Clinical Prediction Models for Valvular Heart Disease

Benjamin S. Wessler, MD, MS; Christine M. Lundquist, MPH; Benjamin Koethe, MPH; Jinny G. Park, MPH; Kristen Brown, BS; Tatum Williamson, MPH; Muhammad Ajlan, MD; Zuhair Natto, DMD; Jennifer S. Lutz, MA; Jessica K. Paulus, ScD; David M. Kent, MD, MS

Background—While many clinical prediction models (CPMs) exist to guide valvular heart disease treatment decisions, the relative performance of these CPMs is largely unknown. We systematically describe the CPMs available for patients with valvular heart disease with specific attention to performance in external validations.

Methods and Results—A systematic review identified 49 CPMs for patients with valvular heart disease treated with surgery (n=34), percutaneous interventions (n=12), or no intervention (n=3). There were 204 external validations of these CPMs. Only 35 (71%) CPMs have been externally validated. Sixty-five percent (n=133) of the external validations were performed on distantly related populations. There was substantial heterogeneity in model performance and a median percentage change in discrimination of −27.1% (interquartile range, −49.4% to −5.7%). Nearly two-thirds of validations (n=129) demonstrate at least a 10% relative decline in discrimination. Discriminatory performance of EuroSCORE II and Society of Thoracic Surgeons (2009) models (accounting for 73% of external validations) varied widely: EuroSCORE II validation c-statistic range 0.50 to 0.95; Society of Thoracic Surgeons (2009) Models validation c-statistic range 0.50 to 0.86. These models performed well when tested on related populations (median related validation c-statistics: EuroSCORE II, 0.82 [0.76, 0.85]; Society of Thoracic Surgeons [2009], 0.72 [0.67, 0.79]). There remain few (n=9) external validations of transcatheter aortic valve replacement CPMs.

Conclusions—Many CPMs for patients with valvular heart disease have never been externally validated and isolated external validations appear insufficient to assess the trustworthiness of predictions. For surgical valve interventions, there are existing predictive models that perform reasonably well on related populations. For transcatheter aortic valve replacement (CPMs additional external validations are needed to broadly understand the trustworthiness of predictions. (J Am Heart Assoc. 2019;8:e011972. DOI: 10.1161/JAHA.119.011972.)

Key Words: clinical prediction models • risk • valvular heart disease

Treatments for patients with advanced valvular heart disease (VHD) are increasingly offered to patients with advanced age and elevated pre-procedural risk.1-3 Clinical predictive models (CPMs) have assumed a central role in clinical decision making and current guidelines link VHD treatment decisions to predicted risk.4-6 CPMs can potentially enhance shared decision making,7,8 when they perform well and are appropriately matched to the correct decisional context, though there remain major questions about how well CPMs for patients with VHD perform in external validations.

It is well recognized that many of the best known (and most widely used) CPMs for VHD were derived on patients receiving surgical interventions9,10 and do not accurately predict outcomes for patients treated with percutaneous interventions,11 though they continue to be used for this purpose. While there are newer efforts to create CPMs specific to percutaneous valve interventions, the relative performance of these models and their performances in external validations remains largely unknown. Generally, the performance of CPMs has often been underreported and incompletely assessed12 and since CPMs that perform poorly can yield misleading predictions that motivate harmful decision making,13 it is essential that clinicians understand CPM performance before leveraging outputs to inform decisions. This is especially important for VHD treatment decisions, given the importance of these tools.

Here, using the Tufts PACE (Predictive Analytics and Comparative Effectiveness) CPM Registry, we describe the
available CPMs for patients with VHD treated with percutaneous or surgical interventions. This analysis focuses on comparative model performance during external validations.

Clinical Perspective

What Is New?
- Risk prediction is central to decision making for patients with advanced valvular heart disease; however, the performance of clinical predictive models in external validations is often substantially worse than expected based on derivation data set performance.

What Are the Clinical Implications?
- Isolated external validations appear insufficient to broadly understand the performance of valvular heart disease clinical predictive models.
- There are clinical predictive models for surgical valvular heart disease interventions that perform well across multiple external validations.
- The trustworthiness of transcatheter aortic valve replacement predictions is largely unknown as these models have not been widely tested in external validations.

Methods

General Approach

The data that support the findings of this study are available from the corresponding author upon reasonable request. This study analyzed data from the Tufts PACE (Predictive Analytics and Comparative Effectiveness) CPM Registry, a database created to describe the CPM literature for patients at risk for and with known cardiovascular disease. The registry, which is free and available to the public at http://pace.tuftsmedical-center.org/cpm, encompasses a field synopsis of CPMs for patients with VHD. The methods have been previously reported. Briefly, we had previously searched PubMed for English-language articles containing CPMs for cardiovascular disease published from January 1990 through 2015. We extended the search for VHD CPMs to January 2017 to include more recent CPM development (Table S1, Figure S1). Citations were reviewed to confirm completeness of our review. All citations and data fields were extracted in duplicate to ensure accuracy. Discrepancies were discussed until consensus was achieved.

For inclusion in the registry, articles had to meet the following criteria: (1) develop a CPM as a primary aim, (2) contain a model predicting the development of a specified clinical diagnosis (diagnostic models) or the probability of developing a clinical outcome (prognostic models), (3) contain at least 2 outcome predictors, and (4) present enough information to estimate the probability for an individual patient. Articles were excluded if they did not provide enough information to predict a patient’s risk or if the described models predicted surrogate outcomes. We also excluded non-English reports, pharmacology reports, cost-effectiveness models, decision-analysis models, systematic reviews, and editorials.

Model Selection

This report focuses on CPMs predicting outcomes for patients with VHD. CPMs predicting natural history outcomes and outcomes after surgical and percutaneous procedures were included. CPMs were grouped based on underlying valve pathology and procedure. CPMs were also included if they were derived on cardiac surgery cohorts where at least 50% of patients received treatment for VHD. CPMs derived exclusively on coronary artery bypass populations were excluded.

CPM Reporting

Information was extracted on CPM derivation and reporting. Collected fields included: index clinical condition, predicted outcome, timeframe of prediction, sample size, cohort size, and number of events. We calculated the events per variable (EPV) based on the number of variables included in the model. We also extracted information on modeling method and performance with specific attention to reporting of discrimination and calibration (Table S2).

Validation Search

Citations for each CPM article through September 2017 were identified using Scopus and reviewed for inclusion as external validations. An external validation was defined as any evaluation of CPM performance (assessment of either discrimination or calibration) on a data set distinct from the derivation data set. External validations included validations that were done on the same cohort but temporally or geographically distinct from the derivation cohort or on an entirely separate cohort. Each validation citation was reviewed by 2 investigators for inclusion and discrepancies were reviewed with an additional investigator to arrive at consensus.

Validation Reporting

Information on validation reporting was extracted, including sample size, continent of study, number of events, and reporting of measures of discrimination and calibration (Table S3). The validation performance analysis focused on whether CPM discrimination changed when compared with
that seen in the derivation population. Because the c-statistic ranges from 0.5 (no discriminatory ability) to 1.0 (perfect discrimination), it has been rescaled as Somer’s D statistic $2(c−0.5))$ so that discrimination ranges from 0 (no discrimination) to 1.0 (perfect discrimination). We describe changes on this scale because it more intuitively reflects the true changes in discriminatory power. The percentage change in discrimination [(Validation AUC−0.5)/(Derivation AUC−0.5)×100] is presented. We also document whether validations include any assessment of CPM calibration. There is currently no literature standard for assessing calibration. Given this lack of consistency and interpretability, we have only reported on whether this dimension of performance was assessed. Calibration assessment included any comparison of observed versus expected outcomes. Examples include a Hosmer-Lemeshow statistic or calibration plot. For this study we also included measures of global fit, where overall observed event rates are compared with predicted rates (ie, calibration-in-the-large).

Relatedness

To assess the similarity between the derivation population and the validation population for each validation, we created a relatedness rubric to divide validations into 2 categories — "related" and "distantly related." The rubric contained 3 domains: (1) type of intervention (ie, percutaneous or surgical), (2) percentage of the population undergoing isolated valve procedures (as opposed to valve procedures in combination with revascularization), and (3) calendar years of enrollment. We considered a validation population to be “related” if all of the following criteria were met: (1) same type of intervention (eg, both surgical populations), (2) ± 10% absolute difference in the proportion of isolated valve procedure (eg, derivation population was 100% isolated valve and validation population was 95% isolated valve), and (3) overlapping years of enrollment. Matches that did not meet all 3 criteria were deemed “distantly related.”

Results

VHD CPMs

We identified 49 CPMs predicting clinical outcomes for patients with VHD, which were cited a total of 1296 times (Table 1, Table S2). Thirty-four (69%) predict outcomes following surgical interventions, 12 (24%) predict outcomes following percutaneous interventions, and 3 (6%) predict outcomes in the absence of intervention (Table 2). Overall, the most commonly predicted outcomes were 30-day mortality (n=14, 29%) and in-hospital mortality (n=14, 29%). Twenty-four models (46%) were derived from patients in North America, followed by 12 (23%) from Europe and 8 (15%) from Asia (Figure 1). The median derivation sample size was 4510 (interquartile range [IQR], 1087–18 686), median event rate was 8.3% (IQR, 4.5%–14.8%), and median EPV was 40 (IQR, 20–92) (Table 2). The median number of covariates was 10 (IQR, 7–19).

Among models that reported a c-statistic (n=37, 76%), the overall median ROC was 0.76 (IQR, 0.72–0.78) (Table 2). When stratified by intervention type, the median c-statistic was 0.77 (IQR, 0.75–0.79) for CPMs predicting outcomes following surgical interventions, 0.68 (IQR, 0.67–0.74) for CPMs for percutaneous interventions, and 0.81 (IQR, 0.77–0.86) for CPMs predicting outcomes in the absence of intervention (Table 2).

CPMs for Isolated Valve Disease

There are 31 CPMs for isolated valve disease. Sixteen (52%) predict outcomes following surgical intervention and 12 (39%) predict outcomes following percutaneous interventions (transcatheter aortic valve replacement [TAVR], balloon aortic valvuloplasty, and percutaneous mitral balloon valvuloplasty). Three CPMs (10%) predict outcomes for patients with aortic stenosis in the absence of intervention. The median derivation sample size was 2552 (IQR, 1064–108 410) and the median age was 70 (IQR, 64–82). The median number of events was 360 (IQR, 104–2021) and the median EPV was 55 (IQR, 18–112). The median event rate was 10% (IQR, 4.6%–18.3%). For the 27 (87%) models reporting discrimination, the median c-statistic was 0.74 (IQR, 0.69–0.78).

CPMs for Isolated or Multiple Valve Disease

There are 11 CPMs that predict outcomes for patients undergoing either single or multiple valve surgical procedures. The median derivation sample size was 3544 (IQR, 2297–12 079) and the median age was 60 (IQR, 54–65). The median number of events was 303 (IQR, 139–507) and the median EPV was 26 (IQR, 20–40). The median event rate was 5.1% (IQR, 4.1%–9.5%). For the 10 (91%) models reporting discrimination, the median c-statistic was 0.78 (IQR, 0.76–0.79).

CPMs for Multiple Valve Disease

There are 7 CPMs that predict outcomes specifically for multiple valve surgical interventions. These CPMs include the Society of Thoracic Surgeons (STS) Multi-Valve Risk Models and the derivation sample size was 18 686 (IQR, 4510–22 861). The median number of events was 1420 (IQR, 591–1981) and the median EPV was 71 (IQR, 48–92). Median age was 70 (IQR, 70–71). The median event rate was 9.4% (IQR, 7.6%–11.3%). Median number of covariates was 20 (IQR, 14–23).
Table 1. De Novo VHD CPMs Overview

Author, Model Name	Publication, y	Valve	Standardized Type of Intervention	Outcome	Model Method	C-Statistic	Calibration Measure	Externally Validated?
Isolated valve								
Edwards,16 STS (original) Isolated Valve	2001	Aortic/Mitral	Surgery	30 d operative mortality	Logistic regression	0.766	HL statistic, Calibration plot	Yes
Nowicki,17 NNE Aortic and Mitral Models	2004	Aortic	Surgery	In-hospital mortality	Logistic regression, score	0.75	HL statistic	Yes
Kuduvalli,18 NWQIP	2007	Aortic	Surgery	In-hospital mortality	Logistic regression, score	0.79	HL statistic	Yes
Cruz-Gonzalez,19 PMV Score	2009	Mitral	Percutaneous	Procedural success	Logistic regression, score	NR	HL statistic	Yes
Monin20	2009	Aortic stenosis	Natural History	Composite (Non-MACE)	Logistic regression, score	0.90	HL statistic	Yes
O’Brien,9 STS (2009)—Composite AEs	2009	Aortic/Mitral	Surgery	DSWI	Logistic regression	0.704	None	Yes
O’Brien,9 STS (2009)—Mortality	2009	Aortic/Mitral	Surgery	DSWI	Logistic regression	0.805	None	Yes
O’Brien,9 STS (2009)—Prolonged LOS	2009	Aortic/Mitral	Surgery	Prolonged LOS	Logistic regression	0.77	None	Yes
O’Brien,9 STS (2009)—Prolonged Ventilation	2009	Aortic/Mitral	Surgery	Prolonged ventilation	Logistic regression	0.77	None	Yes
O’Brien,9 STS (2009)—Renal Failure	2009	Aortic/Mitral	Surgery	Renal failure	Logistic regression	0.782	None	Yes
O’Brien,9 STS (2009)—Reoperation	2009	Aortic/Mitral	Surgery	Reoperation	Logistic regression	0.643	None	Yes
O’Brien,9 STS (2009)—Short LOS	2009	Aortic/Mitral	Surgery	Prolonged LOS	Logistic regression	0.738	None	No
O’Brien,9 STS (2009)—Stroke	2009	Aortic/Mitral	Surgery	Stroke	Logistic regression	0.694	None	Yes
Guaragna,21 GuaragnaSCORE	2010	Aortic/Mitral	Surgery	In-hospital mortality	Logistic regression, score	0.82	HL statistic, Calibration plot	Yes
Guo22	2010	Aortic	Surgery	In-hospital mortality	Logistic regression	NR	HL statistic	No
Elmariah,23 CRRAC the AV Score	2011	Aortic	Percutaneous	30 d mortality	Cox regression, score	0.754	HL statistic	No
Boulet24	2012	Mitral	Percutaneous	Composite (MACE)	Cox regression, score	0.74	Calibration plot	No
Cioffi25	2012	Aortic stenosis	Natural History	Composite (MACE)	Cox regression, score	NR	None	No

Continued
Author, Model Name	Publication, y	Valve	Standardized Type of Intervention	Outcome	Model Method	C-Statistic	Calibration Measure	Externally Validated?
Holme,26 SEAS Score	2012	Aortic stenosis	Natural History	5 y mortality	Cox regression	0.722	HL statistic, Calibration plot, Brier score	No
Kötting,27 German Aortic Valve Score	2013	Aortic	Percutaneous	In-Hospital Mortality	Logistic regression, score	0.808	HL statistic	Yes
Arnold,28 6 mo and 1 y Models	2014	Aortic stenosis	Percutaneous	Composite (Non-MACE)	Logistic regression	0.66	HL statistics, Calibration plot	Yes
Capodanno,29 OBSERVANT Score	2014	Aortic stenosis	Percutaneous	30 d mortality	Logistic regression, score	0.73	HL statistic, Calibration plot	Yes
D'Ascenzo,30 Survival Post-TAVI (STT)—30 d and 1 y Models	2014	Aortic	Percutaneous	30 d mortality	Logistic regression, score	0.66	HL statistic	Yes
Iung31	2014	Aortic	Percutaneous	30 d mortality	Logistic regression, score	0.67	HL statistic, Calibration in the large, Calibration plot	No
Debonnaire,32 TAVI2-SCORe	2015	Aortic	Percutaneous	1 y mortality	Logistic regression, score	0.715	HL statistic, Calibration in the large	Yes
Edwards7	2016	Aortic	Percutaneous	In-hospital mortality	Logistic regression	0.67	HL statistics, Calibration in the large, Calibration plot	Yes
Isolated or multiple valve								
Kaplan33	2003	All	Surgery	Pacemaker placement	Logistic regression, score	NR	None	No
Ambler34	2005	Aortic, mitral	Surgery	In-hospital mortality	Logistic regression, Score	0.77	HL statistic, Calibration plot	Yes
Xu35	2006	All	Surgery	Prolonged LOS	Logistic regression	0.81	Calibration in table form	No
Hannan36	2007	Aortic, mitral	Surgery	In-hospital mortality	Logistic regression, Score	0.794	HL statistic, Calibration plot	Yes
Table 1. Continued

