Oncologic effects of adjuvant chemotherapy in patients with ypT0–2N0 rectal cancer after neoadjuvant chemoradiotherapy and curative surgery: a meta-analysis

Gi Won Ha, Min Ro Lee
Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea

INTRODUCTION

For patients with locally advanced rectal cancer, neoadjuvant chemoradiotherapy (nCRT) followed by radical surgery is the standard treatment. Although nCRT has been shown to increase the control of local disease while reducing toxicity associated with treatment, it has not been shown to improve overall survival (OS) [1,2]. As distant recurrence occurs in roughly 30% of patients [2-5], adjuvant chemotherapy has been used to stop or destroy circulating tumor cells and micro-metastases in order to decrease distant recurrence. Although adjuvant chemotherapy is recommended for patients who undergo nCRT and radical surgery, the use of adjuvant chemotherapy for patients with rectal cancer following nCRT and radical surgery has not demonstrated a clear benefit, especially for patients that respond well to nCRT, such as ypT0–2N0 [4-6]. Some studies have suggested that adjuvant chemotherapy should be used selectively, as patients treated with nCRT and radical surgery...
that achieve stage ypT0–2N0 already have a favorable oncologic outcome, so they may not benefit from adjuvant chemotherapy following nCRT and surgery [7-9].

Although there is one previous meta-analysis about adjuvant chemotherapy following nCRT and radical surgery for rectal cancer [10], it did not focus on patients with ypT0–2N0 rectal cancer. Since there were no random trials with a subgroup of ypT0–2 patients excluding N positive, no previous random trial on this subject can be a part of a meta-analysis that focuses solely on ypT0–2N0 patients. Consequently, the hypothesis that adjuvant chemotherapy is beneficial for ypT0–2N0 rectal cancer patients needs stronger evidence for confirmation. Therefore, we performed a meta-analysis to assess the oncologic efficacy of adjuvant chemotherapy for patients with ypT0–2N0 rectal cancer who were treated with nCRT and radical surgery.

METHODS

This meta-analysis followed the recommendations of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement [11]. Multiple comprehensive databases were searched for studies that assessed the oncologic effects of adjuvant chemotherapy compared with observation for patients with ypT0–2N0 rectal cancer after nCRT and radical resection surgery. The study protocol used Cochrane Review Methods [12]. This study was approved exempt from Institutional Review Board of Jeonbuk National University Hospital (No. CUH202001021-HE001).

Data and literature sources

Studies were identified from PubMed (January 1, 1976 to December 13, 2018), Embase (January 1, 1985 to December 13, 2018), and the Cochrane Central Register of Controlled Trials (CENTRAL; January 1, 1987 to December 13, 2018). There were no restrictions regarding the year of publication, and articles in any language were permitted for review. The search terms were “rectal cancer,” “neoadjuvant chemoradiotherapy,” “adjuvant chemotherapy,” “recurrence,” “prognosis,” and “survival.” After the preliminary electronic search, further articles were searched for manually to retrieve additional studies. Finally, all articles were assessed individually for inclusion.

Study selection and data extraction

Article titles and abstracts were screened and full texts were independently reviewed by 2 reviewers according to the selection criteria. Any differences in judgment regarding inclusion were resolved through discussion between the reviewers.

The included studies assessed survival outcomes, including OS, disease-free survival (DFS), cancer-specific survival (CSS), local recurrence, and distant recurrence, for patients with ypT0–2N0 rectal cancer after nCRT and radical surgery. Studies were excluded if they: (1) assessed patients with stage IV or recurrent rectal cancer; (2) assessed patients who received neoadjuvant radiotherapy alone without chemotherapy; (3) examined rectal cancer patients who did not receive total mesorectal excision after completion of nCRT; (4) examined rectal cancer patients who had observation after completion of nCRT; (5) had no extractable data and authors were unavailable to provide additional information (e.g., only an abstract was available); or (6) were case series with fewer than 10 patients.

All eligible studies were reviewed and all relevant data were extracted by the 2 reviewers independently using a data extraction form designed before the review. The variables recorded were: (1) standard publication information, including year of publication, name of the first author, and number of patients; (2) clinical and demographic characteristics of all patients; and (3) outcomes (5-year OS, DFS, CSS, local recurrence, and distant recurrence).

Assessment of methodological quality

The methodological quality of the studies included in the meta-analysis was assessed using the Newcastle-Ottawa quality assessment scale (NOS), which attributes a maximum of 9 points to each study and categorizes a study with a score of 6 or more as “high quality” [13]. The quality of the included studies was analyzed using 3 metrics: study group comparability, patient selection, and outcome assessment.

