This paper provides information related to the sensor measurements obtained from five different unreinforced masonry (URM) walls subjected to incremental dynamic shake-table tests at EUCENTRE, Pavia, Italy. This information has been made available to assist in the development and calibration of analytical and numerical models intended to simulate the out-of-plane (OOP) two-way bending response of URM walls. For further interpretation of the sensor recordings, and for a detailed discussion on the observed seismic performance of the specimens, the reader is referred to the article entitled “Experimental Response of URM Single Leaf and Cavity Walls in Out-Of-Plane Two-Way Bending Generated by Seismic Excitation” [1]. Videos documenting the failure of each specimen are also available on YouTube [2].

© 2019 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Data corresponding to incremental dynamic testing of five full-scale URM walls is provided. Each specimen was densely instrumented with various sensors measuring accelerations and displacements throughout the testing sequence. The locations of these sensors and their operating status throughout the testing sequence (Table 4 of reference article [1]) is provided in Tables 1–5 and Figs. 2–6. Figs. 2–6 also provide information on the mass distribution assumed to compute the provided inertial force associated with each specimen. The recorded data is organized into folders with each folder corresponding to a single specimen. Each folder contains several files with a single file containing the data of all instruments recording in a particular test. The name of each file provides information about which test of the testing sequence it contains data of. Within each .txt file, the first column corresponds to a time vector whereas all other columns correspond to instrument readings. All data acquired was filtered from frequencies higher than 50 Hz. All recordings of accelerations and forces are provided in units of g and kN, respectively while displacements are given in mm.

2. Experimental design, materials, and methods

This article presents the experimental data obtained from incremental dynamic testing of five full-scale URM walls subjected to two-way bending OOP seismic excitation. Four full scale URM walls

Specifications table

Subject area	Engineering
More specific subject area	Structural dynamics, Earthquake engineering
Type of data	Tables, figures, videos and recordings from instruments (acceleration, displacement and force time histories)
How data was acquired	The specimens were instrumented with accelerometers, wire potentiometers, linear potentiometers, and a three-dimensional motion-capture system was used for recording their response during testing.
Data format	Filtered and processed time histories: .txt files
Experimental factors	Specimens were U shaped: consisting of an out-of-plane panel and two return walls. Their materials can be considered representative of the URM building stock of the Groningen province of the Netherlands
Experimental features	Incremental unidirectional dynamic shake-table tests were performed up to near-collapse or collapse conditions of the specimens, using input ground motions compatible with induced-seismicity scenario for the Groningen region of the Netherlands
Data source location	The tests were carried out at the laboratory facilities of the European Centre for Training and Research in Earthquake Engineering (EUCENTRE) based in Pavia, Italy
Data accessibility	All recorded data (acceleration and displacement time histories) included with this article can also be requested on the EUCENTRE repository at the URL www.eucentre.it/nam-project/?lang=en
Related research article	Graziotti F, Tomassetti U, Sharma S, Grotti L, Magenes G. Experimental response of URM single leaf and cavity walls in out-of-plane two-way bending generated by seismic excitation. Construction and Building Materials. 195, 2019, 650–670.; https://doi.org/10.1016/j.conbuildmat.2018.10.076 [1]

Value of the data

- The data provides detailed information about the dynamic response of URM walls in two-way bending. It may serve as a benchmark for the development as well as calibration of numerical models to simulate the response of URM in the out-of-plane direction (e.g. Refs. [4–6]).
- The data can also be used to validate simplified analytical methods to assess the response of URM in the out-of-plane direction.
- The data may serve to evaluate the effectiveness of the test setup.

