An Integrated Method for Detecting Micro RNA Target Proteins through Reverse-phase Protein Arrays

Jiawen Zhu¹, Song Wu¹ and Jie Yang*²

¹Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11790, USA
²Department of Preventive Medicine, Stony Brook University, Stony Brook, NY 11790, USA

Abstract

Objective: Understanding functions of microRNAs (or miRNAs), particularly their effects on protein degradation, is biologically important. Emerging technologies, including the reverse-phase protein array (RPPA) for quantifying protein concentration and RNA-seq for quantifying miRNA expression, provide a unique opportunity to study miRNA-protein regulatory mechanisms. One naive way to analyze such data is to directly examine the correlation between the raw miRNA measurements and protein concentrations estimated from RPPA. However, the uncertainty associated with protein concentration estimates is ignored, which may lead to less accurate results and significant power loss.

Methods: We propose an integrated nonlinear hierarchical model for detecting miRNA targets through original RPPA intensity data. This model is fitted within a maximum likelihood framework and the correlation test between miRNA and protein is assessed using Wald tests. We compare this model and the simple method through extensive simulation studies and a real dataset from the Cancer Genome Atlas (TCGA) project.

Results: This integrated method is shown to have consistently higher power than the simple method, especially when sample sizes are limited and when the RPPA intensity levels are close to the boundaries of imaging limits.

Conclusions: Our proposed method is powerful in detecting miRNA’s protein target through RPPA. We recommend this method in practice.

Keywords: MicroRNA; Reverse-phase Protein Arrays; Nonlinear mixed model; Micro RNA target

Introduction

MicroRNA (miRNA) is a set of small, non-coding RNA molecules that can post-transcriptionally regulate a broad range of gene expression in both plants and animals. They have been suggested to be involved in many important biological processes, such as normal physiological development and disease onsets. In the past decade, many efforts have been put to search for the miRNA targets [1]. Although our understanding on some miRNAs has been dramatically improved, as of today, the targets of many others remain largely unknown. Therefore, powerful methods for efficient detection of miRNA targets are still in great need.

In general, miRNA regulates the expression of its target genes through two mechanisms–mRNA degradation or translation inhibition. That is, if a miRNA and its target gene can complement extensively, the miRNA-mRNA target may form a double-strand RNA (dsRNA) structure, after which, the mRNA can be cleaved and degraded to lower the mRNA expression and subsequently protein expression [2,3]. On the other hand, if a miRNA and its target can only complement partially, the target mRNA will not be directly degraded but its translation may be repressed [4,5]. So, in both mechanisms, the total protein level relating to the miRNA targets would be reduced, resulting in their functional losses.

Based on the phenomenon that the sequences of miRNAs and their target genes complement to each other, or at least partially, one way of the miRNA target identification is through silico prediction. Several software tools have been developed for such purpose, each with its own unique feature. For example, miRanda scored the likelihoods of miRNA down-regulation according to a regression model that is trained on sequence and contextual features of the predicted miRNA::mRNA duplex [6], and Target Scan studies on the miRNA::mRNA duplex interactions according to a thermodynamics-based modeling and comparative sequence analysis [7]. Based on these computational tools, several databases with predicted miRNA targets have been generated (miRNA.org and targetscan.org). However, one major limitation is that they all suffer from large percentage of false positives, which hinder their practical usage.

Another popular way to determine the miRNA targets is through experimental data by measuring downstream effects of miRNAs. Since miRNAs can induce protein reduction via both functional mechanisms, protein expression seems to be the right mark. However, due to difficulties in high-throughput quantification of protein expression but relative ease in that of mRNA, conventionally, scanning of the miRNA targets is mainly through testing negative correlations between miRNAs and mRNAs. For example, high-throughput techniques, such as miRNA and mRNA gene microarray, can be applied to measure their expression levels, and then the correlations analyses can be conducted subsequently to filter out miRNA-mRNA pairs that show significant negative correlations as potential candidates for further analyses [8]. More recently, with the advent and rapid advance of sequencing techniques, the miRNA sequencing (miRNA-seq) and RNA sequencing (RNA-seq) platforms have become more and more...
is the error term assumed to have a normal distribution with \(\mu \) and \(\sigma^2 \) is the mean value among the parameters of interest, describing the correlation where \(\text{range}(Y) \) was calculated.

The initial median effective protein concentration level \(x_i \) are estimated by using:

\[
x_i = \text{median} \left(\frac{Y_{\text{linear}}}{\beta_{1}} \right) + \frac{i}{J}
\]

where \(Y_{\text{linear}} \) is the mean value among \(\left\{ Y_{\text{linear}} \right\} \).

To update the parameters \(\left(\hat{\beta}_1, \hat{\beta}_2, \hat{\beta}_3 \right) \) in the nonlinear model, the nonlinear least-squares estimates of \(\left(\hat{\beta}_1, \hat{\beta}_2, \hat{\beta}_3 \right) \) were calculated based on the following model [14]:

\[
y_{ij} = g(x_i, l_i, y_j) = \beta_1 + \frac{\beta_2}{1 + 2^{-\beta_3(y_j - y^*)}} + e_{ij}
\]

After obtaining \(\left(\hat{\beta}_1, \hat{\beta}_2, \hat{\beta}_3 \right) \), the nonlinear least-square method is used again to update the relative protein level \(x = \left\{ x_i \mid i=1 \cdots J \right\} \) and \(\sigma_j^2 \).

This iteration continues until convergence.

A naïve model for correlating miRNA and protein expression

Since \(X = \left\{ x_i \mid i=1 \cdots J \right\} \), the log transformation of the median effective protein concentration levels, can be estimated from the RPPA, a straightforward way to examine the relationship between miRNA and protein expression levels is through Pearson’s correlation coefficients or simple linear regression models, which is referred as the naïve model in this article.

The linear relationship between protein and miRNA in the naïve model can be expressed as:

\[
x_{ij} = f(Z_i) = \alpha_1 + \alpha_2 Z_i + \eta_i, \quad \text{where} \quad \eta_i \sim N(0, \sigma^2_{\eta}) \quad \text{and} \quad \{ Z_i \mid i=1 \cdots J \} \text{are log-transformed expression levels of a specific miRNA from sample } i=1 \cdots J.
\]

The parameter estimates \(\hat{\alpha}_1, \hat{\alpha}_2, \hat{\alpha}_3 \) can be calculated by using linear regression. \(\hat{\alpha}_1 \) is our parameter of interest, describing the correlation between a miRNA and protein pair. We can test \(H_{0}: \alpha_1 = 0 \) to determine if a particular pair of miRNA and protein is related or not.

A hierarchical model for correlating miRNA and protein expression

Although the naïve method is straightforward, uncertainty associated with protein concentration estimates is ignored. As demonstrated in later sections, it leads to less accurate results and significant power loss. Here we propose a nonlinear hierarchical model for studying the relationship between miRNA and protein expression, in which the correlation analysis is integrated with the estimation of protein concentration. The model is given as follows:

\[
y_{ij} = g(x_i, l_i, y_j) = \beta_1 + \frac{\beta_2}{1 + 2^{-\beta_3(y_j - y^*)}} + e_{ij}
\]

\[
x_i = f(Z_i) + \eta_i, \quad \eta_i \sim N(0, \sigma^2_{\eta}), \quad e_{ij} \sim N(0, \sigma^2_{e})
\]

Here \(g(.) \) is a general function to describe how \(x_i \), the protein level, and \(y_j \), the miRNA expression level, is related. \(\beta = [\beta_1, \beta_2, \beta_3] \) is the parameter vector of the response curve function \(g(.) \). To directly
We further assume that the two error terms, η_i and ϵ_i, are independent of each other. In this hierarchical framework, the relationship between miRNA and protein expression level can be estimated without explicitly quantifying the protein concentration based on intensity data first. This model is referred to as the integrated model hereinafter.

The likelihood function for Y and Z can be written as a joint probability function

$$L(\phi, \sigma, \gamma; Y, Z) = \prod_{i=1}^{n} \int f_Y(y_i) \int f_Z(z_i, \phi, \eta, \gamma) \eta \sigma d\eta d\sigma$$

where $\phi = (\alpha, \beta, \gamma, \phi_x)$ is a vector including parameters in function $f(.)$ and $g(.)$, $Y = [y_i]$ $i=1,2,...,j$ representing the RPPA intensity levels and $Z = [z_i]$ $i=1,2,...,J$ representing the log-transformed miRNA expression levels.

Computational algorithm

The unknown parameters $\phi = (\alpha, \beta, \gamma, \phi_x)$ can be estimated within the maximum likelihood framework. The adaptive Gaussian quadrature method is used to approximate the integral and the dual quasi-Newton method can be further applied in maximizing the likelihood function given in equation (6). To compare with the naïve model, we assume (\eta) to be linear in equation (7), that is, $f(Z) = \alpha + \alpha Z$. We further assume that the two error terms, η_i and ϵ_i, are independent of each other. In this hierarchical framework, the relationship between miRNA and protein expression level can be estimated without explicitly quantifying the protein concentration based on intensity data first. This model is referred as the integrated model hereinafter.

The likelihood function for Y and Z can be written as a joint probability function

$$L(\phi, \sigma, \gamma; Y, Z) = \prod_{i=1}^{n} \int f_Y(y_i) \int f_Z(z_i, \phi, \eta, \gamma) \eta \sigma d\eta d\sigma$$

where $\phi = (\alpha, \beta, \gamma, \phi_x)$ is a vector including parameters in function $f(.)$ and $g(.)$, $Y = [y_i]$ $i=1,2,...,j$ representing the RPPA intensity levels and $Z = [z_i]$ $i=1,2,...,J$ representing the log-transformed miRNA expression levels.

Hypothesis testing

Since it is expected that miRNA negatively regulate the protein level of its target gene, to test if there is a significant relationship between a specific pair of miRNA and protein, the hypothesis test can set up as a one-sided test:

$$H_0 : \alpha = 0 \text{ vs } H_1 : \alpha < 0$$

Once the maximum likelihood estimates are obtained, a likelihood ratio test (LRT), a Wald test or a Score test can be constructed. However, LRT can be very time consuming and is not appropriate for one-sided test. For Score test, the confidence interval of α is difficult to be calculated. Thus Wald tests were used in our simulation and real data example, and its test statistic is:

$$T.S. = \frac{\hat{\alpha}_T}{\sqrt{I(\hat{\alpha})^{-1}}} \sim N(0,1) \text{ under } H_0$$

where $(\hat{\phi})$ represent the fisher information matrix of the likelihood function. The null hypothesis was rejected when p-value was above 0.05 in our simulation study.

