Involvement of RSK1 activation in malformin-enhanced cellular fibrinolytic activity

Yukio Koizumi¹, Kenichiro Nagai², Lina Gao¹, Souichi Koyota³, Tomokazu Yamaguchi¹, Miyuki Natsui¹, Yumiko Imai⁴, Keiji Hasumi⁵, Toshihiro Sugiyama¹ & Keiji Kuba¹

Pharmacological interventions to enhance fibrinolysis are effective for treating thrombotic disorders. Utilizing the in vitro U937 cell line-based fibrin degradation assay, we had previously found a cyclic pentapeptide malformin A1 (MA1) as a novel activating compound for cellular fibrinolytic activity. The mechanism by which MA1 enhances cellular fibrinolytic activity remains unknown. In the present study, we show that RSK1 is a crucial mediator of MA1-induced cellular fibrinolysis. Treatment with rhodamine-conjugated MA1 showed that MA1 localizes mainly in the cytoplasm of U937 cells. Screening with an antibody macroarray revealed that MA1 induces the phosphorylation of RSK1 at Ser380 in U937 cells. SL0101, an inhibitor of RSK, inhibited MA1-induced fibrinolytic activity, and CRISPR/Cas9-mediated knockout of RSK1 but not RSK2 suppressed MA1-enhanced fibrinolysis in U937 cells. Synthetic active MA1 derivatives also induced the phosphorylation of RSK1. Furthermore, MA1 treatment stimulated phosphorylation of ERK1/2 and MEK1/2. PD98059, an inhibitor of MEK1/2, inhibited MA1-induced phosphorylation of RSK1 and ERK1/2, indicating that MA1 induces the activation of the MEK-ERK-RSK pathway. Moreover, MA1 upregulated the expression of urokinase-type plasminogen activator (uPA) and increased uPA secretion. These inductions were abrogated in RSK1 knockout cells. These results indicate that RSK1 is a key regulator of MA1-induced extracellular fibrinolytic activity.

Irregular thrombus formation causes severe ischemic diseases such as cerebral infarction and myocardial infarction. Antithrombotic therapies are categorized into three groups: anticoagulants, antiplatelet agents, and thrombolytics. A thrombolytic therapy induces the conversion of proenzyme plasminogen to plasmin, a fibrinolytic enzyme, which in turn leads to the degradation of insoluble fibrin, the main component of thrombus. Although thrombolytic enzymes, such as tissue-type plasminogen activator (tPA) or urokinase-type plasminogen activator (uPA; also known as urokinase), are available for the treatment of thrombotic disorders, pharmacological interventions using low molecular weight compounds for thrombolytic therapies currently present an unmet medical need.

By utilizing an in vitro U937 monocytoid cell line-based fibrin degradation assay, we had previously found the natural cyclic pentapeptide malformin A1 (MA1), a disulfide form of cyclo-D-Cys-D-Cys-L-Val-D-Leu-L-Ile-), as a novel activating compound for cellular fibrinolytic activity (Fig. 1A). MA1 was originally identified as a fungal metabolite that induces curvatures on bean plants and on corn roots²–⁵. Thereafter, the various biological activities of MA1 and its analogs have been reported⁶–¹⁸. The mode of action of MA1 in enhancing the fibrinolytic activity involves the uPA/plasminogen system on the cell surface and depends on the coordinated action of vitronectin as a plasma component¹⁹. However, the intracellular mechanism by which MA1 enhances fibrinolytic activity remains unclear¹⁹.

The mitogen-activated protein kinase (MAPK) pathway has been shown to regulate multiple cellular processes including cell proliferation, differentiation, and survival²⁰. The MAPK pathway transduces extracellular signals to intracellular target proteins through the recruitment and activation of various signaling molecules.

¹Department of Biochemistry and Metabolic Science, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan. ²School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan. ³Molecular Medicine Laboratory, Bioscience Education and Research Support Center, Akita University, 1-1-1 Hondo, Akita, 010-8543, Japan. ⁴Laboratory of Regulation of Intractable Infectious Diseases, National Institute of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan. ⁵Department of Applied Biological Science, Tokyo Noko University, 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509, Japan. Correspondence and requests for materials should be addressed to Y.K. (email: ykoizumi@med.akita-u.ac.jp)

Received: 16 March 2017 Accepted: 15 March 2018 Published online: 03 April 2018
such as Ras, Raf, MAPK kinase (MEK), and extracellular signal-regulated kinase (ERK). Once activated, ERK phosphorylates several substrates, including the p90 ribosomal S6 kinase (RSK)21. RSK activation is regulated by sequential phosphorylations controlled by upstream activators, including ERK1/2 and PDK1, as well as by autophosphorylation22–27.

