FlowCaps: Optical Flow Estimation with Capsule Networks For Action Recognition

Vinoj Jayasundara
Debaditya Roy
Basura Fernando
Outline

1. Overview
2. Key Contributions
3. FlowCaps: Architecture
4. Key Approaches
5. Experiments and Results
6. Capabilities of FlowCaps
Overview: The need for a Capsule Encoder

Observation: Raw pixels contain sparse motion information, cluttered with non-motion information.

Similar pixel intensities yet differing relative motion. It is convenient for the optical flow estimation if motion information are unentangled and better-coded.
Overview: The need for a Capsule Encoder

Observation: Raw pixels contain sparse motion information, cluttered with non-motion information.

Potential Solution: A capsule encoder, which provides the following:

a) better correspondence matching via finer-grained, concise, motion-specific, and more-interpretable encoding crucial for optical flow estimation
b) better-generalizable optical flow estimation
c) utilize lesser ground truth data
d) significantly reduce the computational complexity

In comparison to the convolutional encoder in FlowNet.
Key Contributions

- Proposing a novel CapsNet based architecture, termed FlowCaps.
- Investigating two contrasting approaches for optical flow estimation and action recognition, namely, frame-wise and segment-wise.
- Achieving a significant (94%) reduction in computational complexity with FlowCaps, in comparison to FlowNet.
- Achieving better optical flow estimation and subsequent action recognition performance for several benchmark datasets.
- Investigating the capabilities of Flow-Caps in terms of out-of-domain generalization and training with only a few samples.
FlowCaps: Architecture
Key Approaches: Improvements to Loss

- Issues with EPE:
 - Only considers the magnitude component in its calculations
 - L2 norm is highly susceptible to outliers with higher values

- We propose:
 \[L = L_{mag} + \alpha L_{ang} \]

Where \(\alpha \) is an empirically determined constant.
We consider two different approaches based on the number of consecutive frames (k) considered for prediction at a time.

a) Frame-wise (k=2) \(X_{frm} \in \mathbb{R}^{(H \times W \times 2C)} \rightarrow Y_{frm} \in \mathbb{R}^{(H \times W \times 2)} \)

b) Segment-wise (k>2) \(X_{seg} \in \mathbb{R}^{(k \times H \times W \times C)} \rightarrow Y_{seg} \in \mathbb{R}^{(H \times W \times 2)} \)

Intuition behind Segment-wise approach

- The model can benefit from the additional contextual information provided by the extra frames considered.
- In a setting where optical flow estimation and action recognition are performed in tandem, it is natural to consider segments, rather than pairs of frames.
Results: Optical Flow Estimation

Model	EpicFlow [25]	FlowFields [1]	Sintel clean	Sintel final	KITTI15
Conventional			2.27	3.56	9.27
	-	-	**1.86**	3.06	8.33
Heavyweight CNN	FlowNetS [6]	38.68	4.50	5.45	-
	FlowNet2 [17]	162.49	2.02	3.54	10.08
Lightweight CNN	LiteFlowNet [16]	5.37	2.48	4.04	10.39
	SPyNet [24]	1.20	4.12	5.57	-
	Ours	2.39	2.13	**2.51**	**7.83**
Results: Segment-wise vs Frame-wise

Model	KTH-I Frames	Sub UCF-I Frames	UTI-P Frames			
	Optical flow estimation performance in EPE	Action classification performance				
	Frame	Seg.				
FlowNetS	1.1934	1.1355	2.3149	2.3079	0.4426	0.4265
FlowCaps-S	1.1033	**0.9384**	2.2037	**2.1930**	0.3806	**0.3672**
FlowNetS	61.30%	66.30%	85.50%	89.70%	84.12%	83.08%
FlowCaps-S	**65.00%**	**72.50%**	**91.20%**	**92.30%**	**86.02%**	**85.93%**
GT	68.90%		92.60%		81.37%	
Results: Optical Flow Estimation and Action Recognition

Model	UCF I-Frames	UTI P-Frames	KTH I-Frames	JHMDB				
	test epe	action	test epe	action	test epe	action	test epe	action
GT	-	79.4%	-	81.37%	-	68.90%	-	51.49%
FlowNetS	1.53	55.58%	0.44	84.12%	1.19	61.30%	0.49	44.03%
LiteFlowNet	-	-	-	83.17%	-	59.79%	-	40.30%
SPyNet	1.37	65.78%	0.42	87.66%	0.95	64.30%	0.44	42.54%
Ours	1.49	64.49%	0.39	86.02%	1.10	65.00%	**0.40**	**48.51%**
Ours - Mod Loss*	1.41	-	0.35	-	1.04	-	0.26	-
Ours - Segment	1.40	65.16%	**0.37**	88.34%	**0.93**	**72.50%**	0.71	41.90%
Optical Flow Estimation: UTI

Image	Ground Truth	FlowNetS	FlowCaps-S
![Image](image1.png)	![Ground Truth](ground_truth1.png)	![FlowNetS](flownets1.png)	![FlowCaps-S](flowcaps-s1.png)
![Image](image2.png)	![Ground Truth](ground_truth2.png)	![FlowNetS](flownets2.png)	![FlowCaps-S](flowcaps-s2.png)
![Image](image3.png)	![Ground Truth](ground_truth3.png)	![FlowNetS](flownets3.png)	![FlowCaps-S](flowcaps-s3.png)
Optical Flow Estimation: KTH
Optical Flow Estimation: UCF
FlowCaps: Out-of-Domain Generalization

- We test on all the classes of UCF-101 except for classes with no videos containing more than 5 I-frames, and for the five classes considered for training, which yields 88 out-of-domain action classes.
FlowCaps: Out-of-Domain Generalization
FlowCaps: Training with few samples

- Lower the availability of training data, higher the relative generalization capability of FlowCaps-S.
Thank You!

For more information, please join the Q&A session for the paper ID: 975!

A copy of our paper can be found here: