Two volatile-phase alcohols inhibit growth of *Pseudogymnoascus destructans*, causative agent of white-nose syndrome in bats

Sally Padhi, Itamar Dias and Joan W. Bennett
Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ, USA

ABSTRACT

In North America, *Pseudogymnoascus destructans* infects hibernating bats within caves and other hibernacula causing high mortalities. We have sought a potential fumigation strategy that can be deployed within a contained area, using an agent that already has been determined to be safe for environmental application. We here report the efficacy of 1-octen-3-ol ("mushroom alcohol") and 1-hexanol against *P. destructans*. At 50 ppm and 100 ppm, vapours of racemic 1-octen-3-ol are fungicidal to *P. destructans* at 15ºC after 21 days incubation, while exposure to 5 and 10 ppm is fungistatic. The six-carbon alcohol 1-hexanol is not as effective, although at 50 and 100 ppm, vapours of this compound inhibited growth of the fungus.

ARTICLE HISTORY
Received 15 September 2016
Accepted 4 December 2016

KEYWORDS
1-hexanol; 1-octen-3-ol; bats; mushroom alcohol; *Pseudogymnoascus destructans*; white-nose syndrome

Introduction

The white-nose syndrome (WNS), an epidemic disease of hibernating bats, has decimated North American bat populations since it was first documented in the winter of 2006–2007 (Blehert et al. 2009). A five-year assessment of mortality and geographic spread of WNS, from 42 sites in five states, reported that the number of hibernating bats declined from 412,340 to 49,579 animals, a decrease of 88% (Turner et al. 2011). It has been predicted that the little brown bat (*Myotis lucifugus*) could become extinct in the Northeastern USA in 7–30 years, with a similar fate possible for three other bat species (Frick et al. 2010).

WNS is caused by *Pseudogymnoascus destructans* (formerly known as *Geomyces destructans*), a psychrophilic fungus (Gargas et al. 2009; Verant et al. 2012). The body temperatures of hibernating bats range from 2°C to 15°C, which closely resembles the optimum growth temperatures for this fungus (Blehert et al. 2011). The disease is characterised by a white-coloured fungal growth on the muzzle and wings of hibernating bats resulting in severe damage to wing membranes (Cryan et al. 2010). Affected animals display increased arousal and depletion of fat reserves, resulting in emaciation and death (O’Donoghue et al. 2015). Physiological studies using isotope-based estimates of change in body mass composition showed that little brown bats infected with *P. destructans* used twice as much energy as non-infected controls and also displayed respiratory acidosis and high concentrations of potassium in the blood, even in early stages of infection (Verant et al. 2014). Effective and ecologically appropriate management strategies for the control of this devastating pathogen are lacking.

Several antifungal drugs such as amphotericin B and fluconazole have been reported as capable of limiting the growth and/or conidial germination of *P. destructans* (Chaturvedi et al. 2011), but it is feared that application of broad spectrum antifungal compounds could negatively affect cave ecosystems (Bending et al. 2007; Raudabaugh and Miller 2015). Biological control promises a more ecologically sound approach. For example, in laboratory studies, six bacterially produced volatile organic compounds were found to inhibit the growth of *P. destructans* (Cornelison et al. 2014a) and volatile phase compounds from the bacterium *Rhodococcus rhodocrous* also caused inhibition of the pathogen (Cornelison et al. 2014b). Moreover, the volatile sesquiterpene trans-trans-farnesol from the yeast *Candida* has the potential to be utilised as a biological control agent (Raudabaugh and Miller 2015) and the fungus *Epicoccum nigrum* also has been evaluated for
possible biocontrol (Perryman et al. 2014). In another study, bacteria isolated from the skin of bats and identified as *Pseudomonas* spp. were found effective in inhibiting the growth of *P. destructans* in vitro (Hoyt et al. 2015).

