INTRODUCTION

The Opisthorchioidea Looss, 1899 (Digenea) comprises a group of species of medical and veterinary importance with a worldwide distribution for which approximately 100 life cycles have been described [1-6].

Heterophyids are usually parasitic as adults in mammals and birds, and utilize mollusks and then generally fishes as intermediate hosts. Such fish-borne heterophyids are known to have a zoonotic potential. According to Chai and Jung [7], 30 species are able to infect humans worldwide, with a global level of infection of around 7 million people. Integrative studies, including molecular data associated with structural, morphological and ecological aspects, have helped elucidate the taxonomy and phylogeny of the group [6], although, based on limited molecular evidence, Thaenkham et al. [8,9] have questioned the recognition of this family as distinct from the Opisthorchidae. It is clear that further taxonomic studies of the Heterophyidae are required, since recognition is the basis for prevention and control programs for these emerging fish-borne trematodoses [10]. Not only taxonomic problems but also other dubious aspects of the biology of these parasites need to be solved via the use of molecular tools [11]. According to Chai and Lee [12], of the approximately 70 species of intestinal trematodes that parasitize humans, more than 30 belong to Heterophyidae. Humans acquire these fish-borne zoonotic trematode (FZT) infections by eating raw or inadequately cooked fish. The main symptoms include abdominal pain, flatulence, diarrhea, eosinophilia, lethargy and anorexia. Occasional severe symptoms or even deaths have been observed when heterophyid eggs reach the blood or lymphatic vessels and migrate to the cardiac muscle and brain [1,12].

In this paper we present a review of the research on South American (SA) heterophyid trematodes.

TAXONOMY AND LIFE CYCLES

The genus Ascocotyle Looss, 1899 is represented by numerous species composing the so called “Ascocotyle complex” [13,14]. The distribution of those species in different genera and subgenera represented a problem in the taxonomy of the group. The most commonly used classification was based on Sogandares-Bernal and Lumsden [13] which considered Ascocotyle subdivided into 3 sub-genera: Ascocotyle (Ascocotyle), Ascocotyle (Leighia), and Ascocotyle (Phagicola). The subgenera Ascocotyle and Leighia included adults with 2 rows of oral spines and vitellarium extending up to the ventral sucker; the former had the uterus confined posterior to ventral sucker and a para-
pleurolofercercous-type cercaria while in the latter the uterus extended to the pharynx level and had ophthalmomogymnocephalous-type cercaria. The subgenus Phagicola comprised adults with 1, 2 or no rows of oral spines, vitellarium extending only to the ovary level and the cercaria was of pleurolofoercercous type [13].

Pearson [15] revised the family Heterophyidae and did not recognize subfamilies or subgenera, considering the following genera occurring in SA: Acanthotrema Travassos, 1928, Ascocotyle Looss, 1899 (syn. Phagicola Faust, 1920; Parascocotyle Stunkard & Haviland, 1924; Metascocotyle Ciurea, 1933; Pseudascocotyle Sogandares-Bernal & Bridgman, 1960; Leigìa Sogandares-Bernal & Lumsden, 1963); Centrocestus Looss, 1899, Cryptocotyle Lühe, 1899, Heterophyes Cobbold, 1886, Opisthometra Poche, 1926, Phoelter Odhner, 1914, and Pygidioptes Looss, 1907 (syn. Caiguiria Nasir & Díaz, 1971). Several authors continued using the subgenera of Ascocotyle [16-18]. The WoRMS database [19] followed Pearson’s taxonomy [15] and authors tend to avoid using subgenera for the stability of the taxa. The current list of species occurring in SA with their hosts and geographical distribution is presented in Table 1. The host names are based on ITIS online database [20].

Species of the genus Ascocotyle are the most prevalent in SA and include Ascocotyle angeli Travassos, 1928 (syn. A. rara), Ascocotyle angrense Travassos, 1916, Ascocotyle cameliae Hernández-Orts, Georgieva, Landete & Scholz, 2019, Ascocotyle diminuta (Stunkard & Haviland, 1924), Ascocotyle felipei Travassos, 1928, Ascocotyle hadra Ostrowski de Núñez, 1992, Ascocotyle longa Ransom, 1920, Ascocotyle patagoniensis Hernandez-Orts, Montero, Crespo, García, Raga & Aznar, 2012, Ascocotyle pinalramensis (Travassos, 1928), Ascocotyle secunda Ostrowski de Núñez, 2001 and Ascocotyle tertia Ostrowski de Núñez, 2001.

Out of these, a species considered as causing an emerging fish-borne disease in humans is A. longa, a parasite recorded throughout the Americas, Europe, Africa and the Middle East [1,21-25]. Its life-cycle includes adult parasites in the intestine of fish-eating birds and mammals and the metacercaria mainly in mullets [Mugil spp.] [14,18,24,26-31]. The life cycle of A. longa is associated with estuaries and coastal lagoons, where the mugilid juveniles become infected [7,17,24,26-28,30]. The first intermediate host in Argentina, Brazil and Uruguay is the snail Heleobia australis (d’Orbigny, 1835), in which rediae and parapleurolophercercous cercariae develop [7,31]. Metacercariae have been found encysted in the body musculature, heart, stomach, liver, kidney, spleen, gonads and mesentery of the mullets [17,26,27,32]. Galván-Borja et al. [18] examined mullets from Brazil and reported that these metacercariae cause inflammatory reactions involving macrophage aggregates and necrosis, thus suggesting that trematodes infecting the liver of mugilids can affect the growth and well-being of the fish. The life-cycles of A. diminuta, A. angrense, A. hadra, A. felipei, A. secunda and A. tertia were studied in Argentina and follow similar pattern to that of A. longa and the adults mainly parasitize fish-eating birds and mammals [6,33-36] (Table 1).

