Kingman’s model with random mutation probabilities: convergence and condensation I

Linglong Yuan∗†
Department of Mathematical Sciences
University of Liverpool

Department of Mathematical Sciences
Xi’an Jiaotong-Liverpool University

June 1, 2021

Abstract
For a one-locus haploid infinite population with discrete generations, the celebrated Kingman’s model describes the evolution of fitness distributions under the competition of selection and mutation, with a constant mutation probability. This paper generalises Kingman’s model by using i.i.d. random mutation probabilities, to reflect the influence of a random environment. The weak convergence of fitness distributions to the globally stable equilibrium is proved. The condensation occurs when almost surely a positive proportion of the population travels to and condensates at the largest fitness value. The condensation may occur when selection is more favoured than mutation. A criterion for the occurrence of condensation is given.

∗University of Liverpool, Department of Mathematical Sciences, Peach Street, L69 7ZL, Liverpool, UK. Email: yuanlinglongcn@gmail.com
†Xi’an Jiaotong-Liverpool University, Department of Mathematical Sciences, Ren’ai Road, 215111, Suzhou, P.R.C. China.

Contents
1 Motivation and background 2
2 Models 3
3 Main results 6
4 Proofs 9
A Analysis of $\ln \frac{b(1-b)}{\int xQ(dx)}$ in Kingman’s model 23
1 Motivation and background

Various biological forces interact with each other and drive the evolution of population all together. One important competing pair consists of selection and mutation. It was as early as 1937 when Haldane [14] put forward the concept of mutation-selection balance. The mathematical foundation of this subject was established by Crow and Kimura [7], Ewens [11], and Kingman [20]. For more details on this topic, we refer to Bürger [5, 6].

A simple setting is to consider a one-locus haploid infinite population with discrete generations under selection and mutation. The locus is assumed to have infinitely many possible alleles which have continuous effects on a quantitative type. The continuum-of-alleles models were introduced by Crow and Kimura [7] and Kimura [17] and are used frequently in quantitative genetics.

Kingman [18] suggested to explain the tendency that most mutations are deleterious by the assumption of the independence of the gene before and after mutation. This feature was named “House of Cards”, as the mutation destroys the biochemical house of cards built up by evolution, by Kingman in [19] where the most famous one-locus model was proposed. In this model, a population is characterised by its type distribution, which is a probability measure on \([0, 1]\) and any \(x \in [0, 1]\) is a type value. In Kingman’s setting, an individual with a larger type value is fitter, which means more productive. So the type value can also be named fitness value. Kingman’s model can be seen as the limit of a finite population model, see [13].

Bürger [4] generalised the selection mechanism by allowing the gene after mutation to depend on that before and proved convergence in total variation. The genetic variation of the equilibrium distribution was computed and discussed. I proposed [22] a more general selection mechanism which can model general macroscopic epistasis, with the other settings the same as in Kingman’s model. This model was applied to the modelling of the Lenski experiment (see [12] for a description of the experiment).

There exist also models on the balance of selection and mutation in the setting of continuous generations. Bürger [3] provided an exact mathematical analysis of Kimura’s continuum-of-alleles model, focusing on the equilibrium genetic variation. Steinsaltz et al [21] proposed a multi-loci model using a differential equation to study the ageing effect. Later on the recombination was incorporated to the model [10]. Betz et al’s model [2] generalised a continuous-time version of Kingman’s model and other models arising from physics.

However to the author’s best knowledge, Kingman’s model has never been generalised to a random version. In this paper we will assume that the mutation probabilities of all generations form an i.i.d. sequence. Biologically, we think of a stable random environment such that the mutation probabilities vary on time but independently sampled from the same distribution.

In Kingman’s model, condensation occurs if a certain positive proportion of the population travels to and condensates at the largest fitness value. This is due to the dominance of
selection over mutation. In the random model proposed in this paper, we also consider the convergence of (random) fitness distributions to the equilibrium and the condensation phenomenon. Moreover, Kingman’s model has been revisited recently in terms of the travelling wave of mass to the largest fitness value \([8]\). The random model provides another example for consideration in this direction.

2 Models

2.1 Kingman’s model with time-varying mutation probabilities

Consider a haploid population of infinite size and discrete generations under the competition of selection and mutation. We use a sequence of probability measures \((P_n) = (P_n)_{n \geq 0}\) on \([0, 1]\) to describe the distribution of fitness values in the \(n\)th generation. We can assume, more generally, that the probability measures are supported on a finite interval, not necessarily \([0, 1]\). But since only fitness ratios will be relevant (see \([19]\) or \([22]\) for a more explicit explanation), we adopt the setting of \([0, 1]\), which was used by Kingman \([19]\), and which is equivalent to general finite supports.

Individuals in the \(n\)th generation are children of the \((n - 1)\)th generation. First of all, the fitness distribution of children is initially \(P_{n-1}\) (an exact copy from parents). Then selection takes effect, such that the fitness distribution is updated from \(P_{n-1}\) to the size-biased distribution

\[
\frac{x P_{n-1}(dx)}{\int y P_{n-1}(dy)}.
\]

Here we use \(\int\) to denote \(\int_0^1\). Basically the new population is re-sampled from the existing population by using their fitness as a selective criterion. Next, each individual mutates independent with the same mutation probability which we denote by \(b_n\) taking values in \([0, 1)\). Each mutant has the fitness value sampled independently from a common mutant distribution, that we denote by \(Q\), a probability measure on \([0, 1]\). Then the resulting distribution is the distribution of the \(n\)th generation

\[
P_n(dx) = (1 - b_n) \frac{x P_{n-1}(dx)}{\int y P_{n-1}(dy)} + b_n Q(dx). \tag{1}
\]

The fact that we exclude the case that \(b_n\) equals 1 is because in this situation we have \(P_n = Q\) which loses accumulated evolutionary changes. This is not interesting neither biologically nor mathematically.

Expanding (1), we can also obtain

\[
P_n(dx) = \left(\prod_{l=0}^{n-1} \frac{1 - b_{l+1}}{\int y P_l(dy)} \right) x^n P_0(dx) + \sum_{j=1}^{n} \left(\prod_{l=j}^{n-1} \frac{1 - b_{l+1}}{\int y P_l(dy)} \right) b_j m_{n-j} Q^{n-j}(dx) \tag{2}
\]

where

\[
Q^k(dx) := \frac{x^k Q(dx)}{\int y^k Q(dy)}, \quad m_k := \int x^k Q(dx), \quad \forall k \geq 0.
\]

In particular if \(Q = \delta_0\), the Dirac measure on \(\{0\}\), \(Q^k = \delta_0\) for any \(k \geq 0\).
When all the b_n’s are equal to the same number $b \in [0, 1)$, this is the model introduced by Kingman [19]. In the general setting we allow the mutation probabilities to be different. We call it Kingman’s model with time-varying mutation probabilities or the general model for short.

We introduce a few more notations. Let M be the space of (nonnegative) Borel measures on $[0, 1]$ and M_1 the subspace of M consisting of probability measures. Let M, M_1 be endowed with the topology of weak convergence. We use \Rightarrow to denote weak convergence. We say a sequence of measures (u_n) converges in total variation to a measure u, denoted by $u_n \Rightarrow u$, if the total variation, $\sup_B |u_n(B) - u(B)|$ where the supremum is taken over all Borel sets, converges to 0.

For any $u \in M_1$, define

$$S_u := \sup\{x : u[x, 1] > 0\}. \quad (3)$$

So S_u is interpreted as the largest fitness value in a population of distribution u. Define $h := S_{P_0}$. It is not difficult to see that $S_{P_n} = \max\{S_{P_0}, S_Q\}$ if the equality holds for $n - 1$ or $0 < b_n < 1$. Since we are interested in asymptotics, it is thus without loss of generality to assume that $h \geq S_Q$. Therefore $S_Q \leq h \leq 1$.

Note that the general model has parameters $(b_n)_{n \geq 1}, Q, P_0, h$. Kingman’s model shares the same parameters, but with b_n’s all equal to b. We call (P_n) the forward sequence or just the sequence. Although h is determined by P_0, we still consider h as a parameter as it will be clear later that for Kingman’s model and the random model considered in this paper, the limit of (P_n) depends on P_0 only through h. This is the so-called global stability.

2.2 Convergence and condensation in Kingman’s model

Kingman [19] proved the convergence of (P_n) when all mutation probabilities are equal, i.e., $b_n = b, \forall n \geq 1$.

Theorem 1 (Kingman’s Theorem, [19]). 1. If $\int \frac{Q(dx)}{1-x/h} \geq b^{-1}$, then (P_n) converges in total variation to

$$\mathcal{K}(dx) = \frac{b \theta_b Q(dx)}{\theta_b - (1-b)x},$$

with θ_b, as a function of b, being the unique solution of

$$\int \frac{b \theta_b Q(dx)}{\theta_b - (1-b)x} = 1. \quad (4)$$

2. If $\int \frac{Q(dx)}{1-x/h} < b^{-1}$, then (P_n) converges weakly to

$$\mathcal{K}(dx) = \frac{bQ(dx)}{1-x/h} + \left(1 - \int \frac{bQ(dy)}{1-y/h}\right) \delta_h(dx).$$

Note that \mathcal{K} is uniquely determined by b, Q, h, but not the choice of P_0. In this sense \mathcal{K} is a globally stable equilibrium. For simplicity, for any measure, say μ, its mass on a point x is denoted by $\mu(x)$ instead of $\mu(\{x\})$. Then we say there is condensation at h in Kingman’s model if $Q(h) = 0$ but $\mathcal{K}(h) > 0$. We call $\mathcal{K}(h)$ the condensate size if $Q(h) = 0$. In the case 1 above, there is no condensation. The condition $\int \frac{Q(dx)}{1-x/h} \geq b^{-1}$ is satisfied only if b is
big and/or Q is fit (i.e., having more mass on larger values). It means mutation is stronger against selection, so that the limit does not depend on P_0 at all.

