Sex ratio, maturity stage and fist maturity of yellowfin parrotfish *Scarus flavipectoralis* Schultz, 1958 in Wallace line at Spermonde Archipelago, South Sulawesi

J Tresnati¹,³, A Yanti¹,³, N Rukminasari¹, Irmawati¹, Suwarni¹, I Yasir²,³, P Y Rahmani²,³, R Aprianto³ and A Tuwo²,³

¹Fisheries Department, Faculty of Marine Science and Fisheries, Universitas Hasanuddin, Makassar, Indonesia
²Marine Science Department, Faculty of Marine Science and Fisheries, Universitas Hasanuddin, Makassar, Indonesia
³Multitrophic Research Group, Faculty of Marine Science and Fisheries, Universitas Hasanuddin, Makassar, Indonesia

E-mail: ambotuwo62@gmail.com

Abstract. Yellowfin parrotfish *Scarus flavipectoralis* has a wide distribution in Indo-Pacific waters which has an important ecological role in maintaining the balance of coral reef ecosystems, as well as having important economic values that need to be managed sustainably. This study aims to analyze the sex ratio, gonad maturity stage, and the size at first maturity. This study was conducted on a population of yellowfin parrotfish in the Wallace line at Spermonde Archipelago, South Sulawesi. Fish samples were obtained from catches of fishermen who were landed at the Rajawali Fish Landing Area of Makassar City. The results of this study indicate that the sex ratio of yellowfin parrotfish not balanced between male and female, there was more female than male; the development of gonad maturity stage is synchronous between male and female; and the size at the first maturity sexual of yellowfin parrotfish female was 18 cm and the male was 21.7 cm.

1. Introduction

Parrotfish is a family of Scaridae that live in shallow waters in tropical and subtropical regions, especially in coral reef ecosystems. Parrotfish have a wide distribution in Indo-Pacific waters, can live from shallow waters to a depth of 25 m [1]; as a herbivorous fish, parrotfish have a very important role in maintaining the balance of the coral reef ecosystem [2]. Due to this, it can play an important role in maintaining the balance of the structure of marine plant communities, reduction of parrotfish populations in coral reef ecosystems can cause a shift in the community from coral to macroalgae because macroalgae can inhibit the recruitment and growth of coral organisms [3]. Besides having an important ecological role, parrotfish has important economic value so it needs to be managed based on sustainable principles [4]. As a target fish, many species of parrotfish are caught by fishermen in the waters of the Spermonde Islands, South Sulawesi [5]. Spermonde Islands are islands consisting of 120 islands [6], which has an area of around 2,500 km². Spermonde Islands is located in the Makassar Strait which is one of the important fishing are as traversed by the Wallace Line. As the transitional...
region between Asian and Australian species, Spermonde island is an area that has very diverse reef fish species [7-9].

Parrotfish are reef fish that are sensitive to variations in environmental factors because they are biologically classified as fish with a "r" reproductive pattern whose reproductive organ development is simpler than fish species with a "K" strategy reproductive pattern [10].

The results of previous studies indicate an imbalance in the nature of the study of reef fish, which is very qualitative. Previous studies of parrotfish in Indonesia and other Indo-Pacific regions have only been related to ecological aspects [11, 12]. There are studies of the biological aspects of parrotfish [13]. The results of previous studies have not concerned the quantitative aspects of the reproductive biology of parrotfish. In this study, quantitative aspects of reproductive biology were examined quantitatively on yellowfin parrotfish S. flavipectoralis. This study aims to analyze aspects of reproductive biology, which include sex ratio, maturity stages, and first maturity of yellowfin parrotfish S. flavipectoralis caught in the waters of the Spermonde Islands.

2. Materials and Methods
The research was conducted in October to December 2019, using a sample of yellowfin parrotfish (Figure 1a-b) from the waters of the Spermonde Islands, South Sulawesi Province, which was landed at PPI Rajawali in Makassar City. Based on interviews with fishermen, it was known that this yellowfin parrotfish was the catch on the Island of Langkai, Lanyukang, Kodingareng Lompo, Kodingareng Keke, Panambung, Lumu-lumu, Bonebatang, Barranglompo and Barrangcaddi (Figure 1c).

