Halo Orbits around L_1 and L_2 in the Photogravitational Sun-Earth System with Oblateness

Dhwani Sheth1 • V. O. Thomas1

Abstract The Photogravitational Restricted Three Body Problem with oblateness has been studied to obtain halo orbits around the Lagrangian points L_1 and L_2 of the Sun-Earth system in which the Sun is taken as radiating and the Earth as an oblate spheroid. The halo orbits corresponding to fourth and fifth order approximations around L_1 and L_2 for actual oblateness of the Earth and for different radiation pressures for the Sun are displayed graphically. The time period of halo orbits around L_1 decreases with increase in oblateness and increases with increase in radiation pressure. A reverse effect is observed due to increase in oblateness and radiation pressure on time period of orbits around L_2. It is also observed that halo orbits around L_1 shifts towards the source of radiation due to increase in both radiation pressure and oblateness. However, halo orbits around L_2 shifts towards the source of radiation due to increase in radiation but recedes with increase in oblateness.

Keywords Restricted Three Body Problem, Photogravitational Sun-Earth System, Oblateness, Halo orbits

1 Introduction

Restricted Three Body Problem (RTBP) deals with the motion of an infinitesimal body which moves under the gravitational influence of two massive bodies called the primaries. The infinitesimal body is called the secondary body. The only force acting on this system is the gravitational attraction force between the primaries. The mass of the secondary body is negligible compared to the primary masses and it does not influence the motion of the primaries. RTBP is very useful for describing the motion of planets, asteroids, comets and satellites (Plummer 1919; Winter 1941; Brouwer and Clemence 1961; Danby 1964; Pollard 1966; Murray and Dermot 1999). It plays an important role in space dynamics, celestial dynamics and analytic dynamics. It has applications in the fields of mathematics, theoretical physics and quantum physics. In Circular Restricted Three Body Problem (CRTBP), the primaries move in a circular path around their common centre of mass. This is a particular case of RTBP (Moulton 1914; McCuskey 1963; Szebehely 1967; Roy 2005; Fitzpatrick 2012; Vallado 2013). Most of the celestial bodies are radiating and hence study of RTBP incorporating radiation, usually called photogravitational RTBP, is pertinent. The solar radiation pressure force changes with the distance in a similar law as the gravitational attraction force but acts in an opposite direction to it. This reduces the effective mass of the Sun (Poynting 1903; Robertson and Russell 1937; Schuerman 1980; Simmons et al. 1985; Abouelmagd 2013; Pathak et al. 2016). In the case of planar CRTBP, there exist five equilibrium points known as Libration points or Lagrangian points. Among these, three points, denoted by L_1, L_2 and L_3 are collinear with L_1 lying between the primaries. The remaining Lagrangian points L_4 and L_5 lie opposite sides of the joining the primaries. The three dimensional periodic orbits around Lagrangian points are called halo orbits. Halo orbits were introduced by Farquhar (1968). He discovered the trajectories around the Earth-Moon L_2 which could be used to place a communication satellite that would continuously link between the Earth and the Moon. Other researchers (Breakwell and Brown 1979; Howell and V. Breakwell 1984; Howell 1984) have studied halo orbit families for
the Earth-Moon system. ISEE-3 was the first halo orbit mission. A third order approximation was introduced by Richardson (1980) to represent halo orbits in the Sun-Earth system. Tiwary and Kushvah (2015) have computed a first guess of halo orbits up to fourth order approximation using the Lindstedt-Poincaré method in the photogravitational RTBP with oblateness. In this paper we have computed halo orbits around the Lagrangian points L_1 and L_2 in the Sun-Earth system considering the Sun as radiating body and the Earth as oblate spheroid. The fourth order approximations to solutions given by (Tiwary and Kushvah 2015) have been improved incorporating fifth order approximation. The comparison of the orbits obtained by fourth and fifth order approximations are shown graphically.

Equations of motion of an infinitesimal body in a synodic system are described in Section 2. Equations of motion of infinitesimal body with oblateness and solar radiation pressure are given as (McCuskey 1963; Sharma 1987; Tiwary and Kushvah 2015)

\[
\begin{align*}
\dot{x} - 2n\dot{y} &= \frac{\partial \Omega^*}{\partial x}, \\
\dot{y} + 2n\dot{x} &= \frac{\partial \Omega^*}{\partial y}, \\
\ddot{z} &= \frac{\partial \Omega^*}{\partial z},
\end{align*}
\]

where

\[
\Omega^* = n^2\frac{x^2 + y^2}{2} + \frac{(1 - \mu)q}{r_1} + \frac{\mu}{r_2} + \frac{\mu A_2}{2r_2^3},
\]

and

\[
\begin{align*}
q &= \left(1 - \frac{F_p}{F_g}\right), \quad n = \sqrt{\left(1 + \frac{3}{2}A_2\right)}, \quad A_2 = \frac{R_2^2 - R_p^2}{5R^2}, \\
r_1 &= \sqrt{(x + \mu)^2 + y^2 + z^2}, \\
r_2 &= \sqrt{(x + \mu - 1)^2 + y^2 + z^2}
\end{align*}
\]

are the distances of the infinitesimal body from the bigger and smaller primaries, respectively.

3 Computation of Halo orbits

Lindstedt-Poincaré method (Koon et al. 2011) is used to compute the halo orbits around the libration points L_1 and L_2. It is used for solving non-linear ordinary differential equation when the regular perturbation method fails by removing secular terms and thereby converting to weakly non-linear equation with finite oscillatory solutions.

3.1 Equations of motion near L_1 and L_2

To obtain the halo orbits around the Lagrangian point the origin is shifted to the location of the Lagrangian point. Then the new coordinates are given by (Koon et al. 2011)

\[
\begin{align*}
X &= \frac{1}{\gamma}(x + \mu - 1 \pm \gamma), \\
Y &= \frac{1}{\gamma}y, \\
Z &= \frac{1}{\gamma}z,
\end{align*}
\]

where γ is the distance between the Lagrangian point and the smaller primary. In (7), upper sign corresponds to L_1 and lower sign corresponds to L_2. The variables X,Y and Z are normalized so that the distance between the Lagrangian point and the smaller primary is 1. Using the above transformation in the equations of...
motion (1)-(3), we obtain

\[
\gamma \dot{X} - 2n\dot{Y} = \frac{1}{\gamma} \frac{\partial \Omega}{\partial X},
\]

\[
\gamma \dot{Y} + 2n\dot{X} = \frac{1}{\gamma} \frac{\partial \Omega}{\partial Y},
\]

\[
\gamma \ddot{Z} = \frac{1}{\gamma} \frac{\partial \Omega}{\partial Z},
\]

where

\[
\Omega = \frac{n^2}{2} \left((\gamma X + 1 - \mu) \gamma + (\gamma Y)^2 + (\gamma Z)^2 \right) + \frac{(1 - \mu)q}{R_1} + \frac{\mu A_2}{2R_2} + \frac{\mu A_2}{2R_2},
\]

and

\[
R_1 = \sqrt{(\gamma X + 1 - \mu) \gamma + (\gamma Y)^2 + (\gamma Z)^2},
\]

\[
R_2 = \sqrt{(\gamma X + 1 - \mu) \gamma + (\gamma Y)^2 + (\gamma Z)^2}.
\]

Expanding the nonlinear terms \(\frac{(1 - \mu)q}{R_1} + \frac{\mu A_2}{2R_2}\) of (13) using Legendre polynomials, equations of motion can be written as (Koon et al. 2011; Tiwary and Kushvah 2015)

\[
\ddot{X} - 2n\dot{Y} - (n^2 + 2C_2)\dot{X} = \frac{\partial}{\partial X} \sum_{k \geq 3} C_k \rho^k P_k \left(\frac{X}{\rho} \right),
\]

\[
\ddot{Y} + 2n\dot{X} + (C_2 - n^2)\dot{Y} = \frac{\partial}{\partial Y} \sum_{k \geq 3} C_k \rho^k P_k \left(\frac{X}{\rho} \right),
\]

\[
\ddot{Z} + C_2\dot{Z} = \frac{\partial}{\partial Z} \sum_{k \geq 3} C_k \rho^k P_k \left(\frac{X}{\rho} \right).
\]

In above equations, the left hand side contains the linear terms and the right hand side contains the non-linear terms. The coefficients \(C_k\) are given by

\[
C_k = \frac{1}{\gamma^3} \left[\frac{(-1)^k q (1 - \mu) \gamma^{k+1}}{k! \gamma^{k+1}} + (\pm 1)^k \left(\mu + \frac{3\mu A_2}{2\gamma^2} \right) \right],
\]

for \(k \geq 1\). Considering only linear terms in equations (14)-(16), the solution of the linearized equations is

\[
X(t) = A_1 e^{\omega t} + A_2 e^{-\omega t} + A_3 \cos \lambda t + A_4 \sin \lambda t,
\]

\[
Y(t) = -k_1 A_1 e^{\omega t} + k_1 A_2 e^{-\omega t} - k_2 A_3 \sin \lambda t + k_2 A_4 \cos \lambda t,
\]

\[
Z(t) = A_5 \cos \sqrt{C_2} t + A_6 \sin \sqrt{C_2} t,
\]

where \(A_1, A_2, A_3, A_4, A_5\) and \(A_6\) are arbitrary constants,

\[
\alpha = \sqrt{-\left(2n^2 - C_2\right) + \sqrt{9C_2^2 - 8n^2C_2}},
\]

\[
\lambda = \frac{2n^2 - C_2 + \sqrt{9C_2^2 - 8n^2C_2}}{2},
\]

\[
k_1 = \frac{(2C_2 + n^2) - \alpha^2}{2n\alpha},
\]

\[
k_2 = \frac{(2C_2 + n^2) + \lambda^2}{2n\lambda}.
\]

