Research Article

On Certain Classes of Harmonic p-Valent Functions Defined by an Integral Operator

T. M. Seoudy

Department of Mathematics, Faculty of Science, Fayoum University, Fayoum 63514, Egypt

Correspondence should be addressed to T. M. Seoudy; tms00@fayoum.edu.eg

Received 3 November 2012; Accepted 18 December 2012

Academic Editor: Frédéric Robert

Copyright © 2013 T. M. Seoudy. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We obtain coefficient characterization, extreme points, and distortion bounds of certain classes of harmonic p-valent functions defined by an integral operator.

1. Introduction

A continuous complex-valued function $f = u + iv$ defined in a simply connected complex domain D is said to be harmonic in D if both u and v are real harmonic in D. In any simply connected domain, we can write

$$f = h + \overline{g},$$

(1)

where h and g are analytic in D. We call h the analytic part and g the coanalytic part of f. A necessary and sufficient condition for f to be locally univalent and sense preserving in D is that $|h'(z)| > |g'(z)|$ in D (see [1]).

Denote by S_H the class of functions f of the form (1) that are harmonic univalent and sense preserving in the unit disc $U = \{z : |z| < 1\}$ for which $f(0) = f_z(0) - 1 = 0$.

Recently, Jahangiri and Ahuja [2] defined the class H_p ($p \in \mathbb{N} = \{1, 2, 3, \ldots\}$), consisting of all p-valent harmonic functions $f = h + \overline{g}$ that are sense preserving in U and h, and g are of the form

$$h(z) = z^p + \sum_{k=p+1}^{\infty} a_k z^k, \quad g(z) = \sum_{k=p}^{\infty} b_k z^k, \quad |b_p| < 1.$$

(2)

For $f = h + \overline{g}$ given by (2), we define the modified p-valent Salagean integral operator $I_{p,\lambda}^n$ of f (see [3] and also [4] when $p = 1$) as follows:

$$I_{p,\lambda}^n f(z) = I_{p,\lambda}^n h(z) + (-1)^n \overline{I_{p,\lambda}^n g(z)},$$

(3)

where

$$I_{p,\lambda}^n h(z) = z^p + \sum_{k=p+1}^{\infty} \frac{p}{p+\lambda(k-p)} a_k z^k$$

$$I_{p,\lambda}^n g(z) = \sum_{k=p}^{\infty} \frac{p}{p+\lambda(k-p)} b_k z^k,$$

(4)

For $p \in \mathbb{N}$, $\lambda > 0$, $n \in \mathbb{N}_0$, $0 \leq \alpha < 1$, and $z \in U$, we let $H_{p,\lambda}(n;\alpha)$ denote the family of harmonic functions f of the form (2) such that

$$\text{Re} \left\{ \frac{I_{p,\lambda}^n f(z)}{I_{p,\lambda}^{n+1} f(z)} \right\} > \alpha,$$

(5)

where $I_{p,\lambda}^n f$ is defined by (3).

We let the subclass $H_{p,\lambda}^{-}(n;\alpha)$ consists of harmonic functions $f_n = h + \overline{g}_n$ in $H_{p,\lambda}(n;\alpha)$ so that h and g_n are of the form

$$h(z) = z^p + \sum_{k=p+1}^{\infty} a_k z^k, \quad g_n(z) = (-1)^n \sum_{k=p}^{\infty} b_k z^k,$$

(6)

$$a_k, b_k \geq 0.$$
We note that \(\mathcal{H}_{-p,1}(n;\alpha) = \mathcal{H}_p(n;\alpha) \), where the class \(\mathcal{H}_p(n;\alpha) \) was defined and studied by Cotirla [5].

In this paper, we obtain coefficient characterization of the classes \(\mathcal{H}_{p,\lambda}(n;\alpha) \) and \(\mathcal{H}_{-p,\lambda}(n;\alpha) \). We also obtain extreme points and distortion bounds for functions in the class \(\mathcal{H}_{-p,\lambda}(n;\alpha) \).

2. Coefficient Characterization

Unless otherwise mentioned, we assume throughout this paper that \(p \in \mathbb{N} \), \(n \in \mathbb{N}_0 \), \(0 \leq \alpha < 1 \), \(a_p = 1 \), and \(\lambda > 0 \). We begin with a sufficient condition for functions in \(\mathcal{H}_{p,\lambda}(n;\alpha) \).

