Functional Diversity of Haloacid Dehalogenase Superfamily Phosphatases from *Saccharomyces cerevisiae*

BIOCHEMICAL, STRUCTURAL, AND EVOLUTIONARY INSIGHTS

Ekaterina Kuznetsova†, Boguslaw Nocek‡, Greg Brown§, Kira S. Makarova§, Robert Flick‡, Yuri I. Wolf§, Anna Khusnutdinova†, Elena Evdokimova†, Ke Jin†, Kemin Tan‡, Andrew D. Hanson¶, Gulham Hasnain¶, Rémi Zallot¶, Valérie de Crécy-Lagard‡‡, Mohan Babu**, Alexei Savchenko‡, Andrezj Joachimiak§, Aled M. Edwards††, Eugene V. Koonin‡‡, and Alexander F. Yakunin†

From the †Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada, the ‡Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439, the §Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada, the ¶National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, the **Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, Saskatchewan S4S 0A2, Canada, and the ‡‡Horticultural Sciences Department, Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611

Background: Haloacid dehalogenase (HAD)-like hydrolases represent the largest superfamily of phosphatases.

Results: Biochemical, structural, and evolutionary studies of the 10 uncharacterized soluble HADs from *Saccharomyces cerevisiae* provided insight into their substrates, active sites, and evolution.

Conclusion: Evolution of novel substrate specificities of HAD phosphatases shows no strict correlation with sequence divergence.

Significance: Our work contributes to a better understanding of an important model organism.

The haloacid dehalogenase (HAD)-like enzymes comprise a large superfamily of phosphohydrolases present in all organisms. The *Saccharomyces cerevisiae* genome encodes at least 19 soluble HADs, including 10 uncharacterized proteins. Here, we biochemically characterized 13 yeast phosphatases from the HAD superfamily, which includes both specific and promiscuous enzymes active against various phosphorylated metabolites and peptides with several HADs implicated in detoxification of phosphorylated compounds and pseudouridine. The crystal structures of four yeast HADs provided insight into their active sites, whereas the structure of the YKR070W dimer in complex with substrate revealed a composite substrate-binding site. Although the *S. cerevisiae* and *Escherichia coli* HADs share low sequence similarities, the comparison of their substrate profiles revealed seven phosphatases with common preferred substrates. The cluster of secondary phosphatases sharing significant activity of both *S. cerevisiae* and *E. coli* HADs includes 28 common metabolites that appear to represent the pool of potential activities for the evolution of novel HAD phosphatases. Evolution of novel substrate specificities of HAD phosphatases shows no strict correlation with sequence divergence. Thus, evolution of the HAD superfamily combines the conservation of the overall substrate pool and the substrate profiles of some enzymes with remarkable biochemical and structural flexibility of other superfamily members.

Characterization of proteins with unknown functions is one of the major challenges to modern biology (1). Global genome and metagenome sequencing efforts have already produced millions of new sequences, from which 30–40% of the genes have no known function (2–4). Even for the two best characterized model organisms, *Escherichia coli* and *Saccharomyces cerevisiae*, ~20% of their genes have no function assigned or have only a general function predicted (e.g. putative hydrolase), and experimental data are available for only 54% of *E. coli* proteins (5, 6). In addition, a substantial and growing number of genes have inaccurate functional annotations. Focused analyses of new sequences for members of 37 protein families deposited in 2005 have shown that about 40% of these proteins remain misannotated (7, 8). Our knowledge gap also includes over 1,000 of the known enzyme activities in the Enzyme Classification (of the 4,997 EC numbers) that have no associated gene sequence (orphan enzymes) (9, 10).

To infer gene function, complementary computational and experimental approaches and their combinations have been used, including sequence analysis, comparative genomics, gene expression and disruption, protein interaction, and protein

This work was supported, in whole or in part, by National Institutes of Health Grant GM094585 (to A. J.). This work was also supported by the Government of Canada through Genome Canada, the Ontario Genomics Institute, and the Ontario Research Fund (Grants 2009-OGI-ABC-1405 and ORF-GL2-01-004 to A. F. Y.), by the United States Department of Energy, Office of Biological and Environmental Research, under Contract DE-AC02-06CH11357 (to A. J.), and by U. S. National Science Foundation Grant IOS-1025398 (to A. D. H.). The authors declare that they have no conflict of interest with the content of this article.

This article contains supplemental Tables 1–8 and Figs. 1 and 2. The atomic coordinates and structure factors (codes 2QLT, 3NUQ, 3K2C, and 3RFG) have been deposited in the Protein Data Bank (http://wwwpdb.org/).**

To whom correspondence should be addressed: Dept. of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St., Toronto, Ontario M5S 3E5, Canada. Tel.: 416-978-4013; Fax: 416-978-8605; E-mail: a.iakounine@utoronto.ca.
Substrate Specificities of Yeast HAD-like Phosphatases

Most enzymes are organized into families of sequence-related proteins whose members catalyze the same or similar reactions but have evolved different substrate preferences and specific biological functions. These families represent a challenge for functional annotation because their catalytic activities and substrates are likely to be very similar. One such family are haloacid dehalogenase (HAD)\(^2\)-like hydrolases, which represent one of the largest enzyme superfamilies found in all organisms, with 479,051 sequences in databases (InterPro IPR023214) and 33 major families (24, 25). Most genomes are predicted to contain multiple HAD-like proteins, including 28 genes in \(E. coli\), 45 genes in \(S. cerevisiae\), and 183 genes in humans (26). This superfamily was originally named after the haloacid dehalogenase (HAD)\(^2\)-like hydrolases, which represent one of the largest enzyme superfamilies found in all organisms, with 479,051 sequences in databases (InterPro IPR023214) and 33 major families (24, 25). Most genomes are predicted to contain multiple HAD-like proteins, including 28 genes in \(E. coli\), 45 genes in \(S. cerevisiae\), and 183 genes in humans (26). This superfamily was originally named after the haloacid dehalogenases, but it is dominated by putative phosphatases (~79%) and ATPases (~20%) and also includes phosphonatases and phosphomutases (25–27). Specifically, the HAD-like phosphatases are a family of diverse enzymes that are responsible for the majority of metabolic phosphonooester hydrolysis reactions in all kingdoms of life (26, 28). Extensive sequence comparisons show that the HAD-like hydrolases are defined by the presence of four conserved sequence motifs with the characteristic N-terminal motif I containing two Asp residues (DxD), whereas motifs II and III contain a highly conserved Thr (or Ser) and Lys, respectively (24, 25). Most HAD-like hydrolases contain a highly conserved \(α/β\) core domain with a mobile cap domain, which can be inserted between motifs I and II (type I or C1) or between motifs II and III (type II or C2) of the core domain (25, 29). Type III HAD-like hydrolases have no cap domain (C0).

HAD-like phosphatases can perform different cellular roles, including primary and secondary metabolism, regulation of enzyme activity or protein assembly, cell housekeeping, and nutrient uptake (26). To date, many HAD-like phosphatases from different organisms have been characterized both biochemically and structurally, including the phosphoserine phosphatase SerB from \(Methanococcus jannaschii\) (30), phosphoglycolate phosphatase TA0175 from \(Thermoplasma acidophilum\) (31), UMP nucleotidase NagD from \(E. coli\) (32), and inorganic pyrophosphatase BT2127 from \(Bacteroides thetaiotaomicron\) (33). In particular, phosphoprotein phosphatase activity has been demonstrated for several eukaryotic HAD-like hydrolases: human CTDP1 (or FCPI; Ser(P) phosphatase) (34), \(Drosophila\) and mammalian Eyes absent (Tyr(P) phosphatase) (35–37), and mammalian chronophin (Ser(P) phosphatase) (38, 39). In a previous study, we have experimentally characterized the substrate specificities of the 19 soluble HAD-like phosphatases from \(E. coli\) and demonstrated that most of the \(E. coli\) HADs show remarkably broad and overlapping substrate profiles, being active against phosphorylated carbohydrates, nucleotides, organic acids, and coenzymes (40). A phylogenetic analysis of the \(E. coli\) HADs suggested that their secondary activities might have no direct physiological function, but they could comprise a reservoir for the evolution of phosphatases with novel specificities.

The genome of the yeast \(S. cerevisiae\) contains at least 45 genes encoding the predicted HAD-like hydrolases (IPR023214), which include 19 membrane proteins (mostly ATPases), seven HAD-like domains in large proteins, and 19 soluble, stand-alone HAD-like proteins (supplemental Table 1). From the last group, the enzymatic activity and specific substrates have previously been experimentally demonstrated for two deoxyglucose-6-phosphate phosphatases (DOG1 and DOG2), two glycerol-3-phosphate phosphatases (GPP1 and GPP2), DNA 3'-phosphatase TPP1, phosphomannomutase SEC53, phosphatidylglycerophosphatase GEP4, pyrimidine 5'-nucleotidase SDT1, and protein fructosamine 6-phosphatase MDP-1 (41–47).

Here, we present the results of biochemical and structural studies of soluble HAD-like hydrolases from \(S. cerevisiae\) with a focus on the 10 uncharacterized HADs. Eight previously uncharacterized HADs had phosphatase activity. Additional substrates were found for the five known \(S. cerevisiae\) HAD phosphatases. Collectively, these were active against 2-phosphoglycerate, thiamine monophosphate, pyridoxal phosphate, phosphoserine, glycerol 1-phosphate (Gly-1-P), nucleotides, and phosphorylated peptides. The crystal structures of four \(S. cerevisiae\) HADs provided insight into the molecular basis of their substrate specificity. Although the \(S. cerevisiae\) and \(E. coli\) HADs share low overall sequence similarities, these enzymes show remarkable conservation of their biochemical activities.

Experimental Procedures

Gene Cloning, Protein Purification, and Mutagenesis—The genes encoding 15 selected yeast HADs (Table 1) were amplified by PCR from \(S. cerevisiae\) genomic DNA and cloned into a modified pET15b vector (Novagen) as described previously (40). Purification of proteins for screening and biochemical characterization was performed as described previously (48). The oligomeric state of purified proteins was determined using gel filtration analysis on a Superdex 200 10/300 column (GE Healthcare). Site-directed mutagenesis of YKR070W was performed using a protocol based on the QuickChange site-directed mutagenesis kit (Stratagene) as described previously (48). The presence of mutations was verified by DNA sequencing, and the

\(^2\) The abbreviations used are: HAD, haloacid dehalogenase; Gly-1-P, glycerol 1-phosphate; Gly-2-P, glycerol 2-phosphate; Gly-3-P, glycerol 3-phosphate; pNP, \(p\)-nitrophenyl phosphate; P-glycolate, 2-phosphoglycolate; PLP, pyridoxal 5-phosphate; \(Ψ\)-UMP, pseudouridine monophosphate; \(Ψ\)-UTP, pseudouridine triphosphate; BisTris, 2-(bis[2-hydroxyethyl]amino)ethane-1,2-diol (MOPS); BisTris propane, 1,3-bis(2-[tris(hydroxymethyl)methylamino])propane (Tris); SAD, single-wavelength anomalous diffraction; AP, apurinic/apyrimidinic; TP, thiamine monophosphate; r.m.s., root mean square; PDB, Protein Data Bank.
mutant proteins were overexpressed and purified in the same manner as the wild-type YKR070W.

