RFLP-based Analysis of Recombination among Resistance Genes to Fusarium Wilt Races 1, 2, and 3 in Tomato

J.W. Scott, H.A. Agrama, and J.P. Jones
Gulf Coast Research and Education Center, University of Florida, 5007 60th Street East, Bradenton, FL 34203-9324

ABSTRACT. Tomato (Lycopersicon esculentum) line E427 has resistance genes to all three races of Fusarium oxysporum f.sp. lycopersici derived from L. pennellii accession LA 716 and L. pimpinellifolium accession PI 126915. To determine genes that confer resistance to specific races of fusarium wilt, line E427 was crossed to susceptible ‘Bonny Best’ and then F1 and backcross (to ‘Bonny Best’) seed were obtained. Self-pollinations resulted in 337 lines and progeny of each line was inoculated separately with fusarium wilt races 1, 2, or 3. Plants from lines whose segregation suggested recombination of resistance were self-pollinated and reinoculated until disease reactions were homozygous. Four lines were obtained with resistance to both races 2 and 3, but susceptible to race 1. These lines had the L. pennellii alleles at restriction fragment length polymorphism (RFLP) markers linked to I-3 on chromosome 7 and lacked L. pimpinellifolium alleles linked to I and I-2 on chromosome 11. Complementation (F2) data indicated race 2 resistance on chromosome 7 was controlled by a single dominant gene. Three lines were resistant to race 2, but susceptible to races 1 and 3. These lines had L. pimpinellifolium alleles at TG105 and flanking markers encompassing a 14.4 cM region indicating the presence of I-2, and no L. pennellii alleles at markers linked to I-3. Three lines were resistant to race 1, but susceptible to races 2 and 3. All three lines had L. pimpinellifolium alleles at TG523 confirming linkage to I on chromosome 11 and no L. pennellii alleles at markers tightly linked to I-3. However, one of the lines, 415, had L. pennellii alleles at CT113 on chromosome 7. This data along with F2 complementation data suggests the possible existence of a second race 1 resistant locus, I1, in this region. The four lines resistant to both races 2 and 3 were backcrossed again to ‘Bonny Best’ and self-pollinated progeny from 174 plants were screened as described above. Two lines derived from different BC1S lines that were fusarium wilt race 3 resistant and susceptible to race 1 had intermediate resistance to race 2. Two of these two lines did not have the L. pennellii alleles at TG183, TG174, and CT43 near the I-3 locus indicating crossovers in this region resulted in reduced race 2 resistance. Collectively, this is the first clear break in the fusarium wilt race 2 and race 1 resistance linkage on chromosome 11. It appears that the race 1 resistance derived from PI 126915 is controlled by the I gene. On chromosome 7, there was a break between the I-3 and I1 genes indicating I3 does not confer race 1 resistance. The crossovers resulting in reduced resistance to race 2 could be within a complex I-3 locus or a tightly linked race 2 locus.

The host–pathogen interaction of tomato (Lycopersicon esculentum Mill.) and Fusarium oxysporum Schlecht. f.sp. lycopersici (Sacc.) Snyder & Hansen has been widely studied. Several major dominant resistance genes and the races they control have been identified. The first vertical gene for resistance (I) was reported by Bohn and Tucker (1939) in L. pimpinellifolium accession PI 79532. This gene was later assigned to chromosome 11 (Paddock, 1950). Recently I was found to be linked to chromosome 11 restriction fragment-length polymorphism (RFLP), TG523 (P. Lindhout, personal communication). This position is consistent with the location reported for RFLP introgression lines at the Solgenes website (http://grain.jouy.inra.fr/cgi-bin/webace/webace?db=solgenes). A second race was discovered before 1940 (Alexander and Tucker, 1945) but was not reported again until 1961 when the pathogen caused serious crop losses in Florida (Stall and Walter, 1965). A gene (I-2) for resistance to the second race was discovered in a L. pimpinellifolium-L. esculentum F1 accession, PI 126915 (Stall and Walter, 1965). The I-2 gene was mapped to chromosome 11 by morphological markers (Laterrot, 1976) and by RFLP marker TG105 (Sarfatti et al., 1989; Segal et al., 1992). Simons et al. (1998) cloned I-2 and it is a complex locus (Ori et al., 1997; Simons et al., 1998). Stall and Walter (1965) originally reported PI 126915 was also resistant to race 1, but it was not clear if this was due to I-2 or to a linked gene, either I or another gene. Cirulli and Alexander (1966) reported that resistances to race 1 and race 2 from PI 126915 were controlled by separate genes but did not confirm I to be the race 1 resistance gene. Later, Laterrot and Philouze (1984) reported recombination between genes for resistance to race 2 (I-2) and race 1. They obtained a line, which was resistant only to race 2, although this line was less susceptible to race 1 than the susceptible control line. Laterrot and Philouze (1984) concluded that the I-2 gene gave a reduced susceptibility to race 1. It still is not known if the race 1 resistant gene linked to I-2 from PI 126915 is I or another gene.

