Kinetic aspects of casein micelle cross-linking by transglutaminase at different volume fractions

Norbert Raak¹ᵇ,*, Milena Corredig¹ᵇ

¹ Department of Food Science, Aarhus University, Agro Food Park 48, 8200, Aarhus N, Denmark
² CiFOOD Centre for Innovative Food Research, Aarhus University, Agro Food Park 48, 8200, Aarhus N, Denmark

ARTICLE INFO

Keywords:
Casein micelle
Cross-linking
Transglutaminase
Milk protein concentrate
Membrane filtration
Reaction kinetics

ABSTRACT

Milk protein concentrates (MPC) are widespread food ingredients, due to their high protein-to-solids ratio, nutritional value, and technological properties, which can be tailored to various end uses. Interest has been given to modifying such ingredients through enzymatic cross-linking by microbial transglutaminase. However, no systematic studies on the cross-linking kinetics of casein micelles at different concentration factors are currently available, although the enzyme might act in a considerably different fashion at decreased inter-particle distances. In this study, cross-linking of casein micelles was studied in a 4x MPC obtained by ultrafiltration, and compared to that of the original skim milk. The cross-linking kinetics were evaluated by following the degree of casein polymerisation using size exclusion chromatography. The extent of polymerisation for both skim milk and 4x MPC could be scaled to a master curve by normalising the incubation time to concentration factor and enzyme level, indicating similar cross-linking kinetics. Likewise, the cross-linking of individual casein types followed the same trend regardless of treatment. However, the casein micelle size increased with cross-linking at 4x but decreased at 1x concentration, suggesting enhanced cross-linking on the surface of the casein micelles in MPC suspensions. These results are relevant for the design of novel milk protein ingredients.

1. Introduction

Caseins are major dairy proteins, and not only a recognised source of nutrients such as essential amino acids, calcium and phosphorus, but also widespread techno-functional ingredients in food manufacturing. In recent years, the concentration and fractionation of milk proteins by membrane filtration have become increasingly relevant (Carter, Cheng, Kapoor, Meletharayil, & Drake, 2021; Corredig, Krishnakutti Nair, Li, Eshpari & Zhao, 2019). In such processes, skimmed milk is passed over a semi-permeable membrane, allowing for the partial transmission of certain components into the permeate fraction while increasing the ratio of protein to dry matter in the retentate. Depending on the molecular weight cut off (MWCO) of the membrane, whey proteins are either fully retained (ultrafiltration (UF); typically ~10 kDa MWCO) or partially depleted (microfiltration (MF); typically ~0.1–0.2 μm pore size), resulting in either milk protein concentrate (MPC) or micellar casein concentrate (MCC), respectively (Raak & Corredig, 2022). The total protein content (MPC) or casein content (MCC) of the products can be increased further by diafiltration, i.e., the addition of water or other media to the concentrate during filtration, before they are typically spray-dried and sold as powders for reconstitution.

Post-translational modifications of casein proteins in ingredients such as caseinates, MPCs or skim milk powders have been studied as means to tailor their properties and create added value. One example is the use of enzymatic cross-linking via microbial transglutaminase (mTGase; EC 2.3.2.13); this enzyme catalyses the formation of covalent isopeptide bonds between glutamine and lysine residues (Buchert et al., 2010). Many studies have been conducted to demonstrate how cross-linking of caseins may improve the technological properties of dairy products, such as yoghurt, cheese or ice cream (Gharibzahedi & Chronakis, 2018; Gharibzahedi et al., 2018; Raak, Rohm, & Jaros, 2021; Romeih & Walker, 2017). Until recently, however, less attention has been given to the potential of casein ingredients modifications. It has been shown for instance, that sodium caseinate cross-linked by mTGase, when added to skim milk, increases the stiffness of the resulting acid gels (Raak, Rohm, & Jaros, 2020). Moreover, the addition of a powder derived from MPC (~70% protein) cross-linked by mTGase to enrich protein in yoghurt, results in a higher gel strength compared to the same treatment but with uncross-linked MPC (Chen et al., 2018; Li et al., 2021).

* Corresponding author. Department of Food Science, Aarhus University, Agro Food Park 48, 8200, Aarhus N, Denmark.
E-mail addresses: norbert@food.au.dk (N. Raak), mc@food.au.dk (M. Corredig).

https://doi.org/10.1016/j.foodhyd.2022.107603
Received 23 November 2021; Received in revised form 15 February 2022; Accepted 17 February 2022
Available online 20 February 2022
0268-005X/© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Only intra-micellar cross-linking with limited changes in casein micelle size has been reported so far for casein micelles suspensions when treated at their native volume fraction (Huppertz & de Kruijf, 2008; Mounsey, O’Kennedy, & Kelly, 2005). Furthermore, only few studies have addressed the mTGase cross-linking reaction for casein micelles in concentrated suspensions, meaning volume fractions higher than those of native milk. For example, Huppertz (2014) used reconstituted skim milk powder at 180 g/kg dry matter (~2x concentration) and observed that low levels of cross-linking improves heat stability, as shown by an increased heat coagulation time when treated at pH > 6.8. Lam et al. (2017) treated reconstituted skim milk at 276 g/kg dry matter (~3x) with mTGase. When these samples were diluted back to 1x with different concentrations of EDTA, an increased stability of casein micelles against disruption induced by Ca\(^{2+}\)-chelation was observed. In addition, Er, Sert, and Mercan (2019) produced powders from mTGase-treated skim milk, concentrated by evaporation to 450 g/kg dry matter (~4x), and observed lower powder particle sizes and decreased caking with cross-linking. Fewer studies are available on casein micelles suspensions such as MPC. Power, Fenelon, O’Mahony, and McCarthy (2020), treated a casein micelles suspension from MPC reconstituted to 100 g/kg protein (~3x), and showed that cross-linking could stabilise the protein particles against the disruption induced by the addition of sodium hexametaphosphate.

