1. 緒 言

マグ (MAG: Metal Active Gas) 溶接はガスメタルアーク溶接の1種であり, シールドガスにO₂やCO₂などの活性ガスを含む混合ガスを用いる溶接法である. 活性ガスを用いることで, シールドガスに純不活性ガスを用いるガスメタルアーク溶接であるミグ (MIG: Metal Inert Gas) 溶接に比べ, 底部が広い鍋底型の溶込みを得やすくなる1). また, これらの活性ガスはArなどの不活性ガスに比べて安価であるため, ミグ溶接に比べ, マグ溶接は安価に施工できる. その反面, 活性ガスがプラズマ中で解離しOが発生することで, 溶接部の酸化による靭性劣化を引き起こすという問題が生じる2,3). これを防ぐため, マグ溶接では溶接金属の主成分であるFeよりもOとの親和性が高いMnやSiなどをワイヤに添加している. これらの元素は, 脱酸・還元反応によって溶融金属中のOを吸着することで, FeとOの結合を低減し溶接部の酸化を抑える作用をする4). このときOを吸着した元素はスラグとして浮遊する. スラグの発生は溶接部の酸化による靭性劣化を防ぐため不可避となる. スラグは溶接後ビード上に定着し, 電着塗装の際に塗装不良が生じ, 腐食の原因となることが報告されている5-7). 他にも, 複数パスで行う溶接でのスラグ巻込みの原因となるため8,9), 溶接のたびにスラグを除去する必要がある. 特にビード止端部に定着したスラグ除去には時間を要するため, スラグ除去工程は生産効率低下の一因となっている. そこで, スラグ除去効率向上のためにスラグの定着位置制御に着目した溶接条件の設定指針が求められており, スラグの輸送・定着を調査した研究が報告されている.

Numerical investigation for dominant factors in slag transfer and deposition process during metal active gas welding using incompressible smoothed particle hydrodynamics method*

by FUKAZAWA Takamasa***, TANAKA Keigo***, KOMEN Hisaya****, SHIGETA Masaya****, TANAKA Manabu**** and MURPHY Anthony Bruce******

Numerical simulation based on an incompressible smoothed particle hydrodynamics method was performed to clarify dominant factors of slag transfer and deposition processes in a metal active gas welding with a computational model which considered the effects of a shielding gas flow on a slag floating on a weld pool surface. As a result, the slags generated on the weld pool surface near the center of a heat source were transferred to the edge of the pool, which was similar to an experiment result. The slags stayed at the trailing region of the pool and then deposited on a weld bead. These simulated behaviors supported the validity of the present computational result. In order to identify the dominant factors of the slag behavior on the weld pool, numerical experiments were conducted with individually acting the forces due to the Marangoni effect, the shearing force, the Lorentz force, and the drag by the shielding gas flow. From the computational results, it was suggested that the shearing force and the drag due to the shielding gas were dominant near the center of the heat source, and the slag was transferred from the vicinity of the heat source to the end of the weld pool. On the other hand, it was clarified that the force due to the Marangoni effect was dominant in the trailing region of the weld pool, and consequently the slag was transferred from there to the front region in the welding direction.

Key Words: Particle method, Slag, MAG welding, Driving force, Marangoni effect

*受付日 2021年6月16日 受理日 2021年11月29日
**学生員 大阪大学接合科学研究所 Student member, Joining and Welding Research Institute, Osaka Univ.
***正員 大阪大学接合科学研究所（現在 地方独立行政法人 大阪産業技術研究所和泉センター） Member, Joining and Welding Research Institute, Osaka Univ. (Present Address: Osaka Research Institute of Industrial Science and Technology, Izumi Center)
****正員 大阪大学接合科学研究所 Member, Joining and Welding Research Institute, Osaka Univ.
*****正員 大阪大学接合科学研究所（現在 東北大学大学院工学研究科） Member, Joining and Welding Research Institute, Osaka University (Present Address: Graduate School of Engineering, Tohoku Univ.)
******CSIRO Manufacturing, Australia

