Supplementary Information

Bulk viscosity of molecular fluids

Frederike Jaeger1, Omar K. Matar2, Erich A. Müller*2

1Department of Physics, Imperial College London
2Department of Chemical Engineering, Imperial College London

*e.muller@imperial.ac.uk
1 Full pressure tensor

The pressure tensor elements are given by [1,2]

\[P_{\alpha\beta} = \frac{1}{V} \left(\sum_{i} \frac{p_{i\alpha} p_{i\beta}}{m_{i}} + \sum_{i>1} \sum_{j>i} f_{ij\alpha} f_{ij\beta} \right) - \langle P_{\alpha\beta} \rangle, \]

(1)

where the sum is over \(N_{a} \) atoms, and \(p_{i\alpha} \) and \(p_{i\beta} \) are the particle momenta in the respective direction. The second term is a sum over all forces between atoms \(i \) and \(j \). \(\langle P_{\alpha\beta} \rangle \) is expressed as:

\[\langle P_{\alpha\beta} \rangle = \delta_{\alpha\beta} \left[P + \frac{\partial P}{\partial N} (N - \langle N \rangle) + \frac{\partial P}{\partial E} (E - \langle E \rangle) \right]. \]

(2)

Thus it is 0 for \(\alpha \neq \beta \). In the microcanonical ensemble (constant number, volume, energy) we have \(N = \langle N \rangle \) and \(E = \langle E \rangle \), such that \(\langle P_{\alpha\beta} \rangle = \delta_{\alpha\beta} P \).

2 Influence of the Lennard-Jones cut-off on transport properties

The influence of the potential cut-off, \(r_{\text{cut}} \), is examined briefly in order to choose a cut-off value which does not affect results, as done in previous studies [3, 4]. A near-critical isotherm (\(T^{*} = 1.35 \)) was chosen to investigate the effects on the enhanced bulk viscosity near the critical point. As can be seen in Fig. S1a, the shear viscosity, \(\eta^{*} \), remains unaffected by the chosen cut-off. The bulk viscosity, however, is larger for larger cut-off values. The increase of the ratio, \(\kappa^{*} / \eta^{*} \), for larger cut-offs is significant (Fig. S2). Therefore we can conclude that the long-range interactions contribute to the bulk viscosity, \(\kappa^{*} \), but not the shear viscosity. For larger \(r_{\text{cut}} \) the effect of this becomes smaller.
Figure S1: Shear and bulk viscosity for an LJ fluid at $T^* = 1.35$ for several cut-off parameters, r_{cut}. The filled markers present data from this work with the crosses being obtained from Meier et al. (2004,2005) [3,5] for $r_{\text{cut}} = 5.5$.

S-3
Figure S2: Viscosity ratio, κ^*/η^*, for an LJ fluid at $T^* = 1.35$ for several cut-off parameters, r_{cut}.

3 Simulation parameters for water, CO$_2$ and n-decane

Tables S1, S2, S3, S4 and S5 show the simulation parameters used in this work.

Table S1: Simulation parameters for two atomistic water models, SPC/E and TIP4P/2005.

Model	SPC/E	TIP4P/2005
σ_{O-O} (Å)	3.166	3.1589
ϵ_{O-O} (eV)	0.00673	0.0080
$\sigma_{H-O} = \epsilon_{H-O} = \sigma_{H-H} = \epsilon_{H-H}$	0	0
q_O (e)	-0.8476	-1.1128
q_M (e)	-	-
b (Å)	1.0	0.9572
θ (°)	109.47	104.520
r_{O-M} (Å)	-	0.1546 -
Table S2: A selection of parameters for the SAFT-γ Mie CGW1-ift and CGW1-vle water models as parametrised by Lobanova et al. [6].

T (K)	σ_{ift} (Å)	ϵ_{ift} (K/k_B)	σ_{vle} (Å)	ϵ_{vle} (K/k_B)
293	2.9055	304.28	-	-
298	2.9016	305.21	-	-
313	2.8938	309.01	-	-
343	2.8811	318.84	3.0015	481.87
393	2.8721	332.18	3.0039	466.97
493	2.8666	350.25	3.0251	438.55
533	-	-	3.0403	426.99
613	-	-	3.1028	400.21

Table S3: Simulation parameters for different CO$_2$ models.

Model	TrapPE	EPM2	SAFT-γ dimer	SAFT-γ monomer
σ_{C-C} (Å)	2.8	2.757	-	-
ϵ_{C-C} (eV)	0.00233	0.002424	-	-
σ_{O-O} (Å)	3.05	3.033	-	-
ϵ_{O-O} (eV)	0.00681	0.006938	-	-
q_C (e)	0.7	0.6512	-	-
b (Å)	1.16	1.149	-	-
θ (°)	180.0	180.0	-	-
K_{θ} (eV/rad2)	-	(6.405)	-	-
σ_{SAFT} (Å)	-	-	2.85	3.74
ϵ_{SAFT} (eV)	-	-	190.14	0.03118
λ_r	12.0	12.0	13.77	23.0
λ_g	6.0	6.0	6.0	6.66
Table S4: Simulation parameters for two atomistic decane models, OPLS and L-OPLS.

Model	OPLS	L-OPLS
\(\sigma_{\text{C-C}}\) (Å)	0.35	0.35
\(\epsilon_{\text{C-C}}\) (eV)	0.00286	0.00286
\(\sigma_{\text{H-H}}\) (Å)	0.25	0.25
\(\epsilon_{\text{H-H,CH}_2}\) (eV)	0.00130	0.00114
\(\epsilon_{\text{H-H,CH}_3}\) (eV)	0.00130	0.00130
\(q_{\text{C,CH}_2}\) (e)	-0.120	-0.148
\(q_{\text{C,CH}_3}\) (e)	-0.180	-0.222
\(q_H\) (e)	0.06	0.074
\(b_{\text{C-H}}\) (Å)	1.09	1.09
\(k_{b_{\text{C-H}}}\) (eV)	14.743	14.743
\(b_{\text{C-C}}\) (Å)	1.529	1.529
\(k_{b_{\text{C-C}}}\) (eV)	11.621	11.621
\(\theta_{\text{C-C-H}}\) (°)	110.7	110.7
\(k_{\theta_{\text{C-C-H}}}\) (eV)	1.6262	1.6262
\(\theta_{\text{H-C-C-H}}\) (°)	107.8	107.8
\(k_{\theta_{\text{H-C-C-H}}}\) (eV)	1.43	1.43
\(\theta_{\text{C-C-C}}\) (°)	112.7	112.7
\(k_{\theta_{\text{C-C-C}}}\) (eV)	2.503	2.503

Table S5: Dihedral parameters for two atomistic decane models, OPLS and L-OPLS.