Fig. 1. PRISMA flow diagram.
Table 1. Characteristics of the included studies

Study	Design	Period	Obs (n)	ACT (n)	Age (yr), Obs/ACT	RT dose (Gy)	Neoadjuvant chemotherapy regimen	Time to surgery (wk)	Type of surgery (%), SPR/APR	yp Stage	ACT chemotherapy regimen	ACT completeness (%)	Follow-up (mo)	Outcome measures	NOS scale
Dossa et al. [20]	RCS, large data	2006–2012	1,775	680	59.5	45–54	NR	NR	NR	T0N0	NR	NR	36.9±	5-yr OS	7
Galata et al. [21]	RCS, single	1999–2012	50	54	62 ± 10.7	50.4±	Capecitabine/ XELOX/cetuximab	NR	NR	79.8/20.2	T0/T1-2N0	83.0	68 ± 33.7	3-yr OS, DFS, LR, DR	7
Lu et al. [22]	RCS, single	2005–2014	51	58	52±	42–50	Capecitabine/ CAPOX	7.7±	NR	36.7/63.3	T0/T1–2N0	53.2	50±	5-yr OS, LR, DR	8
Peng et al. [23]	RCS, single	2008–2014	22	83	52.9 ± 11.8	30–46 (36.2%)	XELOX	6–8	NR	69.5/30.5	T0N0	74.7	49±	3-yr OS, DFS	7
Gamaleldin et al. [24]	RCS, single	2000–2012	83	47	58.9 ± 11.8	50 (63.8%)	iv 5-FU	NR	NR	T0N0	NR	NR	68.4±	5-yr OS, DFS, LR, DR	8
Lichhardt et al. [25]	RCS, single	1992–2013	32	35	65±	NR	NR	NR	NR	T0/T1–2N0	iv 5-FU/Capecitabine/ FOLFOX/ oxaliplatin +S1	NR	NR	5-yr OS, LR, DR	7
Tay et al. [26]	PCS, multi	2003–2014	30	97	NR	50±	Fluoropyrimidine	NR	NR	T0N0	71.0±	45.5±	5-yr OS, RR	5-yr OS, LR, DR	7
Zhou et al. [30]	PCS, single	2005–2013	21	19	54 ± 12.6	50	CapeOX/ FOLFOX/ capcitabine	7±	70.0/30.0	T0N0	NR	NR	57±	5-yr DFS, LR	8
Jung et al. [31]	RCS, single	2006–2011	8	107	6.4±/5.4±	44±	iv 5-FU/Capcitabine	8±	90.0/10.0	T1–2N0	NR	NR	100	5-yr DFS	7
Lee et al. [8]	RCS, single	1999–2009	12	32	NR	50.4	Capcitabine	6–8	86.6/13.4	T0/T1–2N0	UFT/doxifluridine/capcitabine/Capecitabine/ oxaliplatin/oral fluoropyrimidine/cetuximab	NR	NR	5-yr OS, DFS, LR	7
Park et al. [9]	RCS, multi	2004–2009	106	910	65±/58±	50.4±	iv 5-FU/Capcitabine/ irinotecan/ oxaliplatin/oral fluoropyrimidine/cetuximab	4–12	83.6/16.4	T0–1/T2N0	NR	NR	58±	5-yr LR, DR	7
Study	Design	Period	Obs (n)	ACT (n)	Age (yr), Obs/ACT	RT dose (Gy)	Neoadjuvant chemotherapy regimen	Time to surgery (wk)	Type of surgery (%), SPR/APR	yp Stage	ACT chemotherapy regimen	ACT completeness (%)	Follow-up (mo)	Outcome measures	NOS scale
---------------------	--------	--------------	---------	---------	-------------------	--------------	---------------------------------	---------------------	--------------------------------	----------	--------------------------	-------------------	----------------	---------------------------	----------
Gao et al. [32]	RCS,	1992–2008	233	149	NR	NR	NR	45–50.4	9.3 ± 3.6	T0–2N0	Oxaliplatin/iv 5-FU/capecitabine	NR	NR	5-yr CSS	6
	large	data					iv 5-FU/capecitabine								
Geva et al. [27]	RCS,	2001–2013	17	35	65.7 a)	46	FOLFOX/XELOX	50.4 a)	71.0/29.0	T0N0			46 a)	5-yr OS, DFS	7
	single	RCS,	26	65	NR	45–50.4	iv 5-FU	9.3 ± 3.6	69.2/30.8	T0N0	iv 5-FU/capecitabine		62.2 ± 42.6	5-yr CSS	7
You et al. [28]	RCS,	2003–2010	26	65	NR	NR	iv 5-FU	51.9/48.1	5-yr CSS		Oxaliplatin/iv 5-FU/capecitabine	NR	NR	5-yr CSS	7
	single	RCS,	14	59.4 ± 12.1/55.6 ± 11.8	50.4 a)	iv 5-FU	93 ± 3.6	69.2/30.8	T0N0			46 a)	5-yr OS, DFS	7	
Kiran et al. [29]	RCS,	2000–2008	34	14	59.4 ± 12.1/55.6 ± 11.8	50.4 a)	iv 5-FU	93 ± 3.6	69.2/30.8	T0N0	iv 5-FU/capecitabine		62.2 ± 42.6	5-yr CSS	7
	single	RCS,	14	59.4 ± 12.1/55.6 ± 11.8	50.4 a)	iv 5-FU	93 ± 3.6	69.2/30.8	T0N0			62.2 ± 42.6	5-yr CSS	7	
Govindarajan et al. [33]	RCS,	1993–2003	30	173	68°/60°	50.4	iv 5-FU	4–8	86.0/14.0	T0/T1–2N0	FL/FOLFOX	NR	69.6 a)	5-yr LR, DR	7
	single	RCS,	24	17	62/55	50.4	iv 5-FU	6–8	85.4/14.6	T0–2N0	FL/ticafur/uracil/doxifuridine	NR	47.6 a)	5-yr OS, DFS	7

