The clinical influence of the preoperative lymphocyte-to-monocyte ratio on the postoperative outcome of patients with early-stage gastrointestinal cancer

Takayuki Shimizu | Mitsuru Ishizuka | Takayuki Shiraki | Yuhki Sakuraoka | Shozo Mori | Akihito Abe | Yukihiro Iso | Kazutoshi Takagi | Taku Aoki | Keiichi Kubota

Abstract

Aim: The lymphocyte-to-monocyte ratio (LMR) is useful for predicting the prognosis of patients with gastric cancer (GC) and those with colorectal cancer (CRC) undergoing surgery. The relationship between the LMR and postoperative outcome of patients with early-stage gastrointestinal cancers such as stage I GC and CRC remains unclear.

Methods: We retrospectively evaluated 323 stage I GC and 152 stage I CRC patients undergoing surgery. Univariate and multivariate analyses using the Cox proportional hazards model were performed to identify the clinical characteristics associated with overall survival (OS), and the cut-off values of these variables were determined by receiver operating characteristic analysis. The Kaplan–Meier method and log-rank test were used for postoperative survival comparisons according to the LMR (GC: LMR < 4.2 vs ≥4.2; CRC: LMR < 3.0 vs ≥3.0).

Results: Univariate and multivariate analyses revealed that OS was significantly associated with the LMR (<4.2/≥4.2) (HR, 2.489; 95% CI, 1.317-4.702; \(P < 0.001 \)), as well as age (>75/≤75 years) (HR, 3.511; 95% CI, 1.881-6.551; \(P < 0.001 \)) and albumin level (<3.5/≥3.5 g/dL) (HR, 3.040; 95% CI, 1.575-5.869; \(P = 0.001 \)), in stage I GC patients. Survival analysis demonstrated a significantly poorer OS in stage I GC patients with a LMR < 4.2 compared with ≥4.2 (\(P < 0.001 \)). In stage I CRC patients, despite a significant difference in OS according to the LMR (<3.0 vs ≥3.0) (\(P = 0.040 \)), univariate analysis revealed no significant association between the LMR and OS.

Conclusion: LMR is a useful predictor of the postoperative outcome of stage I GC patients treated surgically.

Keywords

immunosuppression, lymphocyte-to-monocyte ratio, stage I colorectal cancer, stage I gastric cancer
1 | INTRODUCTION

Although the 5-year overall survival (OS) rate after surgery in patients with stage I gastric cancer (GC) or colorectal cancer (CRC) is >90%, some patients have poor postoperative outcomes due to recurrence or other diseases.\(^1\)\(^2\) Several studies have revealed that a high age, elevated tumor marker levels, lymphovascular invasion, and male sex are associated with poor postoperative outcomes in patients with stage I GC or CRC.\(^1\)\(^2\) Therefore, predicting postoperative outcomes is important for appropriate postoperative follow-up of such patients.

During the last decade, many blood-cell-based prognostic systems have been reported as useful for predicting the prognosis of GC and CRC patients.\(^3\)\(^4\) For example, the neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio are blood-cell-based prognostic markers for cancer patients. Although the mechanism underlying how these prognostic markers is associated with the prognosis of cancer patients is still unclear, it was previously reported that these markers are associated with cancer-related inflammation and a tumor microenvironment favoring tumor progression.\(^5\)

Recently, a low peripheral blood lymphocyte-to-monocyte ratio (LMR) was reported to be significantly associated with a poor prognosis, including tumor progression and distant metastasis, in patients with GC or CRC.\(^6\)\(^-\)\(^9\) Additional reports showed that the pretreatment LMR predicts the prognosis of early-stage cancer patients.\(^10\)\(^-\)\(^12\) These findings suggest that the LMR is associated with postoperative outcomes in patients with both stage I GC and CRC. However, the relationship between the LMR and postoperative outcome in patients with early-stage gastrointestinal cancer remains unclear. Herein, we investigated the relationship between the LMR and postoperative outcomes in both patients with stage I GC and stage I CRC using the database from a single institution.

2 | METHODS

We retrospectively reviewed 323 stage I GC and 152 stage I CRC patients who underwent surgery between April 2000 and December 2015 at the Second Department of Surgery, Dokkyo Medical University Hospital. We excluded patients with clinical evidence of infection or other inflammatory conditions. All procedures were performed by a single well-trained surgical team.

This study was approved by the institutional review board (ID number: R-27-12J) based on the Ethical Guidelines for Clinical Research of the Ministry of Health, Labour and Welfare in Japan (http://www.mhlw.go.jp/seisakunitsuite/bunya/hokabunya/kenky ujigyou/i-kenkyu/index.html).

