RIDDLE: Lidar Data Compression with Range Image Deep Delta Encoding

Xuanyu Zhou∗ Charles R. Qi∗ Yin Zhou Dragomir Anguelov
Waymo LLC

Abstract

Lidars are depth measuring sensors widely used in autonomous driving and augmented reality. However, the large volume of data produced by lidars can lead to high costs in data storage and transmission. While lidar data can be represented as two interchangeable representations: 3D point clouds and range images, most previous work focuses on compressing the generic 3D point clouds. In this work, we show that directly compressing the range images can leverage the lidar scanning pattern, compared to compressing the unprojected point clouds. We propose a novel data-driven range image compression algorithm, named RIDDLE (Range Image Deep Delta Encoding). At its core is a deep model that predicts the next pixel value in a raster scanning order, based on contextual laser shots from both the current and past scans (represented as a 4D point cloud of spherical coordinates and time). The deltas between predictions and original values can then be compressed by entropy encoding. Evaluated on the Waymo Open Dataset and KITTI, our method demonstrates significant improvement in the compression rate (under the same distortion) compared to widely used point cloud and range image compression algorithms as well as recent deep methods.

1. Introduction

Lidar (or LiDAR, short for light detection and ranging) sensors are commonly used in applications that require 3D scene understanding such as autonomous driving and augmented reality. However, with the growing resolution of lidars, storing and transmitting large volumes of sequential lidar data become a challenge. There is a strong need to develop effective algorithms for lidar data compression.

While the measurements of a lidar scan are often used as a 3D point cloud, the raw lidar data can be represented as a more structured format: a range image, where each pixel corresponds to a laser shot, each row represents shots from the same laser, each column represents shots at a specific azimuth rotation angle. Given the lidar scanning mechanism (directions of the lasers) and sensor poses (6D poses in the global coordinate at the timestamp of every shot), a range image and its corresponding point cloud can be converted interchangeably and losslessly. By organizing the points in a range image, instead of storing the three-dimensional coordinates of the points, we can just store one-dimensional ranges (around 3x saving in storage). Given this observation, in contrast to previous works that focus on compressing 3D point clouds [9, 16, 23], we propose to directly compress range images to leverage the lidar scanning patterns.

As range images are in the image format, naturally we can apply existing compression methods for optical images (RGB or grayscale); however, those methods have their limitations. For example, the PNG format is often used to compress depth images in indoor datasets [4, 11, 25], where the depth value are normalized and quantized to 16-bit integers and compressed losslessly. While PNG also applies to compress lidar range images, it is not data-driven and does not use temporal information. There are also attempts to use auto-encoder networks [31] to lossily compress range images by storing the bottleneck layer output. However, as range values often have a much wider distribution than RGB colors, it is challenging to learn an accurate reconstruction, especially at the object boundaries.

In this work, we propose RIDDLE (Range Image Deep Delta Encoding), a data-driven algorithm to compress range images with predictive neural networks (Fig. 2). Our method is inspired by the use of delta encoding in PNG image compression. However, instead of simply computing a difference between close-by pixels, we adopt a deep model to predict the pixel value from context pixels. The deep model takes a local patch of the decoded range image and predicts the attributes of the next pixel in a raster-scanning order (a similar process to the sequential image decoder PixelCNN [33]). We can then entropy encode the residuals between the predicted values and the original values to achieve lossless compression under a chosen quantization rate. In this scheme, the more accurate the prediction is, the smaller the entropy of the residuals are – improving the compression rate is equivalent to developing a more accurate predictive model.

What is unique in our model design is that we represent
local image patches as point clouds in the spherical coordinates (with azimuth, elevation and range values) to reflect the non-uniform ray angles of each shot (or pixel), which lifts the 2D pixels to 3D point clouds. By further lifting the 3D points to 4D with a timestamp channel, we can unify lifts the 2D pixels to 3D point clouds. By further lifting the non-uniform ray angles of each shot (or pixel), which calculates (with azimuth, elevation and range values) to reflect the point distribution patterns in lidar range images.