	K_1(eV)	K_2(eV)	K_3(eV)	K_4(eV)
OPLS				
H-C-C-H	0.0	0.0	0.01379	0.0
C-C-C-H	0.0	0.0	0.01588	0.0
H-C-C-C	0.07545	-0.00681	0.01209	0.0
L-OPLS				
H-C-C-H	0.0	0.0	0.01379	0.0
C-C-C-H	0.0	0.0	0.01588	0.0
H-C-C-C	-0.00317	0.02796	-0.00929	0.00772
Figure S3: $P - \rho$ relation for different water models at 393 and 613 K. For 393 K, the models presented are SPC/E, SAFT-ift and SAFT-vle. For 613 K, the models presented are SPC/E, TIP4P/2005 and SAFT-vle.

4 Additional data: Water at different temperatures

In addition to the data presented in the paper we also examine water using both atomistic (SPC/E, TIP4P/2005) and coarse-grained models (two versions of the SAFT-γ Mie model) at 393K and the near critical 613K.

The SAFT-γ Mie force field for water [6] not only has temperature dependent parameters σ and ϵ but there are also two different parametrizations performed over different temperature ranges. SAFT-ift is applicable in the lower temperature range (293 – 493 K) and was parametrized to fit to interfacial tension data whilst SAFT-vle was parametrized for 343 – 613 K using vapour-liquid equilibrium data.

We examine the pressure, shear viscosity and bulk viscosity data for water at two different temperatures; 393 K (SPC/E, SAFT-ift, SAFT-vle) and 613 K (SPC/E, TIP4P/2005 and SAFT-vle). The former is to compare the two coarse-grained parametrizations whilst the latter is to obtain data near the critical point. As SPC/E performs best in the liquid regime [7, 8] this is further a crude test for the applicability of SPC/E in the vapour phase. As no rotational or vibrational relaxation time data is available for these temperatures, only the configurational contribution of κ is presented.
4.1 393 K

Figure S3a and S4 show the results for $T = 393$ K. The short falls of the SPC/E model in achieving the correct thermodynamic state are immediately clear as it overestimates the pressures. The tendency of atomistic models to overestimate pressures is already present at $T = 300$ K. SAFT-ift performs best, in particular at low densities, whilst SAFT-vle only obtains similar accuracy at very low pressures/densities but diverges in the high pressure regime.

Despite the inaccurate pressure values SPC/E does well in the prediction of shear viscosities, where on average only a slight overestimation compared to NIST values is observed. Notably SAFT-ift, while underestimating the shear viscosity, shows much improvement in this temperature range compared to room temperature data. SAFT-vle, however, overestimates the viscosities greatly and is as such not suitable for transport calculations.

Once again both SAFT models perform poorly in predicting bulk viscosity values of the order of the shear viscosity, with $\kappa_{\text{conf}}/\eta$ well below 1. SPC/E, however, obtains values between 3-4, similar to those at room temperature. These values are higher than that of 2.32 observed at 300 K. The increase of $\kappa_{\text{conf}}/\eta$ is contrary to an observed decrease with increase temperature in experiment [9, 10].

In conclusion we can assert that, despite its shortcomings in thermodynamic quantities, transport properties are still well predicted by the SPC/E model. The SAFT-ift model is superior to SAFT-vle both in terms of the thermodynamic predictions and the shear viscosity. The performance of SAFT-ift is much improved over room temperature simulations. Bulk viscosities, however, are still not well predicted.

4.2 613 K

SPC/E, TIP4P/2005 and SAFT-vle perform well in predicting the $P - \rho$ curve (Fig. S3b), with TIP4P/2005 giving the best agreement with NIST data. The SAFT-vle model diverges near the phase transition, giving pressures too low and even below zero, and overestimates the pressure for higher densities. SPC/E shows a great improvement over the 393 K case, with pressures within 200 bar or less for the whole density range. The shear viscosity, η, and the viscosity ratio, $\kappa_{\text{conf}}/\eta$, are presented in Fig. S5. η is well predicted by the atomistic models over the entire range, underestimating slightly
Figure S4: η and $\kappa_{\text{conf}}/\eta$ for SPC/E, SAFT-ift, SAFT-vle at $T = 393$ K.
Figure S5: η and $\kappa_{\text{conf}}/\eta$ for SPC/E and SAFT-vle at $T = 613$ K.
compared to NIST at low densities. The SAFT-vle model performs particularly well in the vapour regime. In the liquid regime shear viscosities are overestimated considerably.

The viscosity ratio for SAFT-vle resembles that of other simple (monomer) fluids near the critical point with a clear peak observed near the critical density. SPC/E shows inconsistent results pointing to the difficulty of obtaining statistically relevant results near the critical point. TIP4P/2005, whilst more consistent, nevertheless does not show a clear enhancement near the critical point. However notably the viscosity ratio is increased significantly (to up to 17.5 for the SPC/E model). As no literature data exists for this region the validity of this cannot be confirmed. More investigations in the high temperature range are necessary.

4.3 Conclusions

The SAFT-ift model outperforms the SAFT-vle model both in terms of thermodynamic and transport properties. Attention should be drawn to the relatively good prediction of the shear viscosity at higher temperatures (SAFT-ift at 393 K and SAFT-vle at 613 K) showing that coarse-grained models for water may be successfully used in transport applications in some physical situations. An increase in the viscosity ratio near the critical point is observed similar to other fluids. However, as this is not present in generally superior atomistic models, further investigations near the critical point should be performed.

5 Additional data: Supercritical CO$_2$

We study two atomistic (EPM2, TraPPE) and two coarse-grained models (SAFT dimer, SAFT monomer) for the supercritical isotherm at 323 K. All models studied show qualitatively the same behaviour for supercritical CO$_2$ as at 300 K (Figure S6). The SAFT monomer model once again overestimates the shear viscosity at high densities. EPM2 is the most accurate in predicting η whilst TraPPE and the SAFT dimer model have comparable results. The viscosity ratio (where only the configurational term is considered for κ) is overestimated in the lower density range, in particular in the vicinity of the critical point. With the exception of the high density region, where there is a
larger amount of scatter in the data together with bigger error bars, EPM2, TraPPE and SAFT dimer agree well with each other for the viscosity ratio. In the high density region the SAFT dimer model gives the lowest values compared to the atomistic and the monomer models. The dilute gas contribution, \(\kappa_{\text{dilute}} \), is not considered here as it is the same for all models.

6 Additional data: CO\(_2\) in the two-phase region

In order to investigate the simulation box size dependence of transport properties in the two-phase regions, we have simulated CO\(_2\) at \(\rho = 0.6 \) g/cm\(^3\) using different numbers of molecules: 500, 1372, 2048 (as presented in the paper), 4000, and 6912. The results are presented in Fig. S7. A clear dependence of the quantities on the simulation box size/number of molecules is observed. Notably, for all but the smallest box, \(\kappa_{\text{conf}}/\eta \) agree relatively well (almost within their error). Therefore we conclude that the results presented in the paper may still serve as a guide to the general behaviour in a two-phase region.

