The identification and prioritization of chemically tractable therapeutic targets is a significant challenge in the discovery of new medicines. We have developed a novel method that rapidly screens multiple proteins in parallel using DNA-encoded library technology (ELT). Initial efforts were focused on the efficient discovery of antibacterial leads against 119 targets from *Acinetobacter baumannii* and *Staphylococcus aureus*. The success of this effort led to the hypothesis that the relative number of ELT binders alone could be used to assess the ligandability of large sets of proteins. This concept was further explored by screening 42 targets from *Mycobacterium tuberculosis*. Active chemical series for six targets from our initial effort as well as three chemotypes for DHFR from *M. tuberculosis* are reported. The findings demonstrate that parallel ELT selections can be used to assess ligandability and highlight opportunities for successful lead and tool discovery.
Drug discovery and development is an extremely challenging, lengthy and expensive endeavour with an unsustainable success rate1,2. Understanding the ligandability of a target protein remains a central challenge for early small molecule drug discovery programmes3. An integrated lead discovery approach often employs biochemical target-based screening, cellular screening, phenotypic screening or a combination of methods. In most cases, a biochemical target-based approach is chosen to search for early lead molecules4. This approach requires extensive reagent generation, assay development, lead identification and optimization efforts, and can amount to years of invested time and millions of dollars in expense. The approach only interrogates a tiny fraction of the essential and druggable proteome and often results in failure after considerable investment. The alternative phenotypic and cellular screening methods probe multiple targets but often require target deconvolution efforts to support lead optimization as well as significant resource and technology investments to execute5,6. The antibacterial therapeutic area is particularly challenging, with the number of approved drugs steadily declining since 1980. Multiple factors have contributed to the lack of success, including the emergence of resistance, challenges in designing cell penetration properties into an antibacterial agent, a focus on genes essential for growth in rich media (only 7% in \textit{Escherichia coli}) and a general lack of tools to understand the complex biology of host–pathogen interactions7–9. In addition to the many uncharacterized bacterial targets, 75% of protein research into human targets still focuses on only 10% of the proteins known before the human genome mapping10. A platform to prioritize this wider scope of targets based on ligandability and the rapid identification of lead and tool molecules for these proteins will aid in a deeper understanding of biology and the discovery of the next generation of therapeutics.

A variety of academic and pharmaceutical research has been directed towards addressing the need for understanding chemical tractability over the past decade and both experimental and computational strategies have been reported11–15. As described elsewhere, chemical tractability or ligandability is the ability of a protein to bind chemical matter, whereas druggability describes the possibility of discovering a molecule for the target that will modulate the disease state6. A technique to characterize small molecule ‘hot spots’ on proteins was reported by Hajduk et al.14, where the relationship between ligandability and fragment-binding measurements with NMR was described. Edfeldt’s more recent feature highlights the use of fragment technology to probe the ligandability of 36 targets in the AstraZeneca portfolio over an 8-year period15. Computational methods and docking approaches have been reported and are highly valuable16,17. These techniques have helped guide target selection for the past decade but are often limited by target throughput, experimental efficiency and the prerequisite that structural information is available.

A relatively recent addition to drug discovery screening is the use of DNA-encoded chemical libraries (DEL) or encoded library technology (ELT) to discover small molecule binders to targets of interest18–20. First conceptualized in 1992 (ref. 19), various methods for creating large DNA-encoded combinatorial libraries have been developed, such as split and pool encoding20, DNA-templated synthesis21,22 and self-assembling libraries23,24. Regardless of the library synthesis technique, binders to individual proteins are selected by affinity from complex mixtures. Binding events are detected by harnessing the power of high-throughput sequencing to identify DNA tags encoding the bound chemotypes. Chemotypes of interest can then be re-synthesized off-DNA for assay testing and further development. The technology has become widely used throughout the pharmaceutical, biotech and academic environments to discover ligands and is continually evolving25–27. ELT has been employed successfully to identify numerous molecules that bind to proteins from diverse target classes and sample deep chemical space as well as understand structure activity relationships directly from the screening output28–38.

At GlaxoSmithKline (GSK), we have created a DNA-encoded compound collection containing over 100 different libraries comprised of billions of unique molecules generated from over 40 reaction types using a split and pool encoding strategy39,40. These libraries are ultimately assembled and screened in a single pool, allowing for the rapid identification of chemical ligands. The technology has continued to mature and ELT is now considered for every small molecule screening effort in the GSK portfolio to discover new chemical matter. As high-throughput sequencing has continued to advance and we have refined our analysis methods, the target capacity of the technology has increased. Pairing these improvements with the automation of protein immobilization and affinity selections has allowed for the screening of multiple targets in a single experiment, as opposed to probing one target at a time, enabling a panel to be executed in a 5–7-month period31. Thus, the interrogation of a larger fraction of the proteome is possible while maintaining the simplicity and efficiency of a reductionist target-based approach.

