Original Research Article

Phosphorus Fractions - Keys to Soil based P Management

M. Chandrakala1*, C.A. Srinivasamurthy2, V.R.R. Parama3, S. Bhaskar4, Sanjeev Kumar5 and D.V. Naveen6

1National Bureau of Soil Survey and Land Use Planning, Regional Centre, Hebbal, Bangalore-560 024, Karnataka, India
2Director of Research, Central Agricultural University, Imphal, Manipur, India
3Department Soil Science and Agricultural Chemistry, UAS, Bangalore-560 065, Karnataka, India
4Department of Agronomy, UAS, Bangalore-560 065, Karnataka, India
5NDRI, Karnal, India
6Department of Soil Science and Agricultural Chemistry, Sericulture College, Chintamani, Karnataka, India

*Corresponding author

A B S T R A C T

Red soils (Alfisols) of Karnataka are low in total and available phosphorus (P). When soluble P sources are added, undergo transformation into unavailable forms with time. Native P compounds, some being highly insoluble are unavailable for plant uptake. Thus, knowing the changes in P fractions in different soils is much important for P recommendation. The objective of the study was to find out the fate of the applied phosphorus in soils of different P fertility in a finger millet-maize cropping system. An experiment with creation of five P fertility gradient strips (Very low, Low, Medium, High and Very high) in one and the same field followed by response of finger millet and maize crops to graded levels of P was undertaken at UAS, Bangalore. Soil P fractions were determined in a soil after the harvest of maize in a finger millet-maize cropping system. There was an increase in total-P, organic-P, reductant soluble-P, occluded-P and calcium-P fractions with the increased gradient strips from very low to very high applied with levels of P. Whereas, saloid-P, aluminium-P and iron-P are the slowly and plant available labile-P forms which were decreased as the P fertility gradients and dose of P addition increased. There was a direct relationship with addition, fixation and distribution of P fractions. Hence, continuous P fertilization can be restricted in soils of high and very high initial P status as the PUE was 20-40 per cent only in general leads to build-up and transformation in to non-labile P forms.

Keywords
Fertility gradients, Finger millet – maize cropping system, Graded levels of P, Soil phosphorus fractions.

Accepted: 04 September 2017
Available Online: 10 November 2017

Introduction

The total phosphorus level of soil is not only low but also P compounds are mostly unavailable for plant uptake. The concentrations of phosphorus in the soil solution (intensity) and capacity of the soil to supply phosphorus to the soil solution are important factors affecting P availability. As the basic raw material rock phosphate available in the country is only 10 per cent of the total requirement hence, fertilizer industry...
in India is not self sufficient in meeting the requirement of P therefore, depends on imports for the balance of 90 per cent (Chandrakala, 2014).

Phosphorus (P) dynamics in soil and maintenance of its adequate supply are important for sustainability (Song et al., 2007). The application of P to each crop in a rotation and low recovery of added P has been found to result in its significant build up in soils (Brar et al., 2004). Application of fertilizer phosphorus is essential for raising the available P content in soils in order to meet the crop requirements at different stages of growth. The availability of soil P to plants depends on the replenishment of labile P from other P fractions. Nwoke et al., (2004) observed that the changes in different inorganic-P fractions in soils under a wide range of management conditions. The extent of P depletion ranged from 33 to 129 per cent over a period of 11 years (Nambiar and Ghosh, 1984; Tandon, 1987).

Knowing the initial soil test value and recovery of added phosphates, it will be possible to work out the amount of fertilizer phosphorus needed to build-up the soil phosphate to a given critical limit. Soil based P management relies on maintenance of adequate soil P fertility and replenishment of P nutrient removed by harvested grain. However, there is a need to know the effect of P addition and distribution in soils of different P status for sustained P management and improved PUE in the region. In the light of the above facts, a field experiment was undertaken involving gradient creation followed by response of finger millet (Eleusine coracana L.) - maize (Zea mays L.), are the major crops cultivated in Karnataka among millets and cereals, respectively.

The objective of the investigation is to assess the availability of phosphorus and their different fractions in soils of different phosphorus fertility gradients applied with graded levels of P to finger millet- maize cropping system.

Materials and Methods

The field experiment comprised of two stages. Fertility gradient creation was the preparatory step per the procedure of Ramamoorthy et al., (1967) followed by finger millet-maize cropping system in the subsequent seasons.

Experimental site

The experiment was conducted during 2009-2010 at D-16 Block, Zonal Agricultural Research Station (ZARS), GVKV, UAS, Bengaluru which is located in Eastern Dry Zone of Karnataka at latitude of 12°58' N and longitude of 75°35' E with an altitude of 930 m above mean sea level.

