Implication for alphavirus host-cell entry and assembly indicated by a 3.5Å resolution cryo-EM structure

Lihong Chen¹²³, Ming Wang², Dongjie Zhu⁴¹⁴, Zhenzhao Sun², Jun Ma¹, Jinglin Wang⁵, Lingfei Kong¹, Shida Wang², Zaisi Liu², Lili Wei², Yuwen He⁵, Jingfei Wang² & Xinzheng Zhang¹³

Alphaviruses are enveloped RNA viruses that contain several human pathogens. Due to intrinsic heterogeneity of alphavirus particles, a high resolution structure of the virion is currently lacking. Here we provide a 3.5 Å cryo-EM structure of Sindbis virus, using block based reconstruction method that overcomes the heterogeneity problem. Our structural analysis identifies a number of conserved residues that play pivotal roles in the virus life cycle. We identify a hydrophobic pocket in the subdomain D of E2 protein that is stabilized by an unknown pocket factor near the viral membrane. Residues in the pocket are conserved in different alphaviruses. The pocket strengthens the interactions of the E1/E2 heterodimer and may facilitate virus assembly. Our study provides structural insights into alphaviruses that may inform the design of drugs and vaccines.
Alphaviruses are enveloped, single-stranded RNA viruses with a diameter of ~700 Å. A considerable number of these viruses pose as lethal human pathogens, including Sindbis (SINV), Semliki Forest (SFV), Ross River, Chikungunya (CHIV) and Venezuelan equine encephalitis (VEEV) virus. Currently, there are neither any licensed vaccines nor anti-viral therapeutics available for treating infections caused by alphaviruses.

The T = 4 icosahedral symmetry alphaviruses comprises 80 trimers, including 60 quasi-three-fold symmetry trimers as well as 20 icosahedral three-fold symmetry trimers. In addition, these viruses possess a nucleocapsid core with 240 copies of capsid protein (CP). Each trimer is composed of three E1/E2 heterodimers. Both E1 and E2 are transmembrane proteins that are anchored to the viral membrane with their transmembrane helices associated with each other. The E2 protein is responsible for host cell receptor recognition. It contains A, B, and C ectodomains as well as one subdomain D, which is composed of a loop and a helix located near the viral membrane connecting the Domain C with the transmembrane helix (TM).

E1 protein, a homolog to the Flavivirus E glycoprotein, takes responsibility for membrane fusion. E1 possesses ectodomains I, II, III (namely D1, DII and DIII) with the fusion loop located at the distal domain of DII and a stem region that connects DIII with the E1 TM. The stem region forms a loop in the virus and packs against the homotrimer core, at least as observed in the trimeric and fusogenic crystal structure of E1.

Alphaviruses enter the host cells via a receptor-mediated endocytosis process. After endocytosis, the acidic environment of the endosome causes an irreversible conformational rearrangement of E1 and E2 envelope glycoproteins in which E2 dissociates from E1. This is followed by E1 forming homotrimer exposing hydrophobic fusion loops. The stem loop of the virus becomes exposed upon dissociation of E1/E2 heterodimer. The stem region subsequently packs against the trimer core at a relatively late step in the formation of the final post-fusion hairpin, after the fold-back of DIII. The formation of the homotrimer triggers the fusion of the viral membrane with the endosomal membrane, which results in the release of viral genome into the cytoplasm.

During the assembly of virus particles, the CP is autoproteolytically processed, thus forming the nascent nucleocapsid core (NC). The trimers formed from virus-encoded E1-E2 envelope glycoproteins heterodimers are transported to the plasma membrane. They interact with the nascent NCs in the cytoplasm to form intact progeny viruses which can bud out of the host cell for a new round of infection. The cytoplasmic tail of E2 binds to a hydrophobic pocket in the C-terminal domain of the CP, which links the protein of the inner core with those on the surface of the virion. Interestingly, CP mutants that fail to preassemble cytoplasmic NCs still form viral particles with the same T = 4 icosahedral symmetry, albeit with much lower efficiency. This phenomenon suggests that particle budding is promoted both by preassembled NCs and lateral interactions of envelope proteins.

