Variability of nitrogen oxide emission fluxes and lifetimes estimated from Sentinel-5P TROPOMI observations

Kezia Lange¹, Andreas Richter¹, and John P. Burrows¹
¹Institute of Environmental Physics, University of Bremen, Bremen, Germany
Correspondence: Kezia Lange (klange@iup.physik.uni-bremen.de)

Abstract. Satellite observations of the high-resolution instrument TROPOMI (TROPOspheric Monitoring Instrument) on Sentinel-5 Precursor can be used to observe nitrogen dioxide (NO₂) at city scales, to quantify short time variability of NOx emissions and lifetime nitrogen oxides (NOx) emissions and lifetimes on a seasonal and daily basis. In this study, two years of TROPOMI tropospheric NO₂ data columns, having a spatial resolution of up to 3.5 km x 5.5 km, together with ECMWF-ERA5 wind data have been analyzed. NOx have been analyzed together with wind and ozone data. NOx lifetimes and emission fluxes are calculated for 45 different NOx 50 different NOx sources comprising cities and isolated power plants, industrial regions, oil fields and regions with a mix of sources, distributed around the world. The retrieved emissions are lower than the bottom-up emission inventories from EDGAR v5.0 but are in good agreement with other TROPOMI based estimates, can reproduce the variability seen in power plant stack measurements, but are in general lower than the analyzed stack measurements and emission inventory results. Separation into seasons shows a clear seasonal dependence of emissions with in general the highest emissions during winter, except for cities in hot desert isolated power plants and especially sources in hot desert climates, where the opposite is found. The NOx-NOx lifetime shows a systematic latitudinal dependence with an increase in lifetime from two to eight hours with latitude but only a weak seasonal dependence. For most of the 45 sources 50 sources including the city of Wuhan in China, a clear weekly pattern of emissions is found with weekend-to-week day ratios of up to 0.5, but with a high variability for the different locations. During the Covid-19 lockdown period in 2020 strong reductions in the NOx NOx emissions were observed for New Delhi, Buenos Aires and Madrid.

1 Introduction

Nitrogen oxides (NOxNOx = NO + NO₂) play a key role in atmospheric chemistry, air quality and climate. In the atmosphere NOx is defined as the sum of nitrogen monoxide and nitrogen dioxide (NOx = NO + NO₂). It is emitted into the atmosphere by both natural processes and anthropogenic activity. Natural sources include lightning, microbial processes in soils and naturally occurring wildfires. The dominant source of NOx-NOx is fossil-fuel combustion by anthropogenic activity, from traffic, residential heating, cooking and the industry and energy sectors. These sources are concentrated in cities and urban areas. In addition, biomass burning and the use of fertilizers are also significant sources of NOx-NOx (Jacob, 1999; Seinfeld and Pandis, 2006; Stocker, 2014). These sources predominantly release nitrogen monoxide (NO). Nitrogen dioxide (NO₂) is released in smaller amounts
but is rapidly produced in the atmosphere where NO reacts with ozone \((O_3)\). During the day NO\(_2\) is photolyzed, reforming NO and producing an oxygen atom O, which forms \(O_3\) in a termolecular reaction \((\text{Seinfeld and Pandis, 2006})\).

\[\text{NO} + \text{O}_3 \rightarrow \text{NO}_2 + \text{O}_2\]  
(R1)

\[\text{NO}_2 + h\nu \rightarrow \text{NO} + \text{O}\]  
(R2)

\[\text{O} + \text{O}_2 + \text{M} \rightarrow \text{O}_3 + \text{M}\]  
(R3)

Depending on the concentrations of NO, \(\text{NO}_2\) and O, and the diurnal variation of the photolysis frequency \(J_{\text{NO}_2}\) the rate of reactions R1, R2 and R3, respectively \(k_{\text{NO} + \text{O}_3}\), \(J_{\text{NO}_2}\) and \(k_{\text{O} + \text{O}_2 + \text{M}}\), are rapid enough, that the Leighton photo-stationary state \(L\) is established and concentrations of NO and \(\text{NO}_2\) are coupled in the daytime atmosphere by reactions R1-R3:

\[L = \frac{[\text{NO}]}{[\text{NO}_2]} = \frac{J_{\text{NO}_2}}{k_{\text{NO} + \text{O}_3} \cdot \text{O}_3}.\]

In the troposphere \(\text{NOx}\) is \(\text{NO}_x\), are a precursor of the health hazard and greenhouse gas \(O_3\) but \(\text{NO}_2\) is also an important toxic health hazard in its own right \((\text{Jacob, 1999}; \text{Molina and Molina, 2004}; \text{Seinfeld and Pandis, 2006}; \text{Stocker, 2014})\) \((\text{Jacob, 1999})\). Consequently, monitoring and understanding its behavior is of particular importance in cities and urban agglomerations, where high emissions from multiple sources are found in combination with high population density. As a result, a large part of the population is exposed to polluted air \((\text{Molina and Molina, 2004})\).

\(\text{NOx}\) is \(\text{NO}_x\), are short-lived in the atmosphere with a lifetime of several hours in the boundary layer during daytime \((\text{Beirle et al., 2003}; \text{Stavrakou et al., 2008})\). This explains in part the high spatial and temporal variability observed for \(\text{NO}_2\). Other factors leading to large concentration gradients in \(\text{NO}_2\) are its close relation to anthropogenic activity, the inhomogeneous distribution of sources and variations of meteorological parameters, such as wind speed, temperature and illumination, which impact on the atmospheric lifetime and dilution of \(\text{NO}_2\) \((\text{Beirle et al., 2003}; \text{Stavrakou et al., 2008})\).

\textbf{Measurements of \(\text{NO}_2\) with adequate spatial and temporal resolution are required to assess and compare the variability of \(\text{NO}_x\) emissions and lifetimes around the world.} Provided that tropospheric \(\text{NO}_2\) columns retrieved from satellite sensors have sufficient spatial resolution, the typically short daytime lifetime of \(\text{NO}_x\) in urban agglomerations provides an opportunity to disentangle and quantify local sources of \(\text{NO}_x\) and their variations over time. The TROPOspheric Monitoring Instrument \((\text{TROPOMI})\) on Sentinel-5 Precursor \((\text{S5P})\), which was launched in October 2017, provides higher spatial resolution than its predecessors as for example the Ozone Monitoring Instrument \((\text{OMI})\). Tropospheric columns of \(\text{NO}_2\) retrieved from TROPOMI thus offer the best opportunity so far to deconvolve urban daytime sources of \(\text{NO}_x\) \((\text{Veeckkind et al., 2012}; \text{Griffin et al., 2019})\). Making use of the \(\text{NO}_2\) tropospheric columns from TROPOMI, but also from its predecessors, a number of studies on the variability of \(\text{NO}_x\) have been carried out.
The high spatial resolution of TROPOMI makes it possible to identify NOx point sources and quantify their emissions which has high potential for checking and improving emission inventories (Beirle et al., 2019, 2021). Investigation of seasonal emission estimates enables the disentanglement of the NOx sources in a region and the identification of their individual contributions (van der A et al., 2008). For example, it was found that for Paris in winter, the analysis of TROPOMI data for Paris showed that residential heating, rather than traffic emissions, dominate the sources of NOx transport emissions, is the main source of NOx in winter. This is not well accounted for in current emission inventories, in which residential heating is underestimated during winter and overestimated during summer (Lorente et al., 2019). In contrast, a seasonal cycle with a maximum of NOx emissions in summer was found for Riyadh, which, while not being significant in a statistical sense, may be explained by higher power consumption in summer caused by the use of air conditioning (Beirle et al., 2011).

NOx emissions also change from day to day, as a result of the human behavior, especially between work and rest days. Such patterns are readily identified (Beirle et al., 2003). Lorente et al. (2019) investigated the day to day variability of NOx emissions in Paris for individual days of 2018 with TROPOMI satellite measurements. They found that the highest emissions occurred on cold weekdays and the lowest on warm weekend days. In Chicago a clear weekend effect with reduced NOx emissions of 30% during weekends was found analyzing one season of TROPOMI measurements (Goldberg et al., 2019). A recent study by Stavrakou et al. (2020) investigated the weekly NO2 cycle and its trends using the long-term satellite observations of OMI and one year of TROPOMI NO2 column measurements. For 115 out of 274 cities, significant weekly cycles were found. A weakening trend over Europe and the US could be observed. The opposite behavior was found for regions with increasing emissions. This provides evidence that NOx emissions are changing. The decreases or respectively increases in the contribution of anthropogenic emissions to the observed NO2 levels are thus revealed. These long-term investigations provide valuable insight, but need to be complemented by analysis of daily, seasonal and annual means. Such analyses account better for the high variability of NOx emissions, resulting from fossil fuel combustion, which are monitored and limited by environmental policy regulations. In addition, sudden changes in emission patterns are readily identified (Goldberg et al., 2019).

With TROPOMI data it is possible to use relatively short periods of data to analyze day to day variability. For Chicago a clear weekend effect with reduced NOx emissions of 30% during weekends was found analyzing one season of TROPOMI measurements (Goldberg et al., 2019). Lorente et al. (2019) investigated the day-to-day variability of NOx emissions in Paris for individual days, with the highest emissions on cold weekdays and the lowest on warm weekend days.

Beginning in early 2020, first China and subsequently the majority of states around the world took containment measures to limit the spread of Covid-19. These measures resulted in significant changes of human behavior with reductions in traffic density and industrial activity and consequently anthropogenic emissions. Temporally resolved emission estimates help to identify the different potential origins of such changes. This provides an approach and an opportunity to better quantify source contributions and to distinguish between different anthropogenic and natural sources of NOx. Several recent studies have analyzed satellite measurements of NO2 columns, and report substantial decreases in the NO2 tropospheric column in early 2020 over China (Liu et al., 2020; Bauwens et al., 2020), northern Italy, South Korea and the United States (Bauwens et al., 2020). However, these reductions in because of the high variability of NO2 tropospheric columns cannot be simply attributed to a decrease in NOx emissions resulting from the Covid-19 contain-
ment measures. This is because of the high variability of NO₂ columns, which results from the rate of production and rate of loss of NO₂ and its transport. The tropospheric column of NO₂ is influenced by behavioral patterns of anthropogenic activity, seasonality, and meteorology. For example, Goldberg et al. (2020) found that the meteorology to account for meteorology, which led to lower NO₂ values in spring 2020, as compared to spring 2019 in North America. This complicates the interpretation of the changes in NOx derived from comparisons between two particular years or also a particular year and an average of previous years. Consequently, Goldberg et al. (2020) combined TROPOMI NO₂ column data with ERA5 analysis meteorological data and a chemical transport model to account for meteorology to calculate and calculated normalized NO₂ changes and that provide a better representation of Covid-19 related NOx emission changes in North America. They found that in spring 2020 compared to spring 2019 Covid-19-related NO₂ decreased between 9.2 and 43.4 for the 20 cities analyzed, with a median of 21.6 % emission changes.

In addition to NOx emissions, NOx-NO₂ emissions, NOx lifetimes can be investigated with satellite data (Leue et al., 2001; Beirle et al., 2003; Kunhikrishnan et al., 2004). The NOx-NO₂ lifetime in daylight depends on the rate of loss of NOx-NO₂ which is attributed primarily to the reaction of the hydroxyl radical (OH) with NO₂ to form HNO₃. Consequently, there is a nonlinear relationship between the tropospheric concentrations of OH and NOx-NO₂, which again depends in a complex fashion on the NOx-NO₂ concentration (Valin et al., 2013; Stavrakou et al., 2008). Laughner and Cohen (2019) showed that NOx NO₂ lifetime has changed significantly between 2005 and 2014 in North American cities, changes being of the same order of magnitude as those in NOx-NO₂ emissions. Another important factor influencing NOx-NO₂ lifetime is the actinic radiation photolyzing NO₂, which varies diurnally and is modulated by the presence of clouds. Shorter lifetimes at smaller solar zenith angles in summer or at lower latitudes due to higher photolysis frequencies are expected (Stavrakou et al., 2020). Typical lifetimes of NOx are between two and NO₂ range from two to eight hours in polluted air masses and extend to about a day for cleaner more rural background concentrations for which nighttime chemistry also has to be considered (Beirle et al., 2011; Valin et al., 2014; de Foy et al., 2014; Seinfeld and Pandis, 2006). Studies for winter months and especially for winter months at higher latitudes are limited, but analyses with the chemical transport model GEOS-Chem show a tendency towards longer lifetimes of about one day (Martin et al., 2003; Shah et al., 2020).

Adequate spatially and temporally resolved measurements of NOx are required to assess and compare the variability of NOx emissions and lifetimes around the world. The different urban NOx sources include different types and patterns of emissions, mixtures of domestic and transport emissions, often mixed with industrial sources and sometimes also dominated by emissions from power plants of different types or even oil refineries, etc. Provided the tropospheric NO₂ columns retrieved from satellite sensors have sufficient spatial resolution, the typically short daytime lifetime of NOx in urban agglomerations provides an opportunity to disentangle and quantify the local sources of NOx and their variations over time. The TROPOspheric Monitoring Instrument (TROPOMI) on Sentinel-5 Precursor (S5P), which was launched in October 2017, provides higher spatial resolution than its predecessors. Tropospheric columns of NO₂ retrieved from TROPOMI thus offer the best opportunity so far to deconvolve urban daytime sources of NOx (Veefkind et al., 2012; Griffin et al., 2019). For the urban areas targeted, we assume that two years tropospheric NO₂ columns retrieved from TROPOMI provide a sufficient data set to be separated into the following time periods: Seasons, weekend and working days, and times before and during Covid-19 restrictions to examine
short-term variability. In this study, we show that the spatial resolution and good signal-to-noise ratio of TROPOMI NO2 columns allow to investigate NOx sources at city level, for isolated power plants and even for sources with low NOx emissions. We use the method first developed by Beirle et al. (2011) and refined by later studies (Pommier et al., 2013; Valin et al., 2013) to estimate the NOx-NOx emissions and lifetimes from TROPOMI NO2 column amounts. Studies on NOx-NOx emissions and lifetimes have been reported using this method for OMI data, which have coarser spatial resolution, for a limited number of sources and using longer time periods of data (Ialongo et al., 2014; de Foy et al., 2015; Lu et al., 2015; Liu et al., 2016). Other studies, which applied this method to TROPOMI data are reported by Goldberg et al. (2019) and Lorente et al. (2019). In this work, we provide the first study of NOx-NOx emissions and lifetimes for a large data set, comprising 45 different NOx source regions, oil fields and regions with a mix of sources. We show that the spatial resolution and good signal-to-noise ratio of TROPOMI NO2 columns allow us to investigate two years of data and additionally divide it into the following time periods: seasons, weekend and working days, and times before and during Covid-19 restrictions to examine short-term variability. Focus of our investigation is to assess the variability of NOx-NOx emissions and lifetimes in space and time during the period of observation.

2 Data

2.1 TROPOMI NO2 tropospheric vertical column

In October 2017, the Copernicus Sentinel-5 Precursor (S5P) satellite with the TROPospheric Monitoring Instrument (TROPOMI) on board was launched into a sun-synchronous orbit at 824 km altitude. TROPOMI comprises a hyperspectral spectrometer measuring radiation in the ultraviolet (270 nm - 320 nm), visible (310 nm - 500 nm) and infrared (675 nm - 775 nm, 2305 nm - 2385 nm) spectral regions (Veefkind et al., 2012). The two-dimensional CCD detectors measure spectra in 450 separate viewing directions across the 2600 km swath with an integration time of approximately one second. This results in a high spatial resolution of 3.5 km x 7 km in nadir with little variation across the swath. In August 2019, the pixel size was reduced further to 3.5 km x 5.5 km by reducing along track averaging. One orbit around the Earth takes about 100 minutes, which, in combination with the wide swath, results in a daily global coverage. At higher latitudes, two to three useful overpasses are available on the same day on some days up to three overpasses, with approximately 100 minutes in between the measurements are available. In the rare case of three overpasses, two of them are only on the outer edge of the swath. The equator overpass time of S5P is 13:30 Mean Local Solar-mean local solar time in the ascending node.

The different spectral ranges of TROPOMI provide information about the atmospheric abundance of various trace gases including the operational products: O3, methane (CH4), carbon monoxide (CO), sulfur dioxide (SO2), formaldehyde (HCHO), clouds, aerosol layer height, aerosol index and NO2. In addition, there are valuable non-operational products such as glyoxal (CHOCHO) (Alvarado et al., 2020) or bromine monoxide (BrO) (Seo et al., 2019). In this study, the operational NO2 product of TROPOMI is used (van Geffen et al., 2018). The NO2 product from TROPOMI extends NO2 measurements from earlier
instruments such as GOME (1995-2011, (Burrows et al., 1999)), SCIAMACHY (2002–2012, (Bovensmann et al., 1999)), GOME-2 (since 2007, (Munro et al., 2006)), OMI (since 2004, (Levelt et al., 2006)) and OMPS (since 2011, (Dittman et al., 2002)). These instruments had increasing spatial coverage and resolution, OMI being the first instrument with daily global coverage. However, with a resolution of 13 km x 24 km at nadir, its spatial resolution is one order of magnitude poorer than that of TROPOMI in the center of the swath and much lower at the edges. **Differences in resolution are larger at the edges, which is due to the fact that for TROPOMI always averages of two pixels in the center of the scan, but not at the edges, are used to compensate for the geometric effect caused by the slanted view to the ground.**

The level-1b spectra measured by TROPOMI are analyzed with the Differential Optical Absorption Spectroscopy (DOAS) technique in the fitting window 405 nm - 465 nm. The retrieved NO₂ slant column densities are separated into a stratospheric and a tropospheric part based on data assimilation by the TM5-MP global chemistry transport model. The resulting tropospheric slant columns are then converted to tropospheric vertical columns by tropospheric air mass factors (AMFs) based on a look-up table of altitude-dependent AMFs, NO₂ vertical profiles from the TM5-MP model, the OMI climatological surface albedo and cloud characteristics derived using the FRESCO algorithm (van Geffen et al., 2018). The final product is the tropospheric vertical column, defined as the vertically integrated number of molecules per unit area between the surface and the tropopause.

In this study, we use the operational level-2 TROPOMI tropospheric vertical column NO₂ product from March 2018 to November 2020, the first two years of data for the general study, and additional months from 2020 for the Covid-19 impact study. This includes the reprocessed (RPRO) and offline mode (OFFL) data of version V01.00.01 to version V01.03.02. **Due to changes with version V01.04, we implemented major changes, which led to a substantial increase in the tropospheric NO₂ column over polluted areas for scenes with small cloud fractions.** We only use the data up to November 2020 for our analysis to ensure better comparability, since mixing data from before V01.04, and after is not recommended. Further major updates in the TROPOMI NO₂ retrieval algorithm are done in V02.02, released on 1 July 2021 (van Geffen et al., 2021). A complete mission reprocessing will be performed to get a harmonized data set (Eskes and Eichmann, 2021). Data from 30 April 2018 onwards is freely available on https://s5phub.copernicus.eu/. Data before the 30 April is only available on the S5P Copernicus Expert Hub and therefore not publicly accessible. The data with a spatial resolution of up to 3.5 km x 5.5 km is oversampled to a finer resolution of 0.01° x 0.01°. Each TROPOMI ground pixel is accompanied by a quality assurance value (qa_value). The qa_value ranges from zero (error, no output) to one (no errors or warnings) and indicates the quality of the processing and retrieval result. Based on the recommendation by van Geffen et al. (2018), measurements with a qa_value lower than 0.75 are filtered and not used. A qa_value of 0.75 removes part of the scenes covered by snow and ice, problematic retrievals and also excludes problematic retrievals, errors, partially snow/ice covered scenes and measurements with cloud radiance fractions of more than 50 %, which roughly corresponds to a geometric cloud fraction of 0.2.

Figure 2 shows the average NO₂ tropospheric vertical column from May 2018 to December 2019. The red circles mark regions with higher NO₂ than their surroundings and are analyzed in this study. NO₂ tropospheric vertical column of the offline, level-2
Sentinel-SP TROPOMI product from 04 May 2018 to 31 December 2019. Red circles mark NOx emission sources analyzed in this study.

### 2.2 Wind data

In addition to the TROPOMI NO2 data, wind speed and direction are required for the emission emissions and lifetime calculations. The wind data used are is provided by the European Centre for Medium-Range Weather Forecast (ECMWF), ERA5 reanalysis hourly data with a horizontal resolution of 0.25° x 0.25° on model levels. To merge the wind data in space and time with the TROPOMI observations, they are interpolated to the overpass time and oversampled to the same 0.01° x 0.01° resolution as the TROPOMI data. The chosen height of wind data can be critical for wind speed and direction, because of increasing wind speeds and turning with height, and therefore also for emissions and lifetime estimates. Beirle et al. (2011) investigated the dependence of calculated emissions and lifetimes on the wind data level height by comparing the results calculated with wind fields averaged from ground up to 500 m, 200 m and 1000 m and showed low dependence of the results on the wind level height. We use the wind data from the 100 m level above ground. In urban areas, NOx is predominantly emitted near the surface, while power plants emit into higher atmospheric layers depending on stack height. NOx on average when using 200 m (1000 m) instead of 500 m and less than 15% for individual sources. We use wind data averaged over the boundary layer, with the boundary layer height also provided by ERA5. At the early afternoon overpass of TROPOMI, it can be assumed that the boundary layer is well mixed and the 100 m level is wind information averaged over this layer are representative for the emissions and lifetimes investigated in this study. Using wind data averaged over the boundary layer instead of using a fix height has the advantage that seasonality in wind data due to the seasonal variability of the boundary layer height is considered.

### 2.3 Ozone volume mixing ratios

Ozone mass volume mixing ratios, for scaling the NO2 column measurements to NOx NOx columns to estimate emissions in terms of NOx NOx, were taken from the Copernicus Atmosphere Monitoring Service (CAMS) reanalysis EAC4. The latter is the latest ECMWF global reanalysis atmospheric composition. The CAMS reanalysis combines observations with model data into a globally complete and consistent dataset. It is gridded with a 0.75 ECMWF ERA5 reanalysis. The ozone data has the same resolution as the used wind data, hourly data with a horizontal resolution of 0.25° x 0.75° horizontal resolution and has a monthly temporal resolution with three hourly estimates. The vertical resolution consists of 60 model levels, with the top level at 0.1 (?) . We used the monthly averages for 2019 at 950 0.25° on model levels. It is averaged over the boundary layer, interpolated to a typical mean early afternoon SSP overpass time. Conversion from ozone mass mixing ratios \( m_{O_3} \) to ozone number density \( n_{O_3} \) is performed using:

\[
n_{O_3} = m_{O_3} \cdot \frac{m_w}{m_{O_3}} \cdot M
\]
with atmospheric number concentration $M$. 

$$M = \frac{p}{k_b \cdot T}.$$ 

Using pressure $p = 950$ and Temperature $T$ at 950 from the CAMS reanalysis, Boltzmann constant $k_b$, molar mass of ozone $m_O$, and molar mass of humid air $m_w$ calculated with specific humidity at 950 from the CAMS reanalysis. TROPOMI overpass time and oversampled to the same 0.01° resolution as the TROPOMI data just as the wind data.

2.4 Emission inventories

For comparison with the calculated TROPOMI $\text{NO}_x \text{NO}_y$ emissions, we use the bottom-up emission inventory EDGAR Emissions Database for Global Atmospheric Research (EDGAR) v5.0 of 2015. The emission data are bottom-up emission data is available in 0.1° x 0.1° gridded resolution. For calculation of total emissions in the specific source regions, the gridded emission inventory data have to be integrated over the area for which the top-down method based on TROPOMI data is sensitive. The EDGAR inventory is based on activity data (i.e. population, energy, fossil fuel production, industrial processes, agricultural statistics), mainly from the International Energy Agency (IEA), corresponding emission factors, national and regional information on technology mix data and end-of-pipe measures (Crippa et al., 2018, 2019). Uncertainties in bottom-up inventories are inferred from the dependence of emission factors on the fuel type, technology and combustion condition, as well as the low-resolution activity data and emission factors. The uncertainty in $\text{NO}_x-\text{NO}_y$ emissions from the latest EDGAR inventory version (v4.3.2) varies from 17% to 69% for different regions (Crippa et al., 2018). The limited temporal coverage of bottom-up emissions results in additional uncertainties. 2015 is the most recent year available in EDGAR v5.0, which cannot reflect recent declines in $\text{NO}_x$ emissions or new sources of $\text{NO}_x$ does not reflect the recent negative and positive trends, which were found in trend analysis of $\text{NO}_2$ column satellite data (Georgoulas et al., 2019). Thus, we anticipate Since a large part of the regions analyzed in this study is located in industrialized and highly populated regions, where $\text{NO}_2$ has generally decreased according to (Georgoulas et al., 2019), we anticipate that the TROPOMI estimates for the majority of analyzed regions that the TROPOMI estimates the analyzed regions are lower than the EDGAR inventory estimates for 2015.

3 Method

The method to estimate emissions and lifetimes from satellite column data builds on the heritage of the method introduced by Beirle et al. (2011) and refined by later studies (Pommier et al., 2013; Valin et al., 2013). We use two years of TROPOMI $\text{NO}_2$ tropospheric vertical column data from 01 March 2018 to 29 February 2020 for the general analysis and the months January through November of 2019 and excluding data for which Covid-19 regulations influenced emissions. For the two Chinese cities included in this study, the analyzed period is limited to 22 January 2020 for the due to early Covid-19 regulations. The Covid-19 impact study in section 4.5 is based on the months January through November of 2019 and 2020. The three steps of the analysis are shown in Fig. 1 for the Medupi and Matimba power plants in South Africa as an example. First, the source region is selected. The choice of sources is described in more detail in section 3.1. The next step is a rotation of the satellite
measurements around the selected source with the corresponding ERA5 reanalysis wind data to a common wind direction resulting in an upwind-downwind pattern, which is described in more detail in section 3.2. The NO\textsubscript{2} column of each pixel is converted into \(\text{NOx-NO}_x\) column and the mean \(\text{NOx-NO}_x\) distribution is calculated. In the last step, we apply a line density fit with an exponentially modified Gaussian (EMG) function to the averaged \(\text{NOx-NO}_x\) columns to calculate the \(\text{NOx-emission-NO}_x\) emissions and lifetime (see section 3.3).

![Figure 1](image)

**Figure 1.** (a) Mean NO\textsubscript{2} tropospheric vertical column (VC) from 01 March 2018 to 29 February 2020 in the region of the power plants Medupi and Matimba in South Africa for days with wind speed > 2 m s\(^{-1}\). (b) Each TROPOMI pixel of the two-year time period converted to NO\textsubscript{2} and rotated with its wind direction around the source (cross) to an upwind-downwind pattern. Black lines indicate a sector of ± 50 km around the source. (c) \(\text{NOx-NO}_x\) line density as function of distance to the source calculated for the ± 50 km sector (gray) and fit results (black) with estimated emission-NO\textsubscript{2} emissions and lifetime. Emission and lifetime uncertainties are 1-sigma uncertainties derived by the fitting procedure.

### 3.1 Selection of sources

To obtain a representative analysis of the variability of \(\text{NOx-NO}_x\) emissions and lifetimes from urban and industrial areas around the earth, we have used the following guideline for the selection of targets. The targeted emission sources need to be well distributed around the world to provide information about the seasonal variations, climatic conditions, latitudinal dependence and weekday behavior of the \(\text{NOx-NO}_x\) lifetimes and emissions. By visually inspecting the global mean NO\textsubscript{2} tropospheric vertical column distribution from March 2018 to February 2020 (shown in Fig. 2), we selected 45 target regions, which are marked with red circles, for the calculation of emissions and lifetimes. The selected sources comprise a mix of cities with predominantly domestic and transport emissions e.g. Paris (France), cities with more industrial emitters e.g. Chelyabinsk (Russia), power plants like Medupi and Matimba in South Africa or oil refinery regions like Sarir Field in Libya. The method works best for isolated point sources with a high contrast between source and background. Regions having low cloud coverage are preferred to maximize the number of satellite observations. In addition, a local meteorology for the target region, having rather homogeneous wind patterns, facilitates the detection of the outflow patterns, which is further enhanced by filtering out data with wind speeds of less than 2 m s\(^{-1}\) (Beirle et al.,...
Some, initially promising sources like Santiago de Chile, were omitted. This was a result of their location in coastal and mountainous regions with inhomogeneous terrain. This results in inhomogeneous wind patterns, which are more difficult to interpret and lead to larger uncertainties in NOx emission rates and lifetimes. For this study, many of the sources with high NO\textsubscript{2} signal in China were not used, because the influence of large NOx emitting sources nearby resulted in low contrast of the NO\textsubscript{2} column amount between the target and the local background. For such conditions, other methods to determine NOx emission rates and lifetimes are more appropriate (Liu et al., 2016).

Not every source region is used for every analysis in this study because of data availability after separating data into seasons or week and weekend days. Despite efforts to select a broad range of regions in many respects, some selection bias could have been introduced, for example, by not analyzing regions with low wind speeds, mostly cloudy conditions or areas in regions with many emission sources and higher background levels.

