Characterization of volatile compounds in ten Piper species cultivated in Hainan Island, South China

Chao-Yun Hao¹, Rui Fan², Xiao-Wei Qin¹, Li-Song Hu³, Le-He Tan¹,²,³, Fei Xu¹,²,³, and Bao-Duo Wu¹,²,³

¹Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Science (CATAS), Wanning, Hainan, China; ²Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops, Ministry of Agriculture, Wanning, Hainan, China; ³Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Wanning, Hainan, China

ABSTRACT

The volatile compounds of 10 Piper species cultivated in Hainan Island, China, have been investigated. Eighty compounds were profiled after headspace–solid phase microextraction (HS–SPME) with gas chromatography–mass spectrometry (GC–MS). Mean Bray–Curtis similarity value was only 22.78 ± 1.98% among the different Piper species. The volatile compounds were largely grouped as hydrocarbons, aldehydes, alcohols, acids, ketones, esters, and phenols. The main compounds comprised benzaldehyde, cinnamaldehyde, β-caryophyllene, ocimene, linalool, myrcene, cubebene, terpinene, linalool, α-caryophyllene, β-elemene, and germacrene. Principal component analysis revealed that Piper laetispicum, Piper longum, Piper hainanense, Piper betle, and Piper flaviflorum were characterized by high contents of β-caryophyllene, α-caryophyllene, germacrene, and β-pinene. Piper puberulum and Piper cathayanum were associated with high contents of linalool, myrcene, and germacrene D. On the other hand, Piper pseudofuligineum and Piper retrofractum were related with high contents of ocimene. Finally, Piper auritum was associated with high content of cinnamaldehyde. Volatile profiling of Piper species by HS–SPME–GC–MS and the interrelationship investigated among the volatiles can be used as a roadmap for future resource utilization or biotechnological applications.

ARTICLE HISTORY

Received 30 July 2017
Accepted 24 February 2018

KEYWORDS
Aroma; Bray–Curtis similarity; HS–SPME–GC–MS; Piper; volatiles

Introduction

Piper is the largest genus in the family Piperaceae, which is distributed throughout the tropical regions, with major concentrations occurring in Central and South Americas, Caribbean, Africa, Asia, and some Pacific Islands.¹,² The aroma emitted by its leaf/fruit/root has caused Piper species to be widely utilized as flavoring ingredient in cooking.³–⁵ Among Piper species, Piper nigrum is characterized as the “king of spice” and is incredibly popular since ancient times; its yields can reach 461,452 t, and the corresponding profits may exceed 100 billion dollars.⁶ Piper laetispicum, P. nigrum, Piper tuberculatum, Piper retrofractum, Piper longum, Piper hainanense, and Piper puberulum have been applied in folk medicine for invigorating the circulation, reducing stasis, detumescence, and as analgesics.⁷ In accordance with the “Flora of China”⁸, many Piper species, such as Piper betle, P. hainanense, Piper hancei, and Piper Yunnanense, present high economical and ethnobotanical benefits given their use as spices, vegetation, fragrance, and traditional medicines.

Aroma is one of the essential components of spice and medicine quality. Aroma is also one of the essential factors that attract consumers. Compared with other spices, such as saffron⁹, chili...
peppers[10], and thyme[11], several studies have focused on volatile aroma compounds in \textit{Piper} species although some investigations have shown that \textit{Piper} species are remarkably rich in volatile compounds, of which more than 270 compounds have been identified.[12,13] However, most of such studies only focused on the analysis of volatile compounds released from \textit{Piper nigrum}.[14,15] Limonene, α-pinene, D-3-carene, β-pinene, 4-carene, terpinolene, α-copaene, β-caryophyllene, α-caryophyllene, and D-elemene have been identified as important compounds to the overall flavor of \textit{Piper nigrum} and its essential oil.[14–18] Recently, several studies reported that aroma is specific to species and exhibits unique potential flavor characteristics.[19,20] Topul et al.[21] concluded that \textit{Piper aduncum} contains significantly higher amounts of dillapiole than \textit{Piper gibbilimbum} species, whereas \textit{P. gibbilimbum} contains more gibbilimbols than \textit{P. aduncum}.

In this study, headspace–solid phase microextraction (HS–SPME) combined with gas chromatography–mass spectrometry (GC–MS) was applied to study the characteristic volatiles of 10 \textit{Piper} species for food and flavor. This study essentially focused on comparing aroma composition and content, particularly among \textit{Piper} species that have not been extensively studied. These plants include Chinese local species and a number of species from other countries in order to acquire information for further breeding programs, cultivation, and finding new food sources.

Materials and methods

Plant materials

All fresh \textit{Piper} leaves were obtained from the Germplasm Repository of Black Pepper of the Spice and Beverage Research Institute, CATAS, Hainan Province, China. Approximately 20 g of raw leaves was collected at 8:00–10:00 a.m., on August 8–10, 2016, depending on 10 different \textit{Piper} species, \textit{P. betle}, \textit{P. auritum}, \textit{P. retrofractum}, \textit{P. hainanense}, \textit{Piper pseudofuligineum}, \textit{P. laetispicum}, \textit{Piper flaviflorum}, \textit{Piper cathayanum}, \textit{P. puberulum}, and \textit{P. longum}. Following collections, the leaves were moisturized and transported to the laboratory immediately. In all experiments, leaves were sliced by using a knife into similarly thin slices to enable their placement in the headspace bottle (volume: ~5 mL).

