TOROIDAL AND PROJECTIVE COMMUTING AND NON-COMMUTING GRAPHS

M. AFKHAMI, M. FARROKHI D. G. AND K. KHASHYAR MANESH

Abstract. In this paper, all finite groups whose commuting (non-commuting) graphs can be embed on the plane, torus or projective plane are classified.

1. Introduction

Let G be a non-abelian group. The commuting graph associated to G is an undirected graph with vertex set $G \setminus Z(G)$ such that two distinct vertices x and y are adjacent if $xy = yx$. We denote this graph by Γ_G. Also, the non-commuting graph of G, which is denoted by Γ'_G, is an undirected graph with vertex set $G \setminus Z(G)$ such that two distinct vertices x and y are adjacent if $xy \neq yx$. Indeed, Γ'_G is the complement of Γ_G. Commuting graphs as well as non-commuting graphs have many interesting properties, for instance it is known that (non-)commuting graphs characterize non-abelian finite simple groups among all finite groups (see [12]).

Recall that a graph is planar if it can be drawn in the plane such that its edges intersect only at their end points. A subdivision of a graph is any graph that can be obtained from the original graph by replacing edges by paths. A remarkable characterization of the planar graphs was given by Kuratowski in 1930. Kuratowski’s Theorem [9] states that a graph is planar if and only if it contains no subdivisions of K_5 and $K_{3,3}$, where K_n is the complete graph with n vertices and $K_{m,n}$ is the complete bipartite graph with parts of sizes m and n.

It is well-known that a compact surface is homeomorphic to a sphere, a connected sum of g tori, or a connected sum of k projective planes (see [10, Theorem 5.1]). We denote S_g for the sphere and S_g ($g \geq 1$) for the surface formed by a connected sum of g tori, and N_k for the one formed by a connected sum of k projective planes. The number g is called the genus of the surface S_g and k is called the crosscap of N_k. When considering the orientability, the surfaces S_g and sphere are among the orientable class of surfaces and the surfaces N_k are among the non-orientable one.

A simple graph which can be embedded in S_g but not in S_{g-1} is called a graph of genus g. Similarly, if a simple graph can be embedded in N_k but not in N_{k-1}, then we call it a graph of crosscap k. The notations $\gamma(\Gamma)$ and $\gamma(\Gamma)$ stand for the genus and crosscap of a graph Γ, respectively. It is easy to see that $\gamma(\Gamma_0) \leq \gamma(\Gamma)$ and $\gamma(\Gamma_0) \leq \gamma(\Gamma)$, for all subgraphs Γ_0 of Γ. Clearly, a graph Γ is planar if $\gamma(\Gamma) = 0$. A graph Γ such that $\gamma(\Gamma) = 1$ is called a toroidal graph. Also, a graph Γ such that $\gamma(\Gamma) = 1$ is called a projective graph.

2000 Mathematics Subject Classification. Primary 05C25; Secondary 05C10.

Key words and phrases. Genus, crosscap, commuting graph, non-commuting graph.

This research was in part supported by grants from IPM (No. 91050011) and (No. 900130063).
The aim of this paper is to determine finite non-abelian groups such that their commuting (or non-commuting) graphs are planar, toroidal or projective.

In this paper, \(G \) is a finite non-abelian group. In the following, we remind some useful theorems that will be used frequently in our proofs. We note that \(\lceil x \rceil \) denotes the smallest integer greater than or equal to the given real number \(x \).

Theorem 1.1 ([11]). For positive integers \(m \) and \(n \), we have

1. \(\gamma(K_n) = \left\lceil \frac{1}{6}(n-3)(n-4) \right\rceil \) if \(n \geq 3 \),
2. \(\gamma(K_{m,n}) = \left\lceil \frac{1}{2}(m-2)(n-2) \right\rceil \) if \(m, n \geq 2 \).

Theorem 1.2 ([3]). Let \(\Gamma \) be a simple graph with \(v \) vertices \((v \geq 4)\) and \(e \) edges. Then \(\gamma(\Gamma) \geq \left\lceil \frac{1}{6}(e-3v) + 1 \right\rceil \).

Theorem 1.3 ([5][11]). For positive integers \(m \) and \(n \), we have

1. \(\tau(K_n) = \begin{cases} \left\lceil \frac{1}{6}(n-3)(n-4) \right\rceil, & n \geq 3 \text{ and } n \neq 7, \\ 3, & n = 7, \end{cases} \)
2. \(\tau(K_{m,n}) = \left\lceil \frac{1}{2}(m-2)(n-2) \right\rceil \) if \(m, n \geq 2 \).

