Research Article

Fuzzy C_e-I(ec, eo) and Fuzzy Completely C_e-I(rc, eo) Functions via Fuzzy e-Open Sets

V. Seenivasan and K. Kamala

Department of Mathematics, University College of Engineering Panruti (A Constituent College of Anna University, Chennai), Panruti, Tamil Nadu 607106, India

Correspondence should be addressed to V. Seenivasan; seenujsc@yahoo.co.in

Received 7 August 2015; Accepted 7 February 2016

Academic Editor: Bruno Carpentieri

Copyright © 2016 V. Seenivasan and K. Kamala. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We introduced the notions of fuzzy C_e-I(ec, eo) functions and fuzzy completely C_e-I(rc, eo) functions via fuzzy e-open sets. Some properties and several characterizations of these types of functions are investigated.

1. Introduction

With the introduction of fuzzy sets by Zadeh [1] and fuzzy topology by Chang [2], the theory of fuzzy topological spaces was subsequently developed by several fuzzy topologist based on the concepts of general topology. In 2014, the concept of fuzzy e-open sets and fuzzy e-continuity and separations axioms and their properties were defined by Seenivasan and Kamala [3]. In this paper, we introduce the notion of fuzzy C_e-I(ec, eo) functions, fuzzy C_e-continuous, fuzzy completely C_e-I(rc, eo) functions, and fuzzy e-kernel via fuzzy e-open sets and studied their properties and several characterizations of these types of functions are investigated. In this paper, we denote fuzzy e-open, fuzzy e-closed, and fuzzy regular closed as, eo, ec, and rc, respectively.

2. Preliminaries

Throughout this paper, $(X, τ)$ and $(Y, σ)$ (or simply X and Y) represent nonempty fuzzy topological spaces on which no separation axioms are assumed, unless otherwise mentioned.

Let $μ$ be any fuzzy set of X. The fuzzy closure of $μ$, fuzzy interior of $μ$, fuzzy $δ$-closure of $μ$, and the fuzzy $δ$-interior of $μ$ are denoted by $cl(μ)$, $int(μ)$, $cl_δ(μ)$, and $int_δ(μ)$, respectively. A fuzzy set $μ$ of X is called fuzzy regular open [4] (resp., fuzzy regular closed) if $μ = int(cl(μ))$ (resp., $μ = cl(int(μ))$).

The fuzzy $δ$-interior of fuzzy set $μ$ of X is the union of all fuzzy regular open sets contained in $μ$. A fuzzy set $μ$ is called fuzzy $δ$-open [5] if $μ = int_δ(μ)$. The complement of fuzzy $δ$-open set is called fuzzy $δ$-closed (i.e., $μ = cl_δ(μ)$). A fuzzy set $μ$ of X is called fuzzy $δ$-preopen [6] (resp., fuzzy $δ$-semi open [7]) if $μ \leq int(cl_δ(μ))$ (resp., $μ \leq cl(int_δ(μ))$). The complement of a fuzzy $δ$-preopen set (resp., fuzzy $δ$-semiopen set) is called fuzzy $δ$-preclosed (resp., fuzzy $δ$-semiclosed).

Definition 1. A fuzzy set $μ$ of a fuzzy topological space X is called fuzzy e-open [3] if $μ \leq cl(int(μ)) \lor int(cl(μ))$. Fuzzy e-closed if $μ \geq cl(int_δ(μ)) \land int_δ(cl(μ))$.

The intersection of all fuzzy e-closed sets containing $μ$ is called fuzzy e-closure of $μ$ and is denoted by $fe-cl(μ)$ and the union of all fuzzy e-open sets contained in $μ$ is called fuzzy e-interior of $μ$ and is denoted by $fe-int(μ)$.

Definition 2. A mapping $f : X \to Y$ is said to be fuzzy e*-open [8] if the image of every fuzzy e-open set in X is fuzzy e-open set in Y.

Definition 3. A function $f : X \to Y$ is called fuzzy e-irresolute [3]. $f^{-1}(λ)$ is fuzzy e-open in X for every fuzzy e-open set $λ$ of Y.

Definition 4. A fuzzy set $μ$ is quasicoincident [9] with a fuzzy set $λ$ denoted by $μ\lambda$ iff there exist $x \in X$ such that $μ(x) + λ(x) > 1$. If $μ$ and $λ$ are not quasicoincident, then we write $μ\lambda < λ$. $μ \leq λ$ iff $μ\lambda$.

Definition 5. A fuzzy point x_p is quasicoincident [9] with a fuzzy set $λ$ denoted by $x_p\lambda$ iff there exist $x \in X$ such that $p + λ(x) > 1$.

Definition 6. A fuzzy topological space (X, τ) is said to be fuzzy $e\text{-}T_1$ [3] if for each pair of distinct points x and y of X there exist fuzzy e-open sets μ and μ_2 such that $x \in \mu_1$ and $y \notin \mu_2$ and $x \notin \mu_2$ and $y \notin \mu_1$.

Definition 7. A fuzzy topological space (X, τ) is said to be fuzzy $e\text{-}T_2$ [3] if for each pair of distinct points x and y of X there exists disjoint fuzzy e-open sets η and ρ such that $x \in \eta$ and $y \notin \rho$.

Definition 8. A fuzzy topological space X is said to be fuzzy weakly Hausdorff [10] if for each element of X is an intersection of fuzzy regular closed sets.

Definition 9. A fuzzy topological space X is said to be fuzzy e-normal [3] if for every two disjoint fuzzy closed sets ρ and η of X there exist two disjoint fuzzy e-open sets μ and λ such that $\eta \leq \mu$ and $\rho \leq \lambda$ and $\mu \wedge \lambda = 0$.

Definition 10. A fuzzy topological space X is said to be fuzzy strongly normal [10] if for every two disjoint fuzzy closed sets η and ρ of X there exist two disjoint fuzzy e-open sets μ and λ such that $\eta \leq \mu$ and $\rho \leq \lambda$.

Definition 11. A fuzzy topological space X is said to be fuzzy Urysohn [11] if for every distinct points x and y in X there exist fuzzy open sets μ and λ in X such that $x \in \mu$ and $y \in \lambda$ and $\text{cl}(\mu) \wedge \text{cl}(\lambda) = 0$.

