The Equifinal Achievement of the Total Antioxidant Activity of Flavonoids by Plants in Various Habitats

A V Scherbakov¹, V B Ivanov¹*, A V Ivanova¹ and I Yu Usmanov¹,²

¹Nizhnevartovsk State University, 56 Lenina str., Nizhnevartovsk 628605, Russia
²Ufa State Petroleum University, 1 Kosmonavtov str., Ufa 450064 Russia

E-mail: karatazh@mail.ru

Abstract. The most important nonspecific stress-protecting function of flavonoids is antioxidant, which is associated with blocking the spread of free radicals in cells. Moreover, the effectiveness of individual classes of flavonoids as antioxidants is different; in particular, substances can differ by three or more times. The accumulation of flavonoids by individual plants is exceptionally high in plasticity. To estimate the total potential antioxidant activity, we proposed an indicator – the antioxidant status of flavonoids, taking into account the qualitative and quantitative composition of the identified flavonoids. It has been shown that relatively close values of this indicator can be formed due to different quantitative ratios of flavonoids - either a relatively large number of low-efficiency flavonoids or a much smaller number of high-efficiency ones can accumulate in plants. It has been established that this is characteristic of various species of plants that live in a variety of conditions – from horse marshes to the steppe zone and salt marshes.

Keywords: Antioxidant activity · Flavonoids · Trolox equivalents · Equifinality · Antioxidant status

1. Introduction

For plants growing in the wild, it is typical that the effects of environmental factors on them are complex and unpredictable. This is due to the high mosaic of their habitat conditions and the complex nature of fluctuations in local soil conditions in response to seasonal changes in temperature or humidification conditions. The mobility of any compound in the soil is determined by both the compound’s properties and the medium’s characteristics. It does not depend on the mobility and distribution of other compounds. Therefore, almost any combination of compounds present in a given landscape or biocenosis can be added to soils [2-11, 19-20, 31]. For example, if for each soil element, a conditional scale of only three values is adopted: “deficit-norm-toxic maximum,” then with the number of 15 factors considered, the total possible number of combinations will be 3 to 15 options.

In most cases, plants implement the principle of multiple adaptive responses, apparently as the only possible one. Its essence is as follows. In response to the environment’s requirements, the plant launches as many protective mechanisms as it can afford for resource provision. Previously, our studies have shown that the overall list of plant-triggered defensive tools, as well as the involvement of each of them in the cumulative adaptive response, can change stochastically [1, 16-18, 22, 24-30].

Flavonoids are physiologically active substances (secondary metabolites) that regulate many functions in plants and animals [21]. Flavonoids are considered essential components of the formation of plants’ nonspecific resistance to various kinds of stresses, while the composition of plant flavonoids,
like many other secondary metabolites, is characterized by significant plasticity and low predictability [12, 22-26, 29].

With respect to the accumulation of flavonoids in plants, significant intra- and interpopulation differences in the collection of these substances can be said to occur, with virtually no strong correlation between the content of individual essences [1, 16-18]. The flavonoid biosynthesis scheme is quite complicated and allows plants to widely vary the qualitative and quantitative composition, synthesize the same compound in several alternative ways, and many more.

One of the main functions of flavonoids in plants is antioxidant, protecting plants from free radicals under various stress types.

Therefore, it seems essential for us to study how the plasticity of individual flavonoids’ accumulation affects these compounds’ potential total antioxidant activity.

2. Materials and Methods

The objects were samples of individual chromatograms of extracts of aboveground parts of 8 plant species of the Urals and Western Siberia (Table 1). Samples of aboveground parts of the plants from which the quotes were obtained are collected in various populations that differ in habitat conditions.

Species name	Community	Habitat
Atriplex patula	Festuco-Puccinellietea	Stepes and salt flats of the Bashkir Trans-Urals
Bassia seidoides	Festuco-Puccinellietea	Stepes and salt flats of the Bashkir Trans-Urals
Kochia prostrata	Festuco-Puccinellietea	Stepes and salt flats of the Bashkir Trans-Urals
Juniperus sabina	Festuco-Brometea;	Steppes and hills Bashkir Trans-Urals
	Polygono-Artemisietea Austriacae	
Glycyrrhiza korshinskii	Festuco-Puccinellietea	Steppe and salt flats of the Bashkir Trans-Urals
Oxyccoccus palustris	Oxyccocco-Sphagnetea	Oligotrophic Swamps of Western Siberia
Chamaedaphne calyculata	Oxyccocco-Sphagnetea	Oligotrophic Swamps of Western Siberia
Andromeda polifolia	Oxyccocco-Sphagnetea	Oligotrophic Swamps of Western Siberia

Source: Compiled by the authors.

