INTRODUCTION

Toothbrushes are generally used to remove dental plaque and some studies demonstrate the presence of bacteria on toothbrushes [1-3]. Many bacteria are found on toothbrushes after brushing [4], and these bacteria can survive for one day to one week after brushing [5]. Toothbrushes can be contaminated by the oral environment, hands, and contaminated containers [6]. Contaminated toothbrushes can cause oral disease, sepsis, and many systemic diseases of the cardiovascular system, respiratory organs, and the kidneys [7].

Various studies reported the number and types of microorganisms present on toothbrushes and reported contamination by pathogenic microorganisms after using toothbrushes [8-13]. An average of 10^3 to 10^5 colony-forming unit (CFU) of bacteria were found per toothbrush. Malmberg et al. [10] examined the distribution of microorganisms in 44
toothbrushes collected from four nurseries. Streptococci like *Streptococcus salivarius*, *Streptococcus sanguinis*, and *Streptococcus mitis* were most prevalent in these studies, and *Haemophilus* was found in 82% of the samples. Researchers also found oral microorganisms associated with periodontal disease and fungi. Another study found that 70% of toothbrushes were contaminated with pathogenic microorganisms after use [14].

Most of these studies used a method of culturing bacteria in a specific medium. The identified microorganisms were identified using Gram staining and biochemical characteristics. However, this identification method is limited because it cannot detect microorganism species that are not cultured. Sometimes, identification using biochemical properties may not match the characteristics of any known species or genus.

To overcome these limitations, this study used Illumina sequencing to identify microorganisms present on toothbrushes.

MATERIALS AND METHODS

Sampling

A total of 10 toothbrush samples were obtained by collecting 2 toothbrushes (group A: toothbrushes stored in the office, group B: toothbrushes stored in the bathroom) from 5 healthy adults (aged 20–50). The toothbrush sample was transferred to a test tube containing 10 mL of sterile distilled water and vortexed for 5 minutes to remove the bacteria from the head of toothbrush.

Genomic DNA extraction

The PureLink® Genomic DNA Mini Kit (Invitrogen, Waltham, MA, USA) was used to extract DNA from the 10 toothbrushes and DNA was extracted according to the manufacturer’s instructions. For Illumina sequencing, individual DNA samples belonging to each group were mixed in equal proportions.

RESULTS

Bacterial diversity of toothbrush samples

Table 1 shows the microbial diversity of the two toothbrush groups with different storage locations (group A, group B). In group A, 78,171 reads and 126 genera were obtained, while 83,021 reads and 151 genera were obtained in group B. In group A, *Enterococcus* (30.76%), *Pseudomonas* (21.85%), *Streptococcus* (14.94%) and *Lactobacillus* (5.15%) were most abundant. In group B, *Strep-
Table 1. List of genera identified on toothbrushes using Illumina MiSeq

Phylum	Class	Genus	Count	Count
			Group A	Group B
Bacteria				
Actinobacteria	Actinobacteria_c	Actinobaculum	13	7
		Actinomyces	401	786
		Antricoccus	-	11
		Arsenicococcus	-	11
		Bifidobacterium	282	403
		Brachybacterium	-	15
		Brevibacterium	131	218
		Corynebacterium	69	99
		Dietzia	-	4
		Gardnerella	-	7
		Kocuria	32	583
		Microbacterium	3	-
		Phycicoccus	-	2
		Propionibacterium	4	6
		Rhodococcus	3	70
		Rothia	1,557	2,908
		Atopobium	29	130
		Collinsella	9	14
		Senegalimassilia	-	8
Coriobacteriia				
		Alistipes	58	890
		Alloprevotella	125	959
		Bacteroides	-	221
		Dysgonomonas	2	-
		Marinilimophilum	1	-
		Parabacteroides	-	20
		Porphyromonas	152	937
		Prevotella	861	3,813
		Tannerella	3	72
		Bergeyella	17	88
		Capnocytophaga	81	162
		Chryseobacterium	-	14
		Maritimimonas	-	2
		Sphingobacterium	5	140
Flavobacteria				
		Atopobium	29	130
		Collinsella	9	14
		Senegalimassilia	-	8
		Alistipes	58	890
		Alloprevotella	125	959
		Bacteroides	-	221
		Dysgonomonas	2	-
		Marinilimophilum	1	-
		Parabacteroides	-	20
		Porphyromonas	152	937
		Prevotella	861	3,813
		Tannerella	3	72
		Bergeyella	17	88
		Capnocytophaga	81	162
		Chryseobacterium	-	14
		Maritimimonas	-	2
		Sphingobacterium	5	140
		Aerococcus	-	1
		Alkalibacterium	1	-
		Bacillus	55	-
		Enterococcus	24,088	6,790
		Gemella	232	1,994
		Granulicatella	205	309
		Lactobacillus	4,032	647
		Lactococcus	98	3
		Staphylococcus	64	-
		Streptococcus	11,703	16,410
		Vagococcus	1	-
		Weissella	7	-
Clostridia				
		Acetatitfactor	-	7
		Acidaminobacter	81	3
		Agathobacter	-	4
		Alkalibacter	37	-

