ORIGINAL CONTRIBUTION

Prevalence of Hepatitis B Virus Infection Markers Among a Working Population in a Coastal City of Yantai, China

Kazunori Seiji¹, Masaru Takahashi², Osamu Inoue¹, Shi-Xiong Cai³ Mei-Yuan Huang², Takao Watanabe³, Toshio Kawai⁴, Tomojiro Yasugi⁴ Jiang-Bin Qu⁵, and Masayuki Ikeda⁶

Three markers of hepatitis B virus (HBV) infection, HBsAg, anti-HBs and anti-HBc, were investigated in the sera from 426 factory workers of both sexes in a coastal city of Yantai in China. The investigation showed that the rate of those positive to HBsAg was 25.4% (25.9% in men and 24.6% in women), and that the rate when two sexes were combined was highest (i.e., 29.5%) at the ages of 20s followed by gradual decrease at higher ages (below 20%). The overall HBV infection rate as calculated by those positive to any of the three markers studied was 70.4%. Comparison with rates reported in literature indicated that the rate of HBsAg-positive cases in the present study are probably among the highest values in China, whereas overall rate of HBV infection was almost comparable to the values for other provinces. It should be added that other reports on other parts of Shandong Province describe HBsAg prevalence of about 6%. No explanation is currently available for the high HBsAg prevalence among the study population. J Epidemiol, 1991; 1: 11-17.

anti-HBc, anti-HBs, China, HBsAg, HBV

Persistent infection of hepatitis B virus (HBV) is among the known risk factors of primary hepatocellular carcinoma (PHC). Accordingly, increasing attention has been given in public health to the prevalence of the HBV infection with intention for the prevention of this insidious disease1-7). It is generally understood that the prevalence is higher in many parts of the Asian and Pacific regions than in northern Europe and North America8-10). Reports on HBV prevalence in China are also growing in numbers reflecting the large population, with focus to the areas of high PHC incidence such as Guangxi Province6,11-15).

In continuation of seroepidemiological surveys by this study group on HBV infection in East Asia16-19), a study was conducted in a coastal city of Yantai in Shandong Province, China, the area where there still exists a paucity of data on HBV infection.

MATERIALS AND METHODS

Sera. In 1991, the survey was conducted in a port city of Yantai in Shandong Province, on the north coast of the Shandong Peninsula, as a part of an occupational health survey of factory workers. The workers both in production sections and in clerical sections were invited to participate in the study, and sera obtained from 426 workers (243 men and 183 women at the ages of 17 to over 50 years) were subjected to the seroepidemiological study.

HBV marker assays. The radioimmunoassay kits for 3 markers, i.e., AUSTRIA® 11-125 for HBsAg, AUSAB™ for Anti-HBs, and ANTI HBc RIAKIT™ for Anti-
HBc, were supplied by Abbott Laboratories (North Chicago, IL, USA). The cutoff indices for the identification of positive cases (to be abbreviated as HBsAg+, Anti-HBs+, and anti-HBc+) were set at >5, >2, and >70%, respectively.

Statistical evaluation. Statistical significance of difference in prevalence was evaluated by means of chi-square test.

RESULTS

Prevalence of the 3 HBV infection markers among the study population

The prevalence of cases positive to the three markers are summarized in Tables 1 and 2. Those positive to

Table 1. Prevalence of hepatitis B virus (HBV) infection markers among factory workers in Yantai.

HBV infection marker	Number of cases	
HBsAg	Men	Women
	64 (29.6)	62 (33.9)
Anti-HBs	12 (4.9)	4 (2.2)
Anti-HBc	25 (10.3)	14 (7.2)
	79 (32.5)	58 (31.7)
	37 (11.1)	24 (13.1)
	3 (1.2)	2 (1.1)

In total, 426 adults (243 men and 183 women) were studied. The numbers in the table are the numbers of cases and the percentages in parentheses. + : Positive. – : Negative.

Table 2. Prevalence of HBsAg+, anti-HBs+ and anti-HBc+ cases by age and by sex.

