Vascular plant diversity of the Alanya Castle walls and their ecological effects

Ahmet AKSOY 1, Jale ÇELİK 2

ORCID: 0000-0002-9696-7122; 0000-0002-3624-2146

1 University of Akdeniz, Faculty of Science, Department of Biology, Antalya, Turkey
2 University of Akdeniz, Institute of Science and Technology, Department of Biology, Antalya, Turkey

Abstract
Since historical buildings are living mirrors of the past, it is very important to preserve and transfer them to future generations. In this study, plants growing on the walls of Alanya Castle were identified and the damages that these plants gave to the historical construction and the precautions to be taken to prevent these damages were emphasized. A total of 94 plant taxa, including five pteridophytes, one gymnosperm and 88 angiosperms, belonging to 35 families were identified on the walls of Alanya Castle. *Conyza canadensis*, *Inula heterolepis*, *Phagnalon graecum*, *Arabis verna*, *Mercurialis annua*, *Fumaria parviflora*, *Cymbalaria microcalyx*, *Galium canum* subsp. *antalyense*, *Parietaria judaica*, *Hyoscyamus aureus*, *Poa bulbosa* were the dominant plant species of Alanya Castle walls. Possible seed dispersion of these plants on the castle walls and the methods for controlling them are discussed in detail. We conclude that the most effective method of combating plants that grow naturally on historical buildings and give damage to these buildings is mechanical excavation.

Key words: Alanya, biodiversity, mechanical excavation, urban ecosystems, wall flora

1. Introduction
Alanya town is one of the oldest settlements in Antalya. Although the exact establishment date of the town is not known, the oldest known name of the city is Calanoros which meant “Güzel dağ” in the Byzantium Period (A.D. 395-1453) [1]. Its name was later changed to Alaiye after the city was conquered by the Anatolian Seljuk Emperor 1. Allaaddin Keykubat. In 1935, the name of the city was finally changed to Alanya by Mustafa Kemal Atatürk [2]. Since Alanya hosted many civilisations and different cultures, the city has many cultural assets such as; Red Tower, Castle Walls, Seljuk Shipyard, Seljuk Armoury, Alanya Lantern, Hıdırellez Dede and Adem Atacağı [3].

* Corresponding author / Haberleşmeden sorumlu yazar: Tel.: +905543822143; Fax.: +905543822143; E-mail: jale_celik38@hotmail.com

© Copyright 2020 by Biological Diversity and Conservation

Received: 24.01.2018; Published: 15.04.2020

BioDiCon. 725-0118
Although ferns, algae and flowering plants on historic buildings are considered to be additional ornamental plants and contribute to the completion of the architectural and historical perception of the buildings, many of the historical artefacts today are worn for various reasons [4]. Although the most important factors causing these damages are known to be climatic conditions and neglected maintenance, the negative effects of plants on historical structures cannot be ignored in long-term either [5]. The edaphic requirements of the plants are related to the amount of seeds produced and their dispersion patterns. Usable substrate volume, substrate type, moisture requirements for germination and reproduction play an important role among the edaphic preferences; seed lightness, seed morphology (pappus and wing), and seed dispersal types (e.g. anemophilic and zoophilic) are the main factors affecting the formation of wall flora [6].

Studies on the wall flora constitute a significant part of the urban ecosystems. In this sense, the first study on wall flora was conducted by Brishbeth (1948) in the USA. Later, similar floristic and ecological studies were carried out on plants growing on historical monuments in India, Greece, Italy, Brazil, China, and England [6-13]. With regard to Turkey, (on a regional scale), various studies were carried out in Istanbul [14-16] and Edirne [17] in the Marmara Region; İzmir [18] and Muğla [19] in the Aegean Region; Kayseri [20] and Niğde [21] in the Central Anatolia Region; Van [22] in the Eastern Anatolia Region; Gaziantep [23] and Şanlıurfa [24] in the Southeastern Anatolia Region, and Hatay [25, 26], Isparta [27] and Antalya [5,28,29,30] in the Mediterranean Region. According to the literature, so far more than 350 vascular plant species have been identified on walls of historical buildings from Turkey [31].

