Low frequency of human papillomavirus infection in conjunctival squamous cell carcinoma of Mexican patients

Raúl Peralta1, Alejandra Valdivia1, Perla Estañol1, Vanessa Villegas1, Carolina Pimienta2, Eugenio Treviño2, Daniel Marrero3, Monica Mendoza1, Florinda Jimenez3, Leonardo Villalvazo4, Miriam Tejeda5 and Mauricio Salcedo1*

Abstract

Background: The relationship between Human Papillomavirus (HPV) infection and conjunctiva cancer is controversial. HPV detection will provide more information about the role of this infectious agent in the biology of conjunctiva cancer. In the present study, DNA extracted and purified from 36 Conjunctival Squamous Cell Carcinomas (CSCC) was evaluated by PCR for HPV DNA sequences. The results were correlated with the clinical and histopathological variables.

Results: The results showed that HPV DNA was present in 8 CSCC samples (22%); HPV16 was the sole type detected. Significant association was found between HPV detection and the limbus tumor subtype (p = 0.03). All the samples were non-metastatic squamous cell carcinoma.

Conclusions: The HPV presence in CSCC from Mexican patients is not a common event.

Keywords: conjunctiva, carcinoma, HPV

Background

Squamous cell carcinoma (SCC) is the most common neoplasm of the conjunctiva [1]. The etiology of cancer of the conjunctiva appears to be multifactorial; several risk factors have been identified, such as smoke, Human immunodeficiency virus (HIV) infection, Ultraviolet (UV) light, history of pterygium, or Human papillomavirus infection (HPV) [2,3]. However, the reports on HPV and conjunctival neoplasms are controversial. Some studies have reported a heterogeneous prevalence of high-risk HPV types, suggesting that only a subset of cases can be attributed to these viruses [4,5]. Differences in detection methods, populations, or geographic distribution could contribute to the variation in HPV infection rates in Conjunctival Squamous Cell Carcinoma (SCC)[6-12]. HPV is considered the main etiologic agent in proliferative ocular surface, lachrymal sac lesions, and pterygium worldwide, and it is has been suggested that HPV types 16 and 18 play a critical role in the oncogenesis of conjunctival cancers [13-17].

HPV are a group of host-specific DNA viruses with oncogenic subtypes that have been shown to act as carcinogens in the development of Cervical Cancer (CC), anogenital, head and neck, and CSCC [18,19]. While the E6 oncoprotein, encoded by HPV16 or HPV18, is known to bind the cancer gene product p53 and to promote its degradation, the E7 oncoprotein binds to the retinoblastoma cancer gene product pRB and results in E7-induced pRB inactivation. The E5 virus protein cooperates with E7 to transform cells and enhances the ability of E7 to induce proliferation, and with E6, to immortalize cells [20]. Preclinical and clinical studies suggest that the adoption of HPV vaccination strategies may exert an impact on the incidence of CC and potentially on other HPV infection-associated cancers, such as conjunctival cancer [21].

In order to elucidate the presence of HPV in CSCC, in the present study a group of fixed and paraffin-
embedded specimens from Mexican patients with CSCC were analyzed, and a systematic review of the literature was performed.

Results

Prevalence of HPV Infection in Conjunctival Carcinoma Worldwide

The PubMed database (National Library of Medicine, Bethesda, MD, USA) was used to identify all of the articles published between 1986 and August 2011 containing combinations of the Medical Subject Headings “Human papillomavirus” and “Conjunctival carcinoma”. All articles reporting data of HPV prevalence in conjunctival carcinomas were selected and reviewed (45 reports). To have a more robust analysis, publications containing < 10 studied cases were excluded from the analysis. Finally, 21 articles were included in this review. Information on country of origin, year, authors, sample size, and mucosal and cutaneous HPV prevalence was retrieved (Table 1).

Detection of HPV Sequences in Conjunctival Carcinomas of Mexican Patients

To demonstrate the quality of the DNA for amplification reaction, DNA purified from formalin-fixed tissue samples was first subjected to PCR utilizing D-loop mitochondrial primers. This amplicon was consistent in all cases (Figure 1). Therefore, DNA was analyzed for the presence of HPV16/E6 (primers yielding a 126 bp fragment). These primer sets allowed detection of HPV DNA in 22% of the CSCC samples (8/36). Even when excessive DNA fragmentation was due to the tissue fixation process, our results might be considered as valid in showing the prevalence of HPV in the CSCC analyzed. In general, HPV16 was the sole type detected in CSCC samples (8/36, 22%). HPV type was confirmed by DNA sequencing (data not shown).