Simulation studies

Extensive simulation studies were carried out to examine the performance of our proposed integrated model and to compare with the naïve model approach. Protein intensities were generated by using a sigmoidal response curve (Figure 2a). And a typical miRNA expression distribution in the TCGA data was borrowed in this simulation to mimic the real data and generate protein EC$_{50}$ (Figure 2b). Also, the true values of $[\beta_1, \beta_2, \beta_3, \beta_4]$ were set as $[50, 30000, 1, 1, 300]$ to mimic parameter values estimated from a real TCGA ovarian cancer data set. Different strengths of correlation between miRNA and protein expression levels, as characterized by σ^2, were examined in a range from 0, which represents the null hypothesis, to -1.5, which yields the power of 1 for the integrated method. In order to investigate the performance of two models with protein intensity values located in different areas of the sigmoidal curve, σ^2 was set as 0 and 5 corresponding to the middle part and upper part of sigmoidal curve, respectively. The upper part of a sigmoidal curve corresponds to a scenario where most of intensity levels are close to the saturation point. The RPPA intensity levels range between 10 and 30100. An illustration of the sigmoidal curve used to generate simulated data was showed in Figure 2a. The locations of
protein intensity center were marked by circles. If simulated intensity values are beyond the imaging boundary, they would be replaced with the boundary value with small error (Gaussian distributed with mean 0 and standard deviation 5). 1000 simulations were carried out for each parameter setting under different sample sizes (N=20, 50, 100 and 300). Generally, there are 5 diluted samples in one dilution series, so $J=5$ were used in our simulation setting. Pre-specified Type I error was set to be 0.05.

The false positive rates and detection powers for miRNA targets for both the integrated model and the naïve model under different sample sizes were shown in Figures 3 and 4. It is clear that when there was no relationship between miRNA and protein ($\alpha_2=0$), both models can well control the pre-specified type-I error when sample size were bigger than 50. Two models had similar detection performance, especially when sample size increased.

![Figure 2: An illustration of (a) a sigmoidal shape response curve. When α_1 was set to be 0, the center of the EC50s would located at 0; When α_1 was set to be 5, the center of EC50s would located at 5; (b) distribution of a typical miRNA expression in the TCGA data we used in the simulation.](image)

![Figure 3: Power curve of the naïve model (solid line) and the integrated model (dashed line) according different simulation scenarios: sample size ranged from 20 to 300 and the protein intensities were located in the middle part of a sigmoidal curve. Detection powers (type I error if $\alpha_2=0$) denoted by p_1 and p_2 under different correlation strengths were report on the bottom of each plot for the naïve and integrated models, respectively. Both models can well control the pre-specified type-I error when sample size were bigger than 50. Two models had similar detection performance, especially when sample size increased.](image)

![Figure 4: Power curves of the naïve model (solid line) and the integrated model (dashed line) according different simulation scenarios: sample size ranged from 20 to 300 and the protein intensities were located in the upper part of a sigmoidal curve. Detection powers (type I error if $\alpha_2=0$) denoted by p_1 and p_2 under different correlation strength were report on the bottom of each figure for the naïve and integrated models, respectively. Both models can well control the pre-specified type-I error when sample size were bigger than 50. The integrated model was consistently more powerful than the naïve model.](image)

Analysis of TCGA Ovarian Cancer Data

Both models were applied onto an ovarian cancer dataset from the TCGA project. In this dataset, there were 333 ovarian cancer samples with both miRNA and RPPA data available. 352 miRNAs having more than 50% of non-zero counts and 165 proteins were included in our analyses.

The results from both naïve and integrated models on predicting miRNA targets were reported in Table 1. False Discover Rate (FDR) at 10% was used to adjust for multiple testing [18]. The integrated model approach we proposed found 1106 potential miRNA-protein pairs, 797 of which were on non-phosphorylated protein array. 822 pairs were found on non-phosphorylated protein array: 250 out of them were found by integrated model only and 25 pairs were found by naïve model only. Integrated model found significantly more number of potential miRNA-protein pairs ($P<0.0001$ according to McNemar’s test). Furthermore, we compared our results with miRNA targets identified by miRanda algorithm [19-22]. 98 targets, which were found by both the integrated and the naïve model, and 31 targets, which
Table 1: Table for the detailed point estimates of all unknown parameters and their standard error. Sample size was from 20 to 300 and the protein intensity located in the middle part of sigmoidal curve, the integrated model had a similar performance as the naive model.

Sample size	α_1	β_1	β_2	σ_1	σ_2
true value	0.0034 (0.0033)	-0.1028 (0.0047)	7.11 (6.74)	0.999 (0.0033)	0.9863 (0.0022)
naive model	-0.0032 (0.0047)	-2.178 (12.82)	30189.17 (14.32)	0.997 (0.0022)	0.957 (0.0022)
integrated model	0.0014 (0.0028)	-0.0033 (0.0047)	7.17 (6.74)	0.9961 (0.0022)	0.9863 (0.0022)
naive model	-0.025 (0.028)	-0.4946 (0.0064)	48.01 (13.45)	0.996 (0.0024)	0.9971 (0.0032)
integrated model	0.0012 (0.0041)	-0.0946 (0.0064)	-6.6 (16.12)	0.9951 (0.0022)	0.9925 (0.0032)
naive model	-0.0006 (0.006)	-1.3033 (0.0117)	39.67 (18.69)	0.9978 (0.0022)	0.9792 (0.0053)
integrated model	-0.0009 (0.0041)	-1.3077 (0.0118)	96.34 (11.97)	0.9935 (0.0021)	0.979 (0.0053)
naive model	-0.0001 (0.0069)	-1.5086 (0.0117)	124.24 (11.18)	0.9996 (0.0021)	0.9927 (0.0051)
integrated model	-0.0011 (0.0069)	81.23 (22.74)	50090.99 (30.21)	0.9945 (0.0021)	0.9807 (0.0053)
naive model	-0.0001 (0.0069)	-1.5086 (0.0117)	124.24 (11.18)	0.9996 (0.0021)	0.9927 (0.0051)
true value	0.0143 (0.0208)	-0.0033 (0.0047)	7.17 (6.74)	0.9961 (0.0022)	0.9863 (0.0022)
naive model	-0.0029 (0.0032)	-1.028 (0.0047)	46.45 (12.49)	0.9929 (0.0022)	0.9865 (0.0022)
integrated model	-5e-04 (0.0032)	-1.029 (0.0047)	1.55 (6.47)	0.9948 (0.0022)	0.9859 (0.0022)
naive model	-0.0078 (0.0041)	-1.4898 (0.0064)	77.09 (11.46)	0.9932 (0.0022)	0.9909 (0.0022)
integrated model	-0.0026 (0.0043)	-1.4944 (0.0064)	82.21 (6.6)	0.9917 (0.0022)	0.972 (0.0032)
naive model	0.00034 (0.0033)	-0.5204 (0.0047)	29.46 (12.41)	0.9948 (0.0022)	0.9968 (0.0022)
true value	0.0012 (0.0027)	-0.0032 (0.0047)	-2.178 (12.82)	0.997 (0.0022)	0.957 (0.0022)
integrated model	0.0143 (0.0208)	-0.0033 (0.0047)	7.17 (6.74)	0.9961 (0.0022)	0.9863 (0.0022)
naive model	-0.0029 (0.0032)	-1.028 (0.0047)	46.45 (12.49)	0.9929 (0.0022)	0.9865 (0.0022)
integrated model	-5e-04 (0.0032)	-1.029 (0.0047)	1.55 (6.47)	0.9948 (0.0022)	0.9859 (0.0022)
naive model	-0.0078 (0.0041)	-1.4898 (0.0064)	77.09 (11.46)	0.9932 (0.0022)	0.9909 (0.0022)
integrated model	-0.0026 (0.0043)	-1.4944 (0.0064)	82.21 (6.6)	0.9917 (0.0022)	0.972 (0.0032)
naive model	0.00034 (0.0033)	-0.5204 (0.0047)	29.46 (12.41)	0.9948 (0.0022)	0.9968 (0.0022)
true value	0.0012 (0.0027)	-0.0032 (0.0047)	-2.178 (12.82)	0.997 (0.0022)	0.957 (0.0022)
integrated model	0.0143 (0.0208)	-0.0033 (0.0047)	7.17 (6.74)	0.9961 (0.0022)	0.9863 (0.0022)
naive model	-0.0029 (0.0032)	-1.028 (0.0047)	46.45 (12.49)	0.9929 (0.0022)	0.9865 (0.0022)
integrated model	-5e-04 (0.0032)	-1.029 (0.0047)	1.55 (6.47)	0.9948 (0.0022)	0.9859 (0.0022)
naive model	-0.0078 (0.0041)	-1.4898 (0.0064)	77.09 (11.46)	0.9932 (0.0022)	0.9909 (0.0022)
integrated model	-0.0026 (0.0043)	-1.4944 (0.0064)	82.21 (6.6)	0.9917 (0.0022)	0.972 (0.0032)
naive model	0.00034 (0.0033)	-0.5204 (0.0047)	29.46 (12.41)	0.9948 (0.0022)	0.9968 (0.0022)