Reproductive parameters observed were maturity stages (MS), and first maturity (FM). The aspects observed were sex, maturity stages, gonad length and weight. The aspects measured for the first maturity analysis were total length and gutted weight. Weight is measured using an electrical balance with an accuracy of 0.01 g.

Sex ratio (SR) was calculated using the equation: \(SR = \frac{\sum J}{\sum B} \), where: SR was sex ratio, \(\sum J \) was the number of males, \(\sum B \) was the number of females. The significance of the difference in sex ratio between male and female fish based on the sampling period, maturity stages, and length classes, a Chi-square test was done [14]. Maturity stages were divided to five maturity stages referring to S. niger [15], namely immature, early maturation, advanced maturation, end late maturation, mature, and post-spawning. Maturity stages distribution was analyzed based on the sampling period and length class distribution.

First maturity (FM) was estimated based on the size (length) where 50% (L\(_{FM}\)) of sexually mature based on MS III, IV and IV [15] according to the equation: \(FM = L_{FM} \). The FM curve on the L\(_{FM}\) was calculated using Polynomial Trendline.
3. Results

3.1. Sex-ratio

During sampling, there were 248 fish consisting of 64 male fish and 184 female fish. The percentage of female fish appeared to be more than male fish (Figure 2 a), and based on the chi-square test results showed that sex ratio based on the sampling period was significantly different ($X^2_4<X^2_{10}$). Sex ratio based on maturity stages shows that the number of females was greater than the number of males (Figure 2b), and based on the chi-square test results show the sex ratio based on maturity stages was significantly different ($X^2_4<X^2_{10}$). Sex ratios based on long classes also show that females were smaller in size (Figure 2c), and based on the chi-square test results show that sex ratio based on long classes was significantly different ($X^2_4<X^2_{10}$). Female was dominant in the small size group, whereas male was dominant in the large size group. This shows that yellowfin parrotfish was most likely a protogynous hermaphrodite with a length of transitional sex were between 18.6 and 24.7 cm.

![Figure 2](image-url)
Figure 2. Sex ratio of yellowfin parrotfish *Scarus flavipectoralis* based on sampling period (a), maturity stages (b), and length classes (c).

3.2. Maturity Stages

3.2.1. Macroscopic Characteristics of Gonad

Macroscopically, male and female gonads can be distinguished by their colour and size (Figure 3 and Table 1). In male gonads, the colour varies from clear to milky white, whereas in female gonads, the colour varies from white to brownish red.
Figure 3. Macroscopic characteristics of the yellowfin parrotfish *Scarus flavipectoralis* at female stage II (a), stage III early (b), stage III late (c), stage IV (d), stage V (e) and male stage II (f), stage III early (g), stage III late (h), stage IV (i), and stage V (j). O: ovary, T: testes.
Table 1. Macroscopic characteristics of yellowfin parrotfish *Scarus flavipectoralis* gonads in female and male fish

MS	Female	Male
I	Gonadal colour was clear, cannot be distinguished, male or female.	Gonadal colour was clear, cannot be distinguished, male or female.
	Gonadal weight was less than 0.02 g.	Gonadal weight was less than 0.02 g.
II	Ovaries colour was brownish white. Ovaries weight varied from 0.02 to 0.06 g with an average weight of 0.03±0.02 g.	Testicles colour was white. Testicles weight was varied from 0.02 to 0.09 g with an average weight of 0.05±0.02 g.
III	Ovaries colour was brownish white. Ovaries' weight varied from 0.06 to 0.60 g with an average weight of 0.18±0.09 g.	Testicles colour was milky white. Testicles' weight varied from 0.06 to 0.23 g with an average weight of 0.13±0.05 g.
IV	Ovaries colour was brownish-red. Ovaries' weight varied from 0.33 to 1.37 g with an average weight of 0.76±0.29 g.	Testicles colour was milky white. Testicles' weight varied from 0.24 to 0.59 g with an average weight of 0.38±0.11 g.
V	Ovaries colour was brownish white. Ovaries' weight varied from 0.05 to 0.26 g with an average weight of 0.16±0.07 g.	Testicles colour was milky white. Weight was 0.06 g.

3.2.2. Maturity Stages Distribution

Monthly sampling results show that the presence of each MS was relatively synchronous between males and females, with varying percentages of males and females (Figure 4a). During the sampling period, MS II and III appeared to be more frequently found. Length classes based indicated that the presence of each MS was synchronous between males and females, with varying percentages of males and females, where MS II and III appear to be more frequently found (Figure 4b). The small size class was generally found in female fish, while the large size was only found in male fish. Almost all long classes were dominated by MS II and III.

