ABSTRACT

The neutrino-nucleus reaction cross sections of 4He and 12C are evaluated using new shell model Hamiltonians. Branching ratios of various decay channels are calculated to evaluate the yields of Li, Be, and B produced through the ν-process in supernova explosions. The new cross sections enhance the yields of 7Li and 11B produced during the supernova explosion of a 16.2 M_\odot star model compared to the case using the conventional cross sections by about 10%. On the other hand, the yield of 10B decreases by a factor of 2. The yields of 6Li, 9Be, and the radioactive nucleus 10Be are found at a level of $\sim 10^{-11}$ M_\odot. The temperature of ν_e, $\bar{\nu}_e$ and ν_{μ}, $\bar{\nu}_{\mu}$-neutrinos inferred from the supernova contribution of 11B in Galactic chemical evolution models is constrained to the 4.3–6.5 MeV range. The increase in the 7Li and 11B yields due to neutrino oscillations is demonstrated with the new cross sections.

Subject headings: neutrinos — nuclear reactions, nucleosynthesis, abundances — supernovae: general

Online material: color figures, machine-readable tables

1. INTRODUCTION

 Supernova (SN) explosions constitute one of several production sites of the relatively rare light elements Li, Be, and B. In SN environments these elements are produced through neutrino-nucleus reactions (the ν-process; Domogatsky et al. 1978; Woosley et al. 1990). Neutrinos of all flavors are emitted in large numbers from a proto–neutron star, created during core-collapse of massive stars and the subsequent supernova explosion. Among the light elements, 7Li and 11B are abundantly produced through the ν-process (Woosley et al. 1990; Yoshida et al. 2004, 2005a; Heger et al. 2005). Production of these light element isotopes in core-collapse supernovae (ccSNe) can contribute significantly to the increase in their abundances during Galactic chemical evolution (GCE; Fields et al. 2000; Ramaty et al. 2000a, 2000b).

Cross sections for neutrino-nucleus interactions are some of the most important data required to reliably estimate the 7Li and 11B yields in supernovae. The ν-process cross sections have been evaluated for a wide range of nuclear species in Woosley et al. (1990). The data are tabulated in Hoffman & Woosley (1992, hereafter referred to as HW92). Since the evaluation by HW92, further development of shell model calculations now enable us to more accurately evaluate these essential cross sections.

The ν-process cross sections are often presented as a function of neutrino temperature, based on averaging energy-dependent cross sections over a Fermi-Dirac distribution of given temperature and chemical potential (for simplicity often assumed to be zero). However, it is more appropriate to consider the energy dependence as the primary information, as studies of SN neutrino transport show that their spectra do not exactly follow Fermi-Dirac distributions with zero chemical potential (e.g., Keil et al. 2003). Furthermore, when considering neutrino oscillations in SN, the spectra are nonthermal after the neutrino flavors change, even if the Fermi-Dirac distribution approximates the spectra at the neutrino sphere reasonably well (e.g., Dighe & Smirnov 2000; Takahashi et al. 2001).

The main purpose of this study is the reevaluation of neutrino-nucleus reaction cross sections for 12C and 4He using new shell-model Hamiltonians. We evaluate the branching ratios of many decay channels for light element species. Then, we evaluate the yields of the light elements, 6Li, 7Li, 9Be, 10Be, 10B, and 11B, and discuss their production processes. We reestimate the allowed range of the neutrino temperatures derived from constraints on the SN contribution of 11B in GCE models (following Yoshida et al. 2005a). We also investigate the dependence of the neutrino oscillation parameters, i.e., mass hierarchy and the mixing angle θ_{13}, on the 7Li and 11B yields using the new cross sections.

The paper is organized as follows. In § 2, new cross sections for neutrino-4He reactions are derived using the SFO and PSDMK2 Hamiltonians. New cross sections for neutrino-12C reactions are evaluated using the WBP and SPDMDK Hamiltonians, as shown in this section. The temperature dependence of the cross sections is discussed. The supernova explosion model and supernova neutrino models employed are introduced and explained in detail in § 3. The nuclear reaction network used in this study is presented briefly. Light-element production mechanisms are discussed in § 4. The yields obtained using the new cross sections and the differences from those obtained with old cross sections are shown. The dependence of the light-element yields on neutrino chemical potential is also discussed. The dependence of the
yields of ^7Li and ^{11}B on the neutrino oscillation parameters, mass hierarchy, and the mixing angle θ_{13} is shown in § 5. The dependence of neutrino oscillation parameters on the $^7\text{Li}/^{11}\text{B}$ ratio, the elemental abundance ratios of the light elements, is considered, and the possibility of constraining mass hierarchies and the mixing angle θ_{13} is evaluated. Other effects on flavor exchange of neutrinos in supernovae are discussed in § 6, and our conclusions are finally presented in § 7.

2. NEUTRINO-NUCLEUS REACTION CROSS SECTIONS OF ^4He AND ^{12}C

New neutrino-induced reaction cross sections on ^{12}C have been obtained by shell model calculations with the WFO Hamiltonian (Suzuki et al. 2006, hereafter SC06). The SFO Hamiltonian describes spin properties of p-shell nuclei, such as Gamow-Teller (GT) transitions, better than conventional shell-model Hamiltonians, such as PSDMK2 (Millener & Kurath 1975; Brown et al. 1986). Systematic improvements in the agreement between calculated and observed magnetic moments of p-shell nuclei support the use of the SFO Hamiltonian (Suzuki et al. 2003a), which takes into account the important roles of spin-isospin interactions, in particular tensor interaction, and is found to lead to proper shell evolution (Otsuka et al. 2005; Suzuki et al. 2006).

While a slight modification of the axial-vector coupling constant, $g_{AV}/g_A = 0.95$, is enough to reproduce the GT transition in ^{13}C, a large quenching of the coupling constant, $g_{AV}/g_A = 0.7$, was taken for other multipoles to reproduce the inclusive charged-current reaction cross sections induced by the DAR neutrinos (Suzuki et al. 2006). This is consistent with the electron scattering data, where considerable quenching of the spin g-factor, $g^{\pi}/g_A = 0.6-0.7$, explains the M2 form factor in ^{13}C ($T = 1$, 19.40 MeV) at low momentum transfer (Drake et al. 1968; Yamaguchi et al. 1971; Gaarde et al. 1984). The final state interaction is included by multiplying the relativistic Fermi function for the charged-current reactions.

Although large quenching of $g^{\pi}/g_A = 0.7$ was adopted for all multipoles other than the GT transitions in Suzuki et al. (2006), electron scattering data indicate a smaller quenching of the spin g-factor for 1^- states, i.e., $g^{\pi}/g_A \approx 0.9$ (Drake et al. 1968; Yamaguchi et al. 1971). Photo reaction cross section data indicate that the electric dipole transition strength is quenched by about 30% below $E_e = 30$ MeV, and a large fraction of the strength is pushed up to higher energy (Ahrens et al. 1975; Pywell et al. 1985; McLean et al. 1991; Suzuki et al. 2003b). We therefore adopt separate quenching factors for g_A: $g^{\pi}/g_A = 0.95$, 0.7, and 0.9 for the GT (1$^+$), 2$^-$ spin dipole, and other multipoles, respectively. The Coulomb dipole form factor is also reduced by 30%. As the dominant contributions come from the GT and the 2$^-$ spin-dipole transitions, the inclusive charged-current reaction cross section in ^{12}C remains to be explained by the modified quenching factors. Effects of the change of the contributions from other multipoles are insignificant. The shell-model configuration space assumed here is the same as in Suzuki et al. (2006), but multiple polarities up to $J = 4$ are included, instead of just $J = 3$.

To enable comparisons, the cross sections for ^{12}C are obtained for the conventional PSDMK2 Hamiltonian in the same way, i.e., with $g^{\pi}/g_A = 1.0$, 0.75, and 0.9 for the GT, 2$^-$ spin-dipole, and other multipoles, respectively, and with the Coulomb dipole form factor reduced by 30%.

Neutrino-induced reaction cross sections on ^4He are obtained by shell-model calculations with the WBP (Warbuton & Brown 1992) and PSDMK (Millener & Kurath 1975; Brown et al. 1986) Hamiltonians, with the bare g_A (Suzuki et al. 2006). The $0s-0p-1s0d-1p0f$ and $0s-0p-1s0d$ configurations are taken for the shell-model space for the WBP and PSDMK2 cases, respectively, and ^4He is not treated as a closed core. The axial-vector coupling constant is therefore taken to be the bare value, g_A. The shell-model configuration space is extended up to 4(5) $h\omega$ excitations for positive (negative) parity transitions, instead of just up to 2 (3) $h\omega$ excitations.

Branching ratios for γ transitions and proton (p), neutron (n), and α knock-out channels have been obtained from Hauser-Feshbach theory for ^{12}C (Suzuki et al. 2006). However, we extend the Hauser-Feshbach calculations by including knock-out of a deuteron (d), ^3He and ^3H, as well as multiparticle knock-out channels. All possible particle knock-out and γ transitions are included until the transitions end up with a residual nucleus with mass number $A = 6-12$. For ^4He, p, n, and d, knock-out channels are taken into account. Here, Hauser-Feshbach calculations are carried out for each Hamiltonian, consistently with the respective energy spectrum. We allowed α decay (1) after γ transition from isospin $T = 1$ states in ^{12}C to $T = 0$ states, or (2) directly from $T = 1$ states in ^{12}C to $T = 1$ states in ^8Be. We also assumed 1% isospin nonconservation in γ transitions, as the experimental data for ^{12}C indicate such a possibility.

Calculated reaction cross sections for various channels are shown in Figure 1 for ^4He and in Figures 2 and 3 for ^{12}C. For neutral current reactions, the average of (ν, ν') and $(\bar{\nu}, \bar{\nu}')$ reactions are shown. Nuclei produced, including those knocked out, which cannot decay further by particle emissions, are denoted in the figures.

