Efficient Gradient-Based Algorithm with Numerical Derivatives for Expedited Optimization of Multi-Parameter Miniaturized Impedance Matching Transformers

Slawomir KOZIEL 1,2, Anna PIETRENKO-DABROWSKA 2

1 Engineering Optimization & Modeling Center, Reykjavik University, Menntavegur 1, 101 Reykjavik, Iceland
2 Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland

koziel@ru.is, anna.dabrowska@pg.edu.pl

Submitted February 7, 2019 / Accepted June 13, 2019

Abstract. Full-wave electromagnetic (EM) simulation tools have become ubiquitous in the design of microwave components. In some cases, e.g., miniaturized microstrip components, EM analysis is mandatory due to considerable cross-coupling effects that cannot be accounted for otherwise (e.g., by means of equivalent circuits). These effects are particularly pronounced in the structures involving slow-wave compact cells and their numerical optimization is challenging due to expensive simulations and large number of parameters. In this paper, a novel gradient-based procedure with numerical derivatives is proposed for expedited optimization of compact microstrip impedance matching transformers. The method restricts the use of finite differentiation which is replaced for selected parameters by a rank-one Broyden updating formula. The usage of the formula is governed by an acceptance parameter which is made dependent on the parameter space dimensionality. This facilitates handling circuits of various complexities. The proposed approach is validated using three impedance matching transformer circuits with the number of parameters varying from ten to twenty. A significant speedup of up to 50 percent is demonstrated with respect to the reference algorithm.

Keywords
Microwave design closure, EM simulation, design optimization, trust-region framework, Broyden update, impedance transformers

1. Introduction
Small size has become a prerequisite in the design of many high-frequency structures, including RF, microwave and antenna components [1], [2]. The fundamental challenges come from physical limitations, e.g., some of the circuit dimensions being proportional to the guided wavelengths. These can be overcome to a certain extent by miniaturization methods such as transmission line folding [3], utilization of slow-wave compact cells [4], or various geometrical modifications (defected ground structures [5], stubs [6], radiator slots [7], etc.). Size reduction by topology alterations leads to practical problems related to parameter adjustment which have to be based on full-wave electromagnetic (EM) simulations. This is because neither analytical nor equivalent network models are able to account for cross-coupling effects in densely arranged layouts. Examples of relevant high-frequency structures include miniaturized microstrip couplers [8], impedance matching transformers [9], power dividers [10], filters [11], as well as antennas [12–14]. Another issue pertinent to compact components is an increased number of geometry variables. For example, a typical compact microstrip resonant cells (CMRC) unit is described by five or more parameters versus two for the conventional transmission line (TL) it is replacing [15]. Similarly, miniaturized antennas may require as many as twenty to thirty parameters to describe their geometry versus just a few for basic topologies. Finally, computational models of compact structures typically require longer simulation times (e.g., EM models of CMRC-based circuits normally feature higher-graded meshes than the TL-based ones). The abovementioned factors arising from device miniaturization i.e., cross-coupling effects, increased parameter number and lengthened simulation duration lead to excessive costs of the optimization process.

Below, the state-of-the-art approaches for reducing the computational burden of EM-driven design closure are recited. One of the most straightforward methods is the use of adjoint sensitivities for expediting gradient-based routines [16]. Unfortunately, the availability of the adjoint technology is sparse in commercial simulation packages. A different approach is a reduction of the search space dimensionality, which can be achieved, among others, by
the parameters for which the corresponding basis vectors are
sufficiently well aligned with the direction of the recent
design relocation ensuring by this this satisfactory accuracy
of the resulting Jacobian estimate. In order to facilitate
handling circuits of various complexities, the alignment
acceptance threshold is made dependent on the search
space dimensionality. The main scientific contributions of
the proposed framework are: (i) a considerably reduced
computational cost of the optimization process without
significantly compromising the design quality by incorpo-
ration of the updating formulas into the Jacobian estimation
process in a selective manner, (ii) delivering a way of
automating the algorithm setup by making the alignment
threshold dimensionality independent, (iii) suitability of
the proposed algorithm to speed up both direct and surrogate-
assisted optimization procedures in the microwave area
involving variable-fidelity models. For the sake of valida-
tion, several CMRC-based miniaturized impedance
matching transformers are optimized, described by ten,
fifteen, and twenty parameters, respectively. The results
demonstrate considerable significant speedup (up to 50
percent, averaged over ten runs with random initial design)
over the reference algorithm.

