Therapeutic drug monitoring of oral targeted antineoplastic drugs

Anna Mueller-Schoell1,2 · Stefanie L. Groenland3 · Oliver Scherf-Clavel4 · Madelé van Dyk5 · Wilhelm Huisinga6 · Robin Michelet1 · Ulrich Jaehde7 · Neeltje Steeghs3 · Alwin D.R. Huitema8,9 · Charlotte Kloft1

Received: 2 July 2020 / Accepted: 1 October 2020
© The Author(s) 2020, corrected publication 2020

Abstract

Purpose This review provides an overview of the current challenges in oral targeted antineoplastic drug (OAD) dosing and outlines the unexploited value of therapeutic drug monitoring (TDM). Factors influencing the pharmacokinetic exposure in OAD therapy are depicted together with an overview of different TDM approaches. Finally, current evidence for TDM for all approved OADs is reviewed.

Methods A comprehensive literature search (covering literature published until April 2020), including primary and secondary scientific literature on pharmacokinetics and dose individualisation strategies for OADs, together with US FDA Clinical Pharmacology and Biopharmaceutics Reviews and the Committee for Medicinal Products for Human Use European Public Assessment Reports was conducted.

Results OADs are highly potent drugs, which have substantially changed treatment options for cancer patients. Nevertheless, high pharmacokinetic variability and low treatment adherence are risk factors for treatment failure. TDM is a powerful tool to individualise drug dosing, ensure drug concentrations within the therapeutic window and increase treatment success rates. After reviewing the literature for 71 approved OADs, we show that exposure-response and/or exposure-toxicity relationships have been established for the majority. Moreover, TDM has been proven to be feasible for individualised dosing of abiraterone, everolimus, imatinib, pazopanib, sunitinib and tamoxifen in prospective studies. There is a lack of experience in how to best implement TDM as part of clinical routine in OAD cancer therapy.

Conclusion Sub-therapeutic concentrations and severe adverse events are current challenges in OAD treatment, which can both be addressed by the application of TDM-guided dosing, ensuring concentrations within the therapeutic window.

Keywords Targeted antineoplastic drugs · Tyrosine kinase inhibitors · Therapeutic drug monitoring · Oral anticancer drugs · Personalised medicine

The original article was revised: Due to an error during production, some in-text and most of the in-table citations were not correctly displayed in the original previous online version of the article and have now been corrected.

Supplementary Information The online version of this article (https://doi.org/10.1007/s00228-020-03014-8) contains supplementary material, which is available to authorized users.

Charlotte Kloft
charlotte.kloft@fu-berlin.de

1 Dept. of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
2 Graduate Research Training Program, PharMetrX, Berlin/Potsdam, Germany
3 Department of Clinical Pharmacology, Division of Medical Oncology, The Netherlands Cancer Institute—Antoni van Leeuwenhoek, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
4 Institute of Pharmacy and Food Chemistry, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
5 College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
6 Institute of Mathematics, University of Potsdam, Potsdam, Germany
7 Department of Clinical Pharmacy, Institute of Pharmacy, University of Bonn, Bonn, Germany
8 Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute—Antoni van Leeuwenhoek, Amsterdam, The Netherlands
9 Department of Clinical Pharmacy, University Medical Center, Utrecht University, Utrecht, The Netherlands
Introduction

With the approval of imatinib in 2001 [1], kinase inhibitors (KIs) have significantly improved the prognosis of many cancers. As of April 2020, 71 oral antineoplastic drugs (OADs) targeting a large assortment of molecular targets (Supplementary Fig. 1) are approved by the European Medicines Agency (EMA) and/or the US Food and Drug Administration (FDA).

With more OADs available, both the route of administration and the treatment setting are changing. While i.v. chemotherapy is mainly administered in an in-patient setting, OADs allow outpatient care with both its advantages and disadvantages. Strong advantages are the level of independence, and, due to outpatient treatment, a reduction of health care costs. At the same time, the responsibility for adhering to treatment schedules is moved to the patient. Given the often-complex treatment regimens, patients must be well trained and motivated to take their medication correctly. Moreover, patients should have knowledge on the frequency and severity of possible adverse events (AEs) and on preventive and responsive measures to limit them. Yet, adherence to targeted OADs is variable.

Other aspects to consider are the complex pharmacokinetics (PK) of OADs [2]. Although the right drug (‘what’) is increasingly selected based on the tumour characteristics, a fixed dose (‘how much’) is mostly given in OADs, leading to large differences between individual plasma concentrations. High interindividual variability (IIV) in exposure at standard dosing, mostly ranging from 19 to 100% [3] and up to 16-fold for gefitinib [4], has been described for OADs. While modern phase I studies increasingly assess exposure-response relationships and maximum tolerated doses (MTD) become harder to identify, the fixed dose for a new antineoplastic drug is historically established in a phase I study using a $3 + 3$ design, which focuses on toxicity [5]. The MTD, defined as the dose level below the toxic dose level, is usually adopted as the recommended phase II dose [5]. Few patients participate in phase I trials (median $n = 26$ [6]) which limits the generalisability of the selected dose. Based on the lack of focus on efficacy, a proportion of patients will show subtherapeutic plasma concentrations [7] and be at risk for treatment failure at the early determined MTD. At the same time, some patients will show toxic plasma concentrations and thus an increased risk for non-adherence [8] as consequence of AEs [9].

One strategy to prevent sub-optimal drug concentrations is the use of therapeutic drug monitoring (TDM), i.e. dosing based on measured drug exposure [10], guiding OAD dosing [7, 11–14]. By tailoring drug doses to individual patients, the proportion of patients with sub-optimal drug concentrations can be reduced. TDM has already been well-adopted in other therapeutic areas such as antimicrobial and antiepileptic therapy [15–17]. Despite its value in oncology becoming more recognised [18–21], it is still not commonly used in antineoplastic treatment.

In the following sections, we elaborate on the unexploited value of TDM in OAD therapy. After introducing various forms of TDM and TDM for OADs specifically, an overview of current evidence for drug target concentrations is provided. Moreover, we describe available PK models, observed PK exposure, TDM targets and data on exposure-response and exposure-safety relationships for OADs that are approved by at least one regulatory agency. Finally, TDM recommendations are given for OADs, for which targets were established and TDM has proven feasible.

Therapeutic drug monitoring

Therapeutic drug monitoring (TDM) refers to measuring drug concentrations to assess if drug concentrations are within the therapeutic target range and, if necessary, individualise dosing regimens. An unpredictable dose-exposure relationship, a small therapeutic window with a defined target concentration, a high PK and/or pharmacodynamic (PD) IIV and nonlinear PK are best indicators for a benefit from TDM [7, 22]. The absence of an exposure-response relationship and high intra-individual and interoccasion (IOV) PK/PD variability relative to the IIV are characteristics of drugs unsuitable for TDM [23, 24] (Supplementary Fig. 2). Several forms of dose individualisation exist. These are classified as a priori and a posteriori approaches, depending on the level of individualisation before treatment initiation [15]. In an a priori framework, information on both drug and patient characteristics is used to guide initial dosing [25]. Based on established relationships between patient characteristics and PK parameters, initial dosing can be individualised to patient sub-populations [26]. However, no individual PK information is included in an a priori framework, resulting in moderate average bias and precision [26].

Individual drug concentrations obtained after treatment start are used in a posteriori TDM [15]. Following the detection of non-optimal drug concentrations, different procedures for dose adjustments are possible: in the simplest case, oncologists will use the drug label, dosing algorithms or nomograms to determine a new dose [27]. Although simple, this approach requires to abide with the scheduled blood sampling times and is unsuitable if the patient is not represented by the population on which drug label or dosing algorithm have been developed on [28].

Another a posteriori approach involves the collection of 4–8 blood samples within a dosing interval and the subsequent calculation of the area under the concentration-time curve (AUC) [11]. Based on the calculated AUC, individual PK parameters can be obtained and used for PK calculations to
determine a more suitable dose. However, dense blood sampling is rarely feasible in clinical practice [29].

Population PK (nonlinear mixed-effects) modelling and simulation [30] can aid in optimising TDM in multiple ways: first, PK information from the population can be incorporated into model parameters during model development. Use of this information allows to refrain from dense blood sampling in model-informed precision dosing (MIPD) and often few samples are enough to obtain sufficiently precise individual PK estimates [26]. Second, sampling at fixed time points is no longer necessary and can also be performed prior to steady-state attainment [26]. As long as actual sampling times are documented, samples from virtually every time point can be used for PK analyses in MIPD [26]. Still, there are more and less informative sampling time points. Optimal design, another part of the model-informed dose individualisation process, can aid in systematically determining the most informative sampling time point(s) within a given time frame [31]. Finally, Bayesian TDM in MIPD combines model-informed TDM with the ability to learn and subsequently forecast drug concentrations at various possible dosing regimens. Similarly to traditional population PK, the Bayesian approach uses information from the population to estimate the most likely PK parameter values for a given drug and population [32]. If specific patient characteristics influence one or more of the PK processes, this information can already be used in an a priori dose selection process. At the beginning of treatment, when no concentration measurements are available, predicted PK parameter values for a specific patient will be identical with the population estimates [29]. As measured drug concentrations become available, they are used to refine the patient’s predicted PK parameter values. The more patient-individual information (i.e. drug concentrations) is available, the more weight is set on this information in the parameter estimation process and the more individual parameter estimates will be allowed to deviate from the population estimates [29]. Moreover, Bayesian TDM can account for IOV that is lower than the safe and effective variability [33] and still predict future doses based on at least two sampling occasions [34, 35]. A disadvantage of Bayesian TDM is the high shrinkage of predicted individual PK parameters if only a single PK sample is available: when the population outweighs the individual information, individual information on the patient will get lost as the empirical Bayes estimates shrinks to the typical population parameters [29]. Moreover, applying Bayesian TDM requires special knowledge, can be time intensive and thus difficult to implement in clinical practice.

Sampling minimum plasma concentrations at steady-state \(C_{\text{min,ss}} \) is often performed in clinical practice and, if done correctly, the currently most precise approach as it avoids shrinkage of individual information to the population mean. However, it requires precise information about the patient’s dosing schedule and good coordination between patient and treatment team. An easy and time-efficient way to circumvent the need to sample at \(C_{\text{min,ss}} \) is to account for the difference between the time of minimum concentrations and time of measurement and extrapolate based on the time after last dose and the terminal half-life of the drug. In this method, based on an algorithm described and validated for imatinib [10], samples can be taken at random time points in the elimination phase of the drug and the corresponding \(C_{\text{min,ss}} \) can be calculated using Eq. (1).

\[
C_{\text{min,ss}} = C_{\text{measured}} \times \left(\frac{\text{Dosing Interval [h]} - \text{Time after last dose [h]}}{\text{Half-life [h]}} \right) \quad \text{Eq. (1)}
\]

Of note, this method assumes that \(C_{\text{measured}} \) is sampled in the terminal phase of a monoexponential decline. For drugs with a nonlinear clearance or a short half-life (i.e. dasatinib, axitinib), an alternative method has to be used. For example, the \(C_{\text{min,ss}} \) can also be estimated based on a randomly taken concentration measurement (\(C_{\text{measured}} \)) and a simulated typical concentration-time curve, using an existing population PK model. Based on the ratio of the measured concentration at \(t_{\text{measured}} \) with the concentration in the simulated PK profile, the corresponding \(C_{\text{min,ss}} \) in this patient can be estimated [36].

Therapeutic drug monitoring for oral targeted antineoplastic drugs

Several OAD characteristics suggest individualised dosing:

1. **OADs show highly variable drug exposure, caused by IV in absorption, distribution, metabolism and excretion (ADME).** Oral bioavailability (BA) differs between and within agents (i.e. 14–34% in dasatinib and 98% in imatinib) and depends on drug formulation [37], absorption, first-pass hepatic metabolism and food intake. Moreover, almost all OADs are metabolised by monooxygenases of the Cytochrome P450 (CYP) family [3]. Up to 20-fold variability in expression and activity of CYP3A4 has been reported, and polymorphisms in the isoenzymes CYP2D6, CYP2C9 and CYP2C19 additionally contribute to the variable metabolic activity [3]. The activity of CYP enzymes may be additionally influenced by concomitant administration of CYP inducers/inhibitors, environmental factors, smoking and food intake [3, 38]. Polymorphic transporters are also involved in the excretion of many agents (i.e. axitinib, dasatinib and sorafenib) [3].

2. **Efficacy is challenging to assess during OAD treatment, as benefits in clinical outcome parameters such as overall survival (OS) and progression-free survival (PFS) take long until evaluable.** Objective response rates using CT scans can be assessed earlier and for a few malignancies, reliable biomarkers are available (i.e. prostate specific antigen for prostate cancer or complete cytopgenic response...
(CCyR) for chronic myeloid leukaemia (CML)). Furthermore, advances in PKPD modelling allow to use tumour dynamics in exposure-response analyses [39]. If an exposure-response relationship has been established, achieving target concentrations can serve as a proxy for achieving beneficial outcomes.

As disease progression can be fatal in oncology, treatment at an exposure above the efficacy threshold should be assured from the start of treatment or at least achieved as soon as possible, while individual patient toxicity should be monitored carefully. Furthermore, dose increases should only be implemented in case of acceptable toxicity and patients with low exposure and considerable toxicity should be switched to another treatment option.

Of note, while TDM might be crucial for agents with a narrow therapeutic window (i.e. pazopanib, sunitinib), it might be less relevant for agents with a wider therapeutic window (i.e. erlotinib, osimertinib).

Considering the high costs of OADs, cost-neutral PK-guided dose interventions to increase exposure, i.e. concomitant intake with food [40–42], split intake moments [43] or boosting (i.e. with a CYP3A4 inhibitor), should be considered before conventional dose increments, particularly in countries with poor healthcare systems.

For some agents, TDM has already proven feasible [44]. Strong evidence exists for imatinib in CML [18, 45] and gastrointestinal stromal tumours (GIST) [46]. Additional compounds for which TDM was feasible in prospective studies are sunitinib [47], pazopanib [48], tamoxifen [20] and abiraterone [40]. For other agents, i.e. alectinib [49], axitinib, crizotinib [49], trametinib [50] and vemurafenib [51–54], a PK target associated with either efficacy or toxicity has been established, but not yet evaluated in prospective clinical studies [13]. Lastly, no information about the value of TDM is available for some compounds. Most of these are new, and exposure-response relationships have not been established yet. For those drugs, we suggest to target the mean/median exposure as proxy for a PK target, as previously established PK targets amounted to 85% (± 19%) [14] and 82% (± 17%) [13] of the mean population exposures in AHDs and KIs, respectively. This is already applied in the DPOG-TDM study [55] and similar approaches are suggested by the FDA for special populations [56–58]. In the DPOG-TDM study [55], the feasibility, tolerability and efficacy of TDM for 23 different OADs is currently being evaluated (www.trialregister.nl; NL6695)) and preliminary results are promising [59].

The rapid improvement in OAD treatment together with the continuous development of new compounds poses a challenge for the timely establishment of viable TDM targets. While exposure-safety relationships are determined early during drug development, observing exposure-response relationships requires extensive time. Accordingly, there is often a discrepancy between the level of viability of proposed PK/PD targets and the clinical relevance of a compound. For example, while imatinib was approved in 2001 [1], the exposure-response relationships in CML and GIST became publicly available in 2008 [45] and 2009 [46], respectively. Sunitinib was first approved in 2006, but the exposure-response relationship was published in 2010 [60]. Likewise, pazopanib was approved by the EMA in 2010 and the exposure-response relationship was first described in 2014 [61].