Citation: Zhu J, Wu S, Yang J (2015) An Integrated Method for Detecting Micro RNA Target Proteins through Reverse-phase Protein Arrays. J Comput Sci Syst Biol 8: 012-033. doi:10.4172/jcssb.1000166
Sample size	\(a_1\)	\(a_2\)	\(\beta_1\)	\(\beta_2\)	\(\sigma_1\)	\(\sigma_2\)	
true value	5 0 50	30000 1	1 1	500			
naive model	2.3538 (0.0337)	0.0108 (0.0348)	21673.99 (73.67)	8063.19 (72.22)	1.8432 (0.0062)	1.5515 (0.0137)	506.9 (4.52)
integrated model	4.653 (0.08)	-0.0161 (0.0139)	-274276.76 (52197.04)	304133.74 (52200.42)	1.2805 (0.0011)	0.9999 (0.0014)	451.8 (0.34)
true value	5 0 50	30000 1	1 1	500			
naive model	2.3656 (0.0399)	-0.0895 (0.0529)	21700.84 (71.7)	8041.22 (70.25)	1.8401 (0.0059)	1.6134 (0.1588)	504.84 (3.24)
integrated model	4.5686 (0.0859)	-0.0693 (0.0418)	-330800.61 (56594.51)	360639.78 (56591.54)	1.2918 (0.0288)	0.9732 (0.0742)	458.96 (2.34)
true value	5 0 50	30000 1	1 1	500			
naive model	3.695 (0.0275)	-0.3577 (0.0482)	21516.03 (74.6)	8221.13 (73.15)	1.8385 (0.0057)	1.5135 (0.0168)	505.61 (3.97)
integrated model	4.403 (0.0769)	-0.308 (0.0123)	-249677.33 (50408.57)	279512.95 (50405.41)	1.2762 (0.0105)	0.8937 (0.0099)	456.25 (1.72)
true value	5 0 50	30000 1	1 1	500			
naive model	2.4444 (0.0374)	-0.7107 (0.0782)	21260.05 (74.8)	8464.35 (73.51)	1.8481 (0.0059)	1.5864 (0.1521)	507.56 (2.77)
integrated model	4.3227 (0.0763)	-0.5035 (0.0123)	-250395.86 (48590.31)	260258.79 (48592.42)	1.2486 (0.0097)	0.8981 (0.0102)	457.35 (1.62)
true value	5 0 50	30000 1	1 1	500			
naive model	2.7712 (0.0505)	-1.4615 (0.1208)	19902.57 (90.02)	9814.9 (88.76)	1.8388 (0.0058)	2.1685 (0.1959)	527.34 (4.87)
integrated model	4.1187 (0.0636)	-1.0024 (0.0148)	-52274.05 (21283.31)	82100.65 (21281.33)	1.2984 (0.0063)	0.8417 (0.0365)	469.72 (2.81)
true value	5 0 50	30000 1	1 1	500			
naive model	2.9411 (0.0548)	-1.7328 (0.0838)	18770.02 (98.58)	9036.33 (97.49)	1.828 (0.0054)	2.2383 (0.2277)	539.5 (4.31)
integrated model	4.1799 (0.0528)	-1.3159 (0.0145)	-81574.05 (21283.07)	111394.19 (21283.76)	1.2845 (0.0095)	0.8634 (0.0125)	478.65 (2.39)
true value	5 0 50	30000 1	1 1	500			
naive model	3.2206 (0.0717)	-2.3778 (0.1593)	18002.82 (105.51)	11696.6 (104.59)	1.8231 (0.0057)	2.9557 (0.2621)	560.41 (7.25)
integrated model	3.6493 (0.0623)	-0.964 (0.0609)	-51974.4 (22391.12)	81776.04 (22386.56)	1.2932 (0.0201)	0.8548 (0.0355)	488.64 (3.71)

Table 2: Table for the detailed point estimates of all unknown parameters and their standard error; Sample size was from 20 to 300 and the protein intensity located in the upper part of sigmoidal curve. Truncation was applied to the boundary of intensity level; the integrated model consistently yielded parameter estimates of \(a_1\) with similar or much less standard errors than the naive model.
Sample size	true value	naive model	integrated model	naive model	integrated model
100	3.0816 (0.0323) -0.7697 (0.44) 18916.19 (63.29) 10793.17 (63.66) 1.674 (0.003) 3.701 (0.2824) 474.8 (1.61)	3.0957 (0.0479) -0.4835 (0.0459) 16620.21 (194.41) 13095.57 (200.87) 1.5193 (0.0068) 0.8203 (0.0165) 508.61 (1.12)	3.0493 (0.0261) -0.0055 (0.006) 16387.53 (64.05) 13333.07 (642.19) 1.5292 (0.0075) 0.8232 (0.0178) 501.83 (1.1)	5 -0.5 50 30000 1 1 500	5 -0.1 5 30000 1 1 500
300	3.0804 (0.027) -0.3768 (0.0336) 18175.54 (74.23) 11545.95 (73.97) 1.5939 (0.0032) 4.1281 (0.3787) 453.35 (1.29)	3.283 (0.072) -1.3507 (0.0072) 11947.42 (130.59) 8886.72 (128.1) 1.6086 (0.0054) 0.8078 (0.0217) 505.75 (2.87)	3.0315 (0.0206) 0.0285 (0.003) 18347.55 (76.65) 11288.3 (76.65) 1.5986 (0.003) 3.2497 (0.263) 451.57 (1.21)	5 -0.3 5 30000 1 1 500	5 -0.5 5 30000 1 1 500
500	3.0893 (0.027) -0.3768 (0.0336) 18175.54 (74.23) 11545.95 (73.97) 1.5939 (0.0032) 4.1281 (0.3787) 453.35 (1.29)	3.283 (0.072) -1.3507 (0.0072) 11947.42 (130.59) 8886.72 (128.1) 1.6086 (0.0054) 0.8078 (0.0217) 505.75 (2.87)	3.0315 (0.0206) 0.0285 (0.003) 18347.55 (76.65) 11288.3 (76.65) 1.5986 (0.003) 3.2497 (0.263) 451.57 (1.21)	5 -0.3 5 30000 1 1 500	5 -0.5 5 30000 1 1 500

Citation: Zhu J, Wu S, Yang J (2015) An Integrated Method for Detecting Micro RNA Target Proteins through Reverse-phase Protein Arrays. J Comput Sci Syst Biol 8: 012-033. doi:10.4172/jcbs.1000166

ISSN: 0974-7230 JCSB, an open access journal

Volume 8(1) 012-033 (2015) - 18
Table 3: A list of miRNA/protein pairs suggested by the naïve model and the integrated model and they were classed into three groups: “Found by the integrated model only”, “Found by both the integrated model and the naïve model” and “Found by the naive model only”. Pairs found by the integrated model were sorted by ascending order of adjusted p-values from the integrated model and the naïve model, respectively. Pairs found by the naïve model only were sorted by ascending order of adjusted p-values from the naïve model and integrated model, respectively. In addition, a number “1” will mark under the column for pairs found by MirTarbase, MirTarBase with strong experimental evidences or miRanda, and those pairs will be list on the top of each group after pairs got ordered.

