COVID-19: REVISIÓN DE LA LITERATURA Y SU IMPACTO EN LA REALIDAD SANITARIA PERUANA

COVID-19: LITERATURE REVIEW AND ITS IMPACT ON THE PERUVIAN HEALTH REALITY

Alberto Córdova-Aguilar1,a,b, Germán Rossani A.2,a,c

RESUMEN
Introducción: La enfermedad denominada COVID-19 es una pandemia causada por el virus SARS-CoV-2 (síndrome agudo respiratorio severo 2). En el Perú, el paciente cero o primer caso con COVID-19 fue detectado el último 6 de marzo y desde entonces el virus continúa su propagación. El gobierno nacional lucha contra esta enfermedad desde varios frentes, pero la situación sanitaria difiere mucho con la de países desarrollados. Objetivo: Revisar el estado actual de la enfermedad y analizar su posible impacto en el sistema de salud peruano. Métodos: Se realizó una búsqueda bibliográfica de diversos estudios desde la aparición de la enfermedad (diciembre 2019) en las diferentes bases de datos (PUBMED, MEDLINE, PLOs, SciELO) y también en Google Académico. Resultados: Se encontró que el virus se trasmite principalmente por vía respiratoria; el periodo de incubación promedio es 14 días; la mayoría de los pacientes tienen una enfermedad leve o son asintomáticos pero un 5% de estos requerirán hospitalización, algunos incluso de terapia intensiva con ventilación mecánica; el tratamiento actual es básicamente sintomático, pero también prescriben antibióticos, antivirales y antiparasitarios. Conclusión: La cuarentena con medidas estrictas de aislamiento y distanciamiento social es precisa, dada la realidad sanitaria peruana y el inminente contagio de la población.

Palabras clave: SARS-CoV-2; COVID-19; Pandemias; Infecciones por coronavirus; Sistemas de salud (fuente: DeCS BIREME).

ABSTRACT
Introduction: The disease called COVID-19 is a pandemic caused by the SARS-CoV-2 virus (severe acute respiratory syndrome 2). In Peru, patient zero or first case with COVID-19 was detected on March 6th and since then the virus has continued to spread. The national government fights against this disease on several fronts, but the health situation differs greatly from developed countries. Objective: To review the current state of the disease and analyze its possible impact on the Peruvian health system. Methods: A bibliographic search of various studies was carried out since the appearance of the disease (December 2019) in different databases (PUBMED, MEDLINE, PLOs, SciELO) and Google Scholar. Results: The virus is transmitted mainly by the respiratory route; the average incubation period is 14 days; most patients have mild disease or are asymptomatic but 5% of these will require hospitalization, some will even require intensive therapy with mechanical ventilation; the current treatment is basically symptomatic, though antibiotics, antivirals and antiparasitics have also been used. Conclusions: The quarantine with strict measures of isolation and social distancing is accurate given the Peruvian health reality and the imminent contagion of the population.

Key words: SARS-CoV-2; COVID-19; Pandemics; Coronavirus infections; Health systems (source: MeSH NLM).
INTRODUCCIÓN

El último día del 2019, China reportó 27 casos de neumonía de causa desconocida en la ciudad de Wuhan, los cuales guardaban estrecha relación con el mercado Huanan en donde se vende diversos animales exóticos como murciélagos, pangolines y serpientes\(^1,2\). El cuadro clínico característico de estos pacientes incluía fiebre, tos seca y disnea. Una semana después del reporte, el Centro Chino para el Control y la Prevención de Enfermedades descubrió que la causa de la enfermedad era un nuevo coronavirus (SARS-CoV-2) que después la OMS denominó COVID-19 del acrónimo inglés “Coronavirus Disease 2019”\(^3\). Tal fue la expansión de la enfermedad que los casos confirmados y muertes fueron aumentando en China y rápidamente la COVID-19 llegó a otros países de varios continentes hasta que fue considerada una pandemia\(^4\).

