Supporting Information

Influence of the nacnac Ligand in Iron(I)-Mediated P₄ Transformations

Fabian Spitzer, Christian Graßl, Gábor Balázs, Eva M. Zolnhofer, Karsten Meyer, and Manfred Scheer*

anie_201510716_sm_miscellaneous_information.pdf
1. **Synthesis and Characterization**

General Remarks:
All manipulations were performed with rigorous exclusion of oxygen and moisture using Schlenk-type glassware on a dual manifold Schlenk line with Argon inert gas or glove box filled with N\textsubscript{2} containing a high-capacity recirculator (<0.1 ppm O\textsubscript{2}). Solvents were dried using a MB SPS-800 device of company MBRAUN, degassed and saturated with argon to prevent N\textsubscript{2} activation while reduction reactions. Mass spectrometry was performed using a ThermoQuest Finnigan TSQ 7000 (ESI-MS), Finnigan MAT 95 (LIFDI) and JEOL AccuTOF GCX (LIFDI), respectively. Elemental analysis (CHN) was determined using a Vario micro cube and Vario EL III instrument.

Fe(II) chloride, anhydrous; 98\% was purchased by ABCR and used without further purification. Ligands L1H[1] and L3H[2] were synthesized following literature-known routes.

Synthesis of L2H:

L2H was prepared using the standard β-diiimine ligand preparation except that 1,1,3,3-tetramethoxypropane was used instead of 2,4-peantadione as starting material.[28] L2H was crystallized from THF.

Analytical data:

NMR (C\textsubscript{6}D\textsubscript{6}, 300 K)	1H: δ [ppm] = 11.42 (1H, br s, a), 7.05 (2H, d, 1J\textsubscript{HH} = 6 Hz, d), 6.97 (4H, d, 1J\textsubscript{HH} = 7 Hz, f), 6.91 (2H, dd, 1J\textsubscript{HH} = 6 Hz, 1J\textsubscript{HH} = 9 Hz, e), 4.79 (1H, t, 1J\textsubscript{HH} = 6 Hz, c), 2.17 (12H, s, b).
Mass spectrometry (ESI-MS)	m/z: 279.19 (100\%) [M+H]+.

Synthesis of [L1Fe(tol)] (1a):

Compound 1a was prepared analogue to literature method,[3] beside that [L1FeBr]\textsubscript{2} was used instead of [L1CoI(2,4-lutidine)].

Synthesis of [L2Fe(tol)] (1b):
A yellow slurry of 6.68 g (24.0 mmol) \(\text{L}^2\text{H} \) in 100 mL THF was treated with a solution of 15 mL (24.0 mmol) \(^{\text{t}}\text{BuLi} \) (1.6 M) in n-hexane. The formed clear red solution was stirred at r.t. for 1 h. Within 1.5 h the solution was slowly transferred into a slurry of 3.04 g (24.0 mmol) anhydrous \(\text{FeCl}_2 \) in 5 mL THF, forming an intense dark yellow solution, which was stirred at r.t. for 12 h. After removal of solvent, the brownish solid was dissolved in 50 mL of toluene. The intense dark yellow solution was transferred into a slurry of 1.05 equivalents of potassium graphite in 10 mL toluene. The mixture was stirred at r.t. for 98 h and a color change to olive green was observed. Remaining graphite and salts were removed via filtration of the olive green solution over celite. The solvent was removed \text{i. vac.} and a dark green brown solid was obtained. The solid was dissolved in 100 mL n-hexane and the solution was filtered over celite. After concentration of the solution to a volume of ca. 20 mL, the intense green solution was stored at 5 °C for several h and at –15 °C for one night to yield 2.36 g of dark green crystalline blocks.

Crystalline yield: 2.36 g (5.55 mmol, 23 %)

Analytical data:

NMR (Tol-\(\text{d}_8 \), 298 K)	\(^1\text{H} \): \(\delta \) [ppm] = 512.9 (2H, s, b), 487.6 (1H, s, a), 10.9 (4H, s, d), 9.8 (2H, s, e), 7.76 and 7.65 (ca. 5H, s, g/h/i), 2.78 (3H, s, f), 1.9 (12H, s (broad), c).
Evans-NMR (Tol-\(\text{d}_8 \) solution)	\(\mu_{\text{eff}} = 2.01 \mu_\text{B} \) (298 K)
Elemental analysis (C\(_{26} \)H\(_{29} \)FeN\(_2 \))	Calculated: C 73.41, H 6.87, N 6.59. Found: C 72.78, H 6.61, N 6.63.
Mass spectrometry (FD, toluene)	m/z: 425.18 (100%) \([\text{M}]^+\), 610.30 (24%) \([\text{L}^2\text{Fe}]^+\).

\textbf{Synthesis of L}^3\text{Fe(tol)} \times 0.25 n\text{-hexane (1c):}
To a cooled (0 °C) solution of 6.03 g (14.4 mmol) L^3H in 40 mL THF was added a solution of 9 mL (14.4 mmol) nBuLi (1.6 M) in n-hexane. The solution was stirred for 3.5 h and allowed to warm up to room temperature. Within 10 min the clear intense yellow solution was slowly added to a slurry of 1.83 g (14.5 mmol) anhydrous FeCl$_2$ in 20 mL THF. A color change to intense dark yellow occurred and the reaction mixture was stirred for 17.5 h. After removal of the solvent, the dark yellow solid was dissolved in 45 mL of toluene. The intense dark yellow solution was added to a slurry of 1.05 equivalents potassium graphite in 10 mL toluene. The mixture was stirred at r.t. for 48 h. Remaining graphite and salts were removed by filtration over celite. The solvent was removed $i. \text{vac.}$ and the resulting dark brown solid was dissolved in 65 mL n-hexane, filtered over celite and stored at 5 °C for 3 d to yield 3.01 g of black crystals. The supernatant solution was concentrated and 1.20 g of a second crystalline crop was obtained.

Crystalline yield: 4.21 g (7.45 mmol, 52 %)

Analytical data:

Test	Result
1H-NMR (Tol-d_8, 300 K)	Despite 1H spectra were measured from 1100 ppm to -1100 ppm, only three very broad signals could be detected. This might be due to line broadening caused by the paramagnetic nature of 1c. 1H-NMR Spectrum of obtained signals is shown in chapter “5. 1H-NMR and EPR Spectra”.
Evans-NMR (Tol-d_8 solution)	$\mu_{\text{eff}} = 1.89 \mu_B$ (300 K)
Elemental analysis (C$_{36}$H$_{49}$FeN$_2$)	Calculated: C 76.44, H 8.73, N 4.95. Found: C 76.24, H 8.79, N 4.83.
Mass spectrometry (FD, toluene)	m/z: 565.34 (100%) [M]$^+$

Synthesis of $[(\text{L}^3\text{Fe})_4\text{P}_8]$ (2a):
506 mg (4.0 mmol, 2 equivalents) of P₄ were dissolved in 20 mL toluene. The solution was added to an intense reddish brown solution of 943 mg (2.0 mmol, 1 equivalent) of 1a in 50 mL toluene. Within 1 h, a color change to red was observed. After 16 h, the solvent was concentrated and the solution was filtered over celite. Within 1 d red crystals were obtained by storing saturated solutions at 8 °C.