As a lidar point cloud can be represented as a range image, image-based compression methods can be adapted for its compression. For example, [3, 7, 15] applied traditional image compression methods such as JPEG, PNG and TIFF to compress the range images. A sequence of range images could be seen as a video, and video-based compression method like H.264 was applied to compress lidar sequences [20]. MPEG also proposed a PCC (V-PCC) standard that compresses dynamic point clouds via HEVC video codec [14]. Our work extends them to leverage deep models and delta encoding to compress range images.

Auto-encoders have been used to achieve lossy compression of point clouds. [34, 35] proposed to train an encoder-decoder point cloud reconstruction network and entropy encode the bottleneck layer as the compressed data. Similarly, [31] trained an auto-encoder to reconstruct range images and compress the bottleneck vectors. While these methods may achieve high compression rates, the reconstructed point clouds could have strong artifacts, especially at the object boundaries resulting in unbounded errors in the lossy compression scheme.

Learned image and video compression Image and video compression are well-studied fields with many standards (for example: PNG, JPEG, TIFF for images, H.264 and HEVC for videos). Among them, PNG is highly related to our work as it uses lossless image compression using delta encoding. With the popularity of deep convolutional neural networks for image understanding, deep model-based image and video compression have also been widely explored [5, 6, 18, 19, 29, 30]. Many of them leverage an encoder-decoder neural network (for example, a variational auto-encoder [5]) for the compressing (encoding the image to a latent vector) and decompressing (decode/generate the image from the vector). For the decoding architectures, sequential models such as PixelCNN [21] and PixelRNN [33] inspired our predictive model design.

2. Related Work

Point cloud compression As 3D applications rise, recent years have seen an increasing number of algorithms proposed for point cloud compression. One family of the methods uses octrees to represent and compress quantized point clouds [10, 12, 24]. The Motion Picture Experts Group (MPEG) has released a related point cloud compression (PCC) standard, called geometry-based PCC (G-PCC) [14], using the octree structure and various ways to predict the next-level content. More recently, OctsqueezE [16] was proposed to use a neural network as a conditional entropy model to estimate the octree occupancy symbols, and MuS-CLE [9] extends it by including temporal prior from previous frames. VoxelContextNet [23] further leverages the voxel context for the octree structure prediction. These neural network-based methods consistently show improvements over G-PCC which uses hand-crafted entropy models. While the octree-based methods are flexible to model arbitrary point clouds (from either a lidar sensor or multi-view reconstruction), they do not make use of the point distribution patterns in lidar range images.

As a lidar point cloud can be represented as a range image, image-based compression methods can be adapted for its compression. For example, [3, 7, 15] applied traditional image compression methods such as JPEG, PNG and TIFF to compress the range images. A sequence of range images could be seen as a video, and video-based compression method like H.264 was applied to compress lidar sequences [20]. MPEG also proposed a PCC (V-PCC) standard that compresses dynamic point clouds via HEVC video codec [14]. Our work extends them to leverage deep models and delta encoding to compress range images.

Auto-encoders have been used to achieve lossy compression of point clouds. [34, 35] proposed to train an encoder-decoder point cloud reconstruction network and entropy encode the bottleneck layer as the compressed data. Similarly, [31] trained an auto-encoder to reconstruct range images and compress the bottleneck vectors. While these methods may achieve high compression rates, the reconstructed point clouds could have strong artifacts, especially at the object boundaries resulting in unbounded errors in the lossy compression scheme.
Commonly used delta encoding adopts a linear prediction model to estimate the pixel values. In its simplest form, to predict a pixel \(I_{i,j} \) at the \(i \)-th row and \(j \)-th column, its left pixel \(I_{i,j-1} \) is used as the prediction. Other linear filters of left, up and nearby pixels can also be used. The delta between the prediction and the original pixel value is stored to be compressed. In our work, we propose to train a deep neural network to predict the pixel values and show that it can achieve significant improvement in prediction accuracy and compression rate. Next, we first introduce our model in its intra-prediction format (only using the information from the current frame/scan for the prediction) and then describe how we extend it to take temporal input from history scans. Please see the supplementary for more details on the model architecture, the losses and the training process.
Intra-frame Prediction Model Formally, the network models the conditional probability of the \(k \)-th pixel value (in the raster scanning order) conditioned on the quantized pixel values before \(k \):
\[
p(I_k; \Theta) = p(I_k | \{I_{k-1}', ..., I_1'\}; \Theta),
\]
where \(\Theta \) are the network weights, \(I' \) is the quantized range image and \(I' \) is the unquantized raw range image. Empirically, as shown in Fig. 3, instead of using the entire past context (e.g. with a RNN model), we can use local image patch of shape \(h \times w \) as the context to predict the bottom right pixel of the patch, similar to the idea of the sequential image decoder PixelCNN [21].

