K, matching both the spontelectric field and the degree of orientation involves $\zeta = 2.2 \times 10^4$ and yields decay rates of the order of 10^{-14} s$^{-1}$ to 10^{-13} s$^{-1}$. Thus, our results are consistent with the observation that films are essentially stable for $T_d \geq 60$ K.
The above analysis, for $T_d \ll T_g$, yields an image of molecules of cis-MF which, at any time, have some probability of leaking, through angular excursions of $|\theta_M - \theta_0|$, into an unstable configuration. This configuration becomes a gateway to subsequent decay of dipole orientation. Only a very tiny fraction of the total number of rotational motions, per second per molecule, achieve this large displacement angle of $>50^\circ$, necessary for decay of polarization. The fraction of angular excursions which lead to decay of dipole orientation is of the order of k_{11}/A lying between $\sim 2 \times 10^{-15}$ at $T_d = 40$ K and $\sim 6 \times 10^{-16}$ at $T_d = 50$ K, given a pre-exponential factor $A = 5 \times 10^{10}$ s$^{-1}$. Moreover, this secondary process of decay, in contrast to the primary process, which is found above 80 K, does not remove the alignment altogether. Rather, it establishes a new, more weakly polarized spontaneous state, decaying from an initial value of $\sim 2.3 \times 10^7$ V m$^{-1}$ to a field of $\sim 8 \times 10^6$ V m$^{-1}$, as estimated above.

We note that the spontelectric model involves feedback between all the species in a film, through which each species talks to every other, via the spontelectric field permeating the medium. Thus the secondary relaxation mechanism propagates through the film, rendering it homogeneous on the timescale of the decay of the orientation. All molecules relax effectively as T_d approaches T_g, giving a qualitative image of the physics underlying the Curie effect in spontelectrics. The present work complements this in showing that secondary relaxation takes place, at lower temperature, through molecular rotation, without translational motion.

Conclusions

The key message of the current work is that the depolarisation in spontelectric cis-MF is a proxy for the secondary relaxation mechanism for glassy solids, occurring at temperatures tens of degrees below the glass transition temperature. Decay of the spontelectric field acts as a probe of molecular dynamics,
showing how films with $T_d < 60$ K relax to a more stable glass through molecular rotation on timescales of hours, while films with $T_d \geq 60$ K are stable.

Author contributions

AC designed the experiments, collected data, and performed data analysis on SP measurements; DF performed analysis on the SP data using the analytical model; AG, VL, MJ and OP collected data. All authors contributed to drafting the manuscript.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

AC and MRVJ are grateful for the support of the Danish National Research Foundation (Center for Interstellar Catalysis, DNRF150 and Center for Materials Crystallography, DNRF93 respectively). We thank the Danish Agency for Science, Technology and Innovation for funding the instrument centre DanScatt. This research is supported by the experiment that used resources at the Spallation Neutron Source, a DOE Office of Science User Facility operated by the Oak Ridge National Laboratory.

