Mechanisms of Virologic Control and Clinical Characteristics of HIV+ Elite/Viremic Controllers

Elena Gonzalo-Gil, Uchenna Ikediobi, and Richard E. Sutton*

Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine

Human immunodeficiency virus type 1 (HIV-1†) disease is pandemic, with approximately 36 million infected individuals world-wide. For the vast majority of these individuals, untreated HIV eventually causes CD4+ T cell depletion and profound immunodeficiency, resulting in morbidity and mortality. But for a remarkable few (0.2 to 0.5 percent), termed elite controllers (ECs), viral loads (VLs) remain suppressed to undetectable levels (< 50 copies/ml) and peripheral CD4+ T cell counts remain high (200 to 1000/μl), all in the absence of antiretroviral therapy (ART). Viremic controllers (VCs) are a similar but larger subset of HIV-1 infected individuals who have the ability to suppress their VLs to low levels. These patients have been intensively studied over the last 10 years in order to determine how they are able to naturally control HIV in the absence of medications, and a variety of mechanisms have been proposed. Defective HIV does not explain the clinical status of most ECs/VCs; rather these individuals appear to somehow control HIV infection, through immune or other unknown mechanisms. Over time, many ECs and VCs eventually lose the ability to control HIV, leading to CD4+ T cell depletion and immunologic dysfunction in the absence of ART. Elucidating novel mechanisms of HIV control in this group of patients will be an important step in understanding HIV infection. This will extend our knowledge of HIV-host interaction and may pave the way for the development of new therapeutic approaches and advance the cure agenda.

INTRODUCTION

Natural Progression of HIV Infection

Human immunodeficiency virus-1 (HIV-1) is transmitted via hetero or homosexual contact, exchange of infected blood via transfusion and/or the sharing of nee-
dles, breast-feeding from an infected mother to child, or trans-placentally from an infected mother to fetus [1,2]. After introduction by sexual contact, virus encounters Langerhans cells, antigen-presenting dendritic cells (DCs) that densely populate mucosal surfaces of the gut and vaginal tissue. And although these cells express low levels of cluster of differentiation 4 (CD4) and C-C Motif Chemokine Receptor 5 (CCR5) on the cell surface, they actively bind to HIV particles via these and other receptors, and facilitate attachment and fusion of viral and host cell membranes [3,4]. Langerhans cells with bound, internalized virus migrate from the mucosal surface to infect neighboring T cells expressing CD4 and CCR5 receptors, before arriving at regional lymph nodes [5]. In addition, these cells are important for priming naive CD4+ T cells into HIV-specific T helper (T_H) cells. Local viral replication then occurs, followed by initial detectable plasma viremia, a process called primary infection [4]. Once within regional and draining lymph nodes, infected CD4+ T cells induce T cell activation and proliferation by stimulating HIV-specific CD8+ T cells [6] (Figure 1). The key effector functions of HIV-specific CD8+ T cells are three-fold and include (i) T cell receptor-based recognition of viral-infected cells and subsequent release of perforins and granzyme that are essential to cytotoxic function, (ii) prevention of viral entry via release of competitively binding chemokines such as macrophage inflammatory protein-1 (MIP-1)α, MIP-1β and Chemokine (C-C motif) ligand 5 (RANTES), that serve as chemo-attractants for lymphocytes and monocytes [7,8] and (iii) inhibition of viral replication via production of cytokines and activation of the interferon (IFN) signaling pathway [9] (Figure 1).

During HIV infection, chemokine ligands inhibit viral entry into cells, preventing viral replication and delaying disease progression by competitively binding to the co-receptors, CCR5 and C-X-C chemokine receptor type 4 (CXCR4), on CD4+ T cells and macrophages [10,11]. The polyfunctional HIV-specific and non-specific CD8+ T cell responses induce cytotoxic killing of HIV-infected cells [12] and establish a general antiviral state by enhancing innate immunity, making cells more resistant to virus replication. This, as well as gastrointestinal microbial translocation which occurs due to depletion of gut-associated lymphoid tissue secondary to early, massive HIV replication, creates a pro-inflammatory environment that drives chronic immune activation and leads to disease progression [13]. One consequence of this, with respect to long-term clinical outcomes in HIV-infected individuals, may be a greater propensity for the development of cardiovascular (CV) and other inflammatory diseases [14]. Even in the presence of antiretroviral therapy (ART) there are low levels of viremia; whether there remains active viral replication in blood and lymphoid tissue is controversial and subject to debate and continued study [15]. But presumably the presence of virus or viral gene products is at least in part responsible for the chronic inflammatory state, which may result in a myriad of untoward consequences, with adverse effects on the health of the infected individual.
HIV-1 Viral Life Cycle and Antiretroviral Therapy

The viral life cycle begins when the envelope (env) glycoprotein gp120 binds to the cell surface receptor CD4 and the membrane co-receptors CCR5 or CXCR4 [16,17] (Figure 2). After fusion of the viral and cellular membranes, the viral particle enters into the cytosol and viral RNA is reverse transcribed into proviral double-stranded cDNA (dscDNA) [18]. Although it is not clear whether reverse transcription occurs within an intact viral capsid core, some studies suggest that post-entry at least a partial capsid core structure is required for optimal reverse transcriptase activity [19,20]. After formation of a pre-integration complex (PIC), dscDNA is imported into the cell nucleus through an intact nuclear pore [21] and the genetic material either circularizes as one or two long terminal repeat (LTR)-containing circles (considered dead-end products) or becomes incorporated irreversibly into the host genome via the catalytic activity of viral integrase [22]. Transcription of integrated provirus yields viral mRNAs of different sizes, which are exported from the nucleus [23,24]. These mRNAs serve as templates for protein production and genome-length RNA is incorporated into nascent viral particles, likely cooperatively assembled at the plasma membrane [25]. Finally the newly made viral particles bud from the plasma membrane and mature through the activity of the viral protease, which cleaves the Gag and Pol polyprotein, to produce fully infectious particles [26].

In vitro approaches have identified a number of host genes that negatively regulate or interfere with virus replication. These potent HIV restriction factors include tripartite motif-containing protein 5 alpha (TRIM-5α) [27], multiple apolipoprotein B mRNA editing enzyme catalytic (APOBEC) family members [28], the nucleotide hydrolase SAMHD1 [29], SERINC family members, myxovirus resistance protein (MXB), and tetherin [30-32]. Each of these factors acts at distinct steps of the virus lifecycle to inhibit viral replication and yet none has been definitively implicated in viral control in humans [27,30]. On the other hand, many steps of the viral life cycle are targets for ART [33] (Figure 2), and one of the greatest success stories of the last two decades of modern medicine is the widespread use of ART to treat HIV and transform the infection, once considered a death sentence, into a chronic, very manageable disease. Despite this, ART is life-long and non-curative, and once therapy is stopped or drug resistance develops, viral rebound invariably occurs within weeks and CD4 counts then decline [34,35].

As discussed above, HIV-1 infects both activated and resting cells, allowing the viral genome to be permanently integrated into the chromosome of a host T cell or tissue macrophage, cell types that can be very long-lived [36]. Latent, cellular reservoirs of virus are established very early during primary infection, even in the presence of ART, and their very long half-life and consequent slow decay constitutes the major barrier to eradication [37]. Thus, despite the extraordinary advances that have been made in ART over the last two decades, we still have
controllers,” have more favorable outcomes compared to most HIV-infected individuals who do not have ability to achieve virologic suppression in the absence of ART, termed “non-controllers” (NC) [43]. Although clinical latency in untreated non-controllers may persist for years, because of unrelenting high level viral replication for the vast majority of these patients there is an inexorable loss of CD4+ T cells and immune system decline, eventually resulting in acquired immune deficiency syndrome (AIDS) [47] (Figure 3).