Notes:
- Age, time to surgery, and follow-up was presented as mean or median only, or mean ± standard deviation.
- Obs: observation; ACT: adjuvant chemotherapy; RT: radiation therapy; Gy, Gray; SPR: sphincter preserving resection; APR: abdominoperineal resection; RCS, retrospective cohort study; NR: not reported; OS, overall survival; XELIRI, capecitabine plus irinotecan; XELOX, capecitabine plus oxaliplatin; iv, intravenous; FU, fluorouracil; DFS, disease-free survival; LR, local recurrence; DR, distant recurrence; CAPOX, capecitabine plus oxaliplatin; FOLFOX, folinic acid, FU, oxaliplatin; FOLFIRI, folinic acid, FU, irinotecan; PCS, prospective cohort study; RR, recurrence rate; CapeOX, capecitabine plus oxaliplatin; UFT, tegafur/uracil; CSS, cancer-specific survival; FL, FU, folinic acid.
- a) Median.
Statistical analysis

Odds ratio (OR), variance, and 95% confidence interval (CI) were determined in the meta-analysis. Heterogeneity, including its presence and extent, were assessed using the Q test and I² index, respectively; a P-value less than 0.1 was considered statistically significant [14]. The DerSimonian-Laird random effects model was used to pool data in light of cross-study heterogeneity [15]. When sufficient data were available, subgroup analyses were performed. For this analysis, patients treated with nCRT and radical surgery were separately categorized as patients with ypT0N0 rectal cancer and patients with ypT1–N0 rectal cancer. Sensitivity analyses were also performed to assess the robustness of the meta-analysis findings [16,17]. Sensitivity analysis of the data was determined with the trim-and-fill method and an alternative effects size, and were performed to exclude any studies with large outlying effects. Assessment of publication bias was done using the Egger weighted linear regression test, along with visual inspection of funnel plots showing outcomes [18,19]. Data analyses were performed using Review Manager software (ver. 53; Cochrane Collaboration) and Comprehensive Meta-Analysis software (ver. 3; Biostat, Englewood, NJ, USA).

A

Study or subgroup	Observation Events	Adjuvant chemotherapy Events	OR M–H, random, 95% CI	OR M–H, random, 95% CI	
Dossa et al.	209	34	580	26.4%	2.54 [1.74, 3.69]
Galata et al.	6	1	54	4.7%	7.23 [0.84, 62.32]
Gamaleldin et al.	11	83	47	11.3%	1.64 [0.49, 5.48]
Geva et al.	1	17	5	4.5%	0.38 [0.04, 3.49]
Huh and Kim	4	24	17	6.2%	1.50 [0.24, 9.30]
Kiran et al.	2	34	1	3.7%	0.81 [0.07, 9.76]
Lee et al.	0	38	8	2.8%	0.12 [0.01, 2.16]
Lichthardt et al.	5	32	1	4.5%	6.30 [0.69, 57.15]
Lu et al.	7	51	5	11.2%	1.69 [0.50, 5.69]
Peng et al.	3	22	4	7.8%	3.12 [0.64, 15.12]
Tay et al.	2	30	17	8.2%	0.34 [0.07, 1.55]
You et al.	4	26	4	8.6%	2.77 [0.64, 12.05]
Total (95% CI)	**2,182**	**1,272**	**100.0%**	**1.71 [1.03, 2.85]**	
Total events	254				
Heterogeneity: Tau²	0.22				
Q test	16.22				
df	11				
I²	32%				
Test for overall effect	Z = 2.08 (P = 0.04)				

B

Study or subgroup	Observation Events	Adjuvant chemotherapy Events	OR M–H, random, 95% CI	OR M–H, random, 95% CI		
Galata et al.	7	50	3	54	11.8%	2.77 [0.67, 11.36]
Gamaleldin et al.	12	83	4	47	15.7%	1.82 [0.55, 5.99]
Geva et al.	1	17	7	35	5.4%	0.25 [0.03, 2.22]
Huh and Kim	6	24	3	17	10.0%	1.56 [0.33, 7.34]
Jung et al.	2	8	14	107	8.5%	2.21 [0.41, 12.07]
Kiran et al.	4	34	3	14	9.0%	0.49 [0.09, 2.54]
Lee et al.	0	38	9	87	3.2%	0.11 [0.01, 1.89]
Peng et al.	3	22	6	83	11.0%	2.03 [0.46, 8.85]
You et al.	7	26	9	65	17.5%	2.29 [0.75, 7.00]
Zhou et al.	5	21	2	19	7.9%	2.66 [0.45, 15.69]
Total (95% CI)	**323**	**528**	**100.0%**	**1.52 [0.90, 2.55]**		
Total events	47					
Heterogeneity: Tau²	0.08					
Q test	10.12					
df	9					
I²	11%					
Test for overall effect	Z = 1.57 (P = 0.12)					

Fig. 2. Meta-analysis of the effects of adjuvant chemotherapy. (A) On overall survival (OS) in patients with ypT0–2N0 rectal cancer after neoadjuvant chemoradiotherapy (nCRT) and radical surgery. (B) On disease-free survival (DFS) in patients with ypT0–2N0 rectal cancer after nCRT and radical surgery. (C) On local and distant recurrence in patients with ypT0–2N0 rectal cancer after nCRT and radical surgery. OR, odds ratio; CI, confidence interval; df, degree of freedom.
RESULTS

