TLR4 counteracts BVRA signaling in human leukocytes via differential regulation of AMPK, mTORC1 and mTORC2

Zhiyong Zhang, Louis F. Amorosa, Anna Petrova, Susette Coyle, Marie Macor, Mohan Nair, Leonard Y. Lee & Beatrice Haimovich

TLR4 is implicated in diseases associated with chronic low-grade inflammation, yet homeostatic signaling mechanisms that prevent and/or are affected by chronic TLR4 activation are largely uncharacterized. We recently reported that LPS/TLR4 activates in human leukocytes signaling intermediates (SI), abbreviated TLR4-SI, which include mTORC1-specific effectors and targets, and that leukocytes of patients with T2D or after cardiopulmonary bypass (CPB) expressed similar SI. Extending these previous findings, here we show that TLR4-SI expression post-CPB was associated with low serum bilirubin and reduced preoperative expression of biliverdin reductase A (BVRA), the enzyme that converts biliverdin to bilirubin, in patient’s leukocytes. Biliverdin inhibited TLR4 signaling in leukocytes and triggered phosphorylation of mTORC2-specific targets, including Akt, PKCζ, AMPKα-LKB1-TSC1/2, and their association with BVRA. Torin, PP242, and a PKCζ inhibitory peptide, but not rapamycin, prevented these biliverdin-induced responses and TLR4 inhibition. In contrast, LPS/TLR4 triggered decreases in BVRA, AMPKα and PKCζ expression, and an increase in haptoglobin, a heme binding protein, in leukocytes in vivo and in vitro, indicating that activated TLR4 may suppress biliverdin/BVRA signaling. Significantly, compared to non-diabetics, BVRA and PKCζ expression was low and haptoglobin was high in T2D patients leukocytes. Sustained TLR4 activation may deregulate homeostatic anti-inflammatory BVRA/mTORC2 signaling and thereby contribute to chronic inflammatory diseases.

Toll-like receptor 4 (TLR4) is implicated in morbidities associated with chronic low-grade inflammation, including insulin resistance and type 2 diabetes (T2D)\(^1,2\). Our understanding of homeostatic molecular mechanisms that limit TLR4 signaling, and whether/how chronic TLR4 activation might impact these homeostatic signaling processes remains limited. TLR4 is activated by lipopolysaccharide (LPS) derived from pathogenic and commensal gut-residing Gram-negative bacteria, and endogenous ligands that include free fatty acids\(^3,4\). LPS is a potent inducer of inflammatory responses in humans\(^5,6\). However, whereas LPS doses above 0.5 ng/kg elicited inflammatory responses that included IL-6 and TNF-α production and broad changes in leukocyte’s mRNA and signaling intermediates (SI) expression\(^7\), doses below 0.5 ng/kg triggered only changes in leukocyte’s SI expression\(^8\). These observations suggested the hypothesis that the pattern of SI detected in leukocytes challenged with low LPS doses may be clinically relevant and serve as a tool for interrogating whether and how chronic low-grade TLR4 activation may deregulate homeostatic signaling mechanisms that prevent unwarranted TLR4 activation.

Among the SI affected by TLR4 activation are several mammalian target of rapamycin (mTOR) complex 1 (mTORC1) signaling components\(^9,10\), including AMP-activated protein kinase (AMPK) and hypoxia inducible factor subunit α (HIF-1α)\(^9\). In general, mTORC1 is activated when nutrients are abundant. Scarcity of energy and/or glucose triggers AMPK activation\(^11\). AMPK can prevent mTORC1 signaling via two mechanisms: (i) AMPK can phosphorylate Raptor on Ser792 thus preventing mTORC1 assembly\(^12\), and (ii) AMPK can phosphorylate and activate TSC1/2\(^13\), which acts as a GAP for Rheb\(^14\). Activated TSC1/2 inhibits Rheb and consequently...
mTORC1. Raptor is phosphorylated at Ser792 in resting leukocytes. LPS/TLR4 triggers Raptor dephosphorylation at Ser792 via a unique matrix metalloprotease 9 (MMP9)-dependent molecular mechanism. Though MMP9 is best known for its role in extracellular matrix degradation, in LPS activated leukocytes intracellular MMP9 contributes to AMPKα cleavage, mTORC1 activation, and the phosphorylation of S6K1 at Ser389, Thr423. mTORC1 also upregulates TLR4 and HIF-1α expression. HIF-1α and HIF-1β form the transcription factor HIF-1, an essential regulator of myeloid cells bioenergetics and antimicrobial functions. LPS does not activate mTORC2 complex 2 (mTORC2). Hereafter, we refer to the panel of SI that include elevated MMP9, HIF-1α, TLR4, and proteolytically cleaved AMPKα, as ‘TLR4-SI’.

We recently reported that leukocytes of patients with T2D and a majority of patients after cardiopulmonary bypass (CPB) surgery expressed SI similar to TLR4-SI. However, T2D patients treated with insulin, in general, did not express TLR4-SI. Further investigation revealed that insulin counter-regulates TLR4 signaling in leukocytes, and vice-a-versa. Building on this prior work, in this study we sought to determine why the majority, but not all CPB patients expressed TLR4-SI postoperatively, hypothesizing existence of TLR4 signaling regulator(s) in addition to insulin. Here, a prospective blinded study of CPB patients uncovered an inverse association between postoperative TLR4-SI expression and serum bilirubin levels. Bilirubin is the end product of heme catabolism. Heme is converted to biliverdin by heme oxygenases and then reduced to bilirubin by biliverdin reductase A (BVRA). We then discovered that TLR4-SI expression postoperatively was also inversely associated with preoperative BVRA expression, suggesting that TLR4- and BVRA-signaling in leukocytes are interconnected. We report that biliverdin/BVRA activates mTORC2 and an AMPK signaling axis that inhibits mTORC1, a key TLR4 signaling node. Furthermore, we identify biliverdin/BVRA SI that are altered by TLR4 causing mTORC2 inhibition. The data identify a novel counter-regulatory signaling loop involving BVRA and TLR4. We propose that in T2D patient’s leukocytes this loop is deregulated and that the signals are skewed in favor of TLR4.

Materials and Methods

All methods were performed in accordance with the relevant guidelines and regulations.

Study protocol, inclusion exclusion criteria, and surgical procedure. Rutgers, Robert Wood Johnson Medical School Institutional Review Board approved the study. Patient participation was voluntary and without compensation. Informed written consent was obtained from all participants before enrollment in the study. Details concerning study protocol, inclusion exclusion criteria and surgical procedure are included in the Supplement.

CPB patient’s blood samples collection and analyses. CPB patient’s blood was drawn pre-anesthesia (P), within 30 minutes of patient’s arrival in the recovery room (RR), and in the early hours of day 1 post-operatively (D1). Additional daily collections were derived from 4 randomly selected patients in the early hours of days 2, 3, 4 (D2, D3, D4). IL-6 was measured using Quantikine ELISA kits, Cat # D6050 (R&D Systems, Minneapolis, MN). Insulin was measured using an ELISA assay (sensitivity 2–200 microU/ml; Millipore).

