Search for QSO candidates in OGLE-II data.

Laurent Eyer

Princeton University Observatory, Princeton, NJ 08544, USA

ABSTRACT

A search for faint slowly variable objects was undertaken in the hope of finding QSO candidates behind the Small and Large Magellanic Clouds (SMC and LMC). This search used the optical variability properties of point sources from the Magellanic cloud OGLE-II photometric data. Objects bluer than $V - I = 0.9$ and within $17 < I < 20.5$ were studied. Robust variograms/structure functions have been computed for each time-series and only candidates showing a significant increasing variability over longer time scales were selected.

Several light curves were identified as having probable artifacts and were therefore removed. Stars showing signs of periodicity or small trends in their light curves were also removed and we are left with mostly either Be stars (γ Cas stars) or QSO candidates.

We present a list of 25 slowly varying objects for SMC and 155 for LMC, out of 15'000 and 53'000 variable objects respectively. Of these, about 15 objects for the SMC and 118 objects for the LMC are QSO candidates.

1. **Introduction**

The main motivation of this study is to find QSOs behind the Magellanic clouds. Few QSOs behind SMC and LMC are known. Several previous studies have reported such discoveries with their associated coordinates, but none of them was in OGLE fields. However more recently, Dobrzycki et al. (2002) found four new QSOs thanks to spectroscopic observations of the optical counterpart of X-ray sources. Those four candidates were observed by OGLE-II.

Other studies have been undertaken for several years by the MACHO group (Geha et al. 1999, Drake et al. 2001). They found about 30 QSOs behind LMC, but have not yet published their coordinates.

QSOs can be useful for different purposes, for example: for fixing the coordinate system in proper motion studies of LMC, SMC or foreground stars; for mapping the interstellar material in the Magellanic Clouds.
The optical variability properties of QSOs are not very well known. Some efforts are underway to remedy this situation; for instance AGNs are monitored in 11 passbands by Kobayashi et al. 1998 (MAGNUM project).

Most QSOs are variable (Cristiani et al. 1996). Discovery of QSOs have been achieved using their optical variability (Trevese et al. 1989, Brunzendorf & Meusinger 2001). We note however that only one QSO out of the four in Dobrzycki’s studies was classified as a variable in OGLE-II. This is mainly due to the faintness of the three other objects (about $V \simeq 20$) and the resulting large errors ($\simeq 0.1$) in the OGLE-II photometry.

We exploit the variability properties of QSOs since photometric data of OGLE-II is in public domain and offers a 4 years observing period with about 300-400 data points per object in I-band and about 30 in B and V-bands.

From SDSS, we know (Strauss 2002) that there are about 5 QSOs per square degree brighter than $i = 19$ mag. The number is smaller by a factor 5 per magnitude. As SDSS i-mag is approximately I-mag, a cut $I > 17$ will exclude one or two QSOs in all fields together, and therefore seems a sensible limit. We should expect to find about 30 QSOs behind the SMC and LMC brighter than $I = 19$ mag.

2. Selection criteria

A schematic description of the different selection criteria can be found in Fig. 1. The criteria are described in the following sections.

2.1. Selection on photometry

The OGLE-II experiment measured a total of 9 million stars in the direction of the Magellanic clouds. The LMC catalog lists 7 million star coordinates covering 5.7 square deg and B, V, I photometry (Udalski et al. 2000), and SMC data catalog lists 2.2 million star coordinates covering 2.4 square deg (Udalski et al. 1998). The colour-magnitude diagrams for the stars observed by OGLE-II (subsample selected randomly) and for the variable stars (see Fig. 2) have different distributions. The variable star catalog lists 68’000 stars: 53’000 for LMC and 15’000 for SMC, (cf. Žebruń et al. 2001). The variability analysis covered 21 fields (4.5 square deg) out of 26 fields for LMC data (the LMC fields 22 to 26 were monitored only on 13 nights). The pipeline for the OGLE-II analysis using Difference Image Analysis and the criterion for selecting the variable stars are described by Woźniak (2000). The two lower diagrams of Fig. 2 (left LMC and right SMC) are quite stunning. Though we recognize
variables from the red giant branch (right border of the diagram), RR Lyrae stars (spherical clump at $I = 18.7$ and $V - I = 0.55$ for LMC, mostly too faint in SMC), Cepheids (the rather vertical clump/strip above RR Lyrae stars), the B variable stars (left border), we also notice that the main sequence seems to separate in two branches, that a population of very bright variable objects forms a strip (to the right of Cepheid strip), and that the red giants are quite clumped (we further point out that the red giant tip produces a discontinuity between the giant branch and the asymptotic giant branch). Those aspects will be studied in a separate article. For our purpose, we want to explore the lower part ($I > 17$) of the colour-magnitude diagrams (see dashed lines of Fig. 2). The magnitude cut selects, for the LMC data, a population of main sequence blue variables, RR Lyrae stars and red giant stars. Some short period Cepheid are included in the selected sample of SMC data because it is further away and has a lower metallicity.

