Clinical Validity of Next-Generation Sequencing Multi-Gene Panel Testing for Detecting Pathogenic Variants in Patients With Hereditary Breast-Ovarian Cancer Syndrome

Jaeeun Yoo, M.D.1,2, Gun Dong Lee, M.T.1,2, Jee Hae Kim, M.T.1,2, Seung Nam Lee, M.T.1,2, Hyojin Chae, M.D., Ph.D.1,2, Eunhee Han, M.D., Ph.D.1,2, Yonggoo Kim, M.D., Ph.D.1,2, and Myungshin Kim, M.D., Ph.D.1,2

1Department of Laboratory Medicine and 2Catholic Genetic Laboratory Center, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea

Background: Hereditary breast and ovarian cancer syndrome (HBOC) is characterized by pathogenic variants in BRCA and other cancer-related genes. We analyzed variants in BRCA gene and other cancer-related genes in HBOC patients to evaluate the clinical validity of next-generation sequencing (NGS) multi-gene panel testing.

Methods: The BRCA1/2 NGS testing was conducted for 262 HBOC patients. Multiplex ligation-dependent probe amplification and direct Sanger sequencing were performed for confirmation. Multi-gene panel testing was conducted for 120 patients who did not possess BRCA1/2 pathogenic variants but met the National Comprehensive Cancer Network criteria.

Results: Pathogenic variants in BRCA1/2 were detected in 30 HBOC patients (11.5%). Additionally, four out of the 120 patients possessed pathogenic variants by multi-gene panel testing (3.3%): MSH2 (c.256G>T, p.Glu86*), PMS2 (c.1687C>T, p.Arg563*), CHEK2 (c.546C>A, p.Tyr182*), and PALB2 (c.3351-1G>C). All the four patients had a family history of cancer.

Conclusions: Multi-gene panel testing could be a significant screening tool for HBOC patients, especially for those with a family history of cancer.

Key Words: Hereditary breast and ovarian cancer syndrome, BRCA1/2, Pathogenic variants, Multi-gene panel, Clinical validity, Next-generation sequencing

INTRODUCTION

Hereditary breast and ovarian cancer syndrome (HBOC) is characterized by increased susceptibility to the development of breast, ovarian, and other cancers [1]. The significance of the BRCA1 and BRCA2 (BRCA1/2) germline variants as predictors of HBOC has been well established [2]. Identification of germline variants in BRCA1/2 has improved the prevention and diagnosis of HBOC [3]. However, BRCA1/2 pathogenic variants have been observed in only approximately 20% of suspected hereditary cases [4]; several other cases are suspected to be caused by germline pathogenic variants in other cancer-related genes [5].

Recent advances in genetic testing have led to the discovery of many genes that increase the susceptibility to cancer [5]. Fur-
thermore, the development of next-generation sequencing (NGS) has enabled simultaneous testing of multiple genes. Many recent studies have examined the clinical validity of comprehensive multi-gene panel testing in breast and ovarian cancers [6-8]. It has been reported that 3% to 4% of high-risk patients have pathogenic variants in cancer-related genes other than BRCA1/2, but the exact prevalence details remain unknown [9, 10]. Therefore, clear clinical management guidelines should be established, and evidence-based clinical validity of multi-gene panel testing should be conducted. In this study, we evaluated the clinical validity of multi-gene panel, including BRCA1/2 and 25 other cancer-related genes as a screening tool for patients with HBOC.

METHODS

Study population

This was a retrospective study based on chart review and test results. We reviewed 262 patients with breast or ovarian cancer who underwent BRCA1/2 gene testing from May 2015 to July 2017 in Seoul St. Mary’s Hospital, Seoul, Korea and met the National Comprehensive Cancer Network (NCCN) criteria for HBOC [11]. For inclusion, HBOC should be suspected in individuals with a personal or family history of any of the followings: (a) breast cancer diagnosed at or before the age of 45 years; (b) ovarian cancer; (c) multiple primary breast cancers either in one or both breasts; (d) triple-negative (estrogen receptor-negative, progesterone receptor-negative, and human epidermal growth factor receptor 2 [HER2/neu]-negative) breast cancer, particularly when diagnosed before the age of 60 years; (e) two or more relatives with breast cancer, with at least one under the age of 50 years; (f) three or more relatives with breast cancer at any age; and (g) a previously identified BRCA1 or BRCA2 pathogenic variant in the family. Medical and family histories were provided by the referring physicians and/or were collected through a review of the patients’ medical records (Table 1).

