Identification of genes required for eye development by high-throughput screening of mouse knockouts

Bret A. Moore et al.¹

Despite advances in next generation sequencing technologies, determining the genetic basis of ocular disease remains a major challenge due to the limited access and prohibitive cost of human forward genetics. Thus, less than 4,000 genes currently have available phenotype information for any organ system. Here we report the ophthalmic findings from the International Mouse Phenotyping Consortium, a large-scale functional genetic screen with the goal of generating and phenotyping a null mutant for every mouse gene. Of 4364 genes evaluated, 347 were identified to influence ocular phenotypes, 75% of which are entirely novel in ocular pathology. This discovery greatly increases the current number of genes known to contribute to ophthalmic disease, and it is likely that many of the genes will subsequently prove to be important in human ocular development and disease.
The prevalence and burden of ophthalmic disease within the human population, some with the potential for causing complete blindness, highlights the need to identify factors that cause such conditions1-3. A wide variety of ocular diseases are known to have an underlying genetic component. These include single-gene disorders4 and multi-factorial ocular disorders including age-related diseases with hereditary predispositions embedded in several risk alleles across the genome5. However, the genetic contribution(s) for many ocular diseases remains largely unknown or poorly understood5. Phenotype information of any organ system is available for approximately 4000 genes at Online Mendelian Inheritance in Man (https://www.omim.org/), illustrating the limited access and the prohibitive cost of forward genetics in humans, despite advances in next generation sequencing technologies. Altogether, the limitations on genetic research in humans, the genetic variability between individuals and among populations, the rarity of many diseases, and the size of the mammalian genome together make identification of disease-causing alleles challenging.

Classical genetic techniques studying pedigrees of human families affected by ocular disorders have identified numerous genes associated with a wide array of eye diseases (e.g., see Retinal Information Network - https://sph.uth.edu/retnet/). However, gene discovery by pedigree analysis is limited. Studies exploring genetic mechanisms in cellular biology have traditionally relied upon single-gene deletions in animal models (largely mice) targeted by individual laboratories, and by identification of gene mutations in mutagenesis screens6,7. Mice engineered to test specific hypotheses may be made on variable or undefined genetic backgrounds, often without systematic or standardized multi-system phenotyping that would reveal effects not anticipated in the study design. Additionally, only ~50% of the estimated ~24,000 total protein-coding genes in the mouse currently have experimentally derived functional information available, as assessed by Gene Ontology annotation8. The current understanding of gene functions would be greatly enhanced by gene/phenotype data from genetically invariant mouse strains (i.e., same background strain with manipulation of only the gene(s) in question).

To address the fundamental problems in traditional methods of studying genetic mechanisms in cellular biology and genetic contributions to disease, the International Mouse Phenotyping Consortium (IMPC) was established in 2011 as a network of highly specialized academic centers with expertise in high-throughput mouse mutagenesis and comprehensive phenotyping9,10. The IMPC consists of 18 laboratories in 12 countries globally, and is supported by 5 national funding agencies including the National Institute of Health (NIH). Figure 1 and Table 1 highlight all relevant consortium partners who contribute to data production. The goal of the IMPC is to create the first functional catalog of the mammalian genome by using the proven methodology of phenotype screening of targeted gene mutations in mice, which has been successful in identifying novel pathologic loci across a wide range of organ systems11-15. The large-scale production and characterization of the mouse genome through single-gene deletion of all protein-coding genes using multiple gene targeting strategies on a uniform C57BL/6N genetic background is currently underway9,11,14,15.

To date, the IMPC has generated over 7000 genotype confirmed mutant strains, and has completed standardized phenotyping across 11 organ systems for 4364 of these genes. Access to mouse resources and all phenotype data are publically available at http://www.mousephenotype.org. Homozygous mice from all viable strains and heterozygous mice from all subviable or lethal strains have been subjected to ophthalmic examinations to identify ocular phenotypes, which together with their associated genotypes are presented here. Many novel genes previously unknown to be involved with mammalian ophthalmic diseases are presented, demonstrating successful identification of mouse mutants with early and delayed onset ocular phenotypes. This report sheds new light on gene function, generates new models for inherited eye diseases, and provides a roadmap for discovery of relevant monogenic and complex human disorders. The numerous novel pathologic loci revealed here serve as a powerful resource for human ocular geneticists to scan whole genome sequencing data in patients with presumed hereditary ocular disease who do not have common mutations of known disease genes. Finally, the murine loci identified in this manuscript, if validated in human patient populations, would greatly increase the number of known novel ocular disease genes found over the past three decades since the discovery of rhodopsin gene mutations in families with retinitis pigmentosa16,17.

Results

Primary phenotyping

The initial IMPC dataset search returned 4364 genes with completed phenotyping, each of which attained a p-value threshold of 10-4 used to assign mutant phenotypes. From the 4364 genes, a list of 347 genes with ocular phenotypes was curated. Literature searches identified 42 genetic phenotypes known to exist in vertebrates (Known Phenotype), 44 genes described to cause an ocular phenotype differing from the phenotype described in the present study (Novel Phenotype), and most interestingly, 261 genes (75% of genes with ocular phenotypes) with no prior ocular implication (Novel Gene). The number of genes within each of the three categories is shown in Table 2. Anatomical abnormalities affecting several structures or affecting the entire eye were categorized into groups: anterior segment (any combination of adnexa, cornea, iris, or lens), posterior segment (any combination of vitreous, retina, choroid, posterior sclera, or optic nerve), and whole eye (any combination across different ocular segments, e.g., retina and cornea, or eye size and vitreous, etc.). Complete phenotype results, and complete information on gene and information and analysis are provided in Supplementary Table 1. Selected ocular phenotypes are presented below as exemplars.

Corneal phenotypes

A total of 25 knockout strains were found to have only corneal opacities, 20 of which were completely novel and unknown to be involved in the development of ocular phenotypes (Table 2). An additional 21 genes were identified with multifocal ocular abnormalities that included corneal phenotypes, and may represent candidates for anterior segment dysgenesis syndromes, Peters’ anomaly, and other conditions of dysgenesis. For example, Fam20a (Family with sequence similarity 20, member A) knockout mice exhibited large paraxial corneal opacities in a polygonal pattern, clearly visible on biomicroscopy (Fig. 2a) and retro-illumination (Fig. 2b). The corneal opacities corresponded histologically to superficial stromal mineralization (Fig. 2c). FAM20A deficiency has been linked to abnormal bio-mineralization and is associated with enamel-renal syndrome in humans18. Affected individuals suffer from amelogenesis imperfecta and nephrocalcinosis and/or nephrolithiasis18,19. Fam20a knockout mice have been previously described, but no corneal phenotype was reported20. NADSYN1 (NAD synthetase 1) is implicated in vitamin D metabolism in humans. Nadsyn1-deficient mice develop chronic keratitis with neovascularization (Fig. 2d), observable by histology (Fig. 2e). Mice deficient in Col6a2 (collagen type VI alpha 2) had very subtle corneal opacities visible to the examiner, which was determined to be due to a disorganized basket-weave appearance of the corneal stroma (Fig. 2f) by electron microscopy, rather than the typical lamellar...
structure of this tissue (Fig. 2g) evident in wild type control animals. The Col6a2 gene is known to be expressed in the central corneal stroma of humans, but the phenotype of the cornea deficient in this protein has not been reported21.

