Exophytic inflammatory myofibroblastic tumor of the stomach in an adult woman: A rare cause of hemoperitoneum

Seong-Heum Park, Jong-Han Kim, Byung Wook Min, Tae Jin Song, Gil Soo Son, Seung Joo Kim, Sang Woo Lee, Hwan-Hoon Chung, Ju Han Lee, Jun Won Um

Abstract

Inflammatory myofibroblastic tumor (IMT) of the stomach in adults is extremely rare, with unpredictable prognosis. We present a 55-year-old woman with a gastric IMT. She experienced sudden abdominal pain 4 d previously. Physical examination showed mild abdominal tenderness in the hypogastrium, but no palpable abnormal abdominal mass. Abdominal CT showed a mass of approximately 8 cm in the gastrocolic ligament. On laparoscopic exploration, unexpected hemoperitoneum of approximately 1.5 L of blood was found, and an exophytic gastric mass of approximately 10 cm, appeared from the anterior wall of the gastric body along the greater curvature. Laparoscopy further showed that non-clotting blood in the abdominal cavity seemed to be from the gastric tumor. After conversion to open surgery for more precise evaluation of the cause of hemoperitoneum and the large friable tumor, gastric wedge resection, including the tumor, was conducted. The final diagnosis was consistent with IMT that originated from the gastric wall.

© 2008 WJG. All rights reserved.

Key words: Stomach disease; Stomach neoplasms; Hemoperitoneum; Myofibroma; Granuloma; Plasma cell; Stomach surgery

http://dx.doi.org/10.3748/wjg.14.136

INTRODUCTION

Inflammatory myofibroblastic tumor (IMT) is a rare neoplasm. The perspective of this distinctive disease has changed over time from a reactive, inflammatory process to a neoplasm of intermediate biologic potential[1-3]. Even though IMT has recently been known to span the entire age range and can arise from any site in the body[1], gastric IMT in an adult is, nevertheless, still very rare. We present a case of gastric IMT in an adult and a review of the literature.

CASE REPORT

A 55-year-old woman presented with acute-onset, sharp abdominal pain. The pain had developed 4 d prior to referral to our department from a local hospital for further evaluation of abdominal pain. On admission, her vital signs were normal. She denied other gastrointestinal symptoms and signs such as nausea, vomiting, abnormal bowel habits, melena or hematochezia, except for sharp abdominal pain. She also denied weight loss, fever, or other systemic symptoms. She had no medical or family history. Physical examination showed mild abdominal tenderness in the hypogastrum, but no palpable abnormal abdominal mass. Her laboratory findings, including tumor markers, were unremarkable, except for a normocytic, normochromic anemia: hemoglobin, 9.86 g/dL; hematocrit, 28.6%; mean corpuscular volume, 100.4 fL; and elevated erythrocyte sedimentation rate, 54 mm/h. The chest and abdominal X-ray films revealed no abnormal findings. Abdominal CT demonstrated a mass of approximately 8 cm in the gastrocolic ligament or gastric wall (Figure 1), and abdominal MRI showed a heterogeneous mass of approximately 8 cm in the gastrocolic ligament or gastric wall (Figure 2).

Endoscopic examination, including colonoscopy, showed no luminal or mucosal lesion and no remarkable...
findings, except chronic atrophic gastritis with Helicobacter infection. Routine gynecological evaluation was unremarkable. After the work up for the intra-abdominal mass, her abdominal pain completely subsided at the time of operation.

The patient underwent laparoscopic exploration. Unexpected hemoperitoneum of approximately 1.5 L of non-clotting blood was found. An exophytic gastric mass from the anterior wall of the gastric body along the greater curvature appeared, similar in appearance to the spleen or a hematoma, approximately 10 cm in size (Figure 3). Laparoscopic diagnosis was massive intra-abdominal hemorrhage from the gastric tumor or ectopic spleen. Since further evaluation of the precise cause of hemoperitoneum was needed, and because it would have been difficult to remove the large friable tumor from the abdominal cavity, even after a safe laparoscopic resection we decided to convert to open surgery.

After evacuation of blood, the abdominal cavity was thoroughly explored for any other source of bleeding, but none was found; the permeated or ruptured exophytic gastric mass was the cause of hemoperitoneum, because preoperative imaging studies, including gynecologic evaluation during admission, showed no evidence of intra-abdominal fluid, and also no other identified focus of bleeding upon surgical exploration. The tumor showed a dark reddish pedunculated mass with a stalk that originated from the gastric wall, but there was no blood vessel directly into the tumor. During dissection, we could not find any tear or rupture on the exophytic tumor. Gastric wedge resection, including the tumor and greater omentum, was conducted.

