PHARMACOTHERAPY OF CHALLENGING BEHAVIOURS IN CHILDREN AND ADOLESCENTS WITH AUTISM SPECTRUM DISORDER

Diana Puzio¹, Agnieszka Gmitrowicz², Iwona Makowska²

¹Central Teaching Hospital of the Medical University of Lodz, Department of Adolescent Psychiatry, Lodz, Poland
²Clinic of Adolescent Psychiatry, Medical University of Lodz, Poland

Abstract

Purpose: The article attempts to answer the question whether a drug-therapy of challenging behaviours in paediatric patients with autism is warranted. If so, how should it be implemented, including mainly the choice of agent, dosage, length of therapy and drug's expected efficacy and safety.

Views: Challenging behaviours (CB) are common problems in discussed population that additionally aggravate the level of individual functioning. When a drug-therapy of CB is concerned, there is an alarming tendency of increasing antipsychotic use and polypharmacy which exceeds the body of evidence. Out of many agents studied, only risperidone and aripiprazole exhibit established evidence for effectiveness and safety during a short-term use. Research shows comparable efficacy of these drugs and several particularities in secondary outcomes profile. It is established that in pedopsychiatric patients with autism and challenging behaviours both agents equally increase body weight in a statistically significant way; however, risperidone is associated with bigger risk of metabolic changes and extrapyramidal symptoms than aripiprazole. In addition, risperidone significantly augments the risk of hyperprolactinaemia while aripiprazole exhibits no such an action. Aripiprazole, on the other hand, is linked with higher frequency of sedation.

Conclusions: Drug-therapy of CB in autism should be considered only as an addition to comprehensive interventions when behavioural and psychosocial measures lack effectiveness. The safety/efficacy profile in long-term use remains undetermined and needs further studies.

Key words: autism, pharmacotherapy, challenging behaviours.
INTRODUCTION

Autism spectrum disorder (ASD) encompasses the range of neurodevelopmental chronic disorders. Affected individuals exhibit impaired development of relations, impaired communication skills and restricted, repetitive behaviours. Its prevalence has been suggested to increase lately, estimating about 1% worldwide. It is more common in male individuals and associated with a substantial co-morbidity (> 70%) and the occurrence of non-core symptoms (53%) [1, 2] (Tables 1 and 2).

Preceding classifications, i.e. International Statistical Classification of Diseases and Related Health Problems, 10th Revision, and Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, require the presence of three core symptoms before the age of three for the diagnose of an autistic disorder and include it between Pervasive Developmental Disorders along with, for example, Asperger Syndrome [3, 4]. The Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition, and International Statistical Classification of Diseases and Related Health Problems, 11th Revision, comprise the aforementioned conditions in a single diagnose of broad clinical presentation, i.e. Autism Spectrum Disorder. It is characterised by the duet of symptoms: impaired social development (inseparably connecting communication and socialisation) and the limitation of spontaneous activities which do not necessarily need to be visible in early childhood [5, 6]. In presented paper terms autism and ASD are used interchangeably and refer to DSM-V diagnosis whereas autistic disorder stands for the diagnosis in accordance with DSM-IV (TR). Despite classification evolvement and differences, an emerging need to recognise and treat co-existing psychiatric symptoms seems to be essential [2, 7].

To date, no drug-therapy of autism core symptoms has been proven to be effective [8]. Available guidelines recommend instead parent-mediated, behavioural and psychosocial interventions to be implemented as early as possible [7]. However, research shows increasing rates of psychotropic use (64%) and simultaneous use of multiple psychotropic agents (35%) among children with ASD [9]. It is noteworthy that antipsychotics out of other drug classes used in autistic population are associated with the highest numbers of days treated (2/3 of the year on average) and are one of the most commonly prescribed drugs (Table 3) [10]. Meanwhile, their safety profile in de-

Table 1. Selected psychiatric co-morbidities (of note in pediatric and adult population with autism spectrum disorder (ASD)) [10-17]

Mental health condition	Prevalence in population with ASD
Attention deficit hyperactivity disorder	38-60%
Anxiety disorder	19-40%
Conduct disorder	7-15%
Intellectual disability	14-47%
Bipolar disorder	7%
Epilepsy	9-22%
Schizophrenia	2-35%
Depression	1-30%

Table 2. Frequent (reported ≥ 3 times a week) problems in children and adolescents with autism spectrum disorder (ASD) [2]

Symptom	Prevalence in paediatric population with ASD
Eating problems	58%
Sensory issues	57%
Temper tantrums	48%
Sleep problems	45%
Hyperactive periods	43%
Anxiety	43%
Toileting problems	31%
Aggression to others	22%
Reluctance to separate	15%
Self injury	14%

Table 3. Use prevalence of selected psychotropic medication by class (of note, in pediatric and adult population with autism spectrum disorder (ASD)) [10]

Drug class	Use prevalence in population with ASD
Antidepressant	31%
Stimulants	31%
Antipsychotics	30%
Anxiolytics	15%
Hypotensive agents	12%
Anticonvulsants	10%

veloping population is considered most detrimental and
distal health outcomes still poorly understood [18, 19].

