Recurrence in *Plasmodium vivax* malaria: a prospective cohort study with long follow-up from a coastal region in South-West India [version 1; peer review: awaiting peer review]

Divya Gandrala¹, Nitin Gupta²,³, Alekhya Lavu⁴, Vishnu Teja Nallapati²,³, Vasudeva Guddattu⁵, Kavitha Saravu²,³

¹Department of Medicine, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
²Department of Infectious Diseases, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
³Manipal Center for Infectious Diseases, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
⁴Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
⁵Department of Data Science, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India

Abstract

Background: India is endemic for *Plasmodium vivax* (*Pv*) malaria. Despite a decrease in incidence, its elimination is hampered by recurrences. This study aimed to characterize recurrences in *Pv* malaria and study its association with primaquine (PQ) usage.

Methods: Symptomatic adult *Pv* patients were followed-up for up to 23 months for recurrences. The time to recurrence was compared by the PQ dosage they received using a log-rank test.

Results: Of the 294 malaria patients, 206 (70%) patients had *Pv* infection during the study period. A total of 20 (9.7%) recurrences were seen in 17 (8.2%) patients of *Pv*. The percentage of first-time recurrences were highest in the no PQ group (25%), followed by the weekly PQ group (20%), low dose daily PQ (8.2%) group, and high dose daily PQ group (3.1%).

Conclusions: Recurrence in *Pv* malaria is common, especially in those who receive an inappropriate prescription of primaquine.

Keywords
Primaquine; relapse; severe malaria
Corresponding author: Kavitha Saravu (kavithasaravu@gmail.com)

Author roles: Gandrala D: Conceptualization, Data Curation, Formal Analysis, Investigation, Methodology, Project Administration, Validation, Writing – Original Draft Preparation; Gupta N: Data Curation, Formal Analysis, Methodology, Project Administration, Validation, Writing – Review & Editing; Lavu A: Data Curation, Formal Analysis, Investigation, Methodology, Writing – Original Draft Preparation; Nallapati VT: Writing – Original Draft Preparation, Writing – Review & Editing; Guddattu V: Formal Analysis, Writing – Original Draft Preparation, Writing – Review & Editing; Saravu K: Conceptualization, Formal Analysis, Methodology, Project Administration, Resources, Supervision, Validation, Writing – Original Draft Preparation, Writing – Review & Editing

Competing interests: No competing interests were disclosed.

Copyright: © 2022 Gandrala D et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Gandrala D, Gupta N, Lavu A et al. Recurrence in Plasmodium vivax malaria: a prospective cohort study with long follow-up from a coastal region in South-West India [version 1; peer review: awaiting peer review] F1000Research 2022, 11:279 https://doi.org/10.12688/f1000research.109577.1

First published: 04 Mar 2022, 11:279 https://doi.org/10.12688/f1000research.109577.1

This article is included in the Manipal Academy of Higher Education gateway.
Introduction

Malaria is a major global health problem, with around 228 million reported cases alone in 2018, most due to *Plasmodium falciparum* (*Pf*). Consequently, most reports on malaria concentrate on *Pf*. Traditionally, *Pf* has been described as the causative agent for severe malaria. However, recent reports have shown that malaria caused by *Plasmodium vivax* (*Pv*) can also be severe. Although India represents a small percentage of the overall global malaria cases, it is responsible for nearly half of the total cases of *Pv*. Despite a decline in the number of Malaria cases in India, the major roadblock to elimination is the tendency of *Pv* to relapse frequently, mainly when primaquine (PQ) is not prescribed or prescribed in sub-therapeutic dosage. Therefore, the objective of the study was to calculate the incidence of recurrence in patients with *Pv* malaria and find the impact of PQ prescription practices on recurrence.

Methods

A prospective observational cohort study was conducted at Kasturba Hospital, Manipal in Udupi district of Karnataka State, India, for two years, from October 2016 to August 2018. The study was commenced after taking approval from the Institute's Ethical Committee (IEC 636/2016). All patients of either sex above 18 years of age who presented during the study period with fever and had malarial parasites on the quantitative buffy coat (QBC) examination were included in the study after taking written informed consent. The article was reported according to the STROBE guidelines and all the criteria in the STROBE checklist were met. The sample size was calculated as 206 cases of *Pv*, considering recurrence prevalence as 31.5%, 95% level of confidence and 6.5% precision.

