ON THE DUALS OF GEOMETRIC GOPPA CODES FROM NORM-TRACE CURVES

EDOARDO BALLICO

Department of Mathematics, University of Trento
Via Sommarive 14, 38123 Povo (TN), Italy

ALBERTO RAVAGNANI

Department of Mathematics, University of Neuchâtel
Rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland

ABSTRACT. In this paper we study the dual codes of a wide family of evaluation codes on norm-trace curves. We explicitly find out their minimum distance and give a lower bound for the number of their minimum-weight codewords. A general geometric approach is performed and applied to study in particular the dual codes of one-point and two-point codes arising from norm-trace curves through Goppa’s construction, providing in many cases their minimum distance and some bounds on the number of their minimum-weight codewords. The results are obtained by showing that the supports of the minimum-weight codewords of the studied codes obey some precise geometric laws as zero-dimensional subschemes of the projective plane. Finally, the dimension of some classical two-point Goppa codes on norm-trace curves is explicitly computed.

1. INTRODUCTION

Let \(r \geq 2 \) be an integer and let \(q \) denote a prime power (fixed). Consider the field extension \(\mathbb{F}_q \subseteq \mathbb{F}_{q^r} \) and denote by \(\mathbb{P}^2 \) the projective plane defined over the field \(\mathbb{F}_{q^r} \). Write \(c := \frac{q^r-1}{q-1} \) and denote by \(Y_r \subseteq \mathbb{P}^2 \) the curve having

\[
x^c = y^{q^r-1} + y^{q^r-2} + \cdots + y + y
\]
as an affine equation. Denote by \(\text{Tr}_r : \mathbb{F}_{q^r} \to \mathbb{F}_q \) and \(\text{N}_r : \mathbb{F}_{q^r} \to \mathbb{F}_q \) the \(\mathbb{F}_q \)-linear maps (named trace and norm, respectively) defined by

\[
\text{Tr}_r(\alpha) := \alpha^{q^r-1} + \alpha^{q^r-2} + \cdots + \alpha, \quad \text{N}_r(\alpha) := \alpha^c, \quad \text{for any } \alpha \in \mathbb{F}_{q^r}.
\]
The curve \(Y_r \) is in fact defined by the equation \(\text{N}_r(x) = \text{Tr}_r(y) \) and so it is called the norm-trace curve associated to the integer \(r \). If \(r = 2 \) then \(Y_2 \) is the well-known Hermitian curve. We studied the geometric properties of the dual codes of Goppa codes on \(Y_2 \) in \[1\], \[2\] and \[3\]. Here we focus on the more complicated case \(r \geq 3 \). In this situation the curve \(Y_r \) is singular. The only point at infinity, of projective coordinates \(P_\infty := (0 : 1 : 0) \), is also the only singular point of the curve (straightforward computation). Denote by \(\pi : C_r \to Y_r \) the normalization, which is known to be a bijection. The genus of \(Y_r \) (which is by definition the
genus of C_r is $g = (q^{r-1} - 1)(c - 1)/2$ and the Weierstrass semigroup associated to P_∞ is well studied in \cite{7} and known to be $H(P_\infty) = \langle q^{r-1}, c \rangle$.

The curve Y_r carries $|Y_r(\mathbb{F}_q)| = q^{2r-1} + 1$ rational points and we have already stated that q^{2r-1} of them lie in the affine chart $\{z \neq 0\}$. Let $Q_\infty := \pi^{-1}(P_\infty)$. For any $0 \leq s \leq cq^r$ a basis of the Riemann-Roch space $L(sQ_\infty)$ is formed by the (pull-backs of the) monomials
\[
\{x^iy^j : i < q^r, j < q^{r-1}, iq^{r-1} + jc \leq s\}
\]
(see \cite{4}). Since for any prime power q and for any $r \geq 2$ we get $(q^r - 1)/(q - 1) > q^{r-1}$, the degree of Y_r is exactly $c = (q^r - 1)/(q - 1)$. The pull-backs of the monomials $\{1, x, y\}$ span the vector space $H^0(C_r, \pi^*(\mathcal{O}_{Y_r}(1)))$, which is contained into $L(cQ_\infty)$. Since we know $\dim_{\mathbb{F}_q} L(cQ_\infty) = 3$, we get exactly $L(cQ_\infty) = H^0(C_r, \pi^*(\mathcal{O}_{Y_r}(1)))$, the vector space of the homogeneous degree 1 forms on the curve Y_r (we pull-back forms through π in order to work on a smooth curve). More generally, if $0 < d < q$ then the vector space of the degree d homogeneous forms on the curve Y_r, $H^0(C_r, \pi^*(\mathcal{O}_{Y_r}(d)))$, is exactly $L(dcQ_\infty)$ and we will widely use this geometric fact in the paper to get a bond between classical Goppa codes and a new class of evaluation codes. For any $0 < d < q^{r-1}$ a natural basis for the vector space $H^0(C_r, \pi^*(\mathcal{O}_{Y_r}(d)))$ of the degree d homogeneous forms on the curve Y_r is made of the monomials x^iy^j such that $i, j \geq 0$ and $i + j \leq d$ (up to a homogeneization). Indeed, these monomials are linearly independent because they appear also in the cited basis of $L(dcQ_\infty)$.

In general we have an inclusion of vector spaces
\[
H^0(C_r, \pi^*(\mathcal{O}_{Y_r}(d))) \subseteq L(dcQ_\infty).
\]

2. One-point codes: a first analysis

In this section we study a simple family of evaluation codes on Y_r curves. The method will be improved at a second time. First of all, we state a technical result.

Lemma 1. Fix integers $d > 0$, $z \geq 2$ and a zero-dimensional scheme $Z \subseteq \mathbb{P}^2$ such that $\deg(Z) = z$.

(a) If $z \leq d + 1$, then $h^1(\mathbb{P}^2, \mathcal{I}_Z(d)) = 0$.

(b) If $d + 2 \leq z \leq 2d + 1$, then $h^1(\mathbb{P}^2, \mathcal{I}_Z(d)) > 0$ if and only if there is a line L such that $\deg(L \cap Z) \geq d + 2$.

