Optical properties of the infinite-layer La$_{1-x}$Sr$_x$NiO$_2$ and hidden Hund’s physics

Chang-Jong Kang1 and Gabriel Kotliar1,2

1Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08856, USA
2Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, New York 11973, USA

(Dated: July 31, 2020)

We investigate the optical properties of the normal state of the infinite-layer La$_{1-x}$Sr$_x$NiO$_2$ using DFT+DMFT. We find a correlated metal which exhibits substantial transfer of spectral weight to high energies relative to the density functional theory. The correlations are not due to Mott physics, which would suppress the charge fluctuations and integrated optical spectral weight as we approach a putative insulating state. Instead we find the unusual situation, that the integrated optical spectral weight decreases with doping and increases with increasing temperature. We contrast this with the coherent component of the optical conductivity, which decreases with increasing temperature as a result of a coherence–incoherence crossover. Our optical studies support a picture of a Hund’s metallic state, where dynamical orbital fluctuations are visible at intermediate energies, even if at low energies the Fermi surface has primarily $d_{x^2-y^2}$ character and we propose a low-energy two-band model with atom centered e_g states.

Introduction— The recent discovery of superconductivity in the infinite-layer nickelates, Nd$_{1-x}$Sr$_x$NiO$_2$ [1], has attracted intensive interests due to material similarities with high-T_c cuprate superconductors. Several follow-up experiments confirmed the superconductivity [2–6], with some possibly contradictory observations [7, 8]. Nomura et al. estimated the electron-phonon coupling mediated T_c to be ~ 0.1 K [17], much less than the observed $T_c \approx 15$ K, showing the mechanism for superconductivity is unconventional thus electron correlations play an important role.

There are many experimental investigations of these systems [1–16]. Besides, multiple theoretical techniques have been applied to study electronic structure of the infinite-layer nickelate [17–28, 30–49]. On the theory side, three different views of this material are emerging. In the first one, the infinite-layer nickelate has a cuprate-like correlated $d_{x^2-y^2}$ band near a Mott transition and an additional uncorrelated “spectator” band near the Fermi level which provides self-doping supported by density functional theory (DFT) [17–21], DFT plus dynamical mean-field theory (DFT+DMFT) [22–24], and model calculations [21, 25, 26]. In the second one, it has been suggested that multiorbital effects are important as for example Hund’s physics, using DFT+DMFT [27], GW+DMFT [28, 29], and model studies [30–33]. A third approach invokes Kondo physics between correlated and uncorrelated bands. This has been supported by DFT [34], DFT+Gutzwiller [35], DFT+DMFT [35, 36], and model calculations [37, 38].

Optical conductivity experiments have been very useful in identifying the origin and nature of electronic correlations in different archetypical systems [50]. Here, we employ DFT+DMFT [51–53] in a broad energy window to investigate the infinite-layer LaNiO$_2$ system and find an optical response is very different from canonical Mott-Hubbard systems. Instead our results support a picture of a Hund’s metallic state. The correlations arise from Hund’s coupling J_H, the low-energy bands can be reproduced by a two-band model with atom centered e_g bands, and the valence histogram favors the highest possible spin configuration in the e_g manifold. This Hund’s metal is very anisotropic in orbital space, with a highly correlated $d_{x^2-y^2}$ orbital and an d_{z^2} orbital with weaker correlations.

Methods— We perform fully charge self-consistent DFT+DMFT calculations [54] implemented in the all-electron full-potential Wien2k package [55] with exact double counting scheme [56]. We choose a large energy window from -10 eV to 10 eV with respect to the Fermi level E_F in order to describe both low and high energies precisely. The fully rotational invariant form is applied for a local Coulomb interaction Hamiltonian with on-site Coulomb repulsion $U = 5$ eV and Hund’s coupling $J_H = 1$ eV [57]. This approach was recently shown to give results consistent with the occupancies measured in high-energy spectroscopies [14, 27, 28]. The computational details is provided in Supplemental Material [58].

Results: Optical Conductivity— The DMFT optical conductivity is computed with the formalism presented in Refs. [54, 58] and is shown in Fig. 1. The DFT optical conductivity is provided for comparison. The optical conductivity consists of a Drude weight and interband transitions at ~ 3.5, ~ 6, and ~ 8.5 eV. The former corresponds to a transition from Ni 3d to La 4f orbitals and the last two correspond to transitions from O 2p to La 4f orbitals [58].

The temperature(T)-dependent optical conductivity is displayed in Fig. 2(a). The Drude peak develops gradually upon cooling, resulting in a decrease of the resistivity ρ as shown in the inset of Fig. 2(a). The computed ρ follows a T^2 behavior, found experimentally at intermediate temperatures [12]. At lower temperatures a resistivity upturn below $T \sim 100$ K is observed in ex-
periments [1, 12, 13] which we ascribe to disorder effects which are not included in the calculations.

Results: Integrated Optical Spectral Weight—To understand the physics of this material we analyze the integrated spectral weight $K(\Omega) = \int_0^\Omega \sigma_1(\omega) d\omega$ as a function of a cutoff frequency Ω [50]. Figure 2(b) displays $K(\Omega)$ for DMFT normalized with that for DFT to present the kinetic energy ratio between DFT and DMFT. The ratio of $K_{\text{DMFT}}/K_{\text{DFT}}$ decreases upon heating for low cutoff Ω (less than ~ 50 meV) as a result of the broadening of the Drude peak. However the total integral over the Drude peak (up to $\Omega = 0.369$ eV) increases with increasing temperature, which can be understood as a result of the quasiparticles becoming lighter as shown in Fig. 2(c). The total spectral weight of the Drude peak in DMFT is less than in DFT by 0.58 for $T = 116$ K. Part of the lost weight in the Drude peak is transferred to a low-energy interband transition around ~ 0.5 eV as shown in Fig. 1.

We see that the ratio of $K_{\text{DMFT}}/K_{\text{DFT}}$ depicted in Fig. 2(b) is less than one. This demonstrates the significance of electronic correlations which reduces the electronic kinetic energy. For LaNiO$_2$, $K_{\text{DMFT}}/K_{\text{DFT}} = 0.5 - 0.6$, thereby suggesting that it is a (moderately) correlated metal. The kinetic energy ratio is comparable to Hund's metal compounds of LaFePO and SrRuO$_3$ [50]. It is noteworthy that $K_{\text{DMFT}}/K_{\text{DFT}} \approx 0$ for cuprates of La$_2$CuO$_4$ and Nd$_2$CuO$_4$, those are charge-transfer insulators, and ~ 0.2 for La$_{2-x}$Sr$_x$CuO$_2$ ($x = 0.1, 0.15, 0.2$) [66]. In addition, in the paramagnetic metallic phase of V$_2$O$_3$, which is a prototypical Mott system, $K_{\text{DMFT}}/K_{\text{DFT}} \approx 0.2$ [50]. Based on the values of $K_{\text{DMFT}}/K_{\text{DFT}}$, LaNiO$_2$ is far from a Mott system, but close to a Hund's metal.

Notice that the behavior of $K_{\text{DMFT}}/K_{\text{DFT}}$ of LaNiO$_2$ as a function of temperature (when Ω is large) is the opposite of what is observed in canonical Mott insulating systems such as V$_2$O$_3$ where $K_{\text{DMFT}}(\Omega)$ (or $K_{\text{DMFT}}/K_{\text{DFT}}$) decreases upon heating (within the paramagnetic metallic phase) [65] (see details in Supplemental Material [58]).