To date, no systematic investigation has been reported of the mechanism of casein cross-linking by mTGase in concentrated casein micelles suspensions such as fresh milk protein concentrates obtained by membrane filtration. As in these systems the inter-particle distance between casein micelles is considerably reduced down to lengths much smaller than the casein micelle diameter (Karlsson, Ipsen, Schrader, & Ardo, 2005), it might be hypothesised that in milk concentrates the enzyme activity is accelerated and cross-linking may occur not only intra- but also inter-micellarly.

The aim of this study was to investigate the kinetics of casein micelle cross-linking by mTGase in 4x MPC compared to unconcentrated milk. Fresh casein micelles suspensions were prepared from skim milk using UF (MPC), and treated with different levels of enzyme and for different periods of time to fully explore the kinetic details of the reaction. The cross-linking extent was evaluated using denaturing size exclusion chromatography, and dynamic light scattering was applied to assess potential changes in the casein micelle structure. This research will lead to a better understanding of the mode of action of mTGase on concentrated milk protein suspensions, and contribute knowledge to the development of casein ingredients of improved functionality.

2. Materials and methods

2.1. Materials

Pasteurised skim milk (72 °C, 15 s) was provided by Arla Foods Amba (Viby, Denmark). The enzyme mTGase “Activa MP” from Streptomyces mobaraensis was a gift from Ajinomoto Foods Europe SAS (Mesnil-Saint-Nicaise, France) and had a declared activity 100 U/g. Standards of \(\alpha\)-, \(\beta\)- and \(\kappa\)-casein, \(\alpha\)-lactalbumin and \(\beta\)-lactoglobulin were purchased from Sigma-Aldrich Chemie GmbH (Steinheim, Germany) and had declared purities of \(>70\%\), \(>98\%\), \(>70\%\), \(>85\%\) and \(>90\%\), respectively. Bovine serum albumin (BSA) was obtained from VWR Life Sciences (Soborg, Denmark) and had a declared purity of \(>98\%\). All other chemicals were of analytical grade.

2.2. Sample preparation

2.2.1. Manufacture of milk protein concentrate

Skim milk was treated with 2 g/kg Na\(_2\)S for preservation and concentrated using a Vibro Lab3500 system equipped with a PESH plate-and-frame UF membrane unit (30 kDa MWCO; 0.35 m\(^2\) membrane area) and connected to a 9 L stainless steel pressurised container as feed tank (Sani Membranes ApS, Allerod, Denmark). The container was kept in an ice bucket during the filtration to maintain a temperature of approx. 10 °C. The filtration was driven by pressurised air at 0.2 MPa, and the retentate flow was regulated manually via the valve opening. The concentrate passing through the membrane chamber was continuously circulated by an external pump (RLFP122202, Sani Membranes ApS). The system was operated in vibration mode to minimise fouling and thus facilitate the separation. The filtration was ended when the retentate reached a 4x concentration factor, based on volume of permeate removed.

2.2.2. Cross-linking by microbial transglutaminase

Skim milk and 4x MPC were equilibrated in a water bath at 40 °C for 1 h before mTGase was added at concentrations of 0.125, 0.5 and 2.0 mg/g (skim milk) or 0.5, 2.0 and 8.0 mg/g (4x MPC), corresponding to similar enzyme:protein ratios for the two substrates. The samples were incubated at 40 °C for 20, 80, 320 or 1280 min, and the enzymatic reaction was stopped by adding 8 mmol/L N-ethylmaleimide (NEM). Enzyme levels and incubation times were based on previous published work on skim milk (Jaroś, Jacob, Otto, & Rohm, 2010). Reference samples referred to as 0 min incubation time corresponded to skim milk and MPC with 8 mmol/L NEM but without addition of mTGase. Additional reference samples were prepared by adding 8 mmol/L NEM before incubating skim milk and 4x MPC with 2.0 and 8.0 mg/g mTGase at 40 °C for 1280 min, respectively. All samples were prepared and analysed within one week.

For a more comprehensive interpretation of the results, the theoretical concentration of cross-links \(n_c\) (\(\mu\)mol/g) that could have been formed, assuming infinite availability and susceptibility of glutamine and lysine residues was calculated:

\[
n_c = \frac{t_{inc} \times c_e \times A_g}{1000 \times CF} \quad (1)
\]

Here, \(t_{inc}\) is the incubation time (min), \(c_e\) is the enzyme concentration (mg/mg mTGase/g), \(CF\) is the concentration factor (i.e., 1 for skim milk and 4 for MPC), and 1000 is a conversion factor. \(A_g\) corresponds to the declared enzyme activity of 100 U/\(\mu\)g mTGase, where 1 U = 1 \(\mu\)mol reaction product per min (Jin et al., 2016). Although \(n_c\) may not be an accurate predictor of the actual concentration of cross-links, it is a useful parameter for normalisation when comparing samples treated with different enzyme concentrations (Raak et al., 2019).