Three species of Pygidioptes have been reported in SA: Pygidioptes macrostomum Travassos, 1928, Pygidioptes crassus Ostrowski de Núñez, 1995 and Pygidioptes australis Ostrowski de Núñez, 1996. Pygidioptes macrostomum was originally described based on a single specimen obtained from the intestine of Rattus norvegicus (Erzleben, 1777) in Brazil [37], but was subsequently reported from the intestine of the bulldog-bat Nectilio leporinus mastinus Ribeiro, 1914 in Cuba [38,39]. This parasite was redescribed using morphological, ultrastructural and molecular data [8,40], and its life cycle was completed using naturally infected snails and fish, and hamsters as experimental definitive hosts [4]. The snail H. australis acts as the first intermediate host, the fishes Phallopatuschus januarius (Hensel, 1868), Jenynsia multidentata (Jenyns, 1842) and Poecilia vivipara (Bloch & Schneider, 1801) as second intermediate hosts, and fish-eating mammals and birds as definitive hosts [4]. Indirect immunocytochemistry and phalloidin-fluorescence techniques, allied with confocal laser scanning microscopy, were also used by Borges et al. [8] to describe the muscular and neuronal structures of Pygidioptes macrostomum, revealing the complex arrangement of muscular fibers and ganglia within the body. Pygidioptes crassus was reported from Argentina and Venezuela while Pygidioptes australis only from Argentina; metacercariae were found in small fish, and adults in Himantopus melanurus (Viellot, 1817) and experimentally infected Gallus gallus (Linnaeus, 1758) [5,6,41,42].

Centrocestus formosanus Nishigori, 1924, a species considered of zoonotic importance, was introduced in the Americas within its host snail Melanooides tuberculata. It has been reported from Brazil [43-47], Colombia [48], Peru [50] and Venezuela [51]. The life-cycle includes naturally infected fish (metacerciae in the gills) and birds (adults in the intestine) and experimental infections were performed with G. gallus [45] (Table 1). To our knowledge there are no reports on human infections by C. formosanus in SA. Cryptocotyle thapari McIntosh, 1953 described from the otter...
Table 1. The current list of species occurring in South America with their hosts and geographical distribution

Country	Species	1st Int. host	2nd Int. host-site	Definitive host	References	
Argentina	Ascocotyle angeloii	Heleobia castellanosae	Jenynsia lineata, Cnesterodon decemmaculatus (exp)-muscles, body cavity, internal organs, gill chamber	Ixobrychus exilis; Gallus gallus (exp)	[34,54]	
Argentina	Ascocotyle angrense	Girardinus caudimaculatus (=Phallopterus caudimaculatus), Cnesterodon decemmaculatus (n, exp)-gills	Platalea ajaja (=Ajaia ajaja), Ardea alba, Ardea alba egretta, Ardea cocoi, Ixobrychus involucris, Gallus gallus (exp)		[33,96,98,121,122]	
Argentina	Ascocotyle cameliae	Spheniscus magellanicusus			[16]	
Argentina	Ascocotyle diminuta	Jenynsia lineata, Odonthesthes bonariensis, Australoheros facetum (=Cichlasoma facetum), Cnesterodon decemmaculatus (exp), Gambusia affinis -gills	Egretta thula, Ardea alba, Gallus gallus (exp)		[33,118,123]	
Argentina	Ascocotyle felippei (=A. tenuicollis)	Heleobia piscium	Girardinus caudimaculatus (=Phallopterus caudimaculatus), Cnesterodon decemmaculatus (n, exp)-bulbus arteriosus	Himantopus melanurus; Spheniscus magellanicus; Nycticox nycticorax, Butleridus striata, Ixobrychus involucris, Gallus gallus (exp), Mus musculus (exp), Anas platyrhynchos (exp)		[33,36,42,96,98]
Argentina	Ascocotyle hadra	Heleobia parchappii	Jenynsia lineata, Gambusia affinis (exp), Cnesterodon decemmaculatus (n, exp)-liver and mesentery	Plegadis chihi, Gallus gallus (exp), Mus musculus (exp)		[6,35,105]
Argentina	Ascocotyle longa	Heleobia australis	Mugil liza-musculature, heart, mesentry	Ardea alba	[9,17,27,97]	
Argentina	Ascocotyle patagoniensis	Odonthesthes bonariensis, O. smitii-heart		Otaria flavescens	[16,148]	
Argentina	Ascocotyle secunda	Heleobia castellanosa, Heleobia parchappii	Cnesterodon decemmaculatus, Jenynsia lineata, Gambusia affinis (exp)-bulbus arteriosus	Gallus domesticus (exp)	[6]	
Argentina	Ascocotyle secunda	Jenynsia lineata	Gambusia gallus (exp)		[6]	
Argentina	Ascocotyle sp.	Odonthesthes bonariensis-bulbus arteriosus, Percichthys trucha		Patagonina hatcheri	[117,128]	
Argentina	Ascocotyle terfa	Heleobia castellanosa, Heleobia parchappii	Cnesterodon decemmaculatus, Gambusia affinis, Jenynsia lineata (n, exp)-bulbus arteriosus	Gallus gallus (exp)		[6]
Argentina	Cryptocotyle dominicana	Galaxias platei-fins, muscle			[48]	
Argentina	Cryptocotyle sp.			Larus dominicanus	[55]	
Argentina	Heterophyidae, metacercaria	Percichthys trucha			[128]	
Argentina	Pygidiopsis australis	Cnesterodon decemmaculatus		Gallus gallus (exp)		[41,54]
Argentina	Pygidiopsis crassus	Jenynsia lineata, Cnesterodon decemmaculatus, Gambusia affinis		Himantopus melanurus, Gallus gallus (exp)		[5,41,42,54]
Argentina	Pygidiopsis crassus			Patagonina hatcheri		[128]
Bolivia	Cryptocotyle sp.			Lutra longicaudis		[53]
Brazil	Acanthotrema acantho -tremis			Thalassiosomus maximus		[58]
Brazil	Ascocotyle pindoramen -sis	Poecilia vivipara, Phallocerous januarius-Gill arches, musculature, mesenteries, intestinal wall, liver, gonads.	Ixobrychus exilis, Nyctanassa violacea, Nycticox nycticorax, Butleridus striata, Mesocricetus auratus (exp)			[37,57-59,101,102,111,125,126,149]
Country	Species	1st Int. host	2nd Int. host-site	Definitive host	References	
---------	--------------------------------	--------------------------	------------------------------------	-----------------	------------	
Brazil	Ascocotyle angeloi (=A. rara)	Ixobrychus exilis			[37,58,59,101,150]	
Brazil	Ascocotyle angrense	Butorides striata, Butorides sp., Ixobrychus exilis, Ardea cocoi			[59,102,111]	
Brazil	Ascocotyle diminuta	Butorides sp.			[59]	
Brazil	Ascocotyle felippei (=A. tenuicollis)	Poecilia vivipara-heart bulb and and, more rarely, in the gills and mesentery	Bebrychus exilis, Leucophoyx sp., Phalacrocorax sp., ardea birds	[37,58,59,117]		
Brazil	Ascocotyle longa (=A. arnaldoi)	Heleobia australis	Muscle, heart, stomach, liver, kidney, spleen, gonads and mesentery	Thalassarche melanophris (=Diomedea melanophris), Thalassarche sp., Ardea cocoi, Spheniscus magellanicus, Canis lupus, Otaria flavescens, Rattus sp., Mesocricetus auratus (exp)	[14,24,26,37,57-59,75-78,82,87-91,93,95,101,106,127,138,139,141]	
Brazil	Ascocotyle sp. (=Phagicola sp.)	Mugil sp., Astyanax altiparanae, Astyanax spp., -bulbus arteriosus, Satanoperca papaterra, Chicha piquiti, C. kelberi-gills, Acestrorhynchus lacustris			[85,86,109,143-146]	
Brazil	Centrocestus formosanus	Melanoides tuberculata	Oreochromis niloticus, Austrabheros facetus	Butorides striata	[26,43,44,108,111]	
Brazil	Cryptocotyle thapari	Pteronura brasilensis			[52]	
Brazil	Galactosomum cochleariforme	Sternula hirundinacea, S. sandvicensis, Larus dominicanus, Sula leucogaster			[57,58]	
Brazil	Galactosomum spinetum	Rhynchops nigra			[57,58]	
Brazil	Heterophyidae gen. sp.	Melanoides tuberculata			[46]	
Brazil	Opisthometra planicollis	Sula leucogaster			[59]	
Brazil	Pygidopsis macrostomum	Heleobia australis	Poecilia vivipara, Phalopycthes januarius, Jenynsia multidentata- mesentery	Rattus norvegicus, Mesocricetus auratus (exp)	[4,8,40,58,125]	
Brazil	Stictodora acanthotrema	Thalassus maximus			[58,59]	
Chile	Ascocotyle felippei	Falco sparrowius			[112,113]	
Chile	Ascocotyle longa	Mugil cephalus-mesentery, heart, liver	Dogs, birds and mammals, Mus musculus		[81,130-133]	
Chile	Ascocotyle sp. (=Phagicola sp.)	Cats			[130]	
Chile	Cryptocotyle sp.	Larus dominicanus			[118,124]	
Colombia	Ascocotyle longa	Poecilia reticulata, Xiphophorus helleri, X. maculatus-Mugil incili	Birds and mammals		[18]	
Colombia	Centrocestus formosanus	Melanoides tuberculata	Andinoacara pulcher (=Aequidens pulcher)		[49]	
Colombia	Galactosomum cochleariforme	Marine birds			[60]	
Colombia	Galactosomum johnsoni	Birds			[60,127]	
Colombia	Galactosomum pullini	Sterna maxima, Eretta thula (=Leucophoyx thula)			[127]	
Colombia	Opisthometra planicollis	Sula leucogaster			[60]	
(Continued to the next page)
Table 1. Continued