Author, Model Name	Publication, y	Valve	Standardized Type of Intervention	Outcome	Model Method	C-Statistic	Calibration Measure	Externally Validated?
Xu, Fuwai Score	2007	All	Surgery	Prolonged LOS	Logistic regression, Score	0.76	HL statistic, Calibration plot	Yes
Shi, EuroSCORE II	2010	Aortic, mitral	Surgery	In-hospital mortality	Logistic regression	0.7358	None	No
Aryanaratne, Aus-AVR Score	2011	Aortic, mitral	Surgery	30 d mortality	Logistic regression, Score	0.78	HL statistic, Calibration in the large	Yes
Nashef, EuroSCORE II	2012	All	Surgery	In-hospital mortality	Logistic regression	0.8095	None	Yes
Hannan, NY Operative Mortality Risk Score	2013	Aortic, mitral	Surgery	30 d mortality	Logistic regression, Score	0.781	HL statistic	Yes
Wang	2013	All	Surgery	Prolonged ventilation	Logistic regression	0.789	HL statistic	No
Zheng	2013	Aortic, mitral	Surgery	In-hospital mortality	Logistic regression, Score	0.76	HL statistic, Chi-square statistic, Calibration plot	No
Multiple valve								
Guo	2010	Aortic, mitral	Surgery	In-hospital mortality	Logistic regression	NR	HL statistic	No
Rankin, AM Preop	2013	Aortic, mitral	Surgery	30 d mortality	Logistic regression	NR	Calibration plot	Yes
Rankin, MT Preop	2013	mitral, tricuspid	Surgery	30 d mortality	Logistic regression	NR	Calibration plot	Yes
Rankin, AM Preop	2013	Aortic, mitral, tricuspid	Surgery	30 d mortality	Logistic regression	NR	Calibration plot	Yes
Rankin, AM Preop + Intraop	2013	Aortic, mitral	Surgery	30 d mortality	Logistic regression	NR	Calibration plot	Yes
Rankin, MT Preop + Intraop	2013	Mitral, tricuspid	Surgery	30 d mortality	Logistic regression	NR	Calibration plot	Yes
Rankin, AM Preop + Intraop	2013	Aortic, mitral, tricuspid	Surgery	30 d mortality	Logistic regression	NR	Calibration plot	Yes

AEs indicates adverse events; AM, aortic, mitral; AMT, aortic, mitral, tricuspid; AV, aortic valvuloplasty; Aus-AVR, Australian aortic valve replacement; CRRAC, critical status, renal dysfunction, eugical atrial pressure, and cardiac output; DSWI, deep sternal wound infections; EuroSCORE, European System for Cardiac Operative Risk Evaluation; HL, Hosmer-Lemeshow; LOS, length of stay; MACE, major adverse cardiovascular events; MT, mitral, tricuspid; NNE, Northern New England; NR, not reported; NWQIP, North West Quality Improvement Programme in Cardiac Interventions; NY, New York; OBSERVANT, Observational Study of Appropriateness, Efficacy and Effectiveness of AVR-TAVR Procedures for the Treatment of Severe Symptomatic Aortic Stenosis; PMV, percutaneous mitral valvuloplasty; SEAS, Simvastatin and Ezetimibe in Aortic Stenosis; STS, Society of Thoracic Surgeons; STT, Survival post-TAVI; TAVI, transcatheter aortic valve implantation; TAVR, Transcatheter Aortic Valve Replacement.
Table 2. Reported Characteristics of De Novo Valvular Heart Disease CPMs

Characteristic*	Overall (n=49)	Surgical (n=34)	Percutaneous (n=12)	Natural History (n=3)
Publication range	2001 to 2016	2001 to 2013	2009 to 2016	2009 to 2012
Age, y	69 (61–79)	65 (58–70)	82 (82–83)	68 (67–70)
Sample size	4510 (1087–18 686)	12 079 (3125–92 563)	1160 (752–2241)	772 (440–1169)
Event rate	0.08 (0.05–0.15)	0.07 (0.04–0.11)	0.14 (0.06–0.37)	0.35 (0.23–0.47)
Events per variable	40 (20–92)	46 (25–110)	42 (18–81)	11 (10–45)
C-statistic	0.76 (0.72–0.78)	0.77 (0.75–0.79)	0.68 (0.67–0.74)	0.81 (0.77–0.86)
% Externally validated	71.4	73.5	83.3	33.3

CPM indicates clinical predictive models.
*Values are reported as median (interquartile range), unless otherwise specified.
†De novo CPM search spans January 1, 1990 to January 1, 2017.

CPMs for Percutaneous VHD Interventions

Since 2009, there have been 12 CPMs presented that predict outcomes following percutaneous VHD interventions. Two models predict outcomes following mitral percutaneous mitral balloon valvuloplasty.24,44 There were 9 CPMs that predict outcomes following TAVR with a median derivation sample size of 2130 (IQR, 10 642–552). The median age of patients in the TAVR CPMs was 82 (IQR, 82–83). TAVR CPMs had a median number of events of 253 (IQR, 80–180) and a median EPV was 28 (IQR, 20–70). The median event rate was 9.9% (IQR, 5.6%–15.7%). All of the CPMs predicting outcomes following TAVR reported discrimination with a median c-statistic of 0.67 (IQR, 0.66–0.72).

External Validations

Two hundred and four external validations of these CPMs were identified, of which 190 (93%) report a c-statistic. Overall, 35 (71%) of the VHD CPMs have been externally validated and 20 (37%) have been externally validated more than once. External validations were most commonly done in cohorts of patients from Europe (n=93, 46%), Asia (n=38, 19%), and North America (n=37, 18%) (Figure 1). Fifty-three (26%) validations were performed on populations from the same continent as the derivation population, with a median c-statistic of 0.71 (IQR, 0.66–0.77). Seventy-one (35%) were done on populations from a different continent, with a median c-statistic of 0.68 (IQR, 0.64–0.73). External validations overall had a median c-statistic of 0.71 (IQR, 0.65–0.77) (Table 3). For the models that were externally validated, we noted an overall median percentage change in discrimination of –27.1% (IQR, –49.4–5.7). Just under two-thirds of validations (n=129) demonstrate at least a 10% relative decline in discriminatory power, and 18 (9%) showed a decline of >80%. Thirty-three (16%) validations showed CPM discrimination at or above that seen in the derivation cohort.

The distribution of number of validations was skewed towards a small number of CPMs. Two CPMs (EuroSCORE II and STS [2009] Models†) accounted for 73% of the external validations. EuroSCORE II has been validated 78 times across 5 continents (Table 4). Validation c-statistics ranged from 0.50 to 0.95 with a median percentage change of –23.4% (range –100%–46.7%). For the STS (2009) Models, validation c-statistics ranged from 0.50 to 0.86 (Table 5). The median percentage change was –31.8% and ranged from –100% to +18%. The STS (2009) Models have been validated 70 times across 5 continents.

Of CPMs that have been validated at least 2 times (n=17) in related populations, the highest median validation c-statistic was seen for EuroSCORE II (0.82 [IQR, 0.76–0.85]), followed by the North West Quality Improvement Programme in Cardiac Interventions model (0.78 [IQR, 0.77–0.78]), and the Northern New England Aortic model (0.76 [IQR, 0.75–0.77]) (Table 6). Forty-five (22%) external validations did not report any measure of calibration. Of the 159 validations that did report calibration, 103 (65%) reported the Hosmer-Lemeshow statistic, 87 (55%) reported calibration-in-the-large, and 46 (29%) included a calibration plot. Median c-statistic was 0.71 (IQR, 0.65–0.77) for validations that reported some measure of calibration and 0.68 (IQR, 0.63–0.74) for validations that did not report any calibration.

Clinical relatedness between the development and validation populations was assessed using a novel rubric. Seventy-one validations (35%) were performed on related populations, while the remaining 133 (65%) were performed on distantly-related populations. The median validation c-statistic was 0.73 (IQR, 0.67–0.79) for related validations and 0.70 (IQR, 0.62–0.76) for distantly-related validations (P=0.009). There was a significant difference in percentage change in discrimination: the median change in c-statistic was –12.2% (IQR,
−28.3% to +2.5%) for related validations and −32.1% (IQR, −54.9% to −12.8%) for distantly-related validations (Figure 2, \(P<0.0001 \)).

CPMs that were derived on percutaneously-treated VHD populations and externally validated (\(n=9 \)) underwent a total of 19 validations, almost all of which were on percutaneous populations. CPMs that were derived on surgical VHD populations and externally validated (\(n=25 \)) underwent a total of 184 validations, of which 130 (71%) were on surgical populations, 52 (28%) were on percutaneous populations, and

Figure 1. Geography of derivation and validation cohorts. Country of origin for derivation (A) and validation (B) populations. Maps created in Tableau Public.
2 (1%) were on populations including both surgical and percutaneous interventions. For validations of surgical VHD models discrimination was better when CPMs were tested on cohorts treated with surgical versus percutaneous interventions (median c-statistic 0.74 versus 0.63, \(P< 0.001\)).

Of the surgical VHD CPMs validated on percutaneous populations (n = 52 validations), the CPM most often validated was the STS (2009) model predicting mortality (n = 27, median c-statistic 0.64 [IQR, 0.58–0.67]). EuroSCORE II (n = 20) had the highest discrimination in this setting, with a median c-statistic of 0.67 (IQR, 0.55–0.71).

Discussion

Here we show that there are many CPMs available for patients with VHD and that many of these CPMs have not been externally validated. For the CPMs that have been externally

Table 3. Reported Characteristics of Valvular Heart Disease External Validations‡
Characteristic

Sample size
Number of events
Event rate
% Men
C-statistic

*Values are reported as median (interquartile range).
†Validations done on populations treated with surgical and percutaneous interventions that did not disaggregate results (n=2) are only included in the overall count.
‡Validation search includes citations through September 8, 2017.

Table 4. EuroSCORE II Population Compared With External Validation Populations, Stratified by Relatedness

Statistic	EuroSCORE II	Validation Populations§	Related	Distantly Related
Total patients (n)	16 828	14 382	98 744	
Total validations (n)	NA	5	73	
Age, y	Mean (SD): 64.6 (12.5)	63.4 (62.7–67.0)	67.1 (61.1–80.5)	
Number of events (n)	656	123 (53–215)	27 (12–57)	
Event rate, %	3.9	5.7 (5.7–6.1)	6.3 (3.0–10.5)	
Sex reported, n (%)	NA	5 (100%)	50 (68%)	
Men, %	69.1	65.2 (62.5–66.5)	52.5 (46.8–64.1)	
Type of intervention, n (%)				
Surgery	1 (100%)	5 (100%)	52 (71.2%)	
Percutaneous	0 (0%)	0 (0%)	20 (27.4%)	
Both	0 (0%)	0 (0%)	1 (1.4%)	
Valve-related, %	53.3	56 (54.6–56.1)	100 (100–100)	
Enrollment, y (range)	2010	2005 to 2013	1999 to 2015	
C-statistic	0.8095	0.82 (0.76–0.85)	0.72 (0.67–0.78)	
C-statistic (range)	NA	0.737 to 0.861	0.50 to 0.95	
Any calibration reported, n (%)	0 (0%)	4 (80%)	65 (89%)	
Change in discrimination, %	NA	2.6 (−16.0–13.1)	−28.9 (−45.3–−9.5)	

EuroSCORE indicates European System for Cardiac Operative Risk Evaluation.
*All values are reported as median (interquartile range) unless otherwise specified.
†Validation data is reported at the population level only; patient-level data was not available.
‡Validation population are “related” if it meets all of the following criteria: (1) same type of intervention (eg, both surgical populations), (2) \(\pm 10\%\) absolute difference in the proportion of isolated valve procedure (eg, derivation population was 100% isolated valve and validation population was 95% isolated valve), and (3) overlapping years of enrollment. A validation population that does not meet all 3 criteria is “distantly related.”
§Change in discrimination is calculated as \([\text{Validation AUC}_0.5−\text{Derivation AUC}_0.5]/(\text{Derivation AUC}_0.5−0.5)\) × 100.
Table 5. STS (2009) Population Compared With External Validation Populations, Stratified by Relatedness

Statistic*	STS Models (n=9)	Validation Populations†‡§	Related	Distantly Related
Total patients, n	109 759	37 395	49 530	
Total validations, n	NA	33	37	
Age, y	Not Reported	64.7 (56.6–73)	81.6 (74.5–83)	
Number of events, n	9164 (3706–12 892)	29 (12–82)	38 (18–57)	
Event rate, %	8.3 (3.4–11.7)	4.9 (2.7–12.6)	9.1 (3.7–11.7)	
Men, %	55.4	56 (56.0–74.9)	47.8 (43.6–55.3)	
Type of intervention, n (%)				
Surgery	9 (100%)	33 (100%)	8 (21.6%)	
Percutaneous	0 (0%)	0 (0%)	28 (75.7%)	
Both	0 (0%)	0 (0%)	1 (2.7%)	
Valve-related, %	100	100 (100–100)	100 (100–100)	
Enrollment, y (range)	2002–2006	1999–2014	1999–2015	
C-statistic, median, IQR	0.74 (0.70–0.77)	0.72 (0.67–0.79)	0.65 (0.6–0.71)	
Calibation reported, n (%)	0.643 to 0.805	0.612 to 0.86	0.5 to 0.81	
Change in discrimination, %	9 (100%)	18 (54.5%)	28 (75.7%)	
#	NA	–21.3 (–34.4–2.3)	–50.8 (–67.2–25.1)	

IQR indicates interquartile range; STS, Society of Thoracic Surgeons.

*All values are reported as median (interquartile range) unless otherwise specified.

†Validation data is reported at the population level only; patient-level data was not available.

‡Validation population is “related” if it meets all of the following criteria: (1) same type of intervention (eg, both surgical populations), (2) ±10% absolute difference in the proportion of isolated valve procedure (eg, derivation population was 100% isolated valve and validation population was 95% isolated valve), and (3) overlapping years of enrollment. A validation population that does not meet all 3 criteria is “distantly related.”

§Change in discrimination is calculated as [(Validation AUC–0.5)–(Derivation AUC–0.5)]/(Derivation AUC–0.5)×100.

validated, models often perform substantially worse than expected based on performance in derivation data sets. Notably, isolated external validations of VHD CPMs appear insufficient for broadly understanding CPM performance in the context of specific clinical decisions as predictive models may have highly variable performance across various databases. For patients under consideration for surgical VHD interventions, there are CPMs that have been extensively validated. The fidelity of TAVR CPM predictions is largely unknown, as these models have not been widely tested in external validations.

Predicted risk is central to procedural decision making for patients with VHD, however. individual risk estimates using published CPMs for VHD appear more uncertain than originally thought, especially when prediction models are derived on patients who are not closely related to the patients being treated. CPM performance (specifically discrimination) substantially degrades from the derivation population to the validation population, particularly when populations are “distantly related” with respect to procedure type (percutaneous versus open surgical), therapeutic era, and the need for concurrent revascularization. Without attention to these patient-level specifics, it is likely that there is widespread inappropriate use of CPMs that are informing treatment decisions for patients with VHD. While it is encouraging that newer models have been developed for TAVR patients, these CPMs have not been widely validated or integrated into contemporary guidelines, and have risk estimates that may become inaccurate as devices continue to improve and procedural techniques mature. The attenuated performance of these TAVR CPMs may also be related to the magnitude and significance of comorbid illnesses that are common for older treated adults and are rarely included as part of parsimonious modeling efforts. More work is needed to understand these risk factors.

The decrease in discrimination that is observed in this study may be attributable to model overfitting, differences in case mix (ie, narrower populations in the validation data set), and phenotypic heterogeneity. Ultimately, the relevant performance metrics for clinicians relate to the patients they are treating (with a specific intervention), not to performance measured at the time of CPM development. Rarely, discrimination appears to improve during validations. This is likely the result of differences between the derivation population and the validation population where some models are developed on more highly selected (narrow case-mix) cohorts than they are testing on. The data presented here demonstrates that CPMs externally validated multiple times show substantial variation in performance. This strongly suggests that adequate
performance demonstrated in a single external validation may be insufficient to assess the quality (and utility) of VHD CPMs and that a more tailored approach is needed to understand the trustworthiness of CPM predictions in specific settings.