CHALLENGING BEHAVIOURS IN AUTISM

“Challenging behaviours” (CB) is the term designed
to describe culturally abnormal behaviours in
children with learning disabilities that threaten the health
of the person or others [20]. National Institute for Health
and Care Excellence (NICE) guidelines include CB as
possible co-existing symptoms of autism comprising, for
example, self-injurious behaviours, aggression towards
others (screaming, shouting, kicking, biting) and inap-
propriate sexualised behaviour [7]. In the pharmacologi-
cal research literature of autism, these behaviours are re-
ferred to as “irritability” or “aggression.” This is based on
one of the most commonly used drug research measures,
i.e. Aberrant Behavioural Checklist – Irritability subscale
(ABC-I). The scale includes, among others, mood changes,
inappropriate crying and screaming, temper tantrums,
self-injurious behaviours (SIB) and aggression towards
others [21].

CB seem to pose one of the most urgent and difficult
tasks to combat in autistic population due to a few rea-
sons. Firstly, CB are relatively common. A study of almost
1400 children diagnosed with ASD reported that ca. 35%
were currently demonstrating definite aggression [22].
Secondly, they appear to diminish quality of life to a great
extent. Enough to mention, interfering with the course
der of core symptoms therapy, decreasing the level of family
life satisfaction, causing educational withdrawal, being
the most common reason for admission to foster care
units and finally resulting in potential physical harm to
self or others [2, 22]. Moreover, there is no established
measure for detection whether aggressive CB are the re-
sult of the intrinsic traits of an autistic individual and re-
quire biological approach or are rather the consequences
of external factors (e.g. changes in the routine, excessive
stimulation or inadequate care-givers conduct), demand-
ing counselling and proper adjustments in the patient’s
life. Eventually, it is still undetermined to what extent these
two factors may contribute simultaneously [23]. State rec-
ommendations regarding the CB treatment in autism are
limited to the possibility of short-term use of risperidone
(RIS) when a conduct disorder is diagnosed in children
over the age of 5 and adolescents with intellectual disabil-
ity. British and American guidelines point out that ideally
autistic children and adolescents would be treated with
non-pharmacological interventions (Table 4). However
when CB are too severe to implement behavioural inter-
ventions or failed to respond to them and are constitut-
ing major interference with family, social or educational
functioning, drugs may be recommended as an accessory
measure [7, 24].

PURPOSE AND METHODS

The present paper aims to simplify clinical decision
making regarding pharmacotherapy targeting CB in chil-
dren and adolescents diagnosed with autism.

The data was gathered in an informal and subjective
manner.

The search of Pubmed/MEDLINE database was con-
ducted using pubmed advanced search option for original
papers (Randomised Controlled Trials, open-label
and prospective trials), Systemic Reviews and Meta-anal-
ysis as well as review of references. Retrospective trials,
case series and single case reports were excluded as well
as papers which had a full text version in a language oth-
er than English. Searched terms included among many
others: “autism”, “autism spectrum disorder”, “autistic
 disorder”, “Asperger syndrome”, “drug therapy”, “phar-
macotherapy”, “antipsychotics”, “polypharmacotherapy”,
“irritability”, “aggression”, “arippiprazole”, “risperidone”,
“adjunctive therapy”, “children”, “adolescents”, “comorbid-
ity”. Authors aimed to limit their search to papers pub-
lished after 2000; however, some exceptions have been
made due to the studies’ originality.

No	Step	What to establish?
1	Exclusion of identifiable or curable causes or both	• Health and mental health conditions, environmental problems, behavioural problems
2	Careful assessment of challenging behaviours	• Triggers and patterns of behaviour
		• Needs that the child attempts to fulfil
		• Consequences of behaviour. Does maladaptive reinforcement occurs?
3	Implementation of psychosocial intervention	• Identify target behaviour
		• Focus on outcomes linked to quality of life
		• Assess and modify environmental factors
		• Clearly define intervention strategy that takes into account the developmental
		level and coexisting problems of the child or young person
		• Specify timescale to meet intervention goals
		• Measure systematically target behaviour before and after intervention
		• Apply interventions consistently in all child’s environments
		• Ensure agreement among parents, carers and professionals in all settings
		about how to implement the intervention

Table 4. First-line approach for challenging behaviours (5, 15)
The search, removal of duplicates and selection of searched papers were conducted manually in a non-systematic fashion. Therefore, numbers of excluded papers on title, abstract and full text level as well as the total number of excluded papers were not elicited.

RESULTS

The majority of trials found featured study design deficiencies, such as small sample design, short study period, subject heterogeneity or, finally, showed a substantial rate of side effects. In consequence, the evidence of haloperidol, olanzapine, valproic acid, lamotrigine, levetiracetam, clomipramine, amantadine and naltrexone use in autistic patients was estimated as insufficient. It was recognised that only risperidone and aripiprazol are considered to have established evidence of efficacy and safety, and they are depicted hereafter [25-35].