Meanwhile, a third race of fusarium wilt was discovered in Australia (Grattidge and O’Brien, 1982) and now spread to the southeastern and western United States, Mexico and Japan. Resistance to race 3 (I-3 gene) was discovered in L. pennellii (McGrath et al., 1987; Scott and Jones, 1989). In fact, all accessions of L. pennellii carry resistance to all three races of the fusarium wilt organism (Scott and Jones, 1990). Bourvillal et al. (1989) determined the I-3 gene from LA 716 was linked to an allozyme of Got-2 on chromosome 7. This marker could also be used to select for race 1 and 2 resistance derived from LA 716 (Bourvillal et al., 1990). From this work, it was not clear whether the resistances to races 1 and 2 were conferred by I-3 or genes linked to I-3. Later, Tankesley et al. (1992) reported I-3 was linked to RFLP markers TG128, TG217, and TG170. Sarfatti et al. (1991) reported a gene (I1) conferring resistance to race 1 derived from LA 716, was linked between RFLP markers TG20 and TG128 on chromosome 7. They reported this gene not to be an allele of I-3 presumably due to differences in linkage estimates from Got-2. Resistance to

Received for publication 9 June 2003. Accepted for publication 18 Nov. 2003. Florida Agricultural Experiment Station journal series R-08534. We thank John Petti, Karen Pearce, and Russell Owens for technical assistance.
race 3 was not evaluated in their experiments. Later Sela-Buurlage et al. (2001) stated that the I-3 gene confers resistance to all three races. Thus, there is some confusion as to the genetic control of fusarium wilt resistance on chromosome 7.

RFLPs have been used to generate tomato molecular linkage maps (Fulton et al., 1997; Haanstra et al., 1999; Ron et al., 2000; Tanksley et al., 1992). However, RFLPs have also been used to identify markers that are closely linked to tomato disease resistance genes (Grube et al., 2000; Lindhout 1995; Martin et al., 1993) such as tobacco mosaic virus (Young et al., 1988), powdery mildew (Chunwongse et al., 1994), yellow leaf curl virus (Zamir et al., 1994), corky root rot (Dogran et al., 1998), root-knot nematode (Kaloshian et al., 1998), and cucumber mosaic virus (Stamova and Chetetelat, 2000).

In this work, we use fusarium wilt inoculations to develop and identify lines that have crossovers between resistance genes on chromosome 7 or chromosome 11. Complementation tests (F2) and RFLP analyses were used to identify genes present and determine their approximate locations. On chromosome 11 the goal was to determine if the race 1 resistance gene linked to I-2 is the I gene and to see if I-2 affected race 1 resistance. On chromosome 7 the goal was to determine if genes other than I-3 confer race 1 or race 2 resistance and determine approximate map locations for these genes.

Materials and Methods

Recombinant line development. *Lycopersicon pennellii* accession LA 716, resistant to all three races of the fusarium wilt pathogen was crossed with a breeding line carrying the I-2 gene and an unknown linked race 1 resistance gene on chromosome 11. The F1 was self-pollinated (F2) and backcrossed to BB (BB), which is susceptible to all 3 races of the fusarium wilt pathogen. The F1 was selected for race 3 resistance and backcrossed to another I-2, race 1 resistant breeding line. After further selection for race 3 resistance, a homozygous resistant F3 line designated E427 was derived that was also resistant to races 1 and 2 (Scott and Jones, 1989). Line E427 has the I-3 gene on chromosome 7 that confers race 3 resistance, while resistance to races 1 and 2 could be due to resistance genes on chromosome 11 and/or chromosome 7 (Bournival et al., 1990). In 1986, E427 was crossed with ‘Bonny Best’ (BB), which is susceptible to all 3 races of the fusarium wilt pathogen. The F1 was self-pollinated (F2) and backcrossed to BB (BC). Self-pollinated seed were saved from 187 BC1 plants and 150 F2 plants. Seedlings from each BC1 and F2 were divided into three groups and inoculated with race 1, 2, or 3 of the fusarium wilt pathogen. Resistant plants from lines whose segregation ratios indicated crossing-over between resistance genes were planted in the field where self-pollinated seed was saved from several plants per line. Progeny were inoculated separately for all three races, and this procedure was repeated again until homoygosity for the disease reactions was obtained. BC1S2 and F1 lines carrying resistance to races 1 and 2 but not to race 3 were somewhat common but ignored due to the difficulty in distinguishing if these had crossovers on chromosome 7 or were lines carrying only I-2 and linked race 1 resistance on chromosome 11. Data are presented from the BC1S2 and F1 generations. Several plants of each Fusarium recombinant line (BC1S2 and F1), were tested for Got-2 using starch gel electrophoresis as described by Bournival et al. (1989) and Vallejos (1983).