![Illustrative example of PCR reaction for the HPV16/E6 region and D-loop mitochondrial region in conjunctival carcinoma samples](image)

Table 1 Geographic distribution of Human Papillomavirus in conjunctiva carcinoma

Continent	Authors	Year	N cases	HPV cutaneous prevalence	HPV mucosal prevalence	Countries
African	Yu JJ	2010	11	0	9 (81%)	Uganda, Kenya
Ateenyi-Agaba C	2010	94	42 (44.7%)	6 (6.4%)	Uganda	
DeKoning MN	2008	24	10 (42%)	3 (13%)	Uganda	
Tornesello ML	2006	29	3 (10.3%)	0	Uganda	
Moubaye P	2004	14	0	5 (35%)	Tanzania	
Ateenyi-Agaba C	2004	21	0	18 (86%)	Uganda	
Newton R	2002	39	0	11 (28%)	Uganda	
Waddell KM	1996	20	0	7 (35%)	Uganda, Malawi	
Europe	Reszec J	2010	38	0	2 (5.2%)	Poland
Guthoff R	2009	31	0	0	Germany	
Reszec J	2005	11	0	1 (9%)	Poland	
Toth J	2000	33	0	5 (22%)	Hungary	
Asia	Manderwad GP	2009	48	0	0	India
Sen S	2007	30	0	0	India	
Jung SM	2006	13	0	0	Taiwan	
Tulvatana W	2002	30	0	0	Thailand	
Eng HL	2002	20	0	0	China	
Karcioglu ZA	1997	31	0	17 (55%)	Saudi Arabia	
Oceania	Tabrizi SN	1997	88	0	34 (39%)	Australia
America	Palazzi MA	2000	31	0	4 (12%)	Brazil
McDonell JM	1992	11	0	7 (63%)	USA	
Present work	2011	36	0	8 (22%)	Mexico	

Publications containing less than ten cases studied were excluded from the analysis. In total were 21 reports covering more than 650 cases with an average of 28% in 15 countries. A range from 0-86% was observed.
Correlation Between HPV Detection and Clinicopathological Variables

The age of patients ranged from 24-92 years, with a mean age of 66 years. Distribution by age group was as follows: 25% \((n = 9)\), > 80 years of age; 61% \((n = 22)\), aged between 50 and 79 years, and only 14% \((n = 5)\) were < 49 years of age. Patients positive or negative to HPV infection were stratified by age group (Table 2).

Anatomical analysis showed that in CSCC, limbus type was 58% \((21/36)\), followed by conjunctival type, 42% (Table 2). None of the patients had a previous history of pterygium. Sexual transmitted diseases (STD) history was not considered accurate because the STD data provided was not considered accurate. Significant association was found between HPV detection and limbus subtype \((p < 0.05)\), but no statistically significant correlation between HPV and differentiation degree was found \((p > 0.05)\) (Table 2).

Discussion

Development of CSCC such as cervical cancer could be strongly linked with infection by high-risk HPV types [22]. There is molecular evidence that viral oncoproteins E6 and E7, found in high-risk HPV genotypes that are inactive cancer genes \(p53\) and \(pRb\), promote genomic rearrangement and confer replicative and immortalizing activities on cervical neoplasms and other cancers [20]. According to the model of cervical carcinogenesis, which assigns HPV infection a central initiating role, identical or similar mechanisms could be responsible for the development of conjunctival cancer.

In reviewing the literature on CSCC and its relationship with HPV, it is evident that a major discrepancy exists among the reports published. Intriguingly, in published data on HPV DNA analysis in conjunctival carcinoma, < < 1,000 samples were studied in nearly 21 reports, showing serious differences. Based on the present study and certain other reports that failed to demonstrate the HPV DNA of any HPV (mucosal or not), as in studies in Taiwan, Thailand, China, India, or Germany, we tend to conclude that HPV is highly, but not conclusively, unlikely to play any causal role in the pathogenesis of conjunctival cancer [6,8,13,15,23-25]. Even when HIV infection could act as an important risk factor for conjunctival cancer, reports showing a high percentage of HPV DNA sequences in CSCC HIV+ could indicate a biased result with respect to HPV frequencies [4,26].

It is noteworthy that Mexico is a country with a high incidence of CC [27]; however, in the present work we show a low percentage of mucosal HPV sequences, mainly HPV 16 (22%) in conjunctival carcinoma. Interestingly, limbus tumor was found related with the presence of HPV; this association could be explained because limbus tissue is quite similar in concept to that of transitional epithelium, as in cervical epithelium. The low frequency of HPV DNA in conjunctival cancer in our Mexican population failed to support HPV as a relevant etiological factor for this tumor type. Additional studies will be required prior to there being a definitive relationship between HPV and conjunctival cancer.

