Targeted Inactivation of the Gene psaL Encoding a Subunit of Photosystem I of the Cyanobacterium Synechocystis sp. PCC 6803*

(Received for publication, January 6, 1993, and in revised form, February 26, 1993)

Vaishali P. Chitnis§, Qiang Xu†, Lian Yu†, John H. Golbeck§, Hitoshi Nakamoto§, Dian-Lin Xie§, and Parag R. Chitnis†

From the §Division of Biology, Kansas State University, Manhattan, Kansas 66506, the §Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68883, and the §Roche Institute of Molecular Biology, Nutley, New Jersey 07110

Photosystem I is a multisubunit pigment-protein complex that functions as a light-driven plastocyanin-ferredoxin oxido reductase in thylakoid membranes of cyanobacteria and higher plants. A 16-kDa protein subunit of photosystem I complex was isolated from the cyanobacterium Synechocystis sp. PCC 6803. The sequence of its NH₂-terminal residues was determined and a corresponding oligonucleotide probe was used to isolate the gene encoding this subunit. The gene, designated as psaL, codes for a protein of 16,605 Da. The deduced amino acid sequence is homologous to the subunit Psal of barley photosystem I. There are two conserved hydrophobic regions in the subunit Psal that may cross or interact with thylakoid membranes. The gene psaL exists as a single copy in the genome and is expressed as a monocistronic RNA. Stable mutant strains in which the gene psaL was interrupted by a gene conferring resistance to chloramphenicol, were generated by targeted mutagenesis. Growth and photosynthetic characteristics of a selected mutant strain under phototrophic conditions were similar to those of the wild type, suggesting that the function of Psal is dispensable for photosynthesis in Synechocystis sp. PCC 6803. Western analysis and subunit composition of purified photosystem I revealed that the mutant strain contained other subunits of photosystem I in thylakoid membranes and in the assembled complex. When photosystem II activity was inhibited and glucose was supplied in the medium, mutant strains grew faster than the wild type. Under these conditions of growth, re-reduction of P700 in the mutant cells, but not in the wild type cells, showed a component with an uncharacteristically rapid half-time.

Photosystem I (PS I) is one of two pigment-protein complex of the photosynthetic apparatus of cyanobacterial and plant thylakoid membranes. It accepts electrons on the luminal side of the membranes from plastocyanin or cytochrome c₅₅₃ and donates them to ferredoxin present in the cytoplasm. Photosystem II, or PS II, is similar to that from higher plants, but its genetic organization is simpler and can be more easily manipulated. This organism is able to take up extraneous DNA and incorporate it into the genome by homologous recombination, thus enabling one to mutate specific genes encoding proteins of the photosynthetic apparatus. We have embarked on a program to decipher functions of the accessory subunits of PS I through targeted mutagenesis of the genes encoding these subunits in Synechocystis sp. PCC 6803. Previously we have cloned the genes encoding PsaD, PsaE, and PsaF subunits from Synechocystis sp. PCC 6803 and subsequently generated mutants in which these genes have been mutated (15-18). This approach has allowed us to demonstrate the functions of these subunits in vivo. In the present work, we have cloned and sequenced the gene encoding subunit Psal of PS I and then generated a mutant strain in which the psaL gene has been inactivated by insertion of a gene conferring resistance to chloramphenicol.

* P. V. Warren, Y.-S. Jung, V. P. Chitnis, P. R. Chitnis, J. Zhao, D. A. Bryant, and J. H. Golbeck, unpublished results.
Inactivation of Cyanobacterial psaL Gene

EXPERIMENTAL PROCEDURES

Materials—Radioactive chemicals were purchased from Du Pont-New England Nuclear. All enzymes and reagents used for molecular cloning were obtained from Boehringer-Mannheim (Mannheim, Germany) or Promega Biotech. The antibody specific to the carboxyl-terminal sequence of PsaB was kindly provided by Dr. James Guikema (19). The antibodies against PsaA, PsaD, and PsaL were produced at the University of Nebraska, Lincoln Antibody Production Facility.