In the case 2, the condition $\int \frac{Q(dx)}{1-x/h} < b^{-1}$ implies $Q(h) = 0$, but we have that $\mathcal{K}(h) > 0$. So there is condensation. Contrarily to the first case, selection is more favoured so that the limit depends on P_0 through h. If $P_0(h) = 0$ (implying $S_{P_n} = h$ and $P_n(h) = 0$ for any n), a certain amount of mass $K(h) = \left(1 - \int \frac{bQ(dy)}{1-y/h}\right)$ travels to the largest fitness value h, by the force of selection.

Next we introduce the random model, which is the main object of study in this paper.

2.3 Kingman’s model with random mutation probabilities

Let $(\beta_n)_{n \geq 0}$ be an i.i.d. sequence of random variables in the common probability space $(\Omega, \mathcal{F}, \mathbb{P})$, taking values in $[0,1)$ with common distribution $L \in M_1$ supported on $[0,1)$. The Kingman’s model with random mutation probabilities or simply the random model is defined by the following dynamical system:

$$P_n(dx) = (1-\beta_n) \frac{x P_{n-1}(dx)}{\int y P_{n-1}(dy)} + \beta_n Q(dx), \quad n \geq 1. \tag{5}$$

The random model has parameters $(\beta_n), Q, P_0, h$. It is a randomisation of Kingman’s model, as we can set β_n’s to equal b with probability 1.

We are interested in the convergence of (P_n) to the equilibrium and the phenomenon of condensation. Since we are dealing with random probability measures, i.e., random elements of M_1, let us recall the definition of weak convergence in this context. Random (probability) measures (μ_n) supported on $[0,1]$ converge weakly to a limit μ if and only if for any continuous function f on $[0,1]$ we have

$$\int f(x) \mu_n(dx) \xrightarrow{d} \int f(x) \mu(dx).$$

We refer to [16] for a reference on random measures. The definition of weak convergence for random measures stated in the follow-up paper [23] is incorrect. But it does not affect anything there as the weak convergence results are all proved in this paper.

As the sequence (P_n) is completely determined by $(\beta_n), Q, P_0$ and h, the only randomness arises from (β_n). In comparison to the terminology in statistical physics, the weak limit of (P_n) is an annealed limit, which is obtained given the law of (β_n). A quenched limit, which is obtained by conditioning on (β_n), does not exist unless $P_0 = Q = \delta_0$. A simple reason for nonexistence is that P_n contains $\beta_n Q$ which fluctuates persistently as (β_n) is i.i.d.. However in Section 4.3 we will see that it is possible to obtain a quenched limit if the evolution is seen backwards.

For the particular case that $Q = \delta_0$, we have

$$P_n(dx) = (1-\beta_n) \frac{x^n P_0(dx)}{\int y^n P_0(dy)} + \beta_n \delta_0(dx).$$

From this, it is easily deduced that the sequence (P_n) converges weakly to the random element $(1-\beta)\delta_h + \beta \delta_0$, where β is a random variable with law \mathcal{L}, the common law of the β_n’s. So we assume from now on $Q \neq \delta_0$.

5
3 Main results

3.1 Weak convergence

Recall that the sequence \((P_n)\) in the random model has parameters \((\beta_n), Q, P_0\) and \(h\), with \(h = S_{P_0}\). Then \((P_n)\) converges weakly to a globally stable equilibrium, in the sense that the limit depends on \(P_0\) only through \(h\). Recall \(\beta\) is a random variable with law \(L\), the common law of \(\beta_n\’s\).

Theorem 2. For the random model (5), the sequence \((P_n)\) converges weakly to a random probability measure, denoted by \(I\), whose distribution depends on \(L, Q, h\) but not on the choice of \(P_0\).

Remark 1. In ([23], P.872), it is written that the distribution of \(I\) depends on \(\beta, Q, h\). The statement is true in the sense that the distribution of \(I\) depends on \(\beta\) via its distribution. Here we make it more clear by replacing \(\beta\) by \(L\).

Remark 2. If we start with \(P_0 = \delta_h\) (recall that \(h \in [S_Q, 1]\)), then all \(P_n\’s\) are supported on \([0, S_Q] \cup \{h\}\), which entails that the limit \(I\) is supported on the same set \([0, S_Q] \cup \{h\}\). Moreover we have either \(I(h) > 0\) a.s. or \(I(h) = 0\) a.s. (a justification is provided in Remark 11 in Section 4.4). In the latter case, \(I\) is supported only on \([0, S_Q]\) and (the distribution of) \(I\) does not depend on \(h\) (see Theorem 3). Therefore, although we say \(h\) is a parameter of \(I\) but it should be understood in the sense that \(I\) is weak limit of \((P_n)\) with \(h = S_{P_0}\).

The limit \(I\) is introduced in Section 4.3. But the proof of weak convergence is deferred to a later stage, as it uses other main results such as the condensation criterion for the random model.

3.2 Condensation criterion

The fact that either \(I(h) > 0\) a.s. or \(I(h) = 0\) a.s. allows us to give the precise definition of condensation in line with that for Kingman’s model, as follows:

Definition 1. For the random model, we say there is condensation at the largest fitness value \(h\) if \(Q\) assigns zero mass at \(h\) (i.e., \(Q(h) = 0\)) but the limiting measure \(I\) assigns positive mass at it (i.e., \(I(h) > 0\), a.s.).

Next we give the condensation criterion. If \(h = S_Q\), we write \(I_Q\) for \(I\) and \(K_Q\) for \(K\).

Theorem 3 (Condensation criterion). If there is no condensation at \(h\), then \(I \overset{d}{=} I_Q\). The condensation criterion for \(I\) at \(h\) is as follows:

1. If \(h = S_Q\), then there is no condensation at \(h\) if

 \[
 \mathbb{E} \left[\ln \frac{S_Q(1 - \beta)}{\int y I_Q(dy)} \right] < 0.
 \]

2. If \(h > S_Q\), then there is no condensation at \(h\) if and only if

 \[
 \mathbb{E} \left[\ln \frac{h(1 - \beta)}{\int y I_Q(dy)} \right] \leq 0.
 \]
Here $E\left[\ln \frac{1-\beta}{\int yQ(dy)}\right]$ is well defined, and takes values in $[-\infty, -\ln \int yQ(dy)]$, and depends only on the marginal distributions of β and I_Q.

Remark 3. In fact, if there is no condensation at h, then I, I_Q are the same random probability measure, based on the definition of I introduced at the end of Section 4.3. But since here we do not have the definition yet, we write a weaker version $I \overset{d}{=} I_Q$.

By Remark 12 in Section 4.4, we can only have $E\left[\ln \frac{S_Q(1-\beta)}{\int yI_Q(dy)}\right] \leq 0$. About the occurrence of condensation in the case where $h = S_Q$, the fact that we cannot say anything when $E\left[\ln \frac{S_Q(1-\beta)}{\int yI_Q(dy)}\right] = 0$ can be better understood in Kingman’s model, which is a special random model. In this model, $E\left[\ln \frac{S_Q(1-\beta)}{\int yI_Q(dy)}\right] = 0$ becomes

$$\ln \frac{S_Q(1-b)}{\int yK_Q(dy)} = 0.$$

By some simple computations using Theorem 1, the above display is equivalent to

$$\int \frac{Q(dx)}{1 - x/S_Q} \leq b^{-1}.$$

But it covers cases with and without condensation. For full details please see Appendix A, where the case $h > S_Q$ is also analysed.

We give some intuition why Theorem 3 holds true. Consider the unnormalised variant of the dynamical system that is given by

$$P_n(dx) = (1 - \beta_n)xP_{n-1}(dx) + \beta_n \left(\int yP_{n-1}(dy)\right)Q(dx)$$

with $P_0 = P_0$. By induction, it can be shown that

$$P_n = P_0 \prod_{i=0}^{n-1} \int xP_i(dx), \forall n \geq 0.$$

We can roughly think of the growth of P_n as contributed by two parts, the initial P_0 and the subsequently arriving Q’s. If the initial distribution is supported on $[0, S_Q]$, by Theorem 2, P_i converges weakly to I_Q as $i \to \infty$. Then the part of P_n contributed by the Q’s grows at rate $gr(Q) := E[\ln \int xI_Q]$ (see (9)). In comparison the largest fitness value h in P_0 can be assigned the growth rate $gr(h) := E[\ln h(1 - \beta)]$ (due to the term $(1 - \beta_n)xP_{n-1}(dx)$ in (8)). Then it is clear that the occurrence of condensation is determined by the comparison of $gr(h)$ and $gr(Q)$. However it is subtle when $gr(h) = gr(Q)$: no condensation if $h > S_Q$ and it is undetermined if $h = S_Q$.

In the follow-up paper [23], we provide a matrix representation for I_Q, so the condensation criterion can be written neatly (Corollary 2, P.877). Moreover, using matrix analysis, we can compare the fitness of equilibria from different models (Section 3.3-(3), P.878–879). The challenging problem of finding a necessary and sufficient condition for the occurrence of condensation in the case $h = S_Q$ has not been dealt with anywhere and still remains open.
3.3 Invariant measure

We introduce the notion of invariant measure, which includes the limit \mathcal{I}. We will heavily use the invariant measures in the proofs.

Definition 2 (Invariant measure). A random probability measure ν is invariant if it is supported on $[0, 1]$ and satisfies

$$
\nu(dx) \overset{d}{=} (1 - \beta) \frac{x \nu(dx)}{\int y \nu(dy)} + \beta Q(dx)
$$

where β is independent of ν.

Clearly \mathcal{I} is an invariant measure, since it is the weak limit of (P_n) defined by (5).

