DEMAZURE MODULES AND GRADED LIMITS OF MINIMAL AFFINIZATIONS

KATSUYUKI NAOI

Abstract. For a minimal affinization over a quantum loop algebra of type BC, we provide a character formula in terms of Demazure operators and multiplicities in terms of crystal bases. We also prove the formula for the limit of characters conjectured by Mukhin and Young. These are achieved by verifying that its graded limit (a variant of a classical limit) is isomorphic to some multiple generalization of a Demazure module, and by determining the defining relations of the graded limit.

1. Introduction

Let \(g \) be a complex simple Lie algebra of rank \(n \), and \(L_g = g \otimes \mathbb{C}[t, t^{-1}] \) the associated loop algebra. The theory of finite-dimensional representations of the quantum loop algebra \(U_q(L_g) \) has been intensively studied from various viewpoints in recent years. For example, see the survey [CH10] and references therein.

In [Cha95], Chari introduced the notion of minimal affinizations. An affinization \(\hat{V} \) of a simple \(U_q(g) \)-module \(V \) is by definition a simple \(U_q(L_g) \)-module whose highest weight is equal to that of \(V \). Two affinizations of \(V \) are said to be equivalent if they are isomorphic as \(U_q(g) \)-modules. Then one can define a partial ordering on the set of equivalence classes of affinizations of \(V \), and minimal ones with respect to this ordering are called minimal affinizations. An almost complete classification of minimal affinizations was done by Chari and Pressley in [Cha95, CP95a, CP96a, CP96b], and in particular it was proved that, if \(g \) is of type \(ABCFG \), for every simple \(U_q(g) \)-module its minimal affinization is unique.

Given a minimal affinization, one can consider its classical limit. By restricting it to the current algebra \(g[t] = g \otimes \mathbb{C}[t] \) and taking a pull-back, a graded \(g[t] \)-module is obtained. In this article we call this the graded limit. Graded limits are quite important for the study of minimal affinizations since the \(U_q(g) \)-module structure of a minimal affinization is completely determined by the \(U(g) \)-module structure of its graded limit. This idea was applied in [Cha01, CM06b] to Kirillov-Reshetikhin modules, which are minimal affinizations whose highest weights are multiples of a fundamental weight.

The graded limits of general minimal affinizations were first studied by Moura in [Mou10]. In the article, he defined some two \(g[t] \)-modules using the graded limits of Kirillov-Reshetikhin modules, and conjectured in all types that the graded limit of a minimal affinization is isomorphic to them. This conjecture was proved in type \(A \) and partially in type \(BD \) in the article, and partially in type \(E_6 \) in [MP11].

In the present paper we study in more detail the graded limits of minimal affinizations in type \(ABC \). These are the classical types in which minimal affinizations are unique (our main interest is in type \(BC \) since type \(A \) is well-known). In particular, we give a proof to the Moura’s conjecture in these types (though we need some modification in type \(C \)).

To introduce our results, let us define some \(g[t] \)-modules. Denote by \(\hat{g} \) the non-twisted affine Lie algebra associated with \(g \), and by \(\hat{b} \subseteq \hat{g} \) the standard Borel
subalgebra. Let $\xi_1, \ldots, \xi_p \in \hat{P}$ be a sequence of weights of $\hat{\mathfrak{g}}$, and assume that each ξ_i belongs to the affine Weyl group orbit $W\Lambda^i$ of a dominant integral weight $\Lambda^i \in \hat{P}^+$. We define a \mathfrak{g}-module $D(\xi_1, \ldots, \xi_p)$ by

$$ D(\xi_1, \ldots, \xi_p) = U(\mathfrak{b})(v_{\xi_1} \otimes \cdots \otimes v_{\xi_p}) \subseteq \hat{V}(\Lambda^1) \otimes \cdots \otimes \hat{V}(\Lambda^p), $$

where $\hat{V}(\Lambda)$ is the highest weight $\hat{\mathfrak{g}}$-module with highest weight Λ, and v_{ξ} is an extremal weight vector with weight ξ. When $p = 1$, $D(\xi_1)$ is called a Demazure module. It is easily seen that, if each ξ_i is dominant with respect to \mathfrak{g}, then $D(w_0\xi_1, \ldots, w_0\xi_p)$ is $\mathfrak{g}[t]$-stable, where w_0 is the longest element of the Weyl group of \mathfrak{g}.

Assume that \mathfrak{g} is of type ABC. Let $V_\lambda(\lambda)$ be the simple $U_q(\mathfrak{g})$-module with highest weight $\lambda \in P^+$, and $L_\lambda(\pi)$ a minimal affinization of $V_\lambda(\lambda)$ (here π denotes the ℓ-highest weight. See Subsection 3.2). By $L(\pi)$ we denote its graded limit. Our first main theorem is the following (Theorem 1.1).

Theorem 1.1. As a $\mathfrak{g}[t]$-module, $L(\pi)$ is isomorphic to $D(w_0\xi_1, \ldots, w_0\xi_n)$ with suitable \mathfrak{g}-dominant $\xi_1, \ldots, \xi_n \in \hat{P}$.

When \mathfrak{g} is of type AB and $\lambda = \sum \lambda_i \varpi_i$ (ϖ_i are the fundamental weights of \mathfrak{g}), we set $\xi_i = \lambda_i \varpi_i + \lambda'_i\Lambda_0$, where $\lambda'_i = \lceil \lambda_i/2 \rceil$ if \mathfrak{g} is of type B and $i = n$, and $\lambda'_i = \lambda_i$ otherwise. Here Λ_0 is the fundamental weight of $\hat{\mathfrak{g}}$ associated with the additional index 0. In type C, we need to choose ξ_i's in a little more complicated way. For the detail see Subsection 4.2.

Let $\mathfrak{g} = n_+ \oplus \mathfrak{h} \oplus n_-$ be a triangular decomposition of \mathfrak{g}, and denote by α_i and α_i^\vee the simple roots and coroots respectively. Our second main theorem gives the defining relations of $L(\pi)$ (Theorem 1.2).

Theorem 1.2. The graded limit $L(\pi)$ is isomorphic to the cyclic $\mathfrak{g}[t]$-module generated by a nonzero vector v with relations

\begin{align*}
n_+ [t]v = 0, \quad (h \otimes t^s)v = \delta_{s0} \langle h, \lambda \rangle v & \quad \text{for } h \in \mathfrak{h}, s \geq 0, \quad f_i^{\alpha_i^\vee} \Lambda(v) = 0 \quad \text{for } 1 \leq i \leq n, \\
1 \otimes [t]v = 0, \quad (f_\alpha \otimes t)v = 0 & \quad \text{for } \alpha \in \Delta^1_+, \quad \text{where } \Delta^1_+ \text{ is a subset of the positive roots } \Delta_+ \text{ defined by} \\
\Delta^1_+ = \left\{ \alpha \in \Delta_+ \mid \alpha = \sum_{1 \leq i \leq n} n_i \alpha_i \text{ with } n_i \leq 1 \text{ for all } i \right\}.
\end{align*}

We easily see that the above theorems are reformulation of the Moura’s conjecture in type AB. It should also be noted that Theorem 1.1, together with a result of [Her07], gives a proof to [CG11, Conjecture 1.13] in type B.

The module $D(w_0\xi_1, \ldots, w_0\xi_n)$ in Theorem 1.1 can be constructed in another way as follows. For a \mathfrak{b}-submodule D of a $\hat{\mathfrak{g}}$-module V and an index i, let F_iD be the $(\mathfrak{b} \otimes \mathbb{C}f_i)$-submodule of V generated by D, and for an element $w \in \hat{W}$ with reduced expression $w = s_{i_1} \cdots s_{i_p}$, set $F_wD = F_{i_1} \cdots F_{i_p}D$. One can naturally extend F_w for $w \in \hat{W} \rtimes \Sigma$ (see Subsection 2.3), where Σ is the group of Dynkin diagram automorphisms. Then we have

$$ D(w_0\xi_1, \ldots, w_0\xi_n) = F_{w_0w_1} \left(D(\Lambda^1) \otimes F_{w_2} \left(D(\Lambda^2) \otimes \cdots \otimes F_{w_{n-1}} \left(D(\Lambda^{n-1}) \otimes F_{w_n}D(\Lambda^n) \right) \right) \right) \quad \text{(1.1)} $$

for suitable $\Lambda^1, \ldots, \Lambda^n \in \hat{P}^+$ and $w_1, \ldots, w_n \in \hat{W} \rtimes \Sigma$ (see Subsection 2.3). The character of such a module is called $D(\xi; \pi)$ in terms of Demazure operators D_w (see Subsection 2.2). Since the character of $L^\pi(\pi)$ is equal to that of $L(\pi)$, we obtain the following character formula as a corollary of Theorem 1.1 (Corollary 1.11).
Corollary 1.3.

\[\text{ch } L_q(\pi) = D_{w_n} \left(e^{\lambda^1} \cdot D_{w_2} \left(e^{\lambda^2} \cdots D_{w_{n-1}} \left(e^{\lambda^{n-1}} \cdot D_{w_n} (e^{\lambda^n}) \right) \right) \right) \bigg|_{e^{\lambda} = e^\delta = 1}, \]

where \(\delta \) is the null root.

The right-hand side of (1.1) has a crystal analogue. Using this, we can express the \(U_q(\mathfrak{g}) \)-module multiplicities of \(L_q(\pi) \) as the numbers of some elements in a crystal basis (Corollary 4.11). We would like to emphasize that the crystal basis appearing here is (essentially) of finite type (see Remark 1.13).

On the other hand, we deduce from Theorem 1.2 the formula for the limit of normalized characters (Corollary 4.13), which was conjectured by Mukhin and Young in [MY13, Conjecture 6.3].

Corollary 1.4. Let \(J \subseteq \{1, \ldots, n\} \), and \(\lambda^1, \lambda^2, \ldots \) be an infinite sequence of elements of \(P^+ \) such that \(\lim_{k \to \infty} \langle \lambda^1, \alpha_i \rangle = \infty \) if \(i \notin J \) and \(\langle \lambda^k, \alpha_i \rangle = 0 \) for all \(k \) otherwise. Assume that \(L_q(\pi^k) \) is a minimal affinization of \(V_q(\lambda^k) \) for each \(k \). Then \(\lim_{k \to \infty} e^{-\lambda^k} \text{ch } L_q(\pi^k) \) exists, and

\[\lim_{k \to \infty} e^{-\lambda^k} \text{ch } L_q(\pi^k) = \prod_{\alpha \in \Delta_+ \setminus \Delta^J_+} \frac{1}{1 - e^{-\alpha}} \cdot \prod_{\alpha \in \Delta_+ \setminus \Delta^J_+} \frac{1}{1 - e^{-\alpha}}, \]

where \(\Delta^J_+ = \Delta_+ \cap \left(\sum_{i \in J} \mathbb{Z} \alpha_i \right) \) and \(\Delta^J_+ = \{ \alpha \in \Delta_+ \mid \alpha = \sum_i n_i \alpha_i \text{ with } n_i \leq 1 \text{ if } i \notin J \} \).

It should be noted that the existence of the limit has already been proved in [HJ12, MY13].

The theorems are established by showing one by one the existence of three surjective homomorphisms

\[D(w_0 \xi_1, \ldots, w_0 \xi_n) \to M(\lambda), \quad M(\lambda) \to L(\pi), \quad L(\pi) \to D(w_0 \xi_1, \ldots, w_0 \xi_n), \]

where \(M(\lambda) \) denotes the \(\mathfrak{g}[[t]] \)-module defined in Theorem 1.2. The key idea to verify the first one is to determine the defining relations of \(D(w_0 \xi_1, \ldots, w_0 \xi_n) \) inductively using the equality (1.1). A main tool to prove the latter two is the theory of \(q \)-characters introduced by Frenkel and Reshetikhin [FR99]. A \(q \)-character is a generalization of a usual character which records the dimensions of generalized eigenspaces (i.e., \(t \)-weight spaces) with respect to the commutative subalgebra \(U_q(\mathfrak{h}) \).

In this article we concentrate only on the type \(ABC \). However, (at least a part of) these results would hold in the other types. These will be studied in future publications.

It should be mentioned that a module similar to the right-hand side of (1.1) also appears in another study of graded limits. In [Nao12], it was proved that the fusion product of the graded limits of Kirillov-Reshetikhin modules is isomorphic to such a module. This fact was essentially used to prove the \(X = M \) conjecture in type \(AD \).

The plan of this article is as follows. In Section 2, after fixing some notation we define modules \(D(\xi_1, \ldots, \xi_p) \) and study their properties. In Section 3, we review the theory of finite-dimensional representations of a quantum loop algebra. In Section 4, we state our main theorems and corollaries. Finally in Section 5, we establish our main theorems by showing the existence of three surjective homomorphisms. For this we need some results on \(q \)-characters, which are also recalled in this section.
Index of notation

We provide for the reader’s convenience a brief index of the notation which is used repeatedly in this paper:

2.1: \(C = (c_{ij})_{1 \leq i, j \leq n}, I, d_1, \ldots, d_n, g, h, b, \Delta, \Delta_+, \alpha_i, \varpi_i, P, P^+, Q, Q^+, W, \)
\(w_0, e_\alpha, f_\alpha, \alpha^\vee (\alpha \in \Delta), n_\pm, g, J, K, d, b, \hat{\delta}, \hat{\Delta}, \hat{\Delta}^+, \hat{\Delta}^-, \delta, \hat{I}, \alpha_0, e_0, \)
\(f_0, \alpha^\vee (\alpha \in \hat{\Delta}^\pm), \Lambda_0, \hat{P}, \hat{P}^+, \hat{Q}, \hat{Q}^+, \lambda \leq \nu, \hat{W}, \Sigma, \hat{W}, \La, a[t], t^*g[t], V(\lambda), \)
\(V(\lambda, a), ch_b V, \)

2.2: \(\hat{V}(\lambda), v_\xi, D(\xi_1, \ldots, \xi_\rho), \hat{p}_i, F_i, F_w, D_u, F_r, \)

3.1: \(q_i, U_q(Lq), x_{i,r}^\pm, k^\pm, h_{i,m}, U_q(Ln_\pm), U_q(Lh), U_q(g), U_q(Lg_J), U_q(Lh_J), \)

3.2: \(V_q(\lambda), P_q^+, \varpi_{i,a}, P_q, wt, V_\rho, L_q(\pi), v_\pi, \pi^*, \pi, \)

3.3: \(\pi_{m,a}, P_{q,J}, \rho_J, \)

3.4: \(\Lambda, (x_{i,r}^\pm)^{(k)} U_{\Lambda}(Lq), P_\Lambda^+, L_\Lambda(\pi), \hat{L}_\Lambda(\pi), \)

4.1: \(L(\pi), \pi_\pi, \)

4.2: \(\xi_1, \ldots, \xi_\rho, \hat{\delta}, p_i, \Delta^+_i, \)

4.3: \(w_1, \ldots, w_n, w_{[r,t]}, \Lambda^1, \ldots, \Lambda^n, \)

5.1: \(M(\lambda), \alpha_{pq}, v_M, D, v_D, \)

5.2: \(wt_\ell(V), ch_q V, \alpha_{i,a}, \nu \leq \rho. \)

2. Lie algebras

2.1. Notation and basics. Let \(C = (c_{ij})_{1 \leq i, j \leq n} \) be a Cartan matrix of finite type, and set \(I = \{1, \ldots, n\} \). Throughout this paper, we assume that the indices are ordered as in \[\text{Kac90}, \text{Section 4.8} \]. Let \(D = \text{diag}(d_1, \ldots, d_n) \) be the diagonal matrix such that \(DC \) is symmetric and the numbers \(d_1, \ldots, d_n \) are coprime positive integers.

Let \(g \) be the complex simple Lie algebra associated with \(C \). Fix a Cartan subalgebra \(h \) and a Borel subalgebra \(b \) containing \(h \). Let \(\Delta \) be the root system, and \(\Delta_+ \) the set of positive roots. Denote by \(\alpha_i (i \in I) \) the simple roots and by \(\varpi_i (i \in I) \) the fundamental weights. For notational convenience, we set \(\varpi_0 = 0 \). Let \(P \) be the weight lattice, \(P^+ \) the set of dominant integral weights, \(Q \) the root lattice and \(Q^+ = \sum_{i \in I} \mathbb{Z}_{\geq 0} \alpha_i \). Let \(W \) be the Weyl group and \(w_0 \in W \) the longest element.

For each \(\alpha \in \Delta \), denote by \(g_\alpha \) the corresponding root space, and fix nonzero elements \(e_\alpha \in g_\alpha, f_\alpha \in g_{-\alpha} \) and \(\alpha^\vee \in h \) such that
\[
|e_\alpha, f_\alpha| = \alpha^\vee, \quad |\alpha^\vee, e_\alpha| = 2e_\alpha, \quad |\alpha^\vee, f_\alpha| = -2f_\alpha.
\]
We also use the notation \(e_i = e_{\alpha_i}, f_i = f_{\alpha_i} \) for \(i \in I \). Set \(n_\pm = \bigoplus_{\alpha \in \Delta_\pm} g_{\pm\alpha} \). For a subset \(J \subseteq I \), denote by \(g_J \) the semisimple Lie subalgebra of \(g \) generated by \(\{e_i, f_i \mid i \in J\} \).

Let \(\theta \in \Delta_+ \) be the highest root, and denote by \((,) \) the unique non-degenerate invariant symmetric bilinear form on \(g \) normalized so that \((\theta^\vee, \theta^\vee) = 2 \). The restriction of this bilinear form on \(h \) induces a linear isomorphism \(\nu: h \to h^* \). By \((,) \) we also denote the bilinear form on \(h^* \) induced by \(\nu^{-1} \). Then for \(\alpha = \sum_{i \in I} n_i \alpha_i^\vee \in \Delta \), it follows that
\[
\alpha^\vee = \sum_i \frac{(\alpha, \alpha_i)}{(\alpha, \alpha)} n_i \alpha_i^\vee.
\]

Let \(\hat{g} \) be the non-twisted affine Lie algebra associated with \(g \):
\[
\hat{g} = g \otimes \mathbb{C}[t, t^{-1}] \oplus \mathbb{C}K \oplus \mathbb{C}d,
\]
where K denotes the canonical central element and d is the degree operator. The Lie bracket of \mathfrak{g} is given by

$$[x \otimes t^n + a_1 K + b_1 d, y \otimes t^n + a_2 K + b_2 d] = [x, y] \otimes t^{n+n} + nb_1 y \otimes t^n - mb_2 x \otimes t^n + m \delta_{m, -n}(x, y) K.$$

Naturally \mathfrak{g} is regarded as a Lie subalgebra of $\hat{\mathfrak{g}}$. A Cartan subalgebra \hat{h} and a Borel subalgebra \mathfrak{b} are defined as follows:

$$\hat{h} = h \oplus \mathbb{C}K \oplus \mathbb{C}d, \quad \mathfrak{b} = \mathfrak{h} \oplus \mathfrak{n}_+ \oplus \mathfrak{g} \otimes t\mathbb{C}[t].$$

Set $\hat{\mathfrak{n}}_+ = \mathfrak{n}_+ \oplus \mathfrak{g} \otimes t\mathbb{C}[t]$.

