Three-dimensional Analysis of Cranial Vault and Position of Mandibular Fossa
Part 1: Analysis of Mandibular Protrusion Cases without Asymmetry

AKEMI KAWAJIRI, AU SASAKI, TADASHIGE UESATO,
YURI TOGANE, SACHIKA ASAKA, KOJI YAMAGUCHI
and NAOTO SUDA

Abstract

The relationship between the shape of the cranial vault and the position of the mandibular fossa is not clear. To clarify the relationship, three-dimensional analysis was performed using cases with mandibular protrusion but without facial asymmetry. Nineteen female patients with skeletal mandibular protrusion who had visited Meikai University Hospital were used in this study. The lateral deviation of mental spine was less than 4 mm in all cases. Genetic/congenital anomaly cases, endocrine disorders, or cases with severe trauma and TMD were excluded. Computed tomography (CT) images of the 19 cases were taken at the first visit. Three reference planes were defined in CT images. The horizontal reference plane was defined as the plane running through the right and left porion, and left orbitale. The mid-sagittal reference plane was defined as the plane running through the midpoint of the bilateral nasomaxillary suture and basion, and perpendicular to the horizontal reference plane. The frontal reference plane was defined as the plane running through the left porion, and perpendicular to the horizontal reference and mid-sagittal reference planes.

There was a significant negative correlation between the bilateral difference in the sagittal length of the cranial vaults and the bilateral difference in the sagittal position of the mandibular fossas. This implies that posteriorly located mandibular fossas are seen in cases with asymmetric cranial vaults having longer A-P length on the same sides. In contrast, there was no correlation between the bilateral difference in the vertical length of the cranial vaults and the bilateral difference in the vertical position of the mandibular fossas. Also, there was no correlation between the bilateral difference in the transverse length of the cranial vaults and the bilateral difference in the transverse position of the mandibular fossas. Interestingly, there was a significant negative correlation between the bilateral difference in the sagittal position of mandibular fossas and the bilateral difference of mandibular body lengths, suggesting that the mandibular body length compensated the A-P position of the mandibular fossa to prevent facial asymmetry.

The obtained findings indicate that the shape of the cranial vaults is related to the A-P position of mandibular fossas in patients with skeletal mandibular protrusion but without facial asymmetry. It is likely that the bilateral difference of the mandibular body lengths has a compensating effect on the bilateral A-P difference of the mandibular fossas in the present cases.
Key words: cranial vault (頭蓋冠), mandibular fossa (下顎窩), mandibular protrusion (下顎前突)

研究方法

1. 研究対象ならびに資料

2010年から2016年の間に明海大学病院を受診し、顎変形症と診断された女性19 名を対象とした（Table 1）。全19例とも、側面頭部エックス線規格写真によるソフテクプログラム分析において、上顎骨の前後位の位置（SNA°）は日本平均値の値10°と比較して±1 SD以内であった。下顎骨の前後位の位置は標準値を超えて大きく、ANBが0°以下の骨格性下顎前突症例であった。全例、正面頭部エックス線規格写真において、オトガイ頜の偏位が4 mm未満であった。遺伝性や先天性の疾患、内分泌代謝異常、顎顔面頭蓋の重度外傷、重篤な顎関節症を有する症例は除外した。

2. 方法

a) 基準点の設定

基準平面を規定するために、三次元再構築画像上で基準平面（Fig. 1a）と基準点を設定した。基準平面には両側外耳道上縁（Po, 右側: PoR, 左側: PoL）, 左側眼窩下縁（OrL）, 前頭鼻骨縫合の両側外側縁の中点（M）, 大後頭孔の前縁上の最下方点（Ba）の5点を用いた。

b) 基準面の設定

水平基準面はPoR, PoL, OrLの3点を通る平面, 正中矢状基準面はMとBaを通る水平基準面と直行する平面, 前頭基準面はPoLを通る水平基準面および正中矢状基準面に直行する平面とした（Fig. 1a）。

経 言

頭蓋は、神経頭蓋と、顔面の骨格を形成する内臓頭蓋に分けられる1,2)。頭蓋では、脳の成長が最も急速な生後2年間に最大成長がみられ、その容積は6歳までに成人の92％、12歳で97％に達し、16歳まで増加する3,4)。神経頭蓋は脳を下方から支える頭蓋底と、脳を外側から取り囲む頭蓋冠に大別される2)。頭蓋底は軟骨結合部の成長と縫合部での骨添加、さらに頭蓋底内外面の骨のリモデリングにより成長する5)。一方、頭蓋冠では縫合性成長と、骨の外面と内面での骨質性成長がみられる6)。