Theorem 1. Let \(f = h + g \) so that \(h \) and \(g \) are given by (2).

Furthermore, let

\[
\sum_{k=p}^{\infty} \left\{ \Psi_{p,\lambda}(n,k,\alpha) |a_k| + \Phi_{p,\lambda}(n,k,\alpha) |b_k| \right\} \leq 2, \quad (7)
\]

where

\[
\Psi_{p,\lambda}(n,k,\alpha) = \left(\frac{p}{p + \lambda (k-p)} \right)^n - \alpha \left(\frac{p}{p + \lambda (k-p)} \right)^{n+1} \times (1 - \alpha)^{-1}, \quad (8)
\]

\[
\Phi_{p,\lambda}(n,k,\alpha) = \left(\frac{p}{p + \lambda (k-p)} \right)^n + \alpha \left(\frac{p}{p + \lambda (k-p)} \right)^{n+1} \times (1 - \alpha)^{-1}. \quad (9)
\]

Then, \(f \) is sense preserving in \(U \) and \(f \in \mathcal{H}_{p,\lambda}(n;\alpha) \).

Proof. According to (2) and (3), we only need to show that

\[
\Re \left\{ \frac{f^m_{p,\lambda} f(z) - \alpha f^m_{p,\lambda} f(z)}{f^{m+1}_{p,\lambda} f(z)} \right\} \geq 0 \quad (z \in U). \quad (10)
\]

It follows that

\[
\Re \left\{ \frac{f^m_{p,\lambda} f(z) - \alpha f^m_{p,\lambda} f(z)}{f^{m+1}_{p,\lambda} f(z)} \right\} = \Re \left\{ (1 - \alpha) z^p + \sum_{k=p+1}^{\infty} \left[\left(\frac{p}{p + \lambda (k-p)} \right)^n - \alpha \left(\frac{p}{p + \lambda (k-p)} \right)^{n+1} \right] a_k z^k \right\}
\times \left(z^p + \sum_{k=p+1}^{\infty} \left(\frac{p}{p + \lambda (k-p)} \right)^n a_k z^k \right)^{-1} \times \left(z^p + \sum_{k=p}^{\infty} \left(\frac{p}{p + \lambda (k-p)} \right)^n b_k z^k \right)^{-1}
\]

\[
\times \left(1 + \sum_{k=p+1}^{\infty} \left(\frac{p}{p + \lambda (k-p)} \right)^{n+1} a_k z^{-p} \right)^{-1} + \left((1 - \alpha) z^p + \sum_{k=p}^{\infty} \left(\frac{p}{p + \lambda (k-p)} \right)^n a_k z^{k-p} \right) \times \left(z^p + \sum_{k=p}^{\infty} \left(\frac{p}{p + \lambda (k-p)} \right)^n b_k z^k \right)^{-1}
\]

\[
\times \left(1 + \sum_{k=p}^{\infty} \left(\frac{p}{p + \lambda (k-p)} \right)^{n+1} b_k z^{-p} \right)^{-1}
\]

\[
+ \left((1 - \alpha) z^p + \sum_{k=p}^{\infty} \left(\frac{p}{p + \lambda (k-p)} \right)^n b_k z^{k-p} \right) \times \left(1 + \sum_{k=p}^{\infty} \left(\frac{p}{p + \lambda (k-p)} \right)^{n+1} b_k z^{-p} \right)^{-1}
\]

\[
\times \left(z^p + \sum_{k=p}^{\infty} \left(\frac{p}{p + \lambda (k-p)} \right)^n b_k z^k \right)^{-1}
\]
\[
\sum_{k=p+1}^{\infty} \left(\frac{p}{p + \lambda (k - p)} \right)^{n+1} a_k z^{k-p} + (-1)^{n+1} \sum_{k=p}^{\infty} \left(\frac{p}{p + \lambda (k - p)} \right)^{n+1} b_k z^{-p} \mathbf{-1} \bigg) = \text{Re} \left\{ \frac{1 - \alpha + A(z)}{1 + B(z)} \right\}.
\]

