The effect of a fireworks event on the amount and elemental concentration of deposited dust collected in the city of Debrecen, Hungary

Edina Baranyai · Edina Simon · Mihály Braun · Béla Tóthmérész · József Posta · István Fábián

Received: 30 March 2014 / Accepted: 19 August 2014 / Published online: 27 August 2014
© The Author(s) 2014. This article is published with open access at Springerlink.com

Abstract Many social celebrations in urban areas are followed by fireworks show. The organic and inorganic pollutants emitted during detonations are expected to affect the ambient air quality of these celebration sites. The environmental aspects of fireworks events are usually investigated by analyzing the concentration and composition of airborne particulate matter, while there is limited information regarding the effect of fireworks on the elemental concentration of deposited dust.

In this study, foliage dust samples were collected in the city of Debrecen (Hungary) before and after the fireworks show, organized on the 20th of August for the celebration of a historical event. Leaf samples (Tilia tomentosa) were collected around the location of the area of festivities. The sampling sites were further divided into five areas: city center (center), Southeast (SE), Southwest (SW), Northeast (NE), and Northwest (NW). We found that the amount of deposited dust particles increased significantly after the fireworks show compared to the background; we also found significant differences in the amount of dust deposition between the different locations of the city. A statistically higher level of Ca, Mg, and Sr was detected in samples collected after the display compared to those collected during the previous days, while the concentration of other studied elements were not statistically different from the background level. Our study confirmed previous findings that the relatively high altitude of detonations allows chemicals to disperse in the fine and ultrafine aerosol fractions; thus, the emitted pollutants by fireworks shows do not increase the level of elements as markedly in deposited dust as in the inhalable fraction.

Keywords Fireworks show · Urban dust pollution · Elemental analysis · ICP-OES · MP-AES

Introduction

Explosive pyrotechnic devices are widely used for celebrating specific events causing an unusual environmental effect on the ambient air quality (Vecchi et al. 2008). They are most frequently used in the already polluted urban areas (Kulshrestha et al. 2004), emitting additional amount of metal particles, gases, and various organic compounds which can cause a temporary decrease in air quality (Ravindra et al. 2003). The elemental concentrations of the aerosol particles that reach the atmosphere during fireworks events were studied using different analytical methods (Dutcher et al. 1999; Liu et al. 1997; Drewnick et al. 2005). It was demonstrated that the particulate matter generated by these shows contain Sr, K, V, Ti, Ba, Cu, Pb, Mg, Al, S, Mn, and Zn as major components (Perry 1999). It was found by Kulshrestha et al. (2004) that the concentration of Ba, K, Al, and Sr significantly increased during the fireworks of Diwali festival (India) compared to the background values registered on the previous days. This finding
was confirmed by Sarkar et al. (2010). Most of these metallic salts serve as color-generating components in pyrotechnic devices and have adverse health effects if inhaled (Murty 2000; Hirai et al. 2000). Camilleri and Vella (2010) showed that most of the metals contributed by fireworks are in the inhalable dust—finding strong correlations between airborne particulate matter (PM10) and Al, Ba, Cu, Sr, and Sb concentrations in airborne dust—hence leading to a strong concern of health risks.

The environmental aspects of fireworks shows are usually studied by analyzing the concentration and composition of airborne particulate matter (PM10 and PM2.5) collected with conventional sampling methods (Guttikunda and Kopakka 2014; Rogula-Kozlowska et al. 2014; Wang et al. 2013; Tsai et al. 2012; Shen et al. 2009). There is no information in the literature on the deposited dust in urban areas from fireworks; in most of the studies, the fine and/or inhalable fractions were investigated due to health concerns. However, deposited dust may contain toxic substances affecting plants, the quality of soil, and groundwater especially in urban and rural areas (Pelig-Ba et al. 2001; Goossens 2007).

Trees reflect the cumulative effects of environmental pollution from both the soil and the atmosphere (Madejón et al. 2004). Therefore, they have been used as bioindicators in several studies (Celik et al. 2005; Baycu et al. 2006). Mostly plant tissues are analyzed to monitor the accumulation of trace elements confirming their availability in the soil (Baker et al. 2000; Markert et al. 2003) and atmosphere since they can capture and uptake trace elements as well as concentrate them, making small amounts detectable. However, trees can also be used as dust traps in environmental assessments based on urban dust analysis (Margitai and Braun 2005) since deposited contaminants can be trapped by the surface of leaves thus representing the environmental load. Although Simon et al. (2011) concluded that the elemental concentration of foliage dust did not differ remarkably between species, the amount of captured deposited dust highly depends on the surface of leaves, stomata size, and density of the selected species. Accordingly, these factors affect their possible use in air quality monitoring investigations (Abbruzzese et al. 2009).