頭蓋冠の中で側頭骨は、前方の顎弓基部と外耳道の前方の間で下顎窩を形成する7,8)。下顎窩における顎関節は、下顎骨の前後位置はもちろんのこと、側方や上下的位置にも関与する7)。下顎窩は、胎齢8週に発生し、下顎頭の成長とともに膜内骨化により形成される9)。下顎窩における骨添加は、12歳頃まで継続し、その容積は乳歯萌出前と比較して、萌出後で1.2~1.3倍、永久歯萌出開始期にはさらに1.4~1.5倍となり、最終的には永久歯列期では約3倍となる9)。

頭蓋底の形態やその長軸長も、下顎骨の成長に関係することが報告されてきた10,11)。特に、頭蓋底において蝶形骨と後頭骨から構成される斜台の形態や成長は、下顎骨の成長に大きな影響を持つと考えられている。矢状面に投影した前頭蓋底と後頭蓋底間の角度（saddle angle）は、long faceやshort faceといった顎型パターンに関係する10)。また、saddle angleの狭小化は、下顎骨の反時計方向の回転の1因と報告されている11)。こうした頭蓋底や頭蓋冠の成長は、下顎骨の成長に深く関与することが知られている10,11)。これにより、下顎窩の位置にどのような影響を与えるかについては不明の点が多い。この理由は、これまでこの研究内容が乾燥頭蓋を用いた報告12)に限定され、多数の資料を用いて解析が不可能であったためと考えられる。

近年、顎変形症治療において、CT画像が診断・顎矯正手術のシミュレーションや治療の評価に活用されることになった13-15)。CT画像を用いることで、ソフテクプログラムを用いた二次元解析では定量化が困難であった下顎窩の位置や形状の評価可能となった。そこで本研究では、明海大学病院を受診した顔面非対称のない骨格性下顎前突の女性19例を用いて、頭蓋冠形態と下顎窩の位置を三次元的に解析し、さらに下顎骨体長との関連性を検討した。
c）計測点の設定
下顎窩の計測点は、三次元 CT 画像とその前頭断面および矢状断面の画像より、左右の下顎窩の最深点（右側：FR、左側：FL）とした（Fig. 2a, b）。オトガイ隆起の最突出点を、三次元 CT 画像とその水平断面および矢状断面の画像から Pog とした（Fig. 2c）。また右側と左側の下顎角部を各々 GoR と GoL とした。GoR と GoL は、三次元 CT 画像において左右各々の下顎枝後縁と下顎下縁がなす角度の二等分線と、下顎角部の交点と定めた（Fig. 2d）。

頭蓋冠後方部の計測点は、正中矢状基準平面に平行で、かつ正中矢状基準平面から 20mm 間隔に設定した平面が頭蓋冠表面の頭頂部と交わる点を正中より順に v20r と v20l, v40r と v40l, v60r と v60l とした（r は右側、l は左側を表す）（Fig. 3b）。

頭蓋冠前方部の計測点は、前頭基準平面に平行で、かつ前頭基準平面から後方へ 20mm 間隔に設定した平面が、頭蓋冠表面の左右側方部と交わる点を順に t20r と t20l, t40r と t40l, t60r と t60l とした（r は右側、l は左側を表す）（Fig. 3c）。

d）計測項目
①前後的距離
FR と FL から前頭基準平面までの距離（mm）を各々 FsR と FsL とした。s20r, s20l, s40r, s40l, s60r, s60l と前頭基準平面までの距離（mm）を各々 S20R, S20L,
Horizontal reference plane was defined by the plane running through right and left Porion (Po), left Orbitale (OrL) (a). Po was defined as the most superior point of external ear in CT image (b). OrL was defined as the most inferior point of left orbit in CT image (c).

Mid-sagittal reference plane was defined by the plane running through M point (midpoint of bilateral ends in nasomaxillary suture (denoted by small circles) in CT image (d)) and Basion (Ba; the most anterior and inferior point of foramen magnum in CT image (e)), and perpendicular to the horizontal reference plane.

Frontal reference point was defined by the plane running through left Po, and perpendicular to Horizontal reference plane and mid-sagittal reference plane.