Neutral-current and charged-current reaction cross sections on ^4He, $^4\text{He}(\nu, \nu')^3\text{H}$, $^4\text{He}(\nu, \nu'n)^3\text{He}$, $^4\text{He}(\nu, \nu'd)^3\text{H}$, $^4\text{He}(\nu, (\bar{\nu}'n)^{\text{pp}})^3\text{H}$, $^4\text{He}(\nu, (\bar{\nu}'p)^{\text{pp}})^3\text{H}$, $^4\text{He}(\nu, e^-n)^{\text{pp}}^{\text{pp}}H$, and $^4\text{He}(\nu, e^-n)n^3\text{He}$, induced by supernova neutrinos with temperature T_ν, are shown in Figure 1. For these averaged cross sections, the neutrino energy spectra are assumed to be Fermi-Dirac distributions with zero chemical potential, to enable comparisons with our earlier studies. Results for the two shell-model Hamiltonians, WBP and PSDMK, are shown. Results for ^{12}C obtained with the SFO and the PSDMK2 Hamiltonians are shown in Figures 2 and 3, respectively. We note that the de-excitation cross section of ^{12}C, $\sigma_{\nu e C, \nu'}$, has the following relation to the production cross section, $\sigma_{\nu e C, \nu}(Z, A)$, of species i, of which charge number and mass number are Z_i and A_i, respectively:

$$\sigma_{\nu e C, \nu} = \sum_i \frac{A_i}{12} \sigma_{\nu C, \nu}(Z_i, A_i).$$

For use with nonthermal neutrino spectra, cross section values for ^4He as a function of the neutrino energy for the WBP and PSDMK2 Hamiltonians are provided in Tables 1 and 2. The neutrino-induced reaction cross sections of ^{12}C for neutral-current reactions, charged-current reactions of ν_e, and those of $\bar{\nu}_e$ with the SFO and PSDMK2 Hamiltonians are listed in Tables 3, 4, and 5 (SFO) and 6, 7, and 8 (PSDMK2).

For ^4He, the neutral current reaction cross sections obtained with the WBP Hamiltonian are rather close to those obtained with a microscopic ab initio calculation using AV8* interaction (Gazit & Barnea 2004), although the dependence on T_ν is more moderate for WBP. We thus take the cross sections obtained by WBP and SFO as a “standard set” for the evaluation of the production yields of light elements during supernova explosions.

We now briefly explain important neutrino-nucleus reactions on ^{12}C, relevant for producing light elements. The qualitative nature of the reactions does not depend much on the chosen Hamiltonians, but there are some quantitative differences. Light
Fig. 1.—Cross sections for 4He as a function of neutrino temperature T_ν. The neutrino energy spectrum is assumed to follow a Fermi-Dirac distribution with zero chemical potential. (a) Neutral-current reactions with the WBP Hamiltonian; (b) charged-current reactions with the WBP Hamiltonians; (c) neutral-current reactions with the SPSDMK Hamiltonian; (d) charged-current reactions with the SPSDMK Hamiltonian.
Fig. 2.—Averaged cross sections of 12C as a function of neutrino temperature, T_ν, for the SFO Hamiltonian. The neutrino energy spectrum is assumed to follow a Fermi-Dirac distribution with zero chemical potential. Top, middle, and bottom panels correspond to neutral-current reactions, charged-current reactions for ν_e, and charged-current reactions for $\bar{\nu}_e$, respectively. The line labeled 12C corresponds to the total decomposition rate of 12C, $\sigma_{\nu C}$, (see eq. [1]). [See the electronic edition of the Journal for a color version of this figure.]
Fig. 3.—As in Fig. 2, but for the PSDMK2 Hamiltonian. [See the electronic edition of the Journal for a color version of this figure.]
Table 1
Neutrino-Induced Reaction Cross Sections of \(^4\)He in Units of \(10^{-42}\) cm\(^2\) Using the WBP Hamiltonian

\(E_p\) (MeV)	\((\nu, \nu'p)^3\)H	\((\nu, \nu'n)^3\)He	\((\nu, \nu'd)^3\)H	\((\nu, \nu'np)^3\)H	\((\bar{\nu}_e, e'^n)^3\)H	\((\nu, e'pp)^3\)H	\((\bar{\nu}_e, e'^nn)^3\)H
10.0	0.000E+00						
20.0	0.000E+00						
30.0	4.018E-02	3.829E-02	2.168E-01	3.538E-08	1.604E-01	1.264E-01	0.000E+00
40.0	4.609E-01	4.425E-01	3.169E-04	9.746E-03	2.094E+00	1.556E+00	1.054E-04
50.0	1.802E+00	1.738E+00	7.218E-02	1.730E-01	8.957E+00	5.992E+00	3.140E-01
60.0	4.777E+00	4.620E+00	3.381E-01	7.782E-01	2.564E+01	1.529E+01	1.670E+00
70.0	1.017E+01	9.856E+00	8.064E-01	1.991E+00	5.842E+01	3.108E+01	4.243E+00
80.0	1.874E+01	1.818E+01	1.485E+00	4.021E+00	1.145E+02	5.435E+01	8.148E+00

Note.—Table 1 is published in its entirety in the electronic edition of the *Astrophysical Journal*. A portion is shown here for guidance regarding its form and content.

Table 2
Neutrino-Induced Reaction Cross Sections of \(^4\)He in Units of \(10^{-42}\) cm\(^2\) Using the SPSDMK Hamiltonian

\(E_p\) (MeV)	\((\nu, \nu'p)^3\)H	\((\nu, \nu'n)^3\)He	\((\nu, \nu'd)^3\)H	\((\nu, \nu'np)^3\)H	\((\bar{\nu}_e, e'^n)^3\)H	\((\nu, e'pp)^3\)H	\((\bar{\nu}_e, e'^nn)^3\)H
10.0	0.000E+00						
20.0	0.000E+00						
30.0	6.992E-02	6.399E-02	0.000E+00	2.706E-04	2.045E-01	1.694E-01	0.000E+00
40.0	7.360E-01	6.805E-01	3.413E-07	5.913E-03	2.709E+00	1.968E+00	0.000E+00
50.0	2.879E+00	2.675E+00	6.340E-03	4.657E-02	1.211E+01	7.761E+00	2.338E-02
60.0	7.633E+00	7.112E+00	5.841E-02	2.429E+01	3.557E+01	2.025E+01	1.717E-02
70.0	1.616E+01	1.509E+01	1.800E-01	8.009E-01	8.209E+01	4.173E+01	8.673E-01
80.0	2.944E+01	2.753E+01	3.897E-01	2.037E+00	1.614E+02	7.367E+01	2.062E+00

Note.—Table 2 is published in its entirety in the electronic edition of the *Astrophysical Journal*. A portion is shown here for guidance regarding its form and content.

Table 3
Neutrino-Induced Neutral-Current Reaction Cross Sections of \(^{12}\)C in Units of \(10^{-42}\) cm\(^2\) Based on the SFO Hamiltonian

\(E_p\) (MeV)	\(^{12}\)Ca	\(^{12}\)C							
10.0	0.000E+00								
20.0	1.484E-03	1.482E-05	1.330E-03	0.000E+00	4.201E-04	0.000E+00	0.000E+00	0.000E+00	0.000E+00
30.0	4.062E-01	8.046E-02	3.147E-01	1.329E-04	9.846E-05	1.462E-04	3.296E-02	0.000E+00	1.644E-13
40.0	3.206E+00	7.104E-01	2.308E+00	1.259E-02	1.136E-02	1.458E-02	5.987E-01	2.569E-07	1.256E-04
50.0	1.123E+01	2.576E+00	7.890E+00	6.209E+02	6.915E-02	8.576E+02	2.637E+00	9.178E+05	3.726E-03
60.0	2.705E+01	6.346E+00	1.877E+01	1.765E-01	2.110E-01	2.574E-01	7.050E+00	7.484E-04	1.801E-02
70.0	5.199E+01	1.240E+01	3.578E+01	4.583E-01	5.560E-01	1.439E+01	2.094E+03	4.453E-02	1.442E+00
80.0	8.574E+01	2.068E+01	5.862E+01	6.252E+01	8.167E-01	9.890E-01	2.471E+01	3.979E-03	8.175E-02

Note.—Table 3 is published in its entirety in the electronic edition of the *Astrophysical Journal*. A portion is shown here for guidance regarding its form and content.

\(^a\) Decomposition rate. See § 2 and eq. (1).
elements are mainly produced by neutral current reactions induced by $\nu_{\mu, \tau}$ and $\bar{\nu}_{\mu, \tau}$, which have higher temperature than ν_e and $\bar{\nu}_e$. Note that neutral current processes involve six kinds of neutrinos.

We find that ^{11}B has the largest yield among the light elements. The branching ratio for $^{12}\text{C}(\nu_e, e^-) ^{11}\text{B}$ is about 4 times larger than that for $^{12}\text{C}(\nu, e^-) ^{11}\text{C}$. The charged-current reaction cross section for $^{12}\text{C}(\nu_e, e^-) ^{11}\text{B}$ at $E_\nu = 5$ MeV is nearly the same as that for $^{12}\text{C}(\nu, e^-) ^{11}\text{C}$ at $E_\nu = 6$ MeV.

^{10}B is produced mainly by neutral current reactions, $^{12}\text{C}(\nu, \nu'p) ^{10}\text{B}$ and $^{12}\text{C}(\nu, \nu'd) ^{10}\text{B}$. The amount of the production is about $(6 \times 10^{-3}$ times that of ^{11}B for the SFO (PSDK2) Hamiltonian.