If the conditions are favorable (e.g. clear-sky, homogeneous and strong wind condition) even a single overpass can deliver good results for some regions (Lorente et al., 2019; Goldberg et al., 2019). For analyzing the variability due to seasonal or weekday effects in a more general way, it is useful to have some statistics to not for example introducing a bias into the seasonal analysis.
by weekday variability. Due to the high spatial resolution and the good signal to noise ratio of the TROPOMI data, it is possible to use a data set of only two-years length to analyze successfully regions, which are covered more frequently by clouds or have low NO$_2$ signals. From the 45 targeted regions, three Nevertheless, not every source region is used for every analysis in this study because of data availability after separating data into seasons or week and weekend days. From the 50 targeted regions shown in Fig. 2, eight are in the southern hemisphere. In order to integrate them into the analysis, they are mirrored in latitude and shifted by six months in season. All source regions are listed in the appendix table A1. Surgut (Russia) is the NO$_x$-NO$_2$ source with the highest latitude at 61.25° N, and Singapore (Singapore) is the one closest to the equator at 1.3° N. One example of the selected source regions is shown in Fig. 1. Figure 1 (a) shows the average of NO$_2$ tropospheric vertical columns for two years of data from 1 March 2018 to 29 February 2020 for days with wind speeds > 2 m s$^{-1}$ in the region of the power plants Medupi and Matimba in South Africa. This is an example for one of the selected source regions. The NO$_2$ distribution shows an isolated source and its plume which has a high contrast to a low background concentration. In the south eastern part of the map high tropospheric NO$_2$ columns are visible. These originate from the South African Highveld conurbation near Johannesburg.

3.2 Rotation technique

To investigate the spatial pattern of NO$_2$ column measurements we combine the approach from Beirle et al. (2011) of a directional classification to determine the distribution, as a function of downwind distance, with a rotation of each TROPOMI measurement with its merged wind direction around the source to a common wind direction (Pommier et al., 2013; Valin et al., 2013).

Each TROPOMI observation is merged with the ERA5 wind data and rotated with its wind direction about a reference point (centre of source, e.g. the city centre or the power plant site) to a common wind direction, preventing a neutralization of outflow patterns of opposite wind directions. After the rotation, the TROPOMI measurement points are redistributed along the upwind-downwind direction with the enhancement located in the downwind area of the source reference point and a clear outflow pattern. The measurement points maintain their upwind-downwind character and are analyzed simultaneously, independent of their wind direction. Figure 1 (b) shows the mean of the rotated NO$_2$ tropospheric vertical column for the Medupi/Matimba example, where a pronounced plume with a clear upwind-downwind distribution is found. The black lines indicate a sector of ±50 km around the source. Only data in this sector are used in the next step for the calculation of emission and lifetime. As an additional quality filter, only days, where at least 50% of the ground scenes in this area contain measurements and are not filtered because of clouds or wind speed, are used in the analysis.

3.3 Line density calculation

The average outflow pattern of the NO$_2$ tropospheric vertical column with a decay of the signal with distance from the reference source point reflects transport and nonlinear effects of atmospheric chemistry. Beirle et al. (2011) proposed a model to estimate the NO$_x$-NO$_2$ emissions and lifetimes by integrating the mean NO$_2$ columns in the across-wind direction and thereby reducing the two-dimensional maps to one-dimensional so-called line densities with units molecules cm$^{-1}$. In this
study, we first converted the NO$_2$ columns for each pixel into NOx-NO$_2$ columns to obtain NOx-NO$_2$ line densities from which NOx-NO$_2$ emissions are calculated directly (comparable to Beirle et al. (2021)) instead of applying the commonly used fixed [NOx-NO$_2$]/[NO$_2$] ratio of 1.32. Assuming that the Leighton photostationary state applies for the polluted air masses investigated, the NO$_2$ is considered a surrogate for NOx-NO$_2$ and concentrations of NO and NO$_2$ are coupled by:

$$\begin{align*}
\frac{[\text{NOx}]}{[\text{NO}]} & = 1 + \frac{[\text{NO}]}{[\text{NO}_2]} = 1 + \frac{J_{\text{NO}_2}}{k_{\text{NO}+\text{O}_3} \cdot n_{\text{O}_3}} \\
\text{with } J_{\text{NO}_2} & \text{ the photolysis frequency of NO}_2 \text{ and } k_{\text{NO}+\text{O}_3} \text{ the rate constant for the reaction of NO with O}_3 \text{ (Seinfeld and Pandis, 2006).}
\end{align*}$$

The O$_3$ mixing ratios are taken from the CAMS reanalysis data set converted to number densities $n_{\text{O}_3}$, Ozone data is taken from ERA5 and interpolated to the typical mean early afternoon the S5P overpass time as described in section 2.3.

For clear-sky conditions the photolysis frequency in the boundary layer is parameterized as a function of solar zenith angle (SZA) as proposed by Dickerson et al. (1982):

$$J_{\text{NO}_2} = 0.0167 \exp \left( -\frac{0.575}{\cos(SZA)} \right) \text{ s}^{-1} \text{ s}^{-1}. \quad (2)$$

The rate constant $k_{\text{NO}+\text{O}_3}$ can in general be well represented by the Arrhenius expression, following the recommendation by Atkinson et al. (2004):

$$k_{\text{NO}+\text{O}_3}(T) = 2.07 \cdot 10^{-12} \exp \left( -\frac{1400}{T} \right) \text{ (cm}^3\text{molec}^{-1}\text{s}^{-1}) \quad (3)$$

with temperature $T$ (in kelvin) taken from the monthly mean values in hourly resolution from the CAMS reanalysis data set interpolated to the mean S5P overpass time ERA5 reanalysis; hourly data with a horizontal resolution of 0.25$^\circ$ x 0.25$^\circ$, averaged about the boundary layer, interpolated to TROPOMI overpass time and oversampled to the same spatial resolution.

From the averaged NOx columns NOx-NO$_2$ columns NO$_2$ line densities are calculated by integrating perpendicular to the wind direction. To reduce the influence of possible surrounding sources, the line density is only calculated in a sector around the source (black vertical lines in Fig. 1 (b)), which does not cut the plume and thereby misses emissions. Typical values used for the sector size are between ±15 km and ±70 km across the plume depending on its width, and up to 200 km upwind and up to 400 km downwind of the source depending on plume length and the presence of other influencing sources. Figure 1 (c) shows the calculated line density as function of distance to the source. The calculated line density is shown in gray and the fit in black. Due to transport processes, the maximum is shifted in wind direction and the line density curve is steep upwind and less steep downwind with an exponential decay. From this line density curve, NOx lifetime and emission NO$_x$ lifetime and emissions can be estimated. The fitting model $M$ as function of distance to the source $x$ is described by (similar to Beirle et al. (2011) supplement):

$$M(x) = E' \cdot (e \otimes G)(x) + B \quad (4)$$

12
with a convolution of the exponential $e$ and the Gaussian $G$ function scaled by a multiplicative emission factor $E'$ and shifted by a background concentration offset $B$. The exponential function describes transport and chemical decay:

$$e(x) = \exp\left(\frac{-(x - X)}{x_0}\right)$$  \hspace{1cm} (5)$$

with $x > X$ (downwind) and else zero, where $X$ is the location of the apparent source relative to the source reference point and $x_0$ the distance over which the line density decreases by a factor of $e$ ($e$-folding distance). The Gaussian function represents the broadening of the source by spatial smoothing with the Gaussian function width $\sigma$, which accounts for spatial smoothing caused by the extent of the spatial source, the TROPOMI pixel size and wind variations:

$$G(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{x^2}{2\sigma^2}\right).$$  \hspace{1cm} (6)$$

This results in:

$$M(x) = E' \cdot \left(\exp\left(\frac{-(x - X)}{x_0}\right) \otimes \frac{1}{\sqrt{2\pi}\cdot\sigma} \cdot \exp\left(-\frac{x^2}{2\cdot\sigma^2}\right)\right) + B$$

$$= \frac{E'}{2} \cdot \exp\left(\frac{\sigma^2}{2 \cdot x_0^2} \cdot \frac{x - X}{x_0}\right) \cdot \text{erfc}\left(\frac{\sigma^2 - x_0(x - X)}{\sqrt{2} \cdot \sigma \cdot x_0}\right) + B.$$  \hspace{1cm} (7)$$

The fitted $e$-folding distance $x_0$ and the mean wind speed $w$ from the line density sector was is then used to calculate the mean lifetime:

$$\tau = \frac{x_0}{w}.$$  \hspace{1cm} (8)$$

The calculated lifetime includes effects of deposition, chemical conversion and wind advection but must be considered as an effective mean dispersion lifetime. This is because, downwind changes for example due to a changing $[\text{NO}_2]/[\text{NO}_x\text{NO}_x]$ ratio in the or the effects of non-linearities in the $\text{NO}_x$ lifetime in the plume are not considered in the method used.

The multiplicative emission factor $E'$ characterizes the total amount of $\text{NO}_x\text{NO}_x$ near the source and is used together with the mean wind speed $w$ from the line density sector to derive the $\text{NO}_x\text{NO}_x$ flux in mol s$^{-1}$:

$$E_{\text{NO}_2\text{NO}_x} = \frac{E'}{N_A} \cdot w$$  \hspace{1cm} (9)$$

with the Avogadro constant $N_A = \text{6.02214076 \cdot 10}^{23}$ constant $N_A = \text{6.02214076 \cdot 10}^{23}$ mol$^{-1}$.

The described method to calculate emissions and lifetime lifetimes will be named exponentially modified Gaussian (EMG) method. Uncertainties and error bars for emission emissions and lifetime estimates presented in the following results are based on 1-sigma uncertainties (standard deviation) derived by the EMG fitting procedure and are calculated with error propagation. Uncertainties in general are The total uncertainty of $\text{NO}_x$ emissions and lifetimes is influenced additionally by many different error sources, especially the TROPOMI $\text{NO}_2$ tropospheric vertical column itself, which are mainly systematic and lead to an overall low bias of the derived emissions which is discussed in more detail in section 4.6.
4 Results and Discussion

The EMG method was applied to the mean TROPOMI NO$_2$ column data of the selected regions and NO$_x$ emissions and lifetimes were calculated. For all available TROPOMI measurements of the two years period from 01 March 2018 to 29 February 2020, and also separated into seasons, working days and weekends and pre Covid-19 times and the Covid-19 pandemic. Not all source regions are used for all analysis due to sometimes poor statistics when separating the two years of data into specific periods.

4.1 Comparison to EDGAR emission data base and other similar studies

The NO$_x$ emission estimates from this study are first compared to results from other recent studies (Beirle et al., 2019; Goldberg et al., 2019; Lorente et al., 2019), which estimated NO$_x$ emissions with TROPOMI data. The studies used for comparison focused only on specific regions, used different periods, and the methods differ slightly but have in common that all used TROPOMI data for their emission calculations. Table 1 compares the NO$_x$ emission estimates for all source regions used in the comparative studies to the emission estimates retrieved in this study. For the study of Goldberg et al. (2019), which uses a time window from May to September 2018, which is within our data period, it is possible to estimate and compare the results for the same period, values are given in brackets. Due to different time periods and slightly different methods and input parameter, differences are expected but in general the emissions are in reasonable agreement.

Beirle et al. (2019) used modified operational TROPOMI NO$_2$ data, for the period from December 2017 to October 2018.

Table 1. NO$_x$ emissions calculated for seven source regions compared to the emissions derived by other studies based on TROPOMI data. Values in brackets are derived using the same data period as in Goldberg et al. (2019). Errors are 1-sigma uncertainties derived by the EMG fitting procedure.

| Source region | This study       | NO$_x$ emissions (mol s$^{-1}$) |
|---------------|----------------|---------------------------------|
| Riyadh        | 186.1 ± 7       | 144.8 - 184.5                   |
| Medupi/Matimba| 55.5 ± 4.5      | 37.2                            |
| Chicago       | 82.9 (62.3) ± 7 (8) | 73                             |
| New York      | 101 (75.5) ± 8 (5) | 57.4                           |
| Toronto       | 53.8 (50.8) ± 3.5 (4.5) | 51.9                           |
| Colstrip      | 4.6 (4.9) ± 0.2 (0.4) | 5.3                            |
| Paris         | 56.2 ± 4.5      |                                |

and NO$_x$ emission estimates are based on the continuity equation. For Riyadh emissions are given for the urban area and a greater area of 250 x 250 km$^2$ around Riyadh. Emissions retrieved in this study are slightly higher than those for Riyadh and significantly higher than those for Medupi/Matimba given in Beirle et al. (2019).
Possible reasons for this are different wind fields and the conversion from NO$_2$ to NO$_x$. Beirle et al. (2019) used wind information from a fixed vertical level at about 450 m and a fixed [NO$_x$]/[NO$_2$] ratio of 1.32 compared to the wind data averaged over the boundary layer and the conversion based on the photo-stationary state with ERA5 ozone data used in this study. For Riyadh the mean [NO$_x$]/[NO$_2$] value is 1.41 and therefore only slightly higher but for Medupi/Matimba it is with 1.54 significantly higher an can explain the higher NO$_x$ emissions compared to Beirle et al. (2019).

Goldberg et al. (2019) used operational and modified NO$_2$ data from May to September 2018, from which here only the emissions based on the operational data product are used. Because they found that plumes can be misaligned by up to 30° after rotation based on the ERA5 wind data, which affected the analysis, they made a visual inspection of every day and manually adjusted the data. Due to the focus on summer months in Goldberg et al. (2019) and generally lower emissions in summer than in winter (see also section 4.2), lower values are expected in comparison to the two-year average used in this study. For a better comparison we added estimates for the same time period from May to September 2018 and as expected agreement gets better. Nevertheless, deviations can still be seen, especially significant for New York, possibly the different wind information have a greater influence here.

Lorente et al. (2019) used 36 orbits of the operational NO$_2$ product obtained on 34 different days between February and June 2018 for investigations of emissions for Paris. Their emissions of 53 mol s$^{-1}$ agree well with the estimated emissions for Paris of 56.2 mol s$^{-1}$ from this study.

The comparison shows that the emissions of the comparable source regions are in agreement with previous results under consideration of the differences in the analyses.