FR and FL were defined as the most superior points in the right and left mandibular fossas (denoted as small circles), in the frontal (a) and sagittal image of CT (b). Pog (denoted as black point) was defined as the most protruded point of the mental protuberance (c). GoR (denoted as black point) was defined as the intersection of the right mandibular angle and the bisector (denoted as dotted black line) of the ramus plane (denoted as white solid line) and the mandibular plane (denoted as white solid line) (d). GoL was defined similarly as the intersection of the left mandibular angle and the bisector between the ramus plane and the mandibular plane.
3529 巻 1 号 頭蓋冠形態と下顎窩の位置の関連性

② 垂直的距離

FR と FL から水平基準面までの距離（mm）を各々 FvR, FvL とした。v20r, v20l, v40r, v40l, v60r, v60l と水平基準面までの距離（mm）を各々 V20R, V20L, V40R, V40L, V60R, V60L とした（Fig. 3a）。

③ 側方的距離

FR と FL から正中矢状基準面までの距離（mm）を各々 FtR と FtL とした。t20r, t20l, t40r, t40l, t60r, t60l と正中矢状基準面までの距離（mm）を各々 T20R, T20L, T40R, T40L, T60R, T60L とした（Fig. 3b）。

e）両側下顎窩の位置および頭蓋冠形態の左右差の評価

上記 d）の前後の、垂直的、側方的距離を基に両側下顎窩の位置および頭蓋冠形態の左右差を求めた。全ての距離の左右差は、右側の計測距離から左側の計測距離の差として表した。両側下顎窩の前後の位置の左右差を Fs（FsR-FsL）、垂直的の位置の左右差を Fv（FvR-FvL）、側方的位置の左右差を Ft（FtR-FtL）とした。頭蓋冠形態の前後の左右差を S20（S20R-S20L）、S40（S40R-S40L）、S60（S60R-S60L）とした。垂直的の左右差を V20（V20R-V20L）、V40（V40R-V40L）、V60（V60R-V60L）、側方的の左右差を T20（T20R-T20L）、T40（T40R-T40L）、T60（T60R-T60L）とした。

f）下顎骨体長とその左右差の評価

Pog と GoR 間、Pog と GoL 間の距離を各々右側と左側の下顎骨体長とした。両側の下顎骨体長の左右差は、右側の距離から左側の距離を引いた差として表した。

なお本研究での三次元計測は、同じ評価者が行った。この際の計測誤差を検証するため、FR に関する計測誤差を算出した。異なる 3 日間に行った評価者内誤差は、FsR, FvR, FtR の各々で 0.00mm, 0.00mm, 0.09mm で、級内相関係数は 1.0 であった。また 3 名で行った評価者間誤差は、FsR, FvR, FtR の各々で 0.00mm, 0.00mm, 0.09mm で、級内相関係数は 1.0 であった。このように、
評価者内誤差と評価者間誤差はわずかであり、精度の高い計測が行えた。

3. 統計処理
両側下顎窩の前後的位置、垂直的位置、側方的位置の左右差と頭蓋冠形態の左右差間の関相関、両側下顎骨体長の左右差と両側下顎窩の前後的位置の左右差間の関相関は、Excel 2013（Microsoft Japan）を用いて Spearman の順位相関係数により検定を行った。有意水準は 5%とした。

結果
1. 両側の下顎窩の位置と頭蓋冠形態の前後的左右差（Table 2）
両側下顎窩の前後的位置の左右差を示す Fs の最大値と最小値は各々 5.6mm と -2.3mm で、両者の差は 7.9mm であった。頭蓋冠形態の前後的左右差を示す S20 の最大値と最小値は 5.2mm と -16.4mm で、21.6mm の差があった。S60 の最大値と最小値は 8.9mm と -19.6mm で、28.5mm の差があった。S20 ~ S60 の最大値と最小値の差は、正中線から離れると増加し、非対称は拡大した。Case 2, 4, 10, 14, 15, 18 において頭蓋冠形態の前後的左右差は 10mm を越えていた。

2. 両側の下顎窩の位置と頭蓋冠形態の垂直的左右差（Table 3）
両側下顎窩の垂直的位置の左右差を示す Fv の最大値と最小値は各々 1.3mm と -2.2mm で、両者の差は 3.5mm であった。このように Fv の最大値と最小値の差は、Fs の最大値と最小値の差（7.9mm）と比較して 1/2 以下であった。頭蓋冠形態の垂直的左右差を示す V20 の最大値と最小値は 0.8mm と -2.5mm で、両者の差は 3.3mm であった。V40 の最大値と最小値は 2.5mm と -3.9mm で、6.4mm の差があった。V60 の最大値と最小値は 8.9mm と -5.7mm で、14.6mm の差があった。S20 ~ S60 と同様に、V20 ~ V60 の最大値と最小値の差は、正中矢状基準平面から離れると増加し、非対称は拡大した。