Definition 12. A space (X, τ) is called fuzzy S-closed [2] (resp., fuzzy e-compact [3]) if every fuzzy regular closed (resp., fuzzy e-open) cover of X has a finite subcover.

Definition 13. A function $f : X \to Y$ is called fuzzy completely continuous [12] if $f^{-1}(\lambda)$ is fuzzy regular open in X for every fuzzy open set λ in Y.

Definition 14. A fuzzy filter base ξ is said to be fuzzy rc-convergent [10] to a fuzzy point x_ϵ in X if for any fuzzy regular closed set η in X containing x_ϵ there exists a fuzzy set $\rho \in \xi$ such that $\rho \leq \eta$.

Definition 15. A collection of fuzzy subsets Δ of a fuzzy topological spaces X is said to form fuzzy filterbases [13] iff for every finite collection $\{\lambda_\alpha : \alpha = 1, 2, \ldots, n\}$, $\bigwedge_{\alpha=1}^{n} \lambda_\alpha \neq 0_X$.

3. Fuzzy $C_e\text{-}I$ (ec, eo) Functions

In this section, the notion of fuzzy $C_e\text{-}I$(ec, eo) functions is introduced and some characteristics and properties are studied.

Definition 16. A mapping $\varphi : (X, \tau) \to (Y, \sigma)$ is called fuzzy $C_e\text{-}I$(ec, eo) if the inverse image of every fuzzy e-open set of Y is fuzzy e-closed in X.

Remark 17. The concepts of fuzzy $C_e\text{-}I$(ec, eo) and fuzzy e-irresolute are independent notions as illustrated in the following example.

Example 18. Let $X = \{a, b, c\}$ and $Y = \{x, y, z\}$ and the fuzzy sets μ_1, μ_2, ν be defined as follows:

\[
\begin{align*}
\mu_1 (a) &= 0.1, \\
\mu_2 (a) &= 0.7, \\
\nu (x) &= 0.2, \\
\mu_1 (b) &= 0.6, \\
\mu_2 (b) &= 0.5, \\
\nu (y) &= 0.2, \\
\mu_1 (c) &= 0.4, \\
\mu_2 (c) &= 0.6, \\
\nu (z) &= 0.4.
\end{align*}
\]

Let $\tau = \{0, 1, \mu_1, \mu_2, \mu_1 \vee \mu_2, \mu_1 \wedge \mu_2\}$ and $\sigma = \{0, \nu, 1\}$. Then, the mapping $\varphi : (X, \tau) \to (Y, \sigma)$ is defined by $\varphi(a) = x$, $\varphi(b) = y$, $\varphi(c) = z$. Then, φ is fuzzy $C_e\text{-}I$(ec, eo) but not fuzzy e-irresolute.

Example 19. Let $X = \{a, b, c\}$ and $Y = \{x, y, z\}$ and the fuzzy sets η_1, η_2, ρ are defined as follows:

\[
\begin{align*}
\eta_1 (a) &= 0.4, \\
\eta_2 (a) &= 0.3, \\
\rho (x) &= 0.4, \\
\eta_1 (b) &= 0.7, \\
\eta_2 (b) &= 0.5, \\
\rho (y) &= 0.5, \\
\eta_1 (c) &= 0.8, \\
\eta_2 (c) &= 0.2, \\
\rho (z) &= 1.
\end{align*}
\]

Let $\tau = \{0, 1, \eta_1, \eta_2\}$ and $\sigma = \{0, \rho, 1\}$. Then, the mapping $\varphi : (X, \tau) \to (Y, \sigma)$ is defined by $\varphi(a) = x$, $\varphi(b) = y$, $\varphi(c) = z$. Then, φ is fuzzy e-irresolute but not fuzzy $C_e\text{-}I$(ec, eo).

Definition 20. A mapping $\varphi : (X, \tau) \to (Y, \sigma)$ is called fuzzy C_e-continuous if the inverse image of every fuzzy open set of Y is fuzzy e-closed in X.

Remark 21. Every fuzzy $C_e\text{-}I$(ec, eo) function is fuzzy C_e-continuous, but not conversely from the following example.
Example 22. Let $X = \{a, b, c\}$ and $Y = \{x, y, z\}$ and the fuzzy sets μ_1, μ_2, ν, v are defined as follows:

\[
\begin{align*}
\mu_1(a) &= 0.6, \\
\mu_2(a) &= 0.4, \\
\nu(a) &= 0.8, \\
\nu(x) &= 0.3, \\
\mu_1(b) &= 0.5, \\
\mu_2(b) &= 0.7, \\
\nu(b) &= 0.5, \\
\nu(y) &= 0.4, \\
\mu_1(c) &= 0.3, \\
\mu_2(c) &= 0.5, \\
\nu(c) &= 0.3, \\
\nu(z) &= 0.6.
\end{align*}
\]

Let $\tau = \{0, 1, \mu_1, \mu_2, \mu_1 \lor \mu_2, \mu_1 \land \mu_2\}$ and $\sigma = \{0, \nu, 1\}$. Then, the mapping $\varphi : (X, \tau) \rightarrow (Y, \sigma)$ is defined by $\varphi(a) = x$, $\varphi(b) = y$, and $\varphi(c) = z$. Then, φ is fuzzy C_e-continuous but not fuzzy $C_e-I(\text{ec}, \text{eo})$ as the fuzzy set v is fuzzy e-open in Y but $\varphi^{-1}(v)$ is not fuzzy e-closed set in X.

Theorem 23. For a fuzzy function $\varphi : X \rightarrow Y$, if $\varphi(x_\epsilon) \vert \mu$, the inverse image of every fuzzy e-closed set of Y is fuzzy e-open in X if for any $x_\epsilon \in X$, if $\varphi(x_\epsilon) \vert \mu$, then $x_\epsilon \lnot \varphi^{-1}(\varphi^{-1}(\mu))$.

Proof. Let $\mu \leq Y$ be a fuzzy e-closed set and $\varphi(x_\epsilon) \vert \mu$. Then, $x_\epsilon \varphi^{-1}(\mu)$ and, by hypothesis, $\varphi^{-1}(\mu) = \text{fe-int}(\varphi^{-1}(\mu))$. We obtain, $x_\epsilon \varphi^{-1}(\varphi^{-1}(\mu))$. Converse can be shown easily.