Note: The table includes counts of genera identified on toothbrushes using Illumina MiSeq technology.
Table 1. Continued

Phylum	Class	Genus	Count	Group A	Group B
		Alkaliphilus	31		
		Anaerovorax	3		
		Blautia	5		32
		Butyricoccus	-		5
		Caproicproduens	-		2
		Catonella	8		70
		Clostridium	12		129
		Dorea	7		13
		Eisenbergiella	23		597
		Eubacterium	42		210
		Faecalibacterium	6		64
		Filifactor	-		4
		Fusicatenibacter	6		10
		Intestinibacter	4		-
		Lachnoanaerobaculum	45		74
		Lachnospira	-		14
		Marvinbryantia	-		1
		Mogibacterium	1		-
		Morrellia	45		69
		Oribacterium	57		73
		Oscillibacter	5		107
		Peptostreptococcus	25		190
		Pseudoflavonifractor	3		126
		Romboutsia	3		5
		Roseburia	-		6
		Ruminococcus	14		31
		Sporobacter	-		5
		Subdoligranulum	-		11
		Tindallia	11		-
	Erysipelotrichi	Bulleidia	32		36
		Catenibacterium	-		14
		Holdemanella	2		6
	Negativicutes	Dialister	2		12
		Megamonas	-		5
		Megasphaera	5		14
		Pelosinus	10		10
		Phascolarctobacterium	-		9
		Selenomonas	21		137
		Veillonella	1,261		3,757
	Tissierellia	Dethiosulatibacter	114		-
		Parvimonas	24		141
		Tissierella	157		-
	Fusobacteria	Fusobacterium	400		1,923
		Leptotrichia	111		893
		Streptobacillus	-		16
	Proteobacteria	Alphaproteobacteria	467		18
		Altererythrobacter	-		7
		Auremonas	13		15
		Brevundimonas	56		7
		Novosphingobium	5		-
		Rhizobium	467		18
		Rhodobacter	-		5
Table 1. Continued

Phylum	Class	Genus	Count	Group A	Group B
Betaproteobacteria					
		Roseomonas	18	2	
		Sphingobium	8	5	
		Sphingomonas	17	2	
		Acidovorax	13	13	
		Comamonas	3	7	
		Curvibacter	6	6	
		Dechloromonas	29	18	
		Delfta	61	35	
		Duganella	3	-	
		Eikenella	-	1	
		Herbaspirillum	3	-	
		Janthinobacterium	3,393	2,110	
		Kingella	11	65	
		Lautropia	23	198	
		Neisseria	1,067	5,854	
		Paucibacter	53	43	
		Simonsiella	-	7	
		Sutterella	-	4	
		Thauera	2	1	
		Undibacterium	6	11	
Deltaproteobacteria	Desulfonatronum	194	10		
Epsilonproteobacteria	Arcobacter	15	114		
	Campylobacter	15	114		
	Helicobacter	-	1		
	Sulfurovum	2	3		
Gammaproteobacteria	Actinobacter	2,937	840		
	Actinobacillus	3	101		
	Aeromonas	389	264		
	Aggregatibacter	7	122		
	Buttiauxella	10	18		
	Cardiobacterium	12	37		
	Cedecea	68	36		
	Citrobacter	27	12		
	Enhydrobacter	195	332		
	Enterobacter	458	129		
	Erwinia	1,707	173		
	Escherichia	43	11		
	Haemophilus	556	2,047		
	Halomonas	23	16		
	Halotalea	3	-		
	Klebsiella	5	156		
	Moraxella	-	3		
	Morganella	143	132		
	Pantoea	133	4,109		
	Pseudoalteromonas	-	1		
	Pseudomonas	17,110	13,374		
	Rahmella	15	5		
	Serratia	-	8		
	Stenotrophomonas	1,081	761		
	Vibrio	2	8		
So Yeon Lee and Si Young Lee

185

tococcus (19.73%), Pseudomonas (16.08%), Enterococcus (8.16%) and Neisseria (7.04%) were most abundant (Fig. 2–4).

