Zopolrestat Induced Suicidal Death of Human Erythrocytes

Ghada Bouguerraa,b Rosi Bissingera Salem Abbèsb Florian Langa

aDepartment of Physiology, University of Tübingen, Tuebingen, Germany, bLaboratoire d’Hématologie Moléculaire et Cellulaire, Institut Pasteur de Tunis, Université de Tunis-El Manar, Tunis, Belvédère, Tunisie

Key Words
Phosphatidylserine • Cell volume • Eryptosis • Oxidative stress • Calcium

Abstract

Background/Aims: The aldose reductase inhibitor zopolrestat has been shown to either decrease or increase apoptosis, the suicidal death of nucleated cells. Erythrocytes may similarly enter suicidal death or eryptosis, which is characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Triggers of eryptosis include oxidative stress, Ca2+ entry with increase of cytosolic Ca2+ activity ([Ca2+]), and ceramide formation. The present study explored, whether and how zopolrestat induces eryptosis. Methods: Phosphatidylserine exposure at the cell surface was estimated from annexin V binding, cell volume from forward scatter, oxidative stress from DCFDA dependent fluorescence, [Ca2+] from Fluo3-fluorescence, and ceramide abundance utilizing specific antibodies. Results: A 48 hours exposure of human erythrocytes to zopolrestat (≥ 150 µg/ml) significantly increased the percentage of annexin-V-binding cells, significantly decreased forward scatter (≥ 125 µg/ml), significantly increased Fluo3-fluorescence (200 µg/ml), significantly increased ceramide abundance (150 µg/ml), but did not significantly modify DCFDA fluorescence. The effect of zopolrestat on annexin-V-binding was significantly blunted, but not abolished by removal of extracellular Ca2+. Conclusions: Exposure of human erythrocytes to zopolrestat triggers cell shrinkage and cell membrane scrambling, an effect in part due to Ca2+ entry and ceramide.

Introduction

The benzothiazole zopolrestat [1], an aldose reductase inhibitor [2], considered for the treatment of diabetic neuropathy [3], has been shown to attenuate hepatic ischemia-reperfusion injury [2] and interfere with colon carcinoma cell proliferation [4]. Moreover,
zopolrestat attenuated cardiac myocyte apoptosis following hypertonic sorbitol treatment [5]. In contrast, zopolrestat enhanced the apoptosis of vascular cells, an effect attributed in part to formation of 4-hydroxynonenal, a toxic aldehyde resulting from lipid peroxidation [6].

Similar to apoptosis of nucleated cells, erythrocytes may enter 3ryptosis, a suicidal death characterized by cell shrinkage [7] and cell membrane scrambling with phosphatidylserine translocation to the cell surface [8]. Stimulators of 3ryptosis include increase of cytosolic Ca\(^{2+}\) activity ([Ca\(^{2+}\)]\(_i\)), ceramide formation [9], energy depletion [8], and oxidative stress [8]. Signaling of 3ryptosis may further involve activated caspases [8, 10, 11] and stimulation of casein kinase 1\(\alpha\), Janus-activated kinase JAK3, protein kinase C, p38 kinase and PAK2 kinase [8]. 3ryptosis is inhibited by AMP activated kinase AMPK, cGMP-dependent protein kinase and sorafenib/sunitinib sensitive kinases [8]. 3ryptosis could be triggered by a wide variety of xenobiotics [8, 12-36].

The present study explored whether zopolrestat triggers 3ryptosis. To this end, human erythrocytes from healthy volunteers were treated with zopolrestat and phosphatidylserine surface abundance, cell volume as well as [Ca\(^{2+}\)]\(_i\) and ROS formation determined by flow cytometry.

