Peripheral and Central Mechanisms Involved in the Hormonal Control of Male and Female Reproduction

L. M. Rudolph*, G. E. Bentley†, R. S. Calandra‡, A. H. Paredes§, M. Tesone‡, T. J. Wu¶ and P. E. Micevych*

*Department of Neurobiology, Laboratory of Neuroendocrinology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
†Department of Integrative Biology, and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA.
‡Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina.
§Laboratory of Neurobiochemistry, Faculty of Chemistry and Pharmaceutical Sciences, Universidad de Chile, Independencia, Santiago, Chile.
¶Department of Obstetrics and Gynecology, Center for Neuroscience and Regenerative Medicine, Uniformed Services University, Bethesda, MD, USA.

Reproduction involves the integration of hormonal signals acting across multiple systems to generate a synchronised physiological output. A critical component of reproduction is the luteinising hormone (LH) surge, which is mediated by oestradiol (E2) and neuroprogesterone interacting to stimulate kisspeptin release in the rostral periventricular nucleus of the third ventricle in rats. Recent evidence indicates the involvement of both classical and membrane E2 and progesterone signalling in this pathway. A metabolite of gonadotrophin-releasing hormone (GnRH), GnRH-(1-5), has been shown to stimulate GnRH expression and secretion, and has a role in the regulation of lordosis. Additionally, gonadotrophin release-inhibitory hormone (GnIH) projects to and influences the activity of GnRH neurones in birds. Stress-induced changes in GnIH have been shown to alter breeding behaviour in birds, demonstrating another mechanism for the molecular control of reproduction. Peripherally, paracrine and autocrine actions within the gonad have been suggested as therapeutic targets for infertility in both males and females. Dysfunction of testicular prostaglandin synthesis is a possible cause of idiopathic male infertility. Indeed, local production of melatonin and corticotrophin-releasing hormone could influence spermatogenesis via immune pathways in the gonad. In females, vascular endothelial growth factor A has been implicated in an angiogenic process that mediates development of the corpus luteum and thus fertility via the Notch signalling pathway. Age-induced decreases in fertility involve ovarian kisspeptin and its regulation of ovarian sympathetic innervation. Finally, morphological changes in the arcuate nucleus of the hypothalamus influence female sexual receptivity in rats. The processes mediating these morphological changes have been shown to involve the rapid effects of E2 controlling synaptogenesis in this hypothalamic nucleus. In summary, this review highlights new research in these areas, focusing on recent findings concerning the molecular mechanisms involved in the central and peripheral hormonal control of reproduction.

Key words: progesterone, oestrogens, androgens, paracrine, autocrine

doi: 10.1111/jne.12405

Introduction

Reproduction is tightly regulated by the actions of hormones, both central and peripheral in origin. The ‘classical’ mechanisms of steroidal control of reproduction have been studied for decades, yet questions remain about how these hormones interact within the nervous system to elicit a coordinated response leading to ovulation and fertilisation. The common final pathway to the regulation of reproductive function is dependent on the appropriate functioning of the hypothalamic-pituitary-gonadal (HPG) axis. The proper coordination of the HPG axis relies largely on the inputs that regulate gonadotrophin-releasing hormone (GnRH) release from hypothalamic neurones. In recent years, numerous nonclassical mechanisms have been uncovered, including newly understood membrane, autocrine and paracrine actions of steroid hormones. In addition, novel neuropeptides have been added to the list of
neuroendocrine mediators such as the truncated GnRH [GnRH-(1-5)], as well as the inhibitory gonadotrophin release-inhibitory hormone (GnIH). Together, these recently appreciated events have changed our understanding of the interaction of the HPG axis and the relationship between the periphery and the central nervous system in the regulation of reproduction.

Control of the LH surge

Central nervous system (CNS) regulation of the LH surge

As reviewed previously, oestradiol membrane signalling, comprising oestradiol (E2) signalling that is initiated at the cell membrane, plays an important role in the CNS synthesis of progesterone (neuroP) needed for oestrogen positive-feedback of the LH surge (1). Although the preovulatory rise in circulating E2 is essential for stimulating gonadotrophin release (2–4), progesterone is also necessary for the LH surge (5–9). In ovariectomised rats and mice, E2 induces an LH release (10) and LH levels are augmented by additional application of progesterone (11,12). Blocking progesterone receptor (PR) or progesterone synthesis prevents the E2-induced GnRH and LH surges in ovariectomised rats (5,13) and arrests the oestrous cycle in intact female rats (14). Most critically for this discussion, ablation of PR in kisspeptin (KP)-expressing neurones abrogates oestrogen positive-feedback (15), indicating that that both E2 and progesterone are necessary for surge release of LH.

Where does neuroP act to influence the LH surge? It is well established that GnRH neurones themselves do not express the requisite steroid hormone receptors, oestrogen receptor (ER) and PR (16,17). There is now solid evidence that the LH surge 'pattern generator', which integrates steroid hormone information and regulates oestrogen positive-feedback is a population of KP-expressing neurones of the rostral periventricular nucleus of the third ventricle (RP3V), an area that includes the anterior periventricular nucleus and the anteroventral periventricular nucleus (18–25). Kiss1 neurones in the RP3V are critical for GnRH secretion because KP released from Kiss1 neurones activates GnRH neurones via GPR54, a G-protein coupled receptor that binds KP (26–28). Although much of the work on steroid regulation of KP and its gene, Kiss1, has focused on E2 (29,30), it is now evident that E2 and neuroP function together to regulate KP. First, both ERα and PR are needed for positive-feedback of the LH surge (31,32), and both have been localised in KP neurones, although neither are found in GnRH neurones (20,33). Consistent with the need for E2-induced PRs for the LH surge, a substantial number of KP neurones in RP3V and the arcuate nucleus of the hypothalamus (ARH) express PR after E2 treatment (25,30,33,34). Coincident with this, rising E2 levels during pro-oestrous induce neuroP synthesis (14,35).

A combination of in vitro and in vivo experiments have demonstrated that neuroP acts on KP neurones to mediate oestrogen positive-feedback (Fig. 1). Integrated steroid signalling was studied in a cell line (mHypoA51s) that approximates 'sexually mature' female hypothalamic neurones. These immortalised neurones have the characteristics of post-pubertal RP3V KP neurones because they express ERα, PR and KP (36). As with KP neurones in vivo, E2 and the ERα agonist, PPT, induced KP and PR in mHypoA51s. Significantly, E2-induced PR up-regulation was dependent on an intracellular ER, whereas KP expression was stimulated by membrane-impermeable E2 (E2 coupled to bovine serum albumin; E-6-BSA). These data suggest that anterior hypothalamic KP neurones utilise both membrane-initiated and classical nuclear oestrogen signalling to up-regulate KP and PR, which are essential for the LH surge.

The nature of progesterone signalling in KP neurones remains to be clarified. In addition to classical nuclear PR, there are intriguing suggestions that KP neurones in vitro and in vivo have membrane progesterone receptors, especially mPRβ (37). The mPRs are seven-transmembrane proteins that activate G proteins that belong to the progestin and adipokine receptor (PAQR) family not the classic G protein-coupled receptor (GPCR) family (38–40). PAQRs can signal through mitogen-activated protein kinase activation and increasing [Ca2++]i (41–47); but see also (48). Studies in mHypoA51s indicate that classical PR is responsible for progesterone-induced signalling events. Treatment of E2-primed mHypoA51s with progesterone induces a rapid increase in free cytoplasmic calcium ([Ca2++]i), which appears to be responsible for the release of KP induced by progesterone, whereas inhibition with RU486 prevents the [Ca2++]i increase (36).

In vivo, preliminary experiments have demonstrated that exogenous progesterone rescued the LH surge in females whose hypothalamic steroidogenesis was blocked with the CYP11A1 inhibitor aminoglutethimide (AGT) (49). In AGT-treated animals, infusions of progesterone or KP into the diagonal band of Broca induced an LH surge, confirming that KP operates downstream of neuroP. Finally, KP knockdown in the RP3V prevented the E2-induced LH surge (49). Most importantly, the ablation of PR in KP neurones in ovariectomised mice abrogates E2 positive-feedback (15) demonstrating that that both E2 and neuroP are necessary for the surge release of LH.

