DIRAC-HARMONIC MAPS WITH TRIVIAL INDEX

JÜRGEN JOST, LINLIN SUN AND JINGYONG ZHU

Abstract. For a homotopy class \([u]\) of maps between a closed Riemannian manifold \(M\) and a general manifold \(N\), we want to find a Dirac-harmonic map with map component in the given homotopy class. Most known results require the index to be nontrivial. When the index is trivial, the few known results are all constructive and produce uncoupled solutions. In this paper, we define a new quantity. As a byproduct of proving the homotopy invariance of this new quantity, we find a new simple proof for the fact that all Dirac-harmonic spheres in surfaces are uncoupled. More importantly, by using the homotopy invariance of this new quantity, we prove the existence of Dirac-harmonic maps from manifolds in the trivial index case. In particular, when the domain is a closed Riemann surface, we prove the short-time existence of the \(\alpha\)-Dirac-harmonic map flow in the trivial index case. Together with the density of the minimal kernel, we get an existence result for Dirac-harmonic maps from closed Riemann surfaces to Kähler manifolds, which extends the previous result of the first and third authors. This establishes a general existence theory for Dirac-harmonic maps in the context of trivial index.

1. Introduction

Motivated by the supersymmetric nonlinear sigma model from quantum field theory, see [6], Dirac-harmonic maps from Riemann surfaces (with a fixed spin structure) into Riemannian manifolds were introduced in [2]. They generalize harmonic maps and harmonic spinors. From the variational point of view, they are critical points of a conformally invariant action functional. The Euler-Lagrange equation then is an elliptic system coupling a harmonic map type equation with a Dirac type equation.

The existence of Dirac-harmonic maps from closed spin manifolds is a very difficult problem. So far, there are only a few results in this direction. Most solutions found so far are uncoupled in the sense that the map part is harmonic. The existence result of [1] for uncoupled solutions depends on the index \(I(M, u)\)
being non-zero (see Definition 2.2). But when the domain and target are both closed Riemann surfaces, the index $I(M, u)$ always vanishes. In this case, an existence result about uncoupled Dirac-harmonic maps was proved in [3] by the Riemann-Roch formula. Later, this result was generalized to Kähler manifolds in [16]. More recently, in [9], the first and third authors extend the Sacks-Uhlenbeck scheme [14] to the context of Dirac-harmonic maps from closed Riemann surfaces to compact manifolds. They used the linking theory and a deformation lemma to prove the existence of perturbed α-Dirac-harmonic maps. Then by the uniformly bounded energy condition, they got the existence of coupled α-Dirac-harmonic map. However, the nontriviality of the spinor field cannot be generally guaranteed when one lets $\alpha \searrow 1$. To overcome this problem, they used the flow method. In [17], Wittmann proved the short-time existence of the Dirac-harmonic map flow under assumptions on the initial map. This, however, is not yet sufficient for an existence result, because there are two obstacles: the Dirac-harmonic map flow could develop bubbles, which are Dirac-harmonic spheres; the dimension of the kernel of Dirac operator may not stay minimal along the flow. Due to these issues, the first and third authors consider the α-Dirac-harmonic map flow in [10], and prove the short-time existence of the flow from closed Riemann surfaces for those initial maps along which the Dirac operators have a one-dimensional kernel with quaternion coefficients. As an application, they get the existence of not necessarily uncoupled Dirac-harmonic maps when the index $I(M, u)$ is nontrivial.

This then naturally raises the question of the existence of Dirac-harmonic maps in a given homotopy class $[u]$ between manifolds M, N with trivial index $I(M, u)$. Of course, we should first identify conditions under which this index vanishes. When the domain M is a closed Riemann surface with positive genus and the target N is an odd-dimensional oriented manifold, there is always a spin structure on M such that the index $I(M, u)$ is nontrivial. When, in contrast, M is a closed Riemann surface and N is an even-dimensional spin manifold, the index $I(M, u)$ is always zero. Therefore, here we consider the case where the target manifold N is a Kähler spin manifold. In this case, it is necessary to use a new quantity that can replace the index $I(M, u)$. For this purpose, we introduce a candidate that uses the complex structure of the target manifold. More precisely, we first decompose the twisted Dirac operator as

$$\mathcal{D}^u = \mathcal{D}_{1,0}^u + \mathcal{D}_{0,1}^u$$

according to the decomposition $(u^*TN)^C = u^*T_{1,0}N \oplus u^*T_{1,0}N$. Then we just consider the kernel of one of the two operators, such as $\mathcal{D}_{1,0}$. We define

$$\mathcal{I}(M, u^*T_{1,0}N) := \left[\frac{1}{2} \text{dim}_{\mathbb{C}} \ker \mathcal{D}_{1,0}^u \right]_{\mathbb{Z}_2},$$

for an even dimensional spin manifold M whenever the complex dimension of the kernel of $\mathcal{D}_{1,0}^u$ is even.
In order to be useful for our purposes, this should be homotopy invariant. Let us first look at an example. Suppose \(M = \mathbb{C}P^1 \) and \(N \) is a compact surface. Consider any map \(u : M \to N \), the spinor bundle \(\Sigma \mathbb{C}P^1 \) and the twisted bundle \(\Sigma \mathbb{C}P^1 \otimes u^* T_{1,0} N \). Let \(g_N \) be the genus of \(N \) and \(c_1 (u^* T_{1,0} N) = a \gamma, a = 2 \deg(u)(1 - g_N) \), where \(\gamma \) is the tautological bundle of \(\mathbb{C}P^1 \). The unique spin structure of \(\mathbb{C}P^1 \) is determined by \(\gamma \) since \(\Lambda^{1,0} \mathbb{C}P^1 = \gamma^2 \). Then as a holomorphic bundle, we have

\[
\Sigma \mathbb{C}P^1 \otimes u^* T_{1,0} N = (\gamma \oplus \Lambda^{0,1} \mathbb{C}P^1 \otimes \gamma) \otimes \gamma^a = \gamma^{a+1} \oplus \Lambda^{0,1} \mathbb{C}P^1 \otimes \gamma^{a+1}.
\]

Since

\[
\dim_{\mathbb{C}} H^0 (\mathbb{C}P^1, \gamma^m) = \begin{cases} 0, & m > 0, \\ 1 - m, & m \leq 0, \end{cases}
\]

we conclude that

\[
\dim_{\mathbb{C}} \ker D_{1,0}^u = \dim_{\mathbb{C}} H^0 (\mathbb{C}P^1, \gamma^{a+1}) + \dim_{\mathbb{C}} H^1 (\mathbb{C}P^1, \gamma^{a+1}) \\
= \dim_{\mathbb{C}} H^0 (\mathbb{C}P^1, \gamma^{a+1}) + \dim_{\mathbb{C}} H^0 (\mathbb{C}P^1, \gamma^{1-a}) \\
= |a| = 2|\deg(u)(g_N - 1)|.
\]

Therefore, \(\dim_{\mathbb{C}} \ker D_{1,0}^u \) is invariant in the homotopy class \([u]\). This implies the homotopy invariance of \(I(\mathbb{C}P^1, u^* T_{1,0} N) \), which is equal to \([|\deg(u)(g_N - 1)|]_{\mathbb{Z}_2}\). Moreover, the dimension of the kernel of the Dirac operator is a constant in a given homotopy class. Then the following well-known fact follows from the first variational formula.

Proposition 1.1 ([18]). There is no coupled Dirac-harmonic map from the 2-sphere into a compact Riemann surface.

In general, we can give two different sufficient conditions to guarantee the homotopy invariance of \(I \).

Theorem 1.2. Suppose that \(M \) is an even dimensional spin Riemannian manifold and \((N, i)\) is a Kähler manifold. If one of the following holds:

1. the complex spinor bundle \((\Sigma M, i_1)\) over \(M \) admits a commuting real structure \(j \), i.e.

 \[
j^2 = id_{\Sigma M}, \quad ji_1 = -i_1 j, \quad j \rho = \rho j,
\]

 where \(\Sigma M = Spin(m) \times_{\rho} \sigma_m, \rho : \Cl_m \to \End_{\mathbb{C}}(\Sigma_m) \) is an irreducible complex representation of the complex Clifford algebra \(\Cl_m \) and \(N \) is hyperKähler;

2. the complex spinor bundle \(\Sigma M \) over \(M \) admits a commuting quaternionic structure \(j_1 \) and there exists a parallel real structure \(j_2 \) on \(T_{1,0} N \), i.e.

 \[
j_2^2 = id_{T_{1,0} N}, \quad j_2 i = -i j_2 \text{ and } \nabla j_2 = 0.
\]
Then all the eigenspaces of \mathcal{D}_u^a are quaternionic vector spaces for any map $u : M \to N$ and $\mathcal{I}(M, u^*T_{1,0}N)$ is invariant in the homotopy class $[u]$.

Moreover, if $\mathcal{I}(M, u^*T_{1,0}N) \neq 0$, then there is a real vector space of real dimension ≥ 4 such that all (\tilde{u}, ψ) are uncoupled α-Dirac-harmonic maps as long as there is an α-harmonic map $\tilde{u} \in [u]$ for $\alpha \geq 1$.

Here α-Dirac-harmonic maps are the critical points of the following functional

$$L^\alpha(u, \psi) = \frac{1}{2} \int_M (1 + |du|^2)^\alpha + \frac{1}{2} \int_M \langle \psi, \mathcal{D}^a\psi \rangle_{\Sigma M \otimes u^*TN}, \ \forall \alpha \geq 1.$$

They are generalizations of Dirac-harmonic maps (i.e. the case of $\alpha = 1$). As generalizations of harmonic maps, α-harmonic maps are the critical points of the following functional

$$E_\alpha(u) = \frac{1}{2} \int_M (1 + |du|^2)^\alpha, \ \forall \alpha \geq 1,$$

which was introduced by Sacks and Uhlenbeck in [14].

By the statement in [5, Theorem 2.2.2], such a commuting real structure in Theorem 1.2 always exists on M if $m = 0, 6, 7 \pmod{8}$. In particular, when $m = 0, 6 \pmod{8}$, we can get the existence of uncoupled Dirac-harmonic maps.

Corollary 1.3. Let m be the dimension of M. Suppose one of the following holds:

(a) $m = 0, 6 \pmod{8}$, N is a hyperKähler manifold and a homotopy class $[u]$ satisfies $\mathcal{I}(M, u^*T_{1,0}N) \neq 0$;

(b) $m = 2, 4 \pmod{8}$, N is a Kähler manifold with a parallel real structure j_2 defined in Theorem 1.2 and a homotopy class $[u]$ satisfies $\mathcal{I}(M, u^*T_{1,0}N) \neq 0$.

Then there is a real vector space of real dimension ≥ 4 such that all (\tilde{u}, ψ) are uncoupled α-Dirac-harmonic maps as long as there is an α-harmonic map $\tilde{u} \in [u]$ for $\alpha \geq 1$.

Remark 1.4. Note that the case $m = 6 \pmod{8}$ is not included in [1] due to the definition of index $\alpha(M, u)$. When $m = 0 \pmod{4}$, the triviality of the index $\alpha(M, u)$ implies that of the index $\text{ind}(\mathcal{D}^+)$. When $m = 2k$ and k is odd, the triviality of $\text{ind}(\mathcal{D}^+)$ does not imply that of $\text{ind}(\mathcal{D}^+_{1,0})$. In this case, the second author used the index $\text{ind}(\mathcal{D}^+_{1,0})$ to get an existence result in [16].

In general, the triviality of the index of $\mathcal{D}^a_{1,0}$ does not necessarily imply that of the kernel. So, our corollary is still meaningful even if $\text{ind}(\mathcal{D}^+_{1,0}) = 0$.

When M is a closed Riemann surface, we can extend the result in [10] to the case of Kähler target manifolds with parallel real structures.
Theorem 1.5. Let M be a closed Riemann surface and N a complex n-dimensional Kähler manifold with an analytic metric and a parallel real structure j defined in Theorem 1.2. Suppose there exists a map $u_0 \in C^{2+\mu}(M, N)$ for some $\mu \in (0, 1)$ such that $\dim \ker D_{u_0} = 1$. Then there exists a nontrivial smooth Dirac-harmonic map (Φ, Ψ) whose energy satisfies

$$E(\Phi) := \frac{1}{2} \int_M |d\Phi|^2 \leq E(u_0) \text{ and } \|\Psi\|_{L^2} = 1.$$

In particular, if N has nonpositive curvature, then the map part Φ is in the same homotopy class as u_0 and (Φ, Ψ) is coupled if the energy of the map Φ is strictly bigger than that of a harmonic map in the homotopy class $[u_0]$.