Notes and references

1. M. Micoulaut, Relaxation and physical aging in network glasses: a review, *Rep. Prog. Phys.*, 2016, 79, 066504.
2. S. R. Forrest and M. E. Thompson, Introduction: Organic Electronics and Optoelectronics, *Chem. Rev.*, 2007, 107, 923–925.
3. G. Tan, F. Wu, C. Zhan, J. Wang, D. Mu, J. Lu and K. Amine, Solid-State Li-Ion Batteries Using Fast, Stable, Glassy Nanocomposite Electrolytes for Good Safety and Long Cycle-Life, *Nano Lett.*, 2016, 16, 1960–1968.
4. W. Brütting, S. Berleb and A. G. Mückl, Device physics of organic light-emitting diodes based on molecular materials, *Org. Electron.*, 2001, 2, 1–36.
5. M. Alomari, F. H. Mohamed, A. W. Basit and S. Gaisford, Personalised dosing: Printing a dose of one’s own medicine, *Int. J. Pharm.*, 2015, 494, 568–577.
6. E. S. Zarie, V. Kaidas, D. Gedamu, Y. K. Mishra, R. Adelung, F. H. Furkert, R. Scherließ, H. Steckel and B. Groessner-Schreiber, Solvent Free Fabrication of Micro and Nanostructured Drug Coatings by Thermal Evaporation for Controlled Release and Increased Effects, *PLoS One*, 2012, 7, e40746.
7. J. D. Stevenson and P. G. Wolynes, A universal origin for secondary relaxations in supercooled liquids and structural glasses, *Nat. Phys.*, 2010, 6, 62–68.
8. H. B. Yu, M. Tylinski, A. Guiseppi-Elie, M. D. Ediger and R. Richert, Suppression of β-Relaxation in Vapor-Deposited Ultrastable Glasses, *Phys. Rev. Lett.*, 2015, 115, 185501.
9. E. Ma, Tuning order in disorder, *Nat. Mater.*, 2015, 14, 547–552.
10. Q. Yang, S.-X. Peng, Z. Wang and H.-B. Yu, Shadow glass transition as a thermodynamic signature of β relaxation in hyper-quenched metallic glasses, *Nat. Sci. Rev.*, 2020, 7, 1896–1905.
11. A. Cassidy, M. R. V. Jørgensen, A. Glavic, V. Lauter, O. Plekan and D. Field, A mechanism for ageing in a deeply supercooled molecular glass, *Chem. Commun.*, 2021, 57, 6368–6371.
12. R. Balog, P. Cicman, N. C. Jones and D. Field, Spontaneous Dipole Alignment in Films of N$_2$O, *Phys. Rev. Lett.*, 2009, 102, 073003.
13. D. Field, O. Plekan, A. Cassidy, R. Balog, N. C. Jones and J. Dunger, Spontaneous electric fields in solid films: spont-electrics, *Int. Rev. Phys. Chem.*, 2013, 32, 345–392.
14. O. Plekan, A. Cassidy, R. Balog, N. C. Jones and D. Field, A new form of spontaneously polarized material, *Phys. Chem. Chem. Phys.*, 2011, 13, 21035–21044.
15. I. K. Gavra, A. N. Pilidi and A. A. Tsekouras, Spontaneous polarization of vapor-deposited 1-butanol films and its dependence on temperature, *J. Chem. Phys.*, 2017, 146, 104701.
16. A. Cassidy, O. Plekan, R. Balog, J. Dunger, D. Field and N. C. Jones, Electric Field Structures in Thin Films: Formation and Properties, *J. Phys. Chem. A*, 2014, 118, 6615–6621.
17. O. Plekan, A. Cassidy, R. Balog, N. C. Jones and D. Field, Spontaneous electric fields in films of cis-methyl formate, *Phys. Chem. Chem. Phys.*, 2012, 14, 9972–9976.
18. C. Kittel, *Introduction to Solid State Physics*, Wiley India Pvt. Limited, 7th edn, 2007.
19. S. A. Blair and A. J. Thakkar, Relating polarizability to volume, ionization energy, electronegativity, hardness, moments of momentum, and other molecular properties, *J. Chem. Phys.*, 2014, 141, 074306.
20. M. Roman, S. Taj, M. Gutowski, M. R. S. McCoustra, A. C. Dunn, Z. G. Keolopile, A. Rosu-Finsen, A. M. Cassidy and D. Field, Non-linear and non-local behaviour in spontaneously electrical solids, *Phys. Chem. Chem. Phys.*, 2018, 20, 5112–5116.
21. A. Cassidy, O. Plekan, J. Dunger, R. Balog, N. C. Jones, J. Lasne, A. Rosu-Finsen, M. R. S. McCoustra and D. Field, Investigations into the nature of spontelectrics: nitrous oxide diluted in xenon, *Phys. Chem. Chem. Phys.*, 2014, 16, 23843–23853.
22. A. Cassidy, M. R. V. Jørgensen, A. Rosu-Finsen, J. Lasne, J. H. Jørgensen, A. Glavic, V. Lauter, B. B. Iversen, M. R. S. McCoustra and D. Field, Dipole-Oriented Molecular Solids Can Undergo a Phase Change and Still Maintain Electrical Polarization, *J. Phys. Chem. C*, 2016, 120, 24130–24136.
23. J. Lasne, A. Rosu-Finsen, A. Cassidy, M. R. S. McCoustra and D. Field, Spontaneously electrical solids in a new light, *Phys. Chem. Chem. Phys.*, 2015, 17, 20971–20980.
24 J. Lasne, A. Rosu-Finsen, A. Cassidy, M. R. S. McCoustra and D. Field, Spontaneous electric fields in solid carbon monoxide, *Phys. Chem. Chem. Phys.*, 2015, **17**, 30177–30187.

25 A. Cassidy, R. L. James, A. Dawes and D. Field, Crystallites and Electric Fields in Solid Ammonia, *ChemistryOpen*, 2020, **9**, 983–990.

26 J. Demaison, L. Margulé, I. Kleiner and A. G. Császár, Equilibrium structure in the presence of internal rotation: A case study of cis-methyl formate, *J. Mol. Spectrosc.*, 2010, **259**, 70–79.

27 K. Ishii and H. Nakayama, Structural relaxation of vapor-deposited molecular glasses and supercooled liquids, *Phys. Chem. Chem. Phys.*, 2014, **16**, 12073–12092.

28 K. L. Ngai, L.-M. Wang and H.-B. Yu, Relating Ultrastable Glass Formation to Enhanced Surface Diffusion via the Johari–Goldstein β-Relaxation in Molecular Glasses, *J. Phys. Chem. Lett.*, 2017, **8**, 2739–2744.

29 Y. Z. Chua, M. Tylinski, S. Tatsumi, M. D. Ediger and C. Schick, Glass transition and stable glass formation of tetrachloromethane, *J. Chem. Phys.*, 2016, **144**, 244503.

30 S. F. Swallen, K. L. Kearns, M. K. Mapes, Y. S. Kim, R. J. McMahon, M. D. Ediger, T. Wu, L. Yu and S. Satija, Organic Glasses with Exceptional Thermodynamic and Kinetic Stability, *Science*, 2007, **315**, 353–356.

31 Z. W. Wu, W. Kob, W. H. Wang and L. Xu, Stretched and compressed exponentials in the relaxation dynamics of a metallic glass-forming melt, *Nat. Commun.*, 2018, **9**, 5334.