Crystalline yield: 50 mg (0.03 mmol, 6%)

Analytical data:

Method	Data
NMR (THF-d₈, 300 K)	¹H: δ [ppm] = 11.4 (8H, s, f/g), 3.9 (8H, s, f/g), -4.4 (4H, s, c/h/i), -5.0 (24H, s, d/e), -20.9 (12H, s, a/b), -21.6 (4H, s, c/h/i), -23.1 (24H, s, d/e), -26.1 (4H, s, c/h/i), -28.7 (12H, s, a/b).
	³¹P{¹H}: No signal could be detected between 1200 to -1200 ppm.
Evans-NMR (C₆D₆ solution)	µₑff = 6.79 µB (300 K)
VT SQUID	χ₈₈₉ = 11.11·10⁻⁴ cm³·mol⁻¹
	µₑff = 7.04 µB (300 K)
Elemental analysis (C₉₁H₁₀₈Fe₄N₈P₈)	Calculated: C 61.23, H 6.10, N 6.28.
	Found: C 61.42, H 6.28, N 6.59.
Mass spectrometry (FD, toluene)	m/z: 1692.7 (100%) [M]⁺

Synthesis of [(L²Fe)₄P₈] (2b):
44 mg (0.35 mmol, 0.5 equivalents) of P₄ were dissolved in 12 mL toluene. Within 15 min at r.t., the solution was added to an intense dark green solution of 300 mg (0.71 mmol, 1 equivalent) 1b in 15 mL toluene. After 30 min the solution has changes color from olive green to dark brown. After stirring at r.t. for 20 h, the brown reaction solution was filtered over celite and the solvent was concentrated to a volume of 5 mL. Several crops of crystalline brown blocks were obtained by cooling the concentrated solution to 5 °C.

Crystalline yield: 185.8 mg (0.12 mmol, 67 %)

Analytical data:

NMR (Tol-\textit{d₈}, 300 K)	¹H: δ [ppm] = 273.1 (4H, s, a/b), 251.5 (4H, s, a/b), 12.3 (8H, broad s, f/g), 5.6 (8H, broad s, f/g), -5.0 (24H, s, d/e), -12.9 (4H, s, c/h/i), -14.8 (4H, s, c/h/i), -19.2 (4H, s, c/h/i), -19.3 (24H, s, d/e).
Evans-NMR (THF-\textit{d₈} solution)	³¹P{¹H}: No signal could be detected between 1200 to -1200 ppm.
VT SQUID	¹H-NMR Spectrum is shown in chapter “5. ¹H-NMR and EPR Spectra”.
Zero-field Mössbauer	Note: An accurate signal integration is possible in ¹H NMR spectra only with spectral width of 240 ppm or less. Therefore we could not compare the integral ratio of the signals at δ = 273.1 and 251.5 ppm with the rest of the signals.
Elemental analysis (C₇₆H₈₄Fe₄N₈P₈)	Calculated: C 57.75, H 5.36, N 7.09.
Mass spectrometry (LIFDI, toluene)	Found: C 57.85, H 5.22, N 6.53.

Synthesis of [(L₃Fe)₂P₄] (2c):
33 mg (0.27 mmol, 0.5 equivalents) of \(P_4 \) were dissolved in 10 mL toluene. Within 8 min at r.t. this solution was added to an intense reddish brown solution of 300 mg (0.53 mmol, 1 equivalent) \(1c \) in 15 mL toluene. After stirring at r.t. for 18 h, the brown reaction solution was filtered over celite and the solvent was removed i. vac. to obtain a brown microcrystalline product, which was washed with 10 mL \(\text{n-hexane} \) and dried.

Microcrystalline yield: 176.2 mg (0.17 mmol, 62 %)

Analytical data:

\[
\text{NMR (THF-}^d_8, 300 \text{ K)}
\]

\[^1\text{H: } \delta \text{ [ppm]} = 6.7 \text{ (8H, d, } ^1J_{\text{H-H}} = 7 \text{ Hz, f), 6.5 (12H, s, b), 2.3 (4H, t, } ^1J_{\text{H-H}} = 7 \text{ Hz, g), 2.1 (24H, s, c/d), 0.7 (2H, s, a), -0.6 (8H, s (broad), e), -2.0 (24H, s, c/d).} \]

\[^{31}\text{P\{^1\text{H}\}: No signal could be detected between 1200 to -1200 ppm.} \]

\[^1\text{H-NMR Spectrum is shown in chapter “5. } ^1\text{H-NMR and EPR Spectra”.} \]

\[
\text{Evans-NMR (THF-}^d_8 \text{ solution)}
\]

double determination:

\[\mu_{\text{eff,1}} = 2.97 \mu_B, \]
\[\mu_{\text{eff,2}} = 3.20 \mu_B \]

\[
\text{VT SQUID}
\]

\[\chi_{\text{dia}} = 7.45 \cdot 10^{-4} \text{ cm}^3\text{mol}^{-1} \]
\[\mu_{\text{eff}} = 3.46 \mu_B \text{ (300 K)} \]

\[
\text{Zero-field Mössbauer}
\]

\[\delta = 0.74(1) \text{ mm}\text{s}^{-1}, \Delta E_Q = 1.74(1) \text{ mm}\text{s}^{-1} \]

\[
\text{Elemental analysis (C}_{58}\text{H}_{82}\text{Fe}_2\text{N}_4\text{P}_4)
\]

Calculated: C 65.05, H 7.72, N 5.23.

Found: C 65.08, H 7.56, N 5.23.

\[
\text{Mass spectrometry (LIFDI, toluene)}
\]

\[m/z: 1070.49 \text{ (100%) [M]^+}, 1039.52 \text{ (22%) [M-P]^+}, 1008.54 \text{ (23%) [M-P}_2]^+}, 566.22 \text{ (4%) [L}^3\text{FeP}_3]^+, 535.26 \text{ (10%) [L}^3\text{FeP}_2]^+, 473.29 \text{ (7%) [L}^3\text{Fe}]^+, 418.37 \text{ (22%) [L}^3]^+. \]
2. Crystallographic Details

General remarks:

Single crystal structure analyses were performed using Agilent Technologies diffractometer (GV1000, Titan52 diffractometer (1b), Xcalibur, Atlas52, Gemini ultra diffractometer (1c, 2b), SuperNova, Single source at offset, Atlas diffractometer (2a), SuperNova, Single source at offset, Eos diffractometer (2c). Frames integration and data reduction were performed with the CrysAlisPro41 software package. Using the software Olex255 the structure solution was carried out using the programs ShelXT66 (Sheldrick, 2015) (1a, 1b, 2b, 2c) and SIR200477 (2a). Least squares refinements on F_0^2 were performed using SHELXL-2014 (1b, 1c, 2a, 2b, 2c).88 Further details are given in Table S2.