Earlier work in our laboratory has shown that the vapour phases of the medium chain alcohols 1-octen-3-ol (also called mushroom alcohol) and 1-hexanol exhibit fungistatic properties against *Aspergillus niger* and *Penicillium chrysogenum* (Yin et al. 2015). Both 1-octen-3-ol and 1-hexanol (Figure 1) are examples of volatile organic compounds (VOCs), a large group of odiferous, low-molecular-weight metabolic products that frequently function in ecological interspecific communications (Hermann 2010; Hung et al. 2015). Mushroom alcohol is one of the most abundant aroma compounds produced by mushrooms and moulds (Tressl et al. 1982; Korpi et al. 2009) and serves as a semiochemical (signalling molecule) for many arthropods (Davis et al. 2013). It is used to enhance mushroom flavour in foods and is generally regarded as safe (GRAS) by the U. S. Food and Drug Administration (FDA) (Zawirska-Wojtaslak 2004). Furthermore, it attracts biting insects (Luntz 2003; Cilek et al. 2011) and has received U.S. Environmental Protection Agency clearance for use in insect lures (EPA 2015a, 2015b). Low concentrations of 1-octen-3-ol inhibit growth of *Aspergillus nidulans* (Herrero-Garcia et al. 2011) and can control a fungal disease of cultivated mushrooms caused by *Leccanicillium fungicola* (Berendsen et al. 2013). Another mid-length alcohol, 1-hexanol, also has been found to be biologically active against fungi and has been tested for controlling postharvest fungal pathogens (Archbold et al. 1997; Cruz et al. 2012). Therefore, we hypothesised that these vapour-phase alcohols might be effective against *P. destructans*. Our goal was to test these compounds in the laboratory as potential fumigation agents for control of *P. destructans*. We report herein the initial results of our study.

Materials and methods

P. destructans (MYA-4855™) was obtained from the American Type Culture Collection, Manassas, VA. Throughout our experiments, assiduous care was taken to ensure that this pathogen was handled according to all rules, procedures and steps required for a level 2 classification pathogen. All cultures were grown on potato dextrose agar (PDA) (Difco) and incubated at 15°C. Petri plates (100 × 15 mm) (sometimes called ‘I’ plates) were used so that one half of the plate contained 10 ml PDA and the other half contained a sterile glass cover slip (22 mm × 22 mm) for the placement of aliquots of the VOCs being tested. To prepare inocula, mycelial plugs were taken from the actively growing outer edge of 21-day-old colonies using a #3 cork borer, and placed onto fresh medium in the divided Petri plate. The VOCs tested were reagent grade racemic 1-octen-3-ol, 1-hexanol and toluene (a toxic industrial VOC). All VOCs were purchased from Sigma-Aldrich. Liquid aliquots of these compounds were placed in the other half of the plate and added in appropriate amounts to deliver concentrations of 5, 10, 50 and 100 ppm (mg/L) when volatilised. The amounts were calculated according to the density of the compound and volume of the container. Inoculated plates were sealed with two layers of Parafilm, each concentration of VOC placed in 2 l glass containers with tightly fitting propylene lids and incubated at 15°C for 3 weeks. Following exposure, the colonies were observed macroscopically and the colony diameter recorded. In addition, mycelial plugs showing no growth macroscopically were observed microscopically and the colony diameter recorded. In addition, mycelial plugs from treatments that exhibited no growth were subcultured on PDA and examined after 2 weeks to determine if the concentrations were fungistatic or fungicidal.

![Figure 1](image-url) Structural formulas of (a) 1-octen-3-ol and (b) 1-hexanol.
Results

Macroscopic images of *P. destructans* mycelial plugs after 3 weeks incubation at 15°C with and without exposure to vapours of 1-octen-3-ol (0, 5, 10, 50 and 100 ppm) are shown in (Figure 2 (a–e)). There was no increase in diameter of mycelial plugs in the 1-octen-3-ol treatments (Figure 2 (b–e)). These results were compared to the effects produced by 1-hexanol, another midlength alcohol. Growth in the 5 and 10 ppm treatments was equivalent to the untreated control (Figure 2 (a, f, g)). Inhibition occurred at 50 ppm and there was no growth at 100 ppm (Figure 2 (h, i)). Toluene, a known toxic industrial volatile (Donald et al. 1991), was also tested and it had no inhibitory effects on the fungus. Growth was equivalent to the untreated controls when mycelial plugs were exposed to 100 ppm of toluene vapours (data not shown). Microscopic examination of the mycelial plugs treated with 1-octen-3-ol at 5 ppm showed slight hyphal extension in 5 days. Similar hyphal extensions were visible after 10 days in the 10 ppm treatment.

Measurements of the growth of mycelial plugs in all VOC treatments were subjected to statistical analysis and are presented in (Figure 3). Error bars indicate standard error (SE) of the mean. Racemic 1-octen-3-ol inhibited growth at 5 ppm while 5 ppm

![Figure 2. Pseudogymnoascus destructans mycelial plugs after 3 weeks at 15°C on potato dextrose agar in split Petri plates.](image)

![Figure 3. Growth in cm of mycelial plugs of Pseudogymnoascus destructans exposed to 5, 10, 50 or 100 ppm racemic 1-octen-3-ol or 1-hexanol.](image)
1-hexanol did not affect growth and is similar to that of the control (Figure 3 (a)). There was no measurable growth of mycelia in the 10, 50, and 100 ppm 1-octen-3-ol treatments (Figure 3 (b-d)); 100 ppm 1-hexanol inhibited but did not prevent mycelial growth (Figure 3 (d)).

