Dynamic Changes in Protein-Protein Interaction and Protein Phosphorylation Probed with Amine-reactive Isotope Tag*

Marcus B. Smolka, Claudio P. Albuquerque, Sheng-hong Chen, Kristina H. Schmidt, Xiao X. Wei, Richard D. Kolodner, and Huilin Zhou‡

We present an approach for quantitative analysis of changes in the composition and phosphorylation of protein complexes by MS. It is based on a new class of stable isotope-labeling reagent, the amine-reactive isotope tag (N-isotag), for specific and quantitative labeling of peptides following proteolytic digestion of proteins. Application of the N-isotag method to the analysis of Rad53, a DNA damage checkpoint kinase in Saccharomyces cerevisiae, led to the identification of dynamic associations between Rad53 and the nuclear transport machinery, histones, and chromatin assembly proteins in response to DNA damage. Over 30 phosphorylation sites of Rad53 and its associated proteins were identified and quantified, and they showed different changes in phosphorylation in response to DNA damage. Interestingly, Ser789 of Rad53 was found to be a major initial phosphorylation site, and its phosphorylation regulates the Rad53 abundance in response to DNA damage. Collectively, these results demonstrate that N-isotag-based quantitative MS is generally applicable to study dynamic changes in the composition of protein complexes and their phosphorylation patterns in a site-specific manner in response to different cell stimuli. Molecular & Cellular Proteomics 4:1358–1369, 2005.

MS is a central tool in proteomics and is widely used to study protein complexes and their post-translational modifications. For stably associated protein complexes, it is possible to carry out a multistep purification to obtain highly purified proteins for MS analysis (1, 2). However, numerous biologically important protein-protein interactions are dynamic and are regulated by reversible protein modifications such as phosphorylation. It is therefore important to develop new tools for quantitative analysis of dynamic changes in protein complexes under different cell stimuli. Given the nature of dynamic protein-protein interactions, rapid single-step protein purification should help to preserve the interaction (3, 4). However, such purification procedures often result in higher levels of contaminating proteins, which may obscure the observation of less abundant yet specifically associated proteins by conventional in-gel digestion and MS approaches. Recently, the ICAT method was used to identify specific interacting proteins in Pol II general transcriptional complexes, thus demonstrating the potential of quantitative analysis of protein complexes by stable isotope labeling (5). However, only cysteine-containing peptides were labeled by ICAT; thus it is not applicable to quantify noncysteine-containing proteins and various protein modifications.

MS has also been used to identify phosphorylation sites of proteins (6). Many signaling proteins are subjected to dynamic phosphorylation at many sites, thus understanding the biological function of phosphorylation requires analysis of phosphorylation in a site-specific and quantitative fashion (7). Existing approaches for quantitative analysis of protein phosphorylation include the use of heavy amino acids in cell culture (8, 9). However, for many biological investigations, it is necessary to incorporate stable isotopes to proteins after their purification without the limitation of metabolic labeling. For post-purification labeling of protein samples, several amine-reactive stable isotope-labeling reagents were developed (10, 11), which led to perturbations in both the ionization efficiency and CID of the labeled peptides. Here, we describe a new amine-reactive isotope reagent, which we termed N-isotag,† for chemical incorporation of a stable isotope-coded amino acid into virtually all peptides (including phosphopeptides and other post-translationally modified peptides) for their quantitation and identification by MS. Because an amino acid is used for labeling peptides, the N-isotag has a minimal effect on both the ionization efficiency and CID of the labeled peptides. To further illustrate its application in a specific biological investigation, we applied the N-isotag method to study dynamic changes in the composition and phosphorylation of the Rad53 complex in response to DNA damage.

Rad53 is an essential checkpoint serine/threonine kinase in

© 2005 by The American Society for Biochemistry and Molecular Biology, Inc.
This paper is available on line at http://www.mcponline.org
the DNA damage response pathway in *Saccharomyces cerevisiae*. It becomes hyperphosphorylated and activated following treatment of cells with DNA-damaging agents (12, 13). The activation of Rad53 requires Rad9, which is also hyperphosphorylated in response to DNA damage and is thought to be a mediator protein (14–18). Despite these extensive studies, the phosphorylation sites of Rad53 have not been mapped. Furthermore, although several Rad53-associated proteins have been identified (4, 19), it is generally not known how they may be affected by DNA damage. Using the N-isotag method, we identified and quantified dynamic associations of Rad53 with components of the nuclear transport machinery, histones, and chromatin assembly proteins in response to DNA damage. More than 30 novel phosphorylation sites of Rad53 and its associated proteins were identified and quantified in response to DNA damage. Analysis of a key initial phosphorylation site, Ser789, of Rad53 showed that it regulates the abundance of Rad53 in response to DNA damage.

EXPERIMENTAL PROCEDURES

Genetic Methods—All strains of tandem affinity purification (TAP)-tagged proteins were obtained from the Open Biosystems collection (20). The C-terminal-tagged Srp1–3HA (in BY4734 background, MATα) and Rad53-His-FLAG (HZY1161:MATa his3Δ200 leu2Δ1 trp1 ura3Δ52 pep4::HIS3, Rad53-His-FLAG:G418) were generated using the pFA6a vectors and standard homologous recombination techniques (21, 22). To generate S789A and 4SA mutants of Rad53, C-terminal-tagged Rad53-His-FLAG was first cloned into a pFA6a vector using PacI and Asc1 sites (21). Site-specific mutagenesis was performed, and then mutations were introduced into the chromosomal locus of *RAD53* by homologous recombination. The corrected integration was verified by DNA sequencing in all cases. Double-tagged Srp1–3HA/Rad53-TAP diploid strain was generated by mating the Rad53-TAP strain (MATα) with the Srp1–3HA strain (MATa) tagged Srp1–3HA/Rad53-TAP diploid strain was generated by mating with the Srp1–3HA strain (MATa) tagged Srp1–3HA/Rad53-TAP diploid strain was generated by mating with the Srp1–3HA strain (MATa).