2.1 | Definition of GC tumor location

Based on the General Rules for Japanese Classification of Gastric Carcinoma (Japanese Gastric Cancer Association, 3rd English Edition), the stomach is anatomically divided into three portions (upper, middle, and lower) delineated by the lines connecting the bisected points on the lesser and greater curvatures. If the tumor involves more than one stomach portion, all involved portions are recorded in descending order of the degree of involvement, e.g., lower, middle, upper, middle, lower.\(^13\)

2.2 | Statistical analysis

Data are presented as medians with interquartile ranges. Intergroup differences were analyzed using the chi-squared test or Mann-Whitney U test, as appropriate. Clinical factors closely related to OS were identified by univariate and multivariate analyses using the Cox proportional hazards model, with calculation of the hazard ratio (HR) and 95% confidence interval (CI). The Kaplan–Meier method and log-rank test were used to compare postoperative OS according to the LMR in the GC patients (LMR < 4.2 vs ≥4.2) and CRC patients (LMR < 3.0 vs ≥3.0). All statistical analyses were performed using SPSS software (version 25.0; IBM Co., New York, NY, USA), and differences with a P-value < 0.05 were considered statistically significant.

The cut-off values of the various clinical characteristics evaluated were determined using receiver operating characteristic (ROC) analysis, defined according to the most prominent point on the ROC curve (Youden index = maximum [sensitivity – (1 – specificity)]). We also calculated the area under the ROC curve.\(^14\) The optimal cut-off LMR for stage I GC and stage I CRC patients were 4.2 and 3.0, which had sensitivities of 66.3% and 68.9%, specificities of 70.0% and 33.3%, and areas under the ROC curve of 0.673 and 0.610, respectively (Figure 1). Excluding serum levels of carbohydrate antigen 19-9 (U/mL), carcinoembryonic antigen (ng/mL), and C-reactive protein (CRP; mg/dL), cut-off values for other variables, such as age (years), body mass index (kg/m\(^2\)), maximum tumor size (cm), platelet count (×10\(^3\)/mm\(^3\)), serum level of albumin (g/dL), and white blood cell count (×10\(^3\)/mm\(^3\)) were also calculated using ROC analyses.

3 | RESULTS

3.1 | Clinical characteristics of stage I GC patients

Of the 323 stage I GC patients (217 males and 106 females) enrolled in this study, 197 had a high LMR (≥4.2) and 126 a low LMR (<4.2). Table 1A shows the clinical characteristics of the stage I GC patients according to the LMR. There were significant differences in age, serum levels of albumin (g/dL), carcinoembryonic antigen (ng/mL) and CRP (mg/dL), sex, number of tumors (1 vs ≥2), survival period (days), and surgery (open vs laparoscopic) according to the LMR. Low LMR (<4.2) was not significantly associated with all comorbidities and the number of comorbidities.

3.2 | Clinical characteristics of stage I CRC patients

Of the 152 stage I CRC patients (93 males and 59 females) enrolled in this study, 130 had a high LMR (≥3.0) and 22 had a low LMR (<3.0).
Table 1B shows the clinical characteristics of the stage I CRC patients according to the LMR. There were significant differences in age, serum CRP level (mg/dL), sex and survival period (days) between patients with a high and those with a low LMR. Low LMR (<3.0) was significantly associated with both respiratory disease ($P = 0.001$) and cardiovascular disease ($P = 0.019$).

3.3 | Postoperative death and recurrence in stage I GC patients

During the observation period, 50 of the GC patients died, including 14 cancer-related deaths (Table 2A,B). Among the 14 cancer-related deaths, three patients died of GC, and 11 died of other types of cancers. The other deaths were due to infectious disease in nine patients, cerebrovascular disease in five patients, liver failure in three patients, heart disease, melena, asphyxia, ileus, pulmonary thromboembolism, old age, in -tra-abdominal hemorrhage, interstitial pneumonia and a traffic accident in one patient each, and unknown causes in 10 patients. Thirty-four (27.0%) patients with a LMR < 4.2 compared with 16 (8.1%) patients with a LMR \geq 4.2 died during the observation period. A LMR < 4.2 was significantly associated with death from other cancers ($P = 0.041$) or other diseases ($P = 0.041$). Only 11 (8.5%) patients with a LMR \geq 3.0 died during the observation period. Two patients had postoperative recurrence of the CRC, one of whom had local recurrence and the other lung metastasis. There were no significant differences in the recurrence pattern according to the LMR in stage I CRC patients.

3.4 | Postoperative death and recurrence in stage I CRC patients

During the observation period, 15 of the stage I CRC patients died, including five cancer-related deaths: one from CRC and four from other cancer types (Table 3A,B). Among the non-cancer-related deaths, two patients died of infectious disease, and one patient each died of cerebrovascular disease, liver failure, heart disease, hypoglycemia, hypoxemia, old age, hematemeses, and unknown causes. Four (18.2%) patients with a LMR < 3.0 died during the observation period, and a low LMR was significantly associated with death from other cancers ($P = 0.041$) or other diseases ($P = 0.041$). Only 11 (8.5%) patients with a LMR \geq 3.0 died during the observation period. Two patients had postoperative recurrence of the CRC, one of whom had local recurrence and the other lung metastasis. There were no significant differences in the recurrence pattern according to the LMR in stage I GC patients.

3.5 | Survival of stage I GC patients

The median and maximum follow-up periods of the surviving patients with stage I GC were 1905 and 5844 days, respectively, with a mean OS of 2025 ± 1393 days. The Kaplan–Meier method and log-rank test revealed a significant difference in OS according to the LMR (\geq4.2 vs <4.2) (Figure 2A).