Extraction of volatile compounds

HS–SPME was used to extract the volatile compounds and evaluate their concentrations. For each extraction sample, 1.5 g of leaf slices was weighted and placed in a 5-mL capped SPME vial and allowed to stand for 30 min at ambient room temperature ((22 ± 3)°C). Divinylbenzene/Carboxen/Polydimethylsiloxane (DVB/CAR/PDMS) fibers were applied in this study for assaying, and film thickness was 50/30 μm (Supelco, Bellefonte, PA, USA). Through manual penetration of the silicone septum, SPME products can be inserted into the vial. Then, after 40 min, the fibers will be exposed to the headspace of sliced leaves. After extraction, the operator of SPME device will set the needle to 0.5 cm for GC injector and then desorbed the fiber for 10 min. During the experiment, each step of sampling or analysis was finished in triplicate. This study also used empty bottles as control for analysis.

GC–MS conditions

Applications of 7890A/5975C GC–MS system (Agilent Technologies, USA), coupled with a DB-5MS column, were carried out under the following conditions: temperature of line heater of MS transfer of 280°C, injector temperature of 250°C, and those of corresponding operations should be carried out in split-less mode. The initial temperature of the oven should be set at 50°C and kept for 5 min. Afterward, the temperature was increased as follows: 50–80°C at the rate of 10°C/min, 80–100°C at the rate of 2°C/min, 100–140°C at the rate of 8°C/min, 140–200°C at the rate of 6°C/min, and
200–280°C at the rate of 15°C/min. Helium was applied as carrier gas at a flow rate of 1.0 mL/min. The mass spectrometer Agilent 5975C was operated at 70 eV in electron ionization mode. Source temperature was set to 230°C, the quadrupole temperature was set to 150°C, and the mass range m/z 30–500 amu was conducted in a full-scan mode.

Volatile compounds were identified according to their linear retention indices (LRIs) and by comparing their mass spectra with the MS database via the NIST 2014 library, Volatile Compounds in Food 15.1, and Pherobase (database of pheromones and semi-chemicals). We also compared the fragmentation patterns in the mass spectra with those reported in the literature. LRIs were determined via alkane series (C7–C30). Compounds were quantified as area percentages of total volatiles.

Statistical analysis

Bray–Curtis similarity (BCS), an indicator of the composition similarity between different species, was applied to identify whether these species were the same. This index not only incorporates the existence of components but also incorporates their relative contents. Analysis of volatile compounds verified in the 10 species of *Piper* was carried out by principal component analysis (PCA) via the R package (2.12.2) under Windows environment.

Results and discussion

Volatile compounds of different *piper* species

Piper species	Hydrocarbons	Alcohols	Aldehydes	Esters	Acids	Ketones	Phenols	Other Compounds
P. betle	20	6	2	2	1	1	1	31
P. auritum	14	3	2	1	0	0	0	21
P. retrofractum	21	4	1	1	1	1	3	21
P. hainanense	10	5	1	1	0	0	0	21
P. pseudofuligineum	20	2	2	0	0	0	0	20
P. laetispicum	20	2	1	0	0	0	0	20
P. flaviflorum	20	2	2	1	0	0	0	20
P. cathayanum	20	2	2	1	0	0	0	20
P. puberulum	20	2	2	1	0	0	0	20
P. longum	20	2	2	1	0	0	0	20

P. betle exhibited a major complex volatile profile. This plant consisted of 31 compounds, among which 20 were hydrocarbons (cubebene: 9.36%, β-caryophyllene: 8.54%, myrcene D: 6.27%), 6 were alcohols (leaf alcohol: 3.74%), 2 were acids (acetic acid: 4.16%, and benzoic acid: 2.14%), 2 were esters (leaf acetate: 4.11% and (Z)-2-pentenyl ester: 0.50%), and 1 was aldehyde (benzaldehyde: 23.56%).

In *P. hainanense*, 21 components were detected (Table 1). The main compounds can be grouped as follows: 10 hydrocarbons (β-elemene 10.49%, β-pinene 8.37%, (E)-β-farnesene 7.23%, and α-pinene 7.14%), 5 aldehydes (leaf aldehyde 0.69%, benzaldehyde 0.26%), 1 acid (acetic acid 0.14%), and 1 ester (methyl benzoate 0.13%).

In *P. retrofractum*, 21 compounds were detected (Table 1): 14 hydrocarbons (ocimene: 15.6%, linalool: 12.9%, α-caryophyllene: 9.61%, and germacrene D: 7.15%), 4 alcohols (linalool: 12.9% and *trans*-hex-3-en-1-ol: 1.78%), 1 ester (octyl salicylate: 0.34%), 1 phenol (catechol: 2.48%), and 1 ketone (2-octanone: 0.29%).

As for *P. laetispicum*, 20 components were detected with a strong majority of hydrocarbons (76.9%). Other compounds, such as alcohols (9.04%), ketones (1.22%), and aldehydes (0.83%), were also detected (Table 1). The most abundant compound was β-caryophyllene, accounting for 26.15% of the total GC peak area, followed by germacrene (15.28%), α-caryophyllene (9.98%), nerolidol (8.84%), and α-pinene (6.09%).
Table 1. Volatile compounds identified in 10 different species of *Piper* using HS–SPME–GC–MS.

