THE CALABI-YAU EQUATION ON THE KODAIRA-THURSTON
MANIFOLD, VIEWED AS A S^1-BUNDLE OVER A 3-TORUS

E. BUZANO, A. FINO AND L. VEZZONI

Abstract. We prove that the Calabi-Yau equation on the Kodaira-Thurston
manifold has a unique solution for every S^1-invariant initial datum.

1. Introduction

The celebrated Calabi-Yau theorem affirms that given a compact Kähler man-
ifold (M, Ω, J) with first Chern class $c_1(M)$, every $(1, 1)$-form $\tilde{\rho} \in 2\pi c_1(M)$ is the
Ricci form of a unique Kähler metric whose Kähler form belongs to the cohomo-
logy class $[\Omega]$. This theorem was conjectured by Calabi in [4] and subse-
quently proved by Yau in [15]. The Calabi-Yau theorem can be alternatively reformulated in terms
of symplectic geometry by saying that, given a compact Kähler manifold (M^n, Ω, J) and
a volume form σ satisfying the normalizing condition
\[
\int_M \sigma = \int_M \Omega^n,
\]
then there exists a unique Kähler form $\tilde{\Omega}$ on (M, J) solving
\begin{align*}
\tilde{\Omega}^n &= \sigma, \\
[\tilde{\Omega}] &= [\Omega].
\end{align*}
Equation (1) still makes sense in the almost-Kähler case, when J is merely an
almost-complex structure. In this more general context (1) is usually called the
Calabi-Yau equation.

In [5] Donaldson described a project about compact symplectic 4-manifolds in-
volving the Calabi-Yau equation and showed the uniqueness of the solutions. Don-
alson’s project is principally based on a conjecture stated in [5] whose confirm-
ation would lead to new fundamental results in symplectic geometry. Donaldson’s project
was partially confirmed by Taubes in [9] and strongly motivates the study of the
Calabi-Yau equation on non-Kähler 4-manifolds.

In [10] Weinkove proved that the Calabi-Yau equation can be solved if the torsion
of J is sufficiently small and in [13] Tosatti, Weinkove and Yau proved the Don-
alson conjecture assuming an extra condition on the curvature and the torsion of
the almost-Kähler metric. Furthermore, Tosatti and Weinkove studied in [12] the
Calabi-Yau equation on the Kodaira-Thurston manifold assuming the initial datum σ
invariant under the action of a 2-dimensional torus T^2. The Kodaira-Thurston
is historically the first example of symplectic manifold without Kähler structures
(see[11, 1]) and it is defined as the direct product of a compact quotient of the
3-dimensional Heisenberg group by a lattice with the circle S^1. In [6] it is proved
that when σ is T^2-invariant, the Calabi-Yau equation on the Kodaira-Thurston
manifold can be reduced to a Monge-Ampère equation on a torus which has always

2010 Mathematics Subject Classification. 32Q25, 32Q60, 35J60.
This work was supported by the project FIRB “Geometria Differenziale e teoria geometrica
delle funzioni”, the project PRIN “Varietà reali e complesse: geometria, topologia e analisi ar-
monica” and by G.N.S.A.G.A. of I.N.d.A.M.
solution. Moreover in [3] the same equation is studied in every T^2-fibration over a 2-torus.

The *Kodaira-Thurston manifold* is defined as the compact 4-manifold $M = \text{Nil}^3/\Gamma \times S^1$, where Nil^3 is the 3-dimensional real Heisenberg group

$$\text{Nil}^3 = \left\{ \begin{bmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{bmatrix} : x, y, z \in \mathbb{R} \right\}$$

and Γ is the lattice in Nil^3 of matrices having integer entries.

Therefore M is parallelizable and has the global left-invariant co-frame

$$e^1 = dy, \quad e^2 = dx, \quad e^3 = dt, \quad e^4 = dz - xdy$$

inducing the standard metric $g = \sum(e^k \otimes e^k)$ and the triple of non-degenerate 2-forms

$$\Omega_1 = e^1 \wedge e^2 + e^3 \wedge e^4, \quad \Omega_2 = e^1 \wedge e^3 + e^4 \wedge e^2, \quad \Omega_3 = e^1 \wedge e^4 + e^2 \wedge e^3.$$

Every pair (Ω_k, g) specifies an almost complex structure J_k making (g, J_k) an almost Hermitian structure. It turns out that J_1 is integrable, whereas $(\Omega_2, J_2), (\Omega_3, J_3)$ are almost-Kähler, since Ω_2 and Ω_3 are both symplectic. This fact actually implies that $\Omega_2 + i\Omega_3$ is a *holomorphic-symplectic* structure on (M, J_1).

Moreover, M can be viewed as the total space of an S^1-bundle over the 3-dimensional torus $T^3 = T_{xy}^2 \times S^1_1$ therefore it is rather natural to extend the analysis in [12] [6] when σ is S^1-invariant instead of T^2-invariant. We show that the Calabi-Yau equation on the Kodaira-Thurston manifold has a unique solution assuming the initial datum σ invariant under the action of the fiber S^1. The result holds for the canonical almost-Kähler structures defined by the symplectic forms Ω_2 and Ω_3 and more in general for a family of almost-Kähler structures (Ω, J) such that e^4 is orthogonal to e^1, e^2, e^3 with respect to the Riemannian metric induced by (Ω, J).

Acknowledgements. The authors would like to thank Valentino Tosatti for useful remarks and helpful comments on the preliminary version of the present paper.

2. THE MAIN RESULTS

Since $\text{Nil}^3/\Gamma \times S^1 = (\text{Nil}^3 \times \mathbb{R})/(\Gamma \times \mathbb{Z})$, the Kodaira-Thurston manifold M is a 2-step nilmanifold and every left-invariant almost-Kähler structure on $\text{Nil}^3 \times \mathbb{R}$ projects to an almost-Kähler structure on M. Moreover, the compact 3-dimensional manifold $N = \text{Nil}^3/\Gamma$ is the total space of an S^1-bundle over a 2-dimensional torus T^2 with projection $\pi_{xy} : N \rightarrow T^2_{xy}$ and M inherits a structure of principal S^1-bundle over the 3-dimensional torus $T^3 = T_{xy}^2 \times S^1_1$, i.e.

$$S^1 \longrightarrow N \times S^1 = M \quad \longrightarrow \quad T^2 \times S^1 = T^3.$$

Furthermore M is parallelizable and has the global left-invariant co-frame

$$e^1 = dy, \quad e^2 = dx, \quad e^3 = dt, \quad e^4 = dz - xdy,$$

satisfying the structure equations

$$de^1 = de^2 = de^3 = 0, \quad de^4 = e^{12},$$

where $e^{ij} = e^i \wedge e^j$.

Notice that a differential form γ on M is invariant by the action of the fiber S^1_z if and only if its coefficients with respect to the global basis $e^{j_1 \cdots j_k} = e^{j_1} \wedge \cdots \wedge e^{j_k}$ do not depend on the variable z.
In this paper we mainly focus on the almost-Kähler structure \((\Omega_2, J_2)\) which we denote by \((\Omega, J)\) in order to simplify the notation. The Calabi-Yau equation on \((M, \Omega, J)\) can be written as

\[(\Omega + d\alpha)^2 = e^F \Omega^2,\]

where the unknown \(\alpha\) is a smooth 1-form on \(M\) such that

\[J(d\alpha) = d\alpha,\]

and the datum \(F\) is a smooth function on \(M\) such that

\[\int_M e^F \Omega^2 = \int_M \Omega^2.\]

Our main result is the following

Theorem 1. For every smooth \(S^1\)-invariant volume form \(e^F \Omega^2\) satisfying condition (5), equation (3) has a unique solution satisfying (4).

Since uniqueness follows from a general result in [5], then we need only to prove existence. This will be done in two steps. Firstly in Section 3 we reduce equation (3) to a fully nonlinear PDE on the 3-dimensional base torus \(T^3\). Then in Section 5 we show that such an equation is solvable. Section 4 concerns the a-priori estimates needed in Section 5.

