Transcriptomics analysis reveals the effect of *Broussonetia papyrifera* L. fermented feed on meat quality traits in fattening lamb

Xuejiao An¹, Shengwei Zhang², Taotao Li¹, Nana Chen¹, Xia Wang¹, Baojun Zhang², Youji Ma Corresp.¹

¹ College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
² Gansu Provincial Farmer Education and Training Station, Lanzhou, China

Corresponding Author: Youji Ma
Email address: yjma@gsau.edu.cn

To date, utilization of feed grains is increasing, which competes for human food. It is imperative to develop and utilize unconventional feed materials. *Broussonetia papyrifera* L. (*B. papyrifera*) is a good feeding material with high crude protein, crude fat, and low crude fiber, which is widely distributed in China. In this study, 12 Dorper♂ × Hu ♀ crossbred weaned male lambs were selected into 4 groups based on the feed that ratio of the *B. papyrifera* fermented feed in the total mixed diet (0%, 6%, 18%, and 100%), to characterize the lambs’ longissimus dorsi (LD) fatty acids, morphology and transcriptome. Results showed that the muscle fiber’s diameter and area were the smallest in the group 100%. The highest content of beneficial fatty acids and the lowest content of harmful fatty acids in group 18%. RNA-seq identified 443 differentially expressed genes (DEGs) in the LD of lambs from 4 groups. Among these genes, 169 (38.1%) were up-regulated and 274 (61.9%) were down-regulated. The DEGs were mostly enriched in fatty acid metabolism, arginine and proline metabolism, and PPAR signaling pathways. Our results provide knowledge to understand effect of different ratios of *B. papyrifera* fermented feed on sheep meat quality traits, also a basis for understanding of the molecular regulation mechanism of *B. papyrifera* fermented feed affecting on sheep meat quality.
Transcriptomics analysis reveals the effect of *Broussonetia papyrifera* L. fermented feed on meat quality traits in fattening lamb

Xuejiao An¹, Shengwei Zhang², Taotao Li¹, Nana Chen¹, Xia Wang¹, Baojun Zhang², Youji Ma¹,³,*

¹ College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
² Gansu Provincial Farmer Education and Training Station, Lanzhou, China
³ Sheep Breeding Biotechnology Engineering Laboratory of Gansu Province, Minqin, China

* Correspondence: yjma@gsau.edu.cn (Y. M); Tel: 13519637920(Y. M).

Abstract: To date, utilization of feed grains is increasing, which competes for human food. It is imperative to develop and utilize unconventional feed materials. *Broussonetia papyrifera* L. (*B. papyrifera*) is a good feeding material with high crude protein, crude fat, and low crude fiber, which is widely distributed in China. In this study, 12 Dorper♂ × Hu ♀ crossbred weaned male lambs were selected into 4 groups based on the feed that ratio of the *B. papyrifera* fermented feed in the total mixed diet (0%, 6%, 18%, and 100%), to character the lambs’ longissimus dorsi (LD) fatty acids, morphology and transcriptome. Results showed that the muscle fiber’s diameter and area were the smallest in the group 100%. The highest content of beneficial fatty acids and the lowest content of harmful fatty acids in group 18%. RNA-seq identified 443 differentially expressed genes (DEGs) in the LD of lambs from 4 groups. Among these genes, 169 (38.1%) were up-regulated and 274 (61.9%) were down-regulated. The DEGs were mostly enriched in fatty acid metabolism, arginine and proline metabolism, and PPAR signaling pathways. Our results provide knowledge to understand effect of different ratios of *B. papyrifera* fermented feed on sheep meat quality traits, also a basis for understanding of the molecular regulation mechanism of *B. papyrifera* fermented feed affecting on sheep meat quality.

Key words: *B. papyrifera* fermented feed; sheep; meat quality; transcriptome

INTRODUCTION

Broussonetia papyrifera L. (*B. papyrifera*), is a broad-leaved woody specie with a deciduous, dioecious, and dichogamous plant (*Hong et al. 2009*). It is native to southern China and Japan, and
now distributes in China, Malay Peninsula, Japan, and Pacific islands (Zerega et al. 2005; Liu et al. 2009). The plant *B. papyrifera* has strong stress resistance, can grow normally at arid hillside, valley, and roadside. Studies have been indicated it has multiple function, such as the role of manufacturing paper with it’s inner bark (Suleman 1995), its leaves are ideal for feeding animals (Si et al. 2018) and it can also be used in the pharmaceutical industry (KO et al. 2011). Domestic and foreign scholars have found that *B. papyrifera* contains a large amount of flavonoids and diphenylpropane compounds, which have certain antioxidant properties. And the mulberry tree contains at least 16 kinds of amino acids, of which 7 are essential amino acids. And its protein content is rich, the total amino acid content is up to 24.35 %, it is a good feed material (Wei et al. 2008). It is found that *B. papyrifera* silage also reduce the ruminal biohydrogenation (Yusuf et al. 2017) and increase the poly-unsaturated fatty acids (PUFA) concentration in the milk (Si et al. 2018).

There are about 300,000 hectares of *B. papyrifera* in China, widely distributes in basins of Yellow river, Yangtze river, Pearl river and Mingjiang river. *B. papyrifera* is a kind of nutrient-rich woody feed. It contains high crude protein, crude ash, crude fat, phosphorus, and suitable crude fiber content. It has the potential to alleviate the lack of protein feed in China and its dependence on foreign sources. It was reported that the crude protein of *B. papyrifera* had high degradation rate in the rumen of cows. Therefore, this kind of unconventional woody forage was considered to be of great development value (Wang et al. 2019). Also the *B. papyrifera* fruits polysaccharides have antioxidant and antibacterial activities (Roth 2016). Many of the plants contain phytochemicals, which had potent antioxidant activities (Lee et al. 1991; Conforti et al. 2008; Xu et al. 2010; Roth 2016). Antioxidant activities have been described for related polyphenolic constituents extracted from the stem, bark and wood of *B. papyrifera* (Xu et al. 2010). There is report about the radix of *B. papyrifera* that had the greatest antinociceptive and anti-inflammatory effects when different parts of the plant were compared as treatment for chemical-induced pain and inflammation in rodents (Hong et al. 2013).

With the improvement of people's living standards, consumers' demand for livestock and
poultry products has undergone great changes. People not only demand good taste and flavor, but
also demand rich nutrition and benefit human health (Lin et al. 2014). Due to its high protein
content, rich nutrient content, and low fat and cholesterol content, mutton has a growing demand
for mutton. The main indicators for comprehensively evaluating individual animal meat
production performance and meat nutritional value include meat production, meat quality, muscle
nutrition and fatty acid content. The important indicators for evaluating meat quality are
tenderness, marble pattern, meat color, etc. (Sun et al. 2017). At the same time, the composition
and content of fatty acids in muscle are of great significance to meat flavor and human health
(Zhang et al. 2019, Guo et al. 2019). Changing in meat quality traits are regulated by related genes.
Therefore, functional genes that affect sheep meat quality can be screened through transcriptome
sequencing. At the same time, adding different ratios of B. papyrifera fermented feed to sheep
diets can affect meat quality related genes the expression changes to affect sheep meat quality
traits. Cao (2017) used Dorper×Small Tail Han Crossbred and Small Tail Han Sheep as research
objects to compare and analyze their longissimus dorsi transcriptome sequencing and screened out
16 functional genes that may affect sheep meat quality traits. Hao et al (2016) used RNA-seq and
DNA methylation differential gene joint analysis to obtain a large number of genes related to
muscle development, muscle meat traits, muscle energy and lipid metabolism, and cellular defense
and stress response. In light of this, different ratio of B. papyrifera fermented feed was used as
protein feed to feed fattening lambs. Measuring fatty acid content and haematoxylin and eosin
(HE) staining to observe the longissimus dorsi (LD) phenotype, to study the feeding effect of B.
papyrifera fermented feed. Then analyze the transcriptome data, to screen differential genes that
relate to B. papyrifera fermented feed. Conjoint analysis explored the influence of B. papyrifera
fermented feed on the quality of lamb meat, and screened out the appropriate addition ratio.