Methods

Tissues and DNA extraction

We analyzed 36 CSCC formalin-fixed paraffin-embedded specimens for HPV DNA detection. The samples were collected (during 2004-2008) from the Department of Pathology archives of the Hospital de la Luz, S.S., at Mexico City. All patients were subjected to surgery. All the samples consisted of the invasive conjunctiva squamous cell carcinoma. At present, the patients abandoned the clinical assistance, because they were free-disease. A tissue section of each specimen was hematoxilin and eosin stained and blindly analyzed by two independent pathologists to confirm the diagnosis. Information of clinical variables such as age, gender, sexually transmitted diseases, subtype clinical, histological differentiation and pterygium history were collected; in some cases the information were not available. Two 10 μm non-stained tissue sections were mounted on clean slides deparaffinized and rehydrated by standard methods. To avoid false negatives, defined tumor areas were manually microdissected under the light microscope (20× objective) with an sterilized needle, the scrapped tissue was then collected in a microtube containing 500 μl of digestion buffer (100 mM NaCl, 10 mM Tris-Cl pH 8, 25 mM EDTA pH 8, 0.5% SDS, and

Table 2 Correlation between HPV detection and clinicopathological variables in conjunctival cancer samples

Clinicopathological variables	HPV	P value	
N			
All cases	36	8	28
Age			
≤ 50	9	3	6
> 50	27	5	22
Gender			
Male	26	6	20
Female	10	2	8
Subtype Clinical			
Limbus	21	2	19
Conjunctive	15	6	9
Histological differentiation			
Well	10	3	7
Moderate/Poor	26	5	21

HPV: human papillomavirus presence. * Statistical significance
0.1 mg/ml proteinase K), and incubated at 55°C for 48 hours. The DNA was extracted by means of Wizard Extraction kit (Promega, Madison WI, USA) according to manufacturers.

HPV detection and typing
The presence of HPV DNA was determined by PCR analysis with consensus primers HPV16/E6 [28], which amplify, a fragment of E6 gene of 126 bp of HPV16. The PCR solution contained: 200 ng of tumor DNA, 1× buffer (50 mM KCl, 10 mM Tris- HCl, 0.1% Triton X-100), 2 mM MgCl₂, 0.2 mM of each dNTP, 50 pmol of each primer and 2 units of Taq DNA polymerase (Promega) in 50 μl of final volume. The reaction tubes were placed in a thermal cycler (MJ Research Minicycler) with the following program: one cycle of denaturing at 94°C for 30 sec, and 40 cycles of denaturation at 94°C for 4 min, annealing at 55°C for 1.5 min, and extension at 72°C for 1.5 min, with a final extension at 72°C for 1.5 min. CaSkI DNA (HPV16+) was used as a positive control, C33 (HPV-), and lymphocyte DNA were included as negative controls. Before HPV detection, primers for human D-(HPV-), and lymphocyte DNA were included as negative controls. After HPV detection, primers for human D-loop mitochondrial region genes were used as internal controls to monitoring DNA quality.

Statistical analysis
All comparisons for significance were performed by means X²-test. All p values represent two-tailed test and were considered significant at 0.05. The statistical analysis was performed using the SPSS v15 statistical software.