With some minor changes in the proof, it is possible to generalize Theorem 1 to a large class of invariant almost-Kähler structures on the Kodaira-Thurston manifold

Theorem 2. Let \((\Omega, J)\) be an invariant almost-Kähler structure on \(M\) with induced metric \(g\). Assume that \(e^4\) is orthogonal to \(e^1, e^2, e^3\) with respect to \(g\) and that

\[Je^4 \in \text{span}_Q \{e^1, e^2, e^3\}.\]

Then the Calabi-Yau equation (3) has a unique solution satisfying (4) for every \(S^1\)-invariant volume form \(e^F \Omega^2\) satisfying (5).

It is clear that the almost-Kähler structure \((\Omega_2, J_2)\) occurs as a case considered in Theorem 2. Moreover Theorem 2 works for \((\Omega_3, J_3)\) and, more generally, for the family of almost-Kähler structures

\[\omega_\theta = \cos \theta \Omega_2 + \sin \theta \Omega_3, \quad g = \sum_{i=1}^4 e^i \otimes e^i\]

when \(\tan \theta \in \mathbb{Q}\).

3. Reduction to a single equation

Denote by \(dV\) the volume form \(dx \wedge dy \wedge dt\) on \(T^3\).

Proposition 3. Let \(F\) a smooth function on \(T^3\) satisfying the following condition

\[\int_{T^3} e^F dV = 1\]

and let \(u : T^3 \to \mathbb{R}\) be a smooth function such that

\[\int_{T^3} u dV = 0.\]

Consider the 1-form

\[\alpha = d' u - u e^1.\]

Then \(d\alpha\) satisfies (4). Moreover \(\alpha\) solves (3) if and only if \(u\) solves the following PDE

\[(u_{xx} + 1)(u_{yy} + u_{tt} + u_t + 1) - u_{xy}^2 - u_{xt}^2 = e^F.\]
Proof. Let
\[e_1 = \partial_y + x\partial_z, \quad e_2 = \partial_x, \quad e_3 = \partial_t, \quad e_4 = \partial_z \]
be the dual frame to \(\{e^1, e^2, e^3, e^4\} \). Then we have
\[
\dd\bar{u} = -dJdu = -\sum_{i,k=1}^{3} u_{ik} e^i \wedge J e^k - u_2 de^4
\]
\[
= -\sum_{i,k=1}^{3} u_{ik} e^i \wedge J e^k - u_2 e^{12},
\]
where
\[
(11) \quad u_1 = e_1 u = u_y, \quad u_2 = e_2 u = u_x, \quad u_3 = e_3 u = u_t.
\]
Observe that \(e_4 u = 0 \), since \(u \) does not depend on \(z \).

We have
\[
d(ue^1) = -u_2 e^{12} - u_3 e^{13}.
\]
Therefore
\[
\dd\bar{u} = -\sum_{i,k=1}^{3} u_{ik} e^i \wedge J e^k + d(ue^1) + u_3 e^{13}.
\]
It follows that \(da \) is of type \((1, 1)\) and that
\[
(\Omega + da)^2 = \left((1 + u_{22})(1 + u_{11} + u_{33} + u_3) - (u_{23})^2 - (u_{12})^2\right)\Omega^2,
\]
and equation (3) becomes
\[
(12) \quad (u_{22} + 1)(u_{11} + u_{33} + u_3 + 1) - (u_{23})^2 - (u_{12})^2 = e^F.
\]
Thanks to (11), equations (12) and (10) coincide. \(\square\)

4. A priori estimates

We begin by fixing some notation. Functions on the 3-torus can be identified with functions \(u: \mathbb{R}^3 \to \mathbb{R} \) which are 1-periodic in each variable.

For any non-negative integer \(n \), we denote by \(C^n(T^3) \) the Banach space of \(C^n \) functions \(u: T^3 \to \mathbb{R} \) equipped with norm
\[
\|u\|_{C^n} = \max_{m \leq n} |u|_{C^m},
\]
where
\[
|u|_{C^m} = \max_{i+j+k=m} \sup_{T^3} |\partial^i_x \partial^j_y \partial^k_t u(x, y, t)|.
\]

Given \(0 < \rho < 1 \) and \(u \in C^0(T^3) \), we set
\[
\left[u(x, y, t)\right]_{\rho} = \sup_{0 < |h| \leq 1} |u(x + h_1, y + h_2, t + h_3) - u(x, y, t)| |h|^{-\rho}.
\]
For every non-negative integer \(n \) and real number \(0 < \rho < 1 \), define the space \(C^{n+\rho}(T^3) \) of functions \(u \in C^n(T^3) \) such that
\[
|u|_{C^{n+\rho}} = \max_{i+j+k=n} \sup_{T^3} \left[\partial^i_x \partial^j_y \partial^k_t u(x, y, t)\right]_{\rho} < \infty.
\]
\(C^{n+\rho}(T^3) \) is a Banach space with respect to the norm
\[
\|u\|_{C^{n+\rho}} = \max\left\{\|u\|_{C^n}, |u|_{C^{n+\rho}}\right\}.
\]

In conclusion we have defined \(C^\sigma(T^3) \) for every non-negative real number \(\sigma \).

Finally, we denote by \(\check{C}^\sigma(T^3) \) the closed subspace of all \(u \in C^\sigma(T^3) \) satisfying
\[
\int_{T^3} u \, dV = 0,
\]
THE CALABI-YAU EQUATION ON THE KODAIRA-THURSTON MANIFOLD

where \(dV \) denotes as usual the volume form \(dx \wedge dy \wedge dt \) on \(T^3 \).

4.1. \(C^0 \)-estimate.

Proposition 4. Let \(u \in C^2(T^3) \) be a solution to (10). Then we have

\[
\begin{align*}
\text{(13)} & \quad u_{xx} > -1 \\
\text{and} & \\
\text{(14)} & \quad u_{yy} + u_{tt} + u_t > -1.
\end{align*}
\]

Proof. Indeed, from equation (10), we have

\[
(u_{yy} + u_{tt} + u_t + 1)(u_{xx} + 1) \geq e^F > 0.
\]

This implies that \(u_{yy} + u_{tt} + u_t + 1 \) and \(u_{xx} + 1 \) have always the same sign. But at a point where \(u \) attains its minimum, the second derivatives are non-negative. In particular \(u_{xx} + 1 \) must be positive. \(\square \)

Proposition 5. Let \(u \in C^2(T^3) \) be a solution to (10). Then we have

\[
\begin{align*}
\text{(15)} & \quad \lvert u_x \rvert \leq 1.
\end{align*}
\]

Proof. Fix \(y, t \in [0, 1] \) and let \(x_0 \) be a point in \([0, 1] \) where \(x \mapsto u(x, y, t) \) attains its minimum. In particular, we have \(u_t(x_0, y, t) = 0 \). Integrating (13) yields

\[
\begin{align*}
\quad & u_x(x, y, t) \geq -(x - x_0) \geq -1, \quad \text{for } x_0 \leq x \leq x_0 + 1 \\
\text{and} & \\
\quad & -u(x, y, t) \geq -(x_0 - x) \geq -1, \quad \text{for } x_0 - 1 \leq x \leq x_0.
\end{align*}
\]

By periodicity, these estimates hold for all \(x \). This proves estimate (15). \(\square \)

Theorem 6. For all \(u \in \tilde{C}^2(T^3) \) satisfying equation (10), and all \(1 < p < \infty \), we have

\[
\begin{align*}
\text{(16)} & \quad \lVert \nabla |u|^{p/2} \rVert_{L^2} \leq \frac{p^2}{16} \lVert u \rVert_{L^p}^p + \frac{p^2}{16} \left(p + \frac{8}{p-1} \lVert 1 - e^F \rVert_{C^0} \right) \lVert u \rVert_{L^p}^{p-1}.
\end{align*}
\]

Proof. Set

\[
\alpha = -(u_t + u)e^4 + u_y e^3 - u_x e^4.
\]

By Proposition 5, \(\alpha \) solves (3). Then

\[
\begin{align*}
\text{(17)} & \quad (e^F - 1) \Omega^2 = d\alpha \wedge (\Omega + \tilde{\Omega}),
\end{align*}
\]

where

\[
\tilde{\Omega} = \Omega + d\alpha.
\]

