GUIDELINES IN FOCUS

Gastroesophageal reflux disease: nonpharmacological treatment

©2012 Elsevier Editora Ltda - Este é um artigo Open Access sob a licença de CC BY-NC-ND

AUTHORS
Federação Brasileira de Gastroenterologia, Sociedade Brasileira de Endoscopia Digestiva, Colégio Brasileiro de Cirurgia Digestiva, Sociedade Brasileira de Pneumologia, Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial

PARTICIPANTS
Aloisio Carvalhaes, Angelo Paulo Ferrari Junior, Antonio Frederico Magalhães, Ary Nasy, Celso Mirra Paula e Silva, Claudio L. Hashimoto, Décio Chinzon, Edson Pedro da Silva, Eduardo G.H. Moura, Eponina Maria Oliveira Lemme, Farid Butros Iuan Nader, Fauze Maluf Filho, Gerson R. de Souza Domingues, Igelmbar Barreto, Isac Jorge Filho, Ismael Maguilnik, Ivan Cecconello, Jaime Natan Eisig, Joaquim Padro P. de Moraes-Filho, Joffre Rezende Filho, José Carlos Del Grande, José Luiz Pimenta Modena, José Roberto Almeida, Lilian R.O. Aprile, Luciana Camacho-Lobato, Luciana Dias Moretzohn, Marcelo de Souza Cury, Marcio Matheus Tolentino, Marco Aurélio Santo, Marcos Kleiner, Marcos Tulio Haddad, Maria do Carmo Friche Passos, Olavo Mion, Osvaldo Malafaia, Paulo Roberto Savassi Rocha, Rafael Stelmach, Ricardo Aires Correa, Ricardo Correa Barbuti, Richard Gursky, Rimon Sobhi Azzam, Roberto El Ibrahim, Rubens Antonio Aissar Sallum, Roberto Oliveira Dantas, Schilioma Zaterka, Sérgio Gabriel Silva de Barros, Tomas Navarro Rodriguez, Ulysses G. Meneghelli, Wilson Modesto Polara, Nycomed, and Medley; received speaker fees sponsored by AstraZeneca and Nycomed; received financial support for organizing educational activities sponsored by Nycomed, Aché and AstraZeneca. Rezende Filho J received speaker fees sponsored by Nycomed. Mion O received speaker fees sponsored by AstraZeneca. Stelmach R received speaker fees; financial support to organize teaching activities and to perform research; and consulting fees sponsored by AstraZeneca, Aché and Medley. Dantas RO received speaker fees sponsored by AstraZeneca. Zaterka S received financial support for teaching and consulting activities sponsored by Jansen-Cilag. Navarro T received speaker fees; financial support for teaching and consulting activities, and performed research sponsored by AstraZeneca.

DESCRIPTION OF THE EVIDENCE COLLECTION METHOD
A search was performed in the EMBASE, SciELO / LILACS, PubMed / Medline and Cochrane Library databases using the following words: gastroesophageal reflux, gerd, heartburn, nerd, gero, esophagus, esophagitis, extra-esophageal, asthma, atypical symptoms, chest pain, cough, globus sensations, hoarseness, otorhinolaryngology diseases, pain, respiratory tract diseases, laryngitis, anti-ulcer agents, enzyme inhibitors, proton pumps, lansoprazole, omeprazole, proton pump inhibitors, rabeprazole, continuous, on-demand, surgery, fundoplication, Nycomed, and Medley; received speaker fees sponsored by AstraZeneca and Nycomed; received financial support for organizing educational activities sponsored by Nycomed, Aché and AstraZeneca. Rezende Filho J received speaker fees sponsored by Nycomed. Mion O received speaker fees sponsored by AstraZeneca. Stelmach R received speaker fees; financial support to organize teaching activities and to perform research; and consulting fees sponsored by AstraZeneca, Aché and Medley. Dantas RO received speaker fees sponsored by AstraZeneca. Zaterka S received financial support for teaching and consulting activities sponsored by Jansen-Cilag. Navarro T received speaker fees; financial support for teaching and consulting activities, and performed research sponsored by AstraZeneca.

