Abstract

Comparing compositional models of the terrestrial planets provides insights into physicochemical processes that produced planet-scale similarities and differences. The widely accepted compositional model for Mars assumes Mn and more refractory elements are in CI chondrite proportions in the planet, including Fe, Mg, and Si, which along with O make up >90% the mass of Mars. Here we present an alternative model composition for Mars that avoids such an assumption and is based on data from Martian meteorites and spacecraft observations. Our modeling method was previously applied to predict the Earth’s composition. The model establishes the absolute abundances of refractory lithophile elements in the bulk silicate Mars (BSM) at 2.26 times higher than that in CI carbonaceous chondrites. Relative to this chondritic composition, Mars has a systematic depletion in moderately volatile lithophile elements as a function of their condensation temperature. Given this finding, we constrain the abundances of siderophile and chalcophile elements in the bulk Mars and its core. The Martian volatility trend is consistent with \(<7\) wt\% S in its core, which is significantly lower than that assumed in most core models (i.e., \(>10\) wt\% S). Occurrence of ringwoodite at the Martian core-mantle boundary might have contributed partitioning of O and H into the Martian core.
1 Introduction

Mars is the second best-known planet in our solar system, given multiple space missions and cosmochemical studies on martian meteorites (McSween Jr and McLennan, 2014). Therefore comparison of physical and chemical properties of Mars with those of the Earth can provide important insights into the origin and evolution of the rocky planets, especially conditions for a habitable planet formation. Radioisotope dating of Martian meteorites demonstrates that its accretion and evolution occurred earlier than that of the Earth (Dauphas and Pourmand, 2011; Kruijer et al., 2017b; Bouvier et al., 2018). The rapid formation of Mars is consistent with a pebble accretion model for its formation, which predicts efficient accretion of Mars-sized planetary embryos before the dissipation of the protoplanetary disk (Johansen et al., 2015; Levison et al., 2015). Comparing the composition of Mars and the Earth (McDonough and Sun, 1995; McDonough, 2014) will provide insights into processes of planetary formation and evolution.

Compositional modeling of terrestrial planets requires determining the abundances and distribution of elements, given limited chemical data from their silicate shell, knowledge of the behavior of elements in different P-T-Xi-\(fO_2\) conditions (Table 1), and constraints from their geodetic properties. A compositional model for the bulk planet and its core and mantle can be used to understand the many and markedly different processes involved in its accretion and differentiation. Models for the chemical composition of Mars (e.g., Morgan and Anders, 1979; Longhi et al., 1992; Wänke and Dreibus, 1994; Lodders and Fegley Jr, 1997; Sanloup et al., 1999; Halliday et al., 2001; Burbine and O’Brien, 2004; Taylor, 2013) have been reviewed recently by Taylor (2013). Limited cosmochemical constraints and a lack of seismic data from Mars make it difficult to evaluate critically these competing models. Importantly, most existing models assume Mars’ major element composition equates to that in CI carbonaceous chondrites. Chondrites are undifferentiated assemblage of metal and silicates (Scott and Krot, 2014). Chondritic meteorites, especially the CI carbonaceous chondrites, are chemically similar to the solar photosphere (e.g., Palme et al., 2014), which is taken to reflect the Sun’s abundances of non-gaseous elements. At >99% of mass of the solar system, understanding the Sun’s composition and that of chondrites, the building blocks of the terrestrial planets, is key to understanding the sources and processes involved in making the planets.

The Wänke and Dreibus family of models (Wänke, 1981, 1987; Wänke and Dreibus, 1988, 1994; Dreibus and Wänke, 1984, 1987; Wänke and Dreibus, 1994) is the most widely accepted compositional model of Mars. It is based on chemical composition of Martian meteorites and assumes that Mn and more refractory elements (Table 1) are in CI-like proportions in Mars. Abundances of other less refractory elements are determined from chemical correlations with refractory or major elements. Many studies use a similar approach (Longhi et al., 1992; Halliday et al., 2001; Taylor, 2013; Taylor, 2013) revisited and updated the Wänke and Dreibus model using the more abundant, recent chemical data for Martian meteorites and spacecraft observations, and found no significant difference with the Wänke and Dreibus model. This model is the standard for most geochemical and geophysical modeling (e.g., Sohl and Spohn, 1997; Khan et al., 2018) and experimental works (e.g., Bertka and Fei, 1997; 1998a).
Here we present an alternative compositional model for Mars. We avoid the CI chondrite assumption. We base our model on data from Martian meteorites and spacecraft observations and use a method that was previously applied to predict the Earth’s composition. We determine a unique composition for the bulk silicate Mars (BSM) and a best fit, non-unique model for its core composition. By establishing the systematic depletion in volatile element in the BSM, we show that the core has \(\leq 7 \) wt\% S along with O and H as light elements. We discuss similarities and differences between the Earth and Mars and possible causes of these differences in a companion paper (Yoshizaki and McDonough, submitted).

2 Recent developments in understanding the solar system

Over the last decade technological advances and insights have revealed markedly new perspectives about the Sun’s composition and restrictions in the radial distribution of certain chondritic materials. Multiple challenges have been advanced regarding the solar photosphere’s composition, weakening the use of CI chondrites as a proxy for the bulk solar composition. Spectroscopic observations of the solar photosphere and assumptions about local thermodynamic equilibrium in modeling the photosphere’s composition are used to constrain its elemental abundances (e.g., Asplund et al., 2009). The solar metallicity problem notes the significant difference in estimates of the sun’s metallicity \((Z_\odot, \text{abundance of elements in the Sun heavier than He}) \) from spectroscopic observations versus helioseismology (e.g., Basu and Antia, 2008; Haxton et al., 2013; Bergemann and Serenelli, 2014). The former method suggests 30 to 40% lower metal content in the Sun and the finding is at 5\(\sigma \) to 15\(\sigma \) outside the limits set by helioseismology for the Sun’s surface He abundance, the sound speed in the convective zone, and the depth of the convective zone boundary. Data from experiments on the opacity of metals in high temperature plasma (Bailey et al., 2015; Nagayama et al., 2019), the composition of solar wind particles (Schmelz et al., 2012), and measurements of solar neutrino flux (Haxton et al., 2013; Agostini et al., 2018) are in mutual agreement with findings from helioseismology, regarding the Sun’s metallicity. One solution to the problem is to have a significant increase in the Sun’s abundance of Mg, Si, S and Fe, which leads to a hotter core temperature (Basu and Antia, 2008; Asplund et al., 2009; Bergemann and Serenelli, 2014).

It is also important to recognize the accretion settings of different chondritic parent bodies. Isotopic distinctions (e.g., O, Ni, Cr, Ti, Mo, W) are now clearly established for the non-carbonaceous and carbonaceous (NC and CC, respectively) meteorite groups, including the chondrites (Warren, 2011; Dauphas and Schauble, 2016; Kruijer et al., 2017a). These differences likely originated because of a limited radial transport in the accretion disk, which may have been controlled by an early-formed young Jupiter (Walsh et al., 2011; Kruijer et al., 2017a; Raymond and Izidoro, 2017; Desch et al., 2018). As members of the inner solar system NC group, Mars and Earth are isotopically most similar to ordinary and enstatite chondrites, respectively, whereas CI chondrites are isotopically a part of the CC group meteorites, which are taken as sampling the outer solar system building blocks. Trace element chemistry of NC and CC meteorites supports this isotopic divide of two groups (Dauphas and Pourmand, 2015; Barrat et al., 2016). Thus, we recommend not using
a CI-chondrite compositional model for the inner terrestrial planets, including Mars. Here we develop a compositional model for Mars that is based on Martian rocks and is free of the CI chondrite assumption.

3 Data

A compilation of chemical and isotopic data of Martian meteorites was used in this study, with most data coming from the Martian Meteorite Compendium (Righter, 2017) and the online Met-Base database (https://metbase.org/). Shergottites, especially lherzolitic ones, were used to estimate composition of the bulk silicate Mars (BSM). Data for olivine shergottites (SHE-OI) and basaltic shergottites (SHE-B) provide robust compositional correlations. In most cases we excluded nakhlites, chassignites and other ungrouped Martian meteorites (e.g., Allan Hills (ALH) 84001) from our analyses because these samples are cumulates, metamorphosed cumulates, or more complex lithologies rather than simple melt-derived rocks (McSween Jr, 2008). Paired Martian meteorites (e.g., Northwest Africa (NWA) 2975 and NWA 2986) are treated as one sample. We exclude NWA 7397 lherzolitic shergottite from our analyses because it has experienced a complicated formation processes (Howarth et al., 2014). Several analyses which are unrepresentative due to sample heterogeneity or terrestrial contamination are also excluded from our dataset. Average values of elemental abundances in each Martian meteorite are calculated and used in the compositional modeling. We also use data from the Martian surface as measured by spacecraft missions using a gamma-ray spectrometer (GRS) (Boynton et al., 2008; Taylor et al., 2006a,b). For some elemental abundances, we adopted estimates by recent studies (e.g., Yang et al., 2015; Wang and Becker, 2017; Tait and Day, 2018). Errors are reported as 1 standard deviations, unless otherwise noted. For a CI chondritic composition, we adopted the value proposed by Palme et al. (2014) for most elements, with some modifications for halogens (Clay et al., 2017), Mo, Tl, Bi (Wang et al., 2015), highly siderophile elements (Day et al., 2016), and U (Wipperfurth et al., 2018) (Table 2).

4 Composition of the bulk silicate Mars

4.1 Refractory lithophile elements

Refractory lithophile elements (RLE; Table[1]) remain in the silicate shell during core-mantle differentiation and their relative abundances show limited variation (generally <10%) among chondritic meteorites (e.g., Masuda, 1957; Coryell et al., 1963; Larimer and Wasson, 1988; Wasson and Kallemeyn, 1988; Bouvier et al., 2008b). Thus, if you establish the absolute concentration of one RLE, you can calculate the abundances of all of the others based on chondritic ratios (e.g., Sm/Nd, Lu/Hf, Ca/Al).

As a first step in determining the composition of Mars, we independently tested if Mars has chondritic ratios of RLE. We used ratio-ratio plots to demonstrate that the trends cross at the in-
intersection of chondritic values when using 4 independent refractory lithophile elements (Figure 1). These chemical trends see through previous melt-residue differentiation events back to their primordial compositions, which are chondritic RLE ratios. Thus, these chemical trends document negligible (within uncertainties) fractionation of RLE in the undifferentiated BSM composition. Given this finding, all RLE are taken to be in chondritic relative proportions in the BSM and, as a follow on, in the bulk Mars too. From this starting point, we can directly determine the BSM abundances of most elements, whose concentrations are correlated with ratios or abundances of refractory lithophile elements in Martian rocks, due to chemical trends resulting from melt-residue differentiation.

The absolute abundance of the RLE are established using variation diagrams involving a single RLE versus an RLE ratio (Figure 2). The lherzolitic shergottite (SHE-L) are the best recorders of melt depletion trends, providing an accurate estimate of the primitive BSM composition. Using these melt depletion trends for multiple element combinations, we estimate the absolute abundance of the refractory lithophile elements in the BSM at ~ 2.26 times that in CI chondrites with $\sim 10\%$ uncertainties (cf. $2.75 \times$ CI in the BSE; McDonough and Sun, 1995).

4.2 Major elements (Mg, Si, Fe)

Magnesia correlates negatively with RLE abundances in shergottites (Figure 3) and trends for multiple RLE establish the MgO abundance at 31.0 \pm 2.0 wt% for the BSM. There is limited variation in silica contents in shergottites (Figure 4), reflecting silicon’s bulk distribution coefficient of ~ 1 during silicate melt production. The SiO$_2$ content of the Martian surface as measured by gamma-ray spectroscopy (GRS) (Boynton et al., 2007) overlaps with the range seen in basaltic shergottites, confirming the bulk crust of Mars is basaltic (e.g., Taylor and McLennan, 2009; McSween Jr and McLennan, 2014 and references therein). By averaging the SiO$_2$ abundances in shergottites, we estimate 45.5 \pm 1.8 wt% SiO$_2$ for the BSM. Assuming no Si or Mg in the Martian core, our BSM and bulk Mars model compositions have a Mg/Si value of 0.88 \pm 0.07, which agrees with an estimate based on Si isotope systematics (0.86 \pm 0.05; Dauphas et al., 2015). Uncertainty in Mg/Si value for the BSM does, however, overlap with average values for ordinary (~0.82) and carbonaceous chondrites (~0.92).

As compared to the Earth, Mars is more oxidized and Martian meteorites, including the least evolved samples, have distinctly lower Mg# (atomic ratio of Mg/(Mg + Fe)) relative to basalts from the Earth (e.g., Wadhwa, 2001, 2008; Herd et al., 2002). Estimates of the Mg# of the Martian mantle range between 0.7 and 0.8 (Table 3). Agee and Draper (2004) argued that a bulk Martian mantle or shergottite source region has a Mg# closer to that of H-type ordinary chondrites (0.79–0.82; Rubin et al., 1988). Petrological and geochemical data support the H chondrite like Mg# of the Martian mantle (Minitti et al., 2006; McCoy et al., 2016; Draper et al., 2005; White et al., 2006; Borg and Draper, 2003). Adopting an Mg# of 0.79 for the Martian mantle gives an FeO content of
14.7 ± 1.0 wt% in the BSM. Collectively, these findings for the RLE (Al, Ca and Ti), magnesia, silica and ferrous iron sets the BSM composition at a total of 97.8 wt% (Table 4).

4.3 Non-refractory lithophile elements

4.3.1 Manganese, chromium and vanadium

The MnO concentration in the BSM (Wänke and Dreibus, 1994; Taylor, 2013) is established foremost from the nearly constant FeO/MnO ratio in Martian meteorites (shergottite average 39.4 ± 0.07) and the Martian mantle’s FeO content, producing a BSM having 0.37 ± 0.07 wt% MnO. An alternative approach uses experimental studies on the partitioning of Mn at 1–2 GPa during melting (Baratoux et al., 2011; Filiberto and Dasgupta, 2011). The measured olivine/melt partition coefficient for MnO (Takahashi and Kushiro, 1983; Walter, 1998; Herzberg and Zhang, 1996; Wasylenki et al., 2003; Le Roux et al., 2011) is 0.93 ± 0.04 (Taylor, 2013). Using this value and a shergottite average MnO content (0.48 ± 0.06 wt%) predicts 0.44 ± 0.06 wt% MnO in the BSM. The MnO content of the BSM obtained using these methods are in agreement within errors.

Chromium correlates with Al ($R^2 = 0.72$) in lherzolitic and olivine-phyric shergottites. Where the Cr-Al trend crosses the Al content of the BSM yields 0.88 ± 0.15 wt% Cr$_2$O$_3$ in the BSM. The CI-normalized abundances in the BSM for Cr and major elements (Mg, Si and Fe), with similar condensation temperatures (Lodders, 2003), is used to conclude that the Martian inventory of Cr is hosted solely in the mantle.

In the solar nebula vanadium behaves as a refractory lithophile element (Lodders, 2003). During the formation of the Earth’s core it was equally lithophile and siderophile in its behavior under high P-T and/or reducing condition (Ringwood and Hibberson, 1990; Wade and Wood, 2005; Wood et al., 2006, 2008; Corgne et al., 2008; Siebert et al., 2013), resulting in half of the Earth’s inventory of V to be in the core (McDonough, 2014). Estimates of the V content of the BSM using correlation diagrams yields ∼130 ppm V, which is an equivalent concentration to that of the other RLE (∼2.26 × CI) (note, here and throughout the paper ppm and ppb will refer to parts per million and billion by weight, respectively). Thus, we conclude that V behaved exclusively as a lithophile element during Mars’ core formation and is wholly concentrated in the BSM.

