Кріохірургія і фізичні методи
в лікуванні онкологічних захворювань
Чиж М. О.1, ORCID: 0000-0003-0085-296X, e-mail: n.chizh@ukr.net
Бєлочкіна І. В.1, ORCID: 0000-0003-0090-2971, e-mail: ibelochkina@ukr.net
Гладких Ф. В.2, ORCID: 0000-0001-7924-4048; e-mail: fedir.hladkykh@gmail.com
1 Інститут проблем кріобіології і кріомедицини Національної академії наук України, Харків, Україна
2 Державна установа «Інститут медичної радіології та онкології ім. С. П. Григор’єва Національної академії медичних наук України», Харків, Україна

Cryosurgery and physical medicine
in treatment of cancer
Chyzh M. O.1, ORCID: 0000-0003-0085-296X, e-mail: n.chizh@ukr.net
Belochkina I. V.1, ORCID: 0000-0003-0090-2971, e-mail: ibelochkina@ukr.net
Hladkykh F. V.2, ORCID: 0000-0001-7924-4048; e-mail: fedir.hladkykh@gmail.com
1 Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv, Ukraine
2 State Organization “Grigoriev Institute for Medical Radiology and Oncology of the National Academy of Medical Sciences of Ukraine”, Kharkiv, Ukraine

РЕЗЮМЕ
Актуальність. На сучасному етапі розвитку онкології кріохірургічний метод лікування займає міцні позиції поряд з іншими хірургічними способами лікування злокахісних пухлин. Проте, особливо при застосуванні кріоаплікаційного методу, радикальна низькотемпературна деструкція пухлини великого розміру стикається з проблемою нерівномірного промерзання тканини всередині та на периферії зони кріоабляції, що призводить до недостатньо повного руйнування всіх пухлинних клітин.
Перспективною стратегією підвищення ефективності кріогенного методу лікування, що дозволить максимально проявити потенціал впливу низьких температур на біологічні тканини, є комбіноване його використання з іншими фізичними методами. З іншого боку, попередній кріовплив на пухлинну тканину може бути використаний для підвищення ефективності протипухлинної терапії іншими, зокрема, фізичними методами.
Мета роботи. – узагальнення та аналіз даних літератури щодо комбінованого використання низьких температур з іншими фізичними методами лікування для визначення ефективності та перспективності їх застосування в сучасній онкології.
Матеріали та методи. Проведено аналіз робіт, опублікованих у 2000–2020 рр., в яких висвітлювалися відомості про вплив низьких температур в комбінації з іншими фізичними методами на біологічні тканини. Після пошуку за ключовими словами по міжнародних та українських базах даних, були відіbrane, проаналізовані статті за даною тематикою та включені до списку літератури.
Результати та їх обговорення. З урахування патогенетичних механізмів дії низьких температур на біологічні структури в огляді представлені переваги і недоліки застосування кріохірургічного методу у лікувальній практиці. На підставі даних експериментальних та клінічних досліджень показано позитивний ефект комбінованого використання кріохірургічних підходів з іншими фізичними методами при проведенні оперативних втручань з приводу абляції злокахісних новоутворень. На розгляд були представлені публікації, в яких описані результати досліджень щодо комбінації кріохірургії з попередньою гемодилюцією; радіочастотною та мікрохвильовою гіпертермічною абляцією; лазерною та фотодинамічною терапією; електропорацією. Також представлені сучасні уявлення про

Ключові слова:
kріохірургія, фізичні методи, деструкція, онкологія.

Для цитування:
Чиж М. О., Бєлочкіна І. В., Гладких Ф. В. Кріохірургія і фізичні методи в лікуванні онкологічних захворювань. Український радіологічний та онкологічний журнал. 2021. Т. XXIX. № 2. С. 127–149. DOI: https://doi.org/10.46879/ukroj.2.2021.127-149

Для кореспонденції:
Бєлочкіна Ірина Владиславівна
Інститут проблем кріобіології і кріомедицини Національної академії наук України, відділ експериментальної кріомедицини;
вул. Перевальська, буд. 23, м. Харків, Україна, 61016;
e-mail: ibelochkina@ukr.net

© Чиж М. О., Бєлочкіна І. В., Гладких Ф. В., 2021
**ABSTRACT**

**Background.** At the present stage of oncology development, cryosurgery is keeping up with other surgical options of treating malignant tumors. However, especially when using cryoapplication technique, radical low-temperature destruction of large tumors is challenged with uneven freezing of the tissue inside and on the periphery of the cryoablation zone resulting in insufficient complete destruction of all tumor cells. The long-term strategy of increasing the efficiency of cryogenic treatment, which will maximize the potential for exposure of biological tissues to low temperatures, is its combination with other physical methods. On the other hand, the preliminary cryotherapy of the tumor tissue can be used to increase the efficiency of antitumor therapy by other methods, in particular, physical ones.

**Purpose** – to summarize and analyze the literature data on applying low temperatures in combination with other physical medicine techniques in order to assess the efficiency and the potential of those in uptodate oncology.

**Materials and Methods.** The paper deals with analyzing the studies published within the period from 2000 to 2020 outlining the data on the impact of low temperatures on the biological tissues in combination with other physical medicine techniques. After keyword search against international and Ukrainian databases, the papers, focused on this subject area, were sorted out, analyzed and included in the references.

**Results.** The review presents pros and cons of using cryosurgery in medical practice with due regard for pathogenetic mechanisms of low temperature impact on biological structures. Based on experimental and clinical studies data, a positive effect of cryosurgical approaches in combination with other physical medicine techniques when performing surgical interventions for ablation of malignant neoplasms has been shown. The paper included the contributions describing the findings on combining cryosurgery with: preliminary hemodilution; radiofrequency and microwave hyperthermic ablation; laser and photodynamic therapy; electroporation. Additionally, a contemporary view of cryo-ultrasound therapy, cryonanoablation, cryo-radiation treatment and cryoelectrolysis was presented.

**Conclusions.** Cryosurgery is an effective minimally invasive surgical method keeping up with other methods of treating malignant tumors, despite the fact that these days the research on optimizing the method of exposure of biological tissues to low temperatures is still ongoing. Cryosurgery in combination with other physical medicine techniques in case of tumor ablation can enhance the effectiveness of treating cancer patients.

**Keywords:** cryosurgery, physical methods, destruction, oncology.
INTRODUCTION

The up-to-date approach to treating cancer patients is based on generally accepted international standards, maintained according to the principles of evidence-based medicine (Evidence-Based Medicine) and aimed at improving the quality of cancer care. According to Order No 554 of the Ministry of Health of Ukraine “On approval of protocols for medical care in the specialty “Oncology” dated 17.09.2007, the adopted standards regulate the choice of method and treatment regimens for cancer patients. Methods of minimally invasive surgery, in particular, cryosurgical ones [1], are increasingly used to destroy pathological neoplasms.

The development of the cryogenic method results from collaborative study of cryobiologists, engineers, cryogenic equipment developers, clinicians, in particular, oncologists. Theoretical calculations and experience in applying low temperatures in experimental animal research have become the basis for introducing the cryosurgical method into practical medicine. Today, the cryogenic method is keeping up with other methods of treating malignant tumors. The main potential advantages of cryosurgical treatment include low incidence of complications, short bed-day, lower cost of treatment, the possibility of treating patients with severe comorbidities and, above all, reducing or preventing the risk of dissemination and metastasis of the tumor due to hemo- and lymphostatic effect of tissue freezing [2–5].

The major challenge of cryosurgery is the destruction of pathologically altered tissues within the healthy ones. A peculiarity of the cryosurgical method is the destruction of tumors without removing them. For complete cryodestruction of tumors, the target temperature at the tumor site should not be higher – 40°C. The mechanism of cryodamage of biological tissues is fulfilled during and after cryo-intervention at molecular, cellular, tissue and system levels. The coagulation necrosis of tissues is known to appear after cryosurgery. One of the factors of destructive action of low temperatures at the cellular level is extra- and intracellular crystal formation leading to mechanical damage of cells. The changes in osmotic pressure, pH and dehydration are considered as additional factors of destruction, which lipoproteins of cell membranes are particularly sensitive to [6]. Due to reaching low temperatures in the depth of the tissues, the destruction of tumor cells by necrosis is highest possible, which leads to the release of intracellular contents, including DNA, RNA and specific tumor proteins [7]. The immune system recognizes these tumor antigens and provides an immune specific reaction in the form of proliferation and activation of T- and B-cells [9]. Studies have shown that low temperatures can sensitize dendritic cells,
У зв'язаному стані вода зі зниженням температури зв'язана з води в клітинних та тканинних системах, призводить до недостатньо повного руйнування всіх відносно цієї температури. Кріштоабляція новоутворень, крім деструкції пухлин, може підсилювати проти- пухлинну імунну відповідь організму, направлену на запобігання рецидиву захворювання та метастазуванню.

Ступінь пошкодження клітин залежить від температурного та часового режимів. Отже, найважливішими параметрами кріодеструкції пухлин є рівень низьких температур, експозиція кріоінвіуковання, швидкість заморозкування та відтавання тканин, кількість циклів заморозкування—відтавання [3, 5, 11].

В онкології залежно від розташування пухлини використовують кріозрошення, клініку та пептроетодну кріоінвіоабляцію. Кріодеструкція завжди за- стосовують в дерматології, а також в гастроентеро- логії та ЛОР-практикі в комплексному лікуванні інтенсивних новоутворень на слизових оболонках органів з використанням ендоскопичної апаратури. Апікаційний спосіб, тобто спосіб контактової кріодеструкції дозволяє провести деструкцію більш глибоких патологічно змінених тканин. Для руйнування великих об’ємів тканин у кріохірургії застосо- вують пенетраційний спосіб, коли кріозонд занурюється на всю глибину пухлини. Питання відносно вибору технічного способу кріожерів деструкції виришується для кожного конкретного випадку з урахуванням розміру, характеру росту та гістологічної будови пухлин, загального стану хворого, його віку та наявності супутньої патології, тощо. Загалом, кріоінвіо метод лікування належить до функціонально безпечних методів локального впливу на патологічний осередок [3, 5].

До позитивних властивостей дії низьких температур на судини або порожнини органа можна віднести те, що під їх впливом відбувається загибель клітинних елементів зі збереженням колагенового каркаса. Завдяки цьому ефекту попереджується ризик кровотечі або перфорації як під час кріодеструкції, так і після неї. Тому існує можливість проводити оперативні втручання у важкодоступних місцях та поблизу великих судин [12, 13].

Проте, особливо в ході застосування кріоаппликаційного методу, радикальна низько-температурна деструкція пухлин великого розміру стикається з проблемою нерівномірного промерзання тканин всередині та на периферії зони кріоінвіоції, що призводить до недостатньо повного руйнування всіх пухлинних клітин [14, 15].

Для кріоінвіоції суттєве значення має стан зв’язаної води в клітинних та тканинних системах. У зв’язаному стані вода зі зниженням температури
On the other hand, the preliminary cryotherapy of the tumor tissue can be used to increase the efficiency of anti-tumor therapy by other methods, including physical ones.

**MATERIALS AND METHODS**

Information search was carried out against PubMed database (https://pubmed.ncbi.nlm.nih.gov/), ResearchGate database (https://www.researchgate.net/), Scientific Periodicals of Ukraine (http://www.irbis-nbuv.gov.ua/). The search depth: 2000–2020. Analyzing the summary of papers by keywords: cryosurgery and physical methods of ablation made it possible to specify the search. Full-text papers by the keywords: cryo- and hyperthermic ablation, cryo-ultrasound therapy, cryonanoablation, cryosurgery in combination with laser and photodynamic therapy, cryoradiation method, cryoelctrolysis, cryosurgery and electroporation were sorted out, analyzed and included in the references.

**RESULTS AND DISCUSSION**

Applying a combination of different treatment options was included in medical practice for a while now. The combined method principle consists in the sequential or simultaneous application of two methods of special treatment with local action. It is the combined use of different methods that increases the efficiency of treatment due to summation – additive action, potentiation of the effects of two or more therapeutic methods or, on the contrary, the combined use can reduce or eliminate the therapeutic effect of the methods.

**Cryodestruction with preliminary hemodilution**

One of the methods that would enhance the cryodestruction effect is pre-hemodilution. The use of acute normovolemic hemodilution in combination with the technology of controlled low central venous pressure in liver resection in patients with hepatocellular carcinoma, is known to reduce intraoperative hemorrhage and it does not significantly affect coagulation function [18]. Increasing the volume of circulating blood in the vessels...
істотно не впливає на функцію згортання крові [18]. Збільшення об’єму циркулюючої крові в судинах теоретично призводить до збільшення вільної води в біологічних тканинах, і, таким чином, під час кріовпливу підвищується вірогідність появи зародків кристалоутворення, в першу чергу в позаклітинному просторі [19].

На ізольованій печінці свині О.І. Дронов та співавтори показали посилення кріовпливу завдяки попередньому введенню дистилованої води в біологічну ткінну. Проведення гемоділюції за 5 хв до початку локального кріовпливу чинить потенційний ефект, який проявляється в досягненні більш низьких температур у ділянках, віддалених від робочої поверхні кріоаплікатора. Середня температура у тканині печінки тварин досліджуваної групи на глибині 3 мм від робочої поверхні кріоаплікатора наприкінці 10-ї хвилини другого циклу кріовпливу була на 36˚С нижче, ніж у контрольній [19]. Слід враховувати, що результати, отримані на такій моделі навіть, тобто за відсутності спланхнічного кровотоку, не можуть повною мірою відповідати умовам in vivo. Проте, ефект від проведення попередньої гемоділюції є імовірним, що потребує подальших експериментальних і клінічних досліджень.

Комбінація кріо- та гіпертермічної абляції

Для локального підвищення температури в пухлинах створені й успішно застосовуються системи гіпертермічної абляції: радіочастотної, мікрохвильової, причому електроди можуть вводитися як безпосередньо в орган (після лапаротомії), так і черезшкірно під ультразвуковим або променевим контролем [20, 21] . Енергія, що застосовується для нагрівання пухлин, містить енергію мікрохвиль (у діапазоні частот 433 – 2450 МГц), радіочастот (100 кГц – 150 МГц). Гіпертермія є перспективним методом лікування злоякісних новоутворень, який полягає в тому, що частина тіла або окремі органи піддаються впливу, який включає гіпертермію в експерименті та клініці [16, 21]. В.В. Шафранов показав, що тепла енергія виділяється в самих тканинах, а не підводиться конвективно зовні, при цьому виключається перегрів поверхневих тканин.

Комбінованому використанню кріогенного методу і НВЧ-гіпертермії в експерименті та клініці присвячено багато робіт [16, 21]. В.В. Шафранов показав, що попереднє втручання на зону заморожування мікрохвильами (надвисокочастотне електромагнітне поле) значно збільшує об’єм кріоенкроку та дозволяє використовувати даний метод лікування у разі великих глибоких новоутворень особливо складної анатомічної локалізації, коли проведення інших методів лікування неможливо. Одним із механізмів значного посилення кріонекрозу під час комбінованого використання мікрохвиль є збільшення теплопровідності біологічних тканин, теоретично веде до збільшення величини, зумовленої збільшенням свободної води в клітинних ендоцітії. НВЧ-гіпертермія вивчається в місці, що віддалене від зони аблакції, обумовлює розтягнуте збільшення температури та збільшення концентрації свободної води у віддалених від зони аблакції тканинах. НВЧ-гіпертермія в експерименті та клініці присвячено багато робіт [16, 21]. НВЧ-гіпертермія концентрує енергію у мікрохвильовому діапазоні частот 433 – 2450 МГц, радіочастотному діапазону (100 кГц – 150 МГц). НВЧ-гіпертермія в експерименті та клініці присвячено багато робіт [16, 21]. НВЧ-гіпертермія концентрує енергію, що виділяється у тканинах, а не підводиться конвективно зовні, при цьому виключається перегрів поверхневих тканин.

Combination of cryo- and hyperthermic ablation

Hyperthermal ablation systems have been created and successfully used for local temperature rise in tumors: radiofrequency, microwave; moreover, electrodes can be inserted directly into the organ (after laparotomy) as well as percutaneously under ultrasound or radiation control [20, 21]. The energy used to heat tumors includes microwave energy (in the frequency range 433–2450 MHz), radio frequencies (100 kHz-150 MHz). Hyperthermia is a long-term method of treating malignant neoplasms, which consists in the fact that a part of the body or individual organs are exposed to high temperatures (above 39°C, up to 44–45°C) [22–24]. Numerous studies have shown that the thermal sensitivity of tumor tissue in ultrahigh-frequency (UHF) hyperthermia depends on the degree of vascularization and blood flow in it, the level of pO2, and pH, etc. [23–25]. A distinctive feature in treatment with the use of microwave hyperthermia is that thermal energy is released in the tissues themselves, and is not supplied convectively from the outside, thus eliminating overheating of surface tissues.