1. Data

Data corresponding to incremental dynamic testing of five full-scale URM walls is provided. Each specimen was densely instrumented with various sensors measuring accelerations and displacements throughout the testing sequence. The locations of these sensors and their operating status throughout the testing sequence (Table 4 of reference article [1]) is provided in Tables 1–5 and Figs. 2–6. Figs. 2–6 also provide information on the mass distribution assumed to compute the provided inertial force associated with each specimen. The recorded data is organized into folders with each folder corresponding to a single specimen. Each folder contains several files with a single file containing the data of all instruments recording in a particular test. The name of each file provides information about which test of the testing sequence it contains data of. Within each .txt file, the first column corresponds to a time vector whereas all other columns correspond to instrument readings. All data acquired was filtered from frequencies higher than 50 Hz. All recordings of accelerations and forces are provided in units of g and kN, respectively while displacements are given in mm.
(single leaf as well as cavity) were also previously tested by the authors under one-way bending excitation \[3\]. The data acquired from such tests may represent a benchmark for the development as well as calibration of numerical models to simulate the response of URM in the out-of-plane direction (e.g. Refs. \[4\]–\[6\]). This experimental data can also provide valuable insights on the comparison between results observed for walls with that of local two-way-bending failures observed in full-scale buildings (e.g. Tomassetti et al. \[7\]).

The five tested walls represent the first full-scale URM walls tested up to collapse that have been reported in literature. Three of these specimens were constructed in calcium silicate masonry (CS),

![Figure 1](https://via.placeholder.com/150)

Table 1

CS-010/005-RR data organisation.

Col.	Instr.	Description	Offline Location	Associated Mass
			X [mm] Z [mm]	1st [kg] 2nd [kg] 3rd [kg]
1	–	‘Time [s]’	–	–
2	Acc.	‘Shake Table Acc. [g]’	–	–
3	Acc.	‘Foundation Acc. [g]’	–	449 449 284
4	Acc.	‘Frame Acc. [g]’	–	–
5	Acc.	‘Side A Beam Acc. [g]’	–	–
6	Acc.	‘Centre Beam Acc. [g]’	–	412 412 260
7	Acc.	‘Side C Beam Acc. [g]’	–	–
8	Acc.	‘1/4 B Wall Acc. [g]’	1995 775	294 206 206
9	Acc.	‘1/2 A Wall Acc. [g]’	885 1425	229 228 402
10	Acc.	‘1/2 B Wall Acc. [g]’	1995 1425	163 137 136
11	Acc.	‘1/2 C Wall Acc. [g]’	3105 1425	229 357 531
12	Acc.	‘3/4 B Wall Acc. [g]’	1995 2070	281 288 267
13	Pot.	‘Shake Table Disp. [mm]’	–	–
14	WP	‘1/4 A Wall Disp. [mm]’	1, 9, 23, 27	885 775
15	WP	‘1/4 B Wall Disp. [mm]’	1, 9, 23, 27	1995 775
16	WP	‘1/4 C Wall Disp. [mm]’	1, 9, 23, 27	3105 775
17	WP	‘1/2 A Wall Disp. [mm]’	1, 9, 23, 27	885 1425
18	WP	‘1/2 B Wall Disp. [mm]’	1, 9, 23, 27	1995 1425
19	WP	‘1/2 C Wall Disp. [mm]’	1, 9, 23, 27	3105 1425
20	WP	‘3/4 A Wall Disp. [mm]’	1, 9, 23, 27	885 2070
21	WP	‘3/4 B Wall Disp. [mm]’	1, 9, 23, 27	1995 2070
22	WP	‘3/4 C Wall Disp. [mm]’	1, 9, 23, 27	3105 2070
23	Pot.	‘4/4 A Wall Disp. [mm]’	All Tests	–
24	Pot.	‘Top Beam Disp. [mm]’	–	–
25	Pot.	‘4/4 C Wall Disp. [mm]’	All Tests	–
26	Pot.	‘1/2 Side A OOP Detachment [mm]’	–	220 1425
27	Pot.	‘Side A Ret. Wall Sliding [mm]’	1–27	50 450
28	Pot.	‘1/2 Side C OOP Detachment [mm]’	–	3770 1425
29	Pot.	‘Side C Ret. Wall Sliding [mm]’	1–27	3935 450
30	–	‘Inertial Force [kN]’	1, 9, 23, 27	–