3.6 | Survival of stage I CRC patients

The median and maximum follow-up periods of the surviving patients with stage I CRC were 1864 and 6009 days, respectively, with a mean OS of 2213 ± 1344 days. The Kaplan–Meier method and log-rank test revealed a significant difference in OS according to the LMR (\geq3.0 vs <3.0) (Figure 2B).

3.7 | Postoperative incidence of infectious diseases in stage I GC patients

During the observation period, 62 GC patients had incidence of infectious diseases. Among the 62 patients, 30 had pneumonia, six had cholecystitis, five had cholangitis, five had shingles, five had skin infection, three had pancreatitis, three had urinary tract infection, one had diverticulitis, one had intra-abdominal hemorrhage, one had peritonitis, one had spondylitis, and one had sinusitis, respectively. The Kaplan–Meier method and log-rank test revealed a significant difference between the two groups according to the LMR (\geq4.2 vs <4.2) in incidence of infectious diseases (Figure 3A).
Table 1: Relationships between clinical characteristics and LMR in patients with stage I (A) gastric cancer and (B) colorectal cancer

Variable	LMR ≥ 4.2 (n = 197) (61.0%)	LMR < 4.2 (n = 126) (39.0%)	P-value
Depth of tumor			
M, SM	177 (54.8%)	111 (34.3%)	
MP	20 (6.2%)	15 (4.7%)	0.621
Gender			
Female	83 (25.7%)	23 (7.1%)	<0.001
Male	114 (35.3%)	103 (31.9%)	
Glasgow prognostic score			
0	173 (53.6%)	92 (28.5%)	
1	16 (5.0%)	29 (9.0%)	
2	1 (0.3%)	3 (0.9%)	
Not available	7 (2.1%)	2 (0.6%)	<0.001
Location			
EU	0 (0.0%)	1 (0.3%)	
U	33 (10.2%)	27 (8.4%)	
UM	3 (0.9%)	1 (0.3%)	
M	81 (25.2%)	39 (12.1%)	
ML	3 (0.9%)	4 (1.2%)	
L	77 (23.8%)	53 (16.4%)	
Not available	0 (0.0%)	1 (0.3%)	0.265
Lymphatic invasion			
Absence	137 (42.4%)	79 (24.5%)	
Presence	59 (18.3%)	46 (14.2%)	
Not available	1 (0.3%)	1 (0.3%)	0.212
Lymph node metastasis			
N0	187 (57.9%)	120 (37.2%)	
N1	10 (3.1%)	6 (1.8%)	0.899
Number of tumor			
1	180 (55.7%)	105 (32.5%)	
>2	17 (5.3%)	21 (6.5%)	0.029
Operation			
Distal gastrectomy	143 (44.3%)	80 (24.8%)	
Proximal gastrectomy	2 (0.6%)	4 (1.2%)	
Total gastrectomy	52 (16.1%)	42 (13.0%)	0.127
Pathological differentiation			
Well or moderately	120 (37.2%)	87 (26.9%)	
Poorly or signet-ring cell	77 (23.8%)	38 (11.8%)	
Not available	0 (0.0%)	1 (0.3%)	0.113
Surgery			
Open	184 (56.7%)	125 (38.7%)	
Laparoscopic	13 (4.3%)	1 (0.3%)	0.012
Venous invasion			
Absence	149 (46.1%)	91 (28.2%)	
Presence	47 (14.6%)	35 (10.8%)	

(Continues)
Variable	LMR ≥ 4.2 (n = 197) (61.0%)	LMR < 4.2 (n = 126) (39.0%)	P-value
Not available	1 (0.3%)	0 (0.0%)	0.445
Age (y)	64 (56-72)	73 (65-78)	<0.001
Albumin (g/dL)	4.0 (3.7-4.2)	3.8 (3.5-4.2)	0.003
BMI (kg/m²)	23.2 (21.1-25.1)	22.5 (20.5-25.0)	0.125
CA19-9 (U/mL)	8.0 (5.7-14.2)	8.0 (7.0-17.0)	0.491
CEA (ng/mL)	1.9 (1.4-3.2)	2.3 (1.7-3.6)	0.008
CRP (mg/dL)	0.1 (0.1-0.3)	0.3 (0.1-0.3)	<0.001
Maximum tumor size (cm)	2.8 (2.0-4.0)	3.1 (2.0-4.4)	0.316
Platelet count (x10⁹/mm³)	22.1 (18.2-25.8)	21.6 (16.7-24.6)	0.151
Survival period (d)	2056 (1083-3229)	1629 (593-2621)	0.005
WBC count (×10³/mm³)	5.8 (4.9-6.7)	5.6 (4.7-6.9)	0.848
Diabetes			
Absence	178 (55.1%)	105 (32.5%)	0.062
Presence	19 (5.9%)	21 (6.5%)	
Respiratory disease			
Absence	187 (57.9%)	120 (37.1%)	0.899
Presence	10 (3.1%)	6 (1.9%)	
Cerebrovascular disease			
Absence	191 (59.1%)	119 (36.8%)	0.263
Presence	6 (1.9%)	7 (2.2%)	
Cardiovascular disease			
Absence	173 (53.6%)	116 (35.9%)	0.225
Presence	24 (7.4%)	10 (3.1%)	
Chronic liver disease			
Absence	187 (57.9%)	119 (36.8%)	0.851
Presence	10 (3.1%)	7 (2.2%)	
Renal dysfunction			
Absence	189 (58.5%)	119 (36.8%)	0.534
Presence	8 (2.5%)	7 (2.2%)	
Number of co-morbidities			
0	139 (43.1%)	87 (26.9%)	0.376
1	42 (13.0%)	22 (6.8%)	0.512
2	13 (4.0%)	15 (4.6%)	
3	3 (0.9%)	2 (0.6%)	
(B)			
Depth of tumor			
M, SM	67 (44.1%)	13 (8.6%)	
MP	63 (41.4%)	9 (5.9%)	
Gender			
Female	74 (48.7%)	19 (12.5%)	0.009
Male	56 (36.8%)	3 (2.0%)	
TABLE 1 (Continued)

