LARGE SCALE DETECTION OF HALF-FLATS IN CAT(0) SPACES.

STEFANO FRANCAVIGLIA AND JEAN-FRANÇOIS LAFONT

Abstract. Let M be a complete locally compact $\text{CAT}(0)$-space, and X an ultralimit of M. For $\gamma \subset M$ a k-dimensional flat, let γ_ω be the k-dimensional flat in X obtained as an ultralimit of γ. In this paper, we identify various conditions on γ_ω that are sufficient to ensure that γ bounds a $(k+1)$-dimensional half-flat.

As applications we obtain (1) constraints on the behavior of quasi-isometries between locally compact $\text{CAT}(0)$-spaces, (2) constraints on the possible non-positively curved Riemannian metrics supported by certain manifolds, and (3) a correspondence between metric splittings of a complete, simply connected non-positively curved Riemannian manifolds, and metric splittings of its asymptotic cones. Furthermore, combining our results with the Ballmann, Burns-Spatzier rigidity theorem and the classic Mostow rigidity, we also obtain (4) a new proof of Gromov’s rigidity theorem for higher rank locally symmetric spaces.

1. Introduction.

A k-flat in a $\text{CAT}(0)$-space X is defined to be an isometrically embedded copy of the standard \mathbb{R}^k, $k \geq 1$. In the case where $k = 1$, a k-flat is just a geodesic in X. By a k-dimensional half-flat, $k \geq 1$, in a $\text{CAT}(0)$ space, we mean an isometric copy of $\mathbb{R}^{k-1} \times \mathbb{R}^+$ (where $\mathbb{R}^+ = [0, \infty)$ is the usual half line). For example, when $k = 1$, a half-flat is just a geodesic ray in X. In the study of $\text{CAT}(0)$-spaces, a key role is played by the presence of flats and half-flats of higher rank, i.e. satisfying $k \geq 2$. In the present paper, our goal is to identify some coarse geometric conditions which are sufficient to ensure the existence of half-flats in a $\text{CAT}(0)$-space X. We provide three results towards this goal, as well as an example showing that our results are close to optimal.

Before stating our main results, let us recall that an asymptotic cone of a metric space X is a new metric space, which encodes the large-scale geometry of X, when viewed at an increasing sequence of scales. A precise definition, along with some basic properties of asymptotic cones, is provided in our Section 2. For a k-flat γ_ω inside the asymptotic cone X of a $\text{CAT}(0)$-space, we introduce (see Section 3) the notion of a flattening sequence of maps for γ_ω. These are a sequence of maps from a k-disk D^k into X, whose images are getting further and further away from γ_ω, and whose projections onto γ_ω satisfy certain technical conditions. The main point of such flattening sequences is that we can prove:
Theorem A (Flattening sequences ⇒ half-flats). Let M be a locally compact CAT(0)-space and let X be an asymptotic cone of M. Let γ be a k-flat of M (possibly a geodesic) and let γ_ω be its limit in X. Suppose that there exists a flattening sequence of maps for γ_ω. Then the original k-flat γ bounds a $(k+1)$-half-flat in M.

The reader will readily see that, in the special case where γ_ω itself bounds a half-flat, it is very easy to construct a flattening sequence. So an immediate consequence of Theorem A is:

Theorem B (Half-ultraflat ⇒ half-flat). Let M be a locally compact CAT(0)-space and let X be an asymptotic cone of M. Let γ be a k-flat of M (possibly a geodesic) and let γ_ω be its limit in X. If γ_ω bounds a half-flat, then γ itself must bound a half-flat.

We also provide an example showing that, in the context of locally compact CAT(0)-spaces, the analogue of Theorem B with “half-flats” replaced by “flats” is false.

In Section 4, we weaken the hypothesis of Theorem B, by replacing a $(k+1)$-flat in the ultralimit by a bi-Lipschitzly embedded $(k+1)$-flat. We compensate for this by requiring the original flat to satisfy some mild periodicity requirement, and establish:

Theorem C (Bilipschitz half-ultraflat + periodicity ⇒ half-flat). Let M be a locally compact CAT(0)-space and let X be an asymptotic cone of M. Let γ be a k-flat of M (possibly $k = 1$) and let γ_ω its limit in X. Suppose that there exists $G < \text{Isom}(M)$ that acts co-compactly on γ.

If there is a bi-Lipschitz embedding $\Phi : \mathbb{R}^k \times \mathbb{R}^+ \to X$, whose restriction to $\mathbb{R}^k \times \{0\}$ is a homeomorphism onto γ_ω, then γ bounds a $(k+1)$-half-flat in M.

In Section 5, we provide various geometrical applications of our main results. These include:

- constraints on the possible quasi-isometries between certain locally CAT(0)-spaces.
- restrictions on the possible locally CAT(0)-metrics that are supported by certain locally CAT(0)-spaces.
- a proof that splittings of simply connected non-positively curved Riemannian manifolds correspond exactly with metric splittings of their asymptotic cones.
- a new proof of Gromov’s rigidity theorem [BGS]: a closed higher rank locally symmetric space supports a unique metric of non-positive curvature (up to homothety).

In January 2008, the authors posted a preliminary version [FrLa] of this work on the arXiv, which contained special cases of Theorems A, B, C, under the additional hypothesis that the flats be 2-dimensional, and the ambient space M was a Riemannian manifold of non-positive sectional curvature (rather than a CAT(0)-space). Shortly thereafter, Misha Kapovich was kind enough to inform the authors of his
paper with B. Leeb [KaL], in which (amongst other things) they proved a version of Theorem C in the special case of 2-dimensional flats, and where the ambient space M was an arbitrary locally compact CAT(0)-space. Their paper provided the motivation for us to write the present paper, which includes a generalization to higher dimensional flats of the result in [KaL, Prop. 3.3].

Acknowledgements

The author's would like to thank V. Guirardel, J. Heinonen, T. Januszkiewicz, B. Kleiner, R. Spatzier, and S. Wenger for their helpful comments. We are indebted to M. Kapovich for pointing out the existence of his joint paper with B. Leeb [KaL], which put us on the track of the results contained in this paper.

This work was partly carried out during a visit of the first author to the Ohio State University (supported in part by the MRI), and a visit of the second author to the Università di Pisa. The work of the first author was partly supported by the European Research Council – MEIF-CT-2005-010975 and MERG-CT-2007-046557. The work of the second author was partly supported by NSF grants DMS-0606002, DMS-0906483, and by an Alfred P. Sloan research fellowship.

2. Background material on asymptotic cones.

In this section, we provide some background on ultralimits and asymptotic cones of metric spaces. Let us start with some basic reminders on ultrafilters.

Definition. A non-principal ultrafilter on the natural numbers \mathbb{N} is a collection \mathcal{U} of subsets of \mathbb{N}, satisfying the following four axioms:

1. if $S \in \mathcal{U}$, and $S' \supset S$, then $S' \in \mathcal{U}$,
2. if $S \subset \mathbb{N}$ is a finite subset, then $S \notin \mathcal{U}$,
3. if $S,S' \in \mathcal{U}$, then $S \cap S' \in \mathcal{U}$,
4. given any finite partition $\mathbb{N} = S_1 \cup \ldots \cup S_k$ into pairwise disjoint sets, there is a unique S_i satisfying $S_i \in \mathcal{U}$.

Zorn's Lemma guarantees the existence of non-principal ultrafilters. Now given a compact Hausdorff space X and a map $f : \mathbb{N} \to X$, there is a unique point $f_\omega \in X$ such that every neighborhood U of f_ω satisfies $f^{-1}(U) \in \mathcal{U}$. This point is called the ω–limit of the sequence $\{f(i)\}$; we will occasionally write $\omega \lim \{f(i)\} := f_\omega$. In particular, if the target space X is the compact space $[0, \infty]$, we have that f_ω is a well-defined real number (or ∞).

Definition. Let (X,d,\ast) be a pointed metric space, $X^\mathbb{N}$ the collection of X-valued sequences, and $\lambda : \mathbb{N} \to (0, \infty) \subset [0, \infty]$ a sequence of real numbers satisfying $\lambda_\omega = \infty$. Given any pair of points $\{x_i\}, \{y_i\}$ in $X^\mathbb{N}$, we define the pseudo-distance $d_\omega(\{x_i\}, \{y_i\})$ between them to be f_ω, where $f : \mathbb{N} \to [0, \infty)$ is the function $f(k) = d(x_k, y_k)/\lambda(k)$. Observe that this pseudo-distance takes on values in $[0, \infty]$.

Next, note that $X^\mathbb{N}$ has a distinguished point, corresponding to the constant sequence $\{\ast\}$. Restricting to the subset of $X^\mathbb{N}$ consisting of sequences $\{x_i\}$ satisfying $d_\omega(\{x_i\},\{\ast\}) < \infty$, and identifying sequences whose d_ω distance is zero, one obtains a genuine pointed metric space $(X_\omega, d_\omega, \ast_\omega)$, which is called an asymptotic cone of the pointed metric space (X, d, \ast).