In the following section, we explore the potential of TDM-guided dosing to optimise OAD treatment. For each drug, we searched PubMed and Google Scholar using the terms ‘pharmacokinetics’, ‘exposure response’, ‘exposure efficacy’, ‘exposure safety’, ‘exposure toxicity’, ‘therapeutic drug monitoring’ and ‘TDM’ together with the respective drug name. Additionally, we reviewed the respective EMA European Public Assessment Reports and the FDA Clinical Pharmacology and Biopharmaceutics Reviews. In Supplementary Tables 1a-c, KIs, AHDs and other OADs are summarised together with their molecular target(s), therapeutic indication and date of first approval. Table 1 presents current evidence for TDM-guided dosing of OADs. In this table, each drug is classified according to the level of evidence currently available for TDM. If there is an established exposure-response relationship and a PK target, TDM is considered potentially useful. If additionally, a feasibility study has been performed, TDM is recommended. If on top of that, randomised, prospective studies demonstrated a positive effect of TDM, it is strongly recommended. If there is no evidence for an exposure-response relationship, TDM is considered exploratory. If there are minimal data on the PK of a drug, there are more useful targets than plasma concentration or there is evidence that TDM is not useful, it is not recommended. Compounds with the highest clinical relevance as monotherapy and for which TDM is classified as recommended are discussed below.

Abiraterone

In an observational study in 61 metastatic castration-resistant prostate cancer patients, $C_{\min} \geq 8.4 \text{ ng/mL}$ were associated with a significantly longer PFS compared to $C_{\min} < 8.4 \text{ ng/mL}$ (PFS 7.4 vs. 12.2 months, $p = 0.044$) [62]. This threshold was later confirmed in a real-world patient cohort ($n = 62$, PFS 6.1 vs. 16.9 months, $p = 0.033$) [63]. Yet, at the standard dose of 1000 mg once daily (QD), 35% and 42% of patients, respectively, did not reach this target [62, 63]. A prospective study ($n = 32$) demonstrated that 20 patients (63%) had at least one $C_{\min} < 8.4 \text{ ng/mL}$ with standard care [40]; however, when a light meal or snack was concomitantly taken with abiraterone, adequate exposure in 28 patients (87.5%) without...
additional toxicities was achieved [40]. Thus, TDM of abiraterone and concomitant food intake as a cost-neutral PK-guided intervention to reach $C_{\text{min}} > 8.4$ ng/mL has proven feasible. Given the absence of an exposure-toxicity relationship, a pragmatic option could be to include concomitant food intake in the drug label.

Everolimus

In a meta-analysis, it has been reported that a two-fold increase in C_{min} was linked to an increased reduction in tumour size and $C_{\text{SS, min}} \geq 10$ ng/mL could be used as a cut-off value [64]. At the same time, $C_{\text{SS, min}} > 26.3$ ng/mL have been associated with a 4-fold increased risk of toxicity compared to $C_{\text{SS, min}} < 26.3$ ng/mL [21]. As the occurrence of AEs seemed to be associated with high maximum concentrations (C_{max}) [65], Verheijen et al. investigated the potential of alternative dosing to reduce C_{max}-related AEs while maintaining therapeutic $C_{\text{SS, min}}$. In a crossover study in 11 patients, administering 5 mg twice daily (BID) instead of 10 mg QD significantly reduced everolimus C_{max} while $C_{\text{SS, min}}$ increased from 9.6 to 13.7 ng/mL [65]. Given the established exposure-response and exposure-toxicity relationships, we propose to combine 5 mg BID dosing with TDM to target a therapeutic window of $C_{\text{SS, min}} \geq 10$ ng/mL and < 26.3 ng/mL. The developed population PK model by Combes et al. [66] could serve as a starting point in a MIPD framework.

Imatinib

Higher frequencies of CCyR and major molecular response (MMR) have been reported in CML patients with high imatinib $C_{\text{min, SS}}$ [45, 67]. Current evidence supports the use of a $C_{\text{min, SS}} \geq 1000$ ng/mL as PK target to achieve improved CCyR and MMR in CML [68]. Imatinib $C_{\text{min, SS}} > 3000$ ng/mL have been associated with higher rates of AEs [67]. Therefore, a therapeutic window of $1000 \leq C_{\text{min, SS}} < 3000$ ng/mL seems reasonable [68]. In gastrointestinal stromal tumours (GIST), one study determined a longer time to disease progression in patients ($n = 73$) with $C_{\text{SS, min}} \geq 1100$ ng/mL [46]. In another study, a significantly longer PFS was found in patients with $C_{\text{min, SS}} \geq 760$ ng/mL compared to patients with $C_{\text{min, SS}} < 760$ ng/mL (PFS not reached vs. 56 months, respectively), although this patient population was not representative of routine clinical practice [69]. The feasibility of TDM-guided dosing to achieve imatinib $C_{\text{min, SS}}$ of 750–1500 ng/mL has been proven in a prospective randomised controlled trial [18], and several population PK models [70–72] are available for use in MIPD of imatinib. As the fraction of patients reaching durable $C_{\text{min, SS}} \geq 1000$ ng/mL has been reported to be as low as 33.3% [73], individualised imatinib dosing is highly relevant. As imatinib C_{min} have been reported to decrease during the first 3 months of treatment [74], it is important to keep measuring imatinib $C_{\text{min, SS}}$ during treatment and after dose adjustments.

Pazopanib

An association of $C_{\text{SS, min}} \geq 20.5$ mg/L with improved PFS (19.6 vs. 52.0 weeks, $p = 0.004$) and tumour shrinkage was found in a retrospective analysis in 177 patients with advanced renal cell carcinoma (RCC) [61]. This efficacy threshold was later validated in the adjuvant setting [75] and in a real-life patient cohort [76]. However, 16–20% [61, 76] of patients do not reach this threshold and are thus at risk of decreased efficacy. In a prospective feasibility study of individualised

Evidence level	Recommendation	Description						
1	Strongly recommended	Randomised, prospective studies demonstrated positive effect of routine TDM with regards to efficacy and/or safety.						
2	Recommended	There is an established exposure-response relationship using standard dosage from retrospective studies, a target is established and a feasibility study has been performed.						
3	Potentially useful	An exposure-response or exposure-safety relationship using standard dosage has been identified and a potential target has been reported.						
4	Exploratory	An exposure-response or exposure-safety relationship using standard dosage has been identified but no target has been reported.						
5	Not recommended	No exposure-response or exposure-safety relationship using standard dosage has been identified and/or - there is very few data on pharmacokinetics of the drug; - there are more useful targets than plasma concentration (PD); - there is evidence that TDM is not useful						
Substance	Evidence level for TDM	Proposed TDM target [ng/mL]	Patients below TDM target at standard dose (%)	Reported mean/median C_{min} at standard dose [ng/mL] (IIV%)	Exposure-response relationship [yes/no] (associated parameter(s))	Exposure-safety relationship [yes/no] (associated parameter(s))	NLME model available	Comments
-----------	------------------------	-----------------------------	---	--	--	--	-----------------	----------
Abiraterone	Recommended	C_{min} ≥ 8.4 [62,63]	35[62]-42[63]	9.3 [%70%[63]]	Yes (PPS[62,63])	No[63]	Yes[99]	• TDM with food intervention has been proven feasible and cost-efficient[40,100]
Axitinib	Recommended	AUC ≥ 300[101]	38[101]	AUC: 367% (77%) [103]	Yes (PPS, PR, OS)[101,102]	Yes (hypertension, proteinuria, fatigue, diarrhea)[104]	Yes[101]	• Diastolic blood pressure (DBP) has additionally been related to efficacy[105]
Everolimus	Recommended	C_{min} ≥ 10 [64]	37[64]	15.65 (90% CI: 14.79, 16.53)[64]	Yes (PPS)[64,107]	Yes (pulmonary events, stomatitis)[64,108]	Yes[109]	• 5 mg BID instead of 10 mg QD decreases C_{min} (potentially decreased risk for toxicity)[65]
Gefitinib	Recommended	C_{min} ≥ 200 [4]	30[4]	266 (41%)[4]	Yes (OS)[4]	Yes (skin toxicity, diarrhea, hepatotoxicity)[4,112]	No	• Treatment at increased doses has been proven feasible[113]
Imatinib	Recommended	CML: C_{min} ≥ 1000 [45,67,114] GIST: C_{min} ≥ 1100 [46]	73[115]	979 (54%)[45]	Yes (MMR, CcyR) [45,67,114]	Yes (neutropenia, rash, diarrhea, arthralgia, oedema) [67,116,117]	Yes[70]	• Feasibility of TDM has been proven in a cohort study[44] and a RCT[18]
Pazopanib	Recommended	C_{min} ≥ 20500 [61,75,76]	16[76]-20[61]	28100 (40%)[76]	Yes (PFS) [61,75,76]	Yes (fatigue, anorexia, hypertension) [77]	Yes[78]	• An alternative threshold of 760 ng/mL has been proposed for GIST [69]
Sunitinib	Recommended	Intermittent dosing: C_{min} ≥ 59 [60] Continuous dosing:	49[115]-52[119]	51.6 (39%)[115]	Yes (TTP, OS)[60]	Yes (hypertension, fatigue, anorexia, myelosuppression, HFSR, altered taste, mucositis) [79,80,120,121]	Yes[81]	• PK-guided dosing has been proven feasible[119]

* Eur J Clin Pharmacol (2021) 77:441–464

* Springer
| Substance | Evidence level for TDM | Proposed TDM target [ng/mL] | Patients below TDM target at standard dose (%) | Reported mean/median C_{SUMP} at standard dose [ng/mL] (IIV) | Exposure-response relationship [yes/no] (associated parameter(s)) | Exposure-safety relationship [yes/no] (associated parameter(s)) | NLME model available | Comments |
|------------------|------------------------|-----------------------------|---|---|---|---|----------------------|--|
| Tamofoxen | Recommended | C_{AUC} \geq 5.97^{d} [83] | 20[83] | 9.72 <1,73-30.8 \geq^{d}[122] | Yes (RR)[83] | No[89] | Yes[92] | • TDM-guided dosing has been proven feasible[20] |
| | | C_{max} \geq 10.6 [50] | 27[123] | 12.1 <6-34 >[124] | Yes (PFS)[50] | No[124] | Yes[50] | • Genotype-guided dose escalations have been proven safe[87-89] |
| Alectinib | Potentially useful | C_{SUMP} \geq 435 [49,125] | 35[125] | 572 (485%)[126] | Yes (tumour size, PFS)[49,125] | No[127] | Yes[126] | • Exposure-response relationship only evaluated for trametinib monotherapy but not for combination therapy with dabrafenib |
| Crizotinib | Potentially useful | C_{SUMP} \geq 235 [49,128] | 48[49] | 244 (45%)[49] | Yes (PFS, ORR)[49,128] | Yes (neutropenia, AST elevation)[129] | Yes[130] | |
| Erlotinib | Potentially useful | C_{SUMP} \geq 500 [131] | 11[115] | 101 (69%)[115] | Yes (preclinical efficacy, PFS, OS)[131,132] | Yes (skin toxicity)[133,134] | Yes[135] | |

Substance	Evidence level for TDM	Proposed TDM target [ng/mL]	Patients below TDM target at standard dose (%)	Reported mean/median C_{SUMP} at standard dose [ng/mL] (IIV)	Exposure-response relationship [yes/no] (associated parameter(s))	Exposure-safety relationship [yes/no] (associated parameter(s))	NLME model available	Comments
Gilteritinib	Potentially useful	C_{SUMP} \geq 10 0 [136]	659 (NA) [136]	Yes (CR)[136]	No (CK, ALT, AST, ALT)[136]	Yes[136]		
Letrozole	Potentially useful	C_{SUMP} \geq 85.6 [137]	NA	Yes (TTP)[137]	Not reported	Yes[139]		
Nilotinib	Potentially useful	C_{SUMP} \geq 469 [140]	1239 (52%)[140]	Yes (TTP, trend for MMR)[140,141]	Yes (bilirubin and liver enzyme elevations)[140-142]	Yes[140]		• Feasibility of TDM has been reported in a case study [143]
Vemurafenib	Potentially useful	C_{SUMP} \geq 420 00 [51-53]	61000(41%)[14][44]	Yes (PFS, OS)[51-54]	Yes (QTc prolongation, rash)[53,146]	Yes[147]		• Dose selection with respect to UGT1A1 genotype could prevent elevation of bilirubin levels[142]
Abemaciclib	Exploratory	NA	NA	Yes (tumour shrinkage, BOR, PFS)[148]	No (neutropenia)[148]	Yes[149]		
Afatinib	Exploratory	NA	NA	Yes (diarrhoea, anorexia)[150]	Yes (diarrhoea, anorexia)[150-152]	Yes[153]		• Daily doses <20 mg have been associated with a significant shorter PFS[152]
Alpelisib	Exploratory	NA	NA	Inconclusive (trend for PFS)[154]	Yes (hyper-glycemia)[154]	Yes[155]		
Anastrozole	Exploratory	NA	NA	Yes (estradiol suppression)[156]	Not reported	NA		• Relationship of anastrozole C_{SUMP} with both oestrone levels and efficacy endpoints should be further investigated[14]
Substance	Evidence level for TDM	Proposed TDM target [ng/mL]	Patients below TDM target at standard dose (%)	Reported mean/median C_{min} at standard dose [ng/mL] (IV)	Exposure-response relationship [yes/no] (associated parameter(s))	Exposure-safety relationship [yes/no] (associated parameter(s))	NLME model available	Comments
---------------	------------------------	----------------------------	---	--	--	--	----------------------	----------
Apalutamide	Exploratory	NA	NA	3700 (32%)[157]	No[157]	Yes (fatigue, fall, rash, weight loss, arthralgia) [157]	Yes[158]	• A target of C_{min} > 34.2 ng/mL has been proposed [156]
Avapritinib	Exploratory	NA	NA	593 (NA)[159]	No (ORR)[159]	Yes (G 3/4 AEs, cognitive effects)[159]	Yes[159]	• Because of the high response rate and small sample size, the results of the exposure-response analysis should be interpreted with caution[159]
Binimetinib	Exploratory	NA	NA	59.3 (49%)[160]	Yes (PFS)[161]	Yes (CK increases, renal events)[161]	Yes[161]	
Bosutinib	Exploratory	NA	NA	400 mg QD: 512 (73%) 500 mg QD: 517 (79%)[162]	Yes (CcrR, MMR, CHR)[163,164]	Yes (diarrhoea, rash)[164]	Yes[162]	
Brigatinib	Exploratory	NA	NA	520 (61%)[165]	Yes (PFS, OS)[165]	Yes (diarrhoea, increased CK, skin events, pneumonitis, pneumonia)[165]	Yes[165]	
Cabozantinib	Exploratory	NA	NA	Pred. C_{min}: 1125 (NA)[166]	Yes (PFS)[166,167]	Yes (HFS, fatigue, diarrhoea, hypertension)[166]	Yes[168]	• Concomitant intake with food as cost-neutral PK-guided intervention[41]
Ceritinib	Exploratory	NA	NA	871 (47%)[169]	Inconclusive (trend for ORR)[170]	Yes (ALT and AST elevation, hyperglycaemia)[169]	Yes[171]	

Table continued...

