Extrahepatic portosystemic shunts as an unusual but treatable cause of hyperammonemic encephalopathy in a noncirrhotic patient – a case report

Jordi Kühne Escolà, Jens M. Theysohn, Yan Li, Michael Forsting, Philipp Capetian, Jens Volkmann, Christian Lange, Carlos M. Quesada, Martin Köhrmann, Benedikt Frank and Christoph Kleinschnitz

Abstract: We report a case of hyperammonemic encephalopathy due to extrahepatic portosystemic shunts in a noncirrhotic patient. A 79-year-old woman suffered from episodic confusion, disorientation, dysphasia and fluctuating level of consciousness. Electroencephalography (EEG) showed encephalopathic changes and serum levels of ammonia were elevated. Further investigation revealed mesenterorenal and mesenterocaval shunts, which had possibly evolved after pancreatic surgery 5 years ago. After shunt obliteration, the symptoms completely resolved, ammonia levels dropped to the normal range and EEG findings normalized. Clinicians should be aware of this rare but treatable cause of encephalopathy in noncirrhotic patients.

Keywords: extrahepatic shunt, hyperammonemia, hyperammonemic encephalopathy, noncirrhotic

Case description

A 79-year-old woman developed recurrent episodes of confusion, disorientation, dysphasia and fluctuating level of consciousness. Medical history included fully-remitted marginal zone lymphoma (MZL) under previous treatment with rituximab and bendamustine. Furthermore, the patient had undergone curative pylorus-preserving pancreaticoduodenectomy 5 years ago due to intraductal papillary mucinous neoplasm (IPMN).

Over the past months, the patient had been hospitalized several times because of the abovementioned symptoms, including intensive care unit treatment. Nonconvulsive seizures and even nonconvulsive status epilepticus (NCSE) had been considered in the initial differential diagnosis, but despite regular administration of antiepileptic drugs including levetiracetam and gabapentin, she continued to have intermittent episodes of confusion, reduced consciousness and/or severe neurocognitive deficits lasting for hours to several days. Treatment with intravenous valproic acid (VPA) even triggered a severe stuporous state, which completely resolved after withdrawal of VPA.

Approximately, 6 months after first onset, the patient was admitted again due to a prolonged episode of confusion. She was disoriented and dysphasic without motor or sensory deficits. Electroencephalography (EEG) showed generalized, irregular delta-theta activity as well as triphasic waves (see Figure 1) and laboratory testing revealed hyperammonemia of 121 μg/dl (reference range 19–55 μg/dl) despite normal liver and kidney function. Examination of cerebrospinal fluid (CSF) and magnetic resonance imaging (MRI) of the brain did not show any relevant abnormalities. Hyperammonemic encephalopathy was suspected and treatment with lactulose and rifaximin was initiated, supported by daily enemas. Serum levels of ammonia decreased (see Figure 2) and clinical symptoms improved.
Improvement was observed under this treatment regimen. Abdominal ultrasound, including liver elastography and abdominal MRI showed only minor signs of chronic liver disease, however, without evidence of cirrhosis or significant portal hypertension. Finally, computed tomography (CT) angiography revealed a left abdominal venous convolute with portosystemic shunts between the inferior mesenteric vein and the left renal vein as well as the inferior vena cava (see Figure 3(a)). The patient underwent percutaneous transhepatic coil embolization and the shunts were successfully obliterated (Figure 3(b)–(g)), resulting in full and sustained clinical recovery with serum ammonia levels remaining within the normal range. EEG before discharge showed a posterior alpha-rhythm with no encephalopathic changes (see Figure 4). No further episodes of

Figure 1. Electroencephalography on admission showing generalized, irregular delta-theta activity as well as triphasic waves in average montage. EEG was recorded by surface electrodes following the 10/20 system using the following parameters: sensitivity 7 µV/mm, time constant 0.3 s, 70 Hz low-pass filter and 50 Hz notch filter.

Figure 2. Serum levels of ammonia over time during hospitalization.
confusion and impaired consciousness occurred until a follow-up period of 12 months.