Description of studies
The predefined search strategy and manual searching identified 8,036 potentially relevant articles. We excluded 1,409 articles because they were duplicates, and 6,593 articles because their titles and abstracts did not fulfill the selection criteria. After full text review of the remaining 34 articles, we excluded 17 articles because of the exclusion criteria of this study. Therefore, we included 17 nonrandomized studies for qualitative analysis and 16 nonrandomized studies that examined 4,747 patients for the meta-analysis (Fig. 1). Twelve studies evaluated OS [7,8,20-29], 10 studies evaluated DFS [7,8,21,23,24,27,31], one study evaluated CSS [32], 10 studies evaluated local recurrence [7-9,21,22,24,28-30,33], and 8 studies evaluated distant recurrence [7,9,21,22,24,28,30,33]. Eight studies examined patients with ypT0–2N0 rectal cancer [7,9,21,22,25,28,29,33]; among these, 5 studies separately analyzed patients with ypT0N0 and ypT1–2N0 rectal cancer [7,8,20-22].

Oncologic outcomes of adjuvant chemotherapy in patients with ypT0–2N0
Analysis of oncologic effects of adjuvant chemotherapy in patients with ypT0–2N0 indicated that 12 studies (3,454 patients) reported data on OS; patients who received adjuvant chemotherapy had better survival than patients who were not (OR, 1.71; 95% CI, 1.03–2.85; $I^2 = 32\%$) (Fig. 2A). Ten studies (851 patients) reported data on DFS; there were no significant
survival differences between the observation and adjuvant chemotherapy groups (OR, 1.52; 95% CI, 0.90–2.55; I² = 11%) (Fig. 2B). Ten studies (1,907 patients) reported data on local recurrence; there were no significant survival differences between the observation and adjuvant chemotherapy groups (OR, 1.88; 95% CI, 0.97–3.62; I² = 0%) (Fig. 2C). Eight studies (1,734 patients) reported data on distant recurrence; there were no significant survival differences between the observation and adjuvant chemotherapy groups (OR, 1.49; 95% CI, 0.96–2.32; I² = 0%) (Fig. 2C). On the other hand, there was only one study that reported data on CSS; therefore, we could not perform a meta-analysis on this outcome metric.

Sensitivity analyses using predefined methods indicated that the results of these meta-analyses were robust except for data

Study or subgroup	Observation Events	Total	Adjuvant chemotherapy Events	Total	Weight	OR M–H, random, 95% CI	
3.1.1 ypT0N0 OS							
Dossa et al.	209	1,775	34	680	36.2%	2.54 [1.74, 3.69]	
Galata et al.	2	20	0	12	3.2%	3.38 [0.15, 76.51]	
Gamaleldin et al.	11	83	4	47	14.9%	1.64 [0.49, 5.48]	
Geva et al.	1	17	5	35	5.8%	0.38 [0.04, 3.49]	
Kiran et al.	2	34	1	14	4.8%	0.81 [0.07, 9.76]	
Lee et al.	0	12	3	32	3.3%	0.34 [0.02, 7.02]	
Lichthardt et al.	4	15	0	9	3.3%	7.43 [0.35, 156.28]	
Lu et al.	3	29	2	22	7.7%	1.15 [0.18, 7.58]	
Peng et al.	3	22	4	83	10.2%	3.12 [0.64, 15.12]	
Tay et al.	2	30	17	97	10.7%	0.34 [0.07, 1.55]	
Subtotal (95% CI)	**2,037**	**1,031**	**100.0%**	**1.53 [0.86, 2.72]**	**Total events**	237	70
3.1.2 ypT0N0 DFS							
Galata et al.	2	20	0	12	4.8%	3.38 [0.15, 76.51]	
Gamaleldin et al.	12	83	4	47	29.6%	1.82 [0.55, 5.99]	
Geva et al.	1	17	7	35	9.6%	0.25 [0.03, 2.22]	
Kiran et al.	4	34	3	14	16.4%	0.49 [0.09, 2.54]	
Lee et al.	0	12	4	32	5.2%	0.25 [0.01, 5.07]	
Peng et al.	3	22	6	83	20.2%	2.03 [0.46, 8.85]	
Zhou et al.	5	21	2	19	14.2%	2.66 [0.45, 15.69]	
Subtotal (95% CI)	**209**	**242**	**100.0%**	**1.22 [0.61, 2.42]**	**Total events**	27	26
3.1.3 ypT0N0 local recurrence							
Gamaleldin et al.	0	83	0	47	Not estimable		
Govindarajan et al.	0	9	0	64	Not estimable		
Huh and Kim	0	10	0	17	Not estimable		
Kiran et al.	1	34	0	14	47.6%	1.30 [0.05, 33.80]	
Lee et al.	0	12	2	32	52.4%	0.49 [0.02, 10.91]	
Zhou et al.	0	21	0	19	Not estimable		
Subtotal (95% CI)	**169**	**193**	**100.0%**	**0.78 [0.08, 7.37]**	**Total events**	1	2

Fig. 3. Subgroup analysis of oncologic effects of adjuvant chemotherapy in patients with ypT0N0 rectal cancer. OR, odds ratio; CI, confidence interval; df, degree of freedom; OS, overall survival; DFS, disease-free survival.
on OS. Excluding one study with a large outlying effect [20], OS between the observation and adjuvant chemotherapy groups was not significantly different (OR, 1.48; 95% CI, 0.80–2.75; I^2 = 27%).

