XNect: Real-time Multi-person 3D Human Pose Estimation with a Single RGB Camera

DUSHYANT MEHTA1,3, OLEKSANDR SOTNYCHENKO1, FRANZISKA MUELLER1,3, WEIFENG XU1, MOHAMED ELGHARIB1, PASCAL FUA2, HANS-PETER SEIDEL1, HELGE RHODIN2, GERARD PONS-MOLL1, CHRISTIAN THEOBALT1

1Max Planck Institute for Informatics, Saarbrücken \hspace{1cm} 2EPFL, Lausanne \hspace{1cm} 3University of Saarland, Saarbrücken

We present a real-time approach for multi-person 3D motion capture at over 30 fps using a single RGB camera. It operates in generic scenes and is robust to difficult occlusions both by other people and objects. Our method operates in subsequent stages. The first stage is a convolutional neural network (CNN) that estimates 2D and 3D pose features along with identity assignments for all visible joints of all individuals. We contribute a new architecture for this CNN, called SelectSLS Net, that uses novel selective long and short range skip connections to improve the information flow allowing for a drastically faster network without compromising accuracy. In the second stage, a fully-connected neural network turns the possibly partial (on account of occlusion) 2D pose and 3D pose features for each subject into a complete 3D pose estimate per individual. The third stage applies space-time skeletal model fitting to the predicted 2D and 3D pose per subject to further reconcile the 2D and 3D pose, and enforce temporal coherence. Our method returns the full skeletal pose in joint angles for each subject. This is a further key distinction from previous work that neither extracted global body positions nor joint angle results of a coherent skeleton in real time for multi-person scenes. The proposed system runs on consumer hardware at a previously unseen speed of more than 30 fps given 512x320 images as input while achieving state-of-the-art accuracy, which we will demonstrate on a range of challenging real-world scenes.

1 INTRODUCTION

Optical human motion capture is a key enabling technology in visual computing and related fields [Chai and Hodgins 2005; Menache 2010; Starck and Hilton 2007]. For instance, it is widely used to animate virtual avatars and humans in VFX. It is a key component of many man-machine interfaces and is central to biomedical motion analysis. In recent years, computer graphics and computer vision researchers have developed new motion capture algorithms that operate on ever simpler hardware and under far less restrictive constraints than before. These algorithms do not require special body suits, dense camera arrays, in-studio recording, or markers. Instead, they only need a few calibrated cameras to capture people wearing everyday clothes outdoors, e.g., [Elhayek et al. 2016; Kanazawa et al. 2018; Mehta et al. 2017b; Omran et al. 2018; Pavlakos et al. 2019; Rhodin et al. 2016; Stoll et al. 2011; Xiang et al. 2018]. The latest approaches leverage the power of deep neural networks to capture 3D human pose from a single color image, opening the door to many exciting applications in virtual and augmented reality. Unfortunately, the problem remains extremely challenging due to depth ambiguities, occlusions, and the large variety of appearances and scenes.

More importantly, most methods fail under occlusions and focus on a single person. Single person tracking is already hard and starkly under-constrained; multi-person tracking is incomparably harder due to multiple occlusions, challenging body part to person assignment, and is computationally more demanding. This presents a practical barrier for many applications such as gaming and social VR/AR, which require tracking multiple people from low cost sensors, and in real time.
We introduce a real-time algorithm for motion capture of multiple people in common interaction scenarios using a single color camera. Our system produces the skeletal joint angles of multiple people in the scene, along with estimates of 3D localization of the subjects in the scene relative to the camera. Our method operates at more than 30 frames-per-second and delivers state-of-the-art accuracy and temporal stability. Our results are of a similar quality as off-the-shelf depth sensing based mocap systems.

To this end, we propose a neural network architecture, a pose encoding-decoding scheme, and a model-based pose fitting solution, all of which jointly enable real-time performance while handling inter-person and person-object occlusions, and resulting in temporally stable 3D skeletal motions. We use two deep neural network stages that perform local (per body joint) and global (all body joints) reasoning, respectively. Stage I is fully convolutional and the most computationally expensive part of the pipeline. It jointly reasons about the 2D and 3D pose for all the subjects in the scene at once, which ensures that the computational cost does not increase with the number of individuals. Stage I only considers visible joints—a common strategy for 2D pose estimation [Cao et al. 2017], which we generalize to multi-person 3D pose estimation. For each body joint, we predict the 2D part confidence maps, information for associating parts to an individual, and an intermediate 3D pose encoding per body part which is only cognizant of the joint’s immediate neighbours (local) in the kinematic chain. At this stage, not all body joints of an individual may be visible. Stage II is a compact fully-connected network, which gathers the intermediate pose encoding and other evidence from the visible joint locations in the preceding stage and decodes the complete 3D pose, leveraging global context to reason about occluded joints. This stage is efficient, as it acts in parallel on all detected subjects.

In addition to the proposed pose encoding-decoding scheme, we achieve real-time performance using a new convolutional neural network (CNN) architecture in Stage I, which we will refer to as SelectSLS Net. Our proposed architecture depends on far fewer features than competing ones, such as ResNet-50 [He et al. 2016], without any accuracy loss thanks to our insights on selective use of short and long range concatenation-skip connections. This enables fast inference on the complete input frame, without the added pre- or post-processing complexity of a separate bounding box tracker for each subject. Further, the compactness of our Stage II network, which reconciles the partially incomplete 2D pose and 3D pose encoding to a full body pose estimate, enables it to simultaneously handle many people with minimal overhead on top of Stage I. We further fit a model based skeleton to the 3D and 2D predictions in order to satisfy kinematic constraints, and further reconcile the 2D and 3D predictions across time. This produces temporally stable predictions, with skeletal angle estimates, which can readily drive virtual characters.

In summary, our technical innovations at the individual stages enable our final contribution: a complete algorithm for multi-person 3D motion capture from a single camera that achieves real-time performance without sacrificing reliability or accuracy. The run time of our system only mildly depends on the number of subjects in the scene, and even crowded scenes can be tracked at high frame rates. We demonstrate our system’s performance on a variety of challenging multi-person scenes.

2 RELATED WORK

We focus our discussion on relevant 2D and 3D human pose estimation from monocular RGB methods, in both single- and multi-person scenarios—for overview articles refer to [Sarafianos et al. 2016; Xia et al. 2017]. We also discuss prior datasets, and neural network architectures that inspired ours.

Multi-Person 2D Pose Estimation: Multi-person 2D pose estimation methods can be divided into bottom-up and top-down approaches. Top-down approaches first detect individuals in a scene and fall back to single-person 2D pose approaches or variants for pose estimation [Gkioxari et al. 2014; Iqbal and Gall 2016; Pardap dreou et al. 2017; Pishchulin et al. 2012; Sun and Savarese 2011]. Reliable detection of individuals under significant occlusion, and tracking of people through occlusions remains challenging. Top-down approaches instead first localize the body parts of all subjects and associate them to individuals in a second step. Associations can be obtained by predicting joint locations and their identity embeddings together [Newell and Deng 2017], or by solving a graph cut problem [Insafutdinov et al. 2017; Pishchulin et al. 2016]. This involves solving an NP-hard integer linear program which easily takes hours per image. The work of [Insafutdinov et al. 2017] improves over [Pishchulin et al. 2016] by including image-based pairwise terms and stronger detectors based on ResNet [He et al. 2016]. This way reconstruction time reduces to several minutes per frame. Cao et al. [Cao et al. 2017] predict joint locations and part affinities (PAFs), which are 2D vectors linking each joint to its parent. PAFs allow quick and greedy part association, enabling real time multi-person 2D pose estimation. Our Stage I uses similar ideas to localize and assign joints in 2D, but we also predict an intermediate 3D pose encoding per joint which enables our subsequent stage to produce accurate 3D body pose estimates. [Güler et al. 2018] compute dense correspondences from pixels to the surface of SMPL [Loper et al. 2015], but they do not estimate 3D pose.

Single-Person 3D Pose Estimation: Monocular single person 3D pose estimation was previously approached with generative methods using physics priors [Wei and Chai 2010], or semi-automatic analysis-by-synthesis fitting of parametric body models [Guan et al. 2009; Jain et al. 2010]. Recently, methods employing CNN based learning approaches led to important progress [Ionescu et al. 2014; Li and Chan 2014; Li et al. 2015; Pavlakos et al. 2017; Sigal et al. 2010; Tekin et al. 2016]. These methods can broadly be classified into direct regression and ‘lifting’ based approaches. Regressing straight from the image requires large amounts of 3D-pose labelled images, which are difficult to obtain. Therefore, existing datasets are captured in studio scenarios with limited pose and appearance diversity [Ionescu et al. 2014], or combine real and synthetic imagery [Chen et al. 2016]. Consequently, to address the 3D data scarcity, transfer learning using features learned on 2D pose datasets has been applied to improve 3D pose estimation [Mehta et al. 2017a,b; Popa et al. 2017; Sun et al. 2017; Tekin et al. 2017; Zhou et al. 2017].
'Lifting' based approaches predict the 3D pose from a separately detected 2D pose [Martinez et al. 2017]. This has the advantages that 2D pose datasets are easier to obtain in natural environments, and the lifting can be learned from MoCap data without overfitting on the studio conditions. While this establishes a surprisingly strong baseline, lifting is ill-posed and often requires additional image information for body-part depth disambiguation. Other work has proposed to augment the 2D pose with relative depth ordering of body joints as additional context to disambiguate 2D to 3D lifting [Pavlakos et al. 2018a; Pons-Moll et al. 2014]. Our approach can be seen has a hybrid of regression and lifting methods: An encoding of the 3D pose of the visible joints is regressed directly from the image (Stage I), with each joint only reasoning about its immediate kinematic neighbours (local context). This encoding, along with 2D joint detection confidences augments the 2D pose and is ‘lifted’ or ‘decoded’ into a complete 3D body pose by Stage II reasoning about all body joints (global context).

Some recent methods integrate a 3D body model [Loper et al. 2015] within a network, and train using a mixture of 2D poses and 3D poses to predict 3D pose and shape from single images [Kanazawa et al. 2018; Omran et al. 2018; Pavlakos et al. 2018b; Tung et al. 2017]. Other approaches optimize a body model or a template [Habermann et al. 2019; Xu et al. 2018] to fit 2D poses or/and silhouettes [Alldieck et al. 2019, 2018a,b; Bogo et al. 2016; Lassner et al. 2017]. None of them handles multiple people.

