Ferromagnetic Resonance in Permalloy Metasurfaces

N. Noginova1 · V. Gubanov2 · M. Shahabuddin1 · Yu. Gubanova2 · S. Nesbit1 · V. V. Demidov3 · V. A. Atsarkin3 · E. N. Beginin2 · A. V. Sadovnikov2

Received: 5 March 2021 / Revised: 4 May 2021 / Accepted: 10 May 2021 / Published online: 18 June 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2021

Abstract
Permalloy films with one-dimensional profile modulation of submicron periodicity are fabricated based on commercially available DVD-R discs and studied using ferromagnetic resonance method and micromagnetic numerical simulations. The main resonance position shows in-plane angular dependence which is strongly reminiscent of that in ferromagnetic films with uniaxial magnetic anisotropy. The main signal and additional low-field lines are attributed to multiple standing spin-wave resonances defined by the grating period. The results may present interest in magnetic metamaterials and magnonics applications.

1 Introduction
Advances in nanofabrication and development of metamaterial concepts bring to life a new class of composite materials whose properties are artificially engineered via responses of nano-features to the electric component of electromagnetic field [1, 2]. Nanoinclusions made from plasmonic metal (silver, gold, aluminum) are commonly used in optical metamaterials due to their strong response to illumination in the range of plasmon resonances [2]. Using magnetic inclusions which respond to the magnetic component of the electromagnetic radiation, one can design magnetic properties and propagation of electromagnetic waves in a material as well [3–8]. In similarity with optical metamaterials [2], such systems can be described in terms of the effective medium approximation [9] with the material constants: dielectric permittivity, \(\varepsilon \), and magnetic permeability, \(\mu \). However, magnetic metamaterials are restricted to the radio frequency range since the dynamic of the magnetic response is relatively slow, with typical frequencies of magnetic resonance in GHz range. On
the other hand, the use of magnetic components enables easy tunability of such systems with the external magnetic field. The effective permeability of composites with single-domain small magnetic nanoparticles in polymer matrices can be tuned from negative to positive values [5, 6], presenting interesting opportunities for temporal and spatial control of the wave propagation. Via mutual arrangement of magnetic nanofeatures and their shape, one can design materials with certain anisotropy of magnetic and microwave properties [10–15].

With increased sizes of magnetic features, the effective medium approximation using a single μ might be no longer sufficient as the response to the illumination becomes more complicated due to the excitation and propagation of spin waves. Structures with periodic arrangement of magnetic elements are commonly considered in terms of magnonic crystals [16–24] in analogy with photonic crystals [25–27] exhibiting effective photonic forbidden and allowed bands. In this work we study grating-like permalloy structures with the submicron periodicity. Permalloy is a soft ferromagnetic with high magnetic permeability; it is a common material for various magnetic and magnonic [13, 22–24] studies. In addition, it exhibits plasmonic behavior [28] and an interesting coupling between plasmonic, magnetic and electric properties [29], presenting interest for plasmon-induced magnetization switching and magnetically controlled plasmonics. In our work, we employ the FMR method and micromagnetic numerical simulations to better understand magnetic and magnetic resonance behavior of such systems, applicability of metamaterial description, and a role of spin wave-related effects.

2 Experimental

Our experimental structures are permalloy (Ni–Fe alloy with 80% of Ni and 20% of Fe) thin films with one-dimensional (1D) profile modulation based on the substrates derived from commercially available digital optical storage discs, DVD-R (Digital Video Recordable). The fabrication starts with obtaining polycarbonate grating substrates from disassembling commercial DVD-R by carefully taking out the polymer, plastic, silver, and protective coating layers. Then, permalloy (Py) with a thickness $\delta=40$ nm is deposited on the prepared and precut DVD substrates using e-beam evaporation. The thickness of the film is independently tested with a profilometer by measuring films simultaneously deposited on glass substrates. Atomic force microscopy (AFM) confirms the profile-modulation parameters, the periodicity $d=740$ nm and modulation height $h=60–80$ nm. As main experiments and numerical simulations are performed with Py/DVD structures, for comparison purposes we also prepared permalloy structures with different profile-modulation parameters using substrates derived from discs of the different format, Blu-Ray or CD discs, with $d=320$ nm and $h=25–30$ nm in Py/BR structures, and $d=1600$ nm and $h=120–140$ nm (Py/CD), see Fig. 1a for the schematics.