Peak	RT* (min.)	LRI *	Compounds	Pre	PAU	Pre	PHA	PPS	PLA	PFL	PCA	PPU	PLO
			Acids										
1	1.839	<800	Acetic acid	4.16 ± 0.160	–	–	0.14 ± 0.015	–					
2	19.411	1280	Ethanedioic acid	–	0.49 ± 0.021	–		–					
3	13.098	1116	Benzoic acid	2.14 ± 0.072	–	–							
			Esters										
4	5.869	897	Acetic acid (Z)-2-pentenyl ester	0.5 ± 0.046	–	–							
5	8.147	986	Leaf acetate	4.11 ± 0.017	–	–							
6	30.456	1753	Octyl salicylate	–	3.49 ± 0.145	–							
7	11.294	1072	Methyl benzoate	–	–		0.13 ± 0.012						
8	11.519	1078	Leaf alcohol	2 ± 0.027	12.9 ± 0.902	1.1 ± 0.031							
9	30.452	1753	Isopentyl salicylate	0.25 ± 0.040									
10	31.842	1834	2-Pentanol	0.89 ± 0.179	0.38 ± 0.025	0.86 ± 0.026			0.24 ± 0.040				
			Alcohols										
11	3.481	<800	2-Pentanol	0.89 ± 0.179	0.38 ± 0.025	0.86 ± 0.026			0.24 ± 0.040				
12	4.878	842	Leaf alcohol	3.74 ± 0.111						9.66 ± 0.546			
13	9.059	1015	Cinene	0.58 ± 0.044									2.53 ± 0.066
14	4.915	844	trans-Hex-3-en-1-ol	1.78 ± 0.046									
15	11.519	1078	Linoleal	2 ± 0.027	12.9 ± 0.902	1.31 ± 0.155	1.62 ± 0.224	0.2 ± 0.015	0.76 ± 0.045	1.46 ± 0.046	2.25 ± 0.056		
16	2.573	<800	Cyclopentanol	0.16 ± 0.017									
17	2.517	<800	1-Penten-3-ol	2.09 ± 0.040	0.49 ± 0.015								
18	5.103	855	Octanol	0.29 ± 0.030									
19	7.041	943	Benzyl alcohol	2.54 ± 0.068									
20	24.833	1486	4-Methylbenzyl alcohol	0.33 ± 0.078									
			Hydrocarbons										
21	25.687	1523	Nerolidol	8.84 ± 0.215	8.07 ± 0.099	1.38 ± 0.017	0.88 ± 0.020	8.69 ± 0.494	1.38 ± 0.053				
22	5.080	853	n-Hexyl alcohol	1.18 ± 0.015									
23	12.080	1092	Lavandulol	28.69 ± 0.494									
24	1.367	<800	Cyclohexanol	1.38 ± 0.053									

(Continued)
Peak	RT* (min.)	LRI *	Compounds	PBE	PAU	PRE	PHA	PPS	PLA	PFL	PCA	PPU	PLO
36	23.78	1443	Myrcene	6.27 ± 0.012 1.24 ± 0.010	6.27 ± 0.012 1.24 ± 0.010	1.67 ± 0.029							
37	24.77	1484	Cadinene	0.92 ± 0.046 0.12 ± 0.015	0.4 ± 0.015	6 ± 0.353	1.03 ± 0.015 4.08 ± 0.089						
38	24.28	1463	Bicyclogermacrene	4.61 ± 0.025 0.76 ± 0.011	0.71 ± 0.047								
39	23.94	1450	Cubaene	9.36 ± 0.025	0.12 ± 0.015								
40	8.28	991	α-Phellandrene	0.92 ± 0.046 0.12 ± 0.015	0.4 ± 0.015	6 ± 0.353	1.03 ± 0.015 4.08 ± 0.089						
41	8.60	1002	α-Terpineene	1.89 ± 0.01									
42	9.97	1038	Terpinene	5.11 ± 0.0305 0.64 ± 0.051	0.08 ± 0.015	0.2 ± 0.025							
43	10.99	1064	Terpinene	5.11 ± 0.0305 0.64 ± 0.051	0.08 ± 0.015	0.2 ± 0.025							
44	22.69	1499	Germacrene D	0.36 ± 0.010	0.72 ± 0.038								
45	23.21	1420	Farnesene	0.19 ± 0.031									
46	24.19	1460	Germacrene D	0.65 ± 0.025 1.24 ± 0.021	7.15 ± 0.565	5.71 ± 0.188 0.47 ± 0.010 1.13 ± 0.036							
47	24.55	1475	(E)-α-Farnesene	0.4 ± 0.015	0.21 ± 0.017 0.41 ± 0.025								
48	25.70	1524	α-Farnesene	0.13 ± 0.011									
49	9.17	1017	trans-β-ocimene	4.67 ± 0.345 6.53 ± 0.596	0.41 ± 0.021 0.24 ± 0.023								
50	24.13	1457	α-Selinene	1.76 ± 0.078	0.39 ± 0.038 408 ± 0.030								
51	24.22	1461	trans-Isolimonone	0.73 ± 0.006	0.21 ± 0.017 0.41 ± 0.025								
52	24.29	1464	β-Humulene	1.35 ± 0.093	0.29 ± 0.025								
53	24.53	1474	Bisabolene	0.81 ± 0.038	0.8 ± 0.044								
54	23.48	1431	Calarene	0.28 ± 0.003	0.21 ± 0.017								
55	4.90	843	2,4-Hexadiene	0.11 ± 0.021 1.78 ± 0.012	0.11 ± 0.020 0.24 ± 0.026								
56	7.34	955	β-Terpilene	0.18 ± 0.012	0.18 ± 0.012								
57	24.28	1464	Germacrene	0.76 ± 0.025	15.28 ± 0.600	3.2 ± 0.086 6.8 ± 0.130	0.08 ± 0.021						
58	7.47	960	β-Pinene	8.37 ± 0.512 11.95 ± 0.839	4.15 ± 0.061 6.08 ± 0.106 6.1 ± 0.025 4.39 ± 0.095								
59	26.14	1543	(E)-β-Farnesene	7.23 ± 0.584	15.28 ± 0.600	3.2 ± 0.086 6.8 ± 0.130	0.08 ± 0.021						
60	7.36	955	Sabineine	1.26 ± 0.199	0.17 ± 0.006 10.46 ± 0.115								
61	9.98	1038	β-Phellandrene	0.11 ± 0.020 0.24 ± 0.026									
62	21.27	1347	Copaene	4.56 ± 0.106									
63	22.90	1407	(+)-Aromadendrene	0.58 ± 0.032 0.43 ± 0.029									
64	4.97	1012	Cyclohexene	2.72 ± 0.020 5.72 ± 0.087 14.26 ± 0.072 1.36 ± 0.031									
65	11.23	1070	perillene	6.63 ± 0.026	1.91 ± 0.020								
66	9.52	1026	3-Carene	5.88 ± 0.031									
67	19.40	1281	Valencen	5.88 ± 0.031									
68	7.00	941	Sabinene	0.11 ± 0.020 0.24 ± 0.026									