Antibodies and phosphorocenic response modifiers. Antibodies used: Actin (A2066; 1:1000) was from Sigma. Heme oxygenase 2 (HO-2) (PB9213; 1:500) was from Boster Biological Tech Co., Pleasanton CA. HIF-1α (sc-1079464; 1:1000), p-PKCζ (sc-393218; 1:500), heme oxygenase 1 (HO-1) (sc-136960; 1:1000), heme oxygenase 2 (HO-2) (sc-17786; 1:1000), tuberin (TSC2) (sc-271962; 1:500), GSK2334470 (3 μM) was from Cayman. Rapamycin (100 nM), torin (50 nM), PP242 (100 nM) was from Tocris. The PKCζ inhibitory peptide (c-pseudosubstrate inhibitory peptide) (10 μM) was from Fisher Scientifics.

In vitro studies. Blood drawn into heparin-containing tubes was separated into aliquots and treated with LPS (10 ng/ml) or biliverdin (50 μM), unless otherwise indicated. Leukocytes were then isolated as described. In some experiments, neutrophils and mononucleated cells (which include monocytes and lymphocytes) were isolated, treated or not, and lysed as described. Raw 264.7 cells were obtained from ATCC and cultured for up to 5 passages. Cell lysates were normalized for protein content and analyzed by western blotting. In brief, samples were subjected to SDS-PAGE separation followed by blotting onto polyvinylidene difluoride membrane. Immunoreactive bands were detected using Super Signal Chemiluminescence (Thermo Scientific Pierce) and visualized by autoradiography. All figures shown are an accurate representation of the data and no image was manipulated.

Immunoprecipitation. Pierce crosslink IP kit (Prod #26147, Thermo Scientific) was used to crosslink BVRA antibody to agarose. Leukocyte pellets were washed once with PBS and then lysed for 5 min on ice with 500 μl of RIPA buffer. Cellular debris was removed by centrifugation and supernatants were normalized for protein concentration. Lysates (500 μg protein) were pre-cleared for 2 h at 4°C with 40 μl of protein A/G agarose
beads and were then incubated overnight at 4 °C with 2 μg of BVRA-agarose with gentle rotation. Samples were then washed three times with washing buffer (0.025 M Tris, 0.15 M NaCl, 0.001 M EDTA, 1% NP-40, 5% glycercin, pH 7.4). Bound proteins were eluted with 5X NaDodSO4 sample buffer and analyzed by western blotting as described earlier.

Statistical analyses. Clinical and laboratory data were analyzed with respect to the detection of TLR4-SI on day 1 post-CPB. t-test was used to analyze continuous variables and Mann-Whitney test for comparison of non-parametric data. Categorical variables were compared using Fisher exact test. Normality was determined using D’Agostino and Pearson test. Demographic and clinical variables recognized in unadjusted comparisons as statistically significant at p-value of less than 0.1 were selected for inclusion in a logistic regression model. Data are presented as mean and 95% confidence interval (95%CI) of mean if data were normally distributed, or median and interquartile (Q25, Q75%) range if data were not normally distributed. Within group values were compared using ANOVA with repeated measure and Tukey’s multiple comparisons test, or Friedman test and Dunn’s multiple comparisons test if data were not normally distribution. Data and statistical analyses were performed using Prism 7.0 for Mac OSX (Graph Pad software, Inc) and STATISTICA 12.0 for Windows (StatSoft Inc. Oklahoma, USA). P-values less than 0.05 were considered statistically significant.

Results

Expression of TLR4 signaling intermediates in leukocytes of patients after CPB is inversely correlated with preoperative serum bilirubin levels. We conducted a prospective blinded study of a cohort of patients scheduled for elective CPB. Patient’s demographics are presented in Table 1. Patient’s leukocytes were analyzed for expression of previously described TLR4 signaling intermediates (SI), referred to as ‘TLR4-SI’, which include MMP9, AMPKα, HIF-1α and TLR4. MMP9, HIF-1α and TLR4 expression was low and AMPKα was intact in leukocytes of patients prior to or immediately after CPB (Fig. 1a, lanes 1 and 2). However, leukocytes of 31 of the 44 patients (70%) exhibited increased MMP9, HIF-1α and TLR4 expression and proteolytically cleaved AMPKα by day 1 postoperatively (Fig. 1a). A similar expression pattern was seen for up to day 4 postoperatively (Fig. 1a).

Next, patient’s demographics, clinical parameters, and blood chemistries were all analyzed with respect to the expression of TLR4-SI postoperatively (Table 2). Patients expressing TLR4-SI had significantly higher (p = 0.028) body surface area (BSA) (Fig. 1b), but not body mass index (BMI). Patient’s gender, BSA and BMI are presented in Supplementary Table 1. In addition, patients expressing TLR4-SI had significantly lower (p = 0.003) bilirubin (Fig. 1c) and insulin (p = 0.041) than those without TLR4-SI. Those factors showing a bivariate association with the dependent variable, i.e., TLR4-SI at p < 0.1, were entered into a multivariate logistic regression model. Detection of TLR4-SI was independently associated with decreased levels of total bilirubin [OR 0.02; 95%CI 0.01, 0.55] and increased body surface area [OR, 43.41; 95%CI 1.15, 162.60].

Biliverdin reductase A (BVRA), the enzyme that reduces biliverdin to bilirubin, is ubiquitously expressed. BVRA expression in CPB patients leukocytes obtained on the morning of the surgery varied among patients (Fig. 1d). Strikingly, BVRA expression in leukocytes of patients who did not express TLR4-SI postoperatively was in general higher than in leukocytes of patients who expressed TLR4-SI postoperatively (see Supplementary Table 1 for patient’s demographics). In addition, whereas TLR4-SI expression postoperatively increased, BVRA expression transiently decreased (Fig. 1e). Preoperative BVRA expression levels and/or presence of TLR4-SI postoperatively did not correlate with patient’s intensive care unit length of stay and/or time to discharge.

Table 1. Cardiopulmonary bypass (CPB) patient’s demographics and blood chemistries. Data are presented as mean and 95% confidence interval (95%CI) of mean, or as median and interquartile (Q25, Q75%) range, indicated by *p*. BMI (body mass index), BSA (body surface area), HbA1C (Hemoglobin A1C), AST (aspartate transaminase), ALT (alanine transaminase), HDL (high density lipoprotein), LDL (low density lipoprotein).

