On Large-Lifting and Large-Supplemented Modules

Amira A. Abduljaleel*, Sahira M. Yaseen
Mathematics Department, College of Science, University of Baghdad, Baghdad, Iraq

Received: 30/6/2021 Accepted: 27/7/2021 Published: 30/4/2022

Abstract
In this paper, we introduce the concepts of Large-lifting and Large-supplemented modules as a generalization of lifting and supplemented modules. We also give some results and properties of this new kind of modules.

Keywords. L-small, L-lifting module, L-supplemented module.

1. Introduction
Throughout this paper, we assume that R is a commutative ring with identity. A submodule N of an R-module M is called Large (essential) submodule in M, (N ≤_g M), if for every nonzero submodule K of M, then N ∩ K ≠ 0 [1]. A proper submodule N of an R-module M is called small (N ≪ M), if for any submodule K of M such that N + K = M implies that K = M [1]. Assume that N and K are submodules of M, where M is R module, then N is called supplement of K in M, if N is minimal with respect to the property M = N + K. This is equivalent to M = N + K and N ∩ K ≪ N, if every submodule of M has a supplement in M, then M is called supplemented module [2]. An R-module M is called lifting, if for every submodule N of M there exists a submodule K of M such that M = K ⊕ H and N ∩ H ≪ H where H be a submodule of M, equivalently M is called lifting, if and only if for every submodule N of M there exists a submodule K of N such that M = K ⊕ H and N ∩ H ≪ M [2]. In [3], we give the concept of Large-small (L-small) submodule, it is given as follows; Let N be a proper submodule of M, then N is called L-small submodule of M (N ≪_L M), if N + K = M where K ≤ M, then K is essential submodule of M (K ≤_g M). In [4], we also give the concept of Large-coessential (L-coessential) submodule. It is given as follows; Let M be an R-module and K, N are submodules of M such that K ≤ N ≤ M, then K is said to be Large-coessential submodule, if N/k ≪_L M/k. This paper consists two sections, in section one we

*Email: amiraaaa142@gmail.com
give the concept of Large-lifting (L-lifting) modules and some of its properties, such that an R-module M is said to be L-lifting, if for every submodule N of M there exists a submodule K of N such that $M = K \oplus H$ and $N \cap H \ll_L M$ where H is a submodule of M. In section two we introduce the concept of Large-supplemented (L-supplemented) modules, such that an R-module M is called L-supplemented, if every submodule of M has L-supplement in M, where a submodule N is called L-supplement of K in M, if $M = N + K$ and $N \cap K \ll_L N$. In Lemma(1.1), Lemma(1.2) and Lemma(1.3) we give some properties in [3] and [4] that we need it in this paper.

Lemma 1.1[3]: (1) Let M be an R-module and K, N be submodules of M such that $K \leq N \leq M$, if $N \ll_L M$ then $K \ll_L M$.

(2) Let $f : M \to M'$ be an epimorphism where M and M' are R-modules such that $N \ll_L M'$ then $f^{-1}(N) \ll_L M$.

(3) Let M be an R-module and K, N be submodules of M where K is a closed in M such that $K \leq N \leq M$, if $N \ll_L M$ then $K \ll_L M$ and $\frac{N}{K} \ll_L \frac{M}{K}$.

(4) Let M be an R-module and K, N be submodules of M such that $K \leq N \leq M$, and N is direct summand of M, if $K \ll_L M$, then $K \ll_L N$.

Lemma 1.2[3]: (1) Let $M = \bigoplus_{i \in I} M_i$ be a fully stable module, if $N_i \ll_L M_i$ then $\bigoplus_{i \in I} N_i \ll_L \bigoplus_{i \in I} M_i$.

(2) Let M be an R-module such that M is faithful, finitely generated and multiplication module and let I be an ideal of R then $I \ll_L R$ if and only if $IM \ll_L M$.

Lemma 1.3[4]: (1) Let M be an R-module and K, N be submodules of M such that $K \leq N \leq M$, if $\frac{N}{K} \ll_L \frac{M}{K}$ then $N \ll_L M$.

(2) Let M be an R-module and $K, N, and U$ be submodules of M such that $K \leq N \leq U \leq M$, then $N \ll_L U$ in M if and only if $\frac{N}{K} \leq_L \frac{U}{K}$ in $\frac{M}{K}$.