Country	Species	1st Int. host	2nd Int. host-site	Definitive host	References
Ecuador	Heterophyidae gen. sp. Eggs		Phalacrocorax harrisi	[107]	
Peru	A. longa (=A. arnaldoi)	Mugil cephalus	Carina moschata, birds and mammals, dogs, Gallus gallus (exp)	[32, 56, 82-84]	
Peru	Centrocestus formosanus	Melanoides tuberculata	Larus pipixcan, Sterna hirundo	[56]	
Peru	Pygidiopsis sp.		Aequidens rivulatus	[56]	
Uruguay	Ascocotyle longa	Heleobia australis	Arctocephalus australis, Otaria flavescens	[31, 73, 136, 137]	
Venezuela	Ascocotyle nana	Caquetaia kraussi-cranial cavity and musculature	Gelochelidon nilotica, rats (exp)	[120]	
Venezuela	Ascocotyle paratenicollis	Poecilia reticulata (=Lebistes reticulatus)	Gallus gallus (exp)	[134]	
Venezuela	Ascocotyle longicollis		Birds		
Venezuela	Ascocotyle sp.		Cyprinodontiform fish		
Venezuela	Centrocestus formosanus	Melanoides tuberculata (n, exp)-digestive gland	Anas platyrhynchos, Columba livia, Gallus gallus (exp)	[51]	
Venezuela	Haplorchis pumilio	Anablepsoides hartii (=Rivulus hartii)-muscular tissue under scales of caudal fin	Butorides striatus, ducks (exp)	[50, 51]	
Venezuela	Pholeter anterouterus		Phalacrocorax olivaceus		
Venezuela	Pygidiopsis crassus	Snails-heart and hepatopancreas		[62]	
Venezuela	Pygidiopsis sp. (=Caiguiria anterouteria)	Poecilia reticulata (=Lebistes reticulatus)	Himantopus himantopus, Gallus gallus (exp)	[135]	
Venezuela	Stictodira sp.		Tringa melanoleuca	[103, 104]	

All are natural hosts, except when it occurs n= natural and/or exp = experimental host.
Pteronura brasiliensis Zimmermann, 1780 from U.S. National Zoo in Washington, D.C. was later redescribed from specimens collected from Lontra longicaudis (Olfers, 1818) (=Lutra longicaudis) from Bolivia [52,53]. Cryptocotyle dominicana Casalins, Arbetman, Viozzi & Altman, 2020 was described from Larus dominicus Lichtenstein, 1823, and the metacercariae from Galaxias platei Steindacher, 1898 were conspecific based on morphometrics and genetic markers [48].

Few records of Galactosomum spp. have been reported from Brazil, Colombia and Peru from marine birds [54-58]. Opistrometra planicollis (Rudophli, 1819) was only recorded from the same bird Sula leucogaster (Boddart, 1783) in both countries [59,60]. Some species have been only reported from Venezuela, such as Haplorchis pumilio (Looss, 1896), Pholeter anterouterus Fischtal & Nasir, 1974 and Sictodora sp. Pholeter anterouterus and Sictodora sp. were reported parasitizing birds while H. pumilio considered an introduced species parasitizes the introduced M. tuberculosis, the fish Anablepsoïdes hartii and the bird Butorides striatus, and experimentally infected ducks [50,54,61-63] (Table 1).