In this study, we investigated mechanisms of action by which MA1 enhances cellular fibrinolytic activity. An antibody-spotted macroarray screening revealed that MA1 treatment induces the phosphorylation of RSK1 at Ser380. Pharmacological and genetic intervention of RSK inhibited MA1-enhanced fibrinolytic activity. Moreover, MA1 treatment caused the activation of the MEK-ERK-RSK pathway and increased the expression of uPA. These results show that RSK1 is a key regulator of MA1-enhanced cellular fibrinolytic activity.

Results
Fluorescence-conjugated MA1 is localized to the intracellular compartment. In our previous report, MA1-pretreated U937 cells exerted significant pro-fibrinolytic activities, suggesting that a MA1 target was present in the cellular fractions1. We evaluated the cellular distribution of MA1 using a synthesized fluorescence

Figure 1. Fluorescence-conjugated MA1 is localized to the intracellular compartment. (A) Structure of MA1. (B) Strategy for MA1-rhodamine synthesis. (C) MA1-rhodamine localization in U937 cells. MA1-rhodamine-treated cells were counter-stained with DAPI and analyzed with a confocal laser scanning microscope. MA1-rhodamine staining (red) (top left), DAPI staining (blue) (top center), and merged image (top right) are shown. The histogram at the bottom indicates localization of MA1-rhodamine and DAPI signal intensities following the line in the merged image (top right). Scale bar, 10 µm. Arrowheads, MA1-rhodamine-enriched regions.
probe (Fig. 1B). Rhodamine-conjugated MA1 was observed mainly in the cytoplasm of U937 cells (Fig. 1C and Fig. S1), and enrichment of MA1-rhodamine was also observed in cytoplasmic organelles in some of the cells (Fig. 1C). These results suggest that MA1 may interact with intracellular molecule(s).

Antibody macroarray screening reveals that MA1 induces phosphorylation of RSK1. To address what intracellular mechanisms by which MA1 induces fibrinolytic activity, we carried out a screening to identify differentially phosphorylated kinases (26 targets) between MA1-treated and non-treated cell lysates using membrane-based antibody macroarrays (Fig. 2A). The result was represented as a Volcano plot (Fig. 2B). The negative log10 function of the p-value was plotted against the log2 function of the fold change, representing the up- and downregulated phosphorylated kinases in response to MA1 treatment. All kinases with increasing or decreasing fold changes by at least 2-fold at a p-value cut-off of p < 0.05 were considered differentially phosphorylated as a result of the treatment. MA1 significantly elevated the signal intensity of phosphorylated RSK1 (Ser380) (Fig. 2B,C, Table S1).

MA1-induced RSK1 phosphorylation is independent of fibrin and plasma components. We further examined the phosphorylation status of RSK1 by western blotting. Phosphorylation of Ser380 residue of RSK1 was increased by MA1 in U937 cells cultured in the presence of plasma components using membrane-based antibody macroarrays (Fig. 2A). The result was represented as a Volcano plot (Fig. 2B). The negative log10 function of the p-value was plotted against the log2 function of the fold change, representing the up- and downregulated phosphorylated kinases in response to MA1 treatment. All kinases with increasing or decreasing fold changes by at least 2-fold at a p-value cut-off of p < 0.05 were considered differentially phosphorylated as a result of the treatment. MA1 significantly elevated the signal intensity of phosphorylated RSK1 (Ser380) (Fig. 2B,C, Table S1).

