Tenocyte apoptosis in the torn rotator cuff: a primary or secondary pathological event?

Kirsten Lundgreen,1 Øystein Bjerkebrand Lian,2 Lars Engebretsen,3 Alex Scott4

ABSTRACT
Little information exists on the contribution of apoptosis to pathological tendon changes in rotator cuff tendinopathy. The purpose of this study was to quantitate the rate of tenocyte apoptosis in torn supraspinatus tendons and in the matched intact subscapularis and to examine the potential relation between apoptotic index (AI) and tendon pathology. In addition, the authors examined tenocyte density, proliferation rate and p53 gene expression patterns to gain further insight into relevant pathological mechanisms in the torn supraspinatus. 15 torn supraspinatus tendons with matched intact subscapularis tendon samples and 10 reference subscapularis samples were collected. Immunohistochemistry was used to define the AI (F7-26), proliferation rate (Ki67) and presence of p53 (M7001). Tendon degeneration was evaluated according to the Bonar scale. Expression of p53 and relevant genes (n=84) was examined on a subset of samples using microfluidic arrays. The AI was significantly increased in torn supraspinatus tendon and matched subscapularis tendon (R^2=0.5742; p=0.0005). Cell density and proliferation rate were also elevated in torn supraspinatus compared with reference subscapularis tendons (p<0.05). A significant increase in p53 occurred specifically in torn supraspinatus tendon (p<0.05), and several genes encoding p53-inhibiting proteins were downregulated in association, including HDAC1 (p<0.05), MDM4 (p<0.001) and PPM1B (p<0.05). Our results suggest that tenocyte apoptosis results from more than one mechanism in the injured rotator cuff, including both intrinsic factors related specifically to the torn supraspinatus tendon, as well as a more generalised effect on the adjacent subscapularis tendon.

INTRODUCTION
Rotator cuff injury ranks among the most prevalent of shoulder disorders causing pain and impaired function.1 The incidence of tendon injury is rising due to an ageing population and increasing participation in recreational and sporting activities.2–4 Despite improved surgical techniques, re-tear rates are high.5–14 The poor healing capacity of the rotator cuff has sparked studies of degenerative mechanisms, including tenocyte apoptosis, which could potentially be minimised with biologic treatments at the time of repair.

Apoptosis is a regulated programme of cell death that plays essential roles in development and homeostasis. Apoptosis ensures appropriate cell density in adult tissues and the clearance of inflammatory and reparative cells during healing.15–17 Excessive apoptosis is associated with degenerative pathologies including Alzheimer’s disease,18 osteoarthritis19–22 and tendinopathy.23–31 Inflammation, infection, nicotine, hypoxia and mechanical injury are among the factors that may lead to increased apoptotic cell death.

Tenocytes play a pivotal role in maintaining a biomechanically competent extracellular matrix. These cells are typically defined by their elongated appearance, their organisation into longitudinal arrays and their high level of type I collagen synthesis. Tenocytes are typically quiescent, non-dividing cells. Areas of increased proliferation and apoptosis have been reported at microregions of extracellular matrix remodelling, suggesting a potential association between dysregulation of tenocyte homeostasis and changes in tendon extracellular matrix.32 A significant increase of apoptosis in human rotator cuff disease has been reported.25 29–31 33–35 However, the identification of apoptotic cells using TUNEL (terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labelling) in these studies is debatable as this method can generate false-positive results not discriminating necrotic, apoptotic and autolytic cell death.36–38 This makes the conclusion on the actual extent of tenocyte apoptosis in these studies uncertain. Furthermore, the relationship between tenocyte apoptosis and other features of tendon pathology remains unclear, as does the potential role of p53—a key regulator of apoptosis and a potential regulator of tendon extracellular matrix homeostasis.