(Continued)
Peak	RT* (min.)	LRI *	Compounds	PBE	PAU	PRE	PHA	PPS	PLA	PFL	PCA	PPU	PLO
Phenols													
69	19.407	1280	Catechol										
			Phenols	69							69		
70	19.074	1270	Cinnamaldehyde										
			Aldehydes	70									
71	4.813	838	Leaf aldehyde	70									
72	21.001	1336	Benzaldehyde	70									
73	16.373	1188	Decanal	70									
74	30.122	1736	Palmitaldehyde	70									
75	23.929	1449	2-Methyl-2-pentenal	70									
76	21.001	1337	Benzaldehyde	70									
77	24.664	1479	Piperonylaldehyde	70									
78	3.933	<800	Leaf aldehyde	70									
Ketones													
79	21.28	1270	2-Octanone										
80	19.071	1270	2-Nonanone										

Notes: PBE: *P. betle*; PAU: *P. auritum*; PRE: *P. retrofractum*; PHA: *P. hainanense*; PPS: *P. pseudofuligineum*; PLA: *P. laetispicum*; PFL: *P. flaviflorum*; PCA: *P. cathayanum*; PPU: *P. puberulum*; PLO: *P. longum*.

*RT: Retention time (minutes).
*LRI: Line retention index.
The volatile compound profile of *P. pseudofuligineum* comprised 16 components (Table 1): 11 hydrocarbons (β-pinene: 11.95%, α-pinene: 6.73%, cinene: 4.64%, and myrcene: 2.76%), 3 esters (diethyl phthalate: 0.42% and isopentyl salicylate: 0.25%), and 2 alcohols (linalool: 1.62% and 4-methylbenzyl alcohol: 0.33%).

P. flaviflorum contained major alcohol compounds. The plant was composed of 24 components (Table 1), among which 7 were alcohols (lavandulol: 28.69%, leaf alcohol: 9.66%, nerolidol: 8.07%). Other compounds, such as hydrocarbons (30.95%), acids (3.49%), ketones (4%), and aldehydes (0.21%), were also detected.

P. cathayanum possessed major hydrocarbons compounds (Table 1). The plant consisted of 19 components, among which 15 were hydrocarbons (70.57%). The most abundant compound was myrcene, accounting for 16.06% of the total GC peak area, followed by β-caryophyllene (13.23%), sabinene (10.46%), germacrene (6.8%), and β-pinene (6.1%). Other compounds, such as aldehydes (2.03%), ester (1.1%), and alcohols (0.88%), were also detected.

Similar to *P. cathayanum* species, *P. puberulum* also featured major hydrocarbons compounds (Table 1). The plant was composed of 14 components, among which 12 were hydrocarbons (86.03%). The most abundant compound was myrcene, accounting for 34.92% of the total GC peak area, followed by β-caryophyllene (22.51%), cyclohexene (14.26%), β-elemene (4.82%), and trans-β-ocimene (4.08%). Other compounds, such as alcohols (1.46%) and aldehydes (0.47%), were also detected.

In *P. longum*, 21 components were identified (Table 1): 16 hydrocarbons (52.78%), 3 alcohols (4.94%), and 1 ketone (3.2%). The most abundant compound was β-caryophyllene, accounting for 27.7% of the total GC peak area, followed by β-pinene (4.39%), cadinene (4.08%), α-pinene (3.06%), and 2-nonenone (3.2%).

