Complete encapsulation of sulfur through interfacial energy control of sulfur solutions for high-performance Li–S batteries

Donghee Gueona, Min-Young Jua, and Jun Hyuk Moona,1

*Department of Chemical and Biomolecular Engineering, Sogang University, 04107 Seoul, Republic of Korea

Edited by Yi Cui, Stanford University, Stanford, CA, and accepted by Editorial Board Member Catherine J. Murphy April 16, 2020 (received for review January 4, 2020)

Complete encapsulation of high-content sulfur in porous carbon is crucial for high performance Li–S batteries. To this end, unlike conventional approaches to control the pore of carbon hosts, we demonstrate controlling the interfacial energy of the solution in the process of penetrating the sulfur-dissolved solution. We unveil, experimentally and theoretically, that the interfacial energy with the carbon surface of the sulfur solution is the key to driving complete encapsulation of sulfur. In the infiltration of sulfur solutions with N-methyl-2-pyrrolidone, we achieve complete encapsulation of sulfur, even up to 85 wt %. The sulfur fully encapsulated cathode achieves markedly high volumetric capacity and stable cycle operation in its Li–S battery applications. We achieve a volumetric capacity of 855 mAh/cm³ at 0.2C and a capacity reduction of 0.071% per cycle up to 300 cycles at 1C.

Next-generation electric vehicles (EVs), hybrid EVs, and energy storage systems require energy storage batteries with high capacity and high energy density (1, 2). Lithium–sulfur (Li–S) batteries are one of the promising candidates because they have a high theoretical capacity (1,675 mAh/g) that enables an energy density (2,600 Wh/kg) more than twice that of conventional lithium–ion batteries (3–6). A common practice for Li–S battery electrodes is to contain sulfur in a porous carbon host (7, 8). Sulfur has a very low electrical conductivity (5 × 10⁻³⁰ S/cm at 25 °C), and lithium polysulfides (Li PS) produced during charging/discharging reactions cause dissolution and shuttling in the electrolyte solution (9). Sulfur loading into the porous carbon host (i.e., sulfur loading into the hollow cavity) improves electrical conductivity and prevents the dissolution through physical confinement (10, 11). Previously, much effort was devoted to control the pore structure of carbon or carbon composite in order to securely encapsulate sulfur and form a uniform composite of sulfur and carbon (12–19). Moreover, efforts have also been devoted to designing binder and sulphophilic structure (20, 21).

In contrast to these efforts, a relatively overlooked factor is that the low-to-moderate compatibility of sulfur or sulfur-dissolved solution (typically, a sulfur/CS₂ solution) with carbon causes difficulty in completely loading sulfur into the porous carbon host (22, 23). Recent studies have introduced various metal compounds for improved adsorption of PSs, but, due to their relatively low content, the compatibility with carbon surfaces is still important (24–26). Indeed, molten sulfur shows only partial wetting on the carbon surface (SI Appendix, Fig. S1) (27). This property causes highly resistive diffusion of sulfur into the micropores or mesopores of carbon in the traditional melt diffusion processes. Previous results often showed poor penetration of sulfur into the open pores of carbon nanotube (CNT) assembly or carbon particles with hollow cavities (28–30). Meanwhile, even in the case of penetrating the sulfur-dissolved CS₂ solution, the sulfur may not favorably penetrate the porous structure, because the CS₂ has low compatibility with the carbon surface; CS₂ is nonpolar due to its symmetry molecular structure, and the carbon surface is mildly polar. A sulfur vapor deposition has been proposed to address this issue, but this has limitations in selectively loading sulfur into the porous carbon structure (19). Therefore, a robust and high-fidelity process for complete encapsulation of sulfur, regardless of the carbon or carbon composite host, remains a challenge. This is particularly useful for the fabrication of electrodes containing high amounts of sulfur to achieve ultrahigh energy density.