In order to reject the time series of the red giant branch variable stars which may also have slow variations as QSOs do, we select objects bluer than $V - I = 0.9$ and we also select the objects brighter than $I = 20.5$. To avoid any misidentification problem, all stars which have a position further than 1 pixel (0.417 arcsec) from the other determinations of position (matches of dophot and DIA position) were removed. We show in Fig. 3 the histogram of those distances. With these criteria, we get a first selection of 6241 objects for LMC and 1553 objects for SMC out of the samples of 53’000 (LMC) and 15’000 (SMC) variable objects.

2.2. Selection on time variations

It is known that generally QSOs have little variability at short time scales, and that the variability, though irregular and aperiodic, is increasing when longer time scales are observed. We note however that the BL Lac objects could have a variability of several tenth of a magnitude on a day to day basis.

The criterion of selection is an increase of variability for time scales longer than 100 days and the employed mathematical tool is the variograms/structure functions. This permits us to determine the time scale of the variations in a given signal (Hughes et al. 1992, Eyer & Genton 1999). All pair differences of time, $h_{ij} = JD_j - JD_i$ (h is the lag; JD is the Julian Date) and squared pair differences of magnitude, $(I_j - I_i)^2$, are computed.

Given a lag h, we compute the median of the subsample, $2\gamma_{med}(h)$, of $(I_j - I_i)^2$ formed by all possible pairs i, j such that $h_{ij} < h$. It gives an estimation of the spread of the distribution formed by the $I_j - I_i$. We call this function variogram. If the distribution of the $I_j - I_i$ is symmetric then the square root of $2\gamma_{med}(h)$ is the interquartile range of the
distribution of the $I_j - I_i$. For an example see Fig. 4. The slope of the variogram can be used as a discriminating criterion for selecting the time series where variability is increasing as longer time scales are observed.

We reject objects whose variogram has a computed slope for $h \geq 100$ days smaller than 0.1. This limit was established empirically and also studied by doing Monte Carlo simulations on the SMC data. If all the signals are composed of pure Gaussian noise, then selecting the slope higher than 0.1 would select less than 0.1% of the time series. As an other example, if all the signals were periodic with period of about 10-11 days, the criterion of the slope higher than 0.1 would select less than 0.2% of the light curves. This threshold will generate only a small number of false detections. On the other hand, a signal with a period between 250 and 300 days would be selected with this slope criterion with a proportion higher than 99.9%.

The variable QSO, behind LMC, OGLE050833.29-685427.5 discovered by Dobrzycki et al. 2002 has its variogram displayed in Fig. 4. It is clearly selected by our criterion.

By applying the slope selection criterion, the list of QSO candidates shortens to 649 objects for LMC and 179 for SMC.

2.3. QSO and Be star colours

Fig. 5 is a colour-magnitude diagram of the variable stars and the selected objects in the SMC and LMC. We see that there is a very high density of points towards the location of the main sequence. The magnitude, colour, as well as the light curve, allow us to identify them with γ Cas stars/Be stars. For a full discussion of Be stars in SMC, see Mennickent et al. (2002). The variation in different bands gives further clues for the identification of eruptive Be stars: notice that in the brightening phase the star is becoming brighter in the I-band (cf. Fig. 6).

