RANDOMNESS OF CHARACTER SUMS MODULO m

YOUNESS LAMZOURI AND ALEXANDRU ZAHARESCU

Abstract. Using a probabilistic model, based on random walks on the additive group $\mathbb{Z}/m\mathbb{Z}$, we prove that the values of certain real character sums are uniformly distributed in residue classes modulo m.

1. Introduction

A central question in number theory is to gain an understanding of character sums

$$S_{\chi}(x) = \sum_{n \leq x} \chi(n),$$

where χ is a Dirichlet character modulo q. When $q = p$ is a prime number and $\chi_p = \left(\frac{.}{p}\right)$ is the Legendre symbol modulo p, the character sums $S_p(x) = S_{\chi_p}(x)$ encode information on the distribution of quadratic residues and non-residues modulo p (see for example Davenport and Erdős [5], and Peralta [13]). In particular, bounds for the order of magnitude of $S_p(x)$ lead to results on the size of the least quadratic non-residue modulo p (see the work of Ankeny [2]; Banks, Garaev, Heath-Brown and Shparlinski [3]; Burgess [4]; Graham and Ringrose [6]; Lau and Wu [10]; Linnik [11]; and Montgomery [12]).

Quadratic residues and non-residues appear to occur in a rather random pattern modulo p, which suggests that the values of $\chi_p(n)$ mimic a random variable that takes the values 1 and -1 with equal probability $1/2$. This fact was recently exploited by Granville and Soundararajan [7] while investigating the distribution of the values of Dirichlet L-functions attached to quadratic characters at $s = 1$. Furthermore, a result of Davenport and Erdős [5] shows that short real character sums are indeed random in some sense. More specifically, they established that the values $S_p(n + H) - S_p(n)$ are distributed according to a Gaussian distribution of mean zero and variance H as $H \to \infty$ in the range $\log H / \log p \to 0$ when $p \to \infty$.

In this paper, we investigate a new aspect of the randomness of these character sums. To describe our results, we first need some notation. Let $F(X)$ be a square-free

2010 Mathematics Subject Classification. Primary 11L40; Secondary 11B50, 60G50.

Key words and phrases. Character sums, distribution in residue classes, random walks on finite groups.

The First author is supported by a postdoctoral fellowship from the Natural Sciences and Engineering Research Council of Canada. Research of the second author is supported by the NSF grant DMS-0901621.
polynomial of degree $d_F \geq 1$ over the finite field $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$, and define
\[S_p(F,k) := \sum_{n \leq k} \chi_p(F(n)), \]
for all positive integers $k \leq p$. Moreover, let $\Phi_p(F; m, a)$ be the proportion of positive integers $k \leq p$ for which $S_p(F,k) \equiv a \mod m$; that is
\[\Phi_p(F; m, a) = \frac{1}{p}|\{k \leq p : S_p(F,k) \equiv a \mod m\}|. \]
Since the values $\chi_p(F(n))$ are expected to be randomly distributed, one might guess that $\Phi_p(F; m, a) \sim 1/m$ for all $a \mod m$ as $p \to \infty$. We show that this is indeed the case in Corollary 1 below, uniformly for all m in the range $m = o((\log p)^{1/4})$ as $p \to \infty$. Our strategy is to introduce a probabilistic model for the values $S_p(F,k)$ based on random walks. A simple random walk on \mathbb{Z} is a stochastic process $\{S_k\}_{k \geq 1}$ where
\[S_k = X_1 + \cdots + X_k, \]
and $\{X_j\}_{j \geq 1}$ is a sequence of independent random variables taking the values 1 and -1 with equal probability $1/2$ (for further reference see Spitzer [14]). We shall model the values $S_p(F,k) \mod m$ by the stochastic process $\{S_k \mod m\}$ which may be regarded as a simple random walk on the additive group $\mathbb{Z}/m\mathbb{Z}$. To this end we consider the random variable
\[\Phi_{\text{rand}}(N; m, a) := \frac{1}{N}|\{k \leq N : S_k \equiv a \mod m\}|. \]
Here and throughout $\mathbb{E}(Y)$ will denote the expectation of the random variable Y. We first study the probabilistic model and prove

Proposition 1. Let $m \geq 2$ be a positive integer. Then, for all $N \geq m^2$ we have
\[\sum_{a=0}^{m-1} \mathbb{E} \left(\left(\Phi_{\text{rand}}(N; m, a) - \frac{1}{m} \right)^2 \right) \ll \frac{m^2}{N}. \]

Appealing to Markov’s inequality, we deduce from this result that
\[\Phi_{\text{rand}}(N; m, a) = \frac{1}{m}(1 + o(1)) \]
with probability $1 - o(1)$ provided that $N/m^2 \to \infty$.

Using Proposition 1, we establish an analogous estimate for the second moment of the difference $\Phi_p(F; m, a) - 1/m$ (which may be regarded as the “variance” of $\Phi_p(F; m, a)$).

Theorem 1. Let p be a large prime number and $F(X) \in \mathbb{F}_p(X)$ be a square-free polynomial of degree $d_F \geq 1$. Then, for any integer $2 \leq m \ll (\log p)^{1/4}$ we have
\[\sum_{a=0}^{m-1} \left(\Phi_p(F; m, a) - \frac{1}{m} \right)^2 \ll_{d_F} \frac{m^2}{\log p}. \]
As a consequence, we obtain

Corollary 1. Under the same assumptions of Theorem 1, we have uniformly for all $0 \leq a \leq m - 1$

$$\Phi_p(F; m, a) = \frac{1}{m} + O_{d_F} \left(\frac{m}{\sqrt{\log p}} \right).$$

Let $R_p(F, k)$ be the number of positive integers $n \leq k$ such that $F(n)$ is a quadratic residue modulo p, and similarly denote by $N_p(F, k)$ the number of $n \leq k$ for which $F(n)$ is a quadratic non-residue mod p. Using a slight variation of our method we also prove that the values $R_p(F, k)$ (and $N_p(F, k)$) are uniformly distributed in residue classes modulo m. In this case, the corresponding probabilistic model involves random walks on the non-negative integers, where each step is 0 or 1 with equal probability. Define

$$\tilde{\Phi}_p(F; m, a) = \frac{1}{p} |\{k \leq p : R_p(F, k) \equiv a \mod m\}|.$$

Then, using a similar result to Proposition 1 in this case (see Proposition 3.3 below) we establish

Theorem 2. Let p be a large prime number and $F(X) \in \mathbb{F}_p(X)$ be a square-free polynomial of degree $d_F \geq 1$. Then, for any integer $2 \leq m \ll (\log p)^{1/4}$ we have

$$\sum_{a=0}^{m-1} \left(\tilde{\Phi}_p(F; m, a) - \frac{1}{m} \right)^2 \ll_{d_F} \frac{m^2}{\log p}.$$

A similar result holds replacing $R_p(F, k)$ with $N_p(F, k)$.