Subgroup analysis of ypT0N0 rectal cancer patients

The oncologic effects of adjuvant chemotherapy were determined in 2 subgroups, according to the final pathologic stage. They were separately determined in patients with ypT0N0 and ypT1–2N0 rectal cancer who were treated with nCRT and radical surgery.

The first subgroup consisted of patients with ypT0N0 rectal cancer. The results show that adjuvant chemotherapy had no significant effect on OS (OR, 1.53; 95% CI, 0.86–2.72; I^2 = 27%), DFS (OR, 1.22; 95% CI, 0.61–2.42; I^2 = 5%), local recurrence (OR, 0.78; 95% CI, 0.08–7.37; I^2 = 0%), and distant recurrence (OR, 1.04; 95% CI, 0.41–2.62; I^2 = 0%) (Fig. 3).

The second subgroup consisted of patients with ypT1–2N0 rectal cancer. The results show that adjuvant chemotherapy had no significant effect on OS (OR, 2.15; 95% CI, 0.59–7.80; I^2 = 26%), DFS (OR, 1.66; 95% CI, 0.35–7.85; I^2 = 44%), local recurrence (OR, 2.56; 95% CI, 0.72–9.13; I^2 = 0%), and distant recurrence (OR, 1.15; 95% CI, 0.23–5.87; I^2 = 0%) (Fig. 4).

Publication bias

Publication bias was analyzed using the Egger weighted linear regression test, which assesses the asymmetry of funnel plots, and visual inspection of funnel plots (Fig. 5). The funnel plot for analysis of OS (P = 0.075) and DFS (P = 0.007) in patients with ypT0–2N0 was found to be asymmetrical, indicating the presence of publication bias. However, the funnel plots for analysis of local recurrence (P = 0.31) in patients with ypT0–2N0 indicated no publication bias.

DISCUSSION

For patients with locally advanced rectal cancer who were treated with nCRT, transabdominal resection can be performed. According to the guidelines of National Comprehensive Cancer Networ, adjuvant chemotherapy is recommended to improve survival rates in these patients, regardless of their pathologic stage after surgery. The treatment strategy to use adjuvant chemotherapy has been guided by studies on colon cancer [34-36], and has also been guided by the thesis that tumor downstaging after nCRT may suggest a favorable tumor biology that can be correlated with further responsivity to additional chemotherapy. The theory further suggests that patients with a proven responsivity to treatment may benefit from adjuvant chemotherapy insofar as potentially eliminating residual micrometastatic disease [37,38]. Further, a recent meta-analysis demonstrated improved OS with adjuvant chemotherapy in patients with a downstaged tumor following nCRT and radical surgery [10].

However, in clinical practice, patients’ compliance with adjuvant chemotherapy is poor, with only about half to two-thirds of patients continuing with it [39,40]. Further, adjuvant chemotherapy after local treatment is usually not well tolerated and often cannot be completed by older patients and those with comorbidities. In addition, patients with a positive response to treatment may benefit from adjuvant chemotherapy insofar as potentially eliminating residual micrometastatic disease [37,38]. Further, a recent meta-analysis demonstrated improved OS with adjuvant chemotherapy in patients with a downstaged tumor following nCRT and radical surgery [10]. Some studies showed that patients with ypT3–4 or ypN+ rectal cancer that were treated with nCRT and radical surgery had worse oncological outcomes where adjuvant chemotherapy was required: whereas patients with a positive response to
nCRT, such as ypT0–2N0 rectal cancer, were expected to have improved survival outcomes and may not need adjuvant chemotherapy [9,29]. Therefore, the hypothesis that adjuvant chemotherapy is beneficial for ypT0–2 rectal cancer patients needs better evidence for confirmation. However, the only previous meta-analysis on this topic did not focus on patients with ypT0–2N0 rectal cancer, so we performed the present meta-analysis. To our knowledge, the present study is the first meta-analysis evaluating the effect of adjuvant chemotherapy in patients with ypT0–2N0 rectal cancer after nCRT and radical surgery.

Our primary analysis of ypT0–2N0 rectal cancer patients indicated that adjuvant chemotherapy was associated with better OS, but there were no associations between adjuvant chemotherapy and DFS, local recurrence, and distant recurrence. However, the studies included in patients with ypT0–2N0 were heterogeneous in terms of groups of participants. To account for this affect, it was necessary to perform sensitivity analysis for confirmation of robustness in this meta-analysis. As a result, although there was a survival difference in the analysis of OS,