Enzymatic Screens and Assays—Purified yeast HADs were initially screened for the presence of phosphatase activity against the general phosphatase substrates pNPP and acetyl phosphate as described previously (40). Secondary phosphatase screens with 93 phosphorylated metabolites (supplementary Table 2) were then performed to identify the preferred in vitro substrates for these proteins (40). Phosphatase activity against phosphorylated metabolites and phosphopeptides was measured spectrophotometrically using the malachite green reagent (48). The dependence of phosphatase activity on divalent metal cations was determined spectrophotometrically using the malachite green reagent or a mild phosphate detection method (48). The dependence of phosphatase activity on divalent metal cations was determined using saturating concentrations of the indicated substrates and cations (5 mM Mg$^{2+}$ or 0.5 mM for other ions), whereas the pH dependence was determined using a mixed buffer system (MEGA buffer) (49). For the determination of kinetic parameters (K_m and k_{cat}), enzymatic assays were performed using a range of substrate concentrations (0.05–10 mM) or a range of metal ion concentrations (0.005–2.5 mM) in the presence of saturating substrate concentrations (0.5–0.8 mM). Kinetic parameters were calculated by non-linear regression analysis of raw data to fit to the Michaelis-Menten function using GraphPad Prism Software (version 4.00 for Windows, GraphPad Software, San Diego, CA). A heat map of HAD activity was performed using the gplots heatmap.2 function, whereas hierarchical clustering of HADs (based on substrate profiles) was calculated using Euclidian distance, and groups were clustered using the complete linkage method (R Foundation for Statistical Computing).

HPLC Methods—An HPLC-based protocol was used for the analysis of phosphohydrolase activity against pseudouridine monophosphate (Ψ-UMP), which was generated using commercially available pseudouridine triphosphate (TirLink Biotechnologies) and purified Maf nucleotide pyrophosphatases from yeast (YOR111W) or Bacillus subtilis (BSU28050) (50). The reactions were performed in a reaction mixture (20 μl final volume) containing 50 mM HEPES-K (pH 7.5), 10 mM CoCl$_2$, 1 mM pseudouridine triphosphate (Ψ-UTP), and 2.5 μg of YOR111W or BSU28050 for Ψ-UTPase reactions (to generate Ψ-UMP) followed by the addition of purified yeast HADs (PHM8, SDT1, or YKL033W-A; 5 μg) for Ψ-UMPase assays. The reactions were carried out at 30 °C for 2 h and analyzed using reversed phase chromatography on a Varian ProStar HPLC system equipped with a Varian Pursuit C18 column as described previously for Maf proteins (50). Standard solutions of Ψ-UMP and Ψ were used to confirm the identity of the observed peaks and products.

The S. cerevisiae haploid mutant ycr015cΔ (genotype BY4741; Mat a; his3D1; leu2D0; met15D0; ura3D0; YCR015C::kanMX4) was obtained from the Euroscarf collection, and the YCR015cΔ deletion was verified by PCR. The ycr015cΔ and the corresponding wild type strain BY4741 were grown at 30 °C in a synthetic defined medium without thiamine (SD medium) that consisted of yeast nitrogen base without amino acids, without ammonium sulfate, and without thiamine (1.9 g/liter; ForMedium), –Ura DO supplement (0.77 g/liter; Clontech), and uracil (180 mg/liter; Sigma) with glucose at 2% (w/v) final concentration. Cells were harvested when A_{600} reached 0.6, frozen in liquid nitrogen, and stored at −80 °C. Cell pellets were resuspended in 0.5 ml of 7.2% (v/v) perchloric acid and sonicated. The sonicate was held on ice for 15 min with periodic vortex mixing and then cleared by centrifugation at 4 °C (2,000 × g, 15 min). Thiamine and its phosphates were analyzed by oxidation to thiochrome derivatives followed by HPLC with fluorometric detection (51). The oxidation reagent was a freshly prepared solution of 12.14 mM potassium ferricyanide in 3.35 mM NaOH. Samples or standards (160 μl) were mixed with 15 μl of methanol; 100 μl of oxidation agent was added and mixed for 60 s, and 100 μl of 1.43 μl peroxidic acid was then added. The standards (thiamine, TMP, and thiamine pyrophosphate (TPP) dissolved in 0.1 M HCl) were made up in 7.2% (v/v)
perchloric acid, 0.25 m NaOH (1:1, v/v). Samples (25 μL) were separated on an Alltech HP C18 amide column (150 × 4.6 mm, 5 μm, 190 Å, Alltech). The mobile phase (1 mL/min) consisted of a gradient of potassium phosphate (140 mM, pH 7.00), 12% methanol (v/v) (buffer A) to 70% (v/v) methanol (buffer B). Runs began with 100% buffer A; within 10 min, the ratio A/B reached 50:50, becoming 0:100 in the following 5 min.

Analysis of Protein-Protein Interactions—The physical interactions of the *S. cerevisiae* YKR070W were analyzed using an affinity tagging and purification mass spectrometry approach essentially as described previously (52). The C-terminally GFP-tagged YKR070W was purified using anti-GFP MicroBeads, and the associated proteins were analyzed using a high performance linear trap quadrupole Orbitrap Velos Pro mass spectrometer (Thermo Scientific, Waltham, MA). After filtering the data set with a confidence score of 95% probability and 2 or more peptides, we were able to retain 119 protein-protein interactions. This data set was merged with previously known interactions extracted from the literature and public databases (BioGRID, MINT, IntAct, and DIP), resulting in 127 unique protein-protein interactions. These were then subjected to the GO Slim Mapper deployed in SGD (53) to group the interacting proteins into specific processes.

Protein Crystallization—The *S. cerevisiae* HAD-like proteins were crystallized at room temperature using the sitting or hanging drop vapor diffusion protocols. The crystals of RHR2 were grown in a crystallization solution containing 100 mM BisTris propane buffer (pH 7.0) and 2.5 mM ammonium sulfate. Mercury-labeled crystals were obtained by overnight soaking of crystals in 10 mM HgCl₂ followed by cryoprotection in 3.6 M ammonium sulfate and flash freezing in liquid nitrogen. The selenomethionine-labeled YKR070W (54) was crystallized in a solution containing 100 mM potassium/sodium phosphate (pH 6.2), and 26% (w/v) polyethylene glycol (PEG) 3350. The crystals were treated with paratone oil as the cryoprotectant and flash-frozen in liquid nitrogen. The crystals of the YKR070W complex with glyceral 3-phosphate (Gly-3-P) were obtained by co-crystallization in a solution containing 100 mM HEPES-K (pH 7.5), 1.2 M sodium citrate, 0.2 mM MgCl₂, and 4 mM Gly-3-P (added to the crystallization sitting drop prior to set-up). The SDT1 crystals were grown using native protein in a solution containing 100 mM BisTris (pH 6.5) and 25% (w/v) PEG 2000 MME (monomethyl ether). Prior to freezing, 25% (v/v) ethylene glycol was added for cryoprotection. Mercury labeling was performed by adding 6 mM HgCl₂ to the crystallization drop followed by a 4-h incubation.

Data Collection, Structure Determination, and Refinement—Single-wavelength anomalous diffraction (SAD) data sets were collected for the RHR2 (Hg-SAD) and YKR070W (Se-SAD) crystals at 12.66 keV at the Structural Biology Center at the Advanced Photon Source (19-1D) (55). The low resolution data sets were collected on mercury-labeled SDT1 crystals (data not shown) using a Rigaku Micromax-007 HF generator equipped with a CR Raxis-4++ detector and producing chromium Kα radiation, whereas the refinement of the SDT1 structure was performed with native crystal data sets collected using copper Kα radiation. Data collection, integration, and scaling on all data were performed with the HKL3000 suite of programs (56).

Table 2

Protein	Variable substrate	K_{in}	K_{cat}	K_{cat}/K_{in}
DOG1	2-Deoxyglucose-6-P	1.39	99.6	7.104
	Mannose-6-P	5.72	43.4	7.601
DOG2	2-Deoxyglucose-6-P	0.77	17.0	2.204
	Mannose-6-P	1.10	13.8	1.303
Fructose-1-P		1.80	29.0	1.603
HOR2	Gly-3-P	3.02	12.2	4.006
	Gly-1-P	4.72	11.4	2.408
PHM8	AMP	2.10	31.5	1.503
	CMP	0.063	0.098	2.303
	GMP	0.21	0.76	3.703
	IMP	0.99	32.8	3.303
	UMP	0.083	0.151	1.803
	XMP	0.52	28.6	5.503
PHO13	P-glyceraldehyde	0.061	67.4	1.103
RHR2	Gly-3-P	2.81	79.0	2.806
	Gly-1-P	2.95	77.7	2.606
SDT1	UMP	0.028	0.64	2.303
	CMP	0.073	0.78	1.103
	XMP	0.24	0.42	1.703
	Tyr(P)	1.19	0.79	6.602
SER2	Ser(P)	0.098	1.17	1.403
YCR015C	Thiamine-P	0.019	20.4	1.203
YKL033W	XMP	1.26	1.9	1.503
YKR070W	Glu-6-P	0.22	35.1	1.603
	Glu-6-P (Mn⁺¹)	0.06	7.9	1.403
	2-Deoxyglucose-5-P	0.59	46.2	7.802
	2-Deoxyribose-5-P	0.31	27.3	8.803
	Fructose-1,6-bisp	0.65	40.1	6.204
	Fructose-6-P	1.04	67.4	6.503
	Mannose-6-P	0.67	39.6	5.903
	Ribose-5-P	0.75	49.0	6.503
	Erythrose-4-P	0.33	29.5	8.803
	Gly-3-P	0.28	41.1	1.603
	Gly-1-P	0.39	35.6	9.203
	Gly-2-P	1.22	12.2	1.033
YNL010W	Gly-1-P	1.12	35.8	3.203
	Erythrose-4-P	2.84	26.3	9.303
	Sorbitol-6-P	0.26	0.70	2.703
YOR131C	PLP	0.07	3.0	1.203
	Imide-diP	0.69	3.0	4.403

The initial phases of RHR2, SDT1, and YKR070W were determined by SAD phasing, and the initial protein models were built using the HKL3000 software package (57–62). A summary of the crystallographic data can be found in Table 2. The structure of the YKR070W-Gly-3-P complex was solved by molecular replacement using the program MOLREP from the CCP4 program suite and the YKR070W structure as a search model (60, 63). All protein models required substantial rebuilding and refinement using the program COOT in order to obtain the final models (57). The models were refined against all reflections in the resolution range except for a randomly selected 5% of reflections, which were used for monitoring R_{free}. The quality of the structures was checked using the validation tools included in the programs COOT and Molprobity (64). The final refinement statistics are shown in Table 2.