Patients*	44
Sex (M)	26
Age (y)	69 (66, 73)
BMI (kg/m²)	30 (29, 32)
BSA (m²)	2 (1.9, 2.1)
HbA1C (%)	5.8 (5.7, 5.9)
Fasting glucose (mg/dL)*	110 (102, 123)
Fasting Insulin (µU/mL)*	3.8 (2.7, 4.9)
ALT (IU/L)*	21 (13, 26)
AST (IU/L)*	21 (16, 29)
Bilirubin (µmol/L)*	0.5 (0.3, 0.6)
Cholesterol (mg/dL)*	164 (148, 192)
Creatinine (mg/dL)	0.9 (0.85, 1)
HDL (mg/dL)*	50 (41, 60)
Triglyceride (mg/dL)*	108 (77, 136)
LDL (mg/dL)*	93 (77, 106)
Neutrophils constitute >60% and lymphocytes ~30% of all leukocytes in humans blood. Naïve T and B cells are less responsive to LPS than neutrophils. Analyses of leukocytes and neutrophils from three randomly selected CPB patients showed that the transient decline in BVRA expression seen in leukocytes was reproduced in neutrophils (Fig. 1f,g). Together, the data established that postoperative TLR4-SI expression in CPB patient’s leukocytes/neutrophils was inversely associated with both preoperative serum bilirubin and BVRA expression, suggesting that biliverdin/BVRA may counter-regulate TLR4 signaling.

Biliverdin activates mTORC2 and AMPK signaling in leukocytes. To clarify the role of biliverdin relative to TLR4 signaling in leukocytes, we first characterized the biliverdin/BVRA signaling pathway in these cells. Biliverdin and LPS activated dissimilar SI (Fig. 2). LPS did, but biliverdin did not induce S6K1 phosphorylation at Ser389 (Fig. 2a), the target of functional mTORC1. In addition, as previously reported, LPS triggered Akt phosphorylation at Thr308, but not Ser473 (Fig. 2a), the mTORC2-dependent phosphorylation site. In contrast, biliverdin induced Akt phosphorylation at Ser473 (Fig. 2a). Together, the data suggested that whereas TLR4 activates mTORC1, biliverdin/BVRA activates mTORC2.

AMPK α cleavage is a hallmark of LPS/TLR4 signaling in human leukocytes. In contrast, biliverdin induced AMPK α phosphorylation at Thr172 (Fig. 2b). Two kinases, LKB1 and Ca 2+/calmodulin-dependent kinase β (CaMKKβ), phosphorylate AMPK α at Thr172. Activated LKB1 is phosphorylated at Ser431 whereas CaMKKβ autophosphorylates at Thr286. Though both LKB1 and CaMKKβ where detected in...
leukocytes, biliverdin induced only LKB1 Ser431 phosphorylation (Fig. 2b). However, as reported28, biliverdin induced CaMKK3 activation in Raw264.7 cells (Supplementary Fig. 1). CaMKK3 phosphorylates endothelial nitric oxide synthase (eNOS) at Ser117728, eNOS Ser1177 phosphorylation was undetectable in biliverdin-treated leukocytes (Fig. 2b), but as reported29, was evident in biliverdin-treated Raw 264.7 cells used here as controls (Fig. 2b lane 7). Others noted differences related to NF-κB signaling in Raw264.7 versus HEK293A cells30. We also compared leukocytes’, neutrophils and mononucleated cells’ (monocytes and lymphocytes) responses to biliverdin. Reproducing the pattern seen in leukocytes, Akt Ser473, AMPKα, and TLR4 expression, AMPKα and TLR4 signaling were all detected in neutrophils but not mononucleated cells (Supplementary Fig. 2). These observations established that multiple SI implicated in mTORC2 and AMPK activation, and on the other hand, mTORC1 inhibition are associated with metformin and biliverdin signaling in leukocytes. We also compared leukocytes’, neutrophils and mononucleated cells’ (monocytes and lymphocytes) responses to biliverdin. Reproducing the pattern seen in leukocytes, Akt Ser473, AMPKα, and TLR4 expression, AMPKα and TLR4 signaling were all detected in neutrophils but not mononucleated cells (Supplementary Fig. 2). These observations established that multiple SI implicated in mTORC2 and AMPK activation, and on the other hand, mTORC1 inhibition are associated with metformin and biliverdin signaling in leukocytes.

Leukocytes are not amenable to genetic manipulations. Therefore, to further examine the role of mTORC2 relative to biliverdin signaling in leukocytes, blood samples were co-treated with biliverdin and one of three well-characterized pharmacologic response modifiers: rapamycin, an acute mTORC1 inhibitor, torin, an mTORC1 and mTORC2 inhibitor29, and GSK2334470 (GSK), an inhibitor of 3-phosphoinositde-dependent protein kinase (PDK1)41. In LPS treated leukocytes (Supplementary Fig. 3), rapamycin and torin inhibited HIF-1α expression and S6K1 phosphorylation at Ser239; GSK also inhibited Akt phosphorylation at Thr308. In marked contrast, while rapamycin and GSK had not effect, torin inhibited all biliverdin-induced responses (Fig. 2a,b). Taken together, the data established that mTORC2 is central to biliverdin signaling in leukocytes.

Table 2. Cardiopulmonary bypass (CPB) patient’s demographics, and pre-surgery clinical data and blood chemistries analyzed with respect to the expression of leukocytes TLR4 signaling intermediates on postoperative Day 1. Data are presented as mean and 95% confidence interval (95%CI) of mean, or as median and percentiles ([Q25, Q75%; marked by ()]). Data were compared using t-test or Mann-Whitney U test. A *p*-value < 0.05 was considered statistically significant.

Patients#	TLR4-SI positive	TLR4-SI negative	p value
31	31	13	
Sex (M)	18	8	
Age (y)	67.5 (63.1, 71.8)	71.9 (66.4, 77.5)	0.2
BMI (kg/m²)	30.4 (28.2, 32.6)	28.3 (25.4, 31.2)	0.3
BSA (m²)	2.0 (1.9, 2.1)	1.8 (1.7, 1.9)	<0.03
HbA1C (%)	5.8 (5.6, 5.9)	5.7 (5.5, 6.1)	0.4
Fasting glucose (mg/dL)	118 (111, 126)	111 (99, 123)	0.3
Fasting Insulin (µU/mL)*	4.0 (2.7, 4.3)	5.7 (4.0, 7.3)	0.1
ALT (IU/L)*	20 (13, 29)	22 (15, 34)	0.4
AST (IU/L)*	20 (16, 29)	23 (1, 37)	0.1
Bilirubin (µmol/L)*	0.4 (0.3, 0.5)	0.7 (0.5, 1.0)	<0.01
Cholesterol (mg/dL)*	164 (146, 204)	156 (136, 179)	0.4
Creatinine (mg/dL)	0.9 (0.8, 1.0)	0.9 (0.7, 1.3)	0.1
HDL (mg/dL)*	50 (41, 63)	45 (34, 54)	0.2
Triglyceride (mg/dL)*	107 (78, 145)	112 (80, 135)	1.0
LDL (mg/dL)	105 (90, 119)	83 (67, 100)	0.1
IL-6 (pg/ml)*	3 (1, 9)	2 (1.5)	0.7
CRP (ng/ml)*	2.9 (0.9, 3.7)	2.2 (0.5, 8.4)	0.8

