Proximate composition, vitamin and mineral composition, antioxidant capacity, and anticancer activity of *Acanthopanax trifoliatus*

Abstract

Acanthopanax trifoliatus has been used as both traditional plant food and medicinal plant in Thailand. This study aimed to evaluate proximate, vitamin, and mineral compositions of *A. trifoliatus* leaf samples together with antioxidant and anticancer activities of ethanolic leaf extract of *A. trifoliatus*. For leaf samples, quantitative determination of proximate composition was evaluated comprising moisture, crude protein, total fat, total carbohydrate, dietary fiber, ash, as well as energy. Quantitative determination of vitamin and mineral composition including Vitamin A, Vitamin B1, Vitamin B2, Vitamin C, calcium, sodium, and iron was also assessed. For ethanolic leaf extract, antioxidant activity was investigated using oxygen radical absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) methods. Anticancer activity was determined against human ductal, bronchogenic, liver, gastric, and colon cancer cell lines using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method. Proximate composition of *A. trifoliatus* was found to be 74.62 ± 0.38, 5.01 ± 0.05, 0.95 ± 0.04, 16.47 ± 0.40, 8.54 ± 0.06, and 2.95 ± 0.04 g/100 g sample, respectively, and energy was found to be 94.48 ± 1.30 kcal/100 g sample. Vitamin and mineral composition was found to be 428.47 ± 3.00 μg/100 g sample, 0.41 ± 0.01, 0.17 ± 0.00, 11.95 ± 0.86, 675.35 ± 46.57, 13.46 ± 0.95, and 4.79 ± 0.15 mg/100 g sample, respectively. *A. trifoliatus* ethanolic leaf extract revealed antioxidant capacity with ORAC value of 9057.29 ± 43.08 μmol TE/100 g and FRAP value of 1230.88 ± 19.51 μmol TE/100 g. Its extract also showed cytotoxic potential against all tested cancer cell lines. *A. trifoliatus* leaf is a good source of essential nutrients, which had antioxidant and anticancer potential.

Key words: Anticancer, antioxidant, mineral, nutrition, proximate, vitamin

INTRODUCTION

Phak-pam (*Acanthopanax trifoliatus*), a medium-sized shrub that commonly distributes in Asia, belongs to the Araliaceae family. It has been used as both traditional plant food and medicinal plant.[1-6] As plant food, people of Thailand consume Phak-pam as a vegetable.
As a medicinal plant, Phak-pam has been reported as ginseng-like plant.[9] It also possessed pharmacological effects, for instance, anti-inflammatory, antioxidant, and anticancer properties.[1-6] Plant food provides nutrients that help maintain the body functions. Nowadays, nutritional information is increasingly concern for many reasons, for example, to meet nutritional requirements or to prevent nutritional deficiency disease.[7,8] Nutrients can be divided into two groups based on the requirement in amounts per day: macronutrients include proteins, fats, and carbohydrates; in opposition, micronutrients include vitamins and minerals.[8,9]

Medicinal plant is also used to promote good health. Plant and its compounds have biological capability, such as antioxidant and anticancer.[10] Some bioactive compounds in the food plant has a natural antioxidant capacity, especially polyphenols, to scavenge free radicals.[3,10,11] Oxygen radical absorbance capacity (ORAC) measures the effectiveness of chain-breaking antioxidants, while ferric reducing antioxidant power (FRAP) measures the action of the electron donation from antioxidants (the reducing capacity of antioxidants).[10-14] Cancer is a disease differentiated by the uncontrolled growth and spread of abnormal cells.[15,16] 4-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay can be used for estimating the quantitative of antiproliferative and anticancer potential.[15] There is a necessity to find drug or medicinal plant with antioxidant and anticancer capability. This study covered evaluations of proximate, vitamin, and mineral compositions of leaf samples together with antioxidant capacity and anticancer activity of ethanolic leaf extract of A. trifoliatus.

MATERIALS AND METHODS

Materials and chemicals
A. trifoliatus leaf samples were collected in Thailand. They were authenticated at Queen Sirikit Botanic Garden, Thailand. Voucher specimens were deposited at School of Integrative Medicine, Mae Fah Luang University, Thailand. Leaf samples were washed and then dried at 50°C. The dried leaf samples were stored at room temperature. For antioxidant and anticancer activities, the dried leaf samples were pulverized and exhaustively extracted using Soxhlet apparatus. The extract was filtered, evaporated, and then stored at −20°C. All chemicals were analytical grade.