Four lines were obtained that were resistant to races 2 and 3 but susceptible to race 1. In Fall 1994, these four lines were crossed to BB and backcrosses were made to BB in Spring 1995. In Spring 1998, the backcrosses were grown in the field and self-pollinated seed (BC1S2) was saved from 174 plants. In Spring 1999, BC1S2 progeny were divided into three groups and each was inoculated with race 1, 2, or 3 of the fusarium wilt pathogen. When segregation ratios indicated crossing-over between resistance genes, resistant plants were transplanted to the field and self-pollinated seed was saved from several plants per line. This process was repeated until homozygous lines were obtained. Pooling data from the BC1S2, BC1S3, and BC1S4 generations in 2000 and 2001 are presented for two lines (732 and 751), which were clearly resistant only to race 3.

Complementation tests. Since dominant genes conferred resistance, F2 complementation tests were conducted to determine allelism of recombinant lines. Three lines resistant to race 1 but susceptible to races 2 and 3 were crossed to ‘Manapal’ (I) and the F1 was later self-pollinated to produce F2 seed. The three race 1 resistant parent lines (415, 392, and 399), the F1’s, ‘Manapal’, and BB (I/I+, susceptible control) were inoculated with race 1. A two gene model (15 resistant : 1 susceptible in the F2) was then tested for goodness of fit by Chi-square. Two lines resistant to races 2 and 3 but not race 1 were crossed with Fla. 7182, (I-2). The resultant F1 was self-pollinated to obtain F2 seed. The two race 2 and 3 resistant parent lines (218 and 256), Fla. 7182, the F1’s, and ‘Manapal’ (I-1/I-2, susceptible control) were screened for race 2 resistance and tested for fit to a two gene model as above.

Inoculation. The race 1 isolate, 626, was originally sent from Cirulli (Cirulli and Alexander, 1966). The race 2 and race 3 isolates, 548 and 5397, respectively, were originally from Florida farms. These three isolates were grown on potato dextrose agar at 28 °C for 1 week and comminuted in a blender with dH2O and adjusted to 6 × 107 spores/mL. Seedlings at the cotyledon stage were root dipped in the slurry and transplanted to Todd planter flats containing 128 cells (3.8 cm3). The cells contained a 1:1 (by volume) ratio of peat and vermiculite amended with dolomite, superphosphate, and hydrated lime so the pH was 6.5. Supplemental liquid fertilizer was applied to maintain plant growth. Plants were scored several times over a 30 day period for disease symptoms which ranged from death to stunting, wilting, yellowing of the foliage, epinasty, and/or enlarged stems. Healthy plants had none of the above symptoms and retained their green cotyledons. Stems of questionable plants were cut longitudinally and rated as diseased if they had vascular browning. Several inoculations were done from 1990 to 2001 in greenhouses under ambient conditions. Spring temperatures ranged from 20 to 32 °C d/12 to 18 °C n (typically 27 °C d/18 °C n). Summer or fall temperatures ranged from 30 to 33 °C d/21 to 25 °C n. The recombinant lines with resistance to only race 1, race 2, or both races 2 and 3 and controls were inoculated over several experiments (generally three) and data were pooled over these experiments for clarity of presentation. Plant numbers tested per line for each race ranged from 98 to 329. The lines resistant to race 3 alone were tested in three later experiments and data were also pooled. Plant numbers tested per line for each race ranged from 147 to 176. The following control lines were used for race 1 inoculations (BB-susceptible, ‘Manapal’-resistant); race 2 inoculations (‘Manapal’-susceptible, Fla. 7182 or ‘Horizon’-resistant); and race 3 inoculations (Fla. 7182 or ‘Horizon’-susceptible, I3R1 or Fla. 7182, 5747-resistant).

RFLP analyses. The RFLP screening method we used was similar to stepped aligned inbred recombinant strains (STAIRS) approach that is generally applicable yet focused on precise QTL location. It allows one to “zoom in” on genes responsible to almost any degree of accuracy and because only few lines are required at any one time, it permits very large-scale replication to enhance the statistical power of both trait and gene-expression analysis (Kearsey, 2002).

Total tomato DNA was extracted from fresh leaf tissue of...
pooled 15 to 20 seedlings following the method of Burbidge et al. (1995). Genomic DNA of each line was digested with the restriction enzymes EcoRI, HindIII, BamHI or XbaI. Digested DNA was fractioned in 1.0% agarose gels. After electrophoresis, gels were denatured, neutralized and Southern blotted onto uncharged nylon membrane using standard techniques. DNA probes were labeled by PCR amplification with 2.5% digoxigenin d-UTP (Boehringer-Mannheim, Ridgefield, Conn.). The probes were detected according to chemiluminescent protocol described by Agrama and Moussa (1996) and Bohorova et al. (1999). RFLP probes were obtained from S.D. Tanksley’s Laboratory, Cornell University, New York. These probes spanned chromosomes 7 and 11 with some concentration near reported fusarium wilt resistance loci.