Theorem 4 (Compoundness of invariant measures). For any invariant measure ν, there exists a regular conditional distribution of ν on S_{ν}. Moreover, conditional on S_{ν},

$$(\nu|S_{\nu}) \overset{d}{=} \mathcal{I}, \quad \text{almost surely,}$$

where \mathcal{I} is the random probability measure introduced in Theorem 2 with parameters $\mathcal{L}, Q, h = S_{\nu}$ and satisfies $\mathbb{P}(S_{\mathcal{I}} = S_{\nu}|S_{\nu}) = 1$, a.s..

Remark 4. Remark 2 says that if there is no condensation at h, then \mathcal{I} is supported on $[0, S_Q]$. Since \mathcal{I} is an invariant measure, the above theorem entails that $\mathcal{I} \overset{d}{=} \mathcal{I}_Q$. This assertion has been stated in Theorem 3.

Using the notion of invariant measures, we can solve a distributional equation in the following example. For a survey on distributional equations, we refer to Aldous and Bandyopadhyay [1].

Example 1. Consider a particular case: Q is supported only on $\{c\}$ for some $c \in (0, 1)$, and $h \in (c, 1)$. Let ν be an invariant measure supported on $\{c\} \cup \{h\}$. Then ν can be written as $\nu = X\delta_c + (1 - X)\delta_h$ where X is a random variable taking values in $[0, 1]$, and satisfies

$$
X\delta_c + (1 - X)\delta_h \overset{d}{=} (1 - \beta) \frac{cX\delta_c + h(1 - X)\delta_h}{cX + h(1 - X)} + \beta \delta_c,
$$

where β is independent of X. The above display is equivalent to

$$
X \overset{d}{=} \frac{c + (h - c)(1 - X)}{c + (h - c)(1 - X)}.
$$

We are interested in a necessary and sufficient condition for the above equation to have a solution X with $0 \leq X < 1$ a.s. (i.e., $\nu(h) > 0$ a.s.). By Theorem 4, it is equivalently saying that there is condensation at h. By Theorem 3, the necessary and sufficient condition is simply $\mathbb{E}[\ln(h(1 - \beta)/c)] > 0$. Moreover as such ν is unique (in distribution), the solution X is also unique (in distribution).

The paper is organised as follows. Section 4.1 and 4.2 provide necessary preparations. Section 4.3 and 4.4 analyse the finite backward sequence, which is the main tool used in this paper. Section 4.5 proves Theorem 3. Section 4.6 analyses the invariant measures, and the results obtained there will be used in Section 4.7 to prove the weak convergence in Theorem 2. Section 4.8 is dedicated to the proof of Theorem 4.
4 Proofs

4.1 Relations between measures

We introduce some notations to describe relations between measures.

1). For measures \(u, v \in M \), we say \(u \) is a component of \(v \) on \([0, a]\) (resp. \([0, a^-]\)), denoted by \(u \leq_a v \) (resp. \(\leq_{a^-} \)), if

\[
u(A) \leq v(A), \quad \text{for any measurable set } A \subset [0, a] \text{ (resp. } [0, a^-]).
\]

For random measures \(\mu, \nu \in M \), we write \(\mu \leq_d a \nu \) if there exists a coupling \((\mu', \nu')\) with \(\mu', \nu' \in M \) such that

\[
\mu' \leq_a \nu' \text{ a.s. and } \mu' \overset{d}{=} \mu, \nu' \overset{d}{=} \nu.
\]

The relation \(\mu \leq_d a^- \nu \) is defined in a similar way.

2). For measures \((u_n)\) and \(u \in M \), we introduce a notation

\[
u_n \leq_a TV \rightarrow u
\]

which means that \(u_n \leq_a u_{n+1} \) for any \(n \), and \(u_n \) converges in total variation to \(u \). We define similarly \(\leq_{a^-} TV \rightarrow \).

3). For real-valued random variables \(\xi, \eta \), we write the well known stochastic ordering \(\xi \preceq \eta \), which holds if

\[
P(\xi \leq x) \geq P(\eta \leq x), \quad \forall x \in \mathbb{R}.
\]

4). For any \(u \in M_1 \), let the distribution function of \(u \) be

\[
D_u(x) := u([0, x]), \quad \forall x \in [0, 1].
\]

For any \(u, v \in M_1 \), we use the same notation \(\preceq \) of stochastic ordering and write \(u \preceq v \) if \(D_u(x) \geq D_v(x) \) for any \(x \in [0, 1] \). This definition is natural, as \(\xi \preceq \eta \) is equivalent to \(u \preceq v \), if \(u \) is the distribution of \(\xi \) and \(v \) is the distribution of \(\eta \).

Remark 5. We make a comment between \(\leq_{a^-} \) and \(\preceq \). For two probability measures \(u, v \in M_1 \), assume that \(S_u = S_v = a \), then \(u \leq_{a^-} v \) implies that \(v \preceq u \). But the converse is not true.

Remark 6. If we use notations \(\leq_{a^-}, \leq_{a^-} TV, \leq_{a^-} TV, \preceq \) to describe the relations between random measures, it should be understood that they hold in the almost sure sense, or even pointwise sense (i.e., for every \(\omega \in \Omega \)) if possible.

Similarly if we use \(\leq, <, >, =, \neq \) to compare random variables, it should be understood in the almost sure sense, or pointwise sense.
4.2 Three sequences

To study the asymptotic behaviour of \((P_n)\), we also introduce \((P'_n)\) and \((P''_n)\) so that the three forward sequences correspond respectively to

\[
((\beta_n, Q, P_0, h), \quad ((\beta_n, Q', P'_0, h'), \quad ((\beta_n, Q'', P''_0, h'')).
\]

The parameters of \((P'_n)\) and \((P''_n)\) will be specified when they are used. The two sequences will converge weakly when they are used, and \((P_n)\) is compared to them or one of them to show that \((P_n)\) also converges weakly. The first place where this technique is used is in Section 4.6.

Using (2), we write

\[
P_n(dx) = \mathcal{M}_n(dx) + \mathcal{W}_n(dx)
\]

with

\[
\mathcal{M}_n(dx) = \left(\prod_{l=0}^{n-1} \frac{1 - \beta_{l+1}}{yP_l(dy)} \right) x^n P_0(dx)
\]

and

\[
\mathcal{W}_n(dx) = \sum_{j=1}^{n} \left(\prod_{l=j}^{n-1} \frac{1 - \beta_{l+1}}{yP_l(dy)} \right) b_j m_{n-j} Q^{n-j}(dx).
\]

Therefore \(\mathcal{M}_n\) is the contribution to \(P_n\) made by \(P_0\), while \(\mathcal{W}_n\) is the contribution by the \(Q\)'s.

Similarly we introduce

\[
P'_n(dx) = \mathcal{M}'_n(dx) + \mathcal{W}'_n(dx) \quad (13)
\]

\[
P''_n(dx) = \mathcal{M}''_n(dx) + \mathcal{W}''_n(dx) \quad (14)
\]

with \(\mathcal{M}'_n, \mathcal{W}'_n, \mathcal{M}''_n, \mathcal{W}''_n\) defined correspondingly.

4.3 Introducing the finite backward sequences

4.3.1 The general model.

We introduce the finite backward sequence \((P^n_j) = (P^n_j)_{0 \leq j \leq n}\) for the general model which has parameters \(n, (b_j)_{1 \leq j \leq n}, Q, P^n_n, h\) with \(S_{P^n} = h\):

\[
P^n_j(dx) = (1 - b_{j+1}) \frac{xP^n_{j+1}(dx)}{yP^n_{j+1}(dy)} + b_{j+1} Q(dx), \quad \forall 0 \leq j \leq n - 1.
\]

Here \(h, Q\) are from the general model and \(P^n_0\) can be any measure in \(M_1\) satisfying \(S_{P^n} = h\). The \((b_j)_{1 \leq j \leq n}\) are the first \(n\) mutation probabilities in the general model. Here we use the index \(j\) to indicate that we are dealing with a finite backward sequence.

The sequence is backward in the sense that we use \(b_n\) to generate \(P^n_{n-1}\) from \(P^n_n\), and use \(b_{n-1}\) to generate \(P^n_{n-2}\) from \(P^n_{n-1}\), etc. The \((b_j)\) are used backwards and the \((P^n_j)\) are generated backwards. The advantage to take a backward approach is that \((P^n_j)\) converges as \(n\) tends to infinity, in contrast to the forward sequence.
Lemma 1. In the general model, for the finite backward sequence with \(P_n^j = \delta_h \), \(P_j^n \) converges in total variation to a limit, denoted by \(\mathcal{G}_j = \mathcal{G}_{j,h} \), as \(n \) goes to infinity with \(j \) fixed, such that
\[
\mathcal{G}_{j-1}(dx) = (1 - b_j) \frac{x \mathcal{G}_j(dx)}{\int y \mathcal{G}_j(dy)} + b_j Q(dx), \quad j \geq 1.
\] (16)

As a consequence, \(\mathcal{G}_0 : [0,1)^\infty \to M_1 \) is a measurable function, with \(\mathcal{G}_j = \mathcal{G}_0(b_{j+1}, b_{j+2}, \ldots) \) supported on \([0, S] \cup \{h\} \) for any \(j \geq 0 \).

Remark 7. We write \(\mathcal{G}_{j,h} \) when \(h \) has to be specified for clarity. Otherwise we write \(\mathcal{G}_j \). This logic applies to other terms which will appear later.

Remark 8. Note that, by (16), either \(\mathcal{G}_j(h) \)'s are all zero or all strictly positive.

Proof. We prove a stronger version below

For any \(j \), \(P_n^j \leq_h \frac{TV}{\mathcal{G}_j}, \) as \(n \to \infty \). (17)

It suffices to show that
\[
P_j^n \leq_h P_j^{n+1},
\] (18)
as \(P_j^n \)'s are all supported on \([0, S] \cup \{h\} \).