CONFLICT OF INTEREST
Chinzon D received reimbursement for attending conferences sponsored by Jansen and, also received speaker and consulting fees sponsored by Jansen, AstraZeneca and Medley. Lemme EMO received speaker fees sponsored by AstraZeneca and received grants for research sponsored by Nycomed. Moraes Filho JPP received reimbursement for attending a symposium sponsored by AstraZeneca,
A total of 5,000 publications were retrieved. Using the filters: humans, randomized controlled trial, randomized AND controlled AND trial, clinical AND trial, clinical trials, random*, random allocation, therapeutic use, epidemiologic methods, cohort studies, cohort AND study*, prognos*, first AND episode, cohort, we selected 73 studies to support this Guideline.

DEGREE OF RECOMMENDATION AND STRENGTH OF EVIDENCE

A: Experimental or observational studies of best consistency.

B: Experimental or observational studies of lower consistency.

C: Case reports (non-controlled studies).

D: Opinion without critical evaluation, based on consensuses, physiological studies or animal models.

OBJECTIVE

Due to high prevalence, variety of the clinical presentation forms and economic impact, consequences of loss of quality of life and clinical-laboratory research costs, the implementation of international consensus meetings has been encouraged. On the other hand, the diagnosis and therapeutic management of gastroesophageal reflux disease (GERD) has varied from center to center, which is an important factor in the search for scientific evidence on the issue, prompting the implementation of this Guideline, which seeks to answer four key clinical questions of the non-pharmacological treatment of GERD.

1. **Does the nonpharmacological treatment produce results in GERD?**

Obesity

Body mass index (BMI) > 25 is a risk factor for erosive GERD (B). There is an association between reflux symptoms and obesity (OR: 2.6) (B). BMI is associated with reflux (OR per 5 units: 1.9) (B). BMI > 25 is a risk factor (OR: 1.41) for GERD (B). Obesity is associated with GERD (B). Weight decrease does not reduce the manifestations of reflux (B). In patients with mean BMI of 42.5 kg/m², there is no association with the prevalence of GERD (B). Obesity predisposes to gastroesophageal reflux, and weight loss improves postprandial reflux and reduces pH time < 4 (B).

Smoking

Smoking is a risk factor for non-erosive GERD (B) and for reflux symptoms (B). Smokers have more reflux episodes than nonsmokers, but a 24-hour abstinence does not reduce the pH time < 4 (B).

24-hour smoking abstinence reduces the number of reflux episodes, but does not affect the total acid exposure (B). Individuals abstaining from smoking for 48 hours have increased esophageal acid exposure (B). Smoking is associated with GERD (B).

Alcohol

Alcohol intake is a risk factor for erosive GERD (B). Frequent consumption of alcohol is a risk factor for reflux symptoms (B). The habits of drinking wine or beer increase the risk of reflux (B). Alcoholic consumption is a risk factor for erosive GERD (OR: 2.42 to 2.85) (B).

Coffee

Coffee consumption is associated with GERD (OR: 1.23) (B).

Diet

The consumption of sweets and white bread is associated with symptoms of reflux (B). Fruit consumption has a protective effect on reflux symptoms (B). Frequent consumption of alcohol is a risk factor for reflux (B). The habits of drinking wine or beer increase the risk of reflux (B). Alcohol consumption is a risk factor for erosive GERD (OR: 2.42 to 2.85) (B).

Posture

Working in an inclined position is a risk factor for non-erosive GERD (B). GERD episodes are triggered by posture (B).

Inclined head of the bed

Sleeping with a wedge-shaped support is associated with less acid exposure than in the horizontal position (B). Raising the head of the bed (28 cm) reduces the number of reflux episodes and pH time < 5 (B).

Night meals

The later the night the meal is, the higher the rate of reflux episodes, especially in obese individuals and in those with erosive GERD (B). Going to bed immediately after dinner is associated with increased risk of GERD, especially within a time period of less than 3 hours (B).

Physical exercise

Physical activity seems to have a protective effect against GERD (B).

