Experimental Study of A Novel Variant of Fiduccia Mattheyses(FM) Partitioning Algorithm

1Mitali Sinha, 2Rakesh Mohanty, 3Prachi Tripathy
Department of Computer Science and Engineering
Veer Surendra Sai University of Technology, Burla,
Sambalpur, Odisha, India-768018
1mitalisinha.148@gmail.com, 2rakesh.iitmphd@gmail.com,
3prachitripathy@gmail.com

3Suchismita Pattanaik
Department of Electronics and Communication Engineering
Sambalpur University Institute of Information Technology,
Jyoti Vihar, Burla, Sambalpur, Odisha, India-768019
spattanaik.vlsi@gmail.com

Abstract—Partitioning is a well studied research problem in the area of VLSI physical design automation. In this problem, input is an integrated circuit and output is a set of almost equal disjoint blocks. The main objective of partitioning is to assign the components of circuit to blocks in order to minimize the numbers of inter-block connections. A partitioning algorithm using hypergraph was proposed by Fiduccia and Mattheyses with linear time complexity which has been popularly known as FM algorithm. Most of the hypergraph based partitioning algorithms proposed in the literature are variants of FM algorithm. In this paper, we have proposed a novel variant of FM algorithm. We have performed a comparative experimental study of FM algorithm and our proposed algorithm using two datasets such as ISPD98 and ISPD99. Experimental results show that performance of our proposed algorithm is better than the FM algorithm using the above datasets.

Index Terms— VLSI, Physical design automation, Partitioning problem, Hypergraph, Netcut, FM algorithm.

I. INTRODUCTION

Hypergraph partitioning is a NP-hard problem[4]. Though hypergraph partitioning has extensive applications in various fields such as data-mining, job scheduling, image processing, improving page fault and VLSI design, a number of heuristic algorithms were developed with polynomial time-complexity. Fiduccia and Mattheyses (FM) algorithm [5] is a basic hypergraph partitioning algorithm with single shift in which time-complexity is linear in nature. In this paper, we studied the FM algorithm and explored its limitations. We proposed a variant of FM algorithm and conducted experimental studies of our proposed algorithm by considering two standard data sets. Through our experiments, we have done comparative performance analysis of our proposed algorithm with the FM algorithm.

Very Large Scale Integration (VLSI) is a technique of manufacturing an Integrated Circuit(IC) by integrating thousands of connected electronic components into a single chip. The components may be transistors, resistors, capacitors and inductors etc. A group of connected components can be represented as a block. In circuit layout, the length of connections between the components of two different blocks is more than that of the length of connections between the components within the same block. Therefore we have to minimize the number of connections between the components of two different blocks to reduce the cost of wire length.

A. Hypergraph Partitioning

Circuit in the form of a graph or hypergraph is provided as the input to a partitioning algorithm. A hypergraph is a generalization of graph in which an edge connects any number of vertices and this edge is called as hyperedge. Mathematically hypergraph can be represented as \(H(V, E) \), where \(V \) is the set of vertices and \(E \) is the set of hyperedges. A circuit can be converted to a hypergraph in which a vertex of hypergraph represents component of the circuit and a hyperedge represents the set of components which share the same signal known as net. A set of nets which represent a circuit is known as netlist. Two vertices of a hypergraph are said to be neighbor if both belong to at least one common net. A circuit and its netlist representation are shown in fig. 1(a) and fig. 1(b) respectively.

Fig. 1 Input representation of a partitioning algorithm

(a) Circuit (b) Netlist (c) Hypergraph

The netlist in fig. 1(b) contains three nets \(n_1, n_2 \) and \(n_3 \). \(n_1 \) contains components \(c_4, c_5 \) and output of \(c_4 \) is provided as input to \(c_5 \). Similarly \(n_2 \) contains \(c_1, c_2 \) and \(n_3 \) contains \(c_1, c_2 \) and \(c_5 \). The Netlist is represented as a hypergraph \(H(V, E) \) as shown in fig.1(c) in which \(V=\{c_1, c_2, c_3, c_4, c_5\} \) and \(E=\{n_1, n_2, n_3\} \).

