Interaction of fibrinogen and muramidase-released protein promotes the development of *Streptococcus suis* meningitis

Junping Wang1,2†, Decong Kong†, Shengwei Zhang1, Hua Jiang1, Yuling Zheng1, Yating Zang1, Huaijie Hao3* and Yongqiang Jiang1*

1 State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China, 2 Urumqi Ethnic Cadres' College, Urumqi, China, 3 CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China

Muramidase-released protein (MRP) is as an important virulence marker of *Streptococcus suis* (*S. suis*) serotype 2. Our previous works have shown that MRP can bind human fibrinogen (hFg); however, the function of this interaction in *S. suis* meningitis is not known. In this study, we found that the deletion of *mrp* significantly impairs the hFg-mediated adherence and traversal ability of *S. suis* across human cerebral microvascular endothelial cells (hCMEC/D3). Measurement of the permeability to Lucifer yellow in vitro and Evans blue extravasation in vivo show that the MRP-hFg interaction significantly increases the permeability of the blood–brain barrier (BBB). In the mouse meningitis model, wild type *S. suis* caused higher bacterial loads in the brain and more severe histopathological signs of meningitis than the *mrp* mutant at day 3 post-infection. Western blot analysis and immunofluorescence observations reveal that the MRP-hFg interaction can destroy the cell adherens junction protein p120-catenin of hCMEC/D3. These results indicate that the MRP-hFg interaction is important in the development of *S. suis* meningitis.

Keywords: *Streptococcus suis*, fibrinogen, meningitis, muramidase-released protein, p120-catenin

Introduction

Streptococcus suis (*S. suis*) serotype 2 is an important emerging zoonotic pathogen that can cause meningitis, endocarditis, arthritis, pneumonia, bacteremia, and sudden death in swine and humans (Segura, 2009). Sporadic cases of *S. suis* infection in humans have been reported in several European and Asian countries as well as in North and South America, Australia, and New Zealand. This bacterium can affect not only the workers in close contact with pigs or swine byproducts but also the general population. Meningitis is the most important clinical feature associated with *S. suis* infection in humans, with high morbidity and mortality. In China, the outbreak of *S. suis* serotype 2 in 2005 resulted in more than 200 human cases of infection with a fatality rate near 20% (Yu et al., 2006). In Vietnam, *S. suis* was the most frequent cause of bacterial meningitis in adults (Hoa et al., 2013). Meningitis caused by *S. suis* likely develops through a multi-step process of bacteria-host interaction (Gottschalk and Segura, 2000; Gottschalk et al., 2010). Individuals can be infected through skin lesions or the oral route followed by invasion, bacteremia and septicemia with or without meningitis. Bacteria reach central nervous system by crossing the blood–brain barrier (BBB) which is mostly composed of brain microvascular endothelial cells. The effect of the interactions between specific *S. suis* virulence factors and host factors at the BBB is not understood.
The blood protein fibrinogen is synthesized primarily in the liver under normal conditions (Herrick et al., 1999) and interacts with a number of integrin and non-integrin receptors expressed on many cell types in the hematopoietic, immune and nervous system using multiple non-overlapping sites. For example, fibrinogen can bind glycoprotein IIb-IIIa (GPIIb-IIIa) on the surface of agonist-stimulated platelets leading to platelet aggregation (Bennett, 2001). Additionally, fibrinogen can bind to CD11b/CD18 expressed on cells of the immune system and cause a broad spectrum of cell signaling responses, such as activation of NF-kB and mitogen-activated protein kinase (MAPK)/phosphatidylinositol 3-kinase (PI3K) to mediate adhesion, migration, chemotaxis, and phagocytosis (Ryu et al., 2009). Fibrinogen can also mediate diseases by bridging the surface proteins of pathogens in the bloodstream or within tissues. In recent years, many cell wall proteins in gram-positive bacteria, such as the M protein of Group A streptococci (Whintack and Beachey, 1985), FbsA of S. agalactiae (Tenenbaum et al., 2005), FnbpA of S. aureus (Wann et al., 2000), CiaA of S. aureus (Josefsson et al., 2001), SdrG of S. epidermidis (Davis et al., 2001) have been shown to interact with fibrinogen and play different biological functions in pathogenesis.