Materials and Methods

Erythrocytes, solutions and chemicals

Fresh Li-Heparin-anticoagulated blood samples were kindly provided by the blood bank of the University of Tübingen. The study is approved by the ethics committee of the University of Tübingen (184/2003 V). The blood was centrifuged at 120 x g for 20 min at 21°C and the platelets and leukocytes-containing supernatant was disposed. Erythrocytes were incubated _in vitro_ at a hematocrit of 0.4% in Ringer solution containing (in mM) 125 NaCl, 5 KCl, 1 MgSO\(_4\), 32 N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid (HEPES; pH 7.4), 5 glucose, 1 CaCl\(_2\) at 37°C for 48 hours. Where indicated, erythrocytes were exposed to zopolrestat (Sigma Aldrich, Hamburg, Germany) at the indicated concentrations.

Annexin-V-binding and forward scatter

After incubation under the respective experimental condition, a 150 µl cell suspension was centrifuged at 1600 rpm for 3 mins and, after trashing the supernatant, the erythrocytes were stained with Annexin-V-FITC (1:200 dilution; ImmunoTools, Friesoythe, Germany) in Ringer solution containing 5 mM CaCl\(_2\) at 37°C for 15 min under protection from light. The annexin V abundance at the erythrocyte surface was subsequently determined on a FACS Calibur (BD, Heidelberg, Germany). Annexin V binding was measured with an excitation wavelength of 488 nm and an emission wavelength of 530 nm. A marker (M1) was placed to set an arbitrary threshold between annexin V-binding cells and control cells. The same threshold was used for untreated and zopolrestat treated erythrocytes. A dot plot of forward scatter (FSC) vs. side scatter (SSC) was set to linear scale for both parameters. The threshold of forward scatter was set at the default value of "52".

_Intracellular Ca\(^{2+}\)^

After incubation, a 150 µl cell suspension was centrifuged at 1600 rpm for 3 mins and, after trashing the supernatant, the erythrocytes were stained with Fluo-3/AM (Biotium, Hayward, USA) in Ringer solution containing 5 mM CaCl\(_2\) and 5 µM Fluo-3/AM. The cells were incubated at 37°C for 30 min. Then, Ca\(^{2+}\)-dependent fluorescence intensity was measured with an excitation wavelength of 488 nm and an emission wavelength of 530 nm on a FACS Calibur.

Reactive oxygen species (ROS)

Oxidative stress was determined utilizing 2', 7'-dichlorodihydrofluorescein diacetate (DCFDA). After incubation, a 150 µl suspension of erythrocytes was centrifuged at 1600 rpm for 3 mins and, after trashing the supernatant, the erythrocytes were stained with DCFDA (Sigma, Schnelldorf, Germany) in Ringer solution containing DCFDA at a final concentration of 10 µM. Erythrocytes were incubated at 37°C for 30 min
in the dark and then washed in Ringer solution. The DCFDA-loaded erythrocytes were resuspended in 200 µl Ringer solution, and ROS-dependent fluorescence intensity was measured at an excitation wavelength of 488 nm and an emission wavelength of 530 nm on a FACS Calibur (BD).

Ceramide abundance

For the determination of ceramide, a monoclonal antibody-based assay was used. After incubation, a 100 µl cell suspension was centrifuged at 1600 rpm for 3 mins, and, after trashing the supernatant, the erythrocytes were stained for 1 hour at 37°C with 1 µg/ml anti ceramide antibody (clone MID 15B4, Alexis, Grünberg, Germany) in PBS containing 0.1% bovine serum albumin (BSA) at a dilution of 1:10. The samples were washed twice with PBS-BSA. Subsequently, the cells were stained for 30 minutes with polyclonal fluorescein isothiocyanate (FITC) conjugated goat anti-mouse IgG and IgM specific antibody (Pharmingen, Hamburg, Germany) diluted 1:50 in PBS-BSA. Unbound secondary antibody was removed by repeated washing with PBS-BSA. The samples were then analyzed by flow cytometric analysis with an excitation wavelength of 488 nm and an emission wavelength of 530 nm.