This reflects the fact that the kinetic energy is reduced as an insulating state is approached at higher temperatures. Therefore, LaNiO$_2$ is far from a Mott system and closer to a Hund’s system such as BaFe$_2$As$_2$ [67].

Results: Orbital Character—We now turn to the orbital character of the different optical features. First we analyze the quasiparticle weight Z as a function of T as depicted in Fig. 2(c) [68]. Ni $d_{x^2-y^2}$ has the smallest and drastically different Z from other 3d orbitals that have $Z \approx 0.8$. Besides, it exhibits strong temperature dependence: Z increases linearly upon heating. However, other orbitals have very weak or no temperature depen-
dence as shown in the inset of Fig. 2(c). Hence, the correlated \(d_{x^2-y^2} \) shows strong temperature dependence but the others are almost temperature independent, thereby presenting orbital differentiation clearly.

The Drude peak could be decomposed into two characters: the correlated Ni \(d_{x^2-y^2} \) and an uncorrelated hybridized band which includes Ni \(d_{z^2} \) and \(d_{xz}/dy_z \) orbitals [58]. It illustrates the multiorbital feature of LaNiO\(_2\). The dominant component of the Drude peak is the correlated \(d_{x^2-y^2} \) which exhibits strong temperature dependence as shown in \(Z \). The remaining contribution originates from the uncorrelated hybridized band that are almost temperature independent. Therefore, \(T \)-dependent width of the Drude peak is almost solely determined by the electronic correlation exhibited in the \(d_{x^2-y^2} \) orbital.

To gain more insight into the optics of the infinite-layer LaNiO\(_2\), the effective plasma frequency \(\omega_p^2 \) and the effective scattering rate \(1/\tau_{ir}^p \) are extracted from the computed optical conductivity [65]. Recall that the Drude peak could be decomposed into two characters that are the correlated \(d_{x^2-y^2} \) and the uncorrelated hybridized band. The dc conductivity, therefore, can be written as a sum of each band contribution: \(\sigma = \sum_i (\omega_{pi}^2)^2 \tau_{ir}^i / 4\pi \), where \(i \) is a band index. Hence it is the low-frequency analysis (related to the extended Drude analysis) and is free from the cutoff \(\Omega \) in the partial sum rule. Figures 2(d) and (e) show \((\omega_p^2)^2 \) and \(1/\tau_{ir}^i \) for each band component as a function of temperature. The temperature dependence in \((\omega_p^2)^2 \) and \(1/\tau_{ir}^i \) is directly related to that in \(Z \) and the quasiparticle scattering rate \(1/\tau_{qp} = -Z\text{Im} \Sigma(i\omega^p) \) as indicated in Ref. [65, 69]. Interestingly, \((\omega_p^2)^2 \) and \(1/\tau_{ir}^i \) for the uncorrelated hybridized band are almost temperature independent and those for \(d_{x^2-y^2} \) exhibit strong temperature dependence: particularly \((\omega_p^2)^2 \) has a linear temperature dependence up to \(T \approx 300 \) K and then a saturation above the temperature. The saturation behavior in \((\omega_p^2)^2 \) is also found in ruthenates [69] and is explained by coherence-incoherence crossover (see details in Supplemental Material [58]). \((\omega_p^2)^2 \) increases upon heating until \(T \) is below the coherent temperature of \(T \approx 400 \) K and then shows the saturation behavior above the coherent temperature. In addition, \(1/\tau_{ir}^i \) for \(d_{x^2-y^2} \) is approximately parabolic in temperature below the coherent temperature, thereby presenting Fermi liquid behavior at the temperature range. However, it shows a deviation from the quadratic behavior above the coherent temperature.

Results: Doping Dependence— Now, we turn our attention to Sr-doped LaNiO\(_2\), that is La\(_{1-x}\)Sr\(_x\)NiO\(_2\), where Sr doping provides holes to LaNiO\(_2\). Figure 3(a) shows the doping-concentration\((x)\)-dependent optical conductivity of La\(_{1-x}\)Sr\(_x\)NiO\(_2\). The Drude peak is gradually diminished upon doping and the integrated optical spectral weight \(K(\Omega) \) decreases accordingly as depicted in Fig. 3(b). Since \(K(\Omega) \) is proportional to the electronic kinetic energy, it indicates the decrease of the kinetic energy upon doping. In the case of a Mott system where doping triggers the Mott transition, doping releases localization of electrons, thereby increasing the electronic kinetic energy. Hence, it increases \(K(\Omega) \) upon doping [50, 70]. However, in La\(_{1-x}\)Sr\(_x\)NiO\(_2\), the opposite feature is realized and it is another definite evidence of that La\(_{1-x}\)Sr\(_x\)NiO\(_2\) is far from a Mott system. Note that Mott-like behavior was reported in recent GW+DMFT calculations [28].

The decrease in the kinetic energy originates from the fact that the number of mobile charge carriers \(n_e \) decrease upon doping as presented in Table I. \(n_e \) is estimated from the volume of the Fermi surface by using Luttinger’s theorem. Note that two distinct charge carriers are realized in the Fermi surface, those are the correlated Ni \(d_{x^2-y^2} \) and the uncorrelated hybridized band with Ni \(d_{z^2} \) (see Fig. 4). \(n_e \) for Ni \(d_{x^2-y^2} \) decreases gradually and significantly upon doping. However, \(n_e \) for the uncorrelated hybridized band decreases slowly and its amount is fairly small. From the viewpoint of \(n_e \), the doped holes mostly go to the Ni \(d_{x^2-y^2} \) orbital [71].

Results: Electronic Structure— Electronic structure of LaNiO\(_2\) is provided in Fig. 4. The correlated Ni \(d_{x^2-y^2} \) is a dominant character at \(E_F \) and gives a large Fermi surface (FS) shown in Fig. 4(b). The uncorrelated hybridized band gives small FSs at \(\Gamma \) and \(A \). Hence, the

| Table I. The number of mobile charge carriers, \(n_e \), as a function of doping ratio. \(n_e \) is estimated from the volume enclosed by each Fermi surface. 3-dimensional Fermi surface computed with DFT+DMFT is presented in Supplemental Material [58]. |
|---------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| \(x = 0.0 \) | 0.98 | 0.93 | 0.85 | 0.76 | 0.66 | 0.56 |
| \(x = 0.1 \) | 0.93 | 0.87 | 0.79 | 0.71 | 0.63 | 0.55 |
| \(x = 0.2 \) | 0.85 | 0.79 | 0.72 | 0.64 | 0.56 | 0.48 |
| \(x = 0.3 \) | 0.76 | 0.71 | 0.64 | 0.56 | 0.48 | 0.40 |
| \(x = 0.4 \) | 0.66 | 0.56 | 0.48 | 0.40 | 0.32 | 0.24 |
| \(x = 0.5 \) | 0.56 | 0.48 | 0.40 | 0.32 | 0.24 | 0.16 |
multiorbital character is clearly identified in the electronic structure calculations [27, 28, 31]. At $x = 0.2$, the hybridized band with Ni d_{x^2} detaches from E_F. As a result, the FS at Γ disappears. Upon further doping, at $x = 0.5$, another FS from the hybridized band detaches from E_F as well and the FS from Ni $d_{x^2-y^2}$ is solely realized. Therefore, two distinct Lifshitz transitions are realized upon doping [27, 42].