Little is known regarding the precise mechanisms that allow robust control of HIV infection, especially in ECs/VCs. Further investigation into how controllers achieve such a high degree of virologic control may help facilitate efforts directed towards a “functional cure” for HIV, in which the virus is still present in latent reservoirs but never reaches high levels of replication, all in the absence of ART.

Epidemiology and Clinical Definitions of Elite Controllers

Elite controllers (ECs) are a small subset of HIV-1 infected individuals (on the order of 1 in 200 to 1 in 500 or 0.2 to 0.5 percent) who have the ability to suppress viremia to undetectable levels (< 50 copies/ml), while maintaining elevated CD4 cell counts (200 to 1000/µl) in the absence of ART [38-42] (Figure 3). These ECs have been intensively investigated over the last several years in order to determine how they are able to naturally control HIV. A similar subset of HIV-infected individuals termed viremic controllers (VCs) achieve a lesser degree of virologic control (200 < VL < 2000 copies/ml), while also maintaining elevated CD4 cell counts (typically ≤ 500/µl), in the absence of ART [43]. ECs and VCs are part of a significantly larger cohort of HIV-infected persons, described as long-term non-progressors (LTNP). LTNP are characterized by their ability to maintain elevated CD4 cell counts in the absence of ART [43].

These individuals can be identified early during the course of HIV infection and achieve a significantly lower VL set point after sero-conversion [4,44-46]. As a result, collectively, ECs, VCs and LTNP, hereafter termed “controllers,” have more favorable outcomes compared to most HIV-infected individuals who do not have ability to achieve virologic suppression in the absence of ART, termed “non-controllers” (NC) [43]. Although clinical latency in untreated non-controllers may persist for years, because of unrelenting high level viral replication for the vast majority of these patients there is an inexorable loss of CD4+ T cells and immune system decline, eventually resulting in acquired immune deficiency syndrome (AIDS) [47] (Figure 3).

Little is known regarding how to effectively control and eventually eradicate the virus. Identifying novel mechanisms for HIV control bears critical importance to HIV research and treatment, as it will extend our knowledge of the HIV-host interaction and potentially pave the way to new therapeutic approaches.

Figure 3. Progression of disease after HIV-1 infection in HIV-1 progressors, EC and VC.
having three or more VL determinations below the limit of assay detection (usually < 50 copies/ml), spanning 12 months or more, in the absence of ART [43,50,51]. Other studies have required a high percentage of VL values below the limit of detection (> 90 percent) over 10 years to define an EC, although these metrics have not been widely employed [48]. VCs are similar, except that 200 < VL < 2000, with an occasional higher or lower value.

MECHANISMS OF CONTROL OF HIV-1 IN ELITE CONTROLLERS

Viral and Host Cell Intrinsic Factors

Viral protein/ Host factor	Mechanism of action	[ref]
nef	• Downregulates surface levels of MHC-I and MHC-II	[32,138-140]
	• Modulates TCR signaling by inducing/ blocking NFAT and IL-2 production in fresh/ activated T cells, respectively	
	• Prevents incorporation of SERINC-3 and SERINC-5 into HIV-1 virions, enhancing infectivity of the virus	
vpu	• Downregulates CD4, and BST-2/tetherin	[30,141,142]
vif	• Binds to and blocks the antiviral activity of APOBEC3 proteins, in conjunction with other host factors, inducing their proteasomal degradation	[143]
TRIM-5α	• Binds to and multimerizes on the viral capsid, somehow inhibiting viral replication	[27]
	• Initiates innate immune sensing of cytosolic viral capsid	
	• Counteracted by mutations in viral capsid	
Mx2/MxB	• Delays HIV-1 DNA nuclear import and integration by targeting viral capsid, exact mechanism of action uncertain	[31,144]
	• Counteracted by mutations in viral capsid	
APOBEC3 family members	• Inhibits viral reverse transcription and integration	[28]
	• Induces lethal mutations in viral cDNA	
	• Counteracted by vif (see above)	
Tetherin	• Inhibits HIV-1 release by binding virus particles that bud through the cell membrane	[30,145]
	• Counteracted by vpu (see above)	
Serinc-3/5	• Inhibit HIV-1 particle infectivity	[32]
	• Counteracted by nef (see above)	

MHC: major histocompatibility complex; TCR: T Cell Receptor; NFAT: nuclear factor of activated T-cells; BST-2: bone marrow stromal antigen 2; APOBEC: apolipoprotein B mRNA editing enzyme 3 catalytic polypeptide; Mx2/McB: myxovirus resistance protein 2; BST-2: bone marrow stromal antigen 2.

As the sensitivity of VL assays improved over time, the definition of who is classified as an ECs has also changed. For example, an individual characterized as having an undetectable VL between 1995 and 2000 (VL of < 500 copies/ml) may not be identified as an ECs today, as the VL assays in routine clinical use are now able to detect less than 20 copies/ml. This is a potential confounder of longitudinal analyses that evaluate clinical outcomes over prolonged periods of time that cross generations of VL assays.

Furthermore, fluctuations in HIV VL are observed naturally during the course of HIV infection and are usually due to concurrent illness or other co-morbidities, receipt of vaccinations, variability or reproducibility of the assay, or inconsistent ART compliance (of course the latter does not pertain to those off therapy) [43]. The ability to not only achieve undetectable VLs, but to sustain them is what differentiates an EC from an NC. Therefore, widely accepted study definitions of an EC include having three or more VL determinations below the limit of assay detection (usually < 50 copies/ml), spanning 12 months or more, in the absence of ART [43,50,51]. Other studies have required a high percentage of VL values below the limit of detection (> 90 percent) over 10 years to define an EC, although these metrics have not been widely employed [48]. VCs are similar, except that 200 < VL < 2000, with an occasional higher or lower value.

MECHANISMS OF CONTROL OF HIV-1 IN ELITE CONTROLLERS

Viral and Host Cell Intrinsic Factors

Some studies have suggested that the viral control is the result of infection with defective viral strains [52,53]. However, other studies have proposed that the majority of control is due to host factors. A summary of the viral proteins and host restriction factors implicated in control in VCs/ECs and their role in viral cycle is included in Table 1 and Figure 4. Infection with highly attenuated HIV was observed in a group of recipients of blood products from a common infected donor. The transmitted virus contained a deletion in the viral accessory gene nef, and
data is strictly correlative. In some ECs, certain polymorphisms within the HIV genome were likely acquired early during the course of infection, rendering the virus somewhat devoid of genetic variability and thus yielding a relatively poorly replicating virus [53,65]. Many of these studies involved small numbers of ECs in whom replication competent viruses were not isolated, thus limiting the generalizability of the conclusions. Other work has isolated and analyzed the genomes of replication-competent virus from ECs and results have shown comparable degrees of genetic variation, replication, and evolution, compared to virus isolated from NC [52]. Thus, perhaps host factors play a more significant role in achieving and sustaining virologic control. Consistent with this idea, Buckheit et al., were able to isolate identical viruses from NC and one EC and another VC, consistent with host factors having a dominant role in the control of the HIV-1 replication [66].

Cellular Immune Responses

Studies have suggested that viral control is strongly correlated with the cellular and humoral immune responses in man [67]. A tight association has been observed between Gag-specific cytotoxic T lymphocyte responses and viral control [68,69], and most notably, HIV-1 specific-CD8+ T cell responses against viral structural proteins have been shown to correlate inversely to set point levels of viral RNA [69]. More recently, greater avidities of Gag-specific T cell and human leukocyte antigen (HLA)-B-restricted responses were seen in vivo in
has been associated with high levels of HIV-specific interferon-gamma (IFN-γ) CD4+ T cells and lower levels of T-cell activation and HIV-neutralizing antibodies [82-84]. However, HIV-specific CD4+ T cell responses have been suggested not play a direct role in controlling viral replication, at least in non-human primates infected with simian immunodeficiency virus [85].

