Intrinsic electron-doping in nominal “non-doped” superconducting (La,Y)$_2$CuO$_4$ thin films grown by dc magnetron sputtering

L. Zhao, G. Wu, R. H. Liu and X. H. Chen

Hefei National Laboratory for Physical Science at Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China

The superconducting nominal “non-doped” La$_{1.85}$Y$_{0.15}$CuO$_4$ (LYCO) thin films are successfully prepared by dc magnetron-sputtering and in situ post-annealing in vacuum. The best T$_c$ more than 13K is achieved in the optimal LYCO films with highly pure c-axis oriented T-type structure. In the normal state, the quasi-quadratic temperature dependence of resistivity, the negative Hall coefficient and effect of oxygen content in the films are quite similar to the typical Ce-doped n-type cuprates, suggesting that T-LYCO shows the electron-doping nature like known n-type cuprates, and is not a band superconductor as proposed previously. The charge carriers are considered to be induced by oxygen deficiency.

PACS numbers: 74.72.Dn, 74.78.Bz, 74.62.Dh, 74.90.+n

I. INTRODUCTION

Although the intense research since the discovery of high-temperature superconductors by Bednorz and Müller in 1986[1], the underlying mechanism for high temperature superconductivity remains elusive. It is well known that the parent compounds of all the high-temperature superconductors are antiferromagnetic half-filled Mott insulators in which the strong electronic correlation exists. Upon increasing doping holes or electrons temperature superconductors are antiferromagnetic half-planes. They claimed that oxygen deficiencies can’t afford a main source of charge carriers and these new superconductors are most plausibly so-called “band superconductors”[2,3]. But they lacked further investigation on physical properties of these new class of superconductors. Furthermore, no other group can reproduce their work and acquire superconducting samples. Only one unsuccessful attempt was reported recently[4]. It is urgent to confirm these results at present.

According to our experimental experiences in the synthesis of La-based 214 cuprate superconductors, recently discovered by NTT research group, are nominal “non-doped” T’-(La, RE)$_2$CuO$_4$ (RE = Sm, Eu, Gd, Tb, Lu, and Y). RE is the isovalent cation with La and don’t provide necessary charge carriers to CuO$_2$ planes. They claimed that oxygen deficiencies can’t afford a main source of charge carriers and these new superconductors are most plausibly so-called “band superconductors”[2,3]. But they lacked further investigation on physical properties of these new class of superconductors. Furthermore, no other group can reproduce their work and acquire superconducting samples. Only one unsuccessful attempt was reported recently[4]. It is urgent to confirm these results at present.

According to our experimental experiences in the synthesis of La-based 214 cuprate superconductors, recently discovered by NTT research group, are nominal “non-doped” T’-(La, RE)$_2$CuO$_4$ (RE = Sm, Eu, Gd, Tb, Lu, and Y). RE is the isovalent cation with La and don’t provide necessary charge carriers to CuO$_2$ planes. They claimed that oxygen deficiencies can’t afford a main source of charge carriers and these new superconductors are most plausibly so-called “band superconductors”[2,3]. But they lacked further investigation on physical properties of these new class of superconductors. Furthermore, no other group can reproduce their work and acquire superconducting samples. Only one unsuccessful attempt was reported recently[4]. It is urgent to confirm these results at present.

According to our experimental experiences in the synthesis of La-based 214 cuprate superconductors, recently discovered by NTT research group, are nominal “non-doped” T’-(La, RE)$_2$CuO$_4$ (RE = Sm, Eu, Gd, Tb, Lu, and Y). RE is the isovalent cation with La and don’t provide necessary charge carriers to CuO$_2$ planes. They claimed that oxygen deficiencies can’t afford a main source of charge carriers and these new superconductors are most plausibly so-called “band superconductors”[2,3]. But they lacked further investigation on physical properties of these new class of superconductors. Furthermore, no other group can reproduce their work and acquire superconducting samples. Only one unsuccessful attempt was reported recently[4]. It is urgent to confirm these results at present.