Ferromagnetic resonance curves are recorded using the Bruker EPR Spectrometer at 10 GHz microwave frequency (X Band). The sample is placed inside the microwave cavity with the sample orientation corresponding to the external magnetic field, H in plane of the film, Fig. 1b. The direction of the grooves makes an
angle θ with H. The signal (the derivative of the microwave absorption vs H) is recorded for various θ.

Typical ferromagnetic resonance spectra observed in Py/DVD are shown in Fig. 2a. (In this plot, the field is shown in Oersted as is in the original recordings.) The signal position depends on the orientation angle, shifting from the lowest to highest field when θ changes from 0 to 90°, corresponding, respectively, to the parallel and perpendicular orientations of the grooves in respect to the external field.

The position of the main FMR peak (determined from fitting with the Lorentzian lines) is plotted as the function of θ, Fig. 2b. The dependence closely follows $\cos 2\theta$ function. An additional component can be clearly distinguished in some orientations, with the position strongly dependent on the angle as well. The relative strength of this component slightly varies from sample to sample while the angular behavior (Fig. 2c, open circles) follows the same $\cos 2\theta$ dependence.

Fig. 1 a Profile schematics of Py/DVD, Py/BR, and Py/CD structures (as indicated). b Orientation of the sample in FMR experiments

Fig. 2 a Typical FMR spectra and b position of the main peak as the function of θ in Py/DVD. Dashed trace is fitting with Eq. 1. c Peak positions in Py/CD (stars) and Py/DVD (circles), main peak (closed symbols), additional component (open symbols). d Positions of two peaks in Py/BR vs angle
We explored the FMR in the other structures as well. A single peak in the Py/CD structures demonstrates the same angular dependence (Fig. 2c, stars) but with a smaller amplitude. The behavior of Py/BR is different. In a broad range of angles ($\theta > 40^\circ$), a single FMR peak is observed with practically no dependence on the orientation. Splitting into two peaks and a strong angular dependence is observed for low angles. Note, that in the current work we concentrate on the Py/DVD system; the other systems will be studied in detail elsewhere.

3 Discussion and Modeling

The angular dependence of the main FMR signal in Py/DVD is strongly reminiscent of that in ferromagnetic films with the growth-induced in-plane uniaxial anisotropy [30, 31]. This can be expected, taking into account that the structural geometry of our gratings is comparable with that of crystalline films [30] but with a submicron-size of the features instead of interatomic distances. Note that films with this type of the magnetic anisotropy exhibit a sharp reorientation of the magnetization upon a small increment of the magnetic field [32, 33], and are of particular interest for optically induced magnetization switching via angular momentum transfer from light to matter [34, 35].

Assuming a relatively small magnetic anisotropy $H_p < H < M$, the FMR condition in our excitation geometry reads [36],

$$\left(\frac{\omega}{\gamma} \right)^2 (H + M + H_p \cos^2 \theta) (H + H_p \cos 2\theta),$$

predicting the periodic dependence with the period of 180°, minimum at 0° and maximum at 90° as has been observed in the experiment. Here ω is the FMR frequency, γ is the gyromagnetic ratio, M is the magnetization, and H_p is the anisotropy field [37]. From the fitting with Eq. 1, the effective anisotropy fields are estimated as $\mu_0 H_p = 7.6$ mT in the Py/DVD and 3.7 mT in Py/CD, assuming the saturation magnetization of permalloy, $M = M_S = 6.4 \times 10^5$ A/m. This is in agreement with the literature [12–15] as well, where patterned magnetic structures such as films deposited on the grating-like substrates [13] exhibit a uniaxial anisotropy with the easy axis parallel to the direction of grooves. However, in our Py/DVD systems, additional features are clearly seen, which could not be described with this simple approximation.