Grossly, the external surface of a well-encapsulated lump of soft solid tumor was smooth and glistening, but there was no gastric mucosal lesion (Figure 4A). The tumor measured 8.5 cm × 7.1 cm × 3.6 cm and weighed 88.1 g, and its stalk measured 2.0 cm × 1.2 cm × 1.9 cm. On serial sectioning, the cut surface was characterized by several amorphous fragments of parenchymal tissue, which were separated by the cystic spaces (Figure 4B). Histologically, the tumor was composed of round and spindle-shaped myofibroblastic cells, diffusely scattered inflammatory cells, and many vascular structures (Figure 5A). The mitotic count was 1/10 high power fields (HPF). The tumor cells showed positive immunoreactivity for vimentin (Figure 5B), while being negative for c-kit, CD34, desmin, smooth muscle actin (SMA), S-100, anaplastic lymphoma kinase (ALK), β-catenin, and CD31. Ki-67 labeling index was approximately 10%. Lymph nodes found along the gastroepiploic vessels in the omentum were all negative for tumor. The final pathologic diagnosis was consistent with IMT that originated from the gastric wall.
The patient had an uneventful postoperative course and has been followed up, including positron emission tomography, for any recurrence.

DISCUSSION

IMT is a rare, distinctive disease. Various terms such as inflammatory pseudotumor, plasma cell granuloma, inflammatory myofibroblastoma, and inflammatory myofibrohistioblastic proliferation have previously been used to describe the disease[3], which indicates that the exact nature of IMT is not yet fully understood. It has been debated whether IMT is a tumor or inflammation, and also whether it is benign or malignant[1]. However, recent studies on cytogenetic abnormalities, such as rearrangements of the ALK gene on chromosome 2p23[4,5], clonal chromosome abnormalities[6-8], and DNA aneuploidy[9], and the role of oncogenic viruses[10,11] in the pathogenesis of IMT suggest that it is a true neoplasm. According to the current classification of the World Health Organization[12], IMT is a neoplasm with a tendency for local recurrence and a very low rate of metastasis, and is histopathologically composed of myofibroblastic spindle cells, with inflammatory cell infiltrate of plasma cells, lymphocytes and eosinophils.

It was once accepted that IMT is primarily a disease of children and young adults and commonly occurs in the lungs[13,14]. However, a recent study by Coffin et al has shown that IMT may span the entire age range and can occur in any site of the body[13]. Nevertheless, gastric IMT in adults is still a very rare disease. Only four case reports of gastric IMT in adults exist in the English literature: Kim et al have reported a gastric IMT with peritoneal dissemination in a young adult[15]; Al-Taie et al have reported a rapidly growing inflammatory tumor after triple therapy for benign gastric ulcer[16]; Leon et al have experienced an IMT of the gastric remnant in a 50-year-old woman with a prior gastrectomy[3]; and Kojimahara et al have described a large, poorly demarcated, elevated IMT with infiltrative proliferation of spindle cells over the full thickness of the gastric wall in a 19-year-old woman[17].

This is believed to be the first case report of an exophytic gastric IMT that spontaneously bled into the peritoneal cavity and developed into hemoperitoneum. The present case can be compared with other intra-abdominal IMTs that present with an abdominal mass and related compressive symptoms, such as abdominal pain and vomiting[3,15-18].

Most IMTs require surgery to obtain definite diagnosis and cure. Complete resection is the preferred option, because incomplete excision has been shown to be a risk factor for recurrence[13]. As evident in this case, microrupture of the solid tumor might be another risk factor for early recurrence.

The main difficulty in the management of IMT lies in the unpredictable postoperative course. There are no definitive clinical, histopathological, or genetic features to predict recurrence or metastasis. Recently, reactivity of ALK has been reported to be a favorable prognostic indicator[9]. Differentiation between aggressive and non-
aggressive forms of IMT remains to be further clarified.
We reported a case of gastric IMT that spontaneously bled into the peritoneal cavity during admission. The patient is currently undergoing careful follow-up, because it is not clear whether gastric IMT is benign.