We will usually denote an asymptotic cone by $\text{Cone}(X)$. The reader should keep in mind that the construction of $\text{Cone}(X)$ involves a number of choices (basepoints, sequence λ, choice of non-principal ultrafilters) and that different choices could give different (non-homeomorphic) asymptotic cones (see the papers \cite{TV}, \cite{KSTT}, \cite{OS}). However, in the special case where $X = \mathbb{R}^k$, all asymptotic cones are isometric to \mathbb{R}^k (i.e. we have independence of all choices).

We will require the following facts concerning asymptotic cones of non-positively curved spaces:

- if (X, d) is a CAT(0)-space, then $\text{Cone}(X)$ is likewise a CAT(0)-space,
- if $\phi : X \to Y$ is a (C, K)-quasi-isometric map, then ϕ induces a C-bi-Lipschitz map $\phi_\omega : \text{Cone}(X) \to \text{Cone}(Y)$,
- if $\gamma \subset X$ is a k-flat, then $\gamma_\omega := \text{Cone}(\gamma) \subset \text{Cone}(X)$ is likewise a k-flat,
- if $\{a_i\}, \{b_i\} \in \text{Cone}(X)$ are an arbitrary pair of points, then the ultralimit of the geodesic segments $a_i b_i$ gives a geodesic segment $\{a_i\} \{b_i\}$ joining $\{a_i\}$ to $\{b_i\}$.

Concerning the second point above, we remind the reader that a (C, K)-quasi-isometric map $\phi : (X, d_X) \to (Y, d_Y)$ between metric spaces is a (not necessarily continuous) map having the property that:

$$
\frac{1}{C} \cdot d_X(p, q) - K \leq d_Y(\phi(p), \phi(q)) \leq C \cdot d_X(p, q) + K.
$$

We also comment that, in the second point above, the asymptotic cones of X, Y, have to be taken with the same scaling sequence and the same ultrafilters.

Lemma 2.1 (Translations on asymptotic cone). Let X be a geodesic space, $\gamma \subset X$ a k-flat, and $\gamma_\omega \subset \text{Cone}(X)$ the corresponding k-flat in an asymptotic cone $\text{Cone}(X)$ of X. Assume that there exists a subgroup $G < \text{Isom}(X)$ with the property that G leaves γ invariant, and acts cocompactly on γ. Then for any pair of points $p, q \in \gamma_\omega$, there is an isometry $\Phi : \text{Cone}(X) \to \text{Cone}(X)$ satisfying $\Phi(p) = q$.

Proof. Let $\{p_i\}, \{q_i\} \subset \gamma \subset X$ be sequences defining the points p, q respectively. Since G leaves γ invariant, and acts cocompactly on γ, there exists elements $g_i \in G$ with the property that for every index i, we have $d(g_i(p_i), q_i) \leq R$.

Now observe that the sequence $\{g_i\}$ of isometries of X defines a self-map (defined componentwise) of the space $X^\mathbb{N}$ of sequences of points in X. Let us denote by g_ω this self-map, which we now proceed to show induces the desired isometry on $\text{Cone}(X)$. First note that it is immediate that g_ω preserves the pseudo-distance d_ω on $X^\mathbb{N}$,
and has the property that $d_\omega(\{g_i(p_i)\}, \{q_i\}) = 0$. So to see that g_ω descends to an isometry of $Cone(X)$, all we have to establish is that for $\{x_i\}$ a sequence satisfying $d_\omega(\{x_i\}, *) < \infty$, the image sequence also satisfies $d_\omega(\{g_i(x_i)\}, *) < \infty$. But we have the series of equivalences:

\[
\begin{align*}
 d_\omega(\{x_i\}, *) < \infty & \iff d_\omega(\{x_i\}, \{p_i\}) < \infty \\
 & \iff d_\omega(\{g_i(x_i)\}, \{g_i(p_i)\}) < \infty \\
 & \iff d_\omega(\{g_i(x_i)\}, \{q_i\}) < \infty \\
 & \iff d_\omega(\{g_i(x_i)\}, *) < \infty
\end{align*}
\]

where the first and last equivalences come from applying the triangle inequality in the pseudo-metric space (X^N, d_ω), and the second and third equivalences follow from our earlier comments. We conclude that the induced isometry g_ω on the pseudo-metric space X^N of sequences leaves invariant the subset of sequences at finite distance from the distinguished constant sequence, and hence descends to an isometry of $Cone(X)$. Finally, it is immediate from the definition of the isometry g_ω that it will leave γ_ω invariant, as each g_i leaves γ invariant. This concludes the proof.

Let us now specialize the previous Lemma to the case of geodesics (i.e. $k = 1$). Observe that any element $g \in Isom(X)$ as in the previous Lemma gives rise to a \mathbb{Z}-action on X leaving γ invariant. It is worth pointing out that the Lemma does not state that the \mathbb{Z}-action on X induces an \mathbb{R}-action on $Cone(X)$. The issue is that for each $r \in \mathbb{R}$, there is indeed a corresponding isometry of $Cone(X)$, but these will not in general vary continuously with respect to r (as can already be seen in the simple case where $X = \mathbb{H}^2$).

3. Flattening sequences and Half-flats

In this section, we will provide a proof of Theorem A. Our goal is to show how certain sequences of maps from the disk to the asymptotic cone of a CAT(0)-space M can be used to construct flats in M. We recall that ω denotes the ultrafilter used to construct $X = Cone(M)$, that λ_j denotes the sequence of scaling factors, and that $*$ denotes both the base-point of M, and the basepoint of X represented by the constant sequence $\{\}$. We are given a k-flat $\gamma \subset M$ (possibly a geodesic), and we have the corresponding k-flat $\gamma_\omega \subset X$ in the asymptotic cone X. By abuse of notation, we will use π to denote both the nearest point projection $\pi : M \rightarrow \gamma$, as well as the nearest point projection $\pi : X \rightarrow \gamma_\omega$. We can now make the:

Definition (Flattening sequences). We say that γ_ω has a flattening sequence provided there exists a sequence of continuous maps $(f_r)_{r \in \mathbb{N}}$ from the k-disk \mathbb{D}^k to X such that

1. The diameter of $f_r(\mathbb{D}^k)$ is smaller than one.
The image of $\pi \circ f_r$ contains an open neighborhood of the base-point \ast.

(3) The restriction of $\pi \circ f_r$ to $\partial \mathbb{D}^k = S^{k-1}$ does not contain \ast, and represents a non-zero element in the homotopy group $\pi_{k-1}(\gamma_\omega \setminus \{\ast\}) \cong \mathbb{Z}$.

(4) There exists a constant $D > 0$ with the property that

$$d(f_r(\mathbb{D}^k), \gamma_\omega) = \inf_{x \in \mathbb{D}^k} d(f_r(x), \gamma_\omega) \geq D \cdot r.$$

The sequence of maps $(f_r)_{r \in \mathbb{N}}$ will be called a flattening sequence for γ_ω.

We now assume that the k-flat γ_ω has a flattening sequence consisting of maps $f_r : \mathbb{D}^k \to X$. To establish Theorem A, we need to prove that γ bounds a $(k + 1)$-dimensional half-flat. In order to do this, we have to construct geodesic rays emanating from various points on γ.

Each such ray will be constructed as a limit of a sequence of longer and longer geodesic segments, originating from a fixed point on γ, and terminating at a sequence of suitably chosen points in the space M. In order to select this suitable sequence of points in M, we start by noting that each of the maps $f_r : \mathbb{D}^k \to X$ in our flattening sequence can be obtained as an ultralimit of a sequence of maps $f_{r,j} : \mathbb{D}^k \to M$ (see for instance Kapovich [Ka]). The desired collection of points will be carefully chosen to lie on the image of some of the maps $f_{r,j}$. The precise selection process is contained in the following:

Assertion: Let us be given an arbitrary finite $(m+1)$-tuple of points $\{P^0, \ldots, P^m\} \subset \gamma$. Then for each $r \in \mathbb{N}$, we can choose indices $j_r \in \mathbb{N}$, and $(m+1)$-tuples of points $\{x_{r,j_r}^0, \ldots, x_{r,j_r}^m\} \subset f_{r,j_r}(\text{Int}(\mathbb{D}^k)) \subset M$ with the property that:

1. For each r, and $0 \leq i \leq m$, we have that $\pi(x_{r,j_r}^i) = P^i$.
2. For any i, i'

$$\frac{d(x_{r,j_r}^i, x_{r,j_r}^{i'})}{\lambda_{j_r}} < 2.$$

3. For any i

$$\frac{d(P^i, x_{r,j_r}^i)}{r \cdot \lambda_{j_r}} > D/2.$$

We temporarily delay the proof of the **Assertion**, and focus on explaining how our Theorem A can be deduced from this statement. We first recall some terminology: we say that two half-rays η_1 and η_2 bound a flat strip, provided there exists an isometric embedding of $\mathbb{R}^+ \times [0,a]$ (for some $a > 0$) into M, with the property that η_1 coincides with $\mathbb{R}^+ \times \{0\}$ and η_2 coincides with $\mathbb{R}^+ \times \{a\}$. For a fixed ray η, we will denote by $\text{Par}(\eta) \subset M$ the union of all geodesic rays in M which, together with η, jointly bound a flat strip. Our first step is to use the **Assertion** to show:
Claim 1: Given any finite set of points \(\{P^0, \ldots, P^m\} \subset \gamma \), there exist a collection of geodesic rays \(\{\eta^0, \ldots, \eta^m\} \), satisfying:

- for each \(s \), we have that \(\eta^s \) originates at \(X^i \), and satisfies \(\pi(\eta^s) = P^i \).
- each pair of geodesic rays \(\eta^i, \eta^j \) jointly bound a flat strip.

