Trade-offs in the design of multimodal interaction for older adults

Gianluca Schiavo, Ornella Mich, Michela Ferron and Nadia Mana

ABSTRACT
This paper presents key aspects that designers and Human–Computer Interaction practitioners might encounter when designing multimodal interaction for older adults, focusing on the trade-offs that might occur as part of the design process. The paper gathers literature on multimodal interaction and assistive technology, and describes a set of design challenges specific for older users. Building on these main design challenges, four trade-offs in the design of multimodal technology for this target group are presented and discussed. To highlight the relevance of the trade-offs in the design process of multimodal technology for older adults, two of the four reported trade-offs are illustrated with two user studies that investigate mid-air and speech-based interaction with a tablet device. The first study explores the design trade-offs related to redundant multimodal commands in older, middle-aged and younger adults, whereas the second one investigates the design choices related to the definition of a set of mid-air one-hand gestures and voice input commands for older adults. Further reflections highlight the design trade-offs that such considerations bring in the process, providing an overview of the design choices involved and of their potential consequences.

1. Introduction
Multimodal interfaces, meant as ‘interfaces able to process two or more combined user input modes, such as speech, pen, touch, manual gestures, and gaze, in a coordinated manner with multimedia system output’ (Oviatt 2003, 414), seek to combine multiple sensory input and output channels in ways similar to natural interaction. This similarity has led to the expectation that multimodality in Human–Computer Interaction (HCI) can provide a more natural, robust and flexible form of interaction with respect to more traditional input modalities such as mouse and keyboard (Turk 2014). In this respect, multimodal human – computer interaction has sought to provide not only more powerful and compelling interactive experiences, but also more accessible interfaces to technological devices. Moreover, following the principle of design for all and inclusive design, multimodal technology has been proposed as a possible solution that allows users to use the interaction modality that best suits their preferences and/or needs, thus making the interaction more flexible (Turk 2014). However, despite these potential advantages of multimodal interfaces, the literature reports significant disadvantages as well. For example, different modalities may interfere with each other and a synchronisation problem might arise (Turk 2014; Oviatt, De Angeli, and Kuhn 1997).

Additionally, combining and coordinating more than one modality might also require more effort from the users (Naumann, Wechsung, and Hurtienne 2010; Wechsung and Naumann 2008) and a higher cognitive load (Naumann, Wechsung, and Hurtienne 2010). Current research provides findings supporting both assumptions by reporting advantages, as well as disadvantages.

This paper aims to further advance the discussion on this topic by presenting design trade-offs in multimodal technology when designing technology for older adults. Design trade-offs can be defined as balancing of factors in the design process that ‘can be recognised in all those situations where one needs to renounce to something in order to gain something else’ (Fischer et al. 2020). In literature, little attention has been devoted to investigating the design process and design choices for multimodal technology (e.g. Naumann, Wechsung, and Hurtienne 2010; Munteanu and Salah 2017). Such research provided guidance to the design of multimodal interactive systems, showing that the process of creating these systems is not easy nor straightforward and that it requires the exploration of design trade-offs (Fischer 2017; Fischer et al. 2020). Here the discussion is based on the analysis of such guidelines from multimodal interaction and older-adults HCI and User-Centred Design (UCD) literature in order to investigate the impact of different design challenges in multimodal interaction.
2. Multimodal interaction for older users

Multimodal interfaces have been considered to improve accessibility for a number of users and usage contexts (Obrenovic, Abascal, and Starcevic 2007), including the diverse needs of older users (Himmelsbach et al. 2015; Munteanu and Salah 2017). Multimodal systems can integrate a wider range of modalities (such as speech, writing, gaze, touch or mid-air gestures) and potentially better accommodate users’ preferences with respect to unimodal interfaces. Furthermore, people who have little or no experience with common computer devices can find multimodal interfaces more user-friendly since they offer the possibility to use multiple interaction channels instead of relying on a single source of input (Himmelsbach et al. 2015). However, other studies point out that multimodality must be introduced with caution since it might require more cognitive effort to coordinate different input modalities (especially when more than two modalities are involved) and additional physical demand (Naumann, Wechsung, and Hurtienne 2010). This may become particularly relevant when considering the cognitive and physical characteristics of older users (Fisk 2009).

Numerous examples of multimodal technology for older adults can be found in research and on the market. For instance, social robots or telepresence technology are two representative examples of multimodal systems believed to assist and support older users (Munteanu and Salah 2017). Mobile technology is another field in which multimodal interaction is experimented, given the opportunity that mobile context offers (Lemmelä et al. 2008). Before listing the design trade-offs that multimodal interaction might bring to technology, we summarise a list of aspects to be considered when designing technology for older adults.

3. Designing multimodal technology for older adults

In this work, we define older adults as individuals who are 65 or older (Farage et al. 2012), even if we share the opinion of several authors who believe that grouping older people exclusively by their chronological age is restrictive, since chronologically older adults do not constitute a homogeneous group (Vines et al. 2015). Indeed, they can be very diverse if we take into account their lifestyles and circumstances such as physical condition, cognitive ability, health, income and living arrangements (Lindsay et al. 2012). Having said that, it cannot be denied that ageing brings about several changes covering different aspects of life, such as changes in perception, cognition, movement control, psychological and social well-being, as well as shifts in the social environment and a higher incidence of age-related health problems (Fisk et al. 2009; Farage et al. 2012; Seeman et al. 2001; Hawthorn 2000).

In HCI research studies, and particularly in the design of multimodal technology for older adults, three main aspects should be considered:

(1) The influence of cognitive factors. Because of age-related changes, older adults can be considered a specific user group with respect to younger adults, as they (a) might need more time to learn how to use digital tools, (b) might be more error-prone, and (c) might require a specific kind of support and interface design. Due to short-term memory impairment and lower fluid intelligence, any new system is harder to learn for older people. Several studies (e.g. Venkatesh et al. 2003; Barnard et al.
suggest that a series of high-quality, short, and repetitive training sessions should be provided in order to reinforce the learning of basic commands to operate a new system.

(2) **Physical performance and fatigue.** Older participants can feel fatigued more easily than younger ones, especially when using gestural interaction or moving their upper limbs. Attention should be paid to avoid as much as possible additional risks from injury, pain or fatigue (Gerling, Klauser, and Niesenhaus 2011; Lepicard and Vigouroux 2012).

(3) **Acceptability and long-term use of technology.** Research on technology acceptance has shown that older adults, compared to younger users, decide to adopt new technologies differently. Multiple factors, such as computer knowledge, technical self-confidence, previous computer experience, user’s performance, the presence of efficient technical support, fear of failure, effective user interaction and usability, concur to form such decision (Wilkowska and Ziefle 2009). These factors were found to be mainly related to ease of use, one of the components of technology acceptance (Davis 1989). In addition to this, new technologies need to satisfy also the second component of technology acceptance, usefulness. To this regard, the lack of perceived advantages may explain the reluctance of many older adults to use novel digital technologies (Melenhorst, Rogers, and Caylor 2001). Indeed, perceived benefits play a significant role in fostering the motivation that leads to the adoption of novel technologies in the long run.

3.1. Guidelines for designing multimodal interaction for older adults

In this section, we review the literature on multimodal interaction and HCI to specifically investigate trade-offs and frictions in the design of multimodal systems for older adults. This investigation is based on existing research and studies in the field of HCI, UCD and Inclusive Design. Papers were retrieved from ACM digital library, and only articles specifically presenting a summary of guidelines and recommendations for multimodal interaction and for the design or meta-design (Fogli et al. 2020) of technology for older people were included.

Regarding multimodal interaction, several guidelines for the design of multimodal interfaces for older adults have been discussed in the HCI literature (Oviatt and Cohen 2015; Reeves et al. 2004; McGee-Lennon, Wolters, and Brewster 2011), also considering use cases with older users (Munteanu and Salah 2017; Naumann, Wechsung, and Hurtienne 2010; Xiao et al. 2003).

These studies define a set of guidelines for multimodal user interface design that are summarised below and reported in Table 1.

The rationale behind these guidelines is that each one provides indications or good practices related to a meaningful design problem or challenge that might arise in the process of creating multimodal interaction for older adults. In the following, we summarise the main challenges associated with the design process in order to better frame the design space and its inherent constraints, and to facilitate the identification of the design trade-offs.