RSK1 is essential for MA1-enhanced fibrinolytic activity. The phosphorylation of RSK1 at several sites including Ser380 is important for its kinase activation and downstream signaling22–27. To address whether RSK1 activation was involved in MA1-enhanced cellular fibrinolytic activity, we co-treated U937 cells with an
RSK inhibitor and MA₁ on fibrin-coated plates. SL0101, an inhibitor of RSK28, suppressed MA₁-enhanced fibrinolytic activity in a dose-dependent manner (Fig. 3C). We next analyzed the effects of RSK1 gene knockout (KO) on MA₁-enhanced fibrinolysis via genome editing with the CRISPR/Cas9 system. U937 cells transduced with lentivirus co-expressing Cas9 nuclease with RSK1- or RSK2-targeted sgRNA, or non-targeted control sgRNA were collected after puromycin selection, and single cell clones with a deletion of RSK1 (RSK1#9, RSK1#14, and RSK1#17) or RSK2 (RSK2#24 and RSK2#27) were further selected. Protein expression of RSK1 was depleted in the cell clones RSK1#9, RSK1#14, and RSK1#17; whereas RSK2 expression was depleted in the clones RSK2#24 and RSK2#27 (Fig. 4A). In non-target sgRNA-expressing cells and RSK2 KO cells, MA₁ induced fibrinolytic activity (Fig. 4B). By contrast, MA₁ failed to enhance fibrinolytic activity in RSK1 KO clones (Fig. 4B). These data indicate that RSK1 is functionally involved in MA₁-enhanced cellular fibrinolytic activity.

Biologically active MA₁ derivative also induces phosphorylation of RSK1. Our previous structure-activity relationship study showed that the disulfide bond and the bulky hydrophobic side chains in MA₁ play a crucial role in exerting pro-fibrinolytic activity29. We further examined the effects of synthetic MA₁ derivatives on RSK1 phosphorylation. Three MA₁ derivatives (reduced MA₁, dimethyl MA₁, and 3-LysMA₁), which have been found not to retain fibrinolysis-enhancing activity, did not induce phosphorylation of RSK1 (Fig. 5A,B). On the other hand, a biologically active derivative, 3-BocLysMA₁, induced RSK1 phosphorylation (Fig. 5A,B). Thus, there was a positive correlation between the biological activity and the induction of RSK1 phosphorylation in MA₁ derivatives.

MA₁ induces the activation of the MEK-ERK-RSK pathway. RSK1 is activated by MAP kinases of the ERK family in response to growth factors, hormones, and other stimuli21. We investigated whether ERK1/2, an upstream kinase of RSK1, was activated in MA₁-treated cells. MA₁ treatment caused the phosphorylation of ERK1/2 (Fig. 6A). Furthermore, MA₁ also upregulated phosphorylation levels of MEK1/2, an upstream kinase
of ERK1/2 (Fig. 6A). These inductions were observed identically to RSK1 phosphorylation at 30 min after MA1 stimulation (Fig. 6B). MA1-induced activation of RSK1 and ERK1/2 was suppressed by PD98059 (Fig. 6C), an inhibitor of MEK30. These results show that MA1 induces the activation of the MEK-ERK-RSK pathway. MA1 increases the expression of the uPA gene and secretion of uPA in an RSK1-dependent manner. Although MA1-induced RSK activation increased fibrinolytic activity, it remains unknown what fibrinolytic factors were elevated. Our previous study using neutralizing antibodies has shown that uPA was involved in MA1-enhanced activity1. Therefore, we examined uPA gene expression levels. The expression of the uPA gene was upregulated in MA1-treated cells (Fig. 7A). Furthermore, when the uPA protein level was examined, MA1 induced an increase in uPA secretion into the conditioned medium (Fig. 7B). Next, we investigated the effects of RSK1 KO. In contrast to the RSK2 KO clone (RSK2#24), MA1 did not significantly upregulate the expression of the uPA gene in RSK1 KO clones (RSK1#9 and RSK1#14) (Fig. 7C). Similarly, MA1 could not increase the secretion of uPA in RSK1 KO clones (Fig. 7D). These results indicate that MA1 induced the activation of RSK1 followed by an increase in uPA expression, and enhanced extracellular fibrinolytic activity (Fig. 8).