Ashanら10)は異なる量の脱酸剤を含むCMT (Cold Metal Transfer)溶接を行い,溶融金属上のスラグ輸送の様子を高速度ビデオカメラによって観察した. また溶接後にビード上に定着したスラグの位置を観察した. その結果, 脱酸剤含有量に応じて, 溶融池対流の方向が変化し, それに伴ってスラグの輸送方向も変化することを明らかにした. Umeharaら11)はガスメタルアーク溶接において, ワイヤ中のSの含有量を一般的に用いられる0.01wt.%より高い0.06wt.%に設定して溶接を行った. その結果, ワイヤ中のSの含有量を高くするとスラグが円状に成長し, それによりOとの親和性が高いMnやSiなどをワイヤに添加している. これらの元素は, 脱酸・還元反応によって溶融金属中のOを吸着することで, FeとOの結合を低減し溶接部の酸化を抑える作用をする4).
の後ビード中央に定着することを明らかにした。このようにスラグは溶融池表面を浮遊することから、添加元素によって溶融池表面にたらくMarangoni効果による対流の方向が異なることに着目している研究がなされている。しかしながら、溶融池内における対流はMarangoni効果による力のみならず、計4つの駆動力（Marangoni効果による力、Lorentz力、浮力、表面せん断力）によって決定されると考えられている2)。したがって、これらの4つの駆動力の個々の影響がスラグの輸送・定着に及ぼす影響を明らかにすることが必要であるが、これらの実験的観察はまだされていない。またスラグは溶融池表面を浮遊しているため、スラグ自身も気流からの影響を受けていると考えられる。マグ溶接におけるスラグ輸送・定着メカニズムを明らかにするためには、これら4つの駆動力の個々の影響がスラグの輸送・定着に及ぼす影響を調査する必要がある。マグ溶接では母材がアークからの入熱によって相変化して溶融池を形成し、溶融池の流動や溶滴の落下による溶融金属の大変形が生じる。そのため計算手法として、これら現象を柔軟に取り扱うことができる粒子法が適している。粒子法は、溶接接合分野にも広く用いられており13-19)Komenら20)は粒子法を用いたガスメタルアーク溶接における溶融池対流およびビード形成過程のシミュレーションを行い、実験結果とよい一致を得ている。また、溶接スラグに関する数値計算として、サブマージアーク溶接において溶接金属だけでなくスラグの溶融、凝固も考慮した数値シミュレーションが行われている21)。さらに、マグ溶接におけるスラグについては、Marangoni効果による力がスラグを輸送に与える影響を数値計算によって調査した報告もある22)。しかししながら、4つの溶融池駆動力および気流から溶融池表面のスラグがそれぞれどのような影響を受けるかを調査した報告はされていない。そこで本研究では、粒子法の1つである非圧縮性SPH（Smoothed Particle Hydrodynamics）法を用いた3次元の計算モデルを構築し、2次元軸対称を仮定した熱源モデル23)から得られたマグ溶接の熱源分布を用いた数値実験を実行する。また、溶融池駆動力および気流がスラグ輸送に及ぼす影響を個別に調査することで、スラグ輸送・定着の支配因子を見出すことを試みる。

Table 1 Computational conditions of heat source.

Shielding gas	Ar + 20%C0₂
Arc length	5.0 mm
Welding current	300 A
Wire feed rate	10 m/min⁴¹
Gas flow rate	20 L/min⁴¹
Welding speed	5 mms⁻¹
Ionization voltage of shielding gas	15.68 V

2. 計算手法および計算条件

2.1 本計算における仮定

前述のように、マグ溶接中の溶融池を輸送されるスラグは4つの駆動力による溶融池の流動の影響だけでなく、気流からの影響を直接受ける。したがって、スラグの輸送・定着をシミュレートするためには、アークプラズマからの熱伝達、表面せん断、溶接池内を流れる電流を考慮した溶融池の挙動およびスラグが受ける気流からの影響を考える必要がある。本研究では辻村23)の熱源モデルによってTable 1の条件で計算されたマグ溶接におけるアークプラズマの物理量および母材中の電流密度や磁束密度が、粒子法を用いた計算に受け渡される。Fig. 1からFig. 3は、それぞれ辻村23)の熱源モデルを用いて計算された母材表面から0.1 mm上方の位置における気流の温度分布、母材表面から0.1 mm上方の位置における半径方向のシールドガス流の速度分布、母材表面から0.1 mm上方の位置における温度分布、母材表面から0.1 mm上方の位置における半径方向のシールドガス流の速度分布、母材底部を一定に0 Vとして計算された母材内部のLorentz力分布を示している。Fig. 1からFig. 3において濃色部は熱源中からの半径方向の距離を示している。また、Fig. 3のzは厚み方向の位置を示しており、z=5.0 mmが母材表面である。なお、Fig. 3の黒い矢印はLorentz力の方向を示しており、格子点3点ごとに描画している。本研究で熱源として用いるアークプラズマの各分布は、簡単のため定常状態と2次元軸対称を仮定している。また、粒子法の計算では相変化が潜熱期間の中間で生じるとし、過冷却、過熱は考慮していない。溶渕は周期的に熱源中心軸上で生成され、温度一定、鉛直下向きに定速で輸送されると仮定している。本研究では、スラグ輸送・定着の支配因子を見出すことに主眼を置いて、スラグの発生および運動を以下のよう