First of all, \(P_n^j = \delta_h \leq_h P_n^{n+1} \). Assume for some \(1 \leq j \leq n \), we have \(P_j^n \leq_h P_j^{n+1} \). By definition
\[
P_{j-1}^n(dx) = (1 - b_j) \frac{x P_j^n(dx)}{\int y P_j^n(dy)} + b_j Q(dx), \quad P_{j-1}^{n+1}(dx) = (1 - b_j) \frac{x P_j^{n+1}(dx)}{\int y P_j^{n+1}(dy)} + b_j Q(dx).
\] (19)

Since \(P_j^n \leq_h P_j^{n+1} \) (hence \(P_j^{n+1} \leq P_j^n \), see Remark 5), we have
\[
\int y P_j^{n+1}(dy) \leq \int y P_j^n(dy)
\]
and thus
\[
\frac{x}{\int y P_j^n(dy)} \leq \frac{x}{\int y P_j^{n+1}(dy)}, \quad \forall x \in [0,1].
\]
Together with \(P_j^n \leq_h P_j^{n+1} \) and (19), we get \(P_{j-1}^n \leq_h P_{j-1}^{n+1} \). The induction shows that
\[
P_j^n \leq_h P_j^{n+1}, \quad \text{for any } 0 \leq j \leq n, n \geq 0.
\] (20)
This completes the proof. \(\square \)

The monotonicity analysis in the above proof will be used many times in this paper, as it applies to both backward and forward sequences. An immediate application is the following: we can compare \(\mathcal{(G}_j \) and \((G'_j) = (G_{j,h'}) \) for \(S \leq h < h' \leq 1 \) with the same \((b_j), Q \).

Corollary 1. Let \(\mathcal{(G}_j \) and \((G'_j) \) be the above sequences. Then we have
\[
G'_j \leq_h G_j, \quad G_j(h) \leq G'_j(h'), \quad \forall j \geq 0.
\] (21)
Moreover we have the exact equalities in the above display for any \(h \in [S, h') \) if and only if \(G'_0(h') = 0 \). In this case \((G_j) \) and \((G'_j) \) are all supported on \([0, S] \), and both equal to \((G_j,S) \).
Proof. Let \(P^n_j \) be the sequence in Lemma 1. Let \(P^n_{j,h'} \) be the variant of \(P^n_j \) with \(P^n_n = \delta_{h'} \). By following the same monotonicity analysis for proving (18), we obtain
\[
P^n_{j,h'} \leq h^{-1} P^n_j, \quad P^n_j(h) \leq P^n_{j,h'}(h'), \quad \forall 0 \leq j \leq n.
\]
By Lemma 1, \(P^n_{j,h'} \overset{TV}{\longrightarrow} G'_j \) and \(P^n_j \overset{TV}{\longrightarrow} G_j \), as \(n \to \infty \). Then we obtain (21).

Now let us prove the if-and-only-if statement. If \(G'_0(h') = 0 \), then by (21), \(G_0(h) = 0 \). Using Remark 8, \(G'_j(h') = 0 \), \(G_j(h) = 0 \) for any \(j \), and so (21) holds with equalities. For the other direction, if \(G'_0(h') > 0 \), then again by Remark 8, \(G'_j(h') > 0 \) for any \(j \). Using (21), it holds that
\[
\int y G'_j(dy) > \int y G_j(dy), \quad \forall j.
\]
Similar to (19)
\[
G_{j-1}(dx) = (1 - b_j) \frac{x G_j(dx)}{\int y G_j(dy)} + b_j Q(dx), \quad G'_j_{j-1}(dx) = (1 - b_j) \frac{x G'_j(dx)}{\int y G'_j(dy)} + b_j Q(dx).
\]
As (22) entails that \(\frac{1 - b_j}{\int y G'_j(dy)} > \frac{1 - b_j}{\int y G_j(dy)} \), and using again (21), we obtain \(G'_{j-1} \leq h^{-1} G_{j-1} \) but they are not equal on \([0,h)\). Since they are probability measures, we have \(G_{j-1}(h) < G'_{j-1}(h') \) for any \(j \). Then the proof is complete.

If (21) holds with equalities, \((G_j) = (G'_j) \) are all supported on \([0,S_Q]\). To show that they are equal to \((G_{j,S_Q}) \), we only have to take \(h = S_Q \) and apply the equalities in (21). \(\square \)

4.3.2 The random model.

Our goal of the paper is the random model, which is a randomised general model. Since \((G_j) \) has parameters \((b_{j+1}, b_{j+2}, \cdots) \) and \(Q, h \), we can define
\[
\mathcal{I}_j = \mathcal{I}_{j,h} := G_0(\beta_{j+1}, \beta_{j+2}, \cdots).
\]
Therefore \(\mathcal{I}_j \) is the quenched limit of the finite backward sequences in the random model with \(P^n_n = \delta_{h} \). Thanks to Lemma 1, we have the following result.

Corollary 2. The sequence \((\mathcal{I}_j) = (\mathcal{I}_j)_{j \geq 0} \) is stationary ergodic and satisfies
\[
\mathcal{I}_{j-1}(dx) = (1 - \beta_j) \frac{x \mathcal{I}_j(dx)}{\int y \mathcal{I}_j(dy)} + \beta_j Q(dx), \quad j \geq 1.
\]

Remark 9. The equality (23) holds in the pointwise sense. In other words, given any realisation of \((\beta_j) \) (or equivalently, conditioning on \((\beta_j) \)), the equality holds for any \(j \) as in the general model. In the sequel, when we present results regarding \((\mathcal{I}_j) \), then conditioning on \((\beta_j) \) should be understood as in the pointwise sense. Sometimes we omit saying either of them when the context is clear.

The proof of Corollary 2 requires the following lemma which is proved by Lemma 9.5 in \[15\].

Lemma 2. Let \((S, \mathcal{A})\) and \((S', \mathcal{A}')\) be measurable spaces. Let \((\alpha_j) \in S^\infty\) be a stationary ergodic sequence of random variables. Let \(f : S^\infty \to S' \) be a measurable function. Then \((f(\alpha_j, \alpha_{j+1}, \cdots)) \) is also stationary ergodic.
Proof of Corollary 2. Since \((\beta_j)\) is i.i.d., it is stationary ergodic. As \(G_0\) is a measurable function from \([0,1)^\infty\) to \(M_1\), we apply Lemma 2 to obtain that \((I_j) = (G_0(\beta_{j+1}, \beta_{j+2}, \cdots))\) is also stationary ergodic. The recursive equation (23) is inherited from (16).

Since \((I_j)\) is stationary ergodic, all \(I_j\)'s have the same distribution. We denote by \(I := I_0 = I_{0,h}\) which is the weak limit appeared in Theorem 2. The reason to drop off the index is to make it stand out from the backward context, when it is appropriate to do so. The term \(I_Q\) used in Theorem 3 is in fact \(I_{0,S_Q}\).

We comment further on the importance of finite backward sequences. Let \((P_n)\) be a forward sequence and \((P^n_j)\) the finite backward sequence with \(P^n_0 = P_0\), both in the random model with the same \((\beta_j)\) and \(Q\). Since \((\beta_j)\) is i.i.d., we have

\[
(P_0, P_1, \cdots, P_n) \overset{d}{=} (P_n^0, P_{n-1}^0, \cdots, P_0^0).
\]

So showing the weak convergence of \((P_n)_{n \geq 0}\) is equivalent to showing that of \((P^n_0)_{n \geq 0}\). But investigating the finite backward sequences, via the general model, appears to be more convenient. In general a dynamical system is easier to handle if we take a backward point of view, see Diaconis and Freedman [9].

4.4 Finer analysis of the finite backward sequences

4.4.1 The general model.

We consider \((P^n_j)\) with \(P^n_0 = \delta_h\), the one in Lemma 1. Developing (15) we obtain

\[
P^n_0(dx) = \left(\prod_{l=1}^{n} \frac{1 - b_l}{\int y^{P^n_l}(dy)} \right) x^n P^n_0(dx) + \sum_{j=0}^{n-1} \left(\prod_{l=1}^{j} \frac{1 - b_l}{\int y^{P^n_l}(dy)} \right) b_{j+1} m_j Q^j(dx)
\]

\[
= \left(\prod_{l=1}^{n} \frac{h(1-b_l)}{\int y^{P^n_l}(dy)} \right) \delta_h(dx) + \sum_{j=0}^{n-1} \left(\prod_{l=1}^{j} \frac{1 - b_l}{\int y^{P^n_l}(dy)} \right) b_{j+1} m_j Q^j(dx).
\]

We refer to (2) for the expansion of the forward sequence \((P_n)\).

Proposition 1. Let \((P^n_j)\) be the finite backward sequence in the general model with \(P^n_0 = \delta_h\). Then for the sequence \((G_j)\), we have

\[
G_0(dx) = G_0 \delta_h(dx) + \sum_{j=0}^{\infty} \prod_{l=1}^{j} \frac{1 - b_l}{\int y^{G_l}(dy)} b_{j+1} m_j Q^j(dx),
\]

where the second term on the right side of (26) converges to that of (27):

\[
\sum_{j=0}^{\infty} \prod_{l=1}^{j} \frac{1 - b_l}{\int y^{P^n_l}(dy)} b_{j+1} m_j Q^j(dx) \leq TV \sum_{j=0}^{\infty} \prod_{l=1}^{j} \frac{1 - b_l}{\int y^{G_l}(dy)} b_{j+1} m_j Q^j(dx)
\]

(28)
and the term \(G_0 = G_{0,h} \) satisfies the following assertions:

\[
\prod_{l=1}^{n} \frac{h(1-b_l)}{\int yP_l^n(dy)} \text{ decreases in } n \text{ and converges to } G_0, \tag{29}
\]

\[
G_0 = 1 - \sum_{j=0}^{\infty} \prod_{l=1}^{j} \frac{1-b_l}{\int yG_l(dy)} b_{j+1}m_j \in [0,1], \tag{30}
\]

\[
G_0 = G_0(h), \text{ if } Q(h) = 0, \tag{31}
\]

\[
\int \left(\frac{y}{h} \right)^n G_n(dy) \prod_{l=1}^{n} \frac{h(1-b_l)}{\int yG_l(dy)} \text{ decreases in } n \text{ and converges to } G_0, \text{ if } G_0 > 0. \tag{32}
\]

Moreover if we define \(G_j \) for \(G_j \) similarly as \(G_0 \) for \(G_0 \), we have

\[
G_{j-1} = G_j \frac{h(1-b_j)}{\int yG_j(dy)}, \quad \forall j \geq 1. \tag{33}
\]

As a consequence \(G_j \)'s are either all 0 or all strictly positive.