Here we present the successful use of this strategy to identify tractable targets from \textit{Staphylococcus aureus} and \textit{Acinetobacter baumannii} and to discover individual lead/tool molecules for six different target proteins. We describe the chemical series and their activity against each protein. In addition, we propose an evolution of the panel screening, in which the output of the screen moves beyond identifying active pharmacophores and is used to rapidly assess targets based on their ligandability as determined by ELT. The refined approach was used to prioritize proteins from \textit{Mycobacterium tuberculosis} and we present those results along with active pharmacophores against one of the highest-ranked targets as a proof of concept. Our results demonstrate that ELT can inform the allocation of resources within the drug discovery process towards the most chemically tractable targets. We envision the methodology will provide a tool to assess targets associated with virtually any therapeutic area. Parallel screening could include targets clustered in pathways, related targets, or a single target examined under multiple conditions perhaps using multiple constructs42,43. While this assessment is independent from target selection in the broader biological context, the technique could enable a deeper understanding of disease biology by rapidly providing much-needed tool molecules18,44,45. Here we report data supporting this assertion as well as several novel chemotypes as tools for the antibacterial field.

Results

ELT selection outcome. A schematic showing the streamlined selection of targets for R&D efforts through the ELT tractability approach is illustrated in Fig. 1. The ELT selections were conducted by immobilizing affinity-tagged protein onto an affinity matrix, then exposing the protein to pooled compound libraries before washing away non-binders and recovering bound compounds by heat elution (detail below). This process was repeated to enrich bound species and reduce the population that does not bind to the protein of interest (described previously)20,31–33,37. The individual selection process was adapted to an automation platform such that hundreds of proteins could be evaluated in parallel. For each selection, final yields of 106–109 sequences of DNA were obtained, quantified using qPCR and amplified for sequencing as described in the ‘Methods’ section and...
The collected data were translated from the DNA barcode to the associated encoded molecule. On the basis of the library size and the number of sequences obtained, the noise level was calculated for each selection. Signal strength is reported as a value relative to that level (that is, signal value of 10 represents 10-fold greater measurement than noise). All data points with signal greater than two were included in subsequent data analysis steps. This output was then filtered to remove chemotypes that had been identified as binders to affinity matrix or multiple proteins in past selections (non-specific or frequent nuisance binders). This set of specific binders was clustered by chemical similarity (Tanimoto score ≥ 0.85) or shared building blocks. The compounds can be used as tools to assess the validity of the target or potentially as a lead molecule. Over the course of these panels, the number of libraries available for ELT screening expanded from 36 in the initial panel to 84 in the final screening panel and is currently over 100. This increase in library size was accompanied by a parallel increase in the reaction types used to create those libraries contributing to a modest increase in diversity and an ability to probe a greater breadth of chemical space. Generally, we assessed the target’s tractability by examining the number of enriched chemical series as illustrated in Fig. 2 by a plot of the number of binders versus target protein. Committing chemistry resource to the most tractable targets first, clusters with dense representation, high signal strength and favourable chemical properties were prioritized for synthesis of.

Figure 1 | Schematic representation of the ELT screening and ligandability assessment strategy. Hundreds of potential targets of interest are immobilized and screened against GSK’s DNA encoded libraries. Targets with signal are ranked by the counts of ELT binders which correlate to the protein’s chemical ligandability. Data is used to plan off-DNA synthesis and confirm hits in assays. In addition to novel chemical starting points for lead optimization, the output is a target/chemotype pair that enables therapeutic programs by providing tools for target validation as well as a ranking of targets to prioritize further studies.
representative chemical series\(^4\)). In addition, a structure similarity search (Tanimoto > 0.85) was conducted against the corporate collection for every target, including those with fewer binders, enabling rapid hit confirmation as well as interrogation of all targets with signal. Specific outcomes for each of the three panels are described below.

S. aureus panel. The S. aureus ELT target panel was a collection of 39 essential enzyme targets. Table 1 shows the high-level progression of the targets in each panel; for detailed target information, see Supplementary Table 1. These targets were selected based on their potential utility as antibacterial drug targets and the availability of a biochemical assay system either inside GSK or rapidly adaptable from reported literature. N- and C-terminal dual-tagged proteins were subjected to ELT selections; one tag was used for rapid protein purification and the second for ELT selection immobilization. Miniaturization, automation and coupling of the purification and ELT selections in a parallel method enabled maximum efficiency (described in detail in Supplementary Methods). Data from the targets were examined inside GSK or rapidly adaptable from reported literature. N- and C-terminal dual-tagged proteins were subjected to ELT selections; one tag was used for rapid protein purification and the second for ELT selection immobilization. Miniaturization, automation and coupling of the purification and ELT selections in a parallel method enabled maximum efficiency (described in detail in Supplementary Methods). Data from the targets were examined inside GSK or rapidly adaptable from reported literature. N- and C-terminal dual-tagged proteins were subjected to ELT selections; one tag was used for rapid protein purification and the second for ELT selection immobilization. Miniaturization, automation and coupling of the purification and ELT selections in a parallel method enabled maximum efficiency (described in detail in Supplementary Methods). Data from the targets were examined inside GSK or rapidly adaptable from reported literature. N- and C-terminal dual-tagged proteins were subjected to ELT selections; one tag was used for rapid protein purification and the second for ELT selection immobilization. Miniaturization, automation and coupling of the purification and ELT selections in a parallel method enabled maximum efficiency (described in detail in Supplementary Methods). Data from the targets were examined inside GSK or rapidly adaptable from reported literature.