A block in a graph is a maximal subgraph with no cut point. The following theorem gives a formula for computing the genus of a graph using its blocks genus.

Theorem 1.4 ([2]). If \(\Gamma \) is a graph with blocks \(B_1, \ldots, B_n \), then

\[
\gamma(\Gamma) = \gamma(B_1) + \cdots + \gamma(B_n).
\]

Although there is no similar formula for crosscap number of a graph in terms of its blocks crosscap numbers, it is shown in [7] that \(2K_5 \) is not projective, the fact that will be used in our proofs.

All over this paper, \(\overline{\ast} : G \to G/Z(G) \) denotes the natural homomorphism for a given group \(G \), hence \(\overline{G} = G/Z(G) \) will denote the image group. Also, \(\omega(G) = \{ |x| : x \in G \} \), \(\exp(G) = \text{lcm}(\omega(G)) \), \(Z(G) \) and \(S_p(G) \) (\(p \) prime) denote the spectrum of \(G \), the exponent of \(G \), the center of \(G \) and a Sylow \(p \)-subgroup of \(G \), respectively. In what follows, \(S_n, A_n, D_{2n} \) and \(Q_8 \) stand for the symmetric group of degree \(n \), alternating group of degree \(n \), dihedral group of order \(2n \) and the quaternion group of order 8. Moreover, the union of \(n \) disjoint copies of a graph \(\Gamma \) will be denoted by \(n\Gamma \).

2. Commuting graphs

In this section, we will classify all finite non-abelian groups whose commuting graphs can be embedded in the plane, torus or projective plane. We begin with a simple lemma.

Lemma 2.1. Let \(G \) be a \(p \)-group of order \(p^n \), where \(n > 1 \). Then

1. If \(p > 2 \), then \(G \setminus \{1\} \) has a commuting subset with \(p^2 - 1 \geq 8 \) elements.
2. If \(p = 2 \), \(n \geq 5 \) and \(G \) is non-abelian, then \(G \setminus Z(G) \) has two disjoint commuting subsets with 6 elements

Proof.

1. Let \(x \) be a central element of \(G \) of order \(p \) and consider the subgroup generated by \(\{x, y\} \) for any \(y \in G \setminus \{x\} \).

2. If \(|Z(G)| \geq 8 \), then consider two distinct cosets of \(Z(G) \). Assume \(|Z(G)| \leq 4 \). Let \(H \) be a subgroup of \(G \) of order 32 containing \(Z(G) \). If \(H \) contains an abelian subgroup \(K \) of order 16, then \(K \setminus Z(G) \) contains two disjoint commuting subsets
with 6 elements. Hence, we may assume that \(H \) does not have abelian subgroups of order 16. Using the following codes in GAP [6], one can easily see that \(|Z(H)| = 2\) and consequently \(|Z(G)| = 2\).

```
for i in [1..NrSmallGroups(32)] do
    H:=SmallGroup(32,i);
    if Maximum(List(Filtered(AllSubgroups(H),IsAbelian),Order))<16 then
        Print(Order(Center(H)),"n");
    fi;
od;
```

Now, by using following codes, it follows that \(H \setminus Z(G) \) contains two disjoint commuting subsets with 6 elements.

```
for i in [1..NrSmallGroups(32)] do
    H:=SmallGroup(32,i);
    L:=Filtered(AllSubgroups(H),IsAbelian);
    counterexample:=true;
    if Maximum(List(L,Order))<16 then
        for A in L do
            for B in L do
                if Order(A)=8 and Order(B)=8 and Order(Intersection(A,B))=2 then
                    counterexample:=false;
                fi;
            od;
        od;
    fi;
    if counterexample=true then
        Print(i,"n");
    fi;
od;
```

The proof is complete. \(\square\)

Theorem 2.2. Let \(G \) be a finite non-abelian group. Then \(\Gamma_G \) is planar if and only if \(G \) is isomorphic to one of the following groups:

1. \(S_3, D_8, Q_8, A_4, D_{10}, D_{12}, D_8 \times Z_2, D_8 \times Z_2, S_4, SL(2,3), A_5 \),
2. \(\langle a, b : a^3 = b^4 = 1, a^b = a^{-1} \rangle \cong Z_3 \times Z_4 \),
3. \(\langle a, b : a^4 = b^4 = 1, a^b = a^{-1} \rangle \cong Z_4 \times Z_4 \),
4. \(\langle a, b : a^8 = b^2 = 1, a^b = a^{-3} \rangle \cong Z_8 \times Z_2 \),
5. \(\langle a, b : a^4 = b^2 = (ab)^4 = [a^2, b] = 1 \rangle \cong (Z_4 \times Z_2) \rtimes Z_2 \),
6. \(\langle a, b, c : a^2 = b^2 = c^2 = [a, c] = [b, c] = 1, [a, b] = c^2 \rangle \cong (Z_4 \times Z_2) \rtimes Z_2 \),
7. \(\langle a, b : a^5 = b^4 = 1, a^b = a^3 \rangle \cong Z_5 \times Z_4 \).

Theorem 2.3. Let \(G \) be a finite non-abelian group. Then \(\Gamma_G \) is toroidal if and only if \(G \) is isomorphic to one of the following groups:

1. \(D_{11} \),
2. \(D_{16} \),
3. \(Q_{16} \),
4. \(QD_{16} \),
5. \(A_4 \times Z_2 \),
Proof of Theorems 2.2 and 2.3. We will show that there are only finitely many groups whose commuting graph have no subgraphs isomorphic to K_8 or $2K_5$ and among them, we will cross out those whose commuting graph is not planar, toroidal or projective. We proceed in some steps.

(1) $|Z(G)| \geq 8$. Then $xz(G)$ induces a complete subgraph for each $x \in G \setminus Z(G)$, which is a contradiction. So, we have $|Z(G)| \leq 7$.

(2) $|Z(G)| \geq 4$. If $\varpi \in \overline{G}$ such that $|\varpi| > 2$, then $xz(G) \cup x^{-1}Z(G)$ induces a complete subgraph with at least 8 elements, which is a contradiction. Thus \overline{G} is an elementary abelian 2-group and hence G is nilpotent. Clearly, $|Z(G)| \neq 5, 7$. If $|Z(G)| = 6$, then $G \cong Z_3 \times H$, where H is an extra special 2-group. Let $\langle x \rangle$ be the Sylow 3-subgroup of G. If $A \subseteq H \setminus Z(H)$ is a commuting set, then $\langle x \rangle \times A$ is a commuting set in $G \setminus Z(G)$. Thus Γ_G has a subgraph isomorphic to $K_{3,4}$. Hence $|A| \leq 2$ and this is possible only if $H \cong D_8$ or Q_8. Therefore $G \cong Z_3 \times D_9$ or $Z_3 \times Q_8$, which is impossible for $\Gamma_G \cong 3K_6$. If $|Z(G)| = 4$, then G is a 2-group and, by Lemma 2.1 it follows that $|G| = 16$.

(3) $|Z(G)| = 3$. If $\varpi \in \overline{G}$ is an element of order > 3, then $xz(G) \cup x^2Z(G) \cup x^3Z(G)$ induces a complete subgraph isomorphic to K_9, which is impossible. Thus $\omega(\overline{G}) \subseteq \{1, 2, 3\}$. With a same argument one can show that $C_G(x) = \langle Z(G), x \rangle$ for all $x \in G \setminus Z(G)$. Now, we have three cases. If \overline{G} is a 2-group, then G is abelian, which is a contradiction. Also, if \overline{G} is a 3-group and $x, y \in G$ are such that $xy \neq yx$, then $xZ(G) \cup x^{-1}Z(G) \cup yZ(G) \cup y^{-1}Z(G)$ induces a subgraph isomorphic to $2K_6$, which is a contradiction. Therefore, \overline{G} is neither a 2-group nor a 3-group. Then, by [4], either $\overline{G} \cong (Z_2 \times Z_2)^m \times Z_3$ or $\overline{G} \cong Z_3^m \times Z_2$. If $\overline{G} \cong (Z_2 \times Z_2)^m \times Z_3$, then $Z(G)S_2(G) \setminus Z(G)$ induces a complete subgraph with at least 9 elements, which is a contradiction. Thus $G \cong Z_3^m \times Z_2$. By previous arguments, $S_3(G)$ must be abelian, which implies that $|S_3(G) \setminus Z(G)| \leq 7$. Hence, $|S_3(G)| = 9$ and so $|G| = 18$.