The stem loop of E1 is important for E1/E2 dimerization and virus assembly; however, no specific stem sequence is required for membrane fusion. Mutagenesis studies of the E2 subdomain D loop have revealed that several of the conserved histidines from these regions reduce the thermostability of the virus and reduce viral growth from 1.6 to 2 log due to conserved histidines from these regions reduce the thermostability.

Studies of the E2 subdomain D loop have revealed that several of the conserved histidines from these regions reduce the thermostability.

Results

Overall structure of SINV. The structure of SINV (Supplementary Figure 1A and B) was first determined to ~4.3 Å using a “block-based” reconstruction method to further refine the structure. In the block-based reconstruction method, three blocks with one block containing five trimers located near icosahedral five-fold symmetry axis, another block containing four trimers located near icosahedral three-fold symmetry axis and the third block containing 17 CPs were selected (Fig. 1A). Each block was refined and reconstructed separately (see Methods). The structure of the entire virus was calculated by combining the densities of the three blocks to give rise to the asymmetric unit followed by imposition of the icosahedral symmetry. The resolutions of the envelope glycoprotein and capsid core were determined to 3.5 and 4.7 Å by gold standard Fourier Shell Correlations (FSC), respectively (Supplementary Figure 1C). As shown in Supplementary Figure 1D, the local resolution of the map (see Methods) confirms the resolution assignment. The atomic model of the glycoproteins was built ab-initi (Supplementary Figure 1E). This model includes proteins E1, E2, and E3 (Fig. 2A). The model of capsid core was built by fitting the structure of the capsid (PDB code 1E5P) into the density.

Comparison of our structure of E1–E2 ectodomains with SINV E1–E2 crystal structure determined at low pH and CHIKV E1–E2 crystal structure and cryo-EM VEEV E1–E2 ectodomains showed that the overall structure of these domains is similar (Supplementary Table 1).

Our analysis showed that in each E1–E2–E3 molecule, four N-linked glycosylation sites are present, namely N139, N245 on E1, N283 on E2 and N14 on E3 (Supplementary Figure 2). We found three glycosylation sites on E1 and E2 which is in agreement with results of previous studies. However, we were unable to confirm the other previously identified glycosylation site on E2 N191, as this region of domain B was disordered in our structure.

β-ribbon connector and its interactions with E3 and Domain B. The β-ribbon connector is important for the conformational changes of alphaviruses triggered by low pH conditions. An earlier study found this connector is partially disordered in the low pH E1–E2 crystal structure. However, in our experiment condition (pH 8.0), this connector in our
Fig. 1 Overall structure of SINV and the two types of inter-triangle interactions. **a** Radially colored 3D reconstruction of SINV. Left: an asymmetric unit on the cryo-EM density map of SINV is enclosed by a black dash triangle. Block 1 and block 2 containing five trimers near the icosahedral five-fold axis and four trimers near the icosahedral three-fold axis are indicated by dash black cycle and solid black cycle, respectively. Right: block 3 is marked by dash black cycle on the inner capsid shell. **b** The type I interactions between a quasi-three-fold trimer and an icosahedral three-fold trimer are enlarged. Two parallel dash lines indicate the interacted edges of two neighboring trimers. **c** The third region of the contacts is shown. The H125 forms hydrogen bond with S41 on the other side of the edge. **d** The type II interactions between two quasi-three-fold trimers are enlarged. The distance between two edges becomes larger when away from the five-fold axis. Two dash lines indicate the interacted edges of two neighboring trimers. The maps in **b, d** are colored according to the radial scale in **a**.