MATERIAL AND METHODS

Overview of experimental program

This paper mainly explores the molecular regulation mechanism of different ratios of B.
papyrifera fermented feed on sheep meat quality. We randomly selected 12 crossbred weaned male
lams divided into 4 groups (3 lambs per group) fed that ratio of the B. papyrifera fermented feed in the total mixed diet (0%, 6%, 18%, and 100%) for 60 days. HE staining and analysis of fatty acid content of LD muscle, a suitable ratio of fermented feed for B. papyrifera was initially selected. Then conduct transcriptomics analysis to screen the key genes that affect meat quality and predict the biological functions of these genes in fatty acid synthesis and metabolism. Finally, combining the phenotypic data and the transcriptome results, explore the effect of B. papyrifera fermented feed on the quality of lamb meat, and select the appropriate addition ratio. (Figure 1).

Chemicals and reagents

NaOH (Jinhuitaiya, Tianjin), CH₃OH (jingke, Wuxi), TRIpure Reagent (DiNing Biotech, China), CHCl₃ (Beyotime), NaCl (jingke, Wu xi), 14%BF3-CH3OH (Xiya, Shandong), Eosin Staining Solution (Beyotime), Hematoxylin Staining Solution (Beyotime), Evo M-MLV RT Kit with gDNA Clean for qPCR (Accurate Biotechnology (Hunan) Co., Ltd), YBR Green Premix Pro Taq HS qPCR Kit (Accurate Biotechnology (Hunan) Co., Ltd),

Ethics approval

Experimental animals were reviewed and approved by the Animal Committee of Gansu Agricultural University (GSAU-2019-76).

Preparation of experimental animals

12 crossbred weaned male lambs Dorper♂ × Hu ♀ were selected, which with same weight (20 kg/ lamb), similar ages and good health. All fed in Gansu Zhongtian Sheep Industry Co., Ltd. (Longxi China). Randomly divided into 4 groups (3 lambs per group) based on the feed that ratio of the B. papyrifera fermented feed in the total mixed diet (0%, 6%, 18%, and 100%). There is transition period of 7 days, a pre-test period of 7 days and a formal period of 60 days. Refer to NRC (2007) standard for 20kg lamb with a daily weight gain of 200g / d. The diet formula was shown in Table 1. Feed the same amount twice a day at 08:00 and 18:00, respectively, and drink freely.12 lambs were euthanized after 60 days of feeding each lamb was given intravenous injection of 360 mg sodium pentobarbital without heartbeat, continuous non-spontaneous breathing for 2-3 minutes, and no blinking reflex, and then dissected. Collecting the LDs: one
sample was immediately placed in liquid nitrogen and subsequently cryopreserved at -080°C for
the extraction of total RNA, the second was placed in an ice box and subsequently cryopreserved
at -20°C to extract fatty acids, and the last was fixed with 4% paraformaldehyde for approximately
48 h, dehydrated in a gradient series of ethanol, cleared in xylene and embedded in paraﬃn. The
tissues were sectioned at 5 mm thickness and used for HE staining.

Fatty acid analysis

Frozen samples were thawed 12 h prior to analyse at 4 °C, and weighed 5g LD muscle on an
electronic balance. In order to accurately and quickly extract the lipids in the LD, total lipids were
extracted with CHCl₃/ CH₃OH (2:1, V/V) as described by Zlatkis et al (1953) with some
modifications. Fatty acid methyl esters (FAME) were prepared as following from the methods as
described previously (Liu 2015) with some modiﬁcation. Extracted lipids (approximately 10 mg)
were combined with BHT and 2.0 mL NaOH-MeOH solution (0.1 mol/L), saponify at 60 °C for
60 min. After the solution was clear and transparent, test the tube under 4 °C running water cool
to room temperature; then add 2.0 mL of 14% BF₃-CH₃OH solution, methylate at 60 °C for 15
min, and cool the test tube to RT under 4 °C of tap water; add 3 mL of n-hexane, 1 mL of 25%
NaCl solution and 6 mL of distilled water was shaken vigorously, centrifuged at 6000 r/min for 10
min, the upper layer of FAME was collected, the lower layer solution was repeatedly extracted
once with n-hexane, combined FAME, added an appropriate amount of anhydrous sodium sulfate,
and all were sucked out with a disposable needle, and the organic phase was ﬁltered. The
membrane is placed at the front of the needle tube for ﬁltration, concentrated to dryness under the
protection of nitrogen, the residue is dissolved in n-hexane and ﬁxed to a 2.0 mL volumetric ﬂask,
stored at -20 °C for future use, until GC detection.

Derivatized methyl esters of fatty acids were separated and quantiﬁed by gas
chromatograph (7820A, Agililent Technologies, California, USA). The capillary column was a 100
m×0.25 mm×0.2 μm (SPTM-2560; Sigma Louis, MO, USA). The carrier gas (Nitrogen) ﬂow rate
was 1.5 mL min⁻¹, The flow rate of gas (Hydrogen) was 40mL·min⁻¹, The flow rate of air was 400mL·min⁻¹. Split injection, split ratio 60:1, injection volume 1.0μL. Injector temperature was set as 260 °C. The initial oven temperature was programmed at 140 °C and maintained for 5 min, then increased to 200 °C at 2 °C min⁻¹, increased to 230 °C at 6 °C/min and keep 20 min.

Haematoxylin and eosin staining

Section of LD of was stained with H&E as described previously (Asuka et al. 2017). Then was observed under a microscope, and photographed using ImageView.

Muscle fiber measurement

The HE-stained section was photographed under the 20×and 40×microscope using the ImageView microphase system, and the diameter and area of the muscle fibers under the 40×microscope were determined using ImageJ software.

Total RNA extraction, cDNA library preparation

Total RNA was extracted from each sample using TRIpure Reagent according to instructions. The concentrations and quality of RNA samples were examined by NanoDrop2000 (Thermo) and Agilent 2100 (Agient). The total RNA of the aforementioned samples was used to construct an RNA-Seq library, which were sequenced in parallel on Illumina HiSeq 2000 system by Biomarker technologies (Beijing, China).

Identification and quantification of DEGs

Identification of differential genes used FPKM (fragments per kilobase per million reads) (Mortazavi et al. 2008). Differential expression analyses of genes among four groups were implemented using the Cuffdiff (Trapenll et al. 2013). Genes with indexes fold change (FC)>1.5 and FDR<0.05 were considered as DEGs.

Functional annotation and pathway analysis of DEGs

The functional of DEGs were identified through GO and KEGG database. GO annotation and KEGG pathways analyses by the GOseq R package and KOBAS software, the p value ≤ 0.05 were defined as significant enriched by DEGs.

Validation of RNA-seq results
To verify reliability of the transcriptomic profiling data, quantitative real-time PCR (qRT-PCR) was performed for 9 randomly selected DEGs (*FABP3, ECI1, ACADVL, GOT1, LPIN1, MLYCD, PLIN5, RASD1* and *SELENOW*). *GAPDH* was used as a reference gene in quantitative analysis. Using *Evo M-MLV* RT Kit with gDNA Clean for qPCR to reverse transcribe RNA into cDNA, and using SYBR Green Premix *Pro Taq HS* qPCR Kit and run on the Roche LightCycler96. The relative expression was calculated using the $2^{-\Delta\Delta Ct}$ method (*Vanslyke 2000*).