Diverse volatile compounds were observed in the different *Piper* species. In accordance with Varughese et al. [22] and Srivastave et al. [23] the total profile of volatile compounds in the 10 *Piper* species revealed the predominance of esters, hydrocarbons, aldehydes, and alcohols. Volatile
assemblages differed considerably among the different Piper species (BCS = 22.78% ± 1.98%, range: 3.15–58.83%, n = 45 comparisons, Table 2). Volatile compositions of *P. laetispicum* were more similar to those of *P. longum* (BCS = 58.83%) than those of *P. retrofractum* (35.67%), *P. hainanense* (34.53%), *P. cathayanum* (34.47%), *P. puberulum* (31.90%), *P. flaviflorum* (30.39%), *P. pseudofulgineum* (20.07%), and *P. betle* (17.94%). *P. auritum* showed significant dissimilarity to the other nine *Piper* species (BCS = 4.38% ± 0.12%, range: 3.15%–6.09%, n = 9 comparisons), especially to that of *P. hainanense* (3.15%). This pattern indicated high diversity in volatile compounds of *Piper* at the species level.

Relative abundance of different classes of volatile compounds in different *piper* species

Compositions and relative contents of volatiles in the different *Piper* species varied significantly (Table 3). Forty-four hydrocarbons were identified, and these hydrocarbons accounted for 20.10–86.03% of the total volatiles. The sum of hydrocarbons in *P. retrofractum*, *P. pseudofulgineum*, *P. laetispicum*, *P. cathayanum*, and *P. puberulum* was significantly high at over 60% (Table 3). However, *P. auritum* presented low hydrocarbon content (20.1%). Some hydrocarbons, such as β-caryophyllene, myrcene, ocimene and β-pinene, are linked to pleasant woody, fruit, fragrance of flowers, and pine odor, respectively.²⁴⁻²⁹ In this study, β-caryophyllene, myrcene, ocimene, and β-pinene were the major hydrocarbon compounds, accounting for more than 50% of the total hydrocarbons. *P. puberulum* yielded the highest β-caryophyllene, myrcene, and ocimene contents at 22.51 ± 0.36%, 34.92 ± 0.36%, and 0.94 ± 0.03%, respectively, followed by *P. pseudofulgineum* at 2.32 ± 0.10%, 2.76 ± 0.12%, and 31.48 ± 0.55% (Table 1). However, in *P. auritum*, contents of these compounds were very low, with mean content of 0.45 ± 0.029% in myrcene and 1.88 ± 0.031% in β-caryophyllene.

Fourteen alcohols were detected in the 10 *Piper* species. The highest alcohol content was observed in *P. flaviflorum* (50.18%), showing significant differences from the remaining *Piper* species, whereas no alcohol was detected in *P. auritum*. Alcohols are described to possess “fruity”

| Table 2. The Bray–Curtis similarity values (%) among different species of *Piper*. |
|-------------------|---|---|---|---|---|---|---|---|---|---|
| PBE | 100 | PAU | 5.77 | 100 | PRE | 17.94 | 4.93 | 100 | PHA | 21.48 | 3.15 | 22.02 | 100 | PPS | 12.41 | 3.20 | 26.70 | 39.04 | 100 | PLA | 17.93 | 3.91 | 35.67 | 34.53 | 20.07 | 100 | PFL | 18.45 | 3.30 | 12.47 | 22.33 | 16.09 | 30.39 | 100 | PCA | 16.94 | 5.78 | 26.48 | 35.01 | 18.96 | 34.47 | 27.17 | 100 |
| PPU | 19.80 | 3.34 | 34.46 | 30.50 | 12.25 | 31.90 | 15.60 | 46.07 | 100 | PLO | 25.97 | 6.09 | 38.93 | 38.55 | 22.29 | 58.83 | 27.14 | 34.94 | 41.58 | 100 |

Notes: PBE: *P. betle*; PAU: *P. auritum*; PRE: *P. retrofractum*; PHA: *P. hainanense*; PPS: *P. pseudofulgineum*; PLA: *P. laetispicum*; PFL: *P. flaviflorum*; PCA: *P. cathayanum*; PPU: *P. puberulum*; PLO: *P. longum*.

| Table 3. Relative abundance of different classes of volatile compounds in 10 *Piper* species. |
|-------------------|---|---|---|---|---|---|---|---|---|---|
| PBE | 6.30 | 0.49 | 0.00 | 0.14 | 0.00 | 0.00 | 3.49 | 0.00 | 0.00 | 0.00 |
| PAU | 4.61 | 0.00 | 0.34 | 0.13 | 1.52 | 0.00 | 0.00 | 1.10 | 0.00 | 0.00 |
| PRE | 9.46 | 0.00 | 15.55 | 5.00 | 1.95 | 9.04 | 50.18 | 0.88 | 1.46 | 4.94 |
| PHA | 46.63 | 20.10 | 64.59 | 59.65 | 63.53 | 76.9 | 30.95 | 70.57 | 86.03 | 52.78 |
| PPS | 0.00 | 0.00 | 2.48 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PLA | 0.00 | 9.46 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PFL | 0.47 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PCA | 23.56 | 78.06 | 15.55 | 5.00 | 1.95 | 9.04 | 50.18 | 0.88 | 1.46 | 4.94 |
| PPU | 0.00 | 0.00 | 0.29 | 0.00 | 0.00 | 1.22 | 4.00 | 0.00 | 0.00 | 0.00 |
| PLO | 90.56 | 98.65 | 83.25 | 69.59 | 67 | 87.99 | 88.83 | 74.58 | 87.96 | 61.82 |