The retrieved NO$_x$ emissions for the two years of data are compared to the EDGAR emission database. Figure 3 shows a scatter plot of the resulting NO$_x$ NO$_2$ emissions for the 45-50 source regions versus the respective emissions received from the EDGAR database for the year 2015. Most NO$_x$ NO$_2$ source regions have higher emissions in the EDGAR database than estimated by the EMG method in this study. One possible explanation for differences is the different time periods the two methods are based on with 2015 for the EDGAR database and March 2018 to February 2020 for this study. In addition, the EMG method is only sensitive to daytime emissions on nearly cloudless days close to the time of measurements, whereas the EDGAR database gives 24-hour annual averages. Another possible explanation is the known low bias of current TROPOMI tropospheric NO$_2$ columns, as compared to ground based or aircraft measurements of the tropospheric NO$_2$ column. This underestimation is more pronounced for regions with larger NO$_2$ columns (Verhoest et al., 2021), which is in agreement with our finding that differences to EDGAR are largest for the source regions with high emissions such as Riyadh, Singapore, Seoul, New York and Tokyo, Wuhan, Moscow and New York. This underestimation of TROPOMI will probably be reduced using the reprocessed data set with V02.02 and is discussed in more detail in section 4.6. The calculated emissions for the Medupi and Matimba power plants are an exception as they show significantly higher emissions estimated by the EMG method than reported in the EDGAR database. One likely explanation for this observation is that the Medupi power plant was put in operation only in 2015, the year to which the EDGAR database refers to. Consequently, it was not or only partially considered in EDGAR. This also shows the potential to identify NO$_x$ point sources with this method that are not included in emission inventories.
The NOx emission estimates from this study are also compared to results from other recent studies (Beirle et al., 2019; Goldberg et al., 2019). Figure 3. NOx-NOy emissions derived from two years of TROPOMI data (01 March 2018 to 29 February 2020) for 45-50 sources calculated with the EMG method compared to the emissions derived from the EDGAR emission database (v.5.0, 2015). The dashed line shows the 1:1 ratio. Error bars are 1-sigma uncertainties derived by the EMG fitting procedure for emission estimates. Which estimated NOx emissions with TROPOMI data. The studies used for comparison focused only on specific regions, used different periods, and emissions from power plants in the United States are measured continuously at the stacks and are made available as hourly mean values by the Environmental Protection Agency’s (EPA) Continuous Emission Monitoring System (CEMS). The NOx emissions for the power plant Colstrip (Montana, USA) are reported in the CEMS database and can also be analyzed with the EMG method based on TROPOMI data. Figure 4 (a) shows a time series of the NOx emissions reported by the CEMS for the methods differ slightly but have in common that all used TROPOMI data for their emission calculations. Table 1 compares the NOx emission estimates for all source regions used in the comparative studies to Colstrip power plant from February 2018 to March 2020 (blue) and reported data filtered for days with TROPOMI measurements that were used for the EMG method (green). Based on the assumption that a typical NOx lifetime is around three hours on average for the Colstrip power plant, reported emissions are averaged between 11 to 14 local time, approximately three hours before a typical TROPOMI overpass. The reported NOx emissions for the Colstrip power plant show a high variability over the course of the year.

The EMG method is a widely used method but mostly used for data around summer. In this study we will also extensively use winter data which bring greater uncertainties to the analysis, for example due to longer lifetimes in winter and additionally data availability is often worse during winter than summer. Therefore, we wanted to verify if the EMG method can reproduce the
variability seen in the emission estimates retrieved in this study. Due to different time periods and slightly different methods, differences are expected but in general the emissions are in good agreement. Beirle et al. (2019) used modified operational NO$_2$ data, for the period from December 2017 to October 2018. Goldberg et al. (2019) used operational and modified NO$_2$ data from May to September reported emissions independently of season. For analyzing this variability, we defined seven time periods of a range between two to five months during February 2018 , from which only the emissions based on the operational data product are compared. Due to the focus on summer months in Goldberg et al. (2019) and generally lower emissions in summer than in winter (see also section 4.2), lower values are expected in comparison to the two year average used in this study. For New York the to March 2020 (dashed black lines), CEMS data reported on TROPOMI measurement days are averaged for these time periods and are shown as horizontal green lines with standard deviation. Estimates from the EMG method for these time periods are shown as horizontal red lines with 1-sigma uncertainties derived by the EMG fitting. The averaged CEMS data and EMG estimates show a similar pattern of emissions match this expectation. However, for Chicago, Toronto and Colstrip the emissions are comparable or even lower in the two years average than the average over the summer months. A possible explanation is the short averaging period of only one summer and the high variability of NOx emissions , which if not averaged out can potentially lead to a bias. Lorente et al. (2019) used 36 orbits of the operational NO$_2$ product obtained on 29 different days between February and June 2018 for investigations of emissions for Paris over the year with an underestimation of the CEMS data by the TROPOMI EMG results for all time periods due to the low bias of the TROPOMI data discussed above. Figure 4 (b) shows a comparison of the two data sets for the seven time periods in a scatter plot. The 1:1 line is indicated with the gray dashed line. The solid black line indicates the linear regression, with a slope of 0.4 and a correlation of 0.9, showing the well matching emission patterns.

NOx emissions for seven source regions compared to the emissions derived by other studies based on TROPOMI data. Source region This study Beirle et al. (2019) Goldberg et al. (2019) Lorente et al. (2019) Riyadh 131.9 ± 5 144.7 Medupi/Matimba 35.8 ± 2 37.2 Chicago 73 ± 7 73 New York 88.9 ± 9 57.4 Toronto 45.8 ± 3 51.9 Colstrip 4.2 ± 0.2 —5.3 Paris 48.1 ± 3 —53 The comparison of the emissions from the two year data set show that the emissions of the comparable source regions are overall in good agreement with previous results. Below, the two year data is presented for a larger set of source regions and separated into shorter time periods to investigate their short term variability. From this comparison we can conclude that power plant emissions can vary strongly over time and that the TROPOMI based NO$_x$ emissions can be lower by about a factor of two for power plants as already discussed in previous publications (Beirle et al., 2019). But most importantly for this study we can conclude that the EMG method applied to TROPOMI data at least for this power plant can reproduce the temporal variability seen in the CEMS data reasonably well, and does not show a clear seasonal bias. Therefore, it can be assumed that the method also gives reasonable results analyzing winter data. 4.2 Seasonality in emissions

To investigate a possible seasonal variation of NO$_x$ emissions, the two years of TROPOMI data are separated into four seasons and emissions are calculated separately for each season. Winter months are from December to February (DJF, southern hemisphere JJA), spring from March to May (MAM, southern hemisphere SON), summer from June to August (JJA, southern
hemisphere DJF) and autumn from September to November (SON, southern hemisphere MAM). The two-year data set provides for each season a maximum of two times three months. Due to cloud cover, inhomogeneous wind patterns and resulting partly poor statistics after separating into seasons, only 29 of the 45-34 of the 50 source regions are analyzed. For Wuhan which is already affected by COVID-19 regulations when analyzing data from March 2018 to February 2020, the analysis is limited to data from March 2018 to 22 January 2020.

Figure 5 shows the summer-to-winter ratio for these 29-34 source regions. For most of the source regions, it was found that the emissions are higher during winter months than during summer. Naples (Italy), Wuhan (China), Novosibirsk and Krasnoyarsk in Russia and Wuhan in China (Russia) are among the cities with the lowest summer-to-winter ratio of around 0.3 and accordingly clearly higher emissions in winter than during summer. This is expected in places where domestic heating in winter contributes significantly to NOx emissions. The most unexpected ratio is found for NOx emissions. For some source regions the found ratios are unexpected as for example for Casablanca (Morocco), with a summer-to-winter ratio of 0.280.32 ± 0.490.17.

Due to the location on the Atlantic coast, which mitigates temperature fluctuations, summers are hot but typically not very hot and winters mild, smaller seasonal variation in emissions is expected. No explanation for this observation could be found so far. For some regions, the emissions are actually higher in summer than in winter like for Medupi/Matimba in South Africa. Interestingly, the regions with a summer-to-winter ratio larger than one or close to one in Saudi Arabia (Riyadh, Rabigh, Tabuk, Buraidah), Libya (Sarir Field) and Sudan (Khartoum) are all located in hot desert climate regions which are dry and warm all
Figure 5. Summer-to-winter ratio for two years of retrieved NOx, NOy emission data (01 March 2018 to 29 February 2020). Data were separated into winter (northern hemisphere: DJF, southern hemisphere: JJA) and summer (northern hemisphere: JJA, southern hemisphere: DJF) for source regions. From left to right in increasing ratio. The red line indicates the 1:1 line where summer and winter emissions are equal, below the line winter emissions are larger and over the line the summer emissions are predominant compared to the winter emissions. Error bars are 1-sigma uncertainties derived by the EMG fitting procedure for emission estimates.

year round, but where especially in summer long heat periods are common. A likely explanation is therefore, that the emissions are higher in summer than in winter due to higher power consumption caused by the use of air conditioning in summer.

Beirle et al. (2011) reported that the derived emissions are stable throughout the year for Singapore and Madrid, and that variability found for other cities, which could reflect a change in emissions, was not significant. Most other emission studies focused on summer months only and therefore an investigation of seasonality of emissions was not possible (Beirle et al. (2019); Goldberg et al. (2019); Ialongo et al. (2014)). Lorente et al. (2019) found highest emissions on cold weekdays in February and lowest emissions on warm weekend days in spring 2018. Together with comparisons to emission inventories the
authors concluded that this indicated the importance of the contributions from the residential heating sector to emissions in winter. Using the full two-year data set, we found a summer-to-winter ratio of $0.460.51 \pm 0.220.2$ for Paris, which supports the results of Lorente et al. (2019).

Overall, the investigation of seasonality shows higher NO$_x$-NO$_y$ emissions in winter than in summer for the majority of source regions, which is expected due to the location of the majority of the selected regions in mid-latitudes and temperate climate. Not all ratios are significantly different from unity, and some results are unexpected, but the trend from the source regions at high latitudes with higher emissions in winter to the regions in desert climate with higher emissions in summer is plausible. In some part our results differ from previous literature (Crippa et al., 2020; Zheng et al., 2018) where generally weaker seasonality is found, which however is based on emission inventories and analyzes average values for countries that probably does not reflect the specific situation in cities, where the composition of sources is expected to be different. Further detailed investigations and comparisons would be helpful to understand the discrepancies. Nevertheless, it should be considered that the uncertainties for emission estimates from the EMG method can be large and especially the analysis of winter data has not been performed often and is influenced even more by uncertainties (see section 4.1 and 4.6).

4.3 Latitudinal and seasonal dependence of lifetimes

Another parameter retrieved by the EMG method is the mean effective lifetime of NO$_x$-NO$_y$. Thus, in addition to the seasonality of emissions, the seasonality of lifetimes is investigated as well as their latitudinal dependence. When data averaged over the two years is considered, lifetimes can be calculated for all 50 source regions. Separating the data set into seasons reduces the number of available data and lifetimes can be estimated for 34 of the in total 50 source regions.

Figure 6 (a) shows for the city Madrid the line density in dependence of distance to the source, separated into four seasons for the city Madrid. The light blue line is the calculated line density and the dark blue one the fitted curve for the winter months (DJF). For the two winters (six months) between 01 March 2018 and 29 February 2020, 49–25 days could be used for the analysis with a mean wind speed on these days of 4.75 m s$^{-1}$. For winter, this results in emissions of $72.084.2 \pm 7.78.8$ mol s$^{-1}$ and a lifetime of $2.972.41 \pm 0.330.27$ h. The results for spring (MAM) are shown in green, the summer results (JJA) in red, and the autumn months (SON) are shown in yellow. The calculated lifetimes vary between $2.091.59 \pm 0.300.16$ h in autumn and $3.25$ summer and $2.41 \pm 0.300.27$ h in spring with an winter. The average lifetime over the full two years period is $2.03 \pm 0.190.15$ h.

This analysis was carried out for all source regions. In Figure 6 (b) estimated NO$_x$ lifetimes for ten source regions are shown as function of season. Only a selection of the sources is shown here, which are a mix of regions from southern and northern latitude, distributed over many latitudes and with different source types. In general these source regions show similar behavior with the longest lifetimes in winter, shortest in summer and quite similar lifetimes in spring and autumn that fall between the summer and winter estimates. Also deviations are visible as could already be seen for the case of Madrid, where the autumn lifetime is much shorter than in spring. Seasonal differences are the strongest for higher latitudes and the lowest for sources the closest to equator. In general, the results are in agreement with values shown in Beirle et al. (2011), where eight different source regions were analyzed yielding lifetimes within a range of two to six hours and a maximum of 8.5 hours during wintertime for
Moscow.

The averaged lifetimes over the full two-years period for these 45-50 source regions as a function of latitude are shown in Fig. 6 (bc). As a result of the lower sun and thus reduced photolysis and likely lower OH at higher latitudes, one would expect an increase of NOx-NOx lifetime with latitude (Martin et al., 2003; Stavrakou et al., 2013). This is broadly confirmed by the results, averaged lifetimes increasing from approximately two hours for source regions at low latitudes near the equator to about six to eight hours for source regions at high latitudes of around 60 degrees.

The retrieved lifetimes can be used to estimate atmospheric OH concentrations. Assuming that the decay of NOx-NOx is determined by the termolecular reaction of OH with NOx with the rate constant kOH+NOx+M for 298 K and 1 atm based on Burkholder et al. (2020), the mean OH concentration ranges from \(0.3 \cdot 10^7\) - \(1 \cdot 10^7\) molec cm\(^{-3}\) for a range of NOx-NOx lifetimes of two to eight hours. This is in a reasonable range for OH concentrations at midday (Holland et al., 2003; Smith et al., 2006; Lu et al., 2013).

Figure 6 (ed) shows in addition to the two years mean also the lifetimes separated by seasons. As result of the reduced number of data points not all source regions (34 out of 50) could be included. All seasons show similar latitudinal dependence as described for the mean lifetime but in addition a seasonal dependence is visible with the shortest lifetimes in summer and longer lifetimes in winter. The seasonal differences are small, with the curve of the winter lifetimes starting to deviate more from the other seasons at 25 degrees. Exceptionally long lifetimes are found in winter for Chicago (USA, 41.89° N) with 8.61 ± 2.8, Moscow (Russia, 55.95° N) with 8.89 ± 2.97 and Krasnoyarsk (Russia, 56.1° N) with 10.97 ± 1.93. In general, the results are in agreement with values shown in Beirle et al. (2011), where eight different source regions were analyzed yielding lifetimes within a range of two to six hours and a maximum of 8.5 hours during wintertime for Moscow.

