Evolution of plasma vitamin B_{12} in patients with solid cancers during curative versus supportive care

Valentin Lacombe¹, Anne Patsouris², Estelle Delattre¹, Carole Lacout¹, Geoffrey Urbanski¹

¹Department of Internal Medicine and Clinical Immunology, University Hospital, Angers, France
²Medical Oncology, Ouest Cancerology Institute, Angers, France

Submitted: 30 June 2021; Accepted: 6 August 2021
Online publication: 3 September 2021

Arch Med Sci 2021; 17 (6): 1811–1815
DOI: https://doi.org/10.5114/aoms/140974
Copyright © 2021 Termedia & Banach

Abstract

Introduction: The direction of the causal link between solid cancers and elevated plasma vitamin B_{12} (B_{12}) remains uncertain.

Methods: We retrospectively included patients having two B_{12} measurements with a B_{12} initially \geq 1000 ng/l and a solid cancer diagnosed between the measurements. Patients were included in the Curative or Supportive group according to their treatments.

Results: B_{12} changes over time differed between groups ($p = 0.001$): +157.4 ng/l/month in the Supportive care group versus –171.6 ng/l/month in the Curative care group.

Conclusions: The decrease of plasma B_{12} in cases of curative care could suggest that this B_{12} elevation is secondary to solid cancers.

Key words: vitamin B_{12}, neoplasms, neoplasm metastasis, antineoplastic agents.

The association between solid cancers and elevated level of total plasma vitamin B_{12} (B_{12}) has been demonstrated [1, 2] and remains after adjustment for other causes of elevated B_{12} [3]. However, the design of previous studies did not allow them to clearly determine whether solid cancers were the cause of the B_{12} elevation or vice versa. The B_{12} elevation could be related to cancer through the tumor mass or by means of the granulocytic immune response [4–6]. However, several authors consider that the B_{12} elevation could favor the onset of cancer, due to the role of vitamin B_{12} in cell proliferation [7, 8]. This hypothesis is contradictory to the short-term association observed in cohort studies [1, 2]. The change of B_{12} during the treatment of solid cancers may help explain the direction of this causal relation. Indeed, a decrease of B_{12} after curative cancer treatment would bring an argument for asserting that the cancer induced the B_{12} elevation, directly or indirectly.

In the present study, we compared the change of plasma B_{12} after curative versus supportive treatments for solid cancer in patients with initially elevated B_{12} levels that were related to solid cancers.

Methods. Ethics. The bioethical committee of Angers University Hospital approved this study (n°2019/105) and waived the need for patient consent for this observational study.

Study population. We included patients aged 18 years and over who had been admitted to Angers University Hospital between January 2007...
and May 2015. Patients were required to have undergone two \(B_{12} \) measurements at two different times (T1 and T2), at least 7 days apart.

Patients were included in cases of both i) an elevated level of \(B_{12} \) at T1 defined as \(\geq 1000 \text{ ng/l} \) [3], and ii) a solid cancer diagnosed between T1 and T2. Patients with an active solid cancer already known before T1 or diagnosed after T2 were not included. T1 needed to be performed in the preceding 3 months before the solid cancer diagnosis, and T2 within the next 6 months after the cancer diagnosis. In cases where there were more than two \(B_{12} \) measurements in the period of interest, T2 was considered to be the measurement furthest from T1 in the 6 months following the cancer diagnosis.

We excluded patients presenting other elevated \(B_{12} \)-related diseases previously known or diagnosed during the follow-up: acute liver disease (elevation of transaminases to more than 2 times normal) or chronic liver disease (dysmorphic ultrasound appearance, persistent signs of hepatocellular insufficiency, histology suggestive of cirrhosis), severe chronic renal failure (modification of diet in renal disease (MDRD) creatinine clearance \(\leq 30 \text{ ml/min/1.73 m}^2 \)), autoimmune or inflammatory disease, and myeloid blood malignancy [3–5]. Patients with pernicious anemia or \(B_{12} \) supplementation were also excluded. Assays performed in intensive care and maternity units were excluded because of the metabolic changes observed in these patients [9, 10].

Total plasma vitamin \(B_{12} \) assay. \(B_{12} \) measurement was centralized in the biochemistry laboratory of Angers University Hospital. Plasma vitamin \(B_{12} \) was identified using competitive immunoassays with direct chemiluminescence on the ADVIA Centaur system (Siemens Healthcare Diagnostics Inc. Tarrytown, NY 10591-5097 USA). The normal reference range was 200–999 ng/l and the coefficient of variation was 1.3–4.1%.

Composition of groups. Patients receiving a curative treatment for solid cancer (chemotherapy, radiotherapy, hormonotherapy and/or surgery) constituted the Curative care group, regardless of the efficacy of their treatment. Patients receiving only supportive care, analgesics or other symptomatic treatments represented the Supportive care group. Patients receiving only minor palliative surgery, symptomatic radiotherapy, or a systemic corticosteroid therapy were excluded because of their potential minor curative effects.