Molecular mechanisms of GnRH-(1-5) action

The decapeptide GnRH (pGlu-His-Trp-Ser-Tyr-Gly-Leu-Arg-Pro-Gly-NH2) is highly conserved across species, suggesting its functional importance throughout evolution (50). GnRH is primarily known for its role in regulating reproductive function and behaviour via interaction with KP and its cognate receptor, GPR54, in the hypothalamus (51–57). Within each oestrous cycle, a rapid increase in GnRH secretion culminates in an LH surge, which precedes the onset of sexual receptivity and ovulation. In addition to its effects on the secretion of LH, GnRH can autoregulate its own biosynthesis and secretion via an ultrashort-loop feedback mechanism (58–62).

GnRH not only functions in its full form, but also can signal via its metabolite, GnRH-(1-5). GnRH-(1-5) is produced by the cleavage of GnRH by the zinc metalloendopeptidase EC3.4.24.15 (EP24.15) at the covalent bond linking the fifth and sixth amino acids (63–65) (Fig. 2). Localisation of EP24.15 supports the involvement of EP24.15 in the modulation of hypothalamic GnRH neuronal function (63,66). EP24.15 immunoreactivity is sensitive to hormonal fluctuations: increasing on pro-oestrous day of the rat oestrous cycle within the median eminence, with a peak expression coinciding with the LH surge (63). Unlike GnRH, GnRH-(1-5) robustly

© 2016 British Society for Neuroendocrinology Journal of Neuroendocrinology, 2016, 28, 10.1111/jne.12405
stimulates GnRH gene expression (67) and stimulates GnRH secretion (68). Moreover, the GnRH facilitation of lordosis behaviour is actually mediated by its metabolism to GnRH-(1-5) (69).

Interestingly, studies show that GnRH-(1-5) does not bind to the GnRH receptor (51) but binds to two orphan GPCRs: GPR101 (70) and GPR173 (71,72) (Fig. 2). Both GPR101 and GPR173 are members of the Rhodopsin class of receptors. The Rhodopsin family is the largest of the five groups of orphan receptors with 672 members of which 63 have no known ligands. Both GnRH-(1-5)-binding GPCRs are highly conserved and are highly expressed in the hypothalamus (Allen Brain Bank) (73,74). In several species, the coding sequence for GPR101 is located on the X chromosome in a band that is syntenic between species (75). In mouse, GPR101 mRNA is 2186 bases, encoding a seven-transmembrane receptor that is approximately 51 kDa (76). The sequenced GPR173 mRNA is 1122 bases, which translates to a 42-kDa seven-transmembrane receptor (73). Functional studies suggest that GnRH-(1-5) retards the cellular migration of neural cells via GPR173 (71–73). By contrast, GnRH-(1-5) may stimulate cellular migration and invasion of the extracellular matrix in endometrial cells via GPR101 (70,77).

These studies support the idea that GnRH-(1-5) represents another layer of regulatory complexity in tissues where GnRH is also produced. The identification of an endogenous ligand to an orphan GPCR is important because these receptors may have therapeutic potential (74). Furthermore, the identification of a GPCR that binds GnRH-(1-5) may help resolve some of the current quandaries regarding the actions of GnRH (agonist/antagonist) and enhance our understanding in the evolution of peptide metabolism and processing.

Role of GnIH in avian reproductive system; regulation of GnIH by photoperiod and stress and the effects of these changes on reproductive behaviours

Although GnRH and its metabolite, GnRH-(1-5), are known for promoting reproduction-related functions in the HPG axis, a more recently discovered hormone has been implicated as a potential brake on the HPG system. GnIH has received attention because of its role in the inhibition of activity of components of the HPG axis, including a reduction of sexual behaviour (78–86). Despite a great deal of investigation into its specific functions and the factors that
regulate GnIH, the full range of actions of GnIH within the central nervous system remain unknown. At present, we know that, in birds, GnIH projects to GnIH receptor-expressing GnRH-I and -II neurones in addition to the median eminence (84,87). In several species of mammals, GnIH projects to and also influences the activity of GnRH neurones (85,88), as well as the external layer of the median eminence (88–92), although this latter finding remains disputed (85,93). There are GnIH projections to multiple other brain areas (e.g. brainstem) and possibly to the spinal cord (84,93), although the function of GnIH in these extra-hypothalamic areas remains obscure. The GnIH content of the brain is influenced by changes in day length and the associated changing melatonin signal in seasonal breeders (84,94–99). In birds, despite the influence of GnIH on GnRH neurones, it appears that GnIH does not influence the termination of reproduction at the end of the breeding season. Rather, it is more likely that GnIH plays a role in temporary reproductive suppression within the breeding season in response to different physiological stimuli, such as stress (84,100–102).

The action of GnIH is not restricted to the brain and the anterior pituitary gland. GnIH and its receptor (GPR147) are synthesised in the gonads of both sexes of all vertebrates studied to date (103–108). Furthermore, in birds, GnIH-producing neurones in the brain project to the pars nervosa, suggesting that GnIH is released directly into the bloodstream (G. Bentley, unpublished observations).

If confirmed, then not only can locally produced GnIH act within the gonads, but also neurally produced GnIH could be released to the general circulation and act upon peripheral targets.

It is possible that GnIH-producing neurones can be subdivided into heterogenous subpopulations that respond to unique environmental and physiological cues. For example, GnIH neurones express melatonin receptor (MelR) and glucocorticoid receptor (GR) mRNA. However, not all of the GnIH neurones express MelR or GR (98,109) and it is not known whether single GnIH neurones can express both MelR and GR, suggesting that there could be MelR- and GR-specific subpopulations of GnIH neurones, each with potentially distinct functions. Thus, it remains to be determined whether or how melatonin and glucocorticoids interact to influence GnIH action within the brain.

In birds and mammals, melatonin and corticosterone can act on the gonadal GnIH system. This suggests the possibility that the neural and gonadal GnIH systems could differentially respond to hormones and, together, could coordinate a response to circulating hormones (perhaps via direct innervation of the gonad). Unfortunately, only in vitro preparations can be used to answer this question. Without separating the gonads from the blood circulation and from potential neural input, it is impossible to determine gonadal responses to a changing hormonal environment, especially if GnIH is present in circulating blood. However, in vivo studies in this area
could also be very informative, especially if localised blockade of GnIH receptor could be induced in the gonads.

GnIH responses to chronic stress have been documented in male and female rats, with a significant impact on reproduction (109–111). To date, there has been only one study on chronic stress effects upon GnIH in birds with sex-specific effects of treatment. Female European starlings (Sturnus vulgaris) exhibited increased ovarian GnIH expression compared to their nonstressed counterparts and were also reported not to ovulate, whereas nonstressed animals did (111). Acute stressors can certainly influence the avian GnIH system, although these effects appear to depend on the species, the time of year, the sex of the bird and the stressor (112–114). In addition, some stressors influence the gonads directly rather than via neural GnIH (112). The same is true for chronic housing stress in European starlings, as noted above (111). Thus, it is clear that neural and GnIH systems can respond differently to any particular stressor, regardless of whether it is acute or chronic. Further studies in this area should determine the response of gonadal and neural GnIH systems to stressors and hormones, and should also assess communication between these GnIH systems in a variety of species.

Local regulation of gonadal function

Autocrine and paracrine regulation of testicular function: molecular pathways involved in testis pathophysiology leading to infertility

Gonadotrophins are key regulators of male gonadal function. LH and follicle-stimulating hormone (FSH) released from the pituitary reach the testis and exert their effects through receptors located in the plasma membrane of Leydig and Sertoli cells, respectively (115,116). In addition, local factors and hormones influence testicular function via paracrine and autocrine mechanisms. Several molecules that reach the testis and/or are locally produced in the gonad regulate the activity of different cell types (e.g. Leydig cells, Sertoli cells, mast cells, macrophages, myofibroblasts), include peptides (117), neurotransmitters (118), neurohormones (119), cytokines (120) and prostaglandins (PGs) (121).

In this context, the neurohormones serotonin (122), melatonin (123) and corticotrophin-releasing hormone (CRH) (124) act in the testes as important negative regulators of cAMP and androgen production. Serotonin, melatonin and CRH can be produced within the CNS and secreted into peripheral circulation, or locally synthesised in the testes (125,126). Melatonin and also serotonin inhibit steroidogenesis via their 5-HT2 receptor- and Mel1a receptor-mediated signalling pathways, which influence CRH centrally (125,127) and in the testes (127,128). This CRH-mediated inhibition of steroid production occurs through the activation of tyrosine phosphatases, which reduces the phosphorylation of extracellular regulated kinase (ERK) and c-Jun N-terminal kinase, and subsequently down-regulates c-jun, c-fos and steroid acute regulatory protein (StAR), thereby inhibiting testosterone production (128).