Stress and fatigue

GERD episodes are triggered by stress and fatigue (B). Stress is among the risk factors for GERD (B).
Recommendation

Although obesity (BMI > 25), smoking, alcohol consumption, coffee, sweets, proteins, excess food, inclined posture, stress and fatigue are associated with GERD, there is no consistent information to define that the resolution of these factors is followed by resolution or improvement of GERD. However, the elevation of the head of the bed and going to bed only after a minimum of three hours after the night meal are measures that reduce esophageal acid exposure.

2. WHAT ARE THE INDICATIONS OF SURGICAL TREATMENT OF GERD?

Hiatal hernia

Parasophageal

The laparoscopic Nissen fundoplication is equally effective in patients with GERD and paraesophageal hernia (B). There is improvement in abdominal pain, reflux, digestion score and quality of life score in patients with large paraesophageal hernias submitted to laparoscopic surgery (B). At the average follow-up period of 72 months, 93% of patients are free of GERD-related symptoms (B).

Risk factor

Hiatal hernia is a risk factor for erosive GERD (B). A hiatal hernia < 3 cm is a risk factor for non-erosive GERD, and a hiatal hernia > 3 cm, for erosive GERD and Barrett’s esophagus (B). The size of hiatal hernia, low pressures in the lower esophageal sphincter, esophageal acid exposure and number of reflux episodes are associated with esophagitis severity (B). Hiatal hernias > 2 cm are associated with Barrett’s esophagus and erosive GERD (B). The presence of hiatal hernia is associated with more severe esophagitis and predisposes patients with non-erosive GERD to more severe histological alterations (B). Patients with hiatal hernias have a high incidence of pathological reflux, regardless of the low pressure in the lower esophageal sphincter. Patients with pathologic reflux have esophageal propulsion failure and/or mechanical defects of the cardia associated with hiatal hernia (B).

Prognosis

Recurrence after fundoplication (Nissen or Toupet) is higher in large hernias (grades 3 and 4) (B). The permanent migration of the esophagogastric junction has more relevance in GERD prognosis than in sliding hiatal hernia, with reduction of the junction. Hiatal insufficiency and concentric hiatal hernia are determinant factors of irreversible cardia incontinence (B). In patients with GERD and hiatal hernia (31% erosive GERD and 75% lower sphincter dysfunction), reduction, crural closure, and Nissen fundoplication result in symptom improvement, at a 14-month follow-up (B). In patients with GERD (complicated or not), the presence of hiatal hernia determines significant increase in the PPI dose to achieve intraesophageal acid suppression (B).

Recommendation

Considering that:

- The presence of the permanent migration of esophagogastric junction and size of hiatal hernia (> 2 cm) are factors of worst prognosis for GERD;
- The presence of hiatal hernia requires higher doses of PPIs;
- The result of the laparoscopic fundoplication is adequate, including for paraesophageal hernia.

Hiatal hernias associated with GERD, especially those > 2 cm and fixed, should be treated surgically.

Motility

The Nissen fundoplication has good results in patients with normal esophageal motility, and the Toupet technique, in patients with esophageal dysmotility (B). There is no difference in postoperative symptoms in patients with or without esophageal dysmotility submitted to fundoplication (Nissen or Toupet) (A). The type of fundoplication should not be determined by the presence of dysmotility, as the postoperative dysphagia is not related to it (A). Preoperative dysmotility reflects a more severe disease, does not affect the postoperative outcomes, does not improve fundoplication and may occur after surgery (B).

Recommendation

Considering that:

- The preoperative dysmotility reflects a more severe disease, does not affect the postoperative outcomes, does not improve with fundoplication and may occur after surgery; no surgical treatment should be indicated using the parameter of esophageal dysmotility.

Cost

From the perspective of the National Health System, laparoscopic fundoplication is more cost-effective over eight years than PPI (B). Over five years, the cost of PPI is lower than the open surgery for GERD (B). Apparently, the Nissen fundoplication is more cost-effective in the treatment of GERD than treatment with PPI (B).