A great number of papers have been focused on combined use of the cryogenic method and microwave hyperthermia in experiment and clinic [16, 21]. V.V. Shaf ranov showed that preliminary intervention on the freezing zone by microwaves (ultrahigh-frequency electromagnetic field) significantly increases the volume of cryonecrosis and makes it possible to use this treatment option for large deep tumors of complex anatomical location, when other treatments are not possible. One of the mechanisms of substantial enhancement of cryonecrosis in combined use of microwaves is to increase the thermal conductivity of biological tissues [16]. Under microwaves, polar molecules become excited, resonant phenomena...
ткани [16]. Під впливом мікрохвиль полярних молекул переходять у збуджений стан, виникають резонансні явища, що призводить до зміни зони гідратації, розривів внутрішньомолекулярних зв’язків. Це, у свою чергу, дестабілізує структуру води, робить її більш розривів внутрішньомолекулярних зв’язків. Таким чином, вплив мікрохвиль має певну точку прикладення, що відповідає задачам кріохірургії [16].

Незважаючи на проведення понад 900 клінічних досліджень за останні 50 років, гіпертермія є одним із найпоширеніших методів радіологічної терапії, але параметри виконання процедур потребують чітко визначеної процедури. Загальна залежність впливу мікрохвиль полярних молекул полягає в тому, що за рахунок зміни розмірів, отриманих на першу добу, проте зона після кріоабляції не відрізнялася від первинних розмірів. За результатами дослідження встановлено, що при протого маси після обох методів лікування можна досягти нової некрозу тканин, але ступінь та глибина некрозу відрізняються: вогнища некрозу після кріоабляції під КТ-зображенням не змінюються, а після мікрохвильної абляції з часом збільшуються. Автори роблять висновки, що ці два методи можуть застосовуватися в комбінації, але параметри виконання процедур потребують подальшого вивчення [30].

У роботі [23] подано експериментальне обґрунтування комбінованого застосування локальної кріодеструкції і радіотерапії з електромагнітними полем, застосування яких є актуальною. Суттєвим обґрунтованням комбінованого застосування локальної кріодеструкції і радіотерапії є те, що відносно розмірів, отриманих на першу добу, проте зона після кріодеструкції не відрізнялася від первинних розмірів. За результатами дослідження встановлено, що при протого маси після обох методів лікування можна досягти нової некрозу тканин, але ступінь та глибина некрозу відрізняються: вогнища некрозу після кріоабляції під КТ-зображенням не змінюються, а після мікрохвильної абляції з часом збільшуються. Автори роблять висновки, що ці два методи можуть застосовуватися в комбінації, але параметри виконання процедур потребують подальшого вивчення [30].

У роботі [23] подано експериментальне обґрунтування комбінованого застосування локальної кріодеструкції і радіотерапії з електромагнітними полем, застосування яких є актуальним. Суттєвим обґрунтованням комбінованого застосування локальної кріодеструкції і радіотерапії є те, що відносно розмірів, отриманих на першу добу, проте зона після кріодеструкції не відрізнялася від первинних розмірів. За результатами дослідження встановлено, що при протого маси після обох методів лікування можна досягти нової некрозу тканин, але ступінь та глибина некрозу відрізняються: вогнища некрозу після кріоабляції під КТ-зображенням не змінюються, а після мікрохвильної абляції з часом збільшуються. Автори роблять висновки, що ці два методи можуть застосовуватися в комбінації, але параметри виконання процедур потребують подальшого вивчення [30].

У роботі [23] подано експериментальне обґрунтування комбінованого застосування локальної кріодеструкції і радіотерапії з електромагнітними полем, застосування яких є актуальним. Суттєвим обґрунтованням комбінованого застосування локальної кріодеструкції і радіотерапії є те, що відносно розмірів, отриманих на першу добу, проте зона після кріодеструкції не відрізнялася від первинних розмірів. За результатами дослідження встановлено, що при протого маси після обох методів лікування можна досягти нової некрозу тканин, але ступінь та глибина некрозу відрізняються: вогнища некрозу після кріоабляції під КТ-зображенням не змінюються, а після мікрохвильної абляції з часом збільшуються. Автори роблять висновки, що ці два методи можуть застосовуватися в комбінації, але параметри виконання процедур потребують подальшого вивчення [30].
Cryo-ultrasound therapy

Among surgical methods of treating patients with malignant tumors of the ENT organs, cryo-ultrasound therapy is preferred as a relatively optimal method of treating tumors both in terms of cosmetic and functional effect, and achieving maximum local destructive effect on tumor tissue with minimal damage to surrounding healthy tissues [31]. Molotov O.V et al. have shown in their paper that in case of applying local cryo-ultrasound destruction on the background of modification by leukinferon, the increased number of immunocompetent cells is observed, providing intensive resorption and elimination of necrotized tumor masses, acceleration of local reparative processes in the area of cryonecrosis along with the formation of connective structures. Within three years after combination therapy, recurrences, regional and distant metastases were detected in 13.5% of patients, and in control – in 33.6% of patients.

In gynecological practice, low-intensity ultrasound has been successfully used to enhance cryo-damage of pathologically altered cervical tissues [32]. According to the findings of a clinical study, it’s been found that applying cryo-ultrasound leads to a larger and deeper area
інтенсивності [32]. За результатами клінічного до-слідження встановлено, що застосування кріоультра-звукового впливу призводить до більш великої та глибокої зони некрозу, ніж після ізольованого кріохірургічного втручання. Найбільше пошкоджуються тканини в режимах, коли озвучування відбувається як у процесі заморозування, так і відтавання. Крім того, застосування ультразвуку в поєднанні з низькими температурами впливає на швидкість репаративних процесів у бік скорочення термінів регенерації. Так, після комбінованого кріоультра-звукового втручання з попереднім озвучуванням формувалась більш еластичний струп, який відторгався самостійно вже на 6-ту – 8-му добу, на відміну від одночасного кріоультразвукового втручання, за якого струп відторгався на 10–14-ту добу. На думку авторів, посилення ефекту кріоіндукуції може бути пов’язане з впливом ультразвуку на зародження та збільшення розмірів кристалів льоду, появу дрібнодисперсної кристалічної структури (на етапі заморозування) та можливою інтенсифікацією рекристалізації в ультразвуковому полі (на етапі відтавання) [32].

У роботі М.В. Мерзликіна показано, що застосу-вання наднизьких температур для резекції пухлин печінки знижує інтераперативну крововтрату, підвищує аблазічність операції за рахунок деструкції тканин по лінії розтину печінки. Крім того, під час операцій з приводу зло- та добровісних пухлин печінки можна здійснити у трьох варіантах: кріорезекція за допомогою кріоскальпеля і кріоультразвукового скальпеля і кріовіброскальпеля; звичайна резекція з кріодеструкцією кукси печінки уздовж лінії розтину; кріодеструкція метастазів і гемангиом невеликих розмірів. У цих випадках можливе виконання операції лапароскопічним доступом [33].

Можливість дистанційного впливу на пухлину поширювалась завдяки появі нового неінвазивного методу – ультразвукової абляції (High Intensive Focused Ultrasound – HIFU) [20]. Принцип лікувальної дії ультразвуку такий самий, як і в діагностиці, і заснований на здатності ультразвукової хвилі проходити крізь тканини, не пошкоджуючи їх. Під час проходження крізь тканини частина енергії пере-творюється на тепло. Під час фокусування ультра-звукової хвилі за допомогою спеціальної лінзи при HIFU-впливі температура підвищується досить швидко (протягом 1 с) до мінімального рівня 56°C, що створює цитотоксичний ефект, викликаючи безв-ротні зміни в тканинах – коагуляційний некроз. Під час HIFU-впливу температура може підвищуватись приблизно до 80°C, за якої ефективно руйнуються пухлинні тканини [34, 35].

Деструктивна дія HIFU-абляції досягається за рахунок поєднаної, майже одночасної, дії трьох процесів: перший – перетворення механічної енергії в тепло, другий – запуск кавітації, третій – пряме пошкодження судин, які живлять пухлину. Внаслідок проведення HIFU-абляції виникає невеликий локальний осередок ушкодження і некрозу, при цьому поверхневі і навколишні тканини залишаються інконтактним. of necrosis than after isolated cryosurgery. Tissues are most damaged in modes when sonification occurs both in freezing and thawing processes. In addition, ultrasound in combination with low temperatures affects the speed of reparative processes in the direction of reducing the regeneration time. Thus, after combined cryo-ultrasound intervention with preliminary sonification, a white elastic scab was formed, which was rejected independently on day 6–8, in contrast to the simultaneous cryo-ultrasound intervention, in which the scab was rejected on day 10–14. According to the authors, the strengthening of cryoablation effect may be associated with the impact of ultrasound on formation and increase of ice crystal size, appearance of fine crystalline structure (at freezing stage) and possible intensification of recrystallization in the ultrasonic field (at thawing stage) [32].