Results: Two-Band Model — The multiorbital character is definitely seen in the DMFT valence histogram as depicted in Fig. 4(c), where the second largest probability of 0.16 comes from the atomic configuration of ($N = 8, e_g$ $S = 1$) with a spin-triplet state within Ni e_g states. Note that ($N = 9, S = 1/2$) with one hole in Ni $d_{x^2-y^2}$ has the largest probability of 0.35. These two largest probabilities are nearly constant over the doping concentration. Since the FS has primarily Ni $d_{x^2-y^2}$, one could interpret in an one-band scenario as a low-energy model [21, 24]. However we find that Hund’s coupling J_H decreases Z and increases $-\text{Im}\Sigma(i0^+)$ for $d_{x^2-y^2}$ [58], which is surprising as the atomic ground state configuration has one hole. This J_H dependence of the correlation strength is the hallmark of a Hund’s metal [72–74]. This is because a metallic state requires fluctuations between d^9 and d^8, and J_H is important in the latter configuration as seen clearly in the valence histogram in Fig. 4(c). We can think of the crystal field as being frequency dependent, at low energies it leaves $d_{x^2-y^2}$ as the most active orbital, but at intermediate frequencies both $d_{x^2-y^2}$ and d_{z^2} are important [29]. Therefore, the infinite-layer nickelate is a Hund’s metal where Hund’s correlation is hidden at low energies but noticeable at intermediate energies. It is different from the Hund’s metal realized in iron pnictides, chalcogenides, and ruthenates, where a configuration with more than one electron or hole, makes Hund’s correlation prominent in the atomic ground state configuration. This is made explicit by a two-band Wannier construction which is atom centered with the symmetry of the two Ni e_g orbitals, but which exhibits the clear difference of $d_{x^2-y^2}$ and d_{z^2} provided in Supplementary Material [58]. Note that alternative low-energy Wannier constructions have been reported [14, 17, 34–36, 43, 44]. The origin of superconductivity and absence of long-range magnetic order within this kind two-band model is an open problem.

Conclusion — To summarize, we have computed the temperature and doping dependence of the optical properties of the normal state of La$_{1-x}$Sr$_x$NiO$_2$ within DFT+DMFT. The ratio of $K_{\text{DMFT}}/K_{\text{DFT}}$ is less than one, indicating electronic correlations but the trends in the evolution of the optics with temperature and doping are opposite to those of established Mott systems. The results suggest that an interpretation in terms of the two-band model at low energies, contain-
ing the strongly differentiated $d_{2−z}^2$ which exhibits the coherence-incoherence crossover and the second band which is less correlated and can be seen as a hybrid of several orbitals with d_{2} character. At very low energies and temperatures, the former is dominant but contributions from the second is seen at intermediate energies and temperatures. While there are some studies of spinful two-orbital models with occupancy near one (or three) [80, 81] the large differences between the two band structures of spinful two-orbital models with occupancy near one d_{2} character. At very low energies and temperatures, the former is dominant but contributions from the second is seen at intermediate energies and temperatures. While there are some studies of spinful two-orbital models with occupancy near one (or three) [80, 81] the large differences between the two bands makes the infinite-layer nickelates a new prototype of strongly correlated material.

Acknowledgment — We are grateful to K. Haule, M. Kim, S. Choi, Y. Wang, H. Miao, and G. L. Pascut for useful discussions. C.-J. K. and G. K. were supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences as a part of the Computational Materials Science Program through the Center for Computational Design of Functional Strongly Correlated Materials and Theoretical Spectroscopy.