In 2c one disordered methyl group was refined to a chemical occupancy 68:32. Additionally the slightly disordered cyclo-P\textsubscript{4} middle deck was refined to a chemical occupancy of 97:3. Due to the low electron density of minor component two geometrical restraints (DFIX, SIMU) were used in case of the minor component (3% occupation).

Table S1: Comparison of geometrical details of major and minor component in 2c.

	major component (97%)	minor component (3%)
P1-P2, P1-P2’	2.178(1), 2.207(1) Å	2.18(1) Å (DFIX), 2.25(3) Å
Fe1-P1, Fe1-P2, Fe1-P1’, Fe1-P2’	2.4376(6), 2.5064(6), 2.5064(6), 2.5163(6) Å	2.43(2), 2.50(2), 2.55(2), 2.52(2) Å
P2’-P1-P2, P1-P2-P1’	88.27(3)°, 91.73(3)°	87(1)°, 94(1)°

Molecular structures of compounds 1b, 1c and 2a are shown on Figure S1-S3. Molecular structures of compounds 2b and 2c are shown in main part of publication.

Crystallographic data and details of the diffraction experiments are given in Table S2. CIF files with comprehensive information on the details of the diffraction experiments and full tables of bond lengths and angles for 1 and 2 are deposited in Cambridge Crystallographic Data Centre under the deposition codes CCDC-1435936–1435939 and CCDC-1436088.
Table S2: Crystallographic data and details of diffraction experiments for 1b, 1c, 2a, 2b and 2c.

Compound	1b	1c · 0.25 \text{^9} \text{hexan}	2a · 2 tol	2b · 1 tol	2c
CCDC	1436088	1435936	1435937	1435938	1435939
Formula	C_{36}H_{49}FeN_{2}	C_{36}H_{49}FeN_{2}	C_{36}H_{16}Fe_{2}N_{2}P_{8}	C_{36}H_{16}Fe_{2}N_{2}P_{8}	C_{36}H_{16}Fe_{2}N_{2}P_{4}
\(D_{calc.}\) / g cm\(^{-3}\)	1.297	1.140	1.298	1.352	1.249
\(\mu\) / mm\(^{-1}\)	5.637	3.837	6.385	7.400	0.661
Formula Weight	425.36	565.62	1877.14	1671.79	1070.85
Colour	clear dark green	black	red	clear dark brown	clear dark black
Shape	block	block	block	Block	block
Max Size/mm	0.26	0.42	0.32	0.23	0.18
Mid Size/mm	0.23	0.17	0.13	0.13	0.14
Min Size/mm	0.18	0.07	0.07	0.09	0.07
\(T/K\)	123(1)	123(1)	123(1)	125(4)	123(1)
Crystal System	orthorhombic	tetragonal	triclinic	monoclinic	monoclinic
Space Group	Pna\(_2\)_1	I4\(_1\)/a	P-1	C2/c	P2\(_1\)/n
\(a/\text{\AA}\)	12.1516(2)	37.7067(4)	13.59902(16)	24.7045(2)	14.2409(3)
\(b/\text{\AA}\)	25.9683(6)	37.7067(4)	14.59579(18)	13.14969(13)	13.5520(3)
\(c/\text{\AA}\)	6.90447(16)	9.27235(14)	25.7434(4)	26.0368(3)	15.2276(3)
\(\alpha/\degree\)	90	90	91.9532(11)	90	90
\(\beta/\degree\)	90	90	105.1756(12)	103.8325(9)	104.288(2)
\(\gamma/\degree\)	90	90	102.0298(10)	90	90
\(V/\text{\AA}^3\)	2178.74(8)	13183.4(3)	4801.96(12)	8212.95(14)	2847.91(11)
\(Z\)	4	16	2	4	2
\(Z'\)	1	1	1	0.5	0.5
\(\Theta_{max}/\degree\)	3.404	3.315	3.427	3.685	3.144
\(\Theta_{max}/\degree\)	74.165	66.624	73.093	66.647	28.282
Measured Refl.	9794	27919	35623	35496	46308
Independent Refl.	3724	5726	18648	7235	7046
Reflections Used	3614	5491	16595	6664	6142
\(R_{int}\)	0.0427	0.0297	0.0304	0.0296	0.0408
Parameters	268	393	1119	479	345
Restraints	1	0	131	0	7
Largest Peak	0.385	0.236	0.733	0.398	0.562
Deepest Hole	-0.342	-0.217	-0.580	-0.249	-0.831
Goof	1.054	1.107	1.022	1.027	1.054
\(wR_2\) (all data)	0.1073	0.0848	0.1084	0.0625	0.1042
\(wR_2\)	0.1062	0.0779	0.1037	0.0607	0.1001
\(R_1\) (all data)	0.0393	0.0301	0.0462	0.0298	0.0473
\(R_1\)	0.0382	0.0280	0.0404	0.0260	0.0402
Flack Parameter	-0.003(8)				
Hooft Parameter	0.041(7)				
Figure S1: Molecular structure of compound 1b. Hydrogen atoms are omitted for clarity. Thermal ellipsoids are shown at 50% probability level.

Figure S2: Molecular structure of compound 1b. Hydrogen atoms are omitted for clarity. Thermal ellipsoids are shown at 50% probability level.

Figure S3: Molecular structure of compound 2a. Hydrogen atoms and three molecules toluene are omitted for clarity. Thermal ellipsoids are shown at 50% probability level.
3. Magnetic Measurements in Solution (Evans Method)

Magnetic susceptibilities χ_M and effective magnetic moments μ_{eff} of paramagnetic compounds in solution were determined by 1H NMR spectroscopy using Evans Method9 with pure solvent as internal reference and neglecting diamagnetic contributions according to equations10 (1) and (2). 1H NMR spectra were recorded on a Bruker Avance III HD 400 (1H: 400.130 MHz) spectrometer.

Equations:

\[
\chi_M = \frac{3 \cdot \Delta f}{1000 \cdot f \cdot c} \quad (1)
\]

\[
\mu_{\text{eff}} = 798 \cdot \sqrt{T \cdot \chi_M} \quad (2)
\]

where

χ_M is the molar susceptibility of the sample in m3 · mol$^{-1}$,

Δf is the chemical shift difference between solvent in presence of paramagnetic solute and pure solvent in Hz,

f is the operating frequency of NMR spectrometer in Hz,

c is the concentration of paramagnetic sample in mol · L$^{-1}$,

T is the absolute temperature in K, and

μ_{eff} is the effective magnetic moment in μ_B.

