Research Article

José Antonio Carrillo and Ke Lin

Sharp conditions on global existence and blow-up in a degenerate two-species and cross-attraction system

https://doi.org/10.1515/anona-2020-0189
Received December 19, 2020; accepted April 26, 2021.

Abstract: We consider a degenerate chemotaxis model with two-species and two-stimuli in dimension $d \geq 3$ and find two critical curves intersecting at one point which separate the global existence and blow up of weak solutions to the problem. More precisely, above these curves (i.e. subcritical case), the problem admits a global weak solution obtained by the limits of strong solutions to an approximated system. Based on the second moment of solutions, initial data are constructed to make sure blow up occurs in finite time on and below these curves (i.e. critical and supercritical cases). In addition, the existence or non-existence of minimizers of free energy functional is discussed on the critical curves and the solutions exist globally in time if the size of initial data is small. We also investigate the crossing point between the critical lines in which a refined criteria in terms of the masses is given again to distinguish the dichotomy between global existence and blow up. We also show that the blow ups is simultaneous for both species.

Keywords: Degenerate parabolic system, chemotaxis, variational methods, global existence, blow up

MSC: 35K65, 92C17, 35J20, 35A01, 35B44

1 Introduction

The interaction motion of two cell populations in breast cancer cell invasion models in \mathbb{R}^d ($d \geq 3$) has been described by the following chemotaxis system with two chemicals and nonlinear diffusion (cf. [20, 30])

\[
\begin{align*}
 u_t &= \Delta u^{m_1} - \nabla \cdot (u \nabla v), & x \in \mathbb{R}^d, t > 0, \\
 -\Delta v &= w, & x \in \mathbb{R}^d, t > 0, \\
 w_t &= \Delta w^{m_2} - \nabla \cdot (w \nabla z), & x \in \mathbb{R}^d, t > 0, \\
 -\Delta z &= u, & x \in \mathbb{R}^d, t > 0, \\
 u(x, 0) &= u_0(x), & w(x, 0) &= w_0(x), & x \in \mathbb{R}^d,
\end{align*}
\]

where $m_1, m_2 > 1$ are constants. Here, $u(x, t)$ and $w(x, t)$ denote the density of the macrophages and the tumor cells, $v(x, t)$ and $z(x, t)$ denote the concentration of the chemicals produced by $w(x, t)$ and $u(x, t)$,

José Antonio Carrillo, Mathematical Institute, University of Oxford, Oxford, OX2 6GG, UK, E-mail: carrillo@maths.ox.ac.uk
Ke Lin, School of Economics and Mathematics, Southwestern University of Economics and Finance, Chengdu, 611130 Sichuan China, E-mail: linke@swufe.edu.cn

Open Access. © 2021 José Antonio Carrillo and Ke Lin, published by De Gruyter. This work is licensed under the Creative Commons Attribution alone 4.0 License.
respectively. For simplicity, the initial data are assumed to satisfy
\[u_0 \in L^1(\mathbb{R}^d; (1 + |x|^2)dx) \cap L^\infty(\mathbb{R}^d), \quad \nabla u_0 \in L^2(\mathbb{R}^d) \quad \text{and} \quad u_0 \geq 0, \]
\[w_0 \in L^1(\mathbb{R}^d; (1 + |x|^2)dx) \cap L^\infty(\mathbb{R}^d), \quad \nabla w_0 \in L^2(\mathbb{R}^d) \quad \text{and} \quad w_0 \geq 0. \quad (1.2) \]
Since the solutions to the Poisson equations can be written by the Newtonian potential such as
\[v(x, t) = \mathcal{K} * w = c_d \int_{\mathbb{R}^d} \frac{w(y, t)}{|x - y|^d} dy, \quad z(x, t) = \mathcal{K} * u = c_d \int_{\mathbb{R}^d} \frac{u(y, t)}{|x - y|^d} dy \]
with \(\mathcal{K}(x) = \frac{c_d}{|x|^d} \), and \(c_d \) is the surface area of the sphere \(S^{d-1} \) in \(\mathbb{R}^d \), the original system (1.1) can be regarded as the interaction between two populations
\[
\begin{align*}
& u_t = \Delta u^{m_1} - \nabla \cdot (u \nabla \mathcal{K} * w), \quad x \in \mathbb{R}^d, \quad t > 0, \\
& w_t = \Delta w^{m_2} - \nabla \cdot (w \nabla \mathcal{K} * u), \quad x \in \mathbb{R}^d, \quad t > 0, \\
& u(x, 0) = u_0(x), \quad w(x, 0) = w_0(x), \quad x \in \mathbb{R}^d,
\end{align*}
\]
where it follows that the solutions obey the mass conservation
\[M_1 := \int_{\mathbb{R}^d} u(x, t) dx = \int_{\mathbb{R}^d} u_0(x) dx \quad \text{and} \quad M_2 := \int_{\mathbb{R}^d} w(x, t) dx = \int_{\mathbb{R}^d} w_0(x) dx. \]
The associated free energy functional \(\mathcal{F} \) for (1.1) or (1.3) is given by
\[\mathcal{F}[u(t), w(t)] = \frac{1}{m_1 - 1} \int_{\mathbb{R}^d} u^{m_1} dx + \frac{1}{m_2 - 1} \int_{\mathbb{R}^d} w^{m_2} dx - c_d \mathcal{H}[u, w], \]
which is non-increasing with respect to time since for smooth cases it satisfies the following decreasing property
\[\frac{d}{dt} \mathcal{F}[u(t), w(t)] = - \int_{\mathbb{R}^d} u \left| \frac{m_1}{m_1 - 1} \nabla u^{m_1 - 1} - \nabla \mathcal{K} \right|^2 dx \\
- \int_{\mathbb{R}^d} w \left| \frac{m_2}{m_2 - 1} \nabla w^{m_2 - 1} - \nabla \mathcal{K} \right|^2 dx, \]
where
\[\mathcal{H}[u, w] = \int_{\mathbb{R}^d \times \mathbb{R}^d} \frac{u(x, t)w(y, t)}{|x - y|^d} dxdy. \]
The chemotaxis system consisting of only one population and one chemical signal is the well-known Keller-Segel model by taking into account volume filling constraints (see [9, 28, 38]) reading as
\[
\begin{align*}
& u_t = \Delta u^{m_1} - \nabla \cdot (u \nabla \mathcal{K} * u), \quad x \in \mathbb{R}^d, \quad t > 0, \\
& u(x, 0) = u_0(x), \quad x \in \mathbb{R}^d,
\end{align*}
\]
which has been immensely investigated over the last decades. See [3, 13, 23, 28, 39] for the biological motivations and a complete overview of mathematical results for related more general aggregation-diffusion models. Here the diffusion exponent \(m_1 \) is taken to be supercritical \(0 < m_1 < m_c := 2 - 2/d \), critical \(m_1 = m_c \) and subcritical \(m_1 > m_c \) if \(d > 3 \). The critical number \(m_c \) is chosen to produce a balance between diffusion and potential drift in mass invariant scaling. For the subcritical \(m_1 > m_c \) in the sense that diffusion dominates, the solutions are globally solvable without any restriction on the size of the initial data [29, 43, 45]. However, in the supercritical case, the attraction is stronger leading to a coexistence of global existence of solutions.
and blow-up behavior. More precisely, finite-time blow up occurs for large initial data, see [11] for $m_1 = 1$, [17] for $m_1 = 2d/(d+2)$, [16] for $2d/(d+2) < m_1 < m_c$, and [43] for $1 < m_1 < m_c$. But there also exists a global weak solution with decay properties under some smallness condition on the initial mass [4, 17, 18, 45]. The critical case $m_1 = m_c$ is investigated in [6, 44] showing the existence of a sharp mass constant M^* allowing for a dichotomy: if $|u|_1 = M_1 < M^*$ the solutions exist for all time, whereas if $M_1 \geq M^*$ there exists solution with non-positive free energy functional blowing up. In addition, such similar dichotomy was found in [8, 19, 24] earlier in dimension $d = 2$ and linear diffusion $m_1 = 1$ for (1.4) with $\lambda(x) = -1/(2\pi) \log |x|$, where M^* was replaced by 8π. We also note that the results in [7] prove that solutions blow up as a delta Dirac at the center of mass as time increases in critical mass $M_1 = 8\pi$. Sufficient conditions for nonlinear diffusion $m_1 > 1$ to prevent blow up are derived in [9].

The variational viewpoint to analyse problems of the type (1.4) has also been an active field of research. For instance, there exist a lot of results about the properties of global minimizers of the corresponding free energy functional, including the existence, radial symmetry and uniqueness and so on, since they not only correspond to steady states of (1.4) in some particular cases, but also are candidates for the large time asymptotics of solutions to (1.4). Lion’s concentration-compactness principle [36] (see also [2]) can be directly applied to the subcritical $m_1 > m_0$, if $d \geq 3$ and allows the existence of minimizer which further satisfies some regularities properties (see [15]). The uniqueness of minimizer in this case is ensured in [33] and it is shown that such minimizer is also an exponential attractor of solutions of (1.4) when the initial data is radially symmetric and compactly supported by using the mass comparison principle (see [29]). In the critical case $m_1 = m_c$, the free energy functional does not admit global minimizers except for the critical mass case $M_1 = M^*$ introduced above [10]. The minimizers were used in [6] to describe the infinite time blow-up profile. For the nonlinear-diffusion in two dimension, the long time asymptotics of solutions is fully characterized in [16] based on the unique existence of radial minimizer [12]. We refer to [5] for a discussion on the existence of many stationary states for $m_1 = 1$ and $d = 2$ in the critical case $M_1 = 8\pi$ and their basins of attraction.

Back to linear two-species system (1.1) in $d = 2$, similar to the role of the critical mass 8π in (1.4) ([8, 19]), the critical curve $M_1M_2 - 4\pi(M_1 + M_2) = 0$ for two species was discovered in [22]: solutions exist globally if $M_1M_2 - 4\pi(M_1 + M_2) < 0$ and blow up occurs if $M_1M_2 - 4\pi(M_1 + M_2) > 0$. The key tool for the proof of the global existence part is using the Moser-Trudinger inequality [42]. One can use partial results in [42] to check that minimizers indeed exist in the case $M_1M_2 - 4\pi(M_1 + M_2) = 0$. We also mention that such nonlinear system (1.1) and the one population system (1.4) can be formally regarded as gradient flows of the free energy functional in the probability measure space with the Euclidean Wasserstein metric [1, 25]. For general n-component multi-populations chemotaxis system, in [26, 27] the authors have made considerable progress on these aspects and obtain the global arguments in the subcritical and critical cases. The Neumann initial-boundary value problem is analysed in [34, 35, 47, 48].

The aim of this paper is to give a thorough understanding of the well-posedness and asymptotic behavior for (1.1) or (1.3) in $d \geq 3$ and to show the existence or non-existence of global minimizers in critical cases. We make use of bold faces $\text{m, A, B, I, M, } \cdots$ to denote two-dimensional vectors throughout the paper and assume that $\text{A} = (a_1, a_2) \leq (\epsilon)\text{B} = (b_1, b_2)$ means that $a_1 \leq (\epsilon)b_1$ and $b_1 \leq (\epsilon)b_2$, respectively. If (u, w) is a solution of (1.3), then for any $\lambda > 0$ the following scaling

$$
 u_\lambda(x, t) = \lambda^{m_2} u(\lambda^{m_2/m_1} x, \lambda^{m_1} t), \quad w_\lambda(x, t) = \lambda^{m_1} w(\lambda^{m_1/m_2} x, \lambda^{m_2} t)
$$

is also a solution. Obviously, each of (u, w) preserves the L^1-norm if $\text{m} := (m_1, m_2)$ satisfy

$$
 m_1m_2 + 2m_1/d = m_1 + m_2,
$$

and

$$
 m_1m_2 + 2m_2/d = m_1 + m_2,
$$

respectively, whereas the above scaling becomes mass invariant for both u and w if and only if $\text{m} = (m_c, m_c)$. The curves (1.5) and (1.6) can be shown to be the sharp conditions separating the global existence and blow
Our main result in Theorem 1.3 shows the following dichotomy: above the two red curves in Figure 1, in the sense that \(m_1m_2 + 2m_1/d > m_1 + m_2\) or \(m_1m_2 + 2m_2/d > m_1 + m_2\), weak solutions globally exist and blow up occurs below the red curves for certain initial data regardless of their initial masses (see Theorem 1.3). Several results are also obtained at the critical curves (see Theorem 1.4). In addition, the two lines will intersect at the point \((m_c, m_c)\). Therefore, we consider the \((m_1, m_2) \in (1, \infty)^2\) parameter range divided by the following three critical cases (red curve in Figure 1):

Line \(L_1: m_1m_2 + 2m_1/d = m_1 + m_2\) with \(m_1 \in (m_c, d/2), m_2 \in (1, m_c)\);

Line \(L_2: m_1m_2 + 2m_2/d = m_1 + m_2\) with \(m_1 \in (1, m_c), m_2 \in (m_c, d/2)\);

The intersection point \(I := (m_c, m_c)\).

Based on the above discussion, we say that \(m = (m_1, m_2)\) is subcritical if

\[m_1m_2 + 2m_1/d > m_1 + m_2\]

and \(m = (m_1, m_2)\) is supercritical if

\[m_1m_2 + 2m_1/d < m_1 + m_2\]

and \(m_1m_2 + 2m_2/d < m_1 + m_2\).

Notice that this corresponds to being above (subcritical) or below (supercritical) the red curves in Figure 1.

We also define subsets of \(L^1(\mathbb{R}^d)\) as

\[S_{M_1} := \{f \geq 0 : f \in L^1(\mathbb{R}^d) \cap L^{m_1}(\mathbb{R}^d) \text{ and } \|f\|_1 = M_1\}\]

and

\[S_{M_2} := \{g \geq 0 : g \in L^1(\mathbb{R}^d) \cap L^{m_2}(\mathbb{R}^d) \text{ and } \|g\|_1 = M_2\}\].

Now the definition of weak solution for (1.1) or (1.3) is give as
Definition 1.1. Let $m_1, m_2 > 1$, $d \geq 3$ and $T > 0$. Suppose the initial data (u_0, w_0) satisfies some classical regularities (1.2). Then (u, w) of nonnegative functions defined in $\mathbb{R}^d \times (0, T)$ is called a weak solution if

i) $(u, w) \in (C([0, T); L^1(\mathbb{R}^d)) \cap L^\infty(\mathbb{R}^d \times (0, T)))^2$,

$(u^{m_1}, w^{m_2}) \in (L^2(0, T; H^1(\mathbb{R}^d)))^2$;

ii) (u, w) satisfies

\[
\int_0^T \int_{\mathbb{R}^d} u \phi_1 \, dx \, dt + \int_0^T u_0(x) \phi_1(x, 0) \, dx = \int_0^T (\nabla u^{m_1} - u \nabla v) \cdot \nabla \phi_1 \, dx \, dt,
\]

\[
\int_0^T \int_{\mathbb{R}^d} w \phi_2 \, dx \, dt + \int_0^T w_0(x) \phi_2(x, 0) \, dx = \int_0^T (\nabla w^{m_2} - w \nabla z) \cdot \nabla \phi_2 \, dx \, dt,
\]

for any test functions $\phi_1 \in \mathcal{D}(\mathbb{R}^d \times [0, T])$ and $\phi_2 \in \mathcal{D}(\mathbb{R}^d \times [0, T])$ with $v = \mathcal{K} \ast w$ and $z = \mathcal{K} \ast u$.

For a given weak solution, we also define:

Definition 1.2. Let $T > 0$. Then (u, w) is called a free energy solution with some regular initial data (u_0, w_0) on $(0, T)$ if (u, w) is a weak solution and moreover satisfies $(u^{(2m_1-1)/2}, w^{(2m_2-1)/2}) \in (L^2(0, T; H^1(\mathbb{R}^d)))^2$ and

\[
\mathcal{F}[u(t), w(t)] + \int_0^t \int_{\mathbb{R}^d} \left| \frac{m_1}{m_1 - 1} \nabla u^{m_1 - 1} - \nabla v \right|^2 \, dx \, ds + \int_0^t \int_{\mathbb{R}^d} \left| \frac{m_2}{m_2 - 1} \nabla w^{m_2 - 1} - \nabla z \right|^2 \, dx \, ds \leq \mathcal{F}[u_0, w_0]
\]

for all $t \in (0, T)$ with $v = \mathcal{K} \ast w$ and $z = \mathcal{K} \ast u$.

Our first main result for (1.1) or (1.3) above or below lines L_1 and L_2 is:

Theorem 1.3. Let $m_1, m_2 > 1$. Suppose that the initial data (u_0, w_0) with $\|u_0\|_1 = M_1$, $\|w_0\|_1 = M_2$ fulfill (1.2). Then

i) If \mathbf{m} is subcritical, there exists a global free energy solution.

ii) If \mathbf{m} is supercritical, then one can construct large initial data ensuring blow up in finite time.

On the lines L_1, L_2 and intersection point I, our second main result is as follows.

Theorem 1.4. Let $m_1, m_2 > 1$. Suppose that the initial data (u_0, w_0) with $\|u_0\|_1 = M_1$, $\|w_0\|_1 = M_2$ fulfill (1.2). Then

i) If \mathbf{m} is I, then there exists a number $M_c > 0$ such that if $M_1 M_2 < M_c^2$, solutions globally exist and if $M_1 M_2/(M_1^{m_1} + M_2^{m_2}) > M_c^{2/d}/2$, there exists a finite time blow-up solution. Moreover, non-zero global minimizers of \mathcal{F} exist in $S_{M_1} \times S_{M_2}$ at the crossing point $\mathbf{m} = (M_c, M_c)$.

ii) If \mathbf{m} is on L_1, there exists a number $M_{2c} > 0$ with the following properties: if $M_2 < M_{2c}$, solutions globally exist and $\inf_{x \in S_{M_1}} \inf_{x \in S_{M_2}} \mathcal{F}[f, g] = 0$ if $M_2 = M_{2c}$, but there exist no non-zero global minimizers of \mathcal{F} in $S_{M_1} \times S_{M_2}$. In addition, blow-up solution exists if

\[
\left(\frac{\int_{\mathbb{R}^d} u_0^{m_1/m_2} \, dx}{\int_{\mathbb{R}^d} u_0^{m_1} \, dx} \right)^{m_1/m_2} \left(\frac{\int_{\mathbb{R}^d} w_0 \, dx}{\int_{\mathbb{R}^d} w_0 \, dx} \right)^{m_2} > N_0 \text{ with some } N_0 > 0.
\]
If m is on L_2, there exists $M_{1c} > 0$ with the similar properties for M_1 and blow-up solution exists if

$$\frac{(\int_{\mathbb{R}^d} u_0 \, dx) \left(\int_{\mathbb{R}^d} w_0^{m_1/m_2} \, dx \right)^{m_1/m_2}}{(\int_{\mathbb{R}^d} u_0 \, dx)^{m_1} + \left(\int_{\mathbb{R}^d} w_0^{m_1/m_2} \, dx \right)^{m_1}} > N_0.$$

iii) A simultaneous blow-up phenomenon exists if m is critical.