Variable	LMR ≥ 3.0 (n = 130) (85.5%)	LMR < 3.0 (n = 22) (14.5%)	P-value
Glasgow prognostic score			
0	108 (71.0%)	16 (10.5%)	
1	18 (11.9%)	5 (3.3%)	
2	2 (1.3%)	1 (0.7%)	
Not available	2 (1.3%)	0 (0.0%)	0.357
Location			
Colon	89 (58.5%)	16 (10.5%)	
Rectum	41 (27.0%)	6 (4.0%)	0.689
Lymphatic invasion			
Absence	73 (48.0%)	16 (10.5%)	
Presence	54 (35.5%)	6 (4.0%)	
Not available	3 (2.0%)	0 (0.0%)	0.178
Number of tumors			
1	113 (74.3%)	19 (12.5%)	
≥2	4 (2.6%)	0 (0.0%)	0.413
Not available	13 (8.6%)	3 (2.0%)	
Pathological differentiation			
Well or moderately	128 (84.2%)	22 (14.5%)	
Poorly	2 (1.3%)	0 (0.0%)	0.558
Surgery			
Open	60 (39.5%)	14 (9.2%)	
Laparoscopic	70 (46.0%)	8 (5.3%)	0.129
Venous invasion			
Absence	70 (47.0%)	10 (6.6%)	
Presence	57 (38.3%)	12 (7.9%)	
Not available	3 (2.0%)	0 (0.0%)	0.401
Age (y)	68 (61-75)	73 (69-82)	0.009
Albumin (g/dL)	4.1 (3.7-4.3)	3.9 (3.5-4.2)	0.154
BMI (kg/m²)	23.0 (20.7-25.3)	23.0 (20.9-24.8)	0.921
CA19-9 (U/mL)	7.0 (4.0-14.2)	7.5 (5.7-13.2)	0.479
CEA (ng/mL)	2.1 (1.4-3.4)	2.6 (1.8-3.6)	0.141
CRP (mg/dL)	0.1 (0.1-0.2)	0.3 (0.1-0.6)	0.007
Maximum tumor size (cm)	2.5 (1.7-3.5)	2.0 (1.2-3.2)	0.207
Platelet count (×10⁴/mm³)	22.5 (18.8-27.0)	20.9 (16.1-27.8)	0.525
Survival period (d)	1916 (1444-3127)	1483 (545-1987)	0.006
WBC count (×10³/mm³)	6.0 (4.6-7.1)	6.3 (5.6-6.8)	0.339
Diabetes			
Absence	111 (73.0%)	20 (13.2%)	
Presence	19 (12.5%)	2 (1.3%)	0.487
Respiratory disease			
Absence	127 (83.5%)	18 (11.9%)	
Presence	3 (2.0%)	4 (2.6%)	0.001
Cerebrovascular disease			
Absence	120 (78.9%)	21 (13.8%)	

(Continues)
Postoperative incidence of infectious diseases in stage I CRC patients

During the observation period, 30 CRC patients had infectious diseases. Among the 30 patients, nine had surgical site infection, nine had pneumonia, six had urinary tract infection, two had enteritis, one had sepsis, one had hepatitis, and one had esophageal candidiasis, respectively. The Kaplan–Meier method and log-rank test revealed no significant difference between the two groups according to the LMR (≥3.0 vs <3.0) in incidence of infectious diseases (Figure 3B).

