Unsaturated resilient strain behaviours of a granular material

P. Jing, C. Chazallon, H. Nowamooz
Laboratoire des sciences de l’ingénieur, de l’informatique et de l’imagerie (ICube) UMR7357, CNRS, INSA de Strasbourg, 24 Boulevard de la Victoire, 67084, Strasbourg Cedex, France

ABSTRACT: Road pavement structures are generally composed of unsaturated granular materials. The influence of the fine content is significant as well as unsaturated state on the resilient strain behaviour of granular materials for pavements. In this paper, based on the soil water retention curves and repeated load triaxial tests for a granular material with three fine contents, the simple exponential function relationship between resilient strain behaviours and $s/s^*$ values (suction) could be observed, which can reduce the number of tests required to determine the unsaturated resilient strain behaviours of this kind of granular material.

1 GENERAL INSTRUCTIONS

Granular materials are usually used in low traffic pavements as base layer or sub-base layer. During the service life, low-traffic pavements are subjected to variable hydraulic and mechanical impacts, which have a significant influence on mechanical behaviours (both resilient and permanent strain behaviours) of granular materials. In fact, the granular materials in low traffic pavements are commonly in unsaturated states.

Several researches have shown that besides the effect of water content on the mechanical behaviours of the unsaturated granular materials, it is necessary to take into account the effect of suction (Yang et al. 2008, Cary & Zapata, 2011, Nowamooz et al. 2011, Nowamooz et al. 2013, Salour et al. 2014, Han et al. 2015 and Jing et al. 2016, 2017 in press) as well as hydraulic hysteresis (Miller et al. 2008, Yang et al. 2012 and Ho et al. 2014). Different experimental researches showed that the variation of fine content (particles passing the sieve 75 µm or sieve No.200 based on American classification) has also an important effect as well as water content on mechanical behaviours of granular materials as reported by Babić et al. 2000, Duong et al. 2013 and Jing et al. 2016, 2017 in press.

However, the relationship between resilient strain behaviours and unsaturated state with different fine contents has been rarely studied.

In this work, the objective is to study the effect of unsaturated state on the resilient strain behaviours for a granular material constituted of three fine contents in low-traffic pavements.

The soil water retention curves (SWRC) are obtained by suction tests with filter paper method. The resilient strain behaviours of the unsaturated granular material is then studied by a series of repeated load triaxial tests (RLTT).

2 STUDIED MATERIAL

The studied granular material is the Missillac fine sand. It is an alluvial sand coming from the quarry of Missillac in France. The particle size varies between 0 and 4 mm. This sand is used as subgrade soil in low traffic pavements for full-scale pavement tests at IFSTTAR (Institut Français des Sciences et Technologies des Transports, de l’Aménagement et des Réseaux) in Nantes, France. This kind fine sand is sensitive to moisture variation, and its in situ elastic modulus typically varies between 50 and 100 MPa.

2.1 Particle-size analysis

In this work, the Missillac sand are studied in three different fine contents, named respectively M4.0, M7.5 and M15.3:

- M4.0 samples contain 4.0% of fine content.
- M7.5 samples contain 7.5% of fine content.
- M15.3 samples contain 15.3% of fine content.

Figure1 shows particle size distribution curves for all of three Missillac sands (XP P94-041,1995). Table 1 presents all of the characteristic parameters of these curves, such as Cc and Cu. The coefficients...
of curvature (Cc) (estimated between 1 and 3) show a well-graded composition of three studied Missillac sand. The methylene blue values (VBS) of M7.5 and M15.3 (NF P94-068, 1993) are also introduced in Table 1, which shows an obvious increase of VBS value from M7.5 to M15.3. It can be stated that the main component of the fine content for Missillac sand is the clay which is really sensitive to moisture variation.

The materials are also classified based on the VBS values and particle size distribution (NF P11-300, 1992 or USCS ASTM D2487 - 06) as reported in Table 1.

### 2.2 Soil water retention curve (SWRC)

When the soil pores are filled by water and air, the porous material is unsaturated. Unsaturated soils can exert an attraction on water, either by capillary action in the pores, between soil particles, or through physicochemical effects. The pressure difference is referred to as matric suction:

\[ S = u_a - u_w \]  \hspace{1cm} (1)

where, \( u_a \) is pore air pressure and \( u_w \) is pore water pressure.

A soil water retention curve (SWRC) is usually used to illustrate the evolution of saturation or water content, as a function of matric suction in unsaturated soil mechanics.

In this study, filter paper method is used to obtain SWRC. For the wetting path, the samples are prepared at a water content ranging from 7% to 12.3% and for the drying path, the samples initially saturated are dried in the ambient temperature (20°) to reach the desired water content from 7% to 12.3 %. All of samples are compacted at an initial dry density ranging of 2±0.06 Mg/m³. The measured soil water retention curves for M4.0 and M15.3 are illustrated in Figure 2.

In unsaturated soil mechanics, various empirical equations have been suggested to describe the SWRC. Among these equations, the relationships (proposed by van Genuchten, 1980 and Fredlund & Xing, 1994) have been widely used in geotechnical engineering. The van Genuchten model which is simple and has meaningful parameters is used in this study. The van Genuchten equation is written as follows:

\[ w = w_s + \left( \frac{w_r - w_s}{1 + (\alpha s)^m} \right)^n \]  \hspace{1cm} (2)

where \( w \) is the actual soil water content at the suction \( S \); \( w_s \) and \( w_r \) are the saturated water content and the residual water content; \( \alpha \) is a parameter related to the air entry suction; \( m \) and \( n \) are the model parameters with the relationship: \( m = 1 - 1/n \).

The fitting curves of M4.0 and M15.3 are also plotted in Figure 2, which shows the van Genuchten model fits well with the measured values for both studied materials. The parameters of van Genuchten model are summarized in Table 2.
Figure 2. Matric suction obtained by filter paper method as well as model prediction (M4.0, M7.5 and M15.3).

Figure 3. Evolution of water content, as a function of \( s/s^* \).