We often consider \mathfrak{h}^* as a subspace of $\hat{\mathfrak{h}}^*$ by setting $\langle K, \lambda \rangle = \langle d, \lambda \rangle = 0$ for $\lambda \in \mathfrak{h}^*$. Let $\hat{\Delta}$ be the root system of $\hat{\mathfrak{g}}$, $\hat{\Delta}_+$ the set of positive roots, $\hat{\Delta}^{re}$ the set of real roots, and $\hat{\Delta}^e = \hat{\Delta}^{re} \cap \hat{\Delta}_+$. Denote by δ the indivisible imaginary root in $\hat{\Delta}_+$. Set $\hat{I} = I \cup \{0\}$, $\alpha_0 = \delta - \theta$, $e_0 = f_0 \otimes t$ and $f_0 = e_0 \otimes t^{-1}$. For $\alpha = \beta + s\delta \in \hat{\Delta}^{re}$ with $\beta \in \Delta$ and $s \in \mathbb{Z}$, define $\alpha^\vee \in \hat{\mathfrak{h}}$ by

$$\alpha^\vee = \beta^\vee + \frac{2s}{(\beta, \beta)} K.$$

Let \hat{W} be the Weyl group of $\hat{\mathfrak{g}}$, and regard W naturally as a subgroup of \hat{W}. Let $\ell: \hat{W} \to \mathbb{Z}_{\geq 0}$ be the length function. Denote by Σ the group of Dynkin diagram automorphisms of $\hat{\mathfrak{g}}$. A linear action of Σ on $\hat{\mathfrak{h}}^*$ is defined by letting $\tau \in \Sigma$ act as follows:

$$\tau(\alpha_i) = \alpha_{\tau(i)} \text{ for } i \in \hat{I}, \quad \tau(\Lambda_0) = \varpi_{\tau(0)} + \Lambda_0 - \frac{1}{2}(\varpi_{\tau(0)}, \varpi_{\tau(0)}) \delta.$$

The length function ℓ is extended on \hat{W} by setting $\ell(w\tau) = \ell(w)$ for $w \in \hat{W}, \tau \in \Sigma$. Given a Lie algebra \mathfrak{a}, its loop algebra $L\mathfrak{a}$ is defined by the tensor product $\mathfrak{a} \otimes \mathbb{C}[t, t^{-1}]$ equipped with the Lie algebra structure given by $[x \otimes f, y \otimes g] = [x, y] \otimes f g$. Let $\mathfrak{a}[t]$ and $t^s \mathfrak{a}[t]$ for $s \in \mathbb{Z}_{\geq 0}$ denote the Lie subalgebras $\mathfrak{a} \otimes \mathbb{C}[t]$ and $\mathfrak{a} \otimes t^s \mathbb{C}[t]$ respectively. The Lie algebra $\mathfrak{a}[t]$ is called the current algebra associated with \mathfrak{a}.

Denote by $V(\lambda)$ the simple \mathfrak{g}-module with highest weight $\lambda \in P^+$. For $a \in \mathbb{C}^\times$, let $ev_a: L\mathfrak{g} \to \mathfrak{g}$ denote the evaluation map defined by $ev_a(x \otimes f) = f(a)x$. Denote by $V(\lambda, a)$ the simple $L\mathfrak{g}$-module defined by the pull-back of $V(\lambda)$ with respect to ev_a, which is called an evaluation module. An evaluation module for $\mathfrak{g}[t]$ is similarly defined, and also denoted by $V(\lambda, a) (\lambda \in P^+, a \in \mathbb{C})$.

For a finite-dimensional semisimple \mathfrak{h}-module V, define the \mathfrak{h}-character $ch_\mathfrak{h}V$ by

$$ch_\mathfrak{h}V = \sum_{\lambda \in \mathfrak{h}^*} e^\lambda \dim V_\lambda \in \mathbb{Z}[\mathfrak{h}^*],$$
where $V_\Lambda = \{ v \in V \mid hv = \langle h, \lambda \rangle v \text{ for } h \in \mathfrak{h} \}$. For a finite-dimensional semisimple \(\mathfrak{h} \)-module \(\hat{V} \), the \(\mathfrak{h} \)-character \(ch_{\mathfrak{h}} \hat{V} \in \mathbb{Z}[\mathfrak{h}^*] \) is defined similarly. We will omit the subscript \(\mathfrak{h} \) or \(\hat{\mathfrak{h}} \) when they are obvious from the context.

2.2. Demazure modules and generalizations. For each \(\xi \in \hat{W}(\hat{P}^+) \), we define a \(\hat{\mathfrak{h}} \)-module \(D(\xi) \) as follows: let \(\Lambda \) be the unique element of \(\hat{P}^+ \) such that \(\xi \in \hat{W}(\Lambda) \), and denote by \(\hat{V}(\Lambda) \) the simple highest weight \(\hat{\mathfrak{h}} \)-module with highest weight \(\Lambda \). Let \(v_\xi \in \hat{V}(\Lambda) \) be an extremal weight vector with weight \(\xi \), and set \(D(\xi) = U(\hat{\mathfrak{h}})v_\xi \subseteq \hat{V}(\Lambda) \).

Definition 2.1. The \(\hat{\mathfrak{h}} \)-module \(D(\xi) \) is called a Demazure module.

Note that, for \(i \in \hat{I} \), \(D(\xi) \) is \(f_i \)-stable if and only if \(\langle \alpha_i^\vee, \xi \rangle \leq 0 \). In this article we consider the following generalization of a Demazure module. Let \(\xi_1, \ldots, \xi_p \) be a sequence of elements of \(\hat{W}(\hat{P}^+) \). For each \(1 \leq j \leq p \), let \(\Lambda_j \) be the element of \(\hat{P}^+ \) satisfying \(\xi_j \in \hat{W}(\Lambda_j) \), and define a \(\hat{\mathfrak{h}} \)-submodule \(D(\xi_1, \ldots, \xi_p) \) of \(\hat{V}(\Lambda_1) \otimes \cdots \otimes \hat{V}(\Lambda_p) \) by

\[
D(\xi_1, \ldots, \xi_p) = U(\hat{\mathfrak{h}})(v_{\xi_1} \otimes \cdots \otimes v_{\xi_p}).
\]

If \(\langle \alpha_i^\vee, \xi_j \rangle \leq 0 \) holds for all \(1 \leq j \leq p \), then \(D(\xi_1, \ldots, \xi_p) \) is \(f_i \)-stable.

Though it seems difficult to give characters of \(D(\xi_1, \ldots, \xi_p) \) in general, when the sequence \(\xi_1, \ldots, \xi_p \) has some special property, the character is given in terms of Demazure operators. To explain this, let us recall a result in [LLM02]. Denote by \(\hat{p}_i \) for \(i \in \hat{I} \) the parabolic subalgebra \(\hat{\mathfrak{h}} \otimes \mathbb{C}f_i \). For a \(\hat{\mathfrak{g}} \)-module \(\hat{V} \), a \(\mathfrak{h} \)-submodule \(D \) of \(\hat{V} \) and \(i \in \hat{I} \), let \(F_i D = U(\hat{p}_i)D \subseteq V \). For \(w \in \hat{W} \) with reduced expression \(w = s_{i_1} \cdots s_{i_k} \), we set

\[
F_w D = F_{i_1} \cdots F_{i_k} D.
\]

Though the definition of \(F_w \) depends on the choice of a reduced expression, we will use this by abuse of notation (most of the modules \(F_w D \) in this article do not depend on the choices). For \(i \in \hat{I} \), define a linear operator \(D_i \) on \(\mathbb{Z}[\hat{P}] \) by

\[
D_i(f) = \frac{f - e^{-\alpha_i} \cdot s_i(f)}{1 - e^{-\alpha_i}},
\]

where \(s_i \) acts on \(\mathbb{Z}[\hat{P}] \) by \(s_i(e^\xi) = e^{s_i\xi} \). The operator \(D_i \) is called the Demazure operator associated with \(i \). For \(w \in \hat{W} \) and its reduced expression \(w = s_{i_1} \cdots s_{i_k} \), the operator \(D_w = D_{i_1} \cdots D_{i_k} \) is independent of the choice of the expression [Kum02].

The following theorem is a reformulation of [LLM02, Theorem 5] for our setting (note that \(D(\Lambda) \) is 1-dimensional if \(\Lambda \in \hat{P}^+ \)):

Theorem 2.2. For sequences \(\Lambda^1, \ldots, \Lambda^p \) of elements of \(\hat{P}^+ \) and \(w_1, \ldots, w_p \) of elements of \(\hat{W} \), we have

\[
ch_{\hat{\mathfrak{h}}} F_{w_1} \left(D(\Lambda^1) \otimes F_{w_2} \left(D(\Lambda^2) \otimes \cdots \otimes F_{w_{p-1}} \left(D(\Lambda^{p-1}) \otimes F_{w_p} D(\Lambda^p) \right) \cdots \right) \right) = D_{w_1} \left(e^{\Lambda^1} \cdot D_{w_2} \left(e^{\Lambda^2} \cdots D_{w_{p-1}} \left(e^{\Lambda^{p-1}} \cdot D_{w_p}(e^{\Lambda^p}) \right) \right) \right).
\]

Remark 2.3. In [LLM02], the authors studied \(\mathfrak{b} \)-modules \(V_{i,m} \) called generalized Demazure modules. The \(\mathfrak{b} \)-module in the left-hand side of (2.1) is easily identified with a generalized Demazure module (see [loc. cit., Subsection 1.1], in which the authors explain how a Demazure module is identified with a generalized Demazure module). Under this identification, the above equality follows from [loc. cit., Theorem 5].
In some cases, we can construct $D(\xi_1, \ldots, \xi_p)$ using F_w’s. To see this, we need the following lemma.

Lemma 2.4. Let ξ_1, \ldots, ξ_p be a sequence of elements of $\hat{W}(\hat{P}^+)$ and $i \in \hat{I}$. If $\langle \alpha_i^\vee, \xi_j \rangle \geq 0$ holds for all $1 \leq j \leq p$, then we have

$$F_i D(\xi_1, \ldots, \xi_p) = D(s_i \xi_1, \ldots, s_i \xi_p).$$

Proof. Let $\mathfrak{s}t_{2,i}$ be the Lie subalgebra of $\hat{\mathfrak{g}}$ spanned by $\{e_i, \alpha_i^\vee, f_i\}$. Since $e_i \xi_j = 0$ and $f_i v_{s_i \xi_j} = 0$ hold for all j, we easily see that

$$U(\mathfrak{s}t_{2,i}) (v_{\xi_1} \otimes \cdots \otimes v_{\xi_p}) = U(\mathfrak{s}t_{2,i}) (v_{s_i \xi_1} \otimes \cdots \otimes v_{s_i \xi_p}).$$

Since $D(s_i \xi_1, \ldots, s_i \xi_p)$ is \hat{p}_r-stable, this implies the assertion. □

Let w_1, \ldots, w_p be a sequence of elements of \hat{W}, and denote by $w_{[r,t]}$ the element $w_r w_{r+1} \cdots w_t \in \hat{W}$ for $1 \leq r \leq t \leq p$. We assume that $\ell(w_{[1,p]}) = \sum_{j=1}^p \ell(w_j)$. Then for every $1 \leq r \leq t \leq p$ and $\Lambda \in \hat{P}^+$, if $w_r = s_i \cdots s_{i_N(r)}$, then a reduced expression of w_r, then

$$\langle \alpha_i^\vee, s_{i_{k+1}} \cdots s_{i_{N(r)}} w_{[r+1, t]} \Lambda \rangle \geq 0$$

holds for all $1 \leq k \leq N(r)$ since $\ell(w_{[r,t]}) = \sum_{j=r}^t \ell(w_j)$. Hence by applying Lemma 2.4 several times, the following proposition is proved.

Proposition 2.5. Let $\Lambda^1, \ldots, \Lambda^p$ be a sequence of elements of \hat{P}^+, and w_1, \ldots, w_p a sequence of elements of \hat{W} such that $\ell(w_{[1,p]}) = \sum_{j=1}^p \ell(w_j)$. Then we have

$$F_{w_1} (D(\Lambda^1) \otimes F_{w_2} (D(\Lambda^2) \otimes \cdots \otimes F_{w_{p-1}} D(\Lambda^p)) \cdots \cdot) = D(w_{[1,1]}^{\Lambda^1}, w_{[1,2]}^{\Lambda^2}, \ldots, w_{[1,p-1]}^{\Lambda^{p-1}}, w_{[1,p]}^{\Lambda}).$$

In conclusion, if there is a sequence $w_1, \ldots, w_p \in \hat{W}$ satisfying $\xi_j = w_{[1,j]}^{\Lambda^j}$ with $\Lambda^j \in \hat{P}^+$ and $\ell(w_{[1,p]}) = \sum_{j=1}^p \ell(w_j)$, then the character of $D(\xi_1, \ldots, \xi_p)$ is obtained from Theorem 2.2 and Proposition 2.5.

For later use, we need to generalize the above results for elements of \hat{W}. Let τ be an element of Σ. For $\Lambda \in \hat{P}^+$, we define a linear map $F_\tau : \hat{V}(\Lambda) \to \hat{V}(\tau \Lambda)$ by $F_\tau (x \Lambda) = \tau(x) \Lambda$ for $x \in U(\hat{g})$, which is well-defined and bijective by [Kac93, Corollary 10.4]. Note that if $v \in \hat{V}(\Lambda)_{\xi}$ with $\xi \in \hat{P}$, then $F_\tau (v) \in \hat{V}(\tau \Lambda)_{\xi}$. For an arbitrary sequence $\Lambda^1, \ldots, \Lambda^p$ of elements of \hat{P}^+, the tensor product $F_\tau^{\otimes p}$ defines an linear isomorphism $\hat{V}(\Lambda^1) \otimes \cdots \otimes \hat{V}(\Lambda^p) \to \hat{V}(\tau \Lambda^1) \otimes \cdots \otimes \hat{V}(\tau \Lambda^p)$, which we also denote by F_τ instead of $F_\tau^{\otimes p}$. If D is a \hat{b}-submodule of $\hat{V}(\Lambda^1) \otimes \cdots \otimes \hat{V}(\Lambda^p)$, the image $F_\tau D$ is also a \hat{b}-submodule. The following lemma is easily proved.

Lemma 2.6. For a sequence ξ_1, \ldots, ξ_p of elements of $\hat{W}(\hat{P}^+)$, we have

$$F_\tau D(\xi_1, \ldots, \xi_p) = D(\tau \xi_1, \ldots, \tau \xi_p).$$

For a \hat{b}-submodule D, it is easily seen that $F_\tau F_i D = F_\tau(i) F_i D$. Set $F_{w_{[r,t]}} D = F_w F_{[r,t]} D$ for $w \in \hat{W}$ and $\tau \in \Sigma$. Now the following proposition is an easy generalization of Proposition 2.5 ($w_{[r,t]}$ are defined as above).

Proposition 2.7. Let $\Lambda^1, \ldots, \Lambda^p$ be a sequence of elements of \hat{P}^+, and w_1, \ldots, w_p a sequence of elements of \hat{W} such that $\ell(w_{[1,p]}) = \sum_{j=1}^p \ell(w_j)$, then we have

$$F_{w_1} (D(\Lambda^1) \otimes F_{w_2} (D(\Lambda^2) \otimes \cdots \otimes F_{w_{p-1}} D(\Lambda^p)) \cdots \cdot) = D(w_{[1,1]}^{\Lambda^1}, w_{[1,2]}^{\Lambda^2}, \ldots, w_{[1,p-1]}^{\Lambda^{p-1}}, w_{[1,p]}^{\Lambda}).$$
For $\tau \in \Sigma$, define a linear operator D_{τ} on $\mathbb{Z}[\widehat{P}]$ by $D_{\tau}(e^\xi) = e^{\tau \xi}$. Obviously $\text{ch}_x F_x D = D_{\tau} \cdot \text{ch}_x D$ holds, and we have $D_{\tau} D_t = D_{\tau(t)} D_{\tau}$. [FL06, Lemma 4]. Set $D_{\tau \tau} = D_{\tau} D_{\tau}$ for $w \in \widehat{W}$ and $\tau \in \Sigma$. Now the following corollary is obvious from Theorem 2.2.

Corollary 2.8. The equality (2.1) also holds for a sequence w_1, \ldots, w_p of elements of \widehat{W} (instead of \widehat{W}).