CD4+ T Cell Phenotype and Susceptibility to HIV Infection

Whether CD4+ T cells from ECs are intrinsically more resistant to HIV infection has also been investigated; these results have been very controversial, dependent on the method of CD4+ T cell stimulation. Polyclonal, PHA-activated ECs, and LTNP CD4+ T cells were susceptible to HIV infection [52]. In contrast, CD3-activated CD4+ T cells from ECs were resistant to HIV infection in culture, independent of co-receptor usage [86,87]. This phenotype was associated with increased levels of the cyclin dependent kinase (CDK) inhibitor p21 [86,88]. Further investigation of the role of p21 in ECs suggests that it may indirectly block HIV reverse transcription by inhibiting CDK2-dependent phosphorylation [89]. A recent study demonstrated that a subset of ECs have CD4+ T cells that produce higher levels of MIP chemokines, suggesting that these cells may be resistant to HIV infection by blocking R5-tropic HIV viral entry [90]. Conversely, HIV infection of CD3-activated CD4+ T cells from ECs and NCs was similar [91].

Higher levels of viral particle production, however, were observed in NCs compared with ECs [92,93]. Unstimulated ECs than in NC [70], consistent with these HIV-specific CD4+ and CD8+ T cell immune responses occurring more frequently in ECs than NCs [71,72].

On the other hand, the absence of some of these HIV-specific CD4+ T cell responses has been shown to be a marker of disease progression [73]. CD8+ T cells from ECs have exhibited more multifunctional capabilities in response to HIV antigens compared to NC, with greater degranulation and release of perforin and granzyme B [74-76]. Furthermore, CD8+ cells from HLA-B*57/5801 ECs were more efficient at eliminating potentially infected resting and activated CD4+ T cells compared to the same cells in progressors [77]. Higher frequency in memory CD8+ CD73+ cells, a subtype involved in the HIV-specific CD8+ T-cell responses, was observed in ECs compared to healthy controls and HIV+ patients, even for those on ART [78]. CD8+ T cells from ECs produced more CD107α, a marker of CD8+ T-cell degranulation following stimulation in response to HIV, compared with NC on ART [79]. Also, CD8+ T cells from ECs and VCs released more inflammatory cytokines and chemokines than NC. These soluble factors included tumor necrosis factor-alpha (TNF-α) and MIP-1β, which facilitate cytotoxic T cell lysis of HIV-infected cells [79,80]. Inhibiting the function of chemokine ligands in vitro led to loss of viral control and replication of HIV in susceptible T lymphocytes [81]. This may serve as one method by which ECs are able to achieve viral control.

Other studies performed in CD4+ T cells isolated from ECs have been aimed at understanding how these individuals are able to control viral replication. CD4+ T cells from ECs have been shown to retain their ability to proliferate and produce interleukin-2 (IL-2) in response to HIV [80,82,83]. Moreover, control of HIV replication has been associated with high levels of HIV-specific interferon-gamma (IFN-γ) CD4+ T cells and lower levels of T-cell activation and HIV-neutralizing antibodies [82-84]. However, HIV-specific CD4+ T cell responses have been suggested not play a direct role in controlling viral replication, at least in non-human primates infected with simian immunodeficiency virus [85].

CD4+ T Cell Phenotype and Susceptibility to HIV Infection

Whether CD4+ T cells from ECs are intrinsically more resistant to HIV infection has also been investigated; these results have been very controversial, dependent on the method of CD4+ T cell stimulation. Polyclonal, PHA-activated ECs, and LTNP CD4+ T cells were susceptible to HIV infection [52]. In contrast, CD3-activated CD4+ T cells from ECs were resistant to HIV infection in culture, independent of co-receptor usage [86,87]. This phenotype was associated with increased levels of the cyclin dependent kinase (CDK) inhibitor p21 [86,88]. Further investigation of the role of p21 in ECs suggests that it may indirectly block HIV reverse transcription by inhibiting CDK2-dependent phosphorylation [89]. A recent study demonstrated that a subset of ECs have CD4+ T cells that produce higher levels of MIP chemokines, suggesting that these cells may be resistant to HIV infection by blocking R5-tropic HIV viral entry [90]. Conversely, HIV infection of CD3-activated CD4+ T cells from ECs and NCs was similar [91]. Non-activated CD4+ T cells from ECs were fully susceptible to HIV infection, similar to those of progressors. Higher levels of viral particle production, however, were observed in NCs compared with ECs [92,93]. Unstimu-
lar HIV DNA, suggesting a block at genome integration, after nuclear entry [97].

Other groups have studied whether the cellular phenotypes observed in natural killer (NK) cells were associated with ECs phenotype [98]. Undetectable viremia observed in ECs was shown to correlate with a higher percentage of activated NK cells [99]. Also, it has been suggested an increased NK activity in ECs who lacks HIV-1 specific CD8+ T cell responses [100]. Recently, the maintenance of CD4+ T cells in ECs has been associated with the lack of expression of one of the natural

Table 3: Summary of retrospective cohort studies of clinical outcomes in ECs.

Study population	Sample size (N)	Primary outcome	Study period	Relevant results	Ref
HIV+ in the military healthcare system	Total (4,586)	Time to develop AIDS	1986-2006	1. Time to virologic suppression was early after infection (less than 1 year from the time of seroconversion) in most ECs/VCs 2. ECs/VCs had fewer deaths and AIDS-defining events, and longer time to AIDS and death compared to NC 3. Individuals achieving LTNP status for 10 years had more favorable time to AIDS and death compared to LTNP reaching their status for 7 years	[43]
HIV research network	Total (34,000)	All-cause hospitalization rates	2005-2011	1. ECs had higher rates of hospitalization rates due to CV disease and psychiatric illness, compared to NC under ART 2. ECs were more likely to be hospitalized than VCs (with both high and low VL) due to CV diseases	[135]
US military HIV+ natural history	Total (1091)	Non-AIDS	2000-2013	1. Non-AIDS infection was the most common reason for hospitalizations in all groups, ECs, VCs and progressors on therapy 2. No differences in hospitalization rates associated with CV disease between groups, suggesting longer follow up of patients may be needed	[134]
HIV+ patients from a University Hospital	Total (574)	Non-AIDS and AIDS events	1996-2011	1. Non-AIDS-defining malignancies were the most common reason for hospitalization, followed by CV and neuropsychiatric illnesses 2. The risk of non-AIDS events was comparable in ECs, VCs and NCs 3. Only controllers who retained spontaneous control during the entire follow-up period had a lower risk of non-AIDS events	[152]

EC: elite controller; VC: viremic controller; LTNP: long-term non-progressor; LTNP 10: LTNP through 10 years of follow-up; LTNP 7: LTNP through 7 years of follow-up; NC: non-controller; ART: antiretroviral therapy; CV: cardiovascular; VL: viral load; AIDS: acquired immune deficiency syndrome

lated CD4+ T cells from ECs exhibited reduced levels of viral integration, compared to those of NCs and HIV-negative controls [94].

On the other hand, ECs do not exhibit some of the immune changes that are observed in NCs. Cytotoxic T-Lymphocyte Antigen-4 (CTLA-4) is upregulated on HIV-specific CD4+ T cells during acute HIV infection, and also correlates with progression of disease. However, this phenotype has not been observed on CD4+ T cells from ECs [95,96]. Interestingly, ECs harbor lower levels of integrated HIV DNA, but higher levels of 2-LTR circu-lar HIV DNA, suggesting a block at genome integration, after nuclear entry [97].