There is increasing recognition of the central importance of CPM calibration. Surprisingly, calibration was reported in only 78% of the external validations of VHD CPMs. There is no agreed-upon standard for reporting model calibration and no consensus on interpreting this metric. Moreover, there are well-recognized limitations to the most commonly reported measure, the Hosmer-Lemeshow statistic (eg, sample-size dependence). Reporting of model calibration represents a poorly-recognized limitation to the most commonly reported metric. The optimal number of validations required to adequately assess CPM performance remains unknown. Ideally, CPMs are serially validated and recalibrated (if necessary) to optimize performance for specific, local clinical decision making. Without addressing these limitations, clinical decisions that leverage CPM outputs may be inaccurate and lead to harmful decisions.

This analysis offers a structure to consider which CPMs are most accurate (discrimination and calibration) and trustworthy (consistent performance in multiple external validations). For patients being considered for surgical valve interventions, EuroSCORE II (median validation c-statistic 0.82 [0.76, 0.85]), North West Quality Improvement Programme in Cardiac Interventions; NY, New York; OBSERVANT, Observational Study of Appropriateness, Efficacy and Effectiveness of AVR-TAVR Procedures for the Treatment of Severe Symptomatic Aortic Stenosis; STS, Society of Thoracic Surgeons; STT, Survival post-TAVI; TAVI, transcatheter aortic valve implantation.

*Change in discrimination is calculated as [(Validation AUC – Derivation AUC) / (Derivation AUC – 0.5)] × 100.

Table 6. CPMs that Have Been Validated ≥2 Times in Related Populations

De Novo CPM	Pub., Y	Model Name	External Validations in Related Populations (n)	Validation C-statistic, median (IQR)	% Change in Discrimination,*	Any Calibration Reported (%)
2001	STS (original): Isolated Valve	2	0.77 (0.77, 0.77)	2.6 (2.6–2.6)	100	
2004	NNE Aortic	2	0.76 (0.76, 0.77)	4.0 (2.0–6.0)	100	
2007	NWQIP	2	0.78 (0.77, 0.78)	–1.8 (–2.7–2.9)	100	
2005	Ambler	4	0.73 (0.72, 0.76)	–15.2 (–18.9–2.2)	100	
2009	STS: Mortality	19	0.74 (0.71, 0.79)	–21.3 (–31.5–4.8)	95	
2009	STS: Stroke	2	0.65 (0.65, 0.66)	–20.9 (–23.8–17.9)	0	
2009	STS: Prolonged Ventilation	2	0.72 (0.68, 0.75)	–20.2 (–33.8–6.6)	0	
2009	STS: Prolonged LOS	2	0.67 (0.65, 0.68)	–38.1 (–43.5–32.8)	0	
2009	STS: Renal Failure	2	0.76 (0.72, 0.79)	–9.6 (–22.5–3.4)	0	
2009	STS: DSWI	2	0.68 (0.65, 0.70)	–13.7 (–24.8–2.7)	0	
2009	STS: Composite AEs	2	0.68 (0.65, 0.71)	–18.8 (–30.7–6.9)	0	
2009	STS: Reoperation	2	0.64 (0.63, 0.65)	–21.1 (–11.9–7.7)	0	
2011	Aus-AVR Score	3	0.72 (0.67, 0.72)	–22.9 (–40.4–20.4)	100	
2012	EuroSCORE II	5	0.82 (0.76, 0.85)	2.6 (16.0–13.1)	80	
2013	NY Operative Mortality Risk Score	3	0.73 (0.71, 0.75)	–18.1 (–26.5–9.8)	66.7	
2014	OBSERVANT Score	4	0.60 (0.58, 0.61)	–57.8 (–63.7–50.7)	50	
2014	STT: 30 d	2	0.66	0	50	
Figure 2. Percentage change in discrimination in external validations of valvular heart disease clinical prediction models, stratified by relatedness. Each bar represents a unique external validation that reports a c-statistic (n=205). Society of Thoracic Surgeons (2009) Models. Percentage change in discrimination is calculated as \(\frac{[\text{validation c-statistic} - 0.5] - [\text{derivation c-statistic} - 0.5]}{[\text{derivation c-statistic} - 0.5]} \times 100 \). STS indicates Society of Thoracic Surgeons.
Interventions Model (median validation c-statistic 0.78 [0.77, 0.78]), Northern New England Aortic Model (median validation c-statistic 0.76 [0.76, 0.77]), Ambler (median validation c-statistic 0.73 [0.72, 0.76]), and STS (2009) Mortality (median validation c-statistic 0.74 [0.71, 0.79]) have reasonable discrimination and multiple assessments of discrimination and calibration in external data sets. There are no CPMs for patients treated with TAVR that demonstrate good performance across multiple related validation databases. The trustworthiness of these newer risk estimates for TAVR remains under-studied.

There are several limitations to this work. Our review was limited to CPMs that provide enough information in the published report to calculate a risk prediction for a patient. Logistic regression models that did not report a full equation or intercept were not included. Cox regression models that did not report a point score or baseline hazard were excluded. The search for de novo VHD CPMs was last run in January 2017. While newer CPMs have been developed, there is often substantial delay before the publication of subsequent external validations. Notably, we present relative changes in discrimination to more accurately document changes on a clinically relevant scale, where small decreases in the C-statistic can result in large changes in clinically relevant performance. Lastly, this study was limited in its examination of CPM calibration, which is an important measure of model performance, but often poorly reported and without a widely-accepted summary measure.

While there are numerous available CPMs for patients with VHD, many have never been externally validated, and for those that have, discriminatory performance is often much worse than originally reported. We note that CPM performance is highly dependent on the cohort selected for study, suggesting that one-off external validations may inadequately assess performance. Instead of new CPM development, robust external validations of established TAVR CPMs and without a widely-accepted summary measure.

Acknowledgments

The statements in this publication are solely the responsibility of the authors and do not necessarily represent the views of the Patient-Centered Outcomes Research Institute, its Board of Governors, or Methodology Committee.

Sources of Funding

This work was partially supported through a Patient-Centered Outcomes Research Institute Methods Award (ME-1606-35555), as well as by the National Institutes of Health (R03 AG056447 GEMSSTAR Grant and K23 AG055667) and the Bellows Foundation Grant from the American College of Cardiology.

Disclosures

None.

References

1. Leon MB, Smith CR, Mack M, Miller DC, Moses JW, Svensson LG, Tuzcu EM, Webb JG, Fontana GP, Makkar RR, Brown DL, Block PC, Guyton RA, Pichard AD, Bavaria JE, Herrmann HC, Douglas PS, Petersen JL, Akin JJ, Anderson WN, Wang D, Pocock S; PARTNER Trial Investigators. Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N Engl J Med. 2010;363:1597–1607.

2. Muller DWM, Farivar RS, Jansz P, Bae R, Waiters D, Clarke A, Grayburn PA, Stoler RC, Dahlie G, Rein KA, Shaw M, Scalisi GM, Guerrero M, Pearson P, Kapadia S, Gillinov M, Pichard A, Corso P, Popma J, Chiang M, Blanke P, Leipsic J, Soriaja P; Tendyne Global Feasibility Trial Investigators. Transcatheter mitral valve replacement for patients with symptomatic mitral regurgitation: a global feasibility trial. J Am Coll Cardiol. 2017;69:381–391.

3. Aboulhosn J, Cabalka AK, Levi DS, Himbert D, Testa L, Latib A, Makkar RR, Boudjemline Y, Kim DW, Kefer J, Bleiziffer S, Kerst G, Dvir D, McElhinney DB. Transcatheter valve-in-ring implantation for the treatment of residual or recurrent tricuspid valve dysfunction after prior surgical repair. JACC Cardiovasc Interv. 2017;10:53–63.

4. Holmes DR Jr, Mack MJ, Kaul S, Agnihotri A, Alexander KP, Bailey SR, Calhoun JH, Carabello BA, Desai MY, Edwards FH, Francis GS, Gardner TJ, Kappetein AP, Lindenbaum JA, Mukherjee C, Mukherji A, Otto CM, Ruiz CE, Sacco RI, Smith D, Thomas JD. 2012 ACCF/AATS/SCAI/STS expert consensus document on transcatheter aortic valve replacement. J Am Coll Cardiol. 2012;59:1200–1254.

5. Nishimura RA, Otto CM, Bonow RO, Carabello BA, Erwin JP III, Fleisher LA, Jneid H, Mack MJ, McLeod CJ, O’Gara PT, Rogolin VH, Sundt TM III, Thompson A. 2017 AHA/ACC focused update of the 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. Circulation. 2017;135:e1159–e1195.

6. Nishimura RA, Otto CM, Bonow RO, Carabello BA, Erwin JP III, Guyton RA, O’Gara PT, Ruiz CE, Skubas NJ, Sorajja P, Sundt TM III, Thomas JD; ACC/AHA Task Force Members. 2014 AHA/ACC guideline for the management of patients with valvular heart disease: executive summary: a report of the American College Of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2014;129:2490–2537.

7. Edwards FH, Cohen DJ, O’Brien SM, Peterson ED, Mack MJ, Shahian DM, Grover FL, Tuzcu EM, Thourani VH, Carroll J, Brennan JM, Brindis RG, Rumsfeld J, Holmes DR Jr; Steering Committee of the Society of Thoracic Surgeons/AmERICAN College of Cardiology Transcatheter Valve Therapy R. Development and validation of a risk prediction model for in-hospital mortality after transcatheter aortic valve replacement. JAMA Cardiol. 2016;1:46–52.

8. Duke University. Optimizing health outcomes in patients with symptomatic aortic valve disease (pcori-avr). National Institutes of Health. NCT number NCT02266251; 2014.

9. O’Brien SM, Shahian DM, Filardo G, Ferraris VA, Haan CK, Rich JB, Normand SL, DeLong ER, Shewan CM, Dokholyan RS, Peterson ED, Edwards FH, Anderson RP; Society of Thoracic Surgeons Quality Measurement Task F. The society of thoracic surgeons 2008 cardiac surgery risk models: part 2–isolated valve surgery. Ann Thorac Surg. 2009;88:523–542.

10. Nashef SA, Roques F, Sharples LD, Nilsson J, Smith C, Goldstone AR, Lockwood AD, Euroscore ii. Eur J Cardiothorac Surg. 2012;41:734–744; discussion 744–753.

11. Dewey TM, Brown D, Ryan WH, Herbert MA, Prince SL, Mack MJ. Reliability of risk algorithms in predicting early and late operative outcomes in high-risk patients undergoing aortic valve replacement. J Thorac Cardiovasc Surg. 2008;135:180–187.

12. Wessler BS, Lai YN, Kramer W, Cangelosi M, Raman G, Lutz JS, Kent DM. Clinical prediction models for cardiovascular disease: tufts predictive analytics and comparative effectiveness clinical prediction model database. Circ Cardiovasc Qual Outcomes. 2015;8:368–375.

13. Van Calster B, Vickers AJ. Calibration of risk prediction models: impact on decision-analytic performance. Med Decis Making. 2015;35:162–169.

14. Siontis GC, Tzoulaki I, Castaldi PJ, Ioannidis JP. External validation of new prediction models is infrequent and reveals worse prognostic discrimination. J Clin Epidemiol. 2015;68:25–34.
Clinical Prediction Models for VHD

15. Harrell FE. Regression modeling strategies: with applications to linear models, logistic regression, and survival analysis. New York, NY: Springer-Verlag; 2001.

16. Edwards FH, Peterson ED, Coombs LP, DeLong ER, Jamieson WR, Shroyer AL, Grover FL. Prediction of operative mortality after valve replacement surgery. J Am Coll Cardiol. 2001;37:885–892.

17. Nowicki ER, Birkmeyer NJ, Weintraub RW, Leavitt BJ, Sanders JH, Dacey LJ, Clough RA, Quinn RD, Charlesworth DC, Sisto DA, Uhlig PN, Olmedo EM, O’Connor GT. Northern New England Cardiovascular Disease Study Group and the Center for Evaluative Clinical Sciences, Dartmouth Medical School. Multivariable prediction of in-hospital mortality associated with aortic and mitral valve surgery in Northern New England. Ann Thorac Surg. 2004;77:1966–1977.

18. Kuduvalli M, Grayson AD, Au J, Grotte G, Bridgewater B, Fabri BM, Fabri BM. DOI: 10.1161/JAHA.119.011972

19. Harrell FE.

20. Monin JL, Lancellotti P, Monchi M, Lim P, Weiss E, Pierard L, Gueret P. Risk of perioperative mortality and long-term outcomes of percutaneous mitral valvuloplasty: a multifactorial score. Am J Med. 2009;122:581.e511–581.e519.

21. Monin JL, Lancellotti P, Monchi M, Lim P, Weiss E, Pierard L, Gueret P. Risk score for predicting outcome in patients with asymptomatic aortic stenosis. Circulation. 2009;120:69–75.

22. Guaragna JC, Bodanese LC, Bueno FL, Goldani MA. Proposed preoperative risk score for patients candidate to cardiac valve surgery. Arq Bras Cardiol. 2010;94:541–548.

23. Guo LX, Meng X, Zhang ZG, Bai T. Analysis of risk factors for valve replacements in 5,128 cases from a single heart center in China. Chin Med J (Engl). 2010;123:3509–3514.

24. Elmariah S, Lubitz SA, Shah AM, Miller MA, Kaplish D, Kothari S, Moreno PR, Gabrielli A, Elmariah S. Risk model and long-term outcomes of percutaneous mitral valve replacement: preliminary results from a series of 912 patients. Circulation. 2012;125:2119–2127.

25. Cioffi G, Cramarucic D, Dalsgaard M, Davidsen ES, Egstrup K, Rossebo AB, de Simone G, Gerds T. Left atrial systolic force and outcome in asymptomatic mitral stenosis. Echocardiography. 2012;29:1038–1044.

26. Holme I, Pedersen TR, Boman K, Egstrup K, Rossebo AB, de Simone G, Gerds T. An effective survival post TAVI function model for prolonged ventilation after adult heart valve surgery in a Chinese single center. Heart Lung. 2013;42:13–18.

27. Zheng Z, Fan H, Gao H, Li X, Yuan X, Meng J, Xu J, Song Y, Sun H, Hu S. Mortality risk model for heart valve surgery in China. J Heart Valve Dis. 2013;22:93–101.

28. Rankin JS, He X, O’Brien SM, Jacobs JP, Welke KF, Filardo G, Shahian DM. The society of thoracic surgeons risk model for operative mortality after multiple valve surgery. Ann Thorac Surg. 2013;95:1484–1490.

29. van der Kley F, Katsanos S, Joyce E, Tamborini G, Muratori M, Gripari P, Bax JJ. Score for patients candidate to cardiac valve surgery. Heart Lung. 2014;43:97–101.

30. Collins GS, Reitsma JB, Altman DG, Moons KG. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. BMJ. 2015;350:g7594.

31. van der Windt DA, Hayden JA, Perel P, Schroter S, Steyerberg EW, Moons KG, van der Wijden P, Thourani V, Green P, Rodes-Cabau J, Beohar N, Mack MJ, Leon MB, Cohen DJ; OBSERVANT Research Group. A simple risk tool (the observant score) for prediction of 30-day mortality after transcatheter aortic valve replacement. Eur J Cardiothorac Surg. 2011;39:815–821.

32. Rosenhek R, Iung B, Tornos P, Antunes MJ, Prendergast BD, Otto CM, De Bacquer D, Zuberbichler M, et al. Score for predicting in-hospital/30-day mortality for patients undergoing valve and valve/coronary artery bypass graft surgery. Ann Thorac Surg. 2013;95:1282–1290.

33. Wang C, Zhang GX, Lu FL, Li BL, Zou LJ, Han L, Xu Z. A local risk prediction model for prolonged ventilation after adult heart valve surgery in a Chinese single center. Eur Heart J. 2012;33:822–828,828a,828b.

34. Streyberg EW, Vickers AJ, Cook NR, Gerds T, Gonen M, Obuchowski N, Pencina MJ, Kattan MW. Assessing the performance of prediction models: a framework for developing and evaluating novel measures. Epidemiology. 2010;21:128–138.

