Sliding Mechanism for Release of Superlight Objects from Micropatterned Adhesives

Yue Wang, Xuan Zhang, René Hensel, and Eduard Arzt*

Robotic handling and transfer printing of micrometer-sized superlight objects is a crucial technology in industrial fabrication. In contrast to the precise gripping with micropatterned adhesives, the reliable release of superlight objects with negligible weight is a great challenge. Slanted deformable polymer microstructures, with typical pillar cross-section 150 µm × 50 µm, are introduced with various tilt angles that enable a reduction of adhesion by a switching ratio of up to 500. The experiments demonstrate that the release from a smooth surface involves sliding of the contact during compression and subsequent peeling of the object during retraction. The handling of a 0.5 mg perfluorinated polymer micro-object with high accuracy in repeated pick-and-place cycles is demonstrated. Based on beam theory, the forces and moments acting at the tip of the microstructure are analyzed. As a result, an expression for the pull-off force is proposed as a function of the sliding distance and a guide to an optimized design for these release structures is provided.

1. Introduction

Automated industrial fabrication involves pick-and-place operations, including gripping, pick-up and precise placement of objects and components. Solutions for gripping are widespread and range from mechanical grippers, pneumatic suckers,[16] jamming of granular media[20] to magnetorheological[21] or electromagnetic devices.[22] The movement to a target position is often realized by robots and automated gantry systems. The present trend toward integration of miniaturized components in various industries poses numerous demands such as high-precision transport and actuation, particularly to grip and release micrometer-sized, lightweight objects during handling or transfer printing.[5–11] To address this challenge, bio-inspired, micropatterned adhesive surfaces have recently been proposed,[12–15] for a recent review.[16] Traction between such reversible dry adhesives and a target surface primarily relies on van der Waals interactions.[17,18] The adhesion strength can be tuned by the size, design, and mechanical properties of the microstructures.[16,19–25] A major advantage of these deformable microstructures is their ability to mechanically switch between high and low adhesion.[26–30] Compared to other actuation strategies, mechanical switching is most straightforward since it can be implemented in the trajectory of the handling device without requiring additional external triggers such as light, temperature, and electromagnetic fields.[24,25–30]

Mechanical switching was proposed in variants involving lateral and normal movements with respect to the target surface and their combinations. Lateral actuation has frequently been combined with anisotropic microstructured adhesives, resulting in unidirectional shear adhesives.[23,26–29] However, such lateral actuation is difficult to implement in robotic operations, where vertical motion further controls the pick and place cycle of the object. Particularly for micrometer-sized objects, such an approach requires a high-level control over a full 3D trajectory of the microgripper. By contrast, actuation in normal direction alone reduces the complexity, as attachment, pick-up, placing, and release can all be realized by a single path normal to the target surface.

Several groups have demonstrated the switchability of elastically deformable pillar-like microstructures that undergo buckling upon passing a critical compressive load.[12,27,32,35] If the buckling event is accompanied by a permanent loss in contact area, it can result in controlled detachment of the target object. However, the buckling mechanism exhibits two major limitations. First, the switching ratio of high to low adhesion is often no higher than two, potentially limiting the release of lightweight objects.[14,28,12] Second, the pillar deformation during buckling induces tangential forces on the object in an unpredictable direction, which can counteract precision during release. Both problems can usually be ignored for macroscopic, heavy objects, but can cause serious difficulties when handling micrometer-sized, lightweight objects. The switching ratio capacity of the buckling mechanism is mainly limited by the re-formation of the contact during compressive unloading (“unbuckling”).[26] Such contact recovery could possibly be prevented by slippage of the microstructure during compression, which is promoted in the case of slanted microstructures, as discussed by Mengüç et al.[21] They
report switching ratios between 26 and 35, though a detailed analysis of the proposed switching mechanism is still lacking.

Toward this end, we perform adhesion tests with individual slanted microstructures of various tilt angles. The adhesion of the microstructures is actuated by controlling the vertical displacement. Complementary to experiments, the deformation of the microstructure is analyzed by a bending beam model that allows access to forces and moments generated when pressed against the target surface. A relationship between the sliding distance and the adhesion force is obtained and a guide to optimize the design is proposed. Finally, the concept is transferred to a tripod gripper and precise handling of a superlight object is demonstrated.

2. Experimental Section

2.1. Microfabrication

The slanted microstructures were made from polyurethane (Smooth-On PMC780, KauPo Plankenhorn e.K. Germany) via replica molding, as described in previous reports.[29,41] Master structures for the replication process were printed in an IP-S resin (Nanoscribe, Eggenstein-Leopoldshafen, Germany) using a two-photon lithography system (Photonic Professional GT, Nanoscribe, Eggenstein-Leopoldshafen, Germany). Subsequently, IP-S master structures were coated with (1H,1H,2H,2H perfluorooctyl)-trichlorosilane (AB11444, ABCR, Karlsruhe, Germany) by vapor deposition for 45 min. Then a silicone-based template (PDMS, Sylgard 184, Dow, Midland, MI, USA) was molded from the master structures, which in turn was used to mold the polyurethane microstructures.

2.2. Adhesion Testing

The custom-made adhesion test apparatus (Figure 1b) was built using three main parts: a linear actuator (Q-545.240, PI, Karlsruhe, Germany) with resolution of 6 nm, a load cell (KD45-2N, ME-Messysteme, Hennesdorf, Germany) to record normal forces with a resolution of 0.3 mN, and two optical systems (UltraZoom, Navitar Inc., New York, NY, USA and μLens System Zoom 640 Aven, Ann Arbor, MI, USA), both connected with CCD cameras (DMK 33UX252, ImagingSource, Bremen, Germany) to record top and side view videos. The microstructures were mounted to a stage with two goniometers for proper alignment and the target object was a flat and smooth glass plate.

The apparatus was operated by a LabVIEW routine (National Instruments, Austin, TX, USA). First, the microstructure was brought into contact with the target surface to a set maximum compression at a velocity of 10 μm s⁻¹. After a hold time of 5 s, the microstructure was retracted at the same velocity until detachment occurred. The maximum tensile load was defined as the pull-off force. The pull-off force obtained from the lowest compression (u_max = 10 μm) was defined as adhesion force F_ad. For pick-and-place demonstration, a 170 μm thick fluorinated ethylene propylene object (FEP, Bytac, Merck, Darmstadt, Germany) with edge lengths of 1.5 mm × 1.5 mm was used. The mass of the object was about 0.5 mg.

3. Results and Discussion

Microstructures were made from polyurethane using two-photon lithography and replica molding, as described in the Experimental Section. Figure 1a depicts exemplarily a 310 μm long, slanted microstructure. The rectangular cross-section was 150 μm × 80 μm at the bottom and 150 μm × 50 μm at the top (contact side). The top surface had a 20 μm wide and 5 μm thick extension (cap) perpendicular to the orientation of the slanted microstructure. All these dimensions were kept constant and only the tilt angle α was changed from 30° to 75° in steps of 15°. Figure 1b illustrates the adhesion experiment: the slanted microstructure was first brought into contact with a smooth object and compressed until a set displacement u_max, ranging between 10 and 90 μm, was reached. Subsequently, the microstructure was retracted until detachment occurred. Typical force–displacement curves for u_max = 20 μm (blue curve) and u_max = 90 μm (red curve) are depicted in Figure 1c. The blue curve shows linear compressive loading and unloading and a pull-off force of about 1.5 mN. By contrast, the red curve turned into a nonlinear regime upon passing a critical displacement of about 45 μm (step II), where the adhesive contact started to slide. At u_max = 90 μm (step III), the slanted microstructure was S-shaped, but was still in full contact with the object. The compressive force dropped from ~5 to ~3.6 mN during 5 s hold time due to relaxation. During retraction, the contact remained fixed until it suddenly detached at u = 40 μm, even though the microstructure was still in the compressive regime (step IV). Only the edge of the microstructure remained in contact with the object, but did not result in a detectable pull-off force during final detachment (step V). In contrast to the blue curve, the red curve exhibited large hysteresis.