![YouTube](https://via.placeholder.com/150)
one in clay (CL) masonry and another one was a cavity wall consisting of an inner leaf in CS and an outer leaf in CL masonry connected to each other by metal ties. All dynamic tests were carried out at the uniaxial shake table of EUCENTRE Pavia. The main input motions used in this part of the campaign corresponded to second floor accelerograms recorded either from a building prototype tested by Graziotti et al. [8] or from a calibrated numerical model of the tested building [5]. Low amplitude random excitations (RN) were used in between test runs to identify the dynamic properties of the specimens. A summary of the naming adopted and boundary conditions associated with the tested specimens can be observed in Fig. 1. Characteristics of the employed input motions and their sequence along with the employed scaling factors are summarised in Table 4 of the reference article [1].

Every specimen was densely instrumented with sensors that recorded the dynamic response at various locations. The instrumentation adopted for each specimen consisted of accelerometers, potentiometers, wire potentiometers and a 3D optical acquisition system (used for all specimens except CS-005-RR). The location of all the instrumentation adopted for each specimen was decided based on the boundary conditions envisaged and correspondingly expected deformed shapes. Accelerometers were installed on the OOP panel of the specimen in order to record acceleration-time histories. Additional accelerometers were also installed at the specimen foundation, top beam, rigid frame and the return walls. Potentiometers were used to measure relative displacements associated with various locations of the specimen. Wire potentiometers attached to the rigid frame in several locations were used to record horizontal displacements relative to the shake table. Potentiometers were also adopted to record the relative displacements between the main panel and the return walls.

Table 2

Col.	Instr.	Description	Offline	Location	Associated Mass
				X [mm]	Z [mm]
1	–	‘Time [s]’	–	–	–
2	Acc.	‘Shake Table Acc. [g]’	–	–	–
3	Acc.	‘Foundation Acc. [g]’	–	–	–
4	Acc.	‘Frame Acc. [g]’	–	–	–
5	Acc.	‘Side A Ret. Wall Acc. [g]’	–	–	452 432
6	Acc.	‘Top Beam Acc. [g]’	–	–	–
7	Acc.	‘Side C Ret. Wall Acc. [g]’	–	–	103
8	Acc.	‘1/4 B Wall Acc. [g]’	20–22	1995	615 294
9	Acc.	‘1/2 A Wall Acc. [g]’	20–22	885	1425 287
10	Acc.	‘1/2 B Wall Acc. [g]’	20–22	1995	1425 249 1625
11	Acc.	‘1/2 C Wall Acc. [g]’	20–22	3105	1425 287
12	Acc.	‘4/4 B Wall Acc. [g]’	–	1995	2070 281
13	Pot.	‘Shake Table Disp. [mm]’	–	–	–
14	Opt.	‘1/4 A Wall Disp. [mm]’	1, 5, 19-22	885	775
15	Opt.	‘1/4 B Wall Disp. [mm]’	1, 5, 19-22	1995	775
16	Opt.	‘1/4 C Wall Disp. [mm]’	1, 5, 19-22	3105	775
17	Opt.	‘1/2 A Wall Disp. [mm]’	1, 5, 19-22	885	1425
18	Pot./Opt.	‘1/2 B Wall Disp. [mm]’	1, 5, 19-22	1995	1425
19	Opt.	‘1/2 C Wall Disp. [mm]’	1, 5, 19-22	3105	1425
20	Opt.	‘3/4 A Wall Disp. [mm]’	1, 5, 19-22	885	2070
21	Opt.	‘3/4 B Wall Disp. [mm]’	1, 5, 19-22	1995	2070
22	Opt.	‘3/4 C Wall Disp. [mm]’	1, 5, 19-22	3105	2070
23	Opt.	‘4/4 A Wall Disp. [mm]’	19–22	885	2720
24	Pot.	‘4/4 B Wall Disp. [mm]’	1, 5, 19-22	1995	2720
25	Opt.	‘4/4 C Wall Disp. [mm]’	19–22	3105	2720
26	Pot./Opt.	‘1/2 Side A OOP Detachment [mm]’	19–22	105	1340
27	Pot./Opt.	‘4/4 Side A OOP Detachment [mm]’	19–22	105	2640
28	Pot./Opt.	‘1/2 Side C OOP Detachment [mm]’	19–22	3880	1340
29	Pot./Opt.	‘4/4 Side C OOP Detachment [mm]’	19–22	3880	2640
30	–	‘Inertial Force [kN]’	1, 5, 19	–	–

