Targeting relaxase genes for classification of the predominant plasmids in Enterobacteriaceae

Fabrice Compain, Agathe Poisson, Simon Le Hello, Catherine Branger, François-Xavier Weill, Guillaume Arlet, Dominique Decré

To cite this version:

Fabrice Compain, Agathe Poisson, Simon Le Hello, Catherine Branger, François-Xavier Weill, et al.. Targeting relaxase genes for classification of the predominant plasmids in Enterobacteriaceae. International Journal of Medical Microbiology Supplements, Elsevier, 2014, 304 (3-4), pp.236 - 242. 10.1016/j.ijmm.2013.09.009 : pasteur-01108896

HAL Id: pasteur-01108896
https://hal-pasteur.archives-ouvertes.fr/pasteur-01108896
Submitted on 12 Mar 2019
Targeting relaxase genes for classification of the predominant plasmids in Enterobacteriaceae

Fabrice Compain¹, Agathe Poisson¹, Simon Le Hello², Catherine Branger³, François-Xavier Weill², Guillaume Arlet¹,⁴, Dominique Decré¹,⁴*

¹Université Pierre et Marie Curie-Paris 6, Faculté de Médecine, Site Saint-Antoine, Laboratoire de Bactériologie, ER8, Paris, France; ²Institut Pasteur, Unité des Bactéries Pathogènes Entériques, Centre National de Référence des Escherichia coli, Shigella et Salmonella, WHO Collaborating Centre for Reference and Research on Salmonella, Paris, France; ³Université Paris Diderot, UMR-S 722, Faculté de Médecine, Site Xavier Bichat, F-75018 Paris, France; ⁴Laboratoire de Bactériologie, Hôpital Saint-Antoine, Assistance Publique des Hôpitaux de Paris, Paris, France

*Corresponding author

Email addresses:

FC: compain.fabrice@wanadoo.fr
AP: agatepoisson@gmail.com
SLH: slehello@pasteur.fr
CB: catherine.branger@lmr.aphp.fr
FXW: fxweill@pasteur.fr
GA: guillaume.arlet@upmc.fr
DD: dominique.decre@upmc.fr; Tel.: +33 1 40 01 14 46; Fax +33 1 49 28 24 72
Abstract

Plasmids are the main vectors of antimicrobial drug resistance and virulence genes, especially in Enterobacteriaceae. Identification and classification of plasmids is essential for analysis of their distribution. The most widely used typing method is PCR-based replicon typing (PBRT). A new classification scheme based on relaxase gene typing has been described recently. We propose a practical application of this method, with the development of a multiplex PCR set targeting relaxase genes found on plasmids most frequently encountered in Enterobacteriaceae. This method, here called “plasmid relaxase gene typing” (PRaseT), was validated with 60 transconjugants and transformants harboring various replicon types. The method was tested with 39 multidrug-resistant clinical isolates including Escherichia coli, Klebsiella pneumoniae and Salmonella enterica subsp. enterica carrying 1 to 7 replicons as well as with 17 plasmids non-typeable using PBRT; all replicons were tested in parallel with PBRT for comparison. Six multiplex PCRs and one simplex PCR, including 24 pairs of primers, recognized plasmids of groups A/C, B/O, colE, FIA, FIB, FIC, FV, FIlk, HI1, HI2, I1, K, L/M, N, P1α, Q1, U, W, X1, X2, X3 and X4. There was perfect correlation between PRaseT and PBRT results in 31/39 (79.5%) clinical isolates. Moreover, 11/17 (64.7%) plasmids non-typeable by PBRT could be typed by PRaseT. Our set of multiplex PCRs showed high sensitivity and specificity for the classification of resistance plasmids. It has proved complementary to the widely used PBRT and will improve the monitoring of plasmid distribution in every-day practice.

Keywords

Plasmid; Classification; Replicon typing; Relaxase; Multiplex PCR
Introduction

Plasmids are important agents of gene flux and have found to be responsible for the dissemination of multiple antibiotic resistance genes. Identification and classification of plasmids is essential for analysis of their distribution, their genetic relatedness and evolution, as well as for study of horizontal gene transfer. A classification scheme should be based on genetic traits that are universally present and constant. It should be robust and the corresponding experimental procedure should be easy. The basic replicon locus, which is always present on plasmids, has been used historically for classification. Plasmids were initially classified according to their incompatibility, which is directly related to replication. Incompatibility (Inc) was defined as the inability of two plasmids sharing common replication control (same Inc group) to be maintained in the subsequent lineage during conjugation (Datta and Hedges, 1971 and Novick, 1987). This method which requires plasmid transfer to the same host for testing is time-consuming and not practical for large-scale studies. Couturier et al. tested a method using hybridization with cloned replication regions as probes but with this method plasmid diversity is underestimated due to cross-hybridization (Couturier et al., 1988). In 2005, Carattoli et al. developed a PCR scheme of targeting replicons called PCR-based replicon typing (PBRT) (Carattoli et al., 2005). Eighteen pairs of primers were designed in order to perform 5 multiplex and 3 simplex PCRs recognizing the most frequently encountered plasmid incompatibility groups among Enterobacteriaceae. With this method, 27 Inc groups are currently recognized (Carattoli, 2009). It has been widely used to study plasmid spread and diversity in Enterobacteriaceae. However, PBRT has several drawbacks: (i) plasmids may carry multiple replicons and/or mosaic replicons, and new replicon types may escape classification with this technique; (ii) false-negative results with some Inc groups (e.g. L/M) have been reported (Carattoli et al., 2005) and (iii) PBRT targets multiple sites...
such as the replication initiation protein gene (*rep*), the active segregation partitioning system
(*par*), replication control systems (iterons, antisense RNA), and recently also the relaxase
gene (Carattoli et al., 2005 and Johnson et al., 2012), which may cause confusion. Plasmid
multilocus sequence typing were also developed to refine classification of plasmid subgroups
(García-Fernández and Carattoli, 2010, García-Fernández et al., 2008, García-Fernández et
al., 2011 and Phan et al., 2009).