The rest of the paper is organized as follows: In Section 2, we recall some facts about Dirac-harmonic maps as well as the Dirac operator. In Section 3, we prove Theorem 1.2 and end this section by showing the density of minimal kernel. In Section 4, under the minimality assumption on the kernel of D_{u_0}, we prove the short time existence and recall regularity results about the heat flow for α-Dirac-harmonic maps. In Section 5, we prove the existence of α-Dirac-harmonic maps and Theorem 1.5. In the Appendix, we solve the constraint equation and prove Lipschitz continuity of the solution with respect to the map.

2. Preliminaries

Let (M, g) be a compact Riemann surface with a fixed spin structure χ. On the complex spinor bundle ΣM, we denote the Hermitian inner product by $\langle \cdot, \cdot \rangle_{\Sigma M}$. For any $X \in \Gamma(TM)$ and $\xi \in \Gamma(\Sigma M)$, the Clifford multiplication satisfies the following skew-adjointness:

$$\langle X \cdot \xi, \eta \rangle_{\Sigma M} = -\langle \xi, X \cdot \eta \rangle_{\Sigma M}.$$

Let ∇ be the Levi-Civita connection on (M, g). There is a unique connection (also denoted by ∇) on ΣM compatible with $\langle \cdot, \cdot \rangle_{\Sigma M}$. Choosing a local orthonormal basis $\{e_\beta\}_{\beta=1,2}$ on M, the usual Dirac operator is defined as $\bar{\partial} := e_\beta \cdot \nabla_\beta$, where $\beta = 1, 2$. Here and in the sequel, we use the Einstein summation convention. One can find more about spin geometry in [11].

Let u be a smooth map from M to another compact Riemannian manifold (N, h) of dimension $n \geq 2$. Let u^*TN be the pull-back bundle of TN by u and consider the twisted bundle $\Sigma M \otimes_{\mathbb{R}} u^*TN$. On this bundle there is a metric $\langle \cdot, \cdot \rangle_{\Sigma M \otimes u^*TN}$ induced from the metric on ΣM and u^*TN. Also, we have a connection ∇ on this twisted bundle naturally induced from those on ΣM and u^*TN. In local coordinates $\{y^i\}_{i=1,\ldots,n}$, the section ψ of $\Sigma M \otimes_{\mathbb{R}} u^*TN$ is written as

$$\psi = \psi_i \otimes \partial_{y^i}(u),$$
where each ψ^i is a usual spinor on M. We also have the following local expression of ∇

$$\nabla \psi = (\nabla \psi^i + \Gamma^i_{jk}(u) \nabla u^j \psi^k) \otimes \partial_y^i(u),$$

where Γ^i_{jk} are the Christoffel symbols of the Levi-Civita connection of N. The Dirac operator along the map u is defined as

$$D := e^\alpha \cdot \nabla e^\alpha \psi = (\partial e^\alpha \cdot \psi^k) \otimes \partial_y^i(u),$$

which is self-adjoint [7]. Sometimes, we use D^u to distinguish the Dirac operators defined on different maps. In [2], the authors introduced the functional

$$L(u, \psi) := \frac{1}{2} \int_M (|du|^2 + \langle \psi, D\psi \rangle_{\Sigma M \otimes \nu^*TN})$$

They computed the Euler-Lagrange equations of L:

$$\begin{align*}
\tau^m(u) &= \frac{1}{2} R^m_{ij}(\psi^i, \nabla u^j \cdot \psi^j)_{\Sigma M} = 0, \\
D\psi^i &= \partial e^\alpha \cdot \psi^k = 0,
\end{align*}$$

where $\tau^m(u)$ is the m-th component of the tension field [7] of the map u with respect to the coordinates on N, $\nabla u^j \cdot \psi^j$ denotes the Clifford multiplication of the vector field ∇u^j with the spinor ψ^j, and R^m_{ij} stands for the components of the Riemann curvature tensor of the target manifold N. Denote

$$\mathcal{R}(u, \psi) := \frac{1}{2} R^m_{ij}(\psi^i, \nabla u^j \cdot \psi^j)_{\Sigma M} \partial_y^m.$$

We can write (2.2) and (2.3) in the following global form:

$$\begin{align*}
\tau(u) &= \mathcal{R}(u, \psi), \\
D\psi &= 0,
\end{align*}$$

and call the solutions (u, ψ) Dirac-harmonic maps from M to N.

With the aim to get a general existence scheme for Dirac-harmonic maps, the following heat flow for Dirac-harmonic maps was introduced in [4]:

$$\begin{align*}
\partial_t u &= \tau(u) - \mathcal{R}(u, \psi), \text{ on } (0, T) \times M, \\
D\psi &= 0, \quad \text{on } [0, T] \times M.
\end{align*}$$

When M has boundary, the short time existence and uniqueness of (2.6)-(2.7) was shown in [4].

For a closed manifold M, the situation is more complicated because one cannot uniquely solve the second equation (2.7) and the kernel of the Dirac operator may jump along the flow. As we stated in the introduction, the short-time existence is only known in the minimal kernel case, i.e. $\dim \ker D = 1$. However, when the
target manifold N is an even-dimensional spin manifold, the index $\alpha(M, u)$ always vanishes for any map u between M and N. In order to deal with this case, we utilize the complex structure on N. We denote the complexification of u^*TN by $(u^*TN)^C$. Then we have
\[
\Sigma M \otimes_R u^*TN = (\Sigma M \otimes_C \mathbb{C}) \otimes_R u^*TN = \Sigma M \otimes_C (u^*TN)^C.
\]
The pull-back metric u^*g on u^*TN could be naturally extended to a Hermitian product on $(u^*TN)^C$. Moreover, there is a natural Hermitian product on $\Sigma M \otimes (u^*TN)^C$ induced from those on ΣM and $(u^*TN)^C$, which is denoted by $\langle \cdot, \cdot \rangle_{\Sigma M \otimes (u^*TN)^C}$.

For a general even-dimensional spin Riemannian manifold M, there is a parallel \mathbb{Z}_2-grading $G \in \text{End}(\Sigma M)$ given by $G(\psi) = (\sqrt{-1})^{m/2} e_1 \cdot e_2 \cdots e_m \cdot \psi$ for a positively oriented orthonormal local frame $\{e_1, e_2, \ldots, e_m\}$ where $m = \dim M$.

Thus the spinor bundle can be decomposed as
\[
\Sigma M = \Sigma^+ M \oplus \Sigma^- M,
\]
where $\Sigma^\pm M$ are the eigenspaces of G associated to the ± 1, respectively. As G is Hermitian and parallel, the decomposition is orthogonal in the complex sense and parallel. Consequently, we have
\[
\Sigma M \otimes_C (u^*TN)^C = (\Sigma^+ M \otimes_C u^*T_{1,0}N) \oplus (\Sigma^- M \otimes_C u^*T_{1,0}N)
\]
\[
\oplus (\Sigma^+ M \otimes_C u^*T_{0,1}N) \oplus (\Sigma^- M \otimes_C u^*T_{0,1}N),
\]
where we used $u^*TN)^C = u^*T_{1,0}N \oplus u^*T_{1,0}N$. Moreover, we also have the following decomposition for the Dirac operator:
\[
\begin{align*}
\begin{bmatrix}
\tilde{D}^\pm \\
\tilde{D}^\pm_{1,0} \\
\tilde{D}^\pm_{0,1}
\end{bmatrix}
\end{align*}
\]
where $\tilde{D}^\pm_{1,0}$ (resp. $\tilde{D}^\pm_{0,1}$) is obtained by restricting \tilde{D} on $\Sigma^\pm M \otimes_C u^*T_{1,0}N$ (resp. $\Sigma^\pm M \otimes_C u^*T_{0,1}N$).

By [13], we can isometrically embed N into \mathbb{R}^q. Then (2.4)-(2.5) is equivalent to the following system:
\[
\begin{align*}
\begin{cases}
\Delta_g u = II(du, du) + Re(P(S(du(e_\beta), e_\beta \cdot \psi); \psi)), \\
\tilde{D} \psi = S(du(e_\beta), e_\beta \cdot \psi),
\end{cases}
\end{align*}
\]
where II is the second fundamental form of N in \mathbb{R}^q, and
\[
\begin{align*}
S(du(e_\beta), e_\beta \cdot \psi) := (\nabla u^A \cdot \psi^B) \otimes II(\partial_{z^A}, \partial_{\bar{z}^B}), \\
Re(P(S(du(e_\beta), e_\beta \cdot \psi); \psi)) := P(S(\partial_{z^C}, \partial_{\bar{z}^B}; \partial_{\bar{z}^A})Re((\psi^A, du^C \cdot \psi^B)).
\end{align*}
\]
Here $P(\xi; \cdot)$ denotes the shape operator, defined by $\langle P(\xi; X), Y \rangle = \langle A(X, Y), \xi \rangle$ for $X, Y \in \Gamma(TN)$ and $\text{Re}(z)$ denotes the real part of $z \in \mathbb{C}$. Together with the nearest point projection:

$$\pi : N_\delta \to N,$$

where $N_\delta := \{ z \in \mathbb{R}^q | d(z, N) \leq \delta \}$, we can rewrite the evolution equation (2.6) as an equation in \mathbb{R}^q.

Lemma 2.1. [4] A tuple (u, ψ), where $u : [0, T] \times M \to N$ and $\psi \in \Gamma(\Sigma M \otimes u^*TN)$, is a solution of (2.6) if and only if

$$\partial_t u^A - \Delta u^A = -\pi^A_{BC}(u)\langle \nabla u^B, \nabla u^C \rangle - \pi^A_B(u)\pi^C_{BD}(u)\pi^C_{EF}(\psi^D, \nabla u^E \cdot \psi^F)$$

on $(0, T) \times M$, for $A = 1, \ldots, q$. Here we denote the A-th component function of $u : [0, T] \times M \to N \subset \mathbb{R}^q$ by $u^A : M \to \mathbb{R}$, write $\pi^A_B(z)$ for the B-th partial derivative of the A-th component function of $\pi : \mathbb{R}^q \to \mathbb{R}^q$ and the global sections $\psi^A \in \Gamma(\Sigma M)$ are defined by $\psi = \psi^A \otimes (\partial_A \circ u)$, where $(\partial_A)_{A=1,\ldots,q}$ is the standard basis of $T\mathbb{R}^q$. Moreover, ∇ and $\langle \cdot, \cdot \rangle$ denote the gradient and the Riemannian metric on M, respectively.

For future reference, we define

$$F_1^A(u) := -\pi^A_{BC}(u)\langle \nabla u^B, \nabla u^C \rangle,$$

$$F_2^A(u, \psi) := -\pi^A_B(u)\pi^C_{BD}(u)\pi^C_{EF}(\psi^D, \nabla u^E \cdot \psi^F).$$

Note that for $u \in C^1(M, N)$ and $\psi \in \Gamma(\Sigma M \otimes u^*TN)$ we have

$$I_1(du_p(e_\alpha), du_p(e_\alpha)) = -F_1^A(u)|_p \partial_A|_{u(p)},$$

$$R(u, \psi)|_p = -F_2^A(u, \psi)|_p \partial_A|_{u(p)}$$

for all $p \in M$, where $\{e_\alpha\}$ is an orthonormal basis of T_p^*M.

