gRASping the redox lever to modulate cancer cell fate signaling

Chuan Han Jonathan Fooa,\textcopyright, Shazib Pervaiz\textsuperscript{a,\textcopyright,\textcircled{d},\textcopyright}

a Department of Physiology, YLL School of Medicine, National University of Singapore (NUS), Singapore
b Medical Science Cluster Cancer Program, YLL School of Medicine, National University of Singapore (NUS), Singapore
c NUS Graduate School of Integrative Sciences and Engineering, NUS, Singapore
d National University Cancer Institute, NUHS, Singapore

\textbf{ARTICLE INFO}

\textbf{Keywords:}
Cancer
RAS
Reactive Oxygen Species

\textbf{ABSTRACT}

RAS proteins are critical regulators of signaling networks controlling diverse cellular functions such as cell proliferation and survival and its mutation are among the most powerful oncogenic drivers in human cancers. Despite intense efforts, direct RAS-targeting strategies remain elusive due to its “undruggable” nature. To that end, bulk of the research efforts has been directed towards targeting upstream and/or downstream of RAS signaling. However, the therapeutic efficacies of these treatments are limited in the long run due to the acquired drug resistance in RAS-driven cancers. Interestingly, recent studies have uncovered a potential role of RAS in redox-regulation as well as the interplay between ROS and RAS-associated signaling networks during process of cancer initiation and progression. More specifically, these studies provide ample evidence to implicate RAS as a redox-rheostat, manipulating ROS levels to provide a redox-milieu conducive for carcinogenesis. Importantly, the understanding of RAS-ROS interplay could provide us with novel targetable vulnerabilities for designing therapeutic strategies. In this review, we provide a brief summary of the advances in the field to illustrate the dual role of RAS in redox-regulation and its implications in RAS signaling outcomes and also emerging redox-based strategies to target RAS-driven cancers.

1. Introduction

The first observation of RAS oncogene was reported as early as 1964 when inoculation of murine leukemic virus isolated from leukemic rats unintentionally induced sarcomas in newborn rodents [1]. This discovery eventually paved the way for the identification of acute tumor-inducing retrovirus and molecular characterization of its associated viral gene that confers its oncogenic potency. Despite these seminal discoveries, the first observation of RAS oncogene was reported as early as 1964 when inoculation of murine leukemic virus isolated from leukemic rats
discoveries, enthusiasm in RAS oncogene only heightened upon the discovery of its cellular homologues and its high prevalence of mutations in cancer [2–6]. Research efforts spanning over half a century eventually led to the discovery of numerous signaling pathways associated with RAS activation. Not only do these signaling pathways contribute to mitogen-independent growth of tumors, they are also involved in acquisition of other established cancer hallmarks such as cell survival, motility and angiogenesis as defined by Hanahan and Weinberg [7].

Emerging alongside these discoveries, studies have also implicated the diverse physiological functions of reactive oxygen species (ROS) in cell survival and death signaling as well as their pathological relevance to cancer initiation and progression, underscoring the potential cross-talk between oncogenes and ROS in facilitating the acquisition of cancer hallmarks [8–16]. To that end, recent studies provide overwhelming evidence linking oncogenic signaling to an altered redox-milieu that favors cell survival and promotes transformation and carcinogenesis. In a reciprocal manner, ROS are also able to regulate the activities of oncoproteins. In this review, we attempt to summarize experimental evidence demonstrating the interplay between oncogene RAS and cellular redox status in the context of carcinogenesis as well as present evidence, where relevant, of existing strategies and potential therapeutic avenues targeting the RAS-ROS signaling network(s).

2. Intracellular generation of ROS

ROS are a heterogenous group of chemically reactive ions and molecules derived from the reduction of molecular oxygen, O2, via various cellular processes. The group encompasses both, oxygen-derived radicals such as superoxide anion (O2•−) and hydroxyl radical (HO•), and also non-radical species such as hydrogen peroxide (H2O2) and hypochlorous acid (HOCl), which despite their non-radical properties, are powerful oxidizing agents. Beside its known deleterious effects, ROS are able to regulate protein activity through reversible oxidative modification of redox-sensitive thiol/cysteine groups into sulfenic, sulfinic, sulfonic or S-glutathionylated forms, thereby, altering the function and activity of proteins. It is also worth mentioning that Reactive Nitrogen Species (RNS), such as peroxynitrite (ONO•O), derived from the reaction between nitric oxide (NO) and O2•− can also react directly with proteins and modify its activity and function. However, due to its tendency to act in unison with ROS to induce cellular effects, it is often loosely termed as ROS as well. Among all ROS, superoxide anion and hydrogen peroxide remain the most extensively studied. These two entities remain the most critical determinant of oxidative stress and cell fate with specialized cellular antioxidant systems evolved to buffer and/or counteract their harmful effects.

The major source of intracellular ROS is the mitochondrial bound NADPH-oxidase complexes which consist of NOX family of enzymes and its regulatory phox subunits and/or Rac GTPase (Fig. 1C). The NOX family comprises seven isoforms (NOX1–5, DUOX1 and DUOX2), which catalyzes NADPH-dependent one electron reduction of O2 to O2•−. Among which, NOX1-NOX3 requires Rac GTPase for its activation [17–19]. Similarly, NOX5, DUOX1 and DUOX2 activation requires binding of calcium (Ca2+) to its calcium-binding domains and are usually activated by upstream signaling pathways that increases cellular Ca2+ levels [20,21]. Interestingly, NOX4 differs from the other members of NOX family enzymes in that it is constitutively active and produces predominantly H2O2 owing to its high affinity towards O2 [22]. DUOX enzymes, characterized by a defining N-terminal peroxidase-like domain, also produces both O2•− and H2O2 [23]. However, the ability for its peroxidase-like domain to catalyze conversion of O2•− to H2O2 remains inconclusive [24]. Initially discovered as a membranous protein required for ‘oxidative burst’ in phagocytes for antimicrobial defense, NOX expression was found to be far more ubiquitous than presumed [25]. Although O2•− production by NOX complexes are directed towards extracellular space, studies have suggested that extracellular O2•− can diffuse back into the cell via anion channels to serve as intracellular messengers [26,27]. Importantly, the functional relevance of NOX-produced ROS in promoting cancer cell survival and proliferation has been demonstrated in various cancer cell types [28–30].

The mitochondrial metabolic activity is another important source of intracellular O2•−. During oxidative phosphorylation, adenosine triphosphate (ATP) is generated as electrons shuttle through the mitochondrial electron transport chain (ETC), comprising of four multiprotein complexes named I – IV, located on the inner mitochondrial membrane (IMM). However, during electron shuttling, 1–2% of electrons inevitably leak out from the ETC leading to the reduction of O2 to O2•− [31,32]. (Fig. 1A). Notably, mitochondrial complex I and III are the two major sites within the ETC responsible for the by-production of O2•− [33–37]. Besides the mitochondrial ETC, production of ROS by other mitochondrial enzymes involved in the citric acid (TCA) cycle such as pyruvate dehydrogenase and α-ketoglutarate dehydrogenase has been reported, but the mechanism(s) remain unclear [38].

The endoplasmic reticulum (ER) is a site of critical redox-reactions that assist in proper folding and maturation of proteins, resulting in the generation of ROS [39]. The oxidative folding of proteins is catalyzed by the oxidation of dithiol groups of targets by protein disulfide isomerase (PDI), during which, disulfide bond of PDI enzyme is reduced (Fig. 1B). PDI is reverted to its oxidized form by ER oxidoreductase-1 (ERO1) and results in the reduction of terminal electron acceptor, O2 to H2O2 [40,41]. Further substantiating the role of ER as a ROS-producing organelle, NOX4 has been shown to localize to the ER and increase in the in situ generation of ROS upon stress [42].

Last but not least, Nicotric Oxide Synthases (NOSs) produces nitric oxide, which is sometimes considered ROS due to the presence of an oxygen moiety. Briefly, synthesis of nitric oxide by NOS involves single electron reduction of O2 by NO2− followed by its incorporation into guanidine nitrogen of l-arginine to form •NO and L-citrulline [43]. The electron in this reaction is derived from NADPH and transferred to the heme catalytic center of NOS via a flavin mononucleotide (FMN)-prosthetic group located on the C-terminal end of NOS [44]. Despite being a radical species with an unpaired electron, •NO exhibits low reactivity towards biological molecules and is able diffuse across cell membrane to neighboring cells, allowing it to serve as a signaling agent [45]. However, under high ambient O2•− concentrations, •NO can react readily with O2•− to generate ONOO−, a strong oxidizing/nitrating agent [46]. ONOO− has been reported to damage DNA, proteins and lipids through its oxidative/nitrative properties [47–51].

