PRNP gene
prion protein

Normal Function

The PRNP gene provides instructions for making a protein called prion protein (PrP), which is active in the brain and several other tissues. Although the precise function of this protein is unknown, researchers have proposed roles in several important processes. These include the transport of copper into cells and protection of brain cells (neurons) from injury (neuroprotection). Studies have also suggested a role for PrP in the formation of synapses, which are the junctions between nerve cells (neurons) where cell-to-cell communication occurs.

Different forms of PrP have been identified. The normal version is often designated PrPC to distinguish it from abnormal forms of the protein, which are generally designated PrPSc.

Health Conditions Related to Genetic Changes

Huntington disease-like syndrome

A particular type of mutation in the PRNP gene has been found to cause signs and symptoms that resemble those of Huntington disease, including uncontrolled movements, emotional problems, and loss of thinking ability. Researchers have proposed that this condition be called Huntington disease-like 1 (HDL1).

The PRNP mutations associated with HDL1 involve a segment of DNA called an octapeptide repeat. This segment provides instructions for making eight protein building blocks (amino acids) that are linked to form a protein fragment called a peptide. The octapeptide repeat is normally repeated five times in the PRNP gene. In people with HDL1, this segment is repeated eleven or thirteen times. An increase in the size of the octapeptide repeat leads to the production of an abnormally long version of PrP. It is unclear how the abnormal protein damages and ultimately destroys neurons, leading to the characteristic features of HDL1.

Prion disease

More than 30 mutations in the PRNP gene have been identified in people with familial forms of prion disease, including Creutzfeldt-Jakob disease (CJD), Gerstmann-Sträussler-Scheinker syndrome (GSS), and fatal familial insomnia (FFI). The major features of these diseases include changes in memory, personality, and behavior; a decline in intellectual function (dementia); and abnormal movements, particularly difficulty with coordinating movements (ataxia). The signs and symptoms worsen over time, ultimately leading to death.
Some of the \textit{PRNP} gene mutations that cause familial prion disease change single amino acids in PrP. Other mutations insert additional amino acids into the protein or result in an unusually short version of the protein. These changes alter the structure of PrP, leading to the production of an abnormally shaped protein, known as PrPSc, from one copy of the \textit{PRNP} gene. In a process that is not fully understood, PrPSc can attach (bind) to PrPC and promote its transformation into PrPSc. The abnormal protein builds up in the brain, forming clumps that damage or destroy neurons. The loss of these cells creates microscopic sponge-like holes (vacuoles) in the brain, which leads to the signs and symptoms of prion disease.

Researchers have identified several common variations (polymorphisms) in the \textit{PRNP} gene that affect single amino acids in PrP. These polymorphisms do not cause prion disease, but they may affect a person's risk of developing these disorders. Studies have focused on the effects of a polymorphism at position 129 of PrP. At this position, people can have either the amino acid methionine (Met) or the amino acid valine (Val). This polymorphism is written as Met\textsubscript{129}Val or M\textsubscript{129}V. Because people inherit one copy of the \textit{PRNP} gene from each parent, at position 129 an individual can receive methionine from both parents (Met/Met), valine from both parents (Val/Val), or methionine from one parent and valine from the other (Met/Val).

The Met\textsubscript{129}Val polymorphism appears to influence the risk of developing prion disease. Most affected individuals have the same amino acid at position 129 (Met/Met or Val/Val) instead of different amino acids (Met/Val). Having Met/Met at position 129 is also associated with an earlier age of onset and a more rapid worsening of the disease's signs and symptoms.

\textbf{Wilson disease}

The Met\textsubscript{129}Val polymorphism has been reported to influence the onset of Wilson disease, an inherited disorder in which excessive amounts of copper accumulate in the body. Wilson disease is caused by mutations in the \textit{ATP7B} gene, but studies suggest that symptoms of Wilson disease begin several years later in people who have Met/Met at position 129 in PrP compared with those who have Met/Val or Val/Val. Other research findings indicate that this polymorphism may also affect the type of symptoms that develop in people with Wilson disease. Having Met/Met at position 129 appears to be associated with an increased occurrence of symptoms that affect the nervous system, particularly tremors.

