TITLE:
Symplectic capacity and short periodic billiard trajectory
(Abstract_要旨)

AUTHOR(S):
Irie, Kei

CITATION:
Irie, Kei. Symplectic capacity and short periodic billiard trajectory. 京都大学, 2012, 博士(理学)

ISSUE DATE:
2012-07-23

URL:
http://hdl.handle.net/2433/159415

RIGHT:
Symplectic capacity and short periodic billiard trajectory

（シンプレクティック容量と短い周期ビリヤード軌道）
Symplectic capacity and short periodic billiard trajectory

n 次元ユークリッド空間の有界領域 Ω に対して，$\Omega \times S^{n-1}$ 上のビリヤードと呼ばれる力学系が定まる．

これは，$p \in \Omega$ と $V \in S^{n-1}$ を出発点とした時刻 t の値 $\varphi_t(p, V)$ を次のように定めるものである．

p から V 方向に直線的に進む．ただし，境界 Ω にぶつかったときは，光と同様に，境界で反射させる．長さ t だけ進んだときの位置と方向が $\varphi_t(p, V)$ である．

ビリヤードは力学系理論で古くから重要な例であり，多くの研究がある．また，周期軌道の研究は力学系の研究で中心的な位置を占めている．入江の学位論文は，ビリヤードの周期軌道について，重要な新結果を与えるもので，次のように述べられる．有界領域 Ω に対して，$r(\Omega)$ という正の数を

$$r(\Omega) = \sup \{ r \geq 0 \mid \exists x \in \Omega \ B(x, r) \subset \Omega \}$$

と定める．ここで，$B(x, r)$ は x を中心とした半径 r の球体である．

定理：Ω に対するビリヤード力学系には，長さ $|\gamma|$ が

$$|\gamma| \leq C_n r(\Omega)$$

と評価され bounds が $n+1$ 以下の周期軌道 γ が存在する．

ここで周期軌道の bounds とは，1 周期の間に，境界で反射をする数をあらわす．

$r(\Omega)$ はリーマン多様体の単射半径の類似と見なされる量であるので，定理は，リーマン幾何学の最短測地線の長さを単射半径で評価する古典的な式（たとえば，非正曲率空間の最短測地線は単射半径の 2 倍以下）に対応する．

入江以前に知られていた評価式は

$$|\gamma| \leq C_n (\text{Vol}(\Omega))^{1/n}$$

である．(Viterbo)．ここで，Vol(Ω) は Ω の体積．(??) から Viterbo の評価式が容易に得られるが，たとえば，細長い長方形のように，体積は大きいが，$r(\Omega)$ が小さい領域はが存在するので，入江の結果は Viterbo の結果を真に含んでいる．

以上が本論文の主要結果である。
（論文審査の結果の要旨）

入江慶の博士論文は、ビリアード力学系の周期軌道というハミルトン力学系の古典的かつ基本的な問題に、新しい重要な内容を付け加えた論文である。

入江の証明はシンプレクティックホモロジーを用いて、シンプレクティック容量を評価するという、現在急速に発展している擬正則曲線を用いるシンプレクティックトポロジーの方法によってある。

シンプレクティックトポロジーの論文は多く書かれているが、その手法を使って、古典的な問題に明確な新結果を与える事は決して容易な物ではなく、それを見事に成功している論文は決して多くない。

入江が示した定理は、クリンゲンベルグらの、リーマン幾何学でのカットトロー平板の距離と閉路線の長さの関係を与える定理（多くのリーマン幾何学の教科書に載っている重要な定理）のビリアード版と言える定理であり、その重要性は一目で明らかである。

今回の論文の主定理はもっとも基本的なユークリッド空間の領域にたいするものであるが、曲があったリーマン多様体の場合にも入江は研究を進めている。

証明においても、シンプレクティックホモロジーとシンプレクティック容量に関する重要な部分を明示的に書かれていない部分をしっかりと証明するだけでなく、新しいアイデアをいろいろと導入している。

特に、ハミルトン力学系のフレーバーホモロジーの被覆写像に関する振る舞いを使うという方法は、斬新であり、いままで全くみられなかったアイデアである。

さらに入江は、トーラスから1点を除いた空間の不変被覆空間がユークリッド空間から格子を除いたものになるという事実および主定理に現れる$r(\Omega)$という量が、図形Ωを少しゆがめる事で、1辺の長さがrの格子の補集合に埋め込むことと、結びつくという、興味深い幾何学的考察を行う事で、主定理を証明している。

このように、本論文は、現在急速に発展しているシンプレクティックトポロジーの方法を、独創的なアイデアを用いて、古典的な問題に応用した論文であり、その価値は大変高い。

よって、大学院在学5年未満であるが、本論文は博士（理学）の学位論文として価値あるものと認める。また、論文内容とそれに関連した事項について平成24年5月28日に試問を行った結果、合格と認めた。