2.2.3. Separation of colloidal and serum phases

Skim milk and 4x MPC samples were separated into serum and colloidal phase by ultra centrifugation (Optima L-80 XP, Beckman Coulter, Inc., Brea USA; rotor type Ti70; 23 mL tube volume) at 100,000 \(\times\) g and 21 °C for 1 h. The supernatant was carefully removed, and the casein micelle pellet was discarded.

2.2.4. Preparation of casein and whey protein reference samples

Standard caseins (\(\alpha_s\)-, \(\beta\)- and \(\kappa\)-casein) standards were dissolved in demineralised water at a concentration of 6 mg/g, and \(\alpha\)-lactalbumin, \(\beta\)-lactoglobulin and BSA were dissolved in demineralised water at a concentration of 3 mg/g. All reference samples were analysed in the same way as the skim milk samples.

2.3. Characterisation of sample composition

The total nitrogen contents of skim milk, 4x MPC, their supernatants, and permeate from ultrafiltration were determined using a Gerhardt Dumattherm (C. Gerhardt GmbH & Co. KG, Königswinter, Germany). The protein contents were calculated after subtracting the nitrogen content of the ultrafiltration permeate (non-protein nitrogen) and using a conversion factor of \(N \times 6.38\).
2.4. Evaluation of the cross-linking extent

2.4.1. Size exclusion chromatography

A Superose 6 Increase 10/300 GL column (GE Healthcare, Uppsala, Sweden) was integrated into an AKTA purifier system comprising a P-900 pump, an IN-907 injection valve, and a UV-900 UV detector (GE Healthcare). The elution buffer consisted of 6 mol/L urea, 0.1 mol/L NaCl, 0.1 mol/L Na2HPO4, 2 H2O and 0.2 g/L NaN3, and was adjusted to pH 6.8 using 6 mol/L HCl. Skim milk samples as well as their supernatants were diluted 1:10 (v/v) with elution buffer containing 10 mg/mL dithioerythritol, whereas 4x MPCs and the corresponding supernatants were first diluted 1:4 (v/v) with UF permeate before diluting them 1:10 (v/v) with the buffer system. The samples were incubated at room temperature for at least 1 h to cleave disulphide bonds, and subsequently injected using a 100 μL sample loop. The separation was carried out at ambient temperature (approx. 21 °C) and an isocratic flow rate of 0.75 mL/min, and the eluting protein was detected at 280 nm. The data was collected and processed using the UNICORN software (v5.31; GE Healthcare). As whey proteins co-elute with the caseins (Raak, Abbate, Lederer, Rohm, & Jaros, 2018), the chromatograms of the supernatants were subtracted from those of the corresponding skim milk and 4x MPC samples to analyse specifically the cross-linking extent of the casein micelles. The area (A) under the curve corresponding to polymerised caseins (eluting at 7–15.5 mL) and monomeric caseins (15.5–17.5 mL) were determined, and the polymerisation degree PD (%) was calculated as follows:

\[
PD = \frac{A_{\text{polymerised}}}{(A_{\text{monomeric}} + A_{\text{polymerised}})} \times 100\%
\]

Standards of αS-, β- and κ-casein, α-lactalbumin, β-lactoglobulin and BSA were run as well to determine their elution volumes.

2.4.2. Gel electrophoresis

In order to obtain additional insights on the cross-linking of the different casein types (αS, β, κ) in skim milk and MPC, denaturing and reducing gel electrophoresis was carried out using an Invitrogen™ system and the corresponding supplies (ThermoFisher Scientific, Waltham, MA, USA). 4x MPC samples as well as their supernatants were first diluted 1:4 (v/v) with UF permeate. Afterwards, all samples were diluted 1:15 (v/v) with demineralised water and subsequently mixed with NuPAGE™ LDS sample buffer and 1 mol/L dithioerythritol in a ratio of 6.5:2.5:1 (v/v). The mixtures were boiled at 95 °C for 5 min in a thermostaker (IKA-Werke GmbH&Co.KG, Staufen, Germany). Aliquots (10 μL) were injected to NuPAGE™ precast gradient gels (4–12% polyacrylamide), and the experiment was run at 200 V for 40 min using an XCell SureLock™ Mini-Cell filled with NuPAGE™ MES SDS running buffer. The gels were stained overnight in SimplyBlue™ SafeStain solution, rinsed in demineralised water for 24 h, and subsequently digitised using a ChemiDoc XRS gel imaging system (Bio Rad Laboratories, Inc., Hercules, CA, USA). The protein bands were analysed semi-quantitatively using Image Lab (v6.0.1; Bio Rad Laboratories, Inc.), and the band intensities of the different casein fractions in mTGase-treated samples were divided by those of the uncross-linked reference to evaluate the accessibility of the different casein types for the enzyme. A molar mass standard (Precision Plus Protein™, Bio Rad Laboratories) and standards of αS-, β- and κ-casein, α-lactalbumin, β-lactoglobulin and BSA were run on a separate gel together with uncross-linked skim milk and 2.0 mg/g mTGase for band identification.