- **Diverse abilities.** Multimodal systems should provide users with the choice of the most efficient interaction modality among those offered by the system. Moreover, users should be able to switch to another interaction modality, for example after a recognition error has occurred in the previous one (Turk 2014). However, this requires that the user knows which is the best modality for her/him, or at least ‘intuitively’ uses the best set of multimodal inputs.

- **Integration patterns.** Research on multimodal interaction has shown significant individual differences among how users combine multiple modalities (referred to also as multimodal integration patterns (Oviatt, De Angeli, and Kuhn 1997)). There are large individual differences in users’ multimodal interaction patterns (Oviatt, De Angeli, and Kuhn 1997; Xiao et al. 2003; Oviatt, Lunsford, and Coulston 2005): some individuals tend to integrate different modalities simultaneously and overlap them temporally (simultaneous integrators), whereas others tend to complete one mode before starting the next one (sequential integrators). Studies have shown that older adults demonstrate either a simultaneous or sequential dominant integration during the production of speech and pen multimodal commands (Xiao et al. 2003). Designers should be aware of individual differences in multimodal integration patterns (Oviatt, Lunsford, and Coulston 2005) and multimodal interfaces should be created to accommodate individual interaction patterns.

- **Semantic organisation.** Complementarity and redundancy are two crucial aspects that should be considered in the design of multimodal interfaces for older adults. Studies have shown the importance of complementarity as an organisational theme in multi-modal interaction (Oviatt and Cohen 2000), while others have highlighted the benefits of redundancy (Mills and Alty 1998), especially when an interaction channel becomes indistinct or noisy. Indeed, a multimodal system can receive redundant information from more than one modality,
for instance when a command is given by moving a hand from right to left plus saying ‘go ahead’ in order to select the next item in a horizontal list. This redundancy can support the successful interpretation of the input message by the application, since one stream of information can be used to compensate for the other one during times of distortion or poor quality, or when the user forgets one command and correctly performs the other. Considering the drawbacks, redundant commands might present potential conflicts when the user gives two different (and conflicting) commands. Moreover, having to perform the same commands more than once and with more than one modality can be detrimental for the user experience. We further elaborate the design trade-offs related to this type of interaction in the later sections of this article (see Study 1).

Technology reliability. Users should be able to rely on multimodal technology, especially in the case of assistive technology. For this reason, multimodal processing should be accurate and robust. However, the fact that recognition algorithms are mainly trained on non-elderly population data might pose limitations on the performance of recognition systems due to specific characteristics of older users (e.g. age-related changes on vocal quality that might impact the performance of speech recognition systems (Vacher et al. 2012), or slower gesture speed that might degrade gesture recognition).

Interaction salience. Multimodal interaction implies that the user can fluidly switch between the supported input modalities at any time. Actually, most multimodal interfaces incorporate trigger mechanisms that activate the interaction with the system when a particular event is detected (e.g. starting speech recognition after the user says ‘Ok, Google’ or ‘Hey Siri’ or when the system senses that the user’s lips are moving). Triggers might be active, when they require a direct action from the user (e.g. a trigger word or phrase), or passive, when they are inferred by the system (e.g. lip movement). According to the related literature, the development of multimodal interfaces that rely too heavily on passive triggers, without adequate human control via active input modes, is potentially hazardous and might hinder user experience (Oviatt and Cohen 2015). Limited system transparency and unintended system consequences due to sensor false activation are among the main issues observed. On the other hand, active triggers require the user to remember a set of additional commands (and the correct timing for using them) and might hinder the interaction flow. A general recommendation is to maintain transparency on how to interact with the system (Oviatt and Cohen 2000), while at the same time to make both the system’s underlying operation as well as the type of data that is being collected accessible without being too complex. In this paper,

Table 1. Guidelines for addressing design challenges in designing multimodal interaction for older adults.	Design challenge	Interaction context	Related literature
Give the user or caregiver the choice to select the interaction modality or combination of modalities	Diverse abilities	Need to use the most suitable modality	• Munteanu and Salah 2017
• Naumann, Wechsung, and Hurtienne 2010			
• Reeves et al. 2004			
• McGee-Lennon, Wolters, and Brewster 2011			
Consider individual differences in multimodal integration patterns	Integration patterns	Need to support user’s integration pattern	• Oviatt and Cohen 2015
• Xiao et al. 2003			
• Oviatt and Cohen 2015			
• Mills and Alty 1998			
Consider the advantages of semantic complementarity or redundancy in the design of multimodal commands	Semantic organisation	Multiple interaction channels might complement or repeat semantic information	• Munteanu and Salah 2017
• Naumann, Wechsung, and Hurtienne 2010			
• Reeves et al. 2004			
• Mansson et al. 2020			
• Oviatt and Cohen 2015			
• Reeves et al. 2004			
Employ well-developed components and rely on complementary modalities to reduce error rates and increase usability	Technology reliability	Users need to be able to rely on the technologies	• Munteanu and Salah 2017
• Naumann, Wechsung, and Hurtienne 2010			
• Reeves et al. 2004			
• Oviatt and Cohen 2015			
• Reeves et al. 2004			
Combine active and passive triggers. Maintain transparency on how the system works and on how to interact with it.	Interaction salience	Need to support transparent, seamless interaction while making the user aware of the data being recorded.	• Oviatt and Cohen 2015
• Reeves et al. 2004			
• McGee-Lennon, Wolters, and Brewster 2011			
• Kuebis et al. 2017			
• Oviatt and Cohen 2015			
• Reeves et al. 2004			
• McGee-Lennon, Wolters, and Brewster 2011			
The system should dynamically adapt multimodal interfaces to user’s preferred or stronger modality	Adaptation and personalisation	Need to leverage user’s strongest or preferred modality	• Munteanu and Salah 2017
• Naumann, Wechsung, and Hurtienne 2010			
• Reeves et al. 2004			
• McGee-Lennon, Wolters, and Brewster 2011			
• Oviatt and Cohen 2015			
• Reeves et al. 2004			
• McGee-Lennon, Wolters, and Brewster 2011			
The system should support user-initiated interaction, supporting the user to independently interact with the technology.	Independence	Support user’s need for self-reliance and independence	• Munteanu and Salah 2017
• Reever et al. 2004			
• McGee-Lennon, Wolters, and Brewster 2011			
• Munteanu and Salah 2017			
• Reeves et al. 2004			
• McGee-Lennon, Wolters, and Brewster 2011			
Output modalities should respect users’ privacy and suit the specific context of use.	Privacy and context of use	Multimodality requires specific privacy and contextual requirements	• Munteanu and Salah 2017
• Naumann, Wechsung, and Hurtienne 2010
• Reeves et al. 2004
• McGee-Lennon, Wolters, and Brewster 2011 |
we further investigated this design challenge exploring the design trade-offs associated with different sets of multimodal commands that rely on different degrees of automation (see Study 2).

Adaptation and customisation. One-solution-fits-all models are inadequate as they do not take into account the characteristics of the individuals. Interaction and interface should be made adaptable and personalised based on the preferences of the user and the characteristics of the device. Many guidelines recommend that users should be able to customise the multimodal channels they would rather use for a given task in an application (Reeves et al. 2004; McGee-Lennon, Wolters, and Brewster 2011). Moreover, studies have found that older adults weigh the trade-offs between modalities differently, and therefore, they should be able to choose from a range of options (McGee-Lennon, Wolters, and Brewster 2011).

Independence. Multimodal interfaces should enable older users to independently interact with the technology, even when there is a specific impairment (for example hearing loss or reduced sight). Multimodal interfaces can also contribute to seniors’ perceived independence (Munteanu and Salah 2017; McGee-Lennon, Wolters, and Brewster 2011), if they can enable the user to function independently.

Privacy and context of use. The context of use should be carefully considered when designing multimodal technology (Neves et al. 2015; Rico and Brewster 2010a, 2010b): older people have privacy and social acceptability concerns about using some modalities in public spaces (as in the case of voice commands or mid-air gestures (Rico and Brewster 2010a)). However, one of the advantages of multimodal interaction is the possibility of using one modality rather than the other according to the specific context (e.g. gestures instead of voice commands in noisy environments).