In this study, we present the control of the interfacial energy of the sulfur solution and thereby completely load a high amount of sulfur into the porous carbon host. We exploit a hollow porous carbon sphere (HPCS) (see SI Appendix for synthesis details and productivity of HPCS); this particle has a hierarchical pore structure with a macropore inside and a mesopore in the shell. We apply a mixed solution of isopropyl alcohol (IPA) or N-methyl-2-pyrrolidone (NMP) and CS₂ in the preparation of the sulfur solution. The deposition of sulfur by the penetration of each sulfur solution and conventional sulfur/CS₂ solution is compared in Fig. 1. The sulfur/CS₂ solution, due to its low wettability on the carbon surface, causes poor penetration into the pore, resulting in sulfur being deposited outside of the HPCS after evaporation of the solvent, as described in Fig. 1A. The solution containing IPA has low sulfur solution–carbon interface energy due to its low surface tension and thereby improves the penetration. NMP is highly compatible with carbon, and, therefore, NMP-containing solutions also show enhanced penetration. Our study reveals that NMP lowers sulfur encapsulation | interfacial energy | lithium–sulfur batteries | capillary action | high sulfur loading

Significance

Complete encapsulation of high-content sulfur into porous carbon or carbon composites is crucial for high-performance Li–S cells. However, the low-to-moderate compatibility of sulfur-dissolved solution with carbon causes difficulty in completely loading sulfur into the porous host. We control the interfacial energy of the sulfur solution by adding a solvent with high compatibility with the carbon surface. The use of NMP improves the infiltration of sulfur solution effectively, resulting in complete sulfur encapsulation. We observe that the control of sulfur loading greatly affects Li–S battery performance. We identify significantly superior cell performance in the complete encapsulation. Our method can also be applied to effectively load active materials for next-generation energy storage devices.

Author contributions: J.H.M. designed research; D.G. and M.-Y.J. performed research; D.G. and J.H.M. analyzed data; and D.G. and J.H.M. wrote the paper.

The authors declare no competing interest.

This article is a PNAS Direct Submission. Y.C. is a guest editor invited by the Editorial Board.

This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

1To whom correspondence may be addressed. Email: junhyuk@sogang.ac.kr.

This article contains supporting information online at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2000128117/-/DCSupplemental.

First published May 22, 2020.
interfacial energy more than IPA, resulting in sulfur deposition only in the porous shell for the IPA solution (Fig. 1B) and sulfur deposition into the hollow cavity (i.e., complete encapsulation of sulfur) in the NMP solution (Fig. 1C). We apply sulfur-loaded carbon hosts prepared with each sulfur solution to the cathode of a Li–S cell. We achieve the best performance in the cathode with the most secure sulfur loading prepared using the NMP-containing solution; this cell achieves significantly higher volumetric capacity and stable cycle operation.

HPCs are formed by first forming a silica core as a seed with the Stöber method, forming a silica layer containing the polymer...
resorcinol formaldehyde (RF), and then carbonizing the RF and selectively removing the SiO2. Detailed synthetic procedures and scanning electron microscopy (SEM) images of the particles at each step are given in SI Appendix, Fig. S2. HPCs have a mesopore carbon shell and macropores inside; the internal macropores of HPCs provide a reservoir for high sulfur loading, and the mesopore shell can inhibit the dissolution of Li PSs out of the spheres (SI Appendix, Fig. S3). SI Appendix, Fig. S3 shows the HPCS has a diameter of about 600 nm and a mesopore shell with a pore size of about 5 nm. The transmission electron microscopy (TEM) image also shows pore channels aligned in the radial direction. The X-ray diffraction (XRD) spectrum shown in SI Appendix, Fig. S4 reveals the glassy carbon character of HPCSs (33).

