Characterization of *Trypanosoma brucei gambiense* stocks isolated from humans by RAPD fingerprinting in Côte d’Ivoire: another evidence for multiple infections

Bruno Oury¹, Vincent Jamonneau², Michel Tibayrenc¹, Philippe Truc³*

¹Institut de Recherche pour le Développement (IRD), Research Unit 165 "Génétique et Evolution des Maladies Infectieuses" UMR CNRS/IRD 2724, BP 64501 34394 Montpellier cedex 5, France.
²Institut de Recherche pour le Développement (IRD), Research Unit 35 Trypanosomoses Africaines, Institut Pierre Richet, BP 1500, Bouaké, Côte d’Ivoire.
³Institut de Recherche pour le Développement, IRD, Research Unit 35 BP 1857, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), Department of Research and Control of Human African Trypanosomiasis, BP 288, Yaounde, Cameroon.

Accepted 3 December 2003

Trypanosoma brucei gambiense was isolated twice from each of 23 patients in Côte d’Ivoire. Genetic characterization using RAPD (Random Primed Amplified Polymorphic DNA) showed additional variability within a given isoenzyme profile (zymodeme), confirming that this fingerprinting method has a higher discriminative power (faster molecular clock) than isoenzymes. RAPD confirmed also the evidence of multiple infections by different genotypes in the same patient despite a low genetic variability among *Trypanosoma brucei gambiense* stocks. The involvement of this phenomenon in treatment failure is discussed.

Key words: Human African Trypanosomiasis, *Trypanosoma brucei gambiense*, RAPD, multiple infections.

INTRODUCTION

Human African Trypanosomiasis (HAT) is a serious health problem in the sub-Saharan part of Africa. It is estimated that about 600 000 people are infected in 2003 (W.H.O., personal communication). In West Africa, the causative agent of the chronic form of the disease is *Trypanosoma brucei gambiense*. However, diversified clinical evolutions were recorded in Côte d’Ivoire including a suspicion of an acute form (Jamonneau et al., 2000 a, Truc et al., 1997). The taxonomic status of the subspecies described within the complex *T. brucei* is still under debate, mainly because geographical distribution and pathogenicity of the subspecies are difficult to link with clear genetic categories (Jamonneau et al., 2002). Indeed, the only clear-cut genetic subdivision remains *T. brucei gambiense* group 1 (Gibson, 1986), while it is unclear whether *T. b. brucei* and *T. b. rhodesiense* correspond to distinct phylogenetic subdivisions (Mathieu-Daudé et al., 1994). Trypanosomes were genetically characterized using different methods, including Multilocus Enzyme Electrophoresis (MLEE) and several molecular methods (Gibson et al., 1999), such as...
Table 1. Patient code number, stocks isolated twice from each patient (A and B), corresponding location and focus and year of isolation in Côte d’Ivoire.

Patient/DNA	Location	Focus	Year
611 A and B	Yaokro	Sinfra	1997
622 A and B	Yaokro	Sinfra	1997
2499 A and B	Sinfra	Sinfra	1996
2562 A and B	Dioulabougou	Sinfra	1997
5/7A and B	Sinfra	Sinfra	1999
93/5 A and B	Sinfra	Sinfra	1997
634 A and B	Konéflu	Sinfra	1997
614 A and B	Yaokro	Sinfra	1997
659 A and B	Bonon	Bonon	1998
51/11 A and B	Sinfra	Sinfra	1997
664 A and B	Bonon	Bonon	1998
666 A and B	Bonon	Bonon	1998
4/5 A and B	Sinfra	Sinfra	1999
687 A and B	Bouaflé	Bonon	1998
806/9 A and B	Aboisso	Aboisso	1997
B120/9 A and B	Aboisso	Aboisso	1997
654 A and B	Bouaflé	Bonon	1998
662 A and B	Bonon	Bonon	1998
668 A and B	Bonon	Bonon	1998
669 A and B	Bonon	Bonon	1998
694 A and B	Bouaflé	Bonon	1998
2508 A and B	Bonon	Bonon	1997
T21/4 A and B	Grand Zathry	Sinfra	1999

Random Primed Amplified Polymorphic DNA (RAPD) (Tibayrenc et al., 1993), ribosomal gene 18S sequencing (Stevens, 1999) or microsatellites (Biteau et al., 2000, Truc et al., 2002).