Although the input to our network is an image patch, it is quite different from a typical RGB one. The relations of the range image pixels depend on the location of the patch and even the calibration of a specific lidar because the laser shot angles are often non-uniformly distributed. This is even more prominent in the inter-frame prediction when laser shot angles are often non-uniformly distributed. This process continues in a raster scanning order to predict pixel \(i, j \)’s laser shot angle \((\theta, \alpha) \) and its estimated range \(\hat{r} \), we get a point in the global coordinate, following Sec. 3. Then given the points from last frame in the global coordinate, we can directly query neighbors in the 3D space (using KDtrees to accelerate the query). Those neighboring points from last frame can then be projected to laser shot \((i, j) \)’s spherical coordinate (to the points in the sensor coordinate at the time of the laser shot and then transform to the spherical coordinate), to obtain extra points as temporal contexts.

To take sensor poses into consideration, instead of querying pixels of the last frame using the row and column indices, we should query neighbors using 3D points in the global coordinate (Fig. 3). However, as we do not know the ground truth range value for the pixel \((i, j)\), we have to approximate the query by using a predicted range (e.g. using the left pixel range or the predicted value from the intra-frame model). Given pixel \((i, j)\)’s laser shot angle \((\theta, \alpha)\) and its estimated range \(\hat{r}\), we get a point in the global coordinate, following Sec. 3. Then given the points from last frame in the global coordinate, we can directly query neighbors in the 3D space (using KDtrees to accelerate the query). Those neighboring points from last frame can then be projected to laser shot \((i, j)\)’s spherical coordinate (to the points in the sensor coordinate at the time of the laser shot and then transform to the spherical coordinate), to obtain extra points as temporal contexts.

This is equivalent to assuming the points from the last frame are static, and we re-scan the scene at the sensor location at the time of the laser shot \((i, j)\). To distinguish the points from the last and current frames, we augment the points with an extra time channel (with 1 indicating the last frame and 0 indicating the current frame).

Note that the reprojected points from the last frame do not directly correspond to the rows and columns of the current frame range image. Considering such input as a point cloud is convenient as we do not require any interpolation to turn the points to the image grid or any predefined neighborhood size for image cropping.

Temporal Model The temporal model extends the intra-frame prediction model by leveraging contexts from both the current scan and the past scan. The point cloud representation (compared to the 2D pixel representation) enables us to unify the input from the past and current scans as we can represent all laser shots in the 4D (spherical plus time) coordinates.

Given the current scan (quantized) range image \(I'_T \) and the past scan range image \(I'_{T-1} \), assume we want to predict the range value of pixel \((i, j)\) in the current scan \((k\)-th pixel in the raster scanning order). A naive baseline approach to use temporal data is to take the same neighborhood at that in \(I'_T \) (in terms of pixel rows and columns) from the last scan \(I'_{T-1} \) and concatenate it with the current frame image patch. However, this approach does not take the ego-motion of the lidar sensor into account. As the lidar moves over time, the range image patch with the same rows and columns can correspond to vastly different physical space.