Recommendation

Apparently, the laparoscopic Nissen fundoplication, from the perspective of the National Health System, is more cost effective than PPI therapy over eight years. However, this is not the case with open surgery.
3. WHEN SHOULD CLINICAL TREATMENT BE INDICATED VERSUS SURGICAL TREATMENT?

In patients with GORD (erosive and non-erosive), antireflux surgery, compared to drug treatment with a PPI reduces the pH time < 4.0 and improves the VAS symptom score, the GERSS score, and scores of heartburn and regurgitation39 (A).

In patients with chronic erosive GORD, the Nissen surgery, compared to the use of PPIs, improves symptom scores, including the digestive score, and reduces the pH time < 4.040 (A).

In patients with chronic erosive reflux disease, Nissen surgery compared to PPI increases the degree of patient satisfaction (NNT 5)41 (A).

In patients with erosive reflux disease, antireflux surgery (Nissen or Toupet) compared to omeprazole 20 mg daily reduces the risk of treatment failure over 5 years. There is a greater number of treatment failures over five years with clinical treatment of omeprazole 40 mg or 60 mg compared to surgery (Nissen or Toupet). Surgery reduces the risk of treatment failure by 11.6\% (95\% CI: 0.6-22.6) - NNT: 9. However, symptom scores (GSRS) and quality of life scores (PGWB) were similar in the two compared forms of treatment42 (A).

In patients with chronic erosive reflux disease, antireflux surgery (Nissen or Toupet) in comparison to omeprazole 20 mg reduces treatment failure, and, maintained for seven years, reduces dysphagia (NNT 38) and hiatal hernia (NNT 2)43 (A).

In patients with chronic GORD (reflux symptoms + esophagitis + previous treatment > 3 months), treatment with esomeprazole 20 mg or 40 mg is equivalent to laparoscopic surgery (Nissen), with 93\% and 90\% of patients remaining in symptom remission, respectively44 (A).

There is a greater number of therapeutic failures in three years with the clinical treatment of omeprazole 40 mg or 60 mg, when compared to surgery (Nissen or Toupet). Surgery reduces the risk of treatment failure by 12.9\% (95\% CI: 1.9-23.9) - NNT: 8. However, symptom scores (GSR) and quality of life (PGWB) were similar in the two forms of treatment45 (A).

Symptoms, Esophagitis and pH

In patients with GORD not submitted to surgery, at a follow-up of 17 to 22 years, symptoms improved in 70\% and worsened in 20\%. Of these patients, 66\% developed erosive GORD and/or pH changes, and 10\% Barrett’s esophagus46 (B).

At 12 months of follow-up, GERD treatment with medication and surgery (Nissen) is effective. However, surgery offers additional benefit to patients who had partial improvement with medication at a mean follow-up of 6.9 years41 (A).

At 18 months, regression from dysplasia to Barrett’s esophagus obtained with Nissen fundoplication (93.8\%) is higher than that obtained with PPI (63.2\%)47 (B).

The quality of life is higher in patients submitted to surgery compared to those undergoing medical treatment, at 12 months of follow-up48 (B).

The laparoscopic Nissen fundoplication leads to lower oesophageal acid exposure in three months and better quality of life after 12 months, when compared to clinical treatment49 (A).

Patients with Barrett’s esophagus have a 33\% regression after antireflux surgery. The regression is more significant the longer the time after surgery49 (B).

Patient Preference

Laparoscopic surgery improves the quality of life of patients whose symptoms are adequately controlled with PPIs50 (B).

Prognosis

In patients with GORD submitted to surgery after a follow-up of 5-9 years, 37\% were using medications (PPIs, H\textsubscript{2} blockers or antacids), of which 17\% had never stopped and 83\% resumed after 2.5 years due to return of symptoms. The pH-metry was abnormal in 32\%51 (B).

Comparing the response to surgical treatment of GORD, after 43 months, 66\% had symptom improvement, which was lower in patients with non-erosive GORD52 (B).

After five years, there was no difference in symptom improvement, adverse effects, or quality of life scores among patients with erosive and non-erosive GORD who underwent laparoscopic Nissen fundoplication53 (B).