Multi-Person 3D Pose: Earlier work on monocular multi-person 3D pose capture often followed a generative formulation, e.g. estimating 3D body and camera pose from 2D landmarks using a learned pose space [Ramakrishna et al. 2012]. We draw inspiration from and improve over limitations of recent deep learning-based methods. Rogez et al. [2017] use a detection-based approach and first find representative poses of discrete pose clusters that are subsequently refined. Predicting multiple proposals per individual and fusing them afterwards is time consuming and may incorrectly merge nearby individuals with similar poses. The LCRNet++ implementation of this algorithm uses a ResNet-50 backbone and achieves non-real-time interactive 10 − 12fps on consumer hardware even with the faster but less accurate ‘demo’ version that uses fewer anchor poses. Mehta et al. [2018b] predict the 2D and 3D pose of all individuals in the scene using a fixed number of feature maps, which jointly encode for any number of individuals in the scene. This introduces potential conflicts when subjects overlap, for which a complex encoding and read-out scheme is introduced. The 3D encoding treats each limb and the torso as distinct objects, and encodes the 3D pose of each ‘object’ in the feature maps at the pixel locations corresponding to the 2D joints of the ‘object’. The encoding can thus handle partial inter-personal occlusion by dissimilar body parts. Unfortunately, the approach still fails when similar body parts of different subjects overlap. Similarly, Zanfir et al. [2018b] jointly encode the 2D and 3D pose of all subjects in the scene using a fixed number of feature maps. Different from [Mehta et al. 2018b], they encode the full 3D pose vector at all the projected pixels of the skeleton, and not just at the body joint locations, which makes the 3D feature space rife with potential encoding conflicts. For association, they learn a function to evaluate limb grouping proposals. A 3D pose decoding stage extracts 3D pose features per limb and uses an attention mechanism to combine these into a 3D pose prediction for the limb.

Our key insight is to use a representation similar to Mehta et al. [2018b], but only as an intermediate pose encoding, to augment the 2D to 3D lifting of Stage II. In this way, the 3D pose encodings are a strong cue for the 3D pose in the absence of conflicts, whereas the global context in Stage II and the 2D pose help resolve conflicts when they occur. Different from the full pose encoding of [Zanfir et al. 2018b], and the limb pose encoding of [Mehta et al. 2018b], our encoding further reduces potential conflicts by only encoding a joint’s immediate local context in the kinematic tree. Furthermore, we impose kinematic constraints with a model based fitting stage, which also allows for temporal smoothness. The approach of [Zanfir et al. 2018a] also combines learning and optimization, but their space-time optimization over all frames is not real-time.

Different from prior approaches, our approach works in real-time at 25 − 30 fps using a single consumer GPU, yielding skeletal joint angles and camera relative positioning of the subject, which can be readily be used to control animated characters in a virtual environment. Our approach predicts the complete body pose even under significant person-object occlusions, and is more robust to inter-personal occlusions.

3D Pose Datasets: There exist many datasets with 3D pose annotations in single-person scenarios [Joncescu et al. 2014; Mehta et al. 2017a; Sigal et al. 2010; Trumble et al. 2017; von Marcard et al. 2016] or multi-person with only 2D pose annotations [Andriluka et al. 2014; Lin et al. 2014]. As multi-person 3D pose estimation started to receive more attention, datasets such as MARCONI [Elhayek et al. 2016] with a lower number of scenes and subjects, and the more diverse Panoptic [Hanbyul Joo and Sheikh 2015] and MuCo-3DHP [Mehta et al. 2018b] datasets have come about. LCRNet [Rogez et al. 2017] uses 2D to 3D lifting to create pseudo annotations on the MPII 2D pose dataset [Andriluka et al. 2014], and LCRNet++ [Rogez et al. 2018] uses synthetic renderings of humans from a multitude of single person datasets.

Recently, the 3D Poses in the Wild (3DPW) dataset [von Marcard et al. 2018] features multiple people outdoors recorded with a moving camera and includes ground truth 3D pose. The number of subjects is however limited. To obtain more variation in training, we use the recently published MuCo-3DHP [Mehta et al. 2018b], which is a multi-person training set of composited real images with 3D pose annotations from the single person MPI-INF-3DHP [2017a] dataset.

Convolutional Network Designs: ResNet [He et al. 2016] and derivatives [Xie et al. 2017] incorporate explicit information flowing from earlier to later feature layers in the network through summation-skip connections. This permits training of deeper and more powerful networks. Many architectures based on this concept have been proposed, such as Inception [Szegedy et al. 2017] and ResNext [Xie et al. 2017].

Because increased depth and performance comes at the price of higher computation times during inference, specialized architectures for faster test time computation were proposed, such as AmoebaNet [Real et al. 2018], MobileNet [Sandler et al. 2018], ESPNet [Mehta et al. 2018a], ERFDNet [Romera et al. 2018]. These are
4 • Mehta, D. et al.

The key distinguishing feature of our proposed architecture is the use of concatenation-skip connections like DenseNet, but with selective long-range and short range skip connections rather than a dense connectivity. This results in a network significantly faster than ResNet-50 while retaining the same level of accuracy, avoids the artifacts and accuracy deficit of ESPNet, and eliminates the memory and speed bottlenecks associated with DenseNet.

3 METHOD OVERVIEW

This section serves as an outline of our method, as well as a roadmap for the article.

The input to our method is a live video feed, i.e., a stream of monocular color frames showing a multi-person scene. Our method has three subsequent stages, as shown in Fig. 2. In Section 4, we discuss the first two stages, which together produce 2D and 3D pose estimates per frame.

Stage I uses a convolutional neural network to process the complete input frame, jointly handling all subjects in the scene. The Stage I CNN predicts 2D body joint heatmaps, Part Affinity Fields to associate joints to individuals in the scene, and an intermediate 3D pose encoding per detected joint. After grouping the 2D joint detections from the first stage into individuals following the approach of [Cao et al. 2017], 3D pose encodings per individual are extracted at the pixel locations of the visible joints and are input to the second stage together with the 2D locations and detection confidences of the individual’s joints. Stage I only reasons about visible body joints, and the 3D pose encoding per joint only captures the joint’s pose relative to its immediate kinematic neighbours. The 3D pose encoding is discussed in Section 4.1.2.

Stage II, which we discuss in Section 4.2, uses a lightweight fully-connected neural network that ‘decodes’ the input from the previous stage into a full 3D pose, i.e. root-relative 3D joint positions for visible and occluded joints, per individual. This network incorporates 2D pose and 3D pose encoding evidence over all visible joints and an implicitly learned prior on 3D pose structure, which allows it to reason about occluded joints and correct any 3D pose encoding conflicts. A further advantage of a separate stage for full 3D pose reasoning is that it allows the use of a body joint set different from that used for training Stage I. In our system, 3D pose inference of Stage I and Stage II can be parallelized on a GPU, with negligible dependence of inference time on the number of subjects.

Since the choice of the CNN architecture is independent of our specific pose formulation, we discuss our contributions in that regard separately in Section 5. To allow fast inference on typical consumer-grade GPUs, we propose the novel SelectSLS Net architecture for the backbone of Stage I CNN. It employs selective long and short range concatenation-skip connections to promote information flow across network layers which allows to use fewer features leading to a much faster inference time but comparable accuracy in comparison to ResNet-50.

Stage III, discussed in Section 6, performs sequential model fitting on the live stream of 2D and 3D predictions from the previous stages. A kinematic skeleton is fit to the history of per-frame 2D and root-relative 3D pose predictions to obtain temporally coherent motion capture results. We also track person identity, full skeletal joint
The 3D pose branch also makes use of features from the 2D pose in the following.

4.1 Stage I

Our first stage uses a CNN that features an initial core (or backbone) network and the 2D branch to predict 3D pose encoding maps $P^{3D}_k \in \mathbb{R}^{3 \times 8}$ of the unknown number of K individuals in the scene. $P^{3D}_k \in \mathbb{R}^{3 \times J}$ represents the root (pelvis)-relative 3D coordinates of the J body joints. The task is implemented in the first two stages of our algorithm, which we detail in the following.

4.1.1 2D Branch: 2D Pose Prediction and Part Association.

2D pose is predicted as 2D heatmaps $H = \{H_j \in \mathbb{R}^{\frac{w}{8} \times \frac{h}{8}}\}^{J}_{j=1}$, where each map represents the per-pixel confidence of the presence of body joint type j jointly for all subjects in the scene. Similar to [Cao et al. 2017], we use Part Affinity fields $F = \{F_j \in \mathbb{R}^{\frac{w}{8} \times \frac{h}{8}}\}^{J}_{j=1}$ to encode body joint ownership using a unit vector field that points from a joint to its kinematic parent, and spans the width of the respective limb. For an input image, these Part Affinity Fields can be used to detect the individuals present in the scene and the visible body joints, and to associate visible joints to individuals. If the neck joint (which we hypothesize is visible in most situations) of an individual is not detected, we discard that individual entirely from the subsequent stages. For K detected individuals, this stage outputs the 2D body joint locations in absolute image coordinates $P^{2D}_k \in \mathbb{Z}^{2 \times J}$.

4.1.2 3D Branch: Predicting Intermediate 3D Pose Encoding.

The 3D branch of the Stage I network uses the features from the core network and the 2D branch to predict 3D pose encoding maps $L = \{L_j \in \mathbb{R}^{\frac{w}{16} \times \frac{h}{16}}\}^{J}_{j=1}$. The encoding at the spatial location of each visible joint only encapsulates its 3D pose relative to joints it is directly connected to in the kinematic chain. The general idea of such an encoding map is inspired by the approaches of [Mehta et al. 2017b; Pavlakos et al. 2017] which represent the 3D pose information of joints in output maps at the spatial locations of the 2D detections of the respective joints.