Theorem 24. For a fuzzy function $\varphi : X \rightarrow Y$, if $\varphi(x_\epsilon) \vert \mu$, for any fuzzy e-closed set $\mu \leq Y$ and for any $x_\epsilon \in X$, $x_\epsilon \varphi^{-1}(\varphi^{-1}(\mu))$ if there exists a fuzzy e-open set δ such that $x_\epsilon \delta$ and $\varphi(\delta) \leq \mu$.

Proof. Let $\mu \leq Y$ be any fuzzy e-closed set and let $\varphi(x_\epsilon) \vert \mu$. Then, $x_\epsilon \varphi^{-1}(\varphi^{-1}(\mu))$. Take $\delta = \text{fe-int}(\varphi^{-1}(\mu))$ then $\varphi(\delta) = \varphi(\text{fe-int}(\varphi^{-1}(\mu))) \leq \varphi(\varphi^{-1}(\mu)) \leq \mu$, and δ is fuzzy e-open in X and $x_\epsilon \delta$.

Conversely, let $\mu \leq Y$ be any fuzzy e-closed set and let $\varphi(x_\epsilon) \vert \mu$. By hypothesis, there exists fuzzy e-open set δ such that $x_\epsilon \delta$ and $\varphi(\delta) \leq \mu$. This implies, $\delta \leq \varphi^{-1}(\mu)$ and then $x_\epsilon \varphi^{-1}(\varphi^{-1}(\mu))$.

Theorem 25. For a fuzzy function $\varphi : X \rightarrow Y$, the following statements are equivalent:

1. f is fuzzy $C_e-I(\text{ec}, \text{eo})$.
2. For every fuzzy e-closed set μ in Y, $\varphi^{-1}(\mu)$ is fuzzy e-open in X.
3. For every fuzzy open set μ, $\varphi^{-1}(\text{fe-int}(\mu))$ is fuzzy e-closed.
4. For every fuzzy closed set η, $\varphi^{-1}(\text{fe-cl}(\eta))$ is fuzzy e-open.
5. For each $x_\epsilon \in X$ and each fuzzy e-closed set μ in Y containing $\varphi(x_\epsilon)$, there exists a fuzzy e-open set ρ in X containing x_ϵ such that $\varphi(\rho) \leq \mu$.
6. For each $x_\epsilon \in X$ and each fuzzy e-open set μ in Y noncontaining $\varphi(x_\epsilon)$, there exists a fuzzy e-closed set ν in X noncontaining x_ϵ such that $\varphi^{-1}(\nu) \leq \nu$.

Proof. (1) \Leftrightarrow (2): let ρ be a fuzzy e-open set in Y. Then, $1_Y - \rho$ is fuzzy e-closed. By (2), $\varphi^{-1}(1_Y - \rho) = 1_X - \varphi^{-1}(\rho)$ is fuzzy e-open. Thus, $\varphi^{-1}(\rho)$ is fuzzy e-closed. Converse can be shown easily.

(1) \Leftrightarrow (3): let μ be a fuzzy open set. Since $\text{fe-int}(\mu)$ is fuzzy e-open, then by (1) it follows that $\varphi^{-1}(\text{fe-int}(\mu))$ is fuzzy e-closed. The converse is easy to prove.

(2) \Leftrightarrow (4): let η be a fuzzy closed set. Since $\text{fe-cl}(\eta)$ is fuzzy e-closed set, then by (2) it follows that $\varphi^{-1}(\text{fe-cl}(\eta))$ is fuzzy e-open. The converse is easy to prove.

(2) \Leftrightarrow (5): let μ be any fuzzy e-closed set in Y containing $\varphi(x_\epsilon)$. By (2), $\varphi^{-1}(\mu)$ is fuzzy e-open set in X and $x_\epsilon \in \varphi^{-1}(\mu)$. Take $\rho = \varphi^{-1}(\mu)$. Then, $\varphi(\rho) \leq \mu$. The converse can be shown easily.

(5) \Leftrightarrow (6): let μ be any fuzzy e-open set in Y noncontaining $\varphi(x_\epsilon)$. Then, $1 - \mu$ is a fuzzy e-closed set containing $\varphi(x_\epsilon)$. By (5), there exists a fuzzy e-open set ρ in X containing x_ϵ such that $\varphi(\rho) \leq 1 - \mu$. Hence, $\rho \leq \varphi^{-1}(1 - \mu) = 1 - \varphi^{-1}(\mu)$ and $\varphi^{-1}(\mu) \leq 1 - \rho$. Take $\nu = 1 - \rho$. We obtain that ν is a fuzzy e-closed set in X noncontaining x_ϵ. The converse can be shown easily.

Theorem 26. Let $\phi : X \rightarrow Y$ be a function and let $\varphi : X \rightarrow Y \times Y$ be the fuzzy graph function of ϕ, defined by $\varphi(x_\epsilon) = (x_\epsilon, \phi(x_\epsilon))$ for every $x_\epsilon \in X$. If ϕ is fuzzy $C_e-I(\text{ec}, \text{eo})$, then ϕ is fuzzy $C_e-C_e-I(\text{ec}, \text{eo})$.

Proof. Let μ be a fuzzy e-closed set in Y; then, $1_X \times \mu$ is a fuzzy e-closed set in $X \times Y$. Since ϕ is fuzzy $C_e-I(\text{ec}, \text{eo})$, then $\phi^{-1}(\mu) = \phi^{-1}(1_X \times \mu)$ is fuzzy e-open in X. Thus, ϕ is fuzzy $C_e-C_e-I(\text{ec}, \text{eo})$.

Theorem 27. Let $\{Y_\lambda : \lambda \in \Lambda\}$ be a family of product spaces. If a function $\varphi : X \rightarrow \prod Y_\lambda$ is fuzzy $C_e-C_e-I(\text{ec}, \text{eo})$, then $P_\lambda \circ \varphi : X \rightarrow Y_\lambda$ is fuzzy $C_e-C_e-I(\text{ec}, \text{eo})$ for each $\lambda \in \Lambda$ where P_λ is the projection of $\prod Y_\lambda$ onto Y_λ.

