INTRODUCTION

Houttuynia cordata Thunb, known as Chinese lizard tail, heartleaf, chameleon plant, fish wort, and Khow Tong in Thai, is one of the known perennial herbs for the pharmacological benefits, comes under the family of Tutupalli and Chaubal [1,2]. Two chemotypes of H. cordata species are habited in Asian countries. The plant is native to Northeast India, Japan, Korea, southern China, Thailand, and Burma regions, and is frequently used by the local tribes for the therapeutic purposes and as a dietary vegetable [3]. H. cordata is rich in organic acids (linoleic, palmitic, and aspartic acids), volatile compounds (α-pinene, myrcene, d-limonene, decanoyl acetaldehyde, lauric aldehyde, and methyl nonyl ketone), flavonoids (hyperin, reynoutrin, quercetin, isoquercitrin, astralin, and rutin), essential amino acids (alanine, arginine, aspartic acid, glutamic acid, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tyrosine, and valine), water-soluble polysaccharides, Vitamin-C, minerals, and trace elements (K, Fe, Zn, Cu, and Mn) [4].

H. cordata plant has been used to treat hyperglycemia, dysentery, cholera, and acute renal failure and to purify the circulating system [5,6]. The shoots of H. cordata are used as antidote and antivenom [2,7]. Several scientific reports revealed that H. cordata has a vast range of pharmacological effects such as anticancer (against leukemia), antitumor, antioxidant, adjuvant anticancer, antimutagenic, anti-inflammation, antibacterial, and antiviral (anti-HSV-1, anti-influenza, and anti-HIV-1) [4,8-13].

Fermented plant juices are famous among the people of Asian countries; especially, Thai people believe that consumption of traditionally prepared fermented plant juices has the supremacy to cure most of the illnesses [14]. The fermented foods are rich in bioactive microbes, which offer the health benefits to the consumer and improved the quality of the food [15]. The preparation of fermented plant-based food using specific starter culture improved the nutritional and pharmaceutical values of the food [16-18]. The fermented plant juice with bioactive principles can be an alternative food supplement with regular medication to control the metabolic disorders like diabetes [19].

Although H. cordata is used in several folk medicines to treat several diseases, the reports on fermented H. cordata juice (FHJ) are very limited. Kwon and Ha [20] reported that Bacillus spp. (isolated from the naturally fermented H. cordata) based fermentation increased the flavonoid content of the fermented H. cordata. The fermented H. cordata exhibited high protective effects against lipopolysaccharide (LPS)-induced inflammation with no cytotoxicity in RAW264.7 cells. Banjenpangchai and Kongaweerk [21] stated that ethanolic extract of fermented H. cordata was strong toxic to human leukemia Molt-4 and HL-60 cells.

Methods: FHJ was prepared and the microbial load, lactic acid content, and pH was estimated. Rats were fed with different doses of FHJ for 60 days. The body mass changes were measured during FHJ supplementation. After the treatment period, blood and organs of the experimental rats were collected. The samples were subjected to hematological and biochemical analysis by following standard hospital protocols.

Results: The pH of FHJ after 30 days of fermentation was 3.63. The lactic acid content of FHJ was gradually increased and reached 19.70 mg per mL after 30 days of the fermentation process. Lactobacillus load was high in FHJ after 30 days and no Bacillus spp. and yeast were detected in FHJ at any point of fermentation. There were no significant changes in body weight of male and female experimental rats supplemented with FHJ, irrespective of dose. There were no significant treatment-related pathological changes found in any organ of the experimental rats at all tested dose levels when compared with organs in control animals. There were no significant changes observed in red blood cells (RBCs), white blood cells (WBCs), hemoglobin, hematocrits, lymphocyte, and platelets level of male rats of all groups. Whereas, significant (p<0.01) changes were observed in the RBC (1.02±0.26 106/mm3) of female rats in effective dose (ED) group compared to control. Similarly, significant (p<0.01) changes were detected in the WBC level of female rats in high dose (−7.53±0.03 103/mm3), and post-ED group (−8.86±0.75 103/mm3) compared to control. There were no alterations in tested biochemical parameters of experimental rats.

