ПРИМЕНЕНИЕ КОНЦЕПТУАЛЬНОЙ МОДЕЛИ ЗОНАЛЬНОСТИ ХРОНИЧЕСКОГО ДЕЙСТВИЯ МОЩНОСТЕЙ ДОЗ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ НА ОБЪЕКТЫ БИОСФЕРЫ Г. Г. ПОЛИКАРПОВА В ПРИКЛАДНОЙ ГИДРОБИОЛОГИИ

© 2020 г. Н. Н. Терещенко

Федеральный исследовательский центр «Институт биологии южных морей имени А. О. Ковалевского РАН», Севастополь, Российская Федерация

E-mail: ntereshchenko@yandex.ru

Поступила в редакцию 09.01.2020; после доработки 25.05.2020; принята к публикации 21.09.2020; опубликована онлайн 30.09.2020.

В работе кратко рассмотрена эволюция подхода к оценке воздействия ионизирующей радиации на живые организмы. На примере черноморских гидробионтов показана возможность применения концептуальной радиохемоэкологической модели зональности действия хронического облучения ионизирующих излучений в природе Г. Г. Поликарпова для оценки уровня экологического воздействия ионизирующего излучения от техногенных радиоизотопов на водную биоту. Эта модель может служить в прикладной гидробиологии основой комплексного подхода к оценке экологического состояния водной биоты и его прогноза для широкого диапазона концентраций активности 239,240Pu в морской воде. Подчёркивается необходимость совместного применения биогеохимического и эквидозиметрического показателей поведения радиоизотопов в водоёме. В частности, для прогнозных дозиметрических оценок важно учитывать количественные характеристики концентрирующей способности черноморских гидробионтов и тип биогеохимического поведения радиоэлемента, отражающие особенности биогеохимической миграции плутония в морской экосистеме.

Ключевые слова: оценка экологического состояния водной биоты, Чёрное море, биогеохимическая миграция, перераспределение радиоизотопов 239,240Pu, дозовые нагрузки, гидробионты, концептуальная модель Г. Г. Поликарпова

Прикладная гидробиология призвана изучать последствия загрязнения водоёмов техногенными веществами и процессы формирования качества вод как результат влияния абиягенными и биогенными составляющими экосистемы на перераспределение техногенных веществ в водоёмах, а также предлагать научно обоснованные критерии и подходы к оценке экологического состояния гидробионтов. Это необходимо для рационального использования водных систем и управления ими с сохранением экологически приемлемого качества вод, а также для разработки научных основ нормирования поступления техногенных веществ в водоёмы и их отдельные акватории.

Эти вопросы особенно актуальны для Чёрного моря как внутреннего моря, антропогенное влияние на которое велико, в частности в прибрежных районах. С водосборного бассейна Чёрного моря, площадь которого составляет более 2,3 млн км², поступают как биогенные, так и техногенные вещества, в том числе техногенные радиоактивные изотопы плутония [13; 43; 44].
К основным источникам поступления 239,240Pu в Чёрное море относятся глобальные радиоактивные выпадения и выбросы после аварии на Чернобыльской атомной электростанции (далее — ЧАЭС) [13; 23; 44]. В результате функционирования объектов ядерных производств и произошедших аварий уже сформировались высокие уровни концентраций активности антропогенных радиоизотопов в отдельных морских акваториях (Ирландское море, некоторые моря Арктики), а также в пресноводных водоёмах в разных регионах, включая территорию Евразии (на Южном Урале и в Сибири, в 30-километровой зоне вокруг ЧАЭС и др.) [3; 8; 13; 24; 25]. В Чёрном море уровни концентраций активности радиоизотопов плутония являются достаточно низкими, однако широкое использование этих изотопов в ядерных технологиях увеличивает вероятность дальнейшего радиоактивного загрязнения морских акваторий.

Всё это обуславливает необходимость и важность разработки подходов к оценке экологического состояния биоты в водоёмах и отдельных акваториях на основе установленных закономерностей поведения плутония в водных экосистемах. Подобные работы особенно актуальны в постчернобыльский период, так как поступившие в Чёрное море техногенные радиоизотопы в низких концентрациях, которые не вызывают негативных изменений в черноморских экосистемах, могут измеряться с помощью физических методов исследования и служить радиотрассерами природных процессов [13]. Это уникальная возможность изучать, не нарушая целостности экосистем, процессы и их количественные характеристики в естественных условиях, в том числе миграцию и перераспределение самих техногенных радиоизотопов в природных черноморских экосистемах. Длительные периоды полураспада 239,240Pu дают основание рассматривать его радиоактивное излучение как составную часть хронического антропогенного фактора, формирующегося в настоящий период из-за техногенной деятельности человека. Полученные результаты позволят не только выполнять оценку текущего экологического состояния акваторий и последствий воздействия хронического облучения, но и прогнозировать их возможное изменение при экстремальном увеличении уровней концентрации активности 239,240Pu в водной среде в случае аварий или других внеплановых либо плановых событий.

Цель нашей работы — рассмотреть кратко эволюцию взглядов на оценку действия ионизирующего излучения на гидробионты и определить уровни воздействия техногенных альфа-излучающих радиоизотопов плутония на основе применения концептуальной модели зональности хронического действия мощностей доз ионизирующих излучений на объекты биосферы Г. Г. Поликарпова (далее — концептуальная модель Г. Г. Поликарпова) как части комплексного подхода при оценке экологического состояния водной биоты в широком диапазоне уровней 239,240Pu в водной среде в отношении долгоживущих радиоизотопов плутония.

Действие радиоактивных веществ на живые организмы в первую очередь обусловлено ионизирующим излучением (далее — ИИ), испускаемым радиоактивным веществом, а именно количеством и качеством энергии, переданной живому объекту от ИИ. Именно поэтому мы остановимся кратко на эволюции представлений в области эквидозиметрии для целей оценки воздействия ИИ на живые организмы.

Представления о дозиметрических критериях оценки экологического воздействия ИИ на биоту претерпели ряд изменений после поступления техногенных радионуклидов в окружающую среду в середине XX века. Изначально развитие эквидозиметрии для биоты опиралось на наработки в радиационной гигиене — радиационной защите человека. В радиобиологии вопрос эквидозиметрии был актуальным с самого начала изучения влияния ИИ на живой организм. Это связано с тем, что ионизирующие излучения, обладая одним общим свойством (ионизировать вещество), бывают разных видов: электромагнитное излучение, заряженные частицы разной массы, нейтральные частицы и др. Они при одном и том же количестве энергии, переданной на единицу массы живого вещества (поглощённая доза, $D, Гр = Дж·кг^{-1}$ [10]), вызывают различные по уровню
поражающие эффекты в живых организмах. Именно поэтому для оценки влияния разных видов ИИ на организм человека в радиационной гигиене ввели понятие эквивалентной дозы (H), в которой через взвешивающий коэффициент излучения (W_R) [10] учтено качество ИИ, т. е. его относительная биологическая эффективность при воздействии на живой организм. Дозовую нагрузку на организм оценивают, в зависимости от вида ИИ, как эквивалентную дозу (H = W_R × D, Зв) или мощность эквивалентной дозы (HR, Зв·день⁻¹ либо Зв·год⁻¹) [10].

