An Unbiased Estimator of Peculiar Velocity with Gaussian Distributed Errors for Precision Cosmology

Richard Watkins†,1 & Hume A. Feldman⋆,2
† Department of Physics, Willamette University, Salem, OR 97301, USA.
⋆ Department of Physics & Astronomy, University of Kansas, Lawrence, KS 66045, USA.
emails: †rwatkins@willamette.edu; ⋆feldman@ku.edu

26 November 2014

ABSTRACT

We introduce a new estimator of the peculiar velocity of a galaxy or group of galaxies from redshift and distance estimates. This estimator results in peculiar velocity estimates which are statistically unbiased and that have errors that are Gaussian distributed, thus meeting the assumptions of analyses that rely on individual peculiar velocities. We apply this estimator to the SFI++ and the Cosmicflows-2 catalogs of galaxy distances and, using the fact that peculiar velocity estimates of distant galaxies are error dominated, examine their error distributions. The adoption of the new estimator significantly improves the accuracy and validity of studies of the large-scale peculiar velocity field and eliminates potential systematic biases, thus helping to bring peculiar velocity analysis into the era of precision cosmology. In addition, our method of examining the distribution of velocity errors should provide a useful check of the statistics of large peculiar velocity catalogs, particularly those that are compiled out of data from multiple sources.

Key words: galaxies: statistics, galaxies: kinematics and dynamics, cosmology: observations, cosmology: theory, distance scale, large-scale structure of Universe

1 INTRODUCTION

The Doppler effect provides a remarkably accurate method to infer the velocity of a galaxy toward or away from us by measuring the blue or red-shift of its spectral lines respectively. However, since cosmological expansion also causes a redshift, determination of the peculiar (local) motion v also requires the measurement of the galaxy’s distance r, so that

$$v = cz - H_o r,$$

where c is the speed of light, z is the redshift, and H_o is Hubble’s constant. This formula assumes a linear Hubble relation. For more accuracy, particularly at large distances, we can include the effects of cosmic acceleration by replacing z with z_{mod}, where

$$z_{mod} = z[1+0.5(1-q_o)z-(1/6)(1-q_o^2 + 1)z^2],$$

where q_o is the deceleration parameter (see also Davis & Scrimgeour 2014 Springob et al., 2014). In addition, we can achieve additional accuracy by accounting for the fact that redshift is not an additive quantity. Rather than $cz_{mod} = H_o r + v$, we instead should write

$$(1 + z_{mod}) = (1 + H_o r/c)(1 + v/c),$$

which reduces to the familiar formula at low redshift. Solving for v, we obtain

$$v = \frac{cz_{mod} - H_o r}{1 + H_o r/c} \approx \frac{cz_{mod} - H_o r}{1 + z_{mod}}.$$
As peculiar velocity surveys become larger and the uncertainties in derived quantities like the bulk flow become smaller, it is important to revisit the validity of our assumptions about the measurement error distribution. For example, peculiar velocities calculated using the traditional estimator are known to have non-Gaussian errors. This comes about because the quantity estimated in distance determinations is the distance modulus, which is related to the logarithm of the distance. While distance moduli have Gaussian errors, their exponentiating skews the distribution of the distance errors, hence leading also to skewed errors in the peculiar velocities. Malmquist bias corrections include correction for this skewness (see, e.g. Lynden-Bell et al. 1988; Freudling et al. 1999); however, as we shall see below, while this correction produces a distribution of errors that is approximately Gaussian, it is not as effective as the new estimator at eliminating skewed tails in the distribution. Skewed, non-Gaussian errors invalidate the statistical assumptions of the analysis methods, and further, may lead to biases in the analyses’ results and conclusions.

In this paper we introduce an unbiased estimator of peculiar velocity that has Gaussian distributed errors. The use of this estimator will greatly increase the accuracy and reliability of any analysis that relies on individual peculiar velocity measurements. We also examine the statistics of several large-scale peculiar velocity surveys with both our new estimator and the traditional estimator to determine the validity of our assumptions about measurement errors.

In Section 2 we describe in detail the peculiar velocity estimator. In Section 3 we discuss the statistics of peculiar velocity surveys. We conclude in Section 4.