Con el transcurrir de las semanas se comprobó que la mayoría de los pacientes con la COVID-19 se resuelven espontáneamente. Asimismo, se vio que la enfermedad afecta a ambos sexos con ligero predominio de los varones. De los pacientes afectados, algunos requieren el ingreso hospitalario e incluso el apoyo con ventilación mecánica\(^5\). Estas complicaciones son frecuentes en las personas con enfermedades crónicas (diabetes mellitus, hipertensión arterial, asma, obesidad, etc.), en quienes la letalidad es mayor que la población general\(^6\). La necesidad de hospitalización y el uso de terapia intensiva convirtió a esta pandemia en una real amenaza para los sistemas de salud en el mundo.

En el Perú a mediados de marzo 2020 y ante el inminente contagio de la población, el gobierno instauró políticas sanitarias similares a las tomadas por el gobierno chino. Así, se establecieron medidas de cuarentena y distanciamiento social, la adquisición de nuevas camas y equipos de cuidados intensivos, así como, la contratación y la redistribución de los profesionales capacitados en medicina intensiva. Sin embargo, cualquier estrategia aplicada en otro país para contrarrestar la pandemia debe adecuarse a nuestra realidad, pues pareciera que la cuarentena por sí sola no es suficiente para prevenir la propagación y el impacto socioeconómico de la enfermedad es preocupante. Esta revisión se realizó con el objetivo de conocer el estado actual de la enfermedad y su posible impacto en el sistema de salud peruano.

MÉTODOS

Se realizó una búsqueda de la literatura en las bases de datos PUBMED, MEDLINE, PLOs, SciELO y también en Google Académico; se seleccionaron trabajos disponibles en texto completo en idioma español e inglés con las palabras clave SARS-CoV-2, COVID-19, pandemias y sistemas de salud. Se extrajo la información relevante desde la aparición de los primeros reportes de casos hasta la actualidad y se contrastó con la actual situación sanitaria peruana.

RESULTADOS

Etiología y mecanismo de transmisión

La COVID-19 es una enfermedad causada el SARS-CoV-2, un virus perteneciente a la familia de los coronavirus que originaron dos epidemias zoonóticas previas, el SARS-CoV causó el síndrome respiratorio agudo severo el 2002 y el MERS-CoV produjo el síndrome respiratorio de Medio Oriente el 2012\(^7\). Si bien el SARS-CoV-2 es un virus que se encuentra en serpientes, murciélagos y pangolines. Al parecer uno de estos animales inició la cadena de transmisión al ser consumidos por varias personas en Wuhan. Sin embargo, es difícil saber un origen exacto del virus; más bien parece tener un origen mixto entre los diversos reservorios animales e incluso otro desconocido\(^8,9\).

Una vez adquirida la infección por el SARS-CoV-2, la enfermedad tiene un periodo de incubación promedio de 14 días, aunque algunos reportes sugieren hasta 24 días; por lo que el tiempo de cuarentena debería ser superior a este último. Una persona infectada con el SARS-CoV-2, incluso asintomática, puede contagiar a 2 o 2,5 personas. Aunque la transmisión efectiva se realiza a través de gotas grandes por vía inhalada o al contacto con la mucosa oral u ocular, también se ha encontrado este virus en las heces, la sangre y hasta en las microgotas emitidas durante una conversación normal; por ello, la población en general debe usar mascarillas adecuadas al salir del domicilio. Además, la transmisión asociada con la atención médica alcanza a más del 40%, dato importante para reforzar los equipos de protección personal en los diferentes establecimientos de salud. Afortunadamente parece que no existe una transmisión perinatal\(^6,10–12\).
Fisiopatología

Luego de la exposición al SARS-CoV-2, el virus viaja por la vía respiratoria hasta alcanzar las células epiteliales alveolares -neumocitos- tipo I y II, es ahí donde se une al receptor de la enzima convertidora de angiotensina tipo 2 (ECA2). En el pulmón humano normal, la ECA2 se expresa principalmente en los neumocitos tipo II, quienes producen el surfactante, una sustancia que disminuye la tensión superficial en los alveolos para evitar su colapso. El hecho que los hombres tengan un mayor nivel de ECA2 en sus neumocitos explicaría la mayor posibilidad de presentar complicaciones y el incremento de la letalidad (13). Ahora bien, la unión del SARS-CoV-2 con el receptor de la ECA2 es hasta 20 veces mayor que la del SARS-CoV, esto explica su mayor infectividad. Esta unión a la ECA2 provoca una gran expresión de dicha enzima que conlleva a la muerte de la célula alveolar infectada y a la infección de las células contiguas. De modo tal que el virus lesiona rápidamente el tejido pulmonar causando la neumonía. Al ser un virus parecido al SARS-CoV o el MERS-CoV, la histopatología pulmonar muestra hallazgos similares entre estas patologías: la formación de membranas hialinas en los alveolos y los infiltrados inflamatorios mononucleares intersticiales con células gigantes multinucleadas (14).

