Subwavelength vaterite spherulite scattering properties in optical region

Egor Gurvitz1*, Roman Noskov2 and Alexander Shalin1

1 ITMO University, 49 Kronverkskiy pr., St. Petersburg, Russia, 197101.
2 School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel, 6997801
*egorgurvitz@gmail.com

Abstract. Vaterite is a very promising material for biological applications, but its electromagnetic properties have not been studied well enough. In this work we for the first time introduce multipole decompositions of subwavelength nanoparticles for dark field microscopy in optical range.

1. Introduction:
Nowadays, all-dielectric photonics is a perspective field of modern researches [1,2]. Recent works show a high potential for light manipulation and control of subwavelength scatterers for different scales [3,4]. The low losses in optical region, make dielectric scatterers an alternative to plasmonic ones, which applications are often limited by Ohmic losses. Moreover, it has been shown that both electric and magnetic multipole resonances may be excited if the scatterer permittivity is big enough [5–7].
The practical applications of dielectrics in nanophotonics are widespread and manifold, for example, metasurfaces for photovoltaics [8–13], cloaking [14,15], enhancement of nonlinearity [16,17], bianisotropy [18–21], etc.
Dielectrics (e.g. silica, calcium carbonate, calcium phosphate etc) are in a high demand for biophotonic applications [22,23]. One of the very promising materials is a modification of calcium carbonate so-called vaterite. Vaterite is a porous structure material consisting of single uniaxial nanocrystals aligned with confocal hyperbolas. It has promising applications in drug delivery [24], real time imaging processes [25], optical tweezers [26].

In this work, we investigate the vaterite spherulite scattering properties in the optical range. To describe vaterite in optical range we assumed that the refractive index does not change with the wavelength. Variation of the vaterite refractive index \(n \approx 1.486 - 1.658 \) is connected with anisotropy and depends only on the spatial distribution of uniaxial crystals of which it consists [27].
Thus, geometry and the low refractive index of the vaterite sphere define low-Q factor subwavelength resonator and subtle optical responses. In our model TE polarized plane incident at 65[deg] to a substrate normal. The substrate is the optical glass with refractive index n=1.46. We assume that for possible experiment solid angle for collecting light is pi/4 steradian.
Figure 1. Total scattering efficiency of vaterite spherulite with R=220nm placed on a glass substrate with n=1.46 for TE polarized wave incident to the substrate at 65[deg] (a). Multipole decomposition of a backward scattered light in a solid angle of pi/4 steradian (b). Electric quadrupole and magnetic dipole do not produce an equal contribution to the backscattering, therefore electric dipole and magnetic quadrupole contributions dominate in short wavelength due to an orientation of their radiation patterns.

Figure 1(a) the scattering efficiency for Cartesian multipole decomposition [28] for vaterite spherulite approximated with a sphere with nm R=220nm. In the long wavelength range of 550-880 nm, the scattering efficiency is defined by slow varying electric and magnetic dipoles, electric quadrupole. The magnetic dipole in this range has a peak of scattering efficiency. Besides the slow raise of the electric quadrupole and decrease of the magnetic dipole in short wavelength range of 450 and 550 nm, electric dipole and magnetic quadrupoles resonances have overlapped peaks.

For low refractive index the contribution of higher order multipoles, such as electric and magnetic octupole moments should be considered. In the short wavelength region it leads to the excitation of a magnetic octupole moment and higher multipoles. As soon as the magnetic octupole gives sensible contribution to the multipole decomposition spectra the mismatch of the multipole decomposition with the total scattering indicates necessity to include a second order toroidal magnetic dipole and a second toroidal electric quadrupole. Unfortunately, those high order toroidal moments are not included in the 5th order irreducible Cartesian multipole decomposition and this limitation should be taken into account.

Scattered fields observed for a single nanoparticles in optical region cannot be measured in full solid angle, due to numerical aperture of light collecting optics. The multipole decomposition of a scattering efficiency (for full solid angle [28] Equation 25) calculated for a solid angle Q_{scat}^{NA} can be found from:

$$Q_{\text{scat}}^{NA} = \frac{1}{|E_{\text{inc}}|^2} \int_0^{\pi/2} \int_0^{2\pi} |E_{\text{scat}}|^2 \sin(\theta) \ d\phi \ d\theta,$$ \hspace{1cm} (1)

where E_{scat} is a scattered E-field in the representation of irreducible Cartesian multipoles (Equation 6 in [28]), $|E_{\text{inc}}|$ is an amplitude of incident field, angles θ' and θ'' define position and light collected an aperture for dark-field calculations in spherical coordinates.

