Loop condensation in the triangular lattice quantum dimer model

C M Herdman1,2,4 and K B Whaley1,3

1 Berkeley Center for Quantum Information and Computation, University of California, Berkeley, CA 94720, USA
2 Department of Physics, University of California, Berkeley, CA 94720, USA
3 Department of Chemistry, University of California, Berkeley, CA 94720, USA
E-mail: herdman@berkeley.edu

New Journal of Physics 13 (2011) 085001 (21pp)
Received 19 February 2011
Published 3 August 2011
Online at http://www.njp.org/
doi:10.1088/1367-2630/13/8/085001

Abstract. We study the mechanism of loop condensation in the quantum dimer model (QDM) on the triangular lattice. The triangular lattice QDM displays a topologically ordered quantum liquid phase in addition to conventionally ordered phases with broken symmetry. In the context of systems with extended loop-like degrees of freedom, the formation of such topological order can be described in terms of loop condensation. Using Monte Carlo calculations with local and directed-loop updates, we compute the geometric properties of the transition graph loop distributions of several triangular lattice quantum dimer wavefunctions that display dimer–liquid to dimer–crystal transitions and characterize these in terms of loop condensation.

4 Author to whom any correspondence should be addressed.
Contents

1. Introduction 2
2. The quantum dimer model on the triangular lattice 3
3. Loop condensation 5
4. Loop order in quantum dimer models 6
5. The dimer liquid at the RK point 7
6. Loop order in dimer crystal phases 9
7. Interacting dimer loop liquid 12
8. d-Isotopic quantum loop gas in the triangular lattice quantum dimer model 15
9. Off-diagonal loop operators in the triangular lattice quantum dimer model 17
10. Conclusions 18
Acknowledgments 18
Appendix. The directed-loop algorithm in the interacting dimer model 18
References 20

1. Introduction

Quantum dimer models (QDMs) are among the simplest lattice models known to display exotic quantum phases [1–5]. In addition to conventional, symmetry broken dimer crystal phases, QDMs have quantum liquid phases with no local order. In particular, the QDM on the triangular lattice has been shown to possess a quantum liquid ground state with topological order [3, 6]. Unlike conventionally ordered phases, topological phases have no conventional broken symmetry and therefore cannot be distinguished by a local order parameter [7, 8]. Features of topological order include a robust topological ground state degeneracy and a gap to anyonic quasiparticle excitations. Because of these unique features, topological phases have been proposed as the basis for a physically fault-tolerant quantum computer [8–10]. Several spin and Bose–Hubbard models are known to map to QDMs [11, 12]; consequently, there have been proposals to realize triangular lattice QDMs in various experimental systems as the basis for a topologically protected qubit [13–15].

A transparent physical picture of topological order exists for lattice models with loop degrees of freedom. Such quantum loop model models are known to possess topologically ordered phases [10, 16–19], and the formation of topological order can be described in terms of loop condensation. In the loop condensation picture, the creation of topological order coincides with the formation of fluctuating loops on all length scales. While the microscopic degrees of freedom in QDMs are non-overlapping dimers, QDMs can be mapped to closed loop models [20,21]. In this paper, we use the mapping of QDMs to closed loop models as a tool to analyze the phases of the triangular lattice QDM. In particular, we consider the geometric properties of the loop distribution to understand the loop nature of the liquid and crystalline phases of the QDM.

The structure of this paper is the following: first we review the triangular lattice QDM and the concept of loop condensation and topological order in sections 2 and 3. We then introduce the loop mapping of the QDM in section 4. The main results of this paper are then presented: we
study several wavefunctions that are representative of phases of the triangular lattice QDM and capture transitions from the dimer liquid to dimer crystal phases. Using Monte Carlo sampling of these wavefunctions with local and directed-loop updates, we investigate the loop nature of these phases in sections 5–9. This allows us to characterize the loop properties of the liquid and crystalline phases of the triangular lattice QDM.

2. The quantum dimer model on the triangular lattice

First we briefly review the QDM on the triangular lattice. In a hard-core dimer model, the degrees of freedom are dimers that live on the links of a lattice, and the hard-core constraint forbids more than a single dimer from touching each vertex. The QDM was first introduced on the square lattice by Rokhsar and Kivelson [1] and later generalized to the triangular lattice by Moessner and Sondhi [3]. The Hilbert space of the QDM comprises fully packed, non-colliding dimer coverings of a lattice, where all dimerizations are by definition orthogonal. The only way to rearrange dimers in a fully packed dimerization without violating the hard-core constraint is to flip dimers around a closed loop on the links of the lattice, where the links in the loop are alternately occupied and unoccupied by dimers. Consequently, the minimal quantum dynamics give a resonance between the two orientations of dimers around a ‘flippable’ plaquette. On the triangular lattice a flippable plaquette is defined as a length 4-rhombus lattice containing two parallel dimers. The canonical QDM Hamiltonian on the triangular lattice [1, 3] is

$$H_{RK} \equiv \sum_p \left(-t(|\mathcal{S}|\langle \mathcal{S} | + \text{h.c.}) + v(|\mathcal{S}|\langle \mathcal{S} | + |\mathcal{N}|\langle \mathcal{N} |). \right) \tag{1}$$

In (1), the sum is over all rhombus plaquettes labeled by p, including all three orientations, and $|\mathcal{S}|$ and $|\mathcal{N}|$ represent the two possible flippable dimer configurations around p. The t term gives the dimers kinetic energy, and the v term represents an interaction between parallel dimers. In this work, we will only consider $t > 0$.

These local dynamics are not ergodic over all dimer configurations and consequently split the Hilbert space into topological sectors that are defined by quasi-ergodicity of the local dynamics. This means that on the triangular lattice there is a finite number of topological sectors, within which the plaquette flip dynamics are ergodic [3]. On a lattice with periodic boundary conditions, one can also classify topological sectors by the parity of the number of dimers crossing a closed loop that passes through the faces of the plaquettes and encircles the lattice; a plaquette flip conserves this parity. On a torus, there are four such parity sectors, two for each of the directions around the lattice. However, there also exist a finite number of symmetry-related ‘staggered’ configurations with no flippable plaquettes, which are frozen under plaquette flip dynamics; it is believed that plaquette flips are ergodic in each parity sector excluding these staggered configurations [3]. We label these parity winding sectors as (E, E), (E, O), (O, E) and (O, O), where E and O represent the even and odd parity sectors, respectively.

At the point $v = t$, the so-called RK point, the exact zero-energy ground state of H_{RK} is the equal superposition of all dimerizations:

$$|\text{RK}\rangle = \sum_C |C\rangle, \tag{2}$$

where the sum in equation (2) is taken over all dimer configurations C in a topological sector [1]. Since the norm of $|\text{RK}\rangle$ is equal to the partition function of the corresponding classical dimer...
Figure 1. Reference dimer configurations that are representative of dimer crystals in the triangular lattice QDM. The thick red dimers represent the reference configurations, R_0. (a) A columnar configuration that defines R_{col}. (b) In the $\sqrt{12} \times \sqrt{12}$ phase dimers resonate in 12-site hexagons, colored red in this figure. The thick red dimers show the reference configuration $R_{\sqrt{12}}$.

model, expectation values of diagonal observables are identical to those of the classical dimer model. Dimer–dimer correlation functions are known to decay exponentially in the classical dimer model on the triangular lattice \[22, 23\] and so $|\text{RK}\rangle$ describes a dimer liquid phase. Additionally, imaginary-time correlation functions of equation (2) can be related to dynamic correlation functions of a Monte Carlo simulation of the classical dimer model \[24–26\]; on the triangular lattice, such calculations have shown that H_{RK} has a finite gap at the RK point \[27\]. Quantum Monte Carlo calculations by Moessner and Sondhi \[3\] and Ralko et al \[6\] demonstrate that the dimer liquid phase extends beyond the RK point for a finite range of v/t for $v < t$ and possesses Z_2 topological order. While the QDM has been related to Z_2 gauge theory in the literature, no exact mapping from the deconfined phase of a Z_2 gauge theory to the dimer liquid is known \[28, 29\].

