HIGHER GENUS KASHIWARA-VERGNE PROBLEMS AND THE GOLDMAN-TURAEV LIE BIALGEBRA

ANTON ALEKSEEV, NARIYA KAWAZUMI, YUSUKE KUNO, AND FLORIAN NAEF

Abstract. We define a family KV\((g,n+1)\) of Kashiwara-Vergne problems associated with compact connected oriented 2-manifolds of genus \(g\) with \(n+1\) boundary components. The problem KV\((0,3)\) is the classical Kashiwara-Vergne problem from Lie theory. We show the existence of solutions of KV\((g,n+1)\) for arbitrary \(g\) and \(n\). The key point is the solution of KV\((1,1)\) based on the results by B. Enriquez on elliptic associators. Our construction is motivated by applications to the formality problem for the Goldman-Turaev Lie bialgebra \(g^{(g,n+1)}\). In more detail, we show that every solution of KV\((g,n+1)\) induces a Lie bialgebra isomorphism between \(g^{(g,n+1)}\) and its associated graded \(\text{gr} g^{(g,n+1)}\). For \(g = 0\), a similar result was obtained by G. Massuyeau using the Kontsevich integral.

This paper is a summary of our results. Details and proofs will appear elsewhere.

1. The Goldman-Turaev Lie bialgebra

Let \(\Sigma = \Sigma_{g,n+1}\) be an oriented surface of genus \(g\) with \(n+1\) boundary components. We fix a framing (that is, a trivialization of the tangent bundle) of \(\Sigma\) and choose a base point \(* \in \partial \Sigma\).

We denote by \(\pi = \pi_1(\Sigma,*)\) the fundamental group of \(\Sigma\) and define \(g^{(g,n+1)} = \mathbb{Q}[S^1,\Sigma] = \mathbb{Q}\pi/\mathbb{Q}\pi\mathbb{Q}\pi\) to be the vector space spanned by homotopy classes of free loops. When no confusion arises, we shorten the notation to \(g\).

The vector space \(g^{(g,n+1)}\) carries a canonical Lie bialgebra structure defined in terms of intersections of loops. The Lie bracket on \(g^{(g,n+1)}\) is called the Goldman bracket [4] and is defined as follows. Let \(\alpha\) and \(\beta\) be loops on \(\Sigma\) whose intersections are transverse double points. Then, the Lie bracket \([\alpha, \beta]\) is given by

\[
[\alpha, \beta] = \sum_{p \in \alpha \cap \beta} \varepsilon_p \alpha_p \beta,
\]

where \(\varepsilon_p \in \{\pm 1\}\) is the local intersection number of \(\alpha\) and \(\beta\) at \(p\), and \(\alpha_p \beta\) is the homotopy class of the concatenation of the loops \(\alpha\) and \(\beta\) based at \(p\) (see Fig. 1).

The Lie cobracket on \(g^{(g,n+1)}\) is called the Turaev cobracket [13] and is defined as follows. Let \(\gamma\) be a loop on \(\Sigma\). By a suitable homotopy, we can deform \(\gamma\) to an immersion with transverse double points whose rotation number with respect to the framing of \(\Sigma\) is zero. For each self-intersection \(p\) of \(\gamma\), one can divide \(\gamma\) into two branches \(\gamma^1_p\) and \(\gamma^2_p\), where the pair of the tangent vectors of \(\gamma^1_p\) and \(\gamma^2_p\)

\[\begin{array}{ccc}
\alpha & q & \beta \\
p & \gamma & \gamma
\end{array} \quad \begin{array}{ccc}
\alpha \ast_p \beta \\
\gamma & \gamma
\end{array} \quad \begin{array}{ccc}
\alpha \ast_q \beta \\
\gamma & \gamma
\end{array}
\]

Figure 1. Goldman bracket. In this figure, \([\alpha, \beta] = \alpha \ast_p \beta - \alpha \ast_q \beta\).
forms a positive basis for $T_p\Sigma$. Then, the Lie cobracket $\delta(\gamma)$ is given by

$$\delta(\gamma) = \sum_p \gamma_p^1 \otimes \gamma_p^2 - \gamma_p^2 \otimes \gamma_p^1,$$

where the sum is taken over all the self-intersections of γ (see Fig. 2).