Figure 1(b) shows the scattering efficiency for backward scattering or $\theta'=0$ and $\theta''=\pi/8$ in Equation (1). TE polarized incident wave have pronounced broadband peak of overlapped magnetic
quadrupole and electric dipole at 490 nm. Also it shows dominating and broadband response of magnetic dipole in the long wavelength region.

Comparison of figure 1 panels (a) and (b) shows suppression of magnetic dipole and electric dipole contributions in the short wavelength region for the \(Q_{\text{scat}}^{NA} \). At the same time full scattering reveals almost equivalent amplitudes of first 4 multipoles in spectrum. Thus, it experiences generalized Kerker condition [29,30].

Conclusion:
In this work, we first time demonstrate multipole decomposition of vaterite subwavelength nanostructures for dark-field optical microscopy. Vaterite low refractive index defines subtle optical resonances over the whole optical region. The peculiarities of the system and multipole responses for total scattering and light collected in a solid angle are discussed. The obtained multipole decomposition may be used for scattered light manipulation and control, for improvement vaterite structures imaging, trapping, etc.

Acknowledgement
The authors acknowledge the financial support provided by Russian Fund for Basic Research (Projects No. 18-02-00414, 18-52-00005); Government of Russian Federation, Grant 08-08.

References
[1] Krasnok A E, Miroshnichenko A E, Belov P A and Kivshar Y S 2012 All-dielectric optical nanoantennas *Opt. Express* **20** 837–42
[2] Jahani S and Jacob Z 2016 All-dielectric metamaterials *Nat. Publ. Gr.* **11** 23–36
[3] Basharin A A, Kafesaki M, Economou E N, Soukoulis C M, Fedotov V A, Savinov V and Zheludev N I 2015 Dielectric Metamaterials with Toroidal Dipolar Response *Phys. Rev. X* **5** 1–11
[4] Terekhov P D, Baryshnikova K V., Shalin A S, Karabchevsky A and Evlyukhin A B 2017 Resonant forward scattering of light by high-refractive-index dielectric nanoparticles with toroidal dipole contribution *Opt. Lett.* **42** 1–4
[5] Evlyukhin A B, Novikov S M, Zywietz U, Eriksen R L, Reinhardt C, Bozhevolnyi S I and Chichkov B N 2012 Demonstration of Magnetic Dipole Resonances of Dielectric Nanospheres in the Visible Region *Nano Lett.* **12** 3749–55
[6] Kuznetsov A I, Miroshnichenko A E, Fu Y H, Zhang J and Luk B 2012 Magnetic light *Sci. Rep.* **2** 1–6
[7] Terekhov P D, Baryshnikova K V., Artemyev Y A, Karabchevsky A, Shalin A S and Evlyukhin A B 2017 Multipolar response of nonspherical silicon nanoparticles in the visible and near-infrared spectral ranges *Phys. Rev. B* **96** 1–8
[8] Nagel J R and Scarpulla M A 2010 Enhanced absorption in optically thin solar cells by scattering from embedded dielectric nanoparticles *Opt. Express* **18** 139–46
[9] Milichko V A, Shalin A S, Mukhin I S, Kovrov A E, Krasilin A A, Vinogradov A V., Belov P A and Simovski C R 2016 Solar photovoltaics: current state and trends *Phys. - Uspekhi* **59** 727–69
[10] Voroshilov P M, Simovski C R, Belov P A and Shalin A S 2015 Light-trapping and antireflective coatings for amorphous Si-based thin film solar cells *J. Appl. Phys.* **117** 1–7
[11] Simovski C R, Shalin A S, Voroshilov P M and Belov P A 2013 Photovoltaic absorption enhancement in thin-film solar cells by non-resonant beam collimation by submicron dielectric particles *J. Appl. Phys.* **114** 1–6
[12] Shalin A S 2010 Broadband Blooming of a Medium Modified by an Incorporated Layer of Nanocavities *JETP Lett.* **91** 636–42
[13] Shalin A S and Moiseev S G 2009 Optical Properties of Nanostructured Layers on the Surface
of an Underlying Medium Opt. Spectrosc. 106 1004–13