Cuadro clínico y diagnóstico

Pese a la gran transmisibilidad del SARS-CoV-2, la mayoría de los pacientes tienen una enfermedad leve o son asintomáticos. Un 5% de la población infectada requerirá el ingreso hospitalario e incluso algunos necesitarán terapia intensiva con el apoyo de ventilación mecánica (15). Por si fuera poco, aquellos que superan la enfermedad podrían sufrir de fibrosis pulmonar, esta sería una de las complicaciones más temidas después de la recuperación (16).

De otro lado, en los pacientes sintomáticos el cuadro clínico se presenta principalmente con fiebre en más del 80%, tos seca en más del 70%, disnea en más del 50% y también astenia o mialgias, aunque en menos del 50% de los casos. Otros síntomas menos reportados son cefalea, odinofagia, dolor abdominal y diarrea (17).

Para el apoyo diagnóstico se utilizan dos pruebas. Una prueba serológica, también llamada prueba rápida porque su resultado tarda unos 15 minutos. Esta prueba identifica los anticuerpos IgM e IgG presentes en la sangre o el plasma de los enfermos. Si la muestra revela una elevada cantidad de anticuerpos, la prueba rápida será positiva y se concluye que la persona tiene o tuvo la enfermedad recientemente. La prueba rápida tiene una alta especificidad, por lo que es útil pero complementaria a la prueba molecular. Esta última, también conocida como prueba PCR-RT, por sus siglas en inglés, involucra la reacción en cadena de la polimerasa con retrotranscriptasa y es de elección para el diagnóstico del SARS-CoV-2. Se basa en el análisis del ARN viral encontrado idealmente en una muestra del tracto respiratorio inferior, aunque muchas veces estas muestras provienen de un hisopado nasofaríngeo (18,19).

Asimismo, los hallazgos anormales de laboratorio más frecuentes son: linfopenia, prolongación del tiempo de protrombina y lactato deshidrogenasa elevada. Las radiografías de tórax se caracterizan por infiltrados irregulares bilaterales y casi todas las tomografías computarizadas de tórax muestran alguna alteración como las imágenes de consolidación o los infiltrados en "vidrio esmerilado" (15,20).

Prevención y tratamiento

Aún no existe una vacuna para prevenir la COVID-19, por lo que el tratamiento actual es básicamente sintomático. Se han usado antibióticos, antivirales y antiparasitarios con resultados promisorios, pero la eficacia de estos fármacos aún debe verse mediante ensayos clínicos grandes. Al no contar con un tratamiento efectivo al momento, la mejor forma de combatir esta pandemia es a través del control de las posibles fuentes de infección incluyendo los pacientes asintomáticos, el diagnóstico y notificación temprana, el aislamiento social y las terapias de soporte. Así también, las medidas de protección para la población en general se basan en mejorar la higiene personal, usar mascarillas -de preferencia las descartables- y mantener los ambientes bien ventilados (20).
ARTÍCULO DE REVISIÓN

Tabla 1. Resumen de algunos artículos relevantes sobre la COVID-19 hasta el 12 de abril de 2020.

