Brehm A., Harris D.J., Alves C., Jesus J., Thomarat F. and Vicente L.
(2003). Structure and evolution of the mitochondrial DNA complete Control Region in the lizard Lacerta dugesii (Lacertidae, Sauria).
Journal of Molecular Evolution, xx: xxx-xxx.

António Brehm¹*, D. James Harris², Cíntia Alves³, José Jesus¹, Fabienne Thomarat⁴ and Luís Vicente⁵

1 Center of Macaronesian Studies, University of Madeira, Campus da Penteada, 9000 Funchal, Portugal
2 Centro de Estudos de Ciência Animal (CECA), ICETA-U.P., Campus Agrario de Vairão, 4485-661 Vila do Conde, Portugal
3 IPATIMUP, University of Porto, Rua Dr. Roberto Frias, 4000 Porto, Portugal
4 Laboratoire de Biométrie et Biologie Evolutive, UMR CNRS 5558, Université Lyon I 69622 Villeurbanne, France
5 Centre of Environmental Biology, Department of Zoology and Anthropology, Science Faculty of Lisbon, University of Lisbon, C2 Campo Grande, 1700 Lisbon, Portugal

Name and address of corresponding author
António Brehm, Centre of Macaronesian Studies, University of Madeira, Campus of Penteada, 9000 Funchal, Portugal, Tel 351291705383, Fax 351291705399, email: brehm@uma.pt

Keywords: Lacerta dugesii, Control Region, D-Loop, Structure, Madeira, tRNA^{Thr}, tRNA^{Pro}, tRNA^{Phe}
ABSTRACT

We sequenced the complete control region and adjacent tRNAs, partial 12S rRNA and Cytochrome b (over 3100 bp) from eight individuals of Madeiran Wall lizards *Lacerta dugesii* from four distinct island populations. The tRNAs exhibit a high degree of intra specific polymorphisms compared to other vertebrates. All control region sequences include a minisatellite that varies in length between populations but is apparently fixed within them. Variation in minisatellite length appears between populations separated by apparently very short evolutionary time spans. Many motifs identified in the CR of other vertebrates are not highly conserved, although conserved blocks are identifiable between the few published reptile CR sequences. Overall there are extensive differences in the internal organization of the reptile CR compared to the more widely studied mammals and birds. Variability in the CR is lower than in Cytochrome b, but higher than in 12S rRNA. Phylogenetic analysis of these sequences produces a well-resolved estimate of relationships between populations.

The complete eight sequences used in this study are available from GeneBank accession numbers AY147872-AY147879.
COMPLEMENTARY MATERIAL

The following material was included in early versions of the manuscript but was cut off in later revisions. Nevertheless, it is intended to help those wishing to better understand the structure and evolution of *Lacerta dugesii*’s mitochondrial DNA.

Materials & Methodology

The entire Control Region including 3 tRNAs and partial Cytb and 12SrRNA gene sequences were amplified in one single step using two primers:

(Forward) cBL (5’-CTGCATCTACCTCCACATCGGACG-3’) and

(Reverse) 12L (5’-AAGTTTTT CACTTGTAGTTCTCTG GCGG-3’)

We used *TaqPlus Long™* from Stratagene, following the manufacturers instructions. PCR cycle conditions were 30 sec at 94°C, 30 sec at 60°C and 2 min at 70°C, for 35 cycles. Following the sequencing of this fragment, nine primers were successively designed from conserved regions among the 8 sequences, to amplify consecutive segments, until sequences from both extremities overlapped (primer-walking strategy). Primer sequences and their relative locations are as follows:
Amplified fragments were always sequenced three times and in both directions, on a
377 Applied Biosystem DNA Sequencing Apparatus, with the same set of primers used for
amplification. One 10-mer primer (cBLint5-5’TTGCGCTAC3’) was specifically designed
to work with primer 12Lint5. These two primers were used to amplify the region containing
a repeat motif. We amplified this fragment in ten individuals from each site, to check for
variation of number of repeats within populations.
Results