Isolation and Characterization of the 16-kDa Subunit from PS I—The PS I reaction center was isolated by previously described methods from the wild type strain of Synechocystis sp. PCC 6803 (15). Subunits of PS I were separated by electrophoresis on a 15% polyacrylamide gel using a mini-gel apparatus. The two subunits of PS I were identified using a 700-nm cutoff filter to eliminate the near-infrared. An illumination period of 1.5 s following a dark period of 6 s permitted full activation and recovery of electron transport components. The signal-to-noise ratio was improved by averaging 64 light-dark cycles with a Nicolet 4095A Digital Oscilloscope (12-bit resolution, 500 μs/pt). The average data were transferred to a Macintosh IICl computer for curve fitting using a commercial software package (IGOR).

RESULTS

Characterization of psaL—PS I was isolated from the wild type strain of Synechocystis sp. PCC 6803. The 16-kDa polypeptide was isolated from PS I as described and an NH2-terminal sequence of AESNQVQAYNGDPFV was determined. A genomic library was screened using a 32P-end labeled oligonucleotide probe corresponding to sequence in the NH2 terminus. Positive clones were isolated, and Southern analysis indicated that the psaL gene resided in an 0.7-kilobase Sau3A fragment. Overlapping deletions in this fragment were generated by digestion with exonuclease III for sequencing by the dye-termination method. The nucleotide sequence of the region between the 0.7-kilobase fragment containing the psaL gene revealed an open reading frame comprising psaL gene. It is 471 bp long and encodes a protein of 157 residues. The amino acid sequence determined by chemical protein sequencing is found beginning at residue 2 of the Psal protein. Therefore, the initiator methionine encoded in the gene psaL is post-translationally removed. Lack of a lumen-targeting presequence in the protein encoded by the gene psaL indicates that the subunit Psal is not a luminal protein.

Overall, the Psal subunit of Synechocystis shows considerable homology to Psal proteins from barley (45% identity) and Synechococcus elongatus (67% identity) (Fig. 1). Furthermore, the protein from Synechocystis shows homology to amino-terminal sequences of subunits of PS I of Synechococcus sp. PCC 7002 (28) and of Synechococcus vulcanus (29) (results not shown). These results confirm the identity of the 16-kDa polypeptide from Synechocystis as the Psal subunit. Hydrophathy analysis indicated the presence of a hydrophilic NH2-terminal region followed by three potential transmembrane regions (Fig. 2). The third putative transmembrane region is highly conserved between cyanobacteria and higher plants but the first two share less homology. The length of the middle hydrophobic region in cyanobacteria is smaller than that in the Psal of barley.

Southern and Northern Analysis of the psaL Gene—For Southern blot analysis, a 470-bp DNA fragment containing psaL was labeled with 32PdCTP by random priming. This probe hybridized to a single band in all Southern analysis digestes (Fig. 3, panel A). The probe hybridized with two fragments when the DNA was digested with Styl; this enzyme recognizes a site in psaL gene. Therefore, our results indicate that psaL is present as a single gene in the genome of Synechocystis sp. PCC 6803. Hybridization of a psaL probe to total
Inactivation of Cyanobacterial psaL Gene

Synechocystis
MAESW----Q VQHADFDDPF MAHFTKFSV YPTTFINL LPAVRGGLSP LEILIGEVLQ 56

MAESW----E IKPESQGGDF MAHFTKFSV YPLRTTINL LPAVRGGLSP LEILIGEVLQ 54

Synechococcus
MAE----E E LVKPTQGDFF MOHKTHHSV ESLRTTINL LPAVRGGLSP LEILIGEVLQ 60

Barley
AVSRKIPYQ WOPESQGGDF MOHKTHHSV ESLRTTINL LPAVRGGLSP LEILIGEVLQ 60

| FIG. 1. Comparison of the deduced amino acid sequences of the Psal subunit of PS I from Synechocystis sp. PCC 6803 and barley. The sequences were aligned using GeneWorks, the computer program from Intelligenetics. Conservative amino acid replacements are shaded while the identical amino acids are boxed. The protein sequence determined by chemical sequencing of the 16-kDa subunit of PS I starts at amino acid 2 and is shown in italic letters. The transit sequence of the polypeptide encoded by barley psal is not shown. Sources for sequences: Synechocystis sp. PCC 6803 (this work), barley (21) and Synechococcus elongatus (GenBank accession No. X63763). |