Discussion

In our previous report, we had shown that MA1-treated U937 cells exhibited changes in actin organization and focal accumulation of plasminogen on the cell surface19. In the present study, the fluorescence-labeled MA1, when added to the culture of U937 cells, was primarily localized to the intracellular compartment (Fig. 1C). Based on these observations, we hypothesized that MA1 may affect the function of intracellular molecules. Indeed, we showed here that RSK1 was essentially activated by MA1 and thereby enhanced fibrinolytic activity. Activation of intracellular signaling by MA1 had also been previously reported to have other effects including cytotoxic effects of MA1 on prostate cancer cells involving the accumulation of reactive oxygen species, a decrease in

Figure 4. CRISPR/Cas9-mediated RSK1 knockout suppresses MA1-enhanced fibrinolytic activity. (A) Western blot analysis of RSK1 and RSK2 in CRISPR/Cas9-mediated knockout (KO) U937 cell clones, RSK1#9, RSK1#14, RSK1#17, RSK2#24 and RSK2#27. (B) Effect of MA1 on fibrinolytic activity in CRISPR/Cas9-mediated KO U937 cell clones. CRISPR/Cas9-mediated KO U937 cell clones with human platelet-poor plasma were added to each well of the 125I-fibrin-coated 96-well microplate. After incubation for 3h with MA1 at the indicated concentrations, 125I-fibrin degradation products released into the supernatant were quantified using a γ-counter. Data were presented as means ± SD (n = 3). Statistical analyses were performed using one-way ANOVA with Tukey’s post-hoc test (**p < 0.01, *p < 0.05, versus control).
mitochondrial transmembrane potential, and induction of autophagy. Importantly, MA1 induced the activation of ERK, an upstream kinase of RSK, and its activation was considered to occur in a MEK-dependent pathway (Fig. 6). Localization at the intracellular compartment of MA1 may be necessary for efficient activation of the MEK-ERK-RSK pathway, which increases cellular fibrinolytic activity. The identification of direct target molecules of MA1 that activates MEK is currently under investigation.

The RSK family is comprised of a group of highly related serine/threonine kinases that regulate diverse cellular processes, including cell growth, proliferation, survival, and motility. This family includes four vertebrate isoforms (RSK1–4). Mutations in the RSK2 isoform are known to be associated with Coffin-Lowry syndrome, and a gene knockout study of RSK2 in mice shows that RSK2 is a modulator of craniofacial development. Results from these previous reports plus the results of this study that RSK1 KO specifically suppresses MA1-induced fibrinolytic activity (Fig. 4B, and Fig. 7C,D) lead us to speculate that RSK family proteins are exhibit isoform-specific functions. As the phenotypes of RSK1 KO mice have not yet been reported, the significance of RSK1 in fibrinolysis in vivo remains elusive.

Mammalian RSK was reported to function as an important effector of ERK in global transcriptional regulation. RSK was shown to regulate ~20% of mRNAs controlled by ERK in Madin-Darby canine kidney cells through direct and indirect mechanisms, such as the induction of transcription factors. On the other hand, there have been several reports describing the regulation of uPA activity via the activation of RSK. Activated RSK regulates epithelial cell motility and invasiveness by stimulating the gene expression of the uPA/uPA receptor, and activated RSK in breast carcinoma enhances cellular invasion through phosphorylation of IκBα, allowing NF-κB to translocate into the nucleus and induce uPA expression. We had previously shown that uPA rather than tPA was likely to be involved in MA1-enhanced fibrinolytic activity, and in this study, MA1 consistently upregulated uPA mRNA levels and increased uPA protein secretion (Fig. 7A,B). Target gene clusters for MA1-induced RSK1-mediated transcription activation will be further elucidated in the future.

In summary, we demonstrated that the phosphorylation of RSK1 at Ser380 was crucial for MA1-induced cellular fibrinolysis in U937 monocytoid cells. Pharmacological and genetic intervention of RSK1 suppressed MA1-enhanced fibrinolytic activity. In addition, MA1 resulted in the activation of the MEK-ERK pathway followed by the activation of RSK. Further, MA1 led to the induction of uPA expression in an RSK-dependent manner. Although further studies are needed, the potential applications of MA1 derivatives or RSK1-activating compounds as therapeutics may contribute to the development of better antithrombotic treatments for severe ischemic diseases.
Methods

Reagents. NHS-Rhodamine, Opti-MEM, anti-uPA antibody, and TRIzol reagent were purchased from Thermo Fisher Scientific. DAPI was obtained from Dojindo. Fibrinogen was purchased from Sigma-Aldrich. RSK inhibitor SL0101 and MEK inhibitor PD98059 were obtained from Merck Millipore. Anti-phospho-RSK1