Since 1-octen-3-ol was more effective than 1-hexanol in inhibiting *P. destructans*, it was further studied to determine the fungicidal level of this compound. To make this determination, the entire mycelial plug, which had been exposed for 3 weeks to 10, 50, or 100 ppm 1-octen-3-ol, was transferred to fresh PDA medium and incubated in ambient air at 15°C. At 10 ppm treatment, mycelial growth resumed after 7 days incubation (Figure 4 (b)). Mycelial plugs exposed to 50 and 100 ppm did not show any hyphal growth and therefore these concentrations appear to be fungicidal (Figure 4 (c, d)). In a follow-up study in which the mycelial plugs were exposed to either 50 or 100 ppm 1-octen-3-ol for 3 weeks before subculturing, there was no mycelial growth even after 2 months incubation.

Discussion

There is a need to find methods to control *P. destructans* that do not harm cave ecosystems. Fumigation of bat hibernacula with natural volatile compounds that have GRAS status might be a possible control measure in inhibiting *P. destructans*. In our study, we selected the six carbon alcohol, 1 hexanol, that has been shown to inhibit the growth of the grey mould that rots fruits such as grapes and strawberries (Archbold et al. 1997) and the eight carbon alcohol 1-octen-3-ol that has been used to control a fungal disease of cultivated mushrooms (Berendsen et al. 2013) and affects spore germination and formation in *Agaricus bisporus*, *Aspergillus nidulans* and *Penicillium paneum* (Chitarra et al. 2005; Noble et al. 2009; Herrero-Garcia et al. 2011) In our laboratory, we previously had shown that both volatiles were able to inhibit the growth of two common species of filamentous fungi, *Aspergillus niger* and *Penicillium chrysogenum*, and that 1-octen-3-ol was more effective than 1-hexanol (Yin et al. 2015). However, to our knowledge, this is the first time these volatile alcohols have been tested against a fungal pathogen that causes disease in animals. We showed that vapours of 1-octen-3-ol were more effective in reducing the growth of *P. destructans* than 1-hexanol at all concentrations tested (5, 10, 50 and 100 ppm). Since 1-octen-3-ol is a GRAS compound that already is approved by the US Environmental Protect Agency to be used as a lure for mosquitoes (EPA 2015a, 2015b), it therefore is a promising candidate for use in the control of WNS. Reservoirs of *P. destructans* are present year round in bat hibernacula (Lorch et al. 2013). Thus, caves could be fumigated when bats are not present, thereby effectively killing or lowering the level of *P. destructans*. Maslo et al. (2015) have shown that even an increase in survival of 6% would be enough for persisting populations of little brown bats to revert to positive growth. However, it is important to point out that despite the EPA and FDA clearance for 1-octen-3-ol, there are indications that this compound can be toxic to human embryonic stem cells (Inamdar et al. 2012) and that it also is neurotoxic to *Drosophila melanogaster* (Inamdar et al. 2013). Before any field applications involving fumigation with this VOC, controlled studies will need to be done to ensure that it would not adversely affect cave ecology. Furthermore, to deploy 1-octen-3-ol in caves, it will be necessary to develop suitable methods for slow release of this VOC and we are presently initiating studies in this area. In addition, we are continuing our research to determine the minimum concentration of the VOC required to act as a fungicide on both mycelia and spores. Finally,
we are scaling up our exposure studies using a large environmental chamber as a model system for bat hibernacula.

Conclusion

In summary, the vapours of two natural alcohols, previously shown to inhibit the growth of several plant pathogenic fungi, are capable of slowing or preventing the growth of a fungal pathogen of animals. Our studies show that under laboratory conditions, exposure to 5, 10, 50 and 100 ppm of volatile-phase 1-octen-3-ol is effective in reducing the growth of *P. destructans*; that concentrations of 5 and 10 ppm of 1-octen-3-ol are fungistatic and that concentrations of 50 and 100 ppm are fungicidal.

Acknowledgments

We thank Danielle Fikibar, Lisa LaManna, Brooke Maslo and Richard Veit for their useful insights about bat biology. Our project was supported by a grant from Bat Conservation International, Inc., Grant RA08112015.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This work was supported by a grant from the Bat Conservation International, Inc., Grant RA08112015.