Composite Element REF	miRNA	Corresponding genes	MirTarbase	MirTarbase (Supported by strong experimental evidences)	miRanda
p53-r-v	hasa-mir-605	TP53	1	1	
n-cadherin-r-v	hasa-mir-511-2	CDH2		1	
akt-r-v	hasa-mir-511-1	AKT1, AKT2, AKT3	1		
eef2k-r-v	hasa-mir-488	EEF2K	1		
p53-r-v	hasa-mir-181a-1	TP53	1		
smad4-m-c	hasa-mir-142	SMAD4	1		
c-met-m-c	hasa-mir-223	MET	1		
caspase-8-m-c	hasa-mir-541	CASP8	1		
pcna-m-v	hasa-mir-223	PCNA	1		
n-cadherin-r-v	hasa-mir-146a	CDH2	1		
syk-m-v	hasa-mir-369	SYK	1		
alpha-catenin-m-v	hasa-mir-22	CTNNA1	1		
smad3-r-v	hasa-mir-142	SMAD3	1		
chk1-l-c	hasa-mir-605	CHEK1	1		
er-alpha-r-v	hasa-mir-181a-2	ESR1	1		
alb1-m-v	hasa-mir-605	NCOA3	1		
rad50-m-c	hasa-mir-22	RAD50	1		
caspase-8-m-c	hasa-mir-483	CASP8	1		
syk-m-v	hasa-mir-193a	SYK	1		
jnk2-r-c	hasa-mir-511-1	MAPK9	1		
p53-r-v	hasa-mir-588	TP53	1		
dft-r-c	hasa-mir-145	PARK7	1		
akt-r-v	hasa-mir-142	AKT1, AKT2, AKT3	1		
p27-r-v	hasa-mir-205	CKN1B	1		
beta-catenin-r-v	hasa-mir-485	CTNBN1	1		
c-kit-r-v	hasa-mir-21	KIT	1		
chk1-r-v	hasa-let-7b	CHEK1	1		
b-raf-r-na	hasa-mir-511-1	BRAF	1		
stat5-alpha-r-v	hasa-mir-1224	STAT5A	1		
igf1r-beta-r-c	hasa-let-7b	IGFR1	1		
pea-15-r-v	hasa-mir-541	PEA15	1		
beta-catenin-r-v	hasa-mir-1228	CTNBN1	1		
c-raf-r-v	hasa-mir-1295	RAF1	1		
msh2-m-c	hasa-mir-1247	MSH2	1		
msh2-m-c	hasa-mir-19a-1	MSH2	1		
alib1-m-v	hasa-mir-150	NCOA3	1		
bcl-2-m-v	hasa-mir-1307	BCL2	1		
alpha-catenin-m-v	hasa-mir-511-2	CTNNA1	1		
alpha-catenin-m-v	hasa-mir-511-1	CTNNA1	1		
alib1-m-v	hasa-mir-214	NCOA3	1		
bcl-2-m-v	hasa-mir-652	BCL2	1		
ar-r-v	hasa-mir-224	AR	1		
k-ras-m-c	hasa-mir-150	KRAS	1		
clap-r-v	hasa-mir-223	BIRC2	1		
clap-r-v	hasa-mir-140	BIRC2	1		
clap-r-v	hasa-mir-511-2	BIRC2	1		
alib1-m-v	hasa-mir-1228	NCOA3	1		
claudin-7-r-v	hasa-mir-140	CLDN7	1		
ar-r-v	hasa-mir-1228	AR	1		
bcl-xir-c	hasa-mir-1295	BCL2L1	1		
ar-r-v	hasa-mir-511-1	AR	1		
eef2k-r-v	hasa-mir-181a-2	EEF2K	1		
tau-m-c	hasa-mir-142	MAPT	1		
cdk1-r-v	hasa-mir-1247	CDC2	1		
Gene Symbol	Accession	Protein			
-------------	-----------	---------			
cdk1-r-v	hsa-let-7a-3	CDC2			
cdk1-r-v	hsa-let-7a-1	CDC2			
cdk1-r-v	hsa-let-7a-2	CDC2			
eef2k-r-v	hsa-mir-1908	EEF2K			
p27-r-v	hsa-mir-136	CDKN1B			
eef2k-r-v	hsa-mir-134	EEF2K			
setd2-r-na	hsa-mir-511-2	SETD2			
smad1-r-v	hsa-mir-483	SMAD1			
irs1-r-v	hsa-mir-511-1	IRS1			
p21-r-c	hsa-mir-150	CDKN1A			
ar-r-v	hsa-mir-1307	AR			
bcl-2-m-v	hsa-mir-1295	BCL2			
n-cadherin-r-v	hsa-mir-142	CDH2			
smad4-m-c	hsa-mir-1295	SMAD4			
cdk1-r-v	hsa-let-7b	CDC2			
smad1-r-v	hsa-mir-139	SMAD1			
xiap-r-c	hsa-mir-140	KDR			
claudin-7-r-v	hsa-mir-511-2	CLDN7			
alpha-catenin-m-v	hsa-mir-1228	CTNNA1			
bim-r-v	hsa-mir-218-1	BCL2L11			
eef2k-r-v	hsa-mir-758	EEF2K			
ar-r-v	hsa-mir-452	AR			
ptc1-r-c	hsa-mir-25	PTCH1			
p27-r-v	hsa-mir-758	CDKN1B			
c-kit-r-v	hsa-mir-22	KIT			
smad1-r-v	hsa-mir-377	SMAD1			
eef2k-r-v	hsa-mir-217	EEF2K			
her2-m-v	hsa-mir-511-1	ERBB2			
claudin-7-r-v	hsa-mir-24-1	CLDN7			
abl1-m-v	hsa-mir-139	NCOA3			
chk2-m-c	hsa-mir-485	CHEK2			
claudin-7-r-v	hsa-mir-758	CLDN7			
ar-r-v	hsa-mir-589	AR			
chk2-m-c	hsa-mir-140	CHEK2			
pcna-m-v	hsa-mir-132	PCNA			
setd2-r-na	hsa-mir-511-1	SETD2			
chk2-m-c	hsa-mir-223	CHEK2			
alpha-catenin-m-v	hsa-mir-605	CTNNA1			
claudin-7-r-v	hsa-mir-431	CLDN7			
irs1-r-v	hsa-mir-511-2	IRS1			
eef2k-r-v	hsa-mir-519a-2	EEF2K			
yb-1-r-v	hsa-mir-150	YBX1			
eef2k-r-v	hsa-mir-136	EEF2K			
pcna-m-v	hsa-mir-605	PCNA			
pcna-m-v	hsa-mir-485	PCNA			
xrc1-r-c	hsa-mir-214	XRCC1			
pcna-m-v	hsa-mir-199a-1	PCNA			
eef2k-r-v	hsa-mir-432	EEF2K			
smad1-r-v	hsa-mir-214	SMAD1			
eef2k-r-v	hsa-mir-483	EEF2K			
c-kit-r-v	hsa-mir-511-1	KIT			
foxo3a-r-c	hsa-mir-142	FOXO3			
bim-r-v	hsa-mir-485	BCL2L11			
snail-m-c	hsa-mir-155	SNAI2			
er-alpha-r-v	hsa-mir-877	ESR1			
stat5-alpha-r-v	hsa-mir-605	STAT5A			
claudin-7-r-v	hsa-mir-654	CLDN7			
claudin-7-r-v	hsa-mir-337	CLDN7			
xrc1-r-c	hsa-mir-1247	XRCC1			
claudin-7-r-v	hsa-mir-130b	CLDN7			
mre11-r-c	hsa-mir-766	MRE11A			
Protein	miRNA	Gene			
--------------	-------------	--------			
cdk1-r-v	hsa-mir-140	CDC2			
bim-r-v	hsa-mir-1976	BCL2L11			
gab2-r-v	hsa-mir-654	GAB2			
her2-m-v	hsa-mir-511-2	ERBB2			
chk2-m-c	hsa-mir-24-1	CHEK2			
eef2-r-v	hsa-mir-140	EEF2			
ar-r-v	hsa-mir-1976	AR			
pr-r-v	hsa-mir-31	PGR			
pck-alpha-m-v	hsa-mir-511-2	PRKCA			
mre111-r-c	hsa-mir-511-2	MRE11A			
ku80-r-c	hsa-mir-217	XRCC5			
smac-m-v	hsa-mir-1249	DIABLO			
claudin-7-r-v	hsa-mir-370	CLDN7			
pcaa-m-v	hsa-mir-511-1	PCNA			
bim-r-v	hsa-mir-409	BCL2L11			
eef2k-r-v	hsa-mir-455	EEF2K			
53bp1-r-c	hsa-mir-1295	TP53BP1			
xbp1-g-c	hsa-mir-223	XBP1			
er-alpha-r-v	hsa-mir-1276	ESR1			
dj-1-r-c	hsa-mir-140	PARK7			
syk-m-v	hsa-let-7e	SYK			
er-alpha-r-v	hsa-mir-1914	ESR1			
er-alpha-r-v	hsa-mir-605	ESR1			
smad1-r-v	hsa-mir-1247	SMAD1			
claudin-7-r-v	hsa-mir-181b-2	CLDN7			
pr-r-v	hsa-mir-629	PGR			
rab25-r-c	hsa-mir-223	RAB25			
yb-1-r-v	hsa-mir-1249	YBX1			
chk2-m-c	hsa-mir-1295	CHEK2			
xroc1-r-c	hsa-mir-212	XRCC1			
gab2-r-v	hsa-mir-1247	GAB2			
e-cadherin-r-v	hsa-mir-1271	CDH1			
src-m-v	hsa-mir-142	SRC			
p53-r-v	hsa-mir-1908	TP53			
pck-alpha-m-v	hsa-mir-511-1	PRKCA			
notch3-r-c	hsa-mir-365-2	NOTCH3			
p27-r-v	hsa-mir-487a	CDKN1B			
rab25-r-c	hsa-mir-511-2	RAB25			
rab25-r-c	hsa-mir-212	RAB25			
c-myc-r-c	hsa-mir-511-2	MYC			
xiap-r-c	hsa-mir-217	KDR			
smad1-r-v	hsa-mir-212	SMAD1			
msh6-r-c	hsa-mir-1249	MSH6			
ku80-r-c	hsa-mir-1249	XRCC5			
smad1-r-v	hsa-mir-487a	SMAD1			
eef2k-r-v	hsa-mir-370	EEF2K			
syk-m-v	hsa-mir-411	SYK			
rad50-m-c	hsa-mir-1295	RAD50			
eef2k-r-v	hsa-mir-181b-2	EEF2K			
caspase-8-m-c	hsa-mir-1247	CASP8			
gab2-r-v	hsa-mir-337	GAB2			
bim-r-v	hsa-mir-511-2	BCL2L11			
eef2k-r-v	hsa-mir-522	EEF2K			
bim-r-v	hsa-mir-145	BCL2L11			
p27-r-v	hsa-mir-181b-1	CDKN1B			
msh6-r-c	hsa-let-7a-2	MSH6			
msh6-r-c	hsa-let-7a-3	MSH6			
ptc-r-c	hsa-mir-223	PTCH1			
notch3-r-c	hsa-mir-511-2	NOTCH3			
src-m-v	hsa-mir-511-1	SRC			
gene	miRNA	protein			
------	-------	---------			
jnk2-r-c	hsa-mir-217	MAPK9			
bak-r-c	hsa-mir-511-1	BAK1			
eif4e-r-v	hsa-mir-605	EIF4E			
claudin-7-r-v	hsa-mir-487b	CLDN7			
p53-r-v	hsa-mir-139	TP53			
p53-r-v	hsa-mir-140	TP53			
igf-1r-beta-r-c	hsa-mir-1228	IGF1R			
gab2-r-v	hsa-mir-134	GAB2			
eef2k-r-v	hsa-mir-369	EEF2K			
bcl-2-m-v	hsa-mir-210	BCL2			
caveolin-1-r-v	hsa-mir-551a	CAV1			
pxin-r-v	hsa-mir-511-1	PXN			
yap-r-v	hsa-mir-1295	YAP1			
yap-r-v	hsa-mir-1228	YAP1			
smad1-r-v	hsa-mir-485	SMAD1			
p53-r-v	hsa-mir-589	TP53			
xiap-r-c	hsa-mir-485	KDR			
e-cadherin-r-v	hsa-mir-1306	CDH1			
pr-r-v	hsa-mir-1908	PGR			
inpp4b-g-c	hsa-mir-223	INPP4B			
smac-m-v	hsa-let-7b	DIABLO			
syk-m-v	hsa-mir-539	SYK			
pcna-m-v	hsa-mir-654	PCNA			
smad1-r-v	hsa-mir-605	SMAD1			
syk-m-v	hsa-mir-605	SYK			
smac-m-v	hsa-mir-140	DIABLO			
eef2k-r-v	hsa-mir-133a-1	EEF2K			
rab25-r-c	hsa-mir-142	RAB25			
claudin-7-r-v	hsa-mir-127	CLDN7			
akt-r-c	hsa-mir-217	AKT1			
bak-r-c	hsa-mir-511-2	BAK1			
aib1-m-v	hsa-mir-1247	NCOA3			
cdk1-r-v	hsa-mir-511-1	CDC2			
pea-15-r-v	hsa-mir-433	PEA15			
smac-m-v	hsa-mir-511-2	DIABLO			
gata3-m-v	hsa-mir-99b	GATA3			
inpp4b-g-c	hsa-mir-150	INPP4B			
53bp1-r-c	hsa-mir-589	TP53BP1			
c-kit-r-v	hsa-mir-551a	KIT			
mre11-r-c	hsa-mir-511-1	MRE11A			
igfbp2-r-v	hsa-mir-29c	IGFBP2			
er-alpha-r-v	hsa-mir-494	ESR1			
mek1-r-v	hsa-mir-1228	MAP2K1			
erk2-r-na	hsa-mir-511-1	MAPK1			
igf-1r-beta-r-c	hsa-mir-658	IGF1R			
53bp1-r-c	hsa-mir-148a	TP53BP1			
alpha-catenin-m-v	hsa-mir-1908	CTNN1A			
rad50-m-c	hsa-mir-511-1	RAD50			
yap-r-v	hsa-mir-217	YAP1			
bcl-2-m-v	hsa-mir-203	BCL2			
p53-r-v	hsa-mir-132	TP53			
caveolin-1-r-v	hsa-mir-130b	CAV1			
ku80-r-c	hsa-mir-605	XRCC5			
syk-m-v	hsa-mir-379	SYK			
c-kit-r-v	hsa-mir-15b	KIT			
gab2-r-v	hsa-mir-181a-1	GAB2			
df-1-r-c	hsa-mir-342	PARK7			
bcl-x-r-c	hsa-mir-1295	BCL2L1			
pcna-m-v	hsa-mir-134	PCNA			
eef2k-r-v	hsa-mir-130b	EEF2K			
syk-m-v	hsa-mir-22	SYK			
Gene	miRNA	Gene	miRNA		
------------	---------	------------	---------		
igf-1r-beta-r-c	hsa-mir-203	IGF1R			
paxillin-r-v	hsa-mir-766	PXN			
e-cadherin-r-v	hsa-mir-329-1	CDH1			
pcna-m-v	hsa-mir-493	PCNA			
smac-m-v	hsa-mir-588	DIABLO			
smad1-r-v	hsa-mir-455	SMAD1			
rad50-m-c	hsa-mir-1247	RAD50			
inpp4b-g-c	hsa-mir-766	INPP4B			
p70s6k-r-v	hsa-mir-1247	RPS6KB1			
cdk1-r-v	hsa-mir-605	CDC2			
smac-m-v	hsa-mir-605	DIABLO			
smad1-r-v	hsa-mir-1228	SMAD1			
alpha-catenin-m-v	hsa-mir-214	CTNNA1			