Proof. See \cite{11}, Lemma 2. \hfill \Box

Definition 2. Let $0 < d < q^{r-1} - 1$ be an integer. Set $B := Y_r \setminus \{P_\infty\}$. Then $\mathcal{C}(d)$ will denote the linear code obtained evaluating the vector space $H^0(C_r, \pi^*(\mathcal{O}_{Y_r}(d)))$ on $\pi^{-1}(B)$.

Notation 3. By the injectivity of π, from now to the end of the paper we will write S instead of $\pi^{-1}(S)$, for any $S \subseteq Y_r(\mathbb{F}_q)$.

Remark 4. If $0 < d < q$ then the code $\mathcal{C}(d)$ is the so-called one-point code \mathcal{C}_s ($s := dc$) on Y_r obtained by evaluating $L(sP_\infty)$ at the rational points of the curve different from P_∞ (see Section \cite{11}). For any $0 < d < q^{r-1} - 1$ we have an inclusion of codes $\mathcal{C}(d) \subseteq \mathcal{C}_s$ (the curve Y_r is not in general projectively normal) which gives $\mathcal{C}(d) \supseteq \mathcal{C}_s$. Hence the minimum distance of \mathcal{C}_s is at least the minimum distance of $\mathcal{C}(d)$ (studied below).

Theorem 5. The minimum distance of a $\mathcal{C}(d)$ code is $d + 2$. Moreover, the points in the support of a minimum-weight codewords are collinear. If $q \leq d < q^{r-1} - 1$ then the support of a minimum-weight codeword of $\mathcal{C}(d)$ is contained into a line which cannot be horizontal.

Proof. Consider the line L of equation $x = 0$. By the properties of the trace map the equation $\text{Tr}_r(y) = 0$ has exactly q^{r-1} distinct solutions, i.e. $|Y_r(\mathbb{F}_q) \cap L| = q^{r-1}$. Since $d \leq q^{r-1} - 2$ we can pick out $d + 2$ distinct affine points
\[
P_1 = (0, y_1), \ldots, P_{d+2} = (0, y_{d+2})
\]
from this intersection. They are obviously different from \(P_w \). The natural parity-check matrix of \(\mathcal{C}(d)^\perp \) has at most \(d + 1 \) non-zero rows (those associated to the monomials \(1, y, ..., y^d \)). Hence the columns associated to the points \(P_1, ..., P_{d+2} \) are linearly dependent, i.e. \(\{P_1, ..., P_{d+2}\} \) contains the support of a codeword of \(\mathcal{C}(d)^\perp \) of weight \(w \leq d + 2 \). It follows that the minimum distance of \(\mathcal{C}(d)^\perp \) is smaller or equal than \(d + 2 \).

Since \(0 < d < q^r - 1 - 1 \) we have in particular \(d < c = \deg(Y_f) \). Hence the restriction (and pull-back) map

\[
\rho_d : H^0(\mathbb{F}^2, \Omega_{\mathbb{F}^2}(d)) \to H^0(C_r, \pi^*(\Omega_{Y_r}(d)))
\]

is injective. Let \(S \) be the support of a minimum-weight codeword. The set \(S \) imposes dependent conditions to \(H^0(C_r, \pi^*(\Omega_{Y_r}(d))) \); moreover, no proper subset \(S' \subseteq S \) imposes dependent conditions to that space. Hence the minimum distance of \(\mathcal{C}(d)^\perp \) is exactly \(\sharp(S) \). We already know that \(\sharp(S) \leq d + 2 \). The set \(S \) imposes of course dependent conditions also to the image of \(\rho_d \). Since this linear map is injective, we get that \(S \) imposes dependent conditions also to \(H^0(\mathbb{P}^2, \Omega_{\mathbb{P}^2}(d)) \), i.e. \(h^1(\mathbb{P}^2, \mathcal{I}_S(d)) > 0 \). By Lemma \(\ref{lem:injective} \) we must have that \(\sharp(S) \geq d + 2 \). Hence \(\sharp(S) = d + 2 \) is the minimum distance of \(\mathcal{C}(d)^\perp \). Lemma \(\ref{lem:injective} \) implies also that \(d + 2 \) points in the support of a minimum-weight codewords have to be collinear.

Let us prove the second part of the statement. If \(d \geq q \) then \(x^i \in L(dcp_w) \) for any \(i = 0, 1, ..., d + 1 \) (while if \(d < q \) we do not have \(x^{d+1} \in L(dcp_w) \) as a monomial). If \(q \leq d < q^r - 1 - 1 \) then the minimum distance of \(\mathcal{C}(d)^\perp \) is again \(d + 2 \) (reached in any case on vertical lines) but \(d + 2 \) columns associated to \(d + 2 \) points lying on a horizontal line are in fact always linearly independent (one can immediately find a Vandermonde submatrix of rank \(d + 2 \)).

Theorem 6. The number of the minimum-weight codewords of a \(\mathcal{C}(d)^\perp \) code is at least

\[
(q^r - 1) \left[q^r \left(\frac{q^r - 1}{d + 2} \right) + (q^r - 1) \left(\frac{q^r - 1}{d + 2} \right) \right].
\]

Proof. By Theorem \(\ref{thm:minimum_distance} \) we know that the minimum distance of \(\mathcal{C}(d)^\perp \) is \(d + 2 \) and that the points of the support of a minimum-weight codeword are collinear. Pick out any \(\alpha \in \mathbb{F}_{q^2}^\perp \) and consider the line \(L_\alpha \) of equation \(x = \alpha \). The equation \(\text{Tr}_r(y) = \alpha \) has \(q^r - 1 \) distinct solutions. Choose any distinct affine \(d + 2 \) points \(P_1, ..., P_{d+2} \) in the intersection \(Y_r(\mathbb{F}^q) \cap L_\alpha \). The parity-check matrix of the code \(\mathcal{C}(d)^\perp \) has at most \(d + 1 \) linearly independent rows (those associated to the monomials \(1, y, ..., y^d \)) and so there exist a dependent relation among the columns associated to the points \(P_1, ..., P_{d+2} \), i.e. \(\{P_1, ..., P_{d+2}\} \) is the support of a minimum-weight codewords of \(\mathcal{C}(d)^\perp \) \((d + 2 \) is known to be the minimum distance). In \(H^0(C_r, \pi^*(\Omega_{Y_r}(d))) \) we have only monomials \(x^i y^j \) with the property \(i \leq d \). Hence we can repeat the proof with horizontal lines and the norm map. In this case we can choose any line of the form \(y = \alpha \), provided that \(\alpha \neq 0 \). The lower bounds in the statement follow.