Linearized equations corresponding to equations (14)-(16) have two real roots which are equal in magnitude and opposite in sign. If the initial conditions are chosen arbitrarily, then these roots give rise to unbounded solutions. To avoid this, we take \(A_1 = A_2 = 0\) and \(A_3 = -A_X \cos \phi, A_4 = A_X \sin \phi, A_5 = A_Z \sin \psi\) and \(A_6 = A_Z \cos \psi\) and get the bounded solution in the following form: (Koon et al. 2011)

\[
X(t) = -A_X \cos(\lambda t + \phi),
\]

\[
Y(t) = k A_X \sin(\lambda t + \phi),
\]

\[
Z(t) = A_Z \sin(\sqrt{C_2} t + \psi),
\]

where \(A_X\) and \(A_Z\) are amplitudes; \(\lambda\) and \(\sqrt{C_2}\) are the frequencies; \(k = k_2\); \(\phi\) and \(\psi\) are phases of the in-plane and out of plane motions respectively. The ratio of \(\lambda\) and \(\sqrt{C_2}\) is irrational. This gives Lissajous(quasi periodic) orbits.

3.2 Lindstedt-Poincaré Method for the Halo Orbits

Halo orbits are important for spacecraft mission design. Many researchers have obtained the halo orbits up to third order approximation (Richardson 1980; Howell 1984; Breakwell and Brown 1979; Koon et al. 2011; Chidambarran and Sharma 2016; Pushparaj and Sharma 2016; Ghotekar and Sharma 2019). Tiwary and Kushvah (2015) have computed halo orbits up to fourth order approximation with the Sun as a radiating body and the Earth as an oblate spheroid using Lindstedt-Poincaré method. Here, we have computed halo orbits up to fifth order approximation with radiation pressure and oblateness using Lindstedt-Poincaré method. The non-linear terms in (14)-(16) change the frequency of the linearized system. Due to this secular terms appear in successive approximations. To change the frequency, we take a new independent variable \(\tau = \omega t\), where \(\omega\) is a frequency connection. Then the equations of motion.
(14)-(16) in terms of τ truncated at degree 5 are:

$$\begin{align*}
\omega^2 X'' - 2n\omega X' - (n^2 + 2C_2)X \\
= & \frac{3}{2} C_3(2X^2 - Y^2 - Z^2) + 2C_4X(2X^2 - 3Y^2 - 3Z^2) \\
+ & \frac{5}{8} C_5[8X^2\{X^2 - 3(Y^2 + Z^2)\} + 3(Y^2 + Z^2)^2] \\
+ & 3C_6[2X^3\{X^2 - 5(Y^2 + Z^2)\} + \frac{15}{4} X(Y^2 + Z^2)^2], \\
\text{(18)}
\end{align*}$$

$$\begin{align*}
\omega^2 Y'' + 2n\omega X' + (C_2 - n^2)Y \\
= & -3C_4XY - \frac{3}{2} C_4Y(4X^2 - Y^2 - Z^2) \\
- & \frac{5}{2} C_5XY(4X^2 - 3Y^2 - 3Z^2) \\
+ & \frac{15}{2} C_6[X^2Y\{-2X^2 + 3(Y^2 + Z^2)\} - \frac{1}{4} Y(Z^2 + Z^2)^2] \\
+ & \Delta Z, \\
\text{(19)}
\end{align*}$$

where $\Delta = \lambda^2 - C_2$ is the frequency correction term to obtain halo orbit and $\Delta = O(\epsilon^2)$.

The solutions of (18)-(20) are assumed in the perturbations form as (Thurman and Worfolk 1996):

$$\begin{align*}
X(\tau) = & \epsilon X_1(\tau) + \epsilon^2 X_2(\tau) + \epsilon^3 X_3(\tau) + \epsilon^4 X_4(\tau) + \epsilon^5 X_5(\tau) + \ldots, \\
Y(\tau) = & \epsilon Y_1(\tau) + \epsilon^2 Y_2(\tau) + \epsilon^3 Y_3(\tau) + \epsilon^4 Y_4(\tau) + \epsilon^5 Y_5(\tau) + \ldots, \\
Z(\tau) = & \epsilon Z_1(\tau) + \epsilon^2 Z_2(\tau) + \epsilon^3 Z_3(\tau) + \epsilon^4 Z_4(\tau) + \epsilon^5 Z_5(\tau) + \ldots, \\
\text{(21)-(23)}
\end{align*}$$

and let

$$\omega = 1 + \omega_1 + \epsilon^2 \omega_2 + \epsilon^3 \omega_3 + \epsilon^4 \omega_4 + \ldots \\
\text{(24)}$$

Substituting the solutions (21)-(24) into equations of motion (18)-(20) and equating the coefficients of the same order of $\epsilon, \epsilon^2, \epsilon^3$, and ϵ^4, we obtain the first, second, third and fourth order equations, respectively (Thurman and Worfolk 1996; Tiwary and Kushvah 2015). For obtaining more accurate solutions of the equations we have collected the coefficients of ϵ^5 and obtained the fifth order equations.

3.2.1 Fifth Order Equations

Collecting the coefficients of ϵ^5 and incorporating all the solutions and conditions used up to fourth order approximations (Tiwary and Kushvah 2015), we get the fifth order equations as:

$$\begin{align*}
X_5'' - 2nY_5' - (n^2 + 2C_2)X_5 = & \gamma_{51} \\
Y_5'' + 2nX_5' + (C_2 - n^2)Y_5 = & \gamma_{52} \\
Z_5' + \lambda^2 Z_5 = & \left\{ \begin{array}{ll}
f_3, & p = 0,2 \\
f_4, & p = 1,3 \\
\end{array} \right.
\end{align*}$$

(25)-(27)

where

$$\begin{align*}
\gamma_{51} = & [v_4 + 2\lambda A_4 \omega_4(nk - \lambda)] \cos \tau_1 \\
+ & \gamma_8 \cos 3\tau_1 + \gamma_9 \cos 5\tau_1, \\
\gamma_{52} = & [v_5 + 2\lambda A_4 \omega_4(\lambda k - n)] \sin \tau_1 \\
+ & \beta_9 \sin 3\tau_1 + \beta_{10} \sin 5\tau_1, \\
f_3 = & [v_6 + 2\lambda A_4 \lambda^2 A_2] \sin \tau_1 + \delta_8 \sin 3\tau_1 + \delta_9 \sin 5\tau_1, \\
f_4 = [v_6 + 2\lambda A_4 \lambda^2 A_2] \cos \tau_1 + \delta_8 \cos 3\tau_1 + \delta_9 \cos 5\tau_1
\end{align*}$$

and the remaining coefficients are given in Appendix. In f_3, upper sign corresponds to $p = 0$ and lower sign corresponds to $p = 2$. Similarly, in f_4, upper sign corresponds to $p = 1$ and lower corresponds to $p = 3$.

The secular term can be removed from (27) if

$$v_6 + 2\lambda A_4 \lambda^2 A_2 = 0, \\
\text{(28)}$$

where the upper sign corresponds to $p = 0,1$ and the lower sign corresponds to $p = 2,3$.

To remove the secular terms from (25) and (26), we use a single condition from their particular solution (Thurman and Worfolk 1996; Tiwary and Kushvah 2015)

$$[v_4 + 2\lambda A_4 \omega_4(\lambda k - n)] - k[v_5 + 2\lambda A_4 \omega_4(\lambda k - n)] = 0.$$

(29)

From equation (29), we get

$$\omega_4 = \frac{v_4 - kv_5}{2\lambda A_4(\lambda(k^2 + 1) - 2nk)^2}. \\
\text{(30)}$$

Using conditions (28) and (30) in equations (25)-(27), the equations of motion take the following form:

$$\begin{align*}
X_5'' - 2nY_5' - (n^2 + 2C_2)X_5 \\
= & k\beta_{11} \cos \tau_1 + \gamma_8 \cos 3\tau_1 + \gamma_9 \cos 5\tau_1, \\
Y_5'' + 2nX_5' + (C_2 - n^2)Y_5 \\
= & \beta_{11} \sin \tau_1 + \beta_9 \sin 3\tau_1 + \beta_{10} \sin 5\tau_1,
\end{align*}$$

(31)-(32)
\[Z'' + \lambda^2 Z = \begin{cases} \delta_8 \sin 3\tau_1 + \delta_9 \sin 5\tau_1, & p = 0, 2, \\ \delta_8 \cos 3\tau_1 + \delta_9 \cos 5\tau_1, & p = 1, 3, \end{cases} \quad (33) \]

where \(\beta_{11} = v_5 + 2\lambda A_X \omega_4 (\lambda k - n) \). The solution of equations (31)-(33) is given by

\[X_5(\tau) = \rho_{51} \cos 3\tau_1 + \rho_{52} \cos 5\tau_1, \quad (34) \]
\[Y_5(\tau) = \rho_{51} \sin 3\tau_1 + \sigma_{53} \sin 5\tau_1, \quad (35) \]
\[Z_5(\tau) = \begin{cases} k_{51} \sin 3\tau_1 + k_{52} \sin 5\tau_1, & p = 0, 2, \\ k_{51} \cos 3\tau_1 + k_{52} \cos 5\tau_1, & p = 1, 3, \end{cases} \quad (36) \]

where the coefficients are given in the Appendix.

