Search for WW and WZ resonances decaying to electron, missing E_T, and two jets in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV.

T. Aaltonen,24 J. Adelman,14 B. Álvarez González,12 S. Amerio,4,44 D. Amidei,35 A. Anastassov,39 A. Annuo,29 J. Antos,15 G. Apollinari,18 J. Appel,18 A. Apresyan,49 T. Arisawa,58 A. Artikov,16 J. Asaad,54 W. Ashmanskas,18 A. Attal,4 A. Aurisano,54 F. Azfar,43 W. Badgett,18 A. Barbano-Galtieri,29 V.E. Barnes,49 B.A. Barnett,26 P. Barria99,47 P. Bartos,15 G. Bauer,33 P.-H. Beauchemin,34 F. Bedeschi,47 D. Beecher,31 S. Behari,26 G. Bellettini44,47 J. Bellinger,60 D. Benjamin,17 A. Beretvas,18 A. Bhatti,51 M. Binkley,18 D. Bisello44,4 I. Bizjak44,4 R.E. Blair,2 C. Blocker,7 B. Blumenfeld,26 A. Bocci,17 A. Bodek,50 V. Boisvert,50 D. Bortoletto,49 J. Boudreau,48 A. Boveia,11 B. Braun,11 A. Bridgeman,25 L. Brigliadori44,4 C. Bromberg,36 E. Brubaker,14 J. Budagov,16 H.S. Budd,50 S. Budd,25 K. Burkett,18 G. Busetto44,44 P. Bussey,22 A. Buzatu,34 K. Lyrum,2 S. Cabrera44,17 C. Calancha,32 S. Camarda,3 M. Campanelli,31 M. Campbell,35 F. Canelli,14,18 A. Canepa,46 B. Carls,25 D. Carlsmith60 R. Carosi,47 S. Carrillo44,19 S. Carron,18 B. Casal,12 M. Casarsa,18 A. Castro44,6 P. Catastini99,47 D. Cauz,55 V. Cavaliere99,47 M. Cavalli-Sforza,4 A. Cerri,29 L. Cerrito44,31 S.H. Chang,28 Y.C. Chen,1 M. Chertok,8 G. Chiarelli,47 G. Chlachidze,18 F. Chlebana,18 K. Cho,28 D. Chokleli,16 J.P. Chou,23 K. Chung44,18 W.H. Chung,60 Y.S. Chung,50 T. Chwalek,27 C.I. Ciobanu,45 M.A. Ciocci44,47 A. Clark,21 D. Clark,7 G. Compostella,44 M.E. Convery,18 J. Conway,8 M. Corbo,45 M. Cordelli,29 C.A. Cox,8 D.J. Cox,8 F. Crescioli44,47 C. Cuena Almenar,61 J. Cuevas12 R. Culbertson,18 J.C. Cully,35 D. Dagenhart,18 N. d’Aszenzo44,45 M. Datta,18 T. Davies,22 P. de Barbaro,50 S. De Cecco,52 A. Deisher,29 G. De Lorenzo,4 M. Dell’Orso44,47 C. Deluca,4 L. Demortier,51 J. Deng44,4 M. Deninno,6 M. d’Errico44,44 A. Di Canto44,47 B. Di Ruzza,47 J.R. Dittmann,5 M. D’Onofrio,4 S. Donati44,47 P. Dong,18 T. Dorigo,44 S. Dube,53 K. Ebina,58 A. Elagin44 R. Erbacher,8 D. Errede,25 S. Errede,25 N. Ershadat44,45 R. Eusebi,54 H.C. Fang,29 S. Farrington,43 W.T. Fedorko,14 R.G. Feld,61 M. Feindt,47 J.P. Flegler,232,47 C. Ferrarizza44,47 R. Field,49 G. Flanagan,49 R. Forrest,8 M.J. Frank,5 M. Franklin,23 J.C. Freeman,18 I. Furic,15 M. Gallinaro,51 J. Galyardt,13 F. Garbarino,11 J.E. Garcia,21 A.F. Garfinkel,49 P. Garosi99,47 H. Gerberich,52 D. Gerdes,35 A. Gessler,27 S. Giagu44,52 V. Giacoumopoulos,3 P. Giannetti,47 K. Gibson,47 J.L. Gimelli,50 C.M. Ginsburg,18 N. Giokaris,3 M. Giordani55,55 P. Giromini,20 M. Giunta,47 G. Giurgiu,26 V. Glagolev,16 D. Glinkiewicz,18 M. Gold,48 N. Goldschmidt,19 A. Golossanov,18 G. Gomez,12 G. Gomez-Ceballos,53 M. Goncharov,53 O. Gonzalez,32 I. Gorelov,38 A.T. Goshaw,17 K. Goulianos,1 A. Gresele44,44 G. Grinstein,4 C. Grosso-Pilcher,14 R.C. Group,18 U. Grundler,25 J. Guimaraes da Costa,23 Z. Gunay-Unalan,36 C. Haber,29 S.R. Hahn,18 E. Halkiadakis,53 B.Y. Han,50 J.Y. Han,50 F. Happrcher,29 K. Hara,56 Hare,53 M. Hare,53 M. Hartz,18 K. Hatakeyama,5 C. Hays,43 M. Heck,27 J. Heinrich,46 M. Herndon,60 J. Heuser,27 S. Hewamanage,5 D. Hidas,53 C.S. Hill11,11 D. Hirschbuehl27 A. Hocker,18 S. Hou,4 M. Houliden,50 S.