4. SQUID Magnetization Measurements and Mössbauer Spectra

General remarks:

Magnetic data were collected using a Quantum Design MPMS-XL SQUID magnetometer. Measurements were obtained for a finely ground microcrystalline powder (15 - 30 mg) restrained within a polycarbonate gel capsule. Samples used for magnetization measurement were checked for chemical composition and purity by 1H NMR spectroscopy. Data reproducibility was checked on independently synthesized samples. Dc susceptibility data were collected in the temperature range 2-300 K under a dc field of 1 T. The data shown refer to the complete tetra- and dinuclear complexes, not mononuclear subunits. The data were corrected for core diamagnetism of the sample estimated using Pascal’s constants[11] ($\chi_{\text{dia}} = 11.11 \cdot 10^{-4}$ cm3·mol$^{-1}$ for 2a, $10.16 \cdot 10^{-4}$ cm3·mol$^{-1}$ for 2b, and $7.451 \cdot 10^{-4}$ cm3·mol$^{-1}$ for 2c). Magnetic susceptibility data was analyzed and simulated using the julX program written by E. Bill (MPI for Chemical Energy Conversion, Mülheim an der Ruhr).

57Fe Mössbauer spectra were recorded on a WissEl Mössbauer spectrometer (MRG-500) at 77 K in constant acceleration mode. 57Co/Rh was used as the radiation source. WinNormos for Igor Pro software has been used for the quantitative evaluation of the spectral parameters (least-squares fitting to Lorentzian peaks). The minimum experimental line widths were 0.20 mm·s$^{-1}$. The temperature of the samples was controlled by an MBBC-HE0106 MÖSSBAUER He/N$_2$ cryostat within an accuracy of \pm0.3 K. Isomer shifts were determined relative to α-iron at 298 K.
Figure S4: Molecular structure of 2a (R = Me) and 2b (R = H).

Figure S5: VT SQUID magnetization measurement of compounds 2a (left) and 2b (right).

Figure S6: Zero-field 57Fe Mössbauer spectrum of compound 2b.
Figure S7: Molecular structure of 2c.

Figure S8: VT SQUID magnetization measurement (left) and zero-field 57Fe Mössbauer spectrum (right) of compound 2c.
5. 1H NMR and EPR Spectroscopy

General remarks:

1H and 31P NMR spectra were recorded on a Bruker Avance III HD 400 (1H: 400.130 MHz, 31P: 161.976 MHz). The chemical shifts are reported in ppm relative to external TMS (1H) and H$_3$PO$_4$ (31P). The X-band EPR measurements were carried out with a MiniScope MS400 device equipped with a Magnettech GmbH rectangular TE102 resonator at a frequency of 9.5 GHz. The compounds were dissolved in a glovebox under N$_2$ inert gas atmosphere, placed in tip-sealed pasteur pipettes, and were rubber plugged. The measurements were conducted at room temperature and 77 K, respectively.

EPR spectrum of $[\text{L}_2\text{Fe(tol)}]$ (1b):

![EPR spectrum of $[\text{L}_2\text{Fe(tol)}]$ (1b)](image)

Figure S9: EPR spectrum of $[\text{L}_2\text{Fe(tol)}]$ (1b) in toluene (ca. 0.03 M) at r.t. (a): $g = 2.04$, and at 77 K (b): $g = 2.17$, 2.00, 1.97.
EPR spectrum of [L₃Fe(tol)] x 0.25 n-hexane (1c):

![EPR spectrum image](image)

Figure S10: EPR spectrum of [L₃Fe(tol)] x 0.25 n-hexane (1c) in toluene (ca. 0.03 M) at r.t. (a): $g = 2.06$, and at 77 K (b): $g = 2.20, 2.01, 1.98$.

Note: An EPR spectrum of [L₃Fe(benzene)] in toluene at 77 K has already been published,[¹²] containing identical signals like 1c in toluene at 77 K.
1H NMR spectrum of [L2Fe(tol)] (1b) in Tol-d_8:
1H NMR spectrum of [L$_3$Fe(tol)] (1c) in Tol-d_8:
1H NMR spectrum of [(L1Fe)$_4$P$_8$] (2a) in THF-d_8:

1H NMR spectrum of compound 2a. * = impurities (toluene, L1H and silicon grease).
1H NMR spectrum of [(L$_2$Fe)$_4$P$_3$] (2b) in Tol-d_8.
1H NMR spectrum of [(L3Fe)$_2$P$_4$] (2c) in THF-d_8:
6. Computational Details

Table S3: Oxidation states (obtained from NPA analysis for 2a,b,c at the BP86/def2-SVP level of theory), selected geometric and Mössbauer parameter of 2a,b,c and A.[13]

oxidation state	atomic distances	Mössbauer				
	d(N-Fe) / [Å]	d(Fe-P) / [Å]	d(P-P) / [Å]	d(Fe-Fe\textsubscript{opposing}) / [Å]	δ / [mm s-1]	ΔE\textsubscript{Q} / [mm s-1]
2a P\textsubscript{s}4 Fe(+2)	1.983(2) - 2.006(2)	2.4559(6) - 2.5006(6)	1.991(8) - 2.2813(7)	6.740 - 6.756	n.a.	n.a.
2b P\textsubscript{s}4 Fe(+2)	1.982(2) - 1.990(2)	2.4583(3) - 2.4807(5)	2.2111(6) - 2.2792(6)	6.765	0.73(1)	1.93(1)
2c P\textsubscript{2}2 Fe(+2)	2.018(2) - 2.025(2)	2.4376(6) - 2.5163(6)	2.178(1) - 2.207(1)	3.902	0.74(1)	1.74(1)
A 2x P\textsubscript{2}2 Fe(+3)	2.023(3) - 2.025(3)	2.344(1) - 2.377(1)	2.036(2)	2.777	0.42(1)	1.15(1)

DFT calculations on the complex \([L^1\text{Fe} \mu_{4}\cdot \eta^2; \eta^2; \eta^2; \eta^2-P\textsubscript{8}]\) (2a) and the hypothetical complex \([L^1\text{Fe} \mu_{4}\cdot \eta^2; \eta^2-P\textsubscript{4}]\) have been performed with the TURBOMOLE program package[14] at the RI[15]-BP86[16]/def2-SVP[17] level of theory, followed by single point calculations without the RI approximation and using the def2-TZVP basis set for N, P and Fe and the def2-SVP basis set for the C and H atoms. The Multipole Accelerated Resolution of Identity (MARI-J)[18] approximation was used in the geometry optimization steps. The Natural Population Analysis (NPA) has been performed at the BP86/def2-SVP level of theory with the TURBOMOLE program. For 2c the BPW91/def2-SVP optimized geometry was used. The DFT calculations for \([L^3\text{Fe} \mu_{4}\cdot \eta^2-P\textsubscript{4}]\) (2c) have been performed with the ORCA program.[19] The geometry optimization was performed at the BPW91[20]/def2-SVP level followed by single point calculations in which for Fe and P the aug-cc-pVTZ[21] basis set was used. Broken-symmetry (singlet spin-state) calculations for 2c were done using the converged high-spin (quintet spin-state) as initial guess and flipping the spin on one iron. We found an antiferromagnetic coupling E(High-Spin)-E(BrokenSym) of 486 cm-1. For the constrained geometry of \([L^3\text{Fe} \mu_{4}\cdot \eta^2-P\textsubscript{4}]\) (Fe-Fe distance constrained to 2.777 Å) we obtained a E(High-Spin)-E(BrokenSym) coupling of 1360 cm-1.