![Figure 4](image-url)
Figure 4. Maturity stages of yellowfin parrotfish *Scarus flavipectoralis* at the male and female based on sampling period (a) and length class in cm (b).

3.3. First Maturity Sexual

The size at the female first maturity obtained based on the equation $L_{FM} = -0.001x^5 + 0.160x^4 - 7.979x^3 + 208.2x^2 - 3002.x^2 + 22676x - 70146$ ($R^2 = 0.998$) was 18.0 cm (Figure 4a). Whereas male first maturity obtained based on the equation $L_{FM} = 0.002x^5 - 0.305x^4 + 12.79x^3 - 260.4x^2 + 2583.x - 10010$ ($R^2 = 0.998$) was 21.7 cm (Figure 4b).
Figure 5. The length at the first maturity of yellowfin parrotfish *Scarus flavipectoralis* based on the length classes of female (a) and male (b).

4. Discussion

4.1. Sex-ratio
Sex ratio is influenced by many factors, such as fish migration patterns, growth rates, mortality rates, and FM differences [16]. Sex distribution based on sampling period, MS and long classes show that females are more abundant than male fish. This is different from usual where fish generally have a balanced sex ratio [17].

Fish that have an unbalanced sex ratio usually have a reproductive tactic in which fish are grouped before spawning; although group behavior when spawning has never been reported in yellowfin parrotfish, but group behavior when spawning has been reported in other parrotfish such as *Sparisoma rubripinne* [18-23], and in groupers like *Epinephelus guttatus* [24-26], *Epinephelus striatus* [27-29], *Epinephelus tauvina* [29], and *Mycteroperca bonaci* [30]. This grouping behavior usually begins with migration [31, 32]. This group behavior is strongly suspected to be related to an unbalanced sex ratio to overcome reproductive failure, especially spawning [24].

The results of previous studies have not been reported regarding the sex ratio in yellowfin parrotfish, but for other parrotfish species, namely *S. rivulatus*, the sex ratio of males and females is
also unbalanced [33]. This shows the tendency for more female fish to parrotfish. This tendency is thought to have something to do with the model of protogynous reproduction in parrotfish. When young, female sex fish, with more numbers than male fish, older age.

Sex ratios based on long classes that show a very clear separation between females that dominate the small size classes and males that dominate the large size classes were very clear indications that yellowfin parrotfish were protogynous fish. Protogynous was a common reproductive pattern in Scaridae [15, 34]. At protogynous fish, the female was generally become male after passing through a reproductive period [35].

4.2. Maturity Stages

Gonadal structure that resembles an empty bag on MS V shows that S. flavipectoralis was classified as a fish with a total spawning pattern. Total spawner is a spawning pattern where all the oocytes were released at one time of the spawning season [36, 37]. Total spawning patterns have been reported before on other parrotfish such as Scarus niger [15], and in other reef fishes such as Cheilinus fasciatus [38].

Classification based on length classes indicated that the presence of each maturity stage was synchronous between males and females, with a very varied percentage, where MS II and III appear to be more frequently found. A large percentage of MS II in a sampling period indicates that spawning has occurred previously [33]. Although the classification of gonad maturity stages can be among researchers [39, 40], generally, the gonad maturity stages of aquatic organisms are divided into five, as used in this study.

The development of synchronous maturity stages between males and females based on sampling time and class length is a good thing because it can guarantee reproductive success, especially when spawning. The presence of MS IV simultaneously in males and females guarantees the success of the fertilization process during spawning. This synchrony is very important because even though the sex ratio is unbalanced because the sperm produced by a male can fertilize the eggs of several females. This synchrony explains the success of reproduction, even though the sex ratio is not balanced. Synchronous maturity stages like this have been reported in other parrotfish [15] and other reef fish [38].

Generally, organisms have synchronous maturity stages cycles in males and females. Maturity stages synchrony in yellowfin parrotfish has never been reported before, but other parrotfish in the Spermonde Islands have been reported for Scarus niger [15], and other reef fish such as Cheilinus fasciatus [38]. Synchronous stages were also reported before in other marine organisms in the tropics, such as Holothuria scabra [41, 42], and in four-season regions, such as Holothuria forskali [37].