-C. Hsu,29 R.E. Hughes,40 M. Hurwitz,14 U. Husemann,61 M. Hussein,26 J. Huston,26 J. Incandela,11 G. Intorzzi,47 M. Iori44,52 A. Ivanov44,8 J. James,18 D. Jiang,13 B. Jayatilaka,17 E.J. Jean,28 M.K. Jha,6 S. Jindariani,18 W. Johnson,8 M. Jones,49 K.K. Joo,28 S.Y. Jun,13 J.E. Jung,28 T.R. Junk,18 T. Kamon,54 D. Kar,19 P.E. Karchin,59 Y. Kato,42 R. Kephart,18 W. Ketchum,14 J. Keung,46 V. Khotilovich,54 B. Kilminster,18 D.H. Kim,28 H.S. Kim,28 H.W. Kim,28 J.E. Kim,28 M.J. Kim,20 S.B. Kim,28 S.H. Kim,56 Y.K. Kim,14 N. Kikuta,58 L. Kirsch,7 S. Klimenko,19 B.R. Ko,17 K. Kondo,58 D.J. Kong,28 J. Konigsberg,19 A. Korytov,19 A.V. Kotwal,17 M. Kreps,27 J. Kroll,46 D. Krop,14 N. Krummack,5 M. Kruse,17 V. Krutelyov,11 T. Kuhnt,27 N.P. Kulkarni,59 M. Kurata,56 S. Kwang,14 A.T. Laasanen,49 S. Lam,47 S. Lamml,58 M. Lancaster,24 S.L. Landers,59 K. Lannon,99,44 L. Lath,54,5 G. Latino,47 I. Lazzizzera44,44 T. LeCompte,2 E. Lee,54 H.S. Lee,14 J.S. Lee,28 S.W. Lee44,54 S. Leone,37 J.D. Lewis,18 C.-J. Lin,29 J. Linacne,43 M. Lindgren,18 E. Lipese,46 A. Lister,21 D.O. Litvintsev,18 C. Liu,48 T. Liu,18 N.S. Locker,46 A. Loginov,61 L. Lovas,15 D. Lucchesi44,44 J. Lueck,27 P. Lujan,29 P. Lukens,18 G. Lungu,51 J. Lys,49 R. Lysak,15 D. MacQueen,34 R. Madrak,18 K. Maeshima,18 K. Makhol,33 P. Maksimovic,26 S. Malde,43 S. Malik,31 G. Manca,30 A. Manousakis-Katsikakis,9 F. Margaroli,49 C. Marino,27 C.P. Marino,25 A. Martin,61 V. Martin4,22 M. Martínez,4 R. Martínez-Ballarín,32 P. Mastrandrea,52 M. Mathis,26 M.E. Mattsson,59 P. Mazzanti,6 K.S. McFarland,50 P. McIntyre,54 R. McNulty44,30 A. Mehta,30 P. Mehtta,24 A. Menzione,47 C. Mesropian,51 T. Miao,18 D. Mietlicki,55 N. Miladinovic,7 R. Miller,36 C. Mills,23 M. Milnik,27 A. Mitra,1 G. Mittelsmacher,19 H. Miyake,56 S. Moed,23 N. Moggi,6 M.N. Mondragon18, C.S. Moon,28 R. Moore,18 M.J. Morello,17 J. Morlock,27 P. Movilla Fernandez,18
Using data from 2.9 fb$^{-1}$ of integrated luminosity collected with the CDF II detector at the Tevatron, we search for resonances decaying into a pair of on-shell gauge bosons, WW or WZ, where one W decays into an electron and a neutrino, and the other boson decays into two jets. We observed no statistically significant excess above the expected standard model background, and we set cross section limits at 95% confidence level on G^* (Randall-Sundrum graviton), Z', and W' bosons. By comparing these limits to theoretical cross sections, mass exclusion regions for the three particles are derived. The mass exclusion regions for Z' and W' are further evaluated as a function of their gauge coupling strength.