Risperidone

Risperidone (RSP) is a second-generation antipsychotic acting as a dopaminergic and serotonergic antagonist. It was suggested that the affinity for serotonin 5-HT2 receptors is responsible for its efficacy in diminishing aggressive behaviours. Its relative strong affinity to dopamine D2 receptors and serotonin 5-HT2C receptors probably mediates metabolic and endocrine side effects (SE) [36].

RSP was approved to treat irritability in autistic children and adolescents aged 5-16 years by the Federal Drug Association (FDA) in 2006, supporting its use at a dose range of 0.5-3 mg/day [37]. Several short-term randomised controlled trials demonstrated its efficacy in treating challenging behaviours [38-40].

The Research Units on Paediatric Psychopharmacology Autism Network (RUPP-AN) trial included 101 participants aged 5-17 years diagnosed with autistic disorder according to DSM-IV. It was divided in three phases. The first one was an 8-week RCT; the second – a 4-month open-label extension phase, and the last one – a 2-month placebo-controlled discontinuation phase. The short-term phase, during which RSP was flexibly dosed from 0.5 to 3.5 mg/day, resulted in a significant decrease in the mean Aberrant Behavioural Checklist – Irritability (ABC-I) subscale and a significant improvement on Clinical Global Impression-Improvement (CGI-I) scale. Authors claim that the RSP-treatment was well-tolerated; majority was mild and transient. Finally, control group patients experienced significantly greater weight increase (+2.7 kg vs. +1.0 kg), pulse rate and systolic blood pressure than placebo group [39].

Pandina et al. (2007) extracted the data from the study described above solely on patients diagnosed with autistic disorder (DSM-IV). Study supported the results of the stem trial in regard of both efficacy and safety of the RSP treatment [40].

Aforementioned studies used flexible dose pattern of maximum 3.5 mg/day and did not provide information about prolactin (PRL) level changes. A RCT by Kent et al. compared the benefit of low-dose RSP (0.125-0.175 mg/day) and high-dose RSP (1.25-1.75 mg/day) adjusted to the participant’s weight and found significant change in ABC-I subscale only in a high dose group. It has also depicted the dose-dependency of the following side effects: weight gain, somnolence and prolactin level increase [41].

Data from RUPP trial also enabled to preliminary determine that benefits of the RSP therapy may be expected if the baseline symptom burden ranges from moderate to severe (measured on ABC-I subscale and CGI scale) [42].

Less evidence supports the RSP’s efficacy and safety in long-term use. The open label and discontinuation phase of the RUPP study showed the maintenance of positive response. The discontinuation after 6 months was associated with a rapid relapse in most subjects [43]. One open-label 6-month extension study and one naturalistic study (a 21 month follow up of RUPP trial participants) provided preliminary evidence for clinical benefit maintenance or even further improvement during continuation of the RSP treatment. However, weight gain, excessive appetite and enuresis were the biggest concerns [44, 45].

As far as the safety of RSP administration in autistic patients is concerned, there is emerging evidence of remote endocrine and metabolic consequences. For example, asymptomatic hyperprolactinaemia in adolescents with ASD was reported to be associated with diminishing of sexual functioning and decreasing of lumbar spine bone mineral
Pharmacotherapy of Challenging Behaviours in Children and Adolescents with Autism Spectrum Disorder

Farmakoterapia zachowań trudnych w spektrum zaburzeń autyzmu u dzieci i młodzieży

density [46, 47]. In addition, one prospective study on 168 ASD patients suggests the association of the RSP long-term treatment with the developing of insulin resistance and increased leptin levels which are known to precede metabolic syndrome and cardiovascular complications. Observed metabolic disorders appeared in a dose- and duration-dependent manner which, along with evidence from other studies, implicates vigilance while prescribing RSP during longer periods [48].

There is also an apparent research tendency to establish the agents which have the potential to augment the RSP therapy in autistic patients. Although replication of results is warranted, several of them showed preliminary efficacy and safety in this matter, i.e. pentoxifylline, N-acetylcysteine, memantine, pioglitazone, celecoxib and amantadine. However promising, available data do not warrant any clear recommendations of polypharmacotherapy [49-55].

Aripiprazole

Aripiprazole (ARI) is a second generation antipsychotic, having a unique partial agonistic action at dopamine D2 receptors and serotonin 5HT-1A receptors, and an antagonistic action at serotonin 5HT-2A receptors. It is believed to balance dopaminergic processes and, in consequence, decrease the risk of SE associated with pure blockade of dopamine receptors, such as hyperprolactinaemia and metabolic changes [56, 57].

ARI was registered by the FDA in 2009 to treat irritability in autistic children and adolescents aged 6-17 years, using a dose of 2-15 mg/day [58].

Two pivotal RCTs proved ARI efficacy and safety in treating challenging behaviours in children and adolescents with the diagnosis of autistic disorder according to DSM-IV (TR).

