Detection lipase gene of *Pseudomonas aeruginosa* from crude oil contaminated soil

Tawoos Mohammed Kamel Ahmed

Biology Dept./College of Education for pure Science/ Kirkuk university/Iraq.

mtawis_1967@uokirkuk.edu.iq

Abstract

The microbial lipases are industrially more substantial. The bacterial lipase enzymes can be extracellular and intracellular, and are extremely affected by bacterial nutrition and various physicochemical factors like temperature degree, pH, the sources of carbon and nitrogen, inorganic salts and agitation. The objective of current work is isolation and identify of *P. aeruginosa* from crude oil contaminated soil depending on PCR targeted lipA gene. 20g (15 samples) of crude oil contaminated soil were collected from north oil refineries/Kirkuk /Iraq. The isolates were identified according to microscopically diagnosis and colonial properties, biochemical tests, API-20E system with diagnosis by PCR technique based on gene lip A. PCR products by electrophoresis demonstrated only 8 isolates (53.33%) with positive results with lipA 558 from all isolates of *P. aeruginosa*.

Keywords: *P. aeruginosa*; lipase gene; polymerase chain reaction (PCR).

1. Introduction

Pseudomonads bacteria define as a large group of bacteria, which live originally in soil and the fresh water. *P. aeruginosa* is particularly widespread in the environments like soil, sewage, and related with certain plants [1-2]. *P. aeruginosa* (family: Pseudomonadaceae) is Gram negative, aerobic bacteria, rod-like shape, and its motile, Pseudomonadaceae comprise only genus Pseudomonas members that include eight groups and one of these groups is *P. aeruginosa* [3-5]. It succeed to grow not only in the typical atmospheres, but also in hypoxic (low oxygen levels) atmospheres, and has, thus, colonized many natural and artificial environments. It utilizes a broad range of organic substances for food [6-7]. In the contaminated soil, Pseudomonas spp. has specificity for degrading a various hydrocarbon compounds inclusive of biphenyl, petroleum/oil products and poly aromatic hydrocarbons [8-9]. Lipase enzymes are feature with hydrolases effect on the bonds of carboxylic ester which
found in acyl-glycerol to release the fatty acids and the glycerol [10-11]. Some lipase isoforms have been extracted and isolated from different bacterial cultures [12] and used in various applications in the food with dairy, and the detergent industries [13]. Therefore, the present study aims to detect the lipase gene in \textit{P. aeruginosa} isolated from soil.

2. Materials & methods

Sample collection

20g (15 samples) of crude oil contaminated soil were collected from north oil refineries/Kirkuk /Iraq utilizing sterile bottles to preservation and transport the samples to the laboratory.

Isolation and Identification

After collection of contaminated soil, then was cultured on cetrimide agar, blood agar and MacConkey for 24 h at 37 $^\circ$C for growth of colonies. The isolates were identified according to microscopically diagnosis and colonial properties, biochemical tests and API-20E system.

DNA Isolation

The genomic DNA of \textit{P. aeruginosa} was isolated according to method of [14]. The integrity and DNA purity was determined by using agarose gel electrophoresis.

PCR reaction

The PCR technique was done in reaction mixture (25µl) containing (7.5µl) of nuclease free water lipA 558, (12.5µl) of Green Master Mix and (3µl) of genomic DNA, 1 µl of each forward and reverse primers.

Primer	Sequence (5”-3””)	Product size bp
lipA 558	FGGTCAACCTGCAGGGCCACAGCCACGGCG	558bp
	R GAGGCTGCAGACCTGTTACCTCGGTCCAGGTGG	
3. Results and discussion

Isolation and identification

The morphology, diameter and shapes of isolates on blood agar and MacConkey agar were determined. Also, the microscopic and biochemical examinations (table: 2) were done. The API 20E test (fig: 1) was done for identification.

Table (2): biochemical tests of P. aeruginosa isolated

Biochemical tests	Catalase	Kliguler test	Motility	H₂S	Simmons citrate	V-P	M-R	Indol	EMB	Oxidase
P. aeruginosa	+	-	+	-	-	+	-	-	-	+

Figure (1): identification of bacteria by API 20E.

In the current study, *P. aeruginosa* isolates were appear to be gram negative, oxidase positive, catalase positive, motile and producing bluish green coloration on cetrimide agar. The current findings agreeing with [15] who referred that *P. aeruginosa* had growth ability on specific media called cetrimide agar and its catalase positive results, oxidase positive. Also, results were agreeing with [16] who have described *P. aeruginosa* as Gram negative bacteria and the color of colonies on cetrimide agar is bluish green.
P. aeruginosa lipase gene

The primer of lipA 558 was used to amplification of P. aeruginosa lipase gene PCR technique (Figure 2).

![Agarose gel electrophoresis of PCR amplification products of P. aeruginosa lipA 558 on 1% gel of agarose (70 vol/90 min). Lanes 2-4: lipA 558 gene PCR product, lanes 1,5: ladder 100 bp.](image)

The PCR technique has been estimated for diagnosis of various bacterial types and other microorganisms in recent years [17-18] and it's especially beneficial for the raped identification and diagnosis of bacteria. PCR products by electrophoresis demonstrated only 8 isolates (53.33%) with positive results with lipA 558 from all isolates of P. aeruginosa and that may back to design of oligonucleotides (that used in present study) was not specific for P.aeruginosa lipA gene [19]. lipA gene was utilized to identified and diagnosis of P. aeruginosa, the lipase gene according to [20] might be utilized to classify and identified unknown types of Pseudomonas bacteria because the sequence homologies between genes of lipase enzymes are much less when comparing genes from distantly regarding Pseudomonads.

4. Reference

[1] Velammal, A.; Aiyamperumal B.; Venugopalan V. K. and Ajmalkhan S. (1994). Distribution of Pseudomonas aeruginosa in Pondicherry coastal environs. Indian J Mar Sci. 23: 239–241.

[2] Su, S.; Khine Z. W.; Hla N. (2018). Isolation and Identification of Pseudomonas aeruginosa from the Clinical Soil. Uni. Yan. Res. J. 8: 271-275.

[3] Kenneth T. (2011). Pseudomonas, Todar’s online textbook of Bacteriology.
[4] Altaai, M. E.; Ismail H.A. and Abeer A. M. (2014). Identification Pseudomonas aeruginosa by 16s rRNA gene for Differentiation from Other Pseudomonas Species that isolated from Patients and environment. Bag. Sci. J. 11(2): 1028-1034.

[5] Hassan F. L. and Muthanna H. H. and Luma A. Y. (2017). Molecular Detection of Pseudomonas aeruginosa and Study the Effect of Fresh Garlic juice on Some Virulence Factors of this Bacteria. J. Uni. Anbar Pur. Sci. 11(2): 9-17.

[6] Balcht, Aldona; Smith, Raymond (1994). Pseudomonas aeruginosa: Infections and Treatment. Informa Health Care. pp. 8384.

[7] Majeed H. A. and Raed O. S. (2016). Isolation and Identification of Pseudomonas aeruginosa from different sources (soil, wound, urine) and Checking its MIC with various Antibiotics.Helix. 4(5): 795-799.

[8] Obayori, O.S.; Ilori, M.O.; Adebusoye, S.A.; Oyetibo, G.O. and Amund, O.O. (2008): Pyrene-degradation potentials of Pseudomonas species isolated from polluted tropical soils. World J. Microbiol. Biotechnol., 24: 2639-2646.

[9] El-Khawaga, M. A.; Rawheya A. S.; Rahal A. G.; Lobna A. M. and Elshaymaa E. M. (2015). Bioremediation of petroleum oil by pseudomonas aeruginosa and pseudomonas fluorescens (biotype a) isolated from petroleum oil contaminated soil. Egypt. J. Biotechnol. 50: 65-81.

[10] Saranya P.; Kumari HS.; Rao BP. and Sekaran G. (2014). Lipase production from a novel thermo-tolerant and extreme acidophile Bacillus pumilus using palm oil as the substrate and treatment of palm oilcontaining wastewater. Environ Sci Pollut Res 21:3907–3919.

[11] Sachan, S.; Mohammed S. I. and Aditi S. (2018). Extracellular lipase from Pseudomonas aeruginosa JCM5962 (T): Isolation, identification, and characterization. Int Microbiol. 21:197–205.

[12] Verma S. and Sharma K.P. (2014). Isolation, identification, and characterization of lipase producing microorganisms from environment. Asian J. Pharm. 7: 219-222.

[13] Sharma R.; Thakur V.; Sharma M. and Birkeland N.K. (2013). Biocatalysis through thermostable lipases: adding flavor to chemistry. In Satyanarayana T, Littlechild J, Kawarabayasi Y (Eds.) Thermophilic microbes in environmental and industrial biotechnology, Springer, Dordrecht, p. 905-927.

[14] Chen, W. P. and Kuo, T. T. (1993). A simple and rapid method for the preparation of gram-negative bacterial genomic DNA. Nucleic acids research, 21(9): 2260.

[15] Shilba, A.A.; Raghad H. and Salwa J. (2015). Dissemination of Carbapenem Resistant Pseudomonas aeruginosa among Burn Patients in Karbala Province\ Iraq. Iraqi J. Sci. 56(3A): 1850-1857.
[16] De la Maza, L. M., Pezzalo, M. T., Shigei, J. T. and Peterson, E. M. 2004. Color Atlas of Medical Bacteriology. ASM press, Washington, USA.

[17] Daniel D.; A. L., JR.; Jean-Paul P.; Marc S.; Christian V.; Luc D.L.; Alain V.; and Pierre C. (1997). Direct Detection and Identification of Pseudomonas aeruginosa in Clinical Samples Such as Skin Biopsy Specimens and Expectorations by Multiplex PCR Based on Two Outer Membrane Lipoprotein Genes, oprI and oprL. Journal of Clinical Microbiology, 35(6):1295–1299.

[18] Mothershed, E. A. and Whitney A. M. (2006). Nucleic acid-based methods for the detection of bacterial pathogens: Present and future considerations for the clinical laboratory. Clinica Chimica Acta., 363:206 – 220.

[19] Martinez, A. and Soberon-Chavez, G. (2001). Characterization of the lipA gene encoding the major lipase from Pseudomonas aeruginosa strain IGB83. Appl. Microbiol. Biotechnol., 56 (5-6): 731-735.

[20] Jaric, M.; Sega, J.; Silva-Herzog, E.; Schneper, L.; Mathee, K. and Narasimhan G. (2013). Better primer design for metagenomics applications by increasing taxonomic distinguishability, BMC Bioinformatics. 7(7):S4.