CENTRAL LIMIT THEOREM FOR LINEAR SPECTRAL STATISTICS
OF LARGE DIMENSIONAL SEPARABLE SAMPLE COVARIANCE
MATRICES

ZHIDONG BAI, HUIQIN LI, GUANGMING PAN

ABSTRACT. Suppose that $X_n = (x_{jk})$ is $N \times n$ whose elements are independent real variables with mean zero, variance 1 and the fourth moment equal to three. The separable sample covariance matrix is defined as $B_n = \frac{1}{N} T_{2n}^{1/2} X_n T_{1n} X_n^T T_{2n}^{1/2}$ where T_{1n} is a symmetric matrix and $T_{2n}^{1/2}$ is a symmetric square root of the nonnegative definite symmetric matrix T_{2n}. Its linear spectral statistics (LSS) are shown to have Gaussian limits when n/N approaches a positive constant.

Keywords: Central limit theorem, General sample covariance matrix, Large dimension, Linear spectral statistics, Random matrix theory.

1. INTRODUCTION

The sample covariance matrix is one of the most commonly studied random matrices in Random Matrix Theory, which can be traced back to Wishart (1928) (see [20]). It plays an important role in multivariate analysis because many statistics in traditional multivariate statistical analysis (e.g., principle component analysis, factor analysis and multivariate regression analysis) can be written as functionals of the eigenvalues of sample covariance matrices.

Large dimensional data now appear in various fields such as finance and genetic experiments due to different reasons. To deal with such large-dimensional data, a new area in asymptotic statistics has been developed where the data dimension p is no more fixed but tends to infinity together with the sample size n. The random matrices proves to be a powerful tool for such large dimensional statistical problems. One may refer to the latest book in this area by J. F. Yao, S. R. Zheng and Z. D. Bai (2015), the recent work by Ledoit and Wolf (2004) and Jiang and Yang (2013).

So far, most work focus on the sample covariance matrices of the form

$$S_n = \frac{1}{N} T_{n}^{1/2} X_n X_n^T T_{n}^{1/2}$$

where X_n is a $N \times n$ matrix with independent entries and T_n is a nonnegative definite symmetric matrix. As we know S_n can be viewed as a sample covariance matrix formed from n samples of the random vector $T_{n}^{1/2} x_1$ (where x_1 denotes the
first column of X_n, which has population covariance matrix T_n. Much work has been done on the central limit theorem (CLT) for linear eigenvalues statistics of S_n under different assumptions. Among others we mention [1, 10, 14, 16, 18]. One of the key features of the above sample covariance matrices S_n is that the sample are independent. As far as we know there is no CLT available for the sample covariance matrices generated from the dependent sample.

In view of the above we consider a kind of general sample covariance matrices

$$B_n = \frac{1}{N} T_{2n}^{1/2} X_n T_{1n} X_n' T_{2n}^{1/2},$$

where T_{2n} is $N \times N$ nonnegative definite symmetric matrix and T_{1n} is $n \times n$ symmetric. This model finds applications in the diverse fields including spatio-temporal statistics, wireless communications and econometrics. For example, the data matrix can be represented as

$$Y_n = T_{2n}^{1/2} X_n T_{1n}^{1/2}$$

if T_{1n} is nonnegative definite symmetric. Denote by vec(Y_n) the vector operator that stacks the columns of Y_n into a column vector. This model is referred to as a separable covariance model because the covariance of vec(Y_n) is the Kronecker product of T_{1n} and T_{2n}. The rows of the data matrix Y_n correspond to indices of spatial locations and the column indices correspond to points in time in the field of spatio-temporal statistics. This covariance structure implies that the entries of Y_n are correlated in time (column), but the pattern of temporal correlation does not change with location (row). One may see [17] and the references therein.

In econometrics, when determining the number of factors in the approximate factor models [15] assumes that the idiosyncratic components of the data is of the form Y_n. This allows the idiosyncratic terms to be non-trivially correlated both cross-sectionally and over time. The cross-sectional correlation is caused by matrix $T_{2n}^{1/2}$ linearly combining different rows of X_n, whereas the correlation over time is caused by matrix $T_{2n}^{1/2}$ linearly combining different columns of X_n.

Another motivation of considering the sample covariance matrices B_n is the matrix data. Matrix observations are becoming increasingly available due to the rapid advance in the information technology. For example, images are routinely stored as pixel by pixel data; agricultural exports can be represented via matrices, one for each year, with rows denoting for example different regions and columns different produces; the gene expression of a single subject can be organized as a matrix with the rows for tissue types and the columns for genes. There is an abundance of data that can be characterized as matrix variates in food sciences and chemometrics. In general, the sample covariance matrix of the matrix data is

$$\frac{1}{nm} \sum_{k=1}^{m} Y_{nk} Y_{nk}'$$
where $Y_{nk}, k = 1, \cdots, m$ are $n \times N$ matrix data. Some papers argued that for many matrix variates, it is more appropriate to assume that

$$\text{Cov}(\text{vec}(Y_{nk})) = T_{1n} \otimes T_{2n}.$$

One may refer to [12] and the references therein. Here, the matrix data Y_n defined in (1.2) is just one matrix observation for simplicity. Moreover, write

$$\frac{1}{nm} \sum_{k=1}^{m} Y_{nk}Y'_{nk} = \frac{1}{nm} T_{1/2}^{1/2} (X_{n1}, \cdots, X_{nm}) (I_m \otimes T_{1n}) (X_{n1}, \cdots, X_{nm})' T_{2n}^{1/2}.$$

Let $\tilde{T}_{1n} = I_m \otimes T_{1n}$ and $\tilde{X}_n = (X_{n1}, \cdots, X_{nm})$. Then

$$\frac{1}{nm} \sum_{k=1}^{m} Y_{nk}Y'_{nk} = \frac{N}{nm} N T_{1/2}^{1/2} \tilde{X}_n \tilde{T}_{1n} \tilde{X}_n' T_{2n}^{1/2}$$

which has the same form as (1.1) if nm and N are of the same order.

For any hermitian matrix A of size $n \times n$ its empirical spectral distribution (ESD) is defined by

$$F_A(x) = \frac{1}{n} \sum_{j=1}^{n} I(\lambda_j \leq x),$$

where $\{\lambda_j\}$ are eigenvalues of A. For B_n defined in (1.1), a number of papers ([5] and [23]) investigated its empirical spectral distribution F_{B_n} and the weakest assumption is given in [23], which is specified below. To characterize its limit define the Stieltjes transform of any distribution function $F_A(x)$ to be

$$m_{F_A}(z) = \int \frac{1}{x-z} dF_A(x) = \frac{1}{n} \text{tr}(A - zI)^{-1}, \quad z \in \mathbb{C}^+.$$

Throughout the paper we make the following assumption.

Condition 1.1.

(i) $X_n = (x_{jl})$ is $N \times n$ consisting of independent real random variables with $E x_{jl} = 0, E x_{jl}^2 = 1$, satisfying for each $\delta > 0$, as $n \to \infty$

$$\frac{1}{\delta^2 n N} \sum_{j,l} E \left(\frac{x_{jl}^2}{|x_{jl}|} \right) \to 0.$$

(ii) T_{1n} is $n \times n$ real symmetric matrix (without loss of generality, we assume that T_{1n} is not semi-negative definite) and T_{2n} is $N \times N$ nonnegative definite real symmetric matrix.

(iii) With probability 1, as $n \to \infty$, the empirical spectral distributions of T_{1n} and T_{2n}, denoted by H_{1n} and H_{2n} respectively, converge weakly to two probability functions H_1 and H_2, respectively.

(iv) $N = N(n)$ with $n/N \to c > 0$.

(v) X_n, T_{1n}, T_{2n} are independent.
L. X. Zhang \[23\] establishes the following conclusion under Condition \[1.1\]. For B_n defined in \[1.1\], with probability 1, as $n \to \infty$, the ESD of B_n converges weakly to a non-random probability distribution function F for which if $H_1 = 1_{(0, \infty)}$ or $H_2 = 1_{(0, \infty)}$, then $F = 1_{(0, \infty)}$; otherwise the Stieltjes transform $m(z)$ of F is determined by the following system of equations \[1.3\], where for each $z \in \mathbb{C}^+$,

\[
\begin{cases}
 s(z) = -z^{-1}(1 - c) - z^{-1} c \int \frac{1}{1 + h_2(z) x} \, dH_1(x) \\
 s(z) = -z^{-1} \int \frac{1}{1 + h_2(z) y} \, dH_2(y) \\
 s(z) = -z^{-1} - p(z) q(z).
\end{cases}
\]

Then, the Stieltjes transform $m(z)$ of F, together with the two other functions, denoted by $g_1(z)$ and $g_2(z)$, $(m(z), g_1(z), g_2(z))$ is the unique solution to \[1.3\] in the set

\[
U = \left\{ (s(z), p(z), q(z)) : \Im s(z) > 0, \Im (zp(z)) > 0, \Im q(z) > 0 \right\}
\]

where $\Im h(z)$ stands for the imaginary part of $h(z)$. Denote $B_\mu = \frac{1}{N} T_1 X_1^T X_2 X_n$. Then we have the following relationship between the empirical distributions of B_n and B_μ:

\[
F_{B_\mu}(x) = c_n F_{B_\mu}(x) + (1 - c_n) 1_{(0, \infty)}(x),
\]

and hence

\[
m_n(z) = c_n m_\mu(z) + z^{-1}(c_n - 1).
\]

where $c_n = n/N$, $m_n(z) = m_{F_{B_n}}(z)$ and $m_\mu(z) = m_{F_{B_\mu}}(z)$. Denote by F the limiting distribution of F_{B_μ}. Then F and F must satisfy

\[
F(x) = cF(x) + (1 - c) 1_{(0, \infty)}(x),
\]

and

\[
m(z) = cm(z) - z^{-1}(1 - c)
\]

where $m(z) = m_{F}(z)$. If we let F^{c,H_1,H_2} denote F, then F^{c,H_1,H_2} is obtained from F^{c,H_1,H_2} with c, H_1, H_2 replaced by c_n, H_{1n}, H_{2n} respectively. Let $m_0(z) = m_{F^{c_n,H_{1n},H_{2n}}}(z)$ for simplicity. Moreover $g_{1n}(z)$ and $g_{2n}(z)$ are similarly obtained from $g_1(z)$ and $g_2(z)$ respectively. Then $\left(m_0(z), g_{1n}(z), g_{2n}(z) \right)$ satisfies the equations \[1.3\]. In other words

\[
m_0(z) = -z^{-1} \int \frac{1}{1 + g_{2n}(z) x} \, dH_{1n}(x)
\]

(1.7)

\[
m_0(z) = -z^{-1} \int \frac{1}{1 + g_{1n}(z) y} \, dH_{2n}(y)
\]

(1.8)

\[
m_0(z) = -z^{-1} - g_{1n}(z) g_{2n}(z).
\]
Furthermore,

\begin{equation}
\begin{aligned}
\zeta_{1n}(z) &= -c_n \int \frac{x}{1 + g_{1n}^0(z)x} dH_{1n}(x) \\
\zeta_{2n}(z) &= -\int \frac{y}{1 + g_{1n}^0(z)y} dH_{2n}(y).
\end{aligned}
\end{equation}

[6] further investigated the limiting spectral measure of \(B_n \) and [17] proved that no eigenvalues exist outside the support of limiting empirical spectral distribution of \(B_n \). But [17] required \(T_{2n} \) in \(B_n \) to be diagonal (with positive diagonal entries). It is well known that many important statistics in multivariate analysis can be written as functionals of the ESD of some random matrices. In view of this the aim of this paper is to establish the central limit theorem for linear spectral statistics (LSS) of \(B_n \). LSS of general sample covariance matrices are quantities of the form

\[\frac{1}{N} \sum_{j=1}^{N} f(A_j^{B_n}) = \int f(x) dF_{B_n}(x) \]

where \(f \) is some continuous and bounded real function on \((-\infty, \infty)\).

This paper is organized as follows. Section 2 establishes the main result about the CLT for LSS of \(B_n \). By the Stieltjes transform method, we complete the proof of theorem when the entries of matrix are Gaussian variables in Section 3. Section 4 extends the result from the Gaussian case to the general case through comparing their characteristic functions. Some useful lemmas are listed in Appendix.

2. Main result

Define

\[G_n(x) = N \left(F_{B_n}(x) - F_{c_nH_{1n},H_{2n}} \right) \]

The main result is stated in the following theorem.

Theorem 2.1. Denote by \(s_1 \geq \cdots \geq s_n \) \((s_1 > 0)\) the eigenvalues of \(T_{1n} \). Let \(f_1, \cdots, f_k \) be functions on \(\mathbb{R} \) analytic on an open interval containing

\[\begin{aligned}
\liminf_n \ s_n \left(\lambda_{T_{1n}}^{1n}(0,1)(c) \left(1 - \sqrt{c} \right)^2 \right) & I(s_n \geq 0), \\
\limsup_n \ s_n \left(\lambda_{T_{1n}}^{1n} \left(1 + \sqrt{c} \right)^2 \right) & I(s_n < 0)
\end{aligned} \]

In addition to Condition [17] we further suppose that \(E x_{jl}^4 = 3 \) and for each \(\delta > 0 \), as \(n \to \infty \)

\[\frac{1}{\delta^4 n^2} \sum_{j,l} E \left(x_{jl}^4 I \left(|x_{jl}| > \delta \sqrt{n} \right) \right) \to 0. \]
Also suppose that the spectral norms of \mathbf{T}_{1n} and \mathbf{T}_{2n} are both bounded in n. Then
\[
\left(\int f_1(x)dG_n(x), \cdots, \int f_n(x)dG_n(x) \right)
\]
converges weakly to a Gaussian vector $(X_{f_1}, \cdots, X_{f_n})$ with mean
\[
(2.2) \quad \mathbb{E}X_f = -\frac{1}{2\pi i} \oint_C f(z) \left\{ (d_1(z) - d_2(z)) \left\{ 1 - z^{-1} \left[\int \frac{x}{(1 + xg_2(z))^2}dH_1(x) \right]^{-1} \right. \right. \\
\times \left. \left. \int \frac{x^2}{(1 + xg_2(z))^2}dH_1(x) \int \frac{t}{(1 + g_1(z)t)^2}dH_2(t) \right\}^{-1} \right\} dz
\]
and covariance function
\[
(2.3) \quad \text{Cov}(X_f, X_{g}) = -\frac{1}{2\pi^2} \oint_C \oint_C \frac{\partial^2}{\partial z_2 \partial z_1} \int_0^{f(z,w)} \frac{1}{1 - z}dzdz_1dz_2
\]
where $f, g \in \{f_1, \cdots, f_n\}$. Here
\[
d_1(z) = -cz^{-3} \int \frac{x^2}{(1 + xg_2(z))^2}dH_1(x) \int \frac{t^2}{(g_1(z)t + 1)^3}dH_2(t) \\
\times \left[1 - cz^{-2} \int \frac{x^2}{(1 + xg_2(z))^2}dH_1(x) \int \frac{t^2}{(g_1(z)t + 1)^2}dH_2(t) \right]^{-1} \\
- cz^{-3} \int \frac{x^3}{(1 + xg_2(z))^3}dH_1(x) \int \frac{t}{(g_1(z)t + 1)^2}dH_2(t) \int \frac{t^2}{(g_1(z)t + 1)^2}dH_2(t) \\
\times \left[1 - cz^{-2} \int \frac{x^2}{(1 + xg_2(z))^2}dH_1(x) \int \frac{t^2}{(g_1(z)t + 1)^2}dH_2(t) \right]^{-1},
\]
\[
d_2(z) = -cz^{-4} \int \frac{x^2}{(1 + xg_2(z))^3}dH_1(x) \int \frac{t^2}{(g_1(z)t + 1)^2}dH_2(t) \\
\times \left[\int \frac{x}{(1 + xg_2(z))^2}dH_1(x) \right]^{-1} \int \frac{x^2}{(1 + xg_2(z))^2}dH_1(x) \int \frac{t}{(1 + g_1(z)t)^2}dH_2(t) \\
\times \left[1 - cz^{-2} \int \frac{x^2}{(1 + xg_2(z))^2}dH_1(x) \int \frac{t^2}{(g_1(z)t + 1)^2}dH_2(t) \right]^{-1},
\]
and
\[
f(z_1, z_2) = \frac{1}{z_1z_2} \frac{z_1g_1(z_1) - z_2g_1(z_2)z_1g_2(z_1) - z_2g_2(z_2)}{g_2(z_1) - g_2(z_2) g_1(z_1) - g_1(z_2)}.
\]
The contours in (2.2) and (2.3) (two contours in (2.3), which we may assume to be nonoverlapping) are closed and are taken in the positive direction in the complex plane, each enclosing the support of F^{c,H_1,H_2}.
Remark 2.2. It is worth mentioning that our result is consistent with that in [1]. We distinguish two cases to show the consistency according to whether \(T_{2n} \) or \(T_{1n} \) reduces to the identity matrix.

When \(T_{2n} = I \) and \(T_{1n} \) is a nonnegative definite symmetric matrix, \(B_n = \frac{1}{n}X_nT_{1n}X_n^\prime \). Then (1.3) is transformed into

\[
\begin{align*}
(m(z) &= -z^{-1} \int \frac{1}{1+zm(z)}dH_1(x) \\
g_1(z) &= - \frac{1}{zm(z)} - 1 \\
g_2(z) &= m(z).
\end{align*}
\]

It follows that

\[
EX_f = - \frac{1}{2\pi i} \oint_C f(z) \int \frac{cm(z)^3x^2}{(1+cm(z))^3}dH_1(x)\left(1 - \int \frac{cm(z)^2x^2}{(1+cm(z))^2}dH_1(x)\right)^{-2} \, dz
\]

and

\[
f(z_1, z_2) = 1 + \frac{m(z_1)m(z_2)(z_1 - z_2)}{m(z_2) - m(z_1)}.
\]

These are the same as those in [1].

If \(T_{1n} = I \) then \(B_n = \frac{1}{n}X_nT_{2n}^{1/2}X_n^\prime T_{2n}^{1/2} \). Let \(\tilde{B}_n = \frac{1}{n}T_{2n}^{1/2}X_nX_n^\prime T_{2n}^{1/2} \) and \(\tilde{B}_n = \frac{1}{n}X_nT_{2n}X_n \). We use \(\tilde{m}_n(z) \) and \(\tilde{m}_n(z) \) to denote the Stieltjes transforms of \(F_{B_n} \) and \(F_{\tilde{B}_n} \) respectively. Denote by \(F_{c^{-1},H_2} \) the limiting distribution of \(F_{\tilde{B}_n} \). Moreover \(F_{c^{-1},H_2} \) is obtained from \(F_{c^{-1},H_2} \) with \(c, H_2 \) replaced by \(c_n, H_{2n} \) respectively. Let \(\tilde{m}(z) = \lim_{n \to \infty} \tilde{m}_n(z), \tilde{m}(z) = \lim_{n \to \infty} \tilde{m}_n(z) \) and \(\tilde{m}_n^0(z) = m_{F_{c^{-1},H_2}}(z) \). Due to (2.7) below we only need to consider the limiting distribution of \(\tilde{M}_n(z) = N[\tilde{m}_n(z) - \tilde{m}_n^0(z)] \).

Firstly, (1.3) becomes

\[
\begin{align*}
(m(z) &= -z^{-1} \int \frac{1}{1+zm(z)}dH_2(x) \\
g_1(z) &= cm(z) \\
g_2(z) &= - \frac{1}{zm(z)} - 1
\end{align*}
\]

By Lemma 2.3 below and the above equations, we have

\[
(2.4) \quad EM(z) = \int \frac{cm(z)^3x^2}{(1+cm(z))^3}dH_2(x)\left(1 - \int \frac{cm(z)^2x^2}{(1+cm(z))^2}dH_2(x)\right)^{-2}
\]

and

\[
f(z_1, z_2) = 1 + \frac{m(z_1)m(z_2)(z_1 - z_2)}{m(z_2) - m(z_1)}.
\]

Note that \(B_n = c_n\tilde{B}_n \). It can be verified that

\[
\tilde{m}_n(z/c_n) = c_n\tilde{m}_n(z)
\]
and

\[M_n(z) = c_n^{-1} \tilde{M}_n(z/c_n). \]

These imply that

\[\tilde{m}(z/c) = c \, \tilde{m}(z) \]

and

\[M(z) = c^{-1} \tilde{M}(z/c) \]

where \(\tilde{M}(z) \) is a two-dimensional Gaussian process, the limit of weak convergence of \(\tilde{M}_n(z) \). Plugging (2.5) and (2.6) into (2.4), one has

\[E \tilde{M}(z/c) = E \left\{ 1 - c^{-1} \int \frac{\tilde{m}(z/c)^2 x^2}{1 + \tilde{m}(z/c)^2} dH_2(x) \right\}^{-2} \]

and

\[f(z_1, z_2) = 1 + \frac{\tilde{m}(z_1/c) \tilde{m}(z_2/c) (z_1/c - z_2/c)}{\tilde{m}(z_2/c) - \tilde{m}(z_1/c)}. \]

Hence the expectation and covariance are the same as those in Bai and Silverstein (2004).