Accession Numbers—The atomic coordinates and structure factors have been deposited in the Protein Data Bank with accession codes 2QLT (RHR2), 3NUQ (SDT1), 3KC2 (the wild type YKR070W), and 3RF6 (the YKR070W D19A in complex with Gly-3-P).

Results

The Complement of Soluble HADs in *S. cerevisiae*—The *S. cerevisiae* genome encodes at least 45 HAD-like hydrolases.
of which 19 proteins have been predicted to be membrane-bound ATPases (PEDANT database) (supplemental Table 1). Previously characterized yeast HADs include the RNA polymerase II subunit C-terminal domain phosphatase FCP1 (YMR277W); the phosphatidate phosphatase PAH1 (YMR165C); the three trehalose-phosphate synthase-phosphatases TS3 (YDR074W), TSL1 (YML100W), and TPS3 (YMR261C); the PAH1 protein phosphatase NEM1 (YHR004C); the DNA 3’-phosphatase TTP1 (YMR156C); the mitochondrial phosphatidylglycerophosphatase GEP4 (YHR100C); the phosphomannomutase SEC53 (YFL045C); the pyrimidine- and NMN-specific 5’-nucleotidases ISN1 (YOR155C) and SDT1 (YGL224C); and the protein-fructosamine-6-phosphatase MDP-1 (YER134C) (43–47, 65–70). In addition, specific substrates have been identified for two pairs of paralogous HADs, namely the 2-deoxyglucose-6-phosphate phosphatases DOG1 and DOG2 (92% sequence identity) and the glycerol-1-phosphate phosphohydrolases RHR2 (GPP1) and HOR2 (GPP2) (95% sequence identity) (41, 42). Although purified PHM8 protein has been shown to specifically hydrolyze lysophosphatidic acid, the reported specific activities were at a low nanomolar level (up to 3 nmol min⁻¹ mg⁻¹ protein) (71). Sequence analysis of the 15 selected HAD-like phosphatases confirmed the presence of conserved HAD motifs in all of these proteins (supplemental Fig. 1). Based on the cap domain architecture, they mostly belong to the HAD C1 group (the cap domain is inserted between the first and second HAD motifs) with only two C2 proteins (the cap domain is located between the second and third HAD motifs) (Fig. 1). According to a previous sequence analysis (25), the yeast HADs of the C1 group can be further divided into five families, including PSP, Epo, BGPM, Dehr, and Eno. Members of each family that are likely to be (co)orthologs of the respective yeast HADs were also detected in E. coli and, for three of the families, in humans as well (Fig. 1).

Screening of Purified Yeast HADs for Phosphatase Activity—We expressed in E. coli and purified 10 uncharacterized S. cerevisiae HAD-like proteins as well as five HAD enzymes with identified substrates (DOG1, DOG2, HOR2, RHR2, and SDT1) to confirm these activities and to explore the possibility of their having additional activities (Table 1). The proteins were affinity-purified to over 95% homogeneity and first analyzed for Mg²⁺-dependent phosphatase activity using the generic phosphatase substrate p-nitrophenyl phosphate (pNPP) (21). Except for YKL033W, most yeast HADs showed readily detectable Mg²⁺-dependent hydrolysis of pNPP (Table 1), with the highest activity observed for PHO13 (~200 μmol min⁻¹ mg⁻¹ protein), which has been annotated as pNPP phosphatase (72). Like the E. coli HADs (40), the majority of S. cerevisiae HADs also hydrolyzed the small phosphodonor substrate acetyl phosphate (data not shown).

Several HAD domain-containing proteins have protein phosphatase activity (37–39, 73). Therefore, we screened the purified yeast HADs against a library of 65 synthetic oligopeptides containing Ser(P), Thr(P), or Tyr(P) (supplemental Table 3). The sequences of the 46 phosphopeptides include the most common protein phosphorylation sites found in the S. cerevisiae phosphoproteome, whereas the remaining 19 phosphopeptides represent common protein kinase substrates related to various protein kinases (74, 75). Four S. cerevisiae HADs showed Mg²⁺-dependent protein phosphatase activity, including SDT1 (Tyr(P)- and Ser(P)-containing peptides), YKR070W (Tyr(P)), YNL010W (Tyr(P) and Ser(P)), and YOR131C (Tyr(P) and Ser(P)) (supplemental Table 4). The targeted peptide sequences are present in the S. cerevisiae MAPKs HOG1, FUS3, and KSS1; in the regulatory proteins REG1 and MMF1; and in subunits of several complexes (Pat1p, Rif1p, and Nmd2). Although the presence of protein phosphatase activity has not yet been reported for E. coli HADs (25, 40), this activity has been proposed for several microbial effector proteins with HAD domains from the pathogenic bacteria *Porphyromonas gingivalis* and *Coxiella burnetii* (76, 77).

Substrate Profiles of Purified Yeast HADs—To identify potential natural substrates of the S. cerevisiae HADs, purified proteins were screened for the presence of Mg²⁺-dependent phosphatase activity against a set of 93 phosphorylated compounds (supplemental Table 2) representing all main divisions of natural phosphometabolomes (nucleotides and phosphorylated carbohydrates, organic acids, and amino acids) (78). These assays confirmed the previously reported substrates for DOG1 and DOG2 (2-deoxyglucose-6-phosphate), RHR2 (GPP1), and HOR2 (GPP2) (Gly-3-P) as well as for SDT1 (UMP and CMP) (Fig. 2). Both DOG1 and DOG2 exhibited significant but lesser

![FIGURE 1. Sequence-based clustering of the 15 soluble S. cerevisiae HADs and their homologs.](image-url)
activity toward mannose 6-phosphate, glucose 6-phosphate, fructose 1-phosphate, and ribose 5-phosphate, whereas RHR2 and HOR2 were also active against Gly-1-P (Fig. 2). The enzymes possessed higher catalytic activity and lower K_m toward the major substrates (2-deoxyglucose-6-phosphate and Gly-3-P) than reported previously (41, 42, 45) (Table 3 and supplemental Table 5). Recently, nicotinamide mononucleotide (NMN) has been reported to be another physiological
substrate for SDT1 (70). Indeed, our in vitro assays with purified SDT1 revealed high activity of this protein toward this substrate, which was comparable with that using CMP and XMP (Table 3). However, SDT1 showed lower \(K_m \) for nucleoside monophosphates compared with NMN.

SER2 is annotated as a putative phosphoserine phosphatase based on sequence similarity to known Ser(P) phosphatases from the HAD superfamily. The \(S.\) \textit{cerevisiae} SER2 shows 31.9% sequence identity to the \(E.\) \textit{coli} SerB, but phosphoserine phosphatase activity of SER2 has not yet been verified experimentally. Our screens confirmed the Ser(P) phosphatase activity in purified SER2, which exhibited high catalytic activity against Ser(P) (Fig. 2, Table 3, and supplemental Table 5). SER2 and SerB had similar \(K_m \) values for Ser(P), but SER2 was at least 2 times more active than SerB (Table 3) (40). The high catalytic efficiency of SER2 is consistent with its cellular function, because this enzyme catalyzes the last step in the biosynthesis of serine from carbohydrates (79).

We screened the remaining HADs and revealed phosphatase activity in seven proteins. Two enzymes showed nucleotidase activity (PHM8 and YKL033W), two had glycerol phosphatase activity (PHM8 and YKL033W), and enzymes were found with phosphohydrolase activity against 2-phosphoglucomutase or dehalogenase activity, but none was specific for substrates that are missing in the substrate library used in this work. UTR4 is predicted to be involved in L-methionine biosynthesis, and its phosphatase domain is predicted to catalyze dephosphorylation of 5-(methylthio)-2,3-dioxopentyl phosphate (UniProt P32626). The natural substrate for YMR130W is not known. Other HAD members have \(\beta \)-phosphoglucomutase or dehalogenase activity, but none was detected for YMR130W (data not shown).

Similar to the \(E.\) \textit{coli} HADs (40), phosphatase activities of yeast HADs against natural substrates had slightly acidic or neutral pH optima (pH 6.5–7.5) and were strictly dependent on the addition of a divalent metal cation, with \(\text{Mg}^{2+}, \text{Mn}^{2+}, \) and \(\text{Co}^{2+} \) being the preferred metal ions for most enzymes (supplemental Table 6). In contrast to \(E.\) \textit{coli} HADs, \(\text{Ni}^{2+} \) also supported phosphatase activity of PHO13, PHM8, SDT1, and SER2, whereas \(\text{Zn}^{2+} \) was found to be inefficient for all tested yeast HADs. The yeast HADs required higher concentrations of \(\text{Mg}^{2+} \) for maximal activity (\(K_m = 0.03–1.4 \) mM, depending on substrate used, mostly 0.2–0.5 mM), whereas \(\text{Mn}^{2+}, \text{Co}^{2+}, \) and \(\text{Ni}^{2+} \) were saturating at lower concentrations (\(K_m = 0.1–80 \mu\)M) (supplemental Table 6). \(\text{Mg}^{2+} \) was the best metal cofactor for most yeast HADs except for YKR070W, which showed a preference for \(\text{Co}^{2+}. \) Like \(E.\) \textit{coli} HADs, the yeast HADs usually showed higher \(K_m \) in the presence of \(\text{Mg}^{2+} \) and lower \(K_m \) with other metal ions (supplemental Table 5). In addition, several yeast HADs (DOG1, DOG2, PHM8, SER2, YKL033W, YKR070W, and YOR131C) exhibited sigmoidal substrate saturation curves, suggesting positive cooperativity in substrate binding with Hill coefficients \(n_H = 1.4–1.8 \) (supplemental Table 5). This is in line with the presence of dimers in these protein preparations (supplemental Table 5). Thus, both \(E.\) \textit{coli} and yeast HADs exhibit notable promiscuity toward divalent metal cations and positive cooperativity in substrate binding.
YKR070W, a Broad Substrate Range Mitochondrial Phosphatase—YKR070W is annotated as an unknown protein localized in mitochondria and has no homologs in E. coli. YKR070W shares 29% sequence identity with the uncharacterized human HAD-like protein CECR5, which is also localized in mitochondria and is associated with cat eye syndrome, a developmental disorder (UniProt Q9BXW7). Mitochondria are ubiquitous organelles that carry out many crucial processes in eukaryotic cells, including ATP production, gluconeogenesis, pentose phosphate pathway, and NAD metabolism (80). As shown in Fig. 2 and Table 3, purified YKR070W is a broad substrate range phosphatase with high activity against several phosphorylated carbohydrates and glycerol phosphates, which represent various intermediates of the respiratory, gluconeogenic, and pentose phosphate pathways as well as NAD metabolism. Analysis of the YKR070W kinetic parameters revealed low K_m values mostly below 1 mM, suggesting that this enzyme might contribute to the homeostasis of phosphorylated metabolites (Table 3 and supplemental Table 5). The intracellular levels of phosphorylated metabolites have to be tightly regulated because high levels are toxic and cause DNA damage and growth inhibition (81–84). In our previous work on E. coli HAD phosphatases, we proposed that several enzymes (YniC, YfbT, YbiV, YidA, YjjG, YihX, and YigL) might have a detoxification function in E. coli and experimentally demonstrated this role for one protein (YniC) (40). Recently, the phosphosugar detoxification role has been demonstrated for E. coli YigL (85). In S. cerevisiae, the phosphatase activity of YKR070W against a broad range of phosphorylated metabolites might represent a similar molecular mechanism for fast attenuation of phosphosugar stress by reducing their levels and promoting the efflux of dephosphorylated products.