Melatonin has been postulated to have a physiological role as a paracrine signalling molecule, directly regulating the production of factors (e.g. immune, interleukin-2) in its immediate vicinity (129). Recent observations show that melatonin modulates local cellular activity in testicular immune cells, inducing the expression of antioxidant enzymes and reducing the generation of reactive oxygen species in mast cells. In testicular macrophages, melatonin inhibits cell proliferation, the expression of proinflammatory cytokines, interleukin-1β and tumour necrosis factor α, and PG production (130). PGs are derived from arachidonic acid by the action of inducible isoenzyme cyclooxygenase (COX). In testicular biopsies of men with impaired spermatogenesis, COX-2 is expressed in immune cells, highlighting their relevance in testicular inflammation associated with idiopathic infertility (131). Furthermore, Leydig and Sertoli cells also produce PGs and express several prostanoid receptors (132,133), suggesting autocrine/paracrine action in testicular somatic cells.

PGD2 has a stimulatory effect on basal testosterone production in Leydig cells (134), whereas PGE2 exerts an inhibitory role in the expression of the StAR and 17β-hydroxysteroid dehydrogenase (HSD), as well as in the synthesis of testosterone induced by human chorionic gonadotrophin (hCG)/LH (133), demonstrating that the role of PGs on steroidogenesis, spermatogenesis and ultimately fertility depends on the specific PG in question.

Recent research indicates that multiple local signals influence testicular physiology and are involved in the pathogenesis or maintenance of human infertility. Notably, male infertility results from endocrine dysfunctions associated with the hypothalamic-pituitary-testicular axis only in a small number of cases (135), suggesting the source of infertility likely occurs within local, intra-testicular pathways. Thus, new insights about how cell–cell interactions within the testes affect testicular function and fertility will contribute to the understanding of male reproductive physiopathology, and future studies focusing on testicular paracrine and autocrine interactions may lead to new therapeutic approaches to idiopathic male infertility.

Follicular development, corpus luteum and progesterone regulation of ovarian vascularisation and molecular pathways involved

Similar to testicular functions including spermatogenesis and steroidogenesis, ovarian follicular development and regression is a continuous and cyclic process that depends on a number of endocrine, paracrine and autocrine signals. In healthy tissues, physiological angiogenesis is mainly limited to the reproductive system. The ovarian vasculature is closely associated with preovulatory follicle and corpus luteum during the ovarian cycle and is one of the few sites where nonpathological development and regression of blood vessels occurs in the adult. Recently, local factors such as vascular endothelial growth factor A (VEGF-A) and angiopoietins, which act specifically on vascular endothelial cells or pericytes and smooth muscle to control angiogenesis or angiolyis, were identified in the growing follicle and corpus luteum of several species, including humans (136).

VEGF-A is a key angiogenic factor involved in the formation of new blood vessels within many tissues. It is required to initiate the
formation of new immature vessels by promoting endothelial cell proliferation and vascular permeability. Inhibition of VEGF-A and angiopoietin 1 (ANGPT1) action in rat ovaries by intrabursal administration of VEGF-A-Trap or ANGPT1 antibodies, respectively, produces an imbalance in the ratio of anti-apoptotic : pro-apoptotic proteins leading to greater follicular atresia (137,138). In addition, VEGF-A prevents apoptosis and stimulates the proliferation of granulosa and theca cells of antral follicles through a direct interaction with its KDR receptor localised in granulosa cells, a pathway that involves phosphoinositide 3-kinase (PI3K)/AKT (139). Furthermore, in vitro studies performed in early antral follicles and granulosa cell cultures isolated from rat demonstrate that VEGF acts directly on follicular cells synergistically with FSH and E2, preventing apoptosis and stimulating proliferation, thus promoting follicular development and the selection of the follicle to ovulate (140). Such work reported a direct role for VEGF in early antral follicles mediated by the PI3K/AKT and ERK1/2 pathways, besides the classical and well-known proangiogenic function. Together, these data support the notion that angiogenic factors have an important role in controlling ovarian function.

In vitro studies have shown that Notch signalling is critical for the survival of luteal cells isolated from pregnant rats (141). Local Notch inhibition decreases progesterone levels and cell survival, confirming that Notch has a direct action on both steroidogenesis and luteal viability (141). The Notch signalling pathway is a cell–cell communication pathway that is evolutionarily conserved from Drosophila to humans. To date, four different Notch receptors (Notch1, 2, 3 and 4) and five different ligands (Jagged-1 and -2 and DLL-1 -3 and -4) have been identified in mammals. This Notch system regulates cell fate, proliferation and death. The Notch genes encode transmembrane receptors, which, upon binding their ligand, are cleaved, releasing the intracellular domain. The intracellular portion of the receptor translocates to the nucleus to act as a transcriptional coactivator, regulating cell fate genes (142).

Moreover, in the rat, there is an interaction between the Notch signalling pathway and progesterone that maintains the functionality of the corpus luteum (143). Notch signalling augments P450scs synthesis, leading to an increased synthesis of progesterone, which in turn regulates the activated intracellular Notch domain. Thus, Notch induces progesterone production in vitro through the activation of cytochrome P450 cholesterol side chain cleavage enzyme (P450scs) and decreases apoptosis-mediated cell death. This is the first evidence that there is cross-talk between the Notch signalling system and progesterone, which increases the survival of luteal cells. Also, the Notch/PI3K/AKT signalling pathway might be interacting with progesterone, intensifying the survival role of this hormone in luteal cells. Nevertheless, future studies are required to thoroughly investigate this newly discovered Notch–progesterone relationship and how it contributes to ovarian function and reproduction as a whole.

Ovarian kisspeptin and its role in follicular development

Reproduction in females requires an LH surge, which is centrally regulated by KP. However, KP is found in many peripheral organs (144,145), in particular, the ovary, which expresses KP and its receptor, GPR54, suggesting a role for KP in the peripheral control of reproductive events. KP expression in the ovary fluctuates throughout the oestrous cycle, strongly suggesting that it may be involved locally in the ovariolytic cycle and luteinisation (146–148); but see also (28). However, the mechanisms of action of KP in the ovary, such as paracrine or autocrine functions remain largely unknown.

A recent study demonstrated that intraovarian administration of a KP antagonist (p234) delays vaginal opening and alters the oestrous cycle in rats (147). Additionally, local administration of exogenous KP decreases antral follicle and corpora lutea number in fertile and subfertile rats, which was reversed by p234 treatment, suggesting that KP also participates in both follicular development and ovulation at the level of the ovary (149). Moreover, during ovulation in humans and nonhuman primates, ovarian KP and GPR54 mRNA increases with other ovulation-associated genes, such as COX-2 and progesterone receptor. The ovarian administration of the COX-2 inhibitor, indomethacin, disrupted the ovulatory process in rats, supporting the idea of a local role of KP and GPR54 in ovulation (150). It appears that KP regulates progesterone secretion from luteal cells as well. In isolated chicken granulosa cells, KP stimulates progesterone secretion, possibly by directly altering levels of steroidogenic enzymes, including StAR, P450scs, which converts cholesterol to pregnenolone, and 3β-HSD (151), which converts pregnenolone to progesterone. Similarly, in rat luteal cells, KP increased progesterone production via ERK1/2 signalling and increased the expression of StAR and CYP11A mRNA (152). Furthermore, administration of a GPR54 antagonist, p234, inhibited progesterone secretion in granulosa cell cultures treated with hCG, implicating KP in the luteinisation of granulosa cells (148). Together, these data suggest a potential role of KP in the local control of ovarian function, potentially via progesterone synthesis. These and future studies involving paracrine and autocrine actions of ovarian KP will clarify the molecular mechanisms involved in the regulation of follicular development and ovulation during reproductive life and ovarian ageing.

