Status of PHOKHARA

A. GRZELIŃSKA, IFJ PAN, Kraków, TAU’08

in collaboration with

H. CZYŻ, J. H. KÜHN, and A. WAPIENIK

The radiative return

4π revisited

▶ experimental situation: τ vs. e^+e^- data
▶ improved model
▶ model predictions

Narrow Resonances J/ψ and $\psi(2S)$

Conclusions
THE RADIATIVE RETURN METHOD

\[d\sigma(e^+e^- \rightarrow \text{hadrons} + \gamma(ISR)) = \]

\[H(Q^2, \theta\gamma) \, d\sigma(e^+e^- \rightarrow \text{hadrons})(s = Q^2) \]

- measurement of \(R(s) \) over the full range of energies, from threshold up to \(\sqrt{s} \)
- large luminosities of factories compensate \(\alpha/\pi \) from photon radiation
- radiative corrections essential (NLO, ...)

High precision measurement of the hadronic cross-section at meson-factories

A. Grzelińska, IFJ PAN, Kraków

Status of PHOKHARA

TAU’08 2
From EVA to PHOKHARA

EVA: $e^+e^- \to \pi^+\pi^-\gamma$
- tagged photon ($\theta_\gamma > \theta_{cut}$)
- ISR at LO + Structure Function
- FSR: point-like pions

 [Binner et al.]

PHOKHARA 6.0: $\pi^+\pi^-, \mu^+\mu^-, 4\pi, \bar{N}N, 3\pi, KK, \Lambda(\to \cdots)\bar{\Lambda}(\to \cdots)$
- ISR at NLO: virtual corrections to one photon events and two photon emission at tree level

 [Czyż, Kühn, 2000]

- FSR at NLO: $\pi^+\pi^-, \mu^+\mu^-, K^+K^-$
- tagged or untagged photons
- Modular structure

http://ific.uv.es/~rodrigo/phokhara/

Henryk Czyż, A.G., J. H. Kühn, E. Nowak-Kubat, G. Rodrigo, A. Wapienik

A. Grzelińska, IFJ PAN, Kraków

Status of PHOKHARA
There are altogether four different channels accessible in $e^+ e^-$ annihilation and τ decays into four pions

\[e^+ e^- \rightarrow 2\pi^+ 2\pi^- \]
\[e^+ e^- \rightarrow 2\pi^0 \pi^+ \pi^- \]
\[\tau^- \rightarrow \nu 2\pi^- \pi^+ \pi^0 \] sufficient to determine all four amplitudes
\[\tau^- \rightarrow \nu 3\pi^0 \pi^- \]
Isospin relations: 4π

\[
\langle \pi^+ \pi^- \pi_1^0 \pi_2^0 | J_\mu^3 | 0 \rangle = J_\mu (p_1, p_2, p^+, p^-)
\]

\[
\langle \pi_1^+ \pi_2^+ \pi_1^- \pi_2^- | J_\mu^3 | 0 \rangle = J_\mu (p_2^+, p_2^-, p_1^+, p_1^-) + J_\mu (p_1^+, p_2^-, p_2^+, p_1^-) + J_\mu (p_2^+, p_1^-, p_1^+, p_2^-) + J_\mu (p_1^+, p_1^-, p_2^+, p_2^-)
\]

\[
\langle \pi^- \pi_1^0 \pi_2^0 \pi_3^0 | J_\mu^- | 0 \rangle = J_\mu (p_2, p_3, p^-, p_1) + J_\mu (p_1, p_3, p^-, p_2) + J_\mu (p_1, p_2, p^-, p_3)
\]

\[
\langle \pi_1^- \pi_2^- \pi^+ \pi^0 | J_\mu^- | 0 \rangle = J_\mu (p^+, p_2, p_1, p^0) + J_\mu (p^+, p_1, p_2, p^0)
\]

J. H. Kühn (1999)

A. Grzelińska, IFJ PAN, Kraków

Status of PHOKHARA

TAU’08 5
Isospin relations: \(4\pi\)

\[
\int J_{\mu}^\text{em}(J_{\nu}^\text{em})^*d\Phi_n(Q; q_1, \ldots, q_n) = \frac{(Q_\mu Q_\nu - g_{\mu\nu}Q^2)}{6\pi} R(Q^2)
\]

\[
R(Q^2) = \sigma(e^+e^- \rightarrow \text{hadrons})(Q^2)/\sigma_{\text{point}}
\]

\[
\int J_{\mu}^- J_{\nu}^-^*d\Phi_n(Q; q_1, \ldots, q_n) = \frac{(Q_\mu Q_\nu - g_{\mu\nu}Q^2)}{3\pi} R^\tau(Q^2)
\]

\[
\frac{d\Gamma_{\tau\rightarrow\nu+\text{hadrons}}}{dQ^2} = 2 \Gamma_e \frac{|V_{ud}|^2 S_{\text{EW}}}{m_\tau^2} \left(1 - \frac{Q^2}{m_\tau^2}\right)^2 \left(1 + 2\frac{Q^2}{m_\tau^2}\right) R^\tau(Q^2)
\]
Isospin relations: 4π