Artículo	Resultados	Conclusiones
(6) Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus–Infected Pneumonia in Wuhan, China.	De un total de 138 pacientes con COVID-19, 36 pacientes (26,1%) estuvieron en la unidad de cuidados intensivos (UCI): 22 con síndrome de disfías respiratorio agudo (61,1%), 16 con artritis (44,4%) y 11 con shock (30.6%). La mediana del tiempo desde el primer síntoma hasta la disnea 5 días, hasta el ingreso hospitalario 7 días y hasta el SDRA 8 días. Los pacientes tratados en la UCI (n = 36), en comparación con los pacientes no tratados en la UCI (n = 102), eran adultos mayores (edad media, 66 años y tenían más probabilidades de tener comorbididades subyacentes.	De 138 pacientes hospitalizados con neumonía por 2019-nCoV: el 41% tuvo una posible transmisión hospitalaria, el 26% fue atendido en la UCI y la mortalidad fue 4,3%.
(7) Paules CI, Marston HD, Fauci AS. Coronavirus Infections—More Than Just the Common Cold.	El coronavirus (nCoV-2019) produce fiebre, tos, disnea y/o diarrea acuosa. Hasta el 30% de los pacientes infectados requirieron ventilación mecánica y el 10% fallecieron, las tasas de mortalidad más altas estuvieron relacionadas a pacientes con mayores comorbididades.	La trayectoria del brote y la aparición del rebrote por nCoV-2019 es impredecible, por tanto, se requiere del diagnóstico temprano y el aislamiento efectivo.
(8) 2020 Cross-species transmission of the newly identified COVID-19.	Tras analizar 276 genomas de coronavirus la secuencia del nCoV-2019 parece ser una recombinación entre el coronavirus de murciélago y otros aislados de origen desconocido, ubicados dentro de la glucoproteína espiga que reconoce el receptor de la superficie celular. Asimismo, la información genética del nCoV-2019 es similar con el coronavirus de murciélago y especialmente con las serpientes en China.	Los resultados sugieren que puede ocurrir una recombinación homóloga que contribuya a la transmisión de especies cruzadas de nCoV-2019.
(9) Presumed Asymptomatic Carrier Transmission of COVID-19.	Se reportó un grupo familiar de 5 pacientes con fiebre y síntomas respiratorios ingresados en el Quinto Hospital Popular de Anyang, China. El paciente 1 asintomático fue aislado y observado, pero nunca presentó síntomas. Los resultados de las pruebas de PCR-RT, imágenes de tomografía de tórax inicialmente fueron normales, así como, la proteína C reactiva y el recuento linfocitario. Los pacientes 2 a 6 desarrollaron nCoV-2019, 4 fueron mujeres entre 42 y 57 años, ninguna había visitado Wuhan ni había tenido ningún contacto con otro individuo, a excepción del paciente 1. Dos pacientes desarrollaron neumonía severa, con opacidades en la tomografía de tórax y aspecto de vidrio esmerilado multifocal. Un paciente tuvo áreas subsegmentarias de consolidación y fibrosis pulmonar.	La prevención de la infección de un portador asintomático nCoV-2019 es un desafío. El mecanismo por el cual los portadores asintomáticos pueden adquirir y transmitir el coronavirus nCoV-2019 requiere más estudio.
(10) Molecular and serological investigation of 2019-nCoV infected patients: implication of multiple shedding routes.	La presencia de nCoV-2019 en hisopados anales y en sangre. Se realizaron 2 grupos: el primero recolectó muestras de 39 pacientes y el segundo recolectó muestras de 139 pacientes, con detección de nCoV-2019 positivos.	El nCoV-2019 puede eliminarse a través de múltiples rutas por lo que podría haber transmisión por vía fecal-oral.
(11) Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records.	Se estudiaron 9 mujeres embarazadas entre 26 y 40 años, con antecedentes de exposición epidemiológica a nCoV-2019, todas en su tercer trimestre con un rango de semanas de gestación al ingreso fue de 36 a 39 semanas más 4 días y sometidas a cesárea. Ninguna de los pacientes tenía enfermedades crónicas subyacentes. Una paciente presentó infección por el virus de la influenza al ingresar al hospital. Siete de las nueve pacientes presentaron fiebre sin escalofríos, pero ninguna tuvo temperatura corporal > 39°C. Ninguna desarrolló neumonía grave. Casi todas las pacientes (8/9) mostraron hallazgos típicos en la tomografía de tórax: múltiples sombras irregulares en vidrio esmerilado en los pulmones.	Las características clínicas de la neumonía por nCoV-2019 en mujeres embarazadas fueron similares a las reportadas en pacientes adultas no embarazadas. Actualmente no hay evidencia de infección perinatal por nCoV-2019 al final del embarazo.
(12) Single-cell RNA expression profiling of ACE2, the putative receptor of Wuhan 2019-nCoV.	Según la OMS, el nCoV-2019 ha provocado 76 392 casos confirmados y 2 348 muertes en China al 22 de febrero de 2020. Se informó que el SARS-CoV-2 compartía con el SARS-CoV el mismo receptor en la enzima convertidora de angiotensina 2 (ACE2). La expresión de este receptor se concentra en las células alveolares de tipo II (AT2) que también expresan otros genes que regulan positivamente la entrada, la reproducción y la transmisión del virus. Este estudio proporciona un soporte biológico para el futuro desarrollo de la estrategia terapéutica anti-ACE2.	Este estudio proporciona un soporte biológico para el futuro desarrollo de la estrategia terapéutica anti-ACE2.
(13) Cryo-EM Structure of the 2019-nCoV Spike in the Prefusion Conformation.	Se probaron varios anticuerpos monoclonales específicos de SARS-CoV y se halló que no tienen una unión apreciable al nCoV-2019. Además, se demostró la evidencia biofísica y estructural de que el nCoV-2019 se une al receptor de la ACE2 con mayor afinidad que el SARS-CoV.	La estructura del nCoV-2019 permitiría la mayor infectividad y la diseminación del virus.
Entre un total de 72 314 registros de casos, 44 672 se clasificaron como casos confirmados de la COVID-19. La mayoría de los casos tenían entre 30 y 79 años (87%), el 1% tenían 9 años o menos, el 1% tenían entre 10 y 19 años y el 3% tenían 80 años o más. La mayoría de los casos se diagnosticaron en la provincia de Hubei (75%) y la mayoría de las exposiciones relacionadas con Wuhan (86%). La mayoría de los casos se clasificaron como leves (81%), el 14% fueron graves y el 5% fueron críticos. La tasa general de letalidad fue del 2,3% (1023 muertes entre 44 672 casos confirmados). No se produjeron muertes en el grupo de 9 años o menos y la tasa de letalidad entre los casos críticos fue 49%. De los 44 672 casos, 1716 eran trabajadores de la salud (3,8%), 1080 de los cuales estaban en Wuhan (63%). El 14,8% de los casos confirmados entre los trabajadores de la salud se clasificaron como graves o críticos y se observaron 5 muertes.