Table 2. Parameters of van Genuchten model.

| Parameters of VG model | M4.0  | M15.3 | M7.5 (Prediction) |
|------------------------|-------|-------|-------------------|
| \( \alpha \)           | 0.803 | 0.016 | 0.049             |
| \( n \)                | 1.929 | 1.947 | 2.261             |
| \( m \)                | 0.482 | 0.486 | 0.558             |
| \( w_w \) (\%)         | 14.3  | 11.2  | 11.8              |
| \( w_r \) (\%)         | 6.5   | 0.1   | 6.0               |
| \( s^* \) (kPa)        | 1.8±0.18 | 12±1.2 | 4.2±0.42 |

In Figure 2, the \( s^* \) value is defined as the suction value corresponding to the intersection point of wetting and drying paths, which is significantly related to fine content. Besides, since the \( s^* \) value is very sensible to any variation of the model parameters, this value is presented in Table 2 in a range of between 90\%•\( s^* \) and 110\%•\( s^* \) for the lower bound and the upper bound of \( s^* \) respectively. Table 2 summarizes the \( s^* \) values for M4.0 and M15.3.

Based on the parameters of van Genuchten model of M4.0 and M15.3, the model parameters and the \( s^* \) values are predicted for M7.5 presented in Table 2. Figure 2 also shows the prediction SWRC for M7.5 both wetting and drying paths.

Figure 3 shows the evolution of water content, as a function of \( s/s^* \). It can be observed that a simple exponential function could represent the relationship between \( s/s^* \) value and water content, which is defined as:

\[
w = a \cdot e^{(-s/s^*)/b)} + c
\]

where \( a, b \) and \( c \) are constant. In other words, the soil water retention curves for three different materials coincide together by using \( s/s^* \) value instead of suction value.

3 REPEATED LOAD TRIAXIAL TESTS (RLTT)

RLTT is widely used to investigate the mechanical behaviours of granular materials. It can simulate the variation of pavement loading conditions to describe the resilient strain behaviours or permanent strain behaviours.

3.1 Principle of RLTT

For triaxial tests, the mean normal stress \( p \) and the deviatoric stress \( q \) are usually used to describe the stress state of samples, which are defined as:

\[
p = \frac{\sigma_1 + 2\sigma_3}{3}
\]

\[
q = \sigma_1 - \sigma_3
\]

where \( \sigma_1 \) is the vertical stress (kPa); \( \sigma_3 \) is the confining pressure (kPa).

The volumetric strain \( \varepsilon_v \), and the deviatoric strain \( \varepsilon_d \) are used to describe strain behaviours of samples, which are defined as:

\[
\varepsilon_v = \varepsilon_1 + 2\varepsilon_3
\]

\[
\varepsilon_d = \frac{2(\varepsilon_1 - \varepsilon_3)}{3}
\]

where \( \varepsilon_1 \) is the axial strain; \( \varepsilon_3 \) is the radial strain.

As shown in Figure 4, in RLTT, the axial cyclic deviatoric stress \( q \) and the cyclic cell pressure \( \sigma_3 \) are applied to samples in phase in each cycle. The axial and radial strain behaviour separates two parts: permanent strain and reversible strain.
Figure 4. Principle of repeated load triaxial test.

Figure 5. Resilient strain behaviour: stress paths applied.

Figure 6. Evolution of resilient volumetric strain $\varepsilon'_v$.

M4.0-7.8%

M4.0-11.0%

M7.5-8.0%

M7.5-11.0%

M15.3-8.1%

M15.3-11.1%
For a given relatively low stress state, without failure, the plastic strain will not increase with increase of number of cycles after enough loading cycles. Then the reversible strain could be treat as resilient strain.

### 3.2 Resilient strain tests

In this study, the repeated triaxial tests are performed with three Missillac sands (M4.0, sand M7.5 and M15.3) for the water contents ranging from 7% to 11% with the same dry density of 2±0.06 g/cm$^3$. The samples are prepared at a diameter of 150 mm (160 mm for M7.5) and a height of 285±5 mm (320±5 mm for M7.5).

The samples are first subjected to a conditioning phase that consisted of $10^4$ loading/unloading cycles to stabilize the plastic strains. At the end of the conditioning phase, the increase in axial plastic strain was lower than $10^{-7}$ per cycle confirming the stabilized plastic deformation.

After the conditioning phase, 5 different stress paths ($\frac{\Delta q}{\Delta p} = 0; 0.5; 1; 2; 3$) are applied to each sample. For each stress path, the last cycle of 100 loading/unloading cycles are used to determine the resilient strain behaviours.
4 TEST RESULTS AND ANALYSIS

4.1 Resilient strain behaviours

Figure 6 and Figure 7 present respectively the evolution of resilient volumetric strain $\varepsilon_v$ and the resilient deviatoric strain $\varepsilon_q$ in the last cycle for three different Missillac sands (M4.0, M7.5 and M15.3) at two different water contents (8% and 11%). Based on these figures, it can be stated that $\varepsilon_v$ is positive in the stress paths of $Dq/Dp = 0; 0.5; 1$ and 2 (Contraction) while $\varepsilon_v$ is negative in the stress paths of $Dq/Dp = 3$ (Dilation). The resilient deviatoric strain are positive in the stress paths of $Dq/Dp = 2$ and 3 and negative in the other stress paths.

Besides, the effect of water content on resilient strain behaviours is obvious: Higher the water content, higher the $\varepsilon_v$ in each stress path for each material. Higher the water content, higher the $\varepsilon_q$ in each stress path for each material. For M15.3 material, there are large increases of $\varepsilon_v$ and $\varepsilon_q$ with an increase of water content from 8% to 11%, especially for the stress paths of $Dq/Dp = 0; 0.5$ and 1. The effect of fine content on resilient strain behaviours is not significant when the fine content increases from 4% to 7.5%. At the same time, a large open loops can be observed for M15.3 at the stress paths of $Dq/Dp = 0; 0.5; 1$ and 3.

4.2 Effect of suction

In section 2.2, we defined a new parameter $s^*$ which is the suction value of the intersection point of wetting and drying paths in SWRC.

Figure 8 compares the maximum resilient volumetric strain $\varepsilon_v$ in the last cycle of resilient strain test as a function of water content (Figure 8a) and $s/s^*$ value (Figure 8b) for three materials (M4.0, M7.5 and M15.3) having a water content range of 7% to 11.3% in stress paths of $Dq/Dp = 0$ and 3.

