Bounded Pseudo-Amenability and Contractibility of Certain Banach Algebras

Hasan Pourmahmood-Aghababaa, Mohammad Hossein Sattarib, Hamid Shafie-Aslb

aDepartment of Mathematics, University of Tabriz, Tabriz, Iran
bFaculty of Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran

Abstract. The notion of bounded pseudo-amenability was introduced by Y. Choi and et al. [CGZ]. In this paper, similarly, we define bounded pseudo-contractibility and then investigate bounded pseudo-amenability and contractibility of various classes of Banach algebras including ones related to locally compact groups and discrete semigroups. We also introduce a multiplier bounded version of approximate biprojectivity for Banach algebras and determine its relation to bounded pseudo-amenability and contractibility.

1. Introduction

Let A be a Banach algebra and X a Banach A-bimodule. A bounded linear map $D : A \to X$ is called a derivation if
\[D(ab) = a \cdot D(b) + D(a) \cdot b \quad (a, b \in A), \]
and it is termed inner if there is $x \in X$ such that
\[D(a) = a \cdot x - x \cdot a \quad (a \in A). \]

The notion of amenability of Banach algebras was established by B. E. Johnson in 1972 ([Joh2]). If every bounded derivation from A into the dual Banach A-bimodule X^* is inner for all Banach A-bimodules X, then A is said to be amenable. A Banach algebra A is called contractible, if every bounded derivation from A into any Banach A-bimodule is inner. In 2004, Ghahramani and Loy developed these concepts and introduced new notions of amenability and contractibility ([GhL]). The basic definition of their notions is referred to as approximately inner derivation. For an A-bimodule X, a derivation $D : A \to X$ is called approximately inner if there is a net of inner derivations $\{D_\alpha : A \to X\}_\alpha$ such that $D(a) = \lim_\alpha D_\alpha(a)$ for any $a \in A$. The Banach algebra A is said to be (boundedly) approximately amenable if for any A-bimodule X, every derivation $D : A \to X^*$ is the pointwise limit of a (boundedly) net of inner derivations from A into X^*. In a similar manner (boundedly) approximate contractibility was defined. All notions of amenability are characterized in terms of approximate diagonals. We recall definitions needed in this article.

2010 Mathematics Subject Classification. Primary 46H25; Secondary 43A20, 43A07, 46H20

Keywords. Amenability, Pseudo-amenability, Locally compact group, Group algebra, Fourier algebra, Biprojectivity

Received: 16 November 2018; Accepted: 13 February 2020

Communicated by Dragan S. Djordjević

Email addresses: h_p_aghababa@tabrizu.ac.ir, pourmahmood@gmail.com (Hasan Pourmahmood-Aghababa), sattari@azaruniv.ac.ir (Mohammad Hossein Sattari), hamidmath2013@outlook.com (Hamid Shafie-Asl)
Definition 1.1. Let A be a Banach algebra. A net $\{m_i\} \subset A \hat{\otimes} A$ satisfying
\[am_i - m_ia \to 0, \quad am_i \to a,\]
is called an approximate diagonal, where $\pi : A \hat{\otimes} A \to A$ is the diagonal map determined by $\pi(a \otimes b) = ab$. According to [CGZ], we say that the diagonal $\{m_i\}$ is multiplier-bounded if there exists a constant $K > 0$ such that for all $a \in A$ and all i,
\[\|am_i - m_ia\| \leq K\|a\|, \quad \|am_i - a\| \leq K\|a\|, \quad \|\pi(m_i)a\| \leq K\|a\|.
\]
Johnson proved in [Joh1] that a Banach algebra A is amenable if and only if there exists a bounded approximate diagonal, i.e. an approximate diagonal $\{m_i\}$ satisfying $\sup_{a \in A} \|m_i\| < \infty$.

According to [GhZh] a Banach algebra A is called pseudo-amenable if it has an approximate diagonal, and it is pseudo-contractible if it possesses a central approximate diagonal $\{m_i\}$, i.e. $am_i = m_ia$ for all $a \in A$ and all i.

Definition 1.2. A Banach algebra A is called boundedly pseudo-amenable if it has a multiplier-bounded approximate diagonal. The term “K-pseudo-amenable” refers to bounded pseudo-amenability with multiplier bound $K > 0$.

Like Definition 1.2 we introduce the concept of bounded pseudo-contractibility.

Definition 1.3. A Banach algebra A is called boundedly pseudo-contractible if it has a central multiplier-bounded approximate diagonal, that is to say there are a central approximate diagonal $\{m_i\}$ and a constant $K > 0$ such that
\[\|am_i - a\| \leq K\|a\| \quad (a \in A).
\]
Similarly, the term “K-pseudo-contractible” refers to bounded pseudo-contractibility with multiplier bound $K > 0$.

It is needless to say that every boundedly pseudo-contractible Banach algebra is boundedly pseudo-amenable.

Motivated by the earlier investigations, in this paper, we verify bounded pseudo-amenability and contractibility of some important Banach algebras in harmonic analysis such as group and measure algebras of a locally compact group, Fourier algebra of a discrete group and some algebras constructed on discrete semigroups. We also introduce a multiplier-bounded approximate biprojectivity for Banach algebras and verify its relation with bounded pseudo-amenability and contractibility.

2. Bounded pseudo-amenability and contractibility

In this section we give some general properties of bounded pseudo-amenable and contractible Banach algebras including hereditary properties.