M.V. Merzlikin shows in his study that using ultra-low temperatures for resection of liver tumors reduces intraoperative blood loss, increases the ablative effect of operations due to tissue destruction along the line of liver dissection. Cryotherapy in operations for malignant and benign liver tumors can be performed in three versions: cryo-resection by means of cryoscalpel, cryo-ultrasonic scalpel and cryovibroscalet; normal resection with cryodestruction of the stump of the liver along the line of dissecting; cryodestruction of metastases and small hemangiomas. In these cases, it is possible to perform the operation via laparoscopic access [33].

The possibility of remote exposure of the tumor has spread due to a new non-invasive method, i.e. ultrasonic ablation (High Intensive Focused Ultrasonic – HIFU) [20]. The principle of therapeutic action of ultrasound is the same as in diagnosis, and is based on the ability of the ultrasonic wave to pass through the tissues without damaging them. As it passes through the tissue, some energy is converted into heat. When focusing the ultrasonic wave with a special lens under HIFU-exposure, the temperature rises quite rapidly (1s) to a minimal level of 56°C, which creates a cytotoxic effect, causing irreversible changes in tissues – coagulation necrosis. During HIFU exposure, the temperature can rise above 80°C, at which tumor tissues are effectively destroyed [34, 35].

The destructive effect of HIFU-ablation is achieved due to the combined, almost simultaneous action of three processes: 1 – conversion of mechanical energy into heat energy, 2 – cavitation start, 3 – direct damage to the vessels supplying the tumor. As a result of HIFU-ablation there is a small local center of damage and necrosis, while the superficial and surrounding tissues remain intact. In tissues, these processes occur extremely quickly and simultaneously, so coagulation necrosis caused by focused high-intensity ultrasound is due to the total biological effect of all factors [20]. The literature provides only data on comparing the effectiveness of cryo- and HIFU-ablation in treatment of tumors, such as prostate cancer [36, 37].
В тканинах ці процеси відбуваються надзвичайно швидко і одночасно, тому коагуляційний некроз, викликаний фокусуваним ультразвуком високої інтенсивності, зумовлений сумарним біологічним ефектом усіх факторів [20]. У літературі наведено лише дані щодо порівняння ефективності кріо- та HIFU-абляції в лікуванні пухлин, наприклад, раку простати [36, 37].

**Кріонаноабляція**

Одним із підходів для вирішення проблеми нерівномірного промерзання тканин є локальне введення наночастинок (НЧ) у пухлину перед виконанням процедури кріоабляції [38–40]. Використання НЧ зумовлено здатністю деяких їх видів збільшувати ймовірність утворення внутрішньоклітинного льоду, що призводить до пошкодження цитоскелета, органел та мембрани, як наслідок, до загибелі клітин [10]. Результати експериментів з використанням шикуючої калориметрії підтвердили, що введення НЧ може посилювати гетерогенне зародження крижаного ядра та сприятимати кластеризації зародків льоду. Відомо, що НЧ вивчають також унікальні тепловіластівні властивості, завдяки яким ефективність комбінованої кріоабляції виявляє також унікальні теплопровідні властивості, сприятиме кластеризації зародків льоду. Відомо, що НЧ використовують для покращення кінетики промерзання [14, 40, 41].

Для виготовлення НЧ використовується широкий спектр матеріалів, зокрема неорганічні метали, полімери, які біологічно розкладаються, ліпосоми, міцелі та напівпровідники. З метою покращення кінетики промерзання, Fe 3O4 застосовують, а для посилення термодинамічних параметрів збільшення теплопровідності Магнетоосі кристалів та збільшують швидкість заморозування [14, 40, 41]. Одним із підходів для вирішення проблеми нерівномірного промерзання тканин є використання наночастиц з унікальними тепловіластівними властивостями. Наночастики оксиду алюмінію (Al 2O3) здатні збільшувати швидкість утворення крижаної кулі, тим самим істотно підвищувати ефективність промерзання тканин [14, 40, 41]. Наночастики оксиду магнію (MgO) збільшують швидкість промерзання за рахунок збільшення теплопровідності. Окрім відмінних теплових властивостей, НЧ MgO є біосумісними речовинами, і здатні до біодеструкції, що дозволяє більш широко їх застосовувати в кріохірургічній практиці [14].

Слід зазначити, що використання кріонанохірургічних утречах потребує визначення параметрів кріоабляції, що має суттєве значення для ефективної кріодеструкції пухлин. Головним чином це стосується швидкості заморозування. Залежно від швидкості заморозування висока, у розчинні не утворюється льод, і клітини не зазнають великих втрат [40]. Тому слід підтримувати оптимальну швидкість охолодження для досягнення інтенсивного формування кріоабляції в лікуванні пухлин. J. Wang in an experiment on cell cultures showed that the maximum probability of formation of intracellular ice was observed at a freezing rate of 30°C/min [40]. Similar results have been obtained in human embryonic kidney cells and microvascular endothelial cells [40]. Up to date, the processes that occur during freezing in tissues and large organs, as well as cryostability of tumors depending on the organs where they are located are not sufficiently studied, and, as a result, the questions on the parameters of tumor freezing in self-cryoablation as well as cryonano-surgery remain open. Sun Zi et al. [43] present an attempt to estimate the distribution of tissue freezing zone in the
розв'язання, а також кріостійкість пухлини залежно від органів, де вони розташовані, і, як наслідок, залежають від актуальних питань щодо параметрів заморожування пухлини як при самостійній кріоабляції, так і при кріонанохірургії. У роботі Sun Zi та співавторів [43] познано спробу оцінки розподілу зони проморожування тканин в експерименті. На моделі ізольованої м'язової тканини, печінки і серця свині проведена імітація нанокріохірургічних операцій. Використовували 5%-й водний розчин НЧ Fe\(_2\)O\(_3\), який вводили в тканини ін'єкційно. Контроль температурних полів здійснювали термопарами та інфрачервоним термометром. Встановлено, що крійвані кульки мають різний розмір через неоднорідність тканин, і тому параметри кріохірургічних утручань мають залежати від фактичної ситуації. М'язи, печінка та серце різняться за пористістю, вмістом води, щільністю, кровонаповненням, теплопровідністю, питомою теплоемністю тощо, тому кількість НЧ, які мають вводитися в тканині, слід передбачати заздалегідь. Це допоможе здійснити високоякісну контрольовану абляцію тканин пухлинно-мішені в ході оперативних утручань [43].

Лазерна терапія та кріоабляція

Досить аргументовані і показові результати використання в онкологічній практиці кріохірургічних методів лікування в поєднанні з лазерним опроміненням [44]. Характеристики сучасних хірургічних лазерів (компактність, автономність, відсутність спеціальних зовнішніх систем охолодження, широкий діапазон потужності та довжини хвилі) дозволяють здійснювати їх практично в усіх сферах онкосurgery areas [44]. A. Miehke et al. described the main mechanisms of interaction of СО\(_2\)-laser with human tissues, indications for laser surgery of the larynx, in particular chordectomy and dissection of the ligament stenosis, and identified prospects for its expansion [44]. The results of applying cryosurgical methods of treatment in combination with laser irradiation in ENT practice are well-argued and indicative [44]. The capabilities of modern surgical lasers (small size, autonomy, lack of special external cooling systems, a wide range of power and wavelength) allow them to be used in almost all oncology areas [44]. A. Miehke and colleagues showed high efficiency of combination of CO\(_2\)-laser and cryosurgical ablation to reduce the thermal conductivity of tissue make it possible to use them in cryonanosurgery [38]. Such NPs are injected along the edges of a solid tumor to “protect” healthy tissues before cryosurgery. A high efficiency of combination of laser therapy and cryosurgery is shown in palliative veterinary practice. According to the outcomes of treatment, it was found that combined CO\(_2\)-laser and cryosurgical ablation is reasonable, cost-effective long with providing a high aesthetic effect in dogs with squamous cell carcinoma of the nasal cavity as well as acceptable relief of local manifestations of the disease [45].

Комбінація фотодинамічної терапії та кріоабляції

Важливо зазначити, що в онконанохірургії досить часто використовується метод фотодинамічної терапії, який дозволяє отримувати селективне руйнування пухлин з мінімальним пошкодженням навколишніх здорових тканин. Завдяки тому, що речовини для фотодинамічної терапії мають властивість виборчого накопичення в пухлині, уражені патологічним процесом тканини опромінюють світлом із довжиною хвилі, що
Відповідна або близька до максимальу поглинання барвника. Як джерела світла застосовують лазерні установки, що дозволяють випромінювати світло певної довжини хвилі і високій інтенсивності [46, 47]. Використання кріохірургічного підходу у комбінації з фотодинамічною терапією висвітлено на прикладах лікування активного кератозу [48], але результати рандомізованого дослідження не повідомляються. Для досягнення ремісії у випадках тяжких уражень саме комбіноване застосування кріохірургії з фотодинамічною терапією може дозволити зменшити появу рецидивів цього захворювання [48].

