Efficacy of Magnesium Sulfate Treatment in Children with Acute Asthma

Ali Özdemir\(^a\) Dilek Doğruel\(^b\)

\(^a\)Pediatric Pulmonary Section, Department of Pediatrics, Mersin City Training and Research Hospital, Mersin, Turkey; \(^b\)Pediatric Allergy Section, Department of Pediatrics, University of Cukurova, Adana, Turkey

Significance of the Study
- This study investigates the efficacy of systemic magnesium sulfate treatment in asthmatic children with a considerable number of patients.
- It appears to have a beneficial bronchodilator response by providing sufficient bronchodilator effect on pulmonary function parameters in children with acute asthma.
- Systemic magnesium sulfate may be considered for patients with acute asthma attack.

Keywords
Asthma · Children · Magnesium sulfate · Spirometry

Abstract
Objective: Systemic administration of magnesium sulfate (MgSO\(_4\)) has been proposed as a treatment for pediatric patients with acute asthma. However, previous trials show mixed results and uncertain evidence of benefit. The aim of the study was to ascertain whether intravenous (IV) MgSO\(_4\) improves lung function parameters in children with acute asthma. Methods: This was a prospective clinical trial. All patients with acute asthma received 40–50 mg/kg or maximum 1,500 mg (>30 kg) of single dose IV MgSO\(_4\), administered over 60 min. Spirometry was conducted before and 15 min after MgSO\(_4\) infusion. Results: One hundred and fifteen children aged 6 to 17 years presenting with acute asthma and FEV\(_1\) between 40% and 75% of predicted were included. Then, the patients were classified into 2 groups; mild asthma attack (FEV\(_1\) ranged from 60% to 75%; \(n = 50\)) or moderate asthma attack (FEV\(_1\) ranged from 40% to 59%; \(n = 65\)). The baseline characteristics were similar in both groups. The mean percent predicted pre and post values for FEV\(_1\)/FVC ratio (mild group: 82.59 ± 9.46 vs. 85.06 ± 8.95; moderate group: 77.31 ± 11.17 vs. 79.99 ± 11.77), FEV\(_1\) (mild group: 67.14 ± 4.99 vs. 72.29 ± 8.05; moderate group: 48.50 ± 6.81 vs. 53.78 ± 9.81), PEF (mild group: 65.49 ± 12.32 vs. 71.37 ± 12.96; moderate group: 47.56 ± 11.78 vs. 51.97 ± 13.98), and FEF\(_{25-75}\) (mild group: 58.20 ± 12.24 vs. 66.57 ± 16.95; moderate group: 37.77 ± 11.37 vs. 43.41 ± 14.19) showed a statistically significant (\(p < 0.05\) for all) bronchodilator effect after MgSO\(_4\) infusion in both groups with few side effects. Conclusion: Administration of IV MgSO\(_4\) was associated with improved pulmonary function in children with acute asthma.
Introduction

Asthma is the most common chronic lung disease occurring in all age groups frequently beginning in childhood. The prevalence of asthma has increased in developed countries over the last 4 decades. The disease is associated with airway inflammation and characterized by hyper-responsiveness of the airways with reversible airway obstruction. Asthma symptoms can be triggered by respiratory viruses, allergens, tobacco smoking, air pollutants, and cold or dry air. In spite of the availability of good preventive treatment, respiratory symptoms and acute attacks related to asthma in children still occur and are responsible for a considerable number of clinic or emergency visits, hospital admissions, and missed school days [1].

The main goal of treatment in acute asthma attack is to relax airway smooth muscles, decrease vascular permeability, increase mucociliary clearance, decrease mucus secretion, and, most importantly, downregulate airway inflammation. The most indispensable initial treatment for asthma attack is short-acting β2 agonists such as salbutamol/albumerol or terbutaline to relieve airway obstruction. Safe and effective inhalation of these drugs leads to bronchodilatation. Alternative additive therapies in the treatment of acute asthma attack may include inhaled ipratropium bromide, subcutaneous or inhaled epinephrine/adrenaline, intravenous (IV) or inhaled magnesium sulfate (MgSO4), and IV aminophylline [2].