Soil characteristics of experiment site

Surface soil (0-15 cm) was analyzed for physical and chemical properties and also determined phosphorus fractions by adopting standard procedures. Soils are reddish brown laterite derived from gneiss under subtropical semi-arid climate. The soil of experimental site was red sandy clay loam in texture, acidic in reaction, low in available nitrogen (203.84 kg ha\(^{-1}\)) and phosphorus (18.42 kg ha\(^{-1}\)) and medium in available potassium (147.12 kg ha\(^{-1}\)) content (Table 1).

Experimental details

Creation of fertility gradient strips

Five equal strips (45 × 8.2 m\(^2\)) were created in one and the same field and named very low (VL), low (L), medium (M), high (H) and very high (VH) gradient strips as P\(_0\), P\(_1\), P\(_2\), P\(_3\) and P\(_4\), respectively. Graded doses of phosphorus viz. 0, 20, 40, 80 and 120 kg ha\(^{-1}\) was applied through fertilizer and organics 50
per cent each so as to achieve Very low (<15 kg P\textsubscript{2}O\textsubscript{5} ha-1), Low (16-30 kg P\textsubscript{2}O\textsubscript{5} ha-1), Medium (31-45 kg P\textsubscript{2}O\textsubscript{5} ha-1), High (46-60 kg P\textsubscript{2}O\textsubscript{5} ha-1) and Very high (>60 kg P\textsubscript{2}O\textsubscript{5} ha-1) P levels in the respective strips. Exhaustive crop fodder maize (South African tall) was grown provided with recommended doses of nitrogen (100 kg ha-1), phosphorus (50 kg P\textsubscript{2}O\textsubscript{5} ha-1) and potassium (25 kg K\textsubscript{2}O ha-1) and green fodder was harvested at 60 days after sowing. Soils in each strip analyzed for available nutrients status. Available P\textsubscript{2}O\textsubscript{5} content obtained in P\textsubscript{0}, P\textsubscript{1}, P\textsubscript{2}, P\textsubscript{3} and P\textsubscript{4}, was 14.82, 27.37, 38.76, 52.25, 80.72 kg ha-1, respectively.

Studies on the changes in soil P and different P fractions

After harvest of exhaustive crop, each strip was divided in to three replications and further each replication was sub divided in to seven treatment plots of equal size. Finger millet (GPU-28) was grown (spacing: 20 x 10 cm) during summer followed by maize (Nithyashree Hybrid) was grown (spacing: 60 x 30 cm) during kharif 2011 by imposing treatments in a factorial RCBD design. Treatment details as follows; T\textsubscript{1}: Absolute control; T\textsubscript{2}: Package of Practice (NPK+FYM); T\textsubscript{3}: 100 % Rec. N, P &K only (no FYM); T\textsubscript{4}: 75 % Rec. P + rec. dose of N&K (no FYM); T\textsubscript{5}: 75 % Rec. P + Rec. dose of N&K only+ Rec. FYM; T\textsubscript{6}: 125 % Rec. P + Rec. dose of N&K (no FYM); T\textsubscript{7}: 125 % Rec. P + Rec. dose of N&K + Rec. FYM. Recommended dose of fertilizer for finger millet was 50-40-25 kg N-P\textsubscript{2}O\textsubscript{5}-K\textsubscript{2}O ha-1 whereas for maize 100-50-25 kg N-P\textsubscript{2}O\textsubscript{5}-K\textsubscript{2}O ha-1 was given. Recommended dose of FYM given was 7.5 t ha-1.

Soil sampling and analysis

After the harvest of maize in a finger millet-maize cropping system, The representative soil samples were collected at 0-15 cm depth from all the plots separately, which were analyzed for available P and their fractions as per the standard procedures as follows.

Total phosphorus was estimated by vanadomolybdophosphoric yellow colour method (Hesse, 1971). Organic phosphorus was determined by deducting the sum of total inorganic phosphorus from total phosphorus as suggested by Mehta et al., (1954). The available phosphorus was extracted using Bray’s No.1 extractant for the soils having pH less than 6.5 and Olsen’s extractant for the soils having pH 6.5 and above. The extracted phosphorus was estimated by chloro-stannous reduced molybdophosphoric blue colour method (Jackson, 1973).

The method outlined by Peterson and Corey (1966) was followed to fractionate soil inorganic phosphorus. Saloid-P was estimated by molybdo-sulphuric acid reagent, using stannous chloride as reductant. Aluminium phosphorus (Al-P) determined by chloromolybdic-boric acid reagent and chloro-stannous reductant using the soil residue left after saloid-P estimation. The soil sediment from Al-P estimation, was then used to determine iron phosphorus (Fe-P) by chloromolybdic-boric acid reagent and chloro-stannous reductant.

