Improving the sustainability assessment method SBTool Urban – A critical review of construction and demolition waste (CDW) indicator

G Kamino¹, S Gomes² and L Bragança³
University of Minho, Department of Civil Engineering, Campus de Azurém, Guimarães 4800-048, Portugal

¹gustavokamino@gmail.com, ²gomesstefano@gmail.com, ³braganca@civil.uminho.pt

Abstract. Construction and demolition waste (CDW) are one of the biggest issues in waste generation that cities must deal. In EU, about 25% to 30% of all waste are derived from activities linked to construction and demolition. Such materials like concrete, bricks, wood, glass, metals, plastic and others, have high potential to be recycled or even reused in the process of urbanization. According to the Waste Framework Directive (2008/98/EC), by the year of 2020, a minimum of 70% (by weight) of CDW must be prepared for reuse, recycled or undergo other material recovery. Additionally, in Portugal, there is the Decree-Law nº 46/2008 that regulates the operations of CDW management, by prevention and re-utilization, and the process of collection, transport, storage, treatment, recovery, and disposal. Despite this, the level of CDW reuse varies greatly across the country. The SBTool-PT Urban Planning is an adaptation of the SBTool - international method of sustainability assessment - for use in urban projects into the Portuguese context. The methodology is divided into 3 dimensions (environmental, social and economic), each of then subdivided into categories (14 total) that have their own indicators. One of these indicators is called CDW, and it is related to how much of it is re-used and how it is treated. This study focuses on this indicator, reviewing his process of measurement and calculation, by comparing it with the existing rules, and others assessment methodologies. The findings of this study will validate its calculation process and indicate future developments.

Keywords: CDW, sustainability, assessment, urban, waste, indicator.

1. Introduction
Waste production is a common characteristic among most human activities. The construction industry is one of the top waste generators of the world. According to Eurostat 2015 [1], construction and demolition activities produceD in Europe 820 million tons (Mg) of waste, corresponding to about 35% of all waste generated.
The construction and demolition waste (CDW) are derived from construction, refurbishment or demolition, of any kind of building, roads or public spaces. It contains different kinds of materials, most of them inert and non-hazardous, but also non-inert and hazardous waste. On average, up to 85% of CDW is concrete, ceramics, and masonry, which can be easily reused as an inert material [2].

Although most of the CDW are inert materials, it is characterized by its high volume and weight, thus having a significant environmental impact due to logistics and land occupation.

Regarding CDW reuse, on 2008, the European Commission through the Waste Framework Directive (WFD) 2008/98/EC [3] proposed that by the year of 2020, the preparing for reuse, recycling and backfilling of non-hazardous construction and demolition waste shall be increased to a minimum of 70% by weight. Subsequent, the Portuguese Government approved a series of legislation regarding the CDW use and management in line with the WFD. This resulted in an early achievement of the 70% target projected for 2020, as seen in figure 1.

According to recent studies [4], one of the key best practices/instruments is the adoption of sustainability assessment methods that can measure the level of sustainability of CDW management operations. This paper has the objective of review the SBTool Urban CDW indicator, by reviewing the legislation, comparing it to other sustainability assessment methods and indicate future development.

![Figure 1. CDW treated – Country performance - Eurostat 2014](1)

2. Legal Framework and Policy

Published on 2008, the decree-law 46/2008 of 12 March [5], establishes the legal framework of CDW management, including prevention, reuse, and the operations of collection, transport, storage, treatment, recovery, and disposal. Its main goal is to create legal conditions for the proper management of CDW, focusing on the prevention of risky waste generation, separating at the source, recycling and other forms of recovery, in consideration of reducing the use of natural resources and minimizing landfilling.

The main points [6] of the decree-law 46/2008 are the following:

- The responsibility to manage CDW belongs to the producer (article 3).
- Uncontaminated soils and rocks must be used at the construction site or another site (article 6).
- Incorporation of recycled CDW at construction works must comply with national or Eu standards (article 7).
- CDW which cannot be reused has to be sorted at the construction site (for reuse or recycle) or delivered to a licensed waste operator (article 8).
- CDW landfilling is only possible after sorting and its subject to taxation (article 21).
- Creation of innovative mechanisms in planning (articles 10 and 11).
- Permit exception for certain CDW management operations (article 13).
- Information duty through an electronic platform (SIRAPA) (article 15).
Other legislation and policy were published following the decree-law 46/2008, regarding CDW management. On table 1, it is shown these legislations and its main objectives.