An important question in the theory of random walks on finite groups is to investigate how close is the distribution of the k-th step of the walk to the uniform distribution on the corresponding group (see for example Hildebrand [8]). In our case this corresponds to investigating the distribution of $S_k \mod m$. Define

$$\Psi_{\text{rand}}(k; m, a) = \text{Prob}(S_k \equiv a \mod m).$$

Proposition 2. Let $m \geq 3$ be an odd integer and $0 \leq a \leq m - 1$. Then

$$\Psi_{\text{rand}}(k; m, a) = \frac{1}{m} + O \left(\exp \left(-\frac{\pi^2 k}{3m^2} \right) \right).$$

This shows that the distribution of S_k is close to the uniform distribution on $\mathbb{Z}/m\mathbb{Z}$ when $m = o(k^{1/2})$ as $k \to \infty$. Although this result is classical (see for example Theorem 2 of Aldous and Diaconis [1]), we chose to include its proof for the sake of completeness.

We now describe an analogous result that we derive for character sums. Let N be large, and for each prime $p \leq N$, we consider the walk on $\mathbb{Z}/m\mathbb{Z}$ whose i-th step corresponds to the value of $\chi_p(q_i) \mod m$, where q_i is the i-th prime number. One might guess that as p varies over the primes below N, the distribution of the k-th step of this
walk will be close to the uniform distribution in \(\mathbb{Z}/m\mathbb{Z}\), as \(N, k \to \infty\) if \(m = o(k^{1/2})\).
Define
\[
S_k(p) = \sum_{j \leq k} \chi_p(q_j),
\]
and
\[
\Psi_N(k; m, a) = \frac{1}{\pi(N)}|\{p \leq N : S_k(p) \equiv a \mod m\}|.
\]

Here and throughout \(\log_j\) will denote the \(j\)-th iterated logarithm, so that \(\log_1 n = \log n\) and \(\log_j n = \log(\log_{j-1} n)\) for each \(j \geq 2\). We prove

Theorem 3. Fix \(A \geq 1\). Let \(N\) be large, and \(k \leq A(\log_2 N)/(\log_3 N)\) be a positive integer. Then we have
\[
\Psi_N(k; m, a) = \Psi_{\text{rand}}(k; m, a) + O_A\left(\frac{1}{\log^A N}\right).
\]

Hence, using Proposition 2 we deduce

Corollary 2. Let \(m\) be an odd integer such that \(3 \leq m \leq k^{1/2}\). Then under the same assumptions of Theorem 3 we have uniformly for all \(0 \leq a \leq m - 1\) that
\[
\Psi_N(k; m, a) = \frac{1}{m} + O_A\left(\exp\left(-\frac{\pi^2 k}{3m^2}\right) + \frac{1}{\log^A N}\right).
\]

We remark that under the assumption of the Generalized Riemann Hypothesis for Dirichlet \(L\)-functions, we can improve the range of validity of Theorem 3 to \(k \ll (\log N)/(\log_2 N)\).

2. Preliminary lemmas

In this section we collect together some preliminary results which will be useful in our subsequent work. Here and throughout we shall use the notation \(e_m(x) = \exp\left(\frac{2\pi ix}{m}\right)\).
Recall the orthogonal relation
\[
\frac{1}{m} \sum_{t=0}^{m-1} e_m(tn) = \begin{cases}
1 & \text{if } n \equiv 0 \mod m, \\
0 & \text{otherwise.}
\end{cases}
\]

Our first lemma gives the classical bound for incomplete exponential sums over \(\mathbb{F}_p\) of the form
\[
S_I(P_1, P_2) = \sum_{n \in I} \chi_p(P_1(n))e_p(P_2(n)),
\]
where \(I\) is a subinterval of \(\{0, 1, \ldots, p-1\}\), and \(P_1(X), P_2(X) \in \mathbb{F}_p[X]\), such that \(P_1(X)\) is a nontrivial square-free polynomial.

Lemma 2.1. Let \(p \geq 3\) be a prime number and \(I, P_1(X), P_2(X)\) be as above. Then we have
\[
|S_I(P_1, P_2)| \leq 2D\sqrt{p}\log p,
\]
where
\[D = \deg P_1(X) + \deg P_2(X). \]

Proof. First if \(I = \{0, \ldots, p - 1\} \), then \(S_I(P_1, P_2) = S(P_1, P_2) \) is a complete sum and the result follows from the classical Weil bound for exponential sums [15]:
\[|S(P_1, P_2)| \leq Dp^{1/2}. \tag{2.2} \]

Now, if \(I \) is proper subinterval of \(\{0, \ldots, p - 1\} \), we shall use a standard procedure to express our incomplete sum in terms of complete sums of the same type. Using equation (2.1) we see that
\[S_I(P_1, P_2) = \sum_{n \mod p} \chi_p(P_1(n)) e_p(P_2(n)) \left(\sum_{m \in I} \frac{1}{p} \sum_{t \mod p} e_p(t(m - n)) \right). \]