35. Collins GS, Reitsma JB, Altman DG, Moons KG. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. BMJ. 2015;350:g7594.

36. Streyberg EW, Moons KG, van der Wijden P, Hayden JA, Perel P, Schroter S, Riley RD, Hemingway H, Altman DG; Group P. Prognosis research strategy (progress) 3: prognostic model research. PLoS Med. 2013;10:e1001381.

37. Streyberg EW. Clinical Prediction Models: A Practical Approach to Development, Validation, and Updating. New York, NY: Springer; 2009.

38. Celermajer DS, Chow CK, Marijon E, Anstey NM, Woo KS. Cardiovascular disease in the developing world: prevalences, patterns, and the potential of early disease detection. J Am Coll Cardiol. 2012;60:1207–1216.

39. Baumgartner H, Falk V, Bax JJ, De Bonis M, Hamm C, Holm PJ, Iung B, Lancellotti P, Lansac E, Munoz DR, Rosenhek R, Sjogren J, Mas PT, Vahanian A, Wolter T, Wendler O, Windecker S, Zamorano JL. 2017 ESC/EACTS guidelines for the management of valvular heart disease. Rev Esp Cardiol (Engl Ed). 2018;71:110.

40. Aggarwal SK, Kasula S, Edupuganti MM, Raina S, Shahiels F, Almomani A, Payne JJ, Pothineni NV, Uretsky BF, Hakeem A. Clinical decision making for the hemodynamic “Gray Zone” (PFR 0.75-0.80) and long-term outcomes. J Invasive Cardiol. 2017;29:371–376.
SUPPLEMENTAL MATERIAL
Table S1. Search strategy used to identify all CVD/Cerebrovascular and VHD-specific CPMs.

All CPM Search Terms	VHD CPM Search Terms
((predict$ adj1 model$) or (predict$ adj1 instrument$) or (predict$ adj1 score$) or (predict$ adj1 index)).mp.	heart valve prosthe$.mp. or exp cardiovascular surg$.mp. or exp valve replacement/ or exp valve intervention/ or exp aortic valve/ or exp mitral valve/ or exp tricuspid valve/ or exp pulmonic valve/
((prognos$ adj1 model$) or (prognos$ adj1 instrument$) or (prognos$ adj1 score$) or (prognos$ adj1 index)).mp.	
((risk adj1 model$) or (risk adj1 instrument$) or (risk adj1 score$) or (risk adj1 index) or (risk assessment model or risk assessment instrument or risk assessment score)).mp.	
atrial fib$.mp. or exp Atrial Fibrillation/ or exp coronary artery disease/ or exp coronary disease/ or exp myocardial infarction/ or Myocardial infarct$.mp. or exp Heart Failure, Congestive/ or exp myocardial ischemia/ or exp cardiovascular diseases/ or exp Cerebrovascular Accident/ or *heart failure/ or *stroke/ or *acute coronary syndrome/	
limit 6 to yr="1990 -Current" **Where current = May 15, 2012 publicationsstärkt**	
(201205$ or 201206$ or 201207$ or 201208$ or 201209$ or 201210$ or 201211$ or 201212$ or 2013$ or 2014$ or 201501$ or 201502$ or 201503$).ed.	
Table S2. De Novo Model Unabridged Overview.

Author, Model Name	Year	Valve	Specific Intervention	Standardized Type of Intervention	Outcom e	Cente rs	Samp le Size	Numb er of Event s	EP V	Age	Continent	Model Method	C- statistic	Calibrati on Measure	Externally Validated?
Edwards¹, STS (original) -- Isolated Valve	2001	Aortic/Mitral Surgery	AVR or MVR	30 Day Operative Mortality	Multi-center	4907	2291	121	63.7	North America	Logistic regression	0.766	HL statistic, Calibration plot	Yes	
Nowicki², NNE Aortic and Mitral Models	2004	Aortic Surgery	AVR +/- CABG	In-Hospital Mortality	Multi-center	5793	360	40	69.5	North America	Logistic regression	0.75	HL statistic	Yes	
		Mitral Surgery	MVR or MVRRepair	In-Hospital Mortality	Multi-center	3150	296	30	66.7	North America	Logistic regression	0.79	HL statistic	Yes	
Kuduvalli³, NWQIP	2007	Aortic Surgery	AVR +/- CABG	In-Hospital Mortality	Multi-center	4550	207	21	69	Europe	Logistic regression	0.78	HL statistic	Yes	
Cruz-Gonzalez⁴, PMV Score	2009	Mitral Percutaneous	Percutaneous Mitral Valvuoplast y	Procedural Success	Single center	800	544	91	54.9	North America	Logistic regression	NR	HL statistic	Yes	
Monin⁵	2009	Aortic Stenosis Natural History	None	Composi te (Non-MACE)	Single center	107	62	9	72	Europe	Logistic regression	0.90	HL statistic	Yes	
O’Brien⁶, STS (new) -- Composite AEs	2009	Aortic/Mitral Surgery	AVR or MVR or MVRRepair	Composi te (Non-MACE)	Multi-center	1097	20074	574	NR	North America	Logistic regression	0.721	None	Yes	
O’Brien⁶, STS (new) -- DSWI	2009	Aortic/Mitral Surgery	AVR or MVR or MVRRepair	DSWI	Multi-center	1097	307	26	NR	North America	Logistic regression	0.704	None	Yes	
Author, Model Name	Year	Valve	Standardized Type of Intervention	Specific Intervention	Outcome	Centers	Sample Size	Number of Events	EPV	Age	Continent	Model Method	C-statistic	Calibration Measure	Externally Validated?
-------------------	------	-------	-----------------------------------	-----------------------	---------	---------	-------------	-----------------	-----	-----	------------	----------------	-------------	---------------------	----------------------
O’Brien⁶, STS (new) -- Mortality	2009	Aortic/Mitral	Surgery	AVR or MVR or MVRRepair	30 Day Mortality	Multi-center	1097 59	3706	100	NR	North America	Logistic regression	0.805	None	Yes
O’Brien⁶, STS (new) -- Prolonged LOS	2009	Aortic/Mitral	Surgery	AVR or MVR or MVRRepair	Prolonged LOS	Multi-center	1097 59	9718	270	NR	North America	Logistic regression	0.77	None	Yes
O’Brien⁶, STS (new) -- Prolonged Ventilation	2009	Aortic/Mitral	Surgery	AVR or MVR or MVRRepair	Prolonged Ventilation	Multi-center	1097 59	12892	331	NR	North America	Logistic regression	0.77	None	Yes
O’Brien⁶, STS (new) -- Renal Failure	2009	Aortic/Mitral	Surgery	AVR or MVR or MVRRepair	Renal Failure	Multi-center	1070 60	4673	173	NR	North America	Logistic regression	0.782	None	Yes
O’Brien⁶, STS (new) -- Reoperation	2009	Aortic/Mitral	Surgery	AVR or MVR or MVRRepair	Reoperation	Multi-center	1097 59	9164	305	NR	North America	Logistic regression	0.643	None	Yes
O’Brien⁶, STS (new) -- Short LOS	2009	Aortic/Mitral	Surgery	AVR or MVR or MVRRepair	Prolonged LOS	Multi-center	1097 59	41214	1178	NR	North America	Logistic regression	0.738	None	No
O’Brien⁶, STS (new) -- Stroke	2009	Aortic/Mitral	Surgery	AVR or MVR or MVRRepair	Stroke	Multi-center	1097 59	1751	92	NR	North America	Logistic regression	0.694	None	Yes
Guaragna⁷, GuaragnaSCORE	2010	Aortic/Mitral	Surgery	Isolated Cardiac Valve Surgery +/- CABG	In-Hospital Mortality	Single center	699	128	16	55.5	South America	Logistic regression, Score	0.82	HL statistic, Calibration plot	Yes
Guo⁸	2010	Aortic	Surgery	AVR	In-Hospital Mortality	Single center	1087	45	6	60.24	Asia	Logistic regression	NR	HL statistic	No
Mitral	2010	Surgery	MVR	In-Hospital Mortality	Single center	1752	79	16	50.89	Asia	Logistic regression	NR	HL statistic	No	
Elmariah⁹, CRRAC the AV Score	2011	Aortic	Percutaneous	Balloon Aortic Valvuloplasty	30 Day Mortality	Single center	281	36	9	83	North America	Cox regression, Score	0.754	HL statistic	No
Author, Model Name	Year	Valve	Standardized Type of Intervention	Specific Intervention	Outcome	Centers	Sample Size	Number of Events	EP V	Age	Continen t	Model Method	C-statistic	Calibration Measure	Externally Validated?
-------------------	------	-------	----------------------------------	-----------------------	---------	---------	-------------	-----------------	------	-----	------------	--------------	-------------	---------------------	---------------------
Bouleti10	2012	Mitral	Percutaneous Mitral Commissurotomy	Percutaneous Mitral Commissurotomy	Composi (MACE)	Single center	609	309	77	49	Europe	Cox regression, Score	0.74	Calibration plot	No
Cioffi11	2012	Aortic Stenosis	Natural History	None	Composi (MACE)	Multi-center	1566	550	79	67	Europe	Cox regression, Score	NR	None	No
Holme12, SEAS Score	2013	Aortic Stenosis	Natural History	None	5 Year Mortality	Multi-center	772	78	11	67.7	Europe	Cox regression	0.722	HL statistic, Calibration plot, Brier score	No
Köttting13, German Aortic Valve Score	2013	Aortic	Percutaneous	AVR or TAVR	In-Hospital Mortality	Multi-center	1114	416	28	NR	Europe	Logistic regression, Score	0.808	HL statistic	Yes
Arnold14, 6 Month and 1 Year Models	2014	Aortic Stenosis	Percutaneous	TAVR	Composi (Non-MACE)	Multi-center	2137	704	70	84	North America, Europe	Logistic regression	0.66	HL statistics, Calibration plot	Yes
	2014	Aortic Stenosis	Percutaneous	TAVR	Composi (Non-MACE)	Multi-center	2130	1073	134	84	North America, Europe	Logistic regression	0.66	HL statistics, Calibration plot	Yes
Capodanno15, OBSERVANT T Score	2014	Aortic Stenosis	Percutaneous	AVR or TAVR	30 Day Mortality	Multi-center	1256	77	11	81.9	Europe	Logistic regression, Score	0.73	HL statistic, Calibration plot, Brier score	Yes
D'Ascenzo16, Survival Post-TAVI (STT) - 30 Days and 1 Year Models	2014	Aortic	Percutaneous	TAVR	30 Day Mortality	Multi-center	1064	60	20	81.6	Europe	Logistic regression	0.66	HL statistic	Yes
	2014	Aortic	Percutaneous	TAVR	1 Year Mortality	Multi-center	1064	165	55	81.6	Europe	Logistic regression	0.68	HL statistic	Yes
Author, Model Name	Year	Valve	Standardized Type of Intervention	Specific Intervention	Outcome	Centers	Sample Size	Number of Events	EP V	Age	Continent	Model Method	C-statistic	Calibrated Measure	Externally Validated?
--------------------	------	-------	-----------------------------------	-----------------------	---------	---------	-------------	-----------------	------	-----	-----------	--------------	-------------	--------------------	----------------------
Jung17	2014	Aortic	Percutaneous	TAVR	30 Day Mortality	Multi-center	2552	253	28	82.9	Europe	Logistic regression, Score	0.67	HL statistic, Calibration in the large, Calibration plot	No
Debonnaire18, TAVI2-SCORE	2015	Aortic	Percutaneous	TAVR	1 Year Mortality	Multi-center	509	80	10	82	Europe	Cox regression, Score	0.715	HL statistic, Calibration in the large	Yes
Edwards19	2016	Aortic	Percutaneous	TAVR	In-Hospital Mortality	Multi-center	1367	730	104	82.1	North America	Logistic regression	0.67	HL statistic, Calibration in the large, Calibration plot	Yes

Isolated or Multiple Valve (± CABG)

Author, Model Name	Year	Valve	Standardized Type of Intervention	Specific Intervention	Outcome	Centers	Sample Size	Number of Events	EP V	Age	Continent	Model Method	C-statistic	Calibrated Measure	Externally Validated?	
Koplan20	2003	All	Surgery	Cardiac Valve Surgery	Pacemaker Placement	Single center	3116	168	24	65	North America	Logistic regression, Score	NR	None	No	
Ambler21, Ambler	2005	Aortic, Mitral	Surgery	AVR and/or MVR	In-Hospital Mortality	Multi-center	1667	1067	76	64.8	Europe	Logistic regression, Score	0.77	HL statistic, Calibration in plot	Yes	
Xu22	2006	All	Surgery	Valve Surgery	Prolonged LOS	Single center	507	75	11	55.5	Asia	Logistic regression	0.81	Calibration in table form	No	
Hannan23	2007	Aortic, Mitral	Surgery	Isolated Valve Surgery	In-Hospital Mortality	Multi-center	1070	472	43	NR	North America	Logistic regression, Score	0.794	HL statistic, Calibration in plot	Yes	
Author, Model Name	Year	Valve	Standardized Type of Intervention	Specific Intervention	Outcome	Centres	Sample Size	Number of Events	EP	Age	Continent	Model Method	C-statistic	Calibration Measure	Externally Validated?	
-------------------	------	-------	-----------------------------------	-----------------------	---------	---------	------------	----------------	-----	-----	------------	--------------	------------	---------------------	----------------------	
Xu\(^{24}\), FUWAI Score	2007	All	Surgery	Valve Surgery +/- CABG	Prolonged LOS	Single center	2193	345	27	53.29	Asia	Logistic regression, Score	0.76	HL statistic, Calibration plot	Yes	
Shi\(^{25}\)	2010	Aortic, Mitral	Surgery	AVR and/or MVR	In-Hospital Mortality	Single center	158	8	1	NR	Asia	Logistic regression	0.7358	None	No	
Ariyaratne\(^{26}\), Aus-AVR Score	2011	Aortic, Mitral	Surgery	AVR +/- CABG +/- MVR	30 Day Mortality	Multi-center	3544	147	16	NR	Australia	Logistic regression, Score	0.78	HL statistic, Calibration plot	Yes	
Nashef\(^{27}\), EuroSCORE II	2012	All	Surgery	Major Cardiac Surgery	In-Hospital Mortality	Multi-center	1682	8	656	36	64.6	International	Logistic regression	0.8095	None	Yes
Hannan\(^{28}\), NY Operative Mortality Risk Score	2013	Aortic, Mitral	Surgery	Isolated Valve Surgery	30 Day Mortality	Multi-center	1345	5	542	49	NR	North America	Logistic regression, Score	0.781	HL statistic	Yes
Wang\(^{29}\)	2013	All	Surgery	Valve Surgery	Prolonged Ventilation	Single center	2400	303	25	NR	Asia	Logistic regression	0.789	HL statistic	No	
Zheng\(^{30}\)	2013	Aortic, Mitral	Surgery	AV and/or MV Surgery	In-Hospital Mortality	Multi-center	6677	130	26	48	Asia	Logistic regression, Score	0.76	HL statistic, Chi-square statistic, Calibration plot	No	

Multiple Valve

Author, Model Name	Year	Valve	Standardized Type of Intervention	Specific Intervention	Outcome	Centres	Sample Size	Number of Events	EP	Age	Continent	Model Method	C-statistic	Calibration Measure	Externally Validated?	
Guo\(^{8}\)	2010	Aortic, Mitral	Surgery	AVR + MVR	In-Hospital Mortality	Single center	818	55	14	58.4	Asia	Logistic regression	NR	HL statistic	No	
Rankin\(^{31}\), AM Preop	2013	Aortic, Mitral	Surgery	AVR + MVR	30 Day Mortality	Multi-center	2703	5	2541	116	70	North America	Logistic regression	NR	Calibration plot	Yes
Author, Model Name	Year	Valve	Standardized Type of Intervention	Specific Intervention	Outcome	Centers	Sample Size	Number of Events	EPV	Age	Continent	Model Method	C-statistic Measure	Categorically Validated?		
--------------------	------	-------	-----------------------------------	-----------------------	---------	---------	------------	----------------	------	-----	-----------	----------------	-----------------------	-------------------------		
Rankin³¹, MT Preop	2013	Mitral, Tricuspid	Surgery	MVR + TVR	30 Day Mortality	Multi-center	1868 6	1420	71	70	North America	Logistic regression	NR	Calibration plot	Yes	
Rankin³¹, AMT Preop	2013	Aortic, Mitral, Tricuspid	Surgery	AVR + MVR + TVR	30 Day Mortality	Multi-center	4510	591	74	71	North America	Logistic regression	NR	Calibration plot	Yes	
Rankin³¹, AM Preop + Intraop	2013	Aortic, Mitral	Surgery	AVR + MVR	30 Day Mortality	Multi-center	2703 5	2541	110	70	North America	Logistic regression	NR	Calibration plot	Yes	
Rankin³¹, MT Preop + Intraop	2013	Mitral, Tricuspid	Surgery	MVR + TVR	30 Day Mortality	Multi-center	1868 6	1420	71	70	North America	Logistic regression	NR	Calibration plot	Yes	
Rankin³¹, AMT Preop + Intraop	2013	Aortic, Mitral, Tricuspid	Surgery	AVR + MVR + TVR	30 Day Mortality	Multi-center	4510	591	26	71	North America	Logistic regression	NR	Calibration plot	Yes	

* ‘Isolated Valve’ indicates a single valve procedure; ‘Multiple Valve’ indicates intervention to > 1 valve; AVR indicates aortic valve replacement; MVR, mitral valve replacement; HL, Hosmer-Lemeshow; CABG, coronary artery bypass grafting; NR, not reported; MACE, major adverse cardiovascular events; AEs, adverse events; DSWI, deep sternal wound infections; LOS, length of stay; TAVR, transcatheter aortic valve replacement; TVR, tricuspid valve replacement.
Table S3. External Validations Overview.

