Hypoxia and fatty liver

Tomohiro Suzuki, Satoko Shinjo, Takatomo Arai, Mai Kanai, Nobuhito Goda

Department of Life Science and Medical BioScience, Waseda University School of Advanced Science and Engineering, Tokyo 162-8480, Japan

Author contributions: Suzuki T and Goda N designed and wrote the paper; Shinjo S, Arai T and Kanai M wrote the paper and discussed the body of the paper with Suzuki T and Goda N.

Supported by Grant from Waseda University (in part); a Grant For Special Research Projects from the MEXT-Supported Program for the Strategic Research Foundation at Private; and a Grant-in-Aid for Scientific Research (C) from MEXT

Correspondence to: Nobuhito Goda, MD, PhD, Department of Life Science and Medical BioScience, Waseda University School of Advanced Science and Engineering, TWIns 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan. goda@waseda.jp

Telephone: +81-3-53697319 Fax: +81-3-53697319
Received: October 25, 2013 Revised: February 14, 2014
Accepted: May 28, 2014
Published online: November 7, 2014

Abstract

The liver is a central organ that metabolizes excessive nutrients for storage in the form of glycogen and lipids and supplies energy-producing substrates to the peripheral tissues to maintain their function, even under starved conditions. These processes require a considerable amount of oxygen, which causes a steep oxygen gradient throughout the hepatic lobules. Alcohol consumption and/or excessive food intake can alter the hepatic metabolic balance drastically, which can precipitate fatty liver disease, a major cause of chronic liver diseases worldwide, ranging from simple steatosis, through steatohepatitis and hepatic fibrosis, to liver cirrhosis. Altered hepatic metabolism and tissue remodeling in fatty liver disease further disrupt hepatic oxygen homeostasis, resulting in severe liver hypoxia. As master regulators of adaptive responses to hypoxic stress, hypoxia-inducible factors (HIFs) modulate various cellular and organ functions, including erythropoiesis, angiogenesis, metabolic demand, and cell survival, by activating their target genes during fetal development and also in many disease conditions such as cancer, heart failure, and diabetes. In the past decade, it has become clear that HIFs serve as key factors in the regulation of lipid metabolism and fatty liver formation. This review discusses the molecular mechanisms by which hypoxia and HIFs regulate lipid metabolism in the development and progression of fatty liver disease.

© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: Hypoxia; Fatty liver disease; Hypoxia-inducible factor; Lipid metabolism; Obstructive sleep apnea

Core tip: Hypoxia occurs in the development and progression of fatty liver disease. Recent reports have shed light on the pathological significance of hypoxia-inducible factors (HIFs), master regulators of the hypoxic response, with regard to their regulation of lipid metabolism in context- and isoform-dependent manners. In this review, we summarize recent findings on the various roles of HIF-dependent regulation in fatty liver disease.

Suzuki T, Shinjo S, Arai T, Kanai M, Goda N. Hypoxia and fatty liver. World J Gastroenterol 2014; 20(41): 15087-15097 Available from: URL: http://www.wjgnet.com/1007-9327/full/v20/i41/15087.htm DOI: http://dx.doi.org/10.3748/wjg.v20.i41.15087

INTRODUCTION

Fatty liver disease (FLD), whether it is alcoholic (AFLD) or non-alcoholic (NAFLD), is a major cause of chronic liver disease worldwide[1,2]. FLD initially begins with simple hepatic steatosis but can irreversibly progress to steatohepatitis, fibrosis, cirrhosis, or hepatocellular carcinoma. Hepatic steatosis was initially thought to be a benign state of FLD, but recent studies have revealed that
fat accumulation in the liver clearly predisposes the organ to injury. NAFLD is also highly associated with obesity and diabetes, and insulin resistance is evident in livers that accumulate fat, leading to impaired glucose tolerance.\[3,4\] Thus, hepatic steatosis is a key step in the development and progression of subsequent pathology. However, pharmacological approaches have not successfully treated hepatic steatosis; therefore, a greater understanding of the mechanisms underlying the disease is required for the development of therapeutics.

In hepatic steatosis, five major pathways determine liver fat volume: (1) the uptake of free fatty acids (FFAs) and triglycerides (TG) from the diet; (2) de novo lipogenesis; (3) FA oxidation; (4) the export of TG as very low-density lipoprotein (VLDL) into the bloodstream; and (5) the flux of FFAs released from adipose tissue through lipolysis. In the case of AFLD, increased de novo lipogenesis and impaired FA oxidation in the liver are major contributors to lipid accumulation.\[5\] In contrast, in patients with NAFLD, adipose tissue lipolysis and hepatic de novo lipogenesis accounts for 59% and 26% of fat accumulation in the liver, respectively, with lower amounts derived from the diet (15%), emphasizing the importance of the former two pathways.\[6\] However, lipid disposal via β-oxidation and VLDL formation is only slightly affected.\[7\] Thus, various pathways related to hepatic lipid metabolism are implicated in the development of hepatic steatosis.

To date, studies in humans and rodents have revealed several major regulators of lipid metabolism. The sterol response element binding protein (SREBP) is a transcription factor that controls de novo lipogenesis.\[8,9\] SREBP has three isoforms: SREBP-1a, SREBP-1c, and SREBP-2. SREBP-1a and SREBP-1c are splice variants, and the liver predominantly expresses the SREBP-1c isoform together with SREBP-2. SREBP-1 is mainly involved in de novo FA and TG synthesis, whereas SREBP-2 controls cholesterol homeostasis. SREBP-1c promotes FA synthesis by inducing the expression of lipogenic genes such as fatty acid synthase (FAS), acyl-CoA carboxylase (ACC), and stearoyl-CoA desaturase (SCD)-1. These lipogenic genes have been reported to be associated with the development of FLD,\[5,7,10,11\] whereas the importance of SCD-1 in FLD is still controversial.\[12-14\] Peroxisome proliferator-activated receptors (PPARs) also act as crucial regulators of FA metabolism.\[16\] The PPAR subfamily consists of PPARα, PPARβ/δ, and PPARγ. PPARs heterodimerize with retinoid X receptor (RXR)α, and bind to peroxisome proliferator hormone response elements (PPREs) of target genes. The PPARα/RXRα complex promotes the expression of genes involved in FA oxidation, such as long-chain acyl CoA dehydrogenase (LCAD), medium-chain acyl CoA dehydrogenase (MCAD), and carnitine palmitoyl-CoA transferase-1 (CPT-1). In AFLD, the expression of these genes is well known to be reduced, which leads to impaired FA oxidation.\[12,10,11\] PPARγ is reportedly upregulated in patients with NAFLD and promotes lipogenesis in the liver.\[10,17\]

