The benefits of probiotics for human health have long been proven. Probiotic *Lactobacillus reuteri*, can produce a beneficial broad-spectrum antibacterial compound called reuterin by metabolizing glycerol.

Objective:
The aim of the study was to investigate the effect of the Indonesian strain of *L. reuteri* LC382415 on mono- and dual-species *Streptococcus mutans* and *S. sanguinis* biofilms in vitro.

Methods:
Streptococcus mutans and *S. sanguinis* were cultured in BHI broth. *Lactobacillus reuteri* LC382415 was inoculated on MRS agar. The different concentrations effect of *L. reuteri* (1×10^4, 1×10^6, and 1×10^8 CFU/mL) with and without glycerol supplementation on microbial biofilms were examined using a biofilm assay after incubation for 1, 3, 6, and 24-h. The biofilm mass optical density was measured with a microplate spectrophotometer at 490 nm. Chlorhexidine gluconate (0.2%) was used as a positive control, and wells without treatment were used as negative controls.

Results:
A significant reduction in mono- and dual-species *S. mutans* and *S. sanguinis* biofilm formation was observed after treatment with all concentrations of *L. reuteri* and after all incubation periods (p<0.05) with or without glycerol supplementation. The concentration of 1×10^7 CFU/mL after 3-h incubation was the most effective in inhibiting biofilm formation, with 87.8% *S. mutans*, 95.9% *S. sanguinis*, and 80.4% dual-species biofilm reduction compared to the negative control (p=0.05).

Conclusion:
The Indonesian strain of *L. reuteri* effectively reduces mono- and dual-species *S. mutans* and *S. sanguinis* biofilms. This suggests that it may be useful in preventing biofilm formation in oral cavities. Future studies on the mechanism of action of this active component are warranted.

Keywords: Probiotic, Indonesia, *Lactobacillus reuteri*, *Streptococcus mutans*, *Streptococcus sanguinis*, Oral biofilm.
2. MATERIALS AND METHODS

2.1. Bacterial Culture

Streptococcus mutans (ATCC® 25175™) and *S. sanguinis* (ATCC® 10556™) were cultured in brain heart infusion broth in anaerobic conditions at 37°C for 24 h. *Lactobacillus reuteri* LC382415 [21] was cultured in de Man, Rogosa, and Sharpe broth in anaerobic conditions at 37°C for 72 h. For *L. reuteri* with glycerol supplementation, glycerol (250 mM) was added to *L. reuteri* suspensions.

2.2. Biofilm Assay

Biofilm formation was analysed using a 96-well microtiter plate-based biofilm assay. The biofilm mass Optical Density (OD) of *S. mutans* and *S. sanguinis* cultures was measured. The bacteria were diluted until they reached 1.5×10^4 CFU/μL, equivalent to 0.5 McFarland, and homogenized with a vortexer. The cultures were incubated in a 96-well plate in anaerobic conditions at 37°C for 48 h. The well plate was rinsed with phosphate-buffered saline with no supernatant from the cultures.

Lactobacillus reuteri cultures in different concentrations (1×10^4, 1×10^5, and 1×10^6 CFU/mL) with and without glycerol supplementation were distributed in the well plate. Chlorhexidine gluconate (0.2%) was used as a positive control, and wells without treatment were used as negative controls. The biofilms were examined after incubation in anaerobic conditions for 1, 3, 6, and 24 h.

Crystal violet (0.5% w/v) was added in all wells, incubated for 15 min, and then removed. Absolute ethanol (200 μL) was also added in all wells, and the extraction of crystal violet from the wells was measured as biofilm mass. Absorbance measurements were performed using a microplate reader at a wavelength of 490 nm. All treatments were applied in triplicate.

2.3. Statistical Analysis

Parametric test was performed in data analysis. The Kolmogorov-Smirnov test was used to check the normality of the data. One-way analysis of variance and post hoc tests were performed to determine the significant value between categories ($p < 0.05$) (SPSS version 25, IBM, USA).

