Fullerenes and fulleranes in circumstellar envelopes

Yong Zhang¹,², Sun Kwok¹ and SeyedAbdolreza Sadjadī¹,²
¹ Laboratory for Space Research, Faculty of Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
² Department of Physics, The University of Hong Kong, Hong Kong, China
E-mail: ¹,² zhangy96@hku.hk

Abstract. Three decades of search have recently led to convincing discoveries of cosmic fullerenes. The presence of C₆₀ and C₆₀⁺ in both circumstellar and interstellar environments suggests that these molecules and their derivatives can be efficiently formed in circumstellar envelopes and survive in harsh conditions. Detailed analysis of the infrared bands from fullerenes and their connections with the local properties can provide valuable information on the physical conditions and chemical processes that occurred in the late stages of stellar evolution. The identification of C₆₀⁺ as the carrier of four diffuse interstellar bands (DIBs) suggests that fullerene-related compounds are abundant in interstellar space and are essential for resolving the DIB mystery. Experiments have revealed a high hydrogenation rate when C₆₀ is exposed to atomic hydrogen, motivating the attempt to search for cosmic fulleranes. In this paper, we present a short review of current knowledge of cosmic fullerenes and fulleranes and briefly discuss the implications on circumstellar chemistry.

1. Introduction
Fullerenes are carbon cage molecules consisting of pentagons and hexagons. C₆₀, the best known fullerene, was first discovered in the experiments of understanding the carbon-chain chemistry in circumstellar environments [1]. Given their remarkable stability, fullerenes have been long suspected to exist in the Universe. The detections of fullerenes in terrestrial rocks and meteorites [2, 3, 4] suggest that they can be formed in nature, although the formation mechanisms in various geological environments are still in considerable debate. However, albeit with extensive efforts, search for fullerenes in deep space has been frustrating until recently.

The electronic spectrum of C₆₀ is dominated by a few UV features, and its visible bands are relatively weak. Highly reddened O-type stars can been targeted to search for electronic transitions from interstellar C₆₀. However, no positive detection has yet been made. Unsuccessful attempts [5, 6] only set an upper limit to the C₆₀ abundance in the interstellar medium (ISM). C₆₀ has a low ionization potential (7.6eV), and thus its singly-ionized species, C₆₀⁺, might be more abundant in the ISM. It has been long conjectured that two diffuse interstellar bands (DIBs) can be attributed to C₆₀⁺ [7]. This was recently verified by experimental spectra of gas-phase C₆₀⁺ [8]. The gas-phase laboratory spectra also exhibit two weaker bands at 9428.5 Å and 9365.9 Å, which were soon discovered in the spectra of DIBs [9]. The identification of C₆₀⁺ as the carrier of four DIBs re-raises the possibility that fullerene derivatives might be responsible for the DIB phenomenon.

In infrared spectra, many vibrational modes of C₆₀ are degenerate, resulting in four major features at 7.0, 8.5, 17.4, and 18.9 μm. Early attempts did not yield in certain detections [10, 11].
The first detection of \(C_{60} \) infrared bands was made in a young planetary nebula (PN) by the Spitzer Space Telescope [12]. Soon thereafter, \(C_{60} \) was detected in a variety of circumstellar environments [13, 14, 15, 16, 17, 18, 19, 20, 21], suggesting that it is a common molecule in the Universe and can survive in high-UV environments. About 5 percent of Galactic C-rich PNe have found to contain \(C_{60} \), while Magellanic Cloud PNe show higher detection rate [22]. Infrared bands from the cation form \(C_{60}^+ \) were also detected in some of the \(C_{60} \) sources [23, 24, 25]. There is no firm detection of the other charge states, although some efforts have been devoted to search for circumstellar \(C_{60}^{3+} \) and \(C_{60}^- \) [24, 25].

2. The Formation of Fullerenes

The discovery of \(C_{60} \) in a proto-PN [18] suggests that fullerenes can be formed on a timescale of \(10^3 \) years. In low-density environments, fullerenes are unlikely to be formed through assembly of small carbon species on such a short timescale (i.e. the bottom-up process). Although fullerenes can be experimentally synthesized via several different routes, observations point to a top-down scenario in astronomical environments [14, 26]. In this scheme, photon- or shock-induced processes cause dehydrogenation and ejection of \(C_2 \) of large hydrocarbon molecules, providing a pathway for the formation of closed-caged carbon molecules. Spatially resolved observations of reflection nebulae and H II regions indicate that the formation of \(C_{60} \) is related to the radiation fields [13, 26, 27]. However, the detection of \(C_{60} \) in various evolved stars suggests that strong UV irradiation is not necessary for fullerene formation [17, 24].