For $v > t$, the triangular lattice QDM is in a staggered dimer crystal phase, as the staggered configurations are frozen, zero-energy ground states of H_{RK}. For $|v| \gg t$ and $v/t < 0$, states with the maximum number of flippable plaquettes are favored. The 12 symmetry-related columnar configurations (see figure 1) have the maximum number of flippable plaquettes, $N_l/6$, where N_l is the number of links in the lattice. Additionally, any configuration reached by translating dimers along any number of rows of a columnar configuration and by rotating all dimers in any number of columns of a columnar configuration generates another maximally flippable dimerization \[3\]. The authors of \[3\] and \[6\] show that quantum fluctuations favor the columnar order and that, for $v/t \lesssim -0.75$, H_{RK} has a columnar dimer crystalline ground state. The staggered and columnar phases break both translational and rotational symmetries of the lattice.

Between the columnar crystal and the dimer liquid lies a resonating dimer crystal phase with a 12-site unit cell (see figure 1) termed the $\sqrt{12} \times \sqrt{12}$ phase \[3, 6, 30\]. In this phase, dimers resonate within 24 link hexagons and most translational symmetries are broken. However, this phase retains a rotational symmetry of the lattice. Ralko et al showed that the dimer correlation functions are qualitatively reproduced by a wavefunction that is an equal superposition of all dimerizations within the hexagons \[29, 30\].

New Journal of Physics 13 (2011) 085001 (http://www.njp.org/)
3. Loop condensation

Here, we briefly review the paradigm of loop condensation in topological phases. Loop condensation has been discussed as a physical mechanism for the formation of topological order by several authors [10, 16, 17, 19]. Quantum systems with loop-like degrees of freedom may display a variety of phases. These include symmetry broken loop crystal phases for which the length of loops is peaked at a particular length scale, as well as scale-invariant loop liquid phases characterized by fluctuating loops on all length scales.

One of the simplest exactly solvable models with a quantum liquid ground state is the toric code [10]:

\[H_{TC} = -\lambda_e \sum_{v} A_v - \lambda_m \sum_{p} B_p, \quad A_v \equiv \prod_{j \in v} \sigma_j^z, \quad B_p \equiv \prod_{j \in p} \sigma_j^x. \]

Here, \{\sigma_j\} are spin-1/2 degrees of freedom that are located on the links of a square lattice on a torus. v and p label the vertices and plaquettes of the lattice. When \(\lambda_e = \lambda_m\), the ground state, \(|\Psi_{TC}\rangle\), is an eigenstate of all \(A_v\), i.e. \(A_v|\Psi_{TC}\rangle = +|\Psi_{TC}\rangle\) for all v. These eigenstates of the vertex operators \(A_v\) have 0, 2 or 4 down spins touching each vertex. The ground state subspace can be interpreted in terms of a closed loop model by choosing a reference configuration \(|R\rangle\) in the \(\sigma^z\) basis (from the subspace of +1 eigenstates of all \(A_v\)) that is defined as the empty loop state. For example, we may choose \(|R\rangle\) to be the spin polarized state, \(|\{\forall \sigma_j^z = +1\}\rangle\). Any other configuration in the \(A_v = +1\) subspace can be reached by applying a product of closed loop operators:

\[|A\rangle = \prod_{\ell \in \{\ell_A\}_R} W_\ell |R\rangle, \quad W_\ell \equiv \prod_{j \in \ell} \sigma_j^z, \]

where \(\ell\) is a closed loop along the links and \(\{\ell_A\}_R\) a closed loop covering of the square lattice. Since \(\{A_v, W_\ell\} = 0, \forall v, \{A\}\) is in the \(A_v = +1\) subspace for all \(\{\ell_A\}_R\). In this way, the closed loop covering defining \(|A\rangle\) is \(\{\ell_A\}_R\).

In general, \(\{\ell_A\}_R\) may comprise both contractible loops and non-contractible loops that wind around the torus. The winding sector \((w_1, w_2)_A\) is defined by the number of windings in \(\{\ell_A\}_R\) about the two axes of the torus. Although the plaquette term \(B_p\) causes fluctuations in these loop coverings, the parity of the winding number is conserved. The operator

\[\tilde{W}_{1,2} \equiv \prod_{j \in \tilde{c}_{1,2}} \sigma_j^z \]

measures the parity of the winding sector and commutes with \(H_{TC}\), where \(\tilde{c}_{1,2}\) are loops that pass through the faces of the plaquettes and wind about one of the axes of the torus. Therefore, the ground state subspace is divided into four topological sectors that are defined by the parity of these two winding numbers.

The ground state \(|\Psi_{TC}\rangle\) is an equal superposition of all loop coverings in a given topological sector and has fluctuating loops on all length scales. This quantum loop gas has no local order, but does possess topological order and is described by the deconfined phase of \(Z_2\) gauge theory [10]. By considering the limit \(\lambda_e \to \infty\), perturbations can drive transitions within the closed loop subspace [31]. For example, the addition of a magnetic field \(H' = -h \sum_j \sigma_j^z\) will drive a transition to a spin polarized phase: for \(h > |h_c|\) the ground state is a dilute loop crystal,
and for $h < -|h_c|$ the ground state is a fully packed loop crystal. These transitions do not involve spontaneous symmetry breaking; we can alternatively consider the effect of adding a loop interaction such as $H' = J \sum_{\langle i,j \rangle} \sigma_i^z \sigma_j^z$ which favors a rotational symmetry broken loop crystal for $J \gg \lambda_m$. We note that loop crystals need neither be dilute nor involve short loops; however, we may choose $|R\rangle$ to reflect the broken symmetries of the crystal phase, such that the resulting loop configuration will involve only short loops.

4. Loop order in quantum dimer models

A dimerization of a lattice, $|C\rangle$, can be interpreted as a closed loop covering of the lattice by superimposing it with an arbitrary reference dimerization, $|R_0\rangle$ (see figure 2) [20, 21]. The resulting doubled dimerization, $\{C : R_0\}$, known as the transition graph, has both a reference and physical dimer touching each vertex; this therefore forms closed loops on the lattice with the exception of the case where dimers in $|C\rangle$ coincide with those in $|R_0\rangle$. It is necessary to choose a convention for the definition of such coinciding dimers. Two possible interpretations of overlapping dimers are: (a) they are considered to be loops of length 2 or (b) they are defined as empty links of the transition graph. Choosing option (a) means that the transition graph is a fully packed loop covering of the lattice and the transition graph $\{R_0 : R_0\}$ comprises all length 2 loops. Choosing option (b) means that the transition graph is not fully packed and that $\{R_0 : R_0\}$ is an empty loop covering. In order to make an analogy with the definitions of loops given in equation (4), below we will generally choose the convention (b), unless otherwise noted.