3. RESULTS

A reduction in mono-species *S. mutans* biofilm was observed after treatment with all *L. reuteri* LC382415 concentrations without glycerol supplementation and after all incubation periods compared to the negative control. OD measurements showed that the *S. mutans* mono-biofilm was drastically reduced with the *L. reuteri* LC382415 concentration of 1×10^5 CFU/mL after 1 h compared to the negative control and the other concentrations ($p < 0.05$). A reduction compared to the negative control was also observed with *L. reuteri* LC382415 concentrations of 1×10^4 and 1×10^5 CFU/mL after 3 h ($p < 0.05$). The *S. mutans* biofilm was reduced with *L. reuteri* LC382415 concentrations of 1×10^4, 1×10^5, and 1×10^6 CFU/mL by 56.5%, 55.3%, and 50.4%, respectively, compared to the negative control after incubation for 6 h ($p < 0.05$) and was further reduced by 82.2%, 81.9%, and 81.3%, respectively, after incubation for 24 h ($p < 0.05$). Fig. (1) shows the co-cultured *L. reuteri* LC382415 and *S. mutans* biofilm mass OD after incubation for 1, 3, 6, and 24 h without glycerol supplementation.

The presence of *L. reuteri* LC382415 without glycerol supplementation also reduced the mono-species *S. sanguinis* biofilm with all concentrations and after all incubation periods compared to the negative control.
Concentration-response relationship graphs of L. reuteri LC382415 and S. mutans co-cultures without glycerol supplementation after 1, 3, 6, and 24 h term of incubation. The y-axis represents the biofilm mass in optical density, while the x-axis represents the L. reuteri concentrations (1 \times 10^{4}, 1 \times 10^{6}, and 1 \times 10^{8} CFU/mL). 0.2% Chlorhexidine gluconate (positive control) and untreated wells (negative control) were used in this study. All treatments were applied as triplicate. Asterix state the significance value (p < 0.05).

The biofilm was drastically reduced compared to the negative control with L. reuteri LC382415 concentrations of 1 \times 10^{4} and 1 \times 10^{8} CFU/mL after incubation for 1 h (p < 0.05). A significant reduction compared to the negative control was also observed with L. reuteri LC382415 concentrations of 1 \times 10^{6} and 1 \times 10^{8} CFU/mL after incubation for 3 h (p < 0.05) and a concentration of 1 \times 10^{6} CFU/mL after incubation for 6 h (p < 0.05). The S. sanguinis biofilm was reduced with L. reuteri LC382415 concentrations of 1 \times 10^{4}, 1 \times 10^{6}, and 1 \times 10^{8} CFU/mL by 94.8%, 98.1%, and 94.8%, respectively, compared to the negative control after incubation for 24 h. Fig. (2) shows the co-cultured L. reuteri LC382415 and S. sanguinis biofilm mass OD after incubation for 1, 3, 6, and 24 h without glycerol supplementation.

A significant reduction compared to the negative control was also observed in the dual-species S. mutans and S. sanguinis biofilm after treatment with all concentrations of L. reuteri LC382415 without glycerol supplementation and after all incubation periods (p < 0.05). Fig. (3) shows the co-cultured L. reuteri LC382415 and dual-species biofilm mass OD after incubation for 1, 3, 6, and 24 h without glycerol supplementation.
The mono-species *S. mutans* and *S. sanguinis* biofilms were also significantly reduced compared to the negative control after treatment with almost all concentrations of *L. reuteri* LC382415 with glycerol supplementation after all incubation periods \((p < 0.05)\). The co-cultured *L. reuteri* LC382415 and mono-species *S. mutans* and *S. sanguinis* biofilm mass ODs after incubation for 1, 3, 6, and 24 h with glycerol supplementation are shown in Figs. (4) and (5), respectively.
Fig. (4). Concentration-response relationship graphs of *L. reuteri* LC382415 and *S. mutans* co-cultures with glycerol supplementation after 1, 3, 6, and 24 h term of incubation. The y-axis represents the biofilm mass in optical density, while the x-axis represents the *L. reuteri* concentrations (1 × 10^4, 1 × 10^6, and 1 × 10^8 CFU/mL). 0.2% Chlorhexidine gluconate (positive control) and untreated wells (negative control) were used in this study. All treatments were applied as triplicate. Asterix state the significant value (*p* < 0.05).

Fig. (5). Concentration-response relationship graphs of *L. reuteri* LC382415 and *S. sanguinis* co-cultures with glycerol supplementation after 1, 3, 6, and 24 h term of incubation. The y-axis represents the biofilm mass in optical density, while the x-axis represents the *L. reuteri* concentrations (1 × 10^4, 1 × 10^6, and 1 × 10^8 CFU/mL). 0.2% Chlorhexidine gluconate (positive control) and untreated wells (negative control) were used in this study. All treatments were applied as triplicate. Asterix state the significant value (*p* < 0.05).
Comparisons of the effects of *L. reuteri* LC382415 with and without glycerol supplementation are shown in Fig. (6-9). *Lactobacillus reuteri* LC382415 in a concentration of 1×10^8 CFU/mL resulted in a significantly greater mono-species *S. mutans* biofilm reduction with than without glycerol supplementation after incubation for 1-6 h (Fig. 7). An *L. reuteri* LC382415 concentration of 1×10^8 CFU/mL also caused a greater mono-species *S. sanguinis* biofilm reduction with than without glycerol supplementation after incubation for 1 h (Fig. 8). Moreover, almost all concentrations of *L. reuteri* LC382415 resulted in a greater dual-species formation reduction with than without glycerol supplementation after incubation for 1-6 h (Fig. 9).