Based on the literature search, there is a published study on the flora of Alanya Castle and its surroundings [28]. Although 322 plant species were reported in this study, there is no information about the effects of plants on historical structures. Therefore, in this study, we focused on vascular plants of the walls of Alanya Castle, the abundance of the detected species and their location on the wall, as well as their negative effects on the walls and possible measures to minimize these effects.

2. Materials and methods

Alanya is a city located east of Antalya (Turkey) between 36.54 latitude and 32.00 longitude and is situated at an elevation of approximately 225 meters above sea level (Figure 1). The plant specimens were collected from the walls of Alanya Castle between March 2015 and November 2017 (Figure 2).

Collected specimens were thoroughly evaluated using the relevant literature for species identification. “Flora of Turkey and the East Aegean Islands” and its appendices were used for identification of the taxa assessed in the floristic analysis [32-34]. The life forms of plants were determined according to Raunkiaer’s system [35]. The threat categories of endemic plants were determined using the Red Book of Turkish Plants and IUCN 2017 [36,37]. Turkish plant names were written using The Plant List of Turkey (Vascular Plants) given by Güner et al. (2012) and also the relative abundance of each plant species was determined by using Braun-Blanquet [38,39]. Further, the position of the plants on the walls was noted during the field study.
3. Results

The floristic list of plant species found on the walls of Alanya Castle is given in Table 1.

Table 1. Floristic list of the Alanya Castle Walls (G: Geophyte, Th: Therophyte, H: Hemicryptophyte, Ch: Chamephyte, Ph: Phanerophyte), their relative abundance (1: Rare, 2: Occasional, 3: Frequent, 4: Codominant, 5: Dominant), and their position on the castle walls (V: Vertical, H: Horizontal).