Found by both the integrated model and the naïve model

Gene	miRNA	Gene	miRNA
notch3-r-c	hsa-mir-150	NOTCH3	1
er-alpha-r-v	hsa-mir-18a	ESR1	1
p53-r-v	hsa-mir-150	TP53	1
beta-catenin-r-v	hsa-mir-214	CTNNB1	1
bim-r-v	hsa-mir-181a-1	BCL2L11	1
igf-1r-beta-r-c	hsa-mir-223	IGF1R	1
igf-1r-beta-r-c	hsa-mir-139	IGF1R	1
p27-r-v	hsa-mir-181a-1	CDKN1B	1
igf-1r-beta-r-c	hsa-mir-145	IGF1R	1
smad3-r-v	hsa-mir-155	SMAD3	1
msh6-r-c	hsa-mir-21	MSH6	1
caveolin-1-r-v	hsa-mir-7-1	CAV1	1
bim-r-v	hsa-mir-7a-2	BCL2L11	1
e-cadherin-r-v	hsa-mir-7a-1	BCL2L11	1
n-cadherin-r-v	hsa-mir-223	CDH2	1
yap-r-v	hsa-mir-150	YAP1	1
er-alpha-r-v	hsa-mir-766	ESR1	1
ku80-r-c	hsa-mir-223	XRCC5	1
beta-catenin-r-v	hsa-mir-223	CTNNB1	1
claudin-7-r-v	hsa-mir-493	ESR1	1
claudin-7-r-v	hsa-mir-605	CDH1	1
beta-catenin-r-v	hsa-mir-1228	CLDN7	1
beta-catenin-r-v	hsa-mir-511-1	CTNNB1	1
er-alpha-r-v	hsa-mir-337	ESR1	1
bim-r-v	hsa-mir-299	ESR1	1
er-alpha-r-v	hsa-mir-409	SYK	1
igf-1r-beta-r-c	hsa-mir-142	IGF1R	1
e-cadherin-r-v	hsa-mir-130b	CDH1	1
pcna-m-v	hsa-mir-654	SYK	1
ae2fsr-r-v	hsa-mir-605	EEF2K	1
syk-r-v	hsa-mir-337	SYK	1
snail-m-c	hsa-mir-150	SNAI2	1
igf-1r-beta-r-c	hsa-mir-511-1	IGF1R	1