Next, let us fix some notations, which will be used in the Section 4 and Appendix. For every $T > 0$, we denote by X_T the Banach space of bounded maps:

$$X_T := B([0, T]; C^1(M, \mathbb{R}^q)),
$$

$$\|u\|_{X_T} := \max_{A=1,\ldots,q} \sup_{t \in [0, T]} (\|u^A(t, \cdot)\|_{C^0(M)} + \|\nabla u^A(t, \cdot)\|_{C^0(M)}).$$

For any map $v \in X_T$, the closed ball with center v and radius R in X_T is defined by

$$B_T^R(v) := \{ u \in X_T | \| u - v \| \leq R \}.$$

We denote by $P^{u_t,v_s} = P^{u_t,v_s}(x)$ the parallel transport of N along the unique shortest geodesic from $\pi(u(x, t))$ to $\pi(v(x, s))$. We also denote by P^{u_t,v_s} the inducing mappings

$$\Gamma_{C^1}(\Sigma M \otimes (\pi \circ u_t)^*TN) \to \Sigma M \otimes (\pi \circ v_s)^*TN$$

and

$$\Gamma_{C^1}(\Sigma M \otimes (\pi \circ u_t)^*TN) \to \Gamma_{C^1}(\Sigma M \otimes (\pi \circ v_s)^*TN).$$
We also define
\[\Lambda(u_t) = \sup \{ \tilde{\Lambda} | \text{spec}(\mathcal{D}^{\pi_{out}}) \setminus \{0\} \subset \mathbb{R} \setminus (\tilde{\Lambda}(u_t), \tilde{\Lambda}(u_t)) \} \]
and \(\gamma_t(x) : [0, 2\pi] \to \mathbb{C} \)
as
\[\gamma_t(x) := \frac{\Lambda(u_t)}{2} e^{ix}. \]
In general, we also denote by \(\gamma(x) : [0, 2\pi] \to \mathbb{C} \)
as
\[\gamma_t(x) := \frac{\Lambda}{2} e^{ix} \]
for some constant \(\Lambda \) to be determined. Then the orthogonal projection onto \(\ker(\mathcal{D}^{\pi_{out}}) \), which is the mapping
\[\Gamma_{L^2}(\Sigma M \otimes (\pi \circ u_t)^*TN) \to \Gamma_{L^2}(\Sigma M \otimes (\pi \circ u_t)^*TN), \]
can be written via the resolvent by
\[s \mapsto -\frac{1}{2\pi i} \int_{\gamma_t} R(\lambda, \mathcal{D}^{\pi_{out}})sd\lambda, \]
where \(R(\lambda, \mathcal{D}^{\pi_{out}}) : \Gamma_{L^2} \to \Gamma_{L^2} \) is the resolvent of \(\mathcal{D}^{\pi_{out}} : \Gamma_{W^{1,2}} \to \Gamma_{L^2} \).

In the end of this section, we recall the definition of the index.

Definition 2.2. Let \(E \to M \) be a Riemannian real vector bundle with metric connection. Then one can associate to the twisted Dirac operator \(\mathcal{D}^E : C^\infty(M, \Sigma M \otimes E) \to C^\infty(M, \Sigma M \otimes E) \) an index \(I(M, \chi, E) \in KO_m(pt) \), where
\[KO_m(pt) \cong \begin{cases} \mathbb{Z}, & \text{if } m = 0 \quad (4), \\ \mathbb{Z}_2, & \text{if } m = 1, 2 \quad (8), \\ 0, & \text{otherwise}. \end{cases} \]
The index \(I(M, \chi, E) \) can be determined out of \(\ker(\mathcal{D}^E) \) using the following formula:
\[I(M, \chi, E) = \begin{cases} \{ \text{ch}(E) \cdot \hat{A}(M) \}[M], & \text{if } m = 0 \quad (8), \\ \left\lfloor \frac{\dim \ker(\mathcal{D}^E)}{2} \right\rfloor \mathbb{Z}_2, & \text{if } m = 1 \quad (8), \\ \frac{1}{2} \{ \text{ch}(E) \cdot \hat{A}(M) \}[M], & \text{if } m = 4 \quad (8). \end{cases} \]
In particular, when \(E = u^*TN \) and \(\chi \) is fixed, we denote \(I(M, \chi, E) \) by \(I(M, u) \).
3. Quaternionic structure on the twisted bundle

In this section, we will prove Theorem 1.2 by constructing a commuting quaternionic structure on the twisted bundle $\Sigma M \otimes C u^* T_{1,0} \otimes N$ and show the density of the minimal kernel.

Proof of Theorem 1.2. Let $\rho : C l_m \to \text{End}_C(\Sigma m)$ be an irreducible complex representation of the complex Clifford algebra $C l_m$. Suppose the condition (2) holds. Then every fibre of the complex spinor bundle $\Sigma M = \text{Spin}(M) \times_\rho \Sigma m$ turns into a quaternionic vector space by defining

$$[p, v]h := [p, vh]$$

for all $p \in \text{Spin}(M)$, $v \in \Sigma m$ and $h \in H$.

Since the tensor product of the twisted bundle $\Sigma M \otimes C u^* T_{1,0} \otimes N$ is taken over C, there is a natural complex structure I on $\Sigma M \otimes C u^* T_{1,0} \otimes N$ defined by

$$I(\psi^k \otimes C \theta_k) := i(\psi^k) \otimes C \theta_k = \psi^k \otimes C i(\theta_k).$$

However, the quaternionic structure on ΣM cannot directly extend to the twisted bundle. To overcome this problem, we need an extra structure on $u^* T_{1,0} \otimes N$. By our assumption, we define $J : \Sigma M \otimes C u^* T_{1,0} \otimes N \to \Sigma M \otimes C u^* T_{1,0} \otimes N$ by

$$J(\psi^i \otimes C \theta_i) := j_1(\psi^k) \otimes C j_2(\theta_k).$$

Since both j_1 and j_2 anti-commute with the complex structure i, J is well-defined on $\Sigma M \otimes C u^* T_{1,0} \otimes N$. By the definitions of j_1 and j_2, J anti-commutes with I and $J^2 = -1$. Moreover, J also commutes with the Clifford multiplication and hence the Dirac operator $D^u_{1,0}$, i.e.

$$D^u_{1,0} \circ J = J \circ D^u_{1,0}.$$

Therefore, we conclude that all the eigenspaces of $D^u_{1,0}$ are quaternionic vector space with two complex structures I and J, which are anti-commuting with each other.

If condition (1) holds, i.e. j_1 is a commuting real structure and j_2 is a quaternionic structure, then it follows from the argument above that the conclusion is also true.

When $m \neq 3(\text{mod } 4)$, the eigenvalues are symmetric with respect to the origin (see Remark 2.2.3 in [5]). For any two maps in $[u]$, there is an analytic curve connecting them with parameter $t \in [0, 1]$. (see the construction in the Lemma 3.1 for example). Along this curve, the Dirac operator is analytic in t. Then the eigenvalues are continuous. Suppose there is an eigenvalue $\lambda_1(t)$ that decreases to zero as $t \to T$. By the symmetry of the eigenvalues, there is another eigenvalue $\lambda_{-1}(t)$ such that $\lambda_{-1}(t) = -\lambda_1(t)$. Therefore, the difference of the quaternionic dimension of the kernel of the corresponding Dirac operator is always an even number.
When m is even, we have a parallel \mathbb{Z}_2-grading G described in the previous section. From the orthogonality of the splitting, we have
\[
\langle \mathcal{D}^u_{1,0} \psi^+, \psi^+ \rangle = \langle \mathcal{D}^u_{1,0} \psi^-, \psi^- \rangle = 0
\]
for all $\psi^\pm \in C^\infty(M, \Sigma^\pm \mathcal{M} \otimes u^*T_{1,0}N)$. Thus,
\[
(\mathcal{D}^u_{1,0} \psi^+, \psi^+)_{\mathcal{L}^2} = (\mathcal{D}^u_{1,0} \psi^-, \psi^-)_{\mathcal{L}^2} = 0.
\]
(3.1)

Now, for any smooth variation $(u_s)_{s \in (-\epsilon, \epsilon)}$ of the α-harmonic map $\tilde{u} \in [u]$ with $u_s|_{s=0} = \tilde{u}$, we split the bundle $\Sigma \mathcal{M} \otimes u_s^*T_{1,0}N$ into
\[
\Sigma \mathcal{M} \otimes u_s^*T_{1,0}N = (\Sigma^+ \mathcal{M} \otimes u_s^*T_{1,0}N) \oplus (\Sigma^- \mathcal{M} \otimes u_s^*T_{1,0}N),
\]
which is orthogonal in the complex sense and parallel. Since $\mathcal{I}(M, u^*T_{1,0}N) \neq 0$, there exists $\Psi \in \ker \mathcal{D}^u_{1,0}$ which can be written as $\Psi = \Psi^+ + \Psi^-$, where $\Psi^\pm \in \Gamma(\Sigma^\pm \mathcal{M} \otimes \tilde{u}^*T_{1,0}N)$. Then there always exists a variation Ψ_s of Ψ such that $\Psi_s^\pm \in \Gamma(\Sigma^\pm \mathcal{M} \otimes u_s^*T_{1,0}N)$ are smooth variations of Ψ^\pm, respectively. Moreover, (3.1) implies that
\[
\left. \frac{d}{dt} \right|_{s=0} (\mathcal{D}^u_{s*} \Psi_s^\pm, \Psi_s^\pm)_{\mathcal{L}^2} = 0.
\]
Therefore, for the α-harmonic map \tilde{u}, we have
\[
\left. \frac{d}{dt} \right|_{s=0} L^\alpha(u_s, \Psi_s^\pm) = \left. \frac{d}{dt} \right|_{s=0} \int_M (1 + |du_s|^2)^\alpha = 0.
\]
Hence, we get α-Dirac-harmonic maps (\tilde{u}, Ψ^\pm).

In the rest of this section, we will show the density of the minimal kernel. By the definition of $\mathcal{I}(M, u^*T_{1,0}N)$, we have
\[
\dim \ker(\mathcal{D}^u_{1,0}) \geq \begin{cases}
0, & \text{if } \text{ind}_{u^*T_{1,0}N}(M) = 0; \\
1, & \text{if } \text{ind}_{u^*T_{1,0}N}(M) \neq 0.
\end{cases}
\]
If equality holds above, then we say that $\mathcal{D}^u_{1,0}$ has minimal kernel. Using the analyticity of N, one can prove the following density result for the minimal kernel.

Lemma 3.1. If $\mathcal{D}^u_{1,0}$ has minimal kernel, then $\mathcal{D}^{u'}_{1,0}$ also has minimal kernel for a generic map $u' \in [u]$.

Proof. Let $u' \in [u]$ and H be any homotopy between u' and u. More precisely, $H : [0, 1] \to C^\infty(M, N)$ with $H(0) = u$ and $H(1) = u'$. We can cover the image of H by finitely many balls $\{V_i\}_{i=1}^L$ of radius less than $\frac{1}{2}\text{ inj}(N)$ such that $V_i \cap V_{i+1} \neq \emptyset$ for $i = 1, \ldots, L - 1$ and
\[
u \in V_i, \quad u' \in V_L.
\]
We choose $u_1 \in V_1 \cap V_2$ arbitrarily and define a homotopy H^1_t by

$$H^1_t(x) := \exp_{u(x)}(t \exp_{u(x)}^{-1} u_1(x)),$$

where $x \in M$ and exp is the exponential map on N. We denote by

$$P_t = P_t(x) : T_{1,0}N|_{u(x)} \to T_{1,0}N|_{H^1_t(x)}$$

the parallel transport along the unique shortest geodesic of N connecting $u(x)$ and $H^1_t(x)$ and consider

$$\mathcal{D}_t := P_t^{-1} \circ \mathcal{D}^{H^1_t} \circ P_t.$$

Since \mathcal{D}_t depends analytically on t by the analyticity of N, $\mathcal{D}^{u_t}_{1,0}$ has minimal kernel for all but finitely many $t \in [0,1]$. Therefore, we can assume $\mathcal{D}^{u_t}_{1,0}$ has minimal kernel. Continuing this procedure, we can get $u_{L-1} \in V_{L-1} \cap V_L$ such that $\mathcal{D}^{u_{L-1}}_{1,0}$ also has minimal kernel and a homotopy H^L_t between u_{L-1} and u' such that $\mathcal{D}^{H^L_t}_{1,0}$ has minimal kernel for all but finitely many $t \in [0,1]$. Hence the set of maps along which the $(1,0)$-part of the Dirac operator has minimal kernel is C^∞-dense in $[u]$. Its C^1-openness directly follows from the continuity of the eigenvalues.

\[\Box\]

4. The heat flow for α-Dirac-harmonic maps

In this section, we will prove the short-time existence of the heat flow for α-Dirac-harmonic maps. Since we are working on a closed surface M, we cannot uniquely solve the Dirac equation in the following system:

\begin{equation}
\begin{aligned}
\partial_t u &= \frac{1}{(1 + |\nabla u|^2)^\alpha - 1} \left(\tau^\alpha(u) - \frac{1}{\alpha} \mathcal{R}(u, \psi) \right), \\
\mathcal{D}^u \psi &= 0.
\end{aligned}
\end{equation}