Discussion

Although hyperammonemia is rare in noncirrhotic patients, there are well-known nonhepatic causes of increased ammonia production or decreased elimination that can lead to noncirrhotic hyperammonemic encephalopathy. These include disorders of the urea cycle, which usually occur in children but might manifest in adult patients as well, hematological diseases, such as multiple myeloma or leukemia, increased muscle catabolism and refeeding syndrome. Urease-producing microorganisms should also be considered in the differential diagnosis, especially in patients with anatomical alterations of the urinary tract that predispose for bacterial infections. In addition, a recent case report highlighted cryptococcal infection as a rare cause of hyperammonemia in an immunosuppressed patient, which underlines the need for a broad microbiological workup, especially when patients are at particular risk for infection. Hyperammonemic encephalopathy has also been described as a complication of bariatric surgery. Furthermore, exposure to various substances has been associated with hyperammonemia, including carbamazepine, ribavirin, methamphetamine and chemotherapeutic agents, such as 5-FU. While the underlying mechanisms are not well understood in most of these agents, a clearer concept exists for the etiopathogenesis of VPA-induced hyperammonemia.
Among many other interactions, VPA disrupts the urea cycle by inhibiting the rate-limiting enzyme (carbamoylphosphate synthetase I) through one of its metabolites (propionic acid).17,18 Notably, intravenous administration of VPA was followed by severe clinical worsening in the reported case, which in retrospect could have been due to a further, VPA-associated increase in serum ammonia levels.

In the present case report, the underlying cause of hyperammonemic encephalopathy was a portosystemic shunt. For this rare but important differential diagnosis of noncirrhotic hyperammonemic encephalopathy, special attention should be given to patients with a history of abdominal surgery or trauma, although congenital types and shunts of uncertain etiology have been described.19,20 Noncirrhotic hyperammonemic encephalopathy due to portosystemic shunting has also been observed in patients with portal vein thrombosis.21 In the reported case, postoperative shunt formation after pancreaticoduodenectomy was the most likely cause, an etiology that has been described elsewhere.22 Although therapeutic approaches must address each case individually with regard to the vascular anatomy, interventional treatment seems feasible and effective in most patients.23

Conclusion

Serum levels of ammonia should be assessed in all patients with unexplained alterations of consciousness or mental status, regardless of liver function, to not miss cases of noncirrhotic hyperammonemic encephalopathy. Investigating causes of this rare but well-described clinical entity can be challenging and requires a holistic workup: Thorough examination of patient history with an emphasis on trauma, surgery and drug exposure should be performed, as well as abdominal imaging and a broad infectious workup. Clinicians should be aware of extrahepatic portosystemic shunts as an unusual but treatable cause of hyperammonemic encephalopathy in noncirrhotic patients.

Consent for publication

The patient provided written, informed consent to publication of images and medical information. The need for ethical board approval was waived in compliance with local regulatory requirements.

Author contribution(s)

Jordi Kühne Escolá: Data curation; Formal analysis; Investigation; Validation; Visualization; Writing – original draft; Writing – review & editing.
Jens M. Theysohn: Investigation; Validation; Visualization; Writing – review & editing.

Yan Li: Investigation; Validation; Writing – review & editing.

Michael Forsting: Investigation; Validation; Writing – review & editing.

Philipp Capetian: Data curation; Investigation; Validation; Visualization; Writing – review & editing.

Jens Volkmann: Investigation; Supervision; Validation; Writing – review & editing.

Christian Lange: Investigation; Validation; Writing – review & editing.

Carlos M. Quesada: Investigation; Validation; Visualization; Writing – review & editing.

Martin Köhrmann: Investigation; Resources; Supervision; Validation; Writing – review & editing.

Benedikt Frank: Conceptualization; Investigation; Methodology; Supervision; Validation; Writing – original draft; Writing – review & editing.

Christoph Kleinschnitz: Conceptualization; Data curation; Investigation; Methodology; Project administration; Resources; Supervision; Validation; Writing – review & editing.

ORCID iDs
Jordi Kühne Escolà https://orcid.org/0000-0002-8742-0694
Benedikt Frank https://orcid.org/0000-0001-8837-9489

Funding
The authors received no financial support for the research, authorship, and/or publication of this article.

Conflict of interest statement
The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

References
1. Kalra A and Norvell JP. Cause for confusion: noncirrhotic hyperammonemic encephalopathy. Clin Liver Dis (Hoboken) 2020; 15: 223–227.