Other metabolic enzymes such as xanthine oxidase, cytochrome P450, aldehyde oxidase have also been reported to produce ROS as by-products [52–54]. However, they are not known to significantly influence disease initiation and/or progression of RAS-driven cancers. Thus, they are beyond the scope of this review.

3. Cellular antioxidant defense systems

Uncontrolled increase in intracellular ROS could be detrimental to cells and tissues, resulting in cell death and tissue damage. To that end, cells employ various antioxidant enzymes and non-enzymatic systems to maintain redox homeostasis and prevent oxidative stress-induced injury/damage.

Nuclear factor erythroid 2 (NFE2)-related factor 2 (Nrf2) is a major antioxidant transcription factor and one of the first responders towards increased oxidative stress [55]. Briefly, activation of Nrf2 involves the dissociation of its negative regulator, Kelch-like ECH-associated protein 1 (Keap1), from Nrf2, allowing Nrf2 to translocate into the nucleus to transcribe antioxidant genes [56,57]. The dissociation of Keap1 from Nrf2 in response to oxidative stress involves the modification of redox-sensing cysteine residues on Keap1 which presumably alters its structure and disrupts the Keap1/Nrf2 interaction [57,58]. Other mechanisms of Nrf2 activation has also been reported and reviewed in [59].
The target genes of Nrf2 includes, but are not limited to, glutathione peroxidase (GPx), peroxiredoxin (Prx), thioredoxin (Trx), glutathione disulfide reductase (GSR), thioredoxin reductase (TrxR) [60–66]. The antioxidant function of these proteins would be elaborated later within this section.

Superoxide produced via cellular processes is removed through a series of reactions involving dismutation of O$_2^•−$ to H$_2$O$_2$ by the action of superoxide dismutase (SOD) enzymes (Fig. 1D). Three SOD isozymes are characterized to date, namely CuZnSOD (SOD1), MnSOD (SOD2) and EC-SOD (SOD3) which exhibit differences in their structure, spatial distribution and metal-containing catalytic center. Catalytic activity of SOD1, found primarily in the cytosol and mitochondrial intermembrane space, is driven by copper (II) ion (Cu$^{2+}$) and zinc (II) ion (Zn$^{2+}$) [67]. In contrast, catalytic activity of SOD2 is driven by manganese (III) ion (Mn$^{3+}$) and is found primarily in the mitochondrial matrix. SOD3 has a similar structure to SOD1 with an additional secretory sequence that allows its secretion into extracellular space where it converts extracellular O$_2^•−$ to H$_2$O$_2$ [68]. Like O$_2^•−$, extracellular H$_2$O$_2$ can diffuse back across the plasma membrane via aquaporin channels to carry out its intracellular signaling functions [69].

Within the cell, H$_2$O$_2$ can be further detoxified via a number of antioxidant defense systems. Catalase catalyzes the decomposition of H$_2$O$_2$ to H$_2$O and O$_2$. Besides catalase, H$_2$O$_2$ can also be reduced to H$_2$O by GPx. The reduction of H$_2$O$_2$ to H$_2$O by GPx involves the oxidation of glutathione to glutathione disulfide (GSH to GSSH), which is subsequently recycled to form GSH via GSR [70,71]. In addition to GSH, another major antioxidant enzyme, Prx, scavenges H$_2$O$_2$, peroxides and peroxynitrite (ONOO−) through oxidation of its own redox-active thiol groups. Oxidized Prx (Prxoxd) then uses reduced Trx (Trxred) as an electron donor to restore its reducing capacity. Trxoxd is, in turn, regenerated through reduction by Trx reductase. Central to redox-cycling of the antioxidant defense system is co-factor NADPH which serve as an electron donor for the reduction of GSSG and Trx via GSR and Trx reductase, respectively [72].

As these antioxidants are crucial in maintenance of intracellular redox-homeostasis, compromised antioxidant function coupled with aberrant ROS generation results in an altered redox milieu (pro-oxidant state), associated with carcinogenesis and its progression.

4. Redox Paradox in cancer cell fate

Due to the ability to spontaneously induce oxidative damage to biological systems and involvement in the etiology of various pathological states, ROS have historically been regarded as noxious molecules. Despite these overstated deleterious effects, mounting evidence has challenged the dogmatic view of ROS as noxious molecules and revealed an essential, yet complex signaling role for ROS under both normal and pathophysiological states. Indeed, ROS have been implicated in myriad of cellular processes and signaling networks including those associated with the various phases of carcinogenesis:
initiation, promotion and progression. These effects are a result of the redox-regulation of cell growth and survival mechanisms, such as inhibition of cell death (apoptosis resistance) and/or activation of proliferative pathways or conversely excessive DNA damage and cell execution. The latter effects of ROS are associated with excessive ROS accumulation that results in extensive macromolecule damage such as lipid peroxidation, protein oxidation and DNA damage, triggering cell death/growth arrest pathways that facilitate the removal of cells with irreparable lesions. An example is the p53 tumor suppressor, which is critically involved in the induction of apoptosis or growth arrest in response to oxidative stress-induced DNA damage [73,74]. Similarly, increase in intracellular ROS can also induce apoptosis via sustained activation of c-Jun N-terminal Kinase (JNK) [75,76], possibly stemming from the ROS-dependent inactivation of mitogen-activated protein kinase (MAPK) phosphatase (MKP) that dephosphorylates/inactivates JNK. The inactivation of MKP is a result of catalytic cysteine oxidation to selenic acid by H$_2$O$_2$ [77]. In another study, ROS has also been implicated in the activation of apoptosis signal-regulating kinase-1 (ASK1) which induces apoptosis through downstream activation of JNK/p38 MAPK [78].

In addition to apoptosis, ROS has also been demonstrated to be a robust activator of other forms of cell death. For instance, mutant RAS-selective small molecule compound, erastin, increases cytosolic lipid ROS production via inhibition of cysteine uptake through cysteine/glutamate antiporter (system Xc$^{-}$) required for cysteine-dependent GSH synthesis, compromising antioxidant defense, ultimately resulting in an iron-dependent, oxidative cell death known as ferroptosis [79]. A number of studies has also implicated ROS in mediating necroptosis, a programmed form of necrotic cell death. Notably, combination treatment of Smac-mimetic BV6 and tumor necrosis factor-α (TNF-α) induces ROS-dependent assembly of receptor-interacting serine/threonine-kinase 1(RIPK1)/RIPK3 necrosome which drives necroptosis via phosphorylation and activation of mixed lineage kinase domain like pseudokinase (MLKL) [80]. Interestingly, deficiencies in critical TNF-α-induced necroptosis signaling proteins such as TNFR-associated factor (TRAF)2, Fas-associated death domain (FADD) and RIPK3 ameliorate ROS production and reduce cell death, indicating the importance of a ROS amplification loop in mediating this unique form of cell death [80,81].

Contrary to its death-inducing property, a substantial amount of evidence has also revealed that ROS, within physiological levels, function as secondary messengers. This signaling property of ROS is often mediated by the reversible oxidation of cysteine thiol groups within proteins, altering their function and activity, thereby regulating the respective signaling pathways the proteins are involved in [82–86]. Notably, H$_2$O$_2$ inactivates tumor suppressor phosphatase and tensin homolog (PTEN), a negative regulator of phosphoinositol-3-kinase/protein kinase B (PI3K/AKT) signaling pathway via reversible oxidation of the cysteine residues, resulting in increased PI3K/AKT signaling [84]. The inactivating oxidative modification can be reversed by Trx-mediated reduction of PTEN, thereby restoring its phosphatase activity and downregulation of PI3K/AKT signaling [84]. Similarly, O$_2^{-}$ is able to reversibly inactivate PTEN via oxidative modification, resulting in increased phosphoinositol-(3,4,5)-triphosphate levels, thereby increasing PI3K/AKT signaling [85]. Further supporting the role of oxidants in signal transduction, H$_2$O$_2$ has also been implicated in the reversible oxidation and inactivation of SH2 domain containing protein tyrosine phosphatase (PTP), resulting in burst of protein tyrosine kinases activity, a principle mode of mitogenic signal transduction [86].