Fig. 2 Input and Output of a Hypergraph partitioning

We consider a hypergraph as shown in Fig.2 as the input to a partitioning algorithm and divide it into two approximately equal blocks. Here the components \(c_4, c_5, c_3 \) are present in Block-1 and \(c_1, c_2 \) are present in Block-2. The number of netcuts of this partitioning is one because the components of net \(n_3 \) are present in both the blocks.
B. Literature Review

In order to solve the partitioning problem in VLSI context, the first graph bi-partitioning algorithm was proposed by Kernighan and Lin [1], popularly known as KL algorithm. The time-complexity of KL algorithm is $O(n^2)$ where n is the number of vertices of the input graph. A faster KL algorithm was introduced in [6]. As reported in [7], graph is not a proper representation of a circuit because it cannot correctly convert a net to an edge or a set of edges. The most correct representation of a circuit is hypergraph. A hypergraph partitioning algorithm was proposed by Fiduccia and Mattheyses [5] in the year 1982. The main advantage of this algorithm is its linear time-complexity with respect to the size of the circuit.

A number of variants of FM algorithm with improved performance were developed in [8]-[9]-[10]-[11]. Alpert and Kahng have done a comprehensive survey on netlist partitioning in [3]. A new class of partitioning algorithms known as 2-phase FM, has been mentioned in [12]-[13]-[14]-[15]. FM algorithm has been extended to various multi-level FM algorithms [16]-[17]-[18]-[19]-[20] for better result in terms of solution quality and run time.

C. Our Contribution

In this paper we have proposed a novel variant of FM algorithm by using the idea of pair wise swapping of vertices in hypergraph partitioning. Initially a hypergraph is partitioned in to two blocks of roughly equal size by randomly assigning the vertices of hypergraph to each of the blocks. Then vertices are selected in pair wise manner and swapped in order to reduce the total number of netcuts. We have developed a formula for reduction in netcuts due to pair-wise swapping of components in hypergraph partitioning. We have made a comparative performance analysis of our proposed variant of FM algorithm with FM algorithm using two data sets such as ISPD98 and ISPD99 benchmark circuits. Our experimental results show that our proposed algorithm outperforms FM algorithm.

D. Organization of Paper

FM algorithm and its pseudo-code are presented in section II. Section III contains our proposed variant of FM algorithm and its pseudo-code. Our experimental study and results are shown in section IV. Section V presents the conclusion and future work.

II. FM ALGORITHM

A. Notations and Definitions

Let N_{cut} be the total number of nets which are cut. Cutset be the set of nets which are cut and $n(c_k)$ be the set of nets connected to c_k. P be the maximum number of nets to which any component is connected.

Block Size(S(B_i)): The number of components present in a block is defined as the block size.

Complementary block: If partitioning of a netlist contains two disjoint blocks B_1, B_2 and a component c_k is present in B_1, then B_2 is called the complementary block of c_k.

Locked Component: When a component is shifted from its current block to its complementary block, it will not be considered for further movement. So it is locked.

Gain value (G(c_k)): The gain value of a component c_k is the number of reductions in nets from Cutset if it is moved from its current block to its complementary block. It is calculated as follow.

Let N_{ck}: Number of net which have only one component i.e c_k in the current block of c_k.

Let N'_{ck}: Number of nets which contain component c_k and completely present in the current block of c_k.

$$G(c_k) = N_{ck} - N'_{ck}$$

Gain bucket: Gain bucket is used to sort the gain values of the components present in a block. Its index ranges from $-P$ to $+P$. The Kth index of gain bucket contains a linked list of components having gain value K.

Update neighbour’s Gain of (c_k): This function update the gain values of all unlocked components which are neighbors of c_k [5] and this update will be reflected in the gain buckets.

Make Unlock(c_k): This function is used to unlock a component c_k.

Make Lock(c_k): This function is used to lock a component c_k and delete c_k from its gain bucket.

B. Pseudo Code of FM Algorithm

The first hypergraph bi-partitioning algorithm is the FM algorithm [5] with linear time complexity. It starts with a random initial partitioning of the hypergraph H into two almost equal size blocks B_1 and B_2 and N_{cut} is calculated. At the beginning of the process, all the components are made unlocked and the gain value of each component is calculated. Components of each block are sorted using bucket sorting according to their gain values in order avoid unnecessary search for the component having maximum gain value.

A component c_k with highest gain value is selected to move from its current block to its complementary block and remains locked throughout the process. The size of c_k’s current block should be greater than or equal to its complimentary block. After c_k is moved, the gain values of all its unlocked neighbors are updated in their respective gain bucket for next move and N_{cut} is recorded at that point. This is continued until all components are locked.

