Chapter 39
Andrey Borisovich VISTELIUS

Stephen Henley

Abstract This chapter provides a glimpse of the legacy of Professor Andrey Borisovich Vistelius, who served as the first President of the International Association for Mathematical Geoscientists (IAMG) during 1968–1972.

Professor Andrey Borisovich Vistelius (1915–1995) was arguably the founder of the field of mathematical geology, and he was the first President of the International Association for Mathematical Geology. As a 1982 recipient of the President’s Prize (later renamed the Andrey Borisovich Vistelius Research Award) I consider it a great privilege to have been invited to contribute this chapter in his honour. The scientific heritage of Professor Vistelius is extremely rich. His active work on fundamental and applied problems of geology, and especially mathematical geology, continued to the last days of his life. He was responsible for more than 200 published works, each representing a significant contribution to science. His works

S. Henley (✉)
Resources Computing International Limited, 185 Starkholmes Road, Matlock, Derbyshire DE4 5JA, UK
e-mail: steve@vmine.net

© The Author(s) 2018
B. S. Daya Sagar et al. (eds.), Handbook of Mathematical Geosciences, https://doi.org/10.1007/978-3-319-78999-6_39
cover a wide range of subjects, with contributions to the development of stratigraphy, mineralogy, petrography, petrology and geochemistry. The mathematical approach to geoscientific research, pioneered by Vistelius, has gained recognition worldwide. As applied in practice, these works also represent building blocks to more effective methods of search for minerals. There have been a number of publications about Vistelius, and in attempting to present a rounded view of his life and works, this chapter quotes from them extensively: particularly Dvali et al. (1970), Romanova and Sarmanov (1970), Dech and Glebovitsky (2000), Merriam (2001), Henley (2003), Dech and Henley (2003), and Whitten (2004). I also wish to acknowledge unpublished sources including Whitten, the late Merriam, Pshenichny, and Dech.

39.1 Background

Andrey Borisovich Vistelius was born on 7th December 1915 into the family of a Russian nobleman. His father Boris Vistelius was a lawyer in St. Petersburg before the October Revolution of 1917. Boris’s father (Andrey Borisovich’s grandfather) occupied a senior position in the civil service of the Russian Empire. The relatives of Andrey’s mother (the Bogaevsky family) included some distinguished academics. Thus, his maternal grandfather was a professor at the Imperial St. Petersburg Institute of Technology, and his uncle was rector of the Imperial St. Petersburg Academy of Art.

There is no published information on Vistelius’ early childhood and how he and his family fared during the turbulent years of revolution and civil war. However, it is known that in 1935, after the assassination of Sergei Kirov, the communist leader of Leningrad (as St. Petersburg was renamed in 1924), Boris Vistelius with his wife and son Andrey (at that time a student aged 20) were exiled from Leningrad like many other intellectuals and noblemen. First the Vistelius family found themselves in a remote village in middle Russia, though later the family was allowed to settle in the city of Samara. Because of this forced deportation, A. B. Vistelius had to interrupt his education at the Leningrad State University (which he had entered in 1933).

His studies were resumed only by good luck. Stalin issued an edict with the slogan “sons are not responsible for their fathers’ deeds”, and Boris Vistelius sent a letter to Stalin which clearly received a positive reply. This allowed Andrey Vistelius to resume his studies in Leningrad and in 1939 he graduated brilliantly from the Department of Mineralogy which was headed at that time by Prof. S. M. Kurbatov, a pupil of Academician V. I. Vernadsky, the great mineralogist and geochemist who is considered one of the founders of geochemistry, biogeochemistry, and radiogeology.

A. B. Vistelius was a vivid and gifted personality. He had a very extensive knowledge of history and literature (both Russian and foreign), appreciated poetry
and read English authors in the original. But geology and mathematics were his overwhelming passions. The research topics he investigated were always of great practical importance and at the same time lent themselves to the innovative and elegantly developed solutions which became a hallmark of Vistelius’ work.

He was very sensitive to any dishonesty in science—and especially to political lies. He was known as a sharp-tongued man among his colleagues. Especially under Stalin’s rule, officials did not like such people, and it was very hard for Andrey Vistelius to further his career. His scientific honesty, frankness and his manner of open and explicit expression of his viewpoint prevented his elevation to Academician of the Academy of Sciences, the highest scientific institution of the USSR. For the political appointees who, as a rule, were heads of all scientific establishments, he was an irritant, indeed an extreme nonconformist.

Thus, he never denied his aristocratic heritage, at a time when most descendants of noblemen in Russia were trying to obscure their origins, some even changing their surnames during the period of communist rule. In curricula vitae for job applications he repeatedly wrote that he was a nobleman by birth. Of course, copies of all these documents were compulsorily held by the KGB (Committee for State Security of the USSR), and his noble descent was an embarrassment for the scientific authorities, his employers.

During World War II, A. B. Vistelius was trapped in besieged Leningrad. He underwent all the sufferings of Leningradians. He was not enlisted into the army because of poor eyesight. However, despite the war, his studies continued, with award of his ‘Candidacy’ (roughly equivalent to a western Ph.D.) in 1941, and subsequently his Doctor of Science degree in 1948. After working as a senior scientist in several state organisations, and serving as a director of several geological ‘expeditions’ (the organisations in the USSR, and later the Russian Federation, responsible for regional geological mapping), he became the director of the newly created Laboratory of Mathematical Geology at the Steklov Mathematical Institute of the USSR Academy of Sciences in Leningrad.

In 1968, Vistelius was instrumental, with others, in founding the International Association for Mathematical Geology, and was elected its first president.

Although his circumstances meant that he was unable to participate in many of IAMG’s activities, he continued work as a prolific researcher in Leningrad (subsequently St. Petersburg) with extensive publications in both English and Russian. Whitten (pers.comm.), during a visit to Leningrad in 1971, invited him to Northwestern University (Illinois) which Andrey Vistelius was finally able to accept for the Spring Quarter 1975, and his publication list reflects the results of research projects which he was able to undertake in the US during his time there.

He continued to work in St. Petersburg during the 1970s and 1980s, with a steady stream of research publications, in Russian and in English.

Professor Andrey Borisovich Vistelius died on 12 September, 1995. He continued to work until his last days, with lucidity and inventiveness of thought even in spite of serious illness. In 1992, not long before his death, Kluwer Academic Publishers printed an English translation of his life’s work “Principles of
Mathematical Geology” (Vistelius 1992). This is a considerably reworked and enlarged English edition of his Russian monograph with the same title (Vistelius 1980).

39.2 Scientific Achievements and Insights

The scientific heritage of Prof. A. B. Vistelius is extremely rich. His active work on both fundamental and applied geology, and especially mathematical geology, continued to his last days. He was responsible for more than 200 published works, each of them presenting a very significant contribution to science. References to many of these are supplied below.

Reflecting the breadth of his knowledge and fields of interest, his works cover a wide range of subjects, dealing with research in the fields of stratigraphy, mineralogy, petrography, petrology and geochemistry. The application of mathematical methods, pioneered by Prof. Vistelius, has gained recognition worldwide. As applied in practice, these works represent a building block to more effective methods of search for minerals.

From his earliest post-graduate studies, Vistelius carved out a career which defined a whole new branch of science—mathematical geology.