Conclusion: The FHJ was rich in probiotic Lactobacillus. The supplementation of FHJ (9 mL/kg/day) for 60 days did not significantly affect the body mass, internal organs, hematological, and biochemical parameters of rats. The results suggested that FHJ is qualified for the human consumption.

Keywords: Houttuynia cordata, Lactic acid bacteria, Fermented plant juice, Subchronic, Toxicity.

ABSTRACT

Objective: The present study was intended to evaluate the subchronic toxicity of Lactobacillus-mediated fermented Houttuynia cordata juice (FHJ) using rodent model system.

Methods: FHJ was prepared and the microbial load, lactic acid content, and pH was estimated. Rats were fed with different doses of FHJ for 60 days. The body mass changes were measured during FHJ supplementation. After the treatment period, blood and organs of the experimental rats were collected. The samples were subjected to hematological and biochemical analysis by following standard hospital protocols.

Results: The pH of FHJ after 30 days of fermentation was 3.63. The lactic acid content of FHJ was gradually increased and reached 19.70 mg per mL after 30 days of the fermentation process. Lactobacillus load was high in FHJ after 30 days and no Bacillus spp. and yeast were detected in FHJ at any point of fermentation. There were no significant changes in body weight of male and female experimental rats supplemented with FHJ, irrespective of dose. There were no significant treatment-related pathological changes found in any organ of the experimental rats at all tested dose levels when compared with organs in control animals. There were no significant changes observed in red blood cells (RBCs), white blood cells (WBCs), hemoglobin, hematocrits, lymphocyte, and platelets level of male rats of all groups. Whereas, significant (p<0.01) changes were observed in the RBC (1.02±0.26 106/mm3) of female rats in effective dose (ED) group compared to control. Similarly, significant (p<0.01) changes were detected in the WBC level of female rats in high dose (−7.53±0.03 103/mm3), and post-ED group (−8.86±0.75 103/mm3) compared to control. There were no alterations in tested biochemical parameters of experimental rats.

Conclusion: The FHJ was rich in pmbiotic Lactobacillus. The supplementation of FHJ (9 mL/kg/day) for 60 days did not significantly affect the body mass, internal organs, hematological, and biochemical parameters of rats. The results suggested that FHJ is qualified for the human consumption.

Keywords: Houttuynia cordata, Lactic acid bacteria, Fermented plant juice, Subchronic, Toxicity.

© 2018 The Authors. Published by Innovare Academic Sciences Pvt Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/) DOI: http://dx.doi.org/10.22159/ajpcr.2018.v11i8.26633
The subchronic toxicity studies are needed before any clinical trials. Thus, the present study was aimed to assess the subchronic toxicity of Lactobacillus-mediated fermented H. cordata using rodent model system.

METHODS

Preparation of fermented H. cordata thumb juice

H. cordata, water, and cane sugar were mixed in the ratio of 3:10:1 and subjected to pasteurization. After sterilization and cooling of the medium, 10% of Lactobacillus paracasei HII03 was inoculated, and fermented for 30 days.

Physical observation of FHJ

The changes in the color, odor, and consistency of FHJ during and after fermentation were monitored by organoleptic techniques [22-24].

Determination of pH, lactic acid content, ethanol content, and microbial load

The experiments were performed as described in the previous studies. The pH of FHJ was kinetically assessed using pH meter (Inola, pH level 2, Weilheim) [16]. The lactic acid content of FHJ was determined by high-performance liquid chromatography [25]. The gas chromatography method was employed to assess the ethanol content of FHJ [26]. The microbial load of FHJ was determined by spread plate method using specific media [27].