As shown in Figure 8a, the $\varepsilon_v$ increases with the increase of water content (even the results of M7.5 are somehow scatter) like it has been described in Figure 6. Besides, the effect of fine content is important as well as water content: the $\varepsilon_v$
is different with different fine content and same water content.

In Figure 8b, all of $\varepsilon_{v_{\max}}^{r}$ values are plotted in $s/s^*$ plane. The lower bound of $s/110\%s^*$ and the upper bound of $s/90\%s^*$ are also illustrated in this figure to take into account the sensitivity to variation of the parameters of van Genuchten model. From this figure, it can be stated that a simple exponential function could represent the relationship between all of the $\varepsilon_{v_{\max}}^{r}$ values and $s/s^*$ values, which is defined as:

$$\varepsilon_{v_{\max}}^{r} = A \cdot e^{(s/s^*/B)} + C$$

(8)

where $A$, $B$ and $C$ are constant as shown in Figure 8b. As a result, the $\varepsilon_{v_{\max}}^{r}$ could be determined by $s/s^*$ only. These results are useful to understand problem of dual variation of the maximum resilient volumetric strain $\varepsilon_{v_{\max}}^{r}$ with the water content and the fine content.

As $\varepsilon_{v_{\max}}^{r}$, the maximum resilient deviatoric strain $\varepsilon_{d_{\max}}^{r}$ are also plotted on water content plane (Figure 9a) and $s/s^*$ plane (Figure 9b) respectively for three different materials (M4.0, M7.5 and M15.3) having a water content range of 7% to 11.3% in stress paths of $\Delta q/\Delta p = 0$ and 3.

In Figure 9a, the $\varepsilon_{d_{\max}}^{r}$ increases with the increase of water content and the fine content also plays an important role.

In Figure 9b, another simple exponential function can be observed to represent the relationship between all of the $\varepsilon_{d_{\max}}^{r}$ values and $s/s^*$ values, which is defined as:

$$\varepsilon_{d_{\max}}^{r} = D \cdot e^{(s/s^*/F)} + F$$

(9)

where $D$, $E$ and $F$ are constant as shown in Figure 9b.

5 CONCLUSIONS

In this paper, we address the problem of variation of unsaturated state with different fine contents on resilient strain behaviours of a granular material in low-traffic pavements.

The RLTT experimental results in $s/s^*$ plane show that there are two simple exponential functions could represent respectively the relationship between $\varepsilon_{v_{\max}}^{r}$ and $\varepsilon_{q_{\max}}^{r}$ and $s/s^*$. Hence, the maximum resilient strain behaviours of this unsaturated granular material in low-traffic pavements could be predicted only by SWRC of each material. These findings are helpful for an easier interpretation of the results and reducing the number of tests required to predict the unsaturated resilient strain behaviours of missilac sand.

Besides, the SWRCs for three different materials locate together as a unique curve in $s/s^*$ plane. This is another new point, and it will be continued in the future studies.

6 ACKNOWLEDGMENTS

This work is supported by the China Scholarship Council. Acknowledgements to the previous work of Pierre Hornych (IFSTTAR) and Xuan Nam Ho (INSA-Strasbourg).

7 REFERENCES

ASTM D2487-06. 2006. Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System).

Babić, B., Prager, A., & Rukavina, T. 2000. Effect of fine particles on some characteristics of granular base courses. Materials and Structures, 33(7): 419–424.

Cary, C. E., & Zapata, C. E. 2011. Resilient Modulus for Unsaturated Unbound Materials. Road Materials and Pavement Design, 12(3): 615–638.

Duong, T. V., Tang, A. M., Cui, Y. J., Trinh, V. N., Dupla, J. C., Calon, N., et al. 2013. Effects of fines and water contents on the mechanical behavior of interlayer soil in ancient railway sub-structure. Soils and Foundations, 53(6): 868–878.

Fredlund, D. G., & Xing, A. 1994. Equations for the soil-water characteristic curve. Canadian Geotechnical Journal, 31(6): 1026–1026.

Ho, X. N., Nowamooz, H., Chazallon, C., & Migault, B. 2014. Effective stress concept for the effect of hydraulic hysteresis on the resilient behavior of low traffic pavements. International Journal of Pavement Engineering, 16(9): 842–856.

Han, Z., Mihambanou, B., & Vanapalli, S. K. 2015. A New Approach for Estimating the Influence of Soil Suction on the Resilient Modulus of Pavement Subgrade Soils. Airfield and Highway Pavements, 861–872.

Jing, P., Nowamooz, H., and Chazallon, C. 2016. Influence of Fine Content and Water Content on the Permanent Mechanical Behavior of a Granular Material Used in Low Traffic Pavements. Proc. Geo-China 2016, Jinan, 25-27 July 2016: 215-223.

Jing, P., Nowamooz, H., and Chazallon, C. 2017 in press. Permanent Deformation Behavior of a Granular Material Used in Low Traffic Pavements. Road Materials and Pavement Design. Accepted: 02/11/2016; Number of pages:26; Editor: Catubay, Praise Ann.

Miller, G. A., Khoury, C. N., Muraleetharan, K. K., Liu, C., & Kibbey, T. C. G. 2008. Effects of solid deformations on hysteretic soil water characteristic curves: Experiments and simulations. Water Resources Research, 44, W00C06.

NF P94-068. 1993. Sols: reconnaissance et essais-Mesure de la quantité et de l’activité de la fraction argileuse-détermination de la valeur de bleu de méthylène d’un sol par l’essai à la tache entre tous de ces échantillons.

NF P11-300. 1992. Exécution des terrassements-Classification des matériaux utilisables dans la construction des remblais et des couches de forme d’infrastructures routières.

Nowamooz, H., Chazallon, C., Arsenie, M. I., Hornych, P., & Masrouri, F. 2011. Unsaturated resilient behavior of a natural compacted sand. Computers and Geotechnics, 38(4): 491–503.

Nowamooz, H., Ho, X. N., Chazallon, C., & Hornych, P. 2013. The effective stress concept in the cyclic mechanical behavior of a natural compacted sand. Engineering Geology, 152(1): 67–76.