Another potential in vivo role of YKR070W might be associated with its ability to dephosphorylate Tyr(P)-containing phosphopeptides demonstrated in this work (supplemental Table 4). Using affinity tagging and purification mass spectrometry, we identified a high number of protein-protein interactions of YKR070W with yeast proteins involved in metabolism, protein folding, translation, ribosomal RNA processing, transport, and phosphorylation, including the HAD-like glycerol-3-phosphatase HOR2 (Fig. 3). Presently, 36 protein phosphatase genes are known in S. cerevisiae, including 21
Ser(P)/Thr(P)-specific phosphatases and 14 Tyr(P)-specific phosphatases, none of which is related to the HAD superfamily (86, 87). Mitochondrial localization has been demonstrated for the three yeast PP2C-like (Ser(P)/Thr(P)-specific) protein phosphatases PTC5 (YOR090C), PTC6 (AUP1, YCR079W), and PTC7 (YHR076W) (88) (Saccharomyces Genome Database). Human mitochondria have been shown to contain several non-HAD-related protein Ser(P)/Tyr(P)-specific protein phosphatases, including PP2Cm (PPMIK, PP2C family), PGAM5, and the Tyr(P)-specific protein phosphatase PTMPT1, which play important roles in ATP production, insulin secretion, and cell death regulation (89–91). Thus, YKR070W might also function as a protein phosphatase in S. cerevisiae.

PHM8 and YKL033W-A, Novel Yeast Nucleotidases—Previously, PHM8 (phosphate metabolism protein 8) has been reported to exhibit low nanomolar phosphate activity against lysophosphatidic acid (71). However, this protein shares significant sequence similarity with the S. cerevisiae nucleotidase SDT1 (41.5% identity), and our screens with purified PHM8 revealed a much higher phosphate activity against nucleotides, in the order CMP > XMP > GMP = UMP (Fig. 2 and Table 3) (92). With CMP as substrate, the enzyme showed hyperbolic saturation, whereas with XMP, sigmoidal saturation was observed with the Hill coefficient $n_H = 1.4–1.8$, indicating positive cooperativity between the PHM8 subunits in XMP binding. This finding is consistent with the oligomeric state of PHM8 in solution, which is dimeric, as indicated by the size exclusion chromatography (observed M_r of 64,000 predicted monomer M_r of 39,000).

Phosphatase screens with purified YKL033W-A identified XMP as the best in vitro substrate for this protein (Fig. 2). YKL033W-A is annotated as a protein of unknown function (Saccharomyces Genome Database) or uncharacterized hydrolase (UniProt Q86ZR7) with low sequence similarity to both SDT1 and PHM8 (20 and 19% sequence identity, respectively). Comparison of the catalytic parameters shows that YKL033W-A is a less efficient XMP phosphatase, due to a low k_{cat} value and high apparent K_m (Table 3). Lower catalytic efficiencies of YKL033W-A observed with XMP and other substrates suggest that these could be secondary activities for this protein, and its primary substrate was not included in our screen. The other new yeast nucleotidase PHM8 (YER037W) exhibited a higher level of nucleotidase activity with a substrate profile similar to that of SDT1 (Fig. 2). These two phosphatases have different roles in yeast cells, with SDT1 shown to be responsible for the production of nicotinamide riboside and nicotinic acid riboside as well as for the removal of toxic 6- or 5-modified pyrimidines, whereas PHM8 is a nucleotidase involved in autophagy and ribosome salvage (45, 92).

Presently, over 100 types of RNA modifications have been characterized, with pseudouridine (Ψ) being the most abundant modified base found both in non-coding RNAs and mRNAs (93, 94). Pseudouridine stabilizes the structure of transfer RNA and ribosomal RNA, enhancing their function (95). In S. cerevisiae and humans, the formation of pseudouridine in mRNA is regulated by environmental signals, suggesting a mechanism for the rapid regulation of protein synthesis and regulated rewiring of the genetic code (93). Because of the abundance of pseudouridine, many organisms have evolved various pseudouridine-metabolizing enzymes (96). Pseudouridine monophosphate (Ψ-UMP or pseudouridine 5′-phosphate) produced in the course of RNA degradation can be phosphorylated by promiscuous kinases to Ψ-UTP, which needs to be removed from the cellular nucleotide pool to prevent its uncontrolled incorporation into new RNAs (97, 98). Recently, we have identified the presence of Ψ-UTP pyrophosphatase activity in several Maf proteins, including yeast YOR111W and human ASMTL-Maf, which produced Ψ-UMP and pyrophosphate as reaction products (50). In the present work, we found that the addition of purified YKL033W-A, PHM8, or SDT1 to a reaction mixture with a Maf protein (yeast YOR111W or BSU28050 from B. subtilis) and Ψ-UTP resulted in dephosphorylation of the produced Ψ-UMP and formation of pseudouridine (Ψ) (Fig. 4). These results suggest that the yeast nucleotidases YKL033W-A, PHM8, and SDT1 possess pseudouridine 5′-phosphatase activity and together with YOR111W might constitute a pathway for the detoxification of Ψ-UTP and Ψ-UMP in S. cerevisiae. A similar pathway comprising the human proteins ASMTL-Maf and pseudouridine 5′-phosphatase HDHD1 can also be proposed for humans (50, 99). HDHD1 also belongs to the HAD superfamily and shows low sequence similarity to YKL033W-A (35% sequence identity), PHM8 (19% sequence identity), and SDT1 (17% sequence identity).

PHO13, a Phosphoglycolate Phosphatase—PHO13 is annotated as 4-nitrophenyl phosphatase (UniProt P19881) or as an alkaline phosphatase active against pnPNP and phosphorylated histone II-a and casein (YDL236W, Saccharomyces Genome Database), with the latter annotation based on experiments with a partially purified protein (100). However, our results demonstrated that the recombinantly expressed and purified PHO13 has a neutral pH optimum for pnPNP hydrolysis and exhibits no dephosphorylation activity against phosphopeptides. Furthermore, our screens revealed that purified PHO13 is highly active against P-glycolate, with micromolar activity toward several secondary substrates, including Gly-2-P, imidodiphosphate, Gly-1-P, Gly-3-P, 3-phosphoglycerate, and phosphoenolpyruvate (PEP) (Fig. 2). In all organisms, 2-phosphoglycolate is produced during the repair of DNA apurinic/apyrimidinic (AP) sites as well as during photorepair in plants. The AP sites are the most frequent DNA lesions that can be formed spontaneously or as a consequence of the removal of damaged bases during DNA repair (101). The AP sites are primarily repaired via the base excision repair and nucleotide excision repair pathways (102). These pathways produce various intermediates with blocked 3′-ends, including those with 3′-phosphoglycolate termini, which are removed through a 3′-phosphodiesterase activity of AP endonucleases, producing 2-phosphoglycolate as one of the products (101, 102). In E. coli, there are two major AP endonucleases (exonuclease III and endonuclease IV), whereas the HAD-like P-glycolate phosphatase Gph has been identified as a housekeeping enzyme responsible for the hydrolysis of produced 2-phosphoglycolate (103). In S. cerevisiae, the major endonuclease responsible for the repair of AP sites is APN1 (YKL114C), which has several cata-
Substrate Specificities of Yeast HAD-like Phosphatases

FIGURE 4. Phosphohydrolase activity of purified yeast HADs against pseudouridine monophosphate. HPLC profiles show the dephosphorylation of Ψ-UMP, a reaction product of hydrolysis of Ψ-UTP by the Maf proteins BSU28050 (C) and YOR111W (D), by purified yeast HADs: YKL033W (E and F), PHM8 (G), and SDT1 (H). A and B are nucleotide standards.

enzyme might be involved in the hydrolysis of 2-phosphoglycolate produced by the major AP endonuclease APN1 in the base excision repair pathway.

It has been reported that deletion or inactivation of PHO13 improved growth and production of ethanol by *S. cerevisiae* from *D*-xylose (104–106). Based on a higher phosphatase activity of crude extracts from *S. cerevisiae* cells overexpressing PHO13 against xylulose 5-phosphate, it has been proposed that PHO13 dephosphorylates xylulose 5-phosphate, creating a futile cycle with xylulokinase (106). We could not test this hypothesis because xylulose 5-phosphate is not commercially available. Another possible explanation for the increased ethanol production by the PHO13 deletion strains is based on the fact that 2-phosphoglycerate is a competitive inhibitor of Gly-3-P dehydrogenase, an enzyme involved in the production of glyceral in *S. cerevisiae* (GPD1 and GPD2) and other organisms (107). Deletion of PHO13 might increase the intracellular level of 2-phosphoglycerate in *S. cerevisiae* cells, thereby inhibiting the activity of GPD1 and GPD2 and increasing carbon flow in the ethanol production branch.