De novo	Validation	Author, Year	Index Condition	Outcome	Timeframe	Continent	Sample Size	Number of Events	C-statistic	Calibration Reported?	Change in Discrimination (%)
STS (original) –	Isolated Valve	Edwards, 2001¹	AVR or MVR	operative mortality	30 days	North America	25640	1231	0.773	Yes	2.631578947
Isolated Valve		Brown, 2009²	AVR	mortality	hospitalization	North America	108,687	3197	NA	Yes	NA
NNE Aortic²		Jin, 2005³	AVR	operative mortality	until discharge	North America	3324	142	0.75	Yes	0
		Ariyaratne, 2011²	AVR	early postop mortality	30 days	Australia	3544	147	0.77	Yes	8
		Wang, 2013³⁴	valve surgery	in-hospital mortality	until discharge	Asia	12412	260	NA	Yes	-17.6
NNE Mitral²		Jin, 2005³	MVR	operative mortality	until discharge	North America	1596	95	0.81	Yes	6.896551724
NWQIP³		Kuduvalli, 2007³	AVR +/-	in-hospital mortality	hospitalization	Europe	816	33	0.78	Yes	0
		Ariyaratne, 2011²	AVR +/-								
			CABG	in-hospital mortality or mortality within 30 days of surgery	30 days	Australia	3306	120	0.77	Yes	3.571428571
PMV Score⁴		Cruz-Gonzalez, 2009⁴	percutaneous mitral valvuloplasty	PMV success	1 year	North America	285	213	NR	No	NA
	Monin, 2009⁵	Monin, 2009³	valve surgery	morbidity/mortality	mean 21 months	Europe	107	56	0.89	Yes	-2.5
STS (new) –	Composite AEs³	Watanabe, 2013³⁵	TAVR	composite safety endpoint	30 days	Europe	453	94	0.59	No	-59.2760181
STS (new) –	DSWI⁶	Wang, 2016³⁶	AVR +/-	composite morbidity	30 days	Australia	450	152	0.627	No	42.53393665
		Wang, 2017³⁷	MVR or MVRepair	composite morbidity	30 days	Australia	407	77	0.732	No	4.977375566
		Wang, 2016³⁶	AVR +/-	DSWI	30 days	Australia	450	6	0.631	No	35.78431373
		Wang, 2017³⁷	MVR or MVRepair	mediastinitis	30 days	Australia	407	4	0.721	No	8.333333333
De novo	Validation										
---------	------------										
Model	**Author, Year**	**Index Condition**	**Outcome**	**Timeframe**	**Continent**	**Sample Size**	**Number of Events**	**C-statistic**	**Calibration Reported?**	**Change in Discrimination (%)**	
	Piazza, 2010	TAVR	periprocedural mortality	30 days	Europe	168	19	0.69	Yes	37.70491803	
	Basraon, 2011	AVR	perioperative mortality	30 days	North America	537	32	0.73	Yes	24.59016393	
	Zhang, 2011	valve surgery	prolonged postop ICU stay	mean LOS 79.44 +/- 59.76 hrs	Asia	1333	187	0.70	Yes	34.42622951	
	Durand, 2013	TAVR	mortality	30 days	Europe	250	19	0.58	Yes	-73.7704918	
	Durand, 2013	TAVR (transapical access)	mortality	30 days	Europe	60	7	0.55	Yes	83.60655738	
	Durand, 2013	TAVR (transfemoral access)	mortality	30 days	Europe	190	12	0.66	Yes	47.54098361	
	Haensig, 2013	TA-AVI	mortality	30 days	Europe	360	38	0.64	Yes	54.09836066	
	Haensig, 2013	TA-AVI	in-hospital mortality	until discharge	Europe	360	41	0.65	Yes	50.81967213	
	Laurent, 2013	AVR	operative mortality	30 days	Europe	314	18	0.77	Yes	11.47540984	
	Wang, 2013	valve surgery	in-hospital mortality	until discharge	Asia	12412	260	0.735	Yes	22.95081967	
	Watanabe, 2013	TAVR	mortality	30 days	Europe	453	57	0.6	Yes	67.21311475	
	Watanabe, 2013	TAVR (transfemoral)	mortality	30 days	Europe	249	28	0.6	Yes	67.21311475	
	Watanabe, 2013	TAVR (transfemoral approach, without early experience)	mortality	30 days	Europe	NR	NR	0.65	Yes	50.81967213	
	Watanabe, 2013	TAVR (transapical/transaortic)	mortality	30 days	Europe	330	27	0.61	Yes	63.93442623	
	Barili, 2014	MV surgery	in-hospital mortality	until discharge	Europe	1239	NR	0.82	Yes	4.918032787	
	Barili, 2014	MV surgery +/- CABG	in-hospital mortality	until discharge	Europe	2202	NR	0.76	Yes	14.75409836	
De novo	Validation										
---------	------------										
Author, Year	Model	Condition	Outcome	Timeframe	Continent	Sample Size	Number of Events	C-statistic	Calibration Reported?	Change in Discrimination (%)	
Beohar, 2014	TAVR	mortality	30 days	North America	2552	165	0.6	Yes	67.21311475		
Chan, 2014	MVR or MVRepair	perioperative mortality	30 days	North America	1154	11	0.74	Yes	21.31147541		
Osnabrugge, 2014	AVR	in-hospital mortality	until discharge	North America	4107	119	0.74	Yes	21.31147541		
Osnabrugge, 2014	AVR +/- CABG	in-hospital mortality	until discharge	North America	3480	143	0.74	Yes	21.31147541		
Osnabrugge, 2014	MVRepair	in-hospital mortality	until discharge	North America	1059	13	0.86	Yes	18.03278689		
Osnabrugge, 2014	MVR	in-hospital mortality	until discharge	North America	1071	59	0.79	Yes	4.918032787		
Rabbani, 2014	valve replacement surgery	mortality	30 days	Asia	576	28	0.812	Yes	2.295081967		
Wendt, 2014	AVR or TAVR	mortality	30 days	Europe	1512	95	0.708	Yes	31.80327869		
Wang, 2014	isolated or multiple valve surgery	in-hospital mortality	until discharge	Asia	9846	176	0.712	Yes	30.49180328		
Adamo, 2015	percutaneous MVRepair	mortality	30 days	Europe	304	10	0.62	Yes	-60.6557377		
Debonnaire, 2015	TAVR	all-cause mortality	1 year	Europe	471	80	0.5	Yes	-100		
Holinski, 2015	repeat AVR	mortality	30 days	Europe	78	8	0.64	Yes	54.09836066		
Silaschi, 2015	TAVR (transfemoral or transapical)	mortality	30 days	Europe	457	44	0.57	Yes	77.04918033		
Silva, 2015	TAVR	mortality	30 days	South America	418	38	0.54	Yes	-86.8852459		
Sinning, 2015	TAVR	all-cause mortality	1 year	Europe	310	80	0.685	No	-39.3442623		
Tralhao, 2015	AVR	operative mortality	30 days	Europe	106	6	0.702	Yes	-33.7704918		
Vassileva, 2015	repeat AVR after prior CABG	operative mortality	median LOS 6 days (IQR 5-9)	North America	6534	236	NR	Yes	NA		
De novo	Validation										
---------	------------										
Model	**Author, Year**	**Index Condition**	**Outcome**	**Timeframe**	**Continent**	**Sample Size**	**Number of Events**	**C-statistic**	**Calibration Reported?**	**Change in Discrimination (%)**	
Wang, 2015	AVR	operative mortality	30 days	Australia	620	18	0.716	Yes	-	29.18032787	
Wang, 2015	AVR	post-operative complications	14 days	Australia	620	115	0.666	Yes	-	45.57377049	
Barili, 2016	AVR	mortality	30 days	Europe	1444	NR	0.79	Yes	-	4.918032787	
Collas, 2016	TAVR	mortality	1 year	Europe	225	38	NR	No	NA		
Halkin, 2016	TAVR	all-cause mortality	30 days	Asia	1327	45	0.68	Yes	-	40.98360656	
Kortlandt, 2016	percutaneous MVRepair	periprocedural mortality	30 days	Europe	136	5	0.65	Yes	-	50.81967213	
Peguero, 2016	cardiac surgery	operative mortality	30 days	North America	2263	48	0.77	Yes	-	11.47540984	
Rosa, 2016	TAVR	in-hospital mortality	until discharge	South America	59	6	NR	Yes	NA		
Rosa, 2016	TAVR	30-day mortality	30 days	South America	59	8	0.81	Yes	-	1.639344262	
Wang, 2016	AVR +/- CABG	operative mortality	30 days	Australia	450	29	0.699	Yes	-	34.75409836	
Wang, 2016	valve surgery	in-hospital mortality	until discharge	Asia	12412	260	0.735	Yes	-	22.95081967	
Yamaoka, 2016	AVR +/- CABG	operative mortality	30 days	Asia	406	14	0.781	Yes	-	7.868852459	
Zbroński, 2016	TAVR	mortality	30 days	Europe	156	15	0.55	Yes	-	83.60655738	
Balan, 2017	TAVR	mortality	30 days	North America	426	18	0.674	No	-	42.95081967	
Balan, 2017	SAVR	mortality	30 days	North America	297	14	0.791	No	-	4.590163934	
Balan, 2017	TAVR (transfemoral)	mortality	30 days	North America	NR	NR	0.789	No	-	5.245901639	
Balan, 2017	TAVR (transapical)	mortality	30 days	North America	NR	NR	0.583	No	-	72.78688525	
Schmid, 2017	TAVR	all-cause mortality	1 year	Europe	74	10	0.734	No	-	23.27868852	
Schmid, 2017	TAVR	all-cause mortality	2 years	Europe	74	18	0.646	No	-	52.13114754	
Wang, 2017	MVR or MVRepair	operative mortality	30 days	Australia	407	10	0.850	Yes	-	14.75409836	
Model	Author, Year	Index Condition	Outcome	Timeframe	Continent	Sample Size	Number of Events	C-statistic	Calibration Reported?	Change in Discrimination (%)	
-------------------------------	--------------	----------------	----------	-----------	-----------	-------------	-----------------	-------------	----------------------	-------------------------------	
STS (new)– Prolonged LOS⁶	Wang, 2016³⁶	AVR +/- CABG	LOS > 14 days	14 days	Australia	450	86	0.638	No	-27.40740741	
	Wang, 2017³⁷	MVR or MVRepair	prolonged LOS	14 days	Australia	407	56	0.696	No	-27.40740741	
STS (new)– Prolonged Ventilation⁶	Wang, 2016³⁶	AVR/CABG	ventilation > 24 hours	30 days	Australia	450	124	0.642	No	-47.40740741	
	Wang, 2017³⁷	MVR or MVRepair	ventilation > 24 hours	30 days	Australia	407	54	0.789	No	7.037037037	
STS (new)– Renal Failure⁶	Peguero, 2016⁶⁴	valve surgery +/- CABG	operative mortality	30 days	North America	2263	48	0.76	Yes	-7.80141844	
	Wang, 2016³⁶	AVR +/- CABG	renal failure	30 days	Australia	450	6	0.682	No	35.46999291	
	Wang, 2017³⁷	MVR or MVRepair	renal failure	30 days	Australia	407	12	0.828	No	16.31205674	
STS (new)– Reoperation⁶	Wang, 2016³⁶	AVR/CABG	reoperation	30 days	Australia	450	54	0.612	No	21.6783168	
	Wang, 2017³⁷	MVR or MVRepair	return to theater	30 days	Australia	407	33	0.668	No	17.48251748	
STS (new)– Stroke⁶	Peguero, 2016⁶⁴	valve surgery +/- CABG	operative mortality	30 days	North America	2263	48	0.69	Yes	-2.06185567	
	Wang, 2016³⁶	AVR/CABG	stroke	30 days	Australia	450	15	0.642	No	-26.80412371	
	Wang, 2017³⁷	MVR or MVRepair	stroke	30 days	Australia	407	7	0.665	No	-14.9485361	
GuaragnaSCORE⁷	Sa, 2012⁷¹	valve surgery +/- CABG	perioperative mortality	until discharge	South America	491	74	0.781	Yes	-12.1875	
	Silva, 2015⁵⁴	TAVR	mortality	30 days	South America	418	38	0.52	Yes	-93.75	
German Aortic Valve Score¹³	Sinning, 2015⁵⁵	TAVR	all-cause mortality	1 year	Europe	310	80	0.661	No	47.72727273	
	Sinning, 2015⁵⁵	TAVR	all-cause mortality or rehospitalization	1 year	Europe	310	132	0.618	No	61.68831169	
	Halkin, 2016⁶²	TAVR	all-cause mortality	30 days	Asia	1327	45	0.52	No	93.50649351	
	Kalendar, 2017⁷²	AVR	mortality	until discharge	Asia	35	6	0.647	Yes	52.27272727	
	Martin, 2017⁷³	TAVR	mortality	30 days	Europe	6676	360	0.59	Yes	70.77922078	
De novo	Validation										
---------	------------										
Model	**Author, Year**	**Index Condition**	**Outcome**	**Timeframe**	**Continent**	**Sample Size**	**Number of Events**	**C-statistic**	**Calibration Reported?**	**Change in Discrimination (%)**	
De novo	Schmid, 2017⁷⁰	TAVR	all-cause mortality	1 year	Europe	74	10	0.703	No	-34.09090909	
De novo	Schmid, 2017⁷⁰	TAVR	all-cause mortality	2 years	Europe	74	18	0.554	No	-82.46753247	
Arnold – 6 Month Model¹⁴	Arnold, 2016⁷⁴	TAVR	poor outcome	6 months	North America	2830	882	0.646	Yes	-8.75	
Arnold – 1 Year Model¹⁴	Arnold, 2016⁷⁴	TAVR	poor outcome	1 year	North America	2325	1181	0.653	Yes	-4.375	
OBSERVANT Score¹⁵	Collas, 2016⁶¹	TAVR	mortality	1 year	Europe	225	38	NR	No	NA	
	Halkin, 2016⁶²	TAVR	all-cause mortality	30 days	Asia	1327	45	0.63	No	-43.47826087	
	Zbróński, 2016⁶⁸	TAVR	mortality	30 days	Europe	156	15	0.597	Yes	-57.82608696	
	Martin, 2017⁷³	TAVR	mortality	30 days	Europe	6676	360	0.57	Yes	69.56521739	
Survival Post-TAVI (STT) – 30 days¹⁶	D’Ascenzo, 2014¹⁶	TAVR	mortality	30 days	Europe	180	13	0.66	Yes	0	
	Collas, 2016⁶¹	TAVR	mortality	1 year	Europe	225	38	NR	No	NA	
Survival Post-TAVI (STT) – 1 year¹⁶	D’Ascenzo, 2014¹⁶	TAVR	mortality	1 year	Europe	180	63	0.67	Yes	5.555555556	
TAVI2-SCORE¹⁸	Collas, 2016⁶¹	TAVR	mortality	1 year	Europe	225	38	NR	No	NA	
Edwards, 2016¹⁹	Edwards, 2016¹⁹	TAVR	in-hospital mortality	until discharge	North America	6868	300	0.66	Yes	-5.882352941	