Pathogenic bacteria

In group A, 45 out of 124 genera (36.29%) belonged to pathogenic species. *Enterococcus* was the most common genus, and we also found pathogenic species in the genera *Pseudomonas*, *Acinetobacter*, *Neisseria*, *Haemophilus*, *Corynebacterium*, *Staphylococcus*, *Bacillus*, and *Escherichia*. We also detected bacteria associated with oral diseases like *Streptococcus*, *Actinomyces*, *Fusobacterium*, *Porphyromonas*, *Prevotella*, *Pseudomonas*, *Rothia*, *Streptococcus*, *Veillonella*, and *Etc. (<1%)*

DISCUSSION

The toothbrush is contaminated from the point of use, and the contamination increases when the toothbrush is used repeatedly [18,19]. In addition, 80% of toothbrushes are known to be contaminated before use [8]. The number of bacteria found on each toothbrush is highly variable and was reported to average from 10^3 to 10^5 CFU per toothbrush [8,10,12,13]. Glass and Lare [19] examined the microbial distribution on toothbrushes used by adults and found various genera, including pathogenic species like *Staphylococcus aureus*, *Escherichia coli*, and *Pseudomonas*.

In addition, Malmberg et al. [10] investigated children’s toothbrushes, finding mostly aerobic microorganisms and bacteria like *Staphylococci* and *Pseudomonas*, and fungi. In a study by Mehta et al. [14], 70% of toothbrushes used in the experiment were found to be severely contaminated by pathogenic microorganisms. Studies on microbial contamination of toothbrushes have been done before, but most
of them have identified bacteria based on general bacterial culture methods. Therefore, the risk of contaminated toothbrushes may be underestimated.

In our study, the Enterococcus genus known to have multi-drug resistance was found most frequently. We also found the genus Pseudomonas, an opportunistic infectious bacteria, and Streptococcus, a bacterium related to oral diseases. These results were similar to most other studies, but there were differences in the abundances found for each group. Among the toothbrushes stored in office, Enterococcus was observed at the highest abundance, followed by Pseudomonas, Streptococcus, and Lactobacillus. The Streptococcus genus was most frequently observed in toothbrushes stored in the bathroom, followed by Pseudomonas, Enterococcus, and Nisseria. The proportion of genera containing pathogenic species was observed to be 36.29% in group A and 33.77% in group B. In both groups, we found Haemophilus, which can cause a deadly respiratory infection, Corynebacterium, which is known to be the causative agent of diphtheria, and Neisseria, which can cause septicemia and gonorrhea. In group A, we found Bacillus and Staphylococcus. In group B, we found Helicobacter, which can cause stomach inflammation, gastric cancer, and peptic ulcer disease. In addition, we found several oral bacteria that are related to oral diseases. In both groups, we also found Streptococcus and Actinomyces, causative bacteria of dental caries, and Porphyromonas, Fusobacterium, Aggregatibacter, Tannerella, and Treponema, which are associated with periodontal disease.

Repeated use of contaminated toothbrushes may increase the possibility of bacterial infection [18]. We also found pathogenic bacteria that do not directly cause infection in healthy individuals but could be fatal to patients with weak immune systems. Thus, there is a need to reduce microbial

Fig. 3. Bacterial community diversity in toothbrush samples (group A, toothbrushes stored in the office).
contamination of toothbrushes. The contamination of the toothbrush can be influenced by factors like the shape of the toothbrush, the toothpaste, the storage of the toothbrush, the frequency of brushing, and the period of use. We obtained toothbrush samples in two groups according to storage location (group A, group B). Because toothbrushes are often stored in bathrooms, they can be exposed to enteric bacteria that are aerosolized [12]. We expected enteric bacteria to be found only in toothbrush samples stored in the bathroom, but enteric bacteria were isolated in both groups of toothbrushes. The toothbrush stored in the office seems to be contaminated with enteric bacteria via the human hand or other infection routes.

Based on previous studies, patients with systemic diseases are advised to frequently replace their toothbrush [4,9,20]. The American Dental Association recommends replacing the toothbrush every three months [4], and patients with oral disease also reported reduced symptoms after replacing toothbrushes [9]. Many previous studies demonstrated that brushing is effective in improving oral hygiene [21,22]. There is also a risk of pathogenic microbial transfer due to toothbrush contamination and the positive role of such a toothbrush. Therefore, further research is needed to propose a method to reduce toothbrush contamination and establish better hygiene standards.

CONFLICTS OF INTEREST

The authors declare that they have no competing interests.