By Cauchy’s formula

\[\int f(x) dG(x) = -\frac{1}{2\pi i} \oint f(z)m_{\tilde{m}}(z)dz \]

where \(G \) is a cumulative distribution function (c.d.f.) and \(f \) is analytic on an open set containing the support of \(G \). The complex integral on the right-hand side is over any positively oriented contour enclosing the support of \(G \) and on which \(f \) is analytic. Hence, the proof of Theorem 2.1 relies on establishing limiting results on

\[M_n(z) = N \left[m_n(z) - m_0(z) \right]. \]

The contour \(C \) is defined as follows.

By Condition 1.1 we may suppose \(\max \{ \|T_{1n}\|, \|T_{2n}\| \} \leq \tau \). Let \(v_0 \) be any positive number. Let \(x_r \) be any positive number if the right end point of interval (2.1) is zero. Otherwise choose

\[x_r = \lim \sup_n s_n A_{T_{max}}^{2n} \left(1 + \sqrt{c} \right)^2, \infty). \]

Let \(x_l \) be any negative number if the left end point of interval (2.1) is zero. Otherwise choose

\[x_l \in \begin{cases} (0, \lim \inf_n s_n A_{T_{min}}^{2n} I_{(0,1)}(c) \left(1 - \sqrt{c} \right)^2), & \text{if } \lim \inf_n s_n A_{T_{min}}^{2n} I_{(0,1)}(c) > 0, \\ (-\infty, \lim \inf_n s_n A_{T_{max}}^{2n} \left(1 + \sqrt{c} \right)^2), & \text{if } \lim \inf_n s_n A_{T_{min}}^{2n} I_{(0,1)}(c) \leq 0. \end{cases} \]
Let
\[C_u = \{ x + iv_0 : x \in [x_l, x_r] \}. \]

Define the contour \(C \)
\[C = \{ x + iv : v \in [0, v_0] \} \cup C_u \cup \{ x + iv : v \in [0, v_0] \}. \]

To avoid dealing with the small \(\Im z \), we truncate \(M_n(z) \) on a contour \(C \) of the complex plane. We define now the subsets \(C_n \) of \(C \) on which \(M_n(\cdot) \) agrees with \(\hat{M}_n(\cdot) \). Choose sequence \(\{ \varepsilon_n \} \) decreasing to zero satisfying for some \(\alpha \in (0, 1) \)
\[\varepsilon_n \geq n^{-\alpha}. \]

Let
\[C_l = \{ x_l + iv : v \in [n^{-1} \varepsilon_n, v_0] \} \quad \text{and} \quad C_r = \{ x_r + iv : v \in [n^{-1} \varepsilon_n, v_0] \}. \]

Then \(C_n = C_l \cup C_u \cup C_r \). For \(z = x + iv \), the process \(\hat{M}_n(\cdot) \) can now be defined as
\[
\hat{M}_n(\cdot) = \begin{cases}
M_n(z), & \text{for } z \in C_n, \\
M_n(x_l + in^{-1} \varepsilon_n), & \text{for } x = x_l, v \in [0, n^{-1} \varepsilon_n], \\
M_n(x_r + in^{-1} \varepsilon_n), & \text{for } x = x_r, v \in [0, n^{-1} \varepsilon_n].
\end{cases}
\]

The central limit theorem of \(\hat{M}_n(z) \) is specified below.

Lemma 2.3. Under the conditions of Theorem 2.1, \(\hat{M}_n(z) \) converges weakly to a two-dimensional Gaussian process \(M(\cdot) \) satisfying for \(z \in C \)
\[
EM(z) = (d_1(z) - d_2(z)) \left(1 - z^{-1} \left[\int \frac{x}{(1 + xg_2(z))^2} dH_1(x) \right]^{-1} \times \int \frac{x^2}{(1 + xg_2(z))^2} dH_1(x) \int \frac{t}{(1 + g_1(z)r)^2} dH_2(t) \right)^{-1}
\]

and for \(z_1, z_2 \in C \cup \overline{C} \) with \(\overline{C} = \{ \bar{z} : z \in C \} \),
\[
\text{Cov} (M(z_1), M(z_2)) = 2 \frac{\partial^2}{\partial z_2 \partial z_1} \int_0^{f(z_1, z_2)} \frac{1}{1 - z} dz.
\]

Proof of Theorem 2.1. From [22] and [3], we conclude that
\[
\lambda_{\max} \left(\frac{1}{N}X_n^\prime X_n \right) \to (1 + \sqrt{c})^2 \quad \text{a.s.}
\]

and
\[
\lambda_{\min} \left(\frac{1}{N}X_n^\prime X_n \right) \to (1 - \sqrt{c})^2 \quad \text{a.s.}
\]
The upper and lower bounds of the extreme eigenvalues of B_n depends largely on the signs of s_1 and s_n. Since $s_1 > 0$, we have

$$\lambda_{\text{max}}(B_n) \leq s_1 \lambda_{\text{max}}^{T_{2n}}(\frac{1}{N}X_n'X_n) \leq s_1 \lambda_{\text{max}}^{T_{2n}}(1 + \sqrt{c})^2 \quad \text{a.s.}$$

If $s_n > 0$, then we have

$$\lambda_{\text{min}}(B_n) \geq s_n \lambda_{\text{min}}^{T_{2n}}f_{(0,1)}(c) \lambda_{\text{min}}(\frac{1}{N}X_n'X_n) \geq s_n \lambda_{\text{min}}^{T_{2n}}f_{(0,1)}(c) (1 - \sqrt{c})^2 \quad \text{a.s.}$$

Otherwise, we get

$$\lambda_{\text{min}}(B_n) \geq s_n \lambda_{\text{max}}^{T_{2n}}(\frac{1}{N}X_n'X_n) \geq s_n \lambda_{\text{max}}^{T_{2n}}(1 + \sqrt{c})^2 \quad \text{a.s.}$$

Combining the definitions of x_i, x_r, we find with probability 1

$$\lim_{n \to \infty} \min (x_r - \lambda_{\text{max}}(B_n), \lambda_{\text{min}}(B_n) - x_i) > 0.$$

Since $F^B_n \to F^{H_1,H_2}$ with probability 1 the support of $F^{e_nH_1H_2}$ is contained in interval (2.1) with probability 1. Thus, by (2.7), for $f \in \{f_1, \cdots, f_s\}$ and large n, with probability 1,

$$\int f(x)dG_n(x) = -\frac{1}{2\pi i} \oint f(z)M_n(z)dz$$

where the complex integral is over $C \cup \overline{C}$. For $v \in [0, n^{-1} \varepsilon_n]$, note that

$$|M_n(x_r + iv) - M_n(x_r + in^{-1} \varepsilon_n)| \leq 4n|\max(\lambda_{\text{max}}(B_n), e_r) - x_r|^{-1}$$

and

$$|M_n(x_i + iv) - M_n(x_i + in^{-1} \varepsilon_n)| \leq 4n|\min(\lambda_{\text{min}}(B_n), e_i) - x_i|^{-1}.$$

It follows that for large n, with probability 1,

$$\left| \oint f(z) \left(M_n(z) - \hat{M}_n(z) \right) dz \right| \leq 8K\varepsilon_n \left[\max(\lambda_{\text{max}}(B_n), e_r) - x_r \right]^{-1} + \left| \min(\lambda_{\text{min}}(B_n), e_i) - x_i \right|^{-1} \to 0$$

where $e_l (e_r)$ is the left endpoint (right endpoint) of interval (2.1) and K is the bound on f over C.

Note that the mapping

$$\hat{M}_n(\cdot) \to \left(-\frac{1}{2\pi i} \oint f_1(z)\hat{M}_n(z)dz, \cdots, -\frac{1}{2\pi i} \oint f_s(z)\hat{M}_n(z)dz \right)$$

is continuous. Using Lemma 2.3, we complete the proof of Theorem 2.1 \qed
3. The Gaussian case

This section is to prove Lemma 2.3 under the Gaussian case, i.e., \(\{x_{jk}\}, j = 1, \cdots, N, k = 1, \cdots, n \) are standard normal random variables. Since \(T_{in} \) is symmetric there exists an orthogonal matrix \(U \) such that

\[
T_{in} = U \text{diag}(s_1, \cdots, s_n) U'.
\]

Note that \(X_n \) has the same distribution as \(X_n U \). It then suffices to consider

\[
\tilde{B}_n = \frac{1}{N} \sum_{k=1}^n s_k T_{2n}^{1/2} x_k x_k' T_{2n}^{1/2} \triangleq \frac{1}{N} \sum_{k=1}^n s_k y_k y_k',
\]

where \(x_k \) is the \(k \)-th column of \(X_n \). In what follows, we omit the symbol \(\tilde{\cdot} \) from the notation of \(\tilde{B}_n \) in order to simplify notation. Rewrite for \(z \in \mathbb{C}^n \)

\[
M_n(z) = N[m_n(z) - E m_n(z)] + N[E m_n(z) - m_0(z)] \triangleq M_{n1}(z) + M_{n2}(z).
\]

We below consider the random part \(M_{n1}(z) \) and the nonrandom part \(M_{n2}(z) \) separately to complete the proof of Lemma 2.3.

In the sequel we assume \(x_{jk}, j = 1, \cdots, N, k = 1, \cdots, n \) are truncated at \(\delta_n \sqrt{n} \), centralized and re-normalized. The details are omitted which is similar to Bai and Silverstein (2004).

We start with two probability inequalities for extreme eigenvalues of \(B_n \). It is well known (see [22], [1]) that for any \(l, \eta_1 > (1 + \sqrt{c})^2 \) and \(\eta_2 < (1 - \sqrt{c})^2 \)

\[
P \left(\lambda_{\max} \left(\frac{1}{N} X_n' X_n \right) \geq \eta_1 \right) = o(n^{-l})
\]

and

\[
P \left(\lambda_{\min} \left(\frac{1}{N} X_n' X_n \right) \leq \eta_2 \right) = o(n^{-l}).
\]

Thus, letting

\[
\eta_r \in \begin{cases} (0, x_r), & c \geq 1, \\ (\limsup_{n \to \infty} s_j T_{2n} \lambda_{\max} \left(1 + \sqrt{c}^2 \right), x_r), & \text{otherwise}, \end{cases}
\]

we have for any \(l > 0 \)

\[
P \left(\lambda_{\max} (B_n) \geq \eta_r \right) = o(n^{-l}). \tag{3.1}
\]

Likewise, we have

\[
P \left(\lambda_{\min} (B_n) \leq \eta_r \right) = o(n^{-l}). \tag{3.2}
\]
where
\begin{align*}
\eta_i &\in \begin{cases} (x_i, 0), & c \geq 1, \\
(x_i, \liminf_n s_n T^n_{\min I(0,1)}(c) \left(1 - \sqrt{c}\right)^2), & \text{if } \liminf_n s_n T^n_{\min I(0,1)}(c) > 0, \\
(x_i, \liminf_n s_n T^n_{\max}(1 + \sqrt{c})^2), & \text{if } \liminf_n s_n T^n_{\min I(0,1)}(c) \leq 0.
\end{cases}
\end{align*}

Here \(\eta_i, \eta_r, x_i, x_r \) can be chosen such that
\begin{equation}
(3.3) \quad x_r - \eta_r > 2\tau^2 \quad \text{and} \quad \eta_i - x_i > 2\tau^2,
\end{equation}
where \(\tau \) are the upper bound of the spectral norms of \(T_{1n} \) and \(T_{2n} \) defined before.

3.1. **The limiting distribution of** \(M_{n1}(z) \). The aim of this part is to find the limiting distribution of \(M_{n1}(z) \). That is to say, we show for any positive integer \(r \), the sum
\begin{equation}
\sum_{j=1}^{r} \alpha_j M_{n1}(z_j) \quad \Im z_j \neq 0
\end{equation}
converges in distribution to a Gaussian random variable. We will use the central limit theorem for martingale difference sequences to accomplish the goal. Since
\begin{equation}
\lim_{v_0 \to 0} \limsup_{n \to \infty} \mathbb{E} \left| \int_{C\setminus C_r} f(z) M_{n1}(z) dz \right|^2 \to 0,
\end{equation}
it suffices to consider \(z = u + iv_0 \in C_u \). Introduce
\begin{align*}
D(z) &= B_n(z) - zI_N, \quad D_k(z) = D(z) - \frac{1}{N} s_k y_k y_k', \\
\beta_{nk} &= B_{nk} - \frac{1}{N} s_k y_k y_k', \quad g_{2n}(z) = \frac{1}{N} \text{tr}(D^{-1}(z) T_{2n}), \\
\varepsilon_k(z) &= y_k' D_k^{-1}(z) y_k - \text{tr}(D_k^{-1}(z) T_{2n}), \quad \gamma_k(z) = y_k' D_k^{-2}(z) y_k - \text{tr}(D_k^{-2}(z) T_{2n}).
\end{align*}
\begin{align}
(3.5) & \quad \beta_k(z) = \frac{1}{1 + N^{-1} s_k y_k' D_k^{-1}(z) y_k}, \quad \beta_k(z) = \frac{1}{1 + N^{-1} s_k \text{tr}(D_k^{-1}(z) T_{2n})}, \\
(3.6) & \quad b_k(z) = \frac{1}{1 + N^{-1} s_k \text{tr}(D_k^{-1}(z) T_{2n})}, \quad \psi_k(z) = \frac{1}{1 + s_k E g_{2n}(z)}.
\end{align}

Note that
\begin{equation}
m_n(z) = \frac{1}{N} \text{tr}(B_n(z) - zI_N)^{-1} \pm \frac{1}{N} \text{tr}D^{-1}(z).
\end{equation}
Let \(E_0(\cdot) \) denote mathematical expectation and \(E_k(\cdot) \) denote conditional expectation with respect to the \(\sigma \)-field given by \(x_1, \cdots, x_k \). By the formula
\begin{equation}
(3.7) \quad (\Sigma + qa \beta')^{-1} = \Sigma^{-1} - \frac{q \Sigma^{-1} a \beta' \Sigma^{-1}}{1 + q \beta' \Sigma^{-1} a},
\end{equation}

we have
\[M_{n1}(z) = \sum_{k=1}^{n} \text{tr} \left\{ E_k D^{-1}(z) - E_{k-1} D^{-1}(z) \right\} = \sum_{k=1}^{n} (E_k - E_{k-1}) \text{tr} \left[D(z)^{-1} - D_k^{-1}(z)\right]\]
\[= - \frac{1}{N} \sum_{k=1}^{n} (E_k - E_{k-1}) s_k \beta_k(z) y'_k D_k^{-2}(z) y_k\]
\[= - \frac{1}{N} \sum_{k=1}^{n} (E_k - E_{k-1}) s_k \beta_k(z) y_k(z) - \frac{1}{N} \sum_{k=1}^{n} (E_k - E_{k-1}) s_k \beta_k(z) \text{tr}(D_k^{-2}(z) \mathbf{T}_{2n})\]
(3.8) \[\triangleq I_1 + I_2.\]

From the identity
(3.9) \[\beta_k(z) - \bar{\beta}_k(z) = -\frac{1}{N} s_k \bar{\beta}_k(z) \beta_k(z) \epsilon_k(z),\]
we have
\[I_1 = -\frac{1}{N} \sum_{k=1}^{n} E_k s_k \bar{\beta}_k(z) y_k(z) + \frac{1}{N^2} \sum_{k=1}^{n} (E_k - E_{k-1}) s_k^2 \bar{\beta}_k(z) \beta_k(z) \epsilon_k(z) y_k(z).\]

By Lemma [A.1] and Lemma [B.1]
\[\frac{1}{N^4} \sum_{k=1}^{n} E[(E_k - E_{k-1}) s_k^2 \bar{\beta}_k(z) \beta_k(z) \epsilon_k(z) y_k(z)]^2\]
\[\leq C \frac{1}{N^4} \sum_{k=1}^{n} E^{1/2} |\bar{\beta}_k(z)| \beta_k(z)|^2 E^{1/2} |\epsilon_k(z)| y_k(z)|^4\]
\[\leq C \frac{1}{N^4} \sum_{k=1}^{n} E^{1/4} |\epsilon_k(z)|^8 E^{1/4} |y_k(z)|^8 \leq \frac{C}{N} \to 0.\]

This implies
(3.10) \[I_1 = -\frac{1}{N} \sum_{k=1}^{n} E_k s_k \bar{\beta}_k(z) y_k(z) + o_p(1).\]

Using the same argument and
(3.11) \[\beta_k(z) - \bar{\beta}_k(z) = -\frac{1}{N} s_k \bar{\beta}_k(z) \epsilon_k(z) + \frac{1}{N^2} s_k^2 \beta_k(z) \bar{\beta}_k(z) \epsilon_k^2(z),\]
one gets
(3.12) \[I_2 = \frac{1}{N^2} \sum_{k=1}^{n} E_k s_k^2 \bar{\beta}_k^2(z) \epsilon_k(z) \text{tr}(D_k^{-2}(z) \mathbf{T}_{2n}) + o_p(1).\]
From (3.8), (3.10), and (3.12), we conclude that
\[
M_{n1}(z) = -\frac{1}{N} \sum_{k=1}^{n} E_k s_k \bar{\beta}_{k}(z) \gamma_{k}(z) + \frac{1}{N^2} \sum_{k=1}^{n} E_k s_k^2 \bar{\beta}_{k}^2(z) \epsilon_k(z) \text{tr}(D_{k}^{-2}(z)T_{2n}) + o_p(1).
\]

Define
\[
h_k(z) = -\frac{1}{N} E_k s_k \bar{\beta}_{k}(z) \gamma_{k}(z) + \frac{1}{N^2} E_k s_k^2 \bar{\beta}_{k}^2(z) \epsilon_k(z) \text{tr}(D_{k}^{-2}(z)T_{2n}) = -N^{-1} \frac{d}{dz} E_k s_k \bar{\beta}_{k}(z) \epsilon_k(z).
\]

Thus we only need to prove that \(\sum_{j=1}^{r} \alpha_j \sum_{k=1}^{n} h_k(z_j) = \sum_{k=1}^{n} \sum_{j=1}^{r} \alpha_j h_k(z_j)\) converges in distribution to a Gaussian random variable. By Lemma [B.2], it suffices to verify condition (i) and (ii). It follows from Lemma [A.1] and Lemma [B.1] that
\[
\sum_{k=1}^{n} \left| \sum_{j=1}^{r} \alpha_j h_k(z_j) \right|^4 \leq C \frac{n^2}{N} \sum_{k=1}^{n} \sum_{j=1}^{r} \alpha_j^4 \left[E^{1/2} |\bar{\beta}_{k}|^8 E^{1/2} |\gamma_k(z_j)|^8 + E^{1/2} |\bar{\beta}_{k}|^6 E^{1/2} |\epsilon_k(z_j)|^8 \right] \leq \frac{C}{N} \to 0
\]
which implies that condition (ii) of Lemma [B.2] is satisfied.