In order to better understand magnetic behavior of the Py/DVD structure, we perform numerical simulations, considering a meander-like structure with the following parameters: saturation magnetization of permalloy $M = M_S = 6 \times 10^5$ A/m, periodicity $d = 740$ nm, modulation height $h = 80$ nm, thickness of permalloy, $\delta = 50$ nm at horizontal stages, and various thicknesses $w \leq \delta$ at vertical walls. Since the deposition of metal on the top of the substrate can produce vertical walls with reduced thickness, additional simulations have been performed to explore the role of reduced w. As we found, small variations in the range of possible thicknesses $0 < w \leq \delta$ do not significantly affect the results. The detailed study of FMR behavior in patterned
systems with different parameters including variations in the periodicity, film thickness, and the shape of the profile modulation (sine-wave or rectangular) is the subject of a separate study. In the numerical simulations, we apply an approach discussed in detail in [19] and perform micromagnetic modeling of our structure using the MuMax3 software [38]. The calculation is based on the Landau–Lifshitz–Gilbert equation with damping parameter of 0.007. We consider the same geometry as in the experiment: the external magnetic field lies in plane with the structure and the angle, θ, between the direction of grooves and field varies from 0° to 90°. The microwave field with the magnitude of 10^{-4} T is applied along y-axis (perpendicular to the H direction).

First, we estimate local distributions of the static magnetization M and effective internal fields H_i (resulting from external and demagnetization fields). In Fig. 3, distributions of H_i (absolute values) are shown at various rotation angles: when the external magnetic field is perpendicular to the direction of grooves (Fig. 3a); makes an angle of 45° (Fig. 3b) or parallel to the grooves (Fig. 3c). As one can see, at $\theta=90°$ and $45°$, the magnetic response of the material is strongly modulated in space with maxima of H_i observed in the middle of horizontal stages and minima observed at the corners. The magnitude of this spatial modulation decreases with the decrease in the angle, vanishing at the parallel orientation of the grooves and external field, Fig. 3c. Absorption at the 10 GHz frequency is calculated following the approach [19] as the function of the external magnetic field. In a flat film, a single resonance peak is expected at $\mu_0H_0 = 0.142$ T, while

![Fig. 3](image_url) Distribution of the internal magnetic field at different rotation angles: (a) $\theta=90°$, (b) $\theta=45°$, and (c) $\theta=0°$. $\mu_0H_0 = 0.2$ T
in the profile-modulated structures, several peaks can be resolved with the positions dependent on the orientation.

Three major peaks predicted in the Py/DVD structure (with the period \(d = 740 \text{ nm}\) and wall thickness \(w = 12.5 \text{ nm}\)) are shown in Fig. 4a. With an increase in \(q\), these peaks shift toward \(H_0\), Fig. 4b. The angular dependences for the Peak 1 and Peak 2 positions fairly well correspond to those of the main and additional peaks observed in experiment, Fig. 4c.

Let us assume that the peaks observed below \(H_0\) both in simulations and experiments correspond to the resonance modes formed by the magnetic surface spin waves (MSSW [17–19, 37]) (The Peak 4 in Fig. 4a with the position above \(H_0\) is likely related to the volume modes and is not discussed here). When the field \(H\) and the magnetization, \(M\), are directed along the grooves (\(\theta = 0\)), MSSW waves are excited in the perpendicular direction, see Fig. 5a which illustrates the amplitude of the precessing transverse magnetization \(m(t)\) under the resonance

Fig. 4 a Simulated microwave (10 GHz) absorption vs field in Py/DVD. b Peak positions vs orientation angle, c comparison with experiment. Experimental data are shown with symbols, results of numerical simulations are solid traces. Numbers 1, 2, and 3 indicate corresponding peaks

Fig. 5 a, b Standing modes at a perpendicular orientation and b an arbitrary angle; c Resonance field vs \(k\), simulations. The numbers 1, 2, and 3 indicate corresponding datasets of Fig. 4
conditions. Since the spatial modulation (defined by the grating period) has the period of d in this direction, the resonance condition is expected at,

$$k = \pi N / d,$$

where $N = 1, 2, 3...$ is an integer. Standing waves are formed due to the constructive interference of waves reflected from the same type of boundaries (Bragg law). Note that in the frame of magnonic crystal consideration [21], this condition corresponds to the boundaries of the Brillouin zones where the group velocity is zero. An alternative mechanism of the standing wave formation [19] could be considered where an integer number of half-waves fit in horizontal segments (with the length of $\sim d/2$) between groove walls. In this case, an additional factor of 2 should be included in the right side of Eq. (2). As shown below, our data rather indicate that d is the period of modulation. Thus, further we use Eq. (2), though the alternative approach might be applied as well.