Remark 7. If \(d < q \) then Theorem \(\ref{thm:minimum_distance} \) describes in fact one-point codes on norm-trace curves. Indeed, by setting \(s := dc - a \) with \(0 \leq a \leq c - 1 \). Assume \(0 < d < q^r - 1 - 1 \). The dual minimum distance of the one-point code \(\mathcal{C}_s \) obtained evaluating \(L(sP_w) \) on \(Y_r(\mathbb{F}^q) \) \(\{P_w\} \) is at least \((q^r - 1) \left[q^r \left(\frac{q^r - 1}{d + 2} \right) + (q^r - 1) \left(\frac{q^r - 1}{d + 2} \right) \right] \).

Corollary 8. Let \(s \geq 0 \) be an integer. Write \(s = dc - a \) with \(0 \leq a \leq c - 1 \). Assume \(0 < d < q^r - 1 - 1 \). The dual minimum distance of the one-point code \(\mathcal{C}_s \) obtained evaluating the vector space \(L(sP_w) \) on \(Y_r(\mathbb{F}^q) \) \(\{P_w\} \) is \(d + 2 \). If \(d < q \) then the number of the minimum-weight codewords of \(\mathcal{C}_s^\perp \) code is at least

\[
(q^r - 1) \left[q^r \left(\frac{q^r - 1}{d + 2} \right) + (q^r - 1) \left(\frac{q^r - 1}{d + 2} \right) \right].
\]

Proof. The minimum distance of \(\mathcal{C}_s^\perp \) is at least the minimum distance of \(\mathcal{C}(d)^\perp \), which is \(d + 2 \). Since in \(L(sP_w) \) we have only the monomials \(y^i \) with \(i \leq d \) this weight is reached on vertical lines as in the proof of Theorem \(\ref{thm:minimum_distance} \) if \(d < q \) then apply Theorem \(\ref{thm:minimum_distance} \).

Example 9. Set \(q := 2, r := 3 \) and \(d := 2 \). The code \(\mathcal{C}(d)^\perp \) can be studied by writing a simple Magma program. The minimum distance is 4. If \(d := 1 \) then \(\mathcal{C}(d) \) has dual minimum distance 3 and the number of the minimum-weight codewords of \(\mathcal{C}(d)^\perp \) is 3360.
3. A FEW REMARKS ON GOPPA CODES

Let \(q \) be a prime power and let \(\mathbb{P}^k \) be the projective space of dimension \(k \) over the field \(\mathbb{F}_q \). Consider a smooth curve \(X \subseteq \mathbb{P}^k \) and a divisor \(D \) on it. Take points \(P_1, \ldots, P_n \in X(\mathbb{F}_q) \) avoiding the support of \(D \) and set \(\overline{D} := \sum_{i=1}^n P_i \). The code \(\mathcal{C}(\overline{D}, D) \) is defined to be the code obtained evaluating the vector space \(\mathbb{L}(D) \) at the points \(P_1, \ldots, P_n \) (see [3]). These codes were introduced in 1981 by Goppa, who was interested in studying their dual codes. Since a norm-trace curve \(Y_r \) is not a smooth curve, when writing “Goppa code on \(Y_r \)” we mean “Goppa code on \(C_r \)” (the normalization of \(Y_r \)). The points of \(Y_r \) will be identified with those of \(C_r \) through the injectivity of the normalization \(\pi : C_r \to Y_r \).

Definition 10. Let \(q \) be a prime power. We say that codes \(\mathcal{C}, \mathcal{D} \) on the same field \(\mathbb{F}_q \) and of the same length are strongly isometric if there exists a vector \(\mathbf{x} = (x_1, \ldots, x_n) \in \mathbb{F}_q^n \) of non-zero components such that

\[
\mathcal{C} = \mathbf{x} \mathcal{D} := \{(x_1v_1, \ldots, x_nv_n) \in \mathbb{F}_q^n \text{ s.t. } (v_1, \ldots, v_n) \in \mathcal{D}\}.
\]

The notation will be \(\mathcal{C} \sim \mathcal{D} \) and this defines of course an equivalence relation.

Remark 11. Take the setup of Definition 10. Then \(\mathcal{C} \sim \mathcal{D} \) if and only if \(\mathcal{C}^\perp \sim \mathcal{D}^\perp \). Indeed, if \(\mathcal{C} = \mathbf{x} \mathcal{D} \) then \(\mathcal{C}^\perp = \mathbf{x}^{-1} \mathcal{D}^\perp \), where \(\mathbf{x}^{-1} := (x_1^{-1}, \ldots, x_n^{-1}) \). A strongly isometry of codes preserves in fact the minimum distance of a code, its weight distribution and the supports of its codewords.

Remark 12. Take the setup of the beginning of the section. Let \(D \) and \(D' \) be divisors on \(X \) and take points \(P_1, \ldots, P_n \in X(\mathbb{F}_q) \) avoiding both the supports of \(D \) and \(D' \). Set \(\overline{D} := \sum_{i=0}^n P_i \). It is known (see [5], Remark 2.16) that if \(D \sim D' \) (as divisors) then \(\mathcal{C}(\overline{D}, D) \sim \mathcal{C}(\overline{D}, D') \). By Remark 11 we have also \(\mathcal{C}(\overline{D}, D)^\perp \sim \mathcal{C}(\overline{D}, D')^\perp \).

4. ONE-POINT CODES

Definition 13. Let \(0 < d < q^{r-1} - 1 \) and \(a \geq 0 \) be integers. We denote by \(\mathcal{C}(d,a) \) the code obtained evaluating \(H^0(C_r, \pi^*(\mathcal{O}_{Y_r}(d)(-aP_\infty))) \) on the set \(B := Y_r(\mathbb{F}_q) \setminus \{P_\infty\} \).

Theorem 14. Let \(\mathcal{C}(d,a) \) be as in Definition 13. Assume \(a = 1 \). Then the minimum distance of \(\mathcal{C}(d,a)^\perp \) is \(d + 1 \) and the number of the minimum-weight codewords of \(\mathcal{C}(d,a)^\perp \) is exactly \((q^r - 1)q^{d-1 \choose d+1} \).