MOLECULAR STUDIES

Sequences of the 18S, 28S, and ITS2 rDNA regions of Pygidioptis macrostomum and mtDNA cox-1 sequences of Ascocotyle pindoramensis have already been described [8]. Molecular phylogeny linked P. macrostomum and A. pindoramensis with other heterophyids but, in agreement with Thaenkham et al. [10], the distinction of the Heterophyidae and Opisthorchiidae remained unclear. Additionally, new sequences of P. macrostomum, A. pindoramensis and A. longa from the nuclear regions 18S, 28S, and ITS2 rDNA and the mitochondrial marker mtDNA cox-1 are hereby presented and deposited in GenBank (Table 2), following the methodology of Borges et al. [8]. The sequence analysis of the 18S and 28S rDNA regions of these species did not exhibit any intraspecific variability, but some variability was observed between the species. BLAST analyses indicated a high similarity with other heterophyid genera and species deposited in GenBank. Concatenated phylogenetic analyses (18S and 28S) readily differentiated the heterophyid genera Metagonimus, Haplorchis and Procevorum (Fig. 1), which demonstrates that these gene regions can be useful for solving low-level taxonomic problems when using concatenated genes with higher evolutionary rates. Martorelli et al. [17], Dzikowski et al. [64] and Alda et al. [9] sequenced the 18S rDNA region of A. longa from Israel and Argentina, the sequences of which are deposited in GenBank under the accession numbers AY245703, JX093559, and KF697717, respectively. The comparison of the genetic variability of 18S rDNA among these and our sequences of A. longa (MF980220 and MF980222) resulted in high values of the p distance ranging from 1.6 to 3.3%. This indicates the necessity of a wider, more comprehensive study of A. longa, comparing samples from different geographical regions in order to verify the existence of a complex of sibling species.

The comparison of ITS2 rDNA sequences of P. macrostomum resulted in 3 haplotypes with an intraspecific p distance ranging from 0.4% to 1.9% between them. Such a level of variability appears to be acceptable according to Miller and Cribb [65] who reported 5% variability among species of heterophyids. However, a comparison of new sequences of the ITS2 rDNA of A. longa and A. pindoramensis did not result in any intraspecific variation. Similar results with heterophyids of the genus Haplorchis were reported [66] without intraspecific variability using the ITS2 rDNA region. The intrageneric distance, based on sequences of the ITS2 rDNA of the species A. longa and A. pindoramensis, was as high as 12.8%, indicating that the ITS2 region is a good marker for identifying closely related species. According to Brusentsov et al. [67], genetic variability provides species survival and resilience to ecosystems.

Phylogenetic analysis carried out using the mtDNA cox-1 region resulted in poorly supported branches, which may indi-

Table 2. Sequences of Heterophyidae deposited in GenBank

Species	mtDNA cox-1	18S rDNA	28S rDNA	5.8S rDNA and ITS2 region
Ascocotyle longa	MF967591-MF967594	MF980220-MF980222	MF980610-MF980614	MF978362-MF978371
Ascocotyle pindoramensis	MF967595-MF967602	MF980223	MF980609	MF978372-MF978381
Pygidioptis macrostomum	MF967603-MF967610	MF972488-MF972493	MF972527-MF972531	MF972292-MF972294, h1

h, haplotype.
cate a lack of phylogenetic signal of this marker for comparing species from higher taxa, such as at the family level (Fig. 2). Vanhove et al. [68] and Besansky et al. [69] discussed the problematic use of generic primers for highly variable regions, such as the mtDNA cox-1, for elucidating taxonomic relationships between platyhelminth families, proposing the use of 28S rDNA and ITS rDNA regions as more reliable barcodes for this phylum.

BEHAVIOR AND ECOTOXICOLOGY

The influence of the metacercariae of *A. pindoramensis* on the behavior of the fish-host *Poecilia vivipara* was investigated using an image system linked to a video camera able to record the locomotory activity of the fishes before and after experimental infections [70]. The results indicated a significant decrease in the swimming behavior of fish after 14 days post-infection when metacercariae were fully developed, correlated with parasite intensity [70].

The heterophyid trematode *C. formosanus* was introduced into Brazil with the gastropod *Melanoides tuberculata*, which has a wide geographic distribution in the Neotropics [47]. This species, which is considered to have zoonotic potential, is able to alter the locomotory activity of its snail host regardless of the standard length [47].

Ecotoxicological and behavioral experiments with heterophyids were performed in order to study the effect of cyanobacteria on both the parasite (metacercaria) and its fish host. The fish *Poecilia vivipara* is a common host of *Pygidiopsis macrostomum* off the coast of Rio de Janeiro. This fish-trematode interaction was tested as a model for ecotoxicological studies with the cyanobacterium *Cylindrospermopsis raciborskii* (CYRF-01) [71,72]. Changes in the motility of metacercariae of *P. macrostomum* occurred after their fish host was exposed to different concentrations of crude lyophilized extract of the cyanobacterium CYRF-01 producer of neurotoxic saxitoxins (STX),

Fig. 1. Maximum likelihood reconstruction between sequences obtained by our research group (marked with an asterisk) and sequences of heterophyid species from the GenBank database, with the tree inferred from 18S rDNA and 28S rDNA data sets. The numbers on the tree branches represent the percentage of bootstrap resampling.
resulting in a temporary paralysis [72]. Interestingly, their motility recovered after the fish were kept for 48 hr in clean water, suggesting that blooms of cyanobacteria may interfere with the motility of both the fish host and its parasites.

TREMATODOSIS

Ascocotyle longa has a wide geographic distribution, comprising the Mediterranean Sea and the coasts of the North Atlantic, South Atlantic and Pacific [73]. In SA, it has been reported parasitizing different mugilid fishes from Venezuela, Peru and Brazil [73-76]. This species has also been reported as parasitizing avian hosts [77,78] and dogs in the USA, Chile, Brazil, and Peru [79-84].