Synthesis of N-Isotag—For Tboc protection, one equivalent each of γ-aminobutyric acid (GABA) and di-tBoc carbonate was stirred in a 1% acidic acid, peptides were desalted with a Sep-Pak C18 column and incubated overnight at 4 °C. The tBoc-GABA-NHS ester was mixed, and tBoc was then removed by the addition of 90 % HCl for 30 min, after which 50 μl of 100 mM Tris, pH 8.0, and 10 mM CaCl2, and then digested overnight with 2 μg of trypsin at 37 °C. Digestion was developed by a Sep-Pak C18 column (Waters) and dried in a speedvac prior to N-isotag labeling.

IMAC and Strong Cation Exchange Chromatography—Approximately 30 μg of N-isotag-labeled peptides obtained from the IgG purification of Rad53-TAP cells were dissolved in 50 μl of 0.1% acetic acid and subjected to IMAC purification as described by Stensballe et al. (23) using 1 μl of the IMAC resin. Phosphorylated peptides were eluted from the IMAC resin with 10 μl of 100 mM KPO4, pH 9.5, acidified with acetic acid, and then analyzed by LC-MS/MS. The unbound fraction from IMAC, containing the unphosphorylated peptides (~25 μg), was dried in vacuo first, then dissolved in 100 μl of Buffer A (5 mM KHPO4, pH 3, containing 20% ACN) and fractionated by a 50-mm polysulfoethyl-based strong cation exchange column (PolyMicro Technologies) with a flow rate of 0.1 ml/min. The peptides were eluted with increasing concentrations of KCl (from 10 to 300 mM) over a 20-min period where 2-min fractions were being collected. Each fraction was dried and then desalted by a C18 Zip-Tip (Millipore Corp.) before being analyzed by LC-MS/MS.

Rad53 Autophosphorylation Assay—First, 10 μg of purified recombinant Rad53 was dephosphorylated using 1200 units of lambda phosphatase (New England Biolabs). Phosphatase activity was then inhibited with 3 mM NaVO4, 15 mM NaF, and 30 mM β-glycerophosphate. Rad53 autophosphorylation was initiated by the addition of 1 mM ATP at 30 °C. Samples were collected after 5 and 60 min and either submitted to SDS-PAGE or reduced and alkylated for trypsin digestion. Whereas the trypptic peptides from the dephosphorylated Rad53 protein (~3 μg) were labeled by the d0-N-isotag, those from an equal amount of Rad53 after either 5- or 60-min kinase reaction were labeled by the d6-N-isotag. The rest of the peptides were labeled by the d0-N-isotag. The samples were combined and subjected to IMAC purification. Phosphopeptides were identified from the IMAC-bound fraction, and the corresponding unphosphorylated peptides in the IMAC-unbound fraction were analyzed to quantify the depletion in abundance as a result of phosphorylation.

SDS-PAGE and Western Blot Analysis—Proteins were separated by a NuPAGE 4–12% acrylamide gels (Invitrogen). Detection was performed using either anti-FLAG (Sigma) or anti-TAP (Open Biosystems) primary antibodies and the ECL system (Amersham Biosciences) for detection of secondary antibodies conjugated to horseradish peroxidase according to the manufacturer’s recommendations.

MS and Data Analysis—Samples were analyzed by LC-ESI-MS/MS on a Thermo Finnigan LCQ quadrupole ion trap mass spectrometer as described in Zhou et al. (22). For data analysis, SEQUEST was used for peptide identification, and the XPRESS and INTERACT softwares were used for quantitation (24). Specifically, an integration of the chromatographic profile of the N-isotag-labeled peptides was used to determine the relative abundance of the peptides for data-
Quantitative Analysis of Rad53 Complexes by the N-Isotag Method and MS

A

\[
tBoc - \text{NH} - \underbrace{\text{X} \times \text{X} \times \text{X} \times \text{X}}_{\text{X} = \text{H (light) or D (heavy)}} - \text{COO} - \text{NCC}
\]

B

1. N-isotag
2. Acid removal of tBoc

\[
\text{NH}_2 \text{GABA} \quad \text{Peptide} \quad \text{Lys} \quad \text{COOH}
\]

C

Unlabeled

D6-N-Isotag labeled

D

Protein	m/z Values
Dynorphin	1060.6, 1411.2
Angiotensin II	1060.6, 1411.2
Angiotensin I	1060.6, 1411.2
\(\beta \)-casein peptide	2112.4, 2463.0

1360 Molecular & Cellular Proteomics 4.9
base search of N-isotag-labeled samples, a mass of 85 Da (with a possible 6-Da variable modification for d6-N-isotag labeling) was added to both lysine and N terminus of peptides. For phosphopeptide analysis, a variable modification of 80 Da was added to serine and threonine residues. The complete yeast database was used to analyze the MS/MS spectra with no restriction on the enzyme used, and only the top matched, doubly tryptic peptides were subsequently considered for close inspection. Each MS/MS spectrum that led to peptide identification was manually verified to confirm all significant ions were accounted for. Mass tolerance and others parameters were chosen according to the specifications of the LCQ ion trap MS instrument.

