Interação entre luz, etileno e auxinas durante o amadurecimento e carotenogênese em frutos de tomateiro

Light, ethylene and auxin crosstalk during tomato fruit ripening and carotenogenesis
Interação entre luz, etileno e auxinas durante o amadurecimento e carotenogênese em frutos de tomateiro

Light, ethylene and auxin crosstalk during tomato fruit ripening and carotenogenesis

Tese apresentada ao Instituto de Biociências da Universidade de São Paulo, para a obtenção de Título de Doutor em Ciências, na Área de Botânica.

Orientador(a): Dr. Luciano Freschi

São Paulo
2017
Cruz, Aline Bertinatto

Interação entre luz, etileno e auxinas durante o amadurecimento e carotenogênese em frutos de tomateiro. Orientador: Luciano Freschi
86 p.

Tese (Doutorado) - Instituto de Biociências da Universidade de São Paulo. Departamento de Botânica.

1. Luz 2. Etileno 3. Auxina

I. Universidade de São Paulo. Instituto de Biociências. Departamento de Botânica.

Apoio de fomento: CNPq – Conselho Nacional de Desenvolvimento Científico e Tecnológico

Comissão Julgadora:

Prof(a). Dr(a). Prof(a). Dr(a).

Prof(a). Dr(a).
Dedico:

Às pessoas que não desistem de seus sonhos.
Meus sinceros agradecimentos...

Ao Prof. Dr. Luciano Freschi pela orientação, apoio, confiança e, acima de tudo, pelo exemplo de pesquisador. Foi um enorme prazer ser sua aluna.

Ao Prof. Dr Eduardo Purgatto por todo ensinamento com a parte hormonal e colaboração com a parte dos carotenoides.

À Profa Maria Magdalena Rossi pela colaboração com a parte de expressão.

Ao amigo e doutorando Ricardo Bianchetti, pela valiosa ajuda nas análises de expressão e colaboração nesta tese. Sem palavras para lhe agradecer!

À Dra. Maria Aurineide Rodrigues (Auri - minha amiga querida) obrigada por todo apoio, incentivo e confiança que sempre depositou em mim.

Às pessoas queridas do Laboratório de Fisiologia do Desenvolvimento Vegetal que direta ou indiretamente ajudaram na conclusão deste trabalho e tornaram os dias mais agradáveis: Paulo Marcelo, Paulo Mioto, Alejandra, Filipe, Carolina, Dioceni, Cássia, Antônio, Rafael, Devisson, Frederico, Natália Khatourian entre tantos outros que passaram pelo laboratório nos últimos 5 anos.

Aos queridos William Silva Oliveira e Aline Coelho, além do apoio técnico, agradeço pela amizade e pelos momentos de descontração. Vocês são os queridos do meu coração.

À Ana Maria pela ajuda técnicas indispensável para o desenvolvimento deste trabalho.

Aos Professores do Laboratório de Fisiologia do Desenvolvimento Vegetal, Gilberto Barbante Kerbauy e Helenice Mercier: muito obrigada pelo apoio.

Aos Professores do Laboratório de Fitoquímica, Cláudia, Déborah, Marcelo, Maria Luiza e Antonio Salatinó: muito obrigada pelos ensinamentos e apoio.

Aos colegas do Laboratório de Fitoquímica pelo convívio e apoio, em especial às minhas queridas amigas Mourisa, Fernanda e Kátia.

À todos os técnicos do departamento de Botânica, especialmente Mourisa, Eglee, Amanda, Tati e Silvia, sempre solícitas em me ajudar.

Ao Renato, meu amigo e companheiro, sou muito grata por você fazer parte da minha vida, sempre paciente, amoroso, dedicado e compreensivo. Amo muito você!!
À minha querida irmã, pelo carinho e compreensão nos momentos que não pude estar presente.

Aos meus sogros, Sueli e Vivaldo, por todo apoio e por serem sempre tão solícitos.

Aos meus cunhados, cunhadas e sobrinhos queridos pelo carinho.

Finalmente aos meus pais, que nunca mediram esforços para ajudar na minha formação profissional e por estarem sempre ao meu lado. Amo vocês.

A todos aqueles aqui não nomeados que, de alguma forma, contribuíram para o desenvolvimento deste trabalho e foram importantes para o meu desenvolvimento pessoal.

Ao CNPq e à FAPESP pelo auxílio financeiro e institucional.
“A ciência se construiu não pela prudência dos que marcham, mas pela ousadia dos que sonham.

Todo conhecimento começa com o sonho.
O conhecimento nada mais é que a aventura pelo mar desconhecido, em busca da terra sonhada.”

(Rubem Alves)
CRUZ, Aline Bertinatto. Interação entre luz, etileno e auxinas durante o amadurecimento e carotenogênese em frutos de tomateiro. 2017. 86f. Tese (Doutorado em Ciências – Área Botânica) – Instituto de Biociências, Universidade de São Paulo, São Paulo, 2017.

O amadurecimento de frutos é um processo altamente regulado que envolve várias mudanças estruturais, bioquímicas e fisiológicas, muitas das quais são influenciadas tanto por fatores endógenos quanto ambientais. O sinal luminoso, bem como os hormônios vegetais etileno e auxina têm se revelado importantes reguladores do amadurecimento de frutos. Porém, ainda não está totalmente esclarecido como as cascata de sinalização luminosa e hormonal interagem a fim de controlar o desenvolvimento e a fisiologia dos frutos carnosos. O presente estudo teve como objetivo analisar as interações entre as cascata de sinalização da luz, do etileno e das auxinas durante o amadurecimento e carotenogênese em frutos de tomateiro por meio do uso de mutantes fotomorfogênicos dessa espécie. As análises do metabolismo e sinalização do etileno e das auxinas em frutos do mutante high-pigment 2 (hp2), o qual apresenta respostas exageradas à luz, revelaram que a perda da função do gene HP2 resultou no aumento dos níveis de transcriptos de genes que codificam reguladores-chaves do processo de amadurecimento bem como um incremento na sinalização do etileno, sendo que essas mudanças estiveram atreladas ao maior acúmulo de carotenoides tipicamente encontrados neste mutante. Comparado ao genótipo selvagem, frutos do mutante hp2 também apresentaram uma elevação considerável na sinalização das auxinas, incluindo incrementos na ativação do promotor DR5, regulação negativa da maioria dos genes AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) envolvidos no amadurecimento do tomate, bem como alterações na abundância de transcriptos dos genes que codificam os fatores de transcrição AUXIN RESPONSE FACTOR (ARF). Indícios obtidos também sugerem uma maior responsividade dos frutos de hp2 aos hormônios etileno e auxina. Além disso, as análises do metabolismo e a sinalização das auxinas e do etileno realizadas em frutos do mutante aurea (au), deficiente na síntese do cromóforo dos fitocromos, indicaram que a interação entre esses fotorreceptores e fitormônios influencia o início do amadurecimento dos frutos de tomateiro. Os frutos deste mutante, quando comparados ao selvagem, exibiram um atraso no amadurecimento, o qual se mostrou temporalmente relacionado à indução tardia dos genes que controlam esse processo, ao atraso na produção climatérica do etileno, bem como associado a alterações nos níveis de transcriptos de genes-chaves relacionados com a sinalização das auxinas. Além das mudanças temporais na sinalização hormonal associadas ao amadurecimento, os dados obtidos também sugerem que a deficiência em fitocromos funcionais reprime a ciclização do licopeno, levando a níveis reduzidos de β-caroteno e luteína nos tecidos dos frutos. Embora os mecanismos moleculares responsáveis pelas alterações nas respostas hormonais desencadeadas pela luz ainda precisem ser melhor elucidados em frutos de tomateiro, os dados obtidos neste estudo forneceram evidências de que uma complexa interação entre a sinalização luminosa, do etileno e das auxinas estaria envolvida no controle do amadurecimento e carotenogênese nessa espécie. Portanto, estas descobertas trazem consigo oportunidades de melhoria na regulação de eventos relacionados ao processo de amadurecimento por meio da manipulação combinada de genes relacionados à sinalização luminosa e hormonal.

Palavras-chave: Luz. Etileno. Auxinas. Amadurecimento de frutos.
Fruit ripening is a highly coordinated process involving numerous structural, biochemical and physiological changes, many of which are influenced by both endogenous and environmental stimuli. Light signaling and plant hormones such as ethylene and auxins have been identified as important regulators of tomato fruit ripening. However, it is still not fully understood how light and hormonal signaling cascades interact to control the development and physiology of fleshy fruits. By applying a mutant-based approach, this study investigated the potential interconnection among light, auxin and ethylene signaling cascades during tomato fruit ripening and carotenogenesis. Analysis of ethylene and auxin metabolism and signaling in ripening fruits of the light-hyperresponsive high-pigment 2 (hp2) mutant revealed that the loss of HP2 function promotes the transcription of genes encoding key regulators of fruit ripening and increases ethylene signaling along with the increments in carotenoid synthesis and accumulation typically found in this mutant. Compared to the wild type (WT), significant changes in fruit auxin signaling were also observed in the hp2 mutant, including significantly higher activation of the auxin-responsive promoter DR5, severe down-regulation of all AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) genes more closely associated with fruit ripening as well as disturbed transcript abundance of genes encoding AUXIN RESPONSE FACTOR (ARF) transcription factors. Evidence of increased tissue responsivity to ethylene and auxins in hp2 ripening fruits is also provided. Moreover, comparing the auxin and ethylene metabolism and signaling in fruits of the phytochrome chromophore-deficient mutant aurea (au) in relation to the WT genotype provided new insights into the phytochrome-hormonal signaling crosstalk regulating the timing of fruit ripening. Compared to the WT, fruits of the au mutant exhibited a delayed-ripening phenotype, which was associated with the late induction of genes encoding master controllers of ripening, delayed ethylene climacteric production as well as coordinated changes in the expression of auxin signaling-related genes. Besides the temporal changes in hormonal signaling associated with ripening, the deficiency in functional phytochromes also seems to repress the cyclization of lycopene, leading to reduced levels of β-carotene and lutein in the fruit tissues. Although the exact molecular mechanisms behind the altered hormonal responses in tomato fruits triggered by changes in light signaling remain to be further elucidated, the data obtained in this study provide clear evidence that an intricate crosstalk among light, ethylene and auxin signaling may be involved in controlling tomato fruit ripening and carotenogenesis. Therefore, these findings open up a window of opportunity for further improvement in the regulation of ripening-associated processes through the combined manipulation of hormonal and light signaling-related genes.