(i) スラグは剛体として振る舞う。
(ii) スラグは化学反応で生じるものとはせず、後述の領域内において定常的に発生する。
(iii) スラグの運動は溶融池だけでなく周囲の気流からも影響を受けるものとし、特に気流とスラグの間には摩擦抗力と圧力抗力が生じる。

スラグはマグ溶接中の溶融池において、個別に形状を維持したまま溶融池後方へ輸送される。その後、小さなスラグ片はスラグ片同士の衝突で合体し大きなスラグ片となる。この一連の挙動を再現するために、本研究ではスラグを剛体と仮定し、Koshizukaら24)のPassively moving solid modelを採用して、スラグ片同士が接触すると合体するものと取り扱った。またマグ溶接中の溶融池において、個別に形状を維持したまま溶融池後方へ輸送される。その後、小さなスラグ片はスラグ片同士の衝突で合体し大きなスラグ片となる。この一連の挙動を再現するために、本研究ではスラグを剛体と仮定し、Koshizukaら24)のPassively moving solid modelを採用して、スラグ片同士が接触すると合体するものと取り扱った。またマグ溶接中の溶融池において、個別に形状を維持したまま溶融池後方へ輸送される。その後、小さなスラグ片はスラグ片同士の衝突で合体し大きなスラグ片となる。この一連の挙動を再現するために、本研究ではスラグを剛体と仮定し、Koshizukaら24)のPassively moving solid modelを採用して、スラグ片同士が接触すると合体するものと取り扱った。
と考えられる。しかししながら、本研究ではスラグ形成後の輸送および定着過程に焦点を当てているため、化学反応によるスラグの形成過程については次のように簡略化することとする。まずスラグの発生は、熱源中心近傍の特定の領域に存在する流体粒子を剛体粒子に変化させることによって表現する。この領域はFig.1に示した温度分布とO分率から決定している。Fig.4にMurphyの計算モデルを用いて算出した、局所熱力学的平衡状態におけるAr+20%CO2の混合ガスの各温度におけるモル分率を示す。図より、5000K程度までの温度域では温度が高いほどO分率が大きくなることがわかる。また、Fig.1に示したアークプラズマの温度分布から最も高温になる位置は熱源中心から2.5mm程度離れた位置である。したがって、この位置でO分率が最も大きくなり、スラグは発生しやすくなると考えられる。これらより、Fig.5に示すように本研究における剛体粒子の発生位置は熱源の中心から同心円状に広がる円形領域内(1.5mm≦R≦3.0mm)で、60°ごとに30°の幅を持つ扇状としている。溶滴の生成開始から0.5s間隔でこの範囲内に存在する流体粒子を剛体粒子に変化させることによって、スラグの発生を表現している。スラグの発生位置と発生頻度は、シミュレーションを行う際にスラグの発生と同時に数種同士が合体することを防ぐために設定した値である。また化学反応を考慮しないことから、スラグ形成時の生成熱、
スラグの組成の変化を考慮しない。そのため、スラグの密度は酸化鉄の密度と等しく、形状は厚みが計算粒子径と等しい円柱形として取り扱い、スラグが気流から受ける力をモデル化する。

2.2 溶融池の計算モデル

SPH法では粒子が物理量を持ち、粒子自身が移動することによってその物理量を輸送する。ある粒子の位置すなわち粒子の物理量は、近傍の粒子の相互作用を考慮した式で記述される。

添字、は粒子番号、は質量、は密度、は粒子径によって決まるカーネル関数である。

この離散化手法を用いて、流体粒子の運動は次式を用いて表すことができる。

ここで、は速度、は時間、は圧力、は熱伝導率であり、は熱生成速度を表している。式（5）の右辺第1項は熱伝導項を表し、第2項は生成項を表している。熱生成速度は次式のように表される。