Results and Discussion

Phenotypic analysis. We identified 12 lines in the E427 populations that separate resistance specificities attributed to I, I-2, and I-3. Analysis of these lines using a STAIRS approach to provide a focused analysis of the loci responsible for the resistant phenotypes, demonstrate that the I-3 locus on chromosome 7 does not provide resistance to all three races of fusarium wilt. The results of STAIRS analysis are consistent with the existence of a second gene, II (Sarfatti et al., 1991), conferring resistance to race 1. Furthermore, a region tightly linked to I-3 appears to confer race 2 resistance. On chromosome 11 we demonstrate that the I-2 locus has no effect on race 1 resistance and that I is in fact the gene conferring race 1 resistance that was introgressed with the I-2 gene. The recombinant lines developed in the course of this work will provide the basis to rigorously test hypotheses about the specificity of Fusarium resistance genes using a more diverse array of pathogen isolates and about the existence of loci that might confer partial resistance.

Fusarium wilt race recombinant lines from the E427 populations included three resistant to race 1 alone, three resistant to race 2 alone, and four resistant to both races 2 and 3 (Fig. 1). All lines trace back to separate BC1, plants except 415, which was derived from an F1 plant. All lines had some healthy plants to races they were susceptible to, and often these frequencies were higher than those of BB. For instance, for race 1 inoculation there were between 11% and 16% healthy plants for lines resistant to race 2 alone and races 2 and 3 alone, whereas BB had <2% healthy. The increased frequency of healthy race 1 inoculated plants could be due to an effect of the race 2 and/or race 3 resistance genes, modifier genes, or both. However, these results should not be confused with those reported by Laterrot and Philouze (1984) who found less susceptibility to race 1 in ‘Ideucenzi’, their race 2 resistant line. We had previously tested ‘Ideucenzi’ and confirmed their results (J.W. Scott and J.P. Jones, unpublished data). The present lines were much more susceptible to race 1 than ‘Ideucenzi’ although a direct comparison was not made in these experiments.

Two lines, 732 and 751, with clear resistance only to race 3 were eventually obtained from the 174 BC,S, lines that were screened for all three races (Fig. 2). Lines 732 and 751 came from crosses of BB with lines 218 and 383, respectively, which were resistant to both races 2 and 3 (Fig. 1). Both lines were highly susceptible to race 1, but had an intermediate race 2 disease incidence that varied between seasons (11% to 49% and 13% to 76% healthy plants for 732 and 751, respectively). However, the healthy race 2 inoculated plants were stunted compared to race 3 inoculated plants (Fig. 3). The race 2 reactions for these lines, was similar to that of ‘Ideucenzi’ for race 1 (Laterrot and Philouze, 1984; Scott and Jones, unpublished). This intermediate race 2 susceptibility could be due to an effect of I-3 on race 2 or perhaps the crossover location, which could be within a complex resistance locus that could either be I-3 or a tightly linked race 2 resistance locus. In these experiments, there were inexplicably lower percentages of
Race 2 plants suggesting 399 does not have resistant lines have the TG523 allele linked to chromosome 7 (Table 1). However, all three race acceptable (resistance suggest the location of gene). Collectively, data for lines with and without race 1 resistance indicate the lines only have the TG20 and CT54 or a 3.6 cM region between TG216 and TG639. Thus, would be either 11.5-15.1 cM or 17.5-19.9 cM from I-3. It is clear that lines with resistance only to races 2 and 3 were obtained (Fig. 1) so I1 must exist and the likely locations have been mentioned. Accordingly, I-3 does not confer race 1 resistance as has been claimed (Sela-Buurlage et al. 2001).

A two-gene model was supported by the race 2 inoculation data for F2 populations derived from two lines resistant to both races 2 and 3 crossed with Fl. 7182 (I-2) (Table 2). This conclusion would indicate the lines with resistance to both races 2 and 3 have a resistance gene on chromosome 7 as is supported by the marker data (Figs. 4 and 5). The data also support dominant control of race 2 resistance by the gene on chromosome 7.

RFLP ANALYSIS OF STEPPED ALIGNED INBRED RECOMBINANT LINES. The three lines resistant to race 2 alone all had L. pimpinellifolium alleles in the TG105 region indicating they have the I-2 gene (Ori

Healthy (%)

Race 1 Race 2 Race 3

Genotype

Fig. 2. Frequency of healthy plants for tomato genotypes inoculated with three races of the fusarium wilt pathogen. Controls are 'Bonny Best' susceptible to all races, ‘Manapal’ resistant to race 1 (I-gene), ‘Horizon’ resistant to races 2 and 1 (I-2 and linked race 1 resistant gene) and Fl. 7547 resistant to all three races (I-3, I-2, and race 1 resistant genes).

healthy race 1 inoculated plants in ‘Manapal’ as compared to the previous experiments (Figs. 1 and 2).