A fixed-dose 8-week study randomly assigned 218 participants to one of the four groups, i.e. ITT groups, which were administered 5, 10 or 15 mg/day, and a control group. All doses administered resulted in a significant change in the ABC-I subscale and GCI-I score at the endpoint. In fact, positive response was observed as early as after the first week of treatment. Dose-dependent efficacy was not reported. Ca. 84% of participants in each group reported at least one SE during the trial. The most common SE were sedation, fatigue and vomiting. Fatigue and sedation showed numerical association with higher dosage, however, without statistical significance.

EPS were observed in about 22% of ITT participants and 12% in placebo group. They were reported to be of mild severity but no data on their natural course and response to treatment were shared. It is noteworthy that all the ARI treatment groups gained body weight to a statistically greater extent than placebo-administered subjects (mean weight change in ITT groups was +1.5 kg vs. placebo group +0.3 kg) [59].

The second 8-week RCT was conducted on 98 patients who were either administered ARI in a flexible dose manner or placebo. As in the previously described study, the significant effect of the ARI treatment in participants who were on active medication was seen already after the first week. At week 8th, both the mean CGI-I and ABC-I subscale scores significantly improved as compared with placebo. The rate of SE was similar as in the previous study. Three most common SE were fatigue, somnolence and vomiting. Participants of the ITT groups exhibited no clinically relevant changes in vital signs or electrocardiogram abnormalities. As in the study by Marcus et al., ARI was associated with a significant weight gain (+2 kg at week 8th on ARI vs. 0.8 kg on placebo) [60].

A pooled analysis of the safety data from these two RCTs revealed that ARI had a minimal effect on lipid and glucose blood levels and was associated with a significant decrease of PRL levels [61]. Short-term studies by Owen et al. and Marcus et al. were followed by a 52-week open-label study. It included 330 participants who were prescribed ARI in a flexible mode for a year. They were divided in three groups, i.e.: 1) participants treated with ARI in a short-term trial (prior ARI); 2) participants of control groups (prior placebo); and 3) de novo participants. De novo and prior placebo groups achieved improvement in the ABC-I subscale early during the study and maintained it to week 52-nd. At the endpoint, significant amelioration was observed also in a CGI-I score in these groups (the majority of participants were assessed as much improved or very much improved) in comparison with their condition before therapy. Previously achieved improvement in ‘prior ARI’ participants was maintained based on the results from both scales. SE occurrence was similar to the antecedent short-term trials (86%). The common SE included increased body weight (which reached a plateau at 3-6 months), vomiting, nasopharyngitis and increased appetite. EPS were present in 14.5% of subjects [62].

The post-hoc analysis of previously reviewed trial was conducted in order to establish risk factors for secondary outcomes. It suggests greater susceptibility to pronounced weight gain and somnolence in the individuals who were antipsychotic naïve at the start point. Authors also point out that younger subjects and those with a higher baseline body weight may be prone to gain more weight during ARI treatment [63].

Risperidone vs. aripiprazole

Several studies comparing these agents demonstrated the similarity of their efficacy in the short-term use [64-66]. In general, the tolerability of both active compounds was alike. Somnolence/Sedation effects were the most frequently reported SE [65]. No significant differences between RSP and ARI were observed in treatment-emergent weight gain [64, 65].
However, substantial variances in favour for ARI were calculated for the occurrence of hyperglycaemia, EPS and hyperprolactinaemia [65, 66].

Side effects of the agents described above are in accordance with prevailing knowledge on their pharmacodynamics in children and adolescents with the exception of equal body weight gain during the ARI and RIS short-term treatment. The reason for this outcome remains yet to be established [67, 68].

Assessment

Although RSP and ARI seem to be agents with the biggest evidence supporting their efficacy and safety in the treatment of CB in autistic children and adolescents, data depicted above should be interpreted with caution. Most studies are short-term trials, which can result in the underestimation of SE. Both RCTs of ARI and a RCT by Shea et al. of RSP were industry-funded. Moreover, a substantial overlap of participants in studies by Marcus et al. and Owen et al. cannot be excluded. Longer-term studies followed-up participants from short-term RCTs who showed good tolerability and response to treatment. This has a potential to bias the secondary outcome profile as the sample was lacking individuals who developed treatment-emergent symptoms. In addition, longer-term trials used open-label method, which is questionable for establishing drug efficacy.

Furthermore, the majority of RCTs included patients with the diagnosis of autistic disorder according to DSM-IV (TR) with the exception of patients with other pervasive developmental disorders which are presently encompassed in one diagnose of ASD. Clinicians encounter scarce literature describing the use of second generation drugs in patients with Asperger syndrome or high-functioning autism [69].