Proof (Claim 1). This can be seen as follows: first, apply the \textbf{Assertion} to the finite set of points, obtaining a sequence of \((m + 1)\)-tuples of points \(\{x^0_{r,j}, \ldots, x^m_{r,j}\} \subset M \).

Now for each \(i \), consider the sequence of geodesic segments \(\eta^i_{r,j} \), which joins the point \(X^i \) to the point \(x^i_{r,j} \). Since \(M \) is locally compact, we can extract a subsequence which simultaneously converges for all the \(0 \leq i \leq m \). We define the limiting geodesic rays to be our \(\eta^i \). So to complete the proof of the Claim, we just need to verify that these \(\eta^i \) have the desired property. By construction, we know that each of the \(\eta^i_r \) are geodesic segments originating at \(P^i \), which immediately gives us the corresponding property for \(\eta^i \). Likewise, we have that each of the geodesics segments \(\eta^i_r \), project to the point \(P^i \), which yields the same statement for \(\eta^i \). Note that this implies that, for any \(t > 0 \), \(\eta^i \) is the minimal length path from \(\eta^i(t) \) to \(\gamma \). In particular, the angle (in the CAT(0) sense, see [BrHa]) of \(\eta^i \) with \(\gamma \) must be \(\geq \pi/2 \).

So we now need to establish the second property: that \(\eta^i \) and \(\eta^j \) jointly bound a flat strip. Let us set \(d = d(P^i, P^j) \); we start by showing that for \(t \geq 0 \), we have \(d(\eta^i(t), \eta^j(t)) = d \). Since the geodesic rays are limits of the geodesic segments, this is equivalent to showing \(\lim_{r \to \infty} d(\eta^i_r(t), \eta^j_r(t)) = d \). From condition (1) in the \textbf{Assertion}, and the fact that the projection map is distance non-increasing, we obtain the inequality:

\[
\lim_{r \to \infty} d(\eta^i_r(t), \eta^j_r(t)) \geq \lim_{r \to \infty} d(\eta^i_r(0), \eta^j_r(0)) = d(P^i, P^j) = d
\]

For the reverse inequality, we need to estimate from above the distance between \(\eta^i_r(t) \) and \(\eta^j_r(t) \). To do this, we first truncate the longer of the two geodesic segments \(\eta^i_r \) and \(\eta^j_r \) to have length equal to the smaller one. We will denote by \(\bar{\eta}^i_r, \bar{\eta}^j_r \) the new pair of equal length geodesics, and let \(L \) denote their common length. Since we are trying to estimate from above the distance between the points \(\bar{\eta}^i_r(t) \) and \(\bar{\eta}^j_r(t) \), convexity of the distance function in CAT(0)-spaces yields:

\[
d(\bar{\eta}^i_r(t), \bar{\eta}^j_r(t)) \leq \left(1 - \frac{t}{L}\right) d(\bar{\eta}^i_r(0), \bar{\eta}^j_r(0)) + \frac{t}{L} d(\bar{\eta}^i_r(L), \bar{\eta}^j_r(L))
\]

But from condition (3) in the \textbf{Assertion}, we have that \(L > r \cdot \lambda_{j_r} \cdot D/2 \). Furthermore, from condition (2) in the \textbf{Assertion}, and an application of the triangle inequality, we obtain that \(d(\bar{\eta}^i_r(L), \bar{\eta}^j_r(L)) < 4\lambda_{j_r} + d \). Substituting these expressions (along with \(d(\bar{\eta}^i_r(0), \bar{\eta}^j_r(0)) = d \)) into our inequality, and simplifying, we get:

\[
d(\bar{\eta}^i_r(t), \bar{\eta}^j_r(t)) \leq d + 4t \cdot \frac{\lambda_{j_r}}{L} < d + 4t \cdot \frac{\lambda_{j_r}}{r \lambda_{j_r} \cdot D/2} = d + \frac{8t}{D \cdot r}
\]
where we recall that \(d, t, D\) are constants. Now taking the limit as \(r \to \infty\), we obtain that \(\lim_{r \to \infty} d(\bar{\eta}_i^r(t), \bar{\eta}_j^r(t)) \leq d\), as desired.

This verifies that the two geodesics \(\eta^i, \eta^j\) remain at a constant distance apart, in the sense that \(d(\eta^i(t), \eta^j(t))\) is a constant function of \(t\). Furthermore, from our earlier discussion, we have that the geodesics segment joining \(P^i = \eta^i(0)\) to \(P^j = \eta^j(0)\) forms an angle \(\geq \pi/2\) with each of the geodesic rays \(\eta^i, \eta^j\), and hence both these angles must actually be \(= \pi/2\). But in a CAT(0) space, this forces the geodesics \(\eta^i\) and \(\eta^j\) to bound a flat strip (see the proof of the flat strip theorem [BrHa, pg. 182]). This concludes the proof of Claim 1. □

So we now know that any finite set of points \(\{P^0, \ldots, P^m\} \subset \gamma\) are common endpoints of geodesic rays that pairwise bound a flat strip. But ultimately, we want to show that every point on \(\gamma\) is an endpoint of a parallel geodesic ray. Our next step is to establish:

Claim 2: Given any compact set \(K \subset \gamma\), we can find an isometric embedding of \(K \times [0, \infty) \hookrightarrow M\) with the property that \(K \times \{0\}\) maps to \(K\).

Proof (Claim 2). Recall that, for a geodesic \(\eta\), the set \(Par(\eta)\) is the union of all geodesic rays which, together with \(\eta\), bound a flat strip. From the proof of the product region theorem in CAT(0)-spaces (see for example [BrHa]), one has that \(Par(\eta)\) forms a convex subset of \(M\), which splits as a metric product \(B \times [0, \infty)\). Here \(B \subset M\) is a convex subset, and consists of the collection of all the basepoints of the parallel geodesic rays.

Now, since \(K \subset \gamma\) is compact, we can find a finite set of points \(\{P^0, \ldots, P^m\} \subset \gamma\) whose convex hull contains \(K\). Applying Claim 1, we have that there exist a corresponding collection of geodesic rays \(\{\eta^0, \ldots, \eta^m\}\), with each \(\eta^i\) originating from \(P^i\), and which pairwise bound a flat strip. Considering the set \(Par(\eta^0)\), we have that \(Par(\eta^0)\) is isometric to \(B \times [0, \infty)\), where \(B\) is the collection of basepoints. But we know that \(\{P^0, \ldots, P^m\} \subset B\), so their convex hull is likewise contained in \(B\), forcing \(K \subset B\). We conclude that there is an isometric copy of \(K \times [0, \infty)\) embedded inside the convex subset \(Par(\eta) \subset M\). This completes the proof of Claim 2. □

Finally, let us take a sequence of compact sets \(K_i \subset \gamma\) exhausting the flat \(\gamma\) (for instance, take \(K_i\) to be the radius \(i\) metric ball centered at \(*\)). From Claim 2, we have a corresponding sequence of isometrically embedded copies of \(K_i \times [0, \infty) \hookrightarrow M\), where each \(K_i \times \{0\}\) maps to the corresponding compact \(K_i\). From local compactness, we can extract a convergent subsequence, whose limit will be the desired half-flat bounding \(\gamma\). So to complete the proof of Theorem A, we are left with verifying the Assertion.

Proof (Assertion). Let us recall the framework: we have a finite collection of points \(\{P^0, \ldots, P^m\} \subset \gamma\), and for each \(r \in \mathbb{N}\), a collection of maps \(f_{r,i} : \mathbb{D}^i \to M\) having
the property that \(\omega \lim f_{r,j} = f_r : \mathbb{D}^k \to X \). We want to find, for each index \(r \), a corresponding index \(j_r \) and set of points \(\{x^{0}_{r,j_r}, \ldots, x^{m}_{r,j_r}\} \subset f_{r,j_r}(\text{Int}(\mathbb{D}^k)) \). The chosen set of points should have the property that (1) for each \(i \), \(\pi(x^{i}_{r,j_r}) = P^i \), (2) for any \(i, i' \), \(d(x^{i}_{r,j_r}, x^{i'}_{r,j_r}) < 2\lambda_{j_r} \), and (3) for any \(i \), \(d(P^i, x^{i}_{r,j_r}) > r \cdot \lambda_{j_r} \cdot D/2 \).