Inference. At inference time (for compression), we start from the top left patch of the range image to predict pixel \(I'_{1,1} \) or \(I'_{1,1} \) and store the residual. This process continues in a raster scanning order to predict pixels \(I_{1,2}, ..., I_{1,W}, I_{2,1}, ..., I_{i,j}, ..., I_{H,W} \). The residual map (deltas between the prediction and quantized values) of size \(H \times W \) would be compressed by the entropy encoder. At decompression time, we run the prediction model in the same raster-scanning order, which takes input as already reconstructed pixels \(\{I_{1,1}', ..., I_{k-1}'\} \), predicts the next pixel value \(\hat{I}_k \) and then reconstruct the pixel from saved residual as \(I_k' = \hat{I}_k + \delta_k \), where \(\delta_k \) is the stored delta of pixel \(k = (i-1)W + j \). This process can be parallelized by dividing the input range image into blocks and run the inference.

\[\delta_k = (i-1)W + j \]
in parallel for each block (discussed in the supplementary).

4.3. Entropy Encoding

After the predictive delta encoding, we get a residual map/array of the range image. An entropy encoder is used to leverage the sparsity pattern in the residual map to compress it. Given an accurate prediction model, most of the residuals would be zero. We adopt two methods to entropy encode the residuals. In practice, we select the entropy encoder with the highest compression rates depending on the quantization rates and the predictor.

The first method is to represent the residuals using a sparse representation, with the values of the nonzero residuals and their indices in the array, which can then be arithmetically encoded to further reduce its size. The second method is to represent the residuals using run-length encoding, which achieves better compression rates when the residuals are not very sparse, i.e., when quantization step is small. After obtaining the run-length representation, we use LZMA compressor to further reduce its size.

5. Experiments

In this section, we first introduce the datasets and the metrics in Sec. 5.1. Then we report compression results compared with strong baselines and prior art methods in Sec. 5.2 both quantitatively and qualitatively. We further evaluate the impact of compressed data to downstream perception tasks (3D detection of vehicles and pedestrians) in Sec. 5.3. Finally, we provide extensive analysis experiments to validate our design choices in Sec. 5.4.

5.1. Dataset and Metrics

Waymo Open Dataset (WOD) [26] WOD is the main dataset we experiment with, as it provides rich lidar calibration data and full sensor poses. WOD includes a total number of 1,150 sequences with 798 for training and 202 for validation. Each sequence lasts around 20 seconds with a sampling frequency of 10Hz. A 64-beam lidar is used, providing range images of 64 rows and 2,650 columns, with provided lidar calibration metadata (beam inclination angles). The range channel is cropped to 75m, and each raw range value is stored as a 32-bit float in default. We use the training set to train our deep model and evaluate on the validation set. Only the first return range images are used in our experiments.

SemanticKITTI [8] We also evaluate our method on SemanticKITTI (which enhances KITTI [13] with semantic labels) to compare with prior art methods OctSqueeze [16] and MuSCLE [9] (since they do not release code, we cannot compare with them on the WOD). We directly apply the WOD trained model on SemanticKITTI test split (sequence 11-21). However, as KITTI only released the point cloud data but not the the raw range images nor the sensor poses, we have to refer to the manual of the Velodyne lidar [2] used by KITTI to convert a point cloud to the spherical coordinate to get a pseudo range image with 64 rows and 2,088 columns. For our method, we compress the pseudo range images and do not additionally store the azimuth and elevation of the pixels, as their storage in actual Velodyne range images are negligible (elevations are known and azimuths can be compressed to less than 1Kb per frame [32]).

Metrics Following previous works [9,14,16], we use two geometric metrics to evaluate the reconstruction quality of the compressed point cloud data: point-to-point Chamfer distance and point-to-plane peak signal-to-noise ratio (PSNR). We report these metrics as a function of bitrates i.e., the average number of bits to store one lidar point.

The point-to-point Chamfer distance \(CD_{sym} \) measures the average point distances between two point clouds (smaller the better). For a given point cloud \(P = \{ p_i \}_{i=1,...,N} \) and the reconstructed point cloud \(\hat{P} = \{ \hat{p}_j \}_{j=1,...,M} \):

\[
CD(P, \hat{P}) = \frac{1}{|P|} \sum_{i} \min_{j} \| p_i - \hat{p}_j \|_2 \quad (2)
\]

\[
CD_{sym}(P, \hat{P}) = \max\{ CD(P, \hat{P}), CD(\hat{P}, P) \} \quad (3)
\]