Substance	Evidence level for TDM	Proposed TDM target [ng/mL]	Patients below TDM target at standard dose (%)	Reported mean/median C_{min} at standard dose [ng/mL] (IV)	Exposure-response relationship [yes/no] (associated parameter(s))	Exposure-safety relationship [yes/no] (associated parameter(s))	NLME model available	Comments
Dabrafenib	Exploratory	NA	NA	46.6 (84%)[172]	No[173]	Yes (AEs requiring dose reduction)[174]	Yes[172]	• As AUC seems to differ between dose levels but C_{min} not, AUC might be a more useful measure of exposure[172]
Dacomitinib	Exploratory	NA	NA	73.1 (45%)[175]	Inconclusive (trend for FFS, tumour shrinkage)[175]	Yes (rash/dermatitis, diarrhoea, treatment alteration)[175]	Yes[175]	
Dasatinib	Exploratory	NA	NA	2.6 (26%)[176]	Yes (McrR, MR)[176,177]	Yes (pleural effusions, treatment alteration)[176,178]	Yes[179]	
Enasidenib	Exploratory	NA	NA	AUC_{oral}: 21515 Sp (69%)[180]	Yes (ORR, only for patients with R140 mutation)[180]	Yes (bile acid elevation, hepatic safety)[180]	Yes[180]	• A trend for an exposure-response relationship (ORR) has been reported for patients with R172 mutation[180]
Encorafenib	Exploratory	NA	NA	23 (320%)[181]	No[181]	Yes (G 3/4 AEs, Gl + retinopathy)[181]	Yes[181]	
Erdafitinib	Exploratory	NA	NA	AUC: 36608 Sp (NA)[182]	Inconclusive (trend for PFS)[182]	Yes (nail disorders)[182]	Yes[183]	• Statistically significant relationships between average daily serum phosphate concentrations and both response and safety have been reported[182]
Fedratinib	Exploratory	NA	NA	AUC: 33500 Sp (41%)[184]	Inconclusive (trend for change in spleen)	Yes (anaemia, thrombocytopenia)	Yes[188]	
Substance	Evidence level for TDM	Proposed TDM target [ng/mL]	Patients below TDM target at standard dose (%)	Reported mean/median Css,sys at standard dose [ng/mL] (IV)*	Exposure-response relationship [yes/no] (associated parameter(s))	Exposure-safety relationship [yes/no] (associated parameter(s))	NLME model available	Comments
-----------	------------------------	-----------------------------	---	---	--	--	---------------------	----------
Glasdegib	Exploratory	NA	NA	365 (81%)[187]	volume, S1AT3 phosphorylation [184,185] No[187]	diarrhoea, nausea, vomiting, G3 AEs[184] Yes[188]	Yes[188]	
Ibrutinib	Exploratory	NA	NA	AUC: 680 [189]	Yes (BTK occupancy, clinical response)[189] No[189]	Yes (renal toxicity, dysgeusia, QT prolongation)[187] Yes[190]	Yes[190]	
Ivosidenib	Exploratory	NA	NA	AUCCss: 17000 [190] (50%-90%[191] NA	Yes (clinical benefit)[192]	Yes (anaemia, neutropenia, thrombocytopenia, diarrhoea, fatigue, nausea, PN, rash)[192,193]	Yes[191]	
Ixazomib	Exploratory	NA	NA	43.4 (42%) (8 mg QD)	Yes (reduction in tumour size)[195,196]	Yes (treatment alteration, hypertension, proteinuria, nausea, vomiting, AST, ALT and bilirubin elevation)[195,197,198]	Yes[199]	A reduction in tumour size has been associated with longer PFS[195]
Lenvatinib	Exploratory	NA	NA	NA (<70-125 mg[200] NA	No[200,201]	Yes (hypercholesterolemia)[201]	Yes[201]	Different minimum effective concentrations have been reported for different AEs[202]
Lorlatinib	Exploratory	NA	NA	467 (30%)[203] (50 mg BID)	Yes (blood blast response)[206]	No[204]	Yes[207]	A trend for higher probability of response with higher Css,sys has been reported[204]
Midostaurin	Exploratory	NA	NA	649 ± 135%[214] (86%) (217 Capsules: 1860 (84%) [217]	Yes (PFS)[215]	Yes (thrombocytopenia)[216] Yes (diarrhoea, anaemia, decreased appetite, dysgeusia, fatigue, nausea, vomiting)[218,219]	Yes[216]	A significantly increased risk of death with lower exposure to the metabolite CGP2221 has been observed[204]
Neratinib	Exploratory	NA	NA	13.1% (70%)[210]	Yes (sVEGFR decrease)[211]	Yes (gastrointestinal disorders)[210]	Yes[212]	Weak exposure-response and exposure-safety relationships observed[213]
Nintedanib	Exploratory	NA	NA	547 (56%)[208]	Yes (OR only monotherapy)[206]	No[209]	Yes[209]	
Niraparib	Exploratory	NA	NA	649 ± 135%[214] (86%) (217 Capsules: 1860 (84%) [217]	Yes (PFS)[215]	Yes (diarrhoea, anaemia, decreased appetite, dysgeusia, fatigue, nausea, vomiting)[218,219]	Yes[216]	
Olaparib	Exploratory	NA	NA	166% (49%)[220]	No[220,221]	Yes (rash, diarrhoea)[221]	Yes[222]	
Substance	Evidence level for TDM	Proposed TDM target [ng/mL]	Patients below TDM target at standard dose (%)	Reported mean/median C_{AUC0-24h} [ng/mL] at standard dose (IU*)	Exposure-response relationship [yes/no] (associated parameter(s))	Exposure-safety relationship [yes/no] (associated parameter(s))	NLME model available	Comments
----------------	------------------------	----------------------------	---	---	--	---	----------------------	--
Palbociclib	Exploratory	NA	NA	94 (42%)[223]	Inconclusive (trend for PFS)[223]	Yes (neutropenia)[223,24]	Yes[223]	
Panobinostat	Exploratory	NA	NA	AUC_{AUC0-24h}:174b (95%)[226]	Yes (trend for ORR)[227]	Yes (thrombocytopenia, diarrhoea)[227]	Yes[228]	
Pezidartinib	Exploratory	NA	NA	AUC_{AUC0-24h}: 77465 (32%)[229]	Inconclusive (trend for ORR)[229]	Yes (AST and ALT elevation)[229]	Yes[229]	
Ponatinib	Exploratory	NA	NA	34 (45%)[230]	Inconclusive (trend for MCR, MHR)[231]	Yes (hypertension, ischemia)[231]	No	A dose intensity-safety relationship was identified[231]
Regorafenib	Exploratory	NA	NA	1400 (57%)[232]	Yes (sVEGFR2 level decrease)[232]	Yes (rash, bilirubin)[232,234]	Yes[235]	
Ribociclib	Exploratory	NA	NA	732 (91%)[236]	Inconclusive[236]	Yes (QTCf prolongation, neutropenia)[236]	Yes[236]	Due to lack of data, an exposure-response analysis could not be performed[236]
Rucaparib	Exploratory	NA	NA	1754 ±805[237]	Inconclusive (RECIST response rate)[238]	Yes (creatinine, ALT and AST elevation, fatigue, thrombocytopenia)[237]	Yes[237]	
Ruxolitinib	Exploratory	NA	NA	5.52 ±5.82b (10 mg BID) 11.6±6.01 (15 mg BID)[239]	Yes (spleen volume reduction, total symptom score)[239]	Yes (reduced platelet count, reduced haemoglobin)[239]	Yes[240]	
Sorafenib	Exploratory	NA	NA	3750 (104%)[241]	Yes (PFS, OS)[242,243]	Yes (G3 AEs, HFS)	Yes[247]	Exposure has been reported to decrease over time[244]

Substance	Evidence level for TDM	Proposed TDM target [ng/mL]	Patients below TDM target at standard dose (%)	Reported mean/median C_{AUC0-24h} [ng/mL] at standard dose (IU*)	Exposure-response relationship [yes/no] (associated parameter(s))	Exposure-safety relationship [yes/no] (associated parameter(s))	NLME model available	Comments
Talazoparib	Exploratory	NA	NA	3.54 (63%)[248]	Yes (PFS)[248,249]	Yes (G3 AEs, anaemia, thrombocytopenia)[248,249]	Yes[250]	
Tivozanib	Exploratory	NA	NA	NA <16.0-30.9)[251]	Yes (tumour shrinkage, PFS)[251]	Yes (hypertension, HFS)[251]	Yes[251]	The exposure-response relationship described in [251] is convincing; PFS was 26.4 weeks vs 72.1 weeks in patients with C_{AUC0-24h} in the lowest vs highest quartile, respectively
Vandetanib	Exploratory	NA	NA	795 (NA)[252]	Yes (best calcinonia response)[252]	Yes (diarhoea, fatigue, QTc prolongation)[252]	Yes[252]	IC_{AUC0-24h} values (190 ng/mL) have been used to support dose selection in early clinical trials[253]
Bicalutamide	Not recommended	NA	NA	8850 <1380-21700> (50 mg QD)[254]	No[256]	No[256]	No	
		NA	NA	16400 <2400-44600> (150 mg QD)[255]	No[257]	No[257]	Yes[258]	
Cabimetinib	Not recommended	NA	NA	127 (87%)[257]	No[257]	Yes[257]	Yes[258]	
Darolutamide	Not recommended	NA	NA	3780 (NA)[259]	NA	NA	Yes[259]	
Pazopanib dosing. 57% of all patients (n = 30) showed pazopanib C_{SS,min} < 20 mg/L under standard treatment and 41% of these successfully achieved therapeutic C_{SS,min} upon dose increases to 1000–1800 mg QD [48]. Furthermore, all patients who achieved a partial response showed C_{SS,min} ≥ 20 mg/L. In a recent retrospective observational clinical study in 27 RCC patients, a significant correlation between pazopanib C_{SS,min} ≥ 20.5 mg/L and objective response was established [77]. Based on the evidence for an exposure-response relationship and the proven feasibility of
individualised dosing, we recommend TDM-guided pazopanib dosing, targeting plasma $C_{SS,min} \geq 20 \text{ mg/mL}$. A published population PK model [78] can be used in a MIPD framework for pazopanib. However, due to a dose-dependent decrease in the relative BA of pazopanib, conventional dose increases are an inefficient strategy to increase exposure. Alternative cost-neutral strategies have been described in literature. Splitting intake moments (i.e. 400 mg BID instead of 800 mg QD) resulted in a 79% increase in $C_{SS,min}$ [43]. Moreover, concomitant intake with food successfully increased exposure as well [42].

Sunitinib

Significant increases in toxicities in patients with sunitinib + active metabolite SU012662 $C_{SS,min} \geq 100 \text{ ng/mL}$ have been reported [79, 80]. For RCC patients, an efficacy PK target of 50–100 ng/mL has been proposed in intermittent dosing at 50 mg QD [80]. Exploiting dose linearity, this target was extrapolated to $C_{SS,min} \geq 37.5 \text{ ng/mL}$ for continuous dosing at 37.5 mg QD in GIST patients [12]. Based on a summary of exposure-response analyses [60], TDM-guided sunitinib dosing targeting a sunitinib + SU012662 $C_{SS,min}$ of 50–100 ng/mL was prospectively tested in a clinical study in 43 patients with advanced solid malignancies [47]. Of the patients eligible for PK-evaluation ($n = 29$), 52% ($n = 14$) showed sunitinib + SU012662 $C_{SS,min} < 50 \text{ ng/mL}$ at treatment initiation, and among those, 5 patients reached therapeutic trough levels after dose escalation without experiencing additional toxicities. These findings underline both the need and feasibility of TDM-guided sunitinib dosing, for which a published population PK/PD model can be used [81]. Biomarkers such as the soluble vascular endothelial growth factor receptor may provide additional information on individual response and have been integrated into PK/PD models [82]. Because of the different half-lives of sunitinib and SU012662, $C_{SS,min}$ should be calculated separately when models [82]. Because of the different half-lives of sunitinib and SU012662, $C_{SS,min}$ should be calculated separately when models [82]. Because of the different half-lives of sunitinib and SU012662, $C_{SS,min}$ should be calculated separately when

Tamoxifen

Compared to higher values, C_{SS} of $< 5.97 \text{ ng/mL}$ [83] and $< 5.2 \text{ ng/mL}$ [84] of tamoxifen’s active metabolite endoxifen have been associated with more additional breast cancer events and shorter distant relapse-free survival, respectively. While body weight and age have a significant impact as well [85], CYP2D6 phenotype accounts for 18–43% of the observed IIV of 40–49% in endoxifen C_{SS} [14]. Considering this, TDM of endoxifen might be promising to identify patients with sub-optimal target concentrations [86]. Because no toxic tamoxifen dose has been identified, dose increases up until 120 mg QD for patients with endoxifen $C_{SS} < 5.97 \text{ ng/mL}$ have been investigated and TDM has proven feasible [20, 87–92]. As it takes about 3 months to attain endoxifen steady state, we propose to use MIPD for early endoxifen target attainment [92].

Discussion

While exposure-response and exposure-safety relationships have been observed for many OADs, viable PK targets are only available for a few. Future clinical and ‘real-world’ studies are needed to identify clear target ranges associated with favourable outcome. More PK/PD analyses conducted in (pre-)clinical development could help to characterise exposure-response relationships earlier. More focus must also be dedicated on the establishment of TDM as part of routine patient care. This might be challenging, as bio-analytical assays should be available and a solid logistic system with a short turnaround in place. At the Netherlands Cancer Institute, TDM has been implemented in routine care, and PK samples are collected at routine visits to the outpatient clinic. Concentrations of 35 different OADs are measured weekly using liquid chromatography-tandem mass spectrometry [93–96], treatment recommendations are reported within 24 h to the treating physician and results can be discussed with patients 1–2 weeks after their visit. This approach is also emerging in Australia with several OADs being measured on request with current efficacy-implementation studies underway. Additional data should be prospectively collected (i.e. in registries) to further investigate the effect of TDM on treatment outcomes. Novel microsampling techniques, i.e. volumetric absorptive microsampling (VAMS) [97], could help to provide the TDM results even before patients visit the outpatient clinic. VAMS allows to precisely sample a small volume of capillary blood from the fingertip with a dedicated sampling device. After blood collection, the device is dried in the open air and shipped to a laboratory via regular mail without pre-processing or cooling during transport. Given its easy and minimally invasive character, this technique shows high potential: in the future, VAMS samples could be obtained at home and shipped to a laboratory by patients themselves. Upon sample analysis, results would be communicated to the treating oncologist and discussed with the patient at the next visit. Of note, the disadvantages of VAMS are not fully elucidated yet. Current limitations are variable analyte recoveries dependent on haematocrit [98] and the time-consuming determination of capillary-to-venous blood conversion factors, needed to compare measured capillary whole blood with venous plasma target concentrations [97]. Furthermore, to make this approach feasible, a well-connected infrastructure of oncologists, laboratories and PK-specialists must be available.
Conclusion

In this review, we summarised the opportunities and challenges associated with TDM of OADs and outlined different TDM approaches, their respective advantages and disadvantages. We provided strong arguments why routine TDM should be established as a part of OAD treatment and reviewed the available evidence for all oral targeted antineoplastic drugs currently approved by the EMA and/or FDA. Finally, we provided an outlook into the future and proposed a strategy to increase feasibility and acceptance of TDM as part of routine clinical care.

Code availability Not applicable.

Authors’ contributions AM, OS, UJ and CK developed the research question. AM, OS and SLG conducted the searches and extracted the data. AM, OS and SLG analysed the data and did the quality assessment. AM wrote the first draft of the manuscript. All authors discussed the analysis results, contributed to the revision of the manuscript and reviewed and approved the final version.

Funding Open Access funding enabled and organized by Projekt DEAL.

Data availability Not applicable.

Compliance with ethical standards

Conflict of interest CK and WH report grants from an industry consortium (AbbVie Deutschland GmbH & Co. KG, AstraZeneca, Boehringer Ingelheim Pharma GmbH & Co. KG, Grünenthal GmbH, F. Hoffmann-La Roche Ltd., Merck KGaA and Sanofi) for the PharMetrX PhD program. CK reports grant for the Innovative Medicines Initiative-Joint Undertaking (DDMoRe). CK and RM report grants from the Federal Ministry of Education and Research within the Joint Programming Initiative on Antimicrobial Resistance Initiative (PIJAMIR), all outside the submitted work. OS reports endowed professorship grant (Horphag research Ltd) and funding for the project ‘Individualized cancer therapy with kinase inhibitors using drug monitoring – optimization by minimally invasive at-home sampling’ (Hector Stiftung II gGmbH). The remaining authors declare that the research was conducted in absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Ethics approval Not applicable.