4. Design trade-offs in multimodal interaction design for older adults

When considering the guidelines and the associated design challenges summarised above (Table 1), practitioners and designers should expect to handle a number of design trade-offs (Figure 1), which are situations that involve losing one quality or aspect of the design in return for gaining another quality or aspect (Fischer 2017). This might be particularly relevant when designing technology for a wide range of users, such as people with varying abilities like older adults, or when designing multimodal technology that is based on a wide range of component technologies. In these cases, designers might find themselves making decisions on how to apply a specific guideline in the design of multimodal interaction by weighing different options.

Starting from the design challenges identified in the previous section, we discuss the relationship of the different design challenges in multimodal interaction in the light of four different design trade-offs. These trade-offs represent four situational decisions during the design process related to the different design challenges.

![Design trade-offs](image-url)
challenges of multimodal interaction, as described in Table 2.

(1) Balancing complexity (Trade-off between complexity and simplicity). Providing users with the possibility to interact with more than one modality might increase interaction complexity. This might be true for some combinations of multimodal channels. For example, it has been shown that older adults find some modalities or combination of modalities too complex for multimodal applications (Neves et al. 2015; Naumann, Wechsung, and Hurtienne 2010; Lepicard and Vigouroux 2012). On the other hand, designing interaction with simplicity in mind might force a compromise on functionality (Norman 2010), and this holds true also for multimodal interaction. This trade-off might also affect system usability: a technology that supports many different modalities might increase in complexity and thus be less usable. However, complexity and simplicity are two categories highly investigated in HCI and design research. As others have highlighted (Joshi 2015; Eytam, Tractinsky, and Lowengart 2017), it is important to consider simplicity (and consequently complexity) not as an objective quality, but rather as a quality determined by how users perceive simplicity and complexity, thus related to the context of use and level of mastery.

(2) Balancing automation (Trade-off between automation and control). Multimodal technology relies largely on the application of advanced sensors and algorithms. In the design of multimodal interaction, attention should be devoted to how to communicate the behaviour of such complex systems to the user, especially when older adults are involved (Wu and Munteanu 2018; Broady, Chan, and

| Table 2. The relationship between design challenges and trade-offs. |
|---------------|---------------------------------|---------------------------------|---------------------------------|
| Design challenge | Interaction context | Related design trade-offs | Related questions |
| Diverse abilities | Need to use the most suitable modality | • Balancing complexity
• Balancing personalisation
• Balancing independence | • Are the users aware of the most suitable modality?
• How can the system assist users without being too intrusive? |
| Integration patterns | Need to support user’s interaction pattern | • Balancing complexity
• Balancing automation
• Balancing personalisation | • How to identify user interaction patterns?
• How to support changes in the interaction pattern?
• Can the system proactively identify the most suitable pattern, or is the user (or a third party, e.g. a caregiver) who can customise it? |
| Semantic organisation | Multiple interaction channels might complement or repeat semantic information | • Balancing complexity
• Balancing automation
• Balancing personalisation | • How do users respond to complementary or redundant multimodal commands?
• How might this influence the interaction experience? [This design challenge and related trade-offs are investigated in the first user study] |
| Technology reliability | Users need to be able to rely on their assistive technologies for critical support | • Balancing complexity
• Balancing automation
• Balancing personalisation | • How can the user recover from errors when the system is not reliable?
• How to provide sufficient training?
• Could a simple system be more reliable, but lack some advanced functionalities? |
| Interaction salience | Need to support transparent, seamless interaction while making the user aware of the data being recorded. | • Balancing complexity
• Balancing automation | • How is interaction perceived by users?
• How to support control over the interaction without increasing system complexity? [This design challenge and related trade-offs are investigated in the second user study] |
| Adaptation and personalisation | Need to leverage user’s strongest or preferred modality | • Balancing automation
• Balancing personalisation
• Balancing independence | • Should the system automatically adapt to the user’s characteristics, or is the user in control of the personalisation?
• How do users respond to user-generated or pre-defined commands? |
| Independence | Support user’s need for self-reliance and independence | • Balancing complexity
• Balancing independence | • Who is in charge of the personalisation (the user, the system or a third party, e.g. the caregiver)?
• How to involve caregivers in the process? |
| Privacy and context of use | Multimodality requires specific privacy and contextual requirements | • Balancing automation
• Balancing independence | • How is the adoption of multimodal interaction influenced by contextual factors?
• How do users interpret and perceive privacy when interacting with multimodal technology?
• How to support privacy control? |

Note: For each challenge a list of questions are reported to help practitioners in making trade-offs visible in the design process.
Caputi 2010). On the one hand, multimodal sensors can be used as background controls, to which the interface automatically adapts without any intentional and direct engagement on the part of the user (Dumas, Solórzano, and Signer 2013). In this sense, a proactive system might come forward with suggestions, or automatic responses, based on the sensed context and without engaging the user (automation). On the other hand, a reactive system requires the user to initiate action (control), which implies direct attention and focus on the activity.

(3) Balancing personalisation (Trade-off between adaptation and customisation). Multimodal interaction can be tailored to the specific preferences or needs of the user. This process might also end up in an over-personalisation of the interaction, making it difficult for the user to discover or experiment with alternative interaction modalities. There is indeed a trade-off between adaptation, where the system adapts the interaction to the user, and customisation, where the user is in control of the personalisation process. The latter allows users to control the interaction, assuming that they know how and what feature to control. The former gives control to the system without requiring an effort from the user, but it heavily relies on system reliability and performance. Another aspect in multimodal interaction related to this trade-off is the design of multimodal commands: commands can be created by designers and communicated to the user (pre-defined) or they can be defined by the users themselves (user-defined). About this distinction, studies in HCI have elaborated on the design trade-offs among different types of sets. As discussed by Nacenta et al. (2013), user-defined commands can (a) have a positive effect on accessibility (e.g. people with reduced right-hand mobility could create gestures that do not involve that hand), (b) enable adaptation to the individual’s needs, and (c) help leverage people’s personal background (e.g. culture, personality, and experiences) to provide easier to remember personal associations. In contrast, pre-defined and stock commands might require users to learn them, but they can be better recognised by the system. Moreover, they can be easily communicated and interpreted by caregivers or other people. However, the impact of these design choices when older adults are involved still remains an open question.

(4) Balancing independence (Trade-off between independence and assistance). The cognitive effort required from older users to personalise system interaction may be avoided by allowing other users to take care of the process. For instance, a multimodal technology could be designed to be personalised by caregivers or therapists. However, delegating actions to them might further increase their workload and could be perceived as an additional demand or burden. This might also decrease older adults’ independent use of the technology (Munteanu and Salah 2017).

The aforementioned list of trade-offs has not been intended to be exhaustive, but it is meant to help practitioners in considering additional factors in the design of multimodal technology with the final goal of making better, or at least more informed, design choices. As a support for guiding practitioners in exploring design trade-offs, we collected a number of questions in Table 2, which can help in identifying the design challenges and related trade-offs. By answering the questions, practitioners can clarify early in the design process the trade-off issues and determine whether a design is overly ambitious in trying to support competing concerns. To highlight the relevance of the trade-offs in the design process, we present two studies that illustrate the choices involving the design of multimodal technology for older adults. Specifically, the focus of our research are the two design challenges of semantic organisation and interaction salience (Figure 1). These two challenges underline the design trade-offs related to balancing complexity and balancing automation and are highly relevant for multimodal interaction design, especially when considering the initial design phases for defining interaction terminology.