Since

\[
\begin{align*}
d(u |u|^{p-2}) & = |u|^{p-2} du + u(p-2) |u|^{p-3} \frac{u}{|u|} du \\
& = (p-1) |u|^{p-2} du,
\end{align*}
\]

then

\[
\begin{align*}
\text{(18)} & \quad \int_{T^3} d\left((u |u|^{p-2} \alpha) \wedge (\Omega + \tilde{\Omega}) \right) = \\
& = (p-1) \int_{T^3} |u|^{p-2} du \wedge \alpha \wedge (\Omega + \tilde{\Omega}) + \int_{T^3} |u|^{p-2} u (e^F - 1) \Omega^2
\end{align*}
\]

and Stokes’ theorem implies

\[
\begin{align*}
\text{(19)} & \quad \int_{T^3} |u|^{p-2} du \wedge \alpha \wedge (\Omega + \tilde{\Omega}) = \frac{1}{p-1} \int_{T^3} (1 - e^F) |u|^{p-2} u \Omega^2.
\end{align*}
\]
Taking into account that
\[du = u_y e^1 + u_x e^2 + u_t e^3, \]
\[da = u_x(e^{12} - e^{24}) + (u_{yy} + u_{tt} + u_{t})e^{13} - u_{xy}(e^{14} - e^{23}) - u_{xx} e^{24}, \]
(20)
\[\Omega = u_x(e^{12} - e^{24}) + (1 + u_{yy} + u_{tt} + u_{t})e^{13} - u_{xy}(e^{14} - e^{23}) - (1 + u_{xx}) e^{24}, \]
we have
(21)
\[du \wedge \alpha \wedge \Omega = \frac{1}{2} (u_x^2 + u_y^2 + u_t (u_t + u)) \Omega^2, \]
and
(22)
\[du \wedge \alpha \wedge \tilde{\Omega} = \frac{1}{2} \left((u_x^2 + (u_t + u/2)^2)(1 + u_{xx}) + u_x^2 + u_y^2 + u_t + u_t \right) \Omega^2 \\
- (u_x u_y u_{xy} + u_x (u_t + u/2) u_{xt}) \Omega^2 - \frac{1}{8} u^2 (1 + u_{xx}) \Omega^2. \]
But from (10) and (13) we conclude that the quadratic form
\[Q(\theta) = (1 + u_{xx})(\theta_1^2 + \theta_2^2) + (1 + u_{yy} + u_{tt} + u_t)\theta_2^2 - 2u_{xy}\theta_1 \theta_2 - 2u_{xt}\theta_2 \theta_3 \]
is positive-definite. Then from (19), (21) and (22) we obtain
(23)
\[\int_{T^3} |u|^{p-2} \left(u_x^2 + u_y^2 + u_t (u_t + u) \right) dV - \frac{1}{4} \int_{T^3} |u|^p (1 + u_{xx}) dV \leq \\
\leq \frac{2}{p-1} \int_{T^3} (1 - e^F) |u|^{p-2} u dV. \]
An integration by parts gives
\[\int_{T^3} |u|^{p-2} uu_t = -\int_{T^3} \partial_t \left(|u|^{p-2} u \right) u dV = (1 - p) \int_{T^3} |u|^{p-2} uu_t dV, \]
therefore we have
\[\int_{T^3} |u|^{p-2} uu_t dV = 0. \]
Since, moreover
\[\int_{T^3} |u|^p u_{xx} dV = -p \int_{T^3} |u|^{p-2} u u_{xt}^2 dV, \]
estimates (15) and (23) imply
(24)
\[\int_{T^3} |u|^{p-2} |\nabla u|^2 dV \leq \frac{1}{4} \int_{T^3} |u|^p dV + \frac{p}{4} \left(\frac{2}{p-1} ||1 - e^F||_{C^0} \right) \int_{T^3} |u|^{p-1} dV. \]
But the left-hand side can be rewritten as
\[\int_{T^3} |u|^{p-2} |\nabla u|^2 dV = \frac{4}{p^2} \int_{T^3} |\nabla |u|^{p/2}|^2 dV. \]
Then (24) becomes
(25)
\[\int_{T^3} |\nabla |u|^{p/2}|^2 dV \leq \\
\leq \frac{p^2}{16} \int_{T^3} |u|^p dV + \frac{p^2}{4} \left(\frac{2}{p-1} ||1 - e^F||_{C^0} \right) \int_{T^3} |u|^{p-1} dV. \]
Since \(T^3 \) has measure 1, we have
(26)
\[||u||_{L^{p-1}} \leq ||u||_{L^p}. \]
Estimate (16) follows from (25) and (26).
It is rather natural to compare estimate (16) with the classical a priori Yau’s estimate

\[\| \nabla \varphi \|^2_{L^2} \leq \frac{mp^2}{4p-1} \left(\| 1 - e^F \|_{C^0} \right) \| \varphi \|_{L^p} \]

involving the solutions \(\varphi \) to the complex Monge-Ampère equation \((\omega + dd^c \varphi)^m = e^F \omega^m \) in 2m-dimensional Kähler manifolds (see for instance [8, Proposition 5.4.1]). The right-end side of (16) contains the extra term \(\| u \|_{L^p}^p \) due to the presence of \(-ue^F \) in (9). This is a problem in the first step of \(C^0 \)-estimate, that is with \(p = 2 \). We take care of this in the next two propositions.

Proposition 7. We have

(27) \[2\pi \| u \|_{L^2} \leq \| \nabla u \|_{L^2}, \quad \text{for all } u \in \tilde{C}^1(T^3). \]

Proof. Consider the Fourier series expansion

\[\| u \|_{L^2}^2 = \sum_{(k,m) \in \mathbb{Z}^2 \setminus \{(0,0)\}} |\hat{u}_{k,m,0}|^2, \]

where

\[\hat{u}_{k,m,0} = \int_{T^3} e^{-2\pi i(kx + my + nt)} u(x, y, t) \, dV. \]

We have

\[|\hat{\nabla \hat{u}_{k,m,0}|^2 = 4\pi^2(k^2 + m^2 + n^2)|\hat{u}_{k,m,0}|^2 \geq 4\pi^2|\hat{u}_{k,m,0}|^2, \]

for all \((k, m, n) \in \mathbb{Z}^3 \setminus \{(0,0,0)\} \).

It follows that

\[\| \nabla u \|_{L^2}^2 = \sum_{(k,m) \in \mathbb{Z}^2 \setminus \{(0,0)\}} |\nabla \hat{u}_{k,m,0}|^2 \geq 4\pi^2 \sum_{(k,m) \in \mathbb{Z}^2 \setminus \{(0,0,0)\}} |\hat{u}_{k,m,0}|^2 \]

\[= 4\pi^2 \| u \|_{L^2}^2. \]

Since

\[\| \nabla |u| \|_{L^2} = \| \nabla u \|_{L^2}, \]

we obtain (27). \(\square \)

Proposition 8. For all \(u \in \tilde{C}^2(T^3) \) satisfying equation (10) we have

(28) \[\| \nabla u \|_{L^2} \leq \frac{16\pi}{16\pi^2 - 1} \| 1 + e^F \|_{C^0}. \]

Proof. From (16) with \(p = 2 \) and (27) we obtain

\[\| \nabla u \|_{L^2}^2 \leq \frac{1}{16\pi^2} \| \nabla u \|_{L^2}^2 + \frac{1}{4\pi} \left(1 + \| 1 - e^F \|_{C^0} \right) \| \nabla u \|_{L^2}, \]

which readily implies the statement. \(\square \)

Now we are ready to prove an a priori \(C^0 \) estimate for the solutions to (10):

Theorem 9. There exists a positive constant \(C \) such that

(29) \[\| u \|_{C^0} \leq C \| 1 + e^F \|_{C^0}, \]

for all \(u \in \tilde{C}^2(T^3) \) satisfying equation (10) and all \(F \in C^0(T^3) \) satisfying condition (7).
Proof. From Sobolev Imbedding Theorem (see for instance [2, Theorem 5.4]), there exists a positive constant C' such that

$$(30) \quad \|w\|_{L^6}^2 \leq C'(\|w\|_{L^2}^2 + \|\nabla w\|_{L^2}^2),$$

for all w in the Sobolev space $W^{1,2}(T^3)$.