2.5. Dynamic light scattering

The hydrodynamic diameter D_h of the protein particles was estimated using a Zetasizer Lab (Malvern Panalytical Ltd., Malvern, UK) in side scattering mode ($\theta = 90^\circ$). Skim milk and 4x MPC samples were diluted 1:1000 and 1:4000 (v/v) with filtered (0.45 μm) UF permeate, respectively, and the measurements were carried out at 30 °C after 120 s equilibration time. Correlation functions were acquired and processed using ZS Xplorer (v2.0.1.1; Malvern Panalytical Ltd.). The refractive index for solvent was set to 1.341 for UF permeate (Beliciu, Sauer, & Moraru, 2012), and solvent viscosity was 1.029 mPa s (DHR 20, TA Instruments, New Castle, DE, USA; $\gamma = 10/\mathrm{s}$). For each biological replicate, three subsequent measurements of two technical replicates were performed and averaged. Results shown are z-averages of D_h.

Fig. 1. Typical size exclusion chromatograms of skim milk samples without microbial transglutaminase (dotted lines) and treated with 0.5 mg/g microbial transglutaminase for 1280 min (full lines). (A) Total skim milk samples, (B) centrifugal supernatants, (C) difference between (A) and (B). Note the difference in y-axis scaling for (B).
3.2. General polymerisation kinetics

Renhe and Corredig (2018).

2.48 mg/g, which is in good agreement with the results obtained by enzyme concentrations.

individual milk batches from different weeks were used. In each week, the corresponding soluble protein contents were 7.59 ± 0.45 mg/g and 40.88 ± 2.48 mg/g, which is in good agreement with the results obtained by Renhe and Corredig (2018).

2.6. Statistical analyses

All samples were produced in two biological replicates, and three individual milk batches from different weeks were used. In each week, both skim milk and MPC were treated with mTGase at two different enzyme concentrations.

Data were analysed using SigmaPlot (v14.0.3.192; Systat Software Inc., San Jose, CA, USA). A Student’s t-test was used to identify significant effects of incubation time and sample type (i.e., concentration factor + enzyme level). Spearman’s rank order was performed for correlation analyses. The statistical acceptance level was \(p < 0.05 \).

3. Results and discussion

3.1. Sample composition

The ultrafiltration permeate was analysed with SEC and gel electrophoresis without detecting proteins (data not shown), demonstrating that neither whey proteins nor non-micellar caseins passed the 30 kDa membrane. The total protein contents of the skim milk and 4x MPC were 35.9 ± 0.52 mg/g and 127.4 ± 9.54 mg/g, respectively, and the corresponding soluble protein contents were 7.59 ± 0.45 mg/g and 40.88 ± 2.48 mg/g, which is in good agreement with the results obtained by Renhe and Corredig (2018).

3.2. General polymerisation kinetics

Fig. 1 shows representative size exclusion chromatograms of untreated and mTGase-treated skim milk and the corresponding centrifugal supernatants. In untreated milk (Fig. 1a, dotted line) and the supernatants (Fig. 1b) the majority of the protein eluted between 15.5 and 18.5 mL. These fractions contained mostly monomeric proteins, as demonstrated from elution of isolated fractions of \(\alpha_S \)-, \(\beta \)- and \(\kappa \)-casein, eluting at 15.9, 16.3 and 16.6 mL, respectively (data not shown). Caseins were not resolved from the whey proteins, \(\alpha \)-lactalbumin (eluting at 17.4 mL) and \(\beta \)-lactoglobulin (16.7 mL). These results were fully consistent with previous reports (Raak et al., 2018). The centrifugal supernatants showed three unresolved peaks eluting at 15.8, 16.7 and 17.4 mL (Fig. 1b), identifiable as soluble \(\beta \)-casein, \(\beta \)-lactoglobulin, and \(\alpha \)-lactalbumin. The BSA standard eluted at about 13.7 mL (not shown), but this protein was not detected in these samples.

Fig. 1a compares the elution of untreated skim milk and the same sample incubated with mTGase for 1280 min. The enzyme treatment clearly decreased the intensity of the peak corresponding to the monomeric proteins (eluting between 15.5 and 18.5 mL) and resulted in the appearance of a new peak at 7–15.5 mL, corresponding to a fraction of polymerised caseins with molecular weights larger than 4×10⁴ kDa (based on the exclusion volume of the column). The size exclusion chromatograms of the two supernatants (Fig. 1b) showed overlapping elution behaviour, suggesting similar concentrations of residual monomeric proteins. The area of this peak was not significantly different throughout incubation, as it contained mainly residual serum proteins, which, under these conditions, are barely cross-linked by mTGase. Native whey proteins are known to be a very poor substrate for mTGase due to the low accessibility of their globular structure (Buchert et al., 2010). Using gel electrophoresis, previous authors (Chen et al., 2018) observed a slight decrease in free \(\alpha \)-lactalbumin and \(\beta \)-lactoglobulin after mTGase-treatment of reconstituted MPC powder; however, in this case, process-induced changes may have resulted in a partially denatured whey protein fraction, with an increased susceptibility to the cross-linking enzyme.

Due to the co-elution of soluble caseins and whey proteins, differential chromatograms were generated by subtracting the supernatants’ patterns (Fig. 1b) from the corresponding samples’ chromatograms (Fig. 1a). From this differential elution pattern (Fig. 1c) it was possible to estimate the extent of casein micelle cross-linking by the amount of uncross-linked caseins in the samples (see Eq. (2)). Fig. 1c clearly indicates that, while in untreated skim milk (dotted line) a large peak corresponding to the uncross-linked, dissociated caseins, without any aggregate peak eluting earlier in the chromatogram was present, after
generally similar for skim milk and 4x MPC, as within the same level of enzyme, there were no significant differences in the enzyme levels. The polymerisation kinetics of casein micelles were significantly different from the endogenous reactions occurring in the milk (i.e., non-enzymatic cross-linking during storage or pasteurisation). These values were also not significantly different from the PDs of skim milk and MPC incubated in the presence of NEM for 1280 min (data not shown). The PD increased significantly with increasing incubation time and higher enzyme levels. The polymerisation kinetics of casein micelles were generally similar for skim milk and 4x MPC, as within the same level of enzyme, there were no significant differences in the PD values between skim milk and 4x MPC, apart from one treatment (medium mTGase, 320 min incubation), where the PD was lower in the concentrate than in the skim milk.