Although a decreased follicular pool indicates physiological ageing of the ovary (153), an increased rate of follicular loss is also a pathology that affects the follicular reserve pool, and thereby fertility, in humans and other mammals (154). Reproductive ageing in women begins with shortened menstrual cycles, smaller increases in FSH and decreased levels of inhibin (155), which results in accelerated follicular growth and premature exhaustion of the follicular pool. One of the mechanisms involved in ovarian ageing is increased sympathetic nerve activity. Ovaries of postmenopausal women (≥ 51 years old) have a higher density of innervation compared to age-matched controls (156,157). In the rat, reproductive ageing is associated with increased ovarian sympathetic activity, which is strongly correlated with the spontaneous appearance of follicular cysts and a loss of preantral follicles (158,159). Indeed, the highest sympathetic innervation is found in postmenopausal women, suggesting a correlation between ageing-induced infertility and sympathetic nerve activation. Recent findings indicate that sympathetic innervation may be controlling age-induced infertility.
via regulation of KP because ovarian sympathectomy diminishes KP levels (A. Paredes, unpublished observations). Additionally, during reproductive ageing, KP expression in the ovary increases from the subfertile to infertile period and is directly correlated with the increase in ovarian norepinephrine observed with ageing (149,158), suggesting that KP may be directly controlled by sympathetic innervation of the ovary (147), as well as supporting the idea that KP is regulated by the adrenergic system and KP participate in the local regulation of follicle development and ovulation during reproductive ageing. Furthermore, KP is involved in follicular dynamics: intraovarian administration of KP produced an increase in the numbers of corpora lutea and type III follicles in fertile and subfertile periods, which was reversed by KP receptor antagonism. Future studies should address the potential autocrine and paracrine roles of KP in the ovary, specifically the interaction of KP, steroidogenic pathways and sympathetic innervation and how they relate to reproductive outcomes across the lifespan.

Morphological changes in ARH initiated by oestradiol membrane signalling that mediate lordosis behaviour

Another key component to reproduction in rodents is female sexual receptivity, which is mediated by E2-dependent alterations in hypothalamic neuronal structure. Although the molecular bases of E2-dependent facilitation of female sexual receptivity have more recently been described in detail, the understanding that steroid hormones exert behavioural effects via changes in neural morphology is a well established phenomenon. The most well known example of E2-induced changes in dendritic structure regulating memory-related behaviour is from the hippocampus (160), whereas E2-induced changes in dendrites in the hypothalamus have also been known for some time (161). Indeed, changes in dendritic morphology are critical for the lordosis-regulating circuit (162), which extends from the ARH to the medial preoptic nucleus (MPN), to the ventromedial nucleus of the hypothalamus (VMH). Recent studies have begun to clarify the molecular mechanisms by which morphological changes in the ARH-MPN-VMH circuit allow for expression of lordosis behaviour. The primary step of E2 signalling in the ARH occurs via ERα transactivation of mGluR1α, which initiates morphological changes that are coincident with and required for the display of lordosis behaviour. Within 4 h after E2 treatment, immature, filapodia-like dendritic spines are formed in the ARH (162). Twenty-four hours after E2 treatment, there is a shift in the proportion of dendritic spines, with a decrease in filapodia and a concomitant increase in mature, mushroom-shaped spines (162). The formation of new spines is necessary for the E2-induced lordosis because blocking spine formation significantly reduces the expression of sexual receptivity (162).

Although it appears that spinogenesis is initiated by the action of E2 at membrane ERα, it is unclear what molecular mechanisms underlie spine maturation. Evidence from other circuits suggests a role for the G-protein coupled ER, GPR30, in spine maturation and stabilisation. GPR30 is localised in spine heads, associates with PSD-95, and is regulated by E2 (163,164). In the dorsal hippocampus, the GPR30 agonist, G1, increases PSD-95 immunoreactivity, suggesting a role for GPR30 in spine maturation (164). Indeed, this receptor has been implicated in the initiation of lordosis behaviour on the basis that the partial GPR30 agonist but ERα antagonist, ICI 182,780, facilitates lordosis in E2-primed nonreceptive rats (165). Other studies suggest there could be a role for the STX-activated Gq-coupled membrane ER in the ARH-MPN circuit mediating sexual receptivity. STX is a tamoxifen analogue that does not bind to classical ERα or GPR30 but is blocked by the ER antagonist ICI 182,780 and has pharmacological profile similar to those of the ERα-specific agonist, PPT (166–168). STX treatment induces µ-opioid receptor (MOR) internalisation in the MPN and facilitates lordosis behaviour (169). Alternatively, spine maturation could be mediated by extra-neuronal mechanisms, such as astrocytic contact with neurones, which alters dendritic spine formation and stabilisation (170).

Additionally, it is unclear whether E2 induces spinogenesis in the same population of neurones in the ARH that express ERα, the neuropeptide Y (NPY) neurones, which are the initial site of the action of E2 in the ARH-MPN-VMH circuit, or whether E2 is acting transsynaptically to induce spines on pro-opiomelanocortin (POMC) neurones, which release β-endorphin onto MORs in the MPN. Recent data suggest that the NPY neurones and not POMC neurones undergo spinogenesis, suggesting that spine formation occurs directly within the neurones where initial E2 activation of ERα occurs (171). Regardless of the site of spinogenesis within the ARH, it is clear that spine maturation in this nucleus is coincident with lordosis behaviour, and also that blocking spinogenesis here reduces female sexual receptivity. To a first approximation, the timeline from E2 treatment to the presence of mature dendritic spines is known. However, the time when fully functional synapses appear remains to be determined. Within 1 h of E2 treatment, cofilin is deactivated via phosphorylation, which permits spinogenesis (162), and, in the MPN, MOR is activated/internalised, indicating that the ARH to MPN part of the circuit is functional (172). At 4 h post-E2 treatment, filapodial spines are present, although these thin, labile spines are not considered to mediate functional synapses (173). At 20 h after E2 treatment, the first time point when lordosis behaviour can be elicited with supplemental hormone treatment, there is an increase in the proportion of mushroom spines that are generally assumed to be indicative of functional synapses (162) and that contain the machinery required for synaptic transmission (e.g. PSD-95). Future studies should address the time course of this E2-dependent spine maturation and the potential involvement of non-traditional ER in this process.

Conclusions

Taken together, these recent findings highlight both the redundancy and complexity of the hormonal control of reproduction: what was once considered to be a simple, direct circuit with a handful of steroid hormones and cognate receptors is continually updated with novel hormone regulators and mechanisms of hormone synthesis and action. However, the classical aspects of gonadal hormone control of reproduction remain intact, demonstrating that there are
multiple levels of control of the HPG axis, both centrally and peripherally. Future studies will likely only add to this increasingly complex circuit that regulates reproduction.

Disclaimer

The opinions or assertions contained herein are the private ones of the authors and are not to be construed as official or reflecting the views of the Department of Defense or the Uniformed Services University of the Health Sciences.