| FIG. 2. Hydrophy profile of the deduced amino acid sequence for subunit Psal. Analysis was performed by a GeneWorks analysis program using Eisenberg algorithms (7) with a window size of 21 amino acids. The positions of the charged amino acids in Psal are indicated on the plot. |

| FIG. 3. Southern and Northern blot analysis of the gene psal from Synechocystis sp. PCC 6803. A, genomic Southern. One µg of DNA, isolated from the wild type strain of Synechocystis sp. PCC 6803, was digested with: EcoRI (lane 1), BamHI (lane 2), HindIII (lane 3), EcoRI + BamHI (lane 4), EcoRI + HindIII (lane 5), and BamHI + HindIII (lane 6), and Styl (lane 7). The digested DNA was electrophoresed on a 0.75% agarose gel, transferred to Magnacharge nylon membrane, and probed with a DNA fragment containing psal that had been labeled by random primer labeling. B, 5 µg of total RNA was subjected to electrophoresis in a 1.2% agarose gel containing formaldehyde, transferred to a Magnacharge nylon membrane, and hybridized with a probe specific to psal. |

| FIG. 4. Construction of a clone for insertional inactivation of the psal gene. Restriction map of cloned Synechocystis sp. PCC 6803 DNA containing the gene psal is shown on the upper line. A DNA fragment containing the coding region of the gene psal (middle line) was amplified by PCR and cloned in the EcoRI and XhoI sites of the polylinker of pBluescript-SK. The chloramphenicol resistance cassette with Smal ends (lower line) was isolated from pUC4C and cloned in the Stul site in psal. The resultant clone was used for transforming the wild type cells of Synechocystis sp. PCC 6803. Numbers indicate size of the DNA fragments. The chloramphenicol resistance cassette is not drawn to scale. |

RNA from Synechocystis sp. PCC 6803 revealed a single RNA species of approximately 500 nucleotides in size (Fig. 3, panel B). Considering the sizes of psal genes (468 bp), it can be concluded that the predominant mRNA species for psal in the total RNA in the cells is monocistronic.

Targeted Mutagenesis of psal—Our goal was to generate a subunit-specific mutant using homologous recombination in Synechocystis sp. PCC 6803 to study the role of subunit Psal in photosystem I function. A 470-bp fragment containing Psal-coding regions was amplified by PCR. EcoRI and XhoI restriction sites were added to the end of this fragment during PCR (Fig. 4). This fragment was cloned in pBluescript-SK to yield the plasmid pK17 and was sequenced completely to ensure fidelity of PCR amplification. The plasmid pK17 was interrupted at a unique StuI site in the psal gene with an Escherichia coli gene that confers resistance to the antibiotic chloramphenicol (Fig. 4). This gene for chloramphenicol acetyltransferase was isolated from the plasmid pUC4C^3 after

^3 V. P. Chitnis and P. R. Chitnis, unpublished results.
digestion with the restriction endonuclease Smal.

The resultant plasmid, pK18, was used to transform cells of Synechocystis sp. PCC 6803, and chloramphenicol-resistant transformants were selected and segregated to isolate mutant strains. Six mutant strains were characterized for most of the properties investigated in these studies. All of them were indistinguishable from each other and therefore characteristics of only one (strain ALC7-3) are presented in this paper. Fig. 5 shows the Southern blot analysis of genomic DNA from wild type and ALC7-3 strains. The genomic DNAs were digested completely with EcoRI and HindIII simultaneously, transferred to nylon membrane, and hybridized with the \[^{32}P\] dCTP-labeled DNA fragments containing the \textit{psaL} genes. The probe for the \textit{PsaL}-coding region hybridized only with a 2.7-kilobase fragment in wild type DNA but two fragments of 2.1 and 1.7 kilobases were seen in the mutant DNA (Fig. 5).