Other groups have studied whether the cellular phenotypes observed in natural killer (NK) cells were associated with ECs phenotype [98]. Undetectable viremia observed in ECs was shown to correlate with a higher percentage of activated NK cells [99]. Also, it has been suggested an increased NK activity in ECs who lacks HIV-1 specific CD8+ T cell responses [100]. Recently, the maintenance of CD4+ T cells in ECs has been associated with the lack of expression of one of the natural
cytotoxic receptors in NK cells [101].

Host Genetic Factors

Varied approaches have been taken to identify potential host factors and genes involved in virologic control in both ECs and LTNPs (see Table 2). Several alleles within the HLA-B/C haplotype block have been associated with control, including HLA-B*5701, HLA-C, and HCP5 alleles [39,102-109]. Furthermore, the presence of the CCR5 delta 32 (Δ32) allele (a 32 base-pair deletion in CCR5 which renders the co-receptor cytosolic and non-functional) confers protection against seroconversion, with homozygotes being completely resistant to infection by R5-tropic viral strains [110,111]. HIV+ individuals who are heterozygous for the Δ32 CCR5 genotype have relatively normal levels of CD4 T cell surface CCR5 expression but delayed disease progression [112]. Specific alleles of zinc ribbon domain containing (ZNRD1, a subunit of RNA polymerase I) and ring finger protein 39 (RNF39, a poorly characterized gene) were associated with progression [105].

Genome-wide association studies (GWAS) of HIV-infected cohorts evaluated associations between naturally occurring single nucleotide polymorphisms (SNPs) and particular phenotypes of interest (Table 2). In examining thousands of ECs and NC, the International HIV Controllers Study identified over 300 SNPs located within the chromosome 6 significantly associated with HIV control [51]. Specific amino acid sequences identified within the HLA-B peptide-binding groove were shown to have extremely low P values, lower than any other SNP found by GWAS, or any other HLA allele [113]. Imputed amino acids within the HLA-B peptide-binding groove, in addition to an independent HLA-C effect, explained the associations and the risk and protective alleles, suggesting that very specific interactions between HLA and viral peptides contribute to viral control. In particular, B*57:01, B*27:05, B*14/Cw08:02, B*52 and A*25 alleles were protective, whereas B*35 and Cw*07 conferred risk. Importantly, however, only ~20 percent of the protective effect was explained by the identified SNPs [51], suggesting that other, unknown genes and mechanisms are responsible for the observed control.

Additionally, it has been reported that TRIM-5α expression contributes to viral control in EC patients expressing HLA-B*57 or HLA-B*27 alleles [114].

Investigators have also focused on the role of genetic and molecular factors, including those that regulate chromatin and DNA methylation, in viral control. Epigenetic modifications of the HIV promoter have been associated with control of HIV replication and transcription. ECs were shown to have higher levels of DNA methylation in the 5’-LTR compared with progressors [115]. Similarly, lower levels of ccr5 gene DNA methylation were seen in EC and HIV suppressors compared with HIV-negative individuals, indicating an association between ccr5 methylation status and HIV disease [116]. DNA demethylation of regions that regulate PD-1 gene expression in HIV-specific CD8+ T cells was also associated with HIV control, in both ECs and NC on ART [117].

CLINICAL OUTCOMES OF CONTROLLERS VS. NON-CONTROLLERS ON ART

The long-term clinical outcomes of ECs, as compared to NCs, have been mainly focused on progression to AIDS and AIDS-related death [43]. More is now known about the non-AIDS related clinical outcomes of ECs and the role that chronic immune activation plays in their outcome.

Several retrospective studies have tried to better understand the potential benefit of early ART in modifying both AIDS-related and non-AIDS related outcomes in controllers [118]. A summary of these studies examining clinical outcomes of ECs is provided below (Table 3).

AIDS-associated Clinical Outcomes

CD4+ count is the most well-recognized and reliable clinical indicator of HIV disease progression. For many years CD4+ number was paramount in treatment guidelines regarding timing of ART initiation [119-121].

Although early, high HIV RNA levels have been associated with CD4 decline [120,122], it is subsequent or set point viral RNA levels that have a greater prognostic impact on disease progression [123]. ECs achieve lower early baseline and set point viral RNA levels compared to NCs, and therefore have lower rates of AIDS progression and associated mortality [44,45,120,122] (Figure 3).

In a retrospective study, Okulicz et al [43] showed that among most ECs/VCs, virologic suppression occurred early after infection, and in most cases, during the first year from the time of known seroconversion. However, they did uncover differences between ECs and VCs, including more stable and higher CD4 counts in ECs than VCs. They also evaluated the time to AIDS and death among LTNP through 7 years of follow-up and 10 years of follow-up, depending on the duration of non-progression. Results showed that individuals achieving LTNP status for 10 years had more favorable time to AIDS and death compared to those achieving LTNP status earlier. Eventually, however, some VCs did progress to AIDS and death, reaffirming the notion that loss of virologic control and immune function occurs in some of these individuals. In fact, a study of more than four hundred ECs revealed that almost 30 percent of them lost viral control, resulting in reduced CD4 counts, underscoring the concept that many of these patients may eventually progress to AIDS [124].
Non AIDS-associated Clinical Outcomes

ECs and VCs have higher levels of circulating inflammatory cytokines and rates of coronary atherosclerosis compared to NC on ART [125,126], suggesting that the chronic inflammation present may account for early vascular dysfunction [127]. Several factors contribute to the heightened inflammatory cellular setting of ECs and VCs compared to NC on ART, including gut microbial translocation and chronic T cell activation [128,129]. Gut microbial translocation is measured as circulating lipopolysaccharide (LPS) levels, and its presence has been attributed to viremia and disease progression [131]. Thus, it has been clearly demonstrated that ART reduces LPS levels and reduces the degree of immune activation [132,133]. The inflammatory environment that may be responsible for maintaining strict virological control in ECs and VCs may also portend unfavorable long-term clinical outcomes. A recent retrospective study revealed that non-AIDS-defining infections were the most common reason for hospitalization in ECs, with the same rates of hospitalization due to CV disease in both progressors on ART and ECs [134]. Crowell and colleagues showed, however, that compared to NCs on ART, ECs had higher rates of all-cause hospitalizations due to CV disease and psychiatric illness. In light of what is known about the association of inflammatory cytokines and coronary artery disease in controllers, perhaps this finding is not surprising. That VCs had more favorable all-cause hospitalization rates due to CV disease compared to ECs was nonetheless unanticipated and certainly counter-intuitive.

In light of these findings it was of interest to determine the clinical outcomes of ECs and VCs after beginning ART. A recent study demonstrated an increase in CD4 number after ART initiation in both ECs and VCs, although it was somewhat better in the former [136]. Treatment with ART in ECs and VCs for six months reduced levels of immune activation markers and HIV VL (the latter in VCs), indicating that the use of ART in this setting may be beneficial [137]. Whether there are long-term, meaningful, and lasting differences in clinical outcomes remains to be established. Per current DHHS guidelines, starting ECs on ART is an individualized decision; all VCs should be on ART given their higher, detectable VLs.