3. 両側の下顎窩の位置と頭蓋冠形態の側方的左右差（Table 4）
両側下顎窩の側方的位置の左右差を示す Ft の最大値と最小値は各々 2.7mm と -3.5mm で、両者の差は 6.2mm であった。このように Ft の最大値と最小値の差は、Fv の最大値と最小値の差と比較して大きかった。頭蓋冠形態の側方的な左右差を示す T20 の最大値と最小値は 4.6mm と -7.7mm で、両者の差は 12.3mm であった。T40 の最大値と最小値は 4.7mm と -12.2mm で、16.9mm の差があった。T60 の最大値と最小値は 5.9mm と -13.9mm で、19.8mm の差があった。このように T20 ~ T60 の最大値と最小値の差は、前頭基準平面から離れるに従い増加し、非対称は拡大した。Case 2, 4, 14, 15, 18 において頭蓋冠形態の側方的な左右差は 10mm を越えていた。

4. 両側下顎窩の位置の左右差と頭蓋冠形態の左右差の関相関
両側下顎窩の前後的位置の左右差を示す Fs と、前後的頭蓋冠形態の左右差を示す S20 ~ S60 間の相関を検討した（Fig. 4）。その結果、Fs と S20 間（r = -0.62）、Fs と S40 間（r = -0.70）、Fs と S60 間（r = -0.53）の 3 者間には有意な負の相関がみられた。

次に、両側下顎窩の垂直的位置の左右差を示す Fv と、垂直的な頭蓋冠形態の左右差を示す V20 ~ V60 間の相関を検討した（Fig. 5）。その結果、Fv と V20 ~ V60 間にはいずれも相関はみられなかった。

最後に、両側下顎窩の側方的位置の左右差を示す Ft と、側方的な頭蓋冠形態の左右差を示す T20 ~ T60 間の相関を検討した（Fig. 6）。その結果、Ft と T20 ~ T60 間にはいずれも相関はみられなかった。

5. 両側下顎骨体長の左右差と両側下顎窩の前後的位置の左右差
両側下顎骨体長とその左右差を Table 5 に示す。両側下顎骨体長の左右差は、case 5, 7, 10, 14, 16, 17, 19 で 1mm 以下であった。一方、case 1, 9, 12 の 3 例では 3mm 以上であった。19 例とも正面頭部エックス線規格写真において顎骨基準の正中線とオトガイ線の距離が 4mm 未満だったにもかかわらず、これら 3 例では両側下顎骨体長に左右差がみられた。

そこで、両側下顎骨体長の左右差と両側下顎窩の前後的位置の左右差（Fs）間の相関を検討した（Fig. 7）。その結果、両者には有意な負の相関（r = -0.51）がみられた。すなわち、両側下顎窩の位置の前後的位置の左右差を下顎骨体長が補償する関係がみられた。

考察
下顎窩の位置は、下顎骨の位置に関与し、顔貌や咬合を特徴づける因子の一つと考えられる17）。そこで本研究では、骨格性下顎前突症の女性患者 19 名の資料を用いて、頭蓋冠形態と下顎窩の位置の関相関を検討した。その結果、19 例中 6 例という比較的多くの症例で頭蓋冠形態に前後的な左右差が 10mm 以上みられた（Table 2）。そして頭蓋冠の前後の短縮は下顎窩の前方に関連し、下顎骨の位置関与を指摘する。
下顎窩を形成する側頭骨は、蝶形骨と蝶関節、頭頂骨と歯状関節、後頭骨と後頭乳突関節を介して接し、いずれの関節も頭蓋骨の後方成長に関与する。このように側頭骨周囲の前後の成長は、下顎窩の後方位に関連する。下顎窩を形成する側頭骨は、蝶形骨と蝶関節、頭頂骨と歯状関節、後頭骨と後頭乳突関節を介して接し、いずれの縫合も頭蓋骨の後方成長に関与する。Kimらは、60名の成人下顎前突症例を用いて、左右で非対称な頭蓋底成長が起こると頭顱冠形態にも非対称が及ぶと報告している。