Received 14 January 2016, revised 25 May 2016, accepted 20 June 2016

References

1. Kuo J, Micevych P. Neurosteroids, trigger of the LH surge. J Steroid Biochem Mol Biol 2012; 131: 57–65.
2. Brom GM, Schwartz NB. Acute changes in the estrous cycle following ovariectomy in the golden hamster. Neuroendocrinology 1968; 3: 366–377.
3. Ferin M, Tempone A, Zimmering PE, Van de Wiele RL. Effect of antibodies to 17beta-estradiol and progesterone on the estrous cycle of the rat. Endocrinology 1969; 85: 1070–1078.
4. Lahbsetwar AP. Role of estrogens in ovulation: a study using the estrogen-antagonist, ICI, 46,474. Endocrinology 1970; 87: 542–551.
5. Micevych P, Sinchak K, Mills RH, Tao L, LaPolt P, Lu JK. The luteinizing hormone surge is preceded by an estrogen-induced increase of hypothalamic progesterone in ovarioctomized and adrenalectomized rats. Neuroendocrinology 2003; 78: 29–35.
6. Hibbert ML, Stouffer RL, Wolf DP, Zelin斯基-Wooten MB. Midcycle administration of a progesterone synthesis inhibitor prevents ovulation in primates. Proc Natl Acad Sci USA 1996; 93: 1897–1901.
7. Remohi J, Balmaceda JP, Rojas FJ, Asch RH. The role of pre-ovulatory progesterone in the midcycle gonadotrophin surge, ovulation and subsequent luteal phase: studies with RU486 in rhesus monkeys. Hum Reprod 1988; 3: 431–435.
8. DePaolo LV. Attenuation of preovulatory gonadotrophin surges by epoatein: a new inhibitor of 3 beta-hydroxysteroid dehydrogenase. J Endocrinol 1988; 118: 59–68.
9. Mahesh VB, Brann DW. Interaction between ovarian and adrenal steroids in the regulation of gonadotropin secretion. J Steroid Biochem Mol Biol 1992; 41: 495–513.
10. DePaolo LV, Barraclough CA. Dose dependent effects of progesterone on the facilitation and inhibition of spontaneous gonadotrophin surges in estrogen treated ovarioctomized rats. Biol Reprod 1979; 21: 1015–1023.
11. Petersen SL, Keller ML, Carder SA, McCrone S. Differential effects of estrogen and progesterone on levels of POMC messenger RNA levels in the arcuate nucleus – relationship to the timing of LH surge release. J Neuroendocrinol 1993; 5: 643–648.
12. Petersen SL, McCrone S, Keller M, Shores S. Effects of estrogen and progesterone on luteinizing hormone-releasing hormone messenger ribonucleic acid levels: consideration of temporal and neuroanatomical variables. Endocrinology 1995; 136: 3604–3610.
13. Chappell PE, Levine JE. Stimulation of gonadotropin-releasing hormone surges by estrogen. I. Role of hypothalamic progesterone receptors. Endocrinology 2000; 141: 1477–1485.
14. Micevych PE, Sinchak K. The neurosteroid progesterone underlies estrogen positive feedback of the LH surge. Front Endocrinol 2011; 2: 90.
15. Stephens SB, Tolson KP, Rouse MJL, Poling MC, Hashimoto-Parkyta M, Mellon PL, Kauffman AS. Absent progesterone signaling in kisspeptin neurons disrupts the LH surge and impairs fertility in female mice. Endocrinology 2015; 156: 3091–3097.
16. Herbison AE, Theodosis DT. Localization of oestrogen receptors in pre-optic nuclei containing neurotensin but not tyrosine hydroxylase, choloeystokinin or luteinizating hormone-releasing hormone in the male and female rat. Neuroscience 1992; 50: 283–298.
17. Shivers BD, Harlan RE, Morell J, Pfaff DW. Absence of oestrazion concentration in cell nuclei of LHRR-immunoreactive neurones. Nature 1983; 304: 345–347.
18. Wintermantel TM, Campbell RE, Porteous R, Bock D, Grone HG, Todman MG, Korach KS, Greiner E, Perez CA, Schutz G, Herbison AE. Definition of estrogen receptor pathway critical for estrogen positive feedback to gonadotropin-releasing hormone neurons and fertility. Neuron 2006; 52: 271–280.
19. Han SK, Gottsch ML, Lee KJ, Popa SM, Smith JT, Jakawich SK, Clifton DK, Steiner RA. Activation of gonadotropin-releasing hormone neurons by kisspeptin as a neuroendocrine switch for the onset of puberty. J Neurosci 2005; 25: 11349–11356.
20. Smith JT, Cunningham MJ, Rissman EF, Clifton DK, Steiner RA. Regulation of Kiss1 gene expression in the brain of the female mouse. Endocrinology 2005; 146: 3686–3692.
21. Liu X, Lee K, Herbison AE. Kisspeptin excites gonadotropin-releasing hormone neurons through a phosphohilipase C-calcium-dependent pathway regulating multiple ion channels. Endocrinology 2008; 149: 4605–4614.
22. Dumalska I, Wu M, Morozova E, Liu R, van den Pol A, Alreja M. Excitatory effects of the puberty-initiating peptide kisspeptin and group I metabotropic glutamate receptor agonists differentiate two distinct subpopulations of gonadotropin-releasing hormone neurons. J Neurosci 2008; 28: 8003–8013.
23. Zhang C, Roepeke TA, Kelly MJ, Ronneklev OK. Kisspeptin depolarizes gonadotropin-releasing hormone neurons through activation of TRPC-like cationic channels. J Neurosci 2008; 28: 4423–4434.
24. Pielecka-Fortuna J, Chu Z, Moenter SM. Kisspeptin acts directly and indirectly to increase gonadotropin-releasing hormone neuron activity and its effects are modulated by estradiol. Endocrinology 2008; 149: 1979–1986.
25. Clarkson J, D’Anglemont de Tassigny X, Moreno AS, Colledge WH, Herbison AE. Kisspeptin-GPR54 signaling is essential for preovulatory gonadotropin-releasing hormone neuron activation and the luteinizing hormone surge. J Neurosci 2008; 28: 8691–8697.
26. Navarro VM, Castellano JM, Fernandez-Fernandez R, Barreiro ML, Roa J, Sanchez-Criado JE, Aguilar E, Diguez C, Pinilla L, Tena-Sempere M. Developmental and hormonally regulated messenger ribonucleic acid expression of KISS-1 and its putative receptor GPR54 in rat hypothalamus and potent LH releasing activity of KISS-1 peptide. Endocrinology 2004; 145: 4565–4574.
27. Seminara SB. Metastin and its G protein-coupled receptor, GPR54: critical pathway modulating GnRH secretion. Front Neuroendocrinol 2005; 26: 131–138.
28. Kirilov M, Clarkson J, Liu X, Roa J, Campos P, Porteous R, Schutz G, Herbison AE. Dependence of fertility on kisspeptin-Gpr54 signaling at the GnRH neuron. Nat Commun 2013; 4: 2492.
29. Kinoshita M, Tsukamura H, Adachi S, Matsui H, Uenoyama Y, Iwata K, Yamada S, Inoue K, Ohtaki T, Matsumoto H, Maeda K. Involvement of KiSS-1 and its putative receptor GPR54 in rat hypothalamic neurons by kisspeptin as a neuroendocrine switch for the onset of puberty. J Neuroendocrinol 2003: 345–347.
30. Smith JT, Cunningham MJ, Rissman EF, Clifton DK, Steiner RA. Activation of gonadotropin-releasing hormone neurons by kisspeptin as a neuroendocrine switch for the onset of puberty. J Neurosci 2005; 25: 11349–11356.

Journal of Neuroendocrinology, 2016, 28, 10.1111/jne.12405
31 Chappell PE, Lee J, Levine JE. Stimulation of gonadotropin-releasing hormone surges by estrogen. II. Role of cyclic adenosine 3’5’-monophosphate. Endocrinology 2000; 141: 1486-1492.

32 Chappell PE, Schneider JS, Kim P, Xu M, Lydon JP, O’Malley BW, Levine JE. Absence of gonadotropin surges and gonadotropin-releasing hormone self-priming in ovariec-tomized (OVX), estrogen (E2)-treated, progesterone receptor knockout (PRKO) mice. Endocrinology 1999; 140: 3635–3638.

33 Zhang J, Yang L, Lin N, Pan X, Zhu Y, Chen X. Aging-related changes in RP3V kisspeptin neurons predate the reduced activation of GnRH neurons during the early reproductive decline in female mice. Neurobiol Aging 2014; 35: 655–668.

34 Smith JT, Clay CM, Caraty A, Clarke IJ. KiSS-1 messenger ribonucleic acid (mRNA) and activity in hypothalamus. Exp Physiol 2005; 90: 4386–4390.

35 Soma KK, Sinchak K, Lakhter A, Schlinger BA, Micevych PE. Neurosteroids and female reproduction: estrogen increases 3beta-HSD mRNA and activity in rat hypothalamus. Endocrinology 2005; 146: 3836–3840.

36 Semaan SJ, Tolson KP, Kauffman AS. The development of kisspeptin circuits in the Mammalian brain. Adv Med Biol 2013; 784: 221–252.

37 Cabrales-Seco M, Andrade A, Risco MM, Costa JC, Barroso M, Moreira R, de Sousa PM. Progesterone regulates kisspeptin neurons in the preoptic area. J Neuroendocrinol 2013; 25: 607–615.

38 Smith JT. Sex steroid regulation of kisspeptin circuits. Adv Med Biol 2013; 784: 275–295.

39 Mader TM, Gudjonsson S, Mägi M, Haahtela T, Aarnio M. Angiotensin II receptors in gonadal steroid-regulated neuroendocrine responses. J Neuroendocrinol 2013; 25: 616–625.

40 Sasaki T, Kakishita T, Kikuchi R, Shimohama S, Nakanishi T. Involvement of anterior hypothalamic kisspeptin neurons during the early reproductive decline in female mice. J Neuroendocrinol 2013; 25: 626–633.

41 Chappell PE, Lee J, Levine JE. Stimulation of gonadotropin-releasing hormone surges by estrogen. II. Role of cyclic adenosine 3’5’-monophosphate. Endocrinology 2000; 141: 1486-1492.