CONCLUSIONS

ECs and VCs are able to achieve spontaneous control of viral replication to differing degrees, in the absence of antiretroviral medications. This relatively rare ability is thought to be mediated via either viral or host immune or genetic factors. HIV-specific immune activation, a greater poly-functional CD8+ T cell response, and HIV-specific CD4+ T cell responses in ECs may indeed play a significant role in reducing VL and delaying disease progression. Also, ECs have SNPs within the HLA loci that are significantly associated with viral control and finely map to the peptide-binding groove of the class I molecule. Functional and biochemical studies, however, are required to confirm the role of these amino acid residues in virologic suppression. Additional studies are necessary to pinpoint novel pathways and causal host genes responsible for virologic control, especially since the SNPs observed in the HLA loci can only explain ~20 percent of the EC phenotype. A better understanding of the mechanisms that underlie virologic control and the long-term clinical outcomes of ECs/VCs may help inform the ‘HIV cure’ agenda and lead to a better quality of life, even for HIV+ progressors.

REFERENCES

1. Fox J and Fidler S. Sexual transmission of HIV-1. Antiviral Res. 2010;85(1):276-85.
2. Hansasuta P and Rowland-Jones SL. HIV-1 transmission and acute HIV-1 infection. Br Med Bull. 2001;58:109-27.
3. Wilen CB, Tilton JC, and Doms RW. HIV: cell binding and entry. Cold Spring Harb Perspect Med. 2012;2(8).
4. Weber J. The pathogenesis of HIV-1 infection. Br Med Bull. 2001;58:61-72.
5. Gupta P, Collins KB, Ratner D, Watkins S, Naus GJ, Landers DV, et al. Memory CD4(+) T cells are the earliest detectable human immunodeficiency virus type 1 (HIV-1)-infected cells in the female genital mucosal tissue during HIV-1 transmission in an organ culture system. J Virol. 2002;76(19):9868-76.
6. Wilen CB, Tilton JC, and Doms RW. Molecular mechanisms of HIV entry. Adv Exp Med Biol. 2012;726:223-42.
7. Graw F and Regoes RR. Predicting the impact of CD8+ T cell polyfunctionality on HIV disease progression. J Virol. 2014;88(17):10134-45.
8. Miyagishi R, Kikuchi S, Takayama C, Inoue Y, and Tashiro T. Identification of cell types producing RANTES, MIP-1 alpha and MIP-1 beta in rat experimental autoimmune encephalomyelitis by in situ hybridization. J Neuroimmunol. 1997;77(1):17-26.
9. Norris PJ, Pappalardo BL, Custer B, Spotts G, Hecht FM, and Busch MP. Elevations in IL-10, TNF-alpha, and IFN-gamma from the earliest point of HIV Type 1 infection. AIDS Res Hum Retroviruses. 2006;22(8):757-62.
10. Paxton WA, Martin SR, Tse D, O’Brien TR, Skurnick J, VanDerVanter NL, et al. Relative resistance to HIV-1 infection of CD4 lymphocytes from persons who remain uninfected despite multiple high-risk sexual exposure. Nat Med. 1996;2(4):412-7.
11. Saha K, Bentsman G, Chess L, and Volsky DJ. Endogenous production of beta-chemokines by CD4+, but not CD8+, T-cell clones correlates with the clinical state of human immunodeficiency virus type 1 (HIV-1)-infected individuals and may be responsible for blocking infection with non-syncytium-inducing HIV-1 in vitro. J Virol.
12. Hersperger AR, Pereyra F, Nason M, Demers K, Sheth P, Shin LY, et al. Perforin expression directly ex vivo by HIV-specific CD8 T-cells is a correlate of HIV elite control. PLoS Pathog. 2010;6(5):e1000917.

13. Marchetti G, Tincati C, and Silvestri G. Microbial translocation in the pathogenesis of HIV infection and AIDS. Clin Microbiol Rev. 2013;26(1):2-18.

14. Triant VA. Cardiovascular disease and HIV infection. Curr HIV/AIDS Rep. 2013;10(3):199-206.

15. Hsu PY, Deeks SG, and Hunt PW. Immunologic basis of cardiovascular disease in HIV-infected adults. J Infect Dis. 2012;205 Suppl 3:S375-82.

16. Choe H, Farzan M, Sun Y, Sullivan N, Rolllins B, Ponnath PD, et al. The beta-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates. Cell. 1996;85(7):1135-48.

17. Feng Y, Broder CC, Kennedy PE, and Berger EA. HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science. 1996;272(5263):872-7.

18. Bukrinsky MI, Stanwick TL, Dempsey MP, and Stevenson M. Quiescent T lymphocytes as an inducible virus reservoir in HIV-1 infection. Science. 1991;254(5030):423-7.

19. Jordansky S and Bukrinsky M. Reverse transcription complex: the key player of the early phase of HIV replication. Future Virol. 2007;2(1):49-64.

20. Hulme AE, Perez O, and Hope TJ. Complementary assays reveal a relationship between HIV-1 uncoating and reverse transcription. Proc Natl Acad Sci U S A. 2011;108(24):9975-80.

21. Bukrinsky MI, Sharova N, Dempsey MP, Stanwick TL, Bukrinskaya AG, Haggerty S, et al. Active nuclear import of human immunodeficiency virus type 1 preintegration complexes. Proc Natl Acad Sci U S A. 1992;89(14):6580-4.

22. Arhel NJ, Souquere-Besse S, Munier S, Souque P, Gandaglini S, Rutherford S, et al. HIV-1 DNA Flap formation promotes uncoating of the pre-integration complex at the nuclear pore. EMBO J. 2007;26(12):3025-37.

23. Malim MH, Hauber J, Le SY, Maizel JV, and Cullen BR. The HIV-1 rev trans-activator acts through a structured target sequence to activate nuclear export of unspliced viral mRNA. Nature. 1989;338(6212):254-7.

24. Felber BK, Hadzopoulou-Cladaras M, Cladaras C, Copeland T, and Pavlakis GN. rev protein of human immunodeficiency virus type 1 affects the stability and transport of the viral mRNA. Proc Natl Acad Sci U S A. 1989;86(5):1495-9.

25. Swanson CM and Malim MH. Retrovirus RNA trafficking: from chromatin to invasive genomes. Traffic. 2006;7(11):1440-50.

26. Sundquist WI and Krausslich HG. HIV-1 assembly, budding, and maturation. Cold Spring Harb Perspect Med. 2012;2(7):a006924.

27. Stremlau M, Owens CM, Perron MJ, Kiessling M, Autissier P, and Sodroski J. The cytoplasmic body component TRIM5alpha restricts HIV-1 infection in Old World monkeys. Nature. 2004;427(6977):848-53.

28. Sheehy AM, Gaddis NC, Choi JD, and Malim MH. Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature. 2002;418(6898):646-50.

29. Laguette N, Sobhian B, Casartelli N, Ringeard M, Chable-Bessia C, Segeral E, et al. SAMHD1 is the de- nitrile- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature. 2011;474(7353):654-7.

30. Neil SJ, Zang T, and Bieniasz PD. Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature. 2008;451(7177):425-30.

31. Liu Z, Pan Q, Ding S, Qian J, Xu F, Zhou J, et al. The interferon-inducible MxB protein inhibits HIV-1 infection. Cell Host Microbe. 2013;14(4):398-410.

32. Usami Y, Wu Y, and Gottlinger HG. SERINC3 and SERINC5 restrict HIV-1 infectivity and are counteracted by Nef. Nature. 2015;526(7572):218-23.

33. Laskey RJ and Siliciano RF. A mechanistic theory to explain the efficacy of antiretroviral therapy. Nat Rev Microbiol. 2014;12(11):772-80.

34. Strategies for Management of Antiretroviral Therapy Study Group, El-Sadr WM, Lundgren J, Neaton JD, Gordin F, Abrams D, et al. CD4+ count-guided interruption of antiretroviral treatment. N Engl J Med. 2006;355(22):2283-96.