Now, we need to prove the following lemma.

Lemma 1.4: Let $M = M_1 \oplus M_2$ then $N_1 \ll_L M_1$ and $N_2 \ll_L M_2$ if and only if, $N_1 \cap N_2 \ll_L M_1 \oplus M_2$.

Proof: (\Leftarrow) Let $U_1 \oplus U_2$ be a submodule of $M_1 \oplus M_2$ such that $N_1 \oplus N_2 + U_1 \oplus U_2 = M_1 \oplus M_2$. So that $(N_1 + U_1) \oplus (N_2 + U_2) = M_1 \oplus M_2$ and hence $N_1 + U_1 = M_1$ and $N_2 + U_2 = M_2$. Since $N_1 \ll_L M_1$ and $N_2 \ll_L M_2$, then $U_1 \leq_L M_1$ and $U_2 \leq_L M_2$, this implies that $U_1 \oplus U_2 \leq_L M_1 \oplus M_2$. By [1], and therefore $N_1 \oplus N_2 \ll_L M_1 \oplus M_2$.

(\Rightarrow) Let $N_1 \oplus N_2 \ll_L M_1 \oplus M_2$. Since $N_1 \leq N_1 \oplus N_2 \ll_L M_1 \oplus M_2 = M$ then by Lemma(1.1), we have $N_1 \ll_L M$ and since $N_1 \leq M_1 \leq M$ and M_1 is direct summand of M then by Lemma(1.1) we get $N_1 \ll_L M_1$. Similarly we have $N_2 \ll_L M_2$.

2. Large-Lifting modules.

In this section we introduce the concept of Large-lifting modules and some properties of it are considered.

Definition 2.1: An R-module M is called Large-lifting (L-lifting), if for every submodule N of M there exists a submodule K of N such that $M = K \oplus H$ and $N \cap H \ll_L M$ where H is a submodule of M.

Remarks and Examples 2.2:

(1) Every lifting is L-lifting.

Proof: Let M be a lifting module and $N \leq M$, then $M = K \oplus H$ where $K \leq N$ and $N \cap H \ll_L M$ so $N \cap H \ll_L M$ where $H \leq M$ by [3].

(2) The following example shows that the converse of (1) is not true.

Example: Z as Z-module is L-lifting since for $N = nZ \leq Z$, there exists $\{0\}$ direct summand of nZ such that $M = Z = \{0\} + Z$ and $nZ \cap Z = nZ \ll_L Z$ by [3], also if $N = Z \leq Z$, let $K = Z \leq N$ such that $Z = Z \oplus \{0\}$ and $Z \cap \{0\} = \{0\} \ll_L Z$, but Z is not lifting since nZ no
(3) \(Z_{24} \) as \(Z \)-module is not L-lifting since, Let \(N = Z_{24} \), the only direct summand of \(Z_{24} \) are \(\{0\} \) and \(3Z_{24} \), such that \(Z_{24} = K \oplus H \). If \(K = \{0\} \) thus \(H = Z_{24} \) and \(N \cap H = Z_{24} \cap Z_{24} = Z_{24} \) which is not L-small in \(Z_{24} \) and if \(K = 3Z_{24} \) thus \(H = 8Z_{24} \) and \(Z_{24} \cap 8Z_{24} = 8Z_{24} \) which is not L-small in \(Z_{24} \) and if \(K = 8Z_{24} \) thus \(H = 3Z_{24} \) and \(\exists Z_{24} \cap 3Z_{24} = 3Z_{24} \) which is not L-small in \(Z_{24} \).

(4) Every semisimple module is lifting [2], hence L-lifting by (1). Thus \(Z_6 \) as \(Z \)-module is L-lifting.

(5) Let \(M \) be a semisimple module, then \(M \) is lifting if and only if \(M \) is L-lifting.

(6) Every hollow module is lifting [2], hence L-lifting by (1). Thus \(Z_4 \) as \(Z \)-module is hollow, so it is L-lifting.

Recall that an \(R \)-module \(M \) is called L-hollow module if every proper submodule of \(M \) is L-small submodule in \(M \) [3].

Remark 2.3: Every L-hollow module is L-lifting.

Proof: Let \(M \) be an L-hollow module and \(N \) be a proper submodule of \(M \) and let \(M = \{0\} \oplus M \) and \(N \cap M = N \ll_L M \), so that \(M \) is L-lifting.