ここで、は比熱、は熱伝導率であり、はマグ溶接中のアークプラズマの温度分布の母材表面からの高さ（0.1 mm）である。は放射率、はStefan-Boltzmann定数、はRichardson–Dushman方程式から求まる電子電流密度、は仕事関数、は伊オン電流密度、はプラズマの電離電圧である。

2.3 スラグの計算モデル

前述の通り本研究におけるスラグの運動は、浮体を複数の剛体粒子によって構成し、流体と相互作用させつつ動く。
体粒子によって構成し、流体と相互作用させつつ Newton の運動方程式に基づいて運動させる Passively moving solid model によって決定される。各タイムステップkではスラグが慣性によって移動する前に、スラグを構成する N 個の剛体粒子の位置 r_{wc}^i と式 (7)、式 (8) によって求められる重心 r^{k+1}_{wc} および慣性モーメント I が一時的に記憶される。

$$ r^{k+1}_{wc} = r^{k}_{wc} + \Delta t \sum_{i=1}^{N} m_i \left(\vec{r}_c^i - r_{wc}^i \right)$$
(7)

$$ I_k = \sum_{i=1}^{N} m_i \left(r_c^i - r_{wc}^i \right)^2$$
(8)

ここで m_i は剛体粒子の質量である。そして、溶融池を構成する流体粒子と同様に剛体粒子を流体粒子として取り扱って k テイムステップ分運動させる。その後、$k+1$ ステップ目のスラグの重心を式 (7) 同様に求め、記憶していた k ステップ目の粒子の位置、スラグの重心および慣性モーメントを用いて重心の変位 Δ と回転角 θ を計算する。この重心の変位と回転角をもとにスラグを構成する粒子を k ステップ目における位置から式 (9) に基づき運動させることで剛体の運動をシミュレートする。

$$ r_c^{k+1} = r_c^k + \Delta \vec{r}_{wc} + R(\theta \, \vec{x}) R(\theta \, \vec{y}) \left(\vec{r}_c^k - r_{wc}^k \right)$$
(9)

ここで x, y, z はそれぞれ計算領域における縦方向、横方向、高さ方向の位置座標を示している。また $R(\theta \, \vec{x}), R(\theta \, \vec{y}), R(\theta \, \vec{z})$ はそれぞれの回転角についての回転行列を示しており、$\theta \, \vec{x}, \theta \, \vec{y}, \theta \, \vec{z}$ はそれぞれ剛体粒子群の xy 平面上、xz 平面上、yz 平面上の回転角を示している。

スラグが気流から受ける影響は、流体粒子と同様に運動させる際に考慮する。あるスラグが受ける気流からの影響は、簡単のため式 (10) に示す摩擦抗力と圧力抗力を加えた流体抗力 f_{drag} として取り扱う。

$$ \frac{du}{dt} = f_{\text{nen}} + f_{\text{drag}}$$
(12)

$$ f_{\text{drag}} = \frac{1}{2} \rho_d V_d A_d \nu_d$$
(13)

ここで Q_d は先述の熱源モデルからの得られた熱源の半径であり、先行研究23) と同様に軟鋼を想定した物性値を与えた粒子 21,000 個で構成されている。図中の黒、白色の一点鎖線は熱源の中心線の初期位置を表しており、母材左端から 5.0 mm の位置とする。図中の黒、白色の一点鎖線は溶接線を示しており、この線に沿って溶接を溶接方向に 5.0 mm・s$^{-1}$ の速度で 4.0 s 間移動させる。Fig.7 に溶液の模式図を示す。溶液は、直径 1.5 mm 内に収まるよう上から 5 個、9 個、5 個の 3 層構造の 19 個の粒子で構成されている20)。本計算では、溶液の温度が一定であると仮定し、溶液が保有するエンタルピー h_d は次式から求める。

$$ h_d = \frac{Q_d}{\rho_d V_d N_d}$$
(13)

ここで Q_d は先述の熱源モデルからの得られた熱源の半径であり、先行研究23) と同様に軟鋼を想定した物性値を与えた粒子 21,000 個で構成されている。図中の黒、白色の一点鎖線は熱源の中心線の初期位置を表しており、母材左端から 5.0 mm の位置とする。図中の黒、白色の一点鎖線は溶接線を示しており、この線に沿って溶接を溶接方向に 5.0 mm・s$^{-1}$ の速度で 4.0 s 間移動させる。Fig.7 に溶液の模式図を示す。溶液は、直径 1.5 mm 内に収まるよう上から 5 個、9 個、5 個の 3 層構造の 19 個の粒子で構成されている20)。本計算では、溶液の温度が一定であると仮定し、溶液が保有するエンタルピー h_d は次式から求める。
Table 2 Computational conditions.