[1] Danfeng Li, Kyuho Lee, Bai Yang Wang, Motoki Osada, Samuel Crossley, Hye Ryong Lee, Yi Cui, Yasuyuki Hikita, and Harold Y. Hwang, “Superconductivity in an infinite-layer nickelate,” Nature 572, 624 (2019).
[2] Kyuho Lee, Berit H. Goodge, Danfeng Li, Motoki Osada, Bai Yang Wang, Yi Cui, Lena F. Kourkoutis, and Harold Y. Hwang, “Aspects of the synthesis of thin film superconducting infinite-layer nickelates,” APL Materials 8, 041107 (2020).
[3] Motoki Osada, Bai Yang Wang, Berit H. Goodge, Kyuho Lee, Hyeok Yoon, Keita Sakuma, Danfeng Li, Masashi Miura, Lena F. Kourkoutis, and Harold Y. Hwang, “A superconducting praseodymium nickelate with infinite layer structure,” Nano Lett. in press (2020).
[4] Shengwei Zeng, Chi Sin Tang, Xinmao Yin, Cgangjian Li, Zhen Huang, Junxiong Hu, Wei Liu, Ganesh Ji Omar, Hariom Jani, Zhi Shiliu Lim, Kun Han, Dongyang Wan, Ping Yang, Andrew T. S. Wee, Ariando Ariando, “Phase diagram and superconducting dome of infinite-layer Nd$_{1−x}$Sr$_x$NiO$_2$ thin films,” arXiv:2004.11281 (2020).
[5] Danfeng Li, Bai Yang Wang, Kyuho Lee, Shannon P. Harvey, Motoki Osada, Berit H. Goodge, Lena F. Kourkoutis, Harold Y. Hwang, “Superconducting Dome in Nd$_{1−x}$Sr$_x$NiO$_2$ Infinite Layer Films,” arXiv:2003.08506 (2020).
[6] Qiangqiang Gu, Yueying Li, Siyuan Wan, Huazhou Li, Wei Guo, Huan Yang, Qing Li, Xiyu Zhu, Xiaoqing Pan, Yufeng Nie, and Hai-Hu Wen, “Two superconducting components with different symmetries in Nd$_{1−x}$Sr$_x$NiO$_2$ films,” arXiv:2006.13123 (2020).
[7] Qing Li, Chengping He, Jin Si, Xiyu Zhu, and Hai-Hu Wen, “Absence of superconductivity in bulk Nd$_{1−x}$Sr$_x$NiO$_2$,” Communications Materials 1, 16 (2020).
[8] Xiao-Rong Zhou, Ze-Xin Feng, Pei-Xin Qin, Han Yan, Shuai Hu, Hui-Xin Guo, Xiao-Ning Wang, Hao-Jiang Wu, Xin Zhang, Hong-Yu Chen, Xue-Peng Qu, and Zhi-Qi Liu, “Absence of superconductivity in Nd$_{0.8}$Sr$_{0.2}$NiO$_2$ thin films without chemical reduction,” Rare Metals 39, 368 (2020).
[9] Michel Crespin, Pierre Levit, and Lucien Gatineau, “Reduced forms of LaNiO$_3$ perovskite. Part 1.—Evidence for new phases: La$_2$Ni$_2$O$_5$ and LaNiO$_2$,” J. Chem. Soc., Faraday Trans. 2 79, 1181 (1983).
[10] Pierre Levit, Michel Crespin, and Lucien Gatineau, “Reduced forms of LaNiO$_3$ perovskite. Part 2.—X-ray structure of LaNiO$_2$ and extended X-ray absorption fine structure study: local environment of monovalent nickel,” J. Chem. Soc., Faraday Trans. 2 79, 1195 (1983).
[11] M. A. Hayward, M. A. Green, M. J. Rosseinsky, and J. Sloan, “Sodium Hydride as a Powerful Reducing Agent for Topotactic Oxide Deintercalation: Synthesis and Characterization of the Nickel(I) Oxide LaNiO$_2$,” J. Am. Chem. Soc. 121, 8843 (1999).
[12] Ai Ikeda, Yoshihara Krockenberger, Hiroshi Irie, Michio Naito, and Hideki Yamamoto, “Direct observation of infinite NiO$_2$ planes in LaNiO$_2$ films,” Applied Physics Express 9, 061101 (2016).
[13] Ai Ikeda, Takaaki Manabe, Michio Naito, “Improved conductivity of infinite-layer LaNiO$_2$ thin films by metal organic decomposition,” Physica C 495, 134 (2013).
[14] M. Hepting, D. Li, C. J. Jia, H. Lu, E. Paris, Y. Tseng, X. Feng, M. Osada, E. Been, Y. Hikita, Y.-D. Chuang, Z. Hussain, K. J. Zhou, A. Nag, M. Garcia-Pernandez, M. Rossi, H. Y. Huang, D. J. Huang, Z. X. Shen, T. Schmitt, H. Y. Hwang, B. Meritz, J. Zaanen, T. P. Devereaux, and W. S. Lee, “Electronic structure of the parent compound of superconducting infinite-layer nickelates,” Nature Materials 19, 381 (2020).
[15] Ying Fu, Le Wang, Hu Cheng, Shenghai Pei, Xuefeng Zhou, Jian Chen, Shaocheng Wang, Ran Zhao, Wenrui Jiang, Cai Liu, Mingyun Huang, XinWei Wang, Yusheng Zhao, Dapeng Yu, Fei Ye, Shannin Wang, Jia-Wei Mei, “Core-level x-ray photoemission and Raman spectroscopy studies on electronic structures in Mott-Hubbard type nickelate oxide NdNiO$_2$,” arXiv:1911.03177 (2019).
[16] Berit H. Goodge, Danfeng Li, Motoki Osada, Bai Yang Wang, Kyuho Lee, George A. Sawatzky, Harold Y. Hwang, and Lena F. Korkoutis, “Doping evolution of the Mott-Hubbard landscape in infinite-layer nickelates,” arXiv:2005.02847 (2020).
[17] Yusuke Nomura, Motoaki Hirayama, Terumasa Tadano, Yoshihide Yoshimoto, Kazuma Nakamura, and Ryotaro Arita, “Formation of a two-dimensional single-component correlated electron system and band engineering in the nickelate superconductor NdNiO$_2$,” Phys. Rev. B 100, 205138 (2019).
[18] K.-W. Lee and W. E. Pickett, “Infinite-layer LaNiO$_2$: Ni$^{1+}$ is not Cu$^{2+}$,” Phys. Rev. B 70, 165109 (2004).
[19] A. S. Botana and M. R. Norman, “Similarities and Differences between LaNiO$_2$ and CaCuO$_2$ and Implications for Superconductivity,” Phys. Rev. X 10, 011024 (2020).
[20] Motoaki Hirayama, Terumasa Tadano, Yusuke Nomura, and Ryotaro Arita, “Materials design of dynamically stable d$_{9}$ layered nickelates,” Phys. Rev. B 101, 075107 (2020).
[21] Hu Zhang, Lipeng Jin, Shanmin Wang, Bin Xi, Xingqiang Shi, Fei Ye, and Jia-Wei Mei, “Effective Hamiltonian for nickelate oxides Nd$_{1−x}$Sr$_x$NiO$_2$,” Phys. Rev. Research 2, 013214 (2020).
[22] Frank Lechermann, “Late transition metal oxides with
We constructed a $2 \times 2 \times 2$ supercell and put a con-
strained number of Ni 3d-electrons, $n_d = 9$, in the core state. As a result, the effective value of $U_{\text{eff}} = F_{\text{eff}}^0 = U - J = 4.11$ eV was obtained, which verifies our U and J values in the calculations.

[58] See Supplemental Material, which includes Refs. [11, 54-56, 59-65, 72, 75-79], for the computational details, DFT electronic structure, optics for a prototypical Mott system of V$_2$O$_3$, the decomposition of the Drude peak, the quasiparticle weight Z and the quasiparticle scattering rate for all Ni 3d orbitals, 3-dimensional Fermi surfaces of La$_{1-x}$Sr$_x$NiO$_2$ computed with DFT+DMFT, the DMFT valence histogram as a function of Hund’s coupling J_H, coherence-incoherence crossover, and the two-band model based on the Wannier interpretation.

[59] Philipp Werner, Armin Comanac, Luca de’ Medici, Matthias Troyer, and Andrew J. Millis, “Continuous-Time Solver for Quantum Impurity Models,” Phys. Rev. Lett. 97, 076405 (2006).

[60] Kristjan Haule, “Quantum Monte Carlo impurity solver for cluster dynamical mean-field theory and electronic structure calculations with adjustable cluster base,” Phys. Rev. B 75, 155113 (2007).

[61] John P. Perdew, Kieron Burke, and Matthias Ernzerhof, “Generalized Gradient Approximation Made Simple,” Phys. Rev. Lett. 77, 3865 (1996).

[62] Mark Jarrell, J. E. Gubernatis, “Bayesian inference and the analytic continuation of imaginary-time quantum Monte Carlo data,” Physics Reports 269, 133 (1996).

[63] Arash A. Mostofi, Jonathan R. Yates, Young-Su Lee, Ivo Souza, David Vanderbilt, Nicola Marzari, “Wannier90 as a community code: new features and applications,” J. Phys.: Condens. Matter 32, 165902 (2020).

[64] Giovanni Pizzi et al., “Wannier90 as a community code: new features and applications,” J. Phys.: Condens. Matter 32, 165902 (2020).

[65] Xiaoyu Deng, Aaron Sternbach, Kristjan Haule, D. N. Basov, and Gabriel Kotliar, “Shining Light on Transition-Metal Oxides: Unveiling the Hidden Fermi Liquid,” Phys. Rev. Lett. 113, 246404 (2014).

[66] M. M. Qazilbash, J. J. Hamlin, R. E. Baumbach, Lijun Zhang, D. J. Singh, M. B. Maple, and D. N. Basov, “Electronic correlations in the iron pnictides,” Nature Physics 5, 647 (2009).

[67] A. A. Schafgans, S. J. Moon, B. C. Pursley, A. D. LaForge, M. M. Qazilbash, A. S. Sefat, D. Mandrus, K. Haule, G. Kotliar, and D. N. Basov, “Electronic Correlations and Unconventional Spectral Weight Transfer in the High-Temperature Pnictide BaFe$_{2−x}$Co$_x$As$_2$ Superconductor Using Infrared Spectroscopy,” Phys. Rev. Lett. 108, 147002 (2012).

[68] Z is estimated from $1/Z = 1−\partial \text{Im}\Sigma(i\omega)/\partial \omega\big|_{\omega\to 0}$, and it is comparable to the result from analytical continuation of the modified Gaussian method.

[69] Xiaoyu Deng, Kristjan Haule, and Gabriel Kotliar, “Transport Properties of Metallic Ruthenates: A DFT + DMFT Investigation,” Phys. Rev. Lett. 116, 256401 (2016).

[70] Masatoshi Imada, Atsushi Fujimori, and Yoshinori Tokura, “Metal-insulator transitions,” Rev. Mod. Phys. 70, 1039 (1998).