Muramidase-released protein (MRP) was discovered as a factor released from virulent S. suis serotype 2 strains after muramidase treatment (Smith et al., 1992). Differences in the expression of MRP and extracellular factor (EF) are associated with the virulence of S. suis serotype 2 strains, but an intranasal infection model using newborn germfree pig showed that the isogenic mrp mutant was as virulent as the wild-type strain (Smith et al., 1996). Therefore, MRP was thought to be an important virulence marker but not a critical virulence factor for S. suis serotype 2. However, our recent in vitro study found that MRP could bind to human fibrinogen (hFg) and promote the anti-phagocytosis of S. suis serotype 2 to neutrophils thereby enhancing the survival of bacteria in human blood (Pian et al., 2015). These results indicate that MRP might have undiscovered functions. The biological functions of MRP binding to fibrinogen in S. suis meningitis has not been investigated.

In the present report, we show that hFg increases the adherence and traversal ability of S. suis to hCMEC/D3 cell monolayer. In addition, we provide evidence that the MRP-hFg interaction increases the permeability of the BBB by destroying the stability of p120-catenin, resulting in the development of S. suis meningitis.

Materials and Methods

Ethics Statement

CD1 mice (female, 6 to 8 weeks-old) were used in this study. All animals were purchased from the animal center of the Academy of Military Medical Sciences (AMMS) and housed under SPF condition. Animals were cared for in accordance with the principles of laboratory animal care approved in China. All experimental procedures were approved by the Institutional Animal Care and Use Committee of AMMS.

Bacterial Strains, Cell, and Culture Conditions

The S. suis strain 05ZYH33 and the isogenic deletion mutant 05ZYH33Δmrp used in this study were cultured as previously described (Geng et al., 2008). The mutant 05ZYH33Δmrp was constructed by targeted gene allelic replacement with a constitutively expressed chloromycyn resistance cassette as we previously described (Pian et al., 2012). The immortalized human cerebral microvascular endothelial cells (hCMEC/D3) were donated by Professor Pierre-Olivier Couraud (INSERM, Paris) and cultured by previously described methods (Wekslser et al., 2013).

Adherence Assay

Adherence of S. suis to hCMEC/D3 cells was assayed as previously described with some modifications (Tenenbaum et al., 2005). Briefly, hCMEC/D3 cells were cultured in 96-well tissue culture plates at a seeding density of 1 × 10⁴ cells per well and grown until confluent. The cell culture medium was replaced with EBM-2 complete medium without antibiotics 24 h before infection. After washing once with PBS, log-phase S. suis was resuspended in EBM-2 complete medium plus recombinant hirudin (70 U/mL) without antibiotics and adjusted to 10⁶ CFU/mL. The bacteria were incubated with a series of concentrations of hFg for 1 h at 37°C with rotation, and then added to hCMEC/D3 cell monolayers at a multiplicity of infection (MOI) of 10:1 for 2 h at 37°C in 5% CO₂. The cell monolayers were washed four times with PBS and then lysed with 0.1% saponin on ice for 20 min. The number of cell-adherent bacteria was determined by plating appropriate dilutions of the lysate on THB agar plates. Bacterial adherence was calculated as (recovered CFU/initial inoculum CFU) × 100%.