The ideas of this newly created field of science were first vigorously supported by Academician Vernadsky and then by Academician Kolmogorov. The high value and prospects of Prof. Vistelius’s ideas were emphasized in a review of his works, published by Nature, the international science journal, in 1947. Nevertheless, the ideological regime that reigned in the USSR forced mathematical geology to follow a most difficult path. At that time the Ideological Department of the Central Committee of the Communist Party of the USSR was concerned with purging various branches of science in any way connected with cybernetics, genetics and other newly developed fields which they proclaimed as contradicting Marxist-Leninist ideas. It is sufficient to remember the ill-starred session of the Academy of Agriculture of the USSR in 1948, with Academician Lysenko in the chair, whose actions contributed to the tragic death of Academician Vavilov, a botanist and geneticist of international fame.

For minds narrowed by ideology, mathematical geology was nothing but another suspicious field close to cybernetics. Prof. Vistelius and his group could not avoid this political minefield. Scientific life in the country was totally governed by communist administrators who, on the one hand, did not understand the ideas of Vistelius and sought to deny him the opportunity to work, and on the other hand wished to please higher party authorities. Prof. Vistelius with his unusual mathematical ideas appeared an ideal target. But the ideological attacks on him, fortunately, were not strong enough, and he was defending himself fiercely. This is why the ideological persecution did not bring tragic results. Nevertheless, the damage to his scientific career was considerable. He had to leave the All-Union Oil Geology
Research Institute (VNIGRI, Leningrad) where he had been developing the concept of phase differentiation of Paleozoic sedimentary carbonate rocks based on the theory of random functions (nevertheless, brilliantly defended by him in the same year, 1948, as his dissertation for the degree of Doctor of Science).

It is noteworthy that the academic summary “Introduction into the theory of random stationary processes” (the basis for studying phase differentiation of sedimentary carbonate rock), well-known today to mathematicians and specialists in applied science, was first presented only in 1952 by mathematician A. M. Yaglom. This shows that geological phenomena can become a principal material for creation and development of formal mathematical schemes also, as was repeatedly stated by Vistelius. At that period he closely collaborated with the distinguished mathematician, Academician A. N. Kolmogorov, and worked with him on a very important problem of sedimentology relating to the formation of sedimentary strata. As a result, Kolmogorov wrote a paper “Solution of one problem of the theory of probability, related to the problem of mechanism of bed formation” published in “Doklady AN SSSR” (Kolmogorov 1949). The methods of solving this problem were further discussed by M. F. Dacey in his paper “Models of bed formation” (Dacey 1979). There are other examples of such development of formal mathematical structures, for instance, mathematical investigations developing the formalisms of finite Markov chains and processes along with their geological applications, by mathematicians B. P. Harlamov and A. V. Faas in close collaboration with Vistelius.

In 1952 Prof. A. B. Vistelius was invited to join the Laboratory of Airborne Methods of the Academy of Sciences of the USSR (AS USSR). There, with the support of N. G. Kell, the director of the laboratory and a Corresponding Member of the Academy, he organized a group to carry out investigations not just in the field of airborne methods, but mainly in the field of mathematical geology. At this time (before 1960) his group researched several approaches to the problem of comparison of geological sections and reconstruction of the processes of bed formation using the theory of random processes. A. B. Vistelius was actively involved in development of methods of statistical evaluation and examination of hypotheses able to provide the necessary validity for comparison of a model with geological observations.

Despite the obvious importance of the results of Vistelius’ work, and the support given by Academicians Kolmogorov, Korzhinsky, Belyankin, Linnik and later Artsimovich, the academic Department for Geology and Geography was too closely connected with the Ideological Department of the Central Committee of the Communist Party and impeded the development of mathematical geology whenever possible. In response, in 1961 the mathematical academicians transferred the group headed by Prof. Vistelius to the Leningrad Branch of the Steklov Institute of Mathematics (LOMI) of the USSR Academy of Sciences. The branch was headed by Prof. Petroshen, a well-known mathematician who specialized in seismic fields, and who encouraged the work of Vistelius’ group. There it was set up formally as the Laboratory of Mathematical Geology. It is noteworthy that such a decision was
an indication of the fact that the structure of the Academy of Sciences was like “a state within a state”. Sometimes it was able to take actions which ran counter to the wishes of the Central Committee of the Communist Party.

The Academy of Sciences was precisely the right environment for initiating thorough field investigation, allowing disinterested scientific research, to develop the fundamental principles of mathematical geology. A. B. Vistelius, with broad experience in different fields of geology, developed ideas for the introduction of mathematics into geology systematically and with clarity of purpose.

By the end of the 1970s he demonstrated the advantages of using the methods of mathematical geology that he had developed to a range of questions in mineralogy, petrography, lithology, petrology and more general problems of regional geology in the fields of paleogeography, lithostratigraphy, and geochemistry. The results of his studies showed that mathematical methods were not to be confined to summarisation of geological information, or to identification of geological events and phenomena on the basis of numerical calculations, but could provide a means of expressing geological concepts in mathematical language. The line of inquiry that was defended by A. B. Vistelius and determined by that time as “mathematical geology” leads geology to a higher level, demanding more concrete and accurate notions about objects or processes under consideration than is possible without the application of mathematics.

His group’s scientific work in LOMI, an outstanding internationally recognised mathematical research centre, however, entailed some specific problems. The mere principles of solving tasks of mathematical geology did not raise any objection in the institute, but the choice of propositions for each geological mathematical model remained hard to understand for mathematicians, including the hierarchy of the institute. The institute’s administration consisted of theoretical mathematicians who needed only a sheet of paper and a pen for their work. It was hard to persuade them that geology needs field work and an experimental basis to obtain the data necessary to construct and verify models.

This is why Prof. Vistelius had to look for another more suitable host organisation for the Laboratory of Mathematical Geology. This difficulty, as well as the importance of mathematical geology, were met with understanding by A. P. Aleksandrov, the President of USSR Academy of Sciences, in 1986, and in the following year he moved the Laboratory of Mathematical Geology from the Department of Mathematics to the Department of Geology, Geochemistry, Geophysics and Mining of the Academy by attaching it to the Institute of Precambrian Geology and Geochronology (IGGD, AS USSR).

Then, however, it became immediately apparent that a traditional geologist and a mathematical geologist spoke different languages and the majority of geologists did not understand the mathematical approach to modelling geological phenomena despite the fact that mathematical geology had existed for more than forty years.

It seemed that transformation of the Laboratory of Mathematical Geology into an institute was overdue. The necessity of such a decision was repeatedly stressed by a number of senior scientists such as Academicians Sokolov and Laverov (who was
an acting Vice-President of the Russian Academy of Sciences). But this idea was achieved only in 1991 when the Russian Academy of Natural Sciences (RANS) was founded. Prof. Andrey Vistelius was named an Honorary Member of this Academy at the first elections and charged with organization of an Institute of Mathematical Geology.

Vistelius’ Laboratory of Mathematical Geology together with the Laboratory of Petrophysics and Mathematical Geology of the Earth’s Crust Institute of St. Petersburg State University, constituted the basis of the institute. However, RANS is not a government institution and it had no support from the federal budget. For this reason RANS could not supply the Institute of Mathematical Geology with appropriate financing. The Ministry of Science and Technology of the Russian Federation agreed to subsidize the institute after difficult negotiations. The institute, for its part, took on large obligations in solving some practical geological problems by means of mathematical geology.

Dech and Glebovitsky (2000) give a detailed account of the many fields in which the work of Vistelius advanced geological knowledge through his deep understanding of underlying geological processes and innovative application of mathematical methods.