Our approach is as follows: fixing \(r \), we define three subsets of \(\mathbb{N} \) by setting

- \(J_1 \) to be the set of indices \(j \) for which \(\{P^0, \ldots, P^m\} \subset \pi \circ f_{r,j}(\text{Int}(\mathbb{D}^k)) \),
- \(J_2 \) to be the set of indices where \(\text{diam}(f_{r,j}(\mathbb{D}^k)) < 2\lambda_{j_r} \), and
- \(J_3 \) to be the set of indices where \(d(\gamma, f_{r,j}(\mathbb{D}^k)) > r \cdot \lambda_{j_r} \cdot D/2 \).

Now assuming we could show that each of these three sets are in \(\omega \), property (3) of ultrafilters (second under finite intersections) implies that \(J_1 \cap J_2 \cap J_3 \subset \omega \). Finally, every set in \(\omega \) is infinite (property (2) of ultrafilters), and in particular non-empty, allowing us to find an index \(j_r \in J_1 \cap J_2 \cap J_3 \). For this index \(j_r \), we can choose arbitrary points \(x^{i}_{r,j_r} \in f_{r,j}(\text{Int}(\mathbb{D}^k)) \) satisfying \(\pi(x^{i}_{r,j_r}) = P^i \) (such points exist since \(j_r \in J_1 \)). And from \(j_r \in J_2 \cap J_3 \), it immediately follows that the tuple of points \(\{x^{0}_{r,j_r}, \ldots, x^{m}_{r,j_r}\} \subset f_{r,j}(\text{Int}(\mathbb{D}^k)) \) has the desired properties.

Step 1: The set \(J_2 \) lies in the ultrafilter \(\omega \).

To see this, we recall that property (1) in the definition of a flattening sequence requires \(\text{diam}(f_r(\mathbb{D}^k)) \leq 1 \). Since we know that \(f_r = \omega \lim f_{r,j} \), the definition of distances in the ultralimit tells us that the set of indices \(j \) for which \(\text{diam}(f_{r,j}(\mathbb{D}^k))/\lambda_{j_r} < 2 \) lies in the ultrafilter. This verifies Step 1.

Step 2: The set \(J_3 \) lies in the ultrafilter \(\omega \).

For this, we argue similarly. Recall that property (4) in the definition of a flattening sequence requires the existence of a \(D > 0 \) so that \(d(f(r)(\mathbb{D}^k), \gamma) = \inf_{x \in \mathbb{D}^k} d(f_r(x), \gamma) \geq D \cdot r \). Since \(f_r \) is the ultralimit of the maps \(f_{r,j} \), the definition of distances in the ultralimit tells us that the set of indices \(j \) for which \(d(f_{r,j}(\mathbb{D}^k), \gamma)/\lambda_{j_r} \geq rD/2 \) lies in the ultrafilter. This verifies Step 2.

Step 3: The set \(J_1 \) lies in the ultrafilter \(\omega \).

This last step is much more involved than the first two. Let us fix one of the points \(P^i \), and consider the restriction \(f_{r,j}|_{\partial D^k} : S^{k-1} \to M \), composed with the projection \(\pi : M \to \gamma \). We have three distinct possibilities:

1. \(P^i \) lies in the image of \(\pi \circ f_{r,j}|_{\partial D^k} \), or
2. \(\pi(f_{r,j}(\partial D^k)) \subset \gamma - \{P^i\} \), and \([\pi \circ f_{r,j}|_{\partial D^k}] = 0 \) in \(\pi_{k-1}(\gamma - \{P^i\}) \), or
3. \(\pi(f_{r,j}(\partial D^k)) \subset \gamma - \{P^i\} \), and \([\pi \circ f_{r,j}|_{\partial D^k}] \neq 0 \) in \(\pi_{k-1}(\gamma - \{P^i\}) \).

This gives us a partition \(\mathbb{N} = I_1^i \cup I_2^i \cup I_3^i \) into three disjoint sets, according to which of these three properties holds for the index \(j \). From property (4) of ultrafilters, we have that exactly one of these three sets must lie in \(\omega \). If we could show that \(I_3^i \in \omega \), then
property (3) of ultrafilters would force $I_1^0 \cap \ldots \cap I_2^0 \in \omega$. Since we have a containment $I_1^0 \cap \ldots \cap I_2^0 \subset J_1$, property (1) of ultrafilters would give us that $J_1 \in \omega$.

So to conclude the proof of Step 3 (and hence, of the **Assertion**), we are left with showing that $I_1^0 \notin \omega$ and that $I_2^0 \notin \omega$. We will argue both of these by contradiction. Supposing that $I_1^0 \in \omega$, we would have that the set of indices for which $d(P^i, \pi \circ f_{r,j} \mid \partial D^k) / \lambda_j = 0$ is contained in ω. So the point represented by the constant sequence $\{P^i\} = \{\} \in \gamma_\omega$ lies on the set:

$$\omega \lim \left(\pi \circ f_{r,j} \mid \partial D^k \right) = \pi \left(\omega \lim f_{r,j} \mid \partial D^k \right) = \pi \circ f_r \mid \partial D^k$$

But this contradicts property (3) in the definition of flattening sequence.

Similarly, to see that $I_2^0 \notin \omega$, we again argue by contradiction. So let us assume that $I_2^0 \in \omega$. Note that the indices in I_2^0 are those for which the map $\pi \circ f_{r,j} \mid \partial D^k : S^{k-1} \to \gamma - \{P^i\}$ is homotopically trivial. Let us define real numbers

$$a_j = \inf_{x \in \partial D^k} d(P^i, \pi \circ f_{r,j}(x)),$$

$$b_j = \sup_{x \in \partial D^k} d(P^i, \pi \circ f_{r,j}(x))$$

and consider the set $A_j := \{x \in \gamma \mid a_j \leq d(x, P_i) \leq b_j\}$. The inclusion $A_j \hookrightarrow \gamma - \{P^i\}$ is a homotopy equivalence, and the map $\pi \circ f_{r,j} \mid \partial D^k$ has image lying inside A_j. Hence for indices $j \in I_2^0$, we have that $[\pi \circ f_{r,j} \mid \partial D^k] = 0 \in \pi_{k-1}(A_j)$, and we can construct a map $F_j : D^k \to A_j \subset \gamma - \{P^i\}$ with the property that $F_j \mid \partial D^k = \pi \circ f_{r,j} \mid \partial D^k$.

Now for each $\epsilon > 0$, we can further partition the set $I_2^0 = I_2^0(\epsilon) \cup \tilde{I}_2^0(\epsilon)$ by defining $I_2^0(\epsilon)$ to be the set of indices where the inequality $a_j < \epsilon \lambda_j$ holds, and $\tilde{I}_2^0(\epsilon)$ the set of indices where $a_j \geq \epsilon \lambda_j$. From property (4) of ultrafilters, we have that precisely one of the sets $I_2^0(\epsilon)$, $\tilde{I}_2^0(\epsilon)$ is contained in ω. We now have two possibilities:

- either we have that $I_2^0(\epsilon) \in \omega$ for every $\epsilon > 0$, or
- there exists some $\epsilon > 0$, for which $\tilde{I}_2^0(\epsilon) \in \omega$.

In the first case, we again obtain that the point represented by the constant sequence $\{P^i\} = \{\} \in \gamma_\omega$ lies on the set $\omega \lim (\pi \circ f_{r,j} \mid \partial D^k) = \pi \circ f_r \mid \partial D^k$, which contradicts property (3) in the definition of flattening sequence.

In the second case, we can try to take the ultralimit of the collection of maps $F_j : D^k \to \gamma$. The **upper bound** on the distance between F_j and P^i ensures that the F_j escape to infinity slowly enough for the ultralimit to be defined. More precisely, from the fact that the maps $\pi \circ f_{r,j} \mid \partial D^k$ have as ultralimit $\pi \circ f_r \mid \partial D^k$, we must have that $\omega \lim \{b_j / \lambda_j\} < \infty$, which in turn implies that the ultralimit $F_\omega : D^k \to \gamma_\omega$ exists. On the other hand, the **lower bound** on the distance between F_j and P^i ensures that the ultralimit F_ω does not pass through the constant sequence $\{P^i\}$. More precisely, for the $\epsilon > 0$ satisfying $\tilde{I}_2^0(\epsilon) \in \omega$, and for any index set $j \in \tilde{I}_2^0(\epsilon)$, we have that

$$d(F_j(D^k), P^i) / \lambda_j \geq d(A_j, P^i) / \lambda_j = a_j / \lambda_j \geq \epsilon.$$
Since this holds for a set of indices in the ultrafilter, we immediately deduce the corresponding property for the ultralimit: \(d(F_\omega(D^k), \{P^i\}) \geq \epsilon \). In particular, \(F_\omega : D^k \to \gamma_\omega \) has image lying in the complement of the point corresponding to the constant sequence \(\{P^i\} = \{\ast\} \), and restricts to the map \(\pi \circ f_r|_{\partial D^k} \) on the boundary \(S^{k-1} = \partial D^k \). This tells us that \([\pi \circ f_r|_{\partial D^k}] = 0 \in \pi_{k-1}(\gamma_\omega \setminus \{\ast\}) \), which contradicts property (3) in the definition of a flattening sequence. This concludes the verification of Step 3, and hence completes the proof of the **Assertion**. \(\square \)

Having established the **Assertion**, we have now concluded the proof of Theorem A. From the definition of a flattening sequence, it is obvious that these exist whenever \(\gamma_\omega \) bounds a half-flat in \(X \). As a result, we see that Theorem B follows immediately from Theorem A.