This entire process is called a pass. When a component is locked, it cannot be considered for further move within that pass. At the end of a pass, the point at which the optimal N_{cut} was achieved is selected and the moves of all components after that point are cancelled. The partitioning result of one pass is given as input to next pass. This process is continued till improvement in N_{cut}. Finally the optimal N_{cut} is achieved.
After a comprehensive study and analysis of FM algorithm the following limitations are observed.

C. Limitations of FM Algorithm

When more than one component has same gain value then FM algorithm randomly choose any one component for shifting. So it does not always provide optimal result. Component’s move operation is highly influenced by the balancing constraint of block [21]. FM algorithm uses the technique of single shifting of component instead of pair-wise swapping but pair-wise swapping provides better result than single shifting of component [6]. First limitation is addressed by many other proposed algorithms described in [8]-[10]-[11]. In our work, we have addressed the last two limitations by developing a novel variant of FM algorithm.

III. PROPOSED VARIANT OF FM ALGORITHM

An algorithm that swaps node pairs can provide a better N_{cut} improvement than one that shifts a single node at a time [6]. In this paper we have applied pair-wise swapping of components on hypergraph partitioning by proposing a novel variant of FM algorithm. In this variant of FM algorithm, two components from each block are swapped so that this pair produces the maximum reductions in nets from Cutset than any other pair as proposed in [6] for graph partitioning. Before presenting our proposed variant of FM algorithm we introduce some definitions and notations as follows.

Critical net(n_c): If any component of a net is shifted from its current block to its complementary block and as a result the net is being removed from Cutset then such a net is called critical net. In fig.4 $n_3 = \{c_1, c_2, c_5\}$ is a critical net because n_3 is being removed from Cutset due to shifting of c_5 from B_1 to B_2.

![Fig.3 Pseudo-code of FM algorithm](image)

Gain due to pair-wise swapping ($G(u_i, v_j)$):

$$G(u_i, v_j) = G(u_i) + G(v_j) - \text{correct_term}.$$
to their gain values. Each element of M corresponds to component pair (u_i, v_j). In this variant, u_i and v_j from each block are selected so that (u_i, v_j) pair provides highest gain value than any other pair. The pseudo-code of FM_Variant for best pair selection in hypergraph partitioning is described in Fig.7 as mentioned in [6] for graph. The worst case time complexity for finding the first non-neighbor component of u_1 is $O(d)$ i.e $b=d$ where d is the maximum degree of any component if the hypergraph is visualized as a clique based graph[3]. In the worst case, the gain values of all the neighbor components of u_1 will be greater than gain value of non-neighbor components of u_1. So b value will be repeated d times to reach the 1st non-neighbor component in the 1st while loop condition in the Fig.7. After this, a for loop is continued at most $(d-1)$ times and within the for loop a while loop is continued at most d times. The total time complexity is $(d+(d-1)d)$. The worst case time complexity to get best pair is $O(d^3 m)$. Hence selecting m best pairs time complexity is $O(e^d m)$, $d << m$.

IV. EXPERIMENTAL STUDY

In our experimental study, we have evaluated the performance of FM algorithm and our proposed FM_variant algorithm by computing Ncut. The above two algorithms are tested using two large datasets called as ISPD98 and ISPD99 benchmark circuits. In our experiments we randomly select a component when more than one component has the same gain value.

A. Experimental Setup

The ISPD98 circuit benchmark is the largest dataset which is maintained by the Collaborative Benchmarking Laboratory. The ISPD98 circuit benchmark contains 18 types of files. These are IBM01 to IBM18. Each file comes with three formats such as .net, .are and .netD. Another version of ISPD benchmark circuit is ISPD99. This benchmark circuit contains 9 types of file. Each file having 4 version with .netD or .are format. These dataset are freely in the website http://vlsicad.ucsd.edu/UCLAWeb.html

C. Experiments Performed

We have performed the two experiments using two different datasets ISPD98 and ISPD99. For the experiments we have defined $gain(μ)$ as follow.

$$gain(μ) = \frac{\text{optimal } N_{\text{cut}}(\text{FM}) - \text{optimal } N_{\text{cut}}(\text{FM}_\text{variant})}{\text{optimal } N_{\text{cut}}(\text{FM})} \times 100$$

The Performance of FM_variant is observed to be better if the gain is higher and positive. In the first experiment we have computed the optimal Ncut of FM and our proposed variant of FM algorithm by considering ISPD98 as input dataset and compared the optimal Ncut of both the algorithms. In the second experiment, we have computed optimal Ncut of FM and our proposed variant of FM algorithm by taking ISPD99 as input dataset and compared the optimal Ncut of both the algorithms.