The objective of this study was to quantitate the rate of tenocyte apoptosis in torn supraspinatus tendons and in the matched subscapularis tendon, compared with a reference group of subscapularis tendons from patients with normal rotator cuffs. In addition, our aim was to determine the tenocyte density and proliferation rate in order to better understand the biological context of tenocyte apoptosis. Third, we assessed the potential role of p53 in torn rotator cuff, as this protein regulates many aspects of apoptosis in various pathological scenarios.39

MATERIALS AND METHODS
Patients and tissue collection
The study was approved by the regional committee for research ethics. Informed consent was obtained. Patients were carefully selected; factors that could influence the occurrence of apoptosis such as nicotine use and systemic inflammatory disorders led to exclusion. Fifteen patients with supraspinatus tendon tear and no apparent pathology of the subscapularis tendon on MRI
and during arthroscopy were included. The cuff tears were repaired arthroscopically. Biopsies were harvested from the edge of the torn supraspinatus tendon and from the subscapularis tendon. The biopsy size was approximately 3×3×3 mm³. As a reference, samples of subscapularis tendon were collected from 10 patients undergoing arthroscopic labral repair with no apparent rotator cuff pathology. The subscapularis tendon samples were collected from the upper part of the tendon, approximately 1.5 cm from its insertion on the lesser tuberosity. For histology and immunohistochemistry, tissue samples were fixed in fresh 10% buffered formalin for 16–24 h at 4°C and then subsequently dehydrated and embedded in paraffin. For gene expression analysis, tissue samples from four rotator cuff patients and four patients of the control group were placed directly in RNA preservative (RNAlater; Ambion, Streetsville, Ontario, Canada) immediately after dissection, incubated at 4°C for 24 h and then stored at −20°C.

Tendon degeneration (tendinosis)
Sections of 5 μm were stained with H&E for morphology and with Alcian Blue for sulphated glycosaminoglycans (GAGs). Four diagnostic features of tendinosis – fibroblastic alterations (hyper/hypocellularity), increased GAG, collagen disorganization or disarray and hypervascularity or vascular remodeling – were rated semiquantitatively. The extent of tendinosis was evaluated according to a modified Bonar scale by a single examiner (AS) who was blinded to the identity of the slides.Using this scale, a completely normal tendon would score 0 and a maximally degenerated tendon would score 12. All subscapularis tendons, both from patients and controls, contained areas of chondrocyte-like cells; this may reflect zones of compression. Thus, this was considered a normal phenomenon and accordingly the evaluation of Alcian Blue staining was not included in the Bonar score. The validity of the Bonar scale in assessing tendon ruptures has been previously established.

Tenocyte density
The identity of H&E-stained slides was masked with a dark tape. Light microscopy was performed on a digital imaging workstation (Veritas; Molecular Devices, Sunnyvale, California, USA) using a 20× objective lens (Zeiss, Toronto, Ontario, Canada). An automated scanning function was used to create a composite micrograph of the entire tissue section. Tenocyte density was determined by calculating the average for all individual fields that were free of significant artefact and contained only tenocytes. Cell counting was done independently by two observers (AS and KL). The procedure’s reliability was evaluated by an interobserver test and was determined to be highly reproducible (r²=0.97).

Detection of cellular proliferation
Reagents and antibodies for Ki67 immunohistochemistry were obtained from a single supplier (Ventana Medical Systems, Tucson, Arizona, USA). Staining was carried out using an automated immunohistochemistry unit (Discovery XT, Ventana, Tucson, AZ, USA) with an LSAB (labelled streptavidin-biotin, Ventana, Tucson, AZ, USA) kit according to the manufacturer’s instructions, using a universal secondary antibody with 3,3-diaminobenzidine as the substrate. Tissue sections were pre-treated with EDTA buffer (CC1). The primary antibody was incubated at 37°C for 60 min and the secondary antibody at 37°C for 30 min. Human formalin-fixed paraffin-embedded tonsil was used for optimisation and as a positive control.

