Liposomes: Structure, Biomedical Applications, and Stability Parameters With Emphasis on Cholesterol

Pooria Nakhaei¹, Ria Margiana² ³ ⁴, Dmitry O. Bokov⁵ ⁶, Walid Kamal Abdelbasset⁷ ⁸, Mohammad Amin Jadidi Kouhbanani⁹, Rajender S. Varma¹⁰, Faroogh Marofi¹¹, Mostafa Jarahian¹² ⁷ ⁸ and Nasrin Beheshtkhoo⁹ ¹² ⁷

¹School of Medicine, Tehran University of Medical Sciences, Tehran, Iran, ²Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Depok, Indonesia, ³Cipto Mangunkusumo Hospital, The National Referral Hospital, Central Jakarta, Indonesia, ⁴Master’s Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Depok, Indonesia, ⁵Institute of Pharmacy, Sechenov First Moscow State Medical University, Moscow, Russia, ⁶Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology, and Food Safety, Moscow, Russia, ⁷Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia, ⁸Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt, ⁹Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Czechia, ¹⁰Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Olomouc, Czechia, ¹¹Department of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran, ¹²Toxicology and Chemotherapy Unit (G401), German Cancer Research Center, Heidelberg, Germany

Liposomes are essentially a subtype of nanoparticles comprising a hydrophobic tail and a hydrophilic head constituting a phospholipid membrane. The spherical or multilayered spherical structures of liposomes are highly rich in lipid contents with numerous criteria for their classification, including structural features, structural parameters, and size, synthesis methods, preparation, and drug loading. Despite various liposomal applications, such as drug, vaccine/gene delivery, biosensors fabrication, diagnosis, and food products applications, their use encounters many limitations due to physico-chemical instability as their stability is vigorously affected by the constituting ingredients wherein cholesterol performs a vital role in the stability of the liposomal membrane. It has well established that cholesterol exerts its impact by controlling fluidity, permeability, membrane strength, elasticity and stiffness, transition temperature (Tm), drug retention, phospholipid packing, and plasma stability. Although the undetermined optimum amount of cholesterol for preparing a stable and controlled release vehicle has been the downside, but researchers are still focused on cholesterol as a promising material for the stability promotion of liposomes. Herein, the prior art pertaining to the liposomal appliances, especially for drug delivery in cancer therapy, and their stability emphasizing the roles of cholesterol.

Keywords: liposome, lipids, compounds, cholesterol, stability

INTRODUCTION

Increasing advances in nanotechnology and nanoscience have raised great hopes in the field of biomedicine. Due to their unique, multifaceted and flexible properties, nanomaterials circumvents many challenges in diverse fields of medicine, including health, diagnosis, and treatment (Liu et al., 2020; Naskar and Kim, 2021), nanoliposomes being one of the most widely used nanoparticles in
biomedicine. Liposomes are lipid bilayer spherical membranes that provide both hydrophilic and hydrophobic environments. Adjustability, flexibility, variety of ingredients, ease of functionalization, tunability of the number of layers/sizes, biocompatibility, and biodegradability have turned liposomes into incredible structures in medicine, especially drug delivery (Aguilar-Pérez et al., 2020; Trucillo et al., 2020; Kashapov et al., 2021), most notable use of these structures being in cosmetics and drug delivery. Consequently, various liposome-based products have been commercialized to date, with the approval from pharmaceutical companies (Yu et al., 2021). In the present review, an attempt has been made to comprehensively deliberate liposomes in terms of structure, function, and stability starting initially with an introduction to lipid structures.

Lipid Nanoparticles

Lipid molecules are one of the crucial elements of life and lipid-based nanoparticles comprise a broad range according to their application, components, shape, and fabrication methods; they possess numerous advantages over polymeric-based nanoparticles. Besides topical usage, agent delivery is ascribed to as a significant application of lipid-based nanoparticles. Being a physiological analog to the cellular membrane, liposomes have superior biocompatibility compared to polymeric-based nanoparticles, leading to a more acceptable biomedical application choices (Müller et al., 2000).

As highly adaptable nanoparticles, lipidic nanoparticles can be deployed for a wide varieties of delivery with a bit of condensation. Liposomes and niosomes, as the phospholipid

TABLE 1 | Lipid-based structures.

Types	Structural features	Structural compositions
Liposomes (Pan et al., 2002; Thompson et al., 2006; Yavovich et al., 2009; Chen et al., 2012)	1- Similarity to the cell membrane	
2- One or more concentric lipid bilayers enclosing an equal number of aqueous portions	DMPC- HSPC- DPPC-DOPC- EPC-SPC-DMPC- DOPC-Cholesterol	
Emulsions (Pan et al., 2002; Cardenia et al., 2011; Lu et al., 2012)	1- Composed of two different phases, i.e., diffuse and continuous	
2- A liquid in liquid colloid structure		
Composed of two immiscible liquids (usually oil and water).		
Liquid-liquid emulsions are mainly divided into two categories: water in oil (W/O) and oil in water (O/W) in which the oil phase and the aqueous phase form the continuous phase, respectively	PC- EPC – DOPC- DMPC DPPC- POPC- DSPE	
Micelle (Ashok et al., 2004; Faustino et al., 2011; Deng et al., 2012; Saadat et al., 2014)	1- The formation basis is based on the accumulation of diffused surfactant molecules in a colloidal liquid	
2- Conventional and reverse micelles can be fabricated		
Conventional micelles: hydrophobic tails assembled in the center of the micelles		
Reverse micelle: the hydrophobic end is oriented towards the solvent, and the hydrophilic heads are gathered next to the center of the micelle	PC- DSPE- DOPE- EPGlycolic acid-lecithin	
Cochleate (Pawar et al., 2015; Mannino and Lu, 2018; Asprea et al., 2019)	1- Multilayered structures	
2- Composed of extensive and continuous two fat sheet layers		
3- Stable structures with the two-valence phospholipid sediments of natural materials		
4- It can be made of negatively charged phospholipids and a divalent cation		
5- It can be used for delivering the hydrophobic and hydrophilic drug molecules; positively and negatively charged	PS and PC	
SLN (solid lipid nanoparticles) (Shah et al., 2007; Fang et al., 2008; Menhart and Mäder, 2012)	1- Nanostructures with the solid core of the particle, which are mainly made of lipids, for delivering nucleic acids, proteins, and drugs	Tween 80- soybean phospholipids- SPC- squalene-precipiol- PFB8- glyceryl palmito-steaate
Nanostructured lipid carriers (NLC) (Müller et al., 2002; Müller et al., 2007)	1- SLN modified structures	
2- NLC, or oil-loaded SLN, contains lipid droplets that are partially crystallized and have a less regular or amorphous solid crystal structure to overcome the limitations of SLN | 1- Tween 80-phospholipid- glyceryl palmito-stearate glycyrhrizin- propylene glycol monostearate- lecithin, poloxamer 800, polyglyceryl-3methyl-glucose di-stearate, SDS, SDC, oleic acid, alpha-tocopherol/vitamin E, corn oil squalene |

Note: DMPC, Dipalmitoyl phosphatidylcholine; DOPC, Dioleoyl-sn-glycero-3-phosphocholine; DOPE, Dioleoyl phosphatidylethanolamine; DOPEPC, Dioleoyl phosphatidylethanolamine phosphatidylcholine; DPPC, Dipalmitoyl phosphatidylcholine; DSPC, Distearoyl-sn-glycero-3-phosphocholine; DSPE, Distearoyl-sn-glycero-3-phosphorylcholine; EPC, Ethanolamine phosphatidylcholine; HSPC, Hydro Soy phosphatidylcholine; PC, Phosphatidylcholine; POPC, Palmitoyl-oleoyl-sn-glycero-phosphocholine; PS, Phosphatidylserine; SDC, Sodium deoxycholate; SDS, Sodium dodexyl sulfate; SPC, Sphingosyl phosphorylcholine.
Liposomes are lipid-based structures that constitute one or more bilayer phospholipids which can encapsulate aqueous media. Liposome formation begins by dispersing phospholipids in water, leading to interactions between phospholipids and water (Anwekar et al., 2011). PP being a critical criterion determining the formation of liposome.

