A review of appropriate indicators for need-based financial resource allocation in health systems

maryam radinmanesh
Iran University of Medical Sciences

farbod ebadi fard azar (radinmanesh.m@iums.ac.ir)
Iran University of Medical Sciences

asgar aghaie hashjin
Iran University of Medical Sciences

behzad najafi
Tabriz University of Medical Sciences

reza majdzadeh
Tehran University of Medical Sciences

Research Article

Keywords: financial resource allocation, need indicators, health system, budget

DOI: https://doi.org/10.21203/rs.3.rs-200251/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background

optimal need-based financial resource allocation is one of the most prominent concerns of health systems; various criteria are required to guarantee its fairness. The aim of the present study was to identify the indicators needed to allocate financial resources in the world's health systems through a comprehensive review of studies. In this systematic review, all articles and reports published about need-based financial resource allocation in health systems between 1990 to 2020 in the reputable English language databases including PubMed, Cochrane, Scopus, Persian language databases such as magiran, SID and Google and Google scholar search engines were searched and studied. Of 823 articles found, 29 articles met the inclusion criteria for this study and were analyzed by the content analysis method using MAXQDA (version 10) software.

result

Many need-based resource allocation formulas attempt to estimate health care needs using weighting methods for individuals. The most commonly used indicators were: age, gender, socio-economic status or deprivation, ethnicity, standardized mortality ratio (SMR), modified health indicators (disease consequences, self-assessed health and disability), geographical area / place of residence (geography) (rural versus urban), cross-boundary flows, cost of services and donations.

Conclusion

The indicators used in the allocation of the financial resources of the health system in each country must be simple and transparent and at the same time must be in accordance with the moral norms of that society, must be a good representative of the people's health needs in different geographical areas of that country and their information must be available (to an acceptable extent).

Introduction

Having access to health services with the aim of promoting, maintaining and ensuring the individuals’ health is one of the important pillars in the development of any society (1). However, health systems are faced with the shortage of resources and are not able to provide all the services required for all society members on the one hand (2) and seek to increase justice in people's access to health care and services on the other hand. Are (3). Concerning limited financial resources, world health systems face various challenges in terms of service quality, efficiency, effectiveness and justice; equitable resource allocation is one of the major concerns of any health system and is also a key part of the decision-making process in this regard (4, 5). As a moral issue, it plays a critical role in creating justice in health care services and its health consequences (6). Resource allocation is fair when health care resources are distributed among
competing consumers (e.g. regions) based on the need for health care (7). Need-based resource allocation is one of the methods which has been considered for equitable allocation of resources in recent decades in most publicly financed health care systems (8) (9, 10). Need-based resource allocation is a process in which financial resources are distributed among individuals or populations based on the need for health care services (11, 12). This method is considered the most ethical and fair mechanism for allocating financial resources (13). In fact, need-based resource allocation tries to eliminate budget inequalities among the areas of a region or a country (14). It can ensure that government’s public resources are distributed to different regions in accordance with the goals of the health system (15). Since it is difficult to measure health care needs directly in a society, indirect methods such as indicators are used to measure health needs (16). So far, no standard gold indicator has revealed the need for health care services in communities; this has caused challenges in selecting the indicators required to compile need-based resource allocation formulas (17). Therefore, the models and indicators used in this regard are significantly diverse (18).

According to the World Health Organization, health and treatment conditions have improved in most countries in recent decades; this improvement has been reflected in indicators such as “life expectancy at birth, life expectancy with balanced disability and decreased mortality resulted from health measures”. However, these improvements have been accompanied by some concerns, the most important of which are inequalities in access to health care services and health consequences among different economic groups and individuals inside and outside countries (19, 20). Therefore, concerning numerous challenges that exist due to the shortage of resources to provide equitable health care services, the equitable allocation of available resources is of great importance; This requires changing the current resource allocation approaches to the need-based allocation method. Since creating a suitable indigenous model requires studying the models of other countries in order to identify the principles governing them and the type of indicators used by them, the present study aimed to identify the indicators used for need-based resource allocation in world’s health systems through a comprehensive review of studies.

Materials And Methods

Search strategy

Authoritative English language databases such as “PubMed, Cochrane and Scopus”, Persian language databases of “Magiran and SID” and Google scholar search engines were reviewed to find the studies published between 1990 and 2020. Studying the articles found in these databases and reviewing their references, other related articles were also identified and added to the previous ones.