Changing the order of summation and noting that the inner double sum is a product of two sums, one being a geometric progression and the other a complete exponential sum, we obtain
\[S_I(P_1, P_2) = \frac{1}{p} \sum_{t \mod p} \left(\sum_{m \in I} e_p(tm) \right) \left(\sum_{n \mod p} \chi_p(P_1(n)) e_p(P_2(n) - tn) \right) \]
\[= \frac{1}{p} \sum_{t \mod p} F_I(t) S(P_1, \tilde{P}_2), \tag{2.3} \]

where \(\tilde{P}_2(X) = P_2(X) - tX \) and \(F_I(t) = \sum_{m \in I} e_p(tm) \). If \(t \equiv 0 \mod p \) then \(F_I(t) = |I| \). Otherwise if \(I = \{M + 1, \ldots, M + N\} \), say, then
\[F_I(t) = \frac{e_p(t(M + 1)) - e_p(t(M + N + 1))}{1 - e_p(t)}. \]

Here the numerator has absolute value at most 2, while the absolute value of the denominator is \(2|\sin(t\pi/p)| \). Hence
\[|F_I(t)| \leq \left| \sin \left(\frac{t\pi}{p} \right) \right|^{-1} \leq \left(2 \left| \frac{t}{p} \right| \right)^{-1}, \]

where \(\| \cdot \| \) stands for the distance to the nearest integer. As a set of representatives modulo \(p \) we choose \(\{-\frac{p-1}{2}, \ldots, \frac{p-1}{2}\} \), so that for \(t \neq 0 \) in this set we have
\[|F_I(t)| \leq \frac{p}{2|t|}. \tag{2.4} \]

Now, we insert (2.2) and (2.4) in (2.3) to obtain
\[|S_I(P_1, P_2)| \leq \frac{D}{p^{1/2}} \left(|I| + \sum_{1 \leq |t| \leq \frac{p}{2|t|}} \frac{p}{2|t|} \right) \leq 2D \sqrt{p} \log p. \]

This completes the proof of the lemma. \qed

The following lemma will be later used to prove that the product of distinct shifts of a square-free polynomial cannot be a square in \(\mathbb{F}_p(X) \).
Lemma 2.2. Let \(r \geq 2 \), and \(z_1, \ldots, z_r \), be distinct elements of \(\mathbb{F}_p \). Moreover, let \(\mathcal{M} \) be a nonempty finite subset of the algebraic closure \(\overline{\mathbb{F}}_p \) of \(\mathbb{F}_p \) with \(4|\mathcal{M}| < p^{\frac{1}{2}} \). Then there exists a \(j \in \{1, \ldots, r\} \) such that the translate \(\mathcal{M} + z_j \) is not contained in \(\bigcup_{i \neq j}(\mathcal{M} + z_i) \).

Proof. Suppose that \((z_1, \ldots, z_r, \mathcal{M})\) provides a counterexample to the statement of the lemma. Then clearly for any nonzero \(t \in \mathbb{F}_p \), \((tz_1, \cdots, tz_r, t\mathcal{M})\) is also a counterexample.

We now use Minkowski’s theorem on lattice points in a symmetric convex body to find a nonzero integer \(t \) such that
\[
\begin{aligned}
|t| &\leq p - 1 \\
\left|\frac{tz_j}{p}\right| &\leq (p - 1)^{-\frac{1}{2}} \\
\vdots \\
\left|\frac{tz_r}{p}\right| &\leq (p - 1)^{-\frac{1}{2}}
\end{aligned}
\]

Another way to express this is that there are integers
\[
(2.5) \quad \begin{cases}
|y_j| \leq p(p - 1)^{-\frac{1}{2}} \\
y_j &\equiv tz_j \pmod{p}
\end{cases}
\]

for any \(j \in \{1, \ldots, r\} \). Thus \((y_1, \ldots, y_r, t\mathcal{M})\) provides a counterexample. Now let \(j_0 \) be such that
\[
|y_{j_0}| = \max_{1 \leq j \leq r} |y_j|.
\]

Choose \(\alpha \in t\mathcal{M} \) and consider the set \(\tilde{\mathcal{M}} = t\mathcal{M} \cap (\alpha + \mathbb{F}_p) \). Then \((y_1, \ldots, y_r, \tilde{\mathcal{M}})\) will also be a counterexample.

Note that \(\alpha + \mathbb{F}_p \) can be written as a union of \(|\mathcal{M}| \) intervals whose endpoints are in \(\tilde{\mathcal{M}} \). Let \(\{\alpha + a, \alpha + a + 1, \cdots, \alpha + b\} \) be the longest of these intervals. Then
\[
|b - a| \geq \frac{p}{|\mathcal{M}|} \geq \frac{p}{|\tilde{\mathcal{M}}|}.
\]

By this, \((2.5)\) and the hypothesis \(4|\mathcal{M}| < p^{\frac{1}{2}} \) we deduce
\[
|b - a| > 4p^{1 - \frac{1}{2}} > 2|y_{j_0}|.
\]

Now the point is that if \(y_{j_0} > 0 \) then \(\alpha + a + y_{j_0} \) belongs to \(\tilde{\mathcal{M}} + y_{j_0} \) but does not belong to \(\bigcup_{i \neq j_0}(\tilde{\mathcal{M}} + y_i) \), while if \(y_{j_0} < 0 \) then \(\alpha + b + y_{j_0} \) belongs to \(\tilde{\mathcal{M}} + y_{j_0} \) but does not belong to \(\bigcup_{i \neq j_0}(\tilde{\mathcal{M}} + y_i) \). This completes the proof of the lemma. \(\square \)

Using this lemma, we prove the following result

Lemma 2.3. Let \(F(X) \in \mathbb{F}_p(X) \) be a square-free polynomial of degree \(d_F \geq 1 \). Let \(b_1, \ldots, b_L \) be distinct elements in \(\mathbb{F}_p \) such that \(L < (\log p)/\log(4d_F) \). Then, for any
a ∈ ℱ_p the polynomial

\[H(X) = \prod_{j=1}^{L} F(aX + b_j), \]

is not a square in ℱ_p(X).