What is the precursor of fullerenes? Hydrogenated amorphous carbon (HAC) particles and polycyclic aromatic hydrocarbons (PAHs) have been presented as the starting materials [14, 15, 26, 28]. All the \(C_{60} \) sources exhibit prominent plateau emission [22, 24], which can be attributed to stretching and bending modes of mixed aromatic-aliphatic organic nanoparticles (MAONs, [29]). Therefore, we propose that fullerenes might be formed through the \(sp^3 \) to \(sp^2 \) transformation in MAONs. MAONs have a three-dimensional structure, and thus can be processed into multi-layered fullerenes (buckyonions), which have been suggested as the carrier of the 217 nm extinction bump [30] and some DIBs [31].

3. Search for Fulleranes

When mixed with atomic hydrogen, fullerenes can be readily hydrogenated into fulleranes (\(C_{60}H_m \)). In experiments, \(C_{60}H_{36} \) and \(C_{60}H_{18} \) are the most significant products of the hydrogenation of \(C_{60} \). Induced by UV photons or thermal energy, \(C_{60}H_m \) can be converted back to \(C_{60} \) by releasing molecular hydrogen. Fulleranes and fulleranes, therefore, may play a crucial role in the formation of \(H_2 \) in astronomical environments [32]. However, a search for fulleranes in two PNe showing strong \(C_{60} \) emission has not met with success [33].

Early studies indicate that the experimental spectrum of \(C_{60}H_{36} \) is able to match several infrared emission bands in proto-PNe [34]. IRAS 01005+7910, a \(C_{60} \)-containing proto-PN, shows a few features around 3.4 \(\mu m \) which have been tentatively ascribed to C-H stretching modes of \(C_{60}H_m \) (\(m \approx 36 \)) [24]. In the present work, we calculate the theoretical infrared (5–20 \(\mu m \)) spectra of several \(C_{60}H_m \) using the quantum chemistry method [35], and compare the results with the observed spectrum of IRAS 01005+7910, as shown in Figure 1. Our theoretical calculations are reasonably close to the experimental spectra [36]. For slightly hydrogenated \(C_{60} \), the four carbon skeletal vibration modes are still visible, but the relative intensities might vary compared to those of \(C_{60} \). Therefore, it is possible that the previously detected \(C_{60} \) features actually stem in part from \(C_{60}H_m \). This might help account for the discrepancy between the observed intensities and the predictions from excitation models of \(C_{60} \) [24]. For highly hydrogenated \(C_{60} \), the carbon cage is significantly distorted by the repulsion between the hydrogen atoms, and can be disrupted if \(m > 36 \). The four features from the skeletal vibrations are relatively inconspicuous or substantially invisible in highly hydrogenated \(C_{60} \), partly because the energy
Figure 1. The graph on the left shows the observed spectrum of IRAS 01005+7910 (upper panel) and theoretical spectra of C_{60} and $C_{60}H_m$ (lower panel). The dotted arrows mark the four features arose from the skeleton vibrations of C_{60}. Hydrogenated C_{60} might be responsible for some weak features, as indicated by the dashed arrows. The energetically optimized structures of C_{60}, $C_{60}H_4$, and $C_{60}H_{36}$ are shown on the right.

Figure 1. The graph on the left shows the observed spectrum of IRAS 01005+7910 (upper panel) and theoretical spectra of C_{60} and $C_{60}H_m$ (lower panel). The dotted arrows mark the four features arose from the skeleton vibrations of C_{60}. Hydrogenated C_{60} might be responsible for some weak features, as indicated by the dashed arrows. The energetically optimized structures of C_{60}, $C_{60}H_4$, and $C_{60}H_{36}$ are shown on the right.

is released largely through C-H vibrational modes. We therefore conjecture that fullerenes and fulleranes are rather common species in circumstellar envelopes, but hydrogenation will limit their detectability in infrared spectra. The main challenge in searching for circumstellar $C_{60}H_m$ is that the exact m value is unspecified and there are many isomers for a given m value. Nevertheless, we find that the observed spectrum might exhibit bands originating from $C_{60}H_m$ (Figure 1). In addition, it should be noted that many $C_{60}H_m$ have a ionization potential of <10 eV, and might exist as cation form in the ISM.

4. Summary and Perspectives
The detections of C_{60} and C_{60}^+ in circumstellar and interstellar environments indicate that fullerenes and their derivatives are abundant and widespread in the Universe. Given their high chemical activity and physical stability, fullerene-related compounds (FCs) are promising candidates for the carrier of DIBs. There are some potential matches between the properties of FCs and DIBs [37]. Strong C_{60}^+ absorption bands at 9632 Å and 9577 Å have been detected towards IRAS 01005+7910 [38]. Two DIBs are found to be enhanced in C_{60}-containing PNe [39]. These observations support the view that some of the DIB carriers might be FCs and have a circumstellar origin. Except fulleranes, some other FCs such as metallofullerenes [40] and fullerene/PAH adducts [41] can readily form together with fullerenes in experiments. Furthermore, if molecules like CO and H_2 are trapped inside the fullerene cage, their vibrational and rotational spectra may be strongly affected by the interaction with the wall. Future experimental and theoretical works on these FCs are highly valuable.
Acknowledgments

Financial support for this work was provided by the Research Grants Council of the Hong Kong under grants HKU7073/11P and HKU7062/13P.