II. EXPERIMENT DETAILS

The La$_{1.85}$Y$_{0.15}$CuO$_4$ (LYCO) films were fabricated by on-axis dc magnetron sputtering using a stoichiometric ceramic target. The target was synthesized by conventional solid state reaction. The appropriate powders of La$_2$O$_3$, Y$_2$O$_3$ and CuO of high purity with the composition ratio of cation La: Y: Cu=1.85:0.15:1.0, were mixed, ground, and sintered in air at 980°C for 48 hours with several intermediate regrindings. The calcined powder was then pressed into a 5 mm-thick disk with 50mm in diameter and was sintered at 1050°C for 24 hours.

The (100)-cut SrTiO$_3$ (d=3.905Å) and LSAT [(LaAlO$_3$)$_{0.3}$(Sr$_2$AlTaO$_6$)$_{0.7}$] (d=3.868Å) were used as substrates for deposition of LYCO films. The substrates were fixed to the heater which was located right above the target at a height of 35mm. The base pressure of the chamber prior to deposition was below 5 × 10$^{-4}$Pa. The sputtering gas was pure argon, and the pressure in the chamber was kept at about 60Pa during the deposition. Subsequently, LYCO was deposited at the temperature T$_D$ = 600–755°C. After deposition, the samples were first slowly cooled down to T$_D$ = 600°C in high vacuum (below 10$^{-4}$Pa), then annealed at this temperature for 15-30 minutes to remove the excess apical oxygen and finally followed by very slow cooling to room temperature in high vacuum. Usually 15 minute’s annealing in high vacuum is enough and longer annealing have no improving effect on the superconducting properties of the LYCO films. During the deposition, the sputtering current was ordinarily kept at about 200mA and the typical film thickness is around 3000Å after one hour’s deposition. For these films thicker than 2500Å, there is no distinct difference on the transport properties of these films grown on whether STO or LSAT substrates in our experiments.

All the films are characterized by an x-ray diffractometer (Panalytical, X’pert Pro), using Cu Kα radiation. Their surface morphology and thickness are observed using an atomic force microscope (AFM, Digital Instru-
FIG. 1: Powder x-ray diffraction patterns of La$_{1.85}$Y$_{0.15}$CuO$_4$ target, the peak marked with stars is from a small quantity of un-reacted Y$_2$O$_3$.

ments). The measurements of resistivity and Hall coefficients are carried through by standard 6-lead technology, using a superconducting quantum interference device (SQUID, Quantum Design, MPMS-7XL). The Ag electrodes were deposited by evaporation through a copper mask.

III. RESULTS AND DISCUSSION

Fig. 1 shows the x-ray diffraction pattern of the La$_{1.85}$Y$_{0.15}$CuO$_4$ target. Except the trace of un-reacted yttrium oxide, all the peaks are indexed assuming the La$_2$CuO$_4$-like T-214 structure. The calculated lattice constants of the orthorhombic lattice are, a = 5.355 Å, b = 5.399 Å, and c = 13.14 Å. These lattice constants are slightly less than those of La$_2$CuO$_4$ (a = 5.356 Å, b = 5.402 Å, c = 13.14 Å), consistent with the partial substitution of larger La$^{3+}$ (ion radii is 1.216 Å) by smaller Y$^{3+}$ (1.075 Å).

La$^{3+}$ is the largest ion among lanthanide series, and the detailed analysis on the perovskite crystallographic Goldshmidt tolerance factor t, have told us that La-214 tends to form the T-type phase while T'-phase is unstable at relative lower synthesis temperature [7]. By extrapolating the T’/T phase boundary in the La$_2$-xNd$_y$CuO$_4$ system to y=0, Manthiram and Goodenough [7] predicted that T’-La$_2$CuO$_4$ can only be stabilized below 425°C. Although partially substitution of La$^{3+}$ by smaller Y$^{3+}$ will reduce slightly the average ion radius of A-site, and shift slightly the T/T’ phase boundary to higher temperature, it is still too hard to realize the preparation of T'-phase bulk material. Conventional solid state reaction can only achieve T-phase. Nevertheless compared with the solid-state reaction process, the preparation of thin films can usually be realized at relative lower temperature. Furthermore the appropriate epitaxy strain through suitable substrates can stabilize some meta-stable phases [9].