Bacterial conjugation represents a unique process allowing transfer of plasmid DNA from a
donor to a recipient bacterium through cell-to-cell contact. In this process relaxase is a key
protein encoded by all transmissible plasmids, i.e. mobilizable and conjugative plasmids
involved in horizontal gene transfer (reviewed by Smillie et al., 2010 and Wong et al., 2012).
A classification scheme based on the mobilization region of transmissible plasmids has
recently been developed (Francia et al., 2004 and Garcillán-Barcia et al., 2009). The scheme
classified relaxases in six protein families and 31 subfamilies, depending on their phylogeny;
subsequently, 19 degenerate primer pairs targeting the relaxase genes of γ-proteobacterial
plasmids were designed (Alvarado et al., 2012). This degenerate primer MOB typing (DPMT)
method has been used with success in previous studies (Curiao et al., 2011, Mata et al., 2012,
Mata et al., 2010 and Valverde et al., 2009). However, this set of primers was not designed for
screening purposes in clinical practice, but rather for experimental purposes in order to
discover new relaxases (Alvarado et al., 2012).

The aim of the present study was to design a multiplex PCR method, called “plasmid relaxase
gene typing” (PRaseT), including novel oligonucleotide primers targeting relaxase genes of
the plasmids most frequently encountered in Enterobacteriaceae in clinical practice. These
multiplex PCRs were carried out under maximum consensus thermal cycling conditions, and
applied to various plasmids present in clinical isolates from several collections.
Materials and methods

Database search and primer design

An in silico analysis was carried out using GenBank BLAST (http://blast.ncbi.nlm.nih.gov/).

For each Inc group, the relaxase/helicase gene was used as template; the presence of relaxase-specific multidomains was checked using CD-Search (http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi/). Multiple alignments were performed with ClustalW2 software (http://www.ebi.ac.uk/Tools/msa/clustalw2/). Primer pairs covering most sequences in each family were designed using FastPCR software (http://primerdigital.com/fastpcr.html), while minimizing codon degeneracy (Table 1A).

In silico primer assay

Oligonucleotide primers were tested in silico for hybridization with plasmids of the Enterobacteriaceae referenced in GenBank. Some primers were refined to cover a maximum of reported sequences.

Bacterial strains

For validation of the PCR assays, experiments were conducted with 60 Escherichia coli transconjugants or transformants of Enterobacteriaceae (Table 2). All strains carried replicons of various types that encoded diverse β-lactamases conferring resistance to third-generation cephalosporins or carbapenems. They were part of three collections of, respectively, (i) E. coli strains isolated between 1997 and 2002 in various French university hospitals (for further
details see Marcadé et al., 2009 and Branger et al., 2005), (ii) *Klebsiella pneumoniae* strains from various geographical regions collected since the 1980s (D. Decré and G. Arlet, personal collection) and (iii) *Salmonella enterica* subsp. *enterica* strains representing various serovars (collection of the French National Reference Center for *E. coli*, *Shigella*, and *Salmonella*, Institut Pasteur). Assays with transconjugants and transformants for multiplex PCR optimization were carried out in triplicates.

All transconjugants, transformants and clinical strains used in this study were analyzed in parallel with PRaseT and the PBRT method applied previously (Carattoli et al., 2005, García-Fernández et al., 2009, Götz et al., 1996, Osborn et al., 2000 and Villa et al., 2010). The transconjugants used as positive controls in PRaseT reactions are given in Table 2. Other controls used in this study included three strains of the ECOR collection (Ochman and Selander, 1984) (ECOR 6, ECOR 10 and ECOR 19 harboring, respectively, pTPqrS-1a-like-, pcolE1-like- and IncX2-plasmids), as well as reference plasmids pFBAOT6 (IncU) (Rhodes et al., 2004) and RP4 (IncP1α) (Datta et al., 1971).

After optimization on transconjugants or transformants carrying replicon of various types according to PBRT, we applied the PRaseT method to a panel of 39 clinical strains (21 *E. coli*, 16 *K. pneumoniae* and 2 *S. enterica*) carrying replicons of one to seven different types (Table 3), and 17 transconjugants or transformants that were non-typeable with PBRT (Table 4).

DNA extraction and PCR conditions

InstaGene matrix (Biorad, Marnes la Coquette, France) or lysis by boiling were used for total DNA extraction as previously described (Dallenne et al., 2010). Multiplex PCR was carried out using the Qiagen Multiplex PCR Kit (Qiagen, Courtaboeuf, France). The master mix
contained pre-optimized concentrations of HotStarTaq DNA polymerase and MgCl₂, deoxynucleotide triphosphate and PCR buffer. To all multiplex PCRs, solution Q (Qiagen) that facilitates the reaction with difficult-to-amplify templates by modifying DNA melting behavior was added. Total DNA in 5µl of bacterial lysate was subjected to multiplex PCR in a 50 µl volume. The conditions for multiplex PCR were optimized to ensure that all targets were sufficiently amplified for amplicons to be easily visible on 1.5% agarose gels. The optimal primer concentrations are reported in Table 1A. PCR conditions consisted in initial activation at 95°C for 15 min, followed by 30 cycles at 94°C for 30 s, 60°C for 90 s and 72°C for 90 s with a final extension at 72°C for 10 min; for Multiplex IV and V the annealing temperature was elevated to 65°C for 90 sec. Simplex PCR were performed in a 50 µL mix with 2 U of Taq DNA polymerase (Roche Diagnostics), 10× PCR buffer/MgCl₂ (Roche Diagnostics), 200 µM of each deoxynucleotide triphosphate (dNTP Mix Eurobio), 0.2 pmol/µL of each primer, 40 µL of sterile water and 2 µL of total DNA extract. PCR conditions consisted in 30 cycles [94°C for 1 min, 55°C for 40 sec, 72°C for 1 min], preceded by one cycle at 94°C for 5 min followed by one cycle at 72°C for 5 min. PCR products were separated at 100 V for 90 minutes in 1.5% agarose gel containing ethidium bromide and visualized using GelDoc (Biorad). PCR products were purified using the Exosap purification kit (illustra ExoStar 1-Step, Dutscher, Brumath, France) and subjected to bidirectional DNA sequencing using the BigDye terminator v3.1 cycle sequencing kit (Applied Biosystems, Foster City, CA, USA) and an Applied Biosystems 3730 XL capillary sequencer. Sequence analysis was carried out using BLAST and GenBank sequences.