References

Citation: Zhu J, Wu S, Yang J (2015) An Integrated Method for Detecting Micro RNA Target Proteins through Reverse-phase Protein Arrays. J Comput Sci Syst Biol 8: 012-033. doi:10.4172/jcsb.1000166
Gene	miRNA	Protein	Count
caveolin-1-r-v	hasa-mir-200a	CAV1	1
chk2-m-c	hasa-mir-223	AKT1	1
akt-r-v	hasa-mir-142	CTNNA1	1
alpha-catenin-m-v	hasa-mir-1295	BCL2L11	1
igf-1r-beta-r-c	hasa-mir-1908	CDH1	1
akt-r-v	hasa-mir-150	SYK	1
e-cadherin-r-v	hasa-mir-1228	CDH1	1
p70s6k-r-v	hasa-mir-511-2	RPS6KB1	1
c-myc-r-c	hasa-mir-486	MYC	1
b-raf-m-na	hasa-mir-145	BRAF	1
eef2k-r-v	hasa-mir-1247	EEF2K	1
igf2p2-r-v	hasa-mir-664	IGFBP2	1
p70s6k-r-v	hasa-mir-511-1	RPS6KB1	1
eef2k-r-v	hasa-mir-487a	EEF2K	1
claudin-7-r-v	hasa-mir-493	CLDN7	1
e-cadherin-r-v	hasa-mir-511-2	CDH1	1
yap-r-v	hasa-mir-142	YAP1	1
akt-r-v	hasa-mir-511-2	AKT1	1
actin-alpha-r-v	hasa-mir-1910	ESR1	1
eef2k-r-v	hasa-mir-487a	EEF2K	1
alpha-catenin-m-v	hasa-mir-223	CTNNA1	1
e-cadherin-r-v	hasa-mir-218-1	CDH1	1
akt-r-v	hasa-mir-766	AKT1	1
chk2-m-c	hasa-mir-605	BCL2L11	1
yap-r-v	hasa-mir-605	YAP1	1
erk2-r-r-na	hasa-mir-223	MAPK1	1
beta-catenin-v-v	hasa-mir-146a	CTNNB1	1
caspase-8-m-c	hasa-mir-511-2	CASP8	1
syk-r-v	hasa-mir-541	SYK	1
alpha-catenin-m-v	hasa-mir-379	ESR1	1
chk2-m-c	hasa-mir-7a-3	CHEK2	1
chk2-m-c	hasa-mir-7a-2	CHEK2	1
e-cadherin-r-v	hasa-mir-511-1	CDH1	1
eef2k-r-v	hasa-mir-541	EEF2K	1
msh6-r-c	hasa-mir-142	MSH6	1
chk2-m-c	hasa-mir-7a-1	CHEK2	1
e-cadherin-r-v	hasa-mir-299	CDH1	1
b-raf-m-na	hasa-mir-605	BRAF	1
c-met-m-c	hasa-mir-511-2	MET	1
fak-r-c	hasa-mir-616	PTK2	1
pkc-alpha-m-v	hasa-mir-150	PRKCA	1
bim-r-v	hasa-mir-223	BCL2L11	1
syk-r-v	hasa-mir-483	SYK	1
msh6-r-c	hasa-mir-146a	MSH6	1
b-raf-m-na	hasa-mir-223	BRAF	1
igf2p2-r-v	hasa-mir-29b-1	IGFBP2	1
b-raf-m-na	hasa-mir-511-2	BRAF	1
er-alpha-r-v	hasa-mir-218-1	ESR1	1
syk-r-v	hasa-mir-616	SYK	1
b-raf-m-na	hasa-mir-193a	BRAF	1
53bp1-r-c	hasa-mir-616	CAV1	1
caveolin-1-r-v	hasa-mir-452	RB1	1
er-alpha-r-v	hasa-mir-199a-2	ESR1	1
caveolin-1-r-v	hasa-mir-200b	CAV1	1
c-met-m-c	hasa-mir-511-1	MET	1
jnk2-r-c	hasa-mir-223	MAPK9	1
chk1-r-v	hasa-mir-511-2	CHEK1	1
sysk-m-v	hasa-mir-511-2	SYK	1
igf-1-tr-beta-r-c	hasa-mir-150	IGFR1	1
Protein	miRNA	Gene Name	
---------	-------	-----------	
beta-catenin-r-v	hsa-mir-150	CTNNB1	
e-cadherin-r-v	hsa-mir-214	CDH1	
53bp1-r-c	hsa-mir-150	TP53BP1	
alpha-catenin-m-v	hsa-mir-150	CTNNA1	
pr-r-v	hsa-mir-150	PGR	
ku80-r-c	hsa-mir-150	XRCC5	
claudin-7-r-v	hsa-mir-766	CLDN7	
xrc3-r-c	hsa-mir-150	XRCC1	
e-cadherin-r-v	hsa-mir-1247	CDH1	
e-cadherin-r-v	hsa-mir-145	CDH1	
smad4-r-c	hsa-mir-150	SMAD4	
igf2r2-r-v	hsa-mir-224	IGF2BP2	
eef2k-r-v	hsa-mir-766	EEF2K	
e-cadherin-r-v	hsa-mir-150	CDH1	
notch3-r-c	hsa-mir-146a	NOTCH3	
e-cadherin-r-v	hsa-mir-541	ESR1	
smac-m-v	hsa-mir-150	DIABLO	
syk-m-v	hsa-mir-145	SYK	
er-alpha-r-v	hsa-mir-409	ESR1	
irs1-r-v	hsa-mir-150	IRS1	
er-alpha-r-v	hsa-mir-485	ESR1	
pr-r-v	hsa-mir-22	PGR	
e-cadherin-r-v	hsa-mir-766	CDH1	
syk-m-v	hsa-mir-377	SYK	
claudin-7-r-v	hsa-mir-1247	CLDN7	
syk-m-v	hsa-mir-214	SYK	
er-alpha-r-v	hsa-mir-134	ESR1	
er-alpha-r-v	hsa-mir-758	ESR1	
e-cadherin-r-v	hsa-mir-485	CDH1	
braf-m-na	hsa-mir-150	BRAF	
syk-m-v	hsa-mir-485	SYK	
er-alpha-r-v	hsa-mir-214	ESR1	
dl1-r-c	hsa-mir-150	PARK7	
rad51-r-m-c	hsa-mir-150	RAD51	
er-alpha-r-v	hsa-mir-432	ESR1	
er-alpha-r-v	hsa-mir-377	ESR1	
er-alpha-r-v	hsa-mir-431	ESR1	
bim-r-v	hsa-mir-193a	BCL2L11	
gab2-r-v	hsa-mir-766	GAB2	
er-alpha-r-v	hsa-mir-487a	ESR1	
msh6-r-c	hsa-mir-1247	MSH6	
syk-m-v	hsa-mir-140	SYK	
pcna-m-v	hsa-mir-145	PCNA	
er-alpha-r-v	hsa-mir-433	ESR1	
notch3-r-c	hsa-mir-142	NOTCH3	
syk-m-v	hsa-mir-487a	SYK	
beta-catenin-r-v	hsa-mir-766	CTNNB1	
rad50-m-c	hsa-mir-150	RAD50	
pcna-m-v	hsa-mir-1295	PCNA	
er-alpha-r-v	hsa-mir-382	ESR1	
e-cadherin-r-v	hsa-mir-134	CDH1	
er-alpha-r-v	hsa-mir-370	ESR1	
alpha-catenin-m-v	hsa-mir-766	CTNNA1	
c-myc-r-c	hsa-mir-150	MYC	
e-cadherin-r-v	hsa-mir-139	CDH1	
rb-r-v	hsa-mir-150	RB1	
bcl-xl-r-c	hsa-mir-150	BCL2L1	
er-alpha-r-v	hsa-mir-483	ESR1	
msh6-r-c	hsa-mir-214	MSH6	
msh6-r-c	hsa-mir-1295	MSH6	
syk-m-v	hsa-mir-127	SYK	
Gene Symbol	Gene ID	Gene Name	
-------------	---------	-----------	
er-alpha-r-v	hsa-mir-539	ESR1	
claudin-7-r-v	hsa-mir-605	CLDN7	
her2-m-v	hsa-mir-766	ERBB2	
her2-m-v	hsa-mir-150	ERBB2	
claudin-7-r-v	hsa-mir-485	CLDN7	
claudin-7-r-v	hsa-mir-217	CLDN7	
b-myc-r-v	hsa-mir-766	MYC	
chk2-m-c	hsa-mir-145	CHEK2	
er-alpha-r-v	hsa-mir-127	ESR1	
er-alpha-r-v	hsa-mir-654	ESR1	
e-cadherin-r-v	hsa-mir-409	CDH1	
syk-m-v	hsa-mir-758	SYK	
er-alpha-r-v	hsa-mir-136	ESR1	
syk-m-v	hsa-mir-132	SYK	
e-cadherin-r-v	hsa-mir-199a-1	CDH1	
igf-1r-beta-r-c	hsa-mir-766	IGF1R	
e-cadherin-r-v	hsa-mir-487a	CDH1	
bim-r-v	hsa-mir-150	BCL2L1	
ku80-r-c	hsa-mir-766	XRCC5	
er-alpha-r-v	hsa-mir-410	ESR1	
syk-m-v	hsa-mir-493	SYK	
e-cadherin-r-v	hsa-mir-199a-2	CDH1	
chk2-m-c	hsa-mir-150	CHEK2	
er-alpha-r-v	hsa-mir-1908	ESR1	
claudin-7-r-v	hsa-mir-541	CLDN7	
53bp1-r-c	hsa-mir-223	TP53BP1	
claudin-7-r-v	hsa-mir-204	CLDN7	
eif4e-r-v	hsa-mir-150	EIF4E	
p-cadherin-r-c	hsa-mir-150	CDH3	
smad1-r-v	hsa-mir-766	SMAD1	
pr-r-v	hsa-mir-605	PGR	
xroc1-r-c	hsa-mir-223	XRCC1	
smad1-r-v	hsa-mir-145	SMAD1	
igfbp2-r-v	hsa-mir-452	IGFBP2	
53bp1-r-c	hsa-mir-766	TP53BP1	
igf-1r-beta-r-c	hsa-mir-589	IGF1R	
tau-m-c	hsa-mir-150	MAPT	
igfbp2-r-v	hsa-mir-150	IGFBP2	
e-cadherin-r-v	hsa-mir-204	CDH1	
cdk1-r-v	hsa-mir-150	CDC2	
pr-r-v	hsa-mir-223	PGR	
pr-r-v	hsa-mir-155	PGR	
syk-m-v	hsa-mir-433	SYK	
syk-m-v	hsa-mir-299	SYK	
e-cadherin-r-v	hsa-mir-377	CDH1	
e-cadherin-r-v	hsa-mir-212	CDH1	
chk1-r-v	hsa-mir-150	CHEK1	
b-rat-r-na	hsa-mir-1247	BRAF	
claudin-7-r-v	hsa-mir-487a	CLDN7	
syk-m-v	hsa-mir-134	SYK	
e-cadherin-r-v	hsa-mir-133a-1	CDH1	
rad50-m-c	hsa-mir-223	RAD50	
dvl3-r-v	hsa-mir-150	DVL3	
akt-r-v	hsa-mir-150	AKT1	
p27-r-v	hsa-mir-1276	CDKN1B	
e-cadherin-r-v	hsa-mir-199b	CDH1	
er-alpha-r-v	hsa-mir-130b	ESR1	
n-cadherin-r-v	hsa-mir-224	CDH2	
claudin-7-r-v	hsa-mir-1908	CLDN7	
e-cadherin-r-v	hsa-mir-1295	CDH1	
syk-m-v	hsa-mir-1295	SYK	
Protein	Gene Symbol	miRNA	Gene Symbol
---------	-------------	-------	-------------
ER-alpha-r-v	hsa-mir-496	ESR1	
IGF1r-beta-r-c	hsa-mir-1249	IGF1R	
SYK-m-v	hsa-mir-432	SYK	
LCK-r-v	hsa-mir-1269	LCK	
MSH6-r-c	hsa-mir-605	MSH6	
MSH6-r-c	hsa-mir-223	MSH6	
53bp1-r-c	hsa-mir-1247	TP53BP1	
NOTCH3-r-c	hsa-mir-223	NOTCH3	
PGR-r-v	hsa-mir-142	PGR	
BAK1-r-c	hsa-mir-150	BAK1	
SYK-m-v	hsa-mir-1247	SYK	
PARK7-r-c	hsa-mir-766	PARK7	
ESR1-r-v	hsa-mir-487b	ESR1	
IGF1BP2-z-v	hsa-mir-146a	IGF1BP2	
53bp1-r-c	hsa-mir-1249	TP53BP1	
ER-alpha-r-c	hsa-mir-146a	ESR1	
CHEK2-r-c	hsa-mir-1247	CHEK2	
MSH6-r-c	hsa-mir-193a	MSH6	
IGF1BP2-z-v	hsa-mir-29a	IGF1BP2	
TP53BP1-z-c	hsa-mir-511-2	TP53BP1	
EEF2K-z-v	hsa-mir-485	EEF2K	
TP53BP1-z-c	hsa-mir-142	TP53BP1	
CDH1-r-c	hsa-mir-337	CDH1	
XRCC1-r-c	hsa-mir-140	XRCC1	
DIABLO-z-v	hsa-mir-212	DIABLO	
CTNNB1-z-v	hsa-mir-1249	CTNNB1	
ESR1-r-c	hsa-mir-543	ESR1	
XRCC1-r-c	hsa-mir-22	XRCC1	
FOXO3-z-c	hsa-mir-511-1	FOXO3	
SYK-m-v	hsa-mir-410	SYK	
MSH6-r-c	hsa-mir-140	MSH6	
KDR-z-c	hsa-mir-150	KDR	
CLDN7-z-v	hsa-mir-218-1	CLDN7	
BCL2L11-z-v	hsa-mir-1249	BCL2L11	
CDH1-z-v	hsa-mir-181b-2	CDH1	
GAB2-z-v	hsa-mir-486	GAB2	
ERBB2-z-c	hsa-mir-145	ERBB2	
LCK-z-v	hsa-mir-149	LCK	
ERBB2-z-c	hsa-mir-212	ERBB2	
LCK-z-v	hsa-mir-1910	LCK	
TP53BP1-z-c	hsa-mir-605	TP53BP1	
CTNNB1-z-v	hsa-mir-1295	CTNNB1	
IGF1R-z-v	hsa-mir-1247	IGF1R	
PXN-z-v	hsa-mir-223	PXN	
YAP1-z-v	hsa-mir-22	YAP1	
TP53BP1-z-c	hsa-mir-511-1	TP53BP1	
YAP1-z-v	hsa-mir-766	YAP1	
PGR-z-v	hsa-mir-1228	PGR	
IGF1R-z-c	hsa-mir-605	IGF1R	
CDH1-z-v	hsa-mir-758	CDH1	
XRCC5-z-v	hsa-mir-486	XRCC5	
DIABLO-z-v	hsa-mir-1247	DIABLO	
BRAF-z-v	hsa-mir-214	BRAF	
ERBB2-z-c	hsa-mir-223	ERBB2	
EEF2K-z-v	hsa-mir-485	EEF2K	
SYK-m-v	hsa-mir-487b	SYK	
SYK-m-v	hsa-mir-382	SYK	
EEF2K-z-v	hsa-mir-433	EEF2K	
CDH1-z-v	hsa-mir-432	CDH1	
Protein	miRNA	Gene	
------------------	----------------	------	