Consent to participate Not applicable.

Consent for publication Not applicable.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Committee for Medicinal Products for Human Use (CHMP) European Medicines Agency (2019) Glivec European public assessment report. https://www.ema.europa.eu/documents/product-information/glivec-epr-product-information_en pdf
2. van Erp NP, Gelderblom H, Guchelaar HJ (2009) Clinical pharmacokinetics of tyrosine kinase inhibitors. Cancer Treat Rev 35: 692–706. https://doi.org/10.1016/j.ctrv.2009.08.004
3. Klümpen HJ, Samer CF, Mathijssen RJH, Schellens JHM, Gurney H (2011) Moving towards dose individualization of tyrosine kinase inhibitors. Cancer Treat Rev 37:251–260. https://doi.org/10.1016/j.ctrv.2010.08.006
4. Zhao YY, Li S, Zhang Y, Zhao HY, Liao H, Guo Y, Shi XY, Jiang W, Xue C, Zhang L (2011) The relationship between drug exposure and clinical outcomes of non-small cell lung cancer patients treated with gefitinib. Med Oncol 28:697–702. https://doi.org/10.1007/s12032-010-9541-0
5. Le Tourneau C, Lee JJ, Siu LL (2009) Dose escalation methods in phase I cancer clinical trials. J Natl Cancer Inst 101:708–720. https://doi.org/10.1093/jnci/djp079
6. van Brummelen EMJ, Huiitema ADR, van Werkhoven E, Beijnen JH, Schellens JHM (2016) The performance of model-based versus rule-based phase I clinical trials in oncology: a quantitative comparison of the performance of model-based versus rule-based phase I trials with molecularly targeted anticancer drugs over the last 2 years. J Pharmacokinet Pharmacodyn 43:235–242. https://doi.org/10.1007/s10928-016-9466-0
7. Groenland SL, Mathijssen RJH, Beijnen JH, Huiitema ADR, Steeghs N (2019) Individualized dosing of oral targeted therapies in oncology is crucial in the era of precision medicine. Eur J Clin Pharmacol. https://doi.org/10.1007/s00228-019-02704-2
8. Cardoso E, Csjaka C, Schneider MP, Widmer N (2018) Effect of adherence on pharmacokinetic/pharmacodynamic relationships of oral targeted anticancer drugs. Clin Pharmacokinet 57:1–6. https://doi.org/10.1007/s40262-017-0571-z
9. Partridge AH (2002) Adherence to therapy with oral antineoplastic agents. CancerSpectrum Knowl Environ 94:652–661. https://doi.org/10.1093/cjoe/94.9.652
10. Wang Y, Chia YL, Nedelman J, Schran H, Mahon FX, Molimard M (2009) A therapeutic drug monitoring algorithm for refining the imatinib trough level obtained at different sampling times. Ther Drug Monit 31:579–584. https://doi.org/10.1097/ftd.0b013e3181bce8cf
11. Gao B, Yeap S, Clements A, Balakrishnar B, Wong M, Gurney H (2012) Evidence for therapeutic drug monitoring of targeted anti-cancer therapies. J Clin Oncol 30:4017–4025. https://doi.org/10.1200/jco.2012.43.5362
12. Yu H, Steeghs N, Nijenhuis CM, Schellens JHM, Beijnen JH, Huiitema ADR (2014) Practical guidelines for therapeutic drug monitoring of anticancer tyrosine kinase inhibitors: focus on the pharmacokinetic targets. Clin Pharmacokinet 53:305–325. https://doi.org/10.1007/s40262-014-0137-2
13. Verheijen RB, Yu H, Schellens JHM, Beijnen JH, Steeghs N, Huiitema ADR (2017) Practical recommendations for therapeutic drug monitoring of kinase inhibitors in oncology. Clin Pharmacol Ther 102:765–776. https://doi.org/10.1002/cpt.787
14. Groenland SL, van Nuland M, Verheijen RB, Schellens JHM, Beijnen JH, Huiitema ADR, Steeghs N (2018) Therapeutic drug monitoring of oral anti-hormonal drugs in oncology. Clin Pharmacokinet https://doi.org/10.1007/s40262-018-0683-0
15. Sinnolareddy MG, Cotta MO, Roberts JA (2017) Pharmacokinetic and pharmacodynamic tools to increase efficacy. In: Pulcini C, Ergöñül Ō, Can F, Beovic B (eds) Antimicrobial stewardship, 1st edn. Elsevier Inc, Amsterdam, pp 85–98
16. Wicha SG, Kees MG, Solms A, Minichmayr IK, Kratzer A, Kloft C (2015) TDMs: a novel web-based open-access support tool for optimising antimicrobial dosing regimens in clinical routine. Int J Antimicrob Agents 45:442–444. https://doi.org/10.1016/j.ijantimicag.2014.12.010

17. Velghe S, Stove CP (2018) Volumetric absorptive microsampling as an alternative tool for therapeutic drug monitoring of first-generation anti-epileptic drugs (Analytical and Bioanalytical Chemistry, 2018, 410, 9, (2331-2341), 10.1007/s00216-018-0866-4). Anal Bioanal Chem 410:2449. https://doi.org/10.1007/s00216-018-0951-8

18. Gotta V, Widmer N, Decosterd LA, Chalandon Y, Heim D, Gregor M, Benz R, Leoncini-Franscini L, Baerlocher GM, Duchosal MA, Csajka C, Buclin T (2014) Clinical usefulness of therapeutic concentration monitoring for imatinib dosage individualization: results from a randomized controlled trial. Cancer Chemother Pharmacol 74:1307–1319. https://doi.org/10.1007/s00280-014-2599-1

19. Cabel L, Blanchet B, Thomas-Schoemann A, Huillard O, Bellesoeur A, Cessot A, Giroux J, Boudou-Rouquette P, Coriat R, Vidal M, Said NEB, Golmard L, Alexandre J, Goldwasser F (2018) Drug monitoring of sunitinib in patients with advanced solid tumors: a monocentric observational French study. Fundam Clin Pharmacol 32:98–107. https://doi.org/10.1111/fcp.12327

20. Fox P, Balleine RL, Lee C, Gao B, Balakrishnar B, Minichmayr IK, Kratzer A, Kloft C, Vidal M, Said N, Beijnen JH, Koolen SLW, Mathijssen RHJ, Huitema ADR, Steeghs N (2020) Cost-Neutral Optimization of Pazopanib Exposure by Splitting Intake Moments: A Prospective Pharmacokinetic Study in Cancer Patients. Clin Pharmacokinet. https://doi.org/10.1007/s40262-016-0461-9

21. Deppenweiler M, Falkowski S, Saint-Marcoux F, Monchaud C, Picard N, Laroche ML, Tubiana-Mathieu N, Venat-Bouvet L, Duchosal MA, Csajka C, Buclin T, Jagerskiöld MA, Csajka C, Buclin T, Duchosal MA, Csajka C, Buclin T (2014) Clinical usefulness of therapeutic concentration monitoring for imatinib dosage individualization: results from a randomized controlled trial. Cancer Chemother Pharmacol 74:1307–1319. https://doi.org/10.1007/s00280-014-2599-1

22. Decosterd LA, Widmer N, Zaman K, Cardoso E, Buclin T, Csajka C (2015) Therapeutic drug monitoring of targeted anticancer therapy. Biomark Med 9:887–893. https://doi.org/10.2217/bmm.15.78

23. Chatelut E, Bruno R, Ratain MJ (2018) Intraindividual pharmacokinetic variability: focus on small-molecule kinase inhibitors. Clin Pharmacol Ther 103:956–957. https://doi.org/10.1002/cpt.937

24. Liefaard L, Chen C (2015) Quantifying the effectiveness of dose individualization by simulation for a drug with moderate pharmacokinetic variability: focus on small-molecule kinase inhibitors. Clin Pharmacol Ther 85:1326–1336. https://doi.org/10.1002/cpt.1515

25. Alnaim L (2007) Therapeutic drug monitoring of cancer chemotherapy: why we need Bayesian dosing. Intern Med J 37:593–600. https://doi.org/10.1111/j.1445-139X.2007.013412

26. Rousseau A, Marquet P (2002) Application of pharmacokinetic extrapolation methods to predict trough concentrations to guide therapeutic drug monitoring of oral anticancer drugs. Ther Drug Monit. https://doi.org/10.1097/00007940-200211000-0000767

27. Yeap SH, Ali SS, Gebski V, Provan P, Coulter S, Liddle C, Hui R, Keffer R, Lynch J, Wong M, Wilcken N, Gunney H (2016) Dose escalation of tamoxifen in patients with low endoxifen level: evidence for therapeutic drug monitoring—the TADE study. Clin Cancer Res 22:3164–3171. https://doi.org/10.1158/1078-0432.ccr-15-1470

28. Duchosal MA, Csajka C, Buclin T, Jagerskiöld MA, Csajka C, Buclin T, Duchosal MA, Csajka C, Buclin T (2014) Clinical usefulness of therapeutic concentration monitoring for imatinib dosage individualization: results from a randomized controlled trial. Cancer Chemother Pharmacol 74:1307–1319. https://doi.org/10.1007/s00280-014-2599-1

29. Donagher J, Barras MA (2018) Therapeutic drug monitoring: using Bayesian methods to evaluate hospital practice. J Pharm Pract Res 48:522–529. https://doi.org/10.1002/jppr.1432

30. Marquet P, Woillard JB (2017) Towards therapeutic drug monitoring of targeted anticancer therapies. Curr Med Chem. https://doi.org/10.2174/092986715161411011705444. https://doi.org/10.1080/10780432.2014.916206

31. Chappard A, Cessot A, Giroux J, Boudou-Rouquette P, Coriat R, Vidal M, Said N, Beijnen JH, Koolen SLW, Mathijssen RHJ, Huitema ADR, Steeghs N (2020) Concomitant intake of abiraterone acetate and food to increase pharmacokinetic exposure: real life data from a therapeutic drug monitoring programme. Eur J Cancer 130:32–38. https://doi.org/10.1016/j.ejca.2020.02.012

32. Groenland SL, van Nuland M, Bergman AM, de Feijter JM, Dezentje VO, Rosing H, Beijnen JH, Huitema ADR, Steeghs N (2020) Concomitant intake of abiraterone acetate and food to increase pharmacokinetic exposure: real life data from a therapeutic drug monitoring programme. Eur J Cancer 130:32–38. https://doi.org/10.1016/j.ejca.2020.02.012
pharmacokinetics and its correlation with response and safety in chronic-phase chronic myeloid leukemia: a subanalysis of the IRIS study. Blood 111:4022–4028. https://doi.org/10.1182/blood-2007-10-116475

46. Demetri GD, Wang Y, Wehre E, Racine A, Nikolova Z, Blanke CD, Joensuu H, Von Mehren M (2009) Imatinib plasma levels are correlated with clinical benefit in patients with unresectable/metastatic gastrointestinal stromal tumors. J Clin Oncol 27: 3141–3147. https://doi.org/10.1200/jco.2008.20.4818

47. Lankheet NAG, Kloth JSL, Gaddelaa-Van Hooijdonk CGM, Cirkel GA, Mathijssen RHJ, Lolkema MPJK, Schellens JHM, Voest EE, Sieijfer S, De Jonge MJA, Haanen JBAG, Beijnen JH, Huijtema ADR, Steeghs N (2014) Pharmacokinetically guided sunitinib dosing: a feasibility study in patients with advanced solid tumours. Br J Cancer 110:2441–2449. https://doi.org/10.1038/bjc.2014.194

48. Verheijen RB, Bins S, Mathijssen RHJ, Lolkema MP, van Doorn L, Schellens JHM, Beijnen JH, Langenberg MHG, Huijtema ADR, Steeghs N (2006) Individualized pazopanib dosing: a prospective feasibility study in cancer patients. Clin Cancer Res 22:5738–5746. https://doi.org/10.1158/1078-0432.ccr-16-1255

49. Groenland SL, Geel DR, Janssen JM, de Vries N, Rosing H, Beijnen JH, Burgers JA, Smit EF, Uitend Produkt for a Prospective Study. In: Ther Drug Monit 41 74:731–738. https://doi.org/10.1016/j.ejca.2013.11.022

50. Ouellet D, Kassir N, Chiu J, Mouksassi MS, Leongovens C, Cox D, DeMarini DJ, Gardner O, Cris W, Patel K (2016) Population pharmacokinetics and exposure-response of trametinib, a MEK inhibitor, in patients with BRAF V600 mutation-positive melanoma. Cancer Chemother Pharmacol 77:807–817. https://doi.org/10.1007/s00280-016-2993-y

51. Goldwirt L, Chami I, Feugeas JP, Pages C, Brunet-Possenti F, Allayous C, Baroudjian B, Madelaine I, Sauvageon H, Mourah S, Lebbé C (2016) Reply to “plasma vemurafenib concentrations in advanced BRAFV600mut melanoma patients: impact on tumour response and tolerance” by Funck-Brentano et al. Ann Oncol 27:363–364. https://doi.org/10.1093/annonc/mdv538

52. Funck-Brentano E, Alvarez JC, Longvet C, Abe E, Beauchet A, Funck-Brentano C, Saiag P (2015) Plasma vemurafenib concentrations in advanced BRAF V600mut melanoma patients: impact on tumour response and tolerance. Ann Oncol 26:1470–1475. https://doi.org/10.1093/annonc/mdv189

53. Kramkimel N, Thomas-Schoenmann A, Sakji L, Gomard JL, Noe G, Regnier-Rosencher E, Chapsis N, Maubec E, Vidal M, Avril MF, Goldwasser F, Mortier L, Dupin N, Blanchet B (2016) Vemurafenib pharmacokinetics and its correlation with efficacy and safety in outpatients with advanced BRAF-mutated melanoma. Target Oncol 11:59–69. https://doi.org/10.1007/s11523-015-0375-8

54. Kichenadasse G, Hughes JH, Miners JO, Mangoni AA, Rowland A, Hopkins AM, Sorich MJ (2019) Relationship between vemurafenib plasma concentrations and survival outcomes in patients with advanced melanoma. Cancer Chemother Pharmacol. https://doi.org/10.1007/s00280-019-04002-1

55. Groenland SL, van Eerden RAG, Verheijen RB, Koolen SLW, Moes DJAR, Desar IME, Reyers AKL, Gelderbloom HJ, van Erp NP, Mathijssen RHJ, Huijtema ADR, Steeghs N (2019) Therapeutic drug monitoring of oral anticancer drugs: the Dutch Pharmacology Oncology Group—Therapeutic Drug Monitoring Protocol for a Prospective Study. In: Ther Drug Monit 41

56. Food and Drug Administration. Center for Drug Evaluation and Research and Center for Biologics Evaluation and Research. (2010) Guidance for industry—pharmacokinetics in patients with impaired renal function—study design, data analysis, and impact on dosing and labelling. Draft Guidance Document. https://www.fda.gov/media/71311/download. Accessed 23 March 2020

57. Food and Drug Administration. Center for Drug Evaluation and Research and Center for Biologics Evaluation and Research. (2010) Guidance for industry—pharmacokinetics in patients with impaired renal function—study design, data analysis, and impact on dosing and labelling. Draft Guidance Document. https://www.fda.gov/media/78573/download. Accessed 23 March 2020

58. Food and Drug Administration. Center for Drug Evaluation and Research and Center for Biologics Evaluation and Research. Pediatric study plans: content of and process for submitting initial pediatric study plans and amended initial pediatric study plans guidance for industry. Accessed 23 March 2020