In Table 2, we disclose a representative novel MRS inhibitor belonging to a phenylbenzimidazole chemical series. It has potent enzyme activity in an MRS biochemical assay with an IC\(_{50}\) of 830 pM and possesses moderate antibacterial activity with a minimum inhibitory concentration (MIC) value of 0.5 \(\mu\)g ml\(^{-1}\) against *S. aureus*. Importantly, we conducted studies that suggest the cellular activity of the compound was linked to the inhibition of MRS. Increasing the levels of MRS in an overexpressing strain resulted in a higher MIC. We observed that benzimidazole 1 gave a significant MIC increase of 8-fold (uninduced) and >128-fold (induced with 0.1 \(\mu\)g ml\(^{-1}\) anhydrotetracycline) as compared to a vector control strain. These studies were conducted with a minimum of two replicates. In contrast, we were unable to observe the on-target antibacterial activity of the IRS inhibitor represented by the \(\beta\)-butyldiphenyl-piperazene amide 2 shown in Table 2. We include this series as an example of a hit that binds and inhibits its selected target but whose antibacterial activity could not be established as on-target. An exemplar from a MetAP benzimidazole series is shown (benzimidazole-triazole 3) with an IC\(_{50}\) of 0.35 \(\mu\)M in the biochemical assay (described in Supplementary Methods) but lacks antibacterial activity, hence its antibacterial MoA could not be confirmed in overexpression studies.
Table 1 | ELT screening progression.

Phase	S. aureus	A. baumannii	M. tuberculosis
Ligandability assessment			
Initial number of targets considered	39	80	42
Targets amenable to ELT selection	32	70	41
Targets with ELT signal	14	52	27
Binding confirmation			
Targets with off-DNA synthesis	14	18	13
Targets with confirmed active chemical series (IC50 and/or MIC)	7	17	4*
Targets with confirmed MoA	2	3	ND

ND, not determined.

The table shows a summary of the progression of protein targets through each tractability panel. For additional detail and a full list of targets prosecuted, see Supplementary Table 1.

*Off-DNA activity assessment ongoing for remaining nine targets.

A. baumannii panel. On the basis of our experience with the *S. aureus* campaign, we decided to expand the number of targets examined from the *A. baumannii* genome as a representative organism for the discovery of novel Gram-negative agents. To further simplify the process, we tested the antibacterial activity of all synthesized compounds against a panel of bacterial strains as shown in Supplementary Table 2. This eliminated the need to develop biochemical assays for each target and focused the effort on agents with cell penetration. Eighty proteins were selected for screening from the *A. baumannii* genome and, similar to the *S. aureus* panel described above, constructs were generated incorporating dual affinity tags (strepavidin-binding peptide and FLAG tag). *E. coli* was again used as a heterologous expression host and cell pellets, confirmed to be expressing protein, were thawed on the day of selection and lysed (described in Supplementary Methods). Each target protein was purified using streptavidin agarose resin, eluted with biotin and quantified using an Agilent Bioanalyzer all on the same day as the selection experiment. This removed the need for large-scale protein preparations to be conducted and removed a freeze/thaw cycle that can often compromise the quality of the reagent. Of the 80 targets, 70 were successfully purified using this rapid process. Our panel screen gave positive ELT selection signal for 52 targets and 18 were prioritized for off-DNA synthesis. After off-DNA synthesis of 3–5 chemical series per target and/or similarity searching of the GSK compound collection, 17 of the targets had at least one chemical series with activity in the antibacterial MIC assay panel and 3 targets had compounds that show positive MoA data. We disclose three chemical series identified from these targets with confirmed on-target activity shown in Table 2. LpxA, involved in lipid A biosynthesis, yielded two chemotypes with multiple compounds showing on-target activity. We show a general structure of a chemical series for one of the LpxA chemotypes and a particular ary1-urea series 4 with confirmed on-target MoA. UppS from *A. baumannii* was again found to produce a high number of binders and three unique series with positive MoA were identified, one of these (compound 5) is shown in Table 2. LolA, a lipoprotein chaperone, afforded a chemical series with positive MoA with a disclosed tetrahydropyrido-pyrimidine exemplar 6 shown in Table 2. See the Supplementary Methods for additional details on compound characterization, assay methods and activity results across a panel of bacteria.