Послідовно кріохірургії та фотодинамічної терапії – альтернатива звичайної хірургії для лікування мультифокальної хвороби Педжета вульви з великими або рецидивуючими проявами у людей похилого віку. В роботі С. Boulardа та співавторів [49] описано лікування двох пацієнток з хворобою Педжета і наведені позитивні результати використання кріохірургічних методик у комбінації з фотодинамічною терапією з застосуванням CO2-лазера. Повна ремісія захворювання у пацієнток настала через 12 місяців після лікування [49].

Заслуговує на увагу робота Hou Yi та співавторів [50], в якій подана розробка гібридної платформи, що містить пасту з рідкого металу з вмістом галію та міді. Паста має високу теплопровідність, а наночастинки рідкого металу мають високу фототермічну енергію, для посилення терапевтичного ефекту мультимодальний підхід. Паста з рідкого металу діє як пов’язка на шкіру з високою теплопровідністю, покращуючи теплопередачу пухлинної тканини під час кріоабляції. З використанням пасти кінцева температура пухлинної тканини була нижчою, а розподіл температури – більш рівномірним, ніж без пасти, що, імовірно, посилило ефект руйнування клітин. Наночастинки з рідкого металу діяли як фототермічні агенти, які збільшували зміни температури під час лазерного опромінення [50]. Таким чином, гібридна платформа може бути водночас речовинним посередником у подвійній дії та реалізувати синергічні ефекти в терапії раку.

Кріопроменевий метод

Променева терапія є «класичним», поряд із хіміотерапією, нехірургічним методом боротьби з онко-захворюваннями. Саме наявність відповідної установки стала базою для організації провідних науково-дослідних клінічних онкологічних установ. Зокрема, в Україні це існуюча вже понад століття установи, відомі сьогодні як Національний інститут раку (м. Київ) та Інститут медичної радиології та онкології імені С.П. Григор’єва (м. Харків). Незважаючи на досить високу частоту виникнення тяжких ускладнень внаслідок променевої терапії, зокрема на рівні хромосомного апарату клітин, цей спосіб впливу на злочисні пухлини залишається дуже затребуваним. Відомо, що ефективність променевої терапії залежить переважно від радіочутливості пухлин. До пухлин з високою радіочутливістю належить аденокарцинома ендометрія. В Державна установа «Інститут медичної радиології та онкології ім. С.П. Григо-
шкіри після терапії в інших установах [54]. Завдяки шкіри і у 14 (77,7%) із 18 пацієнтів з рецидивним раком 93 (98,9%) з 94 хворих із первинними формами раку 2,0–2,5 Гр до досягнення сумарної вогнищевої дози (з 2-денною перервою) у разовій локальній дозі ператури заморожування на межі пухлини і здорової локальне охолодження пухлини до досягнення тем-
кожним сеансом променевої терапії проводилося рецидивами базально- і плоскоклітин-імені М.М. Блохіна розроблено новий кріопрому-енів реакцій у пацієнток, яким проводили передпроменеву зниження ризику розвитку місцевих променевих тіла. Це можна розглядати як один з механізмів лімфоцитів між опроміненою і неопроміненою зонами процесу на цитогенетичні показники у ході про- діційних ендореплікацій, на відміну від накопичення геном-корелювало з ефектом зниження частоти поліплоїдов діцентриків та кілець на аберантну клітину, що хворих із передпроменевою кріодеструкцією пухлини, проте у хромосом у клітинах нормальних тканин, пухлини під час променевого лікування хворих на рак темність впливу кріопроцедури на радіочутливість ризику. Цитогенетичні дослідження засвідчили відсутність ефекту зниження частоти поліплоїдов на щурів, яка є радіорезистентною пухлиною і за
порівняно з лікуванням променевим методом перед- променева кріодеструкція пухлини на 22,2% підви- шувала п’ятитрічну виживаність хворих на рак тіла матки. Кріопроменева лікування розглядається як метод вибору у випадках високого операційного ризику. Цитогенетичні дослідження засвідчили відсут- ність впливу кріодеструкції на радіочутливість хромосом у клітинах нормальних тканин, проте у хворих із передпроменевою кріодеструкцією пухлини спостерігалося менш інтенсивне підвищення виходу дінцентриків та кілець на аберантну клітину, що корелювало з ефектом зниження частоти поліплоїдов і ендореплікацій, на відміну від накопичення геном-них порушень у осіб без кріодеструкції пухлини. Такий модифікаційний вплив передпроменевої кріо-
процедури на цитогенетичні показники у ході про-
меневої терапії пов’язані з посиленою циркуляцією процесу на цитогенетичні показники у ході про-
eradiotherapy is associated with increased lymphocyte circulation between irradiated and non-irradiated areas of the body. This can be consi-
dered as one of the mechanisms to reduce the risk of local radiation reactions in patients who underwent pre-radiation cryodestruction of the tumor [53].

A new cryoradiation method for treating patients with locally advanced and recurrent forms of basal and squamous cell carcinoma of the scalp was developed at N.N. Blokhin Russian Cancer Research Center [54, 55]. Immediately before each radiation therapy session, local cooling of the tumor was performed until freezing temperature at the border of the tumor and healthy tissue. Irradiation was being performed 5 days long (with a 2-day break) in a single local dose of 2.0–2.5 Gy until a total focal dose of 60–70 Gy was reached. Applying cryo-radiation if medically required have made it possible to achieve satisfactory treatment outcomes. Sustained recovery was achieved in 93 (98.9%) out of 94 patients with primary skin cancer and in 14 (77.7%) out of 18 patients with recurrent skin cancer after treatment at other institutions [54]. Due to preserving the forms and functions of local tissues, it was possible to maintain a high quality of life and ensure full rehabilitation. The obtained long-term results are as good as other methods of treatment along with avoiding traumatic surgery in the vast majority of patients. Thus, cryoradiation method, applied in accordance with the developed indications, allowed to improve the results and open a new potential in treating patients with primary cases and recurrences of basal and squamous cell carcino-
нома of the face.

Literature review
збереженню форм і функцій місцевих тканин вдалося зберегти високу якість життя і забезпечити повноцінну реабілітацію. Отримані віддалені результати не поступаються іншим методам лікування, при цьому в абсолютної більшості хворих вдалося уникнути травматичних оперативних утручань. Таким чином, кріопроменевий метод, застосований відповідно до розроблених показань, дозволив поліпшити результати і відкрити нові можливості в лікуванні хворих з первинними випадками та рецидивами базальної пласкоклітинного раку шкіри обличчя.

У клінічні дослідження J.M. Vergnon та співавторів [56] було здійснено 38 пацієнтів з симптоматичною обструктивною пухлиною трахеї або головного бронха, яких пролікував спочатку кріотерапією, проведену під загальним наркозом, а потім зовнішнім опроміненням. Встановлено, що кріотерапія, яка була оцінена при бронхоскопії, є ефективною у 26 з 38 пацієнтів. Після опромінення у 17 з 26 пацієнтів не виявлено залишкової бронхіальної пухлини. Найкраща виживаність була пов'язана як з ефективністю первинної деструкції пухлини методом кріотерапії, так і з лікуванням, викликаним опроміненням (медіана, 560 днів). Позитивний результат отриманий у 65% (17/26) випадків, тобто, кращий, ніж 35%, про які зазвичай повідомляють лише після опромінення. Ці результати свідчать про ефективність посилення опромінення кріотерапією [56]. Результати експериментальних і клінічних досліджень показали, що кріодеструкція звікового новоутворення за визначених режимів сенсібілізує клітини до поштовхової променевої дії, що може сприяти підвищенню ефективності лікування [56, 57].

Кріоелектроліз
Do нових тенденцій розвитку кріохірургії слід віднести кріоелектроліз – нова малонівазивна хірургічна методика аблакції тканин, яка поєднує методи електролітичної аблакції з кріохірургією [58]. Метод електрохімічного лізису полягає в деструкції пухлиної тканини, розташованої між парою електродів, за рахунок лізичної дії лугу (гідроксиду натрію) і кислоти (соляної кислоти), яка утворюється між електродами. Електролітична аблакція потребує дуже низьких постійних струмів (від десятків до сотень мА) і дуже низьких напруг (від одного до декількох десятків вольт) [58]. Зона впливу може суттєво поширюватися до сотен квадратних сантиметрів[59]. Електролітична аблакція потребує дуже низьких постійних струмів (від десятків до сотень мА) і дуже низьких напруг (від одного до декількох десятків вольт) [58]. Зона впливу може суттєво поширюватися до сотен квадратних сантиметрів[59].