The converse of previous remark is not true, the following example: \(Z_6 \) as \(Z \)-module is L-lifting by (4) but not L-hollow by [3].

Remark 2.4: Every Local module is hollow so L-hollow [3], hence it is L-lifting by Remark(2.3), where an \(R \)-module \(M \) is called local if it is hollow and has a unique maximal submodule [5].

Proposition 2.5: Let \(M \) be an indecomposable, then \(M \) is L-hollow if and only if \(M \) is L-lifting.

Proof: Clear from Remark (2.3).

\(\Rightarrow \) Let \(M \) be L-lifting and \(N \) be a proper submodule of \(M \) and let \(K \leq N \) such that \(M = K \oplus H \) where \(H \leq M \) and \(N \cap H \ll_L M \), since \(M \) is indecomposable, then either \(K = 0 \) or \(K = M \). If \(K = M \) then \(N = M \) and this is a contradiction, so that \(K = 0 \), and hence \(M = H \), so \(N = N \cap M = N \cap H \ll_L M \) hence \(N \ll_L M \). Therefore \(M \) is L-hollow.

The characterization of L-lifting module is given by the next theorem.

Theorem 2.6: Let \(M \) be an \(R \)-module, then the following statements are equivalent:

1- \(M \) is L-lifting module .

2- Every submodule \(N \) of \(M \) can be written as \(N = V \oplus W \) where \(V \) direct summand of \(M \) and \(W \ll_L M \).

3- Every submodule \(N \) of \(M \) there exists a direct summand \(K \) of \(M \) such that \(K \leq N \) and \(\frac{N}{K} \ll_L \frac{M}{K} \).

Proof: (1) \(\Rightarrow \) (2) Let \(N \) be a submodule of \(M \) then there exists a submodule \(K \) of \(N \) such that \(M = K \oplus H \) and \(N \cap H \ll_L M \) where \(H \) is a submodule of \(M \). Now \(N = N \cap M = N \cap (K \oplus H) = K \oplus (N \cap H) \) by modular law. Let \(V = K \) and \(W = N \cap H \), so \(N = V \oplus W \) where \(V \) direct summand of \(M \) and \(W \ll_L M \).

(2) \(\Rightarrow \) (3) Let \(N \) be a submodule of \(M \) and \(N = V \oplus W \) where \(V \) direct summand of \(M \) and \(W \ll_L M \). It is enough to show that \(\frac{N}{V} \ll_L \frac{M}{V} \). Let \(\frac{U}{V} \leq \frac{M}{V} \) such that \(\frac{N}{V} + \frac{U}{V} = \frac{M}{V} \) so \(\frac{V}{V} = \frac{M}{V} \), hence \(M = V + W + U = W + U \). Since \(W \ll_L M \), then \(U \leq_L M \), and since \(V \) direct summand of \(M \) then \(V \) is closed in \(M \), from [6-10], we have \(\frac{U}{V} \leq_L \frac{M}{V} \), so that \(\frac{N}{V} \ll_L \frac{M}{V} \).

(3) \(\Rightarrow \) (1) Let \(N \) be a submodule of \(M \) then there exists a submodule \(K \) of \(N \) such that \(M = K \oplus H \) and \(\frac{N}{K} \ll_L \frac{M}{K} \). By Lemma(1.3), we have \(N \ll_L M \) by and since \(N \cap H \leq N \leq M \) so we get \(N \cap H \ll_L M \) by Lemma(1.1).
Proposition 2.7: Let M be an indecomposable module, then M is not L-lifting for every nontrivial submodule N of M.

Proof: Suppose that M is L-lifting and by theorem (2.6), let $N = K + H$ where K direct summand of M and $H \ll_L M$, since M be an indecomposable then $K = 0$, hence $N = H \ll_L M$ and this is contradiction, so M is not L-lifting for every nontrivial submodule N of M.

Proposition 2.8: Any direct summand of L-lifting module is L-lifting.

Proof: Let M be L-lifting and assume that $M = M_1 \oplus M_2$. In order to show M_1 is L-lifting, let $N \leq M_1$ so that $N \leq M$ and by theorem (2.6), let $N = V \oplus W$ where V direct summand of M and $W \ll_L M$ hence $W \ll_L M_1$ by Lemma(1.1). Now, $M = V \oplus H$ where $H \leq M$, since V direct summand of M, then we get the result if we prove V direct summand of M_1, so $M_1 = M_1 \cap M = M_1 \cap (V \oplus H) = V \oplus (M_1 \cap H)$ by modular law, hence V direct summand of M_1, so M_1 is L-lifting.