We wet the carbon sphere with a sulfur solution and evaporate the solvent to deposit the sulfur. CS2 is widely used because it has uniquely high solubility for sulfur (∼450 mg/mL at 25 °C) (34). The TEM image, its elemental mapping, and the line profile of sulfur for a sample prepared by infiltration of sulfur-dissolved pure CS2 solution show that only a trace amount of sulfur is loaded in the porous shell and macropore cavity (Fig. 1D and E). The SEM image of Fig. 1F clearly shows the residue of sulfur present on the outside of the particle. Previous studies have also observed imperfect sulfur loading into carbon pores (35, 36). Furthermore, even in the melt diffusion of sulfur, conventionally applied, we observe that sulfur does not penetrate into the pores in the sphere (SI Appendix, Fig. S5). We surmise that this is due to the unfavored interfacial energy with carbon which is similar to NMP. The results agree with the values in the experiment. Compared to the solubility comparable to that of CS2 (SI Appendix, Fig. S6). TEM images of sulfur-loaded HPCS (S/HPCS) prepared using these mixture solutions and the elemental mapping of S and C in these images are shown in Fig. 1G and J, respectively. Fig. 1H and K shows line profiles of the elemental mapping of S/HPCS prepared using the solutions containing IAP and NMP, respectively. Using mixed solvents clearly produces different sulfur loadings from the loading obtained using pure CS2. In S/HPCS prepared using CS2/IPA, sulfur is observed in the porous shell. With the CS2/NMP solvent, the sulfur is carried into the macropores (SI Appendix, Fig. S7) for more TEM images of many S/HPCS particles prepared using the sulfur-dissolved CS2/NMP solution. In the SEM images in Fig. 1J and L, no sulfur residue is visible around the HPCs fabricated with the IPA- or NMP-containing solution. These results confirm that the CS2/IPA and CS2/NMP solutions lead to the more complete infiltration of sulfur-dissolved solvent into the pores of HPCs. The XRD spectrum shown in SI Appendix, Fig. S8 reveals the sulfur character of S/HPCS (CS2/NMP) (40, 41).

The different loading of sulfur for the three solutions can also be confirmed by Brunauer–Emmett–Teller (BET) pore analysis of S/HPCS (SI Appendix, Fig. S9). The S/HPCS (CS2) sample shows little N2 adsorption, reflecting the complete coverage of HPCS by the sulfur residue. The S/HPCS (CS2/NMP) exhibits adsorption in mesopore, while the S/HPCS (CS2/IPA) shows nonporous characteristics. This can be explained by the fact that, in the S/HPCS (CS2/IPA), sulfur is deposited in the shell to block the mesopore, whereas, in the S/HPCS (CS2/NMP), the adsorption profile indicates the presence of mesopore shell due to the deposition of sulfur in the inner hollow cavity.

To illustrate the difference in infiltration depending on the solvent composition, we analyze the capillary action of the solution inside the mesopore shell of HPCS. In such small pores, the infiltration is dominated by capillary pressure (42). The capillary pressure force depends on the contact angle with the surface and the interfacial tension of the liquid (i.e., γsv cosθ). The contact angles (θ) of CS2, CS2/IPA, and CS2/NMP solutions on a flat carbon surface are measured to be 53°, 17°, and 17°, respectively, as observed in Fig. 2A. The value of γsv is calculated by the lever rule considering the mixing ratio, yielding 32 mN/m for CS2, 29 mN/m for CS2/IPA, and 35 mN/m for CS2/NMP (37). Details of the calculation of the capillary pressure are given in SI Appendix, Supplementary Note #1. Then, the capillary pressures of CS2/NMP and CS2/IPA are ~1.7 times 1.4 times larger, respectively, than CS2. These results explain the significantly improved infiltration of the solution containing IPA and NMP into the carbon pores compared to the CS2 solution and also explain the improved infiltration in solutions containing NMP over IPA.