Notes: PBE: *P. betle*; PAU: *P. auritum*; PRE: *P. retrofractum*; PHA: *P. hainanense*; PPS: *P. pseudofulgineum*; PLA: *P. laetispicum*; PFL: *P. flaviflorum*; PCA: *P. cathayanum*; PPU: *P. puberulum*; PLO: *P. longum*.
For alcohols, lavandulol, linalool, and 2-pentanol are described to feature “fruity,” “floral” notes. These compounds also contribute to the fruity and floral odors in fine Piper. In the current study, contents of 2-pentanol were significantly higher in P. betle and P. hainanense species than in the remaining studied plants. P. retrofractum presented high levels of linalool, accounting for 12.9% of the total compounds. However, linalool contents of P. auritum and P. cathayanum were very low.

Aldehyde compounds of the 10 Piper species contributed 0.00–78.06% of the total volatile content. As major components, aldehydes can result from lipid oxidation or self-oxidation and degradation of fatty acids. The sum of aldehydes was significantly higher in P. auritum than notes. For alcohols, lavandulol, linalool, and 2-pentanol are described to feature “fruity,” “floral” notes. These compounds also contribute to the fruity and floral odors in fine Piper. In the current study, contents of 2-pentanol were significantly higher in P. betle and P. hainanense species than in the remaining studied plants. P. retrofractum presented high levels of linalool, accounting for 12.9% of the total compounds. However, linalool contents of P. auritum and P. cathayanum were very low.

Aldehyde compounds of the 10 Piper species contributed 0.00–78.06% of the total volatile content. As major components, aldehydes can result from lipid oxidation or self-oxidation and degradation of fatty acids. The sum of aldehydes was significantly higher in P. auritum than...
the other *Piper* plants. Cinnamaldehyde and benzaldehyde were detected as the major aldehyde compounds, accounting for more than 90% of the total aldehydes. The relative content of cinnamaldehyde in *P. auritum* was very high, reaching 77.98% (Table 1). Cinnamaldehyde, which is the main component of volatile oil of the traditional Chinese medicine cinnamon, features a special cinnamon flavor.[30,31] Cinnamaldehyde exerts pharmacological effects, including antipyretic, analgesic, antibacterial, and antiviral properties.[32]

The current study detected 7 esters, 3 acids, 2 ketones, and 1 phenol compound in 10 *Piper* species. Volatiles such as 2-nonanone (ketone) and leaf acetate (ester) are described to manifest a fresh and sweet odor and fruity taste.[10] *P. flaviflorum* contained the highest 2-nonanone content (4.00%), followed by *P. longum* (3.20%) and *P. laetispicum* (1.22%). Leaf acetate was present only in *P. betle* and *P. cathayanum* species (Table 1). No significant differences in the total contents of acids, esters, and phenols were detected among *P. laetispicum*, *P. puberulum*, and *P. longum*.

PCA of volatile compounds

PCA was used to analyze the data for the 80 volatile compounds obtained from 10 *Piper* species. The first three components of PCA explained 37.67%, 12.16%, and 10.35% of variation, explaining ~60.19% of combined variance (Fig. 2). As shown in Fig. 2a, the 10 *Piper* species can be divided into 4 groups based on their position in the score scatter plot of PCA. The first group was laid on the positive side of PC 1 and included *P. laetispicum*, *P. longum*, *P. hainanense*, *P. betle*, and *P. flaviflorum* species, which were characterized as possessing high concentrations of β-caryophyllene, α-caryophyllene, germacrene, and β-pinene. *P. auritum* species sighted on the negative side of PC 1 formed the second group. *P. auritum* was characterized by extremely high cinnamaldehyde content. The third group contained *P. puberulum* and *P. cathayanum*, which were on the negative side of PC 2 and were characterized as species with high concentrations of myrcene, linalool, and germacrene D. The fourth group contained *P. pseudofuligineum* and *P. retrofractum*, which were on the positive side of PC 2 and were characterized as species with high concentration of ocimene. The remaining 71 volatiles, which include general components, (E)-β-farnesene, α-farnesene, benzyl alcohol, leaf aldehyde, copaene, and trans-β-ocimene, and relatively rare volatiles, such as 4-methylbenzyl alcohol, cineole, and 2-nonanone, showed no relationship with the first 3 components.

Conclusion

Volatiles composition and content depended largely upon *Piper* species background. A total of 80 volatile compounds were identified, and the predominant volatile compounds comprised hydrocarbons and aldehydes, followed by alcohols, acids, ketones, esters, and phenols. *P. laetispicum*, *P. longum*, *P. hainanense*, *P. betle*, and *P. flaviflorum*, were characterized by abundant β-caryophyllene, α-caryophyllene, germacrene, and β-pinene; *P. puberulum* and *P. cathayanum* were characterized by high concentrations of linalool, myrcene, and germacrene D; *P. pseudofuligineum* and *P. retrofractum* were associated with extremely high contents of ocimene. Specifically, *P. auritum* featured high content of cinnamaldehyde. The volatile components of *Piper* not only had been used as flavor ingredients but also had contained terpenoids with biological activities. This research showed significance for the comprehensive utilization of *Piper* germplasm and provides an important reference for further research.