For the SMC data, we have the data of Zaritsky et al. (2002) which contain U-band photometry. We plot in Fig. 7 the colour-colour diagram ($U - B$, $B - V$). We recall that the Johnson U-band is unfortunately covering the Balmer discontinuity at 3647Å and is not optimal as would be the SDSS bands, for example. This type of diagram is helpful to identify QSOs (see Fan 1999). Though QSOs have colours in $B - V$ like RR Lyrae stars, they are brighter in the U-band and can be generally distinguished from stellar locus (more precisely from A-F stars). There are some other degeneracies, with white dwarfs, and Be stars for instance.
As we do not have U magnitudes for LMC data, we want to devise a method applicable to both clouds, which could be checked more thoroughly with the SMC data.

There is a complication already mentioned above: the Be stars during their eruption phases become redder and therefore may enter the domain of the QSOs. A compromise has to be taken to delineate a reasonable colour cut in $B - V$.

As B stars are generally bluer than QSOs (in $B - V$ colour), we can put a threshold on $B - V$ colour on the QSO blue side. We are using the colours of the QSOs measured by SDSS (Richards et al. 2001), to transform the $g - r$ colour in $B - V$ using the transformation given by Fukugita et al. (1996). For the red side of the Be stars, we use the data of Mennickent et al. (2002); we selected their Type 1 or Type 2 Be stars. We clearly want to reject very few QSOs and reject many Be stars. Putting the cut at $B - V = 0.04$ seems a satisfactory compromise since it rejects 87% of Be stars and rejects less that 1% of the QSOs.

2.4. Undesirable effects, artifacts and problems

Some time series are selected due to undesirable effects, some of those are spurious, others are intrinsic to the star:

- Some regions of the CCD chip have a larger number of variables than average. We show in Fig. 8 the case of LMC and SMC where all variable star positions are plotted in CCD coordinate system for the 21 and 11 fields all together respectively (see especially for LMC at the left edge of the CCD, as well as some horizontal lines. Some features appear only in one field; others are present in several fields. The field LMC_SC2 has many perturbations). In Fig. 9, we present the time series of one star located in a suspicious region, which has a yearly pattern. The SMC fields are less perturbed.

- Brighter or dimmer step-like variation in the data, see. Fig. 10. The identified cause was the realumination of the mirror which occurred between 19 Jan 1999 and 22 Jan 1999 (JD: 2451197 - 2451200 days).

- Some objects near a bright star can become variable because of a bleeding column or extended wings of the bright star. We computed the distance from the object to the nearest pixel with counts exceeding 30'000 and removed the objects with such a distance smaller than 50 pixels.

- Small real or spurious monotonic slopes were removed.

- Certain objects are appearing several times because of field overlap. Those were identified and only one was kept.

- The OGLE-II team flagged certain objects as uncertain (Żebruń 2001). Those cases were nearly all removed from our list.

- Some stars show periodic variations on short time scale in addition to trends at longer time scale. Those stars were removed from the list.

3. Results and discussion

3.1. SMC data

The number of objects selected (see section 2.1) with the magnitude and colour cuts was 1553. With the criterion on time scales, we should expect that the errors of false detection are very few. The number of selected objects is 179, we introduce the cut on $B - V > 0.04$ which reduces further the number to 45. This is a small number of objects and can be easily investigated on individual time series.

There are 15 QSO candidates that are listed in Table 1 which contains a total of 25 entries (selected manually). Six objects are identified as Be stars (identified with colour changes), four objects are left without identification. We present the light curves of those objects in Fig. 11.

The object OGLE003850.79-731053.1 is rather bright $I = 16.8$. However it was selected because its I-mag mean in the catalogue was of 17.077.

3.2. LMC data

The number of objects initially selected for the LMC data is rather high 6241. By applying the same time scale criterion as we have for the SMC, we get 649 objects. This LMC fraction of 10.4% is slightly lower than the SMC fraction of 11.5%. The stars initially considered are not completely similar since the SMC is further away while the magnitude and colour cuts are identical for the two clouds. Therefore the selection criterion based on time scale rejects the RR Lyrae stars for the LMC which are not present in the SMC and rejects the short period Cepheids from the SMC which are too bright to be in the LMC. However, RR Lyrae stars showing a Blazhko effect are sometimes selected.