Fluorescent Microscopy

HCMC/D3 cells were grown until confluent on 12-mm diameter glass coverslips coated with 5 µg/cm² of rat tail collagen type I. The cells were grown in EBM-2 medium with 0.25% FBS and hirudin (70 U/mL) without antibiotics 24 h before infection. Log-phase S. suis was pre-incubated with hFg for 1 h and then added to the hCMEC/D3 cell monolayers at a MOI of 100:1 for 25 min. After infection, hCMEC/D3 cells were fixed with 3.7% paraformaldehyde for 20 min at RT and then permeabilized with 0.1% Triton X-100 for 15 min. After blocking with 1% BSA for 1 h, hCMEC/D3 cells were stained with rabbit anti-p120-catenin antibody (Santa Cruz, CA, USA, 1:100 dilution in 0.3% BSA) and Alexa Fluor 594-conjugated goat anti-rabbit antibody (Invitrogen, CA, USA, 1:200 dilution in 0.3% BSA). Coverslips were mounted on glass slides with DAPI (Vector Labs) and observed with a confocal laser scanning microscope (FV1000, Olympus).

For adherence assays, confluent hCMEC/D3 cell monolayers on glass coverslips were grown in EBM-2 medium containing 0.25% FBS and hirudin (70 U/mL) with or without exogenous hFg 3 h prior to bacterial infection. Log-phase S. suis 05ZYH33 and 05ZYH33Δmrp were labeled with BCECF for 30 min and then added to the cell monolayers at a MOI of 100:1 for 2 h. After gently rinsing three times with PBS, hCMEC/D3 cells were fixed and permeabilized as described above. Cell monolayers were stained with 100 nM Rhodamine-labeled Phalloidin (Cytoskeleton, Inc.) for 1 h at room temperature and mounted on glass slides with DAPI.
FIGURE 1 | MRP-hFg interaction promotes the adherence of S. suis to hCMEC/D3 cells. (A) The adherent ratio of S. suis to hCMEC/D3 cells in the presence of hFg. S. suis 05ZYH33 and 05ZYH33 Δmrp mutant were pretreated with a series of concentrations of hFg before infecting a hCMEC/D3 cell monolayer. The adherence ability of S. suis was evaluated by adherence assay. Values represent percent (mean ± S.D.) of total S. suis inoculum bound to the monolayers. (B) The adherent ability of S. suis to hCMEC/D3 cells evaluated by fluorescent microscopy. S. suis 05ZYH33 and 05ZYH33 Δmrp mutant were labeled by BCECF (green) before infection, and hCMEC/D3 cell monolayers were treated or untreated with Fg (500 µg/ml). F-actin was stained with Rhodamine-labeled Phalloidin (red), nuclei were stained with DAPI (blue). *P < 0.05.

Streptococcus suis Transendothelial Migration Assay

For transendothelial migration assays, hCMEC/D3 cells were grown until confluent on 3 µm pore size Millicell® (Millipore) inserts as previously described (Vu et al., 2009). The culture medium was EBM-2 medium supplemented with 0.25% FBS and hirudin (70 U/ml) without antibiotics 24 h before infection. The confluent cell monolayers were pretreated with or without hFg (20
μg/mL) for 3 h and then challenged with log-phase *S. suis* at a MOI of 100:1 for 25 min. The number of traversal bacteria was determined by plating appropriate dilutions of the basal chamber medium on THB agar plates. The traversal rate of *S. suis* across the cell monolayer was calculated as (CFU in the basal chamber / initial inoculum CFU in apical chamber) × 100%.

Measurement of Permeability to Lucifer Yellow

HCMEC/D3 cells were grown until confluent on 0.4 μm pore size MilliCell inserts in 24-well cell plates. Log-phase *S. suis* was incubated with hFg (20 μg/ml) for 1 h and then added to the hCMEC/D3 cell monolayers at a MOI of 100:1. At the same time, Lucifer yellow (200 μM, Invitrogen) was added to the apical chamber and incubated in transport buffer (EBM-2 medium supplemented with 10 mM HEPES and 1 mM sodium pyruvate) for 30 min. The amount of Lucifer yellow in the basolateral chamber was quantified with a spectrophotometer (Varioskan Flash, Thermo Fisher).