35. Hoffmann Olsen C, Mocroft A, Kirk O, Vella S, Blaxhult A, Clumeck N, et al. Interruption of combination antiretroviral therapy and risk of clinical disease progression to AIDS or death. HIV Med. 2007;8(2):96-104.

36. Chavez L, Calvanese V, and Verdin E. HIV latency is established directly and early in both resting and activated primary CD4 T cells. PLoS Pathog. 2015;11(6):e1004955.

37. Siliciano RF and Greene WC. HIV latency. Cold Spring Harb Perspect Med. 2011;3(11):a007050.

38. Okulicz JF and Lambotte O. Epidemiology and clinical characteristics of elite controllers. Curr Opin HIV AIDS. 2011;6(3):163-8.

39. Okulicz JF, Boufassa F, Madec Y, Nguyen A, Goujard C, Meyer L, et al. HIV controllers: a homogeneous group of HIV-1-infected patients with spontaneous control of viral replication. Clin Infect Dis. 2005;41(7):1053-6.

40. Deeks SG and Walker BD. Human immunodeficiency virus controllers: mechanisms of durable virus control in the absence of antiretroviral therapy. Immunity. 2007;27(3):406-16.

41. O’Connell KA, Bailey JR, and Blankson JN. Elucidating the elite: mechanisms of control in HIV-1 infection. Trends Pharmacol Sci. 2009;30(12):631-7.

42. Blankson JN. Effector mechanisms in HIV-1 infected elite controllers: highly active immune responses? Antiviral Res. 2010;85(1):295-302.

43. Okulicz JF, Marconi VC, Landrum ML, Wegner B, Weinroth A, Ganesan A, et al. Clinical outcomes of elite controllers: highly active immune responses? Antiviral Res. 2010;85(1):295-302.

44. Lavreys L, Baeten JM, Chohan V, McClelland RS, Hassan WM, Richardson BA, et al. Higher set point plasma viral load and more-severe acute HIV type 1 (HIV-1) illness predict mortality among high-risk HIV-1-infected African women. Clin Infect Dis. 2006;42(9):1333-9.
BS, Kokka RP, et al. Quantitation of HIV-1 RNA in plasma predicts outcome after seroconversion. Ann Intern Med. 1995;122(8):573-9.

46. Mellors JW, Rinaldo CR, Jr., Gupta P, White RM, Todd JA, and Kingsley LA. Prognosis in HIV-1 infection predicted by the quantity of virus in plasma. Science. 1996;272(5265):1167-70.

47. Pantaleo G, Graziosi C, and Fauci AS. New concepts in the immunopathogenesis of human immunodeficiency virus infection. N Engl J Med. 1993;328(5):327-35.

48. Lambotte O, Boufassa F, Madec Y, Nguyen A, Goujard C, Meyer L, et al. HIV controllers: a homogeneous group of HIV-1-infected patients with spontaneous control of viral replication. Clin Infect Dis. 2005;41(7):1053-6.

49. Grabar S, Selinger-Leneman H, Abgrall S, Pialoux G, Weiss L, and Costagiola D. Prevalence and comparative characteristics of long-term nonprogressors and HIV controller patients in the French Hospital Database on HIV. AIDS. 2009;23(9):1163-9.

50. Walker BD. Elite control of HIV Infection: implications for vaccines and treatment. Top HIV Med. 2007;15(4):134-6.

51. International HIVCS, Pereyra F, Jia X, McLaren PJ, Telenti A, de Bakker PI, et al. Characterization of human immunodeficiency virus type 1 fif gene in long-term asymptomatic individuals. J Clin Invest. 2003;111(10):1547-54.

52. Yamada T and Iwamoto A. Comparison of proviral access-ory genes between long-term nonprogressors and progressive virus type 1 infection. J Virol. 2000;85(4):563-74.

53. Kirchhoff F, Greschner TC, Brettler DB, Sullivan JL, and Desrosiers RC. Brief report: absence of intact nef sequences in a long-term survivor with nonprogressive HIV-1 infection. N Engl J Med. 1995;332(4):228-32.

54. Lambotte O, Boufassa F, Madec Y, Nguyen A, Goujard C, Meyer L, et al. HIV controllers: a homogeneous group of HIV-1-infected patients with spontaneous control of viral replication. Clin Infect Dis. 2005;41(7):1053-6.

55. Churchill MJ, Rhodes DI, Learmont JC, Sullivan JS, Deacon NJ, Tsykin A, Solomon A, Smith K, Ludford-Menting M, Hooker DJ, et al. Genomic structure of an attenuated quasi species of HIV-1 from a blood transfusion donor and recipients. Science. 1995;270(5238):988-91.

56. Edwards BH, Bansal A, Sabbaj S, Bakari J, Mulligan MJ, and Goepfert PA. Magnitude of functional CD8+ T-cell responses to the gag protein of human immunodeficiency virus type 1 correlates inversely with viral load in plasma. J Virol. 2002;76(24):12414-22.

57. Ferrando-Martinez S, Casazza JP, Leal M, Machmach K, Munoz-Fernandez MA, Viciana P, et al. Differential Gag-specific polyfunctional T cell maturation patterns in HIV-1 elite controllers. J Virol. 2012;86(7):3667-74.

58. Kikuchi T, Iwabu Y, Tada T, Kawana-Tachikawa A, Koga M, Hosoya N, et al. Anti-APOBEC3G activity of HIV-1 Vif protein is attenuated in elite controllers. J Virol. 2002;76(24):12414-22.
74. Betts MR, Nason MC, West SM, De Rosa SC, Migueles SA, Abraham J, et al. HIV nonprogressors preferentially maintain highly functional HIV-specific CD8+ T cells. Blood. 2006;107(12):4781-9.

75. Migueles SA, Laborico AC, Shupert WL, Sabbaghian MS, Rabin R, Hafflavan CW, et al. HIV-specific CD8+ T cell proliferation is coupled to perforin expression and is maintained in nonprogressors. Nat Immunol. 2002;3(11):1061-8.

76. Almeida JR, Price DA, Papagno L, Arkoub ZA, Sauce D, Bornstein E, et al. Superior control of HIV-1 replication by CD8+ T cells is reflected by their avidity, polyfunctionality, and clonal turnover. J Exp Med. 2007;204(10):2473-85.

77. Buckheit RW, 3rd, Siliciano RF, and Blankson JN. Primary CD8+ T cells from elite suppressors effectively eliminate non-productively HIV-1 infected resting and activated CD4+ T cells. Retrovirology. 2013;10:68.

78. Carriere M, Lacabaratz C, Kok A, Benne C, Jenabian MA, Migueles SA, Laborico AC, Shupert WL, Sabbaghian MS, Betts MR, Nason MC, West SM, De Rosa SC, Migueles SA, Abdool Karima KA, and Watkins DI. Reduction of CD4+ T cells in vivo-infected CD4+ cells and overexpression of CTLA-4 are linked to loss of antigen-specific CD8+ T cells in HIV elite controllers. Clin Infect Dis. 2010;51(2):233-8.

79. Chen H, Li C, Huang J, Cung T, Seiss K, Beamon J, Emu B, Sinclair E, Favre D, Moretto WJ, Hsue P, Hoh R, et al. Phenotypic, functional, and kinetic parameters associated with apparent T-cell control of human immunodeficiency virus replication in individuals with and without antiretroviral treatment. J Virol. 2005;79(22):14169-78.

80. Ferre AL, Hunt PW, Critchfield JW, Young DH, Morris MM, Garcia JC, et al. Mucosal immune responses to HIV-1 in elite controllers: a potential correlate of immune control. Blood. 2009;113(17):3978-89.

81. Julg B, Pereyra F, Buzon MJ, Piechocka-Trocha A, Clark MJ, Baker BM, et al. Infrequent recovery of HIV from but robust exogenous infection of activated CD4+ T cells in HIV elite controllers. Clin Infect Dis. 2010;51(2):233-8.