Key-words: Light. Ethylene. Auxins. Fruit ripening.
Abbreviation	Description
ABA	Abscisic acid
ACC	1-AMINOCYCLOPROPANE-1-CARBOXYLIC ACID
ACO	ACC oxidase
ACS	ACC synthase
AGPases	ADP-glucose pyrophosphorylases
ARF	AUXIN RESPONSE FACTOR
Aux/IAA	AUXIN/INDOLE-3-ACETIC ACID INDUCIBLE
AUX/LAX	AUX1/LIKE-AUX1
Bk	Breaker stage
Bk1	1 days post-breaker
Bk12	12 days post-breaker
Bk3	3 days post-breaker
Bk6	6 days post-breaker
CNR	COLORLESS NON-RIpening
COP1	CONSTIUTIVE PHOTOMORPHOGENESIS 1
CRTISO	CAROTENOID ISOMERASE
CRY	cryptochromes
CTR	CONSTIUTIVE TRIPLE RESPONSE
CUL4	CULLIN4
CYC-β	LYCOPENE β-CYCLASE
DDB1	DAMAGE DNA BINDING1
DET1	DETIOLATED1
DMAPP	dimethylallyl diphosphate
EIN	ETHYLENE INSENSITIVE
ERF	ETHYLENE RESPONSE FACTORS
ETR	ETHYLENE RESPONSES
flc	Tomato flacca mutant
GGPP	geranylgeranyl diphosphate
Gr	Tomato Green-ripe mutant
HFR1	HYPOCOTYL IN FAR RED 1
HIR	high irradiance responses
hp	Tomato high-pigment mutant
HY5 – LONG HYPOCOTYL 5
IAA – Indole-3-acetic acid
IPP – isopentenyl diphosphate
IPyA – indole-3-pyruvic acid
JAs - Jasmiones
LCY-β – LYCOPENE β-CYCLASE
LFR – low fluences responses
LINs – cell-wall invertases
LYC-ε – LYCOPENE ε-CYCLASE
MAPKKK – Serine/threonine mitogen-activated protein kinase kinase
MEP – methylerythritol
MG – Mature green stage
NCED – 9-cis-epoxycarotenoid dioxygenase
NOR – NON-RIPENING
Nr – Tomato Never-ripe mutant
PAT – polar auxin transport
PDS – PHYTOENE DESATURASE
PHY – Phytochromes
PIFs - PHYTOCHROME INTERACTING FACTORS
PIN – PIN-FORMED
PSY – PHYTOENE SYNTHASE
RIN – RIPENING-INHIBITOR
SAM or AdoMet – S-ADENOSYL-METHIONINE
SAMS – L-METHIONINE-S-ADENOSYLTRANSFERASE
sit – Tomato sitiens mutant
SPBP – SQUAMOSA PROMOTER BINDING PROTEIN
SUTs – sucrose transporters
TAA1 – TRANSLATION OF psaA1
Trp – Tryptophan
VLFR – very low fluence responses
Z-ISO – ZETA-CAROTENE ISOMERASE
ZDS – ZETA-CAROTENE DESATURASE
Index

1. Introduction 12
 1.1. Tomato: the genetic model for fleshy fruit biology 12
 1.2. Climacteric fruit ripening: molecular and hormonal regulation 15
 1.3. Light influence on fruit development and ripening 21
 1.4. Phytochrome, auxin and ethylene signaling crosstalk 25
2. Objectives 27
3. Material and methods 28
 3.1. Plant material 28
 3.2. Growth conditions and treatments 28
 3.3. Fruit nutritional profile 29
 3.3.1. Carotenoid profile 29
 3.3.2. Chlorophyll quantification 29
 3.3.3. Fruit surface color measurement 30
 3.3.4. Antioxidant activity 30
 3.4. Hormonal profile 30
 3.4.1. Auxin measurements 30
 3.4.2. Ethylene emission 31
 3.4.3. ACC measurement 31
 3.4.4. ACO activity 32
 3.5. Hormone-responsive promoter analysis 32
 3.5.1. Quantitative GUS activity assay 32
 3.6. RNA isolation and quantitative RT-PCR analyses 32
 3.7. Genes promoter analyses 35
 3.8. Statistical analysis 35
4. Results 36
 4.1. Section 1 36
 4.2. Section 2 49
5. Discussion 60
 5.1. Section 1 60
 5.2. Section 2 67
6. Conclusion and Future Remarks 73
References 74
1. Introduction

1.1. Tomato: the genetic model for fleshy fruit biology

Fruits are unique to flowering plants and confer a selective advantage to these species by facilitating seed maturation and dispersal. Overall, fruit development can be divided into five stages: organogenesis, expansion, maturation, ripening and senescence (GILLASPY; BEN-DAVID; GRUISSEM, 1993). After pollination and fruit set, intense mitotic activity is observed in fleshy fruits, followed by a gradual reduction in cell division rate, maximal rates of cell enlargement and subsequent gain of competence to initiate ripening. In fleshy fruits, ripening is associated with numerous structural, biochemical and physiological changes, including modifications in the general appearance, texture, flavor and aroma, which ultimately convert immature fruits into a considerably more attractive and palatable structure for seed dispersal animals (GIOVANNONI, 2001; GUPTA et al., 2014; SEYMOUR et al., 2013). Therefore, fruit ripening represents a key reproductive strategy that maximizes the efficacy of seed dispersal, thus facilitating the survival of the next generation (KARLOVA et al., 2014).

Fleshy fruits are classically divided into two major ripening groups: (i) climacteric, characterized by an intermittent increase in ethylene production and a concomitant rise in respiration during the onset of ripening, and (ii) non-climacteric, in which ripening initiation and progression are not associated with dramatic changes in ethylene emission and respiration rates (ALEXANDER; GRIERSON, 2002; KLEE; GIOVANNONI, 2011). Although widely adopted in the literature, these two major ripening categories are clearly insufficient to accommodate the wide physiological variation found in fruit ripening within flowering species and, therefore, more accurate fruit ripening categories may arise in the near future.

Most of the current knowledge on the regulatory modules controlling climacteric fruit ripening is based on tomato (Solanum lycopersicum L.), the model species for fleshy fruit physiology (KLEE; GIOVANNONI, 2011). “Omics” (i.e. genomic, epigenomic, transcriptomic, proteomic and metabolomic) data, efficient stable transformation protocols and large germplasm collections, including many well-characterized mutants, are currently available for this species (CAMPOS et al., 2010; CARVALHO et al., 2011). Moreover, tomato is one of the most important horticultural crops and a relevant source of nutrients for human health (KLEE; GIOVANNONI, 2011). Antioxidants substances such as lycopene, β-
carotene, lutein, flavonoids, phenylpropanoids, ascorbic acids (vitamin C) and tocopherols (Vitamin E) are accumulated in ripe tomato, thereby conferring important health-promoting attributes to this fruits (FRASER; ENFISSI; BRAMLEY, 2009). Tomato plants also exhibit several traits not found in Arabidopsis thaliana, such as photoperiod-independent flowering, compound leaves, agronomically-relevant plant-pathogen interactions and sympodial growth, thus representing an alternative genetic model for investigating many other plant developmental processes besides climacteric fruit ripening (CAMPOS et al., 2010; CARVALHO et al., 2011).

During tomato ripening, fruit color changes associated with chlorophyll degradation, carotenoid accumulation and chloroplast-to-chromoplast differentiation mark the transition from mature green (MG) stage to the so-called breaker (Bk) stage. At MG stage, chlorophyll-containing chloroplasts confer the typical green color of unripe tomato fruits whereas the degradation of chlorophyll and accumulation of carotenoids such as β-carotene and lutein at Bk stage renders the yellowish coloration characteristic of this transitory ripening stage. Dismantlement of chloroplast grana and thylakoids, degradation of starch granules and chlorophylls, synthesis of new membranes structures, increase in the number and size of plastoglobules and the accumulation of large quantities of carotenoids is initiated in fruits at Bk stage, ultimately leading to the conversion of chloroplasts into chromoplasts (EGEA et al., 2010; KLEE; GIOVANNONI, 2011). From Bk onwards, chlorophyll progressively disappears whereas massive lycopene amounts are accumulated giving rise to the distinctive red coloration of fully ripe tomato fruits (FRASER et al., 1994, 1999). Therefore, carotenoid accumulation is one iconic ripening-associated process in tomato fruits, contributing to the color change of this organ, which greatly facilitates the zoochoric dispersal of mature viable seeds.

Carotenoid biosynthesis is strictly controlled throughout the plant life cycle both in vegetative (e.g. leaves and stems) and reproductive tissues (e.g. flowers and fruits) (CAZZONELLI; POGSON, 2010). In green tissues, carotenoids, such as lutein, β-carotene, violaxanthin and neoxanthin, play a major role in photosystem assembly, light harvesting and photoprotection (LADO; ZACARIÁS; RODRIGO, 2016). In contrast, carotenoids found in flowers and ripen fruits fulfill the critically important ecophysiological role of conferring pigmentation attractive for pollinators and seed dispersers, respectively (LADO; ZACARIÁS; RODRIGO, 2016). Carotenoids are derived from the methylerythritol (MEP) pathway and can be divided into two groups according to their chemical structures: (1) xanthophylls, which contain oxygen as functional group (e.g. lutein and zeaxanthin) and (2) carotenes, containing linear hydrocarbon without any functional group (e.g. α-carotene, β-carotene and lycopene).
(ALMEIDA et al., 2015; BRAMLEY, 2002; SAINI; NILE; PARK, 2015).

The MEP pathway initiates with the combination of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) to generate geranylgeranyl diphosphate (GGPP), which is the precursor of phytoene, the first carotenoid in the pathway (BRAMLEY, 2013). The conversion of two molecules of GGPP into phytoene is catalyzed by PHYTOENE SYNTHASE (PSY), the rate-limiting enzyme in the carotenoid biosynthetic pathway (Fig. 1). After phytoene formation, four enzymes catalyze the formation of lycopene: PHYTOENE DESATURASE (PDS), ZETA-CAROTENE DESATURASE (ZDS), CAROTENOID ISOMERASE (CRTISO) and ZETA-CAROTENE ISOMERASE (Z-ISO). After that, lycopene can be either cyclized by Lycopene β-CYCLASES (β-LCY or CYC-β) forming β-carotene, zeaxanthin, violaxanthin and neoxanthin or by the combined action of Lycopene ε-CYCLASE (ε-LYC) and β-LCY or CYC-β giving rise to δ-carotene, α-carotene and lutein (SAINI; NILE; PARK, 2015; SU et al., 2015). The progressive accumulation of carotenoids in ripening tomato fruits relies on the coordinated transcriptional regulation of carotenoid-related genes such as those encoding the PSY, PDS, β-LCY and CYC-β (LADO; ZACARÍAS; RODRIGO, 2016). As discussed below, the transcriptional levels of these genes are tightly controlled by ripening-associated transcription factors, hormonal signaling and several environmental stimuli, including light, drought and temperature (LADO; ZACARÍAS; RODRIGO, 2016; SU et al., 2015).

Figure 1. Simplified schematic representation of the carotenoid biosynthetic pathway in plants.
The abbreviations indicate the following: PSY, PHYTOENE SYNTHASE; PDS, PHYTOENE DESATURASE; ZDS, ZETA-CAROTENE DESATURASE; CRTISO, CAROTENOID ISOMERASE; Z-ISO, ZETA-CAROTENE ISOMERASE, β-LCY or CYC-β, Lycopene β-CYCLASES; ε-LYC, LYCOPENE ε-CYCLASE (modified from SAINTI; NILE; PARK, 2015).

1.2. Climacteric fruit ripening: molecular and hormonal regulation

In line with its complexity and reproductive relevance, fruit ripening onset and progression are intricately regulated by numerous endogenous signaling molecules (e.g. plant hormones, regulatory proteins) and external stimuli (e.g. temperature, light, water availability) (GIOVANNONI, 2004; MCATEE et al., 2013; ZHU et al., 2014). Over the last decades, significant progress has been achieved in identifying the regulatory modules controlling the ripening-associated genetic reprogramming responsible for transcriptionally controlling genes encoding proteins related to several metabolic pathways, including those related to fruit color modification (i.e. chlorophyll degradation, carotenoids and flavonoids accumulation), fruit flavor and aroma changes (i.e. metabolism of sugars, acids and volatile compounds), cell turgor and fruit texture alterations (KARLOVA et al., 2014; KLEE; GIOVANNONI, 2011).

Ripening-deficient tomato mutants, such as *ripening inhibitor* (*rin*; ROBINSON; TOMES, 1968), *nonripening* (*nor*; GIOVANNONI, 2004) and *Colorless nonripening* (*cnr*; THOMPSON et al., 1999), have been critically important for dissecting the regulatory networks controlling climacteric fruit ripening (ZHU et al., 2014).