^{9}Be is produced by neutral current reactions, $^{12}\text{C}(\nu, \nu'x)^{9}\text{Be}$ ($x = \text{He, dp, and ppm}$) and charged-current reactions, $^{12}\text{C}(\nu_e, e^-x)^{9}\text{Be}$ ($x = \text{H, dn and ppm}$). The contribution of the latter reaction at $E_\nu = 5$ MeV is about 10% of the former at $E_\nu = 6$ MeV. The

Note.—Table 4 is published in its entirety in the electronic edition of the Astrophysical Journal. A portion is shown here for guidance regarding its form and

E_ν (MeV)	$^{12}\text{C}^{\alpha}$	n	p	d	t	^{3}He	^{4}He	^{6}He	^{6}Li	^{7}Li
10.0.........	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	
20.0.........	0.000E+00	0.000E+00	4.000E-05	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	
30.0.........	0.000E+00	0.000E+00	5.000E-05	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	
40.0.........	0.000E+00	0.000E+00	6.000E-05	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	
50.0.........	0.000E+00	0.000E+00	7.000E-05	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	
60.0.........	0.000E+00	0.000E+00	8.000E-05	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	
70.0.........	0.000E+00	0.000E+00	9.000E-05	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	
80.0.........	0.000E+00	0.000E+00	1.000E-04	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	

Note.—Table 5 is published in its entirety in the electronic edition of the Astrophysical Journal. A portion is shown here for guidance regarding its form and

E_ν (MeV)	$^{12}\text{C}^{\alpha}$	n	p	d	t	^{3}He	^{4}He	^{6}He	^{6}Li	^{7}Li
10.0.........	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	
20.0.........	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	
30.0.........	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	
40.0.........	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	
50.0.........	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	
60.0.........	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	
70.0.........	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	
80.0.........	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	

Note.—Table 5 is published in its entirety in the electronic edition of the Astrophysical Journal. A portion is shown here for guidance regarding its form and content.

* Decomposition rate. See § 2 and eq. (1).
TABLE 6

Neutrino-Induced Neutral-Current Reaction Cross Sections of 12C in Units of 10^{-42} cm2 Based on the PSDM2 Hamiltonian

E_{ν} (MeV)	4He	4He	8He	6Li	7Li
10.0...........	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
20.0...........	3.289E-04	2.518E-07	2.648E-04	0.000E+00	0.000E+00
30.0...........	2.976E-01	4.222E-02	2.504E-01	4.759E-06	3.311E-05
40.0...........	2.730E-02	5.182E-01	2.114E-00	7.058E-03	1.314E-02
50.0...........	1.016E+01	2.077E+02	7.658E+00	5.212E+00	1.138E+00
60.0...........	2.526E+00	5.382E+00	1.881E+01	3.082E+00	3.575E+00
70.0...........	4.950E+00	1.081E+01	3.657E+01	6.883E+01	7.099E+01
80.0...........	8.259E+00	1.833E+01	6.067E+01	7.514E+01	1.242E+00

Note.—Table 6 is published in its entirety in the electronic edition of the Astrophysical Journal. A portion is shown here for guidance regarding its form and content.

1 Decomposition rate. See § 2 and eq. (1).

production of 9Be is about 4 $(7) \times 10^{-4}$ times that of 11B for the SFO (PSDM2) Hamiltonian.

For 10Be, charged-current reaction cross sections for 12C (\bar{v}_e, e^-p) 10Be and 12C (ν_e, e^-d) 10Be are larger than neutral current reaction cross section for 12C (ν, ν^-p) 10Be at $(T_{\nu_e}, T_{\bar{v}_e}) =$ (5 MeV, 6 MeV), while at $T_{\nu_e} = 4$ MeV the former is as small as one-fourth of the latter. Production yields of 10Be, thus, depend on T_{ν_e}. The production of 10Be by neutral current processes is about 5 $(6) \times 10^{-4}$ times that of 11B for the SFO (PSDM2) case.

3Li is mainly produced by neutral current reactions, 12C (ν_e, ν^-p)3Li, etc. The production of 3Li through 3He is about 20% of that from the neutral current reactions. Contributions from charged-current processes are less than 10% of those from the neutral current reactions at $T_{\nu_e} = 5$ MeV. 4He is produced by neutral current processes, but production through 4He is negligible.

TABLE 7

Neutrino-Induced Charged-Current Reaction Cross Sections for ν_e of 12C in Units of 10^{-42} cm2 Based on the PSDM2 Hamiltonian

E_{ν} (MeV)	4He	4He	8He	6Li	7Li
10.0...........	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
20.0...........	2.363E-01	0.000E+00	2.663E-06	0.000E+00	0.000E+00
30.0...........	4.557E+00	0.000E+00	3.901E-01	1.076E-06	0.000E+00
40.0...........	1.802E+01	1.183E-03	5.282E+00	1.233E-02	0.000E+00
50.0...........	4.884E+01	2.703E-02	2.365E+01	1.266E-01	3.300E-05
60.0...........	1.071E+02	1.370E-01	6.690E+01	5.133E-01	1.394E-03
70.0...........	2.011E+02	3.824E-01	1.450E+02	1.313E+00	6.217E-03
80.0...........	3.346E+02	7.755E-01	2.632E+02	2.567E+00	8.990E+00

Note.—Table 7 is published in its entirety in the electronic edition of the Astrophysical Journal. A portion is shown here for guidance regarding its form and content.

a Decomposition rate. See § 2 and eq. (1).
Light-element synthesis during supernova explosions based on the present reaction cross sections is discussed in § 4.

3. SN NUCLEOSYNTHESIS MODEL

In this study, we adopt the same SN nucleosynthesis model employed by Yoshida et al. (2006a, 2006b), except for the new ν-process reaction rates. Here we briefly explain the SN explosion model, the SN neutrino model, and the nuclear reaction network.

3.1. SN Explosion Model

We consider a 16.2 M_\odot presupernova model, corresponding to the standard model in Yoshida et al. (2006b). It employs the cross sections of 12C and 4He adopted from HW92. Model 1w represents the same neutrino temperatures and total neutrino energy, while model 1w adopts the cross sections of 12Ca and 4He from SFO and WBP.

4. SN Neutrino Model

Here, we briefly explain models for the flux and energy spectra of the neutrinos emitted from the neutrino sphere. For simplicity, we assume that the neutrino luminosity decreases exponentially with a decay time of $\tau_\nu = 3$ s. The total energy carried out by neutrinos is almost equal to the binding energy released at the formation of a proto-neutron star. A characteristic value of the energy is 3×10^{53} ergs (e.g., Woosley et al. 1990), corresponding to the gravitational binding energy of a 1.4 M_\odot neutron star (Lattimer & Yahil 1989; Lattimer & Prakash 2001). The spectra at the neutrino sphere are assumed to follow Fermi-Dirac distributions with zero chemical potentials. Note that the temperatures of neutrinos and the total neutrino energy are somewhat uncertain, and that the 11B abundance in GCE can be used to constrain them.

We consider several neutrino models, parameterized by the neutrino temperatures, total energy released in neutrinos, and adopted cross sections. Table 9 lists seven models employed in this study. We use model 1 as the “standard model” in this study, with $T_{\nu_\alpha} = 3.2$ MeV, $T_{\nu_e} = 5.0$ MeV, $T_{\bar{\nu}_e} = 6.0$ MeV, and $E_{\nu_e,\text{total}} = 3.0 \times 10^{53}$ ergs, where $T_{\nu_\alpha}, T_{\nu_e}, T_{\bar{\nu}_e}$, and $E_{\nu_e,\text{total}}$ are the temperatures of ν_α, ν_e, $\bar{\nu}_e$, and the total neutrino energy. This set of the neutrino temperatures and total neutrino energy were used in the standard model of Yoshida et al. (2004, 2005a, 2006a, 2006b).

Models 1mk, 1p, and 1hw have the same set of the neutrino temperatures and total neutrino energy as in model 1, but adopt different sets of 12C and 4He cross sections. Model 1mk adopts the cross sections of 12C and 4He from SFO and WBP, while model 1w adopts the cross sections of 12C and 4He from PSDMK2 and SPDSMK Hamiltonians (Tables 1c, 1d, 6–8).

Models 1mk and 1w are adopted across 12C and 4He with PSDMK2 and SPDSMK Hamiltonians (Tables 1c, 1d, 6–8). Model 1p contains the cross sections of 4He($\nu, \nu' n$)4He, 4He($\nu, \nu' p$)4He, 4He($\nu_e, e^- p$)4He, 4He($\bar{\nu}_e, e^+ n$)4He, and 12C($\nu_\alpha, \nu' n$)12C, 12C($\nu_\alpha, \nu' p$)12C, and 12C($\nu_\alpha, e^- n$)12C for 12C evaluated in Suzuki et al. (2006). Since the reaction rates of 12C($\nu_\alpha, \nu' p$)10B, 12C($\nu_\alpha, e^- n$)12Be, 12C($\nu_\alpha, e^- n$)12Li, and 12C(ν_α, n)12Be were not evaluated in Suzuki et al. (2006), the rates of these reactions are adopted from HW92. Model 1hw is equivalent to the standard model in Yoshida et al. (2006b). It adopts the cross sections of 4He and 12C from HW92. Model 2 represents the same neutrino energy spectra as used in Rauscher et al. (2002), Heger et al. (2005), and Yoshida et al. (2005b, 2007, 2008).

E_{ν_e} (MeV)	12C	12B	7Li	7Li	7Be	7Be	10Be	11Be	10B	11B	12B
10.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
20.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
30.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
40.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
50.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
60.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
70.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
80.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000

Note: Table 8 is published in its entirety in the electronic edition of the Astrophysical Journal. A portion is shown here for guidance regarding its form and content.

* Decomposition rate. See § 2 and eq. (1).
When we investigate the effects of neutrino oscillations on SN nucleosynthesis, we consider two additional sets, to take into account uncertainties in neutrino oscillation parameters. Model LT corresponds to the largest \(T_{\nu_e} \) value and indicates the \(^{11}\text{B} \) yield close to the upper limit still satisfying GCE constraints (Fields et al. 2000; Ramaty et al. 2000a, 2000b; Alibe’s et al. 2002). Model ST corresponds to the smallest \(T_{\nu_e} \) value and indicates the value close to the lower limit deduced from GCE models. We note that the temperature of \(\nu_e \) in model ST is changed to keep \(T_{\nu_e}/T_{\nu_x} \approx 1.2 \), which is the same as model 1.