Taxonomic categories and Families	Species	Turkish Name	English Name	Life Form	Relative Abundance	Position (V/H)		
PTERIDOPHYTA	Asplenium ceterach L.	Dalakotu	Rustyback	G.	3	V		
Polypodiaceae	Polypodium vulgare L. var. cambricum (L.) Willd.	Benli eğrelti	Southern polyody	G.	2	V		
Pteridaceae	Adiantum capillus-veneris L.	Baldırıkara	Maidenhair fern	H.	2	V		
	Chelianthes pteridioides (Reich.) C.Chr.	Kivrık eğrelti	Hay-scented fern	H.	2	V		
	Pteris vittata L.	Uzun eğrelti	Chinese brake	H.	2	V		
AGACLAR	Magnoliophyta	Tohumlu Bitkiler	Spermatophyta	Angiospermae	Dicotyledoneae	Çift Çenekiller	Dicots	
MAGNOLIOPHYTINA	Capparaceae	Ficus carica L. subsp. carica	Incir	Common fig	Ph.	3	V, H	
DICILBAR	Ephedraceae	Ephedra foeminea Forssk.	Borotu	Leafless ephedra	Ph.	3	V, H	
CALILAR	Magnoliophyta	Caprifoliaceae	Capparis orientalis Veill.	Kabakarn	Caper-bush	Ph.	4	V
PINOPHYTINA	Vitaceae	Vitis vinifera C.C.Gmel	Deli asma	European wild grape	Ph.	2	V	
OTSULAR	Dicotyledoneae							
Taxonomic categories and Families	Species	Turkish Name	English Name	Life Form	Relative Abundance	Position (V/H)		
----------------------------------	---------	--------------	--------------	-----------	-------------------	----------------		
Apiaceae	Eryngium glomeratum Lam	Top boğazdikeni	Eryngo	H.	3	V, H		
Foeniculum vulgare L.	Kadisteresi	The giant tangier fennel	H.	4	H			
Arajaceae	Hedera helix L.	Duvar sarması	English Ivy	Ph.	4	V		
Asteraceae	Centaurea scopolium Boiss. & Heldr. var. scopolorum	Makberınışığı	-	H.	2	V		
Conyza bonariensis (L.) Cronquist	Çakanalotu	Argentine fleabane	Th.	4	V, H			
Conyza canadensis (L.) Cronquist	Selvi otu	Canadian horseweed	Th.	5	V, H			
Crepis sancto (L.) Bornm.	Yaban kuskusu	Hawksbeard	Th.	4	V, H			
Geropogon hybrida (L.) Sch. Bip.	Melez yemlik	Slender salsify	Th.	2	H			
Inula heterolepis Boiss.	Ak andızotu	Snow samphire	H.	5	V			
Lactuca serriola L.	Eğekhelvası	Prickly lettuce	H.	3	H			
Phagnalon graecum Boiss. & Heldr	Boçaklı	Eastern phagnalon	Ch.	5	V, H			
Senecio vernalis Waldst. & Kit.	Kanarya otu	Eastern groundsel	Th.	4	V, H			
Sonchus oleraceus L.	Kuzugevregi	Common sowthistle	H.	4	V, H			
Boraginaceae	*Alkanna macrosephlon Boiss. & Heldr.	Kalkan havacivası	-	H.	3	V		
Cyanoglossum creticum Mill.	Pıniketiği	Hound's-tongue	H.	3	H			
Onosma frutescens Lam.	Sarı emcek	Bushy golden-drop	H.	4	V, H			
Brassicaceae	Arabis verna (L.) R.Br.	Mor kazieresu	Spring rockcress	Th.	5	V, H		
Biscutella didyma L.	Çiçëtötu	Mediterranean Biscutella	Th.	2	H			
Cardamine hirsuta L.	Kılı kodımı	Hairy bittercress	Th.	2	V			
*Convingia grandiflora Boiss. & Heldr.	İrielikari	-	Th.	3	V, H			
Lepidium draba L.	Diğnik	Hoary cress	H.	3	H			
Malcolmia chia (L.) DC.	Ekinteresi	Chian stock	Th.	3	V, H			
Ricotta carnosula Boiss. & Heldr.	Dişli cavıklak	-	Th.	3	V, H			
Campanulaceae	Campanula drahfolia Sibth. & Sm	Dişli çançiceği	Bellflower	Th.	3	V		
Campanula erinus L.	Çatal çançiceği	Elatine bellflower	Th.	2	V, H			
Campanula propinqua Fisch. & C.A.Mey	Kum çamı	Bellflower	Th.	2	V, H			
Caprifoliaceae	Valeriana dioecorda Sm.	Çobanzurnası	Italian valerian	H.	2	H		
Caryophyllaceae	*Arenaria pamphylica Boiss. & Heldr. subsp. pamphylica var. pamphylica	Kys kumotu	-	H.	3	V		
Arenaria serpyllifolia L. subsp. serpyllifolia	Tarla kumotu	Thymeleaf sandwort	H.	5	V			
Cerasitum glomeratum Thun.	Boyunuzotu	Sticky chickweed	Th.	4	V, H			