Acting as a master controller of climacteric ripening, the MADS-box transcription factor RIN is induced at the onset of ripening, directly regulating several key ripening-associated genes (VREBALOV, 2002). Fruits from this mutant display deficient ethylene production as well as impaired carotenoid accumulation and fruit softening. As the ripening-deficient phenotype found in rinn cannot be complemented by supplemental ethylene treatment, RIN has long been described to act upstream to this hormone during fruit ripening (VREBALOV, 2002). Interestingly, rin mutations are frequently used in the heterozygous form to create long shelf life fruits, despite the fact that lycopene production remains partially compromised in rin heterozygous lines (MARTEL et al., 2011).

Compelling genetic evidence suggests that RIN acts together with the NAC domain transcription factor NOR to regulate both ethylene-dependent and -independent processes during climacteric fruit ripening (KLEE; GIOVANNONI, 2011; ZHU et al., 2014). More extensive transcriptional changes in ripening-related gene are triggered by NOR than RIN; therefore, NOR is believed to act upstream of RIN in the tomato ripening regulatory cascade (OSORIO et al., 2011; ZHU et al., 2014).

Whereas rin and nor are mutations in coding sequences of their respective genes, the
cnr mutation consists of an epigenetic change in promoter methylation of a member of the SQUAMOSA PROMOTER BINDING PROTEIN family (SPBP) (MANNING et al., 2006). Ethylene production is considerably reduced in this mutant, whose fruits exhibit impaired softening, yellowish skin and a poorly pigmented pericarp. Synthesis of carotenoid precursor GGPP is severely limited in cnr fruits, explaining their extremely reduced levels of β-carotene, lycopene and other carotenoids (KLEE; GIOVANNONI, 2011; MANNING et al., 2006). Other ripening-impaired mutants continue to be discovered over the years (e.g. Sl-NAC4 loss-of-function mutant) thus facilitating advances in elucidating even further the regulatory networks controlling ripening-related processes (ZHU et al., 2014).

Among the signaling molecules acting downstream of RIN and NOR and other master controllers of ripening, the gaseous plant hormone ethylene is responsible for regulating many ripening-related physiological, biochemical, and molecular processes. Accordingly, the deficiency in the biosynthesis, perception or signal transduction of this plant hormone directly impacts fruit ripening initiation and progression (LIU et al., 2015b).

Ethylene biosynthesis in higher plants is a relatively simple metabolic pathway, involving the rate-limiting enzymes 1-AMINOCYCLOPROPANE-1-CARBOXYLIC ACID (ACC) SYNTHASE (ACS) and ACC OXIDASE (ACO). Ethylene biosynthesis initiates with the conversion of L-methionine to S-adenosylmethionine (AdoMet or SAM) in a reaction catalyzed by the enzyme L-METHIONINE-S-ADENOSYLTRANSFERASE (SAMS) (Fig. 2). SAM is converted in ACC by ACS and ACO converts ACC into ethylene (CARA; GIOVANNONI, 2008; VAN DE POEL et al., 2012).

Figure 2. Simplified schematic representation of ethylene biosynthetic pathway in plants. The abbreviations indicate the following: Met, methionine; SAMS, S-ADENOSYL METHIONINE; ACC, 1-aminocyclopropane-1-carboxylic acid; ACS, ACC SYNTHASE; ACO, ACC OXIDASE.

ACS and ACO are encoded by multigene families whose members have been well
characterized during the ripening of tomato and various other fruits (Fig. 2) (KLEE; GIOVANNONI, 2011). At least nine ACS (Sl-ACS1a, Sl-ACS1b and Sl-ACS2 to Sl-ACS8) and five ACO (Sl-ACO1 to Sl-ACO5) genes are responsible for ethylene production in tomato and they are differentially expressed during fruit development and ripening (CARA; GIOVANNONI, 2008). The coordinated expression of distinct ACS and ACO genes facilitates the occurrence of two systems of ethylene biosynthesis in planta: (1) System 1, which predominates during normal vegetative growth and continues until the onset of ripening (pre-climacteric fruit development) is characterized by auto-inhibitory ethylene production, and (2) System 2, which operates during ripening of climacteric fruits when ethylene production is autocatalytic (ALEXANDER; GRIERSON, 2002; BARRY; LLOP-TOUS; GRIERSON, 2000; CARA; GIOVANNONI, 2008).

During pre-climacteric fruit development, Sl-ACS6 and Sl-ACS1A genes are the main responsible for ethylene production. Subsequently, expression of Sl-ACS1A increases and Sl-ACS4 is induced, initiating the climacteric ethylene production. The up-regulation of Sl-ACS4 leads to the down-regulation of Sl-ACS6 and Sl-ACS1A genes via the negative feedback of ethylene biosynthesis typically observed in System 1. At this moment, Sl-ACS2 expression is induced to maintain the autocatalytic ethylene production characteristic of the System 2 (ALEXANDER; GRIERSON, 2002; BARRY; LLOP-TOUS; GRIERSON, 2000; CARA; GIOVANNONI, 2008). Three ACO genes are typically expressed in tomato fruits, Sl-ACO1, Sl-ACO3 and Sl-ACO4. Whereas Sl-ACO3 expression predominates from early fruit development through Bk stage, Sl-ACO1 and Sl-ACO4 genes are expressed from fruit set through the end of ripening (ALEXANDER; GRIERSON, 2002; CARA; GIOVANNONI, 2008).

Once produced, ethylene perception starts when ethylene binds to its specific receptors located in the endoplasmic reticulum membrane, which activates a signal transduction cascade leading to the transcriptional regulation of ethylene-responsive genes (Fig. 3). In tomato, seven ethylene receptors have been identified – ETHYLENE RESPONSES 1 (Sl-ETR1 to Sl-ETR7) – which can be divided into the subfamilies 1 and 2 according to their transmembrane domains (LIU et al., 2015b). Sl-ETR1, Sl-ETR2, and Sl-ETR3/NR belong to subfamily 1, whose members have a histidine kinases domain. Sl-ETR4 to Sl-ETR7 belong to subfamily 2, as both exhibits a serine kinase domain (CARA; GIOVANNONI, 2008; KLEE; GIOVANNONI, 2011; LIU et al., 2015b). Among tomato mutants defective for ethylene receptors, conspicuous fruit ripening phenotype is only observed in Never-ripe (Nr), in which an amino acid change in the N-terminus of the Sl-ETR3/NR ethylene receptor confers ethylene insensitivity. Therefore, Nr fruits do not fully
ripe even upon treatment with exogenous ethylene (KLEE; GIOVANNONI, 2011; LANAHAN et al., 1994).

Interacting with ETRs, CONSTITUTIVE TRIPLE RESPONSE 1 (CTR1), a putative MAP-kinase kinase kinase (MAPKKK), acts as a negative regulator of ethylene response by forming a signaling complex that suppresses the ethylene response via the inactivation of ETHYLENE INSENSITIVE2 (EIN2) (LIU et al., 2015b). When ethylene is perceived by the receptor, a signaling cascade initiates by releasing the repression caused by CTR1 on EIN2, subsequently leading to the transcriptional activation of ETHYLENE INSENSITIVE 3 (EIN3) and EIL (EIN3-like), which in turn results in the activation of ETHYLENE RESPONSIVE FACTORs (ERFs) via binding to PRIMARY ETHYLENE RESPONSE ELEMENTS (PERE) (Fig. 3). Ethylene signaling cascade ends when ERF bind to ‘GCC’ box motif to promote ethylene responsive genes (CARA; GIOVANNONI, 2008; LIU et al., 2015b).

![Ethylene Signaling Pathway](image)

Figure 3. Simplified schematic representation of ethylene perception and signaling transduction.
ETR, ETHYLENE RESPONSES; CTR1, CONSTITUTIVE TRIPLE RESPONSE 1 (CTR1); EIN2, ETHYLENE INSENSITIVE2; EIL, ETHYLENE INSENSITIVE 3-like; ERFs, ETHYLENE RESPONSIVE FACTORs (modified from LIU et al., 2015b).

ERFs are part of a multigene family, which in tomato encompasses 77 members, grouped into nine subclasses considering their structural features (LIU et al., 2016; PIRRELLO et al., 2012). Due to their ripening-related expression pattern and high transcript abundance in fruit tissues, some members of subclasses E, particularly *Sl-ERF.E1, Sl-ERF.E2* and *Sl-ERF.E4*, have recently been designated as priority targets for further functional characterization (LIU et al., 2016). Among them, *Sl-ERF.E4* has been reported to play a major role in fruit ripening by integrating ethylene and carotenoid pathways (LEE et al., 2012).
Without undermining the role of ethylene, it has become clear that an integrated, multi-hormonal network controls climacteric ripening (AMPOPHO et al., 2013; GIOVANNONI, 2004; KARLOVA et al., 2014; KLEE; GIOVANNONI, 2011; KUMAR; KHURANA; SHARMA, 2014; LIU et al., 2015b; MCATEE et al., 2013), which seems to involve hormones as diverse as abscisic acid (ABA), jasmonates (JAs) and auxins.

ABA is regarded as a promoter of tomato fruit ripening, as a peak in the endogenous levels of this hormone precedes the climacteric rise in ethylene production at the Bk stage (KUMAR; KHURANA; SHARMA, 2014; SUN et al., 2012). Further implicating ABA as promoter signal for the climacteric rise in ethylene production, *Sl-ACS2*, *Sl-ACS4*, and *Sl-ACO1* transcript levels in ripening tomato fruits were up- and down-regulated upon treatment with ABA and its biosynthetic inhibitor fluridone, respectively (ZHANG; YUAN; LENG, 2009). Also, application of ABA promotes starch hydrolysis, consequently leading to soluble sugar accumulation and fruit softening (SUN et al., 2012). Moreover, knockdown of genes encoding 9-cis-epoxycarotenoid dioxygenase (NCED), a key enzyme in ABA synthesis, resulted in the down-regulation of many genes related to cell wall modification (SUN et al., 2012). Furthermore, red fruits of ABA-deficient mutants such as *flacca* (*flc*), *sitiens* (*sit*) and *high pigment 3* (*hp3*) display increased levels of carotenoids, particularly lycopene, compared to their wild-type counterparts (GALPAZ et al., 2008).

Besides their prominent signaling role in plant responses against herbivore attack and pathogen infection, JAs have also been implicated in accelerating climacteric fruit ripening (FAN; MATTHEIS, 1999). In tomato, JA application has been shown to promote ethylene production, chlorophyll degradation, β-carotene accumulation and ripening-related aroma compounds (ALMEIDA et al., 2015; PEÑA-CORTÉS et al., 2004; ZIOSI et al., 2008).

Compelling evidence also indicates that auxins intensively crosstalk with ethylene during fruit ripening. Exogenous application of indole-3-acetic acid (IAA) has been demonstrated to promote ripening-associated processes such fruit softening and anthocyanin formation in peach (PAYASI; SANWAL, 2010). Moreover, delayed ripening and slow starch degradation and soluble sugar accumulation have been observed in IAA-treated banana fruits (PURGATTO et al., 2001). In tomato, Su et al. (2015) demonstrated that auxin application delays ripening and interferes with carotenoid accumulation. IAA treatment repressed carotenoid biosynthesis-related genes such as *Sl-PSY*, *Sl-ZISO*, *Sl-PDS*, *Sl-CAROTENOID ISOMERASE (Sl-CRTISO)* and promoted others such as *β-LCY1* and *β-CAROTENE HYDROXYLASE (CRTR-βI)*, leading to increased neoxanthin and violaxanthin levels and reduced accumulation of lycopene as well as α-, δ- and β-carotene (SU et al., 2015).

