False vacuum energy dominated inflation with large r and the importance of κ_S

Stefan Antusch,a,b Francesco Cefalà,a David Noldea and Stefano Orania

aDepartment of Physics, University of Basel, Klingelbergstr. 82, Basel, CH-4056 Switzerland
bMax-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, München, D-80805 Germany
E-mail: stefan.antusch@unibas.ch, f.cefalà@unibas.ch, david.nolde@unibas.ch, stefano.orani@unibas.ch

Received June 12, 2014
Revised August 13, 2014
Accepted September 6, 2014
Published October 9, 2014

Abstract. We investigate to which extent and under which circumstances false vacuum energy (V_0) dominated slow-roll inflation is compatible with a large tensor-to-scalar ratio $r = \mathcal{O}(0.1)$, as indicated by the recent BICEP2 measurement. With V_0 we refer to a constant contribution to the inflaton potential, present before a phase transition takes place and absent in the true vacuum of the theory, like e.g. in hybrid inflation. Based on model-independent considerations, we derive an upper bound on the possible amount of V_0 domination and highlight the importance of higher-order runnings of the scalar spectral index (α_s) in order to realise scenarios of V_0 dominated inflation. We study the conditions for V_0 domination explicitly with an inflaton potential reconstruction around the inflaton field value 50 e-folds before the end of inflation, taking into account the present observational data. To this end, we provide the up-to-date parameter constraints within ΛCDM + $r + \alpha_s + \kappa_s$ using the cosmological parameter estimation code Monte Python together with the Boltzmann code CLASS.

Keywords: inflation, physics of the early universe, cosmological phase transitions

ArXiv ePrint: 1406.1424
1 Introduction

Recently, the BICEP2 collaboration reported on a measurement of the B-mode polarization of the CMB [1], which may be interpreted as primordial gravity waves due to vacuum fluctuations of the metric during inflation, corresponding to a comparatively large tensor-to-scalar ratio \(r \sim 0.2 \). Although it is still too early to rule out alternative explanations such as primordial gravity waves from other sources [2–4], topological defects [5, 6], primordial magnetic fields [7], or large foregrounds [8, 9], it is worthwhile to study the implications such a large \(r = \mathcal{O}(0.1) \) would have.

An immediate consequence would be that this large \(r \) fixes the energy scale of single field slow-roll inflation to be

\[
E_s = (V_s)^{1/4} = \left(\frac{3}{2} \pi^2 A_s r m_{\text{pl}}^4 \right)^{1/4} \simeq 9 \times 10^{-3} m_{\text{pl}} \simeq 2 \times 10^{16} \text{ GeV},
\]

where \(A_s \sim 2.3 \times 10^{-9} \) is the amplitude of the primordial scalar perturbations. Interestingly, this energy scale is the same as the scale \(M_{\text{GUT}} \) where the couplings of the gauge interactions of the Standard Model (SM) of particle physics meet (when the minimal supersymmetric extension of the SM is considered), and where they could thus be unified in the context of a Grand Unified Theory (GUT).
Both scales, \((V_*)^{1/4}\) and \(M_{\text{GUT}}\), may be the same just by coincidence, but there might also be a deeper physics reason behind it: if inflation was connected to a phase transition in particle physics, especially to the spontaneous breaking of the gauge symmetry of a GUT to the one of the SM, then the vacuum energy \(V_0\) present before this symmetry breaking, to which we refer as the false vacuum energy \(V_0\), might be identified with \(M_{\text{GUT}}\). This \(V_0\) would contribute to the total vacuum energy \(V_*\) at about 50 e-folds before the end of inflation.

However, in addition to \(V_0\), there is also a contribution to \(V_*\) from the field-dependent part of the potential, which we name \(\tilde{V}(\phi)\) with \(\phi\) being the inflaton field. In this paper, we are interested in the situation in which the \(V_0\) contribution to \(V_*\) dominates over the one from \(\tilde{V}(\phi)\), which would allow to explain the origin of the measured \(V_*\) from a particle physics phase transition. However, this is not so easy to achieve: large \(r = \mathcal{O}(0.1)\) implies that the slope of the inflaton potential is comparatively large (at least at \(\phi_*\), 50 e-folds before the end of inflation). This, together with the fact that (assuming slow roll inflation) the inflaton moves \(\mathcal{O}(m_{\text{pl}})\) during inflation, suggests that the vacuum energy contribution from \(\tilde{V}(\phi)\) should also be sizeable.

Models of inflation connected to particle physics phase transitions, such as hybrid inflation, trivibred inflation or models of plateau inflation have been studied in detail in the literature [10–12]. However, they are usually discussed with small inflaton field excursions \(\Delta \phi\). In these scenarios \(V_0\) generically dominates during inflation, but with the small \(\Delta \phi\) they only feature a small tensor-to-scalar ratio \(r \ll 0.1\). The question how large \(r = \mathcal{O}(0.1)\) may be obtained in specific models of hybrid inflation has been discussed in previous studies (see e.g. [13–17]).

In this paper, we investigate to which extent and under which circumstances \(V_0\) dominated inflation is compatible with a large tensor-to-scalar ratio \(r = \mathcal{O}(0.1)\) in a model-independent way. The paper is organised as follows: in section 2 we clarify our notation. section 3 discusses the relation between \(V_0\) domination, relatively small inflaton field excursions \(\Delta \phi\), and large runnings of the spectral index \(n_s(k)\). Then in section 4 we derive an upper bound for the maximum possible \(V_0\) domination in slow-roll inflation. In section 5 we study how the scale-dependence of the spectral index affects the amount of \(V_0\) domination explicitly with a reconstruction of the potential around the inflaton field value at horizon exit. Finally, in section 6 we summarise and conclude.

2 Notations and slow-roll formulas

Throughout this paper, we use natural units \(\hbar = c = m_{\text{pl}} = 1/\sqrt{8\pi G} = 1\), though we sometimes write the reduced Planck \(m_{\text{pl}}\) explicitly to emphasise the mass dimension in some formulas.