Как изначально определяли влияние ионизирующего излучения на биоту? В 1977 г. Международная комиссия по радиационной защите (далее — MKРЗ; International Commission on Radiological Protection, ICRP) приняла концепцию, в которой в центре внимания была защита человека. В ней утверждалось, что если человек будет должным образом защищён, то, вероятнее всего, и другие живые существа будут достаточно защищены [35]. Между тем практика радиобиологических исследований не подтверждала эту точку зрения. Нередко встречаются ситуации полного отсутствия людей в весьма загрязнённой среде, где радиочувствительные представители биоты могут испытывать повреждающее и поражающее действие радиации. Всё зависит от интенсивности взаимодействия организма со средой (например, гидробионтов с водной средой) и от ряда других факторов и условий. Люди, в отличие от биоты, могут активно защищать себя от действия ИИ различными способами. Среди них — применение простейших, но эффективных средств: ношение спецодежды, защита органов дыхания и зрения, использование транспортных средств для передвижения, приём разного рода радиопротекторов, регулирование времени пребывания в зоне радиоактивного загрязнения и т. д. В результате дозообразование происходит не одинаково для людей и представителей биоты. Последние получают во многих случаях более высокие дозы ионизирующего излучения, а люди — более низкие, не опасные. Кроме того, только люди способны регулировать и активно уменьшать поглощённые дозы с помощью специальных контрмер (профилактика и лечение, ускорение выведения радионуклидов из организма, потребление привозной пищи и воды, применение специальных технологий и т. п.). Таким образом, биота в тех же условиях подвергается более интенсивному воздействию, чем человек. Согласно обобщению результатов исследований в зоне аварии на Южном Урале в 1957 г. [1], местное население получило дозы в 10–100 раз меньше, чем дикие позвоночные животные и высшие растения. В зоне возле ЧАЭС разница составляла 30–120 раз [15].

Г. Г. Поликарпов ещё в период работы в Международной лаборатории морской радиоактивности Международного агентства по атомной энергии (далее — МАГАТЭ; International Atomic Energy Agency, IAEA) в Монако (1975–1979) активно изучил вопрос оценки экологического воздействия ИИ на водные организмы. Уже в 1977 г. в Италии на XX конгрессе, посвящённом защите от радиации, он выступил с докладом, в котором впервые изложил созданную им концептуальную модель зональности хронического действия мощностей ИИ на водные организмы на основании обобщения результатов своих исследований и мировых литературных данных по воздействию хронического облучения на биоту [39]. Отмечая сложность унифицированной оценки эффектов воздействия ИИ на водную биоту в связи с разными видами излучения и с различной радиочувствительностью отдельных видов, онтогенетических стадий одного и того же организма и его разных тканей, а также с другими особенностями [33], Г. Г. Поликарпов предложил разделить весь диапазон мощностей доз на отдельные зоны — согласно эффектам (уровень воздействия), которые они вызывают у живых организмов [39] (табл. 1). В этой редакции модели шкала мощности дозы представлена в радах в год (рад·год⁻¹).

Было выделено 5 зон с нижней границей последней (зоны очевидного воздействия) порядка 400 рад·год⁻¹ (4 Гр·год⁻¹) (см. табл. 1). Внимание акцентировали на малой изученности и на необходимости более широкого исследования радиочувствительности водных организмов для их адекватной охраны от воздействия ИИ.
Таблица 1. Зоны биологического действия на гидробионты хронического облучения ионизирующего излучения в первой редакции концептуальной модели Г. Г. Поликарпова согласно [39]

№ зоны	Название зоны (уровень биологического воздействия)	Мощность дозы (рад·год\(^{-1}\)) — верхняя граница зоны
I	Неопределённости	4\times10^{-3}
II	Радиационного благополучия	4\times10^{-1}
III	Физиологической маскировки	5\times10^{0}
IV	Экологической маскировки	4\times10^{2}
V	Очевидного воздействия	4\times10^{3}

С 1990-х гг. представление о том, что для достаточной защиты биоты необходимы экологические критерии, начинает приобретать статус официального. В 1991 г. концепция МКРЗ была дополнена утверждением, что в условиях, когда человек защищён в достаточной степени, отдельные виды могут подвергаться губительному действию радиации [36]. В соответствии с рекомендациями МАГАТЭ и МКРЗ [32; 34; 49], для гидробионтов был принят предел безопасной мощности дозы, равный 0,01 мГр·сут\(^{-1}\) (округлённо до целых единиц — 4 Гр·год\(^{-1}\)); его превышение ведёт к негативным последствиям для популяций биоты. Учёные-радиоэкологи начали использовать понятия эквивалентной дозы и мощности эквивалентной дозы и в отношении биоты, применяя в качестве единиц Гр или Зв [11 ; 13 ; 28 ; 45]. Показательно, что радиологические условия водной среды водоёма, которые формируют мощность дозы 0,00001 Зв·год\(^{-1}\) для популяции людей, использующих воду как питьевую, создают в том же водоёме мощность дозы 0,03 Гр·год\(^{-1}\) для тюленей [6], т. е. в этом случае мощность дозы для тюленей в 3000 раз больше, чем для людей. При изучении мощности дозы от \(^{14}\)C, коэффициент накопления которого равен 50 000 для пресноводных рыб [48], мощность дозы внутреннего облучения тюленей за счёт питания рыбой может быть оценена в 7,5 Гр·год\(^{-1}\). Мощности дозы, которые даже на порядок меньше, чем эта (десяти доли Гр·год\(^{-1}\)), невозможно рассматривать как безопасные для млекопитающих [6]. Данные показали следующее: когда каждый человек из определённой местности получает допустимые мощности доз ИИ из питьевой воды, радиочувствительная водная биота оказывается в то же время незащищённой и получает небезопасные мощности доз ИИ из того же водоёма.