Among these additive therapies, MgSO4 may offer a clinically useful option in treating acute asthma exacerbations in children. Although the precise mechanism by which MgSO4 produces bronchodilatation of smooth muscles is not well understood, it is thought to act by enhancing calcium uptake in the sarcoplasmic reticulum and/or as a calcium antagonist. Additionally, magnesium is a cofactor regulating a number of enzymatic and cellular activities in the body, including adenyl cyclase and sodium-potassium ATP-ase, potentially enhancing the effects of β2 agonists. Other potential beneficial mechanisms in asthma include inhibition of acetylcholine release from cholinergic nerves and reduction in the release of histamine release from mast cells [3]. About 40% of magnesium is bound to plasma proteins and requires distribution into smooth muscle tissue for activity. A retrospective study using covariate analysis investigated serum magnesium disposition by clearance and volume distribution in pediatric population, and stated that only body weight was significantly correlated with serum magnesium concentrations. The authors also reported that magnesium had a short half-life of 2.7 h serum concentration in children [4].

Though systemic MgSO4 treatment in children with acute asthma may be helpful, results of published trials are conflicting regarding the impact of the treatment on respiratory distress. [5, 6]. Therefore, we hypothesized that MgSO4 infusion would result in significant improvement in spirometric measures of lung function in children with acute exacerbations for asthma.

Material and Methods

This was an open intervention study conducted in the Pediatric Pulmonology Section, Mersin City Training and Research Hospital between February and June 2019. Our hospital is a tertiary pediatric hospital with the only pediatric pulmonology clinic in the region serving a population of 1,793,000. The study included a convenience sample of (1) children aged 6–17 years with MD-diagnosed asthma; (2) presenting with respiratory complaints due to asthma; (3) no history of using short-acting β2 agonist in the past 3 h (in order to examine only systemic MgSO4 response); (4) no history of oral/IV steroid use in the past 12 h; (5) respiratory stable outpatient with an oxygen saturation (SpO2) > 92% on room air; (6) spirometry with a forced expiratory volume in 1 s (FEV1) 40% to 75% of predicted measured at the time of the clinic visit. Children who were unable to perform spirometry or who showed unstable clinical status during the study period were excluded.

Patients were given one dose of MgSO4 ranging from 40 to 50 mg/kg or a maximum 1,500 mg for patients > 30 kg in 100 mL of normal saline, administered over approximately 60 min at the discretion of the nurse caring for the patient. Spirometry (MIR® Spirolab model 2014, Rome, Italy) was performed before and 15 min after completion of MgSO4 infusion by an experienced technician. The spirometry procedure was conducted with the children seated upright with at least 3 appropriate expiratory maneuvers. In order to examine the degree of airway obstruction, forced vital capacity (FVC), FEV1, peak expiratory flow (PEF), and forced expiratory flow between 25 and 75% of the FVC (FEF25–75) were included as spirometric values, and expressed as percent of predicted based on height and gender of the child. Normal values were defined using the data of the European Respiratory Society Global Lung Function Initiative [7].

All patients were continually monitored (B40® monitor, model 2016, Freiburg, Germany) for blood pressure, SpO2, respiratory depression, and arrhythmia for the safety of magnesium infusion. Then, the patients immediately received standard care for asthma with inhalation of short-acting β2 agonist and systemic steroid if needed as part of their management. Patients showing clinical or laboratory signs of deterioration were excluded from the study. Efficacy of MgSO4 treatment was assessed as the change of FEV1/FVC, FEV1, PEF, and FEF25–75 parameters before and after MgSO4 infusion.

The study protocol was approved by the University of Cukurova and written informed consent was obtained from parents of the study participants. Additionally, all children were verbally informed about the study procedure.