Choosing a reference dimerization $|R_0\rangle$ translates a dimer configuration into a loop configuration. However, unlike the toric code, there is no reference configuration that retains all of the lattice symmetries. Therefore we are forced to choose an $|R_0\rangle$ that breaks the translational and rotational symmetries of the lattice. Certain properties of the resulting loop model will depend on this choice of a symmetry broken $|R_0\rangle$. All other dimerizations can be reached from $|R_0\rangle$ by applying a product of closed loop operators that alternately pass through the links that are occupied and unoccupied by dimers in $|R_0\rangle$:

$$|C\rangle = \prod_{\ell \in \ell(C)} W_\ell |R_0\rangle, \quad W_\ell \equiv \prod_{\langle r,s \rangle \in \ell} d_r^- d_s^+. \quad (6)$$
In equation (6), \(d^+_\ell (d^-_{\ell})\) are dimer creation (annihilation) operators and \((r, s)\) is a pair of links in \(\ell\) that meet at a vertex, which are occupied and unoccupied, respectively, by a dimer in \(|R_0\rangle\). The set \(\{\ell_C\}_{R_0}\) is simply the transition graph \(\{C : R_0\}\), where we interpret links that are occupied in both \(|C\rangle\) and \(|R_0\rangle\) as empty links in \(\{\ell_{R_0}\}\). We note that the choice of \(|R_0\rangle\) restricts the possible loop coverings such that if a loop touches a vertex, it must pass through the link occupied in \(|R_0\rangle\). This dimer-loop Hilbert space is not equivalent to the Hilbert space of all loop coverings of the lattice.

The phases of \(H_{RK}\) may now be re-interpreted as those of a loop model. \(|RK\rangle\) is the equal superposition of all loop coverings that pass through the dimers of \(|R_0\rangle\), and is therefore a loop gas. We expect the topological phase adjacent to the RK point to be described by a scale-invariant loop liquid. Static dimer crystal phases, such as the columnar and staggered phases, correspond to loop crystals with a narrow distribution of loop lengths; if \(|R_0\rangle\) is chosen to be a dimer configuration with the corresponding broken symmetry, then the loop model is in a short looped dilute phase. The loop order in the resonating \(\sqrt{12} \times \sqrt{12}\) phase is less obvious: if \(|R_0\rangle\) is chosen to be one of the dimerizations with \(\sqrt{12} \times \sqrt{12}\) order, the ideal \(\sqrt{12} \times \sqrt{12}\) state will be a dense, fluctuating short looped phase. This transition loop description of the dimer model allows us to make a connection to the loop condensation picture of topological order. A dimer crystal-to-dimer liquid transition is then described as a transition from a loop crystal to a scale-invariant loop liquid.

5. The dimer liquid at the RK point

Here, we analyze the geometric properties of the loop description of the RK wavefunction, taking this to be representative of the dimer liquid. This analysis follows an approach similar to that of Sutherland and Kohmoto–Shapir in their studies of the spin-1/2 RVB wavefunction on the square lattice [20, 21, 32–35]. To understand the loop properties of \(|RK\rangle\), we can refer to the classical \(O(n)\) loop model [36–38]. In this model, which can be solved exactly on the honeycomb lattice, configurations are closed loop coverings of the lattice, and the partition function is given by

\[
Z_{O(n)} = \sum_C K^C n^N,
\]

where \(C\) is a closed loop configuration comprising \(N\) loops of total length \(L\). In equation (7), \(K\) is the weight per length of loops and \(n\) is the loop fugacity. For \(n \leq 2\), there are two phases separated by a critical line at \(K_c = [2 + \sqrt{2 - n}]^{-1/2}\). \(K_c\) separates a dense loop phase for \(K > K_c\) and a dilute phase for \(K < K_c\). The dense phase is characterized by a power-law distribution of loop lengths, \(P_l(s) \sim s^{-p}\), where \(P_l(s)\) is the density of loops of length \(s\) [39]. Additionally, there is a large spanning loop \(\ell_M\) with fractal dimension \(D_l\), whose length scales with the system size \(L\) as \(s(\ell_M) \sim L^{D_l}\) [40]. These exponents are related by the scaling dimension \(x\):

\[
D_l = 2 - x, \quad p = 1 + \frac{2}{2 - x}.
\]

Within the dense phase, \(x\) is given by

\[
x = \frac{g}{2} - \frac{1}{2g} (g - 1)^2, \quad n = -2 \cos(\pi g)
\]
for $0 < g \leq 1$ where g is the coupling constant of the Coulomb gas description of the $O(n)$ model [38]. The $O(n)$ loop model on the triangular lattice has been studied by Knops et al and is known to possess a critical dense phase of the same universality class as that of the honeycomb lattice [41].

In the $O(1)$ model on the honeycomb lattice, $K_c = 1/\sqrt{3}$, so $K = 1$ is in the dense phase. At $K = 1$, $Z_{O(1)}$ is an equal weighted sum over all loop configurations with the critical exponents $D_t = 7/4$ and $p = 15/7$ [38, 40]. The RK wavefunction can similarly be described as equal superposition of all transition loop configurations within a topological sector, for a given choice of $|R_0\rangle$, and therefore we can relate the loop configuration at the RK point to the critical phase of the $O(1)$ model.

To calculate the loop properties of $|\text{RK}\rangle$, we choose a reference configuration $|R_0\rangle$ and then compute the distribution of loops in the transition graph, $P_{R_0}^R(C, s) = h_{R_0}^R(C, s)/L^2$, where $h_{R_0}^R(C, s)$ is the number of loops of length s in $\{C : R_0\}$ and L is the linear dimension of the lattice. We have computed the expectation value of $P_{R_0}^R$ by Monte Carlo sampling of $|\text{RK}\rangle$ using local plaquette flip updates on triangular lattices of up to $L = 192$, with $N_l = 3 \times L^2$ links.

Here we will consider two choices of reference configurations: $|R_{\text{col}}\rangle$, the columnar reference state shown by the red links in figure 1(a), and $|R_{\sqrt{12}}\rangle$, which is the configuration illustrated by the thick red links in figure 1(b) that is one of the equally weighted configurations of the ideal $\sqrt{12} \times \sqrt{12}$ crystal. In figure 3, the loop distribution $P_{R_0}(s)$ is plotted for these choices of $|R_0\rangle$. We see a clear power law over a range of length scales. The best fit power law $p = 2.12 \pm 0.01$; this is consistent with the theoretical value for the $O(1)$ model, $p = 15/7 \simeq 2.14$ [38, 39], considering the imperfect power-law behavior of P_{R_0} on lattices of these sizes. Additionally, we see that $P_{R_0}(s)$ is independent of the choice of $|R_0\rangle$ for lengths longer than about 16. We have computed the distribution of the longest loop ℓ_M, $P_{\ell_M}(s)$, and this is plotted in figure 4(a). To compute D_t at the RK point, we analyze the finite size scaling of ℓ_M.

Figure 3. Loop distribution P_{R_0} versus loop length s at the RK point on an $L = 120$ triangular lattice using reference configurations $|R_{\text{col}}\rangle$ and $|R_{\sqrt{12}}\rangle$ in the (E, E) winding sector. The line shows the fit to a power law decay.

New Journal of Physics 13 (2011) 085001 (http://www.njp.org/)
Figure 4. (a) The longest loop distribution, P_{ℓ_M}, versus loop length $s(\ell_M)$ at the RK point using reference dimerizations $|R_{\text{col}}\rangle$ and $|R_{\sqrt{12}}\rangle$, in the (E, E) winding sector on lattice size $L = 72$. (b) Finite size scaling of the expectation value of the length of the longest loop $s(\ell_M)$ at the RK point for $|R_{\text{col}}\rangle$ and $|R_{\sqrt{12}}\rangle$, in the (E, E) winding sector of lattice sizes up to $L = 192$. Error bars are smaller than the symbols shown. The line shows the fit to $s(\ell_M) \propto L^{D_f}$.

shown in figure 4(b). The best fit gives $D_f = 1.751 \pm 0.001$, which agrees with the known fractal dimension of the $O(1)$ model, $D_f = 7/4 \ [38, 40]$.