Detection of apoptosis
A monoclonal antibody against single-stranded DNA breaks (F7-26; Chemicon, Temecula, California, USA) was used to examine apoptotic cell death. Tissue sections were deparaffinised in xylene, then washed sequentially in 100%, 95% and 70% ethanol and phosphate-buffered saline (PBS). Slides were incubated in PBS containing 0.1% NP40 for 10 min followed by 20 μg/ml proteinase K for 40 min. Slides were washed in distilled water and transferred to 60°C, 50% formamide (v/v distilled water) for 20 min. Endogenous peroxidase activity was then blocked as above, followed by further blocking in goat serum for 20 min and in avidin D and biotin solutions for 15 min each. The sections were incubated with F7-26 (1:10 dilution) for 30 min at room temperature, then with goat antimouse immunoglobulin M (1:100; Dako, Mississauga, Ontario, Canada) for 15 min. Sections were then processed with Vectastain (Vector Labs, Burlingame, CA, USA) ABC reagents according to the manufacturer’s instructions. Formaldehyde-fixed mammary rat tissue with or without the primary antibody was used as positive and negative controls.

Apoprotic index and proliferation index
The apoptotic index (AI) was determined for the F7-26 staining and the proliferation index for Ki67 staining. AI was defined as the percentage of apoptotic cells within all fields of a given biopsy that demonstrated positive labelling with the assay. The slide identity was masked with dark tape. Cell counting was done on a digital imaging workstation (Veritas; Molecular Devices), using 40x objective. Composite digital micrographs of the entire tissue section were generated as described above. In all fields containing positive cells, the number of both positive and negative cells was counted. The cell counting was done independently by two observers (AS and KL). The counting procedure’s reliability was evaluated by an interobserver test and was determined to be highly reproducible (r²=0.964).

p53
To further examine apoptotic cell death, we assessed the presence of p53 protein. p53 is a powerful tumour suppressor and promotes programmed cell death via apoptotic pathways. A monoclonal antibody (M7001; Dako) was used in conjunction with automated immunohistochemistry (Ventana) as described above. Heat-mediated antigen retrieval in EDTA buffer (CC1) was used. Primary antibody was incubated at 37°C for 60 min at 1:100 dilution, followed by secondary antibody at 37°C for 30 min. Human formalin-fixed breast cancer tissue was used for optimisation and as a positive control.

Data analyses
To compare the histological and immunohistochemical data between normal and tendinopathic tendons, the Mann–Whitney U test was conducted with p values less than 0.05 considered significant. Data were analysed using VassarStats online statistical software hosted by Vassar College (Poughkeepsie, NY). Reliability testing and correlation of variables within patients was conducted using Pearson’s correlation coefficient.

Gene expression analysis
A subset of torn supraspinatus and reference subscapularis tendons were homogenised in a Mikrodisseminator (Sartorius, Germany) and the homogenate placed immediately in Trizol.
RNA was extracted and purified using RNeasy columns. cDNA was generated via reverse transcription (all reagents from Applied Biosystems). Gene expression analysis was performed using reverse transcriptase Profiler PCR Arrays (SABiosciences, Frederick, Maryland, USA) for p53-related genes. Data analysis was performed using SABiosciences Expression Analysis Software (v3.0; Fredericton, MD, USA). Genes with both fold change >2.5 and \(\alpha < 0.05 \) were considered significant.

RESULTS

Patient characteristics

Fifteen patients, 10 men and 5 women, with full thickness tears of the supraspinatus tendon were included. The mean age was 57.7 years (range 49–69). The reference group consisted of 10 patients; mean age 43.9 years (range 32–51). They were five women and five men. No complications occurred.

Evaluation of tendon degeneration

Torn supraspinatus tendons consistently revealed significant degenerative change (ie, tendinosis). The main features were collagen disarray, areas of hypocellularity but more frequently areas of hypercellularity and signs of vascular proliferation or remodelling (neovascularisation). Fibroblastic cells predominated, and inflammatory cells were scarce or absent. Localised areas of increased tenocyte density were observed in the patient subscapularis tendons, but not the reference subscapularis tendons.

Blinded evaluation of the tissue samples using the modified Bonar scale confirmed the greater presence of degenerative change in the patient supraspinatus compared with reference subscapularis tendons and, interestingly, mild degenerative changes in the patient subscapularis tendons (figure 1A).