2. Trust-Region Gradient-Search with
Reduced Jacobian Updates

This section provides the details on the design closure
task formulation, the reference algorithm, as well as the
proposed optimization algorithm with the emphasis put on
the sensitivity update mechanisms.

2.1 EM-Driven Design Closure

Design closure is the last stage of the design process
where the circuit topology is typically fixed and only the
geometry (in some cases also material) parameter values
are adjusted in order to boost the system performance as
much as possible. If the task is dealt with using rigorous
methods, e.g., numerical optimization, it is formulated as

$$\mathbf{x}^* = \arg\min_{\mathbf{x}} U(\mathbf{R}(\mathbf{x}))$$ \hspace{1cm} (1)$$

in which U is a scalar objective function, $\mathbf{R}(\mathbf{x})$ represents a
response of the EM simulation model of the optimized
structure, whereas \mathbf{x} stands for a vector of adjustable pa-
rameters. Clearly, a definition of the function U depends on
the particular circuit, selected performance figures, and
constraints imposed on the system. In this paper we focus
on the impedance matching transformers, with the objec-
tive being reduction of the return loss within the frequency
range of interest F. This can be formally written as

$$U(\mathbf{R}(\mathbf{x})) = \max \{|f \in F : |S_{11}(\mathbf{x}, f)|\}.$$ \hspace{1cm} (2)$$

In (2), the explicit dependence of the reflection coefficient
S_{11} on frequency f is indicated for the sake of clarity.
2.2 Reference Algorithm

As a reference algorithm a standard trust-region (TR) routine [30] is utilized and its concise recapitulation is given below. The TR framework is a convenient way of solving (1) if both the objective function and the constraints are evaluated through EM analysis. The routine delivers approximations to the optimum solution \(x^* \) as a series of vectors \(x^{(i)} \), \(i = 0, 1, \ldots \)
\[
x^{(i+1)} = \arg \min_{x: \delta^0 \leq x - x^{(i)} \leq \delta^0} U(L^{(i)}(x))
\]
(3)
where \(L^{(i)}(x) = R(x^{(i)}) + J_R(x^{(i)})(x - x^{(i)}) \) represents a linear expansion of \(R \) at \(x^{(i)} \). In each iteration of the TR algorithm, \(L^{(i)} \) is determined by estimating the Jacobian \(J_R \) through finite differentiation. For a \(n \)-element vector of the design variables of the structure at hand, it incurs a cost of additional \(n \) EM simulations.

Here, unlike the conventional TR algorithm that adopts an Euclidean search region \(|x - x^{(0)}| \leq \delta^0 \), a hypercube-like search region is employed, and the inequalities \(-\delta^0 \leq x - x^{(i)} \leq \delta^0 \) of (3) are interpreted as component-wise. This relates the initial TR region size, \(\delta^{(0)} = ||\delta^0||_1 \), with the design space sizes. This allows for accommodating the ranges of the geometry parameters (that typically vary from fractions of millimeters for gaps to tens of millimeters for longitudinal values).