Fig. 2 The E1/E2/E3 molecules and the pivotal interactions near β-ribbon connector. **a** Atomic model of E1/E2/E3 was built ab-initially, which includes domain I, II and III of E1, domain A, B, C and subdomain D of E2, stem region of E1, and TMs of E1 and E2. **b** E2 H164 on β-ribbon connector (colored by green) forms hydrogen bond with E1 S57 (colored in purple). E2 H211 is also involved into this interaction. **c** The interactions between E3 (colored by pink) and β-ribbon connector (colored in green) are shown with the side chain of the complete conserved amino acids that is involved in the interactions being displayed. The crystal structure of CHIKV E1-E2-E3 (PDB code 3N44) (colored in gray) are superimposed with SINV based on the structural similarity of E3.
structure is ordered and is exhibiting a similar structure to that observed in structures of alphaviruses as well as in x-ray crystal structures obtained at neutral pH conditions. In addition to the connector structure, we confirmed the presence of a hydrogen bond between the side chain of E2 H170 and E1 S419 (corresponding to SINV E2 H164 and E1 S57), as shown previously in the CHIKV E1–E2 crystal structure. This bond appears to be preserved in all mosquito-borne alphaviruses. However, this interaction was not found in cryo-EM CHIKV structures obtained at neutral pH conditions. In contrast, the type II interactions do not follow the quasi-two-fold symmetry. Throughout the 150 Å-long boundary formed between neighboring trimers, only one region forms contacts between the E1 trimers. The two E1 molecules are separated further apart away from the five-fold axis, which is required to maintain the curvature of the virus. The relatively weaker type II interactions are located near the icosahedral five-fold axis, suggesting that during the virus entry, the trimers near the five-fold axis may be easy to disassemble and to form fusogenic E1 trimers.

Next, we assessed the interaction between E3 and the β-ribbon connector. As shown in Fig. 2c, the E3 domain interacts with the β-ribbon connector mostly via hydrophobic interactions, which is in agreement with a previously reported structure of CHIKV E1–E2–E3. These hydrophobic interactions are stable in the acidic pH. Therefore the uncleaved or cleaved E3 can stabilize and locate the β-ribbon connector through these interactions when E1–E2 heterodimers are processed through the Golgi and trans-Golgi network. On the other hand, these hydrophobic interactions are not strong, allowing E3 to be partially released at neutral pH after the virus is released from host cells, thus to primes the conformational change of the trimer for low-pH activation. Most of the residues involved in the hydrophobic interactions, such as L34, Y46 and Y26 of the E3 and K219 of the β-ribbon connector, are conserved in all mosquito-borne alphaviruses. Together, these observations indicate that the interactions (Fig. 2c) between E3 and the β-ribbon connector of alphaviruses are highly conserved. Importantly, these interactions have been endowed with a similar strength over the course of the evolution, conferring a conserved function on E3.

Hydrophobic pocket near the viral membrane. The 3.5 Å resolution map of SINV enabled us to build an accurate model for E2 subdomain D, E1 and E2 transmembrane (TM) helix as well as the E1 stem region (Fig. 3a). Our structure confirms the previous observation in the structure of VEEV that the E1 TM helix is formed by two consecutive helices separated by a kink region where the conserved GG motif is facing away from the E2 TM helix. Above the kink region, a hydrophobic pocket is formed by E2 subdomain D, E1 and E2 TM helices (Fig. 3a, d). Several complete conserved and highly conserved amino acids were found to form this pocket (Fig. 3b). A 20 Å long linear molecule parallel to the viral membrane (Fig. 3a, c) is sitting inside this pocket. The molecule stabilizes the pocket by forming several hydrophobic interactions with the surrounding proteins (Table 1), among which, the interactions involve amino acids W409 and Y324, which are conserved in all mosquito-borne alphaviruses. In addition to the pocket factor, the hydrophobic pocket is stabilized by several hydrogen bonds connecting E2 subdomain D and E1 near the viral membrane. The interactions include several hydrogen bonds centered between the side chains of E2 H314 of the subdomain D loop and E1 S403 of the E1 TM. In addition, E1 W409 belonging to the E1 stem region forms hydrophobic interaction with another completely conserved amino acid E2 P317 on E2 subdomain (Fig. 3c). A candidate of the pocket factor is the hydrophobic phospholipid tail, which is fitted well into the linear density (Fig. 3c). Such a pocket factor filled pocket is common in alphaviruses.
density has been observed in VEEV in a location similar to that of this pocket factor. Considering the fact that the VEEV map is an average of four E1/E2 molecules in one asymmetric unit and is at relative lower resolution, it is possible that this global density represents the pocket factor identified in our structure.