beta-catenin	hsa-mir-142	CTNNB1	
e-cadherin	hsa-mir-382	CDH1	
syk	hsa-mir-431	SYK	
erb-α	hsa-mir-150	XBP1	
e-cadherin	hsa-mir-1247	ESR1	
rad50	hsa-mir-766	RAD50	
dvl3	hsa-mir-511-2	DVL3	
bim	hsa-mir-766	BCL2L11	
claudin-7	hsa-mir-124	CDH3	
e-cadherin	hsa-mir-455	CDH1	
notch3	hsa-mir-155	NOTCH3	
cd44b	hsa-mir-150	ITGA2	
erb-α	hsa-mir-1228	ESR1	
claudin-7	hsa-mir-134	CLDN7	
braf	hsa-mir-766	BRAF	
notch3	hsa-mir-452	NOTCH3	
smac	hsa-mir-1295	DIABLO	
bim	hsa-mir-455	BCL2L11	
erb-α	hsa-mir-99b	ESR1	
e-cadherin	hsa-mir-132	CDH1	
c-myoc	hsa-mir-223	MYC	
msh6	hsa-mir-511-1	MSH6	
claudin-7	hsa-mir-483	CLDN7	
erb-α	hsa-mir-486	ESR1	
xrccl1	hsa-mir-193a	XRCCL1	
gab2	hsa-mir-605	GAB2	
claudin-7	hsa-mir-377	CLDN7	
eef2k	hsa-mir-539	EEF2K	
claudin-7	hsa-mir-1295	CLDN7	
erb-α	hsa-mir-1224	ESR1	
p-cadherin	hsa-mir-24-1	CDH3	
rab25	hsa-mir-766	RAB25	
mek1	hsa-mir-766	MAP2K1	
bim	hsa-mir-214	BCL2L11	
claudin-7	hsa-mir-1306	CLDN7	
eef2k	hsa-mir-150	EEF2	
msh6	hsa-mir-511-2	MSH6	
syk	hsa-mir-212	SYK	
syk	hsa-mir-133a-1	SYK	
smad4	hsa-mir-511-1	SMAD4	
igf1r-beta	hsa-mir-339	IGFR1	
erb-α	hsa-mir-329-1	ESR1	
chk2	hsa-mir-605	CHEK2	
e-cadherin	hsa-mir-433	CDH1	
smac	hsa-mir-766	DIABLO	
chk2	hsa-mir-766	CHEK2	
xrccl1	hsa-mir-452	XRCCL1	
alpha-catenin	hsa-mir-1249	CTNNA1	
p-r	hsa-mir-224	PGR	
notch3	hsa-mir-224	NOTCH3	
e-cadherin	hsa-mir-766	CDH1	
syk	hsa-mir-199a-1	SYK	
alpha-catenin	hsa-mir-1247	CTNNA1	
claudin-7	hsa-mir-99b	CLDN7	
Protein	miRNA	Gene	
---------	-----------	--------	
XIAP	hsa-mir-223	KDR	
BIM	hsa-mir-486	BCL2L11	
Caveolin-1	hsa-mir-425	CAV1	
YAP	hsa-mir-511-2	YAP1	
Claudin-7	hsa-mir-539	CLDN7	
FOXO3a	hsa-mir-22	FOXO3	
DJ-1	hsa-mir-511-1	PARK7	
XRCC1	hsa-mir-142	XRCC1	
E-cadherin	hsa-mir-539	CDH1	
Igfbp2	hsa-mir-1249	IGFBP2	
Igfbp2	hsa-mir-142	IGFBP2	
SMAD3	hsa-mir-511-2	SMAD3	
Ku80	hsa-mir-511-2	XRCC5	
SMAD1	hsa-mir-150	SMAD1	
Gab2	hsa-mir-181a-2	GAB2	
Stat5a	hsa-mir-218-1	STAT5A	
SYK	hsa-mir-381	SYK	
EEF2k	hsa-mir-150	EEF2K	
XRCC1	hsa-lent-7b	XRCC1	
Foxo3a	hsa-mir-486	FOXO3	
Pk-c-Alpha	hsa-mir-223	PRKCA	
Xiap	hsa-mir-1247	KDR	
4E-BP1	hsa-mir-1295	EIF4EBP1	
YAP	hsa-mir-511-1	YAP1	
Ku80	hsa-mir-1247	XRCC5	
BRAF	hsa-lent-7b	BRAF	
Notch3	hsa-mir-148a	NOTCH3	
CAV1	hsa-mir-182	CAV1	
NF2	hsa-mir-511-1	NF2	
AR	hsa-mir-511-2	AR	
Claudin-7	hsa-mir-125a	CLDN7	
Ku80	hsa-mir-1247	XRCC5	
Claudin-7	hsa-mir-1249	CLDN7	
N-cadherin	hsa-mir-588	CDH2	
Mek1	hsa-mir-1249	MAP2K1	
YAP	hsa-mir-1247	YAP1	
Stat5a	hsa-mir-455	STAT5A	
NF2	hsa-mir-511-2	NF2	
XRCC1	hsa-mir-217	XRCC1	
E-cadherin	hsa-mir-370	CDH1	
Vasp	hsa-mir-504	VASP	
E-cadherin	hsa-mir-541	CDH1	
Notch3	hsa-mir-22	NOTCH3	
Bcl-alr	hsa-mir-140	BCL2L1	
Her2	hsa-mir-1247	ERBB2	
Gab2	hsa-mir-377	GAB2	
p53	hsa-mir-766	TP53	
Er-alpha	hsa-mir-154	ESR1	
Rad50-m	hsa-mir-217	RAD50	
Er-alpha	hsa-mir-1295	ESR1	
Msh6	hsa-mir-139	MSH6	
Alpha-catenin-m	hsa-mir-145	CTNNA1	
E-cadherin	hsa-mir-486	CDH1	
P27	hsa-mir-1254	CDKN1B	
Syk	hsa-mir-370	SYK	
PR	hsa-mir-181a-1	PGR	
E-cadherin	hsa-mir-891a	CDH1	
Er-alpha	hsa-mir-181b-2	ESR1	
Dj-1	hsa-mir-1295	PARK7	
Igf1r	hsa-lent-7i	IGFR1	
Protein	miRNA	Gene Name	
---------------	-----------	-----------------	
claudin-7	hsa-mir-133a-1	CLDN7	
paxillin	hsa-mir-1249	PXN	
n-cadherin	hsa-mir-140	CDH2	
53bp1	hsa-mir-145	TP53BP1	
p-cadherin	hsa-mir-23b	CDH3	
xrcfl-r-c	hsa-mir-511-1	XRCC1	
igf-1r-beta-c	hsa-mir-1976	IGFR1	
beta-catenin	hsa-mir-212	CTNNB1	
p27-r-v	hsa-mir-541	CDKN1B	
e-claudin	hsa-mir-1306	ESR1	
smac-m-v	hsa-mir-145	DIABLO	
irs1-r-v	hsa-mir-24-1	IRS1	
syk-m-v	hsa-mir-199a-2	SYK	
pr-r-v	hsa-mir-766	PGR	
pea-15-r-v	hsa-mir-511-2	PEA15	
syk-m-v	hsa-mir-496	SYK	
bak-c	hsa-mir-766	BAK1	
beta-catenin	hsa-mir-605	CTNNB1	
e-cadherin	hsa-mir-574	CDH1	
er-alpha-r-v	hsa-mir-329-2	ESR1	
foxo3a-r-c	hsa-mir-212	FOXO3	
eif4e-r-v	hsa-mir-1249	EIF4E	
p27-r-v	hsa-mir-99b	CDKN1B	
igfbp2-r-v	hsa-let-71-1	IGFBP2	
notch3-r-c	hsa-mir-1266	NOTCH3	
pea-15-r-v	hsa-mir-511-1	PEA15	
mek1-r-v	hsa-mir-296	MAP2K1	
dj-1-r-c	hsa-mir-409	PARK7	
caveolin-1-r-v	hsa-mir-375	CAV1	
53bp1-r-c	hsa-mir-1228	TP53BP1	
53bp1-c	hsa-mir-24-1	TP53BP1	
ku80-r-c	hsa-mir-1228	XRCC5	
er-alpha-r-v	hsa-mir-212	ESR1	
beta-catenin-r-v	hsa-mir-217	CTNNB1	
bcl-xr-c	hsa-mir-212	BCL2L1	
her2-r-m-v	hsa-mir-217	ERBB2	
53bp1-r-c	hsa-mir-22	TP53BP1	
p27-r-v	hsa-mir-1307	CDKN1B	
bcl-2-m-v	hsa-mir-511-2	BCL2	
notch3-r-c	hsa-let-7i	NOTCH3	
igfbp2-r-v	hsa-let-7b	IGFBP2	
notch3-r-c	hsa-mir-511-1	NOTCH3	
er-alpha-r-v	hsa-mir-139	ESR1	
lck-r-v	hsa-mir-99b	LCK	
53bp1-r-c	hsa-mir-224	TP53BP1	
gab2-r-v	hsa-mir-539	GAB2	
syk-m-v	hsa-mir-543	SYK	
pten-r-v	hsa-mir-766	PTEN	
pea-15-r-v	hsa-mir-1910	PEA15	
xrcfl-r-c	hsa-mir-224	XRCC1	
cdk1-r-v	hsa-mir-217	CDC2	
caveolin-1-r-v	hsa-mir-429	CAV1	
nf2-r-c	hsa-mir-150	NF2	
gab2-r-v	hsa-mir-455	GAB2	
chk2-m-c	hsa-mir-139	CHEK2	
yap-r-v	hsa-mir-1249	YAP1	
4e-bp1-r-v	hsa-mir-145	EIF4EBP1	
gab2-r-v	hsa-mir-541	GAB2	
e-cadherin-r-v	hsa-mir-1249	CDH1	
Protein Name	mir Name	Accession	
----------------	------------	-----------	
mek1-r-v	hsa-mir-504	MAP2K1	
claudin-7-r-v	hsa-mir-891a	CLDN7	
jnk2-r-c	hsa-mir-150	MAPK9	
cdk1-r-v	hsa-mir-664	CDC2	
gab2-r-v	hsa-mir-1910	GAB2	
caveolin-1-r-v	hsa-mir-96	CAV1	
setd2-r-na	hsa-mir-223	SETD2	
igfbp2-r-v	hsa-mir-223	IGFBP2	
4e-bp1-r-v	hsa-mir-605	EIF4EBP1	
msh6-r-c	hsa-mir-217	MSH6	
bcl-x-r-c	hsa-mir-181a-1	BCL2L1	
braf-m-na	hsa-mir-1249	BRAF	
igf-1r-beta-c	hsa-mir-241	IGF1R	
e-cadherin-r-v	hsa-mir-217	CDH1	
igfbp2-r-v	hsa-mir-1012	IGFBP2	
e-cadherin-r-v	hsa-mir-431	CDH1	
n-cadherin-r-v	hsa-mir-193a	CDH2	
cdk1-r-v	hsa-mir-5112	CDC2	
ku80-r-c	hsa-mir-142	XRC5	
caveolin-1-r-v	hsa-mir-210	CAV1	
xroc1-r-c	hsa-mir-766	XRC1	
igf-1r-beta-c	hsa-mir-486	IGF1R	
djk1-r-c	hsa-mir-22	PARK7	
caveolin-1-r-v	hsa-mir-141	CAV1	
cdk1-r-v	hsa-mir-29a	CDC2	
e-cadherin-r-v	hsa-mir-342	CDH1	
syk-m-v	hsa-mir-1228	SYK	
beta-catenin-r-v	hsa-mir-133a-1	CTNNB1	
pf2-r-c	hsa-mir-1252	NF2	
msh6-r-c	hsa-mir-377	MSH6	
syk-m-v	hsa-mir-584	SYK	
her2-m-v	hsa-mir-1249	ERBB2	
chk2-m-c	hsa-mir-133a-1	CHEK2	
dvl3-r-v	hsa-mir-766	DVL3	
p27-r-v	hsa-mir-486	CDKN1B	
gab2-r-v	hsa-mir-485	GAB2	
xroc1-r-c	hsa-mir-3652	XRC1	
smad3-r-v	hsa-mir-223	SMAD3	
e-cadherin-r-v	hsa-mir-487b	CDH1	
notch3-r-c	hsa-mir-3651	NOTCH3	
smac-m-v	hsa-mir-1228	DIABLO	
caspase-8-m-c	hsa-mir-99b	CASP8	
irs1-r-v	hsa-mir-223	IRS1	
alpha-catenin-m-v	hsa-mir-212	CTNNA1	
gab2-r-v	hsa-mir-431	GAB2	
cdk1-r-v	hsa-mir-125a	CDC2	
jnk2-r-c	hsa-mir-140	MAPK9	
c-myc-r-c	hsa-mir-217	MYC	
mek1-r-v	hsa-mir-241	MAP2K1	
vegfr2-r-c	hsa-mir-551a	KDR	
setd2-r-na	hsa-mir-140	SETD2	
rab25-r-c	hsa-mir-217	RAB25	
xroc1-r-c	hsa-mir-139	XRC1	
53bp1-r-c	hsa-mir-214	TP53BP1	
lck-r-v	hsa-mir-605	LCK	
gab2-r-v	hsa-mir-487a	GAB2	
er-alpha-r-v	hsa-mir-381	ESR1	
ku80-r-c	hsa-mir-146a	XRC5	
53bp1-r-c	hsa-mir-217	TP53BP1	
smac-m-v	hsa-mir-224	DIABLO	
er-alpha-r-v	hsa-mir-140	ESR1	
found only by the integrated model, were confirmed by miRanda database. However, only 6 targets found by the naïve model only were confirmed by miRanda database. MirTarbase, a dataset based on manually surveying pertinent literature [23] was used to further verify our results. 15 suggested targets found by both the integrated and the naïve model were supported by the MirTarBase dataset. 11 of the 15 suggested targets found by both the integrated and the naïve model were supported by strong experimental evidences according to the MirTarBase dataset. One suggested target found by the integrated model only were supported by strong experimental evidences according to the MirTarBase dataset. None of the suggested targets found by the naïve model only were supported by strong experimental evidences according to the MirTarBase dataset. This suggests that there could be a number of undiscovered miRNA targets included in the findings of integrated and naïve models. The list of 822 miRNA/protein pairs was included in the appendix (Table A3).