U. Tomassetti et al. / Data in brief 24 (2019) 103854
Table 3
CSW-000-RF data organisation.

Col.	Instr.	Description	Offline	Location	Associated Mass	
			X [mm]	Z [mm]	1st [kg]	2nd [kg]
1	-	'Time [s]'	-	-	-	-
2	Acc.	'Shake Table Acc. [g]'	-	-	-	-
3	Acc.	'Foundation Acc. [g]'	-	-	369	417
4	Acc.	'Frame Acc. [g]'	21–27	-	-	-
5	Acc.	'Side A Ret. Wall Acc. [g]'	-	-	-	103
6	Acc.	'Top Beam Acc. [g]'	-	-	-	-
7	Acc.	'Side C Ret. Wall Acc. [g]'	-	-	-	84
8	Acc.	'1/4 B Wall Acc. [g]'	21–27	2325	615	72
9	Acc.	'1/4 A Wall Acc. [g]'	-	885	1425	98
10	Acc.	'1/2 B Wall Acc. [g]'	21–27	1330	1425	99
11	Acc.	'1/2 C Wall Acc. [g]'	-	3380	1425	47
12	Acc.	'4/4 B Wall Acc. [g]'	-	1975	2560	237
13	Pot.	'Shake Table Disp. [mm]'	-	-	-	-
14	Opt.	'1/4 A Wall Disp. [mm]'	1-2, 10, 21	665	775	-
15	Opt.	'1/4 B Wall Disp. [mm]'	1-2, 10, 21	1495	775	-
16	Opt.	'1/4 C Wall Disp. [mm]'	1-2, 10, 21	3380	775	-
17	Opt.	'1/2 A Wall Disp. [mm]'	1-2, 10, 21	665	1425	-
18	WP/Opt.	'1/2 B Wall Disp. [mm]'	1-2, 10, 21	1495	1425	-
19	Opt.	'1/2 C Wall Disp. [mm]'	1-2, 10, 21	3380	1425	-
20	Opt.	'3/4 A Wall Disp. [mm]'	1-2, 10, 21	665	2315	-
21	WP/Opt.	'3/4 B Wall Disp. [mm]'	1-2, 10, 21	1495	2315	-
22	Opt.	'3/4 C Wall Disp. [mm]'	1-2, 10, 21	3380	2315	-
23	Opt.	'4/4 A Wall Disp. [mm]'	1-2, 10, 21	665	2720	-
24	Opt.	'4/4 B Wall Disp. [mm]'	1-2, 10, 21	1495	2720	-
25	Opt.	'4/4 C Wall Disp. [mm]'	1-2, 10, 21	3380	2720	-
26	Pot./Opt.	'1/2 Side A OOP Detachment [mm]'	1-2, 10, 21	220	1425	-
27	Pot./Opt.	'4/4 Side A OOP Detachment [mm]'	1-2, 10, 21	220	2560	-
28	Pot./Opt.	'1/2 Side C OOP Detachment [mm]'	1-2, 10, 21	3770	1425	-
29	Pot./Opt.	'4/4 Side C OOP Detachment [mm]'	1-2, 10, 21	3770	2560	-
30	-	'Inertial Force [kN]'	1-2, 10, 22	-	-	-
31	Acc.	'1/4 A Wall Acc. [g]'	21–27	885	615	138
32	Acc.	'1/4 C Wall Acc. [g]'	21–27	3380	615	69
33	Acc.	'3/4 A Wall Acc. [g]'	21–27	885	2150	176
34	Acc.	'3/4 C Wall Acc. [g]'	21–27	3380	2150	42
35	Opt.	'1/8 A Wall Disp. [mm]'	1-2, 10, 21	665	450	-
36	Opt.	'1/8 B Wall Disp. [mm]'	1-2, 10, 21	1495	450	-
37	Opt.	'1/8 C Wall Disp. [mm]'	1-2, 10, 21	3380	450	-
38	Opt.	'Side A Window Corner Disp. [mm]'	1-2, 10, 21	1660	530	-
39	Opt.	'Side C Window Corner Disp. [mm]'	1-2, 10, 21	3125	530	-