The BRCA1/2 test results of the 262 patients were evaluated. According to the BRCA testing strategy of our institution, patients who tested negative in the BRCA1/2 test but met the NCCN multi-gene testing criteria underwent cancer-related multi-gene panel testing (Fig. 1). The NCCN multi-gene testing criteria were as follows: (a) at least one case of breast or ovarian cancer in a first- or second-degree relative; (b) bilateral breast cancer; (c) a first diagnosis of breast cancer before the age of 40 years; and (d) co-diagnosis of breast and ovarian cancers in the same patient. In total, 120 HBOC patients were selected for the NGS multi-gene panel testing targeting cancer-related genes other than BRCA1/2.

Multi-gene panel testing was performed for 120 of the 232 BRCA1/2-negative patients, including 72 breast cancer patients, 47 ovarian cancer patients, and one patient with both breast and ovarian cancers. All patients previously provided informed consent for all tests, including the BRCA1/2 gene and multi-gene panel testing. This study was approved by the Institutional Review Board/Ethics Committee of Seoul St. Mary’s Hospital, Seoul, Korea (KC15RISI0915).

Sample collection and preparation

Peripheral blood samples were collected from HBOC patients. Genomic DNA was extracted from whole blood using the QiAamp
BRCA1/2 variant testing using NGS

The library was prepared using the Ion Chef System (Thermo Fisher Scientific) according to the manufacturer’s instructions. Briefly, barcoded libraries were generated from 10 ng of DNA per sample using the Ion AmpliSeq Chef Solutions DL8 Kit (Thermo Fisher Scientific) and the Oncomine BRCA Research Assay (Thermo Fisher Scientific). Two premixed pools of 265 primer pairs were used to generate the sequencing libraries. Clonal amplification of the libraries was performed by emulsion PCR using an Ion AmpliSeq IC 200 Kit (Thermo Fisher Scientific). Next, the prepared libraries were sequenced on an Ion S5 XL Sequencer using an Ion 520 Chip and an Ion 520 kit–Chef Kit (Thermo Fisher Scientific). Raw sequence data in FASTQ format were aligned to the hg19 human reference genome using the Torrent Mapping Alignment Program aligner implemented in v5.2 of the Torrent Suite software (Thermo Fisher Scientific). We used the plug-in Torrent Variant Caller v5.2.0.34 (Thermo Fisher Scientific) for single nucleotide variant (SNV) calling to generate a variant call format file. For Torrent Variant Caller analysis, the default settings of the germline low-stringency parameters (minimal variant frequency, 0.1; minimum variant quality, 10; minimum coverage, 5×; maximum strand bias, 0.98; and minimum variant score, 10) were used and candidate variants were obtained only at a variant frequency at a given position ≥20% and variant coverage ≥20×. Copy number variation (CNV) and insertions and deletions were defined as recommended by the manufacturer. Direct sequencing of the probe binding and ligation sites was performed for the relevant exons to detect nearby variants, which can lead to a false decrease in peak signal.

Multi-gene panel testing using NGS

Following BRCA1/2 variant testing, we conducted a multi-gene panel testing using NGS with a targeted capture sequencing panel (BRCA Reflex, Hereditary Cancer Research Panel, Thermo Fisher Scientific Inc., Waltham, MA, USA) that included all coding sequences and intron-exon boundaries of the coding exon from 25 hereditary cancer-related genes with a central role in DNA repair or the mismatch repair (MMR) pathway (APC, ATM, BARD1, BMPRIA, BRIP1, CDH1, CDK4, CDKN2A, CHEK2, EPCAM, MLH1, MRE11A, MSH2, MSH6, MUTYH, NBN, PALB2, PMS2, PTEN, RAD50, RAD51C, RAD51D, SMAD4, STK11, and TP53) [13]. NGS analysis was subsequently performed using the Ion Torrent S5 system (Life Technologies, Foster City, CA, USA). High-quality sequencing data with an average depth of 500–1,000-folds were acquired. Annotation of SNVs, indels, and splice-site alterations was performed using the Ion Reporter Server System (Life Technologies).