However, recent reports found that PPARγ agonists have beneficial effects on NAFLD by improving peripheral insulin sensitivity and may reduce hepatic fat content and fibrotic scarring.\[18-21\] Furthermore, the carbohydrate response element binding protein (ChREBP) and X-box binding protein (XBP)-1 are also involved in the regulation of hepatic lipid metabolism.\[4,12,22,28\]

Although in vitro and in vivo studies have elucidated the various signaling pathways that regulate lipid metabolism in FLD, little is known regarding upstream stimuli. Historically, in AFLD, hypoxia has been reported in the pericentral zone of hepatic lobules,\[24-26\] and it has also been suggested that an aberrant oxygen gradient can induce hepatic steatosis and subsequent disorders.\[27\] Recent studies have demonstrated that hypoxia is also observed in NAFLD.\[28\] In this review, we discuss the role of hypoxia in FLD, focusing on hypoxia-inducible factors (HIFs), which regulate the cellular and tissue adaptive responses to hypoxia, and the association between hypoxia and lipid metabolism.

HYPOXIA INDUCIBLE FACTORS

Aerobic organisms have evolved by using an innovative energy-producing system, mitochondrial oxidative phosphorylation, which requires oxygen as a final electron acceptor. Oxidative phosphorylation generates energy far more efficiently than anaerobic glycolysis, which was a major factor in the evolutionary progression to larger, multicellular organisms with multifunctional cells and organs. Oxygen, in turn, is required for homeostasis and survival of these organisms. However, oxygen deprivation occurs during development and in the cornea and bone marrow where oxygen supply is quite limited. Thus, cells need to activate specific molecular programs to overcome hypoxic challenges in these conditions.

Hypoxia inducible factors (HIFs) play central roles in the cellular and tissue adaptation to hypoxia. HIF was first discovered as a transcriptional regulator of erythropoietin, which is a hematopoietic regulator protein expressed predominantly in the kidney and, to a lesser extent, in the liver.\[29\] HIFs consist of an oxygen-sensitive α subunit (HIFα) and a constitutively expressed β-subunit [aryl hydrocarbon receptor nuclear translocator (ARNT), HIF-1β].\[30\] Three isoforms of HIFα subunits (HIF-1α, HIF-2α, and HIF-3α) have been identified. Both HIF-1 and HIF-2 exert overlapping roles in the regulation of erythropoiesis, angiogenesis, cell proliferation, and apoptosis, and each HIF regulates a unique subset of target genes (Table 1).\[31-34\] HIF-1 upregulates almost all glycolytic enzymes, including hexokinase (HK) 1, 2, phosphofructokinase, and pyruvate kinase (PK), especially in solid tumors and stem cells.\[35\] HIF-2 is an important inducer of anti-oxidant genes, including superoxide dismutase (SOD)-2.\[36\] HIF-3α lacks a transactivation domain and therefore is considered to be transcriptionally inactive. However, a splice variant of HIF-3α, named inhibitory of PAS domain protein, interacts directly with HIF-1α.
and prevents its binding to DNA, which inactivates its ability to induce downstream targets\(^{30}\).

The stability of HIF\(\alpha\) subunits is strictly regulated by oxygen concentration (Figure 1)\(^{31}\). In the presence of oxygen, HIF\(\alpha\) subunits are hydroxylated at specific proline residues by prolyl hydroxylase domain proteins (PHD1, PHD2, and PHD3) in an oxygen-dependent manner\(^{37,38}\). HIF\(\alpha\) subunits are subsequently recognized and targeted for degradation by the von Hippel-Lindau (VHL) protein, which has E3 ubiquitin ligase activity\(^{37,39}\). However, under hypoxic conditions, HIF\(\alpha\) subunits escape from proteasomal degradation and translocate to the nucleus to heterodimerize with ARNT to exert their transcriptional activity with its cofactor CREB-binding protein (CBP)/p300. In addition, factor-inhibiting HIF (FIH) also hydroxylates the asparagine residue of HIF\(\alpha\), which prevents the interaction between HIF\(\alpha\) and CBP/p300, leading to suppressed transcriptional activity\(^{40}\).

Hypoxia is associated with the progression of various diseases, such as cardiovascular disease, cancer, and inflammatory diseases\(^{41-43}\), and is also present in rodent models of liver disease\(^{44}\). In fatty liver disease, the “hypermetabolic state” may be a driving force for lobular hypoxia. Chronic ethanol consumption promotes the expression of cytochrome P450 2E1 (CYP2E1) in the pericentral zone of hepatic lobules, which metabolizes ethanol and acetaldehyde using oxygen as a co-substrate\(^{45,46}\). In addition, hepatocytes reoxidize excessive reducing equivalents of NADH produced by oxidation of ethanol via alcohol dehydrogenase and aldehyde dehydrogenase in mitochondria\(^{47-49}\). Indeed, oxygen consumption has been reported to increase in the liver of alcohol-fed rats, leading to a reduction in the oxygen content of hepatic venous blood\(^{50}\). In NAFLD, the excessive intake of foods containing lipids may promote \(\beta\)-oxidation of FA, and hence, increase hepatic hypoxia.
which requires a considerable amount of oxygen[51,52]. Constriction of hepatic sinusoids and/or prevention of substrate exchange due to swelling of hepatocytes and accumulation of a fibrotic scar may trigger the development of hypoxia in NAFLD[53]. In addition, reactive oxygen species (ROS) are produced in the pathogenesis of liver disease, which leads to the stabilization of HIF\textsubscript{2}\textalpha subunits by inhibition of PHDs. Indeed, HIF expression is increased in liver diseases, including AFLD and NAFLD[54-60]. These observations imply that HIFs are involved in the development of fatty liver and the pathological sequelae.