References
1. Kiree CA, Dhillon B: The aetiology and associations of conjunctival intraepithelial neoplasia. Br J Ophthalmol 2006, 90:109-113.
2. Lee GA, Williams G, Hirst LW, Green A: Risk factors in the development of ocular surface epithelial dysplasia. Ophthalmol 1994, 101:360-364.
3. zur Hausen H: Viruses in human cancers. Science 1991, 254:1166-1173.
4. Yu JF, Fu P, Pink JJ, Dawson D, Wasman J, Orem J, Mwanda WO, Zhu H, Liang X, Guo Y, Petros WP, Mitsuyasu RT, Wabinga H, Remick SC: HPV infection and EGFR activation/alteration in HIV-infected East African patients with conjunctival carcinoma. PLoS One 2010, 5:10477-10483.
5. Aretnyi-Agaba C, Franceschi S, Wabwire-Mangen F, Arslan A, Othieno E, Binta-Kahwa J, van Doorn LJ, Ketet R, Quint W, Weiderpass E: Human papillomavirus infection and squamous cell carcinoma of the conjunctiva. Br J Cancer 2010, 102:262-267.
6. Guthoff R, Marx A, Stroebele P: No evidence for a pathogenic role of human papillomavirus infection in ocular surface squamous neoplasia in Germany. Curr Eye Res 2009, 34:666-671.
7. de Koning MN, Waddell K, Maegyri J, Purdie K, Proby C, Harwood C, Lucas S, Downing R, Quint W, Newton R: Genital and cutaneous human papillomavirus (HPV) types in relation to conjunctival squamous cell neoplasia: a case-control study in Uganda. Infect Agent Cancer 2008, 3:12-21.
8. Manderwend GP, Kannabiran C, Honavar SG, Vemuganti GK: Lack of association of high-risk human papillomavirus in ocular surface squamous neoplasia in India. Arch Pathol Lab Med 2009, 133:1246-1250.
9. Reszec J, Sulkowsk S: The expression of P53 protein and infection of human papilloma virus in conjunctival and eyelid neoplasms. Int J Mol Med 2005, 16:559-564.
10. Moubayed P, Mvawakoma H, Schneider DT: High frequency of human papillomavirus 6, 11, 16, and 18 infections in precancerous lesions and squamous cell carcinoma of the conjunctiva in sub-Saharan women in Tanzania. Am J Pathol 2002, 159:938-943.
11. Tabrizi SN, McCurrach FE, Drewe RH, Borb AJ, Garland SM, Taylor HR: Human papillomavirus in corneal and conjunctival carcinomas. Aust N Z J Ophthalmol 1997, 25:211-215.
12. Nakamura Y, Machima Y, Kamayama K, Mukai M, Oguchi Y: Detection of human papillomavirus infection in squamous tumours of the conjunctiva and lacrimal sac by immunohistochemistry, in situ hybridisation, and polymerase chain reaction. Br J Ophthalmol 1997, 81:508-513.
13. Jung SM, Lin HC, Chu PH, Wu HJ, Shiu TF, Huang SL, Lai CH: Expression of cell cycle-regulatory proteins, MIB-1, p16, p53, and p63, in squamous cell carcinoma of conjunctiva: not associated with human papillomavirus infection. Virchows Arch 2006, 448:301-305.
14. Aretnyi-Agaba C, Weiderpass E, Smer P, Quint W, Al-Ma'Aliki J, Weiderpass E: Human papillomavirus infection and squamous cell carcinoma of the conjunctiva: a matched case-control study. Br J Ophthalmol 2004, 88:1777-1779.
15. Tulvatana W, Bhattarakosol P, Sansopha L, Sipiyarak W, Kowitdamrong E, Paisuntornsug T, Karnsawai S: The expression of P53 protein and infection of human papilloma virus in conjunctival squamous cell carcinoma. J Clin Pathol 2005, 58:12-21.
16. Toth J, Karcioglu ZA, Moshfeghi AA, Issa TM, Al-Ma'Aliki J, Weiderpass E: Human papillomavirus infection and squamous cell carcinoma of the conjunctiva. Br J Cancer 2010, 102:262-267.
17. East NE, Jones DP, Brown G: Human papillomavirus oncoproteins: pathways to transformation. Nat Rev Cancer 2010, 10:550-560.
18. Hughes DS, Powell N, Fander AN: Will vaccination against human papillomavirus prevent eye disease? A review of the evidence. Br J Ophthalmol 2002, 86:460-465.
22. Palazzi MA, Erwenne CM, Villa LL: Detection of human papillomavirus in epithelial lesions of the conjunctiva. Sao Paulo Med J 2000, 118:125-130.

23. Eng HL, Lin TM, Chen SY, Wu SM, Chien WJ: Failure to detect human papillomavirus DNA in malignant epithelial neoplasms of conjunctiva by polymerase chain reaction. Am J Clin Pathol 2002, 117:429-436.

24. Seema Sen, Anjana Sharma, Anita Panda: Immunohistochemical localization of human papilloma virus in conjunctival neoplasias: A retrospective study. Indian J Ophthalmol 2007, 55:361-363.

25. Joanna R, Renata Z, Witold P, Małgorzata S, Bernaczyk P, Chyczewski L: The evaluation of human papillomavirus and p53 gene mutation in benign and malignant conjunctiva and eyelid lesions. Folia Histochem Cytobiol 2010, 48:530-3.

26. Waddell KM, Lewallen S, Lucas SB, Atenyi-Agaba C, Herrington CS, Liomba G: Carcinoma of the conjunctiva and HIV infection in Uganda and Malawi. Br J Ophthalmol 1996, 80:503-508.

27. Piña-Sánchez P, Hernández-Hernández DM, López-Romero R, Vázquez-Ortiz G, Pérez-Plasencia C, Lizano-Soberón M, González-Sánchez JL, Cruz-Talonia F, Salcedo M: Human papillomavirus-specific viral types are common in Mexican women affected by cervical lesions. Int J Gynecol Cancer 2006, 16:1041-1047.

28. Terris MK, Peehl DM: Human papillomavirus detection by polymerase chain reaction in benign and malignant prostate tissue is dependent on the primer set utilized. Urology 1997, 50:150-156.

doi:10.1186/1750-9378-6-24
Cite this article as: Peralta et al.: Low frequency of human papillomavirus infection in conjunctival squamous cell carcinoma of Mexican patients. Infectious Agents and Cancer 2011 6:24.