From the standpoint of carcinogenesis, the biphasic functions of ROS can be difficult to grasp given its conflicting role in cancer. On the one hand, cancer cells often display higher levels of oxidative stress compared to normal cells due to oncogenic stimulation and altered metabolism, which are important for cancer initiation and progression [87–90]. On the other hand, ROS can also induce multiple tumor suppressive mechanisms such as activation of p53 [73,77,91]. In fact, augmentation of oxidative stress is the basis of many chemotherapeutic and radiotherapeutic agents’ mechanism of action [92–94]. How then, do cancer cells reconcile with the conflicting effects of ROS on cell fate determination? Underpinning these contradictory responses seem to be a concentration-dependent pathology, wherein a threshold exists to distinguish between the signaling functions and toxic effects of ROS (Fig. 2). Hence, while leveraging on the beneficial effects of ROS to promote its own survival and proliferation, a cancer cell must also actively keep its ROS levels in check by enhancing its own antioxidative capacity to prevent cell death. Herein, we will focus on how RAS, a potent oncogene, promote and maintain the cancer phenotype in a redox-regulated manner.

5. Rising ROS levels float RAS signaling

RAS are 21 kDa small GTPase that regulate diverse cellular
processes such as cell proliferation, survival and metabolic reprogramming. In human, three subfamily RAS genes – NRAS, HRRAS and KRAS - encode for 4 highly homologous RAS isoforms, NRAS, HRRAS and splice variants KRAS4a and KRAS4b. Localized on the cell plasma membrane, RAS proteins serve as critical signaling nodes which transduce extracellular signals from membrane receptors to a complex network of intracellular effector pathways. This is achieved by transitions between its active guanosine triphosphate (GTP)-bound conformation upon GDP loading and inactive guanosine diphosphate (GDP)-bound conformation upon GTP hydrolysis. Under physiological conditions, tandem switching between “active” and “inactive” conformations is modulated by GTP exchange factors (GEFs) and GTPase-activating proteins (GAPs), ensuring signal transduction to be transient and efficiently controlled. Hence, RAS are known to be effective “molecular switches”. Molecular analysis of RAS-driven tumors has identified RAS mutational hot spots in codons 12, 13 and 61 at varying frequencies [95]. These mutations disrupt GTP hydrolytic capacity of RAS GTPase resulting in incessant proliferative and survival signaling through stimulation of downstream effectors such as RAF/MEK/MAPK, PI3K/AKT/mTOR and RaGDF/Ral pathways.

Apart from receptor-mediated and mutational activation, increased ROS levels have also been linked to the activation of RAS. Notably, ROS-induced activation of RAS was first observed in human T cells where increased -NO levels increased RAS-GDP dissociation, allowing for subsequent GTP binding and activation [96]. The molecular target of nitric oxide-mediated RAS activation was later identified to be the highly conserved NKKD (asparagine-lysine-X-aspartate) nucleotide-binding motif of RAS superfamily where Cys118 is the variable X residue in HRAS, NRAS and KRAS [97,98]. Presumed to be mediated by S-nitrosylation of Cys118, the guanine nucleotide exchange (GNE) of RAS is facilitated via the formation of RAS-thiyl intermediate (RAS-S•) during the process of S-nitrosylation of the thiol group of Cys118 by nitrogen dioxide (•NO2), a reaction product of •NO and O2, rather than the S-nitrosylated end-product [99–101]. Similarly, O2•- and H2O2 in the presence of transition metals such as copper (Cu2+) and iron (Fe2+), and peroxynitrite (ONOO•) have also been reported to facilitate RAS-GDP dissociation and GTP exchange [102,103]. RAS-S• intermediate may also be formed during S-glutathiolation of RAS Cys118 residue, stimulating RAS activation through GNE [104]. However, this modification prevents Cys118 from engaging in further radical-based reactions [104]. Site-directed mutagenesis of Cys118 to serine impedes carcinogen-induced lung carcinogenesis in mice. Interestingly, duo-site mutated KRASG12S, G13D displayed decreased sensitivity towards epidermal growth factor (EGF) stimulation compared to single-site mutated KRASG12D, suggesting synergism betweenROS and oncogenic RAS mutations in promoting carcinogenesis. Taken together, these studies provide evidence of ROS-dependent activation of RAS signaling in promoting carcinogenesis.

6. RAS: A master redox-rheostat in cell fate determination

6.1. Pro-oxidant activity of RAS

Besides the amenability of RAS structure/activity towards oxidative modifications, RAS activation is also a strong inducer of cellular ROS production associated with tumor-promoting effects of RAS. In that regard, many critical intracellular pro- oncogenic networks that are modulated by mutant RAS signaling such as autophagy, NF-κB and MAPK activation, PI3K/AKT/mTOR and hypoxia signaling appear to be highly intertwined with cellular redox metabolism. Mutant KRAS was shown to promote oxidative stress in pancreatic cancer by induction of miR-155 through NF-κB and MAPK pathway, resulting in downregulation of transcription factor, FOXO3A, which transcribes for antioxidant genes, SOD2 and catalase [105]. Besides transcriptional downregulation of ROS-scavenging enzymes, RAS has also been shown to induce mitochondrial O2•- production from complex I and III of the ETC required for activation of proliferative and survival signaling, although a consensus has not been reached as to whether this is due to an increase in mitochondrial dysfunction or mitochondrial metabolism [106–108]. The conflicting reports may be due to differences in cell models used [106–108]. It is also worth mentioning that AKT, a downstream effector of RAS, can further increase oxidative stress by increasing respiratory capacity and/or suppressing FOXO3A activity [109–111], conceivably resulting in a ROS amplification loop to favor a pro-oxidant milieu for carcinogenesis. Supporting the role of ROS in promoting cancer cell proliferation, null-mutation of Prx1 greatly enhanced proliferation of non-small cell lung cancer (NSCLC) via ROS-dependent stimulation of ERK/CyclinD1 pathway in KRAS-driven lung carcinogenesis, suggesting a tumor suppressor role of the antioxidant activity of Prx1 [112]. Similarly, oncogenic RAS was observed to inhibit transcription of sestrin family genes SESN1 and SESN3, resulting in increased intracellular ROS levels [91].

Perhaps the most convincing evidence linking ROS to RAS-induced transformation and cancer progression is its ability to directly induce O2•- production via the intermediary activation of Rac1 GTPase [113], a critical component of NOX complexes [25,114]. O2•- production via Rac1 has been shown to be an important mediator of mitogenic signaling and is required for malignant transformation and cancer progression in various RAS-driven cancer models [108,115–119]. Moreover, RAS activation in colorectal carcinoma strongly correlates with NOX1 expression and its expression has been linked to activation of MAPK [30,89,120]. Apart from NOX, our group has demonstrated that Rac1 localized to the mitochondria where it interacts with Bcl-2 and increases mitochondrial O2•- production, promoting survival [121].

Besides the aforementioned studies demonstrating RAS as an inducer of ROS production which subsequently promotes mitogenic and survival signaling, there exists a preponderance of evidence attesting ROS production as an integral component of RAS-induced transformation. In pancreatic cancer, where frequency of KRAS mutations are up to 90%, constitutive RAS activation was shown to induce cellular ROS production via NOX4 to promote cancer progression in a Rac1-dependent manner [122]. RAS-induced ROS production via NOX4 also promotes accumulation of DNA damage which may result in the acquisition of additional oncogenic hallmarks or oncogene-induced senescence if DNA-damage response is activated [122,123]. Previously thought to be a tumor suppressive mechanism to arrest cells at risk of malignant transformation, mounting evidence suggests that senescent cells can evoke pro-tumorigenic changes in tumor microenvironment through acquisition of senescence-associated secretory phenotype (SASP) (reviewed by Coppé) [124].