Study or subgroup	Observation Events	Adjuvant chemotherapy Events	OR M–H, random, 95% CI	OR M–H, random, 95% CI
4.1.1 ypT1–2N0 OS	Galata et al. 4 30 1 42 24.5% 6.31 [0.67, 59.59]	Lee et al. 0 26 5 55 16.1% 0.17 [0.01, 3.25]	Lichthardt et al. 2 17 1 26 21.0% 3.33 [0.28, 39.98]	Lu et al. 4 22 3 36 38.5% 2.44 [0.49, 12.15]
Subtotal (95% CI)	95 159 100.0% 2.15 [0.59, 7.80]			
Total events	10 10			
Heterogeneity: Tau² = 0.45; chi² = 4.05, df = 3 (P = 0.26); I² = 26%				
Test for overall effect: Z = 1.16 (P = 0.24)				
4.1.2 ypT1–2N0 DFS	Galata et al. 5 30 2 42 39.5% 4.00 [0.72, 22.21]	Jung et al. 2 8 14 107 39.9% 2.21 [0.41, 12.07]	Lee et al. 0 26 5 55 20.5% 0.17 [0.01, 3.25]	
Subtotal (95% CI)	64 204 100.0% 1.66 [0.35, 7.85]			
Total events	7 21			
Heterogeneity: Tau² = 0.83; chi² = 3.57, df = 2 (P = 0.17); I² = 44%				
Test for overall effect: Z = 0.64 (P = 0.52)				
4.1.3 ypT1–2N0 local recurrence	Govindarajan et al. 3 21 4 109 64.9% 4.38 [0.90, 21.20]	Huh and Kim 1 14 1 17 19.7% 1.23 [0.07, 21.64]	Lee et al. 0 26 1 55 15.5% 0.69 [0.03, 17.40]	
Subtotal (95% CI)	61 181 100.0% 2.56 [0.72, 9.13]			
Total events	4 6			
Heterogeneity: Tau² = 0.00; chi² = 1.37, df = 2 (P = 0.50); I² = 0%				
Test for overall effect: Z = 1.45 (P = 0.15)				
4.1.4 ypT1–2N0 distant recurrence	Govindarajan et al. 1 21 8 109 58.1% 0.63 [0.07, 5.33]	Huh and Kim 2 14 1 17 41.9% 2.67 [0.22, 32.96]		
Subtotal (95% CI)	35 126 100.0% 1.15 [0.23, 5.87]			
Total events	3 9			
Heterogeneity: Tau² = 0.00; chi² = 0.73, df = 1 (P = 0.39); I² = 0%				
Test for overall effect: Z = 0.17 (P = 0.86)				
Test for subgroup differences: chi² = 0.64, df = 3 (P = 0.89); I² = 0%				

Fig. 4. Subgroup analysis of oncologic effects of adjuvant chemotherapy in patients with ypT1–2N0 rectal cancer. OR, odds ratio; CI, confidence interval; df, degree of freedom; OS, overall survival; DFS, disease-free survival.
Adjuvant chemotherapy was not associated with better OS after excluding one study in a sensitivity analysis. In that case, the primary result for OS was modified by excluding a study that assessed a large number of patients with ypT0N0 disease only, as inclusion of such a large study with ypT0N0 patients would inaccurately distort the results [20]. Eventually, we found that subgroup analysis separating into ypT0N0 and ypT1–2N0 patients provided a more robust analysis.

Subgroup analyses, in terms of OS, DFS, and local and distant recurrence, determined no oncologic effects of adjuvant chemotherapy, both for patients with ypT0N0 and ypT1–2N0. Although patients with ypT0–2N0 rectal cancer are regarded as responding well to nCRT, there was a need to explore patients with ypT0N0 and ypT1–2N0 separately. There were 2 studies reporting ypT stage as a prognostic predictor [8,33] and another reporting ypN stage as an independent prognostic factor influencing oncological outcomes [41]. These studies may suggest that final TNM staging could help predict oncological outcomes [38,42]. Tumor response to nCRT can range from no response to a complete pathological response (pCR), where no tumor is seen in the specimen subsequent to rectal resection. This response may also help predict overall prognosis. As patients with pCR (ypT0N0) appear to have improved survival prognosis in general [43,44]. In addition, a study reported that dividing patients between ypT1–2N0 and ypT0N0 showed that response to nCRT in ypT1–2N0 patients treated with adjuvant chemotherapy had a significantly longer recurrence-free time [45]. Therefore, separating into 2 subgroups was more reasonable to determine oncologic effects of adjuvant chemotherapy.

According to the results of this meta-analysis, adjuvant chemotherapy may be an overtreatment for patients with ypT0N0 and ypT1–2N0 rectal cancer after nCRT and radical surgery, as it may lead to a lack of benefit regarding oncologic outcomes along with the adverse effects of the therapy itself. Such chemotherapy may delay recovery from the surgery and delay closure of ileostomy. Nevertheless, this meta-analysis has several limitations. First, it was based on an analysis of nonrandomized studies. Second, there could be a potential heterogeneity across the included studies, even though subgroup and sensitivity analyses were performed. For example, there were clinical differences regarding radiation dose and chemotherapeutic agents during nCRT. In addition, the regimen of adjuvant chemotherapy and duration of its use also varied among the included studies. Third, although 5-year survival rates and recurrence rates were outcome measures, there were differences in the median follow-up period among the included studies, which may affect oncologic outcomes.
In conclusion, based on this meta-analysis, patients with ypT0–2N0 rectal cancer after nCRT and radical surgery may not benefit from adjuvant chemotherapy with respect to long term oncologic outcomes, including OS, DFS, and local and distant recurrence. Therefore, routine use of adjuvant chemotherapy for those patients may be avoided but selective use of adjuvant chemotherapy is recommended. As this is a meta-analysis of non-randomly controlled studies, a random controlled trial would provide a higher degree of evidence to confirm this result.

ACKNOWLEDGEMENTS

The authors wish to thank Professor Jong Hun Kim for some very helpful discussion.

