(NON)LOCAL LOGISTIC EQUATIONS WITH NEUMANN CONDITIONS

SERENA DIPIERRO, EDOARDO PROIETTI LIPPI, AND ENRICO VALDINOCI

ABSTRACT. We consider here a problem of population dynamics modeled on a logistic equation with both classical and nonlocal diffusion, possibly in combination with a pollination term.

The environment considered is a niche with zero-flux, according to a new type of Neumann condition.

We discuss the situations that are more favorable for the survival of the species, in terms of the first positive eigenvalue.

Quite surprisingly, the eigenvalue analysis for the one dimensional case is structurally different than the higher dimensional setting, and it sensibly depends on the nonlocal character of the dispersal.

The mathematical framework of this problem takes into consideration the equation

\[-\alpha \Delta u + \beta (-\Delta) u = (m - \mu u) u + \tau J \ast u \quad \text{in} \quad \Omega,
\]

where \(m\) can change sign.

This equation is endowed with a set of Neumann condition that combines the classical normal derivative prescription and the nonlocal condition introduced in [S. Dipierro, X. Ros-Oton, E. Valdinoci, Rev. Mat. Iberoam. (2017)].

We will establish the existence of a minimal solution for this problem and provide a through-out discussion on whether it is possible to obtain non-trivial solutions (corresponding to the survival of the population).

The investigation will rely on a quantitative analysis of the first eigenvalue of the associated problem and on precise asymptotics for large lower and upper bounds of the resource.

In this, we also analyze the role played by the optimization strategy in the distribution of the resources, showing concrete examples that are unfavorable for survival, in spite of the large resources that are available in the environment.

CONTENTS

1. Introduction 2
2. Functional analysis setting 10
3. Existence results and proofs of Theorems 1.1 and 1.2 12
4. Analysis of the eigenvalue problem in (1.13) and proof of Theorem 1.4 16
5. Optimization on \(m\) and proofs of Theorems 1.5, 1.7, 1.8, 1.9 and 1.10 18
6. Badly displayed resources, hectic oscillations and proof of Theorem 1.11 43
Appendix A. Proofs of Theorems 1.7 and 1.8 when \(n = 2\) 46

2010 Mathematics Subject Classification. 35Q92, 35R11, 60G22, 92B05.

Key words and phrases. Logistic equation, Fisher-KPP equation, long-range interactions, zero-flux condition.

Serena Dipierro: Department of Mathematics and Statistics, University of Western Australia, 35 Stirling Hwy, Crawley WA 6009, Australia. serena.dipierro@uwa.edu.au
Edoardo Proietti Lippi: Department of Mathematics and Computer Science, University of Florence, Viale Morgagni 67/A, 50134 Firenze, Italy. edoardo.proiettilippi@unifi.it
Enrico Valdinoci: Department of Mathematics and Statistics, University of Western Australia, 35 Stirling Hwy, Crawley WA 6009, Australia. enrico.valdinoci@uwa.edu.au

The authors are members of INdAM. The first and third authors are members of AustMS and are supported by the Australian Research Council Discovery Project DP170104880 NEW “Nonlocal Equations at Work”. The first author is supported by the Australian Research Council DECRA DE180100957 “PDEs, free boundaries and applications”. The third author is supported by the Australian Laureate Fellowship FL190100081 “Minimal surfaces, free boundaries and partial differential equations”. Part of this work was carried out during a very pleasant and fruitful visit of the second author to the University of Western Australia, which we thank for the warm hospitality.
1. Introduction

We consider here a biological population with density \(u \) which is self-competing for the resources in a given environment \(\Omega \).

These resources are described by a function \(m \), which is allowed to change sign: the positive values of \(m \) correspond to areas of the environment favorable for life and produce a positive birth rate, whereas the negative values model a hostile environment whose byproduct is a positive death rate of linear type.

The competition for the resource is encoded by a nonnegative function \(\mu \). Resources and competitions are combined into a standard logistic equation. In addition, the population is assumed to present a combination of classical and nonlocal diffusion (the cases of purely classical and purely nonlocal diffusions are also included in our setting, and the results obtained are new also for these cases). The population is also endowed with an additional birth rate possibly provided by pollination\(^1\) and modeled by a convolution operator (the case of no pollination is also included in our setting, and the results obtained are new also for this case).

The environment \(\Omega \) describes an ecological niche and is endowed by a zero-flux condition of Neumann type. Given the possible presence of both classical and nonlocal dispersal, this Neumann condition appears to be new in the literature: when the diffusion is of purely classical type this new prescription reduces to the standard normal derivative condition along \(\partial \Omega \), and when the diffusion is of purely nonlocal type it coincides with the nonlocal Neumann condition set in \(\mathbb{R}^n \setminus \Omega \) that has been recently introduced in [DROV17] – but in case the population is subject to both the classical and the nonlocal dispersion processes the Neumann condition that we introduce here takes into account the combination of both the classical and the nonlocal prescriptions (interestingly, without producing an overdetermined, or ill-posed, problem).

The main question addressed in this paper is whether or not the environmental niche is suited for the survival of the population (notice that life is not always promoted by the ambient resource, since \(m \) can attain negative values). We will investigate this question by using spectral analysis and providing a detailed quantification of favorable and unfavorable scenarios in terms of the first eigenvalue compared with the resource and pollination parameters.

More precisely, the mathematical framework in which we work goes as follows. We consider a bounded open set \(\Omega \subset \mathbb{R}^n \) with boundary of class \(C^1 \): that is, we suppose that there exist \(R > 0 \) and \(p_1, \ldots, p_K \in \partial \Omega \) such that \(\partial \Omega \subset B_R(p_1) \cup \cdots \cup B_R(p_K) \), and, for each \(i \in \{1, \ldots, K\} \),

\[
\text{(1.1)} \quad \Omega \cap B_R(p_i) \text{ is } C^1\text{-diffeomorphic to } B_1^+ := \{(x_1, \ldots, x_n) \in B_1 \text{ s.t. } x_n > 0\}.
\]

Given \(s \in (0, 1) \), \(\alpha, \beta \in [0, +\infty) \), with \(\alpha + \beta > 0 \), \(m : \Omega \to \mathbb{R} \), \(\mu : \Omega \to [\mu, +\infty) \), with \(\mu > 0 \), \(\tau \in [0, +\infty) \) and \(J \in L^1(\mathbb{R}^n, [0, +\infty)) \) with

\[
\text{(1.2)} \quad J(x) = J(-x)
\]

and

\[
\text{(1.3)} \quad \int_{\mathbb{R}^n} J(x) \, dx = 1,
\]

\(^1\)While we use the name of pollination throughout this paper, we observe that the pollination analysis performed is not limited to vegetable species: indeed, for animal species the convolution term that we study can be seen as a birth rate of nonlocal type produced, for instance, by a mating call which attracts partners from surrounding neighbors.
we consider the mixed order logistic equation

\[(1.4) \quad - \alpha \Delta u + \beta (-\Delta)^s u = (m - \mu u)u + \tau J \ast u \quad \text{in } \Omega,\]

where

\[J \ast u(x) := \int_{\Omega} J(x - y) u(y) dy.\]

When \(\beta = 0\), we take the additional hypothesis that

\[(1.5) \quad \Omega \text{ is connected.}\]

We observe that the operator in (1.4) is of mixed local and nonlocal type, and also of mixed fractional and integer order type. Interestingly, the nonlocal character of the operator is encoded both in the fractional Laplacian

\[(-\Delta)^s u(x) := \frac{1}{2} \int_{\mathbb{R}^n} \frac{2u(x) - u(x + \zeta) - u(x - \zeta)}{|\zeta|^{n+2s}} d\zeta\]

and in the convolution operator given by \(J\).

The use of the convolution operator in biological models to comprise the interaction of the population with the resource at a certain range has a very consolidated tradition, see e.g. [ABVV10, CDM13, ACR13, Cov15, BCV16, BCL17, CDV17] and the references therein.

As for the nonlocal diffusive operator, for the sake of concreteness we stick here to the prototypical case of the fractional Laplacian, but the arguments that we develop are in fact usable in more general contexts including various interaction kernels of singular type.

Given the presence of both the Laplacian and the fractional Laplacian, the operator in (1.4) falls within the diffusive processes of mixed orders, which have been widely addressed by several methodologies and arose from a number of different motivations, see for instance various viscosity solutions approaches [JK05, JK06, BI08, BJK10, BCCI12, Cio12, BCCI14, dTEJ17, AdTEJ19], the Aubry-Mather theory for pseudo differential equations [dILV09], Cahn-Hilliard and Allen-Cahn-type equations [CV13, CS16], probability and Harnack inequalities [BK05a, BK05b, CKSV10, CKSV12], decay for parabolic equations [DV19, AV19b], friction and dissipation effects [DP18], smooth approximation with suitable solutions [CS10], Bernstein-type regularity results [CDV], variational methods [BDVV20], nonlinear operators [AC20] and plasma physics [BDN13].

We endow the problem in (1.4) with a set of Neumann boundary conditions that correspond to a “zero-flux” condition according to the stochastic process producing the diffusive operator in (1.4). This Neumann condition appears to be new in the literature and depends on the different ranges of \(\alpha\) and \(\beta\) according to the following setting. If \(\alpha = 0\), we consider the nonlocal Neumann condition introduced in [DROV17], thus prescribing that

\[(1.6) \quad \mathcal{N}_s u(x) := \int_{\Omega} u(x) - u(y) \frac{|x - y|^{-n+2s}}{|x - y|^{n+2s}} dy = 0 \quad \text{for every } x \in \mathbb{R}^n \setminus \overline{\Omega}.\]

If instead \(\beta = 0\), we prescribe the classical Neumann condition

\[(1.7) \quad \frac{\partial u}{\partial \nu} = 0 \quad \text{on } \partial \Omega.\]

Finally, if \(\alpha \neq 0\) and \(\beta \neq 0\), we prescribe both the classical and the nonlocal Neumann conditions, by requiring that

\[(1.8) \quad \begin{cases} \mathcal{N}_s u = 0 & \text{in } \mathbb{R}^n \setminus \overline{\Omega}, \\ \frac{\partial u}{\partial \nu} = 0 & \text{on } \partial \Omega. \end{cases}\]

We remark that the prescription in (1.8) is not an “overdetermined” condition (as it will be confirmed by the existence result in Theorem 1.1 below).
The set of boundary/external Neumann conditions in (1.6), (1.7) and (1.8), in dependence of the different ranges of \(\alpha \) and \(\beta \), will be denoted by “\((\alpha, \beta)\)-Neumann conditions”, and, with this notation and (1.4), the main question studied in this paper focuses on the problem

\[
\begin{aligned}
-\alpha \Delta u + \beta (-\Delta)^s u &= (m - \mu u)u + \tau J * u & \text{in } \Omega, \\
\text{with } (\alpha, \beta)\text{-Neumann condition.}
\end{aligned}
\]

In this setting, the \((\alpha, \beta)\)-Neumann conditions provide an “ecological niche” for the population with density \(u \), making \(\Omega \) a natural environment in which a given species can live and compete for a resource \(m \), according to a competition function \(\mu \). In this setting, the parameter \(\tau \), as modulated by the interaction kernel \(J \), describes an additional birth rate due to further intercommunication than just with the closest neighbors, as it happens, for instance, in pollination.

As a matter of fact, the role of the \((\alpha, \beta)\)-Neumann conditions is precisely to make the boundary and the exterior of the niche \(\Omega \) “reflective”: namely when an individual exits the niche, it is forced to immediately come back into the niche itself, following the same diffusive process, see Section 2 in [DROV17] (see also [Von19] for a thoroughgoing probabilistic discussion about this process).

As a technical remark, we also observe that our \((\alpha, \beta)\)-Neumann condition is structurally different (even when \(\alpha = 0 \) and \(s = 1/2 \)) from the case of bounded domains with reflecting barriers presented in [MPV13, PV18], and the diffusive operator taken into account in (1.9) cannot be obtained by the spectral decomposition of the classical Laplacian in \(\Omega \) (except for the special case of periodic environments, see e.g. Section 2.3 and Appendix Q in [AV19a]).

The possible presence in (1.9) of two different diffusion operators, one of classical and the other of fractional flavor, has a clear biological interpretation, namely the population with density \(u \) can possibly alternate both short and long-range random walks, and this could be motivated, for instance, by a superposition between local exploration of the environment and hunting strategies (see e.g. [VAB+96, DHMP98, CCL07, CHL08, CDM12, KLS12, CCLR12, SV17, MV17]). A detailed presentation of this superposition of stochastic processes will be presented in Appendix B; see also [DV] for the detailed description of the local/nonlocal reflecting barrier also in terms of the population dynamics model.

The notion of solution of (1.9) is intended here in the weak sense, as it will be discussed precisely in formula (2.5). See however [GM02, BDVV20] for a regularity theory for weak solutions of the equations driven by the mixed order operators as in (1.9).

Our first result in this setting is that the problem in (1.9) admits a minimal energy solution (under very natural and mild structural assumptions). To state it, it is convenient to define

\[
q := \begin{cases}
2^s - 2 & \text{if } \beta = 0 \text{ and } n > 2, \\
2^s & \text{if } \beta \neq 0 \text{ and } n > 2s, \\
2^s - 2 & \text{if } \beta = 0 \text{ and } n \leq 2, \text{ or if } \beta \neq 0 \text{ and } n \leq 2s, \\
1 & \text{if } \beta = 0 \text{ and } n > 2, \\
2^s & \text{if } \beta \neq 0 \text{ and } n > 2s, \\
2s & \text{if } \beta = 0 \text{ and } n \leq 2, \text{ or if } \beta \neq 0 \text{ and } n \leq 2s.
\end{cases}
\]

As customary, the exponent \(2^s \) denotes the fractional Sobolev critical exponent for \(n > 2s \) and it is equal to \(\frac{2n}{n - 2s} \). Similarly, the exponent \(2^s \) denotes the classical Sobolev critical exponent for \(n > 2 \) and it is equal to \(\frac{2n}{n - 2} \).

We remark that \(q \geq n/2 \), and we have:
Theorem 1.1. Assume that
\[m \in L^q(\Omega), \text{ for some } q \in \left(\underline{q}, +\infty \right] \]
and \((m + \tau)^3 \mu^{-2} \in L^1(\Omega)\).

Then, there exists a nonnegative solution of (1.9) which can be obtained as a minimum of an energy functional.

The precise definition of energy functional used in Theorem 1.1 will be presented in (3.1): roughly speaking, the energy associated to Theorem 1.1 will be the “natural” functional for the variational methods, and its Euler-Lagrange equation will correspond to the notion of weak solution.

While the functional analysis part of the proof of Theorem 1.1 relies on standard direct methods in the calculus of variations, the more interesting part of the argument makes use of a structural property of the nonlocal Neumann condition that will be presented in Theorem 2.1 (roughly speaking, the nonlocal Neumann condition in (1.6) will be instrumental to minimize the Gagliardo seminorm, thus clarifying the energetic role of the nonlocal reflection introduced in [DROV17]).

Though the result in Theorem 1.1 has an obvious interest in pure mathematics, our main analysis will focus on whether problem (1.9) does admit a nontrivial solution (notice indeed that \(u \equiv 0\) is always a solution of (1.9)). In particular, in view of Theorem 1.1, a useful mathematical tool to detect nontrivial solutions consists in proving that the minimal energy configuration is not attained by the trivial solution (hence, in this case, the solution produced by Theorem 1.1 is nontrivial). The question of the existence of nontrivial solutions has a central importance for the mathematical model, since it corresponds to the possibility of a population to survive in the environmental condition provided by the niche. Interestingly, in our model, the survival of the population can be enhanced by the possibility of exploiting resources by long-range interactions. Indeed, we stress that the nonlocal resource \(m\) in (1.4) is not necessarily positive (hence, the natural environment can be “hostile” for the population): in this configuration, we show that the survival of the species is still possible if the “pollination” birth rate \(\tau\) is sufficiently large. The quantitative result that we have is the following:

Theorem 1.2. Assume that
\[m \in L^q(\Omega), \text{ for some } q \in \left(\underline{q}, +\infty \right] \]
and \((m + \tau)^3 \mu^{-2} \in L^1(\Omega)\).

Then,
\[(i) \text{ if } m \equiv 0 \text{ and } \tau = 0, \text{ then the only solution of (1.9) is the one identically zero}; \]
\[(ii) \text{ if } \int_{\Omega} (m(x) + \tau J * 1(x)) \, dx > 0 \]

and
\[(1.12) \mu \in L^1(\Omega), \]
then (1.9) admits a nonnegative solution \(u \neq 0\).

A particular case of Theorem 1.2 is when the resource \(m\) is nonnegative. In this situation, Theorem 1.2(i) gives that no survival is possible without resources and pollination, i.e. when both \(m\) and \(\tau\) vanish identically (unless also \(\mu\) vanishes identically, then reducing the problem to that of mixed operator harmonic functions), whereas Theorem 1.2(ii) guarantees survival if at least one between the environmental resource and the pollination is favorable to life. Precisely, one can immediately deduce from Theorem 1.2 the following result:
Corollary 1.3. Assume that
\[m \in L^q(\Omega), \text{ for some } q \in (q, +\infty), \]
\[m \text{ is nonnegative,} \]
\[\text{and } (m + \tau)^3 \mu^{-2} \in L^1(\Omega). \]

Then,
(i) if \(m \equiv 0 \) and \(\tau = 0 \), then the only solution of (1.9) is the one identically zero;
(ii) if either \(m > 0 \) or \(\tau (J \ast 1) > 0 \) in a set of positive measure and \(\mu \in L^1(\Omega) \), then (1.9) admits a nonnegative solution \(u \neq 0 \).

Problems related to Corollary 1.3 have been studied in [CDV17] under Dirichelet (rather than Neumann) boundary conditions.

From the biological point of view, assumption (1.11) states that the environment is “in average” favorable for the survival of the species. It is therefore a natural question to investigate the situation in which the environment is “mostly hostile to life”. To study this phenomenon, when \(m \in L^q \) with \(q > n/2 \), with \(m^+ \neq 0 \) and
\[\int_{\Omega} m(x) \, dx < 0, \]
we denote\(^2\) by \(\lambda_1 \) the first positive eigenvalue associated with the diffusive operator in (1.9). More precisely, we consider the weighted eigenvalue problem
\[
\begin{cases}
-\alpha \Delta u + \beta (-\Delta)^s u = \lambda mu & \text{in } \Omega, \\
\text{with } (\alpha, \beta)-\text{Neumann condition.}
\end{cases}
\]
(1.13)

As it will be discussed in detail in Proposition 4.1 here and in [DPLV], problem (1.13) admits the existence of two unbounded sequences of eigenvalues, one positive and one negative. In this setting, the smallest strictly positive eigengevalue will be denoted by \(\lambda_1 \). When we want to emphasize the dependence of \(\lambda_1 \) on the resource \(m \), we will write it as \(\lambda_1(m) \).

We also denote by \(e \) an eigenfunction corresponding to \(\lambda_1 \) normalized such that
\[\int_{\Omega} m(x) e^2(x) \, dx = 1. \]
The first eigenvalue will be an important threshold for the survival of the species, quantifying the role of the necessary pollination parameter \(\tau \) in order to overcome the presence of an hostile behavior in average. The precise result that we obtain is the following one:

Theorem 1.4. Assume that \(m \in L^q(\Omega), \) for some \(q \in (q, +\infty), \) and \((m + \tau)^3 \mu^{-2} \in L^1(\Omega). \)

Then,
(i) if \(m \leq -\tau \), then the only solution of (1.9) is the one identically zero;
(ii) if \(m^+ \neq 0, \mu \in L^1(\Omega), \)
(1.14)
\[\int_{\Omega} m(x) \, dx < 0, \]
and
(1.15)
\[\lambda_1 - 1 < \tau \int_{\Omega} (J \ast e(x)) e(x) \, dx, \]
then (1.9) admits a nonnegative solution \(u \neq 0 \).

\(^2\)As customary, we freely use in this paper the standard notation
\[m^+(x) := \max\{0, m(x)\} \quad \text{and} \quad m^-(x) := \max\{0, -m(x)\}. \]
Once again, in Theorem 1.4, the case described in (i) is the one less favorable to life, since the combination of both the resources and the pollination is in average negative, while the case in (ii) gives a lower bound of the pollination parameter \(\tau \) which is needed for the survival of the species, as quantified by (1.15).

We recall that the link between the survival ability of a biological population and the analysis of the eigenvalues of a linearized problem is a classical topic in mathematical biology, see e.g. [Ske51, Bel97, BHR05a, BHR05b, KS07, KAS12, MPV13, Maz20a, Maz20b] (yet, we believe that this is the first place in which a detailed analysis of this type is carried over to the case of mixed operators with our new type of Neumann conditions).

In light of (1.15), a natural question consists in quantifying the size of the first eigenvalue. Roughly speaking, from (1.15), the smaller \(\lambda_1 \), the smaller is the threshold for the pollination guaranteeing survival, hence configurations with small first eigenvalues correspond to the ones of better chances of life.

To address this problem, since the eigenvalue \(\lambda_1 = \lambda_1(m) \) depends on the resource \(m \), it is convenient to consider an optimization problem for \(\lambda_1 \) in terms of three structural parameters of the resource \(m \), namely its minimum, its maximum and its average, in order to detect under which conditions on these parameters the first eigenvalue can be made conveniently small. More precisely, given \(\overline{m}, \underline{m} \in (0, +\infty) \) and \(m_0 \in (-\overline{m}, 0) \) we consider the class of resources

\[
\mathcal{M} = \mathcal{M}(\overline{m}, \underline{m}, m_0) := \left\{ m \in L^\infty(\Omega) \text{ s.t. } \inf_\Omega m \geq -\overline{m}, \sup_\Omega m \leq \overline{m}, \int_\Omega m(x) \, dx = m_0|\Omega| \text{ and } m^+ \neq 0 \right\}.
\]

We will also consider the smallest possible first eigenvalue among all the resources in \(\mathcal{M} \), namely we set

\[
\overline{\lambda} := \inf_{m \in \mathcal{M}} \lambda_1(m).
\]

When we want to emphasize the dependence of \(\overline{\lambda} \) on the structural quantities \(\overline{m}, \underline{m} \) and \(m_0 \) that characterize \(\mathcal{M} \), we will adopt the explicit notation \(\overline{\lambda}(\overline{m}, \underline{m}, m_0) \).

Our main objective will be to detect whether or not \(\overline{\lambda} \) can be made arbitrarily small in a number of different regimes: we stress that the smallness of \(\overline{\lambda} \) corresponds to a choice of an optimal distribution of resources that is particularly favorable for survival.

The first result that we present in this direction is a general estimate controlling \(\overline{\lambda} \) with \(O \left(\frac{1}{m} \right) \), provided that the maximal hostility of the environment does not prevail with respect to the maximal and average resources. In terms of survival of the species, this is a rather encouraging outcome, since it allows the existence of nontrivial solutions provided that the maximal resource is sufficiently large. The precise result that we have is the following:

Theorem 1.5. Let

\[
\frac{m + m_0}{m + \overline{m}} \geq d_0
\]

for some \(d_0 > 0 \). Then,

\[
\overline{\lambda}(\overline{m}, \underline{m}, m_0) \leq C \overline{m}
\]

for some \(C = C(\Omega, d_0) > 0 \).

A direct consequence of Theorem 1.5 gives that when the upper and lower bounds of the resource are the same and get arbitrarily large, then \(\overline{\lambda} \) gets arbitrarily small (hence, in view of (1.15), there exists a resource distribution which is favorable to survival). More precisely:

\[3\]

\[3\]To avoid notational confusion, we reserved the name of \(m \) to the resource in (1.4) and we denoted by \(\overline{m} \) a “free variable” dimensionally related to the resource.
Corollary 1.6. We have
\[
\lim_{m \to +\infty} \lambda(m, m, m_0) = 0.
\]

We now investigate the behavior of \(\lambda\) for large upper and lower bounds on the resource (maintaining constant the other parameters). Interestingly, this behavior sensibly depends on the dimension \(n\). In this setting, we first consider the asymptotics in dimension \(n \geq 2\): we show that large upper and lower bounds are both favorable for life for a given \(m_0 < 0\), according to the following two results:

Theorem 1.7. Let \(n \geq 2\). Then,
\[
\lim_{m \to +\infty} \lambda(m, m, m_0) = 0.
\]

Theorem 1.8. Let \(n \geq 2\). Then,
\[
\lim_{m \to +\infty} \lambda(m, m, m_0) = 0.
\]

While Theorem 1.7 is somehow intuitive (large resources are favorable to survival), at a first glance Theorem 1.8 may look unintuitive, since it seems to suggest that a largely hostile environment is also favorable to survival: but we remark that in Theorem 1.8, being \(m_0\) given, an optimal strategy for \(m\) may well correspond to a very harmful environment confined in a small portion of the domain, with a positive resource allowing for the survival of the species.

Quite surprisingly, the structural analysis developed in Theorems 1.7 and 1.8 is significantly different in dimension 1. Indeed, for \(n = 1\), we have that \(\lambda\) does not become infinitesimal for large upper and lower bounds on the resource, unless the diffusion is purely nonlocal with strongly nonlocal fractional parameter. Namely, we have the following two results.