Salour, F., Erlingsson, S., & Zapata, C. E. 2014. Modelling resilient modulus seasonal variation of silty sand subgrade
soils with matric suction control. *Canadian Geotechnical Journal, 51*(12): 1413–1422.

van Genuchten, M. T. 1980. A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. *Soil Science Society of America Journal, 44*(5): 892.

XP P94-041. 1995. Sols: reconnaissance et essais-Identification granulométrique-Méthode de tamisage par voie humide.

Yang, S. R., Lin, H. D., Kung, J. H. S., & Huang, W. H. 2008. Suction-Controlled Laboratory Test on Resilient Modulus of Unsaturated Compacted Subgrade Soils. *Journal of Geotechnical and Geoenvironmental Engineering, 134*(9): 1375–1384.

Yang, C., Sheng, D., & Carter, J. P. 2012. Effect of hydraulic hysteresis on seepage analysis for unsaturated soils. *Computers and Geotechnics, 41*: 36–56.
Curriculum vitae
Pr. Cyrille CHAZALLON
INSA de Strasbourg
ICUBE-UMR 7357, INSA de Strasbourg
Team Energy and Civil Engineering
24 Boulevard de la Victoire
67084 Strasbourg cedex
☎ Bureau: +33 3 88 14 47 66
cyrille.chazallon@insa-strasbourg.fr
http://icube-gc.unistra.fr/index.php/Accueil

2010 - present : Professor INSA de Strasbourg
Head of Energy and Civil Engineering team
Head of Materials and Structures of Civil Engineering group
Associate professor H. Nowamooz
Assistant professors G. Koval, S. Mouhoubi, J.C. Quezada
Current phd students : G. Liu, A. Dansou, L. Gaillard

• Articles

Revues internationales avec comité de lecture

2018
Peng Jing, Hossein Nowamooz & Cyrille Chazallon, Unsaturated Mechanical Behaviour of a Granular Material, Road Materials and Pavement Design, 2018, 02/2018 accepted

Loba Sagnol, Juan Carlos Quezada, Cyrille Chazallon and Markus Stöckner, Effect of glass fibre grids on the bonding strength between two asphalt layers and its Contact Dynamics Method modelling, Road Materials and Pavement Design, 2018, https://doi.org/10.1080/14680629.2018.1439764

Kai Li, Hossein Nowamooz, Cyrille Chazallon and Bernard Migault, Finite element modelling of the mechanical behaviour of unsaturated expansive soils subjected to wetting and drying cycles with shakedown concept, European Journal of Environmental and Civil Engineering, 2017, https://doi.org/10.1080/19648189.2017.1363666

Kai Li, Hossein Nowamooz, Cyrille Chazallon and Bernard Migault, Limit Deformation Analysis of Unsaturated Expansive Soils During Wetting and Drying Cycles, Soil Mechanics and Foundation Engineering, March 2018, Volume 55, Issue 1, pp 33–39

Peng Jing, Hossein Nowamooz & Cyrille Chazallon, Permanent deformation behaviour of a granular material used in low-traffic pavements, Road Materials and Pavement Design, Volume 19, 2018 - Issue 2, p289-314
http://dx.doi.org/10.1080/14680629.2016.1259123

2017

Peng Jing, Hossein Nowamooz, Cyrille Chazallon, Effect of Anisotropy on the Resilient Behaviour of a Granular Material in Low Traffic Pavement, Materials, 10(12), 1382; doi:10.3390/ma10121382 (registering DOI) - 3 December 2017

Xiaofeng Gao, Georg Koval, Cyrille Chazallon, Energetical formulation of size effect law for quasi-brittle fracture, Engineering Fracture Mechanics, DOI 10.1016/j.engfracmech.2017.02.001, Volume 175, 15 April 2017, Pages 279-292

Themeli A., Chailleux E., Farcas F., Chazallon C., Migault B., Buisson N., Molecular structure evolution of asphaltite-modified bitumens during ageing: Comparisons with equivalent petroleum bitumens, International Journal of Pavement Research and Technology, DOI 10.1016/j.ijprt.2017.01.003, Volume 10, Issue 1, January 2017, Pages 75-83

Geng, Litao; Xu, Qian; Ren, Ruibo; Chazallon, Cyrille “Performance Research of a New Stabilized Rubber Modified Asphalt and Sand Anti-fracture Mix for Semi-Rigid Asphalt Pavement”, Journal of Testing and Evaluation, January 2017, JTE Volume 45, Issue 1, JTE20160148

Ioana Arsenie, Cyrille Chazallon, Jean Louis Duche and Saida Mouhoubi, “Modelling of the fatigue damage of a geogrid reinforced asphalt concrete”, Road Materials and Pavement Design, Volume 18, 2017 - Issue 1, Pages: 250-262, DOI:10.1080/14680629.2016.1159973

Ioana Arsenie, Cyrille Chazallon, Jean Louis Duche & Pierre Hornych, “Laboratory characterization of the fatigue behaviour of a glass fibre grid reinforced asphalt concrete using 4PB tests”, Road Materials and Pavement Design, Volume 18, 2017 - Issue 1, Pages: 168-180, DOI:10.1080/14680629.2016.1163280

2016

Xiaofeng Gao, Georg Koval and Cyrille Chazallon, “A Size and Boundary Effects Model for Quasi-Brittle Fracture”, Materials, 2016, 9(12), 1030; doi:10.3390/ma9121030

G. Koval, B.D. Le, C. Chazallon, Discrete element model for quasi-brittle rupture under tensile and compressive loading, International Journal for Numerical and Analytical Methods in Geomechanics, 40, 17, 10 December 2016, Pages 2339–2352 DOI:10.1002/nag.2532

Andrea Themeli, Emmanuel Chailleux, Fabienne Farcas, Cyrille Chazallon, Bernard Migault, Nadègle Buisson, Modeling the linear viscoelastic behavior of asphaltite-modified bitumens, Rheologica Acta, December 2016, Volume 55, Issue 11, pp 969–981