Proximate analysis
For quantitative determination of proximate composition of A. trifoliatus leaf samples, moisture was determined using hot air oven (Association of Official Analytical Chemists; AOAC 952.08, 2016).[17] dried leaf samples at 105°C, until constant weight. Crude protein was determined according to the Kjeldahl method (AOAC 992.23, 2016).[17] total nitrogen was multiplied by a protein factor of 6.25. Total fat was determined according to the acid hydrolysis method (AOAC 948.15, 2016).[17] using Soxhlet extractor at 60°C, until constant weight. Dietary fiber was determined according to the enzymatic gravimetric method (AOAC 985.29, 2016).[17] digested leaf samples with heat using alpha-amylose, protease, and amyloglucosidase at 60°C, respectively, then added ethanol to samples to precipitate fiber. Ash was determined according to gravimetric method (AOAC 930.30, 2016).[17] incinerated leaf samples at 550°C, until constant weight. Total carbohydrate was determined according to the difference method by calculation. Energy was determined by calculation based on the contents of carbohydrate, protein, and lipid multiplied by a factor of 4, 4, and 9 respectively, and then added the results together.

Mineral analysis
For quantitative determination of mineral composition of A. trifoliatus leaf samples, Vitamin A as alpha-carotene was determined using high-performance liquid chromatography (HPLC).[18] then measured absorbance at 445 nm, and calculated as follows:

\[
\text{Vitamin A} = 1/6 \text{ (alpha-carotene)} + 1/12 \text{ (remaining carotenoids)}
\]

Vitamin C was determined using ultraviolet-HPLC methods[19] and then measured absorbance at 245 nm. Vitamin B1 and Vitamin B2 were determined by fluorometric method according to the AOAC 942.23 and 970.65, 2016,[17] respectively, and then measured emission at 365 nm and excitation at 435 nm. Calcium and sodium were determined by atomic absorption spectrophotometer (AAS) (AOAC 983.35, 2016)[17] dried leaf samples at 450°C then measured AAS absorbance at 425 and 590 nm, respectively. Iron was determined by AAS (AOAC 984.27, 2016)[17] and then measured absorbance at 250 nm.

Antioxidant analysis
For antioxidant capacity of A. trifoliatus, the ethanolic leaf extract was determined using ORAC, according to the method reported by Ou et al. (2001),[15] using fluorescein as the fluorescent probe. For FRAP, according to the method reported by Benzie and Strain (1996).[14]

Anticancer analysis
Cell cultures
The human cancer cell lines – ductal carcinoma (BT474, ATCC HTB-20), bronchogenic carcinoma (Chago K1, ATCC HTB-168TB), liver hepatoblastoma (Hep G2, ATCC HB-8065), gastric carcinoma (Kato III, ATCC HTB-103), and colon adenocarcinoma (SW 620, ATCC CCL-227) – were obtained from the Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Thailand.

For anticancer activity of A. trifoliatus ethanolic leaf extract, cell viability was determined using MTT (Sigma-Aldrich,
USA) methods with minor modifications. Each human cancer cell line in 198 μl of RPMI 1640 culture medium was incubated with 5% CO₂ atmosphere at 37°C for 24 h. Either 2 μl of A. trifoliatus leaf extract or dimethyl sulfoxide (DMSO) (as negative control) was added and then incubated at 37°C for 48 h. 10 μl of MTT solution (5 mg/ml) was added, then incubated at 37°C for 4 h, and removed all media. 150 μl of DMSO and 25 μl of glycine (0.1 mol/l) were added, mixed, and then measured absorbance at 540 nm.

Statistical analysis
For proximate composition, vitamin and mineral composition, and antioxidant capacity, the data were expressed as mean ± standard deviation (SD). All tests were carried out in triplicates. For anticancer activity, the data were expressed as mean ± SD. This test was carried out in quadruplicates.

RESULTS

Proximate analysis
Proximate composition of A. trifoliatus leaf samples including moisture, crude protein, total fat, total carbohydrate, dietary fiber, ash; as well as, energy were found to be 74.62±0.38, 5.01±0.05, 0.95±0.04, 16.47±0.40, 8.54±0.06, 2.95±0.04 g/100 g sample respectively, and energy was found to be 94.48±1.30 kcal/100 g sample.