PACS numbers: 14.70.Pw, 13.85.Rm, 13.85.Qk, 14.80.-j
Some models of new physics beyond the standard model predict particles that decay into pairs of on-shell bosons, for example Z', W', or the Randall-Sundrum graviton G^* [2]. Searches for these particles in different decay channels have been reported elsewhere [3,5]. Most of them used final states consisting of only leptons or photons. In this Letter we search for these particles in the form of diboson resonances where one boson is a W decaying into an electron and a neutrino, and the other is a W or Z which decays into two jets. This search has the advantage of detecting two types of diboson resonances, WW and WZ, with the same final-state topology. The hadronic decay mode of the W or Z to two jets has a higher branching fraction compared to the leptonic decay mode; however, the background from jets also increases. Thus, we implement a selection based on transverse energy (E_T) [8] of the detected objects in the final state to reduce standard model backgrounds and enhance sensitivity.

The diboson decay modes of Z' and W' directly probe the gauge coupling strength between the new and the standard model gauge bosons. The coupling strength strongly influences the decay branching ratios and the natural widths of the new gauge bosons. In an extended gauge model theory [1] the standard model coupling strength, $g \cdot \cos \theta_w$, is replaced by $\xi \cdot g \cdot \cos \theta_w$, where $\xi = C \cdot (M_W/M_V)^2$; C is a parameter that sets the coupling strength; and M_V is the mass of the new gauge boson, Z' or W'. We set cross section limits on Z' and W' as a function of mass and of ξ. Our results extend the sensitivity beyond the CDF Run I W' results [3] with almost 30 times the integrated luminosity, and, for the first time, set Z' limits as a function of mass and gauge coupling strength. For G^*, the coupling constant k/M_{Pl} dictates the branching ratio and natural width [2], where k and M_{Pl} are respectively the curvature of the extra dimension and the reduced Planck mass scale. This is also the first search for the G^* in the WW decay mode.

This analysis is based on data corresponding to an integrated luminosity of 2.9 fb$^{-1}$ collected using the CDF II detector between March 2002 and February 2008. The detector is approximately forward-backward and azimuthally symmetric. The detector elements relevant to this analysis are the tracking system and the calorimeters. The tracking system consists of an eight-layer silicon tracker [10] surrounded by a 96-layer open-cell drift chamber (COT) [11]. The fiducial coverage of the COT is $|\eta| < 1.0$ [8], and the silicon detector extends the coverage to $|\eta| < 2.0$. The integrated tracking system is contained within a superconducting solenoid, providing a 1.4 T magnetic field. Surrounding the tracking system are the electromagnetic (EM) and hadronic calorimeters [12], divided into “central” ($|\eta| < 1.1$) and “plug” ($1.1 < |\eta| < 3.6$) regions. The calorimeters are made of lead (EM) and iron (hadronic) absorbers sandwiched between plastic scintillators that provide measurements of shower energies. At approximately the shower maximum, the EM calorimeters contain fine-grained detectors [12] for measuring shower positions and profiles.

As we are looking for events with an electron, a neutrino, and two jets, we start with data that were collected with an online selection requirement of a central electron with $|\eta| < 1$ and $E_T > 18$ GeV. From this dataset we select events that have an isolated electron [14] with $E_T > 30$ GeV, a neutrino identified by the requirement that the missing $E_T (E_T) > 30$ GeV, two or three jets with $|\eta| < 2.5$ and $E_T > 30$ GeV, and an overall $H_T > 150$ GeV, where H_T is the scalar sum of the electron E_T, the E_T, and the E_T of all jets [15].