The first four slow-roll parameters are defined as [18]

\[
\varepsilon = \frac{1}{2} \left(\frac{V'}{V} \right)^2, \tag{2.1a}
\]

\[
\eta = \frac{V''}{V}, \tag{2.1b}
\]

\[
\xi^2 = \frac{V'V'''}{V^2}, \tag{2.1c}
\]

\[
\sigma^3 = \frac{(V')^2V'''}{V^3}, \tag{2.1d}
\]

\[-2-\]
where primes denote derivatives with respect to ϕ. One can also define higher-order slow-roll parameters, but those will not be used explicitly in what follows.

The primordial spectrum is generated around $N_e \sim 50$ e-folds before the end of inflation; we indicate variables evaluated at that time by a subscript \ast. Analogously, variables evaluated at the end of inflation are denoted by a subscript e.

It is customary to write the spectrum of primordial curvature perturbations $P_s(k)$ in terms of an amplitude A_s and a spectral index $n_s(k)$:

\begin{align}
A_s &= P_s(k_s), \quad (2.2a) \\
n_s(k) &= 1 + \frac{d\ln P_s}{d\ln k}, \quad (2.2b)
\end{align}

with an arbitrary pivot scale k_s, which we choose as $k_s = 0.05$ Mpc$^{-1}$. The spectral index $n_s(k)$ is often expanded as a power series in $\ln(k)$, so that the spectrum $P_s(k)$ can be written as

\begin{equation}
\ln P_s = \ln A_s + (n_s - 1) \left(\ln \frac{k}{k_s} \right) + \frac{\alpha_s}{2} \left(\ln \frac{k}{k_s} \right)^2 + \frac{\kappa_s}{6} \left(\ln \frac{k}{k_s} \right)^3 + \ldots, \quad (2.3)
\end{equation}

with the definitions

\begin{equation}
n_s \equiv n_s(k_s), \quad \alpha_s \equiv \frac{dn_s}{d\ln k} \bigg|_{k_s}, \quad \kappa_s \equiv \frac{d^2n_s}{(d\ln k)^2} \bigg|_{k_s}. \quad (2.4)
\end{equation}

α_s is called the running of the spectral index and κ_s is called the running of the running. Note that throughout this paper, n_s without an argument refers to the constant term $n_s = n_s(k_s)$, while $n_s(k)$ means the full function as defined in eq. (2.2b).

Analogously, one can define an amplitude A_t and a spectral index n_t for the tensor power spectrum $P_t(k)$. However, one usually uses the tensor-to-scalar ratio $r = A_t/A_s$ instead of the tensor amplitude.

In the slow-roll approximation, the primordial spectrum to leading order in the slow-roll parameters can be calculated as $[19, 20]$\(^1\)

\begin{align}
r &= 16\varepsilon_s, \quad (2.5a) \\
n_s &= 1 - 6\varepsilon_s + 2\eta_s + 2q_1\xi_s^2 + 2q_2\sigma_s^3 + \ldots, \quad (2.5b) \\
\alpha_s &= -2\xi_s^2 - 2q_1\sigma_s^3 + \ldots, \quad (2.5c) \\
\kappa_s &= 2\sigma_s^3 + \ldots, \quad (2.5d)
\end{align}

where $q_1 \simeq 1.063$, $q_2 \simeq 0.209$, and the dots denote slow-roll parameters involving higher derivatives of $V(\phi)$.

As we can always redefine our inflaton field as $\phi \rightarrow \pm (\phi - \phi_s)$, we can choose the sign $V'(\phi) < 0$ during inflation and $\phi_s = 0$. Together, these imply that we always have $\phi \geq 0$.

\(^1\)Eqs. (2.5a)–(2.5d) assume Bunch-Davies initial conditions. For a discussion of non-Bunch-Davies initial conditions, see e.g. [21–24].
To leading order in the slow-roll parameters, one can then write the slow-roll equation of motion as

\[\frac{dN}{d\phi} = \frac{-V(\phi)}{V'(\phi)} = \sqrt{\frac{T}{2\epsilon}}. \]

(2.6)

We also need a precise definition of false vacuum energy domination during inflation, for which we write the inflaton potential as

\[V(\phi) = V_0 + \tilde{V}(\phi), \]

(2.7)

with \(\min(\tilde{V}) = 0 \), where \(V_0 \) is the false vacuum energy related to some GUT-scale phase transition which terminates inflation in the spirit of hybrid inflation. Throughout this paper, false vacuum energy domination refers to the condition that \(\tilde{V} \ll V_0 \) throughout inflation, or equivalently \(V \simeq V_0 \simeq V_\ast \).

3 Why false vacuum energy domination with \(r \gg 0.1 \) implies small \(\Delta \phi \) and a scale-dependent spectral index \(n_s(k) \)

In this section, we want to discuss why combining \(V_0 \) domination with a large tensor-to-scalar ratio \(r \gg 0.1 \) requires relatively small field excursions \(\Delta \phi \) and a non-constant “running” spectral index \(n_s(k) \).

The basis of our discussion is the observation that a large \(r \) requires the inflaton potential \(V(\phi) \) to be steep at \(\phi_\ast \), while \(V_0 \) domination requires a potential which is very flat during inflation. In order to reconcile these conflicting requirements, we must start with a steep potential which very quickly becomes flat during inflation (see figure 1). The rapid change in \(V'(\phi) \) is then the source of the large running of the spectral index, while the flatness of the potential implies that the inflaton field range takes relatively small values.

3.1 Flat potential: small \(\epsilon(\phi) \)

We start by formalizing our earlier statement that \(V_0 \) domination requires a very flat potential. Using eqs. (2.1a) and (2.6), we can derive the rate of change of the potential energy \(V \) per \(\epsilon \)-fold of slow-roll inflation:

\[\frac{dV}{dN} = \frac{dV}{d\phi} \frac{d\phi}{dN} = -2V \epsilon. \]

(3.1)

The false vacuum energy \(V_0 \) is constant during inflation, so only the supposedly negligible inflaton energy density \(\tilde{V} \) can contribute to \(dV/dN \). Therefore, \(V \simeq V_0 \) requires that \(dV/dN \) must be small, and therefore \(\epsilon \) must be small.