Below the kink region, a rigid helix bundle formed via hydrophobic interactions between the E1 and E2 TM helices together with the E2 cytoplasmic tail of the C-terminal of the E2 TM helix helps locate the hydrophobic pore of NP in the nascent icosahedral nucleocapsid core.

Similar to VEEV, SINV contains four histidines in its E2 subdomain D. The protonation of these histidines in a low pH environment could strengthen the interaction between the subdomain and the neighboring negatively charged lipid head groups. Together with the disruption of the contact between E2 H314 and E1 S403 at low pH, the changes resulting from exposure to acidic environment may cause the collapse of the pocket and the release of pocket factor. A previous study of the cryo-EM structure of SFV at pH of 5.9 showed a conformational change of transmembrane region that forms this pocket. Together, these indicate the disassembly of this hydrophobic pocket during virus entry which results in a decrease in the interaction between E1 and E2 and assists in the formation of the fusogenic E1 trimer.

Stem loop. As shown in Supplementary Figure 3 and 4A, the N-terminal of the stem loop from E1 P383 to V388 is associated with E2 domain C via hydrogen bonding interaction between the completely conserved residue E1 H386 and the highly conserved E2 S308. In addition to this interaction, the backbone amide and carbonyl groups on E1 V388 are hydrogen bonded with main chain O and N on E1 W304, respectively. Such interactions help prevent the exposure of the stem loop on the assembled virus. Furthermore, the region encompassing amino acids E1 N389 to N394 of the stem loop bridges E1 DIII with E2 C domain via formation of several hydrogen bonds involving E1 H392 and N394 (Supplementary Figure 3 and Fig. 4a). These hydrogen bonds strengthen the interaction between E1 and E2, which is important for assembly of the virus. At acidic pH, both the interactions formed by E1 H386 and H392 become weaker when compared to those at neutral pH. The loss of interaction containing E1 H392 facilitates the dissociation of E1 and E2 during virus entry. The weakening of both interactions helps to free the stem loop and the free stem loop packs against the trimer core to form post-fusion hairpin at a relatively late stage of the fusion process.

Table 1 Amino acids in the pocket that form hydrogen bonds with the pocket factor
E1
F398
W409^a
L410^b

^aCompletely conserved in mosquito-borne alphaviruses
^bHighly conserved in mosquito-borne alphaviruses
Discussion

The loose interactions between trimers suggest that the efficiency of the assembly of the trimers into an icosahedral lattice by the trimer itself is low, which has been already observed in the assembly of alphavirus harboring CP mutants. However, the loose interactions between spikes could facilitate the reorganization of E1 and E2 during pH induced conformational changes.

The ectodomain of the trimer and the hydrophobic pocket of NP form rigid connection through the helix bundle followed by the stable hydrophobic pocket. Thus, the position of the ectodomain of the trimer outside the viral membrane can be determined by the hydrophobic pocket of NP inside the viral membrane. Taking into account the weak interactions between the neighboring trimers, the accurate location of the trimers outside the viral membrane might help initialize the right interactions between trimers and benefit the assembly of the trimers into an icosahedral lattice.

Based on the structure of VEEV, it has been suggested that conserved contacts might form between E2 H348 and E1 S403 and between E2 H352 and E1 W409. Our results supports the previous proposal that the SFV E2 H348 (corresponding to SINV E2 H314) contacts E1 S403 (corresponding to SINV E1 S403). However, E2 H318 (SFV E2 H352) fails to contact E1 W409 (SFV E1 W409). Previous studies on SFV showed that although the mutation of E2 H348/H352 causes an unexpected budding defect, it failed to affect the fusion of the E1 subunits. Our structure suggests that the loss of the contact of E2 H314 with E1 S403 may result in the collapse of the pocket. It may cause the trimer outside the viral membrane to be located inaccurately, thus hindering the interaction between trimer and the formation of the glycoprotein lattice. On the other hand, the contact of E2 H314 with E1 S403 will be lost in an acidic environment during the virus entry before the formation of the fusogenic E1 trimer. Therefore, the mutation of SFV E2 H 348 does not affect the fusion.