References

[1] Kroto H W, Heath J R, Obrien S C, Curl R F and Smalley R E 1985 Nature 318 162
[2] Buseck P R, Tsipursky S J and Hettich R 1992 Science 257 215-217
[3] Becker L and Buda J 1994 Nature 372 507
[4] Heymann D, Chibante L P F, Brooks R R, Wolbach W S, Smit J, Korochantsev A, Nazarov M A and Smalley R E 1996 The Cretaceous-Tertiary Event and Other Catastrophes in Earth History (GSA Special Paper 307) pp 453-464
[5] Snow T P and Seab C G 1989 Astron. Astrophys. 213 291-294
[6] Herbig G H 2000 Astrophys. J. 542 334-343
[7] Foing B H and Ehrenfreund P 1994 Nature 369 296-298
[8] Campbell E K, Holz M, Gerlich D and Maier J P 2015 Nature 523 322-323
[9] Becker L and Bada J L 1994 Nature 372 507
[10] Heymann D, Chibante L P F, Brooks R R, Wolbach W S, Smit J, Korochantsev A, Nazarov M A and Smalley R E 1996 The Cretaceous-Tertiary Event and Other Catastrophes in Earth History (GSA Special Paper 307) pp 453-464
[11] Snow T P and Seab C G 1989 Astron. Astrophys. 213 291-294
[12] Herbig G H 2000 Astrophys. J. 542 334-343
[13] Foing B H and Ehrenfreund P 1994 Nature 369 296-298
[14] García-Hernández D A, Manchado A, García-Lario P, Stanghellini L, Villaver E, Shaw R A, Szczepanek A and Pérez-Calderón J V 2010 Astrophys. J. Lett. 724 L39-L43
[15] García-Hernández D A, Kameswara Rao N and Lambert D L 2011 Astrophys. J. 729 126
[16] García-Hernández D A, Iglesias-Groth S, Acosta-Pulido J A, Manchado A, García-Lario P, Stanghellini L, Villaver E, Shaw R A and Cataldo F 2011 Astrophys. J. Lett. 737 L30
[17] Gillet C, Cami J, Bouwman J, Peeters E and Min M 2011 Astron. Astrophys. 536 54
[18] Zhang Y and Kwok S 2011 Astron. Astrophys. 536 54
[19] Zhang Y and Kwok S 2011 Astron. Astrophys. 536 54
[20] Zhang Y and Kwok S 2011 Astron. Astrophys. 536 54
[21] Zhang Y and Kwok S 2011 Astron. Astrophys. 536 54
[22] García-Hernández D A, Manchado A, García-Lario P, Stanghellini L, Villaver E, Shaw R A and Cataldo F 2012 Astrophys. J. 760 107
[23] Berné O, Mulas G and Joblin C 2013 Astron. Astrophys. 550 L4
[24] Zhang Y and Kwok S 2013 Earth Planet Spaces 65 1069-1081
[25] Strelnikov D, Kern B and Kappes M M 2015 Astron. Astrophys. 584 55
[26] Berné O and Tielens A G G M 2012 Proc. National Acad. Sci. USA 109 401-406
[27] Castellanos P, Berné O, Sheffer Y, Wolfire M G and Tielens A G G M 2014 Astrophys. J. 794 83
[28] Micelotta E R, Jones A P, Cami J, Peeters E, Bernard-Salas J and Fanchini G 2012 Astrophys. J. 761 35
[29] Kwok S and Zhang Y 2011 Nature 479 80-83
[30] Iglesias-Groth S 2004 Astrophys. J. Lett. 608 L37-L40
[31] García-Hernández D A and Díaz-Luis J J 2013 Astron. Astrophys. 550 L6
[32] Cataldo P and Iglesias-Groth S 2009 Mon. Not. R. Astron. Soc. 400 291-298
[33] Díaz-Luis J J, García-Hernández D A, Manchado A and Cataldo F 2016 Astron. Astrophys. 589, 5
[34] Cataldo F 2003 Fullerences, Nanotubes and Carbon Nanostructures 11 295-316
[35] Sadjadi S, Zhang Y and Kwok S 2015 Astrophys. J. 801 34
[36] Iglesias-Groth S, García-Hernández D A, Cataldo F and Manchado A 2012 Mon. Not. R. Astron. Soc. 423 2868-2878
[37] Alain O 2016 Astron. Astrophys. 590, 52
[38] Iglesias-Groth S and Esposito M 2013 Astrophys. J. Lett. 776 L2
[39] Díaz-Luis J J, García-Hernández D A, Kameswara Rao N, Manchado A and Cataldo F 2015 Astron. Astrophys. 573 97
[40] Dunk P W, Adžićan J-J, Kaiser N K, Quinn J P, Blakney G T, Ewels C P, Marshall A G and Kroto H W 2013 Proc. National Acad. Sci. USA 110 18081-86
[41] García-Hernández D A, Cataldo F and Manchado A 2013 Mon. Not. R. Astron. Soc. 434 415-422