Finally, let us conclude this section by providing a family of cautionary examples. These will be locally compact CAT(0)-spaces \(X_k \), each containing a geodesic \(\gamma_i \), with the property that for a suitable choice of scales, \(\gamma_\omega \) is contained inside a \(k \)-dimensional flat, but the individual \(X_k \) do not contain any flats of dimension \(> 1 \). In particular, these examples show that the analogue of Theorem B with “half-flats” replaced by “flats” is **false**.

Example: Let us fix a \(k \geq 2 \), and for \(n \in \mathbb{N} \), define the spaces \(C_n := [-n^3, n^3]^k \subset \mathbb{R}^k \). Each \(C_n \) is isometric to the standard \(k \)-dimensional cube with side lengths \(2n^3 \); we let \(l_n \subset C_n \) be the geodesic segment of length \(2n^3 \) joining the two points \((\pm n^3, 0, \ldots, 0) \) inside \(C_n \). Now consider the closed upper half space \(\mathbb{R} \times \mathbb{R}_{\geq 0} := \{(x, y) \mid y \geq 0\} \) with the standard flat metric, and for \(n \in \mathbb{N} \), let us denote by \(\bar{l}_n \) the segment of length \(2n^3 \) joining the pair of points \((\pm n^3, n) \) inside \(\mathbb{R} \times \mathbb{R}_{\geq 0} \). We now form the space \(X_k \) by gluing together all the \(C_n \) to \(\mathbb{R} \times \mathbb{R}_{\geq 0} \). More precisely, we isometrically identify each \(l_n \) with the corresponding \(\bar{l}_n \).

Observe that this space \(X_k \), with the natural induced metric, is a locally compact CAT(0)-space. Furthermore, it is clear that \(X_k \) does not contain any flats of dimension \(> 1 \). Now consider the ultralimit \(X \) obtained by fixing the origin as the sequence of basepoints, and setting \(\lambda(i) = i^2 \) to be the sequence of scales. Let us consider the geodesic \(\gamma \subset X_k \) given by the \(x \)-axis in the \(\mathbb{R} \times \mathbb{R}_{\geq 0} \) portion of \(M \). We claim that the corresponding geodesic \(\gamma_\omega \subset \omega \lim X_k \) is contained inside a \(k \)-flat in \(\omega \lim X_k \). Indeed, this follows readily from the following two observations

- since the distance from \(\bar{l}_n \) to the \(\gamma \) grows linearly, while the scaling factor \(\lambda \) grows quadratically, every point \(P \in \gamma_\omega \) can be represented by a sequence \(\{p_n\} \) with the additional property that \(p_n \in C_n \), and
- since the size of the cubes \(C_n \) grows cubically, while the scaling factor \(\lambda \) grows quadratically, the subset \(C_\omega \subset \omega \lim X_k \) consisting of all points having a representative sequence of the form \(\{c_i\} \) (with each \(c_i \in C_i \)) is isometric to the standard \(\mathbb{R}^k \).
This concludes our family of locally CAT(0) examples.

4. FROM BI-LIPSCHITZ HALF-ULTRAFLATS TO HALF-FLATS

In this section we prove Theorem C, allowing us to deduce the presence of half-flats in M from the presence of bi-Lipschitz half-flats in the ultralimit X along with a mild periodicity condition.

The context is the following: we have a locally compact CAT(0)-space M (for instance, the universal cover of a non-positively curved Riemannian manifold) and an asymptotic cone X of M. We have a k-flat γ in M, and its limit γ_ω in X. Moreover, we are supposing that there exists $G < Isom(M)$ that acts co-compactly on γ. We are assuming that there is a bi-Lipschitz embedding $\phi : \mathbb{R}^k \times \mathbb{R}_{\geq 0} \to X$, whose restriction to $\mathbb{R}^k \times \{0\}$ maps onto γ_ω, and we want to show that γ bounds a $(k + 1)$-dimensional half-flat in M. In view of our Theorem A, it is sufficient to find a flattening sequence for γ_ω.

Let C be the bi-Lipschitz constant of ϕ, and let us make the simplifying assumption that the restriction of ϕ to the set $\mathbb{R}^k \times \{0\}$ is actually an isometry onto γ_ω; we will use this isometry to identify γ_ω with $\mathbb{R}^k \times \{0\}$. For $r \in \mathbb{R}$, let us denote by $L_r = \mathbb{R}^k \times \{r\} \subset \mathbb{R}^k \times \mathbb{R}_{\geq 0}$ the horizontal flat at height r. We will use ρ to denote the obvious projection map $\rho : L_r \to L_0$. To make our various expressions more readable, we use d to denote distance in X (as opposed to d_ω), and the norm notation to denote distance inside $\mathbb{R}^k \times \mathbb{R}_{\geq 0}$.

We now define, for each $r \in [0, \infty)$ a map

$$\psi_r : L_r \to L_0$$

as follows: given $p \in L_r$, we have $\phi(p) \in X$. Since $\gamma_\omega \subset X$ is a flat inside the CAT(0) space X, there is a well defined, distance non-increasing, projection map $\pi : X \to \gamma_\omega$, which sends any given point in X to the (unique) closest point on γ_ω. Hence, given $p \in L_r$, we have the composite map $\pi \circ \phi : L_r \to \gamma_\omega$. But recall that, by hypothesis, ϕ maps L_0 homeomorphically to γ_ω. We can now set $\psi_r : L_r \to L_0$ to be the composite map

$$\psi_r = \phi^{-1} \circ \pi \circ \phi$$

We now show that ψ_r is at finite distance from the projection map $\rho : L_r \to L_0$.

We first observe that for arbitrary $x \in L_r$, we have that the distance from x to L_0 is exactly r, and hence from the bi-Lipschitz estimate, we have

$$d(\phi(x), \gamma_\omega) = d(\phi(x), \phi(L_0)) \leq C r$$

Since π is the nearest point projection onto γ_ω, this implies that $d(\phi(x), (\pi \circ \phi)(x)) \leq C r$. Since $(\pi \circ \phi)(x) = \phi(\psi_r(x))$, we can again use the bi-Lipschitz estimate to
conclude that:

\[Cr \geq d(\phi(x), (\pi \circ \phi)(x)) = d(\phi(x), \phi(\psi_r(x))) \geq \frac{1}{C} \cdot ||x - \psi_r(x)|| \]

Which gives us the estimate \(||x - \psi_r(x)|| \leq C^2 r \). This implies that \(\psi \) is at bounded distance from the projection map \(\rho \). Since the latter is a homeomorphism onto \(L_0 \cong \mathbb{R}^k \), it follows that \(\psi_r \) is surjective.

Since \(\psi_r \) is a surjective, Lipschitz map, its differential exists almost everywhere and it is almost everywhere non-degenerate (see for example [We, Chapter 3]). It follows that we can find a \(k \)-disk \(D_r \) in \(L_r \), of diameter smaller than \(1/C \), and a point \(p_r \) in \(\psi_r(D_r) \) such that \(\psi_r(\partial D_r) \) is homotopically non trivial in \(L_0 \setminus p_r \). By Lemma 2.1, we can find an isometry \(g_r \) of \(X \), that leaves \(\gamma \) invariant, and satisfies \(g_r(\phi(p_r)) = * \).

Now we define the maps \(f_r : \mathbb{D}^k \cong D_r \to X \) via the composition

\[f_r = g_r \circ \phi \mid_{D_r} \]

and observe that we have \(\pi \circ f_r = g_r \circ \phi \circ \psi_r \). Moreover, since the diameter of \(D_k \) is smaller than \(1/C \), the diameter of \(f_r(D_k) \) is smaller than one. Finally, it is clear that our choices for \(D_k \) implies that \(f_r \) satisfies all the conditions for being a flattening sequence for \(\gamma \). Invoking Theorem A completes the proof of Theorem C in the special case where \(\phi \mid_{\mathbb{R}^k \times \{0\}} \) maps \(\mathbb{R}^k \times \{0\} \) isometrically onto \(\gamma \).