Then from (16) and (30) we have

$$(31) \quad \|u\|_{L^3}^p \leq C'\left(1 + \frac{p^2}{16}\right) \|u\|_{L^p}^p + C'\frac{p^2}{16} \left(p + \frac{8}{p-1}\right) \|1 + e^F\|_{C^0}) \|u\|_{L^p}^{-1},$$

for all $1 < p < \infty$. If $p \geq 2$ and $u \neq 0$,

(31) implies

$$\left(\frac{\|u\|_{L^3}}{\|u\|_{L^p}}\right)^p \leq C'\frac{1}{2} p^3 \left(1 + \|1 + e^F\|_{C^0} \|u\|_{L^2}^{-1}\right).$$

It follows that

$$\frac{\|u\|_{L^{3p_k}}}{\|u\|_{L^p}} \leq (M_{p_k}^3)^{1/p_k}, \quad \text{for all } k \in \mathbb{Z}_+, \quad \text{with} \quad (32) \quad M = C'\frac{1}{2} \left(1 + \|1 + e^F\|_{C^0} \|u\|_{L^2}^{-1}\right)$$

and

$$p_k = 2 \cdot 3^k.$$

Then

$$\frac{\|u\|_{L^{3p_k}}}{\|u\|_{L^2}} \leq \prod_{k=0}^n (M_{p_k}^3)^{1/p_k}, \quad \text{for all } n \in \mathbb{Z}.$$

But

$$\prod_{k=0}^\infty (M_{p_k}^3)^{1/p_k} = \exp\left(\sum_{k=0}^\infty \frac{1}{2} \frac{1}{3^k} (\log(8M) + 3k \log 3)\right) = (8M)^3/4 \cdot 3^{\mu/2},$$

with

$$\mu = \sum_{k=1}^\infty \frac{k}{3^k} < \infty.$$

Then

$$(33) \quad \|u\|_{C^0} = \sup_{n \in \mathbb{N}} \|u\|_{L^{pn}} \leq (8M)^{3/4} \cdot 3^{\mu/2} \|u\|_{L^2}.$$

Now from (32), (27) and (28) we have

$$M^{3/4} \|u\|_{L^2} = \left(C'\frac{1}{2}\right)^{3/4} \left(\|u\|_{L^2} + \|1 + e^F\|_{C^0}\right)^{3/4} \|u\|_{L^2}^{1/4}$$

$$\leq \left(C'\frac{1}{2}\right)^{3/4} \left(\frac{16\pi^2}{16\pi^2 - 7} \|1 + e^F\|_{C^0}\right)^{1/4},$$

and (29) follows from (33). \qed
4.2. C^0-estimate of Δu. Let

$$\Delta = \partial_x^2 + \partial_y^2 + \partial_t^2,$$

be the Laplacian on \mathbb{R}^3.

Proposition 10. Let $u \in \tilde{C}^2(T^3)$ be a solution to equation (10). Then we have

$$0 < 2e^{F/2} \leq 2 + \Delta u + u_t,$$

and

$$0 < \lambda_- I \leq H \leq \lambda_+ I$$

where I is the identity matrix,

$$H = \begin{bmatrix} 1 + u_{yy} + u_{tt} + u_t & u_{xy} & u_{xt} \\ u_{xy} & 1 + u_{xx} & 0 \\ u_{xt} & 0 & 1 + u_{xx} \end{bmatrix}$$

and

$$\lambda_{\pm} = \frac{1}{2} \left(2 + \Delta u + u_t \pm \sqrt{(2 + \Delta u + u_t)^2 - 4e^F} \right).$$

Proof. Inequality (34) follows from (13), (14) and (10). A simple computation shows that the characteristic polynomial of H is

$$(\lambda - (1 + u_{xx}))(\lambda^2 - (2 + \Delta u + u_t)\lambda + e^F).$$

Then the eigenvalues of H are λ_{\pm} and $1 + u_{xx}$. Since

$$(2 + \Delta u + u_t)^2 - 4e^F = ((1 + u_{yy} + u_{tt} + u_t) - (1 + u_{xx}))^2 + u_{xy}^2 + u_{xt}^2$$

$$\geq ((2 + \Delta + u_t) - 2(1 + u_{xx}))^2,$$

we have

$$\lambda_- \leq 1 + u_{xx} \leq \lambda_+$$

and the proof is complete. \Box

Theorem 11. Given $F \in C^2(T^3)$ satisfying condition (7), there exists a positive constant C, depending only on $\|F\|_{C^2}$, such that

$$|\Delta u|_{C^0} \leq C(1 + |u|_{C^1}),$$

for all $u \in \tilde{C}^4(T^3)$ solution to equation (10).

Proof. From equation (10) we obtain

$$\left(\Delta F + |\nabla F|^2 + F_t \right) e^F =$$

$$= (1 + u_{yy} + u_{tt} + u_t)(\Delta u_{xx} + u_{xxt}) + (1 + u_{xx})(\Delta u_{yy} + u_{yyt} + \Delta u_{tt} + u_{ttt}) +$$

$$+ (1 + u_{xx})(\Delta u_t + u_{tt}) + 2\nabla u_{xx} \cdot \nabla(u_{yy} + u_{tt} + u_t) -$$

$$- 2u_{xy}(\Delta u_{xy} + u_{xyt}) - 2|\nabla u_{xy}|^2 - 2u_{xt}(\Delta u_{xt} + u_{xtt}) - 2|\nabla u_{xt}|^2.$$

Consider

$$G = (2 + \Delta u + u_t)e^{-\mu u},$$

where

$$\mu = \frac{\epsilon}{\max(2 + \Delta u + u_t)}$$

and ϵ is a positive constant to be chosen later. Differentiating (39) yields

$$\nabla G = e^{-\mu u} \left(\nabla(\Delta u + u_t) - \mu(2 + \Delta u + u_t)\nabla u \right),$$
\[(\nabla \otimes \nabla)G = -\mu e^{-\mu u} (\nabla u \otimes \nabla (\Delta u + u_t) + \nabla (\Delta u + u_t) \otimes \nabla u) + \mu^2 e^{-\mu u} (2 + \Delta u + u_t) \nabla u \otimes \nabla u + e^{-\mu u} \left((\nabla \otimes \nabla)(\Delta u + u_t) - \mu (2 + \Delta u + u_t)(\nabla \otimes \nabla) u \right). \]

At a point where \(G\) attains its maximum value we have \(\nabla G = 0\) and \((\nabla \otimes \nabla)G \leq 0\), that is
\[(\nabla \otimes \nabla)(\Delta u + u_t) = \mu (2 + \Delta u + u_t) \nabla u, \]
and
\[(\nabla \otimes \nabla)(\Delta u + u_t) \leq \mu (2 + \Delta u + u_t) \left((\nabla \otimes \nabla) u + \mu \nabla u \otimes \nabla u \right). \]

In particular, we obtain
\[
\left(\mu (2 + \Delta u + u_t) (u_{xy} + \mu u_x u_y) - (\Delta u_{xy} + u_{xyt}) \right)^2 \leq \left(\mu (2 + \Delta u + u_t) (u_{xx} + \mu u_x^2) - (\Delta u_{xx} + u_{xxt}) \right) \cdot \left(\mu (2 + \Delta u + u_t) (u_{yy} + \mu u_y^2) - (\Delta u_{yy} + u_{yyt}) \right).
\]

and
\[
\left(\mu (2 + \Delta u + u_t) (u_{xt} + \mu u_x u_t) - (\Delta u_{xt} + u_{xtt}) \right)^2 \leq \left(\mu (2 + \Delta u + u_t) (u_{xx} + \mu u_x^2) - (\Delta u_{xx} + u_{xxt}) \right) \cdot \left(\mu (2 + \Delta u + u_t) (u_{tt} + \mu u_t^2) - (\Delta u_{tt} + u_{ttt}) \right).
\]

Then \((10) \) implies
\[(1 + u_{yy} + u_{tt} + u_t)(\Delta u_{xx} + u_{xxt}) + (1 + u_{xx})(\Delta u_{yy} + u_{yyt} + \Delta u_{tt} + u_{ttt}) - 2 u_{xy}(\Delta u_{xy} + u_{xyt}) - 2 u_{xt}(\Delta u_{xt} + u_{xtt}) \leq \mu (2 + \Delta u + u_t) (1 + u_{yy} + u_{tt} + u_t) (u_{xx} + \mu u_x^2) + \mu (2 + \Delta u + u_t) (1 + u_{xx}) (u_{yy} + \mu u_y^2 + u_{yt}) - 2 \mu (2 + \Delta u + u_t) (u_{xy}(u_{xy} + \mu u_x u_y) + u_{xt}(u_{xt} + \mu u_x u_t)). \]