Figure 1d depicts the pull-off forces in terms of the maximum displacements, revealing a gradual decrease of the pull-off force from 1.8 mN down to forces below the resolution of the load cell of 0.3 mN with increasing maximum compression u_max. Figure 1e depicts similar trends for slanted microstructures with α of 45°, 60°, and 75°. Here, the pull-off force (normalized by the pull-off force F_ad at u = 10 μm) gradually decreased from 1 to 0.15, whereby the lower limit was always set by the resolution of the load cell. Only the most slanted microstructure with α = 30° was less responsive with normalized pull-off forces ranging between 1 and 0.75. Note that comparing to buckling induced release, the detachment force decreases continuously with increasing compression displacement. Figure 1f exemplarily displays side and top views of the deformed slanted microstructure with α = 75° in correspondence to the red curve shown in Figure 1c. The microstructure was first compressed and then underwent bending before sliding along the object. The microstructure then adhered at the new position until it peeled from the right edge and finally detached from the left edge. Note that sliding has led to a curved shape as seen in the top view (Figure 1f-III).

The experiments revealed that compression of the microstructure led to bending before it started to slide. However, it remains unclear how exactly sliding was induced. Therefore, we propose an analytical model to calculate the shear force.
and the moment acting on the tip of the microstructure in terms of varying tilt angles. The microstructure is considered as a beam of length L and tilt angle α, clamped at both ends (positions O and A, see Figure 2a). The beam is deformed by the displacement u normal to the object, as schematically displayed in Figure 2b. The new position D is exactly below A, as long as adhesion and friction prevent sliding. Due to the mixed mode of bending and compression, the direction of the resulting force F at position D deviates from the direction of the beam and is given by $\alpha - \theta$, where θ is the angle between the direction of F and the x-axis. Forces along x and w-axes are then given as $F \cos \theta$ and $F \sin \theta$, respectively. The elastic deformation of the beam further leads to moments M_0 and M_D at positions O and D, respectively. Balancing forces and moments provides the moment $M(x)$ at any position along the x-axis as follows

$$M(x) = F \cos \theta w + M_0 - F \sin \theta x$$

(1)
Introducing linear beam theory with $M(x) = -EIw''$, where EI is the bending stiffness of the beam, we obtain the governing equation for the beam deflection

$$w'' + \lambda^2 w = -\frac{M_0 + (F\sin\theta)x}{EI}$$ \hspace{1cm} (2)

where $\lambda^2 = \frac{F\cos\theta}{EI}$.

For this analysis, we assume that, to 1st order, the beam is straight (neglecting the tapered cross-section). Furthermore, large deformations leading to nonlinear effects were ignored. \(^{[43]}\) Integration of Equation (2) gives the deflection of the beam as a function of x

$$w(x) = a\cos(\lambda x) + b\sin(\lambda x) + \frac{-M_0 + (F\sin\theta)x}{F\cos\theta}$$ \hspace{1cm} (3)

where a and b are constants, which together with F, θ, and M_0 result in five variables. To solve Equation (3), we consider boundary conditions given by Equations (A.1)–(A.5) as presented in the Appendix.

Note that two Cartesian coordinate systems were introduced: The 1–2-coordinate system represents shear and normal forces, respectively. The x–w-coordinate system is used to describe the bending of the beam, where the x-axis follows the undeformed beam. The latter coordinate system can be transferred into the former by anticlockwise rotation of $90^\circ - \alpha$.

To validate the model given by Equation (3), we compared the deformation of the beam with our calculations (Figure 2d,e) for $u = 30\, \mu m$, which is slightly below the maximum compression at which sliding occurred. The calculated shapes (green lines) match fairly well with the deformed beam in the experiments for tilt angles 45°, 60°, and 75° (Figure 2e). For $\alpha = 30^\circ$, the side view images were insufficiently clear to quantify the deformation. Closer inspection of the experimental data (red symbols) reveals that the beam rotates slightly anticlockwise at position O, which violates our assumption of clamped ends (see Equations (A.3) and (A.4) in the Appendix). This rotation is most likely due to the connection of the microstructure with an elastic support (backing layer). Further discrepancies between experiment and theory may relate to the small ratio of beam length to width of ≈ 5 and its tapered shape with a thicker base than the tip. Despite these differences, our closed-form solution describes the deformation quite well without requiring finite element simulations and also provides practical information on forces and moments, which we discuss below.