When neutrino oscillations are taken into account, the neutrinos emitted from the neutrino sphere change flavor in passing through the stellar interior. The flavor change depends strongly on neutrino oscillation parameters. We use the following values for these parameters. The squared-mass differences of the mass eigenstates \(\Delta m^2_{ij} = m_i^2 - m_j^2 \) are set to be

\[
\Delta m^2_{21} = 7.9 \times 10^{-5} \text{ eV}^2,
\%
\Delta m^2_{31} = 2.4 \times 10^{-3} \text{ eV}^2.
\]

The values of the mixing angles \(\theta_{12} \) and \(\theta_{23} \) are fixed to be

\[
\sin^2 2\theta_{12} = 0.816, \quad \sin^2 2\theta_{23} = 1.
\]

These parameter values correspond to the family of the so-called large mixing angle (LMA) solutions, determined with Super-Kamiokande (Ashie et al. 2004), SNO (Sudbury Neutrino Observatory; Ahmed et al. 2004), and KamLAND (Araki et al. 2005). In the case of \(\Delta m^2_{31} \), only the absolute value has been determined. The positive and negative values correspond to normal and inverted mass hierarchies, respectively. For the mixing angle \(\theta_{13} \), the upper limit of \(\sin^2 2\theta_{13} \) has been determined to be \(\sin^2 2\theta_{13} \approx 0.1 \) from the CHOOZ experiment (Apollonio et al. 2003). In this study, we use values of \(\sin^2 2\theta_{13} \) between \(1 \times 10^{-6} \) and 0.1.

There are two resonances in the transitions between two mass eigenstates in the stellar interior of the presupernova. The resonance density is obtained from

\[
\rho_{\text{res}} Y_e = \frac{m_e \Delta m^2_{ij} \epsilon^4 \cos 2\theta_{ij}}{2 \sqrt{2} G_F (\hbar c)^2 \epsilon_{\nu}} = 6.55 \times 10^6 \left(\frac{\Delta m^2_{ij}}{1 \text{ eV}^2} \right) \left(\frac{1 \text{ MeV}}{\epsilon_{\nu}} \right) \cos 2\theta_{ij} \text{ g cm}^{-3},
\]

where \(\rho_{\text{res}} \) is the resonance density, \(Y_e \) is the electron fraction, \(m_e \) is the atomic mass unit, \(c \) is the speed of light, \(G_F \) is the Fermi constant, \(h \) is the Planck constant divided by \(2\pi \), and \(\epsilon_{\nu} \) is the neutrino energy.

One resonance is related to the transition between the 2–3 mass eigenstates. We refer to this resonance as the “H resonance.” The density range of the H resonance is \(\rho_{\text{res}} \approx 300–3000 \text{ g cm}^{-3} \), with the energy range of \(\epsilon_{\nu} \approx 10–100 \text{ MeV} \). This density range corresponds to the C/O layer and the inner region of the He layer. Adiabaticity of the H resonance depends on the value of the oscillation parameter \(\sin^2 2\theta_{13} \).

The other resonance is due to the transition between the 1 and 2 mass eigenstates. We refer to this resonance as the “L resonance.” The density range of the L resonance is \(\rho_{\text{res}} \approx 4–40 \text{ g cm}^{-3} \). The location of the L resonance is in the He layer. The L resonance is an adiabatic resonance in the range of neutrino oscillation parameters considered in this study. Details of neutrino oscillations in this supernova model are provided in Yoshida et al. (2006b).

3.3. Nucleosynthesis Model

We calculate the nucleosynthesis of the supernova explosion using a nuclear reaction network consisting of 291 nuclear species, as used in Yoshida et al. (2004, 2005a, 2006a, 2006b) and tabulated in Table 1 in Yoshida et al. (2004). The difference from previous studies (Yoshida et al. 2006a, 2006b) is that here new cross sections for neutrino-\(^{12}\text{C} \) and neutrino-\(^{4}\text{He} \) reactions are used (see § 2). Reaction rates are calculated using these new cross sections and the neutrino energy spectra discussed above. When we take neutrino oscillations into account, the formulation of the rates of the charged-current \(\nu \) processes is given by equation (8) in Yoshida et al. (2006b). The range of the neutrino energy for integration is capped at 160 MeV. The reaction rates of the other \(\nu \) processes are adopted from HW92, and the effects of neutrino oscillations are not included for those reactions.

4. LIGHT ELEMENT YIELDS

4.1. Production of Light Elements in SNe

Below we discuss the production processes of light elements in the SN model with the new cross sections for \(^{4}\text{He} \) and \(^{12}\text{C} \). The mass fraction distribution of the light elements at 1000 s after core bounce is shown in Figure 4. The mass fractions of \(^{7}\text{Li} \) and \(^{11}\text{B} \) are larger than those of other light elements. The third abundant species is \(^{10}\text{B} \). The abundances of \(^{6}\text{Li} \) and \(^{9}\text{Be} \) are smaller than that of \(^{10}\text{B} \) by more than an order of magnitude. The radioactive isotope \(^{10}\text{Be} \) is produced at a level similar to those of \(^{6}\text{Li} \) and \(^{9}\text{Be} \).

4.1.1. \(^{7}\text{Li} \)

Most of \(^{7}\text{Li} \) is produced in the He/C layer. The \(^{7}\text{Li} \) is originally produced as \(^{7}\text{Li} \) and its isobar \(^{7}\text{Be} \). In an inner region of the He/C
layer ($M_r \leq 4.8\ M_\odot$), the production of ^7Be dominates. Most of ^7Be is produced through $^4\text{He}(\nu, \nu'n)\text{He}$ and $^4\text{He}(\alpha, \gamma)^7\text{Be}$. The charged-current reaction $^4\text{He}(\nu_e, e^- p)^3\text{He}$ contributes less to the ^7Be production, but is important when neutrino oscillations are considered (see § 5). In the O/Ne layer, the mass fraction of ^7Be is small. Most of ^7Be is produced through the ν-process of ^{12}C. When the shock wave arrives, almost all the ^7Be is photodisintegrated by $^7\text{Be}(\gamma, \alpha)^4\text{He}$. During the expansion stage, ^7Be is again produced from ^{12}C.

In the outer region of the He/C layer, most of ^7Li is produced via the reaction sequence $^3\text{He}(\nu_e, e^- p)^3\text{He}$ and $3\text{He}^0\to^3\text{He}$ and $3\text{He}(\alpha, \gamma)^7\text{Li}$. Some of ^7Li is contributed by the charged-current reaction $^4\text{He}(\nu_e, e^- p)^3\text{He}$. In this region, all ^3He produced through the ν-process is consumed by α-capture to ^7Li during the expansion. On the other hand, a much smaller amount of ^7Be is produced, because the shock temperature is too low to effectively enable $^3\text{He}(\alpha, \gamma)^7\text{Be}$ during the explosion. In the inner region of the He/C layer, the produced ^7Li experiences α-capture to yield ^{11}B during the explosion. In the O-rich layer, ^7Li is produced through the ν-process of ^{12}C, and further α-capture produces ^{11}B.

4.1.2. ^{11}B

About 60% of ^{11}B is produced in the He/C layer. Most of the ^{11}B is produced through $^7\text{Li}(\alpha, \gamma)^{11}\text{B}$ in the mass coordinate range $4.2\ M_\odot \leq M_r \leq 4.9\ M_\odot$. In this region, the mass fraction of ^7Li becomes very small owing to this reaction (see Fig. 4). A very small amount of the isobar ^{11}C is coproduced through $^{12}\text{C}(\nu_e, e^- x)^{11}\text{C}$. In the O-rich layer (O/Ne and O/C layers), both ^{11}B and ^{11}C are produced through the ν-process of ^{12}C. The sum of their mass fractions is about 10^{-6} in the O/C layer, because the mass fraction of ^{13}C is also large. The mass fractions of ^{11}B and ^{11}C are similar about 10 s after the explosion. Some ^{11}B is destroyed by $^{11}\text{B}(\alpha, p)^{14}\text{N}$. In the O/Ne layer, ^{11}B is produced as ^{11}C. The branching ratio of ^{11}B is larger than that of ^{13}C in the ν-process of ^{12}C. Therefore, the amount of ^{11}B produced through the ν-process is larger than the amount of ^{11}C. However, more than 90% of ^{11}B is lost due to the reaction $^{11}\text{B}(\alpha, p)^{14}\text{N}$ at shock arrival. The ν-process that continues after the explosion increases the ^{11}B abundance again, but to a lesser extent than ^{11}C. The main destruction reaction of ^{11}C is $^{11}\text{C}(\alpha, p)^{14}\text{N}$, but it is practically negligible. The produced ^{11}C decays to ^{11}B by β^+-decay and electron capture with a half-life of 20.39 minutes. Thus, the mass fraction of ^{11}B in the He/C layer is larger than that of ^{11}C in Figure 4.

4.1.3. ^6Li and ^9Be

The production processes of ^6Li and ^9Be are connected. About 65% and 60% of ^6Li and ^9Be, respectively, are produced in the He/C layer. Most of ^9Be is produced through the ν-process reaction $^{12}\text{C}(\nu_e, e^- x)^{12}\text{C}$ by ^6Li. However, it is decomposed after shock arrival at $M_r \leq 5.0\ M_\odot$. The main destructive reaction is $^9\text{Be}(\alpha, n)^{12}\text{C}$. About a half of ^6Li is produced through $^4\text{He}(\nu_e, e^- p)^3\text{He}\to^4\text{He}$ in the region $3.8\ M_\odot \leq M_r \leq 4.6\ M_\odot$ in the He/C layer. Additional ^6Li is synthesized through $^{12}\text{C}(\nu_e, e^- x)^{12}\text{C}$ before shock arrival and through $^9\text{Be}(\alpha, n)^{12}\text{C}$ after shock arrival. In the inner region of the He/C layer ^9Be is destroyed through $^4\text{He}(\nu_e, e^- p)^3\text{He}$.

In the O-rich layer, ^9Be is mainly produced through $^{12}\text{C}(\nu_e, e^- x)^{12}\text{C}$. About all of the ^6Li produced before shock arrival is destroyed completely through $^9\text{Be}(\alpha, n)^{12}\text{C}$ by the shock. It is supplied again through $^{12}\text{C}(\nu_e, e^- x)^{12}\text{C}$ during the expansion stage. It is partly produced through $^{12}\text{C}(\nu_e, e^- x)^{12}\text{C}$ in the O-rich layer. The main production process for ^9Be is $^9\text{Be}(\alpha, n)^{12}\text{C}$. This reaction is effective just before shock arrival. The temperature increase from the shock reduces the ^9Be abundance through $^9\text{Be}(\alpha, n)^{12}\text{C}$. However, ^6Li is supplied again via $^6\text{Li}(\alpha, n)^{12}\text{C}$ during the postshock expansion. The contribution from $^{12}\text{C}(\nu_e, e^- x)^{12}\text{C}$ is small.