Introduction of an additional EcoRI site in the mutant chromosome was expected since the gene for chloramphenicol acetyltransferase contains a site for EcoRI. Therefore the strain ALC7-3 contains only the interrupted \textit{psaL} gene.

Growth of the mutant and wild type strains was monitored by measuring absorbance of cultures at 730 nm (Fig. 6). The photoautotrophic growth rate of ALC7-3 in BG11 was not significantly different from that of wild type cells (Fig. 6, triangles). Both strains grew five times faster when the medium was supplemented with 5 mM glucose; however, their growth rates did not differ from each other in that medium (Fig. 6, circles). When 10 \(\mu\)M DCMU, which inhibits electron transfer through PS II, and 5 mM glucose were added to the growth medium, the mutant strain grew more rapidly than the wild type (Fig. 6, diamonds). When glucose was omitted from the medium, DCMU prevented growth of wild type and mutant cells (data not shown). Table I compares the chlorophyll contents and photosynthetic characteristics of the wild type and ALC7-3 cells. The mutant cells contained about the same amount of chlorophyll (approximately 4 \(\mu\)g/A730) as the wild type irrespective of their conditions or stage of growth. The light-dependent oxygen evolution or uptake measurements of the cells were used as indication of the rates of photosynthetic electron transfer. Both wild type and ALC7-3 cells showed about the same rate of overall photosynthetic activity (Table I). Similarly, the activity of PS II remained unchanged in the mutant. To measure PS I activity (as the rate of oxygen uptake) in the intact cells, PS II activity was inhibited by DCMU, and then ascorbate and diaminodurene were used to donate electrons to PS I. The rates of oxygen uptake due to PS I activity were similar in the wild type and mutant cells.

Photosynthetic membranes were isolated from wild type and mutant cells. Western blotting was used to detect the presence of different subunits of PS I in the membranes (Fig. 7). Subunits \textit{PsaB}, \textit{PsaC}, \textit{PsaD}, and \textit{PsaE} were present in approximately the same amounts in the wild type and mutant membranes, indicating that lack of \textit{PsaL} did not affect assembly of these four proteins into membranes. The thylakoids from the mutant and wild type cells did not differ in amount or characteristics of reaction center P700 and electron transfer centers F\textsubscript{X}, F\textsubscript{A}, and F\textsubscript{B} (data not shown). PS I was prepared from photosynthetic membranes of wild type and mutant strains by the Triton X-100 solubilization method (30). SDS-polyacrylamide gel electrophoresis was used to compare the polypeptide composition of PS I preparations from wild type and mutant cells (Fig. 8). The PS I preparation from ALC7-3 specifically lacked the 16-kDa \textit{PsaL} subunit. Both preparations contained approximately the same amounts of other subunits. Therefore PS I complex was assembled in thylakoids.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{Fig5.png}
\caption{Southern blot of genomic DNA from wild type (wt) and mutant strains (ALC7–3) of \textit{Synechocystis} sp. PCC 6803. Genomic DNA was completely digested with two restriction endonucleases, EcoRI and HindIII, and then electrophoresed on 0.75% agarose gel, transferred to nylon membrane, and probed with \[^{32}P\] CTP-labeled probes specific for the genes \textit{psaL}.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{Fig6.png}
\caption{Growth of wild type and ALC7–3 strains of \textit{Synechocystis} sp. PCC 6803. Cells from actively growing cultures of wild type (solid line) and ALC7–3 (dashed line) strains were pelleted and then resuspended in BG11 medium (triangles), in BG11 medium supplemented with 5 mM glucose (circles), or in BG11 medium with 5 mM glucose and 10 \(\mu\)M DCMU (diamonds). The growth of these cultures was monitored by measuring their absorbance at 730 nm at different time intervals. Each treatment was replicated three times to determine averages and standard deviation (shown by bars).}
\end{figure}

\begin{table}[h]
\centering
\begin{tabular}{|l|c|c|}
\hline
Feature & Wild type & ALC7–3 \\
\hline
Chlorophyll content (\(\mu\)g. A\textsubscript{730} m-1) & 4.1 ± 0.2 & 4.2 ± 0.2 \\
Oxygen evolution (\(\mu\)mol O\textsubscript{2}. mg chl-1. h-1) & & \\
Whole chain & 151 ± 7 & 147 ± 6 \\
PS II alone & 304 ± 18 & 323 ± 26 \\
PS I alone* & -116 ± 6 & -118 ± 12 \\
\hline
\end{tabular}
\caption{Photosynthetic characteristics of cells of mutant lacking gene \textit{psaL}.}
\end{table}