Substituting \((41) \) and \((42) \) into \((40) \), and using \((44) \), we obtain
\[(\Delta F + |\nabla F|^2 + F_1) e^F \leq \mu (2 + \Delta u + u_t) (1 + u_{yy} + u_{tt} + u_t) (u_{xx} + \mu u_x^2) + \mu (2 + \Delta u + u_t) (1 + u_{xx}) (u_{yy} + u_{tt} + u_t) (u_{xx} + \mu u_x^2) + \mu (2 + \Delta u + u_t) (1 + u_{xx}) u_t + 2 \nabla u_{xx} \cdot \nabla (u_{yy} + u_{tt} + u_t) + - 2 \mu (2 + \Delta u + u_t) (u_{xy}(u_{xy} + \mu u_x u_y) + u_{xt}(u_{xt} + \mu u_x u_t)). \]

\footnote{Here we make use of the tensor product notation:
\[A \otimes B = \begin{bmatrix} a_1b_1 & a_1b_2 & a_1b_3 \\ a_2b_1 & a_2b_2 & a_2b_3 \\ a_3b_1 & a_3b_2 & a_3b_3 \end{bmatrix}, \text{ with } A = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} \text{ and } B = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}. \]

In particular \((\nabla \otimes \nabla) u\) is the Hessian matrix of \(u\), and \((\text{tr}(\nabla \otimes \nabla)) u = \Delta u\).}
On the other side, from (11) we have

\begin{equation}
\mu^2 (2 + \Delta u + u_t)^2 |\nabla u|^2 = |\nabla (\Delta u + u_t)|^2 = \\
= |\nabla u_{xx}|^2 + |\nabla (u_{yy} + u_{tt} + u_t)|^2 + 2 \nabla u_{xx} \cdot \nabla (u_{yy} + u_{tt} + u_t) \\
\geq 2 \nabla u_{xx} \cdot \nabla (u_{yy} + u_{tt} + u_t).
\end{equation}

Eventually form (13), and (14) we obtain

\begin{equation}
(\Delta F + |\nabla F|^2 + F_t) e^F \leq \\
\leq \mu (2 + \Delta u + u_t) \left((1 + u_{yy} + u_{tt} + u_t) u_{xx} + (1 + u_{xx}) (u_{yy} + u_{tt} + u_t) \right) \\
- 2 \mu (2 + \Delta u + u_t) (u_{yy}^2 + u_{tt}^2) \\
+ 2 \mu^2 (2 + \Delta u + u_t) \left((1 + u_{yy} + u_{tt} + u_t) u_x^2 + (1 + u_{xx}) (u_y^2 + u_t^2) \right) \\
+ \mu^2 (2 + \Delta u + u_t)^2 |\nabla u|^2 \\
\leq 2 \mu (2 + \Delta u + u_t) e^F - \mu (2 + \Delta u + u_t)^2 + 3 \mu^2 (2 + \Delta u + u_t)^2 |\nabla u|^2.
\end{equation}

at any point where G attains its maximum value. Let (x_0, y_0, t_0) be a point where G attains its maximum value. Set

\[M = 2 + \Delta u(x_0, y_0, t_0) + u_t(x_0, y_0, t_0) \]

and

\[u_0 = u(x_0, y_0, t_0), \]

so that

\[\max G = Me^{-\mu u_0}. \]

From (45) we get

\begin{equation}
\mu M^2 \leq |(\Delta F + F_t) e^F|_{C^0} + 2 \mu M \|e^F\|_{C^0} + 3 \mu^2 M^2 |u|_{C^1}^2.
\end{equation}

Denote by \tilde{u} the value of u at a point where $2 + \Delta u + u_t$ attains its maximum. Then we have

\begin{equation}
M \leq \max (2 + \Delta u + u_t) \leq Me^{\mu (\tilde{u} - u_0)} \leq Me^{2\mu |u|_{C^0}}.
\end{equation}

Moreover, (10) and (11) imply

\[2\mu = \frac{2\epsilon}{\max (2 + \Delta u + u_t)} \leq \epsilon e^{-\min F/2} \leq e^{-\min F/2}, \]

then, (47) yields

\begin{equation}
\epsilon \exp \left(-e^{-\min F/2} |u|_{C^0} \right) \leq \mu M \leq \epsilon
\end{equation}

and

\begin{equation}
\exp \left(-e^{-\min F/2} |u|_{C^0} \right) \max (2 + \Delta u + u_t) \leq M.
\end{equation}

Eventually from (46), (48), and (49) we obtain

\[\epsilon \exp \left(-2e^{-\min F/2} |u|_{C^0} \right) \max (2 + \Delta u + u_t) \leq \\
\leq |(\Delta F + F_t) e^F|_{C^0} + 3 \epsilon |u|_{C^1}^2, \]

that is

\begin{equation}
\max (2 + \Delta u + u_t) \leq \\
\leq \exp \left(2e^{-\min F/2} |u|_{C^0} \right) \left(\frac{1}{\epsilon} |(\Delta F + F_t) e^F|_{C^0} + 3 |u|_{C^1}^2 \right).
\end{equation}
Since

$$|\Delta u|_{C^0} \leq \max(2 + \Delta u + u_t) + 2 + |u_t|_{C^0},$$

estimate (27) follows from (24), (25) and (30), with

$$\epsilon = \frac{1}{1 + |u|_{C^1}}.$$

Now we prove a simple interpolation inequality.

Theorem 12. For all $\epsilon > 0$ there exists a positive constant M_ϵ such that

$$|u|_{C^1} \leq M_\epsilon |u|_{C^0} + \epsilon |\Delta u|_{C^0}, \quad \text{for all } u \in C^2(T^3).$$

In order to prove the last theorem we need the following elementary lemma.

Lemma 13. For all $R > 0$ and all $0 < \mu \leq 1/4$ we have

$$M_{\mu,R} = \sup_{|h| \leq 1/2} |h|^{-\mu} \int_{|z| \leq R} \left| \frac{z-h}{|z-h|^3} - \frac{z}{|z|^3} \right| dz < \infty,$$

where $z, h \in \mathbb{R}^3$.

Proof. Consider the following cases:

1. $|z| > |h|^\mu$,
2. $|z-h| > |h|^\mu$,
3. $|z| \leq |h|^\mu$ and $|z-h| \leq |h|^\mu$.

We have the elementary estimate

$$\left| \frac{z-h}{|z-h|^3} - \frac{z}{|z|^3} \right| = \left| \int_0^1 \frac{d}{ds} \frac{z-sh}{|z-sh|^3} ds \right| = \left| \int_0^1 \left(\frac{-1}{|z-sh|^3} \frac{h}{|z-sh|^5} \cdot (z-sh) \right) ds \right| \leq 4|h| \int_0^1 \frac{ds}{|z-sh|^3}.$$

Then in case (1) we have

$$\left| \frac{z-h}{|z-h|^3} - \frac{z}{|z|^3} \right| \leq \frac{4|h|}{(|h|^\mu - |h|)^3} = \frac{4|h|^{1-3\mu}}{(1 - |h|^{1-\mu})^3} \leq \frac{4|h|^{\mu}}{(1 - 2(\mu-1)/\mu)^3},$$

while in case (2) we have

$$\left| \frac{z-h}{|z-h|^3} - \frac{z}{|z|^3} \right| \leq 4|h| \int_0^1 \frac{ds}{|z-h + (1-s)h|^3} \leq \frac{4|h|^\mu}{(|h|^\mu - |h|)^3} \leq \frac{4|h|}{(1 - 2(\mu-1)/\mu)^3}.$$