They were categorized into *Pv*, *Pf* or mixed based on the results of peripheral smear. The patients were classified as having severe disease if they met the criteria for severity laid down by World Health Organisation. A detailed history (including comorbidities), physical examination, and laboratory parameters were noted in a predefined case study form. In addition, the worst value of the variables during hospitalization was recorded. Since the study aimed to record the prescription practices of treating physicians, the study objectives were not disclosed to them to avoid bias. The diagnosed cases were treated by the treating team. Glucose-6 Phosphate dehydrogenase (G6PD) levels were requested by the treating team. The details of treatment, supportive care need, requirement of supportive care, and mortality were comparable in both groups and summarized in Figure 1. The baseline clinical and laboratory features of patients with *Pv* and *Pf* malaria have been summarized in Table 1.

Statistical analysis was performed using Statistical Package for the Social Sciences version 23.0 (SPSS, RRID: SCR_002865, http://www-01.ibm.com/software/uk/analytics/spss/). Continuous variables were summarized as mean with standard deviation (SD) or median with interquartile range (IQR) (in skewed data). Categorical variables were summarized as the frequency with proportion. Overall, patients with *Pv* were divided into four groups according to PQ dosage-no PQ, weekly PQ, low dose daily PQ (0.25 mg/kg/day), and high dose daily PQ (0.5 mg/kg/day). The number of recurrences in each group were calculated. A Kaplan-Meier survival plot was generated to determine the survival function of recurrences according to PQ categories until 23 months’ follow-up duration. Log-rank test was used to compare the survival function. A Chi-square test was used to compare quantitative variables, whereas an independent t-test was used to compare quantitative variables. A p-value of less than 0.01 was considered significant.

Results

A total of 294 malaria cases were enrolled during the study period, of which 206 (70%) were *Pv*, 79 (27%) were *Pf*, and 9 (3%) were mixed (*pv+pf*). A total of 29.6% (87/294) cases had severe malaria. The proportion of severity, the requirement of supportive care, and mortality were comparable in both groups and summarized in Figure 1. The baseline clinical and laboratory features of patients with *Pv* and *Pf* malaria have been summarized in Table 1.

Of 294 cases included in the study, there were 21 recurrences in 18 (6.12%) patients. All patients with recurrent disease had non-severe malaria with good clinical recovery. Twenty recurrences (20/206, 9.7%) belong to the *Pv* group and 1 (1/79, 1.3%) patient from the *Pf* group. Of the 20 recurrences in the 17 patients were in the *Pv* group, three patients had a recurrence for the second time. The median time to follow-up was 388 (293–567) days. The median time to the first recurrence in the *Pv* group was 83 (66.5–242.5) days.

Of the 206 patients with *Pv*, G6PD levels could be done in 196 patients only, out of which nine patients were found to have low G6PD levels (Table 2). No case of PQ-induced hemolysis was noted in our cohort. The dose of PQ was significantly higher...
associated with recurrences on the Chi-square test (p<0.001). The percentage of first-time recurrences were highest in the no PQ group (25%), followed by the weekly PQ group (20%), low dose daily PQ (8.2%) group, and high dose daily PQ group (3.1%) (Table 2). A Kaplan-Meier curve was plotted to compare the median time to recurrence in each of the PQ-based groups, and the difference was found to be significant on the log-rank test (p=0.009) (Figure 2).

Discussion

Udupi district has a population of 1,177,908 with an area of 3,582 sq. km and is located 13°32′ 24.43″ N latitude and 74°52′26.78″E longitude, with typical tropical climatic conditions. The monsoon in this region starts in June and extends till October, with an average rainfall of more than 4000mm every year. The catchment area of our hospital encompasses both the rural and urban populations of coastal and interior Karnataka, Goa and Kerala. *Pv* is the largest infecting species in this region, followed by *Pf*. The same trend is noted in other parts of India. In this study, around 30% of the cases had severe malaria with a similar incidences of severity in *Pv* and *Pf*. In the last decade, the severity of malaria has ranged from 6.5% to 48% across the world. Classically, *Pf* is supposed to be one with a higher frequency of severe manifestation, whereas *Pv* is apparently the benign form. This dogma has been challenged more and more as reports emerge from *Pv* endemic areas. Like other reports, hepatic and renal dysfunction were the commonest manifestation of severity in our study. Central nervous system (CNS) manifestations, which were initially thought to be exclusive to *Pf*, were seen in *Pv* and *Pf* in our study. This study reiterates that severe *Pv* malaria
Table 1. Baseline clinical and laboratory features of patients with severe or non-severe vivax and falciparum malaria.
Plasmodium vivax (N=206)
Non-severe (n=144)
Age (years)
Male gender
Fever in days
Diabetes mellitus
Hypertension
Pulse rate (beats/min)
Respiratory rate (breaths/min)
ARDS
Systolic blood pressure (mmHg)
Diastolic blood pressure (mmHg)
Shock
Pallor
Icterus
Impaired consciousness
Convulsion
Metabolic acidosis
Renal failure
Splenomegaly
Hepatomegaly
Hemoglobin (g/dL)
Hematocrit (%)
Total Leukocyte count (cells/mm³)
Platelet count (cells/mm³)
Plasma Glucose (mg/dL)
Blood Urea (mg/dL)
Table 1.
Continued