Figure 6. MA1 induces the phosphorylation of ERK1/2 and MEK1/2. (A) Western blot analysis of phospho-ERK1/2 (Thr202/Tyr204) and ERK1/2, and phospho-MEK1/2 (Ser217/221) and MEK1/2 in MA1-treated U937 cells. MA1 treatment was performed at 37°C for 1 h. Data were presented as means ± SD (n = 3). Statistical analyses were performed using one-way ANOVA with Tukey’s post-hoc test (*p < 0.05, **p < 0.01, versus control). (B) Western blot time course analysis of phosphorylation of RSK1, ERK1/2, and MEK1/2 in MA1-treated U937 cells. U937 cells were treated with 5 μM MA1 at 37°C for the indicated times. Data were presented as means ± SD (n = 3). Statistical analyses were performed using two-way ANOVA with Tukey’s post-hoc test (**p < 0.01, versus control). (C) Effects of PD98059 on MA1-induced RSK1 and ERK1/2 phosphorylation. U937 cells were treated with 5 μM MA1 and 100 μM PD98059 at 37°C for 1 h. Data were presented as means ± SD (n = 3). Statistical analyses were performed using one-way ANOVA with Tukey’s post-hoc test (**p < 0.01, versus MA1-only treatment).
Malformin A₁ and its synthetic derivatives. MA₁ was purified from the culture broth of Aspergillus niger F7586 as previously described. Reduced MA₁, Dimethyl MA₁, 3-LysMA₁, and 3-BocLysMA₁ were synthesized using solid-phase peptide synthesis according to previous work. MA₁-rhodamine was synthesized by conjugation of 3-LysMA₁ with NHS-rhodamine in 20 mM phosphate buffer (pH 7.4) at 37 °C for 2 h, and then purified by preparative HPLC.

Cell culture. U937 cells were obtained from Japanese Collection of Research Bioresources, and were cultured in RPMI-1640 including 10% FBS, 100 units/mL penicillin, and 100 µg/mL streptomycin. 293FT cells were obtained from Thermo Fisher Scientific, and were cultured in complete medium including DMEM, 10% FBS, 6 mM L-glutamine, 0.1 mM non-essential amino acids, 1 mM sodium pyruvate, 100 units/mL penicillin, and 100 µg/mL streptomycin. Cells were cultured in a humidified 5% CO₂ atmosphere at 37 °C.

Fluorescence imaging. For MA₁-rhodamine staining, U937 cells (5 × 10⁶ cells/ml) were incubated with 5 µM MA₁-rhodamine in 10% human platelet-poor plasma on fibrin-coated 8-chamber slide at 37 °C for 1 h. After the reaction, cells were fixed with 3.7% paraformaldehyde at room temperature for 20 min. The cells were
subsequently washed twice with PBS and incubated with DAPI for 10 min in the dark. Fluorescence images were
taken with a confocal laser scanning microscope LSM510 (Carl Zeiss).

Membrane-based antibody macroarray. Membrane-based antibody macroarrays were performed using
Proteome Profiler Human phosphorylated kinase Arrays (ARY002B; R&D Systems). The procedure was carried
out according to the manufacturer’s instruction. Briefly, U937 cells (5 × 10⁶ cells/ml) were treated with 5 µM
MA1 in 10% human platelet-poor plasma on a fibrin-coated 24-well microplate at 37 °C for 1 h. After treatment,
cell lysates were prepared in lysis buffer (contained in the kit) and clarified by centrifugation. After determination
of protein concentration, equal amounts of protein were subjected to macroarrays. Macroarray membranes
were blocked with blocking buffer (contained in the kit) and then simultaneously reacted with cell lysates and
a biotinylated antibody cocktail. After washing, the membranes were incubated with streptavidin-conjugated
horseradish peroxidase. Subsequently, multiple phosphorylated kinases were detected using the ECL system (GE
Healthcare). The macroarray was conducted with n = 3.

