A NOTE ON q-BERNOULLI NUMBERS AND q-BERNSTEIN POLYNOMIALS

TAEKYUN KIM, CHEON SEOUNG RYOO, AND HEUNGSU YI

Abstract. The purpose of this paper is to investigate some properties of several q-Bernstein type polynomials to express the bosonic p-adic q-integral of those polynomials on \mathbb{Z}_p.

1. INTRODUCTION

Let p be a fixed prime number. Throughout this paper, \mathbb{Z}_p, \mathbb{Q}_p, and \mathbb{C}_p will denote the ring of p-adic integers, the field of p-adic numbers and the field of p-adic completion of the algebraic closure of \mathbb{Q}_p, respectively. Let \mathbb{N} be the set of natural numbers and $\mathbb{Z}_+ = \mathbb{N} \cup \{0\}$. Let ν_p be the normalized exponential valuation of \mathbb{C}_p with $|p|_p = p^{-\nu_p(p)} = \frac{1}{p}$. Let q be regarded as either a complex number $q \in \mathbb{C}$ or a p-adic number $q \in \mathbb{C}_p$. If $q \in \mathbb{C}$, then we always assume $|q| < 1$. If $q \in \mathbb{C}_p$, we usually assume that $|1 - q|_p < 1$. In this paper we use the notation of q-number as $[x]_q = 1 - q^x$.

Let $UD(\mathbb{Z}_p)$ be the set of uniformly differentiable functions on \mathbb{Z}_p. For $f \in UD(\mathbb{Z}_p)$, the bosonic p-adic q-integral on \mathbb{Z}_p is defined by

$$I_q(f) = \int_{\mathbb{Z}_p} f(x)d\mu_q(x) = \lim_{N \to \infty} \frac{1}{[p^N]_q} \sum_{x=0}^{p^N-1} f(x)(q^x), \quad (\text{see } [2-5]). \tag{1}$$

In [2], the Carlitz’s q-Bernoulli numbers are inductively defined by

$$\beta_0,q = 1, \quad \text{and} \quad q(q\beta + 1)^k - \beta_{k,q} = \begin{cases} 1, & \text{if } k = 1, \\ 0, & \text{if } k > 1, \end{cases} \tag{2}$$

with the usual convention of replacing β^i by $\beta_{i,q}$.

The Carlitz’s q-Bernoulli polynomials are also defined by

$$\beta_{n,q}(x) = (qx + [x]_q)^k = \sum_{i=0}^{k} \binom{k}{i} q^i x^i \beta_{i,q}[x]_q^{k-i}. \tag{3}$$

In [2], Kim proved that the Carlitz q-Bernoulli numbers and polynomials are represented by p-adic q-integral as follows: for $n \in \mathbb{Z}_+$,

$$\beta_{n,q} = \int_{\mathbb{Z}_p} [x]_q^n d\mu_q(x), \quad \text{and} \quad \beta_{n,q}(x) = \int_{\mathbb{Z}_p} [x + y]_q^n d\mu_q(y). \tag{4}$$

Date: June 8, 2010.

1991 Mathematics Subject Classification. Primary 11B68, Secondary 41A36, 41A30, 05A30, 11P81.

Key words and phrases. Bernstein polynomial, Bernstein operator, Bernoulli polynomial, Generating function, Laurent series, Shift difference operator.

This study is supported in part by the Research Grant of Kwangwoon University in 2010.
The Kim’s q-Bernstein polynomials are defined by

$$B_{k,n}(x, q) = \binom{n}{k} [x]_q^k [1 - x]_{q^{-1}}^{n-k}, \quad \text{(see [1-8])},$$

where $n, k \in \mathbb{Z}_+$, and $x \in [0, 1]$.

Let f be continuous functions on $[0, 1]$. Then the linear Kim’s q-Bernstein operator of order n for f are defined by

$$B_{n,q}(f \mid x) = \sum_{k=0}^{n} f \left(\frac{k}{n} \right) B_{k,n}(x, q), \quad \text{(see [5])}.$$

In this paper, we consider the p-adic analog of the extended Kim’s q-Bernstein polynomials on \mathbb{Z}_p and investigate some properties of several extended Kim’s q-Bernstein polynomials to express the bosonic p-adic q-integral of those polynomials.

2. Extended q-Bernstein Polynomials

In this section we assume that $q \in \mathbb{R}$ with $0 < q < 1$. Let $C[0, 1]$ be the set of continuous function on $[0, 1]$.

For $f \in C[0, 1]$, we consider the extended Kim’s q-Bernstein operator of order n as follows:

$$B_{n,q}(f \mid x_1, x_2) = \sum_{k=0}^{n} \frac{n}{k} \binom{n}{k} [x_1]_q^k [1 - x_2]_{q^{-1}}^{n-k}$$

$$= \sum_{k=0}^{n} f \left(\frac{k}{n} \right) B_{k,n}(x_1, x_2 \mid q).$$

For $n, k \in \mathbb{Z}_+$, and $x_1, x_2 \in [0, 1]$, the extended Kim’s q-Bernstein polynomials of degree n are defined by

$$B_{k,n}(x_1, x_2 \mid q) = \binom{n}{k} [x_1]_q^k [1 - x_2]_{q^{-1}}^{n-k}. \quad \text{(7)}$$

In the special case $x_1 = x_2 = x$, then $B_{k,n}(x_1, x_2 \mid q) = B_{k,n}(x, q)$.

From (6) and (7) we can derive the generating function for $B_{k,n}(x_1, x_2 \mid q)$ as follows:

$$F^{(k)}_q(x_1, x_2 \mid t) = \frac{(t[x_1]_q^k e_x(t[1 - x_2]_{q^{-1}})}{k!}, \quad \text{(8)}$$

where $k \in \mathbb{Z}_+$ and $x_1, x_2 \in [0, 1]$.

By (8), we get

$$F^{(k)}_q(x_1, x_2 \mid t) = \sum_{n=k}^{\infty} \frac{[x_1]_q^k [1 - x_2]_{q^{-1}}^{n-k} t^n}{k! n!}$$

$$= \sum_{n=k}^{\infty} \binom{n}{k} [x_1]_q^k [1 - x_2]_{q^{-1}}^{n-k} \frac{t^n}{n!}$$

$$= \sum_{n=k}^{\infty} B_{k,n}(x_1, x_2 \mid q) \frac{t^n}{n!}$$

Thus, we have

$$B_{k,n}(x_1, x_2 \mid q) = \begin{cases} \binom{n}{k} [x_1]_q^k [1 - x_2]_{q^{-1}}^{n-k}, & \text{if } n \geq k \\ 0, & \text{if } n < k, \end{cases}$$

for $n, k \in \mathbb{Z}_+$.
It is easy to check that
\[B_{n-k,n}(1 - x_2, 1 - x_1 \mid q^{-1}) = B_{k,n}(x_1, x_2 \mid q). \] (10)

For \(0 \leq k \leq n \), we have
\[
1 - x_2]q^{-1}B_{k,n-1}(x_1, x_2 \mid q) + [x_1]_q B_{k-1,n-1}(x_1, x_2 \mid q) \\
= [1 - x_2]q^{-1}(\binom{n-1}{k}[x_1]_q^{k}[1 - x_2q^{-k}] + [x_1]_q \binom{n-1}{k-1}[x_1]_q^{k-1}[1 - x_2q^{-k}] + [x_1]_q^{k}1 - x_2]q^{-k} \] (11)
\[
= \binom{n}{k}[x_1]_q^{k}[1 - x_2]q^{-k} = B_{k,n}(x_1, x_2 \mid q).
\]

Therefore, we obtain the following theorem.

Theorem 1. For \(x_1, x_2 \in [0, 1] \) and \(n, k \in \mathbb{Z}_+ \), we have
\[
1 - x_2]q^{-1}B_{k,n}(x_1, x_2 \mid q) + [x_1]_q B_{k-1,n}(x_1, x_2 \mid q) = B_{k,n+1}(x_1, x_2 \mid q).
\]

The partial derivative of \(B_{k,n}(x_1, x_2 \mid q) \) are also \(q \)-polynomials of degree \(n - 1 \):
\[
\frac{\partial}{\partial x_1} B_{k,n}(x_1, x_2 \mid q) = \frac{\log q}{q - 1} q^{x_1} n B_{k-1,n-1}(x_1, x_2 \mid q),
\]
and
\[
\frac{\partial}{\partial x_2} B_{k,n}(x_1, x_2 \mid q) = \frac{\log q}{q - 1} q^{x_2} n B_{k,n-1}(x_1, x_2 \mid q).
\]

Therefore, we obtain the following lemma.

Lemma 2. For \(k \in \mathbb{Z}_+ \) and \(n \in \mathbb{N}, x_1, x_2 \in [0, 1] \), we have
\[
\frac{\partial}{\partial x_1} B_{k,n}(x_1, x_2 \mid q) = \frac{\log q}{q - 1} n \{ (q-1)[x_1]_q B_{k-1,n-1}(x_1, x_2 \mid q) + B_{k-1,n-1}(x_1, x_2 \mid q) \},
\]
and
\[
\frac{\partial}{\partial x_2} B_{k,n}(x_1, x_2 \mid q) = \frac{\log q}{q - 1} n \{ (q-1)[x_2]_q B_{k,n-1}(x_1, x_2 \mid q) + B_{k,n-1}(x_1, x_2 \mid q) \}.
\]

For \(f = 1 \), by (6), we have
\[
B_{n,q}(1 \mid x_1, x_2) = \sum_{k=0}^{n} B_{k,n}(x_1, x_2 \mid q) = \sum_{k=0}^{n} \binom{n}{k}[x_1]_q^{k}[1 - x_2]q^{-k}
\]
\[
= (1 + [x_1]_q - [x_2]_q)^n.
\] (12)

By (12), we see that
\[
\frac{1}{(1 + [x_1]_q - [x_2]_q)^n} B_{n,q}(1 \mid x_1, x_2) = 1.
\]

For \(f(t) = t \), by (6), we get
\[
B_{n,q}(t \mid x_1, x_2) = \sum_{k=0}^{n} \binom{k}{n} [x_1]_q^{k}[1 - x_2]q^{-k} \binom{n}{k}
\]
\[
= \sum_{k=1}^{n} [x_1]_q^{k}[1 - x_2]q^{-k} \binom{n-1}{k-1}
\]
\[
= [x_1]_q \sum_{k=0}^{n-1} \binom{n-1}{k} [x_1]_q^{k}[1 - x_2]q^{-k-1},
\]
where \(n \in \mathbb{N} \) and \(x_1, x_2 \in [0, 1] \).
Thus, we have
\[
\frac{1}{(1 + [x_1]_q - [x_2]_q)^{n+1}} B_{n,q}(f \mid x_1, x_2) = [x_1]_q.
\]

For \(f(t) = t^2 \), by (6), we have
\[
B_{n,q}(t^2 \mid x_1, x_2)
= \frac{n-1}{n} [x_1]^2 q (1 + [x_1] - [x_2])^{n-2} + \frac{n}{n} (1 + [x_1] - [x_2])^{n-1}.
\]

In the special case, \(x_1 = x_2 = x \),
\[
B_{n,q}(t^2 \mid x_1, x_2) = \frac{n-1}{n} [x_1]^2 q + \frac{n}{n} [x_1]^2 q, \tag{13}
\]

From (13), we note that
\[
\lim_{n \to \infty} B_{n,q}(t^2 \mid x, x) = [x_1]^2 q.
\]

By (6), we see that
\[
B_{n,q}(f \mid x_1, x_2) = \sum_{k=0}^{n} f \left(\frac{k}{n} \right) B_{k,n}(x_1, x_2 \mid q)
= \sum_{k=0}^{n} f \left(\frac{k}{n} \right) \left(\frac{n}{k} \right) [x_1]^k \sum_{j=0}^{n-k} \left(\frac{n-k}{j} \right) (-1)^j [x_2]^j
= \sum_{t=0}^{n} \left(\frac{n}{t} \right) [x_2]^t \sum_{k=0}^{t} \left(\frac{t}{k} \right) (-1)^{t-k} f \left(\frac{k}{n} \right) \left(\frac{[x_1]^k}{[x_2]^t} \right).
\]

From the definition of \(B_{k,n}(x_1, x_2 \mid q) \), we have
\[
\frac{n-k}{n} B_{k,n}(x_1, x_2 \mid q) + \frac{k+1}{n} B_{k+1,n}(x_1, x_2 \mid q)
= \frac{(n-1)!}{k!(n-k-1)!} [x_1]^k [1 - x_2]^{n-k} + \frac{(n-1)!}{k!(n-k-1)!} [x_1]^{k+1} [1 - x_2]^{n-k-1} \tag{14}
= ([x_1]^k + [1 - x_2]^{n-k}) B_{k,n}(x_1, x_2 \mid q)
= ([x_1] q + [1 - x_2] q) B_{k,n}(x_1, x_2 \mid q),
\]

where \(n \in \mathbb{N} \) and \(k \in \mathbb{Z}_+, x_1, x_2 \in [0, 1] \).

By the binomial theorem, we get
\[
B_{k,n}(x_1, x_2 \mid q) = \left(\frac{[x_1]^k}{[x_2]^t} \right) \sum_{l=k}^{n} \left(\frac{l}{k} \right) \left(\frac{n}{l} \right) (-1)^{l-k} [x_2]^l.
\]

It is possible to write \([x_1]^k \) as a linear combination of \(B_{k,n}(x_1, x_2 \mid q) \) by using the degree evaluation formulae and mathematical induction:
\[
\frac{1}{(1 + [x_1] q - [x_2] q)^{n-1}} \sum_{k=1}^{n} \frac{k}{n} B_{k,n}(x_1, x_2 \mid q) = [x_1]^q.
\]

By the same method, we get
\[
\frac{1}{(1 + [x_1] q - [x_2] q)^{n-2}} \sum_{k=2}^{n} \frac{k}{n} B_{k,n}(x_1, x_2 \mid q) = [x_1]^{2 q}.
\]

Continuing this process, we obtain the following theorem.
Thus, we obtain the following theorem.

Theorem 3. For \(j \in \mathbb{Z}_+ \) and \(x_1, x_2 \in [0, 1] \), we have
\[
\frac{1}{(1 + [x_1]_q - [x_2]_q)^n} \sum_{k=j}^{n-1} \binom{n}{k} B_{k,n}(x_1, x_2 \mid q) = [x_1]_q^n.
\]

From Theorem 3, we have
\[
\frac{1}{(1 + [x_1]_q - [x_2]_q)^n} \sum_{k=j}^{n-1} \binom{n}{k} B_{k,n}(x_1, x_2 \mid q) = \sum_{k=0}^{j} q^\left(\begin{array}{c} j \\ k \end{array}\right) [k]_q S_q(k, j - k),
\]
where \([k]_q! = [k]_q [k - 1]_q \cdots [2]_q [1]_q\) and \(S_q(k, j - k)\) is the \(q\)-Stirling numbers of the second kind.

3. \(q\)-Bernoulli Polynomials associated with the bosonic \(p\)-adic \(q\)-Integral on \(\mathbb{Z}_p\).

In this section we assume that \(q \in \mathbb{C}_p\) with \(|1 - q|_p < 1\). For \(n \in \mathbb{Z}_+\), by (1), we get
\[
\int_{\mathbb{Z}_p} [1 - x + x_1]_{q^{-1}}^n d\mu_{q^{-1}}(x_1) = (-1)^n q^n \int_{\mathbb{Z}_p} [x + x_1]_q^n d\mu_q(x_1). \tag{15}
\]
From (4) and (15), we have
\[
\beta_{n,q^{-1}}(1 - x) = (-1)^n q^n \beta_{n,q}(x) \quad \text{for} \quad n \in \mathbb{Z}_+. \tag{16}
\]
By (2), (3) and (16), we get
\[
q^2 \beta_{n,q}(2) - (n + 1)q^2 + q = q(q + 1)^n = \beta_{n,q} \quad \text{if} \quad n > 1.
\]
Thus, we have
\[
\beta_{n,q}(2) = (n + 1) - \frac{1}{q} + \frac{1}{q^2} \beta_{n,q}. \tag{17}
\]
By simple calculation, we see that
\[
\int_{\mathbb{Z}_p} [1 - x]_{q^{-1}}^n d\mu_q(x) = (-1)^n q^n \beta_{n,q}(-1) = \beta_{n,q^{-1}}(2).
\]
From (15), (16) and (17), we can derive the following equation (18).
\[
\int_{\mathbb{Z}_p} [1 - x]_{q^{-1}}^n d\mu_q(x) = q^2 \beta_{n,q^{-1}} + (n + 1) - q \quad \text{if} \quad n > 1. \tag{18}
\]
Taking double bosonic \(p\)-adic \(q\)-integral on \(\mathbb{Z}_p\), by (18), we set
\[
\int_{\mathbb{Z}_p} \int_{\mathbb{Z}_p} B_{k,n}(x_1, x_2 \mid q) d\mu_q(x_1) d\mu_q(x_2)
\]
\[
= \binom{n}{k} \int_{\mathbb{Z}_p} [x_1]_q^n d\mu_q(x_1) \int_{\mathbb{Z}_p} [1 - x_2]_{q^{-1}}^{n-k} d\mu_q(x_2). \tag{19}
\]
Thus, we obtain the following theorem.

Theorem 4. For \(x_1, x_2 \in [0, 1]\) and \(n, k \in \mathbb{Z}_+\), we have
\[
\int_{\mathbb{Z}_p} \int_{\mathbb{Z}_p} B_{k,n}(x_1, x_2 \mid q) d\mu_q(x_1) d\mu_q(x_2)
\]
\[
= \begin{cases}
\binom{n}{k} \beta_{k,q}(q^2 \beta_{n-k,q^{-1}} + (n - k + 1) - q), & \text{if} \ n > k + 1 \\
0, & \text{if} \ n < k \\
\beta_{k,q}, & \text{if} \ n = k \\
1, & \text{if} \ n = k = 0
\end{cases}
\]
From the q-symmetric properties (see Eq. (10)) of the q-Bernstein polynomials, we have

\[
\int_{\mathbb{Z}} \int_{\mathbb{Z}} B_{k,n}(x_1, x_2 \mid q) d\mu_q(x_1) d\mu_q(x_2) = \sum_{l=0}^{k} \binom{k}{l} (-1)^{k+l} \int_{\mathbb{Z}} \int_{\mathbb{Z}} [1 - x_1]^{k-l} [1 - x_2]^{n-k} d\mu_q(x_1) d\mu_q(x_2)
\]

\[
= \int_{\mathbb{Z}} [1 - x_2]^{n-k} d\mu_q(x_2) \{1 - k \int_{\mathbb{Z}} [1 - x_1]^{k-l} d\mu_q(x_1) + \sum_{l=0}^{k-2} \binom{k}{l} (-1)^{k+l} \int_{\mathbb{Z}} [1 - x_1]^{k-l} d\mu_q(x_1) \}. \tag{20}
\]

For $n, k \in \mathbb{Z}_+$, by (20), we get

\[
\int_{\mathbb{Z}} \int_{\mathbb{Z}} B_{k,n}(x_1, x_2 \mid q) d\mu_q(x_1) d\mu_q(x_2) = \int_{\mathbb{Z}} [1 - x_2]^{n-k} d\mu_q(x_2) \{1 - k \frac{2}{q} \beta_{k-1,q-1} + k - l + 1 - q \}.
\]

By (19) and (21), we obtain the following theorem.

Theorem 5. For $n, k \in \mathbb{Z}_+$, we have

\[
\binom{n}{k} \beta_{k,q} = (1 - k - \frac{2}{q}) + \sum_{l=0}^{k-2} \binom{k}{l} (-1)^{k+l} (q^2 \beta_{k-l,q-1} + k - l + 1 - q).
\]

Let $m, n, k \in \mathbb{Z}_+$. Then we have

\[
\int_{\mathbb{Z}} \int_{\mathbb{Z}} B_{k,n}(x_1, x_2 \mid q) B_{k,m}(x_1, x_2 \mid q) d\mu_q(x_1) d\mu_q(x_2) = \binom{n}{k} \binom{m}{k} \int_{\mathbb{Z}} [x_1]^{2k} d\mu_q(x_1) \int_{\mathbb{Z}} [1 - x_2]^{n+m-2k} d\mu_q(x_2)
\]

\[
= \binom{n}{k} \binom{m}{k} \beta_{2k,q} \int_{\mathbb{Z}} [1 - x_2]^{n+m-2k} d\mu_q(x_2). \tag{22}
\]

By the q-symmetric properties of q-Bernstein polynomials, we get

\[
\int_{\mathbb{Z}} \int_{\mathbb{Z}} B_{k,n}(x_1, x_2 \mid q) d\mu_q(x_1) d\mu_q(x_2) = \sum_{l=0}^{2k} \binom{2k}{l} (-1)^{2k+l} \int_{\mathbb{Z}} [1 - x_1]^{2k-l} d\mu_q(x_1) \int_{\mathbb{Z}} [1 - x_2]^{n+m-2k} d\mu_q(x_2)
\]

\[
= \int_{\mathbb{Z}} [1 - x_2]^{n+m-2k} d\mu_q(x_2) \{1 - 2k \int_{\mathbb{Z}} [1 - x_1]^{2k-l} d\mu_q(x_1) + \sum_{l=0}^{2k-2} \binom{2k}{l} (-1)^{2k+l} \int_{\mathbb{Z}} [1 - x_1]^{2k-l} d\mu_q(x_1) \}. \tag{23}
\]
By (22) and (23), we obtain the following theorem.

Theorem 6. For \(m, n, k \in \mathbb{Z}_+ \), we have

\[
\binom{n}{k} \binom{m}{k} \beta_{k,q} = 1 - 2k - \frac{2k}{[2]_q} + \sum_{l=0}^{2k-2} \binom{2k}{l} (-1)^{2k+l} (q^2 \beta_{2k-l,q-1} + 2k - l + 1 - q).
\]

Let \(n_1, n_2, \ldots, n_s, k \in \mathbb{Z}_+ \), and \(s \in \mathbb{N} \). Then

\[
\int_{\mathbb{Z}_p} \int_{\mathbb{Z}_p} \prod_{i=1}^{s} B_{k,n_i}(x_1, x_2 \mid q) d\mu_q(x_1) d\mu_q(x_2)
\]

\[
= \left(\prod_{i=1}^{s} \binom{n_i}{k} \right) \int_{\mathbb{Z}_p} [1 - x_1]_{q-1}^{n_k} d\mu_q(x_1) \int_{\mathbb{Z}_p} [1 - x_2]_{q-1}^{n_1+\cdots+n_s-sk} d\mu_q(x_2)
\]

\[
= \prod_{i=1}^{s} \left(\frac{n_i}{k} \right) \beta_{sk,q} \int_{\mathbb{Z}_p} [1 - x_1]_{q-1}^{n_k} d\mu_q(x_1) \int_{\mathbb{Z}_p} [1 - x_2]_{q-1}^{n_1+\cdots+n_s-sk} d\mu_q(x_2).
\]

By the binomial theorem, we get

\[
\int_{\mathbb{Z}_p} \int_{\mathbb{Z}_p} \prod_{i=1}^{s} B_{k,n_i}(x_1, x_2 \mid q) d\mu_q(x_1) d\mu_q(x_2)
\]

\[
= \sum_{l=0}^{sk} \binom{sk}{l} (-1)^{sk+l} \int_{\mathbb{Z}_p} [1 - x_1]_{q-1}^{sk-l} d\mu_q(x_1) \int_{\mathbb{Z}_p} [1 - x_2]_{q-1}^{n_1+\cdots+n_s-sk} d\mu_q(x_2).
\]

From (24) and (25), we note that

\[
\left(\prod_{i=1}^{s} \binom{n_i}{k} \right) \beta_{sk,q}
\]

\[
= \sum_{l=0}^{sk} \binom{sk}{l} (-1)^{sk+l} \int_{\mathbb{Z}_p} [1 - x_1]_{q-1}^{sk-l} d\mu_q(x_1)
\]

\[
= 1 - sk \int_{\mathbb{Z}_p} [1 - x_1]_{q-1} d\mu_q(x_1) + \sum_{l=0}^{sk-2} \binom{sk}{l} (-1)^{sk+l} \int_{\mathbb{Z}_p} [1 - x_1]_{q-1}^{sk-l} d\mu_q(x_1).
\]

By (26), we obtain the following theorem.

Theorem 7. Let \(s \in \mathbb{N}, n_1, n_2, \ldots, n_s, k \in \mathbb{Z}_+ \). Then we have

\[
\left(\prod_{i=1}^{s} \binom{n_i}{k} \right) \beta_{sk,q} = 1 - sk - \frac{sk}{[2]_q} + \sum_{l=0}^{sk-2} \binom{sk}{l} (-1)^{sk+l} (q^2 \beta_{sk-l,q-1} + sk - l + 1 - q).
\]

REFERENCES
References

[1] M. Acikgoz, S. Araci, A study on the integral of the product of several type Bernstein polynomials, IST Transaction of Applied Mathematics-Modelling and Simulation, 2010.
[2] T. Kim, q-Völkernborn integration, Russ. J. Math. Phys., 9 (2002), 288-299.
[3] T. Kim, L.-C. Jang, H. Yi A note on the modified q-Bernstein polynomials, Discrete Dynamics in Nature and Society, 2010 (2010), Article ID 706483, 12 pages.
[4] T. Kim, Barnes-type multiple q-zeta functions and q-Euler polynomials, J. Phys. A: Math. Theor., 43 (2010), 255201, 11pages.
[5] T. Kim, A note on q-Bernstein polynomials, Russ. J. Math. Phys., (accepted).
[6] Y. Simsek, M. Acikgoz, A new generating function of q-Bernstein-type polynomials and their interpolation function, Abstract and Applied Analysis, 2010(2010), Article ID 769095, 12 pages.
[7] L. C. Jang, W.-J. Kim, Y. Simsek, A study on the p-adic integral representation on \mathbb{Z}_p associated with Bernstein and Bernoulli polynomials, Advances in Difference Equations, 2010(2010), Article ID 163217, 6 pages.
[8] V. Gupta, T. Kim, J, Choi, Y.-H. Kim, Generating function for q-Bernstein, q-Meyer-König-Zeller and q-Beta basis, Automation Computers Applied Mathematics, 19 (2010), 7-11.

Division of General Education, Kwangwoon University, Seoul 139–701, Korea
E-mail address: tkkim@kw.ac.kr

Department of Mathematics, Hannam University, Daejeon 306-791, Korea
E-mail address: ryooo@hnu.kr

Department of Mathematics, Kwangwoon University, Seoul 139–701, Korea
E-mail address: hsyi@kw.ac.kr