For \(z = re^{i\theta} \), we have

\[
A \left(re^{i\theta} \right) = \sum_{k=p+1}^{\infty} \left[\left(\frac{p}{p + \lambda (k - p)} \right)^n \right. \\
\left. + \alpha \left(\frac{p}{p + \lambda (k - p)} \right)^{n+1} \right] \left(r e^{i(k-p)\theta} \right)^k \\
\left. + (-1)\sum_{k=p}^{\infty} \left[\left(\frac{p}{p + \lambda (k - p)} \right)^n \right. \\
\left. + \alpha \left(\frac{p}{p + \lambda (k - p)} \right)^{n+1} \right] \right] \left(r e^{-i(k+p)\theta} \right)^k.
\]

\[
B \left(re^{i\theta} \right) = \sum_{k=p+1}^{\infty} \left(\frac{p}{p + \lambda (k - p)} \right)^{n+1} a_k r^{k-p} e^{i(k-p)\theta} \\
\left. + (-1)^{n+1} \sum_{k=p}^{\infty} \left(\frac{p}{p + \lambda (k - p)} \right)^{n+1} b_k r^{k-p} e^{-i(k+p)\theta} \right).
\]

Setting that

\[
\frac{1 - \alpha + A(z)}{1 + B(z)} = (1 - \alpha) \frac{1 + w(z)}{1 - w(z)},
\]

the proof will be complete if we can show that \(|w(z)| < 1\).

Using the condition (7), we can write

\[
|w(z)| = \left| \frac{A(z) - (1 - \alpha) B(z)}{A(z) + (1 - \alpha) B(z) + 2(1 - \alpha)} \right| \\
= \left| \sum_{k=p+1}^{\infty} \left[\left(\frac{p}{p + \lambda (k - p)} \right)^n \right. \\
\left. + \alpha \left(\frac{p}{p + \lambda (k - p)} \right)^{n+1} \right] \left(r e^{i(k-p)\theta} \right)^k \\
\left. + (-1)^{n+1} \sum_{k=p}^{\infty} \left[\left(\frac{p}{p + \lambda (k - p)} \right)^n \right. \\
\left. + \alpha \left(\frac{p}{p + \lambda (k - p)} \right)^{n+1} \right] \left(r e^{-i(k+p)\theta} \right)^k \right| < 1.
\]
\[-\left(\frac{p}{p + \lambda (k - p)}\right)^{n+1}|a_k| r^{k-p}\]
\[
\times \left(4 (1 - \alpha) - \sum_{k=p}^{\infty} |c_k| |a_k| + d_k |b_k| \right) r^{k-p}\]
\[
+ \left(\frac{p}{p + \lambda (k - p)}\right)^{n+1} |b_k| r^{k-p}\]
\[
\times \left(4 (1 - \alpha) - \sum_{k=p}^{\infty} |c_k| |a_k| + d_k |b_k| \right)^{-1}\]
\[
\times \left(\sum_{k=p+1}^{\infty} \left[\left(\frac{p}{p + \lambda (k - p)}\right)^n - \left(\frac{p}{p + \lambda (k - p)}\right)^{n+1}\right]|a_k|\right)\]
\[
+ \left(\sum_{k=p}^{\infty} \left[\left(\frac{p}{p + \lambda (k - p)}\right)^n + \left(\frac{p}{p + \lambda (k - p)}\right)^{n+1}\right]|a_k|\right)\]
\[
\times \left(4 (1 - \alpha) - \sum_{k=p}^{\infty} |c_k| |a_k| + d_k |b_k| \right)^{-1}\]
\[
\leq 1,
\]

where
\[
\begin{align*}
q_k &= \left(\frac{p}{p + \lambda (k - p)}\right)^n + (1 - 2\alpha) \left(\frac{p}{p + \lambda (k - p)}\right)^{n+1}, \\
d_k &= \left(\frac{p}{p + \lambda (k - p)}\right)^n - (1 - 2\alpha) \left(\frac{p}{p + \lambda (k - p)}\right)^{n+1}.
\end{align*}
\]

The harmonic functions are as follows:
\[
f(z) = z^p + \sum_{k=p+1}^{\infty} \frac{1}{\Psi_{\rho,\lambda}(n, k, \alpha)} x_k z^k
\]
\[
+ \sum_{k=p}^{\infty} \frac{1}{\Phi_{\rho,\lambda}(n, k, \alpha)} y_k z^k,
\]

where \(\sum_{k=p+1}^{\infty} |x_k| + \sum_{k=p}^{\infty} |y_k| = 1\) show that the coefficient bound given by (7) is sharp. The functions of the form (8) are in the class \(\mathcal{H}_{\rho,\lambda}(n; \alpha)\) because
\[
\sum_{k=p+1}^{\infty} \left|\psi_{\rho,\lambda}(n, k, \alpha) a_k + \Phi_{\rho,\lambda}(n, k, \alpha) b_k\right| = 1 + \sum_{k=p}^{\infty} |x_k| + \sum_{k=p}^{\infty} |y_k| = 2.
\]

This completes the proof of Theorem 1.