Lens phenotypes. Cataracts are another important public health concern1, and 79 strains bearing different single-gene deletions were identified to only have lenticular abnormalities (113 genes when considering multifocal ocular phenotypes) (Table 2). In total, 63 of these genes with lens-only phenotypes were totally novel, including Ndrg1 and Adamts18. Ndrg1 (N-myc down-stream regulated gene 1) is implicated in pronephros development and in cancer biology22,23. The Ndrg1 gene is a member of the N-myc downregulated gene family and encodes a protein involved in stress hormone responses as well as cell growth and differentiation. In humans, it has described roles in Schwann cell

Table 1 Ocular phenotyping protocols across all IMPC phenotyping mouse clinics

Center	Mice	Controls	Slit lamp	Indirect	Other	Secondary screen	Additional modality
KMPC	7M, 7F	B6N	Yes	Yes	-	-	-
MRC	7M, 7F	B6N	Yes	Yes	-	-	Fundus Imaging, OCT
HMGU	7M, 7F	B6N	Yes	Yes	-	-	OCT, LIB, VDT, Scheimpflug
MARC	7M, 7F	B6N	Yes	Yes	-	-	-
IMG	7M, 7F	B6N	Yes	Yes	-	-	-
WTSI	7M, 7F	B6N	Yes	Yes	-	-	-
ICS	7M, 7F	B6N	Yes	No	OCT	-	-
BCM	7M, 7F	B6N	No	No	OCT	-	Fundus Imaging, ERG
JAX	8M, 8F	B6N	Yes	Yes	-	-	-
RIKEN BRC	7M, 7F	B6N	Yes	Yes	-	-	Fundus Imaging, TEM, OCT, ERG
TCP	7M, 7F	B6N	Yes	Yes	Histology	-	-
UCD	7M, 7F	B6N	Yes	Yes	Histology, tonometry	Fundus Imaging, TEM, OCT, ERG	

Slit-lamp examination was performed at all but one mouse clinic, and indirect fundus examination was performed at all but two mouse clinics, where routine OCT cross-sectional and funduscopic imaging was performed. Secondary screening varied across structures and was based on desired testing and available equipment for further evaluation of a suspected or confirmed phenotype. See Fig. 1 legend for definitions of Center abbreviations. ERG (electroretinography), TEM (transmission electron microscopy), OCT (optical coherence tomography), LIB (laser interference biometry), VDT (virtual drum test).

Fig. 1 Schematic overview of IMPC data flow from acquisition to web portal availability for public users. Data are collected from 12 phenotyping centers, validated, and processed to produce curated data accessible on the project portal. Legacy data from EuroPhenome and Sanger MGP were directly transferred to the Central Data Archive at EMBL-EBI for direct integration on the portal. https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkt977. KMPC (Korea Mouse Phenotyping Center), MRC (Medical Research Council) Harwell Institute, HMGU (Helmholtz Zentrum Muenchen), MARC (Model Animal Research Center), IMG (Institute of Molecular Genetics), WTSI (Welcome Trust Sanger Institute), ICS (Institut Clinique de la Souris—PHENOMIN-ICS), BCM (Baylor College of Medicine), JAX (The Jackson Laboratory), RBRC (RIKEN Bio-Resource Center), TCP (The Center for Phenogenomics), UCD (University of California Davis), IMPReSS (International Mouse Phenotyping Resource of Standardized Screens https://www.mousephenotype.org/impress).
of the hyaloid vascular system similar to human PHPV, as found in Cdkn2a knockout mice in the present study.32

Retinal phenotypes. Retinal diseases are the foremost cause of blindness in the developed world, and studies to protect retinal neurons from degeneration are a major area of active research.33 Ocular phenotyping in the IMPC pipeline identified 102 retinal-only phenotypes (139 phenotypes when considering genes leading to multifocal ocular phenotypes), 17 of which are previously well studied and published (Table 2). A total of 69 retinal phenotypes involve genes that have no previously reported ocular phenotype, and potentially represent novel human disease alleles. Arap1 (Arf GAP with Rho GAP domain, ankyrin repeat, and PH domain) 1 is a large and complex soluble GTPase, which regulates membrane biomechanics and lysosome maturation, but the extent of its functions is not well understood.34 This gene plays a role in the recycling of the EGF receptor to the plasma membrane, potentiating this signaling pathway.35,36 Subsequent studies following primary phenotyping document progressive photoreceptor degeneration in Arap1−/− mice, similar to retinitis pigmentosa in humans.37 Furthermore, Arap1 appears to be expressed in Müller glial and RPE cells, not in photoreceptors themselves, implicating a specific and novel dependence of photoreceptors on Arap1 expression in neighboring cells.38 Arap1−/− animals developed a histologically normal retina by 2 weeks postnatal age (Fig. 4a), similar to that of control mice (Fig. 4b). By 8 weeks postnatal, however, the Arap1−/− outer nuclear layer degenerated substantially (Fig. 4c), unlike the age-matched control retinas (Fig. 4d). Our phenotyping efforts have also yielded more subtle examples of retinal thinning, such as the Rnf10−/− mouse (Fig. 4e), in which retinal thickness was lower compared to control mice (Fig. 4f). Quantitation of retinal histology demonstrates the global retinal thinning in these mutants, particularly in the inner nuclear layer and inner plexiform layer (Fig. 4g): when comparing to the control group examined in parallel, WT and Rnf10−/− retinal thicknesses were respectively of 223.8 ± 3.9 µm (n = 12 eyes) vs. 210.6 ± 4.5 µm (n = 14 eyes) for males (p = 4.10−8), of 222.4 ± 3.8 µm (n = 16 eyes) vs. 209.8 ± 4.8 µm (n = 13 eyes) for females (p = 2.10−8). The inner nuclear layer thickness was 27.8 ± 2.1 µm vs. 24.7 ± 2.1 µm for WT and Rnf10−/− males (p = 0.0013), 26.6 ± 2.3 µm vs. 25.0 ± 2.2 µm for WT and Rnf10−/− females (p = 0.063). The inner plexiform layer thickness was 56.6 ± 2.4 µm vs. 48.6 ± 2.9 µm for WT and Rnf10−/− males (p = 8.10−8), 60.1 ± 2.9 µm vs. 46.6 ± 3.4 µm for WT and Rnf10−/− females (p = 6.10−12). In a more global comparison, 78.6% of the male (n = 14) and 84.6% of the female (n = 13) (81.5% overall) Rnf10−/− retinas had a thickness below the reference range. While only of 21.4% and 23.1% of the mutant male and female eyes (22.2% overall) had an inner nuclear layer thickness below the reference range, these percentages were 85.7% and 100% (92.6% overall) when considering the inner plexiform values. Rnf10, ring finger protein 10, may have a role in transmitting NMDA receptor activity to the nucleus of hippocampal neurons, and may have transcriptional regulation capability.38,39 Its role in the retina was previously unknown. Mpdz (multiple PDZ domain protein) knockout mice exhibited a mottled fundus (Fig. 5a, b) characterized by irregular bright patches. The enhanced detection of retinal pigmented epithelium (RPE) cells by fundus imaging (Fig. 5b) is typical of mouse models of retinitis pigmentosa and Leber congenital amaurosis, in which the outer retina has thinned or failed to develop.40,41 Scotopic and photopic electroretinography responses were absent at 16 weeks of age (Fig. 5c), indicating a profound defect in rod and cone photoreceptor function (Fig. 5d). MDPZ is a tight junction protein and its silencing disrupts epithelial cell barrier