The dual-species biofilm was significantly reduced after treatment with all concentrations of *L. reuteri* LC382415 with glycerol supplementation after incubation for 3 and 6 h compared to the negative control ($p < 0.05$). Fig. (6) shows the co-cultured *L. reuteri* LC382415 and dual-species biofilm mass OD after incubation for 1, 3, 6, and 24 h with glycerol supplementation.

![Fig. 6](image-url) Concentration-response relationship graphs of *L. reuteri* LC382415 and dual-species *S. mutans* and *S. sanguinis* co-cultures with glycerol supplementation after 1, 3, 6, and 24 h term of incubation. The y-axis represents the biofilm mass in optical density, while the x-axis represents the *L. reuteri* concentrations ($1 \times 10^4, 1 \times 10^6$, and 1×10^8 CFU/mL). 0.2% Chlorhexidine gluconate (positive control) and untreated wells (negative control) were used in this study. All treatments were applied as triplicate. Asterix state the significant value ($p < 0.05$).
Fig. (7). Concentration-response relationship graphs of with *L. reuteri* LC382415 co-cultures with and without glycerol supplementation after 1, 3, 6, and 24 h term of incubation. The y-axis represents the optical density of mono-species *S. mutans* biofilm mass. The x-axis represents the *L. reuteri* concentrations (1 × 10^4, 1 × 10^6, and 1 × 10^8 CFU/mL). 0.2% Chlorhexidine gluconate (positive control) and untreated wells (negative control) were used in this study. All treatments were applied as triplicate. Asterix state the significan value (p < 0.05).

Fig. (8). Concentration-response relationship graphs of with *L. reuteri* LC382415 co-cultures with and without glycerol supplementation after 1, 3, 6, and 24 h term of incubation. The y-axis represents the optical density of mono-species *S. sanguinis* biofilm mass. The x-axis represents the *L. reuteri* concentrations (1 × 10^4, 1 × 10^6, and 1 × 10^8 CFU/mL). 0.2% Chlorhexidine gluconate (positive control) and untreated wells (negative control) were used in this study. All treatments were applied as triplicate. Asterix state the significan value (p < 0.05).
used in this study. All treatments were applied as triplicate. Asterix state the significant value (p < 0.05).

Concentration-response relationship graphs of with L. reuteri LC382415 co-cultures with and without glycerol supplementation after 1, 3, 6, and 24 h term of incubation. The y-axis represents the optical density of dual-species biofilm mass. The x-axis represents indicates the concentration of 1 × 10^4, 1 × 10^5, and 1 × 10^6 CFU/mL. 0.2% Chlorhexidine gluconate (positive control) and untreated wells (negative control) were used in this study. All treatments were applied as triplicate. Asterix state the significant value (p < 0.05).

4. DISCUSSION

Dental caries is a multifactorial phenomenon representing a major problem of the oral cavity that affects a significant number of people worldwide. It may be caused by oral biofilm formation, which can lead to the destruction of the tooth [22].

The oral biofilm is formed by multi-species communities colonizing the oral cavity in stages (initial, early, middle, and late) [23]. The initial colonization process is dominated by oral streptococci, such as S. mutans and S. sanguinis, which account for over 80% of the early biofilm [11]. Lactobacillus species have known to be linked with dental caries for years, as they have been considered secondary invaders [24]. However, Lactobacillus species have also been reported to be beneficial for the oral cavity [25]. In this study, the Indonesian strain of L. reuteri LC382415 was found to decrease mono- and dual-species S. mutans and S. sanguinis biofilms. Although the exact mechanism has yet to be elucidated, it can be speculated that it is related to competition for nutrients and the ability of L. reuteri LC382415 to inhibit the adherence of competing species by producing antibacterial peptides.