Since leaf sampling is widely used in pollution studies due to the inherent variability in crowns (Luyssaert et al. 2002), our aim was to investigate the applicability of this dust sampling for the analysis of deposited dust load and trace element emission resulted by a fireworks event.

Materials and methods

Sampling procedure

Leaf samples were collected in the city of Debrecen the days before and after the fireworks show on 20th of August (2011), which commemorated a specific historical event in Hungary. Debrecen is the second largest city in Hungary with nearly 225,000 inhabitants. It is the regional center of the Northern Great Plain region and situated 220 km east of the capital, Budapest.

The fireworks event was organized simultaneously in two locations in the city center. We divided the sampling sites into five subareas as follows: city center (center), Southeast (SE), Southwest (SW), Northeast (NE) and Northwest (NW) (Fig. 1). Silver linden (Tilia tomentosa) leaves were chosen since the morphology, canopy structure, and the dust preserving epicuticular wax on the leaf surface make linden trees ideal for biomonitoring studies (Braun et al. 2007). These trees are widespread in and around the city of Debrecen and can be easily distinguished from other species. We collected the control samples 2 days before the festivities (18th and 19th of August, 2011) from the individual selected species; the trees were marked and their coordinates were registered. Sample collection from the same 41 individuals was repeated 2 days after the fireworks show (21st and 22nd of August, 2011). The sampling procedure is based on literature values (Moreno et al. 2010). The pyrotechnic event was performed during stable meteorological conditions, and the weather was also dry in the time of the two sampling periods. The prevailing wind of Debrecen is directed NW–SE (Lóki et al. 1993). The total leaf surface of each sampled tree represented 10–12 dm². Samples were collected in paper bags, and they were stored at +4 °C for analysis.

Sample preparation

The surface area of leaves was determined by a flat scanner. The foliar dust particles were washed down from leaves by deionized water obtained from a Millipore Synergy Ultrapure Water System. Leaves collected from the same individuals were placed into 500-ml plastic container and 250 ml of deionized water was added; then, samples were shaken in an ultrasonic bath (Elma Transsonic, 460/H) for 10 min. The dust containing suspension was filtered through a 150-μm sieve, and the procedure was repeated with 50 ml deionized water. This process produced 300 ml dust containing suspension which was transferred into a microwave digestion system (MLS 1200 mega) where its volume was reduced to 20–30 ml. Then, the suspension sample was transferred into 50-ml glass beaker without loss, and the rest of the water was evaporated at 105 °C in a drying cabinet. The beakers were reweighted to determine the dry weight of dust on an analytical balance (Precisa 240A). Samples were prepared prior to analysis in the same vessels by acid digestion using the mixture of 5 ml 65 % (m/m) nitric acid (reagent grade, Merck) and 2 ml 30 % (m/m) hydrogen-peroxide (reagent grade, Scharlau) on an electric hotplate at 80 °C for 4 h. Only those particles were chemically decomposed, which are not
vaporized at temperatures up to 105 °C. Digested samples were diluted up to 10 ml using 1 % (m/m) nitric acid (Simon et al. 2011).

Elemental analysis of dust samples

The determination of Al, As, Ba, B, Ca, Cu, Fe, K, Mg, Mn, Na, P, S, and Zn was carried out by inductively coupled plasma optical emission spectrometry (ICP-OES, IRIS Intrepid II XSP), while the concentration of Li and Sr was determined by microwave plasma atomic emission spectrometry (MP-AES 4100, Agilent Technologies). The certificated material used was ERM-CZ120. The recovery for all elements was under 5 %.

Six-point calibration solution series were diluted from multi-element calibration stock solution of 1,000 mg l\(^{-1}\) (Merck ICP multi-element standard solution IV).