Table 2 Tabular depiction of genes found to have ocular phenotypes arranged by the ocular tissue involved and the novelty of the gene or phenotype

Ocular tissue	Categorical genes (total)	Known gene (total)	Novel phenotype (total)	Novel gene (total)
Adnexa	8 (20)	0 (3)	0 (1)	8 (16)
Cornea	25 (46)	1 (6)	4 (4)	20 (36)
Iris	5 (19)	0 (6)	0 (1)	5 (12)
Lens	79 (113)	6 (13)	10 (13)	63 (87)
Vitreous	22 (40)	2 (4)	3 (4)	17 (32)
Retina	102 (139)	17 (24)	16 (20)	69 (95)
Optic nerve	4 (8)	0 (2)	0 (0)	4 (6)
Eye size	11 (18)	1 (3)	1 (3)	7 (13)
Neuro	13 (20)	0 (2)	1 (3)	12 (15)
AS Combo	24	5	3	16
PS Combo	6	1	1	4
Whole Eye	48	9	3	36
Total	347	42	44	261

A total of 347 different genes were identified. Of these, 42 genes had phenotypes that have been previously described, 44 genes had phenotypes that differed from previously described ocular phenotypes, and 261 genes previously known to cause ocular disease were found to have ocular phenotypes. AS Combo represents combination of multiple anterior segment structures (i.e., adnexa, cornea, iris, or lens), PS Combo represents combination of multiple posterior segment structures (i.e., vitreous, retina, or optic nerve), and Whole Eye represents phenotypes spanning multiple ocular segments (e.g., anterior and posterior). Novel phenotypes are those not previously described and novel phenotypes are those that differ from previously described phenotypes.
function in vitro42,43. The protein has been localized to the mouse retinal external limiting membrane (ELM) and RPE, thus potentially compromising ELM or RPE barrier function in the knockout strain44,45. Mpdz variants are associated with hydrocephalus, foveal dysplasia, and inner retinal thinning in humans.

Detailed analysis of mouse ocular phenotypes are consistent with human ocular phenotypes, and in an independent mouse knockout model, but ocular phenotypes have not been reported thus far43,46–48.

Gene enrichment analysis. Using a gene ontology enrichment analysis, Wnt signaling pathways were shown to be considered important signaling pathways for all 347 genes including known phenotypes (Supplementary Figs. 1–4 and Tables 2–4). In a subset analysis of the 261 novel genes, oxidation-reduction processes (28 genes) and histone H3-K36 dimethylation pathways (3 genes) are the top-ranked functional annotations (p-value, 5.16E-0.5 and 4.76E-0.4, respectively). Cataract and lens morphology phenotypes were observed in mice with the majority of genes associated with oxidation-reduction process (\(n = 15\/28, 54\%\)). Oxidative stress is an important pathogenic mechanism in numerous eye diseases including age-related macular degeneration, glaucoma, or cataract49,50.

Discussion

Large-scale ocular screens as part of the IMPC phenotyping pipeline of mutant mice have revealed a large number of mutants with ocular phenotypes. With deletion of 4364 genes being analyzed at the time of this writing we report 347 ocular phenotypes, 261 of which are novel and may serve as a powerful tool in future genetic research of human ocular disease. If validated in humans, the genes described here would greatly increase the number of known ocular disease genes. Genes not described here that would be suspected to have ocular phenotypes based on known human counterparts may have been lethal knockouts or may have not yet been phenotyped. Information on all tested genes can be found at www.mousephenotype.org51. A total of 86 knockout strains had genes deleted that are previously known to cause ocular phenotypes (44 novel phenotypes, and 42 known phenotypes), 25 of which knockout strains have not yet been created. In many cases, knockout mice for these genes have been previously reported, and in other cases the deleted gene has a known disease-causing mutation in human pedigrees, or in other vertebrate genetic models such as zebrafish. However, for these 86 known disease-causing genes, the mice phenotyped in this study may represent novel mouse models of human disease states. A total of 205 of these novel models exhibit isolated ocular findings, while 56 others recapitulate syndromic patterns affecting ocular tissues as well as other organ systems, as previously reported in mouse mutational studies52. These models can be used for various forms
of translational research, including therapeutic testing of potential medications, gene therapy, or stem cell-based studies.

All knockout mice in this study were made on the C57BL/6N strain, which is homozygous for the \(\text{Crb1}^{\text{rd8}} \) mutation that is associated with retinal dysplasia\(^{53,54} \), and depending on the strain background, slow retinal degeneration\(^{55,56} \). These mice also exhibit other ocular abnormalities associated with the strain genetic background, occurring at different frequencies, including corneal deposits, altered anterior lens capsule translucency, punctate nuclear cataracts, and vitreous crystalline and/or pigmented opacities\(^{57} \). It should be acknowledged that a very small portion of the genes presented here may be disease-modifying genes, and may cause only a mild or no detectable ocular phenotype, and/or a delay in phenotype appearance, when knocked out in the context of other strains not carrying the \(\text{Crb1}^{\text{rd8}} \) alleles. Additionally, because mice were only examined up to 16 weeks of age, late-onset phenotypes may have been overlooked. However, it is important to note that the intent of the IMPC project is to do a first pass screen to generate hypotheses and assign a functional annotation to the vast majority of genes for which there is little to no knowledge of biological function or pathologic role. Specific genes can then be explored further, including through elaboration of functions not assessed in the IMPC pipeline, where additional important pathophysiologic information about the disease mechanism underlying the observed pathology may be obtained. Select knockout mouse strains have been chosen for advanced analysis in separate studies by some of the authors of this manuscript, and in some instances, the knockouts have been bred away from the \(\text{Crb1}^{\text{rd8}} \) mutation\(^{40} \).

Ophthalmic diseases with a genetic basis can be part of a multi-system syndrome, or they can be caused by either single- or multi-gene disorders limited to the eye. In general, multi-system hereditary conditions that affect the eye are relatively uncommon and make up only a small segment of ocular disease. The IMPC project has the potential to identify genetic disorders that affect more than just the eye. Through comprehensive phenotyping, associations between ocular and systemic abnormalities that might not have been detected thus far in the human population can be discovered. For example, observing that a given knockout mouse with kidney abnormalities has a concomitant retinal degeneration may motivate genetic researchers to evaluate this gene as a potential oculo-renal syndrome or syndromic ciliopathies, of which causation by several single-gene mutations are known\(^{58–60} \). Knockouts of several genes described in this study with previously unreported ocular phenotypes were found to have coexisting kidney disease: \(\text{Aqp6} \), \(\text{Dnase1l2} \), \(\text{Efna5} \), \(\text{Fgf7} \), and \(\text{Galk2} \).
Comprehensive phenotyping of all organ systems as performed by the IMPC may provide many other multi-systemic disease associations and useful insights for understanding and treating human disease, including but not limited to identifying pathways involved in disease progression, identification of biomarker candidates for disease analysis, and surrogate measures for therapeutic testing.