Cerasitum semidecandrum L.	Çengel boynuzotu	Little mouse-ear	Th.	3	V, H			
Dianthus elegans d Urv. var. coas (Boiss.) Reeve	Deli karanfil	Elegant pink	Ch.	3	V			
Dianthus strictus Banks & Sol. var. strictus	Dimisok	Wild carnation	Ch.	2	V			
Minuartia globulosa (Labiill.) Schinz & Thell	Top tists	-	Th.	3	V, H			
Minuartia hybrida (Vill.) Schischk. subsp. hybrida	Çayır tistsı	Fine-leaved Sandwort	Th.	4	V, H			
Minuartia picta (Sibth. & Sm.) Bornm.	Ergen tistsı	Sandwort	Th.	4	V, H			
Polycarpum tetraphyllum (L.) L.	Kerkincıcotu	Four-leaved aliseed	Th.	2	V, H			
Silene dichotoma Ehrh. subsp. dichotoma	Çatal nakil	Forked catchfly	H.	3	H			
Silene gigantea gigantea L. subsp. Koca nakil	-	-	H.	3	H			
Taxonomic categories and Families	Species	Turkish Name	English Name	Life Form	Relative Abundance	Position (V/H)		
----------------------------------	---------	--------------	--------------	-----------	--------------------	---------------		
Silene sedoides Poir.	Yatık nakıl	Hairy catchfly	Th.	3	V			
Velezia pseudorigida Hub.-Mor.	Has tığotu	-	Th.	3	V, H			
Crassulaceae	Rosularia globularifolia (Fenzl) A.Berger	Top kayakoruğu	-	Ch	3	V		
Sedum caespitosum (Cav.) DC.	Bodur damkorğu	Broad-leaved stonecrop	Th.	4	V			
Sedum sediforme (Jacq.) Pau	Yali koruğu	Pale stonecrop	Ch.	4	V, H			
Umbilicus horizontalis DC.	Kalaba	Horizontal navelwort	Ch.	3	V, H			
Euphorbiaceae	Mercurialis annua L.	Parşen	Annual mercury	Th.	5	H		
Fabaceae	Lathyrus setifolius L.	Bilüli baklası	Red pea	Th.	2	H		
	Medicago polymorpha L. var. polymorpha	Kurkyonca	Bur clover	Th.	3	V		
Geraniaceae	Erodium malacoides (L.) L. Her.	Dönbaba	Mediterranean stork's bill	Th.	3	V, H		
	Geranium lucidum L.	Dakkaotu	Shining cranesbill	Th.	3	V		
	Geranium pusillum Burm.f.	İncegelinçarşafı	Small-flowered Cran'e-bill	Th.	3	V		
Hypericaceae	Hypericum perforliatum L.	Bambahdelik otu	Saint John's wort	H.	3	H		
	Hypericum triquetrifolium Turra	Papprotu	Wavy-leaf St John's wort	H.	3	H		
Lamiaeae	*Ajuga bombycina* Boiss.	Geyik mayasılı	-	H.	3	V		
	Clinopodium insulare (Candargy) Govaerts	Ada fesleğeni	-	H.	3	V, H		
	Lamium amplexicaule L. var. amplexicaule	Balstin	Henbit deadnettle	Th.	3	V		
	Micromeria myrtifolia Boiss. & Hohen.	Boğumulçay	Cyprus wild savory	Ch.	4	H		
	Teucrium polium L. subsp. polium	Acıyavşan	Felty germander	Ch.	4	V, H		
Linaceae	Linum strictum L. var. strictum	Tok keten	Upright flax	Th.	4	H		
Oxalidaceae	Oxalis pes-caprae L.	Koca ekşiyonca	Bermuda buttercup	G.	4	V, H		
Papaveraceae	Fumaria parviflora Lam.	Tarla sahteresi	Fineleaf fumitory	Th.	5	H		
	Glaucom flavum Crantz	Gündürmelalesi	Yellow horned poppy	Ch.	3	H		
	Papaver rhoeas L.	Gelincik	Common poppy	Th.	3	H		
Plantaginaceae	Cymbalaria microalyx (Boiss.) Wettst.	Hoş nakkaşotu	Ivy leaved toad-flax	H.	5	V		
	Veronica cymbalaria Bodard	Venüşüççüğü	Pale speedwell	Th.	4	V		
	Veronica syriaca Roem. & Schult.	Arap mavışı	Syrian speedwell	Th.	3	V		
Ranunculaceae	Clematis cirrhosa L.	Bahar sarmaşı	Virgin's bower	Ph.	3	V		
	Delphinium peregrinum L.	Tel hezaren	Violet larkspur	Th.	2	V		
Rosaceae	Sanguisorba verrucosa (G.Don) Ces.	Sincanotu	Mediterranean salad burnet	H.	3	V		
Rubiaceae	*Galium canum* Req. ex DC. subsp. antalyense Ehrend	Antalya yoğunrotu	-	Ch.	5	V		
	Valantia hispida L.	Kılı şirenotu	Hairy valantia	Th.	5	V, H		
Saxifragaceae	Saxifraga hederacea L.	Çalı taşkıran	-	Th.	4	V		
Scrophulariaceae	Serophularia pinardii Boiss.	Çalı sıracası	-	Ch.	4	V		