However, the large tensor-to-scalar ratio \(r \gtrsim 0.1 \) requires a large \(\epsilon_\ast = r/16 \). Such a value of \(\epsilon \) is much too large for \(V_0 \) domination as one can see from eq. (3.1). If we had \(\epsilon(\phi) \sim \epsilon_\ast \) throughout inflation, the vacuum energy \(V_\ast \) at the end of inflation would be \(V_\ast / V_\ast \lesssim 50\% \), so \(V_0 \) (which is constant during inflation) could not have dominated. Therefore, it is necessary that \(\epsilon(\phi) \) quickly decreases during inflation from the large initial \(\epsilon_\ast \). The faster this decrease happens, the more \(V_0 \) dominated inflation can be.

\(^{2}\text{Eq. (2.6) is valid for small slow-roll parameters } \epsilon \ll 1 \text{ (so that the potential energy dominates over the kinetic energy) and } \eta \ll 1 \text{ (so that } \phi \text{ can be neglected during inflation), if the initial velocity } \dot{\phi}_\ast \text{ is close to the inflationary attractor solution given by eq. (2.6). We assume that these conditions are always satisfied during the first } N_{\text{obs}} \sim 8 \epsilon \text{-folds of inflation, so that eq. (2.6) is a good approximation to the full Friedmann equations.} \)
Figure 1. Left: schematic form of the inflaton potential $V(\phi)$ that can lead to $r \gtrsim 0.1$ with a potential dominated by a false vacuum energy V_0. The potential must be steep at ϕ_* due to $r = 16 \varepsilon_*$ and then quickly become flat to generate many ε-folds while staying above the (constant) false vacuum energy V_0. Inflation is assumed to end at ϕ_e due to a phase transition. Right: illustration of a potential where such a phase transition happens at ϕ_e (dashed line) due to an instability in a waterfall field ψ as in hybrid inflation.

3.2 Scale-dependent spectral index $n_s(k)$

Such a fast change in $\varepsilon(\phi)$, and therefore $V''(\phi)$, requires that $V''(\phi)$ is large. However, the observed spectral index $n_s \simeq 0.96$ [25] requires a small $V'' \propto \eta_* \sim 10^{-2}$, as one can see from eq. (2.5b).\(^3\) To get a large $V''(\phi)$, it is therefore necessary to have large higher derivatives of $V(\phi)$, and therefore large higher-order slow-roll parameters like ξ^2 and σ^3 according to eqs. (2.1c) and (2.1d).

The higher-order slow-roll parameters are related to the runnings of the spectral index due to eqs. (2.5c) and (2.5d), so the requirement to have a strongly varying ε implies large runnings of the spectral index. Note that it is not strictly necessary that α_s and/or κ_s are large: one could instead use higher-order runnings related to higher derivatives of V. However, one cannot have V_0 domination with a truly constant spectral index $n_s(k)$.

The scale dependence of the spectral index is constrained from observations (see appendix A), and this limits the rate of change of η and ε. Also, slow-roll inflation requires that $\eta(\phi) \ll 1$ along the whole slow-roll trajectory, so η cannot be increased to arbitrarily high values. For these reasons, some tension between large r and V_0 domination remains, and the maximum V_0/V_* for any given r is limited as we will discuss in section 4.

3.3 Preference for small $\Delta \phi$

Another consequence of the decreasing $\varepsilon(\phi)$ is that the inflaton field range $\Delta \phi = |\phi_* - \phi_e|$ is relatively small, because $d\phi/dN \simeq \sqrt{2 \varepsilon}$ from eq. (2.6). Because small ε is the main condition both for a small inflaton field range and for V_0 domination (see eq. (3.1)), larger V_0/V_* is related to smaller field excursions.

\(^3\)In principle, η_* can be larger if the higher-order slow-roll parameters like ξ^2 and σ^3 are large, so that they cancel the contribution of a large η_* to n_s up to $O(10^{-2})$. However, this would imply that $n_s(k)$ has a strong running according to eqs. (2.5c) and (2.5d), so in this case the conclusions of this section remain unchanged.
Using eq. (2.6) and $\varepsilon(\phi) \ll \varepsilon_*$ as required by V_0 domination, we find that

$$
\Delta \phi = \int dN \frac{d\phi}{dN} = \int dN \sqrt{2\varepsilon} \\
\ll \int dN \sqrt{2\varepsilon_*} = N_* \sqrt{\frac{r}{8}} \approx (6 m_{pl}) \sqrt{\frac{r}{0.1}}.
$$

(3.2)

This explains why requiring large $r \gtrsim 0.1$ and V_0 domination leads to similar conclusions as requiring large r and relatively small field values $\Delta \phi \lesssim m_{pl}$, for which it has been shown in earlier works [16, 26, 27] that large running parameters α_s and κ_s are very helpful.

4 Estimate for upper bound on V_0/V_*

In this section, we want to estimate the maximum possible degree of vacuum energy domination. A useful measure for this is the fraction of energy that is contained in the inflaton field’s potential:

$$
\frac{\Delta V}{V_0} = \frac{V_* - V_0}{V_0}.
$$

(4.1)

We can perform a simple estimate of ΔV that accounts for the two basic limiting factors:

1. Initially, η is negligibly small, and it takes a while until it increases to significant values, because V''' and higher derivatives are limited by observational constraints on the scale dependence of the primordial spectrum.

2. Slow-roll inflation requires $\eta(\phi) \ll 1$.

For a rough estimate, we can account for the first limitation by assuming that $\eta = 0$ for the first few e-folds,\(^4\) after which we set it to a large $\eta = \eta_2 < 1$.

4.1 First stage: $\eta \sim 0$

During the first stage, where η is still negligible, the potential energy changes by

$$
\frac{(\Delta V)_1}{V_0} = \int d\phi \frac{V''(\phi)}{V_0} \simeq (\Delta \phi)_1 \sqrt{2\varepsilon_*} = (\Delta \phi)_1 \sqrt{\frac{r}{8}} \sim \frac{(\Delta \phi)_1}{10},
$$

(4.2)

where $(\Delta \phi)_1$ is the field range over which η remains small. Due to the CMB constraints on the running, one typically finds $(\Delta \phi)_1 \gtrsim O(10^{-1})$. Therefore, the potential energy usually changes by at least a few percent during the first stage.

