Pentaquarks and resonances in the pJ/ψ spectrum

V.V. Anisovich$^+$, M.A. Matveev$^+$, J. Nyiri*, A.V. Sarantsev$^{+\diamond}$, A.N. Semenova$^+$

$^+$National Research Centre "Kurchatov Institute": Petersburg Nuclear Physics Institute, Gatchina, 188300, Russia
\diamond Helmholtz-Institut für Strahlen- und Kernphysik, Universität Bonn, Germany
*Institute for Particle and Nuclear Physics, Wigner RCP, Budapest 1121, Hungary

Abstract

We consider exotic baryons with hidden charm as antiquark-diquark-diquark composite systems. Spin and isospin structure of such exotic states is given and masses are estimated. The data for production of pentaquarks in the reaction $\Lambda_b \rightarrow K^- p J/\psi$ are discussed. We suggest that the narrow peak in pJ/ψ spectra at 4450 MeV is antiquark-diquark-diquark state with negative parity, $5/2^-(4450)$, while the broad bump $3/2^+(4380)$ is the result of rescatterings in the (pJ/ψ)-channel. Positions of other pentaquarks with negative parity are estimated.

PACS: 12.40.Yx, 12.39.-x, 14.40.Lb

1 Introduction

Data for the decay $\Lambda_b^0 \rightarrow p J/\psi K^-$ [1] provide a definite argument for the existence of a pentaquark, a baryon system in pJ/ψ spectra which has the following quark content:

$$P_{\bar{c}uud}^+ = \bar{c}(cuud).$$

In terms of the quark-diquark states it can be presented as a three-body systems:

$$\bar{c}(cuud) = \bar{c} \cdot (cu) \cdot (ud) + \text{permutations of the } u,d \text{ quarks}.$$ (2)

A diquark is a color triplet member, similar to a quark, and the right-hand side of eq. (2) presents a three-body system with a color structure similar to that in low-lying baryons. It is reasonable to suppose that we face similar color forces in three quark and antiquark-diquark-diquark systems as well. Following this idea we perform a classification of such baryon states and give estimations of their masses. Estimation of diquark masses is given in [2] where diquark-antidiquark states are studied.
The notion of the diquark was introduced by Gell-Mann [3]. Diquarks were discussed for baryon states during a long time, see pioneering papers [4, 5, 6, 7, 8] and conference presentations [9, 10, 11]. The systematization of baryons in terms of the quark-diquark states is presented in [12, 13]. The application of the diquarks to exotic mesons in the sector of heavy diquarks was discussed by Maiani et al. [14], Voloshin [15], Ali et al. [16].

Pentaquarks built of light-light and light-heavy diquarks present natural extension of multiquark schemes studied in the last decade for mesons [17, 18] and baryons [19, 20].

2 Pentaquarks

In color space we write for the pentaquark:

\[P_{ccudd}^+ = \epsilon_{\alpha\beta\gamma} \epsilon^\alpha (cu)^\beta (ud)^\gamma \text{ + permutations of the } u, d \text{ quarks} \]

\[(cu)^\beta = \epsilon^{\beta\beta'\gamma'} c_{\beta'} u_{\gamma'} \]

\[(ud)^\gamma = \epsilon^{\gamma\beta\gamma''} u_{\beta''} d_{\gamma''} \]

where \(\alpha, \beta, \gamma \) refer to color indices.

We discuss a scheme in which the exotic baryon states are formed by standard QCD-motivated interactions (gluonic exchanges, confinement forces) but in addition with diquarks as constituents.

2.1 Spin structure of the pentaquarks

We work with two diquarks: scalar \(S \) and axial-vector \(A \). In terms of these diquarks the color-flavor wave function of pentaquark reads:

\[P_{c(cq)-(q'q'')} = \epsilon^\alpha \cdot \epsilon_{\alpha\beta\gamma} S^\beta_{(cq)} S^{\gamma}_{(q'q'')} \]

We have six diquark-diquark states:

\[P_{c(cq)-(q'q'')} = \epsilon^\alpha \cdot \begin{vmatrix} (S_{(cq)} S_{(q'q'')})^\alpha (0^+) \\ (S_{(cq)} A_{(q'q'')})^\alpha (1^+) \\ (A_{(cq)} S_{(q'q'')})^\alpha (1^+) \\ (A_{(cq)} A_{(q'q'')})^\alpha (0^+) \\ (A_{(cq)} A_{(q'q'')})^\alpha (1^+) \\ (A_{(cq)} A_{(q'q'')})^\alpha (2^+) \end{vmatrix} \]

with the spin-parity numbers \(J^P = 0^+, 1^+, 2^+ \).