S. Nikoosokhan, H. Nowamooz, C. Chazallon, “Effect of dry density, soil texture and timespatial variable water content on the soil thermal conductivity”, International Journal of Geomechanics and Geoengineering, Volume 11, Issue 2, April 2016, pages 149-158, DOI: 10.1080/17486025.2015.1048313
B.D. Le, G. Koval, C. Chazallon, “Discrete element model for crack propagation in brittle materials”, International Journal for Numerical and Analytical Methods in Geomechanics, 40, 4, 583–595, 2016, DOI: 10.1002/nag.2417

2015

A. Themeli, E. Chailleux, F. Farcas, C. Chazallon & B. Migault, “Molecular weight distribution of asphaltic paving binders from phase-angle measurements”, International Journal of Road Materials and Pavements Design, Volume 16, Supplement 1, 21 Apr 2015, pages 228-244

S. Nikosookhan, H. Nowamooz, C. Chazallon, “Temperature variations in unsaturated soils with variable hydrothermal properties”, European Journal of Soil Science, Volume 66, Issue 2, March 2015, Pages: 378–388

X. N. Ho, H. Nowamooz, C. Chazallon, B. Migault, “Effective stress concept for the effect of hydraulic hysteresis on the resilient behavior of low traffic pavements”, International Journal of Pavement Engineering, Volume 16, Issue 9, October 2015, pages 842-856

H. Nowamooz, S. Nikosokhan, J. Lin, C. Chazallon, Finite difference modeling of heat distribution in multilayer soils with time-spatial hydrothermal properties, Renewable Energy, Volume 76, April 2015, Pages 7-15

Q. T. Trinh, S. Mouhoubi, C. Chazallon, M. Bonnet, “Multizone and Multicrack media modelled with the Fast Multipole Method applied to Symmetric Galerkin Boundary Element Method”, Engineering Analysis with Boundary Elements, Volume 50, January 2015, Pages 486-495

2014

X. N. Ho, H. Nowamooz, C. Chazallon, B. Migault, “Influence of fine content and water content on the resilient behavior of a natural compacted sand”, International Journal of Road Materials and Pavements Design, 15, 3, pages: 606-621

X. N. Ho, H. Nowamooz, C. Chazallon, B. Migault, “Effect of hydraulic hysteresis on low traffic pavement deflection”, International Journal of Road Materials and Pavements Design, 15,3, pages: 642-658

2013

F. Thøgersen, C. Gregoire, J. Stryk, P. Hornych, C. Chazallon, Y. Descantes, M. Arm, “Recycling of road materials in new unbound road layers”, International Journal of Road Materials and Pavements Design, Volume 14, Issue 2, June 2013, pages 438-444.

B.D. Le, G. Koval, C. Chazallon, 2013, Discrete element approach in brittle fracture mechanics. Engineering Computations, Vol. 30, issue 2, pp.263 - 276, 2013.
Nowamooz H., Ho N., Chazallon C., Hornych P., “The effective stress concept in the cyclic mechanical behavior of a natural compacted sand”, International Journal of Engineering Geology, (Elsevier), Volume 152, Issue 1, Pages 67-76, 2013

2012
A.D. Pham, S. Mouhoubi, M. Bonnet, C. Chazallon, “Fast Multipole Method applied to 3D fracture elasticity problems”, Engineering Analysis with Boundary Elements. (Elsevier), 36, 12, 1838-1847, 2012.

C. Chazallon, G. Koval, S. Mouhoubi “A two mechanisms elastoplastic model for shakedown of unbound granular materials and DEM simulations”, International Journal for Numerical and Analytical Methods in Geomechanics, Wiley, Volume 36, Issue 17, Pages: 1847–1868, 2012

2011
H. Nowamooz, C. Chazallon, I. Arsénie, P. Hornych, F. Masrouri, “Unsaturated resilient behavior of a natural compacted sand”, Computers and Geotechnics, Elsevier, Volume 38, Issue 4, June 2011, Pages 491-503

H. Nowamooz, C. Chazallon, “Finite element modelling of a rammed earth wall”, International Journal of Construction and Building Materials, Elsevier, 2011, 25, 4, 2112-2121

2010
F. Allou, C. Petit, C. Chazallon, P. Hornych, ‘Shakedown approaches to rut depth prediction in low volume roads’, Journal of Engineering Mechanics - ASCE, Vol. 136, No. 11, November 2010, pp. 1422-1434,

2009
C. Chazallon, G. Koval, P. Hornych, F. Allou, S. Mouhoubi ‘Modelling of rutting of two flexible pavements with the shakedown theory and the finite element method.’, Computers and Geotechnics, Elsevier, Volume 36, Issue 5, June 2009, Pages 798-809

C. Chazallon, F. Allou, P. Hornych, S. Mouhoubi, ‘Finite element modelling of the long term behaviour of a full scale flexible pavement with the shakedown theory’, International Journal for Numerical and Analytical Methods in Geomechanics, Wiley editor, 33, 1, p 45-70, 2009.

2007
P. Hornych, C. Chazallon, F. Allou, A. El Abd, ‘Prediction of permanent deformations of unbound granular materials, in relation with the moisture content’, International Journal of Road Materials and Pavements Design, Hermès, 2007, 8, 4, p 644 - 666

F. Allou, C. Chazallon, P. Hornych ‘A numerical model for flexible pavements rut depth evolution with time’, International Journal for Numerical and Analytical Methods in Geomechanics, Wiley editor, 2007, 31, 1, pp 1-22.
2006
C. Chazallon, P. Hornych, S. Mouhoubi, ‘An elastoplastic model for the long term behaviour modelling of unbound granular materials in flexible pavements’, International Journal of Geomechanics, ASCE Editor, 2006, 6 (4), p 279 - 289.

2005
T. Habibalalah, C. Chazallon ‘An elastoplastic model based on the shakedown concept for flexible pavements unbound granular materials’, International Journal for Numerical and Analytical Methods in Geomechanics, Wiley editor, 2005, 29, 6, pp 577 - 596.

C. Chazallon, T. Habibalallah, ‘Finite elements modelling of flexible pavements with the shakedown concept’, International Journal of Road Materials and Pavements Design, Hermès editor, 2005, 6, 1, pp 97 - 117.