To measure the flavonoids, alcohol extracts were chromatographed on a Luna C18 250×4.6 mm, 5 µm column in a reverse-phase system. Flavonoids were measured in the aboveground organs of licorice and juniper by HPLC. The analysis used the Sigma-Aldrich standards: baicalein, hesperetin, fisetin, naringin, naringenin, rutin, quercetin, isoquercetin, morin, dihydroquercetin, and liquiritigenin 92% minimum purity. Flavonoid standards and substances in the samples were detected at 275 and 360 nm on a diode matrix UV analyzer. Standards and importance in the specimens were detected at 275 nm.

It is customary to evaluate compounds’ antioxidant activity in individual substances’ units of action conditionally accepted standards. In Russia, the synthetic antioxidant Trolox (C14H18O4), a water-soluble analog of vitamin E, is most often used as a standard. The antioxidant activity of other compounds is expressed in units of their concentration, that is, in TEAC, (Trolox equivalent antioxidant capacity, mMol) or Trolox equivalents (Tyukkant For compounds with high antioxidant properties (mono- and especially gallates of catechins), this value can be six or more mMol of TEAS.

To assess the total antioxidant activity of flavonoids, we proposed an antioxidant status (AC) indicator. This indicator can be calculated as the sum of the products of the content of individual
flavonoids in the plant raw materials (in mg/g dry weight) by the antioxidant activity of each substance (TEAC, mMol):

\[AC = \sum_{i=1}^{n} TEAC_i \times [\cdot]_i \]

AC – antioxidant status; TEAS – Trolox-equivalent flavonoid, mMol; \([\cdot]\) is the plant’s flavonoid content, mg/g dry weight.

Thus, it becomes possible to evaluate a flavonoid’s participation in forming total antioxidant activity in plants in specific habitats. Moreover, a separate plant, due to the polyvariant nature of its adaptive responses [24, 26], can go in different ways of flavonoid biosynthesis: from the accumulation of a small number of relative flavonoids with relatively high efficiency to biosynthesis of a large number of somewhat less effective antioxidants.

3. Results and Discussion

The participation of individual flavonoids informing the total Trolox equivalent is presented in figures 1–9. From the data presented in figures 1–9, it follows that in all studied plant species in different habitats, the ratio between the content of individual flavonoids changes and the participation of each substance in the formation of total antioxidant activity.

Figure 1. *Atriplex patula*; (a) concentration of flavonoids in individual plants; (b) participation of individual flavonoids in the formation of the total Trolox equivalent. *Source:* Compiled by the authors.

Figure 2. *Bassia seidoides*; (a) content of flavonoids in individual plants (1-3, cenopopulation); (b) participation of individual flavonoids in the formation of the total Trolox equivalent. *Source:* Compiled by the authors.
Figure 3. *Kochia prostrata*; (a) content of flavonoids in individual plants (1-3, cenopopulation); (b) participation of individual flavonoids in the formation of the total Trolox equivalent. *Source:* Compiled by the authors.

Figure 4. *Glycyrrhiza korshinskyi*; (a) the content of flavonoids in individual plants (1-4, cenopopulation); (b) participation of individual flavonoids in the formation of the total Trolox equivalent. *Source:* Compiled by the authors.

Figure 5. *Juniperus Sabina* (male plant); (a) content of flavonoids in individual plants (1-5, cenopopulation); (b) participation of individual flavonoids in the formation of the total Trolox equivalent. *Source:* Compiled by the authors.
Figure 6. *Juniperus Sabina* (female plant); (a) content of flavonoids in individual plants (1-5, cenopopulation); (b) participation of individual flavonoids in the formation of the total Trolox equivalent. *Source*: Compiled by the authors.

Figure 7. *Oxycoccus palustris*; (a) content of flavonoids in individual plants (1-9, cenopopulation); (b) participation of individual flavonoids in the formation of the total Trolox equivalent. *Source*: Compiled by the authors.

Figure 8. *Chamaedaphne calyculata*; (a) content of flavonoids in individual plants (1-9, cenopopulation); (b) participation of individual flavonoids in the formation of the total Trolox equivalent. *Source*: Compiled by the authors.
Figure 9. *Andromeda polifolia*: (a) content of flavonoids in individual plants (1-9, cenopopulation); (b) participation of individual flavonoids in the formation of the total Trolox equivalent. *Source:* Compiled by the authors.