Selection of articles: A total of 823 articles were extracted from the databases. Of them, 641 articles were excluded based on their titles and also due to duplication. The abstracts of the remaining articles (182) were reviewed, and 95 were excluded. The full text of the remaining 87 articles was studied; another 58 articles were excluded due to their non-compliance with the inclusion criteria. finally, 29 articles were entered into the final phase of the study (Figure 1).
Inclusion and exclusion criteria: English or Persian language articles which examined specific criteria and indicators in the need-based financial resource allocation were included in the study. Studies whose abstracts were not in English or Persian or whose full texts were not available were excluded.

Data Extraction and Analysis: the information in the selected articles was extracted using MAXQDA software (version 10) and a pre-designed form. Data related to each study was extracted independently by two people; some minor disagreements were resolved by the third person, and the extraction was finalized if all three people agreed (Table 1).

Findings

Examining the results of studies conducted on the need-based allocation of financial resources in the health system of different countries has revealed that different indicators and methods have been used to allocate financial resources according to the specific conditions of each country, and that the main purpose of all methods is to promote justice in having access to health services, make use of these services and thus increase the efficiency of services. Table 1 shows the common indicators used in the distribution of financial resources in the health system of countries.

As the data in the above table shows, different countries use one or a combination of two general “individual-level data and area-level data” methods to allocate resources. The most commonly used indicators are age, gender, socio-economic status or deprivation, ethnicity, standardized mortality ratio (SMR), modified health indicators (disease consequences, self-assessed health and disability), geographical area / place of residence (geography) (rural versus urban), cross-boundary flows, cost of services and donations.

Reviewing the existing formulas has also shown that all models based on per capita initially take advantage of the indexes “population size and the age-sex distribution of the population of the mentioned areas”. In fact, this index forms the basis for all further calculations.

Discussion

In this study, common indicators used in compiling the formula of allocating financial resources were examined. Need-based formulas, as a more equitable allocation of health budgets to geographical areas of a health system, are increasingly being used as an alternative to the historical methods (8, 23, 42, 43). To develop a need-based formula, it is important to have a practical definition of justice (13). In other words, defining a need-based approach is the first essential step in selecting the indicators “necessity and need to compile a formula for allocating need-based resources” (44). According to Starfield, justice is defined as “No difference in access to health services for equal health needs or greater access for the population defined in terms of social, demographic or geographical status with greater health needs” (45). The theoretical basis of the need-based allocation formula is that the need for health care in populations of equal size is not necessarily equal, and that the population characteristics are the basis for inferring the population's relative needs (48-46).
As mentioned in the findings section, the most common need indicators used to measure the relative need for health care services are: age, gender, socio-economic status or deprivation, ethnicity, standardized mortality ratio (SMR), modified health indicators (disease consequences, self-assessed health and disability), geographical area / place of residence (geography) (rural versus urban) and cross-boundary flows. However, although indicators such as the cost of services and donations are not considered a need indicator, they are used in the resource allocation formula in some countries.

Population size

Personal characteristics of individuals determine their needs for health care services. Owing to the wide variation of the population size in provinces, the population size in a geographical area is the first important indicator of the need for health services in the resource allocation formula (16, 34, 43, 49).

Demographic indicators

Population composition in a region or country (especially age and gender) is a key demographic factor in estimating the relative need for health care services in a geographical area; this is because there is a close relationship between age / gender and the need for health care services (16, 23, 43, 50-52).

Therefore, demographic composition can have more weights in the resource allocation model compared to other factors (53). Three main age / gender groups of children, women of reproductive age (childbearing) and the elderly people are considered the most vulnerable population groups to diseases and thus need more health care services (34, 54-56). Thus, the population size in these groups is an important factor affecting the need for health care services and, consequently, health resources in different regions and areas. For example, the Resource Allocation Working Party (RAWP) claims that demographic features affect the need for health care services and weigh the population of each region according to the national use of health services by age and gender groups (57). In the British formula, 18 age groups within health trusts were adjusted through the national use of health services in the trusts (58). In South Africa (8), the age / sex ratio adjusted based on the national use of health services in each group is used as a need factor in the health resource allocation formula. Children under 5 are selected as a demand criterion for child care services; women aged 15-49 are chosen as an indicator of the increased need for health care services experienced by women who are mainly in childbearing age; and people aged 65 and more are recognized as the criterion of the need for the elderly care. According to the data written in table 1, it can be seen that the age/ gender factor has been used in all the studied countries (except for Israel and France which have only used the age factor).

Ethnicity

Ethnicity is often used in terms of race, citizenship and country of birth in both matrix and ecological models (11). In some countries, some ethnic groups do not use health services (e.g. the Maori people in New Zealand and non-Nordic immigrants in Sweden). In New Zealand, it is estimated how much Maori does not use health care services and thus weighting is adjusted accordingly, while ethnicity is not
considered in the Swedish model. It is clear that this index can be used in a country where there are ethnic differences between different regions.