We can also characterize the loop liquid in terms of the total loop density, $\rho = L / L_M$, where $L_M = L^2$ is the maximum possible total loop length. The value $\rho = 1$ corresponds to the maximum loop density, where no dimers reside on links occupied in $|R_0\rangle$, while ρ strictly vanishes only for $|R_0\rangle$. Consequently, in crystalline phases, ρ depends on the choice of $|R_0\rangle$. At the RK point, all links are occupied with probability $1/6$, and the total loop length is twice the average number of dimers on links unoccupied in $|R_0\rangle$, which is $5/6 \times N_l / 6$. Therefore at the RK point, $\rho = 5/6$; this agrees with our numerically computed value of $\rho = 0.83333(3)$ on an $L = 120$ lattice, computed for $|R_{\text{col}}\rangle$ and $|R_{\sqrt{12}}\rangle$. The RK wavefunction can be described as a dense loop gas. We note that in this loop gas phase, both the total density and geometric properties of loops are independent of the choice of $|R_0\rangle$.

6. Loop order in dimer crystal phases

Here, we will consider the loop order in transitions from the dimer liquid at the RK point to two dimer crystals that are present in the phase diagram of the canonical QDM as defined in equation (1). To analyze these transitions, we will consider a wavefunction that interpolates between $|\text{RK}\rangle$ and a given dimer crystalline order:

$$|\Psi(z)\rangle = \frac{1}{\sqrt{Z}} \sum_C z^{N_B} |C\rangle .$$

(10)
Here we will consider two possible colorings of the triangular lattice where the red links define links that are favored by the crystalline order, to which we give weight 1, and N_B is the number of occupied black links, which are given a weight z. In equation (10), $Z \equiv \sum_C z^{N_B(C)}$, which is the partition function of a non-interacting classical dimer model where black links are given a fugacity z^2. Additionally, $|\Psi(z)\rangle$ is the zero-energy ground state of a local, stochastic matrix form $[26, 42]$ Hamiltonian that is a generalization of H_{RK}:

$$H_z \equiv \sum_{\ell} -t(|\Psi(\ell)|\langle \mathcal{S} \rangle| + h.c.) + t(z^{\Delta N_B} |\mathcal{S}\rangle|\langle \mathcal{S}| + z^{-\Delta N_B} |\mathcal{S}\rangle|\langle \mathcal{S}|$$

where $\Delta N_B \equiv N_B(\mathcal{S}) - N_B(\mathcal{S})$. For $z = 1$, $|\Psi(z = 1)\rangle$ is the RK wavefunction, and for $z = 0$, $|\Psi(z = 0)\rangle$ is an ideal dimer crystal as defined by the red links of the lattice.

As described in section 2, H_{RK} displays two crystalline phases for $v < t$, in addition to the dimer liquid phase. These crystal orders are illustrated in figure 1: the red links of figure 1(a) show one of 12 symmetry-related columnar states, and the red links of figure 1(b) are favored by the $\sqrt{12} \times \sqrt{12}$ resonating crystalline order. We will use these two colorings to define two wavefunctions described by equation (10): $|\Psi_{\text{col}}\rangle$ and $|\Psi_{\sqrt{12}}\rangle$. We will use $|R_{\text{col}}\rangle$ and $|R_{\sqrt{12}}\rangle$, respectively, as the reference configurations to define the transition loops. We have computed the loop distributions for both from a Monte Carlo sampling of these wavefunctions.

We can relate $|\Psi(z)\rangle$ to the $O(1)$ model by considering $|\Psi_{\text{col}}\rangle$. In this case, since only the occupied links in R_{col} are colored red, the total loop length $L = 2 \times N_B$, and $-\log(z)$ acts as an effective loop tension. Accordingly, we can relate z to K in the $O(1)$ model. As discussed in section 5, $z = 1$ sits in the dense phase, corresponding to the dimer liquid, and for some $z_c < 1$ we expect to cross a phase transition into the dilute loop phase, corresponding to the dimer crystal. The relationship is less direct for $|\Psi_{\sqrt{12}}\rangle$, where loop segments within the red hexagons are given unity weight, and only loop segments passing through black links are given a weight $z < 1$. However, we still expect a transition from the long loop dense phase to a short loop phase of finite loop density.

In figure 5, the left panels show the total loop density ρ, and the right panels show the expectation value of the longest loop length, $s(\ell_L)$, as a function of z, for $|\Psi_{\text{col}}\rangle$ (top) and $|\Psi_{\sqrt{12}}\rangle$ (bottom). Here we have rescaled $s(\ell_L)$ by $L^{7/4}$, where $7/4$ is the fractal dimension of the dimer liquid. In both cases, $s(\ell_L)/L^{7/4}$ remains finite for z close to 1 and vanishes for small z. Finite size scaling of $s(\ell_L)/L^{7/4}$ suggests that the corresponding phase transitions occur at $z_c^{\text{col}} \approx 0.57$ for $|\Psi_{\text{col}}\rangle$ and $z_c^{\sqrt{12}} \approx 0.53$ for $|\Psi_{\sqrt{12}}\rangle$. For $|\Psi_{\text{col}}\rangle$, ρ vanishes in the columnar phase, whereas ρ remains finite in the $\sqrt{12} \times \sqrt{12}$ phase of $|\Psi_{\sqrt{12}}\rangle$. This distinction is due to the fact that in the columnar phase, dimers are pinned to $|R_{\text{col}}\rangle$, whereas the $\sqrt{12} \times \sqrt{12}$ phase dimers resonate within the hexagons and are not pinned to $|R_{\sqrt{12}}\rangle$. The location of these transitions may be compared with the transition of the honeycomb lattice $O(1)$ model, where $K_c = 1/\sqrt{3} \approx 0.58$. Figure 6(a) shows the longest loop distributions $P_{\ell_L}(s)$ for $|\Psi_{\text{col}}\rangle$ (left) and $|\Psi_{\sqrt{12}}\rangle$ (right) for several values of z. We see that in both cases the broad distribution, which is a signature of the liquid phase, vanishes below the transition at z_c. The fractal dimension within the dimer liquid phase is plotted in figure 6(b). Deviations from $D_l = 7/4$ in the liquid phase near the transition may be due to the limitations of extrapolating the finite size scaling on lattices of these sizes.

We note that in the crystalline phases, the loop distributions depend on the choice of $|R_0\rangle$; here we have chosen reference dimerizations that reflect the known ordering in each phase. In particular, the vanishing of $s(\ell_L)/L^{D_l}$ in the crystalline phases is due to a choice of $|R_0\rangle$ that is commensurate with the order. Whereas in static crystals such as the columnar phase we may
Figure 5. Top two panels: the total loop density ρ and the longest loop length $s(\ell_M)$ for $|\Psi_{\text{col}}\rangle$. Bottom two panels: the total loop density ρ and the longest loop length $s(\ell_M)$ for $|\Psi_{\sqrt{12}}\rangle$. The solid lines are extrapolations to the thermodynamic limit. We have rescaled $s(\ell_M)$ by $L^{7/4}$ for data collapse in the liquid phase.