FIG. 2: X-ray diffraction patterns($θ−2θ$ scan) of LYCO films grown on STO and LSAT substrates at various deposition temperatures 755°C, 725°C, 690°C, 650°C, and 600°C. The peak marked with “∗” is the (200) reflection belonging to Cu$_2$O impurity. The un-indexed peaks are due to the substrates.

The x-ray diffraction patterns of LYCO films deposited at various temperatures are shown in Fig. 2. The c-axis lattice constant of the LYCO is 12.45 Å for T'-type structure and 13.136 Å for T-type structure, respectively. Therefore, these two kinds of competing structures can easily be distinguished in x-ray diffraction. As mentioned above, the phase competition between the T'- and T-structures also exists during the growth of the LYCO films and the T'-phase is preferable at lower deposition temperature.

From Fig. 2, one can see that the LYCO films with pure T'-phase can be synthesized only when the deposition temperature T_D is near 690°C. Upon increasing T_D, the diffraction peaks belonging to T-phase develop, indicating the coexistence of two phases in the films. They are both highly c-axis oriented and only (00l) peaks exist, except the small (200) peak of Cu$_2$O impurity (marked with “∗” in Fig.2, appears only when deposition temperature is higher than 725°C). With increasing T_D, the proportion of T'-phase component in the films decreases rapidly, and that of T-phase component increases correspondingly. It is consistent with above analysis on the phase competition in LYCO. However, as we decrease T_D further, the T'-214 phase prefers the (110)-oriented epitaxy on STO or LAST substrates, which is usually observed in the film preparation of other cuprate perovskite families. When T_D=600°C, the films are nearly pure (110)-oriented. Only (110) and (220) peaks can be observed.

Therefore, to acquire the high quality T'-LYCO films, the optimal deposition temperature should be around 690°C. The optimal films are of the highly c-axis oriented T'-214 structure without detectable T-phase impurity by x-ray diffraction. The typical full width at half maximum (FWHM) of rocking curves through (006) re-
The surface morphology of typical films, studied by AFM, are shown in Fig. 3. Although the highly pure c-axis oriented T'-structure in the LYCO films has been confirmed by x-ray analysis, some randomly distributed particles on the film surface can be observed. The similar particles were also observed in the LCCO films grown by magnetron sputtering, which suggest that there exists preferential sputtering during the deposition process. The higher deposition temperature help to crystallize these amorphous oxide particles and make them detectable by x-ray diffraction, as shown in Fig. 2(a). According to our experiences in the previous transport measurements in LCCO film prepared by magnetron sputtering, we believe that these CuO$_x$ particles on the surface have no observable effect on the transport properties of the films.

The films in Fig. 4(a) are deposited at higher T_D, in which highly insulating T-phase co-exists as an impurity with superconducting T'-phase component. The coexistence leads to the partial superconducting (SC) transition (caused by the T'-phase component) appended to the whole insulating background (by the T-phase one). Upon increasing T_D, the proportion of the T'-214 component reduces and the SC transition weakens, shifting to lower temperature at the same time as shown in the inset of Fig. 4(a).

The films in Fig. 4(b) are deposited at lower T_D. As T_D decreases farther, the (110) component develops from the c-axis oriented optimal films, and becomes dominant near T_D=600°C, which has been shown in Fig. 2(e). The (110) component introduces the contribution of out-of-plane transport to the whole ρ−T behavior of T'-LYCO films. On the other hand, lower deposition temperature rather strongly hinders the crystallization process and make deoxygenation in vacuum more difficult. At present, we cannot extract ρ$_c$ and ρ$_{ab}$ quantitatively from our results because poor crystallization and grain boundary existing in films deposited at low T_D. As T_D decreases, the influence of both unremoval of apical oxygen and grain boundary lead to the larger resistivity above T_C and more incomplete SC transition as well. It is possible that the semiconducting nature in normal state could arise from the contribution of out-of-plane resistivity. Similar results are reported in the study on the anisotropy of Nd$_{2-x}$Ce$_x$CuO$_4$(NCCO) through the films with different orientations.