We summarize our second main result on the intersection point I, see Figure 2. The blue curve $M_1 M_2 = M_c^2$ intersects with the green curve $M_1 M_2/(M_1^{m_1} + M_2^{m_2}) = M_c^{2/d}/2$ at the point $I = (M_c, M_c)$. Theorem 1.4 implies that below the curve $M_1 M_2 = M_c^2$ solutions globally exist and above the curve $M_1 M_2/(M_1^{m_1} + M_2^{m_2}) = M_c^{2/d}/2$ blow up happens.

![Fig. 2: Parameter lines on intersection point I.](image)

It is an open problem to determine the sharp relation between the masses leading to dichotomy in the intersection point I and the long time asymptotics on the red curves L_1 and L_2 in Figure 1.

The organization of the paper is as follows: we first construct an approximated system for (1.1) in Section 2, and provide a sufficient condition for global existence of smooth solution and then obtain global weak solution or free energy solution of (1.1) by passing limits upon a priori estimate. Section 3 deals with properties of free energy functional, including the lower and upper bounds, and the existence or non-existence of non-zero minimizers if m is critical. Finally, we prove that the solutions are global if m is subcritical or critical with small initial data in Section 4 and construct blow-up solutions if m is supercritical or critical with large masses in Section 5.
2 Approximated system

As mentioned in the introduction, we first consider an approximated system

\[
\begin{align*}
 u_\varepsilon(x, t) &= \Delta u_\varepsilon + (u_\varepsilon + \varepsilon)^m - \nabla \cdot (u_\varepsilon \nabla v_\varepsilon), & x \in \mathbb{R}^d, t > 0, \\
 v_\varepsilon &= \mathcal{K} \ast w_\varepsilon, & x \in \mathbb{R}^d, t > 0, \\
 w_\varepsilon(x, t) &= \Delta (w_\varepsilon + \varepsilon)^m - \nabla \cdot (w_\varepsilon \nabla z_\varepsilon), & x \in \mathbb{R}^d, t > 0, \\
 z_\varepsilon &= \mathcal{K} \ast u_\varepsilon, & x \in \mathbb{R}^d, t > 0, \\
 u_\varepsilon(x, 0) &= u_0^\varepsilon(x) \geq 0, \quad w_\varepsilon(x, 0) = w_0^\varepsilon(x) \geq 0, & x \in \mathbb{R}^d
\end{align*}
\]

(2.1)

with \(u_0^\varepsilon\) and \(w_0^\varepsilon\) being the convolution of \(u_0\) and \(w_0\) with a sequence of mollifiers and \(\|u_0^\varepsilon\|_1 = \|u\|_1 = M_1\) and \(\|w_0^\varepsilon\|_1 = \|w\|_1 = M_2\). Then the uniform a priori estimate for solutions to (2.1) is given if \(m_1\) and \(m_2\) are suitably large, thus global weak solution or even free energy solution exists by letting \(\varepsilon\) tends to 0.

By virtue of the local existence of strong solution for only one population chemotaxis system (see [43, Proposition 4.1]), one obtains:

Lemma 2.1. Let \(m_1, m_2 > 1\). Then there exists \(T_{\text{max}}^\varepsilon \in (0, \infty]\) denoting the maximal existence time such that (2.1) has a unique nonnegative strong solution \((u_\varepsilon, w_\varepsilon) \in (W^{2,1}(Q_T))^2\) with some \(p > 1\), where \(Q_T = \mathbb{R}^d \times (0, T)\) with \(T \in (0, T_{\text{max}}^\varepsilon)\) and

\[
\|w_\varepsilon^{2,1}(Q_T) := \{u \in L^p(0, T; W^{2,p}(\mathbb{R}^d)) \cap W^{1,p}(0, T; L^p(\mathbb{R}^d))\}.
\]

Moreover, if \(T_{\text{max}}^\varepsilon < \infty\), then

\[
\lim_{t \to T_{\text{max}}^\varepsilon} [\|u_\varepsilon(\cdot, t)\|_\infty + \|w_\varepsilon(\cdot, t)\|_\infty] = \infty.
\]

Now we recall the Hardy-Littlewood-Sobolev (HLS) inequality which we frequently use later (see [31] or [32, Chapter 4]).

Lemma 2.2. Let \(0 < \lambda < d\), and let the Riesz potential \(I_\lambda(h)\) of a function \(h\) be defined by

\[
I_\lambda(h)(x) = \frac{1}{|x|^{d-\lambda}} \ast h = \int_{\mathbb{R}^d} \frac{h(y)}{|x-y|^{d-\lambda}} dy, \quad x \in \mathbb{R}^d.
\]

Then for \(h \in L^{\kappa_2}(\mathbb{R}^d)\) and for \(\kappa_1, \kappa_2 > 1\) with \(\frac{1}{\kappa_2} = \frac{1}{\kappa_1} - \frac{\lambda}{d}\), then there exists a sharp constant \(C_{\text{HLS}} = C_{\text{HLS}}(d, \lambda, \kappa_1) > 0\) such that

\[
\|I_\lambda(h)\|_{\kappa_2} \leq C_{\text{HLS}} \|h\|_{\kappa_1}.
\]

An equivalent form of the HLS inequality can be stated that if

\[
\frac{1}{p} + \frac{1}{q} = 1 + \frac{\lambda}{d},
\]

and \(h_1 \in L^p(\mathbb{R}^d), h_2 \in L^q(\mathbb{R}^d)\) with \(p, q > 1\), then there exists a \(C_{\text{HLS}} = C_{\text{HLS}}(d, \lambda, p) > 0\) such that

\[
\left| \int_{\mathbb{R}^d \times \mathbb{R}^d} h_1(x)h_2(y) \frac{1}{|x-y|^{d-\lambda}} dxdy \right| \leq C_{\text{HLS}} \|h_1\|_p \|h_2\|_q.
\]

Inspired by [46], the global solvability of (2.1) can be achieved based on assumptions on the boundedness for \(\|u_\varepsilon\|_{m_1}\) and \(\|w_\varepsilon\|_{m_2}\) with some large \(m_1\) and \(m_2\).
Lemma 2.3. Let $T \in (0, T_{\text{max}}^e)$. Assume that m satisfies
\begin{equation}
 m_1 m_2 + 2m_1 m_2/d > m_1 + m_2.
\end{equation}
Suppose that there exists a constant $C > 0$ such that (u_e, w_e) of (2.1) with initial data (u_0^e, w_0^e) being the convolution of (u_0, w_0) satisfies
\begin{equation}
 \|u_e(t)\|_{m_1} \leq C \quad \text{and} \quad \|w_e(t)\|_{m_2} \leq C \quad \text{for} \quad t \in (0, T).
\end{equation}
Then there exists a constant $C = C(d, m_1, m_2, u_0^e, w_0^e) > 0$ such that
\begin{equation}
 \|(u_e(t), w_e(t))\|_r \leq C \quad \text{for} \quad r \in [1, \infty) \quad \text{and} \quad t \in (0, T)
\end{equation}
and
\begin{equation}
 \|(v_e(t), z_e(t))\|_r + \|\nabla v_e(t), \nabla z_e(t)\|_r \leq C \quad \text{for} \quad r \in (1, \infty] \quad \text{and} \quad t \in (0, T).
\end{equation}
Proof. We split the proof into three steps.

Step 1. The choices of p and q. We first show that there exist $\tilde{p} > 1, \tilde{q} > 1, r_1 > 1$ and $r_2 > 1$ such that for some $p > \tilde{p}$ and $q > \tilde{q}$ one has
\begin{equation}
 p > \begin{cases}
 m_1 + 1, & \text{if} \quad m_1 \geq \frac{d}{2}, m_2 \geq \frac{d}{2},
 \\
 \max \left\{ m_1 + 1, \frac{(m_1 - 1)(m_2 - 1)}{d - 2m_1}, \frac{m_1(d - 2)}{2m_2} \right\}, & \text{if} \quad m_1 \geq \frac{d}{2}, m_2 < \frac{d}{2},
 \\
 \max \left\{ m_1 + 1, \frac{dm_2 + d - 2m_1}{d - 2m_1}, \frac{m_1(d - 2)}{2m_2} \right\}, & \text{if} \quad m_1 < \frac{d}{2}, m_2 \geq \frac{d}{2},
 \\
 \max \left\{ m_1 + 1, \frac{dm_2 + d - 2m_1}{d - 2m_1}, \frac{(m_1 - 1)(m_2 - 1)d}{d - 2m_1}, \frac{m_1(d - 2)}{2m_2} \right\}, & \text{if} \quad m_1 < \frac{d}{2}, m_2 < \frac{d}{2},
 \end{cases}
\end{equation}

\begin{equation}
 \frac{1}{r_1} < 1 - \frac{d - 2}{(q + m_2 - 1)d},
\end{equation}

\begin{equation}
 \frac{1}{r_1} > \max \left\{ 1 - \frac{1}{m_1}, \frac{1 - \frac{d - 2}{d}}{p + m_1 - 1} \right\},
\end{equation}

\begin{equation}
 \frac{1}{r_2} > \frac{d - 2}{d} \cdot \frac{1}{p + m_1 - 1},
\end{equation}

\begin{equation}
 \frac{1}{r_2} < \min \left\{ \frac{1}{m_1}, 1 - \frac{d - 2}{d} \cdot \frac{q}{q + m_2 - 1} \right\}
\end{equation}

and
\begin{equation}
 \frac{p}{m_1} - \frac{1}{r_1} < \frac{1}{1 - \frac{d}{2} + \frac{(p + m_1 - 1)d}{2m_1}} + \frac{m_2}{1 - \frac{d}{2} + \frac{(q + m_2 - 1)d}{2m_2}} < \frac{2}{d}
\end{equation}

as well as
\begin{equation}
 \frac{p}{m_2} - \frac{1}{r_2} < \frac{1}{1 - \frac{d}{2} + \frac{(p + m_1 - 1)d}{2m_1}} + \frac{q}{1 - \frac{d}{2} + \frac{(q + m_2 - 1)d}{2m_2}} < \frac{2}{d}
\end{equation}

In order to prove this claim let us first pick $r_1 > 1$ and $r_2 > 1$ fulfilling
\begin{equation}
 r_1 < \min \left\{ \frac{d}{d - 2}, \frac{m_2}{m_1} - 1 \right\}
\end{equation}
and
\[r_2 > m_1, \quad (2.14) \]
and let
\[q := \frac{m_2(p - 1)}{m_1} + 1. \quad (2.15) \]

In (2.15), \(p > m_1 + 1 \) implies \(q > m_2 + 1 \). The assertions in (2.6)-(2.7) and (2.9) hold by choosing sufficiently large \(p \geq \bar{p} \) with some \(\bar{p} > 1 \) and \(q \geq \bar{q} \) with some \(\bar{q} > 1 \).

To see the possible choice of \(r_1 \) satisfying (2.7)-(2.8), we first observe that \(1 - \frac{1}{m_2} \geq \frac{d - 2}{d} \cdot \frac{p}{p + m_1 - 1} \) is true for any \(p > 1 \) if \(m_2 \geq \frac{d}{2} \), and \(\frac{1}{r_1} > 1 - \frac{1}{m_1} \) holds by (2.13) and \(1 - \frac{1}{m_2} < 1 - \frac{d - 2}{(q + m_2 - 1)d} \) for any \(q > 1 \). Thus the asserted \(r_1 \) can be actually found. When \(m_2 < \frac{d}{2} \), one has \(\frac{1}{r_1} > \frac{d - 2}{d} \cdot \frac{p}{p + m_1 - 1} > 1 - \frac{1}{m_1} \). The first inequality is guaranteed by (2.13) and the second is due to

\[
\frac{d - 2}{d} \cdot \frac{p}{p + m_1 - 1} > 1 - \frac{1}{m_2} \iff \left(\frac{1}{m_2} - \frac{2}{d} \right) p > \frac{(m_1 - 1)(m_2 - 1)}{m_2} \iff p > \frac{(m_1 - 1)(m_2 - 1)d}{d - 2m_2}
\]

by (2.6) if \(m_2 < \frac{d}{2} \). Moreover, from (2.15) and (2.6), \(\frac{d - 2}{d} \cdot \frac{p}{p + m_1 - 1} < 1 - \frac{d - 2}{(q + m_2 - 1)d} \). Therefore, one can also choose \(r_1 > 1 \) satisfying (2.7)-(2.8) in the case \(m_2 < \frac{d}{2} \).

Similar to the choice of \(r_2 \), if \(m_1 \geq \frac{d}{2} \) then it follows from (2.14) that \(\frac{1}{r_1} < \frac{1}{m_1} \leq 1 - \frac{d - 2}{d} \cdot \frac{q}{q + m_2 - 1} \), in which (2.9)-(2.10) can be satisfied due to \(\frac{d - 2}{d} \cdot \frac{1}{p + m_1 - 1} < \frac{1}{m_1} \). If \(m_1 < \frac{d}{2} \), (2.6) implies \(\frac{d - 2}{d} \cdot \frac{1}{p + m_1 - 1} < 1 - \frac{d - 2}{d} \cdot \frac{q}{q + m_2 - 1} < \frac{1}{m_1} \), and the assertion is true.

Since (2.2) ensures that
\[m_1/m_2 - m_1 < 2m_1/d - 1, \]
then

\[
\frac{\frac{p}{m_1} - \frac{1}{r_1}}{1 - \frac{d}{d} + \frac{(p + m_1 - 1)d}{2m_1}} + \frac{\frac{1}{m_2} - 1 + \frac{1}{r_1}}{1 - \frac{d}{d} + \frac{(q + m_2 - 1)d}{2m_2}} = \frac{\frac{p}{m_1} - \frac{1}{r_1}}{1 + \frac{(p - 1)d}{2m_1}} + \frac{\frac{1}{m_2} - 1 + \frac{1}{r_1}}{1 + \frac{(q - 1)d}{2m_2}} = \frac{\frac{p}{m_1} - \frac{1}{r_1}}{1 + \frac{(p - 1)d}{2m_1}} + \frac{\frac{1}{m_2} - 1 + \frac{1}{r_1}}{1 + \frac{(q - 1)d}{2m_2}} = \frac{p + m_1 - m_2}{p + \frac{2m_1}{d} - 1} < \frac{2}{d} < d^*,
\]

and

\[
\frac{\frac{1}{m_1} - \frac{1}{r_1}}{1 - \frac{d}{d} + \frac{(p + m_1 - 1)d}{2m_1}} + \frac{\frac{q}{m_2} - 1 + \frac{1}{r_1}}{1 - \frac{d}{d} + \frac{(q + m_2 - 1)d}{2m_2}} = \frac{\frac{q}{m_2} + \frac{1}{m_2} - 1}{1 + \frac{(p - 1)d}{2m_1}} = \frac{p + m_1 - m_2}{p + \frac{2m_1}{d} - 1} < \frac{2}{d},
\]

which implies (2.11)-(2.12).
Step 2. Inequalities for both u and w. For \(p > 1 \) and \(q > 1 \), we test (2.1) with \(u_c^{p-1} \) and integrate to find that

\[
\frac{1}{p} \frac{d}{dt} \int u_c^p \, dx = -(p-1) \int u_c^{p-2} \nabla u_c \cdot (\nabla (u_c + e)^{m_1} - u_c \nabla v_c) \, dx
\]

\[
\leq - \frac{4m_1 (p-1)}{(p + m_1 - 1)^2} \int |\nabla u_c^{p-1}|^2 \, dx - \frac{p-1}{p} \int u_c^p \Delta v_c \, dx
\]

\[
= - \frac{4m_1 (p-1)}{(p + m_1 - 1)^2} \int |\nabla u_c^{p-1}|^2 \, dx + \frac{p-1}{p} \int u_c^p \Delta v_c \, dx
\]

with \(-\Delta v_c = w_c\), and similarly,

\[
\frac{1}{q} \frac{d}{dt} \int w_c^q \, dx \leq - \frac{4m_2 (q-1)}{(q + m_2 - 1)^2} \int |\nabla w_c^{q-1}|^2 \, dx + \frac{q-1}{q} \int u_c w_c^q \, dx
\]

holds by multiplying (2.1) by \(w_c^{q-1} \) and \(-\Delta z_c = u_c\). Then

\[
\frac{1}{p} \frac{d}{dt} \int u_c^p \, dx + \frac{1}{q} \frac{d}{dt} \int w_c^q \, dx + \frac{4m_1 (p-1)}{(p + m_1 - 1)^2} \int |\nabla u_c^{p-1}|^2 \, dx
\]

\[
+ \frac{4m_2 (q-1)}{(q + m_2 - 1)^2} \int |\nabla w_c^{q-1}|^2 \, dx
\]

\[
\leq \frac{p-1}{p} \int u_c^p \Delta v_c \, dx + \frac{q-1}{q} \int u_c w_c^q \, dx,
\]

where

\[
\int u_c w_c^q \, dx \leq \left(\int u_c^{r_1} \, dx \right)^{\frac{1}{r_1}} \left(\int w_c^{r_2} \, dx \right)^{\frac{1}{r_2}}
\]

and

\[
\int u_c w_c^q \, dx \leq \left(\int u_c^{r_1} \, dx \right)^{\frac{1}{r_1}} \left(\int w_c^{r_2} \, dx \right)^{\frac{1}{r_2}}
\]

by Hölder’s inequality with \(r_1, r_2 > 1 \), \(r_1 = \frac{q}{m} \) and \(r_2 = \frac{p}{m} \). We begin with estimating the right sides of (2.17)-(2.18) based on the choices of \(p, q, r_1 \) and \(r_2 \) in **Step 1**. The assumption (2.6) ensures

\[
p r_1 > m_1,
\]

and

\[
p r_1 < \frac{(p + m_1 - 1)d}{d - 2}
\]

by (2.8). Then by a variant of the Gagliardo-Nirenberg inequality (see [45, Lemma 6]),

\[
\|\varphi\|_k \leq C \int \varphi \| \varphi \|_{k_1}^{\sigma} \|\nabla \varphi \|_{2 \frac{p-1}{2}}^{\frac{p-1}{2}}
\]

with \(m \geq 1 \), \(k_1 \in [1, r + m - 1] \) and \(1 \leq k_1 \leq k_2 \leq \frac{(r+m-1)d}{d-2} \) with \(d \geq 3 \), \(\sigma = \frac{r-1}{2} \left(\frac{1}{k_1} - \frac{1}{k_2} \right) \left(\frac{1}{2} + \frac{1}{2} + \frac{r-1}{2k_1} \right) \),

we pick \(r = p, m = m_1, k_1 = m_1, k_2 = pr_1 \) in (2.21) and use (2.19)-(2.20) to find

\[
\left(\int u_c^{\nu_1} \, dx \right)^{\frac{1}{\nu_1}} = \| u_c \|_{pr_1}^p \leq C \| u_c \|_{m_1}^{p(1-q)} \| \nabla u_c \|^{\frac{p(m_1-1)}{2}} \| u_c \|_{\nu_1} \| u_c \|_{\nu_1}^p
\]
with

\[
\sigma = \frac{p + m_1 - 1}{2} \frac{\frac{1}{m_1} - \frac{1}{p+1}}{\frac{1}{d} - \frac{1}{2} + \frac{p+1}{2m_1}} \in (0, 1),
\]

where invoking (2.3) we further obtain

\[
\left(\int_{\mathbb{R}^d} u^{pr_1}_e \, dx \right)^{\frac{1}{r_1}} \leq C \| \nabla u^{\frac{m_1+1}{2}}_e \|_2 \| \frac{\frac{1}{m_1} - \frac{1}{p+1}}{\frac{1}{d} - \frac{1}{2} + \frac{p+1}{2m_1}} \|.
\]