RESULTS

N-Isotag: Structure, Labeling Chemistry, and Accuracy of Quantitation—Fig. 1A shows the chemical structure of N-isotag, which consists of a tBoc-protected GABA, activated by NHS to form an active NHS ester. The GABA may contain either six hydrogen atoms or six deuterium atoms for labeling two different samples. As indicated in Fig. 1B, the NHS ester of the N-isotag reagent allows the isotope-coded GABA to specifically label the primary amines present at the N terminus and lysine residues of peptides via formation of stable amide bonds. This results in the loss of protonation sites normally provided by the native amine groups of peptides. Because the ionization efficiency of peptides during MS analysis typically depends on protonation of the amine groups of peptides, the tBoc group in the N-isotag is then removed by acid treatment to generate “fresh” amine groups (Fig. 1B). Because virtually every peptide from a proteolyzed protein can be labeled by the N-isotag, quantitative analysis can be performed with high protein sequence coverage, including those peptides carrying various forms of post-translational modifications such as phosphorylation. Therefore, the N-isotag method is applicable for quantitative analysis of protein modifications.

Analysis of N-isotag-labeled standard peptides showed that the NHS ester chemistry of the N-isotag method is free of any noticeable side reaction and allows complete and quantitative labeling of the amino groups from both the N terminus and side chain of lysine residues (Fig. 1, C and D). To further demonstrate the accuracy of protein quantitation by the N-isotag method, equal amount (5 pmol) of a tryptic digest of recombinant Rad53 was labeled by either d0- or d6-N-isotag reagent and then mixed. After tBoc removal, the sample was analyzed by μLC-MS/MS. Fig. 2A shows that the error for each peptide is generally better than 20%, similar to those from the ICAT method (5, 24–26). However, when the average of quantitative values of multiple peptides of Rad53 is used for protein quantitation, the accuracy is better than 5% (Table I). Although not all peptides were found for either unlabeled or labeled Rad53 due to the limited mass window of MS and specific protease used, the N-isotag labeling did not significantly affect the peptide coverage (see Fig. 2B).

Application of N-Isotag to the Analysis of Purified Complexes—The method of quantitative analysis of protein complexes and their phosphorylation is described in Fig. 3A, using a C-terminal TAP-tagged Rad53 (Rad53-TAP) as an example. The Rad53-TAP complex is first purified from control cells and cells treated with the DNA alkylating agent MMS. The purified protein complexes are then digested by trypsin to yield peptides. The tryptic peptides from both untreated (control) and
Quantitative Analysis of Rad53 Complexes by the N-Isotag Method and MS

TABLE I

Quantitation of N-isotag-labeled peptides from dephosphorylated recombinant Rad53 mixed in a 1:1 (light-to-heavy N-isotag-labeled) ratio

Data are shown for three independent experiments. The amino acid preceding the N terminus of the peptide is indicated in parenthesis with an asterisk (*).

Peptide	Experiment 1	Experiment 2	Experiment 3			
	Ratio (d0/d6)	Ratio (d0/d6)	Ratio (d0/d6)			
	Error (%)	Error (%)	Error (%)			
[KKPPVSDTNNGNNSVNDLVEP]	0.79	–21.00	0.88	–12.00	0.77	–23.00
[R]DFIDSLOQVDPNR	0.80	–20.00	0.95	–5.00	0.90	–10.00
[R]DKPDNLIEQDDPVLVK	0.80	–20.00	0.91	–9.00	0.91	–9.00
[K]MPGQLEQDFGQLSQC	0.80	–20.00	0.95	–5.00	0.96	–4.00
[R]HVSLSQSOIDPSK	0.82	–18.00	0.84	–16.00	0.82	–8.00
[R]HVSLSQSOIDPSK	0.84	–16.00	0.86	–14.00	0.96	–4.00
[R]KLOMEOQLOEQDQEDQDGK	0.85	–15.00	0.93	–7.00	0.92	–8.00
[K]LQDTSK	0.88	–12.00	0.99	–1.00	1.02	2.00
[K]QCLEONK	0.90	–10.00	1.05	5.00	1.03	3.00
[R]VHCIFK	0.91	–9.00	0.82	–18.00	0.88	–12.00
[R]YQTP	0.92	–8.00	1.09	9.00	1.10	10.00
[R]IIEVLOK	0.93	–7.00	1.05	5.00	1.04	4.00
[R]GKTSVSPDYEER	0.93	–7.00	1.01	1.00	0.87	–13.00
[K]VQNQGSGFMK	0.93	–7.00	1.06	6.00	1.09	9.00
[R]NPACYHLGNISR	0.94	–6.00	1.02	2.00	1.05	5.00
[R]QILTAIK	0.94	–6.00	1.07	7.00	1.03	3.00
[K]LTGMMAAQR	0.96	–4.00	1.00	0.00	0.92	–8.00
[K]DFSIDEVGGQAFTVK	0.98	–2.00	1.02	2.00	1.01	1.00
[K]FLLGEDQDK	0.99	–1.00	1.06	6.00	1.00	0.00
[K]LHSNNTENVK	0.99	–1.00	0.87	–13.00	0.98	–2.00
[K]VEINDTGLFNEGLMQL	1.02	2.00	1.09	9.00	0.95	–5.00
[K]FVIGK	1.03	3.00	0.97	–3.00	1.06	6.00
[R]ANQPSASSSS	1.04	4.00	0.94	–6.00	1.06	6.00
[K]NNKVFQGFK	1.04	4.00	0.98	–2.00	1.09	9.00
[K]SIEAETR	1.04	4.00	1.13	13.00	1.19	19.00
[K]TKDFIGAK	1.05	5.00	1.04	4.00	1.00	0.00
[K]VGNMDGVTR	1.05	6.00	1.08	8.00	1.02	2.00
[R]DSLADISVLOK	1.07	7.00	0.87	–13.00	0.95	–5.00
[K]TSVSPDYEER	1.11	11.00	1.18	18.00	1.11	11.00
[K]QCLEONKVDR	1.11	11.00	1.22	22.00	1.18	18.00
[K]IWDK	1.12	12.00	1.01	1.00	0.97	–3.00
[K]LLEMMDAQYEFVK	1.12	12.00	1.15	15.00	1.08	8.00
[R]FLEK	1.15	15.00	1.06	6.00	1.05	5.00
[K]ASPGLTSSGTVANK	1.16	16.00	1.10	10.00	1.10	10.00
[R]VICTTQGPIR	1.21	21.00	1.17	17.00	1.10	10.00
MENTIQTOGTQSTQATQR	1.22	22.00	1.09	9.00	1.11	11.00