Таким образом, результаты радиобиологических исследований послужили основой перехода от изучения проблем радиационной защиты биоты в рамках антропоцентрического подхода (в нём приоритетной задачей в сфере охраны природы считали защиту человека и рассматривали его как наиболее радиочувствительный и уязвимый вид) к экоцентрическому подходу. Он базируется на эколого-этическом мировоззрении и на результатах экологических исследований. Этот подход побуждает каждого человека и всё общество осознать, что человек как биологический вид родился и развивается как часть целостной экосистемы (от локальной экосистемы до биосферы как глобальной экосистемы) и что его судьба всецело зависит от её здоровья и сохранности [13 ; 37]. Именно поэтому во главу угла ставят защиту и сохранение экосистемы (все виды живых организмов), а человек как разумный вид несёт ответственность за сохранение жизни на планете, обеспечение безопасного развития и сбережение биоразнообразия в водных и наземных экосистемах [1 ; 2 ; 13 ; 34 ; 37]. Важно и то, что человека не рассматривают как самый радиочувствительный и наиболее уязвимый вид; учитывают научные данные о радиочувствительности всех видов и об особенностях дозообразования в отношении биоты [1 ; 2 ; 13 ; 16 ; 41 ; 42 ; 49 и др.]. С эколого-этическим подходом перекликается биосферный, где биоту и человека рассматривают как элементы биосферы, для сохранения которой необходима единая система оценок, обеспечивающая...
Применение концептуальной модели зональности хронического действия мощностей... 89

безопасность человека и обитателей водных экосистем [7]. В рекомендациях МКРЗ 2007 г. уже не только содержатся предложения по защите человека, но и рассматриваются «подходы, разработанные для создания принципов доказательства достаточной защищённости окружающей среды» [14]. В разделе 8, посвящённом защите окружающей среды, сказано: «Необходима разработка более понятной, научно обоснованной единой концепции для оценки соотношений между облучением и дозой, между дозой и эффектом, а также последствиями таких эффектов для видов живой природы, отличных от человека». Требуются обширные исследования, чтобы можно было «сформировать прагматические рекомендации в этой сфере» [14].

Для оценки радиационной опасности ИИ для биоты Г. Г. Поликарпов, основываясь на экологическом подходе, эквидозиметрических представлениях и обобщении многолетних радиобиологических и радиоэкологических исследований, разработал ранее предложенную модель [11; 13; 41; 42] и сформулировал в современном виде концептуальную модель зональности хронического действия мощностей доз ИИ в природе — на все уровни организации живого от клетки до биологических сообществ и в целом биосферы (рис. 1) [11; 13]. Эта модель послужила основой эквидозиметрического анализа экологического состояния биоты в отношении 239,240Pu в комплексном подходе к оценке экологического состояния гидробионтов [19; 20], где в качественичины дозовой нагрузки использована мощность эквивалентной дозы (Гр·год⁻¹) [11; 13]. Применение мощности эквивалентной дозы важно при анализе уровней экологического воздействия ИИ от тех его видов, для которых Wᵢ > 1. Для альфа-частиц, испускаемых 239,240Pu, в радиационной гигиене Wᵢ = 20 [10]. В нашей работе использовано значение Wᵢ = 20 для гидробионтов, поскольку в современный период нет иного обоснованно принято единого значения Wᵢ для альфа-излучения в отношении биоты, хотя различная относительная биологическая эффективность для разных видов ИИ наблюдается и у животных. Кроме того, большинство данных для установления Wᵢ в радиационной защите человека получено в исследованиях на животных [33]. В обзоре по данному вопросу [31] исследователи не пришли к окончательному обоснованному решению, хотя рекомендовали применение среднего значения Wᵢ = 5 для популяций биоты и указали, что диапазон изменений Wᵢ составляет 1–10 и 1–20 для детерминированных и стохастических эффектов в популяциях соответственно. В использованных для анализа работах значение Wᵢ варьировало в более широком диапазоне: по публикациям 1966–1995 гг. — от 37 до 150; по материалам 1991–2003 гг. — от 1 до 50 [31]. Об отсутствии принятого обоснованного значения Wᵢ в отношении биоты сказано и в работе МКРЗ № 108, посвящённой защите окружающей среды от ИИ [33]. В публикациях МКРЗ № 103 и 108 [14; 33] отмечено, что в данной ситуации для биоты в отношении альфа-излучения применяют значение Wᵢ = 20, как и в радиационной защите человека. Между тем эквивалентные дозы для биоты выражаются в Гр (единицы поглощённой дозы), а мощность эквивалентной дозы — в Гр·сут⁻¹ или Гр·год⁻¹ [14; 33]. В данной работе мощность эквивалентной дозы для биоты получена путём умножения поглощённой дозы на Wᵢ = 20 и представлена в Гр·год⁻¹.

В современный период развиваются несколько подходов к экологическому нормированию и оценке экологического состояния биоты в водных и наземных экосистемах. Применяют разнообразные методы исследования и обобщения. Часто для этих целей используют биоиндикацию и биотестирование, а также математические модели; изучают процессы миграции и аккумуляции техногенных веществ; исследуют эффекты воздействия на организмы на разных уровнях организации биоты — от генетического до биоценотического. Неотъемлемой частью являются разработка подходов к оценке дозовых нагрузок на биоту и использование эквидозиметрии [3; 7; 9; 26; 27; 31; 42 и др.]. Всё более широкое значение в международном масштабе принимает экосистемный подход в выработке путей оценки влияния ИИ на биоту [13; 29; 30; 33; 38; 40; 41]. Ведётся разработка концепции использования как референтных представителей биоты, так и диагазона.
Рис. 1. Соответствие диапазонов мощностей доз ионизирующего излучения и уровней биологического воздействия при хроническом облучении в концептуальной модели Г. Г. Поликарпова с примерами состояния существующих загрязнённых водных биотопов в зависимости от уровня мощности дозы [11 ; 13].

Fig. 1. Correspondence of ionizing radiation dose rate ranges and biological effect levels under chronic irradiation in the G. G. Polikapov conceptual model with examples of the state of existing contaminated aquatic biotopes, depending on dose rate level [11 ; 13].