Our specific encoding in L works as follows: Consider the $1 \times 1 \times (3 \cdot J)$ vector $l_j \in \mathbb{R}^{\frac{w}{16} \times \frac{h}{16}}$ extracted at the pixel location $(u, v)\in L_j$ from the 3D output maps L. Here $(u, v)\in L_j$ is the location of body joint j of individual k. This $1 \times 1 \times (3 \cdot J)$ feature vector is of the dimensions of the full 3D body pose, where the kinematic parent-relative 3D locations of each joint reside in separate channels. Importantly however, and in contrast to previous work [Mehta et al. 2018b; Zanfir et al. 2018b], instead of encoding the full 3D body pose, or per-limb pose, at each 2D detection location $(u, v)\in L_j$, we only encode the pose of the corresponding joint (relative to its parent) and the pose of its children (relative to itself). In other words, at each joint location $(u, v)\in L_j$, we restrict the supervision of the encoding vector...
We will refer to this as channel-sparse supervision of \(l_{j,k} \) to the subset of channels corresponding to the bones that meet at joint \(j \), parent-to-joint and joint-to-child in the kinematic chain. We will refer to this as channel-sparse supervision of \(\{l_{j,k}\}_{j=1}^{J} \) and emphasize the distinction from channel-dense supervision. Figure 4 shows examples for head, neck and right shoulder. Consequently, 3D pose information for all the visible joints of all subjects is still encoded in \(L \), albeit in a spatially distributed manner, and each 2D joint location \((u, v)_{j,k}\) is used to extract its corresponding 3D bones of subject \(k \). Our motivation for such a pose encoding is that the task of parsing in-the-wild images to detect 2D body part heatmaps under occlusion and clutter, as well as grouping the body parts with their respective person identities under inter-personal interaction and overlap is already challenging. Reasoning about the full 3D pose, including occluded body parts, adds further complexity, which not only requires increased representation capacity (thus increasing the inference cost), but also more labelled training data, which is scarce for multi-person 3D pose. The design of our formulation responds to both of these challenges. Supervising only the 3D bones corresponding to each visible joint ensures that mostly local image evidence is used for prediction, where the full body context is already captured by the detected 2D pose. For instance, it should be possible to infer the kinematic-parent relative pose of the upper arm and the fore arm by looking at the region centered at the elbow. This means better generalization and less risk to overfit to dataset specific long-range correlations.

Further, our use of channel-sparse (joint-type-dependent) supervision of \(l_{j,k} \) is motivated by the fact that convolutional feature maps cannot contain sharp transitions [Mehta et al. 2018b], and therefore if a location of the output map encodes the full pose of one subject, a nearby location can not encode the full pose of another subject. E.g., the wrist of one person being in close proximity in the image plane to the shoulder of another person would require the full pose of two different individuals to be encoded in possibly adjacent pixel locations in the output map. Such encoding conflicts often lead to failures of previous methods, as shown in the Results Section (Fig. 13). In contrast, our encoding in \(L \) does not lead to encoding conflicts when different joints of separate individuals are in spatial proximity or even overlap in the image plane, because supervision is restricted to the channels corresponding to the body joint type. Consequently, our target output maps are smoother without sharp transitions, and more suitable for representation by CNN outputs. In Section 7.6 we show the efficacy of channel-sparse supervision for \(\{l_{j,k}\}_{j=1}^{J} \) over channel-dense supervision across various 2D and 3D pose benchmarks. Importantly, unlike [Mehta et al. 2018b; Zanfir et al. 2018b], the 2D pose information is not discarded, and is utilized as additional relevant information for 3D pose inference in Stage II, allowing for a compact and fast network. This makes it more suitable for a real-time system than, for instance, the attention-mechanism-based inference scheme of [Zanfir et al. 2018b].

For each individual \(k \), the 2D pose \(P_{k}^{2D} \) joint confidences \(\{c_{j,k}\}_{j=1}^{J} \), and 3D pose encodings \(\{l_{j,k}\}_{j=1}^{J} \) at the visible joints are extracted and input to Stage II, which uses a fully-connected decoding network that leverages the full body context that it available to it to give the complete 3D pose with the occluding joints filled in. We provide details of Stage II in Section 4.2.

4.1.3 Stage I Training. The Stage I network is trained in multiple stages. First the core network and the 2D pose branch are trained for single person 2D pose estimation on the MPII [Andriluka et al. 2014] and LSP [Johnson and Everingham 2010, 2011] single person 2D datasets. Then, using these weights as initialization, it is trained for multi-person 2D pose estimation on MS-COCO [Lin et al. 2014]. Then the 3D pose branch is added and the two branches are individually trained on crops from MS-COCO and MuCo-3DPH [Mehta et al. 2018b], with the core network seeing gradients from both datasets via the two branches. Additionally, the 2D pose branch sees supervision from MuCo-3DHP dataset via heatmaps of the common minimum joint set between MS-COCO and MuCo-3DHP. We found that the pretraining on multi-person 2D pose data before introducing the 3D branch is important for the convergence of training.

4.2 Stage II Prediction

Stage II uses a lightweight fully-connected network to predict the root-relative 3D joint positions \(\{R_{k}^{3D}\}_{j=1}^{J} \) for each individual considered visible after Stage I. Before feeding the output from Stage I as input, we convert the 2D joint position predictions \(P_{k}^{2D} \) to a representation relative to the neck joint. For each individual \(k \), at each detected joint location, we extract the \(1 \times 1 \times \{3 \cdot J\} \) 3D pose encoding vector \(l_{j,k} \) as explained in the preceding section. The input to Stage II, \(S_{k} \in \mathbb{R}^{J \times \{3 \cdot J\}} \), is the concatenation of the neck relative \((u, v)_{j,k}\) coordinates of the joint, the joint detection confidence \(c_{j,k} \) and the feature vector \(l_{j,k} \), for each joint \(j \). If the joint is not visible, we instead concatenate zero vectors of appropriate dimensions (see Figure 3). Stage II comprises a 5-layer fully-connected network, which converts \(S_{k} \) to a root-relative 3D pose estimate \(R_{k}^{3D} \) (see Figure 5).

We emphasize that unlike [Mehta et al. 2018b], we use \(l_{j,k} \) as a feature vector and not directly as the body part’s pose estimate because jointly encoding body parts of all individuals in the same feature volume may result in corrupted predictions in the case of conflicts–same parts of different individuals in close proximity. Providing the 2D joint positions and part confidences along with the feature vectors as input to the Stage II network allows it to correct any conflicts that may arise. See Figure 13 for a visual comparison of results against [Mehta et al. 2018b].

The inference time for Stage II with a batch size of 10 is 1.6ms on an Nvidia K80, and 1.1ms on a TitanX (Pascal).
4.2.1 Stage II Training. The Stage II network is trained on uncropped frames from MuCo-3DHPR [Mehta et al. 2018b]. We run Stage I on these frames and extract the 2D pose and 3D pose encodings. Then for each detected individual, we use the ground-truth root-relative 3D pose as the supervision target for \(\{(x_j, y_j, z_j)\}_{j=1}^b \). Since the pose prediction can be drastically different from the ground truth when there are severe occlusions, we use the smooth-L1 [Ren et al. 2015] loss to mitigate the effect of such outliers. In addition to providing an opportunity to reconcile the 3D pose predictions with the 2D pose, another advantage of a second stage trained separately from the first stage is that the output joint set can be made different from the joint set used for Stage I, depending on which dataset was used for training Stage II (joint sets typically differ across datasets). In our case, though there are no 2D predictions for foot tip, the 3D pose encoding for ankle encodes information about the foot tip, which is used in Stage II to produce 3D predictions for foot tips.

5 SELECSLS NET: A FAST AND ACCURATE POSE INFERENCE CNN

Our Stage I core network is the most expensive component of our algorithm in terms of computation time. We evaluate various popular network architectures on the task of single person 2D pose estimation (see Table 2) and determine that despite various parameter-efficient depthwise-convolution-based designs, for GPU-based deployment ResNet architectures provide a comparable or better speed-accuracy tradeoff, and thus would be used as baselines throughout the article. ResNet-50 [2016] has been employed for other multi-person pose estimation methods such as [Mehta et al. 2018b] and [Rogez et al. 2018b]. However, on anything but the top-end GPUs, our full system with a ResNet-50 core would not reach real-time performance of \(>25 \) fps. The ‘demo’ system of [Rogez et al. 2018] uses ResNet-50 and only works at 10 – 12 fps on a GPU of 512 x 320 pixel input. We measured its forward pass time on a TitanX (Pascal) GPU to be \(>100 \) ms. We therefore propose a new network architecture module, called SelecSLS module, that uses short range and long range concatenation-skip connections in a selective way instead of additive-skip connections. It is the main building block of the new SelecSLS Net architecture for the Stage I core CNN. Additive-skip gets element-wise added to the features at the point of incorporation of the skip connection, whereas concatenative-skip connections get concatenated with the features in the channel-dimension. Our new selective use of concatenation-skip connectivity promotes information flow through the network, without the exorbitant memory and compute cost associated with a full dense connectivity. Our new Stage I network shows comparable accuracy to a ResNet-50 core at substantially lower inference time, across single person and multi-person 2D and 3D pose benchmarks.

5.1 SelecSLS Module

Our Stage I core network is comprised of building blocks, SelecSLS modules, with intra-module short-range skip connectivity and cross-module longer-range skip connectivity, for the latter of which we explore different architectural variants. The module design is as shown in Figure 6 (a) and (b). All SelecSLS module variants have a common design part which comprises a series of \(3 \times 3 \) convolutions interleaved with \(1 \times 1 \) convolutions. This is to enable mixing of channels when grouped \(3 \times 3 \) convolutions are used. All convolutions are followed by batch normalization and ReLU non-linearity. The module hyperparameter \(k \) dictates the number of features output by the convolution layers within the module. The outputs of all \(3 \times 3 \) convolutions (2\(k \)) are concatenated and fed to a \(1 \times 1 \) convolution which produces \(n_o \) features. The first \(3 \times 3 \) in the module has a stride of 1 or 2, which dictates the feature resolution of the entire module. The cross-module skip connection is the second input to the module. On the one hand, we compare two variants of SelecSLS module that handle cross-module skip connections in different ways: as additive-skip connections, henceforth AS (Figure 6 (a)) or as concatenation-skip connections, henceforth CS (Figure 6 (b)). The additive skip connection is added to the final \(1 \times 1 \) convolution before ReLU, and the ReLU is placed after the sum. When the number of features in the skip connection does not match \(n_o \), a \(1 \times 1 \) convolution is used on the skip path to match the number of channels.