Theorem 2.9: Let M be an R-module, then the following statements are equivalent:
1. M is L-lifting module.
2. For each submodule N of M, there exists $\varphi \in \text{End}(M)$ such that $\varphi^2 = \varphi$, $\varphi(M) \leq N$ and $(1 - \varphi)(N) \ll_L M$.

Proof: (1) \Rightarrow (2) Let N be a submodule of M then there exists a submodule K of N such that $M = K \oplus H$ and $N \cap H \ll_L M$ where H be a submodule of M. Let $\varphi: M \to K$ be a projection map clearly $\varphi^2 = \varphi$ and $M = K \oplus H = \varphi(M) \oplus (1 - \varphi)(M)$, $\varphi(M) \leq N$. Now $(1 - \varphi)(N) = N \cap (1 - \varphi)(M) = N \cap H \ll_L M$, so $(1 - \varphi)(N) \ll_L M$.

(2) \Rightarrow (1) Let N be a submodule of M then there exists $\varphi \in \text{End}(M)$ such that $\varphi^2 = \varphi$, $\varphi(M) \leq N$ and $(1 - \varphi)(N) \ll_L M$. Clearly that $M = \varphi(M) \oplus (1 - \varphi)(M)$, let $K = \varphi(M)$ and $H = (1 - \varphi)(M)$, hence $N \cap H = N \cap (1 - \varphi)(M)$. To show that $N \cap (1 - \varphi)(M) = (1 - \varphi)(N)$, let $u = (1 - \varphi)(v) \in N \cap (1 - \varphi)(M)$, since $(1 - \varphi)^2 = (1 - \varphi)$ so $u = (1 - \varphi)^2(v) = (1 - \varphi)(v) \in (1 - \varphi)(N)$. Now let $u = (1 - \varphi)(v) \in (1 - \varphi)(N)$; $v \in N$, then $u \in (1 - \varphi)(M)$, $u = (1 - \varphi)(v) \in N$, hence $u \in N \cap (1 - \varphi)(M)$ so $N \cap H = N \cap (1 - \varphi)(M) = (1 - \varphi)(N) \ll_L M$, hence $N \cap H \ll_L M$, so M is L-lifting module.

Remark 2.10: The following example shows that if M is L-lifting module and N is a submodule of M, then N need not to be L-lifting module.

Example: Let Z be L-lifting module and $24Z \leq Z$ but $\frac{Z}{24Z} \approx Z_{24}$ which is not L-lifting by (2.2).

Now, we introduce the following proposition in which $\frac{M}{N}$ be L-lifting module.

Proposition 2.11: Let M be L-lifting module and W be a submodule of M such that for every direct summand K of M, $\frac{K + W}{W}$ direct summand of $\frac{M}{W}$, then $\frac{M}{W}$ is L-lifting.

Proof: Let $\frac{N}{W} \leq \frac{M}{W}$, since M is L-lifting, then by theorem (2.6), there exists $K \leq N$ such that $M = K \oplus H$; $H \leq M$ and $\frac{N}{K} \ll_L \frac{M}{K}$, because of $K + W$ is direct summand of M, we have $\frac{N}{K + W} \ll_L \frac{M}{K + W}$ so $K + W \leq_{Lce} N$ in M and by Lemma(1.3), we get $\frac{K + W}{W} \leq_{Lce} \frac{N}{W}$ in $\frac{M}{W}$, hence $\frac{N/W}{(K+W)/W} \ll_L \frac{M/W}{(K+W)/W}$, therefore $\frac{M}{W}$ is L-lifting.

An R-module is called distributive, if for all submodules K, N and U of M, then $K \cap (N + U) = (K \cap N) + (K \cap U)$ [9].

Corollary 2.12: Let M be L-lifting and distributive module and let W be a submodule of M then $\frac{M}{W}$ is L-lifting.