3.2.2 Final Approximation

Final approximation is obtained by removing \(\epsilon \) from all the equations. For that we take the mapping \(A_X \rightarrow \frac{A_X}{A_X} \) and \(A_Z \rightarrow \frac{A_Z}{A_Z} \). Combining the solutions component wise in (21)-(23), we get (Tiwary and Kushvah 2015)

\[X(\tau) = (\rho_{20} + \rho_{40}) - A_X \cos \tau_1 \]
\[+ (\rho_{21} + \sigma_{22} + \rho_{41}) \cos 2\tau_1 \]
\[+ (\rho_{23} + \rho_{51}) \cos 3\tau_1 + \rho_{42} \cos 4\tau_1 + \rho_{52} \cos 5\tau_1, \quad (37) \]
\[Y(\tau) = (k A_X + \sigma_{52} + \sigma_{51}) \sin \tau_1 \]
\[+ (\sigma_{21} + \sigma_{41} + \zeta \sigma_{22}) \sin 2\tau_1 \]
\[+ (\sigma_{31} + \sigma_{52}) \sin 3\tau_1 + \sigma_{42} \sin 4\tau_1 + \sigma_{53} \sin 5\tau_1, \quad (38) \]
\[Z(\tau) = \begin{cases} f_5, & p = 0, 2, \\ f_6, & p = 1, 3, \end{cases} \quad (39) \]

where

\[f_5 = (-1)^{\frac{1}{2}} (A_Z \sin \tau_1 + k_{21} \sin 2\tau_1 + k_{31} \sin 3\tau_1) \]
\[+ k_{41} \sin 2\tau_1 + k_{42} \sin 4\tau_1 + k_{51} \sin 3\tau_1 + k_{52} \sin 5\tau_1, \]
\[f_6 = (-1)^{\frac{p-1}{2}} (A_Z \cos \tau_1 + k_{21} \cos 2\tau_1 + k_{22} + k_{32} \cos 3\tau_1) \]
\[+ k_{40} + k_{41} \cos 2\tau_1 + k_{42} \cos 4\tau_1 \]
\[+ k_{51} \cos 3\tau_1 + k_{52} \cos 5\tau_1. \]

Using equations (37)-(39), we can get the first guess of halo orbits.

4 Discussion

The halo orbits in the photogravitational Sun-Earth system with oblateness upto fourth order approximations using Lindstedt-Poincaré method are obtained by Tiwary and Kushvah (2015). Here, the first guess of the halo orbit in the same system is obtained upto fifth order approximation using Lindstedt-Poincaré method. Equations (37)-(39) are used with the amplitudes \(A_X = 206000 \) km and \(A_Z = 110000 \) km from the ISEE-3 mission.

EDITOR: PLACE FIGURE 1 HERE.
EDITOR: PLACE FIGURE 2 HERE.
EDITOR: PLACE FIGURE 3 HERE.
EDITOR: PLACE FIGURE 4 HERE.

The orbits are plotted for different values of phases. Fig.1 to Fig.4 show halo orbits around \(L_1 \) for different values of \(q \), mass reduction factor. Orbits coloured in blue represents fourth order orbits and red corresponds to fifth order orbits.

EDITOR: PLACE FIGURE 5 HERE.

The effects of radiation pressure on the position of halo orbits are given in Fig.5. Fig.5 shows the positions of halo orbits for \(q = 0.9995, 0.9945, 0.9895 \) and 0.9845 labeled as 1, 2, 3 and 4, respectively, with the actual oblateness of Earth. As radiation pressure increases, the halo orbits move towards the source of radiation. This agrees with conclusions of Eapen and Sharma (2014).

EDITOR: PLACE FIGURE 6 HERE.
EDITOR: PLACE FIGURE 7 HERE.
EDITOR: PLACE FIGURE 8 HERE.
EDITOR: PLACE FIGURE 9 HERE.

Fig.6 – 9 represent halo orbits around \(L_2 \) corresponding to mass reduction factor 0.9995, 0.9945, 0.9895 and 0.9845, respectively, with oblateness \(A_2 = 2.4 \times 10^{-12} \), the oblateness of the Earth.

EDITOR: PLACE FIGURE 10 HERE.

Fig.10 shows the variation in position of halo orbits due to radiation pressure. Here, the orbits labeled as 1, 2, 3 and 4 correspond to \(q = 0.9995, 0.9945, 0.9895, 0.9845 \) and 0.9845, respectively, with oblateness \(A_2 = 2.4 \times 10^{-12} \). Halo orbits move towards the source of radiation with the increase in radiation pressure.

EDITOR: PLACE TABLE 1 HERE.
EDITOR: PLACE TABLE 2 HERE.
EDITOR: PLACE TABLE 3 HERE.
EDITOR: PLACE TABLE 4 HERE.

Table1, Table2, Table3 and Table4 show the variation in coefficients, the position of Lagrangian points, \(\Delta \) and time period \(\tau \) due to variation in radiation pressure and oblateness. \(\Delta = \lambda^2 - C_2 \) is the frequency correction term to obtain the halo orbits. \(\tau \) is the time taken by the infinitesimal body to complete one rotation about
the Lagrangian point. Table1 shows the effect of radiation pressure on parameters of orbits around L_1. It can be observed that as the radiation pressure increases, that is, q decreases, L_1 move towards the source of radiation, the Sun. Also, the time period of orbits increase with the increase in radiation pressure. Table2 represents the effect of oblateness on various parameters of orbits around L_1. With the increase in radiation pressure, orbits move towards the Sun and their time period is decreased. From Table3, it can be observed that due to increase in radiation pressure, the orbits around L_2 move towards the Sun and their time period is decreased. Effect of oblateness on position of orbits and time period can be observed from Table 4. Halo orbits around L_2 move away from the source of radiation and also time period of orbits increase due to increase in oblateness. Fig.11 represents the effect of oblateness on position of L_1. As oblateness increases, L_1 moves towards the source of radiation, the Sun. In Fig.12, the reverse effect of oblateness is observed on the position of L_2. That is, as oblateness increases, L_2 moves away from the Sun. Fig.13 and Fig.14 show the variation in position of L_1 and L_2 due to radiation pressure, respectively. With the increase in radiation pressure, L_1 and L_2 both move towards the Sun. The effect of radiation pressure and oblateness on time period is graphically shown in Fig.15 – 18. Time periods of halo orbits decrease with the increase in oblateness around L_1 while they increase with the increase in oblateness around L_2. With the increase in radiation pressure, time period of orbits around L_1 increases and decreases around L_2.

5 Conclusion

Photogravitational RTBP with oblateness, where the Sun is radiating and the Earth an oblate spheroid, is studied for halo orbits. We have improved the fourth order equations obtained by (Tiwary and Kushvah 2015) using Lindstedt-Poincaré method to fifth order and to obtain halo orbits around L_1 and L_2. The deviations of the orbits around L_1 and L_2 obtained from fourth order and fifth order equations are shown graphically. The variations in position and time of halo orbits around L_1 and L_2 due to radiation pressure and oblateness are studied. It is found that the halo orbits around L_1 shift towards the source of radiation (Sun) as the radiation pressure and oblateness increase. However, the time period of halo orbits around L_1 increases with the increase in radiation pressure but decreases with the increase in the oblateness. Halo orbits around L_2 approaches the source of radiation with increase in the radiation pressure but recedes from the source of radiation due to increase in the oblateness. The period of halo orbits around L_2 decreases with increase in the radiation pressure but increases with increase in oblateness.

Acknowledgements

One of the authors (DS) would like to thank Council of Scientific and Industrial Research (CSIR) for financial support through JRF (File No. 09/114(0218)/2019-EMR-I).

Compliance with Ethical Standards

Conflict of Interest: Author Dhwani Sheth has received Junior Research Fellowship (JRF) from CSIR (File No. 09/114(0218)/2019-EMR-I).

Appendix

$$v_4 = \begin{cases} v_{41}, & \text{when } p = 0, 2, \\ v_{42}, & \text{when } p = 1, 3. \end{cases}$$