これらの点より、本研究における下顎窩の前後的位置の左右差には、頭顱冠と頭顱底の成長が深く関与したと考えられる。

Fig. 5 に示すように前後の結果とは異なり、頭顱冠形態の垂直的な左右差を示す V20〜V60 は多様性が小さく、両側下顎窩の垂直的位置を示す Fv と、頭顱冠形態の垂直的左右差を示す V20〜V60 間にはいずれも相関はみられなかった。この点には、両側下顎窩の前後の位置の左右差を示す Fs の最大値と最小値間には 7.9mm（Table 2）の差があり、この値は両側下顎窩の前後的な左右差を示す Fs の最大値と最小値間の差である 7.9mm ほど大きな差ではなかった。また Fs と T20 〜 T60 間にはいずれも相関がみられなかったのは、本研究で用いた19症例において、下顎窩の垂直的成長の多様性は前後の位置の多様性よりも小さかったためと考えられる。

本研究で用いた資料は、オトガイ棘の側方偏位が 4 mm 未満であった。このような資料を用いた理由は、頭顱冠形態と下顎窩の位置の特徴を、下顎の側方偏位が顕著でない骨格性下顎前突症例を用いて明らかにすることが目的であったからである。Table 4 で示したように、両側下顎窩の側方的位置の左右差を示す Fs の最大値と最小値には 62mm の差があり、この値は両側下顎窩の前後の位置の左右差を示す Fs の最大値と最小値間の差である 7.9mm ほど大きな差ではなかった。また Fs と T20 〜 T60 間にいずれも相関がみられなかったのは、本研究で下顎非対称症例を除いて検討したためと考えられる。Fig. 7 に示したように、両側下顎骨体長の左右差と両側下顎窩の前後の位置の左右差には有意な負の相関がみられ、両側下顎窩の位置の前後の位置の左右差を下顎骨体長が補償したと考えられる。今後、顔面や下顎の非対称症例を用いて、両側下顎窩の位置や頭顱冠形態の左右差、下顎骨体長、さらにはこれらの関連性を検討する計画である。その際、本研究の非対称のない19症例から得られた結果が有用な見解となるだろう。

両側下顎窩の前後の位置の左右差が下顎骨体長により補償されるのであれば、この補償機構を担う組織やメカニズムはどのようなものだろうか。この点を正確に説明することは難しいが、舌の機能圧と、下顎骨に付着する咀嚼筋や舌骨上筋群が関与したと考えることができる。舌圧が下顎骨の成長と密接な関係にあることは古くから知られてきた。両側下顎窩の前後の位置に左右差があったとしても、舌圧が左右両側で調和の取れた歯槽形態を維持するため、下顎骨の成長と密接な関係にあることが知られている。

Case	Fs	S20	S40	S60
1	-1.3	-3.0	-4.4	-5.7
2	2.4	-6.3	-11.4	-4.5
3	0.5	-1.1	-4.1	-9.3
4	2.4	-5.7	-10.4	-12.3
5	-0.3	-2.2	-4.2	-4.1
6	1.4	-1.9	-4.3	-22
7	-1.7	0.5	1.0	4.4
8	-0.2	-2.3	-27	-17
9	-2.1	2.0	52	8.9
10	2.3	-0.8	-0.8	-10.5
11	-2.3	1.5	40	7.9
12	1.4	-2.0	-3.2	-5.1
13	2.1	-0.3	-0.9	-16
14	-1.7	-4.9	-95	-196
15	4.7	-5.0	-106	-9.2
16	0.7	-4.1	-6.3	-9.2
17	0.3	-2.1	-1.9	1.5
18	5.6	-6.3	-16.4	-16.8
19	0.1	-1.1	-5.3	-5.0

Fs: Bilateral difference between the distances from FR to the frontal reference plane (shown as FsR in Fig. 3a) and from FL to the frontal reference plane (FsL shown in Fig. 3a).
S20: Bilateral difference between the distances from s20r to the frontal reference plane (shown as S20R in Fig. 3a) and from s20l to the frontal reference plane (shown as S20L in Fig. 3a). s20r and s20l denote intersections of cranial vault and sagittal planes having 20mm distance from the mid-sagittal reference plane (as shown in Fig. 3a).
S40: Bilateral difference between the distances from s40r to the frontal reference plane (shown as S40R in Fig. 3a) and from s40l to the frontal reference plane (shown as S40L in Fig. 3a). s40r and s40l denote intersections of cranial vault and sagittal planes having 40mm distance from the mid-sagittal reference plane (as shown in Fig. 3a).
S60: Bilateral difference between the distances from s60r to the frontal reference plane (shown as S60R in Fig. 3a) and from s60l to the frontal reference plane (shown as S60L in Fig. 3a). s60r and s60l denote intersections of cranial vault and sagittal planes having 60mm distance from the mid-sagittal reference plane (as shown in Fig. 3a).