Proof: Let K be a direct summand of M, such that $M = K \oplus U$ for some submodule U of M, hence $\frac{M}{W} = \frac{K \oplus U}{W} = \frac{K + W}{W} + \frac{U + W}{W}$ and since M is distribution module, then $(K + W) \cap
\[(U + W) = ((K + W) \cap U) + ((K + W) \cap W) = (K \cap U) + (W \cap U) + (K \cap W) + W = W, \text{ hence } \frac{M}{W} = \frac{K + W}{W} \oplus \frac{U + W}{W} \text{ and by proposition (2.11), we get } \frac{M}{W} \text{ is L-lifting.}\]

Lemma 2.13 [6]: Let \(M = M_1 \bigoplus M_2 \) be an R-module, then \(\frac{M}{A} = \frac{A + M_1}{A} \bigoplus \frac{A + M_2}{A} \) for every fully invariant submodule \(A \) of \(M \).

Corollary 2.14: Let \(M \) be L-lifting module if \(W \) is fully invariant submodule of \(M \) then \(\frac{M}{W} \) is L-lifting.

Proof: It directly comes from Lemma (2.13) and proposition (2.11).

3. Large-Supplemented modules

In this section we introduce the concept of Large-supplemented modules. Some results are also given.

Definition 3.1: Let \(M \) be an R-module and \(N, K \) are submodules of \(M \), then \(N \) is called Large-supplement (L-supplement) of \(K \) in \(M \), if \(M = N + K \) and \(N \cap K \ll_k N \). If every submodule of \(M \) has L-supplement, then \(M \) is called L-supplemented module.

Remarks and Examples 3.2:

1. Every supplemented module is L-supplemented.
 Proof: Let \(M \) be a supplemented and \(N \) be a submodule of \(M \), then \(N \) is a supplement of \(K \) in \(M \), so \(M = N + K \) and \(N \cap K \ll_k N \) by [3], so \(N \) is L-supplement of \(K \) in \(M \), hence \(M \) is L-supplemented.

2. Next example indicates that the converse of (1) is not true.
 Example: \(Z \) as \(Z \)-module is L-supplemented since let \(n, m \in N \), \(nZ \) is L-supplement of \(mZ \) since \(Z = nZ + mZ \) and \(nZ \cap mZ = (nm)Z \ll_k nZ \), but \(Z \) is not supplemented since \(nZ \) is not supplement in \(Z \) since \(Z = nZ + mZ \) and \(nZ \cap mZ = (nm)Z \) but \((nm)Z \) is not small in \(nZ \), since \(\{0\} \) is the only small submodule.

3. Let \(M \) be a semisimple module, then \(M \) is supplemented if and only if, \(M \) is L-supplemented.

4. Next example shows that if \(N \) and \(K \) are submodules of \(M \), and \(N \) is L-supplement of \(K \) in \(M \), then it is not necessary that \(K \) is L-supplement of \(N \) in \(M \).
 Example: In \(Z_4 \) as \(Z \)-module, \(Z_4 \) is L-supplement of \(\{0, 2\} \) in \(Z_4 \) since \(Z_4 = Z_4 + \{0, 2\} \) and \(Z_4 \cap \{0, 2\} = \{0, 2\} \ll_k Z_4 \) but \(\{0, 2\} \) is not L-supplement of \(Z_4 \) in \(Z_4 \) since \(Z_4 = \{0, 2\} + Z_4 \) and \(\{0, 2\} \cap Z_4 = \{0, 2\} \) but \(\{0, 2\} \) is not L-small in \(\{0, 2\} \).

5. In \(Z_6 \) as \(Z \)-module where \(Z_6 = \{0, 3\} \bigoplus \{0, \bar{2}, \bar{4}\} \) then \(\{0, 3\} \) is L-supplement of \(\{0, \bar{2}, \bar{4}\} \) since \(Z_6 = \{0, 3\} + \{0, 2, 4\} \) and \(\{0, 3\} \cap \{0, 2, 4\} = \{0\} \ll_k \{0, 3\} \) also \(\{0, 2, 4\} \) is L-supplement of \(\{0, 3\} \).

6. Every semisimple module is L-supplemented.

7. In [2], authors proved that every direct summand of \(M \) is supplement submodule of \(M \), hence it is L-supplement by (1).