Reductant soluble phosphorus (R-P) estimation was done by taking the soil residue from Fe-P, using molybdate-sulphuric acid reagent with stannous chloride as reductant. The soil residue left out in the estimation of R-P was determined for Occluded phosphorus (Occl-P) by chloro-molybdic-boric acid reagent with chloro-stannous reductant. The soil residue left over after extraction of occluded phosphorus, was used to determine calcium phosphorus (Ca-P) by chloromolybdic-boric acid reagent with chloro-stannous reductant.
Data computation

The experimental data were analyzed using ANOVA (One-Way). Critical differences among treatments were estimated at 5 % probability level of significance. Correlation studies were made and the values of correlation coefficient (r) were calculated and tested for their significance (Panse and Sukhatme, 1967).

Results and Discussion

Data presented in Table 2 to 6 depicted changes in phosphorus fractions after harvest of maize in a finger millet-maize cropping system which showed significant differences among mean values of P gradients, treatments and their interaction.

Fertility gradients effect

There was an increase in, total-P (Table 2), organic-P (Table 3), RS-P (Table 5), occluded-P (Table 6) and Ca-P (Table 6) fractions with the increased fertility gradient strips from very low to very high strip. This might be due to application of P in the increasing dose in order to create fertility gradients. Enrichment of the total and available P (Fig. 1) status as the PUE (Table 8) by the crops was 20-40 per cent only in general. There was a positive correlation exists (Table 7a) between T-P and Org-P, RS-P, Occl-P and Ca-P fractions (0.997*, 0.999*, 0.974* and 0.992*, respectively). There were also recorded increased Org-P, RS-P, Occl-P and Ca-P fractions with the increased T-P content of soil.

Unlike T-P, org-P, RS-P, occl-P and Ca-P fractions, S-P (Table 3), Al-P (Table 4) and Fe-P (Table 4) fractions were decreased as the P fertility gradients increased. This may be due to transformation of these fractions in to non-labile forms of P. The Al-P and Fe-P fractions were higher in very low and low gradient strips, might be due to acidic soil pH resulting in transformation of added P in to Al-P and Fe-P fractions. Majumdhar et al., (2007) observed that the contribution of Org-P to T-P was 48.90 to 53.70 per cent. They also noticed significant increase in S-P, Al-P, Fe-P and Ca-P but decrease in reductant-soluble and occluded-P fractions. Setia and Sharma (2007) observed that application of P @ 17.50 or 35 kg P ha\(^{-1}\) increased all the forms of P in 22 years of maize-wheat cycles. The relative abundance of P fractions was in the order of saloid-P < Fe-P < Al-P < Ca-P. Jakasaniya and Trivedi (2004) also noticed that the increase in S-P, Al-P, Fe-P and Ca-P fractions with increase in rate of P addition in different soils. Org-P showed a build up due to sorghum cropping in all soils.

Treatments effect

Application of graded levels of P with gradient strips had direct relationship with quantity and distribution of P fractions. The quantity of P fractions was higher as the rate of P application was higher. Application of 125 % rec. P + rec. N&K + rec. FYM to very high gradient strip recorded higher T-P and Org-P followed by nutrients application as per package of practice and 125 % rec. P + rec. N&K. Labile-P forms (S-P, Al-P and Fe-P) were higher when P was added along with manure may be due to lesser fixation of P and chelating action of manures which keeps the P in solution there by reducing the transformation of labile P in to non-labile P forms. Non labile pool was enriched when P was added at higher rate without manure application. Anil kumar (2013) reported that application of manures recorded significantly higher available P over control.

Among the fractions Fe-P, Ca-P and organic P fractions in soil remained unaltered while Saloid-P and Al-P fractions were increased in
comparison to their initial concentration.
Sukhvir Kaur (2015) reported that the application of integrated fertilizers recorded significantly higher Sa-P concentration compared to inorganic only.

Fig.1 AvP$_2$O$_5$ in soils of different P fertility strips as influenced by graded levels of applied P

![Graph showing AvP$_2$O$_5$ concentrations for T1 to T7]