2 PECULIAR VELOCITY ESTIMATOR

Our goal is to obtain an estimate \(v_e \) of the peculiar velocity of a galaxy or group from the galaxy’s redshift \(cz \) and an estimate of it’s distance \(r_e \). Given Eq. (1), the most straightforward estimator is

\[
v_e = cz - H_0 r_e, \tag{4}
\]

and this is typically the estimator used in peculiar velocity analyses. However, from a statistical point of view, this estimator has several undesirable qualities. (For a general discussion of the statistics of estimators, see Lupton 1993). First, distance indicators give distance moduli or log distances with Gaussian distributed errors. Exponentiating skews the error distribution, resulting in distance errors that are not Gaussian distributed. Second, this estimator is biased in a statistical sense: the average of an ensemble of velocity estimates with different errors is not the true value, i.e. \(\langle v_e \rangle \neq v \). This is the result of the skewness of the distribution of distance errors, which gives rise to \(\langle r_e \rangle \neq r \). These undesirable features can lead to biases in our analyses and in general invalidate our statistical as...
sions about the errors in peculiar velocities. They suggest that we should be investigating other estimators that might be better behaved statistically.

We propose instead calculating peculiar velocities using the estimator

\[v_e = cz \log(\frac{cz}{H_0 r_e}) \]

(5)

While this estimator may look unfamiliar, it has the statistical properties that we desire in an estimator. First, since it uses the log distance (or equivalently, the distance modulus), it has Gaussian distributed errors. It is easy to see that the uncertainty in the peculiar velocity, \(\delta v_e \), is given by \(\delta v_e = cz \delta l_e \), where \(\delta l_e \) is the uncertainty in the log distance. Second, we can use \(\langle \log(r_e) \rangle = \langle r \rangle \) to show that this estimator is unbiased, as long as the true \(v \ll cz \), which is a good assumption for distant galaxies,

\[
\langle v_e \rangle = -cz(\langle \log(H_0 r_e) \rangle - \log(cz)) = -cz(\langle \log(H_0) - \log(cz) \rangle = -cz(\log(1 - v/cz)) \approx v,
\]

(6)

(7)

where we have used Eq. 1 to replace \(H_0 r \) with \(cz - v \) and we have assumed that the uncertainties in the redshift \(cz \) are negligible. From Eq. 3 we see that a more accurate estimator at large redshift is given by

\[
v_e = \frac{cz_{\text{mod}}}{(1 + z_{\text{mod}})} \log(\frac{cz_{\text{mod}}}{H_0 r_e}).
\]

(8)

with uncertainty \(\delta v_e = cz_{\text{mod}} \delta l_e / (1 + z_{\text{mod}}) \). We stress that the assumption that we are making is that the actual velocity of the galaxy or group (\(v \)) is small compared to the redshift, not the estimated velocity (\(v_e \)). While estimates of peculiar velocities can be a few×10^3 km/s, it is thought that most actual peculiar velocities are at most a few×10^2 km/s. Our assumption should hold quite well for galaxies at distances \(\gtrsim 20 \) Mpc. As with the traditional estimator, our new estimator can be made more accurate at large distances by replacing \(cz \) with \(V_{\text{mod}} \) given in Eq. 2.

3 STATISTICS OF PECULIAR VELOCITY SURVEYS

The defining characteristic of large-scale peculiar velocity surveys is that they have low signal to noise. However, if our goal is to determine the distribution of the noise, then we can turn this to our advantage. In particular, if we consider objects with peculiar velocity errors \(\sigma \) such that \(\sigma \gg \sigma_o \), where \(\sigma_o \) is the spread in actual peculiar velocities, then we can be assured that the objects’ measured peculiar velocities are dominated by noise, with negligible contributions from actual motions.

Here we will examine the error distribution in two large peculiar velocity surveys. The SFI++ ([Masters et al. 2006](http://example.com)) and the CF2 ([Springob et al. 2007](http://example.com)) are sample of 4052 spiral galaxies with Tully-Fisher distances. The Cosmicflows2 (hereafter CF2) ([Tully et al. 2013](http://example.com)) galaxy catalog is a compendium of distances to 8135 galaxies measured with various methods, including Tully-Fisher, Fundamental Plane, SNIa, Surface Brightness Fluctuations, and Tip of the Red Giant Branch. While the CF2 contains the SFI++ as one of its largest components, in compiling the CF2 a reanalysis of the literature distances was done to ensure consistency between datasets. For both catalogs we use the more accurate expressions given by Eq. 3 for the old estimator and Eq. 5 for the new estimator, following ([Tully et al. 2013](http://example.com)) in assuming the standard cosmological model with \(\Omega_m = 0.27 \) and \(\Omega_{\Lambda} = 0.73 \), so that \(q_0 = 0.5 (\Omega_m - 2\Omega_{\Lambda}) = -0.595 \).