Mineral analysis
Vitamin and mineral composition of A. trifoliatus leaf samples comprising vitamin A, vitamin B1, vitamin B2, vitamin C, calcium, sodium and iron were found to be 428.47±3.00 μg/100 g sample, 0.41±0.01, 0.17±0.00, 11.95±0.86, 675.35±46.57, 13.46±0.95 and 4.79±0.15 mg/100 g sample respectively.

Antioxidant analysis
A. trifoliatus ethanolic leaf extract showed antioxidant capacity with ORAC value of 9,057.29±43.08 μmoles TE/100 g and FRAP value of 1,230.88±19.51 μmoles TE/100 g.

Anticancer analysis
A. trifoliatus ethanolic leaf extract possessed cytotoxic effects against all tested human cancer cell lines against gastric and colon human cancer cell lines with the IC50 of 72.9 and 73.4 μg/ml, respectively; against ductal, bronchogenic and liver human cancer cell lines with the IC50 at ≥100 μg/ml.

DISCUSSION
Proximate analysis is used for estimation of the quantitative of food and food substance including moisture, crude protein, total fat, total carbohydrate, and dietary fiber. Proximate composition of A. trifoliatus leaf samples is shown in Table 1. Moisture content is the amount of loss on drying of water and volatile substances. Moisture is sometime used for estimation of the qualitative of food. However, the amount of moisture content is one of the main factors in storage, due to the proliferation of microorganisms, such as fungi and mold. When fresh A. trifoliatus leaf samples dried until constant weight, moisture content was found to be 74.62±0.38 g/100 g sample. Crude protein is the amount of total nitrogen multiplied by protein factors. Total nitrogen consisted of protein nitrogen and a few nonprotein nitrogen. Different types of food had different protein factors. In this study, A. trifoliatus leaf samples used protein factor of 6.25 to convert nitrogen to protein; then, crude protein in the leaf samples was found to be 5.01±0.05 g/100 g sample. Total fat, ether extract, is the amount of fat including fatty acid, oil-soluble dyes, fat-soluble vitamins, and steroids. Total fat of A. trifoliatus leaf samples was found to be 0.95±0.04 g/100 g sample. Total carbohydrate is the amount of carbohydrate, which is one of the main components of structural materials in plants. In this study, we calculated that based on difference method, the total carbohydrate of A. trifoliatus leaf samples was found to be 16.47±0.40 g/100 g sample. Dietary fiber is the amount of total dietary fiber. Dietary fiber of A. trifoliatus leaf samples was found to be 8.54±0.06 g/100 g sample. Ash content is the amount of total mineral residue left after incinerated leaf samples until constant weight. Ash content of A. trifoliatus leaf samples was found to be 2.95±0.04 g/100 g sample. Protein, lipid, and carbohydrate each contribute to the total energy composition. Energy of A. trifoliatus leaf samples was found to be 94.48±1.30 kcal/100 g sample.

Vitamin and mineral analyses are used for estimation of the quantitative of mineral in food. Vitamins are arranged into two groups based on solubility including water-soluble vitamins and fat-soluble vitamins. In this study, we determined the content of Vitamin A, fat-soluble vitamins, calculated as retinal equivalent (1 μg of retinol = 6 μg of alpha-carotene or 12 μg of mixed carotenoids), according to the WHO. The content was found to be 428.47±3.00 μg/100 g sample. Vitamin B1, Vitamin B2 and Vitamin C, and water-soluble vitamins were determined. Their contents were found to be 0.41±0.01, 0.17±0.00, and 11.95±0.86 mg/100 g sample, respectively. Minerals

Table 1: Proximate composition of Acanthopanax trifoliatus leaf samples (per 100 g sample)

Proximate analyses	Compositions*
Energy (kcal)	94.48±1.30
Moisture (g)	74.62±0.38
Crude protein (g)	5.01±0.05
Total fat (g)	0.95±0.04
Total carbohydrate (g)	16.47±0.40
Dietary fiber (g)	8.54±0.06
Ash (g)	2.95±0.04
Table 2: Vitamin and mineral compositions of *Acanthopanax trifoliatus* leaves (per 100 g sample)

Mineral analyses	Compositions*
Vitamin A as	428.47±3.00
alpha-carotene (µg)	50.0
Vitamin B1 (mg)	0.41±0.01
Vitamin B2 (mg)	0.17±0.00
Vitamin C (mg)	11.95±0.86
Calcium (mg)	675.35±46.57
Sodium (mg)	13.46±0.95
Iron (mg)	4.79±0.15