Proof. Let \(\alpha_1, \ldots, \alpha_s \) be the roots of \(F(X) \) in ℱ_p. Since \(F(X) \) is square-free then the \(\alpha_j \) are distinct and \(s = d_F \). Let \(M = \{ a^{-1}\alpha_1, \ldots, a^{-1}\alpha_s \} \), and write \(z_j = -a^{-1}b_j \) for all \(1 \leq j \leq L \). Then note that \(M + z_j \) is the set of the roots of \(F(ax + b_j) \) in ℱ_p. By our hypothesis it follows that \(4|F_p(X)| < p^{1/L} \). Hence, we infer from Lemma 2.2 that there exists a \(j \in \{1, \ldots, L\} \) such that at least one of the roots of \(F(ax + b_j) \) is distinct from all the roots of \(\prod_{l \neq j} F(ax + b_l) \). This shows that \(H(X) \) is not a square in ℱ_p(X) as desired.

\[\square \]

3. Random walks on the integers modulo \(m \)

In this section we shall study the distribution of the random walk \(\{S_k \mod m\}_{k \geq 1} \) and prove Propositions 1 and 2. To this end, we establish the following preliminary lemmas.

Lemma 3.1. If \(m \geq 3 \) is an odd integer, then

\[
\max_{1 \leq t \leq m-1} \left| \cos \left(\frac{2\pi t}{m} \right) \right| \leq 1 - \frac{\pi^2}{3m^2},
\]

and

\[
\max_{1 \leq t \leq m-1} |1 + e_m(t)| \leq 2 - \frac{\pi^2}{6m^2}.
\]

Proof. We begin by proving the first assertion. If \(m \geq 5 \) is odd, then

\[
\max_{1 \leq t \leq m-1} \left| \cos \left(\frac{2\pi t}{m} \right) \right| = \cos \left(\frac{2\pi}{m} \right).
\]

Moreover we know that \(\cos(x) \leq 1 - x^2/3 \) for \(0 \leq x \leq \pi/2 \). This yields

\[
\max_{1 \leq t \leq m-1} \left| \cos \left(\frac{2\pi t}{m} \right) \right| \leq 1 - \frac{4\pi^2}{3m^2}.
\]

Now, when \(m = 3 \) we have \(\max_{1 \leq t \leq 2} |\cos(2\pi t/m)| = \cos(\pi/m) \leq 1 - \pi^2/(3m^2) \). This establishes the first part of the lemma.

Moreover, we have

\[
|1 + e_m(t)|^2 = 2 + 2 \cos(2\pi t/m) \leq 4 \left(1 - \frac{\pi^2}{6m^2} \right),
\]

which follows from (3.1). Therefore, using that \(\sqrt{1-x} \leq 1 - x/2 \) for \(0 \leq x \leq 1 \) we obtain the second assertion of the lemma. \(\square \)
Lemma 3.2. If \(m \geq 2 \) is an integer, then
\[
\sum_{t=1}^{m-1} \sum_{1 \leq j_1 < j_2 \leq N} \cos \left(\frac{2\pi t}{m} \right)^{j_2-j_1} = O(m^3N),
\]
and
\[
\sum_{t=1}^{m-1} \sum_{1 \leq j_1 < j_2 \leq N} \left(\frac{1 + e_m(t)}{2} \right)^{j_2-j_1} = O(m^3N).
\]

Proof. We prove only the first statement, since the proof of the second is similar. For \(d \in \{1, \ldots, N-1\} \), the number of pairs \(1 \leq j_1 < j_2 \leq N \) such that \(j_2 - j_1 = d \) equals \(N - d \). Therefore, the sum we are seeking to bound equals
\[
\sum_{t=1}^{m-1} \sum_{d=1}^{N-1} (N-d) \cos \left(\frac{2\pi t}{m} \right)^d.
\]

First, when \(m \) is odd, Lemma 3.1 implies that the last sum is
\[
\leq mN \sum_{d=1}^{N-1} \max_{1 \leq t \leq m-1} \left| \cos \left(\frac{2\pi t}{m} \right)^d \right| \leq \frac{mN}{1 - \max_{1 \leq t \leq m-1} \left| \cos \left(\frac{2\pi t}{m} \right) \right|} \leq \frac{3m^3N}{\pi^2}.
\]

Now, when \(m = 2r \) is even, then either \(\cos(\pi t/r) = -1 \) or \(|\cos(\pi t/r)| < 1 \). In the latter case the proof of Lemma 3.1 implies that \(|\cos(\pi t/r)| \leq 1 - \pi^2/(3r^2) \). Hence, in this case we obtain
\[
\sum_{d=1}^{N-1} (N-d) \left| \cos \left(\frac{\pi t}{r} \right) \right|^d \ll m^2N.
\]

On the other hand if \(\cos(\pi t/r) = -1 \), then our sum become
\[
\sum_{d=1}^{N-1} (N-d)(-1)^d \leq 2N.
\]

This completes the proof. \(\square \)

We begin by proving Proposition 2 first, since its proof is both short and simple.

Proof of Proposition 2. Recall that
\[
\Psi_{\text{rand}}(k; m, a) = \text{Prob}(X_1 + \cdots + X_k \equiv a \mod m) = \frac{1}{2^k} \sum_{v=(v_1,\ldots,v_k) \in \{-1,1\}^k \atop v_1 + \cdots + v_k \equiv a \mod m} 1.
\]

Hence, using (2.1) we deduce
\[
\Psi_{\text{rand}}(k; m, a) = \frac{1}{2^k m} \sum_{v=(v_1,\ldots,v_k) \in \{-1,1\}^k} \sum_{t=0}^{m-1} e_m \left(t(v_1 + \cdots + v_k - a) \right).
\]
The contribution of the term \(t = 0 \) to the above sum equals \(1/m \). Moreover, since \(\sum_{a \in \{-1,1\}} e_m(\alpha t) = 2 \cos(2\pi t/m) \), then the contribution of the remaining terms equals
\[
\frac{1}{2k^m} \sum_{t=1}^{m-1} e_m(-at) \sum_{v=(v_1,\ldots,v_k) \in \{-1,1\}^k} e_m(t(v_1+\cdots+v_k)) = \frac{1}{m} \sum_{t=1}^{m-1} e_m(-at) \cos \left(\frac{2\pi t}{m} \right)^k.
\]

Thus, the result follows upon using Lemma 3.1.

\[\square\]

Proof of Proposition 1. First, note that
\[
\Phi_{\text{rand}}(N; m, a) = \frac{1}{N} \sum_{j=1}^{N} Y_j \quad \text{where} \quad Y_j = \begin{cases} 1 & \text{if } S_j \equiv a \mod m \\ 0 & \text{otherwise.} \end{cases}
\]