4.1.4. ^{10}Be

Radioactive ^{10}Be is produced in both the O-rich and He/C layers. It is mainly produced through the charged-current reaction $^{12}\text{C}(\nu_e, e^- x)^{12}\text{C}$ and the neutral-current reaction $^{12}\text{C}(\nu_e, x)^{12}\text{C}$. The contribution from the charged-current reaction is larger than that from the neutral-current reaction in this model. The produced ^{10}Be is destroyed by $^{10}\text{Be}(\alpha, n)^{13}\text{C}$ at shock arrival at $M_r \leq 4.8\ M_\odot$. In the O-rich layer, however, the ν-process reaction still increases the ^{10}Be amount during the expansion stage. We note that the ν-process reactions producing ^{10}Be directly are included in this study for the first time. When we do not include these reactions, ^{10}Be is produced through $^{12}\text{C}(\nu_e, e^- x)^{11}\text{Be}(\gamma, n)^{10}\text{Be}$.

4.1.5. ^{10}B

About 80% of the ^{10}B amount is produced through the ν-process of ^{12}C, mainly via $^{12}\text{C}(\nu_e, x)^{10}\text{B}$. About a half of ^{10}B is produced in the O-rich (O/Ne and O/C) layer. In the O-rich layer, some ^{10}B is produced by $^{13}\text{C}(p, \alpha)^{10}\text{B}$ after shock arrival. The amount of ^{10}B increases again in the expansion due to the supply, through the ν-process, of ^{12}C. A small amount of ^{10}B is also produced through $^6\text{Li}(\alpha, \gamma)^{10}\text{Be}$ in the He/C layer. Destruction after shock passage is negligible in the He/C layer.

4.2. Yields of Light Elements

We consider light element yields resulting from different sets of the relevant ν-process cross sections. The yields of ^7Li, ^{11}B, ^6Li, ^9Be, ^{10}Be, and ^{10}B are listed in Table 10. We first compare the yields of the light elements of model 1 with those of model 1p (see § 3.2 and Table 9). In model 1 and model 2, new reaction rates obtained in § 2 with the WBP+SFO Hamiltonians and new branching ratios are used. Model 1p uses the reaction rates of ^4He and ^{12}C evaluated in SC06. The branching ratios used to produce ^7Li, ^7Be, ^9Be, and ^{10}B from ^{12}C were not evaluated in SC06. Therefore, we adopted the rates of these reactions from HW92 in model 1p (see also § 3.2).

The yields of ^7Li and ^{11}B in model 1 become slightly smaller than those in model 1p, but are not very different. ^7Li and ^{11}B are the main products of the ν-process from ^4He and ^{12}C. The cross
sections of $^4\text{He}(\nu, \nu'n)^3\text{H}$ and $^4\text{He}(\nu, \nu'\bar{\nu})^3\text{He}$ in this study are slightly larger than those in SC06, owing to the consideration of the branches of d and mp.

The case of ^11B is an exception. The yield of ^11B in model 1mk is larger than that in model 1 by a factor of 8.5. This is due to the additional ^4He with the SPSDMK Hamiltonian are larger than those using SFO. A large amount of ^11B is produced via $^7\text{Li}(\nu, \nu'\bar{\nu})^7\text{Li}$ through the reaction sequence resulting from $^4\text{He}(\nu, \nu'\bar{\nu})^3\text{H}$. The larger production of ^11B reflects the larger cross sections from ^4He.

4.3. Constraints on the Neutrino Energy Spectrum

Light elements are continuously produced by Galactic cosmic rays (GCRs), nucleosynthesis in SNe, AGB stars, and so on. GCE models deduce the contributions of various production sites from the observed light-element abundances in stars as a function of their metallicity. The contribution of the ^11B yield in SNe was evaluated in GCE models (Fields et al. 2000; Ramaty et al. 2000a, 2000b; Allibes et al. 2002). The yield of ^11B in representative SNe of progenitor mass $\sim 20 M_\odot$ is

$$3.3 \times 10^{-7} M_\odot \lesssim M(^{11}\text{B}) \lesssim 7.4 \times 10^{-7} M_\odot.$$

Yoshida et al. (2005a) evaluated the range of the temperature of $\nu_{\mu, \tau}$ and $\bar{\nu}_{\mu, \tau}$ neutrinos, $T_{\nu_{\mu, \tau}}$, to be between 4.8 and 6.6 MeV. It was assumed that the energy spectra of SN neutrino follow Fermi-Dirac distributions with zero chemical potentials and...
(\(T_{\nu_e}, T_{\bar{\nu}_e}\)) = (3.2 \text{ MeV}, 5 \text{ MeV}). They also discussed the effects of the degeneracy of the neutrino energy spectra. However, the range of allowed neutrino temperatures also depends on the cross sections of the \(\nu\)-process reactions. We reevaluate the range of neutrino temperatures from GCE model constraints with the new cross sections, and also discuss the yields of other light elements in the temperature range given by the \(^{11}\text{B}\) constraint.

We calculated light-element nucleosynthesis in the \(T_{\nu_e}\) range between 4 and 9 MeV on grids with steps of 0.2 MeV in the \(E_\nu\) range between \(1 \times 10^{53}\) and \(6 \times 10^{53}\) ergs on grids with steps of \(1 \times 10^{53}\) ergs. We fixed the temperatures of \(T_{\nu_e}\) and \(T_{\bar{\nu}_e}\) at 3.2 and 5 MeV, respectively, for simplicity, as in Yoshida et al. (2005a). Based on the nucleosynthesis calculations, we derive contours of \(^{11}\text{B}\) yield in \(E_\nu\)-\(T_{\nu_e}\) space. Figure 5 shows the contours of the \(^{11}\text{B}\) yield for the \(\nu\)-process cross sections from the WBP+SFO model. The total neutrino energy deduced from the gravitational binding energy of a neutron star is in the range \(2.4 \times 10^{53}\) ergs \(\leq E_\nu \leq 3.5 \times 10^{53}\) ergs. From the GCE range of the \(^{11}\text{B}\) yield (SN component) and the above range for the total neutrino energy, we constrain the neutrino temperature to be confined in

\[4.3 \text{ MeV} \leq T_{\nu_e} \leq 6.5 \text{ MeV}.\]

This range is slightly smaller than the previously evaluated range; \(4.8 \text{ MeV} \leq T_{\nu_e} \leq 6.6 \text{ MeV}\) (Yoshida et al. 2005a). The contours of the \(^7\text{Li}\) yield are shown in Figure 5b. The yield expected from GCE considerations is indicated by the shaded region. We also evaluated the range of yields for other species, as allowed by the \(T_{\nu_e}\) and \(E_\nu\)-total constraints (see Table 11). Yields of model 1 are in the allowed range for each nuclear species considered.

We note that the lower limit of \(T_{\nu_e}\) is smaller than the assumed value of \(T_{\nu_e}\). If we assume that \(T_{\nu_e}/T_{\bar{\nu}_e}\) keeps a constant ratio, the lower limit of \(T_{\nu_e}\) should be larger. When we assume \(T_{\nu_e}/T_{\bar{\nu}_e} = 1.2\), which is equal to the ratio in model 1, the lower limit of \(T_{\nu_e}\) is 5.0 MeV. This corresponds to model ST (see Table 9).

Table 11

Species	WBP+SFO Model Minimum Yield \((M_\odot)\)	Maximum Yield \((M_\odot)\)	SPSMK+PSDMK2 Model Minimum Yield \((M_\odot)\)	Maximum Yield \((M_\odot)\)
\(^{11}\text{B}\)	\(3.30 \times 10^{-7}\)	\(7.40 \times 10^{-7}\)	\(3.30 \times 10^{-7}\)	\(7.40 \times 10^{-7}\)
\(^6\text{Li}\)	\(2.21 \times 10^{-11}\)	\(5.25 \times 10^{-11}\)	\(1.39 \times 10^{-11}\)	\(3.11 \times 10^{-11}\)
\(^7\text{Li}\)	\(1.17 \times 10^{-7}\)	\(2.82 \times 10^{-7}\)	\(1.40 \times 10^{-7}\)	\(3.37 \times 10^{-7}\)
\(^9\text{Be}\)	\(2.94 \times 10^{-11}\)	\(7.08 \times 10^{-11}\)	\(3.23 \times 10^{-11}\)	\(7.96 \times 10^{-11}\)
\(^{10}\text{Be}\)	\(2.86 \times 10^{-11}\)	\(3.94 \times 10^{-11}\)	\(2.81 \times 10^{-11}\)	\(3.96 \times 10^{-11}\)
\(^{11}\text{B}\)	\(4.39 \times 10^{-10}\)	\(1.20 \times 10^{-9}\)	\(1.88 \times 10^{-10}\)	\(5.30 \times 10^{-10}\)
In order to exhibit the effects of different shell-model Hamiltonians, we evaluated the range of the neutrino temperature using the ν-process cross sections of the SPSDMK+PSDMK2 model. Figure 6a shows the corresponding contours of the 11B yield for the SPSDMK+PSDMK2 model. With this cross section set, we find a larger yield of 11B than for the WBP+SFO model, with the same neutrino radiation. The range of the neutrino temperature consistent with the 11B constraint in GCE models is now slightly shifted to smaller values than obtained in the WBP+SFO model.

Yields of other elements, constrained by the allowed ranges of neutrino temperature and total neutrino energy, are given in Table 11. The contours of the 7Li yield are shown in Figure 6b. The upper and lower limits of the yields are different from those of the WBP+SFO model, but by less than 20% for most cases. This change is much smaller than the basic yield range for each species. However, the yields of 6Li and 10B show relatively large differences, due to the difference of the contribution from 4He(ν, $\nu'd$)3H.