Theorem 1.9. Let \(n = 1\), \(\alpha > 0\) and \(\beta \geq 0\). Then, for any \(m > 0\) and \(m_0 \in (-m, 0)\),
\[
\lambda(m, m, m_0) \geq C
\]
for every \(m > 0\), for some \(C = C(m, m_0, \alpha, \beta, \Omega) > 0\), and
\[
\lim_{m \to 0} \lambda(m, m, m_0) = +\infty.
\]

Moreover, for any \(\overline{m} > 0\) and \(m_0 < 0\),
\[
\lambda(\overline{m}, m, m_0) \geq C
\]
for every \(m > -m_0\), for some \(C = C(\overline{m}, m_0, \alpha, \beta, \Omega) > 0\).

Theorem 1.10. Let \(n = 1\), \(\alpha = 0\) and \(\beta > 0\).

If \(s \in (1/2, 1)\), then, for any \(\overline{m} > 0\) and \(m_0 \in (-\overline{m}, 0)\)
\[
\lambda(\overline{m}, m_0, m_0) \geq C
\]
for every \(\overline{m} > 0\), for some \(C = C(\overline{m}, m_0, \alpha, \beta, \Omega) > 0\), and
\[
\lim_{m \to 0} \lambda(m, m, m_0) = +\infty.
\]

Moreover, for any \(\overline{m} > 0\) and \(m_0 < 0\)
\[
\lambda(\overline{m}, m, m_0) \geq C
\]
for every \(m > -m_0\), for some \(C = C(\overline{m}, m_0, \alpha, \beta, \Omega) > 0\).

If \(s \in (0, 1/2]\), then,
\[
\lim_{m \to +\infty} \lambda(m, m, m_0) = 0,
\]
and
\[
\lim_{m \to +\infty} \lambda(\overline{m}, m, m_0) = 0.
\]
An interesting feature of Corollary 1.6, Theorems 1.7 and 1.8, (1.25) and (1.26) in terms of real-world applications is that their proofs are based on the explicit constructions of suitable resources: though perhaps not optimal, these resources are sufficiently well located to ensure the maximal chances of survival for the population, and their explicit representation allows one to use them concretely and to build on this specific knowledge.

We also think that the phenomenon detected in Theorems 1.9 and 1.10 reveals an important role played by the nonlocal dispersal of the species in dimension 1: indeed, in this situation, the only configurations favorable to survival are the ones in (1.25) and (1.26), that are induced by purely nonlocal diffusion (that is $\alpha = 0$) with a strongly nonlocal diffusion exponent (that is $s \leq 1/2$, corresponding to very long flies in the underlying stochastic process).

To better visualize the results in Theorems 1.7, 1.8, 1.9 and 1.10, we summarize them in Table 1. For typographical convenience, in Table 1 we used the “check-symbol” ✓ to denote the cases in which λ gets as small as we wish (cases favorable to life) and the “x-symbol” ✗ to mark the situations in which λ remains bounded away from zero (cases unfavorable to life which require stronger pollination for survival).

$$
\begin{array}{|c|c|c|}
\hline
n \geq 2 & \text{Large } m & \text{Large } \overline{m} \\
\hline
n = 1 \text{ and } \alpha > 0 & \times & \times \\
n = 1, \alpha = 0 \text{ and } s > 1/2 & \times & \times \\
n = 1, \alpha = 0 \text{ and } s \leq 1/2 & ✓ & ✓ \\
\hline
\end{array}
$$

Table 1. Summarizing the results in Theorems 1.7, 1.8, 1.9 and 1.10.

We stress that the optimization of the resources plays a crucial role in the survival results provided by Corollary 1.6, Theorems 1.7 and 1.8, and formulas (1.25) and (1.26): that is, given $m_0 < 0$, very large but *badly displayed* resources may lead to non-negligible first eigenvalues (differently from the case of optimal distribution of resources discussed in Corollary 1.6, Theorems 1.7 and 1.8, and formulas (1.25) and (1.26)).

To state precisely this phenomenon, given $m_0 < 0$ and $\Lambda > -4m_0$, we let

$$(1.27) \quad \mathcal{M}_{\Lambda, m_0}^\sharp := \left\{ m \in \mathcal{M}(2\Lambda, 2\Lambda, m_0) \text{ s.t. } \inf_{\Omega} m \leq -\frac{\Lambda}{2} \text{ and } \sup_{\Omega} m \geq \frac{\Lambda}{2} \right\}.$$

Roughly speaking, the resources m in $\mathcal{M}_{\Lambda, m_0}^\sharp$ have a prescribed average equal to m_0 and attain maximal positive and negative values comparable with a large parameter Λ, and a natural question in this case is whether large Λ’s provide sufficient conditions for the survival of the species. The next result shows that this is not the case, namely the abundance of the resource without an optimal distribution strategy is not sufficient for prosperity:

Theorem 1.11. Given $m_0 < 0$ and $\Lambda > -4m_0$, we have that

$$
\sup_{m \in \mathcal{M}_{\Lambda, m_0}^\sharp} \lambda_1(m) = +\infty.
$$

Interestingly, the proof of Theorem 1.11 will be “constructive”, namely we will provide an explicit example of a sequence of badly displayed resources which make the first eigenvalue diverge: a telling feature of this sequence is that it is highly oscillatory, thus suggesting that a hectic and erratic alternation of highly positive resources with very harmful surroundings is potentially lethal for the development of the species.

We recall that the investigation of the roles of fragmentation and concentration for resources is a classical topic in mathematical biology, and, in this sense, our result in Theorem 1.11 confirms the main paradigm according to which concentrated resources favor survival (see
e.g. [BHR05a, BHR05b, LLNP16]) – however, there are several circumstances in which this general paradigm is violated and fragmentation is better than concentration, see e.g. the small diffusivity regime analyzed in [LLL20, MRB20, LNY20]. In any case, the analysis of fragmentation and concentration for mixed operators with our Neumann condition is, to the best of our knowledge, completely new.

We also remark that the results presented here are new even in the simpler cases in which no classical diffusion and no pollination term is present in (1.4), as well as in the cases in which the death rate and the pollination functions are constant.

The rest of this paper is organized as follows. In Section 2 we will introduce the functional framework in which we work and the notion of weak solutions, also providing a new result showing that the nonlocal Neumann condition naturally produces functions with minimal Gagliardo seminorm (this is a nonlocal phenomenon, which has no counterpart in the classical setting, and will play a pivotal role in the minimization process).

Then, in Section 3 we prove the existence results in Theorems 1.1 and 1.2. In Section 4 we study the eigenvalue problem (1.13), and we give the proof of Theorem 1.4. Not to overburden this paper, some technical proofs related to the spectral theory of the problem are deferred to the article [DPLV].

In Section 5, we deal with the proofs of Theorem 1.5, Theorems 1.7 and 1.8 when \(n \geq 3 \), and Theorems 1.9 and 1.10.

When \(n = 2 \), the proofs of Theorems 1.7 and 1.8 require some technical modification of logarithmic type, hence their proofs is deferred to Appendix A.

Finally, Section B contains some probabilistic motivations related to the diffusive operators of mixed integer and fractional order.

2. Functional analysis setting

In this section we define the functional space in which we work. First, we recall the space \(H^n_\Omega \) introduced in [DROV17] and defined as

\[
H^n_\Omega := \left\{ u : \mathbb{R}^n \to \mathbb{R} \text{ s.t. } u \in L^2(\Omega) \text{ and } \int_\Omega \frac{|u(x) - u(y)|^2}{|x - y|^{n+2s}} \, dx \, dy < +\infty \right\},
\]

where

\[
Q := \mathbb{R}^{2n} \setminus (\mathbb{R}^n \setminus \Omega)^2.
\]

As customary, by \(u \in L^2(\Omega) \) in (2.1) we mean that the restriction of the function \(u \) to \(\Omega \) belongs to \(L^2(\Omega) \) (we stress that functions in \(H^n_\Omega \) are defined in the whole of \(\mathbb{R}^n \)). Also, all functions considered will be implicitly assumed to be measurable.

Furthermore, we define

\[
X_{\alpha,\beta} = X_{\alpha,\beta}(\Omega) := \begin{cases} H^1(\Omega) & \text{if } \beta = 0, \\ H^n_\Omega & \text{if } \alpha = 0, \\ H^1(\Omega) \cap H^n_\Omega & \text{if } \alpha \beta \neq 0. \end{cases}
\]

In light of this definition, \(X_{\alpha,\beta} \) is a Hilbert space with respect to the scalar product

\[
(u,v)_{X_{\alpha,\beta}} := \int_\Omega u(x)v(x) \, dx + \alpha \int_\Omega \nabla u(x) \cdot \nabla v(x) \, dx + \frac{\beta}{2} \int_\Omega \frac{(u(x) - u(y))(v(x) - v(y))}{|x - y|^{n+2s}} \, dx \, dy,
\]

for every \(u, v \in X_{\alpha,\beta} \).

We also define the seminorm

\[
|u|_{X_{\alpha,\beta}}^2 := \frac{\alpha}{2} \int_\Omega |
abla u(x)|^2 \, dx + \frac{\beta}{4} \int_\Omega \frac{|u(x) - u(y)|^2}{|x - y|^{n+2s}} \, dx \, dy.
\]
From the compact embeddings of the spaces $H^1(\Omega)$ and H^s_0 (see e.g. Corollary 7.2 in [DNPV12] when $\alpha = 0$), we deduce the compact embedding of $X_{\alpha,\beta}$ into $L^p(\Omega)$, for every $p \in [1, 2^*)$ if $\alpha \neq 0$, and for every $p \in [1, 2^*_s)$ if $\alpha = 0$.

We say that $u \in X_{\alpha,\beta}$ is a solution of (1.9) if

$$
\alpha \int_{\Omega} \nabla u(x) \cdot \nabla v(x) \, dx + \frac{\beta}{2} \int_{\Omega} \frac{(u(x) - u(y))(v(x) - v(y))}{|x - y|^{n+2s}} \, dx \, dy
$$

(2.5)

$$
= \int_{\Omega} \left((m(x) - \mu(x)u(x))u(x) + \tau(x) J * u(x) \right) v(x) \, dx
$$

for all functions $v \in X_{\alpha,\beta}$.

Now we show that among all the functions in $H^s_0(\Omega)$, the ones minimizing the Gagliardo seminorm are those satisfying the nonlocal Neumann condition in (1.6). This is a useful result in itself, which also clarifies the structural role of the Neumann condition introduced in [DROV17]:

Theorem 2.1. Let $u : \mathbb{R}^n \to \mathbb{R}$ with $u \in L^1(\Omega)$, and set, for all $x \in \mathbb{R}^n \setminus \overline{\Omega}$,

$$
E_u(x) := \int_{\Omega} \frac{u(z)}{|x - z|^{n+2s}} \, dz.
$$

Then, if we define

$$
\tilde{u}(x) := \begin{cases} u(x) & \text{if } x \in \Omega, \\
\frac{E_u(x)}{E_1(x)} & \text{if } x \in \mathbb{R}^n \setminus \overline{\Omega},
\end{cases}
$$

(2.6)

we have

$$
\int_{\Omega} \int_{\Omega} \frac{|\tilde{u}(x) - \tilde{u}(y)|^2}{|x - y|^{n+2s}} \, dx \, dy \leq \int_{\Omega} \int_{\Omega} \frac{|u(x) - u(y)|^2}{|x - y|^{n+2s}} \, dx \, dy.
$$

(2.7)

Also, the equality in (2.7) holds if and only if u satisfies (1.6).

Proof. We remark that the notation E_1 in (2.6) stands for E_u when $u \equiv 1$. Moreover, without loss of generality, we can suppose that

$$
\int_{\Omega} \int_{\Omega} \frac{|u(x) - u(y)|^2}{|x - y|^{n+2s}} \, dx \, dy < +\infty,
$$

otherwise the claim in (2.7) is obviously true.

In addition,

$$
\int_{\Omega} \int_{\Omega} \frac{|\tilde{u}(x) - \tilde{u}(y)|^2}{|x - y|^{n+2s}} \, dx \, dy = \int_{\Omega} \int_{\Omega} \frac{|u(x) - u(y)|^2}{|x - y|^{n+2s}} \, dx \, dy,
$$

so we only need to consider the integral on $(\mathbb{R}^n \setminus \Omega) \times \Omega$ (being the integral on $\Omega \times (\mathbb{R}^n \setminus \Omega)$ the same).

Setting $\varphi(x) := u(x) - \tilde{u}(x)$, for every $y \in \mathbb{R}^n \setminus \overline{\Omega}$ we have

$$
\int_{\Omega} \frac{|u(x) - u(y)|^2}{|x - y|^{n+2s}} \, dx = \int_{\Omega} \frac{|u(x) - \tilde{u}(y) - \varphi(y)|^2}{|x - y|^{n+2s}} \, dx
$$

(2.9)

$$
= \int_{\Omega} \frac{|u(x) - \tilde{u}(y)|^2 - 2\varphi(y)(u(x) - \tilde{u}(y)) + |\varphi(y)|^2}{|x - y|^{n+2s}} \, dx.
$$

Now, we observe that, for every $y \in \mathbb{R}^n \setminus \overline{\Omega}$,

$$
\int_{\Omega} \frac{u(x) - \tilde{u}(y)}{|x - y|^{n+2s}} \, dx = E_u(y) - \frac{E_u(y)}{E_1(y)} E_1(y) = 0.
$$
Accordingly, (2.9) becomes
\[
\int_\Omega \frac{|u(x) - u(y)|^2}{|x - y|^{n+2s}} \, dx = \int_\Omega \frac{|\tilde{u}(x) - \tilde{u}(y)|^2 + |\varphi(y)|^2}{|x - y|^{n+2s}} \, dx \geq \int_\Omega \frac{|\tilde{u}(x) - \tilde{u}(y)|^2}{|x - y|^{n+2s}} \, dx,
\]
for every \(y \in \mathbb{R}^n \setminus \Omega \), and the equality holds if and only if \(\varphi(y) = 0 \). Integrating over \(\mathbb{R}^n \setminus \Omega \) (or, equivalently, on \(\mathbb{R}^n \setminus \overline{\Omega} \)), we get
\[
\int_{\mathbb{R}^n \setminus \Omega} \int_{\mathbb{R}^n \setminus \Omega} \frac{|u(x) - u(y)|^2}{|x - y|^{n+2s}} \, dx \, dy \geq \int_{\mathbb{R}^n \setminus \Omega} \int_{\mathbb{R}^n \setminus \Omega} \frac{|\tilde{u}(x) - \tilde{u}(y)|^2}{|x - y|^{n+2s}} \, dx \, dy,
\]
and the equality holds if and only if \(\varphi \equiv 0 \) in \(\mathbb{R}^n \setminus \Omega \). From this observation and (2.8) we obtain (2.7), as desired. \(\square \)

3. Existence results and proofs of Theorems 1.1 and 1.2

The proof of Theorem 1.1 is based on a minimization argument. More precisely, given the functional setting introduced in Section 2 (recall in particular (2.2)), in order to deal with problem (1.9), we consider the energy functional \(\mathcal{E} : X_{\alpha, \beta} \rightarrow \mathbb{R} \) defined as

\[
\mathcal{E}(u) := \frac{\alpha}{2} \int_\Omega |\nabla u|^2 \, dx + \frac{\beta}{4} \int_\Omega \frac{|u(x) - u(y)|^2}{|x - y|^{n+2s}} \, dx \, dy + \int_\Omega \left(\frac{\mu |u|^3}{3} - \frac{m u^2}{2} - \frac{\tau u(J \ast u)}{2} \right) \, dx.
\] (3.1)

As a technical remark, we observe that our objective here is to distinguish between trivial and nontrivial solutions, to detect appropriate conditions for the survival of the solutions and we do not indulge in the distinction nonnegative and nontrivial versus strictly positive solutions. For the reader interested in this point, we mention however that, under appropriate conditions, one could develop a regularity theory (see e.g. Theorems 3.1.11 and 3.1.12 in [GM02]) that allows the use of a strong maximum principle for smooth solutions (see e.g. Theorem 3.1.4 in [GM02]).

Now, we prove that the functional in (3.1) is the one associated with (1.9):

Lemma 3.1. The Euler-Lagrange equation associated to the energy functional \(\mathcal{E} \) introduced in (3.1) at a non-negative function \(u \) is (1.9).

Proof. We compute the first variation of \(\mathcal{E} \), and we focus on the convolution term in (3.1) (being the computation for the other terms standard, see in particular Proposition 3.7 in [DROV17] to deal with the term involving the Gagliardo seminorm, which is the one producing the nonlocal Neumann condition).

For this, we set
\[
\mathcal{J}(u) := \frac{\tau}{2} \int_\Omega u(x)(J \ast u(x)) \, dx.
\]

For any \(\phi \in X_{\alpha, \beta} \) and \(\varepsilon \in (-1, 1) \), we have
\[
\mathcal{J}(u + \varepsilon \phi) = \frac{\tau}{2} \int_\Omega (u + \varepsilon \phi)(x)(J \ast (u + \varepsilon \phi))(x) \, dx
= \frac{\tau}{2} \int_\Omega u(x)(J \ast u)(x) + \varepsilon \left[u(x)(J \ast \phi)(x) + \phi(x)(J \ast u)(x) \right] + \varepsilon^2 \phi(x)(J \ast \phi)(x) \, dx.
\]

Accordingly,
\[
\left. \frac{d \mathcal{J}}{d \varepsilon} (u + \varepsilon \phi) \right|_{\varepsilon = 0} = \frac{\tau}{2} \int_\Omega u(x)(J \ast \phi)(x) + \phi(x)(J \ast u)(x) \, dx.
\] (3.2)
Now, since \(J \) is even (recall (1.2)), we see that
\[
\int_{\Omega} u(x)(J \ast \phi)(x) \, dx = \int_{\Omega} u(x) \left(\int_{\Omega} J(x - y) \phi(y) \, dy \right) \, dx = \int_{\Omega} \phi(y) \left(\int_{\Omega} J(y - x) u(x) \, dx \right) \, dy = \int_{\Omega} \phi(x) (J \ast u)(x) \, dx.
\]
Using this in (3.2) we obtain that
\[
\frac{d\mathcal{J}}{d\varepsilon}(u + \varepsilon \phi) \bigg|_{\varepsilon = 0} = \tau \int_{\Omega} \phi(x) (J \ast u)(x) \, dx,
\]
which concludes the proof.

As a consequence of Lemma 3.1, to find solutions of (1.9), we will consider the minimizing problem for the functional \(\mathcal{E} \) in (3.1). First, we show the following useful inequality:

Lemma 3.2. Let \(v,w \in L^2(\Omega) \). Then
\[
\int_{\Omega} |v(x)| |(J \ast w)(x)| \, dx \leq \|v\|_{L^2(\Omega)} \|w\|_{L^2(\Omega)}.
\]

Proof. By the Cauchy-Schwarz Inequality, we have
\[
\int_{\Omega} |v(x)| |(J \ast w)(x)| \, dx \leq \|v\|_{L^2(\Omega)} \|J \ast w\|_{L^2(\Omega)}.
\]
Now, using the Young Inequality for convolutions with exponents 1 and 2 (see e.g. Theorem 9.1 in [WZ15]), we obtain
\[
\|J \ast w\|_{L^2(\Omega)} = \|J \ast (w \chi_{\Omega})\|_{L^2(\mathbb{R}^n)} \leq \|J\|_{L^1(\mathbb{R}^n)} \| w \chi_{\Omega}\|_{L^2(\mathbb{R}^n)} = \|w\|_{L^2(\Omega)},
\]
where (1.3) has been also used. This and (3.4) give (3.3), as desired.

We are now able to provide a minimization argument for the functional in (3.1):

Proposition 3.3. Assume that \(m \in L^q(\Omega) \), for some \(q \in \left(q_\alpha, +\infty \right] \), where \(q_\alpha \) has been introduced in (1.10), and that
\[
(m + \tau)^3 \mu^{-2} \in L^1(\Omega).
\]
Let also
\[
p := \frac{2q}{q - 1}.
\]
Then, the functional \(\mathcal{E} \) in (3.1) attains its minimum in \(X_{\alpha,\beta} \). The minimal value is the same as the one occurring among the functions \(u \in L^p(\Omega) \) for which
\[
\int_{\Omega} \frac{|u(x) - u(y)|^2}{|x - y|^{n+2s}} \, dx \, dy < +\infty
\]
and such that \(\mathcal{N}_s u = 0 \) a.e. outside \(\Omega \).

Moreover, there exists a nonnegative minimizer \(u \), and it is a solution of (1.9).

Proof. First, we notice that \(p \in \left[2, \frac{2q}{q - 1} \right) \) and
\[
\frac{2}{p} + \frac{1}{q} = 1.
\]
By (3.3) we have that
\[
\int_{\Omega} \frac{\tau u(J \ast u)}{2} \, dx \leq \frac{\tau}{2} \|u\|_{L^2(\Omega)} \|u\|_{L^2(\Omega)} = \frac{\tau}{2} \int_{\Omega} |u(x)|^2 \, dx.
\]
Moreover, we use the Young Inequality with exponents 3/2 and 3 to obtain that
\[
\frac{(m + \tau)u^2}{2} = \mu^2 u^2 \cdot \frac{m + \tau}{2\alpha} \cdot \frac{2 |m + \tau|^3}{\mu^2} \leq \frac{\mu |u|^3}{6} + \frac{2 |m + \tau|^3}{\mu^2}.
\]
From this and (3.7) we have that
\[
\int_\Omega \frac{\mu |u|^3}{6} - \frac{mu^2}{2} - \tau u(J \ast u) \, dx \geq \int_\Omega \frac{\mu |u|^3}{6} - \frac{mu^2}{2} - \tau \frac{u^2}{2} \, dx \geq -\frac{2}{3} \int_\Omega \frac{|m + \tau|^3}{\mu^2} \, dx =: -\kappa.
\]
We point out that the quantity \(\kappa \) is finite, thanks to (3.5), and it does not depend on \(u \).

Recalling (3.1), formula (3.8) implies that
\[
\mathcal{E}(u) \geq \frac{\alpha}{2} \int_\Omega |\nabla u|^2 \, dx + \frac{\beta}{4} \int_\Omega \int_\Omega \frac{|u(x) - u(y)|^2}{|x - y|^{n+2s}} \, dx \, dy + \int_\Omega \mu |u|^3 / 6 \, dx - \kappa.
\]
Now, we take a minimizing sequence \(u_j \), and we observe that, in light of Theorem 2.1, we can assume that
\[
\mathcal{N}_s u_j = 0 \in \mathbb{R}^n \setminus \Omega, \quad \text{for every } j \in \mathbb{N}.
\]
We can also suppose that
\[
0 = \mathcal{E}(0) \geq \mathcal{E}(u_j)
\]
\[
\geq \frac{\alpha}{2} \int_\Omega |\nabla u_j|^2 \, dx + \frac{\beta}{4} \int_\Omega \int_\Omega \frac{|u_j(x) - u_j(y)|^2}{|x - y|^{n+2s}} \, dx \, dy + \int_\Omega \mu |u_j|^3 / 6 \, dx - \kappa,
\]
where (3.9) has been also exploited. This implies that
\[
\frac{\alpha}{2} \int_\Omega |\nabla u_j|^2 \, dx + \frac{\beta}{4} \int_\Omega \int_\Omega \frac{|u_j(x) - u_j(y)|^2}{|x - y|^{n+2s}} \, dx \, dy + \int_\Omega \mu |u_j|^3 / 6 \, dx \leq \kappa.
\]
As a consequence,
\[
\frac{\alpha}{2} \int_\Omega |\nabla u_j|^2 \, dx + \frac{\beta}{4} \int_\Omega \int_\Omega \frac{|u_j(x) - u_j(y)|^2}{|x - y|^{n+2s}} \, dx \, dy \leq \kappa. \tag{3.11}
\]
Moreover, by the Hölder Inequality with exponents 3/2 and 3,
\[
\|u_j\|_{L^2(\Omega)}^2 \leq \left(\int_\Omega |u_j|^3 \, dx \right)^{2/3} |\Omega|^{1/3} \leq \left(\int_\Omega \mu |u_j|^3 / 6 \, dx \right)^{2/3} 6^{2/3} |\Omega|^{1/3} \mu^{2/3}
\leq \left(\int_\Omega \mu |u_j|^3 / 6 \, dx \right)^{2/3} 6^{2/3} |\Omega|^{1/3} \mu^{2/3} \leq \left(\int_\Omega \mu |u_j|^3 / 6 \, dx \right)^{2/3} 6^{2/3} |\Omega|^{1/3} \mu^{2/3} \kappa.
\]
From this and (3.11), and using compactness arguments, we can assume, up to a subsequence, that \(u_j \) converges to some \(u \in L^p(\Omega) \) (for every \(p \in [1, 2^*_s] \)) if \(\alpha = 0 \), and for every \(p \in [1, 2^*_s] \) if \(\alpha \neq 0 \), see e.g. Corollary 7.2 in [DNPV12] and a.e. in \(\Omega \), and also \(|u_j| \leq h \) for some \(h \in L^p(\Omega) \) for every \(j \in \mathbb{N} \) (see e.g. Theorem IV.9 in [Bre83]).