Table 3: Antioxidant capacity of ethanolic leaf extract of *Acanthopanax trifoliatus*

Parameter	Antioxidant capacity*
ORAC (µmol TE)	9057.29±43.08
FRAP (µmol TE)	1230.88±19.51

ORAC: Oxygen radical absorbance capacity, FRAP: Ferric reducing antioxidant power, µmol TE: Micromoles Trolox Equivalents

Table 4: Anticancer analysis of ethanolic leaf extract of *Acanthopanax trifoliatus*

Cancer cell lines	IC₅₀ (µg/ml)
Ductal carcinoma	>100
Bronchogenic carcinoma	>100
Liver hepatoblastoma	>100
Gastric carcinoma	72.9
Colon adenocarcinoma	73.4

IC₅₀: Inhibitory concentration

However, from previous study, *A. trifoliatus* leaf extracts had also been reported with strong antioxidant capacity. For DPPH assay, leaves extracts had antioxidant capacity with EC₅₀ value of 100.81±5.05 µg/ml (leaf maceration extract), 72.20±9.61 µg/ml (leaf refluxing extract), and 14.50±1.04 µg/ml (leaf decoction extract).[5] For FRAP assay, leaf extract had antioxidant capacity with 930 µmol Fe (II)/g extract.

From previous study, stem and leaf extracts from *A. trifoliatus* were found anticancer effects on human cancer cell lines, including prostate cancer (PC-3 cells), central nervous system tumor (SF-268), breast adenocarcinoma (MCF-7), hepatoma cell (Huh-7), liver hepatoblastoma (Hep-G2), lung cancer (A 549), nonsmall-cell lung carcinoma (NCL-H460) and fibrosarcoma cell (HT1080).[4,6,16] In this study, ethanolic leaf extract of *A. trifoliatus* also possessed cytotoxic activities against all tested cancer cell lines, especially gastric carcinoma (Kato-III) and colon adenocarcinoma (SW 620) with IC₅₀ value of 72.9 and 73.4 µg/ml, respectively. However, its extract also had cytotoxic activities against ductal carcinoma (BT474), bronchogenic carcinoma (Chago K-1), and liver hepatoblastoma (Hep-G2) cell lines at high dose (IC₅₀＞100 µg/ml). The anticancer analysis of ethanolic leaf extract of *A. trifoliatus* is shown in Table 4 and Figure 1.

CONCLUSION

A. trifoliatus leaf is a good source of essential nutrients including protein, carbohydrate, dietary fiber, and fat. It also contains health-promoting compounds including vitamins and minerals, especially calcium. Moreover, ethanolic *A. trifoliatus* leaf extract had antioxidant and anticancer potentials. For antioxidant capacity, ORAC value and FRAP value were found to be 9057.29±43.08 and 1230.88±19.51 µmol TE/100 g, respectively. For cytotoxic activity, its leaves’ extract possessed cytotoxic activities against all tested cancer cell lines.

Acknowledgement

The authors are grateful to Mae Fah Luang University.
for funding the research. The authors are also grateful to Medicinal Plant Innovation Center of Mae Fah Luang University for necessary assistance and laboratory facilities.

Financial support and sponsorship
This research was supported by Mae Fah Luang University.

Conflicts of interest
There are no conflicts of interest.

REFERENCES

1. Li DL, Zheng X, Chen YC, Jiang S, Zhang Y, Zhang WM, et al. Terpenoid composition and the anticancer activity of *Acanthopanax trifoliatus* (L) Merr. *Arch Pharm Res* 2016;39:51-8.

2. Chien TM, Hsieh PC, Huang SS, Deng JS, Ho YL, Chang YS, et al. *Acanthopanax trifoliatus* inhibits lipopolysaccharide-induced inflammatory response in vitro and in vivo. *Kaohsiung J Med Sci* 2015;31:499-509.

3. Wang H, Li D, Du Z, Huang M, Cui X, Lu Y, et al. Antioxidant and anti-inflammatory properties of Chinese illicifolius vegetable (*Acanthopanax trifoliatus* (L) Merr) and its reference compounds. *Food Sci Biotechnol* 2015;24:1131-8.