The group algebra $\mathbb{Q}\pi$ carries a canonical filtration with the following property. Choose a set of generators $\alpha_i, \beta_i, \gamma_j \in \pi$ with $i = 1, \ldots, g, j = 1, \ldots, n$ such that

$$\prod_{i=1}^{g} \alpha_i \prod_{j=1}^{n} \beta_j \gamma_0 = \gamma_0,$$

where γ_0 is the homotopy class of the boundary component which contains $. Then, the elements $(\alpha_i - 1), (\beta_i - 1) \in \mathbb{Q}\pi$ are of filtration degree 1 and $(\gamma_j - 1) \in \mathbb{Q}\pi$ have filtration degree 2. This filtration on π induces a two step filtration on $H = H_1(\Sigma, \mathbb{Q})$ with $H^{(1)} = H$ and $H^{(2)}$ the kernel of the intersection pairing. The associated graded of $\mathbb{Q}\pi$ with respect to this filtration is the complete Hopf algebra given by $\text{gr} \mathbb{Q}\pi \cong T(\text{gr} H) = U(L(\text{gr} H))$, where $T(\text{gr} H)$ is the completed tensor algebra of the graded vector space $\text{gr} H$ and $U(L(\text{gr} H))$ is the completed universal enveloping algebra of the free Lie algebra $L(\text{gr} H)$.

Let $\mathfrak{g}^{(g,n+1)}$ be the completion of $\mathfrak{g}^{(g,n+1)}$. The completed associated graded vector space $\text{gr} \mathfrak{g}$ can be canonically identified with the space of formal series in cyclic tensor powers of the graded vector space $\text{gr} H = H/H^{(2)} \oplus H^{(2)}$. A choice of a basis in π induces a basis in $\text{gr} H : x_i, y_i, z_j$ with $i = 1, \ldots, g, j = 1, \ldots, n$, where x_i, y_i are of degree 1 and z_j are of degree 2. The graded vector space $\text{gr} \mathfrak{g}$ carries a canonical Lie bialgebra structure induced by the Goldman-Turaev Lie bialgebra structure on \mathfrak{g}. It turns out that both the Lie bracket and Lie cobracket on $\text{gr} \mathfrak{g}$ are of degree (-2).

Let $\mathcal{M}(\Sigma)$ be the mapping class group of the surface Σ fixing the boundary $\partial \Sigma$ pointwise. There are a subset $\mathcal{M}(\Sigma)^0 \subset \mathcal{M}(\Sigma)$ and an embedding $\tau : \mathcal{M}(\Sigma)^0 \to \mathfrak{g}^{(g,n+1)}$ such that any Dehn twist is in $\mathcal{M}(\Sigma)^0$, $\mathcal{M}(\Sigma_{g,1})$ includes the Torelli group and the graded quotient of τ is the classical Johnson homomorphism $[7]$. In $[8]$, the second and third authors proved that $\delta \circ \tau = 0 : \mathcal{M}(\Sigma)^0 \to \mathfrak{g}^{(g,n+1)}$. This is one of the motivations to study the graded version of the Goldman-Turaev Lie bialgebra and the corresponding formality problem.

Definition 1. A group-like expansion is an isomorphism $\theta : \widehat{\mathbb{Q}\pi} \to \text{gr} \widehat{\mathbb{Q}\pi}$ of complete filtered Hopf algebras with the property $\theta \circ \text{Id} = \text{Id}$.

It is easy to see that group-like expansions exist. For instance, every choice of a basis in π described above induces a group-like expansion θ^{\exp} defined by its values on generators:

$$\theta^{\exp}(\alpha_i) = e^{x_i}, \quad \theta^{\exp}(\beta_i) = e^{y_i}, \quad \theta^{\exp}(\gamma_j) = e^{z_j}.$$

In fact, group-like expansions are torsors under the group of automorphisms of the complete Hopf algebra $\text{gr} \widehat{\mathbb{Q}\pi} \cong T(\text{gr} H)$ with associated graded the identity. That is, every group-like expansion is of the form $\theta = F \circ \theta^{\exp}$ for some $F \in \text{Aut}(L(\text{gr} H))$. Furthermore, every group-like expansion defines an isomorphism of filtered vector spaces $\mathfrak{g} \to \text{gr} \mathfrak{g}$ with associated graded the identity map.
Definition 2. A group-like expansion θ is called homomorphic if it induces an isomorphism of Lie bialgebras $g \rightarrow \text{gr } g$.