Hence, if \(x \in \mathbb{R}^n \setminus \Omega \), by the Dominated Convergence Theorem,
\[
\int_\Omega \frac{u_j(y)}{|x - y|^{n+2s}} \, dy \to \int_\Omega \frac{u(y)}{|x - y|^{n+2s}} \, dy,
\]
as \(j \to +\infty \). Accordingly, in light of (3.10), when \(x \in \mathbb{R}^n \setminus \Omega \), we have
\[
\int_\Omega \frac{u_j(y)}{|x - y|^{n+2s}} \, dy \to \int_\Omega \frac{u(y)}{|x - y|^{n+2s}} \, dy
\]
\[
\int_\Omega \frac{u_j(y)}{|x - y|^{n+2s}} \, dy \to \int_\Omega \frac{u(y)}{|x - y|^{n+2s}} \, dy
\]
\[
= u(x),
\]
(3.12)
as $j \nearrow +\infty$ (we stress that till now u was only defined in Ω, hence the last step in (3.12) is instrumental to define u also outside Ω). As a consequence, we obtain that u_j converges a.e. in \mathbb{R}^n.

Now, recalling (3.6), we have that

$$\limsup_{j \nearrow +\infty} \left| \int_\Omega m(u_j^2 - u^2) \, dx \right| \leq \limsup_{j \nearrow +\infty} \int_\Omega |m(u_j - u)(u_j + u)| \, dx = \limsup_{j \nearrow +\infty} \int_\Omega m_j u_j - u\|u_j - u\|_{L^p(\Omega)} - u\|_L^p(\Omega) = 0,$$

so that

$$\lim_{j \nearrow +\infty} \int_\Omega m(u_j^2 - u^2) \, dx = 0.$$

Also,

$$\int_\Omega (u_j (J \ast u_j) - u(J \ast u)) \, dx = \int_\Omega (u_j - u)(J \ast u_j) \, dx + \int_\Omega (J \ast u_j - J \ast u) \, dx.$$

Using (3.3) with $v := u_j - u$ and $w := u$, we obtain

$$\limsup_{j \nearrow +\infty} \int_\Omega |u_j - u| \, |J \ast u_j| \, dx \leq \limsup_{j \nearrow +\infty} \|u_j - u\|_{L^2(\Omega)} \|u_j\|_{L^2(\Omega)} = 0.$$

Similarly, exploiting (3.3) with $v := u$ and $w := u_j - u$, we have

$$\limsup_{j \nearrow +\infty} \int_\Omega |J \ast u_j - J \ast u| \, |u_j - u| \, dx = \limsup_{j \nearrow +\infty} \int_\Omega |J \ast (u_j - u)| \, |u| \, dx \leq \limsup_{j \nearrow +\infty} \|u_j - u\|_{L^2(\Omega)} \|u\|_{L^2(\Omega)} = 0.$$

From (3.13), (3.14) and (3.15) we conclude that

$$\lim_{j \nearrow +\infty} \int_\Omega (u_j (J \ast u_j) - u(J \ast u)) \, dx = 0.$$

We also have, by the Fatou Lemma and the lower semicontinuity of the L^2-norm,

$$\liminf_{j \nearrow +\infty} \int_\Omega \frac{|u_j(x) - u_j(y)|^2}{|x - y|^{n+2s}} \, dx \, dy \geq \int_\Omega \frac{|u(x) - u(y)|^2}{|x - y|^{n+2s}} \, dx \, dy,$$

$$\liminf_{j \nearrow +\infty} \int_\Omega |
abla u_j|^2 \, dx \geq \int_\Omega |\nabla u|^2 \, dx$$

and

$$\liminf_{j \nearrow +\infty} \int_\Omega \frac{\mu_j^3}{3} \, dx \geq \int_\Omega \frac{\mu_j^3}{3} \, dx.$$

Gathering together these observations, we conclude that

$$\liminf_{j \nearrow +\infty} \mathcal{E}(u_j) \geq \mathcal{E}(u),$$

and therefore u is the desired minimum.

Also, since $\mathcal{E}(|u|) \leq \mathcal{E}(u)$, we can suppose that u is nonnegative. Finally, u is a solution of (1.9) thanks to Lemma 3.1.

□

The claim of Theorem 1.1 follows from Proposition 3.3.

Now, we provide the proof of Theorem 1.2, relying also on the existence result in Theorem 1.1:
Proof of Theorem 1.2. Thanks to Theorem 1.1, we know that there exists a nonnegative solution to (1.9).

We now prove the claim in (i). For this, we assume that $m \equiv 0$ and $\tau = 0$, and we argue towards a contradiction, supposing that there exists a nontrivial solution u of (1.9).

We notice that, since $u \geq 0$ and $\mu \geq \mu > 0$ in Ω,

$$\int_\Omega \mu u^3 \, dx > 0.$$

As a consequence, taking $v := u$ in (2.5) we obtain that

$$0 \leq \alpha \int_\Omega |\nabla u|^2 \, dx + \frac{\beta}{2} \int_\Omega \frac{|u(x) - u(y)|^2}{|x - y|^{n+2s}} \, dx \, dy = -\int_\Omega \mu u^3 \, dx < 0,$$

which is a contradiction, and therefore the claim in (i) is proved.

Now we deal with the claim in (ii). From Theorem 1.1 we know that there exists a nonnegative solution u to (1.9) which is obtained by the minimization of the functional \mathcal{E} in (3.1) (recall Proposition 3.3). We claim that

$$(3.16) \quad u \text{ does not vanish identically.}$$

To prove this, we show that

$$(3.17) \quad 0 \text{ is not a minimizer for } \mathcal{E}.\quad \Box$$

For this, we consider the constant function $v \equiv 1$ and a small parameter $\varepsilon > 0$. Then

$$\mathcal{E}(\varepsilon v) = -\frac{\varepsilon^2}{2} \left[\int_\Omega m + \tau (J \ast 1) \, dx \right] + \frac{\varepsilon^3}{3} \int_\Omega \mu \, dx$$

$$\leq -c_1 \varepsilon^2 + c_2 \varepsilon^3,$$

where

$$c_1 := \frac{1}{2} \int_\Omega m + \tau (J \ast 1) \, dx \quad \text{and} \quad c_2 := \frac{1}{3} \|\mu\|_{L^1(\Omega)}.$$

We remark that $c_1 > 0$, thanks to (1.11), and $c_2 \in (0, +\infty)$, in light of (1.12). Then, for small ε we have $\mathcal{E}(\varepsilon v) < 0 = \mathcal{E}(0)$. This implies (3.17), which in turn proves (3.16).

4. Analysis of the eigenvalue problem in (1.13) and proof of Theorem 1.4

In this section we focus on the proof of Theorem 1.4. For this, we need to exploit the analysis of the eigenvalue problem in (1.13) (some technical details are deferred to the article [DPLV] for the reader’s convenience).

The first result towards the proof of Theorem 1.4 concerns the existence of two unbounded sequences of eigenvalues, one positive and one negative:

Proposition 4.1. Let

$$(4.1) \quad m \in L^q(\Omega), \quad \text{for some } q \in \left(q, +\infty \right],$$

where q is given in (1.10). Suppose that $m^+, m^- \neq 0$ and that

$$(4.2) \quad \int_\Omega m(x) \, dx \neq 0.$$

Then, problem (1.13) admits two unbounded sequences of eigenvalues:

$$\cdots \leq \lambda_{-2} \leq \lambda_{-1} < \lambda_0 = 0 < \lambda_1 \leq \lambda_2 \leq \cdots .$$

In particular, if

$$\int_\Omega m(x) \, dx < 0,$$
then

\[
\lambda_1 = \min_{u \in X_{\alpha, \beta}} \left\{ [u]_{X_{\alpha, \beta}}^2 \text{ s.t. } \int_{\Omega} mu^2 \, dx = 1 \right\}
\]

where we use the notation in (2.4). If instead

\[
\int_{\Omega} m(x) \, dx > 0,
\]

then

\[
\lambda_{-1} = - \min_{u \in X_{\alpha, \beta}} \left\{ [u]_{X_{\alpha, \beta}}^2 \text{ s.t. } \int_{\Omega} mu^2 \, dx = -1 \right\}.
\]

The proof of Proposition 4.1 is contained in [DPLV].

The first positive eigenvalue \(\lambda_1\), as given by Proposition 4.1, has the following properties:

Proposition 4.2. Let \(m \in L^q(\Omega)\), for some \(q \in (\frac{q}{2}, +\infty]\), where \(q\) is given in (1.10). Suppose that \(m^+ \not\equiv 0\) and \(\int_{\Omega} m \, dx < 0\).

Then, the first positive eigenvalue \(\lambda_1\) of (1.13) is simple, and the first eigenfunction \(e\) can be taken such that \(e \geq 0\).

A similar statement holds if \(m^- \not\equiv 0\) and \(\int_{\Omega} m \, dx > 0\).

See [DPLV] for the proof of Proposition 4.2.

With this, we are now ready to give the proof of Theorem 1.4:

Proof of Theorem 1.4. Thanks to Theorem 1.1, we know that there exists a nonnegative solution to (1.9).

We first prove the claim in (i). For this, we assume that \(m \leq -\tau\), and we suppose by contradiction that there exists a nontrivial solution \(u\) of (1.9).

We observe that, applying (3.3) with \(v := u\) and \(w := u\),

\[
\tau \int_{\Omega} u (J \ast u) \, dx \leq \tau \|u\|_{L^2(\Omega)}^2 = \tau \int_{\Omega} u^2 \, dx.
\]

Hence, taking \(u\) as a test function in (2.5), using (4.4) and recalling that \(u \geq 0\) and \(\mu \geq \underline{\mu}\), we get

\[
0 \leq \alpha \int_{\Omega} |\nabla u|^2 \, dx + \frac{\beta}{2} \int_{\Omega} \int_{\Omega} \frac{|u(x) - u(y)|^2}{|x-y|^{n+2s}} \, dx \, dy
= \int_{\Omega} (m - \mu u)u^2 \, dx + \tau \int_{\Omega} (J \ast u)u \, dx
\leq -\tau \int_{\Omega} u^2 \, dx - \mu \int_{\Omega} u^3 \, dx + \tau \int_{\Omega} u^2 \, dx
< 0.
\]

This is a contradiction, whence the first claim is proved.

Now we show the claim in (ii). From Theorem 1.1 we know that there exists a nonnegative solution \(u\) to (1.9) which is obtained by the minimization of the functional \(\mathcal{E}\) in (3.1) (recall Proposition 3.3). We claim that

\[
(4.5) \quad u \text{ does not vanish identically.}
\]

To prove this, we show that

\[
(4.6) \quad 0 \text{ is not a minimizer for } \mathcal{E}.
\]
For this, we take an eigenfunction e associated to the first positive eigenvalue λ_1, as given by Proposition 4.2. Namely, we take $e \in X_{\alpha,\beta}$ such that

$$
\alpha \int_\Omega \nabla e \cdot \nabla v \, dx + \frac{\beta}{2} \iint_Q \frac{(e(x) - e(y))(v(x) - v(y))}{|x - y|^{n+2s}} \, dx \, dy = \lambda_1 \int_\Omega m v \, dx,
$$

for every $v \in X_{\alpha,\beta}$.

By taking $v := e$ in (4.7), we obtain that

$$
\alpha \int_\Omega |\nabla e|^2 \, dx + \frac{\beta}{2} \iint_Q \frac{|e(x) - e(y)|^2}{|x - y|^{n+2s}} \, dx \, dy = \lambda_1 \int_\Omega m e \, dx.
$$

We also remark that, thanks to (1.15), we can use the characterization of λ_1 given in formula (4.3) of Proposition 4.1, and hence we can normalize e in such a way that

$$
\int_\Omega m e^2 \, dx = 1.
$$

By Corollary 1.4 in [DPLV], we know that e is bounded.

We also take $\varepsilon > 0$. Then, by (4.8) and (4.9),

$$
\mathcal{E}(\varepsilon) = \frac{\varepsilon^2}{2} \left[\alpha \int_\Omega |\nabla e|^2 \, dx + \frac{\beta}{2} \iint_Q \frac{|e(x) - e(y)|^2}{|x - y|^{n+2s}} \, dx \, dy
- \int_\Omega m e^2 \, dx - \int_\Omega \tau(J \ast e) e \, dx \right] + \frac{\varepsilon^3}{3} \int_\Omega \mu e^3 \, dx
$$

$$
= \frac{\varepsilon^2}{2} \left[(\lambda_1 - 1) \int_\Omega m e^2 \, dx - \int_\Omega \tau(J \ast e) e \, dx \right] + \frac{\varepsilon^3}{3} \int_\Omega \mu e^3 \, dx
$$

$$
= \frac{\varepsilon^2}{2} \left[(\lambda_1 - 1) - \int_\Omega \tau(J \ast e) e \, dx \right] + \frac{\varepsilon^3}{3} \int_\Omega \mu e^3 \, dx
$$

$$
= - \frac{c_1}{2} \varepsilon^2 + \frac{c_2}{3} \varepsilon^3,
$$

where

$$
c_1 := 1 - \lambda_1 + \tau \int_\Omega (J \ast e) e \, dx \quad \text{and} \quad c_2 := \int_\Omega \mu e^3 \, dx.
$$

We notice that $c_1 > 0$, thanks to (1.15), and $c_2 \in \mathbb{R}$, in light of (4.10). As a consequence, for small ε we have that $\mathcal{E}(\varepsilon) < 0 = \mathcal{E}(0)$, which proves (4.6). In turn, this implies (4.5), thus completing the proof of (ii).

5. Optimization on m and proofs of Theorems 1.5, 1.7, 1.8, 1.9 and 1.10

This section is devoted to the understanding of the optimal configuration of the resource m, which is based on the analysis of the minimal eigenvalue problem given in (1.17).

First of all, we will see that the optimal resource distribution attaining the minimal eigenvalue in (1.17) is of bang-bang type, namely concentrated on its minimal and maximal values \underline{m} and \overline{m}. This property is based on the so called “bathtub principle”, see Lemma 3.3 in [DGT10] (or [LL97, LY06]), that we recall here for the convenience of the reader:

Lemma 5.1. Let $f \in L^1(\Omega)$ and \mathcal{M} be as in (1.16). Then, the maximization problem

$$
\sup_{m \in \mathcal{M}} \int_\Omega f m \, dx
$$

is attained by a suitable $m \in \mathcal{M}$ given by

$$
m := \overline{m} \chi_D - \underline{m} \chi_{\Omega \setminus D},
$$
for some subset \(D \subset \Omega \) such that
\[
|D| = \frac{m + m_0}{m + m_0} |\Omega|.
\]

We now show that, in the light of Lemma 5.1, to optimize the eigenvalue \(\lambda_1 \) in (1.17), we have to consider \(m \in \mathcal{M} \) of bang-bang type. More precisely, we define
\[
\tilde{\mathcal{M}} = \tilde{\mathcal{M}}(m, m_0) := \left\{ m \in \mathcal{M} \text{ s.t. } m := m\chi_D - m\chi_{\Omega\setminus D}, \right. \\
\left. \text{for some subset } D \subset \Omega \text{ with } |D| = \frac{m + m_0}{m + m_0} |\Omega| \right\},
\]
and we have the following result:

Proposition 5.2. We have that
\[
\hat{\lambda} = \inf_{m \in \tilde{\mathcal{M}}} \lambda_1(m).
\]

Proof. We define
\[
\lambda := \inf_{m \in \tilde{\mathcal{M}}} \lambda_1(m).
\]
and we claim that
\[
\hat{\lambda} = \lambda.
\]
To this end, we observe that, since \(\tilde{\mathcal{M}} \subset \mathcal{M} \), we have that
\[
\lambda \leq \hat{\lambda}.
\]
Moreover, by the definition of \(\hat{\lambda} \) in (1.17), we have that for every \(\varepsilon > 0 \) there exists \(m_\varepsilon \in \mathcal{M} \) such that \(\hat{\lambda} + \varepsilon \geq \lambda_1(m_\varepsilon) \). Then, we denote by \(e_\varepsilon \) the nonnegative eigenfunction associated to \(\lambda_1(m_\varepsilon) \), and we conclude that
\[
\hat{\lambda} + \varepsilon \geq \lambda_1(m_\varepsilon) = \frac{[e_\varepsilon]^2_{X_{\alpha,\beta}}}{\int_{\Omega} m_\varepsilon e_\varepsilon^2 dx}.
\]
We also observe that, in light of Lemma 5.1,
\[
\int_{\Omega} m_\varepsilon e_\varepsilon^2 dx \leq \int_{\Omega} (m\chi_{\Omega_\varepsilon} - m\chi_{\Omega\setminus D_\varepsilon}) e_\varepsilon^2 dx,
\]
for a suitable \(D_\varepsilon \subset \Omega \) satisfying (5.1). Plugging this information into (5.5), and letting \(m_\varepsilon^* := m\chi_{\Omega_\varepsilon} - m\chi_{\Omega\setminus D_\varepsilon} \), we obtain that
\[
\hat{\lambda} + \varepsilon \geq \frac{[e_\varepsilon]^2_{X_{\alpha,\beta}}}{\int_{\Omega} (m\chi_{\Omega_\varepsilon} - m\chi_{\Omega\setminus D_\varepsilon}) e_\varepsilon^2 dx} \geq \lambda_1(m_\varepsilon^*) \geq \lambda.
\]
Hence, taking the limit as \(\varepsilon \) goes to 0, we get that \(\hat{\lambda} \geq \lambda \). This, combined with (5.4), establishes (5.3), as desired.

We recall that many biological models describe optimal resources of bang-bang type, see e.g. [CC98, CC03, LY06, LLNP16, NY18, MNP20].

In light of Proposition 5.2, from now on, when optimizing the eigenvalue \(\lambda_1(m) \) as in (1.17), we will suppose that \(m \) belongs to the set \(\tilde{\mathcal{M}} \) introduced in (5.2). Now we provide the proof of Theorem 1.5.
Proof of Theorem 1.5. We take a ball $B \subset \Omega$ such that
\begin{equation}
|B| \leq \frac{d_0}{2} |\Omega|.
\end{equation}
We can assume, up to a translation, that $\Omega \subset \{x_n > 0\}$, and, for every $\xi \geq 0$, we define the set
$$
\Omega_\xi := B \cup (\{x_n < \xi\} \cap \Omega).
$$
We observe that $|\Omega_\xi|$ is nondecreasing with respect to ξ, and we define
$$
\xi^* := \sup \left\{ \xi \geq 0 : |\Omega_\xi| < \frac{m + m_0}{m + m'} |\Omega| \right\}.
$$
We claim that, for every $\xi > 0$,
\begin{equation}
\lim_{\xi \to \xi_0} |\Omega_\xi| = |\Omega_{\xi_0}|.
\end{equation}
To this end, we first show that
\begin{equation}
\lim_{\xi \to \xi_0} \chi_{\Omega_\xi}(x) = \chi_{\Omega_{\xi_0}}(x) \quad \text{for a.e. } x \in \Omega.
\end{equation}
For this, we consider several cases. If $x = (x', x_n) \in \Omega_\xi$, then either $x \in B$ or $x_n < \xi$. If $x \in B$, then $x \in \Omega_\xi$ for each $\xi > 0$, and accordingly $\chi_{\Omega_\xi}(x) = 1 = \chi_{\Omega_{\xi_0}}(x)$, which implies (5.8).

If instead $x_n < \xi$, then there exists $\hat{\xi} \in (x_n, \xi)$ such that, for every $\xi \in (\hat{\xi}, \xi)$, we have that $\chi_{\Omega_\xi}(x) = 1 = \chi_{\Omega_{\xi_0}}(x)$, which proves (5.8) also in this case.

On the other hand, if $x \notin \Omega_\xi$, then $x \notin B$ and $x_n \geq \xi$. We notice that the set $\{x_n = \xi\}$ has zero Lebesgue measure, and therefore, in order to prove (5.8), we can assume that $x_n > \xi$. Then, there exists $\hat{\xi} \in (\xi, x_n)$ such that, for every $\xi \in (\xi, \hat{\xi})$, we have that $x \notin \Omega_\xi$, and so $\chi_{\Omega_\xi}(x) = 0 = \chi_{\Omega_{\xi_0}}(x)$. This completes the proof of (5.8).

By (5.8) and the Dominated Convergence Theorem we obtain (5.7), as desired.

We also notice that if $\xi = 0$, then $\Omega_\xi = B$, and therefore, by (1.18) and (5.6),
$$
|\Omega_\xi| = |B| \leq \frac{d_0}{2} |\Omega| \leq \frac{m + m_0}{2(m + m')} |\Omega|.
$$
This and the continuity statement in (5.7) guarantee that $\xi^* > 0$.

Moreover, the continuity in (5.7) implies that
\begin{equation}
|\Omega_{\xi^*}| = \frac{m + m_0}{m + m'} |\Omega|.
\end{equation}

Now, we set $D := \Omega_{\xi^*}$, and we observe that D satisfies (5.1), thanks to (5.9). Also, we take $v \in C_0^\infty(B)$, with $v \neq 0$. Then, recalling that $B \subset D$,
$$
\Lambda \leq \frac{[v]^2_{X_{\alpha,\beta}}}{\int_{\Omega} (m \chi_D - m \chi_{\Omega, D}) v^2 \, dx} = \frac{[v]^2_{X_{\alpha,\beta}}}{m \int_B v^2 \, dx} \leq \frac{C}{m},
$$
for some positive constant C depending on Ω and d_0. This completes the proof of Theorem 1.5.

With the aid of Theorem 1.5 we now prove Corollary 1.6, by arguing as follows:

Proof of Corollary 1.6. We notice that
$$
\lim_{m \to \infty} \frac{m + m_0}{2m} = \frac{1}{2}.
$$
By taking $m = \underline{m} = \overline{m}$, this implies that
$$
\frac{m + m_0}{m + \underline{m}} = \frac{m + m_0}{2m} \geq \frac{1}{4}.
$$
as long as m is large enough. This says that the assumption (1.18) in Theorem 1.5 is satisfied with $d_0 := \frac{1}{4}$; and therefore, Theorem 1.5 gives that

$$\Delta(m, m, m_0) \leq \frac{C}{m},$$

for some $C > 0$ depending only on Ω. As a consequence,

$$\lim_{m \nearrow +\infty} \Delta(m, m, m_0) = 0,$$

as desired. \Box

The next goal of this section is to prove Theorem 1.7. For concreteness, we give here the proof for $n \geq 3$, and we defer the case $n = 2$ to Appendix A.

Without loss of generality, we suppose that

(5.10) \quad $B_2 \subset \Omega$.

For $n \geq 3$ and for any $\rho \in (0, 1)$, we define the function $\varphi : \mathbb{R}^n \to \mathbb{R}$ as

(5.11) \quad $\varphi(x) := \begin{cases} c_* + 1 & \text{if } x \in B_\rho, \\ c_* + \frac{\rho^\gamma}{1 - \rho^\gamma} \left(\frac{1}{|x|^\gamma} - 1 \right) & \text{if } x \in B_1 \setminus B_\rho, \\ c_* & \text{if } x \in \mathbb{R}^n \setminus B_1, \end{cases}$

where $\gamma > 0$ and

(5.12) \quad $c_* := -\frac{m + m_0}{m_0}$.

We observe that, since $m_0 \in (-m, 0)$, we have that $c_* > 0$.

Also, we set

(5.13) \quad $D := B_\rho$.

The idea to prove Theorem 1.7 is to use the function φ in (5.11) and the resource $m = \overline{m} \mathcal{X}_D - \underline{m} \mathcal{X}_{\Omega \setminus D}$, with D as in (5.13), as competitors for the minimization of Δ in (1.17).

In this setting, we notice that, since $m \in \mathcal{M}$, recalling (5.1),

$$\rho^n |B_1| = |B_\rho| = |D| = \frac{m + m_0}{m + \overline{m}} |\Omega|.$$

This says that

(5.14) \quad sending $\underline{m} \nearrow +\infty$ is equivalent to sending $\rho \searrow 0$,

being \underline{m}, m_0 and $|\Omega|$ fixed quantities in this argument.

In light of these observations, the next lemmata will be devoted to estimate in terms of ρ the quantities involving φ that appear in the minimization of Δ.

We point out that, in dimension $n = 2$, the argument to prove Theorem 1.7 will be similar, but we will need to introduce a logarithmic-type function as in (A.1) instead of a polynomial-type function as in (5.11) (as it often happens when passing from dimension 2 to higher dimensions).