Sex range (years)	No. of sera tested	HBsAg+	Anti-HBs+	Anti-HBc+	Anti-HBs+ or Anti-HBc+	Over-all+	HBV marker negativea
Men							
15-19	16	3 (18.8)	6 (37.5)	9 (56.3)	10 (62.5)	6 (37.3)	
20-29	168	51 (30.4)	50 (29.8)	92 (54.8)	96 (57.1)	117 (69.6)	31 (30.4)
30-39	34	5 (14.7)	21 (59.2)	18 (52.9)	24 (70.6)	28 (82.4)	6 (17.6)
40-49	18	2 (11.1)	14 (77.8)	16 (88.9)	18 (100.0)	18 (100.0)	0 (0.0)
≥50	7	2 (28.6)	3 (42.9)	5 (71.4)	5 (71.4)	6 (85.7)	1 (14.3)
Total	243	93 (38.7)	140 (57.6)	152 (62.6)	179 (72.7)	64 (26.3)	
Women							
15-19	22	7 (31.8)	6 (27.3)	7 (31.8)	8 (36.4)	13 (59.1)	9 (40.9)
20-29	86	24 (27.9)	27 (31.4)	38 (44.2)	40 (46.5)	34 (40.4)	32 (37.2)
30-39	37	8 (21.6)	15 (40.5)	21 (56.8)	21 (56.8)	25 (67.6)	12 (32.4)
40-49	24	4 (16.7)	9 (37.5)	16 (66.7)	17 (70.8)	18 (75.0)	6 (25.0)
≥50	14	2 (14.3)	7 (50.0)	11 (78.6)	11 (78.6)	3 (21.4)	
Total	183	45 (24.6)	64 (35.0)	93 (50.8)	97 (53.0)	121 (66.1)	62 (33.9)
Men and women combined							
15-19	38	10 (26.3)	12 (31.6)	16 (42.1)	17 (44.7)	23 (60.5)	15 (39.5)
20-29	254	75 (29.5)	77 (27.6)	130 (51.2)	136 (53.5)	171 (67.3)	83 (32.7)
30-39	71	13 (18.3)	36 (50.7)	39 (54.9)	45 (63.9)	53 (74.6)	18 (25.4)
40-49	42	6 (14.3)	23 (54.8)	32 (76.2)	32 (83.3)	36 (85.7)	6 (14.3)
≥50	21	4 (19.0)	10 (47.6)	16 (76.2)	16 (76.2)	17 (80.9)	4 (19.0)
Total	426	108 (25.4)	158 (37.1)	233 (54.7)	249 (58.5)	300 (70.4)	126 (29.6)

The values in the table are the number of cases and the percentages in parentheses. + : Positive. * Positive to either anti-HBs or anti-HBc. * Over-all rate of infection as defined by the rate of these positive to any of the 3 markers. a Negative to all of the 3 markers tested.
HBsAg accounted for one fourth of the population studied with no significant difference in the prevalence between the two sexes (p > 0.10), and about a half of the HBsAg+ people were negative to the 2 antibody items. In contrast, about one third of the people studied were anti-HBs+ and anti-HBc+ in both sexes, and somewhat less than one third was negative to all of the 3 infection markers (Table 1). Thus, well over two thirds of the study population were either currently or previously infected with HBV.

Very few (1%) were positive to all the three markers, as theoretically expected. In such cases, they were very weakly anti-HBs+ with titers just above the cut-off point, whereas anti-HBc titers were high and HBsAg titers were various depending on the cases.

Age-dependent changes in HBV infection rates

The observed cases were further classified by sex and by decade of years of ages of the subjects (Table 2). There is a gradual age-dependent decrease in HBsAg+ prevalence both in men and women, albeit the rate for those at the ages of 19 years or less (18.8% for men and 31.8% for women) may be comparable to that for 20s; no significant difference in the prevalence was detected between those at less than 20 years of age and those at 20-29 years, when the two sexes were combined (p > 0.10). A high rate of 28.6% for > 50 year-old men should be considered not reliable because only 7 subjects were examined.

Both anti-HBs+ and anti-HBc+ rates gradually increased in parallel in both sexes as ages advanced, so that about 80% or more of the population acquired immunity to HBV infection at the age of 40 years (i.e., either anti-HBs+ or anti-HBc+, or anti-HBs+ and anti-HBc+). When positive reaction in any of the three infection markers (i.e., HBsAg+, anti-HBs+ or anti-HBc+) was considered to be indicative of past or current HBV infection, almost all subjects (more than 85%) had experienced HBV infection before the age of 50, whereas less than 15% of the people remained negative to any of the three HBV infection markers at this stage of life.