\(^4\)One can easily see that a small initial $\eta_* \sim 10^{-2}$ can be neglected, as going from $|V'_*/V_*| = \sqrt{1/8} \sim 10^{-1}$ to a flat region with $V' \sim 0$ would require roughly $\Delta \phi \sim |V'_*/V''_*| \sim 10$. η_* therefore cannot flatten the potential significantly within the small field range $\Delta \phi \ll 6$ required for V_0 domination. There is a caveat though: for sufficiently large ζ_*^s and σ^s_3 (and therefore large α_s and κ_s), the initial value of η_* can be larger due to a cancellation in eq. (2.5b). However, due to the constraints on α_s and κ_s, this effect cannot remove the first stage completely.
4.2 Second stage: $\eta = \eta_2$

After switching on a large $\eta = \eta_2$ at $\phi = \phi_2$, the potential quickly becomes flat, and inflation ends at ϕ_e in the very flat region (see figure 1). We can estimate ϕ_e as the field value where $\varepsilon(\phi_e) = 0$.

For constant $\eta = \eta_2$ and $V \simeq V_0$, $\varepsilon(\phi)$ is given as

$$\sqrt{2\varepsilon(\phi)} = -\frac{V'(\phi)}{V} \simeq -\frac{V_0'}{V_0} (\phi - \phi_2) \simeq \sqrt{2\varepsilon_*} - \eta_2 (\phi - \phi_2).$$

(4.3)

The potential becomes flat ($\varepsilon = 0$) at

$$\phi_e - \phi_2 = \frac{\sqrt{2\varepsilon_*}}{\eta_2} = \frac{1}{\eta_2} \sqrt{\frac{r}{8}}.$$

(4.4)

Using eq. (4.3), we find for ΔV

$$\frac{(\Delta V)^2}{V_0} = \int_{\phi_2}^{\phi_e} d\phi \frac{V'(\phi)}{V_0} \simeq \int_{0}^{\phi_e} d\phi \left(\sqrt{2\varepsilon_*} - \eta_2 \phi \right) = \left[\sqrt{\frac{r}{8}} \phi - \frac{\eta_2}{2} \phi^2 \right]_0^{\phi_e-\phi_2}$$

$$= \frac{r}{16\eta_2} \sim \frac{10^{-2}}{\eta_2}.$$

(4.5)

As slow-roll inflation requires η_2 sufficiently smaller than 1, we find that $\Delta V/V_0$ must be at least a few percent.

4.3 Conclusion for ΔV

From the above calculations, we see that while slow-rolling down the steeper part of the potential, the vacuum energy typically changes at least by a few percent. We can deduce a hard upper bound using that the contribution from stage 2 is bounded by $\eta < 1$:

$$\frac{V_0}{V_*} < 1 - \frac{r}{16} \sim 99\%.$$

(4.6)

Achieving the maximum possible V_0/V_* requires

1. large higher derivatives of V, and therefore a strong scale dependence of the spectral index, to quickly increase η and minimise the contribution from stage 1, and

2. a large maximum slow-roll parameter η to minimise the contribution from stage 2.

Both of these require large slow-roll parameters, so for models which push V_0/V_* to its limits, one may want to consider higher-order corrections in the slow-roll expansion. It is not possible to actually saturate the hard bound (4.6) without breaking slow-roll due to $\eta \sim 1$ already during the first few e-folds after $\phi = \phi_*$.

Note that the arguments in this section are applicable also in the presence of higher-order slow-roll parameters (higher derivatives of $V(\phi)$), particularly the contribution from stage 2, so we expect that our estimate in eq. (4.6) remains valid for any slow-roll potential. It is also straightforward to generalise eq. (4.5) to multi-field models by defining ε and η in terms of derivatives along the inflationary trajectory, so $\Delta V/V_0$ must be at least a few percent even in multi-field models of slow-roll inflation.

5Because the potential is flat near ϕ_e, ΔV is insensitive to the exact value of ϕ_e, and a rough estimate of ϕ_e is sufficient.
5 Potential reconstruction around ϕ_*

In order to analyse the effect of a running spectral index $n_s(k)$, we reconstruct the potential $V(\phi)$ around its value at horizon crossing V_* in terms of the spectral index n_s, its running α_s and its running of the running κ_s (for other works on potential reconstruction see [26–29]). We then calculate the upper bound on the value of the potential at the end of inflation $V_0 \gtrsim V_*$.

Our strategy is based on the fact that cosmological observations can reliably constrain the primordial spectrum only on scales $k \leq k_{NL}$ for which the evolution of perturbations is linear since recombination. On the other end, scales larger than the observable universe are unobservable. Therefore, cosmological observations constrain scales $k_{\text{obs}} \in [k_0, k_{NL}]$, where k_0 denotes the largest observable scale. The number of e-folds of inflation necessary for those scales to exit the horizon is

$$N_{\text{obs}} = \ln \frac{k_{NL}}{k_0} \sim 8.$$ (5.1)

After these initial N_{obs} e-folds, the inflationary potential is unconstrained. The value of the potential at N_{obs}, V_{obs}, obeys the hierarchy $V_{\text{obs}} > V_* > V_0$. In what follows we derive upper bounds on V_{obs}, which we will then translate into upper bounds on V_0.

Henceforth we assume that, during the first N_{obs} e-folds, higher-order runnings beyond κ_s are zero. This implies that the potential around ϕ_* can be written as

$$V = V_* \left[1 + \frac{V'}{V_\star} \phi + \frac{1}{2} \frac{V''}{V_\star} \phi^2 + \frac{1}{6} \frac{V'''}{V_\star} \phi^3 + \frac{1}{24} \frac{V''''}{V_\star} \phi^4 \right].$$ (5.2)

Expressing the derivatives of the potential in terms of the slow-roll parameters (2.1a)–(2.1d), we find

$$V = V_* \left[1 - \sqrt{2} \varepsilon_s \phi + \frac{1}{2} \eta_s \phi^2 - \frac{1}{6} \xi_s^2 \phi^3 + \frac{1}{24} \sigma_s^3 \phi^4 \right].$$ (5.3)

The slow-roll parameters (2.1a)–(2.1d) at horizon crossing are related to the observables r, n_s, α_s and κ_s by (2.5a)–(2.5d) allowing us to express the potential (5.3) solely as a function of these observables:

$$\frac{V}{V_*} = 1 - \sqrt{8} \phi + \left[\frac{n_s - 1}{4} + \frac{q_1}{4} \alpha_s + \frac{q_1^2 - q_2}{4} \kappa_s \right] \phi^2 + \sqrt{8} \frac{\alpha_s + q_1 \kappa_s}{12} \phi^3 + \frac{\kappa_s}{6r} \phi^4.$$ (5.4)

The function (5.4) guarantees that inflation satisfies all constraints on the observables. Indeed, as we argued above, after the first N_{obs} e-folds cosmological observations do not constrain the inflationary potential. Therefore we do not specify the potential responsible for the remaining $N_c - N_{\text{obs}}$ e-folds of inflation but derive an upper bound on V_e given by continuations of (5.4) that maximise V_0 domination.