The qRT-PCR primers are listed in the electronic supplementary material, table S1.

Statistical analysis

All statistical analyses were conducted with SPSS 22.0 software (SPSS Inc., Chicago, IL, USA), the least significant difference (LSD with Fischer's) method in one-way analysis of variance (ANOVA). The results were expressed as mean ± standard error. *P value* < 0.05 were considered as statistically significant.

RESULTS

Comparison of differences in fatty acid composition and content among different groups

Analysis of saturated fatty acid content

A total of 11 kinds of saturated fatty acids were detected in LD of lamb with different *B. papyrifera* fermented feed, including 4 odd saturated fatty acids and 7 even saturated fatty acids. Among the even saturated fatty acids, butyric acid (C4:0), capric acid (C10:0) palmitic acid (C6:0) and stearic acid (C18:0) were not significantly different among the four groups (*P* > 0.05). The content of lauric acid(C12:0), myristic acid (C14:0) and arachidic acid (C20:0) in the 100% group was significantly higher than the other three groups (*P* < 0.05). Among the odd saturated fatty acids, tridecanoic acid (C13:0) and tricosanoic acid (C23:0) were not significantly different among the four groups (*P* > 0.05). The content of pentadecanoic acid (C15:0) and heptadecanoic acid (C17:0) group 100% was significantly higher than other groups (Table 2 and S2).

Analysis of unsaturated fatty acid content

A total of 15 kinds of unsaturated fatty acids were detected in LD of lamb fed with different *B. papyrifera* fermented feed, including 7 kinds of MUFA and 8 kinds of PUFA. Among the
monounsaturated fatty acids, there are three insignificant differences between the four groups, namely myristic acid (C14:1), palmitoleic acid (C16:1), nervonic acid (C24:1) and trans linoleic acid (C18:2n6t) ($P > 0.05$). Among the unsaturated fatty acids, the content of Cis-10-pentadecenoic acid (C15:1) and cis-10-heptadecenoic acid (C17:1) and were gradually increased with the addition of B. papyrifera fermented feed. Among the polyunsaturated fatty acids, the content of four fatty acids also increased with the addition of mulberry fermented feed, including linoleic acid (C18:2n6c), γ-linolenic acid (C18:3n6), alpha-linolenic acid (C18:3n3), cis-8,11,14-eicosatrienoic acid (C20:3n6) and DHA (C22:6n3) (Table 3 and S2).

Analysis of total fatty acid content

The functional fatty acids that are closely related to human health mainly n3 and n6 PUFAs. This study found that n6 was not significantly different between the four groups ($P > 0.05$), but its content increased with the amount of addition, the content of n3 in the group 100% was significantly higher than other groups ($P < 0.05$). Both n6/n3 and P/S can be used to measure the nutritional value of meat. In this study, P/S was the highest in the 100% group, while n6/n3 was the highest in the group 18% (Table 4 and S2).

Comparison of morphological differences of LD in different groups

HE staining of the LD of lamb in different groups, the cross-section staining results showed that the muscle fibers were polygonal, all arranged tightly, the muscle bundle gap was large, and the intramuscular membrane was obvious (Figure 1A-D). The longitudinal section shows that the muscle fibers are long fusiform, and the nuclei are blue elliptical or rod-shaped (Figure 2E-H).

From Figure 1I-J and TableS3, the difference between the three groups of muscle fiber’s area and diameter 0%, 18% and 100% was significant ($P < 0.05$), while the difference between 6% and 18 was not significant ($P > 0.05$), but 18% was less than 6%, indicating that with the increased in the amount of B. papyrifera fermented feed the muscle fiber’s area and diameter was decreased.

Data analysis from RNA-seq

In view of the influence of different proportions of B. papyrifera fermented feed on the meat quality of fattening lamb, transcription level changes in the LD were analyzed using the Illumina
HiSeq 2000 platform, and prepared to construct cDNA libraries for RNA-seq. As shown in table 5, after filtering, the clean data of each sample reached 6.07 GB, the percentage of Q30 bases was greater than 93.57%. The percentage of clean reads that mapped into the sheep reference genome ranged from 96.79 to 97.57%. About 80% of clean reads were uniquely mapped and used for subsequent analysis.

Gene expression analysis

Comparing the three groups to yield a total of 443 DEGs, among them, 48 (19 up-regulated and 29 down-regulated), 104 (38 up-regulated and 66 down-regulated) and 198 (84 up-regulated and 141 down-regulated) DEGs belonged to 6%, 18% and 100%, respectively. The 6 DEGs (2 up-regulated and 4 down-regulated) were commonly regulated by effecting of fermented feed from *B. papyrifera* in the three groups (Figure 3A). A total of 89, 157 and 269 DEGs were identified in the groups of 0% vs 6%, 0% vs 18%, and 0% vs 100%, respectively (FC > 1.5, FDR < 0.05). After adding 6%, the number of down-regulated DEGs (52) were more than the number of up-regulated DEGs (37). When fed all *B. papyrifera* fermented feed, the number of up-regulated DEGs increased from 37 (6%) to 98 (100%), and the down-regulated DEGs increased from 52 (6%) to 171 (100%) (Figure 3B). Hierarchical clustering represents the difference and similarity of 443 DEGs (Figure 3C and Table S4). The results showed that there was a significant difference in gene expression profiles differences among the four groups. With the increase of the added amount, the genes with high expression at 0% were gradually down-regulated, while those with low FPKM at 0% were gradually up-regulated. It indicated that the addition of *B. papyrifera* fermented feed a set of gene expression or induces another set of gene expression, although these changes were to regulate the meat quality performance.

Expression pattern and functional analysis of the DEGs in LD of sheep

According to the expression profiles, 443 DEGs were classified into 8 clusters by co-expression clustering (Figure 4 and Table S5). A total of 16 and 67 genes were classified as clusters 4 and 6, which were rapidly down-regulated within 0% to 18% and then gradually up-regulated within 100%. Most of them participated in pathways such as "Rap1 signaling pathway", and
"protein digestion and absorption", it indicates that those genes were transiently inhibited by B. fermenta. While the genes in clusters 1 and 5 were up-regulated from 0% to 18%, and gradually down-regulated within 100%. This result indicates that those genes were transiently promoted by B. fermenta. Most of them participated in pathways such as "glucagon signaling pathway", "PPAR signaling pathway" and "fat digestion and absorption". The genes belonging to clusters 2, 7 and 8 were continuously down-regulated. Transcription is inhibited by B. fermented feed, most of which are rich in "MAPK signaling pathway" and "cAMP signaling pathway" pathways. Cluster 3 contains fewer genes (31), and the expression levels of these genes are significantly up-regulated with the addition of fermented feed from B. papyrifera, most of which are rich in the "AMPK signaling pathway" and "Circadian rhythm" pathways.

GO classification analyses

Annotated genes were divided into three major functional categories: biological processes (BP), cellular components (CC) and molecular functions (MF). It is obvious that there were more functional terms for BP and relatively few transcripts for CC and MF. Compared with down-regulated transcripts, detoxification (GO: 0098754), synapse (0045202), synapse part (0044456) and antioxidant activity (GO:0016209) terms were peculiar in up-regulated DEGs; nucleoid (0009295) was unique in upregulation GO terms (Figure 5A, B and Table S6).