7 Additional data: Influence of constraints on n-decane at 300K

The constraints placed on the bonds and angles in alkanes such as n-decane are not usually treated with much care. In the work presented in the paper we constrained both the bonds involving hydrogens and the H-C-H angle for the OPLS force field, whilst this force field is often employed without any constraints whatsoever. However, it has been stated in the literature that for certain properties these constraints can have a significant impact [11].

We present here data for n-decane, where either both the hydrogen bonds and the H-C-H angle is constrained (OPLS, as presented in the paper) or both are governed by a harmonic potential (OPLS (flexible)). Our work shows that for the shear viscosities, while there are differences, they are small (see Fig. S8a). It should be noted that the rigid model achieves slightly better accuracy with regard to NIST data than its flexible counter part. The difference is more notable in the viscosity ratio (Fig. S8b). The ratio
Figure S6: η and κ_{conf}/η for the rigid EPM2, TraPPE, SAFT dimer and SAFT monomer models at the supercritical temperature of $T = 323K$.
Figure S7: η, κ and $\kappa_{\text{conf}}/\eta$ for the rigid EPM2 model with different numbers of molecules simulated.
of the flexible model is about 20 % bigger. Notably, the rigid model is in agreement with the experimental value [12]. For L-OPLS a similar investigation was conducted with no notable difference observed. As only one experimental observation was found to date, this may in practice lie within the error of the measurement. However, in any case it highlights an issue with how force fields for alkanes are used and presented. Further analysis needs to be done to confirm which constraints produce the results most in line with the true physical molecule.

8 Compressibilities for different water models

In order to investigate the differences in predicting the bulk viscosity between the SAFT monomer and atomistic models (SPC/E and TIP4P/2005), we calculate the compressibilities, β_c, for all three models at 300 K. As a relation between the bulk viscosity and the bulk modulus, $K = 1/\beta_c$, is proposed in [13], a difference in the models could give an insight into the reasons for the varying performance. The isothermal bulk viscosity is defined through

$$\beta_{c,T} = -\frac{1}{V_0} \left(\frac{\partial V}{\partial P} \right)_T,$$

where V is the volume, P the pressure and V_0 the volume at the desired pressure. In practice, we calculate this by performing simulations at different pressures either side from the target pressure (1 bar) in steps of 50 bar, i.e. between -100 and 100 bar. The slope of the resulting curve is then used to calculate $\partial V/\partial P$. The simulations are performed in an NPT ensemble and individual simulation runs last 2 ns each. The resulting compressibilities are given in Tab. S6. Whilst the SAFT monomer model is furthest from the experimental data we can nevertheless not see a correlation between success in computing κ and β_c. The values for TIP4P/2005 and SAFT monomer are very similar, yet the resulting bulk viscosities are not. Further, SPC/E shows the best agreement with experiment but predicts values of κ which are lower than both experiment and TIP4P/2005. Therefore the conclusion of this preliminary analysis is that the ability of a force field to obtain the correct compressibility does not influence its success in calculating the bulk viscosity, κ.

S-15
Figure S8: η and κ/η for n-decane at 300 K. Two versions of the atomistic OPLS model is presented; one with rigid hydrogen bonds and a rigid H-C-H angle, and one fully flexible one.
Table S6: Compressibilities of water at 300 K and $P = 1$ bar for the SPC/E, TIP4P/2005 and SAFT monomer (SAFT-ift) water models compared to the experimental value [14].

Model	$\beta_c \times 10^{-6}$ (bar$^{-1}$)
SPC/E	47.8
TIP4P/2005	51.7
SAFT Monomer	52.3
Exp.	45.2

9 Benchmark testing for κ_{dilute}

Benchmark testing of κ_{dilute} was performed by the example of CO$_2$ (i.e. using values of c_v for CO$_2$) in order to assess the importance of the relaxation times, τ_{rot} and τ_{vib}, and the wave number, k, on the rotational and vibrational contributions to κ, κ_{rot} and κ_{vib}. The main conclusions are presented in the paper. The dependence on the parameters is illustrated in Figs. S9 and S10.

10 Complete data for the viscosities at different state points

Below is a collection of the data for water ($T = (300, 393, 613)$ K, models = (SPC/E, TIP4P/2005, SAFT1-ift, SAFT1-vle), CO$_2$ ($T = (300, 323)$ K, models = (EPM2, TraPPE, SAFT dimer, SAFT monomer) and n-decane ($T = 300$ K, models = (OPLS, OPLS[flexible], L-OPLS, SAFT three-bead). The density, pressure, shear viscosity, bulk viscosity and viscosity ratio are given for each data point.

11 Files

Example input files and the numerical results presented in the figures and tables above are deposited in the following data repository:

https://doi.org/10.6084/m9.figshare.5799132
Figure S9: κ_{rot} and κ_{vib} as a function of the relaxation times, τ_{rot} and τ_{vib}. Two different values for the wave number, k, were chosen for κ_{vib}.

(a) κ_{rot}

(b) $\kappa_{\text{vib}}, \ k = 700 \ \text{cm}^{-1}$

(c) $\kappa_{\text{vib}}, \ k = 3000 \ \text{cm}^{-1}$
Figure S10: Dependence of κ_{vib} on the wavenumber, k, at different temperatures. The relaxation time was set to $\tau_{\text{vib}} = 4\mu$s.
Table S7: Shear and bulk viscosity data for the SPC/E water model at $T = 300$ K.

ρ (g/cm3)	P (bar)	η (mPas)	κ (mPas)	κ/η
0.997	105.0	0.69 ± 0.019	1.532 ± 0.051	2.018 ± 0.097
1.002	208.4	0.681 ± 0.005	1.521 ± 0.078	2.301 ± 0.076
1.006	309.2	0.672 ± 0.019	1.648 ± 0.074	2.485 ± 0.246
1.01	409.1	0.688 ± 0.033	1.316 ± 0.086	1.914 ± 0.11
1.014	506.6	0.658 ± 0.031	1.407 ± 0.093	2.061 ± 0.178
1.018	605.4	0.666 ± 0.003	1.754 ± 0.03	2.578 ± 0.062
1.023	705.1	0.69 ± 0.026	1.746 ± 0.205	2.548 ± 0.252
1.026	806.1	0.655 ± 0.011	1.481 ± 0.202	2.162 ± 0.236
1.03	905.5	0.709 ± 0.018	2.0 ± 0.304	2.787 ± 0.492

Table S8: Shear and bulk viscosity data for the TIP4P/2005 water model at $T = 300$ K.