Likewise, (2.7)-(2.8) warrants that

\[
m_2 < r_1 < \frac{(q + m_2 - 1)d}{d - 2},
\]

which allows one to make use of the Gagliardo-Nirenberg inequality and the upper bound for \(\| w \|_{m_2} \) in (2.3) to estimate

\[
\left(\int_{\mathbb{R}^d} w^{q r_1}_e \, dx \right)^{\frac{1}{r_1}} = \| w_e \|_{r_1} \leq C \| \nabla w_e^{\frac{q+1}{2}} \|_2 \| \frac{\frac{1}{m_1} - \frac{1}{p+1}}{\frac{1}{d} - \frac{1}{2} + \frac{p+1}{2m_1}} \|.
\]

Then

\[
\left(\int_{\mathbb{R}^d} u^{pr_1}_e \, dx \right)^{\frac{1}{r_1}} \left(\int_{\mathbb{R}^d} w^{q r_1}_e \, dx \right)^{\frac{1}{r_1}} \leq C \| \nabla u^{\frac{m_1+1}{2}}_e \|_2 \| \nabla w_e^{\frac{q+1}{2}} \|_2 \| \frac{\frac{1}{m_1} - \frac{1}{p+1}}{\frac{1}{d} - \frac{1}{2} + \frac{p+1}{2m_1}} \| \| \frac{\frac{1}{m_1} - \frac{1}{p+1}}{\frac{1}{d} - \frac{1}{2} + \frac{p+1}{2m_1}} \|.
\]

To estimate the right side of (2.18), we use (2.10) and (2.9) to obtain

\[
m_1 < r_2 < \frac{(p + m_1 - 1)d}{d - 2}.
\]

Then the Gagliardo-Nirenberg inequality implies

\[
\left(\int_{\mathbb{R}^d} u^{pr_1}_e \, dx \right)^{\frac{1}{r_1}} \leq C \| \nabla u_e^{\frac{m_1+1}{2}} \|_2 \| \frac{\frac{1}{m_1} - \frac{1}{p+1}}{\frac{1}{d} - \frac{1}{2} + \frac{p+1}{2m_1}} \|
\]

by (2.3). We also obtain

\[
m_2 < q r_2 < \frac{(q + m_2 - 1)d}{d - 2}
\]

by (2.10) and (2.15), and choose \(r = q \), \(m = m_2 \), \(k_1 = m_2 \), \(k_2 = q r_2 \) in (2.21) to see that

\[
\left(\int_{\mathbb{R}^d} w^{q r_1}_e \, dx \right)^{\frac{1}{r_2}} = \| w_e \|_{q r_2} \leq C \| w_e \|_{m_2} \| \nabla w_e^{\frac{q+1}{2}} \|_2 \| \frac{\frac{1}{m_1} - \frac{1}{p+1}}{\frac{1}{d} - \frac{1}{2} + \frac{p+1}{2m_1}} \|_2 \| \frac{\frac{1}{m_1} - \frac{1}{p+1}}{\frac{1}{d} - \frac{1}{2} + \frac{p+1}{2m_1}} \|.
\]

\[
= C \| \nabla w_e^{\frac{q+1}{2}} \|_2 \| \frac{\frac{1}{m_1} - \frac{1}{p+1}}{\frac{1}{d} - \frac{1}{2} + \frac{p+1}{2m_1}} \|_2.
\]
with

\[\alpha = \frac{q + m_2 - 1}{2} \left(\frac{\frac{1}{m_1} - \frac{1}{q} + \frac{1}{q}}{\frac{1}{a} - \frac{1}{2} + \frac{q + m_2 - 1}{2m_2}} \right)^{\frac{1}{q}}. \]

Then

\[\left(\int u_e^{\frac{p}{r_1}} dx \right)^{\frac{r_1}{p}} \left(\int w_e^{\frac{q}{r_2}} dx \right)^{\frac{r_2}{q}} \leq C \| \nabla u_e^{\frac{p+m_1-1}{2}} \|_2 \left\| \nabla w_e^{\frac{q+m_2-1}{2}} \right\|_2, \]

which combines with (2.16) and (2.22) ensures that

\[\frac{1}{p} \frac{d}{dt} \int_{\mathbb{R}^d} u_e^p dx + \frac{1}{q} \frac{d}{dt} \int_{\mathbb{R}^d} w_e^q dx + \frac{4m_1(p-1)}{(p + m_1 - 1)^2} \int_{\mathbb{R}^d} \| \nabla u_e^{\frac{p+m_1-1}{2}} \|^2 dx \]

\[+ \frac{4m_2(q-1)}{(q + m_2 - 1)^2} \int_{\mathbb{R}^d} \| \nabla w_e^{\frac{q+m_2-1}{2}} \|^2 dx \]

\[\leq \frac{p-1}{p} \left(\int u_e^{p \beta_1} dx \right)^{\frac{1}{p_1}} \left(\int w_e^{q \beta_2} dx \right)^{\frac{1}{q_1}} \]

\[+ \frac{q-1}{q} \left(\int u_e^{p \beta_2} dx \right)^{\frac{1}{p_2}} \left(\int w_e^{q \beta_2} dx \right)^{\frac{1}{q_2}} \]

\[\leq C \| \nabla u_e^{\frac{p+m_1-1}{2}} \|_2 \left\| \nabla w_e^{\frac{q+m_2-1}{2}} \right\|_2. \]

Step 3. Boundedness for \(u_e \) and \(w_e \) in \(L^p \) and \(L^q \) spaces. Let \(\gamma_1 > 0, \gamma_2 > 0 \) be such that \(\gamma_1 + \gamma_2 < 2 \). For \(\varepsilon > 0 \), a direct application of Young’s inequality implies that

\[\alpha^{\gamma_1} \beta^{\gamma_2} \leq \varepsilon (\alpha^2 + \beta^2) + C. \]

From **Step 1**, there exist some \(p > \bar{p} \) and \(q > \bar{q} \) with some \(\bar{p} > 1 \) and \(\bar{q} > 1 \) such that

\[\frac{\frac{p}{m_1} - \frac{1}{r_1}}{\frac{1}{a} - \frac{1}{2} + \frac{p+m_1-1}{2m_1}} + \frac{\frac{1}{m_2} - \frac{1}{r_2} + \frac{1}{q} + \frac{1}{q}}{\frac{1}{a} - \frac{1}{2} + \frac{q+m_2-1}{2m_2}} < 2 \]

and

\[\frac{\frac{1}{m_1} - \frac{1}{r_2}}{\frac{1}{a} - \frac{1}{2} + \frac{p+m_1-1}{2m_1}} + \frac{\frac{q}{m_2} - \frac{1}{r_2} + \frac{1}{q}}{\frac{1}{a} - \frac{1}{2} + \frac{q+m_2-1}{2m_2}} < 2, \]

where

\[\frac{1}{p} \frac{d}{dt} \int_{\mathbb{R}^d} u_e^p dx + \frac{1}{q} \frac{d}{dt} \int_{\mathbb{R}^d} w_e^q dx + \frac{2m_1(p-1)}{(p + m_1 - 1)^2} \int_{\mathbb{R}^d} \| \nabla u_e^{\frac{p+m_1-1}{2}} \|^2 dx \]

\[+ \frac{2m_2(q-1)}{(q + m_2 - 1)^2} \int_{\mathbb{R}^d} \| \nabla w_e^{\frac{q+m_2-1}{2}} \|^2 dx \leq C \]

(2.25)
by (2.23)-(2.24). One may invoke the Gagliardo-Nirenberg inequality with \(\|u\|_1 = M_1 \) and \(\|w\|_1 = M_2 \) and Young’s inequality to obtain

\[
\frac{1}{p} \int_{\mathbb{R}^d} u_0^p \, dx = \frac{1}{p} \|u_e\|^p_\infty \leq C \|\nabla u_e\|^p_{\frac{p+1}{2}} \|\nabla u_e\|^{p+1}_{\frac{p+1}{2}} \leq \frac{2m_1(p-1)}{(p+m_1-1)^2} \int_{\mathbb{R}^d} |\nabla u_e|^{p+1} \, dx + C
\]

and

\[
\frac{1}{q} \int_{\mathbb{R}^d} w_0^q \, dx \leq \frac{2m_2(q-1)}{(q+m_2-1)^2} \int_{\mathbb{R}^d} |\nabla w_e|^{q+1} \, dx + C
\]

by the fact that

\[
\frac{p-1}{d-\frac{d}{2} + \frac{m_1+1}{2}} < 2 \quad \text{and} \quad \frac{q-1}{d-\frac{d}{2} + \frac{m_2+1}{2}} < 2.
\]

Writing \(y(t) = \frac{1}{p} \int_{\mathbb{R}^d} u_0^p \, dx + \frac{1}{q} \int_{\mathbb{R}^d} w_0^q \, dx \), we obtain from (2.25) that

\[
y'(t) + y(t) \leq C \quad \text{for} \quad t \in (0, T).
\]

Then

\[
\|u_e(t)\|_p \leq C \quad \text{and} \quad \|w_e(t)\|_q \leq C \quad \text{for} \quad t \in (0, T),
\]

which implies that (2.4) holds for any \(r > \max\{p, q\} \). Together with an interpolation with \(L^1 \) any intermediate space can be obtained.

Step 4. The regularities of \(v \) and \(z \). As

\[
v_e = J^\ast w_e = c_d \int_{\mathbb{R}^d} \frac{w_e(y)}{|x-y|^{d-2}} \, dy, \quad z_e = c_d \int_{\mathbb{R}^d} \frac{u_e(y)}{|x-y|^{d-2}} \, dy,
\]

an application of the HLS inequality ensures that for \(r \in (d/(d-1), \infty) \), we have

\[
\|\nabla v_e\|_r \leq c_d(d-2) \|I_1(w_e)\|_r \leq C \|w_e\|_{dr/(d+r)},
\]

\[
\|\nabla z_e\|_r \leq C \|u_e\|_{dr/(d+r)}. \tag{2.26}
\]

Furthermore, observing that the Calderon-Zygmund inequality yields the existence of a constant \(C = C(r) > 0 \) with \(r \in (1, \infty) \) such that

\[
\|\partial_{x_i} \partial_{x_j} v_e\|_r \leq C \|w_e\|_r, \quad \|\partial_{x_i} \partial_{x_j} z_e\|_r \leq C \|u_e\|_r, \quad (1 \leq i, j \leq d),
\]

we combine this with (2.4), (2.26) and the Morrey’s inequality to see that

\[
\|(v_e(t), z_e(t))\|_r + \|(\nabla v_e(t), \nabla z_e(t))\|_r \leq C \quad \text{for} \quad r \in (1, \infty] \quad \text{and} \quad t \in (0, T).
\]

Thus we finish our proof. \(\square \)

Upon the boundedness arguments in Lemma 2.3, we obtain a global weak solution by letting a subsequence of \(\epsilon \) approaches to 0.

Lemma 2.4. Under the same assumption in Lemma 2.3, there exists \(C > 0 \) independent of \(\epsilon \) such that strong solution \((u_\epsilon, w_\epsilon) \) of (2.1) satisfies

\[
\|(u_\epsilon(t), w_\epsilon(t))\|_\infty \leq C \quad \text{for all} \quad t \in (0, T). \tag{2.27}
\]

Moreover, there exists a global weak solution \((u, w) \) of (1.1) which also satisfies a uniform estimate.
Proof. Relying on Lemma 2.3, we apply the Moser’s iteration technique to obtain a priori estimate for the solution in L^∞. Then this local solution can be extended globally in time from the extensibility criterion in Lemma 2.1, which indeed establishes (2.27), see [45, Proposition 10]. Moreover, testing the first equation in (2.1) by $\partial_t(u_\epsilon + e)^{m_1}$ and integrating over \mathbb{R}^d, we make use of Young’s inequality to see that

$$
\frac{1}{2} \frac{d}{dt} \int_{\mathbb{R}^d} |\nabla(u_\epsilon + e)^{m_1}|^2 \, dx + \frac{4m_1}{(m_1 + 1)^2} \int_{\mathbb{R}^d} |\partial_t(u_\epsilon + e)^{m_1+1}|^2 \, dx
$$

$$
= - \frac{2m_1}{m_1 + 1} \int_{\mathbb{R}^d} (u_\epsilon + e)^{m_1-1} \nabla \cdot (u_\epsilon \nabla v_\epsilon) \cdot \partial_t(u_\epsilon + e)^{m_1+1} \, dx
$$

$$
\leq \frac{2m_1}{(m_1 + 1)^2} \int_{\mathbb{R}^d} |\partial_t(u_\epsilon + e)^{m_1+1}|^2 \, dx
$$

$$
+ C(m_1) ||\nabla v_\epsilon||_{L^2(Q_T)} \int_{\mathbb{R}^d} |\nabla(u_\epsilon + e)^{m_1+1}|^2 \, dx +
$$

$$
+ C(m_1) (||u_\epsilon||_{L^\infty(Q_T)} + e)^{m_1+1} \int_{\mathbb{R}^d} |\Delta v_\epsilon|^2 \, dx.
$$

(2.28)

We then test the the first equation in (2.1) by u_ϵ to find that

$$
\frac{1}{2} \frac{d}{dt} \int_{\mathbb{R}^d} u_\epsilon^2 \, dx + \frac{4m_1}{(m_1 + 1)^2} \int_{\mathbb{R}^d} |\nabla(u_\epsilon + e)^{m_1+1}|^2 \, dx
$$

$$
\leq C(m_1)||u_\epsilon||_{L^\infty(Q_T)} \int_{\mathbb{R}^d} |\Delta v_\epsilon|^2 \, dx.
$$

(2.29)

Here, we obtain from (2.28), (2.29) and the regularities of initial data and (u, v, w, z) obtained in Lemma 2.3 and (2.27) that

$$
\int_{\mathbb{R}^d} |\nabla(u_\epsilon + e)^{m_1}|^2 \leq C,
$$

where C does not depend on ϵ. Then $\nabla u_\epsilon^{m_1} \in L^\infty((0, T); L^2(\mathbb{R}^d))$, and $\nabla w_\epsilon^{m_1} \in L^\infty((0, T); L^2(\mathbb{R}^d))$ is true by similar procedure. All in all, there exists (u, v, w, z) with the regularities given in Definition 1.1 such that, up to a subsequence, $\epsilon_n \to 0$,

$$
u_{\epsilon_n} \to u \text{ strongly in } C([0, T); L^p_{loc}(\mathbb{R}^d)) \text{ and a.e. in } \mathbb{R}^d \times (0, T),
$$

$$
\nabla u_{\epsilon_n}^{m_1} \rightharpoonup \nabla u^{m_1} \text{ weakly-* in } L^\infty((0, T); L^2(\mathbb{R}^d)),
$$

$$
v_{\epsilon_n} \rightharpoonup v \text{ strongly in } C([0, T); L^p_{loc}(\mathbb{R}^d)) \text{ and a.e. in } \mathbb{R}^d \times (0, T),
$$

$$
\nabla v_{\epsilon_n}^{m_2} \rightharpoonup \nabla v^{m_2} \text{ weakly-* in } L^\infty((0, T); L^2(\mathbb{R}^d)),
$$

$$
v_{\epsilon_n}(t) \to v(t) \text{ strongly in } L^r_{loc}(\mathbb{R}^d) \text{ and a.e. in } (0, T),
$$

$$
\nabla v_{\epsilon_n}(t) \to \nabla v(t) \text{ strongly in } L^r_{loc}(\mathbb{R}^d) \text{ and a.e. in } (0, T),
$$

$$
\Delta v_{\epsilon_n}(t) \to \Delta v(t) \text{ weakly in } L^r_{loc}(\mathbb{R}^d) \text{ and a.e. in } (0, T),
$$

$$
z_{\epsilon_n}(t) \rightharpoonup z(t) \text{ weakly in } L^\infty(\mathbb{R}^d) \text{ and a.e. in } (0, T),
$$

$$
\nabla z_{\epsilon_n}(t) \rightharpoonup \nabla z(t) \text{ strongly in } L^r_{loc}(\mathbb{R}^d) \text{ and a.e. in } (0, T),
$$

$$
\Delta z_{\epsilon_n}(t) \rightharpoonup \Delta z(t) \text{ weakly in } L^r_{loc}(\mathbb{R}^d) \text{ and a.e. in } (0, T),
$$

where $p \in (1, \infty)$, $r \in (1, \infty)$ and $T \in (0, \infty)$. Since the above convergence can be found in [45, Section 4], we omit the main proof here. Therefore, we have a global weak solution (u, v, w, z) over $\mathbb{R}^d \times (0, T)$ with $T > 0$. \hfill \square
Since is valid with some Lemma 2.5. Consider a global weak solution in Lemma 2.4, then it is also a global free energy solution from [43].

Lemma 2.5. Consider a global weak solution in Lemma 2.4, then it is also a global free energy solution \((u, w)\) of (1.1) given in Definition 1.2.