Univariate and multivariate analyses of OS in stage I CRC patients

Univariate analyses among the stage I CRC patients revealed that OS was not significantly associated with the LMR (<3.0/≥3.0), but

Univariate analyses conducted in the stage I GC patients revealed associations of OS with age (>75 vs ≤75 years), serum albumin level (≤3.5 vs >3.5 g/dL), body mass index (≤23.0 vs >23.0 kg/m²), tumor depth (MP/M or SM), LMR (<4.2 vs ≥4.2), pathological differentiation (poor or signet ring cell vs well or moderate), platelet count (>16.6 × 10⁴ vs ≤16.6 × 10⁴/mm³), venous invasion (presence/absence), and white blood cell count (>5.3 × 10³ vs ≤5.3 × 10³/mm³) (Table 4A). These variables were entered into the multivariate analysis, in which a poor OS was significantly associated with the LMR (<4.2/≥4.2) (HR, 2.489; 95% CI, 1.317-4.702; P = 0.005), as well as age (>75/≤75 years) (HR, 3.511; 95% CI, 1.881-6.551; P < 0.001) and serum albumin level (≤3.5/≥3.5 g/dL) (HR, 3.040; 95% CI, 1.575-5.869; P = 0.001) (Table 4A).
OS was associated with the serum levels of albumin (≤3.9/>3.9 g/dL) and CRP (>0.3/≤0.3 mg/dL). In the multivariate analysis, a poor OS remained significantly associated with the serum levels of albumin (≤3.9/>3.9 g/dL) (HR, 4.425; 95% CI, 1.215-16.11; \(P = 0.024 \)) and CRP (>0.3/≤0.3 mg/dL) (HR, 3.691; 95% CI, 1.250-10.90; \(P = 0.018 \)) (Table 4B).

TABLE 3 Relationships between (A) cause of death and (B) recurrence pattern and LMR in patients with stage I colorectal cancer

Variable	LMR ≥ 3.0 (n = 11)	LMR < 3.0 (n = 4)	P-value
Cerebrovascular disease	1	0	0.680
Colorectal cancer	1	0	0.680
Heart disease	1	0	0.680
Infectious disease	2	0	0.558
Liver failure	1	0	0.680
Other cancers	2	2	0.041
Other diseases	2	2	0.041
Not available	1	0	0.680

Variable	LMR ≥ 3.0 (n = 2)	LMR < 3.0 (n = 0)	P-value
Local recurrence	1	0	0.680
Lung metastasis	1	0	0.680

Abbreviation: LMR, lymphocyte-to-monocyte ratio.

Consistent with previous studies,\(^1\) we found that a low LMR was significantly associated with poor prognosis in patients with early-stage gastrointestinal cancers (i.e., GC and CRC) (Figure 2). However, very few patients died of GC or CRC (Table 2A, B and Table 3A, B), indicating that the LMR is associated with other causes of death after surgery.

To emphasize the usefulness of LMR in patients with early-stage gastrointestinal cancer, we compared LMR with the conventional inflammation-based prognostic score, Glasgow prognostic score (GPS) in prognostication of such patients. Multivariate analyses revealed that GPS was not significantly associated with OS in both stage I GC and stage I CRC patients. A previous study showed that GPS was not good at prognostication of early-stage cancer patients, because most patients with early-stage cancer did not have cancer cachexia due to tumor progression.\(^15\) These facts suggest that LMR is superior to GPS in predicting non-cancer-related death after surgery in stage I GC patients.

Our results revealed that a low LMR was significantly associated with older age, hypoalbuminemia, a high serum CRP level, and male sex in patients with early-stage gastrointestinal cancers (Table 1A,B). Regarding age, the immediate responses to bacterial and viral pathogens are decreased in aged patients because immune

FIGURE 2 Relationship between overall survival and lymphocyte-to-monocyte ratio in patients with early stage gastrointestinal cancer after surgery. A, Stage I gastric cancer and (B) Stage I colorectal cancer