Statistics

Data are expressed as arithmetic means ± SEM. As indicated in the figure legends, statistical analysis was made using ANOVA with Tukey’s test as post-test and t test as appropriate. n denotes the number of different erythrocyte specimens studied. Since different erythrocyte specimens used in distinct experiments are differently susceptible to triggers of eryptosis, the same erythrocyte specimens have been used for control and experimental conditions.

Results

The present study tested, whether zopolrestat modifies eryptosis, the suicidal erythrocyte death characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the cell surface. Phosphatidylserine at the erythrocyte surface was quantified utilizing annexin-V-binding, as determined by flow cytometry. The erythrocytes were analysed following incubation for 48 hours in Ringer solution without or with zopolrestat (50 – 200 µg/ml). As illustrated in Fig. 1, a 48 hours exposure to zopolrestat increased the percentage of phosphatidylserine exposing erythrocytes, an effect reaching statistical significance at 150 µg/ml zopolrestat. An extended dose-response-curve is provided in Fig. 1B. Calculation of an EC50 from log [agonist] vs. normalized response (variable slope) utilizing GraphPad Prism software yielded a value of 425.4 µg/ml.

Erythrocyte volume was estimated from forward scatter, which was determined utilizing flow cytometry. As illustrated in Fig. 2, a 48 hours incubation in Ringer solution with zopolrestat (50 – 200 µg/ml) was followed by a slight decrease of forward scatter, an effect reaching statistical significance at 125 µg/ml zopolrestat concentration.

Fluo3 fluorescence was employed in order to quantify cytosolic Ca²⁺ activity ([Ca²⁺]i). As illustrated in Fig. 3, a 48 hours exposure to zopolrestat increased the Fluo3 fluorescence, an effect reaching statistical significance at 200 µg/ml zopolrestat.

In order to test whether the zopolrestat-induced translocation of phosphatidylserine required entry of extracellular Ca²⁺, erythrocytes were incubated for 48 hours in the absence or presence of 150 µg/ml zopolrestat in the presence or nominal absence of extracellular Ca²⁺. As illustrated in Fig. 4, removal of extracellular Ca²⁺ significantly blunted the effect of zopolrestat on annexin-V-binding. Thus, zopolrestat-induced cell membrane scrambling was in large part due to entry of extracellular Ca²⁺.

Ca²⁺ entry and subsequent eryptosis is stimulated by oxidative stress. Reactive oxygen species (ROS) was thus quantified utilizing 2′, 7′-dichlorodihydrofluorescein diacetate (DCFDA). As a result, following a 48 hours incubation, the DCFDA fluorescence was not significantly different in the presence (15.8 ± 0.6 a.u., n = 5) or absence (15.3 ± 0.4 a.u., n = 5) of 150 µg/ml zopolrestat.
Fig. 1. Effect of zopolrestat on phosphatidylserine exposure. (A) Original histogram of annexin-V-binding of erythrocytes following exposure for 48 hours to Ringer solution without (grey area) and with (black line) presence of 200 µg/ml zopolrestat. (B) Arithmetic means ± SEM (n = 13) of erythrocyte annexin-V-binding (black bars) following incubation for 48 hours to Ringer solution without or with presence of zopolrestat (50 - 200 µg/ml). *** (P < 0.001) indicates significant difference from the absence of zopolrestat (ANOVA). (C) Percentage of annexin-V-binding erythrocytes (%) as a semilogarithmic function of zopolrestat concentration (n = 13).

Fig. 2. Effect of zopolrestat on erythrocyte forward scatter. (A) Original histogram of forward scatter of erythrocytes following exposure for 48 hours to Ringer solution without (grey area) and with (black line) presence of 200 µg/ml zopolrestat. (B) Arithmetic means ± SEM (n = 13) of the erythrocyte forward scatter (FSC) following incubation for 48 hours to Ringer solution without or with presence of zopolrestat (50 - 200 µg/ml). * (P<0.05), ** (P < 0.01) indicate significant difference from the absence of zopolrestat (ANOVA).
Specific antibodies were employed to quantify the ceramide abundance at the erythrocyte surface. As illustrated in Fig. 5, a 48 hours exposure to 150 µg/ml zopolrestat significantly increased the ceramide abundance.
Discussion