Taking the aforementioned doubts into consideration, this paper underscores concerns regarding side effect profile of antipsychotics used in the therapy of CB in paediatric autistic population. It seems that the body of evidence does not support chronic and common use of antipsychotics in these cases. The urgent need for further studies, preferably carried out independently of pharmaceutical companies, to determine distal risks of these medications and their therapeutic value is therefore prominent. Additional trials may be also helpful to establish clinical and genetic risk factors for side effects and drug-refractoriness. More research is also necessary to establish safety and efficacy profile in different clinical presentations on the autism spectrum, which would correspond to current diagnostic classification.

LIMITATIONS

Although the authors’ intention was to provide an extensive review of the available data, this paper is limited by the non-systematic fashion of search and only one database searched.

CONCLUSIONS

1. Challenging behaviours are common and cause burdensome problems among children and adolescents with autism. The first-line approach includes managing possible environmental factors and treating coexisting conditions, careful assessment, psychosocial and behavioural interventions.

2. If first choice approach is insufficient or impossible to implement due to symptom severity, time-limited drug-therapy should be considered.

3. It is recommended that pharmacotherapy are used in conjunction with a total treatment programme (behavioural, psychosocial) as it is not curative and relapse is expected at discontinuation.

4. Risperidone and aripiprazole appear to be agents of the strongest evidence of efficacy and safety. In view of their similar efficacy, the choice between these two drugs should be driven by clinical consideration of patient characteristics and needs.

5. There is not yet an established evidence of the efficacy or safety for any form of augmentation of the aforementioned drugs.

6. The following steps are recommended in executing pharmacotherapy (adapted from NICE, 2013):
 - Identification of the target behaviour and decision on the measure to monitor effectiveness;
 - Discussion on the potential benefit, side effects and course of the treatment with a patient and his/her parents or care-givers;
 - Baseline investigations: weight, height, waist and hip measurements, pulse and blood pressure, fasting blood glucose, glycosylated haemoglobin, blood lipid and prolactin level, assessment of nutritional status, diet, assessment of any movement disorder and level of physical activity;
 - Start-up with a low dose, slowly titrating upwards, and usage of minimal effective dose (CAVE studied doses did not exceed 3.5 mg/day and 15 mg/day for risperidone and aripiprazole respectively);
 - Routine and proactive monitoring of compliance, effectiveness and secondary effects including clinical (weight, EPS, etc.) and biological (glucose, lipids, prolactin, etc.) assessments;
 - Revision of the effects after 3–4 weeks and discontinuation if there is no clinically important response at week 6th;
 - Preparation of a plan for stopping treatment (including a relapse plan) after week 8th.
Conflict of interest/Konflikt interesu
Absent./Nie występuje.

Financial support/Finansowanie
Absent./Nie występuje.