2.3 Trust-Region Optimization with Reduced Sensitivity Updates and Dimensionality-Dependent Alignment Threshold

In the proposed algorithm, two mechanisms are simultaneously used to lessen the computational burden of sensitivity estimation. The first employs reduced sensitivity updates governed by the alignment of the recent design relocation with a given coordinate system axis. The second mechanism involves flexible appointment of the alignment threshold value, which is both dimensionality- and convergence-dependent. Hence, the Jacobian \(J_R \) estimation through FD, performed in each iteration of the conventional TR routine, is, for the chosen parameters, replaced with a rank-one Broyden formula (BF) [31]
\[
J_R^{[i+1]} = J_R^{[i]} + \frac{\triangle R^{[i+1]} - J_R^{[i]} \cdot h^{[i+1]}}{h^{[i+1]} h^{[i+1] T}}
\]
(4)
where \(\triangle R^{[i+1]} = R(x^{[i+1]}) - R(x^{[i]}) = [\Delta R_1^{(i)} \ldots \Delta R_n^{(i)}] \), and the recent design relocation vector is denoted as \(h^{[i+1]} = x^{[i+1]} - x^{[i]} = [h_1^{(i)} \ldots h_n^{(i)}]^T \). The reason for applying the Broyden formula for the directions of search that are well aligned with the coordinate system axes is the following. The estimate \(J_R^{[i+1]} \) of the Jacobian is based on the design relocation between subsequent iterations \(h^{[i+1]} \) (cf. (4)). If \(h^{[i+1]} \) is well aligned with a particular coordinate system axis, the Broyden formula delivers a good approximation of the Jacobian in this direction, otherwise (4) does not bring any useful information into the Jacobian matrix and other means (here, FD) have to be used. It should be underlined that in the proposed algorithm the entire Jacobian is estimated using FD merely in the first iteration, while in the subsequent iterations some (or all) of FD calculations may be replaced by the BF formula. The flow of the proposed algorithm with reduced sensitivity updates is as follows.

1. Set the iteration index \(i = 1 \);
2. Calculate the entire Jacobian \(J_R \) using FD;
3. Find the \(x^{(i+1)} \) by solving (3);
4. Update the TR region size;
5. Perform Jacobian update procedure (see Fig. 1);
6. If the termination condition is not satisfied go to 3, else END.

The flow of the proposed Jacobian update procedure is shown graphically in Fig. 1. In its course, the Jacobian \(J_R \) is merged from the columns \(J_{R,k} \), \(k = 1, \ldots, n \), either estimated with FD or computed with BF (cf. (4)). The variables, for which FD is to be skipped, are chosen based on the alignment between the recent design relocation direction and the coordinate system axes. For a given variable \(k \) the decision factor \(\phi_k^{(0)} \) is defined
\[
\phi_k^{(0)} = \frac{h_{R,k}^{(0) T} e_k}{||h_{R,k}^{(0)}||}
\]
(5)
If the alignment exceeds the alignment acceptance threshold value \(\gamma^{(i)} \), the respective Jacobian column \(\mathbf{J}_i \) is calculated using BF; otherwise FD is executed. The above definition of the decision factor implies that \(\phi_k^{(0)} = 1 \) if the design relocation vector \(\mathbf{h}^{(0)} \) and the \(k \)-th basis vector \(\mathbf{e}_k \) are collinear and \(\phi_k^{(0)} = 0 \) if the vectors are orthogonal. Here, the current threshold value \(\gamma^{(i)} \) for the \(i \)-th iteration is contingent on the current TR region size \(\delta^{(i)} \) being the algorithm convergence status. In the \(i \)-th iteration, \(\gamma^{(i)} \) is calculated as

\[
\gamma^{(i)} = \gamma_{n} \left(\frac{\log(\delta^{(i)}/\varepsilon)}{\log(\delta_{\text{init}}/\varepsilon)} \right) \quad (6)
\]

where \(0 \leq \gamma_{n} \leq 1 \) is a user defined initial threshold value (algorithm control parameter), \(\delta_{\text{init}} \) is a boundary value of the TR region size, and \(\varepsilon \) refers to a termination condition (for convergence in argument). The choice of \(\gamma_{\text{init}} \) is a crucial one, as it strongly influences the optimization process. The higher \(\gamma_{\text{init}} \), the higher the overall number of FD estimations associated with a lengthened optimization process duration and, at the same time, potentially better design quality. If the low computational cost is of primary importance, then lower \(\gamma_{\text{init}} \) values are preferred. In order to secure higher computational savings, the progressive reduction of the acceptance threshold value is carried out that leads to an even less frequent utilization of FD. As the algorithm converges, the TR region size \(\delta^{(i)} \) is reduced according to the standard rules \([31]\). In the case of the small TR region size, below user-defined boundary value \(\delta_{\text{init}} \), the alignment threshold value \(\gamma^{(i)} \) is gradually reduced, tending to 0 as \(\delta^{(i)} \) approaches \(\varepsilon \).