KEGG annotation analyses

KEGG pathway analysis was conducted to investigate whether the genes in LD of the sheep participate in some special pathways with the addition of different B. fermenta. fermented feed. Top20 of KEGG enrichment showed that up-regulated DEGs were highlighted in “fatty acid degradation (ko00071)”, “circadian rhythm (ko04710)”, “tryptophan metabolism (ko00380)”, “arginine and proline metabolism (ko00330)”, “regulation of lipolysis in adipocytes (ko04923)”, “glycerolipid metabolism (ko00561)” and “cGMP-PKG signaling pathway (ko04022)”. Moreover, “pertussis (ko05133)”, “proteoglycans in cancer (ko05205)”, “complement and coagulation cascades (ko04610)”, “ECM-receptor interaction (ko04512)”, “pathways in cancer (ko05200)” and “Rap1 signaling pathway (ko04015)” annotated the most down-regulated DEGs (Figure 5A, B, and...
Table S7).

RNA-Seq expression validation by qRT-PCR

As shown in figure 7 and S8, we selected 9 DEGs that were closely associated with the meat quality. The result showed that qRT-PCR expression patterns were consistent with the changing trends from RNA-seq data.

PPI network

The PPI network of DEGs related to meat quality in the LD muscle of lamb were presented in figure 8. There were 43 edges and 17 nodes in the network. Based on the PPI network, ACSL1 (degree=9), ACADVL (degree=9), ECII (degree=9), ECHS1 (degree=9) were the top four hub genes.

Discussion

Effect of *B. papyrifera* fermented feed on meat quality traits

The internal quality of meat is dependent on certain characteristics of muscle fibers. Besides, there are many factors that affect the differences of muscle fibers, such as growth and development stage, gender, environment, and nutrition. The size and number of muscle fibers are important factors that affect meat quality. Therefore, the characteristics of muscle fibers are of great significance to the meat quality characteristics and growth of animals (*Shen et al. 2014; Kim et al. 2018*). Muscle bundles were composed of muscle fibers, and the size of muscle fiber’s diameter is also related to the shearing force. The smaller the muscle fiber’s diameter, the tenderer the meat quality. At the same time, the cross-sectional area of the muscle fiber was also one of the important indicators for judging the quality of the meat (*Bidanel et al. 1991*). In this study, the diameter and area of muscle fibers decreased with the increase of the ratio of *B. papyrifera* fermented feed (Refer to Fig 2), indicating that the addition of *B. papyrifera* fermented feed was directly proportional to muscle tenderness. Therefore, this feed can be added as a protein feed in ruminant diets for improving muscle tenderness.

Lauric acid (12:0), myristic acid (14:0) and palmitic acid (16:0) in long-chain SFA are closely related to cholesterol and can harden human blood vessels, which was the reason to cause
cardiovascular disease and arteriosclerosis, there are some epidemiology showing that stearic acid (C18:0) is related to coronary heart disease (Hu et al. 1999; Hunter et al. 2010). In this study, the content of lauric acid (12:0) and myristic acid (14:0) in the group 100% was higher than other groups (Refer to Table 2), indicating that excessive addition of B. papyrifera fermented feed in the ruminant feed would cause long chains SFA increase. The intake of unsaturated fats can effectively reduce the level of cholesterol in the body and prevent atherosclerosis (Cameron et al. 2000; Wood et al. 2008). PUFA have been proven to prevent and treat cardiovascular diseases, and also have important physiological effects such as delaying aging and anti-cancer. MUFA plays an important role in lowering cholesterol (Harris et al. 2007). The n3 series of PUFA play a variety of functions in the human body. They can reduce triglycerides in blood lipids, improve blood vessels and eliminate inflammation, and reduce the morbidity and mortality of cardiovascular disease patients (Philip et al. 2013). In the present study, PUFA were higher in other three groups than that in control group, and it might due to the antimicrobial activities in the diet supplemented with B. papyrifera fermented feed (Refer to Table 4), as it is reported that prenylated flavonoids isolated from B. papyrifera have antimicrobial activity (Sohn et al. 2004; Sohn et al. 2010), which affects the biohydrogenation of unsaturated fatty acids by ruminant rumen microorganisms, and also dietary antioxidant activity might increase PUFA content in meat (Sanchez et al. 2012; Belles et al. 2019). Combining the content of beneficial fatty acids such as DHA(C22:6n3), linoleic acid(C18:2n6c) and α-linolenic acid(C18:3n3) and harmful fatty acids such as lauric acid(C12:0), myristic acid(C14:0) and stearic acid(C18:0) in the 4 groups, it showed that the 18% group has a higher content of beneficial fatty acids and a lower count of harmful fatty acid, which would be more beneficial for the consumer’s health.

Effects of B. papyrifera fermented feed on meat quality-related DEGs and fatty acid metabolic pathways

In this study, we screened 443 genes whose mRNA abundance changes not less than 1.5 times based on FDR (Refer to Fig 3). Intramuscular fat is one of the indicators reflecting meat quality and flavor, and is closely related to carcass and meat quality. B. papyrifera fermented feed mainly
improves the intramuscular fat content of fattening lamb through nutritional regulation, thereby affecting meat quality performance. By analyzing the KEGG pathway of differentially expressed genes, it can be seen that 4 DEGs (ACSL1, AQP7, FABP3 and PLIN5) are enriched in the PPAR signaling pathway (Refer to Fig 8). FABP3 mainly regulates the body's fat and glucose balance in the PPAR signaling pathway, and plays an important role in the transportation and metabolism of fatty acids in cells. It can transport long-chain fatty acids from the cell membrane to fatty acid oxidation, triglyceride and phospholipid synthesis (Veekamp 1995). FABP3 gene mutations and mRNA expression levels have a significant impact on intramuscular fat, which in turn affects muscle tenderness (Wang et al. 2015). ACSL1 is the most important synthetase for acyl-CoA to synthesize triglycerides, which helps fatty acid transport and triglyceride deposition (Richards et al. 2006). AQP7, a water/glycerol transporting protein, regulates adipocyte glycerol efflux and influences lipid and glucose homeostasis (Oikonomou et al. 2020). PLIN5 is expressed on both lipid droplets and mitochondria, and may participate in the interaction between lipid droplets and mitochondria (Wang et al. 2013). Muscle-specific overexpression of PLIN5 increases the storage of lipid droplets in muscle cells and also increases the rate of oxidative gene expression and metabolism (Harris et al. 2015). The formation of larger lipid droplets with a higher degree of esterification, increased methylene content and more saturated lipids (Nils et al. 2015). The above results indicate that these four genes mainly promote the deposition of intramuscular fat by participating in the synthesis of triglycerides and polyunsaturated fatty acids, thereby changing muscle tenderness. In this study, the expression of ACSL1, AQP7, FABP3 and PLIN5 genes increased with the addition of B. papyrifera fermented feed, and the expression of all genes decreased in 100% group (Refer to Fig 7), indicating that 18% amount of added B. papyrifera fermented feed can improve meat quality.