4.3.2 Sodium and potassium

A log-log abundance plot of Na and Al in lherzolitic and olivine-phyric shergottites show a well-defined slope ∼1 correlation ($R^2 = 0.83$), indicating nearly equal incompatibility of these elements during a partial melting of the Martian mantle. The limited variation in Na/Al ratio in shergottites (0.44 ± 0.10) is consistent with a Na$_2$O content of 0.59 ± 0.13 wt% in the BSM.
The radioactive elements, K, Th and U, have similar partitioning behavior during mantle melting. Consequently, the Martian surface K/Th value of 5300 ± 220, measured by Gamma Ray Spectroscopy (GRS) aboard Mars Odyssey (Taylor et al., 2006a,b), is taken as the bulk K/Th value. Both Th and U are RLE and this K/Th value gives 0.043 ± 0.005 wt% K₂O in the BSM. Our BSM model has Na/K of 12 ± 3, comparable to the Earth’s ratio (11) and overlapping within errors of the lower chondritic value (9.1 ± 1.3; Wasson and Kallemeyn, 1988). Importantly, this ratio of elements increases as a function of the relative condensation temperature, such that Na/K increases from CI to CM to CO/CV chondrites as refractory to volatile element ratios increase (Wasson and Kallemeyn, 1988). This trend is consistent with higher Na/K in the Earth and Mars.

4.3.3 Rubidium

Martian meteorites show a negative trend in a plot of initial ε₁⁴₃Nd vs ⁸⁷Sr/⁸⁶Sr values, establishing the Martian mantle array (Figure 5). The Martian mantle array is shifted to higher ⁸⁷Sr/⁸⁶Sr values compared to the Earth’s mantle array, consistent with Mars’ higher content of volatile elements. The Martian mantle array yields an initial ⁸⁷Sr/⁸⁶Sr value of 0.709–0.721 in the BSM assuming an initial ε₁⁴₃Nd = 0 for the planet. If Rb/Sr fractionation took place at the earliest stages of accretion, then Mars’ initial ⁸⁷Sr/⁸⁶Sr value is consistent with a Rb/Sr of 0.08 ± 0.04, and thus 1.5 ± 0.8 ppm Rb in the BSM. Analogous to Na/K, K/Rb ratio for Mars is 300, which is higher than the CI value (250) and not as volatile depleted as the Earth’s value (400).

Alternatively, a log-log concentration plot of Rb vs La (slope = 1.0 ± 0.1; R² = 0.84) reveals their similar partition coefficients during mantle melting. Using La (an RLE) abundance in the BSM, we predict 0.9 ± 0.4 ppm Rb in the BSM, comparable to that based on the Nd- and Sr-isotopic systematics. An average of these estimated values yields 1.2 ± 0.4 ppm Rb in the BSM.

4.3.4 Cesium

In a log-log concentration plot, Cs and La show a trend with a slope of 1.0 ± 0.1 (R² = 0.78). The Cs/La ratio in shergottites (0.14 ± 0.10) leads to 0.08 ± 0.06 ppm Cs in the BSM. This value is consistent with an average Rb/Cs ratio of shergottites (16.0 ± 3.0) which indicates 0.07 ± 0.03 ppm Cs in the BSM.

4.3.5 Lithium

Lithium correlates with Nb and LREE in Martian meteorites. Intercepts of the Li-RLE trends and the BSM abundances of the RLE (~2.26 × CI) yields Li concentration in the BSM of 1.8 ± 0.4 ppm.
4.3.6 Boron

Boron and Ca are well-correlated in lherzolitic and olivine-phyric shergottites, except for five high-B (>10 ppm B) olivine-phyric shergottite samples discussed by Day et al. (2018). We agree that these five high-B samples are possibly affected by terrestrial weathering (Curtis et al., 1980; Yang et al., 2015; Day et al., 2018) and exclude them from consideration. The average B/Ca (0.41 ± 0.25) in lherzolitic and olivine-phyric shergottites leads to 0.84 ± 0.53 ppm B in the BSM.

4.3.7 Gallium

Gallium and Al are positively correlated in shergottites \(R^2 = 0.84\). An average Ga/Al ratio for shergottites \((4.6 ± 0.9)\) yields 8.7 ± 1.9 ppm Ga in the BSM. Similarly, the Earth’s average Ga/Al ratio for basalts and mantle rocks is 4.3 (McDonough, 1990), the same as that for Mars. The abundance of Ga in the BSM and BSE (bulk silicate Earth) points to its lithophile behavior during core–mantle differentiation and these cores having negligible quantities of Ga.

4.3.8 Halogens

Efforts to estimate the abundances of the halogens (Cl, F, Br, I) are fraught with challenges, because halogens are fluid-mobile and thus readily lost during magma degassing and by alteration processes (e.g., Filiberto et al., 2019 and references therein). Many have attempted to filter Martian meteorite data affected by such secondary processes (Dreibus and Wänke, 1985; Dreibus and Wänke, 1987; Treiman, 2003; Filiberto and Treiman, 2009; Filiberto et al., 2016, 2019).

Filiberto and Treiman (2009) and Filiberto et al. (2016) constrained Cl/La value for the Martian basalt to be 51 ± 17, which is higher than the terrestrial Cl/La ratio (21 ± 6). This Cl/La ratio and the BSM abundance of La \((0.55 ± 0.05\ ppm)\) yields 28 ± 10 ppm Cl in the BSM, which is our preferred value. We observed a well-defined correlation between Cl and Sr in Martian meteorites \((R^2 = 0.79)\), which corresponds to 32 ± 21 ppm of Cl in the BSM. Although errors in the Cl abundance estimated by two methods are large, these values are consistent in general. Taylor et al. (2010) used GRS data for Cl/K observed a ratio of 1.3 ± 0.2, comparable to the Cl value (1.28), and yielded 0.5 wt% Cl in the BSM. However, others (Keller et al., 2006; Filiberto et al., 2019) conclude that Cl abundance in the Martian surface reflects secondary deposition and thus high Cl/K ratios of the Martian surface might not be an indicator of the primitive Cl content of the BSM.

There is limited F data for Martian meteorites. The few shergottites samples with coupled F and B data show a correlation \((R^2 = 0.80)\), indicating 16 ± 12 ppm F in the BSM. Filiberto et al. (2016) reported shergottites and terrestrial basalts with a mean Cl/F of 0.8 ± 0.4. Given terrestrial and Martian basalts are modified by magma degassing, which decreases the initial value, whereas alteration increases the ratio, Filiberto et al. (2016) suggested Cl/F ∼ 1 in the Martian mantle. Using our estimate of the BSM abundance for Cl, we obtained the BSM abundance for F of ∼28 ppm, our preferred value.
An average Cl/Br ratio in Martian meteorites (224 ± 140; Filiberto et al., 2016) indicates 0.12 ± 0.09 ppm Br in the BSM. The limited variation in Cl/Br values in Martian meteorites, chondrites and the BSE and similarly, albeit with even less data, for Cl/I in chondrites and the BSE, lead Clay et al. (2017) to conclude that the 50% condensation temperature of Cl is much lower than 948 K (Figure 6). Their conclusion has also been supported by newer thermodynamic calculations suggesting the equilibrium 50% condensation temperature for Cl is 472 K (Wood et al., 2019).

There is limited data for I in Martian meteorites, the most volatile of the lithophile elements (Table 1). We do not observe any clear correlation of the halides with other elements. Thus the I abundance in the BSM is defined by the Martian volatility trend (Figure 6).

4.4 Siderophile and chalcophile elements in the BSM

4.4.1 Refractory and major siderophile elements in the BSM

These elements include W and Mo along with Fe, Ni, and Co (Table 1). Nickel in lherzolitic and olivine-phyric shergottites correlate with Mg and their average Ni/Mg ratio is 19.4 ± 5.0, consistent with 0.046 ± 0.012 wt% NiO in the BSM. Likewise these rocks have an average Co/Ni ratio of 0.27 ± 0.10, consistent with 96 ± 44 ppm Co in the BSM.

Mo abundance in shergottites is highly variable between 0.05–0.7, and is not well correlated with lithophile elements. The origin of the wide variation in Mo contents in shergottites is not constrained. Yang et al. (2015) attributes this variation to hydrothermal processes, whereas Noll Jr et al. (1996) argues that Mo is not fluid-mobile. Based on a broad Mo-Ce co-variation, Righter and Chabot (2011) and Yang et al. (2015) estimated the BSM abundance of Mo is 0.08–0.6 ppm. We estimate the BSM to have between 0.1–0.8 ppm Mo.

In a log-log plot for all shergottites, W and Th shows a linear trend with a slope 1.1 ± 0.2, indicating their similar incompatibilities. Using an average W/Th ratio in shergottites (1.0 ± 0.5), W concentration in the BSM is estimated to be 0.07 ± 0.04 ppm.

4.4.2 Highly siderophile elements

Highly siderophile elements (HSE) include Re, Os, Ir, Pt, Ru, Rh, Pd and Au. Brandon et al. (2012) and Tait and Day (2018) estimated the BSM abundances of HSE based on co-variation between HSEs and MgO in shergottites. Although Re, Pd and Pt are poorly correlated with Mg, Tait and Day (2018) assumed MgO ~35 wt% in the BSM and obtained flat, chondrite-like HSE patterns in the BSM, with absolute abundances at (0.010 ± 0.003) × CI. The MgO composition of the BSM used by Tait and Day (2018) is slightly higher than our estimate (MgO ~ 31.0 wt%). However, this difference is negligible for the predicted abundances of the HSE in the BSM and so we adopt the Tait and Day (2018) estimate.
Similarly, Au also show a broad correlation with MgO composition in shergottite. The correlation indicates ~ 2 ppb Au in the BSM, which corresponds to the BSM abundance of $\sim 0.01 \times CI$ (Figure 6). Thus it is likely that the most BSM budget of Au also originated in the late accretion of materials with chondritic HSE composition.

There are limited data for Rh in Martian meteorites with a wide variation, and Rh is not correlated with other elements in Martian meteorites. If we take the mean Rh concentration in the Martian meteorites (~ 2 ppb) as the BSM abundance of Rh, this value corresponds to $\sim 0.02 \times CI$ in the BSM, which is close to that of other HSE (Figure 6; Tait and Day, 2018).

4.4.3 Moderately volatile siderophile elements

Moderately-volatile, siderophile elements include P, Cu, Ge, As, Ag, Sb, Sn, Pb and Bi. A well-defined positive correlation for P vs Y ($R^2 = 0.88$), with a slope of 1.1 ± 0.1, is seen for shergottites. Their average P/Y value in shergottites (0.021 ± 0.005) is used to estimate the P_2O_5 at 0.17 ± 0.05 wt% in the BSM.

Wang and Becker (2017) estimated Cu in the BSM abundance at 2.0 ± 0.4 ppm, based on Cu and MgO correlations in shergottites. Similarly, we find positive Cu vs Ti correlations in shergottites, except for some anomalously high Cu/Ti samples (Cu/Ti < 0.005), and their average Cu/Ti value (0.0026 ± 0.0005) yields 2.6 ± 0.6 ppm Cu is in the BSM, which is comparable to the estimates by Wang and Becker (2017).

Germanium in Martian meteorites do not correlate with lithophile elements, as mantle melting produces little variation in Ge content in the melt and residue (Ringwood, 1966). Germanium contents in shergottites ranges from 0.8 ± 0.4 ppm in lherzolitic shergottites to 1.5 ± 0.3 ppm in olivine-phyric shergottites and $0.7–2.0$ ppm basaltic shergottites. From a weak negative correlation between Ge and MgO in lherzolitic and olivine-phyric shergottites, we estimate Ge abundance in the BSM is 0.6 ± 0.4 ppm.

In terrestrial rocks, As correlates with Ce (Noll Jr et al., 1996). In contrast, As in shergottites does not correlate with tested lithophile elements (Yang et al., 2015). Arsenic is a fluid-mobile element (Yang et al., 2015); thus, the lack of any As-Ce correlation in shergottites might be due to hydrothermal processes. Correcting for hydrothermal processes, Yang et al. (2015) suggested 30 ± 25 ppb As in the BSM.

We do not observe any correlation of Sb and Ag with lithophile elements. Yang et al. (2015) estimated the BSM abundance of Sb to be $0.01–0.03$ ppm using a roughly constrained Sb/Pr ratio of Martian meteorites and the BSM abundance of Pr of 0.17 ppm from Lodders and Fegley Jr (1997). We accept their estimate given that 0.21 ppm Pr in our model does not make significant changes in the estimation of the BSM abundance of Sb. A log-log plot of Sb versus Ag concentrations in
shergottites (slope \(\sim 1\)) indicates their similar compatibility during differentiation. The average
Sb/Ag ratio of 1.4 ± 1.0, with Ag being 0.02 ppm in the BSM with \(\sim 90\%\) uncertainty.

Yang et al. (2015) estimated the BSM abundance of Sn, Cd and In based on their broad correlation
with lithophile elements in Martian meteorites and a model of BSM abundances for lithophile
elements by Lodders and Fegley Jr (1997). The observed correlation resulted in more than a factor
of two uncertainties in their estimates. Although abundances of lithophile elements in our model is
different from that of Lodders and Fegley Jr (1997), this difference does not produce any significant
decrease in the estimated BSM abundances of Cd, In and Sn in Yang et al. (2015). Thus, we accept
the BSM abundances of these elements given by Yang et al. (2015).

The BSM abundance of Pb is constrained from U-Pb isotopic systematics of Martian mete-
orites. Martian meteorites have a wide ranges of \(\mu = \frac{^{238}U}{^{204}Pb}\) values and Pb isotopic hetero-
geneity (Nakamura et al., 1982; Misawa et al., 1997; Borg et al., 2005; Bouvier et al., 2005; 2008a,
2009; Chen and Wasserburg, 1986; Gaffney et al., 2007; Moriwaki et al., 2017; Bellucci et al., 2018).
The recent review of Martian \(\mu\) value (\(\sim 3.6\)), the average \(^{208}Pb/^{204}Pb\), \(^{207}Pb/^{204}Pb\) and
\(^{206}Pb/^{204}Pb\) in Martian meteorites of 33, 12.6 and 13, respectively, and 18 ppb U (Table 5) yields
0.26 ± 0.05 ppm Pb in the BSM.

Bismuth is correlated with Th in shergottites (except for high-Bi samples EETA 79001, Tissint
and NWA 5990) (Yang et al., 2015), which yields 2 ± 1 ppb Bi in the BSM.

4.4.4 Moderately volatile chalcophile elements

Moderately-volatile, chalcophile elements include Zn, Te, Se, S and Cd. As mentioned in Section 4.4.3, we adopt the BSM abundances of Cd estimated by Yang et al. (2015).

Zinc and Lu positively correlate in shergottites \((R^2 = 0.63)\) as does Zn and Ti \((R^2 = 0.56)\),
which yield 45 ± 15 ppm and 40 ± 15 ppm Zn, respectively, in the BSM. These two estimates
agree within errors.

Taylor (2013) estimated Zn in the BSM at 18.9 ± 1.5 ppm, whereas as Yang et al. (2015)
proposed 50–70 ppm. Taylor (2013) estimate was based on a Zn–Sc correlation, which is poorly
correlated in our dataset \((R^2 = 0.27)\). The relatively flat Zn–Sc trend observed by Taylor (2013)
leads to a poor control on an accuracy estimate. Yang et al. (2015) assumed an olivine-rich Martian
mantle and bulk mineral-melt partition coefficients for Zn of \(\sim 1\) during mantle melting (Le Roux
et al., 2011; Davis et al., 2013). The positive Zn-Lu correlation in shergottites reflects the slightly
incompatible nature of Zn in the Martian mantle. Thus, Yang et al. (2015) overestimates the Zn
abundance in the BSM.