Socio-economic status

Socioeconomic status or deprivation is often used as an indirect indicator of the relative need for health care services (13, 23, 42, 46). Since the relationship between socioeconomic status and the need for health care services is not simple and straightforward (59), weights less than one are assigned to socio-economic factors in a need-based formula. In different countries, various socio-economic indicators are used as indicators of the need to adjust the models for allocating health care resources (for example: income / assets (Netherlands, South Africa, Malawi), homelessness and education (New South Wales), unemployment (Belgium and Stockholm), welfare status (Alberta, Netherlands, New Zealand, Northern Ireland and USA), marital status (Norway, Stockholm), family structure (Norway), quality of housing (Belgium), housing ownership and social class (Stockholm) and cohabitation (Stockholm, Northern Ireland). In South Africa, unemployment, people living in poor housing conditions, lack of access to tap water, poor toilet facilities, lack of access to clean energy sources, illiteracy of the household head and female-headed households have been used in the resource allocation formula in order to compile socio-economic indicators (42) Namibia has used a deprivation index using household assets including electricity, radio, television, refrigerator and motorcycle, as well as drinking water and toilet type for equitable health resource allocation among the provinces (13).

Population mortality rate

Owing to some features such as having a familiar concept, reliability and ease of data collection, mortality indicator is considered one of the most common indicators selected to indicate the need for health (49, 60). Standardized mortality ratio (SMR) and age / sex specific mortality indicator have been used as indicators of need to know the health resource allocation (17). For example, raw and standardized mortality ratios have also been used as indicators of need in Per capita schemes in Belgium, Italy, Namibia, Northern Ireland, Norway, Scotland Wales and Zimbabwe. Making use of mortality indicators may have some disadvantages because the health system provides health services for the living not for the dead, so resource allocation indicators should be directed to the living as much as possible. Moreover, using mortality statistics such as SMR to allocate resources may not be appropriate in some cases because a significant portion of health care services is provided for people whose treatment does not lead to death. Finally, the geographical distribution of health needs may not be in line with the geographical distribution of death in different parts of a country. For example, some people who die in one area may die from diseases they contracted in another area some years ago (61). Since the relationship between mortality and need is not straightforward, the mortality rate cannot be mechanically considered in the resource allocation formula, as it may lead to unreasonable and unrealistic allocation patterns (62). Hence, weights less than one are applied to this index in the resource allocation formulas (53).

Disease complications in the population
Disease complications directly indicate poor health (ill-health) conditions in the population (12). The prevalence of some chronic diseases such as diabetes, cardiovascular problems and osteoarthritis as well as the occurrence of acute complications such as the gastrointestinal and respiratory injury or infection are examples of appropriate indicators of disease complications to assess the need for health care services (17). Disease complication data have been used, in combination with socioeconomic factors, to allocate health financial resources in Stockholm, Sweden (38) and the NHS (60). Self-reported health which is people's perception of their health compared to the peers’ health is considered an appropriate indicator of disease complications because it is closely related to many other health indicators and is independent of the indicator “health services use” (15, 63). However, making use of disease complications is not popular as a need indicator due to its technical problems. For example, data on disease complications may be biased owing to differences in records of institutions and regions (64). In addition, disease complication indicators may not cover all the health conditions people need to enjoy health care services (16). This may underestimate the need for health care resources in areas which need these resources more. Moreover, there are always limitations in the frequency, timing or availability of disease complication data for the entire populations and regions; in turn, they impose some restrictions on assessing the need for health through disease complications (65).

Geographical factors

Geographical area is usually an indicator used to decide on the allocation of resources in most health systems. Reasons have been given to justify the allocation of resources based on geographical areas. For example, making use of the geographical area-based resource allocation approach, differences in the cost of providing health services in different regions can be offset by appropriate reimbursements (64). The United Kingdom, Scotland or Ontario Canada have considered these differences in their formulas. The resource allocation based on the geographical area has the potential to include both the justice goals and the goals of the efficiency of health systems (66). Allocating a larger share of the health budget to geographical areas that need more health care services can increase the efficiency in the use of health services (11). Fair distribution of health credits among geographical areas can also improve the previous inappropriate distribution of health facilities and trusts in the regions (67, 68).