References/Piśmiennictwo
1. Lai MC, Lombardo MV, Baron-Cohen S. Autism. Lancet 2014; 383: 896-910.
2. Maskey M, Warnell F, Parr JR, Le Couteur A, McConachie H. Emotional and behavioural problems in children with autism spectrum disorder. J Autism Dev Disord 2013; 43: 851-859.
3. World Health Organization. International Statistical Classification of Diseases and Related Health Problems, 10th Revision. Vol 1-3. Geneva: World Health Organization; 1994.
4. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. 4th ed. Washington, DC: American Psychiatric Publishing; 1994.
5. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. 5th ed. Arlington: American Psychiatric Publishing; 2013.
6. World Health Organization. The International Classification of Diseases 11th Revision 2018. https://icd.who.int/browse11/l-m/en.
7. National Institute for Health and Care Excellence (NICE) #170. Autism in under 19s: Support and management. London, UK: NICE Guideline, 2013.
8. Goel R, Hong JS, Findling RL, Ji NY. An update on pharmacotherapy of autism spectrum disorder in children and adolescents. Int Rev Psychiatry 2018; 30: 78-95.
9. Spencer D, Marshall J, Post B. Psychotropic medication use and polypharmacy in children with autism spectrum disorder. Pediatrics 2013; 132: 833-840.
10. Houghton R, Ong RC, Bolognani F. Psychiatric comorbidities and use of psychotropic medications in people with autism spectrum disorder in the United States. Autism Res 2017; 10: 2037-2047.
11. Goldstein S, Schwebach AJ. The comorbidity of Pervasive Developmental Disorder and Attention Deficit Hyperactivity Disorder: results of a retrospective chart review. J Autism Dev Disord 2004; 34: 329-339.
12. Skokauskas N, Frodl T. Overlap between autism spectrum disorder and bipolar affective disorder. Psychopathology 2015; 48: 209-216.
13. Leyfer OT, Folstein SE, Bacalman S, Davis NO, Dinh E, Morgan J, Tager-Flusberg H, Lainhart JE. Comorbid psychiatric disorders in children with autism: interview development and rates of disorders. J Autism Dev Disord 2006; 36: 849-861.
14. Postorino V, Fatta LM, Sanges V, Giovagnoli G, De Peppo L, Vicari S, Mazzone L. Intellectual disability in Autism Spectrum Disorder: Investigation of prevalence in an Italian sample of children and adolescents. Res Dev Disabil 2016; 48: 193-201.
15. Bolton PF, Carciani-Rathwell I, Hutton J, Goode S, Howlin P, Rutter M. Epilepsy in autism: features and correlates. Br J Psychiatry 2011; 198: 289-294.
16. Chisholm K, Lin A, Abu-Akel A, Wood SJ. The association between autism and schizophrenia spectrum disorders: A review of eight alternate models of co-occurrence. Neurosci Biobehav Rev 2015; 55: 173-183.
17. Strang JF, Kenworthy L, Daniolos P, Case L, Wills MC, Martin A, Wallace GL. Depression and Anxiety Symptoms in Children and Adolescents with Autism Spectrum Disorders without Intellectual Disability. Res Autism Spectr Disord 2012; 6: 406-412.
18. Correll CU, Penzner JB, Parikh UH, Mughal T, Javed T, Carbon M, Malhotra AK. Recognizing and monitoring adverse events of second-generation antipsychotics in children and adolescents. Child Adolesc Psychiatr Clin N Am 2006; 15: 177-206.
19. Steiner H, Warren BL, Van Waes V, Bolaños-Guzmán CA. Life-long consequences of juvenile exposure to psychotropic drugs on brain and behavior. Prog Brain Res 2014; 211: 13-30.
20. Emerson E. Challenging Behaviour: Analysis and intervention in people with learning disabilities. Cambridge: Cambridge University Press; 2001. Available online: Challenging Behaviour Foundation.
21. Aman M, Singh N. aberrant Behaviour Checklist: Manual. New York: Slosson Educational Publications; 1986. Available online: https://www.researchgate.net/publication/19167636_The_Aberrant_Behavior_Checklist_A_behavior_rating_scale_for_the_assessment_of_treatment_effects.
22. Kanne SM, Mazurek MO. Aggression in children and adolescents with ASD: prevalence and risk factors. J Autism Dev Disord 2011; 41: 926-937.
23. Carroll D, Hallett V, McDougle CJ, et al. Examination of aggression and self-injury in children with autism spectrum disorders and serious behavioral problems. Child Adolesc Psychiatr Clin N Am 2014; 23: 57-72.
24. American Academy of Child and Adolescent Psychiatry (AACAP) Practice Parameter For The Assessment And Treatment Of Children And Adolescents With Autism Spectrum Disorder. Washington: 2013. Available online: www.aacap.org.
25. Siegel M, Beaulieu A. Psychotropic medication in children with autism spectrum disorders: a systematic review and synthesis for evidence-based practice. J Autism Dev Disord 2012; 42: 1592-1605.
26. Hollander E, Wasserman S, Swanson EN, Chaplin W, Schapiro ML, Zagursky K, Novotny S. A double-blind placebo-controlled pilot study of olanzapine in childhood/adolescent pervasive developmental disorder. J Child Adolesc Psychopharmacol 2006; 16: 541-548.
27. Anderson LT, Campbell M, Adams P, Small AM, Perry R, Shell J. The effects of haloperidol on discrimination learning and behavioral symptoms in autistic children. J Autism Dev Disord 1989; 19: 227-239.