Statistical average:

| 0.98 | –1.53 | 1.01 | 1.42 | 1.01 | 1.06 |

a Deviation from the expected value of 1.0.
b Peptides that are only identified from the N-isotag-labeled Rad53 (absent in the analysis of unlabeled Rad53). They are usually short peptides for which the N-isotag increases the mass so it is better analyzed by the LCQ ion trap instrument, which has a mass window between 400 and 1600 amu.
c An average of the ratios for all the identified peptides in each experiment.

MMS-treated cells are labeled by d0-N-isotag (light) and d6-N-isotag (heavy), respectively; the two labeled samples are then combined into one sample. Following the removal of tBoc, an IMAC is used to purify the N-isotag-labeled phosphopeptides (23), which are analyzed by μLC-MS/MS for identification and quantitation of phosphopeptides. The IMAC-unbound fraction containing the unphosphorylated peptides is fractionated by strong cation exchange chromatography, and the fractions are analyzed by μLC-MS/MS (5, 24, 27).

MMS-induced Changes in Rad53-associated Proteins— Fig. 3B shows the purified proteins from a mock purification (first lane), control Rad53-TAP cells (second lane), and MMS-treated Rad53-TAP cells (third lane). The activation of Rad53 after MMS treatment was confirmed by its slower electrophoretic mobility (Fig. 3C), a characteristic feature of Rad53 hyperphosphorylation (12, 13). Comparison between the first and second lanes led to the identification of Rad53 and Kap95 by conventional in-gel digestion and MS. However, it is difficult to visualize other specific binding proteins of Rad53 in the gel, likely because they are less abundant and a high level of contaminant proteins is present. To identify the lower abundance, yet specific, binding proteins of Rad53, we first compared the proteins purified from untagged cells with those purified from Rad53-TAP cells in the absence of MMS treatment using the N-isotag method. Proteins that were found only in the Rad53-TAP purification but not in the mock purification are shown in Table II and considered further.
We next sought to identify and quantify changes in Rad53-associated proteins following MMS treatment. To this end, the Rad53 complexes from control and MMS-treated Rad53-TAP cells were analyzed again by the N-isotag method. In addition to the identification and quantitation of the constitutive binding proteins of Rad53, which showed different MMS-induced abundance changes (Table II and Supplemental Table I), histones and Rad9 were found only in the MMS-treated sample. Fig. 3D shows the relative quantitation of representative peptides from proteins purified from the control and MMS-treated cells. Histones were found primarily in MMS treatment samples, confirming previous reports (28). Rad9 was found in the Rad53 complex only after MMS treatment as expected (Table II) (17, 18).

Considering that identification of the interactions between Rad53 and nuclear transport complex including Kap95 and Srp1 is novel, we decided to focus on their characterization further. The abundance of Rad53 increased 3-fold after MMS treatment, similarly to that of Kap95 in the Rad53 complex, which was seen as a specific binding protein of Rad53 in the gel and identified by a conventional in-gel digestion approach (Fig. 3B). The abundance of Kap95 clearly increased following MMS treatment as can be seen directly from the gel (Fig. 3B).

Although Srp1/Kap60 was not visualized from the gel, it was identified from the N-isotag approach (Table II). The identification of Srp1 is consistent in that it forms a complex with Kap95 and regulates nuclear transport of cargo proteins (29).

The interaction between endogenous Srp1 and Rad53 was further confirmed by co-immunoprecipitation of endogenously tagged Srp1–3HA and Rad53-TAP (Fig. 4A). As
Quantitative Analysis of Rad53 Complexes by the N-Isotag Method and MS

Identification of specific associated proteins of Rad53 under different conditions

Protein	Detected in	Average ratio (MMS/Control)	No. of peptides quantitated	SD
	CTL	MMS		
Rad53 (YPL153C)	X	X	3	7
Kap95 (YLR347C)	X	X	2.2	12
Srp1 (YNL189W)	X	X	1.4	11
Nup2 (YLR353W)	X	X	6	2
Asf1 (YJL135W)	X	X	2.5	9
HTA1/HTA2 (YDR225W/YBL003C)	X	X	>10	2
HTB1/HTB2 (YDR224C/YBL002W)	X	X	5	6
HNF1/HNF2 (YBR009C/YNL030W)	X	X	NA	2
Rad9 (YDR217C)	X	X	NA	2

a X indicates the presence of the protein in the indicated sample.