An abstract of this paper was presented at the 52th Annual Meeting of the Korean Society of Coloproctology, Jeju, South Korea, April 5–7, 2019, where it received an award for best poster.

Conflicts of Interest

No potential conflict of interest relevant to this article was reported.

ORCID iD

Gi Won Ha: https://orcid.org/0000-0001-9401-1760
Min Ro Lee: https://orcid.org/0000-0001-9838-8071

Author Contribution

Conceptualization: MRL
Formal Analysis: GWH
Investigation: GWH, MRL
Methodology: GWH
Project Administration: GWH, MRL
Writing – Original Draft: GWH, MRL
Writing – Review & Editing: GWH, MRL

REFERENCES

1. Scott NA, Susnerwala S, Gollins S, Myint AS, Levine E. Preoperative neoadjuvant therapy for curable rectal cancer: reaching a consensus 2008. Colorectal Dis 2009;11:245-8.
2. Sauer R, Liersch T, Merkel S, Fietkau R, Hohenberger W, Hess C et al. Preoperative versus postoperative chemoradiotherapy for locally advanced rectal cancer: results of the German CAO/ARO/AIO-94 randomized phase III trial after a median follow-up of 11 years. J Clin Oncol 2012;30:1026-33.
3. van Gijn W, Marijnens CA, Nagtegaal ID, Kranenburg EM, Putter H, Wiggers T et al. Preoperative radiotherapy combined with total mesorectal excision for resectable rectal cancer: 12-year follow-up of the multicentre. randomised controlled TME trial. Lancet Oncol 2011;12:575-82.
4. Bosset JF, Calais G, Mineur L, Maingon P, Stojanovic-Rundic B, Bensadoun RJ et al. Fluorouracil-based adjuvant chemotherapy after preoperative chemoradiotherapy in rectal cancer: long-term results of the EORTC 22921 randomised study. Lancet Oncol 2014;15:184-90.
5. Breugom AJ, van Gijn W, Muller EW, Berglund Á, van den Broek CB, Fokstuen T et al. Adjuvant chemotherapy for rectal cancer patients treated with preoperative (chemo)radiotherapy and total mesorectal excision: a Dutch Colorectal Cancer Group (DCCG) randomized phase III trial. Ann Oncol 2015;26:696-701.
6. Glynne-Jones R, Counsell N, Quirke P, Mortensen N, Maraveyas A, Meadows HM et al. Chronicle: results of a randomised phase III trial in locally advanced rectal cancer after neoadjuvant chemoradiation randomising postoperative adjuvant capecitabine plus oxaliplatin (XELOX) versus control. Ann Oncol 2014;25:1356-62.
7. Huh JW, Kim HR. Postoperative chemotherapy after neoadjuvant chemoradiation and surgery for rectal cancer: is it essential for patients with ypT0-2N0? J Surg Oncol 2009;100:387-91.
8. Lee KH, Kim JC, Kim JY, Kim JS. Oncologic results and prognostic predictors of patients with locally advanced rectal cancer showing ypN0 after radical surgery following neoadjuvant chemoradiotherapy. Int J Colorectal Dis 2015;30:1026-33.
9. Park JI, Kim DY, Kim HC, Kim NK, Kim HR, Kang SB et al. Role of adjuvant chemotherapy in ypT0-2N0 patients treated with preoperative chemoradiation therapy and radical resection for rectal cancer. Int J Radiat Oncol Biol Phys 2015;92:540-7.
10. Petrelli F, Coinu A, Lonati V, Barni S. A systematic review and meta-analysis of adjuvant chemotherapy after neoadjuvant treatment and surgery for rectal cancer. Int J Colorectal Dis 2015;30:447-57.
11. Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med 2009;151:264-9, W64.
12. Higgins JPT, Green S. editors. Cochrane handbook for systematic reviews of interventions, version 5.1.0. Chichester: Wiley; 2011.
13. Wells GA, Shea B, O’Connell D, Peterson J, Welch V, Losos M et al. The Newcastle-Ottawa scale (NOS) for assessing the quality of nonrandomized studies in treatment of disease. J Clin Epidemiol 2000;53:936-45.
survival of locally advanced rectal cancer patients with pathological complete response after pre-operative chemoradiotherapy. Gastroenterol Rep (Oxf) 2018;6:195-201.
24. Gameleldin M, Church JM, Stocchi L, Kalady M, Liska D, Gorgun E. Is routine use of adjuvant chemotherapy for rectal cancer with complete pathological response justified? Am J Surg 2017;213:478-83.
25. Lichhardt S, Zerorini L, Wagner J, Baur J, Kerscher A, Matthies N, et al. Impact of adjuvant chemotherapy after neoadjuvant radio- or radiochemotherapy for patients with locally advanced rectal cancer. J Cancer Res Clin Oncol 2017;143:2563-73.
26. Tay RY, Jammagerwalla M, Steel M, Wong HL, McKendrick JJ, Faragher I, et al. Survival impact of adjuvant chemotherapy for resected locally advanced rectal adenocarcinoma. Clin Colorectal Cancer 2017;16:e45-54.
27. Geva R, Itzkovich E, Shamai S, Shacham-Shmueli E, Soyer V, Klausner JM, et al. Is there a role for adjuvant chemotherapy in pathological complete response rectal cancer tumors following neoadjuvant chemoradiotherapy? J Cancer Res Clin Oncol 2014;140:1489-94.
28. You KY, Huang R, Ding PR, Qiu B, Zhou GQ, Chang H, et al. Selective use of adjuvant chemotherapy for rectal cancer patients with ypN0. Int J Colorectal Dis 2014;29:529-38.
29. Kiran RP, Kirat HT, Burgess AN, Nisar PJ, Kalady MF, Lavery IC. Is adjuvant chemotherapy really needed after curative surgery for rectal cancer patients who are node-negative after neoadjuvant chemoradiotherapy? Ann Surg Oncol 2012;19:1206-12.
30. Zhou J, Qiu H, Lin G, Xiao Y, Wu B, Wu W, et al. Is adjuvant chemotherapy necessary for patients with pathological complete response after neoadjuvant chemoradiotherapy and radical surgery in locally advanced rectal cancer? Long-term analysis of 40 ypCR patients at a single center. Int J Colorectal Dis 2016;31:1165-8.
31. Jung KU, Kim HC, Park JO, Park YS, Park HC, Choi DH, et al. Adjuvant chemotherapy after neoadjuvant chemoradiation and curative resection for rectal cancer: is it necessary for all patients? J Surg Oncol 2015;111:490-44.
32. Gao P, Song YX, Sun JX, Chen XW, Xu YY, Zhao JH, et al. Which is the best postoperative chemotherapy regimen in patients with rectal cancer after neoadjuvant therapy? BMC Cancer 2014;14:888.
33. Govindarajan A, Reidy D, Weiser MR, Paty PB, Temple LK, Guillem JG, et al. Recurrence rates and prognostic factors in ypNO rectal cancer after neoadjuvant chemoradiation and total mesorectal excision. Ann Surg Oncol 2011;18:3666-72.
34. Taal BG, Van Tinteren H, Zoetmulder FA; NACCAP group. Adjuvant 5FU plus levamisole in colonic or rectal cancer: improved survival in stage II and III. Br J Cancer 2001;85:1437-43.
35. Twelves C, Wong A, Nowacki MP, Abt M, Burris H 3rd, Carrato A, et al. Capecitabine as adjuvant treatment for stage III colon cancer. N Engl J Med 2005;352:2696-704.
36. André T, Boni C, Navarro M, Tabernero J, Hickish T, Topham C, et al. Improved overall survival with oxaliplatin, fluorouracil and leucovorin as adjuvant treatment in stage II or III colon cancer in the MOSAIC trial. J Clin Oncol 2009;27:3109-16.
37. Collette L, Rosset JF, den Dulk M, Nguyen F, Mineur L, Maingon P, et al. Patients with curative resection of cT3-4 rectal cancer after preoperative radiotherapy or radiochemotherapy: does anybody benefit from adjuvant fluorouracil-based chemotherapy? A trial of the European Organisation for Research and Treatment of Cancer Radiation Oncology Group. J Clin Oncol 2007;25:4379-86.
38. De Stefano A, Moretto R, Buccia L, Pepe S, Romano FJ, Cella AC, et al. Adjuvant treatment for locally advanced rectal cancer patients after preoperative chemoradiotherapy: when, and for whom? Clin Colorectal Cancer 2014;13:185-91.
39. Haynes AB, You YN, Hu CY, Eng C, Kopetz ES, Rodriguez-Bigas MA, et al. Postoperative chemotherapy use after...
neoadjuvant chemoradiotherapy for rectal cancer: analysis of Surveillance, Epidemiology, and End Results-Medicare data. 1998-2007. Cancer 2014;120:1162-70.