On the other hand, if \(\mathbf{v} = (v_1, \ldots, v_N) \in \{-1,1\}^N \), then (2.1) yields
\[
|\{1 \leq j \leq N : v_1 + \cdots + v_j \equiv a \mod m\}| = \frac{1}{m} \sum_{j=1}^{N} \sum_{t=0}^{m-1} e_m(t(v_1 + \cdots + v_j - a)).
\]

This implies
\[
(3.4)
\]
\[
\mathbb{E} \left(\left(\Phi_{\text{rand}}(N; m, a) - \frac{1}{m} \right)^2 \right) = \frac{1}{2N} \sum_{\mathbf{v} \in \{-1,1\}^N} \left(\frac{1}{N} \sum_{v_1 + \cdots + v_j \equiv a \mod m} 1 - \frac{1}{m} \right)^2.
\]

Now, expanding the summand on the RHS of (3.4) we derive
\[
\left| \sum_{j=1}^{N} \sum_{t=0}^{m-1} e_m(t(v_1 + \cdots + v_j - a)) - N \right|^2 = \sum_{j=1}^{N} \sum_{t=1}^{m-1} e_m(t(v_1 + \cdots + v_j - a))^2 \left(\sum_{1 \leq j_1, j_2 \leq N} e_m(t_1(v_1 + \cdots + v_{j_1}) - t_2(v_1 + \cdots + v_{j_2})) \right).
\]

Hence, we infer from (2.1) that
\[
(3.5)
\]
\[
\sum_{a=0}^{m-1} \sum_{j=1}^{N} \sum_{t=0}^{m-1} e_m(t(v_1 + \cdots + v_j - a)) - N \right|^2 = m \sum_{t=1}^{m-1} \sum_{1 \leq j_1, j_2 \leq N} e_m(t((v_1 + \cdots + v_{j_1}) - (v_1 + \cdots + v_{j_2})))
\]
\[
= m^2 N + m \sum_{t=1}^{m-1} \sum_{1 \leq j_1, j_2 \leq N} \left(e_m(t(v_{j_1+1} + \cdots + v_{j_2})) + e_m(-t(v_{j_1+1} + \cdots + v_{j_2})) \right).
\]
Inserting this estimate into (3.4), and using that $\sum_{\alpha \in \{-1,1\}} e_m(\alpha t) = 2 \cos(2\pi t/m)$, we obtain
\[
\sum_{a=0}^{m-1} \mathbb{E} \left(\left(\Phi_{\text{rand}}(N; m, a) - \frac{1}{m} \right)^2 \right) = \frac{1}{N} + \frac{2}{mN^2} \sum_{t=1}^{m-1} \sum_{1 \leq j_1 < j_2 \leq N} \cos \left(\frac{2\pi t}{m} \right)^{j_2-j_1}.
\]

The result follows upon using Lemma 3.2 to bound the RHS of the last identity. \hfill \Box

In order to prove Theorem 2 we require an analogous result to Proposition 1 in the case of a random walk on the non-negative integers, where each step is 0 or 1 (rather than -1 or 1). To this end, we take $\{\tilde{X}_j\}_{j \geq 1}$ to be a sequence of independent random variables taking the values 0 and 1 with equal probability $1/2$, and define
\[
\tilde{S}_k = \tilde{X}_1 + \cdots + \tilde{X}_k,
\]
and
\[
\tilde{\Phi}_{\text{rand}}(N; m, a) = \frac{1}{N} |\{1 \leq j \leq N : \tilde{S}_j \equiv a \mod m\}|.
\]

Using a similar approach to the proof of Proposition 1 we establish:

Proposition 3.3. Let $m \geq 2$ be a positive integer. Then, for all $N \geq m^2$ we have
\[
\sum_{a=0}^{m-1} \mathbb{E} \left(\left(\tilde{\Phi}_{\text{rand}}(N; m, a) - \frac{1}{m} \right)^2 \right) \ll \frac{m^2}{N}.
\]

Proof. We follow closely the proof of Proposition 1. First, a similar analysis used to derive (3.4) allows us to obtain
\[
\mathbb{E} \left(\left(\tilde{\Phi}_{\text{rand}}(N; m, a) - \frac{1}{m} \right)^2 \right) = \frac{1}{2N(mN)^2} \sum_{v=(v_1, \ldots, v_N) \in \{0,1\}^N} \left| \sum_{j=1}^{N} \sum_{t=0}^{m-1} e_m(t(v_1 + \cdots + v_j - a)) - N \right|^2.
\]

Hence, using the identity (3.5) in equation (3.6) we get
\[
\sum_{a=0}^{m-1} \mathbb{E} \left(\left(\tilde{\Phi}_{\text{rand}}(N; m, a) - \frac{1}{m} \right)^2 \right) = \frac{1}{N} + \frac{1}{mN^2} \sum_{t=1}^{m-1} \sum_{1 \leq j_1 < j_2 \leq N} \left(\frac{1 + e_m(t)}{2} \right)^{j_2-j_1} + \left(\frac{1 + e_m(-t)}{2} \right)^{j_2-j_1}
\]
\[
= \frac{1}{N} + \frac{2}{mN^2} \sum_{t=1}^{m-1} \sum_{1 \leq j_1 < j_2 \leq N} \left(\frac{1 + e_m(t)}{2} \right)^{j_2-j_1},
\]

upon noting that
\[
\sum_{t=1}^{m-1} \left(\frac{1 + e_m(t)}{2} \right)^d = \sum_{r=1}^{m-1} \left(\frac{1 + e_m(-r)}{2} \right)^d.
\]
by making the simple change of variables $r = m - t$. Appealing to Lemma 3.2 completes
the proof.

\[\square\]

4. Character sums with polynomials: proof of Theorems 1 and 2

We begin by proving the following key proposition which establishes the required
link with random walks. Let p be a large prime number and $F(X) \in \mathbb{F}_p(X)$ be a
square-free polynomial of degree $d_F \geq 1$ in $\mathbb{F}_p(X)$. Moreover, let $L \leq (\log p)/\log(4d_F)$
be a positive integer, and put $N = [p/L] - 1$. Furthermore, for any $\mathbf{v} = (v_1, \ldots, v_L) \in
\{-1, 1\}^L$ we define

\[D_{p,F}(\mathbf{v}, L) = \{0 \leq s \leq N : \chi_p(F(sL + j)) = v_j \text{ for all } 1 \leq j \leq L}\].

