Growth references for weight, height, and body mass index for Ecuadorian children and adolescents aged 5-19 years

Wilmer Tarupi, MSc.(a*), Yvan Lepage, M.D.(b), María L. Felix, M.D.(a), Claude Monnier, M.D.(b), Roland Hauspie, M.D.(c), Mathiela Roelants, M.D.(d), Ricardo Hidalgo, M.D.(e) and Martine Vercauteren, M.D.(b)

INTRODUCTION

Physical growth is one of the most useful instruments in the nutritional and health surveillance of children at the primary level of care.1 Although the growth pattern for children younger than 5 years, resulting from a multicenter study, provides a single international reference corresponding to the best description of physiological growth,2 this is not the case of growth references for children and adolescents aged 5-19 years3,4 based on the United States population. These curves are far from depicting the growth characteristics of childhood and adolescence, a period of life during which genetic, socioeconomic, and geographical influences are fully expressed. In this regard, several studies have demonstrated how growth and maturation patterns at this age vary greatly among and within populations.5-11

Growth assessment implies comparing the measures reached by an individual based on a standard. It has been argued that, if available, national growth standards may be more adequate to assess growth deviations and abnormal growth.10,12

Unlike other countries, like Argentina,13 Venezuela,14 Colombia,15 the United Kingdom,16 Japan,17 and Belgium,18 to date, Ecuador lacked national growth references for children and adolescents aged 5-19 years; therefore, at the time, the United States international growth standards were recommended for their use in this country.3,4 Since there is no global growth reference for the 5-19 age group, the availability of national references is considered...
critical. In this regard, the objective of this study was to develop national references for weight, height, and body mass index (BMI) for Ecuadorian children and adolescents aged 5-19 years.

MATERIALS AND METHODS

Sample
This was a descriptive, cross-sectional study done in schoolchildren and adolescents aged 5 to 19 years. Data were collected across three periods: a) 1999,19 b) 2007-2009,20 and c) 2011-2012,11 in the three continental regions of Ecuador, specifically, the cities of Quito and Tulcán (Andean region), Santa Elena (coastal region), and Tena (Amazon region). This way, the different Ecuadorian and regional ethnic groups (with their ecological differences) would be represented. Galápagos is the fourth region of Ecuador, but its population is very small. Both public and private schools in each city were randomly selected based on the school registry provided by the provincial education boards. Participants were recruited at the schools using a random sample stratified by age, sex, and place of residence (Table 1).

Weight and standing height were measured inside the classroom using the anthropometric technique proposed by the World Health Organization (WHO).21,22 Height was measured to the nearest 1.0 mm using a portable stadiometer (GPM Anthropological Instruments, Switzerland). Weight was measured at the nearest 0.1 kg using a manual scale (Health-o-Meter® HLT Scale), which was periodically calibrated. During the first two periods, measurements were obtained by the research team members and authors of this article, who were experienced in anthropometry. During the third period, there was room for the creation of a learning-teaching space with students from the school of medicine of Universidad Tecnológica Equinoccial de Quito (UTE), who received previous training on how to make the measurements. The intra- and inter-observer technical error of measurement (TEM) was 0.54% and 1.7%, respectively. Measurements were obtained only once. All participants received the relevant feedback about their body measurements.

The date of birth was available for most participants in the official school records. Age and sociodemographic data were provided by parents and adolescents through a questionnaire. The central statistical analysis was done at the UTE, where data were digitalized and subjected to a comprehensive quality analysis. Suspicious values (due to rare measurement or typographical errors) were eliminated or corrected (as long as possible). The first step in data processing was to create dispersion plots and charts to exclude atypical values. Any observation above +3 standard deviations (SDs) and below -3 SDs of the sample median value was excluded before developing the growth references. As a result, 26 observations for males (0.9%) and 49 observations for females (1.5%) were excluded. Due to logistic limitations, the anthropometric data of these participants were not confirmed.

Children who were not of Ecuadorian nationality (18 observations), who had chronic conditions (8 observations) or who were receiving medications that may affect growth (6 observations) were excluded from the study.