[71] n_x for Ni $d_{x^2−y^2}$ changes a lot, however its high-energy occupation number, that is obtained from integration of the DMFT spectral function $A(\omega)$ up to E_F, is almost constant of ~ 1.20 over the doping ratio. It is important to distinguish the high-energy d occupancy, which is measured in x-ray spectroscopy [14] and has been shown to be independent of doping [27], from the low-energy occupancy n_σ that decreases with increasing hole doping. This effect, which competes with an increase in Z with increasing doping [27], dominates the behavior of the kinetic energy.

[72] K. Haule and G. Kotliar, “Coherence-incoherence crossover in the normal state of iron oxypnictides and importance of Hund’s rule coupling,” New J. Phys. 11, 025021 (2009).

[73] Luca de’Medici, Jernej Mravlje, and Antoine Georges, “Janus-Faced Influence of Hund’s Rule Coupling in Strongly Correlated Materials,” Phys. Rev. Lett. 107, 256401 (2011).

[74] Antoine Georges, Luca de’ Medici, and Jernej Mravlje, “Strong Correlations from Hund’s Coupling,” Annual Review of Condensed Matter Physics 4, 137 (2013).

[75] Jernej Mravlje, Markus Aichhorn, Takashi Miyake, Kristjan Haule, Gabriel Kotliar, and Antoine Georges, “Coherence-Incoherence Crossover and the Mass-Renormalization Puzzles in Sr$_2$RuO$_4$,” Phys. Rev. Lett. 106, 096401 (2011).

[76] Jernej Mravlje and Antoine Georges, “Thermopower and Entropy: Lessons from Sr$_2$RuO$_4$,“ Phys. Rev. Lett. 117, 036401 (2016).

[77] F. Hardy, A. E. Böhmer, D. Aoki, P. Burger, T. Wolf, P. Schweiss, R. Heid, P. Adelmann, Y. X. Yao, G. Kotliar, J. Schmalian, and C. Meingast, “Evidence of Strong Correlations and Coherence-Incoherence Crossover in the Iron Pnictide Superconductor KFe$_2$As$_2$,” Phys. Rev. Lett. 111, 027002 (2013).

[78] H. Miao, Z. P. Yin, S. F. Wu, J. M. Li, J. Ma, B.-Q. Lv, X. P. Wang, T. Qian, P. Richard, L.-Y. Xing, X.-C. Wang, C. Q. Jin, K. Haule, G. Kotliar, and H. Ding, “Orbital-differentiated coherence-incoherence crossover identified by photoemission spectroscopy in LiFeAs,” Phys. Rev. B 94, 201109(R) (2016).

[79] Z. K. Liu, M. Yi, Y. Zhang, J. Hu, R. Yu, J.-X. Zhu, R.-H. He, Y. L. Chen, M. Hashimoto, R. G. Moore, S.-K. Mo, Z. Hussain, Q. Si, Z. Q. Mao, D. H. Lu, and Z.-X. Shen, “Experimental observation of incoherent-coherent crossover and orbital-dependent band renormalization in iron chalcogenide superconductors,” Phys. Rev. B 92, 235138 (2015).

[80] Jinwu Ye, “Solution of the two-channel spin-flavor Kondo model,” Phys. Rev. B 56, R489(R) (1997).

[81] E. Walter, K. M. Stadler, S.-S. B. Lee, Y. Wang, G. Kotliar, A. Weichselbaum, J. von Delft, “Uncovering non-Fermi-liquid behavior in Hund metals: conformal field theory analysis of a SU(2) × SU(3) spin-orbital Kondo model,” Phys. Rev. B 56, R489(R) (1997).
Supplemental Material:

Optical properties of the infinite-layer La$_{1-x}$Sr$_x$NiO$_2$ and hidden Hund’s physics

Chang-Jong Kang1 and Gabriel Kotliar1,2

1Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08856, USA
2Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, New York 11973, USA

COMPUTATIONAL DETAILS

Fully charge self-consistent DFT+DMFT calculations implemented in Wien2k package [S1] are performed with formalisms described in Ref. [S2]. The experimental lattice constants of $a = b = 3.871\text{Å}$ and $c = 3.375\text{Å}$ are adopted for the calculations [S3]. The muffin-tin radii are 2.50, 1.95, and 1.68 Bohr radius for La, Ni, and O, respectively.

We choose a wide hybridization energy window from -10 eV to 10 eV with respect to the Fermi level E_F. All the five Ni-3d orbitals are considered as correlated ones and the fully rotational invariant form is applied for a local Coulomb interaction Hamiltonian with on-site Coulomb repulsion $U = 5$ eV and Hund’s coupling $J_H = 1$ eV. The Coulomb parameters U and J_H are confirmed by a constraint LDA (cLDA) calculation, where we constructed a $2 \times 2 \times 2$ supercell and put a constrained number of Ni 3d-electrons, $n_d = 9$, in the core state. It gives the effective Coulomb parameter of $U_{\text{eff}} = F_{\text{th}}^0 = U - J = 4.11$ eV, which verifies our U and J_H values in the DFT+DMFT calculations.

The continuous time quantum Monte Carlo (CTQMC) [S4, S5] is adopted for an impurity solver. We use a generalized gradient approximation (GGA) [S6] for the exchange-correlation functional and subtract double counting (DC) term with an exact DC scheme invented by Haule, which eliminates the DC issues in correlated materials [S7]. The modified Gaussian method [S2] was used for analytical continuation to obtain the self-energy on the real frequency.

The Drude component in the optical conductivity. In the DFT+DMFT method, the real part of the optical conductivity is computed as follows [S54]:

$$
\sigma^{\mu\nu}(\omega) = \frac{\pi e^2}{V_0} \sum_k \int d\omega (-\frac{\partial f}{\partial \omega}) \text{Tr}[v_\mu(k)A(k,\omega)v_\nu(k)A(k,\omega)],
$$

where e, V_0, f, $v_\mu(k)$, and $A(k,\omega)$ are the elementary charge, the volume of the unit cell, the Fermi-Dirac distribution function, the Fermi velocity along μ-direction, and the spectral function, respectively.

Since Eq. (S1) contains the k-sum in the Brillouin zone, the Drude peak could be decomposed into each band character if the all band characters are well separated spatially in the Brillouin zone. Figure S2 demonstrates that all distinct band characters of the Fermi surface are well separated in the Brillouin zone. Note that the hybridized band of Ni d_{xz} and La d_{xy} gives the Fermi surface at Γ and that of Ni d_{yz} gives the Fermi surface at La d_{xy}.

DECOMPOSITION OF THE DRUDE PEAK

Since three band characters cross E_F, those are Ni d_{xz}, the hybridized band of Ni d_{xz}/d_{yz} and La d_{xy}, and that of Ni d_{yz} and La d_{xz}, they contribute the Drude component in the optical conductivity.

In the DFT+DMFT method, the real part of the optical conductivity is computed as follows [S54]:

$$
\sigma^{\mu\nu}(\omega) = \frac{\pi e^2}{V_0} \sum_k \int d\omega (-\frac{\partial f}{\partial \omega}) \text{Tr}[v_\mu(k)A(k,\omega)v_\nu(k)A(k,\omega)],
$$

where e, V_0, f, $v_\mu(k)$, and $A(k,\omega)$ are the elementary charge, the volume of the unit cell, the Fermi-Dirac distribution function, the Fermi velocity along μ-direction, and the spectral function, respectively.