DISCUSSION

The present study of a Yantai population has shown that the rate of those positive to HBsAg was as high as 25.4% (25.9% in men and 24.6% in women), and that the rate when two sexes were combined was highest (i.e., 29.5%) at the ages of 20s followed by gradual decrease at higher ages (about 20% or less). The overall HBV infection rate as calculated by those positive to any of the three markers studied was 70.4%.

A growing number of papers have been published in recent years to report the prevalence of HBV infection especially in terms of HBsAg+, and in some cases as the positivities to the three infection markers, in various cities and provinces in China, Taiwan, Guangxi Province where PHC mortality is known to be very high especially in men; the values higher than the present observation are usually associated with known HBV infection or inclusion of hepatitis cases.

The anti-HBs+ and anti-HBc+ rates were not remarkably high so that the overall rate of HBV infection of the present study population is only comparable to the values for other provinces. It was previously pointed out that the prevalence of HBV infection is lower in a large city like Beijing (although not in Shanghai where PHC mortality is reported to be high) than in rural provinces. Simple urban-rural difference, however, will not be sufficient to explain rather unusually high HBsAg rate among the working population in the present study (Tables 1 and 3).

For comparison with the present observation, 6 reports are available in addition to an early report of Beasley and his co-workers on HBV infection in Shandong Province in particular. The reported HBV infection prevalence as defined by positive to any of the 3 markers reported in recent studies are in a wide range of 27.4% to 78.3%. Nevertheless, the prevalence of HBsAg+ cases are all well below 10%.

Beasley et al. found that the HBsAg+ prevalence among former Shandong Province residents currently in Taiwan were 9.3%, the value being not higher as compared with the values for those from northern China (11.2% on an average) and probably lower than the values for those from southern China (17.5%). In agreement with rather low HBsAg+ prevalence, the rates of mortality from liver cancer (per 10^5 population, based on deaths in 1973 to 1975, and age-adjusted to 1964 census population of China) was 11.57 for men (4.24 for women) in Shandong Province; the values are not higher than the values for the whole country (14.52 for men and 5.61 for women), and quite lower than those for Guangxi Province (26.55 for men and 6.63 for women) where HBV infection prevalence...
is also high (Table 3). Thus, it could be the case that the HBV infection prevalence is specifically high in the present study population, even though the prevalence may be generally low in Shandong Province; such may be quite probable bearing in mind that Shandong Province has a large population of 80 millions in a large area of 150,000 km².

The age-dependent changes in HBsAg prevalence of the present study population in Yantai is depicted in comparison with the counterpart observation in Beijing, Shanghai, Wuxi, Xian and Hefei made by the present study group in Figure 1; a high prevalence (33%) observed in less than 20 year-old subjects in Wuxi may be due to the fact that only a small number of people (15 subjects) were examined in this age group, and therefore not depicted in the figure. It is apparent from Figure 1 that the prevalence in Yantai subjects up to 49 years of age is much higher than their