5. Case study: older adults interacting with a tablet device through mid-air gestures and voice commands

The insights presented in the previous sections are instantiated on a case study, meant as an exploratory work, from a research project on multimodal interaction. This research was conducted in the frame of a larger project with the goal of developing multimodal interfaces for mobile devices where interaction is based on a combination of voice commands and mid-air one-hand gestures, specifically addressing the needs of older adults and visually impaired people. Speech and gestures are indeed two intrinsically linked ways of communicating, regardless of culture or language: people normally gesticulate when they talk on the phone and even blind people use gestures while speaking to blind listeners (Iverson and Goldin-
Meadow 1998). Since the dawn of multimodal interaction research, the simultaneous use of vocal commands and hand or finger gestures has been explored (e.g. Bolt 1980). These are two different interaction modalities designed to jointly convey meaning with the aim of improving interaction efficiency (Hauptmann 1989), even when they do not exactly overlap in time (Oviatt and Olsen 1994). The project explored the combination of voice commands and mid-air gestures when interacting with tablet devices. Such choice was driven by a preliminary study with seniors and interviews with experts where we investigated how elderly people interact with mobile devices and how they use software applications based on mid-air gesture interaction (Ferron, Mana, and Mich 2015). The findings highlighted that, although heavier and more uncomfortable to hold than a smartphone, older adults preferred tablet devices because they offer a larger screen and therefore texts more readable and icons easier to distinguish and select. Hardware wise, the trade-off was to adopt a 8.0-inch tablet for the project studies so to have a screen larger than a common smartphone and a device that was not too heavy to hold.

The choice of the tablet was also driven by the preferences expressed by the elderly participants and observed by the experts working with older adults in local associations for seniors. As emerged by the questionnaires and interviews administered to the panel of target users, older participants appreciated using the tablet device to take pictures when travelling or attending social events (e.g. birthday parties, anniversary, art exhibitions, concerts) to share them with relatives and friends. They also reported using the tablet to read newspapers, navigate on the Internet to search information, or listen to music, podcast, etc. Following these preferences and needs, we elaborated ‘Taking and sharing pictures’ as a first application scenario. Starting from this scenario, during the course of the project a number of user studies were conducted to explore how older adults use multimodal interaction when introduced to it for the first time, by investigating their preferences and opinions on different interaction modalities (voice, mid-air gestures, etc.). In order to provide additional insights on the challenges of designing multimodal interaction for older adults, we report below two of the studies conducted within the project, where we focused on the design trade-offs associated to the use of redundant multimodal commands (Study 1) and the trade-off analysis in choosing different sets of multimodal commands (Study 2). In particular, this research addressed the design challenges of Semantic Organization and Interaction Salience and investigated the associated trade-offs: balancing simplicity vs. complexity and automation vs. control (see Table 2 and Figure 1).

5.1. Study 1: design trade-offs of redundant multimodal commands in older, middle-aged and younger adults

In a first study, we wanted to closely investigate the performance of users interacting with a combination of modalities in a multimodal device, namely mid-air one-hand gestures and voice commands. In particular, this first study explored whether multimodal interaction characterised by the redundant use of gestures and speech commands varied with participants from different age groups. Following previous studies that compared users’ performance on interactive systems between different age groups (Zhou, Rau, and Salvendy 2012; 2014; Fezzani et al. 2010; Al-Showarah, AL-Jawad, and Sellahewa 2014), we considered three groups: younger (< 30), middle-aged (45-65) and older adults (> 65) to better investigate differences and similarities between age groups and in particular to explore age-related differences in the use of multimodal interaction and experience of redundant commands.

Redundant multimodal interaction is the use of two (or more) input modes for the same action – for example, closing an application by saying ‘close’ and waving with the hand. When designing multimodal interaction, redundant commands can be chosen to improve application reliability and robustness, and support the successful interpretation of the input message since two different inputs are available. At the same time, redundant interaction might negatively impact the interaction experience since redundant commands might be perceived as unnecessary, if not detrimental, by the user.

In this study, redundant interaction with a multimodal technology was examined in young, middle-aged, and older users to determine if age-related differences could be observed in the interaction with this technology. In particular, we explore the design trade-offs of balancing simplicity and complexity associated with the use of redundant multimodal commands by comparing performance and opinions of users from different age groups.

5.1.1. Design

The study used a Wizard-of-Oz (WoZ) approach to investigate how participants use redundant multimodal commands, combining mid-air one-hand gestures with speech inputs to interact with a tablet device (Samsung Galaxy Tab S2 8.0-inch). Since this study was conducted in the early stages of the project, WoZ has been used to
simulate the multimodal system and to gain early feedback on user behaviour. In designing the study, practical and ethical aspects for conducting WoZ studies with older adults have been considered (Schiavo et al. 2017). The study was carried out in a between-subject design, involving participants with different ages: young (25-30), middle-aged (45-65) and older (65-75) adults.

5.1.2. Participants
Thirty (30) participants took part in the study, 10 for each age group. Ten older participants were recruited among members of a local senior association; their average age was 68.9 years (SD = 3.62). Middle-aged and younger adults were recruited among the administrative personnel of a non-profit organisation; their average age was respectively 51.1 (SD = 2.92) and 30.2 (SD = 3.71) years. All groups included 5 female and 5 male participants. All participants had normal or corrected-to-normal vision, and none of them reported impairments in mobility, in handling objects or in hand/wrist flexibility.

5.1.3. Procedure
After a short introduction and training, participants were invited to use the redundant multimodal commands to accomplish the task of taking some pictures with a tablet device. This task was chosen since taking photos with a tablet is nowadays popular (Boulanger et al. 2016) also among seniors. Furthermore, it is a relatively easy task that can be operated via multimodal interaction. Moreover, daily and recreational use of tablet devices, e.g. for the purposes of taking pictures, has not received much attention (Carreira et al. 2017), especially when considering older users (Ferron, Mana, and Mich 2019).

Participants were explicitly instructed to hold the tablet device with one hand and to perform the multimodal commands using the other hand and their voice. The taking a picture task was composed of eight sub-tasks: open the camera application (1), shoot a picture (2), zoom in (3) and out (4), scroll up (5) and down (6) the effect list, scroll the picture gallery to the right (7) and to the left (8).

During the study session, the ‘wizard’ operated the tablet device to carry out the actions corresponding to the interaction performed by the participants. A facilitator supported the participants through the study procedure by guiding them through the sequence of sub-tasks only if needed. The facilitator would not correct any interaction command, nor provide any feedback to the participants about their interaction. Each interaction performed during the task was video recorded for further video analysis.

5.1.4. Data analysis
Data analysis included the analysis of quantitative and qualitative information using a mixed-method approach. Quantitative data were extracted from video analysis of the recorded interaction and were analysed to see how users actually performed the multimodal commands. Each command was coded by interaction type as gesture-only, voice-only or multimodal – where both gesture and voice input were performed. Temporal occurrence was also annotated as in parallel if the two modalities were performed with less than 2 sec. delay, otherwise it was considered in sequence. The time taken to complete the task was recorded as well. Moreover, at the end of the task, qualitative individual interviews were conducted to explore user experience and investigate perception on the redundant commands. During the interview, we invited participants to reflect on the different modalities of interaction they had experienced and to offer suggestions or comments. Questions made during the interview included: ‘What modality did you prefer?’, ‘Did you prefer to use only one of the two modalities (voice or gesture), or the combination of the two?’, ‘How did you find the repeated commands?’

5.1.5. Results
In the video analysis, all interactions performed by the users were annotated. Across all groups of participants, the predominant interaction was multimodal commands (Friedman test: \(\chi^2=53.4, p<.01 \); post-hoc with Bonferroni correction: both \(p<.01 \)). No statistically significant differences were observed between groups. Within multimodal interactions, hand gestures and speech were frequently performed in parallel (\(\chi^2 = 46, p<.01 \); post-hoc: both \(p<.01 \)). However, older adults showed fewer parallel interactions compared to the other groups (Kruskal–Wallis (K-W) test: \(H(2) = 11.1, p<.01 \); post-hoc with Dunn-Bonferroni (D-B) comparisons: \(p<.05 \) older compared to middle-aged, and \(p<.01 \) older compared to younger adults), and exhibited more gesture-first interactions (K-W: \(H(2) = 16.4, p<.01 \); D-B: both \(p<.01 \)).

Execution time. Average time for completing the whole task differed between groups (Univariate ANOVA: \(F(2.27) = 9.50, p<.01 \)). Older and middle-aged adults were slower compared to younger participants (post-hoc comparisons with Bonferroni correction: \(p<.05 \) and \(p<.01 \) respectively, Figure 2).