By analyzing the KEGG pathway of differentially expressed genes, it could be seen that there were four genes (ECHS1, ACSL1, ACADVL and ECI1) that were significantly enriched in the fatty acid metabolism signaling pathway (Refer to Fig 8). ECHS1 in cells could activate mammalian target proteins, and animal target proteins may enhance LPL expression through the PPAR
pathway. LPL was involved in the metabolism and transport of lipids, and mainly hydrolyzes the chylomicrons and very low-density lipoproteins present on the surface of capillary endothelial cells to produce fatty acids (Li et al. 2014). ACADVL mainly catalyzes the oxidation of fatty acids to form C 2-C 3 double bonds, and usually catalyzes C 16-acetyl COA or even longer chain fatty acids (Aoyama et al. 1995). The long-chain fatty acyl COA is transported to the mitochondria, firstly binds to VLCAD, and interacts with the mitochondrial trifunctional protein. After 2-3 cycles of oxidation, the medium-chain fatty acyl CoA is formed (Houten 2010). The protein encoded by ECII was an important mitochondrial enzyme involved in the β oxidation of unsaturated fatty acids, which was mainly involved in the metabolic process of fatty acids (Williams 1991). In this study, the expression level of ECII increased with the addition of B. papyrifera fermented feed, reaching the highest in the 18% group, but decreased in the 100% group. The expression level of ACAVDL and ECHS1 rose to the highest after 6% B. papyrifera fermented feed, and then decreased with the increase of the added amount (Refer to Fig 7). It showed that adding the appropriate amount of B. papyrifera fermented feed would increase the synthesis of long-chain fatty acids, while excessive addition of B. papyrifera fermented feed would increase fatty acid metabolism and reduce fatty acid content in the body, thereby affecting the fat deposition on meat quality in the LD of lamb.

Conclusion

Although there are many researches on B. papyrifera in animal breeding, they have focused on its antioxidant activity, rumen hydrogenation and its effect on fatty acids. There is no report on the specific influence mechanism of B. papyrifera fermented feed on the meat quality traits of animal. To our best knowledge, this is the first report about the effect of adding different B. papyrifera fermented feed on the meat quality traits and changes of the longissimus dorsal transcriptome of fattening lamb. First, the fatty acid content and muscle fiber morphology of the longissimus dorsal were studied. It was found that after adding B. papyrifera fermented feed, the muscle fiber’s diameter of the muscle became smaller, the tenderness became more tender, and the content of polyunsaturated fatty acid was the highest in the group18%. Finally, a total of 443
DEGs were identified in the four groups. We screened some DEGs that related to synthesis of fatty acids, most of which were up-regulated in the groups 6% and 18%, and down-regulated in the group 100%. Our results show that proper addition of Pichia fermented feed can help the synthesis of long-chain unsaturated fatty acids and the deposition of intramuscular fat. Therefore, it is recommended to add 18% B. papyrifera fermented feed to lamb feed to improve meat quality traits.

Data availability statement: The sheep mRNA sequences in our manuscript have been deposited in the SRA of the NCBI, accession number and link are PRJNA660919 and https://www.ncbi.nlm.nih.gov/Traces/study/?acc=PRJNA660919, Biosample accession SAMN15963870-15963881.

Supplementary Materials: TableS1: Gene information used for primer design, Table S2: Fatty acid determination results, Table S3: Muscle fiber’s diameter and area, Table S4: List of all DEGs, Table S5: The co-expression analysis of DEGs, Table S6: List of GO analysis result, Table S7: List of KEGG analysis result, Table S8: The results of qRT-PCR.

Author Contributions: Conceptualization, Methodology, Software, Formal analysis, Writing - original draft, X A; Methodology S Z; Methodology, Software, Formal analysis, T L; Formal analysis, N C; Methodology, Software, X W; Methodology, B Z; Conceptualization, Writing - review & editing, Supervision, Project administration, Funding acquisition, Y M. All authors have read and agreed to the published version of the manuscript.

Funding: It was supported by the National Key R&D Program of China (2018YFD0502100).

Acknowledgments: Thanks to Zhongtian Sheep Industry Co., Ltd. for providing us with the lamb breeding base, and BMK Cloud (www.biocloud.net) for supporting in data analysis of this study.

Conflicts of Interest: All authors declare no conflicts of interest.

REFERENCES

Aoyama T, Souri M, Ushikubo S, Kamijo T, Hashimoto. 1995. Purification of human very-long-chain acyl-coenzyme A dehydrogenase and characterization of its deficiency in seven patients. Journal of Clinical Investigation 95(6): 2465-2473. DOI 10.1172/JCI117947

Asuka H, Tomoyuki A, Atsushi H, Kazuhiro S, Hiromichi A, Borjigin S, Mio Y, Akane S, Atchalalt K, Kazuko O, Rika F, Shoei S, Yoshikazu N. 2017. Histochemical properties of bovine and ovine mammary
glands during fetal development. *Journal of Veterinary Medical Science* 80(2): 263-271. DOI 10.1292/jvms.17-0584

Marc B, Pedro R, José AB. 2018. Supranutritional doses of vitamin E to improve lamb meat quality. *Meat Science* 149: 14-23. DOI 10.1016/j.meatsci.2018.11.002

Bidanel JP, Bonneau M, Pointillart A, Gruand J, Mourot J, Demade I. 1991. Effects of exogenous porcine somatotropin (pST) administration on growth performance, carcass traits, and pork meat quality of Meishan, Pietrain, and crossbred gilts. *Journal of Animal Ence* 69(9): 3511. DOI 10.1080/00071669108417414

Cameron ND, Enser M, Nute GR, Whittington FM, Penman JC; Fisken AC, Perry AM, Wood JD. 2000. Genotype with nutrition interaction on fatty acid composition of intramuscular fat and the relationship with flavour of pig meat. *Meat Science* 55(2):187-195. DOI 10.1016/S0309-1740(99)00142-4

Cao Y. 2017 Comparative Analysis on Genome-wide Methylation and RNA-seq in Longissimus Dorsi Muscle between Dorper×Small Tail Han Crossbred and Small Tail Han Sheep. DOI: 10.27228/d.cnki.gnmmu.2020.000086

Conforti F, Sosa S, Marrelli M, Menichini F, Statti G A, Uzunov D, Tubaro A, Menichini F, Della R, Loggia.2008. In vivo anti-inflammatory and in vitro antioxidant activities of Mediterranean dietary plants. *Journal of Ethnopharmacology* 116(1):144-151. DOI 10.1016/j.jep.2007.11.015

Guo JQ, Xu XF, Xie ZK, Yang G. 2019. Research progress on the effect of fatty acids on lamb quality. *China Feed*, (23). DOI: 10.15906/j.cnki.cn11-2975/s.20192317

Hao Y, Cui Y, Gu X. 2016. Genome-wide DNA methylation profiles changes associated with constant heat stress in pigs as measured by bisulfite sequencing. *Sci Rep* 6(1):27507. DOI: 10.1038/srep27507

Harris-Ann LSH, Skinner JR, Shew TM, Pietka TA, Abumrad NA, Wolins NE.2015. Perilipin 5-Driven Lipid Droplet Accumulation in Skeletal Muscle Stimulates the Expression of Fibroblast Growth Factor 21. *Diabetes* 64(8): 2757-2768. DOI 10.2337/db14-27507

Houten SM, Wanders RJA. 2010. A general introduction to the biochemistry of mitochondrial fatty acid β-oxidation. *Journal of Inherited Metabolic Disease* 33(5): 469-477. DOI 10.1007/s10545-010-9061-2

Hou F B, Stamper MJ, Manson JoAnn E, Alberto A, Colditz GA, Speizer FE, Hennekens CH, Willett WC. 1999. Dietary saturated fats and their food sources in relation to the risk of coronary heart disease in women. *The American journal of clinical nutrition* 70(6): 1001-1008. DOI 10.1556/AAlim.28.1999.4.7

Hunter JE, Zhang J, Kris-Etherton PM. 2010. Cardiovascular disease risk of dietary stearic acid compared with trans, other saturated, and unsaturated fatty acids: a systematic review. *The American journal of clinical nutrition* 91(1): 46-63. DOI 10.3945/ajcn.2009.27661

Kim YM, Choi TJ, Cho KH, Cho ES, Lee JJ, Chung HJ, Baek SY, Jeong Y D. 2018. Effects of sex and breed on meat quality and sensory properties in three-way crossbred pigs sired by Duroc or by a synthetic...
breed based on a Korean native breed. *Korean journal for food science of animal resources* 38(3): 544.