The selection on colour, $B - V > 0.04$ cuts the sample by half to 312 stars. In SMC the
sample was cut by one third. This is more surprising. The population of Be stars in LMC seems therefore to have a redder extension in $B - V$ colour than the SMC population.

We decided to select manually the 312 stars on individual basis thereby eliminating the undesirable effects mentioned in section 2.4. However, we conserved 2 cases classified as uncertain and also 3 objects with a distance smaller than 50 pixels to a saturated star.

We end up with a list of 155 candidates see Table 2. and we can see their light curves from Fig. 12 to Fig. 16. A manual selection gives 118 QSO candidates, 30 Be stars and 7 unclassified objects.

4. Conclusion

The main result of this study shows that it is possible to establish a rather narrow list of QSO candidates using mostly photometric times series in the optical wavelengths. However confirmation with spectroscopic data is needed. We list 118 and 15 QSO candidates for the LMC and SMC respectively.

Once the QSOs are eventually identified, we will be able to fine-tune the algorithm to select QSOs more efficiently.

OGLE-II may give hints of how a sampling could be programmed in order to optimize the detection of QSOs from a variability point of view.

From the study of Dobrzycki et al. (2002), we remark that to select QSOs is not a trivial task. From about one hundred candidates, the 30 best objects were selected for spectroscopic follow-up and 4 objects were confirmed as QSOs.

In a mission like GAIA (Perryman et al. 2001), the number of measured objects is estimated to be of the order of one billion, the distinction between QSOs and stars is subject of study with the current photometric system and astrometric precision (Mignard 2002). Variability could be used as an additional criterion for selecting QSO candidates and therefore diminishing further the rate of false detection.

This study is one additional example, that multiepoch surveys like OGLE, MACHO or EROS originally oriented to detect microlensing events can be used in many different fields of astronomy. The scientific outcomes of such surveys are often unexpected.
5. Acknowledgements

We would like to thank Prof. B.Paczyński for his help and constant support. We are indebted to Prof. M.Grenon, Prof. K.Stanek, Prof. M.Strauss, Dr M.Freitag, Dr R.H.Lupton and Dr S.Paltani. We thank Macauley C.S. Peterson for English corrections.

This work was supported with a grant from the Swiss National Science Foundation. Partial support for this project was also provided by the NSF grant AST-9820314.

REFERENCES

Brunzendorf J., Meusinger H., 2001, A&A 373, 38
Cristiani S., et al., 1996, A&A 306, 396
Dobrzycki A., Groot P.J., Macri L.M., Stanek K.Z., 2002, ApJL 569, 16162
Drake A., et al., 2001, AAS 199, 5205
Eyer L., Genton M., 1999, A&AS 136, 421
Fan X., 1999, AJ 117, 2528
Fukugita M., et al., 1996, AJ 111, 1748
Geha M., et al. 1999, AAS 194, 7313
Hughes P.A., Aller H.D., Aller M.F., 1992, ApJ 396, 469
Kobayashi Y., et al., 1998, Proc. SPIE 3352, 120
Mennickent R.E., Pietrzyński G., Gieren W, Szewczyk O., 2002, submitted to A&A, astro-ph/0204390
Mignard F., 2002, in O.Bienaymé & C.Turon, ed., EAS Volume 2, GAIA: A European Space Project
Perryman M.A.C., et al., 2001, A&A 369, 339
Richards G., et al., 2001, AJ 122, 1151
Strauss M., 2002 private communication
Trevese D., et al., 1989, ApJ 98, 108
Udalski A., Szymański M., Kubiak M., Pietrzyński G., Woźniak P., Żebruń K., 1998, Acta Astronomica 48, 147

Udalski A., Szymański M., Kubiak M., Pietrzyński G., Soszyński I., Woźniak P., Żebruń K., 2000, Acta Astronomica 50, 307

Woźniak P.R., 2000, Acta Astronomica 50, 421

Zaritsky D., Harris, J., Thompson I.B., Grebel E.K., Massey P., 2002, AJ 123, 855

Żebruń K., Soszyński I., Woźniak P.R., Udalski A., Kubiak M., Szymański M., Pietrzyński G., Szewczyk O., Wyrzykowski L., 2001, Acta Astronomica 51, 317
Table 1. The list of selected 25 objects from SMC data. It is divided into three parts. QSO candidates QC (15), γ Cas/Be stars (6), unclassified U (4). The columns are an identification number IN, OGLE identification number, I magnitude, number of measurements nmes, V and B magnitudes, the classification, and the nearest distance to a saturated pixel.