ρ (g/cm3)	P (bar)	η (mPas)	κ (mPas)	κ/η
0.997	134.1	0.832 ± 0.04	2.161 ± 0.079	2.565 ± 0.171
1.002	236.0	0.839 ± 0.039	1.866 ± 0.13	2.22 ± 0.08
1.006	327.6	0.836 ± 0.0	2.317 ± 0.0	2.836 ± 0.0
1.01	432.7	0.792 ± 0.016	2.175 ± 0.073	2.814 ± 0.077
1.014	529.4	0.856 ± 0.005	2.174 ± 0.049	2.407 ± 0.073
1.018	630.2	0.762 ± 0.035	2.502 ± 0.266	3.359 ± 0.258
1.023	728.1	0.769 ± 0.004	2.297 ± 0.166	3.076 ± 0.305
1.026	833.0	0.778 ± 0.017	1.935 ± 0.15	2.299 ± 0.217
1.03	925.9	0.787 ± 0.017	2.178 ± 0.02	2.669 ± 0.037

Table S9: Shear and bulk viscosity data for the SAFT1-ift water model at $T = 300$ K.

ρ (g/cm3)	P (bar)	η (mPas)	κ (mPas)	κ/η
0.997	12.3	0.247 ± 0.012	0.099 ± 0.017	0.388 ± 0.06
1.002	99.8	0.275 ± 0.007	0.096 ± 0.024	0.329 ± 0.077
1.006	188.5	0.274 ± 0.006	0.168 ± 0.031	0.628 ± 0.136
1.01	278.3	0.287 ± 0.012	0.065 ± 0.002	0.232 ± 0.006
1.014	369.0	0.274 ± 0.014	0.071 ± 0.01	0.268 ± 0.053
1.018	461.9	0.286 ± 0.005	0.065 ± 0.003	0.239 ± 0.007
1.023	554.5	0.283 ± 0.016	0.081 ± 0.001	0.297 ± 0.027
1.026	645.4	0.317 ± 0.005	0.06 ± 0.002	0.189 ± 0.005
1.03	736.6	0.305 ± 0.009	0.154 ± 0.062	0.5 ± 0.205
Table S10: Shear and bulk viscosity data for the SPC/E water model at $T = 393$ K.

ρ (g/cm3)	P (bar)	η (mPas)	κ_{conf} (mPas)	$\kappa_{\text{conf}}/\eta$
0.948	482.0	0.235 ± 0.013	0.864 ± 0.036	3.717 ± 0.367
0.953	569.9	0.247 ± 0.015	0.827 ± 0.027	3.362 ± 0.1
0.958	665.6	0.251 ± 0.003	0.831 ± 0.021	3.314 ± 0.049
0.962	756.3	0.248 ± 0.007	0.701 ± 0.016	2.831 ± 0.018
0.966	849.9	0.238 ± 0.002	0.871 ± 0.028	3.656 ± 0.078
0.971	939.2	0.26 ± 0.0	0.819 ± 0.094	3.144 ± 0.356
0.975	1032.4	0.239 ± 0.01	0.97 ± 0.028	4.088 ± 0.29
0.979	1126.8	0.265 ± 0.002	0.861 ± 0.144	3.24 ± 0.516

Table S11: Shear and bulk viscosity data for the SAFT1-ift water model at $T = 393$ K.

ρ (g/cm3)	P (bar)	η (mPas)	κ_{conf} (mPas)	$\kappa_{\text{conf}}/\eta$
0.948	117.8	0.199 ± 0.009	0.077 ± 0.0	0.388 ± 0.015
0.953	189.1	0.184 ± 0.001	0.079 ± 0.014	0.432 ± 0.078
0.958	259.3	0.21 ± 0.007	0.132 ± 0.027	0.638 ± 0.15
0.962	337.7	0.202 ± 0.013	0.088 ± 0.006	0.444 ± 0.057
0.966	412.1	0.202 ± 0.01	0.076 ± 0.001	0.379 ± 0.013
0.971	486.3	0.205 ± 0.009	0.075 ± 0.002	0.367 ± 0.024
0.975	560.5	0.212 ± 0.008	0.09 ± 0.001	0.426 ± 0.018
0.979	634.0	0.215 ± 0.011	0.116 ± 0.04	0.522 ± 0.158

Table S12: Shear and bulk viscosity data for the SAFT1-vle water model at $T = 393$ K.

ρ (g/cm3)	P (bar)	η (mPas)	κ_{conf} (mPas)	$\kappa_{\text{conf}}/\eta$
0.948	131.4	0.445 ± 0.013	0.091 ± 0.004	0.206 ± 0.016
0.953	310.0	0.447 ± 0.015	0.16 ± 0.042	0.353 ± 0.082
0.958	493.0	0.465 ± 0.001	0.257 ± 0.13	0.554 ± 0.281
0.962	685.9	0.501 ± 0.005	0.109 ± 0.01	0.217 ± 0.022
0.966	867.2	0.491 ± 0.015	0.113 ± 0.029	0.226 ± 0.052
0.971	1060.1	0.503 ± 0.011	0.105 ± 0.014	0.208 ± 0.024
0.975	1240.3	0.465 ± 0.017	0.103 ± 0.013	0.224 ± 0.037
0.979	1429.3	0.465 ± 0.002	0.126 ± 0.034	0.269 ± 0.073
Table S13: Shear and bulk viscosity data for the SPC/E water model at \(T = 613 \) K.

\(\rho \) (g/cm\(^3\))	\(P \) (bar)	\(\eta \) (mPas)	\(\kappa_{\text{conf}} \) (mPas)	\(\kappa_{\text{conf}} / \eta \)
0.0004	1.0	0.001 ± 0.0	0.001 ± 0.0	0.864 ± 0.0
0.0472	85.3	0.018 ± 0.001	0.218 ± 0.096	11.834 ± 1.332
0.0544	91.2	0.018 ± 0.0	0.119 ± 0.0	6.759 ± 0.0
0.0692	103.3	0.021 ± 0.0	0.271 ± 0.0	12.588 ± 0.0
0.0898	113.7	0.017 ± 0.0	0.305 ± 0.0	17.451 ± 0.0
0.1196	121.5	0.022 ± 0.0	0.209 ± 0.0	9.528 ± 0.0
0.2335	124.4	0.025 ± 0.0	0.078 ± 0.0	3.06 ± 0.0
0.3486	119.7	0.036 ± 0.0	0.196 ± 0.0	5.425 ± 0.0
0.4354	127.6	0.043 ± 0.0	0.506 ± 0.0	11.635 ± 0.0
0.5535	201.0	0.059 ± 0.0	0.548 ± 0.0	9.351 ± 0.0
0.6381	400.3	0.077 ± 0.003	0.446 ± 0.006	5.847 ± 0.127
0.6703	537.4	0.077 ± 0.0	0.429 ± 0.0	5.585 ± 0.0
0.6936	662.4	0.085 ± 0.001	0.594 ± 0.011	7.004 ± 0.271
0.7122	782.9	0.083 ± 0.002	0.52 ± 0.082	6.228 ± 0.824
0.728	904.5	0.093 ± 0.003	1.626 ± 0.117	17.497 ± 0.772

Table S14: Shear and bulk viscosity data for the TIP4P/2005 water model at \(T = 613 \) K.