b Rad53 hyperphosphorylation led to the stoichiometric depletion of unphosphorylated Rad53 peptides, so we only considered peptides located in the TAP-tag region.

c NA, not applicable when two or fewer peptides are quantitated.

d NA, not applicable when the corresponding peptide is not identified in the control sample.

shown in Fig. 4A, more Srp1 co-purifies with Rad53 after MMS treatment, and it appears that the increase in Rad53 abundance after MMS treatment is higher than that of the co-purified Srp1. Serial dilution of the MMS-treated sample was used to provide an estimate of the relative amount of the proteins (Fig. 4, B and C). Densitometric analysis of the Western blot results indicated a good linear correlation between the 1/3 and 2/3 dilution of the MMS-treated sample (Fig. 4B, second and third lanes) and a rather poor correlation with the undiluted MMS-treated sample (Fig. 4B, fourth lane). Clearly, this is due to the limited linearity range of the chemiluminescence detection method used in Western blot analysis. We therefore compared the densitometric values between the control and 1/3 dilution of the MMS-treated sample for quantitation and obtained a -fold increase of 1.3 for Srp1 that co-purifies with Rad53 after MMS treatment. Similarly, the abundance of Rad53 was quantified based on the densitometric analysis of the control and 1/3 dilution of the MMS-treated sample, and we obtained a value of 2.9 for Rad53 (Fig. 4C). Compared with the results shown in Table II, these data provided an independent confirmation of the quantitative values obtained from the N-isotag analysis (Table II), especially when multiple peptides were found for the same protein.

DNA Damage-induced Phosphorylation of Rad53 and Its Binding Proteins—Analysis of phosphopeptides derived from the Rad53 complex led to the identification and quantitation of 32 phosphopeptides (Table III). Rad53 was found to be phosphorylated at serine/threonine-proline consensus phosphorylation sites, i.e. Ser175, Ser375, and Ser775,2 followed by a proline residue in each case. Proline-directed phosphorylation of Rad53 did not appear to be induced by MMS treatment, considering that the abundance of Rad53 protein increased 3-fold. In contrast, the abundance of 12 other phosphopeptides of Rad53 increased from 3- to 60-fold after MMS treatment. Thus, at least two modes of phosphorylation of Rad53 were present in vivo. Additionally, 12 phosphopeptides of Yta7 were found in the Rad53 complex after MMS treatment, 6 of which are proline-directed phosphorylation, whereas the others did not show a clear consensus sequence. Furthermore, three phosphopeptides of Yta7 were identified only in the MMS-treated Rad53 complex.

Analysis of the Dynamics and Stoichiometry of Rad53 Autophosphorylation—To further understand the origin of Rad53 phosphorylation in vivo, we examined Rad53 autophosphorylation in vitro. Rad53 expressed from Escherichia coli is known to undergo autophosphorylation (15). First, we identified 43 autophosphorylation sites of a recombinant, hyper-phosphorylated Rad53 (supplemental Table II). These include all of the nonproline-directed, MMS-induced phosphorylation sites of Rad53 identified in vivo and none of the proline-directed phosphorylation sites. Therefore, the MMS-induced phosphorylation of Rad53 in vivo mirrors Rad53 autophosphorylation, whereas the proline-directed phosphorylation sites of Rad53 are clearly targets of a different kinase in yeast. Indeed, a cyclin-dependent protein kinase from Xenopus was able to phosphorylate a kinase dead version of recombinant Rad53 (K227A) at all three serine-proline sites in vitro (supplemental Fig. 1).

Next we used the N-isotag method to quantify the initial phosphorylation of recombinant Rad53 during an in vitro kinase reaction. As shown in Fig. 5B and supplemental Tables IV and V minutes after ATP addition, Thr213, Thr216, Thr218, and Ser789 were found to be phosphorylated. However, only the unphosphorylated peptide containing Ser789 showed a significant (~ 60%) depletion after 5 min (Fig. 5C),

2 In some cases, the exact site of phosphorylation was not determined due to the clustering of several serine/threonine residues. For example, Ser284-186 refers to phosphorylation of either Ser284 or Ser285; Ser246-746, and Ser789 were found to be phosphorylated. However, only the unphosphorylated peptide containing Ser789 showed a significant (~ 60%) depletion after 5 min (Fig. 5C),
indicating a high phosphorylation level of Ser789. After 1 h, additional phosphorylation sites of Rad53 were found with more depletion of the corresponding unphosphorylated peptides. Therefore, it appears that Ser789 is a major initial auto-phosphorylation site of Rad53 both in vivo and in vitro. Ser789 of Rad53 appears to be located in a classical bipartite nuclear localization signal (NLS) sequence (30). To dissect the function of Rad53 Ser789 phosphorylation in yeast, we generated rad53 (Ser789Ala) and rad53 (4SerAla) mutants in which either Ser789 alone or all of Ser789, Ser791, Ser792, and Ser795 were mutated into alanine at the endogenous RAD53 locus. Fig. 5D shows that the mutant Rad53 proteins were still hyperphosphorylated after MMS treatment; however, there was no MMS-induced increase in the abundance of the Ser789Ala and 4SerAla mutant Rad53 proteins. Thus, phosphorylation of Ser789 of Rad53 is essential for the MMS-induced abundance increase of Rad53 in vivo.