Proof. Since \(0 < a \leq d \) if a monomial \(x^iy^j \) is in the vector space \(H^0(C_r, \pi^*(\mathcal{O}_{Y_r}(d)(-aP_\infty))) \) then we must have \(j \leq d-1 \) (we work up to a homogeneization). On the other hand, \(1, y, \ldots, y^{d-1} \) are in any case in this space. As in the proof of Theorem 5 any \(d+1 \) affine points in the intersection of \(Y_r(\mathbb{F}_q) \) and a vertical line of equation \(x = \alpha \) contain the support of a codeword of \(\mathcal{C}(d,a)^\perp \). Hence the minimum distance of \(\mathcal{C}(d,a)^\perp \) is at most \(d+1 \). Let \(S \subseteq Y_r(\mathbb{F}_q) \) be the support of a minimum-weight codeword of \(\mathcal{C}(d,a)^\perp \). The minimum distance of this code is exactly \(\sharp(S) \). Since \(d < q^{r-1} - 1 < c \) the restriction (and pull-back) map

\[
\rho_{d,a} : H^0(\mathbb{P}^2, \mathcal{O}_{\mathbb{P}^2}(d)(-aP_\infty)) \to H^0(C_r, \pi^*(\mathcal{O}_{Y_r}(d)(-P_\infty)))
\]

is injective. Since \(S \) imposes dependent conditions to the vector space \(H^0(C_r, \pi^*(\mathcal{O}_{Y_r}(d)(-P_\infty))) \) then it has to impose dependent conditions also to \(H^0(\mathbb{P}^2, \mathcal{O}_{\mathbb{P}^2}(d)(-aP_\infty)) \), i.e., \(h^1(\mathbb{P}^2, \mathcal{F}_{P_\infty \cup S}(d)) > h^1(\mathbb{P}^2, \mathcal{F}_{P_\infty}(d)) \). In particular we have \(h^1(\mathbb{P}^2, \mathcal{F}_{P_\infty \cup S}) > 0 \). Observe that \(\sharp(S) + a \leq d+1 = d+2 \). By Lemma 1 we get the existence of a line \(L \subseteq \mathbb{P}^2 \) such that \(\deg(L \cap (P_\infty \cup S)) \geq d+2 \). Since \(\sharp(S) \leq d+1 \) we deduce \(P_\infty \subseteq L \) (as schemes). Hence \(L \) is either the line at infinity, or a vertical line. The line at infinity does not intersect \(Y_r \) at any affine point, so \(L \) has to be a vertical line. It follows

\[
\sharp(S) \geq \deg(L \cap S) \geq d+2 - \deg(L \cap P_\infty) = d+2 - 1 = d+1.
\]

Since we have shown that \(\sharp(S) \leq d+1 \), the minimum distance of \(\mathcal{C}(d,a)^\perp \) is exactly \(d+1 \) and \(S \) consists of \(d+1 \) points on a vertical line. \(\square \)
Corollary 15. Let \(\mathcal{C} \) be the one-point code on \(Y_r \) obtained evaluating the vector space \(L(sP_m) \) on the rational points of \(Y_r \), different from \(P_m \). Divide \(s \) by \(c \) with remainder and write \(s = dc - a \) with \(0 \leq a \leq c - 1 \). Assume \(0 < d < q^{r-1} - 1 \) and \(a \leq d \).

1. If \(a = 0 \) then the minimum distance of \(\mathcal{C}_{s}^{\perp} \) is \(d + 2 \).
2. If \(a = 1 \) then the minimum distance of \(\mathcal{C}_{s}^{\perp} \) is \(d + 1 \).
3. If \(1 < a \leq d \) then the minimum distance of \(\mathcal{C}_{s}^{\perp} \) is at least \(d + 2 - a \) and at most \(d + 1 \).

Proof. Since \(s = dc - a \) we have a linear equivalence \(sP_m \sim dcP_m - aP_m \). Since \(0 < d < q^{r-1} - 1 \) the minimum distance of \(\mathcal{C}_{s}^{\perp} \) is at least the minimum distance of \(\mathcal{C}(d,a)^\perp \), because of the inclusion

\[
H^0(C_r, \pi^*(\mathcal{O}_{Y_r}(d))(-aP_m)) \subseteq L(sP_m).
\]

If \(a \in \{0,1\} \) then as in the proof of Theorem 5 and Theorem 14 this minimum distance is reached on vertical lines (the monomials of the form \(y^r \) appearing in \(L(sP_m) \) and in \(H^0(C_r, \pi^*(\mathcal{O}_{Y_r}(d))(-aP_m)) \) are the same). If \(1 < a \leq d \) then we can repeat the proof of Theorem 14 into a slightly general context.

Remark 16. It could be pointed out that Corollary 15 describes in fact also some classical Goppa one-point codes arising from norm-trace curves (and not only the dual codes of such kind of codes). Indeed, norm-trace curves turn out to be a particular case of Castle curves and so (6, Proposition 5) we get a strong isometry of one-point codes \(\mathcal{C}_{s}^{\perp} \sim \mathcal{C}_{n+2g-2-s} \), in the sense of Definition 10 with \(n = q^{2r-1} \) and \(2g - 2 = (q^{r-1} - 1)(c - 1) - 2 \). It follows that the metric properties of \(\mathcal{C}_{n+2g-2-s} \) are those of \(\mathcal{C}_{s}^{\perp} \).

5. TWO-POINT CODES

Let \(P_0 \) denote the point of \(Y_r \) of projective coordinates \((0:0:1)\). In this section we study codes obtained by using zero-dimensional plane schemes supported by \(P_m \) and \(P_0 \). The results can be applied to study several two codes on norm-trace curves (as we will explain in details).

Definition 17. Let \(0 < d < q^{r-1} - 1 \) be an integer. Choose integers \(a,b \geq 0 \). We denote by \(\mathcal{C}(d,a,b) \) the code obtained evaluating the vector space \(H^0(C_r, \pi^*(\mathcal{O}_{Y_r}(d))(-aP_m - bP_0)) \) on the set \(B := Y_r(\mathbb{F}_q^r) \setminus \{P_m,P_0\} \).