Although oncogenic RAS promotes carcinogenesis through incessant proliferative and survival signaling, it has become clear over the years that oncogenic RAS also requires other mechanisms to sustain tumor progression. One of these critical mechanisms tied to RAS-driven transformation and redox-signaling is autophagy, a “self-eating” mechanism through which organelles, part of cytoplasm or proteins are digested to sustain metabolic needs or prevent accumulation of damaged/unwanted proteins and organelles [87,125–128]. Indeed, autophagy manifests in KRAS-driven malignant transformation of MCF10A breast epithelial cells through ROS-dependent activation of stress kinase, JNK, inducing upregulation of critical autophagy-related genes Atg5 and Atg7. Suppression of autophagy via genetic knockdown of autophagy-related (Atg) genes and ROS scavenging in this model, attenuated malignant transformation [126]. In agreement with this study, our group has shown that a small molecule compound, 1,3-di-buty1-2-thioxo-imidazolidine-4,5-dione (C1), was able to trigger beclin-1 independent autophagy in various cancer cell lines and primary cells from lymphoma patients through ROS-dependent activation of MAPK, ERK and JNK [12]. It has also been reported that autophagy is an important mechanism for sustaining glycolysis during RAS-driven tumorigenesis and deficiencies in autophagy resulted in lower glycolytic flux and reduction in cell proliferation, indicating that autophagy...
may be required to maintain ATP homeostasis during nutrient deprivation [128]. Interestingly, suppression of autophagy in RAS-driven NSCLC with p53 loss disrupts lipid metabolism and changes the fate of adenoma and carcinoma to benign oncocytoma [129]. Collectively, these studies testify the importance of autophagy in supporting metabolic reprogramming during RAS-driven transformation and cancer progression, and changes in cellular-redox status mediated by oncoprotein RAS is an important mediator of these changes.

6.2. Anti-oxidant activity of RAS

While RAS promotes cellular transformation and tumor progression through induction of ROS, persistent ROS production as a result of RAS signaling can trigger growth arrest or cell death mechanisms. To overcome the deleterious effects of ROS, RAS must rely on failsafe mechanisms to neutralize and/or reduce ROS production. Indeed, a number of studies have demonstrated that RAS-driven transformation is associated with upregulation of antioxidant proteins to neutralize ROS production. For instance, upregulation of proteins involved in redox metabolism such as Prx3,4 and selenophosphate synthetase, a rate-limiting enzyme for synthesis of ROS scavenging selenoproteins such as GPx and TrxR, has been observed during RAS-driven transformation of ovarian epithelial cells [130]. More importantly, KRAS has been shown to directly enhance expression of master antioxidant transcription Nrfl2, that positively regulates expression of critical ROS scavenging enzymes [131,132]. The increase in antioxidative capacity is also crucial to mediate RAS-driven transformation and malignant progression. Notably, Nrfl2 has been shown to confer increased survival and tumor growth in later stages of malignancy and also chemoresistance in RAS-driven lung cancer [131,133]. In addition, inhibition of Nrfl2 ubiquitination and degradation via deletion of Sag promotes KRAS-driven skin papillomagenesis [134]. Numerous reports also observed increased Nrfl2 activity in diverse cancer types, lending credence to its importance in carcinogenesis [135–137]. Apart from compromising major cellular antioxidant systems, another study showed that loss of Prx1 in HRASV12-driven hepatocellular carcinoma was sufficient to induce apoptosis as a result of decreased ERK activation and increased ROS-induced DNA damage [138]. In another study, deletion of Pim kinase was shown to reduce SOD2 and GPx4 expression in KRASG12V-transformed MEFs and sensitize towards RAS-induced ROS-dependent cell death [139].

Nevertheless, as mentioned, a key to maintaining antioxidant function of ROS scavenging enzymes is the dependence on NADPH, which is mainly produced by the Pentose Phosphate Pathway (PPP) and the key rate-limiting enzyme for this anabolic pathway is glucose-6-phosphate dehydrogenase (G6PD). Alluding to its role in NADPH synthesis, G6PD has an important role in protecting cells against oxidative stress via NADPH-mediated restoration of GSH activity [140,141]. Interestingly, mammalian Target of Rapamycin complex 1 (mTORC1), a downstream effector of RAS/PI3K/AKT signaling has also been shown to upregulate G6PD expression required for synthesis of NADPH, an important cofactor in the reduction of redox-cycling enzymes such as GSH and Trx.

Fig. 3. Duality of RAS in redox-regulation. Mutant RAS has both oxidative and antioxidative functions to maintain ROS levels below lethal threshold. Mutant RAS drives production of ROS to promote cell proliferation and survival. Mutant RAS, through its downstream effectors have been shown to increase ROS production by stimulating NOX complex through Rac and also disrupting complex I and III activity of the mitochondrial. Mutant RAS also downregulates antioxidant expression through inhibition of FoxO3A transcription factor. Mutant RAS maintains sublethal levels of ROS by activating Nrfl2 transcription of antioxidant genes. Mutant RAS also induces autophagy to remove dysfunctional mitochondria that contributes to ROS production. Also, mTORC1, a downstream effector of RAS/PI3K/AKT signaling has also been shown to upregulate G6PD expression required for synthesis of NADPH, an important cofactor in the reduction of redox-cycling enzymes such as GSH and Trx.
intact autophagic mechanism during RAS-driven carcinogenesis [129,144,145]. Interestingly, oncopgenic KRAS signaling also promotes mitochondrial fragmentation, a pre-requisite to mitophagy initiation, through ERK2-mediated phosphorylation of dynamin-related protein 1 (DRP1) at serine 616 and deletion of DRP1 has been associated with impaired proliferative capacity of KRAS-driven tumors [146,147]. It is plausible that KRAS-induced mitochondrial morphology changes could also play an important role in facilitating the removal of damaged mitochondria and prevent excessive accumulation of ROS during transformation. Hence, the involvement of mitochondrial dynamics in RAS-driven carcinogenesis and its interplay with ROS warrants further investigation.

Taken together, these studies demonstrate strongly the duality of RAS oncogene in redox regulation through concurrent oncogenic stimulation of ROS production and increasing antioxidant capacity to ensure that ROS levels are kept within pro-carcinogenic levels while avoiding the lethal threshold (Figs. 2 and 3). However, in light of the conflicting reports, it would be interesting to investigate the circumstances and cellular context wherein RAS adopts a pro or anti-oxidant role. Understanding the plasticity of RAS in redox-regulation will help us develop more effective therapeutic strategies against RAS-driven tumors.

6.3. Redox-based strategies against RAS-driven cancers

Given the incidence of RAS mutations in cancer and its involvement in mediating acquisition of oncogenic hallmarks, it is unsurprising that direct inhibition of RAS is an important and attractive therapeutic strategy against RAS-driven tumors. However, a therapeutic grip on RAS oncogene remains challenging. Nevertheless, there has been some success in understanding the structure of RAS protein and how it can be drugged [148-150]. However, the therapeutic efficacy remains to be established. As a result, the bulk of research efforts are aimed at designing therapeutic strategies targeting upstream and/or downstream effectors of RAS signaling [151-154]. Despite the initial successes of these therapies, their durability in the clinic is ultimately compromised by multiple cross-talk, negative feedback and redundancies that exists within the complex RAS signaling network, leaving an open area for development of novel therapies [155-159].

Based on the studies presented, the apparent reliance of RAS-driven tumors on ROS to sustain its tumorigenic needs presents itself as a targetable vulnerability to be exploited for therapeutic management. One possible strategy to target RAS-driven tumors will be to reduce its targetable vulnerability to be exploited for therapeutic management. Given the incidence of RAS mutations in cancer and its involvement in mediating acquisition of oncogenic hallmarks, it is unsurprising that direct inhibition of RAS is an important and attractive therapeutic strategy against RAS-driven tumors. However, a therapeutic grip on RAS oncogene remains challenging. Nevertheless, there has been some success in understanding the structure of RAS protein and how it can be drugged [148-150]. However, the therapeutic efficacy remains to be established. As a result, the bulk of research efforts are aimed at designing therapeutic strategies targeting upstream and/or downstream effectors of RAS signaling [151-154]. Despite the initial successes of these therapies, their durability in the clinic is ultimately compromised by multiple cross-talk, negative feedback and redundancies that exists within the complex RAS signaling network, leaving an open area for development of novel therapies [155-159].