Table S4. Relative energies of \([L^1\text{Fe} \mu_{4}\cdot \eta^2; \eta^2; \eta^2; \eta^2-P\textsubscript{8}]\) (2a) in different spin-states at the BP86/def2-SVP level of theory.

Spin-state	Singlet (unrestricted)	Triplet	Quintet	Septet	Nonet
Rel. Energy (kJ·mol-1)	0	79.00	52.29	82.91	134.92
Table S5. Relative energies of [(L^3Fe)₂(μ-η^4:η^4-P₄)] (2c) in different spin-states at the BPW91//def2-SVP/aug-cc-pVTZ (Fe, P) level of theory.

Spin-state	Singlet (unrestricted)	Triplet	Quintet
Rel. Energy (kJ·mol⁻¹)	0	26.75	32.79

Table S6. Relative energies of the constrained geometry of [(L^3Fe)₂(μ-η^4:η^4-P₄)] (geometry optimized with constrained Fe-Fe distance of 2.777 Å) in different spin-states at the BPW91//def2-SVP/aug-cc-pVTZ (Fe, P) level of theory.

Spin-state	Singlet (unrestricted)	Quintet
Rel. Energy (kJ·mol⁻¹)	0	20.01

Table S7. Cartesian coordinates of the optimized geometry of [(L^1Fe)₄(μ-η²:η²:η²:η²-P₈)] (nonet spin-state) (2a) at the BP86/def2-SVP level of theory. Total Energy: -11168.28440919 a.u.

Atom	x	y	z
Fe	0.145172100	2.455462800	2.480034200
Fe	-1.046185100	-2.387140000	2.233742900
Fe	1.048027600	-2.341831100	-2.254303300
Fe	-0.153392600	2.448535700	-2.461434700
P	0.011266200	2.284478900	0.004470700
P	1.328405700	-0.766884000	1.141096600
P	-0.461136900	0.033041900	2.237509400
P	-1.652542700	0.855898800	0.512751200
N	2.975957500	2.0034279100	3.087007000
C	0.3234279100	3.855211700	4.291016000
C	1.078674600	-4.005656500	3.607858900
Table S8. Cartesian coordinates of the optimized geometry of [(L1Fe)\textsubscript{4}(\mu-\eta^2:\eta^2:\eta^2:\eta^2-P)\textsubscript{8}] (unrestricted singlet spin-state) (2a) at the BP86/def2-SVP level of theory. Total Energy: -11482.579767331 a.u.

Atom	x	y	z	
Fe	13.0002636	2.1986698	4.5072346	
P	13.8180399	1.8383504	6.8320542	
P	14.7707360	0.4318347	4.1241124	
N	11.1777691	1.7243123	3.8850187	
---	---	---	---	
N	12.9418417	4.0331098	3.7517639	
Fe	14.4499648	1.8131098	5.7779494	
P	13.2487317	-0.2938826	7.2620403	
Fe	16.4533431	-1.3532248	3.4767794	
P	13.2487317	-0.2938826	7.2620403	
C	10.3404847	2.5484842	3.2211746	
C	10.7442056	0.3857614	4.1434737	
C	11.8897677	4.5647996	3.0878897	
C	14.0968718	4.8582562	3.9329368	
P	15.0710807	-0.5389178	8.5594425	
N	13.1278199	2.3588000	10.620995	
P	13.1278199	2.3588000	10.620995	
N	16.3105030	-2.9696902	2.3087869	
N	18.2198528	-0.7982742	2.7615011	
C	8.9600148	2.0528918	2.8287412	
C	10.6816546	3.8709968	2.8584871	
C	10.0734673	0.0886179	5.3604470	
C	10.9695271	-0.6189631	3.1626163	
C	11.9912943	5.9767978	2.5376468	
C	14.1574533	5.7472920	5.0414778	
C	15.1445473	4.8079213	2.9739512	
Fe	15.8270883	-2.9211747	8.1284608	
C	13.3701543	3.2395802	11.6190611	
C	11.819276	1.7844126	10.5487982	
C	15.8099077	3.7239630	11.0728411	
C	12.2687308	0.1657747	2.1656967	
C	14.6136170	3.8811149	11.8084771	
C	10.7879297	2.4715948	9.8509720	
C	11.5602529	0.5577972	11.2187364	
C	17.0184947	4.5207396	11.530744	
C	17.5482040	3.6357856	8.3075600	
Attributed	C	18.7337063	2.8235421	2.0103913
-----------	-----	------------	-----------	-----------
Attributed	C	17.4971462	1.0445235	0.6845473
Attributed	C	19.7618033	2.3260456	4.1484455
Attributed	C	19.7439939	-0.0097689	5.1308208
Attributed	H	9.4377397	-3.2437874	4.7743148
Attributed	H	17.1582490	7.2649822	4.3000705
Attributed	C	13.9738191	-6.7782651	8.9760541
Attributed	C	16.3671344	-6.0787143	8.7495615
Attributed	C	12.8645845	-3.8116634	10.2242083
Attributed	C	12.2671128	-4.1014106	7.8399514
Attributed	C	18.8398207	-5.9468763	9.0838246
Attributed	C	18.9904261	-2.7012965	10.1498250
Attributed	C	19.6267868	-3.0098135	7.7780143
Attributed	C	9.2143956	0.7273707	10.5418820
Attributed	H	8.6806470	2.4614669	9.3444961
Attributed	H	10.211319	4.0940516	8.5293144
Attributed	H	11.9495212	3.6370156	8.4411945
Attributed	H	11.3536703	4.5833270	9.8202174
Attributed	H	10.0384933	-0.8992051	11.7242400
Attributed	H	13.5094366	-0.3871154	11.2511654
Attributed	H	12.3158000	-1.1077843	12.3842252
Attributed	H	13.1032512	0.4607217	12.7594844
Attributed	C	19.7529421	2.5770388	8.2284774
Attributed	H	19.1079690	4.1832133	6.9100963
Attributed	H	16.8897865	5.0872800	6.8373312
Attributed	H	16.4718043	5.5179607	8.5282400
Attributed	H	15.5608461	4.2401701	7.6914401
Attributed	H	20.0992428	0.9617733	9.6428693
Attributed	H	18.5236453	0.1537669	11.2145856
Attributed	H	16.7922504	0.3421432	10.7735175
Attributed	H	17.5264541	1.4556601	11.9473252
Attributed	C	12.5703443	-4.8758344	1.6685538
Attributed	H	12.3297078	-3.4807655	0.0180960
Attributed	H	13.8581016	-1.7490927	-0.5577694
Attributed	H	15.5737743	-2.2368291	-0.3626043
Attributed	H	14.8500254	-1.1026455	0.7951467
Attributed	H	13.0873230	-6.1334100	3.3627158
Attributed	H	16.4866810	-5.9597766	3.6818151
Attributed	H	15.0405990	-5.9491739	4.6768136
Attributed	H	15.8356436	-4.3409926	4.7516172
Attributed	C	19.4661589	3.2423035	3.1318992
Attributed	H	18.5039876	3.5387281	1.2043701
Attributed	H	17.3005940	1.8877277	-0.0050508
Attributed	H	16.5215603	0.6129640	0.9926051
Attributed	H	18.0186681	0.2484094	0.1123034
Attributed	H	20.3315023	2.6492669	5.0330340
Attributed	H	20.7139387	-0.5007145	4.8914356
Attributed	H	18.9907144	-0.8136516	5.2277553
Attributed	H	19.8530595	0.4823629	6.1157082
Attributed	H	13.4318697	-6.6228724	9.9318863
Attributed	H	14.4499312	-7.7755251	9.0064807
Attributed	H	13.2015803	-6.7777625	8.1809959
Attributed	H	16.5513266	-7.1563200	8.8525984
Attributed	C	11.5115562	-3.5554647	10.5098803
Attributed	C	13.9074283	-3.8014018	11.3153365
Attributed	C	10.9255607	-3.8221012	8.1730497
Atom	x	y	z	
------	-------	-------	-------	
Fe	-0.518933221	0.969466542	-1.540574531	
Fe	0.519666327	-1.011151160	1.565244811	
P	0.202792371	-1.365206524	-0.826384937	
P	-0.256163515	1.168230218	0.978855343	
P	-1.527516707	-0.530038572	0.252168806	
P	1.510857519	0.321557633	-0.116334357	
N	0.421585619	1.286055617	-3.324356122	
N	-2.192737187	2.049981058	-2.036171868	
N	-0.369858247	-1.297407662	3.290086791	
N	2.101199711	-2.090384535	2.003772252	
C	1.847572704	1.108509326	-3.426156974	
C	-0.203789551	1.836379651	-4.388655256	
C	-3.145138685	2.405480526	-1.015995895	
C	-2.426609539	2.479667446	-3.290788485	
C	2.111924671	3.428112675	-2.303914611	