Western blot analysis. U937 cells (5 × 10⁶ cells/ml) were treated with test compounds at the indicated
concentrations in the presence or absence of 10% human platelet-poor plasma on a fibrin-coated or non-coated
dish at 37 °C for 1 h. After treatment, cell lysates were prepared in lysis buffer (50 mM Tris-HCl [pH 7.5], 150 mM
NaCl, 1 mM EDTA, 1% NP-40, 20 mM NaF, 2 mM Na₃VO₄, and protease inhibitor cocktail [Roche Diagnostics])
and clarified by centrifugation. After determining the protein concentration, equal amounts of protein were sub-
jected to SDS-PAGE under reducing conditions. For uPA detection, U937 cells were treated with MA1 for 3 h in
RPMI-1640 medium containing 0.5% FBS. After treatment, conditioned media were concentrated ~20-fold using
Amicon ultra filter devices (Merck Millipore), and then subjected to SDS-PAGE under non-reducing conditions.
Next, proteins were transferred to a nitrocellulose membrane, and then blocked with 5% skim milk and then
incubated with specific antibodies. After washing, the membranes were incubated with peroxidase-conjugated
secondary antibody. Subsequently, targeted proteins were detected using the ECL system.

In vitro fibrin degradation assay. The In vitro fibrin degradation assay was performed using an
125I-labeled fibrin-coated plate as previously described. Briefly, each well of a 96-well microplate was coated
with 125I-fibrinogen (ca. 50,000 cpm/20 µg/well) and then treated with 0.68 units/ml thrombin to convert
125I-fibrinogen to 125I-fibrin. Fifty microliters of U937 cells at a concentration of 5 × 10⁶ cells/ml in 10% human
platelet-poor plasma were added to each well of the 125I-fibrin-coated 96-well microplate. After incubating at
37 °C for 3 h with samples at the indicated concentrations, 125I-fibrin degradation products released into the
supernatant were quantified using the γ-counter AccuFLEX γ7010 (Hitachi).

Lentivirus preparation, transduction, and single cell cloning. Single guide RNAs (sgRNAs) for
RSK1 and RSK2 were designed according to the sgRNA sequences in the genome-scale CRISPR knockout library
GeCKOv2 (http://genome-engineering.org/gecko/?page_id=15) (Table 1), and oligonucleotides for sgRNA were
annealed and cloned into the lentivirus transfer vector lentiCRISPRv2 at the BsmBI restriction site. For
the production of recombinant lentiviral particles, the transfer plasmids were co-transfected with the packaging plas-
mids pMD2.G and psPAX2. Briefly, for each virus, 80% confluent 293FT cells in 6-well plate were transfected in
Opti-MEM using 1 µg of the transfer plasmid, 0.5 µg pMD2.G, 0.5 µg psPAX2, and 6 µl of FuGENE HD. After
12 h, the media were replaced with fresh media. After 48 h, the supernatants containing the viral particles were
harvested and filtrated through a 0.45 µm-pore membrane. For each viral construct, 1 × 10⁶ U937 cells were

Figure 8. A proposed model of MA1-mediated MEK-ERK-RSK1 pathway activation and subsequent
expression of uPA followed by fibrinolysis enhancement.
transduced in 2 ml of media with 1 ml of viral supernatant in wells of a 6-well plate. At 48 h post-transduction, the media was changed to media containing 2 µg/ml puromycin, and the cells were then further cultured in media with puromycin. For single cell cloning of RSK1- or RSK2-knockout cells, puromycin-selected cells were plated onto a 96-well microplate at a density of 0.5 cells/well and cultured in puromycin-free medium. At 20 days post-plating, the knockout efficiency in 40 single cell clones was examined by western blotting.

Quantitative real-time reverse transcription PCR. U937 cells (2 × 10^6 cells/ml) were treated with MA1, at the indicated concentrations at 37 °C for 1 h. After treatment, total RNA was isolated using TRIzol reagent according to the manufacturer’s instructions. The CDNA was synthesized using the PrimeScript RT reagent kit. Quantitative real-time PCR was performed with SYBR Premix Ex Taq II in a Thermal Cycler Dice Real Time System II (Takara). The relative fold change in mRNA expression was calculated using the ΔΔCt method. GAPDH was used as reference gene. Sequences of the primers used were as follows: PLAU_for, CAC GCA AGG GGA GAT GAA; PLAU_rev, ACA GCA TTT TGG TGG TGA CTT; GAPDH_for, CTT CAC CAT GCA GGA GAA GGC; GAPDH_rev, GGC ATG GAC TGT GGT CAT GAG.

