We describe the present status of the pion distribution amplitude as it originated from two sources: (i) a nonperturbative approach, based on QCD sum rules with nonlocal condensates and (ii) a NLO QCD analysis of the CLEO data on $F_{\gamma^*\pi}(Q^2)$, supplemented by the recent high-precision lattice calculations of the second moment of the pion distribution amplitude.

Keywords: Pion Distribution Amplitude; QCD Sum Rules; Lattice QCD; CLEO data.

PACS numbers: 12.38.Aw, 12.38.Cy, 13.40.Gp

1. Pion distribution amplitude from QCD sum rules

The pion distribution amplitude ϕ_π, describes the transition of a pion $\pi(P)$ to a pair of valence quarks u and d, separated by the (straight) Fock–Schwinger connector E, with corresponding momentum fractions xP and $\bar{x}P$, $(\bar{x} \equiv 1 - x)$. In order to obtain the pion DA we use a QCD sum rule (SR) approach with non-local condensates (NLC), employing for the scalar and vector condensates the same minimal model as in the QCD SRs and on the lattice:

$$\langle \bar{q}(0)q(z) \rangle = \langle \bar{q}q \rangle e^{-|z^2|\lambda^2_\varphi/8} ; \quad \langle \bar{q}(0)\gamma_\mu q(z) \rangle = i\frac{z^2}{4} \frac{2\alpha_s\pi \langle \bar{q}q \rangle^2}{81} e^{-|z^2|\lambda^2_\varphi/8}. \quad (2)$$

The nonlocality parameter $\lambda^2_\varphi = \langle k^2 \rangle$ characterizes the average momentum of quarks in the QCD vacuum and has been estimated in QCD SRs and on the lattice.

$$\lambda^2_\varphi = 0.45 \pm 0.1 \text{ GeV}^2.$$ For the quark-gluon-antiquark condensates we use

$$\langle \bar{q}(0)\gamma_\mu (-g \hat{A}_\nu(y))q(x) \rangle = (y_\mu x_\nu - g_\mu_\nu(yx))M_1(x^2, y^2, (y - x)^2),$$

$$+ (y_\mu y_\nu - g_\mu_\nu y^2)M_2(x^2, y^2, (y - x)^2),$$

$$\langle \bar{q}(0)\gamma_5 \gamma_\mu (-g \hat{A}_\nu(y))q(x) \rangle = i\varepsilon_{\mu\nuyx}M_3(x^2, y^2, (y - x)^2),$$

with $(A_{1,2,3} = A_0 (-\frac{3}{2}, 2, \frac{3}{2}))$

$$M_i(x^2, y^2, z^2) = A_i \int_0^\infty d\alpha \int_0^\infty d\beta \int_0^\infty d\gamma f_i(\alpha, \beta, \gamma) e^{(\alpha x^2 + \beta y^2 + z^2)/4}. \quad (3)$$
Fig. 1. (a) “Bunch” of pion DAs extracted from NLC QCD sum rules. \(F^\gamma_{\gamma \pi}(Q^2)\) for comparison we show here also the asymptotic DA (dotted line) and Chernyak–Zhitnitsky (CZ) DA (dashed red line). (b) Allowed values of the pion DA parameters \(a_2\) and \(a_4\) are bounded by the solid blue line. Region bounded by the dotted red line represents results obtained in the minimal model. Both panels show results for the value \(\lambda^2 = 0.4\) GeV.

The minimal model of nonlocal QCD vacuum suggests the following Ansätze

\[
f_i(\alpha, \beta, \gamma) = \delta(\alpha - \Lambda) \delta(\beta - \Lambda) \delta(\gamma - \Lambda)
\]

with \(\Lambda = \frac{1}{2}\lambda_\pi^2\) and faces problems with QCD equations of motion and gauge invariance of 2-point correlator of vector currents. In order to fulfill QCD equations of motion exactly and minimize non-transversity of \(V^\pi_{\gamma \gamma}\) correlator we suggest the improved model of QCD vacuum with

\[
f_i^{\text{imp}}(\alpha, \beta, \gamma) = (1 + X_i \partial_x + Y_i \partial_y + Z_i \partial_z) \delta(\alpha - x\Lambda) \delta(\beta - y\Lambda) \delta(\gamma - z\Lambda),
\]

where \(x = y, \Lambda = \frac{1}{2}\lambda_\pi^2\) and

\[
X_1 = +0.082; \quad X_2 = -1.298; \quad X_3 = +1.775; \quad x = 0.788;
\]

\[
Y_1 = -2.243; \quad Y_2 = -0.239; \quad Y_3 = -3.166; \quad y = 0.212.
\]