Proposition 4.1. Let p, L, and $F(X)$ be as above. Then for any $\mathbf{v} = (v_1, \ldots, v_L) \in
\{-1, 1\}^L$ we have

\[|D_{p,F}(\mathbf{v}, L)| = \frac{p}{2L} \left(1 + O_{d_F}(p^{-1/10})\right).
\]

Proof. Let S be the set of non-negative integers $0 \leq s \leq N$ such that $F(sL + j) \neq 0$
for all $1 \leq j \leq L$. Then $|S| = N + O_{d_F}(1)$. Moreover, note that for $s \in S$ we have

\[\frac{1}{2L} \prod_{j=1}^{L} (1 + v_j \chi_p(F(sL + j))) = \begin{cases}
1 & \text{if } s \in D_{p,F}(\mathbf{v}, L), \\
0 & \text{otherwise}.
\end{cases}
\]

This yields

\[|D_{p,F}(\mathbf{v}, L)| = \frac{1}{2L} \sum_{s=0}^{N} \prod_{j=1}^{L} (1 + v_j \chi_p(F(sL + j))) + O_{d_F}(1).
\]

Expanding the product on the RHS of the previous estimate, we find that $|D_{p,F}(\mathbf{v}, L)|$
equals

\[\frac{1}{2L} \sum_{s=0}^{N} \left(1 + \sum_{i_1=1}^{L} \sum_{1 \leq i_1 < i_2 < \cdots < i_L \leq L} v_{i_1} \cdots v_{i_L} \chi_p(F(sL + i_1) \cdots F(sL + i_L)) \right) + O_{d_F}(1).
\]

\[= \frac{N}{2L} + \frac{1}{2L} \sum_{i_1=1}^{L} \sum_{1 \leq i_1 < \cdots < i_L \leq L} v_{i_1} \cdots v_{i_L} \sum_{s=0}^{N} \chi_p(F(sL + i_1) \cdots F(sL + i_L)) + O_{d_F}(1).
\]

Since $F(X)$ is a square-free polynomial, then it follows from Lemma 2.3 that the
polynomial $H_{i_1,\ldots,i_L}(X) = F(LX + i_1) \cdots F(LX + i_L)$ is not a square in $\mathbb{F}_p(X)$. Therefore,
using Lemma 2.1 with $P_1(X) = H_{i_1,\ldots,i_L}(X)$, $P_2(X) = 0$ and $I = \{0, \ldots, N\}$, we obtain

\[\left|\sum_{s=0}^{N} \chi_p(F(sL + i_1) \cdots F(sL + i_L))\right| \leq 2d_F L \sqrt{p \log p}.
\]
Inserting this bound in (4.3) we get
\[
|D_{p,F}(v, L)| = \frac{p}{2L} + O_d \left(L \sqrt{p \log p} \right),
\]
which completes the proof. \(\square\)

Proof of Theorem 1. Recall that
\[
\Phi_p(F; m, a) = \frac{1}{p} \left| \{1 \leq k \leq p : S_p(F, k) \equiv a \mod m\} \right|.
\]

Let \(L = \lceil (\log p) / (\log(4d_F)) \rceil\), and put \(N = \lceil p/L \rceil - 1\). Moreover, for any \(0 \leq s \leq N\), we define
\[
M_L(s; m, a) = \left| \{1 \leq l \leq L : S_p(F, sL + l) \equiv a \mod m\} \right|.
\]

Then, note that
\[
|\Phi_p(F; m, a) - \frac{1}{m}| \leq \frac{1}{p} \sum_{s=0}^{N} \left| M_L(s; m, a) - \frac{L}{m} \right| + O \left(\frac{L}{p} \right).
\]

To bound the sum on the RHS of (4.5), we use the Cauchy-Schwarz inequality which gives
\[
\left(\sum_{s=0}^{N} \left| M_L(s; m, a) - \frac{L}{m} \right| \right)^2 \leq (N + 1) \sum_{s=0}^{N} \left(M_L(s; m, a) - \frac{L}{m} \right)^2.
\]

Hence, combining this estimate with (4.5), we deduce
\[
\left(\Phi_p(F; m, a) - \frac{1}{m} \right)^2 \ll \frac{N}{p^2} \sum_{s=0}^{N} \left(M_L(s; m, a) - \frac{L}{m} \right)^2 + \frac{L^2}{p^2}.
\]

On the other hand, since \(S_p(sL + l) = S_p(sL) + \sum_{j=1}^{l} \chi_p(F(sL + j))\), then
\[
\sum_{a=0}^{m-1} \left(M_L(s; m, a) - \frac{L}{m} \right)^2 = \sum_{b=0}^{m-1} \left(\Delta_L(s; m, b) - \frac{L}{m} \right)^2,
\]
where
\[
\Delta_L(s; m, b) = \left| \{1 \leq l \leq L : \sum_{j=1}^{l} \chi_p(F(sL + j)) \equiv b \mod m\} \right|.
\]

Therefore, upon combining (4.6) and (4.7) we obtain
\[
\sum_{a=0}^{m-1} \left(\Phi_p(F; m, a) - \frac{1}{m} \right)^2 \ll \frac{N}{p^2} \sum_{a=0}^{m-1} \sum_{s=0}^{N} \left(\Delta_L(s; m, a) - \frac{L}{m} \right)^2 + \frac{mL^2}{p^2}.
\]
Now we evaluate the inner sum on the RHS of the previous inequality. Using (2.1) we get

\[\sum_{s=0}^{N} \left(\Delta_L(s; m, a) - \frac{L}{m} \right)^2 = \frac{1}{m^2} \sum_{s=0}^{N} \left| \sum_{t=0}^{L-1} \sum_{t=1}^{m-1} e_m \left(t \sum_{1 \leq j \leq l} \chi_p(F(sL + j)) - a \right) - L \right|^2 \]

\[= \frac{1}{m^2} \sum_{s=0}^{N} \left| \sum_{t=1}^{L-1} \sum_{t=1}^{m-1} e_m \left(t \sum_{1 \leq j \leq l} \chi_p(F(sL + j)) - a \right) \right|^2 \]

\[\approx \frac{1}{m^2} \sum_{\nu \in \{-1, 1\}^L} \left| \sum_{t=1}^{L} \sum_{t=1}^{m-1} e_m \left(t(v_1 + \cdots + v_l) - \frac{1}{m} \right) \right|^2 D_{p,F}(\nu, L). \]