The short time existence and its extension are the obstacles. This system (if it converges) leads to an α-Dirac-harmonic map which is a solution of the system

\begin{equation}
\begin{aligned}
\tau^\alpha(u) &= \tau((1 + |du|^2)^\alpha) = \frac{1}{\alpha} \mathcal{R}(u, \psi), \\
\mathcal{D}^u \psi &= 0,
\end{aligned}
\end{equation}

where τ is the tension field.
4.1. **Short time existence.** As in Section 2, we now embed N into \mathbb{R}^q. Let $u : M \to N$ with $u = (u^A)$ and denote the spinor along the map u by $\psi = \psi^A \otimes (\partial_A \circ u)$, where ψ^A are spinors over M. For any smooth map $\eta \in C^\infty_0(M, \mathbb{R}^q)$ and any smooth spinor field $\xi \in C^\infty_0(\Sigma M \otimes \mathbb{R}^q)$, we consider the variation

$$(4.3) \quad u_t = \pi(u + t\eta), \quad \psi^A_t = \pi^A(u_t)(\psi^B + t\xi^B),$$

where π is the nearest point projection as in Section 2. Then we have

Lemma 4.1 ([10]). The Euler-Lagrange equations for L^α are

$\Delta u^A = -2(\alpha - 1)\frac{\nabla^2_{\beta\gamma}u^B\nabla_\beta u^B\nabla_\gamma u^A}{1 + |\nabla u|^2} + \pi^A_{BC}(u)(\nabla u^B, \nabla u^C) + \frac{\pi^A_B(u)\pi^C_{BD}(u)\pi^E_{EF}(u)(\psi^D, \nabla u^E \cdot \psi^F)}{\alpha(1 + |\nabla u|^2)^{\alpha-1}}$

and

$$\partial_t \psi^A = \pi^A_{BC}(u)\nabla u^B \cdot \psi^C.$$

Lemma 4.1 implies that (4.1)-(4.2) is equivalent to

$$(4.4) \quad \left\{\begin{array}{l}
\partial_t u^A = \Delta u^A + 2(\alpha - 1)\frac{\nabla^2_{\beta\gamma}u^B\nabla_\beta u^B\nabla_\gamma u^A}{1 + |\nabla u|^2} - \pi^A_{BC}(u)(\nabla u^B, \nabla u^C) \\
- \frac{\pi^A_B(u)\pi^C_{BD}(u)\pi^E_{EF}(u)(\psi^D, \nabla u^E \cdot \psi^F)}{\alpha(1 + |\nabla u|^2)^{\alpha-1}}
\end{array}\right.$$

$$(4.5) \quad D^{\pi^A_{BC}}\psi = 0,$$

Now, let us state the main result of this subsection.

Theorem 4.2. Let M be a closed surface, and N a closed n-dimensional Riemannian manifold. Let $u_0 \in C^{2+\mu}(M, N)$ for some $0 < \mu < 1$ with $\dim \ker(D u_0^{\pi}) = 1$ and $\psi_0 \in \ker(D u_0^{\pi})$ with $\|\psi_0\|_{L^2} = 1$. Then there exists $\epsilon_1 = \epsilon_1(M, N) > 0$ such that, for any $\alpha \in (1, 1 + \epsilon_1)$, the problem (4.1)-(4.2) has a solution (u, ψ) with

$$(4.6) \quad \left\{\begin{array}{l}
\|\psi_t\|_{L^2} = 1, \\
u_t|_{t=0} = u_0, \quad \psi'|_{t=0} = \psi_0.
\end{array}\right.$$

satisfying

$$u \in C^{2+\mu, 1+\mu/2}(M \times [0, T], N)$$

and

$$\psi \in C^{\mu, \mu/2}(M \times [0, T], \Sigma M \otimes u^* TN) \cap L^\infty([0, T]; C^{1+\mu}(M)).$$

for some $T > 0$.

Proof. We will prove the theorem in two steps. In Step 1, we will find a solution $u : M \times [0, T] \to \mathbb{R}^q$ and $\psi_t : M \to \Sigma M \otimes (\pi \circ u_t)^* TN$ of (4.4)-(4.5) with the initial values (4.6). Since ψ_t takes value along the projection $\pi \circ u_t$, it remains to show u takes value in N, which will be proved in Step 2.
Step 1: Solving (4.4)-(4.5) in \(\mathbb{R}^q \).

We first give a solution to (4.5) in a neighborhood of \(u_0 \). For any \(T > 0 \), we can choose \(\epsilon, \delta \) and \(R \) as in the Appendix such that

\[
u(x, t) \in N_\delta
\]

and

\[
d^N((\pi \circ \nu)(x, t), (\pi \circ \nu)(x, s)) < \epsilon < \frac{1}{2} \cdot \text{inj}(N)
\]

for all \(u, v \in B^T_R := B^T_R(\bar{u}_0) = \{ u \in X_T : \| u - \bar{u}_0 \|_{X_T} \leq R \} \cap \{ t = 0 = u_0 \} \), \(x \in M \) and \(t, s \in [0, T] \), where \(\bar{u}_0(x, t) = u_0(x) \) for any \(t \in [0, T] \). If \(R \) is small enough, then by Lemma 6.5, we have

\[
\dim_H \ker(\mathcal{D}^{\pi \circ \nu}_{1,0}) = 1
\]

and there exists \(\Lambda = \frac{1}{2} \cdot \Lambda(u_0) \) such that

\[
\# \{ \text{spec}(\mathcal{D}^{\pi \circ \nu}_{1,0}) \cap [-\Lambda, \Lambda] \} = 1
\]

for any \(u \in B^T_R \) and \(t \in [0, T] \), where \(\Lambda(u_0) \) is a constant such that \(\text{spec}(\mathcal{D}^{u_0}_{1,0}) \setminus \{ 0 \} \subset \mathbb{R} \setminus [-\Lambda(u_0), \Lambda(u_0)] \). Furthermore, for \(\psi_0 \in \ker(\mathcal{D}^{u_0}_{1,0}) \) with \(\| \psi_0 \|_{L^2} = 1 \), Lemma 6.7 implies that

\[
\sqrt{\frac{3}{4}} \leq \| \tilde{\psi}^{u_0}_1 \|_{L^2} \leq 1
\]

for any \(u \in B^T_{R_1} \) and \(t \in [0, T] \), where \(\tilde{\psi}^{u_0} = \mathcal{P}^{u_0,u_0} \psi = \tilde{\psi}_1^{u_0} + \tilde{\psi}_2^{u_0} \) with respect to the decomposition \(\Gamma_{L^2} = \ker(\mathcal{D}^{u_0}_{1,0}) \oplus (\ker(\mathcal{D}^{u_0}_{1,0}))^\perp \) and \(R_1 = R_1(R, \epsilon, u_0) > 0 \).

Now, for any \(T > 0 \) and \(\kappa > 0 \), we define

\[
V_\kappa^T := \{ v \in C^{1+\mu, \frac{1+\mu}{2}}(M \times [0, T]) : \| v \|_{C^{1+\mu, \frac{1+\mu}{2}}} \leq \kappa, \ v|_{M \times \{ 0 \}} = 0 \}.
\]

Then, there exists \(\kappa_{R_1} := \kappa(R_1) > 0 \) such that

\[
u_0 + v \in B^T_{R_1}, \ \forall v \in V_\kappa^T, \ \forall \kappa \leq \kappa_{R_1}.
\]

Now, we denote \(\kappa_0 := \kappa_{R_1} \) and \(V^T := V_\kappa^T \).

For every \(v \in V^T \), \(u_0 + v \in B^T_{\kappa_0} \), Lemma 6.8 gives us a solution \(\psi(v + u_0) \) to the constraint equation. Since \(v + u_0 \in C^{1+\mu}(M) \), by \(L^p \) regularity and Schauder estimates in [4], we have

\[
\| \psi(v + u_0) \|_{C^{1+\mu}(M)} \leq C(\mu, M, \kappa_0, \| u_0 \|_{C^{1+\mu}(M)}).
\]
For any $0 < t, s < T$, we also have
\[
\dot{\psi}(v + u_0)(t) - \psi(v + u_0)(s) = -\Gamma(\pi \circ (v + u_0)(t)) \# \nabla(\pi \circ (v + u_0)(t)) \# \psi(v + u_0)(t) \\
+ \Gamma(\pi \circ (v + u_0)(s)) \# \nabla(\pi \circ (v + u_0)(s)) \# \psi(v + u_0)(s)
\]
that is,
\[
\dot{\psi}(v + u_0)(t) - \psi(v + u_0)(s) = -\Gamma(\pi \circ (v + u_0)(t)) \# \nabla(\pi \circ (v + u_0)(t)) - \nabla(\pi \circ (v + u_0)(s)) \# \psi(v + u_0)(t) \\
- (\Gamma(\pi \circ (v + u_0)(t)) - \Gamma(\pi \circ (v + u_0)(s))) \# \nabla(\pi \circ (v + u_0)(s)) \# \psi(v + u_0)(s),
\]
where $\#$ denotes a multi-linear map with smooth coefficients. For any $\lambda \in (0, 1)$, by the Sobolev embedding, L^p-regularity and Lemma 6.8, we have
\[
\|\psi(v + u_0)(t) - \psi(v + u_0)(s)\|_{C^\lambda(M)} \\
\leq C(\lambda, M, N, \kappa_0, \|u_0\|_{C^1(M)})(\|v(t) - v(s)\|_{L^\infty(M)} + \|d\psi(t) - d\psi(s)\|_{L^\infty}) \\
\leq C(\lambda, M, N, \kappa_0, \|u_0\|_{C^1(M)})|t - s|^\mu/2.
\]

Therefore,
\[
\|\psi(v + u_0)\|_{C^{\nu, \mu/2}(M)} \leq C(\mu, M, N, \kappa_0, \|u_0\|_{C^1(M)}).
\]

Now, when $\alpha - 1$ is sufficiently small, for the (v, ψ^v) above, the standard theory of linear parabolic systems (see [15]) implies that there exists a unique solution $v_1 \in C^{2+\mu,1+\mu/2}((M \times [0, T], \mathbb{R}^q)$ to the following Dirichlet problem:
\[
\partial_t w^A = \nabla^2 w^A + 2(\alpha - 1) \frac{\nabla^2 \psi^D(v + u_0) \nabla \psi^D(v + u_0) \nabla \psi^F(v + u_0)}{1 + |\nabla(v + u_0)|^2} \\
+ \frac{\pi^A_{BC}(v + u_0) \nabla(v + u_0)^B \nabla(v + u_0)^C}{\alpha(1 + |\nabla(v + u_0)|^2)^{\alpha - 1}} \\
+ \dot{\psi}(v + u_0) + 2(\alpha - 1) \frac{\nabla^2 \psi^D(v + u_0) \nabla \psi^D(v + u_0) \nabla \psi^F(v + u_0)}{1 + |\nabla(v + u_0)|^2},
\]
\[
\partial_t w(\cdot, 0) = 0,
\]
satisfying
\[
\|v_1\|_{C^{2+\mu,1+\mu/2}(M \times [0, T])} \leq C(\mu, M, N)\|v_1\|_{C^0(M \times [0, T])} + \|u_0\|_{C^{2+\nu}(M)} + \kappa_0.
\]
Since \(v_1(\cdot, 0) = 0 \), we have

\[
\|v_1\|_{C^0(M \times [0,T])} \leq C(\mu, M, N)T\|v_1\|_{C^0(M \times [0,T])} + \|u_0\|_{C^{2+\nu}(M) + \kappa_0}.
\]

By taking \(T > 0 \) small enough, we get

\[
\|v_1\|_{C^0(M \times [0,T])} \leq C(\mu, M, N)T\|u_0\|_{C^{2+\nu}(M) + \kappa_0}.
\]

Then the interpolation inequality in [12] implies that \(v_1 \in V^T \) for \(T > 0 \) sufficiently small. For such \(v_1 \), we have \(\psi(v_1 + u_0) \) satisfying (4.7) and (4.8). Replacing \((v, \psi(v + u_0))\) in (4.9)-(4.10) by \((v_1, \psi(v_1 + u_0))\), then we get \(v_2 \in V^T \). Iterating this procedure, we get a solution \(v_{k+1} \) of (4.9)-(4.10) with \((v, \psi(v+u_0))\) replacing by \((v_k, \psi(v_k + u_0))\), which satisfies

\[
\|\psi(v_{k+1} + u_0)\|_{C^{0,\nu/2}(M)} \leq C(\mu, M, N, \kappa_0, \|u_0\|_{C^1(M)}).
\]

and

\[
\|v_{k+1}\|_{C^{2+\nu,1/2}(M \times [0,T])} \leq C(\mu, M, N)(\|u_0\|_{C^{2+\nu}(M) + \kappa_0}).
\]

By passing to a subsequence, we know that \(v_k \) converges to some \(u \) in \(C^{2,1}(M \times [0,T]) \) and \(\psi v_k + u_0 \) converges to some \(\psi \) in \(C^0(M \times [0,T]) \). Then it is easy to see that \((u, \psi)\) is a solution of (4.4)-(4.5) with \(u(\cdot, 0) = u_0 \) and \(\psi(\cdot, 0) = \psi_0 \).

Step 2: \(u(x, t) \) takes value in \(N \) for any \((x, t) \in M \times [0,T] \).