Parameter	Value
Diameter of particle	0.5 mm
Time step	1.0 × 10^4 s
Density	7850 kg/m^3
Melting point	1750 K
Viscosity coefficient	4.0 × 10^3 Pa s
Thermal conductivity	30.0 ~ 73.0 W m^-2 K^-1
Specific heat	0.44 ~ 1.04 kJ kg^-1 K^-1
Work function	3.85 eV
Latent heat	2.7 × 10^6 J kg^-1
Acceleration of gravity	9.8 m/s^2
Surface tension coefficient	1.2 N m^-1
Temperature gradient of surface tension	1.0 × 10^4 N m^-1 K^-1

Table 3 Chemical compositions of the base metal and the welding wire (wt.%).

Component	Base metal (SM400; JIS G 3106)	Wire (YGW 11; JIS Z 3312)
C	0.33	0.08
Si	-	0.51
Mn	-	1.10
P	0.035	0.010
S	0.035	0.010

Table 4 Experimental conditions of MAG welding.

Parameter	Value
Average arc voltage	31.5 V
Average current	317 A
Wire feeding speed	11.2 m min^-1
Welding speed	10 mm/s
Shielding gas	Ar + 20% CO2
Gas flow rate	20 L min^-1
Contact tip to work distance	25 mm
Polarity	DC (Direct current electrode positive)
Base metal	Mild steel

Table 5 Recording conditions.

Parameter	Value
Bandpass filter	950 ~ 4.71 nm
Frame rate	3000 fps
Exposure time	330 μs
Aperture value	F 16
Depression angle	20°

Fig. 6 Computational domain of MAG welding model.

Fig. 7 Schematic illustration of molten metal droplet.

3. 計算結果および考察

3.1 スラグ挙動のシミュレーション

Fig. 8 に粒子の状態分布を示す。図は計算領域を上から見えたときの粒子の状態分布である。粒子の色は態状を表しており、赤がスラグ、青が溶融池、淡い灰色が母材、薄い灰色が溶滴および再凝固した金属を表している。Fig. 8 の黄色の実線で囲まれたスラグ A, B, C, D のように、熱源中心近傍に生じたスラグは、熱源中心から放射状に溶融池端部の方向へ輸送される (Fig. 8(a) ~ (f))。また、白色の破線で囲まれたスラグ E, F のように、溶融池後方に輸送されたスラグのうち溶融金属の凝固に伴い定着しなかったスラグは熱源の後方に位置するものの、溶融池中央部の方向へ輸送される (Fig. 8(c) ~ (f))。

Fig. 9 にマグ溶接中の溶融池表面の観察結果を示す。実験に用いたワイヤおよび溶接条件を Table 3 に示す。溶接条件と溶接条件は Table 4 と Table 5 にそれぞれ示す通りである。観察の結果、Fig. 9 中の黄色の実線で囲まれた部分のように、溶融池の前方のスラグは溶融池端部を伝って後方へ輸送される様子が観察された (Fig. 9(b) ~ (e))。一方で、白色の破線で囲まれた部分のように、スラグは溶融池後方に滞留しながらスラグ片同士が合体し、溶接線付近のスラグは溶接方向前方へ輸送される様子を観察された (Fig. 9(a) ~ (f))。これらのスラグの挙動は定性的ではあるものの、本計算でも再現されている。また表面張力の温度勾配を正とした計算結果と、実際のスラグの輸送が同様の傾向を示したことから、実験観察条件下においても表面張力の温度勾配が正であっただけが考えられる。

3.2 数値実験によるスラグ輸送に寄与する駆動力の推定

計算結果および実験結果から、マグ溶接中のスラグは熱
源中心近傍から溶融池後方に輸送されて滞留することが明らかとなった。また溶融池後方で滞留しているスラグ群の一部は、溶融池後方から溶接方向前方に向かって輸送されていることも示された。このようにスラグが溶接方向の前後に輸送されることから、スラグを前方と後方に輸送する因子がそれぞれ存在するものと考えられる。ここでは溶融池駆動力のうち、溶融池表面のスラグ輸送に寄与すると考えられる Marangoni 効果による力、Lorentz 力、表面せん断力、およびスラグにはたらく気流による抗力をそれぞれ個別に作用させた場合の数値実験を行う。ここで、法線方向の表面張力は、溶融池表面において法線方向にのみはたらく力であるためスラグ輸送には大きく影響しないと考慮、すべての数値実験において考慮している。また、Boussinesq 近似に基づく浮力は考慮せず、代わりに重力加速度を与えている。そして、それぞれの駆動力の分布と溶融池上のスラグの分布から、スラグ輸送に及ぼす支配因子を推定することを試みる。