COMPLEMENTATION TESTS. Complementation tests of the F2 progeny (Figs. 2 and 5) revealed that one-fourth of the F2 (246 plants) would indicate the lines with resistance to both races 2 and 3 have a 3.6 cM region between TG216 and TG639. Thus, II would be either 11.5-15.1 cM or 17.5-19.9 cM from I-3. It is clear that lines with resistance only to races 2 and 3 were obtained (Fig. 1) so I1 must exist and the likely locations have been mentioned. Accordingly, I-3 does not confer race 1 resistance as has been claimed (Sela-Buurlage et al. 2001).

A two-gene model was supported by the race 2 inoculation data for F2 populations derived from two lines resistant to both races 2 and 3 crossed with Fl. 7182 (I-2) (Table 2). This conclusion would indicate the lines with resistance to both races 2 and 3 have a resistance gene on chromosome 7 as is supported by the marker data (Figs. 4 and 5). The data also support dominant control of race 2 resistance by the gene on chromosome 7.

RFLP ANALYSIS OF STEPPED ALIGNED INBRED RECOMBINANT LINES. The three lines resistant to race 2 alone all had L. pimpinellifolium alleles in the TG105 region indicating they have the I-2 gene (Ori

Healthy (%)

Race 1 Race 2 Race 3

Genotype

Fig. 2. Frequency of healthy plants for tomato genotypes inoculated with three races of the fusarium wilt pathogen. Controls are 'Bonny Best' susceptible to all races, ‘Manapal’ resistant to race 1 (I-gene), ‘Horizon’ resistant to races 2 and 1 (I-2 and linked race 1 resistant gene) and Fl. 7547 resistant to all three races (I-3, I-2, and race 1 resistant genes).

healthy race 1 inoculated plants in ‘Manapal’ as compared to the previous experiments (Figs. 1 and 2).

COMPLEMENTATION TESTS. Complementation tests of the F2 progeny (Figs. 2 and 5) revealed that one-fourth of the F2 (246 plants) would indicate the lines with resistance to both races 2 and 3 have a 3.6 cM region between TG216 and TG639. Thus, II would be either 11.5-15.1 cM or 17.5-19.9 cM from I-3. It is clear that lines with resistance only to races 2 and 3 were obtained (Fig. 1) so I1 must exist and the likely locations have been mentioned. Accordingly, I-3 does not confer race 1 resistance as has been claimed (Sela-Buurlage et al. 2001).

A two-gene model was supported by the race 2 inoculation data for F2 populations derived from two lines resistant to both races 2 and 3 crossed with Fl. 7182 (I-2) (Table 2). This conclusion would indicate the lines with resistance to both races 2 and 3 have a resistance gene on chromosome 7 as is supported by the marker data (Figs. 4 and 5). The data also support dominant control of race 2 resistance by the gene on chromosome 7.

RFLP ANALYSIS OF STEPPED ALIGNED INBRED RECOMBINANT LINES. The three lines resistant to race 2 alone all had L. pimpinellifolium alleles in the TG105 region indicating they have the I-2 gene (Ori

Healthy (%)

Race 1 Race 2 Race 3

Genotype

Fig. 2. Frequency of healthy plants for tomato genotypes inoculated with three races of the fusarium wilt pathogen. Controls are 'Bonny Best' susceptible to all races, ‘Manapal’ resistant to race 1 (I-gene), ‘Horizon’ resistant to races 2 and 1 (I-2 and linked race 1 resistant gene) and Fl. 7547 resistant to all three races (I-3, I-2, and race 1 resistant genes).

healthy race 1 inoculated plants in ‘Manapal’ as compared to the previous experiments (Figs. 1 and 2).

COMPLEMENTATION TESTS. Complementation tests of the F2 progeny (Figs. 2 and 5) revealed that one-fourth of the F2 (246 plants) would indicate the lines with resistance to both races 2 and 3 have a 3.6 cM region between TG216 and TG639. Thus, II would be either 11.5-15.1 cM or 17.5-19.9 cM from I-3. It is clear that lines with resistance only to races 2 and 3 were obtained (Fig. 1) so I1 must exist and the likely locations have been mentioned. Accordingly, I-3 does not confer race 1 resistance as has been claimed (Sela-Buurlage et al. 2001).

A two-gene model was supported by the race 2 inoculation data for F2 populations derived from two lines resistant to both races 2 and 3 crossed with Fl. 7182 (I-2) (Table 2). This conclusion would indicate the lines with resistance to both races 2 and 3 have a resistance gene on chromosome 7 as is supported by the marker data (Figs. 4 and 5). The data also support dominant control of race 2 resistance by the gene on chromosome 7.