Place of residence

Place of residence (province, cities, towns, urban-rural areas and slums) can affect health and the chance of improving living conditions (69, 70). Geographical differences are regarded as an ethical concern in terms of having access to health care services and health outcomes (10). Therefore, geographical classification is considered an important tool for health promotion and proper distribution of health resources among regions (71). Living in urban or rural areas affects the people's health in different ways (72). Urban life provides citizens with many opportunities and excellent and better living standards. However, urban environments can increase health risks and reshape population health issues from infectious diseases and malnutrition to non-communicable diseases, violence and injuries and deaths from accidents and the effects of environmental disasters (73).
Cross-boundary flow

Cross-boundary flow is where patients may cross health care boundaries to access neighboring health services because the required services are not available at their place of residence or there is an unreasonable delay in obtaining care services (32, 74, 75). Cross-border use of health services is often enjoyed by temporary guests who include people who use the facilities provided in the border regions, people who seek treatment in other cities or abroad, and people who are sent to other cities or abroad by their health sponsors. (74, 76). Cross-boundary flows are considered an element in some resource allocation formulas (including Alberta, Canada, New South Wales and Spain). However, in many cases there is a lack of information about cross-boundary flows, especially in developing countries. This places limitations on the inclusion of "cross-border use of health services" in need-based resource allocation formulas (77).

Costs of providing health services

Costs of providing similar services can vary greatly from region to region (77). For example, costs can be much higher in remote rural areas due to higher transportation costs and perks given to employees in order to encourage them to travel to these regions. Moreover, owing to a tiny number of people in a region or country with very low population density, the cost may be wasted (78). In addition, due to different input costs, service costs may vary among buyers. (79). These factors implicitly indicate the need to adjust a need-based resource allocation formula based on differences in service provision costs resulted from the impact of geographical factors. However, appropriate data must be provided to include various costs in the formula. Additionally, decisions made about adjusting different service costs are often a political issue (11). Alberta, the United Kingdom, Ontario, Scotland, the United States and Wales are examples of countries which have used this indicator in their formulas.

Donations by donors

Alternative financial resources provided by donors and NGOs especially for low-income countries is another indicator used in compiling a need-based allocation formula. The challenge this indicator poses for health policymakers and planners is whether the government should allocate fewer resources in areas with higher donations (41) or not. Uganda is an example of countries that uses this index to allocate health care budgets according to the following weighting: 60% based on the population size index in different age groups, 20% based on human development index (per capita income, life expectancy and school enrollment rates) and 20% based on donations and NGO expenditures in each region (11).

As mentioned above, the geographical area is usually the most common decision-making factor for resource allocation in most health systems; thus, it is the basis of the need-based allocation formula because geographical conditions can affect health and therefore the use of health care services (10, 63). In most of these formulas, the weighted capitation is used to estimate the relative need for health care services in each geographical area. Concerning the main indicators of population composition (age, gender) and especially age (because the gender distribution is usually very similar in different regions)
(11), socio-economic factors (education or occupation, income, wealth, marital status and employment status,...) and geographical factors, this approach ensures more equitable distribution of resources among geographical areas in accordance with the principle “equal access to health care services for all people with the equal need” (10, 11, 63, 80) (8, 11, 43). Age, with higher weight for newborns and population over 75, is the most prominent factor used to pay per capita in high-income countries, while socioeconomic factors as well as factors associated with disease complications are considered a less important criterion except for psychiatric and society-based care services. In low- and middle-income countries, however, the population under 5, poverty indicators and rural population have the highest frequency and are of great importance in the development of need-based financing formulas (11). The essential point about the possibility of using these indicators is that they must meet the requirements so that they can be used as indicators of need in developing resource allocation models. Seven main criteria which the “need indicators” must meet are: universally recorded, verifiable, consistent, no incentive for gaming, no vulnerability to manipulation, confidentiality respected and plausible (10, 16, 64).

In general, as described in the findings section, there are a variety of indicators of the need for health care services. However, there are serious limitations and disagreements about the selection of indicators owing to the emphasized criteria and assumptions, absence of research evidence on the appropriate factors, lack of dependence and legitimacy of the need factors and lack of proper and relevant information about potential need indicators (64, 81).

Conclusion

There are various methods for need-based resource allocation; they can vary from simple indicators such as population size and composition mainly used in developing countries to complex models used in developed countries. Each of these methods is designed according to the conditions of those countries. Access to data and the possibility of calculating the index for the given region, values and ethical criteria and cultural, economic and social conditions are among the most important factors which are considered in the allocation of resources. According to the findings of the present study, an appropriate combination of demographic indicators, mortality indicators, socio-economic indicators and geographical location seems to be effective in developing a need-based allocation formula and thus improving justice in the distribution of financial resources. Although the allocation of financial resources in health systems seems economic in nature, ethical standards of society must be taken into consideration for fair allocation of resources. Therefore, the most appropriate method of need-based resource allocation in the health system in each country is to design and choose a method which both is simple and transparent and uses indicators that meet the moral norms of that community and be a good representative for people's health needs in different geographical areas of that country. Moreover, the information about the characteristics of that model must also be available to a great extent.