It remains to consider case (3). But then we obtain

$$|h|^{-\mu} \int_{|z| \leq R} \left| \frac{z-h}{|z-h|^3} - \frac{z}{|z|^3} \right| dz \leq |h|^{-\mu} \int_{|z| \leq R} \frac{dz}{|z-h|^2} + |h|^{-\mu} \int_{|z| \leq R} \frac{dz}{|z|^2} \leq \int_{|z| \leq R} \frac{dz}{|z-h|^{2+\mu}} + \int_{|z| \leq R} \frac{dz}{|z|^{2+\mu}} \leq 2 \int_{|z| \leq R+1} \frac{dz}{|z|^{2+\mu}} < \infty.$$
Proof of Theorem 12. Green’s Representation Formula (see e.g. [7, formula (2.16)]) implies

\[u(p) = \int_{|q|=R} \left(\frac{u(q)}{4\pi |q-p|^2} + \frac{\nabla u(q) \cdot q}{4\pi R |q-p|} \right) d\sigma(q) - \int_{|q| \leq R} \frac{\Delta u(q)}{4\pi |q-p|} dq, \]

where

\[d\sigma(q) = R^2 \sin \theta \, d\phi \wedge d\theta \]

and

\[
\begin{cases}
q_1 = R \sin \phi \cos \theta, \\
q_2 = R \cos \phi \cos \theta, \\
q_3 = R \sin \theta,
\end{cases}
\]

are coordinates on the sphere with radius \(R \) and centered at the origin. Set

\[f(p) = \int_{|q|=R} \left(\frac{u(q)}{4\pi |q-p|^2} + \frac{\nabla u(q) \cdot q}{4\pi R |q-p|} \right) d\sigma(q), \]

and

\[g(p) = \int_{|q| \leq R} \frac{\Delta u(q)}{4\pi |q-p|} dq. \]

Now

\[(\nabla \otimes \nabla) f(p) = \frac{1}{4\pi} \int_{|q|=R} \frac{6}{|q-p|^4} (q-p) \otimes (q-p) d\sigma(q) \]

\[- \frac{1}{4\pi} \int_{|q|=R} \frac{2}{|q-p|^3} d\sigma(q) \]

\[+ \frac{1}{4\pi} \int_{|q|=R} \frac{2}{R |q-p|^2} (q-p) \otimes (q-p) d\sigma(q) \]

\[- \frac{1}{4\pi} \int_{|q|=R} \frac{\nabla u(q) \cdot q}{R |q-p|} d\sigma(q), \]

then, for all \(0 < r < R \) we have

\[\sup_{|p| \leq r} |(\nabla \otimes \nabla) f(p)| \leq 8R^2 \frac{|u|_{C^0}}{(R - r)^3} + 9R^2 \frac{|u|_{C^1}}{(R - r)^3}. \]

This estimate shows that \(f \) belongs to \(C^{1+\mu}(B_r) \), where \(B_r \) is the ball centered at the origin and with radius \(r \), and satisfies the estimate:

\[|f|_{C^{1+\mu}(B_r)} \leq \frac{9R^2}{(R - r)^3} \left(|u|_{C^0} + (R - r) |u|_{C^1} \right) |h|^{1-\mu}. \]

On the other hand we have

\[\nabla g(p) = \nabla \int_{|q| \leq R} \frac{\Delta u(q)}{4\pi |q-p|} dq = \int_{|q| \leq R} \frac{\Delta u(q)}{4\pi |q-p|^3} (q-p) dq. \]

Then

\[|\nabla g(p + h) - \nabla g(p)| \leq \frac{|u|_{C^0}}{4\pi} \int_{|q| \leq R} \frac{|q - p - h|}{|q - p|^3} \left| \frac{q - p}{|q-p|^3} \right| dq \]

\[\leq \frac{|u|_{C^0}}{4\pi} \int_{|q| \leq R + r} \frac{|q - h|}{|q - h|^3} - \frac{q}{|q|^3} dq, \quad \text{for all } p \in B_r, \]

\[2 \text{ Observe that } |\nabla u(q) \cdot q| \leq 3R |u|_{C^1}. \]
and from Lemma 13 we obtain
\[|h|^{-\mu} |\nabla g(p + h) - \nabla g(p)| \leq (4\pi)^{-1} M_{\mu,2R} |\Delta u|_{C^0}, \]
for $|p| \leq r$ and $|h| \leq 1/2$.

Consider now $0 < r < R$ such that $Q \subset B_r$. Then from (51), (52), (53), (54), and (55) we obtain that there exists a positive constant M such that
\[|u|_{C^{1+\mu}} \leq M \left(|u|_{C^0} + |u|_{C^1} + |\Delta u|_{C^0} \right), \quad \text{for all } u \in C^2(T^3). \]

Thanks to standard interpolation inequality theory (see [7, section 6.8]), for all $\epsilon > 0$ there exists a positive constant M'_{ϵ} such that
\[|u|_{C^1} \leq M'_{\epsilon} |u|_{C^0} + \epsilon |u|_{C^{1+\mu}}, \quad \text{for all } u \in C^{1+\mu}(T^3). \]

From (56) and (57) with $\epsilon = \epsilon_{\mu} = 1/(2M)$ we obtain
\[|u|_{C^1} \leq 2(M + M'_{\epsilon}) |u|_{C^0} + 2M |\Delta u|_{C^0}, \quad \text{for all } u \in C^2(T^3). \]

Using (57) a second time with $\epsilon = \epsilon' > 0$, we get in the end
\[|u|_{C^1} \leq \left(M'_{\epsilon'} + 2\epsilon (M + M'_{\epsilon'}) \right) |u|_{C^0} + 2M \epsilon' |\Delta u|_{C^0}, \quad \text{for all } u \in C^2(T^3). \]

Theorem 14. Given $F \in C^2(T^3)$ satisfying condition (7), there exists a positive constant C, depending only on $\|F\|_{C^2}$, such that
\[|\Delta u|_{C^0} \leq C, \]
for all $u \in \tilde{C}^4(T^3)$ solution to equation (10).

Proof. From Theorems 9, 11 and 12 we obtain that there exists a positive constant C' such that for all $\epsilon > 0$ we have:
\[|\Delta u|_{C^0} \leq C' \left(1 + M'_{\epsilon} + \epsilon |\Delta u|_{C^0} \right), \]
for all u satisfying the hypotheses of the theorem. \hfill \Box

Corollary 15. Given $F \in C^2(T^3)$ satisfying condition (7), there exists a positive constant C, depending only on $\|F\|_{C^2}$, such that
\[|u|_{C^1} \leq C, \]
for all $u \in \tilde{C}^4(T^3)$ solution to equation (10).

Proof. It follows from Theorems 12 and 14. \hfill \Box

Corollary 16. Equation (10) is strictly uniformly elliptic, in the sense that there exists a positive constant C, depending only on $\|F\|_{C^2}$, such that for all $u \in \tilde{C}^4(T^3)$ solution to equation (10), we have
\[\Lambda^{-1} \leq \lambda_- \leq \lambda_+ \leq \Lambda, \]
where λ_{\pm} are defined in formula (59).
4.3. $C^{2+\rho}$-estimate. We begin by recalling a theorem of [14], which greatly simplifies the estimate of second derivatives. In [14] the theorem has been stated locally, but on compact manifolds it holds globally.

Theorem 17 (14 Theorem 5.1). Let $\tilde{\Omega}$ be the solution of the Calabi-Yau equation

$$\tilde{\Omega} = e^F \Omega,$$

on a compact almost-Kähler manifold (M^{2n}, Ω, J).

Assume there are two constants $C_0 > 0$ and $0 < \rho_0 < 1$ such that $F \in C^{\rho_0}(M^{2n})$ and

$$\text{tr} \tilde{\tilde{g}} \leq C_0,$$

where $\tilde{\tilde{g}}$ is the Riemannian metric associated to $\tilde{\Omega}$.

Then there exist two constants $C > 0$ and $0 < \rho < 1$, depending only on M^{2n}, Ω, J, C_0 and $\|F\|_{C^{\rho_0}}$, such that

$$\|\tilde{\tilde{g}}\|_{C^0} \leq C.$$

Using this Theorem we easily prove the following estimate.

Theorem 18. Given $F \in C^2(T^3)$ satisfying condition (7), there exist constants $C > 0$ and $\rho > 0$, both depending only on $\|F\|_{C^2}$, such that

$$\|u\|_{C^{2+\rho}} \leq C,$$

for all $u \in \tilde{\mathcal{C}}^4(T^3)$ solution to equation (10).