Based on the studies presented, the apparent reliance of RAS-driven tumors on ROS to sustain its tumorigenic needs presents itself as a targetable vulnerability to be exploited for therapeutic management. One possible strategy to target RAS-driven tumors will be to reduce its targetable vulnerability to be exploited for therapeutic management. Given the incidence of RAS mutations in cancer and its involvement in mediating acquisition of oncogenic hallmarks, it is unsurprising that direct inhibition of RAS is an important and attractive therapeutic strategy against RAS-driven tumors. However, a therapeutic grip on RAS oncogene remains challenging. Nevertheless, there has been some success in understanding the structure of RAS protein and how it can be drugged [148-150]. However, the therapeutic efficacy remains to be established. As a result, the bulk of research efforts are aimed at designing therapeutic strategies targeting upstream and/or downstream effectors of RAS signaling [151-154]. Despite the initial successes of these therapies, their durability in the clinic is ultimately compromised by multiple cross-talk, negative feedback and redundancies that exists within the complex RAS signaling network, leaving an open area for development of novel therapies [155-159].

Based on the studies presented, the apparent reliance of RAS-driven tumors on ROS to sustain its tumorigenic needs presents itself as a targetable vulnerability to be exploited for therapeutic management. One possible strategy to target RAS-driven tumors will be to reduce its targetable vulnerability to be exploited for therapeutic management. Given the incidence of RAS mutations in cancer and its involvement in mediating acquisition of oncogenic hallmarks, it is unsurprising that direct inhibition of RAS is an important and attractive therapeutic strategy against RAS-driven tumors. However, a therapeutic grip on RAS oncogene remains challenging. Nevertheless, there has been some success in understanding the structure of RAS protein and how it can be drugged [148-150]. However, the therapeutic efficacy remains to be established. As a result, the bulk of research efforts are aimed at designing therapeutic strategies targeting upstream and/or downstream effectors of RAS signaling [151-154]. Despite the initial successes of these therapies, their durability in the clinic is ultimately compromised by multiple cross-talk, negative feedback and redundancies that exists within the complex RAS signaling network, leaving an open area for development of novel therapies [155-159].
Ovarian cancer showed an improved overall survival and median time of 8.75 months longer disease progression/relapse in vitamin C/carboplatin/paclitaxel-treated patients compared to patients receiving only standard carboplatin/paclitaxel therapy [173]. However, the difference between two groups of patients was not statically significant and the efficacy of vitamin C in cancer therapy still warrants further clinical investigation. Intravenous administration of vitamin E in combination with chemotherapeutics was also studied clinically but no therapeutic benefits has been observed [174]. Another limitation and drawback of vitamin C and E in cancer therapy may also be attributed to its short biological half-life [175,176]. Hence, use of vitamin in cancer therapy would be impractical as patients would need to be dosed with high concentrations of vitamins very frequently. Moreover, several studies revealed pro-oxidant activity in vitamins, contrary to their presumed antioxidative roles [167,177]. Thus, it would be important to understand which role would vitamins adopt in vivo and at the tumor site.

As mentioned, NOX enzymes are also potential targets for ROS-modulating strategies and inhibition of NOX enzymes has proven effective against several cancer cell lines [28,119]. Among which, NOX1 and NOX4 has been implicated in RAS-driven carcinogenesis [30,119,123,161]. NOX1 is abundantly expressed in colon epithelial cells and appears to play an important role in mucosal wound repair after inflammation and loss of NOX1 function has been associated with inflammatory bowel disease [178-180]. Expression of NOX4, on the other hand, is far more ubiquitous than NOX1, and its diverse function has recently been reviewed in [181]. Given the importance NOX enzymes in physiological functions, inhibition of NOX during cancer therapy in patients may have severe implications and calls for cautious optimism.

Lastly, given the complexity of RAS oncogene in redox-regulation, it is conceivable that RAS-driven tumors may exhibit redox-heterogeneity across different cell types and stages of carcinogenesis, warranting for personalized redox-profiling of tumors in any given patient to identify potential hornerotic thresholds. Only then, we would be able to effectively target RAS-driven tumors through manipulation of ROS levels using drug or combinational therapy (Table 1).

7. Concluding remarks

The treatment of RAS-driven cancers has been therapeutically challenging due to the complexity and diversity of RAS signaling readouts. However, an interesting aspect with potential therapeutic implications is the intricate interplay between RAS networks and cellular redox status. Observations supporting bi-directional signaling (RAS-ROS-RAS) argue in favor of an amplification loop that on the one hand provides a permissive environment for transformation, survival and carcinogenesis, yet on the other hand presents as a vulnerability worth exploiting for the therapeutic management of RAS driven malignancies. These observations support a Redox Rheostat function for RAS. It is worth noting that the contribution of ROS to cell fate may be governed by cell-specificity and stages of carcinogenesis, and therefore for redox-based therapies to be effective, the functional biology of RAS from the standpoint of redox status in specific cancer cell types and stages have to be clearly established. Furthermore, is there a propensity for RAS to switch from an anti-oxidant role to a pro-oxidant role in response to extrinsic or intrinsic stimuli? If so, what mechanisms confer the plasticity of RAS in redox-regulation? Understanding these phenomena would be critical for the design and development of novel redox-based approaches for the efficient execution of RAS driven cancers.

Acknowledgments

This work was supported by National Medical Research Council (NMRC), Singapore, R-185-000-333-511 to SP.

References

[1] J.J. Harvey, An unidentified virus which causes the rapid production of tumours in mice, Nature 204 (1964) 1104-1105.
[2] E. Taparowsky, Y. Suard, O. Fasano, et al., Activation of the T24 bladder carcinoma transforming gene is linked to a single amino acid change, Nature 300 (5894) (1982) 762-765.
[3] A. Hall, C.J. Marshall, N.K. Spurr, et al., Identification of transforming gene in two human sarcoma cell lines as a new member of the ras gene family located on chromosome 1, Nature 303 (5916) (1983) 396-400.
[4] E. Santos, D. Martin-Zanca, E.P. Reddy, et al., Malignant activation of a K-ras oncogene in lung carcinoma but not in normal tissue of the same patient, Science 223 (4637) (1984) 661-664.
[5] A. Balmian, I.B. Pragnell, Mice skin carcinomas induced in vivo by chemical carcinogens have a transforming Harvey-ras oncogene, Nature 303 (5912) (1983) 72-74.
[6] V.T. Smit, A.J. Boot, A.M. Smits, et al., KRAS codon 12 mutations occur very frequently in pancreatic adenocarcinoma, Nucleic Acids Res. 16 (16) (1988) 7773-7782.
[7] D. Hanahan, A. Weinberg Robert, Hallmarks of cancer: the Next generation, Cell 144 (5) (2011) 646-674.
[8] M.V. Clement, J.L. Hirpara, S. Pervaiz, Decrease in intracellular superoxide sensitivity Bcl-2-overexpressing tumor cells to receptor and drug-induced apoptosis independent of the mitochondria, Cell Death Differ. 10 (11) (2003) 1273-1285.
[9] M.V. Clement, S. Pervaiz, Intracellular superoxide and hydrogen peroxide concentrations: a critical balance that determines survival or death, Redox Rep. 6 (4) (2002) 211-214.
[10] M.V. Clement, S. Pervaiz, Reactive oxygen intermediates regulate cellular response to apoptotic stimuli: an hypothesis, Free Radic. Res. 30 (4) (1999) 247-252.
[11] S. Pervaiz, J.K. Ramalingam, J.L. Hirpara, et al., Superoxide anion inhibits drug-induced tumor cell death, FEBS Lett. 459 (3) (1999) 343-348.
[12] C.H. Wong, K.B. Iskandar, S.K. Yadav, et al., Simultaneous induction of non-canonical autophagy and apoptosis in cancer cells by ROS-dependent ERK and JNK activation, PLoS One 5 (4) (2010) e9996.
[13] K.A. Ahmad, K.B. Iskandar, J.L. Hirpara, et al., Hydrogen peroxide-mediated cystolic acidification is a signal for mitochondrial translocation of Bax during drug-induced apoptosis of tumor cells. Cancer Res. 64 (21) (2004) 7867-7878.
[14] T.W. Poh, S. Pervaiz, LY294002 and LY303511 sensitize tumor cells to drug-induced apoptosis via intracellular hydrogen peroxide production independent of the phosphoinositide 3-kinase-Akt pathway, Cancer Res. 65 (14) (2005) 6264-6274.
[15] F. Kheradmand, E. Werner, P. Tremble, et al., Role of Rac1 and oxygen radicals in collagenase-1 expression induced by cell shape change, Science 280 (5365) (1998) 898-902.
[16] P. Chiarugi, G. Pani, E. Giannoni, et al., Reactive oxygen species as essential...
mediators of cell adhesion; the oxidative inhibition of a FAK tyrosine phosphatase is required for cell adhesion. J. Cell Biol. 161 (5) (2003) 933–944.