Western Blotting Analysis

Streptococcus suis strains 05ZYH33 and 05ZYH33Δmrp were pre-incubated with hFg for 1 h and added to hCMEC/D3 cell monolayers at a MOI of 100:1 for indicated time. Cell monolayers were washed three times with ice-cold PBS and lysed with 50 mM Tris pH 7.5, 10 mM MgCl2, 0.5 M NaCl, 2% Igepal, complete mini protease inhibitors and phosphatase inhibitors (Roche) on ice for 20 min. Cell lysates were separated by SDS-PAGE electrophoresis and transferred to nitrocellulose membranes. Membranes were incubated with primary antibodies and appropriate HRP-conjugated secondary antibodies. The protein signals were developed with SuperSignal West Dura Extended Duration substrate (Pierce) and imaged using ChemiDoc™ XRS+ system (Bio-Rad).

Mouse Model of *S. suis* Meningitis

A hematogenous *S. suis* meningitis model of infection in CD1 mice has been described previously (Dominguez-Punaro et al., 2007). Female 6 to 8-week-old CD1 mice (26 ± 2 g, 8 mice per group) were injected via the tail vein with 5 × 10⁶ CFUs of *S. suis* strains 05ZYH33 or 05ZYH33Δmrp. At day 1, 2, and 3 post-infection, vein blood (10 μL) was collected and at day 3 post-infection, brain tissue was collected aseptically from mice after euthanasia. Bacterial loads in blood and tissue were determined by plating serial 10-fold dilutions of the lysates on THB agar. Brain tissues were fixed in 10% buffered formalin. After embedding in paraffin, tissue sections were stained with hematoxylin and eosin and examined by light microscopy.

Evaluation of BBB Permeability

Female 6 to 8-week-old CD1 mice (26 ± 2 g) were randomly divided into three groups and injected intraperitoneally with 1 × 10⁷ CFU *S. suis* 05ZYH33, 05ZYH33Δmrp, or PBS as previously described (Dominguez-Punaro et al., 2007). At 24, 48, and 72 h post-infection, mice were injected intraperitoneally with 800 μl of 1% (w/v) Evans Blue dye and perfused transcardially with PBS 1 h later under anesthesia to remove intravascular Evans Blue dye. Then, the whole brain was weighed, homogenized, and the Evans blue dye was extracted as previously described (Zhang et al., 2010). The extracted supernatant was measured by absorbance spectroscopy at 620 nm for Evans blue determination. Calculations were based on external standards in the same solvent.

Statistical Analysis

The data were analyzed with GraphPad Prism software using one-way or two-way ANOVA analysis followed by
Bonferroni's multiple comparison test, or unpaired t-tests followed by Holm-Sidak method, or by non-parametric Mann-Whitney t-test. For all tests, a P value < 0.05 was considered significant.

Results

Binding of MRP to Fibrinogen Promotes Adherence of S. suis to HCMED/D3 Cells

Previous studies have found that S. suis serotype 2 has the ability to adhere to and invade porcine brain microvascular endothelial cells (Vanier et al., 2004). In this study, we evaluated if hFg could affect the adherence of S. suis to human brain microvascular endothelial cells. As shown in Figure 1A, with the increase of hFg, both wild type strain 05ZYH33 and the 05ZYH33Δmrp mutant had increased adherence to hCMEC/D3 cells. The adherent ratio of strain 05ZYH33 was significantly higher than that of the 05ZYH33Δmrp mutant in the presence of hFg. Fluorescent microscopy (Figure 1B) showed that in the presence of hFg, there was significantly more BCECF-labeled S. suis 05ZYH33 than that of the 05ZYH33Δmrp mutant. These results indicate that the interaction of MRP and Fg promotes the adherence of S. suis to hCMEC/D3 cell.