This calculation shows that the penetration of the liquid into the carbon pores is determined by the contribution of the contact angle and the interfacial tension of the liquid. This indicates that the interfacial energy of the liquid/solid is the term that determines the penetration; the interfacial energy, γsv − γsv cosθ, from the Young’s equation under partial wetting conditions (42). The γsv of carbon was reported to be ∼39.5 mN/m for glassy carbon (43). The γsv value obtained by subtracting γsv cosθ from this value is 20.2 mN/m for CS2, 11.8 mN/m for CS2/IPA, and 6 mN/m for CS2/NMP (Table 1). The γsv values were further confirmed by simulation using Surface Evolver software (SI Appendix, Supplementary Note #2); we simulated a droplet contacting the carbon surface with minima in the energy landscape satisfying the equilibrium of the three forces in Young’s equation. We obtained γsv values of 21.5, 11.5, and 5.5 mN/m for CS2, CS2/IPA and CS2/NMP, respectively, in the simulation, which agree with the values in the experiment. Compared to the IPA solution, the NMP solution exhibits a similar contact angle but has a much lower interfacial energy, so it penetrates more favorably into the macropore cavity of the interior of the carbon particles. We further applied other solvents (ethanol and N,N-dimethylformamide) to confirm the hypothesis that the penetration of sulfur-dissolved solution is determined by interfacial energy. Ethanol has a surface tension similar to IPA, and N,N-dimethylformamide has interfacial energy with carbon which is similar to NMP. The results show that CS2/ethanol shows sulfur loading in the shell similar to IPA, and CS2/DMF confirms the deposition of sulfur into the hollow cavity (SI Appendix, Supplementary Note #3).

We prepared a Li–S battery cell containing S/HPCS (CS2), S/HPCS (CS2/IPA), or S/HPCS (CS2/NMP) cathode. First, we

Fig. 2. Contact angle of (A) CS2, (B) CS2/IPA (7.3 mol %), and (C) CS2/NMP (7.3 mol %) on a glassy carbon substrate and simulation images of wetting on the carbon surface of each solution drop.
obtained cyclic voltammetric curves in the 1.7- to 2.8-V (vs. Li/Li+),
region at various scan rates, as observed in Fig. 3 A–C. These
curves show cathodic peaks at 2.4 V and 1.95 V on the reduction
curves, which are related to reduction reactions of S₈ + 4 Li⁺ +
4e⁻ → 2Li₂S₄ (C₁) and 2Li₂S₄ + 12 Li⁺ + 12e⁻ → 8Li₂S (C₂),
respectively. Additionally, the anodic peak near 2.5 V is related to
the reverse reaction of Li PS: Li₂S₂/Li₂S to S₈ (44, 45). The response
of the peak current to the scan rate is related to the rate of the
sulfur transformation reaction. We obtained the relative the
diffusivity of Li ions (DLi⁺) using the modified Randles–Sevcik
relationship (5).

\[D_{Li^+} \propto \frac{I_p^2}{Sv^2C_{Li}v} \] \[1 \]

where \(I_p \) is the peak current, \(n \) is the charge transfer number, \(S \) is
the geometric area of the active electrode, \(C_{Li} \) is the concentration
of lithium ions in the cathode, and \(v \) is the potential scan rate.
Here, \(D_{Li^+} \) includes the diffusion of Li⁺ in solution to the surface
of the sulfur deposit and the quasi−solid-state/solid-state diffusion
in the LiPS layer formed on the S surface (46, 47). The
\(D_{Li^+} \) of each sample at each redox peak is compared as shown in Fig. 3D; for
every redox peak, S/HPCS (CS₂/NMP) and S/HPCS (CS₂/IPA)
show a much higher value than S/HPCS (CS₂), revealing the fast
reaction kinetics achieved with the S/HPCS (CS₂/NMP) and
S/HPCS (CS₂/IPA) electrodes (5). In particular, we observe signi-
ficant differences between each sample for the C₂ reaction. Poor
diffusion in S/HPCS (CS₂) samples is responsible for slow solid-
state diffusion in bulk sulfur residues (46, 48, 49). In S/HPCS (CS₂/
IPA), sulfur is encapsulated in a microdomain in a porous shell,
but there may be a large delay in the liquid-phase diffusion of
Li⁺ in sulfur-clogged mesopores (50). In the S/HPCS (CS₂/
NMP), a thin layer of sulfur deposited on the inner wall of the poro-
sous shell, which allows rapid diffusion of Li⁺ into open
pores of the shell (51). A comparison of the charge diffusion for
these samples is described in detail in SI Appendix, Supplementary
Note #4.