All data acquired was filtered from frequencies higher than 50 Hz. Accelerations and forces are provided in units of g and kN, respectively; displacements are given in mm. For each specimen, a folder is created named as the specimen: the folder containing data from all the tests corresponding to the second specimen is named as “CS-000-RF”. This folder contains .txt files for each test named as “TestT#” where “T#” refer to the same quantity provided in the testing sequence included in the reference article [1] (Table 4). Within each .txt file, the first column corresponds to a time vector whereas all other columns correspond to instrument readings. The instrument recordings contained in different columns for each specimen as well as coordinates of their exact location are provided in Tables 1–5. Figs. 2–6 shows graphically the employed instruments for each specimen. In these tables and figures, Acc.: refers to accelerometer, WP: refers to wire potentiometer, Pot.: refers to potentiometer and Opt./Marker: refers to optical acquisition. Please note that moving towards higher intensities of shaking WP measurements were replaced with those obtained from a 3D optical (Opt./Marker) acquisition system.
Table 4
CL-000-RF data organisation.

Col.	Instr.	Description	Offline Location	Associated Mass
			X [mm] Z [mm]	1st [kg] 2nd [kg]
1	–	‘Time [s]’	–	–
2	Acc.	‘Shake Table Acc. [g]’	–	–
3	Acc.	‘Foundation Acc. [g]’	–	–
4	Acc.	‘Frame Acc. [g]’	23	–
5	Acc.	‘Side A Ret. Wall Acc. [g]’	–	445 141
6	Acc.	‘Top Beam Acc. [g]’	–	108 98
7	Acc.	‘Side C Ret. Wall Acc. [g]’	–	108 98
8	Acc.	‘1/4 B Wall Acc. [g]’	–	2065 755 319 455
9	Acc.	‘1/2 A Wall Acc. [g]’	650	1415 241 333
10	Acc.	‘1/2 B Wall Acc. [g]’	2065	1415 176 177
11	Acc.	‘1/2 C Wall Acc. [g]’	3265	1415 241 333
12	Acc.	‘4/4 B Wall Acc. [g]’	–	2065 2555 284 284
13	Pot.	‘Shake Table Disp. [mm]’	–	–
14	Opt.	‘1/4 A Wall Disp. [mm]’	1, 9, 19, 22	1195 755 –
15	WP/Opt.	‘1/4 B Wall Disp. [mm]’	1, 9, 19, 22	2065 755 –
16	Opt.	‘1/4 C Wall Disp. [mm]’	1, 9, 19, 22	2940 755 –
17	Opt.	‘1/2 A Wall Disp. [mm]’	1, 9, 19, 22	1195 1415 –
18	WP/Opt.	‘1/2 B Wall Disp. [mm]’	1, 9, 19, 22	2065 1415 –
19	Opt.	‘1/2 C Wall Disp. [mm]’	1, 9, 19, 22	2940 1415 –
20	Opt.	‘3/4 A Wall Disp. [mm]’	1, 9, 19, 22	1195 2075 –
21	WP/Opt.	‘3/4 B Wall Disp. [mm]’	1, 9, 19, 22	2065 2075 –
22	Opt.	‘3/4 C Wall Disp. [mm]’	1, 9, 19, 22	2940 2075 –
23	Opt.	‘4/4 A Wall Disp. [mm]’	1, 9, 19, 22	2940 2735 –
24	Pot.	‘4/4 B Wall Disp. [mm]’	1, 9, 19, 22	2940 2735 –
25	Opt.	‘4/4 C Wall Disp. [mm]’	1, 9, 19, 22	2940 2735 –
26	Pot./Opt.	‘1/2 Side A OOP Detachment [mm]’	1, 9, 19, 22	155 1535 –
27	Pot./Opt.	‘4/4 Side A OOP Detachment [mm]’	1, 9, 19, 22	3865 2555 –
28	Pot./Opt.	‘1/2 Side C OOP Detachment [mm]’	1, 9, 19, 22	155 1535 –
29	Pot./Opt.	‘4/4 Side C OOP Detachment [mm]’	1, 9, 19, 22	3865 2555 –
30	–	‘Inertial Force [kN]’	1, 9, 19, 22	–
31	–	All Tests	–	–
32	–	All Tests	–	–
33	Acc.	‘3/4 B Wall Acc. [g]’	–	2065 2075 257 257
34	–	All Tests	–	–
35	Opt.	‘1/8 A Wall Disp. [mm]’	1, 9, 19, 22	1195 395 –
36	Opt.	‘1/8 B Wall Disp. [mm]’	1, 9, 19, 22	2065 395 –
37	Opt.	‘1/8 C Wall Disp. [mm]’	1, 9, 19, 22	2940 395 –
38	–	All Tests	–	–
39	–	All Tests	–	–

