Abstract. The gastrointestinal endocrine cells are essential for life. They regulate the gastrointestinal motility, secretion, visceral sensitivity, absorption, local immune defense, cell proliferation and appetite. These cells act as sensory cells with specialized microvilli that project into the lumen that sense the gut contents (mostly nutrients and/or bacteria byproducts), and respond to luminal stimuli by releasing hormones into the lamina propria. These released hormones exert their actions by entering the circulating blood and reaching distant targets (endocrine mode), nearby structures (paracrine mode) or via afferent and efferent synaptic transmission. The mature intestinal endocrine cells are capable of expressing several hormones. A change in diet not only affects the release of gastrointestinal hormones, but also alters the densities of the gut endocrine cells. The interaction between ingested foodstuffs and the gastrointestinal endocrine cells can be utilized for the clinical management of gastrointestinal and metabolic diseases, such as irritable bowel syndrome, obesity and diabetes.

Contents

1. Introduction
2. Gastrointestinal endocrine cells
3. Interaction between diet and gastrointestinal cells
4. Conclusion

1. Introduction

An intake of nutrients is essential for maintaining life, as they provide energy to the body, and also trigger other important body functions. The interaction between ingested foodstuffs and the gastrointestinal endocrine cells is a new emerging concept (1,2). Understanding this interaction is not only important for understanding the normal physiology and the role of ingested nutrients in gastrointestinal disorders and diseases, but also for managing certain gastrointestinal disorders (3-6).

New data on the interaction between ingested nutrients and the gastrointestinal endocrine cells obtained from basic science and clinical research have accumulated in the last few years. The present review aimed to interpret the newly gained knowledge so as to understand the role of this interaction.

2. Gastrointestinal endocrine cells

General. The gastrointestinal endocrine cells are scattered between the mucosal epithelial cells facing the intestinal lumen (Fig. 1) (7,8). There are ≥10 types of endocrine cell, and they are found in the stomach and the small and large intestines (8). Different segments of the gastrointestinal tract contain several different populations of gut endocrine cells (Fig. 2). Certain types of endocrine cells are located only in specific areas of the gastrointestinal tract. For example, serotonin- and somatostatin-secreting cells occur in the stomach and small and large intestines, while those producing ghrelin and gastrin are found only in the stomach, those producing secretin, cholecystokinin, gastric inhibitory peptide (GIP) and motilin are found only in the upper small intestine, and those producing polypeptide YY (PYY), pancreatic polypeptide and oxyntomodulin are located only in the lower small intestine and large intestine (7,9-11). The densities of these cells vary in different sections of the gastrointestinal tract, with the density being highest in the duodenum (12-16) (Fig. 3). The gastrointestinal endocrine cells regulate gastrointestinal motility, secretion, absorption, visceral sensitivity, local immune defence, cell proliferation and appetite (7,17-31). These endocrine cells interact with each other and also with the enteric nervous system, and the afferent and efferent nerve fibers of the autonomic nervous system and the central nervous system (CNS) (7,18,22,32). Depletion of gastrointestinal endocrine cells as in congenital malabsorptive diarrhea caused by mutant neurogenin-3 (33), or complete loss of these cells in mutant
mice with ablation of the transcript factor neurogenin-3 (34) show that the gastrointestinal endocrine cells are essential for life.

Immunohistochemical studies have shown that two hormones can be colocalized in the same endocrine cell type, such as glucagon-like peptide-1 and GIP in the small intestine as well as PYY and oxyntomodulin in the large intestine (34-38). Recent studies have further found that mature intestinal endocrine cells are capable of expressing several hormones (39,40).

Gastrointestinal endocrine cells as sensory cells. The gastrointestinal endocrine cells have specialized microvilli that project into the lumen and function as sensors of the gut contents (mostly nutrients and/or bacteria byproducts), and respond to luminal stimuli by releasing their hormones into the lamina propria (41-63). The gut intraluminal contents of carbohydrates, proteins and fats trigger the release of different...
signaling substances (such as hormones) from the gut endocrine cells (Table I) (41-53).

Mode of action of gastrointestinal endocrine cells. The signaling substances (hormones) released from the gastrointestinal endocrine cells may exert their actions locally on nearby cells or neurons (paracrine mode) or by entering the circulating blood and reaching distant targets (endocrine mode) (64-67).