Fig. 3E compares the electrochemical impedance spectra of
these electrodes. The semicircle corresponds to the charge transfer
resistance (Rct) for the electroredox reaction at the electrode/elec-
trolyte interface, and the straight line in the high-frequency region
is the Warburg impedance and corresponds to Lioni diffusion.
The S/HPCS (CS₂/NMP) electrode shows the smallest semi-
circle and also the straightest line with the steepest slope; this
confirms the smallest Rct value and the fastest diffusion of S/HPCS
(CS₂/NMP).

Second, the galvanostatic charge/discharge characteristics of
the S/HPCS (CS₂), S/HPCS (CS₂/IPA), and S/HPCS (CS₂/NMP)
cathodes are compared in Fig. 4 A–C. Two representative pla-
tae are observed in the discharge voltage profile (Fig. 4 A–C). The
first plateau at 2.3 V shows the reduction from solid S₈ to
higher-order Li PSs (Li₂Sn, \(n = 4 \) to 8), and the second plateau at
2.1 V shows the reduction to insoluble Li₂S₂ and Li₂S. Ideally, the
capacity from the second reaction is 3 times the capacity from the
first reaction. However, since the reaction related to the second
plateau, including nucleation and solid-state charge diffusion, is
sluggish, the capacity ratio (Q₂/Q₁) for the first and second

Table 1. Characterization of CS₂, CS₂/IPA, and CS₂/NMP solvents
on glassy carbon substrate

Solvents	CS₂, mN/m	CS₂/IPA, mN/m	CS₂/NMP, mN/m
γlv	32 (60)	29 (61)	35 (62)
γlv cosθ	19.3	27.7	33.5
γsv	39.5	39.5	39.5
γsl = γsv−γlv cosθ	20.2	11.8	6
carbon sphere-based Li of sulfur in a 75 wt % loading. Previous results for a hollow tent of 85 wt % should contain approximately twice the volume mAh/g at 100 cycles; S/HPCS (CS2/IPA) showed a retention of markedly outstanding retention of

\[1.5. \]

In S/HPCS (CS2/IPA), in which the sulfur is loaded in the pore cavities inside may also promote the nucleation reaction (53). The utilization of sulfur. Moreover, the PS ions confined in the macropore shell, which may allow relatively high utilization of sulfur. The PS ions confined in the macropore cavities inside may also promote the nucleation reaction (53).

Fig. 5A shows the cycle performance of S/HPCS (CS2), S/HPCS (CS2/IPA), and S/HPCS (CS2/NMP) cathodes at a C rate of 1C. The sulfur content was 75 wt %, and the sulfur loading for the electrodes was \(-1\) mg/cm\(^2\). S/HPCS (CS2/NMP) showed markedly outstanding retention of \(-89\%\) with a capacity of 750 mAh/g at 100 cycles; S/HPCS (CS2/IPA) showed a retention of \(-77\%\), and S/HPCS (CS2) had a very low retention of \(-44\%\). We also present a comparison of S/HPCS (CS2/NMP) with S/HPCS by conventional melt diffusion in SI Appendix, Fig. S10. The S/HPCS (CS2/NMP) cell shows faster kinetics and higher sulfur utilization for sulfur redox reactions; the poor performance of the melt diffusion S/HPCS may be responsible for poor penetration into the mesoporous shell due to the high viscosity of the molten sulfur.