принятых реперных (контрольных) уровней мощностей доз — DCRL (derived consideration reference levels) в отношении представителей разных таксономических групп водной и наземной биоты [33]. При этом DCRL рассматривают как зону дозовых нагрузок, в пределах которой вероятны стохастические эффекты и которая разделяет зону фоновых диапазонов мощностей доз и зону детерминированных эффектов. Согласно имеющимся на время анализа проблемы данным (2008), для 12 выделенных реперных представителей животных и растений зона DCRL составляла, по предварительным оценкам, 0,1–100 мГр·сут⁻¹ [33]. Именно поэтому принятая Г. Г. Поликарповым мощность эквивалентной дозы 10 мГр·сут⁻¹ (4 Гр·год⁻¹) в качестве нижней границы зоны поражения экосистем (в соответствии с ранее сформулированными предложениями международных организаций [32 ; 34 ; 49]) остаётся актуальной и на сегодня, а для её уточнения и пересмотра требуются дальнейшие исследования [33]. На это указывал и Г. Г. Поликарпов, обращая внимание, в частности, на ранние стадии развития гидробионтов, которые нередко более радиочувствительны, чем взрослые особи [13].
При рассмотрении экосистемного подхода в радиационной защите биоты внимание фокусируют, как правило, на аспектах оценки доз и на их эффектах. С другой стороны, подчёркивают важность учёта многообразия структуры и функций экосистем, мест их расположения, а также выбора референтных животных и растений, что, несомненно, необходимо и существенно и представляет собой сложную задачу [12; 14; 29; 30; 33; 34; 38; 40; 49]. В то же время внимание не фокусируют на роли биогеохимических процессов в экосистеме и биогеохимического типа поведения радионуклида в ней, определяющего основные пути перераспределения радионуклида в водоёме. Между тем это существенные составляющие, принимающие участие в формировании дозовых нагрузок на биоту в водных экосистемах [4; 9; 13; 16; 17; 21; 22; 24; 46]. Одна из задач наших работ — привлечение внимания к учёту миграционного аспекта при оценке экологического состояния экосистемы в отношении воздействия ионизирующих излучений, источником которых являются поступившие в неё антропогенные радионуклиды. В дополнение к уже достигнутым результатам в этой области нами был предложен комплексный подход к оценке экологического состояния морских акваторий в отношении долгоживущих радионуклидов на примере $^{239+240}$Pu [19; 20].

В основе комплексного подхода лежит следующее положение: как видно из приведённых примеров, разные живые организмы, пребывая в одной и той же водной среде, могут испытывать различные дозовые нагрузки. Именно поэтому в подходе сочетаются оценки состояния водной среды и представителей разных групп гидробионтов посредством взаимного дополнения биогеохимического [5; 16; 17; 18; 19; 20; 21; 46] и эквидозиметрического [13; 15; 19; 20; 40; 41] аспектов пребывания радионуклидов в водной экосистеме (рис. 2). Биогеохимический подход подразумевает учёт реальных количественных показателей влияния характеристик и процессов функционирования самой экосистемы и её компонентов, а также физико-химических свойств самого загрязнителя на перераспределение его в водоёме и, следовательно, на формирование его концентрации в воде.

Рис. 2. Блок-схема комплексного подхода к оценке экологического состояния акваторий (ИИ* — ионизирующее излучение)
Fig. 2. Flowchart of the complex approach to assessing ecological state of water areas (ИИ* is ionizing radiation)
Основными биогеохимическими показателями служат концентрация активности радиоизотопа в воде и соотношение потоков его поступления и элиминации. Это соотношение формирует в воде величину концентрации активности радиоизотопа, и она не должна превышать допустимую концентрацию активности радиоизотопа в воде и биоте (рис. 3). Следовательно, для оценки экологического состояния биоты в водоёме необходимо знать допустимую концентрацию (С_{допустимая}) в воде, превышение которой приводит к негативным последствиям для популяций гидробионтов, и выбрать способ определения уровня экологического воздействия ИИ от данного уровня радиоизотопов в воде на биоту водоёма. Решить эти вопросы позволяет сочетание биогеохимического и эквидозиметрического аспектов пребывания радиоизотопов в морской экосистеме в рамках комплексного подхода к оценке экологического состояния гидробионтов, которое тесно связано с миграционными процессами и включает оценку воздействия разных концентраций техногенных веществ на биоту водных экосистем.

Рис. 3. Блок-схема формирования разных уровней содержания $^{239,240}\text{Pu}$ в воде при различном соотношении П1 и П2: П1 — поток поступления радиоизотопа; П2 — поток элиминации радиоизотопа из водной среды (Бк·м$^{-2}$·год$^{-1}$ или Бк·м$^{-2}$·сут$^{-1}$); C_{0} — концентрация активности радиоизотопа в воде в начальный момент времени (фоновая), C_{t} — в момент времени t (Бк·м$^{-3}$)

Fig. 3. Flowchart of formation of $^{239,240}\text{Pu}$ activity concentration levels in water at different ratios of П1 and П2: П1 is radioisotope input flux; П2 is radioisotope removal flux from water environment (Bq·m$^{-2}$·year$^{-1}$ or Bq·m$^{-2}$·day$^{-1}$); C_{0} is radioisotope activity concentration in water at the initial moment of time (background), C_{t} — at time t (Bq·m$^{-3}$)

Определение биогеохимических показателей основано на изучении миграционного аспекта радиоэкологии плутония в Чёрном море — поведения радиоизотопов в природной экосистеме. Он включает выявление типа биогеохимического поведения радионуклида, определение уровней его содержания в компонентах экосистемы, оценку потоков поступления и элиминации радиоизотопов из водной среды, выявление ведущих механизмов этих процессов [19; 20; 21]. В результате проведённых многолетних наблюдений в Чёрном море в постчернобыльский период были определены количественные характеристики перераспределения радиоизотопов плутония в акваториях [13; 16; 17; 18; 46; 47], которые позволили установить педотропный тип поведения $^{239,240}\text{Pu}$ в Чёрном море. На основе этих данных выявлено, что седиментационный поток плутония с взвешенным вещестом в донные отложения служит основным потоком выноса его из толщи вод [5; 16; 19; 47]. Были также определены коэффициенты накопления (KН) $^{239,240}\text{Pu}$ представителями биоты разных таксономических групп гидробионтов, необходимые для расчёта мощности доз хронического внутреннего облучения биоты ИИ от $^{239,240}\text{Pu}$ [13; 15; 17; 46]. Значения KН, наряду с уровнем концентраций активности радиоизотопов в водной среде, типом биогеохимического поведения радионуклида в водоёме и качеством ИИ, играют важную роль в формировании уровня мощности доз хронического облучения в гидробионтах [17; 18; 19]. В качестве эквидозиметрического критерия оценки воздействия ИИ на черноморскую биоту использовали мощность эквивалентной дозы ИИ. В дальнейшем определяли уровень её экологического воздействия посредством сравнительного эквидозиметрического анализа данных.
помощности доз с применением концептуальной модели Г. Г. Поликарпова [13; 40; 41]. Сравнительный анализ экологического состояния в черноморских акваториях и в стоячих водоемах 30-км зоны ЧАЭС в отношении радиоизотопов после аварии на этой атомной электростанции по уровням экологического воздействия на биоту представлен на рис. 4. При современных уровнях концентрации активности 239,240Pu в компонентах черноморских экосистем мощности доз, сформированные от их ИИ, не оказывают негативного воздействия на биоту в Чёрном море. Согласно зональности действия ионизирующих излучений, уровни их экологического воздействия не превышают влияния, характерного для зоны радиационного благополучия. Дозовые нагрузки от 239,240Pu для моллюсков и от суммы 239,240Pu, 137Cs и 90Sr для разных групп гидробионтов в 30-км зоне ЧАЭС превысили фоновые уровни воздействия. Согласно концептуальной модели Г. Г. Поликарпова, эти уровни воздействия относятся к зонам физиологической и экологической маскировки и достигают нижней границы зоны поражения экосистем.