Results and discussion

In silico analysis
We mainly focused on plasmid families previously found to be involved in the spread of resistance genes in Enterobacteriaceae (Carattoli, 2013, 2011 and 2009). Since no complete sequence of IncFIII, IncFIV, IncFVI, IncFVII and IncY plasmids have been reported and their sequenced segments do not contain relaxase genes, these plasmids were excluded from this study. So were those of the IncR family which is known not to contain any relaxase gene (Alvarado et al., 2012) and those of the IncJ family and R391-like elements that are part of integrative and conjugative elements (Burrus et al., 2006) the analysis of which is beyond the scope of this study. Also not considered here were some relatively rare groups (e.g. IncI2 plasmids) or poorly resolved groups (e.g. IncQ3 or IncT plasmids) (Alvarado et al., 2012).

The majority of plasmids had a single putative relaxase locus, which is consistent with the review by Smillie et al. (Smillie et al., 2010). In contrast, complete GenBank sequences of IncHI1 and IncHI2 plasmids had one to three putative relaxase/helicase loci on each reported plasmid (Supplementary Table S1). CD-Search results for each protein confirmed the presence of relaxase- or helicase-specific multidomains. We finally used five relaxase clades (arbitrarily designed HIα, HIβ, HIγ, HIδ and HIε) present among the various IncHI1 and/or IncHI2 plasmids (Supplementary Table S1). HIβ and HIδ relaxases were found to be encoded only on IncHI1 plasmids and HIγ and HIε relaxases only on IncHI2 plasmids while HIα relaxases were encoded on both IncHI1 and IncHI2 plasmids. We therefore designed three oligonucleotide primers covering the HIα, HIβ and HIγ relaxase, respectively.

In silico analysis led to the design of 24 pairs of primers for six multiplex PCRs (targeting the relaxase genes of plasmids belonging to Inc groups A/C, colE, FIA, FIB, FIC, FII, FIIk, FV, HI1, HI2, I1, L/M, N, P1α, Q1, U, W, X1, X2, X3 and X4) and one simplex PCR (targeting the relaxase genes of plasmids belonging to Inc groups B/O and K) (Table 1A).
Primer evaluation using transconjugants and transformants

In order to assess the sensitivity and specificity of each PCR, primers were tested using a collection of 60 recipient cells, with PBRT as the reference method (Table 2). Each primer pair was validated using all recipient cells, first in a simplex and then a multiplex PCR and target DNA of either single cells or cell mixtures was used. PCR conditions were optimized and all amplicons were sequenced. *E. coli* strain J53 was used as negative control in PCR experiments to test for possible cross-hybridization with chromosomal DNA. No non-specific amplification was observed.

All PRaseT results were consistent with the PBRT results, except for two strains which carried an IncR (*K. pneumoniae* strain S51) or an IncFIB/FII replicon (*E. coli* strain 81), that were undetected by the PRaseT method. For the first strain the result was not unexpected as IncR plasmids do not encode relaxases. For the second strain, the result was more surprising as IncF plasmids are known to be conjugative in most cases (Smillie et al., 2010). As it has been previously reported that Mob regions and mating pair formation (MPF) systems were in general of the same type (Smillie et al., 2010), we designed new primers targeting other conserved genes of the type IV secretion system (T4SS), i.e. *traB* (encoding a secretin-like protein) and *traC* (encoding an ATPase) (Supplementary Table S2). The eighteen PRaseT-positive IncF plasmids reported in Table 2 tested positive for *traB* and *traC* while the PRaseT-negative IncFIB/FII plasmid also tested negative with T4SS typing (data not shown).

Interestingly, no transconjugant but only transformant was obtained from the parental strain of the later plasmid. We considered three possibilities: (i) a very divergent IncF relaxase gene that could not hybridize with our primers was present, (ii) the relaxase gene was truncated or (iii) the gene was absent. Complete sequencing of the plasmid will be performed to confirm one of these possibilities.
For IncHI plasmids, three primer sets were mandatory to differentiate IncHI1 from IncHI2. As noted above, in most cases, the identification of relaxases from IncHI1 and IncHI2 plasmids was obtained with positive results for HIβ- and HIγ-primers respectively (e.g. transconjugants S01477 and 102, Table 2). However, when Hiα PCR was the only positive result (e.g. IncHI2-containing Salmonella S09118), we used T4SS-typing as a complement to PRaseT (Supplementary Table S2). The positive result of PCR targeting the T4SS from IncHI2 plasmids confirmed the presence of a HI2 relaxase in S09118.

Evaluation of relaxase gene typing using clinical strains

To further confirm the specificity of the designed primer set, 39 clinical strains, each carrying from one to seven different replicon types, were submitted to PRaseT (Table 3). An example of the results is shown in Fig. 1. For 31 strains (79.5%) there was a perfect correlation between the results obtained with PRaseT and PBRT.

Five strains were positive with PBRT but negative with PRaseT. Among these, two (E. coli strains 19 and 34, Table 3) carried IncFIA/FIB/FII replicons. PCR targeting the T4SS genes traB and traC was negative, and the plasmid from neither strain could be transferred to a recipient cell by conjugation. Similarly, for the IncU plasmid of strain KpS15 tested negative with PRaseT, primers targeting virB4, the gene coding for the ATPase of the T4SS of IncU plasmids (Supplementary Table 2), were used. The result was negative. The two remaining strains (i.e E. coli 33 and 101) carried an IncP plasmid which could not be typed by PRaseT. Our primer pair was designed using the reference plasmid RP4 as template. However, this plasmid belongs to the IncP1α subgroup, while the IncP1 group consists of at least six
divergent subgroups (IncP1α, IncP1β, IncP1γ, IncP1δ, IncP1ε and IncP1ζ), many of which are antibiotic resistance vectors in the environment (Alvarado et al., 2012, Bahl et al., 2009 and Heuer et al., 2012). We think that our IncP1α relaxase primers were unable to classify all IncP1 group replicons because of too great a divergence in gene sequences. PRaseT of IncP group plasmids should be improved in further studies.