Furthermore, we compared the cycle performance of each cathode cell at a very high sulfur content of 85 wt % (SI Appendix, Fig. S11B), as shown in Fig. 5B. Note that a sulfur content of 85 wt % should contain approximately twice the volume of sulfur in a 75 wt % loading. Previous results for a hollow carbon sphere-based Li–S cell typically applied a sulfur loading of 60 to 75 wt % (SI Appendix, Table S1). We observe the sulfur residue around the HPCs for the S/HPCS (CS2/IPA) sample but not the S/HPCS (CS2/NMP) sample (SI Appendix, Fig. S12). This indicates that S/HPCS (CS2/NMP) had a complete penetration of sulfur into the hollow carbon. In the case of S/HPCS (CS2/IPA), the sulfur is deposited in a mesopore shell with a limited volume, thus leading to an incomplete loading in the high sulfur content. The S/HPCS (CS2/NMP) cell still displays a stable capacity retention of \(-80\%\), but the S/HPCS (CS2/IPA) cell shows the retention of only \(-64\%\). In the case of the S/HPCS (CS2/NMP), the sulfur redox reaction may occur only in the inner cavity, thereby limiting the shuttling of PS ions in the cavity, resulting in excellent capacity retention (54). In contrast, the S/HPCS (CS2/IPA) shows poor retention due to incomplete utilization of sulfur residues.

The long-term cycle performance of S/HPCS (CS2/NMP) cells is recorded up to 300 cycles as shown in Fig. 5C. The cell shows a reduction of only \(-0.071\%\) per cycle until reaching 300 cycles after a reduction in capacity of \(-0.3\%\) per cycle for the initial 40 cycles. Fig. 5C, Inset is an image of 30 LEDs lit for 20 min with constant brightness; this result confirms the stable operation of the S/HPCS (CS2/NMP) cell. Fig. 5D and E compares the morphologies before and after charging/discharging for S/HPCS (CS2/NMP) and S/HPCS (CS2) electrodes, respectively. Unlike the S/HPCS (CS2), where the formation of irreversible LiS\(_2\)/Li2S precipitation on the surface of the carbon phases is prominent, the S/HPCS (CS2/NMP) shows carbon spheres with no surface residues even after the cycle (SI Appendix, Fig. S13).

Complete encapsulation of sulfur in S/HPCS (CS2/NMP) enables the achievement of high volumetric capacity of Li–S cell. We evaluate the cycle performance of an electrode cell with a cathode sulfur density of \(-0.62\) g/cm\(^3\) at a high sulfur loading of 4 mg/cm\(^2\). The volumetric capacity is obtained by multiplying the gravimetric capacity by the sulfur loading and dividing this value by the electrode thickness (65 μm; SI Appendix, Fig. S14), as shown in Fig. 5F. The cell shows an initial gravimetric capacity of \(1,388\) mAh/g at 0.2C and a retention rate of \(-86\%\) for 100 cycles at 0.5C. The calculated volumetric capacity is also displayed, showing 855 mAh/cm\(^3\) and 652 mAh/cm\(^3\) at 0.2C and 0.5C, respectively. Compared with recent results (55–59) as shown in Fig. 5G, the S/HPCS (CS2/NMP) cell exhibits high volumetric capacity, even at high sulfur loading.
In conclusion, we demonstrate controlled sulfur loading into HPCSSs by controlling the interfacial energy of sulfur-dissolved solution. The widely used sulfur/CS₂ solution does not easily penetrate porous carbon, due to the high interfacial energy of CS₂, resulting in a bulk sulfur residue. We find that the use of a mixed solution containing IPA or NMP significantly improves the infiltration of the solution into the pores by improving wetting with the carbon surface. In particular, the use of NMP with low interfacial energy with carbon can improve infiltration more effectively, resulting in complete sulfur encapsulation. We further observed that the control of sulfur loading greatly affects Li-S battery performance. Specifically, the rate and reversibility of the sulfur transformation reaction depend largely on the location of the sulfur loading. We identify significantly superior cell performance (reversible capacity and capacity retention) in the loading of sulfur into the internal macropore of HPCS. Our method can be applied as a facile but precise control technique for the complete encapsulation of sulfur to a host with a variety of surfaces and morphologies.