The first result that we have in this setting deals with the H^1-seminorm of φ:

Lemma 5.3. Let $n \geq 3$ and φ be as in (5.11). Then,

$$\lim_{\rho \nearrow 0} \int_\Omega |\nabla \varphi|^2 \, dx = 0.$$
Proof. By the definition of φ in (5.11), we have that $\nabla \varphi \neq 0$ only if $x \in B_1 \setminus B_\rho$. Accordingly, using polar coordinates,
\begin{align*}
\int_\Omega |\nabla \varphi|^2 \, dx &= \gamma^2 \left(\frac{\rho^n}{1 - \rho^n} \right)^2 \int_{B_1 \setminus B_\rho} \frac{1}{|x|^{2\gamma + 2}} \, dx \\
&= \gamma^2 \left(\frac{\rho^n}{1 - \rho^n} \right)^2 \int_\rho^1 r^{n - 2\gamma - 3} \, dr.
\end{align*}
(5.15)

Now, we point out that
\begin{align*}
\int_\rho^1 r^{n - 2\gamma - 3} \, dr &\leq \begin{cases}
\frac{1}{n - 2\gamma - 2} & \text{if } \gamma < \frac{n - 2}{2}, \\
- \log \rho & \text{if } \gamma = \frac{n - 2}{2}, \\
- \frac{\rho^{n - 2\gamma - 2}}{n - 2\gamma - 2} & \text{if } \gamma > \frac{n - 2}{2}.
\end{cases} \\
\end{align*}
(5.16)

This and (5.15) entail that, for every $\gamma > 0$,
\[\lim_{\rho \to 0} \int_\Omega |\nabla \varphi|^2 \, dx = 0, \]
which concludes the proof. \Box

Now, we deal with the Gagliardo seminorm of φ. For this, we point out the following useful inequality:

Lemma 5.4. Let $x, y \in \mathbb{R}^n \setminus \{0\}$ and $\gamma > 0$. Then, there exists $C_\gamma > 0$ such that
\[\frac{1}{|x|^\gamma} - \frac{1}{|y|^\gamma} \leq C_\gamma \frac{|x| - |y|}{\min\{|x|^\gamma + 1, |y|^\gamma + 1\}}. \]
(5.17)

Proof. We can assume that $|x| \geq |y|$, being the other case analogous. In this way, formula (5.17) boils down to
\[\frac{1}{|y|^\gamma} - \frac{1}{|x|^\gamma} \leq C_\gamma \frac{|x| - |y|}{|y|^\gamma + 1}. \]
(5.18)

To prove (5.18), we first claim that, for every $t \geq 1$,
\[1 - \frac{1}{t^\gamma} \leq C_\gamma (t - 1), \]
(5.19)
for a suitable $C_\gamma > 0$. Indeed, we set
\[f(t) := Ct + \frac{1}{t^\gamma} - (C + 1), \]
for some positive constant C (to be chosen in what follows), and we observe that
\[f(1) = 0, \]
and
\[f'(t) = C - \frac{\gamma}{t^{\gamma + 1}} \geq C - \gamma, \]
for any $t \geq 1$. As a result, taking $C := \gamma + 1$, we obtain that $f'(t) > 0$. This and (5.20) give that $f(t) \geq 0$ for every $t \geq 1$, which implies (5.19).

Taking $t := \frac{|x|}{|y|}$ in (5.19), we obtain that
\[1 - \frac{|y|}{|x|^\gamma} \leq C_\gamma \left(\frac{|x|}{|y|} - 1 \right). \]
Multiplying this inequality by $\frac{1}{|y|^\gamma}$ we deduce (5.18), as desired. \Box

With this, we now estimate the Gagliardo seminorm of φ as follows:
Lemma 5.5. Let \(n \geq 3 \) and \(\varphi \) be as in (5.11). Then,

\[
\lim_{\rho \to 0} \iint_{B_\rho \times B_\rho} \frac{|\varphi(x) - \varphi(y)|^2}{|x - y|^{n+2s}} \, dx \, dy = 0.
\]

Proof. In what follows, we will assume that \(\rho \leq 1/4 \). By the definition of \(\varphi \) in (5.11), it plainly follows that

\[
\iint_{B_\rho \times B_\rho} \frac{|\varphi(x) - \varphi(y)|^2}{|x - y|^{n+2s}} \, dx \, dy = 0
\]

and

\[
\iint_{(\mathbb{R}^n \setminus B_1) \times (\mathbb{R}^n \setminus B_1)} \frac{|\varphi(x) - \varphi(y)|^2}{|x - y|^{n+2s}} \, dx \, dy = 0.
\]

Moreover, by the change of variable \(z := y - x \),

\[
\iint_{B_\rho \times (\mathbb{R}^n \setminus B_1)} \frac{|\varphi(x) - \varphi(y)|^2}{|x - y|^{n+2s}} \, dx \, dy = \iint_{B_\rho \times (\mathbb{R}^n \setminus B_1)} \frac{1}{|x - y|^{n+2s}} \, dx \, dy
\]

\[
\leq \int_{B_\rho} dx \int_{\mathbb{R}^n \setminus B_1} \left(\frac{1}{|z|^{n+2s}} \right) \, dz \leq C \int_{B_\rho} dx = C \rho^n,
\]

for some \(C > 0 \). As a consequence,

\[
\lim_{\rho \to 0} \iint_{B_\rho \times (\mathbb{R}^n \setminus B_1)} \frac{|\varphi(x) - \varphi(y)|^2}{|x - y|^{n+2s}} \, dx \, dy = 0.
\]

Now, if \(x \in B_1 \setminus B_\rho \) and \(y \in B_\rho \), from (5.11) we have that

\[
|\varphi(x) - \varphi(y)|^2 = \left(\frac{\rho^\gamma}{1 - \rho^\gamma} \right)^2 \left(\frac{1}{|x|^\gamma} - \frac{1}{\rho^\gamma} \right)^2.
\]

Hence, utilizing also (5.17) (applied here with \(|y| := \rho\)),

\[
\iint_{(B_1 \setminus B_\rho) \times B_\rho} \frac{|\varphi(x) - \varphi(y)|^2}{|x - y|^{n+2s}} \, dx \, dy
\]

\[
= \left(\frac{\rho^\gamma}{1 - \rho^\gamma} \right)^2 \iint_{(B_1 \setminus B_\rho) \times B_\rho} \left(\frac{1}{|x|^\gamma} - \frac{1}{\rho^\gamma} \right)^2 \frac{1}{|x - y|^{n+2s}} \, dx \, dy
\]

\[
\leq \frac{C}{\rho^{2\gamma + 2}} \left(\frac{\rho^\gamma}{1 - \rho^\gamma} \right)^2 \iint_{(B_1 \setminus B_\rho) \times B_\rho} \frac{|x| - \rho^2}{|x - y|^{n+2s}} \, dx \, dy
\]

We observe that, since \(x \in B_1 \setminus B_\rho \) and \(y \in B_\rho \),

\[
|x| - \rho \leq |x| - |y| \leq |x - y|,
\]

and therefore, plugging this information into (5.24),

\[
\iint_{(B_1 \setminus B_\rho) \times B_\rho} \frac{|\varphi(x) - \varphi(y)|^2}{|x - y|^{n+2s}} \, dx \, dy
\]

\[
\leq \frac{C}{\rho^{2\gamma + 2}} \left(\frac{\rho^\gamma}{1 - \rho^\gamma} \right)^2 \iint_{(B_1 \setminus B_\rho) \times B_\rho} |x - y|^{2-n-2s} \, dx \, dy
\]

\[
\leq \frac{C}{\rho^{2\gamma + 2}} \left(\frac{\rho^\gamma}{1 - \rho^\gamma} \right)^2 \int_{B_\rho} dy \int_{B_2} |z|^{2-2s-n} \, dz
\]

\[
\leq \frac{C}{\rho^{2\gamma + 2}} \left(\frac{\rho^\gamma}{1 - \rho^\gamma} \right)^2 \int_{B_\rho} dy
\]

\[
\leq C \rho^{n-2},
\]
up to renaming $C > 0$ from line to line. As a result,

\[
\lim_{\rho \to 0} \iint_{(B_1 \setminus B_\rho) \times B_\rho} \frac{|\varphi(x) - \varphi(y)|^2}{|x - y|^{n+2s}} \, dx \, dy = 0.
\]

In addition, since $\mathbb{R}^n \setminus \Omega \subset \mathbb{R}^n \setminus B_2$ (recall (5.10)), changing variable $z := y - x$ and using polar coordinates,

\[
\iint_{(B_1 \setminus B_\rho) \times (\mathbb{R}^n \setminus \Omega)} \frac{|\varphi(x) - \varphi(y)|^2}{|x - y|^{n+2s}} \, dx \, dy
\]

\[
= \left(\frac{\rho^\gamma}{1 - \rho^\gamma} \right)^2 \iint_{(B_1 \setminus B_\rho) \times (\mathbb{R}^n \setminus \Omega)} \left(\frac{1}{|x|^\gamma} - 1 \right)^2 \frac{1}{|x - y|^{n+2s}} \, dx \, dy
\]

\[
\leq \left(\frac{\rho^\gamma}{1 - \rho^\gamma} \right)^2 \int_{B_1 \setminus B_\rho} \left(\frac{1}{|x|^\gamma} - 1 \right)^2 \, dx \int_{\mathbb{R}^n \setminus B_1} \frac{1}{|z|^{n+2s}} \, dz
\]

\[
\leq C \left(\frac{\rho^\gamma}{1 - \rho^\gamma} \right)^2 \int_{B_1 \setminus B_\rho} \left(\frac{1}{|x|^\gamma} - 1 \right)^2 \, dx
\]

\[
= C \left(\frac{\rho^\gamma}{1 - \rho^\gamma} \right)^2 \int_{B_1 \setminus B_\rho} \left(\frac{1}{|x|^{2\gamma}} - \frac{2}{|x|^\gamma} + 1 \right) \, dx
\]

\[
\leq C \left(\frac{\rho^\gamma}{1 - \rho^\gamma} \right)^2 \int_{\rho}^{1} (r^{n-2\gamma-1} + r^{n-1}) \, dr
\]

\[
\leq C \left(\frac{\rho^\gamma}{1 - \rho^\gamma} \right)^2 \left[1 + \int_{\rho}^{1} r^{n-2\gamma-1} \, dr \right],
\]

possibly changing $C > 0$ from line to line. We also remark that

\[
\int_{\rho}^{1} r^{n-2\gamma-1} \, dr \leq \begin{cases}
\frac{1}{n-2\gamma} & \text{if } \gamma < \frac{n}{2}, \\
-\log \rho & \text{if } \gamma = \frac{n}{2}, \\
-\rho^{n-2\gamma} & \text{if } \gamma > \frac{n}{2}.
\end{cases}
\]

This and (5.26) imply that

\[
\lim_{\rho \to 0} \iint_{(B_1 \setminus B_\rho) \times (\mathbb{R}^n \setminus \Omega)} \frac{|\varphi(x) - \varphi(y)|^2}{|x - y|^{n+2s}} \, dx \, dy = 0.
\]

Furthermore, recalling (5.11) and making use of (5.17), we have that

\[
\iint_{(B_1 \setminus B_\rho) \times (\Omega \setminus B_1)} \frac{|\varphi(x) - \varphi(y)|^2}{|x - y|^{n+2s}} \, dx \, dy
\]

\[
= \left(\frac{\rho^\gamma}{1 - \rho^\gamma} \right)^2 \iint_{(B_1 \setminus B_\rho) \times (\Omega \setminus B_1)} \left(\frac{1}{|x|^\gamma} - 1 \right)^2 \frac{1}{|x - y|^{n+2s}} \, dx \, dy
\]

\[
\leq C \left(\frac{\rho^\gamma}{1 - \rho^\gamma} \right)^2 \iint_{(B_1 \setminus B_\rho) \times (\Omega \setminus B_1)} \frac{(1 - |x|^2)^2}{|x|^{2\gamma+2}|x - y|^{n+2s}} \, dx \, dy.
\]

Hence, noticing that, for every $x \in B_1 \setminus B_\rho$ and every $y \in \Omega \setminus B_1$,

\[
1 - |x| \leq |y| - |x| \leq |x - y|,
\]

we conclude that

\[
\iint_{(B_1 \setminus B_\rho) \times (\Omega \setminus B_1)} \frac{|\varphi(x) - \varphi(y)|^2}{|x - y|^{n+2s}} \, dx \, dy
\]
\[C \left(\frac{\rho^\gamma}{1 - \rho^\gamma} \right)^2 \int_{(B_1 \setminus B_\rho) \times (\Omega \setminus B_1)} \frac{1}{|x|^{2\gamma + 2} |x - y|^{n + 2s - 2}} \, dx \, dy \]
\[\leq C \left(\frac{\rho^\gamma}{1 - \rho^\gamma} \right)^2 \int_{B_1 \setminus B_\rho} \frac{1}{|x|^{2\gamma + 2}} \, dx \]
\[\leq C \left(\frac{\rho^\gamma}{1 - \rho^\gamma} \right)^2 \int_\rho^1 r^{n - 2\gamma - 3} \, dr. \]

Accordingly, recalling (5.16), we conclude that
\[\lim_{\rho \to 0} \int_{(B_1 \setminus B_\rho) \times (\Omega \setminus B_1)} \frac{|\varphi(x) - \varphi(y)|^2}{|x - y|^{n + 2s}} \, dx \, dy = 0. \]

We now claim that
\[\lim_{\rho \to 0} \int_{(B_1 \setminus B_\rho) \times (B_1 \setminus B_\rho)} \frac{|\varphi(x) - \varphi(y)|^2}{|x - y|^{n + 2s}} \, dx \, dy = 0. \]

For this, we observe that by (5.11)
\[\int_{(B_1 \setminus B_\rho) \times (B_1 \setminus B_\rho)} \frac{|\varphi(x) - \varphi(y)|^2}{|x - y|^{n + 2s}} \, dx \, dy \]
\[= \left(\frac{\rho^\gamma}{1 - \rho^\gamma} \right)^2 \int_{(B_1 \setminus B_\rho) \times (B_1 \setminus B_\rho)} \left(\frac{1}{|x|^\gamma} - \frac{1}{|y|^\gamma} \right)^2 \frac{dx \, dy}{|x - y|^{n + 2s}} \]
\[= 2 \left(\frac{\rho^\gamma}{1 - \rho^\gamma} \right)^2 \int_{(B_1 \setminus B_\rho) \times (B_1 \setminus B_\rho) \atop (|x| \leq |y|)} \left(\frac{1}{|x|^\gamma} - \frac{1}{|y|^\gamma} \right)^2 \frac{dx \, dy}{|x - y|^{n + 2s}}. \]

Hence, from (5.17) we get
\[\int_{(B_1 \setminus B_\rho) \times (B_1 \setminus B_\rho)} \frac{|\varphi(x) - \varphi(y)|^2}{|x - y|^{n + 2s}} \, dx \, dy \leq C \left(\frac{\rho^\gamma}{1 - \rho^\gamma} \right)^2 \int_{(B_1 \setminus B_\rho) \times (B_1 \setminus B_\rho) \atop (|x| \leq |y|)} \frac{|x - y|^{2 - n - 2s}}{|x|^{2\gamma + 2}} \, dx \, dy, \]
up to renaming \(C > 0. \)

Since \(\rho \in (0, 1), \) we can take an integer \(k \) such that
\[\frac{1}{2^{k+1}} < \rho \leq \frac{1}{2^k}. \]

In this way, we have that
\[\int_{(B_1 \setminus B_\rho) \times (B_1 \setminus B_\rho)} \frac{|\varphi(x) - \varphi(y)|^2}{|x - y|^{n + 2s}} \, dx \, dy \]
\[\leq C \left(\frac{\rho^\gamma}{1 - \rho^\gamma} \right)^2 \int_{(B_1 \setminus B_{1/2^k+1}) \times (B_1 \setminus B_{1/2^k+1}) \atop (|x| \leq |y|)} \frac{|x - y|^{2 - n - 2s}}{|x|^{2\gamma + 2}} \, dx \, dy \]
\[\leq C \rho^{2\gamma} \sum_{i=0}^{k} \int_{(B_{1/2^i+1} \setminus B_{1/2^{i+1}}) \times (B_{1/2^i+1} \setminus B_{1/2^{i+1}}) \atop (|x| \leq |y|)} \frac{|x - y|^{2 - n - 2s}}{|x|^{2\gamma + 2}} \, dx \, dy. \]

We also observe that when \(x \notin B_{1/2^i+1}, \ y \in B_{1/2^i} \) and \(|x| \leq |y|, \) we have that
\[\frac{1}{2^{i+1}} \leq |x| \leq |y| \leq \frac{1}{2^i}, \]
and accordingly \(j \leq i + 1. \) This implies that
\[\int_{(B_1 \setminus B_\rho) \times (B_1 \setminus B_\rho) \atop (|x| \leq |y|)} \frac{|x - y|^{2 - n - 2s}}{|x|^{2\gamma + 2}} \, dx \, dy \]
Recalling (5.11), we find that
\[
\lim_{\rho \to 0} \int_{\Omega} \varphi^2 \, dx = m \left(c_* + 1 \right)^2 |\Omega| = m \left(-\frac{m + m_0}{m_0} + 1 \right)^2 \frac{m + m_0}{m + m_0} |\Omega| = \frac{m_0^2 (m + m_0)}{m^2 (m + m)} |\Omega|.
\]
Moreover, we observe that
\[
\rho^\gamma \frac{1}{1 - \rho^\gamma} \frac{1}{|x|^\gamma} \chi_{B_1 \setminus B_\rho} \leq \frac{1}{1 - \rho^\gamma} \leq 2,
\]
as long as \(\rho \) is small enough. As a consequence, recalling (5.11) and (5.13), and using the Dominated Convergence Theorem, we find that
\[
\lim_{\rho \to 0} \int_{\Omega \setminus D} \varphi^2 \, dx = \lim_{\rho \to 0} \int_{\Omega \setminus B_1} c_*^2 \, dx + m \int_{B_1 \setminus B_\rho} \left[c_* + \rho^\gamma \frac{1}{1 - \rho^\gamma} \left(\frac{1}{|x|^\gamma} - 1 \right) \right]^2 \, dx
\]
\[= mc^2 |\Omega \setminus B_1| + mc^2 |B_1| = mc^2 |\Omega| = m \left(\frac{m_0 + m_0}{m_0} \right)^2 |\Omega|. \]

From this and \((5.32)\), and recalling \((5.14)\), we conclude that
\[
\lim_{\rho \searrow 0} m \int_D \varphi^2 dx - m \int_{\Omega \setminus D} \varphi^2 dx = \lim_{m \nearrow +\infty} m \left(\frac{m_0 + m_0}{m_0} \right)^2 |\Omega| - m \left(\frac{m_0 + m_0}{m_0} \right)^2 |\Omega| = - \frac{m (m + m_0)}{m_0} |\Omega|,
\]
which is positive, since \(m_0 \in (-m, 0)\), as desired. \(\square\)

We are now in the position to give the proof of Theorem 1.7 for \(n \geq 3\).

Proof of Theorem 1.7 when \(n \geq 3\). The strategy of the proof is to use the auxiliary function \(\varphi\) as defined in \((5.11)\) and the resource \(m := \overline{m}_D - m_0 \chi_{\Omega, D}\), with \(D\) as in \((5.13)\), as a competitor in the minimization problem \((1.17)\). Indeed, in this way we find that
\[
\chi(m, m, m_0) \leq \frac{\alpha \int_{\Omega} |\nabla \varphi|^2 dx + \beta \int_{\Omega} \frac{\varphi(x) - \varphi(y)^2}{|x - y|^{n+2s}} dxdy}{m \int_D |\varphi|^2 dx - m \int_{\Omega \setminus D} |\varphi|^2 dx}.
\]

Moreover, Lemmata 5.3 and 5.5 give that
\[
\lim_{\rho \searrow 0} \alpha \int_{\Omega} |\nabla \varphi|^2 dx + \beta \int_{\Omega} \frac{\varphi(x) - \varphi(y)^2}{|x - y|^{n+2s}} dxdy = 0.
\]
This, combined with \((5.14)\) and Lemma 5.6, gives the desired result. \(\square\)

Now we deal with the proof of Theorem 1.8. The main strategy is similar to that of the proof of Theorem 1.7, but in this setting we introduce a different auxiliary function (and this of course impacts the technical computations needed to obtain the desired results). Namely, we define
\[
\psi(x) := \begin{cases}
 c_2 - 1 & \text{if } x \in B_\rho, \\
 c_2 - \frac{\rho_\gamma}{1 - \rho^\gamma} \left(\frac{1}{|x|^\gamma} - 1 \right) & \text{if } x \in B_1 \setminus B_\rho, \\
 c_2 & \text{if } x \in \mathbb{R}^n \setminus B_1,
\end{cases}
\]
where
\[
c_2 := \frac{m_0 - \overline{m}}{m_0}.
\]
We point out that \(c_2 > 0\), since \(m_0 < 0 < \overline{m}\). We also set
\[
D := \Omega \setminus B_\rho.
\]

We remark that, in this setting, since \(m \in \mathcal{M}\), recalling \((5.1)\),
\[
|\Omega| - |B_\rho| = |\Omega \setminus B_\rho| = |D| = \frac{m + m_0}{m + \overline{m}} |\Omega|.
\]
This says that
\[
\text{sending } m \nearrow +\infty \text{ is equivalent to sending } \rho \searrow 0,
\]
being \(\overline{m}\), \(m_0\) and \(|\Omega|\) fixed quantities in this argument. The reader may compare the setting in \((5.13)\) and \((5.14)\) with the one in \((5.36)\) and \((5.37)\) to appreciate the structural difference between the two frameworks.
Now, we list some useful properties of the auxiliary function \(\psi \). Noticing that the function \(\psi \) in (5.34) differs by a constant from the function \(-\varphi \) in (5.11), we obtain the following two results directly from Lemmata 5.3 and 5.5:

Lemma 5.7. Let \(n \geq 3 \) and \(\psi \) be as in (5.34). Then,

\[
\lim_{\rho \downarrow 0} \int_{\Omega} |\nabla \psi|^2 \, dx = 0.
\]

Lemma 5.8. Let \(n \geq 3 \) and \(\psi \) be as in (5.34). Then

\[
\lim_{\rho \downarrow 0} \int_{\Omega} \left| \psi(x) - \psi(y) \right|^2 \frac{1}{|x - y|^{n+2s}} \, dx \, dy = 0.
\]

We now deal with the weighted \(L^2 \)-norm of the auxiliary function \(\psi \):

Lemma 5.9. Let \(n \geq 3 \) and \(\psi \) be as in (5.34). Then,

\[
\lim_{\rho \downarrow 0} \int_{\Omega} \psi^2 \, dx - \int_{\Omega} \psi^2 \, dx = -\frac{m(m_0 - m)}{m_0} |\Omega| > 0.
\]

Proof. Recalling (5.34) and (5.36), we find that

\[
\int_{\Omega} \psi^2 \, dx = \int_{\Omega} c_2^2 \, dx + \int_{B_1 \setminus B_{c_2}} \left[c_2 - \frac{\rho}{1 - \rho} \left(\frac{1}{|x|} - 1 \right) \right]^2 \, dx.
\]

Hence, recalling (5.33) and using the Dominated Convergence Theorem and (5.35), we deduce that

\[
\lim_{\rho \downarrow 0} \int_{\Omega} \psi^2 \, dx = \int_{\Omega \setminus B_1} (c_2 - 1)^2 (\Omega \setminus D) = \frac{m(m_0 - m)}{m_0} \frac{m^2 - m_0}{m + m} |\Omega| = \frac{m^2 (m_0 - m)}{m_0 (m + m)} |\Omega|.
\]

Moreover, recalling (5.36), (5.1) and (5.35),

\[
\int_{\Omega \setminus D} \psi^2 \, dx = m(c_2 - 1)^2 |\Omega \setminus D| = \frac{m(m_0 - m)}{m_0} \frac{m^2 - m_0}{m + m} |\Omega| = \frac{m^2 m_0 (m + m)}{m_0} |\Omega|.
\]

As a consequence of this and (5.38), and recalling (5.37), we have that

\[
\lim_{\rho \downarrow 0} \int_{\Omega} \psi^2 \, dx - \int_{\Omega} \psi^2 \, dx = \frac{m(m_0 - m)}{m_0} \frac{m^2 - m_0}{m + m} |\Omega| - \frac{m^2 m_0 (m + m)}{m_0} |\Omega| = \frac{m^2 (m_0 - m)}{m_0} |\Omega| = \frac{m^2 (m_0 - m)}{m_0} |\Omega|.
\]

which is positive, since \(m_0 < 0 < m \).

Now we are ready to give the proof of Theorem 1.8 for \(n \geq 3 \).

Proof of Theorem 1.8. The strategy of the proof is to use the auxiliary function \(\psi \) as defined in (5.34) and the resource \(m := m_\lambda D - m_\lambda \Omega D \), with \(D \) as in (5.36), as a competitor in the minimization problem (1.17). Indeed, in this way we find that

\[
\lambda(m, m, m_0) \leq \frac{\alpha \int_{\Omega} |\nabla \psi|^2 \, dx + \beta \int_{\Omega} |\psi(x) - \psi(y)|^2 \, dx \, dy}{\int_{\Omega} |\psi|^2 \, dx - \int_{\Omega \setminus D} |\psi|^2 \, dx}.
\]

Moreover, from Lemmata 5.7 and 5.8 we have that

\[
\lim_{\rho \downarrow 0} \int_{\Omega} |\nabla \psi|^2 \, dx + \beta \int_{\Omega} |\psi(x) - \psi(y)|^2 \, dx \, dy = 0.
\]
This, combined with (5.37) and Lemma 5.9 implies the desired result.

Having completed the cases \(n \geq 3 \) and deferred the case \(n = 2 \) to Appendix A, we now focus on the case \(n = 1 \), by providing the proofs of Theorems 1.9 and 1.10.