To understand fully Vistelius’ immense contribution to the geosciences, it is necessary first to identify the different and complementary approaches to the subject. The two principal approaches can be summarised thus:

1. development of genetic geological models and quantitative hypothesis testing of them: this is very close to standard scientific method, but because of the complexity of the subject, may not always be practicable
2. the use of data to develop a numerical model which will often (indeed, usually) have no genetic significance: this is the statistical or data processing approach, where the emphasis is on finding patterns or structure in the data rather than understanding the underlying geological processes

Andrey Borisovich Vistelius, with a firm grounding in scientific method, was a strong advocate for genetic models and hypothesis testing. Not only was this theoretically more fulfilling, but also it did not generally require the massive computer power that was not available to him in the Soviet Union.

Vistelius’ beliefs as expressed in 1968, were confirmed recently in a brief historical review (Dech and Henley 2003, p 368) of his ‘scientific heritage’, where it was noted that he

... supposed, and for good reason, that if a science does not use mathematical modelling in constructing its conclusions, “then it can be considered as belonging to the pre-Newtonian period, in other words such a science lags behind the present-day level of research by approximately 300 years” (Vistelius 1991). He understands that the new scientific paradigm of conceptual modelling of geological processes and objects will not be adopted by conservative geologists, the majority of whom continue to use old methods. And he writes that such a situation must be essentially changed, as to enter the twenty-first century with such a considerable time-delay is simply dangerous, not least for economic development.
39.3 The International Association for Mathematical Geology

Vistelius’ participation in the IGC in Prague in 1968 was fortuitous from several standpoints. Prior to the Congress, Reyment had been the first Visiting Research Scientist at the Kansas Geological Survey (1966–67) where the idea of an International Association for Mathematical Geology (IAMG) was conceived. The first hint of mathematical geology as a subject in its own right had actually come to Reyment’s attention in the late 1940s from some of Vistelius’ work. Reyment then visited Vistelius in Leningrad in the early 1960s while in the USSR as a research associate at Moscow University on exchange from the University of Stockholm. From his contact with Vistelius and his experience in Kansas, Reyment had the idea of sending a questionnaire to possible interested participants in such an organisation; he received an overwhelming positive response, and an especially enthusiastic one from Vistelius. Later, at an ISI (International Statistical Institute) meeting in Australia, Reyment conferred with a group of international scientists, including Chester Bliss, founder of the journal Geometrics, and the IAMG concept was nurtured (Reyment pers. comm., 1993). On April 9th, 1968, Reyment asked for approval of a proposed set of statutes in a letter “To all Committee members”: “(1) I am in agreement with the draft statutes of Professor Whitten, amended by Prof. Vistelius and Dr. Marsal and including suggestions from Dr. Agterberg, Mr. Schlegel, and Professor van Leckwijk, ...”. The founding IAMG committee adopted these statutes, and the IAMG then applied for affiliation with the International Union of Geological Sciences (IUGS) and the International Statistical Institute (ISI). The proposal for affiliation with the IUGS was supported by S. Van der Heide, Secretary General of IUGS, and accepted at the Prague meeting as a result of prodding and cajoling by Reyment, and thus the IAMG was officially born.

Vistelius had served on an ad hoc exploratory committee and then was member of the Organizing Committee and attended, along with 19 other members, the first meeting of the committee in Prague. Eight of the attendees were from the Eastern Bloc; their attendance in Prague was allowed as being relatively ‘safe.’ It was the understanding of the other attendees that the ‘Warsaw Pact’ attendees were there on military visas (for reasons which were obvious later). The events during the Congress substantiated that understanding. Vistelius’ participation in the IGC gave him visibility to Western scientists and those contacts (with Frits Agterberg, John Harbaugh, Tim Whitten, and Dan Merriam) were invaluable to him later.

Reyment had prepared a slate of officers to be ratified by the representatives, and it was no surprise he nominated Vistelius for president. Reyment was aware of and impressed by Vistelius’ work (through his Russian publications and personal contact). He was an obvious choice for the position with Reyment’s backing, and
because Bill Krumbein, another possible choice for the office, was not interested, Vistelius was in but, Krumbein was elected the first past president! Reyment was elected Secretary General.

There was considerable discussion about the designation and focus for the new organisation. Proposed for the name of the Association’s newly created journal were such adjectives as geometrics, geomathematics, mathematical geology, numerical, quantitative, etc. Vistelius championed ‘mathematical geology’ and, for a variety of reasons, that name was agreed on. The new Journal of Mathematical Geology was contracted to be published by Plenum Press. In 1969 in the first issue of the fledgling journal, Vistelius, as President of IAMG, wrote a Preface on the ‘mathematization of geology’ and contributed a short note.

At the inaugural meeting of IAMG, Andrey Vistelius championed the concept that Mathematical Geology is a separate branch of science (like Mathematical Physics) based on testing geological hypotheses mathematically, and that this science should be accepted as the primary focus of IAMG. He suggested it is not particularly important or interesting merely to manipulate geological data statistically. These had been his contentions for many years, though few of those present in 1968 appreciated the fact—and their primary objective was solely to initiate IAMG. It was not until several years later that their full significance and the historical importance of his earlier publications became clear to those outside the Soviet Union. Although it can be argued that Vistelius was largely correct, process modelling combined with objective hypothesis testing has received little attention among IAMG members over the ensuing years (Whitten 2003).

Because of the restrictions on travel and communication placed on Vistelius, most of the IAMG work load fell on Reyment as Secretary General and Merriam as editor of the new journal. Vistelius’ direct contribution to the IAMG was minimal through no fault of his own, and later he served a 4-year stint on the Council helping prepare the IAMG sessions at the IGC in Moscow. Reyment succeeded Vistelius as president and by that time in 1972 the organisation was firmly established.

Vistelius attended few ‘official’ IAMG meetings. Because of his circumstances, it was difficult for him to make much direct contribution, except in name, to the activities of IAMG. Vistelius’ unique and important scientific contributions, however, were recognized by the IAMG by awarding him the Krumbein Medal (the IAMG’s highest honour) in 1980 (unfortunately he was unable to attend the IGC in Paris and collect his medal personally) and naming one of their awards in his honour. After IAMG created the Krumbein Medal in 1976, Merriam proposed another annual award for an outstanding young scientist, to be named in honour of Vistelius. The proposal was rejected by the Russian authorities on the grounds that such an honour could not be conferred upon a living person. Thus, the award was designated the President’s Award in 1980 and subsequently changed to the Vistelius Award, as originally intended, after his death in 1995.
39.4 The “Father of Mathematical Geology”?

Andrey Vistelius has often been referred to as the “father of mathematical geology”. He was indeed the first president of IAMG, but there are many other pioneers in the field who could also be acknowledged by the title of “father” (including among others Krumbein, Griffiths, Matheron, Chayes, Krige, and Schwarzacher). Merriam (2001) names W. C. Krumbein as the “father of computer geology”, but of course this is not quite the same thing. Vistelius, himself, as noted above, was ambivalent towards the use of computers.

The history of development of mathematical geology [in the broad sense] is essentially two stories (East and West) with little connection or interaction until near the end of the 20th Century. The two schools developed independently and partly in parallel in response to changes in the science. The quantification of geology began in earnest from modest beginnings of a few quantitatively oriented researchers, such as Vistelius, Krumbein, and Griffiths among others.