Animals, intervention, and sample collection

Sprague Dawley rats (150–180 g of weight) were purchased from National Laboratory Animal Center, Mahidol University, Thailand, and randomly divided into different groups as follows:

1. Control group: Standard laboratory foods (Commercial food no. C.P.082, Perfect Companion Group Co., Ltd., Bangkok, Thailand) and water.
2. Low-dose group (effective dose [ED]): Standard laboratory foods and 1.2 mL/kg/day of FKJ.
3. High-dose group (HD): Standard laboratory foods and 9.0 mL/kg/day of FKJ.
4. Post-ED group (PED): Standard laboratory foods and 1.2 mL/kg/day of FKJ for 53 days (supplementation was stopped before 1 week of animal scarification and testing). The experimental rats were supplemented with test intervention for 60 days. After the intervention period, blood and internal organs were collected for examination. The experiments were ethically approved by the ethical committee of Faculty of Medicine, Chiang Mai University (Approved protocol no: 1/2552 dated 23 June 2009).

Measurement of body mass and Assessment of hematological and biochemical parameters

The changes in body mass of the experimental rats were measured using digital weighing balance. The difference in the weight was calculated as per the following formula:

\[\text{Changes in body mass} = \text{Final weight} - \text{Initial weight} \]

Changes in body mass = Final weight – The initial weight of the experimental rat.

The weight of brain, eyes, heart, lung, liver, spleen, stomach, kidneys, and adrenal gland of the rat was measured. The hematological (hemoglobin, hematocrits, white blood cells [WBCs] count, lymphocyte, platelets, and red blood cells [RBCs] count), biochemical parameters for liver and kidney function (aminotransaminase, alanine aminotransaminase, alkaline phosphatase), and lipid profile (triglyceride and cholesterol) of the experimental rats were determined at MT InterMed (Hospital) Growth Diag. Co., Ltd., Chiang Mai, Thailand, as per the standard procedures.

Statistical analysis

The experiments were completed in triplicate. The values were specified as a mean ± standard deviation. Duncan’s new multiple range tests determined the significant differences at the 95% confidential level (p < 0.05) by SPSS v.17 (Chicago, SPSS Inc., U.S.A.).

RESULTS AND DISCUSSION

The FHJ was prepared as detailed. The pH of FHJ was measured periodically and found that the pH was gradually reduced after 30 days of fermentation. The pH of FHJ after 30 days of fermentation was 3.63 (Fig. 1a). The lactic acid content of FHJ was gradually increased and reached 19.70 mg per mL after 30 days of the fermentation process (Fig. 1b).

The microbial load in FHJ was estimated kinetically at different time points such as 3, 6, 10, 15, 20, and 30 days of fermentation. The total bacterial count (8.8–6.6 Log CFU/mL) and Lactobacillus spp. (8.64–6.4 Log CFU/mL) were gradually decreased over the period of fermentation. The reduction in bacterial load is possibly due to the high acidic condition and nutrient depletion in fermenting medium. At the end of the fermentation process, after 30 days, Lactobacillus spp. concentration was high (6.4 Log CFU/mL) in FHJ with respect to the total microbial load. Bacillus spp. and yeast were not found in FHJ at any point of fermentation, which suggested that FHJ was microbiologically safe (Fig. 2).

The changes in body mass of experimental rat were measured and tabulated (Table 1). The body mass increases in ED, HD, and PED group male rats were 175±24.32, 187±28.57, and 176±30.68 g, respectively, while control rat was 187.50±35.83 g. The body mass increases in HD, ED, and PED group female rats were 68.57±14.43, 62.14±17.99, and 63.57±13.97 g, respectively, while control rat was 75.83±10.18 g. There were no significant changes in body weight of male and female experimental rats supplemented with FHJ, irrespective of dose (ED, HD, and PED) (Table 1).

All the experimental rats were dissected after the study period to check macroscopic morphology of the organs. The organs brain, eyes, heart, lung, liver, spleen, stomach, kidneys, and adrenal gland were collected to determine the organ weight and physical changes. The changes in the organ weight, derived from the control animal, were reported (Table 2). There were no significant treatment-related pathological changes found in any organ of the experimental rats at all tested dose levels when compared with organs in control animals (Table 2).