The second metric, the peak signal-to-noise ratio (PSNR) [28] (the larger the better), measures the ratio between the “resolution” of the point cloud \(r \) and the average point-to-plane error between the original point cloud \(P \) and the reconstructed point cloud \(\hat{P} \):

\[
PSNR(P, \hat{P}) = 10 \log_{10} \frac{r^2}{\max\{ MSE(P, P), MSE(\hat{P}, P) \}} \quad (4)
\]

where \(MSE(P, \hat{P}) = \frac{1}{|P|} \sum_{i} ((p_i - \hat{p}_i) \cdot n_i)^2 \) is the point-to-plane distance, \(\hat{p}_i \) is the closest point in \(\hat{P} \) to \(p_i \), \(r = \max_{p_i \in P} \min_{j \neq i} \| p_i - p_j \|_2 \) is the intrinsic resolution of the original point cloud. We estimate the normal \(n_i \) using Open3D [36] with \(k = 12 \) for \(k \) nearest neighbor.

5.2. Compression Results

In this section, we compare our methods with competitive baselines as well as prior art lidar data compression methods. We focus on compressing the range channel or the 3D coordinates of the points as it is the most studied attribute among the others (intensity, elongation) and some of the methods in comparison do not support compressing other attributes. See supplementary material for more results on compressing the other channels. We adjust the quantization precision of the range images to achieve different compression rates (bits per point) of our method.
Baselines: G-PCC [14] is a point cloud compression method proposed by the MPEG, using octrees. Draco [1] is a popular point cloud compression algorithm based on Kd-trees proposed by Google. We also compare with two prior art deep model based methods 3: OctSqueeze [16] is an octree-based method that uses a neural network to predict the next-level symbol of the octree; MuSCLE [9] further strengthens OctSqueeze by leveraging multi-sweep (temporal) data for the octree prediction. In terms of range image representation, we compare with PNG (intra-frame) as well as HEVC (a video compression standard) on top of PNG for temporal range image compression. For the PNG compression, the range is coded with 16 bits with a varying scaling factor to control the distortion/compression rate. We also compare with Cluster [27], a range image-based lidar data compression algorithm with a pipeline of segmentation, clustering, 3D-HEVC encoding and ground prediction. Besides, supplementary provides a further experiment comparing with an auto-encoder based method on range images (not included here due to its poor performance).

Implementation Details Our intra-frame prediction model, RIDDLE, takes in a context image patch of size 10 x 10 (the bottom right pixel is masked out) and uses a PointNet [22] like architecture for the prediction (without the T-NET structure, adapted the output to predict anchor classification and regression). The input to the network is a 3D point cloud in a spherical coordinate with azimuth, elevation relative to the bottom right pixel and the range relative to the mean range of valid context points. Our temporal model, RIDDLE-T, uses the same network architecture as the intra-frame one but takes in an extra 100 points from the last scan (projected to the spherical coordinate of the next pixel). Please see supplementary for more details.

Waymo Open Dataset Results We report the bitrate versus reconstruction quality metrics (PSNR, Chamfer distance) of competing methods on all frames from the sequences in the validation set of the Waymo Open Dataset. As shown in Fig. 4, our method significantly outperforms prior methods. At the same Chamfer distance around 0.005, our method reduces the bitrate by more than 65% compared to G-PCC (from 10.78 bpp to 3.65 bpp). At the bitrate of around 4, our method reduces the distortion (measured by Chamfer distance) by more than 85%. Our method also has a larger bitrate improvement over previous methods when the reconstruction quality is higher. This indicates our method has more advantage over baselines when the data quality requirement is higher.

SemanticKITTI Results Since prior art methods [9,16] have not released the code or the compression model, we turn to the SemanticKITTI dataset to compare with them (we got the raw values of the curves reported in the MuSCLE [9] paper from the authors). We apply our model trained on the Waymo Open Dataset directly to the SemanticKITTI lidar point clouds (by creating pseudo range images). As shown in Fig. 5, our method is more than 50% lower in bitrate (at around 4.3 bpp) with the same Chamfer distance at around 0.005 compared to all prior art methods, showing significant advantages. This strong lead attributes
Figure 4. Evaluation of the compression methods with geometric metrics on the Waymo Open Dataset val set. Left: Chamfer distance v.s. bit per point (bbp); Right: PSNR v.s. bpp. At a certain bitrate, lower the Chamfer distance or higher the PSNR, better the reconstruction quality.