Vascular plant diversity of the Alanya Castle walls and their ecological effects
Ahmet AKSOY, Jale ÇELİK
Taxonomic categories and Families

Vascular Plant Diversity of Alanya Castle Walls and their Ecological Effects
Ahmet AKSOY, Jale ÇELİK

Table 1

Species	Turkish Name	English Name	Life Form	Relative Abundance	Position (V/H)
Verbascum levanticum	İ.K. Ferguson	Arap sağırkuyruğu	H.	3	V, H
Hyoscyamus aureus L.	Sarı banotu	Golden henbane	H.	5	V
Parietaria cretica L.	Sarçacu	Cretan pellitory	Th.	5	V
Parietaria judaica L.	Doğar feseleği	Spreading pellitory	Th.	5	V

Table 2: Total numbers of families and taxa

Taxonomic Units	Total numbers of families	Total numbers of taxa	Numbers of endemic taxa
Pteridophyta	3	5	-
Gymnospermae	1	1	-
Angiospermae			
Dicotyledonae	28	80	6
Monocotyledonae	3	8	
Total	**35**	**94**	**6**

In the investigated area, Caryophyllaceae (14 species) was the richest family with 14 species (%14,9 of all detected species) followed by Asteraceae (10 species, %10,6), Brassicaceae (7 species, %7,4), Poaceae (6 species, %6,4), Lamiaceae (5 species, %5,3) and others (52 species, %53,23) (Figure 3).

Figure 3. Percentage of plant species by families (%)
4. Discussion and conclusions

Conyza canadensis, Inula heterolepis, Phagnalon graecum, Arabis verna, Mercurialis annua, Fumaria parviflora, Cymbalaria microcalyx, Galium canum subsp. antalyense, Parietaria judaica, Hyoscyamus aureus, Poa bulbosa were the dominant plant species of Alanya Castle walls (Figure 4). These findings are similar to other studies conducted in the Mediterranean region [5,26,28,29]. The life forms of the plants were determined to be 47.8% therophytes, 28.7% hemicyryptophytes, 11.7% chamephytes, 6.4% phanerophytes and 5.4% geophytes. Among them, six endemic taxa were found. Four of these endemics are considered to be of global conservation concern. Arenaria pamphylica subsp. pamphylica and Velezia pseudorigida are listed as Vulnerable (VU), and Ajuga bombycina and Galium canum subsp. antalyense are Near Threatened (NT) on the IUCN Red List Categories [36]. On the other hand, Alkanna macrosiphon and Conringia grandiflora are listed as Least Concern (LC) (Table 1).

Figure 4. Some plant species that were found on the walls of Alanya Castle

It is possible to see one or more of the stages of succession in terrestrial ecosystems on historic structures. Many cyanobacteria, lichen and fungi species, especially on the exterior surfaces of buildings, are dark coloured. They often lead to aesthetic deterioration because they cause color loss of the surfaces during their growth phase. Moreover, some lichen species can cause active erosion on rocks of historic structures due to secreted (usnic acid) substances [40].

As the walls are located in urban and rural landscapes, they are highly influenced by the ornamental and natural vegetation types surrounding the composition of the wall flora [4]. For this reason, members of the cosmopolitan family of Asteraceae are frequently encountered on historical structures [14-16, 28]. The plant species such as Conyza canadensis, Crepis sancta, Inula heterolepis, Sonchus oleraceus were the most common on Alanya Castle walls. The most important reason of this frequent occurrence is that in this family seeds, which have, pappus and wing-like structures are distributed by wind [5, 6].
The castle walls form microhabitats with substrate located in spaces and cracks and thus shape the growth conditions of the plants [6]. Indeed, annual plants develop in these small spaces along the vertical surfaces of the walls. The most common annual plants on the vertical surface at the walls of Alanya Castle were *Arabis verna*, *Campanula drabifolia*, *Arenaria serpyllifolia*, *Cerastium glomeratum*, *Geranium lucidum*, *Sonnichs oleraceus* and *Cymbalaria microcalyx*. At the same time, these micro-habitats also host endemic *Alkanna macrosiphon*, *Galium canum* subsp. *antalyense*, *Arenaria pamphylica* subsp. *pamphylica* (Table 1).