The hematological changes in the experimental rats were determined. The differences, compared to representative control, were represented (Table 3). There were no significant changes observed in RBC, WBC, hemoglobin, hematocrits, lymphocyte, and platelets level of male rats.
Table 1: The increase in body mass of test animals during the experimental period compared to baseline value

Duration (day)	Body weight (g)	Male	Female	
	Control	ED*	HD**	
7	44.17±16.36	43.57±15.99	37.14±12.25	42.85±21.93
30	128.33±29.43	116.42±22.30	128.57±27.60	129.28±26.27
60	187.50±35.83	175.00±24.32	187.87±28.57	176.42±30.68

*ED: 1.2 ml/kg/day, **HD: 9 ml/kg/day, ***PED: Post-effective dose (intervention has been stopped before 7 days of final assessments), ED: Effective dose, HD: High dose

Table 2: Changes in the organ weight after oral supplementation of FHJ

Organs	Weight (g)	Male	Female			
	1.2 ml/kg/day (ED)	9 ml/kg/day (HD)	PED			
Brain	0.07±0.16	0.06±0.08	-0.13±0.49	0.1±0.11	0.12±0.06	0.12±0.05
Eyes	0±0.05	-0.04±0.06	0.03±0.01	0.07±0.05	0.03±0.06	0.1±0.01
Heart	0.03±0.37	0.06±0.36	0.48±0.29	0.01±0.18	0.17±0.45	0.6±0.19
Lung	-0.37±0.22	-0.08±0.43	-0.29±0.14	-0.06±0.25	0.33±0.44	0.25±0.50
Liver	0.12±0.22	0.09±0.27	-1.31±1.01	1.1±0.07	0.7±0.88	0.6±0.01
Spleen	-0.003±0.13	0.017±0.14	-0.113±0.05	0.07±0.06	0.11±0.06	0.01±0.03
Stomach	-0.203±0.19	0.047±0.29	0.077±0.10	0.13±0.22	0.27±0.56	0.18±0.07
Kidneys	-0.22±0.42	0.12±0.45	-0.14±0.43	0.27±0.24	0.14±0.18	0.1±0.13
Adrenal gland	0.004±0.00	0.029±0.05	0.014±0.01	0.02±0.02	0±0.02	0.016±0.02

The values were derived from the control values (the difference between control value and experimental value, after the experimental period) and were represented as a mean±standard deviation. ED: Effective dose, HD: High dose, PED: Post-effective dose, FHJ: Fermented Houttuynia cordata juice

Fig. 2: The microbial load in fermented Houttuynia cordata juice during fermentation

of all groups. Whereas, significant (p<0.01) changes were observed in the RBC (1.02±0.26 10^6/mm^3) of female rats in ED group compared to control. Likewise, significant (p<0.01) changes were detected in the WBC level of female rats in HD (−7.53±0.03 10^3/mm^3), and PED group (−8.86±0.75 10^3/mm^3) compared to control (Table 3). There were no alterations in tested biochemical parameters (blood urea nitrogen, creatinine, cholesterol, triglyceride, aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase) of experimental rats, both male and female, of all treatment groups (Table 3). The results suggested that the consumption of FHJ, even HD, did not affect the internal organ of the experimental rats.

Several reports are available on the pharmacological importance of H. cordata extracts. The ethyl acetate extract of H. cordata (EAEH) has been reported for antiviral property against dengue virus and mouse hepatitis virus [28]. The EAEH exhibited hepatoprotective activity, inhibited the hydroxyl and alkyl free radicals in vitro, and prohibited the carbon tetrachloride-induced liver damage in mice [29], and the isolated alkaloids of H. cordata showed moderate hepatoprotective activity in d-galactosamine-induced WB-F344 cells, and anti-inflammatory activity [30,31]. The methanol extract of H. cordata induces apoptosis in human HepG2 hepatocellular carcinoma cells through activation of hypoxia-inducible factor-1A - Forkhead box O3 and MEF2A pathways [32]. The ethanol extract of H. cordata persuades apoptosis in human leukemic Molt-4 cells through endoplasmic reticulum stress pathway, which was characterized by declined expression of Bcl-xl and improved levels of Smac/Diablo, Bax, and GRP78 proteins [33]. Kumar et al. [2] reported that ethanolic extract of H. cordata (EEH) displayed the antidiabetic activity
The values were derived from the control values (the difference between control value and experimental value, after the experimental period) and were represented as a mean±standard deviation. RBCs: Red blood cells, WBCs: White blood cells, HGB: Hemoglobin, BUN: Blood urea nitrogen, TG: Triglyceride, AST: Aspartate aminotransferase, ALT: Alanine aminotransferase, ALP: Alkaline phosphatase. * Significant difference (p<0.05) between control and test group, ** Significant difference (p<0.01) between control and test group.