Proof. By (17), \(\int yP_n(dy) \) increases in \(n \) and converges to \(\int yG_l(dy) \) as \(n \to \infty \). Then using (26), we obtain (28). Integrating on both sides of (26), we use (28) to deduce that

\[
\prod_{l=1}^{n} \frac{h(1-b_l)}{\int yP_l^n(dy)} = 1 - \int \sum_{j=0}^{n-1} \left(\prod_{l=1}^{j} \frac{1-b_l}{\int yG_l(dy)} \right) b_{j+1}m_jQ^j(dx)
\]

decreases in \(n \) and converges to the limit

\[
1 - \int \sum_{j=0}^{\infty} \left(\prod_{l=1}^{j} \frac{1-b_l}{\int yG_l(dy)} \right) b_{j+1}m_jQ^j(dx) =: G_0.
\]

So (27), (29) and (30) are proved.

From (27) we observe (31). To show (32), we develop (16) as follows

\[
G_0(dx) = \left(\prod_{l=1}^{n} \frac{1-b_l}{\int yG_l(dy)} \right) x^nG_n(dx) + \sum_{j=0}^{n-1} \left(\prod_{l=1}^{j} \frac{1-b_l}{\int yG_l(dy)} \right) b_{j+1}m_jQ^j(dx)
\]

\[
= \left(\int \left(\frac{y}{h} \right)^n G_n(dy) \prod_{l=1}^{n} \frac{h(1-b_l)}{\int yG_l(dy)} \right) x^nG_n(dx) + \sum_{j=0}^{n-1} \left(\prod_{l=1}^{j} \frac{1-b_l}{\int yG_l(dy)} \right) b_{j+1}m_jQ^j(dx).
\]

Combining the above display with (27) and (28), we obtain (32), and also that \(\frac{x^nG_n(dx)}{\int y^nG_n(dy)} \) converges weakly to \(\delta_h \). Finally, combining (16) and (27) leads to (33).

Remark 10. The proposition implies that \((P^n_0) \) with \(P^n_0 = \delta_h \) in the random model converges in total variation to \(I = I_0 \), pointwise. Then by (24), \((P_n) \) in the random model with \(P_0 = \delta_h \) converges weakly to \(I \). Therefore Theorem 2 is proved for the particular case with \(P_0 = \delta_h \). As will be clear later (Section 4.7), a complete proof has to deal with different kinds of \(P_0 \). The one solved here with \(P_0 = \delta_h \) is the simplest case.
4.4.2 The random model.

When carrying over the results of Proposition 1 to the random model, we change the symbol G to I, similar to the change from \mathcal{G} to \mathcal{I}. For instance, we set $I_j = G_0(\beta_{j+1}, \beta_{j+2}, \cdots)$ for any $j \geq 0$. Then we have the following corollary.

Corollary 3. The process $(I_j) = (I_j)_{j \geq 0}$ is stationary ergodic. Moreover $\mathbb{P}(\{I_j = 0, \forall j\}) = \mathbb{P}(I_0 = 0) \in \{0, 1\}$.

Remark 11. If $Q(h) > 0$, then it must be that $h = S_Q$ and $\mathcal{I}(h) = \mathcal{I}_0(h) > 0$ a.s.. If $Q(h) = 0$, then $\mathcal{I}(h) = \mathcal{I}_0(h) = I_0$. So applying Corollary (3), either $\mathcal{I}(h) > 0$ a.s., or $\mathcal{I}(h) = 0$ a.s..

Proof. By Proposition 1, $G_0 = G_0(b_1, b_2, \cdots)$ is a measurable function from $[0, 1]^\infty$ to $[0, 1]$. As (β_j) is i.i.d., we obtain that $(I_j) = (G_0(\beta_{j+1}, \beta_{j+2}, \cdots))$ is stationary ergodic, thanks to Lemma 2.

By (33), for any k, $\{I_k = 0\} = \{I_j = 0, \forall j\}$. Note that $\{I_j = 0, \forall j\}$ is an invariant set in the sigma algebra generated by (I_j). By ergodicity of (I_j), $\mathbb{P}(\{I_j = 0, \forall j\}) = \mathbb{P}(I_0 = 0) \in \{0, 1\}$.

The following result provides us a tool to know more about \mathcal{I} and Q. Let $I = I_{0,h}$, and $\mathcal{I}_Q = I_{0,S_Q}$. To summarise, $\mathcal{I}, I, \mathcal{I}_Q, I_Q$ are identical in value to $\mathcal{I}_{0,h}, I_{0,h}, \mathcal{I}_{0,S_Q}, I_{0,S_Q}$ respectively.

Corollary 4. The following statements about $\mathbb{E} \left[\ln \frac{1-\beta}{\int_{\mathcal{I}(dy)} y} \right]$ hold:

1) $\mathbb{E} \left[\ln \frac{1-\beta}{\int_{\mathcal{I}(dy)} y} \right]$ is well defined, and takes values in $[-\infty, -\ln \int y Q(dy)]$, and depends only on the marginal distributions of β and \mathcal{I}.

2) If $Q(h) = 0$, then

$$\mathbb{E} \left[\ln \frac{h(1 - \beta)}{\int_{\mathcal{I}(dy)} y} \right] \leq 0.$$

3) If $\mathcal{I}(h) > 0$ a.s. and $Q(h) = 0$, then

$$\mathbb{E} \left[\ln \frac{h(1 - \beta)}{\int_{\mathcal{I}(dy)} y} \right] = 0.$$

4) If $h = S_Q$ and $Q(S_Q) > 0$, then

$$\mathbb{E} \left[\ln \frac{S_Q(1 - \beta)}{\int_{\mathcal{I}(dy)} y} \right] < 0 \text{ and } I = 0, \text{a.s.}.$$

Remark 12. If $h = S_Q$, we can only have $\mathbb{E} \left[\frac{S_Q(1 - \beta)}{\int_{\mathcal{I}(dy)} y} \right] = \mathbb{E} \left[\frac{S_Q(1 - \beta)}{\int_{\mathcal{I}_Q(dy)} y} \right] \leq 0$.

Proof. 1) By (27), G_0 is a convex combination of probability measures $\{\delta_h, Q, Q^1, Q^2, \cdots\}$. As $Q^j \leq Q^{j+1} \leq \delta_h$ for any $j \geq 0$, we have, in the pointwise sense

$$Q \leq \mathcal{I} = \mathcal{I}_0 \leq \delta_h.$$ (34)
Then
\[\ln \int yQ(dy) \leq \mathbb{E} \left[\ln \int yI(dy) \right] \leq h. \]
So \(\mathbb{E} \left[\ln \int yI(dy) \right] \) is a finite term. Consequently,
\[
\mathbb{E} \left[\ln \frac{1 - \beta}{\int yI(dy)} \right] = \mathbb{E} \left[\ln(1 - \beta) - \ln \int yI(dy) \right] = \mathbb{E} [\ln(1 - \beta)] - \mathbb{E} \left[\ln \int yI(dy) \right] \in [-\infty, -\ln \int yQ(dy)].
\]

We observe that the above display depends only on the marginal distributions of \(\beta \) and \(I \).

2. Let \((P^n) \) be the finite backward sequence in the random model with \(P^n = \delta_h \). By assumption, \(Q(h) = 0 \). Adapting (26) into the random model and taking the expectation of the mass on \(h \) we obtain
\[
1 \geq \mathbb{E}[P^n_0(h)] = \mathbb{E} \left[\prod_{i=1}^n \frac{h(1 - \beta_i)}{\int yP^n_i(dy)} \right] \geq \exp \left(\sum_{i=1}^n \mathbb{E} \left[\ln \frac{h(1 - \beta_i)}{\int yP^n_i(dy)} \right] \right)
\]
where the second inequality is due to Jensen’s inequality. By (17)
\[\mathbb{E} \left[\ln \frac{h(1 - \beta_i)}{\int yP^n_i(dy)} \right] \] increases in \(n \) and converges to \(\mathbb{E} \left[\ln \frac{h(1 - \beta_i)}{\int yI_i(dy)} \right] = \mathbb{E} \left[\ln \frac{h(1 - \beta)}{\int yI(dy)} \right] \).

Combining the above two displays, it must be that \(\mathbb{E}[\ln \frac{h(1 - \beta)}{\int yI(dy)}] \leq 0 \).

3. Lemma 1 implies that there exists a measurable function \(T : [0, 1)^\infty \mapsto (0, \infty) \) such that for any \(j, \frac{h(1 - b_j)}{\int yQ_j(dy)} = T(b_j, b_{j+1}, \cdots) \). By Lemma 2,
\[
\left(\frac{h(1 - \beta_j)}{\int yI_j(dy)} \right)
\]
is stationary ergodic.