Table 1 shows the changes in the polymerisation degree (PD) (\(PD \)) with comparable enzyme:protein ratios to skim milk sample showed three major bands for uncross-linked casein. The uncross-linked caseins migrated to positions that were in agreement with their molecular masses (~28–31 kDa instead of ~19–25 kDa), as was also reported in other studies (Creamer & Richardson, 1984; Liu & Damodaran, 1999; Raak et al., 2018). Therefore, the standard was not further used to characterise the polymerised casein.

3.3. Cross-linking kinetics of the individual casein types

Gel electrophoresis was used to determine possible differences in the reactivity of the different casein types (\(\alpha_{S1}, \alpha_{S2}, \beta, \kappa \)) in skim milk and 4x MPC to mTGase. Fig. 3a shows a representative migration pattern of skim milk compared to that of the various caseins and whey protein standards. A 2.0 mg/g mTGase solution was too diluted to appear as an additional band under the analytical conditions used in this study, demonstrating that mTGase is not visible in the casein samples. The skim milk sample showed three major bands for uncross-linked casein. The uncross-linked caseins migrated to positions that were not in agreement with their molecular masses (~28–31 kDa instead of ~19–25 kDa), as was also reported in other studies (Creamer & Richardson, 1984; Liu & Damodaran, 1999; Raak et al., 2018). Therefore, the standard was not further used to characterise the polymerised casein.

Fig. 3b shows typical electrophoretic migration patterns of mTGase treated casein. In agreement with the size exclusion chromatography analysis, the band intensity of monomeric caseins decreased and new high molecular weight fractions appeared with ongoing incubation. The band intensities of the whey proteins (\(\alpha\)-lactalbumin, \(\beta\)-lactoglobulin, BSA) in the milk samples and in their centrifugal supernatants (S) did not vary with incubation time, confirming what was shown in Fig. 1b.

As shown by the casein standards, \(\beta\) - and \(\kappa\)-casein could not be distinguished, contradictory to previous studies (e.g., Bogahawantha, Trajkovska, Markoska, & Vasiljevic, 2021; Liyanaarachchi & Vasiljevic, 2018). This lack of separation efficiency could be due to the use of gradient gels, where the resolution decreases with decreasing molecule size. NuPAGE™ gradient gels were not applied in many other studies. Only the work by Fuentes-Lemus, Jiang, Häglund, and Davies (2021), who investigated isolated \(\alpha_S1\), \(\beta\), and \(\kappa\)-caseins on separate gels, indicates a similar behaviour. The other two upper bands refer to \(\alpha_{S2}\) -casein, respectively (Macierzanka et al., 2011). The intensity of the band referring to \(\alpha_{S2}\)-casein appears to be high in relation to the expected concentration of this fraction in the sample, which was most likely due to differences in the binding of the dye in the staining solution between the different casein types.

\(\beta\) - and \(\kappa\)-casein were therefore integrated together, and compared to the total area of \(\alpha_S\)-caseins, as \(\beta\), and especially \(\kappa\)-casein, have been
reported to be most susceptible to mTGase in skim milk due to their location at the outer regions of the casein micelle (Duerasch et al., 2018; Hinz, Huppertz, & Kelly, 2012). It was hypothesised that a higher susceptibility of αS-caseins to mTGase in 4x MPC compared to skim milk might indicate severe structural changes of the casein micelle upon concentration that increased the accessibility of its inner regions. For instance, it was demonstrated by Duerasch et al. (2018) that αS-caseins are more accessible to mTGase after alkaline treatment of the casein micelle at pH 7.9, whereas κ-casein is less cross-linked than at the native pH 6.8, suggesting an opening and/or rearrangement of the internal structure of the micelle with alkalinisation.

Fig. 4 a and b illustrate the relative decrease of uncross-linked αS-caseins (Fig. 4 a) and β- and κ-casein (Fig. 4 b) in skim milk and 4x MPC as obtained from gel electrophoresis band intensities as a function of incubation with mTGase. Regardless of the concentration factor, the band intensity of each casein fraction decreased in the same way with no obvious differences between skim milk and 4x MPC. At the highest cross-linking extent, the band intensity of αS-caseins was ~30% of the original value, and that of the mixed β- and κ-casein fraction was ~10% of the original value. This means that the latter were more accessible to mTGase than αS-caseins. To illustrate this more clearly, the intensity ratios of uncross-linked αS-to uncross-linked β- and κ-casein are shown in Fig. 4c. The increasing trend of the curve demonstrates clearly that β- and κ-casein are more rapidly cross-linked, resulting in a higher share of αS-caseins in the fraction of uncross-linked proteins. These results fully agree with previous research showing a susceptibility of the different caseins to mTGase in the order κ > β > αS1 > αS2 for casein micelles in skim milk (Duerasch et al., 2018). No statistically significant differences between skim milk and 4x MPC were found for each combination of incubation time and enzyme level, and Spearman’s rank order suggested significant negative correlations between the relative concentrations of αS-caseins and the β- and κ-casein mixed fraction with n_{th}, with correlation coefficients of −0.843 and −0.915, respectively (p < 0.05).
It is worth noting that the decrease in band intensity of all casein fractions together was also in good agreement with the PD values obtained from SEC. For instance, the highest enzyme dosage and longest incubation time resulted in a relative concentration of residual monomeric caseins of ~20% (data not shown), meaning that ~80% of the casein must have been polymerised. This is comparable to the observations made by SEC (see Table 1). Spearman’s rank order suggested a significant negative correlation of the PD and the relative concentration of all residual monomeric caseins with a correlation coefficient of -0.915 ($p < 0.05$).