As described, liposomes are lipid-based structures that constitute one or more bilayer phospholipids which can encapsulate aqueous media. Liposome formation begins by dispersing phospholipids in water, leading to interactions between phospholipids and water (Anwekar et al., 2011). PP being a critical criterion determining the formation of liposome.

As described, liposomes are lipid-based structures that constitute one or more bilayer phospholipids which can encapsulate aqueous media. Liposome formation begins by dispersing phospholipids in water, leading to interactions between phospholipids and water (Anwekar et al., 2011). PP being a critical criterion determining the formation of liposome.

As described, liposomes are lipid-based structures that constitute one or more bilayer phospholipids which can encapsulate aqueous media. Liposome formation begins by dispersing phospholipids in water, leading to interactions between phospholipids and water (Anwekar et al., 2011). PP being a critical criterion determining the formation of liposome.

As described, liposomes are lipid-based structures that constitute one or more bilayer phospholipids which can encapsulate aqueous media. Liposome formation begins by dispersing phospholipids in water, leading to interactions between phospholipids and water (Anwekar et al., 2011). PP being a critical criterion determining the formation of liposome.

As described, liposomes are lipid-based structures that constitute one or more bilayer phospholipids which can encapsulate aqueous media. Liposome formation begins by dispersing phospholipids in water, leading to interactions between phospholipids and water (Anwekar et al., 2011). PP being a critical criterion determining the formation of liposome.

As described, liposomes are lipid-based structures that constitute one or more bilayer phospholipids which can encapsulate aqueous media. Liposome formation begins by dispersing phospholipids in water, leading to interactions between phospholipids and water (Anwekar et al., 2011). PP being a critical criterion determining the formation of liposome.

As described, liposomes are lipid-based structures that constitute one or more bilayer phospholipids which can encapsulate aqueous media. Liposome formation begins by dispersing phospholipids in water, leading to interactions between phospholipids and water (Anwekar et al., 2011). PP being a critical criterion determining the formation of liposome.

As described, liposomes are lipid-based structures that constitute one or more bilayer phospholipids which can encapsulate aqueous media. Liposome formation begins by dispersing phospholipids in water, leading to interactions between phospholipids and water (Anwekar et al., 2011). PP being a critical criterion determining the formation of liposome.

As described, liposomes are lipid-based structures that constitute one or more bilayer phospholipids which can encapsulate aqueous media. Liposome formation begins by dispersing phospholipids in water, leading to interactions between phospholipids and water (Anwekar et al., 2011). PP being a critical criterion determining the formation of liposome.

As described, liposomes are lipid-based structures that constitute one or more bilayer phospholipids which can encapsulate aqueous media. Liposome formation begins by dispersing phospholipids in water, leading to interactions between phospholipids and water (Anwekar et al., 2011). PP being a critical criterion determining the formation of liposome.

As described, liposomes are lipid-based structures that constitute one or more bilayer phospholipids which can encapsulate aqueous media. Liposome formation begins by dispersing phospholipids in water, leading to interactions between phospholipids and water (Anwekar et al., 2011). PP being a critical criterion determining the formation of liposome.

As described, liposomes are lipid-based structures that constitute one or more bilayer phospholipids which can encapsulate aqueous media. Liposome formation begins by dispersing phospholipids in water, leading to interactions between phospholipids and water (Anwekar et al., 2011). PP being a critical criterion determining the formation of liposome.

As described, liposomes are lipid-based structures that constitute one or more bilayer phospholipids which can encapsulate aqueous media. Liposome formation begins by dispersing phospholipids in water, leading to interactions between phospholipids and water (Anwekar et al., 2011). PP being a critical criterion determining the formation of liposome.

As described, liposomes are lipid-based structures that constitute one or more bilayer phospholipids which can encapsulate aqueous media. Liposome formation begins by dispersing phospholipids in water, leading to interactions between phospholipids and water (Anwekar et al., 2011). PP being a critical criterion determining the formation of liposome.

As described, liposomes are lipid-based structures that constitute one or more bilayer phospholipids which can encapsulate aqueous media. Liposome formation begins by dispersing phospholipids in water, leading to interactions between phospholipids and water (Anwekar et al., 2011). PP being a critical criterion determining the formation of liposome.

As described, liposomes are lipid-based structures that constitute one or more bilayer phospholipids which can encapsulate aqueous media. Liposome formation begins by dispersing phospholipids in water, leading to interactions between phospholipids and water (Anwekar et al., 2011). PP being a critical criterion determining the formation of liposome.

As described, liposomes are lipid-based structures that constitute one or more bilayer phospholipids which can encapsulate aqueous media. Liposome formation begins by dispersing phospholipids in water, leading to interactions between phospholipids and water (Anwekar et al., 2011). PP being a critical criterion determining the formation of liposome.

As described, liposomes are lipid-based structures that constitute one or more bilayer phospholipids which can encapsulate aqueous media. Liposome formation begins by dispersing phospholipids in water, leading to interactions between phospholipids and water (Anwekar et al., 2011). PP being a critical criterion determining the formation of liposome.

As described, liposomes are lipid-based structures that constitute one or more bilayer phospholipids which can encapsulate aqueous media. Liposome formation begins by dispersing phospholipids in water, leading to interactions between phospholipids and water (Anwekar et al., 2011). PP being a critical criterion determining the formation of liposome.

As described, liposomes are lipid-based structures that constitute one or more bilayer phospholipids which can encapsulate aqueous media. Liposome formation begins by dispersing phospholipids in water, leading to interactions between phospholipids and water (Anwekar et al., 2011). PP being a critical criterion determining the formation of liposome.

As described, liposomes are lipid-based structures that constitute one or more bilayer phospholipids which can encapsulate aqueous media. Liposome formation begins by dispersing phospholipids in water, leading to interactions between phospholipids and water (Anwekar et al., 2011). PP being a critical criterion determining the formation of liposome.

As described, liposomes are lipid-based structures that constitute one or more bilayer phospholipids which can encapsulate aqueous media. Liposome formation begins by dispersing phospholipids in water, leading to interactions between phospholipids and water (Anwekar et al., 2011). PP being a critical criterion determining the formation of liposome.

As described, liposomes are lipid-based structures that constitute one or more bilayer phospholipids which can encapsulate aqueous media. Liposome formation begins by dispersing phospholipids in water, leading to interactions between phospholipids and water (Anwekar et al., 2011). PP being a critical criterion determining the formation of liposome.

As described, liposomes are lipid-based structures that constitute one or more bilayer phospholipids which can encapsulate aqueous media. Liposome formation begins by dispersing phospholipids in water, leading to interactions between phospholipids and water (Anwekar et al., 2011). PP being a critical criterion determining the formation of liposome.

As described, liposomes are lipid-based structures that constitute one or more bilayer phospholipids which can encapsulate aqueous media. Liposome formation begins by dispersing phospholipids in water, leading to interactions between phospholipids and water (Anwekar et al., 2011). PP being a critical criterion determining the formation of liposome.

