Integrated GIS and GPS for mapping of land suitability for Multy Purpose Tree Species (*Persea americana*) at community agroforestry land in Peria-ria Village

Rahmawaty1*, R M E Marpaung1, A Rauf2 and R Batubara2

1Faculty of Forestry, Universitas Sumatera Utara, Medan, Sumatera Utara, Indonesia.
2Faculty of Agriculture, Universitas Sumatera Utara, Medan, Sumatera Utara, Indonesia.

E-mail: *rahmawaty1974@gmail.com*

Abstract. *Persea americana* is known as the Multy Purpose Tree Species (MPTS), which comes from the Lauraceae family. In community agroforestry land in Deli Serdang Regency. The objective of this study was to map the suitability of land for *Persea americana* in Peria-ria Village. This research was conducted using survey methods. Soil samples are collected from survey results in the field based on land units, then the coordinates were marked using the Global Positioning System (GPS). To create a map of land suitability class distribution, Geographic Information System (GIS) technology was used. In land suitability study, were adopted from the Soil and Agro-climate Research Centre, Bogor, West Java, Indonesia, namely: references and land suitability criteria for Agricultural Plants. The actual land suitability for *Persea americana* is not suitable (N) (98.55%) and marginally suitable (S3) (1.45%) and potential land suitability for *Persea americana* is marginally suitable (S3) (1.45%) and moderately suitable (S2) (98.55%) in Peria-ria Village, Biru-Biru Sub district. Water availability (wa), erosion hazard (er) and root zone media (rc), were limiting factors. The most difficult constrain to overcome were the root zone medium and water availability.

1. Introduction
Evaluation of land is a process of estimating potential land resources for various uses. The basic framework for evaluating land suitability is to compare the requirements required for a particular land use, with the nature or quality of land in question. One type of land characteristic can affect more than one type of land quality, for example soil texture can affect water availability, whether or not land is easily cultivated, erosion sensitivity, other factors [1]. The purpose of land evaluation is to choose the optimal land use for each particular unit of land by considering social, economic and physical factors as well as conservation of environmental resources for sustainable use [2]. Land suitability is used as basis for land use planning and for consideration in making land use decisions. Several studies on land suitability have been carried out in several locations based on GIS [3-10]. The Geographic Information System (GIS) technology has been used to analyse land suitability and land capability. The GIS technology application such as for mapping land evaluation in map form as well as show the phenomenon of geographical spatial distribution [3,5]. The GIS technology was used for collection of data, storage of data, analysis of data and manipulation of data [11-17]. It has been applied in various fields, such as land evaluation [3-10].
One of the places that has potential to be planted by *Persea Americana*, namely Deli Serdang Regency, North Sumatra, Indonesia. *Persea americana* is known by the local name "alpukat". These plants can be found in several locations, such as on community land (in agroforestry patterns). Many studies have also been carried out related to *Persea americana* in various places [18-20]. Furthermore, studied about *Persea americana* such as: evaluation of in vitro antioxidant activities of methanol extracts of *Persea americana* [21], research about effects of anti-inflammatory and aqueous extract analgesic of the of *Persea americana* Mill. Leaves [22], and preliminary study regarding the hypotensive activity of *Persea americana* leaf extracts [23]. Nevertheless, research about mapping of land suitability for *Persea Americana* has never been conducted, especially in this location. Due to less data and information about the suitability land of *Persea americana* in Deli Serdang Regency, hence, the objective of this study was to map the the suitability of land both actual and potential land suitability for *Persea americana* in Peria-ria Village, Biru-biru Sub district.

2. Material and methods

2.1. Study area
This study was conducted in Peria-ria Village, Biru-Biru Sub district. This village was located in Deli Serdang Regency, Province of North Sumatra, Indonesia. Biru-Biru Sub district is an area that has fertile soil so that most of the land is cultivated for agriculture. Most of the people of Peria-ria Village are farmers. In general, the community implements a monoculture planting system and implements an agroforestry planting system. In addition, many people use land to be used as rice fields. The survey of land, laboratory analysis and data analysis were conducted from March to July 2019.