It was concluded that concentrating casein micelles by ultrafiltration to 4x did not change the kinetics of polymerisation, and also did not change the accessibility of the enzyme to the various casein proteins.

3.4. Effect of cross-linking on casein micelle size

Fig. 5 illustrates the apparent diameter of the casein micelles in skim milk and 4x MPC as a function of the cross-linking extent. During the initial stages of cross-linking (i.e., $n_h < 4 \mu$mol/g and $PD \leq 25\%$), the casein micelle diameter was unchanged, with a value of about 160 nm. With increasing extent of cross-linking, the apparent diameter D_h deviated from the initial value, with skim milk and 4x MPC showing opposite trends. Casein micelles in skim milk showed a significant decrease to D_h of ~150 nm ($p < 0.05$), corresponding to a radius decrease of about 5 nm, indicating a potential collapse of the polyelectrolyte layer due to enhanced crosslinking of the surface of the casein micelles. Furthermore, it has been shown previously for sodium casein particles that extensive cross-linking can cause an increase in their density (Abbate et al., 2019).

On the other hand, the diameter in 4x MPC showed a significant increase to ~170 nm at the highest cross-linking extent ($p < 0.05$). This increase in size was not great enough to indicate inter-micellar cross-linking as the polydispersity index (PD) was not significantly affected by neither the sample type nor the incubation time ($PD = 0.116 \pm 0.020$). It is also important to point out that there was no statistically significant difference between D_h of casein micelles in uncross-linked skim milk and 4x MPC, as previously reported (e.g., Coskun, Wiking, Rahimi Yazdi, & Corredig, 2022; Liu, Weeks, Dunstan, & Martin, 2014).

It can be hypothesised that the mTGase-induced changes in D_h are a direct result of the closer interactions between micelles in the concentrated suspensions, with an increased surface interaction between β- and κ-caseins. However, it cannot be excluded that the enzymatic cross-linking may have resulted in an increased stability of the micelles upon dilution for the light scattering analysis, and that the increase in apparent diameter was caused by the rearrangements occurring during concentration and not during enzymatic cross-linking.

Previous studies at 1x concentration factor suggested no change in the size of casein micelles during cross-linking by mTGase (e.g., Duerasch et al., 2018; Lam et al., 2017; Nogueira et al., 2019), including Huppertz and de Kruif (2008), who stated to have reached complete casein polymerisation. This discrepancy may result from the use of fresh skim milk instead of reconstituted powders (Huppertz & de Kruif, 2008; Lam et al., 2017; Nogueira et al., 2019).

4. Conclusions

In the present study, the kinetics of casein micelle cross-linking by mTGase were not affected by the volume fraction. The total degree of casein polymerisation and the relative amounts of the individual caseins in skim milk and 4x MPC could be scaled by normalising the incubation time to the applied enzyme level and the concentration factor of the substrate. It was concluded that the caseins in casein micelles concentrated by membrane filtration (ultrafiltration), in spite of the differences in serum composition and higher proximity of the caseins due to higher volume fraction, do not result in a different reactivity to mTGase. Nevertheless, the enzymatic cross-linking had opposite effects on casein micelle size in the two substrates when exceeding a certain cross-linking extent corresponding to a PD of ~25%. While the average radius of casein micelles in skim milk decreased of about 5 nm with ongoing incubation, the opposite effect was observed in 4x MPC. Even though the polymerisation kinetics of total caseins and casein fractions were the same for skim milk and 4x MPC in this study, it may be hypothesised that different supramolecular changes occur during cross-linking of casein micelles at 4x concentration, with a more pronounced cross-linking at the micelle surface. To gain complete understanding of the structural changes that casein micelles might undergo as a consequence of concentration and enzymatic cross-linking, further studies on the undiluted systems are necessary.

Funding

Funding was received from the Danish Dairy Research Foundation.

Conflict of interest

The authors declare no conflict of interest.

Author statement

Norbert Raak: Conceptualization; Methodology; Validation; Formal analysis; Investigation; Data curation; Writing – original draft; Visualization.

Milena Corredig: Conceptualization; Methodology; Resources; Writing – review & editing; Supervision; Project administration; Funding acquisition.

Acknowledgements

The authors would like to thank Ajinomoto Foods Europe SAS (Mesnil-Saint-Nicaise, France) for providing the microbial transglutaminase.