RFLP ANALYSIS OF STEPPED ALIGNED INBRED RECOMBINANT LINES. The three lines resistant to race 2 alone all had L. pimpinellifolium alleles in the TG105 region indicating they have the I-2 gene (Ori

Healthy (%)

Race 1 Race 2 Race 3

Genotype

Fig. 2. Frequency of healthy plants for tomato genotypes inoculated with three races of the fusarium wilt pathogen. Controls are 'Bonny Best' susceptible to all races, ‘Manapal’ resistant to race 1 (I-gene), ‘Horizon’ resistant to races 2 and 1 (I-2 and linked race 1 resistant gene) and Fl. 7547 resistant to all three races (I-3, I-2, and race 1 resistant genes).

healthy race 1 inoculated plants in ‘Manapal’ as compared to the previous experiments (Figs. 1 and 2).

COMPLEMENTATION TESTS. Complementation tests of the F2 progeny (Figs. 2 and 5) revealed that one-fourth of the F2 (246 plants) would indicate the lines with resistance to both races 2 and 3 have a 3.6 cM region between TG216 and TG639. Thus, II would be either 11.5-15.1 cM or 17.5-19.9 cM from I-3. It is clear that lines with resistance only to races 2 and 3 were obtained (Fig. 1) so I1 must exist and the likely locations have been mentioned. Accordingly, I-3 does not confer race 1 resistance as has been claimed (Sela-Buurlage et al. 2001).

A two-gene model was supported by the race 2 inoculation data for F2 populations derived from two lines resistant to both races 2 and 3 crossed with Fl. 7182 (I-2) (Table 2). This conclusion would indicate the lines with resistance to both races 2 and 3 have a resistance gene on chromosome 7 as is supported by the marker data (Figs. 4 and 5). The data also support dominant control of race 2 resistance by the gene on chromosome 7.

RFLP ANALYSIS OF STEPPED ALIGNED INBRED RECOMBINANT LINES. The three lines resistant to race 2 alone all had L. pimpinellifolium alleles in the TG105 region indicating they have the I-2 gene (Ori

Healthy (%)

Race 1 Race 2 Race 3

Genotype

Fig. 2. Frequency of healthy plants for tomato genotypes inoculated with three races of the fusarium wilt pathogen. Controls are 'Bonny Best' susceptible to all races, ‘Manapal’ resistant to race 1 (I-gene), ‘Horizon’ resistant to races 2 and 1 (I-2 and linked race 1 resistant gene) and Fl. 7547 resistant to all three races (I-3, I-2, and race 1 resistant genes).

healthy race 1 inoculated plants in ‘Manapal’ as compared to the previous experiments (Figs. 1 and 2).

COMPLEMENTATION TESTS. Complementation tests of the F2 progeny (Figs. 2 and 5) revealed that one-fourth of the F2 (246 plants) would indicate the lines with resistance to both races 2 and 3 have a 3.6 cM region between TG216 and TG639. Thus, II would be either 11.5-15.1 cM or 17.5-19.9 cM from I-3. It is clear that lines with resistance only to races 2 and 3 were obtained (Fig. 1) so I1 must exist and the likely locations have been mentioned. Accordingly, I-3 does not confer race 1 resistance as has been claimed (Sela-Buurlage et al. 2001).

A two-gene model was supported by the race 2 inoculation data for F2 populations derived from two lines resistant to both races 2 and 3 crossed with Fl. 7182 (I-2) (Table 2). This conclusion would indicate the lines with resistance to both races 2 and 3 have a resistance gene on chromosome 7 as is supported by the marker data (Figs. 4 and 5). The data also support dominant control of race 2 resistance by the gene on chromosome 7.

RFLP ANALYSIS OF STEPPED ALIGNED INBRED RECOMBINANT LINES. The three lines resistant to race 2 alone all had L. pimpinellifolium alleles in the TG105 region indicating they have the I-2 gene (Ori
et al., 1997; Sarfatti et al., 1989; Segal et al., 1992; Simon et al., 1998; Fig. 4). Thus, they are reciprocal recombinants with the race 1 alone lines. There is a considerable distance (52.2 cM) between reported markers linked to \(I\) (TG523) and \(I-2\) (TG105). It is surprising that it has taken so long to show a clear linkage break between these genes. Tomato breeders incorporating \(I-2\) into improved germplasm would typically be using recurrent parents possessing \(I\). It is not known how much effort was put toward breaking the desirable linkage of the two resistances. This is the first report of lines with \(I-2\) that are susceptible to race 1. The reduction of race 1 susceptibility by \(I-2\) reported by Laterrot and Philouze, (1984) was not apparent with our lines (Fig. 1).