The majority of ocular diseases show strong Mendelian inheritance patterns suggestive of single-gene causation. However, multi-gene disorders, resulting from several single-nucleotide polymorphisms in various genes that ultimately contribute to the observed phenotype, exist and are often associated with aging as commonly seen in age-related macular degeneration, diabetic ocular disease, and some forms of cataract, glaucoma, and corneal disease. In recent years, genome-wide association studies have revealed surprising and important genetic risk alleles for ocular diseases, and the discovery of single-gene mutations/deletions causing ocular disease, as provided in this study, may be relevant in a host of multi-factorial diseases affecting the aging population. More immediately impactful in clinical ophthalmology are the single-gene disorders with Mendelian patterns of inheritance as reported in the present study. Not only can the novel genes reported here be used to develop allele-specific models for translational research of human diseases, which can form the foundation for future human trials, they may rapidly impact diagnostics in clinical ophthalmology. For example, when a patient presents to an ophthalmologist with ocular disease that is suspected to be influenced by heritability, blood can be tested relatively inexpensively and efficiently screened using genetic arrays to test for common mutations of known genes. If no commonly known genetic mutations are identified on the initial genetic array, the decision can be made to invest in whole exome or whole genome sequencing. Once the expanded genomic data are available for{fig.5 a}, the clinician-geneticist is then faced with the bioinformatics problem of isolating the single mutated gene within the patient’s entire genome sequencing data. Interrogation of the genome using next generation sequencing can detect 40–55% of mutations. Finding the remaining half of the mutations is an incredibly challenging and time consuming problem when the geneticist has run out of candidate genes to examine, and is forced to examine the remainder of coding and non-coding sequences in an unbiased fashion. This is where identifying novel disease-causing mutations through animal screens represents a powerful tool. The 256 completely novel genes and 48 genes reported here with novel phenotypes (302 total genes) approximate the known number of eye disease-causing loci in mammals, and may help direct human geneticists to candidate genes that will likely be relevant in human ocular disease and blindness.

The identification of candidate genes tremendously increases the efficiency of such a bioinformatics challenge by guiding the queries to examine an expanded pool of potential candidate genes, and by decreasing the number of cases that must be arduously performed in an unbiased methodology. We anticipate that the list of genes identified here will guide human geneticists to the identification of relevant disease genes in humans. Furthermore, the mice produced in the pipeline are available from public resources, such as the NIH-supported Mutant Mouse Resource and Research Centers (MMRRC) or the European Mouse Mutant Archive (EMMA). These animals are immediately available and hold the potential for being validated as relevant models of human ocular diseases. Once validated, they can be used to accelerate identification and development of lead therapeutic compounds employing small molecules, biologics, gene therapies, and cell-based treatments. Finally, many of the genes reported here have not previously been recognized to play a role in the visual system, establishing an expanded menu of potential therapeutic targets once signaling pathways are established.

Methods

Animals. All IMPC centers maintain strict ethical review licensing and accrediting bodies that are reflective of their national legislation. (Institutional Animal Care and Usage Committees, Regierung von Oberbayern, Com’Eth, Animal Welfare and...
AllPupil II LED Vantage Plus Wireless Headset, Keeler Instruments Inc., Broomall, PA, USA, or equivalent).

Acquired incidental (i.e., trauma) findings were identified based on lesion characteristics and lack of repeatability in a given cohort. Background lesions were identified based on expected changes associated with the strain-specific C57BL/6N and retinal degeneration 8 (rd8) mutations in C57BL/6N. Findings in both categories were excluded from reported results. Background findings known for the C57BL/6N line include corneal stromal opacities, altered anterior lens capsule translucency, purulent nuclear cataracts, vitreous pigment and crystalline opacities, retinal dysplasia, and microphthalmia.37. Except in knockout strains that greatly increased the frequency of these specific lesions, background lesions occurred at approximately equal frequencies among knockout and wild-type lines as previously described.37.

Histology. Physiologic data were supported by histopathology, which continues to be the definitive assay in medicine for making most diagnoses.75,74. For pipeline histopathologic evaluation, eyes were either enucleated or fixed in situ. Tissues were immersion fixed in 10% neutral-buffered formalin. If fixed in situ, formalin-fixed heads were decalcified in 15% picric acid for at least 24 h or until sufficient decalcification was achieved. Parasagittal sections of eyes or coronal sections through the head including eyes were processed routinely for histopathology, embedded in paraffin, sectioned at 4–5 μm, and stained with hematoxylin and eosin.

For targeted anterior segment histology, eyes were enucleated, fixed in 10% neutral-buffered formalin, washed in three changes of 100% ethanol for 15 min each, two 15 min changes of 100% xylene, and three 45 min changes of 60% paraformaldehyde. Sections 4 μm thick were cut using a Leica microtome and paraffinized prior to staining. For targeted evaluation of the retina, eyes were enucleated and fixed in 4% paraformaldehyde in 0.1 M phosphate buffer (pH 7.3) for 1 h. After buffer rinses, the pieces were dehydrated in a graded series of ethanol, incubated in propylene oxide, then infiltrated and embedded with epoxy resin (Poly/Bed 812; PolySciences Inc.). Initial sections of tissue were obtained by bright-field microscopy, and thin sections were cut from selected areas, stained with safranin O and fast green, and examined with a Philips CM120 transmission electron microscope.

Ocular imaging. All mice diagnosed with ocular lesions suspected to be a genetic phenotype were flagged for further examination via advanced imaging techniques. Mice were anesthetized with an intraperitoneal injection of a ketamine/xylazine (50–75/7.5 mg/kg) cocktail. Each mouse was anesthetized with an intraperitoneal injection of ketamine/midazolam (50–75/1.25 mg/kg) cocktail. Each eye was analyzed with infrared and fundus imaging by an ophthalmologist, followed by fundus photographs and slit-lamp examination. For stereo and aqueous chamber examination, eyes were either enucleated or fixed in situ, formalin–fixed, paraffin–embedded, sectioned, stained with hematoxylin and eosin, and examined with a light microscope. For quantitative histology, eyes were either enucleated or fixed in situ, formalin–fixed, paraffin–embedded, sectioned at 50 μm thickness on a microtome, deparaffinized, stained with hematoxylin and eosin, and examined with a light microscope.