For this, when \(n = 1 \) we first establish the following lower bound for \(\Delta \) (as defined in (1.17)):

Lemma 5.10. Let \(n = 1 \) and \(\alpha > 0 \). Then

\[
\lambda(m,m,m_0) \geq -\frac{C m_0^3 (m+\bar{m})^4}{m_0 m^3 (m-m_0)^2 (m(2m+m_0) - \bar{m}m_0)},
\]

for some \(C = C(\alpha, \beta, \Omega) > 0 \).

Proof. Without loss of generality, we can set \(\alpha = 2 \). We take an arbitrary resource \(m \) in the set \(\tilde{\mathcal{M}} \) defined in (5.2). Moreover, we denote by \(e \) an eigenfunction associated to the first eignevalue of problem (1.13), that is

\[
\lambda_1(m) = \frac{\int_{\Omega} |e'|^2 \, dx + \beta \int_{\Omega} \int_{\Omega} \frac{|e(x) - e(y)|^2}{|x-y|^{n+2s}} \, dx \, dy}{m \int_{\Omega} e^2 \, dx - m \int_{\Omega \setminus \Omega} e^2 \, dx}.
\]

In light of Proposition 4.2 here and Corollary 1.4 in [DPLV], up to a sign change, we know that \(e \) is nonnegative and bounded, and therefore we set

\[
a := \inf_{\Omega} e \quad \text{and} \quad b := \sup_{\Omega} e.
\]

By construction, we have that \(a \in [0, b] \), and we can also normalize \(e \) such that \(b = 1 \); in this way

\[
e(x) \leq 1 \quad \text{for each } x \in \Omega.
\]

We also take \(x_k, y_k \in \Omega \) such that

\[
e(x_k) \to a \quad \text{and} \quad e(y_k) \to 1
\]
as \(k \to +\infty \).

We observe that

\[
(1 - a)^4 \leq C \int_{\Omega} |e'|^2 \, dx,
\]

for some positive \(C \). Accordingly, we obtain the desired result in (5.42).

Indeed, for \(\bar{x} \) and \(\bar{y} \) as in the assumption of (5.42) we have that

\[
(e(\bar{y}) - e(\bar{x}))^2 = \left(\int_{\bar{x}}^{\bar{y}} e'(t) \, dt \right)^2 \leq C \int_{\Omega} |e'(t)|^2 \, dt,
\]

for some positive \(C \). Accordingly, we obtain the desired result in (5.42).

Now we claim that

\[
(1 - a)^4 \leq C \left(\int_{\Omega} |e'|^2 \, dx + \beta \int_{\Omega} \int_{\Omega} \frac{|e(x) - e(y)|^2}{|x-y|^{n+2s}} \, dx \, dy \right),
\]

for a suitable \(C > 1 \).

To prove this claim, we need to consider different possibilities according to the possible lack of connectedness of \(\Omega \). For this, we first remark that, with no loss of generality, we can suppose that

\[
a < 1,
\]

otherwise (5.43) is obviously satisfied.
Furthermore, being Ω a bounded set with C^1 boundary, necessarily it can have at most a finite number of connected components (otherwise, there would be accumulating components, violating the assumption in (1.1)). Hence, if Ω is not connected, we can define d_0 to be the smallest distance between the different connected components of Ω. We also let d_1 to be the diameter of Ω and d_2 the smallest diameter of all the connected components of Ω (of course, d_0, d_1 and d_2 are structural constants, and the other constants are allowed to depend on them, but we will write d_0, d_1 and d_2 explicitly in the forthcoming computations whenever needed to emphasize their roles). To prove (5.43), we distinguish two cases: the first case is when Ω has one connected component,

or it has more than one connected component, with

$$
(5.45) \quad \sup_{x,y \in \Omega \atop |e(x) - e(y)| \geq \frac{1-a}{2}} \frac{|e(x) - e(y)|}{|x-y|} \geq \frac{4}{d_0},
$$

and the second case is when Ω has more than one connected component, with

$$
(5.46) \quad \sup_{x,y \in \Omega \atop |e(x) - e(y)| \geq \frac{1-a}{2}} \frac{|e(x) - e(y)|}{|x-y|} < \frac{4}{d_0}.
$$

Let us first discuss case (5.45). If Ω has one connected component, then we can exploit (5.42) with $\bar{x} := x_k$ and $\bar{y} := y_k$ with k sufficiently large, and the claim in (5.43) plainly follows. Thus, to complete the study of (5.45), we suppose that Ω is not connected and, in the setting of (5.45), we find $\bar{x}, \bar{y} \in \Omega$ with

$$
(5.47) \quad |e(\bar{x}) - e(\bar{y})| \geq \frac{1-a}{10} \quad \text{and} \quad \frac{|e(\bar{x}) - e(\bar{y})|}{|\bar{x} - \bar{y}|} \geq \frac{3}{d_0}.
$$

In this framework, we have that

$$
(5.48) \quad \bar{x} \text{ and } \bar{y} \text{ belong to the same connected component.}
$$

Indeed, if not, we would have that $|\bar{x} - \bar{y}| \geq d_0$, and thus, by (5.41),

$$
\frac{|e(\bar{x}) - e(\bar{y})|}{|\bar{x} - \bar{y}|} \leq \frac{|e(\bar{x})| + |e(\bar{y})|}{d_0} \leq \frac{2}{d_0},
$$

which is in contradiction with (5.47), thus proving (5.48).

Then, by (5.48), we can exploit (5.42), from which one deduces (5.43) in this case.

Having completed the analysis of case (5.45), we now focus on the setting provided by case (5.46) and we define

$$
(5.49) \quad r := \frac{1}{100 \left(1 + \frac{4}{d_0}\right)} \min \{1 - a, d_2\}.
$$

We observe that, $r > 0$, due to (5.44), and, if $\vartheta \in \Omega$ with $|\vartheta - x_k| \leq r$, then

$$
(5.50) \quad |e(\vartheta) - e(x_k)| \leq \frac{1-a}{10}.
$$

Indeed, suppose not. Then, the assumption in (5.46) guarantees that

$$
\frac{4}{d_0} \geq \frac{|e(\vartheta) - e(x_k)|}{|\vartheta - x_k|} \geq \frac{|e(\vartheta) - e(x_k)|}{r},
$$

and therefore

$$
|e(\vartheta) - e(x_k)| \leq \frac{4r}{d_0} \leq \frac{4}{100 \left(1 + \frac{4}{d_0}\right)} \left(1 - a\right) \leq \frac{1-a}{100}.
$$
This proves (5.50) and similarly one can show that if \(\tau \in \Omega \) with \(|\tau - y_k| \leq r\), then

\[
|e(\vartheta) - e(y_k)| \leq \frac{1-a}{10}.
\]

Combining (5.50) and (5.51), we find that, for all \(\vartheta, \tau \in \Omega \) with \(|\vartheta - x_k| \leq r \) and \(|\tau - y_k| \leq r\),

\[
|e(\vartheta) - e(\tau)| \geq |e(x_k) - e(y_k)| - |e(\vartheta) - e(x_k)| - |e(\tau) - e(y_k)| \geq \frac{1-a}{2} - \frac{1-a}{5} \geq \frac{1-a}{4}.
\]

For this reason, letting \(S_1 := B_r(x_k) \cap \Omega \) and \(S_2 := B_r(y_k) \cap \Omega \), we have that

\[
\int_\Omega \frac{|e(x) - e(y)|^2}{|x - y|^{n+2s}} \, dx \, dy \geq \int_{\Omega \times \Omega} \frac{|e(x) - e(y)|^2}{|x - y|^{n+2s}} \, dx \, dy \geq \int_{S_1 \times S_2} \frac{|e(\vartheta) - e(\tau)|^2}{|\vartheta - \tau|^{n+2s}} \, d\vartheta \, d\tau
\]

\[
\geq \int_{S_1 \times S_2} \frac{(1-a)^2}{16 d_1^{n+2s}} \, d\vartheta \, d\tau = \frac{(1-a)^2 |S_1| |S_2|}{16 d_1^{n+2s}} \geq \frac{(1-a)^2 r^2}{64 d_1^{n+2s}}.
\]

We also recall that in case (5.46) we have that \(\Omega \) is not connected and consequently \(\beta \neq 0 \), due to (1.5). From this and (5.52), up to renaming constants, we deduce that

\[
\int_{\Omega} |e'|^2 \, dx + \beta \int_\Omega \frac{|e(x) - e(y)|^2}{|x - y|^{n+2s}} \, dx \, dy \geq \frac{(1-a)^2 r^2}{C},
\]

which, together with (5.49), proves (5.43), as desired.

We also remark that, testing the weak formulation of (1.13) against a constant function, one sees that

\[
\int_\Omega m \, e \, dx = 0,
\]

and therefore, recalling (5.41),

\[
\overline{m} |D| \geq \overline{m} \int_D e \, dx = \overline{m} \int_{\Omega \setminus D} e \, dx \geq a \overline{m} |\Omega \setminus D|.
\]

Recalling (5.1), we see that

\[
|\Omega \setminus D| = \frac{\overline{m} - m_0}{m + \overline{m}} |\Omega|,
\]

and therefore

\[
\overline{m} \int_D e^2 \, dx - m \int_{\Omega \setminus D} e^2 \, dx \leq \overline{m} |D| - a^2 \overline{m} |\Omega \setminus D|
\]

\[
= \overline{m} \left(\frac{m + m_0}{m + \overline{m}} \right) |\Omega| - a^2 \overline{m} \left(\frac{m_0}{m + \overline{m}} \right) |\Omega| = \overline{m} \frac{m(1-a^2) + m_0(m + a^2 m)}{m + \overline{m}} |\Omega|
\]

\[
< \frac{\overline{mm}}{m + \overline{m}} (1-a^2) |\Omega|,
\]

since \(m_0 < 0 \) and \(\overline{m}, m > 0 \). Using this inequality and (5.43) in (5.40), we conclude that

\[
C \lambda_1(m) \geq \frac{m + \overline{m}}{\overline{mm}} \cdot \frac{(1-a)^4}{1-a^2} = \frac{m + \overline{m}}{\overline{mm}} \cdot \frac{(1-a)^3}{1+a},
\]

up to renaming \(C > 0 \).

Furthermore, from (5.53) we know that

\[
a \leq \frac{\overline{m}}{m} \cdot \frac{m + m_0}{m - m_0}.
\]
Consequently, since the map $[0,1] \ni t := \frac{(1-t)^3}{1+t}$ is decreasing, we discover that
\[
\frac{(1 - a)^3}{1 + a} \geq \left(1 - \frac{m}{m} \cdot \frac{m + m_0}{m - m_0}\right)^3 = -\frac{m_0^3(m + m)^3}{m^2(m - m_0)^2} \cdot \frac{1}{2mm + m_0(m - m)}.
\]
Combining this information and (5.56), we deduce that
\[
C \lambda_1(m) \geq -\frac{m + \overline{m}}{mm} \cdot \frac{m_0^3(m + \overline{m})^3}{m^2(m - m_0)^2} \cdot \frac{1}{2mm + m_0(m - m)} = -\frac{m_0^3(\overline{m} + m)^4}{m^3(m - m_0)^2(\overline{m}(2\overline{m} + m_0) - m_0 m_0)}.
\]
Taking the infimum of this expression, we find the desired result. \qed

With this, we are in the position to give the proof of Theorem 1.9.

Proof of Theorem 1.9. For any $\overline{m} > 0$ and any $m_0 \in (-\overline{m},0)$, we define the function $g_{\overline{m},m_0} : (0, +\infty) \to (0, +\infty)$ as
\[
g_{\overline{m},m_0}(m) := -\frac{m_0^3(m + m)^4}{mm^3(m - m_0)^2(m(2\overline{m} + m_0) - m_0 m_0)}.
\]
We observe that
\[
\lim_{m \to +\infty} g_{\overline{m},m_0}(m) = -\frac{m_0^3}{m^3(2\overline{m} + m_0)} > 0,
\]
and
\[
\lim_{m \to +\infty} g_{\overline{m},m_0}(m) = +\infty.
\]
In particular,
\[
\inf_{m \in (0, +\infty)} g_{\overline{m},m_0}(m) > 0.
\]

Now, by Lemma 5.10, we know that
\[
\Lambda(\overline{m} , m , m_0) \geq C g_{\overline{m},m_0}(m).
\]
As a result, (1.19) follows from (5.58) and (5.59). Moreover, from (5.57) and (5.59) we obtain (1.20).

To prove (1.21), for any $\overline{m} > 0$ and $m_0 < 0$, we define the function $\tilde{g}_{\overline{m},m_0} : (-m_0, +\infty) \to (0, +\infty)$ as
\[
\tilde{g}_{\overline{m},m_0}(m) := -\frac{m^3(m + \overline{m})^4}{\overline{m}m^3(m - m_0)^2(\overline{m}(2\overline{m} + m_0) - m_0 m_0)}.
\]
We notice that
\[
\lim_{m \to -m_0} \tilde{g}_{\overline{m},m_0}(m) = -\frac{\overline{m} - m_0}{m m_0} > 0
\]
and that
\[
\lim_{m \to +\infty} \tilde{g}_{\overline{m},m_0}(m) = -\frac{m^3}{m(\overline{m} - m_0)^2(\overline{m} - m_0)} > 0.
\]
Accordingly,
\[
\inf_{m \in (-m_0, +\infty)} \tilde{g}_{\overline{m},m_0}(m) > 0.
\]
Using this and the fact that, by Lemma 5.10,
\[
\Lambda(\overline{m} , m , m_0) \geq C \tilde{g}_{\overline{m},m_0}(m),
\]
we obtain the desired result in (1.21). \qed
Having established Theorem 1.9, we now deal with the case in which \(\alpha = 0 \), namely when only the nonlocal dispersal is active. This case is considered in Theorem 1.10, according to two different ranges of the fractional parameter \(s \). For this, we divide the proof of Theorem 1.10 into two parts.

Proof of Theorem 1.10 when \(s \in (1/2, 1) \). We denote by \(e \) the eigenfunction associated to the first eigengenvalue of problem (1.13), normalized such that

\[
(5.60) \quad a := \inf_{\Omega} e \geq 0 \quad \text{and} \quad \sup_{\Omega} e = 1.
\]

We recall (5.53), (5.54) and (5.55) to write that

\[
(5.61) \quad a \leq \frac{m}{m - m_0} \cdot \frac{m + m_0}{m - m_0}
\]

and

\[
(5.62) \quad \frac{m}{m} \int_D e^2 \, dx - m \int_{\Omega \setminus D} e^2 \, dx \leq \frac{m m_0}{m + m}(1 - a^2) |\Omega|.
\]

We stress that, in view of (5.61),

\[
(5.63) \quad \delta_0 := 1 - a \geq 1 - \frac{m}{m} \cdot \frac{m + m_0}{m - m_0} = -\frac{m_0(m + m)}{m(m - m_0)} > 0.
\]

In particular, by (5.60), we can find \(\bar{x} \) and \(\bar{y} \) in \(\Omega \) such that

\[
(5.64) \quad e(\bar{x}) \leq a + \frac{\delta_0}{100} \quad \text{and} \quad e(\bar{y}) \geq 1 - \frac{\delta_0}{100}.
\]

Now we claim that

\[
(5.65) \quad \iint_{\Omega} \frac{(e(x) - e(y))^2}{|x - y|^{1+2s}} \, dx \, dy \geq c \left(1 - a \right)^{\frac{4s+2}{2s-1}},
\]

for some \(c \in (0, 1) \) depending only on \(s \) and \(\Omega \) (in particular, this \(c \) is independent of \(m \)). Indeed, if the left hand side of (5.65) is larger that 1, we are done, therefore we can suppose, without loss of generality, that

\[
\iint_{\Omega} \frac{(e(x) - e(y))^2}{|x - y|^{1+2s}} \, dx \, dy \leq 1.
\]

As a result,

\[
\iint_{\Omega \times \Omega} \frac{(e(x) - e(y))^2}{|x - y|^{1+2s}} \, dx \, dy + \|e\|^2_{L^2(\Omega)} \leq 1 + |\Omega|,
\]

and consequently we can exploit Theorem 8.2 in [DNPV12] and conclude that \(\|e\|_{C^{\frac{2s-1}{2s}}(\Omega)} \leq C_0 \), for some \(C_0 > 0 \) depending only on \(s \) and \(\Omega \).

We let \(d_1 \) be the diameter of \(\Omega \) and \(d_2 \) be the smallest diameter of all the connected components of \(\Omega \). We also define

\[
(5.66) \quad r_0 := \min \left\{ \left(\frac{\delta_0}{100 C_0} \right)^{\frac{2}{2s-1}}, \frac{d_2}{100} \right\},
\]

and we observe that, for each \(x \in \Omega \cap B_{r_0}(\bar{x}) \),

\[
e(x) \leq e(\bar{x}) + |e(x) - e(\bar{x})| \leq e(\bar{x}) + C_0 |x - \bar{x}|^{\frac{2s-1}{2}} \leq a + \frac{\delta_0}{100} + C_0 r_0^{\frac{2s-1}{2}} \leq a + \frac{\delta_0}{50},
\]

thanks to (5.64).

Similarly, for each \(y \in \Omega \cap B_{r_0}(\bar{y}) \),

\[
e(y) \geq 1 - \frac{\delta_0}{50},
\]
and consequently
\[
\int \int_{(\Omega \cap B_\rho(x)) \times (\Omega \cap B_\rho(y))} \frac{(e(x) - e(y))^2}{|x - y|^{1 + 2s}} \, dx \, dy \\
\geq \left(1 - a - \frac{\delta_0}{25} \right)^2 \int \int_{(\Omega \cap B_\rho(x)) \times (\Omega \cap B_\rho(y))} \frac{dx \, dy}{|x - y|^{1 + 2s}} \\
\geq \left(1 - a - \frac{\delta_0}{25} \right)^2 \frac{|\Omega \cap B_\rho(x)| \cdot |\Omega \cap B_\rho(y)|}{d_1^{1 + 2s}} \\
\geq \frac{(1 - a)^2 r_0^2}{4 d_1^{1 + 2s}} \frac{|\Omega \cap B_\rho(x)| \cdot |\Omega \cap B_\rho(y)|}{d_1^{1 + 2s}} \\
\geq \frac{(1 - a)^2}{4 d_1^{1 + 2s}}.
\]

From this and (5.66), noticing that \(\frac{4s+1}{2s-1} > 2 \), we obtain (5.65), as desired.

Gathering (5.65) and (5.62) we find that

\[
\lambda_1(m) = \frac{\beta}{4} \frac{\int_0^1 e^2 \, dx}{\int_D e^2 \, dx - m \int_{\Omega \setminus D} e^2 \, dx} \geq \frac{m + m}{m m} \cdot C \left(1 - a \right)^{\frac{4s+1}{2s-1}},
\]

for some \(C > 0 \).

We also notice that, in view of (5.63),

\[
\frac{1 - a}{1 - a^2} = \frac{(1 - a)^{\frac{4s+1}{2s-1}}}{(1 - a)(1 + a)} \geq \frac{1}{2} (1 - a)^{\frac{2s+3}{2s-1}} \geq \frac{1}{2} \left(\frac{m_0(m + m)}{m(m - m_0)} \right)^{\frac{2s+3}{2s-1}}.
\]

By inserting this inequality into (5.67), we conclude that

\[
\lambda_1(m) \geq C \left(\frac{m + m}{m m} \right) \left(\frac{m_0(m + m)}{m(m - m_0)} \right)^{\frac{2s+3}{2s-1}},
\]

up to renaming \(C \).

Now, for any \(m_0 < 0 \) and any \(m > -m_0 \), we define the function \(\bar{g}_{m,m_0} : (0, +\infty) \to (0, +\infty) \) given by

\[
\bar{g}_{m,m_0}(m) := \frac{m + m}{m m} \cdot \left(\frac{m_0(m + m)}{m(m - m_0)} \right)^{\frac{2s+3}{2s-1}}.
\]

We remark that

\[
\lim_{m \to 0} \bar{g}_{m,m_0}(m) = +\infty \quad \text{and} \quad \lim_{m \to +\infty} \bar{g}_{m,m_0}(m) = \frac{1}{m} \left(-\frac{m_0}{m} \right)^{\frac{2s+3}{2s-1}} > 0,
\]

and consequently

\[
\inf_{m \in (0, +\infty)} \bar{g}_{m,m_0}(m) > 0.
\]

Also, by (5.68), and making use of (5.2) and Proposition 5.2, we find that

\[
\underline{\Lambda}(m, m, m_0) = \inf_{m \in \tilde{A}(m,m_0)} \lambda_1(m) \geq C \bar{g}_{m,m_0}(m).
\]

In particular,

\[
\underline{\Lambda}(m, m, m_0) \geq C \inf_{m \in (0, +\infty)} \bar{g}_{m,m_0}(m),
\]

which, combined with (5.69), proves (1.22).

Similarly, we see that

\[
\lim_{m \to 0} \underline{\Lambda}(m, m, m_0) \geq C \lim_{m \to 0} \bar{g}_{m,m_0}(m) = +\infty,
\]
which establishes (1.23).

In addition, given $m_0 < 0$ and $m > 0$, if we consider the auxiliary function $g^*_{m,m_0} : (-m_0, +\infty) \to (0, +\infty)$ defined by

$$g^*_{m,m_0}(m) := \frac{m + m_0}{m m_0} \cdot \left(-\frac{m_0(m + m)}{m(m - m_0)} \right)^{\frac{2 + 3}{2 - 1}},$$

we see that

$$\lim_{m \searrow -m_0} g^*_{m,m_0}(m) = -\frac{m_0 + m}{m_0 m} > 0$$

and

$$\lim_{m \nearrow +\infty} g^*_{m,m_0}(m) = \frac{1}{m} \cdot \left(-\frac{m_0}{m} \right)^{\frac{2 + 3}{2 - 1}} > 0,$$

and these observations allow us to conclude that

$$\lim_{m \to (0, +\infty)} \inf g^*_{m,m_0}(m) > 0. \tag{5.70}$$

Moreover, we deduce from Proposition 5.2, (5.2) and (5.68) that

$$\Delta(m, m, m_0) = \inf_{m \in \mathcal{M}(m, m, m_0)} \lambda_1(m) \geq C g^*_{m,m_0}(m).$$

Therefore

$$\Delta(m, m, m_0) \geq C \inf_{m \in (-m_0, +\infty)} g^*_{m,m_0}(m),$$

which, together with (5.70), proves (1.24). \hfill \Box

Now we prove Theorem 1.10 in the case $s \in (0, 1/2]$. This case is somehow conceptually related to the case $n \geq 2$, since the problem boils down to a subcritical situation.

We suppose without loss of generality that

$$(-2, 2) = B_2 \subset \Omega, \tag{5.71}$$

and we define the function

$$\varphi(x) := \begin{cases}
 c_* + 1 & \text{if } x \in B_{p}, \\
 c_* + \frac{\log |x|}{\log \rho} & \text{if } x \in B_1 \setminus B_{p}, \\
 c_* & \text{if } x \in \mathbb{R} \setminus B_1.
\end{cases} \tag{5.72}$$

Here, $c_* > 0$ is the constant introduced in (5.12), and we set

$$D := B_{p}. \tag{5.73}$$

For our purposes, we recall the following basic inequality:

Lemma 5.11. For every $x, y \in \mathbb{R}^n \setminus \{0\}$, we have that

$$\left| \log |x| - \log |y| \right| \leq \frac{\left| |x| - |y| \right|}{\min\{|x|, |y|\}}. \tag{5.74}$$

Proof. Without loss of generality, we assume that $|y| \leq |x|$. To check (5.74), we take $t := \frac{|x|}{|y|} - 1$, and we see that

$$\left| \log |x| - \log |y| \right| = \log |x| - \log |y| = \log \frac{|x|}{|y|} = \log(1 + t) \leq t = \frac{|x|}{|y|} - 1 = \frac{|x| - |y|}{|y|},$$

as desired. \hfill \Box

With this, we now list some properties of the auxiliary function φ in (5.72).

