PESTO: Switching Point based Dynamic and Relative Positional Encoding for Code-Mixed Languages

Mohsin Ali1 \quad Kandukuri Sai Teja1 \quad Sumanth Manduru1 \quad Parth Patwa2 \quad Amitava Das3,4

IIIT Sri City, India1 \quad UCLA, USA2 \quad Wipro AI Labs, India3 \quad AI Institute, University of South Carolina, USA4

\{mohsinali.m18, saiteja.k18, sumanth.m15\}@iiits.in, parthpatwa@ucla.edu, amitava.das2@wipro.com

Abstract

NLP applications for code-mixed (CM) or mix-lingual text have gained a significant momentum recently, the main reason being the prevalence of language mixing in social media communications in multi-lingual societies like India, Mexico, Europe, parts of USA etc. Word embeddings are basic building blocks of any NLP system today, yet, word embedding for CM languages is an unexplored territory. The major bottleneck for CM word embeddings is switching points, where the language switches. These locations lack in contextually and statistical systems fail to model this phenomena due to high variance in the seen examples. In this paper we present our initial observations on applying switching point based positional encoding techniques for CM language, specifically Hinglish (Hindi - English). Results are only marginally better than SOTA, but it is evident that positional encoding could be an effective way to train position sensitive language models for CM text.

Switching Points: The Bottleneck

Switching Points (SPs) are the positions in CM text, where the language switches. Consider the text - \textit{aap request hain}\textit{hi} (request you to). Here, when the language switches. These locations lack in contextually and statistical systems fail to model this phenomena due to high variance in the seen examples. In this paper we present our initial observations on applying switching point based positional encoding techniques for CM language, specifically Hinglish (Hindi - English). Results are only marginally better than SOTA, but it is evident that positional encoding could be an effective way to train position sensitive language models for CM text.

Background - Dataset and Positional Encoding

Data and SOTA: The SentiMix task @ SemEval 2020 Patwa et al. (2020) released 20K Hinglish tweets, are annotated with word-level languages and sentence-level sentiment i.e., positive, negative, neutral. Liu et al. (2020a) achieved the SOTA (75% f1 score) by fine-tuning a pre-trained XLM-R using adversarial training.

Vaswani et al. (2017) introduced Positional Encoding (PE) for language modeling. PE serves as an added feature along with the word embeddings, providing both \textit{relative} and \textit{absolute} positional relations between a target word and its context words.

Absolute Positional Encoding (APE)

Sinusoidal PE: - A predefined sinusoidal vector \(p_i \in R^d\) is assigned to each position \(i\). This \(p_i\) is added to the word embedding \(w_i \in R^d\) at position \(i\), and \(w_i + p_i\) is used as input to the model. In this way, the Transformer can differentiate the words coming from different positions and assign each token position-dependent attention Vaswani et al. (2017). Sin/cos functions are used interchangeably to capture odd/even numbered positional words in a sequence - equation 1

\[
\alpha_{ij}^{\text{abs}} = \frac{1}{\sqrt{d}} ((w_i + p_i) W^Q,1) (w_j + p_j) W^K,1)^T
\] (1)

Dynamic PE: - Instead of using periodical functions like \(\sin/cos\), Liu et al. (2020b), proposed to learn a dynamic function at every encoder layer that can represent the positional info. A function \(\theta(i)\) is introduced which can learn positional info with gradient flow. - equation 2

\[
\alpha_{ij} = \frac{1}{\sqrt{d}} ((w_i + \theta(i)) W^Q,1) (w_j + \theta(j)) W^K,1)^T
\] (2)

Relative Positional Encoding (RPE)

Shaw, Uszkoreit, and Vaswani (2018) introduced a learnable parameter \(a_{j-i}\) which learns the positional representation of the relative position \(j-i\) at encoder layer \(l\). This helps the model to capture relative word orders explicitly - equation 3

\[
\alpha_{ij}^{\text{rel}} = \frac{1}{\sqrt{d}} ((w_i)^l W^Q,l) (w_j)^l W^K,l + a_{j-i}^l)^T
\] (3)

Switching Point based Positional Encoding

We introduce a novel, switching point based PE. Consider the Hinglish sequence - \textit{gaay\textit{hi}}\textit{aur\textit{hi}}\textit{dance\textit{en}}\textit{kar\textit{hi}}. SP based indices (SPI) - i) We set the index to 0 whenever an SP occurs. Indexing would normally be \(= \{0,1,2,3\}\), we change it to \(= \{0,1,0,0\}\). ii) We consider Hindi as our base language and English as the mixed language. We set the index to 0 only when the shift is from base language (\(L_1\)) to the mixed language (\(L_2\)). So, the resultant index would be \(= \{0,1,0,1\}\).
Switching Point based Dynamic PE (SPDPE)