Let A be a Banach algebra. We say that a net (ε_a) is an approximate identity for A, if $\|\varepsilon_a - a\| \to 0$ and $\|\varepsilon_a - a\| \to 0$ for all $a \in A$. It is called central if $\varepsilon_a = e_a$ for each $a \in A$. We call (ε_a) a bounded approximate identity for A, if it is also bounded. The net (ε_a) is termed a multiplier-bounded approximate identity for A if there exists a constant $k > 0$ such that $\|\varepsilon_a\| \leq k\|a\|$ and $\|\varepsilon_a a\| \leq k\|a\|$ for all $a \in A$ and all α. It is clear that boundedly pseudo-amenable Banach algebras possess a multiplier-bounded approximate identity and pseudo-contractive Banach algebras have a multiplier-bounded central approximate identity.

The unitization of a Banach algebra A is denoted by $A^\#$ which is $\mathcal{A} \hat{\otimes} \mathbb{C}$ with the following product:
\[(a, \lambda) \cdot (b, \mu) = (ab + \mu a + \lambda b, \lambda \mu) \quad (a, b \in A, \lambda, \mu \in \mathbb{C}).
\]
It is obvious that with l^1-norm $A^\#$ is a Banach algebra as well.

Proposition 2.1. ([CGZ, Proposition 2.2]) A Banach algebra A is boundedly approximately contractible if and only if its unitization $A^\#$ is boundedly pseudo-amenable.
The next proposition provides an example of a pseudo-amenable Banach algebra which is not boundedly pseudo-amenable.

Proposition 2.2. There is a unital Banach algebra which is pseudo-amenable but not boundedly pseudo-amenable.

Proof. Consider the Banach algebra A constructed in [GhR] which is boundedly approximately amenable but not boundedly approximately contractible. Then it follows from [CGZ, Proposition 2.4] that A^* is boundedly approximately amenable and so A^* is pseudo-amenable by [Pou1, Corollary 3.7]. Using Proposition 2.1 and the fact that A is not boundedly approximately contractible we conclude that A^* is not boundedly pseudo-amenable.

Theorem 2.3. Let A be a K-pseudo-amenable (contractible) Banach algebra, B a Banach algebra and $\theta : A \to B$ a continuous epimorphism. Then B is boundedly pseudo-amenable (contractible) with bound $K' = \max\{K\|\theta\|^2, K\|\theta\|\}$.

Proof. By the assumption there is a net (m_i) in $A \hat{\otimes} A$ such that

$$am_i - m_ia \to 0, \quad a\pi(m_i) \to a,$$

$$\|am_i - m_ia\| \leq K\|a\|, \quad \|a\pi(m_i) - a\| \leq K\|a\|, \quad \|\pi(m_ia) - a\| \leq K\|a\|.$$

For each $i \in \mathbb{N}$ let $[a^*_n]_{n=1}^\infty, [b^*_n]_{n=1}^\infty \subset A$ be sequences such that $m_i = \sum_{n=1}^\infty a^*_n \otimes b^*_n$ and $\sum_{n=1}^\infty \|a^*_n\| \|b^*_n\| < \infty$. Set $C = \|\theta\|$ and define

$$M_i = (\theta \otimes \theta)(m_i) = \sum_{n=1}^\infty \theta(a^*_n) \otimes \theta(b^*_n).$$

Then $\|M_i\| \leq C^2\|m_i\|$ and for each $a \in A$,

$$\|\theta(a)M_i - M_i\theta(a)\| = \|((\theta \otimes \theta)(am_i - m_ia))\| \leq C^2\|am_i - m_ia\| \leq C^2K\|a\|,$$

$$\|\theta(a)\pi(M_i) - \theta(a)\| = \|\theta(a)\pi(\theta \otimes \theta(m_i)) - \theta(a)\| = \|\theta(a)\pi(\pi(m_i)) - \theta(a)\| = \|\theta(a)\pi(m_i) - \theta(a)\| \leq C\|\pi(m_i) - a\| \leq CK\|a\|,$$

and similarly

$$\|\pi(M_i)\theta(a) - \theta(a)\| \leq CK\|a\|.$$

Therefore, (M_i) is a multiplier-bounded approximate diagonal for B, with bound $K' = \max\{KC^2, KC\}$.

Corollary 2.4. Let A be a K-pseudo-amenable (contractible) Banach algebra and I be a closed two-sided ideal of A. Then A/I is K-pseudo-amenable (contractible).

Corollary 2.5. Let A and B be two Banach algebras such that $A \hat{\otimes} B$ is boundedly pseudo-amenable (contractible) and B has a non-zero character. Then A is boundedly pseudo-amenable (contractible).

Proof. Suppose that $A \hat{\otimes} B$ is K-pseudo amenable, ϕ is a non-zero character of B and consider the epimorphism $\theta(A \hat{\otimes} B) \to A$ by $\theta(a \otimes b) = \phi(b)a$. Now Theorem 2.3 implies that A is K-pseudo-amenable.

Theorem 2.6. Suppose that A is a boundedly pseudo-amenable Banach algebra and J is a two-sided closed ideal of A. Suppose also $[e_n] \subset A$ is a central approximate identity for J that is multiplier-bounded in A. Then J is also boundedly pseudo-amenable.