Figure 6. (a) The longest loop distribution P_{ℓ_M} of $|\Psi_{\text{col}}\rangle$ (left) and $|\Psi_{\sqrt{12}}\rangle$ (right) plotted for several values of z for an $L = 60$ lattice. (b) The fractal dimension D_f of $|\Psi_{\text{col}}\rangle$ and $|\Psi_{\sqrt{12}}\rangle$ in the dimer liquid phase computed from the finite size scaling of $s(\ell_M)$ with lattice sizes up to $L = 144$. The line shows the value at the RK point, $D_f = 7/4$. The accuracy of D_f is limited by the lattice sizes studied.

expect that any choice of $|R_0\rangle$ will lead to $s(\ell_M)$ scaling as L^0, L^1 or L^2, in a resonating dimer crystal such as $\sqrt{12} \times \sqrt{12}$, this is not, in general, true. In fact, we find that for an arbitrary choice of $|R_0\rangle$ the loop distribution in a resonating crystal phase may appear to be that of a liquid phase. This is illustrated in figure 7 where we have computed P_{ℓ_M} for the ideal $\sqrt{12} \times \sqrt{12}$ state.
Figure 7. The longest loop distribution P_{ℓ_M} in the ideal $\sqrt{12} \times \sqrt{12}$ crystal, $|\Psi_{\sqrt{12}}(z = 0)|$, computed for two different columnar reference configurations $|R_{\text{col}}\rangle$ and $|\tilde{R}_{\text{col}}\rangle$. In a resonating crystal phase, for some choices of $|R_0\rangle$, P_{ℓ_M} may clearly indicate crystalline order (seen by the peak at a single length scale for the choice $|\tilde{R}_{\text{col}}\rangle$), whereas for other choices (e.g. $|R_{\text{col}}\rangle$), the distribution P_{ℓ_M} may appear to be that of a liquid.

$|\Psi_{\sqrt{12}}(z = 0)|$ for two different columnar reference configurations: $|R_{\text{col}}\rangle$ (seen in figure 1(a) and $|\tilde{R}_{\text{col}}\rangle$ which is related to $|R_{\text{col}}\rangle$ by translating all dimers one link horizontally. Figure 7 shows that for $|R_{\text{col}}\rangle$, P_{ℓ_M} appears to be a liquid phase, but for $|\tilde{R}_{\text{col}}\rangle$, it is sharply peaked at a single length scale. In fact, finite size scaling of the length of ℓ_M shows that in the case of $|R_{\text{col}}\rangle$, the fractal dimension is that of the liquid phase ($D_f = 7/4$), but in the case of $|R_{\text{col}}\rangle$ $D_f = 1$, indicative of crystal order. This suggests that one may distinguish a liquid phase by computing D_f for all (in this case 12) configurations that are related by symmetry to $|R_0\rangle$, to ensure that a resonating crystalline order is not hidden by the choice of $|R_0\rangle$. However, for any symmetry broken state, if $|R_0\rangle$ is chosen to be commensurate with the broken symmetry, the length of ℓ_M will be finite.

7. Interacting dimer loop liquid

Section 6 discusses the addition of an effective loop tension to the RK dimer liquid. Here, we consider the effects of a translationally invariant dimer interaction by defining a generalization of the RK wavefunction:

$$|\Phi_\alpha\rangle = \frac{1}{\sqrt{Z}} \sum_C \alpha^{-N_l(C)} |C\rangle.$$ \hspace{1cm} (12)

In (12), $N_l(C)$ is the number of flippable plaquettes in $|C\rangle$. For $\alpha = 1$, $|\Phi_{\alpha = 1}\rangle \equiv |\text{RK}\rangle$; for $\alpha \ll 1$, configurations with the maximum number of plaquettes are favored. The square norm
of $|\Phi_\alpha\rangle$ is the partition function of an interacting classical dimer model [43]:

$$
(\Phi_\alpha | \Phi_\alpha \rangle = Z_{cl} = \sum_C e^{-\beta_\alpha E_{cl}(C)},
$$

with $E_{cl}(C) = -u N_f(C)$, $\alpha = \exp\left(-\frac{\beta_\alpha u}{2}\right)$.

All equal time correlation functions of $|\Phi_\alpha\rangle$ are equal to those of the classical model. This relationship allows us to write down a local RK-like Hamiltonian [26, 42] for which $|\Phi_\alpha\rangle$ is an exact zero-energy ground state:

$$
H_\alpha \equiv \sum_p -t(|\mathcal{S}|_p|\mathcal{S}| + \text{h.c.}) + t(\alpha^{-\Delta N_f/2} |\mathcal{S}|_p|\mathcal{S}| + \alpha^{\Delta N_f/2} |\mathcal{S}|_p|\mathcal{S}|),
$$

with $\Delta N_f \equiv N_f(\mathcal{S}) - N_f(\mathcal{S})$ and $N_f(\mathcal{S})$ ($N_f(\mathcal{S})$) is the total number of flippable plaquettes on the lattice with p in orientation \mathcal{S} (\mathcal{S}). Here we see that $\alpha = 1 \Rightarrow u = 0$, which is the non-interacting point of the classical model; consequently, $H_{\alpha=1} = H_{RK}$ at the RK point ($v = t$). The interacting classical dimer model has previously been studied using transfer matrix techniques by Trousselet et al [43]. For $u > 0$ ($\alpha < 1$), E_{α} is minimized by configurations which have the maximum number of flippable plaquettes, $N_f/6$. There is a large number of such configurations, including the 12 symmetry-related columnar states and all configurations related to these by translating rows of dimers (row shifting modes) or rotating all dimers in a set of columns (column shifting modes). For $\alpha = 0$, this degeneracy prevents the formation of local order. However, an ‘order-by-disorder’ mechanism [44] might allow for fluctuations to favor an ordered state for nonzero α. Indeed, the results of [43] are consistent with a first-order phase transition from a liquid phase for $\alpha > \alpha_c$ to an ordered phase for $\alpha < \alpha_c$, where the row shifting modes favor configurations with dimers aligned in the same direction.

Local updates do not give access to the global defects that appear as $\alpha \to 0$. Therefore we have implemented a directed-loop Monte Carlo algorithm [45, 46] to sample $|\Phi_\alpha\rangle$ on lattice sizes up to $L = 128$, using $|R_{col}\rangle$ as the reference configuration. The dimer model directed-loop algorithm generates non-local updates by creating a pair of defects that violate the hard core, fully packed dimer constraint; these defects undergo a directed random walk around the lattice until they coincide and annihilate [45]. The path of these defects forms a closed loop, along which the dimer configuration is updated. To sample $|\Phi_\alpha\rangle$, we have chosen the local weights of each step in the random walk to reflect $|\Phi_\alpha\rangle$ [47] and found a solution to the directed-loop equations [46] (see appendix for details). This algorithm is ergodic in all topological sectors and therefore the results presented here are computed over all winding sectors.

Figure 8 shows that in the presence of interactions, the dimer liquid persists down to $\alpha \sim 0.2$. For much smaller values of α, D_f approaches 1, indicative of a symmetry broken phase. However, there is an intermediate regime where the finite size scaling of ℓ_M does not converge to a power law (this is shown by the dotted line in figure 8). The longest loop distribution P_{ℓ_M} (right panel of figure 8) displays a series of peaks in this intermediate regime, whereas for small α, there is only a single peak at $\ell_M = L$. The small α regime is consistent with the low-temperature phase of [43] where row shifting modes dominate; with this choice of reference dimerization, row defects are loops of length L winding around the lattice in the direction of the rows.
Figure 8. (a) Fractal dimension of the largest loop ℓ_M of $|\Phi_\alpha\rangle$ computed with a directed-loop algorithm for lattice sizes up to $L = 128$. The solid line corresponds to $D_f = 7/4$, the value at the RK point. The dotted line is a guide for the eye; the gap in data is where the finite-size scaling of $s(\ell_M)$ does not converge to a power law for the lattice sizes studied. (b) Longest loop distribution of $|\Phi_\alpha\rangle$ on an $L = 64$ lattice, for several values of α, computed using $|R_{\text{col}}\rangle$. For very small α, P_{ℓ_M} is peaked at L, consistent with an ordered phase with all dimers aligned in the same direction.