Then the NLC sum rules for the pion DA produce a “bunch” of 2-parameter models at \(\mu^2 = 1.35\) GeV\(^2\) (with \(\varphi^{as}(x) \equiv 6x(1-x)\))

\[
\varphi_\pi(x) = \varphi^{as}(x) \left[1 + a_2 C_2^{3/2}(2x - 1) + a_4 C_4^{3/2}(2x - 1)\right],
\]

shown in Fig. 1b. Allowed values of this bunch parameters \(a_2\) and \(a_4\) are shown in Fig. 1b with coordinates of the central point to be \(a_2 = 0.268\) and \(a_4 = -0.186\). These values correspond to \(\langle x^{-1}\rangle_{\text{bunch}} = 3.24 \pm 0.20\), which is in agreement with the result of an independent sum rule, viz., \(\langle x^{-1}\rangle_{\text{SR}} = 3.40 \pm 0.34\).

We emphasize here that BMS model 4, shown in Fig. 1b by symbol ✱, is inside the allowed region dictated by the improved QCD vacuum model. This means that all the characteristic features of the BMS bunch are valid also for the improved bunch: one can see in Fig. 1b that in comparison with CZ model (dashed red line, \(a_2 = 0.56\) and \(a_4 = 0\) at \(\mu^2 = 1\) GeV\(^2\)) NLC-dictated models are much more end-point suppressed, although are double-humped.

2. NLO light-cone sum rules (LCSR), CLEO data and lattice QCD

The CLEO experimental data on \(F^{\gamma\gamma}_{\gamma \pi}(Q^2)\) allow one to obtain direct constraints on \(\varphi_\pi(x)\). Applying the LCSR approach, one can effectively account for...
for the long-distance effects of a real photon by using quark-hadron duality in the vector channel and a dispersion relation in q^2.

In our CLEO data analysis\cite{14}, we also used the relation between λ_q^2 and the twist-4 magnitude $\delta_{\text{Tw-4}}^2 \approx \lambda_q^2/2$ and estimated $\delta_{\text{Tw-4}}^2 = 0.19 \pm 0.02$ at $\lambda_q^2 = 0.4$ GeV2. We used, following the approach of\cite{12,13}, the asymptotic model for the twist-4 contribution. We found that even with a 20\% uncertainty in $\delta_{\text{Tw-4}}^2$, the Chernyak–Zhitnitsky (CZ) DA\cite{10} was excluded at least at the 4\(\sigma\)-level, whereas the asymptotic DA was off the 3\(\sigma\)-level, while the BMS “bunch” was inside the 1\(\sigma\)-region\cite{14}, shown in Fig. 2 as a solid ovals around the best-fit point (✚).

Another possibility, suggested in\cite{15}, to obtain constraints on the pion DA in the LCSR analysis of the CLEO data – to use for the twist-4 contribution renormalon-based model, relating it then to parameters a_2 and a_4 of the pion DA. Using this method we obtain\cite{16} the renormalon-based constraints for the parameters a_2 and a_4, shown in Fig. 2 in a form of 1\(\sigma\)-ellipses (dashed contours) around the corresponding best-fit point (○).

Recently, high-precision lattice measurements of the second moment $\langle \xi^2 \rangle_\pi = \int_0^1 (2x - 1)^2 \varphi_\pi(x) dx$ of the pion DA were reported by two different collaborations\cite{17,18}. Both groups extracted from their respective simulations, values of a_2 at the Schmedding–Yakovlev scale μ_{SY}^2 around 0.24, but with different error bars. It is remarkable that these lattice results are in striking agreement with the previous\cite{4} and improved\cite{9} estimates of a_2 both from NLC QCD SRs and also from the CLEO-data analyses—based on LCSR—\cite{13,14}, as illustrated in Fig. 2, where the lattice results of\cite{18} are shown in the form of a vertical strip, containing the central value with associated errors.