The next aim is to find a limit in probability of
\[
\Phi(z_1, z_2) = \sum_{k=1}^{n} E_{k-1} \{ h_k(z_1) h_k(z_2) \}
\]
for \(z_1, z_2\) with nonzero fixed imaginary parts. It is obvious that
\[
\Phi(z_1, z_2) = N^{-2} \frac{\partial^2}{\partial z_2 \partial z_1} \sum_{k=1}^{n} E_{k-1} \left[E_k \left(s_k \bar{\beta}_{k}(z_1) \epsilon_k(z_1) \right) E_k \left(s_k \bar{\beta}_{k}(z_2) \epsilon_k(z_2) \right) \right].
\]
Due to the analysis on page 571 in [11], it is enough to prove that
\[
N^{-2} \sum_{k=1}^{n} s_k^2 E_{k-1} \left[E_k \left(\bar{\beta}_{k}(z_1) \epsilon_k(z_1) \right) E_k \left(\bar{\beta}_{k}(z_2) \epsilon_k(z_2) \right) \right]
\]
converges in probability to a constant. Similar to (A.3) in the appendix, it can be verified that \(|\bar{\beta}_{k}(z)|\) and \(|b_k(z)|\) has the same bound as \(\beta_k(z)\). Combining (3.1), (3.2), with (3.7), we have for \(l = 1, 2\) and suitably large \(t\)
\[
E(\bar{\beta}_{k}(z_l) - b_k(z_l))^2
\leq E(\bar{\beta}_{k}(z_l) - b_k(z_l))^2 I(\eta_l \leq \lambda_{\min} \leq \lambda_{\max} \leq \eta_r) + E(\bar{\beta}_{k}(z_l) - b_k(z_l))^2
\times I(\lambda_{\min} < \eta_l \text{ or } \lambda_{\max} > \eta_r)
\]
(3.13)
\[\frac{C}{N^2} \mathbb{E}[\text{tr}(D_k^{-1}(z_i)T_{2n}) - \text{tr}(D_k^{-1}(z_i)T_{2n})]^2 \\
+ C N \mathbb{E}[\text{tr}(D_k^{-1}(z_i)T_{2n}) - \text{tr}(D_k^{-1}(z_i)T_{2n})]^2 I(\lambda_{\min} < \eta_l \text{ or } \lambda_{\max} > \eta_r) \\
\leq \frac{C}{N^2} \mathbb{E} \left[\sum_{j=1, j \neq k}^n (E_j - E_{j-1}) \left| \text{tr}(D_k^{-1}(z_i)) - \text{tr}(D_k^{-1}(z_i)) \right|^2 \right] \\
+ C N \mathbb{E} \left[\sum_{j=1, j \neq k}^n (E_j - E_{j-1}) \left| \text{tr}(D_k^{-1}(z_i)) - \text{tr}(D_k^{-1}(z_i)) \right|^2 I(\lambda_{\min} < \eta_l \text{ or } \lambda_{\max} > \eta_r) \right] \\
\leq \frac{C}{N^2} \sum_{j=1, j \neq k}^n \mathbb{E}[\text{tr}(D_k^{-1}(z_i)) - \text{tr}(D_k^{-1}(z_i))]^2 \\
+ C N^2 \sum_{j=1, j \neq k}^n \mathbb{E}[\text{tr}(D_k^{-1}(z_i)) - \text{tr}(D_k^{-1}(z_i))]^2 I(\lambda_{\min} < \eta_l \text{ or } \lambda_{\max} > \eta_r) \\
= \frac{C}{N^2} \sum_{j=1, j \neq k}^n \mathbb{E}\left[\frac{s_j y'_j D_k^{-2}(z_i) y_j}{N(1 + N^{-1} s_j y'_j D_k^{-1}(z_i) y_j)} \right]^2 \\
+ C N^2 \sum_{j=1, j \neq k}^n \mathbb{E}\left[\frac{s_j y'_j D_k^{-2}(z_i) y_j}{N(1 + N^{-1} s_j y'_j D_k^{-1}(z_i) y_j)} \right]^2 I(\lambda_{\min} < \eta_l \text{ or } \lambda_{\max} > \eta_r) \\
\leq \frac{C}{N^2} + C N^3 P(\lambda_{\min} < \eta_l \text{ or } \lambda_{\max} > \eta_r) \leq \frac{C}{N} + C N^3 n^{-t} \to 0 \\
\] where \(D_{kj}(z) = D_j(z) - \frac{1}{N} s_j y'_j y_j \). From the above inequality, we get

\[
\mathbb{E}\left[N^{-2} \sum_{k=1}^n s_k^2 E_{k-1} \left[E_k \left(\beta_k(z_1) \epsilon_k(z_1) \right) E_k \left(\beta_k(z_2) \epsilon_k(z_2) \right) \right] - E_k \left(b_k(z_1) \epsilon_k(z_1) \right) E_k \left(b_k(z_2) \epsilon_k(z_2) \right) \right] \\
\leq C N^{-2} \sum_{k=1}^n \left[\mathbb{E}[E_k \left(\beta_k(z_1) - b_k(z_1) \right) \epsilon_k(z_1) E_k \left(\beta_k(z_2) \epsilon_k(z_2) \right)] + \mathbb{E}[E_k \left(b_k(z_1) \epsilon_k(z_1) \right) E_k \left(\beta_k(z_2) - b_k(z_2) \right) \epsilon_k(z_2)] \right] \\
\leq C N^{-2} \sum_{k=1}^n \left[\mathbb{E}[E_k \left(\beta_k(z_1) - b_k(z_1) \right) \epsilon_k(z_1)]^2 + \mathbb{E}[E_k \left(\beta_k(z_2) \epsilon_k(z_2) \right)]^2 \right] \\
\leq C N^{-1} \sum_{k=1}^n \left[\mathbb{E}[E_k \left(\beta_k(z_1) - b_k(z_1) \right)]^2 + \mathbb{E}[E_k \left(\beta_k(z_2) - b_k(z_2) \right)]^2 \right] \to 0,
\]
which yields
\[
N^{-2} \sum_{k=1}^{n} s_k^2 E_k \left[\varepsilon_k(z_1) \left(\beta_k(z_1) \varepsilon_k(z_1) \right) \right] \to_{i.p.} 0.
\]
Therefore, our goal is to find the limit in probability of
\[
N^{-2} \sum_{k=1}^{n} s_k^2 E_k \left[E_k \left(\varepsilon_k(z_1) \right) \right] E_k \left(\varepsilon_k(z_2) \right) \varepsilon_k(z_2)
\]
Using the moments of normal random variables, we have
\[
E_k \left(\varepsilon_k(z_1) \right) E_k \left(\varepsilon_k(z_2) \right) = 2 \text{tr}(T_{2n} E_k D_k^{-1}(z_1) T_{2n} E_k D_k^{-1}(z_2)).
\]
Consequently, it suffices to study
\[
(3.14) \quad N^{-2} \sum_{k=1}^{n} s_k^2 b_k(z_1) b_k(z_2) \text{tr}(T_{2n} E_k D_k^{-1}(z_1) T_{2n} E_k D_k^{-1}(z_2)).
\]
Let
\[
\beta_{jk}(z) = \frac{1}{1 + N^{-1} s_j y_j' D_{jk}^{-1}(z) y_j}
\]
and
\[
b_{jk}(z) = \frac{1}{1 + N^{-1} s_j \text{tr}(D_{jk}^{-1}(z) T_{2n})}.
\]
Write
\[
D_k(z_1) + R_k(z_1) = \frac{1}{N} \sum_{j \neq k} s_j y_j' y_j - \frac{1}{N} \sum_{j \neq k} s_j \psi_j(z_1) T_{2n}
\]
which implies that
\[
R_k^{-1}(z_1) + D_k^{-1}(z_1) = \frac{1}{N} \sum_{j \neq k} s_j R_k^{-1}(z_1) y_j y_j' D_k^{-1}(z_1) - \frac{1}{N} \sum_{j \neq k} s_j \psi_j(z_1) R_k^{-1}(z_1) T_{2n} D_k^{-1}(z_1).
\]
Using the formula
\[
(\Sigma + q \alpha' \Sigma)^{-1} = \frac{\Sigma^{-1} \alpha}{1 + q \beta' \Sigma^{-1} \alpha},
\]
we have
\[
(3.16) \quad R_k^{-1}(z_1) + D_k^{-1}(z_1) = \frac{1}{N} \sum_{j \neq k} s_j \psi_j(z_1) R_k^{-1}(z_1) \left(y_j y_j' - T_{2n} \right) D_k^{-1}(z_1)
\]
\[
+ \frac{1}{N} \sum_{j \neq k} s_j \left(\beta_{jk}(z_1) - \psi_j(z_1) \right) R_k^{-1}(z_1) \left(y_j y_j' - D_k^{-1}(z_1) \right)
\]
\[
+ \frac{1}{N} \sum_{j \neq k} s_j \psi_j(z_1) \left(D_k^{-1}(z_1) - D_k^{-1}(z_1) \right) T_{2n} \left(D_k^{-1}(z_1) - D_k^{-1}(z_1) \right).
where
\[A_1(z_1) + A_2(z_1) + A_3(z_1). \]

By a direct calculation, we have for any positive number \(t \geq 0 \)
\[
\sum \left(z - \frac{1}{N} \sum_{j \neq k} s_j \psi_j(z) t \right) = v_0 - \frac{1}{N} \sum_{j \neq k} \frac{s_j^2 t}{|1 + s_j E_{g2n}(z)|^2} \sum_{j \neq k} \E_{g2n}(\tilde{z})
\]
\[
= v_0 \left(1 + \frac{1}{N} \sum_{j \neq k} \frac{s_j^2 t}{|1 + s_j E_{g2n}(z)|^2} \text{Etr} \left(D^{-1}(z) D^{-1}(\tilde{z}) T_{2n} \right) \right) \geq v_0
\]
which yields
\[
\left\| R_k^{-1}(z) \right\| \leq \frac{1}{v_0}.
\]

Let \(M \) be a \(N \times N \) matrix with a nonrandom bound on the spectral norm of \(M \) for all parameters governing \(M \) and under all realizations of \(M \). By the Cauchy-Schwarz inequality, one gets
\[
E \left| \text{tr}(A_1(z_1)M) \right| \leq C E^{1/2} \left| y_j D_{jk}^{-1}(z_1) R_k^{-1}(z_1) y_j \right|
\]
\[
- \text{tr} \left(R_k^{-1}(z_1) T_{2n} D_{jk}^{-1}(z_1) \right) \right|^2 = O(N^{1/2}).
\]

Let \(\bar{\beta}_{jk}(z) = \frac{1}{1 + N^{-1} s_j \text{tr}(D_{jk}^{-1}(z) T_{2n})} \). From (3.13)
\[
E \left| \bar{\beta}_{jk}(z) - b_{jk}(z) \right| = O(N^{-1}).
\]

Applying the above inequality, Lemma [B.1] and Lemma [B.3] we obtain
\[
E \left| \beta_{jk}(z) - \psi_j(z) \right|^2 \leq C \left[E \left| \bar{\beta}_{jk}(z) - \bar{\beta}_{jk}(z) \right|^2 + |b_{jk}(z) - \psi_j(z)|^2 \right] + O(N^{-1})
\]
\[
\leq \frac{C}{N^2} E^{1/2} |y_j D_{jk}^{-1}(z) y_j - \text{tr}(D_{jk}^{-1}(z) T_{2n})|^2
\]
\[
+ \frac{C}{N^2} E \left| \text{tr}(D_{jk}^{-1}(z) T_{2n}) - \text{tr}(D^{-1}(z) T_{2n}) \right|^2 + O(N^{-1})
\]
\[
\leq \frac{C}{N} + \frac{C}{N^2} + O(N^{-1}) = O(N^{-1})
\]
which implies that
\[
E \left| \text{tr}(A_2(z_1)M) \right| \leq \frac{C}{N} \sum_{j \neq k} E^{1/2} \left| \beta_{jk}(z_1) - \psi_j(z_1) \right|^2
\]
\[
\times E^{1/2} \left| y_j D_{jk}^{-1}(z_1) M R_k^{-1}(z_1) y_j \right|^2 = O(N^{1/2}).
\]
Lemma B.3 implies that

$$E|\text{tr}(A_3(z_1)M)| \leq C \sum \frac{1}{N} \text{tr}\left[\left(D_{jk}^{-1}(z_1) - D_k^{-1}(z_1)\right) \times \mathbf{R}_k^{-1}(z_1)T_{2n}\right] \leq C.$$

Using (3.16), (3.19), and (3.20), one gets

$$\text{tr}(E_k(D_k(z_1)) T_{2n}D_k^{-1}(z_2)T_{2n}) = -\text{tr}(E_k(R_k^{-1}(z_1)) T_{2n}D_k^{-1}(z_2)T_{2n})$$

$$+ \text{tr}(E_k(A_1(z_1)) T_{2n}D_k^{-1}(z_2)T_{2n}) + a(z_1, z_2)$$

where $E|a(z_1, z_2)| \leq O(N^{1/2})$. Furthermore, write

$$\text{tr}(E_k(A_1(z_1)) T_{2n}D_k^{-1}(z_2)T_{2n})$$

$$= -\frac{1}{N^2} \sum_{j<k} s_j^2 \psi_j(z_1) \beta_{jk}(z_2) \left[\text{tr}(E_kD_{jk}^{-1}(z_1)T_{2n}D_{jk}^{-1}(z_2)y_j - \text{tr}(E_kD_{jk}^{-1}(z_1)T_{2n}D_{jk}^{-1}(z_2)T_{2n}))\right]$$

$$\times \left[\text{tr}(D_{jk}^{-1}(z_2)T_{2n}R_k^{-1}(z_1)T_{2n})\right]$$

$$- \frac{1}{N^2} \sum_{j<k} s_j^2 \psi_j(z_1) \beta_{jk}(z_2) \left[\text{tr}(E_kD_{jk}^{-1}(z_1)T_{2n}D_{jk}^{-1}(z_2)y_j - \text{tr}(E_kD_{jk}^{-1}(z_1)T_{2n}D_{jk}^{-1}(z_2)T_{2n}))\right]$$

$$\times \text{tr}(D_{jk}^{-1}(z_2)T_{2n}R_k^{-1}(z_1)T_{2n})$$

$$+ \frac{1}{N} \sum_{j<k} s_j \psi_j(z_1) \left[\text{tr}(R_k^{-1}(z_1)y_j - T_{2n}) E_kD_{jk}^{-1}(z_1)T_{2n}D_{jk}^{-1}(z_2)T_{2n}\right]$$

$$- \frac{1}{N} \sum_{j<k} s_j \psi_j(z_1) \left[\text{tr}(R_k^{-1}(z_1)T_{2n}E_kD_{jk}^{-1}(z_1)T_{2n}(D_k^{-1}(z_2) - D_{jk}^{-1}(z_2))T_{2n}\right]$$

$$\pm a_1(z_1, z_2) + a_2(z_1, z_2) + a_3(z_1, z_2) + a_4(z_1, z_2) + a_5(z_1, z_2) + a_6(z_1, z_2).$$

It follows from Lemma A.1 and Lemma B.1 that

$$E|a_1(z_1, z_2) + a_2(z_1, z_2) + a_3(z_1, z_2) + a_5(z_1, z_2)| \leq CN^{1/2}.$$

In addition, Lemma B.3 yields that

$$E|a_6(z_1, z_2)| \leq C$$

and that

$$E|a_4(z_1, z_2)| + \frac{1}{N^2} \sum_{j<k} s_j^2 \psi_j(z_1) \psi_j(z_2)$$
\[
\text{tr} \left(E_k D_k^{-1}(z_1) T_{2n} D_k^{-1}(z_2) T_{2n} \right) \leq CN^{-1}
\]
where the last inequality uses (3.18), (3.21), together with the above three inequalities, ensures that
\[
\text{tr}(E_k D_k^{-1}(z_1) T_{2n} D_k^{-1}(z_2) T_{2n}) \left[1 + \frac{1}{N^2} \sum_{j \neq k} s_j^2 \psi_j(z_1) \psi_j(z_2) \text{tr} \left(D_k^{-1}(z_2) T_{2n} R_k^{-1}(z_1) T_{2n} \right) \right]
\]
\[
= - \text{tr} \left(R_k^{-1}(z_1) T_{2n} D_k^{-1}(z_2) T_{2n} \right) + a_7(z_1, z_2)
\]
where \(E|a_7(z_1, z_2)| \leq CN^{1/2} \). Combining (3.17), (3.19) with (3.20), one has
\[
(3.22) \quad \text{tr}(E_k D_k^{-1}(z_1) T_{2n} D_k^{-1}(z_2) T_{2n})
\times \left[1 - \frac{1}{N^2} \sum_{j \neq k} s_j^2 \psi_j(z_1) \psi_j(z_2) \text{tr} \left(R_k^{-1}(z_1) T_{2n} R_k^{-1}(z_2) T_{2n} \right) \right]
\]
\[
= \text{tr} \left(R_k^{-1}(z_1) T_{2n} R_k^{-1}(z_2) T_{2n} \right) + a_8(z_1, z_2)
\]
where \(E|a_8(z_1, z_2)| \leq CN^{1/2} \). From [23]
\[
g_{2n}(z) \rightarrow g_2(z) \quad \text{a.s. as } n \rightarrow \infty.
\]
It follows that
\[
(3.23) \quad \left| \psi_j(z) - \frac{1}{1 + s_j g_{2n}^0(z)} \right| \leq C \left(|Eg_{2n}(z) - g_2(z)| + |g_{2n}^0(z) - g_2(z)| \right) = o(1),
\]
where \(g_{2n}(z) \) is defined at (3.4). Note that by (1.9)
\[
\frac{1}{N} \sum_{j=1}^n s_j^2 \left(1 + s_j g_{2n}^0(z_1) \right) \left(1 + s_j g_{2n}^0(z_2) \right)
\]
\[
= \frac{1}{g_{2n}^0(z_1) - g_{2n}^0(z_2)} \left[\frac{1}{N} \sum_{j=1}^n s_j \left(1 + s_j g_{2n}^0(z_2) \right) - \frac{1}{N} \sum_{j=1}^n s_j \left(1 + s_j g_{2n}^0(z_1) \right) \right]
\]
\[
(3.24) \quad = \frac{z_1 g_{2n}^0(z_1) - z_2 g_{2n}^0(z_2)}{g_{2n}^0(z_1) - g_{2n}^0(z_2)}
\]
and by (1.10)
\[
(3.25) \quad \int \frac{t^2}{(1 + g_{1n}^0(z_1) t)(1 + g_{1n}^0(z_2) t)} dH_{2n}(t) = \frac{z_1 g_{2n}^0(z_1) - z_2 g_{2n}^0(z_2)}{g_{1n}^0(z_1) - g_{1n}^0(z_2)}.
\]
Using the fact from (1.9) and (3.23) that
\[
\frac{1}{N} \sum_{j \neq k} s_j \psi_j(z) + zg_{1n}^0(z) = o(1),
\]
we deduce that
\[
\text{tr}\left(R_k^{-1}(z_1) T_{2n} R_k^{-1}(z_2) T_{2n} \right) = \frac{N}{z_1 z_2} \int \frac{t^2}{(1 + g_{1n}^0(z_1)t)(1 + g_{1n}^0(z_2)t)} dH_{2n}(t) \\
= \frac{N}{z_1 z_2} \left(z_1 g_{2n}^0(z_1) - z_2 g_{2n}^0(z_2) \right).
\]

We now deal with \(\frac{1}{N} \sum_{j<k} s_j^2 \psi_j(z_1) \psi_j(z_2) \) in (3.22). For any \(\varepsilon \in (0, 1/100) \), we now distinguish the following two cases.