The present study reveals a novel effect of zopolrestat, i.e. the triggering of suicidal erythrocyte death or eryptosis. A 48 hours exposure of human erythrocytes to zopolrestat results in cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. The concentrations required for the toxic effect may be approached in vivo at dosages of 800 mg/day or of 25 g/kg BW. The susceptibility to eryptosis may be increased and thus lower zopolrestat concentrations be effective in several clinical conditions, such as dehydration, hyperphosphatemia, chronic kidney disease (CKD), hemolytic-uremic syndrome, diabetes, hepatic failure, malignancy, sepsis, sickle-cell disease, beta-thalassemia, Hb-C and G6PD-deficiency, as well as Wilsons disease.

The effect of zopolrestat on cell membrane scrambling was paralleled by increase of cytosolic Ca\(^{2+}\) activity ([Ca\(^{2+}\)]\(_i\)) and was significantly blunted by removal of extracellular Ca\(^{2+}\). Thus, it appears safe concluding that the triggering of eryptosis by zopolrestat was in part due to Ca\(^{2+}\) entry with subsequent increase of [Ca\(^{2+}\)]. Ca\(^{2+}\) stimulates cell membrane scrambling by activating a scramblase, which awaits molecular identification. An increase of [Ca\(^{2+}\)] further activates Ca\(^{2+}\) sensitive K\(^+\) channels with subsequent cell shrinkage due to K\(^+\) exit, cell membrane hyperpolarization, Cl\(^-\) exit and thus cellular loss of KCl with water.

Even in the absence of extracellular Ca\(^{2+}\), however, zopolrestat leads to increase of annexin-V-binding, an observation pointing to additional mechanisms. As revealed by specific antibodies, zopolrestat treatment did increase the abundance of ceramide, which is known to trigger eryptosis at constant [Ca\(^{2+}\)]. According to DCFDA fluorescence, zopolrestat treatment did not appreciably trigger oxidative stress. The present study does not rule out the involvement of further mechanisms, such as caspase activation and or altered activity of eryptosis stimulating or eryptosis inhibiting kinases.

Eryptotic erythrocytes are rapidly cleared from circulating blood. Eryptosis may thus prevent intravascular hemolysis with release of hemoglobin, which is otherwise filtered in renal glomeruli, precipitates in the acidic lumen of renal tubules and thus occludes nephrons. Eryptosis may further counteract increase of parasitemia following infection with the malaria pathogen *Plasmodium*. The pathogen imposes oxidative stress on the infected host erythrocyte leading to opening of Ca\(^{2+}\)-permeable erythrocyte cation channels. The enhanced susceptibility of sickle-cell trait, beta-thalassemia-trait, Hb-C and G6PD-deficiency...
to eryptosis accelerates the eryptosis and subsequent demise of infected erythrocytes. Accordingly, those genetic disorders decrease parasitemia and protect against a severe course of malaria [8, 49-51]. Along those lines, iron deficiency [52] and treatment with lead [52], chlorpromazine [53] or NO synthase inhibitors [53] enhance the susceptibility of erythrocytes to pathogen-induced eryptosis and thus counteract parasitemia. It is tempting to speculate that zopolrestat may similarly foster removal of infected erythrocytes and thus favourably influence the clinical course of malaria.

On the other hand, eryptosis may lead to anemia [8] and impair microcirculation [9, 54-58] by adherence of phosphatidylserine exposing erythrocytes to the vascular wall [59] as well as stimulation of blood clotting and thrombosis [54, 60, 61].

In conclusion, exposure of human erythrocytes to zopolrestat is followed by eryptosis with cell shrinkage and cell membrane scrambling, an effect paralleled by and in part due to Ca\(^{2+}\) entry and increased abundance of ceramide.