\textbf{Other disorders}

The Met\textsubscript{129}Val variation has been associated with differences in performance on long-term memory tasks among healthy young adults. In one study, people who had either Met/Met or Met/Val at position 129 performed better at long-term memory tasks than those who had Val/Val. It is unclear how these differences may be related to memory.
Chromosomal Location

Cytogenetic Location: 20p13, which is the short (p) arm of chromosome 20 at position 13

Molecular Location: base pairs 4,686,456 to 4,701,588 on chromosome 20 (Homo sapiens Updated Annotation Release 109.20200522, GRCh38.p13) (NCBI)

Credit: Genome Decoration Page/NCBI

Other Names for This Gene

• AltPrP
• ASCR
• CD230 antigen
• CJD
• GSS
• MGC26679
• PRIO_HUMAN
• prion protein (p27-30) (Creutzfeldt-Jakob disease, Gerstmann-Strausler-Scheinker syndrome, fatal familial insomnia)
• PRIP
• PrP
• PrP27-30
• PrP33-35C
• PrPc
• PrPSc

Additional Information & Resources

Educational Resources

• Basic Neurochemistry (sixth edition, 1999): Prion Diseases https://www.ncbi.nlm.nih.gov/books/NBK27938/
Scientific Articles on PubMed

- PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28PRNP%5BTIAB%5D%29+AND+%28%28Genes%5BMH%5D%29+OR+%28Genetic+Phenomena%5BMH%5D%29%29+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND+%22last+720+days%22%5Bdp%5D

Catalog of Genes and Diseases from OMIM

- PRION PROTEIN
 http://omim.org/entry/176640

Research Resources

- Atlas of Genetics and Cytogenetics in Oncology and Haematology
 http://atlasgeneticsoncology.org/Genes/GC_PRNP.html
- ClinVar
 https://www.ncbi.nlm.nih.gov/clinvar?term=PRNP%5Bgene%5D
- HGNC Gene Symbol Report
 https://www.genenames.org/data/gene-symbol-report/#!/hgnc_id/HGNC:9449
- Monarch Initiative
 https://monarchinitiative.org/gene/NCBIGene:5621
- NCBI Gene
 https://www.ncbi.nlm.nih.gov/gene/5621
- UniProt: APRIO_HUMAN
 https://www.uniprot.org/uniprot/F7VJQ1
- UniProt: PRIO_HUMAN
 https://www.uniprot.org/uniprot/P04156

Sources for This Summary

- Caughey B, Baron GS. Prions and their partners in crime. Nature. 2006 Oct 19;443(7113):803-10. Review.
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17051207
- Collinge J. Molecular neurology of prion disease. J Neurol Neurosurg Psychiatry. 2005 Jul;76(7):906-19. Review.
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15965195
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1739714/
- Grubenbecher S, Stüve O, Hefter H, Korth C. Prion protein gene codon 129 modulates clinical course of neurological Wilson disease. Neuroreport. 2006 Apr 3;17(5):549-52.
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16543824
- Harris DA, True HL. New insights into prion structure and toxicity. Neuron. 2006 May 4;50(3):353-7. Review.
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16675391
• Imran M, Mahmood S. An overview of human prion diseases. Virol J. 2011 Dec 24;8:559. doi: 10.1186/1743-422X-8-559. Review.
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22196171
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3296552/

• Merle U, Stremmel W, Gessner R. Influence of homozygosity for methionine at codon 129 of the human prion gene on the onset of neurological and hepatic symptoms in Wilson disease. Arch Neurol. 2006 Jul;63(7):982-5.
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16831968

• Moore RC, Xiang F, Monaghan J, Han D, Zhang Z, Edström L, Anvret M, Prusiner SB. Huntington disease phenocopy is a familial prion disease. Am J Hum Genet. 2001 Dec;69(6):1385-8. Epub 2001 Oct 9.
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11593450
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1235549/

• Papassotiropoulos A, Wollmer MA, Aguzzi A, Hock C, Nitsch RM, de Quervain DJ. The prion gene is associated with human long-term memory. Hum Mol Genet. 2005 Aug 1;14(15):2241-6. Epub 2005 Jun 29.
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15987701

• Paucar M, Xiang F, Moore R, Walker R, Winnberg E, Svenningsson P. Genotype-phenotype analysis in inherited prion disease with eight octapeptide repeat insertional mutation. Prion. 2013 Nov-Dec;7(6):501-10. Epub 2013 Nov 25.
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24275071
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4201619/

• Perez VP, Coitinho AS. Implications of prion protein biology. Curr Neurovasc Res. 2006 Aug;3(3):215-23. Review.
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16918385

• Prusiner SB. Shattuck lecture--neurodegenerative diseases and prions. N Engl J Med. 2001 May 17;344(20):1516-26. Review.
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11357156

Reprinted from Genetics Home Reference:
https://ghr.nlm.nih.gov/gene/PRNP

Reviewed: January 2014
Published: August 17, 2020

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services