Interviews. Older adults and the majority of middle-aged adults showed appreciation for multimodal interaction (e.g. Older Participant - OP02: ‘I liked to take photos in this way’, Middle-aged Participant – MP09: ‘I liked to ask the tablet to shoot a photo for me!’),
and preferred voice interaction compared to gesture only (e.g. OP08: 'Using your voice is so natural', MP077: 'If I have to choose between talking and gesturing, I prefer to use my voice'). Older and middle-aged adults were not concerned about the redundancy of repeating the same command using the gestures and the voice (OP09: 'It’s natural: when you talk, you use your hands', MP05: 'It is hard to make mistakes if I use both my voice and my hands'). The concerns of older adults about voice interaction focused on the social acceptability of using voice commands in public (e.g. OP01: ‘I don’t want others to hear me when I want to take a picture’, OP04: ‘If I have to speak out loud, I will bother the people around me’, OP07: ‘I love to take pictures during my walks. If I am alone I will use the voice, but if I am with my friends, I prefer to just touch the screen’, OP06: ‘Gesture to the tablet might be seen as weird if there are other people around’). This aspect is in line with findings on acceptability of multimodal interaction in public places (Rico and Brewster 2010b).

Younger adults largely preferred single-modality interaction (especially gestures) or the most common touch interaction (e.g. Younger participant – YP01: 'This tablet has been made for being touched'). In particular, they were more negative about speech (e.g. YP09: 'I am not used to talking to a tablet', YP06: 'It feels awkward to speak out loud to give a command when I can just use my hands') and multimodal interaction (e.g. YP08: 'Why should I repeat myself by using both gestures and speech?').

5.1.6. Discussion
The findings of this user study point out both similarities and differences in using redundant multimodal inputs between age groups and explore the trade-off of balancing complexity (vs. simplicity) related to the use of redundant commands.

Overall, multimodal interaction was the predominant type of interaction: all groups, including older participants, were able to easily combine modalities in a redundant way when interacting with the tablet device. In line with previous research on gestural interaction (Stössel and Blessing 2010), older and middle-aged adults were slower than younger participants when performing the commands. We also observed a tendency in older participants to perform mid-air gestures before using the voice commands. When using multimodal commands, older participants used more gesture-first commands compared to the other groups. When older participants were unsure about which word to use, they performed the gesture and then gave the voice input. This was not the case for middle-aged and younger adults. Furthermore, we also observed that multimodal commands performed by older adults were less synchronous than those performed by the other two groups. In other words, older adults tended to perform more in-sequence commands compared to the other two groups.

Older adults (and in part also middle-aged adults) were less concerned about the redundancy of repeating the same command using both gestures and their voices compared to younger participants. This suggests that redundancy might not negatively influence acceptability, at least for older users. However, potential limits related to the social context in which the interaction is performed should be carefully considered in the design of multimodal interfaces, as emerged from the interviews.

All these findings proved useful to inform the design of multimodal commands that were tested in a subsequent user study involving older participants only.
Specifically, based on the results of this study, two sets of redundant multimodal commands that differ in the number and type of commands have been developed and tested with older participants to investigate the design trade-offs between automation vs. control.

5.2. Study 2: evaluating mid-air gestures and voice commands sets with older adults

In a second study, we investigated which of two sets of multimodal commands were preferred by a group of older participants. The two sets differed in number and type of multimodal commands included (all combining voice commands and mid-air one-hand gestures). The two sets differed not only in the number of commands but also in the degree of complexity and level of automation (see Interaction salience) that characterised the interaction. We faced indeed a design choice in the continuum between adopting a larger set of commands that maintain the control of the interaction to the user and a set with fewer commands that relies on the system’s automatic responses. In order to investigate how users might perceive the overall interaction with these commands and how to support control over the interaction, an user study was conducted. The study tested the two different sets and explored the related interaction experience of a group of twenty older users, investigating the design trade-off associated with the adoption of the two sets.

5.2.1. Multimodal command design

Two different sets of multimodal commands were compared in the study (Figure 3). These two sets were designed to allow users to complete a task (i.e. ‘Play a podcast and an audiobook’) by interacting with the interface of the tablet device. Both sets allowed for directional navigation (up, down, left, right), for selecting elements of the interface (e.g. selecting the element to play), and for returning back to a previous action. However, the two sets differed in the number of commands and in the mapping between functions and multimodal commands.

Complete command set. The set includes a total of 6 commands, each composed of a mid-air gesture and a vocal command. Four commands were used to navigate the interface (list vertical scroll, list horizontal scroll). Two commands were designed for specific interaction not related to spatial navigation, i.e. one for returning to the previous screen (‘back’) and the other for selecting an element on the screen (‘select’). These two commands were designed after an elicitation study conducted with HCI experts and with older adults (Ferron, Mana, and Mich 2019).

Simple command set. The simple command set was designed using only 4 commands. Compared to the complete set, the function of the two commands not related to spatial navigation (‘back’ and ‘select’) were mapped to two navigation commands: returning to the previous screen (‘back’) was mapped to the ‘left’ gesture, while selecting an item was mapped to the ‘right’ gesture. With this set, items in both vertical and horizontal lists could be scrolled using the up/down gestures.

The two sets of commands were analysed considering the trade-off discussed in the previous section, specifically the balance between simplicity and complexity and the trade-off between automation and control (see Table 3). This analysis allowed us to better understand the design trade-offs related to the two sets and to guide the design process. Specifically, an user studies was carried out to collect information on the performance and on the perceived user experience in the interaction.

5.2.2. Study design

The study was carried out in a between-subject design with two groups of 10 participants each (20 in total). Participants were asked to complete two similar tasks (i.e. play a podcast and an audiobook) while interacting with a prototype device using one of the two different sets of multimodal commands of mid-air one-hand gesture and voice commands. Also in this study, the task was chosen as it represents a daily and recreational use of tablet devices (Carreira et al. 2017).

5.2.3. Participants

Twenty (20) older adults (10 Males and 10 Females) took part in the study (Mean age 71 years, SD = 8.1). None of the participants were familiar with the multimodal application and were interacting with it for the first time. Participants were divided into two groups, each group was formed so as to balance gender composition, age (M = 71, SD = 6.5, and M = 71.1, SD = 9.8, t (18) = 0.03, p=0.98) and had similar habits and attitudes toward technology (measured through the Attitudes Toward Technologies Questionnaire – ATTQ (Zambianchi and Carelli 2018), M = 3.6, SD = 0.7 and M = 3.2, SD = 1.2, t(18) = 0.96, p = 0.35).

5.2.4. Material and procedure

In this study, metrics related to the objective and subjective performance measures of the multimodal system are considered.

Regarding objective performance, recognition accuracy scores were calculated as the percentage of correctly recognised commands over the total number of
attempts. This metric assesses the reliability of the system, considered as the number of interaction attempts that were correctly recognised by the multimodal sensor.

Subjective system assessment was measured with a modified version of the SASSI (Hone and Graham 2000) and USE (Lund 2001) questionnaires. SASSI was originally developed to assess users’ perception of speech system interfaces and we included four scales (Perceived Accuracy, Cognitive Demand, Annoyance and Speed) that were adapted to cover both speech and mid-air gesture commands. The interaction experience was evaluated using the USE questionnaire items, considering four scales related to Usefulness, Ease of Learning, Ease of Use and Satisfaction.

During the study, participants were randomly assigned to one of the two command sets. They first completed a tutorial on multimodal interaction and then executed the tasks. Participants evaluated the interaction by completing the questionnaire after solving all tasks.

Table 3. Analysis of trade-offs between simple and complete command sets.

Simple set	Balancing complexity	Balancing automation
Few commands to remember, but each command has multiple functions. All commands are related to spatial navigation.	The result of each interaction depends on the system state.	
Complete set	More commands to remember, each command has one function. Some commands are user-defined.	Having specific commands for each function gives more control over the interaction.

Figure 3. The two command sets tested in the study.

in this study (Perceived Accuracy, Cognitive Demand, Annoyance and Speed) that were adapted to cover both speech and mid-air gesture commands. The interaction experience was evaluated using the USE questionnaire items, considering four scales related to Usefulness, Ease of Learning, Ease of Use and Satisfaction.

During the study, participants were randomly assigned to one of the two command sets. They first completed a tutorial on multimodal interaction and then executed the tasks. Participants evaluated the interaction by completing the questionnaire after solving all tasks.