Table 1. Key CDW Legislation and policy

Legislation	Objective
Decree-Law 46/2008 [5]	Establishes the legal framework for waste management resulting from construction works or demolition of buildings or collapses.
Decree-Law 18/2008 [7]	Establishes the elaboration and implementation of a CDW prevention and management plan of all public construction works.
Decree-Law 73/2011 [8]	Defines CDW and introduces the target of incorporating at least 5% of recycled materials or materials containing recycled components.
Decree-Law 26/2010 [9]	Obliges the CDW holder from private construction works (with mandatory permit) to keep a record on CDW generated.
Ordinance 417/2008 [10]	Defines the documentation which certifies CDW transport and reception at private waste management facilities.
Ordinance 40/2014 [11]	Criteria for the inventory of materials containing asbestos and their characterization, in the design phase.
National Waste Management Plan for 2014-2020 [12]	Includes the national Waste Prevention Strategy. In this plan, is included a general description of CDW and the target set to the WFD.

3. SBTool Urban

The SBTool Urban is a methodology for sustainability assessment of urban areas on the Portuguese context, applicable on existing or not urban areas, based on the SBTool PT-PU [13], focused on the sustainability evaluation of urban planning operations.

The fundamental guidelines of the SBTool Urban methodology are [14]:

1. Improve the space organization for the urban tissue consolidation;
2. Promote the environmental quality of the urban area;
3. Improve the quality of life of urban inhabitants;
4. Instigate the economic competitiveness on the territory;
5. Promote the urban sustainability and its assessment.

The methodology is applicable to the planning of new urban areas, as well as to the evaluation of existing areas, and to the planning of interventions in urban areas aiming at their requalification or regeneration. The adoption of SBTool Urban in the project phase stands out by establishing strategic guidelines that are useful for the planning and implementation of measures that make urban areas more sustainable.

The structure of the assessment and certification system is organized according to the three dimensions of sustainable development - environmental, social and economic - each of which is called a group of corresponding categories and indicators [15]. In total there are 12 categories, with 39 sustainability indicators, and 49 evaluation parameters. For each category and indicator, relative weights were assigned through a quasi-objective method, designed to find a balance between usability and scientific correction. Table 2 identifies the dimensions, categories, and indicators used in the SBTool Urban methodology.

3.1. Construction and Demolition Waste Indicator (CDW)

The CDW indicator has the objective to promote the CDW reuse on site, reducing the use of virgin materials and its impacts of extraction, transport, and disposal. Otherwise, it also intends to promote the CDW reclaiming when onsite reuse isn’t possible.
Table 2. SBTool Urban Methodology – Dimensions, Categories, and Indicators

DIMENSION	CATEGORY	INDICATOR
Environmental	C1. Urban Design	I1. Passive Solar Planning
		I2. Ventilation Potential
		I3. Urban Network
	C2. Use of Land and Infrastructure	I4. Land Natural Aptitude
		I5. Density and Flexibility of Uses
		I6. Urban Land Reuse
		I7. Built Heritage Revitalization
		I8. Technical Infrastructure Network
	C3. Ecology and Biodiversity	I9. Green Spaces Distribution
		I10. Green Spaces Connectivity
		I11. Autochthone Vegetation
		I12. Environmental Governance
	C4. Energy	I13. Energy Efficiency
		I14. Renewable Energy
		I15. Centralized Energy Management
	C5. Water	I16. Potable Water Consume
		I17. Centralized Water Management
		I18. Effluent Management
	C6. Materials and Waste	I19. Material’s Impact
		I20. Construction and Demolition Waste
		I21. Urban Soil Waste Management
Social	C7. Exterior Comfort	I22. Air Quality
		I23. Exterior Thermal Comfort
		I24. Noise Pollution
		I25. Light Pollution
	C8. Safety	I26. Safety in the Streets
		I27. Technological and Natural Risks
	C9. Amenities	I28. Service Proximity
		I29. Leisure Equipment
		I30. Local Food Production
	C10. Mobility	I31. Public Transportation
		I32. Pedestrian Accessibility
		I33. Cycling Network
	C11. Local and Cultural Identity	I34. Public Spaces
		I35. Heritage Enhancement
		I36. Social Inclusion and Integration
Economic	C12. Employment and Economic	I37. Economic Viability
	Development	I38. Local Economy
		I39. Employment

The calculation process of this indicator is done by combining two values. The first is the percentage of incorporation of recycled inert materials on public space materials, which is calculated dividing the weight of recycled or reused inert materials incorporated on public spaces, by the total of inert material in public spaces. Them, the percentage is normalized considering 75% the best practice and 25% the usual practice.