Biliverdin inhibits TLR4 signaling in leukocytes via mTORC2. Next, we examined the role of biliverdin relative to TLR4 signaling in leukocytes. As demonstrated in Raw264.7 cells28, biliverdin inhibited TLR4 signaling in leukocytes in a dose-dependent manner (Fig. 3a). In LPS-treated leukocytes, the increase in MMP9 and TLR4 expression, AMPKα cleavage and Raptor dephosphorylation at Ser792 are all upstream to mTORC1. Therefore, by blocking BVRA-mTORC2 signaling, PP242 and torin, chemically distinct ATP-competitive
inhibitors of mTORC1 and mTORC2, reversed the effect of biliverdin and restored the expression pattern of SI associated with TLR4 signaling ((Fig. 3b (i)). In contrast, mTORC1 phosphorylates S6K1 at Ser389 and triggers, though indirectly, Akt phosphorylation at Thr308. Thus, since torin and PP242 blocked both BVRA-mTORC2 and TLR4-mTORC1 signaling, S6K1 and Akt phosphorylation remained suppressed in leukocytes co-treated with biliverdin and LPS ((Fig. 3b (ii)). Torin and PP242 inhibited AMPKα Thr172, LKB1 Ser431, and Akt Ser473 phosphorylation ((Fig. 2c, (iii)). The data suggested that mTORC2 plays a central role relative to biliverdin-inhibition of TLR4.

mTORC2 is a key regulator of biliverdin/BVRA intermolecular interactions. In leukocytes and neutrophils treated with LPS, SI appeared within 10–90 min. In contrast, time-course studies conducted in biliverdin-treated leukocytes (Fig. 4a) revealed co-appearance of all phosphorylated proteins studied by 60 minutes. Numerous BVRA interacting proteins were identified. This suggested the hypothesis that it may take approximately 60 min for BVRA to establish stable intermolecular interactions. Then, we sought to determine which of the SI activated in biliverdin treated leukocytes interact with endogenous BVRA. To this end, untreated and biliverdin-treated leukocytes were lysed and subjected to BVRA immunoprecipitation followed by western blotting to identify interacting proteins (Fig. 4b). Phosphorylated LKB1, AMPKα, PKCζ, Akt and mTOR were all detected in biliverdin-treated leukocyte’s co-immunoprecipitates (Fig. 4b). Torin37, but not GSK2334470, the PDK1 inhibitor, prevented all BVRA’s intermolecular interactions (Fig. 4b). A well-characterized PKCζ inhibitory peptide previously used to determine the role of PKCζ in neutrophils46 also prevented complexes formation. The data established that BVRA interacts either directly or indirectly with multiple SI in biliverdin treated leukocytes. mTORC2 and PKCζ may facilitate formation of and/or stabilize BVRA complexes once formed.

TLR4 is a negative regulator of biliverdin/BVRA signaling. Having found that biliverdin/BVRA inhibits TLR4 signaling, the inverse correlation between TLR4-SI and BVRA expression in CPB patient’s leukocytes described earlier (Fig. 1) required explanation. We hypothesized that TLR4 counter-regulates biliverdin/BVRA signaling. In line with this, we found that LPS triggered a decline in BVRA expression in leukocytes in vitro (Fig. 5a). Inverse TLR4 and BVRA expression trends were also detected in leukocytes of subjects challenged with a bolus dose (1 ng/kg) of LPS in vivo8 (Fig. 5b). As reported47, total BVRA expression remained unchanged in LPS-treated Raw 264.7 cells (Supplementary Fig. 4a). LPS also did not induce an increase in MMP9 expression, AMPKα cleavage or Raptor dephosphorylation at Ser792 in Raw264.7 cells (Supplementary Fig. 4b), establishing

Figure 2. Biliverdin activates mTORC2 and AMPK signaling in leukocytes. Healthy donor’s blood was untreated or treated in vitro. Then, leukocytes were isolated, lysed, normalized for protein content and analyzed by western blotting. (a,b) Blood was untreated (UN; lane 1), or treated for 1 hr with LPS alone (10 ng/ml; lane 2), biliverdin alone (50 μM; lane 3), or co-treated with biliverdin plus rapamycin (Rapa, 100 nM; lane 4), plus torin (50 nM; lane 5), or plus GSK2334470 (GSK, 3 μM; lane 6). In (b), lane 7, a lysate of biliverdin treated (50 μM; 1 hr) Raw 264.7 cells served as a positive control (PC). (c) Blood was untreated (UN; lane 1), or treated for 1 hr with LPS (10 ng/ml; lane 2), biliverdin (50 μM; lane 3), or metformin (10 μM; lane 4).
that LPS and biliverdin signaling in human leukocytes differ from those previously documented in Raw264.7 cells.

In an earlier study, leukocytes of subjects challenged with LPS in vivo were subjected to genome-wide transcriptome analyses. Data from that study, available through GEO Dataset GSE3284, showed that LPS-induced increase in TLR4 mRNA (Fig. 5c), and decreases in BVRA (Fig. 5d) and PKCζ mRNA expression. Consistent with the latter, LPS triggered a decrease in PKCζ protein expression in leukocytes in vitro (Fig. 5a) and in vivo (Fig. 5b). Li and Gao reported following phosphorylation by mTORC2, PKCζ was more resistant to proteosomal degradation. Therefore, it is possible that in addition to the decline in transcriptional expression, mTORC2 inhibition in LPS treated leukocytes contributed to unphosphorylated PKCζ degradation.

Heme oxygenase(s) (HO) convert heme to biliverdin, the substrate of BVRA. Two HO isoforms were described in leukocytes: HO-1 and HO-2. The level of HO-1 is resting leukocytes was below detection (Fig. 5), suggesting that biliverdin production at steady state is primarily HO-2 dependent. Consistent with this, others demonstrated
that bilirubin production in mice neuronal cells required HO-2 but not HO-1. As in macrophages, LPS triggered an increase in HO-1 expression, but not HO-2, in leukocytes in vitro and in vivo. Despite evidence that HO-1 may regulate interferon beta production in LPS treated bone-marrow derived macrophages, the role of HO-1 in leukocytes remains unclear. Furthermore, contrary to the prevailing notion that HO-1 has an anti-inflammatory function, knockout of HO-1 in mice liver and myeloid cells contributed to a decrease in mice susceptibility to diet-induced insulin resistance and inflammation. As proposed, it is possible that HO-1 drives rather than inhibits inflammation in the context of metabolic diseases.