EXPERIMENT-1: ISPD98 AS INPUT DATASET

In this Experiment we have considered eighteen different files of ISPD98 benchmark circuit. We have computed the optimal
N_{cut} of FM and our proposed variant of FM algorithm as shown in Table I.

EXPERIMENT-2: ISPD99 AS INPUT DATASET

In this experiment we have taken nine different files of ISPD99 benchmark circuit and each file having 4 different versions. We have computed the optimal N_{cut} of FM and our proposed variant of FM algorithm as shown in Table II.

For experiment-1 and experiment-2 we plot the graph by considering file’s name of dataset in the X-axis and gain(μ) in Y-axis as shown in fig.8 and fig.9 for ISPD98, ISPD99 respectively.

TABLE I. FM VS FM VARIANT OF ISPD98

File name	Initial N_{cut}	optimal N_{cut}(FM)	optimal N_{cut}(FM_variant)	Gain (μ)
IBM01	9151	1534	858	44.06
IBM02	13443	1595	529	66.8
IBM03	17422	4013	2885	28.1
IBM04	20643	4327	1016	76.5
IBM05	18895	6881	3402	50.5
IBM06	22798	5721	1475	74.2
IBM07	32044	7028	2516	64.2
IBM08	33499	9242	3321	64.06
IBM09	40173	10438	2809	73.08
IBM10	50647	10413	2454	76.43
IBM11	54221	12893	4086	68.3
IBM12	52102	14508	4312	70.27
IBM13	23076	5275	1159	78
IBM14	101990	22990	11257	51.04
IBM15	125878	29037	15149	47.82
IBM16	129985	37057	7268	80.4
IBM17	131364	42226	10062	76.2
IBM18	139169	36949	3055	91.7

TABLE II. FM VS FM VARIANT OF ISPD99

File’s Name	Initial N_{cut}	optimal N_{cut}(FM)	optimal N_{cut}(FM_variant)	Gain (μ)
IBM01A	9213	2148	364	83.1
IBM01B	4958	685	124	82
IBM01C	4878	800	495	38.13
IBM01D	1268	4985	295	76.74
IBM06A	5147	22889	1328	74.2
IBM06B	2565	9962	948	63.41
IBM06C	3044	14558	963	68.4
IBM06D	2360	8693	829	65
IBM09A	9966	40187	3026	69.63
IBM09B	8064	33104	3830	52.51
IBM09C	8022	36086	4706	41.34
IBM09D	8343	33809	2674	67.95
IBM10A	11989	50751	2865	76.1
IBM10B	4259	20021	2551	40.1
IBM10C	7819	32876	2322	70.3
IBM10D	4938	21601	1394	71.77
IBM11A	12833	54079	4408	65.65
IBM11B	5701	27379	3006	47.27
IBM11C	7613	29364	2744	63.95
IBM11D	5471	24600	3219	41.16
IBM12A	13339	51921	3671	72.48
IBM12B	6981	29498	2755	60.53
IBM12C	5533	25109	2018	63.53
IBM12D	6805	22915	1841	72.94
IBM13A	15645	66251	3197	79.56
IBM13B	6813	32990	499	92.67
IBM13C	4461	35728	1427	68
IBM13D	6766	31019	2019	70.16
IBM16A	36869	129950	6844	81.44
IBM16B	19083	72220	2653	86.1
IBM16C	18269	61793	3047	83.32
IBM16D	14341	48717	3084	78.5
IBM17A	43544	131753	9609	77.93
IBM17B	24782	74174	2186	91.17
IBM17C	18965	62567	4157	78.1
IBM17D	11707	41472	3802	67.52

Fig.8 FM VS FM VARIANT OF ISPD98

Fig.9 FM VS FM VARIANT OF ISPD99
V. CONCLUSION AND FUTURE WORK

In this work we have proposed the variant of FM algorithm using a Pair-wise Swapping technique. We have conducted an experimental study to evaluate the performance of our proposed algorithm and FM algorithm by considering two input datasets such as ISPD98 and ISPD99 benchmark circuits. From experimental result, we observed that our proposed algorithm outperforms FM algorithm.