On the other hand, we investigate two variants of the cross-module connectivity design itself. The first is skip connectivity from the previous module, henceforth Prev (Figure 6 (c)), as it has been commonly employed. The second is skip connectivity from the first module in a level, henceforth First (Figure 6 (d)). We define a level as all modules in succession which output feature maps of a particular spatial resolution.

5.2 SelecSLS Net Architecture

Table 2 shows the overall architecture of the proposed SelecSLS Net, parameterized by the type of module (SelecSLS concatenation-skip CS vs addtion-skip AS), the stride of the module (s), the intermediate features in the module (k), cross-module skip connectivity (previous module or first module in the level), and number of outputs of the module \(n_o \) (base case). With the aim to promote information flow in the network, we also consider \((W) \)ider \(n_o \) at transitions in spatial resolution. All \(3 \times 3 \) convolutions with more than \(96 \) outputs use a group size of 2, and those with more than 192 outputs use a group size of 4.

Design Evaluation: We experimentally determine the best network design by testing the Stage I network with a SelecSLS Net core on 2D multi-person pose estimation, i.e., only using the 2D branch, which plays an integral role in the overall pipeline. Our conclusions
Fig. 6. Variants of SelectSLS module design (a) and (b). Both share a common design comprised of interleaved 1 x 1 and 3 x 3 convolutions, with different ways of handling cross-module skip connections internally: (a) as additive-skip connections, or (b) as concatenative-skip connections. The cross module skip connections can themselves come either from the previous module (c) or from the first module which outputs features at a particular spatial resolution (d). In addition to the different skip connectivity choices, our design is parameterized by module stride \(s \), the number of intermediate features \(k \), and the number of module outputs \(n_o \).

Table 2. SelectSLS Net Architecture: The table shows the network levels, overall number of modules, number of intermediate features \(k \), and the spatial resolution of features of the network designs we evaluate in Section 5.2. The design choices evaluated are the type of module (additive skip AS vs concatenation skip CS), the type of cross module skip connectivity (From previous module (Prev) or first module (First) in the level), and the scheme for the number of outputs of modules \(n_o \) ((B)ase or (W)ide).

Level	Output Resolution	SelectSLS Module	Stride	\(k \)	Cross-Module Skip Conn.	\(n_o \)	\(n_o \)
					(B)	(W)	
L0	w/2 x h/2	Conv. 3x3	2	64	No	64	32
L1	w/4 x h/4	CS/AS	2	128	No	128	64
	w/4 x h/4	CS/AS	1	64	Prev/First	64	128
L2	w/8 x h/8	CS/AS	2	64	No	64	128
	w/8 x h/8	CS/AS	1	128	Prev/First	128	128
	w/8 x h/8	CS/AS	1	128	Prev/First	128	288
L3	w/16 x h/16	CS/AS	2	288	No	288	288
	w/16 x h/16	CS/AS	1	288	Prev/First	288	288
	w/16 x h/16	CS/AS	1	288	Prev/First	288	288
	w/16 x h/16	CS/AS	1	288	Prev/First	416	416

We compare against ResNet-50 and ResNet-34 architectures as core networks to establish appropriate baselines. For ResNet, we keep the network until the first residual module in level-5 and remove striding from level-5. We evaluate on a held-out 1000 frame subset of the MS-COCO validation set, and report the Average Precision (AP) and Recall (AR), as well as inference time on different hardware in Table 3. Using the AS module with Prev connectivity and \(n_o(B) \) outputs for modules, the performance as well as the inference time on an Nvidia K80 GPU is close to that of ResNet-34. Using CS instead of addition-skip significantly improves the average precision from 47.0 to 47.6, and the average recall from 51.7 to 52.6. Switching the number of module outputs to the wider \(n_o(W) \) scheme leads to further improvement in AP and AR, at a slight increase in inference time.

Using First connectivity further improves performance, namely to 48.6 AP and 53.3 AR, reaching close to ResNet-50 in AP (48.8) and performing slightly better with regard to AR (53.2). Still our new design has a 1.4-1.8 \(\times \) faster inference time across all devices. We also evaluate the publicly available model of [Cao et al. 2017] on the same validation subset. Their multi-stage network is 11 percentage points better on AP and AR than our network, while being 10 – 20\(\times \) slower.

For subsequent experiments, we therefore use a SelectSLS Net with concatenation-skip modules, cross-module skip connectivity to the first module in the level, and \(n_o(W) \) scheme for module outputs. Refer to Section 7 for further comparisons of our architecture against ResNet-50 and ResNet-34 baselines on single-person and multi-person 3D pose benchmarks.
After Stage I and Stage II we have per-frame root-relative pose estimates for each individual. However, we have no estimates of person size or metric distance from the camera, person identities are not tracked across frames, and reconstructions are not in terms of joint angles. To remedy this, we infer and track person appearance over time, optionally infer absolute height from ground plane geometry, and fuse 2D and 3D predictions with temporal smoothness and joint limit constraints in a space-time kinematic pose fitting method.

6.1 Identity Tracking and Re-identification
To distinguish poses estimated at distinct frames, we extend the previous pose notation with temporal indices in square brackets. So far, per-frame 2D and 3D poses have been estimated for the current and past frames. We need a fast method that maintains identity of a detected person across frames and re-identifies it after a period of full occlusion. To this end, we assign correspondences between person detections at the current timestep t, $\{P_i[t]\}_{i=1}^K$, to the preceding ones $\{P_i[t-1]\}_{i=2}^K$. We model and keep track of person appearance with an HSV color histogram of the upper body region. We discretize the hue and saturation channels into 30 bins each and determine the appearance $A_{i[t]}$ as the class probabilities across the bounding box enclosing the torso joints in $\{P^{2D}_i[t]\}_i$. This descriptor is efficient to compute and can model loose and tight clothing alike, but might suffer from color ambiguities across similarly dressed subjects.

To be able to match subjects robustly, we assign current detections to previously known identities not only based on appearance similarity, $S^A_{i,k} = (A_i[t] - A_k[t-1])^2$, but also on the 2D pose similarity $S^{2D}_{i,k}(i,k) = (P^{2D}_i[t] - P^{2D}_k[t-1])^2$ and 3D pose similarity $S^{3D}_{i,k}(i,k) = (P^{3D}_i[t] - P^{3D}_k[t-1])^2$. A threshold on the dissimilarity is set to detect occlusions, persons leaving the field of view, and new persons entering. That means the number of persons $K[t]$ can change. Person identities are maintained for a certain number of frames after disappearance, to allow for re-identification after momentary occlusions such as those caused by the tracked subjects passing behind an occluder. We update the appearance histogram of known subjects at arrival time and every 30 seconds to account for appearance changes such as varying illumination.

6.2 Relative Bone Length and Absolute Height Calculation
Relative bone length between body parts is a scale-invariant property that is readily estimated by P^{3D}_k in Stage II. To increase robustness, we take the normalized skeleton bone lengths $θ_k$ as the distance between linked joints in P^{3D}_k averaged across the first 10 frames.

Translating relative pose estimates from pixel coordinates to absolute 3D coordinates in cm is a difficult task as it requires either a reference object of known position and scale or knowledge of the person’s height, which in turn can only be guessed with uncertainty from monocular footage [Günel et al. 2018].

In Section 6.3 we explain how the camera relative position up to a scale is recovered through a re-projection constraint.

To allow more accurate camera relative localization, we can optionally utilize the ground plane as reference geometry since camera calibration is less cumbersome than measuring the height of every person appearing in the scene. First, we determine the camera relative position of a person by shooting a ray from the camera origin through the person’s foot detection in 2D and computing its intersection with the ground plane. The subject height, h_k, is then the distance from the ground plane to the intersection point of a virtual billboard placed at the determined foot position and the view ray through the detected head position. Because we want to capture dynamic motions such as jumping, running and partial (self-)occlusions, we cannot assume that the ankle is visible and touches the ground at every frame. Instead, we use this strategy only once when the person appears.

In practice, we compute intrinsic and extrinsic camera parameters once prior to recording using checkerboard calibration. Other object-free calibration approaches would be feasible alternatives [Yang and Zhou 2018; Zanfir et al. 2018a].

6.3 Kinematic Skeleton Fitting
After 2D and 3D joint position prediction, we optimize for the skeletal pose $\{θ_j[t]\}_{j=1}^K$ of all $K[t]$ people in the scene, with $θ_j[t] ∈ R^D$ where $D = 29$ is the number of degrees of freedom (DOF) for one skeleton. Both, per-frame 2D and 3D pose estimates from previous stages are temporally filtered [Casiez et al. 2012] before skeleton fitting. Note that $θ_k ∈ R^D$ describes the pose of a person in terms of joint angles of a fixed skeleton plus the global root position, meaning our final output is directly compatible with CG character animation pipelines. We jointly fit to both 2D and root-relative 3D predictions as this leads to better reprojection error while maintaining plausible and robust 3D articulation. We estimate $θ_j[t]$ by minimizing the
fitting energy
\[E(\theta_1[t], \ldots, \theta_K[t]) = w_{3D}E_{3D} + w_{2D}E_{2D} + w_{\text{lim}}E_{\text{lim}} + w_{\text{temp}}E_{\text{temp}} + w_{\text{depth}}E_{\text{depth}}. \quad (1) \]

We formulate \(\frac{\partial E}{\partial \theta_k[t]} \) in closed form to perform efficient minimization by gradient descent. The influence of the individual terms is balanced with \(w_{3D} = 9e^{-1}, w_{2D} = 1e^{-5}, w_{\text{lim}} = 5e^{-1}, w_{\text{temp}} = 1e^{-7}, \) and \(w_{\text{depth}} = 8e^{-6} \). In the following, we explain each term in more detail.