The accumulation of sediments in the cracks of the roofs and walls of the buildings allow the diaspores to settle and germinate. For this reason, it is possible to see the invasive species more in these parts of the castle. The most common species on the roofs of Alanya Castle were *Allium neapolitanum* and *Ferula tingitana*. Birds and ants play an important role in the transport of seeds over long distances [41, 42]. One of the main factor in seeing Poaceae members like *Aegilops umbellulata*, *Poa bulbosa*, and *Briza maxima* on the roofs of historical buildings may include these animals.

We detected plants that were bushes with tap root systems such as *Capparis spinosa*, *Ficus carica*, and *Hedera helix* on bottom and top parts of the historical walls. These species move the rocks forming the castle walls due to their root system and cause the destruction of the historical structure. Also, if no precautions are taken, parts of the Alanya Castle walls may potentially fall over people causing serious damage.

Studies on controlling growth and occurrence of plants that destroy historical buildings are limited. Physical (flame), chemical (glyphosate active herbicide), and mechanical (cutting and dismounting) control methods could be used to control these plants. No information has been encountered regarding the use of the flame (flame), chemical (glyphosate active herbicide) application. With regard to the limitations of the above mentioned methods, a mechanical approach (for example digging, cutting, excavation) seems to be more preferable. It would not leave any visible marks to the walls and would not require the use of chemicals. However, it may not give good results in removing plants with tap root systems because during their removal the filling materials between the wall stones might be damaged and cause the stones to move. Therefore, applying mechanical control method in the early development phase of plants will cause less damage to historical buildings [29].

As described above, we believe that the most effective method in the light of this data is still the mechanical controlling method. Although it might not be possible to deal with the plants on the historical buildings entirely, the occurrence and growth of plants could be diminished and the damage they cause could be significantly reduced. With this method, the Alanya Castle which is one of our historical heritage could be preserved and ensured that its presence continues for many years.

Acknowledgements

We wish to thank Dr. Bekir Kabasakal for his ecological contributions and language editing.

References

[1] Gürgen, S. (2015). Herkesi kendine hayran bırakan köylar. Denge Dergisi, 43(2), 45–52.

[2] *Alanya’nın Tarihi* (2019). https://www.alanya.bel.tr/S/399/Tarihi (Accessed Date: 24.11.2019).

[3] Akış, A. (2007). Alanya’da turizm ve turizmin Alanya ekonomisine etkisi. *Selçuk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi*, 17, 15–32.

[4] Nedelcheva, A. (2011). Observations on the wall flora of Kyustendil (Bulgaria). *EurAsian Journal of BioSciences*, 5, 80–90. Doi:10.5053/jejbios.2011.5.0.10.

[5] Aksoy, A. & Çelik, J. (2014). Antalya’nın Tarihi Yapıları Üzerinde Bulunan Bitkiler ve Ekolojik Etkileri. *Biyoloji Bilimleri Araştırmalar Dergisi*, 7(2), 01–05.

[6] Lisci, M. & Pacini, E. (1993). Plants Growing on the Walls of Italian Towns 1. Sites and Distribution. *Phytot (Horn, Austria)*, 33 (1), 15–26.

[7] Brishbeth, J. (1948). The flora of Cambridge walls. *Journal of Ecology*, 36(1), 136–148. Doi:10.2307/2256651.

[8] Mishra, A.K., Jain, K.K. & Garg, K.L. (1995). Role of higher plants in the deterioration of historic buildings. *Science of the Total Environment*, 167, 375–392. https://doi.org/10.1016/0048-9697(95)04597-T.

[9] Krigas, N., Lagiou, E., Hanlidou, E. & Kokkini, S. (1999). The vascular flora of the byzantine walls of Thessaloniki (N Greece). *Willdenovia*, 29(1/2), 77–94. https://doi.org/10.10372/wi.29.2907.