82. Kaufmann DE, Kavanagh DG, Pereyra F, Zaunders JJ, Ip S, Munier ML, Kaufmann DE, Suzuki K, Bretenon C, et al. Infection of CD127+ (interleukin-7 receptor+) CD4+ cells and overexpression of CTLA-4 are linked to loss of antigen-specific CD8+ T cells during primary human immunodeficiency virus type 1 infection. J Virol. 2006;80(20):10162-72.

83. Kaufmann DE, Kavanagh DG, Pereyra F, Zaunders JJ, Mackey EW, Miura T, et al. Upregulation of CTLA-4 by HIV-specific CD4+ T cells correlates with disease progression and defines a reversible immune dysfunction. Nat Immunol. 2007;8(11):1246-54.

84. Kurscheid S, Rathod A, et al. Genetic and immunologic heterogeneity linked to loss of antigen-specific CD4 T cells during primary human immunodeficiency virus type 1 infection. J Virol. 2008;85(18):9646-50.

85. Mudd PA, Ericsen AJ, Price AA, Wilson NA, Reimann KA, and Watkins DI. Reduction of CD4+ T cells in vivo does not affect virus load in macaque elite controllers. J Virol. 2011;85(14):7454-9.

86. Yu XG and Lichtfelder M. Elite control of HIV: p21 (waf-1/cip-1) at its best. Cell Cycle. 2011;10(19):3213-4.

87. Leng J, Ho HP, Buzon MJ, Pereyra F, Walker BD, Yu XG, et al. A cell-intrinsic inhibitor of HIV-1 reverse transcription in CD4(+) T cells from elite controllers. Cell Host Microbe. 2014;15(6):717-28.

88. Yu XG and Lichtfelder M. Elite control of HIV: p21 (waf-1/cip-1) at its best. Cell Cycle. 2011;10(19):3213-4.
C, Pontali E, et al. Natural killer cells in HIV controller patients express an activated effector phenotype and do not up-regulate NKp44 on IL-2 stimulation. Proc Natl Acad Sci U S A. 2013;110(29):11970-5.

102. Kiepiela P, Leslie AJ, Honeyborne I, Ramduth D, Thobakgale C, Chetty S, et al. Dominant influence of HLA-B in mediating the potential co-evolution of HIV and HLA. Nature. 2004;432(7018):769-75.

103. Bailey JR, Williams TM, Siliciano RF, and Blankson JN. Maintenance of viral suppression in HIV-1-infected HLA-B*57+ elite suppressors despite CTL escape mutations. J Exp Med. 2006;203(5):1357-69.

104. Migueles SA, Laborico AC, Imamichi H, Shupert WL, Royce C, McLaughlin M, et al. The differential ability of HLA B*5701+ long-term nonprogressors and progressors to restrict human immunodeficiency virus replication is not caused by loss of recognition of autologous viral gag sequences. J Virol. 2003;77(12):6889-98.

105. Fellay J, Shianna KV, Ge D, Colombo S, Ledergerber B, Weale M, et al. A whole-genome association study of major determinants for host control of HIV-1. Science. 2007;317(5840):944-7.

106. Fellay J, Ge D, Shianna KV, Colombo S, Ledergerber B, Cirulli ET, et al. Common genetic variation and the control of HIV-1 in humans. PLoS Genet. 2009;5(12):e1000791.

107. Trachtenberg E, Bhattacharya T, Ladner M, Phair J, Erlich H, and Wolinsky S. The HLA-B/-C haplotype block contains major determinants for host control of HIV. Genes Immun. 2009;10(8):673-7.

108. Han Y, Lai J, Barditch-Crovo P, Gallant JE, Williams TM, Siliciano RF, et al. The role of protective HCP5 and HLA-C associated polymorphisms in the control of HIV-1 replication in a subset of elite suppressors. AIDS. 2008;22(4):541-4.

109. Tang Y, Huang S, Dunkley-Thompson J, Steel-Duncan JC, Ryland EG, St John MA, et al. Correlates of spontaneous viral control among long-term survivors of perinatal HIV-1 infection expressing human leukocyte antigen-B57. AIDS. 2010;24(10):1425-35.

110. Liu R, Paxton WA, Choe S, Ceradini D, Martin SR, Horuk R, et al. Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell. 1996;86(3):367-77.

111. Samson M, Libert F, Doranz BJ, Rucker J, Liesnard C, Farber CM, et al. Resistance to HIV-1 infection in caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature. 1996;382(6593):722-5.

112. Rappaport J, Cho YY, Hendel H, Schwartz EJ, Schachter F, and Zagury JF. 32 bp CCR-5 gene deletion and resistance to fast progression in HIV-1 infected heterozygotes. Lancet. 1997;349(9056):922-3.

113. van Manen D, van’t Wout AB, and Schuitemaker H. Genome-wide association studies on HIV susceptibility, pathogenesis and pharmacogenomics. Retrovirology. 2012;9:70.

114. Granier C, Battivelli E, Lecroux C, Venet A, Lambotte O, Schmitt-Boularger M, et al. Pressure from TRI-MSalpha contributes to control of HIV-1 replication by individuals expressing protective HLA-B alleles. J Virol. 2013;87(18):10368-80.

115. Palacios JA, Perez-Pinar T, Toro C, Sanz-Minguela B, Moreno V, Valencia E, et al. Long-term nonprogressor and elite controller patients who control viremia have a higher percentage of methylation in their HIV-1 proviral promoters than aviremic patients receiving highly active antiretroviral therapy. J Virol. 2012;86(23):13081-4.

116. Gornalasse G, Mummidi S, Gaitan AA, Jimenez F, Rumsurvan V, Picton A, et al. Epigenetic mechanisms, T-cell activation, and CCR5 genetics interact to regulate T-cell expression of CCR5, the major HIV-1 coreceptor. Proc Natl Acad Sci U S A. 2015;112(34):E4762-71.

117. Youngblood B, Noto A, Porichis F, Akondy RS, Ndhlouv ZM, Austin JW, et al. Cutting edge: Prolonged exposure to HIV reinforces a poised epigenetic program for PD-1 expression in virus-specific CD8 T cells. J Immunol. 2013;191(2):540-4.

118. Crowell TA and Hatano H. Clinical outcomes and antiretroviral therapy in ‘elite’ controllers: a review of the literature. J Virus Erad. 2015;1(2):72-77.

119. Langford SE, Ananworanich J, and Cooper DA. Predictors of disease progression in HIV infection: a review. AIDS Res Ther. 2007;4:11.

120. Goujard C, Bonarek M, Meyer L, Bonnet F, Chaux ML, Deveau C, et al. CD4 cell count and HIV DNA level are independent predictors of disease progression after primary HIV type 1 infection in untreated patients. Clin Infect Dis. 2006;42(5):709-15.

121. Phillips AN and Lundgren JD. The CD4 lymphocyte count and risk of clinical progression. Curr Opin HIV AIDS. 2006;1(1):43-9.

122. Touloumi G, Hatzakis A, Rosenberg PS, O’Brien TR, and Goedert JJ. Effects of age at seroconversion and baseline HIV RNA level on the loss of CD4+ cells among persons with hemophilia. Multicenter Hemophilia Cohort Study. AIDS. 1998;12(13):1691-7.

123. Hubert JB, Burgard M, Dussaix E, Tamalet C, Deveau C, Le Chenadec J, et al. Rate and predictors of progression in elite and viremic HIV-1 controllers. AIDS. 2000;14(2):123-31.