28. Hellings JA, Weckbaugh M, Nickel EJ, Cain SE, Zarcone JR, Reese RM, et al. A double-blind, placebo-controlled study of valproate for aggression in youth with pervasive developmental disorders. J Child Adolesc Psychopharmacol 2005; 15: 682-692.
29. Hollander E, Chaplin W, Soorya L, Wasserman S, Novotny S, Rusoff J, et al. Divalproex sodium vs placebo for the treatment of irritability in children and adolescents with autism spectrum disorders. Neuropsychopharmacology 2010; 35: 990-998.
30. Belsito KM, Law PA, Kirk KS, Landa RJ, Zimmerman AW. Lamotrigine therapy for autistic disorder: a randomized, double-blind, placebo-controlled trial. J Autism Dev Disord 2001; 31: 175-181.
31. Wasserman S, Iyengar R, Chaplin WF, Watner D, Waldoks SE, Anagnostou E, Soorya L, Hollander E. Levetiracetam versus placebo in childhood and adolescent autism: a double-blind placebo-controlled study. Int Clin Psychopharmacol 2006; 21: 363-367.
32. Remington G, Sloman L, Konstantareas M, Parker K, Gow R. Clomipramine versus haloperidol in the treatment of autistic disorder: a double-blind, placebo-controlled, crossover study. J Clin Psychopharmacol 2001; 21: 440-444.
33. King BH, Wright DM, Handen BL, Sikich L, Zimmerman AW, McMahon W, et al. Double-blind, placebo-controlled study of amantadine hydrochloride in the treatment of children with autistic disorder. J Am Acad Child Adolesc Psychiatry 2001; 40: 658-665.
34. Willemsen-Swinkels SH, Buitelaar JK, Weijnen FG, van Engeland H. Placebo-controlled acute dosage naltrexone study in young autistic children. Psychiatry Res 1995; 58: 203-215.
35. Campbell M, Anderson LT, Small AM, Adams P, Gonzalez NM, Ernst M. Naltrexone in autistic children: behavioral symptoms and attentional learning. J Am Acad Child Adolesc Psychiatry 1993; 32: 1283-1291.
36. Nuntamool N, Ngamsamut N, Vanwong N, Puangpetch A, Chamnanphon M, Hongkaew Y, et al. Pharmacogenomics and Efficacy of Risperidone Long-Term Treatment in Thai Autistic Children and Adolescents. Basic Clin Pharmacol Toxicol 2017; 121: 316-324.
37. Ortho-McNeil-Janssen, Inc. Risperdal (risperidone) tablets/oral solution: prescribing information. Available at: http://www.risperdal.com/sites/default/files/shared/pi/risperdal.pdf (Accessed: 13.12.2010).
38. Research Units on Pediatric Psychopharmacology Autism Network: Risperidone in children with autism and serious behavioral problems. N Engl J Med 2002; 347: 314-321.
39. Shea S, Turgay A, Carroll A, et al. Risperidone in the treatment of disruptive behavioral symptoms in children with autistic and other pervasive developmental disorders. Pediatrics 2004; 114: e634-e641.
40. Pandina GJ, Bossie CA, Yousef E, et al. Risperidone improves behavioral symptoms in children with autism in a randomized, double-blind, placebo-controlled trial. J Autism Dev Disord 2007; 37: 367-373.
41. Kent JM, Kushner S, Ning X, Karcher K, Ness S, Aman M, Singh J, Hough D. Risperidone dosing in children and adolescents with autistic disorder: a double-blind, placebo-controlled study. J Autism Dev Disord 2013; 43: 1773-1183.
42. Levine SZ, Kodesh A, Goldberg Y, Reichenberg A, Furukawa TA, Kolevzon A, Leucht S. Initial severity and efficacy of risperidone in autism: Results from the RUPP trial. Eur Psychiatry 2016; 32: 16-20.
43. Research Units on Pediatric Psychopharmacology Autism Network: Risperidone treatment of autism disorder: longer-term benefits and blinded discontinuation after 6 months. American Journal of Psychiatry 2005; 162: 1361-1369.
44. Kent JM, Hough D, Singh J, Karcher K, Pandina G. An open-label extension study of the safety and efficacy of risperidone in children and adolescents with autistic disorder. J Child Adolesc Psychopharmacol 2013; 23: 676-686.
45. Aman M, Rettigiani M, Nagaraja HN, Hollway JA, McCracken J, McDougle CJ, et al. Tolerability, Safety, and Benefits of Risperidone in Children and Adolescents with Autism: 21-Month Follow-Up After 8-Week Placebo-Controlled Trial. J Child Adolesc Psychopharmacol 2015; 25: 482-493.
46. Roke Y, van Harten PN, Buitelaar JK, Tenback DE, Quekel LG, de Rijke YB, Boot AM. Bone mineral density in male adolescents with autism spectrum disorders and disruptive behavior disorder with or without antipsychotic treatment. Eur J Endocrinol 2012; 167: 855-863.
47. Roke Y, Buitelaar JK, Boot AM, Tenback D, van Harten PN. Risk of hyperprolactinemia and sexual side effects in males 10-20 years old diagnosed with autism spectrum disorders or disruptive behavior disorder and treated with risperidone. J Child Adolesc Psychopharmacol 2012; 22: 432-439.
48. Srisawasdi P, Vanwong N, Hongkaew Y, Puangpetch A, Vanavananan S, Intachat B, et al. Impact of risperidone on leptin and insulin in children and adolescents with autistic spectrum disorders. Clin Biochem 2017; 50: 678-685.
49. Akhondzadeh S, Fallahi J, Mohammadi MR, Imani R, Mohammadi M, Salehi B, et al. Double-blind placebo-controlled trial of pentoxifylline added to risperidone: effects on aberrant behavior in children with autism. Prog Neuropsychopharmacol Biol Psychiatry 2010; 34: 32-36.