Proof. By the assumption there is a constant $M \geq 1$ such that for all a and $n \in A$,

$$\|ae_n\| \leq M\|a\|, \quad \|e_na\| \leq M\|a\|.$$
So for each \(\alpha \) and \(m \in A \hat{\otimes} A \) we infer that
\[
||m e_\alpha|| \leq M ||m||, \quad ||e_\alpha m|| \leq M ||m||.
\]
Let \(\{m_i\} \subset A \hat{\otimes} A \) be a net satisfying conditions of Definition 1.2 with bound \(K > 0 \). For any \(\varepsilon > 0 \) and finite set \(F \subset J \), there are \(i \) and \(\alpha \) such that
\[
||am_i - m_i a||M^2 \leq \varepsilon / 2, \quad ||\pi(m_i)a - a||M \leq \varepsilon / 2 \quad (a \in F),
\]
and
\[
||e_\alpha a - a|| \leq \varepsilon / 4, \quad ||\pi(m_i)(e_\alpha a - a)||M \leq \varepsilon / 4 \quad (a \in F).
\]
Similar to the proof of [GhZh, Proposition 2.6], we obtain
\[
||ae_\alpha m e_\alpha - e_\alpha m e_\alpha a|| \leq \varepsilon, \quad ||\pi(e_\alpha m e_\alpha a - a)|| < \varepsilon \quad (a \in F).
\]
Passing to a subnet we may suppose that \(\{e_\alpha m e_\alpha\} \subset J \otimes J \) constitutes an approximate diagonal for \(J \). Since \(\{e_\alpha\} \) is central, for each \(i \) and \(a \in J \) we have
\[
||ae_\alpha m e_\alpha - e_\alpha m e_\alpha a|| = ||e_\alpha am e_\alpha - e_\alpha m e_\alpha a|| = ||e_\alpha (am_i - m_i a)e_\alpha|| \\
\leq M^2 ||am_i - m_i a|| \leq M^2 K ||a||,
\]
and
\[
||\pi(e_\alpha m e_\alpha a - a)|| = ||e_\alpha \pi(m_i)e_\alpha a - a|| \\
= ||e_\alpha \pi(m_i)e_\alpha a - e_\alpha e_\alpha a + e_\alpha e_\alpha a - a|| \\
\leq ||e_\alpha (\pi(m_i)e_\alpha a - e_\alpha a)|| + ||e_\alpha e_\alpha a - a|| \\
\leq M ||\pi(m_i)e_\alpha a - e_\alpha a|| + ||e_\alpha e_\alpha a - a|| \\
\leq MK ||e_\alpha a|| + M ||e_\alpha a|| + ||a|| \\
\leq M^2 K ||a|| + M^2 ||a|| + ||a|| \\
= (M^2 K + M^2 + 1)||a||.
\]
Likewise, \(||\pi(e_\alpha m e_\alpha a) - a|| \leq (M^2 K + M^2 + 1)||a|| \). These imply that \(J \) is \((M^2 K + M^2 + 1)\)-pseudo-amenable. \(\square \)

Corollary 2.7. Suppose that \(A \) is a boundedly pseudo-amenable Banach algebra, \(J \) a closed two-sided ideal of \(A \) with a bounded central approximate identity. Then \(J \) is boundedly pseudo-amenable.

The proof of the next proposition is the same as that of [GhZh, Proposition 3.3] and is omitted.

Proposition 2.8. Let \(A \) be a \(M \)-boundedly approximately contractible Banach algebra. If \(A \) has a bounded central approximate identity \(\{e_\alpha\} \) with bound \(K \), then \(A \) is \((2K^2 + M)\)-pseudo-amenable.

Corollary 2.9. Let \(A \) be a boundedly approximately contractible commutative Banach algebra. Then \(A \) is boundedly pseudo-amenable.

Proof. Every boundedly approximately contractible Banach algebra has a bounded approximate identity. \(\square \)

Theorem 2.10. Suppose that \(A \) is a boundedly pseudo-amenable Banach algebra and \(X \) is a Banach \(A \)-bimodule for which each multiplier bounded left (right) approximate identity of \(A \) is a multiplier bounded left (right) approximate identity for \(X \). Then

1. Every derivation \(D : A \to X \) is boundedly approximately inner.
2. Every derivation $D : A \to X'$ is boundedly weak* approximately inner.

Proof. (1): Let $\Phi : A \otimes A \to X$ be defined by $\Phi(a \otimes b) = D(a) \cdot b$ and let $\{m_i\}$ be a net satisfying conditions of Definition 1.2 with corresponding bound $K > 0$. If we set $\psi_i = -\Phi(m_i)$, then as in [GhZh, Proposition 3.5] for each $a \in A$ we obtain

$$D(a) = \lim_i (a\psi_i - \psi_i a),$$

and also we get

$$\|a \cdot \psi_i - \psi_i a\| - \|D(a)\pi(m_i)\| \leq \|a \cdot \psi_i - \psi_i a - D(a)\pi(m_i)\| = \|\Phi(a \cdot m_i - m_i \cdot a)\|$$

$$\leq \|\Phi\| \|a \cdot m_i - m_i \cdot a\| \leq K\|\Phi\| \|\|a\| \leq K\|D\| \|\|a\|,$$

and so

$$\|a \cdot \psi_i - \psi_i a\| \leq K\|D\| \|\|a\| + \|D(a)\pi(m_i)\| \leq K\|D\| \|\|a\| + (K' + 1)\|D(a)\| \leq K''\|D(a)\|.$$

Whence D is boundedly approximately inner.

(2) can be proven similarly. \(\square\)

Obviously, every contractible Banach algebra is boundedly pseudo-contractible. We end this section by presenting an example of a boundedly pseudo-contractible Banach algebra which is not amenable and consequently not contractible.