1998
C. Chazallon, P.Y. Hicher, ‘A constitutive model coupling elastoplasticity and damage for cohesive-frictional materials’, Mechanics of Cohesive - Frictional Materials, Wiley editor, 3, 1, pp 41 - 63, 1998.

Revues nationales avec comité de lecture

2017
Godard Eric, Chazallon Cyrille, Hornych Pierre, Nguyen Mai Lan, Doligez Daniel, Pelletier Hervé, Pour une solution durable du renforcement des infrastructures par grilles en fibre de verre, RGRA, 949, Octobre 2017, p24-33

2014
Ioana ARSENIE, Cyrille CHAZallon, Jean-Louis DUCHEZ, Caractérisation expérimentale de l’endommagement en fatigue d’un béton bitumineux renforcé à l’aide de géo-grilles, Annales du Bâtiment et des travaux Publics, Volume 6, pp 9-16, Décembre 2014, Eska publishing Group

• Ouvrages individuels et collectifs :
  - Water in road structures, movement, damage and effects
    Paru en Novembre 2008
    Editeur : Springer
    ISBN : 978-1-4020-8561-1
    Page : 438
    Co auteur des chapitres 8 et 9.
    Chapter 8 : Mechanical effects on water in pavement and its control – Theoretical aspects and mechanical constitutive modelling
Chapter 9 : Mechanical behaviour: experimental investigation, dependency on water and moisture

- COST337 ‘Unbound granular materials for road pavements’ - Final Report
  Paru en Juillet 2003
  Page : 385
  Co auteur du chapitre 6 : Modelling of the resilient behaviour of unbound granular materials

- Conférences, congrès et colloques à communication (Conférences internationales à comité de lecture et actes publiées) :

  2018
  Cyrille Chazallon, Cédric BarazzuttI, Hervé Pelletier, Mai-Lan Nguyen, Pierre Hornych and Daniel Doligez, Laboratory evaluation and reproduction of geogrid in situ damage used in asphalt concrete pavement, 13th ISAP Conference on Asphalt Pavements, Fortaleza, Brasil, 19-22 June, 2018, 7 pages

  2017
  Juan Carlos Quezada, Cyrille Chazallon, Shear test on viscoelastic granular material using Contact Dynamics simulations”, Powders and Grains 2017: 8th International Conference on Micromechanics of Granular Media, Montpellier, 3/7 July, 8 pages

  Xiafeng Gao, Georg Koval, Cyrille Chazallon, “A discrete element model for damage and fracture of geomaterials under fatigue loading”, Powders and Grains 2017: 8th International Conference on Micromechanics of Granular Media, Montpellier, 3/7 July, 8 pages

  C. Chazallon, T.C. Nguyen, M. L. Nguyen, P. Hornych, D. Doligez, L. Brissaud, E. Godard, “In situ damage evaluation of geogrid used in asphalt concrete pavement”, 10th BCRRA 2017, 28/30 June, Athens, 8 pages

  L. Sagnol, C. Chazallon, M. Stöckner, « Effect of glass fibre grids on the bonding strength between two asphalt layers”, 10th BCRRA 2017, 28/30 June, Athens, 8 pages

  P. Jing, C. Chazallon, H. Nowamooz, “Unsaturated resilient strain behaviours of a granular material”, 10th BCRRA 2017, 28/30 June, Athens, 8 pages

  Loba Sagnol, Juan Carlos Quezada, Cyrille Chazallon, Markus Stöckner, Effect of glass fibre grids on the bonding strength between two asphalt layers and its DEM modelling, 7th EATA, Dübendorf, 12-14 June

  L. Gaillard, J.C. Quezada, C. Chazallon, P. Hornych, Thermo-hydro-mechanical behaviour of the unsaturated compacted asphalt aggregates, Eccografi 2017, Second International Conference on Biobased Building Materials (3BM) June 21st - 23th 2017. Clermont-Ferrand, France, Poster.

  2016
Peng Jing, H. Nowamooz, Cyrille Chazallon, Influence of Fine Content and Water Content on the Permanent Mechanical Behavior of a Granular Material Used in Low Traffic Pavements, 4th GeoChina International Conference, July 25-27, 2016, Jinan, Shandong, China

X. Gao, G. Koval, Cyrille Chazallon, « Effect of fiber grid reinforcement on crack initiation and propagation in asphalt concrete”, 8th International Conference on Mechanisms of Cracking and Debonding in Pavements, Nantes, France, 8 pages, 7-9 June 2016.

Cyrille Chazallon, Arsenie Ioana Maria, Duchez Jean-Louis, « Modelling of the fatigue damage of a geogrid reinforced asphalt concrete”, 8th International Conference on Mechanisms of Cracking and Debonding in Pavements, Nantes, France, 8 pages, 7-9 June 2016.

2015
A. Themeli, E. Chailleux, F. Farcas, Cyrille Chazallon, B. Migault, Ageing performances of asphaltite modified bitumens; comparisons with equivalent petroleum bitumens, 8th International RILEM SIB Symposium, 8 pages, 7-9 Octobre, Ancone, Italie

A. Themeli, E. Chailleux, F. Farcas, Cyrille Chazallon & B. Migault, “Molecular weight distribution of asphaltic paving binders from phase-angle measurements”, 6th European Asphalt Technology Association, 21 pages, 15-17 June, Stockholm, Sweden

2014
S. Nikoosokhan, H. Nowamooz, Cyrille Chazallon, “Seasonal thermal energy storage in shallow geothermal systems effect of time spatial variability of the hydrothermal properties”, International Conference on Grand Renewable Energy, 27 July -1 August, 2014, Tokyo, Japan, 2 pages

Kai LI, Hossein Nowamooz, Cyrille Chazallon and Bernard Migault, “An elasto-plastic model for unsaturated expansive soils based on shakedown concept”, ECCOMAS, 20-25 July, 2014, 8 pages, Barcelone, ISBN: 978-84-942844-7-2

T. Trinh, S. Mouhoubi, Cyrille Chazallon, and M. Bonnet, “Fast multipole boundary elements method for multizone problems”, ECCOMAS, 20-25 July, 2014, 8 pages, Barcelone, ISBN: 978-84-942844-7-2