The idea of making dimension-dependent value of the acceptance threshold \(\gamma_{\text{init}} \) makes the algorithm setup dimensionality independent (see Sec. 3). In the paper, \(\gamma_{\text{init}} \) is calculated based on the number of the design variables of the structure at hand. First, the requested fraction \(\phi \) of the Jacobian columns without FD is selected. Then, the actual acceptance threshold value \(\gamma_{\phi} \) that permits attaining \(\phi \), is obtained using statistical optimization. The following problem needs to be solved

\[
\gamma_{\phi} = \arg \min_{\gamma} \left(\phi - N_{\phi} \sum_{j=1}^{N_{\phi}} \left(\beta_{j\phi} - \gamma \right) \right) \quad (7)
\]

Here, for a given problem dimensionality \(n \), let us denote the statistical factors \(\beta_{j\phi} = \left(\log^{(i)} \mathbf{e}_{j\phi} \right)/\left(\log^{(i)} \mathbf{h} \right) \), for \(j = 1, \ldots, N_{\phi} \) and \(k = 1, \ldots, n \), where \(\gamma^{(i)}; j = 1, \ldots, N_{\phi} \), refer to a series of random observations. The problem of optimizing the fraction of directions, for which the coefficient is over \(\gamma \), is solved using a pattern search algorithm \([29]\).

Figure 2 shows the relation between the desired fraction \(\phi \) of directions without FD and the threshold value \(\gamma \) depicted for the parameter space dimensionality corresponding to those of the transformers from Sec. 3. Different values of \(n \) are associated with various threshold values securing the same fraction of savings. The dimension-dependent threshold allows us for achieving a consistent algorithm performance for the structures described by different number of parameters. In particular, the optimum value of the fraction \(\phi \) appears to be dimensionality independent as validated by the results from Tab. 2.

3. Numerical Validation

In this section, a comprehensive validation of the framework introduced in Sec. 2 is provided. The primary purpose is the evaluation of potential computational savings that can be achieved over the reference method (Sec. 2.2). Other goals include investigation of the algorithm robustness, which is realized by means of multiple optimization runs involving random initial designs. Finally, the method scalability is verified by considering benchmark cases of various dimensionalities.

3.1 Benchmark Structures

The verification structures are three miniaturized impedance matching transformers shown in Fig. 3. The circuits

![Fig. 2. The assumed fraction \(\phi \) of directions without FD versus the threshold value \(\gamma \) for \(n = 10, 15 \) and 20 equal to the number of the design variables for two-, three- and four-section transformer, respectively, as described in Sec. 3.](image_url)

![Fig. 3. Verification test cases: (a) CMRC cell, (b)-(d) CMRC-based miniaturized two-, three- and four-section impedance matching transformers.](image_url)
Fig. 4. Initial (―) and optimized (—) responses of the impedance matching transformers at the selected designs obtained using the proposed methodology: (a) two-section transformer, (b) three-section transformer, (c) four-section transformer. Intended operational bandwidth marked using horizontal lines.

Tab. 1. Transformer specifications and geometrical parameters.

Circuit	Specifications*	Geometry Parameters
2-section	50 100 1.5 – 4.5	\([l_{11}, l_{12}, w_{11}, w_{12}, w_{10}, l_{1}, l_{2}, w_{1}, w_{2}, w_{3}, w_{4}]\)^T
3-section	50 100 1.5 – 4.5	\([l_{11}, l_{12}, w_{11}, w_{12}, w_{10}, l_{11}, l_{2}, w_{1}, w_{2}, w_{3}, w_{4}]\)^T
4-section	50 130 2.0 – 4.0	\([l_{11}, l_{12}, w_{11}, w_{12}, w_{10}, l_{11}, l_{2}, w_{1}, w_{2}, w_{3}, w_{4}]\)^T

Tab. 2. Optimization results and benchmarking: *Number of EM simulations averaged over 10 algorithm runs. # Maximum \(S_{11}\) within the intended operating bandwidth (averaged over 10 algorithm runs).