When the magnetic field is oriented under an angle θ in respect to the groove direction (Fig. 5b), as an approximation, we assume that the magnetization is directed parallel to the field and spin waves propagate in the orthogonal direction. In this case, the period of the modulation is $d / \cos \theta$, and the k-vector of the resonance mode can be found from the condition,

$$k = N \pi / d \cos \theta.$$

Let us replot the peak position estimated from the numerical calculations (Fig. 4b) as the function of the k-vector estimated from the Eq. 3 with $N = 1$ for the dataset 1, and $N = 2$ and $N = 3$ for the datasets 2 and 3, respectively. All the data fit the single curve (Fig. 5c) confirming our assumptions above. Note, that, alternatively, similar speculations can be applied assuming a twice smaller period $d/2$ of magnetic modulation (which corresponds to the width of each horizontal segment). In this case, the graph (c) will be stretched twice along the x-axis.

In frames of the same numerical approach, the dynamic (transverse) magnetization component m_x is calculated under the resonance conditions of Peaks 1, 2, and 3 at $\theta = 0$. While the absolute values of m_x are symmetric in respect to the middle of the figure (in similarity with Fig. 3), patterns for the instantaneous values are rather complicated, see the panels on the left sides of Fig. 6a–c and their analysis on the right. However, the presence of standing waves is evident, with the k vectors of π / d, $2\pi / d$, and $3\pi / d$, corresponding to the resonances 1, 2, and 3, respectively. This corresponds to the predictions of Eq. (2).

We put together theory and experiment in Fig. 6d. Points are the experimental results with the abscissas calculated as following: Red circles and triangles: Py/DVD ($d_{DVD} = 740$ nm). The k vectors are calculated as $k = \pi / d_{DVD} N \cos \theta$, $N = 1$ for the main peak (circles), and $N = 2$ for the second peak (triangles). Green stars: Py/CD ($d_{CD} = 1600$ nm). The k vectors are calculated at the same manner assuming $N = 1$, $k = \pi / d_{CD} \cos \theta$. We make an attempt to add the results obtained in Py/BR ($d_{BR} = 320$ nm) as well. Points (blue squares) fit the general tendency if we use the second (smaller) peak (which shows strong angular dependence) and estimate $k = \pi / d_{BR} \cos \theta$. The
dashed curve is obtained from the numerical simulations (Fig. 5c). The solid curve is shown for comparison; it is obtained from Eq. (4) which describes the dispersion curve of the MSSW for the flat film [39] with in-plane magnetic field assuming the film thickness $\delta = 50$ nm,

$$\left(\frac{\omega}{\mu_0} \right)^2 = H(H + M) + \frac{M^2}{4} \left(1 - e^{-2k\delta} \right). \quad (4)$$

In principle, assuming a certain relationship between the field and the resonance frequency one can derive the dispersion curve of the spin waves in our structures from the data plotted in Fig. 6. It is already seen that at higher k, the dispersion curve is close to that in a flat film. This is expected since the spin waves with smaller wavelengths are less affected by the profile geometry.

In conclusion, a simple fabrication approach based on commercially available digital storage discs has been suggested and implemented for fabrication of profile-modulated permalloy films. The structures obtained are meander-type parallel grooves with the depth and width on the submicron scale. The ferromagnetic resonance experiments confirm in-plane magnetic anisotropy of structures with the easy axis directed along the grooves and effective anisotropy field of 5–10 mT. Additional low-field resonances are detected as well. We discuss the effects in the frames of the metamaterial approach, show its limitations and a need to take spin waves into account. The presence and behavior of the additional FMR peaks is explained with spin-wave resonances determined by the periodicity of the structures. The findings are confirmed by micromagnetic simulations based on digital solving of the
Landau–Lifshitz Equation with the resonant microwave field taken into account. Both static and dynamic magnetization maps are obtained and used for the analysis of the FMR data. The results can find applications in magnonics, metamaterials and future studies of a possible coupling between surface plasmon polaritons and spin waves.

Acknowledgements

N. Noginova, M. Shahabuddin, and S. Nesbit would like to acknowledge financial support from National Science Foundation (NSF) (1830886), Air Force Office of Scientific Research(AFOSR) (FA9550-18-1-0417), and Department of Defence (DoD) (W911NF1810472). The work of authors from Russian Federation is carried out within the framework of the state task and partially was supported by Russian Foundation for Basic Research, project No. 18-57-16001. Micromagnetic simulation of spin-wave resonances was supported by Russian Science Foundation (project No. 20-79-101910).