DOI 10.5851/kosfa.2018.38.3.544

Ko HJ, Jin JH, Kwon OS, Kim JT, Son KH, Kim HP. 2011. Inhibition of Experimental Lung Inflammation and Bronchitis by Phytoformula Containing Broussonetia papyrifera and Lonicera japonica. *Biomolecules & Therapeutics* 19(3): 324-330. DOI 10.4062/biomolther.2011.19.3.324

Lee SH, Yu JH, Jeong CL, Yoon YC, Back YJ. 1991. The influence of mastitis on the quality of raw milk and cheese. *Korean Journal of Dairy Science* 39(39): 750-760. DOI 10.1044/jshr.3904.750

Li Y, He PP, Zhang DW, Zheng XL, Cayabyab FS, Yin WD, Tang CK. 2014. Lipoprotein lipase: From gene to atherosclerosis. *Atherosclerosis* 237(2): 597-608. DOI 10.1016/j.atherosclerosis.2014.10.016

Lin CJ, Jiang JF, Song XM, Wu JL, Shi FX, Jiang YQ. 2014. Comparison of fatty acid composition of F1 generation of Hu sheep and Dorper×Hu sheep. *Animal Husbandry and Veterinary Medicine* (04): 58-61. DOI cnki:sun:xmysLiu C Y. 2015. Analysis of functional lipids in tissues of different bovine species and the effect of heat treatment on lipid oxidation. Huazhong Agricultural University. DOI 10.7666/d.Y2803488

Liu ZY, Fan WH, Shen SH. 2009. SRAP Marker in Broussonetia papyrifera. *Scientia Silvae Sinicae* 45(12): 54-58

Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. 2008. Mapping and quantifying mammalian transcriptomes by RNA-Seq. *Nature methods* 5(7): 621-628. DOI 10.1038/nmeth.1226

Nils B, Madeleen B, William R, Frederik F, Gerrit B, Patrick S, Sander K, Mischa B, Hesselink MKC, Parekh SH. 2015. Perilipin 5 mediated lipid droplet remodelling revealed by coherent Raman imaging. *Integrative Biology: Quantitative Biosciences from Nano to Macro*. DOI 10.1039/c4ib00271g

Oikonomou E, Kostopoulou E, Rojas-Gil AP, Georgiou G, Spiliotis BE. 2020. The metabolic implications of aquaporin 7 (AQP7) promoter variants in lean children and children with obesity. *Hormones (Athens, Greece)* 19(2): 1-9. DOI 10.1007/s42000-020-00184-z

Philip C, Calder. 2013. Omega-3 polyunsaturated fatty acids and inflammatory processes: nutrition or pharmacology? *British Journal of Clinical Pharmacology* 75(3):645-662. DOI 10.1111/j.1365-2125.2012.04374.x

Richards MR, Harp JD, Ory DS, Schaffer JE. 2006. Fatty acid transport protein 1 and long-chain acyl coenzyme A synthetase 1 interact in adipocytes. *Journal of Lipid Research* 47(3): 665. DOI 10.1194/jlr.M500514-JLR200

Roth Z, Wolfenson D. 2016. Comparing the effects of heat stress and mastitis on ovarian function in lactating cows: basic and applied aspects. *Domestic Animal Endocrinology* 56: S218-S227. DOI 10.1016/j.domaniend.2016.02.013

Sanchez-Muniz FJ, Olivero-David R, Triki M, Salcedo L, Gonzalez-Munoz MJ, Cofrades S, Ruiz-Capillas C, Jimenez-Colmenero F, Benedi J. 2012. Antioxidant activity of Hypericum perforatum L. extract in enriched n-3 PUFA pork meat systems during chilled storage. *Food Research International* 48(2): 909-915. DOI 10.1016/j.foodres.2012.07.002
Shen LY, Luo J, Lei HG, Jiang YZ, Zhu L. 2014. Effects of muscle fiber type on glycolytic potential and meat quality traits in different Tibetan pig muscles and their association with glycolysis-related gene expression. Genetics & Molecular Research Gmr 14(4):14366. DOI 10.4238/2015.November.13.22

Si B, Tao H, Zhang X, Guo J, Diao QY. 2018. Effect of Broussonetia papyrifera L. (paper mulberry) silage on dry matter intake, milk composition, antioxidant capacity and milk fatty acid profile in dairy cows. Asian Australasian Journal of Animal Sciences 31(8):1259-1266. DOI 10.5713/ajas.17.0847

Sohn HY, Kwon CS, Son K H. 2010. Fungicidal Effect of Prenylated Flavonol, Papyriflavonol A, Isolated from Broussonetia papyrifera (L.) Vent. Against Candida albicans. J Microbiol Biotechnol 20(10): 1397-1402. DOI 10.4014/jmb.1007.07026

Sohn HY, Son KH, Kwon CS, Kwon GS, Kang SS, 2004. Antimicrobial and cytotoxic activity of 18 prenylated flavonoids isolated from medicinal plants: Morus alba L., Morus mongolica Schneider, Broussnetia papyrifera (L.) Vent, Sophora flavescens Ait and Echinosophora koreensis Nakai. Phytomedicine 11(7-8): 666-672. DOI 10.1016/j.phymed.2003.09.005

Suleman KM. 1995. Suitability of home grown paper mulberry (Broussonetia papyrifera) for pulp and paper manufacture. Pakistan journal of forestry 45(4): 158-162

Sun LM. 2017. Merino sheep and small tail Han sheep meat performance and muscle tissue mRNA-miRNA expression profile integrated analysis. Jilin Agricultural University.

Trapnell C, Hendrickson DG, Sauvageau M, Goff L, Rinn JL, Pachter L. 2013. Differential analysis of gene regulation at transcript resolution with RNA-seq. Nature biotechnology 31(1): 46-53. DOI 10.1038/nbt.2450

VanSlyke JK, Musil LS. 2000. Analysis of connexin intracellular transport and assembly. Methods 20(2): 156-164. DOI 10.1006/meth.1999.0933

Veerkamp JH, Maatman RGHJ. 1995. Cytoplasmic fatty acid-binding proteins: their structure and genes. Progress in Lipid Research 34(1): 17-52. DOI 10.1016/0163-7827(94)00005-7

Wang H, Sreenevasan U, Hu H, Saladino A, Sztalryd C. 2013. Perilipin 5, a lipid droplet-associated protein, provides physical and metabolic linkage to mitochondria. Journal of Lipid Research 54(12): 3539-3539. DOI 10.1194/jlr.M017939ERR

Wang L, Li L, Jiang J, Wang Y, Zhong T, Chen Y, Wang Y, Zhang HP. 2015. Molecular characterization and different expression patterns of the FABP gene family during goat skeletal muscle development. Molecular Biology Reports 42(1): 201-207. DOI 10.1007/s11033-014-3759-4

Wang X, Tang C, Lin Y, Ni K, Yang X. 2019. Assessing nutritive value and in vitro ruminal dry matter digestibility of paper mulberry (Broussonetia papyrifera L.) at the different cutting heights. IOP Conference Series Earth and Environmental Science 387: 012015. DOI 10.1088/1755-1315/387/1/012015