Proof. Let δ be any fuzzy e-open set in Y_λ. Since P_λ is a fuzzy continuous and fuzzy open set, it is a fuzzy e-open set. Now $P_\lambda : \prod Y_\lambda \rightarrow Y_\lambda$, $P_\lambda^{-1}(\delta)$ is a fuzzy e-open in $\prod Y_\lambda$. Therefore, P_λ is a fuzzy e-irresolute function. Now $(P_\lambda \circ \varphi)^{-1}(\delta) = \varphi^{-1}(P_\lambda^{-1}(\delta))$, since φ is fuzzy $C_e-C_e-I(\text{ec}, \text{eo})$. Hence $\varphi^{-1}(P_\lambda^{-1}(\delta))$ is a fuzzy e-closed set, since $P_\lambda^{-1}(\delta)$ is a fuzzy e-open set. Hence, $P_\lambda \circ \varphi$ is fuzzy $C_e-C_e-I(\text{ec}, \text{eo})$.

Theorem 28. If the function $\varphi : \prod X_\lambda \rightarrow \prod Y_\lambda$ is fuzzy $C_e-C_e-I(\text{ec}, \text{eo})$, then $\varphi_\lambda : X_\lambda \rightarrow Y_\lambda$ is fuzzy $C_e-C_e-I(\text{ec}, \text{eo})$ for each $\lambda \in \Lambda$.
Proof. Let $\lambda_0 \in \Lambda$ be an arbitrary fixed index and let ν_{λ_0} be any fuzzy e-open set of Y_{λ_0}; then, $[Y_{\lambda_0} \times \nu_{\lambda_0}]$ is fuzzy e-open in $[Y_{\lambda_0}]$, where $\lambda_0 \neq \mu \in \Lambda$. Since φ is fuzzy C_e-I (ec, eo) function, then $\varphi^{-1}(Y_{\lambda_0} \times \nu_{\lambda_0}) = \bigsqcap X_{\mu} \times \nu_{\lambda_0}$ is fuzzy e-closed in $[X_{\lambda_0}]$ and hence $\varphi^{-1}_Y(Y_{\lambda_0})$ is fuzzy e-closed in X_{λ_0}. This implies φ^{-1}_Y is fuzzy C_e-I (ec, eo).

Theorem 29. If $\varphi : X \to Y$ is fuzzy C_e-I (ec, eo) and δ is fuzzy closed set of X, then $\varphi^{-1}_Y : \delta \to Y$ is fuzzy C_e-I (ec, eo).

Proof. Let λ be a fuzzy e-open set of Y; then, $(\varphi^{-1}_Y)^{-1}(\lambda) = \varphi^{-1}(\lambda \land \delta)$. Since $\varphi^{-1}(\lambda)$ and δ are fuzzy closed, hence $(\varphi^{-1}_Y)^{-1}(\lambda)$ is fuzzy e-closed in the relative topology of δ.

Definition 30. The intersection of all fuzzy e-open set η of a fuzzy topological space (X, τ) containing μ is called the fuzzy e-kernel of μ (briefly, fe-K_{μ}), fe-$K_{\mu} = \bigsqcap \{ \eta : \mu \leq \eta \land \eta$ is fuzzy e-open set of $X \}$. The following properties hold for fuzzy sets μ, λ of X:

1. $x \in$ fe-K_{μ} iff $\mu \land \eta \neq 0$ for any fuzzy e-closed set η containing x.
2. $\mu \leq$ fe-K_{μ} and $\mu =$ fe-K_{μ} if μ is fuzzy e-open in X.
3. $\mu \leq \tau$; then, fe-$K_{\mu} \subseteq$ fe-K_{λ}.

Theorem 31. For a fuzzy function $\varphi : X \to Y$, the following statements are equivalent:

1. φ is fuzzy C_e-I (ec, eo).
2. $\varphi^{-1}(fe-cl(\mu)) \subseteq fe-K_{\varphi(\mu)}$ for every fuzzy set μ of X.
3. $fe-cl(\varphi^{-1}(\eta)) \subseteq \varphi^{-1}(fe-K_{\eta})$ for every fuzzy set η of Y.

Proof. (1) \Rightarrow (2): Let $\mu \leq \mu \leq Y \neq fe-K_{\varphi(\mu)}$. There exists a fuzzy e-closed set γ in Y, such that $\gamma \neq \gamma \land \gamma = 0$. Therefore, $\varphi^{-1}(\varphi(\mu) \land \gamma) = 0$. This implies that $\mu \land \gamma \neq 0$ and fe-$K(\mu) \varphi^{-1}(0) = 0$. Thus, $\varphi^{-1}(\mu \land \gamma) = 0$ and $\varphi \neq \varphi^{-1}(fe-cl(\mu))$. Hence, $fe-cl(\varphi^{-1}(\eta)) \neq fe-K_{\varphi(\mu)}$.

(2) \Rightarrow (3): Let $\eta \leq \mu$; then, $\varphi^{-1}(\eta) \leq \varphi^{-1}(\mu) \land \gamma$. By hypothesis, $\varphi^{-1}(fe-cl(\eta)) \neq fe-K_{\varphi^{-1}(\eta)} \leq fe-K_{\varphi^{-1}(\mu)}$. Hence, $fe-cl(\varphi^{-1}(\eta)) \neq \varphi^{-1}(fe-K_{\eta})$.

(3) \Rightarrow (1): Let η be any fuzzy e-open set of Y; we have $fe-cl(\varphi^{-1}(\eta)) \neq \varphi^{-1}(fe-K_{\eta}) = \varphi^{-1}(\eta)$, since η is fuzzy e-open and fe-$K(\varphi^{-1}(\eta)) = \varphi^{-1}(\eta)$. This implies that $\varphi^{-1}(\eta)$ is fuzzy e-closed in X.

Definition 32. The fuzzy e-Frontier of a fuzzy set γ of a fuzzy topological space X is given by $fe-Fr(\gamma) = fe-cl(\gamma) \land fe-cl(1_X - \gamma)$.