IAA, the most abundant auxin in plants, is mainly derived from tryptophan (Trp).
This amino acid is initially converted to indole-3-pyruvic acid (IPyA) by members of the TRANSLATION OF psaA1 (TAA1) protein family of aminotransferases, and IPyA is subsequently converted to IAA by flavin-containing monooxygenases encoded by YUCCA genes. YUC-catalyzed reaction is believed to represent the rate-limiting step in auxin biosynthesis (COOK; ROSS, 2016; DAI et al., 2013). Once produced, auxins are distributed within plant cells via a highly-coordinated transport mechanism known as polar auxin transport (PAT), which is mediated by PIN-FORMED (PIN) and AUXIN1/LIKE-AUX1 (AUX/LAX) proteins that control cellular auxin efflux and influx, respectively. The asymmetric distribution of these proteins across cells and tissues leads to the directional auxin flow and the establishment of auxin gradients (PATTISON; CATALÁ, 2012).

In the auxin-signaling cascade, hormone perception leads to targeting Aux/IAA (AUXIN/INDOLE-3-ACETIC ACID INDUCIBLE) proteins for degradation via the 26S proteasome. Aux/IAA proteins act as repressors of auxin response by a constant physical inhibition of AUXIN RESPONSE FACTORS (ARFs), which are transcription factors that directly control auxin responsive genes through the binding to AuxRE motifs within their promoters (QUINT; GRAY, 2006; SANTNER; ESTELLE, 2009). Therefore, at low auxin levels, Aux/IAA proteins form dimers with ARFs, inhibiting their activity. In contrast, at higher auxin levels, Aux/IAAs are marked for proteasomal degradation, releasing ARFs to transcriptionally regulate auxin-responsive genes (LI et al., 2016a). Importantly, whereas IAAs always act by repressing the ARF binding to the promoters of auxin-responsive genes repressors, different members of the ARF family can either act as transcriptional repressor or activator of auxin-responsive genes (ZOUINE et al., 2014).

Tomato Aux/IAA and ARF gene families comprise 25 and 22 members, respectively (AUDRAN-DELALANDE et al., 2012; HAO et al., 2015; SANTNER; ESTELLE, 2009). Sl-IAA3, Sl-IAA4, Sl-IAA9 and Sl-IAA15 are expressed at high levels from flower to ripe fruit, Sl-IAA27 and Sl-IAA36 transcripts are also expressed at significant levels all over the ripening phase whereas the transcripts of other Sl-IAAs remain at low levels during fruit ripening (HAO, 2014). Among tomato ARF genes, Sl-ARF3, Sl-ARF5, Sl-ARF6, Sl-ARF13, Sl-ARF15 and Sl-ARF17 are clearly up-regulated at MG stage, potentially playing a role in fruit development (ZOUINE et al., 2014), whereas Sl-ARF2a and Sl-ARF2b have been demonstrated to regulate fruit ripening and carotenogenesis (HAO et al., 2015). Data also reveal that whereas Sl-ARF2a, Sl-ARF2b, Sl-ARF3, Sl-ARF4 and Sl-ARF10 act as repressors of auxin-responsive genes, Sl-ARF5, Sl-ARF8a and Sl-ARF8b are promoters of auxin responses (SAGAR et al., 2013; ZOUINE et al., 2014).

Sl-ARF- and Sl-Aux/IAA-suppressed lines have been instrumental in elucidating the
roles played by these auxin signaling-related components. Under-expression of *Sl-IAA9* disturbed the expression of numerous ethylene-related genes leading to early fruit initiation and parthenocarpy (WANG et al., 2005) whereas altered fruit morphology and size has been observed in *Sl-IAA27*-knockdown lines (BASSA et al., 2012). Conversely, *Sl-ARF4*-silenced plants exhibited increased sugar accumulation and plastid development in tomato fruits (SAGAR et al., 2013). In contrast, *Sl-ARF3* silencing revealed no obvious changes in fruit biology and quality traits but instead implicated this ARF as a key regulator of epidermal cell and trichome formation in vegetative tissues (ZHANG et al., 2015). *Sl-ARF9* was implicated in the regulation of cell division during early tomato fruit development (DE JONG et al., 2015) whereas *Sl-ARF7* was shown to act as a negative regulator of fruit set (DE JONG et al., 2009). Moreover, suppression of *Sl-ARF2a* or *Sl-ARF2b* altered ripening and the double repression of these genes dramatically inhibited ripening progression (HAO et al., 2015). Accordingly, ethylene synthesis and perception as well as pigment accumulation and transcript levels of *Sl-RIN*, *Sl-NOR* and *Sl-CNR* were markedly altered in *Sl-ARF2*-deficient lines (HAO et al., 2015).

Alongside with ERF, Aux/IAA and ARF apparently play a critical role in mediating auxin-ethylene crosstalk in both vegetative and reproductive tissues (CHAABOUNI et al., 2009; DRUEGE et al., 2014; MEIR et al., 2010; RUZICKA et al., 2007). Many tomato genes encoding these signaling proteins are differentially expressed in response to both auxin and ethylene, which suggest their action as the connection points between the signaling cascades initiate by these two hormones (JONES et al., 2002; LI et al., 2016b; TRAINOTTI; TADIOELLO; CASADORO, 2007; ZOUINE et al., 2014). Moreover, auxin-ethylene crosstalk often involves reciprocal regulation at biosynthetic level (STEPANOVA et al., 2007).

1.3. Light influence on fruit development and ripening

Light not only provides energy for photosynthesis but also represents a crucial environmental signal responsible for adjusting plant growth, development and reproduction. Processes as diverse as seed germination, seedling deetiolation, phototropism, flowering, fruit pigmentation and entrainment of circadian rhythms are intrinsically regulated by light stimuli (AZARI et al., 2010a; LLORENTE; D’ANDREA; RODRÍGUEZ-CONCEPCIÓN, 2016). Light quality (spectral composition), intensity (irradiance), duration (including day length) and/or direction are perceived by a complex array of plant photoreceptors, which includes phytochromes (red and far-red light receptors), cryptochromes (blue and UV-A light receptors), phototropins (blue light receptors) and UVR-8 photoreceptors (GUPTA et al.,
2014; LIU; COHEN; GARDNER, 2011). These photoreceptors can operate in concert or independently to regulate plant development (SMITH, 2000).

Due to their profound effects on plant physiology and development, phytochromes (PHY) have been intensively studied over the last 70 years. Therefore, many fundamental aspects of PHY structure, action mechanism and signaling cascades are currently known. In land plants and green algae, phytochromes are dimeric chromoproteins formed when PHY apoproteins – encoded by a small nuclear gene family – become covalently linked to the invariant linear tetrapyrrole chromophore phytochromobilin. Therefore, phytochromobilin-deficient mutants fail to produce functional phytochromes, resulting in pleiotropic phenotypic alterations such as increased stem, hypocotyl and petiole elongation and pale-green leaves and fruits (KENDRICK et al., 1997; MURAMOTO et al., 2005).

Photoactive holophytochromes perceive both red (R, 665 nm) and far-red (FR, 730 nm) light and exist in two distinctive photoconvertible forms, PHY\textsubscript{Pr} and PHY\textsubscript{Pfr}. R light can convert PHY from PHY\textsubscript{Pr} to PHY\textsubscript{Pfr} form, which is the biologically active state. This change is completely reversible, as FR light can convert PHY\textsubscript{Pfr} back to the PHY\textsubscript{Pr} form (INOUE; NISHIHAMA; KOHCHI, 2017). PHY photoconversion results in the translocation of holophytochromes from the cytoplasm to the nucleus, where the active PHY molecules initiate downstream transcriptional cascades (AZARI et al., 2010b).

Once in the nucleus, PHY bind to PHYTOCHROME INTERACTING FACTORS (PIFs), which are negative regulators of light response, targeting these basic helix-loop-helix (bHLH) transcription factors for degradation (FRANKLIN; QUAIL, 2010; LEIVAR; QUAIL, 2011). Active PHY also down-regulates the protein complexes formed by CONSTITUTIVE PHOTOMORPHOGENESIS 1 (COP1), DETIOLATED1 (DET1), DAMAGE DNA BINDING1 (DDB1) and CULLIN4 (CUL4), which are well-known negative regulators of light signaling in plants (CHORY et al., 1989; CHORY; PETO, 1990; DENG; QUAIL, 1991; INOUE; NISHIHAMA; KOHCHI, 2017). Protein complexes formed by COP, DET1, DDB1, CUL4 and some other light-regulated proteins give rise to the so-called COP9 signalosome, which targets photomorphogenesis-promoting factors, such as LONG HYPOCOTYL 5 (HY5), for proteasomal degradation (WEI; SERINO; DENG, 2008). Therefore, light-evoked degradation of COP9 signalosome components promotes HY5 accumulation and consequently activates the expression of photomorphogenesis-related genes such as those involved in chloroplast development and cell elongation and proliferation (LIU et al., 2004; WEI; SERINO; DENG, 2008).

Three distinct types of responses are triggered by PHYs depending on the photon flux density: (1) very low fluence responses (VLFR), which is triggered by fluences as low as
100 pmol m\(^{-2}\) (e.g. transcription of some photosynthetic genes), (2) low fluences responses (LFR), which requires at least 1 mmol m\(^{-2}\) (e.g. germination of some seeds), and (3) high irradiance responses (HIR), which requires long periods of exposure to high fluence rate superior than 10 mmol m\(^{-2}\) (e.g. inhibition of hypocotyl elongation) (FANKHAUSER; CHORY, 1997; INOUE; NISHIHAMA; KOHCHI, 2017). Although VLFR, LFR and HIR converge to regulate plant development, compelling genetic evidence suggests that distinct PHYs are differently implicated in each of these three types of responses. Among the five PHY found in *Arabidopsis thaliana* (i.e., PHYA, B, C, D and E), PHYA is particularly involved in mediating VLFR and HIR whereas PHYB, and sometimes PHYC, D or E, mediate LFR.

PHYA and PHYB displays marked differences in light stimulation and action mechanisms. PHYA can be activated either by R and FR light and this phytochrome does not present photoreversibility (QUAIL, 2002). In contrast, PHYB is essentially activated by R light, exhibits R/FR photoreversibility, and is significantly more photostable than PHYA. Whereas PHYA\(_{Pfr}\) promotes the accumulation of FAR RED ELONGATED HYPOCHOTYL (FHR) and FHR-LIKE (FHL) in the nucleus, PHYB mainly acts by regulating PIF and HY5 cellular abundance (KIRCHER et al., 2002; PFEIFFER et al., 2012).

Tomato genome harbors five *PHY* genes, *Sl-PHYA, Sl-PHYB1, Sl-PHYB2, Sl-PHYE* and *Sl-PHYF*. The impacts of loss of *Sl-PHYA, PHYB1* and/or *PHYB2* function on tomato vegetative growth have been extensively studied (KERCKHOFFS et al., 1997; VAN TUINEN et al., 1995a, 1995b; WELLER et al., 2000), revealing both exclusive and overlapping roles for these three PHYs. All the five PHY-encoding genes are expressed in tomato fruits; however, the role played by these photoreceptors during tomato fruit development and ripening has received relatively little attention.