Another difference in the catalogs is that the SFI++ catalog provide distances in km s\(^{-1}\) and so are scaled relative to the Hubble constant. In contrast, the CF2 sample attempts to determine an absolute scale, and so reports distances in Mpc. Thus to calculate peculiar velocities from the distances in the CF2 we must assume a value for the Hubble constant. The nominal value given by the authors of the CF2 in ([Tully et al. 2013](http://example.com)) is 74.4 km s\(^{-1}\) Mpc\(^{-1}\).

In Fig. 1 we show histograms for the values of the peculiar velocity divided by their uncertainty, \(v_i/\sigma_i \), calculated using both the new estimator and the traditional estimator for galaxies with \(\sigma_i > 1 \) km s\(^{-1}\) in the CF2 survey. If our statistical assumptions are correct, and if actual motions make only a small contribution, then the values \(v_i/\sigma_i \) should be unit Gaussian variates, and the histograms should match the Gaussian of unit standard deviation shown in the figure. We see that the histogram using the new estimator is a good match to the unit Gaussian, but that the traditional estimator results in a skewed distribution.

As seen in the figure, the exponentiation of the Gaussian distributed log distances results in a distribution of errors that is skewed in a complicated way, with the peak shifted toward negative velocities but with a
shortened tail on the negative side and an elongated tail on the positive side. This effect is more clearly seen in Fig. 2 where we plot the histogram using a logarithmic scale. This skewness cannot be corrected for by simply shifting the center of the distribution. Nor can the skewness be corrected by adjusting only negative velocities, as is proposed by Tully et al. (2013) to correct skewness be corrected by adjusting only negative velocities, as is proposed by Tully et al. (2013) to correct for what they call “error bias”.

In Fig. 3 we show histograms for galaxies in the SFI++ survey, again for \(\sigma_i > 1,000 \) km s\(^{-1}\). As in Fig. 2 we plot the histograms on a logarithmic scale to accentuate the tails of the distributions. The catalogs provide both Malmquist corrected and uncorrected distances. Malmquist bias correction methods include correction for the skewness of the distribution of distance errors, and Lynden-Bell et al. (1988) showed that velocities calculated with Malmquist corrected distances should be approximately Gaussian distributed. It does not make sense to use Malmquist corrected distances with the new estimator, since this would in effect double-correct for skewness. We thus show histograms for the new estimator using uncorrected values and the traditional estimator using corrected values. First, we see that the histograms for the new estimator and the traditional estimator using Malmquist corrected distances do in fact have the same peak. However, the histograms are not centered on zero.

One possible explanation for the skewing of the error histograms from zero in Fig. 2 is a coherent outflow in the volume occupied by the survey. While random velocities, or even bulk motions, should have little effect on the histograms since their affect would average out over different directions, a coherent outflow would be expected to shift the peak of the histograms toward positive velocities, exactly the effect we see in the figure. We can test this explanation by considering a simple model where the outflow adds a constant peculiar velocity to each galaxy in the survey. In Fig. 4 we show the same histograms as in Fig. 2 except that we have subtracted 400 km s\(^{-1}\) from the peculiar velocity of each galaxy. We see that subtracting a relatively modest outflow has resulted in an error distribution that is Gaussian and centered on zero. The existence of a coherent outflow would support recent arguments that we live in a low density region, dubbed the “local hole” (Whitbourn & Shanks, 2014; Wiltshire et al., 2013).

The disagreement between the CF2 and SFI++ catalogs regarding the existence of a coherent outflow is a consequence of the addition of new data and the reanalysis of literature distances that was done when the CF2 catalog was assembled. Tully et al. (2013) compared distance estimates for galaxies and groups that appeared in more than one component sample and used this comparison to rescale and reanalyze distances to achieve statistical consistency between all the components of the CF2. This reanalysis was anchored by the zero point provided by Cepheid and TRGB distances. They found that the resulting CF2 catalog was consistent with a Hubble constant \(H_0 = 74.4 \) km s\(^{-1}\)Mpc\(^{-1}\) that did not vary with redshift. It is worth noting that although this relatively low redshift (\(cz < 0.1 \)) measurement of \(H_0 \) is in tension with microwave background results, it agrees well with a recent measurement of \(H_0 \) using SNIa at much higher redshift (Neill et al., 2014).