Our experiments revealed that sliding of the slanted microstructure along the object is necessary to switch adhesion to low values. Sliding is caused by the asymmetric elastic deformation of the microstructure during compression and starts at position D, where the shear force F_{D1} and the moment M_D act at the contact (Figure 2b). First, we analyze the shear force F_{D1} that depends on the tilt angle α. Figure 3a shows that the calculated shear force (Equation (3)) increases with larger u and is maximum for $\alpha \approx 53^\circ$. To induce sliding, F_{D1} has to overcome the
(static) frictional force, \(f = \mu(F_{D2} + F_{ad}) \),\(^{44}\) where \(\mu \) is the friction coefficient and \(F_{ad} \) the adhesion force between the microstructure and the object. The adhesion results depicted in Figure 1d provide \(F_{ad} \) of about 2 mN. Figure 3b displays the force ratio \(F_{D1}/(F_{D2} + F_{ad}) \) in terms of \(u \). The ratio increases with larger displacements before it likely enters saturation, but it strongly varies with \(\alpha \). For a fixed displacement of \(u = 30 \mu m \) (i.e., close to the displacement when sliding started in the experiments), the force ratio ranges between 0.19 and 0.51 for tilt angles of 75° and 45°, respectively. For \(\alpha \) of 30° and 60°, similar ratios of 0.38 were calculated. Note that these values are significantly lower than typical friction coefficients ranging between 1 and 2 for elastomers on glass,\(^{45,46}\) indicating that the shear force is not sufficient to induce sliding. This discrepancy is underpinned by the results shown in Figure 3e, where the critical displacements \(u_s \), at which sliding started, is plotted versus \(\alpha \). The values of \(u_s \) were about 35 \(\mu m \) for 45° and 60° tilt angles and 45 \(\mu m \) for \(\alpha = 75° \). For \(\alpha = 30° \), no significant sliding was observed before the deformed stalk of the microstructure touched the object at \(u = 90 \mu m \) (see scheme in Figure 3e). These results contradict the theoretical predictions when considering the shear force alone as a source to induce sliding.

To address the discrepancy, we further analyzed the moment \(M_D \) at position \(D \). Figure 3d depicts that the calculated moment (Equation (1) for \(x = OB \)) increases with larger \(u \) and depends on \(\alpha \) with a maximum for \(\alpha \approx 58° \), which is similar to the maximum of the shear force. The moment at the tip of the microstructure has a certain relevance for sliding as it induces compression at the leading end and tension at the back end of the contact (Figure 3f). Such a change in the interfacial stress distribution is likely to reduce the effective area over which friction acts. In other words, the frictional resistance along the contact is reduced, as the moment causes the interfacial stress distribution to vary from purely compressive to compressive and tensile states at the leading and back end of the contact. Tensions on the back then even led to detachment, as depicted in Figure 3g. Therefore, the obtained trend for \(u_s \), shown in Figure 3e, can be qualitatively described when considering the

Figure 3. Force and moment analysis at position \(D \) before sliding. a) Calculated shear force \(F_{D1} \) in terms of tilt angle \(\alpha \) for various displacements \(u \). b) Calculated force ratio \(F_{D1}/(F_{D2} + F_{ad}) \) versus \(u \) with adhesion under dry conditions. c) Calculated force ratio \(F_{D1}/F_{D2} \) versus \(u \) without adhesion under wet conditions. Various symbols and colors correspond to different tilt angles \(\alpha \). d) Calculated moment \(M_D \) in terms of tilt angle \(\alpha \) for various displacements \(u \). e) Critical displacement \(u_s \) upon which sliding occurred in experiments under dry (red symbols) and wet (blue symbols) conditions. The inset illustrates how the microstructure with \(\alpha = 30° \) touched the object before contact sliding occurred. f) Schematic illustrating the lateral and normal forces and the moment acting on the tip of the microstructure when pressed against the target surface. The moment then induces tensile (back end) and compressive (leading end) states along the interface. g) Images of the contact at specific \(u_s \) for each of the different microstructure designs under dry conditions. The arrows highlight the location of detached regions at the back end of the contact.
reduced effective contact area caused by M_D in addition to the force ratio $F_{D1}/(F_{D2} + F_{ad})$. Comparing the calculated values for critical displacements u_c for α of 45°, 60°, and 75°, decreasing force ratios of 0.53, 0.37, and 0.19 were obtained, while M_D increased from 170, 196 to 242×10^{-9} Nm, respectively. Thus, with increasing tilt angles larger M_D compensate weaker force ratios to induce sliding (within the tested range 45° ≤ α ≤ 75°). For α = 30°, the force ratio was 0.67 and M_D was 242 × 10^{-9} Nm at u_c = 90 μm. Both values were enhanced, but sliding was restricted to about 5 μm as the stalk of the microstructure simultaneously touched the target surface (see inset in Figure 3e).