In Brazil, only few cases of human trematodosis caused by heterophyids have been reported; these were from São Paulo [85-87]. However, records of metacercariae in mullets from off the Brazilian coast are common [24,26,75,76,88-90]. Following a report of the occurrence of metacercariae of *A. longa* with a prevalence of 100% in mullets from the Rodrigo de Freitas

Fig. 2. Maximum likelihood reconstruction between sequences obtained by our research group (marked with an asterisk) and sequences of heterophyid species from the GenBank database, with the tree inferred from the mtDNA-cox1 data set. The numbers on the tree branches represent the percentage of bootstrap resampling.
Lagoon, Rio de Janeiro, an alert was given concerning the possibility of a related human disease [24,26]. The spleen was reported to be the most parasitized organ in these fishes, with 100% of prevalence, followed by the heart, intestinal wall, liver and muscles, with prevalence decreasing from 98 to 87%. In other organs, such as the stomach wall, brain, gonads and gall bladder, the prevalence decreased from 70 to 30% [26]. Associated experimental infections using only small pieces of muscle tissue to fed hamsters resulted in a higher intensity of infection during spring/summer than in autumn/winter. However, the potential risk of infection was considered to be high in view of the high prevalence and intensity of A. longa in the muscles of mullets throughout the year [26]. Gueretz et al. [91] reported the prevalence of A. longa of 87% in Mugil curema and 100% in Mugil liza off Santa Catarina, southeastern Brazil, confirming the high prevalence on mugilid fish. Similar prevalence indices have been found in mugilids from Colombia and Uruguay [18,73].

Although heterophyid species are already included in the List of Risk Classification of Biological Agents by the Brazilian Health Ministry [92], human cases are no longer reported. Studies on the viability of heterophyid metacercariae of A. longa have been perfomed [93,94] with methodological standardization performed by Borges et al. [95]. Metacercariae isolated from M. liza and incubated in mullet muscle tissue at different temperatures showed that all metacercariae were dead after heating for 15 min at 60˚C, 100˚C and 180˚C. When frozen, all metacercariae died after 2 hr of exposure to −35˚C and −20˚C, but 24 hr of exposure to −10˚C was necessary to kill all metacercariae in the fillets [95]. The specific procedures for inactivation of parasites was important to prevent outbreaks of trematodiases caused by A. longa. Regarding the species with zoonotic potential such as C. formosamus, H. pumilio and Cryptocotyle spp., human cases have not been so far reported.

CONCLUSIONS

Our current knowledge of heterophyid species occurring in SA has enabled us to have a comprehensive view of the species distribution, their hosts and studies on taxonomy and life cycles, along with their influence on their host and the environment in terms of behavioral studies and ecotoxicologic interactions with cyanobacteria.

Asian species of heterophyids are constantly under study in relation to human and animal infections, but, for SA species, these data are still scarce. In this region, information concerning the effects of these trematodes on host tissues is needed, as are new diagnostic approaches for a better understanding of the epidemiology of this trematodiases and its geographic distribution. Marked definida por portesclaudia

The identification of the emerging risk of heterophyid species as a human health hazard relating to the ingestion of raw fish represents a preventive instrument at the disposal of authorities, and molecular approaches under study will provide new insights for the development of diagnostic tools.

AVAILABILITY OF DATA AND MATERIALS

The DNA sequences generated as a part of this study were deposited to the GenBank (Table 2).

ACKNOWLEDGMENT

This study was funded by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (001), PAEF/FIOCRUZ and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq Universal n. 449658/2014-7).

CONFLICT OF INTEREST

We have no conflict of interest related to this work.