For the optimal T'-214 films deposited at 690°C, the temperature dependence of the resistivity is shown in Fig.5 (a). The T_C =13.5K and the width of SC transition less than 1.5K (10-90% criterion) were acquired. The optimal film shows a metallic behavior in the whole range above T_C except for a slight upturn approaching T_C when $T < T_{min}$ ~50K. In contrast to the well-known linear temperature dependence in the hole-doped cuprates like YBCO, the nearly quadratic dependence of ρ in the normal state is observed. This kind of behavior is similar to those observed in the electron-doped cuprates around optimal doping, such as Ln$_{2-x}$Ce$_x$CuO$_4$ (Ln=La, Pr, Nd, and Sm) [10, 11, 12, 13]. Now most researchers consider it as a Landau-Fermi liquid behavior due to electron-electron scattering.

The rigid formula for two-dimensional Landau-Fermi liquid

$$\rho(T) = \rho_0 + A(T/T_F)^2\ln(T/T_F).$$ (1)
is used to fit the data. Where T_F is the Fermi temperature (we take $T_F = 5000K$ here) and ρ_0 residual resistivity [14]. In the normal state the fitting is quite good above T_{min}, which is further confirmed by the fine linearity in the plot of in Fig. 5(b). The quadratic temperature dependence with logarithmic correction have been also observed in other electron-doped cuprates [15], which suggest the T’-LYCO may intrinsically be a typical electron-doped cuprate.

To clarify the origin of charge carriers, Hall coefficient R_H of the optimal films was measured as shown in Fig. 6. The negative R_H in normal states confirms the intrinsic electron-doped nature in T’-214 LYCO films. The R_H decreases gradually as temperature cooling from room temperature down to about 100K. Upon decreasing temperature further, a slight upturn toward to zero occurs. This kind of behavior is quite similar with other electron-doped cuprates as NCCO [16] and PCCO [12] at slightly less optimal doping level.

Till now, we cannot observe any prominent difference in T’-LYCO from the Ce-doped T’-214 cuprate superconductors. Since Y$^{3+}$ and La$^{3+}$ are isovalent in T’-LYCO, no net charge can be provided by doped Y$^{3+}$. The most probable origin of charge carriers is from oxygen deficiency since the superconductivity of our films can only be acquired by annealing in high vacuum.

At present, there is no way to determine the oxygen content in thin films accurately and straightforwardly. To confirm our assumption, we deposited LYCO films at the optimal temperature ($T_D = 690\degree C$) but annealing them in lower vacuum ($P_{O_2} \sim 0.6 \times 10^{-2} Pa$) by tuning the slide valve at the front end of the molecular pump. These films are still of pure T’-214 phase, but with less oxygen deficiency.

Their resistivity are much larger than the previous optimal films annealing in high vacuum ($P < 1.0 \times 10^{-4} Pa$). At low temperature the insulating behavior is observed, and no superconductivity is found down to 4 K as shown in Fig. 7(a). The Hall coefficient R_H was also investigated as shown in Fig. 7(b). R_H is negative in the whole temperature range and decreases with decreasing temperature. The absolute value of R_H is much larger than that for optimal films, indicating less effective carrier density and being consistent with larger resistivity. This oxygen dependence of Hall behavior has been observed in Nd$_{1.85}$Ce$_{0.15}$CuO$_{4-\delta}$ films by varying oxygen content [17]. Because the limit of vacuum that the sputtering chamber can reach is lower than that of the MBE chamber in the NTT group ($P_{O_2} < 10^{-8}$ Torr) [2, 3]. Tuning the films to the overdoped region in the phase diagram cannot be performed by introducing more oxygen deficiency currently.
IV. CONCLUSIONS