In addition to those results under dry conditions, we performed underwater tests, in which F_{ad} can be ignored, because water acts as a lubricant and reduces adhesion. Then, the force ratio reduced to F_{D1}/F_{D2} decreased linearly with increasing u_c for all tilt angles. Figure 3c presents the normalized pull-off force F_{p}/F_{ad} for the normalized sliding distance s/r^2, as shown in Figure 4c. For 45° ≤ α ≤ 75°, the data fit an exponential function $F_{ad}/F_{p} = \exp(-0.0389 \mu m^{-1} s/r^2 - 0.8826)$, which expresses the exponential decrease of the pull-off force in terms of the sliding distance.

In the experiments, we observed that the microstructure remained at the new position during retraction without sliding.

Now we turn back to dry conditions. Passing u_c caused the microstructure to slide along the object for a distance s, but stopped immediately when the set maximum compression u_{max} was attained. Note that the microstructure maintained adhesive contact to the object during sliding for u_{max} ≤ 90 μm, the upper limit in our tests. Figure 4a depicts s as a function of u_{max} depending on α. As an example for u_{max} = 90 μm, the sliding distance increased from 30 to 80 μm with α increasing from 45° to 75°. Figure 4b shows that the data collapse into a single line upon dividing s by r^2 (with $r = \alpha \pi/180$), except the data for α = 30° mainly because of the marginal sliding distances. Therefore, the sliding distance can be determined by $s = r^2 (0.8u_{max} - 22.7) \mu m$, for $r \geq \pi/4$ ($\alpha \geq 45°$). Substituting this expression into Figure 1e, we obtain the relationship between the normalized pull-off force F_{p}/F_{ad} and the sliding distance s/r^2, as shown in Figure 4c. For 45° ≤ α ≤ 75°, the data fit to the exponential function $F_{ad}/F_{p} = \exp(-0.0389 \mu m^{-1} s/r^2 - 0.8826)$, which expresses the exponential decrease of the pull-off force in terms of the sliding distance.

In the experiments, we observed that the microstructure remained at the new position during retraction without sliding.

Figure 4. Sliding, retraction and adhesion results. a) Sliding distance s versus maximum compression u_{max} for various α. b) Sliding distance s/r^2 versus u_{max} for various α. The solid line represents a linear fit with the 0.8. c) Normalized pull-off force versus s/r^2. The solid line represents an exponential fit $F_{ad}/F_{p} = \exp(-0.0389 \mu m^{-1} s/r^2 - 0.8826)$. d, e) Side view images displaying the relaxation of the microstructure with (d) α = 75° and (e) α = 45° during retraction of the object. Vertical dashed lines represent the leading end of the contact at u_{max} = 90 μm after sliding.
backward until detachment occurred. This can be explained by a decreasing shear force at the tip with decreasing displacement and the relaxation of the microstructure by releasing stored strain energy. When sliding occurred during compression, complete relaxation occurred before $u = 0 \mu m$ was reached. When the object was further retracted, this led to stretching of the microstructure and a moment at the tip, opening the leading end of the contact by peeling. The peeling then led to a drastic reduction of the contact area and the microstructure receded to its original position, where it easily detached at a much lower pull-off force. The process further explains the dependence of the pull-off force on the sliding distances as shown in Figure 4c. However, note that the pull-off force depends on the peeling resistance which could be altered, for example, by tip modifications.

Seeking to demonstrate such slanted microstructures in handling applications, we created a tripod gripper made of three identical microstructures with $\alpha = 60^\circ$ in an axisymmetric arrangement (Figure 5a). Figure 5b depicts the force–displacement curves of the gripper tested on glass object and a perfluorinated FEP object. The adhesion of the tripod gripper to the FEP object is $\approx 2.8 \text{ mN}$ (dark green), which is 3.5 times lower than the adhesion to the glass object with 10 mN (dark blue). For $u = 90 \mu m$, pull-off forces were below the resolution of the load cell of 0.3 mN in both cases (light green and blue). Figure 5c depicts the gradual decrease of the pull-off force as a function of the maximum displacements. It was similar for the glass and FEP object and similar to the results of the single pillar studies discussed above (Figure 1e). In Figure 5d, the successful pick-and-place handling of a thin FEP object is depicted by several snapshots including I) the approach, II) attachment to the FEP object, III) lifting, IV) microstructure sliding during compression, and V) detachment and separation (Movie S1, Supporting Information). The FEP object had an edge length of 1.5 mm and a thickness of 180 μm. The mass of the object was 0.5 mg, corresponding to a gravitational force of 5 μN, leading to the conclusion that the adhesion force upon sliding was below 5 μN.