3. Quantum Loop Algebras

3.1. Definitions and basics.

Let $\mathbb{C}(q)$ denote the ring of rational functions in an indeterminate q. Set $q_i = q^{e_i}$ for $i \in I$, and

$$[l]_q = \frac{q^l - q^{-l}}{q - q^{-1}}, \quad [s]_q! = [s]_q [s-1]_q \cdots [1]_q, \quad \frac{s}{s'}_q! = \frac{[s]_q!}{[s-s']_q!}$$

for $l \in \mathbb{Z}$ and $s, s' \in \mathbb{Z}_{\geq 0}$ with $s \geq s'$. The quantum loop algebra $U_q(L_0)$ is the associative $\mathbb{C}(q)$-algebra with generators

$$x_{i,r}^\pm (i \in I, r \in \mathbb{Z}), \quad k_i^{\pm 1} (i \in I), \quad h_{i,m} (i \in I, m \in \mathbb{Z} \setminus \{0\})$$

and the following relations $(i, j \in I, r, r' \in \mathbb{Z}, m, m' \in \mathbb{Z} \setminus \{0\})$:

$$k_i k_j^{-1} = k_j^{-1} k_i = 1, \quad [k_i, k_j] = [k_i, h_{i,m}] = [h_{i,m}, h_{j,m'}] = 0,$$

$$k_i x_{j,m}^\pm k_i^{-1} = q_i^{\pm c_{ij}} x_{j,m}^\pm, \quad [h_{i,m}, x_{j,r}^\pm] = \pm \frac{1}{m} [mc_{ij}]_q x_{j,r+m}^\pm,$$

$$[x_{i,r}^\pm, x_{j,r'}^\pm] = \delta_{ij} \frac{\phi_{i,r+r'}^\pm - \phi_{i,r+r'}^-}{q_i - q_i^{-1}},$$

$$x_{i,r+1} x_{j,r'}^\pm - q_i^{c_{ij}} x_{j,r}^\pm x_{i,r+1}^\pm = q_i^{c_{ij}} x_{j,r}^\pm x_{i,r+1}^\pm - x_{j,r+1}^\pm x_{i,r}^\pm,$$

$$\sum_{s \in \mathbb{Z}_+, k=0}^\infty (-1)^k \frac{s}{k} \prod_{r=0}^\infty \phi_{i,r+r'}^\pm \exp \left(\pm (q_i - q_i^{-1}) \sum_{r'=1}^\infty h_{i,\pm r} u^{\pm r'} \right),$$

for all sequences of integers r_1, \ldots, r_s, where $s = 1 - c_{ij}$, \mathfrak{S}_s is the symmetric group on s letters, and $\phi_{i,r}^\pm$'s are determined by equating coefficients of powers of u in the formula

$$\sum_{r=0}^\infty \phi_{i,r+r'}^\pm u^{\pm r} = k_i^{\pm 1} \exp \left(\pm (q_i - q_i^{-1}) \sum_{r=1}^\infty h_{i,\pm r} u^{\pm r} \right),$$

and $\phi_{i,r}^\pm = 0$ for $r > 0$. The algebra $U_q(L_0)$ is isomorphic to the quotient of the quantum affine algebra $U_q(\hat{g})$ by the ideal generated by a certain central element [Dri87], [Bec94]. Denote by $U_q(L_\pm)$ and $U_q(L_h)$ the subalgebras of $U_q(L_0)$ generated by $\{x_{i,r}^\pm | i \in I, r \in \mathbb{Z}\}$ and $\{k_i^{\pm 1}, h_{i,m} | i \in I, m \in \mathbb{Z} \setminus \{0\}\}$ respectively. Then we have

$$U_q(L_0) = U_q(L_-) U_q(L_h) U_q(L_+),$$

(3.1)

by the existence of a Poincaré-Birkhoff-Witt type basis [Bec94]. Denote by $U_q(\mathfrak{g})$ the subalgebra generated by $\{x_{i,0}^\pm, k_i^{\pm 1} | i \in I\}$, which is isomorphic to the quantized enveloping algebra associated with \mathfrak{g}. For a subset $J \subseteq I$, let $U_q(L_{J_0})$ denote the subalgebra generated by $\{k_i^{\pm 1}, h_{i,r}, x_{i,s}^\pm | i \in J, r \in \mathbb{Z} \setminus \{0\}, s \in \mathbb{Z}\}$. We also define $U_q(L_{J_0})$ in an obvious way. When $J = \{i\}$ for some $i \in I$, we simply write $U_q(L_{i_0})$ and $U_q(L_{i_1})$.

The algebra $U_q(L_0)$ has a Hopf algebra structure [Lus93], [CP94]. In particular if V and W are $U_q(L_0)$-modules, then $V \otimes W$ and V^* are $U_q(L_0)$-modules, and we have $(V \otimes W)^* \cong W^* \otimes V^*$.

3.2. Finite-dimensional modules. For a \(U_q(\mathfrak{g}) \)-module \(V \) and \(\lambda \in P \), set
\[V_\lambda = \{ v \in V \mid k_i v = q_i^{(\alpha_i^\vee, \lambda)} v \text{ for } i \in I \}. \]
We say \(V \) is of type 1 if it satisfies
\[V = \bigoplus_{\lambda \in P} V_\lambda. \]
For a finite-dimensional \(U_q(\mathfrak{g}) \)-module \(V \) of type 1, define its character \(\text{ch} V \) by
\[\text{ch} V = \sum_{\lambda \in P} e^\lambda \dim V_\lambda \in \mathbb{Z}[P]. \]
The category of finite-dimensional \(U_q(\mathfrak{g}) \)-modules of type 1 is semisimple. For \(\lambda \in P^+ \), let \(V_q(\lambda) \) denote the \(U_q(\mathfrak{g}) \)-module generated by a nonzero vector \(v_\lambda \) with relations
\[x_{i,0} v_\lambda = 0, \quad k_i v_\lambda = q_i^{(\alpha_i^\vee, \lambda)} v_\lambda, \quad (x_{i,0})^{(\alpha_i^\vee, \lambda) +1} v_\lambda = 0 \quad \text{for } i \in I. \]
The module \(V_q(\lambda) \) is simple, finite-dimensional and of type 1, and every simple finite-dimensional \(U_q(\mathfrak{g}) \)-module of type 1 is isomorphic to some \(V_q(\lambda) \). Moreover, we have \(\text{ch} V_q(\lambda) = \text{ch} V(\lambda) \). For details of these results, see [CP94] for example.

Now we recall the basic results on finite-dimensional \(U_q(\mathfrak{L}_\mathfrak{g}) \)-modules. Let \(P^+_q \) denote the monoid (under coordinate-wise multiplication) of \(I \)-tuples of polynomials \(\pi = (\pi_1(u), \ldots, \pi_n(u)) \) such that each \(\pi_i(u) \) is expressed as
\[\pi_i(u) = (1 - a_1 u)(1 - a_2 u) \cdots (1 - a_k u) \]
for some \(k \geq 0 \) and \(a_j \in \mathbb{C}(q)^\times \). In other words, \(P^+_q \) is a free abelian monoid generated by \(\{ \varpi_{i,a} \mid i \in I, a \in \mathbb{C}(q)^\times \} \) where
\[(\varpi_{i,a})(u) = \begin{cases} 1 - au & \text{if } j = i, \\ 1 & \text{otherwise.} \end{cases} \]
Denote by \(P_q \) the corresponding free abelian group, which is called the \(\ell \)-weight lattice. We say \(\rho \in P_q \) is dominant if \(\rho \in P^+_q \). Define a homomorphism \(\text{wt}: P_q \to P \) by
\[\text{wt}(\varpi_{i,a}) = \varpi_i \quad \text{for all } a \in \mathbb{C}(q)^\times. \]
A nonzero vector \(v \) of a \(U_q(\mathfrak{L}_\mathfrak{g}) \)-module \(V \) is said to be an \(\ell \)-weight vector with \(\ell \)-weight \(\rho \in P_q \) if there is some \(N \in \mathbb{Z}_{>0} \) satisfying
\[(\phi_i^{\ell} - \gamma_i^{\ell})^N v = 0 \]
for all \(i \in I \) and \(r \in \mathbb{Z}_{>0} \), where \(\gamma_i^{\ell} \) are the rational functions in \(q \) determined by the formula
\[\sum_{r=0}^{\infty} \gamma_i^{\ell} u^r = q_i^{(\alpha_i^\vee, \text{wt} (\rho))} \frac{p_i(q_i^{-1} u)}{p_i(q_i u)} = \sum_{r=0}^{\infty} \gamma_i^{\ell} u^{-r}, \]
in the sense that the left- and right-hand sides are the Laurent expansions of the middle term about \(u = 0 \) and \(u = \infty \), respectively. Denote by \(V_\rho \) the subspace consisting of \(\ell \)-weight vectors with \(\ell \)-weight \(\rho \). If \(V = \bigoplus_{\rho \in P_q} V_\rho \) holds, we say \(V \) is an \(\ell \)-weight module. For an \(\ell \)-weight module \(V \) and \(\mu \in P \), we have
\[V_\mu = \bigoplus_{\rho \in P_q} V_\rho \]
since \(\phi_{i,0} = k_i \) and \(\gamma_{i,0} = q_i^{(\alpha_i^\vee, \text{wt} (\rho))} \). In particular, every \(\ell \)-weight module is of type 1 as a \(U_q(\mathfrak{g}) \)-module. We say a \(U_q(\mathfrak{L}_\mathfrak{g}) \)-module \(V \) is \(\ell \)-highest weight with \(\ell \)-highest weight vector \(v \) and \(\ell \)-highest weight \(\pi \in P^+_q \) if \(v \in V_\pi \), \(x_{i,r}^+ v = 0 \) (\(i \in I, r \in \mathbb{Z} \)) and \(U_q(\mathfrak{L}_{\mathfrak{n}_{-1}}) v = V \). A standard argument using [3] shows that for each \(\pi \in P^+_q \),
there exists a unique simple ℓ-highest weight module $L_q(\pi)$ with ℓ-highest weight π (up to isomorphism). By v_π we denote an ℓ-highest weight vector of $L_q(\pi)$.

Theorem 3.1 (CF95). For every $\pi \in P_q^+$, $L_q(\pi)$ is finite-dimensional and ℓ-weight. Moreover, every simple finite-dimensional ℓ-weight $U_q(Lq)$-module is isomorphic to $L_q(\pi)$ for some $\pi \in P_q^+$.

Remark 3.2. For every sequence of (not necessarily splitting) polynomials $\pi = (\pi_1(u), \ldots, \pi_n(u))$ such that $\pi_i(0) = 1$ ($i \in I$), the simple module $L_q(\pi)$ defined as above is finite-dimensional. For later use, however, it is more convenient to restrict our consideration to $L_q(\pi)$ with $\pi \in P_q^+$. In particular, this restriction makes it easier to apply the theory of q-characters. Since $\pi \in P_q^+$ implies that ℓ-weight by [FM01, Theorem 4.1], the above theorem follows from [CP95].

Let $i \mapsto \bar{i}$ be the bijection $I \rightarrow I$ determined by $\alpha_{\bar{i}} = -w_0(\alpha_i)$. We define endomorphisms $\pi \mapsto \pi^*$ and $\pi \mapsto \pi^+$ of the monoid P_q^+ by setting

$$\varpi_{\bar{i},a} = \varpi_{i,a}q^{-\rho(\bar{i})}, \quad \pi_{\bar{i},a} = \varpi_{i,a}q^{\rho(\bar{i})},$$

respectively, where h^\vee is the dual Coxeter number of g and $r^\vee = \max\{c_{ij}c_{ji} \mid i \neq j\}$. By [Cha95, Proposition 1.6], there is a unique involution σ of $U_q(Lq)$ such that

$$\sigma(x_i^+) = -x_i^-, \quad \sigma(h_i,m) = -h_i,-m, \quad \sigma(k_i^{\pm 1}) = k_i^{\mp 1}, \quad \sigma(\phi_{i,r}) = \phi_{i,-r}^\vee$$

for $i \in I, r \in \mathbb{Z}$ and $m \in \mathbb{Z} \setminus \{0\}$, and σ is also a coalgebra anti-involution. For a $U_q(Lq)$-module V, denote by σ^*V its pull-back with respect to σ. As a consequence of [FM01, Corollary 6.9], we have the following lemma.

Lemma 3.3. For every $\pi \in P_q^+$, we have

$$L_q(\pi)^* \cong L_q(\pi^*) \quad \text{and} \quad \sigma^*L_q(\pi) \cong L_q(\pi^+)$$

as $U_q(Lq)$-modules.

3.3. **Minimal affinizations.** Here we recall the definition of minimal affinizations and their classifications when the shape of the Dynkin diagram of g is a straight line, i.e., g is of type ABCFG.

Definition 3.4 (Cha95). Let $\lambda \in P^+$.

(i) A simple finite-dimensional $U_q(Lg)$-module $L_q(\pi)$ is said to be an affinization of $V_q(\lambda)$ if $\text{wt}(\pi) = \lambda$.

(ii) Affinizations V and W of $V_q(\lambda)$ are said to be equivalent if they are isomorphic as $U_q(g)$-modules. We denote by $[V]$ the equivalence class of V.

If V is an affinization of $V_q(\lambda)$, as a $U_q(g)$-module we have

$$V \cong V_q(\lambda) \oplus \bigoplus_{\mu < \lambda} V_q(\mu)_{\cong m(\mu)}(V)$$

with some $m(\mu)(V) \in \mathbb{Z}_{\geq 0}$. Let V and W be affinizations of $V_q(\lambda)$, and define $m_{\mu}(V), m_{\mu}(W)$ as above. We write $[V] \leq [W]$ if for all $\mu \in P^+$, either of the following holds:

(i) $m_{\mu}(V) \leq m_{\mu}(W)$, or

(ii) there exists some $\mu > \lambda$ such that $m_{\nu}(V) < m_{\nu}(W)$.

Then \leq defines a partial ordering on the set of equivalence classes of affinizations of $V_q(\lambda)$ [Cha95, Proposition 3.7].

Definition 3.5 (Cha95). We say an affinization V of $V_q(\lambda)$ is minimal if $[V]$ is minimal in the set of equivalence classes of affinizations of $V_q(\lambda)$ with respect to this ordering.
For $i \in I$, $a \in \mathbb{C}(q)^\times$ and $m \in \mathbb{Z}_{\geq 0}$, define $\pi_{m,a}^{(i)} \in P_q^+$ by

$$\pi_{m,a}^{(i)} = \prod_{k=1}^{m} \varpi_{i,a,q}^{m-2k+1}.$$

Note that $\pi_{0,a}^{(i)}$ is the unit element of the monoid P_q^+ for all $i \in I$ and $a \in \mathbb{C}(q)^\times$.

For \mathfrak{g} of type $ABCFG$, minimal affinizations are completely classified.

Theorem 3.6 ([Cha95], [CP95a]). Assume that \mathfrak{g} is of type $ABCFG$. For each $\lambda \in P^+$, there exists a unique minimal affinization of $V_q(\lambda)$ up to equivalence. Moreover for $\lambda = \sum_{i \in I} \lambda_i \varpi_i$, $L_q(\pi)$ is a minimal affinization of $V_q(\lambda)$ if and only if π is in the form $\prod_{i \in I} \pi_{\lambda_i}^{(i)}$, with $(a_i)_{i \in I}$ satisfying one of the following conditions:

1. For all $1 \leq i < j \leq n$, $a_i/a_j = \prod_{k \leq i < j} c_k(\lambda)$,
2. For all $1 \leq i < j \leq n$, $a_i/a_j = \prod_{k \leq i < j} c_k(\lambda)^{-1}$,

where we set $c_k(\lambda) = q^{k\lambda_k + d_{k+1}\lambda_{k+1} + d_k - c_{k,k+1} - 1}$.

Remark 3.7. (i) Because of different normalizations in some definitions, the conditions of a_i’s are rewritten in a slightly different way from the ones in [Cha95], [CP95a].

(ii) The situation is more complicated in type DE because of the existence of a trivalent node, and the number of the equivalence classes of minimal affinizations $V_q(\lambda)$ differs depending on λ. In this case, the classification has been achieved except for λ orthogonal to the trivalent node (see [CP96a], [CP96b]). We omit the details since we do not consider this case in this article.

Definition 3.8. The simple modules $L_q(\pi_{m,a}^{(i)})$, which are minimal affinizations of $V_q(m \varpi_i)$, are called Kirillov-Reshetikhin modules. Among them, the ones with $m = 1$ are called fundamental modules.

For a nonempty subset $J \subseteq I$ such that \mathfrak{g}_J is simple, denote by $P_q(J)$ the ℓ-weight lattice of $U_q(L\mathfrak{g}_J)$, and define a map $P_q(J) \ni \rho \mapsto \rho_J \in P_q(J)$ by letting ρ_J be the J-tuple $(\rho_J(u))_{u \in J}$.

Lemma 3.9 ([CP96a], Lemma 2.3). For every $\pi \in P_q^+$, the $U_q(L\mathfrak{g}_J)$-submodule of $L_q(\pi)$ generated by an ℓ-highest weight vector v_π is isomorphic to the simple $U_q(L\mathfrak{g}_J)$-module with ℓ-highest weight π_J.

For $\mu = \sum_{i \in J} \mu_i \varpi_i \in P_q$, write $\mu_J = \sum_{i \in J} \mu_i \varpi_i$. From this lemma and Theorem 3.6, the following corollary is easily proved.

Corollary 3.10. Assume that \mathfrak{g} is of type $ABCFG$. If $L_q(\pi)$ is a minimal affinization of $V_q(\lambda)$, then the $U_q(L\mathfrak{g}_J)$-submodule of $L_q(\pi)$ generated by v_π is a minimal affinization of the simple $U_q(L\mathfrak{g}_J)$-module with highest weight λ_J.

In type A, the structure of minimal affinizations is much simpler than that of the other types.

Theorem 3.11 ([Jim86], Section 2], [CP96a], Theorem 3.1). Assume that \mathfrak{g} is of type A. If $L_q(\pi)$ is a minimal affinization of $V_q(\lambda)$, then $L_q(\pi)$ is isomorphic to $V_q(\lambda)$ as a $U_q(\mathfrak{g})$-module.

3.4. Classical limits. In this subsection we assume that \mathfrak{g} is classical, since some of the results below (for example Proposition 3.13) have been proved under this assumption.

Let $A = \mathbb{C}[q, q^{-1}] \subseteq \mathbb{C}(q)$. An A-submodule L of a $\mathbb{C}(q)$-vector space V is called an A-lattice if L is a free A-module and $\mathbb{C}(q) \otimes_A L = V$ holds. Set $(x_{i,r}^\pm)^{(k)} = (x_{i,r}^\pm)^k / [k]_q!$ for $i \in I$, $r \in \mathbb{Z}$ and $k \in \mathbb{Z}_{\geq 0}$, and denote by $U_A(L\mathfrak{g})$ the A-subalgebra
of $U_q(L_0)$ generated by $\{k^{\pm 1}, (x^{\pm}_{i,r})^k \mid i \in I, r \in \mathbb{Z}, k \in \mathbb{Z}_{>0}\}$. Define $U_A(g)$ in a similar way. Then $U_A(L_0)$ and $U_A(g)$ are A-lattices of $U_q(L_0)$ and $U_q(g)$ respectively \cite[Lemma 2.1]{Cha01}. \cite{Lus93}. Set

$$U_1(L_0) = \mathbb{C} \otimes_A U_A(L_0) \quad \text{and} \quad U_1(g) = \mathbb{C} \otimes_A U_A(g),$$

where \mathbb{C} is regarded as an A-module by letting q act by 1. As shown in the proof of \cite[Lemma 2.1]{Cha01}, the A-lattice of the quantum affine algebra $U_q'(g)$ in \cite{Lus93} is mapped onto $U_A(L_0)$ under the canonical projection. Hence the following proposition is proved from \cite{Lus93, CP94} Proposition 9.3.10].