\(\rho \) (g/cm\(^3\))	\(P \) (bar)	\(\eta \) (mPas)	\(\kappa_{\text{conf}} \) (mPas)	\(\kappa_{\text{conf}} / \eta \)
0.0004	1.0	0.001 ± 0.0	0.0 ± 0.025	0.499 ± 1.206
0.0472	85.3	0.019 ± 0.001	0.083 ± 0.007	4.491 ± 0.145
0.0544	91.6	0.02 ± 0.0	0.058 ± 0.012	2.929 ± 0.575
0.0692	101.8	0.017 ± 0.0	0.07 ± 0.013	4.104 ± 0.673
0.0898	110.3	0.018 ± 0.0	0.045 ± 0.001	2.587 ± 0.045
0.1196	115.4	0.02 ± 0.001	0.051 ± 0.008	2.485 ± 0.285
0.164	113.4	0.022 ± 0.0	0.089 ± 0.0	4.145 ± 0.142
0.2335	109.2	0.026 ± 0.0	0.088 ± 0.011	3.345 ± 0.387
0.3486	91.5	0.038 ± 0.002	0.154 ± 0.019	4.088 ± 0.331
0.4354	79.0	0.046 ± 0.001	0.256 ± 0.003	5.55 ± 0.075
0.5535	104.1	0.063 ± 0.001	0.239 ± 0.015	3.829 ± 0.139
0.6381	264.5	0.077 ± 0.002	0.26 ± 0.012	3.374 ± 0.254
0.6703	378.7	0.077 ± 0.0	0.261 ± 0.017	3.423 ± 0.976
0.6936	496.0	0.093 ± 0.003	0.202 ± 0.037	2.176 ± 0.737
0.7122	605.2	0.087 ± 0.002	0.299 ± 0.042	3.416 ± 0.407
0.728	722.6	0.086 ± 0.004	0.41 ± 0.073	4.697 ± 0.627
Table S15: Shear and bulk viscosity data for the SAFT1-vle water model at $T = 613$ K.

ρ (g/cm3)	P (bar)	η (mPas)	κ_{conf} (mPas)	$\kappa_{\text{conf}} / \eta$
0.004	1.0	0.001 ± 0.0	0.0 ± 0.0	0.0 ± 0.0
0.0472	108.3	0.022 ± 0.0	0.001 ± 0.0	0.023 ± 0.0
0.0544	120.5	0.023 ± 0.001	0.001 ± 0.0	0.043 ± 0.0
0.0692	142.2	0.022 ± 0.0	0.002 ± 0.0	0.071 ± 0.002
0.0898	164.9	0.024 ± 0.0	0.004 ± 0.0	0.165 ± 0.0
0.1196	183.3	0.026 ± 0.001	0.02 ± 0.001	0.781 ± 0.001
0.164	166.1	0.028 ± 0.001	0.186 ± 0.002	6.595 ± 0.052
0.2335	146.0	0.034 ± 0.0	0.187 ± 0.002	5.503 ± 0.016
0.3486	94.5	0.048 ± 0.0	0.398 ± 0.028	8.215 ± 0.537
0.5535	−48.3	0.092 ± 0.002	0.21 ± 0.006	2.282 ± 0.044
0.6143	219.9	0.092 ± 0.003	0.126 ± 0.009	1.371 ± 0.049
0.6381	407.4	0.107 ± 0.009	0.098 ± 0.002	0.915 ± 0.058
0.6703	761.4	0.134 ± 0.0	0.078 ± 0.0	0.59 ± 0.0
0.6936	1089.4	0.144 ± 0.001	0.067 ± 0.0	0.464 ± 0.0
0.7122	1404.1	0.161 ± 0.0	0.073 ± 0.0	0.454 ± 0.0
0.728	1715.4	0.161 ± 0.001	0.074 ± 0.001	0.461 ± 0.004

Table S16: Shear and bulk viscosity data for the EPM2 CO$_2$ model at $T = 300$ K.

ρ (g/cm3)	P (bar)	η (mPas)	κ (mPas)	κ / η
0.066	31.4	0.014 ± 0.001	32.121 ± 0.007	2386.03 ± 28.806
0.095	41.7	0.015 ± 0.001	32.122 ± 0.002	2147.449 ± 1.542
0.133	53.4	0.017 ± 0.0	32.123 ± 0.003	1926.003 ± 13.531
0.269	66.4	0.021 ± 0.002	32.138 ± 0.028	1519.786 ± 8.01
0.3	64.9	0.023 ± 0.001	32.149 ± 0.0	1411.617 ± 188.643
0.35	67.9	0.024 ± 0.001	32.164 ± 0.006	1330.27 ± 66.091
0.4	68.4	0.028 ± 0.001	32.189 ± 0.008	1155.162 ± 6.114
0.45	60.8	0.031 ± 0.0	32.22 ± 0.0	1037.52 ± 84.955
0.5	59.9	0.035 ± 0.0	32.23 ± 0.003	890.25 ± 18.897
0.55	55.1	0.038 ± 0.0	32.282 ± 0.0	877.054 ± 45.316
0.6	53.6	0.044 ± 0.001	32.305 ± 0.001	755.436 ± 25.476
0.803	59.2	0.077 ± 0.002	32.337 ± 0.029	410.421 ± 19.096
0.906	171.5	0.098 ± 0.001	32.32 ± 0.022	338.235 ± 1.495
0.96	272.4	0.115 ± 0.001	32.302 ± 0.008	292.696 ± 9.419
0.999	375.7	0.127 ± 0.001	32.335 ± 0.024	254.717 ± 8.775
1.029	460.2	0.135 ± 0.002	32.322 ± 0.014	235.3 ± 5.51
1.055	572.5	0.157 ± 0.004	32.314 ± 0.013	210.468 ± 4.868
1.077	696.0	0.147 ± 0.001	32.352 ± 0.013	216.659 ± 19.399
Table S17: Shear and bulk viscosity data for the TraPPE CO\(_2\) model at \(T = 300\) K.