Lemma 5.12. Let $n = 1$, $s \in (0, 1/2]$ and φ be as in (5.72). Then,

$$\lim_{\rho \searrow 0} \int_0 \int_{\mathbb{R}} \frac{\left| \varphi(x) - \varphi(y) \right|^2}{|x - y|^{1+2s}} \, dx \, dy = 0.$$
Proof. Without loss of generality, we suppose that \(\rho < 1/4 \). We observe that
\[
(5.75) \quad \iint_{B_{\rho} \times B_{\rho}} \frac{|\varphi(x) - \varphi(y)|^2}{|x - y|^{1+2s}} \, dx \, dy = 0
\]
and
\[
(5.76) \quad \iint_{(\mathbb{R}^n \setminus B_{1}) \times (\mathbb{R}^n \setminus B_{1})} \frac{|\varphi(x) - \varphi(y)|^2}{|x - y|^{1+2s}} \, dx \, dy = 0.
\]
Moreover,
\[
\lim_{\rho \to 0} \int_{B_{\rho} \times (\mathbb{R}^n \setminus B_{1})} \frac{|\varphi(x) - \varphi(y)|^2}{|x - y|^{1+2s}} \, dx \, dy = \lim_{\rho \to 0} \int_{B_{\rho} \times (\mathbb{R}^n \setminus B_{1})} \frac{dx \, dy}{|x - y|^{1+2s}}
\]
\[
\leq \lim_{\rho \to 0} \int_{B_{\rho}} \int_{\mathbb{R}^n \setminus B_{2\rho}} \frac{1}{|z|^{1+2s}} \, dz \leq \lim_{\rho \to 0} C \rho = 0.
\]

Now we observe that if \(x \in B_{1} \setminus B_{\rho} \) and \(y \in B_{\rho} \), then
\[
|\varphi(x) - \varphi(y)|^2 = \frac{1}{(\log \rho)^2} |\log |x| - \log \rho|^2.
\]
As a consequence, changing variables \(X := x/\rho \) and \(Y := y/\rho \), and taking \(k \in \mathbb{N} \) such that \(2^{k-1} \leq 1/\rho \leq 2^k \), we see that
\[
(5.77) \quad \iint_{(B_{1}\setminus B_{2\rho}) \times B_{\rho}} \frac{|\varphi(x) - \varphi(y)|^2}{|x - y|^{1+2s}} \, dx \, dy = \frac{1}{(\log \rho)^2} \int_{(B_{1}\setminus B_{2\rho}) \times B_{\rho}} \frac{|\log |x| - \log \rho|^2}{|x - y|^{1+2s}} \, dx \, dy
\]
\[
= \frac{\rho^{1-2s}}{(\log \rho)^2} \int_{(B_{1}\setminus B_{2\rho}) \times B_{\rho}} \frac{|\log |X||^2}{|X - Y|^{1+2s}} \, dX \, dY
\]
\[
\leq \frac{\rho^{1-2s}}{(\log \rho)^2} \sum_{j=2}^{k} \int_{(B_{2\rho} \setminus B_{2^{j-1}}) \times B_{1}} \frac{|\log (2^j)|^2}{(2^{j-1} - 1)^{1+2s}} \, dX \, dY
\]
\[
\leq C \frac{\rho^{1-2s}}{(\log \rho)^2} \sum_{j=2}^{k} \frac{2^j j^2}{2^{j(1+2s)}}
\]
\[
\leq C \frac{\rho^{1-2s}}{(\log \rho)^2} \sum_{j=1}^{k} \frac{j^2}{2^{2sj}}
\]
\[
\leq C \frac{\rho^{1-2s}}{(\log \rho)^2},
\]
up to renaming \(C > 0 \).

In addition, using (5.74) (with \(|y| := \rho \)) and changing variable \(z := x - y \),
\[
\iint_{(B_{2\rho} \setminus B_{\rho}) \times B_{\rho}} \frac{|\varphi(x) - \varphi(y)|^2}{|x - y|^{1+2s}} \, dx \, dy = \frac{1}{(\log \rho)^2} \int_{(B_{2\rho} \setminus B_{\rho}) \times B_{\rho}} \frac{|\log |x| - \log \rho|^2}{|x - y|^{1+2s}} \, dx \, dy
\]
\[
\leq \frac{1}{(\log \rho)^2} \int_{(B_{2\rho} \setminus B_{\rho}) \times B_{\rho}} \frac{(|x| - \rho)^2}{|x - y|^{1+2s}} \, dx \, dy
\]
\[
\leq \frac{1}{(\log \rho)^2} \int_{(B_{2\rho} \setminus B_{\rho}) \times B_{\rho}} \frac{|x - y|^{-1+2s}}{\rho^2} \, dx \, dy
\]
\[
\leq \frac{1}{(\log \rho)^2} \int_{B_{3\rho} \times B_{\rho}} \frac{|z|^{1-2s}}{\rho^2} \, dz \, dy
\]
\[
= C \frac{\rho^{1-2s}}{(\log \rho)^2},
\]
for some $C > 0$.

From this and (5.78), we deduce that

$$\lim_{\rho \searrow 0} \int_{B_1 \setminus B_\rho} \frac{|\varphi(x) - \varphi(y)|^2}{|x - y|^{1+2s}} \, dx \, dy = 0. \tag{5.79}$$

Moreover, recalling (5.71),

$$\int_{(B_1 \setminus B_\rho) \times (\mathbb{R}^n \setminus \Omega)} \frac{|\varphi(x) - \varphi(y)|^2}{|x - y|^{1+2s}} \, dx \, dy \leq \frac{1}{(\log \rho)^2} \int_{B_1 \setminus B_\rho} |\log |x||^2 \, dx \int_{\mathbb{R}^n \setminus B_1} \frac{dz}{|z|^{1+2s}} \leq \frac{C}{(\log \rho)^2},$$

for some $C > 0$. This implies

$$\lim_{\rho \searrow 0} \int_{(B_1 \setminus B_\rho) \times (\mathbb{R}^n \setminus \Omega)} \frac{|\varphi(x) - \varphi(y)|^2}{|x - y|^{1+2s}} \, dx \, dy = 0. \tag{5.80}$$

Now, we observe that

$$\int_{(B_{1/2} \setminus B_\rho) \times (\Omega \setminus \Omega)} \frac{|\varphi(x) - \varphi(y)|^2}{|x - y|^{1+2s}} \, dx \, dy = \frac{1}{(\log \rho)^2} \int_{(B_{1/2} \setminus B_\rho) \times (\Omega \setminus \Omega)} \frac{|\log |x||^2}{|x - y|^{1+2s}} \, dx \, dy \tag{5.81}$$

for a suitable $C > 0$.

Furthermore, taking $R > 0$ such that $\Omega \subset B_R$,

$$\int_{(B_1 \setminus B_{1/2}) \times (\Omega \setminus B_1)} \frac{|\varphi(x) - \varphi(y)|^2}{|x - y|^{1+2s}} \, dx \, dy = \frac{1}{(\log \rho)^2} \int_{(B_1 \setminus B_{1/2}) \times (\Omega \setminus B_1)} \frac{|\log |x||^2}{|x - y|^{1+2s}} \, dx \, dy \leq \frac{4(\log 2)^2}{(\log \rho)^2} \int_{1/2}^1 \int_R^1 (y - x)^{-1-2s} \, dx \, dy = \frac{2(\log 2)^2}{s(\log \rho)^2} \int_{1/2}^1 [(1 - x)^{-2s} - (R - x)^{-2s}] \, dx \leq \frac{2(\log 2)^2}{s(1 - 2s)(\log \rho)^2} \left[(R - 1)^{1-2s} + \left(\frac{1}{2} \right)^{1-2s} - \left(R - \frac{1}{2} \right)^{1-2s} \right].$$

This and (5.81) give that

$$\lim_{\rho \searrow 0} \int_{(B_1 \setminus B_\rho) \times (\Omega \setminus B_1)} \frac{|\varphi(x) - \varphi(y)|^2}{|x - y|^{1+2s}} \, dx \, dy = 0. \tag{5.82}$$

Now, we take $k \in \mathbb{N}$ such that

$$\frac{1}{2^{k+1}} < \rho \leq \frac{1}{2^k}. \tag{5.83}$$
and we observe that
\[
\int \int_{(B_1 \setminus B_ρ) \times (B_1 \setminus B_ρ)} \frac{|φ(x) - φ(y)|^2}{|x - y|^{1+2s}} \, dx \, dy
\]
\[
= \frac{1}{(\log ρ)^2} \int \int_{(B_1 \setminus B_ρ) \times (B_1 \setminus B_ρ)} \frac{|\log |x| - \log |y||^2}{|x - y|^{1+2s}} \, dx \, dy
\]
\[
= \frac{2}{(\log ρ)^2} \int \int_{(B_1 \setminus B_ρ) \times (B_1 \setminus B_ρ)} \frac{|\log |x| - \log |y||^2}{|x - y|^{1+2s}} \, dx \, dy
\]
\[
\leq \frac{2}{(\log ρ)^2} \int \int_{(B_1 \setminus B_0) \times (B_1 \setminus B_{k+1})} \frac{|\log |x| - \log |y||^2}{|x - y|^{1+2s}} \, dx \, dy
\]
\[
\leq \frac{2}{(\log ρ)^2} \sum_{i,j=0}^{k} \int \int_{(B_1 \setminus B_i) \times (B_1 \setminus B_j)} \frac{|\log |x| - \log |y||^2}{|x - y|^{1+2s}} \, dx \, dy.
\]

Moreover, we remark that if \(x \in B_{1/2^j} \), \(y \notin B_{1/2^{j+1}} \) and \(|x| \geq |y| \), we have that
\[
\frac{1}{2i} \geq |x| \geq |y| \geq \frac{1}{2j+1},
\]
and accordingly \(i \leq j + 1 \).

This observation and (5.84) yield that
\[
\frac{(\log ρ)^2}{2} \int \int_{(B_1 \setminus B_ρ) \times (B_1 \setminus B_ρ)} \frac{|φ(x) - φ(y)|^2}{|x - y|^{1+2s}} \, dx \, dy
\]
\[
\leq \sum_{j=0}^{k} \sum_{j=0}^{j+1} \int \int_{(B_1 \setminus B_i) \times (B_1 \setminus B_j)} \frac{|\log |x| - \log |y||^2}{|x - y|^{1+2s}} \, dx \, dy
\]
\[
\leq I_1 + I_2,
\]
where
\[
I_1 := \sum_{j=0}^{k} \sum_{j=0}^{j+1} \int \int_{(B_{1/2^i} \setminus B_{1/2^{i+1}}) \times (B_{1/2^j} \setminus B_{1/2^{j+1}})} \frac{|\log |x| - \log |y||^2}{|x - y|^{1+2s}} \, dx \, dy
\]
and
\[
I_2 := \sum_{j=0}^{k} \sum_{j=0}^{j+1} \int \int_{(B_{1/2^i} \setminus B_{1/2^{i+1}}) \times (B_{1/2^j} \setminus B_{1/2^{j+1}})} \frac{|\log |x| - \log |y||^2}{|x - y|^{1+2s}} \, dx \, dy.
\]

We point out that, if \(x \in B_{1/2^i} \) and \(|y| \leq |x| \), then
\[
|x - y| \leq |x| + |y| \leq 2|x| \leq \frac{1}{2^{i-1}}.
\]
In light of this fact and (5.74), we have that

\[
I_1 \leq \sum_{j=0}^{k} \sum_{j-4 \leq i \leq j+1} \iint_{(B_{1/2} \setminus B_{1/2+i+1}) \times (B_{1/2} \setminus B_{1/2+i+1})} \frac{|x-y|^{1-2s}}{|y|^2} dx dy \\
\leq \sum_{j=0}^{k} \sum_{j-4 \leq i \leq j+1} \iint_{(B_{1/2} \setminus B_{1/2+i+1}) \times (B_{1/2} \setminus B_{1/2+i+1})} \frac{2^{(1-i)(1-2s)}}{2^{-2(j+1)}} dx dy \\
= \sum_{j=0}^{k} \sum_{j-4 \leq i \leq j+1} \frac{2^{-i} 2^{-j} 2(1-i)(1-2s)}{2^{-2(j+1)}} \\
(5.86) \\
= 2^{3-2s} \sum_{j=0}^{k} \sum_{j-4 \leq i \leq j+1} 2^{-2i(1-s)} 2^j \\
\leq 3 \cdot 2^{4-2s} \sum_{j=0}^{k} 2^{-2(j-4)(1-s)} 2^j \\
= 3 \cdot 2^{12-10s} \sum_{j=0}^{k} 2^{(2s-1)j}.
\]

In addition, if \(x \in B_{1/2} \) and \(y \notin B_{1/2+i+1} \) and \(|x| \geq |y| \),

\[
|\log |x| - \log |y|| = \log |x| - \log |y| \leq \log \frac{1}{2^i} - \log \frac{1}{2^{j+1}} = (j-i+1) \log 2.
\]

As a result,

\[
(5.87) \quad I_2 \leq \log^2 2 \sum_{j=0}^{k} \sum_{0 \leq i \leq j-4} \iint_{(B_{1/2} \setminus B_{1/2+i+1}) \times (B_{1/2} \setminus B_{1/2+i+1})} \frac{(j-i+1)^2}{|x|^{1+2s}} dx dy.
\]

Furthermore, if \(x \in B_{1/2} \setminus B_{1/2+i+1} \) and \(y \in B_{1/2} \), with \(i \leq j-4 \), we see that

\[
|x-y| \geq |x|-|y| \geq \frac{1}{2^{i+1}} - \frac{1}{2^j} = \frac{1}{2^i} \left(1 - \frac{1}{2^j-1}\right) \geq \frac{1}{2^i} \geq \frac{|x|}{4}.
\]

Then, we insert this information into (5.87) and we conclude that

\[
I_2 \leq 4^{1+2s} \log^2 2 \sum_{j=0}^{k} \sum_{0 \leq i \leq j-4} \iint_{(B_{1/2} \setminus B_{1/2+i+1}) \times (B_{1/2} \setminus B_{1/2+i+1})} \frac{(j-i+1)^2}{|x|^{1+2s}} dx dy \\
\leq 4^{1+2s} \log^2 2 \sum_{j=0}^{k} \sum_{0 \leq i \leq j-4} \iint_{(B_{1/2} \setminus B_{1/2+i+1}) \times (B_{1/2} \setminus B_{1/2+i+1})} \frac{(j-i+1)^2}{2^{-(i+1)(1+2s)}} dx dy \\
= 4^{1+2s} \log^2 2 \sum_{j=0}^{k} \sum_{0 \leq i \leq j-4} 2^{-i} 2^{-j} (j-i+1)^2 \\
= 2^{3(1+2s)} \log^2 2 \sum_{j=0}^{k} \sum_{0 \leq i \leq j-4} 2^{2si} 2^{-j} (j-i+1)^2 \\
= 2^{3(1+2s)+1} \log^2 2 \sum_{j=0}^{k} \sum_{0 \leq i \leq j-4} 2^{(2s-1)i} 2^{i-j} (j-i+1)^2.
\]
Hence, changing index of summation by posing $\ell := j - i + 1$,

$$I_2 \leq 2^{3(1+2s)+1} \log^2 2 \sum_{i=0}^k \sum_{\ell \geq 5} 2^{(2s-1)i} 2^{-\ell} \ell^2$$

$$\leq \bar{C} \sum_{i=0}^k 2^{(2s-1)i},$$

where

$$\bar{C} := 2^{3(1+2s)+1} \log^2 2 \sum_{\ell=0}^{+\infty} 2^{-\ell} \ell^2.$$

We plug this information and (5.86) into (5.85) and we find that

$$(5.88) \quad (\log \rho)^2 \int_{(B_1 \setminus B_\rho) \times (B_1 \setminus B_\rho)} \frac{|\varphi(x) - \varphi(y)|^2}{|x - y|^{1+2s}} \, dx \, dy \leq C_* \sum_{m=0}^k 2^{(2s-1)m},$$

where $C_* := 2(\bar{C} + 3 \cdot 2^{12-10s}).$

We observe that

$$\sum_{m=0}^k 2^{(2s-1)m} = k \quad \text{if} \quad s = \frac{1}{2},$$

while

$$\sum_{m=0}^k 2^{(2s-1)m} \leq \sum_{m=0}^{+\infty} 2^{(2s-1)m} =: C_\sharp \quad \text{if} \quad s \in \left(0, \frac{1}{2}\right),$$

and consequently, by (5.88),

$$(\log \rho)^2 \int_{(B_1 \setminus B_\rho) \times (B_1 \setminus B_\rho)} \frac{|\varphi(x) - \varphi(y)|^2}{|x - y|^{1+2s}} \, dx \, dy \leq \begin{cases} C_* k & \text{if} \quad s = \frac{1}{2}, \\ C_* C_\sharp & \text{if} \quad s \in \left(0, \frac{1}{2}\right). \end{cases}$$

From this and (5.83), it follows that

$$(\log \rho)^2 \int_{(B_1 \setminus B_\rho) \times (B_1 \setminus B_\rho)} \frac{|\varphi(x) - \varphi(y)|^2}{|x - y|^{1+2s}} \, dx \, dy \leq \begin{cases} C_* \frac{|\log \rho|}{\log 2} & \text{if} \quad s = \frac{1}{2}, \\ C_* C_\sharp & \text{if} \quad s \in \left(0, \frac{1}{2}\right). \end{cases}$$

This implies that

$$\lim_{\rho \to 0} \int_{(B_1 \setminus B_\rho) \times (B_1 \setminus B_\rho)} \frac{|\varphi(x) - \varphi(y)|^2}{|x - y|^{1+2s}} \, dx \, dy = 0.$$

From this, (5.75), (5.76), (5.77), (5.79), (5.80) and (5.82) we obtain the desired result. \hfill \square

An additional useful property of the function φ defined in (5.72) is the following:

Lemma 5.13. Let $n = 1$, $s \in [0, 1/2]$ and φ be as in (5.72). Then,

$$\lim_{\rho \to 0} \overline{m} \int_D \varphi^2 \, dx - m \int_{\Omega \setminus D} \varphi^2 \, dx = -\frac{m(m + m_0)}{m_0} |\Omega| > 0.$$

Proof. From (5.72) and (5.73), and exploiting (5.1) and (5.12), we see that

$$\overline{m} \int_D \varphi^2 \, dx = \overline{m}(c_* + 1)^2 |D| = \overline{m}(c_* + 1)^2 \frac{m + m_0}{m + m_0} |\Omega| = \frac{\overline{m}m^2(m + m_0)}{m_0(m + m)} |\Omega|$$

and that

$$m \int_{\Omega \setminus D} \varphi^2 \, dx = m \int_{B_1 \setminus B_\rho} \varphi^2 \, dx + m \int_{\Omega \setminus B_1} \varphi^2 \, dx$$

and

...
\[= m \int_{B_1 \setminus B_\rho} \left(c_* + \frac{\log |x|}{\log \rho} \right)^2 dx + m \int_{\Omega \setminus B_1} c_*^2 dx. \]

We also remark that
\[(5.89) \quad \left(\frac{\log |x|}{\log \rho} \right)^2 \chi_{B_1 \setminus B_\rho} \leq 1. \]

Therefore, by the Dominated Convergence Theorem, and recalling (5.14),
\[
\lim_{\rho \to 0} m \int_D \varphi^2 dx - m \int_{\Omega \setminus D} \varphi^2 dx = \lim_{\rho \to +\infty} \frac{m m^2 (m + m_0)}{m_0^2 (m + m)} |\Omega| - \lim_{\rho \to 0} m \int_{B_1 \setminus B_\rho} \left(c_* + \frac{\log |x|}{\log \rho} \right)^2 dx + m \int_{\Omega \setminus B_1} c_*^2 dx
\]
\[= \frac{m^2 (m + m_0)}{m_0^2} |\Omega| - m c_*^2 |\Omega|
\]
\[= \frac{m (m + m_0)}{m_0^2} (m - (m + m_0)) |\Omega|
\]
\[= - \frac{m (m + m_0)}{m_0} |\Omega|,
\]
which is positive, since \(m_0 \in (-m, 0) \), as desired.

In the case \(s \in (0, \frac{1}{2}] \), it is also convenient to introduce the function
\[(5.90) \quad \psi(x) := \begin{cases}
\frac{c_* - 1}{2} & \text{if } x \in B_\rho, \\
\frac{c_* - \frac{\log |x|}{\log \rho}}{2} & \text{if } x \in B_1 \setminus B_\rho, \\
\frac{c_*}{2} & \text{if } x \in \mathbb{R}^2 \setminus B_1,
\end{cases}
\]
where \(c_* \) is defined in (5.35). We also set
\[(5.91) \quad D := \Omega \setminus B_\rho,
\]
and we study the main properties of the auxiliary function \(\psi \).

Comparing (5.72) with (5.90), we observe that \(|\psi(x) - \psi(y)| = |\varphi(x) - \varphi(y)| \), and therefore, from Lemma 5.12, we obtain that:

Lemma 5.14. Let \(n = 1 \), \(s \in (0, 1/2] \) and \(\psi \) be as in (5.90). Then,
\[
\lim_{\rho \to 0} \int_\Omega \frac{\psi(x) - \psi(y)^2}{|x - y|^{1+2s}} \, dx \, dy = 0.
\]

We also have that:

Lemma 5.15. Let \(n = 1 \), \(s \in (0, 1/2] \) and \(\psi \) be as in (5.90). Then,
\[
\lim_{\rho \to 0} \int_D \psi^2 dx - m \int_{\Omega \setminus D} \psi^2 dx = - \frac{m (m - m_0)}{m_0} |\Omega| > 0.
\]

Proof. In view of (5.90), (5.91), (5.35) and (5.1),
\[
m \int_{\Omega \setminus D} \psi^2 dx = m (c_* - 1)^2 |\Omega \setminus D| = m \left(\frac{m_0 - m}{m_0} - 1 \right)^2 \frac{m - m_0}{m + m} |\Omega| = \frac{m m^2 (m - m_0)}{m^2 (m + m)} |\Omega|,
\]
and
\[
m \int_D \psi^2 dx = m \int_{B_1 \setminus B_\rho} \left(c_* - \frac{\log |x|}{\log \rho} \right)^2 dx + m \int_{\Omega \setminus B_1} c_*^2 dx.
\]
Hence, recalling (5.37) and (5.89), and using the Dominated Convergence Theorem,

\[
\lim_{\rho \to 0} \frac{m}{D} \int_D \psi^2 \, dx - m \int_{\Omega \setminus D} \psi^2 \, dx = \lim_{\rho \to 0} \frac{m}{B_1 \setminus B_\rho} \left(c_2 - \log \left| \frac{x}{\log \rho} \right| \right)^2 \, dx + m \int_{\Omega \setminus B_1} c^2_2 \, dx - \lim_{m \to +\infty} \frac{m m_0^2 (m - m_0)}{m_0^2 (m + m)} \, \Omega \]

hence, recalling (42), and utilizing Lemmata 5.12 and 5.13, we find that

\[
\lim_{m \to +\infty} \Lambda(m, m, m_0) \leq \lim_{\rho \to 0} \frac{\beta}{4} \frac{\int_{Q} \left| \varphi(x) - \varphi(y) \right|^2 \, dx \, dy}{\int_D \varphi^2 \, dx - m \int_{\Omega \setminus D} \varphi^2 \, dx} = 0,
\]

as desired.

We are now ready to complete the proof of Theorem 1.10 in the case \(s \in (0, 1/2] \).

Proof of Theorem 1.10 when \(s \in (0, 1/2] \). To prove (1.25), we exploit the auxiliary function \(\varphi \) introduced in (5.72) and the choice of the resource \(m \in \mathcal{M} \), as defined in (5.2), with \(D \) as in (5.73).

In this way, in light of (1.17),

\[
\Lambda(m, m, m_0) \leq \frac{\beta}{4} \frac{\int_{Q} \left| \varphi(x) - \varphi(y) \right|^2 \, dx \, dy}{\int_D \varphi^2 \, dx - m \int_{\Omega \setminus D} \varphi^2 \, dx}.
\]

Hence, taking \(m := \bar{m} \) and utilizing Lemmata 5.12 and 5.13, we find that

\[
\lim_{m \to +\infty} \Lambda(m, m, m_0) \leq \lim_{\rho \to 0} \frac{\beta}{4} \frac{\int_{Q} \left| \varphi(x) - \varphi(y) \right|^2 \, dx \, dy}{\int_D \varphi^2 \, dx - m \int_{\Omega \setminus D} \varphi^2 \, dx} = 0.
\]

This proves (1.25), and we now focus on the proof of (1.26). To this end, we exploit the auxiliary function \(\psi \) introduced in (5.90) and the choice of the resource \(m \in \mathcal{M} \), as defined in (5.2), with \(D \) as in (5.91).

In this framework, in light of (1.17),

\[
\Lambda(m, m, m_0) \leq \frac{\beta}{4} \frac{\int_{Q} \left| \psi(x) - \psi(y) \right|^2 \, dx \, dy}{\int_D \psi^2 \, dx - m \int_{\Omega \setminus D} \psi^2 \, dx}.
\]

As a result, taking \(m := \bar{m} \) and utilizing Lemmata 5.14 and 5.15, we conclude that

\[
\lim_{m \to +\infty} \Lambda(m, m, m_0) \leq \lim_{\rho \to 0} \frac{\beta}{4} \frac{\int_{Q} \left| \psi(x) - \psi(y) \right|^2 \, dx \, dy}{\int_D \psi^2 \, dx - m \int_{\Omega \setminus D} \psi^2 \, dx} = 0,
\]

thus establishing (1.26).
6. Badly displayed resources, hectic oscillations and proof of Theorem 1.11

This section contains the proof of Theorem 1.11, relying on an explicit example of sequence of highly oscillating resources which make the first eigenvalue diverge. The technical details go as follows.

Proof of Theorem 1.11. We suppose that $B_4 \subset \Omega$ and we consider $\eta \in C_0^\infty(B_{3/2}, [0,1])$ with $\eta = 1$ in B_1 and $\|\eta\|_{C^1(\mathbb{R}^n)} \leq 8$. We let

$$m_\omega := m_0 - \frac{\Lambda}{|\Omega|} \int_\Omega \eta(x) \sin(\omega x_1) \, dx$$

and

$$m(x) := m_\omega + \Lambda \eta(x) \sin(\omega x_1),$$

with $\omega > 0$ to be taken arbitrarily large in what follows.