2. Laish I and Ben Ari Z. Noncirrhotic hyperammonaemic encephalopathy. Liver Int 2011; 31: 1259–1270.

3. Upadhyay R, Bleck TP and Busl KM. Hyperammonemia: what urea-ly need to know: case report of severe noncirrhotic hyperammonemic encephalopathy and review of the literature. Case Rep Med 2016; 2016: 8512721.

4. Talamo G, Cavallo F, Zangari M, et al. Hyperammonemia and encephalopathy in patients with multiple myeloma. Am J Hematol 2007; 82: 414–415.

5. Atiq M, Holt AF, Safdar K, et al. Adult onset urea cycle disorder in a patient with presumed hepatic encephalopathy. J Clin Gastroenterol 2008; 42: 213–214.

6. Becker S, Dam G and Hvas CL. Refeeding encephalopathy in a patient with severe hypophosphataemia and hyperammonaemia. Eur J Clin Nutr 2015; 69: 279–281.

7. Albersen M, Joniau S, Van Poppel H, et al. Ureasplitting urinary tract infection contributing to hyperammonemic encephalopathy. Nat Clin Pract Urol 2007; 4: 455–458.

8. De Jonghe B, Janier V, Abderrahim N, et al. Urinary tract infection and coma. Lancet 2002; 360: 996.

9. Hannah WB, Nizialek G, Dempsey KJ, et al. A novel cause of emergent hyperammonemia: Cryptococcal fungemia and meningitis. Mol Genet Metab Rep 2021; 29: 100825.

10. Fenves AZ, Shchelochkov OA and Mehta A. Hyperammonemic syndrome after Roux-en-Y gastric bypass. Obesity (Silver Spring) 2015; 23: 746–749.

11. Salcedo JD, Goldstein JS, Quinonez JM, et al. Nonfatal hyperammonemnic encephalopathy as a late complication of Roux-en-Y gastric bypass. Case Rep Gastrointest Med 2019; 2019: 9031087.

12. Adams EN, Marks A and Lizer MH. Carbamazepine-induced hyperammonemia. Am J Health Syst Pharm 2009; 66: 1468–1470.

13. Bertrand P, Faro A, Cantwell P, et al. Intravenous ribavirin and hyperammonemia in an immunocompromised patient infected with adenovirus. Pharmacotherapy 2000; 20: 1216–1220.

14. Lama M, Shannon S and Davin Q. Methamphetamine intoxication encephalopathy associated with hyperammonemia. Psychosomatics 2016; 57: 325–329.
15. Abbasi Jannatabadi N, Fayyazi Bordbar MR, Etemad L, et al. Methamphetamine-associated hyperammonemic encephalopathy: case reports. *J Clin Psychopharmacol* 2022; 42: 92–94.

16. Mitani S, Kadowaki S, Komori A, et al. Acute hyperammonemic encephalopathy after fluoropyrimidine-based chemotherapy: a case series and review of the literature. *Medicine (Baltimore)* 2017; 96: e6874.

17. Segura-Bruna N, Rodriguez-Campello A, Puente V, et al. Valproate-induced hyperammonemic encephalopathy. *Acta Neurol Scand* 2006; 114: 1–7.

18. Coulter DL and Allen RJ. Secondary hyperammonaemia: a possible mechanism for valproate encephalopathy. *Lancet* 1980; 1: 1310–1311.

19. Watanabe A. Portal-systemic encephalopathy in non-cirrhotic patients: classification of clinical types, diagnosis and treatment. *J Gastroenterol Hepatol* 2000; 15: 969–979.

20. Yang T, Cheng Y, Deng Z, et al. A 73-year-old woman with hyperammonemic encephalopathy caused by noncirrhotic congenital portosystemic shunts. *Neurology* 2021; 97: 340–341.

21. Yadav SK, Srivastava A, Srivastava A, et al. Encephalopathy assessment in children with extra-hepatic portal vein obstruction with MR, psychometry and critical flicker frequency. *J Hepatol* 2010; 52: 348–354.

22. Kasagi Y, Saeki H, Akahoshi T, et al. Non-cirrhotic portal-systemic encephalopathy caused by enlargement of a splenorenal shunt after pancreaticoduodenectomy for locally advanced duodenal cancer: report of a case. *Surg Today* 2014; 44: 1573–1576.

23. Degos B, Daelman L, Huberfeld G, et al. Portosystemic shunts: an underdiagnosed but treatable cause of neurological and psychiatric disorders. *J Neurol Sci* 2012; 321: 58–64.