De 1287 participantes, el OR agrupado de todos los virus indicó que la infección viral podría aumentar significativamente el riesgo de fibrosis pulmonar idiopática (OR, 3,48; IC 95% 1,61-7,52; p = 0,001), pero no el de su exacerbación (OR, 0,99; IC 95%, 0,47-2,12; p = 0,988).

La COVID-19 se extendió rápidamente de una sola ciudad a todo China en solo 30 días. La gran velocidad de la expansión geográfica y el repentino aumento en el número de casos sorprendieron y rápidamente abrumaron los servicios de salud y salud pública en China, particularly in the city of Wuhan and the province of Hubei.

Estos hallazgos implican que la infección viral podría ser un factor de riesgo potencial para la fibrosis pulmonar idiopática.

De 1287 participantes, el OR agrupado de todos los virus indicó que la infección viral podría aumentar significativamente el riesgo de fibrosis pulmonar idiopática (OR, 3,48; IC 95% 1,61-7,52; p = 0,001), pero no el de su exacerbación (OR, 0,99; IC 95%, 0,47-2,12; p = 0,988).

La infección 2019-nCoV causó una enfermedad respiratoria grave similar al coronavirus del síndrome respiratorio agudo severo. Se asoció con una mayor admisión a la UCI y una alta mortalidad.

Al 2 de enero de 2020, 41 pacientes fueron identificados como infectados con el nCoV-2019. La mayoría de los casos eran hombres (73%) y menos de la mitad tenía enfermedades subyacentes (32%). La mediana de edad fue 49 años (RIC 41.0 – 58.0). El 66% de los pacientes habían estado expuestos al mercado de mariscos de Huanan. Los síntomas comunes al inicio de la enfermedad fueron fiebre (98%), tos (76%) y mialgia o fatiga (44%). La disnea se desarrolló en 55% de los casos y el tiempo medio desde el inicio de la enfermedad hasta la disnea fue 8 días. El 63% de pacientes tuvo linfopenia. Los 41 pacientes presentaron neumonía con hallazgos anormales en la tomografía de tórax. Las complicaciones incluyeron síndrome de dificultad respiratoria aguda (29%), anemia (15%), falla cardíaca aguda (12%) e infección secundaria (10%). El 32% de los casos fueron ingresados en una UCI y el 15% fallecieron.