Theorem 33. The fuzzy point $x_\gamma \in X$ such that $\varphi : X \to Y$ is not fuzzy C_e-I (ec, eo) is exactly the union of fuzzy e-Frontier if the inverse image of the fuzzy e-closed set in Y contains $\varphi(x_{\gamma})$.

Proof. Suppose that φ is not fuzzy C_e-I (ec, eo) at the point $x_{\gamma} \in X$; then there exists a fuzzy e-closed set γ such that $\varphi^{-1}(\gamma) \neq \varphi(\mu) \land (1_Y - \gamma) \neq 0$ for all fuzzy e-open set μ such that $x_{\gamma} \in \mu$. It follows that $\mu \land \varphi^{-1}(1_Y - \gamma) \neq 0$ and hence $x_{\gamma} \in fe-cl(\varphi^{-1}(1_Y - \gamma)) = fe-cl(1_X - \varphi^{-1}(\gamma))$. Thus, $x_{\gamma} \in \varphi^{-1}(\gamma) \subseteq fe-cl(\varphi^{-1}(\gamma))$ and hence $x_{\gamma} \in fe-Fr(\varphi^{-1}(\gamma))$. Conversely, suppose that $x_\gamma \in fe-Fr(\varphi^{-1}(\gamma))$, γ is fuzzy e-closed set of Y containing $\varphi(x_{\gamma})$, and φ is fuzzy C_e-I (ec, eo) at $x_{\gamma} \in X$. There exists fuzzy e-open set μ such that $x_{\gamma} \in \mu$ and $\varphi(\mu) \leq \varphi(\gamma)$. Thus, $x_\gamma \in fe-int(\varphi^{-1}(\gamma))$ and hence $x_\gamma \in fe-Fr(\varphi^{-1}(\gamma))$ for each fuzzy e-closed set γ of Y containing $\varphi(x_{\gamma})$, a contradiction. Therefore, φ is not fuzzy C_e-I (ec, eo).

Theorem 34. The following hold for functions $\varphi : X \to Y$ and $\eta : Y \to Z$:

(a) If $\varphi : X \to Y$ is fuzzy C_e-I (ec, eo) and $\varphi : Y \to Z$ is fuzzy C_e-continuous then $\varphi \circ \varphi : X \to Z$ is fuzzy C_e-continuous.

(b) If $\varphi : X \to Y$ is fuzzy C_e-I (ec, eo) and $\varphi : Y \to Z$ is fuzzy e-irresolute then $\varphi \circ \varphi : X \to Z$ is fuzzy C_e-I (ec, eo).

Theorem 35. If $\varphi : X \to Y$ is a fuzzy e-irresolute surjective function and $\varphi : Y \to Z$ is a fuzzy function such that $\varphi \circ \varphi : X \to Z$ is fuzzy C_e-continuous, then φ is fuzzy C_e-I (ec, eo).

Proof. Let η be any fuzzy closed set in Z. Since $\varphi \circ \varphi$ is fuzzy C_e-I (ec, eo), $(\varphi \circ \varphi)^{-1}(\eta)$ is fuzzy e-open in X. Therefore, $(\varphi \circ \varphi)^{-1}(\eta) \subseteq (\varphi \circ \varphi)^{-1}(\eta)$ is fuzzy e-open in X. Since φ is fuzzy e-irresolute, surjection implies $(\varphi^{-1} \varphi^{-1}(\eta)) = \varphi^{-1}(\eta)$ is fuzzy e-open in Y. Thus, φ is fuzzy C_e-I (ec, eo).

Theorem 36. If $\varphi : X \to Y$ is a fuzzy e^*-open surjective function and $\varphi : Y \to Z$ is a fuzzy function such that $\varphi \circ \varphi : X \to Z$ is fuzzy C_e-continuous, then φ is fuzzy C_e-I (ec, eo).

Proof. Let η be any fuzzy closed set in Z. Since $\varphi \circ \varphi$ is fuzzy C_e-continuous, $(\varphi \circ \varphi)^{-1}(\eta)$ is fuzzy e-open in X. Therefore, $(\varphi \circ \varphi)^{-1}(\eta) \subseteq (\varphi \circ \varphi)^{-1}(\eta)$ is fuzzy e-open in X. Since φ is fuzzy e^*-open, surjection implies $(\varphi^{-1} \varphi^{-1}(\eta)) = \varphi^{-1}(\eta)$ is fuzzy e-open in Y. Thus, φ is fuzzy C_e-I (ec, eo).

4. Fuzzy Completely C_e-I (rc, eo) Functions

In this section, the notion of fuzzy completely C_e-I (rc, eo) functions is introduced and the relation between other functions is studied and further some structure preservation properties are investigated.

Definition 37. A mapping $\varphi : (X, \tau) \to (Y, \sigma)$ is called fuzzy completely C_e-I (rc, eo) if inverse image of every fuzzy e-open set in Y is fuzzy regular closed in X. Example 38. Let $X = \{x, y, z\}$ and the fuzzy sets μ_1, μ_2 are defined as follows:

$$
\begin{align*}
\mu_1(x) & = 0.4, \\
\mu_2(x) & = 0.7, \\
\mu_1(y) & = 0.6, \\
\mu_2(y) & = 0.3, \\
\mu_1(z) & = 0.1, \\
\mu_2(z) & = 0.5.
\end{align*}
$$
Let $\tau = \{0, 1, \mu_1, \mu_2, \mu_1 \vee \mu_2, \mu_1 \wedge \mu_2\}$ and $\sigma = \{0, \mu_1, \mu_1 \wedge \mu_2, 1\}$. Then, the mapping $\varphi : (X, \tau) \to (X, \sigma)$ is defined by $\varphi(x) = 1 - x$. Then, φ is fuzzy completely $C_e(I)(rc, eo)$.

Remark 39. Every fuzzy completely $C_e(I)(rc, eo)$ function is fuzzy $C_e(I)(ec, eo)$ and fuzzy C_e-continuous, but the converse is not true, which can be seen in the following example.