Tab. 3. Computational savings and design quality: *Percentage-wise cost savings w.r.t. the reference algorithm. † Degradation of objective function value w.r.t. the reference algorithm. ‡ Standard deviation of the objective function over all algorithm runs.
leads to higher computational savings and, at the same time, certain deterioration of the design quality.

The quality degradation is minor (as compared to the reference algorithm) for all three transformers as long as ϕ does not exceed 0.95. It should be noted that a proper comparison between the reference and the proposed algorithm should take into consideration non-zero standard deviation for the reference procedure, which is a result of using random initial designs leading to various local optima. Consequently, it is the difference between the standard deviations of the proposed algorithm (for a given fraction ϕ) and the reference one that indicates the results repeatability degradation. It increases considerably for ϕ beyond 0.95. The fraction of $\phi = 0.9$ appears to be the best from the point of view of the cost-accuracy trade-off. This value ensures, across the benchmark set, the savings as high as 50% (for two-section transformer) accompanied with an insignificant quality decline (below 0.5 dB). It should be noticed, that the declared fraction value is dimensionality independent which is an advantageous feature of the proposed technique in the context of the algorithm setup.

4. Conclusion

The purpose of this paper was to introduce a reduced-cost trust-region gradient-search framework with numerical derivatives. The intended use of the procedure is design closure of CMRC-based impedance matching transformers. These circuits are typically characterized by a relatively large number of geometry parameters, which incurs considerable optimization cost. The proposed methodology has been comprehensively validated and demonstrated to yield a considerable reduction of the computational cost of the optimization process. The savings are as high as 50 percent as compared to the reference (finite-differentiation-based) algorithm. Furthermore, the acceptance threshold for applying the sensitivity updating formula is made dimensionality dependent, which results in the trade-offs between the cost reduction and quality degradation being consistent for various parameter space dimensionalities (here, from ten to twenty). Consequently, setting up the algorithm control parameters is straightforward. Although demonstrated for impedance matching transformers, other foreseeable applications of the framework are possible and include direct EM-driven design closure of other compact microwave components but also optimization of corrected low-fidelity EM models within surrogate-assisted procedures.

Acknowledgments

The authors would like to thank Dassault Systemes, France, for making CST Microwave Studio available. This work is partially supported by the Icelandic Centre for Research (RANNIS) Grant 174114051 and by National Science Centre of Poland Grant 2015/17/B/ST6/01857.