Case 1: When \(k \leq n^{1-\varepsilon} \), one gets
\[
\frac{1}{N^2} \sum_{j<k} \left| \frac{s_j^2}{(1 + s_j g_{2n}^0(z_1))(1 + s_j g_{2n}^0(z_2))} - c_n^{-1} \frac{z_1 g_{1n}^0(z_1) - z_2 g_{1n}^0(z_2)}{g_{2n}^0(z_1) - g_{2n}^0(z_2)} \right| \leq CN^{-\varepsilon} = o(1),
\]

Case 2: When \(k > n^{1-\varepsilon} \), one gets by (3.24)
\[
\frac{1}{N^2} \sum_{j<k} \left| \frac{s_j^2}{(1 + s_j g_{2n}^0(z_1))(1 + s_j g_{2n}^0(z_2))} - c_n^{-1} \frac{z_1 g_{1n}^0(z_1) - z_2 g_{1n}^0(z_2)}{g_{2n}^0(z_1) - g_{2n}^0(z_2)} \right| \leq \frac{1}{N^2} \sum_{j<k} \left| \frac{s_j^2}{(1 + s_j g_{2n}^0(z_1))(1 + s_j g_{2n}^0(z_2))} - c_n^{-1} \frac{z_1 g_{1n}^0(z_1) - z_2 g_{1n}^0(z_2)}{g_{2n}^0(z_1) - g_{2n}^0(z_2)} \right| \\
= o(1).
\]

It follows that
\[
\text{tr}(E_k D_k^{-1}(z_1) T_{2n} D_k^{-1}(z_2) T_{2n}) \\
\times \left[1 - \frac{k - 1}{nz_1 z_2} \frac{z_1 g_{1n}^0(z_1) - z_2 g_{1n}^0(z_2)}{g_{2n}^0(z_1) - g_{2n}^0(z_2)} \right] \\
= \frac{N}{z_1 z_2} \left(z_1 g_{2n}^0(z_1) - z_2 g_{2n}^0(z_2) \right) + o(1)
\]

where \(E|a_0(z_1, z_2)| = o(N) \). Applying Lemma B.3 and (3.23), one gets
\[
|b_k(z) - \frac{1}{1 + s_k g_{2n}^0(z)}| \leq \frac{C}{N} E \left| \text{tr} \left(D_k^{-1}(z) - D^{-1}(z) \right) T_{2n} \right| + o(1) = o(1).
\]

Set
\[
f_k(z_1, z_2) = \frac{1}{z_1 z_2} \frac{z_1 g_{1n}^0(z_1) - z_2 g_{1n}^0(z_2)}{g_{2n}^0(z_1) - g_{2n}^0(z_2)} + \frac{z_1 g_{2n}^0(z_1) - z_2 g_{2n}^0(z_2)}{g_{1n}^0(z_1) - g_{1n}^0(z_2)}
\]
and

\[r_{nk}(z_1, z_2) = \frac{s_k^2}{(1 + s_k g^0_{2n}(z_1))(1 + s_k g^0_{2n}(z_2))}. \]

By (3.24) and (3.25), we obtain

(3.26)

\[
|f_n(z_1, z_2)| \leq \left[c_n \int \frac{x^2}{|1 + g_{2n}^0(z_1)x|^2} dH_{1n}(x) \int \frac{t^2}{|z_1 \left(1 + g_{1n}^0(z_1)t\right)|^2} dH_{2n}(t) \right]^{1/2}
\times \left[c_n \int \frac{x^2}{|1 + g_{2n}^0(z_2)x|^2} dH_{1n}(x) \int \frac{t^2}{|z_2 \left(1 + g_{1n}^0(z_2)t\right)|^2} dH_{2n}(t) \right]^{1/2}
\times \left[\mathcal{I} \left(z_1 g_{1n}^0(z_1) \right) \mathcal{I} g_{2n}^0(z_1) - \nu \int \frac{t}{\mathcal{I} \left(1 + g_{1n}^0(z_1)t\right)} dH_{2n}(t) \right]^{1/2}
\times \left[\mathcal{I} \left(z_2 g_{1n}^0(z_2) \right) \mathcal{I} g_{2n}^0(z_2) - \nu \int \frac{t}{\mathcal{I} \left(1 + g_{1n}^0(z_2)t\right)} dH_{2n}(t) \right]^{1/2} < 1.
\]

Using (3.26), (3.14) can be rewritten as for large \(n \)

\[
\frac{1}{Nz_1 z_2} \frac{z_1 g_{1n}^0(z_1) - z_2 g_{2n}^0(z_2)}{g_{1n}^0(z_1) - g_{1n}^0(z_2)} \sum_{k=1}^{n} r_{nk}(z_1, z_2) \left(1 - k - \frac{1}{n} f_n(z_1, z_2)\right)^{-1} + o_p(1).
\]

Applying Lemma [B.4] and (3.24), we have

\[
\frac{1}{N} \sum_{k=1}^{n} r_{nk}(z_1, z_2) \left(1 - k - \frac{1}{n} f_n(z_1, z_2)\right)^{-1}
= (1 - f_n(z_1, z_2))^{-1} \frac{1}{N} \sum_{k=1}^{n} r_{nk}(z_1, z_2) - \frac{1}{N} \sum_{k=1}^{n} \sum_{j=1}^{k} r_{nj}(z_1, z_2)
\times \left[\frac{1}{1 - n^{-1} k f_n(z_1, z_2)} - \frac{1}{1 - n^{-1}(k - 1)f_n(z_1, z_2)} \right]
= (1 - f_n(z_1, z_2))^{-1} \left(\frac{\frac{z_1 g_{1n}^0(z_1) - z_2 g_{1n}^0(z_2)}{g_{2n}^0(z_1) - g_{1n}^0(z_2)} - f_n(z_1, z_2)}{N} \sum_{k=1}^{n} \frac{\sum_{j=1}^{k} r_{nj}(z_1, z_2)}{k} \right)
\times \left(\frac{n^{-1} k}{(1 - n^{-1} k f_n(z_1, z_2))(1 - n^{-1}(k - 1)f_n(z_1, z_2))} \right).
\]

We next develop the above limit by Abel’s lemma. To this end, consider the following two cases, for any \(\varepsilon \in (0, 1/100) \) and large \(n \).
Case 1: When $k \leq n^{-1 - \epsilon}$, one gets
\[
\frac{1}{N} \sum_{k \geq n^{1 - \epsilon}} \left| \frac{\sum_{j=1}^{k} r_{nj}(z_1, z_2)}{k} - c_n^{-1} z_1 g_{1n}^0(z_1) - z_2 g_{1n}^0(z_2) \right| \frac{n^{-1} k f_n(z_1, z_2)}{(1 - n^{-1} k f_n(z_1, z_2))(1 - n^{-1}(k - 1)f_n(z_1, z_2))} \leq CN^{-\epsilon} = o(1).
\]

Case 2: When $k > n^{-1 - \epsilon}$, one gets by (3.24)
\[
\frac{1}{N} \sum_{k \geq n^{1 - \epsilon}} \left| \frac{\sum_{j=1}^{k} r_{nj}(z_1, z_2)}{k} - c_n^{-1} z_1 g_{1n}^0(z_1) - z_2 g_{1n}^0(z_2) \right| \frac{n^{-1} k f_n(z_1, z_2)}{(1 - n^{-1} k f_n(z_1, z_2))(1 - n^{-1}(k - 1)f_n(z_1, z_2))} \leq \frac{C}{N} \sum_{k \geq n^{1 - \epsilon}} \left| \frac{\sum_{j=1}^{k} r_{nj}(z_1, z_2)}{k} - c_n^{-1} z_1 g_{1n}^0(z_1) - z_2 g_{1n}^0(z_2) \right| = o(1).
\]

Hence, (3.14) can be transformed into
\[
f_n(z_1, z_2) (1 - f_n(z_1, z_2))^{-1} - f_n^2(z_1, z_2) \times \frac{1}{n} \sum_{k=1}^{n} \frac{n^{-1} k}{(1 - n^{-1} k f_n(z_1, z_2))(1 - n^{-1}(k - 1)f_n(z_1, z_2))} + o_p(1).
\]

Thus,
\[
(3.14) \implies \frac{f(z_1, z_2)}{1 - f(z_1, z_2)} - f^2(z_1, z_2) \int_0^1 \frac{t}{(1 - tf(z_1, z_2))^2} dt = \int_0^{f(z_1, z_2)} \frac{1}{1 - z} \, dz.
\]

We conclude that
\[
\Phi(z_1, z_2) \implies \frac{\partial^2}{\partial z_2 \partial z_1} \int_0^{f(z_1, z_2)} \frac{1}{1 - z} \, dz.
\]

3.2. Tightness of $M_n(z)$. This section is to prove tightness of the sequence of random functions $\tilde{M}_{n1}(z)$ for $z \in C$ defined in (2.8). Similar to Section 3 of Bai and Silverstein (2004) (see [11]), it suffices to show that
\[
\sup_{m_{z_1, z_2} \in C_n} \frac{E \left| M_{n1}(z_1) - M_{n1}(z_2) \right|^2}{|z_1 - z_2|^2}
\]
is finite.

We claim that the moments of $||D^{-1}(z)||$, $||D^{-1}_j(z)||$, and $||D^{-1}_{jk}(z)||$ are bounded in n and $z \in C_n$. Without loss of generality, we only give the proof for $E||D^{-1}_l(z)||^p$ and the others are similar. In fact, it is obvious for $z = u + iv \in C_u$. For $z \in C_l$ or $z \in C_r$, using (3.1) and (3.2), we have for any positive p and suitably large l
\[
E||D^{-1}_l(z)||^p = E||D^{-1}_l(z)||^p I(\eta_l \leq A^{\eta_l} \leq \eta_r)
\]
Thus, it suffices to show that $E[\mathcal{P}_1 + \mathcal{P}_2 + \mathcal{P}_3]^2$ is bounded. Denote $
ho_j(z) = y_j' D_j^{-1}(z) y_j - \text{Etr} \left(T_{2n} D_j^{-1}(z) \right)$. Note that

\begin{align}
\rho_j(z) &= b_j(z) - \frac{1}{N} s_j \beta_j(z) b_j(z) \rho_j(z) \\
\beta_j(z) &= b_j(z) - \frac{1}{N} s_j b_j^2(z) \rho_j(z) + \frac{1}{N^2} s_j^2 \beta_j(z) b_j^2(z) \rho_j^2(z).
\end{align}
Applying (3.27), Lemma [B.1] and Lemma [A.3] we deduce for all large n

\[
|b_j(z)| \leq |E \beta_j(z)| + \frac{1}{N} |s_j b_j(z) E(\beta_j(z) \rho_j(z))| \\
\leq C_1 + C_2 |b_j(z)| N^{-1/2} \leq \frac{C_1}{1 - C_2 N^{-1/2}}.
\]

Hence $|b_j(z)|$ is bounded for all n. Using (3.27), write

\[
P_1 = \frac{1}{N^2} \sum_{j=1}^{N} s_j^2 b_j(z_1) b_j(z_2) \left(E_j - E_{j-1} \right) \left(y_j^* D_j^{-1}(z_1) D_j^{-1}(z_2) y_j \right)^2 \\
- \frac{1}{N^3} \sum_{j=1}^{N} s_j^3 b_j(z_1) b_j(z_2) \left(E_j - E_{j-1} \right) \beta_j(z_2) \rho_j(z_2) \left(y_j^* D_j^{-1}(z_1) D_j^{-1}(z_2) y_j \right)^2 \\
- \frac{1}{N^3} \sum_{j=1}^{N} s_j^3 b_j(z_1) \left(E_j - E_{j-1} \right) \beta_j(z_1) \beta_j(z_2) \rho_j(z_1) \left(y_j^* D_j^{-1}(z_1) D_j^{-1}(z_2) y_j \right)^2 \\
\approx P_{11} + P_{12} + P_{13}.
\]

By Lemma [B.1] we deduce that

\[
E|P_{11}|^2 = \frac{1}{N^4} E \left| \sum_{j=1}^{N} s_j^2 b_j(z_1) b_j(z_2) \left(E_j - E_{j-1} \right) \left(y_j^* D_j^{-1}(z_1) D_j^{-1}(z_2) y_j \right)^2 \\
- \left(\text{tr} D_j^{-1}(z_1) D_j^{-1}(z_2) T_{2n} \right)^2 \right|^2 \\
\leq \frac{C}{N^4} \sum_{j=1}^{N} E \left| y_j^* D_j^{-1}(z_1) D_j^{-1}(z_2) y_j - \text{tr} D_j^{-1}(z_1) D_j^{-1}(z_2) T_{2n} \right|^4 \\
+ \frac{C}{N^2} \sum_{j=1}^{N} E \left| y_j^* D_j^{-1}(z_1) D_j^{-1}(z_2) y_j - \text{tr} D_j^{-1}(z_1) D_j^{-1}(z_2) T_{2n} \right|^2 \\
\leq \frac{C}{N} + C \leq C.
\]

Using Lemma [A.3] and Lemma [B.1] one finds

\[
E|P_{12}|^2 = \frac{1}{N^6} E \left| \sum_{j=1}^{N} s_j^3 b_j(z_1) b_j(z_2) \left(E_j - E_{j-1} \right) \beta_j(z_2) \rho_j(z_2) \left(y_j^* D_j^{-1}(z_1) D_j^{-1}(z_2) y_j \right)^2 \\
- \left(\text{tr} D_j^{-1}(z_1) D_j^{-1}(z_2) T_{2n} \right)^2 \right|^2 \\
\leq \frac{C}{N^6} \sum_{j=1}^{N} E \left| \beta_j(z_2) \rho_j(z_2) \left(y_j^* D_j^{-1}(z_1) D_j^{-1}(z_2) y_j - \text{tr} D_j^{-1}(z_1) D_j^{-1}(z_2) T_{2n} \right)^2 \right|^2
\]

By Lemma [B.1]
\[+ \frac{C}{N^2} \sum_{j=1}^{N} E \left| \beta_j(z_2) \rho_j(z_2) \right|^2 \]

\[\leq \frac{C}{N^6} \sum_{j=1}^{N} E^{1/2} \left| \rho_j(z_2) \left(y_j^T D_j^{-1}(z_1) D_j^{-1}(z_2) y_j - \text{tr} D_j^{-1}(z_1) D_j^{-1}(z_2) T_{2n} \right) \right|^2 \]

\[\times E^{1/2} \left| \beta_j(z_2) \right|^4 + \frac{C}{N^2} \sum_{j=1}^{N} E \left| \beta_j(z_2) \right|^4 \]

\[\leq \frac{C}{N^2} + C \leq C. \]

By the same argument, we get \(E|\mathcal{P}_{13}|^2 \leq C. \) Hence, we obtain

\[E|\mathcal{P}_1|^2 \leq C. \]

For \(\mathcal{P}_2 \) and \(\mathcal{P}_3 \), we only need to analyze one of them due to their similarity. From (3.27), it is obvious that

\[\mathcal{P}_2 = -\frac{1}{N} \sum_{j=1}^{N} s_j b_j(z_1) \left(E_j - E_{j-1} \right) y_j^T D_j^{-2}(z_1) D_j^{-1}(z_2) y_j \]

\[+ \frac{1}{N^2} \sum_{j=1}^{N} s_j^2 b_j(z_1) \left(E_j - E_{j-1} \right) \beta_j(z_1) \rho_j(z_1) y_j^T D_j^{-2}(z_1) D_j^{-1}(z_2) y_j. \]

This yields that

\[E|\mathcal{P}_2|^2 = \frac{1}{N^2} E \left[\sum_{j=1}^{N} s_j b_j(z_1) \left(E_j - E_{j-1} \right) y_j^T D_j^{-2}(z_1) D_j^{-1}(z_2) y_j \right]^2 \]

\[+ \frac{1}{N^4} E \left[\sum_{j=1}^{N} s_j^2 b_j(z_1) \left(E_j - E_{j-1} \right) \beta_j(z_1) \rho_j(z_1) y_j^T D_j^{-2}(z_1) D_j^{-1}(z_2) y_j \right]^2 \]

\[\leq \frac{C}{N^2} \sum_{j=1}^{N} E \left| y_j^T D_j^{-2}(z_1) D_j^{-1}(z_2) y_j - \text{tr} D_j^{-2}(z_1) D_j^{-1}(z_2) T_{2n} \right|^2 \]

\[+ \frac{C}{N^4} \sum_{j=1}^{N} E \left| \beta_j(z_1) \rho_j(z_1) y_j^T D_j^{-2}(z_1) D_j^{-1}(z_2) y_j \right|^2 \]

\[\leq C + \frac{C}{N^4} \sum_{j=1}^{N} E \left| \beta_j(z_1) \rho_j(z_1) \left(y_j^T D_j^{-2}(z_1) D_j^{-1}(z_2) y_j - \text{tr} D_j^{-2}(z_1) D_j^{-1}(z_2) T_{2n} \right) \right|^2 \]

\[+ \frac{C}{N^2} \sum_{j=1}^{N} E \left| \beta_j(z_1) \rho_j(z_1) \right|^2 \leq C \]
where the first inequality is from Lemma B.1 and the last inequality is from Lemma A.3. Therefore, we conclude that

$$\sup_{n, z_1, z_2 \in C_n} E \left| M_{n1}(z_1) - M_{n1}(z_2) \right|^2 \leq \sup_{n, z_1, z_2 \in C_n} E \left| \mathcal{P}_1 + \mathcal{P}_2 + \mathcal{P}_3 \right|^2 \leq C.$$

This implies that \(\widetilde{M}_{n1}(z) \) is tight.

3.3. **Convergence of** \(M_{n2}(z) \). Let \(W(z) = \frac{1}{N} \sum_{j=1}^{n} s_j \psi_j(z) T_{2n} - z I \). Our fist aim is to prove that \(\| W^{-1}(z) \| \) is uniformly bounded on \(C_n \). Indeed we have for any positive number \(t \geq 0 \)

$$\Im \left(\frac{1}{N} \sum_{j=1}^{n} s_j \psi_j(z) t - z \right) = \frac{1}{N} \sum_{j=1}^{n} \frac{s_j^2 t}{1 + s_j \Im g_{2n}(z)} \Im g_{2n}(z) - v$$

$$= - v \left(1 + \frac{1}{N^2} \sum_{j \neq k} E \frac{s_j^2 t}{1 + s_j \Im g_{2n}(z)} \text{Etr} \left(D^{-1}(z) D^{-1}(\bar{z}) T_{2n} \right) \right) \leq - v$$

which yields \(\| W^{-1}(z) \| \) is bounded by \(v_0^{-1} \) on \(C_n \). Since \(\Im (\Im g_1(z)) > 0 \), there exists a positive constant \(\delta_1 \) such that for any \(t \) in the support of \(H_2 \)

$$\inf_{z \in C_t \cup C_r} |z g_1(z) t + z| \geq \delta_1.$$

Moreover, since \(z g_1(z) \) is continuous on \(C_t \cup C_r \), there exists \(C_0 > 0 \) such that

$$\sup_{z \in C_t \cup C_r} |z g_1(z)| < C_0.$$

Additionally, using \(H_{2n} \overset{d}{\to} H_2 \), for all large \(n \) and any \(t \) in the support of \(H_2 \), there exists an eigenvalue \(\lambda T_{2n} \) of \(T_{2n} \) such that

$$|\lambda T_{2n} - t| \leq \frac{\delta_1}{4 C_0}.$$

Assume for the moment that

$$\sup_{z \in C_t \cup C_r} \frac{1}{N} \sum_{j=1}^{n} s_j \psi_j(z) + z g_1(z) < \frac{\delta_1}{4 \tau}.$$

It follows that

$$\inf_{z \in C_t \cup C_r} \frac{1}{N} \sum_{j=1}^{n} s_j \psi_j(z) \lambda T_{2n} - z \geq \inf_{z \in C_t \cup C_r} |z g_1(z) t + z| - \sup_{z \in C_t \cup C_r} |z g_1(z)||\lambda T_{2n} - t| - \sup_{z \in C_t \cup C_r} |\lambda T_{2n}| \frac{1}{N} \sum_{j=1}^{n} s_j \psi_j(z) + z g_1(z) \geq \delta/2.$$

We conclude that

$$\sup_{n, C_n} \| W^{-1}(z) \| < \infty.$$
We are now in position to prove (3.29), i.e.,

\[
\sup_{z \in C_l \cup C_r} \left| \frac{1}{N} \sum_{j=1}^{n} s_j \psi_j(z) + zg_1(z) \right| \rightarrow 0 \quad \text{as } n \rightarrow \infty.
\]

By (3.1), (3.2) and (3.3), we find

\[
\begin{align*}
\sup_{z \in C_l \cup C_r} |Eg_{2n}(z)| &= \sup_{z \in C_l \cup C_r} \left| \frac{1}{N} E \left[\text{tr}(D^{-1}T_{2n})I(\eta_l \leq \lambda_{B_n}^l \leq \eta_r) \right] \right| \\
&+ \sup_{z \in C_l \cup C_r} \left| \frac{1}{N} E \left[\text{tr}(D^{-1}T_{2n})I(\lambda_{\min}^{B_n} < \eta_l \text{ or } \lambda_{\max}^{B_n} > \eta_r) \right] \right| \\
&\leq \tau \max \left\{ \frac{1}{x_l - \eta_l}, \frac{1}{\eta_r - x_r} \right\} + \tau n^{1+\alpha} P(\lambda_{\min}^{B_n} < \eta_l \text{ or } \lambda_{\max}^{B_n} > \eta_r) \\
&< 1/2\tau + 1/4\tau = 3/4\tau
\end{align*}
\]

which implies that \(\psi_j(z) \) is bounded on \(C_l \cup C_r \). For \(z \in C_l \cup C_r \), rewrite

\[
\frac{1}{N} \sum_{j=1}^{n} s_j \psi_j(z) + zg_1(z) = (c_n - c) \int \frac{x}{1 + x Eg_{2n}(z)} dH_{1n}(x)
\]

\[
- c(Eg_{2n}(z) - g_2(z)) \int \frac{x^2}{(1 + x Eg_{2n}(z))(1 + xg_2(z))} dH_{1n}(x)
\]

\[
+ c \int \frac{x}{1 + xg_2(z)} d(H_{1n}(x) - dH_1(x)).
\]

Using Lemma A.2 one gets

\[(3.31) \quad \sup_{z \in C_l \cup C_r} |Eg_{2n}(z) - g_2(z)| \rightarrow 0 \quad \text{as } n \rightarrow \infty.\]

Since the functions \(x/(1 + xg_2(z)) \) in \(x \in \{s_1, \cdots, s_n\} \) form a bounded, equicontinuous family \(z \) ranges in \(C_l \cup C_r \), by Problem 8, page 17 in [4] and the fact that \(H_{1n} \rightarrow H_1 \) we find that

\[(3.32) \quad \sup_{z \in C_l \cup C_r} \left| \int \frac{x}{1 + xg_2(z)} d(H_{1n}(x) - dH_1(x)) \right| \rightarrow 0\]