In the following theorem, it is shown that the condition (7) is also necessary for functions \(f_n = h + \overline{g}_n\), where \(h\) and \(g_n\) are of the form (6).

Theorem 2. Let \(f_n = h + \overline{g}_n\), where \(h\) and \(g_n\) are given by (6). Then, \(f_n \in \mathcal{H}_{\rho,\lambda}(n; \alpha)\) if and only if
\[
\sum_{k=p}^{\infty} \left\{\psi_{\rho,\lambda}(n, k, \alpha) a_k + \Phi_{\rho,\lambda}(n, k, \alpha) b_k\right\} \leq 2,
\]

where \(\psi_{\rho,\lambda}(n, k, \alpha)\) and \(\Phi_{\rho,\lambda}(n, k, \alpha)\) are given by (8) and (9), respectively.

Proof. Since \(\mathcal{H}_{\rho,\lambda}(n; \alpha) \subset \mathcal{H}_{\rho,\lambda}(n; \alpha)\), we only need to prove the “only if” part of the theorem. To this end, for functions \(f_n = h + \overline{g}_n\), where \(h\) and \(g_n\) are given by (6), we notice that the condition \(\text{Re}\left\{\int_{\rho,\lambda} f(z) / \int_{\rho,\lambda} f(z)\right\} > \alpha\) is equivalent to
\[
\text{Re}\left\{((1 - \alpha) z^p - \sum_{k=p+1}^{\infty} \left[\left(\frac{p}{p + \lambda (k - p)}\right)^n a_k z^k\right] - \alpha \left(\frac{p}{p + \lambda (k - p)}\right)^{n+1} a_k z^k\right.\]
\[
\times \left(z^p - \sum_{k=p+1}^{\infty} \left(\frac{p}{p + \lambda (k - p)}\right)^{n+1} a_k z^k\right)\]
\[
\left. + (-1)^{2\alpha} \sum_{k=p}^{\infty} \left(\frac{p}{p + \lambda (k - p)}\right)^{n+1} b_k z^k\right) \right)^{-1}\]
\[+ \left(-1 \right)^{2n-1} \sum_{k=p}^{\infty} \left(\frac{p}{p + \lambda (k-p)} \right)^n \times \left[\frac{p}{p + \lambda (k-p)} \right] \left(\frac{p}{p + \lambda (k-p)} \right)^{n+1} b_k z^k + \alpha \left(\frac{p}{p + \lambda (k-p)} \right) \left(\frac{p}{p + \lambda (k-p)} \right)^{n+1} a_k z^k \times \left(z^p - \sum_{k=p+1}^{\infty} \left(\frac{p}{p + \lambda (k-p)} \right)^{n+1} a_k z^k \right) \right] \] \[+ \left(-1 \right)^{2n} \sum_{k=p}^{\infty} \left(\frac{p}{p + \lambda (k-p)} \right)^{n+1} b_k z^k \right) \right]^{-1} \] \[\geq 0. \] \[(19) \]

The previous required condition (19) must hold for all values of \(z \) in \(U \). Upon choosing the values of \(z \) on the positive real axis where \(0 \leq z = r < 1 \), we must have

\[\left(1 - \alpha \right) - \sum_{k=p+1}^{\infty} \left[\left(\frac{p}{p + \lambda (k-p)} \right)^n \right] a_k r^{k-p} \]

\[\times \left(1 - \sum_{k=p+1}^{\infty} \left(\frac{p}{p + \lambda (k-p)} \right)^{n+1} a_k r^{k-p} \right) \]

\[+ \sum_{k=p+1}^{\infty} \left(\frac{p}{p + \lambda (k-p)} \right)^{n+1} b_k r^{k-p} \]

\[\times \left(1 - \sum_{k=p+1}^{\infty} \left(\frac{p}{p + \lambda (k-p)} \right)^{n+1} a_k r^{k-p} \right) \]

\[+ \sum_{k=p}^{\infty} \left(\frac{p}{p + \lambda (k-p)} \right)^{n+1} b_k r^{k-p} \]

\[\geq 0. \] \[(20) \]