DISCUSSION

The N-Isotag Reagent for Quantitative Protein Analysis Using MS—Biological MS has been increasingly used to characterize composition of protein complexes (2–5). Because most biologically significant interactions are dynamic and are regulated by protein modifications such as phosphorylation, quantitative techniques toward characterization of such interactions and modifications are needed. Several features make the N-isotag approach suitable for quantitative analysis of proteins and their modifications by MS.

First, the NHS ester chemistry is highly specific and robust to label amine groups of peptides (Fig. 1C), and the labeling procedure is straightforward. Second, the incorporation of an amino acid has a minimal effect on the CID of the labeled peptides and consequently their identification (Fig. 2B). Furthermore, other amino acids with different stable isotope compositions can be used in place of GABA, thus allowing the N-isotag reagent additional flexibility in its isotope composition and chemical properties. Third, the primary amine groups of peptides are restored following removal of tBoc, thus ionization of peptides are not significantly affected by the N-isotag labeling. Fourth, the N-isotag reagent is ideally suited for labeling of post-translationally modified peptides including phosphopeptides. Thus, protein phosphorylation can be quantified by MS in a site-specific manner.

Finally, quantitation and identification of multiple peptides from the same protein improves the accuracy of protein quantitation as well as the confidence in protein identification, particularly for low abundance proteins.

Technical limitations of the N-isotag method include a lower sensitivity for labeled samples compared with direct analysis of unlabeled samples due to the additional sample clean up step (the use of C18 column). We typically observed a 2-fold reduction in the signal when the same amount of sample was analyzed. It is possible that an alternative method for sample clean up may improve sample recovery. Second, N-terminal blocked peptide with no lysine residue will not be labeled by this method. Third, because moderate strength acid condition was used to remove the tBoc protection, it is possible that
certain weak (Asp-Pro) peptide bonds could be affected. However, we did not notice any effect on phosphopeptides because phosphorylated residues, which are base labile, are not expected to be affected by this acid treatment. Finally, while accuracy was better than 5% for proteins with multiple peptides identified, the percentage error could be 20% or more for proteins with only one or two identified peptides, especially when low abundant peptide ion was analyzed. For recombinant protein (Table I), the larger error of some peptides is likely due to the use of MS/MS mode for peptide identification, which affects quantification based on the total ion intensity of peptides detected in the MS mode. In this case, MALDI-MS should yield better accuracy.

Analysis of Proteins Associated with Endogenous Rad53 in Response to DNA Damage—In agreement with previous findings (17, 18), Rad53 was found to associate with Rad9 following MMS treatment. Additionally, we found that the association of Rad53 with histones increased drastically following MMS treatment, in agreement with a previous report (28). Interestingly, we identified a novel interaction of Rad53 with nuclear transport proteins, including Kap95, Srp1, and Nup2 (Table II). The identification of the Kap95-Srp1-Nup2 complex in the purified Rad53 suggests that Rad53 is regulated via nuclear transport, consistent with the presence of a canonical NLS at the C terminus of Rad53. Indeed, removal of the NLS of Rad53 led to the abolishment of Rad53 nuclear localization.3

Several previously known Rad53 binding proteins found by overexpression-based studies (4, 31–33), including Mdt1, Dbf4, Ptc2, and Dun1, were not found here, likely because they either do not bind to Rad53 directly or not as tightly. In

3 M. B. Smolka, C. P. Albuquerque, S.-H. Chen, K. H. Schmidt, X. X. Wei, R. D. Kolodner, and H. Zhou, unpublished observations.
our experiments, we analyzed endogenous Rad53 to detect its associated proteins under physiological conditions. Therefore, the absence of these proteins in our analysis is most likely caused by a combination of the purification of endogenous Rad53 complex, the amount of starting material, and the intrinsic sensitivity limit of the MS used.

Analysis of Rad53 Phosphorylation in Vivo and in Vitro—By comparing the in vivo MMS-induced phosphorylation sites and the in vitro autophosphorylation sites of Rad53, we concluded that the MMS-induced phosphorylation of Rad53 in vivo is caused by its autophosphorylation. Rad53 autophosphorylated itself on more than 40 Ser/Thr residues in vitro. They include all the DNA damage-induced phosphorylation sites of Rad53 identified in vivo; however, they do not include the proline-directed phosphorylation sites, which are likely due to proline-directed kinases in yeast (supplemental Fig. 1).

From our analysis of autophosphorylation of Rad53, we can not detect a clear consensus phosphorylation sequence as suggested by Sidorova and Breeden (34). However, it is possible that Rad53 autophosphorylation may not conform to the same consensus derived from another substrate. Interestingly, many of the in vitro and in vivo phosphorylation sites of Rad53 are Ser-Gln/Thr-Gln sites (Table III and supplemental Table II), consistent with previous reports showing that Ser-Gln/Thr-Gln sites are functionally important (16, 35). The Ser-Gln/Thr-Gln sites were previously thought to be the preferred
phosphorylation sites of ATM family kinases including Mec1 (36). Although we do not exclude this possibility, our analysis showed that Rad53 is also capable of such phosphorylation in vitro and possibly in vivo.

Furthermore, we examined Ser789 of Rad53 (a non-Ser-Gln/Thr-Gln site) because its phosphorylation was induced by MMS treatment in vivo, and in vitro study showed that it is a major initial autophosphorylation site of Rad53. In contrast to MMS treatment (Thr-Gln site) because its phosphorylation was induced by 7808); Fax: 858-534-7750; E-mail: huzhou@ucsd.edu.