M. tuberculosis panel. Having seen the ability of these panels to rapidly find ligands for a diverse set of protein targets, we proposed using the number of ELT binders to rank the tractability of proteins from *M. tuberculosis*. An additional goal of this screen was to obtain tool molecules that could help validate a target as pharmacologically relevant. We did not place any requirements for target inclusion other than that the protein had to be purified and contain either a 6-histidine or biotin affinity tag. We obtained a diverse group of targets from academic collaborators for ELT screening. Eleven academic partners provided 42 protein preparations for screening (Supplementary Table 1). Although little to no previous information existed on the chemical tractability for most of these 42 proteins, a small number of known, chemically tractable targets were included as ‘controls’ (for example, InhA and DHFR). The ranking of target tractability is shown in Fig. 2b. Twenty-seven out of 42 targets afforded enriched chemotypes, and 13 targets with a greater number of binders were selected for further data analysis. Each of these targets produced multiple chemical series, and we chose three–five chemotypes for synthesis and off-DNA evaluation. The synthesized compounds 7–9 (Table 2) were easily assayed in a biochemical assay from the reported literature and we disclose three distinct chemical series with potency varying from 492 nM to 4.9 μM against dfrA (also known as DHFR). Compounds 7–9 were active against *M. tuberculosis* and the MIC values, measured in duplicate, are reported in Table 2. Although inhibitors of DHFR are already widely known, the mixture of familiar (compound 8 has a similar substructure to the known DHFR inhibitor methotrexate) and novel inhibitor chemotypes (7 and 9) identified by the ELT selection serves to validate the platform and demonstrate its powerful potential. InhA, the enoyl reductase targeted by the frontline therapeutic isoniazid, was screened but did not result in hits (see ‘Discussion’ section). Assessment of the compounds synthesized for other targets remains ongoing, with chemical series against four targets, KasA, LpdC, DHFR and DXR, confirmed in biochemical assays to date.

Discussion

Tools to prioritize the abundance of uncharacterized proteins that will serve as the next generation of drug targets are crucial to the successful development of new medicines. The ELT target panel platform described here provides an opportunity to select protein targets based on an experimental and data-driven ligandability assessment. Starting with a diverse set of proteins that are of interest to a particular therapy area, the strategy rapidly identifies tractable targets and simultaneously defines novel starting points for therapeutic programme teams to explore. To our knowledge, no other report provides an experimental approach to tractability assessment that can evaluate a large set of proteins *de novo* in such a short period of time.\(^5\),\(^7\).

Initially, the concept of screening many targets in parallel was proposed as a way to simply identify novel chemical matter for antibacterial drug discovery with less investment of both time and effort. The dual tagging, automation and miniaturization...
Table 2 | Representative chemical series discovered in three tractability campaigns.

Campaign	Target Compound	Scaffold	Exemplar	IC_{50} (µM)	MIC* (µg ml\(^{-1}\))	MoA
S. aureus						
MRS 1		![structure1](structure1.png)	![exemplar1](exemplar1.png)	0.00083 ± 0.00005	0.5 Y	
IRS 2		![structure2](structure2.png)	![exemplar2](exemplar2.png)	0.75 ± 0.21	4 N	
MetAP 3		![structure3](structure3.png)	![exemplar3](exemplar3.png)	0.35 ± 0.01	>128 ND	
A. baumannii						
LpxA 4		![structure4](structure4.png)	![exemplar4](exemplar4.png)	ND	>64 Y	
UppS 5		![structure5](structure5.png)	![exemplar5](exemplar5.png)	0.043 ± 0.025	>128 Y	
LolA 6		![structure6](structure6.png)	![exemplar6](exemplar6.png)	ND	>128 Y	
M. tuberculosis						
7		![structure7](structure7.png)	![exemplar7](exemplar7.png)	0.492 ± 0.004	80† ND	
DHFR 8		![structure8](structure8.png)	![exemplar8](exemplar8.png)	0.61 ± 0.42	2.5† ND	
9		![structure9](structure9.png)	![exemplar9](exemplar9.png)	4.9 ± 2.2	80† ND	

ND, not determined; MoA, mode of action.
The scaffold column represents the selected pharmacophore with areas of substitution indicated by R. All data are reported for the single exemplar shown. IC\(_{50}\) values are reported as the average of two replicate experiments with s.d. values calculated using the n\(-1\) method.

*Minimum inhibitory concentration measured against S. aureus WCUH29 wild type or A. baumannii BM652 efflux strains for S. aureus or A. baumannii campaigns with a minimum of two independent experiments.

†MIC unit is in µM and is determined against M. tuberculosis H37Rv.
Figure 3 | Representative data set of enriched binders for the M. tuberculosis target DHFR. The average molecular weight of clustered chemotypes is plotted versus average cLogP. Clusters are sized by the number of members and coloured by maximum signal strength. Chemical series with active molecules are indicated by their scaffolds.
The ELT screening campaigns presented here have successfully identified multiple antibacterial compounds with confirmed MoA and have led to multiple lead optimization programmes. We have also applied this principle to other novel target areas, such as deubiquitinases, methyl readers, bromodomains and histone methyltransferases, and current studies are underway to include additional target areas for examples were accessed. A exploiting the potential impact of this strategy. In cases where modulation of many targets converges on a single disease or phenotype, we are designing ELT panels where all of the off-DNA synthesis converges on a single phenotypic assay. The result will be a tractability ranking for all of the targets connected to a particular disease state along with potential tool and lead molecules to further explore the biology. Given the highly competitive, challenging and expensive endeavour of drug discovery, it is crucial to focus resource where it is most likely to have a positive impact. Our strategy enables teams to quickly identify targets to focus on and we see tremendous potential for this approach to impact other areas throughout the R&D community.

Table 3 | Consistency of HTS and ELT outcomes for 29 S. aureus targets.

	ELT active	ELT inactive
HTS active	4	3
HTS inactive	5	17

Comparison of target outcomes from ELT and HTS where the same target was screened by both methods. ELT and HTS outcomes agreed in 21 of 29 campaigns. For the remaining eight targets, ELT found hits for five where HTS did not.