Noteworthily, the value of a_2 of the displayed lattice measurements (middle line of the strip) is very close to the CLEO best fit in\cite{14} (✚), whereas almost all the bunch, dictated by the improved NLC QCD SRs\cite{9} is inside the strip. Moreover, this bunch is completely inside the standard CLEO 1\(\sigma\)-ellipse and partially inside the renormalon-based CLEO 1\(\sigma\)-ellipse.

![Fig. 2. Results of the LCSR-based CLEO-data analysis on $F_{\pi\gamma\gamma}^\ast(Q^2)$ in comparison with the lattice results of\cite{18}, shown as shaded area. 1\(\sigma\)-ellipse of\cite{14} is enclosed by the solid line, while the renormalon-based one\cite{16} – by the dashed line. Panel (a) shows comparison with predictions of the minimal NLC model, whereas panel (b) – with those of the improved NLC model, displayed in both cases as slanted shaded rectangles. The displayed models are: ✚ – the asymptotic DA; ✶ – BMS model\cite{4}; ✦ – the central point of our new bunch\cite{9}; ■ – CZ model\cite{10}. All results are evaluated at $\mu_{\text{SY}}^2 = 5.76$ GeV2 after NLO ERBL evolution.](image-url)
3. Conclusions

So, we can conclude that the two-humped and endpoint-suppressed profile of the pion DA emerging from the CLEO-data analysis is consistent with that we have determined independently from QCD sum rules with nonlocal condensates.\cite{1} The improvement of the NLC model, suggested in \cite{9}, shifts the allowed region and puts it just in the intersection of the CLEO-data 1\(\sigma\)-regions, obtained using the asymptotic and the renormalon-based models for twist-4 contribution. Remarkably, this intersection lies almost in the center of the recent lattice-QCD strip.

Acknowledgments

This investigation was supported in part by the Bogoliubov–Infeld Programme, grant 2006, by the Heisenberg–Landau Programme, grant 2006, and the Russian Foundation for Fundamental Research, grant No. 06-02-16215.

References

1. A. V. Radyushkin, Dubna preprint P2-10717, 1977 [hep-ph/0410276].
2. S. V. Mikhailov and A. V. Radyushkin, JETP Lett. 48, 712 (1988); Sov. J. Nucl. Phys. 49, 494 (1989); Phys. Rev. D45, 1754 (1992).
3. A. P. Bakulev and S. V. Mikhailov, Phys. Lett. B436, 351 (1998).
4. A. P. Bakulev, S. V. Mikhailov, and N. G. Stefanis, Phys. Lett. B508, 279 (2001); Phys. Lett. B590, 309 (2004).
5. V. M. Belyaev and B. L. Ioffe, Sov. Phys. JETP 57, 716 (1983).
6. A. A. Ovchinnikov and A. A. Pivovarov, Sov. J. Nucl. Phys. 48, 721 (1988).
7. M. D’Elia, A. Di Giacomo, and E. Meggiolaro, Phys. Rev. D59, 054503 (1999).
8. A. P. Bakulev and S. V. Mikhailov, Phys. Rev. D65, 114511 (2002).
9. A. P. Bakulev and A. V. Pimikov, hep-ph/0608288.
10. V. L. Chernyak and A. R. Zhitnitsky, Nucl. Phys. B201, 492 (1982).
11. J. Gronberg et al., Phys. Rev. D57, 33 (1998).
12. A. Khodjamirian, Eur. Phys. J. C6, 477 (1999).
13. A. Schmedding and O. Yakovlev, Phys. Rev. D62, 116002 (2000).
14. A. P. Bakulev, S. V. Mikhailov, and N. G. Stefanis, Phys. Rev. D67, 074012 (2003); Fizika B13, 423 (2004); Phys. Lett. B578, 91 (2004); Annalen Phys. 13, 629 (2004).
15. S. S. Agaev, Phys. Rev. D72, 114010 (2005).
16. A. P. Bakulev, S. V. Mikhailov, and N. G. Stefanis, Phys. Rev. D73, 056002 (2006).
17. L. Del Debbio, Few Body Syst. 36, 77 (2005).
18. M. Göckeler et al., hep-lat/0510089.