The gastrointestinal endocrine cells possess a basal cytoplasmic process, which is believed to facilitate the paracrine mode of action (Figs. 4 and 5) (68-72). This cytoplasmic process extends ≤70 μm, compared with the base of the endocrine cells being only 10 μm in diameter (70). This process has certain similarities to neuronal axons, and has been named a neuropod (70,73 -75). The neuropod has other axon-like characteristics, such as containing neurofilaments, being escorted by enteric glia cells, and expressing receptors for neurotrophins (74). Furthermore, gut endocrine cells have small clear synaptic vesicles, express several genes encoding for presynaptic proteins (synapsin 1, piccolo, bassoon, MUNC13B, regulating synaptic membrane exocytosis 2, latrophilin and transsynaptic neurexin), and also express postsynaptic genes (transsynaptic neuroligins 2 and 3, homer 3 and postsynaptic density 95) (75). Based on these data, it was concluded that the gut endocrine cells have the necessary elements for afferent and efferent synaptic transmission (75). Therefore, it appears that the gastrointestinal endocrine cells exert their effects via three modes of action: Endocrine, paracrine and synaptic (Fig. 6).

The recent findings of gastrointestinal endocrine cells exhibiting endocrine and neuron-like characteristics support and revive the old hypothesis on the evolution of the neuroendocrine system of the gut (76). The observation that the mammalian gastrointestinal hormonal peptides occur in the CNS, but not in the gut of invertebrates (77-79), led to the hypothesis that the gastrointestinal endocrine cells of vertebrates originated in the nervous system of a common ancestor, and migrated during a later stage of evolution into the gut as scattered endocrine cells (76).
3. Interaction between diet and gastrointestinal cells

As aforementioned, the composition of the diet with different proportions of carbohydrates, proteins and fats is a trigger for the release of different gut hormones into the lamina propria. Furthermore, the ingested foodstuffs act as prebiotics for the intestinal microbiota, and the byproducts of the bacteria trigger also the release of hormones from the gut endocrine cells.

It has been shown recently that a change in diet is accompanied by a change in the density of gastrointestinal cells (3-6). This could be due to an ingested foodstuff acting as a prebiotic for the intestinal bacteria with the associated bacterial byproducts. These bacterial byproducts may act on the stem cells and/or differentiation progenitors, resulting in changes in the stem cell clonogenic activity and/or differentiation progeny. Alternatively, these bacterial byproducts could act on mature gastrointestinal cells to favor the expression of specific hormones (Fig. 7). Thus, the change in the density of a certain endocrine cell type could be caused by switching to the expression of a different hormone.

4. Conclusion

The diet is important for regulating the functions of gastrointestinal endocrine cells. It not only regulates the release of hormones from these cells, but also affects their densities. The interaction between nutrients and gastrointestinal endocrine cells could be useful for the clinical management of several diseases, such as irritable bowel syndrome, obesity and diabetes (17,80-85).