Requiring that the inflaton rolls classically throughout inflation and that primordial black holes are not produced too abundantly near the end of inflation implies that ε has to be larger than [30, 31]

$$\varepsilon_{\text{min}} \sim 10^{-1} V.$$ (5.5)

To derive the upper bound on V_0, we consider the case in which the transition to small ε happens immediately after the first N_{obs} e-folds, violating slow-roll. Therefore, during the last $N_c - N_{\text{obs}}$ e-folds, the minimal change in the potential is

$$\frac{\Delta V}{V_*} \sim (N_c - N_{\text{obs}}) 2 \varepsilon_{\text{min}} \sim O(10^{-8}),$$ (5.6)
Figure 2. V_{obs}/V_* as a function of α_s and κ_s, for $r = 0.1$ (left), and $r = 0.2$ (right), using $n_s = 0.96$. The plots were obtained by evaluating the potential (5.4) after $N_{\text{obs}} = 8$ e-folds of inflation. One can see that a larger amount of false vacuum energy domination can be obtained for larger κ_s and α_s. The parameter constraints denoted by the black (68% CL) and grey (95% CL) ellipses were obtained using the Planck + BICEP2 + BAO data (cf. appendix A).

which is negligible compared to the $\mathcal{O}(10^{-2})$ change during the first N_{obs} e-folds. Therefore, although $V_{\text{obs}} > V_0 > V_e$, upper bounds on V_{obs} are effectively equivalent to upper bounds on V_0.

5.1 Numerical analysis

In order to obtain an upper bound for the maximum possible false vacuum energy domination, we have evaluated the potential (5.4) after N_{obs} e-folds, by scanning inflationary trajectories for the ranges

$$r = 0.1 \quad \text{and} \quad r = 0.2,$$

$$n_s = 0.96,$$

$$-0.060 \leq \alpha_s \leq 0.045,$$

$$-0.025 \leq \kappa_s \leq 0.090.$$

(5.7)

Figure 2 shows V_{obs}/V_* as a function of α_s and κ_s for $r = 0.1$ (left) and $r = 0.2$ (right). The corresponding field excursions are illustrated in figure 3 in terms of m_{pl} and the value of ε_{obs} is shown in figure 4. The parameter constraints on α_s and κ_s are given by the grey (95% CL) and black (68% CL) ellipses (cf. appendix A).

A first view on figure 2 makes clear that a smaller value of r results in an overall increase of the maximum V_{obs}/V_*. Moreover, by comparing figure 2 with figure 3 one can see that larger V_{obs}/V_* corresponds to smaller field excursions, just as expected from our analysis in section 3.

A closer look at the plots in figure 2 reveals the importance of κ_s within the scope of a V_0 dominated scenario. For no running, i.e. $\alpha_s = \kappa_s = 0$ we find that $V_{\text{obs}}/V_* \lesssim 0.89$, for $r = 0.1$ and $V_{\text{obs}}/V_* \lesssim 0.80$ for $r = 0.2$. However, note that this point already lies outside the 95% CL region for $r = 0.2$. Taking $\kappa_s = 0$ and $\alpha_s < 0$ results either in less V_0 domination.
Figure 3. φ_{obs}/m_{pl} as a function of α_s and κ_s, for r = 0.1 (left), and r = 0.2 (right), using n_s = 0.96. Here φ_{obs} satisfies the equation \(\int_0^{\phi_{obs}} d\phi V'/V = N_{obs} \) for the potential (5.4). The plots clearly show what we have discussed in section 3, namely that a larger amount of V_0 domination implies that the first N_{obs} = 8 e-folds of inflation are obtained within smaller field excursions. The parameter constraints denoted by the black (68% CL) and grey (95% CL) ellipses were obtained using the Planck + BICEP2 + BAO data (cf. appendix A).

Figure 4. ε_{obs} ≡ ε(\phi_{obs}) for r = 0.1 (left) and r = 0.2 (right) with n_s = 0.96. For large and positive α_s and κ_s, ε_{obs} decreases to very small values during the first N_{obs} = 8 e-folds of inflation whereas for small κ_s it remains large. The parameter constraints denoted by the black (68% CL) and grey (95% CL) ellipses were obtained using the Planck + BICEP2 + BAO data (cf. appendix A).

or in inflation ending before the required number of e-folds N_{obs} is achieved. The inflationary trajectories for which κ_s = 0 and α_s > 0 clearly lie outside the 95% CL.

From the potential (5.4) one can see that the the spectral index only affects the value of V''_s, where larger values of n_s correspond to larger V''_s, which in turn leads to an overall increase in V_{obs}. However, we have found that the effect of n_s on V_{obs} is in general small, except for the lower-left region of figure 2, where V_{obs} is relatively small either way.
5.2 On the relation between V_{obs}, V_e and V_0

In figure 2 we show upper bounds on V_{obs}/V_e. However, we are ultimately interested in the bounds on V_0/V_e. The difference between the two bounds is related to the value of ε_{obs} after the first N_{obs} e-folds of inflation. Figure 4 illustrates that ε decreases the most for large and positive α_s and κ_s while it remains large for small κ_s.

Trajectories for which ε decreases to very small values during the first N_{obs} e-folds can remain within the slow-roll approximation for the last $N_e - N_{\text{obs}}$ e-folds of inflation without losing percentages of false vacuum energy domination. Indeed, in the upper right corner of figure 4 we see that $\varepsilon_{\text{obs}} \sim O(10^{-4})$. Considering the continuation of the potential that evolves towards flatness as fast as possible within the slow-roll approximation, together with the fact that $V_0 \leq V_e$ can be arbitrarily close to V_e, implies that the bounds on V_{obs}/V_e are equivalent to bounds on V_0/V_e at the percent level.