Proposition 3.12. The universal enveloping algebra $U(L_0)$ is isomorphic to the quotient of $U_1(L_0)$ by the ideal generated by $1 \otimes k_i - 1 \otimes 1$ ($i \in I$). In particular if V is a $U_1(L_0)$-module on which $1 \otimes k_i$'s act by 1, then V is an L_0-module. A similar statement also holds for $U(g)$ and $U_1(g)$.

Let P_A be the submonoid of P_q generated by $\{x_{i,a} \mid i \in I, a \in \mathbb{C}^\times q^Z\}$. For $\pi \in P_A$, we set $L_A(\pi) = U_A(L_0)_{\pi} \subset L_q(\pi)$.

Proposition 3.13 \cite{CP01, Cha01}.

(i) $L_A(\pi)$ is spanned by the vectors

$$(x^{−}_{1_{i_1}, l_1})^{(s_1)}(x^{−}_{2_{i_2}, l_2})^{(s_2)} \cdots (x^{−}_{p_{i_p}, l_p})^{(s_p)}_{\pi}$$

for $p \geq 0$, $i_j \in I$, $s_j \in \mathbb{Z}_{\geq 0}$ and $0 \leq l_j \leq N$ with sufficiently large N.

(ii) $L_A(\pi)$ is an A-lattice of $L_q(\pi)$.

Set

$$\overline{L_q(\pi)} = \mathbb{C} \otimes_A L_A(\pi),$$

which is called the classical limit of $L_q(\pi)$. $\overline{L_q(\pi)}$ is an L_0-module by Proposition 3.12, and we have

$$\text{ch} \ L_q(\pi) = \text{ch} \ \overline{L_q(\pi)}.$$ (3.2)

Since $\text{ch} \ V_q(\mu) = \text{ch} \ V(\mu)$ holds for all $\mu \in P^+$, we also have

$$[L_q(\pi) : V_q(\mu)] = [\overline{L_q(\pi)} : V(\mu)]$$ (3.3)

for all $\mu \in P^+$, where the left- and right-hand sides are the multiplicities as a $U_q(g)$-module and g-module respectively.

4. Main Theorems and Corollaries

In this section, we assume that g is of type ABC.

4.1. Graded limit

Let $\lambda \in P^+$, and let $\pi \in P_A$ be such that $L_q(\pi)$ is a minimal affinization of $V_q(\lambda)$ (such an element exists by Theorem 3.4). Denote by $\pi^I = (\pi^1(u), \ldots, \pi^N(u))$ the I-tuple of polynomials with coefficients in \mathbb{C} obtained from π by evaluating q at 1. From Theorem 3.6, we easily see that there exists a unique nonzero complex number a satisfying

$$\pi^i(u) = (1 - au)^{(s_i^\vee, \lambda)} \quad \text{for all} \ i \in I.$$

Hence the following lemma is proved from \cite[Lemma 4.7]{CP01}.

Lemma 4.1. There exists a surjective L_0-module homomorphism from the classical limit $\overline{L_q(\pi)}$ to the evaluation module $V(\lambda, a)$.

Define a Lie algebra automorphism $\tau_a : g[t] \to g[t]$ by

$$\tau_a(x \otimes f(t)) = x \otimes f(t-a) \quad \text{for} \ x \in g, f \in \mathbb{C}[t].$$

We consider $\overline{L_q(\pi)}$ as a $g[t]$-module by restriction, and define a $g[t]$-module $L(\pi)$ by the pull-back $\tau^{-1}_a \overline{L_q(\pi)}$.

Definition 4.2. We call the \(\mathfrak{g}[t]\)-module \(L(\pi) \) the graded limit of the minimal affinization \(L_q(\pi) \).

In fact, \(L(\pi) \) turns out to be a graded \(\mathfrak{g}[t] \)-module from our main theorems, which justifies the name “graded limit”. We see from Proposition 3.13 (i) and the construction that the vector \(\tau_\pi = 1 \otimes v_\pi \) generates \(L(\pi) \) as a \(\mathfrak{g}[t] \)-module. Elementary properties of \(L(\pi) \) are as follows.

Lemma 4.3. (i) There exists a surjective \(\mathfrak{g}[t] \)-module homomorphism from \(L(\pi) \) to \(V(\lambda, 0) \).
(ii) The vector \(\tau_\pi \) satisfies the relations
\[
\begin{align*}
 n_+(t) \tau_\pi &= 0, & (h \otimes t^s) \tau_\pi &= \delta_{s0} \langle h, \lambda \rangle \tau_\pi & \text{for } h \in \mathfrak{h}, s \geq 0, \text{ and } \quad f_i(\alpha^\vee, \lambda) \tau_\pi &= 0 & \text{for } i \in I.
\end{align*}
\]
(iii) We have \(\text{ch} \ L_q(\pi) = \text{ch} \ L(\pi) \).
(iv) For every \(\mu \in P^+ \), we have
\[
[L_q(\pi) : V_q(\mu)] = [L(\pi) : V(\mu)].
\]

Proof. The assertion (i) follows from Lemma 4.1 and (ii) is proved from the construction of \(L(\pi) \) and (i). The assertions (iii) and (iv) are consequences of (3.2) and (3.3) since \(L_q(\pi) \cong L(\pi) \) as \(\mathfrak{g} \)-modules.

The following corollary is obvious from Theorem 3.11 and Lemma 4.3.

Corollary 4.4. When \(\mathfrak{g} \) is of type A, the graded limit \(L(\pi) \) is isomorphic to the evaluation module \(V(\lambda, 0) \).

4.2. Main theorems. Throughout the rest of this section, we fix \(\lambda = \sum_{i \in I} \lambda_i \omega_i \in P^+ \) and \(\pi \in P^*_\lambda \) such that \(L_q(\pi) \) is a minimal affinization of \(V_q(\lambda) \).

In this subsection, we shall state our main theorems. (Although these are trivial in type A, we include this type for completeness.) Their proofs are given in the next section.

Let us define an \(n \)-tuple \(\xi_1, \ldots, \xi_n \) of elements of \(\hat{P} \) as follows. If \(\mathfrak{g} \) is of type A, then \(\xi_i = \lambda_i(\omega_i + \Lambda_0) \) for all \(i \in I \). If \(\mathfrak{g} \) is of type B, then
\[
\xi_i = \begin{cases}
\lambda_i(\omega_i + \Lambda_0) & \text{if } 1 \leq i \leq n - 1, \\
\lambda_n \omega_n + [\lambda_n/2] \Lambda_0 & \text{if } i = n,
\end{cases}
\]
where \([s] = \min \{ r \in \mathbb{Z} \mid r \geq s \} \). If \(\mathfrak{g} \) is of type C, the definition is a little more complicated. Let \(J = \{ 1 \leq i \leq n - 1 \mid \lambda_i > 0 \} \subseteq I \) and \(\hat{J} = \{ 0 \} \cup J \subseteq \hat{I} \). We define \(i^\circ \in \hat{I} \) for each \(i \in I \) by
\[
i^\circ = \begin{cases}
\max\{ j \in \hat{J} \mid j < i \} & \text{if } i \in J, \\
i & \text{otherwise}.
\end{cases}
\]
For \(i \in \hat{J} \), we define \(p_i \in \{ 0, 1 \} \) as follows: if \(i = \max\{ j \in \hat{J} \} \), then \(p_i = 0 \). Otherwise, we define \(p_i \) recursively by
\[
p_{i^\circ} \equiv \lambda_i + p_i \mod 2.
\]
Set \(p_i = 0 \) for \(i \in I \setminus J \). Now \(\xi_1, \ldots, \xi_n \) is defined by
\[
\xi_i = p_i \omega_i + (\lambda_i - p_i) \omega_i + \frac{d_i}{2} (\lambda_i - p_i + p_i) \Lambda_0.
\]
Note that \(\sum_{i \in I} \xi_i \in \lambda + \mathbb{Z}_{>0} \Lambda_0 \) holds in all cases. Our first main theorem is the following.
Theorem 4.5. The graded limit $L(\pi)$ is isomorphic to $D(w_{\varepsilon_1}, \ldots, w_{\varepsilon_n})$ as a $\mathfrak{g}[t]$-module.

In type A, $\varepsilon_i \in \hat{P}^+$ holds for all i. Thus the $\mathfrak{g}[t]$-module $D(w_{\varepsilon_1}, \ldots, w_{\varepsilon_n})$ is the submodule of $V(\lambda_1 \varepsilon_1, 0) \otimes \cdots \otimes V(\lambda_n \varepsilon_n, 0)$ generated by the tensor product of highest weight vectors, which is isomorphic to $V(\lambda, 0)$. Hence the theorem follows from Corollary 4.4.

Let Δ^1_+ be a subset of Δ_+ defined by

$$\Delta^1_+ = \left\{ \alpha \in \Delta_+ \mid \alpha = \sum_{i \in I} n_i \alpha_i \text{ with } n_i \leq 1 \text{ for all } i \in I \right\}.$$

The second main theorem is the following.

Theorem 4.6. The graded limit $L(\pi)$ is isomorphic to the cyclic $\mathfrak{g}[t]$-module generated by a nonzero vector v with relations

$$n_+[t]v = 0, \quad (h \otimes t^s)v = \delta_{s0}h(\lambda)v \text{ for } h \in \mathfrak{h}, s \geq 0, \quad f_i^{\lambda_i+1}v = 0 \text{ for } i \in I,$$

$$t^dn_-[t]v = 0 \quad \text{and} \quad (f_s \otimes t)v = 0 \text{ for } \alpha \in \Delta^1_+.$$

When \mathfrak{g} is of type A, $\Delta^1_+ = \Delta_+$ holds and therefore the theorem is easily proved from Corollary 4.4.

Remark 4.7. Theorem 4.6 implies that $L(\pi)$ is a projective object in a certain full-subcategory of the category of $\mathfrak{g} \otimes (\mathbb{C}[t]/t^2\mathbb{C}[t])$-modules introduced in [CG11]. In particular this theorem, together with [Her07, Theorem 6.1], gives a proof to [CG11, Conjecture 1.13] in type B.

Remark 4.8. As stated in the introduction, these two theorems are equivalent to [Mou10, Conjecture 3.20] in type AB.

4.3. Corollaries. Here we shall give several corollaries on minimal affinizations $L_\mathfrak{g}(\pi)$, which are obtained from the corresponding statements on $L(\pi)$ by applying Lemma 4.3 (iii), (iv).

First we apply the results in Subsection 2.2 to the module $D(w_{\varepsilon_1}, \ldots, w_{\varepsilon_n})$ in Theorem 4.3. Let us define $w_i \in \hat{W}$ for each $1 \leq i \leq n$ as follows:

(i) If \mathfrak{g} is of type A, then $w_i = \text{id}$ for all $1 \leq i \leq n$.

(ii) If \mathfrak{g} is of type B, then $w_i = s_{i-1}s_{i-2} \cdots s_1 \tau$,

where τ denotes the element of Σ which exchanges the nodes 0 and 1.

(iii) If \mathfrak{g} is of type C, then $w_i = s_{i-1}s_{i-2} \cdots s_1 s_0$.

For $1 \leq r \leq t \leq n$, denote by $w_{[r,t]}$ the product $w_r w_{r+1} \cdots w_t \in \hat{W}$. If $r > t$, we set $w_{[r,t]} = \text{id}$.

Lemma 4.9. (i) Let $i \in I$.

(a) When \mathfrak{g} is of type B, we have

$$w_{[1,i]}(\Lambda_0) = \varepsilon_i + \delta_n \varepsilon_n + \Lambda_0 \mod \mathbb{Q} \delta, \text{ and}$$

$$w_{[1,i]}(\varepsilon_n + \Lambda_0) = \varepsilon_n + \Lambda_0.$$

(b) When \mathfrak{g} is of type C, we have

$$w_{[1,i]}(\varepsilon_j + \Lambda_0) = \varepsilon_{i-j} + \varepsilon_i + \Lambda_0 \mod \mathbb{Q} \delta \quad (0 \leq j < i), \text{ and}$$

$$w_{[1,i]}(\varepsilon_j + \Lambda_0) = \varepsilon_j + \Lambda_0 \quad (i \leq j).$$

(ii) We have $\ell(w_{[1,n]}) = \sum_{i=1}^n \ell(w_i)$.

Proof. The assertion (i) is proved by direct calculations. When g is of type B, by applying the sequence
\[w_{[1,n]} = \tau(s_1 \tau) \cdots (s_{n-1} \cdots s_1 \tau) \]
to Λ_0, we see that each reflection s_j changes the weight by a positive multiple of α_j, which implies the assertion (ii). The proof for type C is the same. \hfill \Box

Let $\xi_1, \ldots, \xi_n \in \hat{P}$ be the elements defined in the previous subsection, and set $\Lambda^i = (w_{[1,n]})^{-1} \xi_i$ for each $i \in I$. Using Lemma \ref{lem:main}(i), the following assertions are easily checked:
(i) If g is of type A, then $\Lambda^i = \xi_i$ for all i.
(ii) If g is of type B, then
\[\Lambda^i \equiv \begin{cases} \lambda_i \lambda_0 + \lfloor \lambda_i/2 \rfloor \lambda_0 & (1 \leq i \leq n-1) \\ \lambda_n \omega_n + \lfloor \lambda_n/2 \rfloor \lambda_0 & (i = n) \end{cases} \mod Q\delta, \]
where $\lambda_n = 0$ if λ_n is even, and $\lambda_n = 1$ otherwise.
(iii) If g is of type C, then
\[\Lambda^i \equiv \begin{cases} p_i \omega_i \omega_{i-1} + \frac{1}{2} (\lambda_i - p_i + p_{i'}) \lambda_0 & (1 \leq i \leq n-1) \\ \lambda_n (\omega_n + \lambda_0) (= \xi_n) & (i = n) \end{cases} \mod Q\delta. \]
In particular, $\Lambda^i \in \hat{P}^+$ for all $i \in I$. Since $w_o \xi_i = w_o w_{[1,i]} \Lambda^i$, we have from Theorem \ref{thm:main} and Proposition \ref{prop:main} that
\begin{equation}
L(\pi) \cong D(w_o \xi_1, \ldots, w_o \xi_n)
= F_{w_o w_1} (D(\Lambda^1) \otimes D(\Lambda^2) \otimes \cdots \otimes F_{w_{n-1}} (D(\Lambda^{n-1}) \otimes F_{w_n} (D(\Lambda^n)) \cdots)).
\end{equation}
Now the following character formula for $L_q(\pi)$ is obtained using Corollary \ref{cor:main} and Lemma \ref{lem:main}(iii).

Corollary 4.10.
\[\text{ch } L_q(\pi) = D_{w_o w_1} \left(e^{\Lambda^1} \cdot D_{w_2} \left(e^{\Lambda^2} \cdots D_{w_{n-1}} \left(e^{\Lambda^{n-1}} \cdot D_{w_n} (e^{\Lambda^n}) \cdots) \right) \right) \right|_{e^{\Lambda_0} = e^{\epsilon_1} = 1}. \]

The next corollary gives multiplicities of $U_q(\hat{g})$-modules in $L_q(\pi)$ in terms of crystal bases (for the basics of crystal bases, see \cite{HK02}). To state it we need to prepare several notation. Let $B(\Lambda)$ be the crystal basis of $\hat{V}(\Lambda)$ for $\Lambda \in \hat{P}^+$, and u_Λ its highest weight element. For $\tau \in \Sigma$, let $b \mapsto b^\tau$ denote the bijection from $B(\Lambda)$ to $B(\tau \Lambda)$ satisfying
\[u_\Lambda^\tau = u_{\tau \Lambda} \text{ and } \tilde{f}_i^\tau (b^\tau) = (\tilde{f}_i b)^\tau \text{ for } i \in \tilde{I}, b \in B(\Lambda), \]
where \tilde{f}_i are the Kashiwara operators. Let $\Lambda_{(1)}, \ldots, \Lambda_{(p)}$ be an arbitrary sequence of elements of \hat{P}^+. For a subset T of the crystal basis $B(\Lambda_{(1)}) \otimes \cdots \otimes B(\Lambda_{(p)})$, we define a subset F_T by
\[F_T = \{ b_1 \otimes \cdots \otimes b_p \mid b_1, \ldots, b_p \in T \} \subseteq B(\tau \Lambda_{(1)}) \otimes \cdots \otimes B(\tau \Lambda_{(p)}). \]

For $w \in \hat{W}$ with reduced expression $w = s_{i_1} \cdots s_{i_k}$, we also define a subset $F_w T$ by
\[F_w T = \{ \tilde{f}_{i_1}^{s_1} \tilde{f}_{i_2}^{s_2} \cdots \tilde{f}_{i_k}^{s_k} (b) \mid s_j \geq 0, b \in T \} \setminus \{0\} \subseteq B(\Lambda_{(1)}) \otimes \cdots \otimes B(\Lambda_{(p)}), \]
and set $F_w T = F_w F_{\tau T}$. Now let us define a subset Z' of a $U_q(\hat{g})$-crystal basis by
\[Z' = F_{w_o w_1} \left(u_{\Lambda^1} \otimes F_{w_2} \left(u_{\Lambda^2} \otimes \cdots \otimes F_{w_{n-1}} \left(u_{\Lambda^{n-1}} \otimes F_{w_n} (u_{\Lambda^n}) \cdots) \right) \right) \right). \]
Since this is a crystal analogue of the right-hand side of (4.1) (see \cite{LLM02}, in which $B(\Lambda)$ are realized using LS paths), the classically highest weight elements in Z' (i.e., elements annihilated by \tilde{e}_i for $i \in I$) are in one-to-one correspondence...
with the simple g-module components of $L(\pi)$. Note that F_w generates no new classically highest weight elements since $w_\mu \in W$. Hence the same statement also holds for
\[
Z = F_{w_1}(u_{A_1} \otimes F_{w_2}(u_{A_2}^2 \otimes \cdots \otimes F_{w_{n-1}}(u_{A_{n-1}} \otimes F_{w_n}(u_{A_n})\cdots))
\]
instead of Z'. From this and Lemma 4.3 (iv), we have the following corollary.