An important performance parameter of a release structure is the ratio between the high and low adhesion values, i.e., the switching ratio. Comparing 10 mN (obtained against glass) and 0.3 mN (the lowest detectable force due to load cell resolution) gives a switching ratio of 33, which is an order of magnitude larger compared to previous reports of buckling-induced detachments from straight pillars.[14,28,32] This value is similar to that reported by Mengüç et al.[12] For the FEP object, the
maximum pull-off force of about 2.8 mN, when compared to the weight of the object of 5 μN, results in a switching ratio of about 500. However, note that this value represents an upper bound as it neglects any interaction between the object and the lower substrate. The large improvement of the switching ratio is most probably caused by the fact that the sliding prevents the re-formation of the contact during unloading, which has frequently been observed in unloading of straight pillars. Another difference is the gradual loss of adhesion with compression, compared to a more sudden switching due to the elastic instability during buckling. The resulting differences will very likely require modifications in robot control algorithm, which is beyond the scope of this paper.

Another limitation of the sliding-induced release mechanism may be the accuracy of positioning the object. All three legs of the tripod have to slide similarly, despite possibly varying local friction conditions, wear of the tips, and so on. To evaluate the accuracy of our tripod, the pick-and-place cycle was repeated ten times and positions of the placed object were measured after the 5th and 10th cycle and compared to the original position by overlaying the contours (Figure 5e). The object was found to slightly rotate anticlockwise, while the upper left corner shifted by about 50 μm to the left. Within this tolerance, the tripod arrangement of the microstructures proved to be efficient in avoiding displacement of the object. Overall, the successful demonstration of precise pick-and-place handling opens up a new possibility for handling super-lightweight objects, meeting the growing demands of ongoing component miniaturization.

4. Conclusions

In the present work, we report on a new release mechanism for superlight objects with a weight of few μN using slanted microstructures. We have shown that an optimized tilt angle enables high switching ratios. The following conclusions can be drawn.

- Compression resulted in lateral sliding of the slanted microstructures followed by a peeling process during retraction. This mechanism reduced the adhesion strength by a factor of up to 500, which can be utilized in the detachment of super-light objects.
- Based on a theoretical analysis, we found that sliding occurred because of the interplay of a shear force and a moment acting at the interface between the microstructure and the object. The sliding mechanism was optimized for a tilt angle α of 53° and 58°, which was also explained by calculations of shear force and moment.
- During retraction, the microstructures preferentially peeled from the leading end due to the acting bending moment. As a consequence, the contact area decreased strongly, which in turn led to low adhesion.
- The mechanism was demonstrated to enable sliding-induced detachment at low forces for a thin fluorinated FEP object with a weight of about 5 μN.
- Under wet conditions, the microstructures started sliding immediately following compression (provided the tilt angle was smaller than 45°). The optimized tilt angle will therefore depend on the level of adhesion.

Appendix

To solve Equation (3), we consider the following boundary conditions. For x = 0, the deflection of the beam is zero, which gives

\[a = \frac{M_0}{F \cos \theta} \]

(A.1)

The deformed beam at position D corresponds to a projected distance from position O to B on the original beam of length, \(l_{OB} = L - \sin \alpha \). For \(x = l_{OB} \), the deflection of the beam \(w = u \cos \alpha \), resulting in

\[w(x = l_{OB}) = \cos \alpha (\lambda l_{OB}) + \sin \alpha (\lambda l_{OB}) + \frac{-M_0 + (F \sin \theta) l_{OB}}{F \cos \theta} = u \cos \alpha \]

(A.2)

We further assume that the tilt angle \(\alpha \) remains constant at both ends during deformation of the beam. This assumption is reasonable, as both ends are clamped before any detachment or sliding occurs; thus

\[w'(x = 0) = b \lambda + \tan \theta = 0 \]