By (32) and the fact that \(I(h) = I_0(h) = I_0 > 0 \) a.s. (because \(Q(h) = 0 \) by assumption),
\[
\lim_{n \to \infty} (I_0)^{1/n} = \lim_{n \to \infty} \exp \left(\frac{1}{n} \ln \int \left(\frac{y}{h} \right)^n I_n(dy) + \frac{1}{n} \sum_{i=1}^n \ln \frac{h(1 - \beta_i)}{\int yI_i(dy)} \right) \overset{a.s.}{=} 1. \quad (35)
\]

As \((I_j) \) is stationary ergodic, \(\int \left(\frac{y}{h} \right)^n I_n(dy) \in [I_n, 1] \) converges weakly to \(I_0 \), which is strictly positive. Then
\[\frac{1}{n} \ln I_n, 0 \geq \frac{1}{n} \ln \int \left(\frac{y}{h} \right)^n I_n(dy) \overset{d}{\to} 0, \quad n \to \infty. \]

Moreover, since \(\left(\frac{h(1 - \beta_j)}{\int yI_j(dy)} \right) \) is stationary ergodic, we have
\[\frac{1}{n} \sum_{i=1}^n \ln \frac{h(1 - \beta_i)}{\int yI_i(dy)} \overset{a.s.}{\to} \mathbb{E} \left[\ln \frac{h(1 - \beta)}{\int yI(dy)} \right], \quad n \to \infty. \]

The above three displays yield
\[1 = \exp \left(\mathbb{E} \left[\ln \frac{h(1 - \beta)}{\int yI(dy)} \right] \right) \quad \text{or equivalently} \quad \mathbb{E} \left[\ln \frac{h(1 - \beta)}{\int yI(dy)} \right] = 0. \]
4). We show \(I = I_0 = 0 \) a.s. by contradiction. Adapting (26) in the random model

\[
P^n_0(dx) = \left(\prod_{l=1}^{n} \frac{S_Q(1 - \beta_l)}{\int yP^n_l(dy)} \right) \delta_{S_Q}(dx) + \sum_{j=0}^{n-1} \left(\prod_{l=1}^{j} \frac{1 - \beta_l}{\int yP^n_l(dy)} \right) \beta_{j+1} m_j Q^j(dx).
\]

If \(I_0 > 0 \) a.s., we consider the mass on \(S_Q \) in the above display. Note that \(m_j Q^j(S_Q) = S_Q^j Q(S_Q) \). Together with (29) we obtain

\[
1 \geq P^n_0(S_Q) \geq Q(S_Q) \sum_{j=0}^{n-1} \left(\prod_{l=1}^{j} \frac{S_Q(1 - \beta_l)}{\int yP^n_l(dy)} \right) \beta_{j+1} \geq Q(S_Q) \sum_{j=0}^{n-1} I_0 \beta_{j+1} \overset{d}{\to} \infty.
\]

This is a contradiction. So \(I_0 = 0 \), a.s. Note that by (34), \(\mathcal{I}(S_Q) = \mathcal{I}_0(S_Q) \geq Q(S_Q) > 0 \). Then we get \(\mathbb{E} \left[\ln \frac{h(1-\beta)}{\int y \mathcal{I}_0(dy)} \right] < 0 \) using (35) and the arguments thereafter.

\[\square\]

4.5 Proof of Theorem 3

Proof of Theorem 3. The statement about \(\mathbb{E} \left[\ln \frac{h(1-\beta)}{\int y \mathcal{I}_0(dy)} \right] \) concerns just a subcase of Corollary 4–1). So this is proved.

If there is no condensation at \(h \), then by Corollary 1, \(\mathcal{I} = \mathcal{I}_{0,h} = \mathcal{I}_{0,S_Q} = \mathcal{I}_Q \), then of course \(\mathcal{I} \overset{d}{=} \mathcal{I}_Q \).

The first assertion in the condensation criterion holds due to Corollary 4–3). We consider the second one. If there is condensation at \(h \), then \(\mathcal{I}_{0,S_Q} \neq \mathcal{I}_{0,h} \). By Corollary 1, \(\mathcal{I}_{0,h} \leq S_Q - \mathcal{I}_{0,S_Q} \) and \(\mathcal{I}_{0,S_Q}(S_Q) \leq \mathcal{I}_{0,h}(h) \), which, together with Corollary 4–3) entails that

\[
\mathbb{E} \left[\ln \frac{h(1-\beta)}{\int y \mathcal{I}_{0,S_Q}(dy)} \right] > \mathbb{E} \left[\ln \frac{h(1-\beta)}{\int y \mathcal{I}_{0,h}(dy)} \right] = 0.
\]

The above inequality is strict because \(\mathcal{I}_{0,S_Q} \neq \mathcal{I}_{0,h} \).

If there is no condensation at \(h \), then by Corollary 1, \(\mathcal{I}_{0,h} = \mathcal{I}_{0,S_Q} \). Using Corollary 4–2),

\[
\mathbb{E} \left[\ln \frac{h(1-\beta)}{\int y \mathcal{I}_{0,S_Q}(dy)} \right] = \mathbb{E} \left[\ln \frac{h(1-\beta)}{\int y \mathcal{I}_{0,h}(dy)} \right] \leq 0.
\]

\[\square\]

4.6 Some properties of invariant measures

In this section, we prove some results concerning invariant measures. But we leave the proof of Theorem 4 to the end. Invariant measures will play important roles in the proof of Theorem 2.

Lemma 3. For any invariant measure \(\nu \), \(\mathbb{E} \left[\ln \frac{1-\beta}{\int y \nu(dy)} \right] \) is well defined, and takes values in \([–\infty, – \ln \int yQ(dy)]\), and depends only on the marginal distributions of \(\beta \) and \(\nu \).
Proof. By the definition of invariant measure

\[E \left[\int y \nu(dy) \right] = (1 - E[\beta])E \left[\int \frac{y^2 \nu(dy)}{\int y \nu(dy)} \right] + E[\beta] \int y Q(dy) \]

\[\geq (1 - E[\beta])E \left[\int y \nu(dy) \right] + E[\beta] \int y Q(dy) \]

where the inequality is due to the fact that \(\int y^2 \nu(dy) \geq (\int y \nu(dy))^2 \). Then we obtain

\[\int y Q(dy) \leq E \left[\int y \nu(dy) \right] \leq 1. \]

Proceeding similarly as in the proof of Corollary 4–1), we conclude that this lemma holds. \(\square \)

Corollary 5. \(\mathcal{I}_Q \) is the unique (in distribution) invariant measure supported on \([0, S_Q]\).

Proof. Let \(\nu \) be any invariant measure on \([0, S_Q]\). We show that \(\nu \overset{d}{=} \mathcal{I}_Q \). Note that \(S_\nu = S_Q \), a.s.. Let \((P_n)\) and \((P'_n)\) be two forward sequences as in Section 4.2 with

\[Q = Q'; \quad h = h' = S_Q; \quad P_0 \overset{d}{=} \nu, \quad P'_0 = \delta_{S_Q} \]

and \(P_0 \) is independent of \((\beta_n)\). The two sequences differ only in the starting measures (satisfying \(P_0 \leq S_Q - P'_0 \)), with other parameters identical. Since \(\nu \) is invariant, \(P_n \overset{d}{=} \nu \) for any \(n \geq 0 \). Using the notations \(\mathcal{M}_n, \mathcal{M}'_n, \mathcal{W}_n, \mathcal{W}'_n \) in Section 4.2, and by the monotonicity analysis as in the proof of Lemma 1, we obtain in the pointwise sense,

\[\int \mathcal{M}_n(dx) \leq \int \mathcal{M}'_n(dx), \quad \mathcal{W}_n \leq S_Q \mathcal{W}_n. \quad (36) \]

If \(I_Q = 0 \) a.s., by (29) in Proposition 1 and (24)

\[\int \mathcal{M}'_n(dx) \overset{d}{\rightarrow} I_Q \overset{a.s.}{=} 0. \]

Remark 10 says that \(P'_n(= \mathcal{W}'_n + \mathcal{M}'_n) \overset{d}{\rightarrow} \mathcal{I}_Q \). Then

\[\mathcal{W}'_n \overset{d}{\rightarrow} \mathcal{I}_Q. \]

Thus applying (36) and \(I_Q = 0, \) a.s., we obtain

\[\int \mathcal{M}_n(dx) \overset{d}{\rightarrow} 0, \quad \mathcal{W}_n \overset{d}{\rightarrow} \mathcal{I}_Q. \]

Consequently,

\[P_n(= \mathcal{W}_n + \mathcal{M}_n) \overset{d}{\rightarrow} \mathcal{I}_Q. \]

Since \(\nu \overset{d}{=} P_n \) for any \(n \), we have \(\nu \overset{d}{=} \mathcal{I}_Q \).