Haptoglobin is a high-affinity heme binding protein that regulates heme availability. A recent study found that monocytes of subjects with Gilbert’s syndrome, a syndrome associated with higher than normal bilirubin levels, had significantly lower intracellular haptoglobin levels as compared to matched controls. Neutrophils synthesize and store haptoglobin in their granules and release it following activation. Leukocytes treated with LPS in vitro and in vivo exhibited elevated intracellular haptoglobin protein expression. Data from GEO Dataset GSE3284 showed that LPS also triggered an increase in haptoglobin mRNA in leukocytes in vivo. Therefore, TLR4 may deregulate biliverdin/BVRA signaling in leukocytes by suppressing expression of pathway S1 and heme availability. Our work model, summarizing both BVRA and TLR4 signaling in leukocytes, is presented in Fig. 6.

Figure 4. mTORC2 is a regulator of BVRA intermolecular interactions. (a) Healthy donor's blood was untreated (lane 1) or treated with biliverdin (50 μM; lane 2–6) for the indicated times. Leukocytes were isolated, lysed, normalized for protein content and analyzed by western blotting. (b) Healthy donor's blood was untreated (UN; lane 1) or treated for 1 hour with biliverdin alone (50 μM; lane 2), biliverdin plus torin (50 nM; lane 3), plus PKCo inhibitory peptide (PKCo-P) (10 μM; lane 4), or plus GSK2334470 (GSK, 3 μM; lane 5). Leukocytes were isolated and lysed. Lysate containing equal total protein amounts (Total) were analyzed by western blotting or were subjected to BVRA-immunoprecipitation (IP). BVRA co-immunoprecipitated proteins were detected by western blotting.
Expression of BVRA signaling intermediates in T2D patient's leukocytes. Then, we sought to explore whether our findings had clinical correlates. We reported that leukocytes of patients with T2D expressed TLR4-SI9. Here, using TLR4 as a surrogate for TLR4-SI expression, leukocytes of a previously described cohort of patients without or with T2D10 were analyzed for BVRA, PKCζ and haptoglobin expression (Fig. 7). Reproducing the pattern seen in LPS-treated leukocytes (Fig. 5), leukocytes of patients with T2D exhibited reduced BVRA and PKCζ and increased haptoglobin expression. Consistent with increased HO-1 expression in liver and visceral fat of obese, insulin resistant subjects 52, leukocytes of patients with T2D exhibited elevated HO-1 expression. Collectively, the data suggested that biliverdin/BVRA signaling is deregulated in T2D patient's leukocytes.

Discussion
Leukocytes form the first line of defense against invading microorganisms. In humans, minute LPS concentrations and multiple endogenous ligands that are produced by damaged tissues activate leukocyte’s TLR4. Since activated leukocytes may cause severe damage to hosts, we hypothesized existence of physiological mechanisms that prevent unwarranted TLR4 activation, and furthermore, that failure of these mechanisms may contribute to chronic, low-grade inflammatory diseases. We recently reported that insulin is a TLR4-signaling regulator/inhibitor in leukocytes10. In this study, analyses of CPB patient leukocytes and leukocytes exposed to LPS in vitro and in vivo uncovered an additional TLR4 regulatory mechanism that is controlled by biliverdin and BVRA. We found that biliverdin/BVRA inhibits TLR4 signaling using multiple SI, including PKCζ, LKB1, AMPK, TSC1/2 and Akt. We conclude that mTORC2, but not mTORC1, is central to biliverdin/BVRA signaling in human leukocytes. Two observations support this conclusion: (i) biliverdin induced Akt phosphorylation at Thr473, the mTORC2 phosphorylation site18,23, but failed to induce S6K1 phosphorylation at Ser389, the mTORC1 phosphorylation

Figure 5. TLR4 is a negative regulator of biliverdin/BVRA signaling. (a) Healthy donor’s blood was untreated (lane 1) or treated with LPS (10 ng/ml) for the indicated times (lanes 2–7). Leukocytes were isolated and analyzed. Abbreviations are: Heme oxygenase 1, HO-1; Heme oxygenase 2, HO-2; Haptoglobin, Hapto. (b) In an earlier study9, subjects were administered LPS (1 ng/kg) in vivo and blood was drawn at the indicated times post LPS infusion. Leukocyte lysates available from that study were normalized for protein content and analyzed by western blotting. (c–f) In another prior study9, leukocytes from four subjects administered LPS in vivo were analyzed for changes in gene expression over a period of 24 hours post LPS infusion. Data from that study9, available through GEO dataset GSE3284, revealed a temporal (c) increase in TLR4 mRNA, (d) decline in BVRA mRNA, (e) decrease in PKCζ mRNA (f) increase in haptoglobin mRNA expression. In (c–f) each symbol represents a subject. (g) At time 0 (hr) healthy donor’s blood was untreated (UN; lane 1), treated for 1 hour with biliverdin (Bili 0 hr; 50 μM; lane 2), treated for 4 hours with LPS (10 ng/ml; lanes 4–6) to trigger a decline in BVRA expression, or for 1 hour with metformin (Met; 10 μM; lane 7). Four hours later (time 4 hr) blood samples were treated for 1 hour with biliverdin (Bili 4 hr; 50 μM; lane 3) or metformin (Met 4 hr; 10 μM; lane 8). Samples pretreated with LPS for 4 hours (lanes 4–6), were then treated for 1 hr with biliverdin (Bili; 50 μM; lane 5) or metformin (Met; 10 μM; lane 6). Leukocytes were isolated and analyzed by western blotting.
Figure 6. Our working model for biliverdin/BVRA and TLR4 signaling in leukocytes. Biliverdin induced responses are shown in black. Biliverdin acts on BVRA. Our data suggest that biliverdin facilitates formation of BVRA signaling complex(s) that include mTORC2. mTORC2 induces phosphorylation of two targets: PKCζ at Thr410 and Akt at Ser473. PKCζ is involved in LKB1 Ser431 and AMPKα Thr172 phosphorylation. AMPK phosphorylates TSC1/2 at Ser1387 and Raptor at Ser792. Therefore, BVRA activation may contribute to mTORC1 inhibition via two SI: phosphorylated Raptor, which inhibits mTORC1 complex formation, and TSC1/2 mediated inhibition of mTORC1 activity. Because mTORC1 is central to TLR4 signaling in leukocytes, BVRA inhibition of mTORC1 suppresses TLR4. Pharmacological inhibitors are shown in blue. Torin and PP242, but not rapamycin, inhibited BVRA-mediated protein-protein interactions. TLR4 induced response are shown in red. Once activated, TLR4 down-regulates BVRA and PKCζ expression (dashed lines). TLR4 upregulates expression of MMP9, which then triggers AMPKα cleavage (dashed line), leading to Raptor Ser792 dephosphorylation. This enables mTORC1 activation, which then triggers an increase in HIF-1α expression and S6K1 phosphorylation at Thr389. TLR4 also triggers an increase in haptoglobin expression, thus limiting heme availability. Using these parallel mechanisms TLR4 ensures biliverdin/BVRA and mTORC2 signaling inhibition, and on the other hand, mTORC1 activation.