I.M. Arsenie, Cyrille Chazallon, J.L. Duchez, D. Doligez, Fatigue behaviour of an asphalt concrete reinforced with glass fiber grid with 4PB test, 12th International Conference of the Society for Asphalt Pavements (ISAP), 1-5 June, 2014, Raleigh, NC, USA, 8 pages, ISBN 978-1-138-02693-3

2013
Andrea Themeli, Emmanuel Chailleux, Fabienne Farcas, Cyrille Chazallon, Jean-Louis Duchez, Rheological behavior of asphaltite-modified bituminous binders, 1st RILEM Conference on Rheology and Processing of Construction Materials, 2 - 4 September 2013, Paris, 8 pages, ISBN: 978-2-35158-137-7

K. Li, H. Nowamooz, Cyrille Chazallon, B. Migault, An elastoplastic model for unsaturated expansive soils based on shakedown concept, 5th International Conference on Computational
Methods for Coupled Problems in Science and Engineering, “5 Septembre 2013, Barcelone, Spain, 8 pages

G. Koval, B.D. Le, C. Chazallon, Discrete element model for brittle materials, 3rd International Conference on Particle-based Methods – Fundamentals and Applications, 18-20 September 2013 Stuttgart, Germany, 8 pages

Cyrille Chazallon, Ioana-Maria Arsenie, Andrea Themeli, Jean-Louis Duchez, Daniel Doligez, Study of the fatigue behaviour of an asphalt mixture reinforced with glass fiber grid, 5th European Asphalt Technology Association, Braunschweig, Allemagne, 3 et 5 Juin 2013, 12 pages

2012
X.N. Ho, H. Nowamooz, C. Chazallon, B. Migault, “Influence of hydraulic hysteresis on the resilient behaviour of a natural compacted sand”, Geomechanics and Geoengineering, Springer, Special Issue Multiphysical Testing of Soils and Shales, September 2012, Pages 87-92

Q.T. Trinh, S. Mouhoubi, C. Chazallon, and M. Bonnet (2012), Three dimensional modeling of fracture by fast multipole symmetric Galerkin boundary element method. Application to multi fractured media. 6th European Congress on Computational Methods in Applied Sciences and Engineering ECCOMAS, 10-14 Septembre 2012, Vienne (8 pages). ISBN: 978-3-9502481-9-7

Arsenie I., C. Chazallon, A. Themeli, J.L. Duchez, D. Doligez (2012), Measurement and prediction model of the fatigue behavior of fiber glass reinforced bituminous mixture, 7th RILEM International Conference on Cracking in Pavements, 20-22 Juin 2012, Delft (8 pages) ISBN 978-94-007-4566-7

Ho N., Nowamooz H., Chazallon C., Migault B., (2012), Unsaturated resilient behaviour of a natural compacted sand, 2nd European Conference on Unsaturated Soils, 20-22 Juin 2012, Naples (8 pages)

2011
Arsenie I., Chazallon C., Duchez J.L., Doligez D., Themeli A., Fatigue behaviour of a glass fiber reinforced asphalt mix in 4 points bending test and damage evolution modeling, Workshop Climate and Construction, 24-25 Octobre 2011, Karlsruhe, (10 pages).

Arsenie I., Chazallon C., Duchez J.L., Doligez D., Study of the reinforcement role of the fiber glass grid on the fatigue behavior of an asphalt mix, XVI Ibero-Latin American Congress of Asphalt (IBWC), 20-25 November, Rio Janeiro, Brasil.

G. Koval, B.-D. Le, C. Chazallon, DEM approach in fracture mechanics, proceedings of the II International Conference on Particle-based Methods, 26-28 Octobre, Barcelona, Spain.(10 pages)

G. Koval, C. Chazallon, (2011), Inertial effects on granular materials under repeated load biaxial tests, oral presentation and article in proceedings of the International Symposium of Railway Geotechnical Engineering, Paris, 19-20 Mai, France.(10 pages)
2010
H. Nowamooz, I. Arsénie, C. Chazallon, F. Masrouri, "Hydromechanical behaviour of a natural sand using different suction controlled techniques", 5th International Conference on Unsaturated soils, Barcelone, 6-8 Septembre 2010, (8 pages)

H. Nowamooz, C. Chazallon, G. Koval, "Finite element modelling of a wall built in natural soil", 4th European Conference on Computational Mechanics, Paris, 17-21 Mai 2010, (8 pages)

2009
F. Allou, C. Chazallon, P. Hornych, C. Petit, ‘Influence of the macroscopic cohesion on the 3D finite elements modelling of a flexible pavements rut depth’, 8th BCRRA, 29 June – 2 July, 2009, Champaign, Illinois, USA, (pp 155 – 165)

2007
F. Allou, C. Chazallon, P. Hornych, C. Petit, ‘3D finite elements modelling of rut depth evolution of flexible pavements with the shakedown theory’, Advanced Characterisation of Pavement and Soil Engineering Materials, 20 – 22 Juin 2007, Athènes, ( pp 451 – 460)
T. Habibalah, C. Chazallon, C. Petit, ‘Simplified method based on plasticity for the permanent strains of unbound granular materials of flexible pavements’, *International Symposium on Deformation Characteristics of Geomaterials*, 6 pages, Lyon, Septembre 2003.

2002

C. Chazallon, T. Habibalah and P. Hornych, ‘Elastoplasticity framework for incremental or simplified methods for unbound granular material for roads’, 6th International Conference on the Bearing Capacity of Roads, Railways, and Airfields (BCRA 2002), Lisbonne, Portugal, 24 – 26 Juin 2002, pp 31-39.

2001

C. Chazallon, ‘Cutting plane algorithm for cyclic plasticity of unbound granular materials for roads’, 5th Asian - Pacific Congress on Computational Mechanic (APCOM 2001), Sydney, Australie, 21 – 23 Novembre 2001, pp 1123 – 1228, ISBN 0-08-043981-0.

2000

C. Chazallon, ‘One plasticity mechanism for rutting in flexible pavements’, 8th International Conference on Plasticity (ISP 2000), Whistler, Canada, 17 - 21 Juillet 2000, pp 282 - 284, ISBN 0-9659463-2-0.