YCR015C, a Thiamine Monophosphate Phosphatase— YCR015C is annotated as a protein of unknown function (UPF0655; UniProt: P25616), and our screens with purified YCR015C revealed the presence of high phosphatase activity against thiamine monophosphate (TP) (Fig. 2 and Table 3). Like most prokaryotes and plants, *S. cerevisiae* can synthesize thiamine (vitamin B1) and its active form TPP *de novo* (108, 109). The two separate branches of the TPP biosynthetic pathway generate the thiazole and pyrimidine moieties, which are then joined to produce TP. In *S. cerevisiae* and plants, TP is dephosphorylated by an unknown phosphatase producing thiamine, which is then pyrophosphorylated by the thiamine pyrophosphokinase THI80 (YOR143C) to form TPP (108). The dephosphorylation of TP has been proposed to be catalyzed by nonspecific phosphatase(s) located in the cytosol (108). Given that purified YCR015C showed low *Km* for TP in vitro (19 μM) (Table 3), it might represent the missing phosphatase involved in the final stage of TPP synthesis. However, our HPLC analyses revealed no significant increase in the TP level in extracts of the YCR015C deletion strain (supplemental Fig. 2), suggesting that there might be another phosphatase(s) in *S. cerevisiae* that dephosphorylates TP. Alternatively, YCR015C might dephosphorylate “damaged” forms of TP, as has been recently demonstrated for the *S. cerevisiae* Nudix hydrolase YJR142W, which is up to 60-fold more active against the toxic TPP degradation products oxy- and oxo-TPP compared with TPP (51). Further studies using “damaged” TP forms are required to test this hypothesis.

YOR131C, a Pyridoxal Phosphate Phosphatase— YOR131C is annotated as a putative uncharacterized hydrolase (UniProt Q12486). Our enzymatic screens with purified YOR131C revealed the presence of phosphatase activity against pyridoxal 5-phosphate (PLP), which is the active form of vitamin B6, and Tyr(P)-containing peptides (Fig. 2). The biochemically characterized human PLP phosphatase PDXP (also known as chronophin, CIN) shows less than 20% sequence identity with YOR131C, in contrast to 30% identity with the yeast phosphoglycerate phosphatase PHO13. This discrepancy once again

lytic activities, including 3’-phosphodiesterase activity, which excise the 3’-phosphoglycerate group (101). Our results show that PHO13 exhibits high catalytic efficiency toward 2-phosphoglycerate in vitro, suggesting that in *S. cerevisiae*, this

![HPLC profiles](image-url)
Substrate Specificities of Yeast HAD-like Phosphatases
demonstrates that at low sequence similarity (roughly less than 30% identity with HADs), homology-based prediction of enzyme substrate specificity (as opposed to the general type of the catalyzed reaction) often results in erroneous functional annotations. PLP is the active form of vitamin B₆, which is an essential cofactor in all organisms involved in a broad variety of enzymatic reactions (110). The intracellular level of PLP is mainly controlled by its synthesis, binding to enzymes, and degradation by phosphatases (111, 112). Given that purified YOR131C showed high catalytic activity and low \(K_m \) to PLP (Table 3), we propose that this protein is the missing PLP phosphatase that is involved in PLP catabolism in \(S.\) cervevisiae (EC 3.1.3.74).

The human PLP phosphatase DXP (CIN) has been shown to also be active as a Ser(P)-specific protein phosphatase that directly dephosphorylates cofilin, a key regulator of actin polymerization that is present in all eukaryotes (38, 113, 114). The activity of human cofilin is regulated by phosphorylation (inactivation that is present in all eukaryotes (38, 113, 114). Given that purified YOR131C showed high catalytic activity and low \(K_m \) to PLP (Table 3), we propose that this protein is the missing PLP phosphatase that is involved in PLP catabolism in \(S.\) cervevisiae (EC 3.1.3.74).

The high resolution crystal structures of the three yeast HAD phosphatases RHR2 (GPP1, 1.60 Å resolution), SDT1 (1.60 Å), and YKR070W (1.55 Å) were determined by the SAD method (Table 2). In addition, the crystal structure of the yeast UTR4 has been solved by the Joint Center for Structural Genomics (PDB code 2G80, resolution 2.28 Å). The crystal structures of four yeast HADs revealed the general topology of the HAD hydrolase fold, which forms a three-layer \(\alpha_6\beta_6 \) sandwich with the \(\alpha_6\beta_6 \) core Rossmannoid domain containing a six-stranded parallel \(\beta \)-sheet flanked by five or more \(\alpha \)-helices on both sides (Fig. 5). The crystal structures also revealed the presence of a cap domain, which can be classified as type C1 in RHR2, UTR4, and SDT1 (inserted between HAD motifs 1 and 2) or type C2 in YKR070W (inserted between HAD motifs 2 and 3) (Fig. 5). The cap domains of the first three proteins represent a five- or six-helix bundle, whereas YKR070W has an \(\alpha_6\beta_6 \) three-layer sandwich cap domain of similar size to that of the core domain (Fig. 5). Previous analysis of the available structures of HAD-like hydrolases indicated that ~60% of them are likely to form dimers or higher oligomers, whereas the other proteins appeared to be monomeric (124). In the human PLP/protein phosphatase chronophin, homodimerization is essential for the proper positioning of a conserved His residue in the substrate specificity loop (124). The structures of four yeast HADs suggested a monomeric state for RHR2, SDT1, and UTR4 and a dimeric state for YKR070W with the cap domain of one protomer extending/reaching close to the core domain of the second protomer (Fig. 5).

Despite low sequence similarity between the four yeast HADs (up to 21% sequence identity), the superposition of their core Rossmann-like domains revealed high conservation of the overall fold (average r.m.s. deviation of ~2.4 Å). The conservation of the structural elements that form the active site loops, the central \(\beta \)-sheet region, and the “squiggle” (formed by a 6-residue helical turn, which is located after the first strand of the central \(\beta \)-sheet) was even higher, with an average r.m.s. deviation of 0.9 Å signifying the importance of these elements for catalytic activity of HAD phosphatases (Fig. 6). In contrast, the cap domains of the four yeast HADs showed high structural diversity, which is consistent with different substrate specificities of these enzymes (Fig. 2).

In HAD C1 proteins, the cap domains are inserted in the “flap,” allowing large conformational changes, including opening and closing of the active site (25). The closed active site is represented by the RHR2 structure showing the cap domain positioned close to the core domain, whereas the UTR4 structure revealed the active site in an open conformation (Fig. 5). In addition, the comparison of the SDT1 structure with the recently determined structure of this protein in complex with substrate (UMP) (125) displayed significant structural changes in its cap domain upon substrate binding (Fig. 6B). The major change is associated with the cap domain helices H1 and H2 with the initiation point located near Ser-69 (labeled) at the border of the squiggle region. Ser-69 is the last residue of the 6-residue squiggle structure, which undergoes conformational
change of 3.5 Å during the open-closed state transitions. This triggers a ~3-Å movement of helix H1 (orange) to the new position H1 (dark gray) and a 30° swing of the helix H2, moving its end 13 Å away (to the H1I position). In contrast, the cap domain of the HAD C2 proteins, including YKR070W, is inserted into a rigid part of the core domain (between HAD motifs II and III). Accordingly, the structures of YKR070W, in complex with Gly-3-P (a substrate) or phosphate (a product), revealed limited conformational changes (Fig. 5).

A Dali search for four yeast HADs identified many similar structures of characterized and uncharacterized HAD-like hydrolases from different organisms that show low sequence similarity to yeast HADs (13–25% sequence identity). For RHR2, the top two characterized structural neighbors include the inorganic pyrophosphatase BT2127 from \textit{B. thetaiotaomicron} (Z-score 20.7–21.3, r.m.s. deviation 3.0 Å, PDB codes 3QUB and 3QU2) and the 2-deoxyglucose 6-phosphatase YniC from \textit{E. coli} (Z-score 20.9, r.m.s. deviation 3.0 Å, 18% sequence identity).
sequence identity, PDB code 1TE2); for UTR4, the haloacid dehalogenase L-DEX from *Pseudomonas* sp. YL (Z-score 17.2, r.m.s. deviation 3.7 Å, 17% sequence identity, PDB code 1JUD) and the inorganic pyrophosphatase BT7127 from *B. thetaiotaomicron* (Z-score 14.8, r.m.s. deviation 3.7 Å, 13% sequence identity, PDB code 3QU2); for SDT1, the haloacid dehalogenase L-DEX from *Pseudomonas* sp. YL (Z-score 17.2, r.m.s. deviation 3.4 Å, 15% sequence identity, PDB code 1JUD) and the human N-acylneuraminate-9-phosphatase NANP (Z-score 16.4, r.m.s. deviation 3.1 Å, 20% sequence identity, PDB code 2W4M); for YKR070W, human and murine PLP/protein phosphatase chronophin (Z-score 25.6, r.m.s. deviation 2.5 Å, 19% sequence identity, PDB code 2P69; Z-score 25.4, r.m.s. deviation 2.3 Å, 18% identity, PDB code 4BX2). Thus, the results of the Dali search indicate that the four yeast HADs exhibit overall structural similarity to other HAD-like phosphatases, which is not related to their substrate specificity.

The location of the HAD active sites is indicated by the position of a metal ion (Mg$^{2+}$, Ca$^{2+}$, or Na$^{+}$) which is bound at the bottom of the active site close to the side chains of conserved catalytic residues of the signature HAD motif (Fig. 7). The active site volumes calculated using CASTp (126) were found to be 460 Å3 for RHR2, 966–1003 Å3 for YKR070W, 1737 Å3 for UTR4, and 1698–2096 Å3 for SDT1. Thus, it appears that the HAD active site volumes show no correlation with their substrate promiscuity, which is the highest in YKR070W. The active sites of the four yeast HADs include four loops that support the catalytic residues. Loop 1 accommodates the Asp nucleophile, followed 2 residues downstream by the second Asp, which functions as a general acid-base. Loops 2 and 3 support the phosphoryl group binding residues Thr (or Ser) and Lys, whereas the two Mg$^{2+}$-binding carboxylates are located on loop 4 (Fig. 7). The RHR2 active site also revealed the presence of a bound sulfate ion, whereas a phosphate was found in the YKR070W structure, suggesting that these groups mimic the position of the phosphate product (Fig. 7). In YKR070W, the Mg$^{2+}$ ion adopts an octahedral coordination geometry, being coordinated by the backbone carbonyl oxygen of Asp-21, the side chain carboxylates of Asp-19 and Asp-298, the phosphate group oxygen atom, and two water molecules (all bond lengths are less than 2.12 Å). The phosphate ion is coordinated by direct hydrogen bond interactions with the side chain amide groups of Asp-19 (OD1-PO3, 2.6 Å), Asp-21 (OD2-PO4, 2.6 Å), Thr-52 (O-PO3, 2.7 Å), Lys246 (NZ-PO1, 2.9 Å), and the main chain amide groups of Asn-53 (N-PO4, 2.7 Å), and Asp-21 (N-PO3, 2.8 Å) (Fig. 7).
The role of the HAD motifs and other conserved residues of the core and cap domains of YKR070W were analyzed using site-directed mutagenesis (Fig. 8 and supplemental Table 7). Alanine replacement mutagenesis of the HAD motif residues in YKR070W produced inactive or almost inactive proteins (D19A, D21A, T52A, K246A, D298A, and D303A). In addition, a greatly reduced phosphatase activity was found in the YKR070W mutant proteins with mutations in Asn-53 and Asp-206, which are located in the core and cap domains, respectively, indicating that residues from both domains are important for the YKR070W activity (Fig. 8 and supplemental Table 7). Mutations in the other residues of the YKR070W core and cap domains generated proteins with reduced or wild type activity (Lys-28, Arg-62, Phe-132, Asp-163, Asn-204, and Trp-209). Conservative amino acid replacements (e.g. F132Y, W209Y, or W209F) typically had less significant effects on the YKR070W activity and kinetic parameters compared with non-conservative mutations (e.g. K28E, R62E, or W209A) (Fig. 8 and supplemental Table 7).