Table.1 Initial soil properties of experimental site

Parameters	Values
Coarse sand (%)	33.2
Fine sand (%)	36.3
Silt (%)	7.5
Clay (%)	23.0
Textural Class	Sandy Clay loam
CEC [c mol (p$^+$) kg$^{-1}$]	11.10
pH (1:2.5)	5.55
EC (dS m$^{-1}$)	0.26
Organic Carbon (%)	0.45
Available N (kg ha$^{-1}$)	203.84
Available P$_2$O$_5$ (kg ha$^{-1}$)	18.4
Available K$_2$O (kg ha$^{-1}$)	147.1
Exchangeable Ca [c mol (p$^+$) kg$^{-1}$]	6.75
Exchangeable Mg [c mol (p$^+$) kg$^{-1}$]	3.60
Avail. S (mg kg$^{-1}$)	10.82
DTPA-Fe (mg kg$^{-1}$)	55.8
DTPA-Mn (mg kg$^{-1}$)	59.5
DTPA-Cu (mg kg$^{-1}$)	2.21
DTPA-Zn (mg kg$^{-1}$)	2.35
B (mg kg$^{-1}$)	0.54

Phosphorus fractions

Parameters	Values
Total P (mg kg$^{-1}$)	1115.0
Saloid–P(mg kg$^{-1}$)	48.70
Al-P (mg kg$^{-1}$)	70.52
Fe-P (mg kg$^{-1}$)	135.66
Reductant soluble-P (mg kg$^{-1}$)	146.85
Occluded-P (mg kg$^{-1}$)	11.07
Calcium-P (mg kg$^{-1}$)	10.53
Organic-P (mg kg$^{-1}$)	691.67
Table 2 Changes in total soil phosphorus fraction (Total P) after harvest of maize

P levels/Treatments	Total- P (mg kg⁻¹)					Mean
	P₀	P₁	P₂	P₃	P₄	
T₁	726.33	1086.50	1113.33	1331.67	1517.92	1155.15
T₂	1288.67	1543.67	1676.67	1724.67	1810.83	1608.90
T₃	1033.33	1220.83	1337.67	1430.42	1563.08	1317.07
T₄	959.00	1198.17	1247.75	1436.25	1501.58	1268.55
T₅	1121.33	1308.75	1403.75	1538.00	1757.58	1425.88
T₆	1075.33	1431.00	1533.67	1694.17	1797.07	1506.25
T₇	1381.00	1619.00	1701.33	1890.33	1989.75	1716.28
Mean	1083.57	1343.99	1430.60	1577.93	1705.40	1428.30

	F	S. Em±	CD (p=0.05)	CV
P				
T	S	37.06	104.58	
P x T	NS	-	-	

T₁: Absolute control
T₂: Package of Practice (rec. NPK+FYM)
T₃: 100 per cent rec. N, P & K (no FYM)
T₄: 75 per cent rec. P + rec. N & K (no FYM)
T₅: 75 per cent rec. P + rec. N & K + rec. FYM
T₆: 125 per cent rec. P + rec. N & K (no FYM)
T₇: 125 per cent rec. P + rec. N & K + rec. FYM

P₀: Very low Phosphorus fertility strip
P₁: Low Phosphorus fertility strip
P₂: Medium Phosphorus fertility strip
P₃: High Phosphorus fertility strip
P₄: Very high Phosphorus fertility strip
Table 3 Changes in organic and saloid soil phosphorus fractions (mg kg\(^{-1}\)) after harvest of maize

P levels/Treatments	Org-P	S-P											
	P\(_0\)	P\(_1\)	P\(_2\)	P\(_3\)	P\(_4\)	Mean	P\(_0\)	P\(_1\)	P\(_2\)	P\(_3\)	P\(_4\)	Mean	
T\(_1\)	425.91	646.00	674.71	889.70	1066.52	**740.57**	47.98	53.81	50.73	39.27	36.07	**45.57**	
T\(_2\)	691.64	924.07	1105.90	1132.47	1197.97	**1010.41**	84.07	89.25	54.03	44.60	43.67	**63.12**	
T\(_3\)	418.03	614.30	758.43	864.18	971.38	**725.26**	64.82	72.49	49.73	40.23	34.00	**52.25**	
T\(_4\)	415.16	614.73	725.73	921.25	1065.17	**748.41**	64.14	77.59	48.43	41.09	36.28	**53.51**	
T\(_5\)	593.89	722.71	879.12	1020.05	1230.28	**889.21**	70.73	81.77	55.61	52.89	47.96	**61.79**	
T\(_6\)	466.37	792.52	933.56	1089.97	1160.29	**888.54**	50.20	66.47	38.95	39.55	37.93	**46.62**	
T\(_7\)	706.63	969.11	1141.60	1318.74	1417.07	**1110.63**	85.84	90.52	45.74	42.21	35.73	**60.01**	
Mean	531.09	754.78	888.43	1033.77	1158.38	**1033.77**	873.29	66.83	75.99	49.03	42.83	38.81	**54.70**

F | S. Em± | CD (p=0.05) | CV | **F** | S. Em± | CD (p=0.05) | CV
P	S	12.74	35.96	S	1.92	5.42	6.68
T	S	15.08	42.55	S	2.27	6.42	16.11
P x T	S	33.72	95.15	S	5.08	14.35	16.11