Apoptotic index

Apoptotic cells were distributed throughout the patient tendons, including supraspinatus and subscapularis tendons. There was a significant difference between the AI in torn supraspinatus and matched subscapularis compared with reference subscapularis tendons (patSSP (patient supraspinatus) vs reference subscapularis (refSSC) \(p=0.019256 \); patSSC (patient subscapularis) vs refSSC \(p=0.041685 \), figure 1B). Pearson’s correlation coefficient confirmed a significant, positive correlation between the presence of apoptosis in torn supraspinatus and matched subscapularis (\(R^2=0.5742; p=0.0005 \)) (figure 1C). This correlation indicates that apoptosis was not confined to the injured tendon, but also occurred to a similar degree in the matched, mildly degenerated but intact subscapularis tendon.

Tenocyte proliferation

The tenocyte density and proliferation indices in ruptured supraspinatus samples were significantly higher than the corresponding values for patient or reference subscapularis samples (figure 2A, B).

p53 protein and related gene expression

p53 immunohistochemistry showed a significantly greater expression in the torn supraspinatus than in the reference subscapularis (\(p<0.05 \); figure 3A). In line with the immunohistochemical assay, p53 gene expression was 40% higher in injured supraspinatus tendon; however, this difference did not meet the criteria for statistical significance. Several genes encoding for p53 inhibitors were expressed at lower levels in patient tendons, including HDAC1 (\(p<0.05 \)), MDM4 (\(p<0.001 \)) and PPM1D (\(p<0.05 \); figure 3B). In addition, the prosurvival nuclear transcription factor NF-κβ was downregulated (\(p<0.05 \)). Taken together, the results suggest that apoptosis in injured supraspinatus tendon is associated with multiple gene regulatory events relevant to p53 signalling and cell survival. However, p53 expression in the patient supraspinatus and subscapularis did not correlate with the...
AI in these tendons, indicating that p53 may be partially, but not solely, responsible for regulating tenocyte cell death in the injured rotator cuff.

DISCUSSION

The main goal of this study was to quantify the rate of tenocyte apoptosis in the torn rotator cuff of a well-defined population. We studied torn supraspinatus tendons and matched subscapularis tendons, comparing them with a reference group of subscapularis tendons from patients presenting with a normal rotator cuff. There was a significant increase of tenocyte apoptosis in both the torn supraspinatus tendon and the matched, intact subscapularis tendon. In addition, a significant increase in a key apoptotic regulator, p53, occurred specifically in the torn supraspinatus tendon and not in the matched subscapularis tendon, implying the existence of pathways both dependent and independent of p53 in the torn rotator cuff. Taken together, the findings demonstrate that tenocyte apoptosis is a more generalised feature of rotator cuff disease than previously appreciated, and that different apoptotic pathways may be activated in the torn supraspinatus compared with the adjacent uninjured cuff.

The extent of tenocyte apoptosis in our study is relatively small, but the magnitude of increase in the injured rotator cuff compared with healthy reference tendon (8.2% in torn supraspinatus tendon vs 2.8% in reference subscapularis tendon) is in keeping with the two- to threefold elevation reported in previously published studies. Exclusion of nicotine users since nicotine may promote apoptosis; patients with systemic disorders were also excluded. To our knowledge, this has not been done in previously published studies on apoptosis in rotator cuff tendinopathy. We identified apoptosis by studying the presence of ssDNA, a hallmark of apoptotic cell death. The use of TUNEL in previous published studies is debatable as this method is criticised for generating false-positive results. Apart from the exclusion of nicotine users and patients with systemic disorders, this may be an additional explanation for the discrepancy between the AIs in our study and the studies from Yuan et al., Tuoheti et al. and Benson et al., which used autopsy controls. We extended previous findings by showing that in patients with a torn rotator cuff, apoptosis also occurs in adjacent, macroscopically normal tendon.