42 Chappell PE, Schneider JS, Kim P, Xu M, Lydon JP, O’Malley BW, Levine JE. Absence of gonadotropin surges and gonadotropin-releasing hormone self-priming in ovariec-tomized (OVX), estrogen (E2)-treated, progesterone receptor knockout (PRKO) mice. Endocrinology 1999; 140: 3635–3638.

43 Zhang J, Yang L, Lin N, Pan X, Zhu Y, Chen X. Aging-related changes in RP3V kisspeptin neurons predate the reduced activation of GnRH neurons during the early reproductive decline in female mice. Neurobiol Aging 2014; 35: 655–668.

44 Smith JT, Clay CM, Caraty A, Clarke IJ. KiSS-1 messenger ribonucleic acid (mRNA) and activity in hypothalamus. Exp Physiol 2005; 90: 4386–4390.

45 Soma KK, Sinchak K, Lakhter A, Schlinger BA, Micevych PE. Neurosteroids and female reproduction: estrogen increases 3beta-HSD mRNA and activity in rat hypothalamus. Endocrinology 2005; 146: 3836–3840.

46 Semaan SJ, Tolson KP, Kauffman AS. The development of kisspeptin circuits in the Mammalian brain. Adv Med Biol 2013; 784: 221–252.

47 Yeo SH. Neuronal circuits in the hypothalamus controlling gonadotrophin-releasing hormone release: the neuroanatomical projections of kisspeptin neurons. Exp Physiol 2013; 98: 1544–1549.

48 Kelly MJ, Zhang C, Qiu J, Ronnekleiv OK. Pacemaking kisspeptin neurons. Exp Physiol 2013; 98: 1535–1543.

49 Okamura H, Tsukamura H, Ohkura S, Uenoyma Y, Wababayashi Y, Maeda K. Kisspeptin and GnRH pulse generation. Adv Med Biol 2013; 784: 297–323.

50 Smith JT. Sex steroid regulation of kisspeptin circuits. Adv Med Biol 2013; 784: 275–295.

51 Terasawa E, Guerriero KA, Plant TM. Kisspeptin and puberty in mammals. Adv Med Biol 2013; 784: 253–273.

52 DePaolo LV, King RA, Carillo AJ. In vivo and in vitro examination of an autoregulatory mechanism for luteinizing hormone-releasing hormone. Endocrinology 1987; 120: 272–279.

53 Sarkar DK. In vivo secretion of LHRH in ovariectomized rats is regulated by a possible feedback mechanism. Neuroendocrinology 1987; 45: 510–513.

54 Sarkar DK, Chiappa SA, Fink G, Sherwood NM. Gonadotropin-releasing hormone surge in proestrous rats. Nature 1976; 264: 461–463.

55 Roth C, Schricker M, Lakomek M, Strege AHI, Luft H, Munzel U, Wuttke W, Jarry H. Autoregulation of the gonadotropin-releasing hormone (GnRH) system during puberty: effects of antagonistic versus agonistic GnRH analogs in a female rat model. J Neuroendocrinol 2001; 169: 361–371.

56 Zanisi M, Messi EM, Motta M, Martini L. Ultrashort feedback control of luteinizing hormone-releasing hormone neuronal system. Endocrinology 1987; 121: 2199–2204.

57 Wu TJ, Pierotti AR, Jakubowski M, Streege AH, Luft H, Munzel U, Wuttke W, Jarry H. Autoregulation of the gonadotropin-releasing hormone (GnRH) system during puberty: effects of antagonistic versus agonistic GnRH analogs in a female rat model. J Neuroendocrinol 2001; 169: 361–371.

58 Shrimpton CN, Glucksman MJ, Lew RA, Tuliaj EW, Margulies EH, Roberts JL, Smith AI. Thiol activation of endopeptidase EC 3.4.24.15 presence in the rat median eminence and hypophysial portal blood and its modulation of the luteinizing hormone surge. J Neuroendocrinol 1997; 9: 813–822.

59 Smith AI, Tetaz T, Roberts JL, Glucksman MJ, Clarke IJ, Lew RA. The role of EC 3.4.24.15 in the post-secretory regulation of peptide signals. Biochimie 1994; 76: 288–294.

60 Roberts JL, Mani SK, Woller MJ, Glucksman MJ, Wu TJ. LHRR-(1-5): a bioactive peptide regulating reproduction. Trends Endocrinol Metab 2007; 18: 386–392.

61 Larco DO, Williams M, Schmidt L, Sabel N, Woller MJ, Wu TJ. Autoshortloop feedback regulation of pulsatile gonadotropin-releasing hormone surge. J Neuroendocrinol 2005; 169: 280–286.
hormone (GnRH) secretion by its metabolite, GnRH-(1-5). *Endoc J* 2015; 49: 470–478.
69 Wu TJ, Guickejian MJ, Roberts JL, Mani SK. Facilitation of lordosis in rats by a metabolite of luteinizing hormone releasing hormone (LHRH). *Endocrinology* 2006; 147: 2544–2549.
70 Cho-Clark MC, Larco DO, Semsarzadeh N, Vasta FC, Mani SK, Wu TJ. GnRH-(1-5) transactivates EGFR in Ishikawa human endometrial cells via an orphan G protein-coupled receptor. *Mol Endocrinol* 2014; 28: 80–98.
71 Larco DO, Cho-Clark M, Mani SK, Wu TJ. β-Arrestin 2 is a mediator of GnRH-(1-5) signaling in immortalized GnRH neurons. *Endocrinology* 2013; 154: 783–795.
72 Larco DO, Cho-Clark M, Semsarzadeh N, Mani SK, Wu TJ. The novel actions of the metabolite GnRH-(1-5) are mediated by a G protein-coupled receptor. *Front Endocrinol* 2013; 4: 83.
73 Regard JB, Sato IT, Coughlin SR. Anatomical profiling of G protein-coupled receptor expression. *Cell* 2008; 135: 561–571.
74 Lee DK, George SR, Cheng R, Nguyen T, Liu Y, Brown M, Lynch KR, O'Dowd BF. Identification of four novel G protein-coupled receptors expressed in the brain. *Brain Res Mol Brain Res* 2001; 86: 13–22.
75 Bates B, Zhang L, Nawoschik S, Kodangattil T, Tseng E, Koposco D, Kramer A, Shan Q, Taylor N, Johnson J, Sun Y, Chen HM, Blatcher M, Paulsen JE, Pausch MH. Characterization of Gpr101 expression and G-protein-coupling selectivity. *Brain Res* 2006; 1087: 1–14.
76 Cho-Clark M, Larco DO, Zahn BR, Mani SK, Wu TJ. GnRH-(1-5) activates matrix metalloproteinase-9 to release epidural growth factor and promotes cellular invasion. *Mol Cell Endocrinol* 2015; 415: 114–125.
77 Clarke J, Sari IP, Qi Y, Smith JT, Parkington HC, Ubuka T, Iqbal J, Li Q, Tilbrook A, Morgan K, Pawson AJ, Tsutsui K, Millar RP, Bentley GE. Potent action of RFRamide-related peptide-3 on pituitary gonadotropes indicative of a hypophysiotropic role in the negative regulation of gonadotropin secretion. *Endocrinology* 2008; 149: 5811–5821.
78 Bentley GE, Jensen JP, Kaur GJ, Anderson GM. Cells expressing RFRamide-related peptide-1/3, the mammalian gonadotropin-inhibitory hormone orthologs, are not hypophysiotropic neuroendocrine neurons in the rat. *Endocrinology* 2009; 150: 1413–1420.
Peripheral and central hormonal control of reproduction

103 McGuire NL, Kangas K, Bentley GE. Effects of melatonin on peripheral reproductive function: regulation of testicular GnIH and testosterone. *Endocrinology* 2011; 152: 3461–3470.

104 McGuire NL, Bentley GE. Neuropeptides in the gonads: from evolution to pharmacology. *Front Pharmacol* 2010; 1: 114.

105 McGuire NL, Bentley GE. A functional neuropeptide system in vertebrate gonads: gonadotropin-inhibitory hormone and its receptor in testes of field-caught house sparrow (*Passer domesticus*). *Gen Comp Endocrinol* 2010; 166: 565–572.

106 Bentley GE, Ubuka T, McGuire NL, Chowdhury VS, Tsutsui K. Gonadotropin-inhibitory hormone and its receptor in the avian reproductive system. *Gen Comp Endocrinol* 2008; 156: 34–43.