Statistical Analysis

Statistical analyses were performed using an IBM SPSS Statistics Version 20.0 software package. Categorical variables were ex-
pressed as numbers and percentages, whereas continuous variables were summarized as mean and standard deviation when the data was equally distributed or as median and minimum-maximum when non-equally distributed. The chi-square test was used to analyze categorical variables. For comparison of continuous variables between two groups, the Student’s t test was used. For comparison of two related (paired) continuous variables, paired samples t test was used. A p value < 0.05 was considered statistically significant.

Results

One hundred thirty-six children with asthma exacerbation were enrolled in this study. A total of 21 were excluded for insufficiently performed pulmonary function test ($n = 12$), nausea/vomiting ($n = 4$), decrease in SpO$_2$ level ($n = 4$), and hypotension ($n = 1$) during MgSO$_4$ infusion, resulting in a final sample size of 115 patients. Then, the patients were categorized into 2 groups according to their initial FEV$_1$ results (Fig. 1).

Group 1 consisted of children with a mild attack (FEV$_1$ between 60 and 75% of predicted) and group 2 of children with moderate attack (FEV$_1$ between 40 and 59% of predicted). The demographic characteristics of children are detailed in Table 1. Baseline characteristics were similar

Table 1. Demographic characteristics of children with acute asthma

	Mild asthma ($n = 50$)	Moderate asthma ($n = 65$)	p value
Age	10.30±2.91	10.54±3.11	0.676
Male sex	33 (66%)	41 (63.1%)	0.845
Parental asthma	11 (22%)	14 (21.5%)	1.00
First asthma symptom	3.02±2.59	3.20±3.09	0.740
IgE levels, IU	265.47±171.93	313.40±266.74	0.271
Inhaled allergen positivity	35 (70%)	42 (64.6%)	0.557
Allergic rhinitis	23 (46%)	31 (47.7%)	1.00
Atopic dermatitis	4 (8%)	2 (3.1%)	0.401
Indoor smoking	18 (36%)	18 (27.7%)	0.418
Current treatment			1.00
None	20 (40%)	27 (41.5%)	
Asthma prophylaxis			
Montelukast	8 (16%)	18 (27.7%)	
Inhaled steroid	16 (32%)	6 (9.2%)	
Inhaled steroid and LABA	6 (12%)	14 (21.5%)	

Fig. 1. Enrollment flow diagram.
for age at participation, sex, history of parental asthma, age of first asthma symptom, atopic status (allergic rhinitis, atopic dermatitis, allergy skin test positivity, and IgE levels), indoor smoking exposure, and current asthma medication among the 2 groups ($p > 0.05$). Additionally, there were no statistically significant differences in SpO2, heart rate, and systolic and diastolic blood pressure changes during pre and post MgSO4 infusion in either group (Table 2).

When the mean pre and post FEV1/FVC ratio (82.59 ± 9.46 vs. 85.06 ± 8.95), FEV1 (67.14 ± 4.99 vs. 72.29 ± 8.05), PEF (65.49 ± 12.32 vs. 71.37 ± 12.96), and FEF25-75 (58.20 ± 12.24 vs. 66.57 ± 16.95) percent predicted values were compared, all lung function parameters showed significant improvement with MgSO4 infusion in children with acute asthma in the mild group (Fig. 2). Similarly, when the mean pre and post FEV1/FVC ratio (77.31 ± 11.17 vs. 79.99 ± 11.77), FEV1 (48.50 ± 6.81 vs. 53.78 ±

Table 2. Oxygen saturation, heart rate, and blood pressure of children with acute asthma

	Pre-treatment	Post-treatment	p value
Oxygen saturation, %			
Mild attack	96.10±1.79	96.20±2.55	0.760
Moderate attack	95.20±2.59	95.31±2.65	0.693
Heart rate, beats per min			
Mild attack	104.48±16.40	105.16±15.58	0.712
Moderate attack	116.03±15.63	117.54±17.04	0.391
Blood pressure (systolic), mm Hg			
Mild attack	115.86±10.28	114.60±10.91	0.359
Moderate attack	117.89±12.85	115.97±12.01	0.240
Blood pressure (diastolic), mm Hg			
Mild attack	73.58±7.83	71.40±7.91	0.155
Moderate attack	72.88±10.00	72.28±9.21	0.659

Results are expressed as mean ± SD.