Table S9. Cartesian coordinates of the optimized geometry of \([(L^{3}\text{Fe})_2(\mu-\eta^1:\eta^1-P_4)] (2c) \) (quintet spin-state) \((2c) \) at the BPW91/def2-SVP level of theory.
	1	2	3
H	-3.849455059	4.919816387	1.217221286
H	-1.241803774	4.19186514	-1.408917318
C	-0.984340985	4.925954934	0.596041114
H	-2.445107555	5.968026423	-1.186854013
C	-4.06548149	-1.90544895	3.386985844
C	-1.332912352	1.369675191	4.323792626
H	-3.638254344	0.314526023	4.245640073
H	-1.425505816	-2.723211598	5.515660187
H	0.100347981	-2.520534963	6.433394201
C	-0.952273860	-1.119125656	6.062953930
C	5.076744778	-1.959008901	-0.296974901
C	4.450465620	-0.315736949	1.532598190
C	3.814240198	-3.963993592	-0.772715098
H	1.754685292	-4.65912605	0.524971142
H	4.355258113	-3.411382561	2.726591187
H	4.062771812	-3.12024596	4.475347793
C	3.276000494	-4.84368978	3.659815409
H	4.309031926	-4.765401168	3.880081334
H	-1.938056576	-5.532464447	3.030210898
C	-1.629661270	-4.421828302	4.389093895
C	-2.976260807	-2.988150680	0.480119097
H	-2.601517775	-4.715093822	0.777829334
H	-4.089519117	-3.999836375	1.450896862
C	5.745316305	0.807109839	-3.765949534
H	2.915485101	-2.862951331	-4.007129329
H	1.201434139	-3.334592426	-4.204433293
H	1.718071253	-2.422409194	-2.754691216
H	1.621888278	-0.527723481	-6.707918455
H	1.124258496	-2.228191242	-6.476921891
H	2.839415885	-1.764584390	-6.312217243
C	-5.762742248	3.405101715	1.727117906
H	-4.462367286	-1.006780097	0.326935536
H	-5.010036695	-1.866470098	-1.147578418
H	-6.099061002	-0.715078171	-0.339582719
H	-6.376977756	0.796045564	-2.441725114
H	-5.546733232	-0.577189529	-3.231140248
H	-4.954258397	1.083516248	-3.486770694
H	-1.558404072	5.386298825	1.424771233
H	-0.172814471	5.631376227	0.327707139
H	-0.524864829	3.996593884	0.980830347
C	-3.094349674	5.804246403	-2.066925177
H	-1.621088020	6.644786462	-1.489888501
H	-3.04951485	6.503624863	-0.427058851
C	-4.537479354	-0.717686588	3.959680765
H	-4.777971905	-2.708004386	3.145664478
H	-0.363701799	1.170091930	3.824927514
C	-1.888923757	2.692816170	3.757307290
C	-1.055461294	1.551980682	5.833026769
H	-4.018249455	1.251606290	4.676321834
H	5.942848960	-1.315033426	-0.500836911
C	4.908278678	-3.134293638	-0.103787447
H	3.485671724	-0.000758229	1.97998093
C	4.970712664	0.851369063	0.672560925
C	5.441602583	-0.569484858	2.690501388
H	3.693348203	-4.894687157	-1.344827365
Table S10. Cartesian coordinates of the optimized geometry of \([\text{L}_3\text{Fe}_2(\mu-\eta^1;\eta^1-\text{P}_3)]\) (2c) (unrestricted singlet spin-state) (2c) at the BPW91/def2-SVP level of theory.