Lemma 18. Let \(\mathcal{C}(d,a,b) \) be a code of Definition 17. Assume \(d > 1 \). If \(b > d \) then \(\mathcal{C}(d,a,b) \) is strongly isometric to the code \(\mathcal{C}(d - 1,a,0) \). Hence \(\mathcal{C}(d,a,b)^\perp \) is strongly isometric to the code \(\mathcal{C}(d - 1,a,0)^\perp \) (see Remark 11).

Proof. Keep in mind that \(\mathcal{C}(d,a,b) \) is the code obtained evaluating \(H^0(C_r, \pi^*(\mathcal{O}_{Y_r}(d))(-aP_m - bP_0)) \) on \(B := Y_r(\mathbb{F}_q^r) \setminus \{P_m,P_0\} \). The curve \(Y_r \) is smooth at \(P_0 \) and the tangent line to \(Y_r \) at \(P_0 \) has equation \(y = 0 \). This line has contact order \(c \) with \(Y_r \) and does not intersect \(Y_r \) in any rational point different from \(P_0 \). Since \(b > d \), if \(f \in H^0(C_r, \pi^*(\mathcal{O}_{Y_r}(d)(-aP_m - bP_0))) \) then \((\pi^* \circ f) \) is a degree \(d \) form which is divided by \(y \), the equation of the tangent line. Hence the codes obtained evaluating \(H^0(C_r, \pi^*(\mathcal{O}_{Y_r}(d))(-aP_m - bP_0)) \) on \(B \) and that obtained evaluating \(H^0(C_r, \pi^*(\mathcal{O}_{Y_r}(d - 1)(-aP_m))) \) on \(B \) are in fact strongly isometric.

Theorem 19. Let \(\mathcal{C}(d,a,b) \) be as in Definition 17. If \(b > d \) then assume \(d > 1 \), set \(b' := 0 \) and \(d' := d - 1 \). Otherwise set \(b' := b \) and \(d' := d - 1 \). In any case set \(d' \in \{0,1\} \).

1. If \(d' = 0 \) and \(b' > 0 \) then the minimum distance of \(\mathcal{C}(d',b') \) is \(d' + 1 \) and the number of the minimum-weight codewords of \(\mathcal{C}(d',0,b') \) is at least \((q' - 1)(q'^{-1} - 1) \).
2. If \(b' = 0 \) and \(d' = 1 \) then the minimum distance of \(\mathcal{C}(d,a,b) \) is \(d' + 1 \) and the number of the minimum-weight codewords of \(\mathcal{C}(d',1,0) \) is exactly

\[
(q' - 1) \left((q' - 1) \left(\frac{q'^{-1}}{d' + 1} \right) + \left(\frac{q'^{-1} - 1}{d' + 1} \right) \right).
\]

3. If \(d' = 1 \) and \(b' > 0 \) then the minimum distance of \(\mathcal{C}(d,a,b) \) is \(d' \) and the number of the minimum-weight codewords of \(\mathcal{C}(d,a,b) \) is exactly \((q' - 1)(q'^{-1} - 1) \).
Proof. By Lemma[18] we have $\mathcal{C}(d,a,b) \sim \mathcal{C}(d',a',b')$. Hence we can study the properties of the code $\mathcal{C}(d',a',b')$ without loss of generality. If $d' = 0$ and $b' > 0$ then $d + 1$ affine points of the curve different from P_0 on the line of equation $x = 0$ impose dependent conditions to $H^0(C_r, \pi^*(\mathcal{O}_{Y_r}(d')(-b'P_0)))$ because if $y\in H^0(C_r, \pi^*(\mathcal{O}_{Y_r}(d')(-b'P_0)))$ and y^{d+1} does not lie in this space. If $d' = 1$ and $b' = 0$ then $d' + 1$ affine points of the curve Y_r on any line of equation $x = \alpha (\alpha \in F_q)$ and different from P_0 impose dependent conditions to $H^0(C_r, \pi^*(\mathcal{O}_{Y_r}(d')((-b_0P_0))))$ because $1, y, \ldots, y^{d-1}$ are in the basis of the vector space $H^0(C_r, \pi^*(\mathcal{O}_{Y_r}(d')((-b_0P_0))))$ and y^d are not. If $d' = 1$ and $b' > 0$ then any d' affine points of the curve different from P_0 on the line of equation $x = 0$ impose dependent conditions to $H^0(C_r, \pi^*(\mathcal{O}_{Y_r}(d')((-dP_0-b'P_0))))$ because $y, \ldots, y^{d-1} \in H^0(C_r, \pi^*(\mathcal{O}_{Y_r}(d')((-dP_0-b'P_0))))$ and y^0 do not. So in cases (1) and (2) the minimum distance of $\mathcal{C}(d',a',b')$ is at most $d' + 1$. In case (3) it is at most d'. Let $S = Y_r(\mathbb{F}_q) \setminus \{P_0, P_\infty\}$ be the support of a minimum-weight codeword of $\mathcal{C}(d',a',b')$. The minimum distance of this code is exactly $\delta(S)$. The set S imposes dependent conditions to the space $H^0(C_r, \pi^*(\mathcal{O}_{Y_r}(d')((-dP_\infty-b'P_0))))$ and so it imposes dependent conditions also to $H^0(\mathbb{P}^2, \mathcal{I}_{dP_\infty+b'P_0}(d'))$. It follows $h^1(\mathbb{P}^2, \mathcal{I}_{dP_\infty+b'P_0}(d')) > 0$.

- Assume to be in case (1) or in case (2). Then $\delta(S) + d' + b' \leq d' + 1 + b' \leq 2d' + 1$, Lemma[1] gives the existence of a line $L \subseteq \mathbb{P}^2$ such that $\deg(L \cap (dP_\infty+b'P_0 \cup S)) \geq d' + 2$. If $d' = 0$ then $\delta(S) = d + 1$. Otherwise L has to be the tangent line to Y_r at P_0, which is absurd because $d' + b' \leq d$. If $d' = 1$ then $\delta(S) = d + 1$ because $d' = 1$. Hence the minimum distance of $\mathcal{C}(d',a',b')$ is exactly $d' + 1$. If $b = 0$ then any $d' + 1$ affine points of the curve Y_r different from P_0 on a vertical line are in fact the support of a minimum weight codeword. There are $(d'-1)\choose{d'+1}$ such points on any such a line different from the line of equation $x = 0$ and $(d'-1)\choose{d'+1}$ such points on the line of equation $x = 0$. If $a = 0$ and $b > 0$ then $d' + 1$ points of the support of a minimum-weight codeword of $\mathcal{C}(d',0,b')$ lie on a line passing through P_0.