Figure 7. Expression of BVRA signaling intermediates in T2D patient's leukocytes. Leukocytes obtained from a previously described cohort of patients without diabetes (N) or with T2D (O) were isolated and analyzed by western blotting. (O), obese patients (BMI > 30). *A healthy control sample used multiple times.
site, and (ii) torin and PP242, which act on mTORC1 and mTORC2, suppressed responses to biliverdin, whereas rapamycin, which under acute conditions inhibits only mTORC1, did not. These findings are significant since they demonstrate that bilirubin/BVRA inhibits TLR4/mTORC1 signaling in leukocytes via mTORC2. A similar mechanism may prevent TLR4 activation at steady state.

It is interesting to compare the mechanisms by which insulin and biliverdin/BVRA inhibit TLR4 signaling in leukocytes. Contrasting biliverdin/BVRA signaling dependence on mTORC2, insulin signaling in leukocytes, and in general, involves both mTORC1 and mTORC2 activation. Consequently, whereas PKCζ-LKB1-AMPK-TSC1/2 inhibited mTORC1 in the context of biliverdin/BVRA signaling in leukocytes, insulin suppressed TLR4 signaling via mTORC2-Akt Ser473 and Foxo1/3 without LKB1-AMPK-TSC1/2 involvement. These data demonstrate that mTORC2 can engage distinct SI subsets to inhibit TLR4. Whereas the insulin and biliverdin/BVRA signaling pathways that converge on mTORC1 differ, we noted striking mechanistic similarities between biliverdin/BVRA and metformin signaling in leukocytes. As one of the oldest and most commonly used drugs for treating type 2 diabetes, metformin’s mechanism of action has been studied extensively. In general, metformin activates LKB1-AMPK-TSC1/2 signaling. Our data now demonstrate that both metformin and biliverdin use mTORC2 to inhibit mTORC1. How biliverdin/BVRA activates mTORC2 remains unanswered.

Maines and colleagues suggested that BVRA acts as a scaffold that supports oligomers formation. Our data support this possibility and suggest that in leukocytes, BVRA facilitates formation of signaling complexes that include mTORC2 and its signaling targets.

Earlier studies have focused on the possibility that bilirubin and biliverdin act primarily as antioxidants and may reduce oxidative stress damage by suppressing intracellular oxides levels. Consistent with this possibility, a recent study demonstrated an increase in oxidative stress indicators in BVRA KO mice. Others reported that bilirubin is a ligand of PPARα, a regulator of lipid metabolism in mice. On the other hand, BVRA was implicated in insulin, IGF-1 and TNF-α signaling. In IGF-1 treated HEK293 cells, recombinant BVRA co-immunoprecipitated with Akt1, Akt2 and PDK1 and facilitated Akt phosphorylation at Thr308, the PDK1 phosphorylation site. BVRA also interacted with PKCδ co-immunoprecipitated with Akt1, Akt2 and PDK1 and facilitated Akt phosphorylation at Thr308, the PDK1 phosphorylation site. BVRA also interacted with PKCδ in this model cell system. However, in TNFα treated HEK293 cells, BVRA regulated PKCζ. Of these, only PKCζ activation was reproduced in biliverdin-treated leukocytes. Consistent with our findings, Wegiel and colleagues reported that biliverdin triggered TLR4 signaling inhibition in Raw 264.7 cells. However, the TLR4 inhibitory mechanism in Raw 264.7 cells involved endothelial nitric oxide synthase (eNOS) activation by CaMKKβ and increased nitric oxide generation. Although we observed similar biliverdin-induced responses in Raw264.7 cells, i.e., eNOS and CaMKKβ activation, biliverdin did not induce CaMKKβ-eNOS signaling in leukocytes, neutrophils or mononucleated cells. The data establish the existence of cell-type specific biliverdin/BVRA signaling mechanism(s), and identify a novel biliverdin/BVRA signaling pathway in leukocytes.

Prior clinical and epidemiologic studies found that low serum bilirubin levels were associated with increased risk of pre-diabetes, T2D, metabolic syndrome, as well as stroke. Low serum bilirubin were also shown to correlate with higher C reactive protein levels in patients with T2D and impaired glucose tolerance. It is also known that patients with Gilbert’s syndrome, a syndrome associated with higher than normal bilirubin, have in general a lower incidence of coronary heart disease and arteriosclerosis. Together, these clinical studies suggested that whereas high bilirubin levels are health beneficial, low bilirubin levels could be detrimental to health. We hypothesize that higher bilirubin levels are associated with decreased risk for human diseases, and vice versa, since these levels reflect, at least in part, how well the biliverdin/BVRA signaling network operates. When fully functional, biliverdin/BVRA may contribute to higher serum bilirubin levels and at the same time suppress TLR4 signaling in leukocytes.

Notably, our data are first to show that activated TLR4 can counter-regulate BVRA signaling. One of the key biliverdin/BVRA signaling components targeted by TLR4 is BVRA itself. TLR4 may also disrupt biliverdin/BVRA signaling by reducing AMPKα/AMPK, PKCζ, and heme availability. Significantly, leukocytes of patients with T2D expressed low BVRA and PKCζ levels and elevated haptoglobin, reproducing the expression pattern seen in LPS treated leukocytes. Compared to untreated leukocytes, LPS-treated leukocytes with reduced BVRA expression were less responsive to biliverdin. Higher BVRA expression may enhance leukocyte’s resistance to stressors that act on TLR4, or in other words, that biliverdin/BVRA impact leukocyte’s activation threshold. Our data suggest that activated TLR4 deregulates this safety mechanism.

In summary, we discovered a novel TLR4 and biliverdin/BVRA counter regulatory mechanism that controls TLR4 activation in human leukocytes. Furthermore, our data suggest that the balance between TLR4 and biliverdin/BVRA signaling in leukocytes of patients with T2D is deregulated and chronically shifted in favor of TLR4. A fully functional biliverdin/BVRA signaling network may, in general, suppress unwarranted TLR4 signaling, whereas suboptimal network activity may fail to prevent TLR4 activation thus contributing to non-resolving chronic low-grade inflammation.