There is a wide range of estimates for the abundances of S-Se-Te in the BSM (Franz et al.,
2019; Wang and Becker 2017 and references therein). The limited variation in S/Se/Te ratios,
indicating little degassing loss of S, Se and Te, which lead Wang and Becker [2017] to derive the BSM abundance of these elements at 360 ± 120 ppm, 100 ± 27 ppb and 0.50 ± 0.25 ppb, respectively. Here we adopt their estimates.

4.4.5 Volatile chalcophile elements

Volatile siderophile and chalcophile elements include In, Tl and Hg. As described in Section 4.4.3, we adopt the BSM abundances of In estimated by Yang et al. [2015] in our BSM model. Tl is positively correlated with Sm ($R^2 = 0.73$) in shergottites with a slope of 1.29 ± 0.38 in a log-log slope, indicating 4 ± 2 ppb Tl in the BSM.

Limited data exist for Hg (≤ 0.7 ppm) in Martian meteorites (Ehmann and Lovering [1967], Weinke [1978], Treiman and Lindstrom [1997]). It is readily contaminated by terrestrial sources, it is a highly volatile element, and it is lost during magma transport (e.g., Treiman and Lindstrom [1997]). Therefore it is very difficult to constrain the BSM abundance of Hg. Estimates of the solar abundance of Hg (few hundred ppb) are poorly constrained and Hg is undetectable in the solar photosphere (Lauretta et al. [1999], Grevesse et al. [2015], Meier et al. [2016]). The BSM abundance of Hg is estimated to be ~ 7 ppb, with uncertainty ranging from ≤ 1 to a few tens of ppb.

4.5 Atmophile elements

Mars’ volatility trend (Figure 6) cannot provide strong constraints on the planetary abundances of atmophile elements (H, C, N, O, noble gases; Table 1), given their distinctive behaviors compared with less volatile elements that are retained in rocks. However, approximate estimates of these elements in the BSM were predicted from the Martian volatility trend. An extrapolation of the Martian volatility trend to the lower temperature indicates their abundances to be 0.001–0.01 × CI.

Based on the water contents of Martian meteorites and its constituting hydrous phases (e.g., apatite, amphibole, glass), the BSM is estimated to have ~ 140 ppm H$_2$O (e.g., McCubbin et al. [2016a,b], Filiberto et al. [2019]). This H$_2$O content corresponds to ~ 16 ppm H in the BSM, which is lower than that is expected based on the volatility trend. The low H abundance in the BSM might reflect H incorporation into the core (see Section 5.1) and/or loss of H from the mantle by degassing. Estimates for the water content of the Martian mantle range between 14–250 ppm, which likely reflects a heterogeneous water distribution in the mantle (e.g., McCubbin et al. [2010, 2016a,b]). The BSM might have contained ~ 1000 ppm H$_2$O if volatile-rich chondritic materials were added during a late accretion (i.e., 0.6–0.7% by mass of Mars), as indicated by highly siderophile element abundances and Os isotope systematics in shergottites (Tait and Day [2018]).

Filiberto et al. [2019] estimated the BSM abundances of C and N, based on mean C/H and N/H ratios in CI and CM carbonaceous chondrites (2.1 and 0.11, respectively; Alexander et al. [2019]).
and a BSM estimate for its H$_2$O content. This method assumes the BSM inventory of these atmophile elements is dominantly by a late addition component (e.g., Tait and Day 2018) with CI- and CM-chondritic chemical composition [Filiberto et al. 2019]. These assumptions lead to a BSM with ~140 ppm H$_2$O, ~32 ppm C and ~1.6 ppm N. These estimates have large uncertainties, given the degree of mantle degassing is essentially unconstrained.

5 Composition of the Martian core

5.1 Compositional model of the Martian core

To constrain the Martian core composition, we modeled geophysical properties of Mars. Mineralogy, radial density distribution and seismic velocity profiles in the Martian mantle were computed using the Gibbs free energy minimization method that is employed in the thermodynamic modeling code Perple_X version 6.8.6 (Connolly, 2009). Calculations for the BSM composition (i.e., primitive Martian mantle composition; Table 4) were performed using thermodynamic parameters of Stixrude and Lithgow-Bertelloni (2011) within a chemical system Na$_2$O–MgO–Al$_2$O$_3$–SiO$_2$–CaO–FeO. Temperature profile in the Martian mantle (areotherm) is estimated assuming an Earth-like profile [Katsura et al. 2010], mantle potential temperature of ~1,500 K (Baratoux et al. 2011, 2013; Putirka, 2016; Filiberto, 2017), a lithosphere thickness of 200 km (Grott et al. 2013) and conductive and adiabatic thermal gradients of 2.7 K/km and 0.12 K/km, respectively (Verhoeven et al. 2005), which are consistent with the surface heat flux estimates [Parro et al. 2017; Samuel et al. 2019]. Figure 7 shows a result of the thermodynamic modeling.

We also estimated mineralogy and physical properties of the present-day Martian mantle (not the BSM), which is calculated using compositional models for the BSM (Table 4) and the Martian crust (Taylor and McLennan, 2009), and a crustal mass fraction of ~5 % in the BSM. We observed small changes in the modal abundances of mineral species, but the density profiles are similar in the present-day and primitive mantle models. Thus, the use of the density profile obtained using the composition of primitive mantle or present-day mantle makes negligible changes in our discussion.

Using the obtained radial density profile in the Martian mantle, we computed the Martian interior structure. Here we consider Mars as a spherically symmetric body divided into three layers (crust, mantle and core). The average crustal thickness of 50 km, which is consistent with geophysical and geochemical constraints (Zuber et al. 2000; McGovern et al. 2002, 2004; Wieczorek and Zuber 2004; Ruiz et al. 2009), is adopted in the modeling. We consider a crust of basaltic composition (e.g., Taylor and McLennan, 2009; McSween Jr and McLennan, 2014 and references therein) with a density of 3010 kg/m3, which is in agreement with gravity and topography studies [McKenzie et al. 2002; McGovern et al. 2002, 2004; Phillips et al. 2008].
of inertia (MOI) in Mars are expressed as a function of radial density distribution as:

\[M = 4\pi \int_0^a \rho(r)r^2 dr \]
\[C = \frac{8\pi}{3} \int_0^a \rho(r)r^4 dr, \]

where \(M \) is mass, \(C \) is MOI, \(a \) is Mars’ equatorial radius (3389.5 km; Seidelmann et al., 2002), \(\rho(r) \) is density and \(r \) is distance from the center of the planet.

Sulfur abundance in the Martian core has been of particular interests. Previous estimates vary between 3.5–25 wt% S (Table 6; also see Franz et al., 2019). With the Martian mantle having 360 ppm S (Wang and Becker, 2017), the Martian volatility curve restricts the core to having \(\leq 7 \) wt% S (Figure 8) if its core mass fraction is 18 wt% (see below). The low S composition for the Martian core is supported by metal-silicate partition coefficients for S (Rose-Weston et al., 2009; Boujibar et al., 2014; Wang and Becker, 2017) and an experimental study of Fe isotopic fractionation under high pressure and temperature (Shahar et al., 2015). If we adopt a higher S content for the BSM (up to 2000 ppm; Gaillard et al., 2013; Ding et al., 2015), the S content of the Martian core decreases. Thus, we conclude that the Martian core has \(\leq 7 \) wt% S.

This estimate stands in contrast to widely adopted Martian core models that argue for \(>10 \) wt% S (Wänke and Dreibus, 1994, Taylor, 2013). Such a high sulfur content for the bulk Mars would, in principle, treat S differently with respect to other moderately volatile elements. We find no justification for such a S enrichment (Figure 8).

For the Earth’s core, C, H, S, Si and O are proposed as candidate light elements that decrease its density (Birch, 1952, 1964). Given the P-T-fO\(_2\) condition of the Martian interior, we do not expect Si in the Martian core (Wade and Wood, 2005; Corgne et al., 2008), which is supported by a lack of Si isotopic fractionation in Martian meteorites resulted from a metal-silicate segregation (Zambardi et al., 2013; Dauphas et al., 2015). We also exclude C as a candidate light element in the Martian core since the Martian meteorites lack C isotope fractionation unlike terrestrial rocks (Grady et al., 2004; Wood et al., 2013) and addition of C does not efficiently decrease the core density (Wood, 1993; Bertka and Fei, 1998b). In contrast, experimental studies indicate that O and H can be incorporated into the Martian core (Okuchi, 1997; Shibazaki et al., 2009; Tsuno et al., 2011) and their addition can decrease the core density (Badding et al., 1992; Bertka and Fei, 1998b; Zharkov, 1996; Zharkov and Gudkova, 2005). Moreover, having the Martian core-mantle boundary in contact with ringwoodite can contribute to incorporation of H and O into the Martian core (Shibazaki et al., 2009; Tsuno et al., 2011; O’Rourke and Shim, 2018). Thus, we consider O and H in addition to S as candidates for light elements in the Martian core.

Densities of solid \(\gamma \)-Fe (Ahrens et al., 2002), FeS (Fei et al., 1995), Fe\(_3\)O\(_4\) (Reichmann and Jacobsen, 2004) and FeH (Badding et al., 1992) at core pressures and temperatures were calcu-
lated using a third-order finite strain Birch-Murnaghan equations of state (Stixrude and Lithgow-Bertelloni, 2005), following previous studies (e.g., Rivoldini et al., 2011; Khan et al., 2018). Temperature profile in the core is calculated based on the temperature of core-mantle boundary (Figure 7) and a convecting core.

By fitting mass, density and MOI in the three layers and the bulk planet to the geodetically constrained values (Table 7), the density and composition of the metallic core is estimated. Finally we obtained a core composition with 6.6 wt% S, 5 wt% O and 0.8 wt% H, and a mass fraction of 18% as our best estimate. This core model yields bulk planetary Fe/Si ratio of 1.36, which is lower than the CI value (1.74) but within the range of chondritic meteorite compositions (1.0–1.8; Wasson and Kallemeyn, 1988). With a mass fraction of 18%, the Martian core radius is 1580 km (i.e., 1810 km deep) and its mean density is ∼7060 kg/m³ (Figure 9).

Siderophile element abundances in the bulk Mars and its core were constrained by the BSM and core model (Table 8). This yields the Fe content in the core and bulk Mars to be 79.5 wt% and 23.7 wt%, respectively. Given chondritic meteorites (aside from the few examples of iron rich chondrites (e.g., CB)) show limited variation in Fe/Ni (∼17.4) and Ni/Co (∼20) values (McDonough, 2016), we set the bulk Mars composition to these values.

Abundances of moderately volatile, lithophile elements in the BSM, which can be directly converted to the bulk Mars composition after correcting for the core mass fraction, define a robust depletion trend (Figure 6). The volatility trend provides a method to determine the rest of the element abundances, except for the atmophiles, in the bulk Mars and its core (Tables 8 to 10). For the refractory siderophile and chalcophile elements (Table 1), bulk Mars abundances are set at ∼1.85 times CI abundance.

The possible conditions of Mars core formation (e.g., 10–17 GPa, 1900–2300 K, fO₂ = IW − 2 to −1) are considered to be markedly different than that for the Earth’s core (Righter and Chabot, 2011; Rai and van Westrenen, 2013). These findings (i.e., wholly lithophile character of Mn, Cr and V) are also in harmony with the relatively oxidized conditions for Mars’ core formation as compared to the Earth (e.g., Wadhwa, 2001, 2008; Herd et al., 2002).

5.2 Comparison of the core models

Although cosmochemical and geodetic insights constrain the composition and interior structure of Mars, we cannot determine a unique core model composition, given the available data. Thus, other Martian core models, distinct from that proposed in this study (Table 8), are viable. We tested three (end-member like) core compositions with (1) no H and O, (2) 10 wt% O, and (3) 1.4 wt% H, in addition to our preferred one (Table 11). There is a non-uniqueness in core mass fraction – core radius – core density, with limits being ∼15 to 26%, ∼1500 to 2000 km, and ∼5500 to 7500 kg/m³, respectively. Composition and physical properties of core models were constrained by a
combination of our BSM model, volatility trend, and geodetic properties of the planet. Importantly, as discussed in Section 5.1, the Martian volatility trend puts strong constraint on the S content in the Martian core (Figure 8).

Core models assuming H- and O-free have the highest density (~ 8100 kg/m3), given only S as the light element. A dense core forces down its mass fraction (~ 15 wt%) and low bulk Fe/Si (1.21) and Fe/Al (13.6) ratios, as compared to most chondritic meteorites (1.0–1.8 and 15–25, respectively; Wasson and Kallemeyn [1988]). An exception, CV chondrites, have low Fe/Al ratio (13.4) due to its high abundance of refractory inclusions (i.e., high Al concentration). In contrast, however, the Fe/Si ratio in CV chondrites (1.36) is higher than that of Mars containing a core that is H- and O-free. Thus, to explain such a Mars’ bulk composition requires a chemical fractionation process not recorded in chondritic meteorites. Similar arguments can be applied for the H-bearing, O-free core model.

Physical properties of an O-rich, H-free core model is similar to that of the O- and H-bearing model proposed as the best core model. However, solubility of oxygen in liquid iron does not support such a high O concentration in the Martian core (Rubie et al., 2004; Tsuno et al., 2011).

6 Heat production in Mars

Our model predicts that the present-day heat-producing elements (HPE: K, Th and U) in the BSM produce 2.5 TW heat (Table 3). In Mars, K is a dominant radiogenic heat source during its first 3.5 Gyr history (Figure 10). Based on the BSM abundances of 40K, 232Th, 235U, 238U and 87Rb, we estimate the Martian antineutrino (or areoneutrino) luminosity is 7.7×10^{24} $\bar{\nu}_e$/s.

7 Conclusions and implications for future works

Compositional modeling of Mars reveals that the bulk silicate Mars is enriched in refractory lithophile elements at 2.26 times higher than that in CI carbonaceous chondrites. Moderately volatile elements are systematically depleted in Mars as a function of their volatility compared to the chondritic composition, but less so than in the Earth. The Martian core contains S, O and H as light elements, which is consistent with the volatility trend and occurrence of ringwoodite at the Martian core-mantle boundary.

The chemical compositions of solar system bodies record accretion of solar nebular materials, core-mantle and mantle-crust differentiation and subsequent surface processes. The physicochemical similarities and differences between Mars and Earth provide insights into the origin and evolution of terrestrial planets, which are discussed in a companion paper (Yoshizaki and McDonough submitted).
To constrain further the interior structure and composition of Mars direct evidence from the planet is needed. The best constraints would be provided by seismic determination of the depth of Martian core-mantle boundary, which would immediately define the core’s mass fraction and density. NASA’s ongoing Interior Exploration using Investigations, Geodesy and Heat Transport (InSight) mission will provide significant constraints on the Martian core composition (Smrekar et al., 2019). In turn, our model for composition and interior structure of Mars can be tested by seismic and surface heat flux data from the InSight mission. In addition, rock samples which will be returned from Phobos in the Japan Aerospace Exploration Agency’s planned Martian Moons eXploration (MMX) mission (Kuramoto et al., 2018) are keys to further constrain not only the origin of the Martian moons (Murchie et al., 2014), but also composition of the Martian mantle, if Phobos has formed via giant impacts (Citron et al., 2015; Canup and Salmon, 2018; Hyodo et al., 2018).

Acknowledgments

TY acknowledges supports from the Japanese Society for the Promotion of Science (JP18J20708), GP-EES Research Grant and DIARE Research Grant. WFM gratefully acknowledges NSF support (EAR1650365).

Author contributions

TY and WFM proposed and conceived various portions of this study and together calculated the compositional model of Mars. The manuscript was jointly written by TY and WFM and they read and approved the final manuscript.