40. Bosset JF, Collette L, Calais G, Mineur L, Maingon P, Radosevic-Jelic L, et al. Chemotherapy with preoperative radiotherapy in rectal cancer. N Engl J Med 2006;355:1114-23.

41. Kim TH, Chang HJ, Kim DY, Jung KH, Hong YS, Kim SY, et al. Pathologic nodal classification is the most discriminating prognostic factor for disease-free survival in rectal cancer patients treated with preoperative chemoradiotherapy and curative resection. Int J Radiat Oncol Biol Phys 2010;77:1158-65.

42. Kuo LJ, Liu MC, Jian JJ, Horng CF, Cheng TI, Chen CM, et al. Is final TNM staging a predictor for survival in locally advanced rectal cancer after preoperative chemoradiation therapy? Ann Surg Oncol 2007;14:2766-72.

43. Maas M, Nelemans PJ, Valentini V, Das P, Rodel C, Kuo LJ, et al. Long-term outcome in patients with a pathological complete response after chemoradiation for rectal cancer: a pooled analysis of individual patient data. Lancet Oncol 2010;11:895-44.

44. de Campos-Lobato LF, Stocchi L, da Luz Moreira A, Geisler D, Dietz DW, Lavery IC, et al. Pathologic complete response after neoadjuvant treatment for rectal cancer decreases distant recurrence and could eradicate local recurrence. Ann Surg Oncol 2011;18:1590-8.

45. Chang GJ, Park JI, Eng C, You YN, Kopetz S, Overman MJ, et al. Exploratory analysis of adjuvant chemotherapy benefits after preoperative chemoradiotherapy and radical resection for rectal cancer. J Clin Oncol 2012;30(15 Suppl):3556.