It is easy to check that expansions θ^\exp are not homomorphic. Existence of homomorphic expansions is one of the main results of this paper. Our strategy is to reformulate the problem in terms of properties of the automorphism $F \in \text{Aut}(L(\text{gr } H))$. This leads us to a generalization of the Kashiwara-Vergne problem in the theory of free Lie algebras.

2. The Kashiwara-Vergne problem in higher genus

Denote by $L^{(g,n+1)} = L(\text{gr } H)$ the completed free Lie algebra in the generators x_i, y_i, z_j with $\deg x_i = \deg y_i = 1, \deg z_j = 2$. Define the completed graded Lie algebra of tangential derivations (in the sense of [1]):

$$\text{tder}^{(g,n+1)} = \{ u \in \text{Der}^+(L^{(g,n+1)}) \mid u(z_j) = [z_j, u_j] \text{ for some } u_j \in L^{(g,n+1)} \},$$

This Lie algebra integrates to a pro-unipotent group

$$\text{TAut}^{(g,n+1)} = \{ F \in \text{Aut}^+(L^{(g,n+1)}) \mid F(z_j) = F_j^{-1} z_j F_j \text{ for some } F_j \in \exp(L^{(g,n+1)}) \}.$$

Also following [1], let $\text{tr}^{(g,n+1)}$ denote the vector space of series in cyclic words in the x_i, y_i and z_j's and tr the natural projection from associative words to cyclic words. The space $\text{tr}^{(g,n+1)}$ carries an action of $\text{tder}^{(g,n+1)}$ coming from a natural action of $\text{Der}^+(L^{(g,n+1)})$. Recall the definition of the map $\partial x_i : L^{(g,n+1)} \rightarrow U(L^{(g,n+1)})$ given by the formula

$$\alpha(x_1, \cdots, x_i + \epsilon \xi, \cdots, x_g, y_1, \cdots, y_g, z_1, \cdots z_n) = \alpha + \epsilon \text{ad}(\partial x_i) \xi + O(\epsilon^2) \quad \text{for } \alpha \in L^{(g,n+1)},$$

and the same definition for y_i and z_i. One defines the non-commutative divergence map $\text{div} : \text{tder}^{(g,n+1)} \rightarrow \text{tr}^{(g,n+1)}$ as follows:

$$u \mapsto \sum_{i=1}^g \text{tr}(\partial x_i (u(x_i)) + \partial y_i (u(y_i))) + \sum_{j=1}^n \text{tr}(z_j \partial z_j (u_j)),$$

where u_j is chosen such that it has no linear terms in z_j. In the case of $n = 0$, the divergence coincides with the Enomoto-Satoh obstruction [2] for surjectivity of the Johnson homomorphism.

Proposition 3. The map div is a Lie algebra 1-cocycle on $\text{tder}^{(g,n+1)}$ with values in $\text{tr}^{(g,n+1)}$. It integrates to a group 1-cocycle $j : \text{TAut}^{(g,n+1)} \rightarrow \text{tr}^{(g,n+1)}$.

Let $r(s)$ be the power series $\log(\frac{1}{s}) \in \mathbb{Q}[[s]]$, and let $r = \sum_{i=1}^g \text{tr}(r(x_i) + r(y_i)) \in \text{tr}^{(g,n+1)}$. Below we define a new family of Kashiwara-Vergne problems associated to a surface of genus g with $n + 1$ boundary components.

