During the past half century, excessive/misplaced iron has been observed to be a risk factor for an increasing number and diversity of disease conditions. An extensive list of conditions and of the types of iron association were published in early 2008. Within the subsequent year, four additional disorders have been recognized to be enhanced by iron: aging muscle atrophy, viral replication, rosacea and pulmonary alveolar proteinosis. This paper adds new data and emphasis on these disorders as entities associated with increased iron load and toxicity.

A review written early in 2008 contained an extensive list of diseases for which excessive and/or misplaced iron has been reported to be a causative or associated risk factor. The metal is toxic by catalyzing generation of hydroxyl radicals that intensify oxidative stress as well as by serving as a growth-essential nutrient for invading microbial and neoplastic cells.

In the subsequent twelve months following submission of the manuscript, four additional conditions in which iron is toxic have been described: (a) intensification of aging muscle atrophy, (b) increased replication of human immunodeficiency virus (HIV) and hepatitis C virus (HCV), (c) enhancement of rosacea, and (d) augmentation of pulmonary alveolar proteinosis (PAP). In this paper, the previously published tables of iron-related conditions and of the types of iron association are expanded to include these four conditions.

In the report on muscle atrophy, non-heme iron levels in gastrocnemius muscle in male rats increased by 233% between six and thirty months of age. Abundance of mRNA transferrin receptor-1 decreased by 80%. In related research in the same laboratory, non-heme iron and RNA oxidation increased significantly with age in quadriceps-derived subsarcolemma mitochondria. In a third related study, in rats between 29 and 37 months of age, non-heme iron in gastrocnemius muscle increased by 200% with an accompanying significant increase in oxidized RNA. These changes were associated with evidence of sarcopenia; that is, decreased muscle mass and grip.

Although iron is not a component of viruses, infected host cells apparently need the metal to synthesize viral particles. During the past several decades, it has become manifest that one of the dangers of excessive iron is its ability to favor animal viral infections. The importance of iron in HIV infection has received particular attention. The multi-faceted molecular sites of action of iron in synthesis of HIV, as well as of HCV, are now being compiled. Of special interest are indications that viruses can manipulate iron homeostasis so as to ensure their replication in host cells.

Rosacea is a common chronic light-sensitive inflammatory skin disease. In this inquiry, peroxide and antioxidant potential of serum as well as of skin cell ferritin were assayed. Serum peroxide levels were higher and total anti-oxidant potential was lower in patients than in healthy controls (p < 0.05). The number of ferritin positive cells was higher (p < 0.001) in patient samples especially in those with severe disease. Ultraviolet irradiation of skin plus skin cell iron accelerated development of photo-sensitization, photoaging and skin cancer. It will be of interest to directly measure iron deposits in rosacea cells.

In the investigation on PAP, bronchoalveolar lavage samples of 20 patients were compared with those of 20 healthy volunteers. Concentrations of iron, transferrin, transferrin receptor, lactoferrin and ferritin were significantly elevated in PAP relative to healthy persons. In contrast, quantities of ascorbate, glutathione and urate were significantly depressed in PAP patients, indicative of anti-oxidant depletion. The results suggest an iron-catalyzed oxidative stress in the maintenance of PAP.

Similar alterations in pulmonary iron homeostasis have been observed in several other chronic lung diseases.

The list of iron-associated diseases, whose compilation began 25 years ago, continues to grow (Tables 1 and 2). Recognition of the toxicity of iron is stimulating research efforts to develop iron chelator drugs that might be able to remove the metal from specific disease sites.
Iron toxicity

Table 1 Conditions for which excessive/misplaced iron can be a risk factor

Aging	Infectious	Ophthalmic
muscle atrophy	bacterial, fungal & protozoan infections	macular degeneration
Cardiovascular	viral infections: HIV, HCV	
atherosclerosis		
cardiomyopathy		
hypertension		
ischemic stroke		
venous leg ulcer		
Dermal		
porphyria		
cutanea tarda		
roacea		
Endocrine		
diabetes		
endometriosis		
growth deficiency		
hypogonadism		
hypothyroidism		
Hepatic		
cirrhosis		
steatohepatitis		
viral hepatitis		

Modified from Table 3 (Weinberg et al.)