Fig. 2. Lung function parameters in children with acute asthma in the mild group.
9.81), PEF (47.56 ± 11.78 vs. 51.97 ± 13.98), and FEF_{25–75} (37.77 ± 11.37 vs. 43.41 ± 14.19) percent predicted values were compared, all parameters again improved significantly with MgSO₄ treatment in children with acute asthma in the moderate group (Fig. 3).

The mean change in FEV₁ and FEF_{25–75} with MgSO₄ infusion was 7.7 and 14.2% in the mild group, and 10.9 and 14.9% in the moderate group.

Discussion

Several studies have reported that systemic administration of MgSO₄ in adults with moderate to severe acute asthma resulted in significantly improved short-term pulmonary function [8, 9]. Although most studies examining the potential clinical role of MgSO₄ treatment in children with acute asthma have shown beneficial effect, its precise role has still not been fully elucidated [10–15]. In this regard, two meta-analyses examined the role of IV MgSO₄ for acute severe asthma as part of the co-therapies with inhaled β₂ agonists and systemic steroids mainly conducted in the pediatric emergency department [16, 17]. After pooling the results, IV MgSO₄ was found to be effective as an adjunctive therapy in avoiding hospitalization (odds ratio: 0.290, 95% confidence interval: 0.143 to 0.589). In addition, the pooled result on asthma symptom scores showed consistent improvement in the analysis.

The use of IV MgSO₄ in the emergency room was well tolerated with only minor side effects. Both meta-analyses concluded that IV magnesium sulfate is an effective additional treatment for children with acute severe asthma who had not responded to initial standard treatment. Moreover, a recent study reported IV infusion of MgSO₄ during the first hour of hospitalization in patients with acute severe asthma was associated with significantly reduced percentage of children who required mechanical ventilation support [18].

In a study conducted by Singhi et al. [19] comparing the efficacy of IV MgSO₄, terbutaline, and aminophylline for children with acute, severe asthma poorly responsive to standard initial treatment, adding a single dose of IV MgSO₄ to inhaled β₂ agonists and corticosteroids was found to be more effective, and safer than using terbutaline or aminophylline when treating children with acute severe asthma poorly responsive to initial treatment.

A few studies have investigated the effect of MgSO₄ treatment on pulmonary function. Children treated with IV magnesium infusion in addition to nebulized salbutamol for acute asthma had significantly greater immediate improvement in PEFR compared to placebo group [10, 12]. Additionally, this effect was sustained for hours in the treatment group. A single double-blind placebo-controlled trial conducted on a limited number of children with acute asthma examined the effect of MgSO₄ infusion on detailed pulmonary function; the treatment
A recent Cochrane review analyzed studies on systemic MgSO$_4$ in the treatment of children with acute asthma [20]. The review emphasized that treatment with IV MgSO$_4$ reduced the odds of admission to hospital by 68% (odds ratio: 0.32, 95% confidence interval: 0.14 to 0.74). But the estimated reduction in true population in admission had a wide confidence interval between 86 and 26%. There was reduced length of hospital admission by 5.3 h with IV MgSO$_4$ treatment. The review also concluded that there was an additive benefit of MgSO$_4$ treatment on other parameters such as reduction in intensive care admissions, vital signs, spirometry, or scores on symptom scales, or the likelihood of returning to the emergency department within 48 h with generally mild and infrequent reported side effects. However, the authors concluded that it was difficult to know whether this was either evidence of safety or was sufficient to recommend such a therapy in the presence of weak effect size and small sample size in the trials in the literature.