References

1. J. Haus (ed.), *Fundamentals and Applications of Nanophotonics* (Elsevier, Oxford, 2016), pp. 253–307
2. M.A. Noginov, V.A. Podolskiy (eds.), *Tutorials in Metamaterials* (CRC Press, Boca Raton, 2011), p. 308
3. A.L. Adenot-Engelvin, C. Dudek, P. Toneguzzo, O. Acher, Microwave properties of ferromagnetic composites and metamaterials. J. Eur. Cer. Soc. 27, 1029–1033 (2007)
4. Y. Poo, R. Wu, G. He, P. Chen, J. Xu, R. Chen, Experimental verification of a tunable left-handed material by bias magnetic fields. Appl. Phys. Lett. 96, 161902 (2010)
5. C. Morales, J. Dewdney, S. Pal, S. Skidmore, K. Stojak, H. Srikanth, T. Weller, J. Wang, Tunable magneto-dielectric polymer nanocomposites for microwave applications. IEEE Trans. Microw. Theory Tech. 59, 302–309 (2011)
6. N. Noginova, Q. L. Williams, P. Dallas, E. P. Giannelis, Magnetic nanoparticles for tunable microwave metamaterials, in *Proc. SPIE 8455, Metamaterials: Fundamentals and Applications V*, p. 845531 (2012)
7. M. Mruczkiewicz, M. Krawczyk, R.V. Mikhailovskiy, V.V. Kruglyak, Towards high-frequency negative permeability using magnonic crystals in meta- material design. Phys. Rev. B 86(2), 024425 (2012)
8. B. Bates, N. Greene, N. Noginova, Characterization of ferromagnetic/dielectric systems for metamaterials applications, in *Proc. SPIE, 91602R-91602R-4* (2014)
9. T.C. Choy, *Effective Medium Theory* (Clarendon Press, Oxford, 1999).
10. J. Fischbacher, A. Kovacs, H. Oezelt, M. Gusenbauer, D. Suess, T. Schrefl, Effective uniaxial anisotropy in easy-plane materials through nanostructuring. Appl. Phys. Lett. 111, 192407 (2017)
11. N. Noginova, Yu. Barnakov, A. Radocea, V.A. Atsarkin, Role of dipole-dipole interactions in half-field quantum transitions in magnetic nanoparticles. J. Magn. Magn. Mater. 323, 2264 (2011)
12. M.O. Liedke, M. Körner, K. Lenz, M. Fritzsche, M. Ranjan, A. Keller, E. Čižmár, S.A. Zvyagin, S. Facsko, K. Potzger, J. Lindner, J. Fassbender, Crossover in the surface anisotropy contributions of ferromagnetic films on rippled Si surfaces. Phys. Rev. B 87, 024424 (2013)
13. J. Berendt, J.M. Teixeira, A. García-García, M. Raposo, P.A. Ribeiro, J. Dubowik, G.N. Kakazi, D.S. Schmool, Tunable magnetic anisotropy in permalloy thin films grown on holographic relief gratings. Appl. Phys. Lett. 104, 082408 (2014)
14. R. Moroni, D. Sekiba, F. Buatier de Mongeot, G. Gonella, C. Boragono, L. Mattera, U. Valbus, Uniaxial magnetic anisotropy in nanostructured Co/Cu (001): from surface ripples to nanowires. Phys. Rev. Lett. 91, 167207 (2003)
15. S.A. Mollick, R. Singh, M. Kumar, S.N. Bhattacharyya, T. Som, Strong uniaxial magnetic anisotropy in Co films on highly ordered grating-like nanopatterned Ge surfaces. Nanotechnology 29, 125302 (2018)
16. V.V. Kruglyak, S.O. Demokritov, D. Grundler, Magnonics. J. Phys. D Appl. Phys. 43, 264001 (2010)
17. S.L. Vysotskii, S.A. Nikitov, Yu.A. Filimonov, Magnetostatic spin waves in two-dimensional periodic structures (magnetophoton crystals). J. Exp. Theory Phys. 101, 547–553 (2005)
18. M.L. Sokolovskyy, M. Krawczyk, The magnetostatic modes in planar one-dimensional magnonic crystals with nanoscale sizes. J. Nanoparticle Res. 13, 6085–6091 (2011)
19. E.N. Beginin, A.V. Sadovnikov, V.K. Sakharov, A.I. Stognij, Y.V. Khvintsev, S.A. Nikitov, Collective and localized modes in 3D magnonic crystals. J. Magn. Magn. Mat. 492, 165647 (2019)