Proof. Define a weight function

\[
\psi(|x|) = \begin{cases}
 1, & \text{for } 0 \leq |x| \leq 1, \\
 1 - 2(|x| - 1)^2, & \text{for } 1 < |x| \leq \frac{1}{2}, \\
 2(2 - |x|)^2, & \text{for } \frac{3}{2} < |x| < 2, \\
 0, & \text{for } |x| \geq 2,
\end{cases}
\]

and define \(\psi_l(x) := \psi\left(\frac{|x|}{l}\right)\) for any \(x \in \mathbb{R}^d\) and \(l = 1, 2, 3, \ldots\). Evidently,

\[
|\nabla \psi_l(x)| \leq \frac{C}{l} (\psi_l(x))^\frac{1}{2} \quad \text{and} \quad |\Delta \psi_l(x)| \leq \frac{C}{l^2}
\]

is valid with some \(C > 0\). Denote

\[
\mathcal{F}[u_e(t), w_e(t)] := \frac{1}{m_1 - 1} \int_{\mathbb{R}^d} (u_e + \epsilon)^{m_1} \psi_l(x) dx + \frac{1}{m_2 - 1} \int_{\mathbb{R}^d} (w_e + \epsilon)^{m_2} \psi_l(x) dx
\]

\[
- \int_{\mathbb{R}^d} u_e v_e dx
\]

\[
= \frac{1}{m_1 - 1} \int_{\mathbb{R}^d} (u_e + \epsilon)^{m_1} \psi_l(x) dx - \int_{\mathbb{R}^d} u_e v_e dx
\]

\[
+ \frac{1}{m_2 - 1} \int_{\mathbb{R}^d} (w_e + \epsilon)^{m_2} \psi_l(x) dx - \int_{\mathbb{R}^d} w_e z_e dx
\]

\[
+ \int_{\mathbb{R}^d} \nabla v_e \cdot \nabla z_e dx.
\]

Since

\[
\frac{1}{m_1 - 1} \frac{d}{dt} (u_e + \epsilon)^{m_1} \psi_l - \frac{d}{dt} (u_e v_e) + u_e v_{et}
\]

\[
= \nabla \cdot \left(\nabla(u_e + \epsilon)^{m_1} u_e \nabla v_e \right) \cdot \left(\frac{m_1(u_e + \epsilon)^{m_1 - 1}}{m_1 - 1} \psi_l - v_e \right),
\]

\[
\frac{1}{m_2 - 1} \frac{d}{dt} (w_e + \epsilon)^{m_2} \psi_l - \frac{d}{dt} (w_e z_e) + w_e z_{et}
\]

\[
= \nabla \cdot \left(\nabla(w_e + \epsilon)^{m_2} w_e \nabla z_e \right) \cdot \left(\frac{m_2(w_e + \epsilon)^{m_2 - 1}}{m_2 - 1} \psi_l - z_e \right)
\]
by testing (2.1) by $\frac{m_1(u_e + e)^{m_1-1}}{m_1-1}\psi_l - \nu_e$ and (2.1) by $\frac{m_1(w_e + e)^{m_1-1}}{m_1-1}\psi_l - \nu_e$, then the derivative of $\mathcal{F}[u_e(t), w_e(t)]$ with respect to time is

$$\frac{d}{dt}\mathcal{F}[u_e(t), w_e(t)] = \frac{1}{m_1-1} \int_{\mathbb{R}^d} (u_e + e)^{m_1-1}\psi_l(x)dx - \frac{d}{dt}\int_{\mathbb{R}^d} u_e \nu_e dx$$

$$+ \int_{\mathbb{R}^d} u_e \nu_e dx + \frac{1}{m_2-1} \int_{\mathbb{R}^d} (w_e + e)^{m_2-1}\psi_l(x)dx - \frac{d}{dt}\int_{\mathbb{R}^d} w_e \nu_e dx + \int_{\mathbb{R}^d} w_e \nu_e dx$$

$$= -\int_{\mathbb{R}^d} (\nabla (u_e + e)^{m_1-1} - u_e \nabla \psi_l) \cdot \nabla \left(\frac{m_1(u_e + e)^{m_1-1}}{m_1-1} \psi_l - \nu_e \right) dx$$

$$- \int_{\mathbb{R}^d} (\nabla (w_e + e)^{m_2-1} - w_e \nabla \psi_l) \cdot \nabla \left(\frac{m_2(w_e + e)^{m_2-1}}{m_2-1} \psi_l - \nu_e \right) dx,$$

which can be written as

$$\frac{d}{dt}\mathcal{F}[u_e(t), w_e(t)] = -\int_{\mathbb{R}^d} \left[[u_e + e] \nabla \left(\frac{m_1}{m_1-1} (u_e + e)^{m_1-1} - \nu_e \right) + e \nabla \nu_e \right]$$

$$\cdot \left[\nabla \left(\frac{m_1}{m_1-1} (u_e + e)^{m_1-1} - \nu_e \right) \right]$$

$$+ \left(\frac{m_1}{m_1-1} (u_e + e)^{m_1-1} - \nu_e \right) \nabla \psi_l + \nabla \psi_l (\psi_l - 1) + \nu_e \nabla \psi_l \right] dx$$

$$- \int_{\mathbb{R}^d} \left[(w_e + e) \nabla \left(\frac{m_2}{m_2-1} (w_e + e)^{m_2-1} - \nu_e \right) + e \nabla \nu_e \right]$$

$$\cdot \left[\nabla \left(\frac{m_2}{m_2-1} (w_e + e)^{m_2-1} - \nu_e \right) \right]$$

$$+ \left(\frac{m_2}{m_2-1} (w_e + e)^{m_2-1} - \nu_e \right) \nabla \psi_l + \nabla \psi_l (\psi_l - 1) + \nu_e \nabla \psi_l \right] dx$$

$$= -\int_{\mathbb{R}^d} I_1 \cdot J_1 dx - \int_{\mathbb{R}^d} J_2 \cdot J_2 dx.$$

With $U_e := \frac{m_1}{m_1-1}(u_e + e)^{m_1-1} - \nu_e$, we expand the term $-\int_{\mathbb{R}^d} I_1 \cdot J_1 dx$ to find that

$$-\int_{\mathbb{R}^d} I_1 \cdot J_1 dx = -\int_{\mathbb{R}^d} (u_e + e) \nabla U_e |\nabla U_e|^2 dx - \int_{\mathbb{R}^d} (u_e + e) (U_e + \nabla U_e) \cdot \nabla \psi_l dx$$

$$- \int_{\mathbb{R}^d} (u_e + e) (\psi_l - 1) \nabla U_e \cdot \nabla \nu_e dx - \int_{\mathbb{R}^d} \nabla (\psi_l U_e) \cdot \nabla \nu_e dx$$

$$- \epsilon \int_{\mathbb{R}^d} \nabla (\nu_e (\psi_l - 1)) \cdot \nabla \nu_e dx,$$

where by defining $\Omega_l = \{x \in \mathbb{R}^d : l < |x| < 2l\}$, upon using Young’s inequality, Hölder’s inequality and $(a + b)^m \leq 2^m(a^m + b^m)$ with $a, b > 0$ and $m > 1$, with any $\eta \in (0, 1)$ we deduce from $|\nabla \psi_l| \leq \frac{\eta}{\psi_l}$ and
\[
\text{supp}\{\nabla \psi\} = \bar{\Omega}_l \text{ that }
\]

\[- \int_{\mathbb{R}^d} (u_e + \varepsilon)(U_e + v_e) \nabla U_e \cdot \nabla \psi_l dx \leq \eta \int_{\mathbb{R}^d} (u_e + \varepsilon)(\nabla U_e)^2 dx + \frac{C}{\eta^2} \left(\|u_e\|_{2m_1-1}^2 + \varepsilon^{2m_1-1} |\Omega_l| \right),
\]

\[- \int_{\mathbb{R}^d} (u_e + \varepsilon)(\psi_l - 1) \nabla U_e \cdot \nabla v_e dx = \int_{\mathbb{R}^d} (1 - \psi_l) \nabla (u_e + \varepsilon)^{m_1} \cdot \nabla v_e dx + \int_{\mathbb{R}^d} (u_e + \varepsilon)(\psi_l - 1) |\nabla v_e|^2 dx \leq (u_e + \varepsilon)^{m_1} \nabla \psi_l \cdot \nabla v_e dx
\]

\[- \int_{\mathbb{R}^d} \nabla (\psi_l U_e) \cdot \nabla v_e dx = -\varepsilon \int_{\mathbb{R}^d} \psi_l U_e w_e dx \leq \varepsilon \|w_e\|_{L^1} \|U_e\|_{L^\infty},
\]

\[- \int_{\mathbb{R}^d} \nabla (v_e(\psi_l - 1)) \cdot \nabla v_e dx \leq \int_{\mathbb{R}^d} w_e v_e(1 - \psi_l) dx.
\]

The regularities of \((u_e, v_e, w_e)\) from Lemmas 2.3-2.4 assert that

\[- \int_{\mathbb{R}^d} I_1 \times f_1 dx \leq (1 - \eta) \int_{\mathbb{R}^d} (u_e + \varepsilon) \psi_l |\nabla U_e|^2 dx + \frac{C}{\eta^2} \left(\|u_e(t)\|_{2m_1-1}^2 + \varepsilon^{2m_1-1} |\Omega_l| \right) + \int_{\mathbb{R}^d} (u_e + \varepsilon)^{m_1} w_e(1 - \psi_l) dx + \frac{C}{\eta^2} \int_{\mathbb{R}^d} (u_e + \varepsilon)^{m_1} |\nabla v_e| dx + \varepsilon \|w_e\|_{L^1} \|U_e\|_{L^\infty} + \varepsilon \int_{\mathbb{R}^d} w_e v_e(1 - \psi_l) dx
\]

\[- \int_{\mathbb{R}^d} \frac{1}{\bar{\Omega}_l} \nabla U_e \cdot \nabla \psi_l dx \leq \left(\frac{\varepsilon}{\eta^2} + 1 \right) \|U_e\|_{L^\infty} + C \int_{\mathbb{R}^d} \frac{w_e}{\bar{\Omega}_l} \left(1 + \varepsilon^{2m_1-1} |\Omega_l| \right) + \frac{C}{\eta^2} \left(1 + \varepsilon^{2m_1-1} |\Omega_l| \right)
\]

\[+ C \int_{\mathbb{R}^d} \frac{w_e}{\bar{\Omega}_l} \left(1 + \varepsilon \right).
\]
Doing a similar argument for $-\int_{\mathbb{R}^d} I_2 \times f_2 \, dx$, and integrating (2.30) over time shows that
\[
\mathcal{F}[u(t), w(t)] \leq \mathcal{F}[u_0, w_0] - (1 - \eta) \int_0^t \int_{\mathbb{R}^d} \psi_1 \left[\frac{m_1}{m_1 - 1} \nabla u^{m_1 - 1} \right. \\
\left. - \frac{m_2}{m_2 - 1} \nabla w^{m_2 - 1} \right] \, dx \\
- C T \left(1 + e^{2m_1 - 1} |\Omega| + e^{2m_1 - 1} |\Omega| \right) \\
+ C \int_0^t \int_{\mathbb{R}^d} (u_0 + w_0)(1 - \psi_1) + \frac{CT}{T} + \epsilon CT \, dt'
\]
where as ϵ tends to 0,
\[
\mathcal{F}[u(t), w(t)] \leq \mathcal{F}[u_0, w_0] - (1 - \eta) \int_0^t \int_{\mathbb{R}^d} u \psi_1 \left[\frac{m_1}{m_1 - 1} \nabla u^{m_1 - 1} \right. \\
\left. - \frac{m_2}{m_2 - 1} \nabla w^{m_2 - 1} \right] \, dx \\
+ C \int_0^t \int_{\mathbb{R}^d} (u_0 + w_0)(1 - \psi_1) + \frac{CT}{T} + \frac{CT}{T} \, dt'
\]
by the claimed convergence in Lemma 2.4 and a lower semi-continuity of the free energy dissipation. Finally, as $l \to +\infty$ and $\eta \to 0$,
\[
\mathcal{F}[u(t), w(t)] \leq \mathcal{F}[u_0, w_0] - \int_0^t \int_{\mathbb{R}^d} u \left[\frac{m_1}{m_1 - 1} \nabla u^{m_1 - 1} \right. \\
\left. - \frac{m_2}{m_2 - 1} \nabla w^{m_2 - 1} \right] \, dx \\
- \int_0^t \int_{\mathbb{R}^d} w \left[\frac{m_2}{m_2 - 1} \nabla w^{m_2 - 1} \right. \\
\left. - \frac{m_2}{m_2 - 1} \nabla w^{m_2 - 1} \right] \, dx \, dt'
\]
for $t \in (0, T)$.

Therefore, (u, w) is a free energy solution by the definition. \qed

3 The free energy functional

Now we concentrate on a deeper analysis of the energy functional \mathcal{F} given by
\[
\mathcal{F}[u(t), w(t)] = \frac{1}{m_1 - 1} \int_{\mathbb{R}^d} u^{m_1} \, dx + \frac{1}{m_2 - 1} \int_{\mathbb{R}^d} w^{m_2} \, dx - c_d \mathcal{H}[u, w]
\]
with decay property $\mathcal{F}[u(t), w(t)] \leq \mathcal{F}[u_0, w_0]$ for $t \geq 0$, where
\[
\mathcal{H}[u, w] = \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \frac{u(x)w(y)}{|x - y|^{d-2}} \, dx \, dy = \int_{\mathbb{R}^d} u(x)I_2(w(x)) \, dx = \int_{\mathbb{R}^d} w(y)I_2(u(y)) \, dy.
\]
The estimate for \mathcal{H} can be given as follows.
Lemma 3.1. Let \(\eta > 0 \), and let \(m_1, m_2, m > 1 \). If

\[m < d/2 \quad \text{and} \quad m m_2 + 2m m_2 / d \geq m + m_2, \quad (3.1) \]

then for any \(f \in L^m(\mathbb{R}^d) \) and \(g \in L^1(\mathbb{R}^d) \cap L^{m_2}(\mathbb{R}^d) \), there holds

\[\| \mathcal{I}[f, g] \| \leq \eta \| f \|^m_\infty + C \eta^{-\frac{1}{m_2}} \| g \|^1_1 \frac{m m_2 + 2 m m_2 / d - m - m_2}{m_2 (m - 1) (m_2 - 1)} \| g \|^1_1. \quad (3.2) \]

Moreover, if

\[m < d/2 \quad \text{and} \quad m m_1 + 2 m m_1 / d \geq m + m_1, \quad (3.3) \]

then for any \(f \in L^1(\mathbb{R}^d) \cap L^{m_1}(\mathbb{R}^d) \) and \(g \in L^m(\mathbb{R}^d) \), there holds

\[\| \mathcal{I}[f, g] \| \leq \eta \| f \|^1_1 \frac{m m_2 + 2 m m_2 / d - m - m_2}{m_1 (m - 1) (m_1 - 1)} \| g \|^1_1 + \eta \| g \|^m_\infty. \quad (3.4) \]

Proof. Fixing \(m \in (1, d/2) \), using Hölder’s inequality with \(\frac{1}{m} + \frac{m - 1}{m_1} = 1 \) and the HLS inequality with \(\lambda = 2 \) in Lemma 2.2, we find that

\[\mathcal{I}[f, g] = \int_{\mathbb{R}^d} f(x) I_2(g)(x) \, dx \leq \| f \|_m \| I_2(g) \|_1 \frac{m m_2 + 2 m m_2 / d - m - m_2}{m_2 (m - 1) (m_2 - 1)} \| g \|^1_1 \leq C_{\text{HLS}} \| f \|_m \| g \|_{\frac{md}{(d + 2)m - d}}. \quad (3.5) \]

Since the assumption \(m + m_2 \leq m m_2 + 2 m m_2 / d \) ensures that

\[1 < \frac{md}{(d + 2)m - d} \leq m_2, \]

then if \(g \in L^1(\mathbb{R}^d) \cap L^{m_2}(\mathbb{R}^d) \) with \(m_2 > 1 \), the following interpolation inequality holds:

\[\| g \|_{\frac{md}{(d + 2)m - d}} \leq \| g \|^{\theta_1}_1 \| g \|^{1 - \theta_1}_{m_2}, \]

with \(\frac{(d + 2)m - d}{md} = \theta_1 + \frac{1 - \theta_1}{m_2} \), \(\theta_1 \in (0, 1) \). Hence

\[\| \mathcal{I}[f, g] \| \leq C_{\text{HLS}} \| f \|_m \| g \|^{\theta_1}_1 \| g \|^{1 - \theta_1}_{m_2} \leq \eta \| f \|^m_\infty + C \eta^{-\frac{1}{m_2}} \| g \|^1_1 \frac{m m_2 + 2 m m_2 / d - m - m_2}{m_2 (m - 1) (m_2 - 1)} \| g \|^1_1. \]

by Young’s inequality, which implies (3.2). (3.4) can be also proved if (3.3) holds. \(\square \)

We establish several variants to the HLS inequality on the lines \(L_1, L_2 \) and the intersection point \(I \).

Lemma 3.2. Let \(m \) be on \(L_1 \), and let \(f \in L^{m_1}(\mathbb{R}^d) \) and \(g \in L^1(\mathbb{R}^d) \cap L^{m_2}(\mathbb{R}^d) \). Then

\[C_\cdot := \sup_{f \neq 0, g \neq 0} \left\{ \frac{\| \mathcal{I}[f, g] \|}{\| f \|_m \| g \|^{1/2}_1 \| g \|^{1/2}_{m_2}} \right\} < \infty. \]

If \(m \) is on \(L_2 \), and \(f \in L^1(\mathbb{R}^d) \cap L^{m_1}(\mathbb{R}^d) \) and \(g \in L^{m_1}(\mathbb{R}^d) \), then

\[C_\cdot := \sup_{f \neq 0, g \neq 0} \left\{ \frac{\| \mathcal{I}[f, g] \|}{\| f \|^{2/d}_1 \| f \|^{1/2}_m \| g \|^{1/2}_{m_1}} \right\} < \infty. \]

In addition, assume that \(m \) is \(I \) and \((f, g) \in \left(L^1(\mathbb{R}^d) \cap L^{m_1}(\mathbb{R}^d) \right)^2 \). Then

\[C_c := \sup_{f \neq 0, g \neq 0} \left\{ \frac{\| \mathcal{I}[f, g] \|}{\| f \|^{1/2}_1 \| f \|^{m/2}_m \| g \|^{1/2}_1 \| g \|^{m/2}_{m_2}} \right\} < \infty, \quad (3.6) \]
Proof. If m is on L_1, then $m_1 \in (m_c, d/2)$ and using (3.5) with $m = m_1$ we have

$$|\mathcal{J}[f, g]| \leq C_{\text{HLS}}\|f\|_{m_1} \|g\|_{m_1} \leq C_{\text{HLS}}\|f\|_{m_1} \|g\|_{1/2} \|g\|_{m_1}^{1/2}. $$

Therefore, C^* is finite and bounded above by C_{HLS}. It is also easy to see that C^* is controlled by C_{HLS} if m is on L_2. Finally, with the help of the HLS inequality and Hölder’s inequality, we find that

$$|\mathcal{J}[f, g]| \leq C_{\text{HLS}}\|f\|_{\frac{d}{2}} \|g\|_{\frac{d}{2}} \leq C_{\text{HLS}}\|f\|_{1/d} \|g\|_{m_1} \|g\|_{m_1}^{m_1/d}$$

if m is I. Then the definition of C_c is valid.

Define

$$M_{1c} = (c_d C_c)^{-d/2} (m_2/(m_2 - 1))^{d/2} (m_1 - 1)^{-d(m_2 - 1)/(2m_1)},$$

$$M_{2c} = (c_d C_c)^{-d/2} (m_1/(m_1 - 1))^{d/2} (m_2 - 1)^{-d(m_2 - 1)/(2m_1)},$$

and

$$M_c = (2/[c_d C_c(m_c - 1)])^{d/2}.$$

The lower and upper bounds for \mathcal{J} in the sets $S_{M_1} \times S_{M_2}$ are given next.