As described, liposomes are lipid-based structures that constitute one or more bilayer phospholipids which can encapsulate aqueous media. Liposome formation begins by dispersing phospholipids in water, leading to interactions between phospholipids and water (Anwekar et al., 2011). PP being a critical criterion determining the formation of liposome.

As described, liposomes are lipid-based structures that constitute one or more bilayer phospholipids which can encapsulate aqueous media. Liposome formation begins by dispersing phospholipids in water, leading to interactions between phospholipids and water (Anwekar et al., 2011). PP being a critical criterion determining the formation of liposome.

As described, liposomes are lipid-based structures that constitute one or more bilayer phospholipids which can encapsulate aqueous media. Liposome formation begins by dispersing phospholipids in water, leading to interactions between phospholipids and water (Anwekar et al., 2011). PP being a critical criterion determining the formation of liposome.

As described, liposomes are lipid-based structures that constitute one or more bilayer phospholipids which can encapsulate aqueous media. Liposome formation begins by dispersing phospholipids in water, leading to interactions between phospholipids and water (Anwekar et al., 2011). PP being a critical criterion determining the formation of liposome.

As described, liposomes are lipid-based structures that constitute one or more bilayer phospholipids which can encapsulate aqueous media. Liposome formation begins by dispersing phospholipids in water, leading to interactions between phospholipids and water (Anwekar et al., 2011). PP being a critical criterion determining the formation of liposome.
prepare liposomes with respect to their transition temperature (Tm) and molecular weights are presented in Table 3.

TYPES OF LIPOSOMES

Liposomes are highly versatile compounds and they can be fabricated with various combinations, their diversity and properties vary in structure, size, shape, and surface properties. One of the classification types of liposomes is founded on their size and amount of layers, for example, unilamellar and multilamellar liposomes. They can be subdivided into four main categories based on structural parameters: multilamellar liposomes/vesicles (MLV), oligolamellar vesicles (OLV), multilamellar liposomes/vesicles (MVV), and unilamellar vesicles (ULV). Furthermore, the ULV can be divided into giant unilamellar liposomes/vesicles (GUV) groups, large unilamellar liposomes/vesicles (LUV), medium unilamellar vesicles (MUL), and small unilamellar liposomes/vesicles (SUV), and based on size (Walde and Ichikawa, 2001; Gabriëls and Plaizier-Vercammen, 2003; Wagner et al., 2006; Drulis-Kawa and Dorotkiewicz-Jach, 2010; Baykal-Caglar et al., 2012; Burton et al., 2015). Assorted liposome types, according to the fabrication methods, are presented in Table 4.

Regarding the production of liposome, in addition to the fabrication method, drug loading should also be considered. In general, drug loading is performed via two standard procedures, passive and active loading, which affects the amount and quality of the loaded drug and some extent on the liposome properties. In the active loading method, known as the remote loading method, the drug molecules are loaded into the fabricated liposome. The pH gradient and electrical potential difference across the liposomal membrane are the most known underlying mechanisms dictating the active drug loading (Figure 1). The active loading method has provided various advantages over passive loading methods, including high efficiency and loading capacity, decreasing the loaded drug's leakage, and reducing the drug's shrinking during storage. Another outstanding feature of this method is the possibility of drug loading after carrier formation due to the use of the flexibility of constitutive lipid. It is also possible to prevent the degradation of the biologically active compounds during the preparative process (Barratt, 2003; Anwekar et al., 2011; Agrawal et al., 2012; Burton et al., 2015).

It has been well known that liposome characteristics are highly dependent on lipid composition. Surface charge, particle size, and the preparation method are among the most outstanding influenced features by lipid combination. Besides, the effective properties of bilayer structure, including rigidity, fluidity, and electrical charge, can be determined through bilayer component selection. In this regard, natural-based liposomes fabricated from unsaturated phosphatidylcholine species, including egg or soybean phosphatidylcholine, have provided bilayer structures with highly permeable and slow stable properties. However,
TABLE 4 | Liposome classification based on the synthesis method.

Techniques	Features	Advantages	Disadvantages
Extrusion technique (Al-Remawi et al., 2017; Wang et al., 2017)	1- Different pore size filters depending on the need 2- Producing LUV or nanoliposomes is based on the pore-size of the filters	-	-
Sonication (Nasrabadi et al., 2016; Veneti et al., 2016; Yu and Tang, 2016)	1- The most widely used technique for the preparation and production of liposomes and nanoliposomes 2- One of the most straightforward techniques to size reduction and producing nano-liposomes 3- Probe sonication and bath sonication are the main techniques	-	1- Low internal volume/encapsulation efficiency 2- Low ability to remove large molecules and metal pollution from the probe tip
Microfluidization (Alizadeh et al., 2015; Yu et al., 2015; Davidson et al., 2016; Devrim et al., 2016; Saliba et al., 2016; Tabatabaei Mirakabad et al., 2016)	1- This method is used in the pharmaceutical industry to produce liposomes and pharmaceutical emulsions 2- A chamber of microfluidizer contains a divided pressure stream 3- Recruiting microfluidizer 4- without potentially toxic solvents	1- Possibility of producing a large volume of liposomes 2- Ability to adjust the average size of the liposomes 3- High efficiency (up to 70%)	-
Heating method (Mozafari, 2005; Mozafari et al., 2007; Panahi et al., 2017; Hadavi et al., 2020; Khoosrou-Darani and Sheida Asrab)	1- It can be used for nanoliposomal production 2- Decreases the production time and cost on an industrial scale which has received much attention 3- Produce hollow micro-liposomes (HM-liposomes) that can be used as vectors in drug and gene transfer	-	-
Freeze-drying (lyophilization) (Chen et al., 2010a; Franzé, 2018)	1- Based on removing water from products in the frozen state 2- This step takes place at very low pressures 3- This method can solve the long-term stability problem of the solvent 4- The uses of trehalose can help liposomes retain as much as 100% of their original contents, so trehalose (a carbohydrate) in this method can be used as a freeze protectant	-	-
REV (Otake et al., 2001; Kaffé et al., 2020)	1- A one-step method for producing liposomes that do not make any toxic organic solvent 2- This method can lead to the production of LLI.V.s with the diameters of 0.1–1.2 μm 3- Have a high ability to trap both water-soluble and oil-soluble substances	-	-
Solvent dispersion method (Mozafari, 2005; Dua et al., 2012; Akbarzadeh et al., 2013)	Includes ether injection and 1- ethanol injection methods 2- Ether injection method, a solution of lipids dissolved in diethyl ether or ether/methanol mixture was injected gently into the aqueous solution. The temperature should be set at approximately 55–65°C, or the experiment should perform under reduced pressure. In later stages, under vacuum condition, ether is removed from the environment, and eventually, liposome will be fabricated 2- ethanol injection method: In this method, ethanol’s lipid solution is rapidly injected into a vast excess of the buffer. At this point, The M.L.V.s are formed immediately	Ether injection method 1- Heterogeneous nature of the synthesized liposomes (70–190 nm) 2- Exposure of compounds to relatively high temperatures 3- Exposure of encapsulated compounds to organic solvents 4- Injection method 1- Heterogeneous products (30–110 nm) 2- The fabricated liposomes are very dilute 3- It is difficult to remove all ethanol from the environment due to the formation of azoehptrop with water. Failure to completely remove ethanol from the reaction medium and formation of an azoehptrop with water may lead to inactivation of biologically different activities	-
saturated-phospholipids-based liposomes such as dipalmitoyl phosphatidylcholine lead to rigid and almost impermeable bilayer structures (AllenLiposomes, 1997; Sahoo and Labhasetwar, 2003). The most common liposomal system, in terms of its composition constituent, are presented in Table 5.