Example 2.11. For $1 \leq p < \infty$ let ℓ^p be the usual Banach sequence algebra with pointwise multiplication. Since ℓ^p does not have a bounded approximate identity, it is not amenable. Now for each $i \in \mathbb{N}$ let δ_i be the characteristic function of the singleton $\{i\}$. Then every $f \in \ell^p$ is of the form $\sum_{i=1}^{\infty} f(i)\delta_i$. For each $n \in \mathbb{N}$ put $u_n := \sum_{i=1}^{n} \delta_i \otimes \delta_i$. It is seen that

$$f \cdot u_n = \sum_{i=1}^{n} f(i)\delta_i \otimes \delta_i = \sum_{i=1}^{n} \delta_i \otimes \delta_i f(i) = u_n \cdot f,$$

and

$$\|f\pi(u_n) - f\|_p = \left\|\sum_{i=1}^{n} f(i)\delta_i - \sum_{i=n}^{\infty} f(i)\delta_i\right\|_p \to 0, \quad \|f\pi(u_n)\| \leq \|f\|.$$

Hence, ℓ^p is 1-pseudo-contractible. We also remark that ℓ^p is not approximately amenable[DLZh]. Therefore $(\ell^p)^\#$ is not approximately amenable and thus $(\ell^p)^\#$ is not pseudo-amenable by [GhZh, Proposition 3.2]. Therefore, bounded pseudo-contractibility of a Banach algebra A does not imply not only bounded pseudo-contractibility but also bounded pseudo-amenability of $A^\#$.

3. Banach algebras on locally compact groups

In this section we will verify Bounded pseudo-amenability and contractibility of some important Banach algebras on locally compact groups. We commence with the convolution group and measure algebras $L^1(G)$ and $M(G)$ and their second duals.

Proposition 3.1. For a locally compact group G, $L^1(G)$ is boundedly pseudo-amenable if and only if G is amenable.

Proof. If G is amenable then $L^1(G)$ is amenable and so it is boundedly pseudo-amenable. If $L^1(G)$ is boundedly pseudo-amenable, then it is pseudo-amenable. Thus G is amenable by [GhZh, Proposition 4.1]. \(\square\)
The next proposition is a consequence of [GhZh, Proposition 4.2].

Proposition 3.2. Let G be a locally compact group. Then

1. the convolution measure algebra $M(G)$ is boundedly pseudo-amenable if and only if G is discrete and amenable.
2. $L^1(G)^{\ast\ast}$ is boundedly pseudo-amenable if and only if G is finite.

The following proposition determines the bounded pseudo-amenability and contractibility of the Fourier algebra $A(G)$ of a discrete group G which provides an example of a non-amenable, boundedly pseudo-contractible Banach algebra.

Proposition 3.3. Let G be a discrete group and $A(G)$ be its Fourier algebra. Then the following are equivalent.

1. $A(G)$ has a multiplicity-bounded approximate identity.
2. $A(G)$ is boundedly pseudo-contractive.
3. $A(G)$ is boundedly pseudo-amenable.

Proof. (1) \implies (2): Let $\{e_\alpha\}$ be a multiplicity-bounded approximate identity of $A(G)$ with bound M. As it is mentioned in Remark 3.4 of [GhS], we may suppose that every e_α has finite support, say S_α. Now let

$$m_\alpha = \sum_{x \in S_\alpha} e_\alpha(x) \delta_x \otimes \delta_x,$$

where δ_x is the evaluational function at x. For each $f \in A(G)$ and $x \in G$ we have

$$f \cdot (\delta_x \otimes \delta_x) - (\delta_x \otimes \delta_x) \cdot f = (f \delta_x) \otimes \delta_x - \delta_x \otimes (\delta_x f) = (f(x)\delta_x) \otimes \delta_x - \delta_x \otimes (\delta_x f) = f(x)\delta_x \otimes \delta_x - \delta_x \otimes \delta_x = 0.$$

Therefore, $f \cdot m_\alpha = m_\alpha \cdot f$. Since $\pi(m_\alpha) = e_\alpha$, for all $f \in A(G)$ we have $\pi(m_\alpha) f - f \to 0$. Hence $\{m_\alpha\}$ is central approximate diagonal for $A(G)$. Furthermore, for any $f \in A(G)$ we have

$$\|\pi(m_\alpha) f - f\| = \|f - f\| \leq (M+1)||f||.$$

Hence, $A(G)$ is $(M+1)$-pseudo-contractive.

(2) \implies (3) is clear.

(3) \implies (1): This is immediate inasmuch as every boundedly pseudo-amenable Banach algebras has a multiplicity-bounded approximate identity. \qed

The following example shows that bounded pseudo-contractibility does not imply amenability.

Example 3.4. Let G be a free group. It is shown in [Haa, Theorem 2.1] that $A(G)$ has a multiplicity-bounded approximate identity consisting of functions with finite support. Thus the Fourier algebra of a free group is boundedly pseudo-contractible. Nonetheless, free groups with at least 2 generators are not amenable and so, by Leptin’s theorem, their Fourier algebras lack a bounded approximate identity; consequently they are not amenable.

For a locally compact group G, let $PF_p(G)$ denote the Banach algebra of p-pseudofunctions on G which is the norm closure of the image of $L^1(G)$ in $B(L^p(G))$, the space of bounded operators on $L^p(G)$, under the left regular representation. It is shown in [CGZ, Theorem 7.1] that for a discrete group G, amenability and pseudo amenability of $PF_p(G)$ is equivalent to the amenability of G. We therefore have the following proposition.

Proposition 3.5. Let G be a discrete group and $p \in (1, \infty)$. Then $PF_p(G)$ is boundedly pseudo-amenable if and only if G is amenable.
4. Banach algebras on discrete semigroups

This section is devoted to the Bounded pseudo-amenability and contractibility of many significant Banach algebras constructed on semigroups.

Like Example 3.4, the following is an example of a boundedly pseudo-contractible Banach algebra which is not amenable and consequently is not contractible.

Example 4.1. Let Λ be non-empty, totally ordered set which is a semigroup if the product of two elements is defined to be their maximum. In fact it is a semilattice and is denoted by Λ. Proposition 6.2 of [CGZ] shows that the semigroup algebra $\ell^1(\Lambda)$ is boundedly pseudo-amenable.