Lemma 3.3. Let (f, g) satisfy $f \in S_{M_1}$ and $g \in S_{M_2}$. If m is on L_1, then

$$\left(c_d C_c \right)^{\frac{m_1}{m_1 - 1}} (m_1 - 1)^{\frac{m_1}{m_1 - 1}} m_1^{\frac{m_1}{m_1 - 1}} \left(M_{2c}^{\frac{2m_2}{2m_2 - 1}} - M_2^{\frac{2m_2}{2m_2 - 1}} \right) \|g\|_{m_1} \|m_1 \|_{m_2}$$

$$\leq \mathcal{J}[f, g] \leq \frac{2}{m_1 - 1} \|f\|_{m_1} \|g\|_{m_1}$$

+ \left(c_d C_c \right)^{\frac{m_1}{m_1 - 1}} (m_1 - 1)^{\frac{m_1}{m_1 - 1}} m_1^{\frac{m_1}{m_1 - 1}} \left(M_{2c}^{\frac{2m_2}{2m_2 - 1}} + M_2^{\frac{2m_2}{2m_2 - 1}} \right) \|g\|_{m_1} \|m_1 \|_{m_2}$$

and

$$\inf_{f \in S_{M_1}} \inf_{g \in S_{M_2}} \mathcal{J}[f, g] = 0, \text{ if } M_2 \in (0, M_{2c}).$$

If m is on L_2, then

$$\mathcal{J}[f, g] \geq \left(c_d C_c \right)^{\frac{m_1}{m_1 - 1}} (m_2 - 1)^{\frac{m_1}{m_1 - 1}} m_2^{\frac{m_1}{m_1 - 1}} \left(M_{1c}^{\frac{2m_2}{2m_2 - 1}} - M_1^{\frac{2m_2}{2m_2 - 1}} \right) \|f\|_{m_1}$$

and

$$\inf_{f \in S_{M_1}} \inf_{g \in S_{M_2}} \mathcal{J}[f, g] = 0, \text{ if } M_1 \in (0, M_{1c}).$$

If m is I, then

$$\mathcal{J}[f, g] \geq \left(c_d C_c \right)^2 (m_c - 1) \left(M_2^{\frac{2}{3}} - M_1^{\frac{2}{3}} M_2^{\frac{2}{3}} \right) \|g\|_{m_1}$$

or

$$\mathcal{J}[f, g] \geq \left(c_d C_c \right)^2 (m_c - 1) \left(M_2^{\frac{2}{3}} - M_1^{\frac{2}{3}} M_2^{\frac{2}{3}} \right) \|f\|_{m_1}.$$

Furthermore,

$$\inf_{f \in S_{M_1}} \inf_{g \in S_{M_2}} \mathcal{J}[f, g] = 0, \text{ if } M_1 M_2 \in (0, M_c^2).$$

(3.10)
Proof. By Lemma 3.2, \mathcal{F} satisfies

$$\|\mathcal{F}(f, g)\| \leq C_{\mathcal{F}} \|f\|_{m_1} \|g\|_{m_2}^\frac{1}{2} \|g\|_{m_2}^{1 - \frac{1}{2}}$$

$$\leq \frac{1}{c_d(m_1 - 1)} \|f\|_{m_1} + C_{\mathcal{F}} (c_d C_\gamma) \frac{1}{m_2 - 1} \left(\frac{m_1 - 1}{m_1} \right)^{m_2 - 1} \|g\|_{m_2}^{\frac{m_1}{m_2}} \|g\|_{m_2}^{\frac{2 m_1}{m_2}} (1 - \frac{1}{2}) \|g\|_{m_2}^\frac{m_1}{m_2}$$

$$= \frac{1}{c_d(m_1 - 1)} \|f\|_{m_1} + C_{\mathcal{F}} (c_d C_\gamma) \frac{1}{m_2} \left(\frac{m_1 - 1}{m_1} \right)^{m_2 - 1} \|g\|_{m_2}^{\frac{m_1}{m_2}} \|g\|_{m_2}^\frac{m_1}{m_2}.$$

Then \mathcal{F} can be estimated by

$$\mathcal{F}[f, g] = \frac{1}{m_1 - 1} \|f\|_{m_1} + \frac{1}{m_2 - 1} \|g\|_{m_2}^\frac{m_1}{m_2} - c_d \mathcal{F}[f, g]$$

$$\geq \frac{1}{m_2 - 1} \|g\|_{m_2}^\frac{m_1}{m_2} - (c_d C_\gamma) \frac{m_1}{m_2 - 1} \left(\frac{m_1 - 1}{m_1} \right)^{m_2 - 1} \|g\|_{m_2}^\frac{m_1}{m_2} \|g\|_{m_2}^\frac{2 m_1}{m_2}$$

$$= (c_d C_\gamma) \frac{m_1}{m_2 - 1} \left(\frac{m_1 - 1}{m_1} \right)^{m_2 - 1} \left(M_2 - M_2^\frac{2 m_1}{m_2} \right) \|g\|_{m_2}^\frac{m_1}{m_2}$$

and

$$\mathcal{F}[f, g] \leq \frac{2}{m_1 - 1} \|f\|_{m_1}^\frac{m_1}{m_2} - (c_d C_\gamma) \frac{m_1}{m_2 - 1} \left(\frac{m_1 - 1}{m_1} \right)^{m_2 - 1} \left(M_2^\frac{2 m_1}{m_2} + M_2 - M_2^\frac{2 m_1}{m_2} \right) \|g\|_{m_2}^\frac{m_1}{m_2}.$$

In the case $M_2 \leq M_2^\frac{2 m_1}{m_2}$, since $\mathcal{F} \geq 0$, then the infimum is nonnegative. Taking

$$h_1(x, t) = \frac{M_1}{(4\pi t)^{\frac{d}{2}}} e^{-\frac{|x|^2}{4\pi t}} \quad \text{and} \quad h_2(x, t) = \frac{M_2^\frac{2 m_1}{m_2}}{(4\pi t)^{\frac{d}{2}}} e^{-\frac{|x|^2}{4\pi t}},$$

it is obvious that $h_i \in L^1(\mathbb{R}^d)$ with $\|h_i\|_1 = M_i$, $i = 1, 2$, satisfy

$$\|h_i\|_m \leq O(t^{-\frac{m_1 m_2}{m_2 - 1}}),$$

which implies that $h_i \in S_m$ and that $\mathcal{F}[h_1, h_2]$ tends to 0 as $t \to \infty$. Therefore,

$$\inf_{f \in S_m} \inf_{g \in S_m} \mathcal{F}[f, g] = 0.$$

If m is on L_2, we have (3.8) by the HLS inequality and Hölder’s inequality, and take h_i above to see (3.9).

If m is 1, since

$$\|\mathcal{F}(f, g)\| \leq C_{\mathcal{F}} M_1^\frac{1}{2} M_2^\frac{1}{2} \|f\|_{m_1}^\frac{m_1}{m_2} \|g\|_{m_2} \leq \frac{1}{c_d(m_c - 1)} \|f\|_{m_c}^\frac{m_1}{m_2} + \frac{M_2^\frac{2}{m_2}}{c_d(m_c - 1) M_2^\frac{2}{m_2}} \|g\|_{m_c}^\frac{m_1}{m_2},$$

or

$$\|\mathcal{F}(f, g)\| \leq \frac{M_2^\frac{2}{m_2}}{c_d(m_c - 1) M_2^\frac{2}{m_2}} \|f\|_{m_c}^\frac{m_1}{m_2} + \frac{1}{c_d(m_c - 1)} \|g\|_{m_c}^\frac{m_1}{m_2},$$

by Young’s inequality, then \mathcal{F} satisfies

$$\mathcal{F}[f, g] \geq \frac{1}{m_1 - 1} \|f\|_{m_1}^\frac{m_1}{m_2} + \frac{1}{m_2 - 1} \|g\|_{m_2}^\frac{m_1}{m_2} - c_d C_\gamma M_2^\frac{1}{2} M_2^\frac{1}{2} \|f\|_{m_1} \|g\|_{m_2}$$

$$\geq (c_d C_\gamma)^2 (m_c - 1) \left(\frac{4}{(c_d C_\gamma(m_c - 1))^2} - M_1^\frac{2}{m_2} M_2^\frac{2}{m_2} \right) \|g\|_{m_c}^\frac{m_1}{m_2}.$$
The existence of a maximizing nonnegative, radially symmetric and non-increasing functions

\[(3.11) \]

is an equality if and only if

\[\text{Theorem 3.4. Let } \textbf{m} = \textbf{I}. \text{ Then there exist a pair of nonnegative, radially symmetric and non-increasing functions } (f^*, g^*) \in \left(L^1(\mathbb{R}^d) \cap L^{m^*}(\mathbb{R}^d)\right)^2 \text{ such that } \]

\[\mathcal{J}[f^*, g^*] = C_c. \]

In addition, there exists a minimizer \((f, g) \in S_{M_1} \times S_{M_2}\) of \(\mathcal{J}\) if \(M_1 = M_2 = M_c\), which satisfies

\[f(x) = g(x) = \begin{cases} \frac{1}{m^*_c} \left(\frac{x - x_0}{R_0} \right)^{d/(d-2)}, & \text{if } x \in B(x_0, R_0), \\ 0, & \text{if } x \in \mathbb{R}^d \setminus B(x_0, R_0) \end{cases} \]

with some \(R_0 > 0\) and \(x_0 \in \mathbb{R}^d\), where \(\zeta\) is the unique positive radial classical solution to the Lane-Emden equation

\[\begin{cases} -\Delta \zeta = \frac{m - 1}{m^*} \zeta^{1/(m^* - 1)}, & x \in B(0, 1), \\ \zeta = 0, & x \in \partial B(0, 1). \end{cases} \]

Proof. We claim that if \(C_c\) in (3.6) is obtained by some non-zero \(f\) and \(g\), then \(g = c_0 f\) with some \(c_0\). This is easily verified by the positive definiteness of \(|x - y|^{-(d-2)}\), see [32, Theorem 9.8]. In fact, suppose that there exist a pair of nonnegative functions \((f, g) \in \left(L^1(\mathbb{R}^d) \cap L^{m_c}(\mathbb{R}^d)\right)^2\) such that

\[\mathcal{J}[f, g] = C_c \left\| f \right\|_{L^1(\mathbb{R}^d)}^{n_1} \left\| f \right\|_{m_c}^{m_1} \left\| g \right\|_{L^1(\mathbb{R}^d)}^{n_1} \left\| g \right\|_{m_c}^{m_1}. \]

Then by [32, Theorem 9.8] and the HLS inequality,

\[\mathcal{J}[f, g] \leq \sqrt{\mathcal{J}[f, f]} \cdot \sqrt{\mathcal{J}[g, g]} \]

\[\leq C_c \left\| f \right\|_{L^1(\mathbb{R}^d)}^{n_1} \left\| f \right\|_{m_c}^{m_1} \left\| g \right\|_{L^1(\mathbb{R}^d)}^{n_1} \left\| g \right\|_{m_c}^{m_1}. \]

However, (3.11) is an equality if and only if \(g = c_0 f\) with some constant \(c_0\).

Note that

\[C_c = \sup_{f \neq 0} \left\{ \frac{\mathcal{J}[f, f]}{\left\| f \right\|_{L^1(\mathbb{R}^d)}^{n_1} \left\| f \right\|_{m_c}^{m_1}}, f \in L^1(\mathbb{R}^d) \cap L^{m_c}(\mathbb{R}^d) \right\}. \]

The existence of a maximizing nonnegative, radially symmetric and non-increasing \(f^*\) with \(||f^*||_1 = ||f^*||_{m_c} = 1\) for (3.12) has been given in [6, Proposition 3.3]. So choosing \(g^* = f^*\), then \(\mathcal{J}[f^*, g^*] = C_c\) and the first conclusion has been proved.

To derive minimizers for \(\mathcal{J}\) in the situation \(M_1 = M_2 = M_c\), with \(f := M_c f^*\) and \(g := M_c f^*\) we have

\(f, g \in S_{M_1} \times S_{M_2}\) with \(||f||_1 = ||f||_{m_c} = M_c\), \(||g||_1 = ||g||_{m_c} = M_c\). After a careful computation we infer that

\[\mathcal{J}[f, g] = 0 \]
by the definition of M_c and thus (f, g) is a non-zero global minimizer of \mathcal{J} in $S_{M_1} \times S_{M_2}$. The precise description of the set of minimizers of \mathcal{J} was derived in [6, Proposition 3.5], we omit it here and have proved the second conclusion.

On L_1, we assert that there is no non-zero minimizer of \mathcal{J} in $S_{M_1} \times S_{M_2}$ if $M_2 = M_{2c}$. The proof includes two steps: the first one is to derive the nonexistence of non-trivial classical solution to a Lane-Emden system (see Lemma 3.5), and the second is to make a contradiction by the achievement of Euler-Lagrange equalities which consist of the Lane-Emden system on the assumption that minimizers of its free energy exist (see Theorem 3.6).

Lemma 3.5. Let $M_1, M_2, \rho > 0$, and let $m_1 > 1$ and $m_2 > 1$. Consider a Lane-Emden system

$$\begin{align*}
-\Delta \theta(x) &= \frac{m_1-1}{m_1} \theta^{\frac{1}{m_1}}(x), \quad x \in \Omega_1 = \mathbb{R}^d, \\
-\Delta \varsigma(x) &= \frac{m_2-1}{m_2} \varsigma^{\frac{1}{m_2}}(x), \quad x \in \Omega_2 = B(0, \rho), \\
\varsigma(x) &= 0, \quad x \in \mathbb{R}^d \setminus \Omega_2.
\end{align*} \tag{3.13}$$

Then (3.13) does not admit any nonnegative and non-trivial classical solution $(\theta, \varsigma) \in \left(L^{1/(m_1-1)}(\mathbb{R}^d) \cap L^{m_1/(m_1-1)}(\mathbb{R}^d) \right) \times \left(L^{1/(m_2-1)}(\mathbb{R}^d) \cap L^{m_2/(m_2-1)}(\mathbb{R}^d) \right)$ with $\|q^{1/(m_1-1)}\|_1 = M_1$ and $\|q^{1/(m_2-1)}\|_1 = M_2$, provided that m is on L_1.

Proof. Let

$$q := \frac{1}{m_1-1} \in \left(\frac{2}{d-2}, \frac{d}{d-2} \right).$$

The existence/nonexistence of solutions to the general form of Lane-Emden system has been investigated in [37, 40, 41], for example. However, the solvability of (3.13) involving both whole space and bounded domains is not yet known as far as we know. Here, we assert that there exists no non-trivial classical solution for (3.13) if m is on L_1.

Consider the following properties: Suppose that $\omega \in C^2(\mathbb{R}^d)$ is non-trivial and satisfies $\Delta w \leq 0$, $x \in \mathbb{R}^d$. Then

$$\omega(x) \geq C|x|^{2-d}, \quad |x| \geq 1 \tag{3.14}$$

by the strong maximum principle (see [40, Proposition 3.4]). Relying on the finiteness of $\|\theta\|_q$, we have the following contradiction: For $R > 1$,

$$M_1 \geq \int_{B(0,R)} q^q \, dS = c_d \int_0^R \int_{S^{d-1}} q^q(r, \theta)^d \, dS(\theta) dr,$$

where one combines with the fact that $\Delta \theta \leq 0$ for $x \in \Omega_1 = \mathbb{R}^d$ and (3.14) to see that

$$M_1 \geq C \int_1^R r^{d-1+q(2-d)} \, dr = C \int_{R^{-\frac{m_1-2d}{m_1-1}}}^R r^{\frac{m_1-2d}{m_1-1}-1} \, dr = \frac{C(m_1-1)}{d m_1 + 2 - 2d} \left(R^{-\frac{m_1-2d}{m_1-1}} - 1 \right) \to \infty \text{ as } R \to \infty$$

due to $m_1 > m_c = 2 - 2/d$. So (3.13) has no non-trivial and nonnegative classical solution.

\[\square\]

Theorem 3.6. Let m be on L_1. For all $M_2 \leq M_{2c}$, then \mathcal{J} does not admit any non-zero minimizer in $S_{M_1} \times S_{M_2}$.
Proof. The left inequality in (3.7) in Lemma 3.3 makes sure that there exists no minimizer if \(M_2 < M_{2c} \). Thus we only consider \(M_2 = M_{2c} \) and prove it by contradiction.

\textbf{Step 1. Necessary conditions for global minimizers of } \(\mathcal{F} \). We assume that minimizers exist and try to present some basic properties of them. Suppose that \((f^*, g^*) \in S_{M_1} \times S_{M_2} \) is a minimizer of \(\mathcal{F} \) in the sense that \(\mathcal{F}[f^*, g^*] = 0 \). Then

\[
\frac{1}{m_1-1}||f^*||_{m_1}^{m_1} + \frac{1}{m_2-1}||g^*||_{m_2}^{m_2} = c_d \mathcal{H}[f^*, g^*] \\
\leq c_d C_* ||f^*||_{m_1} ||g^*||_{2/d}^{2/d} ||g^*||_{m_2}^{1-2/d} \\
\leq \frac{1}{m_1-1}||f^*||_{m_1}^{m_1} + (c_d C_*)^{3/m} \left(\frac{m_1-1}{m_1} \right)^{3/m} ||g^*||_{1}^{3/m} ||g^*||_{m_2}^{1-3/m} \\
= \frac{1}{m_1-1}||f^*||_{m_1}^{m_1} + \frac{1}{m_2-1}M_{2c}^{2/(m_1-1)} M_2^{3/(m_1-1)} ||g^*||_{m_2}^{m_2} \\
= \frac{1}{m_1-1}||f^*||_{m_1}^{m_1} + \frac{1}{m_2-1}||g^*||_{m_2}^{m_2} \\
(3.15)
\]

by the HLS inequality, Young’s inequality, the definition of \(M_{2c} \) and \(M_2 = M_{2c} \). As a consequence of (3.15), we obtain that

\[
||f^*||_{m_1}^{m_1} = \frac{1}{m_2-1}M_{2c}^{2/(m_1-1)} ||g^*||_{1}^{3/m} ||g^*||_{m_2}^{m_2} \\
= \frac{1}{m_2-1}M_{2c}^{2/(m_1-1)} M_2^{3/(m_1-1)} ||g^*||_{m_2}^{m_2} \\
= \frac{1}{m_2-1}||g^*||_{m_2}^{m_2} \\
(3.16)
\]

and

\[
\mathcal{H}[f^*, g^*] = C_* ||f^*||_{m_1} ||g^*||_{2/d}^{2/d} ||g^*||_{m_2}^{1-2/d} = \frac{m_1}{c_d (m_1-1)(m_2-1)} ||g^*||_{m_2}^{m_2}.
\]

\textbf{Step 2. The Euler-Lagrange equalities.} Let \(f \) and \(g \) be symmetric rearrangement of \(f^* \) and \(g^* \). Then \((f, g) \in S_{M_1} \times S_{M_2} \) satisfies

\[
||f||_{m_1}^{m_1} = ||f^*||_{m_1}^{m_1} = \frac{1}{m_2-1}||g^*||_{m_2}^{m_2} = \frac{1}{m_2-1}||g||_{m_2}^{m_2} \\
(3.17)
\]

and

\[
\mathcal{H}[f, g] \geq \mathcal{H}[f^*, g^*]
\]

by (3.16) and the Riesz rearrangement properties [31, Lemma 2.1]. Obviously, \(\mathcal{H}[f, g] = 0 \) and \((f, g)\) is also a minimizer of \(\mathcal{F} \). Note that

\[
c_d \mathcal{H}[f, g] = \frac{m_1}{m_1-1} ||f||_{m_1}^{m_1} = \frac{m_1}{(m_1-1)(m_2-1)} ||g||_{m_2}^{m_2}. \\
(3.18)
\]

Given \(\Omega_{10} = \{x \in \mathbb{R}^d : f(x) = 0\} \) and \(\Omega_{1+} = \{x \in \mathbb{R}^d : f(x) > 0\} \) and introduce \(\phi_1 \in C_0^\infty(\mathbb{R}^d) \) with \(\phi_1(x) = \phi_1(-x) \) and

\[
\psi_1(x) = \frac{f(x)}{M_1} \left(\frac{1}{M_1} \int_{\mathbb{R}^d} f(x) \phi_1(x) dx \right).
\]

