Communicating Strategically for Improving Team Effectiveness in ICTs Organizations

DRIVAS I. C. 1, 2, SAKAS D.P. 2, RIZIOTIS C. 3
1Computer Science & Information Technology, Linnaeus University, Växjö, Sweden
2Computer Science & Technology, University of Peloponnese, Tripolis, Greece
3National Hellenic Research Foundation, Athens, Greece

Corresponding author: ioannis.c.drivas@gmail.com

Abstract: This research seeks to demonstrate the effectiveness of communication strategies and practices from decision makers to employees in the Information & Communication Technologies organizations. The purpose is the creation and eventual promotion of a communicational model that embraces best practice relative to overall team effectiveness. By placing decision makers and employees in the center of attention, we examine relations among several communication and team effectiveness practices in ICTs sector. Employees’ recognition, the motivation of exchange and sharing information, clear vision of goals and objectives for employees, and the troubleshooting effectiveness of team, are some of the major factors that indicate the relationship between Communication Strategies and Team Effectiveness. Via the application of a cross-cultural quantitative methodological tool in more than ten countries with a response rate more than 69%, we evaluate communicational strategies that decision makers adopt and their impact in Teamwork Effectiveness in the sensitive sector of ICTs.

Keywords: Strategic Communication, Team Effectiveness, ICTs Organizations, Strategic Leadership, B2B Communication, Communication Strategies

Introduction

Team Effectiveness can be characterized as one of the basic pillars for improving the overall performance in ICTs organizations. The crucial importance of Team Effectiveness is clearly highlighted in several studies arising in this way the necessity for creating a strategic communicational path that leads an organization to effective communicational channels between decision makers and employees (Verma et al. 2016; Volmer & Sonnentag, 2011). It is also noted that each decision maker influence the performance and the coordination of team, hence team effectiveness (Santos et al. 2015) Moreover, according to Kozlowski and Ilgen (2006) several theories are very useful but they appeared with indirect implications about team effectiveness due to the fact that these theories neglect processes that decision makers follow in order to coordinate employees’ knowledge and skills.

In previous research approach team effectiveness factor played a central role to the overall job satisfaction of employees (Drivas et. al. 2016a) illustrating in this way the first path for the creation of a strategic communicational model. However the main goal of this study is to examine if four principles of decision makers practices can be set under the umbrella of team effectiveness. The existence of clear goals and objectives inside the organization, employees’ recognition, information sharing between individuals and the troubleshooting effectiveness are main key points that need to be examined in order to understand if these components can be adopted as cornerstones for the improvement and augmentation of the current teamwork effectiveness.
Clear Goals & Objectives

Progressing into the creation of a communicational model that embraces highly collaboration between decision makers and employees in the ICT sector, the existence of clearly defined goals and objectives constitutes a communicational cornerstone. Clear goals are one of the vital few (Tohidi, 2011). Furthermore, Bojeun (2014) in his work points out that managers frequently start an effort without clear understanding of goals and objectives or the complexity and the percent of risk that have to take. Although this is not a new assertion, the problematic mantle starts to cover all the individuals and especially employees in ICTs development sector, when they do not know, not only how the new ICT product would finally look like, but also how will they know when they finally achieved organization’s goal. In this case, some main pillars for placing the framework of clearly goals is the well-understanding of organizational policies, the provision of necessary job guidelines, while employees know their specific role in the team, or even the definition of clear goals for the job performance in an overall effort to improve dynamically the efficiency and the effectiveness of the team.

Employees’ Recognition

Recognizing employees’ effort can be characterized as a difficult multidimensional process in which several influencers took place. Indeed, managers dealing with the challenge to measure the influence that they caused to their employees, and also they probably think wrong that all the kinds of recognitions and motivations have the same outcomes in all the followers (Canós-Darós, 2013). In any case, the level of equally treatment from decision makers among employees and the participation of employees in decision making process probably highlights employees’ recognition level. In addition, how much venerable and valuable is an employee by others or the possibility that management recognizes the extra effort employees put into their tasks, are some key elements which always needed to be taken into serious consideration from the decision makers in order to establish a well-structured communicational strategy.