ROLE OF HIFs IN FATTY LIVER

Hypoxia is tightly associated with lipid homeostasis, as both in vitro and in vivo studies reveal that ischemic and hypoxic stress increases cellular lipid deposition[65-67].

Hypoxia also upregulates genes involved in lipogenesis, lipid uptake, and lipid droplet formation[55-67]. In addition, several studies have implicated the role of HIFs in lipid homeostasis. In von hipple-lindau (VHL)-deficient renal cell carcinomas that highly express both HIF-1\textalpha and HIF-2\textalpha, neutral lipids accumulate, which makes the cells appear clear[68]. Moreover, heterozygous deletion of VHL or liver-specific inactivation of VHL results in hepatocellular steatosis[69,70]. These observations have encouraged researchers to investigate whether HIFs play a role in lipid metabolism in the liver. Rankin et al[71] demonstrated that HIF-2 functions as an important regulator of hepatic lipid metabolism, as it impairs FA \(\beta\)-oxidation and increases lipid storage capacity. In VHL-deficient mice, deletion of HIF-2\textalpha results in reduced lipid accumulation, whereas this effect is not observed in HIF-1\textalpha-deleted mice. In VHL-null animals, HIF-2 reduces the expression of genes involved in \(\beta\)-oxidation (Acox1, Cpt1, Grot) and promotes lipid droplet formation by inducing the expression of a lipid droplet associated protein (Adip). A subsequent investigation using Adeno-Cre mediated liver-specific disruption of VHL suggested that downregulation of \(\beta\)-oxidation in VHL-deficient mice may be attributable to impaired mitochondrial respiration, which is due in part to a decrease in the Fe-S cluster assembly protein levels, IscU1/2[72]. In addition, tamoxifen-induced temporal disruption of VHL in the liver results in increased hepatic lipid accumulation, which is reversed by the simultaneous disruption of HIF-2\textalpha but not HIF-1\textalpha[73]. Interestingly, the mechanisms involved in lipid accumulation appear to differ depending on the time after tamoxifen treatment. The expression of genes involved in FA synthesis (Srebp-1c and Fasn) increases 3 d post-treatment, but it is significantly suppressed by 14 d. Genes involved in \(\beta\)-oxidation (Cpt1a, Cpt2, Acox1, and Ppara) are also reduced 14 d post-treatment. Moreover, angiopoietin-like 3 (Angpt3), an endogenous lipoprotein lipase inhibitor, is induced after disruption of VHL and is strongly upregulated by HIF-2. The importance of HIF-2 in lipid metabolism is further confirmed in Phd2/3-double knockout mice[54]. Although the majority of studies indicate that HIF-2 promotes fat accumulation, some reports indicate the contrary. Germ-line deletion of HIF-2\textalpha paradoxically results in severe steatosis due to impaired \(\beta\)-oxidation through ROS-mediated mitochondrial dysfunction[73]. In addition, activation of HIF-2 in hepatocytes only has a minimal effect on hepatic lipid accumulation[73]. Simultaneous activation of HIF-1 and HIF-2 results in severe steatosis, suggesting that the regulation of lipid metabolism via HIFs may be more complex than originally thought.

On the other hand, recent studies have also demonstrated the physiological and pathological effect of HIF-1 levels in the fatty liver. Using a liver-specific HIF-1\textalpha-deleted mouse model, we found that HIF-1\textalpha prevents excessive lipid accumulation by suppressing the SREBP-1c-dependent lipogenic pathway in the alcoholic fatty liver[74]. Chronic ethanol administration results in hypoxia in the pericentral zone of hepatic lobules and HIF-1\textalpha is correspondingly expressed in this region. HIF-1 enhances the expression of a circadian helix-loop-helix (HLH) transcription factor, differentiated embryonic chondrocyte 1 (DEC1), which reduces the expression of SREBP-1c and its downstream lipogenic genes. These findings are in a good agreement with previous reports that HIF-1 induces transcriptional activation of DEC1, which in turn represses SREBP-1c-mediated gene expression by competing with other HLH transcription factors to bind the E-box of the SREBP promoter and/or by directly interacting with the SREBP-1c protein[75,76]. In addition, the administration of DMOG, a pharmacological inhibitor of PHDs, reduces ethanol-induced lipid accumulation in the liver in a HIF-1-dependent manner. It has been consistently shown that the ablation of ARNT promotes lipogenic gene expression (SCD-1, FAS) in the liver, which suggests that HIF-1 prevents lipid synthesis[78]. Protective effects of HIF-1 activation against fatty liver disease are further supported by a recent report suggesting that HIF-1 promotes mitochondrial \(\beta\)-oxidation and prevents lipid peroxidation by regulating mitochondrial biogenesis in the liver of high-fat diet (HFD)-fed animals[79]. Collectively, these results indicate that HIF-1 serves as a protective factor against the development of fatty liver and that pharmacological prolyl hydroxylase inhibitors may lead to the development of therapies for the disease. In contrast, Nath et al[80] found that HIF-1 is critical for the development of hepatic steatosis. The authors demonstrated that a combined treatment of ethanol and an inflammatory stimulus (LPS) aggravates hepatic steatosis through induction of HIF-1 \(\alpha\)-specific monocyte chemotactic protein 1 (MCP1). It is not clear why opposing results are obtained from these two studies. One possible explanation is that the presence of inflammation may rewire the HIF-1 pathway, which leads to a different gene expression profile compared to that observed in simple steatosis. In support of this hypothesis, a combination of hypoxia and proinflammatory stimuli strongly enhances the expression of HIF-1 due to a positive feedback loop mechanism between HIF-1 and nuclear factor \(\kappa\)B (NF\(\kappa\)B), which may mimic the overex-
expression studies of HIF-1α[79-82]. In addition, it is implicated that inflammation promotes lipid accumulation by the tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) pathways[83-86]. In contrast, HIF-1 suppresses lipid accumulation by inhibiting de novo lipogenesis. HIF-1 also promotes lipid storage and lipid export.