Declarations

Ethics approval and consent to participate: Not applicable
Consent for publication: Not applicable

Availability of data and materials: The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Competing interests: The authors declare that they have no competing interests.

Funding: Not applicable

Authors' contributions: MR, FE and RM conceived the study and designed its method. MR performed the computations and applied the model, with help from AA for revision of the analytical method. All authors discussed the results and contributed to the final manuscript. MR BN and AA carried out the analytical experiment. MR and BN wrote the manuscript All authors contributed to the development and approved the final manuscript. MR is the guarantor.

Acknowledgements: This article is part of the doctoral dissertation on health economics in Iran University of medical sciences.

References

1. Lotfi F, Rezapour A, Nouraei Motlagh S, Hadian M, Faghisolouk F, Ghaderi H. A survey of Health Sector from the perspective of economics and its relationship with other sectors in Iran's Economy. Journal of Health Administration. 2015;17(58):28-41.

2. Sabik LM LR. Priority setting in health care: Lessons from the experiences of eight countries. International Journal for Equity in Health. 2008;7.

3. Jehu-Appiah C BR, Acquah C, Aikins M, D'Almeida SA, Bosu WK, et al. Balancing equity and efficiency in health priorities in Ghana: The use of multicriteria decision analysis. Value Health. 2008;11(7):1081-7.

4. Singer PA MJ. Ethics of resource allocation: Dimensions for healthcare executives. Law & Governance. 1998;2(2).

5. Karimi I, Nasiripour A, Maleki M, Mokhtare H. Assessing financing methods and payment system for health service providers in selected countries: designing a model for Iran. Journal of Health Administration. 2006;8(22):15-24.

6. Jamison DTJaGBRMA. Disease Control Priorities in Developing Countries: Ethical Issues in Resource Allocation. Research, and New Product Development, A copublication of Oxford University Press and The World Bank. 2006.

7. Asthana SaAG. Health Care Equity, Health Equity and Resource Allocation: Towards a Normative Approach to Achieving the Core Principles of Nhs, Commission for Rural Communities. 2008.

8. McIntyre DaLA. Guidance on Using Needs Based Formulae and Gap Analysis in the Equitable Allocation of Health Care Resources in East and Southern Africa. EQUINET Discussion Paper XX, Health Economics Unit, School of Public Health and Family Medicine, University of Cape Town. 2012.
9. Kirigia DG. Beyond Needs-Based Health Funding: Resource Allocation and Equity at the State and Area Health Service Levels in New South Wales. Australia, School of Public Health & Community Medicine, Faculty of Medicine, University of New South Wales, Australia. 2009

10. Rice NaPCS. Capitation and Risk Adjustment in Health Care Financing: An International Progress Report. The Milbank Quarterly. 2001;VL: 79PG: 81-113.

11. Diderichsen F. Resource Allocation for Health Equity: Issues and Methods Source: Health, Nutrition, and Population Discussion Papers. The International Bank for Reconstruction and Development / The World Bank. 2004.

12. Kephart GaYA. Need-Based Resource Allocation: Different Need Indicators, Different Results. BMC Health Serv Res. 2009;9:122.

13. Zere EaMMSMK. Equity in Health Care in Namibia: Developing a Needs-Based Resource Allocation Formula Using Principal Components Analysis. International Journal for Equity in Health. 2007;6(1):3.

14. McIntosh TaMDB-CCL-PPST. Population Health and Health System Reform: Needs-Based Funding for Health Services in Five Provinces. Canadian Political Science Review. 2010;4(1).

15. WHO. Formula funding of health services: Learning from experience in some developed countries. World Health Organization. 2008.

16. Team. P. Developing a Person-Based Resource Allocation Formula for Allocations to General Practices in England. Nuffield Trust for Research and Policy Studies in Health Services. 2009.

17. Ardal SaJBREL. Assessing Need, the Health Planner's Toolkit, Module 2, Health System Intelligence Project. 2006.

18. Hurley JHB BG, Woodward C. Developing need-based funding formulae using individual-level linked survey and utilization data: an application to home care services in Ontario. In Centre for Health Economics and Policy Analysis Working Paper Hamilton, Ontario, Canada: McMaster University. 2004.