It is possible that the rescaling of the SFI++ could have inadvertently “erased” a real coherent outflow. However, this suggests another explanation of the skewness in the error distribution of the SFI++ survey, a systematic error in the scaling of distances. In Fig. 5 we show the same histograms as in Fig. 3 but with all distances increased by 5%. Again, we see that there is good agreement between the new estimator histogram and the unit Gaussian centered on zero. This roughly corresponds to the rescaling of the SFI++ in the CF2. A direct comparison of the distances given in the SFI++ and the distances for the same galaxies in the CF2, using \(H_o = 74.4 \) km s\(^{-1}\)Mpc\(^{-1}\), shows that CF2 distances are about 6.8% larger on average.

In both Figs. 4 and 5 we see that although the histogram using the traditional estimator with Malmquist corrected data is indeed approximately Gaussian, the tails of this distribution are still noticeably skewed. This demonstrates that our new estimator is more effective at correcting for the skewness of peculiar velocity errors than the method included in Malmquist bias corrections.

4 DISCUSSION

Peculiar velocity analysis methods that work with velocity measurements for individual galaxies, groups or clusters assume that the errors in velocity measurements have a Gaussian distribution. However, the estimator that is traditionally used is known to have a skewed, non-Gaussian error distribution. Malmquist bias corrections include a correction that shifts the peak of the error distribution to zero, but these corrections do not remove the skewness in the tails of the distribution. These tails are particularly important since they represent objects with a large signal to noise ratio. Since analyses of velocity moments typically weight by uncertainty, objects with a large ratio of estimated peculiar velocity to uncertainty can have a large impact.

As peculiar velocity catalogs become larger, with a corresponding decrease in the calculated uncertainties in low order moments such as the bulk flow, it becomes increasingly important to address potential systematic errors arising from non-Gaussian velocity error distributions. We have introduced a simple, easy-to-use, peculiar velocity estimator that results in velocities with unbiased, Gaussian errors. We have shown that this estimator works well when applied to the CF2 catalog and, with some adjustment, the SFI++ catalog of galaxy distances. This new estimator is an important step in bringing peculiar velocity analyses into the era of precision cosmology.

Our new estimator should not be used to estimate peculiar velocities with Malmquist corrected distances, since currently implemented Malmquist correction procedures include a correction for the skewness of the traditional estimator. While Malmquist correction does result in approximately Gaussian velocity errors, we have shown that our new estimator does a better job of producing a distribution with symmetric tails. It is straightforward to modify Malmquist correction methods to be used with the new estimator.

The new estimator will prove particularly useful for peculiar velocity analyses that are done in redshift space with data that has not been Malmquist corrected, and thus has a velocity error distribution that is biased in addition to being skewed. For example, the estimator we have introduced alleviates the problem of "error bias" noted in Tully et al. (2013). We have shown that peculiar velocities calculated from CF2 distances using the new estimator have a symmetric, Gaussian error distribution and do not require any further correction.

We have also presented a method to check large catalogs of peculiar velocities to confirm that they have the expected distribution of errors. We stress that skewness or non-Gaussianity in velocity error distributions can lead to results which do not accurately reflect the large-scale flows we are trying to study. This method should provide a useful tool for compiling large peculiar velocity catalogs, particularly when combining data from different sources.

Finally, we have seen that the distribution of errors in the SFI++ survey is not centered on zero. This can be explained by an approximately 400 km s\(^{-1}\) coherent outflow in the survey volume or by a systematic error in the scaling of distances of about 5%. Which of these explanations is correct is an interesting question that should be pursued in further research.

Acknowledgements: We would like to thank Brent Tully and Mike Hudson for useful comments.

REFERENCES

Agarwal S., Feldman H. A., Watkins R., 2012, MNRAS, 424, 2667
Courteau S., Faber S. M., Dressler A., Willick J. A., 1993, ApJL, 412, L51
Courteau S., Willick J. A., Strauss M. A., Schlegel D., Postman M., 2000, ApJ, 544, 636
Courtois H. M., Hoffman Y., Tully R. B., Gottl¨ober S., 2012, ApJ, 744, 43
Davis T. M., Scrimgeour M. L., 2014, MNRAS, 442, 1117
Feldman H., Juszkiewicz R., Ferreira P., Davis M., Gaztaña E., Fry J., Jaffe A., Chambers S., da Costa L., Bernardi M., Giovanelli R., Haynes M., Wegner G., 2003, ApJL, 596, L131
Feldman H. A., Watkins R., Hudson M. J., 2010, MNRAS, 407, 2328
Freudling W., Zehavi I., da Costa L. N., Dekel A.,