We can only detect a weak seasonality of the NOx-NOx lifetime, which is in agreement to Beirle et al. (2011) but significantly lower than would be expected from the analyses with the chemical transport model GEOS-Chem by Martin et al. (2003) and Shah et al. (2020), which showed lifetimes of about one day in winter compared to around six hours in summer. Possible explanations could be not yet sufficient statistics, a clear-sky bias and also the midday observation time of TROPOMI, which all lead to more balanced lifetimes in summer and winter. (a) NOx line densities for the city of Madrid separated into seasons for two years of data. The calculated line densities are in light colors and the fit in intense colors. (b) Estimated NOx lifetimes for two years of data for 45 sources as a function of latitude. (c) Estimated lifetimes from two years of data in dependence of latitude (black) separated into winter (blue), spring (green), summer (red) and autumn (yellow). Sources from southern hemisphere are mirrored in latitude and season. Given uncertainties and error bars are 1-sigma uncertainties derived by the EMG fitting procedure. Furthermore, it should be considered that the total uncertainty for lifetime estimates is larger than just the 1-sigma uncertainties derived by the EMG fit, especially in winter due to longer lifetimes and often reduced data availability (section 4.6). The large data set used in this study reveals a clear but complex latitudinal dependence of NOx-NOx lifetimes. This can be used for studies similar to those of Beirle et al. (2019, 2021) where an assumption about the lifetime is necessary to calculate emissions and can also provide relevant observational constraints for model simulations of NOx-NOx lifetimes.
Figure 6. (a) NOx line densities for the city of Madrid separated into seasons for two years of data. The calculated line densities are in light colors and the fit in intense colors. (b) Estimated lifetimes as function of season for ten source regions. (c) Estimated NOx lifetimes for two years of data for 50 sources as a function of latitude. (d) Estimated lifetimes from two years of data in dependence of latitude (black) separated into winter (blue), spring (green), summer (red) and autumn (yellow). Sources from southern hemisphere are mirrored in latitude and season. Given uncertainties and error bars are 1-sigma uncertainties derived by the EMG fitting procedure.

4.4 Weekend effect

The presence of a weekend effect in NO2 on a global scale was first shown by Beirle et al. (2003) with GOME measurements. Anthropogenic activities have their maximum during the week and are reduced during the weekend. Thus, we expect less NOx NOx emissions in cities at weekends. This behavior should be reflected in a comparison of NOx NOx emissions on weekdays and weekends. How large the difference between weekends and weekdays is depends on the types of NOx NOx sources and the different patterns of anthropogenic activity in the source region. To investigate the weekly cycle, the TROPOMI data were separated into week and weekend days and emissions and lifetimes were calculated separately. Weekend days can be one or two days and those days can also differ according to religious tradition. For source regions for example in Europe and the United States, weekend days were set to be Saturday and Sunday, for Saudi Arabia weekend days are Friday and Saturday (see also Table A1). Still, often one weekend day can be different than the other, for example, emissions on Saturdays are often not as low as
Figure 7. Weekend-to-weekday ratio for two years of NOx emission data (01 March 2018 to 29 February 2020). From left to right in increasing ratio. Data were separated into working and weekend days for 40-44 source regions. Weekend can be one or two days and those days can also differ according to religious tradition, which is considered. The red line indicates the 1:1 line where weekend and week emissions are equal, below the line emissions during the week are predominant and above the line weekend emissions are higher. Error bars are 1-sigma uncertainties derived by the EMG fitting procedure for emission estimates.

If the weekend would be limited to one day in the analysis, this would lead to a strengthening of the weekend-to-week ratio for some cities.

Figure 7 shows the weekend-to-weekday ratio, with higher emissions during weekdays than on the weekend for most of the source regions albeit with rather high variability. For Paris (France), the emissions are reduced by 38-40% on the weekend, which agrees with Lorente et al. (2019). Chicago shows only a reduction of 11-16% on the weekend versus weekdays which is less compared to than the weekend reductions of 33-30% found in Goldberg et al. (2019) for summer 2018. Goldberg et al. (2019, 2021) This could be attributed to the fact that in Goldberg et al. (2019, 2021) Sunday only was assumed to be a weekend day which gives a more pronounced weekend reduction than with Saturday and Sunday as weekend days as done in this study.

Source regions not showing any reductions on the weekend are mostly dominated by power plants. Rabigh in Saudi Arabia is a small city with a large gas-fired power plant. Medupi/Matimba are two large coal fired power plants in South Africa. Sarir Field
is a large oil field in Libya. Hwange in Zimbabwe is a small town with Zimbabwe's biggest power plant. Chelyabinsk (Russia) is a city with nearly 1.2 million inhabitants but also a center of heavy industry. Sarir Field is a large oil field in Libya, and Hassi Messaud in Algeria is an oil refinery town. Fort McMurray is in the oil sands region in northeastern Alberta, Canada and Medupi/Matimba are two large coal-fired power plants in South Africa. Source regions with less industry, which are dominated by domestic and transport emissions like Madrid (Spain) or Paris (France) Tokyo, Brisbane or Madrid on the other hand show large emission reductions on the weekend of 43±50 % and 38±60 %.

Despite showing large NO\textsubscript{2} columns, Chinese cities did not show a weekend effect in previous studies (Beirle et al., 2003; Stavrakou et al., 2020). Stavrakou et al. (2020) showed an average weekend-to-weekday ratio in NO\textsubscript{2} column over all large Chinese cities of 0.97 ± 0.02 using 2005 - 2017 OMI NO\textsubscript{2} columns and one year of TROPOMI NO\textsubscript{2} columns (May 2018 - April 2019). Ratios of NO\textsubscript{2} columns are related but not identical to ratios in NO\textsubscript{x} emissions as discussed here, as effects from meteorology and lifetime are not accounted for as well as tropospheric background is contained which is removed in the EMG method by fitting the background. Using the EMG method to investigate the weekly cycle we calculated a weekend-to-weekday ratio of 0.78±0.79 ± 0.26 in NO\textsubscript{x} emissions for Wuhan (China). The ratio includes 24±27 weekend days and 51±67 weekdays during the period March 2018 - February 22 January 2020. Due to the small number of isolated point sources and because of the limited statistics from using two years of data it was not yet possible to determine weekly cycles for other Chinese cities. The ratio for Wuhan indicates a reduction of emissions on rest days also in China in the recent years, in contrast to earlier studies showing no such effect. This can be analyzed in more detail as more TROPOMI data become available.

A side effect of the reduced emissions on weekends could be lower OH levels due to the NO + HO\textsubscript{2} reaction and therefore longer NO\textsubscript{x} lifetimes (Stavrakou et al., 2008). However, in our data set the retrieved lifetimes for week and weekend days do not show a clear enhancement of lifetimes on weekends (see Fig. A1). This may possibly be due to insufficient number of data points, required for a statistically significant result and this question should be revisited once a larger TROPOMI data set becomes available.

4.5 Covid-19 effect

In early 2020, several countries took containment measures against the spread of the coronavirus outbreak (Covid-19), which caused reductions in industrial activities and traffic volume. Due to the link of NO\textsubscript{x} emissions to human activities, it is possible to investigate the impact of the Covid-19 induced activity reductions with the TROPOMI NO\textsubscript{2} column data (Bauwens et al., 2020; Liu et al., 2020; Goldberg et al., 2020). Part of the observed decreases in the NO\textsubscript{2} columns may result from effects other than the measures designed to limit transmission of Covid-19, e.g. meteorological variability, seasonal variability or environmental policy regulations. Consequently, it is problematic to identify a clear Covid-19 effect using only NO\textsubscript{2} column amounts. Besides the possibility of using models to separate the Covid-19 effect from other factors (Goldberg et al., 2020), it is also possible to use the EMG method. This approach accounts for wind conditions and NO\textsubscript{x} lifetime, which influence the NO\textsubscript{2} columns observed for similar NO\textsubscript{x} emissions. Since the EMG method can only be used to investigate point sources, the range of possible study areas is limited. In addition, the analysis of the Covid-19 effect is also much more limited compared to the rest of the study, because we decided to compare only monthly means from two different years with each
other to minimize influence by meteorology. We focused on the cities Buenos Aires (Argentina), New Delhi (India) and Madrid (Spain), which are considered to be point sources and have an appropriate number of days with satellite data available during the comparative periods. The EMG method was used, and monthly means of emissions from 2019 and 2020 were calculated and compared. If only a few days per month are available, fit results can be of low quality if conditions on these days are not ideal and statistics are missing so that, for example, weekday effects can also have significant influence. Therefore, even for the selected cities not all months can be considered.

Figure 8 shows the monthly means from January to November of the calculated NOx NO2 emissions of TROPOMI data for 2019 and 2020 for (a) Buenos Aires (b) New Delhi and (c) Madrid. The same months in 2019 and 2020 are compared, as well as the and thus pre Covid-19 period with the period periods with periods of containment measures. However, in the latter case In case emissions from different months are compared, seasonality of NOx NO2 emissions must be considered. The NOx NO2 emissions retrieved for Buenos Aires show lower emissions are low during summer from January to March (months 1-3), are increasing towards the winter months with a maximum in July and decreasing again towards summer. The emissions for New Delhi do not show such a strong seasonality as those for Buenos Aires but in general the emissions are also higher during the winter months January and February (months 1-2) and decrease towards the summer months. The seasonality is also clearly visible for Madrid, which must be considered in possible comparisons.

On 20 March 2020, a strong nationwide lockdown began in Argentina and lasted in Buenos Aires for more than seven months, ending on 8 November. From January to March, NOx NO2 emissions from 2020 are comparable with those from the same months in 2019. In April 2020, the first complete month in lockdown, the emissions are 60.57% lower than in April 2019, and also in May 2020, the emissions are 40.36% reduced compared to 2019. In June, however, emissions are higher in 2020 than in 2019, although there has been no major change in the containment measures by the government. A possible explanation is that already the June 2019 emissions are lower than expected from the seasonal cycle comparing to May and July 2019. It is also possible that June 2020 emissions are unexpectedly high due to a cold winter month and additional emissions from heating. This is also indicated by ERA5 reanalysis temperature data. They were averaged over the boundary layer in the Buenos Aires target area for the measurement days used in our study for the months May, June and July 2019 and 2020 and show that June 2020 was on average 3°C colder than 2019. Whereas, temperatures for May and July 2019 and 2020 are very comparable. The emissions in July behave in a manner similar to those in March and April, only with a somewhat smaller decrease of 33.26% compared to 2019, similar for August and September with reductions of 50.31%. For August and 44%. In October emissions are almost equal for both years but and in November 2020 they are higher than in 2019, possibly due to the end of lockdown on 8 November.

In India, a nationwide strict lockdown started on 24 March 2020. In January and February, the calculated NOx emissions are higher in calculated NOx emissions are almost equal for both years. The significantly higher emissions in February 2020 than in 2019. There is no impact of compared to 2019 probably cannot be explained by a Covid-19 yet in this period, and India’s fast-growing economy is probably the explanation for the upward trend in NOx emissions effect and are more likely to be due to reduced number of TROPOMI observations, of on average only five days in February 2019, which will reveal more natural variability. In April 2020, the first complete month in lockdown, the emissions are 88.87% lower than in April 2019, and also...
Figure 8. Monthly NOx-NO2 emissions calculated with the EMG method based on TROPOMI data for 2019 (blue) and 2020 (orange) from January to November for (a) Buenos Aires (Argentina), (b) New Delhi (India) and (c) Madrid (Spain). The numbers in the bars represent the number of available days for the monthly mean. Due to insufficient data availability of less than three days, comparisons are not possible for some months. Error bars are 1-sigma uncertainties derived by the EMG fitting procedure for emission estimates.

In May and June the emissions are with 50.54% and 28.31% much lower than in 2019. For July to September, comparisons are not possible as less than three days of measurements per month are available due to cloud coverage and statistical fit results are not good. In October and November 2020, emissions are almost back equal to 2019 levels, but without exceeding them, as it was the case at the beginning of the year suggesting that life is back to the way it was before the Covid-19 containment measures.

In Europe Madrid was one of the strongly effected cities. A strict lockdown was enacted on 14 mid of March 2020 which lasted until June, some restrictions were lifted from mid of April and in May the government followed a plan for easing lockdown restrictions slowly. Due to again rising cases, a second lockdown new restrictions started in early October 2020. Emission comparisons are not possible for January, April and November due to lack of data caused by cloud coverage. The significantly higher emissions in February 2019 compared to 2020 are probably mainly caused by two factors, first a strong synoptic meteorological variability in Europe and second February is also a month with typically persistent cloud cover, resulting in a reduced number of TROPOMI observations which will reveal more natural variability. Similar findings are also described in Bauwens et al. (2020) and Levelt et al. (2021). For the months May and October 2020, when Madrid was in lockdown Covid restrictions were in place, the calculated NOx emissions NO2 emissions in Madrid are 43% respectively 76.63% lower than in 2019. This is comparable to results from NO2 column comparisons which showed reduction of around 30% from mid of March to early April 2020 relative to 2019 (Bauwens et al., 2020). The larger reductions in October may be due to stricter restrictions resulting in larger emission reductions. However, even with monthly averages, the high variability of NOx-NO2 emissions is still not negligible, which may be a reason for the high deviation from the retrieved emissions for October 2019 compared to previous months and could also have an influence here.

Despite the shortness of the periods available for analysis, it is possible to investigate short-term variability of NOx-NO2
emissions induced by Covid-19 with TROPOMI NO$_2$ data and the EMG method. Strong decreases due to lockdown measures of 69.57% in Buenos Aires and 88.87% in New Delhi are shown for April 2020 compared to April 2019, as well as a general tendency towards lower emissions in 2020 after the start of the Covid-19 pandemic than 2019. Nevertheless, even with monthly averages, the high variability of NO$_x$-NO$_2$ must still be considered for particular months. These emission estimates account for wind conditions and NO$_x$-NO$_2$ lifetime and can therefore give a better estimate of the Covid-19 measures on NO$_x$-NO$_2$ emissions than just comparing NO$_2$ column measurements. For some cities and months, the number of days in monthly means is limited due to cloud cover. This is also a problem when comparing monthly NO$_2$ column levels.

### 4.6 Uncertainties

The uncertainties and error bars for emission and lifetime estimates given in this work are based on 1-sigma uncertainties (standard deviation), derived by the fitting procedure and are calculated with error propagation. For emissions this results in:

$$\sigma_e = \frac{\bar{w} \cdot \sigma_{E'} + E' \cdot \sigma_{\pi}}{N_A}$$

(10)

and for lifetimes in:

$$\sigma_\tau = \frac{\sigma_{x_0} + \frac{x_0 \cdot \sigma_{\pi}}{\bar{w}^2}}{\bar{w}}$$

(11)

with the emission factor $E'$, the e-folding distance $x_0$, the mean wind speed $\bar{w}$, the Avogadro’s constant $N_A$ (see section 1) and the standard deviations $\sigma_{E'}$ of $E'$ and $\sigma_{x_0}$ of $x_0$ derived from the fit and $\sigma_{\pi}$ derived from the wind field in the line density sector. These estimates are based on the fitting uncertainties.