Competing interests

The authors declare no competing interests.

Data and materials availability

Materials used in this study are provided as supplementary materials.
Figure 1: Ratios vs ratios of refractory lithophile elements in shergottites. The values are normalized to CI chondrite abundance (Table 2). Horizontal and vertical gray bands show CI ratio ± 10%. Trend lines for all shergottites and lherzolitic shergottites, shown in solid black and broken purple lines, respectively, cross CI chondritic compositions, showing that these chemical trends reflect melt-residue differentiation in the Martian silicate mantle. SHE-L, SHE-B and SHE-Ol are lherzolitic, basaltic and olivine-phyric shergottites, respectively.
Figure 2: Ratios vs abundances of refractory lithophile elements in lherzolitic shergottites. The values are normalized to CI chondrite ratios/abundance (Table 2). Horizontal gray bands show CI ratio ± 10%. The correlations among multiple element combinations indicate that refractory lithophile element abundance in the BSM is 2.26 times higher than in the CI chondrites (cf. 2.75 × CI in the BSE [McDonough and Sun 1995]).
Figure 3: MgO contents vs CI-normalized abundances of refractory lithophile elements in shergottites. Horizontal gray bands show the CI-normalized abundance of refractory lithophile elements in the BSM with 10% uncertainties. Intercepts of the correlation lines and the BSM composition suggest 31.0 ± 2.0 wt% MgO in the BSM. SHE-L, SHE-B and SHE-Ol are lherzolitic, basaltic and olivine-phyric shergottites, respectively.
Figure 4: SiO\textsubscript{2} data from shergottites and GRS survey of Martian surface. The box plots show median, minimum, maximum, first and last quartile of SiO\textsubscript{2} contents in shergottites. Outliers which are more than 1.5 times the interquartile range from the end of boxes are shown in dots. The Martian surface composition is determined by gamma-ray spectroscopy (GRS) (Boynton et al., 2007), whose error is in 1 standard deviation. Horizontal line and gray bands show BSM abundance of SiO\textsubscript{2} of 45.5 ± 1.8 wt%. SHE-L, SHE-B and SHE-OI are lherzolitic, basaltic and olivine-phyric shergottites, respectively.
Figure 5: Initial $^{87}\text{Sr}/^{86}\text{Sr}$ vs $\varepsilon^{143}\text{Nd}$ of Martian meteorites. Modified after Day et al. (2018). Compositions of individual shergottite samples and a compositional range for nakhlites and chassignites are shown. Isotopic compositions of terrestrial basalts (mid-ocean ridge basalt (MORB) and ocean island basalts (OIB) are also shown. Assuming that Martian meteorites represent isotopic composition of the Martian mantle and Rb/Sr fractionation at 4.56 Ga, the BSM abundance of Rb is estimated to be 1.6 ± 0.8 ppm Rb. $\varepsilon^{143}\text{Nd} = [(^{143}\text{Nd}/^{144}\text{Nd})_{\text{sample}} ÷ (^{143}\text{Nd}/^{144}\text{Nd})_{\text{chondritic}} - 1] \times 10^4$. Data are from Day et al. (2018) and references therein.
Figure 6: Abundance of lithophile (purple), siderophile (pink) and chalcophile (blue) elements in the bulk silicate Mars (Table 5) are normalized to CI chondrites (Table 2) and plotted against log of the 50% condensation temperature (K) at 10 Pa (Lodders, 2003). As shown by a purple arrow, condensation temperature of CI could be significantly lower than that proposed by Lodders (2003), which is consistent with the bulk silicate Earth composition (Clay et al., 2017) and a recent condensation calculation (Wood et al., 2019).
Figure 7: Mineralogy and physical properties of the Martian mantle. (A) Phase transitions in the Martian mantle. A red line shows an areotherm (Martian geotherm). (B) Depth versus P- and S-wave velocities and density from surface to the core-mantle boundary of Mars. Abbreviations: Ol–olivine; Wad–wadsleyite; Ring–ringwoodite; Gt–garnet; Cpx–clinopyroxene; Opx–orthopyroxene; C2/c–high-pressure clinopyroxene; Pl–plagioclase; Sp–spinel; Ca-pv–Ca-perovskite; St–stishovite.
Figure 8: Volatility trends for Mars (this study) and Earth (McDonough and Sun, 1995) constrain S contents in the metallic cores. The S-rich Martian core models (>15 wt%; e.g., Wänke and Dreibus, 1994; Taylor, 2013) are not consistent with the Martian volatility trend.
Figure 9: Interior structure of Mars. Abbreviations: Ol–olivine; Px–pyroxene; Gt–garnet; Wad–wadsleyite; Ring–ringwoodite; Brg–bridgmanite; Cpv–Ca-perovskite; Ppv–post-perovskite; Fper–ferropericlase.
Figure 10: Radiogenic heat production in the Martian mantle through time. The inset shows relative contributions of heat-producing elements as functions of time.
50% Tc (K)	Lithophile	Siderophile	Chalcophile
Refractory	1821–1355	Zr, Hf, Sc, Y, Gd, Tb, Dy, Ho, Er, Tm, Lu, Th, Al, U, Nd, Sm, Ti, Pr, La, Ta, Nb, Ca, Yb, Ce, Sr, Ba, Be, Eu	Re, Os, W, Ir, Mo, Ru, Pt, Rh
Major component	1355–1250	Mg, Fe, Si, Cr	Ni, Co, Fe, Pd, Cr
Moderately volatile	1250-600	Mn, Li, K, Na, Ga, Cr	P, Mn, As, Au, Cu, Ag, Sb, Zn, Te, Se, S, Cd
Volatile	600–252	Br, I, Tl	In, Tl, Hg

50% Tc (K)	Atmophile	
Highly volatile	<252	O, N, Xe, Kr, Ar, C, Ne, He, H
Highly volatile	<252	O, N, Xe, Kr, Ar, C, Ne, He, H

a Condensation temperature of Cl might be as low as Br and I ([Clay et al., 2017](#) [Wood et al., 2019](#)).

b Condensation temperature of In might be ∼800 K ([Righter et al., 2017](#)).
Table 2: Composition of CI chondrites adopted in this study.

Element	Unit	Value	Reference	Element	Unit	Value	Reference
H	%	1.97	P14	Rh	ppm	0.132	P14
Li	ppm	1.45	P14	Pd	ppm	0.56	P14
Be	ppm	0.0219	P14	Ag	ppm	0.201	P14
B	ppm	0.775	P14	Cd	ppm	0.674	P14
C	ppm	34800	P14	In	ppm	0.0778	P14
N	ppm	2950	P14	Sn	ppm	1.63	P14
O	%	45.9	P14	Sb	ppm	0.145	P14
F	ppm	58.2	P14	Te	ppm	2.28	P14
Na	ppm	4962	P14	I	ppm	0.057	C17
Mg	%	9.54	P14	Cs	ppm	0.188	P14
Al	%	0.840	P14	Ba	ppm	2.42	P14
Si	%	10.7	P14	La	ppm	0.241	P14
P	ppm	985	P14	Ce	ppm	0.619	P14
S	ppm	53500	P14	Pr	ppm	0.0939	P14
Cl	ppm	115	C17	Nd	ppm	0.474	P14
K	ppm	546	P14	Sm	ppm	0.154	P14
Ca	%	0.911	P14	Eu	ppm	0.0588	P14
Sc	ppm	5.81	P14	Gd	ppm	0.207	P14
Ti	ppm	447	P14	Tb	ppm	0.0380	P14
V	ppm	54.6	P14	Dy	ppm	0.256	P14
Cr	ppm	2623	P14	Ho	ppm	0.0564	P14
Mn	ppm	1916	P14	Er	ppm	0.166	P14
Fe	%	18.66	P14	Tm	ppm	0.0261	P14
Co	ppm	513	P14	Yb	ppm	0.169	P14
Ni	ppm	10910	P14	Lu	ppm	0.0250	P14
Cu	ppm	133	P14	Hf	ppm	0.107	P14
Zn	ppm	309	P14	Ta	ppm	0.0150	P14
Ga	ppm	9.62	P14	W	ppm	0.0960	P14
Ge	ppm	32.6	P14	Re	ppm	0.0381	P14
As	ppm	1.74	P14	Os	ppm	0.461	P14
Se	ppm	20.3	P14	Ir	ppm	0.431	P14
Br	ppm	0.189	C17	Pt	ppm	0.874	P14
Rb	ppm	2.32	P14	Au	ppm	0.175	P14
Sr	ppm	7.79	P14	Hg	ppm	0.35	P14
Y	ppm	1.46	P14	Tl	ppm	0.169	W15
Zr	ppm	3.63	P14	Pb	ppm	2.62	P14
Nb	ppm	0.283	P14	Bi	ppm	0.087	W15
Mo	ppm	0.87	W15	Th	ppm	0.0300	P14
Ru	ppm	0.69	P14	U	ppm	0.00796	W18

Clay et al. (2017), Day et al. (2016), Palme et al. (2014), Wang et al. (2015), Wipperfurth et al. (2018).
Table 3: Comparison of compositional models of the bulk silicate Mars.

wt%	This study	WD94	T13	MA79	OK92	LF97	S99	KC08
SiO₂	45.5	44.4	43.7	41.6	43.0	45.4	47.5	44
TiO₂	0.17	0.14	0.14	0.33	0.24	0.14	0.1	-
Al₂O₃	3.59	3.02	3.04	6.39	3.48	2.89	2.5	2.5
MnO	0.37	0.46	0.44	0.15	0.22	0.37	0.4	-
FeO	14.7	17.9	18.1	15.9	15.1	17.2	17.7	17
MgO	31.0	30.2	30.5	29.8	34.3	29.7	27.3	33
CaO	2.88	2.45	2.43	5.16	2.81	2.36	2.0	2.2
Na₂O	0.59	0.5	0.53	0.10	0.46	0.98	1.2	-
K₂O	0.043	0.037	0.037	0.009	-	0.11	-	-
P₂O₅	0.17	0.16	0.19	-	-	0.18	-	-
NiO	0.046	-	0.03	-	-	-	-	-
Cr₂O₃	0.88	0.76	0.73	0.65	0.40	0.68	0.7	-
K (ppm)	360	305	309	76.5	-	920	-	-
Th (ppb)	68	56	58	125	-	55	-	-
U (ppb)	18	16	16	35	-	16	-	-
Total	99.9	100	99.8	100	100	100	100	98.7
Mg#	0.79	0.75	0.75	0.77	0.75	0.76	0.72	0.77
Mg/Si	0.88	0.88	0.90	0.92	1.03	0.84	0.74	0.97
Al/Si	0.09	0.08	0.08	0.17	0.09	0.07	0.06	0.06
RLE/C	2.3	2.1	2.1	4.4	2.4	2.0	1.7	1.9
Fe/Si	0.54	0.67	0.69	0.63	0.58	0.63	0.62	0.64
Fe/Al	6.0	8.7	8.7	3.6	6.4	8.8	10.4	10.0
H₉BSM	2.5	2.0	2.0	3.4	-	3.0	-	-
H₉BSM (pW/kg)	4.8	4.1	4.2	7.0	-	6.2	-	-

a Wänke and Dreibus (1994). b Taylor (2013). c Morgan and Anders (1979). d Ohtani and Kamaya (1992). e Lodders and Fegley Jr (1997). f Sanloup et al. (1999) (EH45:H55 model). g Khan and Connolly (2008). h An average enrichment factor of major refractory lithophile elements (Ca, Al and Ti) compared to CI abundance (Table 2). i Heat production in the bulk silicate Mars (BSM: mantle + crust).
Table 4: Major element composition of the bulk silicate Mars (BSM). See text for the details of methods used to determine the BSM abundance of elements.

Element	wt%	1sd	rsd%	Method
SiO$_2$	45.5	1.8	4	Mean SHE
TiO$_2$	0.17	0.02	10	RLE
Al$_2$O$_3$	3.59	0.36	10	RLE
MnO	0.37	0.07	18	FeO/MnO in SNC
FeO	14.7	1.0	7	Mg# = 0.79 ± 0.02a
MgO	31.0	2.0	6	vs RLE in SHE
CaO	2.88	0.29	10	RLE
Na$_2$O	0.59	0.13	22	Na/Al in SHE
K$_2$O	0.043	0.005	11	K/Th (GRSc)
P$_2$O$_5$	0.17	0.05	28	P/Y in SHE
NiO	0.046	0.01	26	Ni/Mg in SHE-L and SHE-Ol
Cr$_2$O$_3$	0.88	0.15	17	vs Al in SHE-L and SHE-Ol

Total 99.9

Mg# 0.79
Mg/Si 0.88
Al/Si 0.09
RLE/CI 2.26
Fe/Si 0.54
Fe/Al 6.0

a GRS–gamma-ray spectroscopy; RLE–refractory lithophile elements; SHE-L–lherzolitic shergottites; SHE-Ol–olivine shergottites; SNC–shergottite, nakhlite and chassignite.

b Borg and Draper (2003); Agee and Draper (2004); Draper et al. (2005); Minitti et al. (2006); White et al. (2006); McCoy et al. (2016).

c Taylor et al. (2006a,b).
Table 5: Composition of the bulk silicate Mars. Concentrations are in ppm (µg/g), otherwise noted. See text for the details of methods used to determine the BSM abundances of elements.

Element	BSM	rsd%	Method	Element	BSM	rsd%	Method
H	16	U	See text	Rh	0.0021	4	Mean SNC
Li	1.8	22	vs RLE in SNC	Pd	0.0074	70	vs MgO
Be	0.05	10	RLE	Ag	0.02	U	Sh/Na in SHE
B	0.84	63	R/Ca in SHE-L and SHE-Ol	Cd	0.020	50	Cd/Yb in SHE
C	32	U	Chondritic C/H	In	0.010	50	In/Y in SHE
N	1.6	U	Chondritic N/H	Sn	0.28	40	Sn/Sn in SHE
O (%)	43.2	8	Major oxide stoichiometry, E₈₇Sr⁸⁶Sr = 0.7	Sh	0.02	50	Sh/Ps in SHE
F	28	35	Cl/F in SNC	Te	0.0005	50	Cu/Te and Se/Te in SHE
Na	4380	22	Na/Al in SHE	I	0.009	U	Volatility trend
Mg (%)	18.7	6	vs RLE in SHE	Cs	0.07	41	Cs/La in SHE
Al (%)	1.90	10	RLE	Ba	5.47	10	RLE
Si (%)	21.3	4	Mean SHE	La	0.546	10	RLE
P	740	28	PY in SHE	Ce	1.40	10	RLE
S	360	33	S/Cu and S/Se in SHE	Pr	0.212	10	RLE
Cl	28	35	Cl/la in SHE	Nd	1.07	10	RLE
K	360	11	K/Ti (GRS)	Sm	0.347	10	RLE
Ca (%)	2.06	10	RLE	Eu	0.133	10	RLE
Sc	13.1	10	RLE	Gd	0.468	10	RLE
Ti	1010	10	RLE	Tb	0.0858	10	RLE
V	123	10	RLE	Dy	0.578	10	RLE
Cr	6000	17	vs Al in SHE-L and SHE-Ol	Ho	0.128	10	RLE
Mn	2880	18	FeO/MnO in SNC	Er	0.374	10	RLE
Fe (%)	11.4	7	Mg# = 0.79 ± 0.1	Tm	0.0950	10	RLE
Co	96	46	Co/Fe in SHE-L and SHE-Ol	Yb	0.381	10	RLE
Ni	360	26	Ni/Fe in SHE-L and SHE-Ol	Lu	0.0566	10	RLE
Cu	2.6	23	Cu/Ti in SHE	Hf	0.241	10	RLE
Zn	45	33	vs La in SHE	Ta	0.0359	14	RLE
Ga	8.7	22	Ga/Al in SHE	La	0.069	54	13/Si in SHE
Ge	0.6	67	vs MgO in SHE-L and SHE-Ol	Re	0.0004	75	vs MgO
As	0.03	76	As/Al in SNC	Oe	0.004	50	vs MgO
Se	0.10	27	Cu/Se in SHE	Ir	0.0037	60	vs MgO
Br	0.12	72	Cl/Br in SHE	Pt	0.0096	80	vs MgO
Rb	1.2	36	87Sr/86Sr = 0.7	Au	0.002	80	vs MgO
Sr	17.6	10	RLE	Hg	0.007	U	Hg/Se in NAK and the BSE
Y	3.30	10	RLE	Tl	0.004	50	Tl/Sn in SHE
Zr	8.20	10	RLE	Pb	0.255	18	U-Pb isotope systematics in SNC
Nb	0.640	10	RLE	Bi	0.002	60	Bi/Th in SHE
Mo	0.5	80	Mo/Cr in SHE	Th	0.0678	10	RLE
Ru	0.0062	60	vs MgO	U	0.0180	10	RLE

^aU–uncertain. ^bMcCubbin et al. 2016a,b; Filiberto et al. 2019. ^cFeO–bulk silicate Earth. GRS–gamma-ray spectroscopy; NAK–nakhlite; SNC–shergottite, herzolitic anorthosites; SHE-Ol–olivine shergottites. ^dSchmidt et al. 2013; Medard et al. 2014. ^eMedard et al. 2014; Wang and Becker 2017. ^fFiliberto et al. 2016; this study. ^gTait and Day 2018. ^hYang et al. 2015. ⁱBorg and Draper 2003; Agee and Draper 2004; Draper et al. 2005; Minuti et al. 2006; White et al. 2006; McCoy et al. 2016. ^jRighter and Chabot 2011. ^kTait and Day 2018. ^lµ = 3.6, 208Pb/204Pb = 33, 207Pb/204Pb = 13, 206Pb/204Pb = 14.