REFERENCES
1 Coffin CM, Hornick JL, Fletcher CD. Inflammatory myofibroblastic tumor: comparison of clinicopathologic, histologic, and immunohistochemical features including ALK expression in atypical and aggressive cases. Am J Surg Pathol 2007; 31: 509-520
2 Pratap A, Tiwari A, Agarwal B, Pandey SR, Paudel G, Kumar A. Inflammatory myofibroblastic tumor of the abdominal wall simulating rhabdomyosarcoma: report of a case. Surg Today 2007; 37: 352-355
3 Leon CJ, Castillo J, Mebold J, Cortez L, Felner R. Inflammatory myofibroblastic tumor of the stomach: an unusual complication after gastrectomy. Gastrointest Endosc 2006; 63: 347-349
4 Coffin CM, Patel A, Perkins S, Elenitoba-Johnson KS, Perlman E, Griffin CA. ALK1 and p80 expression and chromosomal rearrangements involving 2p23 in inflammatory myofibroblastic tumor. Mod Pathol 2001; 14: 569-576
5 Yousem SA, Shaw H, Cieply K. Involvement of 2p23 in pulmonary inflammatory pseudotumors. Hum Pathol 2001; 32: 428-433
6 Su LD, Atayde-Perez A, Sheldon S, Fletcher JA, Weiss SW. Inflammatory myofibroblastic tumor: cytogenetic evidence supporting clonal origin. Mod Pathol 1998; 11: 364-368
7 Snyder CS, Dell’Aquila M, Haghighi P, Baergen RN, Suh YK, Yi ES. Clonal changes in inflammatory pseudotumor of the lung: a case report. Cancer 1995; 76: 1545-1549
8 Treissman SP, Gillis DA, Lee CL, Giacomantonio M, Resch L. Omental-mesenteric inflammatory pseudotumor. Cytogenetic demonstration of genetic changes and monoclonality in one tumor. Cancer 1994; 73: 1433-1437
9 Biselli R, Ferlini C, Fattoni A, Boldrini R, Bosman C. Inflammatory myofibroblastic tumor (inflammatory pseudotumor): DNA flow cytometric analysis of nine pediatric cases. Cancer 1996; 77: 778-784
10 Lewis JT, Gaffney RL, Casey MB, Farrell MA, Morice WG, Mamon WR. Inflammatory pseudotumor of the spleen associated with a clonal Epstein-Barr virus genome. Case report and review of the literature. Am J Clin Pathol 2003; 120: 56-61
11 Gomez-Roman JJ, Sanchez-Velasco P, Ocejo-Vinayals G, Hernandez-Nieto E, Leyva-Cobian F, Val-Bernal JF. Human herpesvirus-8 genes are expressed in pulmonary inflammatory myofibroblastic tumor (inflammatory pseudotumor). Am J Surg Pathol 2001; 25: 624-629
12 Coffin CM, Fletcher JA. Inflammatory myofibroblastic tumour. In: Fletcher CDM, Unni KK, Mertens F. Pathology and genetics of tumours of soft tissue and bone. World Health Organization Classification of Tumours. Lyon: IARC Press, 2002: 91-93
13 Coffin CM, Watterson J, Priest JR, Dehner LP. Extrapulmonary inflammatory myofibroblastic tumor (inflammatory pseudotumor). A clinicopathologic and immunohistochemical study of 84 cases. Am J Surg Pathol 1995; 19: 859-872
14 Souid AK, Ziamba MC, Dubansky AS, Mazur M, Oliphant M, Thomas FD, Ratner M, Sadowitz PD. Inflammatory myofibroblastic tumor in children. Cancer 1993; 72: 2042-2048
15 Kim KA, Park CM, Lee JH, Cha SH, Park SW, Hong SJ, Seol HY, Cha IH, Mok YJ, Kim YS. Inflammatory myofibroblastic tumor of the stomach with peritoneal dissemination in a young adult: imaging findings. Abdom Imaging 2004; 29: 9-11
16 Al-Taie OH, Mork H, Jenett M, Muller JG, Scheurlein M. Fast-growing gastric inflammatory pseudotumor: a rare manifestation of peptic ulcer disease. Endoscopy 2002; 34: 239
17 Kojimahara K, Mukai M, Yamazaki K, Yamada T, Katayama T, Nakada K, Uematsu S, Umezono A, Hosoda Y. Inflammatory pseudotumor of the stomach: report of a highly infiltrative case with electron microscopic and immunohistochemical studies. Acta Pathol Jpn 1993; 43: 65-70
18 Karmak I, Senoak ME, Cifete AO, Caglar M, Bingol-Kologlu M, Tanyel FC, Buyukpatmucku N. Inflammatory myofibroblastic tumor in children: diagnosis and treatment. J Pediatr Surg 2001; 36: 908-912

S- Editor Liu Y L- Editor Kerr C E- Editor Yin DH

www.wjgnet.com