* Negative values represent oxygen uptake via Mehler reaction.
of the mutant strain without subunit PsAL. Silver staining and Coomassie Blue staining of polyacrylamide gels showed PsAL as a lightly stained band in the wild type PS I. The decreased staining of PsAL compared to other subunits may be due to the low proportion of basic residues (4%) in PsAL (31) or may reflect a lower stoichiometry. However, it is less likely that PsAL is lost during isolation of PS I, because the homologous protein in barley is resistant to removal from PsA-B by chaotropic agents (21). There were polypeptides of 40 and 45 kDa in PSI preparations from wild type and mutant thylakoids. These polypeptides reacted with antibodies against the subunits PsA and PsB and were probably the degradation products. Their presence in different preparations varied, and did not depend on the presence or absence of the PsAL subunit.

P700 Turnover—In the wild type and ALC7-3 mutant *Synechocystis* sp. PCC 6803 were grown photoautotrophically, the 1/e time for P700* reduction is 23 ms (Table II). Although this corresponds to an electron transfer rate of only 40 s⁻¹, the cells are grown under conditions that favor the presence of 3-5 times as much PS I as PS II. Hence, many PS I reaction centers are being supplied by a few PS II reaction centers, and the apparent P700* reduction kinetics will appear correspondingly slower. In the presence of 10 μM DCMU, electrons are supplied only by the respiratory NAD(P)H dehydrogenase complex and by cyclic electron flow around PS I, and the 1/e time for P700* reduction increases to about 165 ms in both the wild-type and mutant strains. The addition of glucose accelerates this rate slightly to 145 ms in the wild type strain but not in the mutant; this difference is not considered meaningful. The addition of 1 mM cyanide to the DCMU-poisoned sample accelerates the 1/e time for P700* reduction in wild type cells to 121 ms due in large part to inhibition of the competing oxidase. The addition of 5 mM glucose to these samples slightly affected the rate. The same trend is followed in the ALC7-3 mutant, except for a slower rate of P700* reduction of 143 ms. The further addition of 100 μM methyl viologen removes electrons from the acceptor side of PS I, thereby inhibiting cyclic electron flow. The decrease in the 1/e time to about 300 ms in both wild type and mutant strains shows that the cyclic pathway is unaffected by the absence of PsAL (13). Dibromomethylisopropyl benzoquinone (DBMIB) at 5 μM concentration inhibits electron donation to the cytochrome b₆/f complex from PSI II, the respiratory NAD(P)H dehydrogenase complex, and the cyclic pathway, and the rate of P700* reduction is slowed to a basal level of 640–680 ms in the wild type and ALC7-3 mutant strains. This rate probably represents a “leak” due to the reduction of P700* from non-physiologically significant reductants. We conclude that the absence of PsAL has no effect on cyclic electron flow around PS I, or on the linear electron flow from PSI II or the NAD(P)H dehydrogenase complex.

The only difference between the wild type and ALC7-3 mutant strains was found when the cells were grown photoheterotrophically in medium supplemented with glucose and DCMU. Without added DCMU, the rate of P700* reduction in wild type cells is equal to that of photoautotrophically grown cells in the presence of added 10 μM DCMU. Although the cells were centrifuged prior to analysis to remove DCMU, it is likely that DCMU remains tightly bound to the Qₐ site during measurement. As expected, the addition of cyanide caused the reduction rate to increase and the further addition of methyl viologen caused it to decrease. However, unlike the wild type cells, the ALC7-3 mutant cells showed biphasic P700* reduction kinetics in which one-third of the P700* reduction occurred in 40 ms and the remaining two-thirds in 815 ms (Fig. 9). The addition of cyanide caused the slower reduction rate to increase to 634 ms and the addition of methyl viologen caused it to increase to 750 ms. These additions had the expected effect on the slower kinetic component, but the ratio of the slow to fast kinetic phases did not change. Both wild type and the ALC7-3 mutant strains showed identical monophasic P700* re-reduction kinetics in the absence of DBMIB. We have no adequate explanation for the biphasic kinetics in the mutant strain, nor do we understand the reason for the fast kinetic component in the absence of DBMIB.