REFERENCES

1. Fried B, Graczyk TK, Tamang L. Food-borne intestinal trematodiasis in humans. Parasitol Res 2004; 93: 159-170.
2. Toledo R, Esteban JG, Fried B. Immunology and pathology of intestinal trematodes in their definitive hosts. Adv Parasitol 2006; 63: 285-365.
3. Simões SBE, das Neves RFC, Santos CP. Life history of Acanthocollaritrema umbilicatum Travassos, Freitas and Bührnheim, 1965 (Digenea: Cryptogonimidae). Parasitol Res 2008; 103: 523-528.
4. Simões SB, Barbosa HS, Santos CP. The life history of Pygidopsis macrostomum Travassos, 1928 (Digenea: Heterophyidae). Mem Inst Oswaldo Cruz 2009; 104: 106-111.
5. Ostrowski de Núñez M. Life history of Pygidopsis crassus n. sp. (Trematoda, Digenea, Heterophyidae) in the Neotropical region. Mem Inst Oswaldo Cruz 1995; 90: 13-19.
6. Ostrowski de Núñez, M. Life cycles of two new sibling species of Ascocotyle (Ascocotyle) (Digenea, Heterophyidae) in the Neotropical Region. Acta Parasitol 2001; 46: 119-129.
7. Chai JY, Jung BK. Fishborne zoonotic heterophyid infections: an update. Food Waterborne Parasitol 2017; 8-9: 33-63.
8. Borges JN, Costa VS, Mantovani C, Barros E, Santos EGN, Ma-fra CL, Santos CP. Molecular characterization and confocal laser scanning microscopic study of Pygidiotis macrostomum (Heterophyidae) parasites of guppies Pseudcichlasoma vittata. J Fish Dis 2017; 40: 191-203.
9. Alda P, Bonel N, Panei CJ, Cazzaniga NJ, Martorelli SR. First molecular identification of Ascocotyle (Phagicola) longa in its first intermediate host the mud snail Heleobia australis. Acta Parasitol 2015; 60: 791-795.
10. Thaekham U, Blair D, Nawa Y, Waikagul J. Families Opisthorchidae and Cestoda. In Bray RA, Gibbons JW, université de Montréal. 1999, pp 35-43.
11. Skov J, Kania PW, Dalsgaard A, Jørgensen TR, Buchmann, K. The life cycle stages of heterophyid trematodes in Vietnamese freshwater fishes traced by molecular and morphometric methods. Vet Parasitol 2008; 160: 66-75.
12. Chai JY, Lee SH. Food-borne intestinal trematode infections in the Republic of Korea. Parasitol Int 2002; 51: 129-154.
13. Soganders-Bernal E, Lumsden RD. The generic status of the heterophyid trematodes of the Ascocotyle complex, including notes on the systematics and biology of Ascocotyle angrense Travassos, 1916. J Parasitol 1963; 49: 264-274.
14. Scholz T. Taxonomic study of Ascocotyle (Phagicola) longa Ransom, 1920 (Digenea: Heterophyidae) and related taxa. Syst Parasitol 1999; 43: 147-158.
15. Pearson J. Family Heterophyidae Leiper, 1909. In Bray RA, Gibson DJ, Jones A eds, Keys to the Trematoda. Vol. 3. Wallingford, UK. CABI International. 2008, pp 113-141.
16. Hernández-Orts JS, Georgieva S, Landete DN, Scholz T. Heterophyid trematodes (Digenea) from penguins: a new species of Heterophyla longa (Digenea: Heterophyidae). Vet Parasitol 2008; 160: 66-75.
17. Martorelli SR, Lino A, Marcoteu P, Montes MM, Alda P, Panei CJ. Morphological and molecular identification of the fishborne metacercaria of Ascocotyle (Phagicola) longa Ransom, 1920 in Mugil liza from Argentina. Vet Par 2012; 190: 599-603.
18. Galván-Borja D, Olivero-Verhel J, Barros-García L. Occurrence of Ascocotyle (Phagicola) longa Ransom, 1920 (Digenea: Heterophyidae) in Mugil incilis from Cartagena Bay, Colombia. Vet Parasitol 2010; 168: 31-35.
19. WoRMS Editorial Board. World Register of Marine Species [Internet]. [cited 2020 May 21]. Available from: http://www.marinespecies.org at VLIZ. 2020.
20. Integrated Taxonomic Information System (ITIS). On-line database [Internet]. Available from: https://www.itis.gov/.
21. Muller R, Wakelin D. Worms and Human Diseases. 2nd ed. Wallingford, UK. CABI International. 2002, pp 300.
22. Chai JY. Human Intestinal Flukes: from Discovery to Treatment and Control. Dordebrecht, The Netherlands. Springer. 2019, pp 1-167.
23. Scholz T, Aguirre-Macedo ML, Salgado-Maldonado G. Trematodes of the family Heterophyidae (Digenea) in Mexico a review of species and new host and geographical records. J Nat Hist 2001; 35: 1733-1772.
24. Simões SB, Barbosa H, Santos, CP. The life cycle of Ascocotyle (Phagicola) longa (Digenea: Heterophyidae), a causative agent of fish-borne trematodosis. Acta Trop 2010; 113: 226-233.
25. Hung NM, Madsen H, Fried B. Global status of fish-borne zoonotic trematodiasis in humans. Acta Parasitol 2013; 58: 231-258.
26. Santos CP, Lopes KC, Costa VS, Santos EGN. Fish-borne trematodosis: potential risk of infection by Ascocotyle (Phagicola) longa (Heterophyidae). Vet Parasitol 2013; 193: 302-306.
27. Montes MM, Marcoteu P, Martorelli SR. Digenes parasíticos de juveniles de Mugil liza (Pisces: Mugilidae) en la Bahía de Sanborombón, Argentina, con el reporte de metacercarias zoonóticas de Ascocotyle (Phagicola) longa. Rev Ang Parasitol 2013; 1: 97-124 (in Spanish).
28. Montes MM, Martorelli SR. An ecological and comparative analysis of parasites in juvenile Mugil liza (Pisces, Mugilidae) from two sites in Sanborombón bay, Argentina. Iheringia Ser Zool 2015; 105: 403-410 (in Spanish).
29. Carnevia D, Speranza G. Seasonal variations in parasites found in mullet (Mugil platanus Günther, 1880) juveniles captured on the Uruguayan coast of the River Plate. Bull Eur Ass Fish Pathol 2003; 23: 245-249.
30. Fernandez JB. Los parásitos de la lisa Mugil cephalus L., en Chile: sistemática y aspectos poblacionales (Perciformes: Mugilidae). Gayana Zool 1987; 51: 3-58.
31. Carnevia D, Perretta A, Venza O. Heleobia australis (Mollusca, Hydrobiidae) and M. platanus (Pisces, Mugilidae), primer y segundo hospedador intermediario de Ascocotyle (Phagicola) longa (Digenea, Heterophyidae) en Uruguay. Rev Bras Parasit Vet 2004; 13: 283 (in Spanish).
32. Jara CA, Escalante H. Phagicola arnoldii: identificación de sus metacercarias obtenidas de Mugil cephalus. Hidrobiol 1982; 6: 37-43.
33. Ostrowski de Núñez M. Life-history studies of heterophyid trematodes in the Neotropical Region: Ascocotyle (Phagicola) diminuta (Stunkard & Haviland, 1924) and A. (P.) angrense Travassos, 1916. Syst Parasitol 1993; 24: 191-199.
34. Ostrowski de Núñez M. Life cycle of Ascocotyle (Phagicola) angrensei (Digenea: Heterophyidae) in the Neotropical Region. Folia Parasitol 1998; 45: 199-204.
35. Ostrowski de Núñez M. Life history studies of heterophyid trematodes in the Neotropical region: Ascocotyle (Leighia) hadra sp.n. Mem Inst Oswaldo Cruz 1992; 87: 539-543.
36. Ostrowski de Núñez M. Fauna de agua dulce en la República Argentina. IV. Las cercarias de Ascocotyle (A.) tenuicolis Price 1935 y de Pygidiotis pinnonamorensis Travassos 1929 (Trematoda, Heterophyidae). Physis Ser B 1976; 35: 51-57.
37. Travassos L. Deux nouvelles espèces du genre Ascocotyle Looss, 1899. Comptes Rendues 1928; 100: 939-940.
49. Velásquez LE, Bedoya JC, Areiza A, Vélez I. First record of P. pinderamensis Travassos, 1929. Acta Parasitol 1996; 41: 13-19.

50. Pullido-Murillo EA, Furtado LFV, Melo AL, Rabelo EML, Pinto HA. Metacercariae of Centrocestus formosanus (Trematoda: Heterophyidae) in Rio de Janeiro metropolitan area, as intermediate host of freshwater fishes. Dis Aquat Org 2004; 59: 35-41.

51. Diaz MT, Hernandez LE, Bashirullah AT. Studies on the life cycle of Haplorchis pumilio (Looss, 1896) (Trematoda: Heterophyidae) in Venezuela. Rev Cient 2008; 12: 71-80.

52. Lutz A. Estudios sobre trematodes observados en Venezuela. Thése Nacional de Pesquisas da Amazônia. 1993, pp 1-553.

53. Fischtal JH, Nasir P. Some digenetic trematodes from freshwater gastropods of the Patagonian Argentina. Bol Chil Parasitol 1997; 52: 39-42 (in Spanish).

54. Ostrowski de Núñez. M. Fishes as definitive or intermediate hosts of Opisthorchoid trematodes in South America. Wiad Parażitol 1999; 45: 329-336.