What this study adds

This study indicates a general involvement of the rotator cuff in the presence of a supraspinatus tear, and a potential role of both p53-dependent and -independent cell death. Apoptosis is an observable feature of tendinopathy, however, extended by our study. Matthews et al. described increased cell density and proliferation in small and medium rotator cuff tears, compared with hypocellularity and reduced proliferation in large and massive tears. The tears were measured according to Post et al., small tears <1 cm, medium tears <3 cm and large tears <5 cm and massive tears >5 cm. All tears included in our study are medium tears. The potential relationship between tenocyte proliferation and early tendinosis changes has recently been demonstrated in a laboratory study of rotator cuff overuse.

One limitation of our study is the age difference between the two groups of patients: 57.7 years versus 43.9 years in the reference group. In previously published studies on apoptosis, this discrepancy is more pronounced with the exception of the study by Tuoheti et al. which used autopsy controls. We find the age discrepancy in our material to be acceptable since degenerative changes of the rotator cuff are not appreciable until the fourth decade, thus placing both our groups at an age prone to tendinopathic change. This reduces the possibility of ageing alone as a cause of difference in AI. Another limitation of our study lies in the differences in anatomy, function and loading profile of the subscapularis tendon compared with the supraspinatus tendon. We consider biopsying healthy supraspinatus tendon from the living to be unethical because of the known reduced healing potential of this tendon. MRI was performed at different institutes and this clearly is a possible limitation allowing variance in the radiologic evaluation of the subscapularis tendon. Any visible pathology of the subscapularis tendon during arthroscopy led to exclusion from the study independent of the MRI result. A general limitation of human studies on tendinopathy is the fact that tendon samples represent tissue with advanced disease not enabling observation of early pathological features. A final limitation is that the extent of involvement and cellular changes in the rotator cuff muscles prior to or following tendon failure are not known. These are important issues that require further investigations. The involvement of the subscapularis tendon in the presence of a supraspinatus tear in our study confirms the findings of Yuan et al. in 2002 and reinforces the importance of this tendon in the study of rotator cuff tendinopathy.

This study indicates a general involvement of the rotator cuff in the presence of a supraspinatus tear, and a potential role of both p53-dependent and -independent cell death. Apoptosis is an observable feature of tendinopathy, however,
its contribution to tendon degeneration requires further research.

Acknowledgements The authors thank Ingeborg Lestegaard Goverud, Chris Duronio and Ashwaniya Sharma for excellent technical service.

Funding The research was funded by a Research At Work grant from the WorkSafeBC research secretariat and a grant from the Osteoarthritis Research Group, South-Eastern Regional Health Authority Norway.

Competing interests None.

Patient consent Obtained.

Ethics approval This study was conducted with the approval of the Lionsberg Deaconal Hospital.

Provenance and peer review Not commissioned; externally peer reviewed.