Data analysis
The Least-Mean-Square algorithm (LMS) method23 for cross-sectional data was used to estimate weight, height, and BMI percentiles. This allowed to adjust the asymmetry using a Box-Cox transformation (L), which normalized data distribution at each age, considering the median (M) and the coefficient of variation of distribution (S). Data adjustment allowed for L, M, and S values to change smoothly at the x-axis (in this case, age), so that they could be representative of the population with smoothed curves plotted based on the y-axis (weight, height, and BMI). At each age, weight, height, and BMI distribution was summarized into three coefficients: L, M, and S, where L accounted for the symmetry; M, for the median; and S, for the coefficient of variation for each age and sex. These parameters were estimated based on the penalized maximum likelihood method.24-26 These curves were then estimated using an iterative

Place	Boys	Girls	Total
Quito, 1999	459	629	1088
Quito, 2007	730	520	1250
Quito, 2009	344	381	695
Quito, 2011	256	448	704
Santa Elena, 2011	537	535	1072
Tulcán, 2012	233	209	442
Tena, 2012	229	454	683
Total	**2788**	**3146**	**5934**
algorithm that included penalized cubic splines, where the smoothing level was determined by assigning the number of equivalent degrees of freedom (edf).

The adequate number of edf was selected as per Pan and Cole’s description, based on deviation, Q-tests, and the worm plot. LMS curves smoothing and the acceleration and deceleration points of the mean curve were verified by inspecting their derivatives. The final models were validated by comparing the expected and observed proportions of observations in a set of percentile bands by age class, with a chi-square goodness-of-fit test (grid test). No significant deviations in expected frequencies were observed (p > 0.1 for all models). All curves were adjusted and validated with the package of functions in R.

The T test was done to compare height, weight, and BMI in the different age groups of the three samples. Such detailed, comparative statistical analysis of the centiles in the three samples showed that, both graphically and statistically, there were no significant differences in the growth status of children in these three data groups: 1. Quito, 1999, 2. Quito, 2007, and Quito, 2009, and 3. Quito, 2011, Santa Elena, 2011, Tulcán, 2012, and Tena, 2012 (p ≥ 0.05). Therefore, data from all sub-samples were combined to obtain an overall, larger sample that would allow to estimate the percentile lines more accurately.

Ethical considerations
The study was carried out in accordance with the guidelines established by the Declaration of Helsinki, and a written informed consent was obtained from all participating children’s and adolescents’ parents or legal guardians. The protocol was approved by the Ethics Committee of both associated institutions: the University Development Commission (Commission Universitaire pour le Développement, CUD) from Belgium and the UTE Review Board from Ecuador.

RESULTS
The study sample was made up of 5934 participants (3146 girls and 2788 boys) (Table 2). Boys were heavier and taller than girls. At 18 years old, the differences between sexes averaged 8 kg and 12.5 cm.

Table 2. Distribution of participants by age

Age	Boys	Girls	Total
5	69	67	130
6	163	187	350
7	149	183	332
8	156	279	435
9	164	209	373
10	213	268	481
11	224	239	463
12	342	323	665
13	306	281	587
14	286	286	572
15	251	253	504
16	188	230	418
17	182	213	395
18	63	88	151
19	32	40	66
Total	2788	3146	5934

Table 3. Distribution of participants by age

Age	Boys	Girls	Total
5	69	67	130
6	163	187	350
7	149	183	332
8	156	279	435
9	164	209	373
10	213	268	481
11	224	239	463
12	342	323	665
13	306	281	587
14	286	286	572
15	251	253	504
16	188	230	418
17	182	213	395
18	63	88	151
19	32	40	66
Total	2788	3146	5934
boys and LMS (edf(λ) = 3, edf(μ) = 5, edf(σ) = 3) for girls. Compared to weight, BMI showed a more positive asymmetry but a smaller coefficient of variation.

The information included in the tables was represented in curves using percentiles (Annexes 1, 2, 3, and 4). In all cases, values increased with age. The design of the reference curves was the same as that adopted in Norway, Luxembourg, and Algeria.

The reference curves for girls also show the distribution in age centiles at the time of menarche in the Ecuadorian population, based on the methodology developed by Lepage. This tool helps to assess the normality of the maturation rate in girls.