Finally, it is easy to see that the general case can be deduced from this special case. Indeed, given our arbitrary bi-Lipschitz embedding \(\phi : \mathbb{R}^k \times \mathbb{R}_{\geq 0} \to X \), let \(\phi_0 : \mathbb{R}^k \times \{0\} \to \gamma \) be the restriction to \(\mathbb{R}^k \times \{0\} \). We are assuming \(\phi_0 \) is onto, hence is a homeomorphism. Now consider the reparametrized map \(\hat{\phi} : \mathbb{R}^k \times \mathbb{R}_{\geq 0} \to X \) obtained by taking the composition:

\[\mathbb{R}^k \times \mathbb{R}_{\geq 0} \xrightarrow{\phi_0^{-1} \times \text{Id}} \mathbb{R}^k \times \mathbb{R}_{\geq 0} \xrightarrow{\phi} X \]

As a composition of bi-Lipschitz maps, \(\hat{\phi} \) is bi-Lipschitz, and by construction, we see that \(\hat{\phi} \) maps \(\mathbb{R}^k \times \{0\} \) isometrically onto \(\gamma \). This reduces the general case to the special case we discussed above, completing the proof of Theorem C.

5. Some applications

Finally, let us discuss some consequences of our main results. As a first application, we obtain some constraints on the behavior of a quasi-isometry between locally compact \(\text{CAT}(0) \)-spaces.

Corollary 5.1 (Constraints on quasi-isometries). Let \(\tilde{M}_1, \tilde{M}_2 \) be two locally compact \(\text{CAT}(0) \)-spaces, and assume that \(\phi : \tilde{M}_1 \to \tilde{M}_2 \) is a quasi-isometry. Let \(\gamma \subset \tilde{M}_1 \) be a \(k \)-flat, \(\gamma_\omega \subset X_1 := \text{Cone}(\tilde{M}_1) \) the corresponding \(k \)-flat in the asymptotic cone, and assume that there exists a bi-Lipschitz \((k+1)\)-dimensional half-flat \(F \subset X_1 \) bounding the \(k \)-flat \(\gamma_\omega \subset X_1 \). Then we have the following dichotomy:
(1) **Non-periodicity:** every k-flat \(\eta \) at bounded distance from \(\phi(\gamma) \) has the property that \(\eta/\text{Stab}_G(\eta) \) is non-compact, where \(G = \text{Isom}(\tilde{M}_2) \), or

(2) **Bounding:** every k-flat \(\eta \) at bounded distance from \(\phi(\gamma) \) bounds a \((k+1)\)-dimensional half-flat.

Proof. This follows immediately from our Theorem C. Assume that the first possibility does not occur, i.e. there exists a k-flat \(\eta \) at bounded distance from \(\phi(\gamma) \) with the property that \(\text{Stab}_G(\eta) \subset G = \text{Isom}(\tilde{M}_2) \) acts cocompactly on \(\eta \). Now recall that the quasi-isometry \(\phi : \tilde{M}_1 \to \tilde{M}_2 \) induces a bi-Lipschitz homeomorphism \(\phi_\omega : \text{Cone}(\tilde{M}_1) \to \text{Cone}(\tilde{M}_2) \). Since \(\eta \subset \tilde{M}_2 \) was a k-flat at finite distance from \(\phi(\gamma) \), we have the containment:

\[
\phi_\omega(\gamma_\omega) \subset \eta_\omega \subset \text{Cone}(\tilde{M}_2).
\]

Since \(\phi_\omega(\gamma_\omega) \) is a bi-Lipschitz copy of \(\mathbb{R}^k \) inside the k-flat \(\eta_\omega \), we conclude that \(\phi(\gamma_\omega) = \eta_\omega \). But recall that we assumed that \(\gamma_\omega \) was contained inside a bi-Lipschitz flat \(\gamma_\omega \subset F \subset \text{Cone}(\tilde{M}_1) \), and hence we see that \(\eta_\omega \subset \phi_\omega(F) \) is likewise contained inside a bi-Lipschitz flat. Since the hypotheses of Theorem C are satisfied, we conclude that \(\eta \) must bound a \((k+1)\)-dimensional half-flat, concluding the proof of Corollary 5.1.

The statement of our first corollary might seem somewhat complicated. We now proceed to isolate a special case of most interest:

Corollary 5.2 (Constraints on perturbations of metrics). Assume that \((M,g_0)\) is a closed Riemannian manifold of non-positive sectional curvature, and assume that \(N^k \hookrightarrow M\) is an isometrically embedded compact flat k-manifold with image \(\gamma_0 \). Let \(\tilde{\gamma}_0 \subset \tilde{M} \) be the k-flat obtained by taking a connected lift of \(\gamma_0 \), and assume that \(\tilde{\gamma}_0 \) bounds a \((k+1)\)-dimensional half-flat \(F_0 \).

Then if \((M,g)\) is any other Riemannian metric on \(M \) with non-positive sectional curvature, and \(\gamma \subset M \) is an isometrically embedded flat k-manifold (in the g-metric) freely homotopic to \(\gamma_0 \), then the lift \(\tilde{\gamma} \subset (\tilde{M},\tilde{g}) \) must also bound a \((k+1)\)-dimensional half-flat \(F \).

We can think of Corollary 5.2 as a “non-periodic” version of the Flat Torus theorem. Indeed, in the case where \(F \) is \(\pi_1(M) \)-periodic, the Flat Torus theorem applied to \((M,g)\) implies that \(\tilde{\gamma} \) is likewise contained in a periodic flat.

Proof. Since \(M \) is compact, the identity map provides a quasi-isometry \(\phi : (\tilde{M},\tilde{g}_0) \to (\tilde{M},\tilde{g}) \). The half-flat \(F_0 \) containing \(\tilde{\gamma}_0 \) gives rise to a flat \((F_0)_\omega \subset \text{Cone}(\tilde{M},\tilde{g}_0)\) containing \((\tilde{\gamma}_0)_\omega \). In particular, we can apply the previous Corollary 5.1.

Next note that, since \(\gamma_0, \gamma \) are freely homotopic to each other, there is a lift \(\tilde{\gamma} \) of \(\gamma \) which is at finite distance (in the g-metric) from the given \(\tilde{\gamma}_0 \subset (\tilde{M},\tilde{g}) \). Indeed, taking the free homotopy \(H : N^k \times [0,1] \to M \) between \(H_0 = \gamma_0 \) and \(H_1 = \gamma \), we
can then take a lift $\tilde{H} : \mathbb{R}^k \times [0, 1] \to \tilde{M}$ satisfying the initial condition $\tilde{H}_0 = \tilde{\gamma}_0$ (the given lift of γ_0). The time one map $\tilde{H}_1 : \mathbb{R}^k \to \tilde{M}$ will be a lift of $H_1 = \gamma$, hence a k-flat in (\tilde{M}, \tilde{g}). Furthermore, the distance (in the g-metric) between $\tilde{\gamma}_0$ and $\tilde{\gamma}$ will clearly be bounded above by the supremum of the g-lengths of the (compact) family of maps $H_p : [0, 1] \to (M, g), p \in N^k$, defined by $H_p(t) = H(p, t)$.

Now observe that by construction, the $\tilde{\gamma} \subset (\tilde{M}, \tilde{g})$ from the previous paragraph has $\text{Stab}_G(\tilde{\gamma})$ acting cocompactly on $\tilde{\gamma}$, where $G = \text{Isom}(\tilde{M}, \tilde{g})$. Hence the first possibility in the conclusion of Corollary 5.1 cannot occur, and we conclude that $\tilde{\gamma}$ must bound a $(k + 1)$-dimensional half-flat F, as desired. This concludes the proof of Corollary 5.2.

Next we recall some terminology from differential geometry: for M a complete, simply connected, Riemannian manifold of non-positive sectional curvature, the rank of a geodesic $\gamma \subset X$ is the dimension $rk(\gamma)$ of the vector space of parallel Jacobi fields along γ. Note that the unit tangent vector field is always parallel, hence the rank of a geodesic is always ≥ 1; a geodesic is said to have higher rank provided $rk(\gamma) \geq 2$. A geodesic γ that bounds a 2-dimensional half-flat automatically has $rk(\gamma) \geq 2$, as the unit normal vector field within the half-flat will be a parallel Jacobi field along γ. Finally, the manifold M is said to have higher rank provided every geodesic $\gamma \subset M$ satisfies $rk(\gamma) \geq 2$. The celebrated rank-rigidity theorem, established independently by Ballmann [Ba2] and Burns-Spatzier [BuSp], states that if M has higher rank then either (1) M is isometric to an irreducible, higher-rank symmetric space of non-compact type, or (2) M is reducible, and splits isometrically as a product $M_1 \times M_2$ of lower dimensional manifolds of non-positive sectional curvature. Our next two applications will exploit the combination of our main results with the rank-rigidity theorem to deduce some information concerning manifolds of non-positive sectional curvature.

Now recall that the classic de Rham theorem [dR] states that any simply connected, complete Riemannian manifold admits a decomposition as a metric product $\tilde{M} = \mathbb{R}^k \times M_1 \times \ldots \times M_k$, where \mathbb{R}^k is a Euclidean space equipped with the standard metric, and each M_i is metrically irreducible (and not \mathbb{R} or a point). Furthermore, this decomposition is unique up to permutation of the factors. This result was recently generalized by Foertsch-Lytchak [FoLy] to cover finite dimensional geodesic metric spaces (such as ultralimits of Riemannian manifolds). Our next corollary shows that, in the presence of non-positive Riemannian curvature, there is a strong relationship between splittings of \tilde{M} and splittings of $\text{Cone}(\tilde{M})$.