The current prospective study has demonstrated that in children aged between 6 and 17 years with mild or moderate acute asthma, systemic infusion of MgSO$_4$ treatment resulted in a beneficial bronchodilator effect as determined by spirometry parameters. Moreover, it could be speculated that MgSO$_4$ treatment would also be beneficial in children with severe asthma based on the study results. Unlike most studies reported in children with acute asthma, the present study on a reasonable sample size has shown beneficial bronchodilator response in the absence of inhaled β_2 agonists. It should be noted that although IV MgSO$_4$ provided statistically significant bronchodilator effect in lung function parameters, its benefit appears not as potent as inhaled β_2 agonists (i.e., expected change in FEV$_1$ >12% and FEF$_{25-75}$ >%24) [21]. In contrast, we did not observe any improvement in SpO$_2$ levels with MgSO$_4$ infusion in both treatment groups. This could be related to the initially selected patients with SpO$_2$ levels >92% or SpO$_2$ might not change even in the presence of sufficient bronchodilation [22]. Because the study was aimed only at investigating the effect of MgSO$_4$ infusion on pulmonary function parameters, other outcomes (e.g., improvement in asthma symptom scores, emergency department visit, hospital admission, etc.) were not assessed. Our findings must be supported by additional studies including other parameters mentioned above.

One of the major limitations of this study is the lack of a control group. Therefore, we do not know if the children would have simply improved on their own without the magnesium sulfate treatment. The main reason for not adding a control group was ethical concerns.

Systemic use of MgSO$_4$ appears to be safe; minor side effects such as headache, muscle tightness or contraction, flushing, heart disturbances, confusion, dry mouth, malaise, and hypotension have been reported in the literature [23]. Approximately 7% of children with side effects attributed to MgSO$_4$ infusion were excluded from our study. Another limitation of this study is that magnesium levels of the study participants were not routinely measured prior to and after the treatment in order to determine a therapeutic level. However, the dose of MgSO$_4$ used suggests that it did achieve sufficient beneficial effect in the study population.

Conclusion

Systemic use of MgSO$_4$ appears to have a beneficial effect on bronchodilator response in spirometric parameters in children with acute asthma with few side effects. Thus, it may be considered for the management of children with asthma suffering from acute airway obstruction.

Acknowledgement

The authors thank Prof. Mark A. Brown for his critical review.

Statement of Ethics

The study protocol was approved by the University of Cukurova and written informed consent was obtained from parents of the study participants. Additionally, all children were verbally informed about the study procedure.

Disclosure Statement

There is no competing interest.

Funding Sources

None.
References

1. Tesse R, Borrelli G, Mongelli G, Mastrorilli V, Cardinale F. Treating Pediatric Asthma According Guidelines. Front Pediatr. 2018 Aug; 6:234.

2. Landau LI, Martinez FD. Asthma:Treatment. In: Taussig LM, Landau LI, Le Souef PN, Morgan WJ, Martinez FD, Sly PD, editors. Pediatric Respiratory Medicine. 2nd ed. Philadelphia: Mosby; 2008. pp. 829–44.

3. Kelly HW. Magnesium sulfate for severe acute asthma in children. J Pediatr Pharmacol Ther. 2003 Jan;8(1):40–5.

4. Rower JE, Liu X, Yu T, Mundorff M, Sherwin CM, Johnson MD. Clinical pharmacokinetics of magnesium sulfate in the treatment of children with severe acute asthma. Eur J Clin Pharmacol. 2017 Mar;73(3):325–31.

5. DeSanti RL, Agasthya N, Hunter K, Hussain MJ. The effectiveness of magnesium sulfate for status asthmaticus outside the intensive care setting. Pediatr Pulmonol. 2018 Jul; 53(7):866–71.

6. Griffiths B, Kew KM, Normansell R. Intravenous magnesium sulfate for treating children with acute asthma in the emergency department. Paediatr Respir Rev. 2016 Sep;20:45–7.

7. Quanjer PH, Stanojevic S, Cole TJ, Baur X, Hall GL, Culver BH, et al.; ERS Global Lung Function Initiative. Multi-ethnic reference values for spirometry for the 3-95-yr age range: the global lung function 2012 equations. Eur Respir J. 2012 Dec;40(6):1324–43.