APPLICATION OF LIPOSOMES

As highly versatile nanoparticles, liposomes have been considered for many biomedical applications (Figure 2). Liposome as cholesterol and natural-non-toxic phospholipids-based spherical shape vesicles has provided many biomedical opportunities, especially for drug delivery ascribed to their biocompatibility, appropriate size, and suitable hydrophobic and hydrophilic character. Besides, the cosmetics industry has been vigorously affected by liposome formulations as they proposed many unique properties for drug carriers (Figueroa-Robles et al., 2020; Matole et al., 2020). On the other hand, the great potential application of liposomes should not be underestimated in the food and farming industries. Numerous studies have been conducting regarding liposome encapsulation to develop appropriate delivery systems to entrap unstable compounds. The ensnared invertebrate ingredients such as antimicrobials, antioxidants, hydrophobic, and hydrophilic compounds in liposome particles could be used to targeted delivery and prevent composition and functionality disruption (Benech et al., 2002; Shehata et al., 2008; Atrooz, 2011).

The nanoliposome is a favorable particle to develop cancer drug delivery systems due to its unique properties, including biocompatibility, biodegradability, and hydrophilic and lipophilic drug loading capability. Liposome-based structures have owned the most commercial delivery systems worldwide. There is various ongoing research regarding improvement drug toxicity and specific targeting with liposomes (Akbarzadeh et al., 2013).

In view of the admirable properties mentioned for liposomes, it has been extensively studied in drug delivery to cancerous and tumor tissues via two main approaches in terms of design to target tumor tissues: passive targeting and active targeting (Figure 3). Passive targeting is reliant on the physiological

Table 5: Liposome classification according to composition constituents.

Types	Feature
Conventional liposome	Spontaneously self-assembled phospholipids (Neutral/negative charge) in an aqueous medium. The fabricated liposomes have surrounded an aqueous medium (Zhao et al., 2005; Zaru et al., 2007; Meure et al., 2008)
Fusogenic liposome (FL)	The liposomal system is based on reconstitute Sendai virus (Nakanishi et al., 2000; Kunisawa et al., 2003)
Cationic liposome	Liposomes containing the cationic lipid (Dokka et al., 2000; Radwan Aimofti et al., 2003; Sioud and Sørensen, 2003)
Long circulating liposome	The obtained products can improve tissues localization. These types of liposomes are liposomes with neutral high transition temperature (Moghimi et al., 2001; Awasthi et al., 2003; Metselaar et al., 2003; Moghimi and Szebeni, 2003)
P.H. sensitive liposome	These liposomes usually contain phosphatidylethanolamine (P.E.) and titratable stabilizing amphiphiles that become unstable under acidic conditions (Jiménez et al., 2004)
Immunoliposome	Long-circulating liposomes that may contain monoclonal antibodies or their fragments (Fab') (Park et al., 2004; Hua, 2013)
characteristics of the tumor and the size of the nanoparticles. Cancer cells overexpress vascular endothelial growth factor (VEGF) due to their very high metabolism, which leads to excessive angiogenesis in tumor tissue. The vascular pores in the tumor tissue are larger than normal tissue, and the appropriate size of the liposomes enable them to circulate for a longer time in the circulatory system, so the anti-cancer drug nanosystem could target the tumor tissue (Zhu et al., 2017; Jeon et al., 2020; Liu et al., 2021). In addition, after the drug delivery system enters the cancerous tissue due to defects in the lymphatic system, the retention time of nanoparticles increases, which is not possible for the small drug molecules (Attia et al., 2019). In this method, the nanosystem is also coated with a biocompatible PEG polymer, which causes the escape of the reticuloendothelial (RES)
system and increases the circulation time in the circulatory system; effect of PEG is through shielding liposomes from opsonization (Suk et al., 2016; Nunes et al., 2019).

Despite the relatively good performance of passive targeting in increasing drug delivery to cancerous tissues, the optimum amount may still not reach the target tissue, or the drug may leak into normal tissues. Hence, researchers are using the active targeting method to enhance drug delivery to the target tissue. The basis of this method can be attributed to the functionalization of the liposome surface. Cancer cells need more nutrients because of their distinct metabolism. Therefore, some surface receptors are overexpressed on the surface of these cells. Targeted drug delivery to the cancerous tissue can be performed using this feature through specifically functionalizing liposome surface (Dana et al., 2020; Montaseri et al., 2020; Raj et al., 2021).

A comprehensive overview of liposomes’ applications in biomedicine is summarized in Table 6 according to the type of liposomes used.

Advantages and Disadvantages of Liposomes

Like any other carrier, liposomes have provided some advantages and disadvantages, too. The benefits of liposomes have been mentioned briefly in this text. As amphiphilic and non-ionic structures particle, liposomes offer an exceptional opportunity to deliver both water and lipid-soluble drugs. This feature has a significant priority in the pharmaceutical industry to develop new formulations (Abdelkader et al., 2014; Joshi et al., 2016). On the other hand, their inimitable structure frame enables researchers to fabricate both sustained and targeted drug delivery systems through controlling permeability, rigidity, size, and surface functionalization (Daraee et al., 2016; Jain and Jain, 2016).

Although liposomes can be administered through different routes, they are composed of biocompatible ingredients (Mansoori et al., 2012). One of the main limitations of drug distribution systems is the importance of biodegradable drug transport, which can be overcome through liposomal delivery that prevents drug oxidation (Manconi et al., 2016). It has been reported that liposomes can promote drug pharmacokinetics by eliminating and circulation life (Bhatt et al., 2018).

Despite all advantages, liposome-based structures have some limitation that prevents their widespread clinical use. The most significant obstacle is attributed to their physical and chemical stabilities (Bakker-Woudenberg, 2002). Among other essential impediments, low solubility in aqueous solutions (Li et al., 2019), short half-life time in body environment (Kshirsagar et al., 2005), high production cost (Noble et al., 2014), challenges in various tissue targeting due to the relatively large size of liposomes may cause (Santos et al., 2005), leakage and fusion of the loaded drugs (Joly et al., 2011), phospholipids oxidation and hydrolysis (Jain and Jain, 2016), rapidly detection by RES system (Daraee et al., 2016), and allergic reactions to some liposomal compounds (Mansoori et al., 2012), can be mentioned.

LIPOSOME STABILITY

One of the most critical challenges in liposome application is attributed to the relative instability in aqueous dispersions. The physical and chemical instability of liposomes can lead to unwanted side effects and efficacy reduction (Scrimgeour et al., 2005; Toh and Chiu, 2013); oxidation and hydrolysis are two primary mechanisms in the degradation of liposomes that
TABLE 6 | The use of liposome in biomedical applications.