The tRNAs

Here we present additional material regarding the tRNA sequences found in *L. dugesii* as well as in comparisons with other animals. Particularly in relation to tRNA$^{\text{Pro}}$ it is true that not all forms present the four stems usually present in tRNAs, some having shifted the TΨC stem for a bigger replacement loop. Most of these tRNA forms present one or two variable loops. Four different sequences of the tRNA$^{\text{Phe}}$ were found in the 8 individuals analysed, all of which are capable of folding into cloverleaf structures (see figure 3 of Brehm et al. 2003).

Below are aligned light-strand DNA sequences of a) tRNA$^{\text{Thr}}$, b) tRNA$^{\text{Pro}}$ and c) tRNA$^{\text{Phe}}$ genes of the different forms occurring in *L. dugesii* as well as other reptiles used for comparisons. Taxa shown are *Eumeces* (Kumazawa and Nishida 1999), *Iguana* (Janke et al. 2001), *Ovophis* and *Dinodon* (Kumazawa et al. 1998), *Cnemidophorus* (Stanton et al. 1994). The anticodons are underlined.

a) tRNA$^{\text{Thr}}$

Taxon	Sequence
Dugesii 1	GTCCCATGCTAGCTTAGACCACTAAAGCAGCGGTCCTGCTGAAACCGAGACCAGACCTCATC-CT---TCCTGAGACA
Dugesii 2	..G.........................
Eumeces	..A--T..AC......TT........
Iguana	..C..T.........A--..T........TT.............A....T.-.GACTTAAA.CGCC...A..G..
Chelonia	A.T.T........A--..-C.......TT.............A....ATT..A.ACT..AA.C-T...AGA..T.
Ovophis	.CT.T.A.......AA.T.TA........GTT.T........A....T.-.G-C-.C-.C--.--AGAG.
Dinodon	.C.T........A--..G.......TT.T.............A....AT--.C..-A.C-------AGAG.
b) tRNAPro

Dugesii 1	TCAAAAGAAGATCTACAGGCTCTGGCAACCCCCAATGCGCTTTTAAT----TTAAACTATCTTTTG
Dugesii 2	..TG..............................
Dugesii 3	..T.A..............................
Dugesii 4	..A..............................
Dugesii 5	..C.A..............................
Dugesii 6	..C.A..............................
Chelonia	..GA.TA.A..........................
Cnemidophorus	..GG.CC.C..........................
Ovophis	..GAG.G.C..........................
Eumeces	..-.GAT...T...TAGTCTCTCTAGAATGACAGCTGCTCTGCTTCCTTTGTTAAGGGGAGATGAGGAACAGAAAAACCTCCACAGACA
Iguana	..-.G.-AGAT...T...AATTTAAAAGCAGGGCTCTGGCAGAGATGAGGAACAGAAAAACCTCCACAGACA

The Control Region (CR)

Lacerta dugesii CR is depicted schematically in Figure 4 of Brehm et al. (2003), but here we include the CR – Complete Sequence (D1 of one individual analysed (D1, Deserta Isl.) so it should make much more easier to follow the scheme:

c) tRNAPhe

Dugesii 1	GTCATTGCTTTATTATTTTTTTAAAGCAGGGCTCTGGCAGAGATGAGGAACAGAAAAACCTCCACAGACA
Dugesii 2	..-.G..............................
Dugesii 3	..-.G..............................
Dugesii 4	..-.G..............................
Dinodon	..-.G..............................
Eumeces	..-.G..............................
Iguana	..-.G..............................
Chelonia	..-.G..............................