DISCUSSION

In this article, we present cross-sectional growth references for height, weight, and BMI for the Ecuadorian population based on a representative sample of children and adolescents aged 5-19 years. The sample was representative because it provided an adequate social and

Table 3. Height (cm) of children aged 5-19 years, Ecuador

AGE in years	L	M (p50)	S	p3	p10	p25	p75	p90	p97
BOYS									
5	1	105.8	0.047	96.4	99.4	102.4	109.2	112.3	115.3
6	1	111.6	0.047	101.7	104.8	108.0	115.1	118.3	121.5
7	1	117.2	0.047	106.8	110.1	113.5	121.0	124.4	127.7
8	1	122.8	0.048	111.7	115.2	118.8	126.7	130.3	133.9
9	1	127.8	0.049	115.9	119.7	123.5	132.0	135.9	139.7
10	1	132.6	0.050	119.9	123.9	128.0	137.1	141.2	145.2
11	1	137.5	0.051	124.2	128.5	132.8	142.3	146.6	150.8
12	1	142.7	0.052	128.6	133.1	137.7	147.8	152.4	156.9
13	1	148.3	0.054	133.2	138.0	142.9	153.7	158.6	163.4
14	1	154.9	0.052	139.5	144.4	149.3	160.4	165.4	170.3
15	1	160.5	0.048	145.9	150.5	155.2	165.7	170.4	175.0
16	1	163.8	0.043	150.3	154.6	159.0	168.6	173.0	177.3
17	1	165.4	0.041	152.7	156.7	160.8	170.0	174.1	178.2
18	1	165.9	0.040	153.4	157.4	161.4	170.4	174.5	178.5
19	1	166.0	0.039	153.6	157.5	161.6	170.5	174.5	178.5

GIRLS									
5	1	104.2	0.054	93.6	97.0	100.4	108.1	111.5	114.9
6	1	110.4	0.050	99.9	103.9	106.7	114.2	117.6	120.9
7	1	115.7	0.048	105.2	108.5	111.9	119.5	122.9	126.2
8	1	120.9	0.047	110.1	113.5	117.0	124.8	128.3	131.7
9	1	126.3	0.047	114.9	118.5	122.2	130.4	134.0	137.7
10	1	132.2	0.048	120.1	123.9	127.9	136.5	140.4	144.3
11	1	138.9	0.049	126.1	130.1	134.3	143.4	147.6	151.7
12	1	144.5	0.048	131.3	135.5	139.8	149.2	153.4	157.6
13	1	148.8	0.045	136.1	140.1	144.2	153.4	157.5	161.5
14	1	151.4	0.042	139.2	143.1	147.0	155.8	159.7	163.6
15	1	152.6	0.041	140.7	144.5	148.3	156.8	160.6	164.4
16	1	153.0	0.040	141.2	145.0	148.8	157.2	161.0	164.7
17	1	153.1	0.040	141.4	145.1	148.9	157.3	161.0	164.8
18	1	153.2	0.040	141.5	145.2	149.0	157.4	161.1	164.9
19	1	153.4	0.040	141.8	145.5	149.3	157.6	161.3	165.0

cm: centimeters; L: Box-Cox power transformation; S: generalized coefficient of variation; M: 50th percentile; P3: 3rd percentile; P10: 10th percentile; P25: 25th percentile; P75: 75th percentile; P90: 90th percentile; P97: 97th percentile.
geographical representation by means of a strict sampling design.

The data used to develop these curves were collected in different periods, and this may be considered a limitation of the study. However, a comparative statistical analysis of data from the three periods showed that there was no significant difference in the growth pattern of the children in these groups. In addition, the scientific literature provides a history of studies that combined population samples, as the one published by Tanner.34 For this reason, we decided to combine the data from the three periods mentioned above to obtain a larger sample that would allow to estimate percentile lines in a more accurate manner. Actually, most likely, the Ecuadorian population does not show a detectable secular trend in the period between the three surveys.