Acknowledgements

The authors acknowledge the meticulous preparation of the manuscript by Tanja Loch. The study was supported by the Deutsche Forschungsgemeinschaft and Open Access Publishing Fund of Tuebingen University.

Disclosure Statement

The authors of this manuscript state that they do not have any conflict of interests and nothing to disclose.

References

1 Seth S: A Comprehensive Review on Recent advances in Synthesis & Pharmacotherapeutic potential of Benzothiazoles. Antiinflamm Antiallergy Agents Med Chem DOI: 10.2174/1871523014666150528110703.
2 Li CX, Ng KT, Shao Y, Liu XB, Ling CC, Ma YY, Geng W, Qi X, Cheng Q, Chung SK, Lo CM, Man K: The inhibition of aldose reductase attenuates hepatic ischemia-reperfusion injury through reducing inflammatory response. Ann Surg 2014;260:317-328.
3 Malik RA: Can diabetic neuropathy be prevented by angiotensin-converting enzyme inhibitors? Ann Med 2000;32:1-5.
4 Ramana KV, Tammali R, Srivastava SK: Inhibition of aldose reductase prevents growth factor-induced G1-S phase transition through the AKT/phosphoinositide 3-kinase/E2F-1 pathway in human colon cancer cells. Mol Cancer Ther 2010;9:813-824.
5 Galvez AS, Ulloa JA, Chiong M, Criollo A, Eisner V, Barros LF, Lavandero S: Aldose reductase induced by hyperosmotic stress mediates cardiomyocyte apoptosis: differential effects of sorbitol and mannitol. J Biol Chem 2003;278:38484-38494.
6 Rittner HL, Hafner V, Klimiuk PA, Szweda LI, Goronzy JJ, Weyand CM: Aldose reductase functions as a detoxification system for lipid peroxidation products in vasculitis. J Clin Invest 1999;103:1007-1013.
7 Lang PA, Kaiser S, Myssina S, Wieder T, Lang E, Huber SM: Role of Ca\(^{2+}\)-activated K+ channels in human erythrocyte apoptosis. Am J Physiol Cell Physiol 2003;285:C1553-C1560.
8 Qadri SM, Mahmud H, Lang E, Gu S, Bobbala D, Zelenak C, Jilani K, Siegrfried A, Foller M, Lang F: Enhanced suicidal erythrocyte death in mice carrying a loss-of-function mutation of the adenomatous polyposis coli gene. J Cell Mol Med 2012;16:1085-1093.
9 Abed M, Towhid ST, Mia S, Pakladok T, Alesutan I, Borst O, Gawaz M, Gulbins E, Lang F: Sphingomyelinase-induced adhesion of eryptotic erythrocytes to endothelial cells. Am J Physiol Cell Physiol 2012;303:C991-999.
10 Lau IP, Chen H, Wang J, Ong HC, Leung KC, Ho HP, Kong SK: In vitro effect of CTAB- and PEG-coated gold nanorods on the induction of eryptosis/erythroptosis in human erythrocytes. Nanotoxicology 2012;6:847-856.

11 Maelaro E, Leocnini S, Moretti D, Del Bello T, Tanganelli I, De Felice C, Ciccodi L: Erythrocyte caspase-3 activation and oxidative imbalance in erythrocytes and in plasma of type 2 diabetic patients. Acta Diabetol 2013;50:489-495.

12 Jilani K, Lang F: Carmustine-induced phosphatidylserine translocation in the erythrocyte membrane. Toxins (Basel) 2013;5:703-716.

13 Vota DM, Maltaneri RE, Wenker SD, Nesse AB, Vittori DC: Differential erythropoietin action upon cells induced to eryptosis by different agents. Cell Biochem Biophys 2013;65:145-157.

14 Zappulla D: Environmental stress, erythrocyte dysfunctions, inflammation, and the metabolic syndrome: adaptions to CO2 increases? J Cardiometab Syndr 2008;3:30-34.