Vistelius’ death in 1995 (Krumbein had died in 1979 and Griffiths in 1992), ended an extraordinary era in the growth of quantitative (mathematical) geology. Along with the rapid development of quantitative techniques and their adaptation to computers, these advances spread throughout the science and allowed rapid strides and changes to be made in the earth sciences.

Never before in the past, and probably never again in the future, will such rapid progress be made in such a short time, fostered by such a small group of dedicated, forwarding-thinking geo-giants.

39.5 Legacy

It is traditional to discuss the legacy of outgoing political leaders, to assess their place in history and to estimate the quality and quantity of their achievements in the light of effects on subsequent developments. Similar discussions take place over the legacy of our foremost scientists, among whose number Andrey Vistelius must surely be counted.

His rigorous scientific training led him to develop his ideas of applying mathematical methods in modelling geological processes, to allow statistical testing of hypotheses against real data. This contrasted starkly with the approach of many western geoscientists, of using data processing capabilities of computers to fit the data using standardised methods. The latter approach allowed the identification of patterns in data, but rarely provided scientific insight into the underlying geological processes. In the English-language literature, perhaps the outstanding example of Vistelius’ approach is the book Computer Simulation in Geology by Harbaugh and Bonham-Carter (1970) which identifies a wide range of geological process models which can be defined mathematically and implemented in computer code.
The process modelling approach pioneered by Vistelius is now making serious contributions to the geosciences. For example, in the work of Alison Ord, Bruce Hobbs, and colleagues in Australia and elsewhere, mathematical models from a number of hitherto separate fields have been combined into complex models with their recognition that the interactions of rock deformation, fluid flow, thermal transport, and chemical reaction are integral to geology. Prediction requires quantification of the processes and their interactions. What is observed is demonstrably multifractal so that we must explore and apply all that nonlinear dynamics has to offer (Ord and Henley 1997; Ord et al. 2002, 2007, 2012, 2016; Hobbs et al. 2010; Hobbs and Ord 2015, 2016).

The other approach is best typified by the field that is generally known as “geostatistics”. Originating in the work of Matheron and many others, this uses purely mathematical concepts to fit models to the data. These models bear little or no relation to underlying geological processes, and the results are purely descriptive. In attempts to improve the quality of fit to the observed data sets, over the past 40 years progressively more complex mathematics has been developed, using assumptions about the statistical properties of data sets which have steadily less justification in the underlying geological processes. The history of development of geostatistics is reminiscent of the iterative refinement of the Ptolemaic astronomical model when circular planetary orbits were found to be incompatible with observations, and epicycles were added in an attempt to improve the fit. The problem, of course, was that the model was itself a mathematical fiction bearing no relation to the laws underlying planetary motions. Similarly, geostatistics is purely descriptive and bears no relationship to actual geological processes.

While geostatistics itself continues to be widely used, the more scientific approach espoused by Vistelius remains very much alive. Even though many of its practitioners are unaware of the debt of gratitude they owe to this pioneer, their work nonetheless is tribute enough.

A special issue of the Journal of Mathematical Geology (volume 35, number 4) dedicated to the memory of Vistelius was published in 2003 and contains papers by many of his former colleagues, as well as one previously unpublished paper by Vistelius himself (Dech et al. 2003; Vistelius and Pavlov 2003; Azimov and Shtukenberg 2003; Harlamov 2003; Voytekhovsky and Fishman 2003; Podkovyrov et al. 2003; Kotov 2003). The breadth of geoscientific subject matter and mathematical approaches shown by this collection of papers is ample illustration of the scientific legacy of Andrey Borisovich Vistelius.

References

Azimov P, Shtukenberg A (2003) Numerical modeling of growth zoning at nonstationary crystallization of solid solutions: metamorphic garnets. Math Geol 35:405–430
Dacey MF (1979) Models of bed formation. Math Geol 11(6):655–668
Dech VN, Glebovitsky VA (2000) Establishment of mathematical geology in Russia: some brush strokes in the portrait of the founder of mathematical geology, Prof. A. B. Vistelius. Math Geol 32(8):897–918
Dech VN, Henley S (2003) On the scientific heritage of Prof. A. B. Vistelius. Math Geol 35(4):363–379
Dech VN, Kiselev BV, Pisakin BN, Roshchinenko OM (2003) Math Geol 35:381–398
Dvali MF, Korzhinskii DS, Linnik YV, Romanova MA, Sarmanov OV (1970) The Life and work of Andrey Borisovich. Math geol 1–5. Chapter 1, Springer, New York
Harbaugh JW, Bonham-Carter G (1970) Computer simulation in geology. Wiley, p 575
Harlamov BP (2003) Formation of concentric rings around sources. Math Geol 35:431–450
Henley S (2003) Special issue: in honour of professor A. B. Vistelius: introduction. Math Geol 35(4):361–362
Hobbs BE, Ord A, Spalla I, Gosso G, Zucali M (2010) The interaction of deformation and metamorphic reactions. In: Spalla MI, Marotta AM, Gosso G (eds) Advances in Interpretation of geological processes. Geological Society, London, Special Publications, vol 332, pp 189–222
Hobbs BE, Ord A (2015) Structural geology: the mechanics of deforming metamorphic rocks. Elsevier Inc., Netherlands, pp 665
Hobbs BE, Ord A (2016) Does non-hydrostatic stress influence the equilibrium of metamorphic reactions? Earth Sci Rev 103:190–233
Kolmogorov AN (1949) The decision of one task from the theory of probabilities connected to a question on the mechanism a layer of formation. Doklady USSR (Reports of Academy of Sciences of the USSR) 65(6):793–796
Kotov SR (2003) Dynamics of global climatic changes and possibility of their prediction using chemical data from Greenland ice. Math Geol 35:477–492
Merriam DF (2001) Andrey Borisovich Vistelius: a dominant figure in 20th Century mathematical geology. Nat Resour Res 10(4):297–304
Ord A, Henley S (1997) Fluid pumping: some exploratory numerical models. Phys Chem Earth 22:49–56
Ord A, Hobbs BE, Zhang Y, Broadbent GC, Brown M, Willetts G, Sorjonesen-Ward P, Walshe JL, Zhao C (2002) Geodynamic modelling of the Century deposit, Mt Isa Province, Queensland. Aust J Earth Sci 49:1011–1039
Ord A, Hobbs BE, Regenauer-Lieb K (2007) Shear band emergence in granular materials—a numerical study. Int J Numer Anal Meth Geomech 31:373–393. https://doi.org/10.1002/nag.590
Ord A, Hobbs BE, Lester DR (2012) The mechanics of hydrothermal systems: I. Ore systems as chemical reactors. Ore Geol Rev 49:1–44
Ord A, Munro M, Hobbs B (2016) Hydrothermal mineralising systems as chemical reactors: wavelet analysis, multifractals and correlations. Ore Geol Rev 79. http://dx.doi.org/10.1016/j.oregeorev.2016.03.026
Podkovyrov VN, Graunov OV, Cullers RL (2003) A linear programming approach to determine the normative composition of sedimentary rocks. Math Geol 35:459–476
Romanova MA, Sarmanov OV (1970) The published works of A. B. Vistelius. Math Geol 6–12, chapter 2. Springer, New York
Vistelius AB (1980) Principles of mathematical geology. Nauka, Leningrad, p 389
Vistelius AB (1991) Whether is the geological science of modern?. Reports of Academy of Sciences of the USSR, no 12, pp 82–90
Vistelius AB (1992) Principles of mathematical geology. Kluwer Academic Publishers, Dordrecht–Boston–London, p 477
Vistelius AB, Pavlov VM (2003a) On rhythmical layering of rocks formed from basaltic magma. Math Geol 35:399–404
Voytekhovsky YL, Fishman MA (2003) Rock kriging with the microscope. Math Geol 35:451–458
Whitten EHT (2003) Mathematical geology in perspective: has objective hypothesis testing become overlooked? Math Geol 35:1–8
Whitten EHT (2004) A. B. Vistelius—first IAMG president and visionary mathematical geologist. Earth Sci History 23(2):384–389