The first set of evidence indicating that PHY-dependent light perception can impact tomato fruit biology and quality traits dates back to 1954 (PIRINGER; HEINZE, 1954), when the accumulation of a “flavonoid-like” pigment in pericarp tissues was shown to be regulated by R/FR light in a reversible manner. Further studies have also identified R, but not FR, radiation as a promotive signal controlling tomato fruit carotenogenesis (JEN; NORRIS; WATADA, 1977; KHUDAIRI; ARBOLEDA, 1971; THOMAS; JEN, 1975). A subsequent study showed that R-light-induced lycopene accumulation is not associated with changes in ethylene emission in ripening tomato fruits (ALBA; CORDONNIER-PRATT; PRATT, 2000). Moreover, reduced pigmentation is also evident in immature green fruits of either the *phyA,B1,B2* triple mutant (WELLER et al., 2000) or the phytochrome chromophore-deficient mutants *aurea (au)* and *yellow green-2 (yg2)*.
Data recently obtained by our research group reveals that the distinctive pale-green phenotype observed in the phytochrome chromophore-deficient mutant *au* primarily result from a significant reduction in chloroplast abundance and size at pre-climacteric fruit development rather than changes in chloroplast ultrastructure (BIANCHETTI et al., submitted). Genes encoding sink and starch biosynthesis-related enzymes, such as cell-wall invertases (LINs), sucrose transporters (SUTs) and ADP-glucose pyrophosphorylases (AGPases), were down-regulated in *au* fruits (BIANCHETTI et al., submitted) limiting the accumulation of sugar in fruits of this mutant. Therefore, functional phytochromes apparently play a fundamental role in regulating chloroplast biogenesis and sugar import and accumulation in developing tomato fruits.

Eight PIF-encoding genes were identified in tomato, *Sl-PIF1a*, *Sl-PIF1b*, *Sl-PIF3*, *Sl-PIF4*, *Sl-PIF7a*, *Sl-PIF7b*, *Sl-PIF8a* and *Sl-PIF8b* (ROSADO et al., 2016). Suppression of *Sl-PIF1a* has been shown to promote carotenoid accumulation by alleviating the repression exerted by this transcription factor on *Sl-PSY1* expression (LLORENTE; D’ANDREA; RODRÍGUEZ-CONCEPCIÓN, 2016). Moreover, changes in the R/FR ratio triggered by fruit pigmentation also impacted *Sl-PSY1* (LLORENTE; D’ANDREA; RODRÍGUEZ-CONCEPCIÓN, 2016), which according to the authors may represent a mechanism responsible for synchronizing carotenoid production in tissues at different depths inside tomato fruits.

Alongside with PHY, other photoreceptors may also participate in fine-tuning tomato fruit biology and quality traits. Four tomato genes encode cryptochromes (*i.e.* *Sl-CRY1a*, *Sl-CRY1b*, *Sl-CRY2* and *Sl-CRY3*), and the overexpression of *Sl-CRY2* has been shown to promote the accumulation of flavonoids and lycopene in the fruit tissues (GILIBERTO et al., 2005). Moreover, overexpression or knockout/knockdown of genes encoding light signaling intermediates such as *Sl-HY5*, *Sl-COP1*, *Sl-DET1/HP2*, *Sl-DDB1/HP1* or *Sl-CUL4*, which are involved in both PHY and CRY signaling cascades, also significantly impact tomato fruit physiology and nutritional composition (DAVULURI et al., 2005; LIU et al., 2004; WANG et al., 2008). For example, mutations in *HIGH PIGMENT 1 (HP1)* and *HP2*, which encode the orthologs of *AtDDB1* and *AtDET1*, respectively, lead to exaggerated photoresponsiveness, thus promoting increased fruit chloroplast number and size and significant increments in carotenoid accumulation (AZARI et al., 2010a; COOKSON et al., 2003; KOLOTILIN et al., 2007; LEVIN et al., 2003, 2006; MUSTILLI et al., 1999). Constitutive deficiency in *Sl-DET1/HP2*, *i.e.* constitutive *Sl-DET1/HP2* silencing or the *hp2* mutation, greatly promotes β-carotene and lycopene accumulation in fruits tissues but also results in severe developmental defects, including the reduced plant stature and bushiness, thus limiting the *hp2* mutation in
breeding programs targeting to improve tomato fruit nutritional value (DAVULURI et al., 2004, 2005). In line with these findings, fruit-specific down-regulation of SI-Deti/HP2 has recently arisen as a successfully alternative to promote the accumulation of health-promoting substances in the fruits without carrying over the collateral adverse effects of hp2 mutation on plant development and productivity (DAVULURI et al., 2005).

1.4. Phytochrome, auxin and ethylene signaling crosstalk

Intricated phytochrome-hormonal signaling networks control plant development and metabolism. PHY-dependent light perception is known to regulate the metabolism, transport, signal recognition and transduction of several plant hormone classes (reviewed by LAU; DENG, 2010; ZDARSKA et al., 2015). Conversely, hormone-signaling cascades also influence PHY signaling in plants via multiple mechanisms (ZDARSKA et al., 2015). Among the huge diversity of light-hormonal signaling crosstalk already described in the literature, those involving ethylene and auxins will be the main focus of this Thesis.

Phytochrome-dependent light perception has been extensively described as an inhibitory signal controlling ethylene production both in seedlings and in vegetative tissues of adult plants (BOURS et al., 2015; PIERIK, 2004; VANDENBUSSCHE et al., 2003). Overall, the inhibitory effect of PHY-dependent light perception on ethylene emission depends on duration and radiation fluence of the R light treatment (IMASEKI; PJON; FURUYA, 1971; KUREPIN et al., 2010; PIERIK et al., 2004).

Multiple mechanisms are involved in PHY$_{Pfr}$-dependent down-regulation of ethylene production in plants. For example, PHYB$_{Pfr}$ is known to promote the rapid conjugation of ACC into MACC in de-etiolation seedlings, thus reducing the cellular abundance of ACC available for ethylene synthesis (JIAO; YIP; YANG, 1987). Genetic evidence also shows that both PHYA and PHYB repress ethylene emission by down-regulating ACS mRNA levels (BOURS et al., 2015; FOO et al., 2006). Accordingly, either the loss of PHYB function or the overexpression of PIF5 rendered increased ACS transcript abundance in Arabidopsis plants (BOURS et al., 2015; KHANNA et al., 2007). Light impacts on ethylene signaling cascades have also been reported. For example, COP1-mediated light signal transduction has been suggested to promote EIN3 protein accumulation (ZHONG et al., 2009), thus affecting the transcript levels of EIN3-downstream genes such as ERFI in Arabidopsis (LIANG et al., 2012; SOLANO et al., 1998).

Genetic and physiological data also suggest a significant influence of PHYs on auxin metabolism, transport and signaling. During seedling deetiolation and shade avoidance
responses, PHY is believed to inhibit both TAA- or YUC-mediated auxin synthesis (TAO et al., 2008). For example, loss of HYPOCOTYL IN FAR RED 1 (HFR1) function, a protein that closely interacts with PIFs, has been shown to promote YUC2, 8 and 9 in Arabidopsis (HERSCH et al., 2014). Moreover, PHYmediate light perception also promotes GRETCHEN HAGEN3 (GH3) genes, which encodes IAA-amide synthetases known to be associated with IAA conjugation (KORASICK; ENDERS; STRADER, 2013; PARK et al., 2007; TANAKA et al., 2002). PHY-dependent light perception has also been demonstrated to regulate auxin transport in tomato seedlings through mechanisms that remain to be elucidated (LIU; COHEN; GARDNER, 2011).

According to data recently obtained by our research group, the deficiency in functional PHY results in marked changes in the fruit transcript abundances of several ARF and Aux/IAA tomato genes, along with alterations in the activation of the auxin-responsive promotor DR5 (BIANCHETTI et al., submitted). Interestingly, very limited differences in auxin content were observed between phytochrome-deficient and wild type tomato fruits, thus suggesting that auxin responsiveness rather than its biosynthesis or transport may represent the primary phytochrome-auxin link during early developing tomato fruits. Data also revealed that functional PHYs stimulate fruit ripening by accelerating the climacteric rise in ethylene production and signaling (BIANCHETTI et al., submitted).

Aside from this study performed by Bianchetti et al. (submitted), additional data on whether and how the signaling cascades triggered by light and hormonal stimuli crosstalk during fruit development and ripening are currently missing. Therefore, deciphering the potential interconnection between light and hormone signaling controlling tomato fruit physiology represents a promising venue for generating relevant information for improving fruit ripening and quality traits.

We hypothesized that detailed analysis of ethylene and auxin metabolism and signaling in ripening fruits from tomato photomorphogenic mutants can be a useful strategy for identifying potential light-hormonal crosstalk mechanisms regulating tomato fruit biology.
6. Conclusion and Future Remarks

Despite the extensive knowledge concerning the metabolic processes responsible for the synthesis and accumulation of phytonutrient in tomato fruits, how these metabolic routes are regulated by light and hormonal signals is comparatively less understood. In this Thesis, we provide a comprehensive set of genetic and physiological evidence indicating an intricate interplay among light, auxin and ethylene signaling during tomato fruit ripening and carotenogenesis.

Several lines of evidence discussed along this Thesis strongly suggest that the overaccumulation of carotenoids caused by the loss of HP2 function is associated with multiple changes in the central signaling cascade controlling ripening, including the regulation of master regulators of ripening, ethylene metabolism and many auxin signaling-related components. Phytochrome-dependent light perception was also shown to critically regulate the timing of fruit ripening via coordinated temporal and quantitative changes in ethylene and auxin metabolism and signaling. Evidence of phytochrome-dependent impact on carotenoid metabolism was also obtained, providing further support for the relevance of this class of photoreceptors in determining tomato fruit quality traits. Taking into consideration, however, the inherent complexity of plant signaling mechanisms, this study also raises important questions for future investigation, such as:

What are the molecular mechanisms behind the altered tissue responsiveness to ethylene and auxins found in ripening fruits of the light-hypersensitive mutant hp2?

Answering this question will require further experiments dissecting the impact of the loss of HP function on the numerous components involved in ethylene and auxin signaling during tomato fruit ripening. Moreover, verifying whether other tomato light-hypersensitive mutants also exhibits altered hormone responsiveness may also help to clarify the molecular mechanisms behind this intriguing light-hormonal interaction.

Which are the tomato phytochrome genes more closely associated with the phytochrome-dependent changes in fruit hormonal signaling?

Overexpression and knockout/knockdown of distinct tomato phytochrome-encoding genes may be instrumental for answering this question. Dissecting which tomato PHY genes are more directly associated with the PHY-dependent changes in tomato fruit hormonal signaling may provide important targets for the future manipulation of light-dependent responses in this fruit crop species.

We hope the findings presented in this Thesis substantiate further advances in fruit improvement via intragenesis, synthetic biology and other biotechnological tools. The coordinated manipulation of auxin, ethylene and light signaling-related genes in tomato and other fruit crops seems to represent a promising venue for adjusting fruit ripening and quality traits.
References

ALBA, R.; CORDONNIER-PRATT, M.-M.; PRATT, L. H. Fruit-localized phytochromes regulate lycopene accumulation independently of ethylene production in tomato. *Plant Physiology*, v. 123, n. 1, p. 363–370, 1 maio 2000.

ALEXANDER, L.; GRIERSON, D. Ethylene biosynthesis and action in tomato: a model for climacteric fruit ripening. *Journal of experimental botany*, v. 53, n. 377, p. 2039–55, 2002.

ALMEIDA, J. et al. Fruits from ripening impaired, chlorophyll degraded and jasmonate insensitive tomato mutants have altered tocopherol content and composition. *Phytochemistry*, v. 111, p. 72–83, 2015.

AMPOPHO, B. et al. Regulatory networks controlling ripening. In: SEYMOUR, G. B. et al. (Eds.). *The Molecular Biology and Biochemistry of Fruit Ripening*. Oxford UK: Blackwell Publishing Ltd, 2013. p. 189–206.

AUDRAN-DELALANDE, C. et al. Genome-wide identification, functional analysis and expression profiling of the Aux/IAA gene family in tomato. *Plant and Cell Physiology*, v. 53, n. 4, p. 659–672, 2012.

AZARI, R. et al. Overexpression of UV-DAMAGED DNA BINDING PROTEIN 1 links plant development and phytonutrient accumulation in high pigment-1 tomato. *Journal of Experimental Botany*, v. 61, n. 13, p. 3627–3637, 2010a.