Definition 4 (KV Problem of type $(g,n+1)$). Find an element $F \in \text{TAut}^{(g,n+1)}$ such that

\begin{align*}
(\text{KVI}^{(g,n+1)}) & \quad F(\sum_{i=1}^g [x_i, y_i] + \sum_{j=1}^n z_j) = \log(\prod_{i=1}^g (e^{x_i} e^{y_i} e^{-x_i} e^{-y_i} \prod_{j=1}^n e^{z_j})) := \xi \\
(\text{KVII}^{(g,n+1)}) & \quad j(F) = \sum_{i=1}^n \text{tr } h(z_i) - \text{tr } h(\xi) - r \quad \text{for some Duflo function } h \in \mathbb{Q}[[s]].
\end{align*}

Let $\text{SolKV}^{(g,n+1)}$ denote the set of solutions of the KV problem of type $(g,n+1)$. Note that $\text{KV}^{(0,3)}$ is the classical KV problem [3] in the formulation of [1]. The following is the first main result of this note:
Theorem 5. Let $F \in \text{SolKV}^{(g,n+1)}$. Then, the group-like expansion $F^{-1} \circ \theta^{\exp}$ is homomorphic. Moreover, if $F \in \text{TAut}^{(g,n+1)}$ satisfies $(\text{KVI}^{(g,n+1)})$, then $F^{-1} \circ \theta^{\exp}$ is homomorphic if and only if $F \in \text{SolKV}^{(g,n+1)}$.

This result holds true for the framing adapted to the set of generators $\alpha_i, \beta_i, \gamma_j \in \pi$. Note that any framing on Σ is specified by the values of its rotation number function on simple closed curves which are freely homotopic to $\alpha_i, \beta_i, \gamma_j$. The adapted framing takes values 0 on α_i, β_i, and -1 on γ_j. Other framings require a more detailed discussion. Our proof of Theorem 5 uses the theory of van den Bergh double brackets [14], their moment maps [10] and their relation to the Goldman bracket [9].

3. Solving $\text{KV}^{(g,n+1)}$

Our second main result is the following theorem:

Theorem 6. For all $g \geq 0, n \geq 0$, $\text{SolKV}^{(g,n+1)} \neq \emptyset$.

Together, Theorem 5 and Theorem 6 imply existence of homomorphic expansions for any g and n (for $g = 0$, an independent proof was given by G. Massuyeau [8]). Among other things, it follows that the obstruction to surjectivity of the Johnson homomorphism provided by the Turaev cobracket is equivalent to the Enomoto-Satoh obstruction.

In what follows, we sketch a proof of this statement. Let us denote the variables appearing in the definition of $\text{tder}^{(g_1+g_2,n_1+n_2+1)}$ by x_i^1, y_i^1, z_i^1 and x_i^2, y_i^2, z_i^2 respectively and define the following map

$$\mathcal{P} : \text{tder}^{(0,3)} \to \text{tder}^{(g_1+g_2,n_1+n_2+1)}$$

$$(u_1, u_2) \mapsto (w^k \mapsto [w^k, u_k(\phi_1, \phi_2)])$$

where

$$\phi_1 = \sum_i [x_i^1, y_i^1] + \sum_j z_j^1, \quad \phi_2 = \sum_i [x_i^2, y_i^2] + \sum_j z_j^2.$$

This map is a Lie algebra homomorphism. It lifts to a group homomorphism $\text{TAut}^{(0,3)} \to \text{TAut}^{(g_1+g_2,n_1+n_2+1)}$ (also denoted by \mathcal{P}). Denote by $t \in \text{tder}^{(0,3)}$ the tangential derivation $t : z_1 \mapsto [z_1, z_2], z_2 \mapsto [z_2, z_1]$. Recall that for $F \in \text{SolKV}^{(0,3)}$ there is a family of solutions $F_\lambda = \text{Fexp}(\lambda t)$ for $\lambda \in \mathbb{Q}$.

Proposition 7. Let $F_1 \in \text{SolKV}^{(g_1,n_1+1)}, F_2 \in \text{SolKV}^{(g_2,n_2+1)}, F \in \text{SolKV}^{(0,3)}$ such that their Duflo functions coincide, $h_1 = h_2 = h$. If $n_1 = n_2 = 0$ or $g_1 = 0$ or $g_2 = 0$, then there is $\lambda \in \mathbb{Q}$ such that

$$\tilde{F} := (F_1 \times F_2) \circ \mathcal{P}(F_\lambda) \in \text{SolKV}^{(g_1+g_2,n_1+n_2+1)}$$

and the corresponding Duflo function $\tilde{h} = h_1 = h_2 = h$.