Finally, three strains (K. pneumoniae KpS63 and FM10, and E. coli 105) which were negative with PBRT (after multiple PCR assays) were found to contain IncFIlk, IncHI and IncII plasmids, respectively, when PRaseT and T4SS typing was used (Table 3). The presence of sequence divergence or mosaic replicons may explain these results that will be clarified by sequencing. These observations underscore the complementarity between the PBRT and PRaseT methods.

Relaxase gene typing in recipient cells non-typeable with PBRT

Seventeen recipient cells whose plasmids were found to be non-typeable with PBRT were subjected to typing with PRaseT; parental strains included 14 strains of E. coli and 3 of K. pneumoniae. PCR results are given in Table 4. In the 17 recipient cells, 11 (64.7%) plasmids, mainly pHUSEC41-4-like mobilizable replicons, could be typed with PRaseT. The complete sequence determination of plasmids from 6 recipient cells (i.e. E. coli strains 65, 66, 70, 71, 72 and 99) confirmed these results (unpublished data). The majority of bla\textsubscript{SHV} ESBL genes (six out of eight) were localized on pHUSEC41-4-like plasmids. Such colE-like plasmids have been already reported as resistance vectors in Enterobacteriaceae (García-Fernández et al., 2009).
Six plasmids could be typed neither with PBRT nor with PRaseT (Table 4). Complete sequence is available for 3 of them, i.e. plasmids from *K. pneumoniae* transformant S77 (pKpS77, SHV-12), *E. coli* transconjugant 76 (RCS47v1_pI, SHV-2) and *E. coli* transformant 93 (RCS63v1_p, CTX-M-3) (unpublished data). Plasmids pKpS77, RCS47v1_pI and RCS63v1_p were, respectively, < 50,000 bp, 117,001 bp and 22,308 bp long. In the sequences of two of them (pKpS77 and RCS63v1_p), no transfer region could be identified. The third plasmid (RCS47v1_pI, *E. coli* transconjugant 76) carried a new relaxase gene which presented 100% query cover and 99% maximum identity with those on plasmids pO111_2 (GenBank accession no. AP010962.1) and p12579_1 (GenBank accession no. CP003110.1); its replicase gene also presented 100% query cover and 99% maximum identity with its counterparts on plasmids pO111_2 and p12579_1. The three other non-typeable plasmids (contained in transformants from *K. pneumoniae* S33, *E. coli* 55 and *E. coli* 86) could not be transferred by conjugation, which is in favor of non-transmissible plasmids; this should, however, be confirmed by complete plasmid sequencing.

Conclusions

Our set of six multiplex PCRs and one simplex PCR allowed classification of the most frequently encountered transmissible plasmids in Enterobacteriaceae by targeting their relaxase gene. It stands as a promising complement to the widely used PBRT method in understanding plasmid spread and evolution, and can be applied to epidemiological surveys as well. Considering the complexity of constant plasmid evolution, the combined use of two complementary and practical classification tools should be advantageous and reduce the need for systematic full-length plasmid sequencing.
Competing interest

The authors declare that they have no competing interests.

Acknowledgements

We are grateful to Etienne Carbonnelle (Hôpital Européen Georges Pompidou, Paris, France) for providing the three control strains from the ECOR collection, and to Glenn Rhodes (Lancaster Environment Centre, Lancaster, United Kingdom) for providing the IncU-positive control strain.
Alvarado A, García-Llopis MP, de la Cruz F, 2012. A degenerate primer MOB typing (DPMT)
method to classify gamma-proteobacterial plasmids in clinical and environmental settings.
PloS One. 7 (7), e40438.

Bahl MI, Burmølle M, Meisner A, Hansen LH, Sørensen SJ, 2009. All IncP-1 plasmid subgroups,
including the novel epsilon subgroup, are prevalent in the influent of a Danish wastewater
treatment plant. Plasmid. 62 (2), 134–139.

Branger C, Zamfir O, Geoffroy S, Laurans G, Arlet G, Thien HV, Gouriou S, Picard B, Denamur E, 2005.
Genetic background of Escherichia coli and extended-spectrum beta-lactamase type. Emerg
Infect Dis. 11 (1), 54–61.

Burrus V, Marrero J, Waldor MK, 2006. The current ICE age: biology and evolution of SXT-related
integrating conjugative elements. Plasmid. 55 (3), 173–183.

Carattoli A, 2009. Resistance plasmid families in Enterobacteriaceae. Antimicrob Agents Chemother.
53 (6), 2227–2238.

Carattoli A, 2011. Plasmids in Gram negatives: molecular typing of resistance plasmids. Int J Med
Microbiol. 301 (8), 654–658.

Carattoli A, 2013. Plasmids and the spread of resistance. Int J Med Microbiol. S1438-4221(13).

Carattoli A, Bertini A, Villa L, Falbo V, Hopkins KL, Threlfall EJ, 2005. Identification of plasmids by PCR-based replicon typing. J Microbiol Methods. 63 (3), 219–228.

Couturier M, Bex F, Bergquist PL, Maas WK, 1988. Identification and classification of bacterial
plasmids. Microbiol Rev. 52 (3), 375–395.

Curiao T, Cantón R, García-Llopis MP, de la Cruz F, Baquero F, Coque TM, 2011. Association of
composite IS26-sul3 elements with highly transmissible IncI1 plasmids in extended-spectrum
beta-lactamase-producing Escherichia coli clones from humans. Antimicrob Agents Chemother.
55 (5), 2451–2457.

Dallenne C, Da Costa A, Decré D, Favier C, Arlet G., 2010. Development of a set of multiplex PCR
assays for the detection of genes encoding important beta-lactamases in Enterobacteriaceae.
J Antimicrob Chemother. 65 (3), 490–495.