Example 40. Let $X = \{a, b, c\}$ and $Y = \{x, y, z\}$ and the fuzzy sets μ_1, μ_2 and ν are defined as follows:

$$
\begin{align*}
\mu_1(a) &= 0.6, \\
\mu_2(a) &= 0.3, \\
\nu(x) &= 0.4, \\
\mu_1(b) &= 0.5, \\
\mu_2(b) &= 0.7, \\
\nu(y) &= 0.3, \\
\mu_1(c) &= 0.2, \\
\mu_2(c) &= 0.8, \\
\nu(z) &= 0.1.
\end{align*}
$$

Let $\tau = \{0, 1, \mu_1, \mu_2, \mu_1 \vee \mu_2, \mu_1 \wedge \mu_2\}$ and $\sigma = \{0, \nu, 1\}$. Then, the mapping $\varphi : (X, \tau) \to (Y, \sigma)$ is defined by $\varphi(a) = x$, $\varphi(b) = y$, $\varphi(c) = z$. Then, φ is fuzzy C_e-continuous and also fuzzy $C_e(I)(ec, eo)$ but not fuzzy completely $C_e(I)(rc, eo)$ as the fuzzy set ν is fuzzy e-open in Y but $\varphi^{-1}(\nu)$ is not fuzzy regular closed set in X.

From the above examples, we have the following implications.

- **Fuzzy completely $C_e(I)(rc, eo)$**
- **Fuzzy $C_e(I)(ec, eo)$**
- **Fuzzy C_e-continuous**

None of these implications is reversible.

Theorem 41. For a fuzzy function $\varphi : X \to Y$, if $\varphi(x)_{\mu} \mu$, the inverse image of every fuzzy e-closed set of Y is fuzzy δ-open in X iff for any $x \in X$ if $\varphi(x)_{\mu} \mu$, then $x, qint_3(\varphi^{-1}(\mu))$.

Proof. Let $\mu \leq Y$ be a fuzzy e-closed set and $\varphi(x)_{\mu} \mu$. Then, $\nu, q\varphi^{-1}(\mu)$ and, by hypothesis, $\varphi^{-1}(\mu) = int_3(\varphi^{-1}(\mu))$. From here, $x, qint_3(\varphi^{-1}(\mu))$. The converse can be shown easily.

Theorem 42. For a fuzzy function $\varphi : X \to Y$, if $\varphi(x)_{\mu} \mu$, for any fuzzy e-closed set $\mu \leq Y$ and for any $x \in X$, $x, qint_3(\varphi^{-1}(\mu))$ iff there exists a fuzzy δ-open set θ such that $x, q\theta$ and $\varphi(\theta) \leq \mu$.

Proof. Let $\mu \leq Y$ be any fuzzy e-closed set and let $\varphi(x)_{\mu} \mu$. Then, $x, qint_3(\varphi^{-1}(\mu))$. Take $\theta = int_3(\varphi^{-1}(\mu))$; then, $\varphi(\theta) = \varphi(int_3(\varphi^{-1}(\mu))) \leq \varphi^{-1}(\mu) \leq \mu$; θ is fuzzy δ-open in X and $x, q\theta$.

Conversely, let $\mu \leq Y$ be any fuzzy e-closed set and let $\varphi(x)_{\mu} \mu$. By hypothesis, there exists fuzzy δ-open set θ such that $x, q\theta$ and $\varphi(\theta) \leq \mu$. This implies $\theta \leq \varphi^{-1}(\mu)$ and then $x, qint_3(\varphi^{-1}(\mu))$.

Theorem 43. For a fuzzy function $\varphi : X \to Y$, the following statements are equivalent:

1. f is fuzzy completely $C_e(I)(rc, eo)$.
2. For every fuzzy e-closed set μ in Y, $\varphi^{-1}(\mu)$ is fuzzy regular open in X.
3. For every fuzzy open set μ, $\varphi^{-1}(fe-int(\mu))$ is fuzzy regular closed.
4. For every fuzzy closed set η, $\varphi^{-1}(fe-cl(\eta))$ is fuzzy regular open.
5. For each $x_\epsilon \in X$ and each fuzzy e-closed set μ in Y containing $\varphi(x_\epsilon)$, there exists a fuzzy regular open set ρ in X containing x_ϵ such that $\varphi(\rho) \leq \mu$.
6. For each $x_\epsilon \in X$ and each fuzzy e-open set μ in Y noncontaining $\varphi(x_\epsilon)$, there exists a fuzzy regular closed set ν in X noncontaining x_ϵ such that $\varphi^{-1}(\nu) \leq \mu$.

Proof. (1) \Leftrightarrow (2): let μ be a fuzzy e-open set in Y. Then, $1-\mu$ is fuzzy e-closed. By (2), $\varphi^{-1}(1-\mu) = 1-\varphi^{-1}(\mu)$ is fuzzy regular open. Thus, $\varphi^{-1}(\rho)$ is fuzzy regular closed. Thus, φ is fuzzy completely $C_e(I)(rc, eo)$. The converse can be shown easily.

(1) \Leftrightarrow (3): let μ be a fuzzy open set. Since $fe-int(\mu)$ is fuzzy e-open, then by (1) it follows that $\varphi^{-1}(fe-int(\mu))$ is fuzzy regular closed. The converse is easy to prove.

(2) \Leftrightarrow (4): let η be a fuzzy closed set. Since $fe-cl(\eta)$ is fuzzy e-closed, then by (2) it follows that $\varphi^{-1}(fe-cl(\eta))$ is fuzzy regular open. The converse is easy to prove.

(2) \Leftrightarrow (5): let μ be any fuzzy e-closed set in Y containing $\varphi(x_\epsilon)$. By (2), $\varphi^{-1}(\mu)$ is fuzzy regular open set in X and $x_\epsilon \in \varphi^{-1}(\mu)$. Take $\rho = \varphi^{-1}(\mu)$. Then, $\varphi(\rho) \leq \mu$. The converse can be shown easily.

(5) \Leftrightarrow (6): let μ be any fuzzy e-open set in Y noncontaining $\varphi(x_\epsilon)$. Then, $1-\mu$ is a fuzzy e-closed set containing $\varphi(x_\epsilon)$. By (5), there exists a fuzzy regular open set ρ in X containing x_ϵ such that $\varphi(\rho) \leq 1-\mu$. Hence, $\rho \leq \varphi^{-1}(1-\mu) = 1-\varphi^{-1}(\mu)$ and $\varphi^{-1}(\mu) \leq 1-\rho$. Take $\nu = 1-\rho$. We obtain that ν is a fuzzy regular closed set in X noncontaining x_ϵ. The converse can be shown easily.