\(\rho\) (g/cm\(^3\))	\(P\) (bar)	\(\eta\) (mPas)	\(\kappa\) (mPas)	\(\kappa/\eta\)
0.066	32.1	0.014 ± 0.0	32.121 ± 0.012	2194.316 ± 3.405
0.095	41.9	0.016 ± 0.0	32.122 ± 0.001	1971.881 ± 19.13
0.133	54.1	0.017 ± 0.0	32.124 ± 0.0	1906.14 ± 21.243
0.269	72.4	0.022 ± 0.008	32.135 ± 0.004	1476.152 ± 10.44
0.3	71.5	0.022 ± 0.0	32.144 ± 0.0	1413.32 ± 36.043
0.35	72.5	0.025 ± 0.001	32.161 ± 0.002	1310.152 ± 3.181
0.4	60.5	0.029 ± 0.003	32.196 ± 0.004	1141.722 ± 46.731
0.45	68.0	0.032 ± 0.0	32.216 ± 0.0	1024.029 ± 36.78
0.5	66.2	0.036 ± 0.0	32.241 ± 0.001	887.772 ± 6.582
0.55	59.2	0.042 ± 0.0	32.26 ± 0.0	794.979 ± 24.905
0.6	60.4	0.047 ± 0.0	32.278 ± 0.001	708.104 ± 22.523
0.803	112.4	0.075 ± 0.003	32.309 ± 0.017	413.358 ± 21.753
0.906	247.0	0.099 ± 0.008	32.362 ± 0.004	322.543 ± 8.757
0.96	341.9	0.121 ± 0.001	32.34 ± 0.003	266.753 ± 0.499
0.999	463.8	0.14 ± 0.001	32.33 ± 0.015	236.539 ± 7.346
1.029	586.4	0.145 ± 0.001	32.344 ± 0.023	222.997 ± 4.747
1.055	688.6	0.16 ± 0.005	32.358 ± 0.003	205.195 ± 3.764
1.077	844.8	0.183 ± 0.002	32.33 ± 0.009	168.699 ± 20.927

Table S18: Shear and bulk viscosity data for the SAFT dimer CO\(_2\) model at \(T = 300\) K.

\(\rho\) (g/cm\(^3\))	\(P\) (bar)	\(\eta\) (mPas)	\(\kappa\) (mPas)	\(\kappa/\eta\)
0.066	31.6	0.013 ± 0.001	32.121 ± 0.004	2529.409 ± 38.636
0.095	42.1	0.013 ± 0.001	32.121 ± 0.012	2408.441 ± 14.458
0.133	52.9	0.016 ± 0.002	32.123 ± 0.005	1981.374 ± 53.609
0.269	72.4	0.02 ± 0.002	32.136 ± 0.012	1588.841 ± 16.112
0.3	73.8	0.023 ± 0.001	32.147 ± 0.001	1486.108 ± 144.781
0.35	74.7	0.027 ± 0.0	32.165 ± 0.005	1156.416 ± 34.852
0.4	75.5	0.03 ± 0.001	32.182 ± 0.031	1098.898 ± 24.77
0.45	74.7	0.033 ± 0.0	32.222 ± 0.0	971.442 ± 23.866
0.5	73.9	0.037 ± 0.001	32.256 ± 0.0	848.071 ± 37.848
0.55	73.6	0.043 ± 0.0	32.305 ± 0.0	737.218 ± 14.062
0.6	73.8	0.048 ± 0.0	32.339 ± 0.004	670.959 ± 42.513
0.803	127.3	0.082 ± 0.001	32.329 ± 0.008	388.577 ± 4.449
0.906	255.8	0.106 ± 0.001	32.285 ± 0.015	310.034 ± 5.696
0.96	379.8	0.132 ± 0.005	32.3 ± 0.007	245.36 ± 9.569
0.999	502.4	0.135 ± 0.002	32.301 ± 0.003	237.918 ± 8.707
1.029	624.9	0.155 ± 0.003	32.294 ± 0.003	225.936 ± 9.978
1.055	746.5	0.168 ± 0.003	32.295 ± 0.001	199.51 ± 7.577
1.077	864.3	0.157 ± 0.002	32.297 ± 0.009	210.798 ± 5.792
Table S19: Shear and bulk viscosity data for the SAFT monomer CO\textsubscript{2} model at \(T = 300 \) K.

\(\rho \) (g/cm3)	\(P \) (bar)	\(\eta \) (mPas)	\(\kappa \) (mPas)	\(\kappa/\eta \)
0.066	31.5	0.014 ± 0.004	32.12 ± 0.003	2234.981 ± 7.396
0.095	41.9	0.015 ± 0.0	32.121 ± 0.0	2252.646 ± 93.524
0.133	52.4	0.017 ± 0.001	32.123 ± 0.003	1914.995 ± 4.993
0.269	69.2	0.022 ± 0.009	32.163 ± 0.013	1551.071 ± 5.71
0.3	68.7	0.021 ± 0.005	32.179 ± 0.008	1484.123 ± 5.494
0.35	68.4	0.026 ± 0.006	32.209 ± 0.043	1245.36 ± 0.553
0.4	65.9	0.028 ± 0.0	32.293 ± 0.0	1120.942 ± 3.076
0.45	65.0	0.034 ± 0.002	32.313 ± 0.01	932.982 ± 38.642
0.5	62.1	0.042 ± 0.0	32.395 ± 0.02	791.611 ± 4.444
0.55	60.8	0.045 ± 0.0	32.42 ± 0.007	699.534 ± 47.632
0.6	57.5	0.055 ± 0.01	32.502 ± 0.009	564.052 ± 8.227
0.804	75.4	0.088 ± 0.001	32.519 ± 0.004	378.187 ± 15.769
0.906	167.2	0.138 ± 0.001	32.451 ± 0.0	242.452 ± 34.709
0.96	274.7	0.154 ± 0.0	32.461 ± 0.024	217.891 ± 0.384
0.999	386.3	0.171 ± 0.0	32.399 ± 0.003	192.492 ± 44.607
1.029	501.8	0.206 ± 0.006	32.41 ± 0.007	159.746 ± 6.518
1.055	622.6	0.225 ± 0.001	32.436 ± 0.016	148.877 ± 13.995
1.077	744.7	0.254 ± 0.001	32.429 ± 0.054	130.867 ± 2.912
Table S20: Shear and bulk viscosity data for the EPM2 CO$_2$ model at $T = 323$ K.