Proposition 7 reduces the proof of Theorem 6 to the cases $\text{KV}^{(0,3)}$ and $\text{KV}^{(1,1)}$. By [1], the problem $\text{KV}^{(0,3)}$ does admit solutions. The remaining case is thus $(g, n + 1) = (1, 1)$. Let $\text{TAut}^{(0,3)}_{z_1-z_2} \subset \text{TAut}^{(0,3)}$ denote the subgroup which preserves $z_1 - z_2$ up to quadratic terms. One defines the following group homomorphism $\text{TAut}^{(0,3)}_{z_1-z_2} \to \text{TAut}^{(1,1)}$:

$$F \mapsto F^{\text{cl}} ; \begin{cases} e^{x_1} \mapsto F_1(\psi_1, \psi_2)^{-1} e^{x_1} F_2(\psi_1, \psi_2) \\
 e^{y_1} \mapsto F_2(\psi_1, \psi_2)^{-1} e^{y_1} F_2(\psi_1, \psi_2), \end{cases}$$

where $\psi_1 = e^{x_1} y_1 e^{-x_1}$ and $\psi_2 = -y_1$.

Furthermore, let $\varphi \in \text{TAut}^{(1,1)}$ be an automorphism defined by $\varphi(x_1) = x_1, \varphi(y_1) = \frac{\exp(x_1)-1}{\exp(x_1)}(y_1)$.
Proposition 8. Let \(F \in \text{SolKV}^{(0,3)} \), then there is a unique \(\lambda \in \mathbb{Q} \), such that \((F\ell^M)^{\text{eff}} \circ \varphi \in \text{SolKV}^{(1,1)}\).

The proof of Proposition 8 is based on the results of [3]. Together with Proposition 7, it settles in the positive the existence issue for solutions of Kashiwara-Vergne problems \(\text{KV}^{(g,n+1)} \). We now turn to the uniqueness problem. Recall the notation \(\phi = \sum_i [x_i, y_i] + \sum_j z_j \).

Definition 9. The Kashiwara-Vergne Lie algebra \(\text{krv}^{(g,n+1)} \) is defined as

\[
\text{krv}^{(g,n+1)} = \{ u \in \text{tder}^{(g,n+1)} | u(\phi) = 0, \text{div}(u) = \sum_j \text{tr} h(z_j) - \text{tr} h(\phi) \text{ for some } h \in \mathbb{Q}[[s]] \}.
\]

Of particular interest is the Lie algebra \(\text{krv}^{(1,1)} \):

\[
\text{krv}^{(1,1)} = \{ u \in \text{tder}^{(1,1)} = \text{Der}^+(L(x,y)) | u([x,y]) = 0, \text{div}(u) = -\text{tr} h([x,y]) \}.
\]

Note that there are other definitions of Kashiwara-Vergne Lie algebras in the literature, see [11][12] for an alternative definition of \(\text{krv}^{(1,1)} \) based on the theory of moulds and [15] for a graph theoretic definition for arbitrary manifolds. At this point, we do not know what is the relation of these approaches to our considerations.

The pro-nilpotent Lie algebra \(\text{krv}^{(g,n+1)} \) integrates to a group \(\text{KRV}^{(g,n+1)} \) which acts freely and transitively on the set of solutions of the Kashiwara-Vergne problem \(\text{KV}^{(g,n+1)} \), \(G : F \mapsto FG \).

The following result gives partial information on the structure of the Lie algebra \(\text{krv}^{(1,1)} \):

Theorem 10. There is an injective Lie homomorphism of the Grothendieck-Teichmüller Lie algebra \(\text{grt}_1 \) into \(\text{krv}^{(1,1)} \) and the elements \(\delta_{2n} \in \text{Der}^+(L(x,y)), n = 1, \ldots \) uniquely defined by conditions \(\delta_{2n}([x,y]) = 0, \delta_{2n}(x) = \text{ad}_{2n}^2(y) \) belong to \(\text{krv}^{(1,1)} \).