AZARI, R. et al. Light signaling genes and their manipulation towards modulation of phytonutrient content in tomato fruits. *Biotechnology Advances*, v. 28, n. 1, p. 108–118, 2010b.

BARRY, C. S.; LLOP-TOUS, M. I.; GRIERSON, D. The regulation of 1-aminocyclopropane-1-carboxylic acid synthase gene expression during the transition from system-1 to system-2 ethylene synthesis in tomato. *Plant physiology*, v. 123, n. 3, p. 979–986, 2000.

BASSA, C. et al. Phenotypes associated with down-regulation of SI-IAA27 support functional diversity among aux/IAA family members in tomato. *Plant and Cell Physiology*, v. 53, n. 9, p. 1583–1595, 2012.

BIANCHETTI, R. E. et al. Phytochrome-mediated light perception controls sugar metabolism through the regulation of cytokinin and auxin signaling in tomato fruits. *Submitted to Scientific Reports*, 2017.

BOURS, R. et al. Thermoperiodic control of hypocotyl elongation depends on auxin-induced ethylene signaling that controls downstream PHYTOCHROME INTERACTING FACTOR3 activity. *Plant physiology*, v. 167, n. 2, p. 517–30, 2015.
BRAMLEY, P. M. Regulation of carotenoid formation during tomato fruit ripening and development. *Journal of Experimental Botany*, v. 53, n. 377, p. 2107–2113, 1 out. 2002.

BRAMLEY, P. M. Carotenoid Biosynthesis and Chlorophyll Degradation. In: SEYMOUR, G. B. et al. (Eds.). *The Molecular Biology and Biochemistry of Fruit Ripening*. Oxford, UK: Blackwell Publishing Ltd., 2013. p. 75–116.

BREITEL, D. A. et al. AUXIN RESPONSE FACTOR 2 intersects hormonal signals in the regulation of tomato fruit ripening. *PLoS Genetics*, v. 12, n. 3, p. 1–34, 2016.

BULENS, I. et al. Protocol: an updated integrated methodology for analysis of metabolites and enzyme activities of ethylene biosynthesis. *Plant Methods*, v. 7, n. 1, p. 17, 2011.

CAMPOS, M. L. et al. Small and remarkable: the Micro-Tom model system as a tool to discover novel hormonal functions and interactions. *Plant Signaling & Behavior*, v. 5, n. 3, p. 267–270, 2010.

CARA, B.; GIOVANNONI, J. J. Molecular biology of ethylene during tomato fruit development and maturation. *Plant Science*, v. 175, p. 106–113, 2008.

CARVALHO, R. F. et al. Convergence of developmental mutants into a single tomato model system: “Micro-Tom” as an effective toolkit for plant development research. *Plant methods*, v. 7, n. 1, p. 18, 2011.

CARVALHO, R. F.; QUECINI, V.; PERES, L. E. P. Hormonal modulation of photomorphogenesis-controlled anthocyanin accumulation in tomato (Solanum lycopersicum L. cv Micro-Tom) hypocotyls: Physiological and genetic studies. *Plant Science*, v. 178, n. 3, p. 258–264, 2010.

CAZZONELLI, C. I.; POGSON, B. J. Source to sink: regulation of carotenoid biosynthesis in plants. *Trends in Plant Science*, v. 15, n. 5, p. 266–274, 2010.

CHAABOUNI, S. et al. SI-IAA3, a tomato Aux/IAA at the crossroads of auxin and ethylene signalling involved in differential growth. *Journal of Experimental Botany*, v. 60, n. 4, p. 1349–1362, 2009.

CHEN, H.; XIONG, L. Role of HY5 in abscisic acid response in seeds and seedlings. *Plant signaling & behavior*, v. 3, n. 11, p. 986–988, 2008.

CHEUNG, A. Y.; MCNELLIS, T.; PIEKOS, B. Maintenance of chloroplast components during chromoplast differentiation in the tomato mutant green flesh. *Plant physiology*, v. 101, p. 1223–1229, 1993.

CHORY, J. et al. Arabidopsis thaliana mutant that develops as a light-grown plant in the absence of light. *Cell*, v. 58, p. 991–999, 1989.

CHORY, J.; PETO, C. A. Mutations in the DET1 gene affect cell-type-specific expression of light-regulated genes and chloroplast development in Arabidopsis. *Proceedings of the
National Academy of Sciences of the United States of America, v. 87, p. 8776–8780, 1990.

CHOW, C. N. et al. PlantPAN 2.0: An update of Plant Promoter Analysis Navigator for reconstructing transcriptional regulatory networks in plants. Nucleic Acids Research, v. 44, n. D1, p. D1154–D1164, 2016.

CLUIS, C. P.; MOUCHEL, C. F.; HARDTKE, C. S. The Arabidopsis transcription factor HY5 integrates light and hormone signaling pathways. Plant Journal, v. 38, n. 2, p. 332–347, 2004.

COCALIADIS, M. F. et al. Increasing tomato fruit quality by enhancing fruit chloroplast function. A double-edged sword? Journal of Experimental Botany, v. 65, n. 16, p. 4589–4598, 2014.

CÓLON-CARMONA, A. et al. Aux / IAA proteins are phosphorylated by phytochrome in vitro. Plant physiology, v. 124, n. 4, p. 1728–1738, 2000.

COOK, S. D.; ROSS, J. J. The auxins, IAA and PAA, are synthesized by similar steps catalyzed by different enzymes. Plant Signaling & Behavior, v. 11, n. 11, p. e1250993, 3 nov. 2016.

COOKSON, P. J. et al. Increases in cell elongation, plastid compartment size and phytoene synthase activity underlie the phenotype of the high pigment-1 mutant of tomato. Planta, v. 217, n. 6, p. 896–903, 2003.

CORBINEAU, F. et al. The effect of light quality on ethylene production in leaves of oat seedlings (Avena sativa L.). Environmental and Experimental Botany, v. 35, n. 2, p. 227–233, 1995.

DAI, X. et al. The biochemical mechanism of auxin biosynthesis by an Arabidopsis YUCCA flavin-containing monooxygenase. Journal of Biological Chemistry, v. 288, n. 3, p. 1448–1457, 2013.

DAVULURI, G. R. et al. Manipulation of DET1 expression in tomato results in photomorphogenic phenotypes caused by post-transcriptional gene silencing. Plant Journal, v. 40, n. 3, p. 344–354, 2004.

DAVULURI, G. R. et al. Fruit-specific RNAi-mediated suppression of DET1 enhances carotenoid and flavonoid content in tomatoes. Nature biotechnology, v. 23, n. 7, p. 890–5, 2005.

DE JONG, M. et al. The Solanum lycopersicum auxin response factor 7 (SIARF7) regulates auxin signaling during tomato fruit set and development. Plant Journal, v. 57, n. 1, p. 160–170, 2009.

DE JONG, M. et al. Solanum lycopersicum AUXIN RESPONSE FACTOR 9 regulates cell division activity during early tomato fruit development. Journal of Experimental Botany, v.
DENG, X.; QUAIL, P. H. *cop1*: a regulatory locus involved in light-controlled development and gene expression in Arabidopsis. *Genes and development*, v. 5, p. 1172–1182, 1991.

DRUEGE, U. et al. Transcriptomic analysis reveals ethylene as stimulator and auxin as regulator of adventitious root formation in petunia cuttings. *Frontiers in Plant Science*, v. 5, p. 494, 2014.

ECARNOT, M. et al. Rapid phenotyping of the tomato fruit model, Micro-Tom, with a portable VIS-NIR spectrometer. *Plant Physiology and Biochemistry*, v. 70, p. 159–163, 2013.

EGEA, I. et al. Chromoplast differentiation: current status and perspectives. *Plant and Cell Physiology*, v. 51, n. 10, p. 1601–1611, 2010.

EGEA, I. et al. Chloroplast to chromoplast transition in tomato fruit: Spectral confocal microscopy analyses of carotenoids and chlorophylls in isolated plastids and time-lapse recording on intact live tissue. *Annals of Botany*, v. 108, n. 2, p. 291–297, 2011.

ENFISSI, E. M. A et al. Integrative transcript and metabolite analysis of nutritionally enhanced DE-ETIOLATED1 downregulated tomato fruit. *The Plant cell*, v. 22, n. 4, p. 1190–1215, 2010.

EPSTEIN, E.; COHEN, J. D.; SLOVIN, J. P. The biosynthetic pathway for indole-3-acetic acid changes during tomato fruit development. *Plant Growth Regulation*, v. 38, n. 1, p. 15–20, 2002.

EXPÓSITO-RODRÍGUEZ, M. et al. Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process. *BMC plant biology*, v. 8, p. 131, 2008.

FAN, X.; MATTHEIS, J. P. Methyl jasmonate promotes apple fruit degreening independently of ethylene action. *HortScience*, v. 34, n. 2, p. 310–312, 1999.

FANKHAUSER, C.; CHORY, J. Light control of plant development. *Annual review of cell and developmental biology*, v. 13, p. 203–229, 1997.

FINLAYSON, S. A.; LEE, I.-J.; MORGAN, P. W. Phytochrome B and the regulation of circadian ethylene production in Sorghum. *Plant Physiology*, v. 116, n. 1, p. 17–25, 1998.

FOO, E. et al. A role for ethylene in the phytochrome-mediated control of vegetative development. *Plant Journal*, v. 46, n. 6, p. 911–921, 2006.

FRANKLIN, K. A.; QUAIL, P. H. Phytochrome functions in Arabidopsis development. *Journal of Experimental Botany*, v. 61, n. 1, p. 11–24, 2010.

FRASER, P. D. et al. Carotenoid biosynthesis during tomato fruit development (Evidence for tissue-specific gene expression). *Plant physiology*, v. 105, n. 1, p. 405–413, 1994.
FRASER, P. D. et al. Phytoene synthase-2 enzyme activity in tomato does not contribute to carotenoid synthesis in ripening fruit. **Plant Molecular Biology**, v. 40, n. 4, p. 687–698, 1999.

FRASER, P. D.; ENFISSI, E. M. A.; BRAMLEY, P. M. Genetic engineering of carotenoid formation in tomato fruit and the potential application of systems and synthetic biology approaches. **Archives of Biochemistry and Biophysics**, v. 483, n. 2, p. 196–204, 2009.

GALPAZ, N. et al. Abscisic acid deficiency in the tomato mutant high-pigment 3 leading to increased plastid number and higher fruit lycopene content. **Plant Journal**, v. 53, n. 5, p. 717–730, 2008.

GILIBERTO, L. et al. Manipulation of the blue light photoreceptor cryptochrome 2 in tomato affects vegetative development, flowering time, and fruit antioxidant content. **Plant physiology**, v. 137, n. 1, p. 199–208, 2005.

GILLASPY, G.; BEN-DAVID, H.; GRUISSEM, W. Fruits: a developmental perspective. **The Plant cell**, v. 5, n. 10, p. 1439–1451, 1993.

GIOVANNONI, J. Molecular biology of fruit maturation and ripening. **Annu. Rev. Plant Physiol.**, v. 52, p. 725–749, 2001.

GIOVANNONI, J. J. Genetic regulation of fruit development and ripening. **The Plant Cell**, v. 16, p. 170–181, 2004.

GOMES, B. LIMA. *Ethylene and auxin: new insights into the hormonal regulation of tomato fruit ripening*. [s.l.] University of Sao Paulo, 2016.

GONG, D. et al. Effect of blue light on ethylene biosynthesis, signalling and fruit ripening in postharvest peaches. **Scientia Horticulturae**, v. 197, p. 657–664, 2015.

GREFEN, C. et al. Subcellular localization and in vivo interactions of the Arabidopsis thaliana ethylene receptor family members. **Molecular Plant**, v. 1, n. 2, p. 308–320, mar. 2008.