59. Groenland SL, Van Eerden RAG, Koolen SL, Moes DJAR, Desar IME, Touw DJ, Imholz ALT, Reyers AKL, Gelderbloom H, van Erp NP, Mathijssen RHJ, Huijtema ADR, Steeghs N (2019) Therapeutic drug monitoring of oral anticancer drugs—preliminary results of a prospective study. Ann Oncol 30:4420. https://doi.org/10.1093/annonc/mdz244.004

60. Houl BE, Bello CL, Poland B, Rosen LS, Demetri GD, Motzer RJ (2010) Relationship between exposure to sunitinib and efficacy and tolerability endpoints in patients with cancer: results of a pharmacokinetic/pharmacodynamic meta-analysis. Cancer Chemother Pharmacol 66:357–371. https://doi.org/10.1007/s00280-009-1170-y

61. Suttle AB, Ball HA, Molimard M, Hutson TE, Carpenter C, Rajagopalan D, Lin Y, Swann S, Amado R, Pandite L (2014) Relationships between pazopanib exposure and clinical safety and efficacy in patients with advanced renal cell carcinoma. Br J Cancer 111:1909–1916. https://doi.org/10.1038/bjc.2014.503

62. Carton E, Noe G, Huillard O, Gomard L, Giroux J, Cessot A, Saidu NEB, Peyromaure M, Zerbib M, Narjoo C, Guibourdenc de J, Thomas A, Vidal M, Goldwasser F, Blanchet B, Alexandre J (2017) Relation between plasma trough concentration of abiraterone and prostate-specific antigen response in metastatic castration-resistant prostate cancer patients. Eur J Cancer 72:54–61. https://doi.org/10.1016/j.ejca.2016.11.027

63. van Nuland M, Groenland SL, Bergman AM, Steeghs N, Rosing H, Venekamp N, Huijtema ADR, Beijnen JH (2019) Exposure-response analyses of abiraterone and its metabolites in real-world patients with metastatic castration-resistant prostate cancer. Prostate cancer Prostatic Dis https://doi.org/10.1016/j.pcad.2018.04.011

64. Ravaud A, Urva SR, Grosch K, Cheung WK, Anak O, Selli DB (2014) Relationship between everolimus exposure and safety and efficacy: meta-analysis of clinical trials in oncology. Eur J Cancer 50:486–495. https://doi.org/10.1016/j.ejca.2013.11.022

65. Combes FP, Guillaume C, Neva B, Penny C, William Z, Yin H, Nedelman J (2018) Population pharmacokinetics—pharmacodynamics of oral everolimus in patients with seizures associated with tuberous sclerosis complex. J Pharmacokin Pharmacodyn 45:707–719. https://doi.org/10.1007/s10928-018-9600-2

66. Guilhot F, Hughes TP, Cortes J, Druker BJ, Baccarani M, Gathmann I, Hayes M, Granvil C, Wang Y, Insenier CJ, Poitiers CHU, De Hospital RA, Insenier P, De CHU (2012) Plasma exposure of imatinib and its correlation with clinical response in the Tyrosine Kinase Inhibitor Optimization and Selectivity Trial. Haematologica 97:731–738. https://doi.org/10.3324/haematol.2011.045666

67. Food and Drug Administration. Center for Drug Evaluation and Research and Center for Biologics Evaluation and Research. (2010) Guidance for industry—pharmacokinetics in patients with impaired renal function—study design, data analysis, and impact on dosing and labelling. Draft Guidance Document. https://www.fda.gov/media/71311/download. Accessed 23 March 2020
concentrations without increasing side effects. Breast Cancer Res Treat 153:583–590. https://doi.org/10.1007/s10549-015-3562-5
90. Irvin WJ, Walko CM, Weck KE, Ibrahim JG, Chiu WK, Dees EC, Moore SG, Olajide OA, Graham ML, Canale ST, Raab RE, Corso SW, Peppercorn JM, Anderson SM, Friedman KJ, Ogburn ET, Desta Z, Fleshback DA, McLeod HL, Evans JP, Carey LA (2011) Genotype-Guided Tamoxifen Dosing Increases Active Metabolite Exposure in Women With Reduced CYP2D6 Metabolism: A Multicenter Study. J Clin Oncol 29:3232–3239. https://doi.org/10.1200/jco.2010.31.4427
91. Khalaj Z, Baratieh Z, Nikpour P, Schwab M, Schaeffeier E, Mokarian F, Khanahlid H, Salehi R, Mürdter TE, Salehi M (2019) Clinical Trial: CYP2D6 Related Dose Escalation of Tamoxifen in Breast Cancer Patients With Iranian Ethnic Background Resulted in Increased Concentrations of Tamoxifen and Its Metabolites. Front Pharmacol 10:1–13. https://doi.org/10.3389/fphar.2019.00530
92. Klopp-Schulze L, Mueller-Schoell A, Neven P, Koolen SL, Mathijssen R, Joergen M, Kloth C (2020) Integrated data analysis of six clinical studies points toward model-informed precision dosing of tamoxifen. Front Pharmaco 11:1–19. https://doi.org/10.3389/fphar.2020.00283
93. Herbrink M, de Vries N, Rosing H, Huitema ADR, Nuijen B, Schellens JHM, Beijnen JH (2016) Quantification of 11 Therapeutic Kinase Inhibitors in Human Plasma for Therapeutic Drug Monitoring Using Liquid Chromatography Coupled With Tandem Mass Spectrometry. Ther Drug Monit 38:649–656. https://doi.org/10.1097/tdm.0000000000000349
94. Herbrink M, de Vries N, Rosing H, Huitema ADR, Nuijen B, Schellens JHM, Beijnen JH (2018) Development and validation of a liquid chromatography–tandem mass spectrometry analytical method for the therapeutic drug monitoring of eight novel anticancer drugs. Biomed Chromatogr 32:1–9. https://doi.org/10.1002/bmc.4147
95. Janssen JM, de Vries N, Venekamp N, Rosing H, Huitema ADR, Beijnen JH (2019) Development and validation of a liquid chromatography-tandem mass spectrometry assay for nine oral anti-cancer drugs in human plasma. J Pharm Biomed Anal 174:561–566. https://doi.org/10.1016/j.jpba.2019.06.034
96. van Nuland M, Venekamp N, de Vries N, de Jong KAM, Rosing H, Beijnen JH (2019) Development and validation of an UPLC-MS/MS method for the therapeutic drug monitoring of oral anti-hormonal drugs in oncology. J Chromatogr B 1106–1107:26–34. https://doi.org/10.1016/j.jchromb.2019.01.001
97. Kok MGM, Fillet M (2018) Volumetric absorptive microsampling: Current advances and applications. J Pharm Biomed Anal 147:288–296. https://doi.org/10.1016/j.jpba.2017.07.029
98. Protti M, Mandrioli R, Mercolini L (2019) Tutorial: Volumetric absorptive microsampling (VAMS). Anal Chim Acta 1046:32–47. https://doi.org/10.1016/j.aca.2018.09.004
99. Stuyckens K, Saad F, Xu XS, Ryan CJ, Smith MR, Griffin TW, Yu MK, Vermeulen A, Nandy P, Poggesi I (2014) Population Pharmacokinetic Analysis of Abiraterone in Chemotherapy-Naive and Docetaxel-Treated Patients with Metastatic Castration-Resistant Prostate Cancer. Clin Pharmacokinet 53:1149–1160. https://doi.org/10.1007/s40262-014-0178-6
100. Szmydlowitz RZ, Peer C, Ibrahim A, Martinez E, Kozloff MF, Carthon B, Donald Harvey R, Fishkin P, Yong WP, Chiong E, Nahban C, Karrson T, Fig TD, Stadler WM, Ratain MJ (2018) Prospective International Randomized Phase II Study of Low-Dose Abiraterone With Food Versus Standard Dose Abiraterone In Castration-Resistant Prostate Cancer. J Clin Oncol 36:1389–1395. https://doi.org/10.1200/jco.2017.76.4381
101. Rini BI, Garrett M, Poland B, Dutcher JP, Rixe O, Wilding G, Stadler WM, Pithavala YK, Kim S, Tarazi J, Motzer RJ (2013) Abiraterone in metastatic renal cell carcinoma: Results of a pharmacokinetic and pharmacodynamic analysis. J Clin Pharmacol 53:491–504. https://doi.org/10.1002/jcph.73
102. Tsutchiya N, Igarashi R, Suzuki-Homma N, Fujiyama N, Narita S, Inoue T, Saito M, Akhima S, Tsuruta H, Miura M, Habuchi T (2015) Association of pharmacokinetics of abiraterone with treatment outcome and adverse events in advanced renal cell carcinoma patients. J Clin Oncol 33:506. https://doi.org/10.1200/jco.2015.33.7_supp1.506
103. Committee for Medicinal Products for Human Use (CHMP) (2012) Inlyta European public assessment report. https://www.ema.europa.eu/documents/product-information/inlyta-epar-product-information_en.pdf. Accessed 17 June 2019
104. Food and Drug Administration. Center for Drug Evaluation and Research (2012) Axitinib Clinical Pharmacology and Biopharmaceutics Review. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2012/202324Orig1s000ClinPharmR.pdf. Accessed 18 June 2019
105. Rini BI, Melichar B, Fishman MN, Oya M, Pithavala YK, Chen Y, Bair AH, Grünwald V (2015) Axitinib dose titration: Analyses of exposure, blood pressure and clinical response from a randomized phase II study in metastatic renal cell carcinoma. Ann Oncol 26:1372–1377. https://doi.org/10.1093/annonc/mdv103
106. Rini BI, Melichar B, Ueda T, Grünwald V, Fishman MN, Arranz JA, Bair AH, Pithavala YK, Andrews GI, Pavlov D, Kim S, Jonasch E (2013) Axitinib with or without dose titration for first-line metastatic renal-cell carcinoma: A randomised double-blind phase 2 trial. Lancet Oncol 14:1233–1242. https://doi.org/10.1016/s1470-2045(13)70464-9
107. Thierry-Vuillemin A, Mouillet G, Nguyen Tan Hon T, Montcuquet P, Maurina T, Almotlak H, Stein U, Montange D, Foubert A, Nerich V, Pivot X, Royer B (2014) Impact of everolimus blood concentration on its anti-cancer activity in patients with metastatic renal cell carcinoma. Cancer Chemother Pharmacol 73:999–1007. https://doi.org/10.1007/s00280-014-2435-7
108. de Wit D, Schneider TC, Moes DJAR, Roozen CFM, den Hartigh J, Gelderblom H, Guchelaar HJ, van der Hoeven JJ, Links TP, Kapiteijn E, van Erp NP (2016) Everolimus pharmacokinetics and its exposure–toxicity relationship in patients with thyroid cancer. Cancer Chemother Pharmacol 78:63–71. https://doi.org/10.1007/s00280-016-3050-6
109. ter Heine R, van Erp NP, Guchelaar HJ, de Fijter JW, Reinders MEJ, van Herpen CM, Burger DM, Moes DIJAR (2018) A pharmacological rationale for improved everolimus dosing in oncology and transplant patients. Br J Clin Pharmacol 84:1575–1586. https://doi.org/10.1111/bcp.13591
110. Krueger DA, Care MM, Holland K, Agricola K, Tudor C, Mangeshkar P, Wilson KA, Byars A, Sahnoud T, Franz DN (2010) Everolimus for subependymal giant-cell astrocytomas in tuberous sclerosis. N Engl J Med 363:1801–1811. https://doi.org/10.1056/nejmoa1001671
111. Shipkova M, Hesselink DA, Holt DW, Billaud EM, Van Gelder T, Munck PC, Brunet M, Budde K, Barten MJ, de Simone P, Wieland E, Lopez OM, Masuda S, Seger C, Picard N, Oellerich M, Langman J, Wallemacq P, Morris RG, Thompson C, Marquet P (2016) Therapeutic drug monitoring of everolimus: A consensus report. Ther Drug Monit 38:143–169. https://doi.org/10.1097/tdm.0000000000000260
112. Kobayashi H, Sato K, Niioka T, Miura H, Ito H, Miura M (2015) Genotype-Guided Tamoxifen Dosing Increases Active Metabolite Concentrations without Increasing Side Effects. Breast Cancer Res Treat 153:583–590. https://doi.org/10.1007/s10549-015-3562-5
113. Perez CA, Song H, Rasz LE, Agulnik M, Grushko TA, Dekker A, Stenson K, Blair EA, Olopade OI, Seiwert TY, Vokes EE, Cohen
EEW (2012) Phase II study of gefitinib adaptive dose escalation to skin toxicity in recurrent or metastatic squamous cell carcinoma of the head and neck. Oral Oncol 48:887–892. https://doi.org/10.1016/joraloncology.2012.03.020

114. Picard S, Titter K, Etienne G, Teihet E, Ducint D, Bernard MA, Lassalle R, Marit G, Reiffers J, Begaud B, Moore N, Molimard M, Mahon FX (2007) Trough imatinib plasma levels are associated with both cytogenetic and molecular responses to standard-dose imatinib in chronic myeloid leukemia. Blood 109:3496–3498. https://doi.org/10.1182/blood-2006-07-036012

115. Lankheet NAG, Knapen LM, Schellens JHM, Beijnen JH, Steeghs N, Huitema ADR (2014) Plasma concentrations of tyrosine kinase inhibitors imatinib, erlotinib, and sunitinib in routine clinical outpatient cancer care. Ther Drug Monit 36:326–334. https://doi.org/10.1097/FDM.0000000000000304

116. Widmer N, Decosterda L, Leyvraz S, Duchosal MA, Rosselet A, Debiec-Rychter M, Csajka C, Biolaz J, Buclin T (2008) Relationship of imatinib-free plasma levels and target genotype with efficacy and tolerability. Br J Cancer 98:1633–1640. https://doi.org/10.1038/sj.bjc.6604555

117. Delbaldo C, Chatelut E, Ré M, Deroussent A, Séronie-Vivien S, Jambu A, Berthaud P, Le Cesne A, Blay JY, Vassal G (2006) Pharmacokinetic-pharmacodynamic relationships of imatinib and its main metabolite in patients with advanced gastrointestinal stromal tumors. Clin Cancer Res 12:6073–6078. https://doi.org/10.1182/clinres.01584.03432.ecc-05-2596

118. Heath EI, Choiorean EG, Sweeney CJ, Hodge JP, Lanner JG, Forman K, Malburg L, Anrumugham T, Dar MM, Sattle AB, Gainer SD, Lorusso P (2010) A phase I study of the pharmacokinetic and safety profiles of oral pazopanib with a high-fat or low-fat meal in patients with advanced solid tumors. Clin Pharmacol Ther 88:818–823. https://doi.org/10.1038/cpt.2010.199

119. Lankheet NAG, Kloth JSL, Gadellla-Van Hooijdonk CGM, Cirkel GA, Mathijssen RHJ, Lolkema MPJK, Schellens JHM, Huitema ADR, Steeghs N (2014) Pharmacokinetically guided sunitinib dosing: A feasibility study in patients with advanced solid tumours. Br J Cancer 110:2441–2449. https://doi.org/10.1038/bjc.2014.194

120. Teo YL, Chue XP, Chau NM, Tan MH, Kanavesan R, Wee HL, Ho HK, Chan A (2015) Association of drug exposure with toxicity and clinical response in metastatic renal cell carcinoma patients receiving an attenuated dosing regimen of sunitinib. Target Oncol 10:429–437. https://doi.org/10.1007/s11522-014-0349-2