However, the NO$_x$-NO$_2$ emissions and lifetimes derived from TROPOMI NO$_2$ data are influenced by additional error sources. The most important contribution directly influencing our estimates is the accuracy of the TROPOMI NO$_2$ tropospheric vertical column itself. This uncertainty is dominated by the accuracy of the tropospheric air mass factor (AMF) and is estimated to be in the order of 30% (Boersma et al., 2004, Bucsela et al., 2013). Recent studies comparing TROPOMI NO$_2$ column with co-located ground based or aircraft measurements reported a low bias for TROPOMI NO$_2$ columns, which is most likely caused by a-priori information such as the surface albedo, cloud-top-height, cloud fraction and the NO$_2$ vertical profile, used for tropospheric AMF calculations. This bias differs for different regions and is more pronounced for regions with larger NO$_2$ columns (Griffin et al., 2019; Ialongo et al., 2020; Judd et al., 2020; Dimitropoulou et al., 2020; Verhoelst et al., 2021). Some studies scaled up the measured NO$_2$ columns with a factor of 1.33 for Paris (Lorente et al., 2019) up to a factor of 1.98 for Germany (Beirle et al., 2019). As this suspected underestimation is not yet fully characterized, and as it is not clear without independent measurements how much the various regions used in our study are affected, we decided not to correct the operational product. It is therefore probable that the NO$_x$-Therefore, NO$_2$ emissions derived in this study are systematically biased low. A new operational NO$_2$ product version V01.04., activated after the analysis time period of this study on 02 December 2020, implemented first major changes, which led to a substantial increase in the tropospheric NO$_2$ column over polluted areas for scenes with small cloud fractions. Further major updates in the TROPOMI NO2 retrieval algorithm are done in V02.02, released on 1 July 2021. Tropospheric vertical columns are between 10 and 40% larger than the v1.x data depending on the
level of pollution and season; the largest impact is found in wintertime at mid- and high-latitudes (van Geffen et al., 2021). A complete mission reprocessing will be performed to get a harmonized data set (Eskes and Eichmann, 2021). The use of the reprocessed data set for this study will increase NO\textsubscript{x} emissions and probably affect the seasonality analysis, but not so much the weekend-to-week comparison results.

To calculate NO\textsubscript{x} NO\textsubscript{y} emissions, we applied a conversion of each TROPOMI pixel from NO\textsubscript{2} column to NO\textsubscript{x} NO\textsubscript{y} column by assuming that the Leighton photostationary state applies for the polluted air masses. This is more accurate than using a fixed conversion factor as in many earlier studies, especially for our analysis over a large latitudinal range and for different seasons. Nevertheless, the photolysis frequencies have to be parameterized and the temperatures for the rate constant and the ozone concentrations taken from the monthly CAMS reanalysis ERA5 data set interpolated to a mean early afternoon the S5P overpass time. Thus, the conversion from NO\textsubscript{2} to NO\textsubscript{x} adds uncertainties NO\textsubscript{x} adds systematic errors in the emission estimates.

In addition, using satellite data introduces a systematic clear-sky bias, because only measurements from nearly cloudless days are used, which favor specific emission patterns. These may differ from those of cloudier and thereby often cooler days. The limitation to nearly cloudless measurements also influence lifetime estimates, which are systematically lower due to higher photolysis rates on cloudless days. Furthermore, the retrieved NO\textsubscript{x} NO\textsubscript{y} emissions and lifetimes are based on measurements in the early afternoon and are therefore systematically biased due to the measurement time. The variability in time can be further analyzed using follow-up sensors on geostationary satellites as for example GEMS, Tempo or Sentinel-4.

The NO\textsubscript{2} tropospheric columns are strongly affected by the wind fields. This affects the calculation of NO\textsubscript{x} NO\textsubscript{y} emissions and lifetimes. We filtered the NO\textsubscript{2} measurements depending on the corresponding wind speed and only data with wind speeds > 2 m s\textsuperscript{-1} are included in the analysis. As a result of the short lifetime of NO\textsubscript{2}, the observed NO\textsubscript{2} distribution should, in general, be dominated by the wind conditions around the satellite overpass. On days with rapidly changing wind directions around the time of measurement, the spatial patterns and thus the estimates of emissions and lifetimes may be affected. An effect observed for some locations on some days are curved plumes, which for the case of strong curvature leads to a part of the plume being outside of the line density calculation sector and an underestimation of both NO\textsubscript{x} emission NO\textsubscript{y} emissions and lifetime. This has a large effect when analyzing estimates for single days and is generally larger for longer lifetimes, so especially on winter days. It has a smaller influence on the overall result analyzing a larger average, if not too many days are affected by rapidly changing wind directions. Nevertheless, the wind field is the largest uncertainty (random and systematic) influencing our estimates after the NO\textsubscript{2} column itself. Lorente et al. (2019) have modified wind speeds by 20\% and found that emissions changed by 20\%, which demonstrates the strong influence of wind speed on NO\textsubscript{x} NO\textsubscript{y} emissions. However, reliable global wind information is hard to obtain. Beirle et al. (2011) estimated an uncertainty of 30\% for the wind data. The uncertainties due to the chosen wind fields will vary for different source regions. Overall, we consider assume an uncertainty of 30\%.

To avoid interference from sources of NO\textsubscript{x} NO\textsubscript{y} surrounding the target region, only rather isolated source regions are chosen for the analysis. Since almost no site is perfectly isolated, sectors were defined in which the line density was calculated by integration and fitted with the EMG method to minimize interference between different sources. Due to the rotation of measurements with their corresponding wind direction around the source, the NO\textsubscript{2} signal from sources in the surroundings is
smeared around the source region in their distance to the source location. To exclude these contaminants, the sector size used for the EMG method has to be chosen carefully. In order to have an adequate amount of data for a robust EMG fit, the sector must first be large enough in both downwind and across-wind directions, but the size is also influenced by other factors. The sector length in wind direction is mainly determined by the influence of other sources but also the spatial extent of the source region itself and wind speeds. A typical size is 300 km, 100 km upwind and 200 km downwind of the source location and is adjusted visually, if necessary, by inspecting the NO\textsubscript{2} distribution and line density. If the influence of surrounding sources is negligible or becomes negligible by adjusting the sector size, the EMG method is robust in variation of the sector size in wind direction. The sector width in across-wind direction is mainly influenced by the geographical extent of the source region. If the sector width is chosen too small, part of the NO\textsubscript{x-NO\textsubscript{x}} emissions are outside of the sector due to dilution by wind or due to curved plumes, as described above. This obviously leads to an underestimation of the calculated emissions which acts as an additional apparent loss, leading to the e-folding distance $x_0$ being systematically biased low and also lifetimes, defined as $\tau = x_0 \cdot w^{-1}$, with mean wind speed $w$, are underestimated. Typical sector widths vary between 30 km to and 140 km and are determined by visually inspecting the NO\textsubscript{2} distribution after rotation. Beirle et al. (2019) estimated the uncertainty of NO\textsubscript{x-NO\textsubscript{x}} emissions and lifetimes due to sector size to 10%.

The EMG method is well suited to investigate point sources. In reality, most of the analyzed sources deviate from the assumption of a point source. Isolated sources as the power plant Colstrip in Montana, USA or the Sarir Oil Field in Libya are close to being point sources. In previous studies, the Four Corners and San Juan power plants in New Mexico, USA, which are located 13 km apart, were investigated as one source using the EMG method (Beirle et al., 2011; Goldberg et al., 2019). With the higher resolution of TROPOMI compared to OMI, it becomes clear that the situation with the two plumes is more complex. This is evidenced by strong irregularities in the line density and fit, indicating that it should not be treated as one point source. In this particular case, re-gridding the TROPOMI data to a coarser resolution would potentially allow an analysis. Other sources such as Tokyo, Moscow or Chicago, all cities with emissions originating from a larger area, are treated as extended point sources but additional uncertainties must be considered. For example, it is not possible to consider a change of the instantaneous NO\textsubscript{x-NO\textsubscript{x}} lifetime downwind of the source with the EMG method and estimated lifetimes should be interpreted as an effective mean lifetime (Beirle et al., 2011). This effect is particularly pronounced in spatially extended source areas and can lead to low biased lifetimes.

In summary, the total uncertainty of NO\textsubscript{x-NO\textsubscript{x}} emissions and lifetimes derived from TROPOMI NO\textsubscript{2} data is influenced by-in addition to the 1-sigma uncertainties, derived by the fitting procedure, by many different error sources but mostly by the uncertainties, which are mainly systematic and lead to an overall low bias of the derived emissions. Dominated by the systematic errors in the TROPOMI NO\textsubscript{2} tropospheric column itself (30% - 50%) and in the wind field (30%). The sector size can lead to low biased emissions and lifetimes and is estimated to introduce an uncertainty of 10%. Further uncertainties due to the measurement time, the clear-sky bias and assumptions about point sources tend to have low bias in the lifetimes and emissions. More analysis is needed to resolve these issues. The error contributions summed in quadrature result in an overall uncertainty estimate for lifetime and emissions in the range 43% - 62%.
5 Conclusions

In this study, we present investigations of the variability of NO\textsubscript{x}, NO\textsubscript{y}, emissions and lifetimes estimated from Sentinel-5P TROPOMI observations for selected urban NO\textsubscript{x} source areas around the world. Similar to earlier studies, we combine TROPOMI NO\textsubscript{2} tropospheric vertical column data with wind information from ECMWF ERA5 reanalysis for the exponentially modified Gaussian, EMG, method. TROPOMI measurements with their high spatial resolution and high signal to noise ratio allow detailed analysis of NO\textsubscript{x}, NO\textsubscript{y}, emissions and lifetimes using only two years of data. Investigating small emission sources not analyzed before and also monitoring the variability on a short-term temporal basis has been possible. Here, a total of 45 NO\textsubscript{x}, 50 NO\textsubscript{y}, sources from different regions, located between the equator and 61° latitude are investigated. Despite efforts to select a broad range of regions, well distributed around the globe and a mix of different sources, predominantly cities, isolated power plants, industrial regions, oil fields and regions with a mix of sources, some selection bias could have been introduced, for example, by not analyzing regions with low wind speeds, mostly cloudy conditions or areas in regions with many emission sources and higher background levels.

The resulting Comparisons to other studies using TROPOMI data and similar methods for emission estimates show small differences and in general good agreement taking into account the differences of the analyses. The emission estimates are compared to the EDGAR (v.5.0 2015) emission inventory, showing higher emissions for most of the source regions in the EDGAR database than estimated with the EMG method. These differences are particularly strong for the source regions with the highest emissions. Comparisons to other studies using TROPOMI data and similar methods for emission estimates show smaller differences and in general good agreement. As the operational TROPOMI tropospheric NO\textsubscript{2} product has been reported to be low in comparison to independent measurements, part of the apparent overestimation by EDGAR could be related to a TROPOMI low bias. On the other hand, NO\textsubscript{x}, emission reductions NO\textsubscript{y}, emission trends over the last five years are likely to also have an impact. EPA CEMS data for the Colstrip power plant shows that power plant emissions can vary strongly over time. The EMG method applied to TROPOMI data, at least for this power plant, can reproduce the temporal variability seen in the CEMS data reasonably well, and does not show a clear seasonal bias. Therefore, it can be assumed that the method also give reasonable results analyzing winter data. However, the TROPOMI based NO\textsubscript{x}, emissions are lower by about a factor of two for this power plant, in agreement to earlier findings for other power plant sources.

The seasonal separation of the emission estimates in general shows the highest emissions during winter and a trend from source regions at higher latitudes with higher emissions in winter, to regions in hot desert climate with higher emissions in summer. This is best explained by the different contributions to NO\textsubscript{x}, NO\textsubscript{y}, emissions depending on source region, which are typically dominated by domestic heating in winter or, air conditioning in hot summer months, depending on the climatic conditions of the source region. In some respects our results differ from previous study results which based on emission inventories, analyzing average values for countries, where generally weaker seasonality is found. However, this probably does not reflect the specific situation in cities, where the composition of sources is expected to be different. Further detailed investigations and comparisons would be helpful to understand the discrepancies. Generally, it should be considered that the uncertainties for emission estimates from the EMG method can be large and especially the analysis of winter data has not been performed often
and is influenced even more by uncertainties.

The investigation of the seasonal and latitudinal dependence of the NOx-NO2 lifetime shows an increase in lifetime from two to six hours in correlation to an increase in latitude for increasing latitudes, but only a weak seasonal dependence with longer lifetimes in winter than in summer. Larger differences are expected based on modelling studies. The weak seasonal dependence found in this study could be explained by not yet sufficient statistics, a clear-sky bias and also the midday observation time of TROPOMI, which all lead to more balanced lifetimes in summer and winter. Uncertainties which tend to have a low bias in lifetime estimates, especially in winter due to longer lifetimes and the aforementioned points, should be considered.

Separating NOx-NO2 emission estimates into working and weekend days indicates that for most NOx-NO2 source regions, emissions are higher during weekdays than on the weekend, albeit with rather high variability in the weekend-to-weekday ratios. Only source regions, which are dominated by power plants or industry, do not show any reductions in NOx-NO2 emissions on the weekend. The largest emission reductions on weekends are found for source regions with little industry, which are dominated by city emissions mostly from traffic. Our results indicate reductions of NOx-NO2 emissions for Wuhan (China) during weekends, in contrast to earlier studies showing no such effect in China. This study can be extended to other Chinese cities, as more high resolution tropospheric NO2 columns become available from TROPOMI and GEMS in the next years. Separately calculated lifetimes for weekend and working days do not show longer lifetimes during weekends. This result also requires further investigation.

A short-term reduction in emissions attributable to the measures introduced to limit the spread of Covid-19 infections was found by comparing NOx-NO2 emissions estimated with the EMG method. Since the method accounts for wind conditions and NOx-NO2 lifetimes, it gives a better estimate on the impact of the Covid-19 measures on NOx-NO2 emissions than comparisons of tropospheric NO2 column measurements as done in other studies. Strong NOx emission reduction NO2 emission reductions during the first lockdown phase and a general tendency to lower emissions in 2020 than in 2019 is shown for Buenos Aires, New Delhi and Madrid.