- Assume to be in case (3). As in the previous part of the proof we get the existence of a line $L \subseteq \mathbb{P}^2$ such that $\deg(L \cap (dP_\infty+b'P_0 \cup S)) \geq d' + 2$. Since $\delta(S) \leq d'$ and L cannot be the tangent line to Y_r at P_0, it follows that L is the line of equation $x = 0$. The number of the minimum-weight codewords trivially follows.

\[\square \]

Remark 20. The hypothesis $d' + b'$ implicitly assumed in Theorem[19] is in fact not restrictive. Indeed, if $a = b = 0$ then, for any d, the code $\mathcal{C}(d,0,0)$ is the code $\mathcal{C}(d,0)$ without the component corresponding to the evaluation at P_0.

Remark 21. The divisor of the rational function y on the curve Y_r is $(y) = cP_0 - cP_\infty$ (see [7], Section 3). Hence we get the linear equivalence $cP_0 \sim cP_\infty$. So if $d < q$ then Theorem[19] is very useful to study two-point codes on norm-trace curves (see Example[22] below).

The following is an interesting computational example.

Example 22. Set $r := 3$ and $q := 3$, so that $c = 13$. Let us study the two-point code \mathcal{C} on the curve Y_3 of equation

$$x^{13} = y^9 + y^3 + y$$

obtained evaluating the vector space $L(12P_\infty + 11P_0)$ on the set $B := Y_r(\mathbb{F}_q) \setminus \{P_0, P_\infty\}$. Observe that $12P_\infty \sim cP_\infty - P_\infty$ and that $11P_0 \sim cP_0 - 2P_0 \sim cP_\infty - 2P_0$. Hence

$$12P_\infty + 11P_0 \sim 2cP_\infty - P_\infty - 2P_0.$$

Set $d := 2$, $a := 1$ and $b := 2$. Since $d < q$ the code \mathcal{C} is in fact strongly isometric to the code $\mathcal{C}(2,1,2)$ of Definition[17] and its dual minimum distance is 2. Indeed, we can set $a' := a$, $b' := b$ and $d' := d$ and apply directly Theorem[19]. Let us study in details the code \mathcal{C}^{\perp}. By using the linear equivalence $12P_\infty + 11P_0 \sim 26P_\infty - P_\infty - 2P_0$ we have already seen that

$$L(12P_\infty + 11P_0) \cong L(26P_\infty - P_\infty - 2P_0) \cong L(25P_\infty - 2P_0).$$
The results of Section 10 assure that we are not changing the metric properties of the code \(\mathcal{C}^\perp \) by using these linear equivalences. Apply the preliminary results of Section 1 to compute a vector basis of \(L(25P_\infty) \):

\[
\{1, y, x, xy, x^2\}.
\]

The rational function \(x \) has a zero at \(P_0 \) of order 1, while the rational function \(y \) has a zero at \(P_0 \) of order \(c = 13 \) (see [7], Section 3). Hence \(1, x \notin L(25P_\infty - 2P_0) \) and

\[
\{y, xy, x^2\} \subseteq L(25P_\infty - 2P_0).
\]

On the other hand, the Riemann-Roch space \(L(25P_\infty - 2P_0) \) is equal to the vector space

\[
H^0(C_3, \pi^*(\mathcal{O}_{Y_r}(2)(-P_\infty - 2P_0)))
\]

(see Section 1 again). Set \(S := 2P_0 \). The scheme \(S \) imposes independent conditions to the vector space \(H^0(C_3, \pi^*(\mathcal{O}_{Y_r}(2)(-P_\infty))) \). Indeed, if it imposes dependent conditions to this space then it has to impose dependent conditions also to \(H^0(\mathbb{P}^2, \mathcal{O}_{\mathbb{P}^2}(2)(-P_\infty)) \) (use the injectivity of the map \(\rho_{d,1} \) as in the proof of Theorem 14). By Lemma 1 there must exist a line \(L \subseteq \mathbb{P}^2 \) with the property \(\deg(L \cap (P_\infty \cup S)) \geq d + 2 = 4 \), which is absurd, because \(\deg(S) = 2 \). This proves that the dimension of \(H^0(C_3, \pi^*(\mathcal{O}_{Y_r}(2)(-P_\infty - 2P_0))) \) is \(\dim_{\mathbb{F}_q} L(25P_\infty) = 2 \). It follows that \(\{y, xy, x^2\} \) is in fact a basis of the Riemann-Roch space \(L(25P_\infty - 2P_0) \cong L(12P_\infty + 11P_0) \). So we have all the explicit data needed to construct the code \(\mathcal{C}^\perp \) in a Magma environment. It can be checked that the minimum distance of \(\mathcal{C}^\perp \) is in fact \(d = 2 \). Hence the number of the minimum-weight codewords of \(\mathcal{C}^\perp \) is exactly \(728 = 26 \cdot \binom{7}{2} \) (Theorem 19).

6. More General Evaluation Codes

The result of Section 15 and Section 5 can be slightly extended by using zero-dimensional schemes whose support is made of arbitrary affine points of the curve \(Y_r \).

Definition 23. Let \(0 < d < q^r - 1 \) be an integer. Choose a zero-dimensional subscheme \(E \subseteq \mathbb{P}^2 \) such that \(E_{\text{red}} \subseteq Y(\mathbb{F}_{q^r}) \cap \{z = 1\} \). We denote by \(\mathcal{C}(d, E) \) the code obtained evaluating \(H^0(C_r, \pi^*(\mathcal{O}_{Y_r}(d)(-E))) \) on the set \(B := Y_r(\mathbb{F}_{q^r}) \setminus (E_{\text{red}} \cap Y(\mathbb{F}_{q^r})) \).