Methods

Just-in-time protein purification. E. coli cell culture expressing target protein was stored as a frozen pellet until the day of selections. Approximately 200 mg of cell pellet was dissolved in B-PER cell lysis solution (Thermo 90084) and incubated at room temperature for 20 min with occasional stirring. Solutions were divided evenly into eppendorf tubes and centrifuged at 18,000 g for 20 min. A 10 ml filter spin column (Pierce 89998) was prepared for each sample. The column was loaded with 400 µl volume of 50% slurry of Streptavidin Ultra-link resin (Pierce 53114). Solution was allowed to flow through and 5 ml of ELT buffer (50 mM Tris-HCl pH 7.5, 0.15 M NaCl, 0.1% Tween 20) was added to equilibrate resin bed. The resin was centrifuged for 3 min at 500 r.p.m., the column capped and 100 µl of buffer added to keep the resin moist. A measure of 3 ml of clarified cell lysate was loaded onto the prepared resin bed and incubated on ice for 15–20 min. The solution was allowed to flow through the column and centrifuged for 3 min at 500 r.p.m.. A measure of 10 ml of ELT buffer was loaded to wash the resin and centrifuged for 3 min at 500 r.p.m. A measure of 300 µl of D-biotin was added to keep the resin moist. A measure of 3 ml of clarified cell lysate was loaded onto the prepared resin bed and incubated on ice for 15–20 min. The solution was allowed to flow through the column and centrifuged for 3 min at 500 r.p.m.. A measure of 10 ml of ELT buffer was loaded to wash the resin and centrifuged for 3 min at 500 r.p.m. A measure of 300 µl of D-biotin was added to keep the resin moist. A measure of 3 ml of clarified cell lysate was loaded onto the prepared resin bed and incubated on ice for 15–20 min. The solution was allowed to flow through the column and centrifuged for 3 min at 500 r.p.m.. A measure of 10 ml of ELT buffer was loaded to wash the resin and centrifuged for 3 min at 500 r.p.m.. A measure of 300 µl of D-biotin was added to keep the resin moist. A measure of 3 ml of clarified cell lysate was loaded onto the prepared resin bed and incubated on ice for 15–20 min. The solution was allowed to flow through the column and centrifuged for 3 min at 500 r.p.m.. A measure of 10 ml of ELT buffer was loaded to wash the resin and centrifuged for 3 min at 500 r.p.m.. A measure of 300 µl of D-biotin was added to keep the resin moist.

Encoded library preparation for selection. ELT libraries were combined into a pooled library for screening purposes. For each screening effort, the then available libraries were ligated to contain a unique library identifier and then combined into an equimolar mixture at a concentration of 0.5 mM. After final library closing to add a pool identification sequence, these libraries could then be identified as associated with each individual condition after sequencing (see Supplementary Methods).

PhyNexus tip preparation and automated selections. Each condition was screened using a Beckman Coulter, BioMek FX robot. Four 200 μl PhyNexus tips packed with 5 µl beds of either M2 anti-FLAG, IMAC or streptavidin resin were employed for target and equilibrated before selections using ELT selection buffer (50 mM Hepes, pH 7.5, 300 mM NaCl, 1 mM CHAPS, 10 mM imidazole, 0.1 mM MgCl2, 1 mM MnCl2, 1 mM DTT). Tips were used within 2 h of equilibration. Ten nmols of pooled library were suspended in 100 µl of selection buffer and used as input for each selection. Ninety-six-well plates were prepared containing 10 μg of target protein suspended in 110 µl of selection buffer per well in row A, for each of four rounds of selection. A measure of 110 µl selection buffer was pipetted per row into rows B–G to serve as washes. In the case of streptavidin tips only, 1 mM biotin was included in the wash.
buffer in row B to reduce enrichment of streptavidin binders. In addition, 120 µl of selection buffer in row H was used for heat elution. A BioMek FX protocol was developed which purifies protein from row A was captured for 15 min. Phynex tips, washed once with selection buffer from row B, exposed to library pool for 30 min, washed five times with selection buffer (rows C–G) and heat eluted in selection buffer from row H at 90 °C to recover binders. Four rounds of selection were performed in this manner with the output of each round carried forward as the input to the successive round with fresh protein and new tips.

Selection output processing. Outputs of each selection condition were purified using a Qiagen Qiacube running a nucleic acid purification protocol and then quantified by qPCR run on a Roche Lightcycler. Total DNA output ranged from 2 × 10^5 to 1 × 10^6 copies, and was PCR amplified with primers adaptors to add sequences compatible with Illumina sequencing flowcells. PCR output was purified using a Qiagen ETOH AMPure SPRI beads according to the manufacturer’s instructions and then quantitated on an Agilent BioAnalyzer using a high sensitivity DNA kit. Final concentration of amplicon for each sample was between 2 and 40 nM. Portions of products were loaded to generate ~20 million clusters per selection condition on an Illumina GAII or HiSeq platform.

Sequencing and data analysis. Libraries were pooled in equal volume and each library had a unique DNA tag that enabled sequence deconvolution. Each warhead was uniquely tagged with a specific DNA tag combination (described previously20) and also included a degenerate region to account for sequencing or amplification artifacts. Compounds with identical degenerate regions were counted as a single occurrence.