Figure 5. Evaluation of the compression methods with geometric metrics on the SemanticKITTI test set. We only present our intra-frame model here as the per pixel sensor pose is unavailable in SemanticKITTI.

Figure 6. Impact of lidar data compression to 3D object detection quality on the Waymo Open Dataset val set. We train PointPillars [17] detectors using the raw point clouds (with no compression) from the WOD train set and evaluate them with the compressed point clouds (or point clouds from the compressed range images) on the WOD validation set.

to our choice of directly compressing the range images as well as the effective deep model.

Qualitative results. In Fig. 7, we show the reconstructed lidar point clouds from our method, Draco and G-PCC. We can see that the point cloud reconstructed from our method remarkably resembles the original point cloud in geometry even when the bitrate is ambitiously set very low, thanks to compressing directly on the range images to keep the point distribution pattern.

5.3. Impact to Downstream Perception Tasks

For applications like autonomous driving, we want to understand the impact of lidar data compression to downstream perception tasks such as 3D object detection. To understand such impact, we trained a widely used PointPillars detector [17] on uncompressed point clouds using the Waymo Open Dataset train set, for the vehicle class and pedestrian class respectively. Detection quality is measured by mean average precision (mAP).

As shown in Fig. 6, our method outperforms other competing baselines in maintaining the best mAP with the same bitrate. At the bitrate around 2, our method leads the second best method (G-PCC) by more than 1 point on vehicle detection and 3 points on pedestrian detection. We can also see that pedestrian detection is more sensitive to data distortion probably due to the smaller average object sizes compared to vehicles.

5.4. Analysis Experiments

In this section we ablate our deep model in terms of architecture choice, loss design and temporal context. In order to compare prediction quality independent from the entropy encoder, we use a prediction accuracy as the metrics for ablation studies. The prediction accuracy (acc.) is defined as the percentage of zero deltas (i.e. perfect prediction under quantization) in the range image residual map, under a specific quantization precision (e.g. $\delta = 0.1m^4$). A prediction q for the quantized range value p' is counted as correct if $|q - p'| < \delta/2$. Supplementary provides more analysis related to entropy encoders and model latency.

4Note 0.1m is not that coarse as average point displacement after the quantization is only 2.5cm
Effects of predictor choices. Table 1 compares several architecture choices. The simplest choice is to use the left valid pixel as the prediction to the current pixel: $\hat{I}_{i,j} = I'_{i,j-1}$. Another extension is to use linear interpolation of close-by pixels: $\hat{I}_{i,j} = I'_{i,j-1} + I'_{i-1,j-1} - I'_{i-1,j-1}$. Note that for both cases, first valid pixel is used in case the nearby one is an empty pixel. We see that deep models can significantly outperform linear models while the point-cloud-based architecture shows a stronger empirical result compared to ConvNet on the image representation.

Effects of loss functions. Table 2 compares several loss choices for our model supervision. With direct attribute prediction as a regression problem, we can see using the mean absolute error (MAE, L1 loss) is superior to using the mean squared error (MSE, L2 loss) as it is affected less by the large errors on the object boundaries. Turning the depth regression problem to a multi-bin classification and regression problem (with classification and intra-bin regression for each depth bin of size 1m) does not help much either as shown in the third row. Our proposed formulation (anchor classification with regression) leads to 4.11 points increase in prediction accuracy compared to the second best option of using mean absolute error.

Effects of temporal contexts. Table 3 shows the benefits of adding temporal contexts to the prediction model. We see that even the naive concatenation of the image patch of the last frame with the same rows and columns (second row) can already help. A more careful handling of the temporal points by considering sensor poses (as described in Sec. 4.2) leads to more gains of using the temporal data.