In future work, we can consider and apply FILO technique for selections of components from gain bucket in our proposed algorithm and compare its performance with FM-LIFO [13]. As reported in [13], FILO technique provides better result than random and FIFO technique. Our proposed variant of FM algorithm can also be enhanced by using multi-level technique.

REFERENCES

[1] B.W Kernighan and S. Lin, “An Efficient Heuristic procedure for partitioning Graphs”, The Bell system technical journal, Vol.49, Feb. 1970, pp. 291-307.
[2] N. A. Sherwani, “Algorithms for VLSI Physical Design Automation”, Springer, 3rd Ed., 1999.
[3] C.J. Alpert, A. B. Kahng, “Recent directions in netlist partitioning: a survey”, Elsevier the VLSI Integration Journal, Vol.19, 1995, pp. 1-81.
[4] M. R. Garey and D. S. Johnson, “Computers and Intractability: A Guide to the Theory of NPCompleteness,”San Francisco, CA: Freeman, 1979.
[5] C.M. Fiduccia and R.M. Mattheyses, “A Linear Time Heuristic for improving Network Partition” 19th Design Automation Conference, 1982, pp. 175-181.
[6] S. Dutt, “A New Faster Kernighan-Lin Type Graph Partitioning Algorithm”, In proc. IEEE Intel Conf. computer Aided Design, 1993, pp. 370-377.
[7] B.W Kernighan and D.G schweikert, “A proper Model for Partitioning the electrical circuit” proc. 9th Design Automation workshop, Dallas, TX, June 1979, pp. 57-62.
[8] B. Krishnamurthy, “An Improved Min-cut Algorithm For Partitioning VLSI Network”, IEEE Transactions on computers, Vol. C-33, May 1984, pp. 438-446.
[9] L. A. Sanchis, “Multi-way Network Partitioning”, IEEE Transaction on Computers, Vol. 38, No. 1, January 1989, pp. 62-81.
[10] A. G. Hoffmann, “The Dynamic Locking Heuristic-A new Graph Partitioning algorithm”, In Proc. IEEE Intel Symp. Circuit and Systems, 1994, pp. 173-176.
[11] L.W. Hagen , D.J. Haung, A.B Kahng, “On Implementation choices for iterative improvement partitioning algorithms”, European Design Automation Conference, 1995, pp. 144-149.
[12] T. Bui’, C. Heigham, C. Jones and T. Leighton, “Improving the performance of the Kernighan-Lin and Simulated Annealing Graph Bisection Algorithm”, 26th ACM/IEEE Design Automation Conference, 1989 pp. 775-778.
[13] L. Hagen and A.B. Kahng, “A new approach to effective circuit clustering”, Proc. of IEEE International Conference on Computer Aided Design, 1992, pp. 422-427.
[14] H. Shin, and C. Kim, “A Simple Yet effective technique for partitioning”, IEEE Transactions On Very Large Scale Integration (VLSI) SYSTEMS, Vol. 1, No. 3, September 1993, pp. 380-386.
[15] Cong and smith, “A parallel bottom-up clustering algorithm with application to VLSI partitioning”, In Proc. ACM/IEEE Design Automation Conference, 1993, pp. 755-760.
[16] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, “Multi-level hyper graph partitioning algorithm : Application in VLSI domain“, 34th Design Automation Conference, Vol. 7, No.1, 1997.
[17] C.J. Alpert, J.H. Huang, and A.B. Kahng, “Multi-level circuit partitioning” IEEE Transaction on Computer-Aided Design of Integrated Circuit and Systems, Vol. 17, No. 8, 1998.
[18] Y. Saab, “A new 2-way multi-level partitioning algorithm”, VLSI Design Overseas Publishers Association, Vol. 2, No. 3, 2000, pp. 301-310.
[19] G. Karypis, V. Kumar, “Multi-level K-way hyper graph partitioning”, VLSI Design Overseas Publishers Association, 2000, pp. 1–16.
[20] J. Cong and S.K. Lim, “Edge separability based circuit clustering with application to multi-level circuit partitioning”, IEEE Transactions On Computer-Aided Design Of Integrated Circuits and Systems, Vol. 23, No. 3, 2004.
[21] Chan-Ik-Park and Yun-Bo Park, “An Efficient Algorithm for VLSI Network Partitioning Problem using a cost function with balancing factor”, Computer Aided Design of Integrated Circuits and Systems, IEEE Transactions, Vol. 12, No. 11, August 2002, pp 1686-1694.