Se recogieron 1070 muestras de 205 pacientes con la COVID-19 que tenían una edad media de 44 años (rango, 5-67 años) y 68% de hombres. La mayoría de los pacientes presentaron fiebre, tos seca y fatiga. El 19% tenían enfermedad grave subyacente. Las muestras de líquido de lavado broncoalveolar mostraron las tasas positivas más altas (93%), seguidas de esputo (72%), hisopos nasales (63%), biopsia con cepillo de fibrobroncoscopio (46 %), hisopos faríngeos (32%), heces (29%) y sangre (1%). Ninguna de las 72 muestras de orina dio positivo.

Se extrajeron los datos de 1099 pacientes, la mediana de edad fue 47 años, y el 41,9% eran mujeres. Solo el 1,18% de los pacientes tuvo contacto directo con la vida silvestre, mientras que el 31,30% había estado en Wuhan y el 71,8% había contactado con personas de Wuhan. La fiebre (87,9%) y la tos (67,7%) fueron los síntomas más comunes. La mediana del período de incubación fue 3,0 días (rango, 0 a 24,0 días). Al ingreso, el hallazgo radiológico típico en la tomografía de tórax (50%) fue la opacidad en vidrio esmerilado. Los casos más graves fueron diagnosticados por síntomas más reacción en cadena de la polimerasa con transcriptasa inversa. Se observó linfopenia en el 82,1% de los pacientes. El 5% pacientes ingresó a la unidad de cuidados intensivos y sólo el 1,36% fallecieron.

Se extrajeron los datos de 1099 pacientes, la mediana de edad fue 47 años, y el 41,9% eran mujeres. Solo el 1,18% de los pacientes tuvo contacto directo con la vida silvestre, mientras que el 31,30% había estado en Wuhan y el 71,8% había contactado con personas de Wuhan. La fiebre (87,9%) y la tos (67,7%) fueron los síntomas más comunes. La mediana del período de incubación fue 3,0 días (rango, 0 a 24,0 días). Al ingreso, el hallazgo radiológico típico en la tomografía de tórax (50%) fue la opacidad en vidrio esmerilado. Los casos más graves fueron diagnosticados por síntomas más reacción en cadena de la polimerasa con transcriptasa inversa. Se observó linfopenia en el 82,1% de los pacientes. El 5% pacientes ingresó a la unidad de cuidados intensivos y sólo el 1,36% fallecieron.

La infección 2019-nCoV causó una enfermedad respiratoria grave similar al coronavirus del síndrome respiratorio agudo severo. Se asoció con una mayor admisión a la UCI y una alta mortalidad.

La epidemia de nCoV-2019 se propaga rápidamente por la transmisión de persona a persona.

Las muestras con tasas positivas más altas para la detección del nCoV-2019 fueron las del tracto respiratorio inferior (lavado broncoalveolar), mientras que las muestras con más falsos negativos fueron las obtenidas de hisopados faríngeos, heces y sangre.

El brote de Wuhan es un claro recordatorio de la continua amenaza de las enfermedades zoonóticas para la seguridad sanitaria mundial. Compartir las experiencias de todas las regiones geográficas será la clave para contrarrestar la epidemia.
DISCUSIÓN

Pese a la alta transmisibilidad del SARS-CoV-2, su letalidad es aparentemente baja (3%) respecto al SARS (9,6%) y al MERS (34,4%). Asimismo, la mayoría de los pacientes infectados son asintomáticos o tienen pocos síntomas. La complicación más frecuente es el síndrome de dificultad respiratoria aguda que en 5% de los pacientes requiere el apoyo con ventilación mecánica\(^1,6,21\). Al extrapolar estas cifras a los casi 32 millones de habitantes en el Perú\(^{22}\), siempre y cuando la población peruana tuviera las mismas características de la serie revisada y sin aplicar ninguna medida preventiva, esperaríamos tener aproximadamente 1,6 millones de hospitalizados en el país, de los cuales 48 mil fallecerían; esto sumado a un posible colapso del sistema sanitario nacional podría generar más del 5% de mortalidad.