To form a WW or WZ hypothesis for the selected events, the electron and E_T are first combined to form a W candidate. Because the longitudinal component of the neutrino momentum (E^ν_T) is not available, the invariant mass of the electron and E_T is artificially set to the W mass. With this assumption, the conservation of energy and momentum results in a quadratic equation for E^ν_T. If the discriminant of the quadratic equation is negative, the combination is discarded. If it is positive, there are two solutions and both are kept. In addition, two jets are combined to form a second W candidate or a Z candidate. In the case of a W candidate, we require the two-jet invariant mass (M_{jj}) to fall between 65 and 95 GeV/c^2, corresponding to $|\pm 1.5\sigma$ of the expected reconstructed W
resolution. In the case of a Z candidate, this window is between 75 and 105 GeV/c^2. For a three-jet event, there are three two-jet invariant mass combinations. In this case only the pair with the invariant mass closest to either the W or the Z mass is kept in order to reduce the combinatorial background. The reconstructed W or Z candidates are then combined to form the final WW or WZ invariant mass.

Twelve standard model processes are considered as background for this analysis: $W(\rightarrow e^+\nu)+$jets, QCD jets, $t\bar{t}$, WW, $Z(\rightarrow e^+e^-)+$jets, $W(\rightarrow \tau^\pm\nu)+$jets, single top, WZ, $W\gamma$, $Z \rightarrow \tau^+\tau^-$, $\gamma\gamma$, and ZZ. The dominating background is $W+$jets whose contribution is estimated by Monte Carlo simulation using the ALPGEN event generator, interfaced to PYTHIA for parton showering and followed by the GEANT 3 based CDF II detector simulation. With the exception of the QCD jet background, the rest of the background processes are all estimated by Monte Carlo simulation using the PYTHIA event generator. The cross sections used for the simulated background processes are obtained from NLO calculations.

The QCD jet background comes from events with three or more jets where one of the jets is misidentified as an electron. With this misidentified electron, the event may pass through subsequent event selection criteria and the reconstruction processes. The contribution of the QCD jet background is estimated using a dataset that has an online selection requirement of one jet with $E_T > 20$ GeV. We first exclude events that have any identified electrons, then each jet in the central region is treated as an electron with a weight corresponding to the probability that a jet is misidentified as an electron. This probability is a function of jet E_T and varies from 10^{-3} at 30 GeV to 10^{-3} above 100 GeV. The misidentified electron is combined with the E_T and then with two jets to form WW or WZ candidates as described earlier. The resulting QCD jet background is normalized to the data by matching the E_T spectrum between data and expected background at their peaks around 10 GeV, where little signal is expected and the QCD jet background dominates. This normalization factor is used for the QCD jet contribution throughout the analysis. Figure 1 shows the resulting E_T spectrum for events with two jets that would have passed the event selection criteria except for the $E_T > 30$ GeV cut.

The systematic uncertainties taken into account in the background calculations are the following, listed by decreasing significance: jet energy scale (JES) uncertainty, theoretical cross section uncertainty, luminosity uncertainty, initial state radiation (ISR) uncertainty, final state radiation (FSR) uncertainty, and parton distribution function (PDF) uncertainty. The JES uncertainty dominates the systematic uncertainties and varies from 20% at 50 GeV/c^2 to 6% at 700 GeV/c^2. Similarly to the background uncertainties, the JES uncertainty dominates the systematic uncertainties and varies from 12% at 170 GeV/c^2 mass to 6% at 700 GeV/c^2 mass for G^*, 13% (170 GeV/c^2) to 6% (1000 GeV/c^2) for Z', and 9% (190 GeV/c^2) to 6% (1000 GeV/c^2) for W'. ISR, FSR and PDF uncertainties are of the order of 1 − 3% each and decrease with increasing diboson mass.

In order to improve sensitivity at higher mass, addi-
tional sets of higher E_T cuts for the constituent particles (observed in the detector as electron, ℓ^\pm from neutrino, and jets) are tried. Two series of the E_T cut sets are implemented. The first series requires a higher E_T on all four participating particles ranging from 40 GeV to 80 GeV in steps of 10 GeV. The second series requires a higher E_T on only one daughter particle from each of the decaying bosons, i.e., a higher E_T for either the electron or the neutrino, and the same higher E_T for one of the two jets. The E_T values in this series range from 40 GeV to 120 GeV in steps of 10 GeV. For each set of E_T cuts the systematic uncertainties for the backgrounds and the acceptances are re-evaluated, but are found to be not very sensitive to the variations.

To find the optimal set of E_T cuts at each selected mass point, the expected cross section limits, which are based only on the background and the signal acceptance, are calculated for each set of cuts. We found that the first series of E_T cuts gives the best expected limits for Z' and W', while the second series is best for G^\prime. The optimal E_T cuts for each particle type are then selected from their own optimal series. The sets that give the best expected limits are chosen without reference to their impact on the data sample. Although the background processes respond differently to the two series of E_T cuts, the best expected limits obtained from each series are very similar. Generally, as the mass increases the higher E_T cuts yield better expected limits.