[17] H.S. Park, S.H. Lee, D. Park, et al., Sequential activation of phosphorylidyinositol 3-kinase, beta Pix, Rac1, and Nox1 in growth factor-induced production of H2O2, Mol. Cell. Biol. 24 (10) (2004) 4384–4394.

[18] T. Ueyama, M. Geiszt, T.L. Leto, Involvement of Rac1 in activation of multi-component Nox1- and Nox2-based NADPH oxidases, Mol. Cell 26 (6) (2006) 2160–2174.

[19] W. Subaursingh, I. Syed, A. Kowluru, Phagocyte-like NADPH oxidase promotes cytokine-induced mitochondrial dysfunction in pancreatic beta-cells: evidence for regulation by Rac1, Am. J. Physiol. Regul. Integr. Comp. Physiol. 300 (1) (2011) R12–R20.

[20] S. Rigutto, C. Hoste, H. Graberber, et al., Activation of dual oxidases Duox1 and Duox2: differential regulation mediated by camp-dependent protein kinase and protein kinase C-dependent phosphorylation, J. Biol. Chem. 284 (11) (2009) 7625–7634.

[21] B. Banfi, F. Tironi, I. Durussel, et al., Mechanism of Ca2+ activation of the NADPH oxidase 5 (NOX5), J. Biol. Chem. 279 (18) (2004) 18583–18591.

[22] Y. Nisimoto, B.A. Diebold, D. Cosentino-Gomes, et al., Nox4: a hydrogen peroxide-generating oxygen sensor, Biochemistry 53 (31) (2014) 5111–5120.

[23] M. Geiszt, J. Witta, J. Baffi, et al., Dual oxidases represent novel hydrogen peroxide sources supporting mucosal surface host defense, Faseb J. 17 (11) (2003) 1502–1504.

[24] J.J. Meierler, P.R. Ortiz de Montellano, Caenorhabditis elegans and human dual oxidase 1 (DUOX1) ‘peroxide’ domains: insights into hinge bending and catalytic activity, J. Biol. Chem. 284 (28) (2009) 18634–18643.

[25] B.M. Babir, NADPH oxidase: an update, Blood 3 (5) (1999) 1644–1476.

[26] J. Lynch, I. Fridovich, Effects of superoxide on the erythrocyte membrane, J. Biol. Chem. 253 (6) (1978) 1838–1845.

[27] B.J. Hawkins, M. Madesh, C.J. Kirkpatrick, et al., Superoxide flux in endothelial cells, J. Biol. Chem. 279 (47) (2004) 48824–48831.

[28] R.E. Lynch, I. Fridovich, Effects of superoxide on the erythrocyte membrane, J. Biol. Chem. 279 (47) (2004) 48824–48831.

[29] P.S. Hole, J. Zabkiewicz, C. Munje, et al., Overproduction of NOX-derived ROS in colon cancers and correlates with activating mutations in K-Ras, Int. J. Cancer 123 (2) (2008) 417–427.

[30] H. Kamata, S. Honda, S. Maeda, et al., Reactive oxygen species promote TNF-alpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphorylation, Antioxid. Redox Signal. 24 (14) (2016) 781–794.

[31] S. Macip, M. Igarashi, P. Berggren, et al., Influence of induced reactive oxygen species on insulin secretion and glucose-stimulated insulin secretion, J. Biol. Chem. 286 (28) (2011) 25388–25396.

[32] J.T. Rotruck, A.L. Pope, H.E. Ganther, et al., Selenium: biochemical role as a component of glutathione peroxidase, Science 179 (478) (1973) 588–590.

[33] Y.J. Kim, J.Y. Ahn, P. Liang, et al., Oxidant stress stimulates expression of the human peroxiredoxin 6 gene by a transcriptional mechanism involving an antioxidant response element, Free Radic. Biol. Med. 46 (2) (2009) 146–153.

[34] C.J. Harvey, K.R. Thimmulappa, A. Singh, et al., Nrf2-regulated glutathione reductase cycling independent of Sod1. Gsto2 is critical for cell survival during oxidative stress, Free Radic. Biol. Med. 46 (4) (2009) 443–453.

[35] M. Kobayashi, L. Li, N. Iwamoto, et al., The antioxidant defense system Keap1-Nrf2 comprises a multiple sensing mechanism for responding to a wide range of chemical compounds, Mol. Cell. Biol. 29 (20) (2009) 493–502.

[36] T. Wiesel, N. Wakahayashi, S. Biwell, Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway, Annu. Rev. Pharmacol. Toxicol. 47 (2007) 89–116.

[37] D.D. Zhang, S.C. Lo, J.V. Cross, et al., Keap1 is a redox-regulated substrate adaptor protein for a Cu3-dependent ubiquitin ligase complex, Mol. Cell 24 (24) (2006) 10941–10953.

[38] Y.J. Kim, J.Y. Ahn, P. Liang, et al., Human prx1 gene is a target for Nrf2, Mol. Cell. Biol. 25 (12) (2005) 4914–4925.

[39] P. Li, H. Huang, J. Sun, et al., Nrf2 comprises a multiple sensing mechanism for responding to a wide range of chemical compounds, Antioxid. Redox Signal. 15 (6) (2011) 1583–1606.

[40] G.P. Bienert, A.L. Moller, K.A. Kristiansen, et al., Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes, J. Biol. Chem. 282 (2) (2007) 13322–13330.

[41] T. Fukai, M. Ushio-Fukai, Superoxide dismutases: role in redox signaling, vascular function, and diseases, Antioxid. Redox Signal. 15 (6) (2011) 1583–1606.

[42] I.C. Low, T. Loh, Y. Huang, et al., Ser70 phosphorylation of Bcl-2 by selective chemical compounds, Mol. Cell Biol. 29 (2) (2009) 546–554.

[43] E.W. Bush, V. Meo, L. Gao, et al., Oxidant stress stimulates expression of the human peroxiredoxin 6 gene by a transcriptional mechanism involving an antioxidant response element, Free Radic. Biol. Med. 46 (2) (2009) 146–153.

[44] J. Itoh, N. Wakahayashi, K. Kato, Keap1 represses nuclear activation of antioxidant responsive element targets by Nrf2 through binding to the amino-terminal Neh2 domain, Gene 13 (1) (1999) 76–85.

[45] A. Kobayashi, M.J. Kang, H. Okawa, et al., Oxidative stress sensor Keap1 functions as an adaptor for Cu3-based E3 ligase to regulate proteasomal degradation of Nrf2, Mol. Cell Biol. 24 (16) (2004) 7130–7139.

[46] M. Sasaki, S. Nishizawa, T. Kataoka, et al., Keap1 acts as a redox-regulated substrate adaptor protein for a Cu3-dependent ubiquitin ligase complex, Mol. Cell 24 (24) (2006) 10941–10953.

[47] I.C. Low, T. Loh, Y. Huang, et al., Oxidant stress stimulates expression of the human peroxiredoxin 6 gene by a transcriptional mechanism involving an antioxidant response element, Free Radic. Biol. Med. 46 (2) (2009) 146–153.

[48] I. Chowdhury, Y. Mo, L. Gao, et al., Oxidant stress stimulates expression of the human peroxiredoxin 6 gene by a transcriptional mechanism involving an antioxidant response element, Free Radic. Biol. Med. 46 (2) (2009) 146–153.
activations of JNK/p38 MAP kinases and apoptosis, EMBO Rep. 2 (3) (2001) 222–228.

S.J. Dixon, K.M. Lemberg, M.R. Lamprecht, et al., Ferroptosis: an iron-dependent form of nonapoptotic cell death, Cell 149 (5) (2012) 1600–1672.

B. Schenk, S. Pfeifer, Oxygen species regulate Smac/mitochondria/MtNFpha-induced necrotic signaling and cell death, Oncogene 34 (47) (2015) 5796–5806.

Y. Lin, S. Choksi, H.M. Shen, et al., Tumor necrosis factor-induced nonapoptotic cell death requires receptor-interacting protein-mediated cellular reactive oxygen species accumulation, J. Biol. Chem. 279 (11) (2004) 10822–10828.