Information Sharing

To begin with, the ICT organizational environment holds the rains of how to deal with the rapidly daily produced information globally. Considering the strategic information collection and management as one of the main capitals which a company has, a clear framework of how employees sharing and deal with the daily produced company’s information must be defined. Measuring the level of exchanging information among individuals, estimating the quantity and the quality of feedback that employees receive, or even observing the motility that team members share their knowledge and expertise to solve upcoming problems, are a few, but surely crucial components that ICTs decision makers must take into consideration. The aforementioned statements come to be strengthened by Gholipour et al. (2011), pointed out that decision makers might take wrong decisions if they are
not willing to use appropriate resources or if they do not have a clearly defined strategy for innovation on how to handle and share the produced knowledge. Moreover, according to Wong (2008) research and the results of it, the distribution of knowledge in teams affects the quality of problem solving.

Troubleshooting Effectiveness

In a working environment which governed under the spirit of teamwork, the synonym of effectiveness is the efficacy in troubleshooting or problem solving. Even if a group consisted of highly skilled members, the result and the way of dealing with the problematic situation is what truly matters. In other words, if a problematic situation cannot be solved and there is no strategic planning for solving it, then the potentially improvement of the organization remains inexistent. Caveleri et al. (2012) mentioned that shifting a team into more active types of collaboration in learning and knowledge processing not only gives the opportunity to deal with problems with greater agility and openness in troubleshooting, but also arise highly qualitative solutions to the upcoming problems. In order to establish a strategic troubleshooting plan, management should always take into serious consideration some axes that related mostly with: decision makers’ efforts to help employees solving problems in their job, the periodically meetings and the well facilitation of them, the quality of results with clear agreements and outcomes after meetings sessions and the constructively working persistence on problematic issues until they are resolved.

Having always in mind that team effectiveness plays a central role in decision making chess game, all the main aforementioned factors including employees’ recognition, information sharing and clear goals and objectives should be examined as to their performance to the troubleshooting effectiveness which is finally related with the overall effectiveness of team. In this way, a positive correlation between these components should shed the lights for the construction of a communicational model that affects drastically the overall effectiveness of a team in an ICT organization. Hence the following hypotheses examined if:

H1: Clear goals and objectives has a positive effect in troubleshooting effectiveness

H2: Employees recognition has a positive effect in troubleshooting effectiveness

H3: Information Sharing has a positive effect in troubleshooting effectiveness

Methodology

A convenient purposively questionnaire was sent via email to 235 employees and managers who were directly associated with ICT organizations, all of them with different positions in their organization. The convenience sampling method has been used to achieve high level of representative sample plus for high availability for data gathering (Drivas et al. 2016b). Survey’s content validity was established before the final distribution in a testing-pilot process to 12 pilot respondents. After reminding to them one time, 164 participants anonymously and confidentially agreed to complete the questionnaire (response rate 69.78%) in a seven Likert Scale, minimizing the proclivity of responding in a socially desirable way. The
survey was partitioned into four major sections as they described above, giving an additional effort to the encapsulation of demographics of participants illustrating their profile.

Results

Gender	Education	Job Experience	Position	Self Estimated Technological Experience
Female: 54.88%	Undergraduate Studies: 30.49% Post-graduate Studies: 48.17% Doctorate(PhD): 21.34%	Up to 1 year: 9.26% 1-5 years: 21.6% 6-10 years: 15.43% 11-20 years: 30.86% 21 years or more: 22.84%	Employee: 67.9% Technical Support: 6.79% Manager: 14.81% Senior Manager: 10.49%	Very low exp.: 0.61% Low exp.: 3.07% Slightly low exp.: 1.84% Medium exp.: 17.18 Slightly high exp.: 38.65% High exp.: 32.52% Extremely high exp.: 6.13%
Male: 45.12%				

Sample size, N=164.