There was no difference in response rates among patients undergoing surgery for GORD with open or laparoscopic techniques, and this was higher in patients undergoing clinical treatment54 (B).

In two years, 14.5\% of medically treated patients developed Barrett’s esophagus compared with no patients submitted to surgery55 (B).

Heartburn and esophagitis are effectively treated by medical and surgical therapy. Only surgery improved regurgitation, dysphagia and oesophageal motility56 (B).

At 10.9 years of follow-up, the Nissen fundoplication produces 84\% symptom resolution, 89\% esophagitis resolution and 5\% use of medication, while the clinical treatment produces, respectively, 53\%, 45\%, and 21\%57 (B).

Laparoscopic fundoplication produces the same results in patients with erosive or nonerosive GORD, with symptom improvement and reduction in PPI use58 (B).

Patients with Barrett’s esophagus have a 33\% regression after antireflux surgery. The regression is more significant the longer the time after surgery49 (B).
LOWER ESOPHAGEAL SPHINCTER PRESSURE

In patients with erosive GERD treated with PPI, the rate of recurrence at 12 months was 7.7% when they had normal pressure of the lower esophageal sphincter (> 8 mmHg), 38.1% in those with sphincter dysfunction and preserved motility and 79.5% in those with sphincter dysfunction and dysmotility69 (B).

In five years of follow-up, patients with inadequate response to PPIs can benefit from laparoscopic fundoplication, especially regarding the improvement of the quality of life60 (B).

During one year of follow-up, antireflux surgery obtained better results than medical treatment in relation to the symptoms of heartburn (19% versus 43%), regurgitation (8% versus 30%), increase in the need for PPIs (19% versus 74%), quality of life score (4 ± 0.6 versus 21 ± 1.4); and patient satisfaction (21.6% versus 5.9%)61 (B).

The success rate of Nissen fundoplication is 75.3%, and is associated with 77.1% of patients who responded to medical treatment and 56.0% who did not respond62 (B).

STENOSIS

In two years of follow-up of patients with erosive GERD and stenosis, antireflux surgery reduces the number of dilations by a factor of 10, reduces the dysphagia score in 50%, and 91.9% of patients were satisfied63 (B).

In a 10-year follow-up of patients that underwent Nissen fundoplication, the persistency or presence of symptoms was 32%, and 68% were asymptomatic. The quality of life remained high, although 80% had to undergo a new fundoplication procedure64 (B).

NON-ACID GERD

In patients on acid suppression, episodes of acid reflux are not associated with symptoms, but with mixed reflux episodes (liquid-gas)65 (B).

When compared to healthy patients, the number of reflux events in 24 hours after fundoplication is significantly lower. Most reflux episodes after surgery are non-acid66 (B).

Most preoperative patients had a positive symptom index, and 14 months after surgery, these patients were asymptomatic or had improved greatly67 (B).

Most patients undergoing prolonged PPI use, with persistent symptoms and a positive symptom index, have non-acid reflux, including patients with atypical symptoms68 (B).

In patients with GERD refractory to medical therapy, where gastric acid production is small (< 1 mEq/hour), about 50% have esophageal pH < 4.0 for more than 1.7% of the time69 (B).

RECOMMENDATIONS

Patients refractory to acid suppression, with typical or atypical symptoms, have non-acid reflux most of the time, and may benefit from surgical treatment.

In a two-year follow-up of patients with erosive GERD and stenosis, antireflux surgery shows a 10-fold reduction in the number of dilations, reduces the score of dysphagia in 50%, and 91.9% of patients are satisfied.

Considering that:

Low pressures in the lower esophageal sphincter are related to the severity of esophagitis, and in patients with erosive GERD treated with PPIs for 12 months, the recurrence rate, when there is lower sphincter dysfunction with pressure < 8 mmHg, whether or not associated with dysmotility, is respectively 38.1% and 79.5%. Surgical treatment should be considered in these patients.