4.4. Effect of Neutrino Chemical Potential

Most of the calculations on the ν-process in supernovae are performed with the neutrino energy spectra, assuming Fermi-Dirac distributions and zero chemical potentials. On the other hand, studies of detailed neutrino transport in core-collapse supernovae have shown that the neutrino energy spectra are closer to a slightly "degenerate" distribution than those with zero chemical potential. In order to investigate the detailed dependence on neutrino degeneracy, the ν-process cross sections as a function of the neutrino energy are required. Here we investigate the effects of the neutrino degeneracy on the light-element yields. We note that we take into account the neutrino degeneracy only for the ν-process of 4He and 12C. We do not take into account the neutrino degeneracy for other ν-process reactions adopted from HW92, because their reaction rates are shown with definite neutrino temperatures derived with the assumption of Fermi-Dirac distributions with zero chemical potential.

The yield ratios of 7Li and 11B relating to the neutrino degeneracy parameter $\eta_\nu = \mu_\nu/kT_\nu$ are shown in Figure 7. Here we assumed that the degeneracy parameter η_ν does not depend on neutrino flavors. The yield ratios increase with the neutrino degeneracy. In the case of $\eta_\nu = 3$, the yield ratios of 7Li and 11B are 1.4 and 1.5, respectively. Yoshida et al. (2005a) discussed the
effect of the neutrino degeneracy on the light-element yields using an analytical approximation for the ν-process cross sections of ^{4}He and ^{12}C. We find that the ^7Li and ^{11}B yields in the case of $\eta_\nu = 3$ would be increased by about 50% compared to the yields for $\eta_\nu = 0$. Therefore, our analytical evaluation approximates the numerical evaluation well. We obtained a similar dependence of the yield ratios on the neutrino degeneracy for the other light elements; the yield ratios are between 1.4 and 1.5 in the case of $\eta_\nu = 3$. The constraint of the neutrino temperature is smaller by about 0.1 MeV in the case of $\eta_\nu = 3$ (Yoshida et al. 2005a).

5. CHANGED ^7Li AND ^{11}B YIELDS DUE TO NEUTRINO OSCILLATIONS

Neutrino oscillations change the flavors of the neutrinos emitted from the neutrino sphere during their passage through the stellar interior. The average neutrino energies of ν_e and $\bar{\nu}_e$ increase due to the neutrino oscillations, and their enhancement depends on neutrino oscillation parameters, i.e., mass hierarchy and the mixing angle θ_{13}. In this study, we evaluate the flavor transition probabilities by the neutrino oscillations using the same procedure as in Yoshida et al. (2006a, 2006b). We evaluate the rates of the charged-current ν-process reactions of ^{4}He and ^{12}C using the flavor-transition probabilities and the cross sections derived in § 2. Then we calculate detailed nucleosynthesis with the ν-process reactions.

5.1. Differences Due to New Neutrino-Nucleus Cross Sections

The dependence of the ^7Li and ^{11}B yields on neutrino oscillation parameters is influenced by the cross sections of neutrino-nucleus reactions (Yoshida et al. 2006a, 2006b). We study the effects on the ^7Li and ^{11}B yields due to neutrino oscillations by comparing models 1 and 1hw. Model 1hw is the standard model used in this study.

Figure 8a shows the relation between the ^7Li yield ratio, i.e., the ratio of the ^7Li yield to the one without neutrino oscillations, and the mixing angle $\sin^22\theta_{13}$. We observe that the dependence on the oscillation parameters, i.e., mass hierarchies and mixing angle θ_{13}, does not change qualitatively. The increase in the ^7Li yield is larger in a normal mass hierarchy than in an inverted hierarchy, and the yield increases for the case of $\sin^22\theta_{13} \simeq 2 \times 10^{-3}$, i.e., the H resonance is adiabatic. On the other hand, the maximum value of the yield ratio is somewhat reduced. The maximum yield ratio is 1.65, which is smaller than the value of 1.87 found in the previous study. The maximum ^7Li yield is $4.41 \times 10^{-7} \ M_\odot$ in a normal mass hierarchy and for $\sin^22\theta_{13} = 1 \times 10^{-2}$. The difference of the neutral-current cross section of ^4He becomes larger for a smaller neutrino temperature. In this case, the contribution from the neutral-current reactions of ν_e and $\bar{\nu}_e$ is larger in the new rates than it is in the HW92 rates. The contribution from charged-current reactions in the new rates becomes smaller.

In the case of an inverted mass hierarchy, the maximum increase in the ^7Li yield is a factor of 1.24, which is slightly smaller than the value found in the previous study. The new reaction rates slightly decrease the effect of neutrino oscillations. The maximum yield of ^7Li is $3.31 \times 10^{-7} \ M_\odot$ for $\sin^22\theta_{13} = 0.1$.

Figure 8b shows the dependence of the ^{11}B yield ratio on the mixing angle $\sin^22\theta_{13}$ using the new and old cross sections. The ^{11}B yield increases most effectively in a normal mass hierarchy and for the case of the adiabatic H resonance. The ^{11}B yield is $8.83 \times 10^{-7} \ M_\odot$ in the case of a normal mass hierarchy and $\sin^22\theta_{13} = 0.1$. The maximum yield ratio is 1.24. The maximum increase in the ^{11}B yield is smaller with the new cross sections. In the case of an inverted mass hierarchy, the increase in the ^{11}B yield is smaller than the corresponding value in a normal mass hierarchy. The maximum yield is $8.48 \times 10^{-7} \ M_\odot$ for $\sin^22\theta_{13} = 0.1$. The maximum yield ratio is 1.19.

5.2. Dependence on T_{ν_e}

We investigated the dependence of the ^{11}B yield on the temperature of $\nu_{e,\tau}$ and $\bar{\nu}_{e,\tau}$ neutrinos, and evaluated the temperature range satisfying the ^{11}B abundance constraints in GCE models (Yoshida et al. 2005a). This range also depends on the cross sections of the ν-process. Therefore, we consider models LT and ST, which present T_{ν_e} and E_{ν} values different from model 1 (see § 3.2). The values of the neutrino temperatures and the total neutrino energy are given in Table 9.

When neutrino oscillations are not considered, the ^7Li yield varies between 1.39×10^{-7} and $2.88 \times 10^{-7} \ M_\odot$ due to the allowed range of the neutrino temperature T_{ν_e}. The variation of the ^{11}B yield is between 3.56×10^{-7} and $7.46 \times 10^{-7} \ M_\odot$. Both...
yields thus change by about a factor of 2 over this temperature range. Therefore, we must consider variations due to neutrino oscillations as well as neutrino temperature.

The dependence of the ^7Li and ^{11}B yields on mass hierarchies and the mixing angle $\sin^2 2\theta_{13}$ in these three models is shown in Figure 9. We observe that the ^7Li yield varies between 1.39×10^{-7} and $4.93 \times 10^{-7} M_{\odot}$, widening with increasing temperature. However, it is difficult to distinguish the effect of neutrino oscillations and temperature. If the ^7Li yield is smaller than $3.2 \times 10^{-7} M_{\odot}$, the increase in the yield due to the neutrino oscillations cannot be distinguished from the ^7Li yield range deduced from the uncertainty of the neutrino temperature. Even for a larger ^7Li yield, the constraints on the mass hierarchy and the mixing angle $\sin^2 2\theta_{13}$ become ambiguous due to the uncertainty in the neutrino temperature.

Figure 9 shows that the variation of the ^{11}B yield is between 3.56×10^{-7} and $9.40 \times 10^{-7} M_{\odot}$. However, as pointed out above, it is difficult to constrain oscillation parameters. If the ^{11}B yield is smaller than $7.6 \times 10^{-7} M_{\odot}$, the uncertainty due to the neutrino temperature and the increase in the yield due to neutrino oscillations are not distinguishable. Even for larger yields, there are no clear differences between the yields in a normal mass hierarchy and in an inverted mass hierarchy.

5.3. Constraints on Oscillation Parameters from the $^7\text{Li}/^{11}\text{B}$ Ratio

In Yoshida et al. (2006a, 2006b) we proposed a constraint of neutrino oscillation parameters derived from the $^7\text{Li}/^{11}\text{B}$ abundance ratio. We have shown above that both the ^7Li and ^{11}B yields change with the neutrino temperature by about a factor of 2. When the abundance ratio of $^7\text{Li}/^{11}\text{B}$ is considered, the uncertainty due to the neutrino temperature cancels out. Then, the dependence on mass hierarchy and mixing angle θ_{13} is most clearly revealed. We found that the $^7\text{Li}/^{11}\text{B}$ ratio is larger than 0.83 in a normal mass hierarchy and $\sin^2 2\theta_{13} \geq 2 \times 10^{-3}$. When we do not consider neutrino oscillations, the $^7\text{Li}/^{11}\text{B}$ ratio is 0.71, at most. However, the $^7\text{Li}/^{11}\text{B}$ ratio does depend on the relevant ν-process cross sections. We evaluate the range of the $^7\text{Li}/^{11}\text{B}$ ratio with the new cross sections discussed in § 2.

We evaluate the $^7\text{Li}/^{11}\text{B}$ range using models 1, 2, LT, and ST. Figure 10 shows the abundance ratio of $^7\text{Li}/^{11}\text{B}$ with the relation to $\sin^2 2\theta_{13}$ evaluated using the WBP+SFO model. When we do not consider neutrino oscillations, the $^7\text{Li}/^{11}\text{B}$ ratio lies between 0.59 and 0.61. The $^7\text{Li}/^{11}\text{B}$ ratio changes by about 12% among these four neutrino temperature models. As shown in Yoshida et al. (2006a, 2006b), the uncertainties of the ^7Li and ^{11}B yields by neutrino temperatures are canceled out when we adopt the $^7\text{Li}/^{11}\text{B}$ ratio.