Suppose \(u \in C^{2,1}(M \times [0,T], \mathbb{R}^q) \) and \(\psi \in C^{\mu,\nu/2}(M \times [0,T], \Sigma M \otimes (\pi \circ u)^*TN) \cap L^\infty([0,T]; C^{1+\mu}(M)) \) satisfy (4.4)-(4.5). In the following, we write \(\| \cdot \| \) and \(\langle \cdot, \cdot \rangle \) for the Euclidean norm and scalar product, respectively. Similarly, we write \(\| \cdot \|_g \) and \(\langle \cdot, \cdot \rangle_g \) for the norm and inner product of \((M, g)\), respectively. We define

\[
\rho : \mathbb{R}^q \to \mathbb{R}
\]

by \(\rho(z) = z - \pi(z) \) and

\[
\varphi : M \times [0,T] \to \mathbb{R}
\]

by \(\varphi(x,t) = \|\rho(u(x,t))\|^2 = \sum_{A=1}^{q} |\rho^A(u(x,t))|^2 \). A direct computation yields

\[
\left(\frac{\partial}{\partial t} - \Delta \right) \varphi(x,t) = -2 \sum_{A=1}^{q} \|\nabla(\rho^A \circ u)(x,t)\|^2_g
\]

\[
+ 2 \langle \rho \circ u, -\pi^A_B(u) F^B_1(u) \rangle
\]

\[
+ \frac{2}{\alpha(1 + |\nabla u|^2)^{\alpha-1}} \langle \rho \circ u, \rho^A_B(u) F^B_2(u, \psi) \rangle
\]

\[
+ \frac{4(\alpha - 1)}{1 + |\nabla u|^2} \langle \rho \circ u, \nabla^2 \rho \nabla \nabla \rho \rho_A^A(u) \rangle,
\]

where \(F^1_B \) and \(F^2_B \) are defined in (2.8) and (2.9), respectively.

Since \(\rho \circ u \in T^\perp_{\rho u} N \) and \((d\pi)_u : \mathbb{R}^q \to T^\perp_{\rho u} N\), we have

\[
\langle \rho \circ u, -\pi^A_B(u) F^B_1 \rangle = \langle \rho \circ u, \rho^A_B(u) F^B_2 \rangle = 0.
\]
Together with
\[
\frac{4(\alpha - 1)}{1 + |\nabla u|^2} \left(\rho \circ u, \nabla_\beta u^C \nabla_\gamma u^B \rho_B^A(u) \right)
\leq 4(\alpha - 1) ||u||_{C^2(M)} ||\rho \circ u|| ||\nabla(\rho \circ u)||
\leq 2(\alpha - 1)(||u||_{C^2(M)}^2 + ||\nabla(\rho \circ u)||^2),
\]
we get \((\frac{2}{3} - \Delta)\varphi(x, t) \leq C\varphi\), where \(C = C(||u||_{C^2(M)}||\rho \circ u||||\nabla(\rho \circ u)||)\). Since \(\varphi(x, t) \geq 0\) and \(\varphi(x, 0) = 0\) for any \((x, t) \in M \times [0, T]\), we conclude \(\varphi = 0\) on \(M \times [0, T]\). We have shown that \(u(x, t) \in N\) for all \((x, t) \in M \times [0, T]\).

Finally, by using the \(\epsilon\)-regularity (see Lemma 4.5 below), we conclude that
\[u \in C^{2+\mu,1+\mu/2}(M \times [0, T], N) \]
and
\[\psi \in C^{\mu,\mu/2}(M \times [0, T], \Sigma M \otimes u^*TN) \cap L^\infty([0, T]; C^{1+\mu}(M)). \]

\[\square \]

4.2. Regularity of the flow. In this subsection, we will give some estimates for the regularity of the flow. The proofs can be found in [10] and the references therein. Let us start with the following estimate of the energy of the map part.

Lemma 4.3. Suppose \((u, \psi)\) is a solution of (4.1)-(4.2) with the initial values (4.6). Then there holds
\[
E_\alpha(u(t)) + 2\alpha \int_0^t \int_M (1 + |\nabla u|^2)^{\alpha - 1} |\partial_t u|^2 = E_\alpha(u_0).
\]
Moreover, \(E_\alpha(u(t))\) is absolutely continuous on \([0, T]\) and non-increasing.

Consequently, we can also control the spinor part along the heat flow of the \(\alpha\)-Dirac-harmonic map.

Lemma 4.4. Suppose \((u, \psi)\) is a solution of (4.1)-(4.2) with the initial values (4.6). Then for any \(p \in (1, 2)\), there holds
\[
||\psi(\cdot, t)||_{W^{1,p}(M)} \leq C, \forall t \in [0, T],
\]
where \(C = C(p, M, N, E_\alpha(u_0))\).

To get the convergence of the flow, we also need the following \(\epsilon\)-regularity.

Lemma 4.5. Suppose \((u, \psi)\) is a solution of (4.1)-(4.2) with the initial values (4.6). Given \(\omega_0 = (x_0, t_0) \in M \times (0, T]\), denote
\[
P_R(\omega_0) := B_R(x_0) \times [t_0 - R^2, t_0].
\]
Then there exist three constants \(\epsilon_2 = \epsilon_2(M, N) > 0\), \(\epsilon_3 = \epsilon_3(M, N, u_0) > 0\) and
\[
C = C(\mu, R, M, N, E_\alpha(u_0)) > 0
\]
such that if
\[
1 < \alpha < 1 + \epsilon_2, \text{ and } \sup_{[t_0 - 4R^2, t_0]} E(u(t); B_{2R}(\omega_0)) \leq \epsilon_3,
\]
then
\[\sqrt{R} \|\psi\|_{L^\infty(P_R(\omega_0))} + R \|\nabla u\|_{L^\infty(P_R(\omega_0))} \leq C \]
and for any \(0 < \beta < 1 \),
\[\sup_{[t_0 - \frac{R^2}{4}, t_0]} \|\psi(t)\|_{C^{1+\mu/2}(B_{R/2}(x_0))} + \|\nabla u\|_{C^{\beta,\beta/2}(P_{R/2}(\omega_0))} \leq C(\beta). \]
Moreover, if
\[\sup_{[t_0 - 4R^2, t_0]} E(u(t); B_{2R}(\omega_0)) \leq \epsilon_3, \]
then
\[\|u\|_{C^{2+\mu,1+\mu/2}(M \times [t_0 - \frac{R^2}{4}, t_0])} + \|\psi\|_{C^{\mu,\mu/2}(M \times [t_0 - \frac{R^2}{4}, t_0])} + \sup_{[t_0 - \frac{R^2}{4}, t_0]} \|\psi(t)\|_{C^{1+\mu}(M)} \leq C. \]

5. Existence of \(\alpha \)-Dirac-harmonic maps

In this section, we will prove Theorem 1.5. First, we will prove the following existence result about the \(\alpha \)-Dirac-harmonic maps for \(\alpha > 1 \). Then, by the compactness, we get a Dirac-harmonic map as the limit of these \(\alpha \)-Dirac-harmonic maps. Last, we prove that the bubbles only can be harmonic spheres, and finish the proof of Theorem 1.5.

Theorem 5.1. Let \(M \) be a closed spin surface and \((N,h)\) a closed Kähler manifold. Suppose there exists a map \(u_0 \in C^{2+\mu}(M,N) \) for some \(\mu \in (0,1) \) such that \(\dim_{\mathbb{H}} \ker \mathcal{D}_{1,0}^{u_0} = 1 \). Then for any \(\alpha \in (1, 1 + \epsilon_1) \), there exists a nontrivial smooth \(\alpha \)-Dirac-harmonic map \((u_\alpha, \psi_\alpha)\) such that the map part \(u_\alpha \) stays in the same homotopy class as \(u_0 \) and \(\|\psi_\alpha\|_{L^2} = 1 \).

Proof of Theorem 5.1. Let us define
\[m_0^\alpha := \inf \{ E_\alpha(u) \|u \in W^{1,2\alpha}(M,N) \cap [u_0] \}, \]
where \([u_0]\) denotes the homotopy class of \(u_0 \). If \(u_0 \) is a minimizing \(\alpha \)-harmonic map, it follows from Lemma 4.3 that \((u_0, \psi_0)\) is an \(\alpha \)-Dirac-harmonic map for any \(\psi_0 \in \ker \mathcal{D}_{1,0}^{u_0} \). If \(E_\alpha(u_0) > m_0^\alpha \), then Theorem 4.2 gives us a solution
\[u \in C^{2+\mu,1+\mu/2}(M \times [0, T), N) \]
and
\[\psi \in C^{\mu,\mu/2}(M \times [0, T), \Sigma M \otimes u^*TN) \cap \cap_{0 < s < T} L^\infty([0, s]; C^{1+\mu}(M)). \]
to the problem (4.1)-(4.2) with the initial values (4.6).

By Lemma 4.3, we know
\[\int_M (1 + |\nabla u|^2)^\alpha \leq E_\alpha(u_0). \]
Then it is easy to see that, for any $0 < \epsilon < \epsilon_3$, there exists a positive constant $r_0 = r_0(\epsilon, \alpha, E_\alpha(u_0))$ such that for all $(x, t) \in M \times [0, T)$, there holds

$$\int_{B_r(x)} |\nabla u|^2 \leq CE_\alpha(u_0)^{1/\alpha} r_0^{1-\frac{1}{\alpha}} \leq \epsilon.$$

Therefore, by Theorem 4.2 and Lemma 4.5, we know that the singular time can be characterized as

$$Z = \{ T \in \mathbb{R} | \lim_{t_i \uparrow T} \dim \ker \mathcal{D}_{1,0}^{u(t_i)} > 1 \}$$

and there exists a sequence $\{ t_i \} \not\to T$ such that

$$(u(\cdot, t_i), \psi(\cdot, t_i)) \to (u(\cdot, T), \psi(\cdot, T))$$

in $C^{2+\mu}(M) \times C^{1+\mu/2}(M)$

and

$$\| \psi(\cdot, T) \|_{L^2} = 1.$$

If $Z = \emptyset$, then, by Theorem 4.2, we can extend the solution (u, ψ) beyond the time T by using $(u(\cdot, T), \psi(\cdot, T))$ as new initial values. Thus, we have the global existence of the flow. For the limit behavior as $t \to \infty$, Lemma 4.3 implies that there exists a sequence $\{ t_i \} \to \infty$ such that

$$\int_{M} |\partial_t u|^2(\cdot, t_i) \to 0.$$

Together with Lemma 4.5, there is a subsequence, still denoted by $\{ t_i \}$, and an α-Dirac-harmonic map $(u_\alpha, \psi_\alpha) \in C^\infty(M, N) \times C^\infty(M, \Sigma M \otimes (u_\alpha)^*TN)$ such that

$$(u(\cdot, t_i), \psi(\cdot, t_i))$$

converges to (u_α, ψ_α) in $C^2(M) \times C^1(M)$ and $\| \psi_\alpha \|_{L^2} = 1.$

If $Z \neq \emptyset$ and $T \in Z$, let us assume that $E_\alpha(u(\cdot, T)) > m_0^\alpha$ and $(u(\cdot, T), \psi(\cdot, T))$ is not already an α-Dirac-harmonic map. We extend the flow as follows: By Lemma 3.1, there is a map $u_1 \in C^{2+\mu}(M, N)$ such that

$$m_0^\alpha < E_\alpha(u_1) < E_\alpha(u(\cdot, T))$$

and

$$\dim \ker \mathcal{D}_{1,0}^{u_1} = 1.$$

Thus, picking any $\psi_1 \in \ker \mathcal{D}_{1,0}^{u_1}$ with $\| \psi_1 \|_{L^2} = 1$, we can restart the flow from the new initial values (u_1, ψ_1). If there is no singular time along the flow started from (u_1, ψ_1), then we get an α-Dirac-harmonic map as in the case of $Z = \emptyset$. Otherwise, we use again the procedure above to choose (u_2, ψ_2) as initial values and restart the flow. This procedure will stop in finitely or infinitely many steps.