The Control Region (CR) is depicted schematically in Figure 4 of Brehm et al. (2003), but here we include the CR – Complete Sequence (D1 of one individual analysed (D1, Deserta Isl.) so it should make much more easier to follow the scheme:
Reference sequence of the Control Region of *Lacerta dugesii* D1 individual (CR – Complete sequence). The 8 sequences studied vary in number of 37-38 repeats, as well as in polymorphic variable positions. The complete 8 sequences are available from GeneBank. The reference sequence shown presents all putative blocks mentioned in the text or shown in detailed analysis in the figures. Base nomenclature follows the international code in those cases more than one base was found in the same position (R=A or G; Y=C or T; W=A or T; S=C or G; K=G or T; M=A or C; B=C, G or T; D=A, G or T; H= A, C or T; and V= A, C or G).

Small letters indicate that some individuals present a gap in that position.
The Minisatellite

As reported in Brehm et al. (2003) the number of repeats from the minisatellite are constant from each collection site. Some repeats show length heteroplasmy and it is interesting to note that the first 5 bases of each repeat are identical to the last 5 bases of the tRNA-Pro (5′TTTTG3′). Moreover each repeat presents two perfect 7 bp mirror sequences separated by 2 cytosines (5′GCCGCTACCTAGCGGC3′) which are responsible for strait and consecutive stem and loop structure formed in this region (ΔG>-71Kcal.).

We have also identified three (CC)₃ repeats (in the L strand), one localized in the middle of the CR and the other two as part of the CSB-2 region, notorious because of a high content of A/Ts (Figure 4 from Brehm et al. 2003).

Conserved structures

Lacerta dugesii CR reveals interesting features when compared with sequences from other taxa retrieved from GenBank. The figure bellow summarizes these findings by comparing L. dugesii sequence with other similar sequences. Sequence a (see Figure CR-Complete Sequence) for example, a 43 bp long sequence following the tandem repeats of the 5′ left region of the CR, is strongly conserved across reptiles, amphibians, mammals and even plants. This sequence includes a TATA box followed by the already mentioned highly conserved sequence ACATTAA (a). Included in a rather variable region in L. dugesii CR are two 28 bp sequences. The first was found conserved in a fish (b in Figure CR-Complete Sequence) but the second is found extremely conserved across a broad array of organisms (c). In humans it is often found within repeat regions of the L1 family, either in the X chromosome or in tandem repeats in the autossomes. Although sometimes slightly modified, the same sequence is found in mammals (Mus), insects (Drosophila) and plants (Arabidopsis). It is interesting to note, however, that the known TATAA box precedes both
sequences b and c. The 43 bp fragment depicted in (d in CR-Complete Sequence) is another highly conserved region in the CR, with almost perfect homologies with the birds *Pionus chalcopterus* and *Amazona amazonica*. This region includes the conserved “F box” of Randi and Lucchini (1998) for *Alectoris*, but in a much bigger extension. However, no such structure was found in *Iguana*. Fragment e of *L. dugesii* (see Figure CR-Complete Sequence) includes the duplicated highly conserved regions R1. In *Iguana iguana* this fragment is also present (e) but with no repeats. Fragment f (also from Figure CR-Complete Sequence) includes the CSB-1. It is found in the turtle *Kinosternon hirtipes* CR in a much bigger extension. Finally, fragment g (figure CR-Complete Sequence), which includes CSB-2, is almost intact in *L. dugesii*, *I. iguana* and the fish *Sardinops melanostictus*.

The aligned sequences of several conserved regions in the Control Region of *Lacerta dugesii* and other organisms were retrieved from Genebank and have the following accession numbers: reptile *Iguana iguana* (AJ278511); amphibian *Rana porosa* (AB036404); fish *Sebastes paucispinis* (AF031499), *Sardinops melanostictus*...
(NC002616.1); mammals *Homo sapiens* (AC002485, AC006473), *Apodemus agrarius* (AAU21161), *Microtus mexicanus* (AF251260), *Acomys percivali* (APE012039), *Setonix brachyrus* (AF380320), *Neotoma lepida* (AF091260); birds *Pionus chalcopterus* (AF338318), *Amazona amazonica* (AF338280). The relative positions occupied by fragments a-e are pointed in the CR scheme of Figure 4 (Brehm et al. 2003) and in the above scheme of the control region.