107 Zhao S, Zhu E, Yang C, Bentley GE, Tsutsui K, Kriegsfeld LJ. RFamide-related peptide and messenger ribonucleic acid expression in mammalian testis: association with the spermatogenic cycle. *Endocrinology* 2010; 151: 617–627.

108 Oishi H, Klausen C, Bentley GE, Osugi T, Tsutsui K, Gilks CB, Yano T, Leung PC. The human gonadotropin-inhibitory hormone ortholog RFamide-related peptide-3 suppresses gonadotropin-induced progesterone production in human granulosa cells. *Endocrinology* 2012; 153: 3435–3445.

109 Kirby ED, Geraghty AC, Ubuka T, Bentley GE, Kaufer D. Stress increases putative gonadotropin inhibitory hormone and decreases luteinizing hormone in male rats. *Proc Natl Acad Sci USA* 2009; 106: 11324–11329.

110 Geraghty AC, Muroy SE, Zhao S, Bentley GE, Kriegsfeld LJ, Kaufer D. Knockdown of hypothalamic RFRP3 prevents chronic stress–induced infertility and embryo resorption. *Elife* 2015; 4: e04316. doi: 10.7554/eLife.04316.

111 Dickens MJ, Bentley GE. Stress, captivity, and reproduction in a wild bird species. *Horm Behav* 2014; 66: 685–693.

112 Lynn SE, Perfito N, Guardado D, Bentley GE. Food, stress, and circulating testosterone: cue integration by the testes, not the brain, in male zebra finches (*Taeniopygia guttata*). *Gen Comp Endocrinol* 2015; 215: 1–9.

113 Ernst DK, Lynn SE, Bentley GE. Differential response of GnIH in the brain and gonads following acute stress in a songbird. *Gen Comp Endocrinol* 2016; 227: 51–57.

114 Lopes PC, Wingfield JC, Bentley GE. Lipopolysaccharide injection induces rapid decrease of hypothalamic GnRH mRNA and peptide, but does not affect GnIH in zebra finches. *Horm Behav* 2012; 62: 173–179.

115 Simoni M, Gromoll J, Nieschlag E. The follicle-stimulating hormone and its receptor in the avian reproductive system. *Endocr Rev* 1997; 18: 739–773.

116 Dufau ML. The luteinizing hormone receptor. *Annu Rev Physiol* 1998; 60: 461–496.

117 Tena-Sempere M. Exploring the role of ghrelin as a novel regulator of gonadal function. *Horm Metab Res* 2005; 37: 83–88.

118 Mayerhofer A. Leydig cell regulation by catecholamines and neuroendocrine messengers. In: Payne AH, Hardy MP, Russell LD, eds. *The Leydig Cell*. St Louis, MO: Cache River Press, 1996; 407–417.

119 McGuire NL, Bentley GE. Neuropeptides in the gonads: from evolution to pharmacology. *Front Pharmacol* 2010; 1: 1–13.

120 Teers KJ, Darrington JH. Localization of transforming growth factor beta1 and beta2 during testicular development in the rat. *Biol Reprod* 1993; 48: 40–45.

121 Wang X, Shen CL, Dyson MT, Eimeri S, Orly J, Hutson JC, Stocco DM. Cyclooxygenase-2 regulation of the age-related decline in testosterone biosynthesis. *Endocrinology* 2005; 146: 4202–4206.

122 Tinajero JC, Fabi A, Cioca DR, Dufau ML. Serotonin secretion from rat Leydig cells. *Endocrinology* 1995; 133: 3026–3029.

123 Valenti S, Thellung S, Florio T, Guisti M, Schettini G, Giordano G. A novel mechanism for the melatonin inhibition of testosterone secretion by rat Leydig cells: reduction of GnRH-induced increase in cytosolic Ca2+. *J Mol Endocrinol* 1999; 23: 299–306.

124 Dufau ML, Tinajero JC, Fabbri A. Corticotropin-releasing factor: an antireproductive hormone of the testis. *FASEB J* 1993; 7: 299–307.

125 Frungieri MB, Mayerhofer A, Zitta K, Pignataro OP, Calandra RS. Direct effect of melatonin on Syrian hamster testes: melatonin subtype 1a receptors, inhibition of androgen production, and interaction with the local corticotropin-releasing hormone system. *Endocrinology* 2005; 146: 1541–1552.

126 Frungieri MB, Gonzalez-Calvar SI, Rubio M, Ozu M, Lustig L, Calandra RS. Serotonin in golden hamster testes: testicular levels, immunolocalization and role during sexual development and photoperiodic regression-recrudescence transition. *Neuroendocrinology* 1999; 69: 299–308.

127 Frungieri MB, Zitta K, Pignataro OP, Gonzalez-Calvar SI, Calandra RS. Interactions between testicular serotoninergic, catecholaminergic, and corticotropin-releasing hormone systems modulating cAMP and testosterone production in the golden hamster. *Neuroendocrinology* 2002; 76: 35–46.

128 Rossi SP, Matzkin ME, Terradas C, Ponizio R, Puigdomenech E, Levalle O, Calandra RS, Frungieri MB. New insights into melatonin/CRH signaling in hamster Leydig cells. *Gen Comp Endocrinol* 2012; 178: 153–163.

129 Carrillo-Vico A, Calvo JR, Abreu P, Lardone PJ, García-Maurino S, Reiter RJ, Guerrero JM. Evidence of melatonin synthesis by human lymphocytes and its physiological significance: possible role as intracrine, autocrine, and/or paracrine substance. *FASEB J* 2004; 18: 537–539.

130 Rossi SP, Windschue tt S, Matzkin ME, Terradas C, Ponizio R, Puigdomenech E, Levalle O, Calandra RS, Mayerhofer A, Frungieri MB. Melatonin in testes of infertile men: evidence for anti-proliferative and anti-oxidant effects on local macrophage and mast cell populations. *Andrology* 2014; 2: 436–449.

131 Frungieri MB, Calandra RS, Mayerhofer A, Matzkin ME. Cyclooxygenase and prostaglandins in somatic cell populations of the testes. *Reproduction* 2015; 149: R169–R180.

132 Matzkin ME, Pelizzari EH, Rossi SP, Calandra RS, Cigorraga SB, Frungieri MB. Exploring the cyclooxygenase 2 (COX2)/15d–PGJ2 system in hamster Sertoli cells: regulation by FSH/testosterone and relevance to glucose uptake. *Gen Comp Endocrinol* 2012; 179: 254–264.

133 Frungieri MB, Gonzalez-Calvar SI, Barborell F, Alabort M, Mayerhofer A, Calandra RS. Cyclooxygenase-2 and prostaglandin F2 alpha in Syrian hamster Leydig cells: inhibitory role on luteinizing hormone/human chorionic gonadotropin-stimulated testosterone production. *Endocrinology* 2006; 147: 4476–4485.

134 Schell C, Frungieri MB, Alabort M, Gonzalez-Calvar SI, Köhn FM, Calandra RS, Mayerhofer A. A prostaglandin D2 system in the human testes. *Fertil Steril* 2007; 88: 233–236.

135 Brugh VM, Matschke HM, Lipschutz LI. Male factor infertility. *Endocrinol Metab Clin North Am* 2003; 32: 689–707.

136 Wulf C, Wilson H, Lange P, Duncan WC, Armstrong DG, Fraser HM. Angiogenesis in the human corpus luteum: localization and changes in angiopoietins, tie-2, and vascular endothelial growth factor messenger ribonucleic acid. *J Clin Endocrinol Metab* 2000; 85: 4302–4309.

137 Abramovitch D, Barborell F, Teseo M. Effect of a vascular endothelial growth factor (VEGF) inhibitory treatment on the folliculogenesis and ovarian apoptosis in gonadotropin-treated prepubertal rats. *Biol Reprod* 2006; 75: 434–441.

138 Parboi et F, Abramovitch D, Teseo M. Intrabursal administration of the antiangiopoietin 1 antibody produces a delay in rat follicular development associated with an increase in ovarian apoptosis mediated by...
changes in the expression of BCL2 related genes. Biol Reprod 2008; 78: 506–513.

139 Abramovich D, Irusta G, Parborell F, Tesone M. Intrabursal injection of vascular endothelial growth factor trap in ECG-treated prepubertal rats inhibits proliferation and increases apoptosis of follicular cells involving the PI3K/AKT signaling pathway. Fertil Steril 2010; 93: 1369–1377.