15 Lupescu A, Jilani K, Zbidah M, Lang F: Patulin-induced suicidal erythrocyte death. Cell Physiol Biochem 2013;32:291-299.

16 Abed M, Zoubi KA, Theurer M, Lang F: Effect of dermaseptin on erythrocytes. Basic Clin Pharmacol Toxicol 2013;113:347-352.

17 Ahmed MS, Langer H, Abed M, Voelkl J, Lang F: The uremic toxin acrolein promotes suicidal erythrocyte death. Kidney Blood Press Res 2013;37:158-167.

18 Ghashghaeinia M, Cluitmans JC, Toulany M, Saki M, Koberle M, Lang E, Dreischer P, Biedermann T, Duszenko M, Lang F, Bosman GJ, Wieder T: Age Sensitivity of NFkappaB Abundance and Programmed Cell Death in Erythrocytes Induced by NFkappaB Inhibitors. Cell Physiol Biochem 2013;32:801-813.

19 Alzoubi K, Honisch S, Abed M, Lang F: Triggering of Suicidal Erythrocyte Death by Penta-O-galloyl-beta-d-glucose. Toxins (Basel) 2014;6:54-65.

20 Jilani K, Enkel S, Bissinger R, Almilaji A, Abed M, Lang F: Fluoxetine induced suicidal erythrocyte death. Toxins (Basel) 2013;5:1230-1243.

21 Lupescu A, Bissinger R, Jilani K, Lang F: Triggering of suicidal erythrocyte death by celecoxib. Toxins (Basel) 2013;5:1543-1554.

22 Arnold M, Lang E, Modicano P, Bissinger R, Faggio C, Abed M, Lang F: Effect of nitazoxanide on erythrocytes. Basic Clin Pharmacol Toxicol 2014;114:421-426.

23 Oswald G, Alzoubi K, Abed M, Lang F: Stimulation of suicidal erythrocyte death by ribavirin. Basic Clin Pharmacol Toxicol 2014;114:311-317.

24 Lupescu A, Bissinger R, Herrmann T, Oswald G, Jilani K, Lang F: Induction of suicidal erythrocyte death by novobiocin. Cell Physiol Biochem 2013;33:670-680.

25 Abed M, Feger M, Alzoubi K, Pakladok T, Frauenfeld L, Geiger C, Towhid ST, Lang F: Sensitization of erythrocytes to suicidal erythrocyte death following water deprivation. Kidney Blood Press Res 2013;37:567-578.

26 Alzoubi K, Calabroa S, Bissinger R, Abed M, Faggio C, Lang F: Stimulation of Suicidal Erythrocyte Death by Artesunate. Cell Physiol Biochem 2014;34:2232-2244.

27 Arnold M, Bissinger R, Lang F: Mitoxantrone-induced suicidal erythrocyte death. Cell Physiol Biochem 2014;34:1756-1767.

28 Bissinger R, Fischer S, Jilani K, Lang F: Stimulation of Erythrocyte Death by Phloretin. Cell Physiol Biochem 2014;34:2256-2265.

29 Bissinger R, Lupescu A, Zelenak C, Jilani K, Lang F: Stimulation of eryptosis by cryptotanshinone. Cell Physiol Biochem 2014;34:432-442.

30 Bissinger R, Modicano P, Frauenfeld L, Lang E, Jacob J, Faggio C, Lang F: Estramustine-induced suicidal erythrocyte death. Cell Physiol Biochem 2013;32:1426-1436.

31 Jilani K, Lang E, Bissinger R, Frauenfeld L, Modicano P, Faggio C, Abed M, Lang F: Stimulation of erythrocyte cell membrane scrambling by mitotane. Cell Physiol Biochem 2014;33:1516-1526.

32 Lupescu A, Bissinger R, Warsi J, Jilani K, Lang F: Stimulation of erythrocyte cell membrane scrambling by gedunin. Cell Physiol Biochem 2014;33:1838-1848.