2.2 Isospin structure of the diquarks

We face the following isospin states for the diquarks:

\[S_{(cq)} (I_d = 1/2, J_d = 0), \quad A_{(cq)} (I_d = 1/2, J_d = 1), \]

\[S_{(q'q'')} (I_d = 0, J_d = 0), \quad A_{(q'q'')} (I_d = 1, J_d = 1). \]
Here we concentrate our attention on non-strange diquarks only, for an expansion of the results of Section 2.3. We write

\[
\begin{bmatrix}
(S_{(cq)}S_{(q'q'')})_\alpha(0^+) \\
(S_{(cq)}A_{(q'q'')})_\alpha(1^+) \\
(A_{(cq)}S_{(q'q'')})_\alpha(1^+) \\
(A_{(cq)}A_{(q'q'')})_\alpha(0^+) \\
(A_{(cq)}A_{(q'q'')})_\alpha(1^+) \\
(A_{(cq)}A_{(q'q'')})_\alpha(2^+)
\end{bmatrix} \rightarrow
\begin{bmatrix}
P_{\frac{1}{2}}^{(\frac{1}{2}, \frac{1}{2})} \\
P_{\frac{3}{2}}^{(\frac{1}{2}, \frac{3}{2})} \\
P_{\frac{3}{2}}^{(\frac{3}{2}, \frac{3}{2})} \\
P_{\frac{5}{2}}^{(\frac{1}{2}, \frac{5}{2})} \\
P_{\frac{5}{2}}^{(\frac{3}{2}, \frac{5}{2})} \\
P_{\frac{5}{2}}^{(\frac{5}{2}, \frac{5}{2})}
\end{bmatrix}
\]

(7)

2.3 Pentaquarks, their masses and spins

Mass formula for a diquark-diquark system \((cq) \cdot (q'q'')\), is accepted to be the same as for the diquark-antidiquark one \([2]\). We write

\[
M_{(cq)\cdot(q'q'')} = m_{(cq)} + m_{(q'q'')} + J_{(cq)\cdot(q'q'')} (J_{(cq)\cdot(q'q'')} + 1) \Delta
\]

with the parameters which were determined in ref. \([2]\):

\[
\Delta = 70 \pm 10 \text{ MeV},
m_{S_{(cq)}} = 2000 \pm 50 \text{ MeV}, \quad m_{A_{(cq)}} = 2050 \pm 50 \text{ MeV}.
\]

Here we concentrate our attention on non-strange diquarks only, for an expansion of the results to the strange quark sector we need \(m_{S_{(cq)}}\) and \(m_{A_{(cq)}}\).

For the \((q'q'')\) diquarks we accept masses found in the analysis of baryons \([12, 13]\):

\[
m_{S_{(q'q'')}} = 650 \pm 50 \text{ MeV}, \quad m_{A_{(q'q'')}} = 750 \pm 50 \text{ MeV}.
\]

The mass of the constituent antiquark \(\bar{c}\) is equal to \([21, 22]\):

\[
m_{\bar{c}} = 1300 \pm 50 \text{ MeV}.
\]

Within these masses \([9, 10, 11]\) we roughly estimate the masses of the pentaquarks as:

\[
M_{\bar{c}(cq)\cdot(q'q'')} \simeq m_{\bar{c}} + M_{(cq)\cdot(q'q'')}.
\]

Correspondingly we write a set of the low-laying pentaquark states:

\[
\begin{array}{c|c|c}
\text{I = 1/2} & \text{I = 3/2} \\
\hline
P_{\bar{c}S_{(cq)}S_{(q'q'')}}(3800), & P_{\bar{c}S_{(cq)}A_{(q'q'')}}(4190), & P_{\bar{c}S_{(cq)}A_{(q'q'')}}(4190),
\end{array}
\]

\[
\begin{array}{c|c|c}
\text{I = 1/2} & \text{I = 3/2} \\
\hline
P_{\bar{c}A_{(cq)}S_{(q'q'')}}(4140), & P_{\bar{c}A_{(cq)}S_{(q'q'')}}(4140), & P_{\bar{c}S_{(cq)}A_{(q'q'')}}(4190),
\end{array}
\]

\[
\begin{array}{c|c|c}
\text{I = 1/2} & \text{I = 3/2} \\
\hline
P_{\bar{c}A_{(cq)}A_{(q'q'')}}(4110), & P_{\bar{c}A_{(cq)}A_{(q'q'')}}(4110), & P_{\bar{c}A_{(cq)}A_{(q'q'')}}(4190),
\end{array}
\]

\[
\begin{array}{c|c|c}
\text{I = 1/2} & \text{I = 3/2} \\
\hline
P_{\bar{c}A_{(cq)}A_{(q'q'')}}(4240), & P_{\bar{c}A_{(cq)}A_{(q'q'')}}(4240), & P_{\bar{c}A_{(cq)}A_{(q'q'')}}(4240),
\end{array}
\]

\[
\begin{array}{c|c|c}
\text{I = 1/2} & \text{I = 3/2} \\
\hline
P_{\bar{c}A_{(cq)}A_{(q'q'')}}(4520), & P_{\bar{c}A_{(cq)}A_{(q'q'')}}(4520), & P_{\bar{c}A_{(cq)}A_{(q'q'')}}(4520),
\end{array}
\]

Masses are given in MeV units, an uncertainty in the determination of masses is of the order of \(\pm 150\) MeV.
3 Discussion

The state $P_{c}^{1/2^{-}}(4520 \pm 150)$ is a good candidate to be a state which was observed in [1]: $5/2^{+}(4450 \pm 4)$ with a width of $\Gamma = 39 \pm 24$ MeV. Then the broad state, $3/2^{+}(3380 \pm 38)$ with $\Gamma = 205 \pm 94$ MeV also observed in the pJ/ψ spectrum, is a positive parity state, $3/2^{+}$.