Table 2. Ratios of variation in the content of individual flavonoids in the studied plant species.

Species name	Variation coefficient, %
Naringin	
Rutin	
Dehydroquercetin	
Fisetin	
Merin	
Quercetin	
Hesperetin	
Baicalein	
Atriplex patula	137.5
Bassia seidoides	16.63
Kochia prostrata	48.27
Yuniperus sabina (male plants)	108.31
Yuniperus sabina (female plants)	111.5
Glycyrrhiza korshinskii	81.87
Oxyccoccus palustris	65.31
Chamaedaphne calyculata	83.75
Andromeda polifolia	80.68
On average for the studied plant species of the Bashkir Trans-Urals	84.01
On average, for the studied plant species of oligotrophic Swamps in Western Siberia	76.58

Note: "-" - the substance was not detected.

Source: Compiled by the authors.

The coefficients of variation of the content of individual flavonoids are presented in table 2. The variables of the total Trolox equivalent are presented in table 3.
Table 3. Variables of the total Trolox equivalent in the studied plant species.

Species name	Total trolox-equivalent (mM TEAC)	minimum	maximum	Variation coefficient, %
Atriplex patula	0.69	3.39	63.70	
Bassia seidoides	1.97	8.76	71.36	
Kochia prostrata	8.85	29.39	79.41	
Yuniperus sabina (male plants)	25.43	73.24	33.02	
Yuniperus sabina (female plants)	31.35	218.02	64.75	
Glycyrrhiza korshinskii	8.04	58.93	76.32	
Oxycoccus palustris	197.59	345.36	20.97	
Chamaedaphne calyculata	155.89	232.82	18.94	
Andromeda polifolia	155.59	292.24	26.17	

Source: Compiled by the authors.

Figure 10 presents the results of the cluster analysis of individual flavonoid compounds in the plants studied. Figure 11 presents the results of a cluster analysis of flavonoid content for individual plant species.

Figure 10. Cluster analysis of the content of individual flavonoids. Source: Compiled by the authors.

Figure 11. Cluster analysis of investigated plant species by the position of the content of individual flavonoids. Source: Compiled by the authors.
The observed picture seems somewhat chaotic, although one cannot fail to notice some similarities in the accumulation of flavonoids by endemic plants of the same habitats – halophytes and horseback plants. However, when it comes to achieving a single antioxidant status, a certain general logic looms (Tab. 3, Fig. 11). Flavonoids are most conservatively accumulated and used as antioxidants by plant species typical of upper oligotrophic marshes. The total antioxidant activity indicator reaches the tremendous Variability in plants – halophytes and plants adapted to the high content of salts in soils (Tab. 3). However, in general, it can be argued that the logic for forming the total antioxidant status of flavonoids is included regardless of the accumulation of individual substances – in general, the variability indicator of the antioxidant quality is more stable than the Variability of unique compounds.

This phenomenon is observed in plants in all studied habitats – from horse marshes (Oxyccocco-Sphagnetea community) to dry steppes (Festuco-Brometea and Polygono-Artemisietea Austriacae communities) and salt marshes (Festuco-Puccinellietea). For the above organizations, the studied plant species are typical, that is, these species have adapted to habitat conditions for many years. However, it can be argued that in natural habitats, due to the high level of stress, the anti-stress antioxidant role of flavonoids continues to be relevant. It was established that for the accumulation of individual flavonoids in each habitat, each plant behaves in its way. This seems to be one example of plants implementing the diversity of primary adaptive reactions and equifinality in achieving the necessary adaptive results. This phenomenon, by its nature of manifestation, has signs of similarity with a strange attractor.

4. Conclusion
The analysis of the obtained data makes it possible to draw the following conclusions:

1. The content of individually identifiable flavonoids varies at all levels: between the cenopopulations of the same species, species within the boundaries of ecosystems, and between plants of oligotrophic swamps and the trans-Ural steppes. In general, we can talk about the formation of regional complexes of flavonoids at all levels.
2. The Variability of the content of individual flavonoids can vary from 8.3 to 223.6%. In species – inhabitants of the riding swamps of Western Siberia, the accumulation of flavonoids occur, in general, more conservatively, which affects lower values of the coefficients of variation.
3. The coefficients of variation of individual flavonoids are higher than the coefficients of interpretation of the sum of flavonoids. Thus, the involvement of many flavonoids in adaptation under specific conditions leads to an increase in plants’ overall resistance and homeostatisation in fluctuating media.