Since Eq. (S1) contains the k-sum in the Brillouin zone, the Drude peak could be decomposed into each band character if the all band characters are well separated spatially in the Brillouin zone. Figure S2 demonstrates that all distinct band characters of the Fermi surface are well separated in the Brillouin zone. Note that the hybridized band of Ni d_{xz} and La d_{xy} gives the Fermi surface at Γ and that of Ni d_{yz} gives the Fermi surface at La d_{xy}.
Fermi surface at A. Both are uncorrelated and correlations exhibited in them are almost temperature independent. Therefore, the low-energy Drude peak could be decomposed into two band components: the correlated Ni $d_{x^2-y^2}$ and the remaining uncorrelated hybridized band. Then, decomposition of the Drude peak is accomplished by performing the k-sum in each discretized Brillouin zone indicated in Fig. S2.

Figure S3 shows the decomposition of the Drude peak computed within DFT+DMFT at a broad temperature range. The effective plasma frequency (ω_p^*) and the effective scattering rate $1/\tau_{qp}$ for each band component are extracted from the data presented in Fig. S3 and they are depicted as a function of temperature in the main text.

OPTICAL CONDUCTIVITY OF A PROTYPICAL MOTT SYSTEM OF V_2O_3

Figure S4(a) shows the optical conductivity of the paramagnetic metallic phase of V_2O_3 computed with DFT+DMFT, which is adopted from Ref. [S9]. From the data, we compute the integrated optical spectral weight $K = \int_0^\Omega \sigma_1(\omega) d\omega$ and provide it as a function of integration cutoff value Ω in Fig. S4(b). Since the electronic kinetic energy is proportional to the integrated optical spectral weight K, Fig. S4(b) demonstrates that the kinetic energy decreases upon heating. This reflects the Mott behavior that the kinetic energy is reduced as an insulating state is approached at higher temperatures. This optical response upon heating is opposite to the case of LaNiO$_2$, where the kinetic energy increases upon heating as shown in the main text. Based on the optical response, the infinite-layer LaNiO$_2$ is, therefore, far from a Mott system.

LOW-ENERGY PHYSICAL QUANTITIES

Figure S5 shows the imaginary part of self-energy for Ni $d_{x^2-y^2}$ on the real axis. The modified Gaussian method [S2] is adopted for analytical continuation. Upon cooling, $\text{Im}\Sigma(0)$ approaches to zero and $\text{Im}\Sigma(\omega)$ exhibits a quadratic behavior at low frequencies. Hence, LaNiO$_2$ clearly shows the Fermi liquid behavior.

TABLE S1. Quadratic fitting $(aT^2 + b)$ in the quasiparticle scattering rate $1/\tau_{qp}$ provided in Fig. S6(b). The coefficients a and b are provided for each Ni orbital.

Orbital	a (eV/K2)	b (eV)
$d_{x^2-y^2}$	2.029×10^{-7}	6.124×10^{-5}
d_{z^2}	4.563×10^{-9}	2.532×10^{-4}
d_{xy}	1.753×10^{-9}	2.045×10^{-4}
d_{xz}	2.393×10^{-9}	2.117×10^{-4}

The quasiparticle weight Z and the quasiparticle scattering rate $1/\tau_{qp} = -Z\text{Im}\Sigma(i0^+)$ are depicted in Fig. S6. Ni $d_{x^2-y^2}$ has the lowest $Z (0.4 \sim 0.5)$ among the others ($Z \approx 0.8$), indicating that Ni $d_{x^2-y^2}$ is the correlated orbital and the others are almost uncorrelated ones. $1/\tau_{qp}$ for all Ni $3d$ orbitals exhibit a quadratic behavior in temperature, thereby presenting the Fermi liquid behavior. In the case of Ni $d_{x^2-y^2}$, deviation from the quadratic behavior in $1/\tau_{qp}$ is recognized around $T \sim 600$ K. The coherent temperature is $T_{coh} \sim 450K$ as demonstrated in Fig. S6(c), hence deviation from the Fermi liquid behavior is apparent above the coherent temperature. It is noteworthy that the only Ni $d_{x^2-y^2}$ orbital shows coherence-incoherence crossover and the others are still coherent even at high temperature. The orbital-differentiated coherence-incoherence crossover is one of the hallmark of a Hund’s metal.

Table S1 provides coefficients of the quadratic fitting $(aT^2 + b)$ on $1/\tau_{qp}$ used in Fig. S6(b). For Ni $d_{x^2-y^2}$, b is relatively small and Γ/k_BT depicted in Fig. S6(c) follows $aT + b/T \approx aT$, that is a linear behavior. On the other hand, the others have relatively large b, so that they exhibit b/T at low temperature, but aT at high temperature as demonstrated in Fig. S6(c).

ELECTRONIC STRUCTURE OF THE INFINITE-LAYER NICKELATE UPON STRONTIUM DOPING

Figure S7 shows the 3-dimensional Fermi surface of the infinite-layer La$_{1-x}$Sr$_x$NiO$_2$ for several doping concentrations x computed with DFT+DMFT. $\text{Im}\Sigma(\omega)$ is set to be zero in Fig. S7, which leads to obtain the quasiparticle Fermi surface. At $x = 0.1$, the small electron pocket at Γ disappears. Upon further doping, another electron pocket at A diminishes and disappears eventually at $x = 0.5$. Therefore, two distinct Lifshitz transitions are realized from $x = 0.0$ to $x = 0.5$.

The number of mobile charge carriers n_c for each band component contributing the intraband transitions is estimated from the volume enclosed by the corresponding Fermi surface presented in Fig. S7 and is provided in the main text. The size of the Ni $d_{x^2-y^2}$ Fermi surface shrinks upon doping and its n_c decreases accordingly. It reduces the electronic kinetic energy as shown in Fig. 3 in the main text. It is another definite evidence of that the infinite-layer La$_{1-x}$Sr$_x$NiO$_2$ is far from a Mott system, where doping releases localization of electrons and increases the electronic kinetic energy correspondingly.
HUND’S RULE CORRELATION IN THE INFINITE-LAYER NICKELATE

In order to gain more insight into the role of Hund’s rule correlation in the infinite-layer LaNiO$_2$, we provide the DMFT valence histogram as a function of Hund’s coupling J_H as depicted in Fig. S8(a). Note that DMFT simulations with $J_H = 0.3$ and 0 eV along with the exact double counting scheme give different occupation numbers of Ni 3d orbitals, $n_d = 8.29$, and 8.17, respectively. Recall that $n_d = 8.58$ for $J_H = 1.0$ eV. Therefore, in order to balance the n_d for $J_H = 1.0$ eV and that for other J_H values, we fix the double-counting energy obtained in the $J_H = 1.0$ eV simulation and perform DMFT calculations with other J_H values. It helps to obtain the similar n_d. As demonstrated in Fig. S8(a), the most probable atomic configuration in a $N = 8$ sector is the spin-triplet state ($S = 1$) in Ni e_g orbitals and its probability decreases as J_H becomes smaller. It clearly shows the Hund’s rule correlation. The Hund’s rule correlation is clearly exhibited in Figs. S8(b) and (c), where the quasiparticle weight Z and the electronic coherence scale $-\text{Im}\Sigma(i0^+)$ change significantly as a function of Hund’s coupling J_H. Figure S8(c) particularly shows that Hund’s coupling J_H increases $-\text{Im}\Sigma(i0^+)$, thereby reducing the coherence scale drastically. It leads to lower the coherent temperature T_{coh}. In Hund’s metal systems such as ruthenates and iron pnictides [S12–S14] and chalcogenides [S15], T_{coh} is defined by $\Gamma/k_B T = 1$ and it is estimated as $T_{coh} \sim 450$ K. The deviation from the T^2 behavior is visible above the coherence temperature. The same behavior could be found in $1/\tau^*_B$ for Ni $d_{x^2−y^2}$ as shown in Fig. 2(e) of the main text. Note that the coherence scale (or T_{coh}) is severely diminished by Hund’s coupling J_H as demonstrated in Fig. S8(c). The coherence-incoherence crossover is already realized in other Hund’s metal systems such as ruthenates [S10, S11] and iron pnictides [S12–S14] and chalcogenides [S15], where Hund’s coupling J_H drastically reduces the coherence scale.