5.2.5. Results

On average, recognition accuracy was $M = 78\%$ (SD = 12) with the simple set and $M = 69\%$ (SD = 15) with the complete set, and no statistically significant difference was observed ($t(18) = 1.6, p = 0.13$).

Regarding the questionnaire scores (Figure 4), a statistically significant difference in ratings was observed
between the two sets (one-way MANOVA: \(F(4,15) = 3.04, p < 0.05\)). The complete gesture set scored generally lower with respect to the simple set when considering the user interaction experience (univariate ANOVAs are reported in Table 4). Follow-up analysis revealed that users rated the simple set as easier to use and learn. They were more satisfied with the system and perceived it as more useful compared to the other group. They also perceived the system as more accurate, even though no significant difference between accuracy metrics could be observed. No differences were found in the cognitive demand, annoyance and perceived system speed scales.

5.2.6. Discussion
The results provide evidence of preference toward the use of the simple command set. The trade-offs analysis showed both challenges and opportunities of the two commands sets, highlighting the potential consequences related to the use of each set in terms of simplicity and automation. On the one hand, the complete set was perceived as more difficult to learn and use, even though it provided the user with more control over the interaction. On the other hand, the simple set resulted in more positive feedback from the users. Significantly, the system was also perceived as more accurate when using the simple command set, even though no significant differences in recognition accuracy scores were observed between the two conditions. However, some open issues still remain: for example, even though all participants correctly remembered the gestures and the vocal commands of the two sets, memorability was not specifically investigated in the long term.

The results of this second study demonstrate the effect of different design choices and the resulting outcome in terms of trade-offs: the complete set is an option that increased the overall complexity of the system (that was indicated by the lower scores reported by the users), but it might allow more control over the interaction. Conversely, the simple set included a lower number of commands but relied on a higher degree of automatism since the system disambiguated the command function (e.g. ‘go left’ or ‘back’) depending on the interface state (e.g. whether browsing a horizontal list or a vertical menu).

Table 4. Follow-up univariate ANOVAs on the interaction experience scales.

Scales	Simple set Mean (SD)	Complete set Mean (SD)	\(F\)	\(df\)
Perceived accuracy	3.4 (0.4)	2.7 (0.6)	8.7*	18
Cognitive Demand	2.6 (0.8)	2.6 (0.8)	0.01	18
Annoyance	2.3 (0.6)	2.2 (0.9)	0.01	18
Speed	2.9 (0.6)	2.7 (0.9)	0.2	18
Ease of Use	3.7 (0.6)	2.8 (0.8)	6.6**	18
Ease of Learning	4.5 (0.7)	3.5 (0.9)	6.9**	18
Usefulness	3.4 (0.6)	2.4 (0.7)	13.9*	18
Satisfaction	4.1 (0.7)	2.8 (0.9)	12.7**	18

* \(p < 0.01\); ** \(p < 0.05\).

6. Conclusion
This paper presented some of the challenges and trade-offs that designers, HCI and UCD practitioners might encounter when designing multimodal interfaces. On the one hand, this paper offers a reflection on how to identify the design trade-offs for multimodal interaction for older adults. On the other hand, this work provides practitioners with a framework for analysing and dealing with such trade-offs.
This paper analysed design trade-offs in the creation of multimodal technology for older adults using mobile devices (specifically tablet devices). In particular, we identified four main trade-offs related to the balancing of (1) simplicity, (2) automation, (3) personalisation and (4) independence. Even though our analysis focuses on older adults as the target user group, we believe that most of these trade-offs might also hold for the wider user population.

Discussing the case study of mid-air gesture and vocal interaction, we explored some design trade-offs in the design of such interaction mechanisms for older adults in two user studies. The first study investigated the differences of interacting with multimodal commands by comparing performance and feedback from users of different age groups. We discussed the design trade-off between simplicity and complexity while creating multimodal interaction that requires the use of redundant commands. To this regard, the results from the first study show that older adults, as well as younger participants, could easily combine different interaction modalities in a redundant way, reporting less concern about redundancy with respect to younger users. This suggests that, while redundancy might discourage younger adults from adopting this technology, it might not negatively influence acceptability in older adults. Recommendations for HCI practitioners include the design of temporally adaptive systems, which gradually guide older users from beginner level to expert level. At least initially (and optionally), these systems should comprise redundant multimodal interaction to (a) increase recognition robustness when users may be more error-prone, (b) compensate for the slower execution of commands by older users, and at the same time (c) foster learning with frequent repetition of gestures and voice commands.

In the second study, we found that a simple set of four multimodal commands received more positive feedback with respect to a larger set of six commands. Even if the complete set allowed more control over the interaction and was richer in terms of semantic interpretation, users preferred the simple set that was also considered easier to learn and to use. This second study showed how design trade-offs might affect the overall user perception about interaction and technology performance. Designers may consider including a simple set of multimodal commands as a default setting, allowing users the time to become acquainted with the interaction modality and offering the opportunity to optionally choose a more complex set at a later stage. It seems reasonable to expect that once older users familiarise themselves with multimodal interaction, they may opt for a command set that allows more control, rather than for the simple one. However, all the older adults who participated in our studies were novice users with regard to mid-air gestures and voice commands, therefore we were not able to assess the preferences of expert older adults in this regard. Moreover, the two user studies were conducted during the early stage of the project, using prototype technology and a controlled experimental procedure that inevitably limited the ecological validity of the studies. Even though the user studies were conducted in a domestic environment and used real-life tasks representing a common daily and recreational use of tablet devices by older adults (i.e. taking pictures and listening audio), we cannot generalise our findings to other types of activities. However, in both user studies the analyses helped to clarify trade-off issues and identify both acceptable and less acceptable solutions, informing the design process. However, while the framework was successfully used in the two studies, it needs to be further investigated and evaluated.

The user studies covered a particular type of mobile device (i.e. tablet) and of multimodal interaction (i.e. the combination of mid-air one-hand gestures and vocal commands), as well as a specific subset of design trade-offs (mainly the balance between simplicity/complexity and autonomy/control). Considering the practical implications, beyond the application scenarios that the elderly themselves highlighted during the studies (e.g. taking pictures, reading online newspapers, listening to podcasts, navigating on the Internet, e-banking, etc.), mobile technology based on mid-air gesture and vocal interaction has several positive implications, offering advantages in particularly adverse conditions, where gesture-based interaction is preferable to voice commands (e.g. when people are in a very noisy environments or crowded public places) or situations where a touch-based interaction would be not feasible (e.g. when people are cooking and their hands are dirty or smeared, or on sunny days where the screen of mobile devices is not visible due to the excessive sunlight), or would be quite complicated (e.g. during a very cold winter day when people are outdoor and wearing gloves).

While our study shed light on the design process of such types of multimodal interaction, future work is needed to deeply explore the influence of certain design choices on different interaction modalities (for example tangible, gestural, and touch-based modalities). Moreover, we believe that the trade-off list is not exhaustive and that different aspects can emerge when considering for instance different application domains or different user groups. Furthermore, future work should provide a more in-depth exploration of the design trade-offs related to the personalisation of a multimodal system and the balance between control and autonomy in the
use of such technology by older adults, also by extending the sample of users in order to overcome the limitation, on this regard, of the first user study.

Lastly, we believe that carefully assessing design ideas that consider such trade-offs might help HCI and UCD researchers with developing multimodal technology that can better accommodate older users’ characteristics. In order to achieve this, co-design, end-user involvement and value-centered design approaches (Fischer 2017) can certainly help designers to balance different, and often competing, design choices. In this respect, this work provides guidance for researchers and practitioners who engage in a structured reflection on the design trade-offs that need to be considered when tackling specific design challenges. As shown in the process reported in the two studies, by identifying the design challenges and exploring the corresponding trade-offs in the design of multimodal interaction, user studies and more direct ways of user involvement can help assess advantages, and related disadvantages, that any design choice entails.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This work was supported by the Horizon 2020 Project ECO-MODE “Event-Driven Compressive Vision for Multimodal Interaction with Mobile Devices” (grant agreement no. 644096).