3D Inverse Kinematics Term: The 3D fitting term measures the 3D distance between predicted root-relative joint positions \(F^{3D}_k[t] \) and the root-relative joint positions in the skeleton \(\mathcal{P}(\theta_k[t], b_k) \) posed by forward kinematics for every person \(k \), joint \(j \) and previously estimated relative bone lengths \(b_k \).

\[E_{3D} = \sum_{k=1}^{K} \sum_{j=1}^{J} ||\mathcal{P}(\theta_k[t], b_k)_{j} - F^{3D}_k[t]_{j}||^2. \quad (2) \]

2D Re-projection Term: The 2D fitting term is calculated as the 2D distance between predicted 2D joint positions \(F^{2D}_k[t] \) and the projected skeleton joint positions \(\mathcal{P}(\theta_k[t], b_k) \) for every person \(k \) and joint \(j \).

\[E_{2D} = \sum_{k=1}^{K} \sum_{j=1}^{J} E^2_{2D}(\theta_{k,j}) = c_{j,k}||\Pi(\mathcal{P}(\theta_k[t], b_k))_{j} - F^{2D}_k[t]_{j}||^2, \quad (3) \]

where \(c \) is the 2D prediction confidence, and \(\Pi \) is the camera projection matrix. Note that \(\mathcal{P} \) outputs unit height, the scaling with \(h_k \) maps it to metric coordinates, and the projection constraint thereby reconstructs absolute position in world coordinates.

Joint Angle Limit Term: The joint limits regularizer enforces a soft limit on the amount of joint angle rotation based on the anatomical joint rotation limits \(\theta^{\text{min}} \) and \(\theta^{\text{max}} \). We write it as

\[E_{\text{lim}} = \sum_{k=1}^{K} \sum_{j=1}^{D} \left\{
\begin{array}{ll}
(\theta^{\text{min}} - \theta_{k,j})^2 & \text{if } \theta_{k,j}[t] < \theta^{\text{min}} \\
(\theta^{\text{max}} - \theta_{k,j})^2 & \text{if } \theta_{k,j}[t] > \theta^{\text{max}} \\
0 & \text{otherwise}
\end{array}
\right., \quad (4) \]

where we start from \(j = 7 \) since we do not have limits on the global position and rotation parameters. Note that our neural network is trained to estimate joint positions and hence has no explicit knowledge about joint angle limits. Therefore, \(E_{\text{lim}} \) ensures biomechanical plausibility of our results.

Temporal Smoothness Term: Since our neural network estimates poses on a per-frame basis, the results might exhibit temporal jitter. The temporal stability of our estimated poses is improved by

\[E_{\text{temp}}(\Theta) = \sum_{k=1}^{K} ||\nabla \theta_k[t - 1] - \nabla \theta_k[t]||^2, \quad (5) \]

where the rate of change in parameter values, \(\nabla \theta_k \), is approximated using backward differencing. In addition, we penalize variations in the less constrained depth direction stronger, using the smoothness term \(E_{\text{depth}} = ||k_{2,2}||^2 - k_{2,2} ||t - 1|| \), where \(k_{2,2} \) is the degree of freedom that drives the \(z \)-component of the root position.

7 RESULTS

In this section we evaluate the results of our real-time multi-person motion capture solution qualitatively and quantitatively on various benchmarks, provide extensive comparison with prior work, and conduct a detailed ablative analysis of the different components of
our system. For additional qualitative results, please refer to the accompanying video.

7.1 System Characteristics and Applications

First, we show that our system provides efficient and accurate 3D motion capture that is ready for live character animation and other interactive CG applications, rivaling depth-based solutions despite using only a single RGB video feed.

Real-time Performance: Our live system uses a standard webcam as input, and processes 512×320 pixel resolution input frames. The system running on a Desktop with an Intel Xeon E5 with 3.5 GHz and an Nvidia GTX 1080Ti is capable of processing input at >30 fps, while on a laptop with an Intel i7-8780H with a 1080-MaxQ it runs at ≈ 25 fps. The accompanying video contains examples of our live setup running on a laptop.

Multi-Person Scenes and Occlusion Robustness: In Figures 11 and 10, we show qualitative results of our full system on MuPoTS-3D [2018b] and Panoptic [2015] datasets with scenes containing multiple interacting and overlapping subjects. Single-person real-time approaches such as VNect [2017b] are unable to handle occlusions or multiple people in close proximity, while our approach succeeds, as shown in Figure 8. Our approach shows better occlusion robustness than the multi-person approach of [Mehta et al. 2018b], particularly for scenarios where similar body parts of different individuals overlap, as seen in Figure 13. For further qualitative results on a variety of scene settings, including community videos and live scene setups, please refer to the accompanying video and Figure 15.

Comparison With KinectV2: The quality of our pose estimates with a single RGB camera is comparable to those from off the shelf depth sensing based systems such as KinectV2 (Figure 9), with our approach succeeding in certain cluttered scenarios where person identification from depth input would be ambiguous. The accompanying video contains further visual comparisons.

Character Animation: Since we reconstruct temporally coherent joint angles and our camera relative subject localization estimates are stable, the output of our system can readily be employed to animate virtual avatars as shown in Figure 7. The video demonstrates the stability of the localization estimates of our system and contains further examples of real-time interactive character control with a single RGB camera.

7.2 Performance on Single Person 3D Pose Datasets

Our method is capable of real-time motion capture of multi-person scenes with notable occlusions. Previous single-person approaches, irrespective of runtime, would fail on this task. For completeness, we show that our method shows competitive accuracy on single person 3D pose estimation. In Table 4 we compare the 3D pose output after Stage II against other single person methods on the MPI-INF-3DHP benchmark dataset [Mehta et al. 2017a] using the commonly used 3D Percentage of Correct Keypoints (3DPCK, higher is better), Area under the Curve (AUC, higher is better) and mean 3D joint position error (MJPE, lower is better). Importantly, we do not wrongfully exploit ground truth 2D or 3D pose information as our evaluation operates on the uncropped frame and does not do a rigid alignment to the ground truth.

Similarly with Stage II trained on Human3.6m (Table 6), we again see that our system compares favourably to recent approaches designed to handle single-person and multi-person scenarios. Further, this is an example of the ability of our system to adapt to different datasets by simply retraining the inexpensive Stage II network.

7.3 Evaluation of Skeleton Fitting (Stage III)

Skeleton fitting to reconcile 2D and 3D poses across time results in smooth joint angle estimates which can be used to drive virtual
We quantitatively evaluate our method’s accuracy (after Stage II) on the single person MPI-INF-3DHP dataset. Top part are methods designed and trained for single-person capture. Bottom part are multi-person methods trained for multi-person capture but evaluated on single-person capture. Metrics used are: 3D percentage of correct keypoints (3DPCK, higher is better), area under the curve (AUC, higher is better) and mean 3D joint position error (MJPE, lower is better). * Indicates that no test time augmentation is employed. † Indicates that no ground-truth bounding box information is used and the complete image frame is processed.

Method	3DPCK	AUC	MJPE
[Mehta et al. 2017b]	78.1	42.0	119.2
[Mehta et al. 2017b]*	75.0	39.2	132.8
[Nibali et al. 2019]	87.6	48.8	87.6
[Yang et al. 2018]	69.0	32.0	
[Zhou et al. 2017]	69.2	32.5	
[Pavlakos et al. 2018a]	71.9	35.3	
[Dabral et al. 2018]	72.3	34.8	116.3
[Kanazawa et al. 2018]	72.9	36.5	124.2
[Mehta et al. 2018b]	76.2	38.3	120.5
[Mehta et al. 2018b]*	74.1	36.7	125.1
Ours(SelecSLS)†	72.1	35.1	130.3
	82.8	45.3	98.4

characters. However, for pose classes with significant self occlusions, where 2D pose estimates are not reliable, we see a significant decrease in joint position accuracy after skeleton fitting. On the single person 3D pose benchmark MPI-INF-3DHP, in Table 11, we see that the overall 3DPCK decreases to 79.3 from 82.8. However, for pose classes such as standing, exercising etc, the pose accuracy is not affected significantly after skeleton fitting.

7.4 Performance on Multi-Person 3D Pose Datasets
We quantitatively evaluate our method’s accuracy (after Stage II) on the MuPoTS-3D monocular multi-person benchmark data set from [Mehta et al. 2018b] which has ground truth 3D pose annotations from a multi-view marker-less motion capture system. We perform two types of comparison. In Table 5(All), we compare on all annotated poses in sequences T1-T20 of the annotated test set, including poses of humans that were not detected by our algorithm. In Table 5(Matched), we compare only on annotated poses of humans detected by the respective algorithms.

Both tables show that our method achieves comparable accuracy in terms of the 3D percentage of correct keypoints metric (3DPCK, higher is better) to LCRNet++ [2018], while being much better than the other related methods, namely [Mehta et al. 2018b] and LCRNet [Rogez et al. 2017]. The faster ‘demo’ version of LCRNet++ [Rogez et al. 2018] is less accurate than the results reported here, and runs at 10 – 12 fps, while our system runs at > 30 fps. Note that we apply no test-time augmentation or ensembling to our system, making the reported performance on various benchmarks accurately reflect the real per-frame prediction performance of our system.

Qualitative comparisons to the approach of [Mehta et al. 2018b] in Figure 13 show that in scenarios where similar body parts of different individuals overlap, the pose representation of [Mehta et al. 2018b] encounters encoding conflicts, while our approach successfully handles these cases. Our pose estimates are comparable to LCRNet++ [2018] quantitatively and qualitatively. However, since LCRNet++ occasionally predicts redundant region proposals, pose estimates from multiple overlapping regions need to be fused. In cases of inter-personal proximity or overlap, the pose proposal fusion step can break, resulting in spurious predictions as seen in Figure 12.

7.5 Core Network Architecture Evaluation
In Section 5.2 (Table 3), we evaluated our design choices with regards to the SelecSLS module, and establish that our our proposed SelecSLS Net performs comparably to ResNet-50 while being significantly faster, when trained for multi-person 2D pose estimation.

After adding the 3D pose branch, and training with additional MuCo-3DHP 3D pose training data, we evaluate on the same MS-COCO validation subset in Table 7. Due to the addition of the 3D pose task, the 2D pose performance expectedly decreases, going down to 47.0 AP from 48.6, and 51.8 AR from 53.3, which outperforms ResNet-50. Even with the addition of the 3D pose branch, the inference time of Stage I stays under 29ms on an Nvidia K80 GPU.