References

1. El-Salhy M, Giljoh OH, Gundersen D, Hatlebakk JG and Hausken T: Interaction between ingested nutrients and gut endocrine cells in patients with irritable bowel syndrome (Review). Int J Mol Med 34: 363-371, 2014.
2. Mazzawi T, Gundersen D, Hausken T and El-Salhy M: Increased gastric chromogranin A cell density following changes to diets of patients with irritable bowel syndrome. Mol Med Rep 10: 2322-2326, 2014.
3. Mazzawi T, Gundersen D, Hausken T and El-Salhy M: Increased chromogranin A cell density in the large intestine of patients with irritable bowel syndrome after receiving dietary guidance. Gastroenterol Res Pract 2015: 823897, 2015.
4. Mazzawi T, Gundersen D, Hausken T and El-Salhy M: Normalization of large intestinal endocrine cells following dietary management in patients with irritable bowel syndrome. Eur J Clin Nutr 70: 175-178, 2016.
5. El-Salhy M, Seim J, Chopin L, Gundersen D and El-Salhy M: Effect of dietary management on the gastric endocrine cells in patients with irritable bowel syndrome. Eur J Clin Nutr 69: 519-524, 2014.
6. Mazzawi T, Gundersen D, Hausken T and El-Salhy M: Duodenal chromogranin A cell density as a biomarker for the diagnosis of irritable bowel syndrome. Gastroenterol Res Pract 2014: 628856, 2014.
7. El-Salhy M, Mazzawi T, Gundersen D, Hatlebakk JG and Hausken T: Duodenal chromogranin A cell density as a biomarker for the diagnosis of irritable bowel syndrome. Gastroenterol Res Pract 2014: 628856, 2014.
8. El-Salhy M, Mazzawi T, Gundersen D, Hatlebakk JG and Hausken T: Chromogranin A cells in the stomachs of patients with sporadic irritable bowel syndrome. Mol Med Rep 10: 1753-1757, 2014.
9. El-Salhy M, Gundersen D and Hausken T: Chromogranin A cell density in the rectum of patients with irritable bowel syndrome. Mol Med Rep 6: 1223-1225, 2012.
10. El-Salhy M, Lomholt-Beck B and Hausken T: Chromogranin A as a possible tool in the diagnosis of irritable bowel syndrome. Scand J Gastroenterol 45: 1435-1439, 2010.
11. El-Salhy M, Wendelbo IH and Gundersen D: Reduced chromogranin A cell density in the ileum of patients with irritable bowel syndrome. Mol Med Rep 7: 1241-1244, 2013.
12. El-Salhy M, Ostgaard H, Gundersen D, Hatlebakk JG and Hausken T: The role of diet in the pathogenesis and management of irritable bowel syndrome (Review). Int J Mol Med 29: 723-731, 2012.
13. El-Salhy M: Irritable bowel syndrome: Diagnosis and pathogenesis. World J Gastroenterol 18: 5151-5163, 2012.
14. Wynn K, Park AJ, Small CJ, Patterson M, Gangl A, and Blakely RD and Gershon MD: Localization and function of a 5-HT transporter in crypt epithelia of the gastrointestinal tract. J Neurosci 16: 2382-2364, 1996.
15. Wynn K, Park AJ, Small CJ, Patterson M, Gangl A, and Blakely RD and Gershon MD: 5-Hydroxytryptamine (serotonin) in the gastrointestinal tract. Curr Opin Endocrinol Diabetes Obes 20: 14-21, 2013.
16. Wynn K, Park AJ, Small CJ, Patterson M, Gangl A, and Blakely RD and Gershon MD: 5-Hydroxytryptamine (serotonin) in the gastrointestinal tract. Curr Opin Endocrinol Diabetes Obes 20: 14-21, 2013.
17. Gershon MD: 5-Hydroxytryptamine (serotonin) in the gastrointestinal tract. Curr Opin Endocrinol Diabetes Obes 20: 14-21, 2013.
18. Wynn K, Park AJ, Small CJ, Patterson M, Gangl A, and Blakely RD and Gershon MD: 5-Hydroxytryptamine (serotonin) in the gastrointestinal tract. Curr Opin Endocrinol Diabetes Obes 20: 14-21, 2013.
19. Wynn K, Park AJ, Small CJ, Patterson M, Gangl A, and Blakely RD and Gershon MD: 5-Hydroxytryptamine (serotonin) in the gastrointestinal tract. Curr Opin Endocrinol Diabetes Obes 20: 14-21, 2013.
20. Wynn K, Park AJ, Small CJ, Patterson M, Gangl A, and Blakely RD and Gershon MD: 5-Hydroxytryptamine (serotonin) in the gastrointestinal tract. Curr Opin Endocrinol Diabetes Obes 20: 14-21, 2013.
21. Wynn K, Park AJ, Small CJ, Patterson M, Gangl A, and Blakely RD and Gershon MD: 5-Hydroxytryptamine (serotonin) in the gastrointestinal tract. Curr Opin Endocrinol Diabetes Obes 20: 14-21, 2013.
22. Wynn K, Park AJ, Small CJ, Patterson M, Gangl A, and Blakely RD and Gershon MD: 5-Hydroxytryptamine (serotonin) in the gastrointestinal tract. Curr Opin Endocrinol Diabetes Obes 20: 14-21, 2013.
23. Wynn K, Park AJ, Small CJ, Patterson M, Gangl A, and Blakely RD and Gershon MD: 5-Hydroxytryptamine (serotonin) in the gastrointestinal tract. Curr Opin Endocrinol Diabetes Obes 20: 14-21, 2013.
24. Wynn K, Park AJ, Small CJ, Patterson M, Gangl A, and Blakely RD and Gershon MD: 5-Hydroxytryptamine (serotonin) in the gastrointestinal tract. Curr Opin Endocrinol Diabetes Obes 20: 14-21, 2013.
25. Wynn K, Park AJ, Small CJ, Patterson M, Gangl A, and Blakely RD and Gershon MD: 5-Hydroxytryptamine (serotonin) in the gastrointestinal tract. Curr Opin Endocrinol Diabetes Obes 20: 14-21, 2013.
26. Wynn K, Park AJ, Small CJ, Patterson M, Gangl A, and Blakely RD and Gershon MD: 5-Hydroxytryptamine (serotonin) in the gastrointestinal tract. Curr Opin Endocrinol Diabetes Obes 20: 14-21, 2013.
27. Wynn K, Park AJ, Small CJ, Patterson M, Gangl A, and Blakely RD and Gershon MD: 5-Hydroxytryptamine (serotonin) in the gastrointestinal tract. Curr Opin Endocrinol Diabetes Obes 20: 14-21, 2013.
28. Wynn K, Park AJ, Small CJ, Patterson M, Gangl A, and Blakely RD and Gershon MD: 5-Hydroxytryptamine (serotonin) in the gastrointestinal tract. Curr Opin Endocrinol Diabetes Obes 20: 14-21, 2013.
29. Wynn K, Park AJ, Small CJ, Patterson M, Gangl A, and Blakely RD and Gershon MD: 5-Hydroxytryptamine (serotonin) in the gastrointestinal tract. Curr Opin Endocrinol Diabetes Obes 20: 14-21, 2013.
35. Spangéus A, Forsgren S and el-Salhy M: Does diabetic state affect co-localization of peptide YY and enterochromaffin-like cells in colonic endocrine cells? Histois Histopathol 15: 37-41, 2000.