IN	Ident	I	nmes	V	B	class	dist
S1	OGLE0003850.79-731053.1	17.077	293	17.694	17.741	QC	299
S2	OGLE0004833.68-732955.6	18.946	298	19.459	19.584	QC	262
S3	OGLE0004743.68-731630.1	17.166	298	17.520	17.652	QC	133
S4	OGLE0004818.25-731242.8	17.185	297	17.443	17.490	QC	115
S5	OGLE0004905.88-730257.5	17.818	311	17.964	18.038	QC	294
S6	OGLE0005136.59-732016.4	17.215	303	18.018	18.400	QC	59
S7	OGLE0005316.80-724219.9	18.920	307	19.270	19.528	QC	34
S8	OGLE0005148.94-723737.7	17.908	306	18.163	18.211	QC	73
S9	OGLE0005448.97-722544.5	18.319	244	19.017	19.179	QC	153
S10	OGLE0005608.34-731911.6	19.489	272	20.036	20.280	QC	180
S11	OGLE010244.86-721521.7	18.412	278	18.890	19.392	QC	172
S12	OGLE010234.69-725424.1	17.664	278	18.372	18.689	QC	164
S13	OGLE010127.63-722422.5	18.742	279	19.067	19.211	QC	243
S14	OGLE010342.76-724419.5	18.762	270	19.471	20.156	QC	102
S15	OGLE010721.61-724845.5	18.262	268	18.958	19.207	QC	227
S16	OGLE0003922.09-732531.6	17.070	292	16.926	16.850	Be	141
S17	OGLE0003922.07-732531.6	17.065	266	16.942	17.029	Be	85
S18	OGLE004722.13-730844.4	17.533	299	17.688	17.728	Be	101
S19	OGLE004705.03-730611.6	17.051	299	17.325	17.382	Be	90
S20	OGLE004701.81-731650.6	17.723	299	17.861	17.987	Be	156
S21	OGLE005131.37-725054.2	17.747	311	18.075	18.141	Be	79
S22	OGLE004504.35-724449.9	17.426	241	17.948	18.438	U	332
S23	OGLE004702.90-730800.9	17.464	299	18.057	18.566	U	115
S24	OGLE005039.19-724154.3	18.296	303	18.852	19.138	U	111
S25	OGLE005137.19-731429.2	17.008	290	17.255	17.298	U	251
Table 2. The list of selected 155 objects from LMC data. It is divided into three parts. QSO candidates (118), Be stars (30), unclassified U (7)