ρ (g/cm3)	P (bar)	η (mPas)	κ_{conf} (mPas)	$\kappa_{\text{conf}}/\eta$
0.269	87.6	0.023 ± 0.001	0.017 ± 0.002	0.732 ± 0.093
0.3	94.0	0.024 ± 0.001	0.023 ± 0.001	0.939 ± 0.031
0.35	93.4	0.024 ± 0.001	0.031 ± 0.001	1.288 ± 0.001
0.4	102.8	0.029 ± 0.002	0.037 ± 0.039	1.281 ± 0.278
0.45	94.4	0.031 ± 0.001	0.065 ± 0.004	2.089 ± 0.158
0.5	108.0	0.035 ± 0.002	0.071 ± 0.003	2.044 ± 0.016
0.55	115.4	0.04 ± 0.001	0.086 ± 0.002	2.148 ± 0.012
0.6	132.1	0.047 ± 0.0	0.127 ± 0.009	2.685 ± 0.206
0.803	190.8	0.075 ± 0.001	0.16 ± 0.002	2.124 ± 0.082
0.906	360.5	0.103 ± 0.006	0.253 ± 0.011	2.473 ± 0.138
0.96	478.5	0.116 ± 0.005	0.22 ± 0.004	1.895 ± 0.108
0.999	578.4	0.129 ± 0.008	0.284 ± 0.025	2.249 ± 0.339
1.029	738.5	0.128 ± 0.005	0.196 ± 0.021	1.522 ± 0.104
1.055	804.2	0.15 ± 0.001	0.276 ± 0.047	1.847 ± 0.473
1.077	955.4	0.152 ± 0.0	0.247 ± 0.013	1.642 ± 0.182

Table S21: Shear and bulk viscosity data for the TraPPE CO$_2$ model at $T = 323$ K.

ρ (g/cm3)	P (bar)	η (mPas)	κ_{conf} (mPas)	$\kappa_{\text{conf}}/\eta$
0.269	91.7	0.024 ± 0.0	0.014 ± 0.002	0.593 ± 0.081
0.3	97.0	0.023 ± 0.0	0.025 ± 0.001	1.074 ± 0.022
0.35	100.5	0.025 ± 0.0	0.033 ± 0.001	1.282 ± 0.065
0.4	102.8	0.028 ± 0.0	0.049 ± 0.006	1.737 ± 0.038
0.45	107.1	0.032 ± 0.001	0.063 ± 0.0	1.95 ± 0.039
0.5	110.8	0.034 ± 0.0	0.083 ± 0.002	2.409 ± 0.077
0.55	108.8	0.04 ± 0.0	0.094 ± 0.004	2.353 ± 0.123
0.6	131.2	0.044 ± 0.001	0.114 ± 0.007	2.561 ± 0.121
0.803	217.8	0.077 ± 0.001	0.152 ± 0.007	1.973 ± 0.233
0.906	403.0	0.099 ± 0.008	0.221 ± 0.007	2.246 ± 0.026
0.96	531.7	0.118 ± 0.001	0.232 ± 0.041	1.952 ± 0.331
0.999	698.8	0.128 ± 0.002	0.281 ± 0.013	2.193 ± 0.132
1.029	909.0	0.147 ± 0.002	0.417 ± 0.015	2.837 ± 0.067
1.055	947.5	0.162 ± 0.007	0.244 ± 0.001	1.506 ± 0.145
1.077	1071.3	0.181 ± 0.002	0.274 ± 0.002	1.516 ± 0.081
Table S22: Shear and bulk viscosity data for the SAFT dimer CO$_2$ model at $T = 323$ K.

ρ (g/cm3)	P (bar)	η (mPas)	κ_{conf} (mPas)	$\kappa_{\text{conf}} / \eta$
0.269	92.6	0.022 ± 0.0	0.014 ± 0.0	0.614 ± 0.033
0.3	97.1	0.023 ± 0.001	0.019 ± 0.0	0.823 ± 0.019
0.35	103.6	0.026 ± 0.001	0.027 ± 0.001	1.011 ± 0.077
0.4	108.9	0.031 ± 0.002	0.046 ± 0.006	1.495 ± 0.028
0.45	114.2	0.033 ± 0.001	0.061 ± 0.001	1.844 ± 0.091
0.5	120.3	0.037 ± 0.0	0.075 ± 0.002	2.02 ± 0.026
0.55	126.4	0.042 ± 0.001	0.094 ± 0.001	2.284 ± 0.059
0.6	135.9	0.048 ± 0.001	0.131 ± 0.005	2.712 ± 0.054
0.803	254.2	0.075 ± 0.001	0.154 ± 0.01	2.052 ± 0.307
0.906	434.1	0.114 ± 0.001	0.164 ± 0.003	1.44 ± 0.023
0.96	591.3	0.115 ± 0.0	0.137 ± 0.0	1.199 ± 0.0
0.999	740.8	0.14 ± 0.004	0.137 ± 0.008	0.985 ± 0.091
1.029	886.5	0.158 ± 0.0	0.188 ± 0.0	1.187 ± 0.0
1.055	1027.0	0.151 ± 0.006	0.136 ± 0.001	0.899 ± 0.083
1.077	1165.7	0.178 ± 0.0	0.144 ± 0.003	0.808 ± 0.055

Table S23: Shear and bulk viscosity data for the SAFT monomer CO$_2$ model at $T = 323$ K.

ρ (g/cm3)	P (bar)	η (mPas)	κ_{conf} (mPas)	$\kappa_{\text{conf}} / \eta$
0.269	88.9	0.022 ± 0.003	0.021 ± 0.02	0.964 ± 0.073
0.3	92.7	0.026 ± 0.002	0.03 ± 0.0	1.167 ± 0.075
0.35	97.5	0.025 ± 0.003	0.046 ± 0.007	1.853 ± 0.071
0.4	98.9	0.031 ± 0.002	0.083 ± 0.001	2.641 ± 0.033
0.45	102.7	0.037 ± 0.0	0.132 ± 0.0	3.574 ± 0.0
0.5	105.1	0.04 ± 0.0	0.137 ± 0.0	3.45 ± 0.0
0.55	108.8	0.048 ± 0.0	0.229 ± 0.0	4.776 ± 0.0
0.6	113.7	0.055 ± 0.009	0.211 ± 0.019	3.818 ± 0.03
0.804	191.2	0.093 ± 0.0	0.277 ± 0.0	2.988 ± 0.0
0.906	338.4	0.123 ± 0.0	0.263 ± 0.003	2.149 ± 0.16
0.96	478.6	0.176 ± 0.0	0.289 ± 0.0	1.648 ± 0.0
0.999	619.5	0.195 ± 0.0	0.283 ± 0.0	1.445 ± 0.0
1.029	760.3	0.204 ± 0.0	0.27 ± 0.003	1.325 ± 0.014
1.055	902.6	0.22 ± 0.0	0.28 ± 0.0	1.274 ± 0.0
1.077	1046.2	0.249 ± 0.007	0.331 ± 0.048	1.322 ± 0.156
Table S24: Shear and bulk viscosity data for the OPLS n-decane model at \(T = 300 \) K, where the hydrogen bonds and the H-C-H angle is constrained.