We use a Bayesian method [22] to calculate cross section limits. Inputs to the calculation are signal acceptance, estimated background, and observed data. The signal acceptance and background are assigned priors and modeled via a Monte Carlo method that allows correlation of uncertainties between acceptance and background. In our analysis, the JES and luminosity uncertainties in the acceptance and in the background are modeled via a Monte Carlo method that allows correlation of uncertainties between acceptance and background, estimated background, and observed data. The uncertainties in the acceptance and in the background are assigned priors to the different decay types (WW, WZ). In the analysis, the JES and luminosity uncertainties are treated as independent in the cross section limit calculation, at each mass point we re-evaluate signal acceptances for different E_T values and calculate cross section limits as a function of ξ. Comparing the calculated and theoretical cross sections as a function of ξ, a ξ exclusion region is derived at each mass point. These Z' and W' exclusion regions are shown in Fig. 4. The branching ratio of Z' or W' to fermions decreases as ξ increases. This is opposite to the diboson decay modes where branching ratios increase as ξ increases. Most Z' or W' search results [6, 7] report mass limits along the $\xi = (M_{W}/M_{W'})^2$ line and we have also done so for comparison. However, the diboson decay modes and the fermionic decay modes are sensitive to different parts of the gauge coupling strength phase space, so searches for bosonic and fermionic decays of Z' and W' are complementary to each other. The W' result shown in Fig. 4 is significantly improved compared to the previous result from CDF Run I [8]. The Z' result shown is the first to

$G^\prime (WW)$	$Z' (WZ)$	$W' (WZ)$	
$W+$ jets	31.8 ± 8.2	33.0 ± 10.0	36.8 ± 9.7
WW	19.6 ± 2.7	35.1 ± 4.0	37.4 ± 5.2
QCD jets	10.7 ± 3.2	15.2 ± 2.8	13.4 ± 3.2
Others	32.7 ± 6.5	5.1 ± 1.0	5.6 ± 1.1
	5.3 ± 0.9	2.4 ± 0.9	3.4 ± 1.0

The results shown in Fig. 3 and Table II for G^\prime and W' are based on a gauge coupling mixing factor of $\xi = C \cdot (M_{W}/M_{W'})^2$, with $C = 1$. Since signal acceptance is the only quantity that changes with ξ in the cross section limit calculation, at each mass point we re-evaluate signal acceptances for different ξ values and calculate cross section limits as a function of ξ. Comparing the calculated and theoretical cross sections as a function of ξ, a ξ exclusion region is derived at each mass point. These Z' and W' exclusion regions are shown in Fig. 4. The branching ratio of Z' or W' to fermions decreases as ξ increases. This is opposite to the diboson decay modes where branching ratios increase as ξ increases. Most Z' or W' search results [6, 7] report mass limits along the $\xi = (M_{W}/M_{W'})^2$ line and we have also done so for comparison. However, the diboson decay modes and the fermionic decay modes are sensitive to different parts of the gauge coupling strength phase space, so searches for bosonic and fermionic decays of Z' and W' are complementary to each other. The W' result shown in Fig. 4 is significantly improved compared to the previous result from CDF Run I [8]. The Z' result shown is the first to
set an exclusion region as a function of ξ and mass.

In conclusion, we have searched for new particles decaying into a pair of bosons in the electron, E_T, and two jets final state. In data from an integrated luminosity of 2.9 fb$^{-1}$, no significant excess over the standard model prediction is observed. Cross section limits at 95% C.L. and mass exclusion regions have been obtained for a Randall-Sundrum graviton, Z' and W' bosons. The W' exclusion region in the $\xi - M_{W'}$ plane has been extended significantly compared to the previous measurement. We have also presented the Z' exclusion region in the $\xi - M_{Z'}$ plane for the first time. We set the most stringent mass limits on W' and Z' bosons.

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the World Class University Program, the National Research Foundation of Korea; the Science and Technology Facilities Council of Canada; the National Research Foundation of the Republic of Korea; the Science and Technology Facilities Council and the Royal Society, UK; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministry de Ciencia e Innovación, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; and the Academy of Finland.