Publications of A. B. Vistelius

This note contains details of many of his published works (where he is sole or first named author), including many in the well known journal Doklady Akademii Nauk USSR (Papers of the Academy of Sciences of the USSR). After break-up of the USSR the journal is called Doklady Rossiiskoy Akademii Nauk (Papers of the Russian Academy of Sciences). These are supplemented by papers in many other journals, and monographs by A. B. Vistelius, some published in Russian, others in English.

Vistelius AB (1939) The Antarctic Continent. Vestn Znanija 9:34–37
Vistelius AB (1939) Tourmaline in carbonate veins in the vicinity of Chupa Bay (Northern Karelia). Uch Zap Leningr Gos Univ (34):60–70
Vistelius AB (1939) Wulfenite in the Kyzyl-Kan mine (Northern Tadzhikistan. Uch Zap Leningr Gos Univ (49):56–62
Vistelius AB (1940) Geological history of Antarctica. Vestn Znanija 2:36–38
Vistelius AB (1940) Mineralogy of the Andreevskii Mine (Khakassia), Uch Zap Leningr Gos Univ (44):148–157
Vistelius AB (1941) A composite dike from the area of the Gulshad lead-zinc deposit (Balkhash region). Doklady Akad Nauk USSR 31(6):559–601
Vistelius AB (1942) Mineral assemblages from the region of the Gulshad lead-zinc deposit (Balkhash region). Summary of dissertation for a scientific degree of Candidates of the geological and mineralogical sciences. Leningrad State University
Vistelius AB (1943) Notes on garnets from the vicinity of Lake Balkhash. Zap Vseross Mineral Obshch 72(3–4):167–173
Vistelius AB (1944) Notes on analytical geology. Doklady Akad Nauk USSR 44(1):27–31
Vistelius AB (1944) Physical properties of oil-bearing strata in the Permian system, author’s abstract in scientific papers of petroleum specialists, Geol (1):81–82
Vistelius AB (1945a) Frequency distribution of the porosity coefficients and energy processes in Spirifer beds of the Buguruslan oil-bearing region. Doklady Akad Nauk USSR 49(1):44–47
Vistelius AB (1945b) On expression of results of fossilization of oscillation of the Earth’s crust by means of the series \(\sum_{i=0}^{k} e^{a_i x + b_i} \cos (a_i x + y_i) \). Doklady Akad Nauk USSR 49(7):531–535
Vistelius AB (1946) Porosity cycles and the phenomenon of phase differentiation of sedimentary strata. Doklady Akad Nauk USSR 54(6):519–521
Vistelius AB (1947a) On correlation of mesorhythms in the early Permian deposits of trans-Kama Tatariya and their stratigraphic significance. Doklady Akad Nauk USSR 55(3):241–244
Vistelius AB (1947b) Application of the correlation coefficient in the investigation of mineral paragenesis in clastic deposits. Doklady Akad Nauk USSR 55(4):343–345
Vistelius AB (1947c) Correlation of apatite and nepheline in the Kukisvumchorr-Jukspor sphene deposit (Khibiny tundra). Doklady Akad Nauk USSR 56(2):185–188
Vistelius AB (1947d) New confirmation of Goldschmidt’s observations on the place of germanium in hard coals. Doklady Akad Nauk USSR 58(7):1455–1457
Vistelius AB, Sarmanov OV (1947) The stochastic basis of a geologically important probability distribution. Doklady Akad Nauk USSR 58(4):631–634
Vistelius AB (1948a) Geology of the Lower Kazanian deposits of the Buguruslan region. Sov Geol Sb (28):48–63
Vistelius AB (1948b) Some analytical methods of investigating rhythmicity. Sov Geol Sb (28):174–182
Vistelius AB (1948c) The measure of correlation between paragenetic members and methods for studying it. Zap Vses Mineralog Obyesvetva 77(2):147–158
Vistelius AB (1948d) The simplest types of problems in mathematical treatment of lithological observations. Litolog Sb Vses Nauchno-Issled Geologorazved Inst 1:125–131
Vistelius AB (1948e) The distribution of magnesite in Palaeozoic rocks on the eastern part of the Russian platform. Litolog Sb Vses Nauchno-Issled Geologorazved Inst 2:42–49
Vistelius AB (1948f) On the roundness of quartz sand grains on the Belinsky bank (Volga delta). Doklady Akad Nauk USSR 63(1):69–72
Vistelius AB (1949a) The mechanism of formation of sedimentary beds. Doklady Akad Nauk USSR 65(4):535–538
Vistelius AB (1949c) Calcium sulphates in Palaeozoic rocks of the eastern part of the Russian platform. Geokhim Sb Vses Nauchno-Issled Geologorazved Inst 1:42–158
Vistelius AB (1950a) Palaeogeographic significance of correlation between bed thicknesses (according to data on the productive sequence of the Apsheron peninsula). Sb Vses Nauchno-Issled Geologorazved Inst 3:61–73
Vistelius AB (1950b) Porosity and chemical composition of the carbonate strata of the eastern part of the Russian platform. Trans Lab Gidrogeol Probleim V. P. Savarenskogo 2:194–202
Vistelius AB (1950c) Distribution of enantiomorphic types of quartz. Zap Vsesoyuzn Mineral Obschh 79(3):191–195
Vistelius AB (1950d) On mineral composition of the heavy part of sands of the lower part of the productive sequence of the Apsheron peninsula, the Chokrak strata of southern Dagestan, and alluvium of the Volga. Doklady Akad Nauk USSR 71(2):367–370
Vistelius AB (1950e) Correlation between copper content in borax waters of Azerbaijan and the degree of mineralisation. Doklady Akad Nauk AzerbSSR 6(1):34–36
Vistelius AB, Miklukho-Maklay AD (1950) Lower Permian pebbles and cobbles from the productive sequence of the Apsheron peninsula. Doklady Akad Nauk USSR 72(2):369–372
Vistelius AB (1951a) Porosity rhythms in Kazanian deposits of southern Tataria. Trans Leningr Estestvoispyt 68(2):150–167
Vistelius AB (1951b) Correlation once again (a reply to S. V. Konstantov). Zap Vsesoyuzn Mineral Obschh 80(1):79–80
Vistelius AB (1951c) The required number of grains for computation in immersions. Zap Vsesoyuzn Mineral Obschh 80(3):188–190
Vistelius AB (1951d) Probability of the effect of an aeolian field in the diagram of L. V. Rukhin on the field of residual types of sand. Izv Akad Nauk USSR Geol (1):155–156
Vistelius AB (1951e) The status of interpreting lithological observations, and methods of improvement. Izv Aakad Nauk USSR Ser Geol (3):90–104
Vistelius AB (1951f) On the origin of disthene in the middle Miocene of Dagestan. Doklady Akad Nauk USSR 79(1):133–136
Vistelius AB, Miklukho-Maklay AD (1951) Palaeozoic pebbles from the productive sequence of the Apsheron peninsula. Doklady Akad Nauk USSR 79(3):499–502
Vistelius AB (1952a) The Kirmaninskaya series of eastern Azerbaijan, 1. Principal lithologic features. Doklady Akad Nauk AzerbSSR 8(1):17–23
Vistelius AB (1952b) Probability distributions (in reply to V. S. Dmitrievskii). Izv Akad Nauk USSR Ser Geol (1):155–156
Vistelius AB (1952c) The mineralogy of the Miocene sandy-argillaceous sediments from southern Azerbaijan. Doklady Akad Nauk USSR 85(5):1155–1158
Vistelius AB, Zulfugarly DD (1952) Natural paragenetic associations of some components of oil in Azerbaijan. Izv Akad Nauk AzerBSSR (2):17–31
Vistelius AB, Sarsadskii NN (1952) Nature of changes in mineral content of concentrates during successive washing of sands. Zap Vsesoyuzn Mineral Obshch 80(2):143–150
Vistelius AB (1953) Rock salt. Bolshaya Sov Entsik, 2nd edn, vol 19, p 490
Vistelius AB (1953) Treatment of microstructural diagrams. Zap Vsesoyuzn Mineral Obshch 82(4):271–280
Vistelius AB, Miklukho-Maklay AD, Ryabinin VN (1953) Devonian limestones from the red bed sequence of Tuarkyr. Doklady Akad Nauk USSR 90(2):231–234
Vistelius AB, Korobkov IA (1953) A new discovery of the Konka horizon on the Krasnovodsk plateau. Doklady Akad Nauk USSR 90(3):445–448
Vistelius AB (1954a) Sands of the middle and lower Volga, in a collection of papers of the Laboratory of Aerial Methods (Akad Nauk USSR) in memory of N. G. Kellyu
Vistelius AB (1954b) Mineralogical associations and characteristic paragenetic relations of the Aptian-Cenomanian clastic strata of the trans-Caspian region. Doklady Akad Nauk USSR 97(3):503–506
Vistelius AB, Yaroslavskaya NN (1954) General features of the colour characteristics of Cretaceous clastic sand-silt strata of the trans-Caspian region. Doklady Akad Nauk USSR 95(2):367–370
Vistelius AB, Sarmanov OV (1954) Remarks on a paper by P. A. Ryzhov: determining the accuracy of calculating reserves of mineral deposits, in investigations of problems of mine surveying, Sb no 29, pp 200–201
Vistelius AB (1955a) The Kirmakinskaya series of the East of Azerbaijan. II. Mineral associations. Doklady Akad Nauk USSR 103(1):117–120
Vistelius AB (1955b) Age of the lower part of the red bed sequence of the Cheleken Peninsula. Doklady Akad Nauk USSR 105(4):786–789
Vistelius AB (1956a) Subdividing the recent deposits of the eastern Caucasus and the northern Caspian region into districts according to mineral content. Doklady Akad Nauk USSR 111(5):1067–1071
Vistelius AB (1956b) Problems of studying correlation in mineralogy and petrography. Zap Vsesoyuzn Mineral Obshch 85(1):58–73
Vistelius AB, Miklukho-Maklay AD (1956) The middle division of the productive sequence of the Apsheron Peninsula and the problem of its origin. Izv Akad Nauk USSR Ser Geol (4):77–94