Study area	Population	Assay by R or H	HBV infection marker positive (%)	Reference
Anhui	503 Factory workers	R	HBsAg 8, Anti-HBs 46, Anti-HBe 53, Over-all 53	16
Beijing	398 All ages	R	HBsAg 7, Anti-HBs 20, Anti-HBe 26	20
Ibid.	600 Dental workers	H	HBsAg 6, Anti-HBs 37, Anti-HBe 46	22
Ibid.	491 All ages	R	HBsAg 7, Anti-HBs 37, Anti-HBe 44	17
Fujian	407 Children (1979)	H	HBsAg 17, Anti-HBs, Anti-HBe	23
Ibid.	6558 Children (1987)	H	HBsAg 7, Anti-HBs, Anti-HBe	23
Guangdong	265 Controls to PHC	H	HBsAg 7, Anti-HBs, Anti-HBe	5
Ibid.	2443 Male prisoners	R	HBsAg 25, Anti-HBs 46, Anti-HBe 81	24
Guangxi	173 Controls to PHC	H	HBsAg 16, Anti-HBs 12, Anti-HBe	13
Ibid.	1310 Adults	H	HBsAg 13, Anti-HBs 9, Anti-HBe	12
Ibid.	35041 All ages	H	HBsAg 13, Anti-HBs 8, Anti-HBe	11
Ibid.	40 Controls to PHC	R	HBsAg 11, Anti-HBs 63, Anti-HBe 88	6
Ibid.	49 Controls to PHC	R	HBsAg 23, Anti-HBs 63, Anti-HBe 88	15
Ibid.	11072 Adults	H	HBsAg 17, Anti-HBs, Anti-HBe	7
Ibid.	304 Adults men	R	HBsAg 22, Anti-HBs, Anti-HBe	14
Henan	1064 All ages	R	HBsAg 26, Anti-HBs, Anti-HBe	25
Ibid.	579 Farmers*	R	HBsAg 32, Anti-HBs 38, Anti-HBe 79	26
Hunan	3089 All ages	RSH	HBsAg 18, Anti-HBs 32, Anti-HBe 74	21
Jiangsu	290 Factory workers	R	HBsAg 9, Anti-HBs 53, Anti-HBe 72	18
Liaoning	66 Factory workers	R	HBsAg 8, Anti-HBs 39, Anti-HBe 48	18
Shandong	926 Various	R	HBsAg 5, Anti-HBs, Anti-HBe	28
Ibid.	1367 All inhabitants	H	HBsAg 7, Anti-HBs, Anti-HBe	29
Ibid.	436 All inhabitants	H	HBsAg 6, Anti-HBs 10, Anti-HBe 40	30
Ibid.	107 Controls to PHC	H	HBsAg 8, Anti-HBs 55, Anti-HBe 58	31
Ibid.	977 Farmers	H	HBsAg 9, Anti-HBs 19, Anti-HBe 72	32
Ibid.	401 Clinical staff	R	HBsAg 7, Anti-HBs 41, Anti-HBe 68	33
Ibid.	426 Factory workers	R	HBsAg 25, Anti-HBs 37, Anti-HBe 70	Present study
Shanghai	4822 Adults	H	HBsAg 10, Anti-HBs 9, Anti-HBe	34
Ibid.	365 All ages	R	HBsAg 7, Anti-HBs 37, Anti-HBe 48	35
Ibid.	520 Preschool children	R	HBsAg 8, Anti-HBs 48, Anti-HBe 55	36
Ibid.	290	R	HBsAg 8, Anti-HBs 48, Anti-HBe 65	18
Shanxi	521 All ages	RSH	HBsAg 8, Anti-HBs 23, Anti-HBe 39	37
Ibid.	2122 All age*	R	HBsAg 36, Anti-HBs 31, Anti-HBe 72	38
Ibid.	429 Factory workers	R	HBsAg 8, Anti-HBs 40, Anti-HBe 56	18
Sichuan	428 Adult blood donors	H	HBsAg 4, Anti-HBs 85, Anti-HBe	39
Zhejiang	5158 All ages	H	HBsAg 13, Anti-HBs, Anti-HBe	40

* Name of province, except for two cities of Beijing and Shanghai. * R for radioimmunoassay, and H for hemagglutination assay. + Overall rate of infection as defined by the rate of those positive to any of the 3 markers. * Not studied. * 1-10 year-old children, studied in 1979. 1-6 year-old children, studied in 1987. * Highly infected with HBV. * 316 hepatitis cases are included.
HBV Markers Among Yantai Workers

Table 4. HBsAg+ prevalence in Shandong Province by ages.

Study Region	No. of subjects	Age range	Reference					
		0 to 9	10 to 19	20 to 29	30 to 39	40 to 49	50 & over	All ages
Changxue County	926	3.2	3.4	4.3	5.9	10.5	6.6	5.4
Huimin County	1367	4.5	6.4	12.2	8.0	11.8	1.8	6.5
Jinan City	436	0.0	4.4	6.9	6.0	12.2	10.6	6.2
Shandong Provincea,b	107							8.4
Penglai Countya	977		26.3	29.5	18.3	14.3	19.0	25.4*
Zibo City	401							7.2
Yantai City	426							23.4*

* Significantly different from counterpart values (p<0.01).
a/ Break-down by age is not given. b/ Hospital patients from the Province. c/ Not studied.