Table 1. Respondents’ Profile

To begin with, before testing the hypotheses, the authors ran a Principal Component Analysis (PCA) which extracted four factors and also excluded variables with statistically insignificant loadings. Thus, one variable of Clear Goals factor (.021 < .05 sig.level) and one variable of Employees Recognition factor (.034 < .05 sig. level) were excluded from the analysis. The other two factors the Information Sharing and Troubleshooting Effectiveness extracted higher factor loadings above the limit of 0.5 sig.level.

In the effort to testify the hypotheses regarding the correlations among the factors and also to confirm each factor’s construct validity a Confirmatory Factor Analysis (CFA) with oblimin rotation was used. CFA can be used in order to testify if the measures of a factor have parallel indications with a researcher’s understanding regarding the nature of the upcoming factor (Kline, 2010). Three fit measures were used to evaluate if the strategic communicational model fits statistically in order to be adopted: chi-square/degree of freedom (χ^2/d.f), goodness-of-fit (GFI) and the comparative fit index (CFI). Table 2 summarizes the overall variables and the loadings of them plus the overall fit values of CFA model, while all the extracted values appeared with acceptable statistical levels.
Constructed Factors	Items	Mean	St. de	Loadings
Clear Goals	CG1	4.7	1.621	.962
KMO: 0.864	CG2	4.62	1.602	.928
Cronbach’s Alpha: .892	CG3	4.40	1.74	.957
Var.Explained: 89.947	CG4	5.09	1.66	.919
Sig. Bartlett: 0.00				
Employees’ Recognition	ER1	4.42	1.57	.785
KMO: 0.918	ER2	4.15	1.62	.905
Cronbach’s Alpha: .942	ER3	4.20	1.71	.907
Var.Explained: 84,743	ER4	5.29	1.49	.916
Sig. Bartlett: 0.00	ER5	5.57	1.46	.921
	ER6	5.18	1.55	.940
	ER7	5.43	1.51	.943
	ER8	5.51	1.29	.926
	ER9	5.48	1.406	.902
Information Sharing	IS1	4.83	1.5	.778
KMO: 0.912	IS2	4.22	1.54	.577
Cronbach’s Alpha: .794	IS3	5.43	1.55	.967
Var.Explained: 81,121	IS4	5.49	1.38	.855
Sig. Bartlett: 0.00	IS5	4.96	1.58	.942
	IS6	4.91	1.57	.836
	IS7	4.97	1.66	.726
Troubleshooting Effectiveness	TE1	4.68	1.6	.740
KMO: 0.859	TE2	4.35	1.63	.942
Cronbach’s Alpha: .819	TE3	4.38	1.51	.945
Var.Explained: 89,957	TE4	4.45	1.64	.949
Sig. Bartlett: 0.00	TE5	5.32	1.45	.892
	TE6	5.19	1.44	.928

Model-Fit Index	Statistical Values-Scores
Chi-square/degree of freedom	1.958,32
Goodness-of-fit index	0.962
Comparative fit index	0.897

Table 2. Factorial Loadings Matrix, Means, St. Deviations & overall fit of the CFA Model.

Discussion & Future Implications

In this study, the authors tried to designate a strategic communicational model that can be adopted from decision makers in ICTs organizations for the optimization of their communicational channel between them and their followers. Regarding the tested hypotheses, as it can be seen in Table 3, all the three factors have significant statistical correlations with Troubleshooting Effectiveness as an axis that is related heavily with the overall team efficiency and efficacy. In other
words, it can be said that if each team solves constructively each problematic situation then it is possessed under highly overall effectiveness.

Factors	Clear Goals & Objectives	Employees Recognition	Information Sharing	Troubleshooting Effectiveness
Clear Goals & Objectives	1.000	0.591*	0.131*	0.484*
Employees Recognition	0.591*	1.000	0.182*	0.250*
Information Sharing	0.131*	0.182*	1.000	0.168*
Troubleshooting Effectiveness	0.484*	0.250*	0.168*	1.000

Sample size, N=164. Correlation is Statistically Significant at the 95 % level 2-tailed (i.e. $p \leq 0.05$)

Table 3. Correlations between factors and hypotheses testing

It is also noteworthy to refer that according to the sample, if decision makers establish clear goals and objectives to their employees’, then a more efficient problem solving process takes place (correlation between factors: 0.484), a fact which related with Hendrix (2004) research paper. In addition, there is an important correlation between information sharing and troubleshooting effectiveness (correlation between factors: 0.168) which not only related with Wong’s (2008) results but also arises future implications in order to establish a well structured framework of strategic information management which helps an ICT organization improve its troubleshooting effectiveness.