T\(_1\): Absolute control
T\(_2\): Package of Practice (rec. NPK+FYM)
T\(_3\): 100 per cent rec. N, P & K (no FYM)
T\(_4\): 75 per cent rec. P + rec. N&K (no FYM)
T\(_5\): 75 per cent rec. P + rec. N&K+ rec. FYM
T\(_6\): 125 per cent rec. P + rec. N&K (no FYM)
T\(_7\): 125 per cent rec. P + rec. N&K + rec. FYM

P\(_0\): Very low Phosphorus fertility strip
P\(_1\): Low Phosphorus fertility strip
P\(_2\): Medium Phosphorus fertility strip
P\(_3\): High Phosphorus fertility strip
P\(_4\): Very high Phosphorus fertility strip

287
Table 4

Changes in aluminium phosphorus and iron phosphorus fractions (mg kg\(^{-1}\)) of soil after harvest of maize

P levels/Treatments	Al- P	Fe- P										
	P0	P1	P2	P3	P4	Mean	P0	P1	P2	P3	P4	Mean
T1	57.55	89.92	77.21	72.45	68.90	73.20	48.06	85.05	79.08	68.45	63.29	68.79
T2	100.96	104.77	86.98	85.27	87.17	93.03	101.07	90.97	84.26	90.65	90.78	91.55
T3	97.66	88.74	75.08	64.67	56.29	76.49	102.92	77.03	67.49	42.21	68.90	71.71
T4	93.78	94.48	72.21	70.67	69.24	80.07	87.24	93.07	61.26	50.38	51.32	68.65
T5	101.41	96.80	82.24	74.73	71.51	85.34	91.27	107.20	77.81	67.00	63.36	81.33
T6	85.52	83.95	65.41	63.45	61.92	72.05	85.18	75.28	69.78	44.87	61.88	67.40
T7	119.85	99.09	77.92	75.88	70.96	88.74	123.00	97.58	60.00	56.52	48.85	77.19
Mean	93.82	93.96	76.72	72.44	69.43	81.28	91.25	89.45	71.38	60.01	64.05	75.23

	F	S.Em±	CD (p=0.05)	CV	F	S.Em±	CD (p=0.05)	CV
P	S	1.72	4.86		S	3.38	9.52	
T	S	2.04	5.75	9.72	S	3.99	11.27	20.56
P x T	S	4.56	12.86		S	8.93	25.20	

T1: Absolute control
T2: Package of Practice (rec. NPK+FYM)
T3: 100 per cent rec. N, P & K (no FYM)
T4: 75 per cent rec. P + rec. N&K (no FYM)
T5: 75 per cent rec. P + rec. N&K+ rec. FYM
T6: 125 per cent rec. P + rec. N&K (no FYM)
T7: 125 per cent rec. P + rec. N&K + rec. FYM

P0: Very low Phosphorus fertility strip
P1: Low Phosphorus fertility strip
P2: Medium Phosphorus fertility strip
P3: High Phosphorus fertility strip
P4: Very high Phosphorus fertility strip

288
Table 5: Changes in reductant soluble phosphorus fraction (RS-P) of soil after harvest of maize

P levels/Treatments	RS-P (mg kg⁻¹)	P₀	P₁	P₂	P₃	P₄	Mean
T₁		130.18	183.03	196.17	219.13	230.17	191.74
T₂		275.10	291.77	297.13	314.17	327.13	301.06
T₃		307.13	317.13	326.10	337.20	345.10	326.53
T₄		266.17	275.17	287.03	295.23	308.07	286.33
T₅		335.23	348.30	353.07	365.07	376.23	355.58
T₆		304.03	314.27	323.10	338.13	346.93	325.29
Mean		264.72	285.22	292.98	306.58	317.55	293.41

	F	S.Em±	CD (p=0.05)	CV
P	S	2.62	7.39	
T	S	3.10	8.74	4.11
P x T	S	6.92	19.54	

T₁: Absolute control
T₂: Package of Practice (rec. NPK+FYM)
T₃: 100 per cent rec. N, P & K (no FYM)
T₄: 75 per cent rec. P + rec. N&K (no FYM)
T₅: 75 per cent rec. P + rec. N&K+ rec. FYM
T₆: 125 per cent rec. P + rec. N&K (no FYM)
T₇: 125 per cent rec. P + rec. N&K + rec. FYM