By comparing the RFLP data from lines resistant to both races 2 and 3 (especially 218) with lines only resistant to race 3 (732 and 751), it is seen that the latter are missing \(L.\) pennellii alleles at markers TG183, TG174, and CT43 (Fig. 5). Sela-Buurlage et al. (2001) found \(I-3\) was flanked by TG110 and TG183 thus placing TG110 on chromosome 7. However, previous RFLP maps revealed that TG110 was located on chromosome 11 (Pillen et al. 1996; Sarfatti et al., 1989; Tanksley et al., 1992). Our race 3 resistant lines, 732 and 751, each had a crossover between TG170 and TG183 that resulted in a partial loss of resistance to race 2. From our data, crossovers separating the race 2 and race 3 resistance genes could be anywhere between TG170 and CT43, a distance of 10.2 cM. This distance can be reduced by considering the introgression line 20-1 data of Sela-Buurlage et al. (2001). Line 20-1 has a short \(L.\) pennellii segment containing \(I-3\) flanked by TG110 on one side and TG217, TG170 and TG183 on the other. Line 20-1 was resistant to both races 2 and 3. Since 732 and 751 have lost their high level of race 2 resistance and they do not have the TG183 marker, it can be concluded that crossovers affecting race 2 resistance must be between TG170 and TG183, a distance of 2 cM.

It should be mentioned that Burbidge et al. (2001) present a different chromosome 7 map than that of Tanksley et al. (1992). Using the former map with our data left a \(L.\) esculentum gap between \(I-3\) and \(I\) on chromosome 11 from ‘Manapal’ and \(I\) on chromosome 7.

Table 1. Fusarium wilt race 1 disease incidence for three fusarium wilt race 1 resistant inbreds, their F2s from crosses with ‘Manapal’ (I gene) and control lines.

Genotype	Total plants	No. healthy	No. diseased	Expected ratio	\(\chi^2\)	\(P\)
Experiment 1						
392	511	112	111	1:0	5.07	<0.025
(392 x Manapal) F2	336	305	34	15:1	7.81	<0.005
415	984	786	238	15:1	15.15	<0.001
(415 x Manapal) F2	239	229	10	15:1	6.96	<0.01
Manapal	120	117	3	15:1	3.84	<0.05
Bonny Best	280	273	7	15:1	3.84	<0.05
Experiment 2						
399	686	625	61	15:1	8.16	<0.005
(399 x Manapal) F2	329	320	9	15:1	3.84	<0.05
Manapal	150	150	0	15:1	0.00	1.00

*Number in parentheses is the percentage diseased plants.

\(I\) on chromosome 11 from ‘Manapal’ and \(I\) on chromosome 7.

![Fig. 4. Survey of 18 RFLP markers on chromosome 11 in 14 tomato lines with various resistances to fusarium wilt race 1, 2, and 3. Resistance for each line is indicated next to line names above the line designation. Black bars represent chromosome segments of *Lycopersicon pimpinellifolium* genomic region. Map distances of RFLPs are indicated next to the markers as shown by Tanksley et al. (1992). Asterisks adjacent to the markers indicate the region of Fusarium resistance genes; where * and ** indicate the reported locations of the \(I\) and \(I-2\) genes, respectively.](image-url)
Table 2. Fusarium wilt race 2 disease incidence for two inbreds resistant to races 2 and 3, their F₂s from crosses with Fla. 7182 (see text), respectively and *** indicates the reported location of I-3. All lines resistant to races 2 and 3 alone, and race 3 alone, and I3R-1 had the L. pennellii Got-2 allele. All other lines had the L. esculentum Got-2 allele.

Genotype	Total plants	No. healthy	No. diseasedα	Expected ratioβ	χ²	P
218	100	99	1 (1.0)	1:0	-	---
(218 x 7182) F₂	240	220	20 (8.3)	15:1	1.78	0.1–0.5
256	105	103	2 (1.9)	1:0	---	---
(256 x 7182) F₂	480	455	25 (5.2)	15:1	0.89	0.1–0.5
Bonny Best	120	1	119 (99.1)	0:1	---	---
Manapal	80	4	76 (95.0)	0:1	---	---
Fla. 7182	126	125	1 (0.8)	1:0	---	---

αNumber in parentheses is the percentage of diseased plants.

βFor a two-gene model, I-2 on chromosome 11 from Fla. 7182 and another gene on chromosome 7.
the two genes and definitively prove that both genes are present in the line. The data indicate that the I-3 gene does not confer race 1 resistance and support the existence of a recombined race 1 resistance gene I1. The precise location of I1 requires further study. Two lines with resistance to race 3 and intermediate resistance to race 2 were obtained, but the reciprocal recombinant was not. Nor was there clear recombination between race 3 and race 2 resistance. A gene in a 2-cM region tightly linked to the I-3 gene between TG 170 and TG183 likely confers race 2 resistance.

Literature Cited

Agrama, H.A. and M.E. Moussa. 1996. Mapping QTLs in breeding for drought tolerance in maize (Zea mays L.). Euphytica 91:89–97.

Alexander, L.J. and C.M. Tucker. 1945. Physiological specialization in the tomato wilt fungus Fusarium oxysporum f. lycopersici. J. Agr. Res. 70: 303–313.