2.2. Data collection
The soil samples were collected in the field by survey method on land unit as well as mark it using GPS. There are two land units in this area that have their own characteristics. Growing requirements for *Persea americana* namely: optimal temperature ranges from 12.8-28.3 °C, optimum rainfall is 750-2700 mm / year, soil types for growth are sandy loam, loamy clay and silt clay soils. Soil acidity for a *Persea americana* ranges from 5.5 to 6.5. In general, *Persea americana* can grow in the lowlands to the highlands, which is 100-3,000 meters above sea level [24-25].

2.3. Data analysis
To evaluate the actual land suitability class for *Persea americana* plants were used a matching method [24,25], which is matching data that has been obtained both from the field and from the laboratory (results from sample analysis). In this study, the criteria for determining land suitability classes were based on criteria determined by the FAO, namely: S1, S2, S3, and N. [26,27,28]. For highly suitable called as S1, S2 for moderately suitable, S3 for marginally suitable, and N for not suitable. Soil sample points were recorded using GPS [17], then integrated with GIS technology to map the land suitability class distribution. Potential land suitability assessment is carried out by making possible improvements to the quality of land which is a limiting factor, so that land suitability is expected to increase.

3. Result and discussion
The actual land suitability for *Persea americana* in Peria-ria Village based on land unit, is presented in Table 1 as well as potential land suitability is presented in Table 2.

The actual land suitability map for *Persea americana* in Biru-biru Sub District is presented in Figure 1 and Figure 2 and the condition of land in Peria-ria Village, Biru-biru Sub District is presented in Figure 3. Based on Table 2 and Figure 2, Development of *Persea americana* in Biru-biru Village still potential based on the area of land suitability that dominated by moderately suitable (S2) that is 98.55%.
Table 1. The actual land suitability classes for *Persea americana* in Peria-ria Village based on land unit

Land unit	Actual land suitability	Area (Ha)	(%)
1	S3 rc	10.39	1.45
2	N eh	708.33	98.55
Total		718.72	100.00

Note: S3 = Marginally suitable, N = Not suitable, rc = root zone medium, eh = erosion hazard

Table 2. The potential land suitability for *Persea americana* in Peria-ria Village based on land unit

Land unit	Potential land suitability	Area (Ha)	(%)
1	S3 rc	10.39	1.45
2	S2 wa,rc,eh	708.33	98.55
Total		718.72	100.00

Note: S3 = Marginally suitable, S2 = Moderately suitable, rc = root zone medium, eh = erosion hazard, wa = water availability

Figure 1. Map of actual land suitability distribution for *Persea americana* in Peria-ria Village
Figure 2. Map of potential land suitability distribution for *Persea americana* in Peria-ria Village

Figure 3. The condition of agroforestry land in Peria-ria Village

Actual land suitability for *Persea americana* were not suitable (N) (98.55%) and marginally suitable (S3) (1.45%) and potential land suitability for *Persea americana* were marginally suitable (S3) (1.45%) and moderately suitable (S2) (98.55%) from the total area of Peria-ria Village (Figure 1 and Figure 2) in Peria-ria Village, Biru-biru Sub District. Nothing highly suitable (S1) was found in this area. The moderately suitable class or S2 means that land has limiting factor that will affect its productivity and require additional input. The marginally suitable or S3 means that land has sever limiting factor for the sustainable land use application [26,27,28]. According to FAO, land suitability class N (not suitable) is divided into two, namely: N1 and N2. N1 means currently is not suitable, but by the treatment can become suitable. Whereas N2 means it is permanently not suitable, even though it is given treatment it cannot become suitable. There are some limiting factors in evaluating land suitability in Peria-ria...
Village, such as: water availability (wa), root zone medium/texture (rc) and erosion hazard (eh). Limiting factors in the most difficult constraints to overcome in this area, were root zone medium and water availability. Water availability (wa), eh and rc cannot be increased. The erosion hazard (slope) can be increased by terracing in steep areas.