Statistical analysis

Data were log transformed prior to analyses. The distribution of data was tested with Shapiro–Wilk test. Principal component analysis (PCA) was used to display the effect of sampling period (before and after the fireworks event) as well as the sampling sites (center, SE, SW, NE, NW) on the concentration of the selected elements in the foliage dust. The homogeneity of variances was tested by Levene’s test. The effect of sampling locations on the amount of deposited dust on the surface of leaves and the elemental concentration of deposited dust was studied by general linear model (GLM). Tukey’s multiple comparison test was used to explore the significant differences. The \(t \) test was used to compare the amount and elemental concentration of deposited dust before and after the fireworks show.

Results

Amount of dust deposited on the surface of leaves

According to the \(t \) test, there was a significant difference (\(t_{80} = -2.178; \ p = 0.032 \)) between the amount of dust deposited on the surface of the collected leaf samples before and after the fireworks show (Fig. 2). The foliage dust significantly increased based on the GLM results after the fireworks event in all studied areas except the Southwestern (SW) region of
the city, where the amount of dust was significantly lower after the event. Sampling period and sampling area had a significant effect (period $F=5.274, p=0.025$; area $F=5.665, p=0.001$) on the amount of foliage dust while interaction effect was not significant ($F=1.939; p=0.113$). The highest dust enlargement after the fireworks show occurred in the Northwestern region (NW) of the city. Considering the amount of deposited dust, the Southwestern area differed significantly from the Southeastern ($p<0.05$), Northeastern ($p<0.05$), and Northwestern ($p<0.001$) areas of the city both before and after the fireworks show, but did not differ significantly from the center.

Elemental concentration of foliage dust

The concentration of the measured elements in the foliage dust in terms of sampling time and area is indicated in Table 1. The GLM analysis showed significant differences between the sampling period ($F=4.794, p<0.001$) and among sampling area ($F=2.636, p=0.002$), based on the elemental concentration of deposited dust, while their interaction effect was not significant ($F=1.279; p=0.112$).

Elemental concentration of foliage dust before the fireworks show

Significant differences occurred in the elemental concentration of foliage dust considering the sampling areas before the fireworks event. The concentration of Ca was the lowest ($p<0.001$) in the Northeastern area of the city, while the concentration of Ba was the highest ($p<0.001$) in the Northwestern area compared to the other studied locations. The centrum area differed significantly from the Southeastern area for Al, K, and Na ($p<0.05$) and from the Northeastern area for Ca ($p<0.05$) and Mg ($p<0.001$). The highest Mg concentration was measured in the Northeastern area, showing a significant difference compared to the others. The Fe concentration was significantly lower ($p<0.05$) in the Southwestern and Northeastern areas of the city compared to the other studied locations. The Southeastern area showed a statistical difference in the Zn ($p<0.001$) and S ($p<0.05$) concentrations compared to the Northeastern area.

Elemental concentration of foliage dust after the fireworks show

According to the t test, the level of Ca ($t_{80}=-3.701, p<0.001$), Mg ($t_{80}=-2.104, p=0.039$), and Sr ($t_{80}=-2.292, p=0.025$) increased significantly in foliage dust after the fireworks event, while the concentration of As ($t_{80}=4.872, p<0.001$) statistically decreased.

The GLM results proved that the concentration of Ca, Mg, and Sr statistically increased in the centrum, Southwestern, Northeastern, and Northwestern sampling areas, respectively ($p<0.005$). A higher level of Al, Ba, B, Cu, Mn, Li, Na, and P was also observed in the centrum, Southwestern, Northeastern, and Northwestern sampling areas, although the difference was not significant. None of the studied elements showed significant concentration increase in the Southeastern sampling area after the fireworks event.

According to PCA there is a clear separation of elements before and after the fireworks show as well as for the studied areas except for the center. The first component (PC1) contributed 32.9% while the second (PC2) contributed 26.1% to the total variance. As indicated in Fig. 3, positive correlation was found for Zn, Ba, and Al with PC1, while K, B, Li, and Sr correlated negatively with the same axis. Positive correlation occurred for Cu, Fe, Mn, Mg, and Ca, while negative correlation was found for Sr and As with PC2.