The Structure of the YKR070W Dimer in Complex with Gly-3-P Reveals a Composite Substrate Binding Site—To provide insight into the molecular mechanisms of substrate selectivity of yeast HADs, we crystallized the inactive YKR070W D19A protein in the presence of Gly-3-P. This crystal structure revealed the presence of two molecules of Gly-3-P and two Mg2+ ions per dimer bound to the active site, representing a structure of an enzyme-substrate (Michaelis) complex (Fig. 9). The positions of the Gly-3-P phosphate group and Mg2+ are very similar to those in the YKR070W structure in complex with phosphate (r.m.s. deviation 0.6 and 0.3 Å for the phosphate and Mg2+ ions, respectively) (Fig. 7). The phosphate moiety of Gly-3-P is positioned near the Mg2+ ion (2.1 Å) at the bottom of the active site pocket and is also coordinated by the side chains of Thr-52 (2.3 Å) and Lys-246 (2.7 Å) as well as by the main chain amide group of Asn-53 (2.5 Å) (Figs. 6C and 9). The glycero moiety of Gly-3-P is bound mostly within the cap domain in a large cavity formed by the side chains of Thr-101, Asn-162, Asp-163, His-165, Asn-204, and Trp-209 (Fig. 9). The C2-OH group of Gly-3-P forms hydrogen bonds with the side chain ND2 nitrogen of Asn-204 (3.2 Å) and OD2 oxygen of Asp-206 (2.8 Å), whereas the C1-OH is 4 Å away from the side chains of Asp-163 and Trp-209 and interacts with a water molecule coordinated by Asp-163 (OD2), Asn-204 (ND2), and the main chain amide of Gln-220. Therefore, the substrate-binding site of the YKR070W pocket can potentially accommodate longer substrates, in line with the high activity of this phosphatase against phosphorylated C4, C5, and C6 carbohydrates (Fig. 2).

The structure of the YKR070W dimer revealed that the side chain of Phe-132 from one protomer contributes to the substrate binding site of another protomer and is positioned near the side chains of Asp-163, His-165, and Trp-209 (3.3–3.7 Å) and just 5.2 Å away from the C1 hydroxyl group of bound Gly-3-P (Fig. 9). This suggests that binding of the substrate to one active site of the YKR070W dimer can be transmitted to the second active site through the Phe-132 side chain, creating an opportunity for allosteric interaction of the two active sites. Therefore, the structure of YKR070W proposes a potential molecular mechanism for positive substrate cooperativity in dimeric and tetrameric HAD-like hydrolases based on the conformational change induced by substrate binding to one sub-

FIGURE 8. Site-directed mutagenesis of YKR070W: phosphatase activity of the purified YKR070W mutant proteins. The assays contained 1 mM Gly-3-P as substrate and 5 mM Mg2+. Results are means ± S.D. (error bars) from at least two independent determinations.

FIGURE 9. Close-up view of the active site of the YKR070W dimer with the bound Gly-3-P (A and B, two views related by a 180° rotation). The core and cap domains of one protomer are colored in orange and light green, respectively, with amino acid side chains shown as sticks along a protein ribbon, whereas the ribbon and Phe-132 of the second protomer are colored in gray. The side chain of Phe-132 of one protomer contributes to the substrate binding site of another protomer.
Substrate Specificities of Yeast HAD-like Phosphatases

unit and transmitted (through Phe-132 in YKR070W) to another subunit. This is consistent with the observed positive cooperativity of substrate binding by purified YKR070W with 2-deoxyribose-5-phosphate as substrate ($k_{i=1} = 1.5$). Substrate saturation experiments with 2-deoxyribose-5-phosphate and purified YKR070W mutant proteins revealed a significant reduction both in cooperativity ($k_{i=} = 1.1–1.2$) and substrate binding ($K_{i=} = 0.4–0.5$ μM) in the F132A, F132Y, and F132H proteins ($k_{i=} = 1.2–1.3$) compared with the wild type YKR070W ($k_{i=} = 1.4$ and $K_{i=} = 0.3$ μM). Although a recent analysis of the available structures of HAD dimers has led to the suggestion that the adjacent HAD protomers do not share active site residues (124), all of these structures show the presence of a conserved aromatic residue homologous to the YKR070W Phe-132 positioned close to the substrate binding site of another protomer. These HAD proteins include the mouse chronophin (Phe-152, PDB code 4BX3) and HDHD2 (Tyr-124, PDB code 2HO4), human LHPP (Tyr-132, PDB code 2X4D), PH1952 from Pyrococcus horikoshii (Tyr-132, PDB code 1ZJJ), and AF0374 from Archaeoglobus fulgidus (Phe-128, PDB code 3QGM). Thus, in dimeric HADs, each of the protomers can contribute an aromatic residue to the substrate binding site of the other protomer, providing a potential molecular mechanism of cooperativity in dimeric HAD-like hydrolases.

Discussion

Biochemical characterization of previously unexplored HAD superfamily hydrolases from S. cerevisiae revealed the presence of phosphatase activity against the general phosphatase substrate pNPP in nine proteins and activity against specific phosphorylated substrates for eight proteins (Table 1 and Fig. 2). Thus, the in vitro or in vivo substrates have been experimentally identified or can be reliably predicted for 25 of the 26 soluble S. cerevisiae HADs, with the exception of YMR130W, for which we demonstrated only low phosphatase activity against pNPP. Most of the soluble S. cerevisiae HADs are phosphomonooesterases active against a broad range of C2–C12 metabolites, including phosphorylated carbohydrates, nucleotides, organic acids, glyceraldehydes, and cofactors (Fig. 10 and supplemental Table 8). The identified in vitro substrates of previously uncharacterized S. cerevisiae HAD phosphatases suggest that these enzymes have a role in cell metabolism (SER2, YCR015C, and YNL010W), regulation (PHM8, SDT1, and YKL033W), or housekeeping (PHO13 and YOR131C).

The S. cerevisiae HAD family includes both highly specific (e.g. SER2 and YCR015C) and promiscuous phosphatases (e.g. YKR070W and DOG2), which show high activity against multiple substrates (Fig. 2). Previously, pronounced substrate promiscuity has been demonstrated for HAD phosphatases from E. coli and other organisms (28, 32, 40). This broad substrate specificity apparently contributes to the key role of these enzymes in the hydrolysis of a broad range of phosphomonooesters as well as the “house-cleaning” functions. Enzyme substrate promiscuity (also known as substrate ambiguity) is likely to be the starting point for the evolution of new enzymes through gene duplication followed by subfunctionalization (substrate specialization) of the diverging enzymes (28, 127). Beneficial promiscuous activities in the promiscuous repertoire can be selected and improved through mutations, initially without losing the primary enzyme activity (127). In the evolutionary biological context, this mode of evolution represents a special case of subfunctionalization (128, 129), whereby the diverging paralogs not only retain but enhance some of the multiple activities of the common ancestor. The S. cerevisiae complement of HAD phosphatases provides at least three examples of gene duplication that are compatible with this general model of enzyme evolution but reflect different stages of subfunctionalization. The glycerol phosphatases HOR2 and RHR2 share 95% sequence identity and have almost identical substrate profiles, suggesting a recent gene duplication without much sequence or functional divergence (Fig. 2). In contrast, despite nearly as high sequence conservation, the 2-deoxyglucose-6-phosphatases DOG1 and DOG2 (92% sequence identity) have already diverged, with DOG2 having evolved a preference toward fructose 1-phosphate but still retaining high activities toward 2-deoxyglucose-6-phosphate and mannose 6-phosphate (Fig. 2 and Table 3). Finally, the nucleotidases PHM8 and SDT1 appear to represent older duplication and greater divergence because they show lower sequence similarity to each other (41.5% sequence identity) and prefer different (although similar) substrates, CMP and UMP, respectively (Fig. 2). The third nucleotidase, YKL033W, shares only 20% sequence identity with PHM8/SDT1 and has a different substrate profile, suggesting that it evolved from an even older gene duplication event or developed a preference for nucleotide substrates independently (through convergent evolution).

The only other organism with thoroughly characterized HADs is E. coli, which encodes a comparable number of soluble HADs (23 proteins) but only five membrane-bound HADs (compared with 19 in S. cerevisiae) (40). Although the orthologous HADs from yeast and E. coli share low overall sequence similarities (30% sequence identity at most), a comparison of the top preferred substrates for these enzymes identified seven common metabolites (Ser(P), P-glycolate, PLP, 2-deoxyglucose-6-phosphatase, fructose 1-phosphate, UMP, and trehalose-6-P). Thus, in the evolution of the HAD superfamily phosphatases, conservation of substrate specificity of orthologous enzymes does not require a particularly high level of sequence conservation. Furthermore, analysis of substrates that support at least moderate activity of HADs from both organisms (>0.2 μmol/min/mg of protein) revealed comparable numbers of substrates (40 in yeast and 44 in E. coli) with 28 common metabolites (70%), which include phosphorylated carbohydrates, nucleotides, organic acids, FMN, and PLP (Fig. 10 and supplemental Table 8). We propose that these metabolites represent the primary pool of potential substrates of the HAD superfamily that are likely to be conserved in most free living organisms with comparable numbers of HADs. This pool of secondary activities is likely to represent the reservoir for evolution of novel phosphatases.

In this work, we also identified several substrates that have not been reported for E. coli HADs and might represent recent additions to the yeast HAD substrate pool, including 3-phosphoglycerate, thiamine-P, and phosphopeptides (Fig. 10 and supplemental Table 8). Four yeast HADs (YOR131C, YNL010W, YKR070W, and SDT1) were found to be active
against phosphorylated (Tyr(P) and Ser(P)) peptides, adding novel potential protein phosphatases to the previously identified Ser(P)/Thr(P) phosphatases NEM1 and FCP1. HAD-like hydrolases with protein phosphatase activity have previously been identified in several eukaryotes (37–39, 73) but not in *E. coli*, suggesting that this activity might be a recent addition to the substrate repertoire in the evolution of the HAD superfamily. In contrast, *E. coli* encodes two HADs that are involved in a bacteria-specific pathway of cell wall lipopolysaccharide biosynthesis (YrbI and GmhB) (130, 131), which are absent in *S. cerevisiae*. Overall, *E. coli* has more HAD superfamily enzymes that are active against phosphorylated carbohydrates (seven compared with three in yeast), whereas *S. cerevisiae* has more HADs with a preference toward P-glycerols (three compared with none in *E. coli*).