(4) $|Z(G)| = 2$. If there is an element $\varpi \in \overline{G}$ with $|\varpi| \geq 5$, then $xz(G) \cup x^2Z(G) \cup x^3Z(G) \cup x^4Z(G)$ induces a subgraph isomorphic to K_8, which is impossible. Therefore, $\omega(\overline{G}) \subseteq \{1, 2, 3, 4\}$. Since $Z(G) \subseteq S_2(G)$, by Lemma 2.1 $|G| \leq 2^4 \cdot 3$.

(5) $|Z(G)| = 1$. Clearly, $\omega(\overline{G}) \subseteq \{1, 2, 3, 4, 5, 6, 7, 8\}$. By Lemma 2.1 $|G| \leq 2^4 \cdot 3 \cdot 5 \cdot 7$. Also, if $7 \in \omega(\overline{G})$, then $S_7(G) \subseteq G$, which implies that $|G| \geq 48$.

Now, the result follows by a simple computation with GAP [6]. The converse is straightforward.

\section{3. Non-commuting graphs}

In this section, we shall determine all finite non-abelian groups whose non-commuting graphs can be embedded in the plane, torus or projective plane. The following theorem of Abdollahi, Akbari and Maimani gives all planar non-commuting graphs.

Theorem 3.1 ([1]). Let G be a finite non-abelian group. Then Γ_G is planar if and only if G is isomorphic to one of the groups S_3, D_8 or Q_8.

Theorem 3.2. There is no toroidal non-commuting graph.

Proof. Assume on a contrary that G is a finite group with toroidal non-commuting graph. Let $k(G)$ be the number of conjugacy classes of G. Since $|V(\Gamma_G)| = |G| -
$|Z(G)|$ and

$$2|E(\Gamma'_G)| = |G|^2 - |\{(x, y) \in G \times G : xy = yx\}|$$

$$= |G|^2 - |G||k(G)|,$$

by Theorem 1.2, it follows that $|G|(|G| - k(G) - 6) + 6|Z(G)| \leq 0$. Hence $k(G) \geq |G| - 5$. On the other hand, $k(G)/|G| \leq 5/8$ (see [5]), from which it follows that $|G| \leq 13$. A simple verification shows that S_3, D_8 and Q_8 are the only groups with these properties each of which has a planar non-commuting graph, a contradiction.

□

Theorem 3.3. There is no projective non-commuting graph.

Proof. Suppose on the contrary that G is a finite group with projective non-commuting graph. If $x, y \in G$ are such that $xy \neq yx$, then the subgraph induced by $xZ(G) \cup yZ(G)$ is isomorphic to $K_{|Z(G)|, |Z(G)|}$, which implies that $|Z(G)| \leq 3$.

On the other hand, if $x \in G \setminus Z(G)$, $y \in G \setminus C_G(x)$ and X is the set of all generators of $\langle x \rangle$, then the subgraph induced by $X \cup \langle x \rangle y$ is isomorphic to $K_{|\langle x \rangle|, |\langle x \rangle|}$, where φ is the Euler totient function, from which it follows that $|x| \leq 4$ or $|x| = 6$. If $|x| = 6$ then there exists a suitable power x^i of x such that $x^i \in G \setminus C_G(y)$ and the subgraph induced by $\{x, x^{-1}, x^i\} \cup \langle x \rangle y$ is isomorphic to $K_{3, 6}$, which is a contradiction. Therefore, $\omega(G) \subseteq \{1, 2, 3, 4\}$. On the other hand, if $x \in G$ such that $|\langle x \rangle| = 4$, then the subgraph induced by $\{x, x^{-1}, x^2\} \cup (G \setminus C_G(x^2))$ has a graph isomorphic to $K_{3, |G \setminus C_G(x)|}$, which implies that $|G \setminus C_G(x^2)| \leq 4$. Hence, $|G| = 8$ and consequently $\exp(G) = 2$, which is a contradiction. Therefore, $\omega(G) \subseteq \{1, 2, 3\}$. Since G has no elements of order 6, it follows that G is a 3-group, G is a 2-group or $Z(G) = 1$. Thus, we have the following cases:

Case 1. G is a 3-group. If $x \in G \setminus Z(G)$ and $y \in G \setminus C_G(x)$, then the subgraph induced by $xZ(G) \cup y^{-1}Z(G) \cup yZ(G)$ is isomorphic to $K_{3, 6}$, which is a contradiction.