6. Conclusion

With improving lidar sensor resolution and growing data volume, how to efficiently store and transmit lidar data becomes a challenging problem in many 3D applications, such as autonomous driving and augmented reality. To address this challenge, we propose a novel lidar data compression algorithm named RIDDLE (Range Image Deep Delta Encoding), which combines the succinctness of traditional delta encoding and the expressiveness of deep neural networks, with support of using temporal contexts. Experiments over the Waymo Open Dataset and KITTI show that compared to previous methods, the proposed approach yields significant improvement in the point cloud reconstruction quality and the downstream perception model performance, under the same compression rates.
References

[1] Draco. https://github.com/google/draco. Accessed: 2021-09-28. 2, 6

[2] Velodyne hdl-64e. https://gpsolution.oss-cn-beijing.aliyuncs.com/manual/LiDAR/MANUAL%2CUSERS%2CHDL-64E_63.pdf. Accessed: 2021-10-04. 5

[3] Jae-Kyun Ahn, Kyu-Yul Lee, Jae-Young Sim, and Chang-Su Kim. Large-scale 3d point cloud compression using adaptive radial distance prediction in hybrid coordinate domains. *IEEE Journal of Selected Topics in Signal Processing*, 9(3):422–434, 2015. 2

[4] I. Armeni, A. Sax, A. R. Zamir, and S. Savarese. Joint 2D-3D-Semantic Data for Indoor Scene Understanding. *ArXiv e-prints*, Feb. 2017. 1

[5] Johannes Ballé, Valero Laparra, and Eero P Simoncelli. End-to-end optimized image compression. *arXiv preprint arXiv:1611.01704*, 2016. 2

[6] Johannes Ballé, David Minnen, Saurabh Singh, Sun Jin Hwang, and Nick Johnston. Variational image compression with a scale hyperprior. *arXiv preprint arXiv:1802.01436*, 2018. 2

[7] Peter van Beek. Image-based compression of lidar sensor data. *Electronic Imaging*, 2019(15):43–1, 2019. 2

[8] Jens Behley, Martin Garbade, Andres Milioto, Jan Quenzel, Sven Behnke, Cyrill Stachniss, and Jurgen Gall. Semanticlittii: A dataset for semantic scene understanding of lidar sequences. In *Proceedings of the IEEE International Conference on Computer Vision*, pages 9297–9307, 2019. 5

[9] Sourav Biswas, Jerry Liu, Kelvin Wong, Shenlong Wang, and Raquel Urtasun. Muscle: Multi sweep compression of lidar using deep entropy models. *arXiv preprint arXiv:2011.07590*, 2020. 1, 2, 5, 6

[10] Mario Botsch, Andreas Wirsatanya, and Leif Kobbelt. Efficient high quality rendering of point sampled geometry. *Rendering Techniques*, 2002:13th, 2002. 2

[11] Angela Dai, Angel X Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, and Matthias Nießner. Scannet: Richly-annotated 3D reconstructions of indoor scenes. In *CVPR*, 2017. 1

[12] Olivier Devillers and P-M Gandon. Geometric compression for interactive transmission. In *Proceedings Visualization 2000 VIS 2000 (Cat. No. 00CH37145)*, pages 319–326. IEEE, 2000. 2

[13] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. Vision meets robotics: The kitti dataset. *The International Journal of Robotics Research*, 32(11):1231–1237, 2013. 2, 5

[14] D Graziosi, O Nakagami, S Kuma, A Zaghetto, T Suzuki, and A Tabatabai. An overview of ongoing point cloud compression standardization activities: video-based (v-pcc) and geometry-based (g-pcc). *APSIPA Transactions on Signal and Information Processing*, 9, 2020. 2, 5, 6

[15] Hamidreza Houshian and Andreas Nüchter. 3d point cloud compression using conventional image compression for efficient data transmission. In *2015 XXV International Conference on Information, Communication and Automation Technologies (ICAT)*, pages 1–8. IEEE, 2015. 2

[16] Lila Huang, Shenlong Wang, Kelvin Wong, Jerry Liu, and Raquel Urtasun. Octsqueeze: Octree-structured entropy model for lidar compression. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 1313–1323, 2020. 1, 2, 5, 6