Let $\{A_i\}_{i\in I}$ be a family of Banach algebras and $1 \leq q < \infty$. Then their ℓ^q-direct sum

$$A = \ell^q - \bigoplus_{i\in I} A_i = \left\{ a = (a_i)_{i\in I} \middle| a_i \in A_i, \|a\|_A = \left(\sum_{i\in I} \|a_i\|_{A_i}^q \right)^{1/q} < \infty \right\},$$

is a Banach algebra under componentwise product.

Theorem 4.2. Let $\{A_i\}_{i\in I}$ be a family of K-pseudo-amenable (contractible) Banach algebras, $1 \leq q < \infty$ and $A = \ell^q - \oplus_{i\in I} A_i$. Then A is $(K + 1)$-pseudo-amenable (contractible).

Proof. We follow the proof of Proposition 2.1 of [GhZh]. For arbitrary $\varepsilon > 0$ and a finite set $F \subset A$, there is a finite set $J \subset I$ such that $\|P_i(a) - a\|_A < \frac{\varepsilon}{2}$ for $a \in A$, where $P_i : A \to \ell^q - \oplus_{i\in I} A_i$ is the natural projection and P_i is defined to be $P_{i|_I}$. Since A_i is K-pseudo-amenable, there are $i \in J$ and $u_i \in A_i \otimes A_i$ such that

$$\|P_i(a)u_i - u_iP_i(a)\| < \frac{\varepsilon}{2|I|^1} \quad \|\pi_i(u_i)P_i(a) - P_i(a)\| < \frac{\varepsilon}{2|I|^1} \quad (a \in F),$$

and for all $b \in A_i$

$$\|P_i(b)u_i - u_iP_i(b)\| < K\|P_i(b)\|, \quad \|\pi_i(u_i)P_i(b) - P_i(b)\| < K\|P_i(b)\|, \quad \|P_i(b)\pi_i(u_i) - P_i(b)\| < K\|P_i(b)\|,$$

where $\pi_i : A_i \otimes A_i \to A_i$ is also the diagonal map. Setting $u = \{x_i\}_{i\in I}$ where $x_i = u_i$ for $i \in J$ and $x_i = 0$ for $i \in I \setminus J$ implies that $ua = uP_i(a)$ and $au = P_i(a)u$. Hence for each $a \in F$,

$$\|ua - ua\|_A = \|P_i(a)u - uP_i(a)\|_A = \left(\sum_{i\in J} \|P_i(a)u_i - u_iP_i(a)\|_i^q \right)^{1/2} < \varepsilon;$$

and

$$\|an(a) - a\|_A = \|P_i(a)\pi_i(u) - P_i(a)\|_A \leq \|P_i(a)\pi_i(u) - P_i(a)\|_A + \|P_i(a) - a\|_A$$

$$= \sum_{i\in J} \|P_i(a)\pi_i(u) - P_i(a)\|_i^q + \|P_i(a) - a\|_A \leq \varepsilon / 2 + \varepsilon / 2 = \varepsilon.$$

Also for each $b \in A$ we have

$$\|bu - ub\|_A = \|P_i(b)u - uP_i(b)\|_A = \left(\sum_{i\in J} \|P_i(b)u_i - u_iP_i(b)\|_i^q \right)^{1/2} \leq \left(\sum_{i\in J} K\|P_i(b)\|_i^q \right)^{1/2} = K\|P_i(b)\|_A \leq K\|b\|_A,$$

(1)
and

\[
||\pi(u) - b||_A \leq ||P_j(b)\pi(u) - P_j(b)||_A + ||P_j(b) - b||_A \\
\leq (\sum_{i\in I} ||P_j(b)\pi_i(u) - P_j(b)||_A^p)^{\frac{1}{p}} + ||b||_A \\
\leq (\sum_{i\in I} K^p||P_j(b)||_A^p)^{\frac{1}{p}} + ||b||_A = K||P_j(b)||_A + ||b||_A \\
\leq (k + 1)||b||_A, \tag{2}
\]

and similarly

\[
||\pi(u) - b||_A \leq (K + 1)||b||_A, \quad (b \in A). \tag{3}
\]

\[\square\]

So Theorem 4.2 shows that there are a large class of bounded pseudo-amenable(contractible) Banach algebras that are not amenable. We remark that \(A = \ell^p - \bigoplus_i A_i\) is amenable if and only if \(|l| < \infty\) and each \(A_i\) is amenable.

Example 4.3. Since \(\ell^p = \ell^p - \bigoplus_{i=1}^\infty C_i\), it is 2-pseudo-amenable invoking Theorem 4.2. Notice that, it is in fact \(\ell^p\) is 1-pseudo-contractible by Example 2.11.

Proposition 4.4. Let \(A\) be a Banach algebra and \(M_n(A)\) be its \(\ell^1\)-Munn algebra \((n \in \mathbb{N})\). Then \(M_n(A)\) is K-pseudo-amenable if and only if \(A\) is K-pseudo-amenable.

Proof. Suppose that \(\{\Psi_a\}\) is an approximate diagonal of \(M_n(A)\) with bound \(K\). Keeping \(M_n(A) \otimes M_n(A) \cong M_{n^2}(A \otimes A)\) in mind, we may assume that

\[
\Psi_a = \begin{bmatrix}
m_{11}^a & m_{12}^a & \cdots & m_{1n^2}^a \\
m_{21}^a & m_{22}^a & \cdots & m_{2n^2}^a \\
\vdots & \vdots & \ddots & \vdots \\
m_{n^2-1}^a & m_{n^2-2}^a & \cdots & m_{n^2n^2}^a
\end{bmatrix},
\]

where \(m_{ij}^a \in A \otimes A\). For each \(a \in A\) we have

\[
\begin{bmatrix}
a & 0 & \cdots & 0 \\
0 & a & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & a
\end{bmatrix} - \begin{bmatrix}
a & 0 & \cdots & 0 \\
0 & a & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & a
\end{bmatrix} = \begin{bmatrix}
am_{11}^a & am_{12}^a & \cdots & am_{1n^2}^a \\
am_{21}^a & am_{22}^a & \cdots & am_{2n^2}^a \\
\vdots & \vdots & \ddots & \vdots \\
am_{n^2-1}^a & am_{n^2-2}^a & \cdots & am_{n^2n^2}^a
\end{bmatrix} - \begin{bmatrix}
am_{11}^a & m_{12}^a & \cdots & m_{1n^2}^a \\
m_{21}^a & m_{22}^a & \cdots & m_{2n^2}^a \\
\vdots & \vdots & \ddots & \vdots \\
m_{n^2-1}^a & m_{n^2-2}^a & \cdots & m_{n^2n^2}^a
\end{bmatrix}.
\]