For every library and for each target, the total number of unique warhead sequences was counted. Compounds were then grouped by the different possible combinations of building blocks (for example, single cycle ‘mono’ synthons, two cycle ‘di’ synthons and so on). The total count for every combination was then used to calculate signal as the fold value of number of copies divided by the expected noise level (as defined by the theoretical distribution of copies). Every compound with a signal value > 2 was reported. All chemotypes with signal were compared against a database of historic target. Any chemotypes that also had signal against a structurally compact DNA-encoded chemical library. Any chemotypes that also had signal against a historic target were flagged as promiscuous and removed from further consideration. Any chemotype with signal against empty matrix (no-target control) was similarly removed. The remaining chemotypes, only those that had signal against a single target from the panel were considered for final evaluation, except in cases where the target had highly similar binding pockets, substrates or cofactors.

A data table was created containing all chemotypes and their associated signal values for each target/library combination. These data were graphed in Spotfire and used to rank the targets by total number of chemotypes. To prioritize off-DNA follow-up synthesis, chemotypes with signal were clustered together based on calculated Tanimoto similarity by two-dimensional fingerprints. Clusters with high representation and favourable physical chemical properties (lower average molecular weight, lower average cLogP) were chosen for further evaluation and off-DNA chemistry planning.

Data availability. All relevant data are available from the authors on request.