We have successfully synthesized the superconducting T'-phase LYCO films by dc magnetron sputtering. The optimal growth conditions are explored in detail. The appropriate deposition temperature and succedent in situ annealing in high vacuum are the most crucial to acquire superconducting films with pure c-axis orientation. The optimal \(T_C \) of our samples is lower than the reported MBE-grown films (above 20K) at present. The biggest restriction to improve \(T_C \) is the limit of vacuum one can achieve. Detailed studies on the resistivity and Hall coefficient on T'-LYCO films, suggesting that this kind of so-called “non-doped” superconductor is intrinsically electron-doped cuprates. No exciting prominent difference in T'-LYCO from the well-known Ce-doped T'-214 cuprate superconductors (as LCCO, NCCO and PCCO) is observed in experiments. The charge carriers are the most likely from severe oxygen deficiency. But besides reducing \(t \) factor to improving the stability of T'-structure slightly, the role of \(Y^{3+} \) ion in superconducting T'-LYCO is still elusive now. We have prepared Y-doped T'-Nd\(_2\)CuO\(_4\) and Pr\(_2\)CuO\(_4\) in films and bulk forms, in which there is no need for \(Y^{3+} \) ions to stabilize T'-214 structure. But no superconductivity is observed. We suppose that the cooperation of large-sized La\(^{3+}\) ions with smaller \(Y^{3+}\) may enable the sufficient deficiency of oxygen in T'-structure to induce superconductivity. Further studies on the T'-LYCO films at various Y-doping levels and the in-plane substitution effect by magnetic or non-magnetic impurities are currently in process.

Acknowledgments

The authors would like to thank G. Y. Wang, T. Wu, B. Guan and X. G. Luo, for their assistance on the measurements and useful discussions. This work is supported by the Nature Science Foundation of China and by the Ministry of Science and Technology of China (973 project No: 2006CB601001), and by the Knowledge Innovation Project of Chinese Academy of Sciences.

[1] J. G. Bednorz and K. A. Müller, Z. Phys. B 64, 189 (1986)
[2] A. Tsukada, Y. Krockenberger, M. Noda, H. Yamamoto, D. Manske, L. Alff, and M. Naito, Solid State Communications 133, 427 (2005)
[3] M. Noda, A. Tsukad, H. Yamamoto, and M. Naito, Physica C 426-431, 220 (2005)
[4] Y. Idemoto, T. Miyabe, and N. Koura, Journal of the Ceramic Society of Japan 114, 359 (2006)
[5] L. Zhao, PhD thesis (2005)
[6] A. Manthiram and J. B. Goodenough, J. Solid State Chem. 92, 231 (1991)
[7] A. Tsukada, T. Greibe and M.Naito, Phys. Rev. B 66, 184515 (2002)
[8] H. Zhao, H. Wu, J. Miao, H.Yang, F. C. Zhang, X. G. Qiu and B. R. Zhao, Supercond. Sci. Technol. 17, 1361 (2004).
[9] A. I. Ponomarev, T. B. Charikova, A. N. Ignatenkov, A. O. Tashlykov, and A. A. Ivanov, Low Temp. Phys. 30, 885 (2004)
[10] A. Sawa, M. Kawasaki, H. Takagi and Y. Tokura, Phys. Rev. B 66, 014531 (2002)
[11] M. A. Crusellas, J. Fontcuberta, S. Pinol, T. Grenet and J. Beille, Physica C 180, 313 (1991)
[12] M. Brinkmann, H. Bach, and K. Westerholt, Phys. Rev. B 54, 6680 (1996)
[13] S.J. Hagen, J.L. Peng, and R.L. Greene, et al, Phys. Rev. B 43, 13606 (1991)
[14] C.C. Tsuei, A. Gupta and G. Koren, Physica C 161, 415 (1989)
[15] C. H. Wang, L. Huang, L. Wang, Y. Peng, X. G. Luo, Y.M.Xiong and X. H. Chen, Supercond. Sci. Technol. 17, 469 (2004)
[16] C. H. Wang, G. Y. Wang, T. Wu, Z. Feng, X. G. Luo and X. H. Chen, Phys. Rev. B. 72, 132506 (2005)
[17] Wu Jiang et al., Phys. Rev. Lett. 73, 1291 (1994)
[18] L. Zhao et al., in preparation.