Hence \(am_{ij}^a - m_{ij}^a \to 0\) and \(||am_{ij}^a - m_{ij}^a|| \leq K||a||\). With a similar fashion we can get \(a\pi(m_{ij}^a) \to a, \pi(m_{ij}^a)a \to a, \)

\(||a\pi(m_{ij}^a) - a|| \leq K||a||\) and \(||\pi(m_{ij}^a)a - a|| \leq K||a||\).

Conversely, suppose that \(A\) is K-pseudo-amenable and \(\{m_a\}\) is an approximate diagonal for it, and set

\[
\psi_a = \begin{bmatrix}
m_a & 0 & \cdots & 0 \\
0 & m_a & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & m_a
\end{bmatrix}.
\]
Definition 4.5. A (discrete) semigroup S is called an inverse semigroup if for any $s \in S$, $ss^*s = s$ and $ss^*s = s$. The set of idempotent elements of S is denoted by $E(S)$, that is $E(S) = \{ss^* : s \in S\}$.

Let S be a inverse semigroup. For $e \in E(S)$, $G_e = \{s \in S : ss^* = s's = e\}$ constitutes a group called maximal subgroup of G at e.

For all $s, t \in S$ the relation D defined on an inverse semigroup S by sDt if and only if there exists $x \in S$ with

$$Ss \cup \{s\} = Sx \cup \{x\}, \quad ts \cup \{t\} = xs \cup \{x\},$$

is an equivalence relation. There is also a natural partial order on S given by $s \leq t \iff s = ss't$. For $p \in S$ we set $(p) = \{q \in S : q \leq p\}$.

Definition 4.6. An inverse semigroup S is called locally finite whenever $|\{p\}| < \infty$ for all $p \in S$, and it is called uniformly locally finite (ULF) if $\sup_{p \in S}|\{p\}| < \infty$.

We recall that a Banach algebra A is called biflat if there exists a Banach A-bimodule morphim $\rho : (A \hat{\otimes} A)^* \to A^*$ such that $\rho \circ \pi^* (y) = y$ for all $y \in A^*$, where $\pi^* : A^* \to (A \hat{\otimes} A)^*$ is adjoint of the diagonal map π.

Proposition 4.7. Let S be a ULF inverse semigroup and $\{D_\lambda : \lambda \in \Lambda\}$ be the family of its D-classes such that for all $\lambda \in \Lambda$, $|E(D_\lambda)| < \infty$. For each $\lambda \in \Lambda$ let $p_\lambda \in E(D_\lambda)$. Then the following statements are equivalent.

1. For each $\lambda \in \Lambda$ the maximal subgroup G_{p_λ} is amenable.
2. $\ell^1(S)$ is pseudo-amenable.
3. $\ell^1(S)$ is boundedly pseudo-amenable.

Moreover, in this case $\ell^1(S)$ is biflat.

Proof. From [Ram, Theorem 2.18] we have the following isometric isomorphism

$$\ell^1(S) \cong \ell^1 - \bigoplus_{\lambda \in \Lambda} [M_{E(D_\lambda)}, \ell^1(G_{p_\lambda})] : \lambda \in \Lambda].$$

The proposition now follows from Propositions 3.1, 4.4, Theorem 4.2, and [Ram, Therem 3.7].

Definition 4.8. An inverse semigroup S is called a Clifford semigroup if for all $s \in S$, $ss^* = s's$.}

Theorem 4.9. Let S be a Clifford semigroup and $A(S)$ be its Fourier algebra introduced in [MP]. Then the following statements are equivalent.

1. $A(S)$ has a multiplier-bounded approximate identity.
2. $A(S)$ is boundedly pseudo-contractible.
3. $A(S)$ is boundedly pseudo-amenable.

Proof. $(1) \implies (2)$: Suppose that $A(S)$ has a multiplier-bounded approximate identity with bound M. By [MP] we have the following useful decomposition

$$A(S) = \ell^1 - \bigoplus_{e \in E(S)} A(G_e).$$

Thus it can be readily seen that for each $e \in E(S)$, $A(G_e)$ has a multiplier-bounded approximate identity with bound M. From Proposition 3.3 we conclude that $A(G_e)$ is $(M + 1)$-pseudo-contractible for all $e \in E(S)$. Now Theorem 4.2 implies that $A(S)$ is $(M + 2)$-pseudo-contractible. The other parts of proof are obvious.
Applying the above decomposition, as it is done in [MP], for a Clifford semigroup S with abelian maximal subgroups G_e, we obtain $A(S) \cong \ell^1 - \bigoplus_{e \in E(S)} L^1(G_e)$, where \hat{G}_e is the Pontrjagin dual of G_e. Since \hat{G}_e is compact, it is amenable and so $L^1(\hat{G}_e)$ is 1-amenable. Hence $L^1(\hat{G}_e)$ is 1-pseudo-amenable for all $e \in E(S)$. From Theorem 4.2 it can be inferred that $A(S)$ is 2-pseudo-amenable.