All values represent the difference of right values minus left values.
Table 3 Bilateral difference in the position of mandibular fossa and cranial vault length in the vertical dimension (mm)

Case	Fv	V20	V40	V60
1	-1.6	-1.8	-1.2	-1.9
2	-0.4	-0.7	1.2	2.4
3	-0.3	-0.5	-1.0	-5.0
4	-1.1	-1.8	-1.1	-0.6
5	0.1	0.2	-2.6	-4.1
6	0.0	0.4	1.4	1.9
7	-1.4	0.0	0.4	1.7
8	-2.2	-0.3	-0.5	-0.5
9	0.8	0.7	0.5	5.3
10	0.1	0.8	1.5	-4.4
11	0.1	-0.8	-0.4	0.5
12	-0.8	-1.0	-1.1	-2.7
13	0.1	0.2	2.5	4.4
14	0.1	-2.5	-3.9	-5.7
15	0.6	0.8	-0.5	-2.0
16	0.3	-0.4	-0.8	-2.0
17	-1.2	0.7	1.7	8.9
18	0.2	-0.9	-1.5	-4.8
19	1.3	-0.9	-1.1	-3.0

Maximum 1.3 0.8 2.5 8.9
Minimum -2.2 -2.5 -3.9 -5.7

Fv; Bilateral difference between the distances from FR to the horizontal reference plane (shown as FvR in Fig. 3b) and from FL to the horizontal reference plane (FvL shown in Fig. 3b).
V20; Bilateral difference between the distances from v20r to the horizontal reference plane (shown as V20R in Fig. 3b) and from v20l to the horizontal reference plane (shown as V20L in Fig. 3b). v20r and v20l denote intersections of cranial vault and sagittal planes having 20mm distance from Ba (as shown in Fig. 3b).
V40; Bilateral difference between the distances from v40r to the horizontal reference plane (shown as S40R in Fig. 3b) and from v40l to the horizontal reference plane (shown as V40L in Fig. 3b). v40r and v40l denote intersections of cranial vault and sagittal planes having 40mm distance from Ba (as shown in Fig. 3b).
V60; Bilateral difference between the distances from v60r to the horizontal reference plane (shown as V60R in Fig. 3b) and from v60l to the horizontal reference plane (shown as V60L in Fig. 3b). v60r and v60l denote intersections of cranial vault and sagittal planes having 60mm distance from Ba (as shown in Fig. 3b).
All values represent the difference of right values minus left values.

Table 4 Bilateral difference in the position of mandibular fossa and cranial vault length in the transverse dimension (mm)

Case	Ft	T20	T40	T60
1	-0.1	-0.9	-2.0	-4.3
2	-0.7	-2.0	-5.5	-12.4
3	-1.3	-2.3	-3.2	-5.4
4	0.8	-3.5	-6.7	-12.3
5	2.7	-0.4	-2.1	-6.6
6	-0.9	2.3	0.8	-1.4
7	0.8	2.8	2.2	0.9
8	1.5	1.7	0.4	-12.2
9	-1.5	4.6	4.7	5.8
10	-1.0	-0.3	-1.0	-1.3
11	0.2	2.9	4.4	5.9
12	0.1	-0.2	-2.1	-5.5
13	1.0	2.4	0.4	-1.1
14	-2.9	-7.7	-122	-124
15	1.0	-1.7	-6.6	-10.7
16	-3.5	-2.6	-4.1	-7.3
17	-1.8	2.7	1.0	-0.8
18	2.1	-3.7	-10.0	-139
19	1.9	-0.2	-1.2	-5.2