4.3. First Maturity

The size of the first maturity at the female was smaller than male; this due to the protogynous reproductive pattern that has been stated in the sex ratio. This assumption was supported by the sex ratio and maturity stages distribution where small fish are all female and large fish are all male. Parrotfish (Scaridae) is a protogynous hermaphrodite, which at the beginning of its life cycle, is a female [43], then changes its sex into male [34, 35].

The previous studies have never reported size at the first maturity in yellowfin parrotfish; however, it reported for other parrotfish, namely S. rivulatus where the first maturity of females was smaller than male, namely female fish 16.5 -17.3 cm and male fish 17.7 cm-18.4 cm [33]. The size at the first maturity of S. rivulatus was smaller than the size at the first maturity of yellowfin parrotfish.

The size at the first maturity is closely related to the exploitation or capture effort [44]. Catching effort can cause a reduction of the population, which leads to a decrease in genetic diversity, which can have an impact on population structure, for example, growth. It reported that the first maturity has a relation with fish growth [45]. The size at first maturity can also be influenced by external factors, such as environmental conditions, food availability, temperature, and salinity [46].
5. Conclusion
The sex ratio of yellowfin parrotfish S. flavipectoralis is not proportional between males and female, but the development of maturity stages was synchronous between males and females. This synchrony helps to overcome the disproportionate sex ratio. Yellowfin parrotfish was a protogynous hermaphrodite. Size at the first maturity of female yellowfin parrotfish was 18.0 cm, and the male was 21.7 cm.

Acknowledgment
We would like to thank Universitas Hasanuddin for providing research funding (contract number 1585/UN4.22/PT.01.03/2020 dated May 27th, 2020).