Theorem 44. Let $\varphi_1 : X \to Y$ be a function and let $\varphi_2 : X \to X \times Y$ be the fuzzy graph function of φ_1, defined by $\varphi_2(x_\epsilon) = (x_\epsilon, \varphi_1(x_\epsilon))$ for every $x_\epsilon \in X$. If φ_2 is fuzzy completely $C_e(I)(rc, eo)$, then φ_1 is fuzzy completely $C_e(I)(rc, eo)$.

Proof. Let μ be a fuzzy e-closed set in Y; then, $1_X \times \mu$ is a fuzzy e-closed set in $X \times Y$. Since φ_2 is fuzzy completely $C_e(I)(rc, eo)$, then $\varphi_1^{-1}(\mu) = \varphi_2^{-1}(1_X \times \mu)$ is fuzzy regular open in X. Thus, φ_1 is fuzzy completely $C_e(I)(rc, eo)$.
Theorem 45. The following holds for functions $\varphi_1: X \rightarrow Y$ and $\varphi_2: Y \rightarrow Z$:

(a) If $\varphi_1: X \rightarrow Y$ is fuzzy $C_e^{-1}(rc, eo)$ and $\varphi_2: Y \rightarrow Z$ is fuzzy completely $C_e^{-1}(rc, eo)$, then $\varphi_2 \circ \varphi_1: X \rightarrow Z$ is fuzzy e-irresolute.

(b) If $\varphi_1: X \rightarrow Y$ is fuzzy completely $C_e^{-1}(rc, eo)$ and $\varphi_2: Y \rightarrow Z$ is fuzzy C_e^{-1}-continuous, then $\varphi_2 \circ \varphi_1: X \rightarrow Z$ is fuzzy completely continuous.

Definition 46. A fuzzy filter base ξ is said to be fuzzy e-convergent to a fuzzy point x_ξ in X if for any fuzzy e-open set η in X containing x_ξ there exists a fuzzy set $\rho \in \xi$ such that $\rho \leq \eta$.

Theorem 47. If a fuzzy function $\varphi: X \rightarrow Y$ is fuzzy completely $C_e^{-1}(rc, eo)$ for each fuzzy point $x_\xi \in X$, and each fuzzy filter base ξ in X is fuzzy rc-convergent to x_ξ, then the fuzzy filter base $\varphi(\xi)$ is fuzzy e-convergent to $\varphi(x_\xi)$.

Proof. Let $\xi = \{x_\xi\} \subseteq X$ be any fuzzy filter base in X which is fuzzy rc-convergent to x_ξ. Since φ is fuzzy completely $C_e^{-1}(rc, eo)$, then for any fuzzy e-open set η in Y containing $\varphi(x_\xi)$, there exists a fuzzy regular closed set $\rho \in \rho$ in X containing x_ξ such that $\varphi(\rho) \subseteq \eta$. Since ξ is fuzzy rc-convergent to x_ξ, there exists a $\delta \in \xi$ such that $\delta \subseteq \rho$. This means that $\varphi(\delta) \subseteq \rho$ and therefore the fuzzy filter base $\varphi(\xi)$ is fuzzy e-convergent to $\varphi(x_\xi)$.

Theorem 48. If $\varphi: X \rightarrow Y$ is a fuzzy completely $C_e^{-1}(rc, eo)$ surjection and X is fuzzy S-closed, then Y is fuzzy e-compact.

Proof. Suppose that $\varphi: X \rightarrow Y$ is a fuzzy completely $C_e^{-1}(rc, eo)$ surjection and X is fuzzy S-closed. Let $\{\eta_i\}_{i \in I}$ be a fuzzy e-closed cover of Y. Since φ is a fuzzy completely $C_e^{-1}(rc, eo)$, then $\varphi^{-1}(\eta_i)$ is fuzzy regular closed cover of X and hence there exists finite set $I_0 \subseteq I$ such that $X = \bigcup \{\varphi^{-1}(\eta_i) : i \in I_0\}$. Therefore, we have $Y = \bigcup \{\eta_i : i \in I_0\}$ and Y is fuzzy e-compact.

Theorem 49. If $\varphi: X \rightarrow Y$ is a fuzzy completely $C_e^{-1}(rc, eo)$ injection and Y is fuzzy $e^{-1}T_1$, then X is fuzzy weakly Hausdorff.

Proof. Suppose Y is fuzzy $e^{-1}T_1$. For any distinct fuzzy points x_ξ and y_μ in X, there exist fuzzy e-open sets η and ρ in Y. Since φ is injective, $\varphi(x_\xi) \in \eta$, $\varphi(y_\mu) \notin \eta$, $\varphi(x_\xi) \in \rho$, and $\varphi(y_\mu) \notin \rho$. Since φ is fuzzy completely $C_e^{-1}(rc, eo)$, $\varphi^{-1}(\eta)$ and $\varphi^{-1}(\rho)$ are fuzzy regular closed sets of X such that $x_\xi \in \varphi^{-1}(\eta)$, $y_\mu \notin \varphi^{-1}(\eta)$, $x_\xi \notin \varphi^{-1}(\rho)$, and $y_\mu \in \varphi^{-1}(\rho)$. This shows that X is fuzzy weakly Hausdorff.

Theorem 50. If $\varphi: X \rightarrow Y$ is a fuzzy completely $C_e^{-1}(rc, eo)$ injection and Y is fuzzy e^{-1} normal, then X is fuzzy strongly normal.