References
1. Scannell, J. W., Blanckley, A., Boldon, H. & Warrington, B. Diagnosing the decline in pharmaceutical R&D efficiency. *Nat. Rev. Drug Discov.* 11, 191–200 (2012).
2. Smietana, K., Ekstrom, L., Jeffery, B. & Moller, M. Improving R&D productivity. *Nat. Rev. Drug Discov.* 14, 455–456 (2015).
3. Hann, M. M. & Keseru, G. M. Finding the sweet spot: the role of nature and nurture in medicinal chemistry. *Nat. Rev. Drug Discov.* 11, 355–365 (2012).
4. Russ, A. P. & Lampel, S. The druggable genome: an update. *Drug Discov. Today* 10, 1607–1619 (2005).
5. Forsyth, R. A. et al. A structural biology view of target drugability. *J. Med. Chem.* 48, 2518–2525 (2005).
6. Edfeldt, F. N., Folmer, R. H. & Breeze, A. L. Fragment screening to predict drugability (ligandability) and lead discovery success. *Drug Discov. Today* 16, 284–287 (2011).
7. Ward, R. A. Using protein-ligand docking to assess the chemical tractability of inhibiting a protein target. *J. Mol. Model.* 16, 1833–1843 (2010).
8. Perola, E., Herman, L. & Weiss, J. Development of a rule-based method for the assessment of protein drugability. *J. Chem. Inf. Model.* 52, 1027–1038 (2012).
9. Salmon, H., Klika Skopic, M., Jung, K., Bugaj, G. & Brunschweiger, A. Chemical biology probes from advanced DNA-encoded libraries. *ACS Chem. Biol.* 11, 296–307 (2016).
10. Brenner, S. & Lerner, R. A. Encoded combinatorial chemistry. *Proc. Natl Acad. Sci. USA* 89, 5381–5383 (1992).
11. Clark, M. A. et al. Design, synthesis and selection of DNA-encoded small-molecule libraries. *Nat. Chem. Biol.* 5, 647–654 (2009).
12. Kleiner, R. E., Dumbelin, C. E. & Liu, D. R. Small-molecule discovery from DNA-encoded chemical libraries. *Chem. Soc. Rev.* 40, 5707–5717 (2011).
13. Gartner, Z. J. & Liu, D. R. The generality of DNA-templated synthesis as a basis for evolving non-natural small molecules. *J. Am. Chem. Soc.* 123, 6961–6963 (2001).
14. Hansen, M. H. et al. A yoctoliter-scale DNA reactor for small-molecule evolution. *J. Am. Chem. Soc.* 131, 1322–1327 (2009).
15. Melkko, S., Scheuermann, J., Dumbelin, C. E. & Neri, D. Encoded self-assembling chemical libraries. *Nat. Biotechnol.* 22, 568–574 (2004).
16. Huttner, A. DNA tags help the hunt for drugs. *Nature* 530, 367–369 (2016).
17. Yuen, L. H. & Franzini, R. Achievements, challenges, and opportunities in DNA-encoded library research: an academic point of view. *ChemBiochem* 18, 1–9 (2016).
18. Lerner, R. A. & Brenner, S. DNA-encoded compound libraries as open source: a powerful pathway to new drugs. *Angew. Chem. Int. Ed. Engl.* 56, 1164–1165 (2017).
19. Southan, C., Varkonyi, P., Boppana, K., Jagarlapudi, S. A. & Muresan, S. Tracking 20 years of compound-to-target output from literature and patents. *PLoS ONE* 8, e77142 (2013).
20. Gilmartin, A. G. Allosteric Wip1 phosphatase inhibition through flap-subdomain interaction. *Nat. Chem. Biol.* 10, 181–187 (2014).
21. Yang, H. et al. Discovery of a potent class of P3I3α phosphatases with unique binding mode via encoded library technology (ELT). *ACS Med. Chem. Lett.* 6, 531–536 (2015).
22. Deng, H. et al. Discovery of highly potent and selective small molecule ADAMTS-5 inhibitors that inhibit human cartilage degradation via encoded library technology (ELT). *J. Med. Chem.* 55, 7061–7079 (2012).
23. Disch, J. S. et al. Discovery of thieno[2,3-d]pyrimidine-6-carboxamides as potent inhibitors of SIRT1, SIRT2, and SIRT3. *J. Med. Chem.* 56, 3666–3679 (2013).
24. Encinas, L. et al. Encoded library technology as a source of hits for the discovery and lead optimization of a potent and selective class of bactericidal direct inhibitors of Mycobacterium tuberculosis InhA. *J. Med. Chem.* 57, 1276–1288 (2014).
25. Gentile, G. et al. 5-Aryl-4-carboxamide-1,3-oxazoles: potent and selective GSK-3 inhibitors. *Bioorg. Med. Chem. Lett.* 22, 1899–1994 (2012).
26. Kollmann, C. S. et al. Application of encoded library technology (ELT) to a protein-protein interaction target: discovery of a potent class of integrin lymphocyte function-associated antigen 1 (LFA-1) antagonists. *Bioorg. Med. Chem.* 22, 2353–2365 (2014).
27. Thalji, R. K. et al. Discovery of 1-(3,5-triazin-2-yl)pyridine-4-carboxamides as inhibitors of soluble epoxide hydrolase. *Bioorg. Med. Chem. Lett.* 23, 3584–3588 (2013).
28. Gentile, G. et al. Identification of structure-activity relationships from screening a structurally compact DNA-encoded chemical library. *Angew. Chem. Int. Ed. Engl.* 54, 3927–3931 (2015).
29. Pratesi, G. et al. DNA compatible multistep synthesis and applications to DNA encoded libraries. *ChemBioChem* 18, 1–9 (2017).
44. Newman, R. H. & Zhang, J. Small molecules and chemical tools at the interface. Nat. Chem. Biol. 4, 382–386 (2008).
45. Arrowsmith, C. H. et al. The premise and peril of chemical probes. Nat. Chem. Biol. 11, 536–541 (2015).
46. Bayliss, M. K. et al. Quality guidelines for oral drug candidates: dose, solubility and lipophilicity. Drug Discov. Today 21, 1719–1727 (2016).
47. Concha, N. et al. Discovery and characterization of a class of pyrazole inhibitors of bacterial undecaprenyl pyrophosphate synthase. J. Med. Chem. 59, 7299–7304 (2016).
48. Moffatt, J. H. et al. Colistin resistance in Acinetobacter baumannii is mediated by complete loss of lipopolysaccharide production. Antimicrob. Agents Chemother. 54, 4971–4977 (2010).
49. Payne, D. J., Gwynn, M. N., Holmes, D. J. & Pompiliano, D. L. Drugs for bad bugs: confronting the challenges of antibiotic discovery. Nat. Rev. Drug Discov. 6, 29–40 (2007).
50. Payne, D. J., Miller, L. F., Findlay, D., Anderson, J. & Marks, L. Time for a change: addressing R&D and commercialization challenges for antibacterials. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 370, 20140086 (2015).
51. Deng, H. et al. Discovery, SAR, and X-ray binding mode study of BCATm inhibitors from a novel DNA-encoded library. ACS Med. Chem. Lett. 6, 919–924 (2015).
52. Li, H. J. et al. A structural and energetic model for the slow-onset inhibition of the Mycobacterium tuberculosis enoyl-ACP reductase InhA. ACS Chem. Biol. 9, 986–993 (2014).
53. Pan, P. et al. Time-dependent diaryl ether inhibitors of InhA: structure-activity relationship studies of enzyme inhibition, antibacterial activity, and in vivo efficacy. ChemMedChem 9, 776–791 (2014).
54. Tonge, P. J., Kisker, C. & Slayden, R. A. Development of modern InhA inhibitors to combat drug resistant strains of Mycobacterium tuberculosis. Curr. Top. Med. Chem. 7, 489–498 (2007).
55. Franzini, R. M., Nauer, A., Scheuermann, J. & Neri, D. Interrogating target specificity by parallel screening of a DNA-encoded chemical library against closely related complexes. Chem. Commun. 51, 8014–8016 (2015).

Acknowledgements

We gratefully acknowledge our collaborators for supplying the purified proteins used in the Tuberculosis screen: Prof. Lydia Taberner, Prof. Yuk-Ching Tse-Dinh, Prof. John Blanchard, Prof. Ruslana Bryk, Prof. Carl Nathan, Prof. Courtney Aldrich, Prof. David Sherman, Prof. Yossif Av-Gay, Prof. Matthias Wilmans, Dr Stacey Southall, Dr Argyrides Argyrou, Prof. Lluís Ribas and Prof. Hugo Gramajo. We thank Robert Kirkpatrick for implementing the high throughput protein design strategy that enabled screening and triage of essential A. baumannii targets, based on whole genome sequencing and annotation of BM4454 strain; and Stephanie Van Horn, Allan Kwan, Elizabeth Valueet for A. baumannii genome sequencing and annotation. We thank the designers at The Moment for their contributions to Fig. 1, Stacey Walsh for sequencing work and Stephen Bach for contributions to the bamA MoA studies. We also thank Craig Volker and Jim Brown for bioinformatic analysis and Allison L. Haigney for help with editing the manuscript.