To further characterize the appearance of this symmetry breaking order for small α, we define a rotational symmetry breaking order parameter

$$M^2_{\text{rot}} \equiv \frac{1}{2N_d^2} \sum_{i,j} (N^i_d - N^j_d)^2,$$

where i and j each represent one of the three possible dimer orientations on the triangular lattice, and N_d^i is the number of dimers in a given orientation. Additionally, we define a columnar order parameter

$$M^2_{\text{col}} \equiv \frac{1}{N_d^2} \sum_{(r,c)} (N_d[R_{\text{col}}(r,c)] - N_d[\tilde{R}_{\text{col}}(r,c)])^2,$$

where $R_{\text{col}}(r,c)$ is a columnar configuration with rows oriented in the direction r and columns in the direction c, and $\tilde{R}_{\text{col}}(r,c)$ is obtained by translating all dimers by one lattice spacing in the direction r. $N_d[R]$ is the number of dimers that coincide with the configuration R. In a columnar ordered phase, the expectation values of both M^2_{rot} and M^2_{col} saturate to 1, whereas $M^2_{\text{rot}} = 1$ and $M^2_{\text{col}} = 0$ in the rotational symmetry broken ordered phase that is favored by the row shifting modes.

Figure 9 shows the expectation values of these dimer order parameters in the symmetry broken phases. We see that for small α, M^2_{rot} saturates to 1, whereas M^2_{col} scales to zero for larger system sizes (figure 9). This corresponds to the rotational symmetry broken phase where row defects dominate and destroy the columnar order, as discussed in [43]. However, there is an intermediate regime for larger system sizes where the expectation value of M^2_{rot} reaches a
plateau at approximately $1/4$, and M_{rot}^2 is finite and approaching $1/2$. This is consistent with a phase for which column shifting modes dominate, such that two dimer directions are preferred. The ideal columnar defect configurations saturate the order parameter

$$M_{\text{cd}}^2 \equiv \frac{1}{N_d^2} \sum_{(r,r',c)} (N_d[R_{\text{col}}^{(r,c)}] + N_d[R_{\text{col}}^{(r',c)}] - N_d[\tilde{R}_{\text{col}}^{(r,c)}] - N_d[\tilde{R}_{\text{col}}^{(r',c)}])^2$$

(18)

to 1, whereas M_{rot}^2 and M_{col}^2 are $1/4$ and $1/2$, respectively. In (18), the sum is over $r \neq r' \neq c$. Figure 9 shows that, in the intermediate phase, M_{cd}^2 approaches 1 with decreasing α. We note that while perfect column defects cost zero (classical) energy, adding a horizontal kink to the column defect costs a finite energy; the increased degeneracy of kinked defects may favor them over perfect defects for a sufficiently large α. If kinked column defects proliferate, they will generate a finite (but non-maximal) expectation value of M_{cd}^2. This suggests that for $\alpha \to 0$, global row defects dominate but there is an intermediate regime where kinked column defects dominate. Both of these transitions appear to be first order as shown by the discontinuities seen in these order parameters for larger system sizes (see figure 9); we have confirmed this by observing a double peak structure in the histograms of these order parameters at the transitions. Finite size scaling of these transitions suggests that both transitions occur at finite α in the thermodynamic limit.

The distinction between these results and what is seen in [43] is probably due to the difference in geometry between the systems studied. We have also studied triangular lattices with $L_x \neq L_y$, where $L_{x,y}$ are the lengths in the two lattice directions. We find that as L_y/L_x increases, the width of the intermediate regime decreases. This follows from the discussion [43]: increasing L_y/L_x increases the number of row-shifting modes and therefore favors the row defect ordering. Trousslet et al [43] considered lattices with $L_y \gg L_x$, so the results of that work are consistent with ours in this limit.

8. d-Isotopic quantum loop gas in the triangular lattice quantum dimer model

So far we have only considered transitions out of the $O(1)$ dimer loop liquid to crystalline phases; we now consider a wavefunction that allows us to explore other loop gases in the
Figure 10. The decorated triangular lattice from [12] used for defining $|\Psi_d\rangle$. Here the staggered configuration defined by the red links is used as the reference dimerization.

triangular lattice QDM. In [12], Freedman et al introduced a generalization of the quantum loop gas of the toric code they termed the d-isotopic loop gas [12]. By giving a weight d to each contractible loop in the ground state wavefunction, the $O(1)$ loop liquid of the toric code at $d = 1$ can be driven to loop gas phases for $O(n > 1)$:

$$|\Psi_d\rangle = \sum_C d^{N_c} |C\rangle. \tag{19}$$

In equation (19), N_c is the number of contractible loops in $|C\rangle$ and the sum over C is taken over all configurations in the same winding sector. The norm of Ψ_d is equal to the classical partition function of the $O(n)$ loop model for $n = d^2$ [48]. Freedman et al [12] also wrote down an RK-like Hamiltonian, H_d, for which $|\Psi_d\rangle$ is the exact zero-energy ground state. Every winding sector contains a unique ground state; as such this d-isotopic loop gas has a large degeneracy.

For $1 \leq d \leq \sqrt{2}$, $|\Psi_d\rangle$ is a critical loop liquid, and it has been shown that H_d is gapless. For $n > 2$, the $O(n)$ model is in a short looped phase [38], and correspondingly, the d-isotopic loop gas is in a short looped phase for $d > \sqrt{2}$. All diagonal local correlation functions in $|\Psi_d\rangle$ vanish exponentially; however, Troyer et al [49] showed that off-diagonal correlation functions have a power-law decay. The original motivation for introducing $|\Psi_d\rangle$ was the search for gapped topological phases beyond the Abelian toric code phase. Subsequent work [49] showed that adding local interactions to H_d to open a gap drives the loop gas to the toric code phase. Consistent with the disordered nature of the liquid phase of $|\Psi_d\rangle$, Troyer et al showed that the critical phase of the loop liquid could be described by the fractal dimension of the long fractal loop [49].

To implement Ψ_d in a QDM we color the triangular lattice according to [12]. Links occupied in a staggered reference configuration $|R_0\rangle$ are red and links connecting the red links are colored green (see figure 10). Here, we choose a slightly different interpretation of the transition loop graph; dimers in $|C\rangle$ that coincide with $|R_0\rangle$ are considered to be minimal, length 2 loops. As such, the loop coverings defined by the transition graphs are fully packed loop coverings. In this case, Ψ_d is described by a fully packed loop model, which in turn is related to the dense phase of the $O(n)$ model [50]. Consequently, the geometric exponents as defined in section 5 are the same in the fully packed loop model as those of the dense phase of the $O(n)$ model with $d^2 = n$ [40, 51].