Let $\{A_i\}_{i \in I}$ be a family of Banach algebras. Their c_0-direct sum

$$A = c_0 - \bigoplus_{i \in I} A_i = \left\{ a = (a_i)_{i \in I} \mid a_i \in A_i, \|a_i\|_{A_i} \to 0, \|a\|_A = \sup_{i \in I} \|a_i\|_{A_i} \right\},$$

is a Banach algebra under componentwise product.

The next theorem gives the c_0-analogue of Theorem 4.2. Since the proof is similar, we omit it.

Theorem 4.10. Let $\{A_i\}_{i \in I}$ be a family of K-pseudo-amenable (contractible) Banach algebras and $A = c_0 - \bigoplus_{i \in I} A_i$. Then A is $(K + 1)$-pseudo-amenable (contractible).

Corollary 4.11. Let S be a Clifford semigroup and consider the Banach algebra $PF_p(S)$ of p-pseudofunctions on S introduced in [Pou2]. Then $PF_p(S)$ is boundedly pseudo-amenable if and only if every maximal subgroup G_e of S is amenable.

Proof. By [Pou2] we have the following decomposition

$$PF_p(S) \cong c_0 - \bigoplus_{e \in E(S)} PF_p(G_e).$$

Combining Theorem 4.10 and Proposition 3.5 the corollary follows.

5. Multiplier-bounded approximate biprojectivity

In this section we introduce an approximate version of biprojectivity and then investigate its relation with (bounded) pseudo-amenability.

Definition 5.1. ([Pou1]) A Banach algebra A is said to be approximately biprojective if there is a net $\{\rho_\alpha\} \subset B(A \hat{\otimes} A, A)$ such that for each $a, b \in A$:

$$\pi \circ \rho_\alpha(a) \to a, \quad \rho_\alpha(ab) - a \rho_\alpha(b) \to 0, \quad \rho_\alpha(ab) - \rho_\alpha(a)b \to 0.$$

We say that, A is called boundedly approximately biprojective when $\sup_{\alpha} \|\rho_\alpha\| < \infty$.

Definition 5.2. An approximately biprojective Banach algebra A is termed multiplier-boundedly approximately biprojective if there is a $K > 0$ such that for each $a, b \in A$:

$$\|\pi \circ \rho_\alpha(a) - a\| \leq K\|a\|, \quad \|\rho_\alpha(ab) - a \rho_\alpha(b)\| \leq K\|a\||b||, \quad \|\rho_\alpha(ab) - \rho_\alpha(a)b\| \leq K\|a\||b||,$$

where $\{\rho_\alpha\}$ satisfies condition of Definition 5.1.

Obviously, every boundedly approximately biprojective Banach algebra is multiplier-boundedly approximately biprojective.

Corollary 5.3. Let A be a boundedly pseudo-amenable Banach algebra. Then A is multiplier-boundedly approximately biprojective.
Hence A is boundedly pseudo-amenable. Let $\{m_i\}$ be an approximate diagonal of A with multiplier bound $K > 0$. Define $\rho_a : A \rightarrow A \hat{\otimes} A$ by $\rho_a(a) = a \cdot m_a$. By [Pou1, Proposition 3.4], we have

$$\pi \circ \rho_a(a) \rightarrow a, \quad \rho_a(ab) - a \cdot \rho_a(b) \rightarrow 0, \quad \rho_a(ab) - \rho_a(a) \cdot b \rightarrow 0, \quad (a, b \in A).$$

Moreover, for each $a \in A$ and for each $\alpha \in A$ we have

$$\|\pi \circ \rho_a(a) - a\| = \|\pi(a \cdot m_a) - a\| = \|\alpha \tau(m_a) - a\| \leq K\|a\|$$

On the other hand, for all a and every $b \in A$, $\rho_a(ab) - a \cdot \rho_a(b) = 0$ and

$$\|\rho_a(ab) - \rho_a(a) \cdot b\| = \|ab \cdot m_a - (a \cdot m_a) \cdot b\| \leq \|a\||b\| \cdot m_a - m_a \cdot b\| \leq K\|a\||\|b\|$$

Therefore A is multiplier-boundedly approximately biprojective. □

Proposition 5.4. Let A be a multiplier-boundedly approximately biprojective Banach algebra with a central bounded approximate identity $\{e_\alpha\}$. Then A is boundedly pseudo-amenable.

Proof. Let $\{\rho_a\}$ be a net satisfying Definition 5.2. As in Proposition 3.5 of [Pou1], there are subnets $\{e_\beta\}$ of $\{e_\alpha\}$ and $\{\rho_a\}$ of $\{\rho_a\}$ such that $m_i := \rho_a(e_\beta)$ is an approximate diagonal for A. We show that $\{m_i\}$ is a multiplier-boundedly approximately diagonal. Let $\{e_\alpha\}$ be bounded by K_0. Then for each $a \in A$ we have

$$\|a \cdot m_i - m_i \cdot a\| = \|a \cdot \rho_a(e_\beta) - \rho_a(e_\beta) \cdot a\|$$

$$\leq \|a \cdot \rho_a(e_\beta) - \rho_a(ae_\beta) + \rho_a(e_\beta a) - \rho_a(e_\beta) \cdot a\|$$

$$\leq K\|a\||\|e_\beta\|\|a\|$$

and

$$\|\pi(m_i)a - a\| = \|\pi \circ \rho_a(e_\beta)a - a\| \leq \|\pi \circ \rho_a(e_\beta)a - e_\beta a\| + \|e_\beta a - a\|$$

$$\leq K\|a\||\|e_\beta\|\| + \|e_\beta\|\|a\| + \|a\| = (KK_0 + K_0 + 1)|a|.$$

Hence A is boundedly pseudo-amenable. □

The following example gives an approximately biprojective Banach algebra that is not multiplier-boundedly approximately biprojective.