In conclusion, the application of the N-isotag method to the Rad53 complex led to several novel insights into the regulation and function of Rad53. Thus, the N-isotag method is generally applicable for a quantitative analysis of protein-protein interaction and protein phosphorylation of protein complexes in response to different cell stimuli.

*This work is supported by a K22 HG002604 from the National Human Genome Research Institute and the Ludwig Institute for Cancer Research (to H. Z.). K. H. S. and R. D. K. are supported by National Institutes of Health Grant GM26017. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

†To whom correspondence should be addressed: Ludwig Institute for Cancer Research, University of California, 9500 Gilman Dr., CMM-East, Rm. 3050, La Jolla, CA 92093-0653. Tel.: 858-552-4920 (ext. 7808); Fax: 858-534-7750; E-mail: huzhou@ucsd.edu.

REFERENCES

1. Rigaud, G., Shevchenko, A., Rutz, B., Wilm, M., Mann, M., and Seraphin, B. (1999) A generic protein purification method for protein complex characterization and proteome exploration. Nat. Biotechnol. 17, 1030–1032

2. Gavin, A. C., Bosche, M., Krause, R., Grandi, P., Marzioch, M., Bauer, A., Schultz, J., Rick, J. M., Michon, A. M., Cruciat, C. M., Remor, M., Hofert, C., Schelder, M., Brajenovic, M., Ruffner, H., Merino, A., Klein, K., Hudak, M., Dickson, D.; Rudi, T., Gnau, V., Bauch, A., Bastuck, S., Huhse, B., Leutwein, C., Heutier, M. A., Copley, R. R., Edelmann, A., Querfurth, E., Rybin, V., Drewes, G., Rada, M., Bouwmeester, T., Bork, P., Seraphin, B., Kuster, B., Neubauer, G., and Superti-Furga, G. (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415, 141–147

3. Archambault, V., Chang, E. J., Gruhler, A., Heilbut, A., Bader, G. D., Moore, L., Adams, S. L., Millar, A., Taylor, P., Bennett, K., Bouttier, K., Yang, L., Wolting, C., Donaldson, I., Schandorff, S., Shewnarane, J., Vo, M., Taggart, J., Goudreau, A., Muskat, B., Alfarano, C., Dewar, D., Lin, Z., Michalickova, K., Willems, A. R., Sassi, H., Nielsen, P. A., Rasmussen, K. J., Andersson, J. R., Johansen, L. E., Hansen, L. H., Jespersen, H., Podtelejnikov, A., Nielsen, E., Crawford, J., Poulsen, V., Sorensen, B. D., Matthiasen, J., Hendrickson, R. C., Gleeson, F., Pawson, T., Moran, M. F., Durocher, D., Mann, M., Hogue, C. W., Figgey, D., and Tyers, M. (2002) Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415, 180–183

4. Ranish, J. A., Yi, E. C., Leslie, D. M., Purvine, S. O., Goodlett, D. R., Eng, J., and Aebersold, R. (2003) The study of macromolecular complexes by quantitative proteomics. Nat. Genet. 33, 349–355

5. McLachlin, D. T., and Chait, B. T. (2001) Analysis of phosphorylated proteins and peptides by mass spectrometry. Curr. Opin. Chem. Biol. 5, 591–602

6. Loughey Chen, S., Huddleston, M. J., Shou, W., Deshaies, R. J., Annan, R. S., and Carr, S. A. (2002) Mass spectrometry-based methods for phosphorylation site mapping of hyperphosphorylated proteins applied to Net1, a regulator of exit from mitosis in yeast. Mol. Cell. Proteomics 1, 186–196

7. Oda, Y., Huang, K., Cross, F. R., Cowburn, D., and Chait, B. T. (1999) Accurate quantitation of protein expression and site-specific phosphorylating protease. Nat. Acad. Sci. U. S. A. 96, 6591–6596

8. Blagoev, B., Ong, S. E., Kratchmarova, I., and Mann, M. (2004) Temporal analysis of phosphorysine-dependent signaling networks by quantitative proteomics. Nat. Biotechnol. 22, 1139–1145

9. Cagney, G., and Emili, A. (2002) De novo peptide sequencing and quantitative profiling of complex protein mixtures using mass-coded abun-
dance tagging. Nat. Biotechnol. 20, 163–170

10. Munchbach, M., Quadroni, M., Miotto, G., and James, P. (2000) Quantitation and facilitated de novo sequencing of proteins by isotopic N-termi-
nal labeling of peptides with a fragmentation-directing moiety. Anal. Chem. 72, 4047–4057

11. Sanchez, V., Desany, B. A., Jones, W. J., Liu, Q., Wang, B., and Elledge, S. J. (1996) Regulation of Rad53 by the ATM-like kinases MEC1 and TEL1 in yeast cell cycle checkpoint pathways. Science 271, 357–360

12. Sun, Z., Tay, D. S., Marinii, F., Ioanni, M., and Stern, D. F. (1998) Spk1 Rad3 is regulated by Mec1-dependent protein phosphorylation in DNA replication and damage checkpoint pathways. Genes Dev. 10, 395–406

13. Emili, A. (1998) MEC1-dependent phosphorylation of Rad9p in response to DNA damage. Mol. Cell 2, 183–189

14. Emili, A. (1998) MEC1-dependent phosphorylation of Rad9p in response to DNA damage. Mol. Cell 2, 183–189

15. Gilbert, C. S., Green, C. M., and Lowndes, N. F. (2001) Budding yeast Rad9 is an ATP-dependent Rad53 activating machine. Mol. Cell 8, 129–136