8. Powell C, Kolamunnage-Dona R, Lowe J, Bolland A, Petrou S, Doull I, et al.; MAGNETIC study group. Magnesium sulphate in acute severe asthma in children (MAGNETIC): a randomised, placebo-controlled trial. Lancet Respir Med. 2013 Jun;1(4):301–8.

9. Silverman RA, Osborn H, Runge J, Gallagher EJ, Chiang W, Feldman J, et al.; Acute Asthma/Magnesium Study Group. IV magnesium sulfate in the treatment of acute severe asthma: a multicenter randomized controlled trial. Chest. 2002 Aug;122(2):489–97.

10. Ciak F, Pandolfi A, Mari G, Golinelli S, Zingarelli M, Ricciardi S, et al. Intravenous magnesium therapy for moderate to severe pediatric asthma: results of a randomized, placebo-controlled trial. J Pediatr. 1996 Dec;129(6):809–14.

11. Ciak F, Pandolfi A, Mari G, Golinelli S, Zingarelli M, Ricciardi S, et al. Intravenous magnesium therapy for children with moderate to severe acute asthma. Arch Pediatr Adolesc Med. 2000 Oct; 154(10):979–83.

12. Devi PR, Kumar L, Singh SC, Prasad R, Singh M. Intravenous magnesium sulfate in acute severe asthma not responding to conventional therapy. Indian Pediatr. 1997 May;34(5):389–97.

13. Guérin F, Haspolat K, Boșnak M, Dikici B, Derman O, Ece A. Intravenous magnesium sulphate in the management of moderate to severe acute asthmatic children nonresponding to conventional therapy. Eur J Emerg Med. 1999 Sep;6(3):201–5.

14. Chiriboga N, Osborn H, Runge J, Gallagher EJ, Chiang W, Feldman J, et al.; Acute Asthma/Magnesium Study Group. IV magnesium sulfate in the treatment of acute severe asthma: a multicenter randomized controlled trial. Chest. 2002 Aug;122(2):489–97.

15. Irazuzta JE, Chiriboga N. Magnesium sulfate infusion for acute asthma in the emergency department. J Pediatr (Rio J). 2017 Nov-Dec; 93 Suppl 1:19–25.

16. Cheuk DK, Chau TC, Lee SL. A meta-analysis on intravenous magnesium sulphate for treating acute asthma. Arch Dis Child. 2005 Jan; 90(1):74–7.

17. Su Z, Li R, Gai Z. Intravenous and Nebulized Magnesium Sulfate for Treating Acute Asthma in Children: A Systematic Review and Meta-Analysis. Pediatr Emerg Care. 2018 Jun; 34(6):390–5.

18. Torres S, Sticco N, Bosch JJ, Iolster T, Siaba A, Rocca Rávoral M, et al. Effectiveness of magnesium sulfate as initial treatment of acute severe asthma in children, conducted in a tertiary-level university hospital: a randomized, controlled trial. Arch Argent Pediatr. 2012 Aug;110(4):291–6.

19. Singh S, Grover S, Bansal A, Chopra K. Randomised comparison of intravenous magnesium sulphate, terbutaline and aminophylline for children with acute severe asthma. Acta Paediatr. 2014 Dec;103(12):1301–6.

20. Griffiths B, Kew KM. Intravenous magnesium sulphate for treating children with acute asthma in the emergency department. Cochrane Database Syst Rev. 2016 Apr; 4:CID01050.

21. Kanchongkittiphon W, Gaffin JM, Kopel L, Petty CR, Bollinger ME, Miller RL, et al. Association of FEF25%-75% and bronchodilator reversibility with asthma control and asthma morbidity in inner-city children with asthma. Ann Allergy Asthma Immunol. 2016 Jul; 117(1):97–9.

22. Tal A, Pasterkamp H, Leahy F. Arterial oxygen desaturation following salbutamol inhalation in acute asthma. Chest. 1984 Dec;86(6):868–9.

23. Davalos Bichara M, Goldman RD. Magnesium for treatment of asthma in children. Can Fam Physician. 2009 Sep;55(9):887–9.