[14] Mirzaei A, Miroshnichenko A E, Shadrivov I V and Kivshar Y S 2015 All-Dielectric Multilayer Cylindrical Structures for Invisibility Cloaking Sci. Rep. 5 1–6

[15] Shalin A S, Ginzburg P, Orlov A A, Iorsh I, Belov P A, Kivshar Y S and Zayats A V. 2015 Scattering suppression from arbitrary objects in spatially dispersive layered metamaterials Phys. Rev. B 91 1–7

[16] Savelev R S, Filonov D S, Petrov M I, Krasnok A E, Belov P A and Kivshar Y S 2015 Resonant transmission of light in chains of high-index dielectric particles Phys. Rev. B 92 1–5

[17] Makarov S V, Tsykin A N, Voytova T A, Milichko V A, Mukhin I S, Yulin A V, Putilin S E, Baranov M A, Krasnok A E, Morozov I A and Belov P A 2016 Self-adjusted all-dielectric metasurfaces for deep ultraviolet femtosecond pulse generation Nanoscale 8 17809–14

[18] Odit M, Kapitanova P, Belov P, Alaee R, Rockstuhl C and Kivshar Y S 2016 Experimental realisation of all-dielectric bianisotropic metasurfaces Appl. Phys. Lett. 108 29–32

[19] Alaee R, Albooyeh M, Rahimzadegan A, Mirmoosa M S, Kivshar Y S and Rockstuhl C 2015 All-dielectric reciprocal bianisotropic nanoparticles Phys. Rev. B 92 1–6

[20] Baryshnikova K, Filonov D, Simovski C, Evlyukhin A, Kadochkin A, Nenasheva E, Ginzburg P and Shalin A S 2018 Giant magnetoelectric field separation via anapole-type states in high-index dielectric structures Phys. Rev. B, 98(16), 165419.

[21] Markovich D, Baryshnikova K, Shalin A and Samusev A 2016 Enhancement of artificial magnetism via resonant bianisotropy Sci. Rep. 6 1–8

[22] Tang F, Li L and Chen D 2012 Mesoporous Silica Nanoparticles: Synthesis, Biocompatibility and Drug Delivery Adv. Mater. 24 1504–34

[23] Trofimov A D, Ivanova A A, Zyzin M V and Timin A S 2018 Porous Inorganic Carriers Based on Silica, Calcium Carbonate and Calcium Phosphate for Controlled/Modulated Drug Delivery: Fresh Outlook and Future Perspectives Pharmaceutics 10 1–36

[24] Parakhonskiy B V, Haase A and Antolini R 2012 Sub-Micrometer Vaterite Containers: Synthesis, Substance Loading, and Release Angew. Chemie Int. Ed. 51 1195–7

[25] Nielsen M H, Aloni S and De Yoreo J J 2014 In situ TEM imaging of CaCO3 nucleation reveals coexistence of direct and indirect pathways Science (80). 345 1158–62

[26] Bui A A M, Kashchuk A V, Balanant M A, Nieminen T A, Rubinsztein-dunlop H and Stilgoe A B 2018 Calibration of force detection for arbitrarily shaped particles in optical tweezers Sci. Rep. 8 1–12

[27] Noskov R E 2018 Non-Mie optical resonances in anisotropic biominal nanoparticles Nanoscale 20 21031–40

[28] Gurvitz E A, Ladutenko K S, Dergachev P A, Evlyukhin A B, Miroshnichenko A E and Shalin A S 2018 The high-order toroidal moments and anapole states in all-dielectric photonics Laser & Photonics Reviews, 13-5, 1800266.

[29] Alaee R, Filter R, Lehr D., Lederer F and Rockstuhl C 2015 A generalized Kerker condition for highly directive nanoantennas Opt. Lett. 40 2645–8

[30] Shamkhi H K, Baryshnikova K V, Sayanskiy A, Kapitanova P, Terehov P D, Karabchevsky A, Evlyukhin A B, Belov P, Kivshar Y and Shalin A S 2018 Transverse scattering with the generalised Kerker effect in high-index nanoparticles, Physical review letters, 122-19, 193905.