We evaluate our network trained for multi-person pose estimation (after Stage II) on MPI-INF-3DHP [Mehta et al. 2017a] single person 3D pose benchmark, comparing the performance of different core network architectures. In Table 9, we see that using our SelecSLS core architecture we overall perform significantly better than ResNet-34 and slightly better than ResNet-50, with a higher 3DPCK and AUC and a lower MPJPE error. SelecSLS particularly results in significantly better performance for lower body joints (Knee, Ankle) than the ResNet baselines.
Table 5. Comparison of our per-frame estimates (Stage II) on the MuPoTS-3D benchmark data set [Mehta et al. 2018b]. The metric used is 3D percentage of correct keypoints (3DPCK), so higher is better. The data set contains 20 test scenes TS1-TS20. We evaluate once on all annotated poses (top row - All), and once only on the annotated poses detected by the respective algorithm (bottom row - Matched). Our approach achieves comparable accuracy to the previous monocular multi-person 3D methods from the literature (SingleShot [Mehta et al. 2018b], LCRNet [Roge et al. 2017], LCRNet++ [Roge et al. 2018]) while having a drastically faster runtime. * Indicates no test time augmentation is used.

Method	Direct	Discuss	Eating	Greet	Phone	Posing	Purch.	Sitting	Sit Down	Smoke	Take Photo	Wait	Walk	Walk Dog	Walk Pair	All
[Pavlakos et al. 2017]	60.9	67.1	61.8	62.8	67.5	58.8	64.4	79.8	92.9	67.0	72.3	70.0	54.0	71.0	57.6	67.1
[Mehta et al. 2017a]	52.5	63.8	55.4	62.3	71.8	52.6	72.2	86.2	120.6	66.0	79.8	48.9	76.8	53.7	68.6	
[Martinez et al. 2017]	51.8	56.2	58.1	59.0	69.5	55.2	58.1	74.0	94.6	62.3	78.4	49.5	65.1	52.4	62.9	
[Zhou et al. 2018]	54.8	60.7	58.2	71.4	62.0	53.8	55.6	75.2	111.6	64.1	65.5	63.0	51.4	55.3	64.9	
[Mehta et al. 2017b]	62.8	78.1	63.4	72.5	88.3	63.1	74.8	106.6	138.7	78.8	93.8	35.8	82.0	59.6	80.5	
[Katicirecioglu et al. 2018]	57.8	64.6	59.4	62.8	71.5	57.5	60.4	80.2	104.1	66.3	80.5	62.5	70.0	60.1	67.3	
[Tekin et al. 2017]	85.0	108.8	84.4	98.9	119.4	98.5	93.8	73.8	170.4	85.1	95.7	116.9	62.1	113.7	94.8	100.1
[Mehta et al. 2018b]	58.2	67.3	61.2	65.7	75.8	62.2	64.6	82.0	93.0	68.8	84.5	65.1	57.6	72.0	63.6	69.9
LCRNet++ (2018) (VGG16)	50.9	55.9	63.3	56.0	65.1	52.1	51.9	81.1	91.7	64.7	70.7	54.6	44.7	61.1	53.7	61.2
LCRNet++ (Res50)	55.9	60.0	64.5	56.3	67.4	55.1	55.3	84.8	90.7	67.9	71.8	57.5	47.8	63.3	54.6	63.5
Ours (SelectSLS)	50.2	61.9	58.3	58.2	68.8	54.1	61.5	76.8	91.7	63.4	74.6	58.3	46.3	65.3	53.2	63.6

Table 6. Results of Stage II predictions on Human3.6m, evaluated on all camera views of Subject 9 and 11 without alignment to GT. The Stage II network is trained with only Human3.6m. The top part has single person 3D pose methods, while the bottom part shows methods designed for multi-person pose estimation. Mean Per Joint Error (MPJPE) in millimeters is the metric used (lower is better). Note that our reported results do not use any test time augmentation or rigid alignment to ground truth.

| Method | TS1 | TS2 | TS3 | TS4 | TS5 | TS6 | TS7 | TS8 | TS9 | TS10 | TS11 | TS12 | TS13 | TS14 | TS15 | TS16 | TS17 | TS18 | TS19 | TS20 | Total |
|-------------------------|
| LCRNet | 67.7 | 49.8 | 53.4 | 59.1 | 67.5 | 22.8 | 43.7 | 49.9 | 31.1 | 78.1 | 33.4 | 33.5 | 51.6 | 49.3 | 56.2 | 66.5 | 65.2 | 62.9 | 66.1 | 59.1 | 53.8 |
| Single Shot | 81.0 | 59.9 | 64.4 | 62.6 | 68.0 | 30.3 | 65.0 | 59.2 | 64.1 | 83.9 | 67.2 | 68.3 | 60.6 | 56.5 | 69.9 | 79.4 | 79.6 | 66.1 | 64.3 | 63.5 | 65.0 |
| LCRNet++ (Res50)* | 87.3 | 61.9 | 67.9 | 74.6 | 78.8 | 48.9 | 58.3 | 59.7 | 78.1 | 89.5 | 69.2 | 73.8 | 66.2 | 56.0 | 74.1 | 82.1 | 78.1 | 72.6 | 73.1 | 61.0 | 70.6 |
| Ours (SelectSLS)* | 88.4 | 65.1 | 68.2 | 72.5 | 76.2 | 46.2 | 65.8 | 64.1 | 75.1 | 82.4 | 74.1 | 72.4 | 64.4 | 58.8 | 73.7 | 80.4 | 84.3 | 67.2 | 74.3 | 67.8 | 70.4 |

Table 7. Evaluation of 2D keypoint detections of the complete Stage I of our system (both 2D and 3D branches trained), with different core networks on a subset of validation frames of MS COCO dataset. Also reported are the forward pass timings of the first stage on different GPUs (K80, TitanX (Pascal)) for an input image of size 512 × 320 pixels. We also show the 2D pose accuracy when using channel-dense supervision of \(\{l_{j,k}\}_{j=1}^{3} \) in the 3D branch in place of our proposed channel-sparse supervision (Section 4.1.2).

Table 8. Evaluation of different core network choices with channel-sparse supervision of 3D pose branch of Stage I, as well as a comparison to channel-dense supervision on the multi-person 3D pose benchmark MuPoTS-3D [Mehta et al. 2018b]. We evaluate on all annotated subjects using the 3D percentage of correct keypoints (3DPCK) metric, and also show the 3DPCK only for predictions that were matched to an annotation. We also show the accuracy split for visible and occluded joints.
Table 9. Comparison of limb joint 3D pose accuracy on MPI-INF-3DHP (Single Person) for different core network choices with our channel-sparse supervision of 3D pose branch of Stage I, as well as a comparison to channel-dense supervision. Metrics used are 3DPCK and AUC (higher is better).

Joint	3DPCK	AUC
Elbow	79.6	61.2
Wrist	82.4	61.8
Knee	81.2	62.0
Ankle	82.4	62.0
Total	79.3	61.2
Channel-Dense	82.4	61.8
Supervision	81.2	62.0
SuperslS	80.1	61.2

Table 10. Comparison of limb joint 3D pose accuracy on MuPoTS-3D (Multi Person) for different core network choices with our channel-sparse supervision of 3D pose branch of Stage I, as well as a comparison to channel-dense supervision. Metrics used is 3D Percentage of Correct Keypoints (3DPCK), evaluated with a threshold of 150mm.

Joint	3DPCK	FP Time
Elbow	63.7	29.0ms
Wrist	50.5	39.3ms
Knee	69.1	39.3ms
Ankle	37.3	39.3ms
Total	67.0	39.3ms
Channel-Dense	66.8	28.6ms
Supervision	64.2	28.6ms

Similarly, our SelectSLS network architecture outperforms ResNet-50 and ResNet-34 on the multi person 3D pose benchmark MuPoTS-3D, as shown in Table 8. With our SelectSLS architecture, the pose accuracy for both visible and occluded joints improves over the ResNet baselines, even though there is a slight decrease in the number of detected subjects. Additionally, similar to the single person benchmark, we see in Table 10 that SelectSLS particularly results in significantly better performance for lower body joints (Knee, Ankle) than the ResNet baselines.

With Stage II trained on the single-person pose estimation task on Human3.6m, we again see that our proposed faster core network architecture outperforms ResNet baselines. The use of SelectSLS results in a mean per joint position error of 63.6mm, compared to 64.8mm using ResNet-50 and 67.0mm using ResNet-34.

7.6 Channel-Sparse 3D Pose Encoding Evaluation

As discussed at length in Section 4.1.2, different choices for supervision of \{l_j,k\}_j=1 have different implications. Here we show that our channel-sparse supervision of the encoding, such that only the local kinematic context is accounted for, performs better than the na"ive channel-dense supervision.

The 2D pose accuracy of the Stage I network with channel-dense supervision of 3D branch is comparable to that with channel-sparse supervision, as shown in Table 7. However, our proposed encoding performs much better across single person and multi-person 3D pose benchmarks.

Table 11 shows that channel-sparse encoding significantly outperforms channel-dense encoding, yielding an overall 3DPCK of 82.8 compared to 80.1 3DPCK for the latter. The difference particularly emerges for difficult pose classes such as sitting on a chair or on the floor, where our channel-sparse supervision shows substantial gains. Breakdown by joint types (Tables 9, 10) reveals that the our channel-sparse supervision is significantly more accurate for limb joints.