Electrophysiology. Electroretinography (ERG) studies were conducted at institutions where available (see Table 1), on mice at 16 weeks of age for each knockout line (two male, two females) and, on a weekly basis, C57BL6/N (JAX stock #005304) control mice (two males, two females). An Espion® Electroretinography System (Diagnosys, LLC, Lowell, MA) was used to assess flash-induced voltage changes in both eyes of animals. Mice were either dark-adapted for 2 h prior to exam and stimulated by five flashes at an illuminance of 0.25 cd/m² and a frequency of 1 Hz (photopic condition). The color temperature of all stimuli and background illumination was 6500 K. flashes under each condition were averaged and amplitudes determined using the Espion® software. ERG response amplitudes from the left and right eye of each mouse were averaged, and the mean values from the mutant and control cohorts were analyzed statistically in Prism (GraphPad Software, Inc., La Jolla, CA, USA) using a Student’s t-test to the control group examined in parallel. For a given type of measurement, the reference range is defined as the mean ± 2 SD of all control measurements.

Electroretinography. Electroretinography (ERG) studies were conducted at institutions where available (see Table 1), on mice at 16 weeks of age for each knockout line (two male, two females) and, on a weekly basis, C57BL6/N (JAX stock #005304) control mice (two males, two females). An Espion® Electroretinography System (Diagnosys, LLC, Lowell, MA) was used to assess flash-induced voltage changes in both eyes of animals. Mice were either dark-adapted for 2 h prior to exam and stimulated by five flashes at an illuminance of 0.25 cd/m² and a frequency of 1 Hz (photopic condition). The color temperature of all stimuli and background illumination was 6500 K. flashes under each condition were averaged and amplitudes determined using the Espion® software. ERG response amplitudes from the left and right eye of each mouse were averaged, and the mean values from the mutant and control cohorts were analyzed statistically in Prism (GraphPad Software, Inc., La Jolla, CA, USA) using a Student’s t-test to the control group examined in parallel. For a given type of measurement, the reference range is defined as the mean ± 2 SD of all control measurements.
Jolla, CA) using Student’s t-test. ERG trace data from each eye was exported from the Espion2 software and graphed in Prism.

Gene analysis. The initial list of eye phenotypes was developed by searching the IMPC web portal for non-specific eye phenotypes in an effort to obtain all relevant knockouts with ocular phenotypes (http://www.mousephenotype.org/data/search/mpk?kw=eye). Phenotypes only recognized at gross pathology or histopathology stages were excluded, as were embryologic eye phenotypes, since IMPC statistical thresholds were not applied to phenotypes discovered by these methods. The initial list was analyzed to identify unique genes with ocular phenotypes. The list of knockouts was then categorized based on the eye in which the phenotype was detected. Genes associated with an ocular phenotype were then reviewed by searching www.pubmed.gov and www.google.com/search for each unique gene and the search term eye, the affected anatomical structure (e.g., cornea), and the term knockout to determine if a genetic knockout has been made. If the search yielded an example of at least one vertebrate species with a published ocular phenotype that was similar to the phenotype found in the present study, the genetic phenotype was categorized as a Known Phenotype. If the search yielded evidence of an ocular phenotype for a given genetic knockout, but the phenotype was of a different ocular tissue (e.g., cornea vs. retina), then the genetic phenotype was called Novel Phenotype. Knockouts in the Novel Phenotype category are still considered novel mouse models of ocular disease. If the search yielded no publications on ocular phenotypes of a given gene, the genetic phenotype was categorized as Novel Gene.

Gene enrichment analysis. We used the DAVID functional annotation tool (version 6.8) to examine whether particular gene ontology (GO) terms of biological processes are enriched in a list of genes associated with the eye phenotype (combined, known, or novel)\(^9\). All GO terms of GOTERM_BP_FAT with modified Fisher exact p-values <0.05 were plotted with ReviGo with default options\(^7\). We manually classified GO terms into representative GO groups in the ReviGo interactive graph. To reconstruct a network model of novel genes associated with the eye phenotype, we collected their experimentally validated protein–protein interactions from STRING (version 10.5)\(^8\). The network model was built with the novel genes and their combined protein–protein interactions using Cytoscape (version 3.5.1)\(^9\). We then overlapped the eye location of the novel genes and their membership of the representative GO groups in the constructed network model.

Disclaimer. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Data availability

Data are available from the IMPC at www.mousephenotype.org. Post-QC data from the Core Data Archive (http://www.mousephenotype.org/data/documenta¬tion/data-access) is available in the form of RESTful interfaces. Pre-QC data are available upon request (http://www.mousephenotype.org/contact-us) or by manual download (Phenoview).

Received: 24 May 2018 Accepted: 6 November 2018
Published online: 21 December 2018