50. Nikoo M, Radnia H, Farokhnia M, Mohammadi MR, Akhondzadeh S. N-acetylcysteine as an adjunctive therapy to risperidone for treatment of irritability in children with autistic disorder: a double-blind, placebo-controlled clinical efficacy analysis. Clin Neuropsychopharmacol 2015; 38: 11-17.
51. Ghanizadeh A, Moghimi-Sarani E. A randomized double blind placebo controlled clinical trial of N-Acetylcysteine added to risperidone for treating autistic disorders. BMC Psychiatry 2013; 13: 196.
52. Nikvarz N, Alaghband-Rad J, Tehrani-Doost M, Alimadadi A, Ghaeli P. Comparing Efficacy and Side Effects of Memantine vs. Risperidone in the Treatment of Autistic Disorder. Pharmacopsychiatry 2017; 50: 19-25.
53. Ghaeliha A, Rasa SM, Nikoo M, Farokhnia M, Mohammadi MR, Akhondzadeh S. A pilot double-blind placebo-controlled trial of pioglitazone as adjunctive treatment to risperidone: Effects on aberrant behavior in children with autism. Psychiatry Res 2015; 229: 181-187.
54. Asadabadi M, Mohammadi MR, Ghani dezadeh A, Modabbernia A, Ashrafi M, Hassan zadeh E, Forghani S, Akhondzadeh S. Celecoxib as adjunctive treatment to risperidone in children with autistic disorder: a randomized, double-blind, placebo-controlled trial. Psychopharmacology (Berl) 2013; 225: 51-59.
55. Nikvarz N, Alaghband-Rad J, Tehrani-Doost M, Alimadadi A, Ghaeli P. Comparing Efficacy and Side Effects of Memantine vs. Risperidone in the Treatment of Autistic Disorder. Pharmacopsychiatry 2017; 50: 19-25.
56. Chevreuil C, Polard E, Lemonnier E, Guillemot P, Bentué-Ferrer D; Groupe d'Etude Interdisciplinaire de Bretagne "Psychotropes chez l'Enfant et l'Adolescent". [Aripiprazole use in children and adolescent psychiatric patients]. Therapie 2011; 66: 123-130.
57. Bernagie C, Danckaerts M, Wampers M, De Hert M. Aripiprazole and Acute Extrapyramidal Symptoms in Children and Adolescents: A Meta-Analysis. CNS Drugs 2016; 30: 807-818.
58. Bristol-Myers Squibb. Abilify (aripiprazole) tablets: US prescribing information. Available at: http://www.abilify.com/pds/pi.aspx (Accessed: 10. 01.2011).
59. Marcus RN, Owen R, Kamen L, Manos G, McQuade RD, Carson WH, Aman MG. A placebo-controlled, fixed-dose study of aripiprazole in children and adolescents with irritability associated with autistic disorder. J Am Acad Child Adolesc Psychiatry 2009; 48: 1110-1119.
60. Owen R, Sikich L, Marcus RN, Corey-Lisle P, Manos G, McQuade RD, Carson WH, Findling RL. Aripiprazole in the treatment of irritability in children and adolescents with autistic disorder. Pediatrics 2009; 124: 1533-1540.
61. Robb AS, Andersson C, Belloccio EE, Manos G, Rojas-Fernandez C, Mathew S, et al. Safety and tolerability of aripiprazole in the treatment of irritability associated with autistic disorder in pediatric subjects (6-17 years old): results from a pooled analysis of 2 studies. Prim Care Companion CNS Disord 2011; 13. pii: PCC.10m01008.
62. Marcus RN, Owen R, Manos G, Mankoski R, Kamen L, McQuade RD, et al. Aripiprazole in the treatment of irritability in pediatric patients (aged 6-17 years) with autistic disorder: results from a 52-week, open-label study. J Child Adolesc Psychopharmacol 2011; 21: 229-236.
63. Mankoski R, Stockton G, Manos G, Marler S, McQuade R, Forbes RA, Marcus R. Aripiprazole treatment of irritability associated with autistic disorder and the relationship between prior antipsychotic exposure, adverse events, and weight change. J Child Adolesc Psychopharmacol 2013; 23: 572-576.
64. Ghani dezadeh A, Sahraei dezadeh A, Berk M. A head-to-head comparison of aripiprazole and risperidone for safety and treating autistic disorders, a randomized double blind clinical trial. Child Psychiatry Hum Dev 2014; 45: 185-192.
65. Cohen D, Raffin M, Canitano R, Bodeau N, Bonnot O, Perisse D, Consoli A, Laurent C. Risperidone or aripiprazole in children and adolescents with autism and/or intellectual disability: A Bayesian meta-analysis of efficacy and secondary effects. Research in Autism Spectrum Disorder 2013; 7: 167-175.
66. Ishitobi M, Hiratani M, Kosaka H, Takahashi T, Mizuno T, Asano M, et al. Switching to aripiprazole in subjects with pervasive developmental disorders showing tolerability issues with risperidone. Prog Neuropsychopharmacol Biol Psychiatry 2012; 37: 128-131.
67. Fung LK, Mahajan R, Nozzolillo A, Bernal P, Krasner A, Jo B, et al. Pharmacologic Treatment of Severe Irritability and Problem Behaviors in Autism: A Systematic Review and Meta-analysis. Pediatrics 2016;137 (Suppl 2): S124-S135.
68. Almandil NB, Liu Y, Murray ML, Besag FM, Aitchison KJ, Wong JC. Weight gain and other metabolic adverse effects associated with atypical antipsychotic treatment of children and adolescents: a systematic review and meta-analysis. Paediatr Drugs 2013; 15: 139-150.
69. Sochocky N, Milin R. Second generation antipsychotics in Asperger's Disorder and high functioning autism: a systematic review of the literature and effectiveness of meta-analysis. Curr Clin Pharmacol 2013; 8: 370-379.