In our structure, several completely conserved histidines were identified to be involved either in the formation of inter-triangle-contacts (Fig. 4b, Supplementary Figure 4) or for stabilizing the E1/E2 heterodimer (Fig. 4a, Supplementary Figure 4). These histidines play an important role in the subsequent conformational change of the virus at acidic pH during the entry of the virus into host cells, which results in the disruption of inter-triangle-contacts and the dissociation of the heterodimer. Moreover, in the region of the pocket and the TMs bundle, the E1/E2 heterodimer is stabilized through hydrophobic interactions which are less sensitive to pH compared to the hydrophilic interactions. Therefore, the complete dissociation of E1 from E2 may require a pH lower than that needed for the dissociation of β-ribbon connector from E1.

Fig. 4 Amino acids (displayed as dot in Pymol) that involved in the key interactions which identified or discussed in this SINV structure. a. The completely or highly conserved amino acids of E1 and E2 that are involved in the interactions of forming the hydrophobic pocket and forming the hydrophobic contact with pocket factor are colored in cyan. The amino acids of E1 that are involved in connecting the stem loop with E1 DIII and E2 domain C are colored in magenta. The completely conserved amino acids of E3 and E2 that are involved in hydrophobic interaction between E3 and β-ribbon connector are colored in green. The completely or highly conserved amino acids of E1 S57, E2 H164 and H211 that form an interaction at neutral pH but become repulsive at low pH to facilitate the dissociation of β-ribbon connector from E1 are colored in blue. The identified glycosylation sites are colored in red. b. Amino acids of E1 that are involved in the type I and II inter-triangle interactions are colored in red.
A hydrophobic pocket factor has previously been shown to stabilize a number of Picornaviruses during assembly. In contrast, the expulsion of this factor after receptor recognition destabilizes the viral capsid, thus facilitating the release of the genome during infection. Here, we show that alphaviruses possess a similar pocket factor. Comparable to the factor in Picornaviruses, it stabilizes the assembly of the alphavirus particles, and may be released under acidic pH environmental conditions, aiding the formation of the fusogenic trimer for the release of the viral genome. However, the detailed chemical composition of the pocket factor and the molecular mechanisms involved in its release remain to be elucidated. Small molecules that bind the Picornaviruses pocket tighter than native pocket factor have been designed as virus inhibitors. It is possible that a similar tight-binding molecule could be a drug candidate for alphaviruses.

Methods

Virus production and purification. SINV strain YN-222 (MH29928) was grown in Vero cells (ATCC, CCL-81) at a multiplicity of infection (MOI) of 0.1. Virus was harvested 24 h post infection and centrifuged to remove cell debris. The supernatant containing the virus was concentrated by pelleting through a 20% (w/v) sucrose cushion at 75,000 × g for 2 h in a Beckman rotor (32 Ti) at 4 °C. The virus pellet was gently resuspended in 2 ml PBS buffer and loaded onto a 25–45% (w/v) sucrose discontinuous density gradient. This gradient was centrifuged at 75,000 × g for 3 h in a Beckman rotor (41 Ti) at 4 °C. The band corresponding to the virus was extracted by a syringe and concentrated by centrifuging in TNE buffer (20 mM Tris-HCl, 250 mM NaCl, 1 mM EDTA, pH 8.0) at 38,000 × g for 1.5 h. The resulting virus pellet was gently suspended in TNE. The purity and integrity of the viral particles were examined by negative-stain electron microscopy.