FIGURE 3 Relationship between cumulative infectious disease and lymphocyte-to-monocyte ratio in patients with early stage gastrointestinal cancer after surgery. A, Stage I gastric cancer and (B) Stage I colorectal cancer
Variable	Univariate			Multivariate			
		P-value	HR	95% CI	P-value	HR	95% CI
(A)							
Age (>75/<75, y)	<0.001	5.349	3.021-9.470	<.001	3.492	1.866-6.535	
Albumin (<3.5/>3.5, g/dL)	<0.001	3.449	1.856-6.411	.015	13.89	1.677-115.0	
BMI (<23.0/>23.0, kg/m²)	0.023	1.941	1.094-3.442	.124	1.623	0.875-3.009	
CA19-9 (>37/<37, U/mL)	0.317	1.546	0.658-3.632	.241	0.674	0.028-1.732	
CEA (>5/<5, ng/mL)	0.158	1.726	0.808-3.683	.564	0.797	0.370-1.719	
CRP (>0.3/<0.3, ng/mL)	0.685	0.826	0.327-2.083	.179	0.653	0.351-1.215	
Depth of tumor (MP/M or SM)	0.045	0.132	0.018-0.960	.241	0.674	0.028-1.732	
Gender (Male/Female)	0.969	1.012	0.552-1.856	.103	0.178	0.022-1.416	
Glasgow prognostic score (1 or 2/0)	0.001	2.747	1.473-5.123	.093	3.346	0.816-13.72	
LMR (>4.2/>4.2)	<0.001	4.014	2.101-7.669	.002	2.709	1.433-5.122	
Lymphatic invasion (Presence/Absence)	0.025	0.452	0.226-0.905	.564	0.797	0.370-1.719	
Lymph node metastasis (N1/N0)	0.880	1.094	0.340-3.520	.179	0.653	0.351-1.215	
Maximum tumor size (2.5/>2.5, cm)	0.105	0.628	0.358-1.101	.241	0.674	0.028-1.732	
Number of tumors (2/1)	.066	1.972	0.957-4.060	.241	0.674	0.028-1.732	
Pathological differentiation (Poorly or signet ring cell/Well or moderately)	.444	0.513	0.268-0.982	.241	0.674	0.348-1.303	
Platelet count (>16.6/>16.6, ×10³/mm³)	<0.001	0.344	0.191-0.618	.103	0.587	0.309-1.114	
Venous invasion (Presence/Absence)	0.025	0.348	0.138-0.877	.139	0.460	0.165-1.286	
WBC count (>5.3/>5.3, ×10³/mm³)	0.003	0.426	0.241-0.755	.179	0.653	0.351-1.215	
(B)							
Age (>73/<73, y)	0.054	2.717	0.981-7.524	.093	3.346	0.816-13.72	
Albumin (<3.9/>3.9, g/dL)	0.006	5.944	1.658-21.30	.103	0.587	0.309-1.114	
BMI (<17.5/>17.5, kg/m²)	0.050	3.739	1.001-13.97	.139	0.460	0.165-1.286	
CA19-9 (>37/<37, U/mL)	0.498	2.037	0.260-15.95	.179	0.653	0.351-1.215	
CEA (>5/>5, ng/mL)	0.428	1.835	0.409-8.230	.241	0.674	0.028-1.732	
CRP (>0.3/>0.3, mg/dL)	0.005	4.655	1.593-13.60	.074	2.895	0.903-9.278	
Depth of tumor (MP/ M or SM)	0.804	1.139	0.409-3.173	.259	2.046	0.591-7.088	
Gender (Male/Female)	0.284	0.534	0.169-1.684	.139	0.460	0.165-1.286	
Glasgow prognostic score (1 or 2/0)	0.002	5.289	1.840-15.19	.259	2.046	0.591-7.088	
LMR (>3.0/>3.0)	0.051	3.201	0.996-10.29	.093	3.346	0.816-13.72	
Lymphatic invasion (Presence/Absence)	0.147	2.150	0.764-6.054	.103	0.587	0.309-1.114	
Maximum tumor size (4.5/>4.5, cm)	0.205	2.664	0.585-12.12	.139	0.460	0.165-1.286	
Number of tumors (2/1)	0.505	0.044	0.000-435.2	.179	0.653	0.351-1.215	
Pathological differentiation (Poorly/ Well or moderately)	.841	0.049	0.001-2.974	.241	0.674	0.028-1.732	
Platelet count (>18.3/>18.3, ×10³/mm³)	0.464	1.747	0.392-7.781	.179	0.653	0.351-1.215	
Venous invasion (Presence/Absence)	0.663	1.254	0.454-3.466	.241	0.674	0.028-1.732	
WBC count (>5.5/>5.5, ×10³/mm³)	0.644	0.773	0.259-2.304	.241	0.674	0.028-1.732	

Abbreviations: 95% CI, 95% confidence interval; BMI, body mass index; CA19-9, carbohydrate antigen 19-9; CEA, carcinoembryonic antigen; CRP, c-reactive protein; HR, hazard ratio; LMR, lymphocyte-to-monocyte ratio; WBC, white blood cell.
responses are affected by aging.16 Regarding hypoalbuminemia and high serum CRP levels, recent studies revealed that these characteristics are associated with immunosuppression and malnutrition in cancer patients.17,18 All of these findings support that a low LMR reflects immunosuppression due to high age and malnutrition.

A previous study revealed that the LMR was significantly associated with the incidences of infectious diseases, such as pneumonia and urinary tract infections, in patients with acute ischemic stroke.19 The authors suggested that the LMR might reflect immunosuppression induced by stroke, and in turn, the immunosuppression is the cause of infectious diseases.19 Therefore, the LMR is useful for predicting the outcome of not only patients with cancer but also those with heart or vascular disease.20,21 Thus, immunosuppression might be the underlying cause of the deaths attributed to other diseases in our patients with a low LMR.

In fact, our results showed that a low LMR was significantly associated with death from infectious diseases among the stage I GC patients ($P = 0.016$) (Table 2A,B) and with death from other cancers ($P = 0.041$) and other diseases ($P = 0.041$) among the stage I CRC patients (Table 3A,B). These findings support that a low LMR might be useful for predicting death from a wide variety of diseases, including infectious diseases, in patients with early-stage gastrointestinal cancers after surgery.

Although the survival analysis indicated a poorer OS in the stage I CRC patients with a low LMR (<4.2), multivariate analysis did not identify a significant association between the LMR and OS in these patients. There was a difference in the distributions of stage I GC and stage I CRC patients according to the LMR, in that the patients with a low LMR comprised 39.0\% (126/323) of the total GC cohort compared with 14.5\% (22/152) of the CRC cohort. Because the proportion of patients with a low LMR was higher among stage I GC patients than stage I CRC patients, there might have been a difference between the two groups in the multivariate analyses.