in streptozotocin-induced diabetic rats. The oral supplementation of 200–400 mg/kg body weight of EEH reduced the fasting glucose level, improved the insulin level, and normalized the biochemical parameters and the expression of glucose homeostatic enzyme-coding genes [2].

The ethanol extract of fermented H. cordata was reported for cytotoxicity effects in human leukemia HL-60 and Molt-4 cells. The apoptosis of cancer cell was achieved through activation and mitochondrial oxidative stress pathway, and the study also suggested that fermented H. cordata was more toxic to human cancer cells than non-fermented H. cordata [21]. The fermented H. cordata protects the cells (RAW264.7 and RBL-2H3) from LPS-induced toxicity and suppresses the growth of HepG2 cells (human liver cancer cells) [20]. Senawong et al. [34] studied the anticancer activity of commercially available fermented H. cordata products (CFH) of Thailand. About seven phenolic compounds were detected in CFH, and some of the CFH exhibited dose-dependent antiproliferative activity against HCT116, HT29, and HeLa cells.

An insufficient number of toxicity studies are there on H. cordata extracts and FHJ. The acute oral toxicity of EAEH was studied in C57BL/6 mice and found that 2000 mg/kg of EAEH supplementation did not cause any adverse behavioral and histopathological effects [28]. The ethanol extract of H. cordata leaves (EELH) was studied for toxicity in F344/DuCrj rats. The supplementation of up to 5% of EELH has not affected the hematological, ophthalmological parameters, and organs. The study reported that 1.5 and 0.5 % as dietary level of EEHL did not cause any adverse behavioral and histopathological effects in F344/DuCrj rats. The supplementation of up to 5% of EEHL did not affect the hematological, ophthalmological parameters, and organs. The study reported that 1.5 and 0.5 % as dietary level of EELH supplementation for male and female, respectively [35].

The results of the current study revealed that FHJ did not affect the behavioral character; body mass, internal organs, hematological, and biochemical parameters of experimental rats, and the consumption of FHJ was safe to rodent model system up to the concentration of 9 mL/Kg/day.

CONCLUSION

The FHJ was rich in probiotic Lactobacillus strain (L. casei TH03) and acidic in nature. The supplementation of FHJ (9 mL/Kg/day) for 60 days did not significantly affect the body mass, internal organs, hematological, and biochemical parameters of rats. The results suggested that FHJ is eligible for the human consumption.

ACKNOWLEDGMENT

Authors thankfully acknowledge the Chiang Mai University grant (CMU-grant) for the support and also acknowledge the Faculty of Pharmacy, Chiang Mai University, Thailand, for the necessary provision. All the authors wish to acknowledge the National Science and Technology Development Agency for the support.

AUTHORS’ CONTRIBUTIONS

CC involved in the study design and finalization of the manuscript. BSS and PK contributed to data analysis, manuscript preparation, and critical revision of the manuscript. YD, SC, and SP are responsible for wet lab experiments. All the authors agree with the content of the manuscript.

CONFLICTS OF INTEREST

There are no conflicts of interest.