If infinitely many steps are required, then there exist infinitely many flow pieces $\{ u_i(x, t) \}_{i=1,\ldots,\infty}$ and $\{ T_i \}_{i=1,\ldots,\infty}$ such that

$$E_\alpha(u_i(t)) + 2\alpha \int_{0}^{t} \int_{M} (1 + |\nabla u|^2)^{\alpha-1} |\partial_t u|^2 = E_\alpha(u_i), \ \forall t \in (0, T_i),$$
where \(u_0(\cdot, 0) = u_0 \in C^{2+\mu}(M, N) \). If the \(T_i \) are bounded away from zero, there is \(\{ t_i \} \) such that (5.1) holds for \(t_i \in (0, T_i) \). Therefore, we have an \(\alpha \)-Dirac-harmonic map as before. If \(T_i \to 0 \), then we look at the limit of \(E_\alpha(u_0) \). If the limit is strictly bigger than \(m_0^\alpha \), we again choose another map satisfying (5.2) and (5.3) as a new starting point. If the limit is exactly \(m_0^\alpha \), then we choose \(\{ t_i \} \) such that \(t_i \in (0, T_i) \) for each \(i \). By Lemma 4.5, \(u_i(t_i) \) converges in \(C^2(M) \times C^1(M) \) to a minimizing \(\alpha \)-harmonic map \(u_\alpha \). If \(\mathcal{D}_{1,0}^{u_\alpha} \) has minimal kernel, then for any \(\psi \in \ker \mathcal{D}_{1,0}^{u_\alpha} \), \((u_\alpha, \psi) \) is an \(\alpha \)-Dirac-harmonic map as we showed in the beginning of the proof. If \(\mathcal{D}_{1,0}^{u_\alpha} \) has non-minimal kernel, by using the \(\mathbb{Z}_2 \)-grading \(\mathcal{G} \otimes \text{id} \) as in the proof of Theorem 1.2, we get \(\alpha \)-Dirac-harmonic maps \((u_\alpha, \psi^\pm_\alpha) \) for any \(\ker \mathcal{D}_{1,0}^{u_\alpha} \ni \psi_\alpha = \psi_\alpha^+ + \psi_\alpha^- \). In particular, we can choose \(\psi_\alpha \) such that \(\| \psi_\alpha^+ \|_{L^2} = 1 \) or \(\| \psi_\alpha^- \|_{L^2} = 1 \).

If it stops in finitely many steps, there exists a sequence \(\{ t_i \} \) and some \(0 < T_k \leq +\infty \) such that

\[
\lim_{t_i \to T_k}(u(\cdot, t_i), \psi(\cdot, t_i)) \to (u_\alpha, \psi_\alpha) \text{ in } C^2(M) \times C^1(M),
\]

where \((u_\alpha, \psi_\alpha) \) either is an \(\alpha \)-Dirac-harmonic map or satisfies \(E_\alpha(u_\alpha) = m_0^\alpha \). And in the latter case, \(u_\alpha \) is a minimizing \(\alpha \)-harmonic map. Then we can again get a nontrivial \(\alpha \)-Dirac-harmonic map as above.

\[\square\]

By Theorem 5.1, for any \(\alpha > 1 \) sufficiently close to 1, there exists an \(\alpha \)-Dirac-harmonic map \((u_\alpha, \psi_\alpha) \) with the properties

\[E_\alpha(u_\alpha) \leq E_\alpha(u_0), \quad \| \psi_\alpha \|_{L^2} = 1 \]

and

\[\| \psi_\alpha \|_{W^{1,p}(M)} \leq C(p, M, N, E_\alpha(u_0)) \]

for any \(1 < p < 2 \). Then it is natural to consider the limit behavior when \(\alpha \) decreases to 1. Since the blow-up analysis was already well studied in [8], we can directly prove Theorem 1.5.

Proof of Theorem 1.5. By Theorem 5.1, we have a sequence of smooth \(\alpha \)-Dirac-harmonic maps \((u_{\alpha_k}, \psi_{\alpha_k}) \) with (5.4) and (5.5), where \(\alpha_k \searrow 1 \) as \(k \to \infty \). Then, by the compactness theorem in [8], there is a constant \(\epsilon_0 > 0 \) and a Dirac-harmonic map

\[(\Phi, \Psi) \in C^\infty(M, N) \times C^\infty(M, \Sigma M \otimes \Phi^*TN) \]

such that

\[(u_{\alpha_k}, \psi_{\alpha_k}) \to (\Phi, \Psi) \text{ in } C^2_{\text{loc}}(M \setminus \mathcal{S}) \times C^1_{\text{loc}}(M \setminus \mathcal{S}), \]

where

\[\mathcal{S} := \{ x \in M \mid \liminf_{\alpha_k \to 1} E(u_{\alpha_k}; B_r(x)) \geq \frac{\epsilon_0}{2}, \forall r > 0 \} \]

is a finite set.
Now, taking \(x_0 \in \mathcal{S} \), there exists a sequence \(x_{\alpha k} \to x_0, \lambda_{\alpha k} \to 0 \) and a nontrivial Dirac-harmonic map \((\phi, \xi) : \mathbb{R}^2 \to N\) such that

\[
(u_{\alpha k}(x_{\alpha k} + \lambda_{\alpha k} x), \lambda_{\alpha k}^{\alpha k - 1} \sqrt{\lambda_{\alpha k}} \psi_{\alpha k}(x_{\alpha k} + \lambda_{\alpha k} x)) \to (\phi, \xi) \text{ in } C^2_{loc}(\mathbb{R}^2),
\]

as \(\alpha \to 1 \). Choose any \(p^* > 4 \), by taking \(p = \frac{2p^*}{2 + p^*} \) in (5.5), we get

\[
||\psi_{\alpha k}||_{L^{p^*}(M)} \leq C(p^*, M, N, E^{\alpha_k}(u_0))
\]

and

\[
||\xi||_{L^4(D_R(0))} = \lim_{\alpha k \to 1} \lambda_{\alpha k}^{\alpha k - 1} ||\psi_{\alpha k}||_{L^4(D_{\lambda_{\alpha k} R}(x_{\alpha k}))}
\]

\[
\leq \lim_{\alpha k \to 1} C||\psi_{\alpha k}||_{L^{p^*}(M)}(\lambda_{\alpha k} R)^{2(\frac{1}{4} - \frac{1}{p^*})} = 0.
\]

Thus, \(\xi = 0 \) and \(\phi \) can be extended to a nontrivial smooth harmonic sphere. Since \(||\psi_0||_{L^2} = 1 \), the Sobolev embedding implies that \(||\Psi||_{L^2(M)} = \lim_{\alpha k \to 1} ||\psi_0||_{L^2(M)} = 1 \). Therefore, \((\Phi, \Psi)\) is nontrivial. Furthermore, if \((N, h)\) does not admit any nontrivial harmonic sphere, then

\[
(u_{\alpha k}, \psi_{\alpha k}) \to (\Phi, \Psi) \text{ in } C^2(M) \times C^1(M).
\]

Therefore, \(\Phi \) is in the same homotopy class as \(u_0 \). \(\square \)

6. Appendix

We will use the parallel construction in [10] to construct the solution to the constraint equation for spinors under a different pull-back bundle \(u^* T_{1,0} N \). Since the only thing changed is the bundle we twisted, the proofs of those nice properties are parallel to those in [10]. For completeness, we give the details in this appendix.

For every \(T > 0 \), we consider the space \(B^T_R(\bar{u}_0) := \{ u \in X_T | ||u - \bar{u}_0||_{X_T} \leq R \} \cap \{ u|_{t=0} = u_0 \} \) where \(\bar{u}_0(x, t) = u_0(x) \) for any \(t \in [0, T] \). To get the necessary estimate for the solution of the constraint equation, we will use the parallel transport along the unique shortest geodesic between \(u_0(x) \) and \(\pi \circ u_k(x) \) in \(N \). To do this, we need the following lemma which tells us that the distances in \(N \) can be locally controlled by the distances in \(\mathbb{R}^q \).

Lemma 6.1. Let \(N \subset \mathbb{R}^q \) be a closed embedded submanifold of \(\mathbb{R}^q \) with the induced Riemannian metric. Denote by \(A \) its Weingarten map. Choose \(C > 0 \) such that

\[
||A|| \leq C, \quad \text{where} \quad ||A|| := \sup\{||A_v X|| | v \in T^\perp_p N, X \in T_p N, ||v|| = 1, ||X|| = 1, p \in N\}.
\]
Then there exists $0 < \delta_0 < \frac{1}{C}$ such that for all $0 < \delta \leq \delta_0$ and for all $p, q \in N$ with $||p - q||_2 < \delta$, it holds that

$$d^N(p, q) \leq \frac{1}{1 - \delta C}||p - q||_2,$$

where we denote the Euclidean norm by $|| \cdot ||_2$ in this section.

In the following, we will choose δ and R to ensure the existence of the unique shortest geodesics between the projections of any two elements in $B^T_R(\bar{u}_0)$. By the definition of $B^T_R(\bar{u}_0)$, we have

$$||u(x, t) - \bar{u}_0(x, t)||_2 = ||u(x, t) - u_0(x)||_2 \leq R$$

for all $(x, t) \in M \times [0, T]$. Then taking any $R \leq \delta$, we get

$$d(u(x, t), N) \leq ||u(x, t) - u_0(x)||_2 \leq \delta$$

for all $(x, t) \in M \times [0, T]$. Therefore, $u(x, t) \in N_\delta$. In particular, $\pi \circ u$ is N-valued, and

$$(6.1) \quad ||(\pi \circ u)(x, t) - u_0(x)||_2 \leq ||(\pi \circ u)(x, t) - u(x, t)||_2 + ||u(x, t) - u_0(x)||_2 \leq 2\delta.$$

Now, we choose $\epsilon > 0$ with $2\epsilon < \text{inj}(N)$ and δ such that

$$(6.2) \quad \delta < \min \left\{ \frac{1}{4}\delta_0, \frac{1}{4}\epsilon(1 - \delta_0 C) \right\},$$

where $\delta_0, C > 0$ are as in Lemma 6.1. From (6.1), we know that for all $u, v \in B^T_R(\bar{u}_0)$, it holds that

$$||(\pi \circ u)(x, t) - (\pi \circ v)(x, s)||_2 \leq 4\delta < \delta_0.$$

Then Lemma 6.1 and (6.2) imply that

$$d^N((\pi \circ u)(x, t), (\pi \circ v)(x, s)) \leq \frac{1}{1 - \delta_0 C}||((\pi \circ u)(x, t) - (\pi \circ v)(x, s)||_2 \leq \frac{1}{1 - \delta_0 C}4\delta < \epsilon < \frac{1}{2}\text{inj}(N).$$

(6.3)

To summarize, under the choice of constants as follows:

$$(6.4) \quad \left\{ \begin{array}{l} \epsilon > 0, \quad \text{s.t.} \ 2\epsilon < \text{inj}(N), \\ \delta > 0, \quad \text{s.t.} \ \delta < \min\left\{ \frac{1}{4}\delta_0, \frac{1}{4}\epsilon(1 - \delta_0 C) \right\}, \\ R \leq \delta, \end{array} \right.$$

we have shown that

$$(6.5) \quad u(x, t) \in N_\delta$$

and

$$(6.6) \quad d^N((\pi \circ u)(x, t), (\pi \circ v)(x, s)) < \epsilon < \frac{1}{2}\text{inj}(N)$$

for all $u, v \in B^T_R(\bar{u}_0), x \in M$ and $t, s \in [0, T]$.

Using the properties (6.5) and (6.6), we can prove two important estimates. One is for the Dirac operators along maps.

Lemma 6.2. Choose ϵ, δ and R as in (6.4). If $\epsilon > 0$ is small enough, then there exists $C = C(R) > 0$ such that

$$||(P^{\gamma_1}\psi_1)^{-1} B_{1,0}^{\gamma_1} P^{\gamma_1} - B_{1,0}^{\gamma_1})\psi(x)|| \leq C||\mu - v||_{C^0(M,\mathbb{R})}||\psi(x)||$$

for any $u, v \in B^T_R(\bar{u}_1)$, $\psi \in \Gamma_C(\Sigma M \otimes (\pi \circ v_s)^*T_{1,0}N)$, $x \in M$ and $t, s \in [0, T]$.