To assess the normality of a child’s height/weight, it is necessary to have reference data for percentiles P3 and P97 estimated as accurately as possible. Precisely, such extreme percentiles are the ones used to refer a child for a potential
table 4. weight (kg) of children aged 5-19 years, ecuador

AGE in years	L	M (p50)	S	P3	P10	P25	P75	P90	P97
BOYS									
5	-1.09	17.6	0.179	13.2	14.3	15.7	20	22.9	26.8
6	-1.01	20.1	0.178	15.1	16.4	18	22.9	26.1	30.3
7	-0.93	22.8	0.178	17	18.5	20.3	25.9	29.5	34.1
8	-0.84	25.5	0.182	18.9	20.6	22.7	29	33.1	38.2
9	-0.74	28.3	0.190	20.6	22.6	25.1	32.4	37.1	42.9
10	-0.62	31.5	0.202	22.4	24.8	27.6	36.3	41.8	48.7
11	-0.49	35.1	0.215	24.3	27.1	30.5	40.8	47.2	55.2
12	-0.37	38.9	0.222	26.4	29.6	33.6	45.4	52.5	61.2
13	-0.29	43	0.218	29.2	32.9	37.3	50	57.6	66.6
14	-0.26	47.9	0.202	33.4	37.3	41.9	55.1	62.7	71.5
15	-0.27	52.6	0.183	37.8	41.9	46.6	59.7	67.1	75.6
16	-0.3	56.1	0.167	41.5	45.6	50.2	62.9	70	78
17	-0.32	58.4	0.152	44.4	48.3	52.8	64.8	71.4	78.8
18	-0.34	59.8	0.140	46.4	50.2	54.4	65.8	71.9	78.8
19	-0.35	60.6	0.132	47.8	51.4	55.5	66.4	72.2	78.7
GIRLS									
5	-0.91	16.9	0.176	12.6	13.7	15.1	19.1	21.7	25
6	-0.87	19.3	0.172	14.5	15.8	17.3	21.8	24.7	28.2
7	-0.84	21.7	0.171	16.3	17.7	19.4	24.5	27.6	31.6
8	-0.83	24.3	0.177	18.1	19.7	21.7	27.6	31.3	35.9
9	-0.72	27.4	0.191	19.8	21.8	24.2	31.3	35.9	41.5
10	-0.45	31.1	0.208	21.7	24.1	27.1	35.9	41.3	47.8
11	-0.15	35.4	0.216	23.8	27	30.6	41	47	53.8
12	0	39.7	0.213	26.6	30.2	34.4	45.9	52.2	59.4
13	-0.14	43.8	0.196	30.5	34.1	38.4	50	56.6	64
14	-0.37	47	0.174	34.5	37.9	41.9	53.1	59.4	66.8
15	-0.54	49.2	0.158	37.3	40.6	44.4	55	61.1	68.2
16	-0.66	50.6	0.147	39.2	42.3	45.9	56.1	62	68.8
17	-0.72	51.4	0.140	40.3	43.4	46.9	56.7	62.4	69
18	-0.76	51.8	0.137	40.9	43.9	47.4	57	62.6	69.1
19	-0.77	52	0.135	41.2	44.2	47.6	57.2	62.7	69.1

kg: kilograms; L: Box-Cox power transformation; S: generalized coefficient of variation; M: 50th percentile; P3: 3rd percentile; P10: 10th percentile; P25: 25th percentile; P75: 75th percentile; P90: 90th percentile; P97: 97th percentile.
additional medical examination. The data set on which references were based is large and representative enough of the study population to warrant the best estimation possible of the P3 and P97 percentile lines. In addition, the percentiles used in the current reference curves have been estimated based on the most advanced techniques, i.e., the LMS method developed by Tim Cole.23

Growth references provide authorities with information about children’s growth status and are critical to identify groups and individuals at risk for disease or requiring urgent care.35 Growth curves are used in the detection, surveillance, and follow-up of children’s and adolescents’ health, and are adequate to detect nutritional disorders.36 These references are a useful tool for the static and dynamic diagnosis of growth disorders, to track growth in surveillance systems, and analyze and report growth data and trends in different populations.37

Reference curves, developed for the Ecuadorian population, allow to detect children whose height/weight is above or below the

AGE in years	L	M (p50)	S	p3	p10	p25	p75	p90	p97
BOYS									
5	-3.35	15.8	0.094	13.8	14.3	15	17	18.5	20.7
6	-2.74	16.2	0.107	13.8	14.4	15.2	17.6	19.2	21.7
7	-2.23	16.6	0.119	13.8	14.5	15.4	18.1	20	22.7
8	-1.82	17	0.132	13.8	14.6	15.6	18.7	20.8	23.6
9	-1.49	17.4	0.142	13.9	14.8	15.9	19.4	21.6	24.6
10	-1.23	18	0.141	14.1	15.1	16.3	20.1	22.5	25.6
11	-1.04	18.5	0.147	14.3	15.4	16.8	20.7	23.2	26.4
12	-0.91	19	0.148	14.6	15.8	17.2	21.3	23.8	27
13	-0.81	19.5	0.147	15	16.2	17.6	21.8	24.3	27.4
14	-0.73	20	0.142	15.4	16.7	18.1	22.3	24.7	27.6
15	-0.66	20.5	0.146	15.9	17.2	18.6	22.7	25	27.8
16	-0.58	20.9	0.139	16.4	17.6	19.1	23.1	25.3	27.8
17	-0.49	21.3	0.133	16.8	18.1	19.5	23.4	25.5	27.9
18	-0.4	21.7	0.127	17.2	18.5	19.9	23.7	25.7	27.9
19	-0.31	22	0.122	17.6	18.9	20.3	23.9	25.8	27.9
GIRLS									
5	-1.88	15.6	0.116	12.9	13.6	14.5	16.9	18.6	20.7
6	-1.65	15.9	0.121	13.1	13.9	14.7	17.4	19.1	21.2
7	-1.46	16.3	0.128	13.2	14	15	17.8	19.6	21.9
8	-1.29	16.7	0.136	13.4	14.3	15.3	18.4	20.4	22.8
9	-1.12	17.2	0.144	13.6	14.5	15.7	19.1	21.2	23.8
10	-0.96	17.8	0.130	13.8	14.9	16.1	19.8	22	24.7
11	-0.83	18.4	0.133	14.2	15.3	16.6	20.5	22.8	25.6
12	-0.75	19	0.133	14.7	15.8	17.2	21.2	23.5	26.3
13	-0.69	19.8	0.150	15.3	16.5	17.9	22	24.3	27.1
14	-0.65	20.5	0.145	15.9	17.2	18.6	22.7	25	27.7
15	-0.62	21.1	0.139	16.5	17.8	19.2	23.2	25.5	28.1
16	-0.58	21.6	0.134	17	18.3	19.8	23.7	25.9	28.3
17	-0.54	21.9	0.129	17.5	18.7	20.2	24	26.1	28.5
18	-0.5	22.2	0.124	17.8	19.1	20.5	24.2	26.3	28.5
19	-0.47	22.5	0.120	18.1	19.4	20.8	24.4	26.4	28.6

L: Box-Cox power transformation; S: generalized coefficient of variation; M: 50th percentile; P3: 3rd percentile; P10: 10th percentile; P25: 25th percentile; P75: 75th percentile; P90: 90th percentile; P97: 97th percentile
“normal variation” (in general, above or below the P97 or P3, respectively). Such curves constitute a reliable tool only if they correctly represent the population, i.e., if data may be considered a representative sample of the population. For this reason, reference curves based on a study population always have a better performance than any other type of curves.

The reference curves published by the WHO are of great value as a common global reference that enables countries to establish their growth status. However, the WHO curves may hardly be representative of all other populations, especially during puberty and adolescence, when genetic, geographical, and socioeconomic differences are fully expressed. They are very useful for countries that lack their own growth data to develop local reference curves.

It is worth noting some of the limitations of this study, such as the small number of data corresponding to the extreme ages (5 and 19 years), which did not prevent us from achieving a good fit. In fact, based on the statistical analysis, the models meet the assumption of normality after performing the power transformation.

Since at that time there was no global growth reference for this age group, these new curves should be used in the clinical practice in Ecuador as a complement of growth assessment, which, to date, has been done based exclusively on international tools.

CONCLUSION

The tables and curves obtained with this study are the first descriptive growth references for Ecuadorian children and adolescents aged 5-19 years; therefore, they may be used as a national, supplementary instrument for growth assessment and serve as the starting point for further research about this topic in Ecuador.

Acknowledgments

We would like to thank the more than 6000 children and adolescents, and their parents, for participating in the surveys, the schools, and the local authorities of the cities of Tulcán, Tena, Quito, and Santa Elena. Also, we want to thank the students of the school of medicine of the School of Health Sciences Eugenio Espejo, UTE, for their help with the collection of anthropometric measurements. Finally, we thank Professor Horacio Lejarraga for his contributions to the final manuscript.

REFERENCES

1. Lejarraga H. Consideraciones sobre el uso de tablas de crecimiento en Argentina. Arch Argent Pediatr. 2007; 105(6):545-51.
2. WHO Multicentre Growth Reference Study Group. WHO Child Growth Standards based on length/height, weight and age. Acta Paediatr. 2006; (Suppl 430):76-85.
3. Hamill PV, Drizd T, Johnson CL, Reed RB, et al. NCHS Growth Curves for children, Birth–18 years. United States. Vital Health Stat 11. 1977; (165):1-74.
4. De Onis M, Onvango AW, Borghi E, Sivam A, et al. Development of a WHO growth references for school-aged children and adolescents. Bull World Health Organ. 2007; 85(9):660-7.
5. Kulaga Z, Litwin M, Tkaczuk M, Rózdzynka A, et al. The height-, weight-, and BMI-for-age of Polish school-aged children and adolescents relative to international and local growth references. BMC Public Health. 2010; 10:109.
6. Rosario AS, Schienkiewitz A, Neuhauser H. German height references for children aged 0 to under 18 years compared to WHO and CDC growth charts. Ann Hum Biol. 2011; 38(2):121-30.
7. Sánchez González E, Carrascosa Lezcano A, Fernández García JM, FernándezLongás A, et al. Estudios españoles de crecimiento: situación actual, utilidad y recomendaciones de uso. An Pediatr (Bари). 2011; 74(3):193.e1-16.
8. So HK, Nelson EA, Sung KY, Ng PC. Implications of using World Health Organization growth reference (2007) for identifying growth problems in Hong Kong children aged 6 to 18 years. Hong Kong Med J 2011; 17(3):174-9.
9. Atalah S, Loiza S, Talbo M. Estado nutricional en escolares chilenos según la referencia NCHS y OMS 2007. Nutr Hosp. 2012; 27(1):1-6.
10. Orden A, Apeiztegui M. Weight and height centiles of Argentinian children and adolescents: a comparison with WHO and national growth references. Ann Hum Biol, 2016; 43(1):9-17.
11. Tarupi WA, Lepage Y, Hauspie R, Félix ML, et al. Estudio transversal del crecimiento infantil y de adolescentes en Ecuador. Rev Argent Antropol Biol. 2019; 21(2):e006.
12. Milani S, Buckler JM, Kelnar CHJ, Benso L, et al. The use of local reference growth charts for clinical use or a universal standard: a balanced appraisal. J Endocrinol Invest. 2012; 35(2):224-6.
13. Lejarraga H, Ortilda G. Estándares de peso y estatura para niñas y niños argentinos desde el nacimiento hasta la madurez. Arch Argent Pediatr. 1987; 85(4):209-22.
14. López de Blanco M, Izaguirre de Espinoza I, Macías de Tomei C. Crecimiento y maduración física, bases para el diagnóstico y seguimiento clínico. Madrid: Panamericana; 2013.
15. Durán P, Merker A, Briceño G, Colón E, et al. Colombian References growth curves for height, weight, body mass index and head circumference. Acta Pediatr. 2016; 105(3):116-25.
16. Wright CM, Booth IW, Buckler JMH, Cameron N, et al. Growth reference charts for use in the United Kingdom. Arch Dis Child. 2002; 86(1):11-4.
17. Kagawa M, Tahara Y, Moji K, Nakao R, et al. Secular changes in growth among Japanese children over 100 years (1900-2000). Asia Pac J Clin Nutr. 2011; 20(2):180-9.
18. Roelants M, Hauspie R, Hoppenbrouwers K. References for growth and pubertal development from birth to 21 years in Flanders, Belgium. Ann Hum Biol. 2009; 36(6):680-94.
19. Monnier C, Vercauteren M, Susanne C. Estudio de crecimiento de la población escolar de Quito (Ecuador). Antrop. 2003; 5:9-20.
20. Monnier C, Hauspie R, Cruz Albornoz J. Estudio del crecimiento y desarrollo de niños ecuatorianos residentes en Quito, según su origen social. *TSafiqui*, 2011; 2(2):129-42.
21. World Health Organization. Physical status: the use of and interpretation of anthropometry: Report of a WHO Expert Committee. Geneva: WHO; 1995.
22. World Health Organization. Multicentre Growth references Study Group. WHO child growth standards: length/height-for-age, weight-for-age, weight-for-length, weight-for-height, and body mass index-for age: methods and development. Geneva: WHO; 2006.
23. Cole TJ, Green PJ. Smoothing reference centile curves: the LMS method and penalised likelihood. *Stat Med*. 1992; 11(10):1305-19.
24. Cole TJ. Using the LMS method to measure skewness in the NCHS and Dutch national height standards. *Ann Hum Biol*. 1989; 16(5):407-19.
25. Cole TJ. The LMS method for constructing normalized growth standards. *Eur J Clin Nutr*. 1990; 44(1):45-60.
26. Cole TJ. Constructing growth charts smoothed across time and space. In: Hauspie R, Lindgren G, Falkner F. *Essays on Auxology presented to James Mourilyan Tanner*. UK: Castlemead; 1995. Pages76-88.
27. Pan H, Cole TJ. A comparison of goodness of fit tests for age-related reference ranges. *Stat Med*. 2004; 23(11):1749-65.
28. Royston P, Wright EM. Goodness-of-fit statistics for age-specific reference intervals. *Stat Med*. 2000; 19(21):2943-62.
29. Van Buuren S, Fredriks M. Worm plot: A simple diagnostic device for modelling growth reference curves. *Stat Med*. 2001; 20(8):1259-77.
30. Healy M, Rasbash J, Yang M. Distribution-free estimation of age-related centiles. *Ann Hum Biol*. 1988; 15(1):17-22.
31. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2018. [Accessed on: September 9th, 2019]. Available at: https://www.R-project.org/.
32. Lejarraga H. ¿Qué son los percentíl? *Rev Hosp Niños (B Aires)*. 1974; 16(63):45-7.
33. Lepage Y, Tarupi W, Campbell J, Monnier C, et al. Edad de la menarquia en Ecuador. *Antropo*. 2014; 31:1-8.
34. Tanner J, Whitehouse R, Takaishi M. Standards from birth to maturity for height, weight, height velocity and weight velocity: British children, 1965. II. *Arch Dis Child*. 1966; 41(220):613-35.
35. De Onis M, Garza C, Victoria CG, Onyango AW, et al. The WHO Multicentre Growth References Study: Planning, study design, and methodology. *Food Nutr Bull*. 2004; 25(1 Suppl.):S15-26.
36. Fayter D, Nixon J, Hartley S, Rithalia A, et al. Effectiveness and cost-effectiveness of height-screening programmes during the primary school years: a systematic review. *Arch Dis Child*. 2008; 93(4):278-84.
37. De Onis M, Garza C, Victoria CG, Bhan MK, et al. The WHO Multicentre Growth Reference Study: Rationale, planning, and implementation. *Food Nutr Bull*. 2004; 25(Suppl 1):S3-89.
* Midparental height (MPH) = (father's height + mother's height - 13)/2; genetic range = MPH ± 9 cm.
ANNEX 2. Ecuador, body mass index, 5-19 years old. GIRLS