З використанням оптичних вимірювань та вимірювань електричних вимірювань в експериментальних дослідженнях було показано, що електроліз може також відбуватися під час заморожування фізіологічного розчину при мінусових температурах, вище евтектичної температури для розчину солі, і що поширення фронту pH...
Огляд літератури

Cryosurgery and electroporation

None of the treatment options in the world, from concept development to clinical use, has been introduced into medical practice as quickly as electroporation. The electroporation technique uses pulsed electric fields aimed at damaging tissues. The effect of electric shock consists in creating nanoscale pores in the cell membrane, disrupting intracellular homeostasis [62]. Fulfilling the electroporation occurs at the following stages: charging and polarization of the membrane; destabilization of the membrane structure and creation of hydrophilic pores; increase and stabilization of the pore radius; re-closure of pores and cell survival or cell death due to the appearance of large defects [63]. The formation of nanopores, depending on the influence of electric current, can be short-term or permanent, so there is reversible and irreversible electroporation.

In the experimental paper, J. Edd et al. [64] studied the effect of irreversible electroporation caused by a single impulse lasting 20 μs with 1000 V/cm of voltage, in vivo in the rat liver. In histological examination three hours after the impulse on the treated areas of the liver with fixed perfusion, the authors observed microvascular occlusion, endothelial cell necrosis and diapedesis, which led to ischemic damage to the parenchyma and a massive accumulation of erythrocytes in the sinusoids. However, the architecture of large blood vessels was preserved. The authors also performed a mathematical analysis that showed that this damage was non-thermal in nature. Another advantage of irreversible electroporation is faster wound healing and less connective tissue formation.

The authors believe that the successful outcomes of the procedure are related to the intensity of the applied electric field, the total impulse duration, as well as the
Authors emphasize that the promising results of procedures achieved with freezing at a specific tissue level, which can be adjusted by cryosurgical modes to improve the effectiveness of cryodestruction, ultrasound, and photodynamic therapy. The combination of cryosurgery with UHF-hyperthermia, laser, ultrasound, photodynamic or radiation therapy, the methods of cryoablation, and cryotherapy can potentially increase cryodestruction efficiency, including application cryodestruction of large deep-seated tumors. However, most of these approaches require additional research.

CONCLUSIONS
Cryosurgery is an effective minimally invasive surgical method keeping up with other methods of treating malignant tumors, although the fact that these days the research on optimizing the method of exposure of biological tissues to low temperatures is still ongoing. Having a number of advantages over existing ablation methods, especially due to the cryoimmunological component, cryosurgery is an alternative method of traditional surgical treatment.

The combination of hemodilution, nanoablation, electrolysis, electroporation, ultrasound and photodynamic therapy can potentially increase cryodestruction efficiency, including application cryodestruction of large deep-seated tumors. However, most of these approaches remain at the level of simulated experiments.

Despite the clinical experience in combination of cryotherapy with UHF-hyperthermia, laser, ultrasound, photodynamic or radiation therapy, the methods of cryoablation and, especially, cryoradiation therapy were quite widely introduced into practical oncology. Pre-cryotherapy can increase the radiosensitivity of malignant cells and partially compensate the negative side effects of radiation.

Literature data analysis has shown that despite the potential effect of different physical methods in combination with cryosurgery to confirm the effectiveness of

References
[62] Ukrainian journal of radiology and oncology. 2021. Т. 29. № 2. С. 127–149

ISSN 2708-7166 (Print)
ISSN 2708-7174 (Online)
treatment of cancer patients in the long run, further prospective and randomized studies are essential.

REFERENCES
1. Compendium. Medicines. URL: https://compendium.com.ua/uk/tutorials-uk/onkologiya/rozdil-nbbsp-5-printsipi-likuvannya-patsiyentiv-zizloyakisnimi-novoutvorennymymi
2. Baust JG, Gage AA, Johansen TEB, Bauste JM. Mechanisms of cryoablation: Clinical consequences on malignant tumors. Cryobiology. 2014;68(1):1–11. (In English). DOI: https://doi.org/10.1016/j.cryobiol.2013.11.001
3. Chizh NA. Endoscopic Cryosurgery. Problems of Cryobiology and Cryomedicine. 2017;27(1):3–18. (In English). DOI: https://doi.org/10.15407/cryo27.01.003
4. Chizh NA, Sandomirskiy BP. Cryosurgery. Overloading and renewal. Klinicheskaia khirurgiia. 2011;6(6):53–55. (In Russian). URL: https://hirurgiya.com.ua/index.php/journal/issue/view/37/6-2011
5. Prokhorov GG, Yakovlev AM, Prokhorov DG. Fundamentals of Clinical Cryomedicine. SPb-M: “Book on demand”. 2017;608. (In Russian).
6. Belous AM, Grischenko VI. Cryobiology. Kyiv: Scientific thought. 1994;432 s.
7. Jansen MC, van Hillegersberg R, Schoots I.G. et al. Cryoablation induces greater inflammatory and coagulative responses than radiofrequency ablation or laser induced thermotherapy in a rat liver model. Surgery. 2010;147(5):686–95. (In English). DOI: https://doi.org/10.1016/j.surg.2009.10.053
8. Aarts BM, Klompenhouwer EG, Rice SL. Cryoablation and immunotherapy: an overview of evidence on its synergy. Insights into Imaging. 2019;1:1–12. DOI: https://doi.org/10.1186/s13244-019-0727-5
9. Basu S, Binder RJ, Suto R. et al. Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-kappa B pathway. International Immunology. 2000;12(11):1539–1546. DOI: https://doi.org/10.1093/immunol/12.11.1539
10. Goltsvev A. M., Bondarovich M. O., Babenko N. M. та ін. Використання наноматеріалів у кріобіології та кріомедицини. Проблеми кріобіології і кріомедицини. 2020;30(4):313–330. DOI: https://doi.org/10.15407/cryo30.04.313
11. Chizh NA. Cryogenic Equipment in Minimally Invasive Surgery. Problems of Cryobiology and Cryomedicine. 2018;28(3):200–11. (In English). DOI: https://doi.org/10.15407/cryo28.03.200
12. Xu K, Korpan N, Niu L. Modern cryosurgery for cancer. World Scientific. 2012. 901 p.
13. Yiu W, Basco M. T., Aruny J. E., Cheng S. W. Cryosurgery: a review. The International Journal of Angiology. 2007;Vol. 16, №1. P. 1–6. DOI: 10.1055/s-0031-1278235
16. Шафранов В.В., Тен Ю.В., Резницкий В.Г., Циганов Д.И., Кожевников В.А. Комбинированное микроволновое и криовоздействие на биоткани в эксперименте и клинике. Криобиология. 1988. № 4. С. 27–32.

17. Bischof J. Nanowarming: A new concept in tissue and organ preservation. Cryobiology. 2015. Vol. 71. № 1. 176 р. DOI: https://doi.org/10.1016/j.cryobiol.2015.05.051

18. Guo J. R., Shen H. C., Liu Y. et al. Effect of Acute Normovolemic Hemodilution Combined with Controlled Low Central Venous Pressure on Blood Coagulation Function and Blood Loss in Patients Undergoing Resection of Liver Cancer Operation. Hepato-gastroenterology. 2015. Vol. 140. № 62. P. 992–996. URL: https://pubmed.ncbi.nlm.nih.gov/26902043/

19. Dronov O. I., Khomenko D. I., Bakunets P. P., Teteryna V. V. Temperature Changes During Cryo-effect Potentiated With Distilled Water Assessed in Porcine Liver Model Without Splanchnic Blood Flow. Problems of Cryobiology and Cryomedicine. 2017.27(4):348–55. (In Ukraine). DOI: https://doi.org/10.15407/cryo27.04.348

20. Sviridova TI, Bruslik SV, Vetshev PS. Remote local destruction of liver tumors. Bulletin of Pirogov National Medical & Surgical Center. 2013;8(4):112–7. (In Russian). URL: http://www.pirogov-vestnik.ru/upload/uf/9ad/magazine_2013_4.pdf

21. Chicheł A. Skowronek J., Kubaszewska M., Kanikowski M. Hyperthermia – description of a method and a review of clinical applications. Reports of practical oncology and radiotherapy. 2007;12(5):267–75. (In English). DOI: https://doi.org/10.1016/S1507-1367(10)60065-X

22. Zhu J., Zhang Y., Zhang A. et al. Cryo-thermal therapy elicits potent anti-tumor immunity by inducing extracellular Hsp70-dependent MDSC differentiation. Scientific reports. 2016;6:1–12. (In English). DOI: https://doi.org/10.1038/srep27136

23. Samadov V. H., Kuzmenko A. P., Zaharychev V. D. Оценка противоопухолевого эффекта комбинированного применения криоабляции и микроволновой гипертермии в эксперименте. Проблемы криобиологии. 2012. Vol. 22. № 3. P. 484–490. URL: http://cryo.org.ua/journal/index.php/probl-cryobiol-cryomed/article/view/52
25. Szasz A. Hyperthermia, a modality in the wings. Journal of cancer research and therapeutics. 2007;3(1):56–66. (In English). DOI: https://doi.org/10.4103/0973-1482.31976

26. Roussakov S. Critical Analysis of Electromagnetic Hyperthermia Randomized Trials: Dubious Effect and Multiple Biases. Conference Papers in Medicine. 2013;Article ID 412186: 31p. (In English).