Table 5
CAV-000-RF data organisation.

Col.	Instr.	Description	Offline Location	Associated Mass
			X [mm] Z [mm]	1st [kg]
1	–	‘Time [s]’	–	–
2	Acc.	‘Shake Table Acc. [g]’	–	–
3	Acc.	‘Foundation Acc. [g]’	–	–
4	Acc.	‘Frame Acc. [g]’	–	–
5	Acc.	‘Side A CS Ret. Wall Acc. [g]’	–	460 + 530
6	Acc.	‘Top Beam Acc. [g]’	All Tests	–
7	Acc.	‘Side C CS Ret. Wall Acc. [g]’	–	128
8	Acc.	‘1/4 B CS Wall Acc. [g]’	–	–
9	Acc.	‘1/2 A CS Wall Acc. [g]’	–	995 1340 255 255
10	Acc.	‘1/2 B CS Wall Acc. [g]’	–	2105 1340 126
11	Acc.	‘1/2 C CS Wall Acc. [g]’	–	2990 1340 242
12	Acc.	‘4/4 B CS Wall Acc. [g]’	–	2105 2640 223
13	Acc.	‘Shake Table Disp. [mm]’	–	–
Table 5 (continued)

Col.	Instr.	Description	Offline	Location	Associated Mass	
				X [mm]	Z [mm]	1st [kg]
14	WP	'1/4 A CS Wall Disp. [mm]'	1, 9, 16	995	695	
15	WP	'1/4 B CS Wall Disp. [mm]'	1, 9, 16	2105	695	
16	WP	'1/4 C CS Wall Disp. [mm]'	1, 9, 16	2990	695	
17	WP	'1/2 A CS Wall Disp. [mm]'	1, 9, 16	995	1340	
18	WP	'1/2 B CS Wall Disp. [mm]'	1, 9, 16	2105	1340	
19	WP	'1/2 C CS Wall Disp. [mm]'	1, 9, 16	2990	1340	
20	WP	'3/4 A CS Wall Disp. [mm]'	1, 9, 16	995	2070	
21	WP	'3/4 B CS Wall Disp. [mm]'	1, 9, 16	2105	2070	
22	WP	'3/4 C CS Wall Disp. [mm]'	1, 9, 16	2990	2070	
23	Pot.	'4/4 A CS Wall Disp. [mm]'	All Tests			
24	Pot.	'4/4 B CS Wall Disp. [mm]'	1, 9, 16	1990	2720	
25	Pot.	'4/4 C CS Wall Disp. [mm]'	All Tests			
26	Pot.	'1/2 Side A OOP Detachment [mm]'	1, 9, 16	220	1425	
27	Pot.	'4/4 Side A OOP Detachment [mm]'	1, 9, 16	220	2640	
28	Pot.	'1/2 Side C OOP Detachment [mm]'	1, 9, 16	3770	1425	
29	Pot.	'4/4 Side C OOP Detachment [mm]'	1, 9, 16	3770	2640	
30		'Inertial Force [kN]'	1, 9, 16	2105	2070	242
31	Acc.	'3/4 B CS Wall Acc. [g]'	1, 9, 16	2105	695	307
32	Acc.	'Side A CL Ret. Wall Acc. [g]'	1, 9, 16			137
33	Acc.	'Side C CL Ret. Wall Acc. [g]'	1, 9, 16			154
34	Acc.	'1/4 B CL Wall Acc. [g]'		2175	695	286
35	Acc.	'1/2 A CL Wall Acc. [g]'		1085	1415	286
36	Acc.	'1/2 B CL Wall Acc. [g]'		2175	1415	149