Atom	x	y	z
Fe	-0.49557622	0.947899852	-1.517143463
Fe	0.49546827	-0.947308914	1.517323742
P	0.457646929	-1.221140580	-0.911563413
P	-0.458099499	1.221764270	0.911079106
P	-1.433714028	-0.702169113	0.041885729
P	1.433782633	0.701754232	-0.041228977
N	0.428410775	1.296933108	-3.223801953
N	-2.114082883	1.974158146	1.979816875
N	-0.428706294	1.296933108	3.223751335
N	2.113505866	-1.974500241	1.979921682
C	1.852075405	1.068905308	-3.32940703
C	-0.177175541	1.828646524	-4.30598361
C	-3.059767548	2.329769709	-0.945955224
C	-2.383394472	2.426513714	-3.222491589
C	2.235701877	3.475111894	-2.435489265
C	2.740779122	2.123418022	-2.953055849
C	2.357230964	-0.153350572	3.869758583
C	-1.514320338	2.263879768	-4.316191555
C	0.566806494	2.083621305	-5.611942328
C	-4.192378852	1.495088946	-0.690779167
C	-2.883465246	3.558235883	-0.237052173
C	-3.628308776	3.247167689	-3.534410585
C	2.367782165	4.579078371	-3.507942374
C	2.932132143	3.922358254	-1.135608589
C	-1.852548529	-1.069784296	3.328915686
C	0.176810375	-1.82677734	4.305917081
C	3.059961354	-2.329069055	0.946407455
C	2.382910941	-2.426708906	3.222654709
C	-2.235366618	-3.477140650	2.437311590
C	4.124881424	1.930458119	-3.126496662
C	1.454015783	-1.300193207	-4.342221707
C	3.753317957	-0.285202424	-0.401951329
H	-1.877304161	2.659533737	-5.273392948
H	0.609630473	3.172342390	-5.810210583
H	0.005726868	1.636260959	-6.454627111
H	1.595713024	1.694498534	-5.623109616
C	-5.115941938	1.911565041	0.289171661
C	-4.473198898	0.205886161	-1.475030757
C	-3.843267950	3.919193055	0.729387129
C	-1.733468771	4.530038052	-0.531398137
H	-1.157781942	-3.351491011	2.210720153
H	1.158447291	3.350643879	-2.207560146
H	-4.078037823	2.899349238	-4.483507822
H	-3.342379753	4.306844474	-3.692376470
H	3.430420485	4.755178006	-3.770240554
H	1.953948498	5.537250806	-3.135086064
H	1.834910179	4.323869056	-4.441449861
H	2.834598043	3.156313098	-0.343201179
H	2.481866286	4.863575656	-0.763571022
H	4.012240175	4.117558874	-1.289228888
C	-2.358160207	-2.125065442	2.953589623
C	1.514221990	0.152541374	3.868602511
C	-0.566625731	-2.082160708	5.612551262
C	4.192256557	-1.493448888	0.696262651
C	2.885063953	-3.557142946	0.236523542
C	3.626721524	-3.249220451	3.533726566
C	-2.369376723	-4.580711036	3.509961033
C	-2.930328431	-3.924659808	1.136727435
C	4.633880434	0.739917518	-3.657486382
H	4.819526404	2.736968091	-2.848918336
H	0.450557522	-1.123803703	3.905771286
C	1.946630536	-2.676250588	3.852412422
C	1.302616201	-1.342872151	-5.879916806
H	4.159364870	-1.215082962	-4.441564943
H	-5.991298030	1.282072874	0.497359070
C	4.951917064	3.108698297	0.995315065
C	-3.511178461	-0.115895807	-1.922766258
C	-4.976417151	-0.938924117	-0.575935480
C	-5.479684662	0.418006507	-2.628347845
H	-3.723310384	4.863875665	1.278475484
C	-1.061669204	4.032365712	-1.258334945
C	-0.895465241	4.866243059	0.718193655
C	-2.245498217	5.837220007	-1.178320783
C	-4.125044158	-1.931955050	3.125442393
C	-1.455175408	1.299822766	4.34050037
C	-3.754392384	0.284512761	4.016871206
H	1.876798086	-2.659633685	5.273561569
H	-0.610957957	-3.170822818	5.810902276
Table S11. Cartesian coordinates of the optimized geometry (restricted) of $[(\text{L}^3\text{Fe})_2(\mu-\eta^4:\eta^4-\text{P}_4)]$ (2c) (quintet spin-state) with the Fe-Fe distance fixed to 2.777 Å, at the BPW91/def2-SVP level of theory.

Atom	x	y	z											
Fe	-0.320976920	0.801339516	-1.086904970											
Fe	0.327411613	-0.805320190	1.083340565											
P	0.244856151	-1.455966223	-1.137514807											
P	-0.335708298	1.425016694	1.141046645											
P	-1.578063430	-0.950675964	-0.220623556											
N	1.536699199	1.009902786	0.279740318											
N	0.667135667	1.239083926	-2.865650445											
N	-2.036212477	1.894569320	-1.590586524											
N	-0.662388388	-1.251159048	2.873508428											
N	2.034936386	-1.88984087	1.578375075											
C	2.101528005	1.228554952	-3.067967545											
C	-0.053739497	1.576892041	-3.953683545											
C	-2.976514586	2.467930281	-0.651126828											
C	-2.310216250	2.115164581	-2.889518755											
C	2.225973208	3.660796487	-2.156612504											
C	2.855963230	2.403528403	-2.762475738											
C	2.738248809	0.111788879	-3.698397873											
C	-1.446152537	1.799042122	-3.960270839											
C	0.600132830	1.902054569	-5.293428452											
C	-4.227636485	1.830935137	-0.374309256											
C	-2.690252823	3.753260744	-0.093936078											
C	-3.561234011	2.858774849	-3.352454544											
C	2.130672592	4.802474704	-3.192083931											
C	2.973168235	4.147520737	-0.898625586											
C	-2.095363976	-1.228192585	3.079747553											
C	0.060844886	-1.600843664	3.954250922											
C	-2.972145994	-2.466851550	0.637009356											
C	2.317111928	-2.112929879	2.876953855											
C	-2.246261579	-3.643508857	2.130122707											
	C	H	H	H	H	H	H	C	H	H	H	H	H	H
---	-----	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------
	1.409731905	-4.526551915	0.429384563											
H	4.304965211	-3.039578640	2.527346932											
H	4.075078728	-2.258413887	4.129878802											
H	3.301089142	-3.815684172	3.779390905											
H	-3.160071427	-5.096165754	3.511243121											
H	-1.684761684	-5.689271780	2.697546369											
H	-1.555789352	-4.518838844	4.041361422											
H	-3.055684491	-3.308209173	0.111346557											
H	-2.489085369	-4.980227425	0.412697399											
H	-4.037911918	-4.431012161	1.103550993											
H	5.926431598	1.399724170	-3.960203553											
H	3.637239297	-2.607620742	-3.904179132											
H	2.003934349	-3.310014973	-3.771741148											
H	2.675174134	-2.351290860	-2.418847414											
H	1.456133772	-0.475622795	-6.187285521											
H	1.380492886	-2.239853655	-5.938203150											
H	2.962295652	-1.429774518	-6.102688830											
H	-5.620157542	4.254464292	1.646783932											
H	-4.211878030	-0.659233370	0.838583464											
H	-5.223408101	-1.525393849	-0.354082628											
H	-5.939082350	-0.243911625	0.657933687											
H	-6.768230612	1.010646819	-1.417785135											
H	-6.131769595	-0.353294378	-2.373645549											
H	-5.672448109	1.319841470	-2.790159569											
H	-1.337164095	5.899485932	1.307279596											
H	0.246736919	5.559769404	0.566480535											
H	-0.538160558	4.321575367	1.594210609											
H	-2.088413820	5.229027593	-2.394977244											
H	-0.727099415	6.162248807	-1.710951879											
H	-2.382041960	6.833488663	-1.065603416											
C	4.856386926	-1.324401918	3.703311167											
H	-4.827148637	-3.305143494	2.841502055											
H	-0.929301235	1.064983090	3.803624874											
C	-2.586398786	2.425641518	3.609404185											
H	-1.893685299	1.269864407	5.726751693											
H	4.584769342	0.659098687	4.512709324											
H	6.104708225	-2.014467855	-0.699553932											
C	4.883122511	-3.768595659	-0.997834088											
H	3.798104182	-0.083284325	1.534212527											
C	4.972346819	0.543815424	-0.155948140											
C	5.865999912	-0.597245538	1.894241743											
H	3.459429709	-5.390253785	-1.108616845											
H	0.704470124	-3.792473693	0.865222594											
C	0.736651098	-5.131708257	-0.818297098											
C	1.666774280	-5.623829890	1.485344477											
H	-5.926204559	-1.363573953	3.953162526											
H	-3.592094647	2.621358094	4.032228932											
H	-1.954007288	3.301018147	3.857084111											
H	-2.685085956	2.377606011	2.510767503											
H	-1.389070694	0.415662951	6.209567811											
H	-1.334367998	2.185996017	6.003742113											
H	-2.905779494	1.355417850	6.170923408											
H	5.630138497	-4.275465920	-1.625740672											
H	4.138972538	0.651672672	-0.871823229											
H	5.170540883	1.539057510	0.287944188											
H	5.874690599	0.255449361	-0.730830782											
Literature:

1. P. H. M. Budzelaar, R. de Gelder, A. W. Gal, *Organometallics* **1998**, 17, 4121-4123.
2. a) M. Stender, R. J. Wright, B. E. Eichler, J. Prust, M. M. Olmstead, H. W. Roesky, P. P. Power, *J. Chem. Soc., Dalton Trans.* **2001**, 3465-3469; b) J. Feldman, S. J. McLain, A. Parthasarathy, W. J. Marshall, J. C. Calabrese, S. D. Arthur, *Organometallics* **1997**, 16, 1514-1516.
3. X. Dai, P. Kapoor, T. H. Warren, *J. Am. Chem. Soc.* **2004**, 126, 4798-4799.
4. CrvysAlisPro Software System, Agilent Technologies UK Ltd, Yarnton, Oxford, UK (2014).
5. O.V. Dolomanov and L.J. Bourhis and R.J. Gildea and J.A.K. Howard and H. Puschmann, Olex2: A complete structure solution, refinement and analysis program, *J. Appl. Cryst.*, **2009**, 42, 339-341.

Sheldrick, G.M., *ShelXT, Acta Cryst.*, **2014**, A71, 3-8.
6. M. C. Burla and R. Caliandro and M. Camalli and B. Carrozzini and G. L. Cascarano and L. De Caro and C. Giacovazzo and G. Polidori and R. Spagna, SIR2004: an improved tool for crystal structure determination and refinement, *J. Appl. Cryst.*, **2005**, 38, 381-388.
7. Sheldrick, G.M., *A short history of ShelX, Acta Cryst.*, **2008**, A64, 339-341.
8. D. F. Evans, *J. Chem. Soc. (Resumed) 1959*, 2003-2005.
9. G. J. P. Britovsek, V. C. Gibson, S. K. Spitzmesser, K. P. Tellmann, A. J. P. White, D. J. Williams, *J. Chem. Soc., Dalton Trans.* **2002**, 1159-1171.
10. G. A. Bain, J. F. Berry, *J. Chem. Educ*. **2008**, 85, 532
11. J. M. Smith, A. R. Sadique, T. R. Cundari, K. R. Rodgers, G. Lukat-Rodgers, R. J. Lachicotte, C. J. Flaschenriem, J. Vela, P. L. Holland, *J. Am. Chem. Soc.* **2006**, 128, 756-769.
12. S. Yao, T. Szilvasi, N. Lindenmaier, Y. Xiong, S. Inoue, M. Adelhardt, J. Sutter, K. Meyer, M. Driess, *Chem. Commun.*, **2015**, 51, 6153-6156.
13. a) F. Furche, R. Ahlrichs, C. Hättig, W. Klopper, M. Sierka, F. Weigend, *WIREs Comput. Mol. Sci.* **2014**, 4, 91-100. b) R. Ahlrichs, M. Bär, M. Häser, H. Horn, C. Kölmel, *Chem. Phys. Lett.* **1989**, 162, 165-169; c) O. Treutler, R. Ahlrichs, *J. Chem. Phys.* **1995**, 102, 346-354.
14. a) K. Eichkorn, O. Treutler, H. Oehm, M. Häser, R. Ahlrichs, *Chem. Phys. Lett.* **1995**, 242, 652-660; b) K. Eichkorn, F. Weigend, O. Treutler, R. Ahlrichs, *Theor. Chem. Acc.* **1997**, 97, 119.
15. a) P. A. M. Dirac, *Proc. Royal Soc. A*, 1929, **123**, 714-733. b) J. C. Slater, *Phys. Rev.* **1951**, **81**, 385-390. c) S. H. Vosko, L. Wilk, M. Nusair, *Can. J. Phys.* **1980**, **58**, 1200-1211. d) A. D. Becke, *Phys. Rev. A*, **1988**, **38**, 3098. e) J. P. Perdew, *Phys. Rev. B* **1986**, **33**, 8822-8824.
16. a) H. Horn, R. Ahlrichs, *J. Chem. Phys.* **1992**, 97, 2571. b) F. Weigend, R. Ahlrichs, *Phys. Chem. Chem. Phys.* **2005**, 7, 3297.
17. M. Sierka, A. Hogekamp, R. Ahlrichs, *J. Chem. Phys.* 2003, **118**, 9136.
18. F. Neese, *WIREs Comput. Mol. Sci.*, **2012**, 2, 73.
19. a) A. D. Becke, *Phys Rev A* **1988**, **38**, 3098. b) J. P. Perdew, Y. Wang, *Phys Rev B* **1992**, **45**, 13244.
20. a) D. E. Woon, T. H. Dunning, Jr. *J. Chem. Phys.* **1993**, 98, 1358. b) N.B. Balabanov, K. A. Peterson, *J. Chem. Phys.*, **2005**, 123, 064107.