27. Perez CA, Pajak T, Emami B et al. Randomized phase III study comparing irradiation and hyperthermia with irradiation alone in superficial measurable tumors. Final report by the Radiation Therapy Oncology Group. American journal of clinical oncology. 1991;14(2):133–41. (In English). DOI: https://doi.org/10.1016/0000-0421-199104000-00008

28. Engin K, Tupchong L, Moylan DJ et al. Randomized trial of one versus two adjuvant hyperthermia treatments per week in patients with superficial tumours. International journal of hyperthermia. 1993;9(3):327–40. (In English). DOI: https://doi.org/10.1016/0195-9228(93)90157-8

29. Vasanthan A, Mitsumori M, Park JH et al. Regional hyperthermia combined with radiotherapy for uterine cervical cancers: a multi-institutional prospective randomized trial. International journal of radiation oncology, biology, physics. 2005;61(1):145-53. (In English).

30. Niu L, Li J, Zeng J, Zhou L et al. Comparison of percutaneous cryoablation with microwave ablation in a porcine liver model. Cryobiology. 2014;68(2):194–9. (In English). DOI: https://doi.org/10.1016/j.cryobiol.2014.01.005

31. Molotov AV, Zabolotnyy DI, Lukach EV. Combined use of leukinferon and cryo-ultrasound therapy in patients with malignant tumors of the ENT organs. Journal of Ear, Nose and Throat Diseases. 1994;4:64–6. (In Russian).

32. Zaporozhan VN, Khait OV, Rikberg AB, Bakay EA. Cryo-ultrasound therapy of benign diseases of the cervix. Cryobiology and Cryomedicine. 1983;12:64–9. (In Russian).

33. Merzlikin NV, Tkhai VF, Brazhnikova NA. Cryosurgery of liver tumors. Siberian Journal of Oncology. 2018;17(2):41–8. (In Russian). DOI: https://doi.org/10.21294/1814-4861-2018-17-2-41-48

34. Shevchenko Yu. L., Karpov O. E., Vetrov P. S., Bruslik S. V. Possibilities of HIFU-technology in the treatment of patients with tumors in a multi-profile clinic. Bulletin of Pirogov National Medical & Surgical Center. 2009;4(2):3–8. (In Russian). URL: http://www.pirogov-vestnik.ru/upload/uf/7a/magazine_2009_2.pdf

35. Nazarenko GI, Chen VSH, Dzhan L, Khitrova AN. Ultrasound ablation-HIFU high-tech organ-preserving alternative to surgical treatment of tumors. 2008;87. (In Russian).
35. Назаренко Г. И., Чен В. Ш., Джан Л., Хитрова А. Н. Ультразвуковая аблиция-HIFU высокотехнологичная органосохраняющая альтернатива хирургического лечения опухолей 2008. 87 с.

36. Aus G. Current Status of HIFU and Cryotherapy in Prostate Cancer. A Review. European Urology. 2006. Vol. 50, № 5, P. 927–934. DOI: https://doi.org/10.1016/j.euro.2006.07.011

37. Siddiqui K. M., Billia M., Williams A., Alzahrani A., Chin J. L. Comparative Morbidity of Ablative Energy Based Salvage Treatments for Radio-recurrent Prostate Cancer. Canadian Urological Association journal. 2015;9(9–10):325–9. (In English). URL: http://dx.doi.org/10.5489/cuaj.3113

38. Liu J, Deng Z-S. Nano-cryosurgery: advances and challenges. Journal of nanoscience and nanotechnology. 2009. Vol. 9, № 8, P. 4521–4542. DOI: https://doi.org/10.1166/jnn.2009.1264

39. Yan J-F, Liu J. Nanocryosurgery and its mechanisms for enhancing freezing efficacy of tumor tissues. Nanomedicine. 2008. Vol. 4, № 1, P. 79–87. DOI: https://doi.org/10.1016/j.nano.2007.11.002

40. Hou Y, Sun Z, Rao W, Liu J. Nanoparticle-mediated cryosurgery for tumor therapy. Nanomedicine: NBM. 2018. Vol. 14, P. 493–506. DOI: https://doi.org/10.1016/j.nano.2017.11.018

41. Ye P, Kong Y, Chen Xi, Li W et al. Fe3O4 nanoparticles and cryoablation enhance ice crystal formation to improve the efficacy of killing breast cancer cells. Oncotarget. 2017. Vol. 8, № 7, P. 11389–11399. DOI: https://doi.org/10.18632/oncotarget.13859

42. Yu T H, Liu J, Zhou Y X. Selective freezing of target biological tissues after injection of solutions with specific thermal properties. Cryobiology. 2005;50(2):174–82. (In English). DOI: https://doi.org/10.1016/j.cryobiol.2005.01.001

43. Sun Z, Yan J, Rao W, Liu J. Particularities of Tissue Types in Treatment Planning of Nano Cryosurgery. 3rd IEEE International Conference on Nano/Micro Engineered and Molecular Systems. 2008. P. 885–889. DOI: https://doi.org/10.1109/NEMS.2008.4484465

44. Miehlke A., Chilla R, Vollrath M. Cryosurgery and laser surgery in the treatment of malignant and benign laryngeal processes. ORL; journal for oto-rhino-laryngology and its related specialties. 1979;41(5):273–87. (In English). DOI: https://doi.org/10.1159/0000275446

45. Ierace M. K., Canfield M. S., Peters-Kennedy J., Kane C. W. Combined carbon dioxide laser and cryosurgical ablation of rostral nasal septum squamous cell carcinoma in 10 dogs. Veterinary dermatology. 2017;28:435–6. (In English). DOI: https://doi.org/10.1111/vde.12683

46. Juarranz A, Jaén P, Sanz-Rodriguez F, Cuevas J, González S. Photodynamic therapy of cancer. Basic principles and applications. Clinical & translational oncology. 2008. Vol. 10, № 3. P. 148–154. DOI: https://doi.org/10.1007/s12094-008-0172-2

36. Aus G. Current Status of HIFU and Cryotherapy in Prostate Cancer. A Review. European Urology. 2006;50(5):927–34. (In English). DOI: https://doi.org/10.1016/j.euro.2006.07.011

37. Siddiqui KM, Billia M, Williams A, Alzahrani A, Chin JL. Comparative Morbidity of Ablative Energy Based Salvage Treatments for Radio-recurrent Prostate Cancer. Canadian Urological Association journal. 2015;9(9–10):325–9. (In English). URL: http://dx.doi.org/10.5489/cuaj.3113

38. Liu J, Deng Z-S. Nano-cryosurgery: advances and challenges. Journal of nanoscience and nanotechnology. 2009;9(8):4521–42. (In English). DOI: https://doi.org/10.1166/jnn.2009.1264

39. Yan J-F, Liu J. Nanocryosurgery and its mechanisms for enhancing freezing efficacy of tumor tissues. Nanomedicine. 2008;4(1):79–87. (In English). DOI: https://doi.org/10.1016/j.nano.2007.11.002

40. Hou Y, Sun Z, Rao W, Liu J. Nanoparticle-mediated cryosurgery for tumor therapy. Nanomedicine: NBM. 2018;14:493–506. (In English). DOI: https://doi.org/10.1016/j.nano.2017.11.018

41. Ye P, Kong Y, Chen Xi, Li W et al. Fe3O4 nanoparticles and cryoablation enhance ice crystal formation to improve the efficacy of killing breast cancer cells. Oncotarget. 2017;8(7):11389–99. (In English). DOI: https://doi.org/10.18632/oncotarget.13859