With this coloring, a local QDM Hamiltonian, H_d, can be defined such that $|\Psi_d\rangle$ defines the unique, zero-energy ground state in each winding sector. To allow for the transition to the short looped, staggered crystal phase in the limit $d \to \infty$, four-dimer dynamics that flip dimers around a length 8 loop are included in H_d to connect the staggered configurations to other
Off-diagonal operators in a QDM that does not violate the hard-core constraint are loop operators: two dimer configurations can be connected by flipping dimers along their transition loops, as given in equation (6). In the toric code, such loop operators are related to the Wilson loop of the underlying Z_2 gauge theory. In the ground state $|\Psi_{TC}\rangle$, the expectation value of all loop operators is exactly 1 (a ‘zero law’). However, the addition of a magnetic field will cause the loop operators to decay with the length of the loop (a ‘perimeter law’). In a QDM, the fully packed constraint means that $\langle W_\ell(s) \rangle < 1$ for all loops, even at the RK point [29]. Moessner et al [28] suggested that $\langle W_\ell(s) \rangle$ will decay as a perimeter law at the RK point due to the extensive entropy of dimerizations of the lattice. Figure 12 shows $\langle W_\ell \rangle_{RK}$ computed for a set of parallelograms of different lengths on the triangular lattice by Monte Carlo sampling of $|RK\rangle$. $\langle W_\ell(s) \rangle$ is seen to display a clear perimeter law at the RK point.

9. Off-diagonal loop operators in the triangular lattice quantum dimer model

Figure 11. (a) The longest loop distribution $P_{\ell M}$ for $|\Psi_d\rangle$ in the zero-winding sector on an $L = 24$ lattice for several values of d. (b) the fractal loop dimension of $|\Psi_d\rangle$, computed from finite size scaling of $s(\ell_M)$ on lattice sizes up to $L = 84$. Configurations. Additionally, following [12], we wish to define H_d such that it only connects configurations in the same loop winding sector, not in a parity defined winding sector. This requires removing the plaquette flip terms that can act as a surgery and connect different winding sectors—this is done by excluding plaquette flips in H_d for rhombi that have a green diagonal link. To compensate for lost ergodicity due to the removal of these plaquette flip terms, a three-dimer resonance around a length of 6 triangular loops is also added to H_d [12].

Figure 11(a) shows the longest loop distribution for several values of d computed by Monte Carlo sampling of $|\Psi_d\rangle$ in the triangular lattice QDM. We see that a liquid phase persists for $d > 1$. Figure 11(a) shows that the fractal dimension is a continuously varying function of d. Thus $|\Phi_d\rangle$ can describe dimer liquid phases distinct from the Z_2 topologically ordered phase at the RK point.
10. Conclusions

In this paper, we have characterized the formation of topological order in QDMs in terms of the physical mechanism of loop condensation. This allows for a more direct connection between the Z_2 topologically ordered liquid of the triangular lattice QDM and that of the toric code and other lattice models. We have shown that geometric properties of the transition graph loop distribution may be used to distinguish between dimer liquid and crystal phases. Additionally, the fractal dimension of the spanning loop may be used to distinguish dimer liquid phases. We believe that this approach will be useful for the study of dimer liquids and the full phase diagram of the canonical QDM Hamiltonian.

Acknowledgments

This work was supported by NSF grant number PH4-0803429. CMH thanks Jonathan Dubois for help in the preparation of Monte Carlo simulations.

Appendix. The directed-loop algorithm in the interacting dimer model

The directed-loop algorithm [45, 47] generates non-local updates in a dimer model by creating a pair of defects (a doubly occupied vertex and an unoccupied vertex) that violate the fully packed, hard-core dimer constraint. One of these defects undergoes a directed random walk and, when the two defects coincide once again, this generates a new allowable dimerization, where the dimers have been flipped along the path of the path of the defect [45, 46]. To maintain detailed
balance, the probabilities of choosing each direction on a given step of the random walk must satisfy the directed-loop equations \([47]\).

Consider a step in the loop update where the loop has entered a vertex \(v\) from link \(l\). We define the probability of choosing link \(l'\) to exit the vertex as \(P_{l,l'} \equiv t_{l,l'}/w_l\), where \(w_l\) is the weight of the configuration with the dimer on link \(l\). Detailed balance and probability conservation requires

\[
\sum_{l'} t_{l,l'} = w_l, \quad t_{l,l'} = t_{l',l}. \tag{A.1}
\]

For a given set of weights \(\{w_l\}\), this leads to a set of directed-loop equations.

Here, we consider sampling the square of the wavefunction \(\Phi_\alpha(l) = \alpha^{-N}\)\(\Phi\). There are three possible weights for a dimer to occupy a link \(\{w_0, w_1, w_2\}\), corresponding to a link with 0, 1 or 2 parallel dimers. The choice \(w_2 = 1\), so \(w_2 = \alpha^4\) gives the following directed-loop equations:

\[
1 = (6 - n_1 - n_2) t_{02} + n_1 t_{12} + (n_2 - 1) t_{22} + t_2^b, \tag{A.2}
\]

\[
\alpha^2 = (6 - n_1 - n_2) t_{01} + n_2 t_{12} + (n_1 - 1) t_{11} + t_1^b, \tag{A.3}
\]

\[
\alpha^4 = n_1 t_{01} + n_2 t_{02} + (6 - n_1 - n_2) t_{00} + t_0^b. \tag{A.4}
\]

In (A.2)–(A.4), \(t_{pq}\) is the weight for a transition between links with \(p\) and \(q\) parallel dimers, \(n_p\) is the number of links with \(p\) parallel dimers at vertex \(v\) and \(t_p^b\) is the rate to ‘bounce’ back from a link with \(p\) parallel dimers. Since these equations are underdetermined, we can choose a solution to (A.2)–(A.4) for which the bounce probabilities vanish at the RK point \((\alpha = 1)\):

\[
t_{00} = t_{01} = t_{02} = \frac{\alpha^4}{5}, \quad t_{12} = \frac{\alpha^2}{5}, \quad t_0^b = 0. \tag{A.5}
\]

\[
t_{11} = \begin{cases}
\frac{\alpha^2(n_1 - (1 - \alpha^2) n_2 + 6(1 - \alpha^2) - 1)}{5(n_1 - 1)} & n_1 > 1, \\
0 & n_1 \leq 1,
\end{cases} \tag{A.6}
\]

\[
t_{22} = \begin{cases}
\frac{\alpha^4 n_2 - \alpha^2(1 - \alpha^2)n_1 + 6(1 - \alpha^4) - 1}{5(n_2 - 1)} & n_2 > 1, \\
0 & n_2 \leq 1,
\end{cases} \tag{A.7}
\]

\[
t_1^b = \begin{cases}
\frac{\alpha^2(1 - \alpha^2)(5 - n_2)}{5} & n_1 = 1, \\
0 & n_1 \neq 1,
\end{cases} \tag{A.8}
\]

\[
t_2^b = \begin{cases}
1 - \frac{\alpha^2}{5}(5\alpha^2 + (1 - \alpha^2)n_1) & n_2 = 1, \\
0 & n_2 \neq 1.
\end{cases} \tag{A.9}
\]

The directed loop algorithm using this solution to (A.2)–(A.4) has to be compared to a local update algorithm and is sufficiently efficient in the regimes studied.