Datta N, Hedges RW, 1971. Compatibility groups among fi - R factors. Nature. 234 (5326), 222–223.

Datta N, Hedges RW, Shaw EJ, Sykes RB, Richmond MH, 1971. Properties of an R factor from
Pseudomonas aeruginosa. J Bacteriol. 108 (3), 1244–1249.

Francia MV, Varsaki A, García-Llopis MP, Latorre A, Drainas C, de la Cruz F, 2004. A classification
scheme for mobilization regions of bacterial plasmids. FEMS Microbiol Rev. 28 (1), 79–100.

García-Fernández A, Carattoli A, 2010. Plasmid double locus sequence typing for IncHI2 plasmids, a
subtyping scheme for the characterization of IncHI2 plasmids carrying extended-spectrum
beta-lactamase and quinolone resistance genes. J Antimicrob Chemother. 65 (6), 1155–1161.

García-Fernández A, Chiaretto G, Bertini A, Villa L, Fortini D, Ricci A, Carattoli A, 2008. Multilocus
sequence typing of IncI1 plasmids carrying extended-spectrum beta-lactamases in
Escherichia coli and Salmonella of human and animal origin. J Antimicrob Chemother. 61 (6),
1229–1233.

García-Fernández A, Fortini D, Veldman K, Mevius D, Carattoli A, 2009. Characterization of plasmids
harbouring qnrS1, qnrB2 and qnrB19 genes in Salmonella. J Antimicrob Chemother. 63 (2),
274–281.

García-Fernández A, Villa L, Moodley A, Hasman H, Miriagou V, Guardabassi L, Carattoli A, 2011.
Multilocus sequence typing of IncN plasmids. J Antimicrob Chemother. 66 (9), 1987–1991.

García-Llopis MP, Francia MV, de la Cruz F, 2009. The diversity of conjugative relaxases and its
application in plasmid classification. FEMS Microbiol Rev. 33 (3), 657–687.
Götz A, Pukall R, Smit E, Tietze E, Prager R, Tschäpe H, van Elsas JD, Smalla K, 1996. Detection and characterization of broad-host-range plasmids in environmental bacteria by PCR. Appl Environ Microbiol. 62 (7), 2621–2628.

Heuer H, Binh CT, Jechalke S, Kopmann C, Zimmerling U, Krögerrecklenfort E, Ledger T, González B, Top E, Smalla K, 2012. IncP-1ε Plasmids are Important Vectors of Antibiotic Resistance Genes in Agricultural Systems: Diversification Driven by Class 1 Integron Gene Cassettes. Front Microbiol. 3 (2).

Johnson TJ, Bielak EM, Fortini D, Hansen LH, Hasman H, Debroy C, Nolan LK, Carattoli A, 2012. Expansion of the IncX plasmid family for improved identification and typing of novel plasmids in drug-resistant Enterobacteriaceae. Plasmid. 68 (1), 43–50.

Marcadé G, Deschamps C, Boyd A, Gautier V, Picard B, Branger C, Denamur E, Arlet G, 2009. Replicon typing of plasmids in Escherichia coli producing extended-spectrum beta-lactamases. J Antimicrob Chemother. 63 (1), 67–71.

Mata C, Miró E, Alvarado A, Garcillán-Barcia MP, Toleman M, Walsh TR, de la Cruz F, Navarro F, 2012. Plasmid typing and genetic context of AmpC β-lactamases in Enterobacteriaceae lacking inducible chromosomal ampC genes: findings from a Spanish hospital 1999-2007. J Antimicrob Chemother. 67 (1), 115–122.

Mata C, Miró E, Mirelis B, Garcillán-Barcia MP, de la Cruz F, Coll P, Navarro F, 2010. In vivo transmission of a plasmid cohabouring bla and qnrB genes between Escherichia coli and Serratia marcescens. FEMS Microbiol Lett. 308 (1), 24–28.

Novick RP, 1987. Plasmid incompatibility. Microbiol Rev. 51 (4), 381–395.

Ochman H, Selander RK, 1984. Standard reference strains of Escherichia coli from natural populations. J Bacteriol. 157 (2), 690–693.

Osborn AM, da Silva Tatley FM, Steyn LM, Pickup RW, Saunders JR, 2000. Mosaic plasmids and mosaic replicons: evolutionary lessons from the analysis of genetic diversity in IncFII-related replicons. Microbiology. 146 (9), 2267–2275.

Phan MD, Kidgell C, Nair S, Holt KE, Turner AK, Hinds J, Butcher P, Cooke FJ, Thomson NR, Titball R, Bhutta ZA, Hasan R, Dougan G, Wain J, 2009. Variation in Salmonella enterica serovar typhi IncHI1 plasmids during the global spread of resistant typhoid fever. Antimicrob Agents Chemother. 53 (2), 716–727.

Villa L, García-Fernández A, Fortini D, Carattoli A, 2010. Replicon sequence typing of IncF plasmids carrying virulence and resistance determinants. J Antimicrob Chemother. 65 (12), 2518–2529.

Wong JJ, Lu J, Glover JN, 2012. Relaxosome function and conjugation regulation in F-like plasmids - a structural biology perspective. Mol Microbiol. 85 (4), 602–617.
Table 1 - Primers used in this study