On the other hand, trajectories with small κ_s for which ε_{obs} is large lose at least a further few percent of potential energy if slow-roll remains valid throughout inflation, that is $V_0/V_e < 0.99 V_{\text{obs}}/V_e$, as discussed in section 4. However, if slow-roll is violated and ε abruptly decreases to very small values $\varepsilon \sim \varepsilon_{\min}$ immediately after the first N_{obs} e-folds of inflation, the bounds on V_{obs}/V_e are effectively equivalent to bounds on V_0/V_e even for small κ_s.

5.3 Effects of higher-order runnings beyond κ_s

Our reconstruction of the inflaton potential (5.4) is based on the assumption that higher-order runnings beyond κ_s, i.e. all $[(d/d\ln k)^n n_s(k)]_{k=\kappa_s}$ with $n > 2$, are negligible throughout the first N_{obs} e-folds. As such higher-order runnings are proportional to the $(n+2)$-th derivatives of the inflaton potential $V(\phi)$, this assumption ensures that the inflaton potential can be approximated by a fourth-order polynomial in $(\phi - \phi_*)$. If one allows for higher-order runnings beyond κ_s, higher-order terms $(\phi - \phi_*)^{n+2}$ with $n > 2$ need to be taken into account.

As we discussed in section 3, to maximise V_0/V_e it is necessary that V' changes rapidly from its large value at horizon crossing to a small value. This change has to be driven by higher-order derivatives of the potential, be it the third and fourth only as in (5.4) or higher-order derivatives also. Including higher than fourth-order terms and choosing their value at horizon crossing to maximise V_0 domination would presumably lead to a larger fraction V_e/V_0 than we found in section 5. However, the hard bound (4.6) is independent of the form of the potential, being solely due to $r \gtrsim 0.1$ and $\eta < 1$, so the potential has to decrease by at least one percent during inflation in any case.

Note that if the higher-order runnings of the spectral index are not negligible, one cannot rely on cosmological parameter constraints that were derived under the assumption that these runnings are zero — instead, one should redo the Bayesian parameter estimation for the primordial spectrum including the relevant higher-order runnings to get the correct constraints for that case. In the same way in which the upper bound on α_s is relaxed when allowing for $\kappa_s \neq 0$ (see appendix A), adding large higher-order runnings will likely change the bounds on α_s and κ_s. Higher-order terms also give additional contributions to eqs. (2.5b)-(2.5d), which change the prefactors of the ϕ^2, ϕ^3 and ϕ^4 terms in eq. (5.4) by terms proportional to the additional higher-order runnings.

It may therefore be possible to get large V_0 domination even for small κ_s, but with large higher-order running parameters. In any case, $V_0/V_e > 90\%$ is possible only when there is some sizeable running of the spectral index beyond $\alpha_s \neq 0$, e.g. $\kappa_s > 0$ or some higher-order running.
6 Summary and conclusions

In this paper, we have discussed to which extent and under which conditions false vacuum energy (V_0) dominated slow-roll inflation is compatible with $r \gtrsim 0.1$.

We started with general considerations based on the slow-roll dynamics and constraints on the observed spectrum of perturbations. We found that V_0 domination requires a strongly scale dependent ("running") spectral index $n_s(k)$, and that it is related to relatively small inflaton field excursions $\Delta \phi$.

For the maximum amount of V_0 domination, we derived a hard bound of $V_0/V_* < 99\%$ assuming only $\eta < 1$ and $r \gtrsim 0.1$. As slow-roll generally requires $\eta \ll 1$, models of slow-roll inflation will generally remain at least a few percent below this bound.\footnote{We note that some authors (e.g. \cite{31, 32}) define slow-roll as requiring only $\varepsilon \ll 1$, allowing for $\eta \gtrsim 1$. Our definition of slow-roll also demands that η must be small, so that the conventional slow-roll expansion \cite{18} in ε and η is valid.}

To understand the effect of the running spectral index $n_s(k)$ more quantitatively, we studied a potential reconstruction around the horizon crossing scale ϕ_* including the spectral index n_s, its running α_s and its running of the running κ_s, which provides a model-independent analysis for the case in which the higher-order runnings beyond κ_s are negligible.

We calculated upper bounds on V_0/V_* and lower bounds on $\Delta \phi$ as functions of α_s and κ_s as shown in figures 2 and 3.

For $\kappa_s = 0$, we found an upper bound $V_0/V_* < 90\%$, whereas for $\kappa_s > 0$, the maximum amount of false vacuum energy domination increases up to $V_0/V_* \simeq 96\%$. This shows that large V_0 domination prefers higher-order runnings beyond α_s. Adding only α_s but no other runnings cannot increase V_0/V_* due to observational constraints on α_s.

We also derived the joint constraints on α_s, κ_s and r from the combined Planck and BICEP2 likelihoods (see appendix A) to correctly constrain α_s and κ_s in our analysis.\footnote{The constraints on κ_s published by the Planck collaboration \cite{25} are not directly applicable because they assume $r = 0$.}

We conclude that false vacuum energy domination during slow-roll inflation is possible even with $r \gtrsim 0.1$, but that $V_0/V_* \geq 90\%$ requires higher-order runnings beyond α_s whose effects must be included carefully in the study of any such model.

Acknowledgements

This work was supported by the Swiss National Science Foundation. F.C. and D.N. thank Benjamin Audren, Julien Lesgourgues and Thomas Tram for the introduction to CLASS and Monte Python during the "Tools for Cosmology" workshop in Geneva. We also thank Vinzenz Maurer for helpful discussions.