Maximum 2.7 4.6 4.7 5.9
Minimum -3.5 -7.7 -122 -139

Ft; Bilateral difference between the distances from FR to the mid-sagittal plane running through Ba (shown as FtR in Fig. 3c) and from FL to the mid-sagittal plane running through Ba (FtL shown in Fig. 3c).
T20; Bilateral difference between the distances from t20r to the mid-sagittal plane running through Ba (shown as T20R in Fig. 3c) and from t20l to the mid-sagittal plane running through Ba (shown as T20L in Fig. 3c). t20r and t20l denote intersections of cranial vault and frontal planes having 20mm distance from Ba (as shown in Fig. 3c).
T40; Bilateral difference between the distances from t40r to the mid-sagittal plane running through Ba (shown as T40R in Fig. 3c) and from t40l to the mid-sagittal plane running through Ba (shown as T40L in Fig. 3c). t40r and t40l denote intersections of cranial vault and frontal planes having 40mm distance from Ba (as shown in Fig. 3c).
T60; Bilateral difference between the distances from t60r to the mid-sagittal plane running through Ba (shown as T60R in Fig. 3c) and from t60l to the mid-sagittal plane running through Ba (shown as T60L in Fig. 3c). t60r and t60l denote intersections of cranial vault and frontal planes having 60mm distance from Ba (as shown in Fig. 3c).
All values represent the difference of right values minus left values.
Correlation between the bilateral difference in the position of mandibular fossas (Fs) and the cranial vault length in the sagittal dimension (S20–60). Significant correlation was seen in Fs and S20 ($r = -0.62, p = 0.004$), and in Fs and S40 ($r = -0.70, p = 0.0008$), and in Fs and S60 ($r = -0.53, p = 0.01$).

Correlation between the bilateral difference in the position of mandibular fossas (Fv) and the cranial vault height in the vertical dimension (V20–60). Significant correlation was not seen in Fv and any measures ($p > 0.05$).

Correlation between the bilateral difference in the position of mandibular fossas (Ft) and the cranial vault width in the transverse dimension (T20–60). Significant correlation was not seen in Ft and any measures ($p > 0.05$).
め、片側の下顎骨体の伸長をより大きく促した可能性が考えられる。

本研究では、初診時に撮影した CT を用いて頭蓋冠形態と下顎窩の位置を三次元的に解析した。頭蓋冠と下顎窩のいずれも二次元的画像を用いた解析では、正確な形態や位置の定量的評価は困難だったと考えられる。最近、顎顔面形態のシミュレーションを目的に開発された様々なソフトウェアが市販されている。本研究における計測値の評価者内誤差と評価者間誤差は、きわめて小さかった。このように CT 画像とソフトウェアを活用することにより、本研究では十分な精度を持って三次元形態解析が可能となったと考えている。

骨格性下顎前突症をはじめとする顎変形症は、上下顎骨の顎間関係や顎骨の変形に起因して生じる重度の不正咬合である。21, 22) そのため、変形が顎骨にとどまらず、頭蓋に及ぼす影響を考慮した解析が重要であると考えられる。本研究において得られた結果が骨格性下顎前突症に限定したものか、あるいは上顎前突症や骨格的不正のない症例にも共通した特徴なのかは不明である。本研究で用いた症例において、前頭基準平面の左右差が観察された症例では、同側の下顎窩前突症が主原因であると考えられる。しかし、下顎下角の変形や両側下顎窩の位置の左右差が顎変形症以外の症例でも認められるかは不明である。今後、この点をより詳細に検討する必要がある。

表 5 マンドブリーバー長（mm）

Case	Pog-GoR (mm)	Pog-GoL (mm)	Bilateral difference
1	84.4	80.1	4.3
2	85.4	87.0	-1.6
3	94.7	93.6	1.1
4	89.0	91.7	-2.7
5	88.1	88.3	-0.2
6	83.2	84.3	-1.1
7	89.3	89.4	-0.1
8	86.5	83.6	2.9
9	89.9	83.7	6.2
10	91.7	92.6	-0.9
11	86.3	85.0	1.3
12	80.0	83.3	-3.3
13	86.5	88.5	-2.0
14	93.1	92.3	0.8
15	88.3	90.5	-2.2
16	86.9	86.6	0.3
17	89.1	88.3	0.8
18	91.7	89.8	1.9
19	85.3	85.7	-0.4

Table 5 Mandibular body length (mm)

この距離は Pog-GoR と Pog-GoL が、それぞれ CT 画像の左右側面上で代表されるマンドブリーバー長を表している。各差の値は Pog-GoR から Pog-GoL までの距離を表している。

結 語

明海大学病院を受診した、オトガイ棘の側方偏位が4 mm 未満で、ANB 角が0°未満の骨格性下顎前突症の成人女性 19 例の初診時 CT 上に、水平基準平面、正中矢状基準平面、前頭基準平面の 3 平面を規定した。