Рис. 4. Оценка уровней биологического воздействия ионизирующего излучения от радиоизотопов плутония, а также от суммы основных антропогенных дозообразующих радионуклидов (стронция, цезия и плутония) в постчернобыльский период

Fig. 4. Assessment of biological effect levels of ionizing radiation of plutonium radioisotopes, as well as of a sum of the main man-made dose-forming radionuclides (strontium, cesium, and plutonium) in the post-Chernobyl period

Расчёт дозовых нагрузок для черноморских гидробионтов в широком диапазоне возможных уровней концентрации активности 239,240Pu в воде выполняли согласно известным подходам [13; 15; 28], с учётом $W_R = 20$ для альфа-частиц 239,240Pu. Результаты расчёта мощности эквивалентной дозы представлены в табл. 2. Они отражают связь между концентрацией активности 239,240Pu в воде и мощностью дозы, а следовательно, и уровнем биологического воздействия ИИ на представителей разных групп гидробионтов.
Таблица 2. Дозовые нагрузки (HR — мощность эквивалентной дозы) при разных концентрациях активности 239,240Pu в морской воде ($C_{В}$) и коэффициентах накопления в отношении 239,240Pu ($K_{Н}$ Pu); 4 Гр·год$^{-1}$ (предел мощности дозы, рекомендованный МАГАТЭ и МКРЗ, превышение которого ведёт к негативным изменениям в популяциях биоты) — граница между зоной экологической маскировки и зоной поражения экосистем (подчёркнут в таблице) [32; 34; 42; 49]

Группы гидробионтов	$C_{В}$ Pu, Бк·кг$^{-1}$	0,000001	0,08	0,8	8	16	80
Фитопланктон	1·105	1·10$^{-4}$	4·100	4·101	4·102	8·102	16·103
Макроводоросли	5·104	1·10$^{-3}$	4·10$^{-1}$	4·100	4·101	8·101	16·102
Зоопланктон	1·103	1·10$^{-6}$	4·10$^{-2}$	4·10$^{-1}$	4·100	8·100	16·101
Моллюски	5·102	5·10$^{-7}$	2·10$^{-2}$	2·10$^{-1}$	2·100	4·100	8·101
Рыбы	1·102	3·10$^{-8}$	1·10$^{-3}$	1·10$^{-2}$	1·10$^{-1}$	2·10$^{-1}$	4·100

Эти данные также иллюстрируют связь между биогеохимическим и эквидозиметрическим показателями оценки состояния водной среды и гидробионтов. Как видно из табл. 2, при одном и том же состоянии водной среды в отношении уровней содержания 239,240Pu уровень воздействия ИИ радиоизотопов на разные группы гидробионтов отличается, что в значительной степени определяется аккумуляционной способностью гидробионтов в отношении подвода. Неоспоримо то, что онтогенетические и радиобиологические состояния организмов могут модифицировать нижнюю границу зоны поражения экосистем; она будет уточнена по мере накопления знаний в этой области.

На основании обобщения результатов проведённых исследований была составлена общая схема (рис. 5) комплексного подхода к оценке экологического состояния акваторий в отношении ИИ от долгоживущих радиоизотопов [18; 19]. В данном подходе учитываются конкретные биогеохимические характеристики изучаемой экосистемы, прежде всего биогеохимические седиментационные потoki, аккумуляционную способность компонент экосистемы, гидрологический режим акватории. Важную роль играют и свойства рассматриваемого загрязнителя — тип биогеохимического поведения радионуклида, его физико-химические и радиологические характеристики. Использование этих показателей даёт возможность более точно оценивать способность поверхностных вод фотического слоя к самоочищению (в конкретной экосистеме в отношении рассматриваемого загрязнителя). Применяя комплексный подход, можно выполнять экспресс-оценки текущего или ожидаемого уровня экологического влияния загрязнителя, а также рассчитывать потоки поступления радиоизотопов, при которых они формируются, и время достижения контрольных концентраций. Кроме того, в рамках комплексного подхода рекомендовано использовать для регулирования потоки радионуклидов в акваторию водоёма, не допуская достижения критических уровней загрязнения и предотвращая негативное воздействие на биоту.

Важно, на наш взгляд, и то, что предлагаемая схема-алгоритм нацеливает мониторинговые или экспертные исследования не только на изучение уровней загрязнения в компонентах водной экосистемы, но и на выявление основных закономерностей поведения радионуклида в ней. Ключевое значение приобретают определение типа биогеохимического поведения радионуклида и изучение количественных характеристик биогеохимических процессов в экосистеме с использованием радионуклидов не только как предмета, но и как метода исследования, т. е. в качестве
Применение концептуальной модели зональности хронического действия мощностей… 95

Рис. 5. Схема оценки экологического состояния биоты (уровни ожидаемого экологического воздействия) в черноморских акваториях по биогеохимическим и эквидозиметрическим критериям для широкого диапазона концентраций активности 239,240Pu в воде; П1 — поток поступления 239,240Pu; П2 — поток выноса 239,240Pu; Cв — концентрация активности 239,240Pu в воде; Cв0 — фоновый уровень Cв в воде; Cвдопустимая — уровень концентрации активности 239,240Pu в воде, превышение которого вызывает негативные изменения в популяциях гидробионтов.

Таким образом, результаты изучения ведущих процессов, определяющих перераспределение техногенных радиоизотопов 239,240Pu в Чёрном море, и учёт их количественных характеристик, выявленные основные биогеохимические особенности поведения $^{239+240}$Pu в море, уровни аккумуляционной способности гидробионтов и полученные дозовые нагрузки на водные организмы позволили показать применимость концептуальной модели Г. Г. Поликарпова как заключительного звена схемы-алгоритма текущих и прогнозных оценок экологического состояния биоты в отношении долгоживущих радионуклидов в водных экосистемах в широком диапазоне концентраций активности $^{239+240}$Pu в воде водоёма или отдельно взятой его акватории.

Морской биологический журнал Marine Biological Journal 2020 vol. 5 no. 3
Акцентировано внимание на важности для прогнозных дозиметрических оценок учёта биогеохимических показателей, в частности K_N, количественно характеризующих аккумуляционную способность черноморских гидробионтов и тип биогеохимического поведения радионуклидов в водоёме, а также отражающих особенности биогеохимической миграции плутония в нём.

