Text-to-text Multi-view Learning for Passage Re-ranking

Jia-Huei Ju,† Jheng-Hong Yang,‡ and Chuan-Ju Wang†

June 11, 2021

† Research Center for Information Technology Innovation, Academia Sinica
‡ David R. Cheriton School of Computer Science, University of Waterloo
Table of Contents

Introduction	Future Work
• Multi-view Learning	
• T5 model	
• Passage Ranking Process	
• Example	

Methodology
• Train with two views
• Mixing

Empirical Results
• MS MARCO Passage Ranking
• Effectiveness different depth k
Introduction
Introduction: Multi-view Learning

- Better representation by leveraging multiple views.
 - More generalized and less overfitting result.
 - For example on CV, the 3D object recognition [5]:

- How to apply this idea on text (NLP)?
 - Backbone: Text-to-text Transfer Transformer [4] aka T5
Introduction: T5 model

• How T5 works?
 • Train with different NLP tasks

• Formulate each with "text-to-text" format
• And also well-adapted to the pre-training technique.
Introduction: Document Ranking process

- Common two-stage IR architectures

1. Retrieve from large collections: Using term-matching model BM25.
2. Rank on smaller subset: Using neural ranking model, such as BERT.

- BUT, there is still a potential issue: overfitting.
 - Model only learns to discriminate from shallow associations.
- Multi-view learning with additional "generative view" may be a solution to alleviate the shortcoming of the existing approach.

1 Photo credit: Post by Akos Lada, Meihong Wang, Tak Yan
Example: Discriminative method

Teach a kid to classify the relevance (by “difference”).

Are these two pictures paired?

I am not sure, but I guess “YES”

Good Job! There are the pairs.

Oh I see, Some places are similar. I think “YES”

Great!

NO IDEA how to draw!
Example: Generative method

Teach a kid to copy the image. (memorize then draw).

Learned the representative part!
Methodology
Methodology: Train with two views

- Passage ranking task aka Rank (Discriminative)
- Query generation task[2] aka P2Q (Generative)

Figure 1: Text-to-text multi-view learning for the shared representations using the two objectives of passage ranking (left half) and text generation (right half).
Methodology: Mixing

Rank view & P2Q view (CE loss & NLL loss)
• $\mathcal{L}_{\text{Rank}}(q, p^+, p^-) = -\log P(\text{true} \mid q, p^+) - \log P(\text{false} \mid q, p^-)$
• $\mathcal{L}_{\text{P2Q}}(q, p) = -\sum_{t=1}^{

Multi-view learning with mixing rate η^1
$\mathcal{L}_{\text{multi-view}} = (1 - X) \times \mathcal{L}_{\text{Rank}}(q, p^+, p^-) + X \times \mathcal{L}_{\text{P2Q}}(q, p)$

- Mixing losses by proportion of training instances.

$^1X \sim \text{Bernoulli}(\eta)$: Note that the parameter η controls the sampling views, which is identical to the example proportional sampling.
Empirical Results
Effectiveness on MS MARCO Passage Ranking task

- Evaluated by official MRR@10 on 2 validation data (last 2 column)

#	Condition	Model	# Param (M)	Dev	Dev-Rest
	Baselines	BM25		0.187	0.191
		Best non-BERT [1]		0.290	
		BM25 + BERT-large [3]	340	0.372	
1	Single-view	BM25 +T5-base	220	0.384	0.380
2		BM25 +T5-large	770	0.395	0.390
3		BM25 +T5-3B	2,800	0.398	0.395
4	Multi-view	BM25 +T5-base	220	0.385	0.3821
5		BM25 +T5-large	7702	0.401	0.3933
6		BM25 +T5-3B	2,800	0.402	0.396

Table 1: Comparison on overall ranking effectiveness (MRR@10). The scores are in boldface if they are significantly better than the compared condition (see the superscript) under a paired t-test with $p \leq 0.05$.
Effectiveness at different depth k (candidates)

- Improvement is noted as $\frac{\text{MRR@}10_{\text{multi}} - \text{MRR@}10_{\text{single}}}{\text{MRR@}10_{\text{single}}}$ (growth)

Figure 2: Improvement of MRR@10 with top-K candidates based on the BM25. The re-ranking model is T5-large (multi-view versus single-view).

- Performance improved more even in the noisy environment (more candidates.)
Future Work
Future Work

Fuse more views:

- (P2Q-) Negative P2Q view: Try to generate the irrelevant passage.
- (P2W) Term generative view: Try to extract the keywords of the passage.

Improve the primary task (Rank view):

- Fusing BM25 score: Consider relative scores between candidates, since our reranker is only based on pointwise approach.
[1] S. Hofstätter, N. Rekabsaz, C. Eickhoff, and A. Hanbury. On the effect of low-frequency terms on neural-ir models. In Proc. of SIGIR, page 1137–1140, 2019.

[2] R. Nogueira, J. Lin, and A. Epistemic. From doc2query to doctttttquery. Online preprint, 2019.

[3] R. Nogueira, W. Yang, K. Cho, and J. Lin. Multi-stage document ranking with bert. arXiv:1910.14424, 2019.

[4] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J. Liu. Exploring the limits of transfer learning with a unified text-to-text transformer. J. Mach. Learn. Res., 21(140):1–67, 2020.

[5] H. Su, S. Maji, E. Kalogerakis, and E. Learned-Miller. Multi-view convolutional neural networks for 3d shape recognition. In Proc. of ICCV, pages 945–953, 2015.
Thank You!

Are there any questions you’d like to ask?

Jia-Huei Ju dylanjootw@gmail.com
Jheng-Hong Yang j587@uwaterloo.ca
Chuan-Ju Wang. cjwang@citi.sinica.edu.tw