If the condition (18) does not hold, then the numerator in (20) is negative for \(r \) sufficiently close to 1. Hence there exists \(z_0 = r_0 \) in \((0, 1)\) for which the quotient in (20) is negative. This contradicts the required condition for \(f_n \in \mathcal{H}_{p,\lambda}(n;\alpha) \), and so the proof of Theorem 2 is completed. \(\square \)

3. Extreme Points and Distortion Theorem

Our next theorem is on the extreme points of convex hulls of the class \(\mathcal{H}_{p,\lambda}(n;\alpha) \) denoted by \(\text{clco} \mathcal{H}_{p,\lambda}(n;\alpha) \).

Theorem 3. Let \(f_n = h + g_n \) where \(h \) and \(g_n \) are given by (6). Then, \(f_n \in \mathcal{H}_{p,\lambda}(n;\alpha) \) if and only if

\[f_n(z) = \sum_{k=p}^{\infty} \left[x_k h_k(z) + y_k g_n(z) \right], \] \[(21) \]

where

\[h_1(z) = z^p, \quad h_k(z) = z^p - \frac{1}{\Psi_{p,\lambda}(n,k,\alpha)} z^k \]

\[(k = p+1, p+2, p+3, \ldots), \]

\[g_n(z) = z^p + \left(-1 \right)^{n+1} \frac{1}{\Phi_{p,\lambda}(n,k,\alpha)} z^k \]

\[(k = p, p+1, p+2, \ldots), \]

\[x_k, y_k \geq 0, \quad x_p = 1 - \sum_{k=p+1}^{\infty} x_k - \sum_{k=p}^{\infty} y_k. \]

In particular, the extreme points of the class \(\mathcal{H}_{p,\lambda}(n;\alpha) \) are \(\{h_k\} \) and \(\{g_n\} \).

Proof. Suppose that

\[f_n(z) = \sum_{k=p}^{\infty} \left(x_k h_k(z) + y_k g_n(z) \right) \]

\[= \sum_{k=p}^{\infty} \left(x_k + y_k \right) z^p - \sum_{k=p+1}^{\infty} \frac{1}{\Psi_{p,\lambda}(n,k,\alpha)} x_k z^k \]

\[+ \left(-1 \right)^{n+1} \sum_{k=p}^{\infty} \frac{1}{\Phi_{p,\lambda}(n,k,\alpha)} y_k z^k. \] \[(23) \]

Then,

\[\sum_{k=p+1}^{\infty} \Psi_{p,\lambda}(n,k,\alpha) \left(\frac{1}{\Psi_{p,\lambda}(n,k,\alpha)} x_k \right) \]

\[+ \sum_{k=p}^{\infty} \Phi_{p,\lambda}(n,k,\alpha) \left(\frac{1}{\Phi_{p,\lambda}(n,k,\alpha)} y_k \right) \]

\[= \sum_{k=p}^{\infty} x_k + \sum_{k=p}^{\infty} y_k = 1 - x_p \leq 1, \]

and so \(f_n \in \text{clco} \mathcal{H}_{p,\lambda}(n;\alpha) \).
Conversely, if \(f_n \in \mathcal{H}^{-\lambda}_p(n, \alpha) \), then
\[
a_k \leq \frac{1}{\Psi_{p, \lambda}(n, k, \alpha)}, \quad b_k \leq \frac{1}{\Phi_{p, \lambda}(n, k, \alpha)},
\]
Set that
\[
x_k = \Psi_{p, \lambda}(n, k, \alpha) a_k \quad (k = p + 1, p + 2, p + 3, \ldots),
\]
\[
y_k = \Phi_{p, \lambda}(n, k, \alpha) b_k \quad (k = p, p + 1, p + 2, \ldots).
\]
Then note that by Theorem 2, \(0 \leq x_k \leq 1 \), \((k = p + 1, p + 2, p + 3, \ldots) \), and \(0 \leq y_k \leq 1 \), \((k = p, p + 1, p + 2, \ldots) \). We define that \(x_p = 1 - \sum_{k=p+1}^{\infty} x_k - \sum_{k=p}^{\infty} y_k \) and note that by Theorem 2, \(x_p \geq 0 \). Consequently, we obtain \(f_n(z) = \sum_{k=p}^{\infty} (x_k h_k(z) + y_k g_k(z)) \) as required. \(\square \)

The following theorem gives the distortion bounds for functions in the class \(\mathcal{H}^{-\lambda}_p(n, \alpha) \) which yields a covering result for this class.

