A proof of Catalan’s Convolution formula

Alon Regev
Department of Mathematical Sciences
Northern Illinois Univeristy
DeKalb, IL
regev@math.niu.edu

Abstract
We give a new proof of the k-fold convolution of the Catalan numbers. This is done by enumerating a certain class of polygonal dissections called k-in-n dissections. Furthermore, we give a formula for the average number of cycles in a triangulation.

1 Introduction

The Catalan numbers are defined as follows.

Definition 1. For any $n \geq 0$,

$$C_n = \frac{1}{n+1} \binom{2n}{n}.$$

For $n < 0$, $C_n = 0$.

The Catalan k-fold convolution formula is due to Catalan.

Theorem 2. [2] Let $1 \leq k \leq n$. Then

$$\sum_{i_1+\ldots+i_k=n} C_{i_1-1} \cdots C_{i_k-1} = \frac{k}{2n-k} \binom{2n-k}{n}. \quad (1)$$

Catalan’s original proof [2, 3, 4, 5] uses Lagrange inversion. Gessel and Lacrombe [4] give two proofs which use hypergeometric identities. Tedford [6] exhibits several interpretations of the left-hand side of (1). In this note we use another such interpretation, in terms of dissections of polygons, to give a new proof of Theorem 2. We arrive at this proof using Theorem 5, which enumerates a class of polygonal dissections called k-in-n dissections. As another consequence of this enumeration, in Corollary 7 we give a formula for the average number of cycles in a triangulation.

2 The k-in-n dissections

Definition 3. Let $n \geq 3$ and let $0 \leq k \leq n - 3$.

1. A k-dissection of an n-gon is a partition of the n-gon into $k + 1$ parts by k noncrossing diagonals.

2. A triangulation of an n-gon is an $(n - 3)$-dissection.

3. For $k \geq 4$, an k-in-n dissection is an $(n - k)$-dissection of an n-gon into one k-gon and $n - k + 1$ triangles (see Figure 1). A 3-in-n dissection is a triangulation with one of its $n - 3$ triangles marked.

4. Let $f_k(n)$ be the number of k-in-n dissections.

It is well known that for $n \geq 3$ the number of triangulations of an n-gon is C_{n-2}.

Lemma 4. Let $3 \leq k \leq n$. Then

\[(n - k)f_k(n) = n \sum_{i=2}^{n-k+1} C_{i-1} f_k(n - i + 1). \tag{2}\]

Proof. The left-hand side of (3) is the number of k-in-n dissections, with one of the $n - k$ diagonals marked. These can also be chosen as follows. Choose one vertex v out of the n vertices, then choose $2 \leq i \leq n - k + 1$. Form the diagonal from v to a vertex which is a distance i from v (proceeding, say, counterclockwise along the edges of the n-gon). Mark this diagonal. Now choose a triangulation of the resulting $(i + 1)$-gon and a k-in-$((n - i) + 1)$ dissection of the resulting $((n - i) + 1)$-gon. Each such choice results in a unique k-in-n dissection with one of the diagonals marked.

Lemma 4 can be used to enumerate the k-in-n dissections.

Theorem 5. Let $3 \leq k \leq n$. The number of k-in-n dissections is

\[f_k(n) = \binom{2n - k - 1}{n - 1}. \tag{3}\]
Note 6. There is a bijection between \(k \)-in-\(n \) dissections and \(k \)-crossing partitions of \(\{1, \ldots, n\} \), as defined in [1]. Thus Theorem 5 is equivalent to [1, Theorem 1].

Theorem 5 implies the following corollary:

Corollary 7. Let \(3 \leq k < n \). The average number of cycles of length \(k \) in a triangulated \(n \)-gon is

\[
\frac{\binom{2n-k-1}{n-1}}{n} \frac{C_{k-2}}{C_{n-2}}.
\]

Proof. Each cycle of length \(k \) in a triangulation of an \(n \)-gon uniquely corresponds to a \(k \)-in-\(n \) dissection together with a triangulation of a \(k \)-gon. The result then follows from (3). \(\square \)

The following lemmas will be used in the proof of Theorem 5. It is well known that for any \(n \geq 0 \),

\[
\sum_{i \geq 0} C_i C_{n-i} = C_{n+1}. \tag{4}
\]

Lemma 8. For any \(n \geq 1 \),

\[
\sum_{i \geq 0} i C_i C_{n-i} = \binom{2n+1}{n-1}. \tag{5}
\]

Proof. Note that

\[
\sum_{i \geq 0} i C_i C_{n-i} = \sum_{i \geq 0} (n-i) C_i C_{n-i}.
\]

Therefore by (4),

\[
\sum_{i \geq 0} i C_i C_{n-i} = \frac{1}{2} \sum_{i \geq 0} n C_i C_{n-i} = \frac{n}{2} C_{n+1} = \binom{2n+1}{n-1}.
\]

\(\square \)

Lemma 9. Let \(1 \leq q \leq p \leq 2q-1 \). Then

\[
\sum_{i \geq 0} C_i \binom{p-1-2i}{q-1-i} = \frac{p}{q}. \tag{6}
\]