REFERENCES

1. Tutupalli LV, Chaubal MG. Saururaceae V. Composition of essential oil from foliage of Houttuynia cordata and chemo systematics of Saururaceae. Lloydia 1975;38:92-6.
2. Kumar M, Prasad SK, Hemalatha S. A current update on the phytopharmacological aspects of Houttuynia cordata Thumb. Pharm Rev 2014;8:22-35.
3. Chakraborti S, Sinha S, Sinha RK. High-frequency induction of multiple shoots and clonal propagation from rhizomatous nodal segments of Houttuynia cordata Thumb. An ethnomedicinal herb of India. In Vitro Cell Dev Biol Plant 2006;42:394-8.
4. Yang L, Jiang J. Bioactive components and functional properties of Houttuynia cordata and its applications. Pharm Biol 2009;47:1154-61.
5. Tangkiatkumjai M. Existing evidence for safe use of herbal medicines in chronic kidney disease. Int J Pharm Pharm Sci 2015;7:30-4.
6. Hyniewska SR, Kumar V. Herbal remedies among the Khasi traditional healers and village folks in Meghalaya. Indian J Tradit Knowl 2008;7:581-6.
7. D. Tapan S. Determination of nutritive value, mineral contents and antioxidant activity of some wild edible plants from Meghalaya state, India. Asian J Appl Sci 2011;4:238-46.
8. Kim SK, Ryu SY, No J, Choi SU, Kim YS. Cytotoxic alkaloids from Houttuynia cordata. Arch Pharm Res 2001;24:518-21.
9. Chang JS, Chiang LC, Chen CC, Liu LT, Wang KC, Lin CC. Antileukemic activity of Bidens pilosa L. var. minor (Blume) Sherriff and Houttuynia cordata Thumb. Am J Chin Med 2001;29:303-12.
10. Cho EJ, Yokozawa T, Ryhu DY, Kim SC, Shibahara N, Park JC. Study on the inhibitory effects of Korean medicinal plants and their main compounds on the 1,1-diphenyl-2-picrylhydrazyl radical. Phytomedicine 2003;10:544-51.
11. Wang D, Yu Q, Ekstedt P, Hammond D, Feng Y, Chen N. Studies on antioxidative activity of sodium houttuynate and its mechanism. Int Immunopharmacol 2002;2:1411-8.
12. Li J, Zhao F. Anti-inflammatory functions of *Houttuynia cordata* Thunb. and its compounds: A perspective on its potential role in rheumatoid arthritis. *Exp Ther Med* 2015;10:3-6.
13. Hayashi K, Kamiya M, Hayashi T. Virucidal effects of the steam distillate from *Houttuynia cordata* and its components on HSV-1, influenza virus, and HIV. *Planta Med* 1995;61:237-41.
14. Chaiyasut C, Sivamaruthi BS, Makhannurenga N, Peerajan S, Kesika P. A survey of consumer opinion on consumption and health benefits of fermented plant beverages in Thailand. *Food Sci. Technol Campinas* 2018. DOI: 10.1590/1678-457X.04917.
15. Woraharn S, Lailerd N, Sivamaruthi BS, Wangcharoen W, Sirisattha S, Chaiyasut C. Screening and kinetics of glutaminase and glutamate decarboxylase producing lactic acid bacteria from fermented Thai foods. *Food Sci Technol Campinas* 2014;34:793-9.
16. Peerajan S, Chaiyasut C, Sirilun S, Chaiyasut K, Kesika P, Sivamaruthi BS. Enrichment of nutritional value of *Phyllanthus emblica* fruit juice using the probiotic bacterium, *Lactobacillus paracasei* HII01 mediated fermentation. *Food Sci Technol Campinas* 2016;36:116-23.
17. Woraharn S, Lailerd N, Sivamaruthi BS, Wangcharoen W, Sirisattha S, Peerajan S, et al. Evaluation of factors that influence the L-glutamic and γ-aminobutyric acid production during *Hericium erinaceus* fermentation by lactic acid bacteria. *Cyt J Food 2016;14:47-54.
18. Woraharn S, Lailerd N, Sivamaruthi BS, Wangcharoen W, Peerajan S, Sirisattha S, et al. Development of fermented *Hericium erinaceus* juice with high content of L-glutamine and L-glutamic acid. *Int J Food Sci Technol 2015;50:2104-12.