	Plasmodium vivax (N=206)		Plasmodium falciparum (N=79)			
	Non-severe (n=144)	Severe (n=62)	P-value*	Non-severe (n=56)	Severe (n=23)	P-value*
Serum Creatinine (mg/dL)	0.98 ± 0.27	1.17 ± 0.48	<0.001	1.01 ± 0.42	1.7 ± 2.01	0.01
Total Bilirubin (mg/dL)	1.49 ± 0.62	3.8 ± 2.9	<0.001	1.5 ± 0.6	6.8 ± 7.56	<0.001
Direct Bilirubin (mg/dL)	0.6 ± 0.3	2.08 ± 2.42	<0.001	0.6 ± 0.4	4.23 ± 5.16	<0.001
Aspartate transaminase (IU/L)	33.5 (24.43)	49 (30,65.5)	<0.001	36 (25, 58.5)	47.5 (37.3, 96)	0.02
Alanine transaminase (IU/L)	34 (22,53)	43.5 (27,287.7)	0.01	43 (24, 70)	54.5 (31.7, 103.2)	0.2
Alkaline phosphatase (IU/L)	75 (60,94)	99 (76,144.7)	<0.001	93 (61, 115.8)	122.5 (76.3, 181.5)	0.02

* Categorical variables are summarized as the frequency with proportion whereas continuous variables are summarized as either mean (±SD) or median (IQR). Chi-square or Fischer’s exact test and Independent sample t-test or Mann Whitney U test were performed, p-value less than 0.05 shows the statistically significant difference and shown in bold font. ARDS: Acute Respiratory Distress Syndrome.

Table 2.
Recurrences in Plasmodium vivax cases stratified according to G6PD levels and primaquine prescription patterns.

Primaquine (PQ)	G6PD levels low (n=9)	G6PD levels normal (n=187)	G6PD not done (n=10)			
PQ dose	Total prescribed	Recurrences	Total prescribed	Recurrences	Total prescribed	Recurrences
No PQ	1	0	10	2	5	2
Weekly PQ	5	1	0	0	0	0
Daily PQ (0.25 mg/kg)	3	1	114	8	4	1
Daily PQ (0.5 mg/kg)	0	0	63	2	1	0

PQ: Primaquine; G6PD: Glucose 6 Phosphate dehydrogenase.
cases presented with similar phenotypic features as *Pf* malaria. Although previous studies have reported variable mortality with malaria cases, mortality in our study was low, with one mortality each in *Pv* and *Pf* patients. As expected, all but one recurrence were seen in patients with *Pv*. The percentage recurrence in *Pv* cases was close to 10%, which was considerably lower than recurrences reported in the previous series (24–38%). Like a previous study, all recurrent cases had mild symptoms, presumably due to the development of acquired immunity from the previous episode. The median time to recurrence was 83 days in our study, similar to previously published studies. Those patients for whom PQ was not used had higher rates of recurrence. Interestingly, the 16 patients for whom no PQ was used, only one patient had proven low levels of G6PD. In all the other cases, the levels were either not done or were normal. This reflects the need to reinforce the importance of PQ prescription in patients with *Pv*. The rates were lower in the daily PQ group even when they were used at a lower dose. Similar results were observed in other studies as well. Since the study was done in a tertiary care hospital where G6PD levels and specialist referrals are available, the study cannot be generalized to primary care settings. Similar widespread prescription audits are required all over the country to understand the practices and pattern of recurrences in patients with *Pv*.

Limitations of the study
Self-limiting intermittent recurrences that are asymptomatic could not be ruled out as symptom-based screening for recurrence was done. The genotyping of recurrences could not be done to discern relapse and reinfection. The possibility of non-compliance cannot be ruled out as PQ therapy was unsupervised.

Conclusions
The study reiterates that *Pv* is the dominant species in this part of India with similar frequencies of severity. Moreover, it is associated with recurrences, especially when PQ prescription is inappropriate. Therefore, there is a need for improving prescription practices amongst primary care physicians through regular educational interventions.

Data availability
Data cannot be shared due to ethical and security concerns, however a de-identified dataset with all the details can be shared with reviewer or readers at reasonable request to corresponding author.

Author’s contributions
All authors have read and approved the final manuscript. The requirements for authorship have been met, and each author believes that the manuscript represents honest work.
Acknowledgements
Authors gratefully acknowledge the seed grant funding and publication support from Manipal Center for Infectious Diseases, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, India.