Funding

This study was partially supported by the Ministry of Agriculture of the People’s Republic of China: [Grant Number 2017RZZY-102] and Central Public-interest Scientific Institution Basal Research Fund for Chinese Academy of Tropical Agricultural Sciences: [Grant Number 1630142017014].
References

1. Mabberley, D. J. *Mabberley’s Plant-Book: A Portable Dictionary of Plants, their Classification and Uses*, 3rd ed.; Cambridge University Press: Cambridge, UK, 2008; pp. 20–22.

2. Quijano-Abril, M. A.; Callejas-Posada, R.; Miranda-Esquível, D. R. Areas of Endemism and Distribution Patterns for Neotropical *Piper* Species (Piperaceae). Journal of Biogeography 2006, 33, 1266–1278. DOI: 10.1111/j.2006.33.issue-7.

3. Shi, Y. N.; Xin, Y.; Ling, Y.; Li, X. C.; Hao, C. Y.; Zhu, H. T.; Wang, D.; Yang, C. R.; Xu, M.; Zhang, Y. J. Chemical Constituents from *Piper Hainanense* and Their Cytotoxicities. Journal of Asian Natural Products Research 2016, 18, 730–736. DOI: 10.1080/10286020.2016.1158709.

4. Andrade, E. H. A.; Zoghbi, M. D. G. Volatile Constituents of the Leaves and Stems of *Piper Glandulosissimum* Yunck. Journal of Essential Oil Research 2007, 19, 401–402. DOI: 10.1080/10412905.2007.9699935.

5. Oliveira, J. C. S. D.; Dias, I. J. M.; Camara, C. A. G. D.; Schwartz, M. O. E. Volatile Constituents of the Leaf Oils of *Piper aduncum* L. From Different Regions of Pernambuco (Northeast of Brazil). Journal of Essential Oil Research 2006, 18, 557–559. DOI: 10.1080/10412905.2006.9699166.

6. Hao, C. Y.; Xia, Z. Q.; Fan, R.; Tan, L. H.; Hu, L. S.; Wu, B. D.; Wu, H. S. De Novo Transcriptome Sequencing of Black Pepper (*Piper nigrum* L.) And an Analysis of Genes Involved in Phenylpropanoid Metabolism in Response to *Phytophthora capsici*. BMC Genomics. 2016, 17, 822–835. DOI: 10.1186/s12864-016-3155-7.

7. Gajurel, P. R.; Rethy, P.; Kumar, Y. A New Species of *Piper* (Piperaceae) from Arunachal Pradesh, North-Eastern India. Botanical Journal of the Linnean Society 2001, 137, 417–419. DOI: 10.1111/boj.2001.137.issue-4.

8. Flora of China Editorial Committee. *Flora of China*; Science Press & Missouri Botanical Garden: Beijing, 1995; Vol. 4. http://foe.eflora.cn/.

9. Condurso, C.; Cincotta, F.; Tripodi, G.; Verzera, A. Bioactive Volatiles in Sicilian (South Italy) Saffron: Safranal and Its Related Compounds. Journal of Essential Oil Research 2017, 29, 221–227. DOI: 10.1080/10412905.2016.1244115.

10. Junior, S. B.; Tavares, A. M.; Filho, J. T.; Zini, C. A.; Godoy, H. T. Analysis of the Volatile Compounds of Brazilian Chilli Peppers (*Capsicum spp.*) At Two Stages of Maturity by Solid Phase Micro-Extraction and Gas Chromatography-Mass Spectrometry. Food Research International 2012, 48, 98–107. DOI: 10.1016/j.foodres.2012.02.005.

11. Condurso, C.; Verzera, A.; Ragusa, S.; Tripodi, G.; Dima, G. Volatile Composition of Italian *Thymus capitatus* (L.) Hoffmanns. Et Link Leaves. Journal of Essential Oil Research 2013, 25, 239–243. DOI: 10.1080/10412905.2013.775680.

12. Steinhaus, M.; Schieberle, P. Characterization of Odorants Causing an Atypical Aroma in White Pepper Powder (*Piper nigrum* L.) Based on Quantitative Measurements and Orthonasal Breakthrough Thresholds. Journal of Agricultural and Food Chemistry 2005, 53, 6049–6055. DOI: 10.1021/jf0506030.

13. Dominique, F.; Amaral, A. C. F.; Machado, G. M. C.; Leon, L. L.; Silva, J. R. D. A. Chemical and Biological Analyses of the Essential Oils and Main Constituents of *Piper* Species. Molecules 2012, 17, 1819–1829. DOI: 10.3390/molecules17021819.

14. Jagella, T.; Grosch, W. Flavour and Off-Flavour Compounds of Black and White Pepper (*Piper nigrum* L.) I. Evaluation of Potent Odorants of Black Pepper by Dilution and Concentration Techniques. European Food Research and Technology 1999, 209, 16–21. DOI: 10.1007/s002170050449.

15. Jagella, T.; Grosch, W. Flavour and Off-Flavour Compounds of Black and White Pepper (*Piper nigrum* L.) II. Odour Activity Values of Desirable and Undesirable Odorants of Black Pepper. European Food Research and Technology 1999, 209, 22–26. DOI: 10.1007/s002170050450.