PCR name	Plasmid type detected	Primer name	Sequence (5'-3')	Plasmid prototype	EMBL accession No.	Target site	Amplicon size (bp)	Primer concentration (pmol/µL)
Multiplex I	IncFIIK	MRxeFII-K_for	CGATATTCTTGAAACCCCCGTA	pKP3	CP000648.1	tral	297	0.2
		MRxeFII-K_rev	TCAATGGCCTATATYCGTCC				753	0.2
		MRxeF-tot_for	ATCATGAGGAMCCAAGTTACAC				297	0.2
		MRxeF-tot_rev	GTTTGATGATRGGCAGTGGGAG				642	0.2
		MRxeFV_for	TTACCTCGCAATAGTGGGGA	pED208	AF411480.1	tral	642	0.2
		MRxeFV_rev	TTACTCGCAATAGTGGGGA				642	0.2
Multiplex II	IncN	MRxeN_for	CCAGATGAGGAAACCCTGATCA	R46	AY046276.1	tral	332	0.2
		MRxeN_rev	CGTAATGTGTAATATGCTG				332	0.2
		MRxeN1_for	TCTATGATAAGCAAGGC				332	0.2
		MRxeN1_rev	ACAAATGCCTGGAAATAGCTG				332	0.2
		MRxeN2_for	GATGTAGGAGGCTGATG				332	0.2
		MRxeN2_rev	GGATGCTGATGCGTTGCG				332	0.2
		MRxeN3_for	GATGTAGGAGGCTGATG				332	0.2
		MRxeN3_rev	GGATGCTGATGCGTTGCG				332	0.2
Multiplex III	IncHI1, IncHI2	MRxeH1a_for	CCAAAAGACTGACTTGGGAGCA	pMAK1	AB366440.1	helicase	873	0.2
		MRxeH1a_rev	CGGAATGCTGCAGCTATACG				873	0.2
		MRxeH1b_for	CCAGATGAGGAAACCCTGATCA	pMAK1	AB366440.1	tral	873	0.2
		MRxeH1b_rev	CGGAATGCTGCAGCTATACG				873	0.2
		MRxeH2_for	GATGTAGGAGGCTGATG				873	0.2
		MRxeH2_rev	GGATGCTGATGCGTTGCG				873	0.2
		MRxeH3_for	GATGTAGGAGGCTGATG				873	0.2
		MRxeH3_rev	GGATGCTGATGCGTTGCG				873	0.2
		MRxeH4_for	GATGTAGGAGGCTGATG				873	0.2
		MRxeH4_rev	GGATGCTGATGCGTTGCG				873	0.2
Multiplex IV	IncX1	MRxeX1_for	GAAATAGGTGCTAGTCATAG	pOLAS2	EU370913.1	taxC	845	0.2
		MRxeX1_rev	TTCAGYCTGCAAGACCACTCG				845	0.2
		MRxeX2_for	CGTAATGCGTAAATGCTG	R6K	X95535.1	taxC	560	0.2
		MRxeX2_rev	CGTAATGCGTAAATGCTG				560	0.2
		MRxeX3_for	CATTACAAAAAGCGCCTGCTG				736	0.2
		MRxeX3_rev	GATGGATGCTGATGCGTTGCG	pIncX-SHV	JN247852.1	taxC	736	0.2
		MRxeX4_for	GATGGATGCTGATGCGTTGCG	pSH146_32	JX258655.1	taxC	996	0.2
		MRxeX4_rev	GATGGATGCTGATGCGTTGCG				996	0.2
	Non typeable	MRxeMobC11_for	ACGGATCGCTCCCTGGAGTGC	pColEST258	JN247853.1	mobB	997	0.2
		MRxeMobC11_rev	TCCGSGCCTAGTGCAGTGGAC				997	0.2
		MRxeMobQu_for	TCTCGCAAGRCGCGCTTGC	pG2WZ12	DQ316456.1	mob	481	0.04
		MRxeMobQu_rev	ATGGTGCAAGCGCATGACCA				481	0.04
		MRxeMobP5_1_for	AATGGTCGAGGGTTGCGTGC	pCOLE1	J05566.1	mob3	367	0.04
		MRxeMobP5_1_rev	AATGGTCGAGGGTTGCGTGC				367	0.04
		MRxeMobP5_2_for	AATGGTCGAGGGTTGCGTGC	pTPqnr5-1a	AM746977.1	mobA	656	0.2
		MRxeMobP5_2_rev	AATGGTCGAGGGTTGCGTGC				656	0.2
Multiplex	Inc	MRxe	Primers	GenBank Accession	Function	Mobility		
----------	-----	------	---------	------------------	----------	----------		
Multiplex VI	IncQ1	MRxeQ1	M28829.1	0.2	962			
IncU	MRxeU	pHUSEC41	RSF1010	0.2	743			
IncP1α	MRxeP1α	RP4	M28829.1	0.2	424			
IncW	MRxeW	RP4	R388	0.2	531			
Simplex I	IncB/O, IncK	MRxeBO	AY258503.2	0.2	800			
No.	Parental strain	Tc/Tf	β-Lactamase	Plasmid classification				
-----	---------------------	-------	-------------	------------------------				
6†	E. coli	Tc	TEM-10	L/M				
40†	E. coli	Tc	TEM-24	A/C				
44†	E. coli	Tc	TEM-52	H				
48†	E. coli	Tc	TEM-52	X1				
50	E. coli	Tc	TEM-52	I1				
52	E. coli	Tc	TEM-52	X1				
51	E. coli	Tc	TEM-3	L/M				
57†	E. coli	Tc	SHV-12	F				
62	E. coli	Tc	SHV-2	FIB				
64†	E. coli	Tc	SHV-5	X4				
73	E. coli	Tc	SHV-4	FIHK				
81	E. coli	Tc	CTX-M-3	FIB, FIHK				
85	E. coli	Tc	CTX-M-1	FIA				
91†	E. coli	Tc	CTX-M-3	N				
98	E. coli	Tc	CTX-M-1	X1				
100	E. coli	Tc	CTX-M-1	FIA, FIH				
102†	E. coli	Tc	CTX-M-1	H12				
104	E. coli	Tc	CTX-M-1	FIA, FIB, FIH				
105	E. coli	Tc	CTX-M-1	L/M				
108	E. coli	Tc	CTX-M-1	X4				
110	E. coli	Tc	CTX-M-1	X4				
111	E. coli	Tc	CTX-M-1	FIA				
114	E. coli	Tc	CTX-M-1	L/M				
118	E. coli	Tc	CTX-M-1	FIA, FIB				
120	E. coli	Tc	CTX-M-3	FIB				
125	E. coli	Tc	CTX-M-1	FII				
126	E. coli	Tc	CTX-M-1	N				
127	E. coli	Tc	CTX-M-3	FIB				
S6	K. pneumoniae	Tc	SHV-5	A/C				
S9†	K. pneumoniae	Tc	SHV-4	FIHK				
S16	K. pneumoniae	Tc	CTX-M-3	A/C				
S19	K. pneumoniae	Tc	CTX-M-15/OXA-1	N				
S23	K. pneumoniae	Tc	CTX-M-3	N, A/C				
S24	K. pneumoniae	Tc	TEM-3	A/C				
S36	K. pneumoniae	Tc	CTX-M-3/OXA-1	FII				
S43	K. pneumoniae	Tc	CTX-M-3	F				
S46	K. pneumoniae	Tc	CTX-M-15	L/M				
S51	K. pneumoniae	Tc	SHV-12	FIHK, RI				
S59	K. pneumoniae	Tc	CTX-M-15	FIHK				
S75	K. pneumoniae	Tc	CTX-M-15/OXA-1	FIHK				
S82	K. pneumoniae	Tc	CTX-M-15/OXA-1	FI				
S88	K. pneumoniae	Tc	SHV-2α	FIHK				
S90†	K. pneumoniae	Tc	SHV-12, KPC-2	X3				
S00056	S. enterica Typhimurium	Tc	CTX-M-2	H12, H1γ				
S00319	S. enterica Havanata	Tc	CTX-M-15	H12, H1γ				
S01106	S. enterica Virchow	Tc	SHV-12	H1, H1γ				
S01331	S. enterica Tel el kebir	Tc	CTX-M-15	H12, H1γ				
S01477†	S. enterica Typhimurium	Tc	CTX-M-1/CMY-2	H11, H11, H1,g, H1β, H1γ				
S01650	S. enterica Brandenburg	Tc	CTX-M-14	FrepB, F				
S03207	S. enterica Typhimurium	Tc	CTX-M-15	FIA, FIB, F				
S03663	S. enterica Grumensis	Tc	CTX-M-15	HI2, H1γ				
S03664	S. enterica Typhimurium	Tc	CTX-M-15	N, N				
S04662	S. enterica Virchow	Tc	CTX-M-32	N, N				
S05343	S. enterica Concord	Tc	CTX-M-15	HI2, H1γ				
S07364	S. enterica Miami	Tc	SHV-2	N, N				
S09118	S. enterica Karmassar	Tc	SHV-12	H12, F1, H1, H1γ				
S1922†	S. enterica Kentucky	Tc	VIM-2	W, W				
S1923	S. enterica Kentucky	Tc	VIM-2	W, W				
S27078	S. enterica Carmel	Tc	CTX-M-15	FrepB, F				
S7981	S. enterica Saintpaul	Tc	OXA-48	L/M, L/M				