The coherence temperature T_{coh} manifests itself also in the T-dependent Fermi surface (FS), displayed in Fig. S9(b). Below T_{coh}, quasiparticles are well-defined, thereby providing apparent FSs. Above T_{coh}, Ni 3d orbitals except for $d_{x^2−y^2}$ are still coherent even at very high temperature, however the Ni $d_{x^2−y^2}$ gets incoherent. As a result, the large FS of Ni $d_{x^2−y^2}$ diminishes. T_{coh} is identified in $(\omega_p^*)^2$ as well presented in Fig. 2(d) of the main text, where $(\omega_p^*)^2$ for Ni $d_{x^2−y^2}$ increases linearly upon heating below T_{coh} and then shows the saturation behavior above T_{coh}. $(\omega_p^*)^2$ for the uncorrelated hybridized band does not show temperature dependence. The orbital-differentiated coherence-incoherence crossover is one of the main characteristic of the Hund’s metal physics [S10, S14].

COHERENCE-INCOHERENCE CROSSOVER

Figure S9(a) shows $\Gamma/k_B T$ as a function of T, where Γ is the quasiparticle scattering rate with $\Gamma = -Z\text{Im}\Sigma(i0^+)$. The Fermi-liquid behavior of $\Gamma \propto T^2$ is identified up to ~400 K. The coherence temperature T_{coh} is defined by $\Gamma/k_B T = 1$ and it is estimated as $T_{coh} \sim 450$ K. The deviation from the T^2 behavior is visible above the coherence temperature. The same behavior could be found in $1/\tau^*_B$ for Ni $d_{x^2−y^2}$ as shown in Fig. 2(e) of the main text. Note that the coherence scale (or T_{coh}) is severely diminished by Hund’s coupling J_H as demonstrated in Fig. S8(c). The coherence-incoherence crossover is already realized in other Hund’s metal systems such as ruthenates [S10, S11] and iron pnictides [S12–S14] and chalcogenides [S15], where Hund’s coupling J_H drastically reduces the coherence scale.

The coherence temperature T_{coh} manifests itself also in the T-dependent Fermi surface (FS), displayed in Fig. S9(b). Below T_{coh}, quasiparticles are well-defined, thereby providing apparent FSs. Above T_{coh}, Ni 3d orbitals except for $d_{x^2−y^2}$ are still coherent even at very high temperature, however the Ni $d_{x^2−y^2}$ gets incoherent. As a result, the large FS of Ni $d_{x^2−y^2}$ diminishes. T_{coh} is identified in $(\omega_p^*)^2$ as well presented in Fig. 2(d) of the main text, where $(\omega_p^*)^2$ for Ni $d_{x^2−y^2}$ increases linearly upon heating below T_{coh} and then shows the saturation behavior above T_{coh}. $(\omega_p^*)^2$ for the uncorrelated hybridized band does not show temperature dependence. The orbital-differentiated coherence-incoherence crossover is one of the main characteristic of the Hund’s metal physics [S10, S14].

TWO-BAND MODEL

We investigate the effective low-energy Hamiltonian of the infinite-layer LaNiO$_2$ based on the Wannier interpretation [S16, S17]. Since band characters that cross the Fermi level are the correlated Ni $d_{x^2−y^2}$ and the uncorrelated hybridized band including Ni d_z, we choose two Wannier bases of Ni $d_{x^2−y^2}$ and d_z orbitals. During the process of Wannier minimization, we found that a center of the Wannier wave-function of Ni d_z is shifted toward a La site and the spread of the Wannier wave-function develops gradually due to a significant hybridization with La d_{x^2} orbital. Hence, in order to keep an atom centered Ni d_z orbital, we performed an one-shot Wannier minimization computation and the results are presented in Fig. S10. As shown in Fig. S10, the two-band Wannier band dispersion explains the DFT one near E_F, thereby suggesting that the effective low-energy Hamiltonian is described with atom centered Ni e_g orbitals.

[S1] Peter Blaha, Karlheinz Schwarz, Fabien Tran, Robert Laskowski, Georg K. H. Madsen, and Laurence D. Marks, “WIEN2k: An APW+lo program for calculating the properties of solids,” J. Chem. Phys. 152, 074101 (2020).
[S2] Kristjan Haule, Chuck-Hou Yee, and Kyoo Kim, “Dy-Characterization of the Nickel(I) Oxide LaNiO$_2$, J. Am. Chem. Soc. 121, 8843 (1999).
[S3] M. A. Hayward, M. A. Green, M. J.Rosseinsky, and J. Sloan, “Sodium Hydride as a Powerful Reducing Agent for Topotactic Oxide Deintercalation: Synthesis and Characterization of the Nickel(I) Oxide LaNiO$_2$, J. Am. Chem. Soc. 121, 8843 (1999).
[S4] Philipp Werner, Armin Comanac, Luca de‘Medici, Matthias Troyer, and Andrew J. Millis, “Continuous-Time Solver for Quantum Impurity Models,” Phys. Rev. Lett. 97, 076405 (2006).
[S5] Kristjan Haule, “Quantum Monte Carlo impurity solver for cluster dynamical mean-field theory and electronic structure calculations with adjustable cluster base,” Phys. Rev. B 75, 155113 (2007).
[S6] John P. Perdew, Kieron Burke, and Matthias Ernzerhof, “Generalized Gradient Approximation Made Simple,”
Phys. Rev. Lett. 77, 3865 (1996).

[S7] Kristjan Haule, “Exact Double Counting in Combining the Dynamical Mean Field Theory and the Density Functional Theory,” Phys. Rev. Lett. 115, 196403 (2015).

[S8] Mark Jarrell, J. E. Gubernatis, “Bayesian inference and the analytic continuation of imaginary-time quantum Monte Carlo data,” Physics Reports 269, 133 (1996).

[S9] Xiaoyu Deng, Aaron Sternbach, Kristjan Haule, D. N. Basov, and Gabriel Kotliar, “Shining Light on Transition-Metal Oxides: Unveiling the Hidden Fermi Liquid,” Phys. Rev. Lett. 113, 246404 (2014).

[S10] Jernej Mravlje, Markus Aichhorn, Takaaki Miyake, Kristjan Haule, Gabriel Kotliar, and Antoine Georges, “Coherence-Incoherence Crossover and the Mass-Renormalization Puzzles in Sr$_2$RuO$_4$,” Phys. Rev. Lett. 106, 096401 (2011).