Confirmatory Sanger sequencing

The detected pathogenic and likely pathogenic variants identified by NGS analysis were verified by Sanger sequencing. Direct sequencing of entire coding exons and flanking intronic sequences of relevant genes was performed bi-directionally on an ABI 3130XL Genetic Analyzer (Applied Biosystems, Foster City, CA, USA) with a BigDye Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems). Chromatograms were analyzed with Sequencher software version 5.0 (Gene Codes, Ann Arbor, MI, USA). Sanger sequencing was performed as described previously [14]. Exon numbering and DNA sequence variant descriptions are based on NM_007294.3 and NM_000059.3 as reference sequences for BRCA1/2. The reference sequences for CHEK2, MLH1, MSH2, PALB2, and PMS2 are as follows: CHEK2 NM_001005735.1, MLH1 NM_000249.3, MSH2 NM_000251.2, PALB2 NM_024675.3, and PMS2 NM_000535.6.
Genetic variant classification
Genetic variants were classified using a five-tier system according to the guidelines of the American College of Medical Genetics and Genomics (ACMG): pathogenic, likely pathogenic, variant of unknown significance (VUS), likely benign, or benign [15]. Pathogenic and likely pathogenic variants were considered significant.

Statistical analysis
Normally distributed continuous variables were summarized as mean±SD and compared using the Student t-test. Patient age was summarized as median (range). All tests were two-tailed. \(P \leq 0.05 \) was considered statistically significant. Statistical analyses were performed using MedCalc version 15.5 (MedCalc, Ostend, Belgium).

Fig. 2. Pedigrees and confirmation in IGV and Sanger sequencing of pathogenic variants in multi-gene panel testing. (A) Pathogenic variant in CHEK2 and MSH2. (B) Pathogenic variants in PALB2 and PMS2. Abbreviation: IGV, Integrative Genomics Viewer.
RESULTS

Pathogenic or likely pathogenic variants in *BRCA1/2* were detected in 30 patients (30/262, 11.5%). Of the patients included in the multi-gene panel testing group, 3.3% (4/120) carried a pathogenic variant: two ovarian cancer patients and two breast cancer patients. The median age at diagnosis was 46.5 years (range 26–60 years) (Fig. 2). All four patients had a family history of cancer. The variants identified were *MSH2* (c.256G>T, p.Glu86*, pathogenic), *PMS2* (c.1687C>T, p.Arg563*, rs587778618, pathogenic), *CHEK2* (c.546C>A, p.Tyr182*, rs200917541, pathogenic), and *PALB2* (c.3351-1G>C, pathogenic). The variants in *MSH2* and *PALB2* have not been previously identified. These variants cause premature termination or a splicing error and are classified as pathogenic or likely pathogenic, according to the ACMG criteria (Evidence PVS1, PM1, PM2, PP3-5) [15]. Additionally, a missense variant in the *MLH1* gene (c.1937A>G p.Tyr646Cys, rs35045067) of a breast cancer patient was classified as VUS.

Patients with a variant in *BRCA1/2* or cancer-related genes (N = 34) had a family history of cancer in a second-degree or closer relative more often than those without a detected variant (40.0% vs 28.4%, P = 0.023). In one patient with *PMS2* variant, the breast cancer recurred one year after surgery and completion of chemotherapy.