Sample preparation and cryo-EM data acquisition. Cryo grids were prepared using a Vitrobot Mark IV. Purified virus sample (3.5 µl) was added to the O2, Ar glow-discharged 200 mesh holey carbon grids (Quantifoil, 1.2/1.3 Jena, Germany) at 100% humidity and 4 °C. The grid was blotted for 5 s by filter paper. It was then flash frozen by plunging into liquid ethane at −174 °C. Cryo-EM data collection was performed using 300 kV Titan Krios microscope (ThermoFisher) equipped with K2 Summit camera (Gatan). The images were recorded at a magnification of x18,000 in super-resolution mode, yielding a calibrated pixel size of 0.68 Å. Each exposure of 6.4 s was dose-fractionated into 32 movie frames leading to a total dose of 50 e-/Å². The movie frames were binned and subjected to gain reference correction, motion correction, anisotropic distortion correction. The corrected movie frames after excluding the first 2 frames were summed with or without dose weighting to create two micrographs with a pixel size of 1.35 Å. The micrographs without dose weighting were used to determine the parameters of contrast transfer function (CTF) by program CTFFIND4 and the dose-weighted micrographs were used for further data processing.

Cryo-EM data processing. The virus particles in each micrograph were selected by e2boxer.py. A total of 36,318 particles were extracted (bin 4) from 2589 micrographs in RELION3 and subjected to reference-free 2D classification. 29974 particles were selected and subjected to 3D classification with an initial model created by starticos program40. All particles were selected for 3D auto-refinement by program CTFFIND4 and the dose-weighted micrographs were used for further data processing.

Model building and refinement. For the glycoprotein E1, E2, and E3, crystal structures of the SINV E2-E1 heterodimer at low pH (PDB code 3MNU) and immature envelop glycoprotein complex of Chikungunya virus (PDB code 3N40) were fitted into the 3.5 Å cryo-EM map using UCSF Chimera41. The amino acid sequences were then mutated to their counterparts in SINV strain YN-222 in Coot. The atomic model of the rest of E1 was built manually using the Coot in the Barton mode. The structures of E1, E2, and E3 were refined in real space against the cryo-EM map by Phenix with geometry and secondary structural restraints. The refinement statistics of the structural model are listed in supplementary Table 3. The structure of CPs was determined by fitting the crystal structure of conserved core domain of Venezuelan Equine Encephalitis capsid protein (PDB code 1EPS) into the capsid core.

Data availability

The atomic coordinates of the Sindbis virus envelope glycoprotein has been deposited in the Protein Data Bank with accession code 61MM. The cryo-EM map of the envelope glycoprotein and capsid core has been deposited in the Electron Microscopy Data Bank with accession code EMD-9693 and EMD-9692.

Received: 19 June 2018 Accepted: 12 November 2018 Published online: 14 December 2018