P₀: Very low Phosphorus fertility strip
P₁: Low Phosphorus fertility strip
P₂: Medium Phosphorus fertility strip
P₃: High Phosphorus fertility strip
P₄: Very high Phosphorus fertility strip
Table 6 Changes in occluded and calcium phosphorus fractions (mg kg\(^{-1}\)) of soil after harvest of maize

P levels/ Treatments	Occluded – P	Ca- P	Mean									
	P\(_0\)	P\(_1\)	P\(_2\)	P\(_3\)	P\(_4\)	Mean	P\(_0\)	P\(_1\)	P\(_2\)	P\(_3\)	P\(_4\)	Mean
T\(_1\)	11.54	19.92	25.33	29.47	35.82	24.42	5.03	8.77	10.10	13.20	17.17	10.85
T\(_2\)	20.63	25.67	29.10	35.24	37.93	29.72	15.07	17.17	19.27	22.27	26.23	20.00
T\(_3\)	25.73	28.64	33.27	50.42	53.26	38.26	17.03	22.50	27.57	31.51	34.17	26.55
T\(_4\)	20.42	23.90	29.73	32.44	40.89	29.47	12.10	19.23	23.37	24.93	30.55	22.04
T\(_5\)	18.73	20.30	25.53	29.13	35.06	25.75	10.10	13.07	15.20	17.17	20.27	15.16
T\(_6\)	29.80	36.28	39.27	54.50	58.21	43.61	23.03	28.21	33.63	36.80	40.60	32.45
T\(_7\)	21.77	26.17	31.27	32.68	41.03	30.58	20.07	22.27	23.00	26.17	29.17	24.13
Mean	21.23	25.84	30.50	37.70	43.17	31.69	14.63	18.74	21.73	24.58	28.31	21.60

F	S.Em±	CD (p=0.05)	CV	F	S.Em±	CD (p=0.05)	CV
P	S	0.77	2.16	S	0.48	1.35	
T	S	0.91	2.56	S	0.57	1.60	
P x T	S	2.03	5.72	S	1.27	3.57	10.16

T\(_1\): Absolute control
T\(_2\): Package of Practice (rec. NPK+FYM)
T\(_3\): 100 per cent rec. N, P & K (no FYM)
T\(_4\): 75 per cent rec. P + rec. N&K (no FYM)
T\(_5\): 75 per cent rec. P + rec. N&K+ rec. FYM
T\(_6\): 125 per cent rec. P + rec. N&K (no FYM)
T\(_7\): 125 per cent rec. P + rec. N&K + rec. FYM

P\(_0\): Very low Phosphorus fertility strip
P\(_1\): Low Phosphorus fertility strip
P\(_2\): Medium Phosphorus fertility strip
P\(_3\): High Phosphorus fertility strip
P\(_4\): Very high Phosphorus fertility strip
Table 7a Correlation among soil phosphorous fractions as influenced by phosphorous fertility gradients

Correlation	TP	Or-P	S-P	Al-P	Fe-P	RS-P	Occl-P	Ca-P
TP	1							
Or-P	0.997**	1						
S-P	-0.801	-0.844	1					
Al-P	-0.893*	-0.925*	0.980**	1				
Fe-P	-0.885*	-0.914*	0.950*	0.979**	1			
RS-P	0.999**	0.998**	-0.815	-0.902*	-0.894*	1		
Occl-P	0.974**	0.983**	-0.880*	-0.932*	-0.914*	0.982**	1	
Ca-P	0.992**	0.996**	-0.855	-0.926*	-0.901*	0.995**	0.991**	1

** Correlation is significant at the 0.01 level (2-tailed), * Correlation is significant at the 0.05 level (2-tailed)

Table 7b Correlation among soil phosphorous fractions as influenced by graded levels of phosphorus

Correlation	TP	Or-P	S-P	Al-P	Fe-P	RS-P	Occl-P	Ca-P
TP	1							
Or-P	0.954**	1						
S-P	0.634	0.653	1					
Al-P	0.682	0.738	0.959**	1				
Fe-P	0.583	0.625	0.874*	0.898**	1			
RS-P	0.643	0.394	0.176	0.124	0.045	1		
Occl-P	0.231	-0.029	-0.367	-0.41	-0.346	0.826*	1	
Ca-P	0.426	0.171	-0.156	-0.185	-0.255	0.942**	0.939**	1

** Correlation is significant at the 0.01 level (2-tailed), * Correlation is significant at the 0.05 level (2-tailed)
Table 8 PUEP (Phosphorus Use Efficiency Per cent) by finger millet and maize

