Propagation of short pulses through a Bose-Einstein condensate

Devrim Tarhan1,2,3, Seçkin Şefi1 and Özgür E. Müstecaplıoğlu2

1Department of Physics, Faculty of Sciences and Letters, Istanbul Technical University, Maslak 34469, Istanbul, Turkey
2Department of Physics, Koç University Rumelifeneri yolcu, Sarıyer, Istanbul, 34450, Turkey
3Department of Physics, Harran University, Osmanbey Yerleşkesi, Şanlıurfa, Turkey

We study propagation of short laser pulses in a Bose-Einstein condensate taking into account dispersive effects under the conditions for electromagnetically induced transparency. We calculate dispersion coefficients using typical experimental parameters of slow-light schemes in condensates. By numerically propagating the laser pulse, and referring to theoretical estimations, we determine the conditions for which dispersion starts to introduce distortions on the pulse shape.

PACS numbers: 42.50.-p, 03.75.Kk, 42.50.Gy

I. INTRODUCTION

Since the first demonstration of ultra-slow light propagation through a Bose-Einstein condensate (BEC)1, a major application of slow light has been argued to be an optical memory2. Information storage capacity of such an optical memory based upon slowing laser pulses down to subluminal speeds in BECs would strongly depend on the temporal width of the pulses. As the temporal width of the pulses gets smaller, condensate could contain more pulses in a given time interval. Unfortunately, one cannot hope for using shortest pulses (such as femtosecond or even attosecond) available to maximize information capacity. A challenging issue to use such a short pulse in condensates is the fact that slow-light scheme in BEC is based upon electromagnetically induced transparency (EIT)3, 4 which occurs for not so broad optical frequency window. On the other hand, temporally short pulses have large frequency widths. Present experimental set ups use optical pulses of temporal widths in the order of microseconds. We note that EIT conditions can be reasonably well satisfied for pulses of widths $\sim 10^{-7}$ which would enhance the information capacity of the condensate ten times more.

Another challenging issue in using short pulses in BECs is that their susceptibility to dispersion which may distort the pulse shape. We note that even though dispersive effects have been found small experimentally for microsecond pulses, there is no guarantee that role of dispersion would be small when we make the pulse ten times shorter. As the earlier theoretical models ignore the dispersion completely5, 6, it is necessary to develop a more general theory of slow light propagation taking into account the higher order dispersive properties of the BEC. In the present paper we develop such a theory, generalizing theory of dispersive EIT in a thermal uniform gas7. Using our general theory, we have found that dispersive effects are insignificant for microsecond pulses used in slow-light experiments. However, temporal width of microsecond is the critical width below which dispersion starts to distort the pulse shape. We show that at a width of 10^{-7} seconds, dispersion leads to a small temporal broadening of the pulse.

It may be noted here that study of dispersive effects in slow–short-light propagation may lead to alternative applications such as determination of condensate temperature through measurement of broadening, pulse shape engineering, and frequency band narrowing. While we treat the light classically, novel effects have been predicted for slow-light in quantum regime, in particular a new nonlinearity regime for quantum light8. Our results may contribute to such studies as well. Furthermore, the theory in the present paper can easily be extended to situations in which BEC can have an enhanced nonlinear optical response of BEC that might be utilized for dispersion compensation.

The paper is organized as follows. In Sect. 2, Electric susceptibility of an interacting BEC under EIT conditions is derived. In Sect. 3, wave equation including the high order dispersive terms for the EIT medium is derived. We present and discuss our numerical results in section 4. Finally, we conclude in section 5.