Our results show that L. reuteri LC382415 in a concentration of 1 × 10^4 CFU/mL without glycerol supplementation effectively reduced the mono-species S. mutans biofilm after all incubation periods, even after 24 h. The mono-species S. sanguinis biofilm was also effectively reduced after incubation for 24 h. Lactobacillus reuteri may have the ability to produce hydrogen peroxide (H_2O_2), which can be toxic to organisms lacking hydrogen peroxidase scavenging enzymes, such as S. mutans, thus inhibiting their biofilm growth [12]. Moreover, H_2O_2 produced by L. reuteri or other streptococci can induce autolysis in S. sanguinis [26].

All concentrations of L. reuteri LC382415 with glycerol supplementation significantly reduced the mono-species S. mutans and S. sanguinis biofilms after incubation for 1–6 h. Similar effects were observed in the dual-species biofilm co-cultures. This might be due to the ability of L. reuteri to produce reuterin (3-HPA) by metabolizing glycerol. Reuterin is used as a broad-spectrum antimicrobial agent and has more advantages than other antimicrobial agents [27].

Different incubation periods were used in this study to determine the optimum time required for L. reuteri to inhibit biofilm formation. After 1 h of incubation, biofilm formation enters the adhesion stage, which is reversible, and the attached bacteria are easily removed from the pellicle [28]. After 24 h of incubation, the co-cultured L. reuteri LC382415 and mono-and dual-species biofilms with glycerol supplementation tended to increase, although still at a lower rate compared to the negative control. This suggests that the pathogenic bacteria gradually increased their antibacterial resistance and multiplied as the biofilm entered the maturation stage. It is harder for antimicrobial agents to penetrate thicker biofilms [29], as their glycocalyxes protect the bacteria and enhance their immunity to antibiotic agents [30].
The L. reuteri LC382415 strain was isolated from young Indonesian adults. The sequence results and Basic Local Alignment Search Tool (BLAST) confirmed that the DNA sequence of this strain was similar to L. reuteri ATCC 55730 [31]. The evolution gap between two bacterial strains can be measured using their nucleotide gene identity through BLAST, with average nucleotide identity (ANI) of 95-98% [32]. Lactobacillus reuteri LC 382415 similarity to L. reuteri ATCC 55730, as suggested by an ANI of 96% [21].

The probiotic biofilm inhibition mechanism lies in enhancing the epithelial barrier by inducing mucus secretion, along with enhancing probiotic and inhibiting pathogenic microorganism adhesion, competing with pathogenic microorganisms for nutrients on the host cell surface, and producing other antimicrobial agents, such as lactic acid, acetate acid, and bacteriocin, thereby reinforcing the immune system [33]. Lactic acid and acetate acid produced by L. reuteri contribute to pathogenic bacterial growth inhibition due to their ability to penetrate the bacterial cell membrane, dissociate with the alkaline environment inside the cell, and lower the cytoplasm pH [34]. Bacteriocin and hydrogen peroxide can destroy pathogenic bacterial cell membranes and inhibit pathogenic DNA synthesis. Therefore, probiotics can prevent pathogenic microorganism adhesion and colonization [35]. Wasfi et al. (2018) also found that Lactobacillus spp. probiotics, including L. reuteri ATCC 23272, can prevent dental caries activity. Their anti-caries effect is related to the inhibition of S. mutans biofilm growth, especially because of the secretion of organic acid production of H2O2 [12].

The effectiveness of a probiotic depends on certain factors, such as its ability to survive in enzyme-rich and low-pH environments, its interaction with the host, its ability to compete with pathogenic microorganisms, and most importantly, its safety [36]. L. reuteri probiotics have been proven to meet all these conditions [37]. In recent years, the microbial activity of Lactobacillus has been found to depend on the specific strain and the pH environment [38]. Lactobacillus has been reported to reduce Streptococcus adhesion [39]. These explain how the presence of L. reuteri LC382415 significantly reduced the dual-species biofilm of S. mutans and S. sanguinis.

CONCLUSION

This study demonstrates the promising activity of L. reuteri LC382415 with glycerol supplementation against initial-stage biofilms. Future studies on the mechanism of action of this active component are warranted.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

Not applicable.

HUMAN AND ANIMAL RIGHTS

No animals/humans were used for studies that are the basis of this research.

CONSENT FOR PUBLICATION

Not applicable.

AVAILABILITY OF DATA AND MATERIALS

The data sets analysed during the current study are available from the corresponding author, [C.F.T] upon request.

FUNDING

This research was supported by Faculty of Dentistry, Trisakti University, Jakarta, Indonesia.

CONFLICT OF INTEREST

The authors declare no conflict of interest, financial or other.