The search for secondary structures also uncovered numerous stable inverted perfect or imperfect repeats that constantly turn into stable stem-loop structures when the molecule is single stranded. These repeats are mainly grouped in the CR extremities, following the minisatellite and near the L strand 3’ region. Inverted repeats may be tandemly or closely arranged forming hairpin structures by use of complementarity between the underlined parts, such as 5’ATGTAATAGTACAT3’, 5’ATAAAAAA TTGGTTAT3’, 5’GCTTTGTCAAAACAAACAAAGC3’, or separated by up to one hundred bases like 5’TAAAATTAATACATAAAA3’... 5’TGGTTATTAGTTA ATGAA3’ (see general CR scheme above). Other repeats, even imperfect ones, systematically form stem-loop structures using MFOLD. It is worthwhile to note that all conserved segments depicted in fragments a-c form hairpin-like structures meaning that these regions have mirror like sequences (e.g. inverted tandem repeats) but with the possible exception of CSB-1, none of the CSBs form stable secondary structures. Finally, two TCCC motifs exist in our reptile CR, which have been linked to termination of H strands in mammalian and bird D-Loops (Douzery and Randi 1997; Randi and Lucchini 1998) but none of them are linked to putative cloverleaf secondary structures.
CBS (Conserved Block Sequences)

Below we show the best alignment of sequences including the Conserved Sequence Blocks 1-3 (CSB1-3) in a lizard (L. dugesii, this work), a skink (Eumeces egregious, Kumazawa and Nishida 1999), an iguanidae (Iguana iguana, Janke et al. 2001), a turtle (Kinosternon hirtipes GenBank AF316136), a snake (Dinodon semicarinatus, Kumazawa et al. 1998), a gull and a chicken (Crochet and Desmarais 2000), two partridges (Alectoris barbara and A. graeca, Randi and Lucchini 1998) and six mammals (Rattus and Mus, Brown et al. 1986; Glis glis, Sbisà et al. 1997; Canis familiaris, Rothuizen, et al. direct submission to GenBank X97343; Canis lupus, Vila et al. 1997; Equus caballus, Ishida et al. 1994). In the alignment we did not always use the CSB boundaries proposed by Brown et al. (1986) and instead used the complete sequences that gave a better score on bp matching when compared with reptile sequences. An asterisk denotes that among several options for CSB-1 element, that was the best match. Bases common to all vertebrates are underlined. We present here an alternative sequence for Alectoris graeca from the one proposed by Randi and Lucchini (1998). We could not find any such pattern for Ursus arctus.

CBS-1

5’ TTGGGTGCTGATTCTTTGCTGAAGGCTTTTCATTTTGGA---TGCTATGACT-CAGCT 3’ E. caballus*
5’ TTGGGGGAACCTGGACTTATGATT---CAGCT 3’ U. arctos*
5’ TTGGGGAACCTGGACTTATGATT---CAGCT 3’ C. lupus
5’ TTTTTA---GGGGGGGGAATCTGCTACT-CATCT 3’ C. familiaris
5’ GTTAGACTATTTAAACCATGCTTGTTTGGACATAA 3’ G. glis
5’ GGGTGA---TTGCTGTACTTTTGCTGAAGGCTTTTCATTTTGGA---TGCTATGACT-CAGCT 3’ H. sapiens*
5’ CAAATACATTAAGATAA-TGCTTATTTTAGCTTTTAA-TGGTGG-CATGG 3’ R. norvegicus
5’ TATAT-AGTGAATGCTGATGCTGACATAT 3’ A. barbara
5’ TTTTTT-AGTGTAGTGCTTAAATGGACATG 3’ gulls
5’ TATTTT-AGTGAATGCTGATGCTGACATAA 3’ chicken
5’ ATGG-TATATTT-AGTGAATGCTGATGCTGACATAT 3’ C. careta
5’ GATTTCTTTTAA-TGCTGTTGGGGGCAATAA 3’ E. egregious