Liposome type	Applications	Studies	
Conventional liposome	Drug delivery	Improving the therapeutic index of encapsulated doxorubicin (Hilmer et al., 2004; Papagiannaros et al., 2006)	
		Improving the therapeutic index of encapsulated amphotericin (Bern et al., 2008; Ellis et al., 2008)	
		Liposomes have been used for sustained release cytarabine (Dominguez et al., 2005; Benesch and Urban, 2008)	
	Cosmetics	Liposomes have been used for skin wound healing application as antifibrogenic effects through IFN-alpha 2b	
		encapsulation as cream formulation (Fuchseng et al., 2006)	
		Using liposomal hydrogel with polyvinylpyrrolidone iodine in the topical treatment of partial-thickness burn	
		wounds (Homann et al., 2007)	
	Vaccine adjuvant	NE and HBsAg in protein and DNA + protein have been entrapped into liposomes to induce immune response	
		for hepatis E and hepatis B (Shrivastava et al., 2009)	
		Lipid A-containing liposomes: A non-toxic adjuvant for the malaria sporozoite vaccine in humans (Alving et al., 2013)	
	Senors and Biosensors	Polydiacetylene liposome arrays for selective potassium detection (Lee et al., 2008)	
		Immobilized-liposome sensor system for detection of proteins under stress conditions (Jung et al., 2007)	
	Vaccine therapy	BLP2S liposome vaccine to treat non-small cell lung and prostate cancers (North and Butts, 2009)	
		P5 HER2/neu-derived peptide conjugated to liposomes containing M.P.L. adjuvant as an effective prophylactic	
		vaccine formulation for breast cancer (Farzad et al., 2019)	
		Liposomes containing interferon-gamma as an adjuvant in tumor cell vaccines (Van Slooten et al., 2003)	
Fusogenic liposome (FL)	Labeling	Novel fusogenic liposomes for fluorescent cell labeling and membrane modification (Ciszár et al., 2010)	
		Fusogenic liposomes for cell membrane labeling and visualization (Kleusch et al., 2012)	
		Intracellular delivery of carboxyl coated CoTe quantum dots mediated by fusogenic liposomes (Uria et al., 2013)	
	Gene transfer	Gene transfer with fusogenic liposomes containing vesicular stomatitis Virus G Glycoprotein (Shoji et al., 2004)	
		Subcellular trafficking of antisense oligonucleotides and down-regulation of BCL-2 gene expression in human	
		melanoma cells using a fusogenic liposome delivery system (Hu et al., 2002)	
		Transferring maternally administered fusogenic liposome-DNA complexes into monkey fetuses in a pregnancy	
		model (Hirano et al., 2002)	
Drug delivery		Fusogenic liposomes to deliver mucosal insulin (Goto et al., 2008)	
		Fusogenic liposomes containing diphtheria toxin fragment A to suppress tumor growth (Fang et al., 2005)	
		Transferring antibodies and doxorubicin to the cytoplasm based on fusogenic liposomes for the metastatic	
		treatment of breast cancer (Deng et al., 2011)	
Vaccine		Fusogenic liposome (F.L.) containing non-methylated CpG motif to increase antigen-specific immunity in mice	
		(Yoshikawa et al., 2008a)	
		Fusogenic liposomes (F.L) can efficiently deliver exogenous antigen through the cytoplasm into the MHC class I	
		processing pathway (Nakanishi et al., 2000)	
		Fusogenic liposomes have the potential to be used as an effective vaccine carrier for peptide vaccination	
		to induce cytotoxic T lymphocyte (CTL) response (Sugita et al., 2005)	
Vaccine therapy		Membrane fusogenic liposomes vaccine against melanoma that can produce both systemic immune and CTL	
		responses (Chang et al., 2004)	
		Versatile cancer immunotherapy using vaccine of fusogenic liposomes containing tumor cell-lysate against	
		murine B16Bl6 melanoma (Yoshikawa et al., 2008b)	
Cationic liposome	Gene delivery	Cationic liposomes to transmit human cystic fibrosis transmembrane conductance regulator (CFTR) gene to	
		mouse models of cystic fibrosis (CF) (Lee et al., 2012)	
		Cationic liposomes for co-delivery of small interfering R.N.A. and a M.E.K. inhibitor for enhanced antigen	
		efficacy (Kung et al., 2011)	
		Trilysinyl polyamide-based cationic liposomes for systemic co-delivery of siRNA and an anticancer drug	(Shim et al., 2011)
Drug delivery		Cationic liposomal doxorubicin (LPs-DOX) and paclitaxel (LPs-PTX) via electrostatic force to tumor cells (TRAMP-	
		C1, B16) and HUVEC cells in vitro (Chen et al., 2010)	
		Targeted delivery of cationic liposome-encapsulated paclitaxel (EndoTAG-1) for treating CNV (Gross et al., 2013)	
		Cationic liposomes containing doxilagagainst human SKOV-3 ovarian adenocarcinoma xenograft rat model (Jung et al., 2009)	
Vaccine adjuvant		Cationic liposomes containing mycobacterial lipids as Th1 Adjuvant (Rosenkrands et al., 2005)	
		Cationic liposomes based on dimethylendecacylammonium and synthetic cored protein from M. tuberculosis	
		(trehalose 6,6’-dibenenate)—A adjuvant inducing both strong CMI and antibody responses (Davidson et al., 2005)	
		Cationic liposomes as a potent adjuvant for DNA vaccine of human immunodeficiency virus type 1 (Qiao et al., 2016)	
Vaccine therapy		Cationic liposomes as an antitumor autologous Lewis lung cancer cell vaccine engineered to secrete mouse	
		Interleukin 27 (Zhang et al., 2013)	
		Cationic liposome-based synthetic long peptide vaccines lead to strongly activate functional, antigen-specific	
		CD8 + CD4 + T cells and induce in vivo cytotoxicity against melanoma and HPV-induced tumors in mice	(Varypataki et al., 2017)

(Continued on following page)
cause chemical instability (Carlson et al., 2006; Jung et al., 2006; Frenzel and Steffen-Heins, 2015). The oxidation process is very probable due to free radicals in fatty acids as an intrinsic compound where unsaturated fatty acids are more susceptible than the saturated fatty acids to this mechanism (Anderson and Omri, 2004; Tan et al., 2016). In the presence of acid- or base-catalyst, this process can occur either at the 1-acyl or at the 2-acyl position, which subsequently leads to lysophospholipids through free fatty acids generation, eventually undergoing hydrolysis to free fatty acids and creating phosphoglycerols (Patel and Panda, 2012; Frenzel and Steffen-Heins, 2015). The combination of membrane bilayers, aggregation, reduced retaining of encapsulated materials, and alteration can be mentioned as the causes for physical instability in liposomes (Karmali and Chaudhuri, 2007; Shim et al., 2013; Rahdar et al., 2019).

The administrated liposome fate and stability can be strongly affected by liposomes’ physicochemical characteristics, including bilayer membrane composition, size, rigidity, and charge (Portet and Dimova, 2010; Ghanbarzadeh et al., 2013; Ib and Corredig, 2013). The surface charge of liposomes can be positive, negative, or without electrical charge based on functional groups on liposomes’ surface at the environmental pH. As such, net-charge liposomes have represented the highest tendency to accumulate in the target tissue following systematic
administration due to the reticuloendothelial system’s low clearance. On the other hand, cationic liposomes are often used to transport negatively charged nucleic acids (Xia and Xu, 2005; El-Samaligy et al., 2006a; Demetzos, 2008; Fujisawa et al., 2012). The methods used to prepare liposomes significantly affect physical properties, such as the coating of active compounds’ size and efficiency. Various phenomena such as aggregation and mixing can affect material properties, such as particle size and particle size distribution, attributed to the accumulation of liposomal particles. It has been reported that particle size reduction can be used for achieving bioactive compounds with optimal bioavailability due to increasing specific surface area (Campbell et al., 2001; Miao et al., 2002; Ulrich, 2002; Silva et al., 2011). The smaller the liposomal size, easier it is to cross the membrane, but it can affect the liposomal properties, including decreasing the amount and efficiency of drug loading and reducing liposome stability by increasing the surface energy. The smaller the particle size distribution, the more uniform is the liposomes’ size and the more similar would be the products’ overall characteristics (Marsh, 2001; Yamauchi et al., 2007; Drin et al., 2008).