37	Acc.	'1/2 C CL Wall Acc. [g]'		3265	1415	300
38	Acc.	'3/4 B CL Wall Acc. [g]'		2175	2075	271
39	Acc.	'4/4 B CL Wall Acc. [g]'		2175	2735	240
40	Opt.	'1/4 A CL Wall Disp. [mm]'	1, 9, 16	1085	695	
41	Opt.	'1/4 B CL Wall Disp. [mm]'	1, 9, 16	2175	695	
42	Opt.	'1/4 C CL Wall Disp. [mm]'	1, 9, 16	3265	695	
43	Opt.	'1/2 A CL Wall Disp. [mm]'	1, 9, 16	1085	1415	
44	Opt.	'1/2 B CL Wall Disp. [mm]'	1, 9, 16	2175	1415	
45	Opt.	'1/2 C CL Wall Disp. [mm]'	1, 9, 16	3265	1415	
46	Opt.	'3/4 A CL Wall Disp. [mm]'	1, 9, 16	1085	2075	
47	Opt.	'3/4 B CL Wall Disp. [mm]'	1, 9, 16	2175	2075	
48	Opt.	'3/4 C CL Wall Disp. [mm]'	1, 9, 16	3265	2075	
49	Opt.	'4/4 A CL Wall Disp. [mm]'	1, 9, 16	1085	2735	
50	Opt.	'4/4 B CL Wall Disp. [mm]'	1, 9, 16	2175	2735	
51	Opt.	'4/4 C CL Wall Disp. [mm]'	1, 9, 16	3265	2735	
52	Pot.	'4/4 B CL Wall Disp. [mm]'	1, 9, 16	1960	2735	

Tables 1–5 indicate also the mass associated with each accelerometer for the calculation of the inertial force of the OOP panel (provided in the .txt files). This associated lumped mass distribution changed throughout the testing sequence with the development of cracks and the adopted distribution throughout the testing sequence can also be found in Figs. 2–6. More details about how the inertial force was calculated can be found in the reference article [1]. It is worth noticing as in the case of CS-000-RF specimen during the last stages of testing (Test 19–22), due to lower number of instruments recording, a linear acceleration amplification was assumed along its height and half of the relative acceleration recorded by accelerometer 12 (marked in grey in Fig. 3) was assigned to the centre of the cracked panel. This was done in order not to overestimate the inertial force associated with the specimen. Additionally, the column “Offline” in Tables 1–5 indicates test numbers (Table 4 of reference article [1]) when a particular instrument was not recording.