In addition to the development of fatty liver, HIFs also play a critical role in the pathological sequelae, especially in hepatic fibrosis. Consistent observations suggest that angiogenesis is tightly associated with fibrogenesis in experimental models and human diseases. In fact, vascular endothelial growth factor (VEGF) is now a potential target for the treatment of fibrosis[87-89]. Hypoxic areas are present in the fibrotic liver and co-localize with VEGF expression in endothelial cells, hepatocytes, and hepatic stellate cells (HSCs)[90-92]. In addition, a clinical study revealed that in the human cirrhotic liver, heme oxygenase-1, a well-known target of HIF-1, and HIF-2α are detected in the hepatocytes of regenerative nodules and cells of fibrotic septa[92]. In agreement with these reports, Moon et al[93] demonstrated that bile duct ligation in mice induces hypoxia and HIF-1α activation. Deletion of HIF-1α attenuates fibrogenesis due to the reduced expression of profibrogenic genes, such as platelet-derived growth factor (PDGF)-A, PDGF-B, and plasminogen activator inhibitor-1. Considering the lack of transcriptional activation of PDGFs in the hepatocytes of the fibrotic liver, non-parenchymal cells, presumably macrophages and/or stellate cells, are major contributors to hepatic fibrosis[94-96]. Consistent with this hypothesis, ARNT in myeloid cells contributes to the development of hepatic fibrogenesis via induction of PDGF-B expression[97]. In addition, another report found that overexpression of HIF-2 but not HIF-1 in hepatocytes promotes inflammation and fibrosis in the liver[98]. Although, these in vivo studies have provided evidence that HIFs are important regulators of hepatic fibrosis, the role of each HIF isoform in each cell type is not fully understood, particularly in the context of NAFLD. It is worth noting that macrophages have opposing roles during the progression of and recovery from hepatic fibrosis[99]. It is hypothesized that alternatively activated macrophages (AAMs) promote fibrosis by inducing profibrogenic factors, while classically activated macrophages (CAMs) mediate recovery responses by secreting matrix metalloproteinases and/or removing fibrillar collagen[99]. In addition, CAMs and AAMs predominantly express HIF-1α and HIF-2α, respectively[100]. These observations suggest that HIF-1 and HIF-2 in macrophages may have different roles during fibrosis development.

Overall, the regulation of lipid metabolism by HIFs is complex (Figure 2), and genetic and environmental factors may affect its role in the pathogenesis of fatty liver. The involvement of DECs and ChREBP in the HIF-1 pathway suggests that lifestyle and diet may affect HIF-1-mediated lipid metabolism via lipogenic transcription factors, such as SREBP-1c and PPARγ[76,77,101]. In addition, the role of different HIF isoforms in various cell types during the progression of NAFLD needs to be elucidated. Further studies are required to identify the functional interactions between HIFs and other factors that produce mixed phenotypes observed in FLD.

OBSTRUCTIVE SLEEP APNEA AND FATTY LIVER

Obstructive sleep apnea (OSA) is another risk factor for
the development of NAFLD. OSA is an obstruction of the upper airway and is associated with intermittent hypoxia (IH), temporal deprivation of oxygen from the blood.[102] Studies of human OSA have revealed an association between OSA and NAFLD. Independent of the presence of obesity, IH induces insulin resistance, liver injury, and fibrosis, and the effects are more severe in obese patients.[103-107] While the presence of hepatic steatosis and inflammation in lean patients with OSA was not conclusively determined in these studies, other clinical studies have demonstrated that a combination of OSA and obesity promotes excessive fat accumulation and progression of NAFLD to non-alcoholic steatohepatitis (NASH).[108,109] Recently, an important meta-analysis of 11 clinical studies with 404 controls and 668 OSA patients was conducted, clarifying that OSA is associated with liver injury, fatty liver and fibrosis but not inflammation.[110] To investigate the role of OSA in the development of disease, Fletcher et al.[111] first established a rodent model of IH, in which N2 or air is repeatedly infused into a chamber, mimicking the abnormal fluctuation of oxyhemoglobin saturation observed in OSA patients. This model has been used to elucidate the mechanism(s) by which IH affects lipid metabolism in the fatty liver. Short-term exposure to IH in lean mice induces hepatic steatosis and dyslipidemia through SREBP-1c and its downstream target SCD-1,[112] whereas long-term exposure abolishes this effect.[113] In contrast, long-term IH exposure increases lipid accumulation in the liver of leptin-deficient mice (ob/ob), which upregulates lipogenic genes such as SREBP-1, SCD-1, and glycerol 3-phosphate acyltransferase.[114] Furthermore, a combination of high fat diet-induced obesity and long-term IH exacerbates hepatic steatosis and inflammation.[115] Overall, these observations suggest that long-term IH better mimics human OSA in NAFLD.

IH and chronic hypoxia control the stability of HIF proteins via different mechanisms (Figure 3). In the case of HIF-1α, IH induces ROS production by nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, which then increases Ca2+ concentration in the cytoplasm.[116] This increase in Ca2+ activates protein kinase C, which in turn inactivates PHDs and stimulates translation of HIF-1α by activating mammalian target of rapamycin. Ca2+ also activates calmodulin kinase, which further augments HIF-1 signaling via different mechanisms.[117] In contrast, Ca2+ signaling activates calpain protease, which in turn degrades HIF-2α.[118] IH also reduces the expression of calpastatin, which serves as an inhibitor of calpain. Moreover, a recent study found that xanthine oxidase, but not NADPH oxidase, is required for ROS-mediated HIF-2α degradation.[119] These results clearly suggest that IH promotes the expression of HIF-1α, while destabilizing HIF-2α.