There is evidence of estimated surgery benefit, with treatment failure reduction of 12% (NNT 8), when compared to medical treatment, and rates are maintained in the long term (7 years). But there is also evidence of equivalence for medical treatment with PPIs and laparoscopic surgery (Nissen), with 93% and 90% of patients remaining in symptom remission for 3 years, respectively.

In the long term, surgery reduces the risk of esophagitis by 44% (NNT: 2), and of Barrett’s esophagus and dysplasia, when compared to PPI therapy. In seven years of follow-up, surgery may benefit patients with GERD (erosive or non-erosive) who had partial response to PPIs, especially in relation to quality of life. However, after 2.5 years, 37% of patients may be using PPIs, and, additionally, in 10 years, many (80%) may require reoperation. Laparoscopic surgery enhances patient’s quality of life, even in those whose symptoms are adequately controlled with PPIs.

4. Among patients with surgical indication, which technique has the best result: total (Nissen) or partial fundoplication (Toupet)?

There is no difference after one year regarding the presence of symptoms of heartburn, regurgitation or other symptoms related to reflux in patients who underwent Nissen versus Toupet surgeries. However, the Nissen surgery increases the risk of dysphagia of any degree by 18.7% (95% CI: 6.0-31.4) – NNH: 5, and chest pain at meals by 17.1% (95% CI: 5.7-28.5) – NNH: 6. There is no difference regarding postoperative symptoms related to esophageal motility65 (A).

After two postoperative years, patient satisfaction is equivalent between those submitted to the Nissen or Toupet laparoscopic techniques. However, the Nissen surgery increases the risk of dysphagia by 11.0% (95% CI: 1.7-20.3) – NNH: 9 (A).

There is no difference between Nissen and Toupet surgeries, regarding the severity of symptoms in the one-year postoperative period65 (A).
In patients treated by Nissen surgery versus Toupet, there was no difference related to heartburn or acid regurgitation control. There was also no difference in the prevalence of dysphagia between the two surgical techniques (A).

Patients who underwent the Nissen or Toupet techniques are equally satisfied and reflux control is equivalent. However, the Nissen surgery increases the risk of dysphagia, not correlated to differences in esophageal motility, in 19.0% (95% CI: 8.1-29.9) – NNH: 5² (A).

There was no difference regarding symptom recurrence, dysphagia, or reflux control in the three-year post-operative period of Nissen versus Toupet techniques (A).

RECOMMENDATION

There is no difference between the Nissen and Toupet surgical techniques in relation to therapeutic response; however, the Nissen technique may produce more dysphagia, with NNH of 5 to 9, not correlated with motility.