16. Guerrini, A.; Sacchetti, G.; Rossi, D.; Paganetto, G.; Muzzoli, M.; Andreotti, E.; Tognolini, M.; Maldonado, M. E.; Bruni, R. Bioactivities of *Piper aduncum* L. And *Piper Oblongum* Ruiz & Pavon (Piperaceae) Essential Oils from Eastern Ecuador. Environmental Toxicochemistry and Pharmacology 2009, 27, 39–48. DOI: 10.1016/j.etap.2008.08.002.

17. Santos, P. R. D.; Moreira, D. L.; Guimarães, E. F.; Kaplan, M. A. C. Essential Oil Analysis of 10 Piperaceae Species from the Brazilian Atlantic Forest. Phytochemistry. 2001, 58, 547–551. DOI: 10.1016/S0031-9422(01)00290-4.

18. Maia, J. G. S.; Andrade, E. H. A. Database of the Amazon Aromatic Plants and Their Essential Oils. Quimica Nova 2009, 32, 592–622. DOI: 10.1590/S0100-40422009000300006.

19. Dominique, F.; Amaral, A. C. F.; Machado, G. M. C.; Leon, L. L.; Silva, J. R. D. A. Chemical and Biological Analyses of the Essential Oils and Main Constituents of *Piper* Species. Molecules 2012, 17, 1819–1829. DOI: 10.3390/molecules17021819.

20. Mazida, M. M.; Salleh, M. M.; Osman, H. Analysis of Volatile Aroma Compounds of Fresh Chilli (*Capsicum annuum*) during Stages of Maturity Using Solid Phase Micro Extraction (SPME). Journal of Food Composition and Analysis 2005, 18, 427–437. DOI: 10.1016/j.jfca.2004.02.001.
21. Topul, R.; Wossa, S. W.; Leach, D. N.; Waterman, P. G. Volatile Chemical Constituents of *Piper aduncum* L and *Piper gibbilimbum* C.D.C (Piperaceae) from Papua New Guinea. Molecules 2007, 12, 389–394. DOI: 10.3390/12030389.

22. Varughese, T.; Unnikrishnan, P. K.; Deepak, M.; Balachandran, I.; Shree, A. B. S. Chemical Composition of the Essential Oils from Stem, Root, Fruit and Leaf of *Piper longum* Linn. Journal of Essential Oil Bearing Plants 2016, 19, 52–58. DOI: 10.1080/0972060X.2015.1119065.

23. Srivastave, S.; Gupta, M. M.; Kumar, S. Volatile Constituents of the Essential Oil of *Piper mulesua* from Manipur (India). Journal of Essential Oil Research 1999, 11, 563–564. DOI: 10.1080/10412905.1999.9701214.

24. Qin, X. W.; Lai, J. X.; Hao, C. Y.; Li, F. P.; He, S. Z.; Song, Y. H. Characterization of Volatile Compounds in Criollo, Forastero, and Trinitario Cocoa Seeds (*Theobroma cacao* L.) In China. International Journal of Food Properties 2017, 20, 2261–2275. DOI: 10.1080/10942912.2016.1236270.

25. Arctander, S.;. *Perfume and Flavour Chemicals*; Arctander: Elizabeth, NJ, 1969.

26. Ziegleder, G.; Linalool Contents as Characteristic of Some Flavour Grade Cocoas. Z. Lebensm. Food Research 1990, 191, 306–309. DOI: 10.1007/BF01202432.

27. Werkhoff, P.; Güntert, M.; Kramme, G.; Sommer, H.; Kaulen, J. Vacuum Headspace Method in Aroma Research: Flavor Chemistry of Yellow Passion Fruits. Journal of Agricultural and Food Chemistry 1998, 46, 1076–1093. DOI: 10.1021/jf970655s.

28. Hadi, M. A. M. E.; Zhang, F. J.; Wu, F. F.; Zhou, C. H.; Tao, J. Advances in Fruit Aroma Volatile Research. Molecules 2013, 18, 8200–8229. DOI: 10.3390/molecules18078200.

29. Blank, I.; Grosch, W. Evaluation of Potent Odorants in Dill Seed and Dill Herb (*Anethum graveolens* L.) By Aroma Extract Dilution Analysis. Journal of Food Science 1991, 56, 63–67. DOI: 10.1111/j.1532-2450.1991.tb01947.x.

30. Saltini, R.; Akkerman, R.; Frosch, S. Optimizing Chocolate Production through Traceability: A Review of the Influence of Farming Practices on Cocoa Bean Quality. Food Control 2013, 29, 167–187. DOI: 10.1016/j.foodcont.2012.05.054.

31. Cerny, C.; Fay, L. B. Mechanism of Formation of Alkylpyrazine in the Maillard Reaction. Journal of Agricultural and Food Chemistry 1995, 43, 2818–2822. DOI: 10.1021/jf00059a009.

32. Krysiak, W.; Majda, T.; Nebesny, E. An Effect of Relative Air Humidity on the Content of Volatile Compounds in Roasting Cocoa Beans. In *Focus on Food Engineering Research and Development*; Vivian, N.P., Eds.; Nova Science, Inc.: Vivian, N.P., 2007; pp. 467–482.