HIFs also serve as central regulators in the development of NAFLD in OSA. Li et al.[120] demonstrated that the heterozygous deletion of HIF-1α in mice reduces serum and hepatic TG contents. HIF-1 induces the expression of SREBP cleavage activation protein in hepatocytes, which escorts SREBP from the ER to the Golgi apparatus and triggers SREBP cleavage. The subsequent accumulation of active SREBP fragments in the nucleus
results in SCD-1 up-regulation. Thus, IH causes hepatic steatosis and hyperlipidemia presumably through the induction of HIF-1α in the liver. However, neuronal or inter-organ effects must be considered to interpret the mechanisms involved in NAFLD development of OSA.

In fact, HIF-1 in the carotid body regulates systemic responses to IH by activating the sympathetic nerve system (SNS), which in turn stimulates adipose tissue lipolysis[122], suggesting that SNS affects hepatic lipid content. In addition, HIF-1 prevents the secretion of adiponectin from adipose tissue, which suppresses de novo lipogenesis in the liver[123,124]. Therefore, the extent to which HIF-1 in the liver contributes to serum and hepatic lipid contents during IH remains to be determined.

CONCLUSION

Hypoxia is associated with the development of fatty liver, and it is now clear that hypoxia-inducible transcription factors regulate lipid metabolism in hepatocytes. OSA is an independent risk factor for developing NAFLD. Obesity and OSA synergistically accelerate tissue hypoxia, which further leads to the development of severe hepatic steatosis and inflammation. In addition to the imbalance between oxygen supply and demand, other factors such as inflammation and nutrients as well as inter-organ metabolic and signaling crosstalk must be considered to interpret the hypoxic response during fatty liver development. In addition, each HIF target gene has a unique optimal temperature for oxygenation, which further leads to the development of severe hepatic steatosis and insulin resistance. Lessons from experimental systems suggest that SCD-1 and FAS are key regulators of lipid metabolism in the liver[122,124]. Therefore, increased HIF activity may be a desirable therapeutic target for the treatment of fatty liver.

REFERENCES

1. Gao B, Bataller R. Alcoholic liver disease: pathogenesis and new therapeutic targets. Gastroenterology 2011; 141: 1572-1585
2. Cohen JC, Horton JD, Hobbs HH. Human fatty liver disease: old questions and new insights. J Clin Invest 2011; 121: 1519-1523
3. Savage DB, Semple RK. Recent insights into fatty liver, metabolic dyslipidaemia and their links to insulin resistance. Curr Opin Lipidol 2010; 21: 329-336
4. Tilm H, Moschen AR. Insulin resistance, inflammation, and non-alcoholic fatty liver disease. Trends Endocrinol Metab 2008; 19: 371-379
5. Crabb DW, Liangpunsakul S. Alcohol and lipid metabolism. J Gastroenterol Hepatol 2006; 21 Suppl 3: S56-S60
6. Doglietti L, Smith CI, Schwarzenberg SJ, Jessurun J, Boldt MD, Parks EJ. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest 2005; 115: 1343-1351
7. Postic C, Girard J. Contribution of de novo fatty acid synthesis to hepatic steatosis and insulin resistance: lessons from genetically engineered mice. J Clin Invest 2008; 118: 829-838
8. Goldstein JL, DeBoose-Boyd RA, Brown MS. Protein sensors for membrane sterols. Cell 2006; 124: 35-46
9. Raghothama K, Deng X, Park EA, Elman MB. SREBP-1c: the crossroads of physiological and pathological lipid homeostasis. Trends Endocrinol Metab 2008; 19: 65-73
10. Purohit V, Gao B, Song B. Molecular mechanisms of alcoholic fatty liver. Alcohol Clin Exp Res 2009; 33: 191-205
11. Reddy JK, Rao MS. Lipid metabolism and liver inflammation. II. Fatty liver disease and fatty acid oxidation. Am J Physiol Gastrointest Liver Physiol 2006; 290: G582-G588
12. Fernandez Gallardo E, Burgueño A, Gonzales Mansilla N, Pirolo CJ, Sookoian S. Fatty liver is associated with transcriptional downregulation of stearoyl-CoA desaturase and impaired protein dimerization. PLoS One 2013; 8: e76912
13. Dobrzyn A, Ntambi JM. Stearoyl-CoA desaturase as a new drug target for obesity treatment. Obes Rev 2005; 6: 169-174
14. Fierro J, Ancoli-Israel S. Obstructive sleep apnea is an independent risk factor for developing NAFLD. J Clin Endocrinol Metab 2011; 96: 737-747
15. Silvernagel G, Kucharz K, Cegielski W, Schlesinger M, Iorio E. Silbernagel G. Human fatty liver disease: a new therapeutic target. Curr Opin Gastroenterol 2010; 26: 477-481
16. Evans RM, Barish GD, Wang YX. PPARs and the complex journey to obesity. Nat Med 2004; 10: 355-361
17. Matussek U, Haluzik M, Lambert G, Yim SH, Gavrilova O, Ward JM, Breuer B, Reitman ML, Gonzalez FJ. Liver-specific disruption of PPARgamma in leptin-deficient mice improves fatty liver but aggravates diabetic phenotypes. J Clin Invest 2003; 111: 737-747
18. Zheng H, Li S, Ma L, Cheng L, Deng C, Chen Z, Xie C, Xiang M, Jiang W, Chen L. A novel agonist of PPAR-gamma based on barbituric acid alleviates the development of non-alcoholic fatty liver disease by regulating adipocytokine expression and preventing insulin resistance. Eur J Pharmacol 2011; 659: 244-251
19. Ratziu V, Giraud J, Lauressergues F, Heurtier A, Serfaty L, Podvez P, Lacorte JM, Fernández Gianotti T, Purohit V, Sookoian S. Fatty liver is associated with transcriptional downregulation of stearoyl-CoA desaturase and impaired protein dimerization. J Clin Endocrinol Metab 2012; 97: E2288-E2292
20. Reddy JK, Rao MS. Lipid metabolism and liver inflammation. II. Fatty liver disease and fatty acid oxidation. Am J Physiol Gastrointest Liver Physiol 2006; 290: G582-G588
21. Silvernagel G, Kucharz K, Cegielski W, Schlesinger M, Iorio E. Silbernagel G. Human fatty liver disease: a new therapeutic target. Curr Opin Gastroenterol 2010; 26: 477-481
22. Lee AH, Scapa EF, Cohen DE, Glimcher LH. Regulation of hepatic lipogenesis by the transcription factor XBP1. Science 2008; 320: 1492-1496
23. Peter A. High hepatic SCD1 activity is associated with low liver fat content in healthy subjects under a lipogenic diet. J Physiol Pharmacol 2011; 62: 259-267
24. Kurikawa N, Takagi T, Wakimoto S, Uto Y, Terashima H, Kono K, Ogata T, Ohsumi J. A novel inhibitor of stearoyl-CoA desaturase-1 attenuates hepatic lipid accumulation, liver injury and inflammation in model of nonalcoholic steatohepatitis. Biol Pharm Bull 2013; 36: 259-267
25. Silbernagel G, Kucharz K, Cegielski W, Schlesinger M, Iorio E. Silbernagel G. Human fatty liver disease: a new therapeutic target. Curr Opin Gastroenterol 2010; 26: 477-481
26. Evans RM, Barish GD, Wang YX. PPARs and the complex journey to obesity. Nat Med 2004; 10: 355-361
27. Matussek U, Haluzik M, Lambert G, Yim SH, Gavrilova O, Ward JM, Breuer B, Reitman ML, Gonzalez FJ. Liver-specific disruption of PPARgamma in leptin-deficient mice improves fatty liver but aggravates diabetic phenotypes. J Clin Invest 2003; 111: 737-747
28. Zheng H, Li S, Ma L, Cheng L, Deng C, Chen Z, Xie C, Xiang M, Jiang W, Chen L. A novel agonist of PPAR-gamma based on barbituric acid alleviates the development of non-alcoholic fatty liver disease by regulating adipocytokine expression and preventing insulin resistance. Eur J Pharmacol 2011; 659: 244-251
29. Lee AH, Scapa EF, Cohen DE, Glimcher LH. Regulation of hepatic lipogenesis by the transcription factor XBP1. Science 2008; 320: 1492-1496
30. Peter A. High hepatic SCD1 activity is associated with low liver fat content in healthy subjects under a lipogenic diet. J Physiol Pharmacol 2011; 62: 259-267
31. Reddy JK, Rao MS. Lipid metabolism and liver inflammation. II. Fatty liver disease and fatty acid oxidation. Am J Physiol Gastrointest Liver Physiol 2006; 290: G582-G588
Hypoxia-induced signaling in the cardiovascular system. *Annu Rev Physiol* 2008; 70: 51-71 [PMID: 17850210 DOI: 10.1146/annurev.physiol.70.113006.100526]