A Constraints on α_s and κ_s from Planck and BICEP2

As the constraints on α_s and κ_s provided by the Planck collaboration \cite{25} assume a vanishing tensor-to-scalar ratio $r = 0$, they are not applicable for large $r \gtrsim 0.1$. Since the BICEP2 data has been released, several independent Bayesian parameter estimates for α_s and r using the joint Planck and BICEP2 likelihoods have appeared \cite{33–35} which find some evidence for a negative running $\alpha_s < 0$.\footnote{For parameter estimates using different parametrizations of the primordial spectrum, see \cite{36, 37}.} However, all of these analyses assume that $\kappa_s = 0$, and to our knowledge no parameter estimation including both κ_s and $r \neq 0$ has been published yet.
To derive the joint constraints on ΛCDM + r + α_s + κ_s from current observations, we have used the cosmological parameter estimation code Monte Python [38] together with the Boltzmann code CLASS [39, 40], assuming primordial scalar and tensor spectra of the form

\[P_s = A_s \left(\frac{k}{k_s} \right)^{n_s - 1 + \frac{2}{3} \ln(k/k_s)} \left(\frac{k}{k_s} \right)^{-r/8} \]
(A.1a)

\[P_t = r A_s \left(\frac{k}{k_s} \right)^{n_s - 1} \]
(A.1b)

with the arbitrary pivot scale \(k_s = 0.05 \) Mpc\(^{-1}\). Note that we have enforced the slow-roll consistency condition \(n_t = -r/8 \) because we are interested in parameter constraints for slow-roll inflation only. The parameter constraints are derived using the Planck likelihood data from the Planck Legacy Archive and the BICEP2 [1] and BOSS BAO [41] likelihood data as included in Monte Python 2.0.4.

The resulting 68% CL parameter constraints for \(r \) as a free parameter and for fixed \(r = 0.1 \) and \(r = 0.2 \) are given in table 1, and a triangle plot of the 2-dimensional constraints for the primordial spectrum for fitted \(r \) is shown in figure 5. We find a strong correlation between \(\alpha_s \) and \(\kappa_s \), similar to the Planck constraints for the \(r = 0 \) case [25], but with a slight shift towards larger \(\kappa_s \) and smaller \(\alpha_s \). For \(\kappa_s = 0 \), we find \(\alpha_s < 0 \) in good agreement with [33–35].\(^9\) However, for \(\kappa_s > 0 \), we find that \(\alpha_s > 0 \) is preferred due to the strong correlation between \(\alpha_s \) and \(\kappa_s \).

\(^9\)Our results cannot be compared with [36] because they treat \(n_t \) as a free model parameter, whereas we restrict our analysis to slow-roll spectra with \(n_t = -r/8 \).

\(n_s \)	\(r \) fitted	\(r = 0.1 \) fixed	\(r = 0.2 \) fixed
\(\alpha_s \)	\(0.208^{+0.040}_{-0.048} \)	\(0.2^{+0.040}_{-0.048} \)	\(0.2^{+0.040}_{-0.048} \)
\(\kappa_s \)	\(0.029^{+0.017}_{-0.018} \)	\(0.023^{+0.017}_{-0.018} \)	\(0.029^{+0.017}_{-0.018} \)
\(r \)	\(0.208^{+0.040}_{-0.048} \)	\(0.2^{+0.040}_{-0.048} \)	\(0.2^{+0.040}_{-0.048} \)
\(A_s \)	\((2.28^{+0.06}_{-0.07}) \times 10^{-9} \)	\((2.27^{+0.06}_{-0.07}) \times 10^{-9} \)	\((2.28^{+0.06}_{-0.07}) \times 10^{-9} \)
\(\omega_b \)	\(0.0223^{+0.0003}_{-0.0003} \)	\(0.0223^{+0.0003}_{-0.0003} \)	\(0.0223^{+0.0003}_{-0.0003} \)
\(\omega_{cdm} \)	\(0.1170^{+0.0014}_{-0.0014} \)	\(0.1172^{+0.0014}_{-0.0014} \)	\(0.1170^{+0.0014}_{-0.0014} \)
\(H_0 \)	\((68.71^{+0.66}_{-0.69}) \text{ km s}^{-1} \text{ Mpc}^{-1} \)	\((68.53^{+0.65}_{-0.67}) \text{ km s}^{-1} \text{ Mpc}^{-1} \)	\((68.72^{+0.66}_{-0.68}) \text{ km s}^{-1} \text{ Mpc}^{-1} \)
\(\tau_{reio} \)	\(0.110^{+0.014}_{-0.015} \)	\(0.109^{+0.014}_{-0.015} \)	\(0.110^{+0.014}_{-0.016} \)

Table 1. Cosmological parameter constraints for Planck + BICEP2 + BAO at 68% CL with the primordial spectrum expanded around the pivot scale \(k_s = 0.05 \) Mpc\(^{-1}\). Note that \(\kappa_s \) has a strong correlation with \(\alpha_s \) which should be taken into account when applying these constraints, see figure 5.
Figure 5. Constraints on the primordial spectrum expanded around the pivot scale $k_*=0.05$ Mpc$^{-1}$ for Planck + BICEP2 + BAO, assuming a ΛCDM model extended by r, α_s and κ_s (see eqs. (A.1a) and (A.1b)).

References

[1] BICEP2 collaboration, P.A.R. Ade et al., Detection of B-Mode Polarization at Degree Angular Scales by BICEP2, Phys. Rev. Lett. 112 (2014) 241101 [arXiv:1403.3985] [SPIRE].

[2] J.L. Cook and L. Sorbo, Particle production during inflation and gravitational waves detectable by ground-based interferometers, Phys. Rev. D 85 (2012) 023534 [Erratum ibid. D 86 (2012) 069901] [arXiv:1109.0022] [SPIRE].

[3] L. Senatore, E. Silverstein and M. Zaldarriaga, New Sources of Gravitational Waves during Inflation, JCAP 08 (2014) 016 [arXiv:1109.0542] [SPIRE].

[4] S. Mukohyama, R. Namba, M. Peloso and G. Shiu, Blue Tensor Spectrum from Particle Production during Inflation, JCAP 08 (2014) 036 [arXiv:1405.0346] [SPIRE].
[5] J. Lizarraga, J. Urrestilla, D. Daverio, M. Hindmarsh, M. Kunz and A.R. Liddle, Can topological defects mimic the BICEP2 B-mode signal?, Phys. Rev. Lett. 112 (2014) 171301 [arXiv:1403.4924] [inSPIRE].

[6] A. Moss and L. Pogosian, Did BICEP2 see vector modes? First B-mode constraints on cosmic defects, Phys. Rev. Lett. 112 (2014) 171302 [arXiv:1403.6105] [inSPIRE].

[7] C. Bonvin, R. Durrer and R. Maartens, Can primordial magnetic fields be the origin of the BICEP2 data?, Phys. Rev. Lett. 112 (2014) 191303 [arXiv:1403.6768] [inSPIRE].