References

1. World Health Organization: World Malaria Report, World Health, vol. WHO/HTM/GM, no. December. 2019; p. 238. ISBN 978 92 4 1564403.

2. Saravu K, Kumar R, Ashok H, et al.: Therapeutic Assessment of Chloroquine-Primaquine Combined Regimen in Adult Cohort of Plasmodium vivax Malaria from Primary Care Centres in Southwestern India. PLoS One. 2016 Jun 17; 11(6): e0157666. PubMed Abstract | Publisher Full Text

3. Rahi M, Sharma S, Das P, et al.: Connecting the dots to strengthen malaria elimination strategies in India: A Malaria Elimination Research Alliance - India initiative. Indian J. Med. Res. 2021 Jul; 154(1): 19–23. PubMed Abstract | Publisher Full Text

4. Kumar R, Gudattu V, Saravu K: Therapeutic assessment of primaquine for radical cure of Plasmodium vivax malaria at primary and tertiary care centres in Southwestern India. Korean J. Parasitol. 2016; 54(6): 733–742. PubMed Abstract | Publisher Full Text

5. Rishikesh K, Kamath A, Hande MH, et al.: Therapeutic assessment of chloroquine–primaquine combined regimen in adult cohort of Plasmodium vivax malaria from a tertiary care hospital in south western India. Malar. J. 2015; 14(1): 1–6. PubMed Full Text

6. Douglas NM, Nosten F, Ashley EA, et al.: Plasmodium vivax recurrence following falciparum and mixed species malaria: risk factors and effect of antimalarial kinetics. Clin. Infect. Dis. 2011 Mar 1; 52(5): 612–620. PubMed Abstract | Publisher Full Text

7. World Health Organization: WHO-SEvere malaria. World Health Organization; 2014. Reference Source

8. Saravu K, Docherla M, Vasudeva A, et al.: Thrombocytopenia in vivax and falciparum malaria: an observational study of 131 patients in Karnataka, India. Ann. Trop. Med. Parasitol. 2011; 105(8): 593–598. PubMed Abstract | Publisher Full Text

9. Saravu K, Rishikesh K, Parikh CR: Risk Factors and Outcomes Stratified by Severity of Acute Kidney Injury in Malaria. PLoS One. 2014; 9(3): e90410. PubMed Abstract | Publisher Full Text

10. Nadkarn MY, Huichche AM, Singh R, et al.: Clinical profile of severe Plasmodium vivax malaria in a tertiary care centre in Mumbai from June 2010-January 2011. J. Assoc. Physicians India. 2012 Oct; 60: 11–13. PubMed Abstract

11. Zubairi AB, Nizami S, Raza A, et al.: Severe Plasmodium vivax malaria in Pakistan. Emerg. Infect. Dis. 2013 Nov; 19(11): 1851–1854. PubMed Abstract | Publisher Full Text

12. Kochar DK, Das A, Kochar A, et al.: A prospective study on adult patients of severe malaria caused by Plasmodium falciparum, Plasmodium vivax and mixed infection from Bhakar, northwest India. J. Vector Bone Dis. 2014 Sep; 51(3): 200–210. PubMed Abstract

13. Abdellah TM, Abdeen MT, Ahmed IS, et al.: Severe plasmodium falciparum and plasmodium vivax malaria among adults at Kassala Hospital, eastern Sudan. Malar. J. 2013; 12(1): 1–7. PubMed Abstract | Publisher Full Text

14. Saravu K, Rishikesh K, Kamath A, et al.: Severity in Plasmodium vivax malaria claiming global vigilance and exploration - A tertiary care centre-based cohort study. Malar. J. 2014; 13(1). PubMed Full Text

15. Zuluaga-Idárraga L, Blair S, Akinoy Oko S, et al.: Prospective Study of Plasmodium vivax Malaria Recurrence after Radical Treatment with a Chloroquine-Primaquine Standard Regimen in Turbo, Colombia. Antimicrob. Agents Chemother. 2016 Jul 22; 60(8): 4610–4619. PubMed Abstract | Publisher Full Text

16. Kim JR, Nandy A, Maje AJ, et al.: Genotyping of Plasmodium vivax reveals both short and long latency relapse patterns in Kolkata. PLoS One. 2012; 7(7): e39645. PubMed Abstract | Publisher Full Text

17. Kochar DK, Saxena V, Singh N, et al.: Plasmodium vivax. Emerg. Infect. Dis. 2005; 11(1): 11–12. PubMed Full Text

18. Ganguly S, Saha P, Guha SK, et al.: Recurrence Pattern of P. Vivax Malaria Following Treatment with Chloroquine Either Alone or in Combination with Primaquinein Urban Kolkata, India. Int. J. Recent Sci. Res. 2014; 5(6): 1046–1049.
The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com