*Tc, transconjugant; Tf, transformant; PBRT, PCR-based replicon typing; PRaseT, plasmid relaxase gene typing; T4SS, type IV secretion system; ND, no data; †, Tc used as a positive control in relaxase gene typing.
No.	Species	B-Lactamase	PBRT	Multiplex I	Multiplex II	Multiplex III	Multiplex IV	Multiplex VI	Simplex 1
3	*E. coli*	TEM-24	A/C, B/O	A/C	A/C			K-B/O	
15	*E. coli*	TEM-24	A/C, H1	F	A/C	Hiα, Hiγ	X4		
17	*E. coli*	TEM-24	A/C, FIA, FIB, FIH, HI2, X4	F	A/C	Hiα, Hiγ	X4		
19	*E. coli*	TEM-21	A/C, K, N, X1	F	A/C				
23	*E. coli*	TEM-24	A/C, FIB, FIH	F	A/C				
26	*E. coli*	TEM-24	A/C, FIA, FIB	F	A/C	Hiα, Hiγ	X4		
28	*E. coli*	TEM-21	A/C, K, X1	F	A/C				
33	*E. coli*	TEM-24	A/C, P					K-B/O	
34	*E. coli*	TEM-24	A/C, FIA, FIB, FIH, K, N, X1	F	A/C	Hiα, Hiγ	X4		
40	*E. coli*	TEM-24	A/C, B/O, FIA	F	A/C				
50	*E. coli*	TEM-52	H1	F	A/C				
66	*E. coli*	SHV-12	FIB, K	F	A/C				
84	*E. coli*	CTX-M-1	FIB, HI1, N	F	N	Hiβ	K-B/O		
101	*E. coli*	CTX-M-2	HI2, P	F	N	Hiβ	K-B/O		
105	*E. coli*	CTX-M-1	K, L/M	F	N	Hiα, Hiβ	K-B/O		
106	*E. coli*	CTX-M-1	FIB, HI1, N	F	N	Hiα, Hiβ	K-B/O		
112	*E. coli*	CTX-M-3	FIB, FIH, K	F	A/C				
E37040	*E. coli*	ND	A/C, FIB, FIH	F	A/C				
E43681	*E. coli*	ND	FIA, FIB, FIQ	F	Q1				
Kp83	*K. pneumoniae*	FOX-3	A/C, FIIK, X4	FIH	A/C				
Kp55	*K. pneumoniae*	DHA-1	FIK, L/M, R	FIK	L/M				
Kp515	*K. pneumoniae*	GES-9	FIK, K, U	FIK					
Kp519	*K. pneumoniae*	CTX-M-15, DHA-1	FIK, FIIK, L/M, N	FIK	L/M, N	X4			
Kp520	*K. pneumoniae*	CTX-M-15, SHV-2a	FIK, L/M, N	FIK	L/M, N	X4			
Kp526	*K. pneumoniae*	SHV-12	FIK, N, R	FIK	N				
Kp547	*K. pneumoniae*	CTX-M-3	HI2, L/M	FIK	L/M	Hiγ	K-B/O		
Kp563	*K. pneumoniae*	DHA-1	L/M, R	FIK	L/M				
Kp583	*K. pneumoniae*	TEM-3	A/C, FIB, N	F	A/C, N				
Kp588	*K. pneumoniae*	SHV-2a	FIK	FIK					
Kp591	*K. pneumoniae*	KPC-2	A/C, FIIK, X3	FIK	A/C				
Kp592	*K. pneumoniae*	CTX-M-14, VM-1	FIIK, HI1	FIK, F	HI				
Kp593	*K. pneumoniae*	CTX-M-15, OXA-48	HI, L/M	FIK	HI, L/M				
Kp594	*K. pneumoniae*	OXA-48	FIK, L/M, N	FIK	L/M, N				
Kp595	*K. pneumoniae*	OXA-1	A/C, L/M	A/C	L/M	Hiα			
Kp596	*K. pneumoniae*	ND	A/C, FIK	FIK	A/C				
Kp597	*S. enterica*	Typhimurium	CTX-M-1, CMY-2	HI1, HI2	HI	Hiα, Hiβ	S10-1477		
S10-1477	*S. enterica*	Typhimurium	CTX-M-1, CMY-2	HI1, HI2	HI	Hiα, Hiβ	S10-1276		