The second is a verification list concerning the produced CDW destination and the used CDW origin, as seen on table 3. The score on this list is totalized and normalized, considering 25 credits the best practice, and 5 credits the usual practice.

These two values are combined in the proportion of 60% of the percentage of incorporation of recycled inert materials, and 40% of the CDW management verification list. The result is presented on a scale of level A+ to E, according to the table 4.
Table 3. SBTool Urban – CDW management verification list

Item	Requirement	Credits
1.	Destination (max. 80km) of CDW produced and not used on-site (choose one option):	
1.1	Collection, separation and targeting of 10-49% of CDW produced at site for recovery (recycling or recycling)	5
1.2	Collection, separation and targeting of 50-89% of CDW produced at site for recovery (recycling or recycling)	10
1.3	Collection, separation and targeting of 90-100% of CDW produced at site for recovery (recycling or recycling)	15
2.	Origin of CDW used on-site (choose one option):	
2.1	CDW used originated on-site	15
2.2	CDW used from external origin, max 80km	10

Table 4. CDW Indicator Evaluation

Level	Rate
A+	\(G_{RCD} \geq 1,00 \)
A	\(0,70 \leq G_{RCD} \leq 1,00 \)
B	\(0,40 \leq G_{RCD} \leq 0,70 \)
C	\(0,10 \leq G_{RCD} \leq 0,40 \)
D	\(0,00 \leq G_{RCD} \leq 0,10 \)
E	\(G_{RCD} \leq 0,00 \)

4. Urban Assessment Methodologies and Comparison

In the worldwide context, several sustainability assessment tools are used to evaluate operations of urban planning and design. Although their different origins and calculation methods, these tools have a lot of common objectives, such as to promote the sustainable development regarding environmental, social and economic impacts; to quantify measures for determining sustainability levels and to support all kind of stakeholders on the decision-making process. Thus, by comparing different methodologies, it is possible to visualize each one strength and weaknesses points.

4.1. CDW on other urban assessment methodologies

To make the comparison, it was selected other three different urban sustainability assessment methodologies, the LEED-ND[16], developed on the United States by the US Green Building Council (USGBC), the BREEAM Communities [17], developed on United Kingdom by BRE Global and CASBEE for Urban Development[18], developed on Japan by Japan Sustainable Building Consortium (JSBC) and Japan Green Building Council (JaGBC).

Regarding the CDW management, all systems have indicators that are counted to score credits on the final evaluation. As seen on table 5, they have different approaches and priorities and may not separate CDW from others reused and recycled materials, so they cannot be considered CDW management exclusive indicators. This analysis contemplated the indicator that scores any kind of CDW reuse or recycle.

The corresponding LEED-ND CDW management indicator is called Recycled and Reused Infrastructure. According to the manual, its objective is to avoid and minimize the environmental impact of extracting and processing virgin materials. The only credit is given if at least 50% of the total mass of infrastructure materials are from recycled and reused contents. There is not an intermediate rate on this indicator.

On BREEAM Communities, the indicator Low Impact Materials are the one that considers CDW reuse and recycle. It is divided into two parts, the first called Sustainable Materials, that calculates the
use of low impact materials (specified according to its document Green Guide to Specification) on the public realm, and the second called Road Construction Materials, that considers the locally reclaimed or constituted from recycled materials incorporated on the road construction materials. Only the second part measured CDW reuse and recycle, and both parts have three credits, each corresponding to different percentages of material use.

CASPbee, the Japanese urban assessment method, has the least appropriate indicator that can be related to CDW reuse or recycle. Under the category of Resources Recycling, the indicator Recycled Material, verify the utilization of recycled materials in structural frame materials and non-structural materials. It is calculated by the number of items that have Japanese certification for low impact materials, thus, there is no specific points for CDW reuse or recycle.