[8] M.J. Mortonson and U. Seljak, A joint analysis of Planck and BICEP2 B modes including dust polarization uncertainty, arXiv:1405.5857 [inSPIRE].

[9] R. Flauger, J.C. Hill and D.N. Spergel, Toward an Understanding of Foreground Emission in the BICEP2 Region, JCAP 08 (2014) 039 [arXiv:1405.7351] [inSPIRE].

[10] D.H. Lyth and A. Riotto, Particle physics models of inflation and the cosmological density perturbation, Phys. Rept. 314 (1999) 1 [hep-ph/9807278] [inSPIRE].

[11] A. Mazumdar and J. Rocher, Particle physics models of inflation and curvaton scenarios, Phys. Rept. 497 (2011) 85 [arXiv:1001.0993] [inSPIRE].

[12] J. Martin, C. Ringeval and V. Vennin, Encyclopædia Inflationaris, Phys. Dark Univ. (2014) in press [arXiv:1303.3787] [inSPIRE].

[13] M. Carrillo-González, G. Germán-Velarde, A. Herrera-Aguilar, J.C. Hidalgo and R. Sussman, Testing Hybrid Natural Inflation with BICEP2, Phys. Lett. B 734 (2014) 345 [arXiv:1404.1122] [inSPIRE].

[14] T. Kobayashi and O. Seto, Beginning of Universe through large field hybrid inflation, arXiv:1404.3102 [inSPIRE].

[15] K.-Y. Choi and B. Kyae, Large tensor spectrum of BICEP2 in the natural SUSY hybrid model, Phys. Rev. D 90 (2014) 023536 [arXiv:1404.7855] [inSPIRE].

[16] F. Brummer, V. Domecke and V. Sanz, GUT-scale inflation with sizeable tensor modes, arXiv:1405.4868 [inSPIRE].

[17] C. Pallis and Q. Shafi, From Hybrid to Quadratic Inflation With High-Scale Supersymmetry Breaking, Phys. Lett. B 736 (2014) 261 [arXiv:1405.7645] [inSPIRE].

[18] A.R. Liddle, P. Parsons and J.D. Barrow, Formalizing the slow roll approximation in inflation, Phys. Rev. D 50 (1994) 7222 [astro-ph/9408015] [inSPIRE].

[19] S. Dodelson and E.D. Stewart, Scale dependent spectral index in slow roll inflation, Phys. Rev. D 65 (2002) 103508 [astro-ph/0109354] [inSPIRE].

[20] E.D. Stewart, The Spectrum of density perturbations produced during inflation to leading order in a general slow roll approximation, Phys. Rev. D 65 (2002) 103508 [astro-ph/0110322] [inSPIRE].

[21] L. Hui and W.H. Kinney, Short distance physics and the consistency relation for scalar and tensor fluctuations in the inflationary universe, Phys. Rev. D 65 (2002) 103507 [astro-ph/0109107] [inSPIRE].

[22] H. Collins, R. Holman and T. Vardanyan, Do Mixed States save Effective Field Theory from BICEP?, arXiv:1403.4592 [inSPIRE].

[23] A. Ashoorioon, K. Dimopoulos, M.M. Sheikh-Jabbari and G. Shiu, Non-Bunch-Davies Initial State Reconciles Chaotic Models with BICEP and Planck, Phys. Lett. B 737 (2014) 98 [arXiv:1403.6099] [inSPIRE].

[24] A. Aravind, D. Loshkhovich and S. Paban, Bogoliubov Excited States and the Lyth Bound, JCAP 08 (2014) 058 [arXiv:1403.6216] [inSPIRE].
[25] Planck collaboration, P.A.R. Ade et al., Planck 2013 results. XXII. Constraints on inflation, arXiv:1303.5082 [nSPIRE].

[26] I. Ben-Dayan and R. Brustein, Cosmic Microwave Background Observables of Small Field Models of Inflation, JCAP 09 (2010) 007 [arXiv:0907.2384] [nSPIRE].

[27] S. Hotchkiss, A. Mazumdar and S. Nadathur, Observable gravitational waves from inflation with small field excursions, JCAP 02 (2012) 008 [arXiv:1110.5389] [nSPIRE].

[28] J.E. Lidsey, A.R. Liddle, E.W. Kolb, E.J. Copeland, T. Barreiro and M. Abney, Reconstructing the inflation potential: An overview, Rev. Mod. Phys. 69 (1997) 373 [astro-ph/9508078] [nSPIRE].

[29] Y.-Z. Ma and Y. Wang, Reconstructing the Local Potential of Inflation with BICEP2 data, arXiv:1403.4585 [nSPIRE].

[30] A.S. Josan, A.M. Green and K.A. Malik, Generalised constraints on the curvature perturbation from primordial black holes, Phys. Rev. D 79 (2009) 103520 [arXiv:0903.3184] [nSPIRE].

[31] J. Bramante, S. Downes, L. Lehman and A. Martin, Clearing the Brush: The Last Stand of Solo Small Field Inflation, Phys. Rev. D 90 (2014) 023530 [arXiv:1405.7563] [nSPIRE].

[32] C. Dvorkin and W. Hu, Generalized Slow Roll for Large Power Spectrum Features, Phys. Rev. D 81 (2010) 023518 [arXiv:0910.2237] [nSPIRE].

[33] K.N. Abazajian, G. Aslanyan, R. Easther and L.C. Price, The Knotted Sky II: Does BICEP2 require a nontrivial primordial power spectrum?, JCAP 08 (2014) 053 [arXiv:1403.5922] [nSPIRE].

[34] H. Li, J.-Q. Xia and X. Zhang, Global fitting analysis on cosmological models after BICEP2, arXiv:1404.0238 [nSPIRE].

[35] B. Audren, J. Lesgourgues, K. Benabed and S. Prunet, Conservative Constraints on Early Cosmology: an illustration of the Monte Python cosmological parameter inference code, JCAP 02 (2013) 001 [arXiv:1210.7183] [nSPIRE].

[36] D. Blas, J. Lesgourgues and T. Tram, The Cosmic Linear Anisotropy Solving System (CLASS) I: Overview, arXiv:1104.2932 [nSPIRE].

[37] BOSS collaboration, L. Anderson et al., The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Baryon Acoustic Oscillations in the Data Release 10 and 11 galaxy samples, arXiv:1312.4877 [nSPIRE].