Counterparts in other cities, indicating that HBV infection is endemic among this study population. In addition, the fact that the persistent carrier rate is almost 1.5-fold higher in younger people (those below 30 years of age) as compared with older people suggest that an unidentified episode might have happened in recent 10-20 years which provoked the increase in the HBV carrier rate. It would be more informative if the rates for younger inhabitants were available.

Several factors have been discussed in explaining the high HBsAg prevalence among various Chinese populations studied. For example, Luo et al.15) considered both vertical transmission from carrier mothers to their new-borne babies and close family contacts during the post-natal period as routes of HBV infection to produce persistent HBsAg carriers. Tang et al.42) examined HBV infection markers of 35 fetuses from HBsAg+ mothers after induced abortion in comparison with 10 fetuses from HBsAg- mothers, and observed that the sign of HBV infection was positive in sera of 7 cases in the former group (20%) in contrast to none in the latter. In the former group, 12 cases out of 27 liver tissues (44.4%) were positive to the infection when P-labeled HBV-DNA was employed as a probe, suggesting that intra-uterine infection is also an important mode of HBV transmission42). In this connection, it is worthy to note that Duan et al.43) in fact succeeded to interrupt mother-to-baby transmission of HBV by the administration of HBV vaccine to the babies born to HBsAg+ mothers. Regarding the latter possibility, Huan et al.50) observed in their epidemiological study of preschool children in Shanghai that the habit of premastication of food to feed children is associated with two-fold higher risk of the infection within a family. Opinions are equivocal among Chinese scientists on possible contribution of aflatoxin B contamination of food as a co-causative factor of PHC in combination with persistent HBV infection, in explaining high PHC incidence among Guangxi inhabitants13,14).

A few more reports are available in which trials were made to explain the mode of HBV infection among Chinese inhabitants outside the Continent. In Sin-
gapore, Quak et al. examined Chinese children for HBV infection in comparison with their counterparts of Malay and Indian origin and found that, although HbsAg+ prevalence appeared to be almost comparable among the 3 ethnic groups, the prevalence of anti-HBs and anti-HBc cases were significantly higher among Chinese children than in Malay or Indian children. In a study of babies born to HbsAg+ mothers in Taiwan, Stevens and others observed that the risk of babies to be HbsAg+ increased when his/her mother had high titer HbsAg, when the umbilical cord blood was HbsAg+, or when his/her sibling was HbsAg+, and concluded that the vertical transmission occurs rather frequently. In contrast, Lam et al. observed a sharp increase in HbsAg+ prevalence from first (less than 10%) toward fourth decade (over 40%) of life (and then decreases thereafter) among Chinese population in Hongkong, and thought that the dominant mode of HBV transmission among Chinese people was likely to be horizontal rather than vertical.

At the moment, no plausible explanation is available to understand the unusually high HBV infection prevalence among the population studied. Whether the prevalence is high in Yantai City in general or it is so among the study population only is still yet to be elucidated. Careful observation of the local culture and the way of daily life appears to be extremely important in order to identify the social habits which enhance the risk of infection at an early stage of life.

ACKNOWLEDGEMENTS

The authors are grateful to Prof. T. Suzuki, the Director of Tokahama Rossai Hospital, Sendai 980, Japan, and Prof. S. Horiguchi, the Director of Osaka Occupational Health Service Center, Osaka 550, Japan for their support to and interest in this work.