We remark that

$$(6.1) \quad \frac{1}{|\Omega|} \int_\Omega m(x) \, dx = m_\omega + \frac{\Lambda}{|\Omega|} \int_\Omega \eta(x) \sin(\omega x_1) \, dx = m_0.$$

Moreover, integrating by parts,

$$|m_\omega - m_0| = \frac{\Lambda}{|\Omega|} \left| \int_\Omega \eta(x) \sin(\omega x_1) \, dx \right| = \frac{\Lambda}{|\Omega|} \frac{\omega}{\Lambda} \left| \int_\Omega \eta(x) \frac{d}{dx_1} \cos(\omega x_1) \, dx \right|$$

$$= \frac{\Lambda}{|\Omega|} \frac{\omega}{\Lambda} \left| \int_\Omega \partial_1 \eta(x) \cos(\omega x_1) \, dx \right| \leq \frac{8\Lambda}{\omega},$$

which is arbitrarily small provided that ω is large enough: in particular, we can suppose that

$$2m_0 \leq m_\omega \leq \frac{m_0}{2}. \quad (6.2)$$

Also, for every $x \in \Omega$,

$$|m(x)| \leq |m_\omega| + \Lambda \leq 2|m_0| + \Lambda \leq 2\Lambda. \quad (6.3)$$

Furthermore, for large ω we have that

$$p^\pm := \left(\pm \frac{\pi}{2\omega}, 0, \ldots, 0 \right) \in B_1 \subset \Omega \cap \{\eta = 1\}.$$

Therefore

$$\sup_{\Omega} m \geq m(p^+) = m_\omega + \Lambda \geq \Lambda - 2|m_0| \geq \frac{\Lambda}{2} \quad (6.4)$$

and

$$\inf_{\Omega} m \leq m(p^-) = m_\omega - \Lambda \leq -\Lambda.$$

In view of (1.27), (6.1), (6.3) and (6.4), we obtain that

$$m \in M^2_{\Lambda, m_0}. \quad (6.5)$$

Now, we take into account a function $\varphi \in X_{\alpha, \beta}$ such that

$$\int_\Omega m(x)\varphi^2(x) \, dx = 1.$$

Then, integrating by parts, we see that

$$1 = \int_\Omega \left(m_\omega + \Lambda \eta(x) \sin(\omega x_1) \right) \varphi^2(x) \, dx$$

$$= m_\omega \int_\Omega \varphi^2(x) \, dx + \Lambda \int_{\mathbb{R}^n} \eta(x) \sin(\omega x_1) \varphi^2(x) \, dx$$

$$= m_\omega \int_\Omega \varphi^2(x) \, dx - \frac{\Lambda}{\omega} \int_{\mathbb{R}^n} \eta(x) \frac{d}{dx_1} \cos(\omega x_1) \varphi^2(x) \, dx.$$
\begin{align*}
&= m_{\omega} \int_{\Omega} \varphi^2(x) \, dx + \frac{\Lambda}{\omega} \int_{\mathbb{R}^n} \partial_1 \eta(x) \cos(\omega x_1) \varphi^2(x) \, dx + \frac{2\Lambda}{\omega} \int_{\mathbb{R}^n} \eta(x) \cos(\omega x_1) \varphi(x) \partial_1 \varphi(x) \, dx \\
&\leq m_{\omega} \int_{\Omega} \varphi^2(x) \, dx + \frac{8\Lambda}{\omega} \int_{\mathbb{R}^n} \varphi^2(x) \, dx + \frac{2\Lambda}{\omega} \int_{\mathbb{R}^n} \varphi(x) |\nabla \varphi(x)| \, dx \\
&\leq m_{\omega} \int_{\Omega} \varphi^2(x) \, dx + \frac{9\Lambda}{\omega} \int_{\mathbb{R}^n} \varphi^2(x) \, dx + \frac{\Lambda}{\omega} \int_{\mathbb{R}^n} |\nabla \varphi(x)|^2 \, dx.
\end{align*}
As a consequence, if \(\frac{9\Lambda}{\omega} \leq -m_{\omega} \) (which is the case for \(\omega \) large, in view of (6.2)),
\[1 \leq \frac{\Lambda}{\omega} \int_{\mathbb{R}^n} |\nabla \varphi(x)|^2 \, dx,\]
and accordingly
\[(6.6) \quad \frac{\alpha}{2} \frac{\int_{\Omega} |\nabla \varphi(x)|^2 \, dx}{\int_{\Omega} m(x) \varphi^2(x) \, dx} \geq \frac{\alpha \omega}{2\Lambda}.
\]
Let now \(\zeta \in (-1, 1) \) and \(E' \in \mathbb{R}^{n-1} \) with \(|E'| \leq |\zeta| \) and \(E := (\zeta, E') \in \mathbb{R}^n \). We use the trigonometric identity
\[
\frac{\cos(y) \cos \zeta - \cos(y + \zeta)}{\sin \zeta} = \sin y, \quad \text{for all } \zeta \in \mathbb{R} \setminus (\pi \mathbb{Z}) \text{ and } y \in \mathbb{R},
\]
\[\text{together with the notation } \Phi := \eta \varphi^2 \text{ and the change of variable}
\[X := x + \frac{1}{\omega} (\zeta, E') = x + \frac{E}{\omega},\]
to write that
\[1 = m_{\omega} \int_{\Omega} \left(m_{\omega} + \Lambda \eta(x) \sin(\omega x_1) \right) \varphi^2(x) \, dx \]
\[= m_{\omega} \int_{\Omega} \varphi^2(x) \, dx + \Lambda \int_{\mathbb{R}^n} \sin(\omega x_1) \Phi(x) \, dx \]
\[= m_{\omega} \int_{\Omega} \varphi^2(x) \, dx + \frac{\Lambda}{\sin \zeta} \int_{\mathbb{R}^n} \left(\cos(\omega x_1) \cos \zeta - \cos(\omega x_1 + \zeta) \right) \Phi(x) \, dx \]
\[= m_{\omega} \int_{\Omega} \varphi^2(x) \, dx \]
\[+ \frac{\Lambda}{\sin \zeta} \int_{\mathbb{R}^n} \cos(\omega x_1) \cos \zeta \, \Phi(x) \, dx - \int_{\mathbb{R}^n} \cos(\omega x_1) \, \Phi \left(X - \frac{E}{\omega} \right) \, dX \]
\[= m_{\omega} \int_{\Omega} \varphi^2(x) \, dx \]
\[+ \frac{\Lambda}{\sin \zeta} \int_{\mathbb{R}^n} \cos(\omega x_1) \left[\cos \zeta \, \Phi(x) - \Phi \left(x - \frac{E}{\omega} \right) \right] \, dx \]
\[= m_{\omega} \int_{\Omega} \varphi^2(x) \, dx + \frac{\Lambda}{\sin \zeta} \int_{\mathbb{R}^n} \cos(\omega x_1) \left(\cos \zeta - 1 \right) \Phi(x) \, dx \]
\[+ \frac{\Lambda}{\sin \zeta} \int_{\mathbb{R}^n} \cos(\omega x_1) \left(\Phi(x) - \Phi \left(x - \frac{E}{\omega} \right) \right) \, dx \]
\[\text{Since}
\[|\Phi(x) - \Phi \left(x - \frac{E}{\omega} \right)| \leq \varphi^2(x) \left| \eta(x) - \eta \left(x - \frac{E}{\omega} \right) \right| + \eta \left(x - \frac{E}{\omega} \right) \left| \varphi^2(x) - \varphi^2 \left(x - \frac{E}{\omega} \right) \right|\]
\[
\leq \frac{8\varphi^2(x)|E|}{\omega} + \left| \varphi^2(x) - \varphi^2\left(x - \frac{E}{\omega}\right) \right|,
\]
we thereby discover that, if \(E \in B_1\) and \(\omega \geq 2\),
\[
1 \leq \left(m_\omega + \frac{8\Lambda|E|}{\omega|\sin\zeta|} \right) \int_\Omega \varphi^2(x) \, dx + \frac{\Lambda}{|\sin\zeta|} \int_\Omega (1 - \cos \zeta) \varphi^2(x) \, dx
+ \frac{\Lambda}{|\sin\zeta|} \int_{B_2} \left| \varphi^2(x) - \varphi^2\left(x - \frac{E}{\omega}\right) \right| \, dx
\leq \left(m_\omega + \frac{CA}{\omega} \right) \int_\Omega \varphi^2(x) \, dx + \frac{CA|\zeta|}{\omega} \int_\Omega \varphi^2(x) \, dx
+ \frac{CA}{|\zeta|} \int_{B_2} \left| \varphi^2(x) - \varphi^2\left(x - \frac{E}{\omega}\right) \right| \, dx,
\]
for some \(C > 0\).

In particular, recalling also (6.2), it follows that there exists \(r_0 \in (0, 1)\), possibly depending on \(m_0, \Lambda\) and \(n\), such that, if \(\zeta \in (-r_0, r_0)\) and \(\omega\) is sufficiently large,
\[
(6.7) \quad 1 \leq \frac{m_\omega}{2} \int_\Omega \varphi^2(x) \, dx + \frac{CA}{|\zeta|} \int_{B_2} \left| \varphi^2(x) - \varphi^2\left(x - \frac{E}{\omega}\right) \right| \, dx.
\]
We also observe that, given an additional parameter \(\kappa > 0\), to be taken conveniently small in what follows,
\[
2 \left| \varphi^2(x) - \varphi^2\left(x - \frac{E}{\omega}\right) \right| = 2 \left| \varphi(x) + \varphi\left(x - \frac{E}{\omega}\right) \right| \left| \varphi(x) - \varphi\left(x - \frac{E}{\omega}\right) \right|
\leq \kappa|\zeta|^{n+2s-1} \left| \varphi(x) + \varphi\left(x - \frac{E}{\omega}\right) \right|^2 + \kappa^{-1}|\zeta|^{1-n-2s} \left| \varphi(x) - \varphi\left(x - \frac{E}{\omega}\right) \right|^2
\leq 4\kappa|\zeta|^{n+2s-1}\varphi^2(x) + 4\kappa|\zeta|^{n+2s-1}\varphi^2\left(x - \frac{E}{\omega}\right) + \kappa^{-1}|\zeta|^{1-n-2s} \left| \varphi(x) - \varphi\left(x - \frac{E}{\omega}\right) \right|^2.
\]
Then, we plug this information into (6.7) and we conclude that, if \(r_0\) is small enough and \(\omega\) is large enough,
\[
(6.8) \quad 1 \leq \frac{m_\omega}{2} \int_\Omega \varphi^2(x) \, dx
+ \frac{CA}{|\zeta|} \left[\kappa \int_{B_2} |\zeta|^{n+2s-1}\varphi^2(x) \, dx + \kappa \int_{B_2} |\zeta|^{n+2s-1}\varphi^2\left(x - \frac{E}{\omega}\right) \, dx
+ \frac{1}{\kappa} \int_{B_2} |\zeta|^{1-n-2s} \left| \varphi(x) - \varphi\left(x - \frac{E}{\omega}\right) \right|^2 \, dx \right]
\leq \frac{m_\omega}{2} \int_\Omega \varphi^2(x) \, dx
+ \frac{CA}{|\zeta|} \left[2\kappa |\zeta|^{n+2s-1} \int_{B_4} \varphi^2(x) \, dx + \frac{1}{\kappa} \int_{B_2} |\zeta|^{1-n-2s} \left| \varphi(x) - \varphi\left(x - \frac{E}{\omega}\right) \right|^2 \, dx \right].
\]
We also remark that, in our notation, \(E_1 = \zeta\), and accordingly,
\[
\int_{B_4 \times (B_{r_0} \cap \{|E| \leq |E_1|\})} |\zeta|^{n+2s-2}\varphi^2(x) \, dx \, dE \leq \int_{B_4 \times B_{r_0}} |E_1|^{n+2s-2}\varphi^2(x) \, dx \, dE
\leq \tilde{C}\int_{B_4} \varphi^2(x) \, dx,
\]
for some \(\tilde{C} > 0\).
For this reason, letting ϵ be the measure of the set $\{x = (x_1, x') \in B_1 \text{ s.t. } |x'| \leq |x_1|\}$, we obtain that
\[
\frac{m_\omega}{2} \int_{\Omega} \varphi^2(x) dx \, dE + 2C K \Lambda \int_{B_4 \times (B_9 \cap \{ |E| |E'| \leq |E_1| \})} |\zeta|^{n+2s-2} \varphi^2(x) dx \, dE \leq \frac{m_\omega \epsilon r_0^n}{2} \int_{\Omega} \varphi^2(x) dx + 2C C \Lambda r_0^{2n+2s-2} \int_{B_4} \varphi^2(x) dx \leq 0,
\]
by choosing
\[
\kappa := \min \left\{ 1, \frac{m_\omega \epsilon}{C C \Lambda r_0^{2n+2s-2}} \right\}.
\]
Therefore, we can integrate (6.8) over $E \in B_{r_0} \cap \{ |E'| \leq |E_1| \}$ and up to renaming constants we find that
\[
r_0^n \leq C \Lambda \int_{B_2 \times (B_{r_0} \cap \{ |E| \leq |E_1| \})} |E_1|^{-n-2s} \left| \varphi(x) - \varphi \left(\frac{x - E}{\omega} \right) \right|^2 dx \, dE \leq C \Lambda \int_{B_2 \times (B_{r_0} \cap \{ |E| \leq |E_1| \})} |E|^{-n-2s} \left| \varphi(x) - \varphi \left(\frac{x - E}{\omega} \right) \right|^2 dx \, dE = C \Lambda \omega^{-2s} \int_{B_2 \times (B_{r_0} \cap \{ |E| \leq |E_1| \})} |z|^{-n-2s} \left| \varphi(x) - \varphi(x - z) \right|^2 dx \, dz \leq C \Lambda \omega^{-2s} \int_{B_2 \times \mathbb{R}^n} \left| \varphi(x) - \varphi(y) \right|^2 dx \, dy \leq C \Lambda \omega^{-2s} \int_{\Omega} \frac{\left| \varphi(x) - \varphi(y) \right|^2}{|x - y|^{n+2s}} dx \, dy,
\]
and consequently
\[
\frac{\beta}{4} \int_{\Omega} \frac{\left| \varphi(x) - \varphi(y) \right|^2}{|x - y|^{n+2s}} dx \, dy \geq \frac{\beta r_0^n \omega^{2s}}{C \Lambda},
\]
up to renaming $C > 0$.

This and (6.6), recalling (6.5), give that
\[
\lambda_1(m) \geq \frac{\alpha \omega}{2 \Lambda} + \frac{\beta r_0^n \omega^{2s}}{C \Lambda},
\]
which, taking ω as large as we wish, yields the desired result. \hfill \Box

APPENDIX A. PROOFS OF THEOREMS 1.7 AND 1.8 WHEN $n = 2$

The main strategy followed in this part is similar to the case $n \geq 3$, but when $n = 2$ we have to define different auxiliary functions. We start with the proof of Theorem 1.7. For this, we recall the setting in (5.10) and (5.12), and we define

\[
\varphi(x) := \begin{cases}
 c_\ast + 1 & \text{if } x \in B_p, \\
 c_\ast + \frac{\log |x|}{\log \rho} & \text{if } x \in B_1 \setminus B_p, \\
 c_\ast & \text{if } x \in \mathbb{R}^2 \setminus B_1.
\end{cases}
\]

We set

\[
D := B_p,
\]
and we list below some interesting properties of φ:
Lemma A.1. Let \(n = 2 \) and \(\varphi \) be as in (A.1). Then
\[
\lim_{\rho \searrow 0} \int_{\Omega} |\nabla \varphi|^2 = 0.
\]

Proof. We compute
\[
\frac{1}{(\log \rho)^2} \int_{B_1 \setminus B_\rho} \frac{1}{|x|^2} \, dx = \frac{2\pi}{(\log \rho)^2} \int_{\rho}^{1} \frac{1}{r} \, dr = -\frac{2\pi}{\log \rho} \to 0
\]
as \(\rho \searrow 0 \).

Lemma A.2. Let \(n = 2 \) and \(\varphi \) be as in (A.1). Then
\[
\lim_{\rho \searrow 0} \iint_{\Omega} \frac{|\varphi(x) - \varphi(y)|^2}{|x-y|^{2+2s}} \, dx \, dy = 0.
\]

Proof. As for the proof of Lemma 5.5, we have to consider several integral contributions (given the different expressions of the competitors the technical computations here are different from those in Lemma 5.5). First of all, we have that
\[
\iint_{B_\rho \times B_\rho} \frac{|\varphi(x) - \varphi(y)|^2}{|x-y|^{2+2s}} \, dx \, dy = 0
\]
and
\[
\iint_{(\mathbb{R}^2 \setminus B_1) \times (\mathbb{R}^2 \setminus B_1)} \frac{|\varphi(x) - \varphi(y)|^2}{|x-y|^{2+2s}} \, dx \, dy = 0.
\]

Moreover, assuming \(\rho < 1/4 \),
\[
\iint_{B_\rho \times (\mathbb{R}^2 \setminus B_1)} \frac{|\varphi(x) - \varphi(y)|^2}{|x-y|^{2+2s}} \, dx \, dy = \int_{B_\rho \times (\mathbb{R}^2 \setminus B_1)} \frac{1}{|x-y|^{2+2s}} \, dx \, dy
\]
\[
\leq \int_{B_\rho} \int_{(\mathbb{R}^2 \setminus B_1)} \frac{1}{|z|^{2+2s}} \, dz \leq C |B_1| \rho^2 \to 0
\]
as \(\rho \searrow 0 \).

Furthermore, if \((x, y) \in (B_1 \setminus B_\rho) \times B_\rho \) we have
\[
|\varphi(x) - \varphi(y)|^2 = \frac{1}{(\log \rho)^2} |\log |x| - \log \rho|^2.
\]

Consequently, from (5.74) (used here with \(|y| = \rho \)),
\[
\iint_{(B_1 \setminus B_\rho) \times B_\rho} \frac{|\varphi(x) - \varphi(y)|^2}{|x-y|^{2+2s}} \, dx \, dy = \frac{1}{(\log \rho)^2} \iint_{(B_1 \setminus B_\rho) \times B_\rho} \frac{|\log |x| - \log \rho|^2}{|x-y|^{2+2s}} \, dx \, dy
\]
\[
\leq \frac{1}{\rho^2 (\log \rho)^2} \iint_{(B_1 \setminus B_\rho) \times B_\rho} \frac{|\log |x| - \rho|^2}{|x-y|^{2+2s}} \, dx \, dy
\]
\[
\leq \frac{1}{\rho^2 (\log \rho)^2} \iint_{(B_1 \setminus B_\rho) \times B_\rho} |x-y|^{-2s} \, dx \, dy
\]
\[
\leq \frac{1}{\rho^2 (\log \rho)^2} \int_{B_\rho} \int_{B_2} |z|^{-2s} \, dz
\]
\[
\leq \frac{C}{(\log \rho)^2} \to 0
\]
as \(\rho \searrow 0 \).

Also, exploiting (5.10), we have
\[
\iint_{(B_1 \setminus B_\rho) \times (\mathbb{R}^2 \setminus \Omega)} \frac{|\varphi(x) - \varphi(y)|^2}{|x-y|^{2+2s}} \, dx \, dy = \frac{1}{(\log \rho)^2} \iint_{(B_1 \setminus B_\rho) \times (\mathbb{R}^2 \setminus \Omega)} \frac{|\log |x||^2}{|x-y|^{2+2s}} \, dx \, dy
\]
Moreover, by (5.74), used here with $|y| = 1$, we have
\[
\int\int_{(B_1 \setminus B_ρ) \times (Ω \setminus B_1)} \frac{|φ(x) - φ(y)|^2}{|x - y|^{2+2s}} \, dx \, dy = \frac{1}{(log ρ)^2} \int\int_{(B_1 \setminus B_ρ) \times (Ω \setminus B_1)} \frac{|log |x||^2}{|x - y|^{2+2s}} \, dx \, dy
\]
\[
\leq \frac{1}{(log ρ)^2} \int\int_{(B_1 \setminus B_ρ) \times (Ω \setminus B_1)} \frac{(1 - |x|)^2}{|x|^2|x - y|^{2+2s}} \, dx \, dy
\]
\[
\leq \frac{1}{(log ρ)^2} \int\int_{B_1 \setminus B_ρ} \frac{1}{|x|^2} \, dx \int_{|z|^{-2s} \cdot B_{R+1}} \, dz
\]
\[
\leq \frac{C}{(log ρ)^2} \int\int_{B_1 \setminus B_ρ} \frac{1}{|x|^2} \, dx = - \frac{C}{log ρ} \rightarrow 0
\]
as $ρ \searrow 0$, where we took $R > 2$ sufficiently large such that $Ω \subset B_R$.

In addition, utilizing again (5.74), we first notice that
\[
\int\int_{(B_1 \setminus B_ρ) \times (B_1 \setminus B_ρ)} \frac{|φ(x) - φ(y)|^2}{|x - y|^{2+2s}} \, dx \, dy = \frac{1}{(log ρ)^2} \int\int_{(B_1 \setminus B_ρ) \times (B_1 \setminus B_ρ)} \frac{(log |x| - log |y|)^2}{|x - y|^{2+2s}} \, dx \, dy
\]
\[
= \frac{2}{(log ρ)^2} \int\int_{\{x < |y| \} \cap (B_1 \setminus B_ρ)} \frac{1}{|x|^2} \, dx \int_{|z|^{-2s} \cdot B_{R+1}} \, dz
\]
\[
= \frac{2}{(log ρ)^2} \int\int_{B_1 \setminus B_ρ} \frac{1}{|x|^2} \, dx = - \frac{C}{log ρ} \rightarrow 0
\]
as $ρ \searrow 0$, which concludes the proof. □

Lemma A.3. Let $n = 2$ and $φ$ be as in (A.1). Then
\[
\lim_{ρ \searrow 0} \overline{m} \int_D φ^2 \, dx - \overline{m} \int_{Ω \setminus D} φ^2 \, dx = - \frac{m(m + m_0)|Ω|}{m_0} > 0.
\]

Proof. By (A.1) and (A.2), and recalling (5.1), we have that
\[
\overline{m} \int_D φ^2 \, dx = \overline{m}(c_* + 1)^2 |B_ρ| = \overline{m}(c_* + 1)^2 \frac{m + m_0}{m + m_0} |Ω|.
\]

Hence, in light of (5.12) and (5.14),
\[
\lim_{ρ \searrow 0} \overline{m} \int_D φ^2 \, dx = \lim_{ρ \to +∞} \overline{m} \left(\frac{m + m_0}{m_0} + 1 \right)^2 \frac{m + m_0}{m + m_0} |Ω| = \left(- \frac{m + m_0}{m_0} + 1 \right)^2 (m + m_0) |Ω|.
\]

Moreover, by (5.12) and the Dominated Convergence Theorem,
\[
\overline{m} \int_{Ω \setminus D} φ^2 \, dx = \overline{m} \int_{B_1 \setminus B_ρ} \left(c_* + \frac{log |x|}{log ρ} \right)^2 \, dx + \overline{m} c_*^2 |Ω \setminus B_1|
\]
\[\rightarrow m \int_{B_1} \left(\frac{-m + m_0}{m_0} \right)^2 dx + m \left(\frac{-m + m_0}{m_0} \right)^2 |\Omega \setminus B_1| \]
\[= m \left(\frac{-m + m_0}{m_0} \right)^2 |\Omega| , \]
as \(\rho \searrow 0 \).

As a result,
\[\lim_{\rho \searrow 0} \frac{m}{\Omega} \int_D \varphi^2 dx - \frac{m}{\Omega} \int_{\Omega \setminus D} \varphi^2 dx = \left[\left(\frac{-m + m_0}{m_0} + 1 \right)^2 (m + m_0) - m \left(\frac{-m + m_0}{m_0} \right)^2 \right] |\Omega| \]
\[= \left[\frac{m^2(m + m_0) - (m + m_0)^2m}{m_0} \right] |\Omega| = \left[\frac{m - (m + m_0)}{m_0} \right] \frac{m(m + m_0)}{m_0^2} |\Omega| , \]
which is positive, since \(m_0 \in (-m, 0) \).