Vistelius AB (1957a) Subdivision of unfossiliferous strata by quantitative-mineralogical, petrographic, and chemical features. Zap Vsesoyuzn Mineral Obshch 86(1):99–115
Vistelius AB (1957b) The statistics of microstructural diagrams. Zap Vsesoyuzn Mineral Obshch 86(6):691–703
Vistelius AB (1957c) Regional lithostratigraphy and conditions under which the productive sequence of the south-eastern Caucasus formed. Trans Leningr Obshch Estestvoisp 69(2):126–150
Vistelius AB (1957d) The nature of pre-Permian volcanism in Western Turkmenia. Doklady Akad Nauk USSR 117(5):867–869
Vistelius AB (1958a) A scheme of alluvial deposit zonation of the Pamirs according to their mineralogical associations. 118(6):1158–1161
Vistelius AB (1958b) Structural diagrams. Izd AN USSR 157, Moscow, Leningrad
Vistelius AB (1958c) Spectral brightness of sand-silt rocks of Aptian, Albiam, and Cenomanian ages in the trans-Caspian region, in geology of the Trans-Caspian (1):31–67
Vistelius AB (1958d) Dictionary of petroleum geology. The terms: autocorrelation, probability, probable error, dispersion, disperson analysis, phase differentiation, mathematical expectation, Gostoptekhizdat, Moscow
Vistelius AB (1958e) Volume-frequency analysis of sediments from thin-section data: a discussion. J Geol 66(2):224–226
Vistelius AB (1958f) Paragenesis of sodium, potassium, and uranium in volcanic rocks of Lassen Volcanic National Park, California. Geochem Cosmochim Acta 14(1-2):29–34
Vistelius AB, Korobkov IA (1958) Some questions on the geology of western Turkmenia. Izv Akad Nauk TurkmSSR (6):115–119
Vistelius AB (1959a) Geology at the University of Chicago (translation of a report by E. K. Olsen), Vestn Lenigr Gos Univ Ser geol i Geogr 3(18):137–138
Vistelius AB (1959b) Address at session of technical council of the ministry of the petroleum industry and the academy of sciences of turkmenia at Ashkhabad, 1956. Objectives and potentials of prospecting and exploratory work on oil and gas in the western parts of Central Asia. Izd Akad Nauk 352–355, TurkmSSR, Ashkhabad
Vistelius AB (1959c) Origin of the red bed sequence of the Cheleken peninsula. Experience of using absolute age of clastic mineral for solving problems of lithology and paleogeography. Doklady Akad Nauk USSR 125(6):1307–1310
Vistelius AB, Sarmanov OV (1959) Correlation between percentage values. Doklady Akad Nauk USSR 126(1):22–25
Vistelius AB (1960a) The morphometry of clastic particles. Trans Lab Aerometodov Akad Nauk USSR 9:135–202
Vistelius AB (1960b) Peculiarities of germanium concentration in coal (in reference to the review of V. M. Ershov). Izv Akad Nauk USSR Ser Geol (8):100
Vistelius AB (1960c) The skew frequency distributions and the fundamental law of the geochemical processes. J Geol 68(1):1–22
Vistelius AB, Korobkov LA, Romanova MA (1960d) Age of the red-beds sequence on the north-western Krasnovodsk plateau. Izv Akad Nauk TurkmSSR Ser Fiz-Tekh, Khimik i Geol Nauk 3:108–111
Vistelius AB (1961a) Data on the lithostratigraphy of the productive sequence of Azerbaijan. Izd AN USSR 157, Leningrad
Vistelius AB (1961b) The middle Caspian land mass (reference to papers by Tamrazyan and Rikhter). Bull Mosk Ohschchestva Ispitatel’ey Prirody. Ser Geol 36(1):148–151
Vistelius AB (1961c) Sedimentation time trend functions and their application for correlation of sedimentary deposits. J Geol 69(6):703–728
Vistelius AB (1961d) Discussion of paper by F. Chayes On correlation between variables of constant sum. J Geophys Res 66(5):1601
Vistelius AB, Krylov AJ (1961) The absolute age of the clastic part of the sand-silt sediments of south-western Central Asia. Doklady Akad Nauk USSR 138(2):422–425
Vistelius AB, Sarmanov OV (1961) On the correlation between percentage values: major component correlation in ferro-magnesium micas. J Geol 69(2):145–153
Vistelius AB (1962a) Phosphorus in the granitoidal rocks of Tien Shan, Geokhimiya (2):116–135
Vistelius AB (1962b) Problems of mathematical geology. I On the history of the question. Geol i Geofiz Sibirsk Otd Akad Nauk USSR (12):3–9
Vistelius AB, Romanova MA (1962) Red beds deposits of the Cheleken peninsula (Lithostratigraphy and geological structure). Izd AN USSR, Leningrad, p 227p
Vistelius AB, Demina ME (1963a) Dispersion of clastic material in the Aptian-Cenomanian basin of south-eastern USSR. Doklady Akad Nauk USSR 150(6):1319–1322
Vistelius AB, Demina ME (1963b) Rounding of quartz grains, in Geochemistry, Petrography, and Mineralogy of Sedimentary Rocks. In honour of L. V. Pustuvalov, pp 233–253
Vistelius AB, Yanovskaya TB (1963) Programming problems of geology and geochemistry for use with all-purpose electronic computers. Geol Rudn Mestorozhd (3):34–48
Vistelius AB (1963a) Phase differentiation of Palaeozoic sediments of the middle Volga and trans-Volga regions. Izd Akad Nauk USSR 203, Moscow/Leningrad
Vistelius AB (1963b) Functions of probability distributions of accessory element concentrations in rocks and minerals. Teor Veroyatnostei i ee Primeneniya 8(2):232–233
Vistelius AB (1963a) Problems of mathematical geology. II. Models of processes and paragenetic analysis. Geol i Geofiz Sibirsk Otd Akad Nauk USSR (7):3–17
Vistelius AB (1963d) Problems of mathematical geology. III. The random process. Geol i Geofiz Sibirsk Otd Akad Nauk USSR (12):3–10
Vistelius AB (1963e) Foreword to the book of F. Chayes: quantitative mineral analysis of rocks in thin Section under the microscope (Russian translation), IL, Moscow (in English: Petrographic modal analysis, Wiley, New York, 1956)
Vistelius AB (1963f) Functions of probability distributions of phosphorus concentrations in granitoids of Switzerland, the Guianas, and Equatorial Africa. Doklady Akad Nauk USSR 152 (6):1449–1452
Vistelius AB (1964a) Principal types of mathematical solutions of problems in modern geology. Razvedka i Okhrana Nedr (6):18–25
Vistelius AB (1964b) Problems of geochemistry and information measures. Sov Geol (12):5–26
Vistelius AB (1964c) The problem of formation of sedimentary beds (author’s abstract of a report), Bull Mosk Obschiestva Ispitatyelei Prirody, Ser Geol, vol 39, no 3, p 148
Vistelius AB (1964d) Probability and statistical problems in geology. Trans. In: 4th mathematical conference. 1861, vol 2, Reports of sections, pp 329–335
Vistelius AB (1964e) Palaeogeographic reconstruction by absolute age determinations of sand particles. J Geol 72(4):483–486
Vistelius AB (1964f) Informational characteristics of frequency distribution in geochemistry. Nature 202(4938):1206
Vistelius AB (1964g) Stochastic model for the generation of the bedding of red-beds from the Cheleken peninsula (Caspian Sea). Bull Geol Soc Am. In: Program of Annual Meeting, p 213
Vistelius AB (1964h) A discussion on the statistical analysis of fabric diagrams. J Geol 4(1):224–228
Vistelius AB (1964i) Problems of geochemistry and information measures. Sov Geol (12):5–26
Vistelius AB, Romanova MA (1964) Distribution of the heavy fraction in sand deposits of Central Karakums. Doklady Akad Nauk USSR 158(4):860–863
Vistelius AB, Hurst VJ (1964) Phosphorus in granitic rocks of North America. Bull Geol Soc Am 75:1055–1092
Vistelius AB, Feygelson TS (1965) Theory of formation of sedimentary beds. Doklady Akad Nauk USSR 164(1):158–160
Vistelius AB, Faas AV (1965a) The nature of bed alternation in sections of some sedimentary sequences. Doklady Akad Nauk USSR 164(3):629–632
Vistelius AB, Faas AV (1965b) Variation of bed thicknesses in a section of the Palaeozoic flysch of the Southern Urals. Doklady Akad Nauk USSR 164(5):1115–1118
Vistelius AB (1966a) Probleme der mathematischen geologie, I Zur geschichte. Z Angew Geol 11 (5):265–268
Vistelius AB (1966b) Probleme der mathematischen geologie, II, Modelle von vorgängen und die analyse von paragenesenen. Z Angew Geol 11(6):306–313
Vistelius AB (1966c) Probleme der mathematischen geologie, III, Der zufallsprozess. Z Angew Geol 11(7):356–359
Vistelius AB (1966d) Principaux types des solutions mathematiques des problemes geologiques actuels, BRGM, Service d’inform. Geol Centre Sci et Techn, Orleans-La Source, no 4701
Vistelius AB (1966e) Problemes de geologie mathematique, BRGM, Service d’inform. Geol Centre Sci et Techn, Orleans-La Source, no 4703
Vistelius AB (1966f) Structural diagrams. Pergamon Press, Oxford, p 178
Vistelius AB (1966g) About formation of the Belaya granodiorites on the Kamchatka Peninsula (an experiment in stochastic modeling). Doklady Akad Nauk USSR 167(5):1115–1118
Vistelius AB (1966h) A stochastic model of alaskite crystallization, and corresponding transition probabilities. Doklady Akad Nauk USSR 170(3):653–655
Vistelius AB (1966i) The red beds deposits of the Cheleken peninsula. Lithology. Experiment in the stochastic modeling of processes of formation of sedimentary beds. Izd Nauka (Publ. House Science), 1966, Leningrad, p 304