DISCUSSION

The composition of the PS I reaction center and primary sequences of its subunits are remarkably conserved in cyanobacteria and higher plants. Genes *psaD* (15), *psaE* (17), *psaF* (18), *psa-A* (32, 33), and *psaC* (34) encoding subunits of PS I of *Synechocystis* sp. PCC 6803 have been isolated and characterized. Like these genes, the gene *psaL* encodes a polypeptide that is similar to the homologous counterpart from a higher plant (Fig. 1). As expected, the PsAL of the *Synechocystis* sp. PCC 6803 does not contain obvious consensuss sequences for binding of prosthetic groups. Interestingly, its hydropathy profile was similar to that of the PsAL subunit...
Inactivation of Cyanobacterial psaL Gene

Table II

Inhibitors	Wild type	ALC7-3	Comments				
	PA1	PA2	PH	PA1	PA2	PH	
None	23	24	155	25	27	815/40	P700 re-reduction
DCMU	162	145	165	161			No e- from PS II
DCMU, CN⁻	121	120	110	143	130	634/41	Cytochrome oxidase blocked
DCMU, CN⁺, MV	298	286	310	289	309	750/44	MV precludes cyclic flow
DBMIB	640	644	660	686	681	675	No e- enter P700 pathway

*PA1, photoautotrophic growth in BG11, assay in BG11; PA2, photoautotrophic growth in BG11, assay in BG11 supplemented with glucose (5 mM) and DCMU (10 µM).

CN, cyanide (sodium salt); MV, methyl viologen.

Wild type

1/c Time (ms) for P700⁺ re-reduction in Synechocystis sp. PCC 6803 cells grown under different conditions

Growth conditions*	Wild type	ALC7-3	Comments				
	PA1	PA2	PH	PA1	PA2	PH	
	25	27	815/40	No e- from PS II			
				Cytochrome oxidase blocked			
				MV precludes cyclic flow			

Fig. 9. P700 turnover in wild type and ALC7-3 mutant strains of Synechocystis sp. PCC 6803. The cyanobacterial strains (wild type, panels A and B; mutant, panels C and D) were grown in BG11 medium (panels A and C) or in BG11 medium supplemented with 10 µM DCMU and 5 mM glucose (panels B and D). The cells were then pelleted, resuspended in BG11 medium, and used to study P700 turnover kinetics without any additions. The arrows show start of light (upward arrow) or darkness (downward arrow).

from barley (21); there are three domains that potentially could span the membrane. It is unclear whether all of these hydrophobic sequences indeed serve as transmembrane helices to anchor the protein to the membrane or, alternatively, are involved in interaction with other subunits of PS I. The PsaL subunit of barley is resistant to removal by chaotropic agents (21). The Psal protein from intact spinach thylakoids is partially cleaved by Pronase and partitions into the hydrophobic phase in Triton X-114 extraction experiments (35, 36). Therefore, Psal seems to be an integral membrane protein containing as many as three transmembrane helices. The amino-terminal hydrophilic region of Psal contains several positively charged residues. If the positive inside rule for predicting topology of membrane proteins applies to Psal, the amino terminus of this protein may face the cytoplasmic side of the photosynthetic membranes (37). Spinach Psal contains a Pronase cleavage site in the loop between the second and third putative transmembrane regions, indicating that this loop is exposed to the stromal side of thylakoid membranes (35). Thus, the distribution of charged amino acids, the presence of hydrophobic regions, and location of the protease-susceptible site indicate that Psal contains three transmembrane helices with the amino terminus exposed to the n-side (stromal or cytoplasmic side) and the carboxyl terminus on the p-side (lumenal side) of thylakoids. Homology between subunit Psal from cyanobacteria and a higher plant reveals some interesting features. Like other subunits of PS I, the cyanobacterial proteins lack several amino acids from the amino terminus of the mature polypeptide. These amino-terminal extensions may be required for correct and efficient proteolytic cleavage of the precursors of plant proteins by the leader peptidase. The third hydrophobic region in Psal is highly conserved between the cyanobacterial protein and plant proteins while in the middle region has variation in sequence length (Fig. 1). The significance of these differences is not understood.