The relations between τ decay rates and e^+e^- annihilation cross sections are:

$$R^\tau (- 0 0 0) = \frac{1}{2} R (+ + --)$$

$$R^\tau (- - + 0) = \frac{1}{2} [R (+ + --) + R (+ - 0 0)]$$
Isospin relations: 4π; exp. situation

from the experimental side e^+e^- cross section has been measured by:

$$e^+e^- \rightarrow 2\pi^+2\pi^-: \text{ BaBar, CMD2, SND}$$

$$e^+e^- \rightarrow 2\pi^0\pi^+\pi^-: \text{ BaBar(preliminary), CMD2, SND}$$

the τ data are from:

$$\tau^- \rightarrow \nu 3\pi^0\pi^-: \text{ ALEPH}$$

$$\tau^- \rightarrow \nu 2\pi^-\pi^+\pi^0: \text{ ALEPH, CLEO}$$
Isospin relations: 4π; exp. situation

$\tau^- \to \pi^- 3\pi^0 \nu_\tau$

v - the τ spectral function (normalization chosen by ALEPH)

A. Grzelińska, IFJ PAN, Kraków

Status of PHOKHARA

TAU’08 9
Isospin relations: 4π; exp. situation

$\tau^- \to 2\pi^-\pi^+\pi^0\nu_\tau$

we included effects from the pion mass difference in the phase space

A. Grzelińska, IFJ PAN, Kraków

Status of PHOKHARA

TAU’08 10
The model

We updated the old 4π model from H. Czyż and J.H. Kühn Eur. Phys. J. C 18, 497 (2001) which was implemented to program PHOKHARA

- new and more accurate data
- new $\rho - \rho$ contributions
- properly modeled ω contributions
- new ρ resonance $\rho(2040)$
The model

The amplitude used by H. Czyż, J.H. Kühn (2001) is schematically depicted:

\[
\begin{align*}
\rho & \rightarrow a_1 & \rho & \rightarrow \rho \\
\pi & \rightarrow \pi & \pi & \rightarrow \pi \\
\pi & \rightarrow \pi & \pi & \rightarrow \pi \\
\pi & \rightarrow \pi & \pi & \rightarrow \pi \\
\pi & \rightarrow \pi & \pi & \rightarrow \pi \\
\rho & \rightarrow \omega & \pi & \rightarrow \pi \\
\end{align*}
\]
The model

The new contributions from the omega part and ρ mesons:

H. Czyž, J.H. Kühn, A. Wapienik (2008)
H. Czyž, A.G., J.H. Kühn, G. Rodrigo (2006)
The model

The SU(2) symmetric Lagrangian describing rho-pair production

$$\mathcal{L}_\rho = \frac{1}{4} \vec{F}_{\mu\nu} \cdot \vec{F}^{\mu\nu} + \frac{1}{2} (D^\mu \phi) \cdot (D_\mu \phi)$$

$$+ \frac{1}{2} m_\pi^2 \phi \cdot \phi + \frac{1}{2} m_\rho^2 \rho_\mu \cdot \rho^\mu$$

$$D_\mu \phi = \partial_\mu \phi + g \left(\vec{\rho}_\mu \times \vec{\phi} \right)$$

$$\vec{F}_{\mu\nu} = \partial_\mu \vec{\rho}_\nu - \partial_\nu \vec{\rho}_\mu - g \vec{\rho}_\mu \times \vec{\rho}_\nu$$
The fit

When we built our model we fitted its parameters to the existing data.

We fitted external masses $m_{\rho'}, m_{\rho''}, m_{\rho'''}$ and widths $\Gamma_{\rho'}, \Gamma_{\rho''}, \Gamma_{\rho'''}$ together with the couplings:

- 4 couplings in a_1- part
- 4 couplings in f_0- part
- 4 couplings in ω- part
- 1 coupling in ρ- part

$$\chi^2 = 275, \quad n_{d.o.f} = 287$$
Comparing with τ data

$\tau^{-} \rightarrow \pi^{-}3\pi^{0}\nu_{\tau}$

the upper and lower curves represents error bars
Comparing with τ data

$\tau^- \rightarrow 2\pi^-\pi^+\pi^0\nu_\tau$

$\sqrt{Q^2}$ (GeV)

v

ALEPH

BaBar (+ Isospin)