ORCID

Sally Padhi http://orcid.org/0000-0002-5347-5945

References

Archbold DD, Hamilton-Kemp TR, Barth MM, Langlois BE. 1997. Identifying natural volatile compounds that control gray mold (*Botrytis cinerea*) during postharvest storage of strawberry, blackberry, and grape. J. Agric. Food Chem. 45:4032–4037.

Bending GD, Rodríguez-Cruz MS, Lincoln SD. 2007. Fungicide impacts on microbial communities in soils with contrasting management histories. Chemosphere. 69:82–88.

Berendsen RL, Kalkhove SI, Lugones LG, Baars JJ, Wosten HA, Bakker PA. 2013. Effects of the mushroom-volatile 1-octen-3-ol on dry bubble disease. Appl Microbiol Biotechnol. 97:5535–5543.

Blehert DS, Hicks AC, Behr M, Meteyer CU, Berlowski-Zier BM, Buckles EL, Coleman JTH, Darling SR, Gargas A, Niver R, et al. 2009. Bat white-nose syndrome: an emerging fungal pathogen? Science. 323:227.

Blehert DS, Lorch JM, Ballmann AE, Cryan PM, Meteyer CU. 2011. Bat white-nose syndrome in North America. Microbe. 6:267–273.

Chaturvedi S, Rajkumar SS, Li X, Hurteau GJ, Shtutman M, Chaturvedi V, Neyrolles O. 2011. Antifungal testing and high-throughput screening of compound library against *Geomyces destructans*, the etiologic agent of geomycosis (WNS) in bats. Plos ONE. 6:3e107032.

Chitarra GS, Abee T, Rombouts FM, Dijkstraus H. 2005. 1-Octen-3-ol inhibits conidia germination of *Penicillium paneum* despite of mild effects on membrane permeability, respiration, intracellular pH, and changes the protein composition. FEMS Microbiol Ecol. 54:67–75.

Cilek JE, Hallmon CF, Johnson R. 2011. Semi-field comparison of the BG lure, nonanal, and 1-octen-3-ol to attract adult mosquitoes in northwestern Florida. J Am Mosq Control Assoc. 27:393–397.

Cornelison CT, Gabriel KT, Barlament C, Crow SA. 2014a. Inhibition of *Pseudogymnoascus destructans* growth from conidia and mycelial extension by bacterial volatile organic compounds. Mycopathologia. 177:1–10.

Cornelison CT, Keel MK, Gabriel KT, Barlament CK, Tucker TA, Pierce GE, Crow SA. 2014b. A preliminary report on the contact-independent antagonism of *Pseudogymnoascus destructans* by *Rhodococcus rhodochrous* strain DAP96253. BMC Microbiol. 14:246.

Cruz AF, Hamel C, Yang C, Matsubara T, Gan Y, Singh AK, Kuwada K, Ishii T. 2012. Phytochemicals to suppress *Fusarium* head blight in wheat-chickpea rotation. Phytochemistry. 78:72–80.

Cryan PM, Meteyer CU, Boysle JG, Blehert DS. 2010. Wing pathology of white-nose syndrome in bats suggests life-threatening disruption of physiology. BMC Biol. 8:135.

Davis TS, Crippen TL, Hofstetter RW, Tomberlin JK. 2013. Microbial volatile emissions as insect semiochemicals. J Chem Ecology. 39:840–859.

Donald JM, Hooper K, Hopenhayn-Rich C. 1991. Reproductive and developmental toxicity of toluene: a review. Environ Health Perspect. 94:237–244.

EPA (Environmental Protection Agency). 2015a. Substance registry services for 1-octen-3-ol; [cited 2016 June 11]. Available from: http://iaspub.epa.gov/sor_internet/registry/substreg/searchandretrieve/advancedsearch/externalSearch.do?p_type=CASNO&p_value=3391-86-4

EPA (Environmental Protection Agency). 2015b. Biopesticides fact sheet for 1-octen-3-ol; [cited 2016 June 12]. Available from: https://www3.epa.gov/pesticides/chem_search/reg_actions/registration/fs_PC-069037_28-Apr-03.pdf

Frick WF, Pollock JF, Hicks AC, Langwigg KE, Reynolds DS, Turner GG, Butchkowski CM, Kunz TH. 2010. An emerging disease causes regional population collapse of a common North American bat species. Science. 329:679–682.
Gargas A, Trest MT, Christensen M, Volk TJ, Blehert DS. 2009. *Geomyces destructans* sp. nov. associated with bat white-nose syndrome. Mycotaxon. 108:147–154.

Hermann A. 2010. The chemistry and biology of volatiles. Chichester: John Wiley & Sons.