New Journal of Physics 13 (2011) 085001 (http://www.njp.org/)
References

[1] Rokhsar D S and Kivelson S A 1988 Superconductivity and the hard-core dimer gas Phys. Rev. Lett. 61 2376
[2] Moessner R, Sondhi S and Chandra P 2001 Phase diagram of the hexagonal lattice quantum dimer model Phys. Rev. B 64 144416
[3] Moessner R and Sondhi S L 2001 Resonating valence bond phase in the triangular lattice quantum dimer model Phys. Rev. Lett. 86 1881–4
[4] Misguich G, Serban D and Pasquier V 2002 Quantum dimer model on the Kagome lattice: solvable dimer–liquid and Ising gauge theory Phys. Rev. Lett. 89 137202
[5] Moessner R and Sondhi S L 2001 Resonating valence bond phase in the triangular lattice quantum dimer model Phys. Rev. Lett. 86 1881–4
[6] Ralko A, Ferrero M, Becca F, Ivanov D and Mila F 2005 Zero-temperature properties of the quantum dimer model on the triangular lattice Phys. Rev. B 71 224419
[7] Wen X G 1990 Topological orders in rigid states Int. J. Mod. Phys. B 4 239
[8] Nayak C, Stern A, Freedman M and Das Sarma S 2008 Non-Abelian anyons and topological quantum computation Rev. Mod. Phys. 80 1083–159
[9] Freedman M H, Larsen M and Wang Z 2002 A modular functor which is universal for quantum computation Commun. Math. Phys. 227 605–22
[10] Kitaev A 2003 Fault-tolerant quantum computation by anyons Ann. Phys. 303 2–30
[11] Balents L, Fisher M and Girvin S 2002 Fractionalization in an easy-axis Kagome antiferromagnet Phys. Rev. B 65 224412
[12] Freedman M, Nayak C and Shtengel K 2005 Extended Hubbard model with ring exchange: a route to a non-Abelian topological phase Phys. Rev. Lett. 94 066401
[13] Misguich G, Pasquier V, Mila F and Lhuillier C 2005 Quantum dimer model with Z2 liquid ground state: interpolation between cylinder and disk topologies and toy model for a topological quantum bit Phys. Rev. B 71 184424
[14] Ioffe L B, Feigel’man M V, Ioselevich A, Ivanov D, Troyer M and Blatter G 2002 Topologically protected quantum bits using Josephson junction arrays Nature 415 (6871) 503–6
[15] Albuquerque A, Katzgraber H, Troyer M and Blatter G 2008 Engineering exotic phases for topologically protected quantum computation by emulating quantum dimer models Phys. Rev. B 78 014503
[16] Levin M and Wen X-G 2005 String-net condensation: a physical mechanism for topological phases Phys. Rev. B 71 045110
[17] Freedman M, Nayak C, Shtengel K, Walker K and Wang Z 2004 A class of PT-invariant topological phases of interacting electrons Ann. Phys. 310 428–92
[18] Fendley P and Fradkin E 2005 Realizing non-Abelian statistics in time-reversal-invariant systems Phys. Rev. B 72 024412
[19] Fendley P 2008 Topological order from quantum loops and nets Ann. Phys. 323 3113–36
[20] Sutherland B 1988 Systems with resonating-valence-bond ground states: correlations and excitations Phys. Rev. B 37 3786–9
[21] Kohmoto M 1988 Resonating-valence-bond state: comments on the antiferromagnetic ordering of the two-dimensional Heisenberg model Phys. Rev. B 37 3812–4
[22] Fendley P, Moessner R and Sondhi S 2002 Classical dimers on the triangular lattice Phys. Rev. B 66 214513
[23] Ioselevich A, Ivanov D and Feigel’man M 2002 Ground-state properties of the Rokhsar–Kivelson dimer model on the triangular lattice Phys. Rev. B 66 174405
[24] Henley C L 1997 Relaxation time for a dimer covering with height representation J. Stat. Phys. 89 483–507
[25] Henley C L 2004 From classical to quantum dynamics at Rokhsar–Kivelson points J. Phys.: Condens. Matter 16 S891–98
[26] Castelnovo C, Chamon C, Mudry C and Pujol P From quantum mechanics to classical statistical physics: generalized Rokhsar–Kivelson Hamiltonians and the stochastic matrix form decomposition Ann. Phys. 318 316–44

New Journal of Physics 13 (2011) 085001 (http://www.njp.org/)
[27] Ivanov D 2004 Vortexlike elementary excitations in the Rokhsar–Kivelson dimer model on the triangular lattice Phys. Rev. B 70 094430
[28] Moessner R, Sondhi S and Fradkin E 2001 Short-ranged resonating valence bond physics, quantum dimer models, and Ising gauge theories Phys. Rev. B 024504
[29] Misguich G and Mila F 2008 Quantum dimer model on the triangular lattice: semiclassical and variational approaches to vison dispersion and condensation Phys. Rev. B 77 134421
[30] Ralko A, Ferrero M, Becca F, Ivanov D and Mila F 2006 Dynamics of the quantum dimer model on the triangular lattice: soft modes and local resonating valence-bond correlations Phys. Rev. B 74 134301
[31] Trebst S, Werner P, Troyer M, Shtengel K and Nayak C 2007 Breakdown of a topological phase: quantum phase transition in a loop gas model with tension Phys. Rev. Lett. 98 070602
[32] Kohmoto M and Shapir Y 1988 Antiferromagnetic correlations of the resonating-valence-bond state Phys. Rev. B 37 9439–42
[33] Sutherland B 1988 Novel mechanism for superconductivity in the resonant-valence-bond ground state Phys. Rev. B 38 7192–5
[34] Sutherland B 1988 Monte Carlo investigation of the resonant-valence-bond ground state and a lattice statistical model Phys. Rev. B 38 6855–62
[35] Shapir Y and Kohmoto M 1989 Exact mapping of the resonant-valence-bond state to a classical O(4) model in a logarithmic potential: mean-field theory, magnetic correlations, and excitations Phys. Rev. B 39 4524–30
[36] Domany E, Mukamel D, Nienhuis B and Schwimmer A 1981 Duality relations and equivalences for models with O(n) and cubic symmetry Nucl. Phys. B 190 279–87
[37] Nienhuis B 1982 Exact critical point and critical exponents of O(n) models in two dimensions Phys. Rev. Lett. 49 1062–5
[38] Nienhuis B 1984 Critical behavior of two-dimensional spin models and charge asymmetry in the Coulomb gas J. Stat. Phys. 34 731–61
[39] Ding C, Deng Y, Guo W, Qian X and Blöte H W J 2007 Geometric properties of two-dimensional O(n) loop configurations J. Phys. A: Math. Theor. 40 3305–17
[40] Saleur H and Duplantier B 1987 Exact determination of the percolation Hull exponent in two dimensions Phys. Rev. Lett. 58 2325–8
[41] Knops Y M M, Nienhuis B and Blöte H W J 1988 The O(n) model on the triangular lattice J. Phys. A: Math. Gen. 31 2941–66
[42] Ardonne E, Fendley P and Fradkin E 2004 Topological order and conformal quantum critical points Ann. Phys. 310 493–551
[43] Trouseau, T. J. 2007 Criticality of a classical dimer model on the triangular lattice Phys. Rev. E 76 041125
[44] Villain J, Bidaux R, Carton J-P and Conte R 1980 Order as an effect of disorder J. Physique 41 1263–72
[45] Sandvik A and Moessner R 2006 Correlations and confinement in nonplanar two-dimensional dimer models Phys. Rev. B 73 144504
[46] Syljuåsen O F and Zvonarev M B 2004 Directed-loop Monte Carlo simulations of vertex models Phys. Rev. E 70 016118
[47] Syljuåsen O F and Sandvik A W 2002 Quantum Monte Carlo with directed loops Phys. Rev. E 66 046701
[48] Freedman M, Nayak C and Shtengel K 2005 Line of critical points in 2 + 1 dimensions: quantum critical loop gases and non-Abelian gauge theory Phys. Rev. Lett. 94 147205
[49] Troyer M, Trebst S, Shtengel K and Nayak C 2008 Local interactions and non-Abelian quantum loop gases Phys. Rev. Lett. 101 5–8
[50] Blöte H W J and Nienhuis B 1994 Fully packed loop model on the honeycomb lattice Phys. Rev. Lett. 72 1372–5
[51] Kondev J, Gier J and Nienhuis B 1996 Operator spectrum and exact exponents of the fully packed loop J. Phys. A: Math. Gen. 29 6489