This study has been conducted in Côte d’Ivoire where parasites were isolated twice from each patient at different time, first during the medical survey in the field, and second when arriving at the hospital before treatment (Truc et al., 2002). Isolates were cultivated in vitro, then genetically characterised by RAPD. The aim of this study was first, to record the diversity of *T. brucei* genotypes circulating in this area, and then, to confirm the evidence of multiple infections as previously described by Truc et al. (2002) using another PCR based method.

MATERIALS AND METHODS

Population surveyed

Twenty three patients were diagnosed according to standard procedures (WHO, 1998) between 1996 and 1999 by the Ivorian National Control Program in three foci of Côte d’Ivoire: Sinfra and Bonon in central-western part and Aboisso in the eastern part of the country, on the border with Ghana (Table 1). Consenting patients were bled twice by venepuncture with a minimum interval of 3 days.

Parasite collection

Trypanosomes were isolated using the Kit for In Vitro Isolation of trypanosomes (KIVI, Aerts et al., 1992). Reference stocks were included: JUA and PEYA (*T. b. gambiense* group 1), TSW65 and KP465 (*T. brucei* “bouaflé” group), 058Cl.A3 (*T. b. rhodesiense*), EATRO 1125 (*T. b. brucei) and TRPZ105 (*T. congolense*, savannah group). These reference stocks were previously studied by Truc et al. (1993, 1997) and Mathieu-Daudé et al. (1994). Isolates and reference stocks were cultivated in semi-defined medium (Cunningham, 1977). Parasite pellets were collected, prepared and stored at -20°C according to Truc et al. (1991, 1993, 2002). For each patient, two pellets labelled A and B corresponded respectively to the cultures initiated from each of the two isolates (Truc et al., 2002).

RAPD (Random Primed Amplified Polymorphic DNA)

DNAs were extracted according to the method described by Oury et al. (1997). RAPD amplifications were performed according to the protocol described by Welsh and McClelland (1990) and Williams et al. (1990) and modified by Tibayrenc et al. (1993). Genomic DNA samples (20 ng) were amplified in 60 µl of specific buffer (10 mM
This work was supported by a Fonds d'Aide à la Coopération du Ministère François des Affaires...
Figure 1. UPGMA dendrogram built using Jaccard distances for each pair of stocks (A and B) isolated from the same patient (code number). For reference stocks JUA and PEYA (T. b. gambiense group 1), TSW65 and KP465 (T. brucei "bouaflé" group), 058Cl.A3 (T. b. rhodesiense), EATRO 1125 (T. b. brucei) and TRPZ105 (T. congolense, savannah group), see text.
REFERENCES

Aerts D, Truc P, Penchenier L, Claes Y, Le Ray, D (1992). A kit for in vitro isolation of trypanosomes in the field: first trial with sleeping sickness patients in the Congo. Trans. R. Soc. Trop. Med. Hyg. 86: 394-395.

Barnabé C, Brisse S, Tibayrenc M (2000). Population structure and genetic typing of Trypanosoma cruzi, the agent of Chagas’ disease: a multilocus enzyme electrophoresis approach. Parasitology 150: 513-526.

Biteau N, Bringaud F, Gibson WC, Truc P, Baltz T (2000). Characterisation of Trypanozoon isolates using micro- and minisatellite markers. Mol. Biochem. Parasitol. 105: 185-201.

Cunningham I (1977). New culture medium for maintenance of Tsetse tissues and growth of Trypanosomatids. J. Protozool. 21 (2): 325-329.

Gibson WC (1986). Will the real Trypanosoma brucei gambiense please stand up? Parasitol. Today 2: 255-257.

Gibson WC, Stevens JR, Truc P (1999). Identification of trypanosomes: from morphology to molecular biology. In: “Progress in Human African Trypanosomiasis sleeping sickness”, Editors M. Dumas, B. Bouteille, A. Buguet, Springer Publ., Paris, 253-280.

Jamonneau V, Garcia A, Frézil JL, N’Guessan P, N’Dri L, Laveissière C, Truc P (2000) a. Clinical and biological evolution of human trypanosomiasis in Côte d’Ivoire. Ann. Trop. Med. Parasitol. 94(8): 831-835.

Jamonneau V, Garcia A, Ravel S, Cuny G, Oury B, Solano P, N’Guessan P, N’Dri L, Sanon R, Frézil JL, Truc P (2002). Genetic characterisation of Trypanosoma brucei ssp. and clinical evolution of Human African Trypanosomiasis in Côte d’Ivoire. Trop. Med. Int. Health 7(7): 610-621.

Welsh J, McClelland M (1990). Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res. 18: 7213-7218.

Williams, J.G.K., Kubelik, A.R., Livak, K.J. & Rafalski, J.A. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18: 6531-6535.