Data availability. All data generated or analyzed during this study are included in this published article and its Supplementary Information files.

References

1. Koizumi, Y. & Hasumi, K. Enhancement of fibrinolytic activity of U937 cells by malformin A1. J. Antibiot. 55, 78–82 (2002).
2. Curtis, R. W. Curvatures and malformations in bean plants caused by culture filtrate of Aspergillus niger. Plant Physiol. 33, 17–22 (1958).
3. Curtis, R. W. Root curvatures induced by culture filtrates of Aspergillus niger. Science 128, 661–662 (1958).
4. Takahashi, N. & Curtis, R. W. Isolation and characterization of malformin. Plant Physiol. 36, 30–36 (1961).
5. Bodanszky, M. & Stahl, G. L. The structure and synthesis of malformin A. Proc. Natl. Acad. Sci. USA 71, 2791–2794 (1974).
6. Suda, S. & Curtis, R. W. Antibiotic properties of malformin. Appl. Microbiol. 14, 475–476 (1966).
7. Tan, Q. W., Gao, F. L., Wang, F. R. & Chen, Q. J. Anti-TMV activity of malformin A1, a cyclic penta-peptide produced by an endophytic fungus Aspergillus tubingensis FJJ11. Int. J. Mol. Sci. 16, 5750–5761 (2015).
8. Kojima, Y. et al. Solid-phase synthesis and biological activity of malformin C and its derivatives. J. Antibiot. 62, 681–686 (2009).
9. Li, X. B. et al. Naphtho-γ-pyrones from Endophyte Aspergillus niger occurring in the liverwort Heteroscyphus tener (Steph.)Schiffn. Chem. Biodivers. 10, 1193–1201 (2013).
10. Liu, Y. et al. Malformin A1 promotes cell death through induction of apoptosis, necrosis and autophagy in prostate cancer cells. Cancer Chemother. Pharmacol. 77, 63–75 (2016).
11. Herbert, J. M. et al. Malformin-A1 inhibits the binding of interleukin-1 beta (IL1 beta) and suppresses the expression of tissue factor in human endothelial cells and monocytes. Biochem. Pharmacol. 48, 1211–1217 (1994).
12. Kim, K. W. et al. Structure of Malformin A, a Phytotoxic Metabolite Produced by Aspergillus niger. Biosci. Biotech. Biochem. 57, 240–243 (1993).
13. Kim, K. W. et al. Structure of Malformin B, a Phytotoxic metabolite produced by Aspergillus niger. Biosci. Biotech. Biochem. 57, 787–791 (1993).
14. Anderegg, R. J., Biemann, K., Büchi, G. & Cushman, M. Malformin C, a new metabolite of Aspergillus niger. J. Am. Chem. Soc. 98, 3365–3370 (1976).
15. Kobbe, B., Cushman, M., Wogan, G. N. & Demain, A. L. Production and antibacterial activity of malformin C, a toxic metabolite of Aspergillus niger. Appl. Environ. Microbiol. 33, 996–997 (1977).
16. Hagimori, K., Fukuda, T., Hasegawa, Y., Ōmura, S. & Tomoda, H. Fungal malformins inhibit bleomycin-induced G2 checkpoint in Jurkat cells. Biol. Pharm. Bull. 30, 1379–1383 (2007).
17. Wang, J. et al. Study of Malformin C, a Fungal Source Cyclic Pentapeptide, as an Anti-Cancer Drug. PLoS One 10, e0140069 (2015).
18. Zhou, X. et al. Aspinigrins with anti-HIV-1 activities from the marine-derived fungus Aspergillus niger SCI0 Jsw6F30. Bioorg. Med. Chem. Lett. 26, 361–365 (2016).
19. Koizumi, Y., Fukumode, H. & Hasumi, K. Fibrinolytic activation promoted by the cyclopentapeptide malformin: involvement of cytoskeletal reorganization. Biochem. Pharm. Bull. 34, 1426–1431 (2011).
20. Roberts, P. J. & Der, C. J. Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 26, 3291–3310 (2007).
21. Frödin, M. & Gammeltoft, S. Role and regulation of 90 kDa ribosomal S6 kinase (RSK) in signal transduction. Mol. Cell. Endocrinol. 151, 65–77 (1999).
22. Vik, T. A. & Ryder, J. W. Identification of serine 380 as the major site of autophosphorylation of Xenopus pp90rsk. Biochem. Biophys. Res. Commun. 235, 398–402 (1997).
23. Dally, K. N., Morrice, N., Cadwell, F. B., Avruch, J. & Cohen, P. Identification of regulatory phosphorylation sites in mitogen-activated protein kinase (MAPK)-activated protein kinase-1α/p90rsk that are inducible by MAPK. J. Biol. Chem. 273, 1496–1505 (1998).
24. Jensen, C. J. et al. 90-kDa ribosomal S6 kinase is phosphorylated and activated by 3-phosphoinositide-dependent protein kinase-1. J. Biol. Chem. 274, 27168–27176 (1999).
25. Richards, S. A., Fu, J., Romanelli, A., Shimamura, A. & Blenis, J. Ribosomal S6 kinase 1 (RSK1) activation requires signals dependent on and independent of the MAP kinase ERK. Curr. Biol. 9, 810–820 (1999).
26. Smith, J. A., Poteet-Smith, C. E., Malarkey, K. & Sturgill, T. W. Identification of an extracellular signal-regulated kinase (ERK) docking site in ribosomal S6 kinase, a sequence critical for activation by ERK in vivo. J. Biol. Chem. 274, 2893–2898 (1999).