Работа выполнена в рамках государственного задания ФИЦ ИнБЮМ по темам «Молисмолитические и биогеохимические основы гомеостаза морских экосистем» (№ гос. регистрации АААА-А18-118020890090-2) и «Суперпозиция физических, химических и биологических процессов в формировании качества морской среды и функционального состояния гидробионтов в Азово-Черноморском бассейне» (№ гос. регистрации АААА-А18-118020790154-2).

СПИСОК ЛИТЕРАТУРЫ / REFERENCES

1. Алексахин Р. М., Фесенко С. В. Радиационная защита окружающей среды: антропоцентрический и экзентрический принципы // Радиация и радиационная биология. Радиоэкология. 2004. Т. 44, № 1. С. 93–103. [Alexakhin R. M., Fesenko S. V. Radiation protection of the environment: anthropocentric and ecocentric principles. Radiatsionnaya biologiya. Radioekologiya, 2004, vol. 44, no. 1, pp. 93–103. (in Russ.)]

2. Брешиньяк Ф., Поликарпов Г. Г., Оутон Д. Г., Хантг Т., Алексахин Р., Жу Ю., Хилтон Дж., Странд П. Охрана окружающей среды в 21-м веке: радиационная защита биосферы, включая человечество (заявление Международного союза радиоэкологии) // Морской экологический журнал. 2003. Т. 2, № 2. С. 102–105. [Bréchignac F., Polikarpov G., Oughton D. H., Hunter G., Alexakhin R., Zhu Y. G., Hilton J., Strand P. Protection of the environment in the 21st century: Radiation protection of the biosphere including humankind (Statement of the International Union of Radioecology). Morskoj ekologicheskij zhurnal, 2003, vol. 2, no. 2, pp. 102–105. (in Russ.)]

3. Гудков Д. И., Кузьменко М. И., Шевцова Н. Л., Дзюбенко О. В., Мардаревич М. Г. Нарушение в биосистемах при интенсивном радионуклидном загрязнении водоёмов // Техногенные радионуклиды в пресноводных экосистемах / ред. В. Д. Романенко. Киев : Наукова думка, 2010. С. 195–233. [Gudkov D. I., Kuz'menko M. I., Shevtsova N. L., Dzyubenko O. V., Mardarevich M. G. Narushenie v biosistemakh pri intensivnom radionuklidnom zagryaznenii vodeem. In: Tekhnogennye radionuklyidy v presnovodnykh ekosistemakh / V. D. Romanenko (Ed.). Kiev : Naukova dumka, 2010, pp. 195–233. (in Russ.)]

4. Егоров В. Н., Гулин С. Б., Поповичев В. Н., Мирзоева Н. Ю., Терещенко Н. Н., Лазоренко Г. Е., Малахова Л. В., Плотицина О. В., Малахова Т. В., Проскурин В. Ю., Сидоров И. Г., Гулина Л. В., Стецюк А. П., Марченко Ю. Г. Биогеохимические механизмы формирования критических зон в Чёрном море в отношении загрязняющих веществ // Морской экологический журнал. 2013. Т. 12, № 4. С. 5–26. [Egorov V. N., Gulin S. B., Popovichev V. N., Mirzoeva N. Yu., Tereshchenko N. N., Lazorenko G. E., Malakhova L. V., Plotitsyna O. V., Malakhova T. V., Proskurnin V. Yu., Sidorov I. G., Gulina L. V., Stetsyuk A. P., Marchenko Yu. G. Biogeochemical mechanisms of formation of critical zones concerning to pollutants in the Black Sea. Morskoj ekologicheskij zhurnal, 2013, vol. 12, no. 4, pp. 5–26. (in Russ.)]

5. Зайцев Ю. П. Введение в экологию Чёрного моря. Одесса : Эвен, 2006. 224 с. [Zaitsev Yu. P. Vvedenie v ekologiyu Chernogo morya. Odessa : Even, 2006, 224 p. (in Russ.)]

6. Казаков С. В. Принципы оценки радиоэкологического состояния водных объектов // Радиационная биология. Радиоэкология. 2004. Т. 44, № 6. С. 694–704. [Kazakov S. V. The principles of radiological quality assessment of water resources. Radiatsionnaya biologiya. Radioekologiya, 2004, vol. 44, no. 6, pp. 694–704. (in Russ.)]

7. Казаков С. В., Уткин С. С. Подходы и принципы радиационной защиты водных объектов / ред. И. И. Линге ; Ин-т проблем безопасного развития атомной энергетики РАН. Москва : Наука, 2008. 318 с. [Kazakov S. V., Utkin S. S. Podkhody i printsipy radiatsionnoi zashchity vodnykh obektov

Морской биологический журнал Marine Biological Journal 2020 vol. 5 no. 3
Применение концептуальной модели зональности хронического действия мощностей…

8. Крупные радиационные аварии: последствия и защитные меры / ред. Л. А. Ильин, В. А. Губанов. Москва : ИздАТ, 2001. 752 с. [Kryshev A. I. Dinamicheskoe modelirovanie perenosa radionuklidov v gidrobiotsenozakh i otsenka posledstviya radioaktivnogo zagryazneniya dlya bioty i cheloveka ; avtoref. dis. … d-ra biol. nauk. Obninsk : VNIISKhRAE, 2008, 50 с. (in Russ.)]

9. Применение концептуальной модели зональности хронического действия мощностей…

10. НРБ-99/2009. Нормы радиационной безопасности. Санитарные правила и нормативы: СанПиН 2.6.1.2523-09 / Постановление Главного государственного санитарного врача РФ от 07.07.2009 № 47. 87 с. (in Russ.)

11. Рекомендации 2007 года Международной комиссии по радиационной защите : пер. с англ. / под общ. ред. М. Ф. Киселева, Н. К. Шандылов. Москва : Изд-во ООО ПКФ "Алана", 2009. 344 с. (Trudy M[еждународной] K[омиссии] [po] P[radiatsionnoi] Z[ащите] ; publ. 103). [The 2007 Recommendations of the International Commission on Radio logical Protection : transl. from Engl. Moscow : Izd-vo ООО PKF "Alana", 2009, 344 p. (Annals of I[nternational] C[ommission] [on] R[adio] P[rotection] ; Publ. 103). (in Russ.)]

12. Радиоэкологическая ситуация в Чёрном море в отношении радиоизотопов 238,239,240Pu после Чер нобыльской аварии по сравнению с некоторыми другими водоёмами вне и в пределах 30-км зоны Чернобыльской АЭС // Problemy radiokologii i pogranichnykh distsiplin. Nizhnevartovsk : OOO “Alster”, 2007. Вып. 10. С. 12–29. [Tereshchenko N. N., Polikarpov G. G. Radioekologicheskaya situatsiya v Chernom more v otnoshenii radioizotopov 238,239,240Pu posle Chernobyl'skoj avariyi po sravneniyu s nekotorymi drugimi vodoemami vne i v predelah 30-km zony Chernobyl'skoj AES. In: Problemy radioekologii i pogranichnykh distsiplin. Nizhnevartovsk : OOO “Alster”, 2007, iss. 10, pp. 12–29. (in Russ.)]