Table 6: Comparison of compositional models of the Martian core.

	This study	WD94	T13	MA79	OK92	LF97	S99	KC08
Fe	79.5	77.8	78.6	88.1	78.4	81.1	76.6	75–78
Ni	7.4	7.6	-	8.0	7.6	7.7	7.2	-
Co	0.33	0.36	-	0.37	-	0.4	-	-
S	6.6	14.24	21.4	3.5	14.0	10.6	16.2	22–25
P	0.33	-	-	-	-	0.2	-	-
O	5	-	-	-	-	-	-	-
H	0.8	-	-	-	-	-	-	-
Total	99.9	100	100	100	100	100	100	-

Notes:

- a Wänke and Dreibus (1994).
- b Taylor (2013).
- c Morgan and Anders (1979).
- d Ohtani and Kamaya (1992).
- e Lodders and Fegley Jr (1997).
- f Sanloup et al. (1999) (EH45:H55 model).
- g Khan and Connolly (2008).

h Sum of Fe and Ni.
Table 7: Physical properties of Mars and Earth. Modeled values are in a normal font and reference values are in italic.

Observation	Unit	Crust	Mantle	Core	Bulk planet	Reference value
Mars						
Mass	kg	2.56×10^{22}	5.01×10^{23}	1.17×10^{23}	6.418×10^{23}	$6.41856(8) \times 10^{23}$
Mean density	kg/m3	3010	3640	7060	3935	$3.935(1)$
Moment of inertia	–	7%	89%	4%	0.3638	0.3639(1)
Heat production (K, Th, U)	TW	1.3	1.3	0	2.5	2.9(1)
Heat production (K, Th, U)	pW/kg	4.6^{a}	2.5^{c}	0	3.9^{f}	–
Earth						
Mass	kg	3.12×10^{22}	4.00×10^{24}	1.94×10^{24}	5.97×10^{24}	$5.97218(60) \times 10^{24}$
Mean density	kg/m3	2800	4400	11870	5510	5510
Moment of inertia	–	1%	88%	11%	0.3308	0.3308
Heat production (K, Th, U)	TW	7.5^{a}	12.6^{c}	0	19.9^{i}	4(1)
Heat production (K, Th, U)	pW/kg	232	3.1	0	3.3	–

a Rivoldini et al. (2011). b Konopliv et al. (2016). c Surface heat loss estimated based on an average surface heat flux of 20 ± 1 mW/m2 (Parro et al., 2017; Samuel et al., 2019). d Abundances of heat-producing elements (HPE) in the crust: 3740 ppm K, 700 ppb Th and 180 ppb U (Taylor and McLennan, 2009). e HPE abundance in the mantle is calculated from mass-balance considerations: 190 ppm K, 36 ppb Th and 10 ppb U. f BSM abundances of HPE are 360 ppm K, 68 ppb Th and 18 ppb U (this study). g Chambat et al. (2010). h The preliminary Earth model (Dziewonski and Anderson, 1981). i Huang et al. (2013). j Jaupart et al. (2015).
Table 8: Composition of the Martian core. Concentrations are in ppm (µg/g), otherwise noted.

Element	Martian core	Element	Martian core
Fe (%)	79.5	Os	5
Ni (%)	7.4	Pd	5
O (%)	5.0	Ir	5
S (%)	6.6	Te	3
H (%)	0.8	Pb	3.1
Co	3300	Rh	1.3
P	3300	Sn	1.3
Cu	560	W	0.7
Zn	290	Ag	0.7
Ge	90	Au	0.7
Se	30	Cd	0.7
Pt	9	Re	0.4
As	8	Sb	0.4
Mo	7	Bi	0.1
Ru	7	Tl	0.1
Table 9: Composition of the bulk Mars. Concentrations are in ppm (µg/g), otherwise noted.

Element	Bulk Mars	Element	Bulk Mars
H	1500	Rh	0.24
Li	1.5	Pd	0.84
Be	0.041	Ag	0.14
B	0.69	Cd	0.15
C	26	In	0.01
N	1.4	Sn	0.43
O (%)	36.3	Sb	0.1
F	23	Te	0.6
Na	3600	I	0.01
Mg (%)	15.3	Cs	0.06
Al (%)	1.56	Ba	4.5
Si (%)	17.4	La	0.45
P	1200	Ce	1.1
S	12100	Pr	0.17
Cl	23	Nd	0.88
K	300	Sm	0.28
Ca (%)	1.69	Eu	0.11
Sc	10.8	Gd	0.38
Ti	830	Tb	0.070
V	100	Dy	0.47
Cr	4900	Ho	0.10
Mn	2400	Er	0.31
Fe (%)	23.7	Tm	0.048
Co	680	Yb	0.31
Ni	13600	Lu	0.046
Cu	100	Hf	0.20
Zn	89	Ta	0.028
Ga	7.2	W	0.18
Ge	16	Re	0.07
As	1.4	Os	0.9
Se	5.2	Ir	0.9
Br	0.1	Pt	1.7
Rb	0.96	Au	0.1
Sr	14	Hg	0.006
Y	2.7	Tl	0.02
Zr	6.7	Pb	0.8
Nb	0.52	Bi	0.03
Mo	1.6	Th	0.056
Ru	1.3	U	0.015
Table 10: Compositional models for the bulk Mars, bulk silicate Mars (BSM) and core and atomic proportions for major elements.

	wt%	Bulk	BSM	Core	atomic%	Bulk	BSM	Core
O	36.3	43.2	5.0	O	53	59	11	
Mg	15.3	18.7	0	Mg	15	17	0	
Si	17.4	21.3	0	Si	15	17	0	
Fe	23.7	11.4	79.5	Fe	10	4.5	50	
Al	1.56	1.90	0	Al	1.4	1.5	0	
S	1.2	0.04	6.6	S	0.9	0.02	7.1	
Ca	1.69	2.06	0	Ca	1.0	1.1	0	
Ni	1.4	0.04	7.4	Ni	0.5	0.01	4.4	
H	0.1	0.00	0.8	H	3.4	0.03	28	
Table 11: Comparison of chemical and physical properties of Martian core models.

Chemical composition	H₂O-bearing	H₂O-free	H-free	O-free	Reference value
Core wt%					
Fe	79.5	81.6	76.0	82.4	
Ni	7.4	8.2	7.0	7.8	
Co	0.33	0.37	0.32	0.35	
S	6.56	8.17	6.14	7.04	
P	0.33	0.41	0.31	0.36	
O	5.0	0.0	10.0	0	
H	0.8	0.0	0.0	1.4	
Total	99.9	98.8	99.8	99.3	

Bulk Mars					
Fe/Si	1.36	1.21	1.37	1.33	1.0–1.4
Fe/Al	15.2	13.6	15.4	14.9	15.5–24.3

Modeled physical properties					
M'_core (mass fr.)	18%	15%	19%	17%	
ρ_{core} (kg/m3)	7.060	8.120	6.940	7.320	
r_{core} (km)	1.580	1.400	1.610	1.520	
P_{CMB} (GPa)	22	24	21	22	
M_{bulk} (kg)	6.420×10^{23}	6.414×10^{23}	6.427×10^{23}	6.423×10^{23}	6.419×10^{23}
ρ_{bulk} (kg/m3)	3.935	3.932	3.939	3.947	3.935
MOI	0.3638	0.3644	0.3632	0.3627	0.363

a Compositional range of ordinary chondrites [Wasson and Kallemeyn, 1988].
b M'–mass fraction; ρ–density; r_{core}–radius of the core; P_{CMB}–pressure at the core–mantle boundary; M–mass.
c Rivoldini et al. (2011).
d Konopliv et al. (2016).
References

Agee, C.B., Draper, D.S., 2004. Experimental constraints on the origin of Martian meteorites and the composition of the Martian mantle. Earth and Planetary Science Letters 224, 415–429. doi:10.1016/j.epsl.2004.05.022.

Agostini, M., Altenmüller, K., Appel, S., Atroshchenko, V., Bagdasarian, Z., Basilico, D., Bellini, G., Benziger, J., Bick, D., Bonfini, G., Bravo, D., Caccianiga, B., Calaprice, F., Caminata, A., Caprioli, S., Carlini, M., Cavalcante, P., Chepurnov, A., Choi, K., Collica, L., D’Angelo, D., Davini, S., Derbin, A., Ding, X.F., Di Ludovico, A., Di Noto, L., Drachnev, I., Fomenko, K., Formozov, A., Franco, D., Gabriele, F., Galbiati, C., Ghiano, C., Giamarchi, M., Goretta, A., Gromov, M., Guffanti, D., Hagner, C., Houdy, T., Hungerford, E., Ianni, A., Ianni, A., Jany, A., Jeschke, D., Kobychev, V., Korablyev, D., Korga, G., Kryn, D., Laubenstein, M., Litvinovich, E., Lombardi, F., Lombardi, P., Ludhova, L., Lukyanchenko, G., Lukyanchenko, L., Machulin, I., Manuzio, G., Marcocci, S., Martyn, J., Meroni, E., Meyer, M., Miramonti, L., Misiaszek, M., Muratova, V., Neumair, B., Oberauer, L., Opitz, B., Orekhov, V., Ortica, F., Pallavicini, M., Papp, L., Penek, Ő., Pilipenko, N., Pocar, A., Porcelli, A., Raikov, G., Ranucci, G., Razeto, A., Re, A., Redchuk, M., Romani, A., Roncin, R., Rossi, N., Schönert, S., Semenov, D., Skorokhvatov, M., Smirnov, O., Sotnikov, A., Stokes, L.F.F., Suvorov, Y., Tartaglia, R., Testera, G., Thurn, J., Toropov, M., Unzhakov, E., Villante, F.L., Vishneva, A., Vogelaar, R.B., von Feilitzsch, F., Wang, H., Weinz, S., Wojcik, M., Wurm, M., Yokley, Z., Zaimidoroga, O., Zavatarelli, S., Zuber, K., Zuzel, G., 2018. Comprehensive measurement of pp-chain solar neutrinos. Nature 562, 505–510. doi:10.1038/s41586-018-0624-y.

Ahrens, T.J., Holland, K.G., Chen, G.Q., 2002. Phase diagram of iron, revised-core temperatures. Geophysical Research Letters 29, 54–1. doi:10.1029/2001GL014350.

Alexander, C.M.O., Bowden, R., Fogel, M.L., Howard, K.T., Herd, C.D.K., Nittler, L.R., 2012. The provenances of asteroids, and their contributions to the volatile inventories of the terrestrial planets. Science 337, 721–723. doi:10.1126/science.1223474.

Asplund, M., Grevesse, N., Sauval, A.J., Scott, P., 2009. The chemical composition of the Sun. Annual Review of Astronomy and Astrophysics 47, 481–522. doi:10.1146/annurev.astro.46.060407.145222.

Badding, J.V., Mao, H.K., Hemley, R.J., 1992. High-pressure crystal structure and equation of state of iron hydride: Implications for the earth’s core, in: High Pressure Research: Application to Earth and Planetary Sciences. American Geophysical Union. volume 67. chapter 5, pp. 363–371. doi:10.1029/GM067p0363.

Bailey, J.E., Nagayama, T., Loisel, G.P., Rochau, G.A., Blanchard, C., Colgan, J., Cosse, P., Faus-surier, G., Fontes, C.J., Gillieron, F., Golovkin, I., Hansen, S.B., Iglesias, C.A., Kilcrease, D.P., MacFarlane, J.J., Mancini, R.C., Nahar, S.N., Orban, C., Pain, J.C., Pradhan, A.K., Sherrill,
M., Wilson, B.G., 2015. A higher-than-predicted measurement of iron opacity at solar interior temperatures. Nature 517, 56–59. doi:10.1038/nature14048

Baratoux, D., Toplis, M., Monnereau, M., Sautter, V., 2013. The petrological expression of early Mars volcanism. Journal of Geophysical Research: Planets 118, 59–64. doi:10.1029/2012JE004234

Baratoux, D., Toplis, M.J., Monnereau, M., Gasnault, O., 2011. Thermal history of Mars inferred from orbital geochemistry of volcanic provinces. Nature 472, 338–341. doi:10.1038/nature09903

Barrat, J.A., Greenwood, R.C., Keil, K., Rouget, M.L., Boesenberg, J.S., Zanda, B., Franchi, I.A., 2016. The origin of aubrites: Evidence from lithophile trace element abundances and oxygen isotope compositions. Geochimica et Cosmochimica Acta 192, 29–48. doi:10.1016/j.gca.2016.07.025

Basu, S., Antia, H.M., 2008. Helioseismology and solar abundances. Physics Reports 457, 217–283. doi:10.1016/j.physrep.2007.12.002

Bellucci, J.J., Nemchin, A.A., Whitehouse, M.J., Snape, J.F., Bland, P., Benedix, G.K., Roszjar, J., 2018. Pb evolution in the Martian mantle. Earth and Planetary Science Letters 485, 79–87. doi:10.1016/j.epsl.2017.12.039

Bergemann, M., Serenelli, A., 2014. Solar abundance problem, in: Determination of Atmospheric Parameters of B-, A-, F-and G-Type Stars. Springer, pp. 245–258. doi:10.1007/978-3-319-06956-2_21

Bertka, C.M., Fei, Y., 1997. Mineralogy of the Martian interior up to core-mantle boundary pressures. Journal of Geophysical Research: Solid Earth 102, 5251–5264. doi:10.1029/96JB03270

Bertka, C.M., Fei, Y., 1998a. Density profile of an SNC model Martian interior and the moment-of-inertia factor of Mars. Earth and Planetary Science Letters 157, 79–88. doi:10.1016/S0012-821X(98)00030-2