We conclude that the EMG method in combination with the high-resolution TROPOMI NO2 measurements allows us to investigate the high variability of NOx-NO2 emissions and lifetimes on a global scale and on short time frames. Depending on the goal of the analysis, already a few days of measurements can be sufficient; for seasonal studies, depending on the local meteorological conditions, one to two seasons are sufficient, and it is not anymore necessary to average over several years. The ability to estimate emissions over short time periods will also allow policy makers to evaluate NOx-NO2 emission regulations better and more quickly. The presented high variability should be further investigated using follow-up sensors on geostationary satellites as for example GEMS, Tempo or Sentinel-4, which have the potential to investigate in addition the diurnal variability.
Appendix A

Table A1. \( \text{NO}_x \)-\( \text{NO}_2 \) source regions sorted with increasing latitude with mean \( \text{NO}_x \)-\( \text{NO}_2 \) lifetime and emissions, wind speed, available days, season flag and weekly cycle flag (x: possible, -: not possible). Errors are 1-sigma uncertainties derived by the EMG fitting procedure.

| Source region                  | Latitude (degree) | Longitude (degree) | \( \text{NO}_x \)-\( \text{NO}_2 \) lifetime (hours) | \( \text{NO}_x \) emissions \( \text{NO}_2 \) emissions (mol s\(^{-1}\)) | wind speed (m s\(^{-1}\)) |
|--------------------------------|------------------|-------------------|-------------------------------------------------|-----------------------------------------------------------------|-----------------------------|
| Singapore (Singapore)          | 1.30             | 103.69            | \( 2.42 \pm 0.28 \)                             | \( 84.34 \pm 14.0 \) \( 1.15 \)                                  | 4.75 \pm 4.44               |
| Lagos (Nigeria)                | 6.55             | 3.40              | \( 2.37 \pm 0.49 \)                             | \( 26.30 \pm 5.7 \) \( 6.1 \)                                   | 4.01 \pm 4.31               |
| Colombo (Sri Lanka)            | 6.93             | 79.85             | \( 1.68 \pm 0.12 \)                             | \( 15.52 \pm 1.6 \) \( 2.3 \)                                   | 4.98 \pm 6.17               |
| Kano (Nigeria)                 | 11.98            | 8.51              | \( 3.52 \pm 0.19 \)                             | \( 3.85 \pm 0.3 \) \( 1.0 \)                                   | 3.80 \pm 4.65               |
| Bangalore (India)              | 12.98            | 77.59             | \( 2.79 \pm 0.08 \)                             | \( 14.3 \pm 0.6 \) \( 0.8 \)                                   | 3.83 \pm 4.66               |
| Khartoum (Sudan)               | 15.58            | 32.52             | \( 4.56 \pm 0.04 \)                             | \( 13.3 \pm 0.3 \) \( 0.4 \)                                   | 5.10 \pm 5.85               |
| Rangoon (Myanmar)              | 16.78            | 96.15             | \( 2.44 \pm 0.2 \)                              | \( 13.6 \pm 1.1 \) \( 1.2 \)                                   | 3.24 \pm 3.64               |
| **Belo Horizonte (Hwange (Zimbabwe))** | -18.38 | 26.47          | \( 1.63 \pm 0.06 \)                             | \( 5.0 \pm 0.1 \) \( 1.0 \)                                   | 4.72 \pm 5.48               |
| **Belo Horizonte (Brazil)**    | -19.91           | -43.98            | \( 4.88 \pm 0.34 \)                             | \( 8.7 \pm 0.3 \) \( 2.7 \)                                   | 2.93 \pm 3.76               |
| Guadalajara (Mexico)           | 20.66            | -103.34           | \( 4.51 \pm 0.14 \)                             | \( 26.33 \pm 4.6 \) \( 4.1 \)                                  | 4.49 \pm 6.00               |
| Raibgh (Saudi Arabia)          | 22.69            | 39.03             | \( 4.59 \pm 0.13 \)                             | \( 59.0 \pm 5.0 \) \( 7.2 \)                                  | 5.51 \pm 6.32               |
| Medupi Matimba (South Africa)  | 23.68            | 27.58             | \( 5.03 \pm 0.32 \)                             | \( 35.8 \pm 2.5 \) \( 4.5 \)                                   | 4.23 \pm 4.81               |
| Riyadh (Saudi Arabia)          | 24.65            | 46.71             | \( 3.82 \pm 0.11 \)                             | \( 143.9 \pm 4.9 \) \( 6.8 \)                                  | 5.21 \pm 6.32               |
| Buraidah (Saudi Arabia)        | 26.20            | 43.99             | \( 3.62 \pm 0.14 \)                             | \( 18.2 \pm 0.8 \) \( 1.1 \)                                   | 4.68 \pm 5.74               |
| **Brisbane (Australia)**       | -27.47           | 153.03            | \( 2.31 \pm 0.12 \)                             | \( 24.1 \pm 1.0 \) \( 5.6 \)                                   | 5.66 \pm 6.66               |
| Sarir Field (Libya)            | 27.55            | 21.63             | \( 2.32 \pm 0.04 \)                             | \( 4.55 \pm 0.1 \) \( 0.4 \)                                   | 4.99 \pm 5.84               |
| Tabuk (Saudi Arabia)           | 28.48            | 36.52             | \( 4.81 \pm 0.14 \)                             | \( 15.8 \pm 1.5 \) \( 2.3 \)                                   | 4.72 \pm 5.47               |
| New Delhi (India)              | 28.62            | 77.22             | \( 3.83 \pm 0.12 \)                             | \( 48.4 \pm 1.4 \) \( 2.5 \)                                   | 4.24 \pm 5.09               |
| Wuhan (China)                  | 30.57            | 114.28            | \( 3.52 \pm 0.3 \)                              | \( 92.8 \pm 7.4 \) \( 10.7 \)                                  | 4.23 \pm 5.10               |
| Hassi Messaoud (Algeria)        | 31.70            | 6.05              | \( 2.16 \pm 0.06 \)                             | \( 6.78 \pm 0.4 \) \( 0.2 \)                                   | 5.24 \pm 5.17               |
| **Perth (Australia)**          | -31.95           | 115.85            | \( 2.43 \pm 0.24 \)                             | \( 16.2 \pm 1.5 \) \( 6.3 \)                                   | 6.35 \pm 6.66               |
| Isfahan (Iran)                 | 32.64            | 51.67             | \( 2.48 \pm 0.24 \)                             | \( 80.5 \pm 8.6 \) \( 12.6 \)                                  | 4.65 \pm 5.38               |
| Casablanca (Morocco)           | 33.59            | -7.61             | \( 3.17 \pm 0.35 \)                             | \( 46.6 \pm 6.2 \) \( 2.1 \)                                   | 4.37 \pm 4.93               |
| Xi’an (China)                  | 34.27            | 108.94            | \( 3.93 \pm 0.49 \)                             | \( 129.2 \pm 20.2 \) \( 23.5 \)                                 | 4.20 \pm 4.90               |
| Buenos Aires (Argentina)       | **34.60**        | **58.38**         | \( 5.23 \pm 0.27 \)                             | \( 61.2 \pm 3.0 \) \( 5.8 \)                                   | 5.40 \pm 6.45               |
| **Tokyo+Adelaide (Australia)** | **34.50**        | **58.80**         | \( 5.23 \pm 0.27 \)                             | \( 61.2 \pm 3.0 \) \( 5.8 \)                                   | 5.40 \pm 6.45               |
| **Tokyo (Japan)**              | **35.68**        | **138.60**        | \( 3.11 \pm 0.2 \)                              | \( 20.5 \pm 1.1 \) \( 6.9 \)                                   |                           |
| **Las Vegas-Las Vegas (USA)**  | 36.16            | -115.19           | \( 2.56 \pm 0.2 \)                              | \( 15.3 \pm 1.5 \) \( 2.0 \)                                   | 5.14 \pm 6.23               |
| Seoul (South Korea)            | 37.60            | 127.00            | \( 4.51 \pm 0.4 \)                              | \( 218.7 \pm 19.2 \) \( 28.2 \)                                 | 5.08 \pm 6.28               |
Table A2. **Continuation of table A1**

| Source region          | Latitude | Longitude | NOx lifetime | NOx emission | Wind speed | Days seasons | Weekdays |
|------------------------|----------|-----------|--------------|--------------|------------|--------------|----------|
| **Melbourne (Australia)** |          |           |              |              |            |              |          |
| Madrid (Spain)         |          |           |              |              |            |              |          |
| New York (USA)         |          |           |              |              |            |              |          |
| Naples (Italy)         |          |           |              |              |            |              |          |
| Barcelona (Spain)      |          |           |              |              |            |              |          |
| **Continuation of table A1** Source region Latitude Longitude NOx lifetime NOx emission wind speed days seasons weekdays (degree) (degree) (hours) (mol s$^{-1}$) (degree) | | | | | | | |
| Toronto (Canada)       |          |           |              |              |            |              |          |
| Bucharest (Romania)    |          |           |              |              |            |              |          |
| Colstrip (USA)         |          |           |              |              |            |              |          |
| Budapest (Hungary)     |          |           |              |              |            |              |          |
| Paris (France)         |          |           |              |              |            |              |          |
| Kiev (Ukraine)         |          |           |              |              |            |              |          |
| Minsk (Belarus)        |          |           |              |              |            |              |          |
| Novosibirsk (Russia)   |          |           |              |              |            |              |          |
| Chelyabinsk (Russia)   |          |           |              |              |            |              |          |
| Moscow (Russia)        |          |           |              |              |            |              |          |
| Krasnoyarsk (Russia)   |          |           |              |              |            |              |          |
| Fort McMurray (Canada) |          |           |              |              |            |              |          |
| Saint Petersburg (Russia) |      |           |              |              |            |              |          |
| Helsinki (Finland)     |          |           |              |              |            |              |          |
| Surgut (Russia)        |          |           |              |              |            |              |          |
Figure A1. Weekend-to-weekday ratio for two years of NOx lifetimes (01 March 2018 to 29 February 2020). From left to right in increasing weekend-to-weekday NOx emission ratio (see Fig. 7). Data were separated into working and weekend days for 40 source regions. Weekend can be one or two days and those days can also differ according to religious tradition, which is considered. The red line indicates the 1:1 line where weekend and weekday lifetimes are equal, below the line weekday lifetimes are longer and over the line weekend lifetimes are longer. Error bars are 1-sigma uncertainties derived by the EMG fitting procedure for lifetime estimates.
**Data availability.** TROPOMI data from July 2018 onwards is freely available via https://s5phub.copernicus.eu/. The wind, ozone, temperature and boundary layer height data from the ERA5 reanalysis are freely available from the Copernicus Climate Change (C3S) climate data store (CDS) (http://doi.org/10.24381/cds.adb2d47). EDGAR v5.0 Global Air Pollutant Emissions are available by https://edgar.jrc.ec.europa.eu/overview.php?v=50_AP. CEMS data from power plants can be downloaded here: https://ampd.epa.gov/ampd/.

**Author contributions.** KL, AR and JPB designed the study. KL performed the analysis and wrote the paper with contributions from JPB and AR.

**Competing interests.** The authors declare that they have no conflict of interest.

**Acknowledgements.** We gratefully acknowledge the German Aerospace Center (DLR) Bonn for funding the MAXGRAD project – project no. 50 EE 1709A. Copernicus Sentinel-5P level 2 NO2 data are used in this study. Sentinel-5 Precursor is a European Space Agency (ESA) mission on behalf of the European Commission (EC). The TROPOMI pay-load is a joint development by ESA and the Netherlands Space Office (NSO). The Sentinel-5 Precursor ground-segment development has been funded by ESA and with national contributions from the Netherlands, Germany, Belgium, and UK. ERA5 reanalysis wind data are provided by ECMWF. CAMS reanalysis EAC4 data were provided by ECMWF. EDGAR v5.0 Global Air Pollutant Emissions are provided by https://edgar.jrc.ec.europa.eu/overview.php?v=50_AP, DOI: https://data.europa.eu/doi/10.2904/JRC_DATASET_EDGAR.
References

Alvarado, I. M., Richter.

Atkinson, R., Baulch, D. L., Cox, R. A., Vrekoussis, Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, Hilboll, A., Hedegaard, A. B. K., Schneising, O., and Burrows, J. P.: Unexpected long-range transport of glyoxal and formaldehyde observed from the Copernicus Sentinel-5 Precursor satellite during the 2018 Canadian wildfires, *Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I - gas phase reactions of O₃, HO₂, NO₂ and SO₂ species*, Atmospheric Chemistry and Physics, 20, 2057–2057, 2020, 4, 1461–1738, https://doi.org/10.5194/acp-4-1461-2004, https://acp.copernicus.org/articles/4/1461/2004/, 2004.

Bauwens, M., Compernolle, S., Stavrakou, T., Müller, J.-F., Van Gent, J., Eskes, H., Levelt, P., van der A, R., Veefkind, J., Vlietinck, J., et al.: Impact of coronavirus outbreak on NO₂ pollution assessed using TROPOMI and OMI observations, Geophysical Research Letters, p. e2020GL087978, 2020.

Beirle, S., Platt, U., Wenig, M., and Wagner, T.: Weekly cycle of NO<sub>2</sub> by GOME measurements: a signature of anthropogenic sources, *Atmospheric Chemistry and Physics*, 3, 2225–2232, https://doi.org/10.5194/acp-3-2225-2003, https://acp.copernicus.org/articles/3/2225/2003/, 2003.

Beirle, S., Boersma, K. F., Platt, U., Lawrence, M. G., and Wagner, T.: Megacity emissions and lifetimes of nitrogen oxides probed from space, Science, 333, 1737–1739, 2011.

Beirle, S., Borger, C., Dörner, S., Li, A., Hu, Z., Liu, F., Wang, Y., and Wagner, T.: Pinpointing nitrogen oxide emissions from space, Science advances, 5, eaax9800, 2019.

Beirle, S., Borger, C., Dörner, S., Eskes, H., Kumar, V., de Laat, A., and Wagner, T.: Catalog of NO₂ emissions from point sources as derived from the divergence of the NO₂ flux for TROPOMI, *Earth System Science Data*, 13, 2995–3012, https://doi.org/10.5194/essd-13-2995-2021, https://essd.copernicus.org/articles/13/2995/2021/, 2021.

Bovensmann, H., Burrows, J., Buchwitz, M., Frerick, J., Noël, S., Rozanov, V., Chance, K., and Goede, A.: SCIAMACHY: Mission objectives and measurement modes, Journal of the atmospheric sciences, 56, 127–150, 1999.

Burkholder, J., Sander, S., Abbatt, J., Barker, J., Cappa, C., Crounse, J., Dibb, T., Huie, R., Kolb, C., Kurylo, M., et al.: Chemical kinetics and photochemical data for use in atmospheric studies: evaluation number 19, *Tech. rep.*, Pasadena, CA: Jet Propulsion Laboratory, National Aeronautics and Space Administration, 2020.

Burrows, J. P., Weber, M., Buchwitz, M., Rozanov, V., Ladstätter-Weißenmayer, A., Richter, A., DeBeek, R., Hoogen, R., Bramstedt, K., Eichmann, K.-U., et al.: The global ozone monitoring experiment (GOME): Mission concept and first scientific results, Journal of the Atmospheric Sciences, 56, 151–175, 1999.

Crippa, M., Guizzardi, D., Muntean, M., Schaaf, E., Dentener, F., van Aardenne, J. A., Monni, S., Doering, U., Olivier, J. G., Pagliari, V., et al.: Gridded emissions of air pollutants for the period 1970–2012 within EDGAR v4.3.2, Earth Syst. Sci. Data, 10, 2018, 1987–2013, 2018.