Using the information from the COG and OrthoMCL databases combined with the results of the previous sequence analysis of the HAD superfamily (25, 132, 133), we established several co-orthologous groups for yeast, *E. coli*, and human HADs and compared their substrate specificity (Fig. 1 and Table 4). As shown in Fig. 1, yeast and *E. coli* HADs belong to six co-orthologous groups. The two pairs of recently evolved paralogous yeast HADs, DOG1/DOG2 and HOR2/RHR2 (92 and 95% sequence identity, respectively), which belong to the same co-orthologous group (Fig. 1), share similar substrate profiles, although, as pointed out above, the preferred substrates differ for DOG1 and
Substrate Specificities of Yeast HAD-like Phosphatases

TABLE 4
Co-orthologous groups and substrates of HADs from *S. cerevisiae*, *E. coli*, and humans

Family	*S. cerevisiae*	*E. coli*	Human
PSP	SER2 (Ser(P))	SerB (Ser(P))	PSPH (Ser(P))
	YNL010W (Gly-1-P)	No	No
	YCR015C (thiamine-P)	No	No
Epo	PHM8 (CMP), SDT1 (UMP)	YihX (Glu-1-P), YrfG (GMP)	No
BPGM	DOG1 (2d-glucose-6P), DOG2 (2d-glucose-6P), HOR2 (Gly-3-P), RHR2 (Gly-3-P)	YbfT (fructose-1-P)	No
	YKL033W (XMP)	YncC (2d-glucose-6P), YqaB (fructose-1-P), YjU (P-glucomutase)	HDHD1 (pseudouridine 5'-phosphate)
Dehr	YOR131C (PLP)	Gph (P-glycylate)	No
	YMR130W	YjG (UMP)	HDHD3, NANP (N-acyleuarnimide 9-phosphate)
Enol	YEL038W/UTR4 (5-(methylthio)-2,3-dioxopentyl-P)	No	ENOP1 (5-(methylthio)-2,3-dioxopentyl-P)
NagD	PHO13 (P-glycylate), YKR070W (Glu-6-P)	NagD (UMP)*	LHPP (Lys(P)), PSP (P-glycylate), PDXP (PLP), CERC5, HDHD2

* Data from Ref. 32.

DOG2 (Fig. 2). However, the *E. coli* HAD phosphatase YbfT, to which all of these yeast enzymes appear to be co-orthologous, has a different substrate profile with a preference for fructose 1-phosphate (40). The BPGM group of phosphatases from *E. coli* are active against 2-deoxyglucose-6-phosphate, fructose 1-phosphate, and Gly-3-P, whereas the Epo group enzymies are mostly nucleotidases (Table 4). Thus, substrate preferences of these HAD-like phosphatases correlate with their sequence similarity at the family level. Similarly, the PSP group HADs from *S. cerevisiae* (SER2), human (PSPH), and *E. coli* (SerB) were found to be Ser(P) phosphatases, suggesting that this activity is highly conserved in many organisms. In contrast, the *S. cerevisiae* P-glycylate phosphatase POH13 (YDL236W) from the NagD family has several human orthologs active against P-glycolate (PGP) and PLP (PDXP), whereas the *E. coli* ortholog NagD is a UMP phosphatase, and the more diverged human paralog LHPP is a P-lysine phosphatase (Table 4). This distribution of activities implies that the P-glycylate phosphatase activity probably emerged early in the evolution of eukaryotes, but its paralogs can quickly change their substrate specificity. Moreover, the *E. coli* PLP phosphatases YbhA, YigL, and Cof belong to the Cof family, which also includes the yeast phosphomannomutase SEC53 (YFL045C) (not shown).

The variation of enzyme substrate preferences within several families of HADs from yeast, humans, and *E. coli* indicates that the evolution of substrate specificity does not necessarily follow sequence divergence, although, as pointed out above, in some cases, even highly diverged orthologs retain the ancestral specificity. In addition, our analysis indicates that the HAD phosphatases from different families can convergently evolve to catalyze the dephosphorylation of the same substrate (e.g. P-glycylate). Thus, in general, sequence similarity-based classification of HAD-like phosphatases cannot accurately predict their preferred substrates, emphasizing the importance of biochemical experiments for functional annotation of these enzymes. The presence of large numbers of paralogous HADs with (often) low sequence similarity in many organisms suggests a high rate of evolution of these genes. HAD phosphatases can quickly evolve new biochemical functions and acquire novel biological roles using a broad pool of secondary substrates. The substrate pools of the HAD phosphatases are closely similar in *E. coli* and yeast even if, in many cases, the specificities of enzymes within the same co-orthologous family are not. The biochemical promiscuity of the HAD phosphatases together with their structural flexibility and catalytic efficiency underlies their dominant role in metabolic dephosphorylation in all kingdoms of life.

Author Contributions—E. K., G. B., R. F., and A. K. designed, performed, and analyzed the experiments shown in Tables 1 and 2; Figs. 2, 4, and 8; and supplemental Tables 5–8. B. N., E. E., K. T., A. S., A. J., and A. M. E. designed, performed, and analyzed experiments shown in Figs. 5, 6, 7, and 9, and supplemental Table 3. K. S. M., Y. I. W., and E. V. K. designed, performed, and analyzed the experiments shown in Table 3, Fig. 1, and supplemental Fig. 1. A. D. H., G. H., R. Z., and V. C. L. designed, performed, and analyzed the experiments shown in supplemental Fig. 2. K. J. and M. B. designed, performed, and analyzed the experiments shown in Fig. 3. A. E. M., E. V. K., and A. F. Y. conceived and coordinated the study and wrote the paper. All authors reviewed the results and approved the final version of the manuscript.

Acknowledgments—We thank all members of the Centre for Structural Proteomics in Toronto for help in conducting these experiments. Dr. Zhaolei Zhang (Donnelly Centre for Cellular and Biomolecular Research, University of Toronto) is thanked for help with the design of the *S. cerevisiae* phosphopeptide library.

References
1. Galperin, M. Y., and Koonin, E. V. (2010) From complete genome sequence to “complete” understanding? Trends Biotechnol. 28, 398–406
2. Galperin, M. Y., and Koonin, E. V. (2004) “Conserved hypothetical” proteins: prioritization of targets for experimental study. Nucleic Acids Res. 32, 5452–5463
3. Osterman, A., and Overbeek, R. (2003) Missing genes in metabolic pathways: a comparative genomics approach. Curr. Opin. Chem. Biol. 7, 238–251
4. Hanson, A. D., Pribat, A., Weller, J. C., and de Crécy-Lagard, V. (2010) “Unknown” proteins and “orphan” enzymes: the missing half of the engineering parts list and how to find it. Biochem. J. 425, 1–11
5. Frishman, D. (2007) Protein annotation at genomic scale: the current status. Chem. Rev. 107, 3448–3466
6. Błaby-Haas, C. E., and de Crécy-Lagard, V. (2011) Mining high-throughput experimental data to link gene and function. Trends Biotechnol. 29,
Substrate Specificities of Yeast HAD-like Phosphatases

A. Blumenthal, R. M., Bollinger, J. M., Chang, W. S., Ferrer, M., Friedberg, I., Galperin, M. Y., Gobeill, J., Haft, D., Hunt, J., Karp, P., Klimke, W., Krebs, C., Macelis, D., Madupu, R., Martin, M. J., Miller, J. H., O’Donovan, C., Palsson, B., Ruch, P., Settlerahd, A., Sutton, G., Tate, I., Yakunin, A., Tchigvintsev, D., Plata, G., Hu, J., Greiner, R., Horn, D., Sjolander, K., Salzberg, S. L., Vitkup, D., Letovsky, S., Segre, D., LeLisi, C., Roberts, R. J., Steffen, M., and Kasif, S. (2013) The COMBREX project: design, methodology, and initial results. *PLoS Biol.* 11, e1001638

23. Gerlt, J. A., Allen, K. N., Almo, S. C., Armstrong, R. N., Babbitt, P. C., Cronan, J. E., Dunaway-Mariano, D., Imker, H. J., Jacobson, M. P., Minor, W., Poulter, C. D., Raushel, F. M., Sali, A., Shoichet, B. K., and Sweedler, J. V. (2011) The Enzyme Function Initiative. *Biochemistry* 50, 9950–9962

24. Koonin, E. V., and Tatusov, R. L. (1994) Computer analysis of bacterial haloacid dehalogenases defines a large superfamily of hydrolases with diverse specificity: application of an iterative approach to database search. *J. Mol. Biol.* 244, 125–132

25. Burroughs, A. M., Allen, K. N., Dunaway-Mariano, D., and Aravind, L. (2006) Evolutionary genomics of the HAD superfamily: understanding the structural adaptations and catalytic diversity in a superfamily of phosphoesterases and allied enzymes. *J. Mol. Biol.* 361, 1003–1034

26. Allen, K. N., and Dunaway-Mariano, D. (2009) Markers of fitness in a successful enzyme superfamily. *Curr. Opin. Struct. Biol.* 19, 658–665

27. Aravind, L., Galperin, M. Y., and Koonin, E. V. (1998) The catalytic domain of the P-type ATPase has the haloacid dehalogenase fold. *Trends Biochem. Sci.* 23, 127–129

28. Pandya, C., Farelli, J. D., Dunaway-Mariano, D., and Allen, K. N. (2014) Enzyme promiscuity: engine of evolutionary innovation. *J. Biol. Chem.* 289, 30229–30236

29. Selengut, J. D. (2001) MDP-1 is a new and distinct member of the haloacid dehalogenase family of aspartate-dependent phosphohydrolases. *Biochemistry* 40, 12704–12711

30. Wang, W., Kim, R., Jancarik, J., Yokota, H., and Kim, S. H. (2001) Crystal structure of phosphoserine phosphatase from *Methanococcus jannaschii*, a hyperthermophile, at 1.8 Å resolution. *Structure* 9, 65–71

31. Kim, Y., Yakunin, A. F., Kuznetsova, E., Xu, X., Pennycooke, M., Gu, J., Cheung, F., Proudfoot, M., Arrowsmith, C. H., Joachimiak, A., Edwards, A. M., and Christendat, D. (2004) Structure-function-based characterization of a new phosphoglycolate phosphatase from *Thermoplasma acidiphilum*. *J. Biol. Chem.* 279, 517–526

32. Tremblay, L. W., Dunaway-Mariano, D., and Allen, K. N. (2006) Structure and activity analyses of *Escherichia coli* K-12 NagD provide insight into the evolution of biochemical function in the haloalkanoic acid dehalogenase superfamily. *Biochemistry* 45, 1183–1193