References

1. Strauss, J. H. & Strauss, E. G. The alphaviruses: gene expression, replication, and evolution. *Microbiol. Rev.* **58**, 491–562 (1994).
2. Zhang, R. et al. 4.4 A cryo-EM structure of an enveloped alphavirus. *J. Virol.* **30**, 3854–3863 (2011).
3. Roussel, A. et al. Structure and interactions at the viral surface of the envelope protein E1 of Semliki Forest virus. *Structure* **14**, 75–86 (2006).
4. Garoff, H. et al. Assembly and entry mechanisms of Semliki Forest virus. *Arch. Virol.* **Suppl. 9**, 329–338 (1994).
5. Liao, M. & Kielian, M. Site-directed antibodies against the stem region reveal low pH-induced conformational changes of the Semliki Forest virus fusion protein. *J. Virol.* **80**, 9599–9607 (2006).
6. Forsell, K., Xing, L., Koizlova, T., Cheng, R. H. & Garoff, H. Membrane proteins organize a symmetrical virus. *EMBO J.* **19**, 5081–5090 (2000).
7. Brown, R. S., Wan, J. J. & Kielian, M. The alphavirus exit pathway: what we know and what we wish we knew. *Viruses* **10**, E89 (2018).
8. Liao, M. & Kielian, M. Functions of the stem region of the Semliki Forest virus fusion protein during virus fusion and assembly. *J. Virol.* **80**, 11362–11369 (2006).
9. Byrd, E. A. & Kielian, M. An alphavirus E2 membrane-proximal domain promotes envelope protein lateral interactions and virus budding. *mbio* **8**, e01564–17 (2017).
10. Sjöberg, M. & Garoff, H. Interactions between the transmembrane segments of the alphavirus E1 and E2 proteins play a role in virus budding and fusion. *J. Virol.* **77**, 3441–3450 (2003).
11. Li, L., Jose, J., Xiäng, Y., Kuhn, R. J. & Rossmann, M. G. Structural changes of envelope proteins during alphavirus fusion. *Nature* **468**, 705–708 (2010).
12. Choi, H. K. et al. Structure of Sindbis virus core protein reveals a chymotrypsin-like serine protease and the organization of the virion. *Nature* **354**, 37–43 (1991).
13. Gibbons, D. L. et al. Conformational change and protein-protein interactions of the fusion protein of Semliki Forest virus. *Nature* **427**, 320–325 (2004).
14. Lescar, J. et al. The fusion glycoprotein shell of Semliki Forest virus: an icosahedral assembly primed for fusogenic activation at endosomal pH. *Cell* **105**, 137–148 (2001).
15. Voss, J. E. et al. Glycoprotein organization of Chikungunya virus particles revealed by X-ray crystallography. *Nature* **468**, 709–712 (2010).
16. Mancini, E. J., Clarke, M., Göwen, B. E., Rutten, T. & Fuller, S. D. Cryo-electron microscopy reveals the functional organization of an enveloped virus, Semliki Forest virus. *Mol. Cell* **5**, 255–266 (2000).
17. Pletnev, S. V. et al. Locations of carbohydrate sites on alphavirus glycoproteins show that E1 forms an icosahedral scaffold. *Cell* **105**, 137–148 (2001).
18. Zhang, W. et al. Aura virus structure suggests that the T=4 organization is a fundamental property of viral structural proteins. *J. Virol.* **76**, 7239–7246 (2002).
19. Mukhopadhyay, S. et al. Mapping the structure and function of the E1 and E2 glycoproteins in alphaviruses. *Structure* **14**, 63–73 (2006).
20. Sherman, M. B. & Weaver, S. C. Structure of the recombinant alphavirus Western equine encephalitis virus revealed by cryoelectron microscopy. *J. Virol.* **84**, 9775–9782 (2010).
21. Kostuchenko, V. A. et al. The structure of barmah forest virus as revealed by cryo-electron microscopy at a 6-angstrom resolution has detailed transmembrane protein architecture and interactions. *J. Virol.* **85**, 9327–9333 (2011).
22. Sun, S. et al. Structural analyses at pseudo atomic resolution of Chikungunya virus and antibodies show mechanisms of neutralization. *eLife* **2**, e00435 (2013).
23. Zhu, D. et al. Pushing the resolution limit by correcting the Ewald sphere effect in single-particle Cryo-EM reconstructions. *Nat. Commun.* **9**, 1552 (2018).
24. Guo, F. & Jiang, W. Single particle cryo-electron microscopy and 3-D reconstruction of viruses. *Methods Mol. Biol.* **1117**, 401–443 (2014).
25. Cao, S. & Zhang, W. Characterization of an early-stage fusion intermediate of Sindbis virus using cryoelectron microscopy. *Proc. Natl Acad. Sci. USA* **110**, 13362–13367 (2013).

26. Wu, S. R., Haag, L., Sjoberg, M., Garoff, H. & Hammar, L. The dynamic envelope of a fusion class II virus. E3 domain of glycoprotein E2 precursor in Semliki Forest virus provides a unique contact with the fusion protein E1. *J. Biol. Chem.* **283**, 26452–26460 (2008).