II. EIT ELECTRIC SUSCEPTIBILITY FOR AN INTERACTING BEC

EIT is a technique for making cancellation of induced absorption to weak probe field tuned in resonance to an atomic transition by applying a strong resonant electromagnetic field to couple coherently another atomic transition. Under
EIT refractively thick gaseous medium becomes transparent to the probe beam. In order to formulate the effect, we consider a three-level atom, where the atomic states are denoted by $|1\rangle$, $|2\rangle$ and $|3\rangle$. A-type atom interacting with two lasers. Interaction of electromagnetic field with such an atom, under electric dipole approximation, can be described by a Hamiltonian of the form $H = H_0 + H_1$, where

$$H_0 = \hbar \omega_1 |1 > < 1| + \hbar \omega_2 |2 > < 2| + \hbar \omega_3 |3 > < 3|,$$

$$H_1 = -e \vec{r} \cdot \vec{E}(t).$$

(1)

Here, H_0 and H_1 are unperturbed and interaction parts of the Hamiltonian, respectively. Probe laser, with angular frequency ω_p, is tuned to transition $|1 > \rightarrow |3 >$ while coupling laser, with angular frequency ω_c, is tuned to transition $|2 > \rightarrow |3 >$. We have assumed that only $|3 > \rightarrow |1 >$ and $|3 > \rightarrow |2 >$ transitions are dipole allowed. The interaction part of the hamiltonian for the (EIT) system can be calculated by evaluating

$$H_1 = -\{ |1\rangle\langle 1| + |2\rangle\langle 2| + |3\rangle\langle 3|\} \epsilon_0 \vec{r} \cdot \vec{E}(t)\{ |1\rangle\langle 1| + |2\rangle\langle 2| + |3\rangle\langle 3|\}.$$

(2)

Denoting dipole matrix elements $\mu_{31} = \mu_{13} = \epsilon<3|\langle r|1\rangle$, $\mu_{32} = \mu_{23} = \epsilon<3|\langle r|2\rangle$, $\mu_{12} = \mu_{21} = \epsilon<1|\langle r|2\rangle$ and introducing slowly varying amplitudes for the electric fields $E_p(t) = (\epsilon/2) \exp(-i\omega t)$ and $E_c(t) = (\epsilon/2) \exp(-i\omega_c t)$, Rabi frequency for the coupling laser can be written as $\Omega_c = \mu_{32} \epsilon / \hbar$. Interaction part of the hamiltonian becomes

$$H_1 = -\frac{\hbar}{2} \left\{ \frac{\mu_{31} \epsilon}{\hbar} \exp(-i\omega t)|3\rangle\langle 1| + \frac{\mu_{13} \epsilon}{\hbar} \exp(i\omega t)|1\rangle\langle 3| + \Omega_c \exp(-i\omega_c t)|3\rangle\langle 2| + \Omega_c \exp(i\omega_c t)|2\rangle\langle 3| \right\}.$$

(3)

Including the decay terms phenomenologically, to take into account the finite life time of the atomic levels, to the Liouville Equation $i\hbar \dot{\rho} = [H, \rho]$, density matrix equation become

$$\dot{\rho} = -i\hbar [H, \rho] - \frac{1}{2}\{\Gamma, \rho\}$$

(4)

where Γ is the relaxation matrix, which is defined by the equation $<n|\Gamma|m> = \gamma_n \delta_{nm}$. At the same time the relation between Γ and ρ is given by $\{\Gamma, \rho\} = \Gamma \rho + \rho \Gamma$. In terms of the matrix elements, explicit equation is given by

$$\dot{\rho}_{ij} = \frac{i}{\hbar} \sum_k (H_{ik} \rho_{kj} - \rho_{ik} H_{kj}) - \frac{1}{2} \sum_k (\Gamma_{ik} \rho_{kj} + \rho_{ik} \Gamma_{kj}).$$

(5)

The equation of motion for the density matrix elements ρ_{31} and ρ_{21} are given by

$$\dot{\rho}_{31} = -(i\omega_{31} + \frac{\Gamma_3}{2}) \rho_{31} - \frac{i}{\hbar} \frac{\mu_{31} \epsilon}{\hbar} \exp(-i\omega t)(\rho_{33} - \rho_{11}) + \frac{i}{2} \Omega_c \exp(-i\omega_c t) \rho_{21}$$

(6)

$$\dot{\rho}_{21} = -(i\omega_{21} + \frac{\Gamma_2}{2}) \rho_{21} - \frac{i}{\hbar} \frac{\mu_{31} \epsilon}{\hbar} \exp(-i\omega t) \rho_{23} + \frac{i}{2} \Omega_c \exp(i\omega_c t) \rho_{31}.$$

(7)