In a normal mass hierarchy, the $^7\text{Li}/^{11}\text{B}$ ratio depends on $\sin^2 2\theta_{13}$. For the nonadiabatic H resonance, the $^7\text{Li}/^{11}\text{B}$ ratio lies between 0.64 and 0.66; the range is slightly larger than the case without neutrino oscillations. This slight increase is due to the fact that the ^7Li yield is larger even in nonadiabatic H resonance. For an adiabatic H resonance, where $\sin^2 2\theta_{13} = 0.002$, the $^7\text{Li}/^{11}\text{B}$ ratio is in the range of 0.78–0.83. The increase is slightly smaller than the one found in Yoshida et al. (2006a). The value of 0.78 corresponds to model 1. As discussed in Yoshida et al. (2006b),...
the variation of the $^{7}\text{Li}/^{11}\text{B}$ ratio for a given value of $\sin^{2}2\theta_{13}$ is mainly due to the uncertainties of $T_{\nu_{e}}$ and $T_{\bar{\nu}_{e}}$. If the uncertainty of $T_{\nu_{e}}$ and $T_{\bar{\nu}_{e}}$ becomes small, the range of $^{7}\text{Li}/^{11}\text{B}$ in adiabatic resonance becomes small.

In an inverted mass hierarchy, the $^{7}\text{Li}/^{11}\text{B}$ ratio is not distinguishable from the one with normal mass hierarchy or without neutrino oscillations. If the H resonance is nonadiabatic, the $^{7}\text{Li}/^{11}\text{B}$ ratio is identical in normal and inverted mass hierarchies. The $^{7}\text{Li}/^{11}\text{B}$ ratio for an adiabatic H resonance is smaller than the one for a nonadiabatic resonance.

For completeness, we also show the elemental abundance ratios of light elements in Figure 11. The Li/B ratio is almost identical to the $^{7}\text{Li}/^{11}\text{B}$ ratio. This is because most of Li and B are produced as ^{7}Li and ^{11}B, respectively. The Be/Li and Be/B ratios are much smaller than the Li/B ratio because the Be yield is much smaller than those of Li and B. The Be/Li ratio shows a dependence on mass hierarchies in the case of $\sin^{2}2\theta_{13} \approx 2 \times 10^{-3}$. The Be/Li ratio is smaller than 1.8×10^{-4} in a normal mass hierarchy. On the other hand, it is larger than 2.1×10^{-4} in an inverted mass hierarchy. While the ^{7}Li abundance increases, the ^{9}Be abundance becomes slightly smaller, due to the destructive reaction $^{9}\text{Be}(p, \alpha)^{6}\text{Li}$. The contribution of $^{12}\text{C}(\nu_{e}, e^{-})^{9}\text{Be}$ does not affect the ^{9}Be yield, because the cross section is very small, even with the enhancement of the average ν_{e} energy (see Figs. 2 and 3).

The Be/B ratio has a small dependence on mass hierarchies and mixing angle θ_{13}. The variation of the ratio due to these parameters is roughly equal to the uncertainty resulting from the neutrino temperatures. From the viewpoint of elemental abundance ratios, the Li/B and Be/Li ratios depend on mass hierarchies and the mixing angle θ_{13}.

We have shown above that the $^{7}\text{Li}/^{11}\text{B}$ ratio in a normal mass hierarchy and adiabatic H resonance ($\sin^{2}2\theta_{13} \approx 2 \times 10^{-3}$) is larger than the one obtained in the other cases. This increase is attributed to the effect of neutrino oscillations, and remains after taking into account uncertainties in neutrino energy spectra. Therefore, we confirm with the new ν-process cross sections that the $^{7}\text{Li}/^{11}\text{B}$ ratio is a promising probe of oscillation parameters. If we find that the yields of ^{7}Li and ^{11}B produced in supernovae require a $^{7}\text{Li}/^{11}\text{B}$ ratio larger than 0.78, the mass hierarchy should be normal, and $\sin^{2}2\theta_{13}$ should be larger than 2×10^{-3}. We expect that ^{7}Li and ^{11}B will eventually be detected in stellar material, indicating traces of SN material. Supernova remnants are also promising candidates for the detection of ^{7}Li and ^{11}B.

Fig. 11.—Elemental abundance ratios of (a) Li/B, (b) Be/Li, and (c) Be/B as a function of the mixing angle $\sin^{2}2\theta_{13}$. Dark and medium shaded regions correspond to normal and inverted mass hierarchies, respectively. The lightly shaded region indicates the ratio obtained without neutrino oscillations. Each range is drawn using the results of models 1, 2, LT, and ST.
for this type of abundance constraint on neutrino physics. There have been attempts to find stars with excesses in ^{7}Li, which would provide evidence for direct pollution with supernova ejecta (e.g., Rebull et al. 1998; Primas et al. 1998, 1999). The $^{7}\text{Li}/^{11}\text{B}$ ratio of presolar grains from SmNe might also provide useful information for presolar grains, see, e.g., Lodders & Amari 2005). On the other hand, there are still theoretical uncertainties regarding neutrino energy spectra and stellar evolution. The reduction of these uncertainties will bring about a stronger constraint on neutrino oscillation parameters.

The observation of supernova neutrino signals just after a supernova explosion is one of the most promising methods to constrain unknown neutrino oscillation parameters. It is expected that SuperKamiokande will detect more than 1000 neutrinos if a supernova explodes at the Galactic center (e.g., Fogli et al. 2005). If detailed energy spectra of the neutrinos emitted from the supernova are theoretically predicted, the analysis of the observed neutrino spectra will constrain the oscillation parameters (e.g., Dighe & Smirnov 2000; Takahashi et al. 2001). The time evolution of the neutrino signal may reveal the change of the neutrino spectra due to the supernova shock propagation (Takahashi et al. 2003; Tomás et al. 2004; Fogli et al. 2005; Kneller et al. 2008). SuperKamiokande detects electron-type antineutrinos, so that the enhancement of the supernova $\bar{\nu}_e$ signal detected by SuperKamiokande will be evidence for an inverted mass hierarchy and relatively large value of θ_{13} ($\sin^22\theta_{13} \simeq 10^{-3}$). The enhancement of the $^{7}\text{Li}/^{11}\text{B}$ ratio will be evidence for a normal mass hierarchy and relatively large value of θ_{13}. Therefore, these two constraints complement each other.

6. DISCUSSION

6.1. Temperatures of the ν_e and $\bar{\nu}_e$ Neutrinos

The temperatures of the ν_e and $\bar{\nu}_e$ neutrinos are less sensitive to the yield constraints than those of the ν_{μ}, τ and $\bar{\nu}_{\mu}, \tau, \nu_{e}, \bar{\nu}_{e}$ neutrinos. The temperatures T_{ν_e} and $T_{\bar{\nu}_e}$ are smaller than $T_{\nu_{\mu}, \tau}$ if neutrino oscillations are not taken into account. On the other hand, the enhancement of the light-element yields by neutrino oscillations do depend on T_{ν_e} and $T_{\bar{\nu}_e}$. The production through charged-current reactions is more enhanced when the temperature difference of ν_e and ν_{μ}, τ or $\bar{\nu}_e$ and ν_{μ}, τ is larger. Yoshida et al. (2006b) showed that the $^{7}\text{Li}/^{11}\text{B}$ ratio exhibits significant variation from different values of T_{ν_e} and $T_{\bar{\nu}_e}$ even for a fixed value of T_{ν_e}.

Yields of species mainly produced through charged-current ν-process reactions can be used to constrain the temperatures T_{ν_e} and $T_{\bar{\nu}_e}$. Isotopes of special importance are ^{138}La and ^{180}Ta (Goriely et al. 2001; Rauscher et al. 2002; Heger et al. 2005). The main production process of ^{138}La and ^{180}Ta is $^{138}\text{Ba}(\nu_{e}, e^-)^{138}\text{La}$ and $^{180}\text{Hf}(\nu_{e}, e^-)^{180}\text{Ta}$, respectively. For ^{180}Ta, about half of the yield is produced through $^{181}\text{Ta}(\gamma, n)^{180}\text{Ta}$ and $^{181}\text{Ta}(\nu, \nu')^{180}\text{Ta}$. The GT strength distributions in ^{138}La and ^{180}Ta were recently obtained experimentally (Byelikov et al. 2007). If the temperature of ν_e could be constrained from the yields of ^{138}La and ^{180}Ta and their observed abundances, the effect of neutrino oscillations on ν-process nucleosynthesis could be evaluated more precisely.

6.2. Uncertainties in the Rates of ^{7}Li and ^{11}B Production Reactions

In the He/C layer, almost all ^{7}Li are produced through $^{3}\text{He}(\alpha, \gamma)^{7}\text{Li}$ and $^{3}\text{He}(\alpha, \gamma)^{7}\text{Be}$ after the production of ^{3}H and ^{3}He through the ν-process. About 60% of ^{11}B is also produced through $^{7}\text{Li}(\alpha, \gamma)^{11}\text{B}$ in the inner region of the He/C layer. Therefore, the uncertainty of the rates of these reactions affects the yields of ^{7}Li and ^{11}B. We discuss this uncertainty briefly.

We adopted the rates of the three reactions from NACRE compilation (Angulo et al. 1998). The rates of $^{3}\text{H}(\alpha, \gamma)^{7}\text{Li}$ and $^{3}\text{He}(\alpha, \gamma)^{7}\text{Be}$ are in very good agreement with those in Caughlan & Fowler (1988). For $^{7}\text{Li}(\alpha, \gamma)^{11}\text{B}$, the NACRE compilation showed slightly larger rate (~20% in the temperature range between 2×10^8 and 4×10^9 K) than in Caughlan & Fowler (1988). The NACRE compilation also showed uncertainties of their reaction rates; these are 11%, 17%, and 16% for $^{3}\text{H}(\alpha, \gamma)^{7}\text{Li}$, $^{3}\text{He}(\alpha, \gamma)^{7}\text{Be}$, and $^{7}\text{Li}(\alpha, \gamma)^{11}\text{B}$, respectively. Therefore, the ^{7}Li and ^{11}B yields would have the uncertainty of about 17% due to the uncertainty of the reaction rates. The uncertainty of the $^{7}\text{Li}/^{11}\text{B}$ ratio would be smaller, because more than half of the ^{11}B is produced through the common production sequence of ^{7}Li in the He/C layer.