References
[1] Streelman J T, Alfaro M, Westneat M W, Bellwood D R and Karl S 2002 Evolutionary history of the parrotfishes: biogeography, ecomorphology, and comparative diversity Evolution 56 961-71
[2] Bellwood D R, Hoey A S and Choat J H 2003 Limited functional redundancy in high diversity systems: resilience and ecosystem function on coral reefs Ecology letters 6 281-5
[3] Hoey A S and Bellwood D R 2009 Limited functional redundancy in a high diversity system: single species dominates key ecological process on coral reefs Ecosystems 12 1316-28
[4] Aswani S and Sabetian A 2010 Implications of urbanization for artisanal parrotfish fisheries in the Western Solomon Islands Conservation Biology 24 520-30
[5] Tresnati J, Yasir I, Aprianto R, Yanti A, Rahmani P Y and Tuwo A 2019 Long-Term Monitoring of Parrotfish Species Composition in the Catch of Fishermen from the Spermonde Islands, South Sulawesi, Indonesia. In: IOP Conference Series: Earth and Environmental Science: 370 012015 IOP Publishing
[6] Rauf A and Yusuf M 2004 Studi Distribusi dan Kondisi Terumbu Karang dengan Menggunakan Teknologi Penginderaan Jauh di Kepulauan Spermonde, Sulawesi Selatan Ilmu Kelautan: Indonesian Journal of Marine Sciences 9 74-81
[7] Ulfah I, Yusuf S, Rappe R A, Bahar A, Haris A, Tresnati J and Tuwo A 2020 Coral conditions and reef fish presence in the coral transplantation area on Kapoposang Island, Pangkep Regency, South Sulawesi. In: IOP Conference Series: Earth and Environmental Science: 473 012058 IOP Publishing
[8] Tresnati J, Yasir I, Yanti A, Rahmani P Y, Aprianto A and Tuwo A 2020 Multi years catch composition and abundance of Parrotfish landed at Makassar Fisheries Port. In: IOP Conference Series: Earth and Environmental Science: 473 012059 IOP Publishing
[9] Yasir I, Tresnati J, Yanti A, Rahmani P, Aprianto R and Tuwo A 2019 Species diversity of wrasses caught by fishermen in the Spermonde Islands, South Sulawesi, Indonesia. In: IOP Conference Series: Earth and Environmental Science: 370 012015 IOP Publishing
[10] Johannes R E 1978 Reproductive strategies of coastal marine fishes in the tropics Environmental biology of fishes 3 65-84
[11] Weber M W C and de Beaufort L F 1916 The Fishes of the Indo-Australian Archipelago: EJ Brill Limited. Vol. 3. https://scholar.google.co.id/scholar?hl=en&as_sdt=0%2C5&q=BEAUFORT%2C+L.F.+1940.+The+Fishes+of+the+Indo-Australian+Archipelago.+E J.+Brill%2C+Leiden%3A+508+pp.&btnG=
[12] Weber M and de Beaufort L F 1913 The Fishes of the Indo-Australian Archipelago: Malacopterygii, Myctophoidea, Ostariophysi: I Siluroidea. EJ Brill Limited. Vol 2. https://scholar.google.co.id/scholar?hl=en&as_sdt=0%2C5&q=BEAUFORT%2C+L.F.+1940.+The+Fishes+of+the+Indo-Australian+Archipelago.+E J.+Brill%2C+Leiden%3A+508+pp.&btnG=
[13] Adrim M 2008 Aspek Biologi Ikan Kakatua (Suku scaridae) Jurnal Oseana 33 41-50
[14] Scherrer B 1984 *Biostatistique* (Quebec, Canada: Gaetan Morin Editeur)
[15] Yanti A, Yasir I, Rahmani P Y, Aprianto R, Tuwo A and Tresnati J 2019 Macroscopic characteristics of the gonad maturity stage of dusky parrotfish *Scarus niger*. In: *IOP Conference Series: Earth and Environmental Science* 370 012051 IOP Publishing
[16] Effendie M 2002 *Biologi Perikanan* vol 163 (Yogyakarta: Pustaka Nusantara Yogyakarta)
[17] Ristyaningrum W 2016 Aspek Pertumbuhan dan Biologi Reproduksi Ikan Beloso (Saurida Tumbil Bloch, 1975)
[18] de Mitcheson Y S and Colin P L 2011 *Reef fish spawning aggregations: biology, research and management* vol 35: Springer Science & Business Media
[19] Zeller D C 1998 Spawning aggregations: patterns of movement of the coral trout *Plectropomus leopardus* (Serranidae) as determined by ultrasonic telemetry *Marine Ecology Progress Series* 162 253-63
[20] Chapman D D, Pikitch E K, Babcock E and Shivji M S 2005 Marine reserve design and evaluation using automated acoustic telemetry: a case-study involving coral reef-associated sharks in the Mesoamerican Caribbean *Marine Technology Society Journal* 39 42-55
[21] Farmer N A, Ault J S, Smith S G and Franklin E C 2013 Methods for assessment of short-term coral reef fish movements within an acoustic array *Movement ecology* 1 7
[22] Samoilys M 1997 Movement in a large predatory fish: coral trout, *Plectropomus leopardus* (Pisces: Serranidae), on Heron Reef, Australia *Coral Reefs* 16 151-8
[23] Warner R R 1988 Traditionality of mating-site preferences in a coral reef fish *Nature* 335 719-21
[24] Rhodes K L and Tupper M H 2008 The vulnerability of reproductively active squaretail coralgrouper (*Plectropomus areolatus*) to fishing *Fishery Bulletin* 106 194-204
[25] Beets J and Friedlander A 1999 Evaluation of a conservation strategy: a spawning aggregation closure for red hind, *Epinephelus guttatus*, in the US Virgin Islands *Environmental Biology of Fishes* 55 91-8
[26] Mann D, Locascio J, Schärer M, Nemeth M and Appeldoorn R 2010 Sound production by red hind *Epinephelus guttatus* in spatially segregated spawning aggregations *Aquatic Biology* 10 149-54
[27] Aguilar-Perera A and Aguilar-Dávila W 1996 A spawning aggregation of Nassau grouper *Epinephelus striatus* (Pisces: Serranidae) in the Mexican Caribbean *Environmental Biology of Fishes* 45 351-61
[28] Aguilar-Perera A 2006 Disappearance of a Nassau grouper spawning aggregation off the southern Mexican Caribbean coast *Marine Ecology Progress Series* 327 289-96
[29] Kaunda-Arara B and Rose G A 2004 Homing and site fidelity in the greasy grouper *Epinephelus tauvina* (Serranidae) within a marine protected area in coastal Kenya *Marine Ecology Progress Series* 277 245-51
[30] Schärer M T, Nemeth M I, Rowell T J and Appeldoorn R S 2014 Sounds associated with the reproductive behavior of the black grouper (Muysteroperca bonaci) *Marine biology* 161 141-7
[31] Nemeth R S, Blondeau J, Herzlieb S and Kadison E 2007 Spatial and temporal patterns of movement and migration at spawning aggregations of red hind, *Epinephelus guttatus*, in the US Virgin Islands *Environmental Biology of Fishes* 78 365-81
[32] Rhodes K L, McIlwain J, Joseph E and Nemeth R S 2012 Reproductive movement, residency and fisheries vulnerability of brown-marbled grouper, *Epinephelus fuscoguttatus* (Forsskål, 1775) *Coral Reefs* Journal of the International Society for Reef Studies DOI 10.1007/s00338-012-0875-2
[33] Aswady T U 2019 Rasio Kelamin dan Ukuran Pertama Kali Matang Gonad Ikan Kakatua (*Scarus rivulatus* Valenciennes, 1840) di Perairan Desa Tanjung Tiram, Kecamatan Moramo Utara Kabupaten Konawe Selatan *Jurnal Manajemen Sumber Daya Perairan* 4
[34] Choat J and Robertson D 1975 *Intersexuality in the animal kingdom*: Springer) pp 263-83
[35] Kobayashi K and Suzuki K 1990 Gonadogenesis and sex succession in the protogynous wrasse, Cirrhilabrus temmincki, in Suruga bay, central Japan *Japanese Journal of Ichthyology* 37 256-64