Discussion

In the current study, the effect of a fireworks event is investigated by measuring the amount and elemental concentration of foliage dust deposited on the surface of silver linden tree leaves in the city of Debrecen. Earlier assessments of the effects of compounds emitted during fireworks events are quite controversial. It was stated by Perry (1999) that no significant health concern is involved in pyrotechnic displays. There are studies in the literature which challenge this statement and prove the negative effect of fireworks on the ambient air quality (Ravindra et al. 2003; Camilleri and Vella 2010). These shows may cause adverse health and environmental problems. Sarkar et al. (2010) investigated the amount of fine, respirable particles (PM10) during a major fireworks festival in India and concluded that the level of 24 h PM10 was extremely high. Moreno et al. (2010) analyzed the background level of ultrafine particles during a fireworks pollution episode in Girona (Spain) and observed a highly increased level of 24 h PM2.5. However, no information is found in the literature about the relation of fireworks displays and the amount of deposited dust. In our study, the overall amount of foliage dust was significantly higher after the fireworks compared to the background amount collected previously. Considering the sampling areas, the amount of deposited dust statistically increased after the event in all studied areas except the Southwestern part of the city. This phenomenon may be the consequence of the particular climate and relief of Debrecen. The prevailing wind of Debrecen is directed NW–SE, and in the Northwestern part of the city, a woodland is located protecting that part from strong wind blows (Lóki et al. 1993). On the contrary, the Southwestern region of the city is an open field district with the lack of continuous tree borders and with wind
Table 1 Concentration of the measured elements given in micrograms per kilogram (mean±SD) in foliage dust of sampling sites before and after the fireworks show.

Elements (mg kg⁻¹)	Center	SE	SW	NE	NW					
	Before	After								
Al	4664±1291	5023±703	6753±1649	6018±1294	5250±1851	5941±805	4890±905	5700±1211	5955±1112	6244±1463
As	41±181	5±2	66±16	10±7	40±24	8±2	16±7	10±8	18±9	19±3
Ba	124±53	126±53	133±41	114±37	77±16	89±13	92±15	102±12	234±164	262±225
B	650±897	924±1822	819±793	752±805	510±423	750±736	963±516	1251±744	290±305	420±199
Ca	23870±5908	27594±6668	27808±6694	25310±6683	24874±5282	34357±5643	31179±9899	40483±4968	23419±7123	37417±6638
Cu	134±97	151±46	174±125	126±99	115±73	100±54	88±12	88±41	168±56	159±74
Fe	11024±2478	12561±2966	11281±2275	11316±2957	7543±1923	9217±1877	7605±1524	9823±2586	12101±4220	11203±4348
K	37334±8892	34704±12778	31408±12185	22159±13539	36482±11436	40638±16038	32215±17175	29003±18054	24581±9681	26908±11944
Li	14±9	13±12	20±8	18±8	19±16	28±33	61±106	64±116	14.2±2.5	15±7
Mg	5236±1433	5870±1694	6604±1626	5734±1756	6140±1143	7124±1400	9206±5898	9845±5323	4634±783	7692±727
Mn	333±80	364±73	458±131	426±99	375±126	470±133	404±26	497±68	421±99	404±91
Na	5906±4439	5535±5021	20304±22431	17144±18594	4654±4159	6583±8080	3504±1625	3718±1573	7243±1473	8230±8948
P	17657±4033	15805±3853	22105±5117	15079±3186	17382±9690	19507±4454	1443±2212	16970±4856	1693±3301	21469±6313
S	11809±3687	10616±3812	17450±3567	9141±2060	11815±5913	10366±2690	9089±1081	9827±1372	10959±3756	14265±2588
Sr	156±50	201±63	225±57	194±33	202±72	224±63	298±155	325±167	139±46	213±52
Zn	390±110	334±59	646±315	346±159	327±189	288±49	241±70	277±64	430±138	425±151

Center city center, *SE* Southeast, *SW* Southwest, *NE* Northeast, *NW* Northwest
Derived aerosol particles containing inorganic pollutants are shown. Therefore, we further conclude that pyrotechnically metal concentrations in deposited dust after the fireworks concentrations; other differences were not detected in toxic elements since only Ca, Mg, and Sr were in significantly higher concentrations. Other findings suggest that the relatively high altitude of detonations allow the chemicals to disperse in the fine and ultrafine fractions. Thus, emitted pollutants by firework displays did not elevate the concentration levels of elements in deposited dust since the background concentration of these inorganic components in heavy dust is already high in polluted cities like Debrecen. Pyrotechnic detonations therefore cause environmental risk by the elevated amount of dust deposition but do not contribute significantly to the background concentration of toxic metals in foliage dust.