Theorem 4. Let \(f_n(z) \in \mathcal{H}^{-\lambda}_p(n, \alpha) \). Then, for \(|z| = r < 1 \), we have
\[
(1 - b_p) r^p - \left\{ \Gamma_{p, \lambda}(n, \alpha) - \Delta_{p, \lambda}(n, \alpha) \right\} r^{p+1} \leq |f_n(z)| \leq (1 + b_p) r^p + \left\{ \Gamma_{p, \lambda}(n, \alpha) - \Delta_{p, \lambda}(n, \alpha) b_p \right\} r^{p+1},
\]
where
\[
\Gamma_{p, \lambda}(n, \alpha) = \frac{1 - \alpha}{(p/(p + \lambda))^n - \alpha(p/(p + \lambda))^{n+1}},
\]
\[
\Delta_{p, \lambda}(n, \alpha) = \frac{1 + \alpha}{(p/(p + \lambda))^n - \alpha(p/(p + \lambda))^{n+1}}.
\]

The result is sharp.

Proof. We only prove the right-hand inequality. The proof for the left-hand inequality is similar and will be omitted. Let \(f_n(z) \in \mathcal{H}^{-\lambda}_p(n, \alpha) \). Taking the absolute value of \(f_n \), we have
\[
|f_n(z)| \leq (1 + b_p) r^p + \sum_{k=p+1}^{\infty} (a_k + b_k) r^k \leq (1 + b_p) r^p + \sum_{k=p+1}^{\infty} (a_k + b_k) r^{p+1} = (1 + b_p) r^p + \Gamma_{p, \lambda}(n, \alpha) \times \sum_{k=p+1}^{\infty} \frac{1}{\Gamma_{p, \lambda}(n, \alpha)} (a_k + b_k) r^{p+1} \leq (1 + b_p) r^p + \Gamma_{p, \lambda}(n, \alpha) r^{p+1}
\]
\[
\leq (1 + b_p) r^p + \left\{ \Gamma_{p, \lambda}(n, \alpha) - \Delta_{p, \lambda}(n, \alpha) b_p \right\} r^{p+1}.
\]

The bounds given in Theorem 4 for functions \(f_n = h + \overline{g}_n \), where \(h \) and \(g_n \) of form (6), also hold for functions of form (2) if the coefficient condition (7) is satisfied. The upper bound given for \(f \in \mathcal{H}^{-\lambda}_p(n, \alpha) \) is sharp, and the equality occurs for the functions
\[
f(z) = z^p + b_p \overline{z}^p
\]
showing that the bounds given in Theorem 4 are sharp. \(\square \)

Remark 5.
(i) Putting \(\lambda = 1 \) in the previous results, we obtain the results of Cotirla [5].
(ii) Putting \(\lambda = 1 \) in the previous results, we obtain the results of Cotirla [6], when \(\beta = 0 \).

Acknowledgment

The author is grateful to the referees for their valuable suggestions.

References

[1] J. Clunie and T. Sheil–Small, "Harmonic univalent functions," *Annales Academiae Scientiarum Fennicæ Mathematica* A, vol. 9, pp. 3–25, 1984.

[2] J. M. Jahangiri and O. P. Ahuja, "Multivalent harmonic starlike functions," *Annales Mariae Curie-Skłodowska* A, vol. 56, pp. 1–13, 2001.

[3] M. K. Aouf, A. O. Mostafa, and R. El-Ashwah, "Sandwich theorems for p-valent functions defined by a certain integral operator," *Mathematical and Computer Modelling*, vol. 53, no. 9-10, pp. 1647–1653, 2011.

[4] F. M. Al-Oboudi, "On univalent functions defined by a generalized Sălăgean operator," *International Journal of Mathematics*
[5] L.-I. Cotirla, "Harmonic multivalent functions defined by integral operator," *Studia Universitatis Babeș-Bolyai*, vol. 54, no. 1, pp. 65–74, 2009.

[6] L.-I. Cotirla, "A new class of harmonic multivalent functions defined by an integral operator," *Acta Universitatis Apulensis*, vol. 21, pp. 55–63, 2010.
Submit your manuscripts at http://www.hindawi.com