[36] Prihatiningsih P, Edrus I N and Sumiono B 2018 Biologi Reproduksi, Pertumbuhan dan mortalitas Ikan Ekor Kuning (Caesio Cuning Bloch, 1791) di Perairan Natuna *BAWAL Widya Riset Perikanan Tangkap* 10 1-15

[37] Tuwo A and Conand C 1992 Reproductive biology of the holothurian Holothuria forskali (Echinodermata) *J. mar. bid. Ass. U.K.* 72 745-58

[38] Tresnati J, Yasir I, Yanti A, Aprianto R, Rahmani P Y and Tuwo A 2019 Maturity stages of the redbreasted wrasse Cheilinus fasciatus. In: *IOP Conference Series: Earth and Environmental Science*: 370 012016 IOP Publishing

[39] Irmawati, Tresnati J, Nadiarti and Fachruddin L 2019 Sex Differentiation and Gonadal Development of striped snakehead (Channa striata Bloch, 1793). In: *IOP Conference Series: Earth and Environmental Science*: 253 012007 IOP Publishing

[40] Kantun W, Mallawa A and Tuwo A 2018 Reproductive pattern of yellowfin tuna Thunnus albacares in deep and shallow sea FAD in Makassar Strait *AAACL Bioflux* 11 884-93

[41] Tuwo A 1999 Reproductive cycle of the holothurian Holothuria scabra in Saugi Island, Spermonde archipelago, southwest Sulawesi, Indonesia *Infish International* 6 23-9

[42] Tuwo A and Tresnati J 2015 Sea Cucumber Farming in Southeast Asia (Malaysia, Philippines, Indonesia, Vietnam) *Echinoderm Aquaculture* 331-52

[43] Thresher R E 1991 *Ecology of Fishes on Coral Reefs*: Academic Press)

[44] Yanti A, Tresnati J, Yasir I, Syafiuddin, P Y Rahmani P Y, Aprianto R and Tuwo A 2020 Size at the maturity of sea cucumber Holothuria scabra. Is it an overfishing sign in Wallacea Region. In: *IOP Conference Series: Earth and Environmental Science*: 473 012056 IOP Publishing

[45] Nasution S H 2017 Karakteristik Reproduksi Ikan Endemik Rainbow Selebensis (Telmatherina cerebensis Boulenger) dl Danau Towuti *Jurnal Penelitian Perikanan Indonesia* 11 29-37

[46] Umar C and Lismining 2006 Analisis Hubungan Panjang-Berat Beberapa Jenis Ikan Asli Danau Sentani, Papua. Di dalam: MF Rahardjo, Djadjja Subardja Sjafei, Ike Rachamata, Charles PH Simanjuntak, Ahmad Zahid, penyunting. In: *Prosiding Seminar Nasional Ikan IV Jatiluhur, 29-30 Agustus 2006*, pp 371-5