[1] G. Altarelli, B. Mele, and M. Ruiz-Altaba, Z. Phys. C45, 109 (1989).
[2] L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999).
[3] J. Alcaraz et al. [ALEPH, DELPHI, L3, OPAL Collaborations, LEP Electroweak Working Group], arXiv:hep-ex/0612034v2, “A Combination of Preliminary Electroweak Measurements and Constraints on the Standard Model.”
[4] T. Aaltonen et al. (CDF collaboration), Phys. Rev. Lett. 99, 171801 (2007).
[5] T. Aaltonen et al. (CDF collaboration), Phys. Rev. Lett. 99, 171802 (2007).
[6] T. Aaltonen et al. (CDF collaboration), Phys. Rev. Lett. 102, 031801 (2009).
[7] V.M. Abazov et al. (D0 collaboration), Phys. Rev. Lett. 100, 031804 (2008).
[8] D. Acosta et al., Phys. Rev. D 71, 032001 (2005). CDF uses a cylindrical coordinate system in which $+z$ points along the direction of the proton beam, r is the radius from the nominal beam line, and ϕ is the azimuthal angle. The pseudorapidity is defined as $\eta = -\ln[\tan(\theta/2)]$, where θ is the polar angle measured from the $+z$ axis. Transverse energy is defined as $E_T = E \cdot \sin \theta$, where E is the measured calorimeter energy. Transverse momentum is defined as $p_T = p \cdot \sin \theta$, with p being the track momentum.
[9] T. Affolder et al. (CDF collaboration), Phys. Rev. Lett. 88, 071806 (2002).
[10] A. Sill et al., Nucl. Instrum. Methods Phys. Res. Sect. A 447, 1 (2000).
[11] T. Affolder et al., Nucl. Instrum. Methods Phys. Res. Sect. A 526, 249 (2004).
[12] L. Balka et al., Nucl. Instrum. Methods Phys. Res. Sect. A 267, 272 (1988); S. Bertolucci et al., Nucl. Instrum. Methods Phys. Res. Sect. A 267, 301 (1988); M. Albrow et al., Nucl. Instrum. Methods Phys. Res. Sect. A 480, 524 (2002).
[13] G. Apollinari et al., Nucl. Instrum. Methods Phys. Res. Sect. A 412, 515 (1998).
[14] Electrons are isolated if in a surrounding cone of 0.4 radius the E_T deposited is no more than 1.1 times the electron E_T in the EM calorimeters.
[15] F. Abe et al. (CDF collaboration), Phys. Rev. Lett. 75, 3997 (1995).
[16] M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau, and A. Polosa, J. High Energy Phys. 0307 (2003) 001.
[17] T. Sjostrand et al., Comput. Phys. Commun. 135, 238 (2001).
[18] S. Agostinelli et al., Nucl. Instrum. Methods Phys. Res. Sect. A 506, 250 (2003).
[19] A. Bhatti et al., Nucl. Instrum. Methods Phys. Res. Sect. A 566, 375 (2006).
[20] U. Baur, T. Han, and J. Ohnemus, Phys. Rev. D 48, 5140 (1993); J. M. Campbell and R. K. Ellis, Phys. Rev. D 60, 113006 (1999).
[21] D. Acosta et al., Nucl. Instrum. Methods Phys. Res. Sect. A 494, 57 (2002).
[22] J. Heinrich et al., arXiv:physics/0409129 “Interval estimation in the presence of nuisance parameters. 1. Bayesian approach.”
[23] Z. Sullivan, Phys. Rev. D 66, 075011 (2002).
FIG. 2: Invariant mass distributions with optimal set of E_T cuts for 600 GeV/c^2 signals. Left to right: $G^*(WW)$, $Z'(WW)$, $W'(WZ)$. G^* and Z' are the same decay mode (WW) but with different optimal selections. Z' and W' have the same optimal selection but different decay modes (WW vs WZ). Superimposed on top of the backgrounds are signals at 600 GeV/c^2 mass corresponding to the theoretical cross sections.

FIG. 3: Cross section limits at 95% C.L. Left to right: G^*, Z', W'. Inserts at upper right are cross section limits divided by the theoretical cross sections. Yellow and green bands show 1σ and 2σ bands on the expected limits, respectively.

FIG. 4: Z' (left) and W' (right) exclusion regions as a function of mass and ξ. The $\xi = (M_W/M_V)^2$ (i.e., $C = 1$) lines indicate PYTHIA defaults and are commonly used for mass exclusion regions. The vertical lines mark the results as shown in Table II. Also shown in the W' plot is the CDF Run I result.