4. Wang HQ, Li DL, Lu YJ, Cui XX, Zhou XF, Lin WP, et al. Anticancer activity of *Acanthopanax trifoliatus* (L) Merr extracts is associated with inhibition of NF-kB activity and decreased Erk1/2 and Akt phosphorylation. *Asian Pac J Cancer Prev* 2014;15:9341-6.

5. Sithisarn P, Jarikasem S. Antioxidant activity of *Acanthopanax trifoliatus*. *Med Princ Pract* 2009;18:393-8.

6. Nguyen BT, Trinh NT, Do TH, Nguyen MK, Tran VH, Tran TH, et al. Screening of Vietnamese medicinal plants for cytotoxic activity. *Nat Prod Sci* 2010;16:43-9.

7. Thangaraj P. Pharmacological assays of plant-based natural products. *Rainsford KD*, editor. *Springer Nature* 2016;71:21-9.

8. Kotue T, Marlyne JM, Wirba L, Amalene S, Nkenmeni D, Kwuimgoin DW, et al. Nutritional properties and nutrients-chemical analysis of common beans seed. *MOJ Biol Med* 2018;3:41-7.

9. Naik P. *Biochemistry*. New Delhi: Jaypee Brothers Medical Publishers; 2015.

10. Wilson DW, Nash P, Borrar HS, Griffiths K, Singh R, De Meester F, et al. The role of food antioxidants, benefits of functional foods, and influence of feeding habits on the health of the older person: An overview. *Antioxidants* (Basel) 2017;6:81.

11. Xu DP, Li Y, Meng X, Zhou T, Zhou Y, Zheng J, et al. Natural antioxidants in foods and medicinal plants: Extraction, assessment and resources. *Int J Mol Sci* 2017;18:1-32.

12. Ou B, Humphs-Woddill M, Prior RL. Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. *J Agric Food Chem* 2001;49:4619-26.

13. Litescu SC, Eremia SA, Tache A, Vasilescu I, Radu G. *The Use of Oxygen Radical Absorbance Capacity (ORAC) and Trolox Equivalent Antioxidant Capacity (TEAC) Assays in the Assessment of Beverages’ Antioxidant Properties*: Academic Place; 2014.

14. Benzie IF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. *Anal Biochem* 1996;239:70-6.

15. Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. *J Immunol Methods* 1983;65:55-63.

16. Iqbal J, Abbasi BA, Mahmood T, Kanwal S, Ali B, Shah SA, et al. Plant-derived anticancer agents: A green anticancer approach. *Asian Pac J Trop Biomed* 2017;7:1129-50.

17. AOAC International. *Official Methods of Analysis of AOAC International*. 20th ed. Gaithersburg, MD, USA: AOAC International; 2016; p. 3172.

18. Speek AJ, Temalilwa CR, Schrijver J. Determination of beta-carotene content and Vitamin A activity of vegetables by high-performance liquid chromatography and spectrophotometry. *Food Chem* 1986;19:65-74.

19. Odriozola-Serrano I, Hernandez-Jover T, Martin-Belloso O. Comparative evaluation of UV-HPLC methods and reducing agents to determine Vitamin C in fruit. *Food Chem* 2007;105:1151-8.

20. Food and Agricultural Materials Inspection Center. Proximate Composition and Detergent Fiber; 2019. Available from: http://www.famic.go.jp/english/index.html. [Last accessed on 2020 May 01].

21. Puwastien P, Siong TE, Kantasubrata J, Craven G, Feliciano RR, Judprasong K. *ASEAN Manual of Food Analysis*. Institute of Nutrition, Mahidol University; 2011.

22. Dasgupta A, Klein K. Antioxidants in Food, Vitamins and Supplements. San Diego, CA, USA: Elsevier; 2014. p. 360.

23. Asiedu M, Nilsen R, Lie O, Lied E. Effect of processing (sprouting and/or fermentation) on sorghum and maize. *I: Proximate composition, minerals and fatty acids*. *Food Chem* 1993;46:351-3.

24. World Health Organization & Food and Agriculture Organization of the United Nations. *Requirements of Vitamin A, Thiamine, Riboflavin and Niacin*: Report of a Joint FAO/WHO Expert Group. Geneva: World Health Organization; 1967. p. 86.

25. Nanasombat S, Yansodthee K, Jongjaited I. Evaluation of antidiabetic, antioxidant and other phytochemical properties of Thai fruits, vegetables and some local food plants. *Walailak J Sci Tech* 2019;16:851-66.