140 Irusta G, Abramovich D, Parborell F, Tesone M. Direct survival role of vascular endothelial growth factor (VEGF) on rat ovarian follicular cells. Mol Cell Endocrinol 2010; 325: 93–100.

141 Hernandez F, Peluffo MC, Stouffer RL, Irusta G, Tesone M. Role of the DLL4-NOTCH system in PGF2alpha-induced luteolysis in the pregnant rat. Biol Reprod 2011; 84: 859–865.

142 Kopan R, Ilagan MX. The canonical notch signaling pathway: unfolding the activation mechanism. Cell 2009; 137: 216–233.

143 Acciaioli P, Hernandez SF, Bas D, Pazos MC, Irusta G, Abramovich D, Tesone M. A link between notch and progesterone maintains the functionality of the rat corpus luteum. Reproduction 2015; 149: 1–10.

144 Pinilla L, Aguilar E, Dieguez C, Miller RP, Tena-Sempere M. Kisspeptins and reproduction: physiological roles and regulatory mechanisms. Physiol Rev 2012; 92: 1235–1316.

145 Vikman J, Ahren BD. Inhibitory effect of kisspeptins on insulin secretion from isolated mouse islets. Diabetes Obes Metab 2009; Suppl 4: 197–201.

146 Castellano JM, Gaytan M, Roa J, Vigo E, Navarro VM, Bellido C, Dieguez C, Aguilar E, Sanchez-Criado JE, Pellicer A, Pinilla L, Gaytan F, Tena-Sempere M. Expression of Kiss1 in rat ovary: putative local regulator of ovulation? Endocrinology 2006; 147: 4852–4862.

147 Ricu M, Ramirez VD, Paredes AH, Lara HE. Evidence for a celiac ganglion-ovarian kisspeptin neural network in the rat: intraovarian anti-kisspeptin delays vaginal opening and alters estrous cyclicity. Endocrinology 2012; 153: 4966–4977.

148 Laoharatatathanin T, Terashima R, Yonezawa T, Kurasu S, Kawamunni M. Augmentation of Metastin/Kisspeptin mRNA expression by the proestrous luteinizing hormone surge in granulosa cells of rats: implications for luteinization. Biol Reprod 2015; 93: 15.

149 Fernandos D, Nia E, Cuevas F, Cruz G, Lara HE, Paredes AH. Kisspeptin is involved in ovarian follicular development during the fertility and subfertility periods of rats. J Endocrinol 2016; 228: 161–170.

150 Gaytan F, Gaytan M, Castellano JM, Romero M, Roa J, Aparicio B, Garrido N, Sanchez-Criado JE, Millar RP, Pellicer A, Fraser HM, Tena-Sempere M. Kiss1-1 in the mammalian ovary: distribution of kisspeptin in human and marmoset and alterations in Kiss1 mRNA levels in a rat model of ovariectomy dysfunction. Am J Physiol Endocrinol Metab 2009; 296: 520–531.

151 Xiao Y, Ni Y, Huang Y, Wu J, Grossmann R, Zhao R. Effects of kisspeptin-10 on progesterone secretion in cultured chicken ovarian granulosa cells from preovulatory (F1-F3) follicles. Peptides 2011; 32: 2091–2097.

152 Peng J, Tang M, Zhang BP, Zhang P, Zhong T, Zong T, Yang B, Huang HB. Kisspeptin stimulates progesterone secretion via the Erk1/2 mitogen-activated protein kinase signaling pathway in rat luteal cells. Fertil Steril 2013; 99: 1436–1443.

153 Cedars MI. Biomarkers of ovarian reserve—do they predict somatic aging? Semin Reprod Med 2013; 31: 443–451.

154 Hoyer PB. Damage to ovarian development and function. Cell Tissue Res 2005; 322: 99–106.

155 Lenton EA, Deketser DM, Woodward AJ. Inhibin concentrations throughout the menstrual cycle of normal, infertile and older women compared with those during spontaneous conception cycles. J Clin Endocrinol Metab 1991; 73: 1180–1186.

156 Semenova II. Adrenergic innervation of ovaries in Stein–Leventhal syndrome. Vestn Akad Med Nauk SSSR 1969; 24: 58–62.

157 Heider U, Pedal I, Spanel-Borowski K. Increase in nerve fibers and loss of mast cells in polycystic and postmenopausal ovaries. Fertil Steril 2001; 75: 1141–1147.

158 Acuña E, Fonse P, Fernandois D, Garrido MP, Greiner M, Lara HE, Paredes AH. Increases in norepinephrine release and ovarian cyst formation during ageing in the rat. Reprod Biol Endocrinol 2009; 7: 64.

159 Chavez-Geraro R, Lombide P, Dominguez R, Rosas P, Vazquez-Cuevas F. Sympathetic pharmacological denervation in ageing rats: effects on ovulatory response and follicular population. Reprod Fertil Dev 2007; 19: 954–960.

160 Cooke BM, Woolley CS. Sexually dimorphic synaptic organization of the medial amygdala. J Neurosci 2005; 25: 10759–10767.

161 Matsumoto A, Arai Y. Development of sexual dimorphism in synaptic organization in the ventromedial nucleus of the hypothalamus in rats. Neurosci Lett 1986; 88: 165–168.

162 Christensen A, Dowing P, Micevych P. Membrane-initiated estradiol signaling induces spino genesis required for female sexual receptivity. J Neurosci 2011; 31: 17583–17589.

163 Akama KT, Thompson LJ, Milner TA, McEwen BS. Post-synaptic density 95 (PSD-95) binding capacity of G-protein-coupled receptor 30 (GPR30), an estrogen receptor that can be identified in hippocampal dendritic spines. J Biol Chem 2013; 288: 6438–6450.

164 Waters EM, Thompson LJ, Patel P, Gonzales AD, Ye HZ, Filardo EJ, Clegg DJ, Goreeck JA, Akama KT, McEwen BS, Milner TA. G-protein-coupled estrogen receptor 1 is anatomically positioned to modulate synaptic plasticity in the mouse hippocampus. J Neurosci 2015; 35: 2384–2397.

165 Garcia BL, Mana A, Kim A, Sinchak K. Antagonism of Estrogen Receptors Facilitates Sexual Receptivity through Opioid Circuits in the Arcuate Nucleus of the Hypothalamus and the Medial Preoptic Nucleus in Estradiol Primed Non-Receptive Female Rats. San Diego, CA: Society for Neuroscience, 2010.

166 Kuo J, Hamid N, Bondar G, Prossnitz E, Micevych P. Membrane estrogen receptors stimulate intracellular calcium release and progesterone synthesis in hypothalamic astrocytes. J Neurosci 2010; 30: 12950–12957.

167 Qi J, Ronnekleiv O, Kelly M. Modulation of hypothalamic neuronal activity through a novel G-protein-coupled estrogen membrane receptor. Steroids 2008; 73: 985–991.

168 Qui J, Bosch M, Tobias S, Grandy D, Scanlan T, Ronnekleiv O, Kelly M. Rapid signaling of estrogen in hypothalamic neurons involves a novel G-protein-coupled estrogen receptor that activates protein kinase C J Neurosci 2003; 23: 9529–9540.

169 Christensen A, Micevych P. A novel membrane estrogen receptor activated by STX induces female sexual receptivity through an interaction with mGluR1a. Neuroendocrinology 2010; 97: 363–368.

170 Nishida H, Okabe S. Direct astrocytic contacts regulate local maturation of dendritic spines. J Neurosci 2007; 27: 331–340.

171 Liu T, Kong D, Shah BP, Ye C, Koda S, Saunders A, Ding JB, Yuan Z, Sabatini BL, Lowell BB. Fast activation of AgRP neurons requires NMDA receptors and involves spino genesis and increased excitatory tone. Neuron 2012; 73: 511–522.

172 Mills RH, Sohn RK, Micevych PE. Estrogen–induced mu-opioid receptor internalization in the medial preoptic nucleus is mediated via neuropeptide Y–Y1 receptor activation in the arcuate nucleus of female rats. J Neurosci 2004; 24: 947–955.

173 Kasai H, Matsuoka M, Noguchi J, Yasumatsu N, Nakahara H. Structure-stability-function relationships of dendritic spines. Trends Neurosci 2003; 26: 360–368.