Wei HQ, Liu ZH, Wan W. 2008. General situation and prospect of research on broussonetia papyrifera. Fujian Forestry Science and Technology, 35(4): 261-266. DOI 10.3969/j.issn.1002-7351

Williams T., Tjian R. 1991. Analysis of the DNA-binding and activation properties of the human transcription factor AP-2. Genes & Development 5(4): 670-682. DOI 10.1101/gad.5.4.670

Wood JD, Enser M, Fisher AV, Nute GR,Sheard PR, Richardson RI, Hughes SI, Whittington FM. 2008. Fat deposition, fatty acid composition and meat quality: A review. Meat Science 78(4): 343-358. DOI 10.1016/j.meatsci.2007.07.019
Xu ML, Wang L, Hu JH, Lee SK, Wang MH, 2010. Antioxidant Activities and Related Polyphenolic Constituents of the Methanol Extract Fractions from Broussonetia papyrifera Stem Bark and Wood. Food Science & Biotechnology 19(3): 677-682. DOI 10.1007/s10068-010-0095-x

Yusuf AL, Adeyemi KD, Samsudin AA, Goh YM, Alimon AR, Sazili AQ. 2017. Effects of dietary supplementation of leaves and whole plant of Andrographis paniculata on rumen fermentation, fatty acid composition and microbiota in goats. Bmc Veterinary Research 13(1): 349. DOI 10.1186/s12917-017-1223-0

Zerega NJ, Clement WL, Datwyler SL, Weiblen GD, 2005. Biogeography and divergence times in the mulberry family (Moraceae). Molecular phylogenetics and evolution 37(2): 402-416. DOI 10.1016/j.ympev.2005.07.004

Zhang DM, Rong H, Liu LX, Li QH, Ge CR, Jia JQ, Xu ZQ, Gu DH,Duan XH. 2019. Study on the difference of muscle nutrition composition and FAS gene expression between Nixi and Aiweiyin chickens. Heilongjiang Animal Science and Veterinary Medicine 583(19):62-65. DOI:cnki:sun:hljx.0.2019-19-013

Zlatkis A, Zak B, Boyle G. 1953. A simple method for isolation and purification of total lipids from animal tissue. Journal of Biological Chemistry 226: 497-509
Figure 1

Figure 1. Experimental design and procedures

no
Dorper $\delta \times$ Hu φ crossbred male lambs (n=12)

Randomization to groups
Feed different ratio of *B. papyrifera* fermented feed

- **Group 0% (n=3)**
- **Group 6% (n=3)**
- **Group 18% (n=3)**
- **Group 100% (n=3)**

Breeding for 60 days and collecting the longissimus dorsi

- **HE staining**
- **Fatty acid analysis**
- **Transcriptomics analysis**
 - **DEGs analysis**

Phenotypic change

Conjoint analysis

Choose the appropriate addition ratio of *B. papyrifera* fermented feed
Figure 2

Figure 2. Morphological characteristics of H&E between the LD of the sheep with different B. papyrifera fermented feeds.

A-D was the morphology of the longitudinal view of LD under microscope at 40× times magnification, and E-H was the morphology of the transverse view of LD under microscope at 20× magnification. ① indicates the epimysium, ② indicates the endomysium, ③ indicates the muscle fiber, ④ indicates the blood vessel, ⑤ indicates the nerve, and ⑥ indicates the cell nucleus. I and J was muscle fiber’s diameter and area in different groups.
Figure 3

Figure 3. The expression profile of differentially expressed genes (DEGs) of sheep's LD after adding different B. papyrifera fermented feed.

(A) Venn diagrams representing the numbers of DEGs and the overlaps of sets obtained across three comparisons. (B) Column diagram representing the numbers of DEGs in three groups. (C) The heat map representing the expression profile of 50 of the 443 DEGs.
Figure 4

Figure 4. Co-expression clustering, showing the expression profile of 443 DEGs.

The X axis represents the amount of different Broussonetia papyrifera fermented feed (0, 6, 18 and 100%). The Y axis represents the value of the relative expression level (log2 (FPKM + 1)).
Figure 5

Figure 5. GO functional annotation of the differentially expressed genes (DEGs) of sheep's LD in different groups.

(A) up-regulated DEGs, (B) down-regulated DEGs.
Figure 6

Figure 6. KEGG pathway enrichment of the differentially expressed genes (DEGs) of sheep's dorsal longest muscle in different groups.

(A) up-regulated DEGs, (B) down-regulated DEGs
Figure 7. qRT-PCR analysis of selected DEG genes in the longissimus dorsi of sheep fed with different Broussonetia fermented feed.

Histogram represent the relative expression level defense by qRT-PCR (right y-axis). Broken line indicate the change in transcript level according to the FPKM value of RNA-seq (left yaxis).
Figure 8

Figure 8. PPI network analysis of identified DEGs associated with fatty acids. Line color indicates the type of interaction evidence.

KEGG pathway (FDR < 0.05)
- Fatty acid degradation
- Propanoate metabolism
- Fatty acid metabolism
- PPAR signaling pathway
- AMPK signaling pathway
- Metabolic pathways
Table 1 Composition and nutrient levels of experimental diets (DM basis) %

The Premix Provided the following per kg of diets: VA 220000 IU, VD3 72000 IU, VE 2000 IU, D-biotin 40.0 Mixed group, nicotinic acid amide 2000 Mixed group, Mn (as manganese sulfate) 710 Mixed group, Zn (as zinc sulfate) 2005 Mixed group, Fe (as ferrous sulfate) 830.0 Mixed group, Cu (as copper sulfate) 680.0 Mixed group, Go (as Cobalt sulfate) 12 Mixed group.
Items	0%	6%	18%	100%
B. papyrifera fermented	0.0	6.0	18.0	100
corn feed				
Corn silage	45.7	39.3	22.5	0.0
Corn	16.6	21.5	36.8	0.0
Soybean meal	26.7	23.5	17.7	0.0
Bran	8.1	7.3	3.3	0.0
Limestone	1.2	0.7	0.00	0.0
NaCl	0.7	0.7	0.7	0.0
Premix 1%	1.0	1.0	1.0	1.0
Total	100.0	100.0	100.0	100.0

Nutrient levels

Items	0%	6%	18%	100%
DE (MJ/kg)	10.38	10.35	10.36	8.13
CP	17.42	17.40	17.40	26.10
Ca	20.50	19.47	15.95	15.90
TP	11.06	10.58	8.9	13.00
NDF	0.60	0.61	0.72	3.40
ADF	0.34	0.33	0.30	0.20
Table 2 (on next page)

Table 2 Analysis of saturated fatty acid content and composition in LD muscle (g/100g)

Different lowercase letters in the same industry indicate significant differences ($P < 0.05$).
Table 2 Analysis of saturated fatty acid content and composition in LD muscle (g/100g)

Fatty acid	0%	6%	18%	100%	P-value
C4: 0	1.96±0.26	2.79±0.43	2.49±0.33	3.33±0.81	0.279
C10: 0	0.19±0.01	0.16±0.00	0.14±0.00	0.16±0.00	0.912
C12: 0	0.12±0.00b	0.13±0.00b	0.10±0.00b	0.25±0.04a	0.037
C13: 0	0.51±0.056	0.68±0.07	0.55±0.05	0.67±0.12	0.258
C14: 0	2.29±0.12b	2.27±0.07b	2.14±0.07b	2.96±0.31a	0.009
C15: 0	0.39±0.06bc	0.47±0.05b	0.30±0.03c	0.66±0.06a	0.000
C16: 0	24.21±0.34	23.82±0.35	24.18±0.28	23.63±0.81	0.693
C17: 0	1.14±0.09b	1.00±0.04bc	0.89±0.03c	1.36±0.03a	0.000
C18: 0	15.29±0.43	15.42±0.73	15.92±0.56	16.14±0.64	0.910
C20: 0	0.10±0.00b	0.11±0.00b	0.13±0.00b	0.30±0.07a	0.000
C21: 0	0.46±0.06a	0.34±0.01ab	0.31±0.01b	0.40±0.01b	0.030
C22: 0	0.33±0.03a	0.38±0.04a	0.23±0.03b	0.18±0.02b	0.000
C23: 0	2.40±0.30	2.81±0.47	2.47±0.27	2.90±0.58	0.743