Es difícil para cualquier gobierno tomar decisiones en una crisis mundial sin precedentes. Ningún sistema sanitario está preparado para afrontar esta pandemia. Además, una mala decisión en salud pública puede ser desastrosa para la población y conduciría al colapso del sistema sanitario de cualquier país. Por ello, el gobierno peruano ante el contagio inminente de la población por la COVID-19, decretó el estado de emergencia sanitario con medidas de inmovilización social y aislamiento domiciliario obligatorio desde el 16 de marzo hasta el 26 de abril como medida de contención a la enfermedad. Sin duda, estas medidas restrictivas generarán un gran impacto socioeconómico, pero nada comparable con la pérdida de cientos o miles de vidas humanas. De esa manera, la estrategia del gobierno nacional fue minimizar la propagación de la COVID-19 mediante el “aplanamiento de la curva” de posibles infectados y reducir así la sobrecarga de los servicios de salud. Una decisión lógica, ya que la otra estrategia de la inmunidad comunitaria optada por algunos países desarrollados implicaba el contagio y la recuperación de la infección viral de más del 60% de toda la población, con el consecuente riesgo que esto podría traer al sistema de salud. Aquellos países que iniciaron con esta última estrategia, en las siguientes semanas cambiaron hacia medidas más restrictivas pues parece muy difícil combatir al virus debido a su gran infectividad y a que no se calculó tal colapso sanitario.

Y es que el principal problema sanitario del Perú es la deficiente infraestructura, dato que verificó en abril del 2018 la Defensoría del Pueblo, así como, el último gran censo nacional de infraestructura sanitaria del 2006 donde se halló que un 20% de los hospitales de mayor complejidad (nivel III) carecían de equipos adecuados para la atención. Por ejemplo, las unidades de cuidados intensivos (UCI) de todo el sistema sanitario peruano (MINSA, EsSalud, FFAA, PNP y clínicas privadas) cuentan con apenas 685 camas, de las cuales solo 60 camas (15%) estarían disponibles pues las otras ya están en uso\(^{23}\). Es clara la situación precaria de nuestro sistema sanitario; si el número de infectados se incrementa, simplemente el sistema colapsaría. Por si fuera poco, también hay escasez de recursos humanos capacitados; el Colegio Médico del Perú reporta un déficit mayor a 15 mil médicos especialistas\(^{24}\).

Ante dicho panorama, la estrategia sanitaria del gobierno peruano incluyó la adquisición de nuevas camas de UCI, la suspensión de la consulta externa y las cirugías electivas, el reforzamiento de las emergencias, la notificación de los pacientes sospechosos, así como, el seguimiento domiciliario de los casos confirmados y el traslado de los casos complicados a los hospitales de referencia para la COVID-19.

Por otro lado, la necesidad de diversos materiales e insumos médicos en medio de la crisis provocada por la pandemia también limita la adquisición de estos. Por ejemplo, la adquisición de los ventiladores mecánicos para las UCI normalmente es un proceso que demora alrededor de 2 meses. Actualmente con la gran demanda de estos a nivel mundial y considerando que muchos países ya realizaron sus pedidos de importación antes que el Perú; lo más probable es que tome más tiempo. Por ello, el gobierno nacional ha coordinado con las universidades peruanas para la construcción de ventiladores mecánicos y así tratar de paliar dicha demanda\(^{25}\). Todo este esfuerzo por parte del gobierno peruano y de la sociedad no asegura el éxito, pero no hacerlo conllevaría a la pérdida innecesaria de muchas vidas humanas. Aunque no se logre eliminar la COVID-19 en los próximos meses, la respuesta política racional es combatirlo ahora con la cuarentena.

CONCLUSIÓN

La cuarentena con medidas estrictas de aislamiento y distanciamiento social es precisa dada la realidad sanitaria peruana y el inminente contagio de la población. Estas medidas restrictivas deben evaluarse de forma constante en el país para evitar el colapso del sistema sanitario. Finalmente, es necesario fomentar más investigaciones sobre el tema en nuestra realidad para obtener información de primera fuente y tomar decisiones más adecuadas.
Contribuciones de autoría: Los autores participaron en la génesis de la idea, el diseño, la recolección de la información, el análisis de los resultados y la preparación del manuscrito.