MRP Contributes to Changes in the Permeability of the Blood–Brain Barrier

To evaluate the BBB permeability in vivo, we administered Evans Blue, a dye that is normally excluded from the CNS, to S. suis 05ZYH33 and Δmrp mutant infected mice through an intraperitoneal injection at days 1, 2, and 3 post-infection. Macroscopic inspection of the brain showed more visible penetration of Evans Blue in S. suis 05ZYH33 infected mice than that in Δmrp mutant infected mice at day 3 post-infection (Figure 2A). Quantitative evaluation of extravasated Evans Blue also revealed higher levels in the brain lysates from S. suis 05ZYH33 infected mice than that from Δmrp mutant infected mice at day 3 post-infection (Figure 2B). These data show that the interactions of MRP and Fg increase the traversal of S. suis across human in vitro BBB by increasing the permeability of the hCMEC/D3 cell monolayer.

MRP Promotes the Development of Meningitis

We next evaluated the effects of the MRP-Fg interaction on the pathogenesis of S. suis meningitis. In this study, CD1 mice were challenged intravenously with wild type S. suis 05ZYH33 (3.31 × 10^6 CFU) and the Δmrp mutant strain (2.94 × 10^6 CFU). Bacterial loads in the blood of 05ZYH33 and Δmrp mutant infected mice were comparable from day 1 to day 3 post-infection, but bacterial counts in the brains of 05ZYH33 infected mice at 72 h were significantly higher than that of Δmrp mutant infected mice (Figure 3A). Histopathological lesions such as meningeal thickening and neutrophil infiltration were found in...
the brains of 05ZYH33 infected mice (Figure 4B) 3 days post-infection, but not of Δmrp mutant infected mice (Figure 4C). These data indicate that MRP promotes the development of *S. suis* meningitis.

Binding of MRP to Fibrinogen Can Destroy p120-Catenin of HCMC/D3

The above results indicate that the interaction of MRP with Fg contributes to the development of *S. suis* meningitis by increasing the permeability of the BBB. Since the tightness of endothelial cells is mainly controlled by vascular endothelial cadherin and Claudin-5, we supposed that this interaction might contribute to change the endothelial cell junctions during the *S. suis* infection. To test this hypothesis, we detected the endothelial cell junction proteins of the hCMEC/D3 cell monolayer challenged with Fg-pretreated *S. suis* by western blot. *S. suis* infection could cause a decrease of Claudin-5, ZO-1, ZO-2, and VE-cadherin 6 h post-infection, but we observed no significant difference between *S. suis* 05ZYH33 and 05ZYH33Δmrp infection (data not shown). However, Fg-pretreated *S. suis* 05ZYH33 caused a dramatic decrease of p120-catenin at 25 min post infection, while Fg-pretreated *S. suis* 05ZYH33Δmrp caused a slight increase of p120-catenin at 25 min post-infection (Figure 5A). Immunofluorescence microscopy also showed that compared to untreated cells, Fg-pretreated *S. suis* 05ZYH33 infection caused a marked decrease in the amount of p120-catenin on the surface of hCMEC/D3 cells,
MRP-Fg interaction and *S. suis* meningitis

FIGURE 5 | MRP-Fg interaction can destroy p120-catenin of hCMEC/D3. hCMEC/D3 cell monolayers were challenged with Fg pretreated *S. suis* 05ZYH33 or 05ZYH33Δ*mrp* for the indicated time and the amount of p120-catenin was detected by western blot (A) or by staining for p120-catenin at 25 min post infection (B). Although we show cropped blots, the gels were run under the same experimental conditions.

While Fg-pretreated *S. suis* 05ZYH33Δ*mrp* had no significant change in p120-catenin (Figure 5B). These results indicate that binding of MRP to Fg could destroy the stability of p120-catenin, which might contribute to the increased permeability of the BBB.