Another critical factor affecting the stability of liposomes is referred to lipid composition. Studies have shown that controlling solute retention by liposomes and circulation half-life can be strongly affected by liposomal membrane fluidity and composition manipulation. One of the most critical barriers to prevent the transfer of liposomal drugs from the bench scale to the pharmaceutical market is their physical and chemical instability during production and storing. The mechanically robust and well-filled bilayers diminish the oxidizing and hydrolyzing agents that eventually improve the structure stability through size distribution (Kunzelmann-Marche et al., 2002; Liu and Krieger, 2002; López-Revuelta et al., 2006; Giulimondi et al., 2019); composition of the bilayer membrane is one of the influential and essential factors in liposome stability. The lipid selection during liposome fabrication should be commensurate with the carrier’s composition (Jiménez-Escrig and Sánchez-Muniz, 2000; Scheffer et al., 2005; Zhao et al., 2015; Ricci et al., 2016).

The Effect of Cholesterol on Liposome Membrane Stability

Cholesterol is an organic sterol molecule with amphiphilic nature. Structurally, this molecule has a hydroxyl group that can form hydrogen bonds with phospholipids and bulky steroid ring with a flexible carbohydrate. Cholesterol is a 27-carbon molecule found in the eukaryotic cell membrane and its concentration in the cell membrane is about 30–50 mol% of the entire lipid compounds. Various vital roles have been attributed to cholesterol, including membrane permeability regulation, elasticity and stiffness, and membrane strength. Cholesterol is the most used sterol in the formulation of liposomes which can prevent liposome aggregation and improve the liposomal membrane’s stability (Jiménez-Escrig and Sánchez-Muniz, 2000; Scheffer et al., 2005; Sun et al., 2007; Ricci et al., 2016; Trucillo et al., 2017).

In view of the spherical 3-D structure, liposomes have shown more realistic fluidity and cell membrane mobility than lipid monolayers. Sterols, such as ergosterol, stigmasterol, lanosterol, β-sitosterol and cholesterol, have been added to liposomes to modulate membrane fluidity and improve the stability of the phospholipids bilayer and decrease permeation of the encapsulated active compounds. The sterol molecule is located inside the phospholipid’s bilayer. The sterol carbohydrate tail at C17 intermingles with the hydrophobic fatty acyl chains, while the sterol hydroxyl group attaches to the hydrophilic head group of phospholipids (Socaciu et al., 2000; Sodt et al., 2015; Zhao et al., 2015; Giulimondi et al., 2019). Cholesterol plays a vital role in the liposome’s composition. It is one of the most critical structural components in the mammalian cell plasma membrane. It has been proven that the fluidity and permeability of the artificial vesicle are strongly affected by cholesterol through hydrogen binding to fatty acids that eventually lead to increasing the cohesiveness and mechanical strength. Cholesterol is a critical regulator of lipid bilayer dynamics, and it is essential for the normal functioning of the cells. The reduction of passive permeability to small molecules results from cholesterol interaction with membrane phospholipids, increasing the membrane cohesion. According to experimental studies, cholesterol adding to liposome bilayers can prevent lipid exchange that can be counted as an additional stabilizing effect (Sun et al., 2007; Ricci et al., 2016; Trucillo et al., 2017).

The Relationship Between Cholesterol and Transition Temperature

Another significant factor in the arrangement of bilayers in the liposome is the degree of saturation in phospholipids and the chain length. The presence of sterols such as cholesterol, β-sitosterol, and related plant sterols can lead to the pre-transition temperature peak’s disappearance. The gel-to-liquid crystalline phase Tm has been reported to decrease by addition of the sterols. It can be stated that the orientation of cholesterol in the lipid bilayer has a determinative effect on the reduction of head group accumulation. In the low Tm, cholesterol leads to the crystallization of the hydrocarbon chains into the inflexible crystalline gel phase. While in the high Tm, the rigid cholesterol molecule can limit the movement of the hydrocarbon chains. It can be concluded that, by increasing the sterol concentration, decreases the enthalpy of the main phase transition (Silva et al., 2011; Wu et al., 2012; Ricci et al., 2016).

For example, in the case of the PC molecule, it has been stated that cholesterol at concentrations of more than 25% leads to an order-liquid phase, which is essential for the mobility of membrane compounds; inferred that cholesterol at high concentrations causes the decouples of positional and conformational degrees of freedom of phospholipid molecules. On the other hand, at low cholesterol concentrations below 10%, its effect on the bilayer phospholipid is very different; only a slight decrease in the Tm, the main phase transfer occurs. This means that cholesterol at low concentrations cannot disrupt the crystalline order, nor can it ultimately induce the acyl chains.
in the liquid phase. Cholesterol, therefore, functions as a surfactant molecule, which causes the formation of lipid domains thus increasing the dynamic membrane heterogeneity (Trandum et al., 2000; Pinilla et al., 2020).

The Role of Cholesterol in Retention of Drugs and Modulation of Phospholipid Packing
The cholesterol content has a critical role in drug retention as it implies its effect by raising the phospholipid packing, leading to bilayer permeability reduction to non-electrolytic and dielectrolysis solvents (Dos Santos et al., 2002; Johnston et al., 2007). It is believed that the underlying mechanism in a biological milieu may be related to the phospholipid and high-density lipoproteins exchange of the low-cholesterol or no-cholesterol content liposomes while in cholesterol-encompassing liposomes, the phospholipid motility has been limited that prevents lipoproteins loss (Kunzelmann-Marche et al., 2002; Liu and Krieger, 2002; López-Revuelta et al., 2006).

The phospholipid packing, the membrane fluidity, and the surface charge of liposomes can be modulated and adapted by the cholesterol content, affecting the particle size, encapsulation efficiency, and final morphology (Zhao et al., 2015; Ohvo-Rekilä et al., 2002). Studies have shown that cholesterol as a nonionic molecule has revealed interesting effects on the zeta potential, especially increasing the highest zeta potential of cationic molecule has revealed interesting effects on the zeta potential, increasing the mean size of liposomes’ tissue uptake (D’Avanzo et al., 2011; Johnstone et al., 2001; Moghimi and Patel, 2002). The cholesterol-based liposomal products are presented in Table 7.

The Optimum Cholesterol Concentration for Liposome’s Stability
The importance of cholesterol in liposome stability has been described earlier and schematically shows in Figure 3. However, the optimum concentration of cholesterol to attain a suitable formulation has not yet been elucidated. To make stable and regulated drug discharge means, lipids and cholesterol ratio screening arrangements in different studies can help. For the preparation of liposomes, some phospholipids are blended with varying molar ratios of cholesterol. The results of numerous studies have shown that the maximum amount of cholesterol that can be integrated into reconstructed bilayers is assumed to be ~50 mol%. The most frequently used proportion is the 2:1 ratio (e.g., two parts of lipids and one part of cholesterol) or 1:1 ratio; although the underlying reasons for using these ratios is still unknown (Marsh, 2001; Liang et al., 2007; Bruglia et al., 2015).

The essential mechanisms of the liposomal interaction with cells according to both, in vitro and in vivo studies have been summarized as:

1- Particular interfaces with cell-surface components such as electrostatic bonds and imprecise interactions, including feeble hydrophobic bonds
2- Endocytosis caused by cells of the reticuloendothelial system (RES), comprising neutrophils and macrophages
3- Combination with the plasma cell membrane by inclusion of the lipid bilayer of the liposome into the plasma membrane (Akbarzadeh et al., 2013)

Adjusting cholesterol levels can be a very influential factor in controlling the liposomal stability. This factor can be crucial in designing liposomes for practical use in biological systems in vivo and in vitro (Epstein et al., 2008). The most important commercial liposomes are depicted in Table 8.