References

Abbate, R. A., Raak, N., Boye, S., Janke, A., Rohm, H., Jaros, D., et al. (2019). Asymmetric flow field flow fractionation for the investigation of caseins cross-linked by microbial transglutaminase. Food Hydrocolloids, 92, 117–124. https://doi.org/10.1016/j.foodhyd.2019.01.043

Belciu, C. M., Sauer, A., & Moraru, C. I. (2012). The effect of commercial sterilization regimens on micellar casein concentrates. Journal of Dairy Science, 95, 5510–5526. https://doi.org/10.3168/jds.2011-4975

Bogalawathiba, D., Trajkovska, D., Markoska, T., & Vasiljevic, T. (2021). Effects of pressurized thermal processing on native proteins of raw skim milk and its concentrate. Journal Of Dairy Science, 104, 2834–2842. https://doi.org/10.3168/jds.2020-19542

Buchert, J., Ercili Cura, D., Ma, H., Gasparetti, C., Monogioudi, E., Faccio, G., et al. (2010). Crosslinking food proteins for improved functionality. Annual Review of Food Science and Technology, 1, 113–138. https://doi.org/10.1146/annurev.food.080708.100841

Carter, B. G., Cheng, N., Kapoor, R., Meleharayil, G. H., & Drake, M. A. (2021). Microfiltration-derived casein and whey proteins from milk. Journal of Dairy Science, 104, 2465–2479. https://doi.org/10.3168/jds.2020-18811

Chen, L., Li, Y., Han, J., Yuan, D., Lu, Z., & Zhang, L. (2018). Influence of transglutaminase-induced modification of milk protein concentrate (MPC) on yoghurt texture. International Dairy Journal, 78, 65–72. https://doi.org/10.1016/j.idairyj.2017.10.001

Corredig, M., Krishnankutty Nair, P., Li, Y., Eshpahri, H., & Zhao, Z. (2019). Understanding the behavior of caseins in milk concentrates. Journal of Dairy Science, 102, 4772–4782. https://doi.org/10.3168/jds.2018-15943

Coplan, D., Wiking, L., Rahimi Yazdi, S., & Corredig, M. (2022). Molecular details of the formation of soluble aggregates during ultrafiltration or microfiltration combined with diafiltration of skim milk. Food Hydrocolloids, 124A, Article 107244. https://doi.org/10.1016/j.foodhyd.2021.107244

Creeamer, I. K., & Richardson, T. (1984). Anomalous behavior of bovine α-s1- and β-caseins on gel electrophoresis in sodium dodecyl sulfate buffers. Archives of Biochemistry and Biophysics, 234, 476–486. https://doi.org/10.1016/0003-9866(84)90205-9