If \(I_Q > 0, \) a.s., then by Corollary 4–4), \(Q(S_Q) = 0 \) and \(\mathcal{I}_Q(S_Q) = I_Q > 0, \) a.s.. Then by Corollary 4–3), we have

\[E \left[\ln \frac{S_Q(1 - \beta)}{\int y \mathcal{I}_Q(dy)} \right] = 0. \quad (37) \]
Using again monotonicity analysis, in a pointwise sense,
\[P'_n \leq S_Q - P_n, \quad P_n(S_Q) \leq P'_n(S_Q). \] (38)

As \(P_n \xrightarrow{d} \mathcal{I}_Q \), and \(P_n \xrightarrow{d} \nu \) for all \(n \), the above display entails that,
\[\mathcal{I}_Q \leq S_Q - \nu, \quad \nu(S_Q) \leq I_Q = \mathcal{I}_Q(S_Q). \]

Assume that \(\nu \) is not equal to \(\mathcal{I}_Q \) in distribution, then by the above display and (37),
\[\mathbb{E} \left[\ln \frac{S_Q(1 - \beta)}{\int y\nu(dy)} \right] > 0. \]

The inequality implies that for \(\varepsilon > 0 \) small enough, we have
\[\mathbb{E} \left[\ln \frac{(S_Q - \varepsilon)(1 - \beta)}{\int y\nu(dy)} \right] > 0. \]

As \(S_\nu = S_Q \) almost surely and \(P_0 \xrightarrow{d} \nu, \int \left(\frac{x}{S_Q - \varepsilon} \right)^nP_0(dx) \xrightarrow{d} \infty \), as \(n \to \infty \). Using again the decomposition (12) in Section 4.2, we get
\[
1 = \mathbb{E} \left[\int P_0(dx) \right] \geq \mathbb{E} \left[\int \mathcal{M}_n(dx) \right] \\
= \mathbb{E} \left[\exp \left(\ln \int \left(\frac{x}{S_Q - \varepsilon} \right)^nP_0(dx) + \sum_{l=0}^{n-1} \ln \frac{(S_Q - \varepsilon)(1 - \beta l + 1)}{\int yP_l^n(dy)} \right) \right] \\
\geq \mathbb{E} \left[\exp \left(\sum_{l=0}^{n-1} \ln \frac{(S_Q - \varepsilon)(1 - \beta l + 1)}{\int yP_l^n(dy)} \right) \right] \xrightarrow{n \to \infty} \infty
\]

where the third inequality is due to Jensen’s inequality. So this is a contradiction, which means that \(\nu \) is equal in distribution to \(\mathcal{I}_Q \).

4.7 Proof of Theorem 2

Case 1. \(P_0 = \delta_h \).

Proof of Theorem 2. This is shown in Remark 10.

Case 2. \(I_{0,h} = 0 \) a.s..

Proof of Theorem 2. Let \((P_n)_{n \geq 0}, (P'_n)_{n \geq 0} \) be two forward sequences in Section 4.2 with \(Q = Q', \quad h = h', \quad P'_0 = \delta_h \).

So the two sequences differ only in the starting measures (satisfying \(P_0 \leq h - P'_0 \)), with other parameters identical. Next it suffices to follow the same procedure as in the proof of Corollary 5 for the case \(I_Q = 0 \) a.s.. The proof is omitted.
Case 3. $I_{0,h} > 0$ a.s. and $P_0(h) > 0$.

First of all, we restate a result from ([22], p.10), where only $h = 1$ is considered. But it is easily generalised to any h. Recall also the distribution function D_u for $u \in M_1$, introduced in Section 4.1.

Lemma 4. Let $u_1,u_2 \in M_1$ be any probability measures satisfying $S_{u_1} = S_{u_2} = h$ and $u_1 \leq_{h-} u_2$. If for some $\varepsilon > 0$ there exists $a \in (0,h)$ such that $D_{u_1}(a) + \varepsilon \leq D_{u_2}(a)$, then

$$\int yu_1(dy) \geq c(a,\varepsilon) \int yu_2(dy)$$

where $c(a,\varepsilon) = \frac{1}{1-\varepsilon(h-a)} > 1$.

Proof of Theorem 2. Let $(P_n), (P_n')$ be the two forward sequences in the proof of Case 2. Similarly as (38), conditionally on (β_n), we have

$$P_n' \leq_{h-} P_n, \quad P_n(h) \leq P_n'(h), \quad (39)$$

implying

$$\int yP_j'(dy) \geq \int yP_j(dy), \quad \forall j \geq 0.$$

For any $\varepsilon > 0, a \in (0,h)$, let

$$\kappa_n := \# \{ n : D_{P_j'}(a) + \varepsilon \leq D_{P_j}(a), 0 \leq j \leq n \}.$$

Note that by Proposition 1–4), $Q(h) = 0$. So using (12) and (13) in Section 4.2

$$P_n'(h) = \prod_{l=0}^{n-1} \frac{h(1-\beta_{l+1})}{\int yP_l'(dy)}, \quad P_n(h) = \left(\prod_{l=0}^{n-1} \frac{h(1-\beta_{l+1})}{\int yP_l(dy)} \right) P_0(h).$$

Then by Lemma 4, we have

$$\prod_{l=0}^{n} \int yP_l'(dy) \geq c(a,\varepsilon)^\kappa_n \prod_{l=0}^{n} \int yP_l(dy).$$

Therefore

$$P_n'(h) \leq \frac{1}{c(a,\varepsilon)^\kappa_n} \left(\prod_{l=0}^{n-1} \frac{h(1-\beta_{l+1})}{\int yP_l(dy)} \right) \frac{P_n(h)}{c(a,\varepsilon)^\kappa_n P_0(h)} \leq \frac{1}{c(a,\varepsilon)^\kappa_n P_0(h)}.$$

But (29) of Proposition 1 and (24) entail that $P_n'(h)$ converges weakly to $I_{0,h}$ which is by assumption non-zero almost surely. Then $\lim_{n \to \infty} \kappa_n < \infty$ a.s.. As a,ε are arbitrary numbers and by Case 1 of this theorem $P_n' \xrightarrow{d} I_{0,h}$, we use (39) to conclude that P_n also converges weakly to $I_{0,h}$.

Case 4. $I_{0,h} > 0$ a.s. and $P_0(h) = 0$.

Proof of Theorem 2. The idea is to use a tripling argument similarly as in the proof of Theorem 5 in [22]. For any $u \in M_1$ and any $a \in [0,1]$, define

$$u^a = u_{(0,a)} + u([a,1])\delta_a, \quad a < h$$

where $u_{(0,a)}$ is the restriction of u on $[0,a)$.

20
We distinguish between $h > S_Q$ and $h = S_Q$. For the former, let $(P_n), (P'_n), (P''_n)$ be three forward sequences in Section 4.2 with

$$S_Q < h'' < h = h', \quad Q' = Q, \quad Q'' = Q^{h''} = Q; \quad P'_0 = \delta_h, \quad P''_0 = P_0^{h''}.$$

So the three sequences differ in the starting measures including the largest fitness values, but with the same Q and (β_n). Since $P'_0(h') = \delta_h(h) = 1$ and $0 < P''_0(h'') \leq 1$ and, we use Case 1 for (P'_n) and Case 2, Case 3 for (P''_n) to obtain that,

$$P'_n \xrightarrow{d} I_{0,h}, \quad P''_n \xrightarrow{d} I_{0,h''}.$$

(40)

Applying the monotonicity analysis, the following holds in the pointwise sense:

$$P'_n \leq h - P_n \leq h' - P''_n.$$

(41)

Letting $h'' \to h$ and using Corollary 1, conditionally on (β_j), $I_{0,h''}$ converges weakly to a limit in M_1, denoted by ν. So ν is a (pointwise) weak limit of $I_{0,h''}$ as $h'' \to h$. We prove next that $\nu = I_{0,h}$.

Since $I_{0,h} > 0, a.s.$ and $h > S_Q$, by Theorem 3,

$$E \left[\ln \frac{h(1 - \beta)}{\int yI_{0,S_Q}(dy)} \right] > 0.$$

Then for h'' close enough to h, we also have

$$E \left[\ln \frac{h''(1 - \beta)}{\int yI_{0,S_Q}(dy)} \right] > 0.$$

The above display entails that there is condensation at h'', thanks to Theorem 3. Together with Corollary 4–3), we have

$$E \left[\ln \frac{h''(1 - \beta)}{\int yI_{0,h''}(dy)} \right] = 0, \quad I_{0,h''} > 0, \quad a.s.$$

(42)

Since $I_{0,h''}$ is an invariant measure, the limit ν is still an invariant measure. Using (42) and Corollary 1, the pointwise convergence of $I_{0,h''}$ to ν as $h'' \to h$ entails

$$E \left[\ln \frac{h(1 - \beta)}{\int y\nu(dy)} \right] = 0, \quad \nu(h) > 0 \quad a.s..$$

(43)

Using Corollary 1 again, in the pointwise sense

$$I_{0,h} \leq h'' - I_{0,h''}, \quad I_{0,h''}(h'') \leq I_{0,h}(h),$$

implying in the pointwise sense (since ν is a pointwise weak limit of $I_{0,h''}$),

$$I_{0,h} \leq h - \nu, \quad \nu(h) \leq I_{0,h}.$$

(44)

On the other hand, by assumption $I_{0,h} > 0, a.s.$, so using Corollary 4–3),

$$E \left[\ln \frac{h(1 - \beta)}{\int yI_{0,h}(dy)} \right] = 0.$$
The above display with (43) and (44) entails that
\[\nu = \mathcal{I}_{0,h}, \quad \text{pointwise.} \] (45)
Therefore we proved that \(\mathcal{I}_{0,h''} \) converges pointwise to the weak limit \(\mathcal{I}_{0,h} \) as \(h'' \rightarrow h \).

Now taking into account (40), for any continuous function \(f \),
\[
\int f(x)P''_n(dx) \xrightarrow{d} \int f(x)\mathcal{I}_{0,h''}(dx) \xrightarrow{\text{pointwise}} \int f(x)\mathcal{I}_{0,h}(dx) \xleftarrow{d} \int f(x)P'_n(dx). \tag{46}
\]
Note that using (41), for any bounded continuous increasing function \(g \) we have
\[
\int g(x)P''_n(dx) \leq \int g(x)P'_n(dx) \leq \int g(x)P'_n(dx).
\]
Together with (46), we obtain
\[
\int g(x)P_n(dx) \xrightarrow{d} \int g(x)\mathcal{I}_{0,h}(dx).
\]
Since by (41), \(P'_n \leq_h P_n \) pointwise for any \(n \), the above display entails that \(P_n \) converges weakly to \(\mathcal{I}_{0,h} \), the same weak limit of \((P'_n) \).

If \(h = S_Q \), we follow the same procedure, except that to prove (45), we require Corollary 5.

4.8 Proof of Theorem 4

Firstly we prove two lemmas. Recall the definition of \(S_u \) for \(u \in M_1 \).