42 Wilson WR, Hay MP. Targeting hypoxia in cancer therapy. *Nat Rev Cancer* 2011; 11: 393-410 [PMID: 21608941 DOI: 10.1038/nrc3064]

43 Eltzschig HK, Carmeliet P. Hypoxia and inflammation. *N Engl J Med* 2011; 364: 655-665 [PMID: 21323543 DOI: 10.1056/NEJMra091283]

44 Nath B, Szabo G. Hypoxia and hypoxia inducible factors: diverse roles in liver diseases. *Hepatology* 2012; 55: 622-633 [PMID: 22120903 DOI: 10.1002/hep.25940]

45 Lieber CS. Cytochrome P450ER1: its physiological and pathological role. *Physiol Rev* 1997; 77: 517-544 [PMID: 9114822]

46 Gorsky LD, Koop DR, Coon MJ. On the stoichiometry of the oxidase and monoxygenase reactions catalyzed by liver microsomal cytochrome P-450. *Products of oxygen reduction. J Biol Chem* 1984; 259: 6812-6817 [PMID: 6725272]

47 Thurman RG, Ji S, Matsumura T, Lemasters J. Is hypoxia involved in the mechanism of alcohol-induced liver injury? *Fundam Appl Toxicol* 1984; 4: 129-133 [PMID: 6724187]

48 French SW, Benson NC, Sun PS. Centrilobular liver necrosis induced by hypoxia in chronic ethanol-fed rats. *Hepatology* 1984; 4: 912-917 [PMID: 6479856]

49 Sato N, Kamada T, Kawano S, Hayashi N, Kishida Y, Meren H, Yoshihara H, Abe H. Effect of acute and chronic ethanol consumption on hepatic tissue oxygen tension in rats. *Pharmacol Biochem Behav* 1983; 18 Suppl 1: 443-447 [PMID: 6685353]

50 Tsukamoto H, Xi XP. Incomplete compensation of enhanced hepatic oxygen consumption in rats with alcoholic centrilobular liver necrosis. *Hepatology* 1989; 9: 302-306 [PMID: 2912830]

51 Henly DC, Berry MN. Effect of palmitate concentration on the relative contributions of the beta-oxidation pathway and citric acid cycle to total O2 consumption of isolated rat hepatocytes. *Biochim Biophys Acta* 1993; 1175: 269-276 [PMID: 8435443]

52 Nasrin N, Wu X, Fortier E, Feng Y, Bare’ OC, Chen S, Ren X, Wu Z, Streeper RS, Bordone L. SIRT4 regulates fatty acid oxidation and mitochondrial gene expression in liver and muscle cells. *J Biol Chem* 2010; 285: 31995-32002 [PMID: 20685565 DOI: 10.1074/jbc.M110.124164]