[17] Alex H Lang, Sourabh Vora, Holger Caesar, Lubing Zhou, Jiong Yang, and Oscar Beijbom. Pointpillars: Fast encoders for object detection from point clouds. In *CVPR*, 2019. 7

[18] Siwei Ma, Xinfeng Zhang, Chuanmin Jia, Zhenghui Zhao, Shiqi Wang, and Shanrue Wang. Image and video compression with neural networks: A review. *IEEE Transactions on Circuits and Systems for Video Technology*, 30(6):1683–1698, 2019. 2

[19] Fabrizio Nenci, Luciano Spinello, and Cyrill Stachniss. Effective compression of range data streams for remote robot operations using h.264. In *2014 IEEE/RSJ International Conference on Intelligent Robots and Systems*, pages 3794–3799, 2014. 2

[20] Aaron van den Oord, Nal Kalchbrenner, Oriol Vinyals, Lasse Espeholt, Alex Graves, and Koray Kavukcuoglu. Conditional image generation with pixelcnn decoders. *arXiv preprint arXiv:1606.05328*, 2016. 2, 4

[21] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point sets for 3d classification and segmentation. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 652–660, 2017. 4, 6

[22] Zizheng Que, Guo Lu, and Dong Xu. Voxelcontext-net: An octree based framework for point cloud compression. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 6042–6051, 2021. 1, 2, 6

[23] Ruwen Schnabel and Reinhard Klein. Octree-based point-cloud compression. In *PG@ SIGGRAPH*, pages 111–120, 2006. 2

[24] Shuran Song, Samuel P Lichtenberg, and Jianxiong Xiao. Sun rgb-d: A rgb-d scene understanding benchmark suite. In *CVPR*, 2015. 1

[25] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien Chouard, Vijaysai Patnaik, Paul Tsui, James Guo, Yin Zhou, Yuning Chai, Benjamin Caine, et al. Scalability in perception for autonomous driving: Waymo open dataset. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 2446–2454, 2020. 2, 3, 5

[26] Xuebin Sun, Han Ma, Yuxiang Sun, and Ming Liu. A novel point cloud compression algorithm based on clustering. *IEEE Robotics and Automation Letters*, 4(2):2132–2139, 2019. 6

[27] Dong Tian, Hideaki Ochimizu, Chen Feng, Robert Cohen, and Anthony Vetro. Geometric distortion metrics for point cloud compression. In *2017 IEEE International Conference on Robotics and Automation*. 2017. 4, 5
[29] George Toderici, Damien Vincent, Nick Johnston, Sung Jin Hwang, David Minnen, Joel Shor, and Michele Covell. Full resolution image compression with recurrent neural networks. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pages 5306–5314, 2017.

[30] James Townsend, Thomas Bird, Julius Kunze, and David Barber. Hilloc: Lossless image compression with hierarchical latent variable models. *arXiv preprint arXiv:1912.09953*, 2019.

[31] Chenxi Tu, Eijiro Takeuchi, Alexander Carballo, and Kazuya Takeda. Point cloud compression for 3d lidar sensor using recurrent neural network with residual blocks. In *2019 International Conference on Robotics and Automation (ICRA)*, pages 3274–3280. IEEE, 2019.

[32] Chenxi Tu, Eijiro Takeuchi, Chiyomi Miyajima, and Kazuya Takeda. Compressing continuous point cloud data using image compression methods. In *2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC)*, pages 1712–1719. IEEE, 2016.

[33] Aaron Van Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent neural networks. In *International Conference on Machine Learning*, pages 1747–1756. PMLR, 2016.

[34] Louis Wiesmann, Andres Milioto, Xieyuanli Chen, Cyrill Stachniss, and Jens Behley. Deep compression for dense point cloud maps. *IEEE Robotics and Automation Letters*, 6(2):2060–2067, 2021.

[35] Wei Yan, Shan Liu, Thomas H Li, Zhu Li, Ge Li, et al. Deep autoencoder-based lossy geometry compression for point clouds. *arXiv preprint arXiv:1905.03691*, 2019.

[36] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Open3d: A modern library for 3d data processing. *arXiv preprint arXiv:1801.09847*, 2018.