The preoperative LMR might be useful for prognostication in stage I GC patients, because GC is associated with postoperative weight loss. Unlike in CRC patients, gastric storage dysfunction, reduced ghrelin levels, and digestion/absorption disorders lead to postoperative weight loss in GC patients.22–24 According to recent studies, being underweight is associated with increased incidences of stroke, atrial fibrosis, and impaired endothelial dysfunction,25–27 as well as an increased risk of pneumonia.28 Thus, the combination of postoperative weight loss and a low LMR might increase the risks of other diseases, leading to a worse postoperative outcome in stage I GC patients.

Recent studies showed that oral nutritional supplements significantly improved postoperative weight loss in GC patients.29,30 In the same way, another study showed that exercise interventions prevented postoperative muscle loss in GC patients.31 In addition, exercise interventions prevented not only incidence of cancer and cardiovascular disease but also all-causes of mortality.32,33 Therefore, in order to prevent non-cancer-related death, both nutritional supplements and exercise interventions would be needed in GC patients with low LMR (<4.2).

There were some limitations to our study. First, this was a retrospective study conducted at a single institution. Second, the population of stage I CRC patients in this study was relatively small ($n = 152$). To overcome these limitations, validation of our results in multi-institutional studies with larger sample sizes is needed.

In conclusion, the present findings indicated a relationship between the preoperative LMR and the outcome of patients with early-stage gastrointestinal cancer. The novelty of the study is that LMR could predict not only primary cancer death but also non-cancer-related death due to infectious and vascular diseases. Based on these results, the LMR could be considered a factor determining both nutritional supplements and exercise interventions for such patients.

DISCLOSURE

Conflicts of Interest: The authors declare no conflicts of interest regarding the publication of this paper.

ORCID

Takayuki Shimizu \url{https://orcid.org/0000-0002-2727-842X}
Takayuki Shiraki \url{https://orcid.org/0000-0003-2935-6708}

REFERENCES

1. Park JH, Ryu MH, Kim HJ, Ryoo B-Y, Yoo C, Park I, et al. Risk factors for selection of patients at high risk of recurrence or death after complete surgical resection in stage I gastric cancer. Gastric Cancer. 2016;19:226–33.
2. Lee JH, Lee JL, Park IJ, Lim S-B, Yu CS, Kim JC. Identification of recurrence-predictive indicators in stage I colorectal cancer. World J Surg. 2017;41:1126–33.
3. Zhang J, Zhang HY, Li J, Shao X-Y, Zhang C-X. The elevated NLR, PLR and PLT may predict the prognosis of patients with colorectal cancer: a systematic review and meta-analysis. Oncotarget. 2017;8:68837–46.
4. Zhang LX, Wei ZJ, Xu AM, Zang JH. Can the neutrophil-lymphocyte ratio and platelet-lymphocyte ratio be beneficial in predicting lymph node metastasis and promising prognostic markers of gastric cancer patients? Tumor maker retrospective study. Int J Surg. 2018;56:320–7.
5. Deng Q, He B, Liu X, Yue J, Ying H, Pan Y, et al. Prognostic value of pre-operative inflammatory response biomarkers in gastric cancer patients and the construction of a predictive model. J Transl Med. 2015;13:66.
6. Stotz M, Pichler M, Absenger G, Szkandera J, Arminger F, Schaberl-Moser R, et al. The preoperative lymphocyte to monocyte ratio predicts clinical outcome in patients with stage III colon cancer. Br J Cancer. 2014;110:435–40.
7. Xiao WW, Zhang LN, You KY, Huang R, Yu X, Ding P-R, et al. A Low Lymphocyte-to-monocyte ratio predicts unfavorable prognosis in pathological T3N0 rectal cancer patients following total mesorectal excision. J Cancer. 2015;6:616–22.
8. Hsu JT, Wang CC, Le PH, Chen T-H, Kuo C-J, Lin C-J, et al. Lymphocyte-to-monocyte ratios predict gastric cancer surgical outcomes. J Surg Res. 2016;202:284–90.
9. Lieto E, Galizia G, Auricchio A, Cardella F, Mabilia A, Basile N, et al. Preoperative neutrophil to lymphocyte ratio and lymphocyte to monocyte ratio are prognostic factors in gastric cancers undergoing surgery. J Gastrointest Surg. 2017;21:1764–74.
10. He J, Lv P, Yang X, Chen Y, Liu C, Qiu X. Pretreatment lymphocyte to monocyte ratio as a predictor of prognosis in patients with early-stage triple-negative breast cancer. Tumour Biol. 2016;37:9037–43.
Song YJ, Wang LX, Hong YQ, Lu Z-H, Tong Q, Fang X-Z, et al. Lymphocyte to monocyte ratio is associated with response to first-line platinum-based chemotherapy and prognosis of early-stage non-small cell lung cancer patients. Tumour Biol. 2016;37:5285–93.

Ong HS, Gokavarapu S, Wang LZ, Tian Z, Zhang CP. Low pretreatment lymphocyte-monocyte ratio and high platelet-lymphocyte ratio indicate poor cancer outcome in early tongue cancer. J Oral Maxillofac Surg. 2017;75:1762–74.