REFERENCES
1. Bunker T. Rotator cuff disease. Curr Orthop 2002;16:223–33.
2. Rolf C, Movin T. Teloig, histopathology, and outcome of surgery in achillodynia. Foot Ankle Int 1997;18:565–9.
3. Kader D, Saxena A, Movin T, et al. Achilles tendinopathy: some aspects of basic science and clinical management. Br J Sports Med 2002;36:239–49.
4. Clegg PD, Strassburg S, Smith RK. Cell phenotypic variation in normal and damaged tendons. Int J Exp Pathol 2007;88:227–35.
5. Bishop J, Kleppes S, Lo IK, et al. Cuff integrity after arthroscopic versus open rotator cuff repair: a prospective study. J Shoulder Elbow Surg 2006;15:290–9.
6. Boileau P, Brassant N, Watkinson DJ, et al. Arthroscopic repair of full-thickness tears of the supraspinatus: does the tendon really heal? J Shoulder Elbow Surg 2005;14:1229–40.
7. Galatz LM, Ball CM, Teefey SA, et al. The outcome and repair integrity of completely arthroscopically repaired large and massive rotator cuff tears. J Bone Joint Surg Am 2004;86-A:219–24.
8. Verma NN, Dunn W, Adler RS, et al. All-arthroscopic versus mini-open rotator cuff repair: a retrospective review with minimum 2-year follow-up. Arthroscopy 2006;22:567–94.
9. Sugaya H, Maeda K, Matsuki K, et al. Functional and structural outcome after arthroscopic full-thickness rotator cuff repair: single-row versus dual-row fixation. Arthroscopy 2005;21:1307–16.
10. Sugaya H, Maeda K, Matsuki K, et al. Repair integrity and functional outcome after arthroscopic double-row rotator cuff repair. A prospective outcome study. J Bone Joint Surg Am 2007;89:963–80.
11. Lichtenberg S, Uem M, Magosch P, et al. Influence of tendon healing after arthroscopic rotator cuff repair on clinical outcome using single-row Mason-Allen suture technique: a prospective, MRI controlled study. Knee Surg Sports Traumatol Arthosc 2006;14:1200–6.
12. Voigt C, Bosse C, Vossenruch R, et al. Arthroscopic supraspinatus tendon repair with suture-bridging technique: functional outcome and magnetic resonance imaging. Am J Sports Med 2010;38:983–91.
13. Laffosse L, Brozka S, Toussaint B, et al. The outcome and structural integrity of arthroscopic rotator cuff repair with use of the double-row suture anchor technique. J Bone Joint Surg Am 2007;89:1533–41.
14. Ide J, Tokiyoshi A, Hirose J, et al. Arthroscopic repair of traumatic combined rotator cuff tears involving the subscapularis tendon. J Bone Joint Surg Am 2007;89:2378–88.
15. Lui PP, Cheuk YC, Hung LK, et al. Increased apoptosis at the late stage of tendon healing. Wound Repair Regen 2007;15:702–7.
16. Li G, White G, Connolly C, et al. Cell proliferation and apoptosis during fracture healing. J Bone Miner Res 2002;17:791–9.
17. Wu YF, Chen CH, Cao Y, et al. Molecular events of cellular apoptosis and proliferation in the early tendon healing period. J Hand Surg Am 2010;35:2–10.
18. Jellinger KA, Bancher C. Neuropathology of Alzheimer’s disease: a critical update. J Neurol Neurosurg Psychiatry 2001;64:77–95.
19. Amin AR, Abramson SB. The role of nitric oxide in articular cartilage breakdown in osteoarthritis. Curr Opin Rheumatol 1996;10:263–8.
20. Chikazumi I, Fernandez L. Novel strategies for the treatment of osteoarthritis. Expert Opin Investig Drugs 2005;14:989–1010.
21. Lottz M, Hashimoto S, Kühn K. Mechanisms of chondrocyte apoptosis. Osteoarthr Cartil 1999;7:389–91.
22. Unglaub F, Thomas SB, Kroeber MW, et al. Apoptotic pathways in degenerative disk lesions in the wrist. Arthroscopy 2009;25:1380–6.
23. Benson RT, McDonnell SM, Knowles HJ, et al. Tendinopathy and tears of the rotator cuff are associated with hypoxia and apoptosis. J Bone Joint Surg Br 2010;92:448–53.
24. Chen J, Wang A, Xu J, et al. In chronic lateral epicondylitis, apoptosis and autophagic cell death occur in the extensor carpi radialis brevis tendon. J Shoulder Elbow Surg 2010;19:355–62.