An opposite classification of states is suggested in [23]: $3/2^{+}(3380 \pm 38) \rightarrow 3/2^{-} (S\text{-wave pentaquark})$ and $5/2^{+}(4450 \pm 4) \rightarrow 5/2^{+} (P\text{-wave pentaquark})$.

We suppose that the broad bump in the $3/2^{+}$-wave is the result of rescatterings in pJ/ψ-channel, for example, such as $\Lambda_{b} \rightarrow \Lambda(1520)J/\psi \rightarrow K^{-}(pJ/\psi)$.

In the suggested scheme the mass interval $(4040 - 4500)$ MeV should contain additionally several resonances with $J^{P} = 1/2^{-}, 3/2^{-}$. Some of them may dominantly decay into $p\eta_{c}$-channel, concerning mainly the $1/2^{-}$ states.

The masses of pentaquarks with strange diquarks (cs), see eq.(9), are estimated quite similar to the non-strange ones.

In conclusion, the scheme of the low-lying pentaquark is suggested on the basis of the study of the tetraquark states [2]. We are convinced that the crossing studies of exotic mesons and baryons give a correct way for investigation of these topics.

The work was supported by grants RSGSS-4801.2012.2., RFBR-13-02-00425 and RSCF-14-22-00281.

References

[1] The LHCb collaboration, arXiv:1507.03414v1 [hep-ex].

[2] V.V. Anisovich, M.A. Matveev, A.V. Sarantsev, A.N. Semenova Exotic mesons with hidden charm as diquark-antidiquark states, arXiv:1507.07232 [hep-ph] (2015).

[3] M. Gell-Mann, Phys. Lett. 8, 214 (1964).

[4] M. Ida and R. Kobayashi, Progr. Theor. Phys. 36, 846 (1966).

[5] D.B Lichtenberg and L.J. Tassie, Phys. Rev. 155, 1601 (1967).

[6] S. Ono, Progr. Theor. Phys. 48, 964 (1972).

[7] V.V. Anisovich, Pis’ma ZhETF 21, 382 (1975) [JETP Lett. 21, 174 (1975)]; V.V. Anisovich, P.E. Volkovitski, and V.I. Povzun, ZhETF 70, 1613 (1976) [Sov. Phys. JETP 43, 841 (1976)].

[8] A. Schmidt and R. Blankenbeckler, Phys. Rev. D16, 1318 (1977).

[9] M. Anselmino and E. Predazzi, eds., Proceedings of the Workshop on Diquarks, World Scientific, Singapore (1989).

[10] K. Goeke, P. Kroll, and H.R. Petry, eds., Proceedings of the Workshop on Quark Cluster Dynamics (1992).
[11] M. Anselmino and E. Predazzi, eds., *Proceedings of the Workshop on Diquarks II*, World Scientific, Singapore (1992).

[12] A.V. Anisovich, V.V. Anisovich, M.A. Matveev, V.A. Nikonov, A.V. Sarantsev and T.O. Vulfs, Int. J. Mod. Phys. A25, 2965 (2010); Phys. Atom. Nucl. 74, 418 (2011) [Phys. Atom. Nucl. 74, 418 (2011)].

[13] A.V. Anisovich, V.V. Anisovich, M.A. Matveev, V.A. Nikonov, J. Nyiri, A.V. Sarantsev *Three-particle physics and dispersion relation theory*, World Scientific, Singapore (2013).

[14] L.Maiani, F.Piccinini, A.D.Polosa, V.Riquer, Phys. Rev. D71, 014028 (2005).

[15] M.B. Voloshin, Phys. Rev. D84, 031502 (2011).

[16] A. Ali, C. Hambrock, W.Wang, Phys. Rev. D85, 054011 (2012).

[17] S. Weinberg, Phys. Rev. Lett. 110, 261601 (2013).

[18] S.J. Brodsky, D.S. Hwang and R.F. Lebed Phys. Rev. Lett. 113, 112001 (2014).

[19] R.L. Jaffe and F. Wilchek, Phys. Rev. Lett. 91, 232003 (2003).

[20] G.C. Rossi and G. Veneziano, Phys. Lett. B597, 338 (2004).

[21] V.V. Anisovich, L.G. Dakhno, M.A. Matveev, V.A. Nikonov and A.V. Sarantsev, Yad. Fiz. 70, 392 (2007) [Phys. Atom. Nucl. 70, 364 (2007)].

[22] A.V. Manohar, C.T. Sachrajda, Phys. Rev. D66, 010001-271 (2002).

[23] L. Maiani, A.D. Polosa, V. Riquer, arXiv:1507.04980v1 [hep-ph].