Japanese Gastric Cancer Association. Japanese classification of gastric carcinoma: 3rd English edition. Gastric Cancer. 2011;14:101–2.

Youden WJ. Index for rating diagnostic tests. Cancer. 1950;3:32–5.

Wakahara T, Ueno N, Maeda T, Kanemitsu K, Yoshikawa T, Tsuchida S, et al. Is the Glasgow prognostic score applicable to both early- and advanced-stage gastric cancers? Gastroenterology Res. 2017;10:359–65.

Panda A, Arjona A, Sapey E, Bai F, Fikrig E, Montgomery RR, et al. Human innate immunosenescence: causes and consequences for immunity in old age. Trends Immunol. 2009;30:325–33.

McMillan DC. Systemic inflammation, nutritional status and survival in patients with cancer. Curr Opin Clin Nutr Metab Care. 2009;12:223–6.

Suzuki S, Shibata M, Gonda K, Kanke Y, Ashizawa M, Ujiie D, et al. Immunosuppression involving increased myeloid-derived suppressor cell levels, systemic inflammation and hypoalbuminemia are present in patients with anaplastic thyroid cancer. Mol Clin Oncol. 2013;1:959–64.

Park MG, Kim MK, Chae SH, Kim H-K, Han J, Park K-P. Lymphocyte-to-monocyte ratio on day 7 is associated with outcomes in acute ischemic stroke. Neurrol Sci. 2018:39:243–9.

Gary T, Pichler M, Belaj K, Hafner F, Gerger A, Brodmann M. Lymphocyte-to-monocyte ratio: a novel marker for critical limb ischemia in PAOD patients. Int J Clin Pract. 2014;68:1483–7.

Wang Q, Ma J, Jiang Z, Wu F, Ping J, Ming L. Association of lymphocyte-to-monocyte ratio with in-hospital and long-term major adverse cardiac and cerebrovascular events in patients with ST-elevated myocardial infarction. Medicine. 2017;96:e7897.

Miholic J, Meyer HJ, Muller MJ, Weimann A, Pichlmayr R. Nutritional consequences of total gastrectomy: the relationship between mode of reconstruction, postprandial symptoms, and body composition. Surgery. 1990;108:488–94.

Bae JM, Park JW, Yang HK, Kim JP. Nutritional status of gastric cancer patients after total gastrectomy. World J Surg. 1998;22:254–60.

Kiyama T, Mizutani T, Okuda T, Fujita I, Tokunaga A, Tajiri T, et al. Postoperative changes in body composition after gastrectomy. J Gastrointest Surg. 2005;9:313–9.

Novo G, Guttilla D, Fazio G, Cooper D, Novo S. The role of the renin-angiotensin system in atrial fibrillation and the therapeutic effects of ACE-Is and ARBS. Br J Clin Pharmacol. 2008;66:345–51.

Mak KH, Bhatt DL, Shao M, Hafner SM, Hamm CW, Hankey GJ, et al. The influence of body mass index on mortality and bleeding among patients with or at high-risk of atherothrombotic disease. Eur Heart J. 2009;30:857–65.

Hamatani Y, Ogawa H, Uozumi R, Iguchi M, Yamashita Y, Esato M, et al. Low body weight is associated with the incidence of stroke in atrial fibrillation patients - Insight from the Fushimi AF registry. Circ J. 2015;79:1009–17.

Torres A, Peetersmans WE, Vlieg G, Blasi F. Risk factors for community-acquired pneumonia in adults in Europe: a literature review. Thorax. 2013;68:1057–65.

Kobayashi D, Ishigure K, Mochizuki Y, Nakayama H, Sakai M, Ito S, et al. Multi-institutional prospective feasibility study to explore tolerability and efficacy of oral nutritional supplements for patients with gastric cancer undergoing gastrectomy. Gastric Cancer. 2017;20:718–27.

Kimura Y, Nishikawa K, Kishi K, Inoue K, Matsuyama J, Akamaru Y, et al. Long-term effects of an oral elemental nutritional supplement on post-gastrectomy body weight loss in gastric cancer patients. Ann Gastroenterol Surg. 2019;3:648–56.

Cho I, Son Y, Song S, Bae YJ, Kim YN, Kim H-I, et al. Feasibility and effects of a postoperative recovery exercise program developed specifically for gastric cancer patients (prep-gc) undergoing minimally invasive gastrectomy. J Gastric Cancer. 2018;18:118–33.

Kodama S, Saito K, Tanaka S, Maki M, Yachi Y, Asumi M, et al. Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: a meta-analysis. JAMA. 2009;301:2024–35.

Lakoski SG, Willis BL, Barlow CE, Leonard D, Gao A, Radford NB, et al. Midlife cardiorespiratory fitness, incident cancer, and survival after cancer in men: the cooper center longitudinal study. JAMA Oncol. 2015;1:231–7.

How to cite this article: Shimizu T, Ishizuka M, Shiraki T, et al. The clinical influence of the preoperative lymphocyte-to-monocyte ratio on the postoperative outcome of patients with early-stage gastrointestinal cancer. Ann Gastroenterol Surg. 2020;4:580–590. https://doi.org/10.1002/ags3.12369