[S11] Jernej Mravlje and Antoine Georges, “Thermopower and Entropy: Lessons from Sr$_2$RuO$_4$,” Phys. Rev. Lett. 117, 036401 (2016).

[S12] K. Haule and G. Kotliar, “Coherence-incoherence crossover in the normal state of iron oxypnictides and importance of Hund’s rule coupling,” New J. Phys. 11, 025021 (2009).

[S13] F. Hardy, A. E. Böhmer, D. Aoki, P. Burger, T. Wolf, P. Schweiss, R. Heid, P. Adelmann, Y. X. Yao, G. Kotliar, J. Schmalian, and C. Meingast, “Evidence of Strong Correlations and Coherence-Incoherence Crossover in the Iron Pnictide Superconductor KFe$_2$As$_2$,” Phys. Rev. Lett. 111, 027002 (2013).

[S14] H. Miao, Z. P. Yin, S. F. Wu, J. M. Li, J. Ma, B.-Q. Lv, X. P. Wang, T. Qian, P. Richard, L.-Y. Xing, X.-C. Wang, C. Q. Jin, K. Haule, G. Kotliar, and H. Ding, “Orbital-differentiated coherence-incoherence crossover identified by photoemission spectroscopy in LiFeAs,” Phys. Rev. B 94, 201109(R) (2016).

[S15] Z. K. Liu, M. Yi, Y. Zhang, J. Hu, R. Yu, J.-X. Zhu, R.-H. He, Y. L. Chen, M. Hashimoto, R. G. Moore, S.-K. Mo, Z. Hussain, Q. Si, Z. Q. Mao, D. H. Lu, and Z.-X. Shen, “Experimental observation of incoherent-coherent crossover and orbital-dependent band renormalization in iron chalcogenide superconductors,” Phys. Rev. B 92, 235138 (2015).

[S16] Arash A. Mostofi, Jonathan R. Yates, Young-Su Lee, Ivo Souza, David Vanderbilt, Nicola Marzari, “wannier90: A tool for obtaining maximally-localised Wannier functions,” Computer Physics Communications 178, 685 (2008).

[S17] Giovanni Pizzi et al., “Wannier90 as a community code: new features and applications,” J. Phys.: Condens. Matter 32, 165902 (2020).
FIG. S1. DFT electronic structure of the infinite-layer LaNiO$_2$. (a) DFT band dispersion in a broad energy window. The orange arrows correspond to interband transitions identified in the optical conductivity presented in the main paper. (b) DFT Fermi surface. Three Fermi surfaces are realized and their characters are indicated. (c) DFT band dispersions with orbital characters. (left) La $5d$, Ni $3d$, and O $2p$ (middle) La d_{z^2}, d_{xy}, $d_{x^2-y^2}$, and d_{xz}/d_{yz} (right) Ni d_{z^2}, d_{xy}, $d_{x^2-y^2}$, and d_{xz}/d_{yz} orbital characters are presented.

FIG. S2. Discretization of the Brillouin zone so as to decompose the Drude peak into two band components (Ni $d_{x^2-y^2}$ and an uncorrelated hybridized band) that cross the Fermi level. In the Fermi surface of LaNiO$_2$ computed with DFT+DMFT, each band character is well separated spatially in the Brillouin zone indicated by the black squares.
FIG. S3. Decomposition of the Drude peak in the infinite-layer LaNiO$_2$ at a broad temperature range. The Drude peak computed with DFT+DMFT is decomposed into each band component that crosses the Fermi level, that are Ni $d_{x^2-y^2}$ and an uncorrelated hybridized band.
FIG. S4. (a) The optical conductivity of the paramagnetic metallic phase of V$_2$O$_3$ computed within the DFT+DMFT method. The data is adopted from Ref. [S65]. (b) The integrated optical spectral weight $K(\Omega) = \int_0^\Omega \sigma_1(\omega) d\omega$ as a function of cutoff frequency Ω. It decreases upon heating, which is a key characteristic of a Mott system.

FIG. S5. DMFT self-energy in the infinite-layer LaNiO$_2$. The imaginary part of self-energy for Ni $d_{x^2-y^2}$ orbital is presented on the real axis for several temperatures.

FIG. S6. Low-energy physical quantities for Ni 3d orbitals in the infinite-layer LaNiO$_2$. (a) Quasiparticle weight Z as a function of temperature. (b) Quasiparticle scattering rate $1/\tau_{qp} = -Z \text{Im} \Sigma(\theta^+) + \text{Im} \Sigma''(\theta^+) - \Gamma$ as a function of temperature. (c) Quasiparticle scattering rate $\Gamma = 1/\tau_{qp}$ divided by $k_B T$ as a function of temperature. Error bars presented in (a), (b), and (c) originate from the statistical errors in CTQMC simulations. The dash-dotted lines in (a) and (b) are guides for the eye by fitting Z and $1/\tau_{qp}$ to linear ($aT + b$) and quadratic ($aT^2 + b$) functions, respectively. The dash-dotted lines in (c) are guides for the eye and have a form of $aT + b/T$ where the coefficients a and b are obtained from the fitting in (b).
FIG. S7. DMFT Fermi surfaces of the infinite-layer La$_{1-x}$Sr$_x$NiO$_2$ as a function of doping ratio x. In this figure, Im$\Sigma(\omega)$ is set to be zero to obtain the quasiparticle DMFT Fermi surfaces.

FIG. S8. Hund’s rule correlation in the infinite-layer LaNiO$_2$. (a) The DMFT valence histogram of the Ni-3d shell for LaNiO$_2$ is provided for Hund’s coupling $J_H =$ (left) 1, (middle) 0.3, and (right) 0 eV. The 1024 possible atomic configurations are sorted by the number of 3d electrons of the individual configuration. The probability of the atomic configuration of (N = 8, e_g S = 1), where the spin triplet state is realized in Ni e_g orbitals, decreases as J_H becomes smaller. (b) Quasiparticle weight Z as a function of Hund’s coupling J_H. (c) Electronic coherence scale $-\text{Im}\Sigma(i0^+)$ as a function of Hund’s coupling J_H. The dash-dotted line in (c) is a guide for the eye. Error bars originate from the statistical errors in CTQMC simulations.
FIG. S9. Coherence-incoherence crossover in LaNiO$_2$. (a) Quasiparticle scattering rate $\Gamma = -\text{ZIm}(\delta^+)$ of Ni $d_{x^2-y^2}$ divided by k_BT as a function of temperature. Error bars originate from the statistical errors in CTQMC simulations. The red dash-dotted line is a guide for the eye by fitting Γ/k_BT to a linear function. $\Gamma/k_BT \approx 1$ at the coherent temperature $T_{coh} \sim 450\,\text{K}$. Above T_{coh}, Γ/k_BT shows deviation from linearity, indicating that a quasiparticle is no longer well-defined. The coherence-incoherence crossover is clearly shown in (b), where Fermi surfaces are plotted at temperature below and above T_{coh}.

FIG. S10. Two-band model. (a) DFT (blue solid line) and Wannier (red dot) band dispersions of LaNiO$_2$. (b) Isosurface plots for (left) Ni-centered $d_{x^2-y^2}$-like and (right) Ni-centered d_{z^2}-like with extended La-centered d_{z^2}-like Wannier orbitals. These two orbitals describe the DFT band dispersion well near the Fermi level in (a).