We introduce a function $S(l_i)$, which takes the word level language labels as input and returns SPI. Instead of passing an index directly as i to θ, we use $\theta(S(l_i))$ to dynamically learn the PE based on SPI - equation 4.

$$\alpha_{ij} = \frac{1}{\sqrt{d}} (w_i + \theta(S(l_i))) W^{Q,1} (w_j + \theta(S(l_j))) W^{K,1})^T$$ (4)

PESTO - Switching Point based Dynamic and Relative PE (SPDRE)

Here, in addition to the SPDPE, we use a learning parameter a'_{j-i}, which encodes the relative position $j-i$ at the encoder layer l. This encoding approach learns representations dynamically based on SPs along with the embedding a'_{j-i} so that it can also capture relative word orders (equation 5).

$$\alpha_{ij} = \frac{1}{\sqrt{d}} (w_i + \theta(S(l_i)))^l W^{Q,l} (w_j + \theta(S(l_j)))^l W^{K,l} + a'_{j-i})^T$$ (5)

Models

Baselines - Word2Vec, Multi Head Attention (MHA): We choose Word2Vec as the baseline since it does not capture position info. We also choose attention mechanism, which is widely used to capture relational dependencies, to see its effects over SPs. We experiment with two lengths - i) Length 3 to capture the local window of dependency, whereas, ii) 12 to see whether it can learn anything from the whole sentence. 12 is the average length of sentences in our corpus.

PESTO Overall Architecture: The local dependencies from skipgram Word2Vec (trained from scratch) along with SPI obtained from SPDRE are passed to a 12 headed transformer encoder layer. On top of the transformer, a 1D CNN is used to get the sentence level representation. We also obtain the sentence embedding using tf-idf weighted average of Word2Vec embeddings. Finally, we concatenate the representations of the CNN and the tf-idf sentence embedding and pass it to a dense layer which applies softmax to predict the sentiment. The architecture of PESTO is shown in Fig. 1. We train the entire model (2 encoder layers) from scratch, without using any pre-trained model.

Results

PESTO achieves 75.56% F1 score and outperforms SOTA (Tab. 1). The main reason for this is learning SP by aggregating both relative and dynamic PE with a variable length MHA framework. PESTO is able to generate more thrust to the switching point weather_{EN} achaata_{HI} (Fig. 2). The experiments were conducted on google Colab. The code is available at https://github.com/mohammedmohsinali/PESTO.

Conclusion

In this paper we report initial experiments on Hinglish sentiment analysis problem through the lens of language modeling. We argued SPs are the major bottleneck for CM. Our contribution could be seen as following - i) We introduce the idea of switching-point based positional encoding. i) We propose a relative switching point dynamic positional encoding technique named PESTO, which yields better results than SOTA. iii) It is also noteworthy that our model - PESTO achieves SOTA results without any pre-trained heavy language model, whereas all the SOTA models in the SentiMix task used models like BERT, or XLNet.

References

Liu, J.; et al. 2020a. kk2018 at SemEval-2020 Task 9: Adversarial Training for Code-Mixing Sentiment Classification. In SemEval.
Liu, X.; et al. 2020b. Learning to Encode Position for Transformer with Continuous Dynamical Model. In ICMLE 2020.
Patwa, P.; et al. 2020. SemEval-2020 Task 9: Overview of Sentiment Analysis of Code-Mixed Tweets. In SemEval 2020.
Shaw, P.; Uszkoreit, J.; and Vaswani, A. 2018. Self-Attention with Relative Position Representations. In NAACL 2018.
Vaswani, A.; et al. 2017. Attention Is All You Need. In NeurIPS.

Models Positional Representation	F1 (%)			
Word2Vec + LSTM	Sim/Cos	Index	SPI	Relative
ELMO				
BERT	✓			
3HA with Sinusoidal PE	✓	✓		
3HA with Dynamic PE	✓	✓		
12HA with Dynamic PE+RPE	✓	✓	✓	75.56
12HA with RPE	✓	✓	✓	73.4
12HA with SPDPE	✓	✓	✓	73.52
SOTA (Liu et al. 2020a)	✓	✓	✓	75
PESTO (12HA with SPDRE)	✓	✓	✓	75.56

Figure 1: PESTO - Proposed model for Relative Switching Point based Dynamic Positional Representation for CM text.

Figure 2: PESTO not only differentiates words coming from different positions, but also pays high attention to the SPs like weather_{EN} and achaata_{HI}.