Isolated or Multiple Valve

Ambler²¹	De Bacco, 2008⁷⁵	Implantation of bovine pericardial bioprosthesis	in-hospital mortality	until discharge	South America	703	101	0.729	Yes	15.18518519
	Dewey, 2008⁷⁶	AVR	mortality	mean 4.2 +/- 2.7 years	North America	97	39	NR	Yes	NA
	Tran, 2010⁷⁷	AVR	mortality	1 year	North America	394	23	0.799	Yes	10.74074074
	Laurent, 2013⁸³	AVR	operative mortality	30 days	Europe	314	18	0.70	Yes	25.92592593
	Wang, 2013³⁴	Valve surgery	in-hospital mortality	until discharge	Asia	3479	112	0.677	Yes	34.44444444
Model	Author, Year	Index Condition	Outcome	Timeframe	Continent	Sample Size	Number of Events	C-statistic	Calibration Reported?	Change in Discrimination (%)	
	Silaschi, 201553	TAVR (transfemoral or transapical)	mortality	30 days	Europe	457	44	0.52	Yes	92.59259259	
	Silva, 201554	TAVR	mortality	30 days	South America	418	38	0.57	Yes	74.07407407	
	Wang, 201656	valve surgery	in-hospital mortality	until discharge	Asia	12412	260	0.674	Yes	35.55555556	
	Yamaoka, 201657	AVR +/- CABG	operative mortality	30 days	Asia	406	14	0.709	Yes	22.59259259	
	Zbroński, 201658	TAVR	mortality	30 days	Europe	156	15	0.54	Yes	85.18518519	
	Hannan, 200723	isolated valve surgery	in-hospital mortality	North America	9662	504	NR	No	NA		
	van Gameren, 200878	isolated valve surgery	hospital mortality	hospitalization period	Europe	904	25	0.86	Yes	22.44897959	
	Wang, 201334	valve surgery +/- CABG	in-hospital mortality	hospitalization period	Asia	3479	112	0.682	Yes	-38.0952381	
	FUWAI Score24	Zhang, 201140	valve surgery	prolonged postop ICU stay	mean LOS 79.44 +/- 59.76 hrs	Asia	1333	187	0.81	Yes	19.23076923
	Aus-AVR Score26	Ariyaratne, 201126	AVR	early postoperative mortality	30 days	Australia	3544	147	0.73	Yes	17.85714286
	Wang, 201558	AVR	operative mortality	30 days	Australia	620	18	0.716	Yes	22.85714286	
	Wang, 201559	AVR	post-operative complications	14 days	Australia	620	115	0.618	Yes	57.85714286	
	EuroSCORE II27	Barili, 201379	MV surgery	in-hospital mortality	until discharge	Europe	NR	NR	0.79	No	-6.300484653
	Barili, 201379	AV, MV, or TV surgery	in-hospital mortality	until discharge	Europe	NR	NR	0.8	No	-3.069466882	
	Carnero-Alcazar, 201380	cardiac surgery	post-operative complications	30 days	Europe	3798	215	0.85	Yes	13.08562197	
	Chalmers, 201381	AVR	in-hospital mortality	until discharge	Europe	814	19	0.69	Yes	38.61066236	
	Chalmers, 201381	AVR +/- CABG	in-hospital mortality	until discharge	Europe	517	23	0.74	Yes	22.4557351	
	Chalmers, 201381	MV surgery	in-hospital mortality	until discharge	Europe	340	5	0.87	Yes	19.54765751	
Model	Author, Year	Index Condition	Outcome	Timeframe	Continent	Sample Size	Number of Events	C-statistic	Calibration Reported?	Change in Discrimination (%)	
-------	--------------	----------------	---------	-----------	-----------	-------------	-----------------	-------------	----------------------	-------------------------------	
Durand, 2013	TAVR (all)	mortality	30 days	Europe	250	19	0.66	Yes	48.30371567		
Durand, 2013	TAVR (transapical)	mortality	30 days	Europe	60	7	0.52	Yes	93.53796446		
Durand, 2013	TAVR (transfemoral)	mortality	30 days	Europe	190	12	0.71	Yes	32.14862682		
Haensig, 2013	TA-AVI in-hospital mortality	until discharge	Europe	360	38	0.51	Yes	96.76898223			
Haensig, 2013	TA-AVI mortality	30 days	Europe	360	41	0.50	Yes	-100			
Howell, 2013	valve surgery +/- CABG in-hospital mortality	until discharge	Europe	933	90	0.67	Yes	-45.0726979			
Sedaghat, 2013	TAVR (transfemoral)	mortality	30 days	Europe	206	14	0.71	Yes	32.14862682		
Sedaghat, 2013	TAVR (transfemoral)	mortality	1 year	Europe	206	56	0.70	Yes	35.37964459		
Wang, 2013	valve surgery in-hospital mortality	until discharge	Asia	12412	260	0.693	Yes	37.64135703			
Watanabe, 2013	TAVR mortality	30 days	Europe	453	57	0.68	Yes	41.84168013			
Watanabe, 2013	TAVR (transfemoral)	mortality	30 days	Europe	249	28	0.74	Yes	22.45557351		
Watanabe, 2013	TAVR (transfemoral approach, without early experience)	mortality	30 days	Europe	NR	NR	0.75	Yes	19.22455574		
Watanabe, 2013	TAVR (transapical/transaortic)	mortality	30 days	Europe	330	27	0.61	Yes	64.45880452		
Zhang, 2013	isolated or multiple valve surgery in-hospital mortality	until discharge	Asia	3479	112	0.69	Yes	40.22617124			
Zhang, 2013	isolated valve surgery in-hospital mortality	until discharge	Asia	1106	26	0.792	Yes	5.654281099			
Zhang, 2013	multiple valve surgery in-hospital mortality	until discharge	Asia	2373	86	0.605	Yes	66.07431341			
Barili, 2014	isolated MV surgery in-hospital mortality	until discharge	Europe	1239	NR	0.81	Yes	0.161550889			
Model	Author, Year	Index Condition	Outcome	Timeframe	Continent	Sample Size	Number of Events	C-statistic	Calibration Reported?	Change in Discrimination (%)	
-------	--------------	----------------	---------	-----------	-----------	-------------	-----------------	-------------	------------------------	-----------------------------	
Barili, 2014⁴⁴	associated MV surgery	in-hospital mortality	until discharge	Europe	NR	NR	0.75	Yes	19.22455574		
Barili, 2014⁴⁴	MV surgery +/- CABG	in-hospital mortality	until discharge	Europe	NR	NR	0.74	Yes	22.45557351		
Barili, 2014⁸⁵	elective major cardiac surgery	in-hospital mortality	until discharge	Europe	12201	210	0.80	Yes	3.069466882		
Koszta, 2014⁸⁶	major cardiac surgery	mortality	30 days	Europe	2287	123	0.8177	Yes	2.649434572		
Osnabrugge, 2014⁸⁷	AVR	in-hospital mortality	until discharge	North America	4107	119	0.71	Yes	32.14862682		
Osnabrugge, 2014⁸⁷	AVR +/- CABG	in-hospital mortality	until discharge	North America	3480	143	0.72	Yes	28.91760905		
Osnabrugge, 2014⁸⁷	MVR	in-hospital mortality	until discharge	North America	1059	13	0.82	Yes	3.392568659		
Osnabrugge, 2014⁸⁷	MVR	in-hospital mortality	until discharge	North America	1071	59	0.78	Yes	9.531502423		
Rabbani, 2014⁴⁸	valve replacement surgery	mortality	30 days	Asia	576	28	0.816	Yes	2.100161551		
Rabbani, 2014⁴⁸	MVR	mortality	30 days	Asia	247	7	0.898	Yes	28.59450727		
Rabbani, 2014⁴⁸	AVR	mortality	30 days	Asia	137	4	0.747	Yes	20.19386107		
Rabbani, 2014⁴⁸	DVR	mortality	30 days	Asia	86	2	0.637	Yes	55.73505654		
Rabbani, 2014⁴⁸	MVR +/- CABG	mortality	30 days	Asia	57	11	0.773	Yes	11.79321486		
Rabbani, 2014⁴⁸	AVR +/- CABG	mortality	30 days	Asia	49	4	0.521	Yes	93.21486268		
Spiliopoulos, 2014⁸⁷	AVR +/- CABG	perioperative mortality	30 days	Europe	222	14	0.77	Yes	12.76252019		
Spiliopoulos, 2014⁸⁷	AVR +/- CABG	late mortality	beyond 30 days	Europe	202	21	0.718	Yes	-29.5638126		
Wang, 2014⁸⁸	valve surgery	in-hospital mortality	until discharge	Asia	11170	226	0.72	Yes	28.91760905		
Wang, 2014⁸⁸	isolated non-CABG surgery	in-hospital mortality	until discharge	Asia	3696	NR	0.76	Yes	15.99353796		
Wang, 2014⁸⁸	2 procedures	in-hospital mortality	until discharge	Asia	5006	NR	0.67	Yes	-45.0726979		
Model	Author, Year	Index Condition	Outcome	Timeframe	Continent	Sample Size	Number of Events	C-statistic	Calibration Reported?	Change in Discrimination (%)	
-------	--------------	----------------	---------	-----------	-----------	-------------	----------------	-------------	----------------------	-------------------------------	
Wang, 2014	3+ procedures	in-hospital mortality	until discharge	Asia	2468	NR	0.73	Yes	25.68659128		
Wendt, 2014	AVR or TAVR	mortality	30 days	Europe	1512	95	0.712	Yes	31.50242326		
Wendt, 2014	TAVR (transfemoral)	mortality	30 days	Europe	291	34	0.554	Yes	82.55250404		
Wendt, 2014	TAVR (transapical)	mortality	30 days	Europe	155	12	0.837	Yes	8.885298869		
Debonnaire, 2015	AVR or TAVR	mortality	30 days	Europe	1512	95	0.712	Yes	8.885298869		
Holinski, 2015	repeat AVR	mortality	30 days	Europe	1512	95	0.712	Yes	8.885298869		
Moscarelli, 2015	minimally invasive MV surgery +/- TVR	in-hospital mortality	until discharge	Europe	1609	28	0.846	Yes	11.79321486		
Poullis, 2015	AVR	in-hospital mortality	until discharge	Europe	814	NR	NR	Yes	NA		
Poullis, 2015	MVR	in-hospital mortality	until discharge	Europe	340	NR	NR	Yes	NA		
Poullis, 2015	AVR +/- CABG	in-hospital mortality	until discharge	Europe	517	NR	NR	Yes	NA		
Silaschi, 2015	TAVR (transfemoral or transapical)	mortality	30 days	Europe	457	44	0.54	Yes	87.07592892		
Silva, 2015	TAVR	mortality	30 days	South America	418	38	0.54	Yes	87.07592892		
Tralhao, 2015	AVR	operative mortality	30 days	Europe	106	6	0.792	Yes	5.654281099		
Wang, 2015	AVR	operative mortality	30 days	Australia	620	18	0.711	Yes	31.82552504		
Wang, 2015	AVR	morbidity/mortality	30 days	Australia	620	115	0.649	Yes	51.85783522		
Halkin, 2016	TAVR	all-cause mortality	30 days	Asia	1327	45	0.70	No	35.37964459		
Kortlandt, 2016	MVR	periprocedural mortality	30 days	Europe	136	5	0.54	Yes	87.07592892		
Patrat-Delon, 2016	cardiac surgery for acute	in-hospital mortality	until discharge	Europe	149	32	0.78	Yes	9.531502423		
De novo	Validation										
---------	-------------										
Model	**Author, Year**	**Index Condition**	**Outcome**	**Timeframe**	**Continent**	**Sample Size**	**Number of Events**	**C-statistic**	**Calibration Reported?**	**Change in Discrimination (%)**	
Rosa, 201665	infective endocarditis	TAVR	mortality	30 days	South America	59	8	0.77	Yes	-12.76252019	
Wang, 201636		AVR/CABG	operative mortality	30 days	Australia	450	29	0.669	Yes	-45.39579968	
Wang, 201666		valve surgery	in-hospital mortality	until discharge	Asia	12412	260	0.704	Yes	-34.08723748	
Yamaoka, 201667	AVR +/- CABG	operative mortality	30 days	Asia	406	14	0.704	Yes	-34.08723748		
Allyn, 201792	elective cardiac surgery with CPB	post-operative mortality	until discharge	Europe	6520	411	0.737	No	-23.42487884		
Bomberg, 201793	cardiac surgery	mortality	30 days	Europe	856	27	0.74	No	-22.45557351		
Bomberg, 201793	cardiac surgery	mortality	6 months	Europe	809	49	0.76	No	-15.99353796		
Bomberg, 201793	cardiac surgery	mortality	2 years	Europe	809	84	0.74	No	-22.45557351		
Kalender, 201772	AVR	mortality	until discharge	Asia	35	6	0.603	Yes	-66.72051696		
Kar, 201794	valve surgery +/- CABG	mortality	until discharge	Asia	911	52	0.76	Yes	-15.99353796		
Kar, 201794	valve surgery +/- CABG	mortality	until discharge	Asia	427	18	0.83	Yes	-6.62358643		
Mateos-Pañero, 201795	valve surgery +/- CABG	mortality	until discharge	Europe	866	53	0.861	Yes	16.63974152		
Mateos-Pañero, 201795	valve surgery +/- CABG	mortality	until discharge	Europe	427	NR	0.767	Yes	-13.73182553		
Mateos-Pañero, 201795	valve surgery +/- CABG	mortality	until discharge	Europe	119	NR	0.954	Yes	46.68820679		
Schmid, 201770	TAVR	all-cause mortality	1 year	Europe	74	10	0.669	No	-45.39579968		
Schmid, 201770	TAVR	all-cause mortality	2 years	Europe	74	18	0.552	No	-83.19870759		
Wang, 201737	MVR or MVRepair	operative mortality	30 days	Australia	407	10	0.817	Yes	2.423263328		
Model	Author, Year	Index Condition	Outcome	Timeframe	Continent	Sample Size	Number of Events	C-statistic	Calibration Reported?	Change in Discrimination (%)	
------------------------------	--------------	-----------------	----------------------------------	-----------	---------------	-------------	------------------	-------------	------------------------	-------------------------------	
NY Operative Mortality Risk Score²⁸	Hannan, 2013²⁸	isolated valve surgery	in-hospital/30-day mortality	30 days	North America	12354	NR	NR	No	NA	
	Jin, 2013⁶⁶	isolated valve surgery	in-hospital/30-day mortality	30 days	Europe	4021	105	0.777	Yes	1.423487544	
	Wang, 2016⁶⁶	isolated valve surgery	in-hospital mortality	hospitalization period	Asia	5152	84	0.683	Yes	34.87544484	
Multiple Valve											
AM Preop³¹	Rankin, 2013³¹	AV + MV surgery	operative mortality	30 days	North America	NR	NR	0.71	Yes	NA	
MT Preop³¹	Rankin, 2013³¹	AV + MV surgery	operative mortality	30 days	North America	NR	NR	0.722	Yes	NA	
AMT Preop³¹	Rankin, 2013³¹	AV + MV surgery	operative mortality	30 days	North America	NR	NR	0.702	Yes	NA	
AM Preop + Intraop³¹	Rankin, 2013³¹	AV + MV surgery	operative mortality	30 days	North America	NR	NR	0.714	Yes	NA	
MT Preop + Intraop³¹	Rankin, 2013³¹	AV + MV surgery	operative mortality	30 days	North America	NR	NR	0.727	Yes	NA	
AMT Preop + Intraop³¹	Rankin, 2013³¹	AV + MV surgery	operative mortality	30 days	North America	NR	NR	0.706	Yes	NA	

* ‘Isolated Valve’ indicates a single valve procedure; ‘Multiple Valve’ indicates intervention to > 1 valve; AVR indicates aortic valve surgery (repair or replacement); HL, Hosmer-Lemeshow; MVR, mitral valve surgery (repair or replacement); NR, not reported; NA, not applicable; CABG, coronary artery bypass grafting; TAVR, transcatheter aortic valve replacement; TA-AVI, transapical aortic valve implantation; AEs, adverse events; TVR, tricuspid valve surgery (repair or replacement); DVR, double valve surgery (repair or replacement); MACE, major adverse cardiovascular events.
Abstracts identified
(n = 1205)
All articles citing the VHD de novo models, excluding editorials, commentaries, book chapters, non-English text

Abstracts excluded
(n = 966)

Full-text articles assessed for eligibility
(n = 239)

Full-text articles excluded
(n = 171)
No validation performed; population <50% VHD

Articles included
(n = 68)
Supplemental References:

1. Edwards FH, Peterson ED, Coombs LP, DeLong ER, Jamieson WR, Shroyer ALW, Grover FL. Prediction of Operative Mortality after Valve Replacement Surgery. *J Am Coll Cardiol.* 2001;37:885-892.