Target	Target site sequence (5’ to 3’)	PAM	Target exon	Strand
RP56KA1	TTCCAGAATGGACAGACGCTC	AGG	2	+
RP56KA3	ACAGAATGGACAGCAAAATTB	TGG	2	–
Neg*	ACGGAGGCTAAAAGGTCGGCA	--	--	--

Table 1. Designed sgRNA guide sequences. *Neg, non-targeting sequence.
27. Frödin, M., Jensen, C. J., Merienne, K. & Gammeltoft, S. A phosphoserine-regulated docking site in the protein kinase RSK2 that recruits and activates PDK1. *EMBO J.* **19**, 2924–2934 (2000).
28. Smith, J. A. *et al.* Identification of the first specific inhibitor of p90 ribosomal S6 kinase (RSK) reveals an unexpected role for RSK in cancer cell proliferation. *Cancer Res.* **65**, 1027–1034 (2005).
29. Koizumi, Y., Nagai, K., Hasumi, K., Kubo, K. & Sugiyama, T. Structure–activity relationship of cyclic pentapeptide malformins as fibrinolysis enhancers. *Bioorg. Med. Chem. Lett.* **26**, 5267–5271 (2016).
30. Pang, L., Sawada, T., Decker, S. J. & Saltiel, A. R. Inhibition of MAP kinase kinase blocks the differentiation of PC-12 cells induced by nerve growth factor. *J. Biol. Chem.* **270**, 13585–13588 (1995).
31. Trivier, E. *et al.* Mutations in the kinase Rsk-2 associated with Coffin–Lowry syndrome. *Nature* **384**, 567–570 (1996).
32. Laugel-Haushalter, V. *et al.* RSK2 is a modulator of craniofacial development. *PLoS One* **9**, e84343 (2014).
33. Doehn, U. *et al.* RSK is a principal effector of the RAS-ERK pathway for eliciting a coordinate promotile/invasive gene program and phenotype in epithelial cells. *Mol. Cell* **35**, 511–522 (2009).
34. Astanehe, A. *et al.* The transcriptional induction of PIK3CA in tumor cells is dependent on the oncoprotein Y-box binding protein-1. *Oncogene* **28**, 2406–2418 (2009).
35. Sanjana, N. E., Shalem, O. & Zhang, F. Improved vectors and genome-wide libraries for CRISPR screening. *Nat. Methods* **11**, 783–784 (2014).

Acknowledgements
This work was supported in part by JSPS KAKENHI Grant Numbers 20200037 and 26350969 to Y.K.

Author Contributions
Y.K., K.H., T.S. and K.K. designed the experiments and wrote the paper. K.N. synthesized MA1 derivatives. L.G. performed antibody macroarray. Y.I. helped lentivirus production. S.K., T.Y. and M.N. performed all other experiments.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-23745-0.

Competing Interests: The authors declare no competing interests.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2018