References

1. Eye Diseases Prevalence Research Group, Causes and prevalence of visual impairment among adults in the United States. Arch. Ophthal. 122, 477–485 (2004).
2. L. K. F. et al. Prevalence of normoelastic visual impairment in US adults and associated risk factors, 1999–2002 and 2005–2008. JAMA 308, 2361–2368 (2012).
3. Bourne, R., Price, H. & Stevens, G. Global burden of visual impairment and blindness. Arch. Ophthalmol. 130, 645–647 (2012).
4. Stone, E. M. et al. Clinically focused molecular investigation of 1000 consecutive families with inherited retinal disease. Ophthalmol. 124, 1314–1331 (2017).
5. Warwick, A. & Lotery, A. Genetics and genetic testing for age-related macular degeneration. Eye (Lond.) 32, 849–857 (2017).
6. Hrabé de Angelis, M. et al. Analysis of mammalian gene function through broad-based phenotypic screens across a consortium of mouse clinics. Nat. Genet. 47, 969–978 (2015).
7. White, J. K. et al. Genome-wide generation and systematic phenotyping of knockout mice reveals new roles for many genes. Cell 154, 452–464 (2013).
8. The Gene Ontology Consortium. Expansion of the Gene Ontology knowledgebase and resources. Nucl. Acids Res. 45, D331–D338 (2017).
9. Skarnes, W. C. et al. A conditional knockout resource for the genome-wide study of mouse gene function. Nature 474, 337–342 (2011).
10. Brown, S. D. & Moore, M. W. Towards an encyclopedia of mammalian gene function: the International Mouse Phenotyping Consortium. Dis. Model Mech. 5, 289–292 (2012).
11. Brown, S. D. & Moore, M. W. The International Mouse Phenotyping Consortium: past and future perspectives on mouse phenotyping. Mamm. Genome 23, 632–640 (2012).
12. Dickson, M. E. et al. High-throughput discovery of novel developmental phenotypes. Nature 537, 508–514 (2016).
13. Morgan, H., Simon, M. & Mallon, A. M. Accessing and mining data from large-scale mouse phenotyping projects. Int. Rev. Neurobiol. 104, 47–70 (2012).
14. Bowl, M. R. et al. A large scale hearing loss screen reveals an extensive unexplored genetic landscape for auditory dysfunction. Nat. Commun. 8, 886 (2017).
15. Rozman, J. et al. Identification of genetic entities in metabolism by high-throughput mouse phenotyping. Nat. Commun. 9, 288 (2018).
16. Dreyja, T. F. et al. A point mutation of the rhodopsin gene in one form of retinitis pigmentosa. Nature 343, 364–366 (1990).
17. Sung, C. H. et al. Rhodopsin mutations in autosomal dominant retinitis pigmentosa. Proc. Natl Acad. Sci. USA 88, 6481–6485 (1991).
18. Wang, S. K. C. et al. FAM20A mutations can cause enamel–renal syndrome (ERS). J. Dent. Res. 93, 42–48 (2014).
19. Kantaputra, P. N. et al. Enamel–Renal–Gingival syndrome: hypodontia, and a novel FAM20A mutation. Am. J. Med. Genet. A 164A, 2124–2128 (2014).
20. Vogel, P. et al. Amelogenesis imperfecta and other bimolarization defects in Fam20a and Fam20c null mice. Vet. Pathol. 59, 998–1017 (2012).
21. Liu, Y. et al. Gene expression profile of extracellular matrix and adhesion molecules in the human normal corneal stroma. Curr. Eye Res. 21, 1–8 (2016).
22. Kyuno, J., Fukui, A., Michiue, T. & Asahima, M. Identification and characterization of Xenopus NDRG1. Biochem. Biophys. Res. Commun. 309, 52–57 (2003).
23. Chen, G., Zhang, K., Cao, J. & Qiu, Z. Downregulation of the N-myc downstream regulated gene 1 is related to enhanced proliferation, invasion and migration of pancreatic cancer. Oncol. Rep. 37, 1189–1195 (2017).
24. Hunter, M. et al. NDRG1 interacts with APO A-I and A-II and is a functional candidate for the HDL–C QTL on 8q24. Biochem. Biophys. Res. Commun. 332, 982–992 (2005).
25. Shi, X. H., Larkin, J. C., Chen, B. & Sadowsky, Y. The expression and localization of N-myc downstream-regulated gene 1 in human trophoblasts. PLoS ONE 8, e75473 (2013).
26. Stein, S. et al. NDRG1 is necessary for p53-dependent apoptosis. J. Biol. Chem. 279, 48930–48940 (2004).
27. Takita, S., Wada, Y. & Kawamura, S. Effects of NDRG1 family proteins on photoreceptor outer segment morphology in zebrafish. Sci. Rep. 6, 36590 (2016).
28. Aldahmesh, M. A. et al. The syndrome of microcornea, myopic chorioretinal atrophy, and telecanthus (MMCAT) is caused by mutations in ADAMTS18. Hum. Mutat. 34, 1195–1199 (2013).
29. Chandra, A. et al. Expansion of ocular phenotypic features associated with mutations in ADAMTS18. J. Am. Med. Assoc. Ophthalmol. 132, 996–1001 (2014).
30. Ataca, D. et al. Adams18 deletion results in distinct developmental defects and provides a model for congenital disorders of lens, lung, and female reproductive tract development. Biol. Open. 5, 1585–1594 (2016).
31. Serrano, M. et al. Role of the INK4a locus in tumor suppression and cell mortality. Cell 85, 27–37 (1996).
32. Cheong, C. et al. Role of INK4a locus in normal eye development and cataractogenesis. Mech. Ageing Dev. 127, 633–638 (2006).
33. Hohman, T. C. Hereditary Retinal Dystrophy. Handb. Exp. Pharmacol. 242, 337–367 (2016).
34. Miura, K. et al. ARAP1: a point of convergence for Arf and Rho signaling. Mol. Cell. 9, 109–119 (2002).
35. Campa, F. et al. A PH domain in the Arf GTPase-activating protein (GAP) ARAP1 binds phosphatidylinositol 3,4,5-trisphosphate and regulates Arf GAP activity independently of recruitment to the plasma membranes. J. Biol. Chem. 284, 28069–28083 (2009).
36. Yoon, H. Y., Lee, J. S. & Randazzo, P. A. ARAP1 regulates endocytosis of EGFR. Traffic 9, 2226–2252 (2008).
37. Moshiri, A. et al. Arap1 deficiency causes photoreceptor degeneration in mice. Invest. Ophthalmol. Vis. Sci. 58, 1709–1718 (2017).
38. Dinamarca, M. C. et al. Ring finger protein 10 is a novel synaptonemal complex protein encoding activator of NMDA receptors in hippocampus. Elife 5, e13450 (2016).

39. Hoshikawa, S., Ogata, T., Fujiwara, S., Nakamura, K. & Tanaka, S. A novel function of RING finger protein 10 in transcriptional regulation of the myelin-associated glycoprotein gene and myelin formation in Schwann cells. PLoS ONE 3, e3464 (2008).

40. Charette, J. F. & Prives, C. A chemical mutagenesis screen identifies mouse models with ERG defects. Adv. Exp. Med. Biol. 854, 177–183 (2016).

41. Greenwald, S. H. et al. Mouse models of NMNAT1-leber congenital amaurosis (LCA9) recapitulate key features of the human disease. Am. J. Pathol. 186, 1925–1936 (2016).

42. Adachi, M. et al. Similar and distinct properties of MUPP1 and Patj, two homologous PDZ domain-containing tight junction proteins. Mol. Cell. Biol. 29, 2372–2389 (2009).

43. Feldner, A. et al. Loss of Mpdz impairs ependymal cell integrity leading to perinatal-onset hydrocephalus in mice. EMBO Mol. Med. 9, 890–905 (2017).

44. van Rossum, A. G. et al. PalI1/Pmp5 is required for correct localization of Crlb1 at the subapical region in polarized Muller glia cells. Hum. Mol. Genet. 15, 2659–2672 (2006).

45. van de Pavert, S. A. et al. Crb1 is a determinant of retinal apical Muller glia cell features. Glu 55, 1486–1497 (2007).

46. Al-Dozari, M. S. et al. Mutation in MDPZ causes severe congenital hydrocephalus. J. Med. Genet. 50, 54–58 (2013).

47. Suáger-Vehé, A. & Hofmann, S. Hydrocephalus due to multiple ependymal malformations is caused by mutations in the MDPZ gene. Acta Neuropathol. Commun. 5, 36 (2017).

48. Shaheen, R. et al. The genetic landscape of familial congenital hydrocephalus. Ann. Neurol. 81, 890–897 (2017).

49. Periyasamy, P. et al. Age-related cataracts: Role of unfolded protein response, inflammation and histopathological findings in experimental pathology of the mouse: a sorry tail. Lab. Anim. 46, 146–151 (2017).

50. Krebs, M. P. et al. Mouse models of human ocular disease for translational research. PLoS ONE 12, e0183837 (2017).

51. Mattapallil, M. J. et al. The Rdh8 mutation of the Crb1 gene is present in your vendor lines of C57BL/6N mice and embryonic stem cells, and confounds ocular induced mutant phenotypes. Invest. Ophthalmol. Vis. Sci. 53, 2921–2927 (2012).

52. Low, B. E. et al. Correction of the Crb1rd8 allele and retinal phenotype in C57BL/6N Mice via TALEN-mediated homology-directed repair. Invest. Ophthalmol. Vis. Sci. 57, 890–898 (2016).