33. Huang, H., Patksovsky, Y., Toro, R., Farelli, J. D., Pandya, C., Almo, S. C., Allen, K. N., and Dunaway-Mariano, D. (2011) Divergence of structure and function in the haloacid dehalogenase enzyme superfamily: *Bac teroides thetaiotaomicron* BT2127 is an inorganic pyrophosphatase. *Biochemistry* 50, 8937–8949

34. Archambault, J., Pan, G., Dahmus, G. K., Cartier, M., Marshall, N., Zhang, S., Dahmus, M. E., and Greenblatt, J. (1998) FCPl, the RAP74-interacting subunit of a human protein phosphatase that dephosphorylates the carboxyl-terminal domain of RNA polymerase II. *J. Biol. Chem.* 273, 27593–27601

35. Tootle, T. L., Silver, S. J., Davies, E. L., Newman, V., Latek, R. R., Mills, I. A., Selengut, J. D., Parlikar, B. E., and Rebay, I. (2003) The transcription factor Eyes absent is a protein tyrosine phosphatase. *Nature* 426, 299–302

36. Li, X., Oghi, K. A., Zhang, J., Krones, A., Bush, K. T., Glass, C. K., Nigam, S. K., Aggarwal, A. K., Maas, R., Rose, D. W., and Rosenfeld, M. G. (2003) Eya protein phosphatase activity regulates Six1-Dach-Eya transcriptional effects in mammalian organogenesis. *Nature* 426, 247–254

37. Rayapureddi, J. P., Kattamuri, C., Steinmetz, B. D., Frankfort, B. J., Ostrin, E. J., Mardon, G., and Hegde, R. S. (2003) Eyes absent represents a class of protein tyrosine phosphatases. *Nature* 426, 295–298

38. Gohla, A., Birkenfeld, J., and Bokoch, G. M. (2005) Chronophin, a novel HAD-type serine protein phosphatase, regulates coffin-dependent actin dynamics. *Nat. Cell Biol.* 7, 21–29

39. Seifried, A., Knobloch, G., Durape, P. S., Segere, G., Manhard, J., Schin-
Substrate Specificities of Yeast HAD-like Phosphatases

delin, H., Schultz, J., and Gohla, A. (2014) Evolutionary and structural analyses of mammalian haloacid dehalogenase-type phosphatases AUM and chronophin provide insight into the basis of their different substrate specificities. *J. Biol. Chem.*, **289**, 3416–3431

40. Kuznetsova, E., Pahlman, A. K., Akhtar, N., Blomberg, A., and Adler, L. (1996) Purification and characterization of two isoenzymes of 3,5-glycerol-3-phosphatase from *Saccharomyces cerevisiae*: identification of the corresponding GPPI and GPPIII genes and evidence for osmotic regulation of Gpp2p expression by the osmosensing mitogen-activated protein kinase signal transduction pathway. *J. Biol. Chem.*, **271**, 13875–13881

43. Osman, C., Haag, M., Wieland, F. T., Brügger, B., and Langer, T. (2010) A mitochondrial phosphatase required for cardiopilin biosynthesis: the PGP phosphatase Gep4. *EMBO J.*, **29**, 1976–1987

45. Nakanishi, T., and Sekimizu, K. (2002) SDT1/SSM1, a multicopy suppressor of yeast SEC53 gene encodes phosphomannomutase. *J. Biol. Chem.*, **263**, 9155–9161

47. Nakanishi, T., and Sekimizu, K. (2002) SDT1/SSM1, a multicopy suppressor of yeast SEC53 gene encodes phosphomannomutase. *J. Biol. Chem.*, **277**, 22103–22106

50. Tchigvintsev, A., Tchigvintsev, D., Flick, R., Popovic, A., Dong, A., Xu, X., Kuznetsova, E., Proudfoot, M., Gonzalez, C. F., Brown, G., Omelchenko, J. M., Joachimiak, A. (2006) The Structural Biology Center 19ID undulator beamline: facility specifications and protein crystallographic results. "J. Synchrotron Radiat.", **13**, 30–45

56. Otwinowski, Z., Minor, W. (1997) Processing of x-ray diffraction data collected in oscillation mode. *Methods Enzymol.*, **276**, 307–326

58. Schneider, T. R., and Sheldrick, G. M. (2002) Substructure solution with SHELXD. *Acta Crystallogr. D Biol. Crystallogr.*, **58**, 1772–1779

62. Reddy, V. S., Singh, A. K., and Rajasekaran, R. (2008) The Saccharomyces cerevisiae Lipin homolog is a Mg²⁺-dependent phosphatase phosphatase enzyme. *J. Biol. Chem.*, **283**, 9210–9218

64. Bogan, K. L., Evans, C., Belenky, P., Song, P., Burant, C. F., Kennedy, R., and Brenner, C. (2009) Identification of Sip1 and Sip2 as glucose- and vitamin-regulated nicotinamide mononucleotide and nicotinic acid mononucleotide [corrected] 5'-nucleotidases responsible for production of nicotinamide riboside and nicotinic acid riboside. *J. Biol. Chem.*, **284**, 34861–34869

67. Itoh, R., Tani, S., and Oshima, Y. (2002) Molecular characterization of the genome database provides new regulation in MOLREP and examples of model improvement using x-ray data. *Acta Crystallogr. D Biol. Crystallogr.*, **64**, 1772–1779
117. Lappalainen, P., Fedorov, E. V., Fedorov, A. A., Almo, S. C., and Drubin, D. G. (1997) Essential functions and actin-binding surfaces of yeast coflin revealed by systematic mutagenesis. EMBO J. 16, 5520–5530

118. Giaever, G., Chu, A. M., Ni, L., Connelly, C., Riles, L., Véronneau, S., Dow, S., Lucau-Danila, A., Anderson, K., André, B., Arkin, A. P., Astro Moff, A., El-Bakkoury, M., Bangham, R., Benito, R., Brachat, S., Campanaro, S., Curtiss, M., Davis, K., Deutschbauer, A., Entian, K. D., Flaherty, P., Fourny, F., Garfinkel, D. J., Gerstein, M., Gotte, D., Güldener, U., Hege mann, J. H., Hempel, S., Herman, Z., Jaramillo, D. F., Kelly, D. E., Kelly, S. L., Kötter, P., LaBonte, D., Lamb, D. C., Lan, N., Liang, H., Liao, H., Liu, L., Luo, C., Lussier, M., Mao, R., Menard, P., Ooi, S. L., Revuelta, J. L., Roberts, C. J., Ross-Macdonald, P., Scherens, B., Schimmack, G., Shafer, B., Shoemaker, D. D., Sookhai-Mahadeo, S., Storms, R. K., Strathern, J. N., Valle, G., Voet, M., Volckaert, G., Wang, C. Y., Ward, T. R., Wilhelmy, J., Winzeler, E. A., Yang, Y., Yen, G., Youngman, E., Yu, K., Bussey, H., Boeke, J. D., Snyder, M., Philippson, P., Davis, R. W., and Johnston, M. (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418, 387–391

119. Daiyasu, H., Hiroike, T., Koga, Y., and Toh, H. (2002) Analysis of membrane stereochemistry with homology modeling of sn-glycerol-1-phosphate dehydrogenase. Protein Eng. 15, 987–995

120. Guldan, H., Sterner, R., and Babinger, P. (2008) Identification and characterization of a bacterial glycerol-1-phosphate dehydrogenase: Ni²⁺-dependent AraM from Bacillus subtilis. Biochemistry 47, 7376–7384

121. Nevoigt, E., and Stahl, U. (1997) Osmoregulation and glycerol metabolism in the yeast Saccharomyces cerevisiae. FEMS Microbiol. Rev. 21, 231–241

122. Pahlman, A. K., Granath, K., Ansell, R., Hohmann, S., and Adler, L. (2001) The yeast glycerol 3-phosphatases Gpp1p and Gpp2p are required for glycerol biosynthesis and differentially involved in the cellular responses to osmotic, anaerobic, and oxidative stress. J. Biol. Chem. 276, 3555–3563

123. Wilson, W. A., Wang, Z., and Roach, P. J. (2002) Systematic identification of the genes affecting glycogen storage in the yeast Saccharomyces cerevisiae: implication of the vacuole as a determinant of glycogen level. Mol. Cell Proteomics 1, 232–242

124. Kestler, C., Knobloch, G., Tessmer, I., Jeanclos, E., Schindelin, H., and Gohla, A. (2014) Chronophin dimerization is required for proper positioning of its substrate specificity loop. J. Biol. Chem. 289, 3094–3103

125. Shi, N., Zhang, Y. J., Hao, Y., Gao, Y., Teng, M., and Niu, L. (2011) Crystal structure of the pyrimidine 5′-nucleotidase SDT1 from Saccharomyces cerevisiae complexed with uridine 5′-monophosphate provides further insight into ligand binding. Proteins 79, 1358–1362

126. Binkowski, T. A., Naghibzadeh, S., and Liang, J. (2003) CASTp: Computed Atlas of Surface Topography of proteins. Nucleic Acids Res. 31, 3352–3355

127. Khersonsky, O., and Tawfik, D. S. (2010) Enzyme promiscuity: a mechanistic and evolutionary perspective. Annu. Rev. Biochem. 79, 471–505

128. Lynch, M., and Force, A. (2000) The probability of duplicate gene preservation by subfunctionalization. Genetics 154, 459–473

129. Ward, R., and Durrett, R. (2004) Subfunctionalization: how often does it occur? How long does it take? Theor. Popul. Biol. 66, 93–100

130. Wu, J., and Woodard, R. W. (2003) Escherichia coli YrbI is 3-deoxy-D-manno-octulosonate 8-phosphate phosphatase. J. Biol. Chem. 278, 18117–18123

131. Kneidinger, B., Marolda, C., Graninger, M., Zamyatina, A., McArthur, F., Kosma, P., Vahano, M. A., and Messner, P. (2002) Biosynthesis pathway of ADP-D-glycerol-phosphate dehydrogenase in Escherichia coli. J. Bacteriol. 184, 363–369

132. Tatusov, R. L., Fedorova, N. D., Jackson, J. D., Jacobs, A. R., Kyrutin, B., Koonin, E. V., Krylov, D. M., Mazumder, R., Mekhedov, S. L., Nikolskaya, A. N., Rano, B. S., Smirnov, S., Sverdlov, A. V., Vasudevan, S., Wolf, Y. I., Yin, J. J., and Natale, D. A. (2003) The COG database: an updated version includes eukaryotes. BMC Bioinformatics 4, 41

133. Li, L., Stoeckert, C. J., Jr., and Roos, D. S. (2003) OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res. 13, 2178–2189