Discussion

The interaction of *S. suis* with the BBB plays an important role in the pathogenesis of *S. suis* meningitis. Several *in vitro* studies showed that *S. suis* serotype 2 could adhere to human or porcine brain microvascular endothelial cells (Charland et al., 2000; Vanier et al., 2004), though only invasion of porcine brain microvascular endothelial cells was demonstrated (Vanier et al., 2004). Other studies demonstrated that *S. suis* acquires plasmin activity when in contact with cultured human brain microvascular endothelial cells (hBMECs) and induces the release of arachidonic acid (Jobin et al., 2005) or the shedding of adhesion molecules from the cell surface of the hBMECs (Grenier and Bodet, 2008). Our recent study showed that suilysin from *S. suis* could remodel the cytoskeleton of hBMECs by activating RhoA and Rac1 GTPase (Lv et al., 2014).

In this work, we demonstrate that MRP can mediate the interaction of *S. suis* with the BBB by binding to the blood protein fibrinogen. Previously, MRP has been a phenotypic marker of *S. suis* virulent strains because MRP is associated with virulent strains of certain countries. But whether MRP is a critical virulence factor of *S. suis* remains controversy because the function of MRP has not been identified. This study and our previous studies demonstrate that MRP contribute to the virulence of *S. suis* strain 05ZYH33 by binding to Fg (Pian et al., 2015).
Many human pathogens can anchor to the cell surface of the host by serum proteins or extracellular matrix components (Virji et al., 1995; Sinha et al., 1999; Unkmeir et al., 2002; Schwarz-Linek et al., 2004) and benefit from these interactions. Our results demonstrate that MRP binding to Fg significantly increase the attachment and traversal of S. suis to bHMECs in vitro, which is likely an essential step for the development of S. suis meningitis. Our results show that the interaction of MRP with Fg increase the permeability of the BBB in vitro and in vivo.

Additionally, our results show that the interaction of MRP with Fg can destroy the stability of the adherens junction protein p120-catenin. A central function of p120-catenin is with Fg could destroy the stability of the adherens junction VE-cadherin hemophilic interactions and maintaining the VE-cadherin expression level (Reynolds, 2007). Mutant mice lacking endothelial p120-catenin have decreased VE-cadherin and nuclear cadherin levels, as well as a cellular proliferation defect that is VE-cadherin-dependent, which demonstrates that p120-catenin is required for vascular development and endothelial function (Oas et al., 2010). Thus, we speculate that the decrease of p120-catenin protein caused by the interaction between MRP and hFg might play an important role in the development of S. suis meningitis.

In summary, our in vitro and in vivo studies suggest that the binding of MRP of S. suis serotype 2 to fibrinogen can promote the adherence and traversal of S. suis across human BMECs, and can facilitate the development of S. suis meningitis.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 81171528, 81371766, and 81441062), the National Basic Research Program (973) of China (2012CB518804).