Definition 24. Let \(E \subseteq \mathbb{P}^2 \) be a zero-dimensional scheme. Denote by \(\mathcal{L} \) the set of the lines in \(\mathbb{P}^2 \) different from the line of equation \(y = 0 \) and the line at infinity of equation \(z = 0 \). Denote by \(\mathcal{V} \) the set of the vertical lines in \(\mathbb{P}^2 \). Define

\[
m(E) := \max_{L \in \mathcal{L}} \deg(E \cap L), \quad m_\beta(E) := \max_{L \in \mathcal{V}} \deg(E \cap L).
\]

Theorem 25. Consider a \(\mathcal{C}(d, E) \) code as in Definition 23. Assume \(\deg(E) \leq d \). The minimum distance of \(\mathcal{C}(d, E)^\perp \) is at least \(d + 2 - m(E) \). If \(m(E) = m_\beta(E) \) then the minimum distance of \(\mathcal{C}(d, E)^\perp \) is exactly \(d + 2 - m_\beta(E) \) and the number of the minimum-weight codewords of \(\mathcal{C}(d, E)^\perp \) is at least

\[
(q^r - 1) \left[(q^r - 1) \left(\frac{q^r - 1}{m_\beta(E)} \right) + \left(\frac{q^r - 1}{m_\beta(E)} \right) \right].
\]

Proof. If \(E = \emptyset \) then the thesis trivially follows from Theorem 5. Assume \(E \neq \emptyset \). There obviously exists a vertical line \(L \) such that \(\deg(L \cap E) \geq 1 \) and, by definition of \(m_\beta(E) \), \(\deg(L \cap E) \leq m_\beta(E) \). The scheme \(L \cap E \) is reduced. Indeed, if there exists a point \(P \in Y(\mathbb{F}_{q^r}) \cap \{z = 1\} \) such that \(2P \subseteq L \cap E \) then \(L \) has to be the tangent line to \(Y_r \) at \(P \). The tangent line to \(Y_r \) at \(P = (x : y : z) \) has equation

\[
\pi^{-1}x - \zeta^{-1}y + \frac{\partial Y_r}{\partial z}(x : y : z)z = 0.
\]

Since \(\zeta \neq 0 \), this line cannot be vertical, a contradiction. Let \(L \) be a vertical line which realizes the maximum in the definition of \(m_\beta(E) \). Set \(A := E \cap L \) and observe that \(\deg(A) = m_\beta(E) \). Choose \(d + \)
2 - m_Y(E) distinct points in L \ A and denote by S their union (as a zero-dimensional scheme). Since $d < q^{-1} - 1 < c$, the restriction map

$$\rho_d : H^0(\mathbb{P}^2, \mathcal{O}_{\mathbb{P}^2}(d)) \to H^0(C, \pi^*(\mathcal{O}_Y(d)))$$

is injective. As in the proof of Theorem 5, the set $S \cup A$ (whose degree is $d + 2$) imposes dependent conditions to $H^0(C, \pi^*(\mathcal{O}_Y(d)))$. On the other hand, the set A imposes independent conditions to this space. Indeed, if it imposes dependent conditions, then by Lemma 1 there must exist a line $R \subseteq \mathbb{P}^2$ such that deg$(R \cap \mathbb{A}) \geq d + 2$. Since deg$(A) \leq$ deg(E), this leads to a contradiction. It follows that $S = (S \cup A) \setminus A$ imposes dependent conditions to the space $H^0(C, \pi^*(\mathcal{O}_Y(d)(-A)))$. In particular, it imposes dependent conditions to $H^0(C, \pi^*(\mathcal{O}_Y(d)(-E)))$. In other words, S contains the support of a codeword of $\mathcal{C}(d, E)$. Hence the minimum distance, say δ, of $\mathcal{C}(d, E)$ has to verify $\delta \leq \beta(S) = d + 2 - m_Y(E)$. Assume that $S \subseteq B = Y(\mathbb{P}^d) \setminus \{E_{red} \cap Y(\mathbb{P}^d)\}$ is the support of a minimum-weight codeword of $\mathcal{C}(d, E)$. The minimum distance of $\mathcal{C}(d, E)$ is exactly $\beta(S)$ and $\beta(S) \leq d + 2 - m_Y(E)$. Since the restriction map

$$\rho_{d,E} : H^0(\mathbb{P}^2, \mathcal{O}_{\mathbb{P}^2}(d)(-E)) \to H^0(C, \pi^*(\mathcal{O}_Y(d)(-E)))$$

is injective ($d < q^{-1} - 1 < c$ by assumption), the set S has to impose dependent conditions to the space $H^0(\mathbb{P}^2, \mathcal{O}_{\mathbb{P}^2}(d)(-E))$ and in particular we have $h^1(\mathbb{P}^2, \mathcal{O}_{\mathbb{P}^2}(d)(-E)) > 0$. Since deg$(E \cup S) \leq d + d + 2 - m_Y(E) \leq 2d + 1$ we can apply Lemma 1 to get the existence of a line $R \subseteq \mathbb{P}^2$ such that deg$(R \cap (E \cup S)) \geq d + 2$. This proves that the minimum distance of $\mathcal{C}(d, E)$ is at least $d + 2 - m(E)$.

7. REMARKS ON THE DIMENSION OF TWO-POINT CODES ON NORM-TRACE CURVES

Let m, n be integers such that $m + n > 0$. Write $m = d_1 c - a$ and $n = d_2 c - b$ with $0 \leq a, b \leq c - 1$. Set $d := d_1 + d_2$. On the curve Y, it holds the linear equivalence $cP_0 \sim cP_\infty$ and so we get

$$mP_\infty + nP_0 \sim dp_\infty - ap_\infty - bP_0.$$

If $d < q$ then the two-point code on Y obtained evaluating the rational functions in the Riemann-Roch space $L(mP_\infty + nP_0)$ on the set $B := Y(\mathbb{P}^d) \setminus \{P_\infty, P_0\}$ is in fact the code obtained evaluating the vector space $H^0(C, \pi^*(\mathcal{O}_Y(d)(-aP_\infty - bP_0)))$ on B, i.e. $\mathcal{C}(d, a, b)$ (see Definition 7).

Lemma 26. Let $0 < d < q$, $0 \leq a, b \leq c - 1$ be integers with $b > 0$. The dimension of $\mathcal{C}(d, a, b)$ is $h^0(Y, \mathcal{O}_Y(d)(-aP_\infty - bP_0))$.