$$v_{41} = \lambda \omega_2(2n\sigma_{32} - \lambda \omega_2 A_X) + \frac{3}{2} C_3(-2A_X(2\rho_{40} + \rho_{41}) + 2\rho_{31}(\rho_{21} + \rho_{22}) - k A_X \sigma_{41} - (\sigma_{21} + \sigma_{22})(\sigma_{31} + \sigma_{32}) - (-1)^2 A_Z k_{41} - k_{21} k_{31}) + \frac{3}{2} C_4(2A_X^2 \rho_{31} - 4A_X ((\rho_{20} + \rho_{21} + \rho_{22})^2 + \rho_{20}^2) + 2k A_X^2 (\sigma_{31} + \sigma_{32}) + 2A_X (\sigma_{21} + \sigma_{22})^2 - 4k A_X \rho_{20} (\sigma_{21} + \sigma_{22}) + k^2 A_X^2 \rho_{31} + 2A_X A_Z k_{31} + 2A_X k_{21}^2 - 4A_Z k_{21} \rho_{20} + A_Z^2 \rho_{31}) + \frac{5}{2} C_5(-2A_X^3 (3\rho_{20} + 2(\rho_{21} + \rho_{22})) - 3k A_X^3 (\sigma_{21} + \sigma_{22}) + 3k^2 A_X^2 \rho_{20} - 3A_X^2 A_Z k_{21} + 3A_X A_Z^2 \rho_{20} + \frac{3}{4} k^3 A_X^3 (\sigma_{21} + \sigma_{22}) + \frac{3}{4} k^2 A_X^2 A_Z k_{21} + \frac{3}{4} k A_X A_Z^2 (\sigma_{21} + \sigma_{22}) + \frac{3}{4} A_Z^3 k_{21}) + \frac{15}{32} C_6(-8A_X^5 + 8k^2 A_X^5 + 8A_X^3 A_Z^2 - 3k^4 A_X^5 - 6k^2 A_X^3 A_Z^2 - 3A_X A_Z^4),$$
\[v_{12} = \lambda_2 (2n\sigma_{32} - \lambda_2 A_X) \]
\[+ \frac{3}{2} C_5 (-2A_X (2\rho_40 + \rho_{41}) + 2\rho_{31} (\rho_{21} - \rho_{22})) \]
\[- kA_X \sigma_{41} - (\sigma_{21} - \sigma_{22}) (\sigma_{31} + \sigma_{32}) \]
\[- \rho_{31} (\sigma_{21} - \sigma_{22}) + kA_X (2\rho_{40} - \rho_{41})) \]
\[- \frac{3}{2} C_4 (A^4_A X) \sigma_{31} + \sigma_{32} - 16A_X \rho_0 \sigma_{21} - \sigma_{22}) \]
\[+ 8kA^3_A X \rho_{31} \]
\[+ 3k^3A^3_A X (2\rho_{20} - 2\rho_{21} - \rho_{22}) + (\rho_{21} - \rho_{22}) \]
\[+ 3k^3A^3_A X (\sigma_{31} - 3\sigma_{32}) - 6kA_X (\sigma_{21} - \sigma_{22}) \]
\[+ 2kA_X A_Z k_{31} - 2kA_X k_{21} + 2k^2_{21} + 2k^2_{22} \]
\[- 4A_Z k_{22} (\sigma_{21} - \sigma_{22}) - A^2_Z \sigma_{31} + \sigma_{32}) \]
\[+ \frac{5}{8} C_5 (4A^4_A X) (\sigma_{21} - \sigma_{22}) \]
\[+ 3k^3A^3_A X (2\rho_{20} - 2\rho_{21} - \rho_{22}) - 9k^2A^3_A (\sigma_{21} - \sigma_{22}) \]
\[- 12kA^4_A X \rho_0 - 6kA^2_A X A_Z k_{22} - 3A_A X A^2_Z (\sigma_{21} - \sigma_{22}) \]
\[+ 3kA_X A^2_Z (\sigma_{21} - \sigma_{22}) + \frac{15}{64} C_6 (-8kA^5_A X + 12k^3A^5_A X \]
\[+ 12kA^4_A X - 5k^5A^5_A X - 2k^3A^3_A X A^2_Z - kA_X A^3_Z) \]
\[\frac{v_6}{v_6} = \begin{cases}
 0, & \text{when } p = 0, \\
 1, & \text{when } p = 1, \\
 2, & \text{when } p = 2, \\
 3, & \text{when } p = 3.
\end{cases}
\]
\[v_{61} = \omega_2^2 \lambda^2 A_Z - \frac{3}{2} C_3 (A_X (2k_{40} + k_{41}) + k_{32} (p_{21} - r_{22}) \\
+ r_{31} k_{21} + A_Z (2p_{40} + r_{41}) - \frac{3}{2} C_4 (A_X^2 k_{32} \\
- 4 A_X (r_{20} (k_{21} + 2k_{22}) + (p_{21} - r_{22})) (k_{21} + k_{22})) \\
- 2 A_X A_Z p_{31} \\
+ 2 A_Z \{2p_{20} (p_{20} + r_{21} - r_{22}) + (r_{21} - r_{22})^2 \} \\
+ \frac{1}{4} k^2 A_X^2 k_{32} - 4 A_X k_{22} (\sigma_{21} - \sigma_{22}) \\
- \frac{1}{2} k A_X A_Z (\sigma_{31} + \sigma_{32}) - \frac{3}{4} A_Z^2 k_{32} \\
- \frac{1}{2} A_Z (\sigma_{21} - \sigma_{22})^2 - \frac{3}{2} A_Z (k_{21}^2 + 2k_{21} k_{22} + 2k_{22}^2) \\
- \frac{5}{8} C_5 (4 A_X^3 (2k_{21} + 3k_{22}) \\
+ 12 A_X^2 A_Z (3p_{20} + 2 (p_{21} - r_{22}) \\
+ 9 A_X A_Z^2 (2k_{21} + 3k_{22}) \\
- 3 A_Z^2 (3p_{20} + 2 (p_{21} - r_{22}) + 3k^2 A_X^2 k_{22} \\
+ 6k A_X A_Z (\sigma_{21} - \sigma_{22}) - 3k^2 A_Z^2 A_Z (p_{20}) \\
+ \frac{15}{64} C_6 (40 A_X^4 A_Z + 12k^2 A_X^2 A_Z + 60 A_X^2 A_Z^2 \\
- k^4 A_X^4 A_Z - 2k^2 A_X^2 A_Z^2 - 5 A_Z^5), \\
\]

\[v_{62} = -\omega_2^2 \lambda^2 A_Z - \frac{3}{2} C_3 (A_X (2k_{41} + k_{41} - k_{31} (p_{21} + r_{22}) \\
+ r_{31} k_{21} - A_Z (2p_{40} + r_{41}) \\
- \frac{3}{2} C_4 (A_X^2 k_{31} + 4 A_X p_{20} k_{21} - 2 A_X A_Z p_{31} \\
- 2 A_Z \{2p_{20} (p_{21} - r_{21} - r_{22}) + (r_{21} + r_{22})^2 \} \\
+ \frac{1}{4} k^2 A_X^2 k_{31} + k A_X k_{21} (\sigma_{21} + \sigma_{22}) \\
- \frac{1}{2} k A_X A_Z (\sigma_{31} - 3 \sigma_{32}) - \frac{3}{4} A_Z^2 k_{31} \\
+ \frac{1}{2} \frac{15}{64} C_6 (8 A_X^2 A_Z - 12k^2 A_X^2 A_Z - 12 A_X^2 A_Z^2 \\
+ 5k^4 A_X^4 A_Z + 10k^2 A_X^2 A_Z^2 + 5 A_Z^5), \\
\]

\[v_{63} = -\omega_2^2 \lambda^2 A_Z - \frac{3}{2} C_3 (A_X (2k_{40} + k_{41}) - k_{32} (p_{21} - r_{22}) \\
+ r_{31} k_{21} - A_Z (2p_{40} + r_{41}) - \frac{3}{2} C_4 (A_X^2 k_{32} + 4 A_X (p_{20} (k_{21} + 2k_{22}) + (p_{21} - r_{22})) (k_{21} + k_{22}) \\
+ 2 A_X A_Z p_{31} \\
- 2 A_Z \{2p_{20} (p_{21} + r_{21} - r_{22}) + (r_{21} - r_{22})^2 \} \\
- \frac{1}{4} k^2 A_X^2 k_{32} + 4 A_X k_{22} (\sigma_{21} - \sigma_{22}) \\
+ \frac{1}{2} k A_X A_Z (\sigma_{31} + \sigma_{32}) + \frac{3}{4} A_Z^2 k_{32} \\
+ \frac{1}{2} A_Z (\sigma_{21} - \sigma_{22})^2 + \frac{3}{2} A_Z (k_{21}^2 + 2k_{21} k_{22} + 2k_{22}^2) \\
- \frac{5}{8} C_5 (4 A_X^3 (2k_{21} + 3k_{22}) \\
+ 12 A_X^2 A_Z (3p_{20} + 2 (p_{21} - r_{22}) \\
- 9 A_X A_Z^2 (2k_{21} + 3k_{22}) + 3 A_Z^2 (3p_{20} + 2 (p_{21} - r_{22}) \\
- 3k^2 A_X^2 k_{22} - 6 k A_X A_Z (\sigma_{21} - \sigma_{22}) + 3k^2 A_Z^2 A_Z (p_{20}) \\
+ 3k^2 A_Z^2 A_Z (p_{20}) + \frac{15}{64} C_6 (40 A_X^4 A_Z - 12k^2 A_X^2 A_Z \\
- 60 A_X^2 A_Z^2 + k^4 A_X^4 A_Z + 2k^2 A_X^2 A_Z^2 + 5 A_Z^5), \\
\]

\[\gamma_8 = \begin{cases}
\gamma_{s_1}, & \text{when } p = 0, 2, \\
\gamma_{s_2}, & \text{when } p = 1, 3.
\end{cases} \\
\]