The conservation of the primary structure of Psal implies similarity in its function in cyanobacteria and higher plant photosynthesis. Biochemical methods have been used to identify some of the subunits of PS I (10, 12, 38). Incubation of purified PS I from barley with an antibody raised against barley Psal does not affect the NADP photoreduction (39). Generation of cyanobacterial mutant strains lacking specific proteins has been successfully used to study functions of some proteins of PS I (16-18, 33). We used a similar approach to generate mutant strains lacking the subunit Psal of PS I. The mutant strain ALC7-3 has an interrupted psaL gene (Fig. 5) and lacks the Psal in its PS I (Fig. 8). The lack of this subunit, however, does not affect photoautotrophic growth (Fig. 6), as well as assembly of other subunits into the membranes (Fig. 7) or into PS I (Fig. 8). The P700 turnover kinetics in cells grown under photoautotrophic growth was also similar in wild type and mutant strains (Table II). Therefore, the absence of Psal in photosystem I does not affect linear or cyclic electron flow during photoautotrophic growth of ALC7-3 mutant strain.

There were some differences between the wild type and mutant strains. When the cyanobacterial strains were grown under photoheterotrophic conditions in the presence of DCMU and glucose, the mutant grew faster than the wild type strain (Fig. 6). Under the same conditions the mutant cells showed differences in P700 re-reduction kinetics (Table II). The turnover of P700 in the mutant was biphasic; the faster phase was considerably more rapid than the rates of turnover in the wild type (Fig. 9). This may be responsible for the faster growth rates of mutant strains under these conditions. These results may indicate existence of an unidentified mechanism that is induced under photoheterotrophic growth conditions and can donate electrons to P700 in the absence of Psal. This hypothesis still remains to be tested. We also observed another difference in the Psal-less

*Y. Cohen, V. P. Chitnis, R. Nechushtai, and P. R. Chitnis, unpublished results.
Our method of PS I isolation involves sucrose gradient centrifugation that results in isolation of PS I in two fractions; the heavier fraction presumably represents the trimeric form of PS I. During the isolation of PS I from mutant photosynthetic membranes, we did not observe the trimeric form of PS I under the conditions that resulted in resolution of trimeric and monomeric forms of PS I from the wild type membrane. This observation suggests that PsaL may play a role in trimerization of PS I. We are currently investigating this possibility.

Acknowledgments—We thank M. C. Miedel and Y.-C. E. Pan of the Roche Research Center for help in protein sequencing. We also acknowledge Nathan Nelson, Gary Paulsen, and James Guikema for fruitful discussions and Jim Funderburgh and Martha Funderburgh for critically reading the manuscript.