DISCUSSION

We performed a multi-gene panel test using NGS analysis and evaluated its clinical validity in HBOC patients, focusing on patients negative for pathogenic variants in the *BRCA1/2* NGS testing. *BRCA1/2* pathogenic variants were detected in 11.5% of HBOC patients. This result is lower than that reported by the Korean Hereditary Breast Cancer (KOHBRA) large-cohort study (15.73%, range 26–60 years) (Fig. 2). All four patients had a family history of cancer. The variants identified were *MSH2*, *PMS2*, *CHEK2*, *PALB2*, *BRCA1*, *BRCA2*, *CDH1*, *MUTYH*, *APC*, *CDK2NA*, *TP53*, *PALB2*, *BRCA1*, *BRIP1*, and *MRE11A*. The pathogenic variants identified in *MSH2*, *PMS2*, and *CHEK2* are nonsense variants. *MSH2* is an MMR gene, and pathogenic variants in it can lead to Lynch syndrome or hereditary nonpolyposis colorectal cancer syndrome. Nonsense variants, are the most common cause of MMR function deficiency, comprising 82% of *MSH2* pathogenic variants [18]. The patient with *MSH2* pathogenic variant had a maternal history of endometrial and colon cancer, suggesting the possibility of developing Lynch syndrome. The c.256G>T (p.Glu86*) variant in *MSH2* is novel and was classified as pathogenic according to the ACMG guidelines [15].

The *PMS2* gene is also an MMR gene; the *PMS2* protein helps correct errors created during DNA duplication. Approximately 2% of Lynch syndrome families with pathogenic variants have a variant in *PMS2* gene [19]. The nonsense variant detected in this study, c.1687C>T (p.Arg563*, rs587778618), is classified as pathogenic in the ClinVar database (http://www.ncbi.nlm.nih.gov/clinvar/) [20-22].

The frequency of pathogenic variants in 25 hereditary cancer-related genes in our study is in line with previous findings (Table 2) [10, 13, 17]. All these studies selected *BRCA1/2*-negative breast and/or ovarian cancer patients. Tung, et al. [10] reported that 2.9% of the 377 patients had pathogenic variants in breast/ovarian-associated genes but were negative for *BRCA1/2* variants. Hirotsu, et al. [13] observed that 1.9% (3/155) of patients possessed a pathogenic variant in genes that have a central role in DNA repair or the MMR pathway.

The pathogenic variants identified in *MSH2*, *PMS2*, and *CHEK2* are nonsense variants. *MSH2* is an MMR gene, and pathogenic variants in it can lead to Lynch syndrome or hereditary nonpolyposis colorectal cancer syndrome. Nonsense variants, are the most common cause of MMR function deficiency, comprising 82% of *MSH2* pathogenic variants [18]. The patient with *MSH2* pathogenic variant had a maternal history of endometrial and colon cancer, suggesting the possibility of developing Lynch syndrome. The c.256G>T (p.Glu86*) variant in *MSH2* is novel and was classified as pathogenic according to the ACMG guidelines [15].

The *PMS2* gene is also an MMR gene; the *PMS2* protein helps correct errors created during DNA duplication. Approximately 2% of Lynch syndrome families with pathogenic variants have a variant in *PMS2* gene [19]. The nonsense variant detected in this study, c.1687C>T (p.Arg563*, rs587778618), is classified as pathogenic in the ClinVar database (http://www.ncbi.nlm.nih.gov/clinvar/) [20-22].

Table 2. Comparison of studies examining breast and/or ovarian cancer patients negative for the *BRCA1/2* testing