6.3. Neutrino-Neutrino Interactions

It has been pointed out that neutrino-neutrino interactions in regions just above a proto–neutron star change neutrino flavors and thus affect the neutrino energy spectra. These interactions contribute diagonal and off-diagonal potential to the flavor-basis Hamiltonians. This potential plays a complicated role in flavor exchange, due to the momentum transfer by the interactions. Analytical evaluation have been carried out in some special cases (e.g., Qian & Fuller 1995; Pastor & Raffelt 2002; Fuller & Qian 2006). The change of the neutrino energy spectra for two neutrino flavors by neutrino-neutrino interactions has been investigated in neutrino-driven winds (e.g., Duan et al. 2006a, 2006b) and in the density profile of an exploding supernova (e.g., Fogli et al. 2007). The neutrino-neutrino interactions in three neutrino flavors have very recently been investigated (Duan et al. 2008a, 2008b; Esteban-Pretel et al. 2008). It has been proposed that these interactions affect the efficiency of r-process nucleosynthesis (Balantekin & Yüksel 2005).

Neutrino-neutrino interactions may also change the locations of resonance to deeper regions, which could affect the ^{7}Li and ^{11}B yields in supernovae.

7. CONCLUSIONS

We evaluated the neutrino-nucleus reaction cross sections for ^{4}He and ^{12}C using new shell-model Hamiltonians. These cross sections are important for the yields of the light elements Li, Be, and B produced through the ν-process in SNe. We investigated the nucleosynthesis of the light elements in a SN model corresponding to SN 1987A using these new cross sections. We investigated the dependence of the light element yields on cross sections, neutrino energy spectra, and neutrino oscillations. We obtained the following results.

1. The neutrino-nucleus reaction cross sections at low energy are evaluated using WBP and SPSDMK Hamiltonians for ^{4}He and SFO and PSDMK2 Hamiltonians for ^{12}C. Main production channels of the ^{12}C reaction are the nuclei $n, p, ^4\text{He}, ^{11}\text{B}$, and ^{12}C. Production of ^{8}Li, ^7Be, ^{10}Be, and ^{11}B is also important.

2. For a given neutrino temperature set, the yields of ^{7}Li and ^{11}B with the cross sections of WBP+SFO model are larger than those of the cross sections in Woosley et al. (1990). This is mainly due to larger cross sections of $^{6}\text{He}(\nu, \nu')^4\text{He}$ and $^{6}\text{He}(\nu, \nu'n)^4\text{He}$.

3. Larger yields of ^{8}Li and ^{7}Be result from the new cross sections, with the exception of the yield of ^{10}B, which is reduced. These changes reflect the difference of the cross sections of the ν-process for ^{13}C and deuteron production branches of ^{4}He. Radioactive ^{10}Be is produced with abundance levels similar to ^{9}Be. The channel for producing ^{9}Li and ^{10}Be have been evaluated in the ν-process of ^{12}C.
4. The larger cross sections slightly decrease the range of acceptable neutrino temperature, as constrained by the 7Li abundance evolution during GCE. The range of the neutrino temperature is $4.3 \text{ MeV} \leq T_{\nu_e} \leq 6.5 \text{ MeV}$ for WBP+SFO model and $4.0 \text{ MeV} \leq T_{\nu_e} \leq 6.0 \text{ MeV}$ for the SPDMK+PSDMK2 model.

5. The dependence of the 7Li and 11B yields on neutrino oscillation parameters, such as mass hierarchy and the mixing angle θ_{13}, is not changed by the new cross sections. Yield enhancements are smaller.

6. The 7Li/11B abundance ratio depends on mass hierarchy and the mixing angle θ_{13}, even when considering uncertainties of neutrino temperatures and the total neutrino energy. For a normal mass hierarchy and $\sin^{2}2\theta_{13} \geq 2 \times 10^{-3}$, i.e., adiabatic H resonance, the 7Li/11B ratio is larger than 0.78. In the case of an inverted mass hierarchy or the case without neutrino oscillations, the 7Li/11B ratio is smaller than 0.61. Smaller uncertainty of neutrino temperatures extends the difference in the 7Li/11B ratio.

7. The Be/Li abundance ratio is very small. A decrease in the Be/Li ratio is seen for a normal mass hierarchy and $\sin^{2}2\theta_{13} \geq 2 \times 10^{-3}$.

We would like to thank Koichi Iwamoto, Ken’ichi Nomoto, and Toshikazu Shiroyama for providing the data for the internal structure of progenitor model 14E1 and for helpful discussions. Numerical computations were in part carried out on general common-use computer system at Center for Computational Astrophysics, CfCA, of National Astronomical Observatory of Japan. This work has been supported in part by the Ministry of Education, Culture, Sports, Science and Technology, Grants-in-Aid for Young Scientist (B) (17740130) and Scientific Research (C) (17540279, 18540290, 18560805), Mitsubishi Foundation, and the JSPS Core-to-Core Program, International Research Network for Exotic Femto Systems (EFES).

REFERENCES

Ahmed, S. N., et al. 2004, Phys. Rev. Lett., 92, 181301
Ahrens, J., et al. 1975, Nucl. Phys. A, 251, 479
Alibés, A., Labay, J., & Canal, R. 2002, ApJ, 571, 326
Angulo, C. et al. 1998, Nucl. Phys. A, 656, 3
Apollonio, M., et al. 2003, European J. Phys. J. C, 27, 331
Araki, T., et al. 2005, Phys. Rev. Lett., 94, 081801
Ashie, Y., et al. 2004, Phys. Rev. Lett., 93, 101801
Balantekin, A. B., & Yuksel, H. 2005, New J. Phys., 7, 51
Brown, B., G. L., Lisi, E., Marrone, A., & Mirizzi, A. 2007, J. Cosmol. Astropart. Phys., 9, 15
Caughlan, G. A., & Fowler, W. A. 1988, At. Data Nucl. Data Tables, 40, 283
Colella, P., & Woodward, P. R. 1984, J. Comput. Phys., 54, 174
Drake, T. E., Tomusiak, E. L., & Caplan, H. S. 1968, Nucl. Phys. A, 118, 138
Domogatsky, A. A. Komar, & A. N. Tavkhelidze (Moscow: Nauka), 115
Domogatsky, G. V., Eramzhyan, R. A., & Nadyozhin, D. K. 1978, in Proc. Int. Conf. on Neutrino Physics and Neutrino Astrophysics, ed. M. A. Markov, G. V. Domogatsky, A. A. Komar, & A. N. Tavkhelidze (Moscow: Nauka), 115
Drake, T. E., Tomusiak, E. L., & Caplan, H. S. 1968, Nucl. Phys. A, 118, 138
Heger, A., Kolbe, E., Haxton, W. C., Langanke, K., Martínez-Pinedo, G., & Gagin, D., & Bernea, N. 2004, Phys. Rev. C, 70, 048801
———. 2008b, Phys. Rev. D, 77, 065024
———. 2006a, Phys. Rev. Lett., 96, 091101
———. 2008, Phys. Rev. D, 77, 085024
———. 2006b, Phys. Rev. D, 74, 105014
———. 2008a, Phys. Rev. Lett., 100, 021101
———. 2008b, Phys. Rev. D, 77, 085016
Esteban-Pretel, A., Pastor, S., Tomás, R., & Rauffel, G. G. 2008, Phys. Rev. D, 77, 065024
Felds, B. D., Olive, K. A., Vangioni-Flam, E., & Casse, M. 2000, ApJ, 540, 930
Fogli, G. L., Lisi, E., Marrone, A., & Mirizzi, A. 2007, J. Cosmol. Astropart. Phys., 12, 010
Fogli, G. L., Lisi, E., Mirizzi, A., & Montatino, D. 2005, J. Cosmol. Astropart. Phys., 04, 002
Fuller, G. M., & Qian, Y.-Z. 2006, Phys. Rev. D, 73, 023004
Gaarde, C., et al. 1984, Nucl. Phys. A, 422, 189
Gazit, D., & Bernea, N. 2004, Phys. Rev. C, 70, 048801
Goriely, S., Arnould, M., Borzov, I., & Rayet, M. 2001, A&A, 375, L37
Heger, A., Kolbe, E., Haxton, W. C., Langanke, K., Martínez-Pinedo, G., & Woosley, S. E. 2005, Phys. Rev. Lett., 95, 255006
Keil, M. Th., Raffelt, G. G., & Janka, H.-Th. 2003, ApJ, 590, 971
Keil, M. Th., Raffelt, G. G., & Janka, H.-Th. 2003, ApJ, 590, 971
Kneller, J. P., McLaughlin, G. C., & Brockman, J. 2008, Phys. Rev. D, 77, 045023
Lattimer, J. M., & Prakash, M. 2001, ApJ, 550, 426
Lattimer, J. M., & Yahil, A. 1989, ApJ, 340, 426
Lodders, K., & Amari, S. 2005, Chem. Erde-Geochem., 65, 93
McLean, D. J., Thompson, M. N., Zumanov, D., McNeill, K. G., Jury, J. W., & Berman, B. L. 1991, Phys. Rev. C, 44, 1137
Pastor, S., & Raffelt, G. 2002, Phys. Rev. Lett., 89, 191101
Primas, F., Duncan, D. K., Peterson, R. C., & Thorburn, J. A. 1999, A&A, 343, 545
Primas, F., Duncan, D. K., & Thorburn, J. A. 1998, ApJ, 506, L51
Rebull, L., Duncan, D., Johansson, S., Thorburn, J., & Fields, B. 1998, ApJ, 507, 387
Shigeyama, T., & Nomoto, K. 1990, ApJ, 360, 204
Shigeyama, T., Nomoto, K., Yamaoka, H., & Thielemann, F.-K. 1992, ApJ, 386, L13
Shigeyama, T., Kajino, T., Yokomakura, H., Kimura, K., Takamura, A., & Hartmann, D. H. 2006a, ApJ, 672, 1043
Suzuki, T., Sagawa, H., & Hagiino, K. 2003, Phys. Rev. C, 68, 014317
Suzuki, T., Chiba, S., Yoshida, T., Kajino, T., & Otsuka, T. 2006, Phys. Rev. C, 74, 034307
Suzuki, T., Fujimoto, R., & Otsuka, T. 2003a, Phys. Rev. C, 67, 044302
Suzuki, T., Sagawa, H., & Hagiino, K. 2003b, Phys. Rev. C, 68, 014317