Different lowercase letters in the same industry indicate significant differences ($P <0.05$).
Table 3 Analysis of unsaturated fatty acid content and composition in LD muscle (g/100g)

Different lowercase letters in the same industry indicate significant differences ($P < 0.05$).
Table 3: Analysis of unsaturated fatty acid content and composition in LD muscle (g/100g)

Fatty acid	0%	6%	18%	100%	P-value
C14: 1	0.24±0.05	0.31±0.05	0.30±0.04	0.34±0.07	0.600
C15: 1	0.27±0.05c	0.32±0.01b	0.43±0.02a	0.42±0.04a	0.003
C16: 1	1.45±0.09	1.52±0.09	1.45±0.07	1.47±0.08	0.914
C17: 1	0.50±0.02b	0.55±0.01b	0.64±0.03b	0.97±0.31a	0.042
C18:1n9t	2.97±0.29a	2.51±0.19ab	2.32±0.04b	2.09±0.12b	0.012
C18:1n9c	38.30±0.69a	35.49±0.55b	37.85±0.27a	31.5±1.16c	0.000
C20:1	0.00±0.00b	0.00±0.00b	0.09±0.00a	0.94±0.00a	0.014
C24:1	0.27±0.03	0.30±0.03	0.22±0.01	0.23±0.03	0.186
C18:2n6t	0.21±0.01	0.18±0.01	0.19±0.01	0.24±0.02	0.114
C18:2n6c	5.67±0.35c	6.25±0.62b	6.28±0.60b	7.15±0.50a	0.000
C18:3n6	0.07±0.01b	0.27±0.00a	0.28±0.00a	0.32±0.01a	0.034
C18:3n3	0.30±0.04b	0.39±0.04b	0.45±0.00b	2.31±0.31a	0.005
C20:2	0.2±0.03a	0.00±0.00b	0.29±0.02a	0.32±0.00a	0.005
C20:3n6	0.19±0.02a	0.22±0.02a	0.20±0.02a	0.12±0.01b	0.000
C22:6n3	0.18±0.01b	0.21±0.02b	0.27±0.02b	0.64±0.12a	0.000

2 Different lowercase letters in the same industry indicate significant differences ($P < 0.05$).
Table 4 Analysis of total fatty acid content in LD muscle (g/100g)

SFA: saturated fatty acids; UFA: unsaturated fatty acid; MUFA: monounsaturated fatty acids; PUFA: polyunsaturated fatty acids; M / S: monounsaturated fatty acids / saturated fatty acids; P / S: polyunsaturated fatty acids / saturated fatty acids; n3: n3 polyunsaturated fatty acids; N6: n6 Polyunsaturated fatty acids; N6 / n3: n6 polyunsaturated fatty acid / n3 polyunsaturated fatty acids

Different lowercase letters in the same industry indicate significant differences (P <0.05).
Table 4 Analysis of total fatty acid content in LD muscle (g/100g)

Fatty acid	0%	6%	18%	100%	P-value
SFA	49.21±0.46b	50.17±0.63b	49.52±0.77b	52.61±0.40a	0.000
UFA	50.79±0.46a	49.20±0.26b	50.44±0.76a	46.79±0.25c	0.001
MUFA	44.17±0.60a	41.12±0.52b	42.97±0.23b	37.09±1.31c	0.000
PUFA	6.63±0.35b	7.46±0.47ab	8.09±0.54ab	9.70±1.32a	0.015
M/S	0.90±0.04	0.82±0.03	0.87±0.02	0.74±0.05	0.194
P/S	0.13±0.01b	0.16±0.02b	0.15±0.03b	0.18±0.05a	0.009
n3	0.20±0.02b	0.32±0.02b	0.23±0.02b	0.79±0.19a	0.003
n6	6.08±0.35	6.64±0.65	7.58±0.46	7.99±1.44	0.511
n6/n3	31.65±2.75a	21.70±2.85b	31.78±2.83a	12.95±1.23b	0.000

SFA: saturated fatty acids; UFA: unsaturated fatty acid; MUFA: monounsaturated fatty acids; PUFA: polyunsaturated fatty acids; M/S: monounsaturated fatty acids / saturated fatty acids; P/S: polyunsaturated fatty acids / saturated fatty acids; n3: n3 polyunsaturated fatty acids; n6: n6 Polyunsaturated fatty acids; n6/n3: n6 polyunsaturated fatty acid / n3 polyunsaturated fatty acids

Different lowercase letters in the same industry indicate significant differences (\(P<0.05\)).
Table 5. The alignment statistics result with the reference gene for all samples

Clean reads: the number of clean reads, the single-ended meter; Clean bases: the number of clean data; GC content: the percentage of GC-content in clean data; ≥Q30: Q-score of clean data ≥ 30; Mapped reads: the number of reads mapped to the reference genome and its percentage in clean reads; Unique mapped reads: the number of reads mapped to the only location of the reference genome and its percentage in clean reads.
Table 5. The alignment statistics result with the reference gene for all samples

Samples	Clean reads	Clean bases	GC Content	≥Q30	Mapped Reads	Uniq Mapped Reads
0%	24,777,328	7,408,041,508	52.00%	93.85%	48,003,609	41,605,368
					(96.87%)	(83.96%)
0%	25,135,312	7,514,998,722	51.72%	93.65%	48,766,426	41,325,592
					(97.01%)	(82.21%)
0%	20,761,096	6,203,482,124	52.00%	93.57%	40,190,518	35,283,301
					(96.79%)	(84.97%)
6%	27,093,623	8,116,866,124	51.57%	94.78%	52,862,303	45,396,003
					(97.55%)	(83.78%)
6%	26,301,881	7,853,198,780	51.97%	95.52%	51,254,489	43,515,259
					(97.44%)	(82.72%)
6%	26,594,668	7,930,975,080	51.25%	95.64%	51,935,621	43,423,485
					(97.64%)	(81.64%)
18%	20,815,698	6,220,607,222	51.89%	94.32%	40,451,204	33,974,223
					(97.17%)	(81.61%)
18%	21,106,226	6,303,522,828	51.31%	93.97%	40,921,787	33,937,852
					(96.94%)	(80.40%)
100%	20,274,560	6,070,610,678	51.57%	95.16%	39,563,205	33,684,553
					(97.57%)	(83.07%)
100%	25,188,343	7,525,791,384	52.38%	95.41%	49,093,882	43,162,872
					(97.45%)	(85.68%)
100%	24,637,084	7,352,446,008	52.99%	94.59%	47,927,686	42,256,798
					(97.27%)	(85.76%)

Note: Clean reads: the number of clean reads, the single-ended meter; Clean bases: the number of clean data; GC content: the percentage of GC-content in clean data; ≥Q30: Q-score of clean data ≥ 30; Mapped reads: the number of reads mapped to the reference genome and its percentage in clean reads; Unique mapped reads: the number of reads mapped to the only location of the reference genome and its percentage in clean reads.