Patients (N)	NGS platform	Target genes in panel (N)	Frequency of pathogenic variant (%)	Genes with identified pathogenic variant	Population
	Ion S5 system (Thermo Fisher)	*MSH2*, *PMS2*, *CHEK2*, *PALB2*	3.3	*MSH2*, *PMS2*, *CHEK2*, *PALB2*, *BRCA1*, *BRCA2*, *CDH1*, *MUTYH*, *APC*, *CDK2NA*, *TP53*, *PALB2*, *BRCA1*, *BRIP1*, *MRE11A*	Korean
	HiSeq2500 or MiSeq (Illumina)	*CHEK2*, *ATM*, *PALB2*, *BARD1*, *NBN*, *CDH1*, *MUTYH*, *APC*, *CDK2NA*	4.3	*ATM*, *MRE11A*, *MSH6*	Not disclosed
	Ion 5 System (Thermo Fisher)	*ATM*, *MRE11A*, *MSH6*	1.9	*TP53*, *PALB2*, *BARD1*, *BRIP1*, *MRE11A*	Japanese
	MiSeq (Illumina)	*TP53*, *PALB2*, *BARD1*, *BRIP1*, *MRE11A*	7.5	*TP53*, *PALB2*, *BARD1*, *BRIP1*, *MRE11A*	Korean

Abbreviation: NGS, next-generation sequencing.

This study

Tung, et al. [10]

Hirotsu, et al. [13]

Park, et al. [17]
Checkpoint kinase 2 (CHEK2) is a serine/threonine kinase that is activated on DNA damage and is involved in pathways that activate DNA repair, cell cycle arrest, or apoptosis in response to initial damage [23]. The loss of kinase function has been correlated with different cancer types, mainly breast cancer [23]. The CHEK2 gene is affected by missense or deleterious pathogenic variants. To the best of our knowledge, the CHEK2 c.546C>A variant (p.Tyr182*, rs200917541) is not included in any population databases.

The splicing site variant of the PALB2 gene (c.3351-1G>C) is classified as pathogenic (PVS1, PM2, and PP3). The Partner and localizer of BRCA2 (PALB2) protein interacts with both BRCA1 and BRCA2, forming a “BRCA complex”, in which PALB2 acts as a bridge between BRCA1 and BRCA2. Pathogenic variants in the PALB2 gene are associated with breast, pancreatic, and, possibly, ovarian cancers [24-26].

Additionally, we identified a breast cancer patient with a missense variant in the MLH1 gene (c.1937A>G p.Tyr646Cys, rs35045067). This variant is classified as “uncertain significance” in ClinVar, and is not reported in the Korean reference genome database (KRGDB: http://152.99.75.168/KRGDB/). However, the patient has a significant family history (father: prostate cancer, brother: pancreatic cancer, sister: sarcoma). Thus, further family studies are needed to determine whether this variant is pathogenic or not. The MLH1 gene is another MMR gene implicated in Lynch syndrome. The inclusion of breast cancer within the syndrome remains controversial. Harkness, et al. [27] reported that female MLH1 carriers appear to be at moderate risk of breast cancer and should be considered for breast screening. Scott, et al. [28] also showed a significant increase in breast cancer cases in an MLH1 pathogenic variant-positive group. Woo, et al. [29] have stated that missense variants in MMR genes should be interpreted with caution and that multiple analyses, including functional analyses, are needed. Thus, further studies, including functional analyses, are needed to refine the clinical significance of this variant and its association with Lynch syndrome.

Our results and previous results demonstrate that there is no prognostic difference between HBOC patients with and without germline variants of cancer-related genes. Nevertheless, it would be worthwhile to determine the prognostic impact of cancer-related pathogenic variants through a large-cohort study.

Breast or ovarian cancer patients with related pathogenic variants have a family history of not only breast or ovarian cancer but also colon cancer, pancreatic cancer, prostate cancer, and sarcomas. Thus, multi-gene panel testing may be a good screening tool in such patients with a family history of cancer.

Our study has several limitations. First, family history was not collected sufficiently. To apply NCCN guidelines precisely, information on at least the 2nd degree family history of patients should be available. Due to the lack of information, some patients might have been miscategorized. Second, we did not evaluate all the VUS detected in the multi-gene panel testing. Further evaluation of VUS might affect the prevalence data for the pathogenic variants in HBOC patients.

In conclusion, the NGS multi-gene panel testing demonstrated significant clinical validity in HBOC patients as a screening tool, especially for patients with a family history of cancer. The identification of women with pathogenic variants in cancer-related genes may have important implications for family testing.