REFERENCES

1. Kim N, Lee SW, Cho SJ, Park CG, Yang CH, Kim HS, et al. The prevalence of and risk factors for erosive oesophagitis and non-erosive reflux disease: a nationwide multicentre prospective study in Korea. Aliment Pharmacol Ther. 2008;27:173-85.
2. Nocno M, Labenz J, Willich SN. Lifestyle factors and symptoms of gastroesophageal reflux: a population-based study. Aliment Pharmacol Ther. 2006;23:169-74.
3. Nandurkar S, Locke GR 3rd, Fett S, Zinsmeister AR, Cameron AJ, Hamilton JW, Boisen RJ, Yamamoto DT, Wagner JL, Reichelderfer M. Sleep-related gastroesophageal reflux in patients with hiatal hernia. J Clin Gastroenterol. 2007;41:814-8.
4. Jones MP, Sloan SS, Rabine JC, Ebert CC, Huang CF, Kahrlas PJ. Hiatal hernia size is the dominant determinant of esophagitis presence and severity in gastroesophageal reflux disease. Am J Gastroenterol. 2001;96:1711-7.
5. Cameron AJ, Barrett's esophagus: prevalence and size of hiatal hernia. Am J Gastroenterol. 1999;94:2054-9.
6. Gatopoulou A, Mimikis K, Giannitsanou A, Papadopoulos V, Polychnidis A, Lyratzopoulos N, et al. Effect of hiatal hernia on histological pattern of non-erosive reflux disease. BMC Gastroenterol. 2005;5:2.
7. Xenos ES. The role of esophageal motility and hiatal hernia in esophageal exposure to acid. Surg Endosc. 2002;16:914-20.
8. Endzias Z, Jonczauskienė J, Mickevičius A, Kudielis M. Hiatal hernia recurrence after laparoscopic fundoplication. Medicina (Kaunas). 2007;43:27-31.
9. Mattiodi S, D'Ovidio F, Di Simone MP, Bassi F, Brusori S, Pilotti V, et al. Clinical and surgical relevance of the progressive phases of intrathoracic migration of the gastroesophageal junction in gastroesophageal reflux disease. J Thorac Cardiovasc Surg. 1998;116:267-75.
10. Fuller CR, Hagen JA, DeMeester TR, Peters JH, Ritter M, Bremmer CG. The role of fundoplication in the treatment of type II paraesophageal hernia. J Thorac Cardiovasc Surg. 1996;111:655-61.
11. Frazzoni M, De Micheli E, Gresendi A, Savarino V. Hiatal hernia size is the key factor determining the laparoscopic dosage required for effective intra-esophageal acid suppression. Aliment Pharmacol Ther. 2002;16:881-6.
12. Livingston CD, Jones HL Jr, Askew RE Jr, Victor BE, Askew RE Sr. Laparoscopic hiatal hernia repair in patients with poor esophageal motility or paraesophageal hernia. Surg Endosc. 2001;15:1196-202.
13. Booth MI, Stratford J, Jones L, Dehn TC. Randomized clinical trial of laparoscopic total (Nissen) versus posterior partial (Toupet) fundoplication for gastroesophageal reflux disease based on preoperative esophageal manometry. Br J Surg. 2005;92:55-63.
14. Strate U, Emmermann A, Fibbe C, Layer P, Zornig C. Laparoscopic fundoplication: Nissen versus Toupet two-year outcome of a prospective randomized study of 200 patients regarding preoperative esophageal motility. Surg Endosc. 2005;19:1312-6.
15. Fibbe C, Layer P, Keller J, Strate U, Emmermann A, Zornig C. Esophageal motility in reflux disease before and after fundoplication: a prospective, randomized, clinical, and manometric study. Gastroenterology. 2006;131:118-25.
16. Cookson R, Flood C, Koo B, Mahon D, Rhodes M. Short-term cost effectiveness and long-term cost analysis comparing laparoscopic Nissen fundoplication with proton pump inhibitor maintenance for gastro-oesophageal reflux disease. Br J Surg. 2005;92:987-91.
17. Myrøld HE, Lundell L, Miettinen P, Pedersen SA, Liedman B, Hatlebakk J, et al. The cost of long term therapy for gastroesophageal reflux disease: a randomized trial comparing omeprazole and open antireflux surgery. Gut. 2001;49:488-94.
18. Van Den Boom G, Go PM, Hameeteman W, Dallemeagne B, Ament AJ. Cost effectiveness of medical versus surgical treatment in patients with severe or refractory gastroesophageal reflux disease in the Netherlands. Scand J Gastroenterol. 1996;31:1-9.
19. Anvari M, Allen C, Marshall J, Armstrong D, Goeree R, Ungar W, et al. A randomized controlled trial of laparoscopic nissen fundoplication versus proton pump inhibitors for treatment of patients with chronic gastroesophageal reflux disease: One-year follow-up. Surg Innov. 2006;13:238-49.
20. Mahon D, Rhodes M, Decadt B, Hindmarsh A, Lowndes R, Buckingham I, et al. Randomized clinical trial of laparoscopic Nissen fundoplication compared with proton-pump inhibitors for treatment of chronic gastro-oesophageal reflux disease. Br J Surg. 2005;92:695-9.
21. Mehta S, Bennett J, Mahon D, Rhodes M. Prospective trial of laparoscopic Nissen fundoplication versus proton pump inhibitor therapy for gastroesophageal reflux disease. Gut. 2002;51:1312-6.
22. Lundell L, Miettinen P, Myrøld HE, Pedersen SA, Liedman B, Hatlebakk JG, et al. Association between dinner-to-bed time and gastro-esophageal reflux disease. Am J Gastroenterol. 2005;100:2633-6.
44. Lundell L, Attwood S, Ell C, Fiocca R, Galmeiche JP, Hatlebakk J, et al. Comparing laparoscopic antireflux surgery with esophageal repair in the management of patients with chronic gastro-oesophageal reflux disease: a 3-year interim analysis of the LOTUS trial. Gut. 2008;57:1207-13.