Table 2 Association of iron with morbidity

• Iron, by itself, has been observed to initiate the disease
 cardiomyopathy
 growth deficiency
 hemophilic synovitis
 hypogonadism
 lung cancer
 osteoarthritis
 osteoporosis
 pneumoconiosis

• Iron can be a cofactor in promoting the disease
 Alzheimer
 atherosclerosis
 bacterial infections
 diabetes
 endometriosis
 esophageal adenocarcinoma
 fungal & protozoan infections
 gout
 hepatojenesis
 multiple sclerosis
 osteoarthritis
 oto- & renal toxicity
 ozone lung injury
 pulmonary alveolar proteinosis
 viral infections

• Iron deposits are observed in disease-associated tissue sites
 basal ganglia in PKAN
 hepatocytes in cirrhosis, steatohepatitis & viral hepatitis
 mitochondria in Friedreich ataxia
 pulmonary secretions in cystic fibrosis
 retina in macular degeneration
 skin cells in rosacea
 skeletal muscle in aging
 substantia nigra in Parkinson
 thyroid in hypothyroidism

• Body iron loading is associated with above normal incidence of morbidity
 ALS
 breast cancer
 colorectal cancer
 depression
 Down syndrome
 epilepsy
 hypertension
 ischemic stroke
 leukemia
 pre-eclampsia
 pneumoconiosis
 prion disease
 sudden infant death syndrome

• Maternal antibodies can impair fetal iron metabolism
 fetal or neonatal death in neonatal hemochromatosis

References
1. Weinberg ED, Miklosy J. Iron withholding: A defense against disease. J Alz Dis 2008; 13:451-63.
2. Hofer T, Marzetti E, Xu J, Seo AY, Gulec S, Knutson MD, et al. Increased iron content and RNA oxidative damage in skeletal muscle with aging and disease atrophy. Exp Geront 2008; 43:563-70.
3. Drakesmith H, Prentice A. Viral infection and iron metabolism. Nat Rev Microbiol 2008; 6:541-55.
4. Tisma VS, Basta-Juthasic A, Jagargac M, Bricic L, Dobric I, Lipotzecic J, et al. Oxidative stress and ferritin expression in the skin of patients with rosacea. J Am Acad Dermatol 2009; 60:270-6.
5. Ghio AJ, Stoneheurner JG, Richards JH, Crissman KM, Roggli VL, Plantadosi CA, et al. Iron homeostasis and oxidative stress in idiopathic pulmonary alveolar proteinosis. Respir Res 2008; 9:10.
6. Seo AY, Xu J, Servais S, Hofer T, Marzetti E, Wohlgemuth SE, et al. Mitochondrial iron accumulation with age and functional consequences. Aging Cell 2008; 7:706-16.
7. Xu J, Knutson MD, Carter CS, Leesewruenburgh C. Iron accumulation with age, oxidative stress and functional decline. PLoS ONE 2008; 3:e2865.
8. Weinberg ED. Iron withholding: A defense against viral infections. BioMetals 1999; 9:393-9.
9. Weinberg GA, Beolajt JR, Weinberg ED. Iron and HIV infection. In Friis H, ed. Micronutrients and HIV Infection. CRC Press Boca Raton, FL 135-58.
10. Kitawa S, Iwata K. Reduction of ultraviolet light-induced oxidative stress by amino acid chelators. Biochim Biophys Acta 1999; 1473:400-8.
Iron toxicity

11. Ghio AJ. Disruption of iron homeostasis and lung disease. Biochim Biophys Acta (General Subjects) 2008; e-pub.

12. Weinberg ED. Iron withholding: A defense against infection and neoplasia. Physiol Rev 1984; 64:65-102.

13. Tam TF, Leung-Toung R, Li W, Wang Y, Karimian K, Spino M. Iron chelator research: Past, present, future. Curr Medicinal Chem 2003; 10:983-95.

14. Hider RC, Ma Y, Molina-Holgado F, Gaeta A, Roy S. Iron chelation as a potential therapy for neurodegenerative disease. Biochem Soc Trans 2008; 36:1304-8.