7.7 Ablation of Input to Stage II

We evaluate variants of Stage II network taking different subsets of outputs from Stage I as input. We compare the Stage II output, without Stage III on MPI-INF-3DHP single person benchmark as well as MuPoTS-3D multi person benchmarks. On the single person benchmark (Table 11), using only the 2D pose from the 2D branch as input to Stage II, without having trained the 3D branch for Stage I, results in a 3DPCK of 76.0. When using 2D pose from a network with a 3D branch, trained additionally on MuCo-3DHP dataset, we see a minor performance decrease to 75.5 3DPCK. Though it comes with a performance improvement on challenging pose classes such as ‘Sitting’ and ‘On The Floor’ which are under-represented in MSCOCO. Adding other components on top of 2D pose, such as the joint detection confidences C_k, and output features from the 3D branch \{l_j,k\}_j=1 as described in Section 4.1.2 leads to consistent improvement as more components are subsequently used as input to Stage II. Using joint detection confidences C_k with 2D pose increases the accuracy to 77.2 3DPCK, and incorporating 3D pose features \{l_j,k\}_j=1 increases the accuracy to 82.8 3DPCK, and both lead to improvements in AUC and MPJPE as well as improvements for both simper poses such as upright ‘Standing/walking’ as well as more difficult poses such as ‘Sitting’ and ‘On the Floor’.
We evaluate on all annotated subjects using the 3D percentage of correct keypoints (PCK). The metric used is 3D percentage of correct keypoints (PCK), so higher is better. The data set contains 20 test scenes T1-T20. We evaluate once on all annotated poses (top row – All). Evaluation of the impact of the different components from Stage I that form the input to Stage II, evaluated on the multi person 3D pose benchmark MuPoTS-3D [Mehta et al. 2018b]. We evaluate on all annotated subjects using the 3D percentage of correct keypoints (3DPCK) metric, also showing the accuracy split for visible and occluded joints. The components evaluated are the 2D pose predictions P_{2D}^k, the body joint confidences C_k, and the set of extracted 3D pose encodings $\{l_{j,k}\}_{j=1}^l$. Metrics used are: 3D percentage of correct keypoints (3DPCK), higher is better), area under the curve (AUC, higher is better) and mean 3D joint position error (MJPE, lower is better). Also shown are the results with channel-dense supervision of 3D pose encodings $\{l_{j,k}\}_{j=1}^l$, as well as evaluation of Stage III output.

Stage II Input	Stand/Walk	Sitt.	On The Floor	Total 3DPCK	AUC
P_{2D}^k (2D Branch Only)	86.4	76.3	44.9	76.0	42.1
$P_{2D}^k + C_k$	79.8	78.4	58.5	75.5	41.3
$P_{2D}^k + C_k + \{l_{j,k}\}_{j=2}^v$	85.9	79.4	58.7	77.2	42.2
$P_{2D}^k + C_k + \{l_{j,k}\}_{j=2}^v$	88.4	85.8	70.7	82.8	45.3
Channel-Dense $\{l_{j,k}\}_{j=2}^v$, Supervision	87.0	83.6	61.5	80.1	43.3
Stage III Output	88.5	82.6	52.6	79.3	41.2

Similarly for multi person 3D pose evaluation on the recently proposed MuPoTS-3D benchmark in Table 12, introduction of additional components as input to Stage II leads to improvement on the overall 3DPCK metric, for both visible and occluded joints. Each subsequently introduced component leads to an overall ≈5 3DPCK improvement. The most significant impact of the intermediate 3D pose features $\{l_{j,k}\}_{j=1}^l$ is on pose accuracy for occluded joints.

Table 12. Evaluation of choices for input to the 2nd stage on MuPoTS.

Stage II Input	All	Matched	Visible	Occluded
P_{2D}^k	59.3	63.9	61.6	50.0
$P_{2D}^k + C_k$	64.1	69.1	67.6	51.7
$P_{2D}^k + C_k + \{l_{j,k}\}_{j=2}^v$	70.4	75.8	74.1	57.8

As with other monocular approaches, the accuracy of our method is not comparable yet to the accuracy of multi-view capture algorithms. Failure cases in our system can arise from each of the constituent stages. The 3D pose estimates can be incorrect if the underlying 2D pose estimates or part associations are incorrect. Also, since we require the neck to be visible for a successful detection of a person, scenarios such as that in Figure 14(b) result in the person not being detected despite being mostly visible.

Our algorithm successfully captures the pose of occluded subjects even under difficult inter-person occlusions that are generally hard for monocular methods. However, the approach still falls short of reliably capturing extremely close interactions, like hugging. Incorporation of physics-based motion constraints could further enhance the accuracy of our system.
Fig. 15. Real-time 3D motion capture results on a wide variety of multi-person scenes. Our approach handles challenging motions and poses, including interactions and cases of self-occlusion. The top two rows show our live system tracking subjects in real-time and driving virtual characters with the captured motion. Please refer to the supplemental video for more results.
We present the first real-time approach for multi-person 3D motion capture using a single RGB camera. It offers state-of-the-art accuracy. We demonstrate these advances on a range of tasks.

Our algorithm is fast, but the relatively simple identity tracker may swap identities of people when tracking through extended person occlusions, drastic appearance changes, and similar clothing. More sophisticated space-time tracking would be needed to remedy this. As with all learning-based pose estimation approaches, pose estimation accuracy worsens on poses very dissimilar from the training poses. To approach this, we plan to extend our algorithm in future such that it can be refined in an unsupervised or semi-supervised way on unlabeled multi-person videos.

Our \textit{SelectSLS Net} leads to a drastic performance boost. There are other strategies that could be explored to further boost the speed of our network and convolutional architectures in general, or target it to specific hardware, such as using depthwise 3×3 convolutions or factorized 3×3 convolutions \cite{Romera et al. 2018; Szegedy et al. 2017} or binarized operations \cite{Bulat and Tzimiropoulos 2017}, all of which our proposed design can support. Note that the \textit{SelectSLS Net} architecture can also replace ResNet core networks for a broad range of tasks.

9 CONCLUSION

We present the first real-time approach for multi-person 3D motion capture using a single RGB camera. It operates in generic scenes and is robust to occlusions both by other people and objects. It provides joint angle estimates and localizes subjects relative to the camera. To this end, we jointly designed pose representations, network architectures, and a model-based pose fitting solution, to enable real-time performance. One of the key components of our system is a new CNN architecture that uses selective long and short range skip connections to improve the information flow allowing for a drastically faster network without compromising accuracy. The proposed system runs on consumer hardware at more than 30 fps while achieving state-of-the-art accuracy. We demonstrate these advances on a range of challenging real-world scenes.

REFERENCES

Thiemo Alldieck, Marcus Magnor, Bharat Lal Bhatnagar, Christian Theobalt, and Gerard Pons-Moll. 2019. Learning to Represent People in Clothing from a Single RGB Camera. In \textit{IEEE Conference on Computer Vision and Pattern Recognition (CVPR)}.

Thiemo Alldieck, Marcus Magnor, Weipeng Xu, Christian Theobalt, and Gerard Pons-Moll. 2018a. Detailed Human Avatars from Monocular Video. In \textit{3DV}.

Thiemo Alldieck, Marcus Magnor, Weipeng Xu, Christian Theobalt, and Gerard Pons-Moll. 2018b. Video Based Reconstruction of 3D People Models. In \textit{CVPR}.

Moll. 2018b. Video Based Reconstruction of 3D People Models. In \textit{3DV}.

Moll. 2018a. Detailed Human Avatars from Monocular Video. In \textit{ACM Transactions on Graphics (Proc. SIGGRAPH)} (Jul 2019).

Liu and Zollhoefer. 2018. Learning Human Shape and Pose from a Single Image. In \textit{ICCV}.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual Learning for Image Recognition. In \textit{CVPR}.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. 2017. Densely connected convolutional networks. In \textit{CVPR}.

Eldar Insafutdinov, Mykhaylo Andriluka, Leonid Pishchulin, Siyu Tang, Evgeny Levinson, Bjorn Andres, Bernt Schiele, and Saarland Informatics Campus. 2017. ArtTrack: Articulated multi-person tracking in the wild. In \textit{CVPR}.

Catalin Ionescu, Dragos Papava, Vlad Olaru, and Cristian Sminchisescu. 2014. Human3.6m: Large scale datasets and predictive methods for 3D human sensing in natural environments. \textit{PAMI} 36, 7 (2014), 1325–1339.

Umar Iqbal and Juergen Gall. 2016. Multi-person pose estimation with local joint-to-joint pose associations. In \textit{ECCV Workshops}. Springer, 627–642.

Arjun Jain, Thorsten Thorstén M. Fue, and Christian Theobalt. 2010. MovieReshape: Tracking and Reshaping of Humans in Videos. In \textit{CVPR} 29, 6, Article 148 (Dec. 2010), 10 pages. https://doi.org/10.1109/1882816.

Sam Johnson and Mark Everingham. 2010. Clustered Pose and Nonlinear Appearance Models for Human Pose Estimation. In \textit{BMVC}. doi:10.5244/C.24.12.

Sam Johnson and Mark Everingham. 2011. Learning Effective Human Pose Estimation from Inaccurate Annotation. In \textit{CVPR}.

Joldbrain Cafe Fork 2018. Cafe. https://github.com/joldbrain/cafe.

Angjoo Kanazawa, Michael J. Black, David W. Jacobs, and Jitendra Malik. 2015. Panoptic Studio: A Massively Multiview System for Social Motion Capture. In \textit{ECCV}.

Marc Habermann, Weipeng Xu, , Michael J. Black, and Michael J. Black. 2018. End-to-end Human Pose Estimation in the Wild. In \textit{CVPR}. 7297–7306. https://doi.org/10.1109/\textit{CVPR}.2018.00762

Semih Gümel, Helge Rhodin, and Pascal Fua. 2018. What Face and Body Shapes Can Tell About Height. \textit{arXiv preprint arXiv:1805.10355} (2018).

Zhe Cao, Tomas Simon, Shih-En Wei, and Yaser Sheikh. 2017. Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields. In \textit{CVPR}.

Géry Casiez, Nicolas Rousset, and Daniel Vogel. 2012. A Simple Speed-based Low-pass Filter for Noisy Input in Interactive Systems. In \textit{Proceedings of the \textit{SIGCHI Conference on Human Factors in Computing Systems (CHI ’12)}}. ACM, New York, NY, USA, 2527–2530. https://doi.org/10.1145/2207676.2208639

International Conference on Computer Vision.

Zhe Cao, Tomas Simon, Shih-En Wei, and Yaser Sheikh. 2017. Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields. In \textit{CVPR}.

Weipeng Xu, and Christian Theobalt. 2019. LiveCap: Real-time Human Performance Capture from Monocular Video. In \textit{ACM Transactions on Graphics (Proc. SIGGRAPH)} (Jul 2019).

Lei Tan and Liang Wang. 2019. Learning to Reconstruct People in Clothing from a Single RGB Camera. In \textit{ECCV}.

Marc Habermann, Weipeng Xu, , Michael J. Black, and Michael J. Black. 2018. End-to-end Human Pose Estimation in the Wild. In \textit{CVPR}. 7297–7306. https://doi.org/10.1109/\textit{CVPR}.2018.00762

Semih Gümel, Helge Rhodin, and Pascal Fua. 2018. What Face and Body Shapes Can Tell About Height. \textit{arXiv preprint arXiv:1805.10355} (2018).