121. Takasaki S, Kawasaki Y, Kikuichi M, Tanaka M, Suda A, Sato Y, Yamashita S, Mitsuzuka K, Saito H, Ito A, Yamaguchi H, Arai Y, Mano N (2018) Relationships between sunitinib plasma concentration and clinical outcomes in Japanese patients with metastatic renal cell carcinoma. Int J Clin Oncol 23:936–943. https://doi.org/10.1007/s10147-018-1302-7

122. Jager NGL, Rosing H, Schellens JHM, Linn SC, Beijnen JH (2014) Tamoxifen dose and serum concentrations of tamoxifen and six of its metabolites in routine clinical outpatient care. Breast Cancer Res Treat 143:477–483. https://doi.org/10.1007/s10549-013-2826-1

123. Flaherty KT, Robert C, Hersey P, Nathan P, Garbe C, Milhem M, Demidov LV, Hassell JC, Rutkowski P, Mohr P, Demuner R, Treffzer U, Larkin JMG, Uitkai J, Dreno B, Nyakas M, Middleton MR, Becker JC, Casey M, Sherman LJ, Wu FS, Ouellet D, Martin A-M, Patel K, Chadendorf D (2012) Improved Survival with MEK Inhibition in BRAF-Mutated Melanoma. N Engl J Med 367:107–114. https://doi.org/10.1056/nejmoa1203421

124. Food and Drug Administration. Center for Drug Evaluation and Research (2013) Trametinib Clinical Pharmacology and Biopharmaceutics Review. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2013/204114Orig1s000ClinPharmR.pdf. Accessed 24 March 2020

125. Food and Drug Administration. Center for Drug Evaluation and Research (2015) Alectinib Clinical Pharmacology and Biopharmaceutics Review. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2015/208434Orig1s000ClinPharmR.pdf. Accessed 07 April 2019

126. Committee for Medicinal Products for Human Use European Medicines Agency (2017) Alecensa European public assessment report. https://www.ema.europa.eu/en/documents/product-information/alecensa-epraproduct-information_en.pdf. Accessed 07 April 2019

127. Marcos PN, Nuesch E, Jamision F, Guerini E, Hsu JC, Bordogna W, Balas B, Mercier F (2018) Exposure–response analysis of alectinib in crizotinib-resistant ALK-positive non-small cell lung cancer. Cancer Chemother Pharmacol 82:129–138. https://doi.org/10.1007/s00280-018-3597-5

128. Food and Drug Administration. Center for Drug Evaluation and Research (2011) Crizotinib Clinical Pharmacology and Biopharmaceutics Review. http://www.accessdata.fda.gov/drugsatfda_docs/nda/2011/202570Orig1s000ClinPharmR.pdf. Accessed 25 March 2019

129. Kurata Y, Miyauchi N, Suno M, Ito T, Sendo T, Kiura K (2015) Correlation of plasma crizotinib trough concentration with adverse events in patients with anaplastic lymphoma kinase positive non-small-cell lung cancer. J Pharm Heal Care Sci 1:8. https://doi.org/10.1186/s40780-014-0008-x

130. Wang E, Nickens DJ, Bello A, Khosravan R, Amantea M, Wilner KD, Parivar K, Tan W (2016) Clinical implications of the pharmacokinetics of crizotinib in populations of patients with non-small cell lung cancer. Clin Cancer Res 22:5722–5728. https://doi.org/10.1158/1078-0432.ccr-14-0563

131. Hidalgo M, Siu LL, Nemunaitis J, Rizzo J, Hammond LA, Takimoto C, Eckhardt SG, Tolcher A, Britten CD, Denis L, Ferrante K, Von Hoff DD, Silberman S, Rowinsky EK (2001) Phase I and pharmacologic study of OSI-774, an epidermal growth factor receptor tyrosine kinase inhibitor, in patients with advanced solid malignancies. J Clin Oncol 19:3267–3279. https://doi.org/10.1200/jco.2001.19.13.3267

132. Soulieres D, Senzer NN, Vokes EE, Hidalgo M, Agarvala SS, Siu LL (2004) Multicenter phase II study of erlotinib, an oral epidermal growth factor receptor tyrosine kinase inhibitor, in patients with recurrent or metastatic squamous cell cancer of the head and neck. J Clin Oncol 22:77–85. https://doi.org/10.1200/jco.2004.06.075

133. Tiseo M, Andreoli R, Gelsomino F, Mozzoni P, Azzoni C, Bartolotti M, Bortesi B, Goldoni M, Silini EM, De Palma G, Mutti A, Ardizzoni A (2014) Correlation between erlotinib pharmacokinetics, cutaneous toxicity and clinical outcomes in patients with advanced non-small cell lung cancer (NSCLC). Lung Cancer 83:265–271. https://doi.org/10.1016/j.lungcan.2013.12.001

134. Lu JF, Eppler SM, Wolf J, Hamilton M, Rakhit A, Bruno R, Lum BL (2006) Clinical pharmacokinetics of erlotinib in patients with solid tumors and exposure-safety relationship in patients with non-small cell lung cancer. Cancer Chemother Pharmacol 56:https://doi.org/10.1007/s00280-006-0398-9

135. Endo-Tsukude C, Sasaki J, Saeki S, Iwamoto N, Inaba M, Ohtsuka Y, Nakano T, Ono K, Kato T, Saeki R, Hayashi E, Tsubata Y, Hayashi M, Kai Y, Saito H, Isobe T, Kohrogi H, Hamada A (2018) Population Pharmacokinetics and Adverse Events of Erlotinib in Japanese Patients with Non-small-cell Lung Cancer: Impact of Genetic Polymorphisms in Metabolizing Enzymes and Transporters. Biol Pharm Bull 41:47–56. https://doi.org/10.1248/bpb.17-00521

136. Food and Drug Administration. Center for Drug Evaluation and Research (2018) NDA Multi-Disciplinary Review and Evaluation
137. Food and Drug Administration. Center for Drug Evaluation and Research (1997) Letrozole Clinical Pharmacology and Biopharmaceutics Review. https://www.accessdata.fda.gov/drugsatfda_docs/nda/1997/20726_FEMARA2.5MG_BIOPHARM.PDF. Accessed 14 February 2020

138. Desta Z, Kreutz Y, Nguyen AT, Li L, Skaar T, Kamdem LK, Henry NL, Hayes DF, Stormiolio AM, Steams V, Hofmann E, Tyndale RF, Flockhart DA (2011) Plasma letrozole concentrations in postmenopausal women with breast cancer are associated with CYP2A6 genetic variants, body mass index, and age. Clin Pharmacol Ther 90:693–700. https://doi.org/10.1038/clpt.2011.174

139. Tanii H, Shitara Y, Horie T (2011) Population pharmacokinetic analysis of letrozole in Japanese postmenopausal women. Eur J Clin Pharmacol 67:1017. https://doi.org/10.1007/s00228-011-1042-3

140. Giles FJ, Yin OQP, Sallas WM, Le Coutre PD, Woodman RC, Henry NL, Hayes DF, Storniolo AM, Stearns V, Hoffmann E, Tyndale RF, Flockhart DA (2011) Plasma letrozole concentrations in postmenopausal women with breast cancer are associated with CYP2A6 genetic variants, body mass index, and age. Clin Pharmacol Ther 90:693–700. https://doi.org/10.1038/clpt.2011.174

141. Larson RA, Yin OQP, Hochhaus A, Saglio G, Clark RE, Nakamae H, Gallagher NJ, Demirhan E, Hughes TP, Kantarjian HM, Le Coutre PD (2012) Population pharmacokinetic and exposure-response analysis in patients with imatinib-resistant or -intolerant chronic myeloid leukemia. Eur J Clin Pharmacol 69:813–823. https://doi.org/10.1007/s00228-012-1385-4

142. Takahashi N, Abumiya M, Miura M, Nioka T, Sawada K, Tagawa H, Kameoka Y, Fujishima N (2014) Influence of UGT1A1 *6, *27, and *28 Polymorphisms on Nilotinib-induced Hyperbilirubinemia in Japanese Patients with Chronic Myeloid Leukemia. Drug Metab Pharmacokinet 29:449-454. https://doi.org/10.2133/dmpk.dmpk-14-rg-031

143. Nakahara R, Sumimoto T, Ogata M, Sato Y, Itoh H (2019) Successful determination of nilotinib dosage by therapeutic drug monitoring in a patient with chronic myeloid leukemia developing hepatic dysfunction: A case report. Clin Case Reports 7:1419–1421. https://doi.org/10.1002/ccr3.2191

144. Nijenhuis CM, Huitema ADR, Blank C, Haanen JBA, van Thienen JV, Rosing H, Schellens JHM, Beijnen JH (2017) Clinical Pharmacokinetics of Vemurafenib in BRAF-Mutated Melanoma Patients. J Clin Pharmacol 57:125–128. https://doi.org/10.1002/jcph.788

145. Nijenhuis CM, Huitema ADR, Marchetti S, Blank C, Haanen JBA, van Thienen JV, Rosing H, Schellens JHM, Beijnen JH (2016) The Use of Dried Blood Spots for Pharmacokinetic Monitoring of Vemurafenib Treatment in Melanoma Patients. J Clin Pharmacol. https://doi.org/10.1002/jcph.728

146. Committee for Medicinal Products for Human Use (CHMP) European Medicines Agency (2012) Zelboraf European public assessment report. https://www.ema.europa.eu/en/documents/assessment-report/zelboraf-epar-public-assessment-report_en.pdf. Accessed 24 March 2020

147. Food and Drug Administration. Center for Drug Evaluation and Research (2017) Vemurafenib Clinical Pharmacology and Biopharmaceutics Review. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2017/202429Orig1s016ClinPharmR.pdf. Accessed 24 March 2020

148. Food and Drug Administration. Center for Drug Evaluation and Research (2018) Abemaciclib Clinical Pharmacology and Biopharmaceutics Review. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2018/208855Orig1s000MultidisciplinaryR.pdf. Accessed 12 February 2020

149. Tate SC, Sykes AK, Kulanthaivel P, Chan EM, Turner PK, Cronier DM (2018) A Population Pharmacokinetic and Pharmacodynamic Analysis of Abemaciclib in a Phase I Clinical Trial in Cancer Patients. Clin Pharmacokinet 57:335–344. https://doi.org/10.1007/s40262-017-0559-8

150. Food and Drug Administration. Center for Drug Evaluation and Research (2012) Afatinib Clinical Pharmacology and Biopharmaceutics Review. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2012/21292Orig1s000ClinPharmR.pdf. Accessed 12 February 2020

151. Takahashi N, Abumiya M, Miura M, Nioka T, Sawada K, Tagawa H, Kameoka Y, Fujishima N (2014) Influence of UGT1A1 *6, *27, and *28 Polymorphisms on Nilotinib-induced Hyperbilirubinemia in Japanese Patients with Chronic Myeloid Leukemia. Drug Metab Pharmacokinet 29:449-454. https://doi.org/10.2133/dmpk.dmpk-14-rg-031

152. Lim CK, Wei YF, Tsai MS, Chen KY, Shih JY, Yu CJ (2018) Treatment effectiveness and tolerability of afatinib at different doses in patients with EGFR-mutated lung adenocarcinoma: How low can we go? Eur J Cancer 103:32–40. https://doi.org/10.1016/j.ejca.2018.07.128

153. Freiwald M, Schmid U, Fleury A, Wind S, Stopfer P, Staab A (2014) Population pharmacokinetics of afatinib, an irreversibly ErbB family blocker, in patients with various solid tumors. Cancer Chemother Pharmacol 73:759–770. https://doi.org/10.1007/s00280-014-2403-2

154. Food and Drug Administration. Center for Drug Evaluation and Research (2019) NDA/BLA Multi-Disciplinary Review and Evaluation NDA 212526 PIQRAY (alpelisib). https://www.accessdata.fda.gov/drugsatfda_docs/nda/2019/212526Orig1s000MultidisciplinaryR.pdf. Accessed 06 April 2020

155. De Buck SS, Jakab A, Boehm M, Bootle D, Juric D, Quad C, Goggin TK (2014) Population pharmacokinetics and pharmacodynamics of BYL719, a phosphoinositide 3-kinase antagonist, in adult patients with advanced solid malignancies. Br J Clin Pharmacol 78:543–555. https://doi.org/10.1111/bcp.12378

156. Ingle JN, Kakari KR, Buzdar AU, Robson ME, Goetz MP, Desta Z, Barman P, Dudenkov TT, Northfelt DW, Perez EA, Flockhart DA, Williard CV, Wang L, Weinsilboum RM (2015) Estrogens and their precursors in postmenopausal women with early breast cancer receiving anastrozole. Steroids 99:32–38. https://doi.org/10.1016/j.steroids.2014.08.007

157. Food and Drug Administration. Center for Drug Evaluation and Research (2018) NDA/BLA Multi-Disciplinary Review and Evaluation NDA 210951 Erleada (apalutamide). https://www.accessdata.fda.gov/drugsatfda_docs/nda/2018/210951Orig1s000MultidisciplinaryR.pdf. Accessed 13 February 2020

158. Pérez-Ruixo C, Pérez-Blanco JS, Chien C, Yu M, Ouellet D, Perez-Ruixo JJ, Ackaert O (2019) Population Pharmacokinetics of Apalutamide and its Active Metabolite N-Desmethyl-Apalutamide in Healthy and Castration-Resistant Prostate Cancer Subjects. Clin Pharmacokinet 59:229–244. https://doi.org/10.1007/s40262-019-00808-7

159. Food and Drug Administration. Center for Drug Evaluation and Research (2020) NDA/BLA Multi-Disciplinary Review and Evaluation NDA 212608 AYVAKIT (avapritinib). https://www.accessdata.fda.gov/drugsatfda_docs/nda/2020/212608Orig1s000MultidisciplinaryR.pdf. Accessed 06 April 2020

160. Food and Drug Administration. Center for Drug Evaluation and Research (2018) NDA Multi-Disciplinary Review and Evaluation NDA 210498 MEKTOVI™ (binimetinib). https://www.accessdata.fda.gov/drugsatfda_docs/nda/2018/210498Orig1s000MultidisciplinaryR.pdf. Accessed 13 February 2020
161. Wollenberg L, Marchand M, Merdjian H, Litwiler K (2018) Development of a Population Pharmacokinetic Model for Binimetinib with Subsequent Exposure-Response Analyses in NRAS Mutant Melanoma. Am Confi Pharmacometrics

162. Hsyu P-H, Mould DR, Abbas R, Amantea M (2014) Population Pharmacokinetic and Pharmacodynamic Analysis of Bosutinib. Drug Metab Pharmacokinet 29:441–448. https://doi.org/10.2133/dmpk.dmpk-13-rg-126

163. Hsyu P-H, Mould DR, Upton RN, Amantea M (2013) Pharmacokinetic-pharmacodynamic relationship of bosutinib in patients with chronic phase chronic myeloid leukemia. Cancer Chemother Pharmacol 71:209–218. https://doi.org/10.1007/s00280-012-1998-4

164. Hsyu P-H, Mould DR, Abbas R, Amantea M (2014) Population Pharmacokinetic and Pharmacodynamic Analysis of Bosutinib. Clin Pharmacokinet 55:1191–1204. https://doi.org/10.1007/s40262-016-0391-6

165. Food and Drug Administration. Center for Drug Evaluation and Research (2017) NDA Multi-Disciplinary Review and Evaluation NDA 208772 ALUNBRIG (brigatinib). https://www.accessdata.fda.gov/drugsatfda_docs/nda/2017/208772Orig1s000MultidisciplineR.pdf. Accessed 12 February 2020

166. Lacy S, Nielsen J, Yang B, Miles D, Nguyen L, Hutmaccher M (2018) Population exposure–response analysis of cabozantinib efficacy and safety endpoints in patients with renal cell carcinoma. Cancer Chemother Pharmacol 81:1061–1070. https://doi.org/10.1007/s00280-018-3579-7

167. Nguyen L, Chapel S, Duy B, Lacy S (2019) Cabozantinib exposure – response analyses of efficacy and safety in patients with advanced hepatocellular carcinoma. J Pharmacometr Pharmacodyn 0123456789. https://doi.org/10.1007/s10928-019-09659-y

168. Nguyen L, Chapel S, Tran BD, Lacy S (2019) Updated Population Pharmacokinetic Model of Cabozantinib Integrating Various Cancer Types Including Hepatocellular Carcinoma. J Clin Pharmacol 59:1551–1561. https://doi.org/10.1002/jcph.1467

169. Food and Drug Administration. Center for Drug Evaluation and Research (2014) Ceritinib Clinical Pharmacology and Biopharmaceutics Review. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2014/205755Orig1s000ClinPharmR.pdf. Accessed 13 February 2020

170. Food and Drug Administration. Center for Drug Evaluation and Research (2018) Dacomitinib Clinical Pharmacology and Biopharmaceutics Review. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2018/211288Orig1s000MultidisciplineR.pdf. Accessed 13 February 2020

171. Ishida Y, Murai K, Yamaguchi K, Miyagishima T, Shindo M, Ogawa K, Nagashima T, Sato S, Watanabe R, Yamamoto S, Hirose T, Saitou S, Yonezumi M, Kondo T, Kato Y, Mochizuki N, Ohno K, Kishino S, Kubo K, Oyake T, Ito S (2016) Pharmacokinetics and pharmacodynamics of dasatinib in the chronic phase of newly diagnosed chronic myeloid leukemia. Eur J Clin Pharmacol 72:185–193. https://doi.org/10.1007/s00228-015-1968-y

172. Switky J, Goodman VL (2014) Population pharmacokinetics of JAK2 inhibitor fedratinib (SAR302503) in healthy volunteers. J Clin Pharmacol 54:696–706. https://doi.org/10.1002/jcph.849

173. Ogasawara K, Zhou S, Krishna G, Palmisano M, Li Y (2019) Population pharmacokinetics of dasatinib in patients with myelo-fibrosis, polycythemia vera, and essential thrombocythemia.