The levels $|3 > \rightarrow |1 >$ are coupled by a probe field of amplitude ϵ and frequency ω, whose dispersion and absorption we are interested in. The dispersion and absorption can be computed by ρ_{31}. All atoms are initially in the ground level $|1 >$, $\rho_{11}^{(0)} = 1$, $\rho_{22}^{(0)} = \rho_{33}^{(0)} = \rho_{31}^{(0)} = 0$. In order to solve equation (6), we can write the equations in the form of $\hat{R} = -M \hat{R} + \hat{A}$, where \hat{R}, \hat{M} and \hat{A} are matrix elements. As a result \hat{R} is given by $\hat{R} = M^{-1} \hat{A}$.

We found for the density matrix element ρ_{31},

$$\rho_{31} = \frac{i \mu_{31} \epsilon \exp(-i\omega t)(i\Delta + \Gamma_2/2)}{2\hbar[(\Gamma_2/2 + i\Delta)(\Gamma_3/2 + i\Delta) + \Gamma_c^2]}. $$

(8)

Finally, we determine the electric susceptibility χ of BEC consisting of such three-level atoms in EIT scheme. If we use the relationship between electric field, atomic polarizability and (macroscopic) polarization, we find

$$\chi = \frac{\rho|\mu_{31}|^2}{\epsilon_0 \hbar} \left[\frac{i(i\Delta + \Gamma_2/2)}{[(\Gamma_2/2 + i\Delta)(\Gamma_3/2 + i\Delta) + \Gamma_c^2]} \right].$$

(9)
where $\rho = \rho(\vec{r})$ stands for the inhomogeneous concentration of atoms in an interacting BEC. At a given temperature density profile of an interacting BEC is composed of two components \cite{11}. Density of the condensate part is evaluated by using Thomas-Fermi approximation, while the density of the thermal component is evaluated semi-classically in a harmonic trap \cite{11}. The total ground state density is given by

$$
\rho(\vec{r}) = \frac{\mu - V(r)}{U_0} \Theta(\mu - V(r)) \Theta(T_c - T) + \frac{\alpha_0^2 (\epsilon e^{-\beta V})}{\lambda^3}.
$$

where $U_0 = 4\pi \hbar^2 a_s / m$, m is the atomic mass and a_s is the s-wave scattering length, $\Theta(.)$ is the Heaviside step function, $\alpha_0(x) = \sum_j x^j / j^n$, λ_T is the thermal de Bröglie wavelength, $\beta = \frac{1}{k_B T}$, and T_c is the critical temperature.

We assume an external trapping potential in the form $V(\vec{r}) = (1/2)m(\omega_r^2 r^2 + \omega_z^2 z^2)$ with ω_r the radial trap frequency and ω_z the angular frequency in the z direction. μ is the chemical potential.

III. WAVE EQUATION IN DISPERSIVE MEDIA

In a dispersive medium the relation between displacement current vector and electric field is given by

$$
D = \epsilon(\omega)E
$$

where $\epsilon(\omega) = \epsilon_0[1 + \chi(\omega)]$. Polarization is related to the electric field through electric susceptibility via $P = \epsilon_0\chi(\omega)E$. Susceptibility $\chi(\omega)$ is the Fourier transformation of the response function (Green function) of the medium $\chi(t)$, $\chi(\omega) = \int_{-\infty}^{\infty} \chi(t) \exp(-i \omega t) dt$. Dispersive media are characterized by frequency dependence of susceptibility. Expanding the susceptibility of the dressed atom to second order about a central frequency ω_0, and with $P(\omega - \omega_0) \equiv \epsilon_0\chi(\omega - \omega_0)E(\omega - \omega_0)$, yields\cite{7}.

$$
\chi(\omega - \omega_0) = \chi(\omega_0) + \frac{\partial \chi}{\partial \omega}|_{\omega_0}(\omega - \omega_0) + \frac{1}{2} \frac{\partial^2 \chi}{\partial^2 \omega}|_{\omega_0}(\omega - \omega_0)^2,
$$

which leads to the polarization\cite{7}

$$
P(t) = \epsilon_0\chi(\omega_0)E(t) - i\epsilon_0 \frac{\partial \chi}{\partial \omega}|_{\omega_0} \frac{\partial E}{\partial t} - \frac{\epsilon_0}{2} \frac{\partial^2 \chi}{\partial^2 \omega}|_{\omega_0} \frac{\partial^2 E}{\partial^2 t}.
$$