(A.3)

\[w'(x = l_{OB}) = -a \lambda \sin \alpha (\lambda l_{OB}) + b \lambda \cos \alpha (\lambda l_{OB}) + \tan \theta = 0 \]

(A.4)

Finally, the force \(F \) is given as

\[F = \frac{F_{D2}}{\sin (\alpha - \theta)} \]

(A.5)

where \(F_{D2} \) is the normal force component recorded by the load cell during the tests. Figure 2c displays \(F_{D2} \) versus displacement \(u \) for the initial compression of the slanted microstructure before sliding. The compressive forces increased linearly with different slopes \(K \), representing the effective stiffness of the beam in normal direction and, thus, \(F_{D2} = Ku \). The inset in Figure 2c depicts that \(K \) increased linearly with the tilt angle of the microstructures \(r = \alpha \frac{\pi}{180} \). A linear fit provides \(K = \left(\frac{780}{\pi} r - 122 \right) \frac{N}{mm} \). Substituting the expression for \(K \) into Equation (A.5) gives

\[F = \left(\frac{780}{\pi} \frac{N}{mm} - 122 \frac{N}{mm} \right) u / \sin (\alpha - \theta). \]

Finally, considering Equations (A.1)–(A.5), Equation (3) can be solved numerically for given displacements \(u \).

Supporting Information

Supporting Information is available from the Wiley Online Library or from the author.

Acknowledgements

The authors acknowledge funding by the Leibniz Competition Grant MUSIGAND (No. K279/2019). Open access funding enabled and organized by Projekt DEAL.

Conflict of Interest

Eduard Arzt declares that he is co-owner of a start-up commercializing robotic systems.

Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.
Keywords
bioinspiration, microhandling, micropatterned adhesives, release of superlight objects, two-photon lithography

Received: September 28, 2021
Revised: November 25, 2021
Published online: January 5, 2022

[1] A. Tiwari, B. N. J. Persson, Water in Biomechanical and Related Systems, Springer, Cham 2021, pp. 187–209.
[2] E. Brown, N. Rodenberg, J. Amend, A. Mozeika, E. Steltz, M. R. Zakin, H. Lipson, H. M. Jaeger, Proc. Natl. Acad. Sci. USA 2010, 107, 18809.
[3] A. Pettersson, S. Davis, J. O. Gray, T. J. Dodd, T. Ohlsson, Adv. Funct. Mater. 2016, 26, 943.
[4] T. N. Do, H. Phan, T.-Q. Nguyen, Y. Visell, Adv. Mater. Technol. 2020, 5, 000676.
[5] C. Linghu, S. Zhang, C. Wang, J. Song, np J. Flex. Electron. 2018, 2, 26.
[6] A. B. Croll, N. Hosseini, M. D. Bartlett, Adv. Mater. Technol. 2019, 4, 1900193.
[7] A. Pettersson, S. Davis, J. O. Gray, T. J. Dodd, T. Ohlsson, J. Food Eng. 2010, 98, 332.
[8] W. Zesch, M. Brunner, A. Weber, Proc. – IEEE Int. Conf. on Robotics and Automation, IEEE, Albuquerque, NM, USA 1997.
[9] V. Eichhorn, K. Carlson, K. N. Andersen, S. Fatikow, P. Beggild, IEEE Int. Conf. on Intelligent Robots and Systems, IEEE, San Diego, CA, USA 2007.
[10] C. Linghu, S. Zhang, C. Wang, J. Song, np J. Flex. Electron. 2018, 2, 26.
[11] M. S. Kim, J. A. Rogers, Adv. Mater. Interfaces 2020, 7, 2000244.
[12] S. Yang, R. Hensel, Adv. Mater. Interfaces 2019, 2, 1800152.
[13] S. Yang, R. Hensel, Adv. Mater. Interfaces 2019, 2, 1800153.
[14] J. Purtov, M. Frensemeier, E. Kroner, ACS Appl. Mater. Interfaces 2017, 9, 18322.
[15] E. Arzt, H. Quan, R. M. Mcmkeering, R. Hensel, Prog. Mater. Sci. 2021, 120, 100823.
[16] K. Autumn, M. Sitti, Y. A. Liang, A. M. Peatle, W. R. Hansen, S. Sponberg, T. W. Kenny, R. Fearing, J. N. Israelachvili, R. J. Full, Proc. Natl. Acad. Sci. USA 2002, 99, 12252.