33 Malik A, Bissinger R, Calabro S, Faggio C, Jilani K, Lang F: Aristolochic Acid Induced Suicidal Erythrocyte Death. Kidney Blood Press Res 2014;39:408-419.
34 Tesoriere L, Attanzio A, Allegra M, Cilla A, Gentile C, Livrea MA: Oxysterol mixture in hypercholesterolemia-relevant proportion causes oxidative stress-dependent eryptosis. Cell Physiol Biochem 2014;34:1075-1089.

35 Voeldl J, Alzoubi K, Mammar AK, Ahmed MS, Abed M, Lang F: Stimulation of suicidal erythrocyte death by increased extracellular phosphate concentrations. Kidney Blood Press Res 2013;38:42-51.

36 Zhang R, Xiang Y, Ran Q, Deng X, Xiao Y, Xiang L, Li Z: Involvement of calcium, reactive oxygen species, and ATP in hexavalent chromium-induced damage in red blood cells. Cell Physiol Biochem 2014;34:1780-1791.

37 Inskeep PB, Ronfeld RA, Peterson MJ, Gerber N: Pharmacokinetics of the aldose reductase inhibitor, zopolrestat, in humans. J Clin Pharmacol 1994;34:760-766.

38 Yadav UC, Srivastava SK, Ramana KV: Inhibition of aldose reductase attenuates endotoxin signals in human non-pigmented ciliary epithelial cells. Exp Eye Res 2010;90:555-563.

39 Abed M, Artunc F, Alzoubi K, Honisch S, Baumann D, Foller M, Lang F: Suicidal erythrocyte death in end-stage renal disease. J Mol Med (Berl) 2014;92:871-879.

40 Polak-Jonkisz D, Purzyce L: Ca(2+) influx versus efflux during eryptosis in uremic erythrocytes. Blood Purif 2012;34:209-210; author reply 210.

41 Calderon-Salinas JV, Munoz-Reyes EG, Guerrero-Romo JF, Rodriguez-Moran M, Bracho-Riquelme RL, Carrera-Gracia MA, Quintanar-Escorza MA: Eryptosis and oxidative damage in type 2 diabetic mellitus patients with chronic kidney disease. Mol Cell Biochem 2011;357:171-179.

42 Lang PA, Beringer O, Nicolay JP, Amon O, Kempe DS, Hermle T, Attanasio P, Akel A, Schafer R, Friedrich B, Risler T, Baur M, Olbricht CJ, Zipfel PF, Wieder T, Lang F: Suicidal death of erythrocytes in recurrent hemolytic uremic syndrome. J Mol Med (Berl) 2006;84:378-388.

43 Nicolay JP, Schneider J, Niemoeller OM, Artunc F, Portero-Otin M, Haik G Jr, Thornalley PJ, Schleicher E, Wieder T, Lang F: Stimulation of suicidal erythrocyte death by methylglyoxal. Cell Physiol Biochem 2006;18:223-232.

44 Lang E, Gatidis S, Freise NF, Rock H, Kubitz R, Lauermann C, Orth HM, Klindt C, Schauier M, Keitel V, Reich M, Liu G, Schmidt S, Xu HC, Qadri SM, Herebian D, Pandya AA, Mayatepek E, Follins E, Lang F, Haussinger D, Lang KS, Foller M, Lang PA: Conjugated bilirubin triggers anemia by inducing erythrocyte death. Hepatology 2015;61:275-284.

45 Kempe DS, Akel A, Lang PA, Hermle T, Biswas R, Muresanu J, Friedrich B, Dreischer P, Wolz C, Schumacher U, Peschel A, Gotz F, Doring G, Wieder T, Gulbins E, Lang F: Suicidal erythrocyte death in sepsis. J Mol Med (Berl) 2007;85:273-281.