Y.S. Bae, S.W. Kang, M.S. Seo, et al., Epidermal growth factor (EGF)-induced generation of hydrogen peroxide. Role in EGF receptor-mediated tyrosine phosphorylation, J. Biol. Chem. 272 (1) (1997) 217–221.

Y.S. Bae, J.Y. Sung, O.S. Kim, et al., Platelet-derived growth factor-induced H(2)O(2) production requires the activation of phospholipidhydroxolase 3-kine, J. Biol. Chem. 275 (10) (2000) 10257–10261.

S.R. Lee, K.S. Yang, J. Kwon, et al., Reversible inactivation of the tumor suppressor PTEN by H2O2, J. Biol. Chem. 277 (23) (2002) 20336–20342.

S. Lim, M.V. Clement, Phosphorylation of the survival kinase Akt by superoxide is dependent on an autocatalytic reversible-oxidation of PTEN, Free Radic. Biol. Med. 42 (8) (2007) 1178–1192.

T.C. Meng, T. Fukada, N.K. Tonks, Reversible oxidation and inactivation of protein kinase C in vivo, Mol. Cell 9 (2) (2002) 378–399.

J.Y. Guo, H.Y. Chen, R. Mathew, et al., Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis, Genes Dev. 25 (5) (2011) 460–470.

F. Weinberg, R. Hamanaka, W.W. Wheaton, et al., Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenesis, Proc. Natl. Acad. Sci. USA 107 (19) (2010) 8788–8793.

M.T. Park, M.J. Kim, Y. Sub, et al., Novel signaling axis for ROS generation during K-Ras-induced cellular transformation, Cell Death Differ. 21 (8) (2014) 1185–1197.

T. Ren, H. Zhang, J. Wang, et al., MCI-dependent mitochondrial Ca(2+) + inhibitors NAD(+)/SIRT3/SOD2 pathway to promote ROS production and metastasis of HCC cells, Oncogene 36 (42) (2017) 5897–5909.

P.B. Kopnin, L.S. Agapova, R.P. Kopnin, et al., Repression of Sestrin family genes contributes to oncogenic Ras-induced ROS Up-regulation and genetic instability, Cancer Res. 67 (10) (2007) 4671–4678.

P. Bragado, A. Armessila, A. Silva, et al., Apoptosis by cisplatin requires p53 mediated p368SRK/DRAP activation through ROS generation, Apoptosis 12 (9) (2007) 1773–1742.

L.T. Hwang, Y.M. Chung, J.J. Kim, et al., Drug resistance to 5-FU linked to reactive oxygen species mediator, Biochem. Biophys. Res. Commun. 359 (2) (2007) 904–910.

J.K. Leach, G. Van Tulley, P.S. Lin, et al., Ionizing radiation-induced, mitochondria-dependent generation of reactive oxygen/nitrogen, Cancer Res. 61 (6) (2001) 3894–3901.

G.A. Hobbs, C.J. Der, K.L. Rossman, ROS is forms and mutations in cancer at a glance, J. Cell Sci. 129 (7) (2016) 1287–1292.

H.M. Lander, J.S. Ogiste, S.F. Pearce, et al., Nitric oxide-stimulated guanine nucleotide exchange factors in vivo, Mol. Cell 9 (4) (2002) 387–399.

J.K. Leach, C.J. Der, K.L. Rossman, RAS isoforms and mutations in cancer at a glance, J. Cell Sci. 129 (7) (2016) 1287–1292.

J.K. Leach, G. Van Tulley, P.S. Lin, et al., Ionizing radiation-induced, mitochondria-dependent generation of reactive oxygen/nitrogen, Cancer Res. 61 (6) (2001) 3894–3901.

R. Khosravi-Far, P.A. Solski, G.J. Clark, et al., Activation of Rac1 exchange factor, Tiam1, mediates neurotrophin-3-induced Schwann cell migration, Proc. Natl. Acad. Sci. USA 102 (41) (2005) 14489–14494.

G. Cheng, B.A. Diebold, Y. Hughes, et al., Nolx1–dependent reactive oxygen generation is regulated by Rac1, J. Biol. Chem. 281 (26) (2006) 17718–17726.

K. Irawan, M.J. Zhang, Y. Lin, et al., Protein tyrosine phosphatases in vivo, Mol. Cell 9 (2) (2002) 387–399.

Y. Nogueira, Y. Park, C.C. Chen, et al., Akt determines replicative senescence and respiratory capacity through 4E-BP1, PLoS ONE 7 (9) (2012) e45806.

J. Saito, T. Rokutan, T. Sano, et al., Rac1 is a major target of inactivation by P38/AKT signaling in aggressive neuroblastoma, Cancer Res. 73 (7) (2013) 2189–2198.

Y.H. Park, S.U. Kim, B.K. Lee, et al., Ptx1 suppresses Kras-driven lung tumorigenesis by opposing redox-sensitive ERK/cyclin D1 pathway, Antioxid. Redox Signal. 19 (5) (2013) 482–496.

J. Yamauchi, Y. Miyamoto, A. Tanoue, et al., Ras activation of a Rac1 exchange factor, Tiam1, mediates neurotrophin-3-induced Schwann cell migration, Proc. Natl. Acad. Sci. USA 102 (41) (2005) 14489–14494.

H. Satoh, T. Moriguchi, J. Takai, et al., Nrf2 prevents initiation but accelerates senescence in Ras-induced lung cancer, Oncotarget 6 (25) (2015) 2314–2322.

I.T. Hwang, Y.M. Chung, J.J. Kim, et al., Drug resistance to 5-FU linked to reactive oxygen species fuel hyperproliferation and DNA damage response activation, Cell Death Differ. 21 (6) (2014) 998–1012.

T.W. Young, F.C. Mei, G. Yang, et al., Activation of antioxidant pathways in ras-related GTPases by a radical-based mechanism similar to that of nitric oxide, J. Biol. Chem. 276 (14) (2001) 12924–12932.

M. Kundu, C.B. Thompson, Autophagy: basic principles and relevance to disease, Annu. Rev. Pathol. 3 (2008) 427–455.

U. Weyemi, O. Lagente-Chevallier, M. Boufraqech, et al., ROS-generating NADPH oxidase NOX4 is a critical mediator in oncogenic H-Ras-induced DNA damage and subsequent senescence, Oncogene 31 (9) (2012) 1117–1129.

J.P. Coppé, P.Y. Desprez, A. Krtolica, et al., The senescence-associated secretory phenotype: the dark side of tumor suppression, Annu. Rev. Pathol. 5 (2010) 99–118.

M. Kanda, C.B. Thompson, Autophagy: basic principles and relevance to disease, Annu. Rev. Pathol. 3 (2008) 427–455.

M.J. Kim, S.J. Woo, C.H. Yoon, et al., Involvement of autophagy in oncogenic K-Ras-induced malignant cell transformation, J. Biol. Chem. 286 (15) (2011) 12924–12932.

D. Arnoult, A. Grodet, J.Y. Lee, et al., Release of OPA1 during apoptosis participates in the rapid and complete release of cytochrome c and subsequent mitochondrial fragmentation, J. Biol. Chem. 280 (42) (2005) 35742–35750.

J.L. Kissil, M.J. Walmsley, L. Hanlon, et al., Requirement for Rac1 in a KrasG12D-induced lung cancer in the mouse, Cancer Res. 67 (17) (2007) 8089–8098.

R. Khosravi-Far, P.A. Solski, G.J. Clark, et al., Activation of Rac1, RhoA, and mitogen-activated protein kinases is required for Ras transformation, Mol. Cell. Biol. 15 (11) (1995) 6443–6450.

J. Saito, T. Rokutan, T. Sano, et al., Rac1 is a major target of inactivation by P38/AKT signaling in aggressive neuroblastoma, Cancer Res. 73 (7) (2013) 2189–2198.

J.A. Chabner, J. Wani, A. Wang, et al., Targeted disruption of the housekeeping gene encoding glucose 6-phosphate dehydrogenase (G6PD): G6PD is dispensable for pentose synthesis but essential for defense against oxidative stress, Embo J. 14 (2005) 3995–4003.
(21) (1995) 5209–5215.