As an illustrative example, with reference to Table 2, column 3 of the file “Test6.txt” in the folder “CS-000-RF” corresponds to recordings of the ‘Foundation Acc.’ when specimen CS-000-RF was subjected to FEQ2-DS3 scaled at 50% i.e. T#6 in Table 4 of the reference article [1].
Fig. 2. CS-010/005-RR Instrumentation scheme and mass distribution evolution with associated Test#.

Fig. 3. CS-000-RF instrumentation scheme and mass distribution evolution with associated Test#.

Fig. 4. CSW-000-RF Instrumentation scheme and mass distribution evolution with associated Test#.
Acknowledgments

This paper describes an activity that is part of the “Study of the vulnerability of masonry buildings in Groningen” project at the EUCENTRE, undertaken within the framework of the research program for hazard and risk of induced seismicity in Groningen sponsored by the Nederlandse Aardolie Maatschappij BV. The authors would like to thank all the parties involved in this project, namely EUCENTRE and University of Pavia (DICAr) laboratories that performed the tests, Arup and TU Delft. The valuable

Fig. 5. CL-000-RF Instrumentation scheme and mass distribution evolution with associated Test#.

Fig. 6. CAV-000-RF Instrumentation scheme and mass distribution evolution with associated Test#.
advice of R. Pinho, G. Magenes, A. Penna and M. Griffith is gratefully acknowledged. Thanks go also to J. Uilenreef, F. Dacarro, S. Pelosi, M. Mandirola, A. Fragomelone, M. P. Scovenna and G. Sinopoli for the practical support.

Transparency document

Transparency document associated with this article can be found in the online version at https://doi.org/10.1016/j.dib.2019.103854.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.dib.2019.103854.

References

[1] F. Graziotti, U. Tomassetti, S. Sharma, L. Grottoli, G. Magenes, Experimental response of URM single leaf and cavity walls in out-of-plane two-way bending generated by seismic excitation, Constr. Build. Mater. 195 (2019) 650–670, https://doi.org/10.1016/j.conbuildmat.2018.10.076.
[2] EUCENTRE, URM Walls in Out-Of-Plane Two Way Bending (YouTube Playlist), 2017. Published, https://www.youtube.com/playlist?list=PLRDMVFhFvQnMRn7SDXreqbcg044logeB.
[3] F. Graziotti, U. Tomassetti, A. Penna, G. Magenes, Out-of-plane shaking table tests on URM single leaf and cavity walls, Eng. Struct. 125 (2016) 455–470, https://doi.org/10.1016/j.engstruct.2016.07.011.
[4] U. Tomassetti, F. Graziotti, A. Penna, G. Magenes, Modelling one-way out-of-plane response of single-leaf and cavity walls, Eng. Struct. 167 (2018) 241–255, https://doi.org/10.1016/j.engstruct.2018.04.007.
[5] S. Kallioras, F. Graziotti, A. Penna, Numerical assessment of the dynamic response of URM terraced house exposed to induced seismicity, Bull. Earthq. Eng. (2018), https://doi.org/10.1007/s10518-018-0495-5.
[6] D. Malomo, R. Pinho, A. Penna, Using the applied element method for modelling calcium silicate brick masonry subjected to in-plane cyclic loading, Earthq. Eng. Struct. Dyn. 47 (2018) 1610–1630, https://doi.org/10.1002/eqe.3032.
[7] U. Tomassetti, A.A. Correia, P.X. Candeias, F. Graziotti, A.C. Costa, Two-way bending out-of-plane collapse of a full-scale URM building tested on a shake table, Bull. Earthq. Eng. (2018), https://doi.org/10.1007/s10518-018-0507-5.
[8] F. Graziotti, U. Tomassetti, S. Kallioras, A. Penna, G. Magenes, Shaking table test on a full scale URM cavity wall building, Bull. Earthq. Eng. 15 (12) (2017), https://doi.org/10.1007/s10518-017-0185-8.