Lemma 5. \(S(\cdot) \) is a continuous (hence measurable) function on \(M_1 \) with the topology of the weak convergence.

Proof. Assume that a sequence \((u_n) \) converges weakly to \(u \). If \(S_{u_n} \) does not converge to \(S_u \), then there exists a subsequence \((u_{n_k}) \) such that \(S_{u_{n_k}} \) converges to a limit \(a \) with \(a < S_u \) or \(a > S_u \). Without loss of generality, assume \(a < S_u \). We take a positive and continuous function \(f \) supported on \((a + \frac{S_u}{2}, S_u] \) and then \(\int f(x)u(dx) > 0 \). But \(\int f(x)u_{n_k}(dx) \) converges to 0. This is against the weak convergence. The proof is then completed. \(\square \)

The next lemma generalises Corollary 5.

Lemma 6. For any invariant measure \(\nu \) with \(S_\nu = h \) a.s., we have \(\nu \xrightarrow{d} \mathcal{I} \).

Proof. Let \((P_n) \) be the forward sequence in the random model with \(P_0 \xrightarrow{d} \nu \) and \(P_0 \) independent of \((\beta_n) \). By Theorem 2, conditionally on \(P_0 \), \(P_n \) converges in distribution to the same random measure \(\mathcal{I} \). Then unconditionally \(P_n \xrightarrow{d} \nu \) converges in distribution to \(\mathcal{I} \), implying \(\nu \xrightarrow{d} \mathcal{I} \). \(\square \)
Proof of Theorem 4. Let ν be any invariant measure. By Definition (10), $S_\nu \in [S_Q, 1]$, a.s.. By Lemma 5, S_ν is a random variable and then by Theorem 5.3 in [15], there exists a regular conditional distribution of ν on S_ν.

Conditioning on S_ν for both sides of (10), we see that $(\nu|S_\nu)$ must be an invariant measure almost surely. By Lemma 6, conditionally on S_ν, we have $(\nu|S_\nu) \overset{d}{=} \mathcal{I}$ almost surely, where \mathcal{I} is the random probability measure with parameters $\mathcal{L}, Q, h = S_\nu$ and satisfies $P(S_\mathcal{I} = S_\nu|S_\nu) = 1$, a.s.. Then the proof is finished.

A Analysis of $\ln \frac{h(1-b)}{\int xK_Q(dx)}$ in Kingman’s model

We discuss respectively Theorem 1-1 (i.e., $\int \frac{Q(dx)}{1-\frac{x}{h}} \geq b^{-1}$) and Theorem 1-2 (i.e., $\int \frac{Q(dx)}{1-\frac{x}{h}} < b^{-1}$). For the former, let us compute $\int xK_Q(dx)$ first.

$$
\int xK_Q(dx) = \int \frac{b\theta_b x Q(dx)}{\theta_b - (1-b)x} \\
= \int \frac{b\theta_b (x - \theta_b/(1-b))Q(dx) + b\theta_b^2/(1-b)Q(dx)}{\theta_b - (1-b)x} \\
= \frac{b\theta_b}{1-b} + \frac{b\theta_b^2}{1-b} \int \frac{Q(dx)}{\theta_b - (1-b)x} \\
= \theta_b
$$

where the last equality is due to the fact that θ_b is the solution of the equation (4). The equation (4) also implies

$$
\int \frac{\theta_b Q(dx)}{\theta_b - (1-b)x} = \int \frac{Q(dx)}{1 - (1-b)x/\theta_b} = b^{-1}.
$$

Recall $\int \frac{Q(dx)}{1-\frac{x}{h}} \geq b^{-1}$. Then the above display entails that

$$
\frac{1}{h} \geq \frac{1-b}{\theta_b}.
$$

Taking into account (47), we arrive at

$$
\frac{h(1-b)}{\int xK_Q(dx)} \leq 1, \text{ or equivalently, } \ln \frac{h(1-b)}{\int xK_Q(dx)} \leq 0.
$$

The equality holds if and only if $\int \frac{Q(dx)}{1-\frac{x}{h}} = b^{-1}$.

For Theorem 1-2, we have

$$
\int xK_Q(dx) = \int \frac{bxQ(dx)}{1-x/S_Q} + \left(1 - \int \frac{bQ(dx)}{1-x/S_Q}\right)S_Q \\
= S_Q + \int \frac{b(x - S_Q)Q(dx)}{1-x/S_Q} \\
= (1-b)S_Q.
$$
Then we obtain
\[
\ln \frac{h(1 - b)}{\int x K_Q(dx)} = \ln \frac{h}{S_Q} \geq 0
\]
where the equality holds if and only if \(h = S_Q \).

In conclusion, if \(h > S_Q \), \(\ln \frac{h(1 - b)}{\int x K_Q(dx)} \leq 0 \) is equivalent to \(\int \frac{Q(dx)}{1 - x/h} \geq b^{-1} \) (non-condensation case), and \(\ln \frac{S_Q(1 - b)}{\int x K_Q(dx)} > 0 \) is equivalent to \(\int \frac{Q(dx)}{1 - x/S_Q} < b^{-1} \) (condensation case).

If \(h = S_Q \), \(\ln \frac{h(1 - b)}{\int x K_Q(dx)} = 0 \) is equivalent to either \(\int \frac{Q(dx)}{1 - x/S_Q} = b^{-1} \) (non-condensation case) or \(\int \frac{Q(dx)}{1 - x/S_Q} < b^{-1} \) (condensation case), and \(\ln \frac{S_Q(1 - b)}{\int x K_Q(dx)} < 0 \) is equivalent to \(\int \frac{Q(dx)}{1 - x/S_Q} > b^{-1} \) (non-condensation case). The case \(\ln \frac{S_Q(1 - b)}{\int x K_Q(dx)} > 0 \) does not exist, which is in line with Remark 12.

Therefore, if \(h = S_Q \), knowing only \(\ln \frac{h(1 - b)}{\int x K_Q(dx)} = 0 \) cannot tell whether the condensation occurs or not.

Acknowledgements

The author thanks Takis Konstantopoulos, Götz Kersting and Pascal Grange for discussions. The author thanks the anonymous reviewers for their comments which greatly improved the presentation of the paper, and for suggesting the intuition for Theorem 3. The author acknowledges the support of the National Natural Science Foundation of China (Youth Programme, Grant: 11801458).

References

[1] Aldous, D.J. and Bandyopadhyay, A. (2005). A survey of max-type recursive distributional equations. *Ann. Probab.* 15(2), 1047-1110.

[2] Betz, V., Dereich, S. and Mörters, P. (2018). The shape of the emerging condensate in effective models of condensation. *Ann. Inst. Henri Poincaré*. 19(6), 1869-1889.

[3] Bürger, R. (1986). On the maintenance of genetic variation: global analysis of Kimura’s continuum-of-alleles model. *J. Math. Biol.* 24, 341-351.

[4] Bürger, R. (1989). Mutation-selection balance and continuum-of-alleles models. *Math. Biosci.* 12(9), 67-83.

[5] Bürger, R. (1998). Mathematical properties of mutation-selection models. *Genetica*. 102, 279-298.

[6] Bürger, R. (2000). *The Mathematical Theory of Selection, Recombination, and Mutation*. Wiley, Chichester, New York.

[7] Crow, J.F. and Kimura, M. (1970). *An Introduction to Population Genetics Theory*. Harper & Row, New York.
[8] Dereich, S. and Mörters, P. (2013). Emergence of condensation in Kingman’s model of selection and mutation. Acta Appl. Math. 127, 17-26.

[9] Diaconis, P. and Freedman, D. (1999). Iterated random functions. SIAM Rev. 41(1), 45-76.

[10] Evans, S.N., Steinsaltz, D. and Wachter, K.W. (2013). A Mutation-Selection Model with Recombination for General Genotypes. American Mathematical Soc.

[11] Ewens, W.J. (1979). Mathematical Population Genetics. Springer-Verlag, New York, Heidelberg, Berlin.

[12] Gonzalez-Casanova, A., Kurt, N., Wakolbinger, A. and Yuan, L. (2016). An individual-based model for the Lenski experiment, and the deceleration of the relative fitness. Stochastic Process. Appl. 126(8), 2211-2252.

[13] Grange, P. (2019). Steady states in a non-conserving zero-range process with extensive rates as a model for the balance of selection and mutation. J. Phys. A. 52(36), 365601.

[14] Haldane, J.B.S. (1937). The effect of variation on fitness. Amer. Naturalist. 71, 337-349.

[15] Kallenberg, O. (1997). Foundations of Modern Probability, Springer Science & Business Media.

[16] Kallenberg, O. (2017). Random measures, theory and applications, Cham: Springer International Publishing.

[17] Kimura, M. (1965). A stochastic model concerning the maintenance of genetic variability in quantitative characters. Proc. Natl. Acad. Sci. 54(3), 731-736.

[18] Kingman, J.F.C. (1977). On the properties of bilinear models for the balance between mutation and selection. Proc. Camb. Phil. Soc. 80, 443-453.

[19] Kingman, J.F.C. (1978). A simple model for the balance between selection and mutation. J. Appl. Prob. 15, 1-12.

[20] Kingman, J.F.C. (1980). Mathematics of Genetic Diversity. SIAM.

[21] Steinsaltz, D., Evans, S.N. and Wachter, K.W. (2005). A generalized model of mutation-selection balance with applications to aging. Adv. Appl. Math. 35(1), 16-33.

[22] Yuan, L. (2017). A generalization of Kingman’s model of selection and mutation and the Lenski experiment. Math. Biosci. 285, 61-67, 2017.

[23] Yuan, L. (2020). Kingman’s model with random mutation probabilities: Convergence and Condensation II. J. Stat. Phys. 181, 870-896, 2020.