Corollary 4.11. For every $\mu \in P^+$, we have
\[
[L_q(\pi) : V_q(\mu)] = \# \{ b \in Z \mid \mathfrak{h}\text{-}weight of b is } \mu, \ e_i b = 0 \text{ for } i \in I \}.
\]

Remark 4.12. Assume that g is of type BC, and let $J = \{ 0, 1, \ldots, n-1 \} \subseteq \tilde{T}$, $U_q(\tilde{g})$ be the subalgebra of $U_q(g)$ whose set of simple roots are J, and W_J its Weyl group. Since w_i belongs to $W_J \times \Sigma$ for all $i \in I$, we can regard Z as a subset of a $U_q(\tilde{g})$-crystal basis. In view of this, Corollary 4.11 implies that multiplicities of $L_q(\pi)$ are expressed in terms of crystal bases of finite type $(D_n$ and C_n respectively).

Finally we prove the formula for the limit of normalized characters of minimal affinizations, which has been conjectured in [MY13, Conjecture 6.3]. Let J be a subset of I, and set $\Delta^+_{1,J} = \Delta^+ \cap \left(\sum_{i \in J} Z\alpha_i \right)$ and
\[
\Delta^+_{1,J} = \left\{ \alpha \in \Delta^+ \mid \alpha = \sum_{i \in I} n_i \alpha_i \text{ with } n_i \leq 1 \text{ if } i \notin J \right\} \text{.}
\]
Assume that $\lambda^1, \lambda^2, \ldots$ is an infinite sequence of elements of P^+ such that
\[
\langle \alpha^i, \lambda^k \rangle = 0 \text{ for all } i \in J, \ k \in \mathbb{Z}_{>0} \text{ and } \lim_{k \to \infty} \langle \alpha^i, \lambda^k \rangle = \infty \text{ for all } i \notin J.
\]

Corollary 4.13. Let π^1, π^2, \ldots be an infinite sequence of elements of P^+_A such that $L(\pi^k)$ is a minimal affinization of $V_q(\lambda^k)$. Then $\lim_{k \to \infty} e^{-\lambda^k} \text{ch} L_q(\pi^k)$ exists, and
\[
\lim_{k \to \infty} e^{-\lambda^k} \text{ch} L_q(\pi^k) = \prod_{\alpha \in \Delta^+_1 \setminus \Delta^+_J} \frac{1}{1 - e^{-\alpha}} \cdot \prod_{\alpha \in \Delta^+_1 \setminus \Delta^+_J} \frac{1}{1 - e^{-\alpha}}.
\]

Proof. By Lemma 4.3 (iii), it suffices to show that $\lim_{k \to \infty} e^{-\lambda^k} \text{ch}_h L(\pi^k)$ coincides with the right-hand side of (4.2). Define a Lie subalgebra a_J of $g[t]$ by
\[
a_J = n_+ [t] \oplus h[t] \oplus \bigoplus_{\alpha \in \Delta^+_J} \mathbb{C} f_\alpha \oplus \bigoplus_{\alpha \in \Delta^+_J} \mathbb{C} (f_\alpha \otimes t) \oplus t^n [t].
\]
For each λ^k, let e^{λ^k} be a 1-dimensional a_J-module defined by
\[
h v^k = \langle h, \lambda^k \rangle v^k \text{ for } h \in \mathfrak{h}, \ (a_J \cap \mathfrak{h}+) v^k = f_\alpha v^k = 0 \text{ for } \alpha \in \Delta^+_J,
\]
and define a $g[t]$-module M^k by
\[
M^k = U(g[t]) \otimes_{U(a_J)} e^{\lambda^k}.
\]
For all k, $e^{-\lambda^k} \text{ch}_h M^k$ coincides with the right-hand side of (4.2). Note that both M^k and $L(\pi^k)$ have natural $\mathbb{Z}_{>0}$-gradings, which we normalize so that the degrees of v^k and $\pi^k v^k$ are 0. We denote these gradings by superscripts. By Theorem 1.6, there exists a surjective homomorphism $\Phi^k : M^k \to L(\pi^k)$, and ker Φ^k is generated by the vectors $u_i = e^{\langle \alpha^i, \lambda^k \rangle + 1} v^k$ for $i \notin J$. A standard calculation shows $n_+ u_i = 0$, which implies ker $\Phi^k = \bigoplus_{i \notin J} U(n_-[t]) U(th[t]) U(t^n [t]) w_i^k$. Hence if $\beta \in Q^+$ and $s \geq 0$ satisfies (ker $\Phi^k)^{\lambda_{k-s}} \neq 0$, there exists some $i \notin J$ satisfying
\[
\lambda^k - \beta + s \delta \in \lambda^k - \langle (\alpha^i, \lambda^k) + 1 \rangle \alpha_i + w_9 \hat{Q}^+.
\]
When β and s are fixed, this does not occur for sufficiently large k, which implies

$$\dim(M^k)^{s}_{\lambda^s - \beta} = \dim L(\pi^k)^{s}_{\lambda^s - \beta} \quad \text{if } k \gg 0.$$

Since $(M^k)^{s}_{\lambda^s - \beta} = 0$ except for finitely many s if β is fixed, the assertion follows. \square

4.4. Example. In order to illustrate how Corollary 4.11 is applied, we will give an explicit decomposition for minimal affinizations of type B in a special case. Results in this subsection have previously been given in [Mou10] in a different way.

Assume that g is of type B_n. For convenience we relabel (in this subsection only) the vertices of the Dynkin diagram of \hat{g} as follows:

```
    1   2   3
   / \ / \ /
  4   5   6
```

and we let g be the Lie subalgebra corresponding to the subdiagram with vertices $I = \{1, 2, 4, \ldots, n + 1\}$. In the rest of this subsection we use the new labels for ϖ_i, α_i, etc., and consider the case where $\lambda = \sum_{i \in I} m_i \varpi_i \in P^+$ with $m_i = 0$ for $i > 4$, that is, $\lambda = m_1 \varpi_1 + m_2 \varpi_2 + m_4 \varpi_4$.

In this setting, the subset Z defined in the previous subsection becomes

$$Z = u_{m_1 \Lambda_1} \otimes F_{s_3} \left(u_{m_2 \Lambda_3} \otimes F_{s_{2s_1}} (u_{m_4 \Lambda_4}) \right),$$

where Λ_i denote the fundamental weights of \hat{g} (with respect to the new labels). Let $J = \{1, 2, 3\}$ and $U_q(\hat{g}_J)$ be the subalgebra of $U_q(\hat{g})$ of type A_3 defined similarly as in Remark 4.12. Then as in the remark we can regard Z as a subset of the $U_q(\hat{g}_J)$-crystal basis $B_J(m_1 \Lambda_1) \otimes B_J(m_2 \Lambda_3) \otimes B_J(m_4 \Lambda_4)$, where $B_J(\nu)$ denotes the crystal basis of the simple $U_q(\hat{g}_J)$-module with highest weight ν. In the sequel, we regard Z in this way.

Define a subset $W \subseteq B_J(m_2 \Lambda_3) \otimes B_J(m_4 \Lambda_4)$ by

$$W = \{ b \in B_J(m_2 \Lambda_3) \otimes B_J(m_4 \Lambda_4) \mid \check{e}_{i}^{m_{i+1}}(b) = 0, \check{e}_2(b) = 0 \}. $$

Then by the tensor product rule (see [HK02], we have

$$\{ b \in Z \mid \check{e}_i(b) = 0 \quad \text{for } i = 1, 2 \} = u_{m_1 \Lambda_1} \otimes W. \quad (4.3)$$

As [HK02] Theorem 8.2.1, let us identify $B_J(m_2 \Lambda_3)$ and $B_J(m_4 \Lambda_4)$ with the sets of semistandard tableaux of rectangle shape $3 \times m_2$ and $1 \times m_4$ respectively. Then it is easily checked that W is the set consisting of the elements of the form

```
1 2 3
| 1 2 3
| 1 2 3
```

with $x, y, z \geq 0$, $x \leq m_2$, $y \leq m_1$, and $y + z \leq m_4$. Note that the weight of this element is

$$m_2 \Lambda_3 + m_4 \Lambda_1 - (y + z) \alpha_1 - z \alpha_2 - (x + z) \alpha_3. $$

Now by Corollary 4.11 and 1.3, we have that a minimal affinization $L_q(\pi)$ of $V_q(\lambda)$ decomposes as follows:

$$L_q(\pi) \cong \bigoplus_{x, y, z \geq 0, \atop x \leq m_2, y \leq m_1, y + z \leq m_4} V_q \left((m_1 + m_4) \varpi_1 - (y + z) \alpha_1 - z \alpha_2 - (x + z) \pi_3 \right).$$
where τ_3 denotes the restriction of α_3 on \mathfrak{h} (note that $\Lambda_3|_{\mathfrak{h}} = 0$). It is easily checked that this result coincides with that given in [Mou10, Proposition 5.7].

5. Proof of main theorems

Throughout this section, we assume that \mathfrak{g} is of type BC unless specified otherwise, and fix $\lambda = \sum_{i \in \mathcal{I}} \lambda_i \omega_i \in P^+$ and $\pi \in P^+_{\mathfrak{h}}$ such that $L_q(\pi)$ is a minimal affinization of $V_q(\lambda)$. Here we use the usual labeling given in Section 2, not the one in Subsection 4.4. We freely use the notation ξ, Λ, etc., defined in Subsections 4.2 and 4.3.

Let $M(\lambda)$ denote the $\mathfrak{g}[t]$-module defined in terms of generators and relations in Theorem 4.6. We shall verify one by one the existence of surjective homomorphisms ξ, Λ, etc., defined in Subsections 4.2 and 4.3. Proposition 5.1.

5.1. Proof of $D(w_0 \xi_1, \ldots, w_0 \xi_n) \rightarrow M(\lambda)$. Let us prepare several notation. For $1 \leq p \leq q \leq n$, set $\alpha_{p,q} = \alpha_p + \alpha_{p+1} + \cdots + \alpha_q$. We have

\[\Delta_+ = \left\{ \{\alpha_{p,q} \mid p \leq q\} \cup \{\alpha_{p,n} + \alpha_{q,n} \mid p < q\} \right\} \quad \mathfrak{g} = B_n, \]

\[\left\{ \{\alpha_{p,q} \mid p \leq q\} \cup \{\alpha_{p,n} + \alpha_{q,n-1} \mid p \leq q \leq n\} \right\} = C_n. \]

Set $\alpha_{p,q} = 0$ if $p > q$. Let v_M denote the generator of $M(\lambda)$ in the definition, and set $D = D(w_0 \xi_1, \ldots, w_0 \xi_n)$ and $v_D = v_{\xi_1} \otimes \cdots \otimes v_{\xi_n} \in D$. Note that v_D generates D as a $\mathfrak{g}[t]$-module. Recall that D is by definition a module over the Lie algebra $\mathfrak{g}[t] \oplus \mathbb{C}K \oplus \mathbb{C}d$, and K and d act on v_D by some scalar multiplications. In this subsection, we also view $M(\lambda)$ as a module over this Lie algebra by letting K and d act on v_M by the same multiplications.

For $\alpha = \beta + s \delta \in \hat{\Delta}_e^\mathfrak{g}$, we define an nonnegative integer $\rho(\alpha)$ by

\[\rho(\alpha) = \sum_{k=1}^{n} \max \left\{ 0, -\langle \alpha^\vee, \xi_k \rangle \right\} = \sum_{k=1}^{n} \max \left\{ 0, -\langle \beta^\vee, \xi_k \rangle - \frac{2s}{(\beta, \beta)} \langle K, \xi_k \rangle \right\}. \]

The following assertions are checked by direct calculations.

(i) For $\beta + s \delta \in \hat{\Delta}_e^\mathfrak{g}$, we have $\rho(\beta + s \delta) = 0$ unless $-\beta \in \Delta_+ \setminus \Delta_+^1$ and $s = 1$.

(ii) If \mathfrak{g} is of type B and $p < q$, we have

\[\rho \left(-(\alpha_{p,n} + \alpha_{q,n}) + \delta \right) = \sum_{k=q}^{n-1} \lambda_k + \left\lfloor \lambda_n/2 \right\rfloor. \]

(iii) If \mathfrak{g} is of type C and $p < q$, we have

\[\rho \left(-(\alpha_{p,n} + \alpha_{q,n-1}) + \delta \right) = \begin{cases} \sum_{k=q}^{n-1} \lambda_k - 1 & \text{if } \sum_{k=q}^{n-1} \lambda_k \in 2\mathbb{Z}_{\geq 0} + 1 \text{ and } \lambda_k = 0 \text{ for all } p \leq k < q, \\ \sum_{k=q}^{n-1} \lambda_k & \text{otherwise}, \end{cases} \]

\[\rho \left(-(\alpha_{q,n} + \alpha_{q,n-1}) + \delta \right) = \left\lfloor \sum_{k=q}^{n-1} \lambda_k/2 \right\rfloor. \]

For $\alpha = \beta + s \delta \in \hat{\Delta}_e^\mathfrak{g}$, we denote by x_{α} the vector $e_\beta \otimes t_\delta \in \hat{\mathfrak{g}}$. The following proposition is essential in this subsection.

Proposition 5.1. (i) If \mathfrak{g} is of type B, we have

\[\text{Ann}_{U(\hat{\mathfrak{g}}_+)}v_D = U(\hat{\mathfrak{g}}_+) \left(\sum_{\alpha \in \hat{\Delta}_e^\mathfrak{g}} \mathbb{C}x_{\alpha}^{\rho(\alpha)+1} + t\mathfrak{h}[t] \right). \]
(ii) If \(\mathfrak{g} \) is of type \(C \), we have

\[
\text{Ann}_{U(\widehat{n}_+)}v_D = U(\widehat{n}_+)(\sum_{\alpha \in \Delta_+^\vee} \mathbb{C}x_\alpha^{(\rho(\alpha)+1)} + \sum_{(\alpha, \beta) \in S} \mathbb{C}x_{\alpha,\beta}^{(\rho(\alpha)-2k+1)} x_\beta + tf[t]),
\]

where \(S \) is a subset of \(\Delta_+^\vee \times \Delta_+^\vee \) defined by

\[
S = \left\{ \left(-\left(\alpha_{p,n} + \alpha_{q,n-1} \right) + \delta, -\left(\alpha_{q,n} + \alpha_{q,n-1} \right) + \delta \right) \mid 1 \leq p < q \leq n \right\}.
\]

Assuming this proposition for a while, we shall prove \(D \twoheadrightarrow M(\lambda) \) first. Set \(D' = D(\xi_1, \ldots, \xi_p) \subseteq D \), which is generated by \(v_D \) as a \(\mathfrak{h} \)-module.

Lemma 5.2. There is a \(\mathfrak{h} \)-module homomorphism from \(D' \) to \(M(\lambda) \) mapping \(v_D \) to \(v_M \).

Proof. Since the \(\widehat{\mathfrak{h}} \)-weights of \(v_D \) and \(v_M \) are same, it is enough to check that \(\text{Ann}_{U(\widehat{n}_+)}v_D \) given in Proposition 5.1 annihilates \(v_M \). First let us show \(x_\alpha^{(\rho(\alpha)+1)}v_M = 0 \) for \(\mathfrak{g} = B_n \) and \(\alpha = -(\alpha_{p,n} + \alpha_{q,n-1}) + \delta \) with \(p < q \). Set \(\gamma = \alpha_{q,n} \). It is easily checked that

\[
\langle \gamma^\vee, \lambda + (\rho(\alpha) + 1)\alpha \rangle = \left(2 \sum_{k=q}^{n-1} \lambda_k + \lambda_n \right) - 2 \left(\sum_{k=q}^{n-1} \lambda_k + |\lambda_n/2| + 1 \right) < 0.
\]

On the other hand, a direct calculation shows \(x_\alpha^{(\rho(\alpha)+1)}v_M = 0 \), which implies \(x_\alpha^{(\rho(\alpha)+1)}v_M = 0 \) as desired since \(M(\lambda) \) is a finite-dimensional \(\mathfrak{g} \)-module. For \(\mathfrak{g} = C_n \) and \(\alpha = -(\alpha_{q,n} + \alpha_{q,n-1}) + \delta \), \(x_\alpha^{(\rho(\alpha)+1)}v_M = 0 \) is proved by the same argument with \(\gamma = \alpha_{q,n-1} \).

Next we shall show \(x_\alpha^{(\rho(\alpha)-2k+1)} x_\beta v_M = 0 \) for \(\mathfrak{g} = C_n \),

\[
\alpha = -(\alpha_{p,n} + \alpha_{q,n-1}) + \delta, \quad \beta = -(\alpha_{q,n} + \alpha_{q,n-1}) + \delta \quad \text{with} \quad p < q,
\]

and \(0 \leq k < \rho(\alpha)/2+1 \). If \(\rho(\alpha) = \sum_{k=q}^{n-1} \lambda_k \), this is proved by the same argument as above with \(\gamma = \alpha_{q,n-1} \). So we may assume that \(\rho(\alpha) = \sum_{k=q}^{n-1} \lambda_k = 1 \) (i.e., \(\sum_{k=q}^{n-1} \lambda_k = 0 \) for \(p \leq k < q \)). The assertion is proved by the descending induction on \(k \). Set \(\gamma = \alpha - \beta = -\alpha_{p,q-1} \). Since \(\rho(\beta) = \rho(\alpha)/2 \) and \(x_\gamma v_M = 0 \), we have

\[
0 = x_\gamma x_\beta^{(\rho(\alpha)/2+1)} v_M \in \mathbb{C} x_\beta^{(\rho(\alpha)/2)} v_M.
\]

Hence the case \(k = \rho(\alpha)/2 \) is proved. Assume that \(k < \rho(\alpha)/2 \). A direct calculation using \(x_\gamma v_M = 0 \) shows

\[
x_{\gamma} x_{\beta}^{(\rho(\alpha)-2k+1)} x_{\gamma} \mathbb{C} + 2 x_{\gamma}^{2k+2} v_M = a_1 x_{\beta+2}^{(\rho(\alpha)-2k-3)} x_{\gamma}^{2k+2} v_M + a_2 x_{\beta+2} x_{\gamma}^{(\rho(\alpha)-2k-1)} x_{\gamma}^{2k+1} v_M + a_3 x_{\beta+2}^{(\rho(\alpha)-2k+1)} x_{\gamma}^{2k+1} v_M
\]

for some \(a_1, a_2, a_3 \in \mathbb{C} \) with \(a_3 \neq 0 \) (set \(x_{\beta+2} = 0 \) if \(l < 0 \)). By the induction hypothesis, this implies \(x_\alpha^{(\rho(\alpha)-2k+1)} x_\beta v_M = 0 \) as desired. The other relations are trivially checked, and the lemma is proved.