Materials and Methods
HPCS was prepared by first forming a SiO₂ core and a formaldehyde–resorcinol polymer shell, heat-treating the particles at high temperature, and then removing SiO₂. Sulfur deposition was obtained by wetting HPCS with sulfur solution (solution in which sulfur is dissolved in CS₂, CS₂/IPA, or CS₂/NMP). All procedures and analysis of HPCS samples are described in detail in SI Appendix, Methods. The fabrication and evaluation of lithium–sulfur battery cells is also presented in SI Appendix.

Data Availability. All data needed to evaluate the conclusions in this paper are available in the main text or in SI Appendix.

ACKNOWLEDGMENTS. This work was supported by National Research Foundation of Korea (Grants 2019R1A2C2009123 and 2019R1A4A1027627). The Korea Basic Science Institute is also acknowledged for the SEM and TEM measurements.
1. J. W. Choi, D. Aubach, Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 1, 16013 (2016).
2. W. Li et al., High-performance hollow carbon nanotube-structured battery cathode through a scalable, room temperature, one-step, bottom-up approach. Proc. Natl. Acad. Sci. U.S.A. 110, 7114-7113 (2013).
3. C. Tang et al., CAo-template growth of hierarchical porus graphene for high-power lithium-sulfur battery applications. Adv. Funct. Mater. 26, 577-585 (2016).
4. S. Bai et al., Hierarchical lithium polysulfide diffusion in graphene nanocomposites for high energy density Li-S batteries. Adv. Mater. 28, 12666-12675 (2016).
5. K. Mi, Y. Jiang, J. Feng, Y. Qian, S. Xiong, Hierarchical carbon nanotubes with a thick carbon shell for improved lithium-ion battery performance. Energy Environ. Sci. 6, 1757-1768 (2013).
6. Y. Chen, S. Choi, D. Su, X. Gao, G. Wang, Self-standing sulfur cathodes enabled by 3D hierarchically porous titanium monoxide-graphene composite film for high-performance lithium-sulfur batteries. Nano Energy 47, 331-339 (2018).
7. X. Liang et al., Facile synthesis of crumpled nitrogen-doped MXene nanosheets as a new sulfur host for lithium-sulfur batteries. Adv. Energy Mater. 8, 1023457 (2018).
8. W. Bao et al., Facile synthesis of crumpled nitrogen-doped MXene nanosheets as a new sulfur host for lithium-sulfur batteries. Adv. Energy Mater. 8, 1702485 (2018).
9. G. Zhou et al., Catalytic oxidation of Li2S on the surface of metal sulfides for Li-S batteries. Proc. Natl. Acad. Sci. U.S.A. 114, 840-845 (2017).
10. K. Mi, Y. Jiang, J. Feng, Y. Qian, S. Xiong, Hierarchical carbon nanotubes with a thick carbon shell for improved lithium-ion battery performance. Energy Environ. Sci. 6, 1757-1768 (2013).
11. J. Chen et al., Self-standing sulfur cathodes enabled by 3D hierarchically porous titanium monoxide-graphene composite film for high-performance lithium-sulfur batteries. Nano Energy 47, 331-339 (2018).
12. X. Wang et al., Does the sulfur cathode require good mixing for a liquid electrolyte lithium-sulfur cell? Electrochem. Commun. 31, 10-12 (2013).
13. Y. Liu et al., Enhanced Li-S battery performance based on solution-impregnation-assisted sulfur-mesoporous carbon cathodes and a carbon-coated separator. J. Mater. Chem. A Mater. Energy Sustain. 5, 5750-5760 (2017).
14. S. S. Zhang, Does the sulfur cathode require good mixing for a liquid electrolyte lithium-sulfur cell? Electrochem. Commun. 31, 10-12 (2013).