C. Chazallon, ‘An elastoplastic model with kinematic hardening for unbound aggregates in roads’, 5th Int. Symp. on Unbound Aggregates in Roads (UNBAR 5), ed Balkema, Nottingham, Angleterre, 21 - 23 Juin 2000, pp 265 - 270 ISBN 90 5809 147 3.

C. Chazallon, ‘An elastoplastic model with damage for liquefaction of grouted sand’, 14th Engineering Mechanics Conference ASCE (EM2000), Austin, Texas, Etats Unis, 21 - 24 May 2000, (6 pages).

1998

A. Khalifa, C. Chazallon, P. Thomas, ‘Modélisation des écoulements dans les digues en mer: cas de la digue de Calais’, 8th Int. Congress of Geology, pp 145 - 153, Vancouver, Canada, 21 - 25 Septembre 1998, ISBN: 9054109955.

1995

C. Chazallon, P.Y. Hicher, ‘An elastoplastic model with damage for bonded geomaterials’, NUMOG 5, pp 21 - 26, Davos, Suisse, 6-8 Septembre 1995, ISBN 9054105682.

- Autres :

**Congrès avec actes et comité de lecture national.**

L. Gaillard, C. Chazallon, J.C. Quezada, P. Hornych, Comportement thermomécanique des agrégats d’enrobés compacts non saturés, RUGC 20-22 Juin 2018

L.Sagnol, C. Chazallon, M. Stockner, D. Doligez, Journées techniques routes, 7 et 8 Février 2018, IFSTTAR Nantes, Poster
Arsenie Ioana, Chazallon Cyrille, Duchez Jean-Louis, Caractérisation expérimentale et simulation de l’endommagement en fatigue d’un béton bitumineux, AUGC, 03-05/06/2014, Orléans, France, 8 pages

T. Trinh, S. Mouhoubi, C. Chazallon, M. Bonnet, Les éléments de frontière accélérés par la Méthode Multipôle Rapide (FMM) pour modéliser des domaines 3D multizone fissurés, CFM, 26-30 Août 2013, Bordeaux, France, 8 pages

X. N. Ho, H. Nowamooz, C. Chazallon, B. Migault, (2013), Influence de l’hystérésis hydrique sur le comportement résilient d’un sable naturel compacté, Colloque AUGC - Paris, 29-31 Mai, 8 pages

Ioana-Maria Arsenie, Cyrille Chazallon, Andrea Themeli, Jean-Louis Duchez, Daniel Doligez (2012), Modélisation du comportement en fatigue d’un béton bitumineux renforcé par géo-grille, Colloque AUGC - Chambéry, 6-8 Juin, 8 pages

B.-D. Le, G. Koval, C. Chazallon, Modélisation discrète du comportement à la rupture des matériaux fragiles, Colloque AUGC - Chambéry, 6-8 Juin 2012, 8 pages

B.-D. Le, G. Koval, C. Chazallon, Modélisation discrète en mécanique de la rupture, Annales du 20ème Congrès Français de Mécanique, Besançon, France, 2011.

X. N. Ho, H. Nowamooz, C. Chazallon, B. Migault, Comportement hydromécanique des matériaux granulaires compactés non-saturés, Annales du 20ème Congrès Français de Mécanique, Besançon, France, 2011.

Fatima Allou, Cyrille Chazallon, Pierre Hornych & Christophe Petit, ‘Calcul par éléments finis de l’orniérage d’une chaussée souple - Effet de la prise en compte de la cohésion macroscopique’, AUGC 2008, Nancy, Juin, (8 pages)

F. Allou, C. Chazallon, P. Hornych, C. Petit ‘Modélisation de l’orniérage des chaussées à faible trafic’, Congrès Français de Mécanique, 27-31 Aout 2007 (6 pages)

Fatima Allou, Cyrille Chazallon, Pierre Hornych & Christophe Petit, ‘Modélisation de l’influence de la teneur en eau sur les déformations permanentes dans les chaussées souples’, AUGC 2006, La Grande Motte, 1-2 Juin, (8 pages)

Fatima Allou, Cyrille Chazallon & Christophe Petit, ‘Modèle simplifié pour la modélisation de structures de chaussées souples’, AUGC 2005, Grenoble, 25-27 Mai, (8 pages)

T. Habibalah, C. Chazallon, and C. Petit, ‘Analyse structurelle inélastique d’une structure de chaussée souple’, Congrès de l’AUGC, 8 pages, Marne la Vallée, 3-4 Juin 2004

T. Habibalah, C. Chazallon, and C. Petit, ‘Modélisation des déformations permanentes des matériaux granulaires à grands nombres de cycles. Une méthode simplifiée basée sur la théorie de l’adaptation’, Congrès Français de Mécanique, 8 pages, Nice, 1 – 5 Septembre 2003.

T. Habibalah, C. Chazallon, and C. Petit, ‘Durabilité des chaussées souples : une méthode simplifiée pour la modélisation de l’orniérage’, Congrès de l’AUGC, p53 – 60, La Rochelle, 2-3 Juin 2003
C. Chazallon, P. Y. Hicher, ‘Modélisation de la transition fragile ductile dans les géomatériaux cimentés’, Atelier MAG, GEO, Aussois Décembre 1996.

C. Chazallon, ‘Un modèle élastoplastique avec endommagement pour modéliser le comportement mécanique des géomatériaux cimentés’, XIVèmes journées de l’AUGC, Prix Jeunes Chercheurs ‘René Houpert’, pp 57 - 65, Clermont Ferrand, Mai 1996.

Rapports scientifiques

Chazallon C., ‘Modélisation du comportement mécanique des géomatériaux cimentés’, Thèse de Docteur de l’Ecole Centrale de Paris, pp 175, 1996.

Chazallon C., ‘Fiabilité des ouvrages en terre’, Mémoire de projet de DEA, Ecole Centrale de Paris - EDF/CNEH, pp 30, 1993.

Chazallon C., ‘Calcul dynamique du barrage de San Fernando’, Mémoire de stage de DEA, Ecole Centrale de Paris - EDF/CNEH, pp 100, 1993.