Bertka, C.M., Fei, Y., 1998b. Implications of Mars Pathfinder data for the accretion history of the terrestrial planets. Science 281, 1838–1840. doi:10.1126/science.281.5384.1838

Birch, F., 1952. Elasticity and constitution of the Earth’s interior. Journal of Geophysical Research 57, 227–286. doi:10.1029/JZ057i002p00227

Birch, F., 1964. Density and composition of mantle and core. Journal of geophysical research 69, 4377–4388. doi:10.1029/JZ069i020p04377
Borg, L.E., Draper, D.S., 2003. A petrogenetic model for the origin and compositional variation of the Martian basaltic meteorites. Meteoritics & Planetary Science 38, 1713–1731. doi:10.1111/j.1945-5100.2003.tb00011.x

Borg, L.E., Edmunson, J.E., Asmerom, Y., 2005. Constraints on the U-Pb isotopic systematics of Mars inferred from a combined U-Pb, Rb-Sr, and Sm-Nd isotopic study of the Martian meteorite Zagami. Geochimica et Cosmochimica Acta 69, 5819–5830. doi:10.1016/j.gca.2005.08.007

Boujibar, A., Andrauld, D., Bouhifd, M.A., Bolfan-Casanova, N., Devidal, J.L., Trcera, N., 2014. Metal–silicate partitioning of sulphur, new experimental and thermodynamic constraints on planetary accretion. Earth and Planetary Science Letters 391, 42–54. doi:10.1016/j.epsl.2014.01.021

Bouvier, A., Blichert-Toft, J., Albarede, F., 2009. Martian meteorite chronology and the evolution of the interior of Mars. Earth and Planetary Science Letters 280, 285–295. doi:10.1016/j.epsl.2009.01.042

Bouvier, A., Blichert-Toft, J., Vervoort, J.D., Albarede, F., 2005. The age of SNC meteorites and the antiquity of the Martian surface. Earth and Planetary Science Letters 240, 221–233. doi:10.1016/j.epsl.2005.09.007

Bouvier, A., Blichert-Toft, J., Vervoort, J.D., Gillet, P., Albarède, F., 2008a. The case for old basaltic shergottites. Earth and Planetary Science Letters 266, 105–124. doi:10.1016/j.epsl.2007.11.006

Bouvier, A., Vervoort, J.D., Patchett, P.J., 2008b. The Lu–Hf and Sm–Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth and Planetary Science Letters 273, 48–57. doi:10.1016/j.epsl.2008.06.010

Bouvier, L.C., Costa, M.M., Connelly, J.N., Jensen, N.K., Wielandt, D., Storey, M., Nemchin, A.A., Whitehouse, M.J., Snape, J.F., Bellucci, J.J., Moynier, F., Agranier, A., Gueguen, B., Schönbächler, M., Bizzarro, M., 2018. Evidence for extremely rapid magma ocean crystallization and crust formation on Mars. Nature 558, 586–589. doi:10.1038/s41586-018-0222-z

Boynton, W.V., Taylor, G.J., Evans, L.G., Reedy, R.C., Starr, R., Janes, D.M., Kerry, K.E., Drake, D.M., Kim, K.J., Williams, R.M.S., Crombie, M.K., Dohm, J.M., Baker, V., Metzger, A.E., Karunatillake, S., Keller, J.M., Newsom, H.E., Arnold, J.R., Brckner, J., Englert, P.A.J., Gasnault, O., Sprague, A.L., Mitrofanov, I., Squyres, S.W., Trombka, J.I., d’Uston, L., Wnke, H., Hamara, D.K., 2007. Concentration of H, Si, Cl, K, Fe, and Th in the low- and mid-latitude regions of Mars. Journal of Geophysical Research: Planets 112, E12S99. doi:10.1029/2007JE002887
Boynton, W.V., Taylor, G.J., Karunatillake, S., Reedy, R.C., Keller, J.M., 2008. Elemental abundances determined via the Mars Odyssey GRS, in: Bell III, J. (Ed.), The Martian Surface: Composition, Mineralogy, and Physical Properties. Cambridge University Press, Cambridge, pp. 105–124. doi:10.1017/CBO9780511536076.006

Brandon, A.D., Puchtel, I.S., Walker, R.J., Day, J.M.D., Irving, A.J., Taylor, L.A., 2012. Evolution of the martian mantle inferred from the 187Re–187Os isotope and highly siderophile element abundance systematics of shergottite meteorites. Geochimica et Cosmochimica Acta 76, 206–235. doi:10.1016/j.gca.2011.09.047

Burbine, T.H., O’Brien, K.M., 2004. Determining the possible building blocks of the Earth and Mars. Meteoritics & Planetary Science 39, 667–681. doi:10.1111/j.1945-5100.2004.tb00110.x

Canup, R., Salmon, J., 2018. Origin of Phobos and Deimos by the impact of a Vesta-to-Ceres sized body with Mars. Science Advances 4, eaar6887. doi:10.1126/sciadv.aar6887.

Chambat, F., Ricard, Y., Valette, B., 2010. Flattening of the Earth: further from hydrostaticity than previously estimated. Geophysical Journal International 183, 727–732. doi:10.1111/j.1365-246X.2010.04771.x

Chen, J.H., Wasserburg, G.J., 1986. Formation ages and evolution of Shergotty and its parent planet from U-Th-Pb systematics. Geochimica et Cosmochimica Acta 50, 955–968. doi:10.1016/0016-7037(86)90376-5

Citron, R.I., Genda, H., Ida, S., 2015. Formation of Phobos and Deimos via a giant impact. Icarus 252, 334–338. doi:10.1016/j.icarus.2015.02.011

Clay, P.L., Burgess, R., Busemann, H., Ruzié-Hamilton, L., Joachim, B., Day, J.M.D., Ballentine, C.J., 2017. Halogens in chondritic meteorites and terrestrial accretion. Nature 551, 614–618. doi:10.1038/nature24625.

Connolly, J.A.D., 2009. The geodynamic equation of state: what and how. Geochemistry, Geophysics, Geosystems 10, Q10014. doi:10.1029/2009GC002540

Corgne, A., Keshav, S., Wood, B.J., McDonough, W.F., Fei, Y., 2008. Metal–silicate partitioning and constraints on core composition and oxygen fugacity during earth accretion. Geochimica et Cosmochimica Acta 72, 574–589. doi:10.1016/j.gca.2007.10.006

Coryell, C.D., Chase, J.W., Winchester, J.W., 1963. A procedure for geochemical interpretation of terrestrial rare-earth abundance patterns. Journal of Geophysical Research 68, 559–566. doi:10.1029/JZ068i002p00559

Curtis, D., Gladney, E., Jurney, E., 1980. A revision of the meteorite based cosmic abundance of boron. Geochimica et Cosmochimica Acta 44, 1945–1953. doi:10.1016/0016-7037(80)90194-5
Dauphas, N., Poitrasson, F., Burkhardt, C., Kobayashi, H., Kurosawa, K., 2015. Planetary and meteoritic Mg/Si and δ^{30}Si variations inherited from solar nebula chemistry. Earth and Planetary Science Letters 427, 236–248. doi:10.1016/j.epsl.2015.07.008

Dauphas, N., Pourmand, A., 2011. Hf–W–Th evidence for rapid growth of Mars and its status as a planetary embryo. Nature 473, 489–492. doi:10.1038/nature10077

Dauphas, N., Pourmand, A., 2015. Thulium anomalies and rare earth element patterns in meteorites and Earth: Nebular fractionation and the nugget effect. Geochimica et Cosmochimica Acta 163, 234–261. doi:10.1016/j.gca.2015.03.037

Dauphas, N., Schauble, E.A., 2016. Mass fractionation laws, mass-independent effects, and isotopic anomalies. Annual Review of Earth and Planetary Sciences 44, 709–783. doi:10.1146/annurev-earth-060115-012157

Davis, F.A., Humayun, M., Hirschmann, M.M., Cooper, R.S., 2013. Experimentally determined mineral/melt partitioning of first-row transition elements (FRTE) during partial melting of peridotite at 3 GPa. Geochimica et Cosmochimica Acta 104, 232–260. doi:10.1016/j.gca.2012.11.009

Day, J.M.D., Brandon, A.D., Walker, R.J., 2016. Highly siderophile elements in Earth, Mars, the Moon, and asteroids. Reviews in Mineralogy and Geochemistry 81, 161–238. doi:10.2138/rmg.2016.81.04

Day, J.M.D., Tait, K.T., Udry, A., Moynier, F., Liu, Y., Neal, C.R., 2018. Martian magmatism from plume metasomatized mantle. Nature Communications 9, 4799. doi:10.1038/s41467-018-07191-0

Desch, S.J., Kalyaan, A., Alexander, C.M.O., 2018. The effect of Jupiter’s formation on the distribution of refractory elements and inclusions in meteorites. The Astrophysical Journal Supplement Series 238, 11. doi:10.3847/1538-4365/aad95f

Ding, S., Dasgupta, R., Lee, C.T.A., Wadhwa, M., 2015. New bulk sulfur measurements of Martian meteorites and modeling the fate of sulfur during melting and crystallization–Implications for sulfur transfer from Martian mantle to crust–atmosphere system. Earth and Planetary Science Letters 409, 157–167. doi:10.1016/j.epsl.2014.10.046

Draper, D.S., Borg, L.E., Agee, C.B., 2005. Crystallization of a martian magma ocean and the formation of Shergottite source regions: A less Fe-rich Mars?, in: 36th Annual Lunar and Planetary Science Conference, p. 1429.

Dreibus, G., Wänke, H., 1984. Accretion of the Earth and the inner planets, in: Proceedings of the 27th International Geological Congress, VNU Science Press. pp. 1–20.

Dreibus, G., Wanke, H., 1985. Mars, a volatile-rich planet. Meteoritics 20, 367–381.
Dreibus, G., Wänke, H., 1987. Volatiles on Earth and Mars: A comparison. Icarus 71, 225–240. doi:10.1016/0019-1035(87)90148-5

Dziewonski, A.M., Anderson, D.L., 1981. Preliminary reference Earth model. Physics of the Earth and Planetary Interiors 25, 297–356. doi:10.1016/0031-9201(81)90046-7

Ehmann, W.D., Lovering, J.F., 1967. The abundance of mercury in meteorites and rocks by neutron activation analysis. Geochimica et Cosmochimica Acta 31, 357–376. doi:10.1016/0016-7037(67)90047-6

Fei, Y., Prewitt, C.T., Mao, H.k., Bertka, C.M., 1995. Structure and density of FeS at high pressure and high temperature and the internal structure of Mars. Science 268, 1892–1894. doi:10.1126/science.268.5219.1892

Filiberto, J., 2017. Geochemistry of Martian basalts with constraints on magma genesis. Chemical Geology 466, 1–14. doi:10.1016/j.chemgeo.2017.06.009

Filiberto, J., Dasgupta, R., 2011. Fe$^{2+}$–Mg partitioning between olivine and basaltic melts: Applications to genesis of olivine-phyric shergottites and conditions of melting in the Martian interior. Earth and Planetary Science Letters 304, 527–537. doi:10.1016/j.epsl.2011.02.029

Filiberto, J., Gross, J., McCubbin, F.M., 2016. Constraints on the water, chlorine, and fluorine content of the Martian mantle. Meteoritics & Planetary Science 51, 2023–2035. doi:10.1111/maps.12624

Filiberto, J., McCubbin, F.M., Taylor, G.J., 2019. Volatiles in Martian Magmas and the Interior: Inputs of Volatiles Into the Crust and Atmosphere, in: Filiberto, J., Schwenger, S.P. (Eds.), Volatiles in the Martian Crust. Elsevier, pp. 13–33. doi:10.1016/B978-0-12-804191-8.00002-7

Filiberto, J., Treiman, A.H., 2009. Martian magmas contained abundant chlorine, but little water. Geology 37, 1087–1090. doi:10.1130/G30488A.1

Franz, H.B., King, P.L., Gaillard, F., 2019. Sulfur on mars from the atmosphere to the core, in: Filiberto, J., Schwenger, S.P. (Eds.), Volatiles in the Martian Crust. Elsevier, pp. 119–183. doi:10.1016/B978-0-12-804191-8.00006-4

Gaffney, A.M., Borg, L.E., Connelly, J.N., 2007. Uranium–lead isotope systematics of Mars inferred from the basaltic shergottite QUE 94201. Geochimica et Cosmochimica Acta 71, 5016–5031. doi:10.1016/j.gca.2007.08.009

Gaillard, F., Michalski, J., Berger, G., McLennan, S.M., Scaillet, B., 2013. Geochemical reservoirs and timing of sulfur cycling on Mars. Space Science Reviews 174, 251–300. doi:10.1007/s11214-012-9947-4

44
Grady, M.M., Verchovsky, A.B., Wright, I., 2004. Magmatic carbon in Martian meteorites: attempts to constrain the carbon cycle on Mars. International Journal of Astrobiology 3, 117–124. doi:10.1017/S1473550404002071

Grevesse, N., Scott, P., Asplund, M., Sauval, A.J., 2015. The elemental composition of the Sun-III. The heavy elements Cu to Th. Astronomy & Astrophysics 573, A27. doi:10.1051/0004-6361/201424111

Grott, M., Baratoux, D., Hauber, E., Sautter, V., Mustard, J., Gasnault, O., Ruff, S.W., Karato, S.I., Debaille, V., Knapmeyer, M., Sohl, F., Van Hoolst, T., Breuer, D., Morschhauser, A., Toplis, M.J., 2013. Long-term evolution of the Martian crust-mantle system. Space Science Reviews 174, 49–111. doi:10.1007/s11214-012-9948-3

Halliday, A.N., Wänke, H., Birck, J.L., Clayton, R.N., 2001. The accretion, composition and early differentiation of Mars. Space Science Reviews 96, 197–230. doi:10.1023/A:1011997206080

Haxton, W.C., Hamish Robertson, R.G., Serenelli, A.M., 2013. Solar neutrinos: Status and prospects. Annual Review of Astronomy and Astrophysics 51, 21–61. doi:10.1146/annurev-astro-081811-125539

Herd, C.D.K., Borg, L.E., Jones, J.H., Papike, J.J., 2002. Oxygen fugacity and geochemical variations in the martian basalts: Implications for martian basalt petrogenesis and the oxidation state of the upper mantle of Mars. Geochimica et Cosmochimica Acta 66, 2025–2036. doi:10.1016/S0016-7037(02)00828-1

Herzberg, C., Zhang, J., 1996. Melting experiments on anhydrous peridotite KLB-1: Compositions of magmas in the upper mantle and transition zone. Journal of Geophysical Research: Solid Earth 101, 8271–8295. doi:10.1029/96JB00170

Howarth, G.H., Pernet-Fisher, J.F., Balta, J.B., Barry, P.H., Bodnar, R.J., Taylor, L.A., 2014. Two-stage polybaric formation of the new enriched, pyroxene-olivocrystic, lherzolitic shergottite, NWA 7397. Meteoritics & Planetary Science 49, 1812–1830. doi:10.1111/maps.12357

Huang, Y., Chubakov, V., Mantovani, F., Rudnick, R.L., McDonough, W.F., 2013. A reference Earth model for the heat-producing elements and associated geoneutrino flux. Geochemistry, Geophysics, Geosystems 14, 2003–2029. doi:10.1002/ggge.20129

Hyodo, R., Genda, H., Charnoz, S., Pignatale, F.C.F., Rosenblatt, P., 2018. On the impact origin of Phobos and Deimos. IV. Volatile depletion. The Astrophysical Journal 860, 150. doi:10.3847/1538-4357/aac024

Jaupart, C., Labrosse, S., Lucazeau, F., Mareschal, J.C., 2015. Temperatures, heat, and energy in the mantle of the earth, in: Schubert, G. (Ed.), Treatise on Geophysics (Second Edition). Elsevier, Oxford. volume 7, pp. 223–270. doi:10.1016/B978-0-444-53802-4.00126-3
Johansen, A., Mac Low, M.M., Lacerda, P., Bizzarro, M., 2015. Growth of asteroids, planetary embryos, and Kuiper belt objects by chondrule accretion. Science Advances 1, e1500109. doi:10.1126/sciadv.1500109.