Proof. The point P_∞ is a singular point. We denote by $\pi : C \to Y$ the normalization of the norm-trace curve Y. The map π is known to be a bijection. Let $Q_0 := \pi^{-1}(P_0)$ and $Q_\infty := \pi^{-1}(P_\infty)$, which is a nonsingular point of C. Since $d < q$ it follows that $\mathcal{C}(d, a, b)$ is the code obtained evaluating the vector space $L(dcQ_\infty - aQ_\infty - bQ_0)$ on the set $\pi^{-1}(B)$. Since $|\pi^{-1}(B)| = q^{2r-1} - 1$ we have

$$dc - a - b - \deg(\pi^{-1}(B)) < 0.$$

It follows that the kernel of the evaluation map $ev : L(dcQ_\infty - aQ_\infty - bQ_0) \to \mathbb{F}_q[|B|]$ is a zero-dimensional vector space and so the image of ev (which is exactly $\mathcal{C}(d, a, b)$) has dimension $\ell(dcQ_\infty - aQ_\infty - bQ_0) = h^0(C, \pi^*(\mathcal{O}_Y(d)(-aQ_\infty - bQ_0))) = h^0(Y, \mathcal{O}_Y(d)(-aP_\infty - bP_0))$. \qed

Remark 27. The case $b = 0$ is not of interest. Indeed, a $\mathcal{C}(d, a, 0)$ code is a shortening of a $\mathcal{C}(d, a)$ code (see Definition 13).

Lemma 28. Let $0 < d < q$, $0 \leq a, b \leq c - 1$ be integers with $b > 0$. If $b > d$ then $\mathcal{C}(d, a, b)$ has dimension $h^0(Y, \mathcal{O}_Y(d + 1)(-aP_\infty))$. \qed
Proof. By Lemma 26 it is enough to prove that $h^0(Y_r, \mathcal{O}_{Y_r}(d)(-aP_\infty - bP_0)) = h^0(Y_r, \mathcal{O}_{Y_r}(d-1)(-aP_\infty))$. A form $f \in H^0(Y_r, \mathcal{O}_{Y_r}(d)(-aP_\infty - bP_0))$ is a degree d homogeneous polynomial on the curve Y_r vanishing at P_0 with order at least b. Since P_0 is a nonsingular point of the curve Y_r, f is divided by the equation of the tangent space to Y_r at P_0, which is $y = 0$. The division by y defines in fact an isomorphism of vector spaces
\[H^0(Y_r, \mathcal{O}_{Y_r}(d)(-aP_\infty - bP_0)) \rightarrow H^0(Y_r, \mathcal{O}_{Y_r}(d-1)(-aP_\infty)), \]
whose inverse is the multiplication by y (the tangent line to Y_r at P_0 has contact order $c \geq b$).

\[\square \]

Notation 29. The dimension of the Riemann-Roch space $L(sP_\infty)$ on Y_r will be denoted by $N(s)$. If $0 \leq s \leq cq'$ then $N(s)$ is the number of the pairs $(i, j) \in \mathbb{N}^2$ such that
\[i < q', \quad j < q'^{-1}, \quad iq'^{-1} + jc \leq s. \]
The basis for $L(sP_\infty)$ made of the monomials x^iy^j (i, j with the cited properties) will be denoted by \mathcal{B}_s.

Proposition 30. Let $0 < d < q$, $0 \leq a \leq c - 1$ and $0 \leq b \leq d$ be integers with $b > 0$. Set $s := dc - a$. Then
\[h^0(Y_r, \mathcal{O}_{Y_r}(d)(-aP_\infty - bP_0)) = \ell(s) - b. \]

Proof. First of all, let us consider the trivial inclusion of Riemann-Roch spaces $L(dcP_\infty - aP_\infty - bP_0) \subseteq L(dcP_\infty - aP_\infty)$. We have in any case $\ell(dcP_\infty - aP_\infty - bP_0) \geq \ell(dcP_\infty - aP_\infty) - b$. Since $b \leq d$ in the basis \mathcal{B}_s appear the monomials $1, x, \ldots, x^{b-1}$. These rational functions are linearly independent and do not lie in $L(dcP_\infty - aP_\infty - bP_0)$, because x has a zero of order one at P_0. Hence the dimension of this space is exactly $N(s) - b$. Moreover, it is spanned by the monomials in $\mathcal{B}_s \cap L(dcP_\infty - aP_\infty - bP_0)$.

\[\square \]

Corollary 31. Let $0 < d < q$, $0 \leq a, b \leq c - 1$ be integers with $b > 0$. Set $s := dc - a$.

1. If $b \leq d$ then the dimension of $\mathcal{C}(d, a, b)$ is $N(s) - b$.
2. If $b > d$ then the dimension of $\mathcal{C}(d, a, b)$ is $N(s - c)$.

Proof. If $b \leq d$ then apply Proposition 30. If $b > d$ then use Lemma 28.

\[\square \]

ACKNOWLEDGMENT

The authors would like to thank the Referees for suggestions that improved the presentation of this work.

REFERENCES

[1] E. Ballico, A. Ravagnani, On Goppa Codes on the Hermitian Curve. http://arxiv.org/abs/1202.0894
[2] E. Ballico, A. Ravagnani, On the Geometry of Hermitian one-point codes. http://arxiv.org/abs/1203.3162
[3] E. Ballico, A. Ravagnani, On the Geometry of Hermitian two-point codes. http://arxiv.org/abs/1202.2453
[4] O. Geil, On codes from norm-trace curves. Finite Fields and their Applications, 9, 351–371 (2003).
[5] C. Munuera, R. Pellikaan, Equality of geometric Goppa codes and equivalence of divisors. Journal of Pure and Applied Algebra, 90, 229–252 (1993).
[6] C. Munuera, A. Sepulveda, F. Torres, Algebraic Geometry Codes from Castle Curves. ICMCTA ’08, Proceedings of the 2nd international Castle meeting on Coding Theory and Applications, Springer-Verlag Berlin, Heidelberg 2008.
[7] C. Munuera, G. C. Tizziotti, and F. Torres, Two-point codes on norm- trace curves. ICMCTA ’08, Proceedings of the 2nd international Castle meeting on Coding Theory and Applications, Springer-Verlag Berlin, Heidelberg 2008.
[8] S. A. Stepanov, Codes on Algebraic Curves. Springer, 1999.