REFERENCES

1. Golbeck, J. H. (1992) Annu. Rev. Plant Physiol. Plant Mol. Biol. 43, 293–324
2. Chitnis, P. R., and Nelson, N. (1991) in The Photosynthetic Apparatus: Molecular Biology and Operation (Bogorad, L., and Vasil, I. K., eds) pp. 178–224, Academic Press, San Diego
3. Parrett, K. G., Mehari, T., Warren, P. G., and Golbeck, J. H. (1989) Biochim. Biophys. Acta 973, 324–332
4. Wynn, R. M., and Malkin, R. (1988) FEBS Lett. 229, 393–397
5. Zanetti, G., and Merati, G. (1987) Eur. J. Biochem. 169, 143–148
6. Zilber, A., and Malkin, R. (1986) Plant Physiol. 88, 810–814
7. Eisenberg, D., Weiss, R., and Terwilliger, T. (1984) Proc. Natl. Acad. Sci. U. S. A. 81, 140–144
8. Li, N., Zhao, J., Warren, P. V., Warden, J. T., Bryant, D. A., and Golbeck, J. H. (1991) Biochemistry 30, 7864–7872
9. Chitnis, P. R., and Nelson, N. (1992) Plant Physiol. 99, 239–246
10. Benga, C., and Nelson, N. (1977) J. Biol. Chem. 252, 4564–4569
11. Wynn, R. M., and Malkin, R. (1988) Biochemistry 27, 5963–5969
12. Wynn, R. M., Onaka, J., and Malkin, R. (1989) Biochemistry 28, 5554–5560
13. Yu, L., Golbeck, J. D., Zhao, J. D., Schlueter, W., Muhlenhoff, U., and Bryant, D. (1993) in Current Research in Photosynthesis (Murata, N., ed) pp. 565–568, Kluwer Academic Publishers, Dordrecht, The Netherlands
14. Williams, J. G. K. (1988) Methods Enzymol. 167, 766–778
15. Reilly, P., Hulmes, J. D., Pan, Y.-C. E., and Nelson, N. (1988) J. Biol. Chem. 263, 17658–17662
16. Chitnis, P. R., Reilly, P. A., and Nelson, N. (1989) J. Biol. Chem. 264, 18381–18385
17. Chitnis, P. R., Reilly, P. A., Miedel, M. C., and Nelson, N. (1989) J. Biol. Chem. 264, 18374–18380
18. Chitnis, P. R., Purvis, D., and Nelson, N. (1991) J. Biol. Chem. 266, 10035–10038
19. Henry, R. L., Takemoto, L. J., Murphy, J., Gallegos, G. L., and Guikema, J. A. (1992) Plant Physiol. Biochem. 30, 357–364
20. Matzeu, P. (1987) J. Biol. Chem. 262, 10033–10038
21. Okkels, J., Scheller, H. V., Svendsen, I., and Moller, B. L. (1991) J. Biol. Chem. 266, 8767–8773
22. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
23. Henikoff, S. (1987) Methods Enzymol. 155, 156–155
24. Sanger, F., Nicklen, S., and Coulson, A. R. (1977) Proc. Natl. Acad. Sci. U. S. A. 74, 5463–5467
25. Goiden, S. S., Brusilson, J., and Haselkorn, R. (1987) Methods Enzymol. 153, 215–231
26. Lasemni, U. K. (1970) Nature 227, 680–685
27. Maxwell, P. G., and Biggins, J. (1976) Biochemistry 15, 3875–3981
28. Klein, E., and Bryant, D. A. (1988) in Light-energy Transduction in Photosynthesis: Higher Plants and Bacterial Models (Stevens, S. E., and Bryant, D. A., eds) pp. 320–323, American Society of Plant Physiologists, Rockville, MD
29. Koff, H., Ikeuchi, M., Hiyama, T., and Inoue, Y. (1989) FEBS Lett. 253, 257–260
30. Blattner, N. C., and Nelson, N. (1975) J. Biol. Chem. 250, 2783–2788
31. Tal, M., Silberstein, A., and Nusser, E. (1985) J. Biol. Chem. 260, 9976–9980
32. Smart, L. B., and McIntosh, L. (1991) Plant Mol. Biol. 17, 959–971
33. Smart, L. B., Anderson, S. L., and McIntosh, L. (1992) EMBOJ. 10, 2299–2306
34. Anderson, S. L., and McIntosh, L. (1991) Plant Mol. Biol. 16, 487–499
35. Zilber, A., and Malkin, R. (1992) Plant Physiol. 99, 901–911
36. Zilber, A., Wynn, R., Webber, A., and Malkin, R. (1990) in Current Research in Photosynthesis (Baltchafsky, M., ed) pp. 575–578, Kluwer Academic Publishers, Dordrecht, The Netherlands
37. von Heijne, G., and Gavel, Y. (1988) Eur. J. Biochem. 174, 671–674
38. Parrett, K. G., Mehari, T., and Golbeck, J. H. (1990) Biochim. Biophys. Acts 1013, 341–352
39. Anderson, B., Koch, B., and Scheller, H. V. (1992) Plant Physiol. 84, 154–161