53 Kondo K, Sugioji T, Tsukada K, Aizawa M, Takizawa M, Shimizu K, Morimoto M, Suematsu M, Goda N, Fennoliter, a peroxisome proliferator-activated receptor alpha agonist, improves hepatic microcirculatory patency and oxygen availability in a high-fat-diet-induced fatty liver in mice. *Adv Exp Med Biol* 2010; 662: 77-82 [PMID: 2040774 DOI: 10.1007/978-1-4419-2281-0_6]

54 Kaelin WG. ROS: really involved in oxygen sensing. *Cell Metab* 2005; 1: 357-358 [PMID: 16054083 DOI: 10.1016/j.cmet.2005.05.006]

55 Klimova T, Chandel NS. Mitochondrial complex III regulates hypoxic activation of HIF. *Cell Death Differ* 2008; 15: 660-666 [PMID: 18219320 DOI: 10.1038/sj.cdd.4402307]

56 Leung TM, Nieto N. CYP2E1 and oxidant stress in alcoholic and non-alcoholic fatty liver disease. *J Hepatol* 2013; 58: 395-398 [PMID: 2294046 DOI: 10.1016/j.jhep.2012.08.018]

57 Wang X, Wu D, Yang L, Gan L, Cederbaum AL. Cytochrome P450 2E1 potentiates ethanol induction of hypoxia and HIF-1α in vivo. *Free Radic Biol Med* 2013; 63: 175-186 [PMID: 23669278 DOI: 10.1016/j.freeradbiomed.2013.05.009]

58 Carabelli J, Burgueño AL, Rosselli MS, Gianiotti TF, Lago NR, Pirola CJ, Sookoian S. High fat diet-induced liver steatosis promotes an increase in liver mitochondrial biogenesis in response to hypoxia. *J Cell Mol Med* 2011; 15: 1329-1338 [PMID: 20629985 DOI: 10.1111/j.1582-4934.2010.01128.x]

59 Nishiyama Y, Goda N, Kanai M, Niwa D, Osatani K, Yamamoto Y, Senoo-Matsuda N, Johnson RS, Miura S, Kabe Y, Suzuki T et al. HIF and fatty liver...
Suzuki T et al. HIF and fatty liver

toppath 2014; 29: 33-44 [PMID: 23996844]

89 Paternostro C, David E, Novo E, Parola M. Hypoxia, angiogenesis and liver fibrogenesis in the progression of chronic liver diseases. World J Gastroenterol 2010; 16: 281-288 [PMID: 20802427 DOI: 10.3748/wjg.v16.i3.281]

90 Corpechot C, Barbu V, Wendum D, Kinman N, Rey C, Poupon R, Housset C, Rosmorduc O. Hypoxia-induced VEGF and collagen I expressions are associated with angiogenesis and fibrogenesis in experimental cirrhosis. Hepatology 2002; 35: 1010-1021 [PMID: 11981751 DOI: 10.1053/jhep.2002.32524]

91 Novo E, Cannito S, Zamara E, Valdeiro Bonzo L, Caligiuri A, Cravanzola C, Compagnone A, Colombatto S, Marra F, Pinzani M, Parola M. Proangiogenic cytokines as hypoxia-dependent factors stimulating migration of human hepatic stellate cells. Am J Pathol 2007; 170: 1942-1953 [PMID: 1752562]

92 Novo E, Povero D, Busletta C, Paternostro C, di Bonzo LV, Cannito S, Compagnone A, Bandino A, Marra F, Colombatto S, David E, Pinzani M, Parola M. The biphase nature of hypoxia-induced directional migration of activated human hepatic stellate cells. J Pathol 2012; 226: 588-597 [PMID: 21959987 DOI: 10.1002/path.3005]

93 Moon JO, Welch TP, Gonzalez FJ, Copple BL. Reduced liver fibrosis in hypoxia-inducible factor-1alpha-deficient mice. Am J Pathol 2009; 174: 5328-5329 [PMID: 19136383 DOI: 10.1152/ajpath.00368.2008]

94 Copple BL, Bustamante J, Welch TP, Kim ND, Moon JO. Hypoxia-inducible factor-dependent production of profibrotic mediators by hypoxic hepatocytes. Liver Int 2009; 29: 1010-1021 [PMID: 19302442 DOI: 10.1111/j.1478-3231.2009.02015.x]

95 Kuwabara K, Ogawa S, Matsumoto M, Koga S, Claus M, Pinsky DJ, Lyn P, Leavy J, Witte L, Joseph-Silverstein J. Hypoxia-mediated induction of acidic/basic fibroblast growth factor and platelet-derived growth factor in mononuclear phagocytes stimulates growth of hypoxic endothelial cells. Proc Natl Acad Sci USA 1995; 92: 4606-4610 [PMID: 7538678]

96 Copple BL, Bai S, Burgoon LD, Moon JO. Hypoxia-inducible factor-1alpha regulates the expression of genes in hypoxic hepatic stellate cells important for collagen deposition and angiogenesis. Liver Int 2011; 31: 230-244 [PMID: 20880076 DOI: 10.1111/j.1478-3231.2010.02347.x]

97 Copple BL, Kaska S, Wentling C. Hypoxia-inducible factor activation in myeloid cells contributes to the development of liver fibrosis in cholestatic mice. J Pharmacol Exp Ther 2012; 340: 307-316 [PMID: 22721892 DOI: 10.1124/jpet.111.198340]

98 Duffield JS, Forbes SL, Constantinou CM, Clay S, Partolina M, Vuthoori S, Wu S, Lang R, Iredale JP. Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J Clin Invest 2005; 115: 56-65 [PMID: 15634404 DOI: 10.1172/JCI22675]

99 Wynn TA, Barron L. Macrophages: master regulators of inflammation and fibrosis. Semin Liver Dis 2010; 30: 245-257 [PMID: 20665377 DOI: 10.1055/s-0030-1255354]

100 Takeda N, O’Dea EL, Doedens A, Kim JW, Weidemann A, Stockmann C, Asagiri M, Simon MC, Hoffmann A, Johnson RS. Differential activation and antagonistic function of HIF-[alpha] isoforms in macrophages are essential for NO homeostasis. Genes Dev 2010; 24: 491-501 [PMID: 20194441 DOI: 10.1101/gad.1881401]