\[\gamma_8 = 6 \lambda \omega_2 (3 \lambda p_{31} + n \sigma_{31}) + \frac{3}{2} C_5 (-2 A_X (p_{41} + p_{42}) \\
+ 4 \rho_{20} p_{31} + k A_X (\sigma_{41} - \sigma_{42}) + \sigma_{32} (\sigma_{21} + \sigma_{22}) \\
+ (1 - \frac{1}{2}) A_Z (k_{41} - k_{42})) \\
+ \frac{3}{2} C_4 (4 A_X^2 \rho_{31} - 2 A_X (p_{21} + p_{22}) (4 \rho_{20} + p_{21} + p_{22}) \\
+ 2k A_X (\sigma_{31} + \sigma_{32}) (2 \rho_{20} - (p_{21} + p_{22})) \\
- 2k^2 A_X^2 \rho_{31} + 4 A_Z k_{21} + 2 A_Z k_{21} (2 \rho_{20} - (p_{21} + p_{22})) \\
- 2k^2 A_X^2 \rho_{31} + 4 A_Z k_{21} + 2 A_Z k_{21} (2 \rho_{20} - (p_{21} + p_{22})) \\
+ 12 k A_X (\sigma_{21} + \sigma_{22}) - 12 k^2 A_X (2 \rho_{20} - (p_{21} + p_{22})) \\
+ 12 k A_X A_Z (k_{21} - 12 A_X A_Z (2 \rho_{20} - (p_{21} + p_{22})) \\
- 9k A_X A_Z (k_{21} - 12 A_X A_Z (2 \rho_{20} - (p_{21} + p_{22})) \\
- 9k A_X A_Z (k_{21} - 12 A_X A_Z (2 \rho_{20} - (p_{21} + p_{22})) \\
+ \frac{5}{16} C_5 (-8 A_X^2 (2p_{20} + 3 (p_{21} + p_{22})) \\
+ 12 k A_X (\sigma_{21} + \sigma_{22}) - 12 k^2 A_X (2 \rho_{20} - (p_{21} + p_{22})) \\
+ 12 k A_X A_Z (k_{21} - 12 A_X A_Z (2 \rho_{20} - (p_{21} + p_{22})) \\
- 9k A_X A_Z (k_{21} - 12 A_X A_Z (2 \rho_{20} - (p_{21} + p_{22})) \\
- 9k A_X A_Z (k_{21} - 12 A_X A_Z (2 \rho_{20} - (p_{21} + p_{22})) \\
+ \frac{15}{64} C_6 (-8 A_X^2 - 8k^2 A_X^2 - 8 A_X^2 A_Z + 9k A_X A_Z \\
+ 18k^2 A_X A_Z + 9 A_X A_Z) \\
\]
\[\gamma_{92} = \frac{3}{2} C_3(-2A_X \rho_{42} + 2 \rho_{31}(\rho_{21} - \rho_{22}) + k A_X \sigma_{42} + \sigma_{31}(\sigma_{21} - \sigma_{22}) - (-1)^{\frac{\gamma}{2}} A_Z k_{42} - k_{21} k_{31}) + \frac{3}{2} C_4(2 A_X^2 \rho_{31} - 2A_X(\rho_{21} - \rho_{22})(4 \rho_{20} + \rho_{21} - \rho_{22}) - 2k A_X^2 \sigma_{32} - A_X(\sigma_{21} - \sigma_{22})^2 + 2k A_X(\sigma_{21} - \sigma_{22})(2\rho_{20} - (\rho_{21} - \rho_{22})) - 2k^2 A_X^2 \rho_{31} + 4A_X A_Z k_{32} + A_X(k_{21}^2 + 4k_{21} k_{22}) - 2A_Z(k_{21}(2\rho_{20} + \rho_{21} - \rho_{22}) + 2k_{22}(\rho_{21} - \rho_{22})) - 2A_Z^2(\rho_{20} + 3(\rho_{21} - \rho_{22})) + 12k A_X^3(\sigma_{21} - \sigma_{22}) - 12k^2 A_X^2(2\rho_{20} - (\rho_{21} - \rho_{22})) - 12A_X A_Z(3k_{21} + 2k_{22}) + 12A_X A_Z^2(2\rho_{20} + 3(\rho_{21} - \rho_{22})) - 9k^3 A_X^3(\sigma_{21} - \sigma_{22}) + 3k^2 A_X^2 A_Z(k_{21} - 2k_{22}) - 3k A_X A_Z^2(2\rho_{21} - 2k_{22}) + 15 A_X^3(\sigma_{21} - \sigma_{22}) + 3A^2(3k_{21} + 2k_{22}) + \frac{15}{64} C_6(-8A_X^5 - 8k^2 A_X^5 + 40A_X^4 A_Z^2 + 9k^4 A_X^3 + 6k^2 A_X^3 A_Z^2 - 15A_X A_Z^4). \]

\[\beta_9 = \begin{cases}
\beta_{91}, & \text{when } p = 0, 2, \\
\beta_{92}, & \text{when } p = 1, 3.
\end{cases} \]

\[\beta_{91} = \frac{3}{2} C_3(-2A_X \rho_{42} + 2 \rho_{31}(\rho_{21} - \rho_{22}) + k A_X \sigma_{42} + \sigma_{31}(\sigma_{21} + \sigma_{22}) + (-1)^{\frac{\gamma}{2}} A_Z k_{42} + k_{21} k_{31}) + \frac{3}{2} C_4(2 A_X^2 \rho_{31} - 2A_X(\rho_{21} + \rho_{22})^2 - 2k A_X^2 \sigma_{31} - A_X(\sigma_{21} + \sigma_{22})^2 + 2k A_X(\sigma_{21} + \sigma_{22})(\rho_{21} + \rho_{22}) + k^2 A_X^2 \rho_{31} - 2A_X A_Z k_{31} - A_X k_{31}^2 + 2A_Z k_{21} - A_X k_{21}^2 + 2A_X A_Z^2(2\rho_{21} - 2k_{21}) + \frac{5}{16} C_5(-8A_X^3(\rho_{21} + \rho_{22}) + 12k A_X^3(\sigma_{21} + \sigma_{22})) - 12k^2 A_X^2(2\rho_{21} - 2k_{21}) - 3k A_X A_Z(3k_{21} + 2k_{22}) + \frac{5}{16} C_6(-8A_X^5 - 40k^2 A_X^5 + 40A_X^4 A_Z^2 - 15k^4 A_X^3 + 30k^2 A_X^3 A_Z^2 - 15A_X A_Z^4), \]

\[\gamma_9 = \begin{cases}
\gamma_{91}, & \text{when } p = 0, 2, \\
\gamma_{92}, & \text{when } p = 1, 3.
\end{cases} \]

\[\beta_{91} = 6\lambda\omega_2(3\lambda \rho_{31} + n \sigma_{31}) - \frac{3}{2} C_3(-A_X(\sigma_{21} + \sigma_{22}) + 2\rho_{20} + \sigma_{32}(\rho_{21} + \rho_{22}) + k A_X(\sigma_{21} - \sigma_{22}) - \frac{3}{8} C_4(4A_X^2(2\sigma_{31} + \sigma_{32})) - 8A_X(\sigma_{21} + \sigma_{22})(2\rho_{20} + \rho_{21} + \rho_{22}) + 4k A_X(\rho_{21} + \rho_{22})(4\rho_{20} - (\rho_{21} + \rho_{22})) - 3k^2 A_X^2(2\sigma_{31} - \sigma_{32}) - 3k A_X(\sigma_{21} + \sigma_{22})^2 - 4k A_X A_Z k_{31} - k A_X k_{21}^2 - 2A_Z k_{21}(\sigma_{21} + \sigma_{22}) - A_Z^2(2\sigma_{31} - \sigma_{32}) + \frac{5}{16} C_5(12A_X^3(\sigma_{21} + \sigma_{22}) - 12k A_X^3(\rho_{20} + \rho_{21} + \rho_{22}) + 3k^2 A_X^2(\sigma_{21} + \sigma_{22})) + 3k A_X A_Z^2(2\rho_{20} + 3(\rho_{21} + \rho_{22})) - 9k^3 A_X^3(\sigma_{21} + \sigma_{22}) - 6k A_X A_Z k_{21} - 3A_X A_Z^2(\sigma_{21} + \sigma_{22}) + 3k A_X A_Z^2(2\rho_{21} - 2k_{21}) + \frac{15}{128} C_6(-24k A_X^5 + 12k^3 A_X^3 A_Z^2 - 5k A_X A_Z^5 + 10k^3 A_X A_Z^5 + 5k A_X A_Z^5),
\]

\[\gamma_{92} = \frac{3}{2} C_3(-2A_X \rho_{42} + 2 \rho_{31}(\rho_{21} - \rho_{22}) + k A_X \sigma_{42} + \sigma_{31}(\sigma_{21} - \sigma_{22}) - (\frac{\gamma}{2})^{-1} A_Z k_{42} - k_{21} k_{31}) + \frac{3}{2} C_4(2 A_X^2 \rho_{31} - 2A_X(\rho_{21} - \rho_{22})^2 - 2k A_X^2 \sigma_{31} - A_X(\sigma_{21} - \sigma_{22})^2 + 2k A_X(\sigma_{21} - \sigma_{22})(\rho_{21} - \rho_{22}) + k^2 A_X^2 \rho_{31} + 2A_X A_Z k_{31} + A_X k_{31}^2 - 2A_Z k_{21}(\rho_{21} - \rho_{22}) - A_Z^2(\rho_{20} + 3(\rho_{21} - \rho_{22})), \]