Hence, using Proposition 4.1 along with the identity \((3.4)\) obtained in the random walk setting, we derive

\[\sum_{s=0}^{N} \left(\Delta_L(s; m, a) - \frac{L}{m} \right)^2 \]

\[= \frac{p}{2^{2L} m^2 L} \sum_{\nu \in \{-1, 1\}^L} \left| \sum_{t=1}^{L} \sum_{t=1}^{m-1} e_m \left(t(v_1 + \cdots + v_l) \right) \right|^2 \left(1 + O_{d_F} \left(p^{-1/10} \right) \right) \]

\[= pL \mathbb{E} \left(\left(\Phi_{\text{rand}}(L; m, a) - \frac{1}{m} \right)^2 \right) \left(1 + O_{d_F} \left(p^{-1/10} \right) \right). \]

Finally, combining this estimate with \((4.8)\) we obtain

\[\sum_{a=0}^{m-1} \left(\Phi_p(F; m, a) - \frac{1}{m} \right)^2 \ll_{d_F} \sum_{a=0}^{m-1} \mathbb{E} \left(\left(\Phi_{\text{rand}}(L; m, a) - \frac{1}{m} \right)^2 \right) + \frac{m(\log p)^2}{p^2} \]

\[\ll_{d_F} \frac{m^2}{\log p}, \]

which follows from Proposition 1. This completes the proof.

\[\square \]

Proof of Theorem 2. We only prove the result for \(R_p(F, k)\), since the proof for \(N_p(F, k)\) is similar. Define

\[\delta_F(j) = \begin{cases} 1 & \text{if } \chi_p(F(j)) = 1, \\ 0 & \text{otherwise}. \end{cases} \]

Then, note that

\[R_p(F, k) = \sum_{j=1}^{k} \delta_F(j). \]

We follow closely the proof of Theorem 1. Let \(L = \lfloor (\log p)/\log(4d_F) \rfloor\), and \(N = \lfloor p/L \rfloor - 1\). For any \(0 \leq s \leq N\) we define

\[\Delta_L(s; m, b) = \left| \{1 \leq l \leq L : \sum_{j=1}^{l} \delta_F(sL + j) \equiv b \mod m\} \right|. \]
Therefore, inserting this estimate (4.10) we obtain
\[
\sum_{a=0}^{m-1} \left(\Phi_p(F; m, a) - \frac{1}{m} \right)^2 \ll \frac{N}{p^2} \sum_{a=0}^{m-1} \sum_{s=0}^{N} \left(\Delta_L(s; m, a) - \frac{L}{m} \right)^2 + \frac{m(\log p)^2}{p^2}.
\]

Moreover, an analogous approach which leads to the identity (4.9) also gives
\[
\sum_{s=0}^{N} \left(\Delta_F(s; m, a) - \frac{L}{m} \right)^2 = \frac{1}{m^2} \sum_{v \in \{0, 1\}^L} \left| \sum_{t=1}^{L} \sum_{t=1}^{m-1} a^t \left(t(v_1 + \cdots + v_l - a)\right) \right|^2 \sum_{0 \leq s \leq N} 1.
\]

Remark that if \(F\) does not vanish in the interval \([sL + 1, sL + L]\) then
\[
\delta_F(sL + j) = \frac{1 + \chi_p(F(sL + j))}{2},
\]
for all \(1 \leq j \leq L\). Hence, writing \(\tilde{v} = (\tilde{v}_1, \ldots, \tilde{v}_L)\) with \(\tilde{v}_j = 2v_j - 1\), we deduce
\[
\sum_{0 \leq s \leq N} 1 = |D_p(\tilde{v}, L, F)| + O_{d_F}(1) = \frac{p}{2L} \left(1 + O_{d_F} \left(p^{-1/10} \right) \right),
\]
which follows from Proposition 4.1. Thus, appealing to the identity (3.6) obtained in the random walk setting, we derive
\[
\sum_{s=0}^{N} \left(\Delta_F(s; m, a) - \frac{L}{m} \right)^2 = pL \mathbb{E} \left[\left(\Phi_{\text{rand}}(L; m, a) - \frac{1}{m} \right)^2 \right] \left(1 + O_{d_F} \left(p^{-1/10} \right) \right).
\]

Therefore, inserting this estimate in (4.10) and using Proposition 3.3 we obtain
\[
\sum_{a=0}^{m-1} \left(\Phi_p(F; m, a) - \frac{1}{m} \right)^2 \ll_{d_F} \sum_{a=0}^{m-1} \mathbb{E} \left[\left(\Phi_{\text{rand}}(L; m, a) - \frac{1}{m} \right)^2 \right] + \frac{m(\log p)^2}{p^2}
\ll_{d_F} \frac{m^2}{\log p},
\]
as desired. \(\Box\)

5. Character sums of fixed length: Proof of Theorem 3

We shall derive Theorem 3 from the following proposition

Proposition 5.1. Fix \(A \geq 1\). Let \(N\) be large, and \(k \leq A(\log_2 N)/(\log_3 N)\). Then for any \(v = (v_1, \ldots, v_k) \in \{-1, 1\}^k\) we have
\[
\frac{1}{\pi(N)} |\{p \leq N : \chi_p(q_j) = v_j \text{ for all } 1 \leq j \leq k\}| = \frac{1}{2^k} \left(1 + O_A \left(\frac{1}{\log^A N} \right) \right).
\]