46 Lang PA, Schenk M, Nicolay JP, Becker JU, Kempe DS, Lupesca A, Koka S, Eisele K, Klarl BA, Rubben H, Schmid KW, Mann K, Hildenbrand S, Hefter H, Sider SM, Wieder T, Erhardt A, Haussinger D, Gulbins E, Lang F: Liver cell death and anemia in Wilson disease involve acid sphingomyelinase and ceramide. Nat Med 2007;13:164-170.

47 Harrison HE, Bunting H, Ordway NK, Albrink WS: The Pathogenesis of the Renal Injury Produced in the Dog by Hemoglobin or Methemoglobin. J Exp Med 1947;86:339-356.

48 Kirk K: Membrane transport in the malaria-infected erythrocyte. Physiol Rev 2001;81:495-537.

49 Ayi K, Giribaldi G, Skorokhed G, Schwarzar E, Prendergast PT, Ares P: Early phagocytosis of ring-stage parasitized erythrocytes: a novel mechanism for antimalarial activity. Antimicrob Agents Chemother 2002;46:3180-3184.

50 Ayi K, Turrini F, Pig A, Ares P: Enhanced phagocytosis of ring-parasitized mutant erythrocytes: a common mechanism that may explain protection against falciparum malaria in sickle trait and beta-thalassemia trait. Blood 2004;104:3364-3371.

51 Cappadoro M, Giribaldi G, O'Brien E, Turrini F, Mannu F, Ulliers D, Simula G, Luzzatto L, Ares P: Early phagocytosis of glucose-6-phosphate dehydrogenase (G6PD)-deficient erythrocytes parasitized by Plasmodium falciparum may explain malaria protection in G6PD deficiency. Blood 1998;92:2527-2534.

52 Koka S, Huber SM, Boini KM, Lang C, Foller M, Lang F: Lead decreases parasitemia and enhances survival of Plasmodium berghei-infected mice. Biochem Biophys Res Commun 2007;363:484-489.

53 Koka S, Lang C, Niemoeller OM, Boini KM, Nicolay JP, Huber SM, Lang F: Influence of NO synthase inhibitor L-NAME on parasitemia and survival of Plasmodium berghei infected mice. Cell Physiol Biochem 2008;21:481-488.
54 Andrews DA, Low PS: Role of red blood cells in thrombosis. Curr Opin Hematol 1999;6:76-82.
55 Closse C, Dachary-Prigent J, Boisseau MR: Phosphatidylserine-related adhesion of human erythrocytes to vascular endothelium. Br J Haematol 1999;107:300-302.
56 Gallagher PG, Chang SH, Rettig MP, Neely JE, Hillery CA, Smith BD, Low PS: Altered erythrocyte endothelial adherence and membrane phospholipid asymmetry in hereditary hydrops fetalis. Blood 2003;101:4625-4627.
57 Pandolfi A, Di Pietro N, Siroli V, Giardinelli A, Di Silvestre S, Amoroso L, Di Tomo P, Capani F, Consoli A, Bonomini M: Mechanisms of uremic erythrocyte-induced adhesion of human monocytes to cultured endothelial cells. J Cell Physiol 2007;213:699-709.
58 Wood BL, Gibson DF, Tait JF: Increased erythrocyte phosphatidylserine exposure in sickle cell disease: flowcytometric measurement and clinical associations. Blood 1996;88:1873-1880.
59 Borst O, Abed M, Alesutan I, Towhid ST, Qadri SM, Foller M, Gawaz M, Lang F: Dynamic adhesion of eryptotic erythrocytes to endothelial cells via CXCL16/SR-PSOX. Am J Physiol Cell Physiol 2012;302:C644-C651.
60 Chung SM, Bae ON, Lim KM, Noh JY, Lee MY, Jung YS, Chung JH: Lysophosphatidic acid induces thrombogenic activity through phosphatidylserine exposure and procoagulant microvesicle generation in human erythrocytes. Arterioscler Thromb Vasc Biol 2007;27:414-421.
61 Zwaal RF, Comfurius P, Bevers EM: Surface exposure of phosphatidylserine in pathological cells. Cell Mol Life Sci 2005;62:971-988.