Proof. We use induction on \(q \). If \(q = 1 \) then \(p = 1 \) and both sides of (6) are equal to 1. Now suppose \(q \geq 2 \). If \(p = q \) then both sides are equal to 1. If \(p = 2q-1 \) then (6) follows from (4) and (5), since

\[
\sum_{i \geq 0} C_i \binom{2q-2-2i}{q-1-i} = \sum_{i \geq 0} C_i (q-i) C_{q-1-i} = q \sum_{i \geq 0} C_i C_{q-1-i} - \sum_{i \geq 0} i C_i C_{q-1-i} = q C_q - \binom{2q-1}{q-2} = \binom{2q-1}{q}.
\]

3
Now suppose \(q + 1 \leq p \leq 2q - 2 \). Note that \(q - 1 \leq p - 1 \leq 2q - 2 - 1 = 2(q-1) - 1 \). Therefore by the induction hypothesis, (6) holds for \(p - 1 \) and \(q - 1 \). Also \(q \leq p - 1 \) and \(p - 1 \leq 2q - 3 < 2q - 1 \), so that (6) holds for \(p - 1 \) and \(q \). Thus

\[
\binom{p}{q} = \binom{p-1}{q-1} + \binom{p-1}{q} = \sum_{i \geq 0} \frac{1}{i+1} \binom{2i}{i} \binom{p-2-2i}{q-2-i} + \sum_{i \geq 0} \frac{1}{i+1} \binom{2i}{i} \binom{p-2-2i}{q-1-i}
\]

\[
= \sum_{i \geq 0} \frac{1}{i+1} \binom{2i}{i} \binom{p-1-2i}{q-1-i}.
\]

2.1 Proof of Theorem 3

Proof. Fix \(k \geq 3 \) and proceed by induction on \(n \). If \(n = k \) then both sides are equal to 1. Now let \(n \geq k + 1 \). By Lemma 4 and by the induction hypothesis,

\[
f_k(n) = \frac{n}{n-k} \sum_{i=2}^{n-k-1} C_{i-1} f_k(n-i+1)
\]

\[
= \frac{n}{n-k} \sum_{i=2}^{n-k-1} C_{i-1} \left(\frac{2(n-i+1)-k-1}{n-i} \right)
\]

\[
= \frac{n}{n-k} \left(\sum_{i \geq 1} C_{i-1} \left(\frac{2(n-i+1)-k-1}{n-i} \right) - f_k(n) \right).
\]

Solving for \(f_k(n) \) and applying Lemma 9, with \(q = n \) and \(p = 2n - k \),

\[
f_k(n) = \frac{n}{2n-k} \sum_{i \geq 0} C_i \left(\frac{2n-k-2i-1}{n-i-1} \right) = \frac{n}{2n-k} \left(\frac{2n-k}{n} \right) = \left(\frac{2n-k-1}{n-1} \right).
\]

3 Proof of the Catalan convolution formula

The next Lemma gives the relation between the number of \(k \)-in-\(n \) dissections and the Catalan convolution.

Lemma 10. Let \(3 \leq k < n \). Then

\[
k f_k(n) = n \sum_{i_1 + \ldots + i_k = n} C_{i_1-1} \cdots C_{i_k-1}.
\]
Proof. The left-hand side of (7) is the number of \(k \)-in-\(n \) dissections, with one of the vertices of the \(k \)-gon marked. These can also be chosen as follows. Choose any vertex \(v \) of the \(n \)-gon. For each vertex \(v \), choose \(i_1, \ldots, i_k \) such that \(i_1 + \ldots + i_k = n \). This determines the lengths of the sides of a \(k \)-gon by starting at \(v \) and proceeding, say, counterclockwise. For example, in Figure 1, if \(v \) is the bottom vertex then the lengths are 1, 4, 2, 2, 3. For each \(1 \leq r \leq k \), there is a resulting \((i_r + 1)\)-gon sharing one edge of the \(k \)-gon. Each of these \((i_r + 1)\)-gon can be triangulated in \(C_{i_r-1} \) ways, forming a uniquely determined \(k \)-in-\(n \) dissection with one of the of the \(k \)-gon marked.

The proof of Theorem 2 now follows from Lemma 10, since

\[
\sum_{i_1+\ldots+i_k=n} C_{i_1-1} \cdots C_{i_k-1} = \frac{k}{n} f_k(n) = \frac{k}{n} \binom{2n-k-1}{n-1} = \frac{k}{2n-k} \binom{2n-k}{n}.
\]

References

[1] M. Bergerson and A. Miller and A. Pliml and V. Reiner and P. Shearer and D. Stanton and N. Switala, A note on 1-crossing partitions, available at http://www.math.umn.edu/~reiner/Papers/onecrossings.pdf.

[2] E. Catalan, Sur les nombres de Segner, Rend. Circ. Mat. Palermo, 1 (1887) 190–201.

[3] D. R. French and P. J. Larcombe, The Catalan number \(k \)-fold self-convolution identity: the original formulation, J. Combin. Math. Combin. Comput., 46 (2003) 191–204.

[4] I. Gessel and P. J. Lacrombe, A forgotten convolution type identity of Catalan: two hypergeometric proofs, Util. Math., 59 (2001), 97-109.

[5] P. J. Lacrombe, A forgotten convolution type identity of Catalan, Util. Math., 57 (2000), 65-72.

[6] S. J. Tedford, Combinatorial interpretations of convolutions of the Catalan numbers, Integers 11 (2011).