CTATACGGGATAC-ATT-C-TTTCA-TGCTGTATTTAGACATAC 3’ D. semicarinatus
5’ CTATACGGGATAC-ATT-C-TTTCA-TGCTGTATTTAGACATAC 3’ I. iguana
5’ CTATACGGGATAC-ATT-C-TTTCA-TGCTGTATTTAGACATAC 3’ K. hirtipes
5’ CTATACGGGATAC-ATT-C-TTTCA-TGCTGTATTTAGACATAC 3’ L. dugesii
CBS-2

5' CAAACCCCC-TACCCCCC 3' L.dugesii, E.egregius, I.iguana, Sardinops
5' TAAACCCCC--GCCCCGA 3' E.egregious
5' CAAACCCCCCTACCCCCC 3' E.caballus
5' CAAACCCCCC-ACCCCT 3' R.norvegicus
5' CAAACCCCCC--ACCCCT 3' M.domesticus
5' TNAAMCCCCC--ACCCCA 3' C.careta

CBS-3

5' TCGC-AAACCCCT----AAAACGA 3' L.dugesii
5' CCGCCAAACCC----AAAAACAA 3' E.egregious, C.familiaris
5' TTGTCAAACCC----AAAAACAA 3' I.iguana
5' TGCCAAACCC----AAAAACAA 3' R.norvegicus
5' TCCCAAACCC----AAAAACAA 3' M.domesticus
5' TTGCCAAACCC----AAAAACAA 3' E.caballus
5' CACAAAAAACC----AAAAAC 3' A.graeca
5' AAG--AAACCCCTAAAAACA 3' gulls
Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman D (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25:3389-3402.

Attardi G (1985) Animal mitochondrial DNA: an extreme example of genetic economy. Int. Rev. Cytol. 93:93-148.

Baker AJ, Marshall HD (1997) Mitochondrial control region sequences as tools for understanding evolution. Pp 51-82 in D.P.MINDELL, ed. Avian molecular evolution and systematics. Academic Press, San Diego.

Bensasson D, Zhang DX, Hartl D, Hewitt GM (2001) Mitochondrial pseudogenes: evolution’s misplaced witnesses. TEE 16 (http://tree.trends.com169-5347/01/$).

Brown G, Gadaleta G, Pepe G, Saccone C, Sbisà E (1986) Structural conservation and variation in the D-loop-containing region of vertebrate mitochondrial DNA. J. Mol. Biol. 192:503-511.

Brown WM, George M Jr., Wilson AC (1979) Rapid evolution of animal mitochondrial DNA. Proc. Natl. Acad. Sci. USA. 76:1967-1971.

Carranza S, Arnold EN, Mateo JA, Lopez-Jurado LF (2000) Long-distance colonization and radiation in gekkonid lizards, *Tarentola* (Reptilia: Gekkonidae), revealed by mitochondrial DNA sequences. Proc. R. Soc. Lond. B. 267 : 637-649.

Clayton DA (1982) Replication of animal mitochondrial DNA. Cell. 28:693-705.

Crochet PA, Desmarais E (2000) Slow rate of evolution in the mitochondrial control region of gulls (Aves : Laridae). Mol. Biol. Evol. 17:1797-1806.

Doda DA, Wright CT, Clayton DA (1981) Elongation of displacement-loop strands in human and mouse mitochondrial DNA is arrested near specific template sequences. Proc. Natl. Acad. Sci. USA 78:6116-6120.

Douzery E, Randi E (1997) The mitochondrial control region of Cervidae: evolutionary patterns and phylogenetic contents. Mol. Biol. Evol. 14:1154-1166.

Felsenstein J (1981) Evolutionary trees from DNA sequences: A maximum likelihood approach. J. Mol. Evol. 17: 368-376.

Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783-791.

Fumagalli L, Taberlet P, Favre L, Hauser J (1996) Origin and evolution of homologous repeated sequences in the mitochondrial DNA control region of shrews. Mol. Biol. Evol. 13: 31-46.