ORCID

Gianluca Schiavo http://orcid.org/0000-0003-3529-3889
Ornella Mich http://orcid.org/0000-0002-9063-2540
Michela Ferron http://orcid.org/0000-0003-4840-3266
Nadia Mana http://orcid.org/0000-0002-0678-1261

References

Al-Showarah, Suleyman, Naseer AL-Jawad, and Harin Sellahewa. 2014. “Effects of User Age on Smartphone and Tablet use, Measured With an Eye-Tracker Via Fixation Duration, Scan-Path Duration, and Saccades Proportion.” In International Conference on Universal Access in Human-Computer Interaction, 3-14.

Barnard, Yvonne, Mike D. Bradley, Frances Hodgson, and Ashley D. Lloyd. 2013. “Learning to Use New Technologies by Older Adults: Perceived Difficulties, Experimentation Behaviour and Usability.” Computers in Human Behavior 29 (4): 1715–1724.

Bolt, Richard A. 1980. “Put-That-There” Voice and Gesture at the Graphics Interface.” In Proceedings of the 7th Annual Conference on Computer Graphics and Interactive Techniques, 262–270.

Boulanger, Catí, Saeideh Bakhshi, Joseph “Jofish” Kaye, and David A Shamma. 2016. “The Design, Perception, and Practice of Tablet Photography.” In Proceedings of the 2016 ACM Conference on Designing Interactive Systems, 84–95. New York, NY, USA.

Broady, Tim, Amy Chan, and Peter Caputi. 2010. “Comparison of Older and Younger Adults’ Attitudes Towards and Abilities with Computers: Implications for Training and Learning.” British Journal of Educational Technology 41 (3): 473–485.

Carreira, Micael, Karine Lan Hing Ting, Petra Cæsbanka, and Daniel Gonçalves. 2017. “Evaluation of in-air Hand Gestures Interaction for Older People.” Universal Access in the Information Society 16 (3): 561–580.

Davis, Fred D. 1989. “Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology.” MIS Quarterly 13 (3): 319–340.

Dumas, Bruno, Maria Solorzano, and Beat Signer. 2013. “Design Guidelines for Adaptive Multimodal Mobile Input Solutions.” In Proceedings of the 15th International Conference on Human–Computer Interaction with Mobile Devices and Services, 285–294. ACM.

Eytam, Eleanor, Noam Tractinsky, and Oded Lowengart. 2017. “The Paradox of Simplicity: Effects of Role on the Preference and Choice of Product Visual Simplicity Level.” International Journal of Human-Computer Studies 105 (September): 43–55.

Farage, Miranda A., Kenneth W. Miller, Funmi Ajayi, and Deborah Hutchins. 2012. “Design Principles to Accommodate Older Adults.” Global Journal of Health Science 4 (2): 2–25.

Ferron, Michela, Nadia Mana, and Ornella Mich. 2015. “Mobile for Older Adults: Towards Designing Multimodal Interaction.” In Proceedings of the 14th International Conference on Mobile and Ubiquitous Multimedia, 373–378.

Ferron, Michela, Nadia Mana, and Ornella Mich. 2019. “Designing Mid-Air Gesture Interaction with Mobile Devices for Older Adults.” In Perspectives on Human-Computer Interaction Research with Older People, edited by Sergio Sayago, 81–100. Cham: Springer.

Fezzani, Khaled, Cédric Albinet, Bernard Thon, and J.-C. Marquie. 2010. “The Effect of Motor Difficulty on the Acquisition of a Computer Task: a Comparison Between Young and Older Adults.” Behaviour & Information Technology 29 (2): 115–124.

Fischer, Gerhard. 2017. “Exploring Design Trade-Offs for Quality of Life in Human-Centered Design.” Interactions 25 (1): 26–33.

Fischer, Gerhard, Daniela Fogli, Anders Mørch, Antonio Piccinno, and Stefano Valtolina. 2020. “Design Trade-Offs in Cultures of Participation: Empowering end Users to Improve Their Quality of Life.” Behaviour & Information Technology 39 (1): 1–4.

Fisk, Arthur D. 2009. Designing for Older Adults: Principles and Creative Human Factors Approaches. 2nd ed, edited by Human Factors, and Aging Series. Boca Raton: CRC Press.

Fisk, Arthur D., Wendy A. Rogers, Neil Charness, Sara J. Czaja, and Joseph Sharit. 2009. Designing for Older
Adults: Principles and Creative Human Factors Approaches, Second Edition. Boca Raton, FL: CRC Press.

Fogli, Daniela, Antonio Piccinno, Stefan Carmien, and Gerhard Fischer. 2020. "Exploring Design Trade-Offs for ACHIEVING Social Inclusion in Multi-Tiered Design Problems." Behaviour & Information Technology 39 (1): 27–46.

Gerling, Kathrin M., Matthias Klauser, and Joerg Niesenhaus. 2011. "Measuring the Impact of Game Controllers on Player Experience in FPS Games." In Proceedings of the 15th International Academic MindTrek Conference: Envisioning Future Media Environments, 83–86. MindTrek ’11. New York, NY, USA: ACM.

Hauptmann, Alexander G. 1989. “Speech and Gestures for Graphic Image Manipulation.” In Proceedings of the SIGCHI Conference on Hum. Factors Comput. Syst. ACM, New York, NY, USA, 241–245.

Hawthorn, D. 2000. “Possible Implications of Aging for Interface Designers.” Interacting with Computers 12 (5): 507–528.

Himmelsbach, Julia, Markus Garschall, Sebastian Egger, Susanne Steffek, and Manfred Tscheslig. 2015. “Enabling Accessibility Through Multimodality?: Interaction Modality Choices of Older Adults.” In Proceedings of the 14th International Conference on Mobile and Ubiquitous Multimedia, 195–199. MUM ’15. New York, NY, USA: ACM.

Hone, Kate S., and Robert Graham. 2000. “Towards a Tool for the Subjective Assessment of Speech System Interfaces (SASSI).” Natural Language Engineering 6 (3–4): 287–303.

Iverson, Jana M., and Susan Goldin-Meadow. 1998. "Why People Gesture When They Speak." Nature 396: 228. doi:10.1038/24300.

Joshi, Suhas Govind. 2015. “Designing for Experienced Simplicity: Why Analytic and Imagined Simplicity Fail in Design of Assistive Technology.” International Journal on Advances in Intelligent Systems 8 (3–4): 324–338.

Kuerbis, A., A. Mulliken, F. Muench, A. A. Moore, and D. Gardner. 2017. “Older Adults and Mobile Technology: Factors That Enhance and Inhibit Utilization in the Context of Behavioral Health.” Mental Health and Addiction Research 2: 1–11.

Lemmälä, Saija, Akos Vetek, Kai Mäkelä, and Dari Trendafilov. 2008. “Designing and Evaluating Multimodal Interaction for Mobile Contexts.” In Proceedings of the 10th international conference on Multimodal interfaces, 265–272. ACM.

Lepicard, Guillaume, and Nadine Vigouroux. 2012. “Comparison Between Single-Touch and Multi-Touch Interaction for Older People.” In Proceedings of the 13th International Conference on Computers Helping People with Special Needs - Volume Part I, 658–665. ICCHP’12. Berlin, Heidelberg: Springer-Verlag.

Lindsay, Stephen, Daniel Jackson, Guy Schofield, and Patrick Olivier. 2012. “Engaging Older People Using Participatory Design.” In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 1199–1208. CHI ’12. New York, NY, USA: ACM.

Lund, Arnold M. 2001. “Measuring Usability with the Use Questionnaire.” Usability Interface 8 (2): 3–6.

Mansson, Linda, Maria Wiklund, Fredrik Öhberg, Karin Danielsson, and Marlene Sandlund. 2020. “Co-creation with Older Adults to Improve User-Experience of a Smartphone Self-Test Application to Assess Balance Function.” International Journal of Environmental Research and Public Health 17 (11): 3768.

McGee-Lennon, Marilyn Rose, Maria Klara Wolters, and Stephen Brewster. 2011. “User-Centred Multimodal Reminders for Assistive Living.” In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 2105–2114. CHI ’11. New York, NY, USA: ACM.

Melenhorst, Anne-Sophie, Wendy A. Rogers, and Evan C. Caylor. 2001. “The Use of Communication Technologies by Older Adults: Exploring the Benefits from the User’s Perspective.” Proceedings of the Human Factors and Ergonomics Society Annual Meeting 45 (3): 221–225.