2. Nowicki ER, Birkmeyer NJ, Weintraub RW, Leavitt BJ, Sanders JH, Dacey LJ, Clough RA, Quinn RD, Charlesworth DC, Sisto DA, Uhlig PN, Olmstead EM, O’Connor GT. Multiple Variable Prediction of in-Hospital Mortality Associated with Aortic and Mitral Valve Surgery in Northern New England. *Ann Thorac Surg.* 2004;77:1966-1977.

3. Kuduvalli M, Grayson AD, Au J, Grotte G, Bridgewater B, Fabri BM, North West Quality Improvement Programme in Cardiac Interventions. A Multi-Centre Additive and Logistic Risk Model for in-Hospital Mortality Following Aortic Valve Replacement. *Eur J Cardiothorac Surg.* 2007;31:607-613.

4. Cruz-Gonzalez I, Sanchez-Ledesma M, Sanchez PL, Martin-Moreiras J, Jneid H, Rengifo-Moreno P, Inglessis-Azuaje I, Maree AO, Palacios IF. Predicting Success and Long-Term Outcomes of Percutaneous Mitral Valvuloplasty: A Multifactorial Score. *Am J Med.* 2009;122:581.e511-589.

5. Monin JL, Lancellotti P, Monchi M, Lim P, Weiss E, Pierard L, Gueret P. Risk Score for Predicting Outcome in Patients with Asymptomatic Aortic Stenosis. *Circulation.* 2009;120:69-75.

6. O’Brien SM, Shahian DM, Filardo G, Ferraris VA, Haan CK, Rich JB, Normand SL, DeLong ER, Shewan CM, Dokholyan RS, Peterson ED, Edwards FH, Anderson RP, Society of Thoracic Surgeons Quality Measurement Task Force. The Society of Thoracic Surgeons 2008 Cardiac Surgery Risk Models: Part 2—Isolated Valve Surgery. *Ann Thorac Surg.* 2009;88:S23-S42.

7. Guaragna JC, Bodanese LC, Bueno FL, Goldani MA. Proposed Preoperative Risk Score for Patients Candidate to Cardiac Valve Surgery. *Arq Bras Cardiol.* 2010;94:541-548.

8. Guo LX, Meng X, Zhang ZG, Bai T. Analysis of Risk Factors for Valve Replacements in 5,128 Cases from a Single Heart Center in China. *Chin Med J (Engl).* 2010;123:3509-3514.

9. Elmariah S, Lubitz SA, Shah AM, Miller MA, Kaplish D, Kothari S, Moreno PR, Kini AS, Sharma SK. A Novel Clinical Prediction Rule for 30-Day Mortality Following Balloon Aortic Valvuloplasty: The Cracc the Av Score. *Catheter Cardiovasc Interv.* 2011;78:112-118.

10. Bouleti C, Iung B, Laouenan C, Hambert D, Brochet E, Messika-Zeitoun D, Detaint D, Garbarz E, Cormier B, Michel PL, Mentre F, Vahanian A. Late Results of Percutaneous Mitral Commissurotomy up to 20 Years: Development and Validation of a Risk Score Predicting Late Functional Results from a Series of 912 Patients. *Circulation.* 2012;125:2119-2127.

11. Cioffi G, Cramariuc D, Dalsgaard M, Davidsen ES, Egstrup K, Rossebo AB, de Simone G, Gerdts E. Left Atrial Systolic Force and Outcome in Asymptomatic Mild to Moderate Aortic Stenosis. *Echocardiography.* 2012;29:1038-1044.

12. Holme I, Pedersen TR, Boman K, Egstrup K, Gerdts E, Kesaniemi YA, Malbecq W, Ray S, Rossebo AB, Wachtell K, Willenheimer R, Gohlke-Barwolf C. A Risk Score for Predicting Mortality in Patients with Asymptomatic Mild to Moderate Aortic Stenosis. *Heart.* 2012;98:377-383.
13. Kotting J, Schiller W, Beckmann A, Schafer E, Dobler K, Hamm C, Veit C, Welz A. German Aortic Valve Score: A New Scoring System for Prediction of Mortality Related to Aortic Valve Procedures in Adults. *Eur J Cardiothorac Surg.* 2013;43:971-977.

14. Arnold SV, Reynolds MR, Lei Y, Magnuson EA, Kirtane AJ, Kodali SK, Zajarias A, Thourani VH, Green P, Rodes-Cabau J, Beohar N, Mack MJ, Leon MB, Cohen DJ, PARTNER Investigators. Predictors of Poor Outcomes after Transcatheter Aortic Valve Replacement: Results from the Partner (Placement of Aortic Transcatheter Valve) Trial. *Circulation.* 2014;129:2682-2690.

15. Capodanno D, Barbanti M, Tamburino C, D'Errigo P, Ranucci M, Santoro G, Santini F, Onorati F, Grossi C, Covello RD, Caprannizzo P, Rosato S, Seccareccia F, OBSERVANT Research Group. A Simple Risk Tool (the Observant Score) for Prediction of 30-Day Mortality after Transcatheter Aortic Valve Replacement. *Am J Cardiol.* 2014;113:1851-1858.

16. D'Ascenzo F, Capodanno D, Tarantini G, Nijhoff F, Ciua C, Rossi ML, Brambilla N, Barbanti M, Napodano M, Stella P, Saia F, Ferrante G, Tamburino C, Gasparetto V, Agostoni P, Marzocchi A, Presbitero P, Bedogni F, Cerrato E, Omede P, Conrotto F, Salizzoni S, Biondi Zoccai G, Marra S, Rinaldi M, Gaita F, D'Amico M, Moretti C. Usefulness and Validation of the Survival Post Tavi Score for Survival after Transcatheter Aortic Valve Implantation for Aortic Stenosis. *Am J Cardiol.* 2014;114:1867-1874.

17. Iung B, Laouenan C, Himbert D, Eltchaninoff H, Chevreul K, Donzeau-Gouge P, Fajadet J, Leprince J, Leguerrier A, Lievre M, Prat A, Teiger E, Laskar M, Vahanian A, Gilard M, FRANCE 2 Investigators. Predictive Factors of Early Mortality after Transcatheter Aortic Valve Implantation: Individual Risk Assessment Using a Simple score. *Heart.* 2014;100:1016-1023.

18. Debonnaire P, Fusini L, Wolterbeek R, Kamperidis V, van Rosendaal P, van der Kley F, Katsanos S, Joyce E, Tamborini G, Muratori M, Gripari P, Bax JJ, Marsan NA, Pepi M, Delgado V. Value of the "Tavi2-Score" Versus Surgical Risk Scores for Prediction of One Year Mortality in 511 Patients Who Underwent Transcatheter Aortic Valve Implantation. *Am J Cardiol.* 2015;115:234-242.

19. Edwards FH, Cohen DJ, O'Brien SM, Peterson ED, Mack MJ, Shahian DM, Grover FL, Tuzcu EM, Thourani VH, Carroll J, Brennan JM, Brindis RG, Rumsfeld J, Holmes DR, Jr., Steering Committee of the Society of Thoracic Surgeons/American College of Cardiology Transcatheter Valve Therapy Registry. Development and Validation of a Risk Prediction Model for in-Hospital Mortality after Transcatheter Aortic Valve Replacement. *JAMA Cardiol.* 2016;1:46-52.

20. Koplan BA, Stevenson WG, Epstein LM, Aranki SF, Maisel WH. Development and Validation of a Simple Risk Score to Predict the Need for Permanent Pacing after Cardiac Valve Surgery. *J Am Coll Cardiol.* 2003;41:795-801.

21. Ambler G, Omar RZ, Royston P, Kinsman R, Keogh BE, Taylor KM. Generic, Simple Risk Stratification Model for Heart Valve Surgery. *Circulation.* 2005;112:224-231.

22. Xu J, Ge Y, Pan S, Liu F, Shi Y. A Preoperative and Intraoperative Predictive Model of Prolonged Intensive Care Unit Stay for Valvular Surgery. *J Heart Valve Dis.* 2006;15:219-224.

23. Hannan EL, Wu C, Bennett EV, Carlson RE, Culliford AT, Gold JP, Higgins RS, Smith CR, Jones RH. Risk Index for Predicting in-Hospital Mortality for Cardiac Valve Surgery. *Ann Thorac Surg.* 2007;83:921-929.

24. Xu J, Ge Y, Hu S, Song Y, Sun H, Liu P. A Simple Predictive Model of Prolonged Intensive Care Unit Stay after Surgery for Acquired Heart Valve Disease. *J Heart Valve Dis.* 2007;16:109-115.

25. Shi JH, Meng X, Han J, Li Y, Wang JG, Zhang HB, Jia YX, Gurbanov E, Zhuang XJ. A Mortality Risk Assessment Model for Cardiac Valve Replacement Surgery and Its Application in the Use of Prophylactic Extracorporeal Membrane Oxygenation. *Int Surg.* 2010;95:227-231.
26. Ariyaratne TV, Billah B, Yap CH, Dinh D, Smith JA, Shardey GC, Reid CM. An Australian Risk Prediction Model for Determining Early Mortality Following Aortic Valve Replacement. *Eur J Cardiothorac Surg.* 2011;39:815-821.

27. Nashef SA, Roques F, Sharples LD, Nilsson J, Smith C, Goldstone AR, Lockowandt U. Euroscore II. *Eur J Cardiothorac Surg.* 2012;41:734-744; discussion 744-735.

28. Hannan EL, Racz M, Culliford AT, Lahey SJ, Wechsler A, Jordan D, Gold JP, Higgins RS, Smith CR. Risk Score for Predicting in-Hospital/30-Day Mortality for Patients Undergoing Valve and Valve/Coronary Artery Bypass Graft Surgery. *Ann Thorac Surg.* 2013;95:1282-1290.

29. Wang C, Zhang GX, Lu FL, Li BL, Zou LJ, Han L, Xu ZY. A Local Risk Prediction Model for Prolonged Ventilation after Adult Heart Valve Surgery in a Chinese Single Center. *Heart Lung.* 2013;42:13-18.

30. Zheng Z, Fan H, Gao H, Li X, Yuan X, Meng J, Xu J, Song Y, Sun H, Hu S. Mortality Risk Model for Heart Valve Surgery in China. *J Heart Valve Dis.* 2013;22:93-101.

31. Rankin JS, He X, O'Brien SM, Jacobs JP, Welke KF, Filardo G, Shahian DM. The Society of Thoracic Surgeons Risk Model for Operative Mortality after Multiple Valve Surgery. *Ann Thorac Surg.* 2013;95:1484-1490.

32. Brown JM, O'Brien SM, Wu C, Sikora JA, Griffith BP, Gammie JS. Isolated Aortic Valve Replacement in North America Comprising 108,687 Patients in 10 Years: Changes in Risks, Valve Types, and Outcomes in the Society of Thoracic Surgeons National Database. *J Thorac Cardiovasc Surg.* 2009;137:82-90.

33. Jin R, Grunkemeier GL, Starr A, Providence Health System Cardiovascular Study Group. Validation and Refinement of Mortality Risk Models for Heart Valve Surgery. *Ann Thorac Surg.* 2005;80:471-479.

34. Wang C, Li X, Lu FL, Xu JB, Tang H, Han L, Xu ZY. Comparison of Six Risk Scores for In-Hospital Mortality in Chinese Patients Undergoing Heart Valve Surgery. *Heart Lung Circ.* 2013;22:612-617.

35. Watanabe Y, Hayashida K, Lefevre T, Chevalier B, Hovasse T, Romano M, Garot P, Farge A, Donzeau-Gouge P, Bouvier E, Cormier B, Morice MC. Is Euroscore II Better Than Euroscore in Predicting Mortality after Transcatheter Aortic Valve Implantation? *Catheter Cardiovasc Interv.* 2013;81:1053-1060.

36. Wang TK, Choi DH, Ramanathan T, Ruygrok PN. Comparing Performance of Risk Scores for Combined Aortic Valve Replacement and Coronary Bypass Grafting Surgery. *Heart Lung Circ.* 2016;25:1118-1123.

37. Wang TK, Harmos S, Gamble GD, Ramanathan T, Ruygrok PN. Performance of Contemporary Surgical Risk Scores for Mitral Valve Surgery. *J Card Surg.* 2017;32:172-176.

38. Piazza N, Wenaweser P, van Gameren M, Pilgrim T, Tzikas A, Otten A, Nuis R, Onuma Y, Cheng JM, Kappetein AP, Boersma E, Juni P, de Jaegere P, Windecker S, Serruys PW. Relationship between the Logistic Euroscore and the Society of Thoracic Surgeons Predicted Risk of Mortality Score in Patients Implanted with the Corevalve Revalving System—a Bern-Rotterdam Study. *Am Heart J.* 2010;159:323-329.

39. Basraon J, Chandrashekar YS, John R, Agnihotri A, Kelly R, Ward H, Adabag S. Comparison of Risk Scores to Estimate Perioperative Mortality in Aortic Valve Replacement Surgery. *Ann Thorac Surg.* 2011;92:535-540.

40. Zhang CX, Xu JP, Ge YP, Wei Y, Yang Y, Liu F, Shi Y. Validation of Four Different Risk Stratification Models in Patients Undergoing Heart Valve Surgery in a Single Center in China. *Chin Med J (Engl).* 2011;124:2254-2259.
41. Durand E, Borz B, Godin M, Tron C, Litzler PY, Bessou JP, Dacher JN, Bauer F, Cribier A, Eltchaninoff H. Performance Analysis of Euroscore II Compared to the Original Logistic Euroscore and STS Scores for Predicting 30-Day Mortality after Transcatheter Aortic Valve Replacement. *Am J Cardiol.* 2013;111:891-897.

42. Haensig M, Holzhey DM, Borger MA, Schuler G, Shi W, Subramanian S, Rastan AJ, Mohr FW. Is the New Euroscore II a Better Predictor for Transapical Aortic Valve Implantation? *Eur J Cardiothorac Surg.* 2013;44:302-308; discussion 308.

43. Laurent M, Fournet M, Feit B, Oger E, Donal E, Thebault C, Biron Y, Beneux X, Sellin M, Le Reveille S, Flecher E, Leguerrier A. Simple Bedside Clinical Evaluation Versus Established Scores in the Estimation of Operative Risk in Valve Replacement for Severe Aortic Stenosis. *Arch Cardiovasc Dis.* 2013;106:651-660.

44. Barili F, Pacini D, Grossi C, Di Bartolomeo R, Alamanni F, Parolari A. Reliability of New Scores in Predicting Perioperative Mortality after Mitral Valve Surgery. *J Thorac Cardiovasc Surg.* 2014;147:1008-1012.

45. Beohar N, Whisenant B, Kirtane AJ, Leon MB, Tuzcu EM, Makkar R, Svensson LG, Miller DC, Smith CR, Pichard AD, Herrmann HC, Thourani VH, Szeto WY, Lim S, Fischbein M, Fearon WF, O’Neill W, Xu K, Dewey T, Mack M. The Relative Performance Characteristics of the Logistic European System for Cardiac Operative Risk Evaluation Score and the Society of Thoracic Surgeons Score in the Placement of Aortic Transcatheter Valves Trial. *J Thorac Cardiovasc Surg.* 2014;148:2830-2837.e2831.

46. Chan V, Ahraari A, Ruel M, Elmistekawy E, Hynes M, Mesana TG. Perioperative Deaths after Mitral Valve Operations May Be Overestimated by Contemporary Risk Models. *Ann Thorac Surg.* 2014;98:605-610; discussion 610.