Proof. We write $f_0 := \pi \circ v_s$, $f_1 := \pi \circ u_t$ and define the C^1 map $F : M \times [0, 1] \rightarrow N$ by

$$F(x, t) := \exp_{f_0(x)}(t \exp_{f_0(x)}^{-1} f_1(x))$$

where \exp denotes the exponential map of the Riemannian manifold N. Note that $F(\cdot, 0) = f_0$, $F(\cdot, 1) = f_1$ and $t \mapsto F(x, t)$ is the unique shortest geodesic from $f_0(x)$ to $f_1(x)$. We denote by

$$P_{t_1, t_2} = P_{t_1, t_2}(x) : T_{1,0}N|_{F(x,t_1)} \rightarrow T_{1,0}N|_{F(x,t_2)}$$

the parallel transport in $F^{*}T_{1,0}N$ with respect to $\nabla^{F^{*}T_{1,0}N}$ (pullback of the connection on $T_{1,0}N$) along the curve $\gamma_s(t) := (x, t)$ from $\gamma_s(t_1)$ to $\gamma_s(t_2)$, $x \in M$, $t_1, t_2 \in [0, 1]$. In particular, $P_{0,1} = P^{\gamma_0}$. Let $\psi \in \Gamma_C(\Sigma M \otimes (f_0)^*T_{1,0}N)$. We have

$$\Theta_t(x, t) := (P_{0,1})^{-1}(\nabla^{F*T_{1,0}N}_{e_\alpha}(b_i \circ f_0))(x).$$

For each $t \in [0, 1]$ we define the functions $T_{ij}(\cdot, t) := T_{ij}^\alpha(\cdot, t)$ by

$$\sum_j T_{ij}(x, t)(b_j \circ f_0)(x).$$

So far, we only know that the T_{ij} are continuous. In the following, we will perform some formal calculations and justify them afterwards. By a straightforward
Now, let us justify the formal calculations \((6.10)\) and deduce that
\[
\nabla_i f \ \text{further get}
\]
\[
\implies \text{that these time-derivatives are related to the curvature of } F.\]

Therefore we want to control the first time-derivative of the \(T_{ij}\). Equation \((6.8)\) implies that these time-derivatives are related to the curvature of \(F^*T_{1,0}N\). More precisely, for all \(X \in \Gamma(TM)\) we have
\[
\frac{d}{dt} \bigg|_{t=r} \left((P_{0,t})^{-1} \left((\nabla^X X^* F_{1,0} N \Theta_i)(x,t) \right) \right) = \frac{d}{dt} \bigg|_{t=0} \left((P_{0,t+r})^{-1} \left((\nabla^X X^* F_{1,0} N \Theta_i)(x,t+r) \right) \right) = (P_{0,r})^{-1} \frac{d}{dt} \bigg|_{t=0} \left((P_{r,r+t})^{-1} \left((\nabla^X X^* F_{1,0} N \Theta_i)(x,t+r) \right) \right) = (P_{0,r})^{-1} \left((\nabla^X X^* F_{1,0} N \nabla^X X^* F_{1,0} N \Theta_i)(x,r) \right).
\]

Now, let us justify the formal calculations \((6.9)\) and \((6.10)\). Combining the definition of \(\Theta_i\) as parallel transport and a careful examination of the regularity of \(F\) we deduce that \((\nabla^X X^* F_{1,0} N \nabla^X X^* F_{1,0} N \Theta_i)(x,r)\) exists. Then \((6.10)\) holds. Together with \((6.8)\), we know that the \(T_{ij}\) are differentiable in \(t\). Therefore \((6.9)\) also holds. We further get
\[
\nabla^X X^* F_{1,0} N \nabla^X X^* F_{1,0} N \Theta_i = R^X X^* F_{1,0} N (\frac{\partial}{\partial t}, X) \Theta_i + \nabla^X X^* F_{1,0} N \nabla^X X^* F_{1,0} N \Theta_i - \nabla^X X^* F_{1,0} N \Theta_i = R^X X^* F_{1,0} N (dF(\frac{\partial}{\partial t}), dF(X)) \Theta_i,
\]

since \(\nabla^X X^* F_{1,0} N \Theta_i = 0\) by the definition of \(\Theta_i\) and \([\frac{\partial}{\partial t}, X] = 0\).
This implies
\[
\sum_j \left(\frac{d}{dt} \bigg|_{t=r} T_{ij}(x,t) \right)^2 = \left\| \frac{d}{dt} \bigg|_{t=r} \left((P_{0,t})^{-1}(\nabla^{F^*T_{1,0}N}_{\Theta_j}(x,t)) \right) \right\|^2
\]
\[
= \left\| \left(\nabla^{F^*T_{1,0}N} \nabla^{F^*T_{1,0}N}_{\Theta_j} \right)(x,r) \right\|^2
\]
\[
= \| R^{T_{1,0}N}(df_{x,r}) (\partial_{\theta_j}(df_{x,r}) \Theta_j(x,r)) \|^2
\]
\[
\leq C_1 \||df_{x,r}(\theta_j)||\|df_{x,r}(\Theta_j)||^2,
\]
where \(C_1 \) only depends on \(N \).

In the following we estimate \(||df_{x,r}(\theta)||\) and \(||df_{x,r}(\Theta)||\). We have
\[
df_{x,r}(\theta)|_{(x,r)} = \frac{\partial}{\partial t} \bigg|_{t=r} (\exp_{f_0(x)}(t \exp_{f_0(x)}^{-1} f_1(x))) = c'(r),
\]
where \(c(t) := \exp_{f_0(x)}(t \exp_{f_0(x)}^{-1} f_1(x)) \) is a geodesic in \(N \). In particular, \(c' \) is parallel along \(c \) and thus \(||c'(r)|| = ||c'(0)|| = ||\exp_{f_0(x)}^{-1} f_1(x)||\). Therefore, we get
\[
||df_{x,r}(\theta)|| = ||\exp_{f_0(x)}^{-1} f_1(x)|| \leq dN(f_0(x), f_1(x)) \leq C_2 ||u_t - v_s||_{C^0(M, \mathbb{R}^n)},
\]
where we have used Lemma 6.1 and the Lipschitz continuity of \(\pi \). Moreover, there exists \(C_3(R) > 0 \) such that \(||df_{x,r}(\Theta)||\) \(\leq C_3(R) \) for all \((x, r) \in M \times [0, 1]\). Thus, we have shown
\[
\sum_j \left(\frac{d}{dt} \bigg|_{t=r} T_{ij}(x,t) \right)^2 \leq C_1 C_2^2 C_3^2(R)^2 ||u_t - v_s||_{C^0(M, \mathbb{R}^n)}^2
\]
for all \((x, t)\). Combining this with (6.7) and (6.9), we complete the proof. \(\square \)

The other one is for the parallel transport.

Lemma 6.3. Choose \(\epsilon, \delta \) and \(R \) as in (6.4). If \(\epsilon > 0 \) is small enough, then there exists \(C = C(\epsilon) > 0 \) such that
\[
||P^{\nu, u_0} P^{\nu, v_0} P^{\nu, u_0} Z - Z|| \leq C ||u_t - v_s||_{C^0(M, \mathbb{R}^n)} ||Z||
\]
for all \(Z \in T_{1,0}N \mid_{u_0(x)} \), \(u, v \in B^T_R(\bar{u}_0) \), \(x \in M \) and \(t, s \in [0, T] \).

Consequently, we also have

Lemma 6.4. Choose \(\epsilon, \delta \) and \(R \) as in (6.4). For \(u, v \in B^T_R(\bar{u}_0) \), \(s, t \in [0, T] \), the operator norm of the isomorphism of Banach spaces
\[
P^{\nu, u_0} : \Gamma_{W^1,p}(\Sigma M \otimes (\pi \circ v_s)^* T_{1,0}N) \to \Gamma_{W^1,p}(\Sigma M \otimes (\pi \circ u_t)^* T_{1,0}N)
\]
is uniformly bounded, i.e. there exists \(C = C(R, p) \) such that
\[
||P^{\nu, u_0}||_{L(W^1,p, W^1,p)} \leq C
\]
for all \(u, v \in B^T_R(\bar{u}_0) \), \(x \in M \) and \(t, s \in [0, T] \).
The proofs of these two lemmas only depend on the existence of the unique shortest geodesic between any two maps in $B^T_R(\bar{u}_0)$, which was already shown in (6.6). So we omit them here. Besides, by Lemma 6.2, one can immediately prove the following Lemma by the Min-Max principle.

Lemma 6.5. Assume that $\dim H_\ker(\mathcal{D}^{u_0}) = 1$. Choose ϵ, δ and R as in Lemma 6.2. If R is small enough, then

$$\dim H_\ker(\mathcal{D}^{\pi_0u_{1t}}) = 1$$

and there exists $\Lambda = \frac{1}{2}\Lambda(u_0)$ such that

$$\# \{ \text{spec}(\mathcal{D}^{\pi_0u_{1t}}) \cap [-\Lambda, \Lambda] \} = 1$$

for any $u \in B^T_R(\bar{u}_0)$ and $t \in [0, T]$, where $\Lambda(u_0)$ is a constant such that $\text{spec}(\mathcal{D}^{u_0}) \setminus \{0\} \subset \mathbb{R} \setminus (-\Lambda(u_0), \Lambda(u_0))$.

Once we have the minimality of the kernel in Lemma 6.5, we can prove the following uniform bounds for the resolvents, which are important for the Lipschitz continuity of the solution to the Dirac equation.

Lemma 6.6. Assume we are in the situation of Lemma 6.5. We consider the resolvent $R(\lambda, \mathcal{D}^{\pi_0u_{1t}}) : \Gamma_{L^2} \to \Gamma_{L^2}$ of $\mathcal{D}^{\pi_0u_{1t}} : \Gamma_{W^{1,2}} \to \Gamma_{L^2}$. By the L^p estimate (see Lemma 3.3 in [4]), we know the restriction

$$R(\lambda, \mathcal{D}^{\pi_0u_{1t}}) : \Gamma_{L^p} \to \Gamma_{W^{1,p}}$$

is well-defined and bounded for any $2 \leq p < \infty$. If $R > 0$ is small enough, then there exists $C = C(p, R) > 0$ such that

$$\sup_{|\lambda| = \frac{1}{2}} ||R(\lambda, \mathcal{D}^{\pi_0u_{1t}})||_{L(L^p, W^{1,p})} < C$$

for any $u \in B^T_R(\bar{u}_0)$, $t \in [0, T]$.

Now, by the projector of the Dirac operator, we can construct a solution to the constraint equation whose nontriviality follows from the following lemma.

Lemma 6.7. In the situation of Lemma 6.5, for any fixed $u \in B^T_R(\bar{u}_0)$ and any $\psi_0 \in \ker(\mathcal{D}^{u_0})$ with $||\psi_0||_{L^2} = 1$, we have

$$\sqrt{\frac{1}{2}} \leq ||\tilde{\psi}^{u_{1t}}||_{L^2} \leq 1,$$

where $\tilde{\psi}^{u_{1t}} = P_{\ker(\mathcal{D}^{u_0})} \psi_0 = \tilde{\psi}_1^{u_{1t}} + \tilde{\psi}_2^{u_{1t}}$ with respect to the decomposition $\Gamma_{L^2} = \ker(\mathcal{D}^{\pi_0u_{1t}}) \oplus (\ker(\mathcal{D}^{\pi_0u_{1t}}))$.

In Section 3, to show the short-time existence of the heat flow for α-Dirac-harmonic maps, we need the following Lipschitz estimate.
Lemma 6.8. Choose δ as in (6.4), ϵ as in Lemma 6.2 and Lemma 6.3, R as in Lemma 6.5 and Lemma 6.6. For any harmonic spinor $\psi_0 \in \ker(\mathcal{D}_{1,0}^{\pi})$, we define

$$\tilde{\psi}(u_t) := \bar{\psi}_1 = -\frac{1}{2\pi i} \int_\gamma R(\lambda, \mathcal{D}_{1,0}^{\pi}) P_{u_0,u_t} \psi_0 d\lambda$$

for any $u \in B_R^T(\bar{u}_0)$, where γ is defined in the Section 2 with $\Lambda = \frac{1}{2}\Lambda(u_0)$. In particular, $\tilde{\psi}(u_t) \in \ker(\mathcal{D}_{1,0}^{\pi}) \subset C^0(\Sigma M \otimes (\pi \circ u_t)^* T_{1,0})$. We write

$$\psi(u_t) := \psi(u(\cdot, t)) = \tilde{\psi}(u_t) \frac{1}{\|\tilde{\psi}(u_t)\|_{L^2}}.$$

Let $\psi^A(u_t)$ be the sections of ΣM such that

$$\psi(u_t) = \psi^A(u_t) \otimes (\partial_A \circ \pi \circ u_t)$$

for $A = 1, \ldots, q$. Then there exists $C = C(R, \epsilon, \psi_0) > 0$ such that

$$\|P_{u_t,v_s} \tilde{\psi}(u_t)(x) - \tilde{\psi}(u_t)(x)\| \leq C\|u_t - v_s\|_{C^0(M, \mathbb{R}^q)} \tag{6.11}$$

and

$$\|\psi^A(u_t)(x) - \psi^A(v_s)(x)\| \leq C\|u_t - v_s\|_{C^0(M, \mathbb{R}^q)} \tag{6.12}$$

for all $u, v \in B_R^T(\bar{u}_0)$, $A = 1, \ldots, q$, $x \in M$ and $s, t \in [0, T]$.