Katsura, T., Yoneda, A., Yamazaki, D., Yoshino, T., Ito, E., 2010. Adiabatic temperature profile in the mantle. Physics of the Earth and Planetary Interiors 183, 212–218. doi:10.1016/j.pepi.2010.07.001.

Keller, J.M., Boynton, W.V., Karunatillake, S., Baker, V.R., Dohm, J.M., Evans, L.G., Finch, M.J., Hahn, B.C., Hamara, D.K., Janes, D.M., Kerry, K.E., Newsom, H.E., Reedy, R.C., Sprague, A.L., Squyres, S.W., Starr, R.D., Taylor, G.J., Williams, R.M., 2006. Equatorial and midlatitude distribution of chlorine measured by Mars Odyssey GRS. Journal of Geophysical Research: Planets 111. doi:10.1029/2006JE002679.

Khan, A., Connolly, J.A.D., 2008. Constraining the composition and thermal state of Mars from inversion of geophysical data. Journal of Geophysical Research: Planets 113. doi:10.1029/2007JE002996.

Khan, A., Liebske, C., Rozel, A., Rivoldini, A., Nimmo, F., Connolly, J.A.D., Plesa, A.C., Giardini, D., 2018. A geophysical perspective on the bulk composition of Mars. Journal of Geophysical Research: Planets 123, 575–611. doi:10.1002/2017JE005371.

Konopliv, A.S., Park, R.S., Folkner, W.M., 2016. An improved JPL Mars gravity field and orientation from Mars orbiter and lander tracking data. Icarus 274, 253–260. doi:10.1016/j.icarus.2016.02.052.

Kruijer, T.S., Burkhardt, C., Budde, G., Kleine, T., 2017a. Age of Jupiter inferred from the distinct genetics and formation times of meteorites. Proceedings of the National Academy of Sciences 114, 6712–6716. doi:10.1073/pnas.1704461114.

Kruijer, T.S., Kleine, T., Borg, L.E., Brennecka, G.A., Irving, A.J., Bischoff, A., Agee, C.B., 2017b. The early differentiation of Mars inferred from Hf–W chronometry. Earth and Planetary Science Letters 474, 345–354. doi:10.1016/j.epsl.2017.06.047.

Kuramoto, K., Kawakatsu, Y., Fujimoto, M., Bibring, J.P., Genda, H., Imamura, T., Kameda, S., Lawrence, D., Matsumoto, K., Miyamoto, H., Morota, T., Nagaoka, H., Nakamura, T., Ogawa, K., Otake, H., Ozaki, M., Sasaki, S., Senshu, H., Tachibana, S., Terada, N., Usui, T., J. W., Watanabe, S., study team, M., 2018. Martian Moons eXploration (MMX): an overview of its science, in: European Planetary Science Congress, pp. EPSC2018–1036.

Larimer, J.W., Wasson, J.T., 1988. Refractory lithophile elements, in: Kerridge, J.F., Matthews, M.S. (Eds.), Meteorites and the Early Solar System. The University of Arizona Press, Tucson, pp. 394–415.
Lauretta, D.S., Devouard, B., Buseck, P.R., 1999. The cosmochemical behavior of mercury. Earth and Planetary Science Letters 171, 35–47. doi:10.1016/S0012-821X(99)00129-6

Le Roux, V., Dasgupta, R., Lee, C.T.A., 2011. Mineralogical heterogeneities in the Earth’s mantle: constraints from Mn, Co, Ni and Zn partitioning during partial melting. Earth and Planetary Science Letters 307, 395–408. doi:10.1016/j.epsl.2011.05.014

Levison, H.F., Kretke, K.A., Walsh, K.J., Bottke, W.F., 2015. Growing the terrestrial planets from the gradual accumulation of submeter-sized objects. Proceedings of the National Academy of Sciences 112, 14180–14185. doi:10.1073/pnas.1513364112

Lodders, K., 2003. Solar system abundances and condensation temperatures of the elements. Astrophysical Journal 591, 1220–1247. doi:10.1086/375492

Lodders, K., Fegley Jr, B., 1997. An oxygen isotope model for the composition of Mars. Icarus 126, 373–394. doi:10.1006/icar.1996.5653

Longhi, J., Knittle, E., Holloway, J.R., Wänke, H., 1992. The bulk composition, mineralogy and internal structure of Mars, in: Kieffer, H.H., Jakosky, B.M., Snyder, C.W., Matthews, M.S. (Eds.), Mars. University of Arizona Press, Tuscon, pp. 184–208.

Masuda, A., 1957. Simple regularity in the variation of relative abundances of rare earth elements. The Journal of Earth Sciences, Nagoya University 5, 125–134.

McCoy, C.L., Chartrand, Z., Caroeber, P.K., Gross, J., Filiberto, J., 2016. Experimentally melting a Mg 80# Martian mantle at 0.5 to 1.5 GPa: Implications for basalt genesis, in: The Geological Society of America Annual Meeting, p. 7. doi:10.1130/abs/2016AM-282245

McCubbin, F.M., Boyce, J.W., Novák-Szabó, T., Santos, A.R., Tartèse, R., Muttik, N., Domokos, G., Vazquez, J., Keller, L.P., Moser, D.E., Jerolmack, D.J., Shearer, C.K., Steele, A., Elardo, S.M., Rahman, Z., Anand, M., Delhaye, T., Agee, C.B., 2016a. Geologic history of Martian regolith breccia Northwest Africa 7034: Evidence for hydrothermal activity and lithologic diversity in the Martian crust. Journal of Geophysical Research: Planets 121, 2120–2149. doi:10.1002/2016JE005143

McCubbin, F.M., Boyce, J.W., Srinivasan, P., Santos, A.R., Elardo, S.M., Filiberto, J., Steele, A., Shearer, C.K., 2016b. Heterogeneous distribution of H_2O in the Martian interior: Implications for the abundance of H_2O in depleted and enriched mantle sources. Meteoritics & Planetary Science 51, 2036–2060. doi:10.1111/maps.12639

McCubbin, F.M., Smirnov, A., Nekvasil, H., Wang, J., Hauri, E., Lindsley, D.H., 2010. Hydrous magmatism on Mars: A source of water for the surface and subsurface during the Amazonian. Earth and Planetary Science Letters 292, 132–138. doi:10.1016/j.epsl.2010.01.028
McDonough, W.F., 1990. Comment on Abundance and distribution of gallium in some spinel and garnet lherzolites by D.B. McKay and R.H. Mitchell. Geochimica et Cosmochimica Acta 54, 471–473. doi:10.1016/0016-7037(90)90335-I

McDonough, W.F., 2014. Compositional model for the Earth’s core, in: Holland, H.D., Turekian, K.K. (Eds.), The Mantle and Core. Elsevier, Oxford. volume 3 of Treatise on Geochemistry (Second Edition), pp. 559–577. doi:10.1016/B978-0-08-095975-7.00215-1

McDonough, W.F., 2016. The composition of the lower mantle and core, in: Terasaki, H., Fischer, R.A. (Eds.), Deep Earth. American Geophysical Union (AGU). chapter 12, pp. 145–159. doi:10.1002/9781118992487.ch12

McDonough, W.F., 2016. The composition of the Earth. Chemical Geology 120, 223–253. doi:10.1016/0009-2541(94)00140-4

McGovern, P.J., Solomon, S.C., Zuber, M.T., Simons, M., Wieczorek, M.A., Phillips, R.J., Neumann, G.A., Aharonson, O., Head, J.W., 2002. Localized gravity/topography admittance and correlation spectra on Mars: Implications for regional and global evolution. Journal of Geophysical Research: Planets 107, 19–1. doi:10.1029/2002JE001854

McGovern, P.J., Solomon, S.C., Zuber, M.T., Simons, M., Wieczorek, M.A., Phillips, R.J., Neumann, G.A., Aharonson, O., Head, J.W., 2004. Correction to Localized gravity/topography admittance and correlation spectra on Mars: Implications for regional and global evolution. Journal of Geophysical Research: Planets 109, E07007. doi:10.1029/2004JE002286

McKee, D., Barnett, D.N., Yuan, D.N., 2002. The relationship between Martian gravity and topography. Earth and Planetary Science Letters 195, 1–16. doi:10.1016/S0012-821X(01)00555-6

McSween Jr, H.Y., 2008. Martian meteorites as crustal samples, in: Bell III, J. (Ed.), The Martian Surface: Composition, Mineralogy, and Physical Properties. Cambridge University Press, pp. 383–395. doi:10.1017/CBO9780511536076.018

McSween Jr, H.Y., McLennan, S.M., 2014. Mars, in: Holland, H.D., Turekian, K.K. (Eds.), Treatise on Geochemistry (Second Edition). 2 ed.. Elsevier, Oxford, pp. 251–300. doi:10.1016/B978-0-08-095975-7.00125-X

Medard, E., Martin, A.M., Collinet, M., Richter, K., Grove, T.L., Newville, M., Lanzilotti, A., 2014. Fe$^{3+}$ partitioning during basalt differentiation on Mars: insights into the oxygen fugacity of the shergottite mantle source (s), in: AGU Fall Meeting Abstracts, pp. V52B–03.

Meier, M.M., Cloquet, C., Marty, B., 2016. Mercury (Hg) in meteorites: Variations in abundance, thermal release profile, mass-dependent and mass-independent isotopic fractionation. Geochimica et Cosmochimica Acta 182, 55–72. doi:10.1016/j.gca.2016.03.007
Minitti, M.E., Fei, Y., Bertka, C.M., 2006. New, geophysically-constrained martian mantle compositions, in: Workshop on Early Planetary Differentiation, pp. 72–73.

Misawa, K., Nakamura, N., Premo, W.R., Tatsumoto, M., 1997. U-Th-Pb isotopic systematics of lherzolitic shergottite Yamato-793605. Antarctic Meteorite Research 10, 95–108.

Morgan, J.W., Anders, E., 1979. Chemical composition of Mars. Geochimica et Cosmochimica Acta 43, 1601–1610. doi:10.1016/0016-7037(79)90180-7.

Moriwaki, R., Usui, T., Simon, J.I., Jones, J.H., Yokoyama, T., Tobita, M., 2017. Coupled Pb isotopic and trace element systematics of the Tissint meteorite: Geochemical signatures of the depleted shergottite source mantle. Earth and Planetary Science Letters 474, 180–189. doi:10.1016/j.epsl.2017.06.044.

Murchie, S.L., Britt, D.T., Pieters, C.M., 2014. The value of Phobos sample return. Planetary and Space Science 102, 176–182. doi:10.1016/j.pss.2014.04.014.

Nagayama, T., Bailey, J.E., Loisel, G.P., Dunham, G.S., Rochau, G.A., Blanchard, C., Colgan, J., Cossé, P., Faussurier, G., Fontes, C.J., Gilleron, F., Hansen, S.B., Iglesias, C.A., Golovkin, I.E., Kilecrease, D.P., MacFarlane, J.J., Mancini, R.C., More, R.M., Orban, C., Pain, J.C., Sherrill, M.E., Wilson, B.G., 2019. Systematic Study of L-Shell Opacity at Stellar Interior Temperatures. Physical Review Letters 122, 235001. doi:10.1103/PhysRevLett.122.235001.

Nakamura, N., Unruh, D.M., Tatsumoto, M., Hutchison, R., 1982. Origin and evolution of the Nakhla meteorite inferred from the Sm-Nd and U-Pb systematics and REE, Ba, Sr, Rb and K abundances. Geochimica et Cosmochimica Acta 46, 1555–1573. doi:10.1016/0016-7037(82)90314-3.

Noll Jr, P.D., Newsom, H.E., Leeman, W.P., Ryan, J.G., 1996. The role of hydrothermal fluids in the production of subduction zone magmas: evidence from siderophile and chalcophile trace elements and boron. Geochimica et Cosmochimica Acta 60, 587–611. doi:10.1016/0016-7037(95)00405-X.

Ohtani, E., Kamaya, N., 1992. The geochemical model of Mars: An estimation from the high pressure experiments. Geophysical Research Letters 19, 2239–2242. doi:10.1029/92GL02369.

Okuchi, T., 1997. Hydrogen partitioning into molten iron at high pressure: implications for Earth’s core. Science 278, 1781–1784. doi:10.1126/science.278.5344.1781.

O’Rourke, J.G., Shim, S.H., 2018. Suppressing the Martian dynamo with ongoing hydrogenation of the core by hydrated mantle minerals, in: Lunar and Planetary Science Conference, p. 2390.

Palme, H., Lodders, K., Jones, A., 2014. Solar system abundances of the elements, in: Holland, H.D., Turekian, K.K. (Eds.), Treatise on Geochemistry (Second Edition). Elsevier, Oxford. volume 2, pp. 15–36. doi:10.1016/B978-0-08-095975-7.00118-2.
Parro, L.M., Jiménez-Díaz, A., Mansilla, F., Ruiz, J., 2017. Present-day heat flow model of Mars. Scientific Reports 7, 45629. doi:10.1038/srep45629

Phillips, R.J., Zuber, M.T., Smrekar, S.E., Mellon, M.T., Head, J.W., Tanaka, K.L., Putzig, N.E., Milkovich, S.M., Campbell, B.A., Plaut, J.J., Safaeinili, A., Seu, R., Biccar, D., Carter, L.M., Picardi, G., Orosei, R., Surdas Mohit, P., Heggy, E., Zurek, R.W., Egan, A.F., Giacomoni, E., Russo, F., Cutigni, M., Pettinelli, E., Holt, J.W., Leuschen, C.J., Marinangeli, L., 2008. Mars north polar deposits: Stratigraphy, age, and geodynamical response. Science 320, 1182–1185. doi:10.1126/science.1157546

Putirka, K., 2016. Rates and styles of planetary cooling on Earth, Moon, Mars, and Vesta, using new models for oxygen fugacity, ferric-ferrous ratios, olivine-liquid Fe-Mg exchange, and mantle potential temperature. American Mineralogist 101, 819–840. doi:10.2138/am-2016-5402

Rai, N., van Westrenen, W., 2013. Core-mantle differentiation in Mars. Journal of Geophysical Research: Planets 118, 1195–1203. doi:10.1002/jgre.20093

Raymond, S.N., Izidoro, A., 2017. Origin of water in the inner Solar System: Planetesimals scattered inward during Jupiter and Saturns rapid gas accretion. Icarus 297, 134–148. doi:10.1016/j.icarus.2017.06.030

Reichmann, H.J., Jacobsen, S.D., 2004. High-pressure elasticity of a natural magnetite crystal. American Mineralogist 89, 1061–1066. doi:10.2138/am-2004-0718

Righter, K., 2017. The Martian Meteorite Compendium. URL: https://curator.jsc.nasa.gov/antmet/mmc/

Righter, K., Chabot, N.L., 2011. Moderately and slightly siderophile element constraints on the depth and extent of melting in early Mars. Meteoritics & Planetary Science 46, 157–176. doi:10.1111/j.1945-5100.2010.01140.x

Righter, K., Nickodem, K., Pando, K., Danielson, L., Boujibar, A., Righter, M., Lapen, T.J., 2017. Distribution of Sb, As, Ge, and In between metal and silicate during accretion and core formation in the Earth. Geochimica et Cosmochimica Acta 198, 1–16. doi:10.1016/j.gca.2016.10.045

Ringwood, A.E., 1966. Chemical evolution of the terrestrial planets. Geochimica et Cosmochimica Acta 30, 41–104. doi:10.1016/0016-7037(66)90090-1

Ringwood, A.E., Hibberson, W., 1990. The system Fe-FeO revisited. Physics and Chemistry of Minerals 17, 313–319. doi:10.1007/BF00200126

Rivoldini, A., Van Hoolst, T., Verhoeven, O., Mocquet, A., Dehant, V., 2011. Geodesy constraints on the interior structure and composition of Mars. Icarus 213, 451–472. doi:10.1016/j.icarus.2011.03.024
Rose-Weston, L., Brenan, J.M., Fei, Y., Secco, R.A., Frost, D.J., 2009. Effect of pressure, temperature, and oxygen fugacity on the metal-silicate partitioning of Te, Se, and S: Implications for Earth differentiation. Geochimica et Cosmochimica Acta 73, 4598–4615. doi:10.1016/j.gca.2009.04.028

Rubie, D.C., Gessmann, C.K., Frost, D.J., 2004. Partitioning of oxygen during core formation on the Earth and Mars. Nature 429, 58. doi:10.1038/nature02473

Rubin, A.E., Fegley, B., Brett, R., 1988. Oxidation state in chondrites, in: Kerridge, J.F., Matthews, M.S. (Eds.), Meteorites and the Early Solar System. The University of Arizona Press, Tucson. volume 1, pp. 488–511.