Combining (3.31) with (3.32) we obtain (3.29). Write \(D(z) - W(z) = \frac{1}{N} \sum_{j=1}^{n} s_j y_j y_j' - \frac{1}{N} \sum_{j=1}^{n} s_j \psi_j(z) T_{2n} \). Taking inverses and then expected value, we have

\[(3.33) \quad W^{-1}(z) - ED^{-1}(z) = W^{-1}(z) E \left[\frac{1}{N} \sum_{j=1}^{n} s_j y_j y_j' D^{-1}(z) - \frac{1}{N} \sum_{j=1}^{n} s_j \psi_j(z) T_{2n} D^{-1}(z) \right] = W^{-1}(z) E \left[\frac{1}{N} \sum_{j=1}^{n} s_j \beta_j(z) y_j y_j' D_j^{-1}(z) - \frac{1}{N} \sum_{j=1}^{n} s_j \psi_j(z) T_{2n} D^{-1}(z) \right].\]
Taking the trace on both sides and dividing by \(-1\), one obtains (3.34)

\[
d_{n1}(z) = -\frac{1}{N} \sum_{j=1}^{n} s_j E \beta_j(z) \left(y_j D_j^{-1}(z) W^{-1}(z) y_j - \text{Etr} \left(W^{-1}(z) T_{2n} D_j^{-1}(z) \right) \right)
\]

\[
- \frac{1}{N} \sum_{j=1}^{n} s_j E \beta_j(z) \left(\text{Etr} \left(W^{-1}(z) T_{2n} D_j^{-1}(z) \right) - \text{Etr} \left(W^{-1}(z) T_{2n} D^{-1}(z) \right) \right)
\]

\[
- \frac{1}{N} \sum_{j=1}^{n} s_j E \left(\beta_j(z) - \psi_j(z) \right) E \left(\text{tr} \left(W^{-1}(z) T_{2n} D^{-1}(z) \right) \right)
\]

\[
\equiv J_1 + J_2 + J_3,
\]

where \(d_{n1}(z) = N \left[E m_n(z) - \int_{x} \frac{1}{\Sigma_{j=1}^{n} s_j \psi_j(z) x_{-z}} dH_{2n}(x) \right] \). From (3.28), \(J_1 \) can be represented as

\[
J_1 = \frac{1}{N^2} \sum_{j=1}^{n} s_j^2 b_j^2(z) E \rho_j(z) y_j D_j^{-1}(z) W^{-1}(z) y_j
\]

\[
- \frac{1}{N^3} \sum_{j=1}^{n} s_j^3 b_j^2(z) \rho_j(z) y_j D_j^{-1}(z) W^{-1}(z) y_j - \text{tr} \left(W^{-1}(z) T_{2n} D_j^{-1}(z) \right)
\]

\[
- \frac{1}{N^3} \sum_{j=1}^{n} s_j^3 b_j^2(z) \rho_j(z) \left(\text{tr} \left(W^{-1}(z) T_{2n} D_j^{-1}(z) \right) - \text{Etr} \left(W^{-1}(z) T_{2n} D_j^{-1}(z) \right) \right)
\]

\[
\equiv J_{11} + J_{12} + J_{13}.
\]

Applying Lemma B.1, Lemma A.3, and (3.30), we get

\[
|J_{12}| \leq \frac{C}{N^3} \sum_{j=1}^{n} \left(E |\beta_j(z)|^4 \right)^{1/4} \left(E |\rho_j(z)|^6 \right)^{1/4}
\]

\[
\times \left(E \left| y_j D_j^{-1}(z) W^{-1}(z) y_j - \text{tr} \left(W^{-1}(z) T_{2n} D_j^{-1}(z) \right) \right|^2 \right)^{1/2}
\]

\[
\leq \frac{C}{\sqrt{N}} \to 0
\]

and

\[
|J_{13}| \leq \frac{C}{N^3} \sum_{j=1}^{n} \left(E |\beta_j(z)|^4 \right)^{1/4} \left(E |\rho_j(z)|^6 \right)^{1/4}
\]

\[
\times \left(E \left| \text{tr} \left(W^{-1}(z) T_{2n} D_j^{-1}(z) \right) - \text{Etr} \left(W^{-1}(z) T_{2n} D_j^{-1}(z) \right) \right|^2 \right)^{1/2}
\]

\[
\leq \frac{C}{N} \to 0
\]
where the last inequality is obtained from Lemma [B.5]. Moreover, we have

\[J_{11} = \frac{1}{N^2} \sum_{j=1}^{n} s_j^2 b_j^2(z)E \varepsilon_j(z) \left(y_j' D_j^{-1}(z) W^{-1}(z) y_j - \text{tr} \left(W^{-1}(z) T_{2n} D_j^{-1}(z) \right) \right) \]

\[+ \frac{1}{N^2} \sum_{j=1}^{n} s_j^2 b_j^2(z) \text{Cov} \left(\text{tr} \left(T_{2n} D_j^{-1}(z) \right), \text{tr} \left(W^{-1}(z) T_{2n} D_j^{-1}(z) \right) \right) \]

\[\approx J_{111} + J_{112}. \]

Using Lemma [B.5] and the Cauchy-Swcharz inequality, one finds \(|J_{112}| \leq CN^{-1}\). This yields

(3.35)

\[J_1 = \frac{1}{N^2} \sum_{j=1}^{n} s_j^2 b_j^2(z)E \varepsilon_j(z) \left(y_j' D_j^{-1}(z) W^{-1}(z) y_j - \text{tr} \left(W^{-1}(z) T_{2n} D_j^{-1}(z) \right) \right) + o(1). \]

Note that (3.27) and

\[\text{Etr} \left(W^{-1}(z) T_{2n} D_j^{-1}(z) \right) - \text{Etr} \left(W^{-1}(z) T_{2n} D^{-1}(z) \right) = \frac{1}{N} \sum_{j=1}^{n} s_j E \beta_j(z) y_j' D_j^{-1}(z) W^{-1}(z) T_{2n} D_j^{-1}(z) y_j. \]

It follows that

\[J_2 = - \frac{1}{N^2} \sum_{j=1}^{n} s_j^2 E \beta_j(z) E \beta_j(z) y_j' D_j^{-1}(z) W^{-1}(z) T_{2n} D_j^{-1}(z) y_j \]

\[= \frac{1}{N^2} \sum_{j=1}^{n} s_j^2 b_j^2(z) E y_j' D_j^{-1}(z) W^{-1}(z) T_{2n} D_j^{-1}(z) y_j \]

\[+ \frac{1}{N^3} \sum_{j=1}^{n} s_j^3 b_j^2(z) E \beta_j(z) \rho_j(z) y_j' D_j^{-1}(z) W^{-1}(z) T_{2n} D_j^{-1}(z) y_j \]

\[+ \frac{1}{N^3} \sum_{j=1}^{n} s_j^3 b_j^2(z) E \beta_j(z) \rho_j(z) E \beta_j(z) y_j' D_j^{-1}(z) W^{-1}(z) T_{2n} D_j^{-1}(z) y_j \]

\[\approx J_{21} + J_{22} + J_{23}. \]

From Lemma [B.1] and (3.30), we see \(|J_{22} + J_{23}| \leq \frac{c}{\sqrt{N}}\). Hence,

(3.36)

\[J_2 = - \frac{1}{N^2} \sum_{j=1}^{n} s_j^2 b_j^2(z) \text{Etr} \left(W^{-1}(z) T_{2n} D_j^{-1}(z) T_{2n} D_j^{-1}(z) \right) + o(1). \]

Note that from (3.28)

\[E \left(\beta_j(z) - b_j(z) \right) = \frac{1}{N^2} s_j^2 b_j^2(z) E \rho_j^2(z) - \frac{1}{N^3} s_j^3 b_j^2(z) E \beta_j(z) \rho_j^2(z) \]
By Lemma \[B.1\] we obtain
\[
|\mathcal{H}_2| \leq \frac{C}{N^3} E^{1/2} |\beta_j(z)| E^{1/2} |\rho_j(z)|^6 \leq CN^{-3/2} = o(N^{-1}).
\]
Using Lemma \[B.5\] we have
\[
|\mathcal{H}_3| \leq CN^{-2} = o(N^{-1}).
\]
These imply that
\[
E\left(\beta_j(z) - b_j(z)\right) = \frac{1}{N^2} s_j^2 b_j^3(z) E\varepsilon_j^2(z) + o(N^{-1}).
\]
Moreover,
\[
b_j(z) - \psi_j(z) = - \frac{1}{N} s_j b_j(z) \psi_j(z) E\left(\text{tr} \left(D_j^{-1} T_{2n} \right) - \text{tr} \left(D_j^{-1} T_{2n} \right)\right)
\]
\[
= - \frac{1}{N^2} s_j^2 b_j^2(z) \psi_j(z) E\beta_j(z) y_j' D_j^{-1} (z) T_{2n} D_j^{-1} y_j
\]
\[
= - \frac{1}{N^2} s_j^2 b_j^2(z) \psi_j(z) E\beta_j(z) y_j' D_j^{-1} (z) T_{2n} D_j^{-1} y_j
\]
\[
+ \frac{1}{N^3} s_j^3 b_j^2(z) \psi_j(z) E\beta_j(z) \rho_j(z) y_j' D_j^{-1} (z) T_{2n} D_j^{-1} y_j.
\]
From Lemma \[A.3\] and Lemma \[B.1\] we have
\[
\left| \frac{1}{N^3} s_j^3 b_j^2(z) \psi_j(z) E\beta_j(z) \rho_j(z) y_j' D_j^{-1} (z) T_{2n} D_j^{-1} y_j \right|
\]
\[
\leq \frac{1}{N^3} E^{1/2} |\beta_j(z)| E^{1/2} |\rho_j(z)| y_j' D_j^{-1} (z) T_{2n} D_j^{-1} y_j^2 \leq CN^{-3/2}.
\]
This yields that
\[
(3.37) \quad b_j(z) - \psi_j(z) = - \frac{1}{N^2} s_j^2 b_j^2(z) \psi_j(z) E\text{tr} D_j^{-1} (z) T_{2n} D_j^{-1} T_{2n} + o(N^{-1}).
\]
Hence,
\[
(3.38) \quad E\left(\beta_j(z) - \psi_j(z)\right) = - \frac{1}{N^2} s_j^2 b_j^2(z) \psi_j(z) E\text{tr} D_j^{-1} (z) T_{2n} D_j^{-1} T_{2n}
\]
\[
+ \frac{1}{N^2} s_j^2 b_j^3(z) E\varepsilon_j^2(z) + o(N^{-1}).
\]
Thus, we get

\[F_3 = - \frac{1}{N^3} \sum_{j=1}^{n} s_j^2 b_j^2(z) E \varepsilon_j^2(z) E \left(\text{tr} \left(W^{-1}(z) T_{2n} D^{-1}(z) \right) \right) + \frac{1}{N^3} s_j^2 b_j^2(z) \psi_j(z) \text{Etr} D_j^{-1}(z) T_{2n} D_j^{-1}(z) + o(1). \]

From (3.34), (3.35), (3.36) and (3.39), we conclude that

\[d_{n1}(z) = \frac{1}{N^2} \sum_{j=1}^{n} s_j^2 b_j^2(z) E \varepsilon_j(z) \left(y_j^T D_j^{-1}(z) W^{-1}(z) y_j - \text{tr} \left(W^{-1}(z) T_{2n} D^{-1}(z) \right) \right) - \frac{1}{N^2} \sum_{j=1}^{n} s_j^2 b_j^2(z) \text{Etr} \left(W^{-1}(z) T_{2n} D_j^{-1}(z) T_{2n} D_j^{-1}(z) \right) - \frac{1}{N^3} \sum_{j=1}^{n} s_j^3 \psi_j(z) \text{E} \varepsilon_j^2(z) E \left(\text{tr} \left(W^{-1}(z) T_{2n} D^{-1}(z) \right) \right) + \frac{1}{N^3} s_j^3 \psi_j(z) \text{Etr} D_j^{-1}(z) T_{2n} D_j^{-1}(z) T_{2n} E \left(\text{tr} \left(W^{-1}(z) T_{2n} D^{-1}(z) \right) \right) + o(1). \]

It is evident from (3.37) that

\[|b_j(z) - \psi_j(z)| \leq \frac{C}{N} \left\| D_j^{-1}(z) T_{2n} D_j^{-1} \right\| + o(N^{-1}) \leq \frac{C}{N}. \]

Then,

\[d_{n1}(z) = \frac{1}{N^2} \sum_{j=1}^{n} s_j^2 \psi_j^2(z) E \varepsilon_j(z) \left(y_j^T D_j^{-1}(z) W^{-1}(z) y_j - \text{tr} \left(W^{-1}(z) T_{2n} D_j^{-1}(z) \right) \right) - \frac{1}{N^2} \sum_{j=1}^{n} s_j^2 \psi_j^2(z) \text{Etr} \left(W^{-1}(z) T_{2n} D_j^{-1}(z) T_{2n} D_j^{-1}(z) \right) - \frac{1}{N^3} \sum_{j=1}^{n} s_j^3 \psi_j^3(z) E \varepsilon_j^2(z) E \left(\text{tr} \left(W^{-1}(z) T_{2n} D^{-1}(z) \right) \right) + \frac{1}{N^3} s_j^3 \psi_j^3(z) \text{Etr} D_j^{-1}(z) T_{2n} D_j^{-1}(z) T_{2n} E \left(\text{tr} \left(W^{-1}(z) T_{2n} D^{-1}(z) \right) \right) + o(1). \]

Considering the moments of the Gaussian variables, we have

\[d_{n1}(z) = \frac{1}{N^2} \sum_{j=1}^{n} s_j^2 \psi_j^2(z) \text{Etr} \left(W^{-1}(z) T_{2n} D_j^{-1}(z) T_{2n} D_j^{-1}(z) \right) - \frac{1}{N^3} \sum_{j=1}^{n} s_j^3 \psi_j^3(z) \text{Etr} \left(T_{2n} D_j^{-1}(z) T_{2n} D_j^{-1}(z) \right) E \left(\text{tr} \left(W^{-1}(z) T_{2n} D^{-1}(z) \right) \right) + o(1). \]
Write $M_n(z)$ as

\[
N \left[E_m(z) - m_n^0(z) \right] = d_{n1}(z) + N \left[\int \frac{1}{N} \sum_{j=1}^{n} s_j \psi_j(z) x - z \ dH_{2n}(x) + z^{-1} \int \frac{1}{1 + g_{1n}^0(z)x} dH_{2n}(x) \right]
\]

\[
= d_{n1}(z) - N \left(E_{g2n}(z) - g_{2n}^0(z) \right) \frac{1}{N} \sum_{j=1}^{n} s_j \psi_j(z) \left(1 + g_{2n}^0(z) s_j \right) \times \int \frac{x}{\left(\frac{1}{N} \sum_{j=1}^{n} s_j \psi_j(z) x - z \right) \left(z + g_{1n}^0(z)x \right)} dH_{2n}(x).
\]

Below we first find the relation between \(E_m(z) - m_n^0(z) \) and \(E_{g2n}(z) - g_{2n}^0(z) \).
Write \(D(z) + z I_N = \frac{1}{N} \sum_{k=1}^{n} s_k y_k y_k^T \). Multiplying by \(D^{-1}(z) \) on the right-hand side and using the formula (3.7), we obtain

\[
I_N + z D^{-1}(z) = \frac{1}{N} \sum_{k=1}^{n} s_k y_k y_k^T \left(D_k^{-1}(z) - \frac{1}{N} s_k \beta_k(z) D_k^{-1}(z) y_k y_k^T D_k^{-1}(z) \right) = \frac{1}{N} \sum_{k=1}^{n} s_k \beta_k(z) y_k y_k^T D_k^{-1}(z).
\]

Taking the trace on both side and dividing by \(N \), one gets

\[
1 + zm_n(z) = c_n - c_n n^{-1} \sum_{k=1}^{n} \beta_k(z).
\]

Together with (1.4), we have

\[
(3.41) \quad m_n(z) = - \frac{1}{2n} \sum_{k=1}^{n} \beta_k(z).
\]

It is obtained from (3.38) and (3.40)

\[
E m_n(z) + \frac{1}{znN^2} \sum_{j=1}^{n} s_j^2 \psi_j(z) \text{Etr} \left(D_j^{-1}(z) T_{2n} D_j^{-1}(z) T_{2n} \right) = - \frac{1}{2n} \sum_{j=1}^{n} \psi_j(z) + o(N^{-1}).
\]

Thus

\[
E m_n(z) - m_n^0(z) = - \frac{1}{znN^2} \sum_{j=1}^{n} s_j^2 \psi_j^3(z) \text{Etr} \left(D_j^{-1}(z) T_{2n} D_j^{-1}(z) T_{2n} \right)
\]

\[
+ \left(E_{g2n}(z) - g_{2n}^0(z) \right) \frac{1}{2n} \sum_{j=1}^{n} s_j \psi_j(z) \left(1 + g_{2n}^0(z) s_j \right) + o(N^{-1}).
\]
Consequently,
\[
E g_{2n}(z) - g_{2n}^0(z) = \left[\frac{1}{zn} \sum_{j=1}^{n} \frac{s_j \psi_j(z)}{1 + g_{2n}^0(z)s_j} \right]^{-1} \times \left[E m_n(z) - m_n^0(z) \right]
\]
\[+ \frac{1}{znN^2} \sum_{j=1}^{n} s_j^2 \psi_j(z) \text{Etr} \left(D_j^{-1}(z) T_{2n} D_j^{-1}(z) T_{2n} \right) \right] + o(N^{-1}).
\]

Combining the above equalities with \(M_{n2}(z) = N \left[E m_n(z) - m_n^0(z) \right] = n \left[E m_n(z) - m_n^0(z) \right] \), we conclude that
\[
(3.42) \quad N \left[E m_n(z) - m_n^0(z) \right] = d_{n1}(z) - n \left[E m_n(z) - m_n^0(z) \right] \left[\frac{1}{zn} \sum_{j=1}^{n} \frac{s_j \psi_j(z)}{1 + g_{2n}^0(z)s_j} \right]^{-1}
\]
\[\times \frac{1}{n} \sum_{j=1}^{n} \frac{s_j^2 \psi_j(z)}{1 + g_{2n}^0(z)s_j} \int \frac{x}{(\frac{1}{N} \sum_{j=1}^{n} s_j \psi_j(z)x - z)(z + zg_{1n}^0(z)x)} dH_{2n}(x)
\]
\[\quad - \frac{1}{znN^2} \sum_{j=1}^{n} s_j^2 \psi_j(z) \text{Etr} \left(D_j^{-1}(z) T_{2n} D_j^{-1}(z) T_{2n} \right) \left[\frac{1}{zn} \sum_{j=1}^{n} \frac{s_j \psi_j(z)}{1 + g_{2n}^0(z)s_j} \right]^{-1}
\]
\[\times \frac{1}{n} \sum_{j=1}^{n} \frac{s_j^2 \psi_j(z)}{1 + g_{2n}^0(z)s_j} \int \frac{x}{(\frac{1}{N} \sum_{j=1}^{n} s_j \psi_j(z)x - z)(z + zg_{1n}^0(z)x)} dH_{2n}(x)
\]
\[
(3.43) \quad = (d_{n1}(z) - d_{n2}(z)) \left[1 + z \left[\frac{1}{n} \sum_{j=1}^{n} \frac{s_j \psi_j(z)}{1 + g_{2n}^0(z)s_j} \right]^{-1} \frac{1}{n} \sum_{j=1}^{n} \frac{s_j^2 \psi_j(z)}{1 + g_{2n}^0(z)s_j} \int \frac{x}{(\frac{1}{N} \sum_{j=1}^{n} s_j \psi_j(z)x - z)(z + zg_{1n}^0(z)x)} dH_{2n}(x) \right]^{-1}
\]
where
\[
d_{n2}(z) = \frac{1}{N^2} \sum_{j=1}^{n} s_j^3 \psi_j^3(z) \text{Etr} \left(D_j^{-1}(z) T_{2n} D_j^{-1}(z) T_{2n} \right) \left[\frac{1}{n} \sum_{j=1}^{n} \frac{s_j \psi_j(z)}{1 + g_{2n}^0(z)s_j} \right]^{-1}
\]
\[\times \frac{1}{n} \sum_{j=1}^{n} \frac{s_j^2 \psi_j(z)}{1 + g_{2n}^0(z)s_j} \int \frac{x}{(\frac{1}{N} \sum_{j=1}^{n} s_j \psi_j(z)x - z)(z + zg_{1n}^0(z)x)} dH_{2n}(x).
\]
Write
\[
\frac{1}{n} \sum_{j=1}^{n} \frac{s_j}{(1 + g_2(z)s_j)^2} - \frac{z}{n} \sum_{j=1}^{n} \frac{s_j^2}{(1 + g_2(z)s_j)^2} \int \frac{x}{(z + zg_1(z)x)^2} dH_2(x)
\]
By continuity, we have the denominator of (3.43) is bounded away from zero.