\[\gamma_9 = \begin{cases}
\gamma_{91}, & \text{when } p = 0, 2, \\
\gamma_{92}, & \text{when } p = 1, 3.
\end{cases} \]
\[
\beta_{92} = 6\lambda\omega_2(3\lambda\sigma_{31} + n\rho_{31}) - \frac{3}{2}C_3(-A_X(\sigma_{41} + \sigma_{42}) + 2\rho_{20}\sigma_{31} + \sigma_{32}(\rho_{21} - \rho_{22}) + kA_X(\rho_{41} - \rho_{42})) - \frac{3}{8}C_4(4A_X^2(2\sigma_{31} + \sigma_{32}) - 8A_X(\sigma_{21} - \sigma_{22})(2\rho_{20} + \rho_{21} - \rho_{22}) + 4kA_X(\rho_{21} - \rho_{22})(4\rho_{20} - (\rho_{21} - \rho_{22})) - 3k^2A_X^2(2\sigma_{31} + \sigma_{32}) - 3kA_X(\sigma_{21} - \sigma_{22})^2 - kA_X(4k_{21}k_{22} - k^2)) - 2A_Z(k_{21} + 2k_{22})(\sigma_{21} - \sigma_{22}) - A_Z^2(2\sigma_{31} + \sigma_{32})) + \frac{5}{16}C_5(12A_X^3(\sigma_{21} - \sigma_{22}) - 12kA_X^3(2\rho_{20} + \rho_{21} - \rho_{22}) + 3k^3A_X^3(-2\rho_{20} + 3(\rho_{21} - \rho_{22})) - 9k^2A_X^3(\sigma_{21} - \sigma_{22}) - 6kA_X^2A_Z(k_{21} + 2k_{22}) - 9A_XA_Z^2(\sigma_{21} - \sigma_{22}) + 3kA_XA_Z^2(2\rho_{20} + \rho_{21} - \rho_{22})) + \frac{15}{128}C_6(-24kA_X^5 + 12k^3A_X^5 + 36kA_X^3A_Z^2 + 5k^5A_X^3 - 2k^3A_X^3A_Z^2 - 3kA_XA_Z^4).
\]

\[
\beta_{102} = -\frac{3}{2}C_3(-A_X\sigma_{42} + \sigma_{31}(\rho_{21} - \rho_{22}) + \rho_{31}(\sigma_{21} - \sigma_{22}) + kA_X\rho_{42}) - \frac{3}{8}C_4(4A_X^2\sigma_{31} - 8A_X(\sigma_{21} - \sigma_{22})(\rho_{21} + \rho_{22}) + 4kA_X(\rho_{21} + \rho_{22})(4\rho_{20} - (\rho_{21} + \rho_{22})) + 3kA_X(\sigma_{21} + \sigma_{22})^2 + 2kA_XA_Zk_{31} + kA_Xk_{21}^2 + 2A_Zk_{21}(\sigma_{21} + \sigma_{22}) + A_Z^2(\sigma_{21} + \sigma_{22})) + \frac{5}{16}C_5(12A_X^3(\sigma_{21} + \sigma_{22}) - 12kA_X^3(\rho_{21} + \rho_{22}) + 3k^3A_X^3(\rho_{21} + \rho_{22}) + 9k^2A_X^3(\sigma_{21} + \sigma_{22}) + 6kA_X^2A_Zk_{21} + 3A_XA_Z^2(\sigma_{21} + \sigma_{22}) + 3kA_XA_Z^2(\rho_{21} + \rho_{22}))) + \frac{15}{128}C_6(-24kA_X^5 + 12k^3A_X^5 + 12k^2A_X^4A_Z + 12A_X^3A_Z^2 + 5k^4A_X^3A_Z + 10k^2A_X^2A_Z^2 + 5A_Z^5) + \frac{\Delta}{\epsilon}k_{31},
\]

\[
\delta_8 = \begin{cases}
\beta_{101}, & \text{when } p = 0, \\
\beta_{102}, & \text{when } p = 1, \\
\beta_{103}, & \text{when } p = 2, \\
\beta_{104}, & \text{when } p = 3.
\end{cases}
\]

\[
\delta_{80} = 18\lambda\omega_2^2\lambda^3k_{31} - \frac{3}{2}C_3(-A_X(k_{41} + k_{42}) + A_Z(\rho_{41} - \rho_{42}) + 2\rho_{20}k_{31}) - \frac{3}{8}C_4(8A_X^2k_{31} - 8A_Xk_{21}(2\rho_{20} + \rho_{21} + \rho_{22}) + 4kA_X(\rho_{21} + \rho_{22})(4\rho_{20} - (\rho_{21} + \rho_{22})) + 2kA_Xk_{21}(\sigma_{21} + \sigma_{22}) + kA_Xk_{31}^2 + 2A_Zk_{31}(\sigma_{21} + \sigma_{22}) + A_Z^2(\sigma_{21} + \sigma_{22})),
\]

\[
\delta_{81} = \frac{5}{16}C_5(12A_X^3k_{21} + 12A_X^3A_Z(2\rho_{20} + \rho_{21} + \rho_{22}) + 9A_XA_Z^2k_{31} + 3A_X^2(2\rho_{20} - 3(\rho_{21} + \rho_{22})) + 3k^2A_X^2k_{21} + 6kA_X^2A_Z(\sigma_{21} + \sigma_{22}) + 3k^2A_X^2A_Z(2\rho_{20} - 3(\rho_{21} + \rho_{22}))),
\]

\[
\delta_{82} = \frac{15}{128}C_6(-24A_X^5A_Z + 12k^2A_X^4A_Z + 12A_X^3A_Z^2 + 5k^4A_X^3A_Z + 10k^2A_X^2A_Z^2 + 5A_Z^5) + \frac{\Delta}{\epsilon}k_{31},
\]

\[
\delta_{83} = \frac{15}{128}C_6(-24A_X^5A_Z + 12k^2A_X^4A_Z + 12A_X^3A_Z^2 + 5k^4A_X^3A_Z + 10k^2A_X^2A_Z^2 + 5A_Z^5) + \frac{\Delta}{\epsilon}k_{31},
\]

\[
\delta_{84} = \frac{15}{128}C_6(-24A_X^5A_Z + 12k^2A_X^4A_Z + 12A_X^3A_Z^2 + 5k^4A_X^3A_Z + 10k^2A_X^2A_Z^2 + 5A_Z^5) + \frac{\Delta}{\epsilon}k_{31}.
\]
\[\delta_{s1} = 18 \omega_2 \lambda^2 k_{32} - \frac{3}{2} C_3 (-A_X (k_{41} + k_{42}) + A_Z (\rho_{41} + \rho_{42})) + 2 \rho_{31} k_{22} + 2 \rho_{20} k_{32} - \frac{3}{8} C_4 (8 A_X^2 k_{32}) - 8 A_X (2 \rho_{20} k_{21} + (\rho_{21} - \rho_{22}) (k_{21} + 2 k_{22})) - 16 A_X A_Z (\rho_{31} + 4 A_X (\rho_{21} - \rho_{22}) (4 \rho_{20} + \rho_{21} - \rho_{22})) - 2 k^2 A_X^2 k_{32} - 2 k A_X (k_{21} - 2 k_{22}) (\sigma_{21} - \sigma_{22}) + 2 k A_X A_Z \sigma_{32} - 6 A_Z^2 k_{32} + A_Z (\sigma_{21} - \sigma_{22})^2 - 3 A_Z k_{21} (k_{21} + 4 k_{22})) - \frac{5}{16} C_5 (-4 A_X^3 (3 k_{21} + 2 k_{22})) + 12 A_X^3 A_Z (2 \rho_{20} + 3 (\rho_{21} - \rho_{22})) + 9 A_X A_Z^2 (2 k_{21} + 2 k_{22}) - 3 A_Z^2 (2 \rho_{20} + 3 (\rho_{21} - \rho_{22})) + 3 k^2 A_X^3 (k_{21} - 2 k_{22}) - 6 A_X^2 A_Z (\sigma_{21} - \sigma_{22}) + 3 k^2 A_X^2 A_Z (2 \rho_{20} - (\rho_{21} - \rho_{22})) + \frac{15}{128} C_6 (-40 A_X^4 A_Z - 12 k^2 A_X^4 A_Z + 60 A_X^2 A_Z^3 + 3 k^4 A_X^4 A_Z + 2 k^2 A_X^2 A_Z^2 - A_Z^2) + \frac{3}{2} C_3 (-A_X (k_{41} + k_{42}) - A_Z (\rho_{41} + \rho_{42}) - 2 \rho_{20} k_{31}) - \frac{3}{8} C_4 (-8 A_X^2 k_{31} + 8 A_X k_{21} (2 \rho_{20} + \rho_{21} + \rho_{22})) - 4 A_Z (\rho_{21} + \rho_{22}) (4 \rho_{20} - \rho_{21} - \rho_{22}) + 2 k^2 A_X^2 k_{31} + 2 k A_X k_{21} (\sigma_{21} - \sigma_{22}) + 2 k A_X A_Z (2 \sigma_{21} - \sigma_{22}) + 6 A_Z^2 k_{31} + A_Z (\sigma_{21} + \sigma_{22})^2 - 3 A_Z k_{21} (k_{21} + 2 k_{22})) - \frac{5}{16} C_5 (12 A_X^3 k_{21} - 12 A_X^2 A_Z (2 \rho_{20} + \rho_{21} + \rho_{22})) - 9 A_X A_Z^2 k_{21} - 3 A_Z^2 (2 \rho_{20} - 3 (\rho_{21} + \rho_{22})) - 3 k^2 A_X^3 k_{21} + 6 k^2 A_X^2 A_Z (\sigma_{21} + \sigma_{22}) - 3 k^2 A_X^2 A_Z (2 \rho_{20} - (\rho_{21} + \rho_{22})) + \frac{15}{128} C_6 (24 A_X^4 A_Z - 12 k^2 A_X^4 A_Z - 12 A_X^2 A_Z^3 - 5 k^4 A_X^4 A_Z - 10 k^2 A_X^2 A_Z^2 + 5 A_Z^2) - \frac{3}{2} C_3 (-A_X k_{42} + k_{31} (\rho_{21} + \rho_{22}) + \rho_{31} k_{21} + A_Z \rho_{42}) - \frac{3}{8} C_4 (4 A_X^2 k_{31} - 8 A_X k_{21} (\rho_{21} + \rho_{22}) - 8 A_X A_Z \rho_{31} + 4 A_Z (\rho_{21} + \rho_{22})^2 + k^2 A_Z^2 k_{31} + 2 k A_X k_{21} (\sigma_{21} + \sigma_{22}) + 2 k A_X A_Z \sigma_{31} + 3 A_Z^2 k_{31} + A_Z (\sigma_{21} + \sigma_{22})^2 + 3 A_Z k_{21} (k_{21} + 2 k_{22})) - \frac{5}{16} C_5 (-4 A_X^3 k_{21} + 12 A_X^2 A_Z (\rho_{21} + \rho_{22}) - 9 A_X A_Z^2 k_{21} + 3 A_Z^2 (\rho_{21} + \rho_{22}) - 3 k^2 A_X^3 k_{21} + 6 k^2 A_X^2 A_Z (\sigma_{21} + \sigma_{22}) + 3 k^2 A_X^2 A_Z (\rho_{21} + \rho_{22})) + \frac{15}{128} C_6 (-8 A_X^4 A_Z - 12 k^2 A_X^4 A_Z - 12 A_X^2 A_Z^3 - k^4 A_X^4 A_Z - 2 k^2 A_X^2 A_Z^2 - A_Z^2), \]