174. Roussel M, Dutiaux C, Bosco-Lévy P, Prey S, Pham-Ledard A, Dousset L, Gérard E, Bouchet S, Canal-Raffin M, Titter K, Molimard M (2017) Trough dabrafenib plasma concentrations can predict occurrence of adverse events requiring dose reduction in metastatic melanoma. Clin Chim Acta 472:26–29. https://doi.org/10.1016/j.cca.2017.07.012

175. Food and Drug Administration. Center for Drug Evaluation and Research (2018) Dacomitinib Clinical Pharmacology and Biopharmaceutics Review. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2018/211288Orig1s000MultidisciplineR.pdf. Accessed 13 February 2020

176. Wang X, Roy A, Hochhaus A, Kantarjian HM, Chen TT, Shah NP (2013) Differential effects of dosing regimen on the safety and efficacy of dasatinib: Retrospective exposure-response analysis of a phase III study. Clin Pharmacol Adv App 5:85–97. https://doi.org/10.2147/cpaa.s47296

177. Yoshitsugu H, Imai Y, Seriu T, Hiraoka M (2012) Markov Chain Monte Carlo Bayesian analysis for population pharmacokinetics of dasatinib in Japanese adult subjects with chronic myeloid leukemia and Philadelphia chromosome positive acute lymphoblastic leukemia. Japanese J Clin Pharmacol Ther 43:29–41

178. Mizuta S, Sawa M, Tsurumi H, Matsumoto K, Miyao K, Hara T, Takahashi T, Sakemura R, Kojima H, Kohno A, Oba MS, Morita S, Sakamoto J, Emi N (2018) Plasma concentrations of dasatinib have a clinical impact on the frequency of dasatinib dose reduction and interruption in chronic myeloid leukaemia: an analysis of the DARIO 01 study. Int J Clin Oncol 23:980–988. https://doi.org/10.1007/s10147-018-1300-9

179. Switky J, Goodman VL (2014) Population pharmacokinetics of JAK2 inhibitor fedratinib (SAR302503) in healthy volunteers. J Clin Pharmacol 54:696–706. https://doi.org/10.1002/jcph.849

180. Food and Drug Administration. Center for Drug Evaluation and Research (2017) NDA Multi-Disciplinary Review and Evaluation NDA 209606 DHIFIA (enasidenib). https://www.accessdata.fda.gov/drugsatfda_docs/nda/2017/209606Orig1s000MultidisciplineR.pdf. Accessed 06 April 2020

181. Food and Drug Administration. Center for Drug Evaluation and Research (2018) NDA Multi-Disciplinary Review and Evaluation NDA 210496 BRAFTOVI TM (encorafenib). https://www.accessdata.fda.gov/drugsatfda_docs/nda/2018/210496Orig1s000MultidisciplineR.pdf. Accessed 12 February 2020

182. Food and Drug Administration. Center for Drug Evaluation and Research (2018) Dacomitinib Clinical Pharmacology and Biopharmaceutics Review. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2018/212018Orig1s000MultidisciplineR.pdf. Accessed 06 April 2020

183. Food and Drug Administration. Center for Drug Evaluation and Research (2019) NDA/BLA Multi-Disciplinary Review and Evaluation NDA 212018 BALVERSA (erdafitinib). https://www.accessdata.fda.gov/drugsatfda_docs/nda/2019/212018Orig1s000MultidisciplineR.pdf. Accessed 06 April 2020

184. Food and Drug Administration. Center for Drug Evaluation and Research (2019) NDA Multi-Disciplinary Review and Evaluation NDA 210496 BRAF/FOV178 (encorafenib). https://www.accessdata.fda.gov/drugsatfda_docs/nda/2019/210496Orig1s000MultidisciplineR.pdf. Accessed 12 February 2020

185. Zhang M, Xu CR, Shamiyeh E, Liu F, Yin JY, Von Moltke LL, Smith WB (2014) A randomized, placebo-controlled study of the pharmacokinetics, pharmacodynamics, and tolerability of the oral JAK2 inhibitor fedratinib (SAR302503) in healthy volunteers. J Clin Pharmacol 54:415–421. https://doi.org/10.1002/jcph.218

186. Ogasawara K, Zhou S, Krishna G, Palmisano M, Li Y (2019) Population pharmacokinetics of fedratinib in patients with myelo-fibrosis, polycythemia vera, and essential thrombocythemia.
Cancer Chemother Pharmacol 84:891–898. https://doi.org/10.1007/s00280-019-03929-9

187. Food and Drug Administration. Center for Drug Evaluation and Research (2018) Glasdegib Clinical Pharmacology and Biopharmaceutics Review. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2018/210656Orig1s000ClinPharmR.pdf. Accessed 06 April 2020

188. Lin S, Shaik N, Martinegli G, Wagner AJ, Cortes J, Ruiz-Garcia A (2019) Population Pharmacokinetics of Glasdegib in Patients With Advanced Hematologic Malignancies and Solid Tumors. J Clin Pharmacol. https://doi.org/10.1002/jcph.1556

189. Food and Drug Administration. Center for Drug Evaluation and Research (2013) Ibrutinib Clinical Pharmacology and Biopharmaceutics Review. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2013/205552Orig1s000ClinPharmR.pdf. Accessed 13 February 2020

190. Marostica E, Sukbuntherng J, Loury D, De Jong J, De Trixhe XW, De Trixhe X (2018) Exposure–time relationship pharmacokinetics of midostaurin and its metabolites in human subjects and patients with cancer. Br J Clin Pharmacol 81:1124–1133. https://doi.org/10.1111/bcp.12907

191. Food and Drug Administration. Center for Drug Evaluation and Research (2018) NDA Multi-disciplinary Review and Evaluation NDA 210868 Lorlatinib. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2018/210868Orig1s000MultidisciplineR.pdf. Accessed 14 February 2020

192. Gupta N, Diderichsen PM, Hanley MJ, Berg D, van de Velde H, Gupta N, Yang H, Hanley MJ, Zhang S, Liu R, Kumar S, Hayato S, Schumaker R, Ferry J, Binder T, Ductus CE, Hussein Z Committee for Medicinal Products for Human Use (CHMP) (2016) Population Pharmacokinetics of Glasdegib in Patients With Advanced Hematologic Malignancies and Solid Tumors. J Clin Pharmacol. https://doi.org/10.1002/jcph.1556

193. Gupta N, Labotka R, Liu G, Hui AM, Venkatakrishnan K (2016) Exposure–time relationship pharmacokinetics of midostaurin and its metabolites in human subjects and patients with cancer. Br J Clin Pharmacol 81:1124–1133. https://doi.org/10.1111/bcp.12907

194. Gupta N, Diderichsen PM, Hanley MJ, Berg D, van de Velde H, Gupta N, Yang H, Hanley MJ, Zhang S, Liu R, Kumar S, Hayato S, Schumaker R, Ferry J, Binder T, Ductus CE, Hussein Z Committee for Medicinal Products for Human Use (CHMP) (2016) Population Pharmacokinetics of Glasdegib in Patients With Advanced Hematologic Malignancies and Solid Tumors. J Clin Pharmacol. https://doi.org/10.1002/jcph.1556

195. Committee for Medicinal Products for Human Use (CHMP) European Medicines Agency (2017) Lorlatinib Clinical Pharmacology and Biopharmaceutics Review. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2017/211192Orig1s000MultidisciplineR.pdf. Accessed 06 April 2020

196. Hayato S, Sukhuntheng J, Loury D, De Jong J, De Trixhe XW, Vermeulen A, De Nicolao G, O'Brien S, Byrd JC, Advani R, McGreivy J, Poggesi I (2015) Population pharmacokinetic model of ibrutinib, a Bruton tyrosine kinase inhibitor, in patients with B cell malignancies. Cancer Chemother Pharmacol 75:111–121. https://doi.org/10.1007/s00280-014-2617-3

197. Food and Drug Administration. Center for Drug Evaluation and Research (2018) NDA Multi-disciplinary Review and Evaluation NDA 211192 Tibsovo (ivosidenib). https://www.accessdata.fda.gov/drugsatfda_docs/nda/2018/205532Orig1s000MultidisciplineR.pdf. Accessed 13 February 2020

198. Tamai T, Hayato S, Hojo S, Suzuki T, Okusaka T, Ikeda K, Nagahama M, Ozeki T, Suzuki A, Sugino K, Niioka T, Ito K, Morinaga R, Ueda S, Terashima M, Tsuya A, Sarashina A, Krygowski M, Liang Y, Turnbull KW, Shapiro GI, Soria JC (2014) Phase I study of neratinib in combination with temsirolimus in patients with human epidermal growth factor receptor 2-dependent and other solid tumors. J Clin Oncol 32:68–75. https://doi.org/10.1200/jco.2012.47.2787

199. Gupta A, Jazbab Z, Capdevila J, Shumaker R, Hussein Z (2020) Population pharmacokinetic analysis of lenvatinib in healthy subjects and patients with cancer. Br J Clin Pharmacol 81:1124–1133. https://doi.org/10.1111/bcp.12907

200. Committee for Medicinal Products for Human Use (CHMP) European Medicines Agency (2019) Lorviqua European public assessment report. https://www.ema.europa.eu/en/documents/assessment-report/lorviqua-epar-public-assessment-report_en.pdf. Accessed 14 February 2020

201. Food and Drug Administration. Center for Drug Evaluation and Research (2018) NDA Multi-disciplinary Review and Evaluation NDA 210868 Lorlatinib. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2018/210868Orig1s000MultidisciplineR.pdf. Accessed 14 February 2020

202. Shaw AT, Felip E, Bauer TM, Besse B, Navarro A, Postel-Vinay S, Gainor JF, Johnson M, Dietrich J, James LP, Clancy JS, Chen J, Martini JF, Abbattista A, Solomon BJ (2017) Lorlatinib in non-small-cell lung cancer with ALK or ROS1 rearrangement: an international, multicentre, open-label, single-arm first-in-man phase 1 trial. Lancet Oncol 18:1590–1599. https://doi.org/10.1016/s1470-2045(17)30680-0

203. Gupte N, Labotka R, Liu G, Hui AM, Venkatakrishnan K (2016) Exposure–safety–efficacy analysis of single-agent ixazomib, an oral proteasome inhibitor, in relapsed/refractory multiple myeloma: dose selection for a phase 3 maintenance study. Invest New Drugs 34:338–346. https://doi.org/10.1007/s10637-016-0346-7

204. Gupta N, Yang H, Hanley MJ, Zhang S, Liu R, Kumar S, Richardson PG, Skacel T, Venkatakrishnan K (2017) Dose and Schedule Selection of the Oral Proteasome Inhibitor Ixazomib in Relapsed/Refractory Multiple Myeloma: Clinical and Model-Based Analyses. Target Oncol 12:643–654. https://doi.org/10.1007/s11523-017-0524-3

205. Gupta N, Didierchen PM, Hanley MJ, Berg D, van de Velde H, Harvey RD, Venkatakrishnan K (2017) Population Pharmacokinetic Analysis of Ixazomib, an Oral Proteasome Inhibitor, Including Data from the Phase III TOURMALINE-MM1 Study to Inform Labelling. Clin Pharmacokinet 56:1355–1368. https://doi.org/10.1007/s40262-017-0526-4

206. Committee for Medicinal Products for Human Use (CHMP) European Medicines Agency (2015) Lenvima European public assessment report. https://www.ema.europa.eu/en/documents/assessment-report/lenvima-epar-public-assessment-report_en.pdf. Accessed 13 February 2020

207. Gandhi L, Bahleda R, Tolaney SM, Kwak EL, Cleary JM, Pandya SS, Hollebecque A, Abbas R, Ananthakrishnan R, Berkenbilt A, Krygowski M, Liang Y, Turnbull KW, Shapiro GI, Soria JC (2014) Phase I study of neratinib in combination with temsirolimus in patients with human epidermal growth factor receptor 2-dependent and other solid tumors. J Clin Oncol 32:68–75. https://doi.org/10.1200/jco.2012.47.2787

208. Yin OQP, Wang Y, Schran H, Green K (2020) Dose- and time-dependent pharmacokinetics of midostaurin in patients with diabetes mellitus. J Clin Pharmacol 48:763–775. https://doi.org/10.1177/0091270008318006

209. Yin OQP, Wang Y, Schran H (2008) A mechanism-based population pharmacokinetic model for characterizing time-dependent pharmacokinetics of midostaurin and its metabolites in human subjects. Clin Pharmacokinet 47:807–816. https://doi.org/10.2165/00003088-200847120-00005

210. Gandhi L, Bahleda R, Tolaney SM, Kwak EL, Cleary JM, Pandya SS, Hollebecque A, Abbas R, Ananthakrishnan R, Berkenbilt A, Krygowski M, Liang Y, Turnbull KW, Shapiro GI, Soria JC (2014) Phase I study of neratinib in combination with temsirolimus in patients with human epidermal growth factor receptor 2-dependent and other solid tumors. J Clin Oncol 32:68–75. https://doi.org/10.1200/jco.2012.47.2787

211. Okamoto I, Kaneda H, Satoth T, Okamoto W, Miyazaki M, Morinaga R, Ueda S, Terashima M, Tsuya A, Sarashina A, Konishi K, Arao T, Nishio K, Kaiser R, Nakagawa K (2010) Phase I safety, pharmacokinetic, and biomarker study of BIBF 1120, an oral triple tyrosine kinase inhibitor in patients with advanced solid tumors. Mol Cancer Ther 9:2825–2833. https://doi.org/10.1158/1535-7163.mct-10-0379
235. Committee for Medicinal Products for Human Use (CHMP) European Medicines Agency (2013) Regorafenib European Public Assessment Report. https://www.ema.europa.eu/en/documents/assessment-report/stivarga-epar-public-assessment-report_en.pdf.