19. The European health report. health and health systems Copenhagen, WHO Regional Office for Europe 2012.

20. Rashidian A. Health Care Financing and Its Challenges in Iran. IRANhealth: WHO-Iran Newsletter. 2010.

21. Gordon DaLSRSBS. Wales NHS Resource Allocation Review- Independent Report of the Research Team, University of Bristol, University of Cardiff, University of Lancaster. 2001.

22. Shamsi kooshki A AsM, Mostafavi H. Health care resources allocation: An ethical perspective. Medical Ethics. 2014;8(29):67-95.

23. Rice N SP. Approaches to capitation and risk adjustment in health care: An international survey. University of York The Centre for Health Economics. 1999.

24. Dixon JaSGMBRBDLS. A Person Based Formula for Allocating Commissioning Funds to General Practices in England. Development of a Statistical Model” Bmj 343: d6608. 2011.
25. Penno E AR, Gauld R. The State of the Art? An analysis of New Zealand’s Population Based Funding Formula for Health Services. Dunedin: Centre for Health Systems University of Otago. 2012.

26. Buck D DA. Improving the allocation of health resources in England. How to decide who gets what. The King’s Fund. 2013.

27. Brick A NA, O’Reilly J and Smith S. Resource Allocation, Financing and Sustainability in Health Care. Evidence for the Expert Group on Resource Allocation and Financing in the Health Sector. (Volume I). 2010.

28. Staines AaVOSM. Towards the Development of a Resource Allocation Model for Primary, Continuing and Community Care in the Health Services. Dublin, Dublin City University. 2010.

29. Nagy B. Improving the allocation of health care resources in Poland. World Health Organization. 2015.

30. Tidemand P SJ, and Bjorn Olsen H. Local Level Service Delivery, ecentralisation and Governance. A Comparative Study of Uganda, Kenya and Tanzania Education, Health and Agriculture Sectors. SYNTHESIS REPORT. 2008.

31. Briscombe B, Suneeta Sharma, and Margaret Saunders. Improving Resource Allocation in Kenya’s Public Health Sector. Washington, DC: Futures Group, Health Policy Initiative, Task Order 1. 2010.

32. Manthalu G aNK. Simple Versus Composite Indicators of Socioeconomic Status in Resource Allocation Formulae: The Case of the District Resource Allocation Formula in Malawi. BMC Health Serv Res. 2010;10(6).

33. McIntyre D aLA. Guidance on Using Needs Based Formulae and Gap Analysis in the Equitable Allocation of Health Care Resources in East and Southern Africa. EQUINET Discussion Paper 93, Health Economics Unit, School of Public Health and Family Medicine, University of Cape Town. 2015.

34. McIntyre D BLMF MFTMSS. Progress Towards Equitable Health Care Resource Allocation in East and Southern Africa, In the Regional Network for Equity in Health in east and southern Africa (EQUINET). 2007.

35. SIDA. RFa. Equity in Health Care in Namibia Towards Needs-Based Allocation Formula, Regional Network for Equity in Health in Southern Africa. 2005.

36. Khan A i. Resource allocation in the public health sector: Current status and future prospects. A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Master of Science in Health Studies and Gerontology Waterloo, Ontario, Canada. 2013.

37. Sutton M aEMMT. Geographical Differences in the Costs of Delivering Health Services in Scotland: Implications for the National Resource Allocation Health Economics Research Unit University of Aberdeen. 2006.

38. Andersson P-Å VEaDF. Modelling of Resource Allocation to Health Care Authorities in Stockholm County. Health Care Management Science. 2000;3(2).