47. Osnabrugge RL, Speir AM, Head SJ, Fonner CE, Fonner E, Kappetein AP, Rich JB. Performance of Euroscore II in a Large US Database: Implications for Transcatheter Aortic Valve Implantation. *Eur J Cardiothorac Surg.* 2014;46:400-408; discussion 408.

48. Rabbani MS, Qadir I, Ahmed Y, Gul M, Sharif H. Heart Valve Surgery: Euroscore Vs. Euroscore II Vs. Society of Thoracic Surgeons Score. *Heart Int.* 2014;9:53-58.

49. Wendt D, Thielmann M, Kahler P, Kastner S, Price V, Al-Rashid F, Patsalis P, Erbel R, Jakob H. Comparison between Different Risk Scoring Algorithms on Isolated Conventional or Transcatheter Aortic Valve Replacement. *Ann Thorac Surg.* 2014;97:796-802.

50. Wang L, Lu FL, Wang C, Tan MW, Xu ZY. Society of Thoracic Surgeons 2008 Cardiac Risk Models Predict in-Hospital Mortality of Heart Valve Surgery in a Chinese Population: A Multicenter Study. *J Thorac Cardiovasc Surg.* 2014;148:3036-3041.

51. Adami M, Capodanno D, Cannata S, Giannini C, Laudisa ML, Barbanti M, Curello S, Imme S, Maffeo D, Grasso C, Bedogni F, Petronio AS, Ettori F, Tamburino C, GRASP-IT Investigators. Comparison of Three Contemporary Surgical Scores for Predicting All-Cause Mortality of Patients Undergoing Percutaneous Mitral Valve Repair with the Mitraclip System (from the Multicenter Grasp-IT Registry). *Am J Cardiol.* 2015;115:107-112.

52. Holinski S, Jessen S, Neumann K, Konertz W. Predictive Power and Implication of Euroscore, Euroscore II and STS Score for Isolated Repeated Aortic Valve Replacement. *Ann Thorac Surg.* 2015;21:242-246.

53. Silaschi M, Conradi L, Seiffert M, Schnabel R, Schon G, Blankenberg S, Reichenspurner H, Diemert P, Treede H. Predicting Risk in Transcatheter Aortic Valve Implantation: Comparative Analysis of Euroscore II and Established Risk Stratification Tools. *Thorac Cardiovasc Surg.* 2015;63:472-478.
54. Silva LS, Caramori PR, Nunes Filho AC, Katz M, Guaragna JC, Lemos P, Lima V, Abizaid A, Tarasoutchi F, Brito FS, Jr. Performance of Surgical Risk Scores to Predict Mortality after Transcatheter Aortic Valve Implantation. *Arq Bras Cardiol.* 2015;105:241-247.

55. Sinning JM, Wollert KC, Sedaghat A, Widera C, Radermacher MC, Descoups C, Hammerstingl C, Weber M, Stundl A, Ghanem A, Widder J, Vasa-Nicotera M, Mellert F, Schiller W, Bauersachs J, Zur B, Holdenrieder S, Welz A, Grube E, Pencina MJ, Nickenig G, Werner N, Kempf T. Risk Scores and Biomarkers for the Prediction of 1-Year Outcome after Transcatheter Aortic Valve Replacement. *Am Heart J.* 2015;170:821-829.

56. Tralhão A, Teles RC, Almeida MS, Madeira S, Santos MB, Andrade MJ, Mendes M, Neves JP. Aortic Valve Replacement for Severe Aortic Stenosis in Octogenarians: Patient Outcomes and Comparison of Operative Risk Scores. *Rev Port Cardiol.* 2015;34:439-446.

57. Vassileva CM, Aranki S, Brennan JM, Kaneko T, He M, Gammie JS, Suri RM, Thourani VH, Hazelrigg S, McCarthy P. Evaluation of the Society of Thoracic Surgeons Online Risk Calculator for Assessment of Risk in Patients Presenting for Aortic Valve Replacement after Prior Coronary Artery Bypass Graft: An Analysis Using the Sts Adult Cardiac Surgery Database. *Ann Thorac Surg.* 2015;100:2109-2115; discussion 2115-2106.

58. Wang TK, Choi DH, Stewart R, Gamble G, Haydock D, Ruygrok P. Comparison of Four Contemporary Risk Models at Predicting Mortality after Aortic Valve Replacement. *J Thorac Cardiovasc Surg.* 2015;149:443-448.

59. Wang TK, Choi DH, Haydock D, Gamble G, Stewart R, Ruygrok P. Comparison of Risk Scores for Prediction of Complications Following Aortic Valve Replacement. *Heart Lung Circ.* 2015;24:595-601.

60. Barili F, Pacini D, D’Ovidio M, Ventura M, Alamanni F, Di Bartolomeo R, Grossi C, Davoli M, Fusco D, Perucci C, Parolari A. Reliability of Modern Scores to Predict Long-Term Mortality after Isolated Aortic Valve Operations. *Ann Thorac Surg.* 2016;101:599-605.

61. Collas VM, Van De Heyning CM, Paelinck BP, Rodrigus IE, Vrints CJ, Bosmans JM. Validation of Transcatheter Aortic Valve Implantation Risk Scores in Relation to Early and Mid-Term Survival: A Single-Centre Study. *Interact Cardiovasc Thorac Surg.* 2016;22:273-279.

62. Halkin A, Steinvil A, Witberg G, Barsheteshet A, Barkagan M, Assali A, Segev A, Fefer P, Guetta V, Barbash IM, Kornowski R, Finkelstein A. Mortality Prediction Following Transcatheter Aortic Valve Replacement: A Quantitative Comparison of Risk Scores Derived from Populations Treated with Either Surgical or Percutaneous Aortic Valve Replacement. The Israeli Tavr Registry Risk Model Accuracy Assessment (Irmma) Study. *Int J Cardiol.* 2016;215:227-231.

63. Kortlandt FA, van ’t Klooster CC, Bakker AL, Swaans MJ, Kelder JC, de Kroon TL, Rensing BJ, Eefting FD, van der Heyden JA, Post MC. The Predictive Value of Conventional Surgical Risk Scores for Periprocedural Mortality in Percutaneous Mitral Valve Repair. *Neth Heart J.* 2016;24:475-480.

64. Peguero JG, Lo Presti S, Issa O, Podesta C, Parise H, Layka A, Brenes JC, Lamelas J, Lamas GA. Simplified Prediction of Postoperative Cardiac Surgery Outcomes with a Novel Score: R2chads2. *Am Heart J.* 2016;177:153-159.

65. Rosa VE, Lopes AS, Accorsi TA, Fernandes JR, Spina GS, Sampaio RO, Paixao MR, Pomerantz Eff PM, Lemos Neto PA, Tarasoutchi F. Euroscore Ii and Sts as Mortality Predictors in Patients Undergoing Tavi. *Rev Assoc Med Bras (1992).* 2016;62:32-37.

66. Wang C, Tang YF, Zhang JJ, Bai YF, Yu YC, Zhang GX, Han L. Comparison of Four Risk Scores for in-Hospital Mortality in Patients Undergoing Heart Valve Surgery: A Multicenter Study in a Chinese Population. *Heart Lung.* 2016;45:423-428.
67. Yamaoka H, Kuwaki K, Inaba H, Yamamoto T, Kato TS, Dohi S, Matsushita S, Amano A. Comparison of Modern Risk Scores in Predicting Operative Mortality for Patients Undergoing Aortic Valve Replacement for Aortic Stenosis. *J Cardiol*. 2016;68:135-140.

68. Zbronski K, Huczek Z, Puchta D, Paczwa K, Kochman J, Wilimski R, Scisio P, Rymuza B, Filipiak KJ, Opolski G. Outcome Prediction Following Transcatheter Aortic Valve Implantation: Multiple Risk Scores Comparison. *Cardiol J*. 2016;23:169-177.

69. Balan P, Zhao Y, Johnson S, Arain S, Dhoble A, Estrera A, Smalleg R, Nguyen TC. The Society of Thoracic Surgery Risk Score as a Predictor of 30-Day Mortality in Transcatheter Vs Surgical Aortic Valve Replacement: A Single-Center Experience and Its Implications for the Development of a Tavr Risk-Prediction Model. *J Invasive Cardiol*. 2017;29:109-114.

70. Schmid J, Stojakovic T, Zweiker D, Scharnagl H, Maderthaner RD, Scherr D, Maier R, Schmidt A, Marz W, Binder JS, Rainer PP. St2 Predicts Survival in Patients Undergoing Transcatheter Aortic Valve Implantation. *Int J Cardiol*. 2017;244:87-92.

71. Sa MP, Sa MV, Albuquerque AC, Silva BB, Siqueira JW, Brito PR, Vasconcelos FP, Lima Rde C. Guaragnascore Satisfactorily Predicts Outcomes in Heart Valve Surgery in a Brazilian Hospital. *Rev Bras Cir Cardiovasc*. 2012;27:1-6.

72. Kalender M, Baysal AN, Karaca OG, Boyacioglu K, Kayalar N. Validation of German Aortic Valve Score in a Multi-Surgeon Single Center. *Braz J Cardiovasc Surg*. 2017;32:77-82.

73. Martin GP, Sperrin M, Ludman PF, de Belder MA, Gale CP, Toff WD, Moat NE, Trivedi U, Buchan I, Mamas MA. Inadequacy of Existing Clinical Prediction Models for Predicting Mortality after Transcatheter Aortic Valve Implantation. *Am Heart J*. 2017;184:97-105.

74. Arnold SV, Afifalo J, Spertus JA, Tang Y, Baron SJ, Jones PG, Reardon MJ, Yakubov SJ, Adams DH, Cohen DJ. Prediction of Poor Outcome after Transcatheter Aortic Valve Replacement. *J Am Coll Cardiol*. 2016;68:1868-1877.

75. De Bacco G, De Bacco MW, Sant’Anna JR, Santos MF, Sant’Anna RT, Prates PR, Kalil RA, Nesralla IA. Applicability of Ambler’s Risk Score to Patients Who Have Undergone Valve Replacement with Bovine Pericardial Bioprosthesis. *Rev Bras Cir Cardiovasc*. 2008;23:336-343.

76. Dewey TM, Brown D, Ryan WH, Herbert MA, Prince SL, Mack MJ. Reliability of Risk Algorithms in Predicting Early and Late Operative Outcomes in High-Risk Patients Undergoing Aortic Valve Replacement. *J Thorac Cardiovasc Surg*. 2008;135:180-187.

77. Tran HA, Roy SK, Hebsur S, Barnett SD, Schlauch KA, Hunt SL, Holmes SD, Ad N. Performance of Four Risk Algorithms in Predicting Intermediate Survival in Patients Undergoing Aortic Valve Replacement. *Innovations (Phil).* 2010;5:407-412.

78. van Gameren M ea. Do We Need Separate Risk Stratification Models for Hospital Mortality after Heart Valve Surgery? - Pubmed - Ncbi. *Ann Thorac Surg*. 2008;85:921-930.

79. Barili F, Pacini D, Rosato F, Parolari A. The Role of Surgical Procedures on Discriminative Performance of the Updated Euroscore II. *J Thorac Cardiovasc Surg*. 2013;146:986-987.

80. Carnero-Alcazar M, Silva Guisasola JA, Renguillo Lacruz FJ, Maroto Castellanos LC, Cobiella Carnicer J, Villagran Medinilla E, Tejerina Sanchez T, Rodriguez Hernandez JE. Validation of Euroscore II on a Single-Centre 3800 Patient Cohort. *Interact Cardiovasc Thorac Surg*. 2013;16:293-300.

81. Chalmers J, Pullan M, Fabri B, McShane J, Shaw M, Mediratta N, Poullis M. Validation of Euroscore II in a Modern Cohort of Patients Undergoing Cardiac Surgery. *Eur J Cardiothorac Surg*. 2013;43:688-694.
82. Howell NJ, Head SJ, Freemantle N, van der Meulen TA, Senanayake E, Menon A, Kappetein AP, Pagano D. The New Euroscore II Does Not Improve Prediction of Mortality in High-Risk Patients Undergoing Cardiac Surgery: A Collaborative Analysis of Two European Centres. *Eur J Cardiothorac Surg.* 2013;44:1006-1011; discussion 1011.

83. Sedaghat A, Sinning JM, Vasa-Nicotera M, Ghanem A, Hammerstingl C, Grube E, Nickenig G, Werner N. The Revised Euroscore II for the Prediction of Mortality in Patients Undergoing Transcatheter Aortic Valve Implantation. *Clin Res Cardiol.* 2013;102:821-829.

84. Zhang GX, Wang C, Wang L, Lu FL, Li BL, Han L, Xu ZY. Validation of Euroscore II in Chinese Patients Undergoing Heart Valve Surgery. *Heart Lung Circ.* 2013;22:606-611.

85. Barili F, Pacini D, Rosato F, Roberto M, Battisti A, Grossi C, Alamanni F, Di Bartolomeo R, Parolari A. In-Hospital Mortality Risk Assessment in Elective and Non-Elective Cardiac Surgery: A Comparison between Euroscore II and Age, Creatinine, Ejection Fraction Score. *Eur J Cardiothorac Surg.* 2014;46:44-48.

86. Koszta G, Sira G, Szatmari K, Farkas E, Szerafin T, Fulesdi B. Performance of Euroscore II in Hungary: A Single-Centre Validation Study. *Heart Lung Circ.* 2014;23:1041-1050.

87. Spiliopoulos K, Bagiatis V, Deutsch O, Kemkes BM, Antonopoulos N, Karangelis D, Haschemi A, Gansera B. Performance of Euroscore II Compared to Euroscore I in Predicting Operative and Mid-Term Mortality of Patients from a Single Center after Combined Coronary Artery Bypass Grafting and Aortic Valve Replacement. *Gen Thorac Cardiovasc Surg.* 2014;62:103-111.

88. Wang L, Han QQ, Qiao F, Wang C, Zhang XW, Han L, Xu ZY. Performance of Euroscore II in Patients Who Have Undergone Heart Valve Surgery: A Multicentre Study in a Chinese Population. *Eur J Cardiothorac Surg.* 2014;45:359-364.

89. Moscarelli M, Bianchi G, Margaryan R, Cerillo A, Farneti P, Murzi M, Solinas M. Accuracy of Euroscore II in Patients Undergoing Minimally Invasive Mitral Valve Surgery. *Interact Cardiovasc Thorac Surg.* 2015;21:748-753.

90. Poullis M, Pullan M, Chalmers J, Mediratta N. The Validity of the Original Euroscore and Euroscore II in Patients over the Age of Seventy. *Interact Cardiovasc Thorac Surg.* 2015;20:172-177.

91. Patrat-Delon S, Rouxel A, Gacouin A, Revest M, Flecher E, Fouquet O, Le Tulzo Y, Lerolle N, Tattevin P, Tadie JM. Euroscore II Underestimates Mortality after Cardiac Surgery for Infective Endocarditis. *Eur J Cardiothorac Surg.* 2016;49:944-951.

92. Allyn J, Allou N, Augustin P, Philip I, Martinet O, Belghiti M, Provenchere S, Montravers P, Ferydunos C. A Comparison of a Machine Learning Model with Euroscore II in Predicting Mortality after Elective Cardiac Surgery: A Decision Curve Analysis. *PLoS One.* 2017;12:e0169772.

93. Bomberg H, Klingele M, Wagenpfeil S, Spanuth E, Volk T, Sessler DI, Schafer HS, Groesdonk HV. Presepsin (Scd14-St) Is a Novel Marker for Risk Stratification in Cardiac Surgery Patients. *Anesthesiology.* 2017;126:631-642.

94. Kar P, Geeta K, Gopinath R, Durga P. Mortality Prediction in Indian Cardiac Surgery Patients: Validation of European System for Cardiac Operative Risk Evaluation II. *Indian J Anaesth.* 2017;61:157-162.

95. Mateos-Panero B, Sanchez-Casado M, Castano-Moreira B, Paredes-Astillero I, Lopez-Almodovar LF, Bustos-Molina F. Assessment of Euroscore and SAPS III as Hospital Mortality Predicted in Cardiac Surgery. *Rev Esp Anestesiol Reanim.* 2017;64:273-281.
96. Jin R, Grunkemeier GL, Providence Health & Services and Swedish Health Services Cardiovascular Disease Study Group. Validation of New York Operative Mortality Risk Score for Valve and Valve/Coronary Artery Bypass Grafting Operations. *Ann Thorac Surg.* 2013;95:1291-1296.