53. Mooney, N. et al. A review of Von Hippel-Lindau Syndrome. J. Kidney Venl. 4, 20–29 (2017).

54. Parisi, M. & Glass, I. Joubert Syndrome (GeneReviews, University of Washington, Seattle, 2010).

55. Weibrecht, K., et al. Keeping an eye on Bardet-Biedl Syndrome: A comprehensive review of the role of Bardet-Biedl Syndrome genes in the eye. Med. Res. Arch. 5. https://doi.org/10.18103/nra.v5i9.1526 (2019).

56. Fritsche, L. G. et al. Age-related macular degeneration: genetics and biology coming together. Annu. Rev. Genom. Hum. Genet. 15, 151–174 (2014).

57. Black, J. R. & Clark, S. J. Age-related macular degeneration: genome-wide association studies to translation. Genet. Med. 18, 283–289 (2016).

58. Cline, M. S. et al. The role of Bardet-Biedl Syndrome genes in the eye: a comprehensive review of the role of Bardet-Biedl Syndrome genes in the eye. Mol. Genet. Metab. 121, 237–249 (2017).

59. Neveling, K. et al. Next-generation genetic testing for retinitis pigmentosa. Genet. Med. 18, 289–299 (2016).

60. Shefler, V. et al. Engineering effective screening strategies for autosomal recessive retinitis pigmentosa in routine clinical practice. Mol. Vis. 21, 461–476 (2015).

61. Lu, Z. et al. Genome-based next generation sequencing as a reliable and efficient technique to detect mutations in unselected patients with retinal dystrophies. Eur. J. Hum. Genet. 22, 99–104 (2014).

62. Neveling, K. et al. Next-generation genetic testing for retinitis pigmentosa. Hum. Mutat. 33, 963–972 (2012).

63. Searle, A. G., Edwards, J. H. & Hall, J. G. Mouse homologies of human hereditary disease. J. Med. Genet. 31, 1–19 (1994).

64. Gillespie, R. L. et al. Personalized diagnosis and management of congenital cataract by next-generation sequencing. Ophthalmo Health 121, 2124–2137 (2014).

65. Karp, N. A. et al. Applying the ARRIVE guidelines to an in vivo database. PLoS Biol. 13, e1002151 (2015).

66. Kurbatova, N., Mason, J. C., Morgan, H., Meehan, T. F. & Karp, N. A. PhenStat: A tool kit for standardized analysis of high throughput phenotypic data. PLoS ONE 10, e0131274 (2015).

67. Wolf, J. C. & Maack, G. Evaluating the credibility of histopathology data in environmental endocrine toxicity studies. Environ. Toxicol. Chem. 36, 601–611 (2017).

68. Ward, J. M., Schofield, P. N. & Sundberg, J. P. Reproducibility of histopathological findings in experimental pathology of the mouse: a sorry tail. Lab. Anim. 46, 146–151 (2017).

69. Murgue, R. & Bustin, S. A. Quantification of real-time PCR data: a comprehensive review of current practice. J. Mol. Endocrinol. 40, 3–20 (2008).

70. Patil, A., Nakai, K. & Nakamura, H. HitPredict: A database of quality assessed protein-protein interactions in nine species. Nucl. Acids Res. 34, D353–D359 (2006).

71. Cline, M. S. et al. Integration of biological networks and gene expression data using Cytocept. Nat. Protoc. 2, 2366–2382 (2007).

Acknowledgements

We thank all the various funding agencies supporting the International Mouse Phenotyping Consortium. This report in published in this publication was supported by the NIH Common Fund, the Office of the Director, and the National Human Genomic Research Institute of the National Institutes of Health under Award Number U01OD011185 (S.A. Murgue), U54HG066332 (R.E.B. and K.L.S.), K08EY027463 (A.M.), K07NS094791 (J.K.W.), U54HG006344, U54DK097165, and U10OD023312 (K.C.K.L.), U54ES023544 (H.M.), U01HG006379 (J.M., F.M.P., H.P., and P.F.), U54HG006348 and Medical Research Council Strategic Award 53650 (S.G., S.W.), K08EY012142 (S.M.T.), P30EY12576 (NEI visual sciences microscopy core grant to UC Davis), P50CA034196 (NIH cancer center support core grant to JAX), 2013M3A4D70S7250, 2013M3A4D105344, 2013M3A4D105622, 2013M3A4D105617, 2013M3A4D105616 (S.R.S., and Wellcome Trust grant (WT90888)). We gratefully acknowledge additional funding sources, including the Research for Preventing Blindness and International Retina Research Foundation (A.F.M.), and Government of Canada through Genome Canada and Ontario Genomics (OGI-051) (C.M. S.D.M.B.), Paul Fitzgerald (UC Davis) assisted in the interpretation of lens findings. Outstanding technical support was provided by Monica Motta, Brad Shihata, Devin Humphal, Adday Thom, Kairie Beeman, Heather Tolentino, Todd Tolentino, Esi Djan, Milton Pham, and Amanda Trainor at UC Davis, Chao Xiu Ram/Hamed, Raphoul Bourn, Alain Guimond, Valérie Lalanne, and Aline Lux at PHENOMIN-ICS, and Samantha Burrill and Jennifer Ryan for training phenotypers at JAX.

Author contributions

B.A. performed gene analysis, wrote the manuscript, and created the figures, and was directly and indirectly involved in ocular phenotyping and data procurement. A.M. performed gene analysis, wrote the manuscript, and created the figures. M.J.R., M.P.K., P.M.N., S.M.A.M., S.M., D.M.I., M.M.A., T.S., S.W., J.K.W., J.K.S., G.T.-V., M.M., C.F., N.K., R.R.-S., M.H.de.A., W.W., K.C.K.L., and K.L.S. performed experiments and analyzed results. Outstanding technical support was provided by Monika Motta, Brad Shihata, Devin Humphal, Adday Thom, Kairie Beeman, Heather Tolentino, Todd Tolentino, Esi Djan, Milton Pham, and Amanda Trainor at UC Davis, Chao Xiu Ram/Hamed, Raphoul Bourn, Alain Guimond, Valérie Lalanne, and Aline Lux at PHENOMIN-ICS, and Samantha Burrill and Jennifer Ryan for training phenotypers at JAX.