Conclusions

The fireworks show in Debrecen resulted in a higher amount of dust particles deposited on the surface of tree leaves. Our findings suggest that the relatively high altitude of detonations allow the chemicals to disperse in the fine and ultrafine fractions. Thus, emitted pollutants by firework displays did not elevate the concentration levels of elements in deposited dust since the background concentration of these inorganic components in heavy dust is already high in polluted cities like Debrecen. Pyrotechnic detonations therefore cause environmental risk by the elevated amount of dust deposition but do not contribute significantly to the background concentration of toxic metals in foliage dust.
Acknowledgments The research was supported by the EU and co-financed by the European Social Fund under the project ENVIKUT (TÁMOP-4.2.2. A-11/1/KONV-2012-0043). E. Simon was supported by the European Union and the State of Hungary, co-financed by the European Social Fund in the framework of TÁMOP 4.2.4. A/2-11-1-2012-0001 ‘National Excellence Program’. We thank the Nova-Lab Ltd. (Hungary) for providing the MP-AES 4100. The technical support of Milán Fehér and Annamária Szalóki are also acknowledged.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

Abbuzzese G, Berigiontolo I, Muleo R, Piazzai M, Sabatti M, Mugnozza GS, Kuzminsky E (2009) Leaf morphological plasticity and stomatal conductance in three Populus alba L. genotypes subjected to salt stress. Environ Exp Bot 66:381–388

Baker AJM, McGrath SP, Reeves RD, Smith JAC (2000) Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal polluted-soils. Phytoremediation of contaminated soil and water. Lewis Publishers, London, pp 85–107

Baycu G, Tolunay D, Özdén H, Günebakan S (2006) Ecophysiological and seasonal variations in Cd, Pb, Zn, and Ni concentrations in the leaves of urban deciduous trees in Istanbul. Environ Pollut 143:545–554

Beddows DCS, Donovan RJ, Harrison RM, Heal MR, Kinnersley RP, Brahm M, Margitia Z, Tóth A, Leermakers M (2007) Environmental monitoring using linden tree leaves as urban pollution assessment. Environ Monit Assess 119:124–133

Braun M, Magritia Z, Tóth A, Leermakers M (2007) Environmental monitoring using linden tree leaves as natural traps of atmospheric deposition: a pilot study in Transylvania, Romania. Agd Landsce Environ 1:24–35

Camilleri R, Vella AJ (2010) Effect of fireworks on ambient air quality in Malta. Atmos Environ 44:4521–4527

Celik A, Kartal AA, Akdogan A, Kaska Y (2005) Determining the heavy metal pollution in Denizli (Turkey) by using Robínio pseudo-acacia. L. Environ Int 31:105–112

Crespo J, Yuhero E, Nicolás JF, Lucarelli F, Nava S, Chiari M, Calzolai G (2012) High-time resolution and size-segregated elemental composition in high-intensity pyrotechnic exposures. J Hazard Mater 241–242:82–91

Drewnick F, Hings SS, Curtius J, Eerdekens G, Williams J (2005) Measurement of fine particulate and gas-phase species during the New Year’s fireworks 2005 in Mainz, Germany. Atmos Environ 40:4316–4327

Dutcher DD, Perry KD, Cahill TA, Copeland SA (1999) Effects of indoor pyrotechnic displays on the air quality in the Houston astrodome. J Air Waste Manag Assoc 49:156–160

Goossens D (2007) Bias in grain size distribution of deposited atmospheric dust due to the collection of particles in sediment catchers. Catena 70:16–24

Guttikunda SK, Kopalka RV (2014) Source emissions and health impacts of urban air pollution in Hyderabad, India. Air Qual Atmos Health 7:195–207

Hirai K, Yamazaki Y, Okada K, Furuta S, Kubo K (2000) Acute eosinophilic pneumonia associated with smoke from fireworks. Intern Med (Japan) 39:401–403

Kulshrestha UC, Nageswara Rao T, Azhagavel S, Kulshrestha MJ (2004) Emissions and accumulation of metals in the atmosphere due to crackers and sparks during Diwali festival in India. Atmos Environ 38:4421–4425