Herrero-Garcia E, Garzia A, Cordobes S, Espeso EA, Ugalde U. 2011. 8-Carbon oxylipins inhibit germination and growth, and stimulate aerial conidiation in *Aspergillus nidulans*. Fungal Biol. 115:393–400.

Hoyt JR, Cheng TL, Langwig KE, Hee MM, Frick WF, Kilpatrick AM. 2015. Bacteria isolated from bats inhibit the growth of *Pseudogymnoascus destructans*, the causative agent of white-nose syndrome. Plos ONE. 10:e0121329.

Hung R, Lee S, Bennett JW. 2015. Fungal volatile organic compounds and their role in ecosystems. Appl Microbiol Biotech. 99:3395–3405.

Inamdar AA, Hossain MM, Bernstein AI, Miller GW, Richardson JR, Bennett JW. 2013. Fungal-derived semiochemical 1- octen-3-ol disrupts dopamine packaging and causes neurodegeneration. Proc Natl Acad Sci U S A. 110:19561–19566.

Inamdar AA, Moore JC, Cohen RI, Bennett JW. 2012. A model to evaluate the cytotoxicity of the fungal volatile organic compound 1-octen-3-ol in human embryonic stem cells. Mycopathologia. 173:13–20.

Korpi A, Jarnberg J, Pasanen AL. 2009. Microbial volatile organic compounds. Crit Rev Toxicol. 39:139–193.

Lorch JM, Muller LK, Russell RE, O’Connor M, Lindner DL, Blehert DS. 2013. Distribution and environmental persistence of the causative agent of white-nose syndrome *Geomyces destructans*, in bat hibernacula of the eastern United States. Appl Environ Microbiol. 79:1293–1301.

Luntz AJ. 2003. Arthropod semiochemicals: mosquitoes, midges and sealice. Biochem Soc Trans. 31:128–133.

Maslo B, Valent M, Gumbs JF, Frick WF. 2015. Conservation implications of ameliorating survival of little brown bats with white-nose syndrome. Ecological Appl. 25:1832–1840.

Noble R, Dobrovin-Pennington A, Hobbs PJ, Pederby J, Rodger A. 2009. Volatile C8 compounds and pseudomonads influence primordium formation of *Agaricus bisporus*. Mycologia. 101:583–591.

O’Donoghue AJ, Knudsen GM, Beekman C, Perry JA, Johnson AD, DeRisi JL, Craik CS, Bennett RJ. 2015. Destructin-1 is a collagen-degrading endopeptidase secreted by *Pseudogymnoascus destructans*, the causative agent of white-nose syndrome. PNAS. 112:7478–7483.

Perryman J, Turner G, Overton B. 2014. Evaluation of *Epichocum nigrum* Link and polyethylene glycol (PEG 8000) in the control of *Pseudogymnoascus destructans* (Blehart & Garagas). In: Minnis, Lindner DL, editors. 7th Annual White-nose syndrome workshop oral presentation and poster abstracts; [cited 2015 May 5]. Available from: https://www.whitenosesyndrome.org/sites/default/files/wns_2014-abstracts-final.pdf.

Raudabaugh DB, Miller AN. 2015. Effect of trans, trans-farnesol on *Pseudogymnoascus destructans* and several closely related species. Mycopathologia. 180:325–332.

Tressl R, Bahri D, Engel KH. 1982. Formation of eight-carbon and ten-carbon components in mushrooms (*Agaricus campestris*). J Agric Food Chem. 30:89–93.

Turner GG, Reeder DM, Coleman JTH. 2011. A five year assessment of mortality and geographic spread of white-nose syndrome in North American bats and a look to the future. Bat Res News. 52:13–27.

Verant ML, Boyles JG, Waldrep W, Wibbelt G, Blehert DS. 2012. Temperature-dependent growth of *Geomyces destructans*, the fungus that causes bat white-nose syndrome. Plos ONE. 7:e46280.

Verant ML, Meteyer CU, Speakman JR, Cryan PM, Lorch JM, Blehert DS. 2014. White-nose syndrome initiates a cascade of physiologic disturbances in the hibernating bat host. BMC Physiol. 14:10.

Yin G, Padhi S, Lee S, Hung R, Zhao G, Bennett JW. 2015. Effects of three volatile oxylipins on colony development in two species of fungi and on *Drosophila* larval metamorphosis. Curr Microbiol. 71:347–356.

Zawirska-Wojtaslak R. 2004. Optical purity of (R)-(−)-1-octen-3-ol in the aroma of various species of edible mushrooms. Food Chem. 86:113–118.