27. Sjoberg, M., Lindqvist, B. & Garoff, H. Activation of the alphavirus spike protein is suppressed by bound E3. *J. Virol.* **85**, 5644–5650 (2011).

28. Sirohi, D. et al. The 3.8 Å resolution cryo-EM structure of Zika virus. *Science* **352**, 467–470 (2016).

29. Zhang, X. et al. Structure of Sputnik, a virophage, at 3.5-A resolution. *Proc. Natl Acad. Sci. USA* **109**, 18431–18436 (2012).

30. Zhang, X. et al. Cryo-EM structure of the mature dengue virus at 3.5-A resolution. *Nat. Struct. Mol. Biol.* **20**, 105–110 (2013).

31. Haag, L. et al. Acid-induced movements in the glycoprotein shell of an alphavirus turn the spikes into membrane fusion mode. *EMBO J.* **21**, 4402–4410 (2002).

32. De Colibus, L. et al. More-powerful virus inhibitors from structure-based analysis of HEV71 capsid-binding molecules. *Nat. Struct. Mol. Biol.* **21**, 282–288 (2014).

33. Grant, R. A. et al. Structures of poliovirus complexes with anti-viral drugs: implications for viral stability and drug design. *Curr. Biol.* **4**, 784–797 (1994).

34. Plevka, P. et al. Structure of human enterovirus 71 in complex with a capsid-binding inhibitor. *Proc. Natl Acad. Sci. USA* **110**, 5463–5467 (2013).

35. Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. *Nat. Methods* **14**, 331–332 (2017).

36. Grant, T. & Grigorieff, N. Automatic estimation and correction of anisotropic magnification distortion in electron microscopes. *J. Struct. Biol.* **192**, 204–208 (2015).

37. Rohou, A. & Grigorieff, N. CTFFIND4: Fast and accurate defocus estimation from electron micrographs. *J. Struct. Biol.* **192**, 216–221 (2015).

38. Tang, G. et al. EMAN2: an extensible image processing suite for electron microscopy. *J. Struct. Biol.* **157**, 38–46 (2007).

39. Scheres, S. H. RELION: implementation of a Bayesian approach to cryo-EM structure determination. *J. Struct. Biol.* **180**, 519–530 (2012).

40. Ludtke, S. J., Baldwin, P. R. & Chiu, W. EMAN: semiautomated software for high-resolution single-particle reconstructions. *J. Struct. Biol.* **128**, 82–97 (1999).

41. Petersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. *J. Comput. Chem.* **25**, 1605–1612 (2004).

Acknowledgements

We thank Y. Xiang and L. Li for useful discussions on this project. Cryo-EM samples were prepared at the EM lab at Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences. Cryo-EM data collection was carried out at the Center for Biological Imaging. Core Facilities for Protein Science at the Institute of Biophysics (IBP), Chinese Academy of Sciences (CAS). We thank X. Huang, G. Ji, Z. Guo, B. Zhu, F. Sun, and other staff members at the Center for Biological Imaging (IBP, CAS) for their support in data collection. The project was funded by the National Key R&D Program of China (2017YFA0504700, 2016YFD0506705, 2017YFD0500105), the Strategic Priority Research Program of CAS (XDB0808030204) and National Natural Science Foundation of China (31570874, 31460669, 31660714). X.Z. received scholarships from the ‘National Thousand (Young) Talents Program’ from the Office of Global Experts Recruitment in China.

Author contributions

X.Z. and J.W. conceived the project; J.L.W., L.W., and Y.H. isolated and identified the Sindbis virus strain; Z.L. and S.W. conducted the EM analysis; M.W. and Z.S. prepared the cryo-EM samples; L.C. and J.M. performed the cryo-EM data collection; L.C. and D. Z. processed the cryo-EM data and reconstructed the cryo-EM map; J.M., L.C., and L.K. built and refined the structure model; L.C., J.M., X.Z., and J.W. analyzed the structure; X. Z. and J.W. wrote the manuscript; all authors discussed and commented on the results and the manuscript.

Additional information

Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-018-07704-x.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/