Case 2. G is a 2-group. Then $|Z(G)| = \exp(G) = 2$, which implies that G is an extra special 2-group. So, $G = G_1 \circ \cdots \circ G_n$ is the central product of G_1, \ldots, G_n, where $G_i \cong D_8$ or Q_8, for $i = 1, \ldots, n$. Let $x, y \in G_1$ with $xy \neq yx$. If $n > 1$, then the subgraph induced by $xG_2 \cup yG_2$ is isomorphic to $K_{8, 8}$, which is impossible. Thus $n = 1$ and subsequently $G \cong D_8$ or Q_8, a contradiction.

Case 3. $|Z(G)| = 1$. Let $P = S_2(G)$, $Q = S_3(G)$ and $x, y \in G$ be elements of orders 2 and 3, respectively. By Case 2, either P is abelian, or $P \cong D_8$ or Q_8. If P is abelian, then the subgraph induced by $(P \setminus \{1\}) \cup Py$ is isomorphic to $K_{|P| - 1, |P|}$, which implies that $|P| \leq 4$. Hence, $|P| \geq 8$ in all cases. On the other hand, Q is abelian, which implies that the subgraph induced by $(Q \setminus \{1\}) \cup Qx$ is isomorphic to $K_{|Q| - 1, |Q|}$. So, we have $|Q| = 3$. Therefore $|G| \geq 24$. The only groups with these properties are S_3, A_4 and S_4 each of which has a non-projective non-commuting graph. The proof is complete.

Acknowledgments. The authors are deeply grateful to the referee for careful reading of the manuscript and helpful suggestions.

References

[1] A. Abdollahi, S. Akbari and H.R. Maimani, Non-commuting graph of a group, J. Algebra 298 (2006), 468–492.
[2] J. Battle, F. Harary, Y. Kodama and J. W. T. Youngs, Additivity of the genus of a graph, \textit{Bull. Amer. Math. Soc.} \textbf{68} (1962), 656–658.

[3] L.W. Beineke and F. Harary, Inequalities involving the genus of a graph and its thickness, \textit{Proc. Glasgow Math. Assoc.} \textbf{7} (1965), 19–21.

[4] E.D. Bokler, Groups whose elements are of order two or three, \textit{Amer. Math. Monthly} \textbf{79}(9) (1972), 1007–1010.

[5] A. Bouchet, Orientable and nonorientable genus of the complete bipartite graph, \textit{J. Combin. Theory Ser. B} \textbf{24} (1978), 24–33.

[6] The GAP Group, \textit{GAP-Groups, Algorithms and Programming, Version 4.6.4}, 2013 (http://www.gap-system.org/).

[7] H.H. Glover, J.P. Huneke and C.S. Wang, 103 Graphs that are irreducible for the projective plane, \textit{J. Combin. Theory Ser. B} \textbf{27} (1979), 332–370.

[8] W.H. Gustafson, What is the probability that two group elements commute?, \textit{Amer. Math. Monthly} \textbf{80} (1973), 1031–1304.

[9] K. Kuratowski, Sur le problème des courbes gauches en topologie, \textit{Fund. Math.} \textbf{15} (1930), 271–283.

[10] W. Massey, \textit{Algebraic Topology: An Introduction}, Harcourt, Brace & World, Inc., New York, 1967.

[11] G. Ringel, \textit{Map Color Theorem}, Springer-Verlag, New York, Heidelberg, 1974.

[12] R. M. Solomon and A. J. Woldar, Simple groups are characterized by their non-commuting graphs, \textit{J. Group Theory} \textbf{16}(6) (2013), 793–824.

\textbf{Department of Mathematics, University of Neyshabur, P.O.Box 91136-899, Neyshabur, Iran}

\textit{E-mail address:} mojgan.afkhami@yahoo.com

\textbf{Department of Pure Mathematics, Ferdowsi University of Mashhad, P.O.Box 1159-91775, Mashhad, Iran}

\textit{E-mail address:} m.farrokhi.d.g@gmail.com

\textbf{Department of Pure Mathematics, Ferdowsi University of Mashhad, P.O.Box 1159-91775, Mashhad, Iran}

\textit{E-mail address:} khashyar@ipm.ir