Corollary 5.3 (Asymptotic cones detect splittings). Let M be a closed Riemannian manifold of non-positive curvature, \tilde{M} the universal cover of M with induced Riemannian metric, and $X = \text{Cone}(\tilde{M})$ an arbitrary asymptotic cone of \tilde{M}. If
\(\tilde{M} = \mathbb{R}^k \times M_1 \times \ldots \times M_n \) is the de Rham splitting of \(\tilde{M} \) into irreducible factors, and \(X = \mathbb{R}^l \times X_1 \times \ldots \times X_m \) is the Foertsch-Lytchak splitting of \(X \) into irreducible factors, then \(k = l, n = m \), and up to a relabeling of the index set, we have that each \(X_i = \text{Cone}(M_i) \).

Proof. Let us first assume that \(\tilde{M} \) is irreducible (i.e. \(k=0, n=1 \)), and show that \(X = \text{Cone}(\tilde{M}) \) is also irreducible (i.e. \(l=0, m=1 \)). By way of contradiction, let us assume that \(X \) splits as a metric product, and observe that this clearly implies that every geodesic \(\gamma \subset X \) is contained inside a flat. In particular, from our Theorem A, we see that every geodesic inside \(\tilde{M} \) must bound a 2-dimensional half-flat, and hence must have higher rank. Applying the Ballmann, Burns-Spatzier rank rigidity result, and recalling that \(\tilde{M} \) was irreducible, we conclude that \(\tilde{M} \) is in fact an irreducible higher rank symmetric space. But now Kleiner-Leeb have shown that for such spaces, the asymptotic cone is irreducible (see [KLL, Section 6]), giving us the desired contradiction.

Let us now proceed to the general case: from the metric splitting of \(\tilde{M} \), we get a corresponding metric splitting \(\text{Cone}(\tilde{M}) = \mathbb{R}^k \times Y_1 \times \ldots \times Y_n \), where each \(Y_i = \text{Cone}(M_i) \). Since each \(M_i \) is irreducible, the previous paragraph tells us that each \(Y_i \) is likewise irreducible. So we now have two product decompositions of \(\text{Cone}(\tilde{M}) \) into irreducible factors. So assuming that each \(Y_i \) is distinct from a point and is not isometric to \(\mathbb{R} \), we could appeal to the uniqueness portion of Foertsch-Lytchak [FoLy] Theorem 1.1] to conclude that, up to relabeling of the index set, each \(X_i = Y_i = \text{Cone}(M_i) \), and that the Euclidean factors have to have the same dimension \(k = l \).

To conclude the proof of our Corollary, we establish that if \(M \) is a simply connected, complete, Riemannian manifold of non-positive sectional curvature, and \(\dim(M) \geq 2 \), then \(\text{Cone}(M) \) is distinct from a point or \(\mathbb{R} \). First, recall that taking an arbitrary geodesic \(\gamma \subset M \) (which we may assume passes through the basepoint \(\ast \in M \)), we get a corresponding geodesic \(\gamma_\omega \subset \text{Cone}(M) \), i.e. an isometric embedding of \(\mathbb{R} \) into \(\text{Cone}(M) \). In particular, we see that \(\dim(\text{Cone}(M)) > 0 \). To see that \(\text{Cone}(M) \) is distinct from \(\mathbb{R} \), it is enough to establish the existence of three points \(p_1, p_2, p_3 \in \text{Cone}(M) \) such that for each index \(j \) we have:

\[
(1) \quad d_\omega(p_j, p_{j+2}) \neq d_\omega(p_j, p_{j+1}) + d_\omega(p_{j+1}, p_{j+2})
\]

But this is easy to do: take \(p_1, p_2 \) to be the two distinct points on the geodesic \(\gamma_\omega \) at distance one from the basepoint \(\ast \in \text{Cone}(M) \), so that \(d_\omega(p_1, p_2) = 2 \). Observe that one can represent the points \(p_1, p_2 \) via the sequences of points \(\{x_i\}, \{y_i\} \) along \(\gamma \) having the property that \(\ast \in x_i y_i \), and \(d(x_i, \ast) = \lambda_i = d(\ast, y_i) \), where \(\lambda_i \) is the sequence of scales used in forming the asymptotic cone \(\text{Cone}(M) \). Now since \(\dim(M) \geq 2 \), we can find another geodesic \(\eta \) through the basepoint \(\ast \in M \), with the property that \(\eta \perp \gamma \). Taking the sequence \(\{z_i\} \) to lie on \(\eta \), and satisfy \(d(z_i, \ast) = \lambda_i \), it is easy to see
that this sequence defines a third point $p_3 \in \text{Cone}(M)$ satisfying $d_\omega(p_3, \ast) = 1$. From the triangle inequality, we immediately have that $d_\omega(p_1, p_3) \leq 2$ and $d_\omega(p_2, p_3) \leq 2$.

On the other hand, since the Riemannian manifold M has non-positive sectional curvature, we can apply Toponogov’s theorem to each of the triangles $\{\ast, x_i, z_i\}$: since we have a right angle at the vertex \ast, and we have $d(\ast, x_i) = d(\ast, z_i) = \lambda_i$, Toponogov tells us that $d(x_i, z_i) \geq \sqrt{2} \cdot \lambda_i$. Passing to the asymptotic cone, this gives the lower bound $d(p_1, p_3) \geq \sqrt{2}$, and an identical argument gives the estimate $d(p_2, p_3) \geq \sqrt{2}$. It is now easy to verify that the three points p_1, p_2, p_3 satisfy (11), and hence $\text{Cone}(M) \neq \mathbb{R}$, as desired. This concludes the proof of Corollary 5.3.

Before stating our next result, we recall that the celebrated rank rigidity theorem of Ballmann, Burns-Spatzier was motivated by Gromov’s well-known rigidity theorem, the proof of which appears in the book [BGS]. Our next corollary shows how in fact Gromov’s rigidity theorem can now be directly deduced from the rank rigidity theorem. This is our last:

Corollary 5.4 (Gromov’s higher rank rigidity [BGS]). Let M^* be a compact locally symmetric space of \mathbb{R}-rank ≥ 2, with universal cover \tilde{M}^* irreducible, and let M be a compact Riemannian manifold with sectional curvature $K \leq 0$. If $\pi_1(M) \cong \pi_1(M^*)$, then M is isometric to M^*, provided $\text{Vol}(M) = \text{Vol}(M^*)$.

Proof. Since both M and M^* are compact with isomorphic fundamental groups, the Milnor-ˇSvarc theorem gives us quasi-isometries:

$$\tilde{M}^* \simeq \pi_1(M^*) \simeq \pi_1(M) \simeq M$$

which induce a bi-Lipschitz homeomorphism $\phi : \text{Cone}(\tilde{M}^*) \to \text{Cone}(\tilde{M})$. Now in order to apply the rank rigidity theorem, we need to establish that every geodesic in \tilde{M} has rank ≥ 2.

We first observe that the proof of Corollary 5.2 extends almost verbatim to the present setting. Indeed, in Corollary 5.2, we used the identity map to induce a bi-Lipschitz homeomorphism between the asymptotic cones, and then appealed to Corollary 5.1. The sole difference in our present context is that, rather than using the identity map, we use the quasi-isometry between \tilde{M} and \tilde{M}^* induced by the isomorphism $\pi_1(M) \cong \pi_1(M^*)$. This in turn induces a bi-Lipschitz homeomorphism between asymptotic cones (see Section 2). The reader can easily verify that the rest of the argument in Corollary 5.2 extends to our present setting, establishing that every lift to \tilde{M} of a periodic geodesic in M has rank ≥ 2.

So we now move to the general case, and explain why every geodesic in \tilde{M} has higher rank. To see this, assume by way of contradiction that there is a geodesic $\eta \subset \tilde{M}$ with $rk(\eta) = 1$. Note that the geodesic η cannot bound a half-plane. But once we have the existence of such an η, we can appeal to results of Ballmann [Bal.
Theorem 2.13], which imply that η can be approximated (uniformly on compacts) by lifts of periodic geodesics in M; let $\{\tilde{\gamma}_i\} \to \eta$ be such an approximating sequence. Since each $\tilde{\gamma}_i$ has $rk(\tilde{\gamma}_i) \geq 2$, it supports a parallel Jacobi field J_i, which can be taken to satisfy $||J_i|| \equiv 1$ and $\langle J_i, \tilde{\gamma}_i' \rangle \equiv 0$. Now we see that:

- the limiting vector field J defined along η exists, due to the control on $||J_i||$,
- the vector field J along η is a parallel Jacobi field, since both the “parallel” and “Jacobi” condition can be encoded by differential equations with smooth coefficients, solutions to which will vary continuously with respect to initial conditions, and
- J will have unit length and will be orthogonal to η', from the corresponding condition on the J_i.

But this contradicts our assumption that $rk(\eta) = 1$. So we conclude that every geodesic $\eta \subset \tilde{M}$ must satisfy $rk(\eta) \geq 2$, as desired.