55. Thatcher VE. Trematódeos Neotropicais. Manaus, Brazil. Instituto Nacional de Pesquisas da Amazônia. 1993, pp 1-553.

56. Travassos L. Contribuição ao conhecimento dos Heterophyidae observados no Brasil. Thése Vet 1929; 3-1.

57. Santos EGN, Santos CP. Parasite-induced and parasite developmental alterations of fish. Acta Zool 2004; 85: 35-41.

58. Travassos L. Trematódeos Neotropicais. Manaus, Brazil. Instituto Nacional de Pesquisas da Amazônia. 1993, pp 1-553.
behavior of wild and laboratory reared guppy *Poecilia vivipara*. Toxicon 2017; 129: 44-51.
72. Lopes KC, Ferrão-Filho AS, Santos EGN, Santos CP. First report of neurotoxic effect of the cyanobacterium *Cylindropermopsis raciborskii* on the mortality of trematode metacercariae. J Helminthol 2018; 92: 244-249.
73. Carnevia D, Castro O, Perretta A, Venzal JM. Identificación en Uruguay de metacercarias de *Ascocotyle (Phagicola) longa* Digen: Heterophyidae parasitando lisas, *Mugil platamus* Pisces: Mugilidae y evaluación del riesgo de zoonosis y afecciones en mascotas. Veterinaria (Montevideo) 2005; 40: 19-23.
74. Armas de Conroy G. Investigaciones sobre la fagocitosis en lisas (Mugilidae) de aguas americanas. I. Estudios taxonómicos de *Phagicola* sp. (Trematoda: Heterophyidae) en mugilidos sudamericanos. Rev Ibér Parasitol 1986; 46: 39-46.
75. Almeida-Dias ER, Woiciechovski, E. Ocorrência da *Phagicola longa* (Trematoda: Heterophyidae) em mugilídeos e no homem. Registro e Cananeia, SP, Hig Alim 1994; 8: 43-46.
76. Cinti AL, Ribeiro NAS, Telles EO, Balian SC. *Ascocotyle (Phagicola) longa* parasitando tainhas (*Mugil liza*, Valenciennes, 1836) em São Paulo: ocorrência, importância na saúde pública e estratégias de controle. Rev Ed Cont Med Vet Zoot CRMV-SP 2014; 12: 36-43.
77. Barros LA, Arruda VS, Gomes DC, Magalhães R. First natural infection by *Ascocotyle (Phagicola) longa* Ransom (Digena, Heterophyidae) in an avian host, *Ardea cocoi* L. (Aves, Ciconiiformes, Ardeidae) in Brazil. Rev Bras Zoot 2002; 29: 151-155.
78. Brandão M, Luque JL, Scholz T, Kostadinova A. New records and descriptions of digeneans from the Magellanic penguin *Spheniscus magellanicus* (Forster) (Aves: Sphenisciformes) on the coast of Brazil. Syst Parasitol 2013; 85: 79-98.
79. Jordan HE, Maples WP. Third record of *Phagicola longa* (Ransom, 1920) (Trematoda: Heterophyidae) in dogs from the United States. J Parasitol 1966; 52: 362-363.
80. Mello EBE Carvalho Maqué G, Campos MS, Rocha UE DellPorto A. Distribuição de helmintos do gênero *Ascocotyle* Loos, 1899 (Trematoda Fascioloidae Heterophyidae - Ascocotylinae) no tubo gastrointestinal de cão. Rev Fac Med Vet Univ São Paulo 1977; 14: 239-242.
81. Manfredi MT, Oneto M. *Phagicola longa* (Heterophyidae) in dogs in Chile: morphological findings and taxonomical problems. Parasitológia 1997; 39: 9-11.
82. Costa HMA, Lima WS, Costa JO. *Phagicola arnaldoi* (Travassos, 1928) Travassos, 1929 (Trematoda, Heterophyidae) em *Canis familiaris*. Arq Bras Med Vet Zootec 1988; 36: 591-595.
83. Costa JO, Guimarães MP, Lima WS, Lima EA. Frequência de endo e ectoparasitos de cães capturados nas ruas de Vitoria, ES, Brasil. Arq Bras Med Vet Zootec 1990; 42: 451-452.
84. Freitas JJ, Ibáñez N, Córdova E. Ocorrência de *Phagicola arnaldoi* en perros de Arequipa, Perú. Rev Per Med Trop 1972; 1: 55-57.
85. Chieffi PP, Leite OH, Dias RM, Torres DM, Mangini AC. Human parasitism by *Phagicola* sp. (Trematoda-Heterophyidae) in Cananéia, São Paulo State, Brazil. Rev Inst Med Trop São Paulo 1990; 32: 285-288.
86. Chieffi PP, Gorla MC, Torres DM, Dias RM, Mangini AC, Monteiro AV, Woiciechovski E. Human infection by *Phagicola* sp. (Trematoda, Heterophyidae) in the municipality of Registro, São Paulo State, Brazil. J Trop Med Hyg 1992; 95: 346-348.
87. Antunes SA, Almeida-Dias ER. *Phagicola longa* (Trematoda: Heterophyidae) em mugilídeos escotados resfriados e seu consumo cru em São Paulo, SP, Hig Alim 1994; 8: 41-42.
88. Knoff M, Luque JL, Amato JE. Community ecology of the metazoan parasites of grey mullets, *Mugil platamus* (Osteichthyes: Mugilidae) from the Littoral of the State of Rio de Janeiro, Brazil. Rev Bras Biol 1997; 57: 441-454.
89. Conceição JCS, São Clemente SC, Matos E. Ocorrência de *Phagicola longus* (Ransom, 1920) Price, 1932 em tainhas (*Mugil* sp.) comercializadas em Belém, Estado do Pará. Rev Bras Cienc Agr 2000; 33: 97-101.
90. Oliveira SA, Blazquez FJI, Antunes SA, Maia AAM. Metacercárias de *Ascocotyle (Phagicola) longa* Ransom, 1920 (Digena: Heterophyidae), em *Mugil platamus*, no estuário de Cananeia, SP, Brasil. Cienc Rural 2007; 37: 1056-1059.
91. Gueretz JS, Moura AB, Martins MI, Souza AP. Estudo da prevalência de *Ascocotyle (Phagicola) longa* em mugilídeos capturados na Baía da Babitonga, Santa Catarina, Brasil. Arch Vet Sci 2019; 24: 79-87.
92. Brasil Ministério da Saúde (2010) Classificação de risco dos agentes biológicos. 2. ed. Série A. Normas e Manuais Técnicos [Internet]: [cited 2019 Oct 9]. Available from: http://bvsms.saude.gov.br/bvs/publicacoes/classificacao_risco_agentes_biologicos_2ed.pdf.
93. Coelho MRT, São Clemente SC, Gottshalk S. Ação de diferentes métodos de conservação na sobrevivência de metacercárias de *Phagicola longus* (Ransom, 1920) Price, 1932, parasito de mugilídeos capturados no litoral do Estado do Rio de Janeiro. Hig Alim 1997; 11: 39-42.
94. Rodrigues MV, Pérez ACA, Machado TM, Orisaka FM, Kurissio JK, Lafisca A. Research of *Ascocotyle (Phagicola) longa* in heat treated fillets of mullets (*Mugil platanus*). Fish Aquac J 2015; 6: 115.
95. Borges JN, Lopes KC, Santos CP. Viability of *Ascocotyle (Phagicola) longa* (Trematoda: Heterophyidae) metacercariae from mullets (*Mugil liza*) from Rio de Janeiro, Brazil after exposure to freezing and heating in the temperature range from -35°C to 180°C. Food Control 2018; 89: 117-122.
96. Ostrowski de Núñez M. Estudio sobre estadios larvales de digeneos de peces Cyprinodontiformes. Physis 1974; 33: 45-61.
97. Drago FB, Lunaschi LI. Update of checklist of digenean parasites of wild birds from Argentina, with comments about the extent of their inventory. Neotrop Helminthol 2015; 9: 325-350.
98. Boero JJ, Led JE, Brandetti E. Algunos parásitos de la avifauna de Argentina. Analecta Vet 1972; 4: 180°C. Food Control 2018; 89: 117-122.
134. Nasir P, Lemus de Guevara D, Díaz MT. Estudio sobre larvas de trematodos de agua dulce. XXIV. Ciclo vital parcial de *Ascocotyle paratenuicollis* sp. n. (Trematoda: Digenea). Acta Biol Venez 1970; 7: 1-4.