System	Indicator	Parameters	Score Method
LEED-ND v4[16]	Recycled and Reused Infrastructure	At least 50% of the total mass of infrastructure materials should be from recycled content and on-site reused materials.	1 credit if the requirement is completed.
BREEAM 2012[17]	Low Impact materials	Road construction materials should be at least 15% (by volume or weight) locally reclaimed or constituted from recycled material.	1 credit for at least 15%, 2 credits for 25-30%, 3 credits for greater than 30%.
CASBEE [18]	Resources Recycling	The utilization status is evaluated, regarding the number of articles used. Recycled materials are evaluated, but there are no specific points for CDW re-use. It can be evaluated the utilization status for structural and non-structural uses.	5 levels of utilization status. Level 1 for no recycled materials used, level 2 is not applicable, level 3 for one article, level 4 for two articles, level 5 for four or more articles.
SBTOOL Urban [14]	Construction and Demolition Waste	Percentage (weight) of reused or recycled inert materials incorporated in public space materials. CDW produced destination and CDW used origin.	60% of the score given according to the percentage of inert reused or recycled incorporated in public space, being a maximum of 75% and a minimum of 25%. 40% of the score given according to a criteria list based on the origin and destination of CDW.

4.2. SBTool Urban Comparison

The three assessment tools analyzed have specific issues that should be addressed. Regarding the CDW reuse and recycle specific calculation, LEED-ND considers CDW and other recycled content, BREEAM considers locally reclaimed CDW and others, and CASBEE considers all recycled materials with a specific certification. Therefore, none of them treats the CDW management as the main issue.

Towards the scoring, the three systems cannot be used to evaluate the CDW reuse and recycle individually. The verification system relies on credits that have a very wide range of results. LEED-ND just gives one credit, which can be understood as a yes/no indicator; BREEAM has three credits if only considered road construction, and CASBEE has five levels, but they don’t relate to the amount or proportion of CDW reused or recycled. From another perspective, as they don’t require a precise measure, they are easy and fast to calculate.

The SBTool Urban Construction and Demolition Waste indicator has a better coverage of CDW management characteristics than the other three systems. It considers not just the amount of CDW used on construction site, but also the destination of those produced, and the origin of those used but not
produced on-site. Use of other low impact materials has their own indicator, called Materials Impact, that is under the same category.

Despite the common objectives for the systems, the CDW indicator of SBTool Urban differs from others as it can be used as a standalone indicator to evaluate a CDW management operation. It results in a level rate from E to A+, considering the amount of inert reused or recycled, and CDW produced and used management. Therefore, compared to the others urban assessment methodologies, the SBTool Urban CDW indicator proved to comply with more requirements of a proper CDW management operation.

5. SBTool Urban CDW indicator critics

Although the SBTool Urban CDW indicator is more complete than its correspondents on other methodologies, there are some observations to do. The Waste Framework Directive (WFD) has set a target of 70% for CDW recovery by the year 2020 [19], and according to the last data [1] this number has already been reached. This CDW recovery ratio data isn’t used to obtain the SBTool Urban CDW indicator, because the percentage of inert reused or recycled incorporated in public space materials refers to materials from any origin. Therefore, a project may have a good level on this indicator, by using CDW from outside the construction site, and not achieve the 70% of CDW recovery. It’s understood that this can be a rare situation, but the amount of CDW produced on-site should also be considered, not just the amount used.

For future developments, it should be considered to stimulate the CDW recovery of different materials, by establishing targets of recovery by waste types. According to an evaluation of European recovery target for CDW [20], the practice of setting one target for all materials by a percentage of weight tends to benefit the recovery of the heaviest materials – such as mineral ones. This should be studied carefully, since this is to be used on an urban assessment methodology and it may complicate the calculation beyond its necessity.

6. Conclusion

CDW reuse and recycle are a reality and a necessity in the construction industry. Towards the improvement of the quality of the environment and reduce the extraction of virgin materials, it is imperative that governments and associations stimulate and regulate CDW management, reuse and recycle.

Subsequent the 2008 EU Waste Framework Directive, the Portuguese government established a series of legislation regarding waste management, treatment, recovery, and disposal. The decree-law 46/2008 is the main legislation that established the legal framework for waste management resulting from construction works or demolition of buildings. After that, other legislation and policy were adopted intending the regulation of the sector and stimulating new practices of CDW management, and even defining targets for incorporation of recycled materials.

There are several urban sustainability assessment methodologies that evaluate the reuse and recycle of CDW among their indicators. To compare with SBTool Urban CDW indicator, three other systems were analyzed, LEED-ND, BREEAM Communities, and CASBEE. They all have strong and weak points but cannot properly assess the CDW management by themselves. Their data are much simpler than that used by SBTool Urban, meanwhile, it is easier to calculate, it doesn’t consider aspects like CDW origin and destination. CASBEE, in special, has a classification method rather unorthodox, that counts the number of recycled articles, and don’t indicate CDW management operations.