124. Leon A, Perez I, Ruíz-Mateos E, Benito JM, Leal M, Lopez-Galindez C, et al. The differential ability of HIV controller status and progression in elite controllers. AIDS. 2010;24(10):1425-35.

125. Li JZ, Arnold KB, Lo J, Dugast AS, Plants J, Ribaudo HJ, et al. Differential levels of soluble inflammatory markers by human immunodeficiency virus controller status and demographics. Open Forum Infect Dis. 2015;2(1):ofu117.

126. Pereyra F, Lo J, Triant VA, Wei J, Buzon MJ, Fitch KV, et al. Increased coronary atherosclerosis and immune activation in HIV-1 elite controllers. AIDS. 2012;26(18):2409-12.

127. Hsue PY, Hunt PW, Schnell A, Kalapus SC, Hoh R, Ganz P, et al. Role of viral replication, antiretroviral therapy, and immunodeficiency in HIV-associated atherosclerosis. AIDS. 2009;23(9):1059-67.

128. Hunt PW, Landay AL, Sinclair E, Martinson JA, Hatano H, Emu B, et al. Cutting edge: Prolonged exposure to HIV reinforces a poised epigenetic program for PD-1 expression in virus-specific CD8 T cells. J Immunol. 2013;191(2):540-4.

129. Krishnan S, Wilson EM, Sheikh V, Rupetz A, Mendoza D,
Yang J, et al. Evidence for innate immune system activation in HIV type 1-infected elite controllers. J Infect Dis. 2014;209(6):931-9.

130. BenMarzouk-Hidalgo OJ, Torres-Cornejo A, Gutierrez-Valencia A, Ruiz-Valderas R, Viciana P, and Lopez-Cortes LF. Differential effects of viremia and microbial translocation on immune activation in HIV-infected patients throughout ritonavir-boosted darunavir monotherapy. Medicine (Baltimore). 2015;94(17):e781.

131. Nwosu PC, Averschina E, Wilson R, and Rudi K. Gut Microbiota in HIV Infection: Implication for Disease Progression and Management. Gastroenterol Res Pract. 2014;2014:803185.

132. d'Ettorre G, Baroncelli S, Micci L, Ceccarelli G, Andreotti M, Sharma P, et al. Reconstitution of intestinal CD4 and Th17 T cells in antiretroviral therapy suppressed HIV-infected subjects: implication for residual immune activation from the results of a clinical trial. PLoS One. 2014;9(10):e109791.

133. Jiang W, Lederman MM, Hunt P, Sieg SF, Haley K, Rodriguez B, et al. Plasma levels of bacterial DNA correlate with immune activation and the magnitude of immune restoration in persons with antiretroviral-treated HIV infection. J Infect Dis. 2009;199(8):1177-85.

134. Crowell TA, Ganesan A, Berry SA, Deiss RG, Agan BK, Okulicz JF, et al. Hospitalizations among HIV controllers and persons with medically controlled HIV in the U.S. Military HIV Natural History Study. J Int AIDS Soc. 2016;19(1):20524.

135. Crowell TA, Gebo KA, Blankson JN, Korthuis PT, Yehia BR, Rutstein RM, et al. Hospitalization Rates and Reasons Among HIV Elite Controllers and Persons With Medically Controlled HIV Infection. J Infect Dis. 2015;211(11):1692-702.

136. Boufassa F, Lechenadec J, Meyer L, Costagliola D, Hunt PW, Pereyra F, et al. Blunted response to combination antiretroviral therapy in HIV elite controllers: an international HIV controller collaboration. PLoS One. 2014;9(1):e85516.

137. Hatano H, Yuki SA, Ferre AL, Graf EH, Somsouk M, Sinclair E, et al. Prospective antiretroviral treatment of asymptomatic, HIV-1 infected controllers. PLoS Pathog. 2013;9(10):e1003691.

138. Abraham L and Fackler OT. HIV-1 Nef: a multifaceted modulator of T cell receptor signaling. Cell Commun Signal. 2012;10(1):39.

139. Neri F, Giolo G, Potesta M, Petrini S, and Doria M. The HIV-1 Nef protein has a dual role in T cell receptor signaling in infected CD4+ T lymphocytes. Virology. 2011;410(2):316-26.

140. Rosa A, Chande A, Ziglio S, De Sanctis V, Bertorelli R, Goh SL, et al. HIV-1 Nef promotes infection by excluding SERINC5 from virion incorporation. Nature. 2015;526(7572):212-7.

141. Skasko M, Tokarcz A, Chen CC, Fischer WB, Pillai SK, and Guatelli J. BST-2 is rapidly down-regulated from the cell surface by the HIV-1 protein Vpu: evidence for a post-ER mechanism of Vpu-action. Virology. 2011;411(1):65-77.

142. Christodoulopoulos I, Droniou-Bonzom ME, Oldenberg JE, and Cannon PM. Vpu-dependent block to incorporation of GaLV Env into lentiviral vectors. Retrovirology. 2010;7:4.

143. Yu X, Yu Y, Liu B, Luo K, Kong W, Mao P, et al. Induction of APOBEC3G ubiquitination and degradation by an HIV-1 Vif-Cul5-SCF complex. Science. 2003;302(5647):1056-60.

144. Kane M, Yadav SS, Bitzegeio J, Kutluay SB, Zang T, Wilson SJ, et al. MX2 is an interferon-induced inhibitor of HIV-1 infection. Nature. 2013;502(7472):563-6.

145. Perez-Caballero D, Zang T, Ebrahimi A, McNatt MW, Gregory DA, Johnson MC, et al. Tetherin inhibits HIV-1 release by directly tethering virions to cells. Cell. 2009;139(3):499-511.

146. Malhotra U, Holte S, Dutta S, Berrey MM, Delpit E, Koelle DM, et al. Role for HLA class II molecules in HIV-1 suppression and cellular immunity following antiretroviral treatment. J Clin Invest. 2001;107(4):505-17.

147. Chen Y, Winchester R, Korber B, Gagliano J, Bryson Y, Hutto C, et al. Influence of HLA alleles on the rate of progression of vertically transmitted HIV infection in children: association of several HLA-DR13 alleles with long-term survivorship and the potential association of HLA-A*2301 with rapid progression to AIDS. Long-Term Survivor Study. Hum Immunol. 1997;55(2):154-62.

148. Limou S, Le Clerc S, Coulonges C, Carpentier W, Dina C, Delaneau O, et al. Genomewide association study of an AIDS-nonprogression cohort emphasizes the role played by HLA genes (ANRS Genomewide Association Study 02). J Infect Dis. 2009;199(3):419-26.

149. Ferre AL, Hunt PW, McConnell DH, Morris MM, Garcia JC, Pollard RB, et al. HIV controllers with HLA-DRB1*13 and HLA-DQB1*06 alleles have strong, polyfunctional mucosal CD4+ T-cell responses. J Virol. 2010;84(21):11020-9.

150. Gao X, Bashirova A, Iversen AK, Phair J, Goedert JJ, Buchbinder S, et al. AIDS restriction HLA allotypes target distinct intervals of HIV-1 pathogenesis. Nat Med. 2005;11(12):1290-9.

151. McLaren PJ, Coulonges C, Barthia I, Lenz TL, Deutsch AJ, Bashirova A, et al. Polymorphisms of large effect explain the majority of the host genetic contribution to variation of HIV-1 virus load. Proc Natl Acad Sci U S A. 2015;112(47):14658-63.

152. Lucero C, Torres B, Leon A, Calvo M, Leal L, Perez I, et al. Rate and predictors of non-AIDS events in a cohort of HIV-infected patients with a CD4 T cell count above 500 cells/mm3(3). AIDS Res Hum Retroviruses. 2013;29(8):1161-7.