\(\rho \) (g/cm\(^3\))	\(P \) (bar)	\(\eta \) (mPas)	\(\kappa \) (mPas)	\(\kappa / \eta \)
0.725	15.6	0.715 ± 0.039	2.812 ± 0.174	3.889 ± 0.006
0.733	122.1	0.82 ± 0.004	3.813 ± 0.142	4.769 ± 0.169
0.74	224.4	0.902 ± 0.02	3.547 ± 0.236	3.854 ± 0.341
0.746	329.5	1.058 ± 0.017	3.682 ± 0.001	3.378 ± 0.02
0.752	435.3	1.111 ± 0.021	3.85 ± 0.121	3.424 ± 0.018
0.758	536.8	1.133 ± 0.023	3.826 ± 0.318	3.389 ± 0.333
0.763	645.3	1.338 ± 0.052	4.028 ± 0.332	3.009 ± 0.425
0.768	742.5	1.271 ± 0.004	4.341 ± 0.105	3.428 ± 0.097

Table S25: Shear and bulk viscosity data for the fully flexible OPLS n-decane model at \(T = 300 \) K.

\(\rho \) (g/cm\(^3\))	\(P \) (bar)	\(\eta \) (mPas)	\(\kappa \) (mPas)	\(\kappa / \eta \)
0.725	28.8	0.712 ± 0.039	3.292 ± 0.087	4.751 ± 0.285
0.733	139.9	0.781 ± 0.009	3.315 ± 0.128	4.318 ± 0.125
0.74	243.3	0.886 ± 0.026	4.027 ± 0.165	4.596 ± 0.282
0.746	350.2	0.978 ± 0.009	4.456 ± 0.205	4.556 ± 0.465
0.752	460.7	1.071 ± 0.011	4.555 ± 0.047	4.347 ± 0.018
0.758	563.3	1.099 ± 0.064	4.427 ± 0.19	4.023 ± 0.386
0.763	670.2	1.31 ± 0.053	5.074 ± 0.08	3.892 ± 0.135
0.768	774.2	1.322 ± 0.0	4.631 ± 0.182	3.532 ± 0.126

Table S26: Shear and bulk viscosity data for the L-OPLS n-decane model at \(T = 300 \) K.

\(\rho \) (g/cm\(^3\))	\(P \) (bar)	\(\eta \) (mPas)	\(\kappa \) (mPas)	\(\kappa / \eta \)
0.725	111.8	0.734 ± 0.058	2.501 ± 0.422	3.363 ± 0.233
0.733	218.5	0.853 ± 0.058	2.762 ± 0.22	3.231 ± 0.02
0.74	321.7	0.904 ± 0.021	2.958 ± 0.032	3.251 ± 0.119
0.746	424.3	0.991 ± 0.027	3.366 ± 0.138	3.298 ± 0.126
0.752	527.8	0.999 ± 0.031	3.761 ± 0.318	3.594 ± 0.221
0.758	633.6	1.21 ± 0.021	3.573 ± 0.017	2.92 ± 0.06
0.763	738.9	1.281 ± 0.016	3.402 ± 0.032	2.737 ± 0.052
0.768	842.2	1.437 ± 0.022	3.813 ± 0.137	2.639 ± 0.108
Table S27: Shear and bulk viscosity data for the three-bead SAFT model at $T = 300$ K.

ρ (g/cm3)	P (bar)	η (mPas)	κ (mPas)	κ/η
0.725	-64.3	0.699 ± 0.017	0.66 ± 0.002	0.933 ± 0.021
0.733	23.4	0.747 ± 0.019	0.71 ± 0.018	0.937 ± 0.045
0.74	111.9	0.831 ± 0.027	0.657 ± 0.009	0.8 ± 0.044
0.746	198.4	0.928 ± 0.044	0.762 ± 0.042	0.78 ± 0.026
0.752	283.6	1.09 ± 0.048	0.879 ± 0.095	0.847 ± 0.141
0.758	371.1	1.129 ± 0.032	0.877 ± 0.069	0.798 ± 0.025
0.763	459.3	1.238 ± 0.03	1.133 ± 0.172	0.915 ± 0.176
0.768	546.9	1.367 ± 0.06	1.129 ± 0.09	0.858 ± 0.044
References

[1] R. Zwanzig, “Time-correlation functions and transport coefficients in statistical mechanics,” *Ann. Rev. Phys. Chem.*, vol. 16, pp. 67–102, 1964.

[2] K. E. Gubbins, “Thermal Transport Coefficients for Simple Dense Fluids,” in *Statistical Mechanics*, no. 6, ch. 4, pp. 194–253, Cambridge: Royal Society of Chemistry, 1973.

[3] K. Meier, A. Laesecke, and S. Kabelac, “Transport coefficients of the Lennard-Jones model fluid. III. Bulk viscosity,” *J. Chem. Phys.*, vol. 122, no. 1, 2005.

[4] V. G. Baidakov and S. P. Protsenko, “Metastable Lennard-Jones fluids. III. Bulk viscosity,” *J. Chem. Phys.*, vol. 141, no. 11, p. 114503, 2014.

[5] K. Meier, A. Laesecke, and S. Kabelac, “Transport coefficients of the Lennard-Jones model fluid. I. Viscosity,” *J. Chem. Phys.*, vol. 121, no. 8, pp. 3671–3687, 2004.

[6] O. Lobanova, C. Avendaño, T. Lafitte, E. A. Müller, and G. Jackson, “SAFT-γ force field for the simulation of molecular fluids: 4. A single-site coarse-grained model of water applicable over a wide temperature range,” *Mol. Phys.*, vol. 113, no. 9-10, pp. 1228–1249, 2015.

[7] P. T. Kiss and A. Baranyai, “Clusters of classical water models,” *J. Chem. Phys.*, vol. 131, no. 20, p. 204310, 2009.

[8] P. T. Kiss and A. Baranyai, “Sources of the deficiencies in the popular SPC/E and TIP3P models of water,” *J. Chem. Phys.*, vol. 134, no. 5, p. 054106, 2011.

[9] M. J. Holmes, N. G. Parker, and M. J. W. Povey, “Temperature dependence of bulk viscosity in water using acoustic spectroscopy,” *J. Phys. Conf. Ser.*, vol. 269, no. 012011, p. 7, 2011.

[10] T. A. Litovitz and E. H. Carnevale, “Effect of pressure on sound propagation in water,” *J. Appl. Phys.*, vol. 26, no. 7, pp. 816–820, 1955.

[11] S. Toxvaerd, “Comment on constrained molecular dynamics of macromolecules,” *J. Chem. Phys.*, vol. 87, no. 10, p. 6140, 1987.
[12] M. G. Sceats and J. M. Dawes, “On the viscoelastic properties of n-alkane liquids,” *J. Chem. Phys.*, vol. 83, no. 3, pp. 1296–1304, 1985.

[13] X.-D. Li, Z.-M. Hu, and Z.-L. Jiang, “Continuum perspective of bulk viscosity in compressible fluids,” *J. Fluid Mech.*, vol. 812, pp. 966–990, 2017.

[14] R. A. Fine and F. J. Millero, “Compressibility of water as a function of temperature and pressure,” *J. Chem. Phys.*, vol. 59, no. 10, pp. 5529–5536, 1973.