4. Conclusion
The actual land suitability for *Persea americana* were not suitable (N) (98.55%) and marginally suitable (S3) (1.45%), nevertheless, potential land suitability for *Persea americana* were marginally suitable (S3) (1.45%) and moderately suitable (S2) (98.55%) in Peria-ria Village, Biru-biru Sub District. Water availability, erosion hazard as well as root zone medium, were the limiting factor in this area. The difficult constrain to counter, namely: root zone medium and water availability.

References
[1] Hardjowigeno S and Widiatmaka 2007 Evaluasi Kesesuaian Lahan dan Perencanaan Tataguna Lahan [Land Suitability Evaluation and Land Use Planning] (Yogyakarta, Indonesia: Gajah Mada University Press)
[2] Rayes M I 2006 Metode Inventarisasi Sumber Daya Lahan [Land Resources Inventory Method] (Yogyakarta, Indonesia: Penerbit Andi)
[3] Rahmawaty, Rauf A and Sitepu H R 2013 Geographic information system application for mapping the suitability of eucalyptus and durian land as agroforestry plants *Proceedings of the National Seminar on Agroforestry IV* pp 660-9 (Banjarmasin, Indonesia: Fahutan Unlam Press)
[4] Rahmawaty, Siregar N C and Rauf A 2016 Land Suitability for Tectona grandis: case study in Arboretum Kwala Bekala, Sumatera Utara University *Jurnal Penelitian Ekosistem Dipterocarpa* 2(2) pp 73-82
[5] Tarigan A, Rauf A and Rahmawaty 2016 Evaluasi kesesuaian lahan kentang di kawasan relokasi Siosar Kabupaten Karo land [Suitability evaluation for potato in the Karo District Siosar relocation area] *Jurnal Pertanian Tropik* 3 pp 124-31
[6] Rahmawaty, Rauf A and Frastika S 2019 Spatial analysis for Pinus merkusii land suitability at agroforestry land in Telagah Village Sumatera Utara Indonesia *IOP Conf. Ser. Mater. Sci. Eng.* 593 (1) 012017 doi:10.1088/1755-1315/593/1/012017
[7] Rahmawaty, Frastika S, Marpaung R M E, Batubara R and Rauf A 2019 Short Communication: Use of Geographic Information System for mapping of Aquilaria malaccensis land suitability in North Sumatra, Indonesia *Biodiversitas* 20 (9) pp 2561-8
[8] Harahap F S, Sitompul R, Rauf A, Rahmawaty, Harahap D E and Walida H 2019 Land suitability evaluation for oil palm plantations (*Elaeis guenensis* jaccq.) on Sitellu Tali Urang Julu, Pakpak Bharat District *IOP Conf. Ser. Earth. Environ. Sci.* 260 (1) 012116 doi:10.1088/1755-1315/260/1/012116
[9] Rahmawaty, Rauf A and Frastika S 2019 Mapping of actual and potential land suitability for oil palm in several land unit using geographic information system *IOP Conf. Ser. Earth. Environ. Sci.* 260 (1) 012073 doi: 10.1088/1755-1315/260/1/012073
[10] Rahmawaty, Villanueva T R, Carandang M G, Lipatan R L, Bantayan N C and Alcantara A J 2012 Land suitability for oil palm in Besiati Watershed, North Sumatra, Indonesia *Science Journal of Agricultural Research and Management* 2012 p 6
[11] Rahmawaty, Sembiring I E P, Batubara R and Patana P 2018 Mapping of tree damage classification in the western part of Medan City green belts using geographic information system *IOP Conf. Ser. Earth. Environ. Sci.* 166(1) 012020 doi: 10.1088/1755-1315/166/1/012020
[12] Satriawan H, Harahap E M, Rahmawaty and Karim A 2014 Land capability evaluation for agriculture in Krueng Siumpo Watershed, Aceh *Acad. Res. Int.* 5 pp 55-63
[13] Satriawan H, Harahap E M, Rahmawaty and Karim A 2015 Effectiveness of soil conservation to erosion control on several land use types *Agriculture (Polnohospodárstvo)* 61 (2) pp 61-8
[14] Rahmawaty, Samosir J B Batubara R and Rauf A 2019 Diversity and distribution of medicinal plants in the Universitas Sumatera Utara Arboretum of Deli Serdang, North Sumatra, Indonesia *Biodiversitas* **20** (5) pp 1457-65