ACKNOWLEDGEMENTS

The authors wish to thank Mario Richi, S.Si and Aradhea Monica Dreastia, S.Si for their laboratory assistance.

REFERENCES

[1] Maharani DA. Do the indonesians receive the dental care treatment they need? A secondary analysis on self-perceived dental care need. ISRN Dent 2012; 2012:769809 [http://dx.doi.org/10.5402/2012/769809] [PMID: 22888443]

[2] Pelzner K, Pengpid S. Dental health status and oral health behavior among university students from five ASEAN countries. Nagoya J Med Sci 2017; 79(2): 123-33. [http://dx.doi.org/10.18999/najms.79.2.123] [PMID: 28626248]

[3] Health Ministry of Indonesia. Indonesia Health Profile 2018.

[4] Benjamin RM. Oral health: the silent epidemic. Public Health Rep 2010; 125(2): 158-9. [http://dx.doi.org/10.1177/003335491012500202] [PMID: 20297740]

[5] Selwitz RH, Ismail AI, Pitts NB. Dental caries. Lancet 2007; 369(9555): 51-9. [http://dx.doi.org/10.1016/S0140-6736(07)60031-2] [PMID: 17206642]

[6] Takahashi N, Nyvad B. Caries ecology revisited: microbial dynamics and the caries process. Caries Res 2008; 42(6): 409-18. [http://dx.doi.org/10.1119/000159604] [PMID: 18832827]

[7] Caulfield P W, Grffen A L. Dental caries. An infectious and transmissible disease. Pediatr Clin North Am 2000; 47(5): 1001-19. [http://dx.doi.org/10.1016/S0031-3955(05)70255-8]

[8] Petersen PE, Bourgeois D, Ogawa H, Estupinan-Day S, Ndiaye C. The global burden of oral diseases and risks to oral health. Bull World Health Organ 2005; 83(9): 661-9.http://dx.doi.org/10.1002/1099-0874(20050501)23:12<661::AID-DDS5>3.0.CO;2-K [PMID: 16211577]

[9] Lemor JA, Quivey RG, Koo H, Abranches J. Streptococcus mutans: a new Gram-positive paradigm? Microbiology (Reading) 2013; 159(Pt 3): 436-45. [http://dx.doi.org/10.1099/mic.0.066134-0] [PMID: 23393147]

[10] Garnett JA, Matthews S. Interactions in bacterial biofilm development: a structural perspective. Curr Protein Pept Sci 2012; 13(8): 739-55. [http://dx.doi.org/10.2174/138920312804871166] [PMID: 23305361]

[11] Kreth J, Merritt J, Qi F. Bacterial and host interactions of oral streptococci. DNA Cell Biol 2009; 28(8): 397-403. [http://dx.doi.org/10.1089/dna.2009.0868] [PMID: 19435424]

[12] Wasfi R, Abd El-Rahman OA, Zafer MM, Ashour HM. Probiotic Lactobacillus sp. inhibit growth, biofilm formation and gene expression of caries-inducing Streptococcus mutans J Cell Mol Med 2018; 22(3): 1972-83. [http://dx.doi.org/10.1111/jcmm.13496] [PMID: 29316223]

[13] Bollen CM, Beikler T. Halitosis: the multidisciplinary approach. Int J Oral Sci 2012; 4(2): 55-63. [http://dx.doi.org/10.1038/jjos.2012.39] [PMID: 22722640]

[14] Mahasneh SA, Mahasneh AM. Probiotics: A Promising Role in Dental Health. Dent J (Basel) 2017; 5(4):E26. [http://dx.doi.org/10.3390/dj5040026] [PMID: 29563432]

[15] Shi LH, Balakrishnan K, Thiagarajah K, Mobed Ismail NI, Yin OS.
Indonesian Strain of Lactobacillus reuteri Probiotic

The Open Dentistry Journal, 2020, Volume 14 553

Beneficial properties of probiotics. Trop Life Sci Res 2016; 27(2): 73-90. [http://dx.doi.org/10.21315/tlsr2016.27.2.6] [PMID: 27688852]

[16] Caglar E, Kavaloglu SC, Kuscu OO, Sandall N, Holgerson PL, Twetman S. Effect of chewing gums containing xylitol or probiotic bacteria on salivary mutans streptococci and lactobacilli. Clin Oral Investig 2007; 11(4): 425-9. [http://dx.doi.org/10.1007/s00784-007-0129-9] [PMID: 17574481]