8. Let \(M \) be an R-module and \(N \) be L-hollow of \(M \), then \(N \) is L-supplement of each proper submodule \(K \) of \(M \) such that \(M = N + K \).
 Proof: Let \(K \) be a proper submodule of \(M \) such that \(M = N + K \). It is clear that \(N \cap K \neq N \), since if \(N \cap K = N \), then \(N \leq K \) hence \(K = M \) and this is a contradiction. Since \(N \) is L-hollow then \(N \cap K \ll_k N \), so \(N \) is L-supplement of \(K \) in \(M \).

9. Let \(M \) be an R-module, then every L-small submodule of \(M \) has L-supplement in \(M \).
 Proof: Let \(N \) be L-small submodule of \(M \), so that \(M = N + M \) and \(N \cap M = N \ll_k M \), therefore \(M \) is L-supplement of \(N \) in \(M \).

10. The converse of (9) is not true, for example \(Z_6 \) as \(Z \)-module.

Proposition 3.3: Let \(M \) be an R-module and \(N, K \) be submodules of \(M \) such that \(N \leq K \leq M \) and \(N \) is closed in \(K \), if \(K \) is L-supplement of \(H \) in \(M \) then \(\frac{K}{N} \) is L-supplement of \(\frac{H + N}{N} \) in \(\frac{M}{N} \).
 Proof: Since \(K \) is L-supplement of \(H \) in \(M \), then we have \(M = K + H \) and \(K \cap H \ll_k K \). Now
\[
\frac{M}{N} = \frac{K+H}{N} = \frac{K}{N} + \frac{H+N}{N}, \text{ we have to show that } \frac{K}{N} \cap \frac{H+N}{N} \ll_{L} \frac{K}{N}, \text{ so that } \frac{K}{N} \cap \frac{H+N}{N} = \frac{K \cap (H+N)}{N} = \frac{K \cap H + N + U}{N} \]

by modular law. Let \(\frac{U}{N} \leq \frac{K}{N} \) where \(U \leq K \) and \(N \leq U \) such that \(\frac{K \cap H + N + U}{N} = \frac{K}{N} \), hence \((K \cap H) + N + U = K \) and since \(N \leq U \) we have \((K \cap H) + U = K \), since \(K \cap H \ll_{L} K \) then \(U \leq e \), but \(N \leq U \leq K \) and \(N \) is closed in \(K \). from \([10-15]\), we get \(\frac{U}{N} \leq e \), therefore \(\frac{K}{N} \) is \(L \)-supplement in \(M \).

Proposition 3.4: Let \(f: M \to M' \) be an epimorphism, if \(M' \) is \(L \)-supplemented module then \(M \) is \(L \)-supplemented.

Proof: Let \(H \leq M \), then \(f(H) \leq M' \), since \(M' \) is \(L \)-supplemented then there exists \(K \) is \(L \)-supplement of \(f(H) \) in \(M' \), so \(M' = K + f(H) \) and \(K \cap f(H) \ll_{L} K \). Now \(f^{-1}(K + f(H)) = f^{-1}(M') \) hence \(f^{-1}(K) + H = M \) and since \(K \cap f(H) \ll_{L} K \) then \(f^{-1}(K \cap f(H)) \ll_{L} f^{-1}(K) \) by Lemma(1.1), hence \(f^{-1}(K) \cap H \ll_{L} f^{-1}(K) \) so, \(f^{-1}(K) \) is \(L \)-supplement of \(H \) in \(M \), hence \(M \) is \(L \)-supplemented.

Proposition 3.5: Let \(M \) be an \(R \)-module and \(N, K \) are submodules of \(M \) such that \(K \) is \(L \)-supplement of \(N \) in \(M \), if \(M = H + K \) for some submodule \(H \) of \(N \), then \(K \) is \(L \)-supplement of \(H \) in \(M \).

Proof: Suppose \(M = H + K \) for some submodule \(H \) of \(N \) and \(K \) is \(L \)-supplement of \(N \) in \(M \), so we have \(M = N + K \) and \(N \cap K \ll_{L} K \), and since \(H \cap K \leq N \cap K \ll_{L} K \), then \(H \cap K \ll_{L} K \) by Lemma(1.1), hence \(K \) is \(L \)-supplement of \(H \) in \(M \).

Proposition 3.6: Let \(M \) be an \(R \)-module and \(N, K \) and \(U \) are submodules of \(M \) such that \(N \leq K \), if \(N \) is \(L \)-supplement of \(U \) in \(M \) then \(N \) is \(L \)-supplement of \(U \cap K \) in \(K \).