[10] Lisci, M., Monteb. M. & Pacini, E. (2003). Lichens and higher plants on stone: a review. *International Biodeterioration & Biodegradation*, 51, 1–17. https://doi.org/10.1016/S0964-8305(02)00071-9.
[11] Reis, V.A., Lombardi, J.A. & Figueiredo, R.A. (2006). Diversity of vascular plants growing on walls of a Brazilian city. *Urban Ecosystems*, 9, 39–43. Doi:10.1007/s11252-006-5528-1.

[12] Jim, C.Y. & Chen, W.Y. (2010). Habitat effect on vegetation ecology and occurrence on urban Masonry walls. *Urban Forestry & Urban Greening*, 9, 169–178. https://doi.org/10.1016/j.ufug.2010.02.004.

[13] Francis, R.A. & Lorimer, J. (2011). Urban reconciliation ecology: The potential of living roofs and walls. *Journal of Environmental Management*, 92, 1429–1437. https://doi.org/10.1016/j.jenvman.2011.01.012.

[14] Altay, V., Özyiğit, İ.İ. & Yarıci, C. (2010). Urban ecological characteristics and vascular wall flora on the Anatolian side of Istanbul, Turkey. *Maejo International Journal of Science and Technology*, 4(3):483–495.

[15] Ösm, E., Altay, V., Özyiğit, İ.İ. & Serin, M. (2010). Urban Vascular Flora and Ecological Characteristics of Kadıköy District, Istanbul, Turkey. *Maejo International Journal of Science and Technology*, 4(1): 64–87.

[16] Eskin, B., Altay, V., Özyiğit, İ.İ. & Serin, M. (2012). Urban vascular flora and ecologic characteristics of the Pendik District (Istanbul-Turkey). *Journal of Agricultural Research*, 7(4): 629–646. Doi:10.5897/AJAR11.2188.

[17] Yarıci, C. & Özçelik, H. (2002). Wall flora of Edirne (Thrace Region). *Ot Sistematik Botanik Dergisi*, 9(1): 57–66.

[18] Gemici, Y., Seçmen, Ö. & Görg, G. (1995). Wall Vegetation of İzmir (Turkey). In Ozturk, M., Erdem, U. & Gork, G., (Eds.), *Urban Eology*. İzmir, Turkey. Ege Univ. Press.

[19] Eling, Z.K., Korkut, T. & Kaya, L.G. (2013). *Hedera helix* L. and damages in Tlos Ancient City. *International Journal of Development and Sustainability*, 2(1), 333–346.

[20] Aksoy, A. & Çelik, A. (2000, July 5-7). Studies on the ecology of plants growing on the historical monuments of Kayseri, Türkiye. Proceedings of The Vth International Symposium, Tashkent, Uzbekistan.

[21] Karınç, M. & Savran, A. (2015). Impact of the surface roughness of stones used in historical buildings on biodeterioration. *Construction and Building Materials*, 80, 279–294. https://doi.org/10.1016/j.conbuildmat.2015.01.073.

[22] Özçelik, H. & Behçet, L. (1992). Flora of Van Castle and its anivrons. *Journal of Faculty of Science Ege University Series B*, 14(2), 469–63.

[23] Ezer, T., Kara, R., Çakan, H. & Düzencil, A. (2008). Bryophytes on the archaeological site of Tilmén Hoyuk, Gaziantep (Turkey). *International Journal of Botany*, 4(3), 297–302. Doi:10.3923/ijb.2008.297.302.

[24] Aslan, M. & Atamov, V. (2006). Flora and vegetation of stony walls in South-east Turkey (Şanlıurfa). *Asian Journal of Plant Science*, 5(1), 153–162. Doi:10.3923/ajps.2006.153.162.

[25] Karahah, F., Çelik, O., Kayıkçı, S. & Altay, V. (2012). Eski Antakya Evleri (Antakya-Hatay) Duvarlarında Yayılış Gösteren Vasküler Bitkiler, *Biyoji Bilimleri Araştırmaları Dergisi*, 5(2), 131–134.