Although a model proposed that embraces clear goals, employees’ effort recognition and information sharing in order to improve troubleshooting effectiveness, it will be very fruitful to design a dynamic simulation modeling process with an actuarial tendency, in order to fully understand the future potential of that model inside an organization as other researchers already constructed in management and decision making sector (Nasiopoulos et al. 2013). Lastly, the survey of this study was distributed in more than ten countries with different decision making and leadership cultures in ICTs organizations and indeed these four factors probably play a central role in strategic communication process. However the multidimensionality of different cultures and how communication process is performed arises and reflects a new era of barriers for the establishment of a lingua franca on communicational planning processes and principles, although the existence of the aforementioned factors as core values of strategic communication process.

References

Bojeun M.C. (2014) Program Management Leadership, Creating Successful Team Dynamics CRC Press Taylor & Francis Group, New York
Canós-Darós L., (2013) "An algorithm to identify the most motivated employees", *Management Decision*, Vol. 51 Iss: 4, pp.813–823

Cavaleri S., Firestone J., Reed F., (2012) "Managing project problem-solving patterns", *International Journal of Managing Projects in Business*, Vol. 5 Iss: 1, pp.125-145

Drivas I.C., Damaskinou, A.I, & Sakas D.P. (2016) “Strategic Communication Process for Sustainable Entrepreneurial Environment in Nonprofit Organizations” In *International Conference of Strategic Innovative Marketing (IC-SIM 2015) Proceedings in Business and Economics Springer*

Drivas I. C., Sakas D.P. & Giannakopoulos G.A. (2016) “Self-other agreement for improving communication in libraries and information services” *Library Review* Vol. 65 Iss. 3 pp. 206-223.

Gholipour, A., Pirannejad, A., Kozekeanan, S.F & Gholipour, F. (2011), “Designing motivation system to produce creativity and entrepreneurship in petrochemical company”, *International Journal of Business Management*, Vol. 6 No. 5, pp. 137-144

Hendrix G. (2004) The Importance of goals to the success of work teams. *Centre for the study of work teams*, University of North Texas

Kline, R. B. (2010). *Principles and practice of structural equation modeling* (3rd ed.) New York: Guilford Press.

Kozlowski, S.W. J., & Ilgen, D. R. (2006). “Enhancing the effectiveness of work groups and teams” *Psychological Science in the Public Interest*, Vol.7 pp.77–124

Nasiopoulos K.D, Sakas D.P & Vlachos D.S. (2013) “Analysis of Strategic Leadership Simulation Models in non-profit Organizations” In: *Procedia - Social and Behavioral Sciences* Vol.73 pp.276–284

Santos J. P., Caetano A., & Tavares S. M., (2015) “Is training leaders in functional leadership a useful tool for improving the performance of leadership functions and team effectiveness?” *The Leadership Quarterly*, Vol. 26, Iss. 3, pp. 470-484

Tohidi H., (2011) “Teamwork productivity & effectiveness in an organization base on rewards, leadership, training, goals, wage, size, motivation, measurement and information technology” *Procedia Computer Science*, Vol. 3, pp. 1137-1146

Verma N., Rangnekar S. N. & Barua M. K., (2016) "Exploring decision making style as a predictor of team effectiveness", *International Journal of Organizational Analysis*, Vol. 24 Iss: 1, pp.36 – 63

Volmer, J. and Sonnentag, S. (2011), “The role of star performers in software design teams”, *Journal of Managerial Psychology*, Vol. 26 No. 3, pp. 219-234

Wong, S.S. (2008), “Task knowledge overlap and knowledge variety: the role of advice network structures and impact on group effectiveness”, *Journal of Organizational Behavior* Vol. 29 No. 5, pp. 591-614