References

Bennett, J. S. (2001). Platelet-fibrinogen interactions. Ann. N. Y. Acad. Sci. 936, 340–354. doi: 10.1111/j.1749-6632.2001.tb03521.x
Charland, N., Nizet, V., Rubens, C. E., Kim, K. S., Lacouture, S., and Gottschalk, M. (2000). Streptococcus suis serotype 2 interactions with human brain microvascular endothelial cells. Infect. Immun. 68, 637–643. doi: 10.1128/IAI.68.2.637-643.2000
Davis, S. L., Gurusiddappa, S., Mccrea, K. W., Perkins, S., and Hook, M. (2001). SdrG, a fibrinogen-binding bacterial adhesin of the microbial surface components recognizing adhesive matrix molecules subfamily from Staphylococcus epidermidis, targets the thrombin cleavage site in the Bβ chain. J. Biol. Chem. 276, 7799–7805. doi: 10.1074/jbc.M103873200
Domínguez-Punaro, M. C., Segura, M., Plante, M. M., Lacouture, S., Rivest, S., and Gottschalk, M. (2007). Streptococcus suis serotype 2, an important swine and human pathogen, induces strong systemic and cerebral inflammatory responses in a mouse model of infection. J. Immunol. 179, 1842–1854. doi: 10.4049/jimmunol.179.3.1842
Geng, H., Zhu, L., Yuan, Y., Zhang, W., Li, W., Wang, J., et al. (2008). Identification and characterization of novel immunogenic proteins of Streptococcus suis serotype 2. J. Proteome Res. 7, 4312–4322. doi: 10.1021/pr800196v
Gottschalk, M., and Segura, M. (2000). The pathogenesis of the meningitis caused from microvascular endothelial cells. Int. J. Biochem. Cell. Biol. 31, 741–746. doi: 10.1016/S1357-2725(99)00032-1
Hoa, N. T., Chieu, T. T., Do Dung, S., Long, N. T., Hieu, T. Q., Luc, N. T., et al. (2013). Streptococcus suis and porcine reproductive and respiratory syndrome, Vietnam. Emerg. Infect. Dis. 19, 331–333. doi: 10.3201/eid1902.120470
Jobin, M. C., Fortin, J., Willson, P. J., Gottschall, M., and Grenier, D. (2005). Acquisition of plasmid activity and induction of arachidonic acid release by Streptococcus suis in contact with human brain microvascular endothelial cells. FEMS Microbiol. Lett. 252, 105–111. doi: 10.1016/j.femsle.2005.08.044
Josefsson, E., Hartford, O., O’Brien, L., Patti, J. M., and Foster, T. (2001). Protection against experimental Staphylococcus aureus arthritis by vaccination with clumping factor A, a novel virulence determinant. J. Infect. Dis. 184, 1572–1580. doi: 10.1086/324430
Lv, Q., Hao, H., Bi, L., Zhang, Y., Zhou, X., and Jiang, Y. (2014). Suihys remodel the cytoskeletons of human brain microvascular endothelial cells by activating RhoA and Rac1 GTPase. Protein Cell 5, 261–264. doi: 10.1007/s13238-014-0037-0
Vu, K., Weksler, B., Romero, I., Couraud, P. O., and Gelli, A. (2009). Immortalized human brain endothelial cell line HMEC/D3 as a model of the blood–brain barrier facilitates in vitro studies of central nervous system infection by Cryptococcus neoformans. Eukaryot. Cell 8, 1803–1807. doi: 10.1128/EC.00240-09

Wann, E. R., Gurusiddappa, S., and Hook, M. (2000). The fibronectin-binding MSCRAMM FnbpA of Staphylococcus aureus is a bifunctional protein that also binds to fibrinogen. J. Biol. Chem. 275, 13863–13871. doi: 10.1074/jbc.275.18.13863

Weksler, B., Romero, I. A., and Couraud, P. O. (2013). The hCMEC/D3 cell line as a model of the human blood–brain barrier. Fluids Barriers CNS 10, 16. doi: 10.1186/2045-8118-10-16

Whitnack, E., and Beachey, E. H. (1985). Inhibition of complement-mediated opsonization and phagocytosis of Streptococcus pyogenes by D fragments of fibrinogen and fibrin bound to cell surface M protein. J. Exp. Med. 162, 1983–1997. doi: 10.1084/jem.162.6.1983

Yu, H., Jing, H., Chen, Z., Zheng, H., Zhu, X., Wang, H., et al. (2006). Human Streptococcus suis outbreak, Sichuan, China. Emerg. Infect. Dis. 12, 914–920. doi: 10.3201/eid1206.051194

Zhang, M., Mao, Y., Ramirez, S. H., Tuma, R. F., and Chabrashvili, T. (2010). Angiotensin II induced cerebral microvascular inflammation and increased blood–brain barrier permeability via oxidative stress. Neuroscience 171, 852–858. doi: 10.1016/j.neuroscience.2010.09.029

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2015 Wang, Kong, Zhang, Jiang, Zheng, Zang, Hao and Jiang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.