[26] Altay, V., Çelik, O. & Kayıkçı S. 2011. Hatay’ın vasküler duvar flora. *Ot Sistematik Botanik Dergisi*, 18 (2), 131–144.

[27] kit, Y.E. & Onat, O. (2012). Weed species on some important historic buildings in Isparta Province and its environs. *Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi*, 16(3), 333–341.

[28] Tülek, B., & Atik, M. (2014). Walled towns as defensive cultural landscapes: a case study of Alanya—a walled town in Turkey. *WIT Transactions on The Built Environment*, 143, 231-242. Doi:10.2495/DSHF140201.

[29] Terblanche, K., Nicci Diederichs, Douwes, E., Terblanche, C., Trafford Petterson, Boule, J., Krissie Clark, & Lotter, W. (2013). *General Invasive Alien Plant Control: Insight into best practice, removal methods, training & equipment*. ETHekwini Municipality, Durban, South Africa. https://doi.org/10.13140/RG.2.1.2678.2246.

[30] Yıldız, E., & Kucüködük, M. (2010). The flora of Anamur Antique City and its surroundings (Mersin/Turkey). *Biological Diversity and Conservation*, 3(3), 46-63.

[31] Altay, V., Karahan, F. & Ozturk, M. (2018, December 13-16). A study on evaluation of vascular wall flora in Turkey. Çukurova I. Uluslararası Multidisipliner Çalışmalar Kongresi, pp. 1080-1089, Adana.

[32] Davis, P.H., (ed.) (1965-1985). *Flora of Turkey and the East Aegean Islands*. Vol. 1-9. Edinburgh, UK: Edinburgh University Press.

[33] Davis, P.H., Mill, R.R. & Tan, K. (eds.) (1988). *Flora of Turkey and the East Aegean Islands*. Vol. 10 (Suppl. 1). Edinburgh, UK: Edinburgh University Press.

[34] Güner, A., Özhatay, N., Ekim, T. & Başer, K.H.C. (eds.) (2000). *Flora of Turkey and the East Aegean Islands*. Vol. 11. Edinburgh, UK: Edinburgh University Press.

[35] Raunkiaer, C. 1934. *The Life Forms of Plants and Statistical Plant Geography*. Oxford, UK: Oxford University Press.
[36] Ekim, T., Koyuncu, M., Vural, M., Duman, H., Aytaç, Z. & Adıgüzel, N. (2000). Türkiye Bitkileri Kırmızı Kitabı. Ankara: Türkiye Tabiatını Koruma Derneği ve Van Yüzüncü Yıl Üniversitesi Yayınları.

[37] IUCN Standards and Petitions Committee. (2019). Guidelines for Using the IUCN Red List Categories and Criteria. Version 14. Prepared by the Standards and Petitions Committee.

[38] Güner, A., Aslan, S., Ekim, T., Vural, M. & Babaç, M.T. (edlr.). (2012). Türkiye Bitkileri Listesi (Damarlı Bitkiler). İstanbul: Nezahat Gökyiğit Botanik Bahçesi ve Flora Araştırmaları Derneği Yayınları.

[39] Braun-Blanquet, J. 1932. Plant Sociology: The Study of Plant Communities. New York and London: McGraw-Hill book company.

[40] Crispim, C.A., Gaylarde, P.M. & Gaylarde, C.C. (2003). Algal and Cyanobacterial Biofilms on Calcareous Historic Buildings. Current Microbiology, 46,79–82. Doi:10.1007/s00284-002-3815-5.

[41] Howe, H. F. & Smallwood, J. (1982). Ecology of Seed Dispersal. Annual Review of Ecology and Systematics. 13(1), 201–228. https://doi.org/10.1146/annurev.es.13.110182.001221.

[42] Heleno, R.H., Ross, G., Everard, A.M.Y., Memmott, J. & Ramos, J.A. (2011). The Role of Avian Seed Predators as Seed Dispersers. Ibis, 153(1), 199–203. Doi:10.1111/j.1474-919X.2010.01088.x