Vistelius AB (1966j) Review of book by V. F. Morkovkina. Chemical analyses of volcanic rocks and rock-forming minerals, Geokhimiyaa, no 5, pp 617–620

Vistelius AB (1966k) Trend surfaces. J S Afr Inst Min Met. In: Symposium on mathematical statistics and its computer applications in ore valuation, Johannesburg, pp 66–72

Vistelius AB (1967a) Crystallization of alaskites from the Karakuldgur river (Central Tyan Shan). Doklady Akad Nauk USSR 172(1):165–168

Vistelius AB (1967b) On the stochastic matrix of quasi-eutectic granites (granites from the area of Dharvar city in Northern Croatia as the example). Doklady Akad Nauk USSR 175(6):1363–1367

Vistelius AB (1967c) About the modes of crystallization and secondary minerals in some granites of the area near Khankay region (Primorje). Doklady Akad Nauk USSR 177(6):1411–1414

Vistelius AB (1967d) Studies in mathematical geology. Consultants Bureau, New York, p 294p

Vistelius AB (1968) Mathematical geology: a report of progress. Geocom Bull 1(8):229–269

Vistelius AB (1968) Stochastic models of processes of sediment formation and their role in sedimentology. Physical and chemical processes and facies. Nauka, Moscow, pp 7–14