Ruiz, J., Williams, J.P., Dohm, J.M., Fernández, C., López, V., 2009. Ancient heat flow and crustal thickness at Warrego rise, Thaumasia highlands, Mars: Implications for a stratified crust. Icarus 203, 47–57. doi:10.1016/j.icarus.2009.05.008

Samuel, H., Lognonné, P., Panning, M., Lainey, V., 2019. The rheology and thermal history of Mars revealed by the orbital evolution of Phobos. Nature 569, 523–527. doi:10.1038/s41586-019-1202-7

Sanloup, C., Jambon, A., Gillet, P., 1999. A simple chondritic model of Mars. Physics of the Earth and Planetary Interiors 112, 43–54. doi:10.1016/S0031-9201(98)00175-7

Schmelz, J.T., Reames, D.V., Von Steiger, R., Basu, S., 2012. Composition of the solar corona, solar wind, and solar energetic particles. The Astrophysical Journal 755, 33. doi:10.1088/0004-637X/755/1/33

Schmidt, M.E., Schrader, C.M., McCoy, T.J., 2013. The primary f_{O_2} of basalts examined by the Spirit rover in Gusev Crater, Mars: Evidence for multiple redox states in the Martian interior. Earth and Planetary Science Letters 384, 198–208. doi:10.1016/j.epsl.2013.10.005

Scott, E.R.D., Krot, A.N., 2014. Chondrites and their Components, in: Holland, H.D., Turekian, K.K. (Eds.), Treatise on Geochemistry (Second Edition). Elsevier, Oxford. volume 1, pp. 65–137. doi:10.1016/B978-0-08-095975-7.00104-2

Seidelmann, P.K., Abalakin, V.K., Bursa, M., Davies, M.E., De Bergh, C., Lieske, J.H., Oberst, J., Simon, J.L., Standish, E.M., Stooke, P., Thomas, P.C., 2002. Report of the IAU/IAG working group on cartographic coordinates and rotational elements of the planets and satellites: 2000. Celestial Mechanics and Dynamical Astronomy 82, 83–111. doi:10.1023/A:1013939327463

Shahar, A., Hillgren, V.J., Horan, M.F., Mesa-Garcia, J., Kaufman, L.A., Mock, T.D., 2015. Sulfur-controlled iron isotope fractionation experiments of core formation in planetary bodies. Geochimica et Cosmochimica Acta 150, 253–264. doi:10.1016/j.gca.2014.08.011
Shibazaki, Y., Ohtani, E., Terasaki, H., Suzuki, A., Funakoshi, K.i., 2009. Hydrogen partitioning between iron and ringwoodite: Implications for water transport into the Martian core. Earth and Planetary Science Letters 287, 463–470. doi:10.1016/j.epsl.2009.08.034

Siebert, J., Badro, J., Antonangeli, D., Ryerson, F.J., 2013. Terrestrial accretion under oxidizing conditions. Science 339, 1194–1197. doi:10.1126/science.122792

Smrekar, S.E., Lognonné, P., Spohn, T., Banerdt, W.B., Breuer, D., Christensen, U., Dehant, V., Drilleau, M., Folkner, W., Fuji, N., Garcia, R.F., Giardini, D., Golombek, M., Grott, M., Gudkova, T., Johnson, C., Khan, A., Langlais, B., Mittelholz, A., Mocquet, A., Myhill, R., Panning, M., Perrin, C., Pike, T., Plesa, A.C., Rivoldini, A., Samuel, H., Stähler, S.C., van Driel, M., Van Hoolst, T., Verhoeven, O., Weber, R., Wieczorek, M., 2019. Pre-mission InSights on the interior of Mars. Space Science Reviews 215, 3. doi:10.1007/s11214-018-0563-9

Sohl, F., Spohn, T., 1997. The interior structure of Mars: Implications from SNC meteorites. Journal of Geophysical Research: Planets 102, 1613–1635. doi:10.1029/96JE03419

Stixrude, L., Lithgow-Bertelloni, C., 2005. Thermodynamics of mantle minerals–I. Physical properties. Geophysical Journal International 162, 610–632. doi:10.1111/j.1365-246X.2005.02642.x

Stixrude, L., Lithgow-Bertelloni, C., 2011. Thermodynamics of mantle minerals–II. Phase equilibria. Geophysical Journal International 184, 1180–1213. doi:10.1111/j.1365-246X.2010.04890.x

Tait, K.T., Day, J.M.D., 2018. Chondritic late accretion to Mars and the nature of shergottite reservoirs. Earth and Planetary Science Letters 494, 99–108. doi:10.1016/j.epsl.2018.04.040

Takahashi, E., Kushiro, I., 1983. Melting of a dry peridotite at high pressures and basalt magma genesis. American Mineralogist 68, 859–879.

Taylor, G.J., 2013. The bulk composition of Mars. Chemie der Erde-Geochemistry 73, 401–420. doi:10.1016/j.chemer.2013.09.006

Taylor, G.J., Boynton, W., Brckner, J., Wnke, H., Dreibus, G., Kerry, K., Keller, J., Reedy, R., Evans, L., Starr, R., Squyres, S., Karunatillake, S., Gasnault, O., Maurice, S., d’Uston, C., Englert, P., Dohm, J., Baker, V., Hamara, D., Janes, D., Sprague, A., Kim, K., Drake, D., 2006a. Bulk composition and early differentiation of mars. Journal of Geophysical Research: Planets 111. doi:10.1029/2005JE002645

Taylor, G.J., Boynton, W.V., McLennan, S.M., Martel, L.M.V., 2010. K and Cl concentrations on the Martian surface determined by the Mars Odyssey Gamma Ray Spectrometer: Implications for bulk halogen abundances in Mars. Geophysical Research Letters 37, L12204. doi:10.1029/2010GL043528

52
Taylor, G.J., Stopar, J.D., Boynton, W.V., Karunatillake, S., Keller, J.M., Brckner, J., Wnke, H.,
Dreibus, G., Kerry, K.E., Reedy, R.C., Evans, L.G., Starr, R.D., Martel, L.M.V., Squyres, S.W.,
Gasnault, O., Maurice, S., d’Uston, C., Englert, P., Doehm, J.M., Baker, V.R., Hamara, D., Janes,
D., Sprague, A.L., Kim, K.J., Drake, D.M., McLennan, S.M., Hahn, B.C., 2006b. Variations
in K/Th on Mars. Journal of Geophysical Research: Planets 111, E03S06. doi:10.1029/2006JE002676.

Taylor, S.R., McLennan, S., 2009. Planetary Crusts: Their Composition, Origin and Evolution.
volume 10. Cambridge University Press.

Treiman, A.H., 2003. Chemical compositions of martian basalts (shergottites): Some inferences
on basalt formation, mantle metasomatism, and differentiation in Mars. Meteoritics & Planetary
Science 38, 1849–1864. doi:10.1111/j.1945-5100.2003.tb00019.x

Treiman, A.H., Lindstrom, D.J., 1997. Trace element geochemistry of Martian iddingsite in the
Lafayette meteorite. Journal of Geophysical Research: Planets 102, 9153–9163. doi:10.1029/96JE03884.

Tsuno, K., Frost, D.J., Rubie, D.C., 2011. The effects of nickel and sulphur on the core–mantle
partitioning of oxygen in Earth and Mars. Physics of the Earth and Planetary Interiors 185, 1–12.
doi:10.1016/j.pepi.2010.11.009

Verhoeven, O., Rivoldini, A., Vacher, P., Mocquet, A., Choblet, G., Menvielle, M., Dehant, V., Van
Hoolst, T., Sleewaegen, J., Barriot, J.P., Lognonné, P., 2005. Interior structure of terrestrial plan-
etes: Modeling Mars’ mantle and its electromagnetic, geodetic, and seismic properties. Journal
of Geophysical Research: Planets 110, E04009. doi:10.1029/2004JE002271.

Wade, J., Wood, B.J., 2005. Core formation and the oxidation state of the Earth. Earth and
Planetary Science Letters 236, 78–95. doi:10.1016/j.epsl.2005.05.017

Wadhwa, M., 2001. Redox state of Mars’ upper mantle and crust from Eu anomalies in shergottite
pyroxenes. Science 291, 1527–1530. doi:10.1126/science.1057594.

Wadhwa, M., 2008. Redox conditions on small bodies, the Moon and Mars, in: MacPherson, G.J.
(Ed.), Reviews in Mineralogy and Geochemistry, Mineralogical Society of America. volume 68,
pp. 493–510. doi:10.2138/rmg.2008.68.17

Walsh, K.J., Morbidelli, A., Raymond, S.N., O’Brien, D.P., Mandell, A.M., 2011. A low mass
for Mars from Jupiter’s early gas-driven migration. Nature 475, 206–209. doi:10.1038/nature10201

Walter, M.J., 1998. Melting of garnet peridotite and the origin of komatiite and depleted litho-
sphere. Journal of Petrology 39, 29–60. doi:10.1093/petroj/39.1.29
Wang, Z., Becker, H., 2017. Chalcophile elements in Martian meteorites indicate low sulfur content in the Martian interior and a volatile element-depleted late veneer. Earth and Planetary Science Letters 463, 56–68. doi:10.1016/j.epsl.2017.01.023

Wang, Z., Becker, H., Wombacher, F., 2015. Mass fractions of S, Cu, Se, Mo, Ag, Cd, In, Te, Ba, Sm, W, Tl and Bi in geological reference materials and selected carbonaceous chondrites determined by isotope dilution ICP-MS. Geostandards and Geoanalytical Research 39, 185–208. doi:10.1111/j.1751-908X.2014.00312.x

Wänke, H., 1981. Constitution of terrestrial planets. Philosophical Transactions of the Royal Society of London. Series A: Mathematical and Physical Sciences 303, 287–302. doi:10.1098/rsta.1981.0203

Wänke, H., 1987. Chemistry and accretion of Earth and Mars. Bulletin de la Société Géologique de France 3, 13–19.

Wänke, H., Dreibus, G., 1988. Chemical composition and accretion history of terrestrial planets. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 325, 545–557. doi:10.1098/rsta.1988.0067

Wänke, H., Dreibus, G., 1994. Chemistry and accretion history of Mars. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 349, 285–293. doi:10.1098/rsta.1994.0132

Warren, P.H., 2011. Stable-isotopic anomalies and the accretionary assemblage of the Earth and Mars: A subordinate role for carbonaceous chondrites. Earth and Planetary Science Letters 311, 93–100. doi:10.1016/j.epsl.2011.08.047

Wasson, J.T., Kallemeyn, G.W., 1988. Compositions of chondrites. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 325, 535–544. doi:10.1098/rsta.1988.0066

Wasylek, L.E., Baker, M.B., Kent, A.J., Stolper, E.M., 2003. Near-solidus melting of the shallow upper mantle: partial melting experiments on depleted peridotite. Journal of Petrology 44, 1163–1191. doi:10.1093/petrology/44.7.1163

Weinke, H.H., 1978. Chemical and mineralogical examination of the Nakhla achondrite. Meteoritics 13, 660–664.

White, D.S.M., Dalton, H.A., Kiefer, W.S., Treiman, A.H., 2006. Experimental petrology of the basaltic shergottite Yamato-980459: Implications for the thermal structure of the Martian mantle. Meteoritics & Planetary Science 41, 1271–1290. doi:10.1111/j.1945-5100.2006.tb00521.x
Wieczorek, M.A., Zuber, M.T., 2004. Thickness of the Martian crust: Improved constraints from geoid-to-topography ratios. Journal of Geophysical Research: Planets 109. doi:10.1029/2003JE002153

Wipperfurth, S.A., Guo, M., Šr´amek, O., McDonough, W.F., 2018. Earth’s chondritic Th/U: Negligible fractionation during accretion, core formation, and crust-mantle differentiation. Earth and Planetary Science Letters 498, 196–202. doi:10.1016/j.epsl.2018.06.029

Wood, B.J., 1993. Carbon in the core. Earth and Planetary Science Letters 117, 593–607. doi:10.1016/0012-821X(93)90105-I

Wood, B.J., Li, J., Shahar, A., 2013. Carbon in the core: its influence on the properties of core and mantle. Reviews in Mineralogy and Geochemistry 75, 231–250. doi:10.2138/rmg.2013.75.8

Wood, B.J., Smythe, D.J., Harrison, T., 2019. The condensation temperatures of the elements: A reappraisal. American Mineralogist 104, 844–856. doi:10.2138/am-2019-6852CCBY

Wood, B.J., Wade, J., Kilburn, M.R., 2008. Core formation and the oxidation state of the Earth: Additional constraints from Nb, V and Cr partitioning. Geochimica et Cosmochimica Acta 72, 1415–1426. doi:10.1016/j.gca.2007.11.036

Wood, B.J., Walter, M.J., Wade, J., 2006. Accretion of the Earth and segregation of its core. Nature 441, 825–833. doi:10.1038/nature04763

Yang, S., Humayun, M., Righter, K., Jefferson, G., Fields, D., Irving, A.J., 2015. Siderophile and chalcophile element abundances in shergottites: Implications for Martian core formation. Meteoritics & Planetary Science 50, 691–714. doi:10.1111/maps.12384

Yoshizaki, T., McDonough, W.F., submitted. Mars and Earth – distinct inner solar system products.

Zambardi, T., Poitrasson, F., Corgne, A., Méheut, M., Quitté, G., Anand, M., 2013. Silicon isotope variations in the inner solar system: Implications for planetary formation, differentiation and composition. Geochimica et Cosmochimica Acta 121, 67–83. doi:10.1016/j.gca.2013.06.040

Zharkov, V.N., 1996. The internal structure of Mars: a key to understanding the origin of terrestrial planets. Solar System Research 30, 456–466.

Zharkov, V.N., Gudkova, T.V., 2005. Construction of Martian interior model. Solar System Research 39, 343–373. doi:10.1007/s11208-005-0049-7

Zuber, M.T., Solomon, S.C., Phillips, R.J., Smith, D.E., Tyler, G.L., Aharonson, O., Balmino, G., Banerdt, W.B., Head, J.W., Johnson, C.L., Lemoine, F.G., McGovern, P.J., Neumann, G.A., Rowlands, D.D., Zhong, S., 2000. Internal structure and early thermal evolution of Mars from
Mars Global Surveyor topography and gravity. Science 287, 1788–1793. doi:10.1126/science.287.5459.1788