15. Y. Chen et al., Co-Mixed metal phosphide nanocubes with highly interconnected pore architecture as an efficient polysulfide mediator for lithium-sulfur batteries. Adv. Energy Mater. 10, 1800428 (2018).
16. H. Chen et al., Monodisperse sulfur nanofibers for lithium-sulfur batteries with theoretical performance. Nano Lett. 15, 798-802 (2015).
17. H. Li et al., Densification of graphene and sulfur through the soft approach for compact lithium-sulfur battery cathode. Nano Energy 12, 468-475 (2015).
18. M. L. Li, C. Carter, A. Douglas, L. Oakes, C. L. Pint, Sulfur vapor-infiltrated 3D carbon nanotube foam for binder-free high areal capacity lithium-sulfur battery composite cathode. Adv. Energy Mater. 11, 4877-4884 (2017).
19. G. Zhou et al., Sulfophilic nickel phosphosulfide enabled Li2S impregnation in 3D graphene cages for Li-S batteries. Adv. Funct. Mater. 26, 1571-1579 (2016).
20. P. Strul et al., ZnO hard templating for synthesis of hierarchical porous carbons with tailored porosity and high performance in lithium-sulfur batteries. Adv. Funct. Mater. 25, 287-297 (2015).
21. H. Li et al., Dense integration of graphene and sulfur through the soft approach for compact lithium-sulfur battery cathode. Nano Energy 12, 468-475 (2015).
22. M. L. Li, C. Carter, A. Douglas, L. Oakes, C. L. Pint, Sulfur vapor-infiltrated 3D carbon nanotube foam for binder-free high areal capacity lithium-sulfur battery composite cathode. Adv. Energy Mater. 11, 4877-4884 (2017).
23. G. Zhou et al., Sulfophilic nickel phosphosulfide enabled Li2S impregnation in 3D graphene cages for Li-S batteries. Adv. Funct. Mater. 26, 1533366 (2017).
24. G. Zhou et al., An aqueous inorganic polymer binder for high performance lithium-sulfur batteries with flame-retardant properties. ACS Cent. Sci. 4, 260-267 (2018).
25. R. Fanelli, The surface tension of sulfur. J. Am. Chem. Soc. 72, 4016-4018 (1950).
26. X. Fan et al., A general dissolution-recrystallization strategy to achieve sulfur-encapsulated carbon for an advanced lithium-sulfur battery. J. Mater. Chem. A Mater. Energy Sustain. 6, 11664-11669 (2018).
27. X. Liang et al., A highly efficient polysulfide mediator for lithium-sulfur batteries. Nat. Commun. 6, 5882 (2015).
28. T. An et al., MnO modified carbon nanotubes as a sulfur host with enhanced performance in Li-S batteries. J. Mater. Chem. A Mater. Energy Sustain. 4, 12588-12583 (2016).
29. Y. Zhong et al., Confining sulfur in integrated composite scaffold with highly porous carbon and amorphous silicon for high-performance lithium-sulfur batteries. Adv. Funct. Mater. 28, 710391 (2018).
30. J. Scholz et al., Severe loss of confined sulfur in nanocarbon for Li-S batteries under wetting conditions. ACS Energy Lett. 3, 387-392 (2018).
31. S. Sun et al., Sulfur embedded in a confined carbon nanotube network as a binder-free electrode for high-performance lithium-sulfur batteries. Nano Energy 10, 1300-1308 (2016).
32. Z. Yuan et al., Hierarchical free-standing carbon-nanotube paper electrodes with ultrahigh sulfur-loading for lithium-sulfur batteries. Adv. Funct. Mater. 24, 6105-6112 (2014).
33. G. Guen et al., Spherical macroporous carbon nanotube particles with ultrahigh sulfur loading for lithium-sulfur battery cathodes. ACS Nano 12, 226-233 (2018).
34. G. He et al., Tailoring porosity in carbon nanospheres for lithium-sulfur battery cathodes. ACS Nano 7, 10920-10930 (2013).