In [3], it is conjectured that \(\text{grt}_1 \) together with \(\delta_{2n}'s \) form a generating set for the elliptic Grothendieck-Teichmüller Lie algebra \(\text{grt}_{\text{ell}} \). In view of Proposition 10, we conjecture that \(\text{grt}_{\text{ell}} \) injects in \(\text{krv}^{(1,1)} \).

Acknowledgements. We are indebted to T. Kohno for a suggestion to start our collaboration. We are grateful to G. Massuyeau, E. Raphael and L. Schneps for sharing with us the results of their work. We thank B. Enriquez, P. Severa and A. Tsuchiya for fruitful discussions. The work of A.A. and F.N. was supported in part by the grant 165666 of the Swiss National Science Foundation, by the ERC grant MODFLAT and by the NCCR SwissMAP. Research of N.K. was supported in part by the grants JSPS KAKENHI 15H03617 and 24224002. Y.K. was supported in part by the grant JSPS KAKENHI 26800044.

References

[1] A. Alekseev and C. Torossian, The Kashiwara-Vergne conjecture and Drinfeld’s associators, Ann. of Math. 175, 415–463 (2012)
[2] N. Enomoto and T. Satoh, New series in the Johnson cokernels of the mapping class groups of surfaces, Algebr. Geom. Topol. 14, 627–669 (2014)
[3] B. Enriquez, Elliptic associators, Selecta Math. 20, 491–584 (2014)
[4] W. Goldman, Invariant functions on Lie groups and Hamiltonian flows of surface group representations, Invent. Math. 85, 263–302 (1986)
[5] M. Kashiwara, M. Vergne, The Campbell-Hausdorff formula and invariant hyperfunctions, Invent. Math. 47, 249–271 (1978)
[6] N. Kawazumi and Y. Kuno, Intersections of curves on surfaces and their applications to mapping class groups, Annales de l’institut Fourier 65, 2711–2762 (2015)
[7] N. Kawazumi and Y. Kuno, The Goldman-Turaev Lie bialgebra and the Johnson homomorphisms, Handbook of Teichmüller theory, ed. A. Papadopoulos, Volume V, EMS Publishing House, Zurich, 97–165 (2016)
[8] G. Massuyeau, Formal descriptions of Turaev’s loop operations, to appear in Quantum Topology, available at arXiv:1511.08974
[9] G. Massuyeau and V. G. Turaev, Quasi-Poisson structures on representation spaces of surfaces, Int. Math. Res. Not. IMRN (2014) no.1, 1–64.
[10] F. Naef, Poisson Brackets in Kontsevich’s ”Lie World”, preprint, arXiv:1608.08886.
[11] L. Schneps, Talk at the conference “Homotopical Algebra, Operads and Grothendieck-Teichmüler Groups”, Nica, September 9-12, 2014.
[12] L. Schneps, E. Raphael, On linearised and elliptic versions of the Kashiwara-Vergne Lie algebra, in preparation.
[13] V. G. Turaev, Skein quantization of Poisson algebras of loops on surfaces, Ann. Sci. École Norm. Sup. 24, 635–704 (1991).
[14] M. van den Bergh, Double Poisson Algebras, Trans. Amer. Math. Soc. 360, 5711–5799 (2008).
[15] T. Willwacher, Configuration spaces of points and their rational homotopy theory, mini-course given in Les Diablerets on August 31 - September 1, 2016, video available at http://drorbn.net/dbnvp/LD16_Willwacher-1.php.

Department of Mathematics, University of Geneva, 2-4 rue du Lievre, 1211 Geneva, Switzerland
E-mail address: anton.alekseev@unige.ch

Department of Mathematical Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8914, Japan
E-mail address: kawazumi@ms.u-tokyo.ac.jp

Department of Mathematics, Tsuda College, 2-1-1 Tsuda-machi, Kodaira-shi, Tokyo 187-8577, Japan
E-mail address: kunotti@tsuda.ac.jp

Department of Mathematics, University of Geneva, 2-4 rue du Lievre, 1211 Geneva, Switzerland
E-mail address: florian.naef@unige.ch