Statistical analysis. The quantitative data were presented as medians and quartiles and compared using the \(t \)-test, as the variables demonstrated a normal distribution according to the Kolmogorov-Smirnov test. The qualitative data were presented as absolute values and percent-
Age	Sex	Site of primary cancer	Site of metastasis	Delay from T1 to cancer diagnosis [days]	Vitamin B12 at T1 [ng/l]	Delay from cancer diagnosis to T2 [days]	Vitamin B12 at T2 [ng/l]	Curative treatment before T2	Delay from cancer diagnosis to treatment [days]	Delay from treatment to T2 [days]
69 M	Lungs	Bones	7	1136	60	1807	None	NA	NA	
71 M	Lungs	Lungs, lymph nodes, bones	7	1422	97	1805	None	NA	NA	
73 W	Unknown	Lymph nodes	5	1029	29	1568	None	NA	NA	
76 W	Breast	Bones	10	1307	65	1228	None	NA	NA	
80 W	Pancreas	Liver, peritoneum	6	1441	35	2001	None	NA	NA	
81 W	Pancreas	Lymph nodes	1	1150	15	1613	None	NA	NA	
90 W	Stomach	–	19	1310	42	1204	None	NA	NA	
91 M	Urothelium	–	3	2001	2001	None	NA	NA	NA	
63 M	Pancreas	Lungs	1	1151	27	1230	None	NA	NA	
58 M	Liver	Liver	62	1032	96	563	None	NA	NA	
64 W	Ovaries	Peritoneum	50	1578	181	1179	Surgery, chemotherapy	31	150	
68 M	Lungs	Bones	6	2001	91	1044	Chemotherapy	6	85	
88 M	Prostate	Bones	26	1567	93	2001	Hormonotherapy	14	79	
48 M	Colon	Lungs	6	1221	7	733	Surgery	0	7	
56 M	Lungs	Bones, lungs, adrenal glands	7	2001	107	310	Chemotherapy	11	96	
58 W	Breast	Brain	11	1182	77	402	Chemotherapy	11	66	
72 W	Stomach	–	29	1115	78	666	Surgery	0	78	
74 W	Esophagus	–	1	1168	73	673	Chemotherapy, radiotherapy	35	38	
74 M	Esophagus	Lymph nodes	20	1742	38	933	Chemotherapy	24	14	
this biological abnormality decreased in the first weeks following the initiation of a curative treatment [11]. Our results are in line with the study of Wakatsuki et al., who observed a decrease in \(B_{12}\) levels after surgical excision of gastric cancers. However, this study was restricted to surgical treatment in gastric cancer. Moreover, these results need to be interpreted with caution because gastric surgical procedures might have modified the results need to be interpreted with caution because the intra-subject variations of the absorption of vitamin \(B_{12}\) [12].

In conclusion, the \(B_{12}\) level decreased during curative treatment in solid cancers associated with elevated \(B_{12}\) at the time of diagnosis. This represents an argument for considering this \(B_{12}\) elevation as secondary to solid cancers rather than an underlying condition that favors their onset or progression.

Conflict of interest

The authors declare no conflict of interest.

References

1. Arendt JFH, Pedersen L, Nexo E, Sørensen HT. Elevated plasma vitamin B12 levels as a marker for cancer: a population-based cohort study. J Natl Cancer Inst 2013; 105: 1799-805.

2. Arendt JFH, Sørensen HT, Horsfall LJ, Petersen I. Elevated vitamin B12 levels and cancer risk in UK primary care: a THIN Database Cohort Study. Cancer Epidemiol Biomarkers Prev 2019; 28: 814-21.

3. Urbanski G, Hamel JF, Prouveur B, et al. Strength of the association of elevated vitamin B12 and solid cancers: an adjusted case-control study. J Clin Med 2020; 9: 474.

4. Arendt JFB, Nexo E. Cobalamin related parameters and disease patterns in patients with increased serum cobalamin levels. PLoS One 2012; 7: e45979.

5. Andres E, Serraj K, Zhu J, Vermorken AIM. The pathophysiology of elevated vitamin B12 in clinical practice. QJM 2013; 106: 505-15.

6. Arendt JFH, Farkas DK, Pedersen L, Nexo E, Sørensen HT. Elevated plasma vitamin B12 levels and cancer prognosis: a population-based cohort study. Cancer Epidemiol Biomarkers Prev 2016; 40: 158-65.

7. Zhao L, Wei Y, Song A, Li Y. Association study between genome-wide significant variants of vitamin B12 metabolism and gastric cancer in a han Chinese population: unexpected role of vitamin B12 metabolism genes. IUBMB Life 2016; 68: 303-10.

8. Fanidi A, Carreras-Torres R, Larose TL, et al. Is high vitamin B12 status a cause of lung cancer? Is high vitamin B12 status a cause of lung cancer? Int J Cancer 2019; 145: 1499-503.

9. Srvl S, Khalaila R, Daher S, et al. Increased vitamin B12 levels are associated with mortality in critically ill medical patients. Clin Nutrition 2012; 31: 53-9.
10. Greibe E, Andreasen BH, Lildballe DL, Morkbak AL, Hvas AM, Nexo E. Uptake of cobalamin and markers of cobalamin status: a longitudinal study of healthy pregnant women. Clin Chem Labor Med 2011; 49: 1877-82.
11. Cappello S, Cereda E, Rondanelli M, et al. Elevated plasma vitamin B12 concentrations are independent predictors of in-hospital mortality in adult patients at nutritional risk. Nutrients 2016; 9: 1.
12. Green R, Allen LH, Bjørke-Monsen AL, et al. Vitamin B12 deficiency. Nature Rev Dis Primers 2017; 3: 17040.
13. Lacombe V, Chabrun F, Lacout C, et al. Persistent elevation of plasma vitamin B12 is strongly associated with solid cancer. Sci Rep 2021; 11: 13361.
14. Brokner M, Hager HB, Lindberg M. Biological variation of holotranscobalamin and cobalamin in healthy individuals. Scand J Clin Labor Investig 2017; 77: 453-6.