39. Anell A GA, Merkur S. Sweden. Health system review. Health Systems in Transition. 2012;14(5):1-159.
40. Minja IASaG. Deprivation and the equitable allocation of health care resources to decentralised districts in Tanzania. Regional Network for Equity in Health in Southern Africa (EQUINET). 2005.
41. Pearson M. Allocating Public Resources for Health, Developing Pro-Poor Approaches, DFID Health Systems Resource Centre. 2002.
42. McIntyre DaMG. Geographic Patterns of Deprivation in South Africa: Informing Health Equity Analyses and Public Resource Allocation Strategies. Health Policy Plan. 2002;17 Suppl:30-9.
43. EQUINET. Deprivation and Resource Allocation: Methods for Small Area Research. Health Economics Unit, University of Cape Town and Centre for Health Policy, University of the Witwatersrand for the Regional Network for Equity in Health in Southern Africa. 2003.
44. Østerdali LPaHH. An Inquiry into Needs-Based Allocation of Health Care Resources Department of Economics, University of Copenhagen. 2006.
45. Starfield B. Basic Concepts in Population Health and Health Care. J Epidemiol Community Health. 2001;55(7):452-4.
46. Birch SaJE. Needs-Based Planning of Health Care: A Critical Appraisal of the Literature. I o C W P S Volume 91 Publisher McMaster University, 1991 Contributor McMaster University Centre for Health Economics and Policy Analysis, CHEPA. 1991.
47. Birch SaEHHSC. A Needs-Based Approach to Resource Allocation in Health Care. Canadian Public Policy. 1993;19:68-85.
48. Ministry of Health and Ministry of Cooperative aSW. The Family Physician Plan and Refferal System in Iran [Farsi]. 2011.
49. Oliveira MDaGB. Measuring Geographic Inequities in the Portuguese Health Care System: An Estimation of Hospital Care Needs. Health Policy 2003;66(3):277-93.
50. Martens PJaSSJ. Mortality Comparisons of First Nations to All Other Manitobans: A Provincial Population-Based Look at Health Inequalities by Region and Gender. Canadian Journal of Public Health Revue Canadienne de Sante Publique 96. 2005;Suppl 1:33-8.
51. Tang KKAPSR. Measuring Health Inequalities between Genders and Age Groups with Realization of Potential Life Years (Reply). Bulletin of the World Health Organization 85(9):681-7.
52. McMunn AaNB. Inequalities in Health at Older Ages: A Longitudinal Investigation of the Onset of Illness and Survival Effects in England. Age Ageing. 2009;38(2):181-7.
53. H BM. Inequities in health and health care between provinces of Iran: promoting equitable health care resource allocation. A thesis submitted for the degree of Doctor of Philosophy University of Salford 2012.
54. Okojie C. Gender Inequalities of Health in the Third World. Soc Sci Med. 1994;Nov;39(9):1237-47.
55. Mendoza-Sass RaJB. Health Services Utilization: A Systematic Review of Related Factors. Cad Saude Publica. 2001; Jul-Aug;17(4):819-32.
56. Layte RaBBBMSNORTTW. Projecting the Impact of Demographic Change on the Demand for and Delivery of Health Care in Ireland. Ireland. The Economic and Social Research Institute. 2009.
57. Smith PC. Resource Allocation and Purchasing in the Health Sector: The English Experience. Bull World Health Organ. 2008;86(11):884-8.

58. Ministry H. Achievements and Challenges in the Health System of Islamic Republic of Iran1979 - 2008 [Farsi]. The Council for Policy-Making in the Ministry of Health and Medical Education of Iran. 2008.

59. Blackwell DaMJSJ. Socioeconomic Status and Utilization of Health Care Services in Canada and the United States; Findings from a Binational Health Survey. Medical Care. 2009;47(11):1136-46.

60. Sutton M. Vertical and Horizontal Aspects of Socio-Economic Inequity in General Practitioner Contacts in Scotland. Health Econ. 2002;11(6):537-49.

61. Yousefi M AS, Arab M, Oliaeemanesh A. Methods of resource allocation based on needs in health systems, and exploring the current iranian resource allocation system. Hakim Research Journal. 2010;13(2):80-90.

62. Cengiz MaGASB. Partial Neuromuscular Blockage Levels with Mivacurium During Mastoidectomy Allows Intraoperative Facial Nerve Monitoring. ORL J Otorhinolaryngol Relat Spec 2008;70(4): 236-41.

63. Asante ADaBZTH. Equity in Resource Allocation for Health: A Comparative Study of the Ashanti and Northern Regions of Ghana. Health Policy. 2006 a;78(2-3):135-48.

64. Smith PC. Formula Funding of Health Services, World Health Organization. 2008a.

65. Vallejo-Torres LaMC-HDLRS. Can Regional Resource Shares Be Based Only on Prevalence Data? An Empirical Investigation of the Proportionality Assumption. Social Science & Medicine. 2009;69(11):1634-42.

66. Mossialos EaAD. Funding Health Care : Options for Europe. Buckingham, Open University Press. 2002.

67. Sepehrdoust H. Eliminating Health Disparities Call to Action in Iran. The International Journal of Applied Economics and Finance. 2009;3(2):22-34.

68. Ahmad Kiadaliri AaNH-B, 39. Geographic Distribution of Need and Access to Health Care in Rural Population: An Ecological Study in Iran. International Journal for Equity in Health. 2011;10(1):39.

69. Marmot MaFBAHT. Closing the Gap in a Generation: Health Equity through Action on the Social Determinants of Health, the Commission on Social Determinants of Health, WHO. 2008.