Proof. From (20) we obtain that the Riemannian metric $\tilde{\tilde{g}}$ is represented by the matrix

$$\begin{bmatrix}
1 + u_{yy} + u_{tt} + u_t & u_{xy} & 0 & u_{xt} \\
0 & 1 + u_{xx} & u_{xt} & 0 \\
u_{xt} & 0 & 1 + u_{yy} + u_{tt} + u_t & -u_{xy} \\
0 & u_{xt} & -u_{xt} & 1 + u_{xx}
\end{bmatrix}.$$

Then

$$\text{tr} \tilde{\tilde{g}} = 2(2 + \Delta u + u_t).$$

Thanks to Theorem 14 and Corollary 16 we can apply Theorem 17 and get that

$$\max\{1 + u_{xx}\}_{C^\rho}, \ 1 + u_{yy} + u_{tt} + u_t\}_{C^\rho}, \|u_{xy}\|_{C^\rho}, \|u_{xt}\|_{C^\rho} \leq C,$$

where C depends only on $\|F\|_{C^2}$.

Now the estimates of the second derivatives can be obtained as follows. Given a solution u of equation (10), we have that u can be viewed as a solution of the equation

$$a_1 u_{xx} + a_2(u_{yy} + u_{tt}) + 2a_3 u_{xy} + 2a_4 u_{xt} + bu_t = f,$$

with

$$a_1 = 1 + u_{yy} + u_{tt} + u_t, \quad a_2 = 1 + u_{xx}, \quad a_3 = -u_{xy}, \quad a_4 = -u_{xt}, \quad b = 1 + u_{xx}, \quad f = 2e^F - (2 + \Delta u + u_t).$$

Equation (60) is uniformly elliptic, with coefficients in $C^\rho(T^3)$. Thanks to (59) and Theorem 9 standard Schauder theory gives the estimate (58). □
5. Proof of Theorem 19

Proposition 19. Assume \(u \in \tilde{C}^{2+\rho}(T^3) \) is a solution to equation (10) with \(\rho > 0 \). If \(F \in C^{\infty}(T^3) \) then \(u \in \tilde{C}^{\infty}(T^3) \).

Proof. By Proposition 10 the equation (10) is elliptic. Then from [10, Theorem 4.8, Chapter 14], it follows that \(u \) belongs to the Sobolev space \(W^{n,2}(T^3) \), for all \(n \in \mathbb{Z}_+ \). But this implies that \(u \in C^{\infty}(T^3) \).

Thanks to Proposition 8, Theorem 1 is an immediate consequence of the following

Theorem 20. Let \(F \in C^{\infty}(T^3) \) satisfy (7). Then equation (10) has a solution \(u \in \tilde{C}^{\infty}(T^3) \).

Proof. We apply the continuity method (see [7 Section 17.2]). For \(0 \leq \theta \leq 1 \), let

\[
\mathcal{S}_\theta = \left\{ u \in \tilde{C}^{\infty}(T^3) : (1 + u_{yy} + u_{tt} + u_t)(1 + u_{xx}) - u_{xy}^2 - u_{xt}^2 = e^{F_\theta} \right\}
\]

where

\[
F_\theta = \log(1 - \theta + \theta e^{F}).
\]

Note that \(0 \in \mathcal{S}_0 \) and that \(\mathcal{S}_1 \) consists in the solutions to (10) lying in \(\tilde{C}^{\infty}(T^3) \). Since

\[
\max_{0 \leq \theta \leq 1} \|F_\theta\|_{C^2} < \infty,
\]

and

\[
\int_{T^3} e^{F_\theta} \, dV = \int_{T^3} (1 - \theta + \theta e^{F}) \, dV = 1,
\]

by Theorem 18 there exists a real number \(\rho > 0 \) such that

\[
\sup_{u \in \mathcal{S}} ||u||_{C^{2+\rho}} < \infty,
\]

with

\[
\mathcal{S} = \bigcup_{0 \leq \theta \leq 1} \mathcal{S}_\theta \neq \emptyset.
\]

Since \(0 \in \mathcal{S}_0 \), the set \(\{ \theta \in [0, 1] : \mathcal{S}_\theta \neq \emptyset \} \) is not empty and we can define

\[
\mu = \sup \{ \theta \in [0, 1] : \mathcal{S}_\theta \neq \emptyset \}.
\]

In order to complete the proof we have to show that \(\mathcal{S}_\mu \neq \emptyset \) and \(\mu = 1 \).

- \(\mathcal{S}_\mu \neq \emptyset \). By the definition of \(\mu \) there exist two sequences \((\theta_k) \subset [0, 1] \) and \((u_k) \subset \tilde{C}^{\infty}(T^3) \) such that \((\mu_k) \) is increasing and \(u_k \in \mathcal{S}_{\theta_k} \) for all \(k \). Thanks to (52), the sequence \((u_k) \) is bounded in \(\tilde{C}^\rho(T^3) \), then by Ascoli-Arzelà Theorem there exists a subsequence \((u_{k_j}) \) convergent in \(\tilde{C}^{2+\rho/2}(T^3) \). Let \(v = \lim_{j} u_{k_j} \), Then \(v \) belongs to \(\tilde{C}^{2+\rho/2}(T^3) \) and satisfies the equation

\[
(1 + v_{yy} + v_{tt} + v_t)(1 + v_{xx}) - v_{xy}^2 - v_{xt}^2 = e^{F_v}.
\]

By Proposition 10 the equation (10) is elliptic and the standard theory of elliptic equations implies that \(v \) belongs to \(\tilde{C}^{\infty}(T^3) \) (see e.g. [10 Chapter 14]). In particular, \(v \) belongs to \(\mathcal{S}_\mu \), which turns out to be not empty.

- \(\mu = 1 \). Assume by contradiction \(\mu < 1 \) and define the non-linear \(C^\infty \) operator

\[
\begin{align*}
T & : \tilde{C}^\rho(T^3) \times [0, 1] \to C^{\rho-2}(T^3), \\
T(u, \theta) & = (1 + u_{yy} + u_{tt} + u_t)(1 + u_{xx}) - u_{xy}^2 - u_{xt}^2 - e^{F_v}.
\end{align*}
\]

Since \(\mathcal{S}_\mu \) is not empty, there exists \(v \in \mathcal{S}_\mu \) such that \(T(v, \mu) = 0 \). Compute

\[
\partial_\mu T(v, \mu) w = Lw,
\]
Then we have
\[Lw = (1 + v_{yy} + v_{tt} + v_1)w_{xx} + (1 + v_{xx}) (w_{yy} + w_{tt} + w_t) - 2v_{xy} w_{xy} - 2v_{xt} w_{xt}. \]

Proposition 16 implies that \(L : \mathcal{C}^{2+p}(T^3) \to \tilde{\mathcal{C}}^p(T^3) \) is elliptic. Then by Strong Maximum Principle \(L = 0 \) implies that \(u \) is constant. This shows that \(L \) is one-to-one on \(\mathcal{C}^{2+p} \). Moreover, by ellipticity, \(L \) has closed range, thus Schauder Theory and Continuity Method (see [7, Theorem 5.2]) show that \(L \) is onto. Therefore by Implicit Function Theorem there exists an \(\epsilon > 0 \) such that
\[T(u, \theta) = 0 \]
is solvable with respect to \(u \) for every \(\theta \in (\mu - \epsilon, \mu + \epsilon) \). Thanks to Proposition 19 these solutions belong to \(\tilde{\mathcal{C}}^\infty(T^3) \). Then \(\mathcal{G}_y \neq \emptyset \) for all \(\mu < \theta < \mu + \epsilon \), in contradiction with the definition of \(\mu \). \(\square \)

6. Proof of Theorem 2

Consider on \(M \) an almost-Kähler structure \((\Omega, J)\) such that \(e^4 \) is orthogonal to \(e^1, e^2, e^3 \) with respect to the Riemannian metric induced by \((\Omega, J)\). Then we can find an invariant orthonormal co-frame \(\{f^1, f^2, f^3, f^4\} \) such that
\[\text{span}_g \{f^1, f^2, f^3\} = \text{span}_g \{e^1, e^2, e^3\}, \quad \text{span}_g \{f^4\} = \text{span}_g \{e^4\}, \]
and
\[\Omega = f^{13} - f^{24}. \]