42. Yu TH, Liu J, Zhou YX. Selective freezing of target biological tissues after injection of solutions with specific thermal properties. Cryobiology. 2005;50(2):174–82. (In English). DOI: https://doi.org/10.1016/j.cryobiol.2005.01.001

43. Sun Z, Yan J, Rao W, Liu J. Particularities of Tissue Types in Treatment Planning of Nano Cryosurgery. 3rd IEEE International Conference on Nano/Micro Engineered and Molecular Systems. 2008. P. 885–889. DOI: https://doi.org/10.1109/NEMS.2008.4484465

44. Miehlke A, Chilla R, Vollrath M. Cryosurgery and laser surgery in the treatment of malignant and benign laryngeal processes. ORL; journal for oto-rhino-laryngology and its related specialties. 1979;41(5):273–87. (In English). DOI: https://doi.org/10.1159/0000275446

45. Ierace MK, Canfield MS, Peters-Kennedy J, Kane CW. Combined carbon dioxide laser and cryosurgical ablation of rostral nasal septum squamous cell carcinoma in 10 dogs. Veterinary dermatology. 2017;28:435–6. (In English). DOI: https://doi.org/10.1111/vde.12683

46. Juarranz A, Jaén P, Sanz-Rodriguez F, Cuevas J, González S. Photodynamic therapy of cancer. Basic principles and applications. Clinical & translational oncology. 2008;10(3):148–154. DOI: https://doi.org/10.1007/s12094-008-0172-2

47. Benov L. Photodynamic therapy: current status and future directions. Medical principles and practice. 2015;24(l):P. 14–28. (In English). DOI: https://doi.org/10.1159/000362416

48. Heppt MV, Steeb T, Ruzicka T, Berking C. Cryosurgery combined with topical interventiontions for actinic
47. Benov L. Photodynamic therapy: current status and future directions. Medical principles and practice. 2015. Vol. 24, Suppl 1. P. 14–28. DOI: https://doi.org/10.1159/000362416

48. Hept M. V., Steeb T., Ruzicka T., Berking C. Cryosurgery combined with topical interventions for actinic keratosis: a systematic review and meta-analysis. British Journal of Dermatology. 2019;180. P. 740–748. DOI: https://doi.org/10.1111/bjd.17435

49. Boularda C., Duval Modestee A. B., Boulliea M. C., Marpeaub L., Courvillec P., Joly P. Traitement de la maladie de Paget vulvaire par cryochirurgie et photothérapie dynamique topique Cryosurgery and photodynamic therapy for the treatment of Paget’s disease of the vulva: Two cases. Annales de Dermatologie et de Vénéréologie. 2013;140(4):282–6. (In English). DOI: https://doi.org/10.1016/j.annder.2013.01.425

50. Hou Yi., Zhang Pengjii, Wang Dawei., Liu Jing. Liquid Metal Hybrid Platform-Mediated Ice-Fire Dual Noninvasive Conformable Melanoma Therapy. ACS applied materials & interfaces. 2020; 12:27984–93. (In English). DOI: https://dx.doi.org/10.1021/acsami.0c06023

51. Лукашова О. П., Михановский О. А. Морфофункциональный стан клеток карциномы Герена после фракционированного рентгеновского облучения и спонтанной дифференциации факторов. Український радіологічний та онкологічний журнал. 2017. Т. 15, № 3. С. 344−351.

52. Лукашова О. П., Михановский О. А., Слободянюк О. В. и др. Ультраструктура аденокарциномы эндометрия после криолечебной терапии в суммарных дозах 10, 20 и 30 ГГ. Український радіологічний журнал. 2012. Т. 20, № 1. С. 25−31.

53. Винникова В. А., Михановский А. А., Мазник Н. А. Цитогенетические аномалии в периферических лимфоцитах пациентов с раком матки, подвергнутых радиотерапии: эффекты пред-рентгеновской терапии. Experimental Oncology. 2003. Vol. 25, № 4. P. 279–284.

54. Пустынский И. Н., Ткачёв С. И., Таболиновская Т. Д., Алиева С. Б. Криоинъюктура и криоотделение больных раком кожи с перерождением. Опухоли головы и шеи. 2015. Т. 5, № 3. С. 24–30. DOI: https://doi.org/10.17650/2222-1468-2015-5-3-24-30

55. Пустынский И. Н., Таболиновская Т. Д., Ткачёв С. И. и др. Лечение больных с местно-распространенными рецидивами рака кожи лица крио-лучевым методом. Сибирский онкологический журнал. 2017. Т. 16, № 6. С. 67−72. DOI: https://doi.org/10.21294/1814-4861-2017-16-6-67-72

56. Vergnon J. M., Schmitt T., Alamartine E., Barthelemy J. C., Fournel P., Emonot A. Initial combined cryo-therapy and irradiation for unresectable non-small cell lung cancer. Chest. 1992;102. P. 1436−1440. DOI: https://doi.org/10.1378/chest.102.5.1436

57. Slanina S., Bazhutova G., Pustynskiy I., Lubaev V., Yagubov A. Survival of the cultured human tumor cells exposed to cryo-radiation treatment. 7-th International Conference of Anticancer Research. 2004;3608.
58. Nilsson E., Von Euler H., Berendson J. et al. Electrochemical treatment of tumours. *Bioelectrochemistry*. 2000; Vol. 51, №1. P.1–11. DOI: https://doi.org/10.1016/S0302-4598(99)00073-2

59. Fosh, B. G., Finch J. G., Lea M. et al. Use of electrolysis as an adjunct to liver resection. *British Journal of Surgery*. 2002; Vol. 89, № 8. P. 999–1002. DOI: https://doi.org/10.1046/j.1365-2168.2002.02134.x

60. Lugnani F., Zanconati F., Marcuzzo T. et al. A Vivens Ex Vivo Study on the Synergistic Effect of Electrolysis and Freezing on the Cell Nucleus. *PLoS ONE*. 2015; Vol. 10, № 12. P. 1–16. DOI: https://doi.org/10.1371journal.pone.0145133

61. Lugnani F., Macchioro M., Rubinsky B. Cryo-electrolysis – electrolytic processes in a frozen physiological saline medium. *Peer J*. 2017; 1–18. (In English). DOI: https://doi.org/10.7717/peerj.2810

62. Mucciardi G, Macchioro M, Inferrera A, Lugnani F. Cryosurgery and Irreversible Electroporation: The State of the Art, Advantages, and Limitations. *Handbook of Electroporation*. Springer. Cham. 2016. (In English). DOI: https://doi.org/10.1007/978-3-319-26779-1_110-1

63. Weaver JC, Chizmadzhev JA Theory of electroporation: a review. *Bioelectrochem Bioenergy*. 1996; 41(2): 135–160. (In English). DOI: https://doi.org/10.1016/S0302-4598(96)05062-3

64. Edd JF, Horowits L, Davalos RV, Mir LM, Rubinsky B In vivo results of a new focal tissue ablation technique: irreversible electroporation. *IEEE transactions on bio-medical engineering*. 2006; 53(7):1409–15. (In English). DOI: https://doi.org/10.1109/TBME.2006.873745

### Prospects for further research
Further studying the effect of low temperatures on biological tissues and optimizing the parameters of the cryosurgical method to achieve the maximum destructive effect in the target organ are promising.

### Conflict of interest
The authors state no conflict of interest.

### Funding information
Financed by the state budget of Ukraine.

---

### INFORMATION ABOUT THE AUTHORS

**Chyz Mykola Oleksiiovych** – Candidate of Medical Sciences, Senior Researcher, act. Head of Experimental Cryomedicine Department of Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine; 23, Pereyaslavskaya Str., Kharkiv, Ukraine, 61016;
Внесок автора: розробка концепції статті, підбір літературних джерел, обробка, аналіз інформації, писання тексту статті.

Бєлочкіна Ірина Владиславівна – кандидат біологічних наук, старший науковий співробітник відділу експериментальної кріомедицини Інституту проблем кріобіології і кріомедицини Національної академії наук України; вул. Перевальська, буд. 23, м. Харків, Україна, 61016;
e-mail: ibelochkina@ukr.net
моб.: +38 (097) 252-55-12

Внесок автора: написання тексту статті, підготовка статті до друку.

Гладких Федір Володимирович – молодший науковий співробітник групи променевої патології та паліативної медицини Відділу радіології Державної установи «Інститут медичної радіології та онкології ім. С. П. Григор’єва Національної академії медичних наук України»; вул. Пушкінська, буд. 82, м. Харків, 61024, Україна;
e-mail: fedir.hladkykh@gmail.com
моб.: +38 (099) 782-78-72

Внесок автора: ідея, літературний пошук, допомога у підготовці статті до друку.