36. Pysy-Gabrielle M, Vauquelin M and Kimamura N: The developmental plasticity of colocalization pattern of peptide YY and glucagon-like peptide-1 in the endocrine cells of bovine rectum. Biomed Res 33: 35-38, 2012.

37. Haroon E, Raison CL and Miller AH: Psychoneuroimmunology meets neuropsychopharmacology: Translational implications in the context of inflammation on behavior. Neuropsychopharmacology 37: 137-162, 2012.

38. el-Salhy M, Wilander E and Grimmelius L: Immunocytochemical localization of gastric inhibitory peptide (GIP) in the human foetal pancreas. Ups J Med Sci 87: 81-85, 1982.

39. Ghit C, Lewis PF, Wang H, Collins M, Deng Y, El-Sharkawy RT, Côté F, Mallet J and Khan WJ: Serotonin has a key role in pathogenesis of experimental colitis. Gastroenterology 137: 1649-1660, 2009.

40. Dryden S, Wang Q, Frankish HM, Pickavance L and Williams G: The serotonin (5-HT) antagonist methysergide increases neuro-peptide Y (NPY) synthesis and secretion in the hypothalamus of the rat. Brain Res 699: 12-18, 1995.

41. Sandström O and el-Salhy M: Ageing and endocrine cells of human duodenum. Mech Ageing Dev 108: 39-48, 1999.

42. el-Salhy M: Ghrelin in gastrointestinal diseases and disorders: A potential role in the pathophysiology and clinical implications (Review). Int J Mol Med 24: 727-732, 2009.

43. Tolhurst G, Reimann F and Gibble FM: Intestinal sensing of nutrients. Handb Exp Pharmacol 209: 309-335, 2012.

44. Lee J, Cummings BP, Martin E, Sharp JW, Graham JL, Stajnovic T, D'Acunto S, Gibble DB and Glucose sensing by gut endocrine cells and activation of the vagalafferent pathway is impaired in a rodent model of type 2 diabetes mellitus. Am J Physiol Regul Integr Comp Physiol 302: R657-R666, 2012.

45. Parker HE, Reimann F and Gibble FM: Molecular mechanisms underlying nutrient-stimulated incretin secretion. Expert Rev Mol Med 12: e1, 2010.

46. Raybould HE: Nutrient sensing in the gastrointestinal tract: Possible role for nutrient transporters. J Physiol Biochem 64: 349-356, 2008.

47. San Gabriel A, Nakamura E, Uneyama H and Torii K: Taste, visceral information and exocrine reflexes with glutamate through umami receptors. J Med Invest 56: 209-217, 2009.

48. Rudholm T, Wallin B, Theodorsson E, Näslund E and Hellström PM: Release of regulatory gut peptides somatostatin, vasoactive intestinal peptide by acid and hyperosmolal solutions in the intestine in conscious rats. Regul Pept 80: 164-174, 2000.

49. Sternini C, Anselmi L and Rozengurt E: Enteroendocrine cells: Possible role for nutrient transporters. J Physiol Biochem 64: 309 -335, 2012.

50. Tolhurst G, Reimann F and Gribble FM: Intestinal sensing of dietary intake of patients with irritable bowel syndrome. Mol Med Rep 8: 845-852, 2013.