その結果、正中矢状基準平面と側方 20 〜 60mm 離れた頭蓋冠形態の前後の左右差と、両側下顎窩の前後の位置の左右差間に有意な相関が得られた。すなわち、片側の頭蓋冠後方点と反対側を比較して前方にある症例は、同側の下顎窩も前方に位置していた。一方で、両側下顎窩にこのような前後的な差があるなら、19 例のオトガイ棘の側方偏位が限定的だったのでは、両側下顎窩の位置の前後の位置の左右差を下顎骨体長が補償したと考えられる。

本論文の要旨は、第 77 回日本歯科内科学会学術大会（2018 年 10 月、横浜）において発表した。
文献
1) Sadler, T.W.: 骨格系. ラングマン人体発生学, 10版. メディカル・サイエンス・インターナショナル, 東京, 2013, p137-156.
2) 大峯 淳: 頭蓋冠形態と下顎窩の位置の関連性. 腦田 崇, 他編: 口腔組織・発生学, 2版. 医歯薬出版, 東京, 2015, p10-21.
3) 島村和宏: 頭蓋, 顔面の発育. 白川哲夫, 他編: 小児歯科学, 5版. 医歯薬出版, 東京, 2017, p33-45.
4) Moore, K.L.: 頭蓋の発生. ムーア人体発生学, 8版. 医歯薬出版, 東京, 2011, p320-336.
5) 山本照子: 頭蓋ならびに顎顔面の発育および成長発育. 相馬邦道, 他編著: 歯科矯正学, 5版. 医歯薬出版, 東京, 2010, p23-40.
6) Sinclair, D.: Growth of Systems. Human growth after birth, 3rd ed. Oxford University Press, Oxford, 1978, p68-97.
7) 阿部伸一, 他: 顎関節症を見直す 2. 顎関節の形態と機能. 歯科学報, 102:649-658, 2002.
8) 井出吉信, 他: 顎顔面の発育. 腦田 崇, 他編: 口腔解剖学, 1版. 医歯薬出版, 東京, 2009, p84-87.
9) 井出吉信, 他: 下顎窩. 井出吉信, 他著: 顎関節機能解剖図譜, 1版. クインテッセンス出版, 東京, 1990, p26-29.
10) 遠藤教昭, 他: 骨格型下顎前突症における垂直的顎面骨格パターンと脳顎面形態との関連性について. 日顎別誌, 58:105-115, 1999.
11) 吉武 崇, 他: 頭蓋底部と下顎骨に特異な成長パターンをみた重度下顎前突の1例. 明海歯科医学, 40:199-211, 2011.
12) Pirttiniemim, P., et al.: Relation of the glenoid fossa to craniofacial morphology, studied on dry human skulls. Acta Odontol Scand, 48:359-364, 1990.
13) 浅間雄介, 他: 顎面変形症と顔面骨格の統合による実態石膏モデルを用いた手術シミュレーションの有効性. 日顎変形誌, 23:15-24, 2013.
14) 三条恵介, 他: 精度の高い歯列画像を有する三次元顎面頭蓋画像の再構成. 日顎変形誌, 25:207-217, 2015.
15) Cevidanes, L.H., et al.: Three-dimensional surgical simulation. Am J Orthod Dentofacial Orthop, 138:361-371, 2010.
16) 飯塚哲夫, 他: 頭顎X線規格写真法による症例分析法の基準値について—日本人成人男女正常咬合群—. 日顎変誌, 16:4-12, 1957.
17) Kim, S., et al: Morphologic relationship between the cranial base and the mandible in patients with facial asymmetry and mandibular prognathism. Am J Orthod Dentofacial Orthop, 144:330-340, 2013.
18) 石田哲也: 最適形状決定法による咀嚼筋筋力と下顎骨形との関連性に関する研究. 口病誌, 51:103-123, 1984.
19) 内山 正: 小児の舌骨の位置と顎顔面形態との関係について. 日大歯学, 74:146-153, 2000.
20) 坂本貴彦: 小児期反対咬合の舌骨位と顎顔面形態との関係について. 日大歯学, 75:28-37, 2001.
21) 飯塚忠彦: 顎変形症の外科的治療に関する研究. 日口外誌, 32:696-722, 1983.
22) 小林正治, 他: 本邦における顎変形症治療の実態調査. 日顎変形誌, 18:237-250, 2008.
23) 久保誼修, 他: 顎顔面非対称患者における頭部形態について. 日顎変形誌, 2:48-52, 1992.
24) 佐藤勇資, 他: 下顎の側方偏位と頭顎冠形態の関連性について. 日顎変形誌, 4:96-103, 1994.