Alon, H., J. Katan, and N. Kedar. 1974. Factors affecting penetrance of resistance to Fusarium oxysporum f. sp. lycopersici in tomatoes. Phytopathology 64:455–461.

Bohn, G.W. and C.M. Tucker. 1939. Immunity to fusarium wilt in the tomato. Science 89:603–604.

Bohorova, N., S. Fenell, S. McLean, A. Pellegrineschi, and D. Hoisington. 1999. Laboratory Protocols: CIMMYT Applied Genetic Engineering Laboratory. Mexico D.F., CIMMYT, México.

Bournival, B.L., J.W. Scott, and C.E. Vallejos. 1990. An isozyme marker for resistance to race 3 of Fusarium oxysporum f. sp. lycopersici in tomato. Theor. Appl. Genet. 78:489–494.

Bournival, B.L., C.E. Vallejos, and J.W. Scott. 1989. An isozyme marker for the wild tomato Lycopersicon peruvianum. Theor. Appl. Genet. 79:641–645.

Burbridge, A., T.M. Grieve, K.J. Woodman, and B.L. Taylor. 1995. Strategies for targeted transposon tagging of ABA biosynthetic mutants in tomato. Theor. Appl. Genet. 91:1022–1031.

Chunwongse, J., T.B. Bunn, C. Crossman, J. Jiang, and S.D. Tanksley. 1994. Chromosomal localization and molecular marker tagging of the powdery mildew resistance gene (Ls) in tomato. Theor. Appl. Genet. 89:76–79.

Cirilli, M. and L.J. Alexander. 1966. A comparison of pathogenic isolates of Fusarium oxysporum f. lycopersici and different sources of resistance in tomato. Phytopathology 56:1301–1304.

Doganlar, S., J. Dodson, B. Gabor, T. Beck-Bunn, C. Crossman, and S.D. Tanksley. 1998. Molecular mapping of the py-f gene for resistance to corky root rot (Pyrenochaeta lycopersici) in tomato. Theor. Appl. Genet. 97:784–788.

Fulton, T.M., J.C. Nelson, and S.D. Tanksley. 1997. Introggression and DNA marker analysis of Lycopersicon peruvianum, a wild relative of the cultivated tomato, into Lycopersicon esculentum, followed through three successive backcross generations. Theor. Appl. Genet. 95:895–902.

Geberhart, C. and J.P. Valkonen. 2001. Organization of genes controlling disease resistance in the potato genome. Annu. Rev. Phytopathol. 39:79–102.

Grattidge, R. and R.G. O’Brien. 1982. Occurrence of a third race of fusarium wilt of tomatoes in Queensland. Plant Dis. 66:165–166.

Grube, R.C., E.R. Radwanski, and M. Jahn. 2000. Comparative genetics of disease resistance within the Solanaceae. Genetica 155:873–887.

Haanstra, J.P.W., C. Wye, H. Verbakel, F. Meijer-Dekens, P. van der Berg, T. van der Lee, M. Breda, M. Pleij, J. van den Berg, J. Onstenk, M. de Both, M. Haring, J. Mes, B. Bentien, N. Zaboe, and P. Vos. 1998. Dissection of the Fusarium I2 gene cluster in tomato reveals multiple complex loci. Mol. Genet. Genomics 265:1055–1068.

Stall R.E. and J.W. Walter. 1965. Selection and inheritance of resistance in tomato to isolates of races 1 and 2 of the fusarium wilt organism. Phytopathology 55:1213–1215.

Stamova B.S. and R.T. Chetelat. 2000. Inheritance and mapping of cucumber mosaic virus resistance introgressed from Lycopersicon chilenense into tomato. Theor. Appl. Genet. 101:527–537.

Tanksley, S.D., M.W. Ganal, J.P. Prince, M.C. de Vincente, M.W. Bonierbale, P. Broun, T.M. Fulton, J.J. Giovannoni, S. Grandillo, G.B. Martin, R. Messuegg, J.C. Miller, L. Miller, A.H. Paterson, O. Pineda, M.S. Roder, R.A. Wing, W. Wu, and N.D. Young. 1992. High-density molecular linkage maps of the tomato and potato genomes. Genetics 132:1141–1160.

Vallejos, C.E. 1983. Enzyme activity staining, p. 469–516. In: S.D. Tanksley and T.J. Orton (eds.). Isozymes in plant genetics and breeding. vol. 1A. Elsevier, Amsterdam.

Young, N.D., D. Zamir, M.W. Ganal, and Tanksley. 1988. Use of isogenic lines and simultaneous probing to identify DNA markers tightly linked to the Tm-2a gene in tomato. Genetics 120:579–585.

Zamir, D., M.I. Ekstein, Y. Zagay, N. Navot, and M. Zeibab. 1994. Mapping and introgression of tomato yellow leaf curl virus tolerance gene, Ty-1. Theor. Appl. Genet. 88:141–146.