References
1. Duncan, B. B. et al. Low-grade systemic inflammation and the development of type 2 diabetes: the atherosclerosis risk in communities study. Diabetes 52, 1799–1805 (2003).
2. Gregor, M. F. & Hotamisligil, G. S. Inflammatory mechanisms in obesity. Annu Rev Immunol 29, 415–445 (2011).
3. Rakoff-Nahoum, S. & Medzhitov, R. Toll-like receptors and cancer. Nat Rev Cancer 9, 57–63 (2009).
4. Saltiel, A. R., & Olefsky, J. M. Inflammatory mechanisms linking obesity and metabolic disease. J Clin Invest 127, 1–4, https://doi.org/10.1172/JCI90203 (2017).
5. Suffredini, A. F., Hochstein, H. D. & McMahon, F. G. Dose-related inflammatory effects of intravenous endotoxin in humans: evaluation of a new clinical lot of Escherichia coli O113 endotoxin. J Infect Dis 179, 1272–1282 (1999).
6. Lowry, S. F. Human endotoxemia: a model for mechanistic insight and therapeutic targeting. Shock 24(Suppl 1), 94–100 (2005).
7. Calvano, S. E. et al. A network-based analysis of systemic inflammation in humans. Nature 437, 1032–1037. Epub 2005 Aug 1031 (2005).
8. Haimovich, B. et al. Cellular Metabolic Regulators: Novel Indicators of Low-Grade Inflammation in Humans. Ann Surg (2013).
44. Miralem, T.

40. Liu, Q.

41. Najafov, A., Sommer, E. M., Axten, J. M., Deyoung, M. P. & Alessi, D. R. Characterization of GSK2334470, a novel and highly specific

42. Feldman, M. E.

30. Wegiel, B. & Otterbein, L. E. Go green: the anti-inflammatory effects of biliverdin reductase.

34. Hardie, D. G. New roles for the LKB1–

29. Chen, S., Zhou, N., Zhang, Z., Li, W. & Zhu, W. Resveratrol induces cell apoptosis in adipocytes via AMPK activation.

19. Zhang, Z., Lowry, S. F., Guarente, L. & Haimovich, B. Roles of SIRT1 in the acute and restorative phases following induction of

13. Inoki, K., Zhu, T. & Guan, K. L. TSC2 mediates cellular energy response to control cell growth and survival. Cell 115, 577–590 (2003).

Inoki, K., Li, Y., Xu, T. & Guan, K. L. Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev 17, 1839–1844, https://doi.org/10.1101/gad.111003 (2003).

Van den Steen, P. E. et al. Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9). Crit Rev Biochem Mol Biol 37, 375–536 (2002).

Pearson, R. B. et al. Phosphorylation of the protein kinase mutated in Peutz-Jeghers cancer syndrome, LKB1/STK11, at Ser431 by p90(RSK) and CAMP-dependent protein kinase, but not its farnesylation at Cys(433), is essential for LKB1 to suppress cell growth. The Journal of biological chemistry 276, 19469–19482, https://doi.org/10.1074/jbc.M009953200 (2001).

Thiel, G., Czernik, A. J., Gorelick, F., Nairn, A. C. & Greengard, P. Ca2+/calmodulin-dependent protein kinase II: identification of threonine-286 as the autophosphorylation site in the alpha subunit associated with the generation of Ca2+/calmodulin-dependent activity. Proc Natl Acad Sci USA 85, 6337–6341 (1988).

Wegiel, B. et al. Biliverdin inhibits Toll-like receptor-4 (TLR4) expression through nitric oxide-dependent nuclear translocation of biliverdin reductase. Proc Natl Acad Sci USA 108, 18849–18854, https://doi.org/10.1073/pnas.1108571108 (2011).

Chen, S., Zhou, N., Zhang, Z., Li, W. & Zhu, W. Resveratrol induces cell apoptosis in adipocytes via AMPK activation. Biochem Biophys Res Commun 457, 608–613, https://doi.org/10.1016/j.bbrc.2015.01.034 (2015).

Wegiel, B. & Otterbein, L. E. Go green: the anti-inflammatory effects of biliverdin reductase. Front Pharmacol 3, 47, https://doi.org/10.3389/fphar.2012.00047 (2012).

Shaw, R. J. et al. The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 310, 1642–1646 (2005).

Yang, J. & Holman, G. D. Long-term metformin treatment stimulates cardiomyocyte glucose transport through an AMP-activated protein kinase-dependent reduction in GLUT4 endocytosis. Endocrinology 147, 2728–2736, https://doi.org/10.1210/en.2005.1433 (2006).

Howell, J. J. et al. Metformin Inhibits Hepatic mTORC1 Signaling via Dose-Dependent Mechanisms Involving AMPK and the TSC Complex. Cell Metab 25, 463–471, https://doi.org/10.1016/j.cmet.2012.03.009 (2017).

Hardie, D. G. New roles for the LKB1–AMPK pathway. Curr Opin Cell Biol 17, 167–173, https://doi.org/10.1016/j.jcb.2005.01.006 (2005).

Huang, J. & Manning, B. D. The TSC1–TSC2 complex: a molecular switchboard controlling cell growth. Biochem J 412, 179–190, https://doi.org/10.1042/BJ20080281 (2008).

Potter, C. J., Pedraza, L. G. & Xu, T. Akt regulates growth by directly phosphorylating Tsc2. Nat Cell Biol 4, 658–665, https://doi.org/10.1038/nclb8440 (2002).

Xie, Z., Dong, Y., Scholz, R., Neumann, D. & Zou, M. H. Phosphorylation of LKB1 at serine 428 by protein kinase C-zeta is required for metformin-enhanced activation of the AMP-activated protein kinase in endothelial cells. Circulation 117, 952–962, https://doi.org/10.1161/CIRCULATIONAHA.107.744909 (2008).

Li, X. & Gao, T. mTORC2 phosphorylates protein kinase Czeta to regulate its stability and activity. EMBO Rep 15, 191–198, https://doi.org/10.1002/embr.2013338119 (2014).

Soliman, G. A. et al. mTOR Ser-2481 autophosphorylation monitors mTORC-specific catalytic activity and clarifies rapamycin mechanism of action. The Journal of biological chemistry 285, 7866–7878, https://doi.org/10.1074/jbc.M109.096222 (2010).

Liu, Q. et al. Discovery of 1-[(4-(4-propionylpiperazin-1-yl)-3-(trifluoromethyl)phenyl)-9-(quinolin-3-yl)benz o[h][1,6] naphthyridin-2(1H)]one as a highly potent, selective mammalian target of rapamycin (mTOR) inhibitor for the treatment of cancer. J Med Chem 53, 7146–7155, https://doi.org/10.1021/jm101144f (2010).

Najafov, A., Sommer, E. M., Axten, J. M., Deyoung, M. P. & Alessi, D. R. Characterization of GSK2334470, a novel and highly specific inhibitor of PDK1. Biochem J 433, 357–369, https://doi.org/10.1042/Bj20101732 (2011).

Feldman, M. E. et al. Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2. PLoS Biol 7, e88, https://doi.org/10.1371/journal.pbio.0050038 (2009).