Example 5.5. Suppose that A is the algebra introduced in Proposition 2.2. Approximate amenability of A^\ast implies its approximate biprojectivity [Pou1, Proposition 3.4]. On the other hand, A^\ast is not boundedly pseudo-amenable and so by Proposition 5.4 is not multiplier-boundedly approximately biprojective.

Here we give an example of multiplier-boundedly approximately biprojective Banach algebra which is not boundedly approximately biprojective.

Example 5.6. Suppose that S is an infinite non-empty set and consider the Banach algebra $L^2(S)$ with pointwise multiplication. Let $\{e_i\}_{i \in S}$ be the canonical basis for $L^2(S)$ and let Λ be the set of finite subsets of S, which is an ordered set with respect to inclusion. For any $F \in \Lambda$ define $m_F = \sum_{i \in F} e_i \otimes e_i$. Then $\{m_F\}_{F \in \Lambda}$ is a central approximate diagonal for $L^2(S)$ satisfying conditions of Definition 1.2. Therefore it is boundedly pseudo contractible and consequently, by Proposition 5.3, multiplier-boundedly approximately biprojective. However, it is known that $L^2(S)$ is not boundedly approximately biprojective (see [Pou1, Example 4.1]).

Corollary 5.7. If G is an infinite Abelian compact group, then $L^2(G)$ is a multiplier-boundedly approximately biprojective Banach algebra.

Proof. Suppose Γ is the dual group of G. From Plancherel Theorem we have $L^2(G) \cong L^2(\Gamma)$ and so Example 5.6 gives the desired result. □
The last example provides a boundedly pseudo-amenable Banach algebra which is not boundedly approximately biprojective.

Example 5.8. Consider the inverse semigroup $S = (\mathbb{N}, \ast)$ with $s \ast t = \min\{s, t\}$ for all $s, t \in \mathbb{N}$. By [GLZ, Example 4.6], the convolution semigroup algebra $\ell^1(S)$ is sequentially approximately contractible. So the uniform boundedness principle implies that $\ell^1(S)$ is boundedly approximately contractible. Hence by Proposition 2.1, $(\ell^1(S))^\#$ is boundedly pseudo amenable. Nevertheless, since S is a locally finite, non-uniformly locally finite inverse semigroup, by [Ram, Theorem 3.7], $\ell^1(S)$ is not biflat and consequently its unitization $(\ell^1(S))^\#$ is not biflat. It now follows from [Ari, Theorem 3.6(A)] that $(\ell^1(S))^\#$ is not boundedly approximately biprojective.

References

[Ari] O. Yu. Aristov, *On approximation of flat Banach modules by free modules*, Sbornik, Mathematics (2005), 1553–1583.

[CGZ] Y. Choi, F. Ghahramani and Y. Zhang, *Approximate and pseudo-amenability of various classes of Banach algebras*, J. Funct. Anal., 256 (2009), 3158-3191.

[Dal] H. G. Dales, *Banach algebras and Automatic continuity*, Oxford university Press, 2001.

[DL] H. G. Dales and R. J. Loy, *Approximate amenability of semigroup algebras and Segal algebras*, Diss. Math., 474 (2010), 1-58.

[DLZh] H. G. Dales, R. J. Loy and Y. Zhang, *Approximate amenability for Banach sequence algebras*, Studia Math., 177 (2006), 81-96.

[GhL] F. Ghahramani and R. J. Loy, *Generalized notions of amenability*, J. Funct. Anal., 79 (2004), 229-260.

[GLZ] F. Ghahramani, R. J. Loy and Y. Zhang, *Generalized notions of amenability. II*, J. Funct. Anal., 254 (2008), 1776-1810.

[GhR] F. Ghahramani and C. J. Read, *Approximate identities in approximate amenability*, J. Funct. Anal., 262 (2012), 3929-3945.

[GhS] F. Ghahramani and R. Stokke, *Approximate and pseudo-amenability of the Fourier algebra*, Indiana Univ. Math. J., 56 (2007), 909-930.

[GhZh] F. Ghahramani and Y. Zhang, *Pseudo-amenable and pseudo-contractible Banach algebras*, Math. Proc. Comb. Phil. Soc., 142 (2007), 111-123.

[GhHS] M. Ghandhari, H. Hatami and N. Spronk, *Amenability constants for semilattice algebras*, Semigroup Forum, 79 (2009), 279-297.

[Haa] U. Haagerup, *An example of a nonnuclear C*-algebra, which has the metric approximation property*, Invent. Math., 50 (1978/79), 279-293.

[Joh1] B. E. Johnson, *Approximate diagonals and cohomology of certain annihilator Banach algebras*, Amer. J. Math., 94 (1972), 685-698.

[Joh2] B. E. Johnson, *Cohomology in Banach algebras*, Mem. Amer. Math. Soc., 127 (1972).

[MP] A. R. Medghalchi and H. Pourmahmood-Aghababa, *Figa-Talamanca–Herz algebras for restricted inverse semigroups and Clifford semigroups*, J. Math. Anal. Appl., 395 (2012), 473-485.

[Pou1] H. Pourmahmood-Aghababa, *Approximately biprojective Banach algebras and nilpotent ideals*, Bull. Austral. Math. Soc., 87 (2013), 158-173.

[Pou2] H. Pourmahmood-Aghababa, *Pseudomeasures and pseudofunctions on inverse semigroups*, Semigroup Forum, 90 (2015), 632-647.

[Ram] P. Ramsden, *Biflatness of semigroup algebras*, Semigroup Forum, 79 (2009), 515-530.