Zhe Cao, Tomas Simon, Shih-En Wei, and Yaser Sheikh. 2017. Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields. In \textit{CVPR}.

Géry Casiez, Nicolas Rousset, and Daniel Vogel. 2012. A Simple Speed-based Low-pass Filter for Noisy Input in Interactive Systems. In \textit{Proceedings of the \textit{SIGCHI Conference on Human Factors in Computing Systems (CHI ’12)}}. ACM, New York, NY, USA, 2527–2530. https://doi.org/10.1145/2207676.2208639

International Conference on Computer Vision.

Zhe Cao, Tomas Simon, Shih-En Wei, and Yaser Sheikh. 2017. Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields. In \textit{CVPR}.

Géry Casiez, Nicolas Rousset, and Daniel Vogel. 2012. A Simple Speed-based Low-pass Filter for Noisy Input in Interactive Systems. In \textit{Proceedings of the \textit{SIGCHI Conference on Human Factors in Computing Systems (CHI ’12)}}. ACM, New York, NY, USA, 2527–2530. https://doi.org/10.1145/2207676.2208639

International Conference on Computer Vision.
Julia Martinez, Rayu Hosun, Javier Romero, and James J. Little. 2017. A simple yet effective baseline for 3D human pose estimation. In ECCV.

Dushyant Mehta, Helge Rhodin, Dan Casas, Pascal Fua, Oleksandr Sotnychenko, Weipeng Xu, and Christian Theobalt. 2017a. Monocular 3D Human Pose Estimation In The Wild Using Improved CNN Supervision. In 3DV. IEEE. https://doi.org/10.1109/3dv.2017.00064

Dushyant Mehta, Oleksandr Sotnychenko, Franziska Mueller, Weipeng Xu, Srinath Sridhar, Gerard Pons-Moll, and Christian Theobalt. 2018b. Single-Shot Multi-Person 3D Pose Estimation From Monocular RGB. In 3DV. IEEE. http://gcvi.mpi-inf.mpg.de/projects/SingleShotMultiPerson

Dushyant Mehta, Srinath Sridhar, Oleksandr Sotnychenko, Helge Rhodin, Mohammad Shafiee, Hans-Peter Seidel, Weipeng Xu, Dan Casas, and Christian Theobalt. 2017b. VNeCT: Real-time 3D Human Pose Estimation with a Single RGB Camera. In TOG, Vol. 36. 14. https://doi.org/10.1109/3702959.3075596

Sachin Mehta, Mohammad Rastegari, Anas Caspi, Linda Shapiro, and Hannieha Jaijirirvi. 2018a. ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation. In ECCV.

Alberto Menache. 2010. Understanding Motion Capture for Computer Animation, Second Edition (2nd ed.). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

Alessandro Neuwelt and Jia Deng. 2017. Associative Embedding: End-to-End Learning for Joint Detection and Grouping. In NeurIPS.

Aiden Nibali, Zhen He, Stuart Morgan, and Luke Prendegast. 2019. 3D Human Pose Estimation with 2D Marginal Heatmaps. In WACV.

Mohamed Omran, Christop Lassner, Gerard Pons-Moll, Peter Geiler, and Bernt Schiele. 2018. Neural Body Filtering: Unifying Deep Learning and Model Based Human Pose and Shape Estimation. In 3DV.

George Papandreou, Tyler Zhu, Nori Kanazawa, Alexander Toshev, Jonathan Tompson, Chris Bregler, and Kevin Murphy. 2017. Towards Accurate Multi-person Pose Estimation in the Wild. In CVPR.

George Papaloukas, Yaxiong Zhou, Konstantinos G Derpanis, and Kostas Daniilidis. 2017. Coarse-to-Fine Volumetric Prediction for Single-Image 3D Human Pose. In CVPR.

George Papaloukas, Luoyang Zhu, Xiaowei Zhou, and Kostas Daniilidis. 2018b. Learning to Estimate 3D Human Pose and Shape from a Single Color Image. In CVPR.

Leonid Pishchulin, Eldar Insafutdinov, Siyu Tang, Bjorn Andres, Mykhaylo Andriluka, Peter Geiler, and Bernt Schiele. 2016. DeepCut: Joint Subset Partition and Labeling for Multi Person Pose Estimation. In CVPR.

Leonid Pishchulin, Arjun Jain, Mykhaylo Andriluka, Thorsten Thormählen, and Bernt Schiele. 2012. Articulated people detection and pose estimation: Reshaping the future. In CVPR. IEEE, 3178–3185.

Gerard Pons-Moll, David J Fleet, and Bodo Rosenhahn. 2014. Poselets for monocular human pose estimation. In CVPR. 2337–2344.

Alin-Ionut Popa, Mihai Zanfir, and Cristian Sminchisescu. 2017. Deep Multitask Architecture for Integrated 2D and 3D Human Sensing. In CVPR.

Varun Ramakrishna, Takeo Kanade, and Yaser Sheikh. 2012. Recovering 3D Planes from a Single Image via Volumetric Contour Cues. In ECCV.

Esteban Real, Alok Aggarwal, Yangping Huang, and Qiao V Le. 2018. Regularized evolution for image classifier architecture search. arXiv preprint arXiv:1802.01548 (2018).

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. 2015. Faster R-CNN: Towards Real-time Object Detection with Region Proposal Networks. In CVPR. 91–99.

Helge Rhodin, Nadia Robertini, Dan Casas, Christian Richardt, Hans-Peter Seidel, and Christian Theobalt. 2016. General Automatic Human Shape and Motion Capture from Monocular Video. In Image and Vision Computing. 536–554.

Jonathan Starck and Adrian Hilton. 2007. Surface capture for performance-based animation. IEEE computer graphics and applications 27, 3 (2007).

Carsten Stoll, Nils Hasler, Juergen Gall, Hans-Peter Seidel, and Christian Theobalt. 2011. Fast articulated motion tracking using a sums of Gaussians body model. In ICCV. 951–958

Min Sun and Silvio Savarese. 2011. Articulated part-based model for joint object detection and pose estimation. In ECCV. IEEE, 723–736.

Xiao Sun, Jiaxiang Shang, Shuang Liang, and Yichen Wei. 2017. Compositional human pose regression. 2, 3 (2017), 7.

Christian Spreng, Sergey Ioffe, Volodymyr Titov, and Alexander A. Alemi. 2018. Inception-v4, inception-resnet and the impact of residual connections on learning.. In AAAI. Vol. 4. 12.

Christian Spreng, Volodymyr Titov, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. 2016. Rethinking the inception architecture for computer vision. In Proceedings of the IEEE conference on computer vision and pattern recognition. 2818–2826.

Bugra Tekin, Linusus Kaitzioglu, Mathieu Salzmann, Vincent Lepetit, and Pascal Fua. 2016. Structured Prediction of 3D Human Pose with Deep Neural Networks. In BMVC.

Bugra Tekin, Pablo Marquez-Neila, Mathieu Salzmann, and Pascal Fua. 2017. Learning to Pose 2D and 3D Image Cues for Monocular Body Pose Estimation. In ECCV.

Matthew Trumble, Andrew Gilbert, Charles Malleson, Adrian Hilton, and John Collomosse. 2017. Total Capture: 3D Human Pose Estimation Fusing Video and Inertial Sensors. In BMVC. 1–13.

Hoao-Tung Tu, Hsiao-Wei Tung, Ersin Yumer, and Katerina Fragkiadaki. 2017. Self-supervised Learning of Motion Capture. In NeurIPS. 5243–5252.

Timo von Marcard, Roberto Henschel, Michael Black, Bodo Rosenhahn, and Gerard Pons-Moll. 2018. Recovering Accurate 3D Human Pose in The Wild Using IMUs and a Moving Camera. In ECCV.

Timo von Marcard, Gerard Pons-Moll, and Bodo Rosenhahn. 2016. Human Pose Estimation from Video and IMUs. PAMI 38, 8 (Jan. 2016), 1533–1547.

Xiaolin Wei and Jixiang Chai. 2010. VideoMocap: Modeling Physically Realistic Human Motion from Monocular Video Sequences. TOG 29, 4, Article 42 (July 2010), 10 pages. https://doi.org/10.1145/1779765.1779799

Shihong Xia, Lin Guo, Yuan-Kun Lai, Mingzhe Yuan, and Jixiang Chai. 2017. A Survey on Human Performance Capture and Animation. J. Comput. Sci. Technol. 32, 3 (2017), 536–554.

Dongli Xiang, Hanbyul Joo, and Yaser Sheikh. 2018. Monocular Total Capture: Posing Face, Body, and Hands in the Wild. arXiv preprint arXiv:1812.01598 (2018).

Saining Xie, Ross Girshick, Pieter Dollár, Zhuowen Tu, and Kaiming He. 2017. Aggregated residual transformations for deep neural networks. In CVPR. IEEE, 5987–5995.

Weipeng Xu, Avishak Chattejee, Michael Zollhöfer, Helge Rhodin, Dushyant Mehta, Hans-Peter Seidel, and Christian Theobalt. 2018. Monopercap: Human performance capture from monocular video. TOG 37, 2 (2018), 27.

Fengting Yang and Zihan Zhou. 2018. Recovering 3D Planes from a Single Image via Convolutional Neural Networks. In ECCV. 85–100.

Wei Yang, Wanli Ouyang, Xiaolong Wang, Jimmy Ren, Hongsheng Li, and Xiaogang Wang. 2018. 3D human pose estimation in the wild by adversarial learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018.

Andrei Zanfir, Elisabeta Marinoiu, and Cristian Sminchisescu. 2018a. Monocular 3D Pose and Shape Estimation of Multiple People in Natural Scenes—the Importance of Multiple Scene Constraints. In CVPR. 2148–2157.

Andrei Zanfir, Elisabeta Marinoiu, Mihai Zanfir, Alin-Ionut Popa, and Cristian Sminchisescu. 2018b. Deep Network for the Integrated 3D Sensing of Multiple People in Natural Images. In NeurIPS.

Xingyi Zhou, Qixing Huang, Xiao Sun, Xiangyang Xue, and Yichen Wei. 2017. Towards 3D Human Pose Estimation in the Wild: A Weakly-Supervised Approach. In CVPR. 398–407.