References

ARTICLE

COMMUNICATIONS BIOLOGY | DOI: 10.1038/s42003-018-0226-0 | www.nature.com/commsbio
Bret A. Moore¹, Brian C. Leonard², Lionel Sebbag³, Sydney G. Edwards¹, Ann Cooper¹, Denise M. Imai³, Ewan Straiton⁴, Luis Santos⁴, Christopher Reilly⁵, Stephen M. Griffin⁵, Lynette Bower⁵, David Clary⁵, Jeremy Mason⁶, Michel J. Roux⁷,8,9,10,11, Hamid Meziane⁷,8,9,10,11, Yann Hauriet⁷,8,9,10,11, International Mouse Phenotyping Consortium¹, Colin McKeirle¹²,13, Ann M. Flenniken¹²,14, Lauryl M.J. Nutter¹²,13, Zorana Berberovic¹²,14, Celeste Owen¹²,14, Susan Newbigging¹²,14, Hibret Adissu¹²,14, Mohammed Eskandarian¹²,14, Chih-Wei Hsu¹⁵, Sowmya Kalaga¹⁵, Uchechukwu Udens¹⁵, Chinwe Asomugha¹⁵, Ritu Bohat¹⁶, Juan J. Gallegos¹⁶, John R. Seavitt¹⁶, Jason D. Heaney¹⁶, Arthur L. Beaudet¹⁶, Mary E. Dickinson¹⁵,16, Monica J. Justice¹²,13,16, Vivek Philip¹⁷, Vivek Kumar¹⁷, Karen L. Svenson¹⁷, Robert E. Braun¹⁷, Sara Wells⁴, Heather Cater⁴, Michelle Stewart⁴, Sharon Clementson-Mobbs⁴, Russell Joyonson⁴, Xiang Gao¹⁸, Tomohiro Suzuki¹⁹, Shigeharu Wakana¹⁹, Damian Smedley¹³, J. K. Seong²⁰, Glauco Tocchini-Valentinii²¹, Mark Moore²³, Colin Fletcher²⁴, Natasha Karp²⁵, Ramiro Ramirez-Solis²⁵, Jacqueline K. White¹⁷,25, Martin Hrabe de Angelis¹⁶,26, Wolfgang Wurst²⁶, Sara M. Thomasy²,27, Paul Flicek²,6, Helen Parkinson⁶, Steve D.M. Brown⁴, Terrence F. Meehan⁴, Patsy M. Nishina¹⁷, Stephen A. Murray¹⁷, Mark P. Krebs¹⁷, Ann-Marie Mallon⁴, K.C. Kent Lloyd⁵, Christopher J. Murphy²,2⁷ & Ala Moshiri²⁷

¹William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California-Davis, Davis 95616 CA, USA. ²Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616, USA. ³Comparative Pathology Laboratory, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616, USA. ⁴Medical Research Council Harwell Institute (Mammalian Genetics Unit and Mary Lyon Center, Harwell, Oxfordshire OX11 ORX, UK. ⁵Mouse Biology Program, and Department of Surgery, School of Medicine, University of California-Davis, CA 95618, USA. ⁶European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK. ⁷Institut de Génetique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France. ⁸Centre National de la Recherche Scientifique, UMR7104 Illkirch, France. ⁹Institut de la Santé et de la Recherche Médicale, U1258 Illkirch, France. ¹⁰Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France. ¹¹CELPHEDIA, PHENOMIN, Institut Clinique de la Souris (ICS), CNRS, INSERM, Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch-Graffenstaden, France. ¹²The Centre for Phenogenomics, Toronto, ON M5T 3H7, Canada. ¹³The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada. ¹⁴Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada. ¹⁵Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA. ¹⁶Department of Medical and Pharmaceutical Biotechnology and Model Animal Research Center, Collaborative Innovation Center for Genetics and Development, Nanjing Biomedical Research Institute, Nanjing University, Nanjing 210061, China. ¹⁷RIKEN BioResource Center, Tsukuba, Ibaraki 305-0074, Japan. ¹⁸SKL of Pharmacological Biotechnology and Model Animal Research Center, Collaborative Innovation Center for Genetics and Development, Nanjing Biomedical Research Institute, Nanjing University, Nanjing 210061, China. ¹⁹SKL of Pharmacological Biotechnology and Model Animal Research Center, Collaborative Innovation Center for Genetics and Development, Nanjing Biomedical Research Institute, Nanjing University, Nanjing 210061, China. ²⁰Skl of Pharmacological Biotechnology and Model Animal Research Center, Collaborative Innovation Center for Genetics and Development, Nanjing Biomedical Research Institute, Nanjing University, Nanjing 210061, China. ²¹The Jackson Laboratory, Bar Harbor, ME 04609, USA. ²²National Institutes of Health, Bethesda, MD 20205, USA. ²³The Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK. ²⁴German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764 Neuberger, Germany. ²⁵Department of Ophthalmology & Vision Science, School of Medicine, U.C. Davis, Sacramento, CA 95817, USA. These authors contributed equally: Brian C. Leonard, Lionel Sebbag. ²⁶A full list of consortium members appears at the end of the paper.
International Mouse Phenotyping Consortium

Anna Swan4, Ruairidh King4, Piia Keskivali-Bond4, Lois Kelsey12, Igor Vukobradovic12, Dawei Qu12, Ruolin Guo12, Elisa Tran12, Lily Morikawa12, Milan Ganguly12, Napoleon Law12, Xueyuan Shang12, Patricia Feugas12, Yanchun Wang12, Yingchun Zhu12, Kyle Duffin12, Ayexa Ramirez12, Patricia Penton12, Valerie Laurin12, Shannon Clarke12, Qing Lan12, Gillian Sleep12, Amie Creighton12, Elsa Jacob12, Ozge Danisman12, Joanna Joeng12, Marina Gertsenstein12, Monica Pereira12, Sue MacMaster12, Sandra Tondal12, Tracy Carroll12, Jorge Cabezas12, Amit Patel12, Jane Hunter12, Gregory Clark12, Mohammed Bubshait12, David Miller12, Khondoker Sohel12, Alexandr Bezginov12, Matthew McKay16, Kevin Peterson16, Leslie Goodwin16, Rachel Urban16, Susan Kales16, Rob Hallett16, Dong Nguyen-Bresinsky16, Timothy Leach16, Audrie Seluke16, Sara Perkins16, Amanda Slater16, Rick Bedigian16, Leah Rae Donahue16, Robert Taft16, James Denegre16, Zachery Seavey16, Amelia Willett16, Lindsay Bates16, Leslie Haynes16, Julie Creed16, Catherine Witmeyer16, Willson Roper16, James Clark16, Pamela Stanley16, Samantha Burrill16, Jennifer Ryan16, Yuichi Obata19, Masaru Tamura19, Hideki Kaneda19, Tamio Furuse19, Kimio Kobayashi19, Ikuo Miura19, Ikuko Yamada19, Hiroshi Masuya19, Nobuhiko Tanaka19, Shinya Ayabe19, Atsushi Yoshiki19, Valerie Vancollie25, Francesco Chiani28, Chiara Di Pietro28, Gianfranco Di Segni28, Olga Ermakova28, Filomena Ferrara28, Paolo Fruscoloni28, Alessia Gambadoro28, Serena Gastaldi28, Elisabetta Golini28, Gina La Sala28, Silvia Mandillo28, Daniela Marazziti28, Marzia Massimi28, Rafaela Matteoni28, Tiziana Orsini28, Miriam Pasquini28, Marcello Raspa28, Aline Rauch28, Gianfranco Rossi28, Nicoletta Rossi28, Sabrina Putti28, Ferdinando Scavizzi28 & Giuseppe D. Tocchini-Valentini28

28Monterotondo Mouse Clinic, Italian National Research Council (CNR), Institute of Cell Biology and Neurobiology, Adriano Buzzati-Traverso Campus, Via Ramarini, I-00015 Monterotondo Scalo, Italy