\[\delta_{s8} = -18 \omega_2 \lambda^2 k_{31} \]

\[\delta_{s9} = \begin{cases}
\delta_{s0}, & \text{when } p = 0, \\
\delta_{s1}, & \text{when } p = 1, \\
\delta_{s2}, & \text{when } p = 2, \\
\delta_{s3}, & \text{when } p = 3.
\end{cases} \]
\[
\delta_{91} = \frac{3}{2} C_3 (-A_X k_{42} + k_{32}(\rho_{21} - \rho_{22}) + \rho_{31} k_{21} + A_Z \rho_{42}) \\
- \frac{3}{8} C_4 (4 A_X^2 k_{32} - 8 A_X k_{21}(\rho_{21} - \rho_{22}) - 8 A_X A_Z \rho_{31} \\
\quad + 4 A_Z (\rho_{21} - \rho_{22})^2 + k^2 A_X^2 k_{32} \\
\quad + 2 k A_X k_{21}(\sigma_{21} - \sigma_{22}) + 2 k A_X A_Z \sigma_{31} - 3 A_Z^2 k_{32} \\
\quad + A_Z (\sigma_{21} - \sigma_{22})^2 - 3 A_Z k_{21}^2) \\
- \frac{5}{16} C_5 (-4 A_X^3 k_{21} + 12 A_X^2 A_Z (\rho_{21} - \rho_{22}) \\
\quad + 9 A_X A_Z^2 k_{21} - 3 A_Z^3 (\rho_{21} - \rho_{22}) - 3 k^2 A_X^3 k_{21} \\
\quad - 6 k A_X^2 A_Z (\sigma_{21} - \sigma_{22}) + 3 k^2 A_X^3 A_Z (\rho_{21} - \rho_{22}) \\
\quad + \frac{15}{128} C_6 (-8 A_X^4 A_Z - 12 k^2 A_X^3 A_Z + 12 A_X^2 A_Z \\
\quad \quad - k^4 A_X A_Z + 2 k^2 A_X^3 A_X^4 - A_Z^5),
\]

\[
\delta_{92} = \frac{3}{2} C_3 (-A_X k_{42} - k_{31}(\rho_{21} + \rho_{22}) - \rho_{31} k_{21} - A_Z \rho_{42}) \\
- \frac{3}{8} C_4 (-4 A_X^2 k_{31} + 8 A_X k_{21}(\rho_{21} + \rho_{22}) \\
\quad + 8 A_X A_Z \rho_{31} - 4 A_Z (\rho_{21} + \rho_{22})^2 - k^2 A_X^2 k_{31} \\
\quad - 2 k A_X k_{21}(\sigma_{21} + \sigma_{22}) - 2 k A_X A_Z \sigma_{31} - 3 A_Z^2 k_{31} \\
\quad - A_Z (\sigma_{21} + \sigma_{22})^2 - 3 A_Z k_{21}^2) \\
- \frac{5}{16} C_5 (4 A_X^3 k_{21} - 12 A_X^2 A_Z (\rho_{21} + \rho_{22}) \\
\quad + 9 A_X A_Z^2 k_{21} - 3 A_Z^3 (\rho_{21} + \rho_{22}) + 3 k^2 A_X^3 k_{21} \\
\quad - 6 k A_X^2 A_Z (\sigma_{21} + \sigma_{22}) - 3 k^2 A_X^3 A_Z (\rho_{21} + \rho_{22}) \\
\quad + \frac{15}{128} C_6 (8 A_X^4 A_Z + 12 k^2 A_X^3 A_Z + 12 A_X^2 A_Z \\
\quad \quad + k^4 A_X A_Z + 2 k^2 A_X^3 A_X^4 + A_Z^5),
\]

\[
\delta_{93} = \frac{3}{2} C_3 (-A_X k_{42} - k_{32}(\rho_{21} - \rho_{22}) - \rho_{31} k_{21} - A_Z \rho_{42}) \\
- \frac{3}{8} C_4 (-4 A_X^2 k_{32} + 8 A_X k_{21}(\rho_{21} - \rho_{22}) \\
\quad + 8 A_X A_Z \rho_{31} - 4 A_Z (\rho_{21} - \rho_{22})^2 - k^2 A_X^2 k_{32} \\
\quad - 2 k A_X k_{21}(\sigma_{21} - \sigma_{22}) - 2 k A_X A_Z \sigma_{31} + 3 A_Z^2 k_{32} \\
\quad - A_Z (\sigma_{21} - \sigma_{22})^2 + 3 A_Z k_{21}^2) \\
- \frac{5}{16} C_5 (4 A_X^3 k_{21} - 12 A_X^2 A_Z (\rho_{21} - \rho_{22}) \\
\quad - 9 A_X A_Z^2 k_{21} + 3 A_Z^3 (\rho_{21} - \rho_{22}) + 3 k^2 A_X^3 k_{21} \\
\quad + 6 k A_X^2 A_Z (\sigma_{21} - \sigma_{22}) - 3 k^2 A_X^3 A_Z (\rho_{21} - \rho_{22}) \\
\quad + \frac{15}{128} C_6 (8 A_X^4 A_Z + 12 k^2 A_X^3 A_Z - 12 A_X^2 A_Z \\
\quad \quad + k^4 A_X A_Z - 2 k^2 A_X^3 A_X^4 + A_Z^5).}
\]

\[
\rho_{51} = \frac{6 n \lambda \beta_0 - (9 \lambda^2 + n^2 - C_2) \gamma_8}{(n^2 - 9 \lambda^2)^2 + C_2 (n^2 - 2 C_2 + 9 \lambda^2)},
\]

\[
\rho_{52} = \frac{10 n \lambda \beta_{10} - (25 \lambda^2 + n^2 - C_2) \gamma_9}{(n^2 - 25 \lambda^2)^2 + C_2 (n^2 - 2 C_2 + 25 \lambda^2)},
\]

\[
\sigma_{51} = \frac{k_3}{2 \lambda n},
\]

\[
\sigma_{52} = \frac{6 n \lambda \gamma_8 - (9 \lambda^2 + n^2 + 2 C_2) \beta_9}{(n^2 - 9 \lambda^2)^2 + C_2 (n^2 - 2 C_2 + 9 \lambda^2)},
\]

\[
\sigma_{53} = \frac{10 n \lambda \gamma_9 - (25 \lambda^2 + n^2 + 2 C_2) \beta_{10}}{(n^2 - 25 \lambda^2)^2 + C_2 (n^2 - 2 C_2 + 25 \lambda^2)},
\]

\[
k_{51} = \frac{- \delta_8}{8 \lambda^2},
\]

\[
k_{52} = \frac{- \delta_9}{24 \lambda^2}.
\]

Fig. 1 4^{th} and 5^{th} order halo orbits around L_1 corresponding to $A_2 = 2.4 \times 10^{-12}$, $q = 0.9995$
Table 1 Effect of radiation pressure on different parameters of orbits around L_1 when $A_2 = 2.4 \times 10^{-12}$

q	A_2	2.4×10^{-12}	3.5×10^{-12}	4×10^{-12}
	γ	0.009966562831474	0.010822806024997	0.010822806024997
	L_1	0.990030433536519	0.98975190565718	0.98975190565718
	C_2	0.963443359558607	0.93213970575904	0.93213970575904
	C_3	0.302436775959918	0.2972624703974638	0.2972624703974638
	C_4	0.30334155218881	0.298315954578718	0.298315954578718
	C_5	0.303340367603850	0.298305329754523	0.298305329754523
	C_6	0.303341732214042	0.2983054372628669	0.2983054372628669
	λ	0.87480924217118	0.2983159543754524	0.2983159543754524
	Δ	0.29225189059122	0.291658764200673	0.291658764200673
	k	3.23801097192164	3.21264343931957	3.21264343931957
	τ	3.01027546921636	3.028304497912615	3.028304497912615

Table 2 Effect of oblateness on different parameters of orbits around L_1 when $q = 0.9995$