*PBRT, PCR-based replicon typing, ND, not determined.

Table 3 - Application of relaxase gene typing in 39 clinical strains of Enterobacteriaceae

- **Multiplex I**: FIB, HI1, FIIK, F, FIH, L/M, N, Hβ
- **Multiplex II**: HIα, HIβ
- **Multiplex III**: A/C, B/O, FIIK, F, FIH, L/M, HIγ
- **Multiplex IV**: A/C, FIIK, F, FIH, L/M, HIγ
- **Multiplex VI**: A/C, FIIK, F, FIH, L/M, HIγ

- **Simplex 1**: A/C, FIIK, F, FIH, L/M, HIγ

- **Plasmid classification**: K-B/O
Table 4 - Results of relaxase gene typing in 17 recipient cells non-typeable with PBRT*

No.	Parental species	Tc/Tf	β-lactamase	Plasmid relaxase gene typing
16	*E. coli*	Tc	TEM-21	C11
31	*E. coli*	Tc	TEM-24	P5-3
37	*E. coli*	Tt	TEM-24	P5-3
55	*E. coli*	Tt	TEM-52	NT
65	*E. coli*	Tc	SHV-4	P5-3
66	*E. coli*	Tc	SHV-12	P5-3
67	*E. coli*	Tc	SHV-12	P5-3
70	*E. coli*	Tc	SHV-12	P5-3
71	*E. coli*	Tc	SHV-2	P5-3
72	*E. coli*	Tc	SHV-2	P5-3
76	*E. coli*	Tc	SHV-2	NT, P5-3†
86	*E. coli*	Tt	CTX-M-3	NT
93	*E. coli*	Tt	CTX-M-3	NT
99	*E. coli*	Tc	CTX-M-1	Qu, P5-3†
S33	*K. pneumoniae*	Tt	DHA-1	NT
S55	*K. pneumoniae*	Tt	CTX-M-15, OXA-1	FIIK
S77	*K. pneumoniae*	Tt	SHV-12	NT

*PBRT, PCR based replicon typing, Tc, transconjugant, Tf, transformant, NT, not typeable; †: recipient cells containing two different plasmids (ESBL was carried by plasmids NT and Qu in strains 76 and 99 respectively).
Appendix A. Supplementary data

Supplementary Table S1 – Relaxase and T4SS-ATPase gene sequences of completely sequenced IncHI plasmids stored in GenBank

Supplementary Table S2 – Primers used in this study for T4SS-typing

Supplementary Figure – Relaxase gene typing assays

All PCR products were separated in 1.5% agarose gels. M, molecular size marker (in bp). (a) Multiplex PCR assay of the IncF, IncFIIK and IncFV relaxase genes. Lanes : 1, K. pneumoniae KpS19 ; 2, E. coli 84 ; 3, E. coli 53 ; 4, K. pneumoniae KpS83 ; 5, K. pneumoniae KpS19+ E. coli 53 ; 6, E. coli J53 (negative control). (b) Multiplex PCR assay of the IncA/C, IncI1, IncL/M and IncN relaxase genes. Lanes : 1, E. coli 15 ; 2, E. coli 34 ; 3, K. pneumoniae KpS19 ; 4, K. pneumoniae FM10 ; 5, E. coli 15+ E. coli 34+ K. pneumoniae KpS19 ; 6, E. coli J53 (negative control). (c) Multiplex PCR assay of the Hiα, Hiβ and Hly relaxase genes. Lanes : 1, K. pneumoniae FM10 ; 2, E. coli 26 ; 3, E. coli 88 ; 4, E. coli 106 ; 5, E. Coli 17+ E. Coli 106 ; 6, E. coli J53 (negative control). (d) Multiplex PCR assay of the IncX1, IncX2, IncX3 and IncX4 relaxase genes. Lanes: 1, E. coli 17; 2, K. pneumoniae S90 recipient cell; 3, E. coli ECOR19; 4, E. coli 19; 5, E. coli J53 (negative control). (e) Multiplex PCR assay of the MobP5-1, MobP5-2, MobP5-3, MobC11 and MobQu relaxase genes. Lanes : 1, E. coli 34 ; 2, E. coli ECOR6 ; 3, E. coli ECOR10 ; 3, E. Coli 16 recipient cell ; 4, E. Coli 99 recipient cell ; 5, E. coli ECOR6+ E. coli ECOR10+E. Coli 16 recipient cell+E. Coli 70 recipient cell+ E. Coli 99 recipient cell ; 6, E. coli J53 (negative control). (f) Multiplex PCR assay of the IncP1a, IncQ1, IncU and IncW relaxase genes. Lanes : 1, E. coli Ec43681 ; 2, S. enterica S1922 recipient cell ; 3, pFBAOT6 reference plasmid ; 4, RP4 reference plasmid ; 5, E. coli Ec43681+ pFBAOT6 reference plasmid+ RP4 reference plasmid ; 6, E. coli J53 (negative control). (g) Simplex PCR assay of the IncB/O and IncK relaxase genes. Lanes : 1, E. coli 34 ; 2, E. coli 66 ; 3, E. coli 40 ; 4, E. Coli 112 ; 5, E. coli 53 ; 6, E. coli J53 (negative control).