REFERENCES

1. Nishioka K, Levin AG, Simons MJ. Hepatitis B antigen, antigen subtypes, and hepatitis B antibody in normal subjects and patients with liver disease. Bull WHO, 1975; 52: 293-300.
2. World Health Organization: Advances in viral hepatitis. WHO Technical report Series No. 602: 1977: 7-62.
3. Beasley RP, Liu C-C, Chien C-S, et al. Geographic distribution of HbsAg carriers in China. Hepatology, 1982; 2: 554-556.
4. Brown P. The seroepidemiology of hepatitis A and B in the Asia-Pacific region. Asia-Pacific J Public Health, 1987; 1 (3): 62-76.
5. Lu G-P, Chen Q-Z. Relation between the mortality of primary hepatic carcinoma and viral hepatitis in the surveillance areas of Jiangmen City. Chinese J Epidemiol, 1985; 6: 261-264. (in Chinese with an English abstract)
6. Yeh F-S, Mo C-C, Henderson BE, et al. A serological case-control study of primary hepatocellular carcinoma in Guangxi, China. Cancer Res, 1985; 45: 872-873.
7. Ding Z-R, Li R-C, Gong J, et al. Epidemiological study on relationship between hepatitis B and liver cancer. Chinese J Epidemiol. 1988; 9: 220-223. (in Chinese with an English abstract)
8. Gust ID, Lehmann NI, Dimitrackis M. A seroepidemiologic study of infection with HAV and HBV in five Pacific islands. Am J Epidemiol, 1979; 110: 237-242.
9. Subeslavsky O. Prevalence of markers of hepatitis B virus infection in various countries: A WHO collaborative study. Bull WHO, 1980; 58: 621-625.
10. Yutu J. Epidemiological study of viral Hepatitis A and B in the People's Republic of China. In: Szmuness W, Alter HJ and Maynard BE (eds) Viral Hepatitis. Franklin Institute Press, Philadelphia, 1982.
11. Ding Z-R, Li R-C. Distribution of viral hepatitis B in Guangxi Province. Chinese J Epidemiol, 1982; 3: 84-87. (in Chinese)
12. Xie Y-B. Specific and nonspecific infection of hepatitis B among population in town center of Liupu County of Guangxi Autonomous Region. Chinese J Epidemiol, 1983; 4: 331-334. (in Chinese with an English abstract)
13. Ding Z-R, Li R-C, Huang G-Y, et al. Epidemiological analysis of the etiological relationship between primary hepatocarcinoma and hepatitis B virus. Chinese J Epidemiol, 1984; 5: 146-149. (in Chinese with an English abstract)
14. Yeh F-S, Yu MC, Mo C-C, et al. Hepatitis B virus, aflatoxins, and hepatocellular carcinoma in south Guangxi, China. Cancer Res, 1989; 49: 2506-2509.
15. Luo S, Ye F-S, Mo C-C, et al. Prevalence of hepatitis B viral markers in hepatocellular carcinoma in Xinxiang City, China. Chinese Med J, 1985; 101: 654-658.
16. Seiji K, Inoue O, Kasahara M, et al. Prevalence of serological hepatitis B markers in a working population in Heifei, China. Asia-Pacific J Public Health, 1987; 14: 28-33.
17. Seiji K, Inoue O, Liu S-J, et al. Prevalence of hepatitis B virus infection markers among factory workers in Beijing, China. Asia-Pacific J Public Health, in press, 1991a.
18. Seiji K, Inoue O, Watanabe M, et al. Hepatitis B virus prevalence in industrialized cities in China. Asia-Pacific J Public Health, in press, 1991b.
19. Lee S-H, Lee B-K, Lee K-M, et al. Hepatitis B virus infection among women in a shoe factory in Korea. Asia-Pacific J Public Health, 1989; 3: 145-149.
20. Wang H-T, Jiang Y-T, Ma J, et al. Some characteristics of chronic carriers of hepatitis B surface antigen. Chinese J Prev Med, 1984; 18: 334-336. (in Chinese with an English abstract)
21. Zhang R-D, Zhao Y, Tao J-M, et al. Survey of hepatitis B virus infection in dental workers. Chinese J Stomatol, 1982; 17: 137-139. (in Chinese)
22. Wang H-T, Jiang Y-T, Ma J, et al. Seroepidemiologic study of viral hepatitis B in a suburb of Beijing. Chinese J Epidemiol, 1985; 6: 141-144. (in Chinese with an English abstract)
23. Zeng S-J, Yang W-C, Huang J-Z. A study of children with HbsAg markers related to their parent's HBV markers. Chinese J Epidemiol. 1990; 11: 338-340. (in Chinese with an English abstract)
24. Lu Q-S, Lue K-X, Zhu H-Q, et al. A prospective seroepidemiologic investigation of hepatitis B virus infection in a prison. Chinese J Epidemiol, 1990; 11: 267-270. (in Chinese with an English abstract)
25. Kou P-Y. Distribution of antibody against Hbs among...
people in Henan Province. Chinese J Epidemiol, 1984; 5: 14-15. (in Chinese with an English abstract)