P levels/ Treatments	Finger millet	Maize										
	P₀	P₁	P₂	P₃	P₄	Mean	P₀	P₁	P₂	P₃	P₄	Mean
T₁	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
T₂	31.24	28.25	27.36	24.11	15.85	25.36	38.40	38.89	39.13	42.85	38.00	39.45
T₃	31.56	30.95	26.51	24.09	15.41	25.70	36.93	42.88	40.16	44.86	38.29	40.62
T₄	33.74	30.00	27.79	24.18	17.49	26.64	37.55	44.30	43.61	48.20	44.35	43.60
T₅	31.75	28.12	28.00	24.68	16.18	25.75	36.93	42.36	43.92	45.08	40.43	41.74
T₆	36.55	29.86	27.40	23.65	15.77	26.65	38.99	44.36	42.29	43.53	34.55	40.74
T₇	31.48	29.56	26.55	25.97	15.44	25.80	36.83	39.54	39.37	39.30	35.59	38.13
Mean	32.72	29.46	27.27	24.44	16.02	25.98	37.61	42.05	41.41	43.97	38.53	40.72

T₁: Absolute control
T₂: Package of Practice (rec. NPK+FYM)
T₃: 100 per cent rec. N, P & K (no FYM)
T₄: 75 per cent rec. P + rec. N&K (no FYM)
T₅: 75 per cent rec. P + rec. N&K+ rec. FYM
T₆: 125 per cent rec. P + rec. N&K (no FYM)
T₇: 125 per cent rec. P + rec. N&K + rec. FYM

P₀: Very low Phosphorus fertility strip
P₁: Low Phosphorus fertility strip
P₂: Medium Phosphorus fertility strip
P₃: High Phosphorus fertility strip
P₄: Very high Phosphorus fertility strip
Irrespective of P gradient strips, the treatments have influenced correlations between P fractions (Table 7b). T-P and Org-P were correlated positively with all the P fractions except Occl-P which was negatively correlated with Org-P. However, S-P, Al-P and Fe-P were positively correlated with each other but were negatively related with Occl-P and Ca-P. There was a significant and positive correlation noticed between RS-P, Occl-P and Ca-P. Further, Occl-P and Ca-P were negatively related with S-P, Al-P and Fe-P.

Interaction effect

Very low gradient strip with absolute control and their interaction effect showed lower content of all the P fractions which could be due to utilization of native soil P as well as lack of external nutrient inputs. Murthy et al., (2002) observed increased phosphorus fractions with the increased rate of P application. Singaram and Kothandaraman (1993) also reported the application of P at the rate of 0, 30, 60 and 90 kg ha\(^{-1}\) significantly increased the S-P, Al-P, Fe-P, RS-P and Ca-P as compared to initial content.

There was a positive balance of available P in soil when fertilized with P and higher build up of phosphorus was observed at the harvest. The recommended fertilizer P rates used were high enough to maintain the P balance or even to build up soil P. In most LTTE experiments confirming the residual effects of fertilizer P (Dobermann et al., 1996). More and Agale (1993) observed the P balance at 0 and 25 kg P\(_2\)O\(_5\) ha\(^{-1}\) rate was negative. However, 50 and 75 kg ha\(^{-1}\) resulted in build up of available P in soil. Dobermann et al., (1996) noticed average negative P balances of -7.0 to -8.0 kg P ha\(^{-1}\) per season for -P treatments in LTTE experiments, whereas +P treatments had an average net P gain of 3.7 to 4.9 kg ha\(^{-1}\) per season. Pawar and Jadhav (1995) also observed positive P balance under groundnut-sorghum sequence, whereas balance of these nutrient was negative under fallow-sorghum sequences.

The build-up of P in gradient strips with levels of P application in a cropping system as well as the increased total-P, organic-P, reductant soluble-P, occluded-P and Ca-P fractions as the soil phosphorus fertility increased. And the reverse trend was noticed for saloid-P, Al-P and Fe-P fractions. There was a direct relationship with addition, fixation and distribution of P fractions. Therefore, continuous P fertilization can be restricted in soils of high and very high P fertility gradient strips.

Acknowledgments

I would like to thank chairman and members of advisory committee, staffs of Dept. of SS&AC, UAS, Bangalore, NBSS&LUP and ICAR and my beloved family members and friends. Thankful to ICAR, New Delhi for granting SRF and RKVY, Govt. of Karnataka for providing financial assistance for conducting research.

References

Anil Kumar, Neeraj Kumar, S. K. Singhal, Vinay Singh, V. K., Sharma (2013) Soil phosphorous fractions in a typic haplustept as influenced by organic sources after Soyabean-wheat cropping sequences in semi-arid condition. Agril. Sci.Digest, 33.

Brar, B. S., Singh, M. V., Dhillon, N. S. and Benipal, S. S. (2004) Soil quality, crop productivity and sustainability experience under long-term maize-wheat-cowpea cropping in inceptisol. Res Bull pp 41, All India coordinated research project of long-term fertilizer experiment, Indian Institute of soil science, Bhopal.