[141] T. Efferth, U. Fabry, P. Glatte, et al., Increased induction of apoptosis in mono-nuclear cells of a glucose-6-phosphate dehydrogenase deficient patient, J. Mol. Med. 73 (1) (1995) 47–49.

[142] K. Davel, J.L. Veczy, S. Menon, et al., Activation of a metabolic gene regulatory network downstream of mTOR complex 1, Mol. Cell 39 (2) (2010) 171–183.

[143] O. Moiseeva, V. Bourdeau, A. Roux, et al., Mitochondrial dysfunction contributes to oncogene-induced senescence, Mol. Cell Biol. 29 (16) (2009) 4495–4507.

[144] S. Yang, X. Wang, G. Contino, et al., Pancreatic cancers require autophagy for tumor growth, Genes Dev. 25 (7) (2011) 717–729.

[145] K. Sato, K. Tsuchihara, S. Fuji, et al., Autophagy is activated in colorectal cancer cells and contributes to the tolerance to nutrient deprivation, Cancer Res. 67 (20) (2007) 9677–9684.

[146] L.C. Gomes, G. Di Benedetto, L. Scorrano, During autophagy mitochondria elongate, are spared from degradation and sustain cell viability, Nat. Cell Biol. 13 (5) (2011) 589–598.

[147] J.A. Kashatus, A. Nascimento, L.J. Myers, et al., Erk2 phosphorylation of Drp1 promotes mitochondrial fission and MAPK-driven tumor growth, Mol. Cell 57 (3) (2015) 537–551.

[148] T. Maurer, L.S. Garrettson, A. Oh, et al., Small-molecule ligands bind to a distinct pocket in Ras and inhibit SOS-mediated nucleotide exchange activity, Proc. Natl. Acad. Sci. USA 109 (14) (2012) 5299–5304.

[149] C.Y. Wilson, P. Tollis, Recent advances in cancer drug discovery targeting RAS, Drug Discov. Today 21 (13) (2016) 1915–1919.

[150] F. McCormick, K-Ras protein as a drug target, J. Mol. Med. 94 (3) (2016) 253–258.

[151] N. Yagoda, M. von Rechenberg, E. Zaganjor, et al., RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels, Nature 447 (7146) (2007) 864–868.

[152] W.S. Yang, B.R. Stockwell, Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells, Chem. Biol. 15 (3) (2008) 234–245.

[153] G. Zimmermann, B. Papke, S. Imaizumi, et al., Small molecule inhibition of the KRAS-PI3KDelta interaction impairs oncogenic KRAS signalling, Nature 497 (7451) (2013) 638–642.

[154] J.A. Engelman, L. Chen, X. Tan, et al., Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers, Nat. Med. 14 (12) (2008) 1351–1356.

[155] J.A. Engelman, P.A. Janne, Mechanisms of acquired resistance to epidermal growth factor tyrosine kinase inhibitors in non-small cell lung cancer, Clin. Cancer Res. 14 (10) (2008) 2895–2899.

[156] S.V. Holt, A. Logie, B.R. Davies, et al., Enhanced apoptosis and tumor growth suppression elicited by combination of MEK (selumetinib) and mTOR kinase inhibitors (AZD8055), Cancer Res. 72 (7) (2012) 1804–1812.

[157] P.S. Mongroo, F.K. Noubissi, M. Cuesta-Corral, et al., IMP-1 displays cross-talk with KRas and modulates colon cancer cell survival through the novel proapoptotic protein CYP12P, Cancer Res. 71 (6) (2011) 2172–2182.

[158] N. Wagle, E.M. Van Allen, D.J. Treacy, et al., MAP kinase pathway alterations in BRAF-mutant melanoma patients with acquired resistance to combined RAF/MEK inhibition, Cancer Discov. 4 (1) (2014) 61–68.

[159] J.J. Fiordalisi, R.L. Johnson 2nd, C.A. Weinbaum, et al., High affinity for farnesyltransferase and alternative prenylation contribute individually to K-Ras4B inhibition, Cancer Discov. 4 (1) (2014) 61–68.

[160] R.P. Sahu, R. Zhang, S. Batra, et al., Benzyl isothiocyanate-mediated generation of reactive oxygen species causes cell cycle arrest and induces apoptosis via activation of MAPK in pancreatic cancer cells, Cancercogenes 30 (10) (2009) 1744–1753.

[161] A.T. Shaw, M.M. Winslow, M. Magendantz, et al., Selective killing of K-ras mutant cancer cells by small molecule inducers of oxidative stress, Proc. Natl. Acad. Sci. USA 108 (21) (2011) 8773–8778.

[162] R. Somwar, D. Shum, H. Djballah, et al., Identification and preliminary characterization of novel small molecules that inhibit growth of human lung adeno-carcinoma cells, J. Biomol. Screen. 14 (10) (2009) 1176–1184.

[163] J. Yun, E. Mullarky, C. Lu, et al., Vitamin C selectively kills KRAS and BRAF mutant colorectal cancer cells by targeting GAPDH, Science 350 (6266) (2015) 1391–1396.

[164] M.G. Espy, P. Chen, B. Chalmers, et al., Pharmacologic ascorbate synergizes with pemiceatinib in preclinical models of pancreatic cancer, Free Radic. Biol. Med. 50 (11) (2011) 1610–1619.

[165] C. Ambrogi, J. Kohler, Z.W. Zhou, et al., KRAS dimerization impacts MEK inhibitor sensitivity and oncogenic activity of mutant KRAS, Cell 172 (4) (2018) 857–868 (e15).

[166] E.T. Creagan, C.G. Moertel, J.R. O’Fallon, et al., Failure of high-dose vitamin C (ascorbic acid) therapy to benefit patients with advanced cancer. A controlled trial, N. Engl. J. Med. 301 (13) (1979) 687–690.

[167] C.G. Moertel, T.R. Fleming, E.T. Creagan, et al., High-dose vitamin C versus placebo in the treatment of patients with advanced cancer who have had no prior chemotherapy. A randomized double-blind comparison, N. Engl. J. Med. 313 (1) (1985) 137–141.

[168] S.J. Padayatty, H. Sun, Y. Wang, et al., Vitamin C pharmacokinetics: implications for oral and intravenous use, Ann. Intern. Med. 140 (7) (2004) 533–537.

[169] Y. Ma, J. Chapman, M. Levine, et al., High-dose parenteral ascorbate enhanced chemosensitivity of ovarian cancer and reduced toxicity of chemotherapy, Sci. Transl. Med. 6 (222) (2014) 222ra18.

[170] C.D. Blanke, M. Stipanov, J. Morrow, et al., A Phase I study of vitamin E, 5-fluorouracil and leucovorin for advanced malignancies, Invest. New Drugs 19 (1) (2001) 21–27.

[171] A. Mahipal, J. Klapman, S. Vignesh, et al., Pharmacokinetics and safety of vitamin E delta-tocotrienol after single and multiple doses in healthy subjects with measurement of vitamin E metabolites, Cancer Chemother. Pharmacol. 78 (1) (2016) 157–165.

[172] C.M. Stephenson, R.D. Levin, T. Spector, et al., Phase I clinical trial to evaluate the safety, tolerability, and pharmacokinetics of high-dose intravenous ascorbic acid in patients with advanced cancer, Cancer Chemother. Pharmacol. 72 (1) (2013) 139–146.

[173] P. Pearson, S.A. Lewis, J. Britton, et al., The pro-oxidant activity of high-dose vitamin E supplements in vivo, BioDrugs 20 (5) (2006) 271–273.

[174] H. Kikuchi, M. Hikage, H. Miyashita, et al., NADPH oxidase subunit, gp91(phox) homologue, preferentially expressed in human colon epithelial cells, Gene 254 (1–2) (2000) 237–243.

[175] J. Kwon, A. Wang, D.J. Burke, et al., Peroxiredoxin 6 (Prdx6) supports NADPH oxidase (Nox1)-based superoxide generation and cell migration, Free Radic. Biol. Med. 96 (2016) 99–115.

[176] G. Leoni, A. Alam, P.A. Neumann, et al., Annexin A1, formyl peptide receptor, and NOX1 orchestrate epithelial repair, J. Clin. Invest. 123 (1) (2013) 443–454.

[177] S. Guo, X. Chen, The human Nox4: gene, structure, physiological function and pathological significance, J. Drug Target 23 (10) (2015) 888–896.