26. Tan H-Z, Xiao Y-J, Wu P-L, et al. Family clustering analysis of HBV infection. Chinese J Prev Med, 1989; 23: 135-138. (in Chinese with an English abstract)

27. Xiao Y-J, Tan X-M, Tan S-L, Yang T-B. Seroepidemiological study of HBV infection in human area. Chinese J Epidemiol, 1990; 11: 133-137. (in Chinese with an English abstract)

28. Yu J-Y, Xiu Y-Y, Liu T-X, Fan Y-X. Prevalence of HBsAg-positive cases. Weisheng Fangyi (J Hyg Prev Epidem) 1984; No. 13: 17-19. (in Chinese)

29. Li L. Prevalence of HBsAg-positive cases in Huimin County region. Shandong Weisheng Fangyi (Shandong J Hyg Prev Epidem) 1984; 4: 19-20. (in Chinese)

30. Li L, Shen M-H, Peng Y-F, et al. An investigation on infective markers of HBV among natural population in Jinan. J Shandong Med Univ 1985; 23: 13-17. (Chinese with an English abstract)

31. Li L, Jiang B-F, Wang Y-J, Feng Y-Q. Detection of IgM anti-HBc in patients with primary hepatic carcinoma. Chinese J Epidemiol 1987; 5: 25-27. (in Chinese with an English abstract)

32. Yu L-M, Zhang Y-D, Ji Y-J, et al. Seroepidemiological study on HBV infection markers among clinical staff. Shandong Weisheng Fangyi (Shandong J Hyg Prev Epidem) 1987; 7: 29 only. (in Chinese)

33. Feng M-L. Survey on HBV infection markers among clinical staff. Shandong Weisheng Fangyi (Shandong J Hyg Prev Epidem) 1989; 9: 64-65. (in Chinese)

34. Gu B-C, Gao R-N, Wu Y-J, et al. Comparison of the presence or absence of early hepatitis B viral infections among populations in areas with high and low incidences of primary hepatoma. Chinese J Epidemiol, 1983; 4: 37-42. (in Chinese with an English abstract)

35. Hu M, Schenkele D, Deinhardt F, Scheid R. Epidemiology of hepatitis A and B in the Shanghai area: Prevalence of serum markers. Am J Epidemiol, 1984; 120: 404-413

36. Hu M, Xia Z-Y, Fu T-Y, Zhou D-X. An epidemiological study on prevalence and risk factors of hepatitis B virus (HBV) infection in preschool children. Chinese J Epidemiol, 1990; 11: 129-132. (in Chinese with an English abstract)

37. Mi E-Y, Zhang F-K, Liu Y-P, Lu T-L. Seroepidemiological study of hepatitis B virus infection in rural areas of Shanxi Province. Chinese J Epidemiol, 1984; 5: 325-328. (in Chinese with an English abstract)

38. Lin Y-H, Yan X-E, Liu X-L, et al. SPRIA assays on HBV in 2122 out- and in-patients and RPHA assays on HBsAg in 5872 cases. J Shanxi Province People's Hospital, 1989; 2: 30-34. (in Chinese)

39. Jia W-X, Mi J-W, Cai M-Y, et al. Studies on distribution of HBV infection in voluntary blood donors. J West China Univ Med Sci, 1986; 17: 277-279. (in Chinese with an English abstract)

40. Zhang Z-H, Ge L-Q. Investigation on human carriage of HBsAg in Qingtian County. Chinese J Epidemiol, 1983; 4: 79-82. (in Chinese with an English abstract)

41. Editorial Committee for the Atlas of Cancer Mortality in the People's republic of China. Atlas of Cancer Mortality in the People's republic of China. China Map Press, Shanghai, 1979.

42. Tang S-X, Yu G-L, Cheng S-Y. Study on the HBV intrauterine infection and its rate. Chinese J Epidemiol, 1980; 11: 328-330 (in Chinese with an English abstract)

43. Chen S-C, Xu Z-Y, Zhu Q-R, et al. Interruption of materno-infantile transmission of HBV by HBV vaccine. Acta Paediat Jpn 1989; 31: 649-653.

44. Quak SH, Singh R, Con CJ, Wong HE. Across-sectional study of hepatitis B immune status in Asian children in Singapore. Ann Acad Med Singapore, 1980; 9: 149-151.