Proof: Since \(N \) is \(L \)-supplement of \(U \) in \(M \) then we have \(M = N + U \) and \(N \cap U \ll_{L} N \). Now \(K = M \cap K = (N + U) \cap K = N + (U \cap K) \) by modular law, and since \(N \cap (U \cap K) \leq N \cap U \ll_{L} N \), so we get \(N \cap (U \cap K) \ll_{L} N \) by Lemma(1.1), hence \(N \) is \(L \)-supplement of \(U \cap K \) in \(K \).

Proposition 3.7: Let \(M = M_1 \oplus M_2 \), if \(N_1 \) is \(L \)-supplement of \(N_2 \) in \(M_1 \) and \(K_1 \) is \(L \)-supplement of \(K_2 \) in \(M_2 \), then \(N_1 \oplus K_1 \) is \(L \)-supplement of \(N_2 \oplus K_2 \) in \(M \).

Proof: Since \(N_1 \) is \(L \)-supplement of \(N_2 \) in \(M_1 \) and \(K_1 \) is \(L \)-supplement of \(K_2 \) in \(M_2 \), then we have \(M_1 = N_1 + N_2 \) and \(N_1 \cap N_2 \ll_{L} N_1 \). Also we have \(M_2 = K_1 + K_2 \) and \(K_1 \cap K_2 \ll_{L} K_1 \), so \(M = M_1 \oplus M_2 = (N_1 + N_2) \oplus (K_1 + K_2) = (N_1 \oplus K_1) + (N_2 \oplus K_2) \). Since \(N_1 \cap N_2 \ll_{L} N_1 \) and \(K_1 \cap K_2 \ll_{L} K_1 \), then by Lemma(1.4), we have \((N_1 \cap N_2) \oplus (K_1 \cap K_2) \ll_{L} N_1 \oplus K_1 \). Clearly \((N_1 \oplus K_1) \cap (N_2 \oplus K_2) = (N_1 \cap N_2) \oplus (K_1 \cap K_2) \ll_{L} N_1 \oplus K_1 \), hence \(N_1 \oplus K_1 \) is \(L \)-supplement of \(N_2 \oplus K_2 \) in \(M \).

Proposition 3.8: Let \(M \) be faithful, finitely generated and multiplication module over commutative ring \(R \) and \(N \) be a submodule of \(M \), if \(N \) is \(L \)-supplement of \(IM \) in \(M \), then \(J \) is \(L \)-supplement of \(I \) in \(R \), where \(I \), \(J \) are ideals of \(R \).

Proof: Since \(N \) is \(L \)-supplement of \(IM \) in \(M \), then we have \(M = N + IM \) and \(N \cap IM \ll_{L} N \), since \(M \) is multiplication then \(N = JM \). Now \(M = RM = IM + JM = (I + J)M \), and since \(M \) is faithful, finitely generated and multiplication, then \(M \) is cancellation by \([8]\), so \(R = I + J \) also we have \(IM \cap N = IM \cap JM = (I \cap J)M \ll_{L} N = JM \), hence \(I \cap J \) is \(L \)-supplement of \(J \) in \(R \). To show \(I \cap J \ll_{L} J \), let \(H \) be an ideal of \(R \) such that \((I \cap J) + H = J \), so \((I \cap J)M + HM = JM \) and since \((I \cap J)M \ll_{L} IM \), then \(HM \leq e JM \) so \(H \leq e J \) so we get the result, and hence \(J \) is \(L \)-supplement of \(I \) in \(R \).

The characterization of \(L \)-supplement modules is given in the next theorem.

Theorem 3.9: Let \(M \) be an \(R \)-module and \(N, K \) are submodules of \(M \), then the following statements are equivalent:
1. \(K \) is \(L \)-supplement of \(N \) in \(M \).
2. \(M = N + K \) and for every non-essential submodule \(H \) of \(K \), then \(M \neq N + H \).
Proof: (1) \Rightarrow (2) Assume K is L-supplement of N in M, so we have $M = N + K$ and $N \cap K \ll L K$ and suppose $M = N + H$ where H is non-essential submodule of K, so $K = K \cap M = K \cap (N + H) = H + (N \cap K)$ by modular law, and since $N \cap K \ll L K$ so we have $H \leq e K$ and this is a contradiction, so that $M \neq N + H$.