25. Liu B, Scott A, Engelbreten L, et al. Excessive apoptosis in patellar tendinopathy in athletes. Am J Sports Med 2007;35:605–11.
26. Pearce CJ, Ismail M, Calder JD. Is apoptosis the cause of noninsertional achilles tendinopathy? Am J Sports Med 2009;37:2446–4.
27. Scott A, Khan KM, Duronio V. ISF-1 activates PDK and prevents anoxic apoptosis in Achilles tendon cells. J Orthop Res 2005;23:1219–25.
28. Scott A, Khan KM, Heer J, et al. High strain mechanical loading rapidly induces tendon apoptosis: an ex vivo rat tibiales anterior model. Br J Sports Med 2005;39:e25.
29. Tuohetl Y, Ito I, Pradhan RL, et al. Apoptosis in the supraspinatus tendon with stage II subacromial impingement. J Shoulder Elbow Surg 2005;14:535–41.
30. Yuan J, Wang MX, Murrell GA. Cell death and tendinopathy. Clin Sports Med 2003;22:693–701.
31. Yuan J, Murrell GA, Wei KQ, et al. Apoptosis in rotator cuff tendinopathy. J Orthop Res 2002;20:1372–9.
32. Chuen FS, Chuk CY, Ping WY, et al. Immunohistochemical characterization of cells in adult human patellar tendons. J Histochem Cytochem 2004;52:1151–7.
33. Millar NW, Wei AO, Mollyt TJ, et al. Cytokines and apoptosis in supraspinatus tendinopathy. J Bone Joint Surg Br 2009;91:472–4.
34. Millar NW, Wei AO, Mollyt TJ, et al. Heat shock protein and apoptosis in supraspinatus tendinopathy. Clin Orthop Relat Res 2008;466:1568–76.
35. Wu B, Chen J, Rosa TO, et al. Cellular response and extracellular matrix breakdown in rotator cuff tendon rupture. Arch Orthop Trauma Surg 2011;131:405–11.
36. Grasi-Kraupp B, Ruttkay-Nedecky B, Koudelka H, et al. In situ detection of fragmented DNA (TUNEL) assay fails to discriminate among apoptosis, necrosis, and autolytic cell death: a cautionary note. Hepatology 1995;21:1465–8.
37. Unglaub F, Wolf MB, Dragu A, et al. Molecular events of cellular apoptosis and proliferation in the early tendon healing period. J Hand Surg Am 2010;35:691–2.
38. Van Cruchten S, Van Den Broeck W. Morphological and biochemical aspects of apoptosis, oncosis and necrosis. Anat Histol Embryol 2002;31:214–23.
39. Vogelestein B, Lane D, Levine AJ. Surfing the p53 network. Nature 2000;408:307–10.
40. Cook JL, Feller JA, Bonar SF, et al. Abnormal tenocyte morphology is more prevalent than collagen disruption in asymptomatic athletes’ patellar tendons. J Orthop Res 2004;22:334–8.
41. Maffulli N, Longo UG, Franceschi F, et al. Movin and Bonar scores assess the same characteristics of tendon histology. Clin Orthop Relat Res 2008;466:1605–11.
42. Vousden KH, Lu X. Live or let die: the cell’s response to p53. Nat Rev Cancer 2002;2:594–604.
43. Kim MM, Yoon SO, Cho YS, et al. Histone deacetylases, HDAC1 and HSIR2, act as a negative regulator of ageing through p53 in human gingival fibroblast. Mech Ageing Dev 2004;125:351–7.
44. Le Guenennec X, Bulavin DV, WPI1 phosphate at the crossroads of cancer and aging. Trends Biochem Sci 2010;35:109–14.
45. Mancini F, Di Conza G, Monti O, et al. Puffing over MDM4-p53 network. Int J Biochem Cell Biol 2010;42:1080–3.
46. Frankfurt OS, Robb JA, Sugarbaker EV, et al. Monoclonal antibody to single-stranded DNA is a specific and sensitive cellular marker of apoptosis. Exp Cell Res 1996;226:387–93.
47. Egerbacher M, Arnoczky SP, Caballero O, et al. Loss of homeostatic tension induces apoptosis in tendon cells: an in vitro study. Clin Orthop Relat Res 2008;466:1562–8.
48. Matthews TJ, Hand GC, Rees JL, et al. Pathology of the torn rotator cuff tendon. Reduction in potential for repair as tear size increases. J Bone Joint Surg Br 2006;88:689–95.
49. Post M, Silver R, Singh M. Rotator cuff tear. Diagnosis and treatment. Clin Orthop Relat Res 1983:78–91.
50. Scott A, Cook JL, Hart DA, et al. Tendon responses to mechanical loading in vivo: a role for local insulin-like growth factor 1 signaling in early tendinosis in rats. Arthritis Rheum 2007;56:871–81.