From the rank rigidity theorem, we now obtain that \tilde{M} either splits as a product, or is isometric to an irreducible higher rank symmetric space. Since the asymptotic cone of the irreducible higher rank symmetric space is topologically irreducible (see [KIL, Section 6]), and $\text{Cone} (\tilde{M})$ is homeomorphic to $\text{Cone} (\tilde{M}^*)$, we have that \tilde{M} cannot split as a product. Finally, we see that $\pi_1(M) \cong \pi_1(M^*)$ acts cocompactly, isometrically on two irreducible higher rank symmetric spaces \tilde{M} and \tilde{M}^*. By Mostow rigidity [Mo], we have that the quotient spaces are, after suitably rescaling, isometric. This completes our proof of Gromov’s higher rank rigidity theorem.

\[\square \]

Finally, let us conclude our paper with a few comments on this last corollary.

\textbf{Remarks: (1)} The actual statement of Gromov’s theorem in [BGS, pg. (i)] does not assume \tilde{M}^* to be irreducible, but rather M^* to be irreducible (i.e. there is no finite cover of M^* that splits isometrically as a product). This leaves the possibility that the universal cover \tilde{M}^* splits isometrically as a product, but no finite cover of M^* splits isometrically as a product. However, in this specific case, the desired result was already proved by Eberlein (see [Eb]). And in fact, in the original proof of Gromov’s rigidity theorem, the very first step (see [BGS, pg. 154]) consists of appealing to Eberlein’s result to reduce to the case where M^* is irreducible.

\textbf{(2)} In the course of writing this paper, the authors learnt of the existence of another proof of Gromov’s rigidity result, which bears some similarity to our reasoning. As the reader has surmised from the proof of Corollary 5.4, the key is to somehow show that M also has to have higher rank. But a sophisticated result of Ballmann-Eberlein [BaEb] establishes that the rank of a non-positively curved Riemannian manifold M can in fact be detected directly from algebraic properties of $\pi_1(M)$, and hence the property of having “higher rank” is in fact algebraic (see also the recent preprint of Bestvina-Fujiwara [BeFu]). The main advantage of our approach is that one can
deduce Gromov’s rigidity result directly from rank rigidity, and indeed, that one can geometrically “see” that the property of having higher rank is preserved.

(3) We point out that various other mathematicians have obtained results extending Gromov’s theorem (and which do not seem tractable using our methods). A variation considered by Davis-Okun-Zheng ([DOZ], requires M^* to be reducible and M^* to be irreducible (the same hypothesis as in Eberlein’s rigidity result). However, Davis-Okun-Zheng allow the metric on M to be locally CAT(0) (rather than Riemannian non-positively curved), and are still able to conclude that M is isometric (after rescaling) to M^*. The optimal result in this direction is due to Leeb [L], giving a characterization of certain higher rank symmetric spaces and Euclidean buildings within the broadest possible class of metric spaces, the Hadamard spaces (complete geodesic spaces for which the distance function between pairs of geodesics is always convex). It is worth mentioning that Leeb’s result relies heavily on the viewpoint developed in the Kleiner-Leeb paper [KIL].

(4) We note that our method of proof can also be used to establish a non-compact, finite volume analogue of the previous corollary. Three of the key ingredients going into our proof were (i) Ballmann’s result on the density of periodic geodesics in the tangent bundle, (ii) Ballmann-Burns-Spatzier’s rank rigidity theorem, and (iii) Mostow’s strong rigidity theorem. A finite volume version of (i) was obtained by Croke-Eberlein-Kleiner (see [CEK, Appendix]), under the assumption that the fundamental group is finitely generated. A finite volume version of (ii) was obtained by Eberlein-Heber (see [EbH]). The finite volume versions of Mostow’s strong rigidity were obtained by Prasad in the Q-rank one case [Pr] and Margulis in the Q-rank ≥ 2 case [Ma] (see also [R]). One technicality in the non-compact case is that isomorphisms of fundamental groups no longer induce quasi-isometries of the universal cover. In particular, it is no longer sufficient to just assume $\pi_1(M) \cong \pi_1(M^*)$, but rather one needs a homotopy equivalence $f : M \to M^*$ with the property that f lifts to a quasi-isometry $\tilde{f} : \tilde{M} \to \tilde{M}^*$. We leave the details to the interested reader.

References

[Ba1] W. Ballmann. Axial isometries of manifolds of nonpositive curvature. Math. Ann. 259 (1982), 131-144.
[Ba2] W. Ballmann. Nonpositively curved manifolds of higher rank. Ann. of Math. (2) 122 (1985), 597-609.
[BaEb] W. Ballmann & P. Eberlein. Fundamental groups of manifolds of nonpositive curvature. J. Diff. Geom. 25 (1987), 1-22.
[BGS] W. Ballmann, M. Gromov, & V. Schroeder. Manifolds of nonpositive curvature. Progress in Mathematics 61, Birkhuser, Boston, 1985.
[BeFu] M. Bestvina & K. Fujiwara. A characterization of higher rank symmetric spaces via bounded cohomology. Geom. Funct. Anal. 17 (2009), 11-40.
[BrHa] M. Bridson & A. Haefliger. Metric spaces of non-positive curvature. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 319 Springer-Verlag, Berlin, 1999.

[BuSp] K. Burns & R. Spatzier. Manifolds of nonpositive curvature and their buildings. Inst. Hautes Études Sci. Publ. Math. No. 65 (1987), 35-59.

[CEK] C. Croke, P. Eberlein, & B. Kleiner. Conjugacy and rigidity for nonpositively curved manifolds of higher rank. Topology 35 (1996), 273-286.

[DOZ] M. Davis, B. Okun, & F. Zheng. Piecewise Euclidean structures and Eberlein’s rigidity theorem in the singular case. Geom. Topol. 3 (1999), 303-330.

[dR] G. de Rham. Sur la reductibilité d’un espace de Riemann. Comment. Math. Helv., 26 (1952), 328-344.

[Eb] P. Eberlein. Rigidity of lattices of nonpositive curvature. Ergodic Theory Dynam. Systems 3 (1983), 47-85.

[EBH] P. Eberlein & J. Heber. A differential geometric characterization of symmetric spaces of higher rank. Inst. Hautes Études Sci. Publ. Math., No. 71 (1990), 33-44.

[FoLy] T. Foertsch & A. Lytchak. The de Rham decomposition theorem for metric spaces. Geom. Funct. Anal. 18 (2008), 120-143.

[Ka] M. Kapovich. Triangle inequalities in path metric spaces. Geom. Topol. 11 (2007), 1653-1680.

[KaL] M. Kapovich & B. Leeb. 3-manifold groups and nonpositive curvature. Geom. Funct. Anal. 8 (1998), 841-852.

[KIL] B. Kleiner & B. Leeb. Rigidity of quasi-isometries for symmetric spaces and Euclidean buildings. Inst. Hautes Études Sci. Publ. Math. No. 86 (1997), 115-197.

[KSTT] L. Kramer, S. Shelah, K. Tent, & S. Thomas. Asymptotic cones of finitely presented groups. Adv. Math. 193 (2005), 142-173.

[L] B. Leeb. A characterization of irreducible symmetric spaces and Euclidean buildings of higher rank by their asymptotic geometry. Bonner Mathematische Schriften, 326. Universität Bonn, Mathematisches Institut, Bonn, 2000. ii+42 pp.

[Ma] G. Margulis. Non-uniform lattices in semisimple algebraic groups. In “Lie groups and their representations (Proc. Summer School on Group Representations of the Bolyai Jnos Math. Soc., Budapest, 1971),” pp. 371-553. Halsted, New York, 1975.

[Mo] G. D. Mostow. Strong rigidity of locally symmetric spaces. Annals of Mathematics Studies, 78. Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1973. v+195 pp.

[OS] A.Ol’shanskii & M. Sapir. A finitely presented group with two non-homeomorphic asymptotic cones. Internat. J. Algebra Comput. 17 (2007), 421-426.

[Pr] G. Prasad. Strong rigidity of Q-rank 1 lattices. Invent. Math. 21 (1973), 255-286.

[R] M. S. Raghunathan. Discrete groups and Q-structures on semi-simple Lie groups. In “Discrete subgroups of Lie groups and applications to moduli (Internat. Colloq., Bombay, 1973),” pp. 225-321. Oxford Univ. Press, Bombay, 1975.

[TV] S. Thomas & B. Velickovic. Asymptotic cones of finitely generated groups. Bull. London Math. Soc. 32 (2000), 203-208.

[We] S. Wenger. Isoperimetric inequalities of Euclidean type and applications. PhD Thesis ETH Zurich, 2004.
DEPARTAMENTO DI MATEMATICA, UNIVERSITÀ DI BOLOGNA, PIAZZA DI PORTA S. DONATO 5, 40126, BOLOGNA, ITALY.
E-mail address: francavi@dm.unibo.it

DEPARTMENT OF MATHEMATICS, THE OHIO STATE UNIVERSITY, COLUMBUS, OH 43210
E-mail address: jlafont@math.ohio-state.edu