Note that for all \(z \in C \)

\[
\frac{1}{n} \sum_{j=1}^{n} \frac{s_j^2}{(1 + g_2(z)s_j)^2} \int \frac{x^2}{(1 + g_1(z)x)^2} dH_2(x)
\]

\[
= - \frac{zg_1(z)}{c_n} \left\{ 1 - \frac{1}{z^2 N} \sum_{j=1}^{n} \frac{s_j^2}{(1 + g_2(z)s_j)^2} \int \frac{x^2}{(1 + g_1(z)x)^2} dH_2(x) \right\}.
\]

Note that for all \(z = u + iv \in C \)

\[
\left| \frac{1}{z^2 N} \sum_{j=1}^{n} \frac{s_j^2}{(1 + g_2(z)s_j)^2} \int \frac{x^2}{(1 + g_1(z)x)^2} dH_2(x) \right|
\leq \frac{1}{N} \sum_{j=1}^{n} \frac{s_j^2}{|1 + g_2(z)s_j|^2} \int \frac{x^2}{|z + gz_1(z)x|^2} dH_2(x)
\]

\[
= \frac{\Im(gz_1(z))}{\Im(g_2(z))} - v \int \frac{x}{\Im(gz_1(z))} dH_2(x) < 1.
\]

By continuity, we have the denominator of (3.43) is bounded away from zero.

We are now in position to find the limits of \(d_n(z) \) and \(d_n^2(z) \). Due to (3.7) and (3.30), we see that

\[
\left| \text{Etr} \left(W^{-1}(z)T_{2n}D_j^{-1}(z)T_{2n}D_j^{-1}(z) \right) - \text{Etr} \left(W^{-1}(z)T_{2n}D^{-1}(z)T_{2n}D^{-1}(z) \right) \right|
\]

\[
\leq \frac{T}{N} \left| \text{E} \left\{ \beta_j(z) \right\} \right| \left| y_j^2 \right| \left| \sum_{j=1}^{n} \left| D_j^{-1}(z)W^{-1}(z)T_{2n}D_j^{-1}(z)T_{2n}D_j^{-1}(z) \right| \right|
\]

\[
\leq C
\]

where the last inequality is from Lemma [B.1] and Lemma [A.3]. By the same argument, it follows that

\[
\left| \text{Etr} \left(T_{2n}D_j^{-1}(z)T_{2n}D_j^{-1}(z) \right) - \text{Etr} \left(T_{2n}D^{-1}(z)T_{2n}D^{-1}(z) \right) \right| \leq C.
\]

Hence,

\[
d_n(z) = \frac{1}{N^2} \sum_{j=1}^{n} s_j^3 \psi_j^2(z) \text{Etr} \left(W^{-1}(z)T_{2n}D^{-1}(z)T_{2n}D^{-1}(z) \right)
\]

\[
- \frac{1}{N^3} \sum_{j=1}^{n} s_j^3 \psi_j^3(z) \text{Etr} \left(T_{2n}D^{-1}(z)T_{2n}D^{-1}(z) \right) \left(\text{tr} \left(W^{-1}(z)T_{2n}D^{-1}(z) \right) \right) + o(1).
\]
Our next goal is to find the limit of \(\text{Etr} \left(T_{2n} D^{-1}(z) T_{2n} D^{-1}(z) \right) \), \(\text{Etr} \left(W^{-1}(z) T_{2n} D^{-1}(z) \right) \) and \(\text{Etr} \left(W^{-1}(z) T_{2n} D^{-1}(z) T_{2n} D^{-1}(z) \right) \). From (3.33), we have

\[
(3.44) \quad W^{-1}(z) - D^{-1}(z) = \frac{1}{N} \sum_{j=1}^{n} s_{j} \psi_{j}(z) W^{-1}(z) \left(y_{j} y_{j}' - T_{2n} \right) D_{j}^{-1}(z) \]

\[
+ \frac{1}{N} \sum_{j=1}^{n} s_{j} \left(\beta_{j}(z) - \psi_{j}(z) \right) W^{-1}(z) y_{j} y_{j}' D_{j}^{-1}(z) \]

\[
+ \frac{1}{N} \sum_{j=1}^{n} s_{j} \psi_{j}(z) W^{-1}(z) T_{2n} \left(D_{j}^{-1}(z) - D^{-1}(z) \right) \]

\[
\pm G_{1}(z) + G_{2}(z) + G_{3}(z).
\]

Let \(M \) be \(N \times N \) matrix with a nonrandom bound on the spectral norm of \(M \) for all parameters governing \(M \) and under all realizations of \(M \). Applying Lemma B.1, Lemma B.5, and Lemma A.3, we obtain

\[
(3.45) \quad E |\beta_{j}(z) - \psi_{j}(z)|^{2} \leq \frac{C}{N^2} E |\beta_{j}(z) \left(y_{j}' D_{j}^{-1}(z) y_{j} - ED^{-1}(z) T_{2n} \right) |^{2} = O(N^{-1})
\]

which implies that

\[
(3.46) \quad E \left| \text{tr}(G_{2}(z) M) \right| \leq \frac{C}{N} \sum_{j=1}^{n} E^{1/2} |\beta_{j}(z) - \psi_{j}(z)|^{2} \times E^{1/2} |y_{j}' D_{j}^{-1}(z) M W^{-1}(z) y_{j}|^{2} = O(N^{1/2}).
\]

Form Lemma B.1 and (3.7), we have

\[
(3.47) \quad E \left| \text{tr} \left(G_{3}(z) M \right) \right| \leq \frac{C}{N^2} \sum_{j=1}^{n} |E y_{j}' D_{j}^{-1}(z) W^{-1}(z) T_{2n} D_{j}^{-1}(z) y_{j}| \leq C.
\]

Furthermore, write

\[
\text{tr}((G_{1}(z)) T_{2n} D^{-1}(z) M)
\]

\[
= \frac{1}{N} \sum_{j=1}^{n} s_{j} \psi_{j}(z) \text{tr} W^{-1}(z) y_{j} y_{j}' D_{j}^{-1}(z) T_{2n} \left(D^{-1}(z) - D_{j}^{-1}(z) \right) M
\]

\[
+ \frac{1}{N} \sum_{j=1}^{n} s_{j} \psi_{j}(z) \text{tr} W^{-1}(z) \left(y_{j} y_{j}' D_{j}^{-1}(z) T_{2n} D_{j}^{-1}(z) M - T_{2n} D_{j}^{-1}(z) T_{2n} D_{j}^{-1}(z) M \right)
\]

\[
+ \frac{1}{N} \sum_{j=1}^{n} s_{j} \psi_{j}(z) \text{tr} W^{-1}(z) T_{2n} D_{j}^{-1}(z) T_{2n} \left(D_{j}^{-1}(z) - D^{-1}(z) \right) M
\]

\[
= - \frac{1}{N^2} \sum_{j=1}^{n} s_{j} \psi_{j}(z) \beta_{j}(z) y_{j}' D_{j}^{-1}(z) T_{2n} D_{j}^{-1}(z) y_{j} y_{j}' D_{j}^{-1}(z) M W^{-1}(z) y_{j}
\]
Together with (3.45) and Lemma B.1, one gets
\[
\frac{1}{N} \sum_{j=1}^{n} s_j \psi_j(z) \text{tr} W^{-1}(z) \left(y_j y_j' D_j^{-1}(z) T_{2n} D_j^{-1}(z) M - T_{2n} D_j^{-1}(z) T_{2n} D_j^{-1}(z) M \right) + \frac{1}{N^2} \sum_{j=1}^{n} s_j^2 \psi_j(z) D_j^{-1}(z) \text{MW}^{-1}(z) T_{2n} D_j^{-1}(z) y_j
\]
\[\equiv p_1(z) + p_2(z) + p_3(z).\]

It is obvious that \(E p_2(z) = 0\). Using Lemma B.1 and Lemma A.3 we have
\[E|p_3(z)| \leq C.\]

Together with (3.45) and Lemma B.1 one gets
\[E p_1(z) = -\frac{1}{N^2} \sum_{j=1}^{n} s_j^2 \psi_j(z) E y_j y_j' D_j^{-1}(z) T_{2n} D_j^{-1}(z) y_j y_j' D_j^{-1}(z) \text{MW}^{-1}(z) y_j + O(1).\]

By the proof of Lemma A.2 we obtain
\[|\psi_j(z) - \frac{1}{1 + s_j \beta_{2n}(z)}| = o(1).\]

Let \(q_j = \frac{s_j^2}{(1 + s_j \beta_{2n}(z))^2}\). Then, combining Lemma B.1 we find
\[E p_1(z) = -\frac{1}{N^2} \sum_{j=1}^{n} q_j E y_j y_j' D_j^{-1}(z) T_{2n} D_j^{-1}(z) y_j y_j' D_j^{-1}(z) \text{MW}^{-1}(z) y_j + o(N)\]
\[= -\frac{1}{N^2} \sum_{j=1}^{n} q_j \text{tr} D_j^{-1}(z) T_{2n} D_j^{-1}(z) T_{2n} \left(\text{tr} D_j^{-1}(z) \text{MW}^{-1}(z) T_{2n} \right) + o(N)\]
\[= -\frac{1}{N^2} \sum_{j=1}^{n} q_j \text{tr} D_j^{-1}(z) T_{2n} D_j^{-1}(z) T_{2n} \left(\text{tr} D_j^{-1}(z) \text{MW}^{-1}(z) T_{2n} \right) + o(N)\]
\[= -\frac{1}{N^2} \sum_{j=1}^{n} q_j \left(\text{Etr} D_j^{-1}(z) T_{2n} D_j^{-1}(z) T_{2n} \right) \left(\text{Etr} D_j^{-1}(z) \text{MW}^{-1}(z) T_{2n} \right) + o(N).\]

It follows that
\[E \text{tr}((G_1(z)) T_{2n} D_j^{-1}(z) M)\]
\[= -\frac{1}{N^2} \sum_{j=1}^{n} q_j \left(\text{Etr} D_j^{-1}(z) T_{2n} D_j^{-1}(z) T_{2n} \right) \left(\text{Etr} D_j^{-1}(z) \text{MW}^{-1}(z) T_{2n} \right) + o(N).\]

From (3.44), (3.46)-(3.48), and
\[E \text{tr}((G_1(z)) T_{2n} W^{-1}(z) T_{2n} = 0,\]
one has

\[
\frac{1}{N} \mbox{Etr}D^{-1}(z)T_{2n}W^{-1}(z)T_{2n} = \frac{1}{N} \mbox{tr}W^{-1}(z)T_{2n}W^{-1}(z)T_{2n} + o(1)
\]

(3.49)

\[
The integral becomes

\[
= \int \frac{t^2}{\left(\frac{1}{N} \sum_{j=1}^n s_j \psi_j(z) t - z \right)^2} dH_{2n}(t) + o(1).
\]

By the same argument, we get

\[
\frac{1}{N} \mbox{Etr}W^{-1}(z)T_{2n}W^{-1}(z)T_{2n}D^{-1}(z) = \frac{1}{N} \mbox{tr}W^{-1}(z)T_{2n}W^{-1}(z)T_{2n}W^{-1}(z) + o(1)
\]

(3.46)

\[
= \int \frac{t^2}{\left(\frac{1}{N} \sum_{j=1}^n s_j \psi_j(z) t - z \right)^2} dH_{2n}(t) + o(1).
\]

and

(3.50)

\[
\frac{1}{N} \mbox{Etr}W^{-1}(z)T_{2n}D^{-1}(z) = \frac{1}{N} \mbox{tr}W^{-1}(z)T_{2n}W^{-1}(z) + o(1)
\]

(3.47)

\[
= \int \frac{t}{\left(\frac{1}{N} \sum_{j=1}^n s_j \psi_j(z) t - z \right)^2} dH_{2n}(t) + o(1).
\]

Together with (3.44), (3.46)-(3.49), we have

\[
\frac{1}{N} \mbox{Etr}D^{-1}(z)T_{2n}D^{-1}(z)T_{2n} = \frac{1}{N} \mbox{Etr}D^{-1}(z)T_{2n}W^{-1}(z)T_{2n}
\]

\[
\times \left[1 + \frac{1}{N^2} \sum_{j=1}^n q_j \left(\mbox{Etr}D^{-1}(z)T_{2n}D^{-1}(z)T_{2n} \right) \right] + o(1)
\]

\[
= \int \frac{t^2}{\left(\frac{1}{N} \sum_{j=1}^n s_j \psi_j(z) t - z \right)^2} dH_{2n}(t)
\]

\[
\times \left[1 + \frac{1}{N^2} \sum_{j=1}^n q_j \left(\mbox{Etr}D^{-1}(z)T_{2n}D^{-1}(z)T_{2n} \right) \right] + o(1)
\]

which yields

(3.51)

\[
\frac{1}{N} \mbox{Etr}D^{-1}(z)T_{2n}D^{-1}(z)T_{2n} = \int \frac{t^2}{\left(\frac{1}{N} \sum_{j=1}^n s_j \psi_j(z) t - z \right)^2} dH_{2n}(t)
\]

\[
\times \left[1 - \frac{1}{N} \sum_{j=1}^n q_j \int \frac{t^2}{\left(\frac{1}{N} \sum_{j=1}^n s_j \psi_j(z) t - z \right)^2} dH_{2n}(t) \right]^{-1} + o(1).
\]
Similarly, we get (3.52)

\[
\frac{1}{N} \text{Etr} \left(W^{-1}(z) T_{2n} D^{-1}(z) T_{2n} D^{-1}(z) \right) \\
= \frac{1}{N} \text{Etr} W^{-1}(z) T_{2n} W^{-1}(z) T_{2n} D^{-1}(z) \left[1 + \frac{1}{N^2} \sum_{j=1}^{n} q_j \left(\text{Etr} D^{-1}(z) T_{2n} D^{-1}(z) T_{2n} \right) \right] \\
= \int \frac{t^2}{\left(\frac{1}{N} \sum_{j=1}^{n} s_j \psi_j(z) t - z \right)^2} dH_{2n}(t) \left[1 + \frac{1}{N^2} \sum_{j=1}^{n} q_j \left(\text{Etr} D^{-1}(z) T_{2n} D^{-1}(z) T_{2n} \right) \right]^{-1}.
\]

Finally, (3.29), (3.50)-(3.52), and

\[
\frac{1}{N} \sum_{j=1}^{n} q_j = c_n \int \frac{x^2}{\left(1 + x g_2^n(z) \right)^2} dH_{1n}(x)
\]

one has

\[
d_{n1}(z) = -c_n \int \frac{x^2}{\left(1 + x g_2^n(z) \right)^2} dH_{1n}(x) \int \frac{t^2}{\left(z g_{1n}(z) t + z \right)^2} dH_{2n}(t) \\
\times \left[1 - c_n \int \frac{x^2}{\left(1 + x g_2^n(z) \right)^2} dH_{1n}(x) \int \frac{t^2}{\left(z g_{1n}(z) t + z \right)^2} dH_{2n}(t) \right]^{-1} \\
- c_n \int \frac{x^3}{\left(1 + x g_2^n(z) \right)^3} dH_{1n}(x) \int \frac{t}{\left(z g_{1n}(z) t + z \right)^2} dH_{2n}(t) \int \frac{t^2}{\left(z g_{1n}(z) t + z \right)^2} dH_{2n}(t) \\
\times \left[1 - c_n \int \frac{x^2}{\left(1 + x g_2^n(z) \right)^2} dH_{1n}(x) \int \frac{t^2}{\left(z g_{1n}(z) t + z \right)^2} dH_{2n}(t) \right]^{-1} + o(1),
\]

and

\[
d_{n2}(z) = -c_n \int \frac{x^2}{\left(1 + x g_2^n(z) \right)^2} dH_{1n}(x) \int \frac{t}{\left(z g_{1n}(z) t + z \right)^2} dH_{2n}(t) \\
\times \left[\int \frac{x}{\left(1 + x g_2^n(z) \right)^2} dH_{1n}(x) \right]^{-1} \int \frac{x^2}{\left(1 + x g_2^n(z) \right)^2} dH_{1n}(x) \int \frac{t}{\left(z + z g_{1n}(z) t \right)^2} dH_{2n}(t)
\]
Consequently, from (3.42) and the above two equalities, we conclude that
\[
\begin{align*}
\Delta_2(x, z) &= \left(1 - z \int \frac{x}{(1 + xg_2(z))^2} dH_1(x) \right)^{-1} \\
&\quad \times \left(1 - z \int \frac{t}{(1 + g_1(z)t)^2} dH_2(t) \right)^{-1}.
\end{align*}
\]

4. Non-Gaussian case

It has been verified that Lemma 2.3 is true when the entries of the matrix are independent Gaussian variables. This section is to show this conclusion still holds in the general case. The strategy is to compare the characteristic functions of the linear spectral statistics under the normal case and the general case.

We below assume that \(x_{jk}, j = 1, \ldots, N, k = 1, \ldots, n\) are truncated at \(\delta_n \sqrt{n}\), centralized and renormalized as in the last section. That is to say,
\[
|x_{jk}| \leq \delta_n \sqrt{n}, \quad \operatorname{Ex}_{jk} = 0, \quad \operatorname{Ex}_{jk}^2 = 1, \quad \operatorname{Ex}_{jk}^4 = 3 + o(1).
\]

4.1. From the general case to the Gaussian case. Denote \(A_n = \frac{1}{N} T_{2n}^{1/2} Y_n T_{1n} Y_n' T_{2n}^{1/2}\) where the entries of \(Y_n = (y_{jk})\) are independent real Gaussian random variables such that
\[
\mathbb{E}y_{jk} = 0, \quad \mathbb{E}y_{jk}^2 = 1, \quad \text{for } j = 1 \ldots N, k = 1, \ldots, n.
\]

Moreover, suppose that \(X_n\) and \(Y_n\) be independent random matrices. As in [7] for any \(\theta \in [0, \pi/2]\), we introduce the following matrices
\[
(4.1) \quad W_n(\theta) = X_n \sin \theta + Y_n \cos \theta \quad \text{and} \quad G_n(\theta) = \frac{1}{N} T_{2n}^{1/2} W_n T_{1n} W_n' T_{2n}^{1/2}
\]

where
\[
(W_n(\theta))_{jk} = w_{jk} = x_{jk} \sin \theta + y_{jk} \cos \theta.
\]

Furthermore, let
\[
\begin{align*}
H_n(t, \theta) &= e^{itG_n(\theta)}, \quad S(\theta) = \text{tr} (G_n(\theta)), \\
S^0(\theta) &= S(\theta) - N \int f(x) dF_{e^{itH_n} H_n}(x), \quad Z_n(x, \theta) = E e^{iS(\theta)}.
\end{align*}
\]

For simplicity, we omit the argument \(\theta\) from the notations of \(W_n(\theta), G_n(\theta), H_n(t, \theta)\) and denote them by \(W_n, G_n, H_n(t)\) respectively.

Note that
\[
(4.3) \quad Z_n(x, \pi/2) - Z_n(x, 0) = \int_0^{\pi/2} \frac{\partial Z_n(x, \theta)}{\partial \theta} d\theta.
\]
The aim is to prove that \(\frac{\partial Z_n(x, \theta)}{\partial \theta} \) converges to zero uniformly in \(\theta \) over the interval \([0, \pi/2]\), which ensures Lemma 2.3.