Galtier N, Gouy M, Gautier C (1996) SEAVIEW and PHYLO_WIN: two graphic tools for sequence alignment and molecular phylogeny. Comput Appl Biosci. 12: 543-548.

Geldmacher J, Bogaard P, Hoernle K Schnincke HU (2000) The 40Ar/39Ar age dating of the Madeira Archipelago and hotspot track (eastern North Atlantic). Geochemistry, Geophysics, Geosystems, 1 (Fev) 1999GC000018.

Harris DJ (2002). Reassessment of comparative genetic distance in reptiles from the mitochondrial cytochrome *b* gene. Herpetological J. (in press).

Harris DJ, Arnold EN, Thomas RH (1998) Relationships of the lacertid lizards (Reptilia: Lacertidae) estimated from mitochondrial DNA sequences and morphology. Proc. R. Soc. London B. 265: 1939-1948.
Harris DJ, Crandall KA (2000) Intragenomic variation within ITS1 and ITS2 of freshwater crayfishes (Decapoda: Cambaridae): implications for phylogenetic and microsatellite studies. Mol. Biol. Evol. 17: 284-291.

Hoelzel AR, Lopez JV, Dover GA, O'Brien SJ (1994) Rapid evolution of a heteroplasmic repetitive sequence in the mitochondrial DNA control region of carnivores. J.Mol.Evol. 39:191-199.

Hulsenbeck JP, Crandall KA (1997) Phylogenetic estimation and hypothesis testing using maximum likelihood. Ann. Rev. Ecol. Syst. 28: 437-466.

Ishida N, Hasegawa T, Takeda K, Sakagami M, Onishi A, Inumaru S, Komatsu M, Mukoyama H (1994) Polymorphic sequence in the D-Loop region of equine mitochondrial DNA. Anim. Genet. 25: 215-221.

Janke A, Erpenbeck D, Nilsson M, Arnason U (2001) The mitochondrial genomes of the iguana (Iguana iguana) and the caiman (Caiman crocodylus): implications for amniote phylogeny. Proc. R. Soc. Lond., B, Biol. Sci. 268: 623-631.

Kumazawa Y, Nishida M (1993) Sequence evolution of mitochondrial tRNA genes and deep-branch animal phylogenetics. J. Mol. Evol. 37: 380-398.

Kumazawa Y, Nishida M (1995) Variations in mitochondrial tRNA gene organization of reptiles as phylogenetic markers. Mol. Biol. Evol. 12: 759-772.

Kumazawa Y, Nishida M (1999) Complete mitochondrial DNA sequences of the green turtle and blue-tailed skink: statistical evidence for archosauarian affinity of turtles. Mol. Biol. Evol. 16: 784-792.

Kumazawa Y, Ota H, Nishida M, Ozawa T (1998) The complete nucleotide sequence of a snake (Dinodon semicarinatus) mitochondrial genome with two identical control regions. Genetics, 150: 313-329.

Lunt DH, Whipple LE, Hyman BC (1998) Mitochondrial DNA variable number of tandem repeats (VNTRs): utility and problems in molecular ecology. Mol. Ecol. 7: 1441-1455.

Lyrholm T, Leimer O, Gyllensten U (1996) Low diversity and biased substitution patterns in the mitochondrial DNA control region of sperm whales: implications for the estimates of time since common ancestry. Mol. Biol. Evol. 13:1318-1326.

Macey JR, Larson A, Ananjeva NB, Fang Z, Papenfuss T (1997a) Two novel gene orders and the role of light-strand replication in rearrangement of the vertebrate mitochondrial genome. Mol. Biol. Evol. 14:91-104.

Macey JR, Larson A, Ananjeva NB, Papenfuss T (1997b) Replication slippage may cause parallel evolution in the secondary structures of mitochondrial transfer RNAs. Mol. Biol. Evol. 14:30-39.