CLINICAL TRIALS
Unlike most nanoparticles, which encounter serious challenges in entering the clinic for various reasons, including safety issues, liposomes are well accepted in the clinic, first liposome-based drug being approved was Doxil® (Anselmo and Mitragotri, 2015; Bulbake et al., 2017; Singh et al., 2020), a liposome-based Doxorubicin formulation that has been FDA approved in 1995 for the United States market to treat ovarian cancer and AIDS-related Kaposi’s sarcoma. Subsequently, various other liposomal-based drugs have been commercialized, such as DaunoXome®, for the delivery of daunorubicin, approved in 1996 to manage advanced HIV-associated Kaposi’s sarcoma and several different formulations (Khadke et al., 2020).

Currently, many efforts are underway to develop lipid formulations for entry in to the clinics in various fields. To
TABLE 7 | Cholesterol-based liposomal products.

Drug compounds	Composition	The purpose of using cholesterol
Vitamin E (Samuni et al., 2000)	EPC + PUFA + cholesterol	1- Increasing the storage time by reducing physical and chemical changes: a- Decreasing the lipid-bilayer hydration 2- Reduction in oxidative levels
5(6)carboxyfluorescein 5(6) (CF) (Liang et al., 2007)	DPPC + cholesterol	1- Increasing physical stability and reducing liposome deformity 2- Drug release 3- Prolonged blood circulation in vivo
Epirubicin (Wang et al., 2010)	CHCS + phosphatidylcholine + cholesterol	1- Physical stability
Doxorubicin (Zhao et al., 2007)	mPEG-DSPE + HSPC + cholesterol	1- Inhibiting aggregation through the steric barrier 2- Prolonged blood circulation in vivo
CF (Abu-Dahab et al., 2001)	DPPC + LC-Biotin-DPPE + cholesterol	1- Enhancing the stability
Paclitaxel (Liang et al., 2007)	SPC + EPC + PE + DSPC + DPPC + HPC + cholesterol	1- Improving physicochemical stability 2- Increasing drug loading by 3- Increasing retained drug 4- Improving therapeutic activity
Vinorelbine (Semple et al., 2005)	SM + cholesterol	1- Improving drug retention 2- Prolongation of plasma 3- Circulation time 4- Improving therapeutic activity
Curcumin (Chen et al., 2009)	DMPC + DMPG + cholesterol	1- Improving the bioavailability and efficacy of drug-containing liposomes
Vincristine (Liang et al., 2008)	PC + OQCMC + cholesterol	1- Good physical form
Tenofovir (Ku et al., 2011)	DMPC + DPPC + DSPC + DPTAP + cholesterol	1- Reducing the membrane permeability 2- Preventing the formation of ion channels in the crystalline phase of the membrane of the liquid
Amphotericin B (Matsuoka and Murata, 2002)	POPC + EPC + FCCP + cholesterol	1- Inhibiting AmB-induced membrane permeability 2- An increase in the mean particle size 3- Eliminating the phase-transition temperature (Tc) peak of DPPC and thus the range of the gel state of vesicles increased 4- Preventing the partial dilution of the bilayers 5- Decreasing permeability and making more rigid
Minoxidil (M) (López-Pinto et al., 2005)	α-DPPC + cholesterol	1- Increasing the drug-entrapment percentage, due to the stabilizing effect of cholesterol into the lipid bilayers 2- Increasing the drug-entrapment percentage, due to the stabilizing effect of cholesterol into the lipid bilayers
CLX (celecoxib) (Deriz et al., 2010)	DSPC + cholesterol	1- Reducing phase transition temperature (Tm) 2- Encapsulation efficiency, loading, and releasing CLX decreased with the increasing cholesterol content 3- Increasing drug retention
Acetzolamide (Hathout et al., 2007)	PC + cholesterol + SA + DP	1- Increasing drug loading by 2- Increasing cholesterol 3- Increasing Physical stability
Slymarin (El-Samaligy et al., 2006b)	Lecithin Soya + SA + DP + cholesterol	4- Increasing retained drug
Dithranol (Agarwal et al., 2001)	phosphatidyl choline + DCP + cholesterol	2- Increasing drug loading by a specific limit produced a decrease in encapsulation efficiency 3- Increasing retained drug
Ciprofloxacin (Hosny, 2010)	PC + cholesterol	1- Optimal encapsulation efficiency by increasing a certain amount of C.H. content 2- Improving prolonged drug 3- Agent helping to control drug release

Note: CF, carboxyfluorescein; CLX, celecoxib; EPC, Ethanolamine phosphatidylcholine; PUFA, Polyunsaturated fatty acids; DPPC, Dipalmitoyl phosphatidylcholine; PEG-DSPE, Distearoyl-sn-glycero-3-phosphoethanolamine-Polyethylene glycol glycol; HSPC, Hydrogenated soybean phosphatidylcholine; LC-Biotin-DPPE, N-(biotinyl)amino)hexanoyl)dipalmitoyl-α-DPPC, α-dipalmitoylphosphatidylcholine; SPC, Sphingosyl phosphorylcholine; PE, phosphatidyl-ethanolamine; DSPC, Distearoyl L-3-phosphatidylcholine; HPC, hydrogenated soybean phosphatidylcholine; SM, sphingomyelin; DMPC, dimyristoylphosphatidylcholine; DMPG, dimyristoylphosphatidylglycerol; PC, phosphatidylcholine; OQCMC, octadecyl quaternized carboxymethyl chitosan; DPTAP, 1,2-dipalmitoyl-3-trimethylammonium-propane; POPC, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine; EPC, Egg yolk phosphatidylcholine; FCCP, carbonyl cyanid-3-fluorochromophenyl hydradrene; a-DPPC, a-dipalmitoylphosphatidylcholine; SA, stearylamine; DP, dicetyl phosphate; DCP, Dicetyl phosphate.

Examine the clinical phase studies of liposome-based structures, the term “liposome” was searched from the PubMed database pertaining to various studies related to the clinical phases in the last year. In one study, the effect of liposomal amphotericin B formulation as an antifungal agent was investigated in patients with hematological malignancies with neutropenia and persistent fever (Yoshida et al., 2020). Because fungal infections subsequent to the chemotherapy in patients with neutropenia are considered a severe complication, and as the use of common antifungal drugs is highly toxic, eliminating this life-threatening complication is very important. The usage of 3 mg/kg/day liposomal amphotericin B concentration for patients was compared with itraconazole; results showed no difference between the liposomal amphotericin B and itraconazole regarding the efficacy and safety in antifungal therapy in hematological malignancy patients (Yoshida et al., 2020).
Liposomal compounds are known to be very effective in treating cancer. Recently, another liposomal system has been proposed for the treatment of acute myeloid leukemia wherein the Vyxeos liposome in phase III clinical was examined. This liposomal system comprise two different topoisoenzyme II inhibitors known as daunorubicin and cytarabine, which included 1 and 0.44 mg in every 1 unit of liposome formulation. The study was performed on elderly patients with untreated acute myeloid leukemia where a higher survival rate for patients treated with the liposomal formulation was discerned than for standard chemotherapy, although some side effects have been reported for the use of this formulation (Tzogani et al., 2020).