45. Lundell L, Miettinen P, Myrvold HE, Pedersen SA, Thor K, Lamn M, et al. Long-term management of gastroesophageal reflux disease with omeprazole or open antireflux surgery: results of a prospective, randomized clinical trial. The Nordic GORD Study Group. Eur J Gastroenterol Hepatol. 2000;12:879-87.

46. Isolauri J, Luostarinen M, Isolauri E, Keyriläinen O. Natural course of gastroesophageal reflux disease: 17-22 year follow-up of 60 patients. Am J Gastroenterol. 1997; 92:37-41.

47. Rossi M, Barreca M, de Bortoli N, Renzi C, Santi S, Gennai A, et al. Efficacy of Nissen fundoplication versus medical therapy in the regression of low-grade dysplasia in patients with Barrett esophagus: a prospective study. Ann Surg. 2006;243: 58-63.

48. Ciovica R, Gadenstättler M, Klingler A, Lechner W, Riedl O, Schwab GP. Quality of life in GERD patients: medical treatment versus antireflux surgery. J Gastrointest Surg. 2006;10:934-9.

49. Gurski RR, Peters JH, Hagen JA, DeMeester SR, Bremner CG, DeMeester TR, et al. Barrett’s esophagus can and does regress after antireflux surgery. J Gastrointest Surg. 2003;7:44-51.

50. Gillies RS, Stratford JM, Booth MI, Dehn TC. Does laparoscopic antireflux surgery improve quality of life in patients whose gastro-oesophageal reflux disease is well controlled with medical therapy? Eur J Gastroenterol Hepatol. 2008;20: 430-5.

51. Wijnhoven BP, Lally CJ, Kelly JJ, Myers JC, Watson DI. Use of antireflux medication after antireflux surgery: a study of prevalence and predictive features. J Am Coll Surg. 2003;196:706-12.

52. Thibault R, Coron E, Sébille V, Sacher-Huvelin S, Bruley des Noës C, Lassus JF, et al. Long-term efficacy of total (Nissen-Rossetti) and posterior partial (Toupet) fundoplication: repeated measures analysis. Surg Endosc. 2007;21:1985-90.

53. Kamolz T, Graenderath FA, Schweimer U, Pointner R. Laparoscopic Nissen fundoplication in patients with nonerosive reflux disease. Long-term quality of life assessment and surgical outcome. Surg Endosc. 2005;19:494-500.

54. Ellis SG, Fisher L, Dushman-Ellis S, Pettinger M, King SB 3rd, California. Natural course of gastroesophageal reflux disease is well controlled with medical therapy. J Gastrointest Surg. 2006;10:934-9.

55. Wetscher GJ, Glaser K, Gadenstaetter M, Profanter C, Achem R, Hinder RA. The effect of medical therapy and antireflux surgery on dysphagia in patients with gastrooesophageal reflux disease without esophageal stricture. Am J Surg. 2003;196:706-12.

56. Pidoto RR, Fama E, Giacobbe G, Gioffrè Florio MA, Cogliandrolo A. Quality of life and predictors of long-term outcome in patients undergoing open Nissen fundoplication for chronic gastroesophageal reflux. Am J Surg. 2006;191:470-8.

57. Isolauri J, Luostarinen M, Viljakka M, Keyriläinen O, Karvonen AL. Long-term comparison of antireflux surgery versus conservative therapy for reflux esophagitis. Ann Surg. 1997;225:285-9.

58. Desai KM, Frisella MM, Soper NJ. Clinical outcomes after laparoscopic antireflux surgery in patients with and without preoperative endoscopic esophagitis. J Gastrointest Surg. 2003;7:44-51.