135. Nasir P, Diaz MT. Studies on freshwater larval trematodes. XXIV-VII. Partial life cycle of *Caiguiria anterouteria* gen. n., sp. n. (Trematoda: Digenea). Proc Helm Soc Wash 1971; 38: 21-23.

136. Carnevia D, Mazzoni RA A preliminary note on the parasito-fauna of the lebranche mullet (*Mugil liza*, Val. 1836) in Uruguay. Riv Ital Piscic Ittiop 1986; 21: 109-111.

137. Morgades D, Katz H, Castro O, Capellino D, Casas L, Benítez G, Venzal J, Moraña A. Fauna Parasitaria del Lobo Fino (*Arctocephalus australis* Val.) y del León Marino (*Otaria flavescens*) (Mammalia, Otariidae) en la costa de Uruguay. In Menafra R, Rodríguez-Gallego L, Scarabino F, Conde D eds, Bases para la conservación y el manejo de la Costa Uruguaya. Montevideo, Uruguay. Vida Silvestre Uruguay. 2006, pp 89-96.

138. Pereira EM, Müller G, Secchi E, Pereira Jr J, Valente ALS. Digenetic trematodes in South American sea lions from southern Brazilian waters. J Parasitol 2013; 99: 910-913.

139. Conroy D, Cecarelli P, Almeida ER. Diseases and parasites detected in grey mullet (*Mugil curema* Val., 1836) and lebranche mullet (*Mugil liza* Val., 1836). Riv Ital Piscic Ittiop 1985; 20: 154-155.

140. Antunes SA, Almeida Dias ER. *Phagicola longa* (Trematoda: Heterophyidae) em mugílideos estocados resfriados e seu consumo cru em São Paulo, SP. Hig Alimentar 1994; 8: 41.

141. Barros I, Amato S. Experimental infection of dogs with metacercariae of *Phagicola longa* (Ransom, 1920) Price, 1932. Rev Bras Paras Vet 1996; 5: 61-64.

142. Conroy D, Perez K. A report on the experimental infection of a smooth-headed capuchin monkey (*Cebus apella*) with metacercariae of *Phagicola longa* obtained from silver mullet (*Mugil curema*) viscera. Riv Ital Piscic Ittiop 1985; 20: 154-155.

143. Pozza A, Lima F, Haas ML, Lehmann Albornoz PC. *Clinostomum* sp. (Digenea: Clinostomidae) and *Ascocotyle* sp. (Digenea: Heterophyidae): metacercariae with zoonotic potential in fishes from Tramandai River basin, southern Brazil. Bol Inst Pesca 2018, 44: 105-109.

144. Yamada FH, Takemoto R, Pavanelli GC. Ecological aspects of ectoparasites from the gills of *Satanopera papatarea* (Heckel, 1840) (Cichlidae) from the upper Paraná River floodplain, Brazil. Acta Sci Biol Sci 2007; 29: 331-336.

145. Camargo AA, Pedro NHO, Pelegrini LS, Azevedo RK, Silva RJ, Abdallah VD. Parasites of *Acestrohyynchus laevis* (Lütken, 1875) (Characiformes: Acestrohyynchidae) collected from the Peixe River, southeast Brazil. Acta Sci Biol Sci 2015; 37: 231-237.

146. Yamada FH, Santos LN, Takemoto RM. Gill ectoparasite assemblages of two non-native *Cichla* populations (Perciformes, Cichlidae) in Brazilian reservoirs. J Helminthol 2011; 85: 185-191.

147. Hernández-Orts, JS, Montero FE, Juan-García A, García NA, Crespo EA, Raga JA, Aznar FJ. Intestinal helminth fauna of the South American sea lion *Otaria flavescens* and fur seal *Arctocephalus australis* from northern Patagonia, Argentina. J Helminthol 2013; 87: 336-347.

148. Hernández-Orts JS, Montero FE, Crespo EA, García NA, Raga JA, Aznar FJ. A new species of *Ascocotyle* (Trematoda: Heterophyidae) from the South American sea lion *Otaria flavescens* off Patagonia, Argentina. J Parasitol 2012; 98: 810-816.

149. Simões SBE, Scholz T, Barbosa HS, Santos CP. Taxonomic status, redescription, and surface ultrastructure of *Ascocotyle* (*Phagicola*) *pindoramensis* n. comb. (Digenea: Heterophyidae). J Parasitol 2006; 92: 501-508.

150. Scholz T, Muniz-Pereira LC, Santos CP. Taxonomic status of *Ascocotyle* (*Phagicola*) *rara* Arruda, Muniz-Pereira et Pinto, 2002 (Digenea: Heterophyidae). Folia Parasitol 2006; 53: 297-301.