Then for \(f \in S_{M_1} \) and fix \(\epsilon \in (0, \epsilon_0 := M_1(2||\phi_1||_{\infty})^{-1}) \), there holds

\[
||f + \epsilon \psi_1||_1 = M_1
\]
and
\[
f + \epsilon \psi_1 = f \left(1 + \frac{\epsilon}{M_1} \left(\phi_1(x) - \frac{1}{M_1} \int_{\mathbb{R}^d} f(x) \phi_1(x) dx \right) \right)
\]
which implies that \(f + \epsilon \psi_1 \in S_{M_1} \). Moreover, \(\text{supp} \psi_1 \subset \overline{\Omega}_{1+} \). Then for \(\Omega \subset S \), we have
\[
\| f + \epsilon \psi_1 \|_{\infty} \leq \frac{1}{\epsilon} \| f \|_{\infty} + \frac{1}{\epsilon M_1} \| \phi_1 \|_{\infty}.
\]

According to \(\| f + \epsilon \psi_1 \|_{\infty} \leq \| f \|_{\infty} \), as \(\epsilon \to 0 \), Lebesgue's dominated convergence theorem shows that
\[
\int_{\mathbb{R}^d} \frac{m_1}{m_1 - 1} f_m \leq \int \psi_1(x) dx \geq 0.
\]
By replacing \(-\psi_1 \) by \(\psi_1 \), one also obtains from above to see that
\[
\int_{\mathbb{R}^d} \frac{m_1}{m_1 - 1} f_m \leq \int \psi_1(x) dx = 0,
\]
where
\[
0 = \frac{1}{M_1} \int_{\mathbb{R}^d} \left(\frac{m_1}{m_1 - 1} f_m \phi_1(x) - \int \psi_1(x) dx \right) f(x) \phi_1(x) dx
\]
\[
- \frac{1}{M_1} \int \phi_1(x) dx \cdot \int \left(\frac{m_1}{m_1 - 1} f_m \phi_1(x) - \int \psi_1(x) dx \right) f(x) \phi_1(x) dx
\]
\[
= \frac{1}{M_1} \int \left(\frac{m_1}{m_1 - 1} f_m \phi_1(x) - \int \psi_1(x) dx \right) f(x) \phi_1(x) dx
\]
by (3.18). For any choice of symmetric test function \(\phi_1 \in C^\infty_0(\mathbb{R}^d) \), we also obtain
\[
\frac{m_1}{m_1 - 1} f_m \leq \int \psi_1(x) dx = 0 \quad a.e. \quad \text{in} \quad \overline{\Omega}_{1+}.
\]
Now we intend to extent above equality to the whole space. Denote \(\phi_1 \in C^\infty_0(\mathbb{R}^d) \) with \(\phi_1(x) = \phi_1(-x) \) and \(\phi_1 \geq 0 \). Define
\[
\psi_1(x) = \phi_1 - \frac{f(x)}{M_1} \int_{\mathbb{R}^d} \phi_1(x) dx.
\]
Then for \(f \in S_{M_1} \) and fix \(\epsilon \in \left(0, M_1 \left(\| \phi_1 \|_{\infty} \| \text{supp} \phi_1 \|_{\infty} \right)^{-1} \right) \), we have \(f + \epsilon \psi_1 \in S_{M_1} \) due to \(\| f + \epsilon \psi_1 \|_1 = M_1 \) and
\[
\int_{\mathbb{R}^d} \left(\frac{m_1}{m_1 - 1} f_m \phi_1(x) - \int \psi_1(x) dx \right) f(x) \phi_1(x) dx = 0 \quad \text{in} \quad \overline{\Omega}_{1+},
\]
and outside \(\overline{\Omega}_{1+} \) since \(\phi_1 \geq 0 \). Following above similar arguments, one has
\[
\int_{\mathbb{R}^d} \left(\frac{m_1}{m_1 - 1} f_m \phi_1(x) - \int \psi_1(x) dx \right) \psi_1(x) dx \geq 0,
\]
introduce

Then (3.17) and (3.18) imply that

\[\int_{\mathbb{R}^d} \left(\frac{m_1}{m_1 - 1} f^{m_1-1}(x) - \mathcal{K} * g(x) \right) \phi_1(x) dx \geq 0. \]

Then

\[\frac{m_1}{m_1 - 1} f^{m_1-1}(y) - \mathcal{K} * g(x) \geq 0 \text{ a.e. in } \mathbb{R}^d. \]

Hence for almost every \(x \in \Omega_{10} \),

\[\frac{m_1}{m_1 - 1} f^{m_1-1}(y) = 0 = \mathcal{K} * g(x), \]

which together with (3.19) implies that

\[\frac{m_1}{m_1 - 1} f^{m_1-1} = \mathcal{K} * g(x) \text{ a.e. in } \mathbb{R}^d. \tag{3.21} \]

For \(g \), arguing similarly as above and we define \(\Omega_{20} = \{ x \in \mathbb{R}^d : g(x) = 0 \} \) and \(\Omega_{2+} = \{ x \in \mathbb{R}^d : g(x) > 0 \} \) and introduce \(\phi_2 \in C_0^\infty(\mathbb{R}^d) \) with \(\phi_2(x) = \phi_2(-x) \) and

\[\psi_2(x) = \frac{g(x)}{M_2} \left(\phi_2(x) - \frac{1}{M_2} \int_{\mathbb{R}^d} g(x) \phi_2(x) dx \right). \]

Then for \(g \in S_{M_2} \) and fix \(\epsilon \in (0, M_2(2\|\phi_2\|_\infty)^{-1}) \), there holds \(g + \epsilon \psi_2 \in S_{M_2} \). Then

\[\frac{\mathcal{J}[f, g + \epsilon \psi_2] - \mathcal{J}[f, g]}{\epsilon} \leq \frac{1}{M_2} \int_{\Omega_{2+}} \left((g + \epsilon \psi_2)^{m_2} - g^{m_2} \right) dy \]

\[- \int_{\mathbb{R}^d} \mathcal{K} * f(y) \psi_2(y) dy, \]

where by Lebesgue's dominated convergence theorem again,

\[\int_{\mathbb{R}^d} \left(\frac{m_2}{m_2 - 1} g^{m_2-1}(y) - \mathcal{K} * f(y) \right) \psi_2(y) dy \geq 0, \]

and replacing \(-\psi_2\) by \(\psi_2\), it follows that

\[\int_{\mathbb{R}^d} \left(\frac{m_2}{m_2 - 1} g^{m_2-1}(y) - \mathcal{K} * f(y) \right) \psi_2(y) dy = 0. \]

Then (3.17) and (3.18) imply that

\[\begin{align*}
0 &= \frac{1}{M_2} \int_{\mathbb{R}^d} \left(\frac{m_2}{m_2 - 1} g^{m_2-1}(y) - \mathcal{K} * f(y) \right) g(y) \phi_2(y) dy \\
&\quad - \frac{1}{M_2} \int_{\mathbb{R}^d} g(y) \phi_2(y) dy \int_{\mathbb{R}^d} \left(\frac{m_2}{m_2 - 1} g^{m_2-1}(y) - \mathcal{K} * f(y) g(y) \right) dy \\
&= \frac{1}{M_2} \int_{\mathbb{R}^d} \left(\frac{m_2}{m_2 - 1} g^{m_2-1}(y) - \mathcal{K} * f(y) \right) g(y) \phi_2(y) dy \\
&\quad + \frac{2m_1}{M_2^d (d-2m_1)} \|g\|_{m_2} \int_{\mathbb{R}^d} g(y) \phi_2(y) dy \\
&= \frac{1}{M_2} \int_{\mathbb{R}^d} \left(\frac{m_2}{m_2 - 1} g^{m_2-1}(y) - \mathcal{K} * f(y) + \frac{2m_1 \|g\|_{m_2}}{M_2^d (d-2m_1)} \right) g(y) \phi_2(y) dy.
\end{align*} \]
on L_1. Therefore,
\begin{equation}
\frac{m_2}{m_2 - 1} g^{m_2 - 1} - \mathcal{K} \ast f + \frac{2m_1}{M_2(d - 2m_1)} \|g\|_{m_2} = 0 \ a.e. \ in \ \overline{\Omega}_2. \tag{3.22}
\end{equation}
To extend the whole space, we repeat the previous argument for f. Denote $\phi_2 \in C_0^\infty(\mathbb{R}^d)$ with $\phi_2(x) = \phi_2(-x)$ and $\phi_2 \geq 0$. Define
\[\psi_2(x) = \phi_2 - \frac{g(x)}{M_2} \int_{\mathbb{R}^d} \phi_2(x)dx. \]
Then for $g \in S_{M_1}$ and fix $c \in \left(0, M_2 \left(\|\phi_2\|_{\infty} |\text{supp}(\phi_2)|\right)^{-1}\right)$, we have $g + c\psi_2 \in S_{M_1}$ due to $\|g + c\psi_2\|_1 = M_2$ and $g + c\psi_2 \geq 0$, as well as
\[\int_{\mathbb{R}^d} \left(\frac{m_2}{m_2 - 1} g^{m_2 - 1}(y) - \mathcal{K} \ast f(y) \right) \psi_2(y) dy \geq 0. \]
Then taking account of the definition of ψ_2, we see that
\[\frac{m_2}{m_2 - 1} g^{m_2 - 1}(y) - \mathcal{K} \ast f(y) + \frac{2m_1}{M_2(d - 2m_1)} \|g\|_{m_2} \geq 0 \ a.e. \ in \ \mathbb{R}^d, \]
which together with (3.22) implies that
\[\frac{m_2}{m_2 - 1} g^{m_2 - 1} = \left(\mathcal{K} \ast f - \frac{2m_1}{M_2(d - 2m_1)} \|g\|_{m_2} \right) + a.e. \ in \ \mathbb{R}^d. \tag{3.23} \]
Since g is radially symmetric and non-increasing, there exists $\rho \in (0, \infty]$ such that
\[\Omega_{2+} \subset B(0, \rho) \ and \ \Omega_{20} \subset \mathbb{R}^d \setminus B(0, \rho), \]
and from (3.23) we obtain
\[\frac{m_2}{m_2 - 1} g^{m_2 - 1} = \mathcal{K} \ast f - \frac{2m_1}{M_2(d - 2m_1)} \|g\|_{m_2} \ a.e. \ in \ B(0, \rho). \]
Hence such symmetric non-increasing minimizer $(f, g) \in S_{M_1} \times S_{M_1}$ of \mathcal{J} satisfies the following Euler-Lagrange equalities
\[\begin{cases}
\frac{m_1}{m_1 - 1} f^{m_1 - 1}(x) = \mathcal{K} \ast g(x) \ a.e. \ in \ \mathbb{R}^d, \\
\frac{m_2}{m_2 - 1} g^{m_2 - 1}(x) = \mathcal{K} \ast f(x) - \frac{2m_1}{M_2(d - 2m_1)} \|g\|_{m_2} \ a.e. \ in \ B(0, \rho).
\end{cases} \tag{3.24} \]
Step 3. The regularities of minimizer. From (3.24)$_1$, one invokes the HLS inequality in Lemma 2.2 to see for $g \in L^1(\mathbb{R}^d) \cap L^{m_1}(\mathbb{R}^d)$ that
\[f \in L^p(\mathbb{R}^d) \ with \ p \in \left[\frac{d(m_1 - 1)}{d - 2}, \frac{d(m_1 - 1)m_2}{d - 2m_2} \right], \]
where once more using the HLS inequality again, one concludes that
\[\mathcal{K} \ast f \in L^q(\mathbb{R}^d) \ with \ q \in \begin{cases}
\left[\frac{d(m_1 - 1)}{d - 2m_1}, \frac{d(m_1 - 1)m_1}{d - 2m_2} \right], \ if \ d > 2m_1m_2, \\
\left[\frac{d(m_1 - 1)}{d - 2m_1}, \infty \right), \ if \ d \leq 2m_1m_2.
\end{cases} \]
In particular, $\mathcal{K} \ast f \in L^{\frac{m_2}{m_2 - 1}}(\mathbb{R}^d)$ since $m_1 + m_2 = 2m_1/d + m_1m_2 \leq 2m_1m_2/d + m_1m_2$ and
\[\frac{m_2}{m_2 - 1} \in \left[\frac{d(m_1 - 1)}{d - 2m_1}, \frac{d(m_1 - 1)m_2}{d - 2m_2} \right]. \]
Consequently, \(g^{m_2-1} \in L^{m_2-1}(\mathbb{R}^d) \), which excludes \(\rho = \infty \) in (3.24)_1. Hence \(\rho < \infty \) and

\[
\frac{m_2}{m_2 - 1} g^{m_2-1}(x) = \begin{cases}
\mathcal{K} \ast f(x) - \frac{2m_1}{M_2(d-2m_1)} \|g\|^{m_2}_{m_2-1}, & \text{if } |x| < \rho, \\
0, & \text{if } |x| > \rho
\end{cases}
\]

by the monotonicity of \(g \). Moreover, a bootstrap argument ensures that

\[
f, g \in (L^\infty(\mathbb{R}^d))^2.
\]

Letting \(\vartheta := f^{m_2-1} \) and \(\varsigma := g^{m_2-1} \), we readily infer from (3.24)_1 that

\[
\vartheta(x) = \frac{m_2 - 1}{m_1} \mathcal{K} \ast \varsigma^{1/(m_2-1)}(x) \quad \text{a.e. in } \mathbb{R}^d,
\]

and invoke [21, Theorem 9.9] to have \(\vartheta \in W^{2,r}(B(0, \rho)) \) with \(r \in (m_1, \infty) \) and \(-\Delta \vartheta = \frac{m_2 - 1}{m_1} \varsigma^{1/(m_2-1)} \) a.e. \(x \in \mathbb{R}^d \).

Furthermore, from the expression for \(\varsigma \) such as

\[
\varsigma(x) = \frac{m_2 - 1}{m_2} \mathcal{K} \ast g^{1/(m_2-1)}(x) - \frac{2m_1(m_2 - 1)}{M_2(m_2-1)} \|\varsigma\|^{m_2/(m_2-1)}_{m_2-1}, \quad x \in B(0, \rho),
\]

by means of the regularity of \(\vartheta \) and [21, Lemma 4.2], we obtain \(\varsigma \in C^2(B(0, \rho)) \) with \(-\Delta \varsigma = \frac{m_2 - 1}{m_2} g^{1/(m_2-1)} \) in \(B(0, \rho) \) and [21, Lemma 4.1] ensures that \(\varsigma \in C^1(\mathbb{R}^d) \). Then \(\varsigma(x) = 0 \) if \(|x| = \rho \) and \(\varsigma \) is a classical solution to

\[
\begin{cases}
-\Delta \varsigma(x) = \frac{m_2 - 1}{m_2} g^{1/(m_2-1)}(x), & x \in B(0, \rho), \\
\varsigma(x) = 0, & x \in \partial B(0, \rho).
\end{cases}
\]

With the smoothness of \(\varsigma \), [21, Lemma 4.2] applies so as to assert that \(\vartheta \in C^2(\mathbb{R}^d) \) and

\[
-\Delta \vartheta(x) = \frac{m_2 - 1}{m_1} \varsigma^{1/(m_2-1)}(x), \quad x \in \mathbb{R}^d.
\]

Step 4. Contradiction. (3.25)-(3.26) consist of the Lane-Emden system (3.13). However, it has been proved that there exists no non-trivial classical solution of (3.13) if \(m \) is on \(L_1 \), which makes a contradiction.

\[\square\]

Remark 3.7. Let \(m \) be on \(L_2 \), there exists no non-zero minimizer for \(\mathcal{F} \) in \(S_{M_1} \times S_{M_2} \) with \(M_1 \leq M_1c \).

4 The global existence

This section deals with the global solvability of (1.1) in the subcritical case. We first present a local existence and extensibility criterion of free energy solutions to (1.1). Note that this theorem also provides the simultaneous blow-up argument in Section 5.

Theorem 4.1. Let \(m_1, m_2 > 1 \). Under assumption (1.2) on the initial data \((u_0, w_0)\) with \(\|u_0\|_1 = M_1, \|w_0\|_1 = M_2 \), then there exists \(T_{\max} \in (0, \infty) \) and a free energy solution \((u, w)\) over \(\mathbb{R}^d \times (0, T_{\max}) \) of (1.1) such that either \(T_{\max} = \infty \) or \(T_{\max} < \infty \) and

\[
\lim_{t \to T_{\max}^-} (\|u(\cdot, t)\|_\infty + \|w(\cdot, t)\|_\infty) = \infty.
\]

Moreover, let \(m \) be subcritical or critical. Then if \(T_{\max} < \infty \),

\[
\lim_{t \to T_{\max}^-} \|u(\cdot, t)\|_{m_1} = \lim_{t \to T_{\max}^-} \|w(\cdot, t)\|_{m_2} = \infty.
\]

Proof. For \((u_0, w_0)\) satisfying (1.2), local existence and (4.1) can be proved by approximation arguments (similar to those in the proof of Theorem 1.1 in [43] for instance). To see (4.2), since the solution is globally solved...
if both $\|u\|_{m_1}$ and $\|w\|_{m_2}$ are uniformly bounded in the subcritical or critical case due to Lemmas 2.3-2.5, then it is sufficient to show that the two terms $\|u\|_{m_1}$ and $\|w\|_{m_2}$ are governed by one other with some constants.

Since

$$\frac{1}{m_1 - 1} \int_{\mathbb{R}^d} u^{m_1} + \frac{1}{m_2 - 1} \int_{\mathbb{R}^d} w^{m_2} \leq c_d \beta([u, w] + \beta[u_0, w_0]),$$

(4.3)

then it needs to control the term β at the right side of (4.3). For $m \in (1, d/2)$ satisfying (3.1), Lemma 3.1 yields that

$$|\beta(f, g)| \leq \eta \|f\|_m^m + C\eta^\frac{1}{m-1} \|g\|_1 \frac{m^{m_2-2m_2/d-m_2}}{(m_1-1)(m_2-1)} \|g\|_m^{m_2-2m_2/d}$$

(4.4)

for some $f \in L^m(\mathbb{R}^d)$ and $g \in L^1(\mathbb{R}^d) \cap L^{m_1}(\mathbb{R}^d)$ with $\eta > 0$. If $m_1 < d/2$, choosing $m = m_1$ in (4.4), then

$$\frac{1}{m_1 - 1} \int_{\mathbb{R}^d} u^{m_1} + \frac{1}{m_2 - 1} \int_{\mathbb{R}^d} w^{m_2}$$

$$\leq c_d \eta \|u\|_{m_1}^m + c_d C\eta^\frac{1}{m_1-1} \|u\|_{m_1} \|w\|_{m_2}^m + \beta[u_0, w_0]$$

by Young’s inequality, since

$$\frac{m_2 - 2m_2}{(m_1 - 1)(m_2 - 1)} \leq m_2$$

if $m_1 m_2 + 2m_1 d \geq m_1 + m_2$ holds. Taking η small enough, we have

$$\|u(t)\|_{m_1}^m \leq C\|w(t)\|_{m_2}^m + C \quad \text{for} \quad t \in (0, T_{\text{max}})$$

(4.5)

and if η is sufficiently large, we see that

$$\|w(t)\|_{m_2}^m \leq C\|u(t)\|_{m_1}^m + C \quad \text{for} \quad t \in (0, T_{\text{max}}).$$

(4.6)

Therefore, (4.2) holds by (4.1), (4.5)-(4.6). In fact, suppose that $T_{\text{max}} < \infty$ and (4.2) does not hold. Then the finiteness of $\|u(t)\|_{m_1}$ or $\|w(t)\|_{m_2}$ ensures both norms are finite by means of (4.5)-(4.6), which actually implies that $T_{\text{max}} = \infty$ due to Lemma 2.4. This is a contradiction.