Conclusion

Health and medical issues and problems have always been one of the main areas of interest for scientists. Applying new methods for solving medical problems requires introducing new and efficient materials and tools that address relevant questions and issues. Liposomes have been extensively studied since their introduction, and their potential biomedical use has been well demonstrated. The unique properties of liposomes, including biocompatibility, biodegradability, amphiphilic nature, low toxicity, non-ionicity, sustained release, and active targeting, have made them one of the most widely used nanoparticles. Currently, the most commercialized nanoparticles in the field of drug delivery and cosmetics are related to liposomes. However, they still have some shortcomings that need to be addressed for clinical and pharmaceutical use. As mentioned earlier, since Doxil® introduced in 1995, many efforts have been made to bring these versatile nanomaterials to the clinic; however, their structure still needs to be optimized to reduce some complications. One approach to increase liposomes' efficiency, especially concerning cancers therapy, is the use of RGD which can be anchored to liposome surfaces or via self-assembly means (Cheng and Ji, 2019). This strategy has been proposed to reduce the side effects of liposomal drugs, as the clinical trial sometimes suffers from, including acute infusion reaction and hand-foot syndrome (HFS). Hence future studies must include new procedures to reduce safety problems (He and Tang, 2018; Cheng and Ji, 2019). Since varying combinations of liposomes can provide unique and distinctive properties, exciting suggestions have been propositioned in the field of novel drug delivery systems, such as nose-to-brain direct drug transport using liposome formulation based on DTE and DTP ingredients (Hong et al., 2019).

However, one of the most critical challenges that liposomes encounter is their physical and chemical instability. Various factors such as environmental conditions, manufacturing method, components characteristics, lipid type, and the absence or presence of cholesterol affect liposomes’ stability. The vital need for the development of liposomes with high stability significantly impacts their clinical application. Cholesterol has been shown to increase liposome stability through various mechanisms, including increased retention time, modulating phospholipid packing, Tm, and plasma stability. However, the optimal amount of cholesterol has not yet been identified. Future field research should be based on the principle of finding the optimal amount of cholesterol in liposome production. Notably, cholesterol still tend to maintain membrane’s fluidity as its concentration is increased and decreased. Therefore, the amount of cholesterol and the type of liposome constituents need further investigation. In this context, simulation and computational studies may prove to be very helpful. Hashemzadeh et al. (2020a) have investigated DSPC and DPPS effect on liposome stability through a simulation study which revealed that DSPC preserves its structure shape due to the cylindrical geometric structure and small-size head group, while the DPPS was causing liposome turnover into micelle structure because of its conical geometric design with the larger head group. Such studies regarding cholesterol’s effect on liposome stability via simulation investigations would be highly desirable.

Author Contributions

All authors contributed to the conception and the main idea of the work. MJ, NB, FB, HK, AH, and FM drafted the main text, figures, and tables. MJ supervised the work and provided the final version of the work to be published.
Antigen-specific Immunity in Mice. *Biol. Pharm. Bull.* 29 (1), 105–109. doi:10.1248/bpb.29.105

Yoshikawa, T., Okada, N., Tsujino, M., Gao, J.-Q., Hayashi, A., Tsutsumi, Y., et al. (2006). Vaccine Efficacy of Fusogenic Liposomes Containing Tumor Cell-Lysate against Murine B16BL6 Melanoma. *Biol. Pharm. Bull.* 29 (1), 100–104. doi:10.1248/bpb.29.100

Yu, F., and Tang, X. (2016). Novel Long-Circulating Liposomes Consisting of PEG Modified β-Sitosterol for Gambogic Acid Delivery. *J. nanosci nanotechnol* 16 (3), 3115–3121. doi:10.1166/jnn.2016.12405

Yu, J. Y., Chuesiang, P., Shin, G. H., and Park, H. J. (2021). Post-processing Techniques for the Improvement of Liposome Stability. *Pharmaceutics* 13 (7), 1023. doi:10.3390/pharmaceutics13071023

Yu, T., Ji, P., and Zhao, W. M. (2015). Preparation of Baicalein Liposome-Lyophilized Powder and its Pharmacokinetics Study. *Zhong Yao Cai* 38 (11), 2404–2407.

Yuba, E. (2020). Development of Functional Liposomes by Modification of Stimuli-Responsive Materials and Their Biomedical Applications. *J. Mater. Chem. B* 8 (6), 1093–1107. doi:10.1039/c9tb02470k

Yuba, E., Kanda, Y., Yoshizaki, Y., Teranishi, R., Harada, A., Sugiura, K., et al. (2015). pH-sensitive Polymer-Liposome-Based Antigen Delivery Systems Potentiated with Interferon-γ Gene Lipoplex for Efficient Cancer Immunotherapy. *Biomaterials* 67, 214–224. doi:10.1016/j.biomaterials.2015.07.031

Zaru, M., Mourtas, S., Klepetsanis, P., Fadda, A. M., and Antimisiaris, S. G. (2007). Liposomes for Drug Delivery to the Lungs by Nebulization. *Eur. J. Pharmaceutics Biopharmaceutics* 67 (3), 655–666. doi:10.1016/j.ejpb.2007.04.005

Zhang, J., Chen, Y., Li, X., Liang, X., and Luo, X. (2016). The Influence of Different Long-Circulating Materials on the Pharmacokinetics of Liposomal Vincristine Sulfate. *Int. J. Nanomedicine* 11, 4187–4197. doi:10.2147/IJN.S109547

Zhang, J., Tian, H., Li, C., Cheng, L., Zhang, S., Zhang, X., et al. (2013). Antitumor Effects Obtained by Autologous Lewis Lung Cancer Cell Vaccine Engineered to Secrete Mouse Interleukin 27 by Means of Cathionic Liposome. *Mol. Immunol.* 55 (3–4), 264–274. doi:10.1016/j.molimm.2013.02.006

Zhang, J. A., and Pawelchak, J. (2000). Effect of pH, Ionic Strength and Oxygen burden on the Chemical Stability of EPC/cholesterol Liposomes under Accelerated Conditions. Part I: Lipid Hydrolysis. *Eur. J. Pharm. Biopharm.* 50 (3), 357–364. doi:10.1016/s0939-6411(00)00127-2

Zhao, L., Temelli, F., Curtis, J. M., and Chen, L. (2015). Preparation of Liposomes Using Supercritical Carbon Dioxide Technology: Effects of Phospholipids and Sterols. *Food Res. Int.* 77, 63–72. doi:10.1016/j.foodres.2015.07.006

Zhao, X. B., Muthusamy, N., Byrd, J. C., and Lee, R. J. (2007). Cholesterol as a Bilayer Anchor for PEGylation and Targeting Ligand in Folate-receptor-targeted Liposomes. *J. Pharm. Sci.* 96 (9), 2424–2435. doi:10.1002/jps.20885

Zhao, Y.-Z., Liang, H.-D., Mei, X.-G., and Halliwell, M. (2005). Preparation, Characterization and In Vivo Observation of Phospholipid-Based Gas-Filled Microbubbles Containing Huirudin. *Ultrasound Med. Biol.* 31 (9), 1237–1243. doi:10.1016/j.ultrasmedbio.2005.05.007

Zhu, R., Wang, Z., Liang, P., He, X., Zhuang, X., Huang, R., et al. (2017). Efficient VEGF Targeting Delivery of DOX Using Bevacizumab Conjugated SiO2@LDH for Anti-neuroblastoma Therapy. *Acta Biomater.* 63, 163–180. doi:10.1016/j.actbio.2017.09.009

Zupančič, Š., Kocbek, P., Zariwala, M. G., Renshaw, D., Gul, M. O., Elsaid, Z., et al. (2014). Design and Development of Novel Mitochondrial Targeted Nanocarriers, DQAsomes for Curcumin Inhalation. *Mol. Pharm.* 11 (7), 2334–2345. doi:10.1021/mp500003q

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2021 Nakhaei, Margiana, Bokov, Abdelbasset, Jadidi Kouhbanani, Varma, Marofi, Jarahian and Beheshtkhoo. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.