References

[1] CARIOU, M., POTELO, N., QUENDO, C., et al. Compact X-band filter based on substrate integrated coaxial line stubs using advanced multilayer PCB technology. IEEE Transactions on Microwave Theory and Techniques, 2017, vol. 65, no. 2, p. 496–503. DOI: 10.1109/TMTT.2016.2632114
[2] FUJIMOTO, K., MORISHITA, H. Modern Small Antennas. Cambridge (UK): Cambridge University Press, Cambridge, 2014. ISBN: 978-0-521-87786-2, DOI: 10.1017/CBO9780511977602
[3] TSENG, C.-H., CHEN, H.-J. Compact rat-race coupler using shunt stub-based artificial transmission lines. IEEE Microwave and Wireless Components Letters, 2008, vol. 18, no. 11, p. 734–736. DOI: 10.1109/LMWC.2008.2005225
[4] KOZIEL, S., KURGAN, P. Inverse modeling for fast design optimization of small-size rat-race couplers incorporating compact cells. International Journal of RF & Microwave Computer Aided Engineering, 2018, vol. 28, no. 5. DOI: 10.1002/mmce.21240
[5] MAO, Y., GUO, S., CHEN, M. Compact dual-band monopole antenna with defected ground plane for Internet of Things. IET Microwaves, Antennas and Propagation, 2018, vol. 12, no. 8, p. 1332–1336. DOI: 10.1049/iet-map.2017.0860
[6] LI, W., HEI, Y., GRUBB, P. M., et al. Compact inkjet-printed flexible MIMO antenna for UWB applications. IEEE Access, 2018, vol. 6, p. 50290–50298. DOI: 10.1109/ACCESS.2018.2868707
[7] TANG, H., WANG, K., WU, R., et al. A novel broadband circularly polarized monopole antenna based on C-shaped radiator. IEEE Antennas and Wireless Propagation Letters, 2017, vol. 16, p. 964–967. DOI: 10.1109/LAWP.2016.2615159
[8] TING, H. L., HSU, S. K., WU, T. L. A novel and compact eight-port forward-wave directional coupler with arbitrary coupling level design using four-model control theory. IEEE Transactions on Microwave Theory and Techniques, 2017, vol. 65, no. 2, p. 467–475. DOI: 10.1109/TMTT.2016.2623709
[9] KOZIEL, S., BEKASIJEVICZ, A. Rapid simulation-driven multi-objective design optimization of decomposable compact microwave passives. IEEE Transactions on Microwave Theory and Techniques, 2016, vol. 64, no. 8, p. 2454–2461. DOI: 10.1109/TMTT.2016.2583427
[10] KHAN, A. A., MANDAL, M. K. Miniaturized substrate integrated waveguide (SIW) power dividers. IEEE Microwave and Wireless Components Letters, 2016, vol. 26, no. 11, p. 888–890. DOI: 10.1109/LMWC.2016.2615005
[11] SHEIKHI, A., ALIPOUR, A., ABDIPOUR, A. Design of compact wide stopband microstrip low-pass filter using T-shaped resonator. IEEE Microwave and Wireless Components Letters, 2017, vol. 27, no. 2, p. 111–113. DOI: 10.1109/LMWC.2017.2652862
[12] LI, W., TU, Z., CHU, Q., et al. Differential stepped-slot UWB antenna with common-mode suppression and dual sharp-selectivity notched bands. IEEE Antennas and Wireless Propagation Letters, 2016, vol. 11, p. 1120–1123. DOI: 10.1109/LAWP.2015.2496159
[13] PANDY, G. K., VERMA, H., MESHRAM, M. K. Compact antipodal Vivaldi antenna for UWB applications. Electronics Letters, 2015, vol. 51, no. 4, p. 308–310. DOI: 10.1049/el.2014.3540
[14] SRIVASTAVA, G., MOHAN, A., CHAKRABARTY, A. Compact reconfigurable UWB slot antenna for cognitive radio applications. IEEE Antennas and Wireless Propagation Letters, 2016, vol. 16, p. 1139–1142. DOI: 10.1109/LAWP.2016.2624736
[15] KOZIEL, S., KURGAN, P. Compact cell topology selection for size-reduction-oriented design of microstrip rat-race couplers. International Journal of RF & Microwave Computer Aided Engineering, 2018, vol. 28, no. 5. DOI: 10.1002/mmce.21261
ZHANG, C., JIN, J., NA, W., et al. Multivalued neural network. IEEE Transactions on Antennas and Propagation. San Diego (USA), 2017, p. 985–986, DOI: 10.1109/APUSNCURSINRSM.2017.8072535

KOZIEL, S., YANG, X. S., ZHANG, Q. J. (Eds.) Simulation-Driven Design Optimization and Modeling for Microwave Engineering. London (UK): Imperial College Press, 2013. ISBN: 978-1848169166 DOI: 10.1142/p860

BANDLER, J. W., CHENG, Q. S., DAKROURY, S. A., et al. Space mapping: the state of the art. IEEE Transactions on Microwave Theory and Techniques, 2004, vol. 52, no. 1, p. 337–361. DOI: 10.1109/TMTT.2003.820904

SU, Y., LI, J., FAN, Z., et al. Shaping optimization of double reflector antenna based on manifold mapping. In International Applied Computational Electromagnetics Society Symposium (ACES). Shuzou (China), 2017, p. 1–2. ISBN: 978-0-9960-0785-6