However, if $m_1 \geq d/2$, we pick $m \in (1, d/2)$ such that

$$\frac{m_2}{m_2 + 2d/2} < m < d/2,$$

and next take interpolation inequality to find that

$$\|u\|_m^m \leq \|u\|_1^{m_1 - 1} \|u\|_{m_1 - 1} \|u\|_{m_1}.$$

Upon

$$\frac{m_2 - 2m_2}{(m_1 - 1)(m_2 - 1)} < m_2,$$

then (4.4) implies that

$$|\beta([u, w])| \leq \eta \|u\|_1^{m_1 - 1} \|u\|_{m_1 - 1} \|w\|_{m_2}^m + C\eta^\frac{1}{m_1-1} \|u\|_1 \frac{m_2-2m_2}{(m_1-1)(m_2-1)} \|w\|_{m_2}^m$$

$$= \eta \|u\|_1^{m_1 - 1} + C\eta^\frac{1}{m_1-1} M_{m_2} \|w\|_{m_2}^m + C$$

(4.7)

with $\|u\|_1 = M_1$ and $\|w\|_1 = M_2$. Hence (4.5)-(4.6) are valid by picking suitable $\eta > 0$. By the same token, the case $m_1 m_2 + 2m_2/d \geq m_1 + m_2$ is also true for both $m_2 < d/2$ and $m_2 \geq d/2$. The proof is finished.
The global existence result in the subcritical case is the subject of our next theorem.

Theorem 4.2. Let \(m_1, m_2 > 1 \). Suppose that the initial data \((u_0, w_0)\) with \(\|u_0\|_1 = M_1, \|w_0\|_1 = M_2 \) fulfills (1.2). Then if \(m \) is subcritical, (1.1) has a global free energy solution given in Definition 1.2.

Remark 4.3. If \(m_1 \geq d/2 \) or \(m_2 \geq d/2 \), the conclusion in Theorem 4.2 holds for all \(m_2 > 1 \) or \(m_1 > 1 \).

Proof. In the case \(m_1 m_2 + 2m_1/d > m_1 + m_2 \) and \(m_1 < d/2 \), since \(m_2 > m_1 > d/2 \), then Lemma 3.1 warrants that

\[
\|u\|_{m_1} + C\|w\|_{m_2} \leq \frac{1}{2c_d(m_1 - 1)} \|u\|_{m_1} + \frac{1}{2c_d(m_2 - 1)} \|w\|_{m_2} + C
\]

by Young's inequality. Then substituting (4.3) into above, we have

\[
\frac{1}{m_1 - 1} \int_{\mathbb{R}^d} u^{m_1} \, dx + \frac{1}{m_2 - 1} \int_{\mathbb{R}^d} w^{m_2} \, dx \leq \frac{1}{2(m_1 - 1)} \int_{\mathbb{R}^d} u^{m_1} \, dx + \frac{1}{2(m_2 - 1)} \int_{\mathbb{R}^d} w^{m_2} \, dx + C.
\]

As a corollary,

\[
\|u\|_{m_1} \leq C \quad \text{and} \quad \|w\|_{m_2} \leq C. \tag{4.8}
\]

If \(m_1 \geq \frac{d}{2} \), we recalculate (4.7) carefully and also have (4.8), in which the global existence of free energy solution is immediate from Theorem 4.1. The other case \(m_1 m_2 + 2m_2/d > m_1 + m_2 \) is similar.

Also on the critical lines, we obtain global existence results reading as

Theorem 4.4. Let \(m \) be on \(L_1 \), and let \((u, w)\) be a free energy solution of (1.1) with \((u_0, w_0)\) satisfying (1.2) on \([0, T_{\text{max}})\) with \(T_{\text{max}} \) given in Theorem 4.1. If

\[
M_2 < M_{2c}, \tag{4.9}
\]

then \(T_{\text{max}} = \infty \). The subcritical condition (4.9) will be replaced by \(M_1 < M_{1c} \) on \(L_2 \). Moreover, if \(m \) is 1, one has \(T_{\text{max}} = \infty \) if \(M_1 M_2 < M_c^2 \).

Proof. We just infer from (1.7) and Lemma 3.3 that

\[
(c_d C) \left(m_1 - 1 \right)^{m_1/m_2} m_1^{m_1/m_2 - 1} \left(M_{2c}^{2m_1/m_1 - m_2} - M_2^{2m_1/m_1 - m_2} \right) \|w\|_{m_2} \leq \mathcal{F}[u, w] \leq \mathcal{F}[u_0, w_0].
\]

Due to (4.9), there exists \(C > 0 \) such that for all \(t \in [0, T_{\text{max}}) \) we have \(\|w\|_{m_2} \leq C \). Then the extensibility criterion in Theorem 4.1 makes sure that \(T_{\text{max}} = \infty \). The other cases can be similarly obtained.

5 Blow up

Our last section concerns finite-time blow-up phenomenon when \(m \) is critical or super-critical. These results actually show that lines \(L_i, i = 1, 2 \) are optimal in view of the global existence for sub-critical case. The following second moment estimate of solutions can be achieved in a straightforward computation.
Lemma 5.1. Let \((u_0, w_0)\) satisfy (1.2), and let \((u, w)\) be a free energy solution of (1.1) on \([0, T_{\max})\) with \(T_{\max} \in (0, \infty)\). Then
\[
\frac{d}{dt} I(t) = G(t) \text{ for all } t \in (0, T_{\max}),
\]
where
\[
I(t) := \int_{\mathbb{R}^d} \|x\|^2 (u(x, t) + w(x, t)) \, dx
\]
and
\[
G(t) := 2d \int_{\mathbb{R}^d} u^{m_1}(x, t) \, dx + 2d \int_{\mathbb{R}^d} w^{m_2}(x, t) \, dx
\]
\[\quad - 2c_d (d - 2) \int_{\mathbb{R}^d \times \mathbb{R}^d} \frac{u(x, t)w(y, t)}{|x - y|^{d-2}} \, dx \, dy.
\]

Proof. We present a formal computation for the proof of this lemma. Otherwise, one can easily invoke some localisation arguments in [8, Lemma 2.1] or [43, Lemma 6.2] to give a complete rigorous proof. We differentiate the second moment to see that
\[
\frac{d}{dt} \int_{\mathbb{R}^d} \|x\|^2 (u(x, t) + w(x, t)) \, dx
\]
\[= \int_{\mathbb{R}^d} \|x\|^2 (\Delta u^{m_1} - \nabla \cdot (u \nabla v)) \, dx + \int_{\mathbb{R}^d} \|x\|^2 (\Delta w^{m_2} - \nabla \cdot (w \nabla z)) \, dx
\]
\[= 2d \int_{\mathbb{R}^d} u^{m_1}(x, t) \, dx + 2d \int_{\mathbb{R}^d} w^{m_2}(x, t) \, dx
\]
\[+ 2 \iint_{\mathbb{R}^d \times \mathbb{R}^d} [x \cdot \nabla \chi(x - y)]u(x, t)w(y, t) \, dx \, dy
\]
\[+ 2 \iint_{\mathbb{R}^d \times \mathbb{R}^d} [x \cdot \nabla \chi(x - y)]w(y, t)u(x, t) \, dx \, dy.
\]
With \(\chi(x) = c_d \frac{1}{|x|^{d-2}}\), we have
\[
2 \iint_{\mathbb{R}^d \times \mathbb{R}^d} [x \cdot \nabla \chi(x - y)]u(x, t)w(y, t) \, dx \, dy
\]
\[= -2c_d (d - 2) \iint_{\mathbb{R}^d \times \mathbb{R}^d} \frac{(x - y) \cdot x}{|x - y|^d} u(x, t)w(y, t) \, dx \, dy
\]
\[= -2c_d (d - 2) \iint_{\mathbb{R}^d \times \mathbb{R}^d} \frac{|x|^2}{|x - y|^d} u(x, t)w(y, t) \, dx \, dy
\]
\[+ 2c_d (d - 2) \iint_{\mathbb{R}^d \times \mathbb{R}^d} \frac{x \cdot y}{|x - y|^d} u(x, t)w(y, t) \, dx \, dy
\]
\[= -c_d (d - 2) \iint_{\mathbb{R}^d \times \mathbb{R}^d} \frac{|x|^2}{|x - y|^d} u(x, t)w(y, t) \, dx \, dy
\]
\[+ c_d (d - 2) \iint_{\mathbb{R}^d \times \mathbb{R}^d} \frac{|y|^2}{|x - y|^d} u(x, t)w(y, t) \, dx \, dy
\]
\[+ 2c_d (d - 2) \iint_{\mathbb{R}^d \times \mathbb{R}^d} \frac{x \cdot y}{|x - y|^d} u(x, t)w(y, t) \, dx \, dy.
\]
and

\[
2 \int_{\mathbb{R}^d \times \mathbb{R}^d} [x \cdot \nabla \mathcal{K}(x-y)] u(y, t) w(x, t) dx dy
\]

\[
= - c_d (d-2) \int_{\mathbb{R}^d \times \mathbb{R}^d} \frac{|x|^2}{|x-y|^d} u(y, t) w(x, t) dx dy
\]

\[
- c_d (d-2) \int_{\mathbb{R}^d \times \mathbb{R}^d} \frac{|y|^2}{|x-y|^d} u(x, t) w(y, t) dx dy
\]

\[
+ 2c_d (d-2) \int_{\mathbb{R}^d \times \mathbb{R}^d} \frac{x \cdot y}{|x-y|^d} u(x, t) w(y, t) dx dy.
\]

Combining above equations, it follows that

\[
\frac{d}{dt} \int_{\mathbb{R}^d} |x|^2 (u(x, t) + w(x, t)) dx = 2d \int_{\mathbb{R}^d} u^{m_1}(x, t) dx + 2d \int_{\mathbb{R}^d} w^{m_2}(x, t) dx
\]

\[
- c_d (d-2) \int_{\mathbb{R}^d \times \mathbb{R}^d} \frac{|x|^2 + |y|^2}{|x-y|^d} u(x, t) w(y, t) dx dy
\]

\[
- c_d (d-2) \int_{\mathbb{R}^d \times \mathbb{R}^d} \frac{|x|^2 + |y|^2}{|x-y|^d} u(y, t) w(x, t) dx dy
\]

\[
+ 4c_d (d-2) \int_{\mathbb{R}^d \times \mathbb{R}^d} \frac{x \cdot y}{|x-y|^d} u(x, t) w(y, t) dx dy
\]

\[
= 2d \int_{\mathbb{R}^d} u^{m_1}(x, t) dx + 2d \int_{\mathbb{R}^d} w^{m_2}(x, t) dx
\]

\[
- 2c_d (d-2) \int_{\mathbb{R}^d \times \mathbb{R}^d} \frac{u(x, t)w(y, t)}{|x-y|^{d-2}} dx dy,
\]

which readily implies the lemma.

We construct initial data which ensures the non-positivity of \(G(0) \).

Lemma 5.2. Let \(m \) be critical or super-critical. There exists initial data \((u_0, w_0)\) satisfying (1.2), and fulfilling

\[
\left(\int_{\mathbb{R}^d} u_0^{1/t_1} dx \right)^{t_1} \left(\int_{\mathbb{R}^d} w_0^{1/t_2} dx \right)^{t_2} = \left(\int_{\mathbb{R}^d} u_0^{1/m_1} dx \right)^{m_1} + \left(\int_{\mathbb{R}^d} w_0^{1/m_2} dx \right)^{m_2},
\]

\[
\begin{cases}
N_0, & \text{if } m_1 m_2 + 2 \max\{m_1, m_2\}/d \leq m_1 + m_2 < m_1 m_2 + 2/d m_1 m_2, \\
2N_0, & \text{if } m_1 + m_2 \geq m_1 m_2 + 2/d m_1 m_2,
\end{cases}
\]

\[
\frac{d}{dt} m \left(\int_{\mathbb{R}^d} u_0^{1/t_1} dx \right)^{t_1} \left(\int_{\mathbb{R}^d} w_0^{1/t_2} dx \right)^{t_2} (2N_0 - G(0) < 0),
\]

and

\[
G(0) < 0,
\]

where

\[
t_1 := \frac{2m_2}{(m_1 + m_2 - m_1 m_2)d} \quad \text{and} \quad t_2 := \frac{2m_1}{(m_1 + m_2 - m_1 m_2)d},
\]

\[
N_0 = \left(\frac{d/c_d}{2^{1+2/d}(d-2)} \right)^{t_1} (1 + t_1) (1 + t_2)
\]

and \(G \) is given in Lemma 5.1.
Proof. Consider the following functions having the same compact support as initial data of form
\[u_0(x) = A \left(1 - \frac{|x|^d}{a^d} \right)_+^t, \quad x \in \mathbb{R}^d, \]
\[w_0(x) = B \left(1 - \frac{|x|^d}{a^d} \right)_+^t, \quad x \in \mathbb{R}^d, \] (5.4)
where \(A, B > 0 \) denote the maximum of initial data and \(a > 0 \) denotes the size of the corresponding supports. Such constructions in (5.4) are inspired by [44, Section 6] which deals with one population Keller-Segel system.

In the Case 1: \(m_1 m_2 + 2 \max \{m_1, m_2\} / d \leq m_1 + m_2 < m_1 m_2 + 2 m_1 m_2 / d \), one has
\[
\int_{\mathbb{R}^d} u_0^{m_1} \, dx \leq A^{m_1} \int_{\mathbb{R}^d} \left(1 - \frac{|x|^d}{a^d} \right)_+^{m_1 m_2 m_2^d} \, dx \\
= A^{m_1} \int_{\mathbb{R}^d} \left(1 - \frac{|x|^d}{a^d} \right)_+^{m_1 m_2 m_2^d - 1} \left(1 - \frac{|x|^d}{a^d} \right)_+ \, dx \\
\leq A^{m_1} \int_{\mathbb{R}^d} \left(1 - \frac{|x|^d}{a^d} \right)_+ \, dx \\
= c_d a^d A^{m_1} / (2d)
\]
and
\[
\int_{\mathbb{R}^d} w_0^{m_2} \, dx \leq c_d a^d B^{m_2} / (2d).
\]
For the Case 2: \(m_1 + m_2 > m_1 m_2 + 2 m_1 m_2 / d \),
\[
\int_{\mathbb{R}^d} u_0^{m_1} \, dx \leq A^{m_1} \int_{|x| < a} 1 \, dx = c_d a^d A^{m_1} / d,
\]
\[
\int_{\mathbb{R}^d} w_0^{m_2} \, dx \leq c_d a^d B^{m_2} / d.
\]
The coupled term can be estimated as
\[
\int_{\mathbb{R}^d \times \mathbb{R}^d} \frac{u_0(x)w_0(y)}{|x - y|^{d-2}} \, dx dy \geq \min_{|x|,|y| < a} |x - y|^{-(d-2)} \int_{\mathbb{R}^d} u_0(x) dx \cdot \int_{\mathbb{R}^d} w_0(x) dx \\
\geq a^{-(d-2)} \int_{\mathbb{R}^d} A \left(1 - \frac{|x|^d}{a^d} \right)_+^{t_1} \, dx \cdot \int_{\mathbb{R}^d} B \left(1 - \frac{|x|^d}{a^d} \right)_+^{t_2} \, dx \\
= \frac{c_d^2 a^{d-2}}{d^2(1 + t_1)(1 + t_2)} AB.
\] (5.6)
Since
\[
G(0) \leq c_d a^d A^{m_1} + c_d a^d B^{m_2} - \frac{2c_d^2 a^{d-2}(d-2)}{d^2(1 + t_1)(1 + t_2)} AB
\] (5.7)
by (5.5)-(5.6), to show (5.2), it only needs to show the right side of (5.7) is negative in the sense that
\[
\frac{AB}{A^{m_1} + B^{m_2}} a^2 > N_1
\] (5.8)
with
\[
N_1 = \frac{d^2}{2c_d^2(d-2)} (1 + t_1)(1 + t_2)
in the Case 1, whereas the right side will be replaced by $2N_1$ in the Case 2.

Since
\[
\int_{\mathbb{R}^d} u_0^{1/\ell_1} dx = A^{1/\ell_1} \int_{\mathbb{R}^d} \left(1 - \frac{|x|^d}{a^d} \right)_+^\ell_1 dx = c_d a^d A^{1/\ell_1}/(2d),
\]
\[
\int_{\mathbb{R}^d} w_0^{1/\ell_2} dx = B^{1/\ell_2} \int_{\mathbb{R}^d} \left(1 - \frac{|x|^d}{a^d} \right)_+^\ell_2 dx = c_d a^d B^{1/\ell_2}/(2d)
\]

imply that
\[
A = \left(2d \int_{\mathbb{R}^d} u_0^{1/\ell_1} dx / c_d \right)^{\ell_1} a^{-\ell_1 d}, \quad B = \left(2d \int_{\mathbb{R}^d} w_0^{1/\ell_2} dx / c_d \right)^{\ell_2} a^{-\ell_2 d},
\]

then (5.8) can be rewritten as
\[
\frac{AB}{A^{m_1} + B^{m_2}} a^2 = \left(\frac{2d}{c_d} \right)^{2/d} \left(\frac{\int_{\mathbb{R}^d} u_0^{1/\ell_1} dx}{\int_{\mathbb{R}^d} u_0^{1/\ell_1} dx / c_d} \right)^{\ell_1} \left(\frac{\int_{\mathbb{R}^d} w_0^{1/\ell_2} dx}{\int_{\mathbb{R}^d} w_0^{1/\ell_2} dx / c_d} \right)^{\ell_2} + \left(\frac{\int_{\mathbb{R}^d} w_0^{1/\ell_2} dx}{\int_{\mathbb{R}^d} w_0^{1/\ell_2} dx / c_d} \right)^{2/d}
\]
\[
> N_1 \quad \text{or} \quad 2N_1 \quad \text{for the Case 2}.
\]

Therefore, we have
\[
\frac{\left(\frac{\int_{\mathbb{R}^d} u_0^{1/\ell_1} dx}{\int_{\mathbb{R}^d} u_0^{1/\ell_1} dx / c_d} \right)^{\ell_1}}{\left(\frac{\int_{\mathbb{R}^d} w_0^{1/\ell_2} dx}{\int_{\mathbb{R}^d} w_0^{1/\ell_2} dx / c_d} \right)^{\ell_2}} + \left(\frac{\int_{\mathbb{R}^d} w_0^{1/\ell_2} dx}{\int_{\mathbb{R}^d} w_0^{1/\ell_2} dx / c_d} \right)^{2/d}
\]
\[
> \left\{ \begin{array}{l}
(c_d/2d)^{2/d} N_1, \quad \text{if } m_1 m_2 + 2 \max\{m_1, m_2\}/d \leq m_1 + m_2 \\
< m_1 m_2 + 2m_1 m_2/d,
\end{array} \right.
\]
\[
> 2 \left(c_d/2d \right)^{2/d} N_1, \quad \text{if } m_1 + m_2 \geq m_1 m_2 + 2m_1 m_2/d,
\]
which yields $G(0) < 0$. \hfill \Box

The blow-up results state that

Theorem 5.3. Let m be critical or super-critical. Then one can find some initial data (u_0, w_0) satisfying (1.2) such that free energy solution (u, w) of (1.1) with $(u, w) |_{t=0} = (u_0, w_0)$ blows up in finite time.