Vistelius AB (1969) On the Shap granites (Westmorland, England). Doklady Akad Nauk USSR 187(2):391–394

Vistelius AB, Romanova MA (1969) On the basic factors controlling the composition of present day sands of the Zaunguzsky Karakums. Doklady Akad Nauk USSR 188(1):173–176

Vistelius AB, Ruiz Fuller C (1969) On the origin of variations in the composition of granitic rocks of Chile and Bolivia. Math Geol 1(1):113–114

Vistelius AB (1969) Mathematical geology (the state and perspectives). Mathematical geology, a systematic reference index. Leningrad. Izd Bibl Akad Nauk USSR 41–56

Vistelius AB (1970) Certain factors controlling concentration of mercury in deposits of Severnaya Plavikoyaya mountain and Vostochnaya Vershina of Khaydarkan group. Intern Geol Rev (12):691–702

Vistelius AB, Faas AV (1971) About the probability properties of sequences of grains of quartz, potassic feldspar and plagioclase in magmatic granites. Doklady Akad Nauk USSR 198(4):925–928

Vistelius AB (1971) Some lessons of G-1-W-1 investigations. Math Geol 3(3):323–326

Vistelius AB, Faas AV (1972a) On the statistical identification of ideal granites. Doklady Akad Nauk USSR 203(3):670–673

Vistelius AB, Faas AV (1972b) About transformation of grain successions of quartz, potassic feldspar and plagioclase in ideal granites under the action of slight metasomatism. Doklady Akad Nauk USSR 203(6):1386–1389

Vistelius AB (1972) Ideal granite and its properties. I. Stochastic model. Math Geol 4(2):89–102

Vistelius AB, Le’chuk GC, Talmud GA, Faas AV (1972) Statistical identification of ideal granites and products of their transformation. Ideal granites, no 2, Leningrad, Nauka, p 3–47

Vistelius AB (1973) Phosphorus in granitic rocks of Colombia. Math Geol 5(2):127–148

Vistelius AB (1974) Proper function and role of the international association for mathematical geology in the revolution in geological sciences, IAMG Newsletter, no 3, p 1

Vistelius AB, Romanova MA (1976) On a degenerate case of a model of crystallization of ideal granites. Doklady Akad Nauk USSR 228(1):170–173

Vistelius AB, Demina ME, Harlamov BP (1976) Random fields in some problems of Paleogeography and geochemical prospecting. In: 25th international geological congress, Sydney, CABS, 414–820, p 912

Vistelius AB, Demina ME, Harlamov BP (1976) The fundamental problem of exploration geochemistry and paleogeography of terrigenous components as a problem on the structure of random fields, MGC (Congress). XXV Session Dokl Sov Geol, Moscow, Nedra, pp 37–47
Vistelius AB (1976) Mathematical geology and development of geological sciences. Math Geol 8:3–8
Vistelius AB (1976) Mathematical Geology and the Progress of Geological Sciences. J Geol 84 (6):629–653
Vistelius AB (1977) Mathematical geology: its basic trends and problems. Sov Geol (1):11–34
Vistelius AB, Ivanov DN, Romanova MA, Talmud GA (1978) On the chemical composition of the Cretaceous and Paleogene volcanic rocks of the abyssal structure of the northern part of the Europe-Asia continent frontal zone. Doklady Akad Nauk USSR 242(2):386–389
Vistelius AB (1978) Platinoids and gold in silicate, troilite and metallic phases of chondrites. Zap VMO (3):257–270
Vistelius AB, Harlamov BP (1979) On three-dimensional packing with linear Markov sections. Dokl Akad Nauk USSR 245(2):431–434
Vistelius AB (1980) Principles of mathematical geology. Akad Nauk USSR Izd 389. Nauka
Vistelius AB, Ivanov DN, Romanova MA (1980) The experience of the use of two-dimensional regressions and application of frequency presentations of densities, 1980. Nauka, Leningrad
Vistelius AB, Faas AV (1981) A model of released albite with intergranular silicification of potassic feldspar. Dokl Akad Nauk USSR 260(2):410–414
Vistelius AB (1981) Gravitational stratification. In: Craig RG, Labovitz ML (eds) Future trends in geomathematics. Pion Press, London, pp 141–178
Vistelius AB (1986) About interlayer washout: in Theory of probability and mathematical statistics. Academician RAN Yu. V. Prochorov (ed) Nauka, Moscow, p 534 (The most fundamental works of the Academician A. N. Kolmogorov and subsequent development of their ideas)
Vistelius AB, Ivanov DN, Romanova MA (1982a) About main types of the Mesozoic granitoids of the North-East of Asia. Dokl Akad Nauk USSR 265(5):1213–1216
Vistelius AB, Ivanov DN, Romanova MA (1982b) About trends of potassium content variations in Mesozoic granitoids in the North-East of Asia and adjacent territories. Dokl Akad Nauk USSR 266(6):1444–1448
Vistelius AB, Ivanov DN, Romanova MA (1983a) On the regional oxidation-reduction regime of crystallization of the Mesozoic granitoids from the northern areas of East Asia. Dokl Akad Nauk USSR 268(1):147–151
Vistelius AB, Ivanov DN, Romanova MA (1983b) Principal tectonic elements of the structure of North East Asia and chemical composition of the Mesozoic granites. Dokl Akad Nauk USSR 271(1):141–145
Vistelius AB, Agterberg FP, Divi SR, Hogarth DD (1983) A stochastic model for the crystallization and textural analysis of a fine grained granitic stock near Meach Lake, Gatineau Park, Quebec. In: Geological survey, Canada, paper 81–21, p 62
Vistelius AB (1983) Commingling in the formation of zonal intrusions (with example of the zonal massif located in the vicinity of Gulshad settlement, North-West Balkhash). Dokl Akad Nauk USSR 272(2):457–461
Vistelius AB (1984) A model of commingling and its criterion (on the data of the zonal intrusion near the village of Gul’shad (near Balkhash). Moscow, Nauka, 27 MGK, Doklady, vol 20, pp 18–28
Vistelius AB, Faas AV (1984) On the location of secondary grains of albite and quartz between the primary grains of magmatic granites. Dokl Akad Nauk USSR 279:1461–1464
Vistelius AB (1985) On the correlation between chemical composition of granites and position of their intrusions in regional tectonic pattern of the Northern Part of Eastern Asia. In: Tectonics of Siberia, vol XV, Novosibirsk, Nauka Press, pp 36–41
Vistelius AB (1986) The model of spontaneous cleaning in zonal massif formation (with example of the Gulshad massif in Balkhash region). Dokl Akad Nauk USSR 289(1):180–184
Vistelius AB, Graunov O, Pavlov V (1989) Main stages of zonal massifs fomation: mathematical models of commingling, self-cleaning and pre-eutectic stabilization, Abstracts. In: 28th international geological congress, vol 3, Washington, D.C., USA, pp 304–305
Vistelius AB (1989) The oldest laboratory of mathematical geology, USSR. Math Geol 21: 921–932
Vistelius AB, Faas AV (1991) On the precision of age measurements by RB-Sr isochrons in nontrivial cases. Math Geol 23(8):999–1044
Vistelius AB (1991) Principles of mathematical geology. Kluwer Academic Publishers, pp 477
Vistelius AB, Pavlov VM (2003) On rhythmical layering of rocks formed from basaltic magma. Math Geol 35:399–404

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.