Duerasch, A., Herrmann, P., Hogh, K., & Henle, T. (2020). Study on β-casein depleted casein micelles: Micellar stability, enzymatic cross-linking, and suitability as
nanocarriers. Journal of Agricultural and Food Chemistry, 68, 13940–13949. https://doi.org/10.1021/acs.jafc.0c00968
Duerasch, A., Wiesel, J., & Henle, T. (2018). Reassembling of alkali-treated casein micelles by microbial transglutaminase. Journal of Agricultural and Food Chemistry, 66, 11748–11756. https://doi.org/10.1021/acs.jafc.8b04000
Er, B., Sert, D., & Mercan, E. (2019). Production of skim milk powder by spray-drying from transglutaminase treated milk concentrates: Effects on physicochemical, powder flow, thermal and microstructural characteristics. International Dairy Journal, 99, Article 104544. https://doi.org/10.1016/j.idairyj.2019.104544
Fuentes-Lemus, E., Jiang, S., Huppertz, T., & Mounsey, J. S. (2015). High concentrations of casein proteins exacerbate radical chain reactions and increase the extent of oxidative damage. Food Hydrocolloids, 121, Article 107060. https://doi.org/10.1016/j.foodhydro.2021.107060
Gharibzahedi, S. M. T., & Chronakis, I. S. (2018). Crosslinking of milk proteins by microbial transglutaminase: Utilization in functional yogurt products. Food Chemistry, 245, 620–632. https://doi.org/10.1016/j.foodchem.2017.10.138
Gharibzahedi, S. M. T., Koubah, M., Barba, F. J., Greiner, R., George, S., & Roohinejad, S. (2018). Recent advancements in the application of microbial transglutaminase cross-linking in cheese and ice cream products: A review. International Journal of Biological Macromolecules, 107, 2364–2374. https://doi.org/10.1016/j.ijbiomac.2017.10.115
Hinz, K., Huppertz, T., & Kelly, A. L. (2012). Susceptibility of the individual caseins in reconstituted skim milk to cross-linking by transglutaminase: Influence of temperature, pH and mineral equilibria. Journal of Dairy Research, 79, 414–421. https://doi.org/10.1017/S0022029912000374
Huppertz, T. (2014). Heat stability of transglutaminase-treated milk. International Dairy Journal, 38, 183–186. https://doi.org/10.1016/j.idairyj.2013.10.014
Huppertz, T., & de Kruif, C. G. (2008). Structure and stability of nanogel protein particles prepared by internal cross-linking of casein micelles. International Dairy Journal, 18, 556–565. https://doi.org/10.1016/j.idairyj.2007.10.009
Huppertz, T., Smiddy, M. A., & de Kruif, C. G. (2007). Biocompatible micro-gel particles from cross-linked casein micelles. Biomacromolecules, 8, 1300–1305. https://doi.org/10.1021/bm061070m
Jaros, D., Jacob, M., Otto, C., & Rohm, H. (2010). Excessive cross-linking of caseins by microbial transglutaminase and its impact on physical properties of acidified milk gels. International Dairy Journal, 20, 321–327. https://doi.org/10.1016/j.idairyj.2009.11.014
Jin, M., Huang, J., Pei, Z., Huang, J., Gao, H., & Chang, Z. (2016). Purification and characterization of a high-salt-resistant microbial transglutaminase from Streptomyces mobaraensis. Journal of Molecular Catalysis B: Enzymatic, 133, 6–11. https://doi.org/10.1016/j.molcatb.2016.07.003
Karlsön, A. O., Isen, R., Schröder, K., & Aré, Y. (2005). Relationship between physical properties of casein micelles and rheology of skim milk concentrate. Journal of Dairy Science, 88, 3784–3797. https://doi.org/10.3168/jds.S0022-0302(05)73064-2
Lam, E., Holt, C., Edwards, P., McKinnon, I., Otter, D., Li, N., et al. (2017). The effect of transglutaminase treatment on the physico-chemical properties of skim milk with added ethylenediaminetetraacetic acid. Food Hydrocolloids, 69, 329–340. https://doi.org/10.1016/j.foodhyd.2017.02.002
Li, H., Li, C., Liu, T., Yang, C., Liu, D., Li, H., et al. (2021). Textural performance of Zea mays transglutaminase modified milk protein concentrate in stirred yoghurt. LWT, 147, Article 111625. https://doi.org/10.1016/j.lwt.2021.111625
Liu, M., & Damodaran, S. (1999). Effect of transglutaminase-catalyzed polymerization of β-casein on its emulsifying properties. Journal of Agricultural and Food Chemistry, 47, 1514–1519. https://doi.org/10.1021/jf9810302
Liu, D. Z., Weeks, M. G., Dunstan, D. E., & Martin, G. J. O. (2014). Alterations to the composition of casein micelles and retentate serum during ultrafiltration of skim milk at 10 and 40 °C. International Dairy Journal, 35, 63–69. https://doi.org/10.1016/j.idairyj.2013.10.017
Liyanarachchi, W. S., & Vasiljevic, T. (2018). Caseins and their interactions that modify heat aggregation of whey proteins in commercial dairy mixtures. International Dairy Journal, 83, 43–51. https://doi.org/10.1016/j.idairyj.2018.03.006
Macierzanka, A., Bordron, F., Rigby, N. M., Mills, E. N. C., Lille, M., Pouton, K., et al. (2011). Transglutaminase cross-linking kinetics of sodium caseinate is changed after emulsification. Food Hydrocolloids, 25, 843–850. https://doi.org/10.1016/j.foodhydro.2010.07.010
Mounsey, J. S., O’Kennedy, B. T., & Kelly, P. M. (2005). Influence of transglutaminase treatment on properties of micellar casein and products made therefrom. Le Lait, 85, 405–418. https://doi.org/10.1016/j.leilait.2005.02.004
Nogueira, M. H., Tavares, G. M., Silva, N. F. N., Casanova, F., Stringheta, P. C., Gaucheron, F., et al. (2019). Physico-chemical stability of casein micelles cross-linked by transglutaminase as a function of acidic pH. Food Structure, 19, Article 100103. https://doi.org/10.1016/j.foodstruct.2018.10.013
Power, O. M., Fenelon, M. A., O’Mahony, J. A., & McCarthy, N. A. (2020). Influence of sodium hexametaphosphate addition on the functional properties of milk protein concentrate solutions containing transglutaminase cross-linked proteins. International Dairy Journal. Article 104641. https://doi.org/10.1016/j.idairyj.2020.104641
Raak, N., Abbate, R., Lederer, A., Rohm, H., & Jaros, D. (2018). Size separation techniques for the characterisation of cross-linked caseins: A review of methods and their applications. Separations, 5, 14. https://doi.org/10.3390/sapplications5010014
Raak, N., Rohm, H., Abbate, R. A., Henle, T., Lederer, A., Rohm, H., et al. (2019). Self-association of casein studied using enzymatic cross-linking at different temperatures. Food Bioscience, 28, 89–98. https://doi.org/10.1016/j.fbio.2019.01.016
Raak, N., & Corredig, M. (2022). Manufacture of milk and whey products: Caseins, caseinate and micellar casein. In P. McSweeney, & J. McNamara (Eds.), Encyclopedia of dairy Sciences (3rd ed., Vol. 5, pp. 8–17). Elsevier. https://doi.org/10.1016/B978-0-12818766-1.00135-5
Raak, N., Rohm, H., & Jaros, D. (2020). Enzymatically cross-linked sodium caseinate as a techno-functional ingredient in acid-induced milk gels. Food and Bioprocess Technology, 13, 1857–1865. https://doi.org/10.1007/s11947-020-02527-5
Raak, N., Rohm, H., & Jaros, D. (2021). Enzymatic protein cross-linking in dairy science and technology. In A. L. Kelly, & L. B. Larsen (Eds.), Agents of change: Enzymes in milk and dairy products (pp. 417–445). Springer International Publishing. https://doi.org/10.1007/978-3-030-55482-8_17
Renhe, I. R. T., & Corredig, M. (2018). Effect of partial whey protein depletion during pasteurization on the physicochemical, technological and sensory properties of milk. International Dairy Journal, 35, 405–419. https://doi.org/10.1016/j.idairyj.2018.03.006
Romeih, E., & Walker, G. (2017). Recent advances on microbial transglutaminase and dairy application. Trends in Food Science & Technology, 62, 133–140. https://doi.org/10.1016/j.tifs.2017.02.015