101 Noordeen NA, Kherandish-Gozal L, San Capdevila O, Kherandish E, Gozal D. Elevated serum aminotransferase levels in children at risk for obstructive sleep apnea. Chest 2008; 133: 92-99 [PMID: 18157742 DOI: 10.1378/chest.07-0773]

102 Fletcher EC, Lesske J, Qian W, Miller CC, Unger T. Repetitive, episodic hypoxia causes diurnal elevation of blood pressure in rats. Hypertension 1992; 19: 555-561 [PMID: 1592450]

103 Li J, Thorne LN, Punjabi NM, Sun CK, Schwartz AR, Smith PL, Marino RL, Rodriguez A, Hubbard WC, O’Donnell CP, Polotsky VY. Intermittent hypoxia induces hyperlipidemia in lean mice. Circ Res 2005; 97: 698-706 [PMID: 16123334 DOI: 10.1161/01.RES.0000185367.60089.a9]

104 Savransky V, Nanayakkara A, Vivero A, Li J, Bevans S, Smith PL, Tortorello ML, Polotsky VY. Chronic intermittent hypoxia predisposes to liver injury. Hepatology 2007; 45: 1007-1013 [PMID: 17393512 DOI: 10.1002/hep.21593]

105 Li J, Grigoryev DN, Ye SQ, Thorne L, Schwartz AR, Smith PL, O’Donnell CP, Polotsky VY. Chronic intermittent hypoxia upregulates genes of lipid biosynthesis in obese mice. J Appl Physiol (1985) 2005; 99: 1634-1648 [PMID: 16037401 DOI: 10.1152/japplphysiol.00522.2005]

106 Drager LF, Li J, Reinecke C, Bevans-Fonti S, Jun JC, Polotsky VY. Intermittent hypoxia exacerbates metabolic effects of diet-induced obesity. Obesity (Silver Spring) 2011; 19: 2167-2174 [PMID: 21799478 DOI: 10.1038/oby.2011.240]

107 Yuan G, Panduru J, Khan S, Semenza GL, Prabhakar NR. Induction of HIF-1alpha expression by intermittent hypoxia: involvement of NADPH oxidase, Ca2+ signaling, prolyl hydroxylases, and mTOR. J Cell Physiol 2008; 217: 674-685 [PMID: 18651504 DOI: 10.1002/jcp.21537]

108 Yuan G, Panduru J, Bhasker CR, Semenza GL, Prabhakar NR. Ca2+ /calmodulin kinase-dependent activation of hypoxia inducible factor 1alpha inducible transactivation in cells subjected to intermittent hypoxia. J Biol Chem 2005; 280: 4321-4328 [PMID: 15569687 DOI: 10.1074/jbc.M407706200]

109 Malec V, Gottschald OR, Li S, Rose F, Seeger W, Hänze J. HIF-1 alpha signaling is augmented during intermittent hypoxia by induction of the Nrf2 pathway in NOX1-expressing
Nanduri J, Wang N, Yuan G, Khan SA, Souvannakitti D, Peng YJ, Kumar GK, Garcia JA, Prabhakar NR. Intermittent hypoxia degrades HIF-2alpha via calpains resulting in oxidative stress: implications for recurrent apnea-induced morbidities. *Proc Natl Acad Sci USA* 2009; 106: 1199-1204 [PMID: 19147445 DOI: 10.1073/pnas.0811018106]

Nanduri J, Vaddi DR, Khan SA, Wang N, Makerenko V, Prabhakar NR. Xanthine oxidase mediates hypoxia-inducible factor-2α degradation by intermittent hypoxia. *PLoS One* 2013; 8: e75838 [PMID: 24124516 DOI: 10.1371/journal.pone.0075838]

Li J, Bosch-Marce M, Nanayakkara A, Savransky V, Fried SK, Semenza GL, Polotsky VY. Altered metabolic responses to intermittent hypoxia in mice with partial deficiency of hypoxia-inducible factor-1alpha. *Physiol Genomics* 2006; 25: 450-457 [PMID: 16507783 DOI: 10.1152/physiolgenomics.00293.2005]

Peng YJ, Yuan G, Ramakrishnan D, Sharma SD, Bosch-Marce M, Kumar GK, Semenza GL, Prabhakar NR. Heterozygous HIF-1alpha deficiency impairs carotid body-mediated systemic responses and reactive oxygen species generation in mice exposed to intermittent hypoxia. *J Physiol* 2006; 577: 705-716 [PMID: 16973705 DOI: 10.1113/jphysiol.2006.114033]

Jiang C, Kim JH, Li F, Qu A, Gavrilova O, Shah YM, Gonzalez FJ. Hypoxia-inducible factor 1α regulates a SOCS3-STAT3-adiponectin signal transduction pathway in adipocytes. *J Biol Chem* 2013; 288: 3844-3857 [PMID: 23255598 DOI: 10.1074/jbc.M112.426338]

Jiang C, Qu A, Matsubara T, Chanturiya T, Jou W, Gavrilova O, Shah YM, Gonzalez FJ. Disruption of hypoxia-inducible factor 1 in adipocytes improves insulin sensitivity and decreases adiposity in high-fat diet-fed mice. *Diabetes* 2011; 60: 2484-2495 [PMID: 21873554 DOI: 10.2337/db11-0174]

Sun K, Halberg N, Khan M, Magalang UJ, Scherer PE. Selective inhibition of hypoxia-inducible factor 1α ameliorates adipose tissue dysfunction. *Mol Cell Biol* 2013; 33: 904-917 [PMID: 23249949 DOI: 10.1128/MCB.00951-12]

P- Reviewer: Gorrell MD, Liu H, Nagarajan P, Pirola CJ, Sacco R, Yan M S- Editor: Ma YJ L- Editor: A E- Editor: Ma S