Martens PA, Clayton DA (1979) Mechanism of mitochondrial DNA replication in mouse L-cells: localization and sequence of the light-strand origin of replication. J. Mol.Biol. 135:327-351.

Matsushima T, Masuda R, Mano T, Yoshida MC (1999) Microevolution of the mitochondrial DNA control region in the Japanese brown bear (Ursus arctos) population. Mol. Biol. Evol. 16:676-684.

Matzura O, Wennborg A (1996) RNAdraw: an integrated program for RNA secondary structure calculation and analysis under 32-bit Microsoft Windows. Comput Appl Biosci. 12 :247-249.

Moritz C, Brown WM (1986) Tandem duplications of D-loop and ribosomal RNA sequences in lizard mitochondrial DNA. Science 233:1425-1427.

Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics. 14: 817-818.
Quinn TW, Mindell DP (1996) Mitochondrial gene order adjacent to the control region in crocodile, turtle, and tuatara. Mol Phylogenet Evol. 5: 344-351.
Randi E, Lucchini V (1998) Organization and evolution of the mitochondrial DENA control region in the avian genus *Alectoris*. J.Mol.Evol. 47:449-462.
Saccone C, Attimonelli MA, Sbisà E (1987) Structural elements highly preserved during the evolution of the D-Loop containing region in vertebrate mitochondrial DNA. J. Mol. Evol. 26:205-211.
Savolainen P, Arvestad L, Lundeberg J (2000) mtDNA tandem repeats in domestic dogs and wolves: mutation mechanism studied by analysis of the sequence of imperfect repeats. Mol.Biol.Evol. 17:474-488.
Sbisà E, Tanzariello F, Reyes A, Pesole G, Saccone C (1997) Mammalian mitochondrial D-loop region structural analysis: identification of new conserved sequences and their functional and evolutionary implications. Gene 205: 125-140.
Sites Jr. J, Davis S, Guerra T, Iverson J, Snell H (1996) Character congruence and phylogenetic signal in molecular and morphological data sets: a case study in the living iguanas (Squamata, Iguanidae). Mol. Biol. Evol. 13:1087-1105.
Shadel GS, Clayton DA (1997) Mitochondrial DNA maintenance in vertebrates. Annu. Rev. Biochem. 66:409-435.
Stanton DJ, Daehler LL, Moritz CC, Brown WM (1994) Sequences with the potential to form stem-and-loop structures are associated with coding-region duplications in animal mitochondrial DNA. Genetics 137: 233-241.
Swofford DL (2001) PAUP*: Phylogenetic Analysis Using Parsimony (and other methods) 4.0.b3a. Sinauer Associates, Sunderland, Massachusetts, USA.
Woischnik M, Moraes CT (2002) Pattern of Organization of human mitochondrial pseudogenes in the nuclear genome. Genome Research 12: 885-893.
Walberg MW, Clayton DA (1981) Sequence and properties of the human KB cell and mouse L cell D-loop regions of mitochondrial DNA. Nucleic Acids Res. 9:5411-5421.
Wilkinson GS, Mayer F, Kerth G, Petri B (1997) Evolution of repeated sequence arrays in the D-loop region of bat mitochondrial DNA. Genetics 146:1035-1048.
Vila C, Savolainen P, Maldonado JE, Amorim I, Rice JE, Honeycutt RL, Krandall KA, Lundeberg J, Wayne RK (1997) Multiple and ancient origins of domestic dog. Science 276: 1687-1689.
Zardoya R, Meyer A (1998) Complete mitochondrial genome suggests diapsid affinities of turtles. Proc. Nat. Acad. Sci. USA, 95:14226-14231.
Zuker M, Mathews DH, Turner DH (1999) Algorithms and Thermodynamics for RNA Secondary Structure Prediction: A Practical Guide In *RNA Biochemistry and Biotechnology*, 11-43, J. Barciszewski & B.F.C. Clark, eds., NATO ASI Series, Kluwer Academic Publishers.