GUPTA, S. K. et al. Complex and shifting interactions of phytochromes regulate fruit development in tomato. **Plant, Cell and Environment**, v. 37, n. 7, p. 1688–1702, 2014.

HALLIDAY, K. J.; FANKHAUSER, C. Phytochrome-hormonal signalling networks. **New Phytologist**, v. 157, n. 3, p. 449–463, 2003.

HALLIDAY, K. J.; MARTINEZ-GARCIA, J. F.; JOSSE, E.-M. Integration of light and auxin signaling. **Cold Spring Harbor Perspectives in Biology**, v. 1, n. 6, p. 1–12, 1 dez. 2009.

HAO, Y. **AUXIN-MEDIATED FRUIT DEVELOPMENT AND RIPENING: NEW INSIGHT ON THE ROLE OF ARFs AND THEIR ACTION MECHANISM IN TOMATO (S. LYCOPERSICUM)**. [s.l.] University of Toulouse, 2014.

HAO, Y. et al. Auxin Response Factor SIARF2 is an essential component of the regulatory
mechanism controlling fruit ripening in tomato. PLoS Genetics, v. 11, n. 12, p. 1–23, 2015.
HERSCH, M. et al. Light intensity modulates the regulatory network of the shade avoidance response in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, v. 111, n. 17, p. 2–7, 2014.
IMASEKI, H.; PJON, C.-J.; FURUYA, M. Phytochrome action in Oryza sativa L. Plant physiology, v. 48, n. 3, p. 241–244, 1971.
INOUE, K.; NISHIHAMA, R.; KOHCHI, T. Evolutionary origin of phytochrome responses and signaling in land plants. Plant, Cell and Environment Environment, v. 1, p. 1–7, 2017.
JEN, J. J.; NORRIS, K. H.; WATADA, A. E. In vivo measurement of phytochrome in tomato fruit. Plant physiology, v. 59, p. 628–629, 1977.
JEONG, J. et al. Phytochrome and ethylene signaling integration in Arabidopsis occurs via the transcriptional regulation of genes co-targeted by PIFs and EIN3. Frontiers in Plant Science, v. 7, p. 1–14, 2016.
JIAO, X. Z.; YIP, W. K.; YANG, S. F. The effect of light and phytochrome on 1-aminocyclopropane-1-carboxylic acid metabolism in etiolated wheat seedling leaves. Plant physiology, v. 85, n. 3, p. 643–7, 1987.
JONES, B. et al. Down-regulation of DR12, an auxin-response-factor homolog, in the tomato results in a pleiotropic phenotype including dark green and blotchy ripening fruit. Plant Journal, v. 32, n. 4, p. 603–613, 2002.
KARLOVA, R. et al. Transcriptional control of fleshy fruit development and ripening. Journal of Experimental Botany, v. 65, n. 16, p. 4527–4541, 2014.
KENDRICK, R. E. et al. Photomorphogenic mutants of tomato. Plant, Cell and Environment, v. 20, p. 746–751, 1997.
KERCKHOFFS, L. H. J. et al. Phytochrome control of anthocyanin biosynthesis in tomato seedlings: analysis using photomorphogenic mutants. Photochemistry and Photobiology, v. 65, n. 2, p. 374–381, 1997.
KEVANY, B. M.; TAYLOR, M. G.; KLEE, H. J. Fruit-specific suppression of the ethylene receptor LeETR4 results in early-ripening tomato fruit. Plant Biotechnology Journal, v. 6, n. 3, p. 295–300, abr. 2008.
KHANNA, R. et al. The Basic Helix-Loop-Helix Transcription Factor PIF5 acts on ethylene biosynthesis and phytochrome signaling by distinct mechanisms. the Plant Cell Online, v. 19, n. 12, p. 3915–3929, 2007.
KHUDAIRI, A. K.; ARBOLEDA, O. P. Phytochrome-mediated carotenoid biosynthesis and its Influence by plant hormones. Physiologia Plantarum, v. 24, p. 18–22, 1971.
KILAMBI, H. V et al. Chromoplast-specific carotenoid-associated protein appears to be
important for enhanced accumulation of carotenoids in hp1 tomato fruits. Plant Physiology, v. 161, n. 4, p. 2085–2101, 2013.

KIRCHER, S. et al. Nucleocytoplasmic partitioning of the plant photoreceptors phytochrome A, B, C, D, and E is regulated differentially by light and exhibits a diurnal rhythm. The Plant Cell, v. 14, p. 1541–1555, 2002.

KLEE, H. J.; GIOVANNONI, J. J. Genetics and control of tomato fruit ripening and quality attributes. Annual Review of Genetics, v. 45, n. 1, p. 41–59, 2011.

KOLOTILIN, I. et al. Transcriptional profiling of high pigment-2dg tomato mutant links early fruit plastid biogenesis with its overproduction of phytonutrients. Plant Physiology, v. 145, n. 2, p. 389–401, 2007.

KORASICK, D. A.; ENDERS, T. A.; STRADER, L. C. Auxin biosynthesis and storage forms. Journal of Experimental Botany, v. 64, n. 9, p. 2541–2555, 2013.

KUMAR, R.; KHURANA, A.; SHARMA, A. K. Role of plant hormones and their interplay in development and ripening of fleshy fruits. Journal of Experimental Botany, v. 65, n. 16, p. 4561–4575, 2014.

KUREPIN, L. V. et al. The roles and interactions of ethylene with gibberellins in the far-red enriched light-mediated growth of Solanum lycopersicum seedlings. Plant Growth Regulation, v. 61, n. 3, p. 215–222, 2010.

LADO, J.; ZACARIÁS, L.; RODRIGO, M. J. Regulation of carotenoid biosynthesis during fruit development. In: STANGE, C. (Ed.). Carotenoids in Nature: Biosynthesis, Regulation and Function. Barcelona: Springer International Publishing, 2016. v. 79p. 161–198.

LANAHAN, M. B. et al. The never ripe mutation blocks ethylene perception in tomato. The Plant Cell, v. 6, n. 4, p. 521–30, 1994.

LAU, O. S.; DENG, X. W. Plant hormone signaling lightens up: integrators of light and hormones. Current Opinion in Plant Biology, v. 13, n. 5, p. 571–577, 2010.

LEE, J. M. et al. Combined transcriptome, genetic diversity and metabolite profiling in tomato fruit reveals that the ethylene response factor SIERF6 plays an important role in ripening and carotenoid accumulation. Plant Journal, v. 70, n. 2, p. 191–204, 2012.

LEIVAR, P.; QUAIL, P. H. PIFs: pivotal components in a cellular signaling hub. Trends in Plant Science, v. 16, n. 1, p. 19–28, jan. 2011.

LEVIN, I. et al. The tomato dark green mutation is a novel allele of the tomato homolog of the DEETIOLATED1 gene. Theoretical and Applied Genetics, v. 106, n. 3, p. 454–460, 2003.

LEVIN, I. et al. High pigment tomato mutants more than just lycopene (a review). Israel
LI, L. et al. Plastids and carotenoid accumulation. In: STANGE, C. (Ed.). Carotenoids in Nature: Biosynthesis, Regulation and Function. Barcelona: Springer International Publishing, 2016a. v. 79p. 273–293.

LI, S.-B. et al. A review of auxin response factors (ARFs) in plants. Frontiers in plant science, v. 7, p. 47, 2016b.

LIANG, X. et al. Involvement of COP1 in ethylene- and light-regulated hypocotyl elongation. Planta, v. 236, n. 6, p. 1791–1802, 2012.

LIEBERMAN, M. Biosynthesis and action of ethylene. Annual Review of Plant Physiology, v. 30, p. 533–591, 1979.

LIRA, B. S. et al. Pheophytinase knockdown impacts carbon metabolism and nutraceutical content under normal growth conditions in tomato. Plant and Cell Physiology, v. 57, n. 3, p. 642–653, 2016.

LIU, L. et al. Regulation of carotenoid metabolism in tomato. Molecular Plant, v. 8, n. 1, p. 28–39, jan. 2015a.

LIU, M. et al. Ethylene control of fruit ripening: revisiting the complex network of transcriptional regulation. Plant physiology, v. 169, n. 4, p. 2380–90, 2015b.

LIU, M. et al. Comprehensive profiling of Ethylene Response Factors expression identifies ripening-associated ERF genes and their link to key regulators of fruit ripening in tomato. Plant Physiology, v. 33, p. 1732–1744, 6 jan. 2016.

LIU, X.; COHEN, J. D.; GARDNER, G. Low-fluence red light increases the transport and biosynthesis of auxin. Plant Physiology, v. 157, n. 2, p. 891–904, 2011.

LIU, Y. et al. Manipulation of light signal transduction as a means of modifying fruit nutritional quality in tomato. Proceedings of the National Academy of Sciences of the United States of America, v. 101, n. 26, p. 9897–9902, 2004.

LLORENTE, B. Regulation of Carotenoid Biosynthesis in Photosynthetic Organs. In: STANGE, C. (Ed.). Carotenoids in Nature. Barcelona: Springer International Publishing, 2016. v. 79p. 141–160.

LLORENTE, B.; D’ANDREA, L.; RODRÍGUEZ-CONCEPCIÓN, M. Evolutionary Recycling of Light Signaling Components in Fleshy Fruits: New Insights on the Role of Pigments to Monitor Ripening. Frontiers in Plant Science, v. 7, n. March, p. 263, 7 mar. 2016.

MANNING, K. et al. A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nature Genetics, v. 38, n. 8, p. 948–952, 2006.
MARTEL, C. et al. The tomato MADS-Box transcription factor RIPE NING INHIBITOR interacts with promoters involved in numerous ripening processes in a COLORLESS NONRIPENING-dependent manner. *Plant Physiology*, v. 157, n. 3, p. 1568–1579, 2011.

MARTÍNEZ-GARCÍA, J. F.; HUQ, E.; QUAIL, P. H. Direct targeting of light signals to a promoter element-bound transcription factor. *Science*, v. 288, n. 5467, p. 859–863, 2000.

MCATEE, P. et al. A dynamic interplay between phytohormones is required for fruit development, maturation, and ripening. *Frontiers in plant science*, v. 4, p. 79, 2013.

MEIR, S. et al. Microarray analysis of the abscission-related transcriptome in the tomato flower abscission zone in response to auxin depletion. *Plant Physiology*, v. 154, n. 4, p. 1929–1956, 2010.

MELO, N. K. G. et al. Nitric oxide, ethylene, and auxin cross talk mediates greening and plastid development in deetiolating tomato seedlings. *Plant Physiology*, v. 170, n. 4, p. 2278–2294, 2016.

MURAMOTO, T. et al. The tomato photomorphogenetic mutant, aurea, is deficient in phytochromobilin synthase for phytochrome chromophore biosynthesis. *Plant and Cell Physiology*, v. 46, n. 4, p. 661–665, 2005.

MUSTILLI, A. C. et al. Phenotype of the tomato high pigment-2 mutant is caused by a mutation in the tomato homolog of DEETIOLATED1. *The Plant cell*, v. 11, n. 2, p. 145–157, 1999.

OSORIO, S. et al. Systems biology of tomato fruit development: combined transcript, protein, and metabolite analysis of tomato transcription factor (nor, rin) and ethylene receptor (Nr) mutants reveals novel regulatory interactions. *Plant physiology*, v. 157, p. 405–425, 2011.

PARK, J. E. et al. An Arabidopsis GH3 gene, encoding an auxin-conjugating enzyme, mediates phytochrome B-regulated light signals in hypocotyl growth. *Plant and Cell Physiology*, v. 48, n. 8, p. 1236–1241, 2007.