Author Contributions

Y.K. and M.K. initiated and designed the study and coordinated the drafting of the manuscript. G.L., J.K., and S.L. performed test and collected data. H.C., J.Y., and E.H. carried out data analysis and wrote the manuscript. All authors read and approved the final manuscript.

Conflicts of Interest

None declared.

Research Funding

This study was supported by Research Fund of Seoul St. Mary’s Hospital, The Catholic University of Korea.

ORCID

Jaeun Yoo https://orcid.org/0000-0001-9917-5393
Gun Dong Lee https://orcid.org/0000-0003-4655-0641
Jee Hae Kim https://orcid.org/0000-0003-2447-9303
Seung Nam Lee https://orcid.org/0000-0002-1862-3666
Hyojin Chae https://orcid.org/0000-0001-5870-1887
Eunhee Han https://orcid.org/0000-0001-6519-1539
Yonggoo Kim https://orcid.org/0000-0003-2808-3795
Myungshin Kim https://orcid.org/0000-0001-8632-0168

REFERENCES

1. Smith EC. An overview of hereditary breast and ovarian cancer syndrome.
J Midwifery Womens Health 2012;57:577-84.

2. Collaborative Group on Hormonal Factors in Breast Cancer. Familial breast cancer: collaborative reanalysis of individual data from 52 epidemiological studies including 58,209 women with breast cancer and 101,986 women without the disease. Lancet 2001;358:1389-99.

3. Crawford B, Adams SB, Sittler T, van den Akker J, Chan S, Leitner O, et al. Multi-gene panel testing for hereditary cancer predisposition in unsolved high-risk breast and ovarian cancer patients. Breast Cancer Res Treat 2017;163:383-90.

4. Couch FJ, Nathanson KL, Offit K. Two decades after BRCA: setting paradigms in personalized cancer care and prevention. Science 2014;343:1466-70.

5. Economopoulou P, Dimitriadis G, Psyrri A. Beyond BRCA1 and BRCA2: new hereditary breast cancer susceptibility genes. Cancer Treat Rev 2015;41:1-8.

6. Selkirk CG, Vogel KJ, Newlin AC, Weissman SM, Weiss SM, Wang CH, et al. Cancer genetic testing panels for inherited cancer susceptibility: the clinical experience of a large adult genetics practice. Fam Cancer 2014;13:527-36.

7. LaDuca H, Stuenkel AJ, Dolinsky JS, Keiles S, Tandy S, Pesaran T, et al. Utilization of multigene panels in hereditary cancer predisposition testing: analysis of more than 2,000 patients. Genet Med 2014;16:830-7.

8. Walsh T, Casadei S, Lee MK, Pennil CC, Nord AS, Thornton AM, et al. Mutations in 12 genes for inherited ovarian, fallopian tube, and peritoneal carcinoma identified by massively parallel sequencing. Proc Natl Acad Sci U S A 2011;108:18032-7.

9. Desmond A, Kurian AW, Gabree M, Mills MA, Anderson MJ, Kobayashi Y, et al. Clinical actionability of multigene panel testing for hereditary breast and ovarian cancer risk assessment. JAMA Oncol 2015;1:943-51.

10. Tung N, Battelli C, Allen B, Kaldate R, Bhatnagar S, Bowles K, et al. Frequency of mutations in individuals with breast cancer referred for BRCA1 and BRCA2 testing using next-generation sequencing with a 25-gene panel. Cancer 2015;121:25-33.

11. Daly MB, Axilbund JE, Buys S, Crawford B, Farrell CD, Friedman S, et al. Genetic/familial high-risk assessment: breast and ovarian. J Natl Compr Canc Netw 2010;8:562-94.

12. Kim DH, Chae H, Jo I, Yoo J, Lee H, Jang W, et al. Identification of large genomic rearrangement of BRCA1/2 in high risk patients in Korea. BMC Med Genet 2017;18:38.

13. Hirotsu Y, Nakagomi H, Sakamoto I, Arinami K, Oyama T, Mochizuki H, et al. Multigene panel analysis identified germline mutations of DNA repair genes in breast and ovarian cancer. Mol Genet Genomic Med 2015;3:459-66.