Height and weight standards\(^1\)

C. Monnier, M. Roelants, W. Tarupi, Y. Lepage, R. Haaspie, J. Campbell, M.L. Félix, R. Hidalgo, and M. Vercauter.

The attached curves outline the height and weight growth in a group of more than 6000 Ecuadorian children and adolescents aged 5-19 years. Biometric, cross-sectional surveys were administered in Quito (1999, 2007, 2009, and 2011), Santa Elena (2011), Tucán (2012), and Tena (2012) to students from public and private schools. Measured children came from different socioeconomic groups. Their parents’ level of education and occupation reflect the diversity of Ecuadorian populations.

Chart interpretation: The curves show a measurement distribution in a group of children and allow to see the position of an individual within such group. Above the 50th percentile, which corresponds to the median, you can locate 50% of the group below and 50% of the group above. For example, the 10th percentile represents, at each age, the value below which 10% of the population is located. Individuals outside the 2.5th and 97.5th percentiles are more than 2 standard deviations away from the median. It is recommended to control these children because they are at risk for developing a disease, as well as those whose growth curve is deviated before puberty.

Measurement technique: Weight. The child is weighted wearing light underwear and with no shoes on. Height. The child has to be standing upright but not rigidly, with the back against the stadiometer, the heels together, and the arms and hands hanging on the side of the body. The neck should not be bent forward and the child has to be looking straight ahead. The mobile piece of the stadiometer should be lowered towards the vertex (peak of the head), without pressing down. BMI (body mass index). Mass or weight (in kilograms) divided by the square of the height (in meters), kilograms/meters.\(^2\)

\(^1\)This project was conducted with the help of: Universidad Libre de Bruxelles (ULB), Vrije Universiteit Brussel (VUB) and Universidad Tecnológica Equinocccial de Quito (UTE Quito), and a CUD program.

\(^2\)Data were collected by: C. Monnier, Y. Lepage, G. Pierard, A. Lepage, C. Reynaerts, J. Cruz-Albornoz (logistics), R. Buitron, W. Tarupi, J. Campbell, and fifth and sixth semester students for the 2011-2012 academic year of the school of medicine of the School of Health Sciences Eugenio Espejo.

Université Libre de Bruxelles (ULB), Vrije Universiteit Brussel (VUB), Universidad Tecnológica Equinocccial de Quito (UTE)
Annex 3. Ecuador, height- and weight-for-age, 5-19 years old. BOYS

*Midparental height (MPH) = (father’s height + mother’s height -13)/2; genetic range = MPH ± 10 cm.
Annex 4. Ecuador, body mass index, 5-19 years old. BOYS

Height and weight standards

C. Monnier, M. Roelants, W. Tarupi, Y. Lepage, R. Hauspie, J. Campbell, M.L. Félix, R. Hidalgo, and M. Vercauteren.

The attached curves outline the height and weight growth in a group of more than 6000 Ecuadorian children and adolescents aged 5-19 years. Biometric, cross-sectional surveys were administered in Quito (1999, 2007, 2009, and 2011), Santa Elena (2011), Tucán (2012), and Tena (2012) to students from public and private schools. Measured children came from different socioeconomic groups. Their parents' level of education and occupation reflect the diversity of Ecuadorian populations.

Chart interpretation: The curves show a measurement distribution in a group of children and allow to see the position of an individual within such group. Above the 50th percentile, which corresponds to the median, you can locate 50% of the group below and 50% of the group above. For example, the 10th percentile represents, at each age, the value below which 10% of the population is located. Individuals outside the 2.5th and 97.5th percentiles are more than 2 standard deviations away from the median. It is recommended to control these children because they are at risk for developing a disease, as well as those whose growth curve is deviated before puberty.

Measurement technique: Weight. The child is weighted wearing light underwear and with no shoes on. Height. The child has to be standing upright but not rigidly, with the back against the stadiometer, the heels together, and the arms and hands hanging on the side of the body. The neck should not be bent forward and the child has to be looking straight ahead. The mobile piece of the stadiometer should be lowered towards the vertex (peak of the head), without pressing down. BMI (body mass index). Mass or weight (in kilograms) divided by the square of the height (in meters), kilograms/meters.

This project was conducted with the help of: Universidad Libre de Bruxelles (ULB), Vrije Universiteit Brussel (VUB) and Universidad Tecnológica Equinoccial (UTE Quito), and a CUD program.

Data were collected by: C. Monnier, Y. Lepage, G. Pierard, A. Lepage, C. Reynaerts, J. Cruz-Albornoz (logistics), R. Bultron, W. Tarupi, J. Campbell, and fifth and sixth semester students for the 2011-2012 academic year of the school of medicine of the School of Health Sciences Eugenio Espejo.

Università Libre de Bruxelles (ULB), Vrije Universiteit Brussel (VUB), Universidad Tecnológica Equinoccial de Quito (UTE)