LEIFSSON, L., KOZIEL, S. Surrogate modeling and optimization using shape-preserving response prediction: a review. Engineering Optimization, 2014, vol. 48, no. 3, p. 476–496. DOI: 10.1080/0305215X.2015.1016509

KOZIEL, S., BEKASIEWICZ, A. Rapid microwave design optimization in frequency domain using adaptive response scaling. IEEE Transactions on Microwave Theory and Techniques, 2016, vol. 64, no. 9, p. 2749–2757. DOI: 10.1109/TMTT.2016.2590551

KOZIEL, S. Fast simulation-driven antenna design using response-feature surrogates. International Journal of RF & Microwave Computer Aided Engineering, 2015, vol. 25, no. 5, p. 394–402. DOI: 10.1002/mmce.20873

DE VILLIERS, D. I. L., COUCKUYT, I., DHAENE, T. Multi-objective optimization of reflector antennas using kriging and probability of improvement. In IEEE AP-S International Symposium on Antennas and Propagation. San Diego (USA), 2017, p. 985–986. DOI: 10.1109/APUSNCURSINRSM.2017.8072535

ZHANG, C., JIN, J., NA, W., et al. Multivalued neural network inverse modeling and applications to microwave filters. IEEE Transactions on Microwave Theory and Techniques, 2018, vol. 66, no. 8, p. 3781–3797. DOI: 10.1109/TMTT.2018.2841889

ZHANG, J., ZHANG, C., FENG, F., et al. Polynomial chaos-based approach to yield-driven EM optimization. IEEE Transactions on Microwave Theory and Techniques, 2018, vol. 66, no. 7, p. 3186–3199. DOI: 10.1109/TMTT.2018.2834526

KOZIEL, S., KURGAN, P. Rapid design of miniaturized branchline couplers through concurrent cell optimization and surrogate-assisted fine-tuning. IET Microwaves, Antennas and Propagation, 2015, vol. 9, no. 9, p. 957–963. DOI: 10.1049/iet-map.2014.0600

NOCEDAL, J., WRIGHT, S. J. Numerical Optimization. 2nd ed. New York (USA): Springer, 2006. ISBN: 978-0-387-40065-5 DOI: 10.1007/978-0-387-40065-5

KOZIEL, S. Computationally efficient multi-fidelity multi-grid design optimization of microwave structures. Applied Computational Electromagnetics Society Journal, 2010, vol. 25, no. 7, p. 578–586.

CONN, A. R., GOULD, N. I. M., TOINT, P. L. Trust Region Methods. Philadelphia (USA): MPS-SIAM Series on Optimization, 2000. ISBN: 0-89871-460-5 DOI: 10.1137/1.9780898719857

BROYDEN, C. G. A class of methods for solving nonlinear simultaneous equations. Mathematics of Computation, 1965, vol. 19, no. 92, p. 577–593. DOI: 10.1090/S0025-5718-1965-0198670-6

About the Authors ...

Slawomir KOZIEL received the M.Sc. and Ph.D. degrees in Electronic Engineering from Gdansk University of Technology, Poland, in 1995 and 2000, respectively. He also received the M.Sc. degrees in Theoretical Physics and in Mathematics, in 2000 and 2002, respectively, as well as the Ph.D. in Mathematics in 2003, from the University of Gdansk, Poland. He is currently a Professor with the School of Science and Engineering, Reykjavik University, Iceland. His research interests include CAD and modeling of microwave and antenna structures, simulation-driven design, surrogate-based optimization, space mapping, circuit theory, analog signal processing, evolutionary computation and numerical analysis.

Anna PIETRENKO-DABROWSKA (corresponding author) received the M.Sc. and Ph.D. degrees in Electronic Engineering from Gdansk University of Technology, Poland, in 1998 and 2007, respectively. Currently, she is an Associate Professor with Gdansk University of Technology, Poland. Her research interests include simulation-driven design, design optimization, control theory, modeling of microwave and antenna structures, numerical analysis.