70. Karunakaran EaCAB. Mechanisms of Bacillus Cereus Biofilm Formation: An Investigation of the Physicochemical Characteristics of Cell Surfaces and Extracellular Proteins. Appl Microbiol Biotechnol. 2011;89(4):1161-75.

71. Braveman P. Health Disparities and Health Equity- Concepts and Measurement. Annu Rev Public Health 2006. 2005;27:167–94.

72. Hartley D. Rural Health Disparities, Population Health, and Rural Culture. Am J Public Health. 2004.

73. Smith LCaTRN. Why Is Child Malnutrition Lower in Urban Than in Rural Areas? Evidence from 36 Developing Countries. World Development. 2005;33(8):1285-305.
Table

Table 1- Indicators of need-based financial resource allocation in the world health systems
Country	Micro indicators of financial resource allocation	Macro indicators of financial resource allocation	
Alberta, Canada (9, 10, 21-23)	Age; Sex; Ethnicity; Welfare status	Remoteness; Cross-boundary flows; Funding loss protection; Cost variations	
Belgium (21, 23)	Age; Sex; Disability; Unemployment	Urbanization; Mortality	
England (9, 11, 21, 23-28)	Age (Sex); Additional Need	Market Forces Factor (staff, land & building costs); Unmet Need; Growth Area Adjustment (rurality, scale economies & case-mix factors)	
Finland (21, 23)	Age; Disability	Archipelago; Remoteness; Tax base	
France (21, 23)	Age	Phased implementation	
Germany (21, 23, 29)	Age; Sex; Invalidity; Morbidity; Sick pay	Income base	
Israel (21, 23)	Age	_	
Italy (21, 23)	Age; Sex	Mortality; Damping mechanism	
Kenya (30, 31)	_	Infrastructure; Under-5 population; Poverty rate; AIDS cases; Females of reproductive age (15 to 49); Area of district (sq. km.)	
Malawi (32)	population size; asset indices	population density	
Mozambique (33)	population size; demographic composition; infant mortality	population density	
Namibia (13, 33-35)	population size (weighted by the demographic composition); deprivation index	mortality levels	
Netherlands (21, 23, 25, 29)	Age-Sex; Source of Income; Region; Welfare/Disability status; Pharmacy Cost Groups; Diagnosis Cost Groups	Urbanization; Retrospective Adjustments; Income base	
New South Wales, Australia (9, 21-23, 25, 28)	Age; Sex; Health Needs Index (HNI); Unavoidable Costs; Unmet need; Indigenous Weight; Homelessness	Teaching and Research; Geographical Adjustment; State-wide Services; Cross-boundary flows; Substitution	
New Zealand (9, 21-23, 25, 28)	Age; Sex; Deprivation(Welfare status); Ethnicity	Rurality; Unmet Need; Overseas Visitors; Phased implementation	
Northern	Age; Sex	Mortality; Elderly living alone; Welfare status;	
Country	(Year)	Variables	Cost Category
------------------	--------	---	--
Ireland	(23, 28)	Low birth weight; Rural costs adjustment	
Norway	(21, 23)	Age; Sex; Marital status	Mortality; Elderly living alone; Tax base
Ontario, Canada	(25, 36)	Age; Refined Clinical Group; Socioeconomic Status; Rurality	Market Share; Unit Costs; Population Growth
Scotland	(9, 21, 23, 25, 28, 37)	Age- Sex; Morbidity and Life Circumstances; Unmet Need	Excess Costs (Remoteness/Rural Cost...)
South Africa	(11, 31, 34)	population size; deprivation index	
Spain	(21, 23)	-	Cross-boundary flows; Declining population adjustment
Stockholm, Sweden	(9, 11, 21-23, 25, 28, 29, 38, 39)	Age; Cohabitation and marital status; Housing Tenure; Educational Level; Employment Status; Urbanization;	Costly Diagnosis Groups; Phased implementation
Switzerland	(21, 23)	Age; Sex; Region	Income base
Tanzania	(31, 33, 40)	population size (Age/Sex); under 5 mortality rate; Rurality	poverty level
Uganda	(11, 41)	population (age-sex); Human Development Index; per capita donor and NGO spending	security situation
USA (Veterans)	(21-23)	Dependency (x2)	Labor costs; Phased implementation
USA (Medicare + choice)	(21-23)	Age; Sex; Disability; Welfare status; Previous in-patient diagnosis; county of residence	
Wales	(21, 23, 28)	Age/Sex; Standardized mortality ratio; Additional Need	Extra Costs (Road length, Mean travel Distance...)
Zambia	(33, 34)	population size; deprivation index	burden of disease
Zimbabwe	(8, 33, 34)	population size; socio-economic status	morbidity and mortality rates; service coverage