PATTISON, R. J.; CATALÁ, C. Evaluating auxin distribution in tomato (Solanum lycopersicum) through an analysis of the PIN and AUX/LAX gene families. *Plant Journal*, v. 70, n. 4, p. 585–598, 2012.

PAYASI, A.; SANWAL, G. G. Ripening of climacteric fruits and their control. *Journal of Food Biochemistry*, v. 34, n. 4, p. 679–710, 2010.

PEÑA-CORTÉS, H. et al. Involvement of jasmonic acid and derivatives in plant response to pathogen and insects and in fruit ripening. *Journal of Plant Growth Regulation*, v. 23, n. 3, p. 246–260, 2004.

PFEIFFER, A. et al. Interaction with plant transcription factors can mediate nuclear import of phytochrome B. *Proceedings of the National Academy of Sciences*, v. 109, n. 15, p. 5892–
PIERIK, R. et al. Canopy studies on ethylene-insensitive tobacco identify ethylene as a novel element in blue light and plant-plant signalling. **Plant Journal**, v. 38, n. 2, p. 310–319, 2004.

PIERIK, R. Interactions between ethylene and gibberellins in phytochrome-mediated shade avoidance responses in tobacco. **Plant Physiology**, v. 136, n. 2, p. 2928–2936, 1 out. 2004.

PIRINGER, A. A.; HEINZE, P. H. Effect of light on the formation of a pigment in the tomato fruit cuticle. **Plant physiology**, v. 29, n. 5, p. 467–472, 1954.

PIRRELLO, J. et al. Functional analysis and binding affinity of tomato ethylene response factors provide insight on the molecular bases of plant differential responses to ethylene. **BMC Plant Biology**, v. 12, n. 1, p. 190, 2012.

PORRA, R. J.; THOMPSON, W. A.; KRIEDEMANN, P. E. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. **Biochimica et Biophysica Acta**, v. 975, n. 3, p. 384–394, 1989.

PURGATTO, E. et al. Inhibition of B-amylase activity, starch degradation and sucrose formation by indole-3-acetic acid during banana ripening. **Planta**, v. 212, n. 5–6, p. 823–828, 2001.

QUADRANA, L. et al. Transcriptional regulation of tocopherol biosynthesis in tomato. **Plant Molecular Biology**, v. 81, n. 3, p. 309–325, 2013.

QUAIL, P. H. Phytochrome photosensory signalling networks. **Nature Reviews Molecular Cell Biology**, v. 3, n. 2, p. 85–93, fev. 2002.

QUINT, M.; GRAY, W. M. Auxin signaling. **Current Opinion in Plant Biology**, v. 9, n. 5, p. 448–453, 2006.

ROBINSON, R.; TOMES, M. Ripening inhibitor: a gene with multiple effects on ripening. **Rep Tomato Genet Coop**, v. 18, p. 36–37, 1968.

ROSADO, D. et al. Phytochrome Interacting Factors (PIFs) in Solanum lycopersicum: Diversity, Evolutionary History and Expression Profiling during Different Developmental Processes. **PLOS ONE**, v. 11, n. 11, p. e0165929, 1 nov. 2016.

RUZICKA, K. et al. Ethylene regulates root growth through effects on auxin biosynthesis and transport-dependent auxin distribution. **the Plant Cell Online**, v. 19, n. 7, p. 2197–2212, 2007.

SAGAR, M. et al. SIARF4, an auxin response factor involved in the control of sugar metabolism during tomato fruit development. **Plant physiology**, v. 161, n. 3, p. 1362–74, 2013.
SAINI, R. K.; NILE, S. H.; PARK, S. W. Carotenoids from fruits and vegetables: chemistry, analysis, occurrence, bioavailability and biological activities. *Food Research International*, v. 76, p. 735–750, 2015.

SALISBURY, F. J. et al. Phytochrome coordinates Arabidopsis shoot and root development. *The Plant Journal*, v. 50, n. 3, p. 429–438, 5 abr. 2007.

SANTANA-VIEIRA, D. D. S. et al. Survival strategies of citrus rootstocks subjected to drought. *Scientific Reports*, v. 6, p. 1–12, 2016.

SANTNER, A.; ESTELLE, M. Recent advances and emerging trends in plant hormone signalling. *Nature*, v. 459, n. 7250, p. 1071–1078, 2009.

SCHOFIELD, A.; PALIYATH, G. Modulation of carotenoid biosynthesis during tomato fruit ripening through phytochrome regulation of phytoene synthase activity. *Plant Physiology and Biochemistry*, v. 43, n. 12, p. 1052–1060, dez. 2005.

SESTARI, I. et al. Near-isogenic lines enhancing ascorbic acid, anthocyanin and carotenoid content in tomato (Solanum lycopersicum L. cv Micro-Tom) as a tool to produce nutrient-rich fruits. *Scientia Horticulturae*, v. 175, p. 111–120, 2014.

SEYMOUR, G. B. et al. Fruit development and ripening. *Annual Review of Plant Biology*, v. 64, n. 1, p. 219–241, 29 abr. 2013.

SMITH, H. Phytochromes and light signal perception by plants—an emerging synthesis. *Nature*, v. 407, p. 585–591, 2000.

SOLANO, R. et al. Nuclear events in ethylene signaling: a transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1. *Genes and Development*, v. 12, n. 23, p. 3703–3714, 1998.

SONG, Y. H. et al. DNA-binding study identifies C-box and hybrid C/G-box or C/A-box motifs as high-affinity binding sites for STF1 and LONG HYPOCOTYL5 proteins. *Plant physiology*, v. 146, n. 4, p. 1862–1877, 2008.

SORREQUIETA, A. et al. Off-the-vine ripening of tomato fruit causes alteration in the primary metabolite composition. *Metabolites*, v. 3, n. 4, p. 967–78, 2013.

STEPANOVA, A. N. et al. Multilevel Interactions between Ethylene and Auxin in Arabidopsis Roots. *the Plant Cell*, v. 19, n. 7, p. 2169–2185, 2007.

SU, L. et al. Carotenoid accumulation during tomato fruit ripening is modulated by the auxin-ethylene balance. *BMC plant biology*, v. 15, n. 1, p. 114, 2015.

SUN, L. et al. Suppression of 9-cis-epoxycarotenoid dioxygenase, which encodes a key enzyme in abscisic acid biosynthesis, alters fruit texture in transgenic tomato. *Plant Physiology*, v. 158, n. 1, p. 283–298, 2012.

TANAKA, S.-I. et al. Phytochrome in cotyledons regulates the expression of genes in the
hypocotyl through auxin-dependent and -independent pathways. **Plant & cell physiology**, v. 43, n. 10, p. 1171–81, 2002.

TAO, Y. et al. Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants. **Cell**, v. 133, n. 1, p. 164–176, 2008.

THOMAS, R. L.; JEN, J. J. Phytochrome-mediated carotenoids biosynthesis in ripening tomatoes. **Plant physiology**, v. 56, n. 3, p. 452–453, 1975.

THOMPSON, A. J. et al. Molecular and genetic characterization of a novel pleiotropic tomato-ripening mutant. **Plant Physiology**, v. 120, n. 2, p. 383–389, 1999.

TOLEDO-ORTIZ, G. et al. The HY5-PIF regulatory module coordinates light and temperature control of photosynthetic gene transcription. **PLoS Genetics**, v. 10, n. 6, p. e1004416, 12 jun. 2014.

TOLEDO-ORTIZ, G.; HUQ, E.; RODRÍGUEZ-CONCEPCIÓN, M. Direct regulation of phytoene synthase gene expression and carotenoid biosynthesis by phytochrome-interacting factors. **Proceedings of the National Academy of Sciences of the United States of America**, v. 107, n. 25, p. 11626–31, 2010.

TRAINOTTI, L.; TADIELLO, A.; CASADORO, G. The involvement of auxin in the ripening of climacteric fruits comes of age: the hormone plays a role of its own and has an intense interplay with ethylene in ripening peaches. **Journal of Experimental Botany**, v. 58, n. 12, p. 3299–3308, 2007.

VAN DE POEL, B. et al. Targeted systems biology profiling of tomato fruit reveals coordination of the Yang cycle and a distinct regulation of ethylene biosynthesis during postclimacteric ripening. **Plant physiology**, v. 160, n. 3, p. 1498–1514, 2012.

VAN TUINEN, A. et al. Far-red light-insensitive, phytochrome A-deficient mutants of tomato. **Molecular & General Genetics**, v. 246, n. 2, p. 133–141, 1995a.

VAN TUINEN, A. et al. A temporarily red light-insensitive mutant of tomato lacks a light-stable, B-like phytochrome. **Plant physiology**, v. 108, n. 3, p. 939–947, 1995b.

VANDENBUSSCHE, F. et al. Ethylene and auxin control the Arabidopsis response to decreased light intensity. **Plant physiology**, v. 133, n. 2, p. 517–27, 2003.

VREBALOV, J. A MADS-Box gene necessary for fruit ripening at the tomato Ripening-Inhibitor (Rin) locus. **Science**, v. 296, p. 343–346, 12 abr. 2002.

WANG, H. et al. The tomato Aux/IAA transcription factor IAA9 is involved in fruit development and leaf morphogenesis. **The Plant cell**, v. 17, n. 10, p. 2676–2692, 1 out. 2005.

WANG, S. et al. Altered plastid levels and potential for improved fruit nutrient content by downregulation of the tomato DDB1-interacting protein CUL4. **Plant Journal**, v. 55, n. 1, p. 89–103, 2008.
WEI, N.; SERINO, G.; DENG, X. The COP9 signalosome: more than a protease. Trends in Biochemical Sciences, v. 33, n. 12, p. 592–600, dez. 2008.

WELLER, J. L. et al. Physiological interactions of phytochromes A, B1 and B2 in the control of development in tomato. Plant Journal, v. 24, n. 3, p. 345–356, 2000.

YANG, S. F.; HOFFMAN, N. E. Ethylene biosynthesis and its regulation in higher plants. Annual Review of Plant Physiology, v. 35, p. 155–189, 1984.

YEN, H. C. et al. The tomato high-pigment (hp) locus maps to chromosome 2 and influences plastome copy number and fruit quality. Theoretical and Applied Genetics, v. 95, n. 7, p. 1069–1079, 1997.

ZDARSKA, M. et al. Illuminating light, cytokinin, and ethylene signalling crosstalk in plant development. Journal of Experimental Botany, v. 66, n. 16, p. 4913–4931, 2015.

ZHANG, M.; YUAN, B.; LENG, P. The role of ABA in triggering ethylene biosynthesis and ripening of tomato fruit. Journal of Experimental Botany, v. 60, n. 6, p. 1579–1588, 2009.

ZHANG, X. et al. Auxin response gene SlARF3 plays multiple roles in tomato development and is involved in the formation of epidermal cells and trichomes. Plant and Cell Physiology, v. 56, n. 11, p. 2110–2124, 2015.

ZHONG, S. et al. EIN3/EIL1 cooperate with PIF1 to prevent photo-oxidation and to promote greening of Arabidopsis seedlings. Proceedings of the National Academy of Sciences of the United States of America, v. 106, n. 50, p. 21431–21436, 2009.

ZHU, M. et al. A new tomato NAC (NAM ATAF1/2/CUC2) transcription factor, SINAC4, functions as a positive regulator of fruit ripening and carotenoid accumulation. Plant and Cell Physiology, v. 55, n. 1, p. 119–135, 2014.

ZIOSI, V. et al. Jasmonate-induced transcriptional changes suggest a negative interference with the ripening syndrome in peach fruit. Journal of Experimental Botany, v. 59, n. 3, p. 563–573, 2008.

ZOUINE, M. et al. Characterization of the tomato ARF gene family uncovers a multi-levels post-transcriptional regulation including alternative splicing. PLoS ONE, v. 9, n. 1, p. 1–12, 2014.