Mills, Karen McKenzie, and James L. Alty. 1998. “Investigating the Role of Redundancy in Multimodal Input Systems.” In Gesture and Sign Language in Human-Computer Interaction, edited by Ipke Wachsmuth, and Martin Fröhlich, 159–171. Lecture Notes in Computer Science 1371. Berlin Heidelberg: Springer.

Munteanu, Cosmin, and Albert Ali Salah. 2017. “Multimodal Technologies for Seniors: Challenges and Opportunities.” In The Handbook of Multimodal-Multisensor Interfaces, edited by Sharon Oviatt, Björn Schuller, Philip R. Cohen, Daniel Sonntag, Gerasimos Potamianos, and Antonio Krüger, 319–362. New York, NY, USA: Association for Computing Machinery and Morgan & Claypool.

Nacenta, Miguel A., Yemliha Kamber, Yizhou Qiang, and Per Ola Kristensson. 2013. “Memorability of Pre-Designed and User-Defined Gesture Sets.” In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 1099–1108. CHI ’13. New York, NY, USA: ACM.

Naumann, Anja B., Ina Wechsung, and Jörn Hurtienne. 2010. “Multimodal Interaction: A Suitable Strategy for Including Older Users?” Interacting with Computers 22 (6): 465–474.

Neves, Barbara Barbosa, Rachel L. Franz, Cosmin Munteanu, Ronald Baecker, and Mags Ngo. 2015. “‘My Hand Doesn’T Listen to Me!’: Adoption and Evaluation of a Communication Technology for the ‘Oldest Old.’” In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, 1593–1602. CHI ’15. New York, NY, USA: ACM.

Norman, Donald A. 2010. Living with Complexity. Cambridge, MA: MIT Press.

Obrenovic, Zeljko, Julio Abascal, and Dusan Starcevic. 2007. “Universal Accessibility As a Multimodal Design Issue.” Communications of the ACM 50 (5): 83–88.

Oviatt, Sharon. 2003. “Multimodal Interfaces.” The Human-Computer Interaction Handbook: Fundamentals, Evolving Technologies and Emerging Applications 21: 413–432.

Oviatt, Sharon, and Philip Cohen. 2000. “Perceptual User Interfaces: Multimodal Interfaces That Process What Comes Naturally.” Communications of the ACM 43 (3): 45–53.

Oviatt, Sharon, and Philip R. Cohen. 2015. “The Paradigm Shift to Multimodality in Contemporary Computer Interfaces.” Synthesis Lectures on Human-Centered Informatics 8 (3): 1–243.
Oviatt, Sharon, Antonella De Angeli, and Karen Kuhn. 1997. “Integration and Synchronization of Input Modes During Multimodal Human–Computer Interaction.” In Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems, 415–422. CHI ’97. New York, NY, USA: ACM.

Oviatt, Sharon, Rebecca Lunsford, and Rachel Coulston. 2005. “Individual differences in multimodal integration patterns: What are they and why do they exist?” In Proceedings of the SIGCHI conference on Human factors in computing systems, 241-249. ACM.

Oviatt, Sharon, and Erik Olsen. 1994. “Integration Themes in Multimodal Human–Computer Interaction.” In Proceedings of the International Conference on Spoken Language Processing, edited by K. Shirai, S. Furui, and K. Kakehi, Vol. 2, 551–554. Yokohama, Japan: Acoustical Society of Japan.

Reeves, Leah M., Jennifer Lai, James A. Larson, Sharon Oviatt, T. S. Balaji, Stéphanie Buisine, Penny Collings, et al. 2004. “Guidelines for Multimodal User Interface Design.” Communications of the ACM 47 (1): 57–59. doi:10.1145/962081.962106.

Rico, Julie, and Stephen Brewster. 2010a. “Usable Gestures for Mobile Interfaces: Evaluating Social Acceptability.” In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 887–896. CHI ’10. New York, NY, USA: ACM.

Rico, Julie, and Stephen Brewster. 2010b. “Gesture and Voice Prototyping for Early Evaluations of Social Acceptability in Multimodal Interfaces.” In International Conference on Multimodal Interfaces and the Workshop on Machine Learning for Multimodal Interaction, 16:1–16:9. ICMIML’10. New York, NY, USA: ACM.

Schiavo, Gianluca, Ornella Mich, Michela Ferron, and Nadia Mana. 2017. “Mobile multimodal interaction for older and younger users: Exploring differences and similarities.” In Proceedings of the 16th International Conference on Mobile and Ubiquitous Multimedia, 407-414.

Seeman, T. E., T. M. Louisiana, M. Albert, and L. Berkman. 2001. “Social Relationships, Social Support, and Patterns of Cognitive Aging in Healthy, High-Functioning Older Adults: MacArthur Studies of Successful Aging.” Health Psychology: Official Journal of the Division of Health Psychology, American Psychological Association 20 (4): 243–255.

Stößel, Christian, and Lucienne Blessing. 2010. “Mobile Device Interaction Gestures for Older Users.” In Proceedings of the 6th Nordic Conference on Human–Computer Interaction: Extending Boundaries, 793–796. NordiCHI ’10. New York, NY, USA: ACM.

Turk, Matthew. 2014. “Multimodal Interaction: A Review.” Pattern Recognition Letters 36 (January): 189–195.

Vacher, M., F. Portet, S. Rossato, F. Aman, C. Golanski, and R. Duheau. 2012. “Speech-Based Interaction in an AAL-Context.” Gerontechnology 11 (2): 310–310.

Venkatesh, Viswanath, Michael G. Morris, Gordon B. Davis, and Fred D. Davis. 2003. “User Acceptance of Information Technology: Toward a Unified View.” MIS Quarterly 27 (3): 425–478.

Vines, John, Gary Pritchard, Peter Wright, Patrick Olivier, and Katie Brittain. 2015. “An Age-Old Problem: Examining the Discourses of Ageing in HCI and Strategies for Future Research.” ACM Transactions on Computer-Human Interaction 22 (1): 1–27.

Wechsung, Ina, and Anja B. Naumann. 2008. “Evaluation Methods for Multimodal Systems: A Comparison of Standardized Usability Questionnaires.” In Perception in Multimodal Dialogue Systems, edited by Elisabeth André, Laila Dybkjær, Wolfgang Minker, Heiko Neumann, Roberto Pieraccini, and Michael Weber, 5078:276–284. Berlin, Heidelberg: Springer Berlin Heidelberg.

Wilkowska, Viktoria, and Martina Ziefle. 2009. “Which Factors Form Older Adults’ Acceptance of Mobile Information and Communication Technologies?” In HCI and Usability for E-Inclusion, edited by Andreas Holzinger, and Klaus Miesenberger, 81–101. Lecture Notes in Computer Science 5889. Berlin Heidelberg: Springer.

Wu, Alan Yusheng, and Cosmin Munteanu. 2018. “Understanding Older Users’ Acceptance of Wearable Interfaces for Sensor-Based Fall Risk Assessment.” In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, 119:1–13. CHI ’18. New York, NY, USA: ACM.

Xiao, Benfang, Rebecca Lunsford, Rachel Coulston, Matt Wesson, and Sharon Oviatt. 2003. “Modeling Multimodal Integration Patterns and Performance in Seniors: Toward Adaptive Processing of Individual Differences.” In Proceedings of the 5th International Conference on Multimodal Interfaces, 265–272. ICMI ’03. New York, NY, USA: ACM.

Zambianchi, Manuela, and Maria Grazia Carelli. 2018. “Positive Attitudes Towards Technologies and Facets of Well-Being in Older Adults.” Journal of Applied Gerontology 37 (3): 371–388. doi:10.1177/0733464816647825.

Zhou, Jia, Pei-Luen Patrick Rau, and Gavriel Salvendy. 2012. “Use and Design of Handheld Computers for Older Adults: A Review and Appraisal.” International Journal of Human-Computer Interaction 28 (12): 799–826.

Zhou, Jia, Pei-Luen Patrick Rau, and Gavriel Salvendy. 2014. “Older Adults’ use of Smart Phones: an Investigation of the Factors Influencing the Acceptance of new Functions.” Behaviour & Information Technology 33 (6): 552–560.