Fig. 4. Bacterial community diversity in toothbrush samples (group B, toothbrushes stored in the bathroom).
Bacterial contamination of toothbrushes

ORCID
So Yeon Lee
https://orcid.org/0000-0002-6645-6831
Si Young Lee
https://orcid.org/0000-0001-8826-1413

REFERENCES

1. Ho HP, Niederman R. Effectiveness of the Sonicare sonic toothbrush on reduction of plaque, gingivitis, probing pocket depth and subgingival bacteria in adolescent orthodontic patients. J Clin Dent 1997;8:1:15-19.
2. Rosema NA, Timmerman MF, Versteeg PA, van Palen-stijn Helderman WH, Van der Velden U, Van der Weijden GA. Comparison of the use of different modes of mechanical oral hygiene in prevention of plaque and gingivitis. J Periodontol 2008;79:1586-1594. doi: 10.1902/jop.2008.070654.
3. Creeth JE, Gallagher A, Sowinski J, Bowman J, Barrett K, Lowe S, Patel K, Bosma ML. The effect of brushing time and dentifrice on dental plaque removal in vivo. J Dent Hyg 2009;83:111-116.
4. Basman A, Peker I, Akca G, Alkurt MT, Sarikir C, Celik I. Evaluation of toothbrush disinfection via different methods. Braz Oral Res 2016;30:1806-8324201600100203. doi: 10.1590/1807-3107BOR-2016.vol30.0006.
5. Efstratiou M, Papaioannou W, Nakou M, Ktenas E, Vrotsos IA, Panis V. Contamination of a toothbrush with antibacterial properties by oral microorganisms. J Dent 2007;35:331-337. doi: 10.1016/j.jdent.2006.10.007.
6. Frazelle MR, Munro CL. Toothbrush contamination: a review of the literature. Nurs Res Pract 2012;2012:420630. doi: 10.1155/2012/420630.
7. Nascimento AP, Watanabe E, Ito IY. Toothbrush contamination by Candida spp. and efficacy of mouthrinse spray for their disinfection. Mycopathologia 2010;169:133-138. doi: 10.1007/s11046-009-9239-z.
8. Caudry SD, Klitorinos A, Chan EC. Contaminated toothbrushes and their disinfection. J Can Dent Assoc 1995;61:511-516.
9. Glass RT, Jensen HG. More on the contaminated toothbrush: the viral story. Quintessence Int 1988;19:713-716.
10. Malmberg E, Birkhed D, Norvenius G, Norén JG, Dahlen G. Microorganisms on toothbrushes at day-care centers. Acta Odontol Scand 1994;52:93-98. doi: 10.3109/00016359409029061.
11. Muller HP, Lange DE, Muller RF. Actinobacillus actinomycetemcomitans contamination of toothbrushes from patients harbouring the organism. J Clin Periodontol 1989;16:388-390. doi: 10.1111/j.1600-051x.1989.tb00100.x.
12. Tai SS, Rogers AH. ADRF Trebitsch Scholarship. The microbial contamination of toothbrushes. A pilot study. Aust Dent J 1998:43:128-130. doi: 10.1111/j.1834-7819.1998.tb06101.x.
13. Verran J, Leahy-Gilmartin AA. Investigations into the microbial contamination of toothbrushes. Microbiol 1996:85:231-238.
14. Mehta A, Sequeira PS, Bhat G. Bacterial contamination and decontamination of toothbrushes after use. N Y State Dent J 2007:7:20-22.
15. Lee SY, Lee SY. Assessment of bacterial contamination of lipstick using pyrosequencing. J Cosmet Sci 2017;68:245-252.
16. Kim JY, Kim EM, Yi MH, Lee J, Lee S, Hwang Y, Yong D, Sohn WM, Yong TS. Intestinal fluke Metagonimus yokogawai infection increases probiotic Lactobacillus in mouse cecum. Exp Parasitol 2018;193:45-50. doi: 10.1016/j.exppara.2018.08.002.
17. Costa D, Mercier A, Graveoul K, Lesobre J, Delafoir V, Rousseau A, Verdun J, Imbert C. Pyrosequencing analysis of bacterial diversity in dental unit waterlines. Water Res 2015;81:223-231. doi: 10.1016/j.watres.2015.05.065.
18. Bunetel L, Tricot-Doleux S, Agnani G, Bonnaure-Mallet M. In vitro evaluation of the retention of three species of pathogenic microorganisms by three different types of toothbrush. Oral Microbiol Immunol 2000:15:313-316. doi: 10.1034/j.1399-5406(2000)150508.x.
19. Glass RT, Lare MM. Toothbrush contamination: a potential health risk? Quintessence Int 1986;17:39-42. doi: 10.1016/0889-5406(87)90281-2.
20. Bhat SS, Hegde KS, George RM. Microbial contamination of toothbrushes and their decontamination. J Indian Soc Pedod Prev Dent 2003:21:108-112.
21. Dahlén G, Lindhe J, Sato K, Hanamura H, Okamoto H. The effect of supragingivai plaque control on the subgingival microbiota in subjects with periodontal disease. J Clin Periodontol 1992;19:802-809. doi: 10.1111/j.1600-051x.1992.tb02174.x.
22. Axelsson P, Lindhe J, Nyström B. On the prevention of caries and periodontal disease. Results of a 15-year longitudinal study in adults. J Clin Periodontol 1991;18:182-189. doi: 10.1111/j.1600-051x.1991.tb01131.x.