Proof. Using the following resolvent identity for two operators D_1, D_2

$$R(\lambda, D_1) - R(\lambda, D_2) = R(\lambda, D_1) \circ (D_1 - D_2) \circ R(\lambda, D_2),$$

we have

$$P_{u_t,v_s} \tilde{\psi}(u_t) - \tilde{\psi}(v_s)$$

$$= -\frac{1}{2\pi i} \int_\gamma R(\lambda, P_{u_t,v_s} \mathcal{D}_{1,0}^{\pi}) (P_{u_t,v_s})^{-1} \left(P_{u_t,v_s} P_{u_0,u_t} \psi_0 - P_{u_0,v_s} \psi_0 \right)$$

$$- \frac{1}{2\pi i} \int_\gamma \left(R(\lambda, P_{u_t,v_s} \mathcal{D}_{1,0}^{\pi}) (P_{u_t,v_s})^{-1} - R(\lambda, \mathcal{D}_{1,0}^{\pi}) \right) P_{u_0,v_s} \psi_0$$

$$- \frac{1}{2\pi i} \int_\gamma \left(R(\lambda, P_{u_t,v_s} \mathcal{D}_{1,0}^{\pi}) (P_{u_t,v_s})^{-1} \circ (P_{u_t,v_s} \mathcal{D}_{1,0}^{\pi}) (P_{u_t,v_s})^{-1} - \mathcal{D}_{1,0}^{\pi} \right) \circ R(\lambda, \mathcal{D}_{1,0}^{\pi}) P_{u_0,v_s} \psi_0.$$
where γ is defined in (2.10) with $\Lambda = \frac{1}{2} \Lambda(u_0)$. Therefore, for p large enough, we get

$$
|P^{u_t,v_s}(u_t)(x) - \bar{v}(v_s)(x)| \leq C_1 |P^{u_t,v_s}(u_t) - \bar{v}(v_s)|_{W^{1,p}(M)}
$$

First, by Lemma 6.13, we have

$$
|P^{u_t,v_s}(u_t) - \bar{v}(v_s)|_{W^{1,p}(M)} \leq C_2 \left| \int_{L} R(\lambda, P^{u_t,v_s} P^{\pi_0 \psi}_0 - P^{u_t,v_s} \hat{\psi}_0) \right|_{W^{1,p}(M)} + C_2 \left| \int_{L} \left(R(\lambda, P^{u_t,v_s} P^{\pi_0 \psi}_0 - P^{u_t,v_s} \hat{\psi}_0) \right) (P^{u_t,v_s} P^{\pi_0 \psi}_0 - P^{u_t,v_s} \hat{\psi}_0) \right|_{W^{1,p}(M)}
$$

Next, we want to show the following estimate which is very close to (6.12).

$$
\bar{v}(v_s) \leq C \left| \int_{L} R(\lambda, P^{u_t,v_s} P^{\pi_0 \psi}_0 - P^{u_t,v_s} \hat{\psi}_0) \right|_{W^{1,p}(M)} + C \left| \int_{L} \left(R(\lambda, P^{u_t,v_s} P^{\pi_0 \psi}_0 - P^{u_t,v_s} \hat{\psi}_0) \right) (P^{u_t,v_s} P^{\pi_0 \psi}_0 - P^{u_t,v_s} \hat{\psi}_0) \right|_{W^{1,p}(M)}
$$

Now, we estimate all the terms in the right-hand side of the inequality above. First, by Lemma 6.6 and Lemma 6.4, we know that all the resolvents above are uniformly bounded. Next, by Lemma 6.2, we have

$$
\left| P^{u_t,v_s} P^{\pi_0 \psi}_0 - P^{u_t,v_s} \hat{\psi}_0 \right|_{L(W^{1,p},L^p)} \leq C(R) \left| u_t - v_s \right|_{C^0(M,R^p)}
$$

Finally, by Lemma 6.3, we obtain

$$
\left| P^{u_t,v_s} P^{\pi_0 \psi}_0 - P^{u_t,v_s} \hat{\psi}_0 \right|_{L(W^{1,p},L^p)} \leq C(\epsilon, \psi_0) \left| u_t - v_s \right|_{C^0(M,R^p)}
$$

Putting these together, we get (6.11).

Next, we want to show the following estimate which is very close to (6.12).

$$
\left| \bar{v}(u_t)(x) - \bar{v}(v_s)(x) \right| \leq C(R, \epsilon, \psi_0) \left| u_t - v_s \right|_{C^0(M,R^p)}
$$

(6.13)
In fact, we have

\[
\| \tilde{\psi}^A(u_t)(x) - \tilde{\psi}^A(v_s)(x) \| \\
\leq \| \tilde{\psi}(u_t)(x) - \tilde{\psi}(v_s)(x) \|_{\Sigma, M \otimes \mathbb{R}^q} \\
\leq \| P_{u_t, v_s} \tilde{\psi}(u_t)(x) - \tilde{\psi}(v_s)(x) \|_{\Sigma, M \otimes \mathbb{R}^q} + \| P_{u_t, v_s} \tilde{\psi}(u_t)(x) - \tilde{\psi}(u_t)(x) \|_{\Sigma, M \otimes \mathbb{R}^q} \\
= \| P_{u_t, v_s} \tilde{\psi}(u_t)(x) - \tilde{\psi}(v_s)(x) \|_{\Sigma, M \otimes T_{(\pi \circ v_s)(x)} N} \\
+ \| P_{u_t, v_s} \tilde{\psi}(u_t)(x) - \tilde{\psi}(u_t)(x) \|_{\Sigma, M \otimes \mathbb{R}^q} \\
\leq C(R, \epsilon, \psi_0) \| u_t - v_s \|_{C^0(M, \mathbb{R}^q)} + \| P_{u_t, v_s} \tilde{\psi}(u_t)(x) - \tilde{\psi}(u_t)(x) \|_{\Sigma, M \otimes \mathbb{R}^q}.
\]

It remains to estimate the last term in the inequality above. To that end, let

\[\gamma(r) := \exp_{(\pi \circ u_t)(x)}(r \exp_{(\pi \circ u_t)(x)}^{-1}(\pi \circ v_s)(x)), \quad r \in [0, 1], \]

be the unique shortest geodesic of \(N \) from \((\pi \circ u_t)(x) \) to \((\pi \circ v_s)(x) \). Let \(X \in T_{(\pi \circ u_t)(x)} N \) be given and denote by \(X(r) \) the unique parallel vector field along \(\gamma \) with \(X(0) = X \). Then we have

\[
P_{u_t, v_s} X - X = X(1) - X(0) = \int_0^1 \frac{dX}{dr} \bigg|_{r=\xi} d\xi = \int_0^1 II(\gamma'(r), X(r)) dr.
\]

Therefore,

\[
\| P_{u_t, v_s} X - X \|_{\mathbb{R}^q} \leq C_1 \sup_{r \in [0,1]} \| \gamma'(r) \|_N \sup_{r \in [0,1]} \| X(r) \|_N = C_1 \| \gamma'(0) \|_N \| X \|_N
\]

where \(II \) is the second fundamental form of \(N \) in \(\mathbb{R}^q \) and \(C_1 \) only depends on \(N \). Using (6.3) and the Lipschitz continuity of \(\pi \) we get

\[
\| \gamma'(0) \|_N \leq d^N((\pi \circ u_t)(x), (\pi \circ v_s)(x)) \leq C_2 \| u_t(x) - v_s(x) \|_{\mathbb{R}^q}
\]

and

\[
\| P_{u_t, v_s} X - X \|_{\mathbb{R}^q} \leq C_3 \| u_t(x) - v_s(x) \|_{\mathbb{R}^q} \| X \|_N.
\]

This implies

\[
\| P_{u_t, v_s} \tilde{\psi}(u_t)(x) - \tilde{\psi}(u_t)(x) \|_{\Sigma, M \otimes \mathbb{R}^q} \leq C(R, \epsilon, \psi_0) \| u_t(x) - v_s(x) \|_{\mathbb{R}^q}.
\]

Hence, (6.13) holds.
Now, using (6.11) and (6.13), we get
\[\| \psi^A(u_t)(x) - \psi^A(v_s)(x) \| \]
\[= \left\| \frac{\bar{\psi}^A(u_t)(x)}{\| \bar{\psi}(u_t) \|_{L^2}} - \frac{\bar{\psi}^A(v_s)(x)}{\| \bar{\psi}(v_s) \|_{L^2}} \right\| \]
\[\leq \frac{1}{\| \bar{\psi}(v_s) \|_{L^2}} \left(\| \bar{\psi}(v_s) \|_{L^2} - \| \bar{\psi}(u_t) \|_{L^2} \right) \]
\[+ \frac{1}{\| \bar{\psi}(v_s) \|_{L^2}} \left(\| \bar{\psi}(u_t) \|_{L^2} - \| \bar{\psi}(v_s) \|_{L^2} \right) \]
\[= \frac{1}{\| \bar{\psi}(v_s) \|_{L^2}} \left(\| \bar{\psi}(v_s) \|_{L^2} - \| \bar{\psi}(u_t) \|_{L^2} \right) \]
\[+ \frac{1}{\| \bar{\psi}(v_s) \|_{L^2}} \left(\| \bar{\psi}(u_t) \|_{L^2} - \| \bar{\psi}(v_s) \|_{L^2} \right) \]
\[\leq C(\| u_t - v_s \|_{C^0(M,\mathbb{R}^3)}) \]
Then the inequality (6.12) follows from Lemma 6.7 and (6.13). This completes the proof.

\[\square \]

References

1. Bernd Ammann and Nicolas Ginoux, *Dirac-harmonic maps from index theory*, Calculus of Variations and Partial Differential Equations 47 (2013), no. 3, 739–762.
2. Qun Chen, Jürgen Jost, Jiayu Li, and Guofang Wang, *Dirac-harmonic maps*, Mathematische Zeitschrift 254 (2006), no. 2, 409–432.
3. Qun Chen, Jürgen Jost, Linlin Sun, and Miaomiao Zhu, *Dirac-harmonic maps between Riemann surfaces*, Asian Journal of Mathematics 23 (2019), no. 1, 107–126.
4. Andreas Hermann, *Dirac eigenspinors for generic metrics*, arXiv preprint arXiv:1201.5771 (2012).
5. Jürgen Jost, *Geometry and physics*, Springer Science & Business Media, 2009.
6. Jürgen Jost, *Riemannian geometry and geometric analysis*, seventh ed., Universitext, Springer, 2017.
7. Jürgen Jost, Lei Liu, and Miaomiao Zhu, *A mixed elliptic-parabolic boundary value problem coupling a harmonic-like map with a nonlinear spinor*, Journal für die reine und angewandte Mathematik (Crelles Journal) 2022 (2022), no. 785, 81–116.
8. Jürgen Jost and Jingyong Zhu, *α-Dirac-harmonic maps from closed surfaces*, Calculus of variations and partial differential equations 60 (2021), no. 3.
10. Jürgen Jost and Jingyong Zhu, *Short-time existence of the α-Dirac-harmonic map flow and applications*, Communications in Partial Differential Equations 46 (2021), no. 3, 442–469.
11. H Blaine Lawson and Marie Louise Michelsohn, *Spin geometry*, Princeton Univ. Press, 1989.
12. Gary M Lieberman, *Second order parabolic differential equations*, World scientific, 1996.
13. John Nash, *The imbedding problem for Riemannian manifolds*, Annals of Mathematics (1956), 20–63.
14. Jonathan Sacks and Karen Uhlenbeck, *The existence of minimal immersions of 2-spheres*, Annals of Mathematics (1981), 1–24.
15. Wilhem Schlag, *Schauder and Lp estimates for parabolic systems via Campanato spaces*, Communications in Partial Differential Equations 21 (1996), no. 7-8, 1141–1175.
16. Linlin Sun, *A note on the uncoupled Dirac-harmonic maps from Kähler spin manifolds to Kähler manifolds*, Manuscripta Mathematica 155 (2018), no. 1, 197–208.
17. Johannes Wittmann, *Short time existence of the heat flow for Dirac-harmonic maps on closed manifolds*, Calculus of Variations and Partial Differential Equations 56 (2017), no. 6, 1–32.
18. Ling Yang, *A structure theorem of Dirac-harmonic maps between spheres*, Calculus of Variations and Partial Differential Equations 35 (2009), no. 4, 409–420.

Max Planck Institute for Mathematics in the Sciences, Inselstrasse 22, 04103 Leipzig, Germany

Email address: jost@mis.mpg.de

School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China

Email address: sunll@whu.edu.cn

College of Mathematics, Sichuan University, Chengdu 610065, China

Email address: jzhu@scu.edu.cn