IN	Ident	I	nmes	V	B	class	dist
L1	OGLE05340002-7031278	19.008	350	19.405	19.560	QC	81
L2	OGLE05333335-6950083	17.939	353	18.039	18.087	Be	249
L3	OGLE05344456-6941542	18.200	353	18.806	20.671	QC	116
L4	OGLE05330723-6941091	18.126	353	18.698	19.211	QC	197
L5	OGLE05334305-7021375	18.252	353	18.481	18.633	QC	57
L6	OGLE05345633-7021385	17.030	352	16.884	17.416	QC	186
L7	OGLE05350357-7017506	17.200	345	17.906	18.208	QC	329
L8	OGLE05305804-7018345	17.534	511	18.252	18.588	QC	95
L9	OGLE05300904-6958289	18.525	503	19.314	19.917	QC	131
L10	OGLE05301733-6958358	19.450	503	19.482	19.588	QC	126
L11	OGLE05303747-6952233	19.413	512	20.206	20.433	QC	180
L12	OGLE05315248-6951473	17.648	510	18.310	18.722	QC	254
L13	OGLE05315269-6950447	17.561	503	18.206	18.565	QC	107
L14	OGLE05315279-6949256	17.522	496	17.796	18.172	QC	115
L15	OGLE05323333-6948256	17.522	496	17.796	18.172	QC	115
IN	Ident	I	nmes	V	B	class	dist
-----	-----------	-----------	------	-------	-------	-------	-------
L50	OGLE05175980-6936072	17.583	475	17.481	17.549	Be	69
L51	OGLE05195132-6934301	17.144	473	17.358	17.410	QC	93
L52	OGLE05181138-6932336	18.378	475	17.718	18.005	QC	88
L53	OGLE05175227-6931485	17.860	475	18.329	18.657	Be	250
L54	OGLE05195513-6930534	17.136	469	17.497	17.737	QC	134
L55	OGLE05173038-6928039	17.514	456	17.694	17.975	QC	148
L56	OGLE05174075-6926485	17.784	429	18.315	19.036	QC	183
L57	OGLE05191634-6923391	17.483	448	17.466	17.517	Be	149
L58	OGLE05173308-6928039	17.514	475	17.694	17.975	QC	148
L59	OGLE05192961-6941229	17.566	471	17.674	17.742	QC	313
L60	OGLE05173038-6928039	17.366	467	17.306	17.472	Be	334
L61	OGLE051700619-6933232	18.105	365	18.457	18.594	U	151
L62	OGLE05172660-6929392	17.646	361	17.576	17.835	QC	127
L63	OGLE05150288-6946549	17.954	228	18.501	19.778	QC	103
L64	OGLE05164498-6923022	18.181	331	18.366	18.430	QC	151
L65	OGLE05171370-6921071	17.976	364	18.209	18.334	QC	127
L66	OGLE05150069-6913252	17.781	359	17.788	17.937	QC	227
L67	OGLE05152651-6900427	17.871	365	19.046	19.383	QC	270
L68	OGLE05170055-6855280	17.755	366	17.751	17.941	QC	284
L69	OGLE05165084-6939052	17.340	362	17.549	18.570	Be	196
L70	OGLE05153037-6937072	17.432	366	17.468	17.588	Be	195
L71	OGLE05150572-6935308	17.738	361	17.638	17.756	QC	38
L72	OGLE05135746-6924434	17.923	334	18.548	19.046	QC	302
L73	OGLE05134058-6922569	18.352	333	18.856	19.234	U	196
L74	OGLE05132825-6909559	17.795	334	17.765	18.798	Be	226
L75	OGLE05124146-6938573	18.653	334	19.551	19.994	QC	106
L76	OGLE05140925-6909020	18.749	327	19.244	19.512	QC	245
L77	OGLE05135468-6905033	18.698	334	18.408	18.691	QC	127
L78	OGLE05143356-6932456	17.744	334	18.540	18.876	QC	184
L79	OGLE05138277-6931217	18.792	334	18.878	19.395	QC	162
L80	OGLE05141851-6914204	18.186	328	18.136	18.190	QC	166
L81	OGLE05150086-6927307	17.203	325	17.371	17.425	Be	304
L82	OGLE05102792-6918227	17.516	324	18.017	18.330	QC	96
L83	OGLE05105738-6934202	18.108	321	18.133	18.236	QC	72
L84	OGLE05084577-6859573	18.484	271	18.473	18.518	QC	296
L85	OGLE05084840-6859339	17.537	271	17.673	17.787	Be	258
L86	OGLE05083298-6854275	18.625	271	19.012	19.239	QC	121
L87	OGLE05098188-6850316	17.494	271	17.519	17.577	QC	147
L88	OGLE05085407-6854091	17.368	271	17.439	17.495	QC	139
L89	OGLE05092328-6923182	17.691	271	18.287	18.657	QC	198
L90	OGLE05095364-6920549	17.200	271	17.265	17.371	QC	75
L91	OGLE05095536-6917217	17.602	271	17.629	17.714	Be	281
L92	OGLE05051435-7005051	19.373	325	20.139	20.570	QC	555
IN	Ident	I	nmes	V	B	class	dist
------	-----------	-----	------	-----	-----	-------	------
L99	OGLE05060247-6953112	18.140	271	18.099	18.149	QC	174
L100	OGLE05070041-6950078	18.864	281	19.619	19.822	QC	293
L101	OGLE05072822-6936252	17.608	323	17.655	17.753	Be	90
L102	OGLE05050293-6851166	17.209	254	18.072	18.671	QC	93
L103	OGLE05054738-6847018	17.109	268	17.217	17.276	QC	239
L104	OGLE05071477-6828385	18.709	249	19.087	19.184	U	187
L105	OGLE05062280-6826175	18.375	268	18.972	19.154	QC	179
L106	OGLE05070433-6906561	17.304	267	17.560	17.661	QC	60
L107	OGLE05054118-6839319	19.120	240	19.590	20.030	QC	555
L108	OGLE05050393-6916150	17.458	266	17.360	17.458	Be	226
L109	OGLE05045928-6914385	19.831	266	20.158	20.213	Be	451
L110	OGLE05043735-6903563	17.731	267	17.646	17.700	QC	192
L111	OGLE05050001-6913062	17.484	249	17.317	17.339	QC	192
L112	OGLE05050393-6903563	17.731	267	17.646	17.700	QC	192
L113	OGLE05050001-6913062	17.484	249	17.317	17.339	QC	192
L114	OGLE05050001-6913062	17.484	249	17.317	17.339	QC	192
L115	OGLE05050001-6913062	17.484	249	17.317	17.339	QC	192
IN	Ident	I	mmes	V	B	class	dist
-----	---------------------------	-----	------	-----	-----	-------	------
L148	OGLE05461618-7033250	17.712	261	17.956	18.306	QC	269
L149	OGLE05460323-7024215	17.500	235	17.575	17.730	QC	95
L150	OGLE05453269-7045239	17.643	261	17.495	17.584	Be	98
L151	OGLE05473108-7044592	17.564	261	17.492	17.628	Be	221
L152	OGLE05223241-7009470	17.721	281	17.481	17.686	Be	555
L153	OGLE05220497-7039356	17.878	286	17.899	18.475	QC	193
L154	OGLE05214174-7030291	18.578	214	19.075	19.609	QC	123
L155	OGLE05205707-7024528	17.494	286	17.900	18.546	QC	267
This figure "fig.1.jpg" is available in "jpg" format from:

http://arxiv.org/ps/astro-ph/0206074v1
This figure "fig.2.jpg" is available in "jpg" format from:

http://arxiv.org/ps/astro-ph/0206074v1
This figure "fig.3.jpg" is available in "jpg" format from:

http://arxiv.org/ps/astro-ph/0206074v1
This figure "fig.4.jpg" is available in "jpg" format from:

http://arxiv.org/ps/astro-ph/0206074v1
This figure "fig.5.jpg" is available in "jpg" format from:

http://arxiv.org/ps/astro-ph/0206074v1
This figure "fig.6.jpg" is available in "jpg" format from:

http://arxiv.org/ps/astro-ph/0206074v1
This figure "fig.7.jpg" is available in "jpg" format from:

http://arxiv.org/ps/astro-ph/0206074v1
This figure "fig.8.jpg" is available in "jpg" format from:

http://arxiv.org/ps/astro-ph/0206074v1
This figure "fig.9.jpg" is available in "jpg" format from:

http://arxiv.org/ps/astro-ph/0206074v1
This figure "fig.10.jpg" is available in "jpg" format from:

http://arxiv.org/ps/astro-ph/0206074v1
This figure "fig.11.jpg" is available in "jpg" format from:

http://arxiv.org/ps/astro-ph/0206074v1
This figure "fig.12.jpg" is available in "jpg" format from:

http://arxiv.org/ps/astro-ph/0206074v1
This figure "fig.13.jpg" is available in "jpg" format from:

http://arxiv.org/ps/astro-ph/0206074v1
This figure "fig.14.jpg" is available in "jpg" format from:

http://arxiv.org/ps/astro-ph/0206074v1
This figure "fig.15.jpg" is available in "jpg" format from:

http://arxiv.org/ps/astro-ph/0206074v1
This figure "fig.16.jpg" is available in "jpg" format from:

http://arxiv.org/ps/astro-ph/0206074v1