The SBTool Urban CDW indicator proved to be an adequate calculation tool to assess the levels of CDW management, being part of a whole system or not, at the same time it is simple regarding its needs. It considers both the proportion of CDW used on urban space, the origin of them and the destination of CDW produced and not used. It is on par with the Portuguese legislation and helps to improve environmental sustainability to levels beyond it is required.
7. References
[1] Eurostat. 2015 Waste statistics - Statistics Explained. Waste Stat - Stat Explain.
[2] Gálvez-Martos I-L, Styles D, Schoenberger H, Zeschmar-Lahl B. 2018 Construction and demolition waste best management practice in Europe. Resour Conserv Recycl 136:166–78.
[3] European Parliament and Council. 2008 Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain directives. 2008.
[4] Deloitte. 2017 Study on Resource Efficient Use of Mixed Wastes, Improving management of construction and demolition waste – Final Report. Study Resour Effic Use Mix Wastes, Improv Manag Constr Demolition Waste – Final Rep.
[5] Ministério do Ambiente, do Ordenamento do Território e do Desenvolvimento Regional. 2008 Decreto-Lei 46/2008, 2008-03-12 - DRE. 2008.
[6] Martinho G, Pires AL, Ramos M, Gomes AM, Santos PH. 2015 Construction and demolition waste management in Portugal. Lisboa: 2015.
[7] Ministério das Obras Públicas, Transportes e Comunicações. 2008 Decreto-Lei 18/2008, 2008-01-29 - DRE. 2008.
[8] Ministério do Ambiente e do Ordenamento do Território. 2011 Decreto-Lei 73/2011, 2011-06-17 - DRE. 2011.
[9] Presidência do Conselho de Ministros. 2010 Decreto-Lei 26/2010, 2010-03-30 - DRE. 2010.
[10] Ministério do Ambiente do Ordenamento do Território e do Desenvolvimento Regional. 2008 Portaria 417/2008, 2008-06-11 - DRE. 2008.
[11] Ministérios do Ambiente, Ordenamento do Território e Energia, da Saúde e da Solidariedade Emprego e Segurança Social. 2014 Portaria 40/2014, 2014-02-17 - DRE. 2014.
[12] Presidência do Conselho de Ministros. 2015 Resolução do Conselho de Ministros 11-C/2015, 2015-03-16 - DRE. 2015.
[13] ECOCHOICE, LFTC-UM. 2013 Relatório Final do Projeto SBTool PT STP – Ferramenta para a avaliação e certificação da sustentabilidade da construção. 2013.
[14] Bragança L. 2017 SBTool Urban: Instrumento para a promoção da sustentabilidade urbana. An I SINGEURB 2017 - SImp Nac Gestão e Eng Urbana:3191–202.
[15] Bragança L, Guimarães E. 2016 Introducing the Portuguese Sustainability Assessment Tool for Urban Areas : SBTool PT – Urban Planning. Int. Conf. SBE16 Malta “Europe Mediterr. Towar. a Sustain. Built Environ., 2016.
[16] USGBC. 2016 LEED v 4 for Neighborhood Development. 2016.
[17] BRE Global Limited. 2012 BREEAM Communities. Technical Manual SD202 - 0.1:2012. (Watford: BRE Global Limited) 2012.
[18] Institute for Building Environment and Energy Conservation (IBEC). 2014 CASBEE for Urban development. Comprehensive Assessment System for Built Environment Efficiency. Technical Manual (2014 Edition):98.
[19] Melo A, Gonçalves A, Martins I. 2011 Construction and demolition waste generation and management in Lisbon (Portugal). "Resources, Consery Recycl 55:1252–64.
[20] Arm M, Wilk O, Engelsen CJ, Erlandsson M, Sundqvist J-O, Oberender A, Hjelmar O, Wahlstöm M. 2014 ENCORTE-CDW Evaluation of the European recovery target for construction and demolition waste. Nord Nord Arb:179.

Acknowledgments
The authors acknowledge the support of the European Project BAMB - Building as Materials Banks - funded by the EU Framework Programme for Research and Innovation, Horizon 2020 (grant agreement n. 642384). This research work is also part of the research activities carried out within the framework of the Energy-efficient Urban Communities Network (URBENERE) and the Sustainable, Eco-efficient, Resilient and Inclusive Cities Network (CIRES), supported by the Ibero-American Program of Science and Technology for Development (CYTED).