13. Радиоэкологический отклик Чёрного моря на чернобыльскую аварию / ред. Г. Г. Поликарпов, В. Н. Егоров. Севастополь : ЭКОСИ-Гидрофизика, 2008. 667 с. [Radioeological Response of the Black Sea to the Chernobyl Accident / G. G. Polikarpov, V. N. Egorov (Eds). Sevastopol : EKO SII-Gidrofizika, 2008, 667 p. (in Russ.)]
отложении в перераспределении плутония в черноморских экосистемах. Naukovi pratsi: naukovo-metodychnyi zhurnal. Tekhnohenna bezpeka, 2011, vol. 169, no. 157, pp. 63–70. (in Russ.)

18. Терещенко Н. Н. Плутоний в гидробионтах Чёрного моря // Наукові праці: науково-методичний журнал. Техногенна безпека. 2013. Т. 210, № 198. С. 52–60. [Tereshchenko N. N. Plutonii v gidrobiontakh Chernogo morya. Naukovi pratsi: naukovo-metodychnyi zhurnal. Tekhnohenna bezpeka, 2013, vol. 210, iss. 198, pp. 52–60. (in Russ.)]

19. Терещенко Н. Н. Радиоэкология техногенных альфа-излучающих радиоизотопов плутония в Чёрном море // Крым – эколого-экономический регион. Пространство ноосферного развития : материалы I Междунар. экол. форума в Крыму, 2017 г. / ред. В. А. Иванов, Е. И. Игнатов, И. С. Кусов, Н. Н. Миленко, Е. В. Ясенева, Е. А. Котельянец. Се‌вастополь : Филиал МГУ имени М. В. Ломоносова в г. Севастополе, 2017, pp. 245–248. (in Russ.)

20. Терещенко Н. Н. Комплексная оценка экологического состояния акваторий в отношении техногенных радионуклидов плутония // Экология, промышленная и энергетическая безопасность – 2019 : сб. статей по материалам междунар. науч.-практ. конф., 23–26 сентября 2019 г. / ред. Л. И. Лукина, Н. В. Лямина. Севастополь : СевГУ, 2019, С. 601–605. [Tereshchenko N. N. Kompleksnaya otsenka eko-logichestvo sostoyaniya akvatorii v otnosheni tehnogennykh radionuklidov plutoniiya. In: Eko-logichestkaya, promyshlennaya i energeticheskaya bezopasnost’ – 2019 : sb. statei po materialam mezhdunar. nauk.-prakt. konf., 23–26 Sept. 2019 / L. I. Lukina, N. V. Liymina (Eds). Sevastopol : SevGU, 2019, pp. 601–605. (in Russ.)]

21. Терещенко Н. Н., Прокурин В. Ю., Параскив А. А. Комплексный подход в оценке экологического состояния акваторий // Радиационная биология. Радиоэкология. 2019. Т. 59, № 6. С. 621–636. [Tereshchenko N. N., Proskurnin V. Yu., Paraskiv A. A. Complex approach in assessment of the ecological status of aquatories. Radiatsionnaya biologiya. Radioekologiya, 2019, vol. 59, no. 6, pp. 621–636. (in Russ.)]. http://doi.org/10.1134/s0869803119060122

22. Тимофеева-Ресовская Е. А. Распределение радиоизотопов по основным компонентам пресноводных водотоков. Свердловск : УФАН СССР, 1963. 78 с. (Труды / Ин-т биологии Уральского филиала AN СССР ; вып. 30). [Timofeeva-Resovskaya E. A. Raspredelenie radioizotopov po osnovnym komponentam presnovodnykh vodote-rov. Sverdlovsk : UFAN SSSR, 1963, 78 p. (Trudy / In-t biologii Uralskogo filiala AN SSSR ; iss. 30). (in Russ.)]

23. Трапезников А. В. ⁶⁰Co, ⁹⁰Sr, ¹³⁷Cs и ²³⁹,²⁴⁰Pu в пресноводных экосистемах. Екатеринбург : АкадемНauka, 2010. 510 с. [Trapeznikov A. V. ⁶⁰Co, ⁹⁰Sr, ¹³⁷Cs i ²³⁹,²⁴⁰Pu v presnovodnykh eko-sistemakh. Ekaterinburg : AkademNauka, 2010, 510 p. (in Russ.)]

24. Тряпицына Г. А., Пряхин Е. А. Адаптационные реакции эритропоэза у рыб при хроническом радиационном воздействии // Возможности адаптации к малым дозам радиации / ред. А. В. Аклеев. Санкт-Петербург : СпецЛит, 2019. С. 63–81. [Tryapitsina G. A., Pryakhin E. A. Adaptatsionnye reaktsii eritropoeza u ryb pri khronicheskom radiatsionnom vozdeistvii. In: Vozmozhnosti adaptatsii k malym dozam radiatsii / A. V. Akleev (Ed.). Saint Petersburg : SpetsLit, 2019, pp. 63–81. (in Russ.)]

25. Трапезников А. В. ⁶⁰Co, ⁹⁰Sr, ¹³⁷Cs и ²³⁹,²⁴⁰Pu в пресноводных экосистемах. Екатеринбург : АкадемНauka, 2010. 510 с. [Trapeznikov A. V. ⁶⁰Co, ⁹⁰Sr, ¹³⁷Cs i ²³⁹,²⁴⁰Pu v presnovodnykh eko-sistemakh. Ekaterinburg : AkademNauka, 2010, 510 p. (in Russ.)]

26. Удалова А. А. Биологический контроль радиационно-химического воздействия на окружающую среду и экологическое нормирование ионизирующих излучений : автореф. дис. … д-ра биол. наук. Обнинск : ВНИИСХРАЭ,
27. Цытунга В. Г. Эквидозиметрический подход к оценке действия радиоактивного и химического загрязнения на природные популяции гидробионтов // Доповіді НАН України. 2002. № 3. С. 204–208. [Tsytunuga V. G. The equidosimetric approach to comparing the action of radioactive and chemical pollutants on natural populations of hydrobionts. Dopovidi NAN Ukrainy, 2002, no. 3, pp. 204–208. (in Russ.)]

28. Blaylock B. G., Frank M. I., O’Neal B. R. Methodology for Estimating Radiation Dose Rates to Freshwater Biota Exposed to Radionuclides in the Environment. Oak Ridge, 1993, 10 p. (Report ES/ER/TM–78).