[17] Jones SE, Versalovic J. Probiotic Lactobacillus reuteri biofilms produce antimicrobial and anti-inflammatory factors. BMC Microbiol 2009; 9(1): 35. [http://dx.doi.org/10.1186/1471-2180-9-35] [PMID: 19210794]

[18] Widyarman AS, Drestia AM, Bachtar EW, Bachtar BM. The anti-inflammatory effects of glycercol-supplemented probiotic Lactobacillus reuteri on infected epithelial cells In vitro. Contemp Clin Dent 2018; 9(2): 298-303. [http://dx.doi.org/10.4103/ccd.ccd_53_18] [PMID: 29875577]

[19] Twetman S, Keller MK. Probiotics for caries prevention and control. Adv Dent Res 2012; 24(2): 98-102. [http://dx.doi.org/10.1177/0895738X12451245] [PMID: 22896689]

[20] Kwon H-S, Yang E-H, Yeon S-W, Kang B-H, Kim T-Y. Rapid identification of probiotic Lactobacillus species by multiplex PCR using species-specific primers based on the region extending from 16S rRNA through 23S rRNA. FEMS Microbiol Lett 2004; 239(2): 267-75. [http://dx.doi.org/10.1016/j.femsle.2004.08.049] [PMID: 15476976]

[21] Widyarman AS, Pranoto S, Theodorea CF, Bachtar EW, Bachtar BM. Isolation and identification of Indonesian lactobacilli reuteri strain from saliva of young adults. Sci Dent J 2018; 2(2): 67-75. [http://dx.doi.org/10.26912/sdj.v2i2.2840]

[22] Paiva MA, Leite DF, Farias IA, Costa AD, Sampaio FC. Dental anatomical features and caries: A relationship to be investigated. Dent Anat 2017.

[23] Kolenbrander PE, Palmer RJ Jr, Periasamy S, Jakubovics NS, Monteagudo-Mera A, Rastall RA, Gibson GR, Charalampopoulos D, Liévin-Le Moal V, Servin AL. Anti-infective activities of lactobacillus strains from saliva of young adults. Sci Dent J 2018; 2(2): 67-75. [http://dx.doi.org/10.1128/MCB.17.4.860-862.2004] [PMID: 15489351]

[24] Kim M, Oh H-S, Park S-C, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16s rna gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2016; 64(Pt 2): 346-51.

[25] Vieco-Saiz N, Belguessa Y, Raspoot R, et al. Benefits and Inputs From Lactic Acid Bacteria and Their Bacteriocins as Alternatives to Antibiotic Growth Promoters During Food-Animal Production. Front Microbiol 2019; 10: 57. [http://dx.doi.org/10.3389/fmicb.2019.00057] [PMID: 30804896]

[26] Engevik MA, Versalovic J. Biochemical features of beneficial microbes: Foundations for therapeutic microbiology. Microbiol Spectr 2017; 5(3): 1-47. [http://dx.doi.org/10.1128/microbiolspec.BAD-0012-2016] [PMID: 28982325]

[27] Matsubara VH, Bandara HMHN, Mayer MPA, Samarayake LP. Probiotics as antifungals in mucosal candidiasis. Clin Infect Dis 2016; 62(9): 1143-53. [http://dx.doi.org/10.1093/cid/ciw038] [PMID: 26826375]

[28] Markowski P, Sliżewska K. Effects of Probiotics, Prebiotics, and Synbiotics on Human Health. Nutrients 2017; 9(9). E1021. [http://dx.doi.org/10.3390/nut909E1021] [PMID: 28914794]

[29] Mu Q, Talevski VJ, Luo XM. Role of Lactobacillus reuteri in Human Health and Diseases. Front Microbiol 2018; 9: 757. [http://dx.doi.org/10.3389/fmicb.2018.00757] [PMID: 29725324]

[30] Liévín-Le Moal V, Servin AL. Anti-infective activities of lactobacillus strains in the human intestinal microbiota: from probiotics to gastrointestinal anti-infectious biotherapeutic agents. Clin Microbiol Rev 2014; 27(2): 167-99. [http://dx.doi.org/10.1128/CMR.00080-13] [PMID: 24696432]

[31] Montegudo-Mera A, Rastall RA, Gibson GR, Charalampopoulos D, Chatzifragkou A. Adhesion mechanisms mediated by probiotics and prebiotics and their potential impact on human health. Appl Microbiol Biotechnol 2019; 103(16): 6463-72. [http://dx.doi.org/10.1007/s00253-019-09978-7] [PMID: 31267231]