16. Schwartz, M. F., Duong, J. K., Sun, Z., Morrow, J. S., Pradhan, D., and Stern, D. F. (2002) Rad9p phosphorylation sites couple Rad53 to the Saccharomyces cerevisiae DNA damage checkpoint. Mol. Cell 9, 1055–1065

17. Sun, Z., Hsiao, J., Tay, D. S., and Stern, D. F. (1998) Rad53 FHA domain associated with phosphorylated Rad9 in the DNA damage checkpoint. Science 281, 272–274

18. Vialard, J. E., Gilbert, C. S., Green, C. M., and Lowndes, N. F. (1998) The budding yeast Rad9 checkpoint protein is subjected to Mec1p/Tel1p-de-
dependent hyperphosphorylation and interacts with Rad53 after DNA dam-
age. EMBO J. 17, 5679–5688

19. Emili, A., Schwittek, D. M., Bentz, P. R., III, and Hartwell, L. H. (2001) Dynamic interaction of DNA damage checkpoint protein Rad53 with chromatin assembly factor Asf1. Mol. Cell 7, 13–20

20. Ghaemmaghami, S., Huh, W. K., Bower, K., Howson, R. W., Belle, A., Dephoure, N. O’Shea, E. K., and Weissman, J. S. (2003) Global analysis of protein expression in yeast. Nature 425, 737–741

21. Longtine, M. S., McKenzie, A., Ill, Demarini, D. J., Shah, N. G., Wach, A., Brachet, A., Philippens, P., and Pringle, J. R. (1996) Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14, 953–961

22. Zhou, W., Ryan, J. J., and Zhou, H. (2004) Global analyses of sumoylated proteins in Saccharomyces cerevisiae. Induction of protein sumoylation by cellular stresses. J. Biol. Chem. 279, 32262–32268

23. Stensballe, A., Andersen, S., and Jensen, O. N. (2001) Characterization of phosphoproteins from electrophoretic gels by nanoscale Fe(III) affinity chromatography with off-line mass spectrometry analysis. Proteomics 1, 207–222

24. Han, D. K., Eng, J., Zhou, H., and Aebersold, R. (2001) Quantitative profiling of differentiation-induced microsomal proteins using isotope-coded affinity tags and mass spectrometry. Nat. Biotechnol. 19, 946–951

25. Gygi, S. P., Rist, B., Gerber, S. A., Turecek, F., Gelb, M. H., and Aebersold, R. (1999) Quantitative analysis of complex protein mixtures using iso-
tope-coded affinity tags. *Nat. Biotechnol.* 17, 994–999

26. Zhou, H., Ranish, J. A., Watts, J. D., and Aebersold, R. (2002) Quantitative proteome analysis by solid-phase isotope tagging and mass spectrometry. *Nat. Biotechnol.* 20, 512–515

27. Link, A. J., Eng, J., Schieltz, D. M., Carmack, E., Mize, G. J., Morris, D. R., Garvik, B. M., and Yates, J. R., III (1999) Direct analysis of protein complexes using mass spectrometry. *Nat. Biotechnol.* 17, 676–682

28. Gunjan, A., and Verreault, A. (2003) A Rad53 kinase-dependent surveillance mechanism that regulates histone protein levels in *S. cerevisiae*. *Cell* 115, 537–549

29. Gilchrist, D., Mykytka, B., and Rexach, M. (2002) Accelerating the rate of disassembly of karyopherin cargo complexes. *J. Biol. Chem.* 277, 18161–18172

30. Chook, Y. M., and Blobel, G. (2001) Karyopherins and nuclear import. *Curr. Opin. Struct. Biol.* 11, 703–715

31. Pike, B. L., Yongkiettrakul, S., Tsai, M. D., and Heierhorst, J. (2004) Mdt1, a novel Rad53 FHA1 domain-interacting protein, modulates DNA damage tolerance and G2/M cell cycle progression in *Saccharomyces cerevisiae*. *Mol. Cell. Biol.* 24, 2779–2788

32. Bashkirov, V. I., Bashkirova, E. V., Haghnazari, E., and Heyer, W. D. (2003) Direct kinase-to-kinase signaling mediated by the FHA phosphoprotein recognition domain of the Dun1 DNA damage checkpoint kinase. *Mol. Cell. Biol.* 23, 1441–1452

33. Duncker, B. P., Shimada, K., Tsai-Pflugfelder, M., Pasero, P., and Gasser, S. M. (2002) An N-terminal domain of Dbf4p mediates interaction with both origin recognition complex (ORC) and Rad53p and can deregulate late origin firing. *Proc. Natl. Acad. Sci. U. S. A.* 99, 16087–16092

34. Sidorova, J. M., and Breeden, L. L. (2003) Rad53 checkpoint kinase phosphorylation site preference identified in the Swi6 protein of *Saccharomyces cerevisiae*. *Mol. Cell. Biol.* 23, 3405–3416

35. Lee, S. J., Schwartz, M. F., Duong, J. K., and Stern, D. F. (2003) Rad53 phosphorylation site clusters are important for Rad53 regulation and signaling. *Mol. Cell. Biol.* 23, 6300–6314

36. Kim, S. T., Lim, D. S., Canman, C. E., and Kastan, M. B. (1999) Substrate specificities and identification of putative substrates of ATM kinase family members. *J. Biol. Chem.* 274, 37538–37543