5. Acknowledgments
The chromatographic analysis was carried out on the Common Use Center “Chemistry” of the Ufa Federal Research Centre of the Russian Academy of Sciences. The grant from 18-44-860006 r_a supported the assistance of the Russian Foundation for Basic Research (RFBR).

References
[1] Gelashvili D, Iudin D, Rozenberg G C, Yakimov V N, and Solntsev L A 2013 Fractals and multifractals in bioecology (Nizhny Novgorod, USSR: NNSU)
[2] Girfanov V K, and Ryachovskaya N N 1975 Microelements in the soils of Bashkiria and the effectiveness of micro fertilizers (Moscow, USSR: Nauka)
[3] Hubbell S P 2006 Neutral theory and the evolution of ecological equivalence Ecology 87(6) pp 1387-1398
[4] Ivanov V B, Alexandrova V V, Usmanov I Yu, Scherbakov A V, Yumagulova E R, Ivanov N A ... Chibrikov O V 2016 Comparative evaluation of migrating anthropogenic impurities in ecosystems of the middle of the region through biointegration and chemical analysis Vegetos: An International Journal of Plant Research 29(2) pp 81-85
[5] Ivanov V B, Kalinovskaya E A, Ivanov N A, Aleksandrova V V, and Usmanov Yu 2017 Geochemical assessment of the impact of sludge pits on high bog soils In the World of Scientific Discoveries 9(2-2) pp 23-28
[6] Ivanov V B, Shcherbakov A V, Gonhar I G, Ivanova A V, and Usmanov I Yu 2019 Using the principles of fractal analysis for the description of plant flavonoids metabolism *International Journal of Advanced Biotechnology and Research (IJABR)*** 10**(2) pp 456-464

[7] Ivanov V B, Usmanov I Yu, Aleksandrova V V, Ivanov N A, Ivanova L G, and Kalinovskaya E A 2017 Assessment of the impact of sludge pits on high bog soils *In the World of Scientific Discoveries*** 9**(1-2) pp 66-71

[8] Kimura M, 1983, *neutral theory of molecular evolution* (Cambridge, UK: Cambridge University Press)

[9] Lambers H F, Chapin F S III, and Pons T L 2008 *Plant physiological ecology* (New York, NY: Springer)

[10] Mavletova-Chistyakova M V, Shcherbakov A V, Ivanov V B, Yumagulova E R, and Usmanov I Yu 2017 Pulsating mosaicism of soil parameters in the South Trans-Urals *Bulletin of the Nizhnevartovsk State University*** 4 pp 124-133

[11] McGill B J 2010 Towards a unification of unified theories of biodiversity *Ecology, Letters*** 1 pp 627-642

[12] Mierziak J, Kostyn K, and Kulma A 2014 Flavonoids as Important Molecules of Plant Interactions with the Environment *Molecules*** 19

[13] Nijveldt R J, van Nood E, van Hoorn D EC, Boelens P G, van Norren K, and van Leeuwen P AM 2001 Flavonoids: A review of probable mechanisms of action and potential applications were *J Clin Nutr*** 74**(4) pp 418-425

[14] Shcherbakov A V, Buskunov G G, Aminova A A, Ivanov S P, and Usmanov I Yu 2009 Variability of secondary metabolite content in *Achillea nobilis* L. in ecological conditions of the southern Urals *Proceedings of the Samara Scientific Center of RAS** 11**(1) pp 198-204

[15] Shcherbakov A V, Chistyakova M V, Aminev G H, Ivanov S P, and Usmanov I Yu 2009 Variability of secondary metabolite content in *Juniperus sabina* L. in the southern Urals *Bashkir Chemical Journal*** 16**(2) pp 132-137

[16] Shcherbakov A V, Mavletova M V, Usmanov I Yu, and Biktimirova G Ya 2016 Correlation links of soil mosaic parameters and signs of adaptability of plants of the Southern Trans-Urals. I. *Glycyrrhiza korshinskyi. Samara Luke: Problems of Regional and Global Ecology*** 25**(4) pp 71-78

[17] Shcherbakov A V, Mavletova M V, Usmanov I Yu, and Biktimirova G Ya 2016 Correlation links of soil mosaic parameters and signs of adaptability of plants of the Southern Trans-Urals. II. *Juniperus sabina* L. *Samara Luke: Problems of Regional and Global Ecology*** 25**(4) pp 79-88