Discussion

The traditional way to detect direct targets of miRNA using miRNA-mRNA experiment method is limited, due to the fact that miRNAs may regulate their targets post-transcriptionally. In addition, other computational methods, which were based on optimal sequence complementarity of miRNA and mRNA, suffer from large percentage of false positives and of limited practical use. Taking the advantage of recent technique advance in measuring of miRNA expression and protein concentration levels in a high-throughput scale, we proposed to search for potential miRNA targets through a nonlinear hierarchical model. Computationally, this integrated model measures the correlation between miRNA and its targeting protein without making estimation of protein expression levels first as in the naïve method. We used both simulation studies and an application to the real data to compare our proposed method and the naïve method. Our simulation results suggested that both integrated and naïve methods can well control their type-I errors, however, the integrated method consistently showed higher detection powers than the naïve method under different scenarios, particularly when the protein intensity values were located close to the saturation point or the background noise level. In the real data example, our proposed integrated method detected much more potential miRNA targets than the naïve method. Furthermore, the number of potential miRNA targets, which can be confirmed by computational methods or literatures, is larger in the integrated method than that in the naïve method.

A significant association between a miRNA/protein pair can be
either direct or indirect. For example, a miRNA may directly target and degrade a transcription factor (TF), which in turn induces indirect cascading effects of down-regulating the TF’s target genes. The association analyses from the simple or our integrated model would reveal both direct and indirect associations. In contrast, the other computer-based algorithms, e.g. miRanda, can only predict direct miRNA targets based on sequence comparison. In the real data analyses (Table 1), the relatively smaller percentage of overlap between our findings and miRanda database suggests that our algorithm may detect more indirect targets. This is sound since our algorithm is more powerful, as demonstrated by our simulation studies, and hence is capable of detecting smaller indirect associations. With the cross-reference to miRanda database, those direct miRNA targets of more biological relevance could be filtered out to serve as top candidates for further biological validations. It is worth noting that our algorithm can indeed detect more direct miRNA targets in absolute number. Also, in Table 1, the results were based on a FDR of 10% for the multiple test adjustment; however, we also checked a FDR at 5% level and found the conclusion remained the same. That is, the proposed integrated method found more miRNA targets that appear in other existing databases, demonstrating its advantage over the naïve method.

Unknown parameters in our proposed model were estimated within the maximum likelihood framework. Using the asymptotic properties of maximum likelihood estimates, test statistics were straightforward to construct. However, some improvement can be made to further improve the proposed model. For example, we assumed a linear relationship between miRNA and protein to directly compare with the naïve method and to illustrate our model using simple examples, but in reality, the relationship between miRNAs and proteins could follow a nonlinear relationship, such as a dose-response curve. In this case, (zₚ) can be replaced by other parametric or nonparametric functions. With some simple modifications, our model can be easily extended to relax these assumptions. Additionally, in this article the random error terms for different dilution steps were set to be independent and identically distributed as proposed in other RPPA analysis papers [10]. However, it is possible that the errors may be highly correlated. In this case, more complicated dependence matrix among serial dilution steps can also be readily incorporated into our model framework.

References
1. Pritchard CC, Cheng HH, Tewari M (2012) MicroRNA profiling: approaches and considerations. Nat Rev Genet 13: 358-369.
2. Tang G, Reinhart BJ, Bartel DP, Zamore PD (2003) A biochemical framework for RNA silencing in plants. Genes Dev 17: 49-63.
3. Xie Z, Kasschau KD, Carrington JC (2003) Negative feedback regulation of Dicer-Like1 in Arabidopsis by miRNA-guided miRNA degradation. Curr Biol 13: 784-789.
4. Doench JG, Sharp PA (2004) Specificity of microRNA target selection in translational repression. Genes Dev 18: 504-511.
5. Zeng Y, Wagner EJ, Cullen BR (2002) Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol Cell 9: 1327-1333.
6. Betel D, Koppal A, Agius P, Sander C, Leslie C (2010) Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biol 11: R90.
7. Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB (2003) Prediction of mammalian microRNA target sites. Cell 115: 787-798.
8. Brennecke J, Stark A, Russell RB, Cohen SM (2005) Principles of microRNA-target recognition. PLoS Biol 3: e65.
9. Mueller C, Liotta LA, Espina V (2010) Reverse phase protein microarrays advance to use in clinical trials. Mol Oncol 4: 461-481.
10. Tabus I, Hategan A, Micean C, Rissanen J, Shmulevich I, et al. (2006). Nonlinear modeling of protein expressions in protein arrays. IEEE Transactions on Signal Processing 54: 2394-2407.
11. Yang JY, He X (2011) A multistep protein lysate array quantification method and its statistical properties. Biometrics 67: 1197-1205.
12. Hu J, He X, Baggerly KA, Coombes KR, Hennessy BT, et al. (2007) Non-parametric quantification of protein lysate arrays. Bioinformatics 23: 1986-1994.
13. Gelman A, Chew GL, Shnaidman M (2004) Bayesian analysis of serial dilution assays. Biometrics 60: 407-417.
14. Golub G, Pereyra V (2003) Separaible nonlinear least squares: the variable projection method and its applications. Inverse problems, 19: R1.
15. Pinheiro JC, Bates DM (1995) Approximations to the log-likelihood function in the nonlinear mixed-effects model. Journal of Computational and Graphical Statistics 4: 12-35.
16. Lindstrom MJ, Bates DM (1988) Newton-Raphson and EM algorithms for linear mixed-effects models for longitudinal data. Biometrics 54: 693-711.
17. Dennis Jr JE, Schnabel RB (1996) Numerical methods for unconstrained optimization and nonlinear equations. Classics in Applied Mathematics CL16: xv + 375.
18. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Statist Soc 57: 289-300.
19. Enright AJ, John B, Gaul U, Tuschi T, Sander C, et al. (2003) MicroRNA targets in Drosophila. Genome Biol 5: R1.
20. Hofacker IL, Fontana W, Stadler PF, Bonhoeffer LS, Tacker M, et al. (1994). Fast folding and comparison of RNA secondary structures. Monatshefte für Chemie/Chemical Monthly 125: 167-188.
21. Zuker M, Stiegler P (1981) Optimization and powerful approach to multiple testing. J R Statist Soc 57: 289-300.
22. McCaskill JS (1990) The equilibrium partition function and base pair binding probabilities for RNA secondary structure. Biopolymers 29: 1105-1119.
23. Hsu SD, Tseng YT, Shrestha S, Lin YL, Khaleeli A, et al. (2014) miRTarBase update 2014: an information resource for experimentally validated miRNA-target interactions. Nucleic Acids Res 42: D178-185.