Crippa, M., Oreggioni, G., Guizzardi, D., Muntean, M., Schaaf, E., Lo Vullo, E., Solazzo, E., Monforti-Ferrario, F., Olivier, J. G., and Vignati, E.: Fossil CO₂ and GHG emissions of all world countries, Luxembourg: Publication Office of the European Union, 2019.

Crippa, M., Solazzo, E., Huang, G., Guizzardi, D., Koffi, E., Muntean, M., Schieberle, C., Friedrich, R., and Janssens-Maenhout, G.: High resolution temporal profiles in the Emissions Database for Global Atmospheric Research, Scientific data, 7, 1–17, 2020.

de Foy, B., Wilkins, J. L., Lu, Z., Streets, D. G., and Duncan, B. N.: Model evaluation of methods for estimating surface emissions and chemical lifetimes from satellite data, *Atmospheric Environment*, 98, 66–77, 2014.
Goldberg, D. L., Lu, Z., Streets, D. G., Lamsal, L. N., and Duncan, B. N.: Estimates of power plant NOx emissions and lifetimes from OMI NO2 satellite retrievals, Atmospheric Environment, 116, 1–11, 2015.

Dickerson, R. R., Stedman, D. H., and Delany, A. C.: Direct measurements of ozone and nitrogen dioxide photolysis rates in the troposphere, Journal of Geophysical Research: Oceans, 87, 4933–4946, 1982.

Dimitropoulou, E., Hendrick, F., Pinardi, G., Friedrich, M. M., Merlaud, A., Tack, F., De Longueville, H., Fayt, C., Hermans, C., Laffineur, Q., Fierens, F., and Van Roozendael, M.: Validation of TROPOMI tropospheric NO2 columns using dual-scan multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurements in Uccle, Brussels, Atmospheric Measurement Techniques, 13, 5165–5191, https://doi.org/10.5194/amt-13-5165-2020, https://amt.copernicus.org/articles/13/5165/2020, 2020.

Dittman, M. G., Ramberg, E., Chrisp, M., Rodriguez, J. V., Sparks, A. L., Zaun, N. H., Hendershot, P., Dixon, T., Philbrick, R. H., and Wasinger, D.: Nadir ultraviolet imaging spectrometer for the NPOESS Ozone Mapping and Profiler Suite (OMPS), in: Earth Observing Systems VII, vol. 4814, pp. 111–119, International Society for Optics and Photonics, 2002.

Eskes, H. and Eichmann, K.: S5P MPC Product Readme Nitrogen Dioxide, Tech. rep., Report S5P-MPC-KNMI-PRF-NO2, version 2.1, 17 November 2021, ESA, available at https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-5p/products-algorithms, 2021.

Georgoulias, A. K., van der A, R. J., Stammes, P., Boersma, K. F., and Eskes, H. J.: Trends and trend reversal detection in 2 decades of tropospheric NO2 satellite observations, Atmospheric Chemistry and Physics, 19, 6269–6294, https://doi.org/10.5194/acp-19-6269-2019, https://acp.copernicus.org/articles/19/6269/2019/, 2019.

Goldberg, D. L., Lu, Z., Streets, D. G., de Foy, B., Griffin, D., McLinden, C. A., Lamsal, L. N., Krotkov, N. A., and Eskes, H.: Enhanced Capabilities of TROPOMI NO2: Estimating NO X from North American Cities and Power Plants, Environmental science & technology, 53, 12 594–12 601, 2019.

Goldberg, D. L., Anenberg, S. C., Griffin, D., McLinden, C. A., Lu, Z., and Streets, D. G.: Disentangling the impact of the COVID-19 lockdowns on urban NO2 from natural variability, Geophysical Research Letters, 47, e2020GL089269, 2020.

Goldberg, D. L., Anenberg, S. C., Kerr, G. H., Mohegh, A., Lu, Z., and Streets, D. G.: TROPOMI NO2 in the United States: A detailed look at the annual averages, weekly cycles, effects of temperature, and correlation with surface NO2 concentrations, Earth’s future, 9, e2020EF001665, 2021.

Griffin, D., Zhao, X., McLinden, C. A., Boersma, F., Bourassa, A., Dammers, E., Degenstein, D., Eskes, H., Fehr, L., Fioletov, V., et al.: High-resolution mapping of nitrogen dioxide with TROPOMI: First results and validation over the Canadian oil sands, Geophysical Research Letters, 46, 1049–1060, 2019.

Holland, F., Hofzumahaus, A., Schäfer, J., Kraus, A., and Pätz, H.-W.: Measurements of OH and HO2 radical concentrations and photolysis frequencies during BERLIOZ, Journal of Geophysural Research: Atmospheres, 108, PHO-2, 2003.

Ialongo, I., Hakkarainen, J., Hyttinen, N., Jalkanen, J.-P., Johansson, L., Boersma, K., Krotkov, N., and Tamminen, J.: Characterization of OMI tropospheric NO2 over the Baltic Sea region, Atmospheric Chemistry and Physics, 14, 7795, 2014.

Ialongo, I., Virta, H., Eskes, H., Hovila, J., and Douros, J.: Comparison of TROPOMI/Sentinel-5 Precursor NO2 observations with ground-based measurements in Helsinki, Atmospheric Measurement Techniques, 13, 205–218, https://doi.org/10.5194/amt-13-205-2020, https://amt.copernicus.org/articles/13/205/2020/, 2020.

Jacob, D. J.: Introduction to atmospheric chemistry, Princeton University Press, 1999.

Judd, L. M., Al-Saadi, J. A., Szykman, J. J., Valin, L. C., Janz, S. J., Kowalewski, M. G., Eskes, H. J., Veefkind, J. P., Cede, A., Mueller, M., Gebetsberger, M., Swap, R., Pierce, R. B., Nowlan, C. R., Abad, G. G., Nehrir, A., and Williams, D.: Evaluating Sentinel-5P TROPOMI tropospheric NO2 column densities with airborne and Pandora spectrometers near New York City and Long Island Sound, Atmospheric
Molina, M. J. and Molina, L. T.: Megacities and atmospheric pollution, Journal of the Air & Waste Management Association, 54, 644–680, 2004.

Laughner, J. L. and Cohen, R. C.: Direct observation of changing NOx lifetime in North American cities, Science, 366, 723–727, 2019.

Leue, C., Wenig, M., Wagner, T., Klimm, O., Platt, U., and Jähne, B.: Quantitative analysis of NOx emissions from Global Ozone Monitoring Experiment satellite image sequences, Journal of Geophysical Research: Atmospheres, 106, 5493–5505, 2001.

Leve, P. F., van den Oord, G. H., Dobber, M. R., Malik, A., Visser, H., de Vries, J., Stammes, P., Lundell, J. O., and Saari, H.: The ozone background estimated by satellite observations, Atmospheric Chemistry and Physics, 16, 5283, 2016.

Liu, F., Beirle, S., Zhang, Q., Dörner, S., He, K., and Wagner, T.: NOx lifetimes and emissions of cities and power plants in polluted background estimated by satellite observations, Atmospheric Chemistry and Physics, 16, 5283, 2016.

Liu, F., Page, A., Strode, S. A., Yoshida, Y., Choi, S., Zheng, B., Lamsal, L. N., Li, C., Krotkov, N. A., Eskes, H., et al.: Abrupt decline in tropospheric nitrogen dioxide over China after the outbreak of COVID-19, Science Advances, p. eabc2992, 2020.

Lorente, A., Boersma, K., Eskes, H., Veeck, J., van Geffen, J., van der Gon, H. D., Beirle, S., and Krol, M.: Quantification of nitrogen oxides emissions from build-up of pollution over Paris with TROPOMI, Scientific reports, 9, 1–10, 2019.

Lu, K. D., Hofzumahaus, A., Holland, F., Bohn, B., Brauers, T., Fuchs, H., Hu, M., Häser, R., Kita, K., Kondo, Y., Li, X., Lou, S. R., Oebel, A., Shao, M., Zeng, L. M., Wahner, A., Zhu, T., Zhang, Y. H., and Rohrer, F.: Missing OH source in a suburban environment near Beijing: observed and modelled OH and HO2 concentrations in summer 2006, Atmospheric Chemistry and Physics, 13, 1057–1080, https://doi.org/10.5194/acp-13-1057-2013, https://acp.copernicus.org/articles/13/1057/2013/, 2013.

Lu, Z., Streets, D., De Foy, B., Lamsal, L., Duncan, B., and Xing, J.: Emissions of nitrogen oxides from US urban areas: estimation from Ozone Monitoring Instrument retrievals for 2005-2014, Atmospheric Chemistry and Physics Discussions (Online), 15, 2015.

Martin, R., Jacob, D. J., Chance, K., Kurosu, T. P., Palmer, P. I., and Evans, M. J.: Global inventory of nitrogen oxide emissions constrained by space-based observations of NO2 columns, Journal of Geophysical Research: Atmospheres, 108, 2003.

Molina, M. J. and Molina, L. T.: Megacities and atmospheric pollution, Journal of the Air & Waste Management Association, 54, 644–680, 2004.

Munro, R., Eisinger, M., Anderson, C., Callies, J., Corpaccioli, E., Lang, R., Lefebvre, A., Livschitz, Y., and Albinana, A. P.: GOME-2 on MetOp, in: Proc. of The 2006 EUMETSAT Meteorological Satellite Conference, Helsinki, Finland, vol. 1216, p. 48, 2006.

Pommier, M., McLinden, C. A., and Deeter, M.: Relative changes in CO emissions over megacities based on observations from space, Geophysical research letters, 40, 3766–3771, 2013.

Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and Physics, A Wiley-Inter Science Publication, 2006.
Shah, V., Jacob, D. J., Li, K., Silvern, R. F., Zhai, S., Richter, A.-Liu, M., Lin, J., and Zhang, Q.: Effect of changing NOx lifetime on the seasonality and long-term trends of satellite-observed tropospheric NO2 columns over China, Atmospheric Chemistry and Physics, 20, Blechschmidt, A.-M., 1433–1495, Bougoudis, I., and Burrows, J. P.: First high-resolution BrO column retrievals from TROPOMI, Atmospheric Measurement Techniques, 12, 2019. D., Bloss, W. J., Johnson, G. P., Ingham, T., and Heard, D. E.: Concentrations of OH and HO2 radicals during NAMBLEX: measurements and steady state analysis, Atmospheric Chemistry and Physics, 6, 1435–1453, https://doi.org/10.5194/acp-6-1435-2006, https://acp.copernicus.org/articles/6/1435/2006/. Stavrakou, T., Müller, J.-F., Boersma, K. F., De Smedt, I., and Van Der A, R.: Assessing the distribution and growth rates of NOx emission sources by inverting a 10-year record of NO2 satellite columns, Geophysical Research Letters, 35, 2008.

Stavrakou, T., Müller, J.-F., Boersma, K. F., van der A, R. J., Kurokawa, J., Ohara, T., and Zhang, Q.: Key chemical NOx sink uncertainties and how they influence top-down emissions of nitrogen oxides, Atmospheric Chemistry and Physics, 13, 9057–9082, https://doi.org/10.5194/acp-13-9057-2013, https://acp.copernicus.org/articles/13/9057/2013/, 2013.

Stavrakou, T., Müller, J.-F., Bauwens, M., Boersma, K., and van Geffen, J.: Satellite evidence for changes in the NO2 weekly cycle over large cities, Scientific reports, 10, 1–9, 2020.

Stocker, T.: Climate change 2013: the physical science basis: Working Group I contribution to the Fifth assessment report of the Intergovernmental Panel on Climate Change, Cambridge university press, 2014.

Valin, L., Russell, A., and Cohen, R.: Variations of OH radical in an urban plume inferred from NO2 column measurements, Geophysical Research Letters, 40, 1856–1860, 2013.

Valin, L. C., Russell, A. R., and Cohen, R. C.: Chemical feedback effects on the spatial patterns of the NOx weekend effect: a sensitivity analysis, Atmospheric Chemistry and Physics, 14, 1–9, https://doi.org/10.5194/acp-14-1-2014, https://acp.copernicus.org/articles/14/1/2014/.

Van
den A, R. J., Eskes, H. J., Boersma, K. F., van Noije, T. P. C., Van Roozendael, M., De Smedt, I., Peters, D. H. M. U., and Meijer, E. W.: Trends, seasonal variability and dominant NOx source derived from a ten year record of NO2 measured from space, Journal of Geophysical Research: Atmospheres, 113, https://doi.org/10.1029/2007JD009021, https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2007JD009021, 2008.

Van Geffen, J., Eskes, H., Boersma, K., Maasakkers, J., and Veekind, J.: TROPOMI ATBD of the total and tropospheric NO2 data products (issue 1.2. 0), Royal Netherlands Meteorological Institute (KNMI), De Bilt, the Netherlands, s5P-KNMI-L2-0005-RP, 2018.

Van Geffen, J., Eskes, H., Compernolle, S., Pinardi, G., Verhoelst, T., Lambert, J.-C., Sneep, M., ter Linden, M., Ludewig, A., Boersma, K. F., and Veekind, J. P.: Sentinel-5P TROPOMI NO2 retrieval: impact of version v2.2 improvements and comparisons with OMI and ground-based data, Atmospheric Measurement Techniques Discussions, 2021, 1–37, https://doi.org/10.5194/amt-2021-329, https://amt.copernicus.org/preprints/amt-2021-329/.

Veekind, J., Aben, I., McMullan, K., Förster, H., De Vries, J., Otter, G., Claas, J., Eskes, H., De Haan, J., Kleipool, Q., et al.: TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications, Remote Sensing of Environment, 120, 70–83, 2012.

Verhoelst, T., Compernolle, S., Pinardi, G., Lambert, J.-C., Eskes, H. J., Eichmann, K.-U., Figueras, A. M., Granville, J., Niemeijer, S., Cede, A., et al.: Ground-based validation of the Copernicus Sentinel-5p TROPOMI NO2 measurements with the NDACC ZSL-DOAS,
MAX-DOAS and Pandonia global networks, Atmospheric Measurement Techniques, 14, 481–510, https://doi.org/10.5194/amt-14-481-2021, 2021.

Zheng, B., Tong, D., Li, M., Liu, F., Hong, C., Geng, G., Li, H., Li, X., Peng, L., Qi, J., Yan, L., Zhang, Y., Zhao, H., Zheng, Y., He, K., and Zhang, Q.: Trends in China’s anthropogenic emissions since 2010 as the consequence of clean air actions, Atmospheric Chemistry and Physics, 18, 14095–14111, https://doi.org/10.5194/acp-18-14095-2018, https://acp.copernicus.org/articles/18/14095/2018/, 2018.