Fig. 10からFig. 13に Marangoni 効果による力、表面せん断力、Lorentz 力、気流による抗力を作用させた計算結果をそれぞれ示す。各図において、左は計算領域を上から見たときの粒子の状態分布を示している。粒子の色と形状の対応はFig. 8と同様である。また各図の右は溶融池表面の駆動力および気流による抗力の分布を示しており、矢印の方向は力が作用する方向、色は作用する力の大きさを表して。

Fig. 8 Computational results of slag distribution during MAG welding.
Fig. 9 Experimental results of slag distribution during MAG welding.

Fig. 10 Computational results with only Marangoni effect on weld pool surface.
Fig. 11 Computational results with only shearing force on weld pool surface.

Fig. 12 Computational results with only Lorentz force in weld pool.
いる。なお、力の分布は拡大して溶融池表面のみを示しておおり、黒色の点は熱源中心位置を、灰色の実線で囲まれた部分は左の状態分布において黄色の実線で囲まれたスラグの位置を表している。Fig.10からFig.13の各図において、(a)中に黄色の実線で囲まれた熱源中心近傍で発生したスラグA、B、C、Dは、(b)中に黄色の実線で囲まれた位置にそれぞれ輸送されている。このようなMarangoni効果による力のみを作用させた結果は熱源中心近傍にスラグが残留し(Fig.10)、他の駆動力を作用させた結果では溶融池端部に向かって輸送されている(Fig.11〜Fig.13)。このような輸送の方向とそれぞれの力の方向を比較すると、Lorentz力以外の駆動力は力の方向とスラグ輸送の方向が一致していることがわかる。そのため、Lorentz力以外の駆動力によってスラグが輸送されていると考えられる。そこで、Marangoni効果による力、表面せん断力、気流による抗力の力の分布と力の大きさを比較する。ここで、溶融池駆動力とスラグが受
Fig. 15 Computational results of surface velocity of weld pool at droplet migration without driving force.
抗力の大きさは力がはたらく対象がそれぞれ異なるため、両者を直接的に比較することは厳密には適切ではない。しかしながら、溶融池にはたらく駆動力以上にスラグが溶融金属から力を受けることはないと考え、これらの溶融池駆動力とスラグにはたらく抗力と併せて比較することとする。

Marangoni効果による力については、溶融池端部から熱源中心部の方向へはたらく(Fig. 10)。この力は温度勾配の大きい溶融池端部で大きく、最大で$1.0 \times 10^5 \text{ N} \cdot \text{m}^{-3}$程度である。一方、表面せん断力や、スラグにはたらく気流による抗力は熱源中心近傍から溶融池端部に向かってはたらくが、それぞれ最大$8.8 \times 10^4 \text{ N} \cdot \text{m}^{-3}$、$9.6 \times 10^4 \text{ N} \cdot \text{m}^{-3}$を示している(Fig. 11, 12)。これら3つの駆動力は最大となる位置は異なるものの、その値はほぼ等しいため、スラグ輸送とも同等の影響を及ぼしていると考えられる。

Lorentz力については、溶融池端部から熱源中心部の方向に力がはたらくっているにもかかわらず、スラグは溶融池端部の方向へ輸送されている(Fig. 12)。この原因として、溶滴の輸送によって生じる溶融金属の流動がスラグを溶融池端部へ輸送する力の方が、Lorentz力によってスラグを熱源中心へと輸送する力よりも大きいことが考えられる。

そこで溶融池に駆動力を与えない場合の計算を行った。Fig. 14に計算領域を上から見たときの粒子の状態分布を示す。粒子の色と状態の対応はFig. 8と同様である。計算の結果、熱源近傍に発生したスラグはスラグを熱源中心近傍へと輸送されるが、熱源近傍に発生したスラグは表面せん断力、気流による抗力が支配因子として作用し、溶融池端部へ輸送される。これら3つの駆動力のバランスによるマグ溶接時のスラグは輸送されていることが示唆された。