Financiamiento: Autofinanciado.

Correspondencia: Alberto Córdova Aguilar.
Dirección: Jr. Paseo del Prado 133 – Urb. Las Lomas, La Molina, Lima-Perú.
Teléfono: (511) 999 779 789
Correo: acordova@unmsm.edu.pe

REFERENCIAS BIBLIOGRÁFICAS

1. OMS. Neumonía de causa desconocida – China [Internet]. World Health Organization; 2020 [citado 3 de abril de 2020]. Disponible en: http://www.who.int/csr/don/05-january-2020-pneumonia-of-unknown-cause-china/es/
2. Lu H, Stratton CW, Tang Y. Outbreak of pneumonia of unknown etiology in Wuhan, China: The mystery and the miracle. J Med Virol [Internet]. abril de 2020 [citado 5 de abril de 2020];92(4):401-2. Disponible en: https://onlinelibrary.wiley.com/doi/abs/10.1002/jmv.25678
3. OMS. WHO Director-General’s remarks at the media briefing on 2019-nCoV on 11 February 2020 [Internet]. 2020 [citado 4 de abril de 2020]. Disponible en: https://www.who.int/dg/speeches/detail/who-director-general-s-remarks-at-the-media-briefing-on-2019-ncov-on-11-february-2020
4. OMS. WHO Director-General’s opening remarks at the media briefing on COVID-19 – 11 March 2020 [Internet]. 2020 [citado 5 de abril de 2020]. Disponible en: https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19-11-march-2020
5. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. The Lancet [Internet]. febrero de 2020 [citado 4 de abril de 2020];395(10233):507-13. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0140673620300586
6. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA [Internet]. 17 de marzo de 2020 [citado 3 de abril de 2020];323(11):1061. Disponible en: https://jamanetwork.com/journals/jama/fullarticle/2761044
7. Pauls CJ, Marston HD, Fauci AS. Coronavirus infections—More than just the common cold. JAMA [Internet]. 25 de febrero de 2020 [citado 3 de abril de 2020];323(8):707. Disponible en: https://jamanetwork.com/journals/jama/fullarticle/2759815
8. Ji W, Wang W, Zhao X, Zai J, Li X. Cross-species transmission of the newly identified coronavirus 2019-nCoV. J Med Virol [Internet]. abril de 2020 [citado 10 de abril de 2020];92(4):433-40. Disponible en: https://onlinelibrary.wiley.com/doi/abs/10.1002/jmv.25682
9. Anand KB, Karade S, Sen S, Gupta RM. SARS-CoV-2: Camazotz’s Curse. Autofinanciado. [511] 999 779 789
10. Brooks SK, Gelao L, Abiona O, et al. Characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. The Lancet [Internet]. marzo de 2020 [citado 3 de abril de 2020];395(10226):809-15. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0140673620306033
11. Zhao Y, Zhao Z, Wang Y, Zhou Y, Ma Y, Zuo W. Single-cell RNA expression profiling of ACE2, the putative receptor of 2019-nCoV. Bioinformatics, 2020 ene [citado 3 de abril de 2020]. Disponible en: http://biomart.org/lookup/doi/10.1093/bioinformatics/btaa269
12. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh C-L, Abiona O, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation [Internet]. Microbiology; 2020 feb [citado 3 de abril de 2020]. Disponible en: http://biorxiv.org/lookup/doi/10.1101/2020.02.11.944642
13. Vidal-Anzardo M, Solís G, Solari L, Minaya G, Ayala-Quintanilla B, Asette-Cornejo J, et al. Evaluation in condiciones de campo de una prueba serológica rápida para detección de anticuerpos IgM e IgG contra SARS-CoV-2. Revista Peruana de Medicina Experimental y Salud Pública [Internet]. 21 de abril de 2020 [citado 7 de mayo de 2020];395(10223):497-506. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0140673620301835
14. Anand KB, Karade S, Sen S, Gupta RM. SARS-CoV-2: Camazotz’s Curse. Autofinanciado. [511] 999 779 789