Chandrakala, M. (2014) Status and revalidation of phosphorus requirement for finger millet - maize cropping system in soils of Eastern
Dry Zone of Karnataka. PhD thesis, Univ. Agril. Sci., GKVK, Bangalore, India.

Dobermann, A., Cassman, K. G., Stacruz, P. C., Adviento, M. A. and M. F. Pampolino (1996) Fertilizer inputs, nutrient balance and soil nutrient supplying power in intensive, irrigated rice systems. III. Phosphorus. Nutrient Cycling in Agroecosystems, 46, 1-10.

Hesse, P. R. (1971) A Text Book of Soil Chemical Analysis. John Murry (Publ) Ltd., London, U. K.

Jackson, M. L. (1973) Soil Chemical Analysis. Prentice Hall of India Private Limited, New Delhi, p: 485.

Jakasaniya, M. S. and Trivedi, B. S. (2004) Transformation of added P into inorganic P fractions in soils of Gujarat. Madras Agric. J., 91, 163-167.

Majumdhar, B., Venkatesh, M. S., Kailash Kumar and Patiram (2007) Effect of rock phosphate, superphosphate and their mixtures with FYM on soybean and soil-P pools in a Typic Hapludalf of Meghalaya. J. Indian Soc. Soil Sci., 55(2), 167-174.

Mehta, N. C., Legg, J. O. and Black, C. A. (1954) Determination of organic phosphorus in soils: I. Extractions methods. Soil Sci. Soc. America Proc., 18, 443-449.

More, S. D., and Agale, B. N. (1993) Phosphate balance studies in irrigated cotton. J. Indian Soc. Soil Sci., 41(3), 498-500.

Murthy, I. Y. L. N., Sasthry, T. G., Datta, S. C., Narayanasamy, G. and Rattan, R. K. (2002) Phosphate dynamics in Vertisols of different parent materials. J. Indian Soc. Soil Sci., 50(1), 14-16.

Nambiar, K. K. M. and Ghosh, A. B. (1984) Highlights of long-term fertilizer experiments in India (1971-82). LTFE Res. Bul., I, IARI, New Delhi.

Nwoke, O. C., Vanlauwe, B., Diels, J., Sanginga, N. and Osonubi, O. (2004) The distribution of phosphorus fractions and desorption characteristics of some soils in the moist savanna zone of west Africa. Nutr. Cycl. Agroecosyst. 69: 127-41.

Panse, V. G. and Sukhatme, P. V. (1967) Statistical methods for agricultural worker. Publication and information division, ICAR, New Delhi.

Pawar, K. P. and Jadhav, A. S. (1995) Nutrient balance in legume-sorghum (Sorghum bicolor) cropping sequence. Indian J. Agric. Sci., 65 (7), 515-518.

Peterson, G. W. and Corey, R. B. (1966) A modified Chang and Jackson procedure for routine fractionation of inorganic soil phosphates. Soil Sci. Soc. America Proc., 30, 563-565.

Ramamoorthy, B., Narasimham, R. L and Dinesh, R. S. (1967) Fertilizer application for specific yield target of sonara-64 wheat. Indian Farm, 17, 43-45.

Setia, R. K. and Sharma, K. N. (2007) Dynamics of forms of inorganic phosphorous during wheat growth in a continuous maize-wheat cropping system. J. Indian Soc. Soil Sci., 55(2), 139-146.

Singaram, P. and Kothandaraman (1993) Effect of P sources on phosphorous uptake by finger millet and changes in inorganic P fractions. J. Indian Soc. Soil Sci., 41(3), 588-590.

Song, C. Han, X. Z. and Tang, C. (2007) Changes in phosphorus fractions, sorption and release in udic Mollisols under different ecosystems. J. Biol. Fertil. Soils. 44, 37-47.

Sukhvir Kaur, B. S. Brar and G. S. Dheri (2015) Effect of long-term use of inorganic and integrated fertilization on soil phosphorus fractions in rice-wheat cropping system. Agric. Res. J. 52 (4), 39-43.

Tandon, H. L. S. (1987) Phosphorus research and agricultural production in India. Fertilizer Consumption and Organization, New Delhi.

How to cite this article:
Chandrakala, M., C.A. Srinivasamurthy, V.R.R. Parama, S. Bhaskar, Sanjeev Kumar and Naveen, D.V. 2017. Phosphorus Fractions- Keys to Soil based P Management. Int.J.Curr.Microbiol.App.Sci. 6(11): 281-294. doi: https://doi.org/10.20546/ijcmas.2017.611.033

294