4. 結言

本研究では、溶融池表面を輸送されるスラグにはたらく気流の影響を流体抗力として考慮した計算モデルを構築した。そしてこのモデルと非圧縮性SPH法を用いた溶融形成過程の数値計算モデルによって、マグ溶接時の溶融形成過程とスラグの流動について数値シミュレーションを行った。またマグ溶接におけるスラグ輸送・定着の支配因子を溶融池後方におけるスラグの挙動に着目し、Marangoni効果による力、表面せん断力、Lorentz力および気流による抗力をそれぞれ個別に作用させる数値実験により明らかにすることを目的とした。本研究で得られた知見を以下に示す。

(1) マグ溶接において熱源中心近傍の溶融池表面に生じたスラグは熱源中心から放射状に広がる方向へ輸送され、その後溶融池端部に達するもの、一部は溶融池後方から中央部へ輸送されるという一連のスラグ挙動が数値計算により示された。

(2) 高速度ビデオカメラを用いた実験観察から、スラグは熱源中心近傍から溶融池中心部に達し、その後溶融池端部に達するまでに残留しながら一部は溶融池前方に輸送されることが明らかにされた。
とが可能であると考えられる。

(3) 各駆動力の分布から、熱源中心近傍では表面せん断力と流動による抗力が支配的となり、スラグを熱源中心から放射状に溶融池端部へと輸送し、溶融池後方ではMarangoni効果による力が支配的となり、スラグを溶融池後方から中央部へ輸送することが示唆された。

以上から、スラグを狙った位置に定着させるためには、気流とMarangoni効果を利用してスラグを溶融池センターより放射状に溶融池端部へと輸送し、溶融池後方では溶着を抑制することが重要であることがわかった。したがって、Marangoni効果による力を溶融池中央部の方向に大きくする、または熱源中心から放射状に広がる方向にはたくな表面せん断力、気流による抗力を小さくすることができる溶接プロセスを開発することで、スラグ巻込みの原因となるスラグのビード端への定着を抑えることが可能であると考えられる。