CLEO

model

A. Grzelińska, IFJ PAN, Kraków

Status of PHOKHARA
Comparing with τ data

$$\text{Br}(\tau^- \rightarrow \nu_\tau 2\pi^- \pi^+ \pi^0)$$

Source	Value
PDG06	$(4.46 \pm 0.06)\%$
Model	$(4.12 \pm 0.21)\%$
BaBar (CVC)	$(3.98 \pm 0.30)\%$

$$\text{Br}(\tau^- \rightarrow \nu_\tau \pi^- \omega(\pi^- \pi^+ \pi^0))$$

Source	Value
PDG06	$(1.77 \pm 0.1)\%$
Model	$(1.60 \pm 0.13)\%$
BaBar (CVC)	$(1.57 \pm 0.31)\%$
Comparing with τ data

$$\text{Br}(\tau^- \rightarrow \nu_\tau \pi^- 3\pi^0)$$

Source	Value
PDG06	$(1.04 \pm 0.08)\%$
model	$(1.06 \pm 0.09)\%$
BaBar (CVC)	$(1.02 \pm 0.05)\%$
Narrow Resonances

Up to now we have two narrow resonances

\[J/\psi \text{ and } \psi(2S) \]

in the event generator PHOKHARA

They have the following masses and widths:

\[J/\psi \rightarrow M_{J/\psi} = 3096.916 \text{ MeV}, \quad \Gamma_{J/\psi} = 93.4 \text{ keV} \]

\[\psi(2S) \rightarrow M_{\psi(2S)} = 3686.093 \text{ MeV}, \quad \Gamma_{\psi(2S)} = 337 \text{ keV} \]
Narrow Resonances

We put narrow resonances to the following final states:

\[\pi^+ \pi^-, \mu^+ \mu^-, KK \]

Depends on the final states one has to take into account amplitudes:

- one-photon continuum
- one-photon annihilation
- three-gluon annihilation
 - only for kaons
Form Factors

C. Bruch, A. Khodjamirian and J.H. Kühn, Eur. Phys. J. C39(2005)41
H. Czyż, A.G. and J.H. Kühn in preparation

\[|F_{K^+}(s)|^2 \]

\[\sqrt{s} \text{[GeV]} \]

\[e^+e^- \rightarrow K^+K^- \]

A. Grzelińska, IFJ PAN, Kraków

Status of PHOKHARA

TAU’08 22
$|F_\pi(s)|^2$ vs \sqrt{s} [GeV]

$e^+e^- \rightarrow \pi^+\pi^-$

- DM2 1989
- OLYA 1985
- CLEO-c
- J/ψ
- GS
- KS

Data points and curves represent the squared modulus of the form factor $F_\pi(s)$ as a function of the center-of-mass energy \sqrt{s} in the center of the $\pi^+\pi^-$ channel. The figure compares experimental data with theoretical predictions and model fits.
\[\Delta q = 14.5 \text{ MeV the detector spread} \]

\[e^+ e^- \rightarrow J/\psi \gamma \rightarrow \pi^+ \pi^- \gamma(\gamma) \]

\[\sqrt{s} = 10.52 \text{ GeV} \]
$e^+ e^- \rightarrow J/\psi \gamma \rightarrow \pi^+ \pi^- \gamma(\gamma)$

$\sigma_{\text{IFSNLO}} = (2.27808 \pm 0.00013) \text{ fb}$

$\sigma_{\text{ISRNLO}} = (2.32720 \pm 0.00006) \text{ fb}$

A. Grzelińska, IFJ PAN, Kraków

Status of PHOKHARA

TAU’08 25
Relative difference of the cross sections

e^+e^- \rightarrow J/\psi \gamma \rightarrow \pi^+\pi^-\gamma(\gamma)

\sqrt{s} = 10.52 \text{ GeV}
$e^+e^- \rightarrow J/\Psi \gamma \rightarrow \mu^+\mu^- \gamma(\gamma)$

$\sqrt{s} = 10.52\text{GeV}$

$\frac{d\sigma}{d\sqrt{Q^2}}$

$\sigma(\text{IFSNLO}) = (6.8527 \pm 0.0006) \text{ pb}$

$\sigma(\text{ISRNLO}) = (6.79862 \pm 0.00008) \text{ pb}$
Relative difference of the cross sections

\[e^+e^- \rightarrow J/\psi \gamma \rightarrow \mu^+\mu^-\gamma(\gamma) \]

\[\sqrt{s} = 10.52 \text{GeV} \]

A. Grzelińska, IFJ PAN, Kraków
Status of PHOKHARA
TAU’08 28
Summary

- 4π channels reanalysis was performed

- isospin symmetry violation not seen

- new model proposed and implemented in PHOKHARA
Summary

- implementation J/ψ and $\psi(2S)$ in PHOKHARA
 - with FSR corrections included
 - required more tests