Maxwell equations in the medium are given by

$$
\nabla \cdot \mathbf{B} = 0 \quad \nabla \cdot \mathbf{D} = \rho_{\text{free}}
$$

$$
\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \quad \nabla \times \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t}.
$$

In addition, we have the standard constitutive relations $\mathbf{D} = \epsilon \mathbf{E} + \mathbf{P}$, $\mathbf{B} = \mu_0 \mathbf{H}$, $\mathbf{J} = \sigma \mathbf{E}$. In such a medium, propagation of an electromagnetic wave is determined by a wave equation in the form

$$
-\nabla^2 \hat{E} + \mu_0 \sigma \frac{\partial \hat{E}}{\partial t} + \frac{1}{c^2} \frac{\partial^2 \hat{E}}{\partial t^2} = -\mu_0 \frac{\partial^2 \hat{P}}{\partial t^2}.
$$

Employing the slowly varying amplitude approximation, which is described by conditions,

$$
\frac{\partial \epsilon}{\partial t} \ll \omega \epsilon, \quad \frac{\partial \epsilon}{\partial Z} \ll k \epsilon
$$

$$
\frac{\partial \mathbf{P}}{\partial t} \ll \omega \mathbf{P}, \quad \frac{\partial \mathbf{P}}{\partial Z} \ll k \mathbf{P}.
$$

wave equation can be reduced to

$$
\frac{\partial \mathbf{E}}{\partial Z} + \alpha \mathbf{E} + \frac{1}{V_G} \frac{\partial \mathbf{E}}{\partial t} + i b_2 \frac{\partial^2 \mathbf{E}}{\partial^2 t} = 0.
$$

Here, E loss term α, group velocity V_G, and dispersion coefficient b_2 are given by\cite{7}

$$
\alpha = \frac{i \pi \chi(\omega_0)}{\lambda}, \quad \frac{1}{V_G} = \frac{1}{c} - \frac{\pi \chi}{\lambda} \frac{\partial \chi}{\partial \omega}
$$

$$
b_2 = \frac{\pi 1}{\lambda^2} \left[\frac{\partial^2 \chi}{\partial^2 \omega}|_{\omega_0} \right].
$$
IV. NUMERICAL RESULTS AND DISCUSSION

Let us first compare the relative strength of the last two terms of the wave equation. The third term describes
the group velocity dispersion while the last (fourth) one is for the second order dispersion. We have analytically
3 calculated the second order dispersion coefficient b_2. Substituting the numerical values taken from experiment[1],
where $a_s = 2.75 \, \text{nm}$, $\omega_r = 2\pi \times 69 \, \text{Hz}$, $\omega_z = 2\pi \times 21 \, \text{Hz}$, we numerically evaluated it to be in the order of $b_2 \sim 10^{-9} \, \text{s}^2/\text{m}$ about
the center of a ^{23}Na condensate with the total number of atoms $N = 8.3 \times 10^5$. For some other set of experimentally
accessible parameters we have found $b_2 \sim 10^{-8} \, \text{s}^2/\text{m}$. We have also checked third order dispersion coefficient and have
found it $\sim 10^{-15} \, \text{s}^3/\text{m}$. Taking the ratio of the third term to the fourth term, we find that the
condition for dispersion to be significant is $(\tau/V_G) \times 10^9 \ll 1$, where τ denotes the temporal pulse width. Subluminal
light speeds achieved using ^{23}Na BECs are in the order of $1 \sim 100 (\text{m/s})$. This yields $\tau \ll 10^{-8}$. This explains clearly
laser pulses used in present slow-light experiments in condensates do not suffer from dispersion. They are however not
the optimal choice for a higher capacity optical memory. One could use a ten times shorter pulse so that $\tau \sim 10^{-7}$. Such a pulse would be influenced by little dispersion in the condensate and would be an optimal choice to use in
optical memories. We present our numerical simulation results in Figs[1][2] for the propagation of pulses of widths
10^{-6}s and 10^{-7}s, respectively. In the figures we use dimensionless scaled position (z) and time variables. Position is
scaled by the condensate radius while time is scaled by the pulse width. Diameter of the BEC is $\sim 50 \, \mu\text{m}$. Effect of
second order dispersion is a small broadening in the temporal pulse width as demonstrated in Fig[2] where, behavior
of the pulse about the center of the condensate, where the dispersive effects are most influential, is shown.