Liu DY, Rutherford D, Kinsey M, Prather KA (1997) Real-time monitoring of pyrotechnically derived aerosol particles in the troposphere. Anal Chem 69:1808–1814

Lóki J, Hertelendi E, Borsy Z (1993) New dating of blown sand movement in the Nyírség. Acta Geogr Debr 67–76

Luyssaert S, Raitio H, Vervaekte P, Mertens J, Lut N (2002) Sampling procedure for the foliar analysis of deciduous trees. J Environ Monit 4:358–64

Madejon P, Maranón T, Murillo JM, Robinson B (2004) White popular (Populus alba) as a biomonitor of trace elements in contaminated riparian forest. Environ Pollut 132:145–155

Margitai Z, Braun M (2005) Nyolc európai város légszennyezettségének vizsgálata falevelekkről gyűjtött por elemosszetételének diszkriminancia analízisével. (Air quality assessment via discriminant analysis of elemental composition data dust collected from tree leaves, in Hungarian). Magyar Kémiai Folyóirat 111:38–41

Markert BA, Breure AM, Zecheimster HG (2003) Definitions, strategies and principles for bioindication/biomonitoring of the environment. Biointdic Biomonitor Elsevier Sci Amst 3–39

Mingorange MD, Oliva SR (2006) Heavy metals content in N. oleaner. leaves as urban pollution assessment. Environ Monit Assess 119:57–68

Moreno T, Querol X, Alastuey A, Amato F, Pey J, Pandolfi M, Kuenzli N, Bousso L, Rivera M, Gibbons W (2010) Effect of fireworks events on urban background trace metal aerosol concentrations: is the cocktail worth the show? J Hazard Mater 183:945–949

Murry OP (2000) Diwali toxicity. J Forensic Med Toxicol 17:23–26

Pelig-Ba KB, Parker A, Price M (2001) Elemental contamination of rainwater by airborne dust in Tamale township area of the northern region of Ghana. Environ Geochem Health 23:329–342

Perry KD (1999) Effects of outdoor pyrotechnic displays on the regional air quality of Western Washington. State J Air Waste Manag Assoc 49:146–155

Ravindra K, Mor S, Kaushik CP (2003) Short-term variation in air quality associated with firework events: a case study. J Environ Monit 5:260–264

Rogulka-Kozłowska W, Klejnionski W, Rogulka-Kopiec P, Ośrodka L, Krajny E, Blaszczak B, Mathews B (2014) Spatial and seasonal variability of the mass concentration and chemical composition of PM2.5 in Poland. Air Qual Atmos Health 7:41–58

Sarkar S, Khillare PS, Jyethi DS, Hasan A, Parween M (2010) Chemical speciation of respirable suspended particulate matter during a major firework festival in India. J Hazard Mater 184:321–330

Shen Z, Cao J, Arimoto R, Han Z, Zhang R, Han Y, Liu S, Okuda T, Nakao S, Tanaka S (2009) Ionic composition of TSP and PM2.5 during dust storms and air pollution episodes at Xi’an, China. Atmos Environ 43:2911–2918

Simon E, Braun M, Vidic A, Boggyd D, Fábián I, Tóthmérész B (2011) Air pollution assessment based on elemental concentration of leaves tissue and foliage dust along an urbanization gradient in Vienna. Environ Pollut 159:1229–1333

Tsai HH, Chien LH, Yuan CS, Lin YC, Jen YH, Ie IR (2012) Influences of fireworks on chemical characteristics of atmospheric fine and coarse particles during Taiwan’s lantern festival. Atmos Environ 62:256–264

Vecchi R, Bernardoni A, Cricchio D, D’Alessandro A, Fermo P, Lucarelli F, Nava S, Pazzaglia A, Valli G (2008) The impact of fireworks on airborne particles. Atmos Environ 42:1121–1132

Wang Y, Zhuang G, Xu C, An Z (2007) The air pollution caused by the pyrotechnic displays on the air quality in the Houston astrodome. J Air Waste Manag Assoc 57:58–68

Wang Y, Zhuang G, Xu C, An Z (2007) The air pollution caused by the pyrotechnic displays on the air quality in the Houston astrodome. J Air Waste Manag Assoc 57:58–68

Wen CH, Lü H, Li CY (2009) Air pollution caused by firework events during the New Year in Chengdu, China. Particuology 11(2013):70–77