Lerner-Marmarosh, N., Miralem, T., Gibbs, P. E. & Maines, M. D. Regulation of TNF-alpha-activated PKC-zeta signaling by the human lipin reductase: identification of activating and inhibitory domains of the reductase. FASEB J 21, 3949–3962, https://doi.org/10.1096/fj.07-8544com (2007).

Miralem, T. et al. Interaction of human lipin reductase with Akt/protein kinase B and phosphatidylinositol-dependent kinase 1 regulates glycolen synthase kinase 3 activity: a novel mechanism of Akt activation. FASEB J 30, 2926–2944, https://doi.org/10.1096/fj.2016033000R (2016).

Kapitulnik, J. & Maines, M. D. Pleiotropic functions of lipin reductase: cellular signaling and generation of cytotoxic and cytoxic bile salts. Trends Pharmacol Sci 30, 129–137, https://doi.org/10.1016/j.tips.2008.12.003 (2009).
46. Laudanna, C., Mochly-Rosen, D., Liron, T., Constantin, G. & Butcher, E. Evidence of zeta protein kinase C involvement in polymorphonuclear neutrophil integrin-dependent adhesion and chemotaxis. *The Journal of biological chemistry* **273**, 30306–30315 (1998).
47. Wegiel, B. *et al*. Cell surface biliverdin reductase mediates biliverdin-induced anti-inflammatory effects via phosphatidylidylinositol 3-kinase and Akt. *The Journal of biological chemistry* **284**, 21369–21378, https://doi.org/10.1074/jbc.M109.027433 (2009).
48. Chen, J., Tu, Y., Moon, C., Nagata, E. & Ronnett, G. V. Heme oxygenase-1 and heme oxygenase-2 have distinct roles in the proliferation and survival of olfactory receptor neurons mediated by cGMP and bilirubin. *J Neurochem* **85**, 1247–1261 (2003).
49. Rushworth, S. A., Chen, X. L., Mackman, N., Ogborne, R. M. & O'Connell, M. A. Lipoxygenase-derived heme oxygenase-1 expression in human monocytic cells is mediated via Nrf2 and protein kinase C. *J Immunol* **175**, 4408–4415 (2005).
50. Mitterstiller, A. M. *et al*. Heme oxygenase 1 controls early innate immune response of macrophages to Salmonella Typhimurium infection. *Cell Microbiol* **18**, 1374–1389, https://doi.org/10.1111/cmi.12578 (2016).
51. Tsima, S., Victoratos, P., Kranidioti, K., Alexiou, M. & Kollidas, G. Myeloid heme oxygenase-1 regulates innate immunity and autoimmunity by modulating IFN-beta production. *J Exp Med* **206**, 1167–1179, https://doi.org/10.1084/jem.20081582 (2009).
52. Jais, A. *et al*. Heme oxygenase-1 drives metaflammation and insulin resistance in mouse and man. *Cell* **158**, 25–40, https://doi.org/10.1016/j.cell.2014.04.043 (2014).
53. Molter, C. *et al*. Characteristics of the heme catabolic pathway in mild unconjugated hyperbilirubinemia and their associations with inflammation and disease prevention. *Sci Rep* **7**, 7, 755, https://doi.org/10.1038/s41598-017-00933-y (2017).
54. Theilgaard-Monch, K. *et al*. Haptoglobin is synthesized during granulocyte differentiation, stored in specific granules, and released by neutrophils in response to activation. *Blood* **108**, 353–361, https://doi.org/10.1182/blood-2005-09-3890 (2006).
55. Sarbassov, D. D., Guertin, D. A., Ali, S. M. & Sabatini, D. M. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. *Science* **307**, 1098–1101, https://doi.org/10.1126/science.1106148 (2005).
56. Whithy, F. G., Phillips, J. D., Hill, C. F., McCoubrey, W. & Maines, M. D. Crystal structure of a biliverdin IXalpha reductase enzyme-cofactor complex. *J Mol Biol* **319**, 1199–1210, https://doi.org/10.1016/j.jmb.2002.06.038.3-2 (2002).
57. Stocker, R., Yamamoto, Y., McDonagh, A. F., Glazer, A. N. & Ames, B. N. Bilirubin is an antioxidant of possible physiological importance. *Science* **235**, 1043–1046 (1987).
58. Jansen, T. *et al*. Conversion of biliverdin to bilirubin by biliverdin reductase contributes to endothelial cell protection by heme oxygenase-1 evidence for direct and indirect antioxidant actions of bilirubin. *J Mol Cell Cardiol* **49**, 186–195, https://doi.org/10.1016/j.yjmcc.2010.04.011 (2010).
59. Chen, W. *et al*. Absence of the biliverdin reductase-a gene is associated with increased endogenous oxidative stress. *Free Radical Biology and Medicine* **115**, 156–165 (2018).
60. Stec, D. E. *et al*. Bilirubin Binding to PPARalpha Inhibits Lipid Accumulation. *PLoS One* **11**, e0133427, https://doi.org/10.1371/journal.pone.0133427 (2016).
61. Nano, J. *et al*. Association of circulating total bilirubin with the metabolic syndrome and type 2 diabetes: A systematic review and meta-analysis of observational evidence. *Diabetes Metab*. https://doi.org/10.1016/j.diabet.2016.06.002 (2016).
62. Oda, E. Cross-Sectional and Longitudinal Associations between Serum Bilirubin and Prediabetes in a Health Screening Population. *Can J Diabetes* **40**, 270–275, https://doi.org/10.1016/j.jcjd.2016.01.001 (2016).
63. Perlstein, T. S., Pande, R. L., Creager, M. A., Weuve, J. & Beckman, J. A. Serum total bilirubin level, prevalent stroke, and stroke outcomes: NHANES 1999–2004. *Am J Med* **121**, 781–788, e781, https://doi.org/10.1016/j.amjmed.2008.03.045 (2008).
64. Vitk, L. The role of bilirubin in diabetes, metabolic syndrome, and cardiovascular diseases. *Front Pharmacol* **3**, 55, https://doi.org/10.3389/fphar.2012.00053 (2012).
65. Cheriyath, P. *et al*. High Total Bilirubin as a Protective Factor for Diabetes Mellitus: An Analysis of NHANES Data From 1999–2006. *J Clin Med Res* **2**, 201–206, https://doi.org/10.4021/jocrr245w (2010).
66. Zheng, J. *et al*. Low Serum Total Bilirubin Concentration Was Associated with Increased High Sensitive C Reactive Protein Level in Patients with Impaired Glucose Tolerance and Type 2 Diabetes Mellitus Subjects. *Clin Lab* **62**, 901–907 (2016).
67. Bulmer, A. C., Blanchfield, J. T., Toth, I., Fassett, R. G. & Coombes, J. S. Improved resistance to serum oxidation in Gilbert's syndrome: a mechanism for cardiovascular protection. *Atherosclerosis* **199**, 390–396, https://doi.org/10.1016/j.atherosclerosis.2007.11.022 (2008).