Proof. Let η and ρ be disjoint nonempty fuzzy closed sets of X. Since φ is injective, $\varphi(\eta)$ and $\varphi(\rho)$ are disjoint fuzzy closed sets. Since Y is fuzzy e-normal, there exist fuzzy e-open sets μ and λ such that $\varphi(\eta) \subseteq \mu$ and $\varphi(\rho) \subseteq \lambda$ and $\mu \cap \lambda = 0$. This implies that $fe-cl(\mu)$ and $fe-cl(\lambda)$ are fuzzy e-closed sets in Y. Then, since φ is fuzzy completely $C_e^{-1}(rc, eo)$, $\varphi^{-1}(fe-cl(\mu))$ and $\varphi^{-1}(fe-cl(\lambda))$ are fuzzy regular open sets. Then, $\eta \subseteq \varphi^{-1}(fe-cl(\mu))$ and $\rho \subseteq \varphi^{-1}(fe-cl(\lambda))$ and $\varphi^{-1}(fe-cl(\mu))$ and $\varphi^{-1}(fe-cl(\lambda))$ are disjoint; hence X is fuzzy strongly normal.

Definition 51. A fuzzy topological space (X, τ) is said to be fuzzy $e^{-1}T_0$ ($r-T_0$) [14] if for every fuzzy set λ of X can be written in the form $\lambda = \bigvee_{i \in I} \lambda_i$, where λ_i are fuzzy e-open (fuzzy regular open) or fuzzy e-closed (fuzzy regular closed) sets of Y.

Theorem 52. If $\varphi: X \rightarrow Y$ is a fuzzy completely $C_e^{-1}(rc, eo)$ injection and Y is fuzzy $e^{-1}T_0$, then X is fuzzy $r-T_0$.

Proof. Let η be a any fuzzy set of X. Since Y is fuzzy $e^{-1}T_0$, $\varphi(\eta)$ is fuzzy e-open set of Y. Then, $\varphi(\eta) = \bigvee_{i \in I} \lambda_i$, where λ_i are fuzzy e-open set or fuzzy e-closed sets of Y. Since φ is completely $C_e^{-1}(rc, eo)$ injection we have $\eta = \varphi^{-1}(\varphi(\eta)) = \varphi^{-1}(\varphi(\varphi^{-1}(\varphi^{-1}(\eta_i)))) = \bigvee_{i \in I} \lambda_i$, where λ_i are fuzzy regular open sets or fuzzy regular closed sets of Y. Thus, X is fuzzy $r-T_0$.

Theorem 53. If $\varphi: X \rightarrow Y$ is a fuzzy completely $C_e^{-1}(rc, eo)$ injection and Y is fuzzy $e^{-1}T_2$, then X is fuzzy Urysohn.

Proof. Let x_ξ and y_μ be any two distinct fuzzy points in X. Since φ is injective, $\varphi(x_\xi) \neq \varphi(y_\mu)$. In Y φ is fuzzy $e^{-1}T_2$, there exist fuzzy e-open sets η and ρ such that $\varphi(x_\xi) \in \eta$ and $\varphi(y_\mu) \in \rho$. This implies that $fe-cl(\eta)$ and $fe-cl(\rho)$ are fuzzy e-closed sets in Y. Then, since φ is fuzzy completely $C_e^{-1}(rc, eo)$, there exists fuzzy regular open sets δ and γ in X containing x_ξ, and y_μ, respectively, such that $\varphi(\delta) \subseteq fe-cl(\eta)$ and $\varphi(\gamma) \subseteq fe-cl(\rho)$. This implies that $\delta \subseteq \varphi^{-1}(fe-cl(\eta))$ and $\gamma \subseteq \varphi^{-1}(fe-cl(\rho))$, we have that $\varphi^{-1}(fe-cl(\eta))$ and $\varphi^{-1}(fe-cl(\rho))$ are disjoint and hence $cl(\delta) \cap cl(\gamma) = 0$; by definition, X is fuzzy Urysohn.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

References

[1] L. A. Zadeh, "Fuzzy sets," Information and Control, vol. 8, no. 3, pp. 338–353, 1965.

[2] C. L. Chang, "Fuzzy topological spaces," Journal of Mathematical Analysis and Applications, vol. 24, pp. 182–190, 1968.

[3] V. Seenivasan and K. Kamala, "Fuzzy e-continuity and fuzzy e-open sets," Annals of Fuzzy Mathematics and Informatics, vol. 8, no. 1, pp. 141–148, 2014.

[4] K. K. Azad, "On fuzzy semicontinuity, fuzzy almost continuity and fuzzy weakly continuity," Journal of Mathematical Analysis and Applications, vol. 82, no. 1, pp. 14–32, 1981.

[5] N. Veličko, "H-closed topological spaces," American Mathematical Society Translations, vol. 78, no. 2, pp. 103–118, 1968.
[6] A. Bhattacharyya and M. N. Mukherjee, “On fuzzy δ-almost continuous and δ∗-almost continuous functions,” *Journal of Tripura Mathematical Society*, vol. 2, pp. 45–57, 2000.

[7] A. Mukherjee and S. Debnath, “δ-semi open sets in fuzzy setting,” *Journal of Tripura Mathematical Society*, vol. 8, pp. 51–54, 2006.

[8] V. Seenivasan and K. Kamala, “Some aspects of fuzzy ê-closed set,” *Annals of Fuzzy Mathematics and Informatics*, vol. 9, no. 6, pp. 1019–1027, 2015.

[9] P.-M. Pu and Y.-M. Liu, “Fuzzy topology. I. Neighborhood structure of a fuzzy point and Moore-Smith convergence,” *Journal of Mathematical Analysis and Applications*, vol. 76, no. 2, pp. 571–599, 1980.

[10] E. Ekici, “On the forms of continuity for fuzzy functions,” *Annals of the University of Craiova—Mathematics and Computer Science Series*, vol. 34, no. 1, pp. 58–65, 2007.

[11] S.-L. Chen, “Fuzzy Urysohn spaces and α-stratified fuzzy Urysohn space,” in *Proceedings of the 5th IFSA World Congress*, pp. 453–456, Seoul, Republic of Korea, July 1993.

[12] R. N. Bhaumik and A. Mukherjee, “Fuzzy completely continuous mappings,” *Fuzzy Sets and Systems*, vol. 56, no. 2, pp. 243–246, 1993.

[13] S. Ganguly and S. Saha, “A note on compactness in a fuzzy setting,” *Fuzzy Sets and Systems*, vol. 34, no. 1, pp. 117–124, 1990.

[14] S. Lal and P. Singh, “Some Stronger forms fuzzy continuous mappings,” *Soochow Journal of Mathematics*, vol. 22, no. 1, pp. 17–32, 1996.