Let \(w_0 = s_{i_0} \cdots s_{i_{r-1}} s_{i_r} \) be a reduced expression of \(w_0 \), and set \(w^{k} = s_{i_0} \cdots s_{i_k} \) for \(1 \leq k \leq r+1 \). We define \(D^k = F_{w_0^k}D' \). Then \(D^{r+1} = D' \) is obvious, and \(D^1 = D \) follows from Lemma 7.4. In the following, we shall verify by the descending induction on \(k \) that there exists a nonzero \(\widehat{\mathfrak{h}} \)-module homomorphism from \(D^k \) to \(M(\lambda) \). This for \(k = r + 1 \) is just Lemma 5.2. Assume that \(k \leq r \), and consider
Let V be an integrable \hat{g}-module, T a finite-dimensional \hat{b}-submodule of V, $i \in \hat{I}$ and $\xi \in \hat{P}$ such that $\langle \alpha_i^\vee, \xi \rangle \geq 0$. Assume that the following conditions hold:

(i) T is generated by a weight vector $v \in T_{\xi}$ satisfying $e_i v = 0$.

(ii) There is an $\text{ad}(e_i)$-invariant left $U(\hat{n}_+)$-ideal \mathcal{I} such that

$$\text{Ann}_{U(\hat{n}_+)} v = U(\hat{n}_+) e_i + U(\hat{n}_+) \mathcal{I}.$$

(iii) We have $\text{ch}_b F_i T = D_i \text{ch}_b T$.

Let $v' = f_i(\alpha_i^\vee, \xi) v$. Then we have

$$\text{Ann}_{U(\hat{n}_+)} v' = U(\hat{n}_+) e_i^{\langle \alpha_i^\vee, \xi \rangle + 1} + U(\hat{n}_+) r_i(\mathcal{I}),$$

where r_i denotes the algebra automorphism of $U(\hat{g})$ corresponding to the reflection s_i.

Proof. The following proof is essentially same as a part of the proof of [Jos85, Theorem 3.4].

It follows from the $\text{ad}(e_i)$-invariance of \mathcal{I} that

$$U(\hat{n}_+) \mathcal{I} = C[e_i] \mathcal{I} \subseteq \mathcal{I} + U(\hat{n}_+) e_i.$$
Hence (ii) implies \(\text{Ann}_{U(\widehat{\mathfrak{n}})} v = \mathcal{I} \), for \(U(\widehat{\mathfrak{n}}) = U(\widehat{\mathfrak{n}}_+) \oplus U(\widehat{\mathfrak{n}}_-) \). By [Kac90, Lemma 3.8], there is a \(\mathfrak{g} \)-module automorphism \(r'_i \) on \(V \) satisfying \(r'_i(v) \in \mathbb{C}^\times v' \) and \(\text{Ad}(r'_i)x = r_i(x) \) for \(x \in \widehat{\mathfrak{g}} \). Hence by applying \(r_i \) to the equality \(\text{Ann}_{U(\widehat{\mathfrak{n}})} v = \mathcal{I} \), we have \(\text{Ann}_{U(\widehat{\mathfrak{n}})} v' = r_i(\mathcal{I}) \). Now, since (iii) implies

\[
\text{Ann}_{U(\widehat{\mathfrak{n}})} v' = U(\widehat{\mathfrak{n}}_+)e_i^{(\alpha_i^\vee, \xi_i)} + U(\widehat{\mathfrak{n}}_-)\text{Ann}_{U(\widehat{\mathfrak{n}})} v'
\]

by [Jos85, Proposition 3.2], the assertion is proved. \(\square \)

For \(1 \leq j \leq n \) and \(0 \leq i \leq j \), define \(\rho_{i,j} : \hat{\Delta}^\text{re} \to \mathbb{Z}_{\geq 0} \) by

\[
\rho_{i,j}(\alpha) = \sum_{k=j}^n \max\left\{0, -\langle \alpha^\vee, w_i w_{j+1,k}^\delta \rangle \right\},
\]

and put \(\hat{\Delta}^\text{re}_+(i,j) = \{ \alpha \in \hat{\Delta}^\text{re}_+ \mid \rho_{i,j}(\alpha) > 0 \} \). When \(j < n \), we have

\[
\rho_{0,j}(\alpha) = \rho_{j+1,j+1}(\alpha) + \max\left\{0, -\langle \alpha^\vee, \Lambda_j^\vee \rangle \right\} = \rho_{j+1,j+1}(\alpha) \quad \text{for } \alpha \in \hat{\Delta}^\text{te}_+,
\]

which implies \(\hat{\Delta}^\text{te}_+(0,j) = \hat{\Delta}^\text{te}_+(j+1,j+1) \).

Lemma 5.4. Assume \(1 \leq i \leq j \leq n \).

(i) If \(\mathfrak{g} = B_n \), then

\[
\hat{\Delta}^\text{re}_+(i,j) \subseteq \left\{ \alpha_{p,i-1} \mid 1 \leq p < i \right\} \cup \left\{ \alpha_{p,q} \mid 1 \leq p \leq j \leq q < n, \ p \neq i \right\}
\]

\[
\cup \left\{ -\langle \alpha_{i,n} + \alpha_{q,n+1} + \delta \mid j < q \leq n \right\} \cup \left\{ -\langle \alpha_{p,n} + \alpha_{q,n} + \delta \mid j < p \leq q \leq n \right\}.
\]

(ii) If \(\mathfrak{g} = C_n \), then

\[
\hat{\Delta}^\text{re}_+(i,j) \subseteq \left\{ \alpha_{p,i-1} \mid 1 \leq p < i \right\} \cup \left\{ \alpha_{p,q} \mid 1 \leq p \leq j \leq q < n, \ p \neq i \right\}
\]

\[
\cup \left\{ -\langle \alpha_{i,n} + \alpha_{q,n-1} + \delta \mid q = i \ or \ j < q \leq n \right\}
\]

\[
\cup \left\{ -\langle \alpha_{p,n} + \alpha_{q,n-1} + \delta \mid j < p \leq q \leq n \right\}.
\]

Proof. We prove the assertion (i) only (the proof of (ii) is similar). Note that the following two containments hold:

\[
\hat{\Delta}^\text{re}_+(1,j) \subseteq \tau \left(\hat{\Delta}^\text{te}_+(j+1,j+1) \right) \quad \text{for } j < n, \quad (5.2)
\]

\[
\hat{\Delta}^\text{te}_+(i+1,j) \subseteq s_i \left(\hat{\Delta}^\text{te}_+(i,j) \right) \cup \{\alpha_i\} \quad \text{for } 0 < i < j. \quad (5.3)
\]

In fact, (5.2) holds since we have

\[
\rho_{1,j}(\alpha) = \rho_{0,j}(\tau \alpha) = \rho_{j+1,j+1}(\tau \alpha) \quad \text{for } \alpha \in \hat{\Delta}^\text{re}_+
\]

by [Jos85, Lemma 2.1], and (5.3) holds since \(\rho_{i+1,j}(\alpha) = \rho_{i,j}(s_i \alpha) \). Then the assertion can be proved inductively from \(\hat{\Delta}^\text{re}_+(1,n) = \emptyset \) using these containments. \(\square \)

Now let us prove Proposition 5.1. First assume that \(\mathfrak{g} \) is of type \(B \). We verify the assertion

\[
(B_{i,j}) \quad \text{Ann}_{U(\widehat{\mathfrak{n}}_+)} v(i,j) = U(\widehat{\mathfrak{n}}_+) \left(\sum_{\alpha \in \hat{\Delta}^\text{re}_+} \mathbb{C} x^\rho_{i,j}(\alpha)+1 + \text{th}[t] \right)
\]

by the induction on \((i,j) \), which with \(i = j = 1 \) is just the proposition. \((B_{0,n}) \) is obvious since \(D(0,n) = D(\Lambda^n) \) is a trivial \(\widehat{\mathfrak{n}}_+ \)-module and \(\rho_{0,n}(\alpha) = 0 \) for all \(\alpha \in \hat{\Delta}^\text{re}_+ \). We easily see that \((B_{j+1,j+1}) \) implies \((B_{0,j}) \) from (5.1) and \(v(0,j) = v_{\Lambda_j} \otimes v(j+1,j+1) \), and it is also easy to check that \((B_{0,j}) \) implies \((B_{1,j}) \) since \(D(1,j) = P_\tau D(0,j) \) by Lemma 2.6 and \(\rho_{1,j}(\alpha) = \rho_{0,j}(\tau \alpha) \). It remains to show that \((B_{i,j}) \) with \(0 < i < j \) implies \((B_{i+1,j}) \). Let \(\xi(i,j) = \sum_{k=j}^n w_i w_{j+1,k}^\delta \Lambda_k \), which is
the weight of \(v(i,j) \). Since \(\langle \alpha^*_i, w_i w_{j+1} \rangle \delta_i \Lambda^k \geq 0 \) for all \(k \geq j \) by Lemma \([\text{I.9}](\text{ii}), \) we have

\[
J_i(i,j) v(i,j) \in \mathbb{C}^X v(i + 1, j)
\]

and \(\rho_{i+1,j}(\alpha_i) = \rho_{i,j}(\alpha_i) = \langle \alpha^*_i, \xi(i,j) \rangle \). Therefore it suffices to show the \(\text{ad}(e_i) \)-invariance of the left \(U(\widehat{n}_i) \)-ideal

\[
\mathcal{I}_{i,j} = U(\widehat{n}_i) \left(\sum_{\alpha \in \widehat{n}_i^\vee \setminus \{ \alpha_i \}} \mathbb{C} p_{\rho_{i,j}(\alpha)+1} + t h[t] \right)
\]

by Lemma \([\text{I.3} \text{]} \). Note that, if \(\beta \in \widehat{\Delta}^\vee \) is in the form \(\beta = l \alpha + \alpha_i \) with some \(\alpha \in \widehat{\Delta}_+ \) and \(l \in \mathbb{Z}_{\geq 0}, \) then \(\rho_{i,j}(\beta) = 0 \) holds. In fact, the condition implies \(\beta \in \widehat{\Delta}^\vee + \delta, \) or \(\beta \in \{ \alpha_p, i \mid p < i \} \cup \{ \alpha_{p,q} \mid q > i \} \cup \{ \alpha_{i,n} + \alpha_{q,n} \mid q \neq i \} \cup \{ -\alpha_{p,i-1} + \delta \mid p < i \}
\]

\[
\cup \{ -\alpha_{i+1,q} + \delta \mid q > i \} \cup \{ -\alpha_{i+1,n} + \alpha_{q,n} \} \cup \{ -\alpha_{i+1,n} + \alpha_{q,n} + \delta \mid q \neq i, i + 1 \},
\]

and hence \(\rho_{i,j}(\beta) = 0 \) follows from Lemma \([\text{I.3} \text{]} \) and \(0 < i < j. \) From this, the \(\text{ad}(e_i) \)-invariance of \(\mathcal{I}_{i,j} \) is immediately proved.

Next assume that \(g = C_n, \) and define a subset \(S_j \) of \(\widehat{\Delta}^\vee \times \widehat{\Delta}^\vee \) for \(1 \leq j \leq \delta \) by

\[
S_j = \left\{ \left(- (\alpha_{p,n} + \alpha_{q,n-1}) + \delta, - (\alpha_{q,n} + \alpha_{q,n-1}) + \delta \right) \mid j \leq p < q \leq \delta \right\}
\]

We verify the assertion \((C_{i,j})\): \(\text{Ann}_{U(\widehat{n}_i)} v(i,j) = \mathcal{J}_{i,j} \) by the induction on \((i,j), \) where \(\mathcal{J}_{i,j} \) is a \(U(\widehat{n}_i) \)-ideal defined by

\[
\mathcal{J}_{i,j} = U(\widehat{n}_i) \left(\sum_{\alpha \in \widehat{n}_i^\vee \setminus \{ \alpha_i \}} \mathbb{C} p_{\rho_{i,j}(\alpha)+1} + \sum_{(\alpha, \beta) \in \{ \delta_i \mid 1 \leq k < \rho_{i,j}(\alpha)/2 + 1 \}} \mathbb{C} x_{\alpha, \beta} p_{\rho_{i,j}(\alpha)-2k+1} + t h[t] \right).
\]

Here we set \(w(S_j) = \{ (w \alpha, w \beta) \mid (\alpha, \beta) \in S_j \} \) for \(w \in \widehat{W}. \) Note that \((C_{1,1})\) is just the proposition, and \((C_{0,0})\) is obvious.

Let us show that \((C_{j+1,j+1})\) implies \((C_{0,j})\). Since \(v(0,j) = v_{\Lambda_i} \otimes v(j+1, j+1), \) we have \(\text{Ann}_{U(\widehat{n})} v(0,j) = \text{Ann}_{U(\widehat{n}_i)} v(j+1, j+1), \) and hence it suffices to show that \(\mathcal{J}_{0,j} = \mathcal{J}_{j+1,j+1}. \) We have \(\rho_{0,j}(\alpha) = \rho_{j+1,j+1}(\alpha) \) for \(\alpha \in \widehat{\Delta}^\vee \) by \((5.1), \) and a direct calculation shows

\[
s_0 \cdots s_{j-1} S_j = S_{j+1} \cup \left\{ (\alpha_{1,q-1} - (\alpha_{q,n} + \alpha_{q,n-1}) + \delta) \mid j < q \leq \delta \right\}.
\]

Hence it is enough to check that

\[
x_{\rho_{j+1,j+1}(\alpha)-2k+1} \in \mathcal{J}_{j+1,j+1}
\]

for \(\alpha = \alpha_{1,q-1}, \beta = (\alpha_{q,n} + \alpha_{q,n-1}) + \delta \) with \(j < q \) and \(1 \leq k < \rho_{j+1,j+1}(\alpha)/2 + 1. \)

Since \(\beta = \alpha_0 + 2 \alpha, \) it is directly checked for \(l_1 \in \mathbb{Z}_{\geq 2} \) and \(l_2 \in \mathbb{Z}_{\geq 0} \) that

\[
eq_{\alpha} x_{\alpha}^l x_{\beta}^l = x_{\alpha}^{l_1} x_{\beta}^{l_2} e_0 + a_1 x_{\alpha}^{l_1-1} x_{\beta}^{l_2} x_{\alpha_0 + \alpha} + a_2 x_{\alpha}^{l_1-2} x_{\beta}^{l_2+1}
\]

with \(a_1, a_2 \in \mathbb{C}. \) Since \(e_0 \) and \(x_{\alpha_0 + \alpha} \) belong to \(\mathcal{J}_{j+1,j+1}, \) \((5.4)\) is proved inductively using this equality from \(x_{\rho_{j+1,j+1}(\alpha)-1} \in \mathcal{J}_{j+1,j+1}. \)

Finally, let us show that \((C_{i,j})\) with \(0 \leq i < j \) implies \((C_{i+1,j})\). It is easy to see that \(f_i \langle \alpha^*_i, \xi(i,j) \rangle v(i,j) \in \mathbb{C}^X v(i+1, j) \) and \(\rho_{i+1,j}(\alpha^*_i) = \langle \alpha^*_i, \xi(i,j) \rangle, \) where \(\xi(i,j) \) is the weight of \(v(i,j). \) Hence by Lemma \([\text{I.3} \text{]}, \) it suffices to show the \(\text{ad}(e_i) \)-invariance of the left \(U(\widehat{n}_i) \)-ideal

\[
\mathcal{I}_{i,j} = U(\widehat{n}_i) \left(\sum_{\alpha \in \widehat{n}_i^\vee \setminus \{ \alpha_i \}} \mathbb{C} p_{\rho_{i,j}(\alpha)+1} + \sum_{(\alpha, \beta) \in \{ \delta_i \mid 1 \leq k < \rho_{i,j}(\alpha)/2 + 1 \}} \mathbb{C} x_{\alpha, \beta} p_{\rho_{i,j}(\alpha)-2k+1} + t h[t] \right).
\]
First, assume that $0 < i < j$. It is checked in a similar way as above that, if $\beta \in \Delta_+^r$ is in the form $i \alpha + \alpha_0$ with $\alpha \in \Delta_+$ and $l \in \mathbb{Z}_{>0}$, then $\rho_{i,j}(\beta) = 0$.

Since $[x_\alpha, x_\beta] = 0$ for $(\alpha, \beta) \in s_i \cdots s_{j-1}(S_3)$, the ad$(e_i)$-invariance of $\mathcal{L}_{i,j}$ is proved from this. Next, assume that $i = 0$. Using $\Delta_+^r(0,j) = \Delta_+^r(j+1,j+1)$, it is similarly checked that, if $\beta \in \Delta_+^r$ is in the form $l \alpha + \alpha_0$ with $\alpha \in \Delta_+$ and $l \in \mathbb{Z}_{>0}$, then $\rho_{0,j}(\beta) = 0$, or

$$l = 2, \ \alpha = \alpha_{1,q-1} \text{ and } \beta = -(\alpha_{q,n} + \alpha_{q,n-1}) + \delta$$

for some $j < q \leq n$. In the latter case, we see from (5.6) that

$$U(\widehat{\mathfrak{g}}_0)\left(C_{x_{\alpha_0+\alpha}} + \sum_{0 \leq k < \rho_{0,j}(\alpha)/2+1} C_{x_{\rho_{0,j}(\alpha)-2k+1}x_{\beta}} \right)$$

is $\text{ad}(e_0)$-invariant. Now the $\text{ad}(e_0)$-invariance of $\mathcal{L}_{0,j}$ is easily proved, using (5.4). The proof is complete.