29. Bradshaw C., Beasley J. C., Bonisoli-Alquati A., Bradshaw C., Brown J., Ciffroy Ph., Forbes V., Geras’kin S., Kautsky U., Brechignac F. Using an Ecosystem Approach to complement protection schemes based on organism-level endpoints. Journal of Environmental Radioactivity, 2014, vol. 136, pp. 98–104. https://doi.org/10.1016/j.jenvrad.2014.05.017

30. Brechignac F., Oughton D., Mays C., Barnthouse L., Brown J., Ciffroy Ph., Forbes V., Geras’kin S., Kautsky U., Brechignac F. Using an Ecosystem Approach to complement protection schemes based on organism-level endpoints. Journal of Environmental Radioactivity, 2016, vol. 158–159, pp. 21–29. https://doi.org/10.1016/j.jenvrad.2016.03.021

31. Chambers D. B., Osborne R. V., Garva A. L. Choosing an alpha radiation weighting factor for doses to non-human biota. Journal of Environmental Radioactivity, 2006, vol. 87, iss. 1, pp. 1–14. https://doi.org/10.1016/j.jenvrad.2005.10.009

32. Effects of Ionizing Radiation on Plants and Animals at Levels Implied by Current Radiation Protection Standards. Vienna : IAEA, 1992, 74 p. (IAEA-TECDOC-1094).

33. Environmental protection: The concept and use of reference animals and plants. Annals of ICRP, 2008, vol. 38, no. 4–6, pp. 1–242.

34. International Commission on Radiological Protection. Recommendations ICRP. Publication 60. Annals of the ICRP, 1991, vol. 21, no. 1–3, pp. 1–201.

35. International Commission on Radiological Protection. Recommendations ICRP. Publication 26. Annals of the ICRP, 1977, vol. 1, iss. 3, pp. 1–53.

36. Political, Social, and Ethical Considerations in Protecting the Environment From the Effects of Ionizing Radiation: A report for discussion. Vienna : IAEA, 2002, 30 p. (IAEA-TECDOC-1270).

37. Environmental protection: The concept and use of reference animals and plants. Annals of ICRP, 2008, vol. 38, no. 4–6, pp. 1–242.

38. Ethical Considerations in Protecting the Environment From the Effects of Ionizing Radiation: A report for discussion. Vienna : IAEA, 2002, 30 p. (IAEA-TECDOC-1270).

39. International Commission on Radiological Protection. Recommendations ICRP. Publication 60. Annals of the ICRP, 1991, vol. 21, no. 1–3, pp. 1–201.

40. International Commission on Radiological Protection. Recommendations ICRP. Publication 26. Annals of the ICRP, 1977, vol. 1, iss. 3, pp. 1–53.

41. Ethical Considerations in Protecting the Environment From the Effects of Ionizing Radiation: A report for discussion. Vienna : IAEA, 2002, 30 p. (IAEA-TECDOC-1270).

42. International Commission on Radiological Protection. Recommendations ICRP. Publication 60. Annals of the ICRP, 1991, vol. 21, no. 1–3, pp. 1–201.

43. Motelsilla C., Abend M., Bréchignac F., Coppo-pleasant D., Geras’kin S., Goodman J., Hore-mans N., Jeggo P., McBride W., Mousseau T. A., O’Hare A., Papinen Rao V. L., Powathil G., Schofield P. N., Seymour C., Sutcliffe J., Austin B. The tubercular badger and the uncertain curve: The need for a multiple stressor approach in environmental radiation protection. Environmental Research, 2019, vol. 168, pp. 130–140. https://doi.org/10.1016/j.envres.2018.09.031

44. Motelsilla C., Abend M., Bréchignac F., Coppo-pleasant D., Geras’kin S., Goodman J., Hore-mans N., Jeggo P., McBride W., Mousseau T. A., O’Hare A., Papinen Rao V. L., Powathil G., Schofield P. N., Seymour C., Sutcliffe J., Austin B. The tubercular badger and the uncertain curve: The need for a multiple stressor approach in environmental radiation protection. Environmental Research, 2019, vol. 168, pp. 130–140. https://doi.org/10.1016/j.envres.2018.09.031

45. Motelsilla C., Abend M., Bréchignac F., Coppo-pleasant D., Geras’kin S., Goodman J., Hore-mans N., Jeggo P., McBride W., Mousseau T. A., O’Hare A., Papinen Rao V. L., Powathil G., Schofield P. N., Seymour C., Sutcliffe J., Austin B. The tubercular badger and the uncertain curve: The need for a multiple stressor approach in environmental radiation protection. Environmental Research, 2019, vol. 168, pp. 130–140. https://doi.org/10.1016/j.envres.2018.09.031

46. Motelsilla C., Abend M., Bréchignac F., Coppo-pleasant D., Geras’kin S., Goodman J., Hore-mans N., Jeggo P., McBride W., Mousseau T. A., O’Hare A., Papinen Rao V. L., Powathil G., Schofield P. N., Seymour C., Sutcliffe J., Austin B. The tubercular badger and the uncertain curve: The need for a multiple stressor approach in environmental radiation protection. Environmental Research, 2019, vol. 168, pp. 130–140. https://doi.org/10.1016/j.envres.2018.09.031
APPLICATION OF THE G. G. POLIKARPOV CONCEPTUAL MODEL OF CHRONIC ACTION ZONALITY OF IONIZING IRRADIATION DOZE RATES TO BIOSPHERE OBJECTS IN APPLIED HYDROBIOLOGY

N. N. Tereshchenko

A. O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Sevastopol, Russian Federation
E-mail: ntereshchenko@yandex.ru

Evolution of the approach to assessing ionizing radiation effects on living organisms is briefly discussed in this paper. Using the example of Black Sea hydrobionts, possibility of applying the G. G. Polikarpov conceptual radiochemoecological model of chronic action zonality of ionizing irradiation dose rates in nature to assess ecological exposure of technogenic radioisotopes ionizing radiation on aquatic biota was shown. In applied hydrobiology, this model can serve as the basis for a complex approach in assessing aquatic biota ecological state and its prediction for a wide range of 239,240Pu activity concentration in seawater. The necessity of combined use of biogeochemical and equidosimetric indicators of radionuclide behavior in a water area is emphasized. In particular, for predictive dosimetric assessments, it is important to take into account quantitative characteristics of accumulative ability of Black Sea hydrobionts and a type of radioelement biogeochemical behavior, reflecting peculiarities of plutonium biogeochemical migration in a marine ecosystem.

Keywords: assessment of aquatic biota ecological state, Black Sea, biogeochemical migration, redistribution of 239,240Pu radioisotopes, dose commitments, hydrobionts, G. G. Polikarpov conceptual model

The materials of the article were presented at the Readings in memory of Academician G. G. Polikarpov “Radiochemoecology: Progress and Prospects” (Sevastopol, IBSS, 2019).