Authors contributions

P.A.C., J.C., C.P.D., Y.D. and X.L. synthesized DNA-encoded libraries. C.A.M., P.F.C., J.H., L.B., G.S.R., D.B.A., R.H.B., J.L., A.M.L., S.M.S., L.M.S., C.P.D., D.H., A.J.P., and J.W.G. selected targets for screening. C.A.M., C.S.K., K.E.L., X.B., D.B.A., Q.L., A.M.L., S.M.S., D.H., C.C.A.-M., A.J.P., J.W.G. and G.E. proposed and evolved the concept. K.I., T.L.G., Q.L., R.L., J.M., P.M., H.Q., A.T. and J.W. performed protein expression, cloning and purification. C.A.M., C.S.K., K.E.L., X.B., J.H., S.B., D.B.A., R.H.B., A.M.L., C.P., C.B.P., C.P.D., C.C.A.-M., A.J.P., J.W.G. and G.E. defined screening strategy and supervised projects. C.A.M., C.S.K., E.N.G., Q.L., H.P.O.K., T.O.K., C.P., M.S.S., F.S.S., L.M.S. and J.Z. performed ELT selections. S.S.C., T.O.K., G.S.S., M.S.S., F.S.S. and J.Z. did amplification, DNA sequencing, data entry and analysis. C.A.M., C.S.K., X.B., K.E.L., R.H.B., D.T.E., T.L.G., B.W.K., B.X., G.Y., J.Z., M.S.S., J.A.M. and G.E. did selection data analysis and off DNA chemistry planning. X.B., R.H.B., A.C., H.D., J.D., J.W.D., D.T.F., T.L.G., B.W.K., Y.L., D.J.W., B.X., G.Y., J.Z. and G.E. did chemistry planning and compound synthesis. P.F.C., J.H., A.E.C., L.M., K.R. and M.F.T. did assay development and compound testing. W.P.I., C.R.K. and M.W. did compound purification, HRMS and NMR of final compounds. C.A.M., C.S.K., K.E.L., X.B., P.F.C. and G.E. did article write-up.

Additional information

Supplementary Information accompanies this paper at http://www.nature.com/naturecommunications.

Competing interests: With the exception of G.S.B., all the other authors are either currently or in past have been employees and stockholders of GlaxoSmithKline.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

How to cite this article: Machutta, C. A. & Kollmann, C. S. et al. Prioritizing multiple therapeutic targets in parallel using automated DNA-encoded library screening. Nat. Commun. 8, 16081 doi: 10.1038/ncomms16081 (2017).

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
Author Correction: Prioritizing multiple therapeutic targets in parallel using automated DNA-encoded library screening

Carl A. Machutta, Christopher S. Kollmann, Kenneth E. Lind, Xiaopeng Bai, Pan F. Chan, Jianzhong Huang, Lluis Ballell, Svetlana Belyanskaya, Gurdyal S. Besra, David Barros-Aguirre, Robert H. Bates, Paolo A. Centrella, Sandy S. Chang, Jing Chai, Anthony E. Choudhry, Aaron Coffin, Christopher P. Davie, Hongfeng Deng, Jianghe Deng, Yun Ding, Jason W. Dodson, David T. Fosbenner, Enoch N. Gao, Taylor L. Graham, Todd L. Graybill, Karen Ingraham, Walter P. Johnson, Bryan W. King, Christopher R. Kwiatkowski, Joël Lelièvre, Yue Li, Xiaorong Liu, Quinn Lu, Ruth Lehr, Alfonso Mendoza-Losana, John Martin, Lynn McCloskey, Patti McCormick, Heath P. O’Keefe, Thomas O’Keefe, Christina Pao, Christopher B. Phelps, Hongwei Qi, Keith Rafferty, Genaro S. Scavello, Matt S. Steinginga, Flora S. Sundersingh, Sharon M. Sweitzer, Lawrence M. Szewczuk, Amy Taylor, May Fern Toh, Juan Wang, Minghui Wang, Devan J. Wilkins, Bing Xia, Gang Yao, Jean Zhang, Jingye Zhou, Christine P. Donahue, Jeffrey A. Messer, David Holmes, Christopher C. Arico-Muendel, Andrew J. Pope, Jeffrey W. Gross & Ghotas Evindar

Nature Communications 8:16081 doi: 10.1038/ncomms16081 (2017); Published 17 Jul 2017, Updated 13 Jul 2018

The original version of this Article omitted the following from the Acknowledgements:

'We thank Robert Kirkpatrick for implementing the high throughput protein design strategy that enabled screening and triage of essential A. baumannii targets, based on whole genome sequencing and annotation of BM4454 strain; and Stephanie Van Horn, Allan Kwan, Elizabeth Valoret for A. baumannii genome sequencing and annotation.'

Also, the original version omitted an acknowledgement to Prof. Lydia Tabernero as one of our collaborators for supplying the purified proteins used in the Tuberculosis screen.

This has been corrected in both the PDF and HTML versions of the Article.