5.2. q-characters. Here we recall the definition of q-characters and some results on them, which are necessary in Subsections 5.3 and 5.4. For a finite-dimensional ℓ-weight module V, define its ℓ-weight set $\text{wt}_\ell V$ and q-character $\text{ch}_q V$ by

$$\text{wt}_\ell V = \{ \rho \in P_q \mid V_\rho \neq 0 \} \text{ and } \text{ch}_q V = \sum_{\rho \in P_q} (\dim V_\rho)q_\rho \in Z[P_q]$$

respectively. For finite-dimensional ℓ-weight modules V_1, V_2 and $\rho \in P_q$, it follows that

$$(V_1 \otimes V_2)_\rho = \bigoplus_{\nu \in P_q} (V_1)_\nu \otimes (V_2)_{\rho-\nu},$$

and therefore $\text{ch}_q V_1 \otimes V_2 = \text{ch}_q V_1 \cdot \text{ch}_q V_2$ holds [FR99]. For $i \in I$ and $a \in \mathbb{C}(q)^\times$, define $\alpha_{i,a} \in P_q$ by

$$\alpha_{i,a} = \pi_{2,a}^{(i)} \prod_{j \neq i} \left(\pi_{c_j,i,a}^{(j)} \right)^{-1}.$$

Let Q_q^+ denote the submonoid generated by $\{ \alpha_{i,a} \mid i \in I, a \in \mathbb{C}(q)^\times \}$, and Q_q the corresponding subgroup. We write $\rho \leq \nu$ for $\rho, \nu \in P_q$ if $\nu \rho^{-1} \in Q_q^+$ holds.

Proposition 5.5 ([FM01, Theorem 4.1]). For every $\rho \in P_q^+, \nu \in \text{wt}_\ell L_q(\rho)$ implies $\nu \leq \rho$.

The following proposition is proved from the study of $U_q(\mathfrak{L}sl_2)$-modules in [CP95, FR99, CP95].

Proposition 5.6. Assume that $\mathfrak{g} = sl_2$. Then the following statements hold, where we omit the index i.

(i)

$$\text{ch}_q L_q(\pi_{m,a}) = \pi_{m,a} \sum_{0 \leq k \leq m} \prod_{0 \leq j \leq k-1} \alpha_{aq_m-2j}^{-1}.$$

(ii) If V is an ℓ-highest weight module with ℓ-highest weight $\pi_{m,a}$, then we have

$$\text{ch}_q L_q(\pi_{m,a}) \leq \text{ch}_q V \leq \prod_{1 \leq j \leq m} \text{ch}_q L_q(\pi_{aq_m-2j+1}) = \pi_{m,a} \prod_{1 \leq j \leq m} (1 + \alpha_{aq_m-2j+1}^{-1}),$$

where the inequality $f \leq g$ means $g - f \in Z_{\geq 0}[P_q]$. In particular, the dimension of each ℓ-weight space of V is at most 1.

Recall the map $P_q \ni \rho \mapsto \rho_{J,I}$ for a subset $J \subseteq I$ defined in Subsection 3.3. The following proposition is an easy consequence of results in [FM01, Section 3].
Proposition 5.7. Let V be a finite-dimensional ℓ-weight module, and $J \subseteq I$ a subset such that g_J is simple. For an ℓ-weight vector $v \in V_q$, let $W = U_q(Lg_J)v$. Assume that a vector $w \in W$ is ℓ-weight with respect to $U_q(Lh_J)$, and its ℓ-weight is

$$\rho_j \prod_{i \in J, a \in \mathbb{C}(q)^{\times}} (\alpha_{i,a})^{v(i,a)} \in P_{q,j}$$
with some integers $v(i,a)$. Then w is also ℓ-weight with respect to $U_q(Lh)$, and its ℓ-weight is $\rho \prod \alpha_{i,a}^{v(i,a)} \in P_{q}$.

Let $j \in I$. We say $\rho = \prod_{i \in J, a \in \mathbb{C}(q)^{\times}} \omega_{i,a}^{u(i,a)} \in P_{q}$ is j-dominant if $u(j,a) \geq 0$ for all $a \in \mathbb{C}(q)^{\times}$. The following proposition was established by Hernandez.

Proposition 5.8 ([Her08, Lemma 5.6]). Let $\rho \in P_{q}^{+}$, and $\nu \in \text{wt}_{\ell}L_q(\rho) \setminus \{\rho\}$. Then there exist some $j \in I$ and $\nu' \in \text{wt}_{\ell}L_q(\rho)$ such that

(i) ν' is j-dominant,
(ii) $\nu' = \nu \prod_{a \in \mathbb{C}(q)^{\times}} \alpha_{i,a}^{\omega_{i,a}^{u(i,a)} - 1} - 1$ and $\nu' > \nu$.
(iii) $(U_q(Lg_J)L_q(\rho)_{\nu'}) \cap L_q(\rho)_{\nu' \neq 0}$.

Definition 5.9 ([FM01]). Assume that $\rho \in P_{q}$ is in the form $\prod_{i \in I, k \in \mathbb{Z}} \omega_{i,k}^{u(i,k)}$ with some $a \in \mathbb{C}(q)^{\times}$ and $u(i,k) \in \mathbb{Z}$. We say ρ is right-negative if $k_{\text{max}} = \max\{k \in \mathbb{Z} | u(i,k) \neq 0 \text{ for some } i \in I\}$ satisfies $u(i,k_{\text{max}}) \leq 0$ for all $i \in I$.

Note that if ρ is right-negative, ρ is not dominant. We easily see that $\alpha_{i,a}^{-1}$ are right-negative.

Lemma 5.10 ([FM01]). (i) If ρ is right-negative and $\nu \leq \rho$, then ν is also right-negative.
(ii) If $\rho \in \text{wt}_{\ell}L_q(\omega_{i,a}) \setminus \{\omega_{i,a}\}$, then $\rho \leq \omega_{i,a} \alpha_{i,a}^{-1}$. In particular ρ is right-negative by (i).

5.3. Proof of $M(\lambda) \rightarrow L(\pi)$. For $1 \leq i \leq j \leq n$ and $p \in \mathbb{Z}$, define $v_p(i,j) \in L_q(\pi)$ by

$$v_p(i,j) = \begin{cases} x_{i,p}x_{i+1,0}x_{i+2,0} \cdots x_{j,0}^{u_{\pi}} & \text{if } \pi \text{ satisfies (I)}, \\ x_{j,p}x_{j-1,0}x_{j-2,0} \cdots x_{i,0}^{v_{\pi}} & \text{if } \pi \text{ satisfies (II)}, \end{cases}$$

where v_{π} is an ℓ-highest weight vector and (I), (II) are the conditions in Theorem 3.6. Let $(a_i)_{i \in J}$ be the sequence of rational functions in Theorem 3.6 associated with π. The following proposition is crucial in this subsection.

Proposition 5.11. Let $1 \leq i \leq j \leq n$.
(i) For all $p \in \mathbb{Z}$, $v_p(i,j)$ is a scalar multiple of $v_0(i,j)$.
(ii) The vector $v_0(i,j)$ is a simultaneous $U_q(Lh)$-eigenvector, and its ℓ-weight is $\pi \prod_{1 \leq k \leq j} \alpha_{k,a_k}^{-1} q_k^{-k}$.

Let us assume this proposition for a moment. To prove $M(\lambda) \rightarrow L(\pi)$, we need to check that the vector $v_{\pi} = 1 \otimes v_{\pi} \in L(\pi)$ satisfies the defining relations of $M(\lambda)$. Using the commutativity $[x_{k,r}, x_{i,s}] = 0$ for $|k - l| \geq 2$, we easily see that Proposition 5.11 (i) implies

$$[x_{i,1}, x_{i+1,0}, \cdots, [x_{j-1,0}, x_{i,0}]]v_{\pi} \in V_q(\lambda) \subseteq L_q(\pi) \text{ if } \pi \text{ satisfies (I)},$$
and

$$[x_{i,1}, [x_{j-1,0}, \cdots, [x_{i+1,0}, x_{i,0}]]v_{\pi} \in V_q(\lambda) \subseteq L_q(\pi) \text{ if } \pi \text{ satisfies (II)}$$
for all $1 \leq i \leq j \leq n$. Here $V_q(\lambda)$ denotes (by abuse of notation) the $U_q(g)$-submodule of $L_q(\pi)$ generated by v_{π}. By the definition of $L(\pi)$, this implies

$$(f_\alpha \otimes t)\pi_{\pi} \in V(\lambda) \subseteq L(\pi) \text{ if } \alpha = \alpha_i + \cdots + \alpha_j \in \Delta_+^1.$$
Since the restriction of the surjection $L(\pi) \to V(\lambda, 0)$ in Lemma 4.3 (i) on $V(\lambda) \subseteq L(\pi)$ is an isomorphism, this implies $(e_\alpha \otimes t)\pi_\alpha = 0$ for all $\alpha \in \Delta_+$. The other relations are proved from this relation or follow from Lemma 4.3. Hence the assertion is proved.

The following lemma was shown in [CP95a, Lemma 3.6].

Lemma 5.12. Assume that g is of type ABC. Let $i \in I$, $\mu \in P^+$ be such that $\langle \alpha'_i, \mu \rangle = 0$ for $i < j < n$, and $\rho \in P^+$ such that $L_q(\rho)$ is a minimal affinization of $V_q(\mu)$. Then for all $p \in \mathbb{Z}$, the vector $v_p(i, n)$ is a scalar multiple of $v_0(i, n)$, where $v_p(i, n) \in L_q(\rho)$ are defined similarly as above.

We verify Proposition 5.11 by the induction on $j - i$, assuming that π satisfies condition (I). (The proof for condition (II) is similar). In view of Corollary 3.14, the case $i = j$ follows from Theorem 5.11 and Proposition 5.6. Let $i \leq j - 1$. Since $\lambda_j = 0$ implies $v_p(i, j) = 0$ for all $p \in \mathbb{Z}$, we may assume $\lambda_j > 0$. By the induction hypothesis, $v_p(i, j, j) = 0$ is a simultaneous π-eigenvector with ℓ-weight $\nu = \pi \prod_{i+1 \leq k \leq j} \alpha^{-1}_{k,a_k q_k}$. Let $W = U_q(L\mathfrak{h}) v_0(i + 1, j) \subseteq L_q(\pi)$. Then W is an ℓ-highest weight $U_q(L\mathfrak{h})$-module, and its ℓ-highest weight with respect to $U_q(L\mathfrak{h})$ is $\nu = \pi \nu(\ell) = \prod_{1 \leq k \leq \ell - e_i, i+1} (1 - a_i q_k^{-2k + 1} u)$. Hence by Proposition 5.6 (ii), each ℓ-weight space of W is 1-dimensional. Let us assume that the assertion (i) of Proposition 5.11 does not hold, which implies that the dimension of the space $\sum_p C(q)x_{p}^- v_0(i + 1, j)$ is at least 2. Hence we can take $Y_s \in \sum_p C(q)x_{p}^- v_0(i + 1, j)$ such that $0 \neq Y_s v_0(i + 1, j) \in L_q(\pi)\nu^{-1}_{i+1}$. For some $b_s \in n_q^+ \cap b_1 \neq b_2$, using Proposition 5.7, we have $l = \min \{i < l' < j \mid \lambda_{l'} > 0\}$, which exists by Lemma 5.12 and Corollary 3.10. We easily see that $\nu \alpha_{i,b}^{-1}$ is not $(l+1)$-dominant, and hence there exists some $p_s \in \mathbb{Z}$ such that $x_{l+1,p}^- Y_s v_0(i+1, j) \neq 0$. From this and the induction hypothesis, we see that $Y_s x_{l+1,0}^- x_{1,0}^- v_0(l + 2, j)$ is a nonzero ℓ-weight vector, and by Proposition 5.7 its ℓ-weight is $\nu \alpha_{i,b}^{-1} \alpha_{i+1,a_i q_i}^{\lambda_i} = \prod_{1 \leq k \leq \ell, i \neq j \neq l+1} \alpha_{k,a_k q_k}^{\lambda_k}$. By repeating this argument, we finally see that $Y_s v_0(i + 1, l)$ is a nonzero ℓ-weight vector with ℓ-weight $\nu \alpha_{i,b}^{-1} \alpha_{l+1,a_l q_l}^{\lambda_l} = \prod_{1 \leq k \leq \ell, i \neq j \neq l+1} \alpha_{k,a_k q_k}^{\lambda_k}$ for $s = 1, 2$. Since $b_1 \neq b_2$, this contradicts Lemma 5.12, and the assertion (i) is proved. Now the assertion (ii) is proved from (i) and the induction hypothesis. The proof is complete.

Remark 5.13. In type B, $M(\lambda) \to L(\pi)$ is also proved in [Mou11, Proposition 3.22] using the Frenkel-Mukhin algorithm.

5.4. **Proof of $L(\pi) \to D(w_0 \xi_1, \ldots, w_0 \xi_n)$.** In this proof we use the following obvious fact repeatedly without further mention: if M, N are $\mathfrak{gl}(t)$-modules and N is cyclic with generator v, then a homomorphism $M \to N$ containing v in its image is surjective. We begin with the proof of the following lemma (note that $\tilde{i} = i$ holds for all $i \in I$ in type BC).

Lemma 5.14. For every $i \in I$, $m \in \mathbb{Z}_{\geq 0}$ and $a \in \mathbb{C}(q)^{\times}$,

$$L(\pi^{(i)}_{m,a}) \cong D(-m a_i + [d, m/2] \Lambda_0).$$

Proof. If $d, m/2 \in \mathbb{Z}$, the assertion follows from [CM06, Proposition 5.1.3] (see also [FL07, Theorem 4]). Hence we may assume $d, m/2 \notin \mathbb{Z}$, which is equivalent
By Corollary 5.17, we have a nonzero homomorphism

$$L(\pi_{m,a}^{(i)}) \hookrightarrow D(-2v_{i} + \Lambda_{0})^{\otimes k} \otimes D(-v_{i} + \Lambda_{0})$$

by [CM06], Theorem 2.2], which implies

$$L(\pi_{m,a}^{(i)}) \cong D(-2v_{i} + \Lambda_{0}, \ldots, 2v_{i} + \Lambda_{0}, -v_{i} + \Lambda_{0}).$$

Since $w_{a}w_{1,1}(\Lambda_{0}) = -2v_{i} + \Lambda_{0}$ and $w_{a}w_{1,1}(\Lambda_{0}) = -v_{i} + \Lambda_{0}$ hold by Lemma 4.9 (i), we have

$$D(-2v_{i} + \Lambda_{0}, 2v_{i} + \Lambda_{0}, -v_{i} + \Lambda_{0}) = F_{w_{a}w_{1,1}} \left(D(\Lambda_{0})^{\otimes k} \otimes D(\Lambda_{0}) \right)$$

$$\cong D(-m\Lambda_{0} + (k + 1)\Lambda_{0})$$

by Proposition 2.7. The assertion is proved.

Hence in type B, $L(\pi) \to D(w_{a}\xi_{1}, \ldots, w_{a}\xi_{n})$ follows from [Mou1], Proposition 3.21]. (Note that this proposition does not imply our assertion in type C.)

In the rest of this subsection, we assume that g is of type C. For the proof of the assertion in this type, we need the following lemma.

Lemma 5.15. Let $1 \leq r < s \leq n - 1$, and assume that ρ is an element of P_{α}^{+} such that $L_{q}(\rho)$ is a minimal affinization of $V_{q}(\Lambda_{r}, \Lambda_{s})$. Then we have

$$L(\rho) \cong D(-\Lambda_{r} - \Lambda_{s} + \Lambda_{0}).$$

Assuming this lemma for a while, we shall prove $L(\pi) \to D(w_{a}\xi_{1}, \ldots, w_{a}\xi_{n})$ for π satisfying condition (I). (The proof for condition (II) is similar.) The proof is carried out in a similar line as that of [Mou1], Proposition 3.21]. First we recall the following theorem, which is obtained by taking the dual of [Cha02, Theorem 5.1] and using Lemma 3.3.

Theorem 5.16. Let $i_{1}, \ldots, i_{p} \in I$, $b_{1}, \ldots, b_{p} \in \mathbb{Q}(q)^{\times}$, and $l_{1}, \ldots, l_{p} \in \mathbb{Z}_{>0}$, and assume that

$$b_{r}\gamma_{i_{r}}^{l_{r}} \notin q^{\mathbb{Z}_{>0}b_{s}\gamma_{i_{s}}^{l_{s}}} \quad \text{for all } r < s. \quad (5.7)$$

Then the submodule of $L_{q}(\pi_{i_{1},b_{1}}^{(1)}) \otimes \cdots \otimes L_{q}(\pi_{i_{p},b_{p}}^{(1)})$ generated by the tensor product of ℓ-highest weight vectors is isomorphic to $L_{q}(\Pi_{k=1}^{p} \pi_{i_{k},b_{k}}^{(1)})$.

The following corollary is an easy consequence of this theorem.

Corollary 5.17. Assume that $i_{1}, \ldots, i_{p} \in I$, $b_{1}, \ldots, b_{p} \in \mathbb{Q}(q)^{\times}$, and $l_{1}, \ldots, l_{p} \in \mathbb{Z}_{>0}$ satisfy (5.7). Then for any sequence $0 = k_{0} < k_{1} < \cdots < k_{r-1} < k_{r} = p$, the submodule of

$$L_{q}\left(\Pi_{k=1}^{k_{0}} \pi_{i_{k},b_{k}}^{(1)} \right) \otimes \cdots \otimes L_{q}\left(\Pi_{k=k_{r}+1}^{p} \pi_{i_{k},b_{k}}^{(1)} \right)$$

generated by the tensor product of ℓ-highest weight vectors is isomorphic to $L_{q}(\Pi_{k=1}^{p} \pi_{i_{k},b_{k}}^{(1)})$.