236. Food and Drug Administration. Center for Drug Evaluation and Research (2017) NDA/BLA multi-disciplinary review and evaluation NDA 209092 KISQALI (ribociclib). https://www.accessdata.fda.gov/drugsatfda_docs/nda/2017/209092Orig1s000MultidisciplineR.pdf. Accessed 13 February 2020

237. Food and Drug Administration. Center for Drug Evaluation and Research (2016) NDA/BLA multi-disciplinary review and evaluation NDA 209115 Rubraca (rucaparib). https://www.accessdata.fda.gov/drugsatfda_docs/nda/2016/209115Orig1s000MultidisciplineR.pdf. Accessed 13 February 2020

238. Committee for Medicinal Products for Human Use (CHMP) European Medicines Agency (2018) Rubraca European public assessment report. https://www.ema.europa.eu/en/documents/assessment-report/rubraca-epar-public-assessment-report_en.pdf.

239. Food and Drug Administration. Center for Drug Evaluation and Research. (2011) Ruxolitinib clinical pharmacology and biopharmaceutics review. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2011/202192Orig1s000ClinPharmR.pdf. Accessed 13 February 2020

240. Chen X, Williams WV, Sandor V, Yeleswaram S (2013) Population pharmacokinetic analysis of orally-administered ruxolitinib (incb018424 phosphate) in patients with primary myelofibrosis (pmlf), post-polycythemia vera myelofibrosis (ppv-mf) or post-essential thrombocythemia myelofibrosis (pet mf). J Clin Pharmacol 53:721–730. https://doi.org/10.1002/jcph.102

241. Minami H, Kawada K, Ebi H, Kitagawa K, Araki K, Mukai H, Tahara M, Nakajima H, Nakajima K (2008) Phase I and pharmacokinetic study of sorafenib, an oral multikinase inhibitor, in Japanese patients with advanced refractory solid tumors. Cancer Sci 99:1492–1498. https://doi.org/10.1111/j.1349-7006.2008.00837.x

242. Shimada M, Okawa H, Kondo Y, Maejima T, Kataoka Y, Hisamichi K, Maekawa M, Matsura M, Jin Y, Mori M, Suzuki H, Shimosegawa T, Mano N (2015) Monitoring serum levels of sorafenib and its N-oxide is essential for long-term sorafenib treatment of patients with hepatocellular carcinoma. Tohoku J Exp Med 237:173–182. https://doi.org/10.1620/tjem.237.173

243. Fukudo M, Ito T, Mizuno T, Shinsako K, Hatano E, Uemoto S, Kamba T, Yamasaki T, Ogawa O, Seno H, Chiba T, Matsubara K (2010) Variability of sorafenib toxicity and exposure over time: a pharmacokinetic/pharmacodynamic analysis. Oncologist 17: 1204–1212. doi: 10.1634/theoncologist.2011-0439

244. Boudou-Rouquette P, Naranjo C, Colmard JL, Thomas-Schoemann A, Mir O, Taieb F, Durand JP, Coriat R, Dauphin A, Vidal M, Tod M, Loriot MA, Goldwasser F, Blanchet B (2012) Early sorafenib-induced toxicity is associated with drug exposure and UGT1A9 genetic polymorphism in patients with solid tumors: a preliminary study. PLoS One 7:1–9. https://doi.org/10.1371/journal.pone.0042875

245. Topalian SL, Hamid O, Kefford RF, Dummer R, Wu YL, Grob JJ, Yang JC, Stopeck AT, Robert N, Dillman RO, Fonseca R, Karaszewska B, Schadendorf D, O’Dwyer PT, Blank CR, Chen L, Cheng Y, Schadendorf D, Pauker SG, Dsau M, Kim YH (2015) Nivolumab for the treatment of patients with advanced melanoma. N Engl J Med 372:320–330. doi:10.1056/NEJMoa1411368

246. Blanchet B, Billemont B, Cramard J, Benichou AS, Chhun S, Harcouet L, Ropert S, Dauphin A, Goldwasser F, Tod M (2009) Validation of an HPLC-UV method for sorafenib determination in human plasma and application to cancer patients in routine clinical practice. J Pharm Biomed Anal 49:1109–1114. https://doi.org/10.1016/j.jpba.2009.02.008

247. Jain L, Woo S, Gardner ER, Dahut WL, Kohn EC, Kimm S, Mould DR, Giaconia G, Yarchoan R, Veniziot J, Figg WD (2011) Population pharmacokinetic analysis of sorafenib in patients with solid tumours. Br J Clin Pharmacol 72: 294–305. https://doi.org/10.1111/j.1365-2125.2011.03963.x

248. Committee for Medicinal Products for Human Use (CHMP) European Medicines Agency (2019) Talzenna European public assessment report. https://www.ema.europa.eu/en/documents/assessment-report/talzenna-epar-public-assessment-report_en.pdf. Accessed 14 February 2020

249. Food and Drug Administration. Center for Drug Evaluation and Research (2018) NDA/BLA multi-disciplinary review and evaluation NDA 211651 TALZENNA (talazoparib). https://www.accessdata.fda.gov/drugsatfda_docs/nda/2018/211651Orig1s000MultidisciplineR.pdf. Accessed 14 February 2020

250. Yu Y, Durairaj C, Shi H, Wang DD (2020) Population pharmacokinetics of talazoparib in patients with advanced cancer. J Clin Pharmacol 60:218–228. https://doi.org/10.1002/jcph.1520

251. Committee for Medicinal Products for Human Use (CHMP) European Medicines Agency (2017) Tivozanib European public assessment report. https://www.ema.europa.eu/en/documents/assessment-report/tivoz-in-epar-public-assessment-report_en.pdf.

252. Food and Drug Administration. Center for Drug Evaluation and Research. (2011) Vandetanib clinical pharmacology and biopharmaceutics review. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2011/202405Orig1s000ClinPharmR.pdf. Accessed 13 February 2020

253. Holdren SN, Eckhardt SG, Basser R, de Boer R, Risichin D, Green M, Rosenthal MA, Wheeler C, Barge A, Hurwitz HJ (2005) Clinical evaluation of ZD6474, an orally active inhibitor of VEGF and EGF receptor signaling, in patients with solid, malignant tumors. Ann Oncol 16:1391–1397. https://doi.org/10.1093/annonc/mdi247

254. Tyrell C, Denis L, Newling D, Soloway M, Channer K, Cockshott I (1998) Casodex TM 10–200 mg daily, used as monotherapy for the treatment of patients with advanced prostate cancer. Eur Urol 33:39–53

255. Saltzstein D, Sieber P, Morris T, Gallo J (2005) Prevention and management of bicalutamide-induced gynecomastia and breast pain: randomized endocrinologic and clinical studies with tamoxifen and anastrozole. Prostate Cancer Prostatic Dis 8:75–83. https://doi.org/10.1038/sj.pcan.4500782

256. Food and Drug Administration. Center for Drug Evaluation and Research. (2008) Bicalutamide clinical pharmacology and biopharmaceutics review. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2008/022310Orig1s000ClinPharmR.pdf. Accessed 14 February 2020

257. Food and Drug Administration. Center for Drug Evaluation and Research. (2015) Cobimetinib clinical pharmacology and biopharmaceutics review. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2015/206192Orig1s000ClinPharmR.pdf. Accessed 12 February 2020

258. Han K, Jin JY, Marchand M, Eppler S, Choong N, Hack SP, Tikoo N, Bruno R, Dresser M, Musib L, Budha NR (2015) Population pharmacokinetics and dosing implications for cobimetinib in patients with solid tumors. Cancer Chemother Pharmacol 76:917–924. https://doi.org/10.1007/s00280-015-2862-0

259. Food and Drug Administration. Center for Drug Evaluation and Research (2019) NDA multi-disciplinary review and evaluation NDA 212099 NUBEQA (darolutamide). https://www.accessdata.fda.gov/drugsatfda_docs/nda/2019/212099Orig1s000MultidisciplineR.pdf. Accessed 06 April 2020
260. Flinn IW, O’Brien S, Kahl B, Patel M, Oki Y, Foss FF, Porcu P, Jones J, Burger JA, Jain N, Kelly VM, Allen K, Douglas M, Sweeney J, Kelly P, Horwitz S (2018) Duvelisib, a novel oral dual inhibitor of PI3K-d,g, is clinically active in advanced hematologic malignancies. Blood 131:877–887. https://doi.org/10.1182/blood.2017-05-786566

261. Food and Drug Administration. Center for Drug Evaluation and Research (2018) NDA multi-disciplinary review and evaluation NDA 211155 COPIKTRA (duvelisib). https://www.accessdata.fda.gov/drugsatfda_docs/nda/2018/211155Orig1s000MultidisciplineR.pdf. Accessed 14 February 2020

262. Food and Drug Administration. Center for Drug Evaluation and Research (2019) NDA/BLA multi-disciplinary review and evaluation NDA 212725 ROZLYTREK (entrectinib). https://www.accessdata.fda.gov/drugsatfda_docs/nda/2019/212725Orig1s000, 212726Orig1s000MultidisciplineR.pdf. Accessed 14 February 2020

263. Food and Drug Administration. Center for Drug Evaluation and Research. (2012) Enzalutamide clinical pharmacology and biopharmaceutics review. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2012/203415Orig1s000ClinPharmR.pdf. Accessed 12 February 2020

264. van Nuland M, Bergman AM, Rosing H, de Vries N, Huijtema ADR, Beijnen JH (2019) Exposure-response assessment of enzalutamide and its major metabolites in a real-world cohort of patients with metastatic castration-resistant prostate cancer. Pharmacotherapy 39:1137–1145. https://doi.org/10.1002/phar.2339

265. Valle M, Salle E Di, Jannuzzo MG, Poggesi I, Rocchetti M, Valle M, Salle E Di, Jannuzzo MG, Poggesi I, Rocchetti M (2017) Exposure-response of idelalisib administered in combination with ofatumumab for the treatment of relapsed chronic lymphocytic leukemia with central nervous system involvement. Haematologica 104:e222–e223. https://doi.org/10.3324/haematol.2018.213157

266. Food and Drug Administration. Center for Drug Evaluation and Research. (2014) Idelalisib clinical pharmacology and biopharmaceutics review. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2014/206545Orig1s000ClinPharmR.pdf. Accessed 14 February 2020

267. Sharma S, Guo Y, Jin F, Li X, Dubowy RL, Newcomb T, Ramanathan S (2015) Exposure-response of idelalisib administered in combination with ofatumumab for the treatment of relapsed chronic lymphocytic leukemia. Blood 126:4172 LP–4174172

268. Daryani VM, Sharma S, Xing G, Silverman J, Adewoye AH, Mathias A (2017) Exposure-response of idelalisib administered in combination with bendamustine and rituximab for the treatment of relapsed chronic lymphocytic leukemia. Blood 130:5344 LP–534544

269. Jin F, Gao Y, Zhou H, Fang L, Li X (2016) Population pharmacokinetic modeling of idelalisib, a novel PI3K δ inhibitor, in healthy subjects and patients with hematologic malignancies. Cancer Chemother Pharmacol 77:89–98. https://doi.org/10.1007/s00280-015-2891-8

270. Burris HA, Hurwitz HI, Dees EC, Dowlati A, Blackwell KL, O’Neil B, Marcom PK, Ellis MJ, Overmoyer B, Jones SF, Harris JL, Smith DA, Koch KM, Stead A, Mangum S, Spector NL (2005) Phase I safety, pharmacokinetics, and clinical activity study of lapatinib (GW572016), a reversible dual inhibitor of epidermal growth factor receptor tyrosine kinases, in heavily pretreated patients with metastatic carcinomas. J Clin Oncol 23:5305–5313. https://doi.org/10.1200/jco.2005.16.584

271. Siegel-Lakah WS, Beijnen JH, Vervenne WL, Boot H, Keessen M, Versola M, Koch KM, Smith DA, Pandite L, Richel DJ, Schellens JHM (2007) Phase I pharmacokinetic study of the safety and tolerability of lapatinib (GW572016) in combination with oxaliplatin/flourauricil/leucovorin (FOLFFOX4) in patients with solid tumors. Clin Cancer Res 13:4495–4502. https://doi.org/10.1158/1078-0432.ccr-07-0004

272. Zhang J, Koch K (2012) Population pharmacokinetics of Lapatinib in cancer patients. PAGE Meet. https://doi.org/10.1007/s40262-016-0452-x

273. Committee for Medicinal Products for Human Use (CHMP) European Medicines Agency (2019) Vitrakvi European public assessment report. https://www.ema.europa.eu/en/documents/assessment-report/vitrakvi-epar-public-assessment-report_en.pdf.

274. Food and Drug Administration. Center for Drug Evaluation and Research (2018) NDA multi-disciplinary review and evaluation NDA 210861 and NDA 211710 VITRAKVI (larotrectinib). https://www.accessdata.fda.gov/drugsatfda_docs/nda/2018/210861Orig1s000_211710Orig1s000MultidisciplineR.pdf. Accessed 14 February 2020

275. Reda G, Cassin R, Dovretlova G, Matteo C, Giannotta J, D’incalci M, Cortelezzi A, Zucchetti M (2019) Venetoclax penetrates in cerebrospinal fluid and may be effective in chronic lymphocytic leukemia with central nervous system involvement. Haematologica 104:e222–e223. https://doi.org/10.3324/haematol.2018.213157

276. Food and Drug Administration. Center for Drug Evaluation and Research. (2016) Venetoclax clinical pharmacology and biopharmaceutics review. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2016/208573Orig1s000ClinPharmR.pdf. Accessed 13 February 2020

277. Jones AK, Freise KJ, Agarwal SK, Humerickhouse RA, Wong SL, Salem AH (2016) Clinical predictors of venetoclax pharmacokinetics in chronic lymphocytic leukemia and non-Hodgkin’s lymphoma patients: a pooled population pharmacokinetic analysis. AAPS J 18:1192–1202. https://doi.org/10.1208/s12248-016-9927-9

278. Food and Drug Administration. Center for Drug Evaluation and Research. (2012) Vismodegib clinical pharmacology and biopharmaceutics review. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2012/203388Orig1s000ClinPharmR.pdf. Accessed 12 February 2020

279. Fujiwara Y, Yamamoto N, Yamada Y, Yamada K, Otsuki T, Kanazu S, Iwasa T, Hardwick JS, Tamura T (2009) Phase I and pharmacokinetic study of vorinostat (suberoylanilide hydroxamic acid) in Japanese patients with solid tumors. Cancer Sci 100:1728–1734. https://doi.org/10.1111/j.1349-7006.2009.01237.x

280. Food and Drug Administration. Center for Drug Evaluation and Research (2006) Vorinostat clinical pharmacology and biopharmaceutics review. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2006/021991s000_Zolinza_ClinPharmR.pdf. Accessed 01 April 2020

281. Hertz DL, Kidwell KM, Seewald NJ, Gersch CL, Desta Z, Fleckhart DA, Stomilo AM, Stearns V, Skaar TC, Hayes DF, Henry NL, Rae JM (2017) Polymorphisms in drug-metabolizing enzymes and steady-state exemestane concentration in postmenopausal patients with breast cancer. Pharmacogenomics J 17:521–527. https://doi.org/10.1007/jp1.2016.60

282. Burris HA, Taylor CW, Jones SF, Koch KM, Versola MJ, Aryan N, Fleming RA, Smith DA, Pandite L, Spector N, Wilding G (2009) A phase I and pharmacokinetic study of oral lapatinib administered once or twice daily in patients with solid malignancies. Clin Cancer Res 15:6702–6708. https://doi.org/10.1158/1078-0432.ccr-09-0369

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.