[18] Shcherbakov A V, Rakhmatullina S R, Mavletova-Chistyakova M V, and Usmanov I Yu 2013, Variability of antioxidant activity of Cossack juniper in the copper ion content gradient in the southern Urals *Bulletin of Bashkir State University*** 18**(4) pp 1081-1084

[19] Suyundukov Y T, Yanturin S I, and Singuzova G S 2013 *Accumulation and migration of heavy metals in the main components of anthropogenic ecosystems of the Bashkir Trans-Urals in the zone of influence of the mining and ore complex* (Ufa, USSR: Gilem)

[20] Tilman D 2004 Niche tradeoffs, neutrality, and community structure: A stochastic theory of resource competition, invasion and community assembly *Presiding of the National Academy of Science (PNAS)*** 101**(30) pp 10854-10861

[21] Tyukavkina N A, Zharabyan S E, and Beloborodov V L 2008 *Organic Chemistry* (Prince 2. Special course) (Moscow, USSR: Publishing House Drofa)

[22] Usmanov I Yu, Ivanov V B, Abdakhimova G S, Shcherbakov A V, Yumagulova E R, and Aleksandrova V V 2019 Fractal analysis of flavonoids in composition HPLC-fingerprint extracts of oxyccocus palustris pers. (ERICACEAE) in oligotrophic swamps of Western Siberia *International Journal of Advanced Biotechnology and Research (IJABR)*** 10**(2) pp 369-376

[23] Usmanov I Yu, Ivanov V B, and Ivanov N A 2018 Self-restoration of the Middle Ob region ecosystems affected by the oil industry. In *Environmental problems of large rivers* (pp 303-304) (Tolyatti, USSR: Anna)

[24] Usmanov I Yu, Shcherbakov A V, Mavletova M V, Yumagulova E R, and Ivanov V B 2016 Pulsing multidimensional ecological niche of plants: Expansion of the concept *Izvestiya of the Samara Scientific Center of Russian Academy of Sciences*** 18**(2-2) pp 525-529

[25] Usmanov I Yu, Yumagulova E R, Aleksandrova V V, Ivanov S P, Shcherbakov A V, Ivanov V B ... Gonchar I G 2019 Fractal analysis of flavonoids in complex chemical compositions in extracts of Chamaedaphne calyculata (L.) Moench (ERICACEAE) In oligotrophic swamps of Western Siberia *Modern Phytomorphology*** 13 pp 35-40

[26] Usmanov I Yu, Yumagulova E R, Ovechkina E S, Ivanov V B, Shcherbakov A B, Aleksandrova V V ... Ivanov, N A 2016 Fractal Analysis of Morpho-Physiological Parameters of Oxyccocus Palustris Pers
in oligotrophic Swamps of Western Siberia Vegetos: An International Journal of Plant Research 29(1) pp 1-3

[27] Usmanov I, Shcherbakov A, Ivanov V, Ivanov S, and Gonchar I 2020 Use of fractal analysis principles when describing flavonoids varieties of the South Trans-Urals plants Modern Phytomorphology 14 pp 13-19

[28] Usmanov I, Yu, and Scherbakov A V 2015 Decentralized network of flavonoid biosynthesis in the Southern Trans-Urals’ plant populations. Problems of population ecology. VI Lyubishchev Readings (pp 312-315) (Tolyatti, USSR: Kassandra)

[29] Usmanov I, Yu, Yumagulova E R, Aleksandrova V V, Gonchar I G, Scherbakov A V, and Ivanov V B 2019 Complexes of flavonoids Chamaedaphne calyculata (L.) Moench oligotrophic bogs of the Middle Ob Bulletin of the Nizhnevartovsk State University 2 pp 59-71

[30] Usmanov I, Yu, Yumagulova E R, Ivanov V B, Aleksandrova V V, Ivanov N A, Schachmetova R I ... Scherbakov A V 2017 Physiological barriers for adventitious species invasion in oligotroph ecosystems of the middle Of Area Vegetos: An International Journal of Plant Research 30(4) pp 81-85

[31] Volkov I M, Ryahin M S, Belousov S N, Aleksandrova V V, and Ivanov V B 2018 Ensuring the environmental safety of the projects on the subsoil areas of licensed operators using best available technologies Oil Industry 2 pp 109-112