参考文献
1) S. Nakayama: A guide for appropriate choice of welding procedure, Journal of the Japan Welding Society, 60-7 (1991), 539-543. (in Japanese)
2) 黄地 優治: 溶接・接合プロセスの基礎, 精興社 (1996).
3) 溶接学会溶接法研究委員会編: 新溶接アーク現象, 産報出版 (2021).
4) T. Kuwana and Y. Sato: Oxygen absorption by Fe-Mn and Fe-Si-Mn weld metal, Quarterly Journal of the Japan Welding Society, 7-1 (1989), 49-56. (in Japanese)
5) M. Miyata, K. Yamazaki, R. Suzuki, M. Tanaka, M. Fukahori and T. Ogawa: Basic examination aimed to develop low slag welding process for galvanized steel, Preprints of the National Meeting of Japan Welding Society (2015). (in Japanese)
6) M. Uchihara, M. Takahashi, A. Sakoda, T. Taka and J. Nakata: Improvement of the corrosion resistance of gas metal arc weld with E-coat by newly developed shielding gas, Materia Japan, 36-4 (1997), 388-390. (in Japanese)
7) H. Fujimoto, K. Akioka and M. Tokunaga: Effects of shot blasting on corrosion properties after electrodeposition and fatigue properties of arc welds in automotive steel sheets, Journal of the Society for Technology of Plasticity, 58-675 (2007), 39-43. (in Japanese)
8) H. Bourkani, M. Viens, S. A. Tahan and M. Gagnon: Case study on the integrity and nondestructive inspection of flux-cored arc welded joints of Francis turbine runners, The International Journal of Advanced Manufacturing Technology, 98 (2018), 2201-2211.
9) H. Ono, R. Obata, T. Teramoto and T. Matsuda: Observation of penetration shapes in narrow-gap MAG welding, Quarterly Journal of the Japan Welding Society, 1-1 (1983), 83-90. (in Japanese)
10) Md. R. U. Ahsan, M. Cheepu, R. Ashiri, T. H. Kim, C. Jeong and Y. D. Park: Mechanisms of weld pool flow and slag formation location in cold metal transfer (CMT) gas metal arc welding (GMAW), Welding in the World, 61 (2017), 1275-1285.
11) Y. Umehara, R. Suzuki and T. Nakano: Development of the innovative GMA wire improving the flow direction of molten pool, Quarterly Journal of the Japan Welding Society, 27-2 (2009), 163-168.
12) M. Tanaka: Arcs and TIG welding, Journal of the Japan Welding Society, 77-2 (2008), 152-162. (in Japanese)
13) M. Tong and D. J. Browne: Smoothed particle hydrodynamics modelling of fluid flow and heat transfer in the pool during laser spot welding, IOP Conference Series: Materials Science and Engineering, 27 (2011) 012080.
14) M. Ito, S. Izawa, Y. Fukunishi and M. Shigeta: Numerical simulation of a weld pool formation in a TIG welding using an incompressible SPH method, Quarterly Journal of the Japan Welding Society, 32-4 (2014), 213-222. (in Japanese)
15) M. Shigeta, T. Watanabe, S. Izawa and Y. Fukunishi: Incompressible SPH Simulation of Double-Diffusive Convection Phenomena, International Journal of Emerging Multidisciplinary Fluid Sciences, 1-1 (2009), 1-18.
16) M. Ito, Y. Nishio, S. Izawa, Y. Fukunishi and M. Shigeta: Numerical Simulation of Joining Process in a TIG Welding System Using Incompressible SPH Method, Quarterly Journal of the Japan Welding Society, 33-2 (2015), 34-38.
17) H. Komen, M. Shigeta, M. Tanaka, M. Nakatani and Y. Abe: Numerical simulation of slag forming process during submerged arc welding using DEM-SPH hybrid method, Welding in the World, 62 (2018), 1323-1330.
18) R. Ueno, H. Komen, M. Shigeta and M. Tanaka: Numerical simulation of droplet transfer with TiO2 flux column during flux cored arc welding by 3D smoothed particle hydrodynamics method, Quarterly Journal of the Japan Welding Society, 38-2 (2020), 84s-88s.
19) H. Komen, M. Shigeta, M. Tanaka, Y. Abe, T. Fujimoto, M. Nakatani and A. B. Murphy: Numerical investigation of heat transfer during submerged arc welding phenomena by coupled DEM-SPH simulation, International Journal of Heat and Mass Transfer, 171 (2021), 121062.
20) H. Komen, M. Shigeta and M. Tanaka: Numerical simulation of molten metal droplet transfer and weld pool convection during gas metal arc welding using incompressible smoothed particle hydrodynamics method, International Journal of Heat and Mass Transfer, 121 (2018), 978-985.
21) Y. Ogino, M. Iida, S. Asai, S. Kozuki, N. Hayakawa and R. Ikeda: Numerical simulation of weld pool formation in submerged arc welding process, Quarterly Journal of the Japan Welding Society, 38 (2020), 355-362. (in Japanese)
22) D. W. Cho, Y. D. Park and M. Cheepu: Numerical simulation of slag movement from Marangoni flow for GMAW with computational fluid dynamics, International Communications in Heat and Mass Transfer, 125 (2021), 105243.
23) H. Komen, M. Shigeta and M. Tanaka: Numerical simulation of slag movement from Marangoni flow for GMAW with computational fluid dynamics, International Communications in Heat and Mass Transfer, 125 (2021), 105243.
29) S. Koshizuka, H. Tamako and Y. Oka: A particle method for incompressible viscous flow with fluid fragmentation, Computational Fluid Dynamics Journal, 4 (1995), 29-46.

30) J. W. Swegle, D. L. Hicks and S. W. Attaway: Smoothed particle hydrodynamics stability analysis, Journal of Computational Physics, 116 (1995), 123-134.

31) O. W. Richardson: LI. Some applications of the electron theory of matter, London Edinburgh Dublin Philosophical Magazine and Journal of Science, 23-136 (1912), 594-627.

32) Y. Miyake, T. Fujii and Q. Fan: Estimation of the drag of a hemisphere on a flat plate, Transactions of the Japan Society of Mechanical Engineers. B, 73-729 (2007), 1167-1174. (in Japanese)

33) H. G. Fan and R. Kovacevic: A unified model of transport phenomena in gas metal arc welding including electrode, arc plasma and molten metal, Journal of Physics D: Applied Physics, 37 (2004), 2531-2544.

34) S. Ozawa, S. Takahashi, S. Suzuki, H. Sugawara and H. Fukuyama: Relationship of surface tension, oxygen partial pressure, and temperature for molten iron, Japanese Journal of Applied Physics, 50 (2011), 11RD05.