(2) \Rightarrow (1) From (2) $M = N + K$, we must show $N \cap K \ll L K$. Let $U \leq K$ such that $(N \cap K) + U = K$, if U is non-essential submodule of K, then by assumption $M \neq N + U$, so $M = N + K = N + (N \cap K) + U = N + U$ and this is a contradiction, so that $U \leq e K$, hence $N \cap K \ll L K$, and we get K is L-supplement of N in M.

Proposition 3.10: Let M be an R-module and M_1, H are submodules of M, such that M_1 is L-supplemented module, if $M_1 + H$ has L-supplement in M then H has L-supplement in M.

Proof: By assumption $M_1 + H$ has L-supplement in M, so there exists $U \leq M$ such that $M_1 + H + U = M$ and $(M_1 + H) \cap U \ll L U$, since M_1 is L-supplemented then $(H + U) \cap M_1 \leq M_2$ has L-supplement in M_1, so there exists $V \leq M_1$ such that $(H + U) \cap M_1 \leq V$ and $(H + U) \cap V \ll L V$. Now $M = M_1 + H + U = (H + U) \cap M_1 + V + H + U = H + (V + U)$. One can easily show $H \cap (V + U) \leq (H + U) \cap V \ll L U$ so we have $H \cap (V + U) \ll L U + V$ and $V + U$ is L-supplement of H in M, hence H has L-supplement in M.

Proposition 3.11: Let $M = M_1 \oplus M_2$ such that M_1 and M_2 are L-supplemented modules then M is L-supplemented module.

Proof: Let $H \leq M$ and since $M_1 + M_2 + H = M$, so it is trivial has L-supplement in M. By proposition (3.10) and since M_1 is L-supplemented, then $M_2 + H$ has L-supplement in M, again by proposition (3.10) and since M_2 is L-supplemented, then H has L-supplement in M, and hence M is L-supplemented module.

References

[1] Kasch, F., *Modules and Rings, Academic Press, Inc-London*. 1982.

[2] A. B. Hamdouni, On lifting modules. M.S. Thesis, University of Baghdad, Iraq, 2001.

[3] Amira A. A. and Sahira M. Y., “On Large-Small submodule and Large-Hollow module”, *Journal of Physics: Conference Series*, vol. 1818, 2021.

[4] Amira A. A. and Sahira M. Y., “Large-Coesential and Large-Coclosed submodules”, *Iraqi Journal of Science*, vol. 62, no. 11, pp. 4065-4070, 2021.

[5] P. M. Hama Ali, Hollow modules and semihollow modules, M.S. Thesis, University of Baghdad, Iraq. (2005).

[6] N. Orhan, D. K Tutuncu and R. Tribak, “On Hollow-lifting Modules”, *Taiwanese J. Math*, vol. 11, No. 2, pp. 545-568, 2007.

[7] Ali K. and Wasan Kh., “On J-Lifting Modules”, *Journal of Physics: Conference Series*, vol.1530, no. 1, 012025, 2020.

[8] A.G. Naoum, “1/2 Cancellation Modules”. *Kyungpook Mathematical Journal*, vol. 36, no. 1, pp. 97-106, 1969.

[9] V. Erdogdu, “Distributive modules”, *Can. Math. Bull*, pp. 248-254, 1987.

[10] Goodearl, K. R. *Ring Theory, Nonsingular Rings and Modules*, Marcel Dekkl, 1976.

[11] Sarah Sh. and Bahar H., “Some Generalization on δ -Lifting modules”, *Iraqi Journal of Science, vol.53*, no. 3, pp 633-643, 2012.

[12] Layla H. H. and Sahira. M. Y., “On Semiannihilator Supplement Submodules”, *Iraqi Journal of Science, vol. Special Issue*, pp. 16-20, 2020.

[13] Enas M. K. and Wasan Kh., “On μ-lifting Modules”, *Iraqi Journal of Science, vol. 60*, no. 2, pp. 371-380, 2019.

[14] Sahira M. Y. and Wasan Kh., “Pure-supplemented Modules”, *Iraqi Journal of Science*. vol. 53, no. 4, pp. 882-886, 2012.

[15] Noor M. M. and Wasan Kh., “Generalized-hollow Lifting$_e$ modules”, *Iraqi Journal of Science, vol. 59*, no. 2B. pp. 917-921, 2018.