Proof. For a given initial data (u_0, w_0) in (5.4) satisfying (5.1), then $G(0) < 0$ from Lemma 5.2. By the continuity argument, there exists $T^* > 0$ such that

\[
G(t) < G(0)/2 \quad \text{for all } t \in [0, T^*],
\]

where from Lemma 5.1, one obtains $\frac{d}{dt} I(t) < G(0)/2$ for all $t \in [0, T^*]$. Integrating by parts, it follows that

\[
I(T^*) < I(0) + G(0)T^*/2. \quad (5.9)
\]
As
\[
I(0) = \int_{\mathbb{R}^d} |x|^2 \left(A \left(1 - \frac{|x|^d}{a^d} \right)^{\ell_1} + B \left(1 - \frac{|x|^d}{a^d} \right)^{\ell_2} \right) dx
\]
\[= a A \int_{|x| \leq a} |x|^2 \left(1 - \frac{|x|^d}{a^d} \right)^{\ell_1} dx + B \int_{|x| > a} |x|^2 \left(1 - \frac{|x|^d}{a^d} \right)^{\ell_2} dx \]
\[= c_d A \int_0^a \left(1 - \frac{r^d}{a^d} \right)^{\ell_1} r^{d+1} dr + c_d B \int_0^a \left(1 - \frac{r^d}{a^d} \right)^{\ell_2} r^{d+1} dr
\]
\[= (c_d a^{d+2} AN_2)/d + (c_d a^{d+2} BN_3)/d
\]
with \(\ell_1, \ell_2 \) given in (5.3) and
\[N_2 := \int_0^1 (1 - r)^{\ell_1} r^{2/d} dr < \infty \quad \text{and} \quad N_3 := \int_0^1 (1 - r)^{\ell_2} r^{2/d} dr < \infty,
\]
then inserting (5.7) and (5.10) into (5.9), the right side of (5.9) should be negative if we may fix small \(a > 0 \) such that
\[T^* \cdot \left[\frac{2 c_d^2 a^{d+2}(d-2)}{d^2(1+\ell_1)(1+\ell_2)} AB - c_d a^d A^{m_1} - c_d a^d B^{m_2} \right]
\[\geq (c_d a^{d+2} AN_2)/d + (c_d a^{d+2} BN_3)/d.
\]
More precisely, if
\[
\frac{dT^*}{2} \cdot \left[\frac{2^{1+2/d}(d-2)}{(1+\ell_1)(1+\ell_2)} \left(\frac{c_d}{d} \right)^{2-2/d} \left(\int_{\mathbb{R}^d} u_0^{1/\ell_1} dx \right)^{\ell_1} \left(\int_{\mathbb{R}^d} w_0^{1/\ell_2} dx \right)^{\ell_2}
\right.
\[\left. - \left(\int_{\mathbb{R}^d} u_0^{1/\ell_1} dx \right)^{m_1\ell_1} - \left(\int_{\mathbb{R}^d} w_0^{1/\ell_2} dx \right)^{m_2\ell_2} \right]
\[\geq \left(2d/c_d \right)^{(1-m_2)/\ell_2} \left(\int_{\mathbb{R}^d} u_0^{1/\ell_1} dx \right)^{\ell_1} \left(\int_{\mathbb{R}^d} w_0^{1/\ell_2} dx \right)^{\ell_2}
\[\left. + \left(2d/c_d \right)^{(1-m_1)/\ell_1} \left(\int_{\mathbb{R}^d} u_0^{1/\ell_1} dx \right)^{\ell_2} \right]
\]
this leads to a contradiction after time \(T^* \) since \(I(t) \) is always nonnegative for all \(t > 0 \). Hence the solutions blow up in finite time.

If \(\mathbf{m} \) is \(\mathbf{I} \), Theorem 5.3 shows that the blow up condition (5.1) can be written as
\[
\frac{M_1 M_2}{M_1^{m_c} + M_2^{m_c}} \geq \frac{1}{2(d-2)} \cdot \left(\frac{2d}{c_d} \right)^{m_c}
\]
(5.11)
since
\[
\frac{d}{dt} I(t) = G(t) = 2(d-2)\mathcal{F}[u(t), w(t)] \leq 2(d-2)\mathcal{F}[u_0, w_0] = G(0) < 0
\]
if (5.11) holds, then the second moment will be negative after some time and it contradicts the non-negativity of \(u \) and \(w \).

We improve blow-up arguments if \(\mathbf{m} \) is \(\mathbf{I} \) by using a different method and summarize the blow up results on the lines \(L_1, L_2 \) and intersection point \(I \) as
Theorem 5.4. Let m be critical. Suppose that (u, w) is a free energy solution of (1.1) with $\|u_0\|_1 = M_1$, $\|w_0\|_1 = M_2$ fulfilling (1.2).

If m is on L_1, for sufficiently small size of the supports of (u_0, w_0) one asserts that blow up happens if

$$\left(\frac{\int_{\mathbb{R}^d} u_0^{m_1/m_2} dx}{\int_{\mathbb{R}^d} w_0^{m_2/m_1} dx}\right)^{m_1/m_2} > N_0$$

with N_0 given in Lemma 5.2.

If m is on L_2, for sufficiently small size of the supports of (u_0, w_0) blow-up solution can be constructed if

$$\left(\frac{\int_{\mathbb{R}^d} u_0 dx}{\int_{\mathbb{R}^d} w_0^{m_2/m_1} dx}\right)^{m_1/m_2} > N_0.$$

If m is I, blow up occurs if

$$M_1 M_2 / (M_1^{m_2} + M_2^{m_2}) > M_2^{2/d}/2.$$

Finally, let (u, w) blow up in finite time T_{\max}. Then $T_{\max} < \infty$ implies that

$$\lim_{t \to T_{\max}} \|u\|_{m_1} = \lim_{t \to T_{\max}} \|w\|_{m_2} = \infty.$$

Proof. The asserted blow-up conditions on the lines L_1 and L_2 just follow from Lemma 5.2 and Theorem 5.3. If m is I, note that for any $M_1' > 0$ and $M_2' > 0$ such that

$$M_1' M_2' / (M_1^{m_2'} + M_2^{m_2'}) = M_2^{2/d}/2,$$ \hspace{1cm} (5.12)

there exists nonnegative function (u^*, w^*) with $\|u^*\|_1 = M_1'$, $\|w^*\|_1 = M_2'$ fulfilling $\mathcal{F}[u^*, w^*] = 0$.

This can be seen by the fact that C_c in (3.6) is

$$C_c = \sup_{f \neq 0} \left\{ \frac{\int \partial f}{\|f\|_{L^1} \|f\|_{L^m}} : f \in L^1(\mathbb{R}^d) \cap L^{m_1}(\mathbb{R}^d) \right\}$$

from Theorem 3.4. From [6, Proposition 3.3], for any $M_1' > 0$ there exists nonnegative, radially symmetric and non-increasing function $u^* \in L^1(\mathbb{R}^d) \cap L^{m_1}(\mathbb{R}^d)$ with $\|u^*\|_1 = M_1'$ such that

$$\|u^*\|_{m_1} = C_c \|u^*\|_1^{2/d} \int [u^*, u^*].$$ \hspace{1cm} (5.13)

Define $w^* = M_2'/M_1' u^*$. Then $w^* \in L^1(\mathbb{R}^d) \cap L^{m_2}(\mathbb{R}^d)$ with $\|w^*\|_1 = M_2'$ and

$$\mathcal{F}[u^*, w^*] = 0$$

by (5.12) and the definition of M_c. Then

$$c_d \int [u^*, w^*] = c_d M_2'/M_1' \int [u^*, u^*] = \frac{1}{m_c - 1} \left(1 + \frac{M_2'}{M_1'}\right)^{m_c} \|u^*\|_{m_c}^{m_c}.$$

Given $u_0 = M_1/M_1' u^*$ and $w_0 = M_2'/M_1' w^*$ with $\|u_0\|_1 = M_1$ and $\|w_0\|_1 = M_2$, then

$$\mathcal{F}[u_0, w_0] = \frac{1}{m_c - 1} \|u_0\|_{m_c} + \frac{1}{m_c - 1} \|w_0\|_{m_c} - c_d \int [u_0, w_0]$$

$$= \frac{1}{m_c - 1} \left(\left(\frac{M_1}{M_1'}\right)^{m_c} + \left(\frac{M_2'}{M_1'}\right)^{m_c} \frac{M_1 M_2}{M_1' M_2'} \left(1 + \frac{M_2'}{M_1'}\right) \right) \|u^*\|_{m_c}^{m_c} < 0,$$
since

\[M_1 M_2 (M_1^{mc} + M_2^{mc}) > M_1' M_2' (M_1'^{mc} + M_2'^{mc}) = M^{2ld}/2. \]

If \((u, w)\) is the corresponding free energy solution with initial data \((u_0, w_0)\), then

\[\mathcal{F}[u(t), w(t)] \leq \mathcal{F}[u_0, w_0] < 0, \quad t > 0 \]

by the decreasing property of \(\mathcal{F}\). From Lemma 5.1, it follows that blow up occurs.

To see the simultaneous blow-up phenomenon, from extensibility criterion in Theorem 4.1 we have

\[C \|w(t)\|_m^m + C \leq \|u(t)\|_m^m \leq C' \|w(t)\|_m^m + C' \quad \text{for} \quad t \in (0, T_{\text{max}}) \]

with some \(C > 0\) and \(C' > 0\) if \(m\) is critical. Then all assertions have been proved. \(\square\)

Acknowledgment. JAC was supported by the Advanced Grant Nonlocal-CPD (Nonlocal PDEs for Complex Particle Dynamics: Phase Transitions, Patterns and Synchronization) of the European Research Council Executive Agency (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 883363). JAC was also partially supported by the EPSRC grant number EP/P031587/1. JAC acknowledges support through the Changjiang Visiting Professorship Scheme of the Chinese Ministry of Education. KL is partially supported by NSFC (Grant No. 11601516) and by Sichuan Science and Technology Program (Grant No. 2020YJ0060).

Professor José A. Carrillo was a member of the Editorial Advisory Board of ANONA although had no effect on the final decision for the article.

References

[1] L. Ambrosio, N. Gigli and G. Savaré, Gradient flows in metric spaces and in the space of probability measures, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2005.

[2] J. Bedrossian, Global minimizers for free energies of subcritical aggregation equations with degenerate diffusion, Appl. Math. Lett. 24 (2011), no. 11, 1927–1932.

[3] N. Bellomo, A. Bellouquid, Y. Tao and M. Winkler, Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci. 25 (2015), no. 9, 1663–1763.

[4] S. Bian and J.-G. Liu, Dynamic and steady states for multi-dimensional Keller-Segel model with diffusion exponent \(m > 0\), Comm. Math. Phys. 323 (2013), no. 3, 1017–1070.

[5] A. Blanchet, E.A. Carlen and J.A. Carrillo, Functional inequalities, thick tails and asymptotics for the critical mass Patlak-Keller-Segel model, J. Funct. Anal. 262 (2012), no. 5, 2142–2230.

[6] A. Blanchet, J. A. Carrillo and P. Laurençot, Critical mass for a Patlak-Keller-Segel model with degenerate diffusion in higher dimensions, Calc. Var. Partial Differential Equations 35 (2009), no. 2, 133–168.

[7] A. Blanchet, J.A. Carrillo and N. Masmoudi, Infinite time aggregation for the critical two-dimensional Patlak-Keller-Segel model, Comm. Pure Appl. Math. 61 (2008), no. 10, 1469–1481.

[8] A. Blanchet, J. Dolbeault and B. Perthame, Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solutions, Electron. J. Differential Equations 44 (2006), 32 pp. (electronic).

[9] V. Calvez and J.A. Carrillo, Volume effects in the Keller-Segel model: energy estimates preventing blow-up, J. Math. Pures Appl. 86 (2006), no. 2, 155–175.

[10] V. Calvez, J.A. Carrillo and F. Hoffmann, Equilibria of homogeneous functionals in the fair-competition regime, Nonlinear Anal. 159 (2017), 85–128.

[11] V. Calvez, L. Corrias and M.A. Ebde, Blow-up, concentration phenomenon and global existence for the Keller-Segel model in high dimension, Comm. Partial Differential Equations 37 (2012), no. 4, 561–584.

[12] J.A. Carrillo, D. Castorina and B. Volzone, Ground states for diffusion dominated free energies with logarithmic interaction, SIAM J. Math. Anal. 47 (2015), no. 1, 1–25.

[13] J.A. Carrillo, K. Craig and Y. Yao, Aggregation-diffusion equations: dynamics, asymptotics, and singular limits. Active particles, Vol. 2., 65–108, Model. Simul. Sci. Eng. Technol., Birkhäuser/Springer, Cham, 2019.

[14] J.A. Carrillo, S. Hittmeir, B. Volzone and Y. Yao, Nonlinear aggregation-diffusion equations: radial symmetry and long time asymptotics, Invent. Math. 218 (2019), no. 3, 889–977.
[15] J.A. Carrillo, F. Hoffmann, E. Mainini and B. Volzone, Ground states in the diffusion-dominated regime, Calc. Var. Partial Differential Equations 57 (2018), no. 5, Art. 127, 28 pp.
[16] L. Chen and J.H. Wang, Exact criterion for global existence and blow up to a degenerate Keller-Segel system, Doc. Math. 19 (2014), 103–120.
[17] L. Chen, J.-G. Liu and J. Wang, Multidimensional degenerate Keller-Segel system with critical diffusion exponent $2n/(n+2)$, SIAM J. Math. Anal. 44 (2012), no. 2, 1077–1102.
[18] L. Corrias, B. Perthame and H. Zaag, Global solutions of some chemotaxis and angiogenesis systems in high space dimensions, Milan J. Math. 72 (2004), no. 1, 1–28.
[19] J. Dolbeault and B. Perthame, Optimal critical mass in the two dimensional Keller-Segel model in \mathbb{R}^2, C. R. Math. Acad. Sci. Paris 339 (2004), no. 9, 611–616.
[20] E. Espejo, K. Vilches and C. Conca, A simultaneous blow-up problem arising in tumor modeling, J. Math. Biol. 79 (2019), no. 4, 1357–1399.
[21] D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order. In: Grundlehren derMathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences), vol. 224, 2nd edn. Springer, Berlin, 1983.
[22] L. Hong, J.H. Wang, H. Yu and Y. Zhang, Critical mass for a two-species chemotaxis model with two chemicals in \mathbb{R}^2, Nonlinearity 32 (2019), no. 12, 4762–4778.
[23] D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. I, Jahresber. Deutsch. Math.-Verein. 105 (2003), 103–165.
[24] W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis, Trans. Amer. Math. Soc. 329 (1992), no. 2, 819–824.
[25] R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker Planck equation, SIAM J. Math. Anal. 29 (1998), no. 1, 1–17.
[26] D. Karmakar and G. Wolansky, On Patlak-Keller-Segel system for several populations: A gradient flow approach, J. Differential Equations 267 (2019), no. 12, 7483–7520.
[27] D. Karmakar and G. Wolansky, On the critical mass Patlak-Keller-Segel for multi-species populations: Global existence and infinite time aggregation, arXiv:2004.10132 (2020).
[28] E.F. Keller and L.A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol. 26 (1970), no. 3, 399–415.
[29] I. Kim and Y. Yao, The Patlak-Keller-Segel model and its variations: properties of solutions via maximum principle, SIAM J. Math. Anal. 44 (2012), no. 2, 568–602.
[30] H. Knútsdóttir, E. Pálsson and L. Edelstein-Keshet, Mathematical model of macrophage-facilitated breast cancer cells invasion, J. Theor. Biol. 329 (2019), no. 2, 819–824.
[31] E.H. Lieb, Sharp constants in the Hardy–Littlewood–Sobolev and related inequalities, Ann. Math. 118 (1983), 349–374.
[32] E.H. Lieb and M. Loss, Analysis. In: Graduate Studies in Mathematics, vol. 14, 2nd edn. American Mathematical Society, Providence, 2001.
[33] E. H. Lieb and H.-T. Yau, The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics, Comm. Math. Phys. 112 (1987), no. 3, 147–174.
[34] K. Lin and T. Xiang, On boundedness, blow-up and convergence in a two-species and two-stimuli chemotaxis system with/without loop, Calc. Var. Partial Differential Equations 59 (2020), no. 4, 1–35.
[35] P. L. Lions, The concentration-compactness principle in calculus of variations. The locally compact case, Part 1, Ann. Inst. H. Poincaré 1 (1984), no. 2, 109–145.
[36] E. Mitidieri, Nonexistence of positive solutions of semilinear elliptic systems in \mathbb{R}^d, Differ. Integral Equations 9 (1996), 465–479.
[37] K. Painter and T. Hillen, Volume-filling and quorum-sensing in models for chemosensitive movement, Can. Appl. Math. Q. 10 (2002), no. 4, 501–543.
[38] B. Perthame, Transport Equation in Biology, Frontiers in Mathematics, Birkhäuser, 2007.
[39] J. Serrin and H. Zou, Non-existence of positive solutions of the Lane-Emden system, Differ. Integral Equations 9 (1996), 635–653.
[40] J. Serrin and H. Zou, Existence of positive solutions of the Lane-Emden system, Atti Sem. Mat. Fis. Univ. Modena 46 (1998), 369–380.
[41] I. Shafrir and G. Wolansky, Moser-Trudinger and logarithmic HLS inequalities for systems, J. Eur. Math. Soc. 7 (2005), 413–448.
[42] Y. Sugiyama, Global existence in sub-critical cases and finite time blow-up in super-critical cases to degenerate Keller-Segel systems, Differ. Integral Equations 19 (2006), no. 8, 864–876.
[43] Y. Sugiyama, Application of the best constant of the Sobolev inequality to degenerate Keller-Segel models, Advances in Differential Equations 12 (2007), no. 2, 121–144.
[44] Y. Sugiyama and H. Kunii, Global existence and decay properties for a degenerate Keller-Segel model with a power factor in drift term, J. Differential Equations 227 (2006), no. 1, 333–364.
[46] Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differential Equations 252 (2012), no. 1, 692–715.

[47] Y. Tao and M. Winkler, Boundedness vs. blow-up in a two-species chemotaxis system with two chemicals, Discrete Contin. Dyn. Syst. Ser. B 20 (2015), no. 9, 3165–3183.

[48] H. Yu, W. Wang and S. Zheng, Criteria on global boundedness versus finite time blow-up to a two-species chemotaxis system with two chemicals, Nonlinearity 31 (2018), no. 2, 502–514.