Let $(a_{i})_{i \in I}$ be the sequence in Theorem 3.1 associated with π. For each $i \in I$, define $\pi^{(i)} \in P_{q}^{+}$ by

$$\pi^{(i)} = \begin{cases}
\pi_{\lambda_{i} - \rho, a_{i}q^{\rho}}^{(1)} \quad & \text{if } \lambda_{i}^{\rho} = 0, \\
\pi_{\rho, a_{i}q^{\rho} - \lambda_{i}^{\rho} + 1}^{(1)} \quad & \text{otherwise}.
\end{cases}$$

By Corollary 5.17, we have a nonzero $U_{q}(L_{g})$-module homomorphism

$$L_{q}(\pi) \to L_{q}(\pi^{(1)}) \otimes \cdots \otimes L_{q}(\pi^{(2)}) \otimes L_{q}(\pi^{(1)}),$$
which induces a $U_\Lambda(L_\mathfrak{g})$-module homomorphism

$$L_\Lambda(\pi) \rightarrow L_\Lambda(\pi^{(1)}) \otimes \cdots \otimes L_\Lambda(\pi^{(n)}) \otimes L_\Lambda(\pi^{(t)}).$$

By applying $C \otimes \Lambda$ and taking the pull-back, we have a $\mathfrak{g}[t]$-module homomorphism $L(\pi) \rightarrow \bigotimes_{i=0}^n L(\pi^{(i)})$ mapping \mathfrak{p}_π to $\mathfrak{p}_{\pi^{(1)}} \otimes \cdots \otimes \mathfrak{p}_{\pi^{(n)}}$. Hence it suffices to show for each $1 \leq i \leq n$ the existence of a surjective homomorphism $L(\pi^{(i)}) \rightarrow D(w_i \xi_i)$, since this induces

$$L(\pi) \rightarrow U(\mathfrak{g}[t])(\mathfrak{p}_{\pi^{(1)}} \otimes \cdots \otimes \mathfrak{p}_{\pi^{(n)}}) \rightarrow D(w_i \xi_n, \ldots, w_i \xi_1),$$

and the last term is isomorphic to $D(w_0 \xi_1, \ldots, w_0 \xi_n)$ by definition. If $p_i = 0$ or $i^q = 0$, this assertion follows from Lemma 5.14. Assume that $p_i = 1$ and $i^q \neq 0$, and put

$$\pi_1 = \pi^{(1)}_{\lambda_i - p_i - 1, a_i q^{\epsilon_i} - 1}, \quad \pi_2 = \mathfrak{w}_r, a_i q^{\lambda_i - i^{q-1}} \mathfrak{w}_s, a_i q^{\lambda_i - 1}. $$

There is a nonzero homomorphism $L_q(\pi^{(1)}) \rightarrow L_q(\pi_1) \otimes L_q(\pi_2)$ by Corollary 5.17, and then using the same argument as above, we obtain a $\mathfrak{g}[t]$-module homomorphism $L(\pi^{(1)}) \rightarrow L(\pi_1) \otimes L(\pi_2)$. By Lemmas 5.14 and 5.15, this induces a surjective homomorphism

$$L(\pi^{(1)}) \rightarrow D\left(- (\lambda_i - p_i - 1) \mathfrak{w}_i + \frac{1}{2}(\lambda_i - p_i - 1) \Lambda_0, - \mathfrak{w}_i - \mathfrak{w}_i + \Lambda_0 \right).$$

By Proposition 2.7 and Lemma 3.9, we see that the right-hand side is isomorphic to

$$F_{w_i w_{[1,i]}} \left(D\left(\frac{1}{2}(\lambda_i - p_i - 1) \Lambda_0 \right) \otimes D(\mathfrak{w}_i - i^{q-1} + \Lambda_0) \right) \cong D(w_i \xi_i),$$

and hence the assertion is proved.

It remains to show Lemma 5.15. Fix $1 \leq r < s \leq n - 1$.

Lemma 5.18. As \mathfrak{g}-modules,

$$D(- \mathfrak{w}_r - \mathfrak{w}_s + \Lambda_0) \cong \bigoplus_{k=0}^r V(\mathfrak{w}_r - k + \mathfrak{w}_s - k).$$

Proof. Let $\tilde{J} = \{0, 1, \ldots, s - 1\} \subseteq \tilde{I}$ and $J = \{1, \ldots, s - 1\} \subseteq I$, and define $\tilde{\mathfrak{g}}_J$ by the Lie subalgebra of $\tilde{\mathfrak{g}}$ generated by $\{e_i, f_i \mid i \in \tilde{J}\}$ and $\tilde{\mathfrak{h}}$. We also define $\mathfrak{g}_J \subseteq \mathfrak{g}$ similarly. Note that we have

$$D(- \mathfrak{w}_r - \mathfrak{w}_s + \Lambda_0) = F_{w_i w_{[1,i]}} D(\mathfrak{w}_s - r + \Lambda_0).$$

Let w_i^J be the longest element of the Weyl group of \mathfrak{g}_J. Then $F_{w_i^J w_{[1,i]}} D(\mathfrak{w}_s - r + \Lambda_0)$ is a simple $\tilde{\mathfrak{g}}_J$-module with highest weight $\mathfrak{w}_s - r + \Lambda_0$, and therefore we have

$$F_{w_i^J w_{[1,i]}} D(\mathfrak{w}_s - r + \Lambda_0) \cong \bigoplus_{k=0}^r V_J(\mathfrak{w}_r - k + \mathfrak{w}_s - k)$$

as \mathfrak{g}_J-modules, where $V_J(\nu)$ denotes the simple highest weight \mathfrak{g}_J-module with highest weight ν. Since $V_J(\nu)$ are Demazure modules for \mathfrak{g}, $F_{w_i^J w_{[1,i]}} V_J(\nu) = V(\nu)$ holds. Hence the assertion is proved. \qed

We also need the following lemma.

Lemma 5.19. There exists an exact sequence

$$0 \rightarrow L_q(\mathfrak{w}_r - \mathfrak{w}_s, a_i q^{\epsilon_i} - r + 2) \rightarrow L_q(\mathfrak{w}_r, a_i) \otimes L_q(\mathfrak{w}_s, a_i q^{\epsilon_i} - r + 2) \rightarrow L_q(\mathfrak{w}_{r-1, a_i} \mathfrak{w}_{s+1, a_i q^{\epsilon_i} - r + 1}).$$
Assuming this lemma for a moment, we shall complete the proof of Lemma 5.19. Take \(\rho \) as in Lemma 5.19. By the results in Subsections 5.1 and 5.3, we have

\[
D(-\varpi_r - \varpi_s + A_0) \twoheadrightarrow M(\varpi_r - \varpi_s) \twoheadrightarrow L(\rho),
\]

Hence it suffices to show that \(\dim L(\rho) \geq \dim D(-\varpi_r - \varpi_s + A_0) \). Recall that every fundamental module \(L_q(\varpi_{i,a}) \) is simple as a \(U_q(\mathfrak{g}) \)-module (in type \(C \)), and it follows for \(1 \leq i < j \leq n \) that

\[
V_q(\varpi_i) \otimes V_q(\varpi_j)
\]

By Theorem 3.3, \(\rho = \varpi_{r,a} \varpi_{s,a} q^{i-r+2} \) for some \(a \in \mathbb{C}(q)^{\times} \) and \(\varepsilon \in \{ \pm 1 \} \). Let us assume \(\varepsilon = +1 \) first. Using

\[
\rho \ni \varpi_{r,a} \varpi_{s,a} q^{i-r+2} \to \varpi_{r-1,a} \varpi_{s+a} q^{i-r+1}.
\]

we see from Lemma 5.19 and (5.8) that \(L_q(\rho) \) contains \(V_q(\varpi_{r-1} + \varpi_{s-1}) \) (0 \(\leq k \leq r \)) as simple \(U_q(\mathfrak{g}) \)-module components. Hence \(\dim L(\rho) = \dim L_q(\rho) \geq \dim D(-\varpi_r - \varpi_s + A_0) \) holds by Lemma 5.18 as desired. Since \(\dim L_q(\rho) = \dim L_q(\rho) \) holds by Lemma 5.19, the case \(\varepsilon = -1 \) is also proved.

Now let us prove Lemma 5.19. It suffices to show that

\[
\text{wt}(L_q(\varpi_{r,a}) \otimes L_q(\varpi_{s,a} q^{i-r+2})) \cap P_+^+ = \{ \varpi_{r,a} \varpi_{s,a} q^{i-r+2}, \varpi_{r-1,a} \varpi_{s+1,a} q^{i-r+1} \}
\]

and each dominant weight space is 1-dimensional. Assume that \(\rho_1 \in \text{wt} L_q(\varpi_{r,a}) \) and \(\rho_2 \in \text{wt} L_q(\varpi_{s,a} q^{i-r+2}) \) satisfy \(\rho_1, \rho_2 \in P_+^+ \). If \(\rho_2 = \varpi_{s,a} q^{i-r+2} \), it follows that

\[
\rho_1 \rho_2 \leq \varpi_{r,a} \varpi_{s,a} q^{i-r+2} \alpha_{s,a}^{-1} \alpha_{s,a}^{-1}.
\]

by Lemma 5.10 (ii), and therefore \(\rho_1, \rho_2 \) is right-negative by Lemma 5.10 (i). Hence we have \(\rho_2 = \varpi_{s,a} q^{i-r+2} \).

We need to show one more. For \(\nu \in \text{wt} L_q(\varpi_{r,a}) \), define \(u_i(\nu) \in \mathbb{Z}_{\geq 0} \) for \(i \in I \) by \(\varpi_r - \text{wt}(\nu) = \sum_{i \in I} u_i(\nu) \alpha_i \). Let \(u(\nu) = \sum_{i \in I} u_i(\nu) \in \mathbb{Z}_{\geq 0} \).

Lemma 5.20. Let \(r \leq k \leq n \), and assume that \(\nu \in \text{wt} L_q(\varpi_{r,a}) \) satisfies \(u_k(\nu) > 0 \). Then \(\nu \leq \varpi_{r,a} \alpha_{k,a}^{-1} \) holds, where we set \(p(k) = k - r + 1 + \delta_{kn} \).

Proof. We prove the assertion by the induction on \(k \). The case \(k = r \) follows from Lemma 5.10 (ii). Let \(k > r \), and assume that there is an element \(\nu \) such that \(u_k(\nu) > 0 \) and \(\nu \not\leq \varpi_{r,a} \alpha_{k,a}^{-1} \). We may assume further that \(u(\nu) \) is minimal among such elements. By Proposition 5.3, there exist \(j \in I \) and \(\nu' \in \text{wt} L_q(\varpi_{r,a}) \) satisfying the conditions (i)–(iii) therein. If \(u_k(\nu') > 0 \), then \(\nu' \) also satisfies the assumption of \(\nu \), which contradicts the minimality of \(u(\nu) \). Hence \(j = k \) and \(u_k(\nu') = 0 \) follow. On the other hand, since \(u_{k-1}(\nu') > 0 \) obviously holds, we have \(u_{k-1}(\nu') > 0 \). Then we see from the weight set of \(L_q(\varpi_{r,a}) \equiv V_q(\varpi_r) \) that \(u_{k-1}(\nu') = 1 \) and \(u_l(\nu') = 0 \) for \(l \geq k \), and therefore we have

\[
\nu' \in \varpi_{r,a} \alpha_{k-1,a}^{-1} \prod_{l<k-1, b \in \mathbb{C}(q)^{\times}} \alpha_{l,b}^{-1} / \mathbb{Z}_{\leq 0} \alpha_{l,b}^{-1}
\]

by the induction hypothesis. Thus it follows that \(\nu'(u) = 1 - a q^{p(k-l)} u \). Then by Propositions 5.10 and 5.14, condition (iii) implies \(\nu = \nu' \alpha_{k,a}^{-1} \leq \varpi_{r,a} \alpha_{k,a}^{-1} \), which is a contradiction. The lemma is proved. \(\square \)
This lemma implies that, if \(\nu \in \text{wt}_L L_q(\varpi_{r,a}) \) satisfies \(u_k(\nu) > 0 \) for some \(k > s \), then \(\nu \varpi_s a q^{-r+2} \) is right-minimal. Hence \(u_k(\rho_1) = 0 \) holds for all \(k > s \). Moreover \(\rho_1 \varpi_s a q^{-r+2} \in P_q^+ \) implies \(\text{wt}(\rho_1) + \varpi_s \in P^+ \). Hence we have
\[
\text{wt}(\rho_1) \in \{ \varpi_r, \varpi_{r-1} - \varpi_s + \varpi_{s+1} \}.
\]
Then we see from [CM06a, Theorem 2.7] that
\[
\rho_1 \in \{ \varpi_{r,a}, \varpi_{r-1,aq} \varpi_{s,aq^{-r+2}} \varpi_{s+1,aq^{-r+1}} \}
\]
and \(\dim L_q(\varpi_{r,a})_{\rho_1} = 1 \). Hence we have
\[
\rho_1 \rho_2 = \rho_1 \varpi_s a q^{-r+2} \in \{ \varpi_{r,a} \varpi_{s,aq^{-r+2}}, \varpi_{r-1,aq} \varpi_{s+1,aq^{-r+1}} \},
\]
and \(\dim \left(L_q(\varpi_{r,a}) \otimes L_q(\varpi_{s,aq^{-r+2}}) \right)_{\rho_1, \rho_2} = 1 \), as desired. The proof is complete.

Acknowledgment. A part of this work was carried out during the visit of the author to University of California, Riverside. He would like to express his gratitude to V. Chari for her hospitality and fruitful discussion. He also thank R. Kodera for helpful comments. This work was supported by World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan.

References

[Beck94] J. Beck. Braided group action and quantum affine algebras. *Comm. Math. Phys.*, 165(3):555–568, 1994.

[CG11] V. Chari and J. Greenstein. Minimal affinizations as projective objects. *J. Geom. Phys.*, 61(3):594–609, 2011.

[CH10] V. Chari and D. Hernandez. Beyond Kirillov-Reshetikhin modules. In *Quantum affine algebras, extended affine Lie algebras, and their applications*, volume 506 of *Contemp. Math.*, pages 49–81. Amer. Math. Soc., Providence, RI, 2010.

[Cha05] V. Chari. Minimal affinizations of representations of quantum groups: the rank 2 case. *Publ. Res. Inst. Math. Sci.*, 31(5):873–911, 1995.

[Cha01] V. Chari. On the fermionic formula and the Kirillov-Reshetikhin conjecture. *Int. Math. Res. Not. IMRN*, (12):629–654, 2001.

[Cha02] V. Chari. Braided group actions and tensor products. *Int. Math. Res. Not.*, (7):357–382, 2002.

[CM06a] V. Chari and A. Moura. Characters of fundamental representations of quantum affine algebras. *Acta Appl. Math.*, 90(1-2):43–63, 2006.

[CM06b] V. Chari and A. Moura. The restricted Kirillov-Reshetikhin modules for the current and twisted current algebras. *Comm. Math. Phys.*, 266(2):431–454, 2006.

[CP91] V. Chari and A. Pressley. Quantum affine algebras. *Comm. Math. Phys.*, 142(2):261–283, 1991.

[CP94] V. Chari and A. Pressley. *A guide to quantum groups*. Cambridge University Press, Cambridge, 1994.

[CP95a] V. Chari and A. Pressley. Minimal affinizations of representations of quantum groups: the nonsimply-laced case. *Lett. Math. Phys.*, 35(2):99–114, 1995.

[CP95b] V. Chari and A. Pressley. Quantum affine algebras and their representations. In *Representations of groups (Banff, AB, 1994)*, volume 16 of *CMS Conf. Proc.*, pages 59–78. Amer. Math. Soc., Providence, RI, 1995.

[CP96a] V. Chari and A. Pressley. Minimal affinizations of representations of quantum groups: the irregular case. *Lett. Math. Phys.*, 36(3):247–266, 1996.

[CP96b] V. Chari and A. Pressley. Minimal affinizations of representations of quantum groups: the simply laced case. *Lett. Math. Phys.*, 38(1):1–30, 1996.

[CP01] V. Chari and A. Pressley. Weyl modules for classical and quantum affine algebras. *Represent. Theory*, 5:191–223 (electronic), 2001.

[Dri87] V. G. Drinfel’d. A new realization of Yangians and of quantum affine algebras. *Dokl. Akad. Nauk SSSR*, 296(1):13–17, 1987.

[FL06] G. Fourier and P. Littelmann. Tensor product structure of affine Demazure modules and limit constructions. *Nagoya Math. J.*, 182:171–198, 2006.

[FL07] G. Fourier and P. Littelmann. Weyl modules, Demazure modules, KR-modules, crystals, fusion products and limit constructions. *Adv. Math.*, 211(2):566–593, 2007.
[FM01] E. Frenkel and E. Mukhin. Combinatorics of q-characters of finite-dimensional representations of quantum affine algebras. *Comm. Math. Phys.*, 216(1):23–57, 2001.

[FR99] E. Frenkel and N. Reshetikhin. The q-characters of representations of quantum affine algebras and deformations of W-algebras. In *Recent developments in quantum affine algebras and related topics (Raleigh, NC, 1998)*, volume 248 of Contemp. Math., pages 163–205. Amer. Math. Soc., Providence, RI, 1999.

[Her07] D. Hernandez. On minimal affinizations of representations of quantum groups. *Comm. Math. Phys.*, 276(1):221–259, 2007.

[Her08] D. Hernandez. Smallness problem for quantum affine algebras and quiver varieties. *Ann. Sci. Éc. Norm. Supér. (4)*, 41(2):271–306, 2008.

[HJ12] D. Hernandez and M. Jimbo. Asymptotic representations and Drinfeld rational fractions. *Compos. Math.*, 148(5):1593–1623, 2012.

[HK02] J. Hong and S.-J. Kang. *Introduction to quantum groups and crystal bases*, volume 42 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2002.

[Jim86] M. Jimbo. A q-analogue of $U(gl(N + 1))$, Hecke algebra, and the Yang-Baxter equation. *Lett. Math. Phys.*, 11(3):247–252, 1986.

[Jos85] A. Joseph. On the Demazure character formula. *Ann. Sci. École Norm. Sup. (4)*, 18(3):389–419, 1985.

[Kac90] V.G. Kac. *Infinite-dimensional Lie algebras*. Cambridge University Press, Cambridge, third edition, 1990.

[Kum02] S. Kumar. *Kac-Moody groups, their flag varieties and representation theory*, volume 204 of *Progress in Mathematics*. Birkhäuser Boston Inc., Boston, MA, 2002.

[LLM02] V. Lakshmibai, P. Littelmann, and P. Magyar. Standard monomial theory for Bott-Samelson varieties. *Compositio Math.*, 130(3):293–318, 2002.

[Lus93] G. Lusztig. *Introduction to quantum groups*, volume 110 of *Progress in Mathematics*. Birkhäuser Boston Inc., Boston, MA, 1993.

[Mou10] A. Moura. Restricted limits of minimal affinizations. *Pacific J. Math.*, 244(2):359–397, 2010.

[MP11] A. Moura and F. Pereira. Graded limits of minimal affinizations and beyond: the multiplicity free case for type E_6. *Algebra Discrete Math.*, 12(1):69–115, 2011.

[MY13] E. Mukhin and C. A. S. Young. Affinization of category \mathcal{O} for quantum groups. *Trans. Amer. Math. Soc.*, 2013.

[Nao12] K. Naoi. Fusion products of Kirillov–Reshetikhin modules and the $X = M$ conjecture. *Adv. Math.*, 231(3-4):1546–1571, 2012.