51. Gustafsson BI, Bakke I, Hauso Ø, Kidd M, Modlin IM, Fossmark R, Brenna E and Waldum HL: Parietal cell activation by arborization of ECL cell cytoplasmic projections is likely the mechanism for histamine induced secretion of hydrochloric acid. Scand J Gastroenterol 46: 531-537, 2011.

52. Gustafsson BI, Bakke I, Tømmerøs K and Waldum HL: A new method for visualization of gut mucosal cells, describing the enterochromaffin cell in the rat gastrointestinal tract. Scand J Gastroenterol 41: 390-396, 2006.

53. Pang XH, Li TK, Xie Q, He FQ, Cui J, Chen YQ, Huang XL and Gan HT: Amelioration of dextran sulfate sodium-induced colitis by peptide YY and neuropeptide Y. Br J Pharmacol 163: 1649-1660, 2009.

54. Buchanan AM: Nutrient tasting and signaling mechanisms in the gut III. Endocrine cell recognition of luminal nutrients. Am J Physiol 277: G103-G1107, 1999.

55. Montero-Hadjadje M, Elias S, Chevalier L, Benard M, Tunguy Y, Turquier V, Galas L, Yon L, Malagon MM, Driouich A, et al: Chromogranin A promotes peptide hormone sorting to mobile granules in constitutively and regulated secreting cells: Role of conserved N- and C-terminal peptides. J Biol Chem 284: 12420-12431, 2009.

56. Shosshatarizadeh P, Zhang D, Chich JF, Gasnier C, Schneider F, Hafkel Y, Aunis D and Metz-Boutigue MH: The antimalarial peptides derived from chromogranin/secretogranin family, new actors of innate immunity. Regul Pept 165: 102-110, 2010.

57. Hassani H, Lucas G, Rozell B and Ernfors P: Attenuation of acute experimental colitis by preventing NPY Y1 receptor signaling. Am J Physiol Gastrointest Liver Physiol 288: G550-G556, 2005.

58. Cani PD, Everard A, Druart P, Fertil M and Kitamura M: Enteroendocrine cells: Immunohistochemical evidence of the enteropancreatic neurohormonal peptides of vertebrate type in the nervous system of the larva of a dipteran insect, the hoverfly, Erastis aeneus. Regul Pept 131: 187-204, 2006.

59. Cani PD, Fertil S, Kramer KJ and Speirs RD: Immunohistochemical investigations of neuropeptides in the brain, corpora cardiaca, and corpora allata of an adult lepidopteran insect, Manduca sexta (L). Cell Tissue Res 232: 295-317, 1983.

60. El-Salhy M, Fertil M, Kramer KJ and Speirs RD: Immunohistochemical evidence for the occurrence of insulin in the frontal ganglion of a Lepidoptera insect, the tobacco hornworm moth, Manduca sexta L. Comp Biochem Physiol 54: 85-88, 1984.

61. Mazzawi T, Haukens T, Gundersen D and El-Salhy M: Effects of insulin guidance of the gut endocrine cells, quality of life and habitual diabetic dietary intake of patients with irritable bowel syndrome. Mol Med Rep 8: 845-852, 2013.
81. Ostgaard H, Hausken T, Gundersen D and El-Salhy M: Diet and effects of diet management on quality of life and symptoms in patients with irritable bowel syndrome. Mol Med Rep 5: 1382-1390, 2012.

82. García-Martínez JM, Chocarro-Calvo A, De la Vieja A and García-Jiménez C: Insulin drives glucose-dependent insulinotropic peptide expression via glucose-dependent regulation of FoxO1 and LEF1/β-catenin. Biochim Biophys Acta 1839: 1141-1150, 2014.

83. García-Martínez JM, Chocarro-Calvo A, Moya CM and García-Jiménez C: WNT/β-catenin increases the production of incretins by entero-endocrine cells. Diabetologia 52: 1913-1924, 2009.

84. Freeland KR, Wilson C and Wolever TM: Adaptation of colonic fermentation and glucagon-like peptide-1 secretion with increased wheat fibre intake for 1 year in hyperinsulinaemic human subjects. Br J Nutr 103: 82-90, 2010.

85. Korner J, Bessler M, Inabnet W, Taveras C and Holst JJ: Exaggerated glucagon-like peptide-1 and blunted glucose-dependent insulinotropic peptide secretion are associated with Roux-en-Y gastric bypass but not adjustable gastric banding. Surg Obes Relat Dis 3: 597-601, 2007.