To this end, let \(f(\lambda) \) be a smooth function with the Fourier transform given by

\[
\hat{f}(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(\lambda) e^{-it\lambda} d\lambda.
\]

From Lemma A.6, we have

\[
\frac{\partial Z_n(x, \theta)}{\partial \theta} = 2\pi i \sum_{j=1}^{N} \sum_{k=1}^{n} \mathbb{E} w'_{jk} \left[T_{2n}^{1/2} \hat{f}(\mathbf{G}_n) T_{2n}^{1/2} \mathbf{W}_n T_{1n} \right]_{jk} e^{ixS_0(\theta)}
\]

where

\[
w'_{jk} = \frac{dw_{jk}}{d\theta} = x_{jk} \cos \theta - y_{jk} \sin \theta
\]

and

\[
(4.4) \quad \hat{f}(\mathbf{G}_n) = i \int_{-\infty}^{\infty} u \hat{f}(u) \mathbf{H}_n(u) du.
\]

Let \(\mathbf{W}_{njk}(x) \) denote the corresponding matrix \(\mathbf{W}_n \) with \(w_{jk} \) replaced by \(x \). And let \(\mathbf{G}_{njk}(x) = \frac{1}{N} T_{2n}^{1/2} \mathbf{W}_{njk}(x) T_{1n} \mathbf{W}_n T_{1n}^{1/2} \),

\[
\varphi_{jk}(x) = \left[T_{2n}^{1/2} \hat{f}(\mathbf{G}_{njk}(x)) T_{2n}^{1/2} \mathbf{W}_{njk}(x) T_{1n} \right]_{jk} e^{ixS_0(\mathbf{G}_{njk}(x))}.
\]

By Taylor’s formula, one finds

\[
\varphi_{jk}(w_{jk}) = \sum_{l=0}^{3} \frac{1}{l!} w'_{jk} \varphi^{(l)}_{jk}(0) + \frac{1}{4!} w''_{jk} \varphi^{(4)}_{jk}(w_{jk}) \quad q \in (0, 1)
\]

which implies that

\[
\frac{\partial Z_n(x, \theta)}{\partial \theta} = 2\pi i \sum_{l=0}^{3} \frac{1}{l!} \sum_{j=1}^{N} \sum_{k=1}^{n} \mathbb{E} w'_{jk} \varphi^{(l)}_{jk}(0) + \frac{2\pi i}{4!} \sum_{j=1}^{N} \sum_{k=1}^{n} \mathbb{E} w''_{jk} \varphi^{(4)}_{jk}(w_{jk}).
\]

It is easy to obtain

\[
\mathbb{E} w'_{jk} w^0_{jk} = 0, \quad \mathbb{E} w'_{jk} w^1_{jk} = 0,
\]

\[
\mathbb{E} w'_{jk} w^2_{jk} = \mathbb{E} w^3_{jk} \sin^2 \theta \cos \theta, \quad \mathbb{E} w^3_{jk} = o(1) \sin^3 \theta \cos \theta.
\]

It follows that

\[
\frac{\partial Z_n(x, \theta)}{\partial \theta} = \frac{\pi i}{N} \sum_{j=1}^{N} \sum_{k=1}^{n} \mathbb{E} w^2_{jk} \sin^2 \theta \cos \theta \varphi^{(2)}_{jk}(0) + \frac{\pi i}{12N} \sum_{j=1}^{N} \sum_{k=1}^{n} \mathbb{E} w^4_{jk} \varphi^{(4)}_{jk}(w_{jk})
\]

\[
\approx I_1 + I_2.
\]

We below analyze \(I_1 \) and \(I_2 \) term by term.
4.1.1. The second derivative. We first consider I_1. A direct calculation yields that

\[
\varphi_{jk}^{(2)}(w_{jk}) = \left[T_{2n}^{1/2} \frac{\partial^2 f(G_n)}{\partial w_{jk}^2} T_{2n}^{1/2} w_n T_{1n} \right]_{jk} e^{i \xi S_0(\theta)} + 2 \left[T_{2n}^{1/2} \frac{\partial f(G_n)}{\partial w_{jk}} T_{2n}^{1/2} \right]_{jj} \left[T_{1n} \right]_{kk} e^{i \xi S_0(\theta)} \\
+ \frac{6i}{N} \left[T_{2n}^{1/2} \frac{\partial f(G_n)}{\partial w_{jk}} T_{2n}^{1/2} w_n T_{1n} \right]_{jk} \left[T_{2n}^{1/2} \frac{\partial f(G_n) T_{2n}^{1/2} w_n T_{1n}}{\partial w_{jk}} \right]_{jj} \left[T_{1n} \right]_{kk} e^{i \xi S_0(\theta)} \\
- \frac{4 \chi^2}{N^2} \left[T_{2n}^{1/2} \frac{\partial f(G_n) T_{2n}^{1/2} w_n T_{1n}}{\partial w_{jk}} \right]_{jk} \left[T_{2n}^{1/2} \frac{\partial f(G_n) T_{2n}^{1/2} w_n T_{1n}}{\partial w_{jk}} \right]_{jk} e^{i \xi S_0(\theta)}.
\]

Using Lemma [A.6] one finds

\[
I_{jk}^{(1)} = - \frac{2}{N} \int_{-\infty}^{\infty} u \hat{f}(u) [T_{1n}]_{kk} [T_{2n}^{1/2} H_n T_{2n}^{1/2}]_{jj} * [T_{2n}^{1/2} H_n T_{2n}^{1/2} w_n T_{1n}]_{jk}(u) e^{i \xi S_0(\theta)} du \\
- \frac{6i}{N^2} \int_{-\infty}^{\infty} u \hat{f}(u) [T_{2n}^{1/2} H_n T_{2n}^{1/2}]_{jj} * [T_{2n}^{1/2} H_n T_{2n}^{1/2} w_n T_{1n}]_{jk} du \\
* [T_{1n} w_n T_{1n}^{1/2} H_n T_{1n}^{1/2} w_n T_{1n}]_{kk}(u) e^{i \xi S_0(\theta)} du \\
- \frac{2i}{N^2} \int_{-\infty}^{\infty} u \hat{f}(u) [T_{2n}^{1/2} H_n T_{2n}^{1/2} w_n T_{1n}]_{jk} * [T_{2n}^{1/2} H_n T_{2n}^{1/2} w_n T_{1n}]_{jk} du \\
* [T_{2n}^{1/2} H_n T_{2n}^{1/2} w_n T_{1n}]_{jk}(u) e^{i \xi S_0(\theta)} du.
\]

It is straightforward to check that the moments of $\left\| T_{2n}^{1/2} H_n T_{2n}^{1/2} \right\|$ and

\[
(4.5) \quad \frac{1}{N} \left\| T_{1n} w_n T_{1n}^{1/2} H_n T_{1n}^{1/2} w_n T_{1n} \right\|
\]

are bounded. Applying Lemma [A.7] we obtain

\[
\left| \frac{1}{N} \sum_{j=1}^{N} \sum_{k=1}^{n} E I_{jk}^{(1)} \right| \leq \frac{C}{N^{1/4}} \int_{-\infty}^{\infty} \left(|u|^2 + |u|^3 \right) \left| \hat{f}(u) \right| du \leq CN^{-1/4}.
\]

By the same argument, we get

\[
\left| \frac{1}{N} \sum_{j=1}^{N} \sum_{k=1}^{n} E (I_{jk}^{(2)} + I_{jk}^{(3)} + I_{jk}^{(4)} + I_{jk}^{(5)}) \right| \leq CN^{-1/4}.
\]

Hence,

\[
|I_1| \to 0 \quad \text{as} \quad n \to \infty.
\]
4.1.2. The remainder term. It is straightforward to check that

\[Ew'_jk w_{jk}^4 \leq C\delta_n \sqrt{n}. \]

Let \(w \) be a random variable which has the same first, second and fourth moments as \(w_{jk} \). We estimate \(E \sup_w \varphi_{jk}^{(4)}(w) \). A direct but tedious computation yields

\[
\varphi_{jk}^{(4)}(w_{jk}) = \left[T_{2n}^{1/2} \frac{\partial^4 \bar{f}(G_n)}{\partial w_{jk}^4} T_{2n}^{1/2} W_n T_{1n} \right]_{jk} e^{i\delta_0(\theta)} + 4 \left[T_{1n} \right]_{kk} \left[T_{2n}^{1/2} \frac{\partial^3 \bar{f}(G_n)}{\partial w_{jk}^3} T_{2n}^{1/2} \right]_{jj} e^{i\delta_0(\theta)}
\]

\[
+ \frac{10xi}{N} \left[T_{2n}^{1/2} \frac{\partial^3 \bar{f}(G_n)}{\partial w_{jk}^2} T_{2n}^{1/2} W_n T_{1n} \right]_{jk} \left[T_{2n}^{1/2} \bar{f}(G_n) T_{2n}^{1/2} W_n T_{1n} \right]_{jk} e^{i\delta_0(\theta)}
\]

\[
+ \frac{30xi}{N} \left[T_{1n} \right]_{kk} \left[T_{2n}^{1/2} \frac{\partial^2 \bar{f}(G_n)}{\partial w_{jk}^2} T_{2n}^{1/2} W_n T_{1n} \right]_{jk} \left[T_{2n}^{1/2} \bar{f}(G_n) T_{2n}^{1/2} W_n T_{1n} \right]_{jk} e^{i\delta_0(\theta)}
\]

\[
+ \frac{20xi}{N} \left[T_{2n}^{1/2} \frac{\partial^2 \bar{f}(G_n)}{\partial w_{jk}} T_{2n}^{1/2} W_n T_{1n} \right]_{jk} \left[T_{2n}^{1/2} \frac{\partial \bar{f}(G_n)}{\partial w_{jk}} T_{2n}^{1/2} W_n T_{1n} \right]_{jk} e^{i\delta_0(\theta)}
\]

\[
+ \frac{20xi}{N} \left[T_{1n} \right]_{kk} \left[T_{2n}^{1/2} \frac{\partial \bar{f}(G_n)}{\partial w_{jk}} T_{2n}^{1/2} W_n T_{1n} \right]_{jk} \left[T_{2n}^{1/2} \frac{\partial \bar{f}(G_n)}{\partial w_{jk}} T_{2n}^{1/2} W_n T_{1n} \right]_{jk} e^{i\delta_0(\theta)}
\]

\[
+ \frac{40xi}{N} \left[T_{1n} \right]_{kk} \left[T_{2n}^{1/2} \frac{\partial \bar{f}(G_n)}{\partial w_{jk}} T_{2n}^{1/2} W_n T_{1n} \right]_{jk} \left[T_{2n}^{1/2} \frac{\partial \bar{f}(G_n)}{\partial w_{jk}} T_{2n}^{1/2} W_n T_{1n} \right]_{jk} e^{i\delta_0(\theta)}
\]

\[
- \frac{40x^2}{N^2} \left[T_{2n}^{1/2} \frac{\partial^2 \bar{f}(G_n)}{\partial w_{jk}} T_{2n}^{1/2} W_n T_{1n} \right]_{jk} \left[T_{2n}^{1/2} \bar{f}(G_n) T_{2n}^{1/2} W_n T_{1n} \right]_{jk} e^{i\delta_0(\theta)}
\]

\[
- \frac{60x^2}{N^2} \left[T_{2n}^{1/2} \frac{\partial \bar{f}(G_n)}{\partial w_{jk}} T_{2n}^{1/2} W_n T_{1n} \right]_{jk} \left[T_{2n}^{1/2} \bar{f}(G_n) T_{2n}^{1/2} W_n T_{1n} \right]_{jk} e^{i\delta_0(\theta)}
\]

\[
- \frac{60x^2}{N^2} \left[T_{1n} \right]_{kk} \left[T_{2n}^{1/2} \frac{\partial \bar{f}(G_n)}{\partial w_{jk}} T_{2n}^{1/2} W_n T_{1n} \right]_{jk} \left[T_{2n}^{1/2} \bar{f}(G_n) T_{2n}^{1/2} W_n T_{1n} \right]_{jk} e^{i\delta_0(\theta)}
\]

\[
- \frac{60x^2}{N^2} \left[T_{1n} \right]_{kk} \left[T_{2n}^{1/2} \frac{\partial \bar{f}(G_n)}{\partial w_{jk}} T_{2n}^{1/2} W_n T_{1n} \right]_{jk} \left[T_{2n}^{1/2} \bar{f}(G_n) T_{2n}^{1/2} W_n T_{1n} \right]_{jk} e^{i\delta_0(\theta)}
\]

\[
- \frac{80x^3i}{N^3} \left[T_{2n}^{1/2} \frac{\partial \bar{f}(G_n)}{\partial w_{jk}} T_{2n}^{1/2} W_n T_{1n} \right]_{jk} \left[T_{2n}^{1/2} \bar{f}(G_n) T_{2n}^{1/2} W_n T_{1n} \right]_{jk} e^{i\delta_0(\theta)}
\]

\[
- \frac{80x^3i}{N^3} \left[T_{1n} \right]_{kk} \left[T_{2n}^{1/2} \frac{\partial \bar{f}(G_n)}{\partial w_{jk}} T_{2n}^{1/2} W_n T_{1n} \right]_{jk} \left[T_{2n}^{1/2} \bar{f}(G_n) T_{2n}^{1/2} W_n T_{1n} \right]_{jk} e^{i\delta_0(\theta)}
\]
\[-\frac{120x^2}{N^2}[T_{1n}]kk[T_{2n}^{1/2} \frac{\partial}{\partial w_{jk}} \tilde{f}(G_n) T_{2n}^{1/2} W_n T_{1n}]_{jk} [T_{2n}^{1/2} \tilde{f}(G_n) T_{2n}^{1/2} W_n T_{1n}]_{jk} \times [T_{2n}^{1/2} \tilde{f}(G_n) T_{2n}^{1/2}]_{jj} e^{ixs_0(\theta)} = \frac{16x^4}{N^4} [T_{2n}^{1/2} \tilde{f}(G_n) T_{2n}^{1/2} W_n T_{1n}]_{jk} e^{ixs_0(\theta)}.\]

We only estimate the first term \([T_{2n}^{1/2} \frac{\partial}{\partial w_{jk}} \tilde{f}(G_n) T_{2n}^{1/2} W_n T_{1n}]_{jk} e^{ixs_0(\theta)}\) and the others are similar. Simple calculations imply that

\[
[T_{2n}^{1/2} \frac{\partial}{\partial w_{jk}} \tilde{f}(G_n) T_{2n}^{1/2} W_n T_{1n}]_{jk} e^{ixs_0(\theta)} = -\frac{24i}{N^2} \int_{-\infty}^{\infty} \tilde{f}(u) [T_{1n}]_{kk} [T_{2n}^{1/2} H_n T_{2n}^{1/2}]_{jj} * [T_{2n}^{1/2} H_n T_{2n}^{1/2}]_{jj} du + \frac{144}{N^3} \int_{-\infty}^{\infty} \tilde{f}(u) [T_{1n}]_{kk} [T_{2n}^{1/2} H_n T_{2n}^{1/2}]_{jj} * [T_{2n}^{1/2} H_n T_{2n}^{1/2} W_n T_{1n}]_{jk} du + \frac{144}{N^3} \int_{-\infty}^{\infty} \tilde{f}(u) [T_{1n}]_{kk} [T_{2n}^{1/2} H_n T_{2n}^{1/2}]_{jj} * [T_{2n}^{1/2} H_n T_{2n}^{1/2}]_{jj} \times [T_{2n}^{1/2} H_n T_{2n}^{1/2} W_n T_{1n}]_{jk} du + \frac{240i}{N^4} \int_{-\infty}^{\infty} \tilde{f}(u) [T_{2n}^{1/2} H_n T_{2n}^{1/2}]_{jj} * [T_{2n}^{1/2} H_n T_{2n}^{1/2} W_n T_{1n}]_{jk} \times [T_{2n}^{1/2} H_n T_{2n}^{1/2} W_n T_{1n}]_{jk} du + \frac{120i}{N^4} \int_{-\infty}^{\infty} \tilde{f}(u) [T_{2n}^{1/2} H_n T_{2n}^{1/2}]_{jj} * [T_{2n}^{1/2} H_n T_{2n}^{1/2} W_n T_{1n}]_{jk} \times [T_{2n}^{1/2} H_n T_{2n}^{1/2} W_n T_{1n}]_{jk} \times [T_{2n}^{1/2} H_n T_{2n}^{1/2} W_n T_{1n}]_{jk} (u) e^{ixs_0(\theta)} du + \frac{24i}{N^4} \int_{-\infty}^{\infty} \tilde{f}(u) [T_{2n}^{1/2} H_n T_{2n}^{1/2} W_n T_{1n}]_{jk} * [T_{2n}^{1/2} H_n T_{2n}^{1/2} W_n T_{1n}]_{jk} * [T_{2n}^{1/2} H_n T_{2n}^{1/2} W_n T_{1n}]_{jk} (u) e^{ixs_0(\theta)} du \leq Q_{jk} + Q_{jk}^2 + Q_{jk}^3 + Q_{jk}^4 + Q_{jk}^5 + Q_{jk}^6.\]

From (4.5), we deduce that

\[
\left| \frac{1}{N} \sum_{jk} EQ_{jk} \right| \leq \frac{C}{N} \int_{-\infty}^{\infty} |u|^3 \tilde{f}(u) E \left\| T_{2n}^{1/2} H_n T_{2n}^{1/2} \right\|^2 \left\| T_{2n}^{1/2} H_n T_{2n}^{1/2} W_n T_{1n} \right\| du \leq \frac{C}{\sqrt{N}} \int_{-\infty}^{\infty} |u|^3 \tilde{f}(u) du = O(N^{-1/2}).
\]
Applying the same arguments as above one can conclude that
\[
\left| \frac{1}{N} \sum_{j,k} E \left(Q_{jk}^3 + Q_{jk}^4 + Q_{jk}^5 + Q_{jk}^6 \right) \right| \leq \frac{C}{\sqrt{N}} \int_{-\infty}^{\infty} \left(|u|^3 + |u|^5 \right) \tilde{f}(u) du = O(N^{-1/2}).
\]
It follows that
\[
|I_2| \leq C\delta_n \to 0.
\]
This fact finishes the proof of Lemma 2.3.

APPENDIX A.

This section is to prove some lemmas which are used in the proof of Lemma 2.3.

Lemma A.1. Under the conditions of Theorem 2.1 we have for \(z \in C_a \) and \(p \geq 1 \)
\[
E|\beta_k(z)|^p \leq C, \quad E|\bar{\beta}_k(z)| \leq C, \quad |b_k(z)| \leq C, \quad |\psi_k(z)| \leq C
\]
where \(\beta_k(z), \bar{\beta}_k(z), b_k(z), \psi_k(z) \) are defined in (3.5) and (3.6).

Proof. We only prove \(E|\beta_k(z)|^p \leq C \) and the others are similar. Note that
\[
N^{-1} |y_k^* D_k^{-1}(z)y_k| \leq \frac{\|y_k\|^2}{Nv_0}
\]
which gives
\[
(A.1) \quad |\beta_k(z)| \leq \frac{1}{1 - \frac{s_k \|y_k\|^2}{Nv_0}} < 2 \quad \text{if} \quad \frac{s_k \|y_k\|^2}{Nv_0} \leq 1/2
\]
where \(\|y_k\|^2 = \sum_{j=1}^{N} y_k^2_j \). Denoting by \(\mathbf{O} \Lambda \mathbf{O}^* \) the spectral decomposition of \(\mathbf{B}_{nk} \) and
\[
\Lambda = \text{diag}(\lambda_1, \ldots, \lambda_N),
\]
we obtain
\[
|\beta_k(z)| \leq \frac{1}{N^{-1}s_k y_k^* D_k^{-1}(z)y_k} \leq \frac{1}{N^{-1}s_k v_0 \sum_{j=1}^{N} \frac{(y_k y_k^* \mathbf{O})(\mathbf{O} y_k y_k^*)}{(t_j - u)^2 + v_0^2}}.
\]
\[
(A.2) \quad \leq \frac{2 \max_{1 \leq j \leq N} \lambda_j^2 + 2 |z|^2}{N^{-1} v_0 \|y_k\|^2 |s_k|} \leq \frac{4 \max_{1 \leq j \leq N} \lambda_j^2 + 4 |z|^2}{v_0^2} \quad \text{if} \quad \frac{s_k \|y_k\|^2}{Nv_0} > 1/2.
\]
Combining (A.1) with (A.2), we have
\[
|\beta_k(z)| \leq \frac{4 \max_{1 \leq j \leq N} \lambda_j^2 + 4 |z|^2}{v_0^2} + 2 \leq 4 \max_{1 \leq j \leq N} \lambda_j^2 + 6 |z|^2 \quad \text{if} \quad \frac{s_k \|y_k\|^2}{Nv_0} > 1/2.
\]
Moreover,
\[
\max_{1 \leq j \leq N} \lambda_j^2 \leq \text{tr} \mathbf{B}_{nk}^2 \leq \frac{\tau^4}{N} (\mathbf{x}_k^* \mathbf{x}_k)^2 \leq \tau^4 \delta_n^4 Nn^2 \leq CN^3.
\]
It follows that

\[(A.3) \quad |\beta_k(z)| \leq \begin{cases} \frac{4\eta^2 + 4\eta \beta + 6\beta^2}{\eta^2} \leq C, & \text{if } \eta_I \leq \lambda_{\text{min}} \leq \lambda_{\text{max}} \leq \eta, \\ CN^3, & \text{otherwise}. \end{cases} \]

Using (3.1), (3.2) and (A.3), we have for suitably large \(l \)

\[
E|\beta_k(z)|^{\rho} \leq E|\beta_k(z)|^{\rho} I(\eta_I \leq \lambda_{\text{min}} \leq \lambda_{\text{max}} \leq \eta_I) + E|\beta_k(z)|^{\rho} I(\lambda_{\text{min}} < \eta_I \text{ or } \lambda_{\text{max}} > \eta_I) \\
\leq C + CN^3 P(\lambda_{\text{min}} < \eta_I \text{ or } \lambda_{\text{max}} > \eta_I) \\
\leq C + CN^3 n^{-l} \leq C.
\]

This completes the proof of this lemma.