With this preliminary work, we can complete the proof of Theorem 1.7 in dimension \(n = 2 \), by arguing as follows:

Proof of Theorem 1.7 when \(n = 2 \). We use the function \(\varphi \) in (A.1) and the resource \(m := m^\chi_D - m^\chi_{\Omega \setminus D} \), with \(D \) as in (A.2), as competitors in the minimization problem in (1.17). In this way, we find that

\[\Lambda(m, m, m_0) \leq \frac{\alpha \int_{\Omega} |\nabla \varphi|^2 dx + \beta \int_{\Omega} \frac{|\varphi(x) - \varphi(y)|^2}{|x - y|^{2+2s}} dx dy}{m \int_D \varphi^2 dx - m \int_{\Omega \setminus D} \varphi^2 dx} . \]

From Lemmata A.1 and A.2, we have that
\[\lim_{\rho \searrow 0} \frac{\alpha \int_{\Omega} |\nabla \varphi|^2 dx + \beta \int_{\Omega} \frac{|\varphi(x) - \varphi(y)|^2}{|x - y|^{2+2s}} dx dy} = 0. \]

Combining this with (A.3) and (5.14), we obtain the desired result in Theorem 1.7. \(\square \)

We now focus on the proof of Theorem 1.8 when \(n = 2 \). For this, we introduce the function
\[\psi(x) := \begin{cases}
 c_2 - 1 & \text{if } x \in B_\rho, \\
 c_2 - \log |x| & \text{if } x \in B_1 \setminus B_\rho, \\
 c_2 & \text{if } x \in \mathbb{R}^2 \setminus B_1,
\end{cases} \]
where \(c_2 \) is the constant introduced in (5.35). Moreover, we set
\[D := \Omega \setminus B_\rho. \]

The proofs of the next two results follow directly from Lemmata A.1 and A.2, since, comparing (A.1) and (A.4),
\[|\nabla \varphi|^2 = |\nabla \psi|^2 \quad \text{and} \quad |\varphi(x) - \varphi(y)|^2 = |\psi(x) - \psi(y)|^2 . \]

Lemma A.4. Let \(n = 2 \) and \(\psi \) be as in (A.4). Then
\[\lim_{\rho \searrow 0} \int_{\Omega} |\nabla \psi|^2 = 0. \]

Lemma A.5. Let \(n = 2 \) and \(\psi \) be as in (A.4). Then
\[\lim_{\rho \searrow 0} \int_{\Omega} \frac{|\psi(x) - \psi(y)|^2}{|x - y|^{2+2s}} dx dy = 0. \]
Lemma A.6. Let \(n = 2 \) and \(\psi \) be as in (A.4). Then
\[
\lim_{\rho \to 0} m \int_{D} \psi^2 \, dx - m \int_{\Omega \setminus D} \psi^2 \, dx = \frac{m (m_0 - m)}{m_0} |\Omega| > 0.
\]

Proof. By (A.4), (A.5) and (5.35), we see that
\[
\int_{\Omega \setminus D} \psi^2 \, dx = m (c_2 - 1)^2 |\Omega \setminus D| = m \left(\frac{m_0 - m}{m_0} - 1 \right)^2 |\Omega \setminus D|.
\]

Also, recalling (5.1), we see that
\[
|\Omega \setminus D| = \frac{m - m_0}{m + m_0} |\Omega|.
\]

Plugging this information into (A.6), we conclude that
\[
\int_{\Omega \setminus D} \psi^2 \, dx = m \left(\frac{m_0 - m}{m_0} - 1 \right)^2 \frac{m - m_0}{m + m_0} |\Omega| = \frac{m m_0^2 (m - m_0)}{m_0^2 (m + m_0)} |\Omega|.
\]

In addition, by the Dominated Convergence Theorem and (5.37),
\[
\lim_{\rho \to 0} \int_{D} \psi^2 \, dx = \lim_{\rho \to 0} \int_{B_1 \setminus B_\rho} \left(c_2 - \frac{\log |x|}{\log \rho} \right)^2 \, dx + \int_{\Omega \setminus B_1} c_2^2 \, dx
\]
\[
= c_2^2 |B_1| + c_2^2 |\Omega \setminus B_1|
\]
\[
= c_2^2 |\Omega|.
\]

This and (A.7) give that
\[
\lim_{\rho \to 0} \frac{m}{m_0} \int_{D} \psi^2 \, dx - m \int_{\Omega \setminus D} \psi^2 \, dx = \frac{m m_0^2 (m - m_0)}{m_0^2 (m + m_0)} |\Omega| - \lim_{m \to \infty} \frac{m m_0^2 (m - m_0)}{m_0^2 (m + m_0)} |\Omega|
\]
\[
= \frac{m m_0^2 (m - m_0)}{m_0^2 (m + m_0)} |\Omega| - \frac{m m_0^2 (m - m_0)}{m_0^2 (m + m_0)} |\Omega| = \frac{m (m_0 - m)}{m_0^2} \left((m - m_0) - m_0 \right) |\Omega|
\]
\[
= - \frac{m (m_0 - m)}{m_0^2} |\Omega|,
\]

which is positive since \(m_0 < 0 < m \).

With this preliminary work, we are in the position of completing the proof of Theorem 1.8 in the case \(n = 2 \).

Proof of Theorem 1.8 when \(n = 2 \). We use the function \(\psi \) in (A.4) and the resource \(m := m_0 \chi_D - m_0 \chi_{\Omega \setminus D} \), with \(D \) as in (A.5), as a competitor in the minimization problem in (1.17), thus obtaining that
\[
\Lambda(m, m_0, m_0) \leq \frac{\alpha \int_{\Omega} |\nabla \psi|^2 \, dx + \beta \int_{\Omega \setminus D} \frac{|\psi(x) - \psi(y)|^2}{|x - y|^{2+2s}} \, dx \, dy}{\frac{m}{m} \int_{D} \psi^2 \, dx - m \int_{\Omega \setminus D} \psi^2 \, dx}.
\]

From Lemmata A.4 and A.5, and recalling (5.37), we have that
\[
\lim_{m \to \infty} \frac{\alpha \int_{\Omega} |\nabla \psi|^2 \, dx + \beta \int_{\Omega \setminus D} \frac{|\psi(x) - \psi(y)|^2}{|x - y|^{2+2s}} \, dx \, dy} = 0.
\]

This, together with Lemma A.6, gives the desired result.
APPENDIX B. PROBABILISTIC MOTIVATIONS FOR THE SUPERPOSITION OF ELLIPTIC OPERATORS WITH DIFFERENT ORDERS

The goal of this appendix is to provide a natural framework in which sums of local/nonlocal operators naturally arise. Though the argument provided can be extended to more general superpositions of operators, for the sake of concreteness we limit ourselves to the operator in (1.9).

For this, extending a presentation in [Val09], we consider a discrete stochastic process on the lattice \(h \mathbb{Z}^n \), with time increment \(\tau \). The space scale \(h > 0 \) and the time step \(\tau > 0 \) will be conveniently chosen to be infinitesimal in what follows.

We denote by \(\mathcal{B}_0 := \{ e_1, \ldots, e_n \} \) the standard Euclidean basis of \(\mathbb{R}^n \), we let \(\mathcal{B} := \mathcal{B}_0 \cup (-\mathcal{B}_0) = \{ e_1, \ldots, e_n, -e_1, \ldots, -e_n \} \), and we suppose that a particle moves on \(h \mathbb{Z}^n \), and, given \(p \in [0, 1] \), \(\lambda \in \mathbb{N} \), and \(s \in (0, 1) \), its probability of jumping from a point \(hk \) to \(h\tilde{k} \) (with \(k, \tilde{k} \in \mathbb{Z}^n \)) is given by

\[
\mathcal{P}(k, \tilde{k}) := \frac{p}{c |k - \tilde{k}|^{n+2s}} + \frac{(1 - p) \mathcal{U}(k - \tilde{k})}{2n}, \tag{B.1}
\]

where

\[
c := \sum_{j \in \mathbb{Z}^n \setminus \{0\}} \frac{1}{|j|^{n+2s}}
\]

and

\[
\mathcal{U}(j) := \begin{cases} 1 & \text{if } j \in \lambda \mathcal{B} = \{ \lambda e_1, \ldots, \lambda e_n, -\lambda e_1, \ldots, -\lambda e_n \}, \\ 0 & \text{otherwise.} \end{cases}
\]

We point out that \(\mathcal{P}(\tilde{k}, k) = \mathcal{P}(k, \tilde{k}) = \mathcal{P}(k - \tilde{k}, 0) = \mathcal{P}(\tilde{k} - k, 0) \), and that

\[
\sum_{j \in \mathbb{Z}^n \setminus \{0\}} \mathcal{P}(j, 0) = \sum_{j \in \mathbb{Z}^n \setminus \{0\}} \left(\frac{p}{c |j|^{n+2s}} + \frac{(1 - p) \mathcal{U}(j)}{2n} \right) = p + \sum_{j \in \lambda \mathcal{B}} \frac{(1 - p)}{2n} = p + (1 - p) = 1. \tag{B.2}
\]

The heuristic interpretation of the probability described in (B.1) is that, at any time step, the particle has a probability \(p \) of following a jump process, and a probability \(1 - p \) of following a classical random walk. Indeed, with probability \(p \), the particle experiences a jump governed by the power law \(\frac{1}{c |j|^{n+2s}} \), while with probability \(1 - p \) it walks to one of the closest neighbors scaled by the additional parameter \(\lambda \) (being all closest neighbors equally probable, and being the probability for the particle of not moving at all equal to zero).

Therefore, given \(x \in h \mathbb{Z}^n \) and \(t \in \tau \mathbb{N} \), we define \(u(x, t) \) to be the probability density of the particle to be at the point \(x \) at the time \(t \), and we write that the probability of being somewhere, say at \(x \), at the subsequent time step is equal to the superposition of the probabilities of being at another point of the lattice, say \(x + hj \), at the previous time step times the probability of going from \(x + hj \) to \(x \), namely, letting \(\bar{k} := \frac{\tilde{k}}{h} \in \mathbb{Z}^n \),

\[
u(x, t + \tau) = \sum_{j \in \mathbb{Z}^n \setminus \{0\}} u(x + hj, t) \mathcal{P}(k, k + j) = \sum_{j \in \mathbb{Z}^n \setminus \{0\}} u(x + hj, t) \mathcal{P}(j, 0).
\]
As a result, in view of (B.2),
\[
 u(x, t + \tau) - u(x, t) = \sum_{j \in \mathbb{Z}^n \setminus \{0\}} \left(u(x + hj, t) - u(x, t) \right) \mathcal{P}(j, 0)
\]
\[
 = \sum_{j \in \mathbb{Z}^n \setminus \{0\}} \left(u(x + hj, t) - u(x, t) \right) \left(\frac{p}{c |j|^{n+2s}} + \frac{(1 - p) \mathcal{U}(j)}{2n} \right)
\]
\[
 = \frac{p}{2c} \sum_{j \in \mathbb{Z}^n \setminus \{0\}} \frac{u(x + hj, t) - u(x, t)}{|j|^{n+2s}} \sum_{j \in \Lambda} \left(u(x + hj, t) - u(x, t) \right)
\]
\[
 = \frac{p}{2c} \sum_{j \in \mathbb{Z}^n \setminus \{0\}} \frac{u(x + hj, t) + u(x - hj, t) - 2u(x, t)}{|j|^{n+2s}}
\]
\[
 + \frac{1 - p}{4n} \sum_{j \in \Lambda} \left(u(x + hj, t) + u(x - hj, t) - 2u(x, t) \right).
\]

Now we consider two specific situations, namely the one in which
\[
 \tau = h^{2s}, \quad \lambda = h^{s-1} \in \mathbb{N}
\]
and \(p \) is independent on the time step, and the one in which
\[
 \tau = h^2, \quad p = \alpha h^{2-2s}, \quad \text{and} \quad \lambda = 1,
\]
for a given \(\alpha > 0 \), independent on the time step.

We observe that the case in (B.4) corresponds to having the closest neighborhood walk scaled by a suitably large factor (for small \(h \)), while the case in (B.5) corresponds to having the usual notion of closest neighborhood random walk, with the probability \(1 - p \) that the particle follows it being large (for small \(h \)).

In case (B.4), we consider \(N \in \mathbb{N} \) and define \(h := N^{-\frac{1}{2s}} \). In this way, taking \(N \nearrow +\infty \), one has that \(h \searrow 0 \), and thus we deduce from (B.3) that
\[
 \frac{u(x, t + \tau) - u(x, t)}{\tau} = \frac{ph^n}{2c} \sum_{j \in \mathbb{Z}^n \setminus \{0\}} \frac{u(x + hj, t) + u(x - hj, t) - 2u(x, t)}{|hj|^{n+2s}}
\]
\[
 + \frac{1 - p}{4n} \sum_{j \in h^{s-1} \mathbb{B}} \frac{u(x + hj, t) + u(x - hj, t) - 2u(x, t)}{h^{2s}}.
\]

With a formal Taylor expansion, we observe that
\[
 u(x + hj, t) + u(x - hj, t) - 2u(x, t) = h^2 D_x^2 u(x, t) j \cdot j + O(h^3),
\]

Therefore the latter sum in (B.6) can be written as
\[
 \sum_{j \in h^{s-1} \mathbb{B}} h^{2(1-s)} D_x^2 u(x, t) j \cdot j + O(h^{3-2s}) = \sum_{j \in \mathbb{N}^2} D_x^2 u(x, t) \frac{j}{N} \cdot \frac{j}{N} + O \left(\frac{1}{N^{2s}} \right)
\]
\[
 = \sum_{i \in \mathbb{B}^2} D_x^2 u(x, t) i \cdot i + o(1) = 2 \Delta u(x, t) + o(1),
\]
as \(N \nearrow +\infty \) (i.e., as \(h \searrow 0 \)).

Hence, recognizing a Riemann sum in the first term of the right hand side of (B.6), taking the limit as \(h \searrow 0 \) (that is \(\tau \searrow 0 \)), we formally conclude that
\[
 \partial_t u(x, t) = \frac{p}{2c} \int_{\mathbb{R}^n} \frac{u(x + y, t) + u(x - y, t) - 2u(x, t)}{|y|^{n+2s}} dy + \frac{1 - p}{2n} \Delta u(x, t),
\]
which is precisely the heat equation associated to the operator in (1.9) (up to defining correctly the structural constants).
A similar argument can be carried out in case (B.5). Indeed, in this situation one deduces from (B.3) that
\[
\frac{u(x, t + \tau) - u(x, t)}{\tau} = \frac{\alpha h^n}{2c} \sum_{j \in \mathbb{Z}^n \setminus \{0\}} u(x + h_j, t) + u(x - h_j, t) - 2u(x, t) \\
+ \frac{1 - \alpha h^{2-2s}}{4n} \sum_{j \in \mathbb{B}} u(x + h_j, t) + u(x - h_j, t) - 2u(x, t).
\]
Hence, since
\[
\sum_{j \in \mathbb{B}} u(x + h_j, t) + u(x - h_j, t) - 2u(x, t) = \sum_{j \in \mathbb{B}} D^2 u(x + h_j, t) j \cdot j + O(h)
\]
as \(h \searrow 0\), we conclude that in this case
\[
\partial_t u(x, t) = \frac{\alpha}{2c} \int_{\mathbb{R}^n} \frac{u(x + y, t) + u(x - y, t) - 2u(x, t)}{|y|^{n+2s}} dy + \frac{1}{2n} \Delta u(x, t),
\]
which, once again, constitutes the parabolic equation associated to the operator in (1.9) (up to renaming the structural constants).

References

[AC20] Nicola Abatangelo and Matteo Cozzi, *An elliptic boundary value problem with fractional nonlinearity*, arXiv e-prints (2020), arXiv:2005.09515, available at [2005.09515](https://arxiv.org/abs/2005.09515).

[AV19a] Nicola Abatangelo and Enrico Valdinoci, *Getting acquainted with the fractional Laplacian*, Contemporary research in elliptic PDEs and related topics, Springer INdAM Ser., vol. 33, Springer, Cham, 2019, pp. 1–105. MR3967804

[AV19b] Elisa Affili and Enrico Valdinoci, *Decay estimates for evolution equations with classical and fractional time-derivatives*, J. Differential Equations 266 (2019), no. 7, 4027–4060. DOI 10.1016/j.jde.2018.09.031. MR3912710

[ACR13] Matthieu Alfaro, Jérôme Coville, and Gaël Raoul, *Travelling waves in a nonlocal reaction-diffusion equation as a model for a population structured by a space variable and a phenotypic trait*, Comm. Partial Differential Equations 38 (2013), no. 12, 2126–2154, DOI 10.1080/03605302.2013.828069. MR3194684

[AdTEJ19] Nathael Alibaud, Félix del Teso, Jørgen Endal, and Espen R. Jakobsen, *The Liouville theorem and linear operators satisfying the maximum principle*, arXiv e-prints (2019), arXiv:1907.02495, available at [1907.02495](https://arxiv.org/abs/1907.02495).

[ABVV10] Narcisa Apreutesei, Nikolai Bessonov, Vitaly Volpert, and Vitali Vougalter, *Spatial structures and generalized travelling waves for an integro-differential equation*, Discrete Contin. Dyn. Syst. Ser. B 13 (2010), no. 3, 537–557. DOI 10.3934/dcbs.2010.13.537. MR2601079

[BCCI12] Guy Barles, Emmanuel Chasseigne, Adina Ciomaga, and Cyril Imbert, *Lipschitz regularity of solutions for mixed integro-differential equations*, J. Differential Equations 252 (2012), no. 11, 6012–6060. DOI 10.1016/j.jde.2012.02.013. MR2911421

[BCCI14] Large time behavior of periodic viscosity solutions for uniformly parabolic integro-differential equations, Calc. Var. Partial Differential Equations 50 (2014), no. 1-2, 283–304. DOI 10.1007/s00526-013-0636-2. MR3194684

[BI08] Guy Barles and Cyril Imbert, *Second-order elliptic integro-differential equations: viscosity solutions’ theory revisited*, Ann. Inst. H. Poincaré Anal. Non Linéaire 25 (2008), no. 3, 567–585. DOI 10.1016/j.anihpc.2007.02.007. MR2422079

[BK05a] Richard F. Bass and Moritz Kassmann, *Harnack inequalities for non-local operators of variable order*, Trans. Amer. Math. Soc. 357 (2005), no. 2, 837–850. DOI 10.1090/S0002-9947-04-03549-4. MR2095633

[BK05b] Hölder continuity of harmonic functions with respect to operators of variable order, Comm. Partial Differential Equations 30 (2005), no. 7-9, 1249–1259. DOI 10.1080/03605300500257677. MR2180302

[Bel97] Fethi Belgacem, *Elliptic boundary value problems with indefinite weights: variational formulations of the principal eigenvalue and applications*, Pitman Research Notes in Mathematics Series, vol. 368, Longman, Harlow, 1997. MR1478921
[DHMP98] Jack Dockery, Vivian Hutson, Konstantin Mischaikow, and Mark Pernarowski, *Nonlocal refuge model with a partial control*, Discrete Contin. Dyn. Syst. **35** (2015), no. 4, 1421–1446, DOI 10.3934/dcds.2015.35.1421. MR3285831

[CDM13] Jérôme Coville, Juan Dávila, and Salomé Martínez, *Pulsating fronts for nonlocal dispersion and KPP nonlinearity*, Ann. Inst. H. Poincaré Anal. Non Linéaire **30** (2013), no. 2, 179–223, DOI 10.1016/j.anihpc.2012.07.005. MR3035974

[dILV09] Rafael de la Llave and Enrico Valdinoci, *A generalization of Aubry-Mather theory to partial differential equations and pseudo-differential equations*, Ann. Inst. H. Poincaré Anal. Non Linéaire **26** (2009), no. 4, 1309–1344, DOI 10.1016/j.anihpc.2008.11.002. MR2542727

[DP18] Filippo Dell’Oro and Vittorino Pata, *Second order linear evolution equations with general dissipation*, arXiv e-prints (2018), arXiv:1811.07667, available at 1811.07667.

[dTEJ17] Félix del Teso, Jørgen Endal, and Espen R. Jakobsen, *On distributional solutions of local and nonlocal problems of porous medium type*, arXiv e-prints (2017), arXiv:1706.05306, available at 1706.05306.

[DGT10] A. Derlet, J.-P. Gossez, and P. Takáč, *Minimization of eigenvalues for a quasilinear elliptic Neumann problem with indefinite weight*, J. Math. Anal. Appl. **371** (2010), no. 1, 69–79, DOI 10.1016/j.jmaa.2010.03.068. MR2660987

[DNPV12] Eleonora Di Nezza, Giampiero Palatucci, and Enrico Valdinoci, *Hitchhiker’s guide to the fractional Sobolev spaces*, Bull. Sci. Math. **136** (2012), no. 5, 521–573, DOI 10.1016/j.bulsci.2011.12.004. MR2944369

[DPLV] Serena Dipierro, Edoardo Proietti Lippi, and Enrico Valdinoci, *Linear theory for a mixed operator with Neumann boundary conditions*, preprint.

[DROV17] Serena Dipierro, Xavier Ros-Oton, and Enrico Valdinoci, *Nonlocal problems with Neumann boundary conditions*, Rev. Mat. Iberoam. **33** (2017), no. 2, 377–416, DOI 10.4171/RMI/942. MR3651008

[DV] Serena Dipierro and Enrico Valdinoci, *Description of an ecological niche for a mixed local/nonlocal dispersal preprint*.

[DVV19] Serena Dipierro, Enrico Valdinoci, and Vincenzo Vespri, *Decay estimates for evolutionary equations with fractional time-diffusion*, J. Evol. Equ. **19** (2019), no. 2, 435–462, DOI 10.1007/s00028-019-00482-z. MR3950697

[DHMP98] Jack Dockery, Vivian Hutson, Konstantin Mischaikow, and Mark Pernarowski, *The evolution of slow dispersal rates: a reaction diffusion model*, J. Math. Biol. **37** (1998), no. 1, 61–83, DOI 10.1007/s002850050120. MR1636644

[GM02] Maria Giovanna Garroni and Jose Luis Menaldi, *Second order elliptic integro-differential problems*, Chapman & Hall/CRC Research Notes in Mathematics, vol. 430, Chapman & Hall/CRC, Boca Raton, FL, 2002. MR1911531

[JK05] Espen R. Jakobsen and Kenneth H. Karlsen, *Continuous dependence estimates for viscosity solutions of integro-PDEs* in **J. Differential Equations** **212** (2005), no. 2, 278–318, DOI 10.1016/j.jde.2004.06.021. MR2129903

[JK06] A “maximum principle for semicontinuous functions” applicable to integro-partial differential equations, NoDEA Nonlinear Differential Equations Appl. **13** (2006), no. 2, 137–165, DOI 10.1007/s00030-005-0031-6. MR2243708

[KLS12] Chiu-Yen Kao, Yuan Lou, and Wenzxian Shen, *Evolution of mixed dispersal in periodic environments*, Discrete Contin. Dyn. Syst. Ser. B **17** (2012), no. 6, 2047–2072, DOI 10.3934/dcdsb.2012.17.2047. MR2924452

[KAS12] Kohkichi Kawasaki, Keisuke Asano, and Nanako Shigesada, *Impact of directed movement on invasion spread in periodic patchy environments*, Bull. Math. Biol. **74** (2012), no. 6, 1448–1467, DOI 10.1007/s11538-011-9714-9. MR2930099

[KS07] Kohkichi Kawasaki and Nakako Shigesada, *An integrodifference model for biological invasions in a periodically fragmented environment*, Japan J. Indust. Appl. Math. **24** (2007), no. 1, 3–15. MR2312291

[LLL20] King-Yeung Lam, Shuang Liu, and Yuan Lou, *Selected topics on reaction-diffusion-advection models from spatial ecology*, arXiv e-prints (2020), arXiv:2004.07978, available at 2004.07978.

[LLNP16] Jimmy Lamboley, Antoine Laurain, Grégoire Nadin, and Yannick Privat, *Properties of optimizers of the principal eigenvalue with indefinite weight and Robin conditions*, Calc. Var. Partial Differential Equations **55** (2016), no. 6, Art. 144, 37, DOI 10.1007/s00526-016-0797. MR358047

[LL97] Elliott H. Lieb and Michael Loss, *Analysis*, Graduate Studies in Mathematics, vol. 14, American Mathematical Society, Providence, RI, 1997. MR1415616

[LY06] Yuan Lou and Eiji Yanagida, *Minimization of the principal eigenvalue for an elliptic boundary value problem with indefinite weight, and applications to population dynamics*, Japan J. Indust. Appl. Math. **23** (2006), no. 3, 275–292. MR2281509

[LNY20] Yuan Lou, Kentaro Nagahara, and Eiji Yanagida, *Work in progress* (2020).
Is a nonlocal diffusion strategy convenient for biological populations in competition?, J. Math. Biol. 74 (2017), no. 1-2, 113–147, DOI 10.1007/s00285-016-1019-z. MR3590678

Quantitative inequality for the eigenvalue of a Schrödinger operator in the ball, arXiv e-prints (2020), arXiv:2005.07417, available at 2005.07417.

PhD Thesis, Sorbonne Université (2020).

Idriss Mazari, Grégoire Nadine, and Yannick Privat, Shape optimization of a weighted two-phase Dirichlet eigenvalue (2020), available at 2001.02958.

A fragmentation phenomenon for a non-energetic optimal control problem: optimisation of the total population size in logistic diffusive models, arXiv e-prints (2020), arXiv:2005.08515, available at 2005.08515.

Idriss Mazari and Domenec Ruiz-Balet, A fragmentation phenomenon for a non-energetic optimal control problem: optimisation of the total population size in logistic diffusive models, arXiv e-prints (2020), arXiv:2005.08515, available at 2005.08515.

Shape optimization of a weighted two-phase Dirichlet eigenvalue (2020), available at 2001.02958.

PhD Thesis, Sorbonne Université (2020).

Idriss Mazari, Grégoire Nadine, and Yannick Privat, Shape optimization of a weighted two-phase Dirichlet eigenvalue (2020), available at 2001.02958.

Idriss Mazari and Domenec Ruiz-Balet, A fragmentation phenomenon for a non-energetic optimal control problem: optimisation of the total population size in logistic diffusive models, arXiv e-prints (2020), arXiv:2005.08515, available at 2005.08515.