14. Park J, Jang W, Chae H, Kim Y, Chi HY, Kim M, Comparison of targeted next-generation and sanger sequencing for the BRCA1 and BRCA2 mutation screening. Annals of Oncology 2016;27:197-201.

15. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 2015;17:405-24.

16. Kang E, Seong MW, Park SK, Lee JW, Lee J, Kim LS, et al. The prevalence and spectrum of BRCA1 and BRCA2 mutations in Korean population: recent update of the Korean Hereditary Breast Cancer (KOH-BRA) study. Breast Cancer Res Treat 2015;151:157-68.

17. Park JS, Lee ST, Nam EJ, Han JW, Lee JY, Kim J, et al. Variants of cancer susceptibility genes in Korean BRCA1/2 mutation-negative patients with high risk for hereditary breast cancer. BMC Cancer 2018;18:83.

18. Pelotomi P and Vasen H. Mutations associated with HNPCC predisposition – Update of ICG-HNPCC/INSiGHT mutation database. Dis Markers 2004;20:269-76.

19. Talseth-Palmer BA, McPhillips M, Groombridge C, Spigelman A, Scott RJ. MS6 and PMS2 mutation positive Australian Lynch syndrome families: novel mutations, cancer risk and age of diagnosis of colorectal cancer. Hered Cancer Clin Pract 2010;8:5.

20. Vasovcak P, Krepelova A, Menigatti M, Puchmajerovva A, Skapa P, Augustinakova A, et al. Unique mutational profile associated with a loss of TDG expression in the rectal cancer of a patient with a constitutional PMS2 deficiency. DNA Repair (Amst) 2012;11:616-23.

21. Vaughn CP, Robles J, Swensen JJ, Miller CE, Lyon E, Mao R, et al. Clinical analysis of PMS2 mutation detection and avoidance of pseudogenes. Hum Mutat 2010;31:588-93.

22. Goodenberger ML, Thomas BC, Riegert-Johnson D, Boland CR, Plon SE, Clendenning M, et al. PMS2 monoallelic mutation carriers: the known unknown. Genet Med 2016;18:13-9.

23. Apostolou P and Papasotiriou I. Current perspectives on CHEK2 mutations in breast cancer. Breast Cancer (Doi Med Press) 2017;9:331-5.

24. Klussa A, Balabas A, Piatkowski M, Czarny K, Paczkowska K, Nowakowska D, et al. PALB2 mutations in BRCA1/2-mutation negative breast and ovarian cancer patients from Poland. BMC Med Genomics 2017; 10:14.

25. Reid S, Schindler D, Hanenberg H, Barker K, Hanks S, Kalb R, et al. Biallelic mutations in PALB2 cause Fanconi anemia subtype FA-N and predispose to childhood cancer. Nat Genet 2007;39:162-4.

26. Xie B, Sheng Q, Nakashiki O, Okita W, Wu J, Christ N, et al. Control of TDG expression in the rectal cancer of a patient with a constitutional PMS2 deficiency. DNA Repair (Amst) 2012;11:616-23.

27. Park JS, Lee ST, Nam EJ, Han JW, Lee JY, Kim J, et al. Variants of cancer susceptibility genes in Korean BRCA1/2 mutation-negative patients with high risk for hereditary breast cancer. BMC Cancer 2018;18:83.

28. Scott RJ, McPhillips M, Meldrum CJ, Fitzgerald PE, Adams K, Spigelman AD, et al. Hereditary nonpolyposis colorectal cancer in 95 families: differences and similarities between mutation-positive and mutation-negative kindreds. Am J Hum Genet 2001;68:118-27.

29. Yoo HI, Woo YM, Kim S, Lee ST, Ki CS, Kim JW. Challenges in assessing pathogenicity based on frequency of variants in mismatch repair genes: an extreme case of a MSH2 variant and a meta-analysis. Gene 2014;546:421-4.

Yoo J, et al.
Multi-gene panel testing for breast-ovarian cancer