20. J.O. Vasseur, L. Dobroznyski, B. Djafari-Rouhani, H. Puszkarski, Magnon band structure of periodic composites. Phys. Rev. B 54, 1043 (1996)
21. H. Puszkarski, M. Krawczyk, Magnonic crystals—the magnetic counterpart of photonic crystals. Solid State Phenom. 94, 125 (2003)
22. G. Gubbiotti, L.L. Xiong, F. Montoncello, A.O. Adeyeye, Collective spin waves in arrays of permalloy nanowires with single-side periodically modulated width. Appl. Phys. Lett. 111, 192403 (2017)
23. P. Malagò, L. Giovannini, R. Zivieri, P. Gruszecki, M. Krawczyk, Spin-wave dynamics in permalloy/cobalt magnonic crystals in the presence of a nonmagnetic spacer. Phys. Rev. B 92, 064416 (2015)
24. Z.K. Wang, V.L. Zhang, H.S. Lim, S.C. Ng, M.H. Kuok, S. Jain, A.O. Adeyeye, Observation of frequency band gaps in a one-dimensional nanostructured magnonic crystal. Appl. Phys. Lett. 94, 083112 (2009)
25. J.D. Joannopoulos, P.R. Villeneuve, S. Fan, Photonic crystals: putting a new twist on light. Nature 386, 143–149 (1997)
26. K. Ohtaka, Energy band of photons and low-energy photon diffraction. Phys. Rev. B. 19, 5057–5067 (1979)
27. I.A. Sukhoivanov, I.V. Guryev, Photonic Crystals, Springer Series in Optical Sciences (Springer Nature, Berlin, 2020), p. 224
28. M. Shahabuddin, N. Noginova, Plasmonic System with In-Plane Magnetic Anisotropy for Plasmon Based Magnetic Switching, OSA Techn. Digests, CLEO: QELS, 2019, paper # JW2A
29. M. Shahabuddin, D. Keene, M. Durach, V. S. Posvyanskii, V. A. Atsarkin N. Noginova, Magnetically controlled plasmon drag in permalloy structures. JOSA B. 38, 2012–2018 (2021)
30. C. Tang, M. Aldosary, Z. Jiang, H. Chang, B. Madon, K. Chan, M. Wu, J.E. Garay, J. Shi, Exquisite growth control and magnetic properties of yttrium iron garnet thin films. Appl. Phys. Lett. 108, 102403 (2016)
31. Y.-J. Zhang, L. Wu, J. Ma, Q.-H. Zhang, A. Fujimori, J. Ma, Y.-H. Lin, C.-W. Nan, N.-X. Sun, Interfacial orbital preferential occupation induced controllable uniaxial magnetic anisotropy observed in Ni/NiO(110) heterostructures. Npj Quant. Mater. 2, 17 (2017)
32. V.A. Atsarkin, V.V. Demidov, A.E. Mefed, VYu. Nagorkin, Magnetic pseudoresonance in manganite thin films. Appl. Magn. Res. 45, 809–816 (2014)
33. T.M. Vasilievskaya, S.A. Volodin, D.I. Sementsov, Ferromagnetic resonance and bistability field in a uniaxial magnetic film. Tech. Phys. 56, 1373 (2011)
34. M. Durach, N. Noginova, Spin angular momentum transfer and plasmogalvanic phenomena. Phys. Rev. B 96, 195411 (2017)
35. K.Y. Blokh, A.Y. Bekshaev, F. Nori, Optical momentum and angular momentum in complex media: from the Abraham-Minkowski debate to unusual properties of surface plasmon-polaritons. New J. Phys. 19, 123014 (2017)
36. V.V. Demidov, I.V. Borisenko, A.A. Klimov, G.A. Ovsyannikov, A.M. Petzhik, S.A. Nikitov, Magnetic anisotropy in strained manganite films and bicrystal junctions. JETP 112, 825 (2011)
37. A.G. Gurevich, G.A. Melkov, Magnetization Oscillation and Waves (CRC, New York, 1996).
38. A. Vansteenkiste, J. Leliaert, M. Dvornik, M. Helsen, F. Garcia-Sanchez, B. Van Waeyenberge, The design and verification of MuMax3. AIP Adv. 4, 107133 (2014)
39. D.D. Stancil, Theory of Magnetostatic Waves (Springer, Berlin, 2012).

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.