A_2	2.4×10^{-12}	3.5×10^{-12}	4×10^{-12}
γ	0.010022806024997	0.010822806024997	0.010822806024997
L_1	0.989974190567518	0.989974190567518	0.989974190567518
C_2	0.4013217360998824	0.4013217360998824	0.4013217360998824
C_3	0.2972624703974638	0.297264704093073	0.297264704093073
C_4	0.2983159543754524	0.2983159543754524	0.2983159543754524
C_5	0.2983054372628669	0.2983054372628669	0.2983054372628669
C_6	0.2983054372628669	0.2983054372628669	0.2983054372628669
λ	2.078419527003888	2.078419527003888	2.078419527003888
Δ	0.291658764200673	0.291658764200673	0.291658764200673
k	3.21264343931957	3.21264343931957	3.21264343931957
τ	3.0283049479712615	3.0283049479712615	3.0283049479712615

Table 3 Effect of radiation pressure on different parameters of orbits around L_2 when $A_2 = 2.4 \times 10^{-12}$

q	A_2	2.4×10^{-12}	3.5×10^{-12}	4×10^{-12}	
γ	0.009966562831474	0.009966562831474	0.009966562831474	0.009966562831474	
L_2	0.009966562831474	0.009966562831474	0.009966562831474	0.009966562831474	
C_2	3.942590937851239	3.99327144921635	4.51388113295898	5.08772984797185	
C_3	2.98348088154385	-0.0329693790758554	-3.55564417985380	-4.313098527601873	
C_4	2.973863414322752	0.302304928754649	3.546861815969391	4.12458572165059	
C_5	2.973863414322752	3.21264343931957	3.21264343931957	3.21264343931957	
C_6	2.973863414322752	3.21264343931957	3.21264343931957	3.21264343931957	
λ	2.057993351632755	2.06959687116124	2.19321760935948	2.3212498886311	
Δ	0.302304928754649	0.302304928754649	0.302304928754649	0.302304928754649	
k	3.186540491593625	3.20569040467006	3.38249069868882	3.56774774450672	
τ	3.05315281375049	3.03542752850363	2.864825235043783	2.706576818596858	2.56064201507853
\(A_2 \)	0	\(2.4 \times 10^{-12} \)	\(3 \times 10^{-12} \)	\(3.5 \times 10^{-12} \)	\(4 \times 10^{-12} \)
---	---	---	---	---	---
\(\gamma \)	0.009978343518616	0.009978343639533	0.009978343669762	0.009978343694953	0.009978343720144
\(L_2 \)	1.00997534008281	1.009975340129198	1.009975340159427	1.009975340184618	1.009975340209809
\(C_2 \)	3.993273145236837	3.993273144291635	3.993273144055562	3.993273143858681	3.993273143661800
\(C_3 \)	-3.032693791243736	-3.032693790758545	-3.032693790637474	-3.032693790536429	-3.032693790435384
\(C_4 \)	3.023203497879979	3.023203497285466	3.023203497137065	3.023203497013244	3.023203496889423
\(C_5 \)	-3.023109736060348	-3.023109735463630	-3.02310973514677	-3.023109735190398	-3.023109735066117
\(C_6 \)	3.023108809716084	3.023108809119334	3.02310880970372	3.02310880846086	3.023108808721798
\(\lambda \)	2.069950687346945	2.069950687116124	2.069950687058475	2.069950687010396	2.069950686962317
\(\Delta \)	0.291422702811252	0.291422702800878	0.291422702798289	0.291422702796127	0.291422702793967
\(k \)	3.205690410801889	3.205690410467006	3.205690410383364	3.205690410313609	3.205690410243853
\(\tau \)	3.035427532446555	3.035427532785036	3.035427532860575	3.035427532940079	3.035427533010583
Fig. 2 4th and 5th order halo orbits around L_1 corresponding to $A_2 = 2.4 \times 10^{-12}, q = 0.9945$

Fig. 3 4th and 5th order halo orbits around L_1 corresponding to $A_2 = 2.4 \times 10^{-12}, q = 0.9895$

Fig. 4 4th and 5th order halo orbits around L_1 corresponding to $A_2 = 2.4 \times 10^{-12}, q = 0.9845$

Fig. 5 Effect of radiation pressure on the position of halo orbits around L_1

Fig. 6 4th and 5th order halo orbits around L_2 corresponding to $A_2 = 2.4 \times 10^{-12}, q = 0.9995$

Fig. 7 4th and 5th order halo orbits around L_2 corresponding to $A_2 = 2.4 \times 10^{-12}, q = 0.9945$
Fig. 8 4th and 5th order halo orbits around L_2 corresponding to $A_2 = 2.4 \times 10^{-12}, q = 0.9895$

Fig. 9 4th and 5th order halo orbits around L_2 corresponding to $A_2 = 2.4 \times 10^{-12}, q = 0.9845$

Fig. 10 Effect of radiation pressure on the position of halo orbits around L_2

Fig. 11 Effect of oblateness on the position of L_1

Fig. 12 Effect of oblateness on the position of L_2

Fig. 13 Effect of radiation pressure on the position of L_1

Fig. 14 Effect of radiation pressure on the position of L_2
Fig. 15 Effect of oblateness on time period of halo orbits around L_1

Fig. 16 Effect of oblateness on time period of halo orbits around L_2

Fig. 17 Effect of radiation pressure on time period of halo orbits around L_1

Fig. 18 Effect of radiation pressure on time period of halo orbits around L_2
References

Abouelmagd, E.I.: Astrophysics and Space Science 346(1), 51 (2013). doi:10.1007/s10509-013-1439-9
Breakwell, J.V., Brown, J.V.: Celestial Mechanics 20, 389 (1979)
Brouwer, D., Clemence, G.M.: Planets and Satellites 31 (1961)
Chidambararaj, P., Sharma, R.K.: International Journal of Astronomy and Astrophysics 6, 293 (2016). doi:10.4236/ijaa.2016.63025
Danby, J.M.A.: Fundamentals of Celestial Mechanics. Macmillan Company, New York (1964)
Eapen, R.T., Sharma, R.K.: Astrophysics and Space Science 352(2), 437 (2014). doi:10.1007/s10509-014-1951-6
Farquhar, R.W.: The control and use of libration-point satellites. PhD thesis, Department of Aeronautics and Astronautics, Stanford University, Stanford (1968)
Fitzpatrick, R.: An Introduction to Celestial Mechanics. Cambridge University Press, New York (2012)
Ghotekar, S., Sharma, R.K.: International Journal of Astronomy and Astrophysics 9, 274 (2019). doi:10.4236/ijaa.2019.93020
Howell, K.C.: Celestial Mechanics 32, 53 (1984)
Howell, K.C., V.Breakwell, J.: Celestial Mechanics 32, 29 (1984)
Koon, W.S., W.Lo, M., Marsden, J.E., Ross, S.D.: Dynamical Systems, the Three-body Problem and Space Mission Design. Interdisciplinary Applied Mathematics, Springer, Berlin (2011)
McCuskey, S.W.: Introduction to Celestial Mechanics. Addison-Wesley, London (1963)
Moulton, F.R.: An Introduction to Celestial Mechanics. Dover Publications, New York (1914)
Murray, C.D., Dermot, S.F.: Solar System Dynamics. Cambridge University Press, Cambridge (1999)
Pathak, N., Sharma, R.K., Thomas, V.O.: International Journal of Astronomy and Astrophysics 6, 175 (2016). doi:10.4236/ijaa.2016.62015
Plummer, H.C.: The American Mathematical Monthly 26(6) (1919). doi:10.2307/2973529
Pollard, H.: Mathematical Introduction to Celestial Mechanics. Prentice Hall, New Jersey (1966)
Poynting, J.H.: Monthly Notices of the Royal Astronomical Society 64(1), 1 (1903). doi:10.1093/mnras/64.1.1a
Pushparaj, N., Sharma, R.K.: International Journal of Astronomy and Astrophysics 6, 347 (2016). doi:10.4236/ijaa.2016.64025
Richardson, D.L.: Celestial Mechanics 22, 231 (1980). doi:10.1007/BF01229511
Robertson, H.P., Russell, H.N.: Monthly Notices of the Royal Astronomical Society 97(6), 423 (1937). doi:10.1093/mnras/97.6.423
Roy, A.E.: Orbital Motion. Institute of Physics Publishing, UK (2005)
Schuerman, D.W.: The Astrophysical Journal 238, 337 (1980). doi:10.1086/157989
Sharma, R.K.: Astrophysics and Space Science 135(2), 271 (1987)
Simmons, J.F.L., McDonald, A.J.C., Brown, J.C.: Celestial Mechanics 35(145), 146 (1985). doi:10.1007/BF01227667
Szebehely, V.: Theory of Orbits. The Restricted Problem of Three Bodies. Academic Press, New York (1967)
Thurman, R., Worfolk, P.A.: The Geometry of Halo Orbits in the Circular Restricted Three-body Problem. Technical Report, Minneapolis (1996)
Tiwary, R.D., Kushvah, B.S.: Astrophysics and Space Science 357(1), 73 (2015). doi:10.1007/s10509-015-2243-5
Vallado, D.A.: Fundamentals of Astrodynamics and Applications. Microcosm, Hawthorne (2013)
Winter, A.: The Analytical Foundations of Celestial Mechanics. Princeton University Press, New Jersey (1941)

This manuscript was prepared with the AAS IMpX macros v5.2.