[15] Rahmawaty, Sitorus N A and Rauf A 2017 Distribution, above-ground biomass and carbon stock of the vegetation in Taman Beringin Urban Forest, Medan City, North Sumatra, Indonesia *Malaysian Forester* **80** (1) pp 73-84

[16] Rahmawaty, Patana P and Latifah S 2017 Spatial analysis on distribution of green belt to reduce impacts of climate change in Medan City, North Sumatra *Malays. Appl. Biol.* **46** (2) pp 67-76

[17] Rahmawaty, Sari E K, Syofyan A and Rauf A 2015 Integrated geographic information system and global positioning system for mapping of forest plants in supporting natural resources protection *Procedia Chemistry* **14** pp 334-42

[18] Andriamanallijaona R, Benateau H, Barre P E, Boumediene K, Labbe D, Compere J F and Pujol J P 2006 Effect of interleukin-1beta on transforming growth factor-beta and bone morphogenetic protein-2 expression in human periodontal ligament and alveolar bone cells in culture: modulation by avocado and soybean unsaponifiables *J. Periodontol.* **77** (7) pp 1156-66

[19] Antia B S, Okokon J E and Okon P A 2005 Hypoglycemic activity of aqueous leaf extract of Persea americana Mill. *Indian J. Pharmacol.* **37** pp 325-6

[20] Asaolu M F, Asaolu S S, Fakunle J B, Emman-Onkon B O, Ajayi E O and Togun R A 2010 Evaluation of in-vitro antioxidant activities of methanol extracts of Persea americana and Cnidosculus aconitifolius *Pak. J. Nutr.* **9** (11) pp 1074-7

[21] Asaolu M F, Asaolu S S, Oyeyemi A O and Aluko B T 2010 Hypolipemic effects of methanolic extract of Persea americana seeds in hypercholesterolemic rats *Journal of Medicine and Medical Sciences* **1** (4) pp 126-8

[22] Adeyemi O O, Okpo S O and Ogunti O O 2002 Analgesic and anti-inflammatory effects of the aqueous extract of leaves of Persea americana Mill. (Lauraceae) *Fitoterapia* **73** (5) pp 375-80

[23] Adeboye J O, Fajonyomi M O, Makinde J M and Taiwo O B 1999 A preliminary study on the hypotensive activity of Persea americana leaf extracts in anaesthetized normotensive rats *Fitoterapia* **70** (1) pp 15-20

[24] Djaenudin D, Hendrisman M, Subagjo H and Hidayat A 2011 *Petunjuk Teknis Evaluasi Lahan untuk Komoditas Pertanian* [Technical Guidelines for Evaluating Land for Agricultural Commodities] (Bogor, Indonesia: Badan Penelitian dan Pengembangan Pertanian [Agricultural Research and Development Agency])

[25] Ritung S, Nugroho K, Mulyani A and Suryani E 2011 *Technical guidelines for evaluating land for agricultural commodities* Revised Edition (Bogor, Indonesia: Badan Penelitian dan Pengembangan Pertanian [Agricultural Research and Development Agency]) p 168

[26] Food and Agriculture Organization (FAO) 1976 A Framework for land evaluation *FAO Soil Bulletin* **32** p 72

[27] Arsyad S 2010 *Konservasi tanah dan air* [Soil and water conservation] 2nd Edition (Bogor, Indonesia: IPB Press Bogor) p 472

[28] Rahmawaty, Villanueva T R and Carandang M G 2011 *Participatory land use allocation, case study in Besitang Watershed, Langkat, North Sumatera, Indonesia* (German: Lambert Academic Publishing) p 200

Acknowledgement

The research was part of a research project entitled: Mapping of Multi-Purpose Tree Species (MPTS) and Agarwood-Producing Trees (*Aquilaria malaccensis*) Land Suitability on Three Types of Land Cover in North Sumatera, funded by Universitas Sumatera Utara (USU) based on TALENTA Research, Contract No. 4167/UN5.1.R/PPM/2019 on April 1st 2019. We are grateful to the USU, AEFS 2019 Committee, as well as, the students of Faculty of Forestry, USU.