Proof. If \(\log N \leq p \leq N\) then
\[
\frac{1}{2^k} \prod_{j=1}^{k} (1 + v_j \chi_p(q_j)) = \begin{cases}
1 & \text{if } \chi_p(q_j) = v_j \text{ for all } 1 \leq j \leq k, \\
0 & \text{otherwise.}
\end{cases}
\]
Therefore we deduce that the number of primes \(p \leq N \) such that \(\chi_p(q_j) = v_j \) for all \(1 \leq j \leq k \), equals

\[
\left(1 + \frac{v_j}{m} \right) \left(1 + \frac{v_i}{m} \right) + \cdots + \left(1 + \frac{v_k}{m} \right) + O(\log N)
\]

\[
(5.1) = \frac{1}{2^k} \sum_{p \leq N} \left(1 + \sum_{1 \leq i_1 < \cdots < i_k \leq k} v_{i_1} \cdots v_{i_k} \chi_p(q_{i_1} \cdots q_{i_k}) \right) + O(\log N)
\]

\[
= \frac{\pi(N)}{2^k} + \frac{1}{2^k} \sum_{1 \leq i_1 < \cdots < i_k \leq k} v_{i_1} \cdots v_{i_k} \sum_{p \leq N} \left(1 + \frac{v_{i_1} \cdots v_{i_k}}{m} \right) + O(\log N).
\]

For \(1 \leq i_1 < \cdots < i_k \leq k \) we let \(Q_{i_1, \ldots, i_k} = q_{i_1} \cdots q_{i_k} \). Then it follows from the prime number theorem that \(Q_{i_1, \ldots, i_k} \leq \prod_{j=1}^k q_j = e^{k \log k + o(1)} \leq (\log N)^{1+o(1)} \). On the other hand, quadratic reciprocity implies that \((Q_{i_1, \ldots, i_k}) \) is a character of modulus \(Q_{i_1, \ldots, i_k} \) or \(4Q_{i_1, \ldots, i_k} \). Therefore, appealing to the Siegel-Walfisz Theorem (see Corollary 5.29 of Iwaniec-Kowalski [9]), we deduce

\[
\sum_{p \leq N} \left(Q_{i_1, \ldots, i_k} \right) \ll (Q_{i_1, \ldots, i_k})^{1/2} \frac{N}{\log^{2A} N}.
\]

Inserting this estimate in (5.1) completes the proof. \(\square \)

Proof of Theorem 3. Using (2.1) we obtain

\[
\Psi_N(k; m, a) = \frac{1}{\pi(N)} |\{p \leq N : S_k(p) \equiv a \mod m\}|.
\]

\[
(5.2) = \frac{1}{m \pi(N)} \sum_{p \leq N} \sum_{t=0}^{m-1} e_m(t(S_k(p) - a))
\]

\[
= \frac{1}{m \pi(N)} \sum_{t=0}^{m-1} \sum_{v \in \{-1,1\}^k} e_m(t(v_1 + \cdots + v_k - a)) \sum_{p \leq N} 1_{\chi_p(q_j) = v_j} \text{ for } 1 \leq j \leq k
\]

Thus, appealing to Proposition 5.1 along with the identity (3.3) obtained in the random walk setting we derive

\[
\Psi_N(k; m, a) = \frac{1}{2^k m} \sum_{t=0}^{m-1} \sum_{v \in \{-1,1\}^k} e_m(t(v_1 + \cdots + v_k - a)) + O_A \left(\frac{1}{\log^4 N} \right)
\]

\[
= \Psi_{\text{rand}}(k; m, a) + O_A \left(\frac{1}{\log^4 N} \right),
\]

which completes the proof. \(\square \)

References

[1] D. Aldous and P. Diaconis, *Shuffling cards and stopping times*, Amer. Math. Monthly 93 (1986), no. 5, 333-348.
[2] N. C. Ankeny, *The least quadratic non residue*, Ann. of Math. (2) 55, (1952). 65-72.

[3] W. Banks, M. Z. Garaev, D. R. Heath-Brown and I. E. Shparlinski, *Density of non-residues in Burgess-type intervals and applications*, Bull. Lond. Math. Soc. 40 (2008), 88-96.

[4] D. A. Burgess, *The distribution of quadratic residues and non-residues*, Mathematika 4 1957 106-112.

[5] H. Davenport and P. Erdős, *The distribution of quadratic and higher residues*, Publ. Math. Debrecen 2, (1952). 252-265.

[6] S. W. Graham and C. J. Ringrose, *Lower bounds for least quadratic nonresidues*, Analytic number theory (Allerton Park, IL, 1989), 269–309.

[7] A. Granville and K. Soundararajan, *The distribution of values of L(1, χd)*, Geometric and Funct. Anal. 13 (2003), 992–1028.

[8] M. Hildebrand, *A survey of results on random walks on finite groups*, Probab. Surv. 2 (2005), 33-63.

[9] H. Iwaniec and E. Kowalski, *Analytic number theory*, American Mathematical Society Colloquium Publications, 53. American Mathematical Society, Providence, RI, 2004.

[10] Y. K. Lau and J. Wu, *On the least quadratic non-residue*, Int. J. Number Theory 4 (2008), no. 3, 423-435.

[11] U. V. Linnik, *A remark on the least quadratic non-residue*, C. R. (Doklady) Acad. Sci. URSS (N.S.) 36 (1942) 119-120.

[12] H. L. Montgomery, *Topics in multiplicative number theory*, Lecture Notes in Mathematics, Vol. 227. Springer-Verlag, Berlin-New York, 1971.

[13] R. Peralta, *On the distribution of quadratic residues and nonresidues modulo a prime number*, Math. Comp. 58 (1992), no. 197, 433-440.

[14] F. Spitzer, *Principles of random walks*, Graduate Texts in Mathematics, Vol. 34. Springer-Verlag, New York-Heidelberg, 1976.

[15] A. Weil, *On some exponential sums*, Proc. Nat. Acad. Sci. U. S. A. 34, (1948). 204-207.

Department of Mathematics, University of Illinois at Urbana-Champaign, 273 Altgeld Hall, MC-382, 1409 W. Green Street, Urbana, Illinois 61801, USA

E-mail address: lamzouri@math.uiuc.edu

Department of Mathematics, University of Illinois at Urbana-Champaign, 273 Altgeld Hall, MC-382, 1409 W. Green Street, Urbana, Illinois 61801, USA

E-mail address: Zaharesu@math.uiuc.edu