\(\square \)

Lemma A.2. Under the conditions of Theorem 2.1, we have

\[
\sup_{z \in C_n} |Eg_{2n}(z) - g_{2n}^0(z)| \to 0.
\]

Proof. Similarly to the proof of (4.1) in \([1]\), one can check that

\[
\sup_{z \in C_n} |Em_n(z) - m(z)| \to 0 \quad \text{as } n \to \infty
\]

By Lemma B.1 (5.38) and (5.41), we have

\[
\sup_{z \in C_n} \left| \frac{1}{n} \sum_{j=1}^{n} (E\beta_j(z) - \psi_j(z)) \right| \leq C|E\beta_j(z) - \psi_j(z)| \leq \frac{C}{N} \to 0.
\]

Note that

\[
|Eg_{2n}(z) - g_{2n}^0(z)| = \left| \frac{1}{n} \sum_{j=1}^{n} \left(\frac{s_j}{1 + s_j Eg_{2n}(z)} \right) \right|
\]

\[
= \left| \frac{1}{n} \sum_{j=1}^{n} \left(\psi_j(z) - \frac{1}{1 + s_j g_{2n}^0(z)} \right) \right|
\]

\[
\leq \left| \frac{1}{n} \sum_{j=1}^{n} (E\beta_j(z) - \psi_j(z)) \right| + |z||Em_n(z) - m(z)| + |z||m_n(z) - m(z)| \to 0.
\]

Consequently, it suffices to prove that \(\frac{1}{n} \sum_{j=1}^{n} \left(\frac{s_j}{1 + s_j Eg_{2n}(z)} \right) \) has a lower bound.

We prove it by contradiction. By (1.6), one has

\[(A.4) \quad (zm(z))' = g_z'(z) \int \frac{x}{(1 + g_z(x))^2} dH_1.
\]

Suppose that there exists a sequence \(\{z_h \in C_n\} \) such that \(z_h \to z_0 \) and

\[
\int \frac{x}{(1 + g_z(x))^2} dH_1(x) \to 0.
\]
From (A.4) and the continuity of $g_2(z)$, it follows that
(A.5)
$$(z_0^{m(z_h)})' \rightarrow (z_0^{m(z_0)})' = 0.$$
Then from the equation $m(z_0) + z_0m'(z_0) = 0$, we obtain another solution of $m(z)$ which has nothing to do with $H_1(z)$ and $H_2(z)$. However, this contradicts to the fact that $m(z)$ is a unique solution of (1.3). Hence, we get

$$
\left| \int \frac{x}{(1 + g_2(z)x)^2} dH_1(x) \right| > 0.
$$

By continuity and convergence of $Eg_2(z)$, we see that for all large n

$$
\left| \frac{1}{n} \sum_{j=1}^{n} \frac{s_j}{(1 + s_jEg_2(z))(1 + s_jg_2^0(z))} \right| > 0.
$$

Therefore, we conclude that

$$
\sup_{z \in C_n} |Eg_2(z) - g_2^0(z)| \rightarrow 0.
$$

\[\square\]

Lemma A.3. For $z \in C_n$, we have for any positive $p \geq 1$

$$
E|\beta_j(z)|^p \leq C^p
$$

where $\beta_j(z)$ is defined in (3.3).

Proof. By formula (3.7), we get

$$
D^{-1}(z) - D_j^{-1}(z) = -\frac{1}{N} s_j \beta_j(z) D_j^{-1} y_j y_j' D_j^{-1}.
$$

This yields

$$
\frac{1}{N} s_j y_j' D^{-1}(z) y_j = \frac{1}{N} s_j y_j' D_j^{-1}(z) y_j \left(1 - \frac{1}{N} s_j \beta_j(z) y_j' D_j^{-1} y_j\right)
= \frac{1}{N} s_j \beta_j(z) y_j' D_j^{-1}(z) y_j = 1 - \beta_j(z).
$$

If $\eta_l < \lambda_{\min}^{B_n} \leq \lambda_{\max}^{B_n} = \eta_r$ and $\eta_l < \lambda_{\min}^{I_n} \leq \lambda_{\max}^{I_n} = \eta_r$, then we have

$$
|\frac{1}{N} s_j y_j' y_j| = \max_{\|f\|=1} f'(B_n - B_{n_i}) f \leq \max_{\|f\|=1} f' B_{n_i} f + \min_{\|f\|=1} f' B_{n_i} f
\leq \lambda_{\max}^{B_n} + \lambda_{\min}^{I_n} \leq 2(\eta_l + |\eta_l|).
$$

Otherwise,

$$
|\frac{1}{N} s_j y_j' y_j| \leq \frac{1}{N} \sum_{k=1}^{N} |x_{jk}|^2 \leq \frac{\tau^2}{n} \delta_n^2 n \leq n.
$$
Therefore, one has

\[|\beta_j(z)| = 1 - \frac{1}{N} \psi_j |y| D^{-1}(z) y | \leq 1 + 2(|\eta_r| + |\eta_l| \max \frac{1}{x_r - \eta_r}, \frac{1}{\eta_l - x_l}, \frac{1}{y_0}) \]

+ \alpha^{2+\alpha} I(\lambda_{\min} < \eta_l \text{ or } \lambda_{\max} < \eta_r \text{ or } \lambda_{\min} > \eta_l \text{ or } \lambda_{\max} < \eta_r).

By (3.1) and (3.2), we have for any positive \(p \geq 1 \) and \(l > 3 \)

\[E|\beta_j(z)|^p \leq C_1^p + C_2^p n^{-l} \leq C^p. \]

\[
\text{Lemma A.4. Let } 1 \leq j \leq N, 1 \leq k \leq n. \text{ Recall the definition of } G_n \text{ in (4.1). Then, for any } 1 \leq a, b \leq N, \text{ we have}

\[
\frac{\partial g_{ab}}{\partial w_{jk}} \bigg|_{ab} = \frac{1}{N} \left[T_{2n}^{1/2} \right]_{aj} \left[T_{1n} W'_{n} T_{2n}^{1/2} \right]_{kb} + \frac{1}{N} \left[T_{2n}^{1/2} W_n T_{1n} \right]_{ak} \left[T_{2n}^{1/2} \right]_{jb}.
\]

\[
\text{Proof. It is obvious that}
\]

\[
\frac{\partial G_n}{\partial w_{jk}} = \frac{1}{N} T_{2n}^{1/2} \frac{\partial W_n}{\partial w_{jk}} T_{1n} W_n T_{2n}^{1/2} + \frac{1}{N} T_{2n}^{1/2} W_n T_{1n} \frac{\partial W_n}{\partial w_{jk}} T_{2n}^{1/2}
\]

\[
= \frac{1}{N} T_{2n}^{1/2} e_j e'_k T_{1n} W_n T_{2n}^{1/2} + \frac{1}{N} T_{2n}^{1/2} W_n T_{1n} e_j e'_k T_{2n}^{1/2}.
\]

This yields

\[
\left[\frac{\partial G_n}{\partial w_{jk}} \right]_{ab} = \frac{1}{N} \left[T_{2n}^{1/2} \right]_{aj} \left[T_{1n} W'_n T_{2n}^{1/2} \right]_{kb} + \frac{1}{N} \left[T_{2n}^{1/2} W_n T_{1n} \right]_{ak} \left[T_{2n}^{1/2} \right]_{jb}.
\]

\[
\text{Lemma A.5. Let } 1 \leq j \leq N, 1 \leq k \leq n. \text{ Recall the definition of } H_n(t) \text{ in (4.2). Then, for any } 1 \leq d, l \leq N

\[
\frac{\partial h_{dl}}{\partial w_{jk}} = \frac{i}{N} \left[H_n(t) T_{2n}^{1/2} \right]_{dj} * \left[T_{1n} W_n T_{2n}^{1/2} H_n(t) \right]_{jl} (t) + \frac{i}{N} \left[H_n(t) T_{2n}^{1/2} W_n T_{1n} \right]_{dk} * \left[T_{2n}^{1/2} H_n(t) \right]_{jl} (t)
\]

where \(h_{dl} = (H_n(t))_{dl} \) and \(f * g(t) = \int_0^t f(s)g(t - s)ds. \)

\[
\text{Proof. Applying Lemma A.4 and Lemma B.8 we get}
\]

\[
\frac{\partial H_n(t)}{\partial w_{jk}} = \sum_{a,b=1}^N \frac{\partial H_n(t)}{\partial g_{ab}} \frac{\partial g_{ab}}{\partial w_{jk}} = \frac{i}{N} \sum_{a,b=1}^N \int_0^t e^{iG_n} e_j e'_k e^{(1-s)G_n} ds
\]

\[
\times \left(\left[T_{2n}^{1/2} \right]_{aj} \left[T_{1n} W'_n T_{2n}^{1/2} \right]_{kb} + \left[T_{2n}^{1/2} W_n T_{1n} \right]_{ak} \left[T_{2n}^{1/2} \right]_{jb} \right).
\]

Hence, one has

\[
\frac{\partial h_{dl}}{\partial w_{jk}} = \frac{i}{N} \sum_{a,b=1}^N h_{da} * h_{lb}(t) \left(\left[T_{2n}^{1/2} \right]_{aj} \left[T_{1n} W'_n T_{2n}^{1/2} \right]_{kb} + \left[T_{2n}^{1/2} W_n T_{1n} \right]_{ak} \left[T_{2n}^{1/2} \right]_{jb} \right)
\]
Proof. By the inverse Fourier transform, we obtain
\[\frac{\partial S(\theta)}{\partial w_{jk}} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(u) \left(\frac{\partial H_n(u)}{\partial w_{jk}} \right) du. \]

It follows from Lemma A.5 that
\[
\frac{\partial S}{\partial w_{jk}} = \frac{2i}{N} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \tilde{f}(u) \sum_{d=1}^{N} \left[H_n T^{1/2} \right]_{dj} \ast \left[T_{1n} W_n T^{1/2} H_n \right]_{kl} (u) du = \frac{2}{N} \int_{-\infty}^{\infty} u \tilde{f}(u) \left[T_{2n} H_n(u) T^{1/2} T_{1n} \right]_{jk} du = \frac{2}{N} \left[T_{2n} \tilde{f}(G_n) T_{1n} \right]_{jk}.
\]

Lemma A.7. Suppose A, B, C, D are p \times n random matrices and their moments of the spectral norms are bounded. Then we get
\[
\begin{align*}
(A.6) \quad \sum_{j,k} |E A_{jj} B_{jk} C_{kk}| & \leq C n^{5/4} \\
(A.7) \quad \sum_{j,k} |E A_{jk} B_{jk} C_{jk}| & \leq C n^{5/4}.
\end{align*}
\]

Proof. Using the Cauchy-Schwarz inequality, we have
\[
\left| \sum_{j,k} E A_{jj} B_{jk} C_{kk} \right| \leq \left(\sum_j E |A_{jj}|^2 \right)^{1/2} \left(\sum_k E \left| \sum_j B_{jk} C_{kk} \right|^2 \right)^{1/2}
\]
\[
\leq C \sqrt{n} \left(\sum_{k_1, k_2} E (B'B)_{k_1 k_2} C_{k_1 k_1} C'_{k_2 k_2} \right)^{1/2}
\]
\[
\leq C \sqrt{n} \left(\sum_{k_1, k_2} E (B'B)_{k_1 k_2}^2 \right)^{1/4} \left(\sum_{k_1, k_2} E |C_{k_1 k_1}|^2 |C'_{k_2 k_2}|^2 \right)^{1/4}
\]
\[
\leq C n^{5/4}
\]
and

\[
\left| \sum_{j,k} E A_{jk} B_{jk} C_{jk} \right| \leq \left(\sum_{j,k} E |A_{jk}| |B_{jk}| \right)^{1/2} \left(\sum_{j,k} E |A_{jk}| |B_{jk}| |C_{jk}|^2 \right)^{1/2} \\
\leq \left(\sum_{j,k} E |A_{jk}| |B_{jk}| \right)^{3/4} \left(\sum_{j,k} E |A_{jk}| |B_{jk}| |C_{jk}|^4 \right)^{1/4} \\
\leq C \sqrt{n} \left(\sum_{j,k} E |A_{jk}|^2 \right)^{3/8} \left(\sum_{j,k} E |B_{jk}|^2 \right)^{3/8} \\
\leq C n^{5/4}.
\]

\[\square\]

APPENDIX B.

In this section, we list several technical facts that will be often used in the paper.

Lemma B.1 (Lemma B.26 in [1]). Let \(A = (a_{jk}) \) be an \(n \times n \) nonrandom matrix and \(X = (x_1, \cdots, x_n)^T \) be a random vector of independent entries. Assume that \(Ex_j = 0, E|x_j|^2 = 1 \) and \(E|x_j|^l \leq v_l \). Then for \(p \geq 1, \)

\[E|X'AX - tr(A)|^p \leq C_p \left((v_4 tr(AA')^{p/2})^{2} + v_4 tr (AA')^{p/2} \right) \]

where \(C_p \) is a constant depending on \(p \) only.

Lemma B.2 (Lemma 2.4 in [1]). Suppose for each \(Y_{n1}, Y_{n2}, \cdots, Y_{nr_n} \) is a real martingale difference sequence with respect to the increasing \(\sigma \)-field \(\{F_{nj}\} \) having second moments. If as \(n \to \infty, \)

(i) \[\sum_{j=1}^{r_n} E(Y_{nj}^2 | F_{nj-1}) \stackrel{i.p.}{\to} \sigma^2, \]

where \(\sigma^2 \) is a positive constant, and for each \(\varepsilon \geq 0, \)

(ii) \[\sum_{j=1}^{r_n} E(Y_{nj} I(|Y_{nj} \geq \varepsilon|)) \to 0, \]

then \(\sum_{j=1}^{r_n} Y_{nj} \overset{D}{\to} N(0, \sigma^2). \)

Lemma B.3 (Lemma 2.6 in [19]). Let \(z \in \mathbb{C}^+ \) with \(v = |z|, \ A \) and \(B \) \(N \times N \) with \(B \) Hermitian, \(\tau \in \mathbb{R}, \) and \(q \in \mathbb{C}^N. \) Then

\[\left| tr \left(\left((B - zI)^{-1} - (B + \tau qq^* - zI)^{-1} \right) A \right) \right| \leq \frac{\|A\|}{v}. \]
Lemma B.4 (Abel lemma). Suppose \(\{f_k\} \) and \(\{r_k\} \) are two sequences. Then, we have
\[
\sum_{k=1}^{n} f_k(r_{k+1} - r_k) = f_{n+1}r_{n+1} - f_1r_1 - \sum_{k=1}^{n} r_{k+1}(f_{k+1} - f_k).
\]

Lemma B.5 (inequality (4.8) in [1]). Let \(M \) be \(N \times N \) nonrandom matrix, we find for \(j \in \{1, 2, \cdots, n\} \)
\[
E|\text{tr}D_j^{-1}M - E\text{tr}D_j^{-1}M|^2 \leq C\|M\|^2
\]

Lemma B.6 (Theorem A.37 in [2]). If \(A \) and \(B \) are two \(n \times p \) matrices and \(\lambda_k, \delta_k, k = 1, 2, \cdots, n \) denote their singular values. If the singular values are arranged in descending order, then we have
\[
\nu \sum_{k=1}^{\nu} |\lambda_k - \delta_k|^2 \leq \text{tr}[(A - B)(A - B)^*]
\]
where \(\nu = \min(p, n) \).

Lemma B.7. For rectangular matrices \(A, B, C, D \), we have
\[
|\text{tr}(ABCD)| \leq \|A\|\|C\|\text{tr}(BB^*)^{1/2}\text{tr}(DD^*)^{1/2}.
\]

Lemma B.8 (Duhamel formula). Let \(M_1, M_2 \) be \(n \times n \) matrices and \(t \in \mathbb{R} \). Then we have
\[
e^{(M_1 + M_2)t} = e^{M_1t} + \int_0^t e^{M_1(t-s)}M_2e^{(M_1 + M_2)s}ds.
\]
Moreover, if \(A(t) \) is a matrix-valued function of \(t \in \mathbb{R} \) that is \(C^\infty \) in the sense that each matrix element \([A(t)]_{jk}\) is \(C^\infty \). Then
\[
\frac{de^{A(t)}}{dt} = \int_0^1 e^{sA(t)}A'(t)e^{(1-s)A(t)}ds.
\]

References

[1] Z. D. Bai and J. W. Silverstein. CLT for linear spectral statistics of large-dimensional sample covariance matrices. The Annals of Probability, 32(1A): 553–605, 2004.
[2] Z. D. Bai and J. W. Silverstein. Spectral analysis of large dimensional random matrices. Springer, 2010.
[3] Z. D. Bai and Y. Q. Yin. Limit of the smallest eigenvalue of a large dimensional sample covariance matrix. The Annals of Probability, 21(3): 1275–1294, 1993.
[4] P. Billingsley. Convergence of Probability Measures. Wiley, New York, 1968.
[5] A. Boutet de Mondvel, A. Khorunzhy and V. Vasilchuk. Limiting eigenvalue distribution of random matrices with correlated entries. Markov Processes and Related Fields 2, 607-636. 1996.
[6] R. Couillet and W. Hachem. Analysis of the limiting spectral measure of large random matrices of the separbale covariance type. Random Matrices: Theory and Applications, 3(4):1450016, 2014.
[7] F. Gotze, A. Naumov, and A. Tikhomirov. Distribution of linear statistics of singular values of the product of random matrices. arXiv preprint arXiv:1412.3314v2, 2015.
[8] W. Hachem, P. Loubaton, and J. Najim. The empirical distribution of the eigenvalues of a Gram matrix with a given variance profile. *Ann. Inst. H. Poincare Probab. Statist.*, 42(6):649-670, 2006.

[9] T. Jiang and F. Yang. Central Limit Theorems for Classical Likelihood Ratio Tests for High-Dimensional Normal Distributions. *Ann. Stat.*, 41(4), 2029-2074, 2013.

[10] D. Jonsson. Some limit theorems for the eigenvalues of a sample covariance matrix *J. Multivariate Anal.*, 12:1-8, 1982.

[11] O. Ledoit and M. Wolf. Some hypothesis tests for the covariance matrix when the dimension is large compared to the sample size. *Ann. Stat.*, 30(4), 1081-1102, 2002.

[12] C. Leng and C. Y. Tang. Sparse matrix graphical models. *Journal of the American Statistical Association*, 107, 1287–1300. 2012.

[13] A. Lytova and L. Pastur. Central limit theorem for linear eigenvalue statistics of random matrices with independent entries. *The Annals of Probability*, 37(5): 1778–1840, 2009.

[14] J. Najim, J. F. Yao. Gaussian fluctuations for linear spectral statistics of large random covariance matrices. *Ann. Applied Prob.*, 26(3), 1837-1887, 2016.

[15] A. Onatskiy. Determining the Number of Factors From Empirical Distribution of Eigenvalues. *Review of Economics and Statistics*, 92(4), 1004-1016, 2010.

[16] G. M. Pan and W. Zhou. Central limit theorem for signal-to-interference ratio of reduced rank linear receiver. *The Annals of Applied Probability*, 18: 1232–1270, 2008.

[17] D. Paul and J. Silverstein. No eigenvalues outside the support of limiting empirical spectral distribution of a separable covariance matrix. *Journal of Multivariate Analysis* 100(1), 37-57, 2009.

[18] M. Shcherbina. Central limit theorem for linear eigenvalues statistics of Wigner and sample covariance random matrices. *Math. Physics, Analysis, Geometry*, 72: 176–192, 2011.

[19] J. W. Silverstein and Z. D. Bai. On the empirical distribution of eigenvalues of a class of large dimensional random matrices. *Journal of Multivariate analysis*, 54(2): 175–192, 1995.

[20] J. Wishart. The generalised product moment distribution in samples from a normal multivariate population. *Biometrika*, 20(1/2): 32–52, 1928.

[21] J. F. Yao, S. R. Zheng and Z. D. Bai. Sample covariance matrices and high-dimensional data analysis. Cambridge University Press. 2015.

[22] Y. Yin, Z. D. Bai, and P. Krishnaiah. On the limit of the largest eigenvalue of the large dimensional sample covariance matrix. *Probability Theory and Related Fields*, 78(4): 509–521, 1988.

[23] L. X. Zhang. Spectral analysis of large dimensional random matrices. The phd thesis, 2006. *Natioanl University of Singapore.*

E-mail address: baizd@nenu.edu.cn

School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou, P.R.C., 221116.

E-mail address: lihq118@nenu.edu.cn

Division of Mathematical Sciences, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371.

E-mail address: GMPAN@ntu.edu.sg