Detailed investigation of behavior of even shorter pulses require more intensive numerical studies and will be
published elsewhere. Wave equation is solved via finite difference Crank-Nicholson space marching scheme. The
Crank-Nicholson scheme is less stable but more accurate than the fully implicit method; it takes the average between
the implicit and the explicit schemes[12]. We use forward difference scheme for the position in order to calculate the
next step and we apply central difference scheme for the time. We discretized the wave equation and a set of linear
equations are solved at each step to find E_{i+1}^z where i represents the position z. At each step we find E_{i+1}^z but this
method is too slow. Accordingly, we use Thomas algorithm[12] which is equivalent than gaussian elimination method
for tri-diagonal matrices.

V. CONCLUSION

Ultra-slow light, which is achieved via EIT in BECs, has an effectively long optical path lengths within the con-
densates. Therefore dispersive effects, in particular temporal broadening of the pulse, can be seen within the short

FIG. 1: Contour plot of the propagation of an EIT pulse of width $\tau = 10^{-6}$s through a ^{23}Na BEC. Time and position are in dimensionless units as explained in the text.

FIG. 2: Same with Fig[1] but for $\tau = 10^{-7}$s.
(micrometer) length of BEC. Normally, one would need much longer distances to be covered with the pulse propagating in other more usual medium such as an optical fiber. Though dispersion has no effect on the slowing down the pulse, slow group velocity makes the dispersion visible in such a short distance.

We examined propagation of short laser pulses in a Bose-Einstein condensate taking into account the dispersive effects under the conditions for electromagnetically induced transparency. Our calculation of the high order dispersion coefficients using typical experimental parameters of slow-light schemes show that dispersive effects start to become influential for pulses whose widths are about 10^{-7}s. Present experiments uses microsecond pulses which are below that dispersion limit.

Acknowledgments

We would like to thank N. Postacqhu and A. Sennaroqhu for their useful discussions. This work was supported by Istanbul Technical University Foundation (ITU BAP). O.E.M acknowledges support from TUBA-GBIP Award.

References

[1] Hau L V, Harris S E, Dutton Z and Behroozi C H 1999 Nature 397 594
[2] Fleischhauer M and Lukin M D 2000 Dark-state polaritons in electromagnetically induced transparency Phys. Rev. Lett. 84 5094
[3] Boller K J, Imamoqlu A and Harris S E 1991 Observation of Electromagnetically induced Transparency Phys. Rev. Lett. 66 2593
[4] Harris S E 1997 Electromagnetically induced transparency Physics Today 50 36-42
[5] Mustecaplo O E and You L 2001 Propagation of raman-matched laser pulses through a Bose-Einstein condensate Optics Comm. 193 301
[6] Mustecaplo O E and You L 2001 Slow light propagation in trapped atomic quatum gases Phys. Rev. A 64 013604
[7] Harris S E, Field J E and Kasapi A 1992 "Dispersive properties of electromagnetically induced transparency Phys. Rev. A 46 R29
[8] Lukin M D and Imamoqlu A 2001 Controlling photons using electromagnetically induced transparency Nature 413 273-276
[9] Scully M O and Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge)
[10] Naraschewski M and Stamper-Kurn D M 1998 Analytical description of a trapped semi-ideal Bose gas at finite temperature Phys. Rev. A 58 2423-2426
[11] Bagnato V, Pritchard D E and Kleppner D 1987 Bose-Einstein condensation in an external potential Phys. Rev. A 35, 4354-4358
[12] Garcia A L 2000 Numerical methods for physics, (New York: Prentice Hall)
[13] Stauffer D and Aharony A 1994 Introduction to Percolation Theory, (London: Taylor and Francis, London) pp.52