Let \(u \) be an \(S^1 \)-invariant function on \(M \), that is not depending on \(z \), and set
\[u_i = f_i u, \]
where \(\{f_1, f_2, f_3, f_4\} \) is the frame dual to \(\{f^1, f^2, f^3, f^4\} \). Observe that
\[u_4 = 0, \]
because \(\text{span}_g \{f_4\} = \text{span}_g \{e_4\} \). From (63) we know that there exists a non-singular matrix \(A \) such that
\[e^1 = \sum_{j=1}^3 A_j^i f^j, \quad \text{for } i \in \{1, 2, 3\}, \quad e^4 = A_4^i f^4. \]

Then we have
\[df^i = \frac{1}{A_i^4} de^4 = \frac{1}{A_i^4} e^{12} = \frac{1}{A_i^4} \sum_{j,k=1}^3 A_j^i A_k^j f^{jk} = \lambda^1 f^{23} + \lambda^2 f^{13} + \lambda^3 f^{12}, \]
with
\[\lambda^1 = \frac{A_1^j A_2^j - A_1^j A_3^j}{A_4^j}, \quad \lambda^2 = \frac{A_1^j A_2^j - A_2^j A_3^j}{A_4^j}, \quad \lambda^3 = \frac{A_1^j A_3^j - A_2^j A_3^j}{A_4^j}. \]

It follows that
\[dd^c u = - \sum_{i,j=1}^3 u_{ij} f^i \wedge J f^j + u_2 (\lambda^1 f^{23} + \lambda^2 f^{13} + \lambda^3 f^{12}) \]
\[= - \sum_{i,j=1}^3 u_{ij} f^i \wedge J f^j + d(u(\lambda^1 f^3 - \lambda^3 f^1) - \sum_{i=1}^3 \lambda^i u_i) f^{13} \]

Therefore, if we set
\[\alpha = d^c v - u(\lambda^1 f^3 - \lambda^3 f^1), \]
(65)
we have that \(d\alpha \) is of type \((1, 1)\) and

\[
d\alpha = -\sum_{i,j=1}^{3} u_{ij} f^i \wedge J f^j + \left(\sum_{i=1}^{3} \lambda^i u_i \right) f^{13}.
\]

At this point, a simple computation shows that \(\alpha \) satisfies (4) if and only if \(u \) satisfies the following PDE

\[
(1 + u_{22}) \left(1 + u_{11} + u_{33} + \sum_{i=1}^{3} \lambda^i u_i \right) - (u_{12})^2 - (u_{13})^2 = e^F.
\]

In conclusion we have proven the following

Proposition 21. Consider on \(M \) an almost-Kähler structure \((\Omega, J)\) such that \(e^4 \) is orthogonal to \(e^1, e^2, e^3 \) with respect to the Riemannian metric induced by \((\Omega, J)\). Let \(F : T^3 \to \mathbb{R} \) be a smooth function satisfying (4). Let \(\{f^1, f^2, f^3, f^4\} \) be an invariant orthonormal co-frame for which (63) and (64) are satisfied. Let \(u : T^3 \to \mathbb{R} \) be a smooth function satisfying (8). Then the 1-form (65) solves (3) if and only if \(u \) is a solution to the non-linear PDE (66).

Equation (66) is very similar to equation (12). As a matter of facts the only really new feature is that the unknown \(u \) is periodic with respect to the lattice generated by \(\{e_1, e_2, e_3\} \) and not with respect to the one generated by the new frame \(\{f_1, f_2, f_3\} \). Then the proof of Proposition 5 fails unless \(u \) is periodic in the direction of \(f_2 \). However from assumption (6) it follows that there exist 4 integers \(n, j, k, m \), with \(n > 0 \), such that

\[
nf_2 = je_1 + ke_2 + me_3.
\]

Now we can estimate \(u_2 \).

Proposition 22. Let \(\pi : \mathbb{R}^3 \to T^3 \) be the quotient map. Assume (67) is satisfied. Then the map

\[
T : \mathbb{R} \to T^3,
\]

\[
T(s) = \pi \left(\frac{j}{n} s, \frac{k}{n} s, \frac{m}{n} s \right),
\]

is periodic. Let \(\nu \) be the minimum positive period of \(T \). Then

\[
|u_2| \leq \nu.
\]

for all solution \(u \) to equation (66).

Proof. Fix \((x, y, t) \in \mathbb{R}^3\), and consider the periodic function

\[
v(s) = u(x + js/n, y + ks/n, t + ms/n).
\]

We have

\[
v''(s) = u_{22} u(x + js/n, y + ks/n, t + ms/n) \geq -1.
\]

Let \(s_0 \in [0, \nu] \) be a critical point of \(v \). Then we have

\[
v'(s) = \int_{s_0}^{s} v''(r) \, dr \begin{cases} \geq -(s - s_0) \geq -\nu, & s_0 \leq s \leq s_0 + \nu, \\ \leq -(s - s_0) \geq -\nu, & s_0 - \nu \leq s \leq s_0. \end{cases}
\]

By periodicity we get that these estimates hold everywhere, in particular we get

\[
|u_2(x, y, t)| = |v'(0)| \leq \nu.
\]

The rest of the proof of Theorem 2 can be obtained by a slight modification of the argument used to prove Theorem 1 and it is left to the reader.
References

[1] E. Abbena, An example of an almost Kähler manifold which is not Kählerian, *Boll. Un. Mat. Ital. A* (6) 3 (1984), no. 3, 383–392.

[2] R.A. Adams, *Sobolev Spaces*, Pure and Applied Mathematics, vol. 65, Academic Press, Orlando, 1975.

[3] E. Buzano, A. Fino and L. Vezzoni, The Calabi-Yau equation for T^2-bundles over the non-Lagrangian case, *Rend. Semin. Mat. Univ. Politec. Torino* 69 (2011), no. 3, 281–298.

[4] E. Calabi, On Kähler manifolds with vanishing canonical class, in *Algebraic geometry and topology. A symposium in honor of S. Lefschetz*, pp. 78–89. Princeton University Press, Princeton, N.J., 1957.

[5] S.K. Donaldson, Two-forms on four-manifolds and elliptic equations. *Inscribed by S.S. Chern*, 153–172, Nankai Tracts Math. 11, World Scientific, Hackensack N.J., 2006.

[6] A. Fino, Y.Y. Li, S. Salamon and L. Vezzoni, The Calabi-Yau equation on 4-manifolds over 2-tori, *Trans. Amer. Math. Soc.* 365 (2013), no. 3, 1551–1575.

[7] D. Gilbarg and N.S. Trudinger, *Elliptic partial differential equations of second order*, second ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983.

[8] D.D. Joyce, *Compact manifolds with special holonomy*, Oxford Mathematical Monographs. Oxford University Press, Oxford, 2000. xii+436 pp.

[9] C.H. Taubes, Tamed to compatible: symplectic forms via moduli space integration. *J. Symplectic Geom.* 9 (2011), no. 2, 161–250.

[10] M.E. Taylor, *Partial Differential Equations III, Nonlinear Equations*, Applied Mathematical Sciences, vol.V 117, Springer, New York, NY, 1996.

[11] W.P. Thurston, Some simple examples of symplectic manifolds, *Proc. Amer. Math. Soc.* 55 (1976), 467–468.

[12] V. Tosatti and B. Weinkove, The Calabi-Yau equation on the Kodaira-Thurston manifold, *J. Inst. Math. Jussieu* 10 (2011), no. 2, 437–447.

[13] V. Tosatti, B. Weinkove and S.T. Yau, Taming symplectic forms and the Calabi-Yau equation, *Proc. London Math. Soc.* 97 (2008), no. 2, 401–424.

[14] V. Tosatti, Y. Wang, B. Weinkove and X. Yang, $C^{2,\alpha}$ estimates for nonlinear elliptic equations in complex and almost complex geometry. *arXiv:1402.0554*

[15] S.T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, I, *Comm. Pure Appl. Math.* 31 (1978), no. 3, 339–411.

[16] B. Weinkove, The Calabi-Yau equation on almost-Kähler four-manifolds, *J. Differential Geom.* 76 (2007), no. 2, 317–349.

Ernesto Buzano, Anna Fino and Luigi Vezzoni, Dipartimento di Matematica, Università di Torino, Via Carlo Alberto 10, 10123 Torino, Italy. E-mail: ernesto.buzano@unito.it, annamaria.fino@unito.it, luigi.vezzoni@unito.it