19. Chaiyasut C, Woraharn S, Sivamaruthi BS, Kesika P, Lailerd N, Peerajan S. *Lactobacillus fermentum* HP3 mediated fermented *Hericium erinaceus* juice as a health promoting food supplement to manage diabetes mellitus. *J Evit Based Integr Med 2018;23:1-9.
20. Kwon RH, Ha BJ. Increased flavonoid compounds from fermented *Houttuynia cordata* using isolated six of *Bacillus* from traditionally fermented *Houttuynia cordata*. *Toxicol Res 2012;28:117-22.
21. Banjerdpongchai R, Kongtawelert P. Ethanolic extract of fermented *Thunb* induces human leukemic HL-60 and Molt-4 Cell apoptosis via oxidative stress and a mitochondrial pathway. *Asian Pac J Cancer Prev 2011;12:2871-4.
22. Sirilun S, Chaiyasut C, Sivamaruthi BS, Peerajan S, Kumar N, Kesika P. Phenethyl alcohol is an effective non-traditional preservative agent for cosmetic preparations. *Asian J Pharm Clin Res 2017;10:129-33.
23. Gawate RP, Kilor VA, Sapkalk NP. Physicochemical characterization and hepatoprotective activity of *Mandur bhasma*. *Int J Pharm Pharm Sci 2016;8:327-32.
24. Sirilun S, Sivamaruthi BS, Kesika P, Peerajan S, Chaiyasut C. Lactic acid bacteria mediated fermented soybean as a potent nutraceutical candidate. *Asian Pac J Trop Biomed 2017;7:930-6.
25. Chaiyasut C, Makhannurenga N, Peerajan S, Sivamaruthi BS. Assessment of organic acid content, and brix value of representative indigenous fermented plant beverages of Thailand. *Asian J Pharm Clin Res 2017;10:350-4.
26. Chaiyasut C, Sivamaruthi BS, Peerajan S, Sirilun S, Chaiyasut K, Kesika P. Assessment of heavy metals, minerals, alcohol, and fusel oil content of selected fermented plant beverages of Thailand. *Int Food Res J 2017;24:126-33.
27. Chaiyasut C, Pattananancheda T, Sirilun S, Suwannalert P, Peerajan S, Sivamaruthi BS. Symbiotic preparation with Lactic acid bacteria and inulin as a functional food: *In vivo* evaluation of microbial activities, and preneoplastic aberrant crypt foci. *Food Sci Technol Campinas 2017;37:328-36.
28. Chiow KH, Phoon MC, Putti T, Tan BK, Chow VT. Evaluation of antiviral activities of *Houttuynia cordata* Thunb. extract, quercetin, quercetrin and cinamnin on murine coronavirus and dengue virus infection. *Asian Pac J Trop Dis 2016;9:1-7.
29. Kang H, Koppula S. Hepatoprotective effect of *Houttuynia cordata* Thunb extract against carbon tetrachloride-induced hepatic damage in mice. *Indian J Pharm Sci 2014;76:267-73.
30. Maa Q, Weih R, Wang Z, Liu W, Sanga Z, Liu Y, et al. Bioactive alkaloids from the aerial parts of *Houttuynia cordata*. *J Ethnopharmacol 2017;195:166-72.
31. Ahn J, Chae H, Chin YW, Kim J. Alkaloids from aerial parts of *Houttuynia cordata*. *J Ethnopharmacol 2017;195:166-72.
32. Prommaban A, Kodchakorn K, Kongtawelert P, Banjerdpongchai R. *Houttuynia cordata* Thunb fraction induces human leukemic Molt-4 cell apoptosis through the endoplasmic reticulum stress pathway. *Asian Pac J Cancer Prev 2012;13:1977-81.
33. Senawong T, Khaopha S, Misuna S, Komaikul J, Senawong G, Wongphakham P, et al. Phenolic acid composition and anticancer activity against human cancer cell lines of the commercially available fermentation products of *Houttuynia cordata*. *Sci Asia 2014;40:420-7.
34. Yoshino H, Imai N, Nabae K, Doi Y, Tamano S, Ogawa K, et al. Thirteen-week oral toxicity study of Dokudami extract (*Houttuynia cordata* Thunb.) in F344/DuCrj rats. *J Toxicol Pathol 2005;18:175-82.