On the critical line zeros of \(L \) — functions attached to automorphic cusp forms.

I.S. Rezvyakova

§1. Introduction. Statement of the main result

One of the most interesting questions in the theory of the Riemann zeta-function is the Riemann hypothesis which asserts that all non-trivial zeros of the Riemann zeta-function lie on the critical line. The Riemann hypothesis is not yet proved nor disproved. In 1942, Atle Selberg \[1\] showed that a positive proportion of non-trivial zeros of the Riemann zeta-function lie on the critical line (for the numerical estimates see works \[2\]–\[7\]). The same type result holds also for Dirichlet \(L \) - functions (\[8\]). In 1989, A. Selberg in his report at the conference in Amalfi conjectured that all functions from Selberg class \(S \) (which have decomposition in the Euler product and functional equation of the Riemann type as the necessary conditions) satisfy an analogue of the Riemann hypothesis (see \[9\]).

The Riemann zeta-function and Dirichlet \(L \) - functions are functions of degree one (for the definition of the degree, which is a characteristic of a functional equation, see \[9\]). In 1983, J.L. Hafner proved an analogue of Selberg’s theorem for a function of degree two. In his papers \[10\], \[11\] for \(L \) - series, whose coefficients are attached to those of holomorphic cusp forms (modular forms) or non-holomorphic cusp forms (Maass wave forms) for the full modular group with trivial character, the result on positivity of proportion of non-trivial zeros lying on the critical line is established (see the necessary definitions further in the text and in \[12\]). This work is a continuation of \[10\], \[11\]. Here we obtain an analogue of Selberg’s theorem for \(L \) - functions attached to automorphic cusp forms with respect to the Hecke congruence subgroup \(\Gamma_0(D) \) with arbitrary integral weight \(k \geq 1 \) (theorem \[1\]).

First, we recall some definitions and notation.

Suppose that \(f(z) \) is an automorphic cusp form of integral weight \(k \geq 1 \) for the group \(\Gamma_0(D) \) with a character \(\chi \) modulo \(D \) (briefly we write this as \(f \in S_k(\Gamma_0(D), \chi) \)), where \(\Gamma_0(D) \) is a subgroup of \(SL_2(\mathbb{Z}) \) that consists of all the matrices \(\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) satisfying the condition \(c \equiv 0 \pmod{D} \). In other words, let \(f \) be a holomorphic function on the upper half-plane, such that for every element \(\gamma \in \Gamma_0(D) \) the following relation is fulfilled:

\[
f(\gamma z) = \chi(\gamma)(cz + d)^k f(z), \quad \text{where} \quad \chi(\gamma) = \chi(d), \quad c \gamma z = \begin{pmatrix} az + b \\ cz + d \end{pmatrix}, \quad (1)
\]

\[\text{This work was supported by grant RFBR 11-01-00759a and 12-01-31165a.}\]
and also that \(f \) vanishes at every cusp of the group \(\Gamma_0(D) \). This entails that \(f(z) \) has an expansion

\[
f(z) = \sum_{n=1}^{+\infty} a(n)e^{2\pi inz} \quad \text{for} \quad \Re z > 0.
\]

Next, assume that \(f \) is not identically zero and is an eigenfunction of all the Hecke operators \(T_n \) for \(n = 1, 2, \ldots \), where

\[
T_n f(z) = \frac{1}{n} \sum_{a \equiv 1 \pmod{n}} \chi(a) a^k \sum_{0 \leq b < d} f\left(\frac{az + b}{d}\right).
\]

Without loss of generality we may assume that \(a(1) = 1 \). From the properties of the Hecke operators, the equality \(T_n f = a(n)f \) follows for every positive integer \(n \), and also if \(\Re s > 1 \), then for Dirichlet series

\[
L(s) = L_f(s) = \sum_{n=1}^{+\infty} \frac{r(n)}{n^s}
\]

with

\[
r(n) = a(n)n^{\frac{1-k}{2}},
\]

the identity

\[
L(s) = \prod_p \left(1 - \frac{r(p)}{p^s} + \frac{\chi(p)}{p^{2s}} \right)^{-1}
\]

holds (here the product is carried over all consecutive prime numbers). For the normalized coefficients \(r(n) \) of the automorphic (for a congruence subgroup) cusp form of an integral weight, which is also an eigenfunction of all the Hecke operators, the estimate

\[
|r(n)| \leq \tau(n)
\]

is valid, where \(\tau(n) \) is the number of divisors of \(n \). This inequality was previously known as the Ramanujan - Petersson conjecture until its truth was proved in [13], [14]. The function \(L(s) \) satisfies the following functional equation (see [12], \$6.7, \$7.2):

\[
\Lambda(s) = \theta \cdot \overline{\Lambda(1 - \overline{s})},
\]

where \(\Lambda(s) \) is an entire function,

\[
\Lambda(s) = \left(\frac{2\pi}{\sqrt{D}} \right)^{s-k} \Gamma \left(s + \frac{k-1}{2} \right) L(s),
\]

and \(|\theta| = 1\), or, more precisely, \(\theta = i^{k/2} \eta \), where \(\eta \) is the eigenvalue of the operator \(\overline{W} \),

\[
\overline{W} f = (-1)^k D^{-k/2} z^{-k} f(1/Dz), \quad \overline{W} f = \eta f.
\]
The function $L(s)$ has zeros at $s = -\frac{k-1}{2}, -\frac{k-1}{2}-1, -\frac{k-1}{2}-2, \ldots$, which correspond to the poles of $\Gamma(s + \frac{k-1}{2})$ and are called “trivial zeros”. The remaining zeros lie in the strip $0 \leq \Re s \leq 1$ and are called “non-trivial”. $L(s)$ is a function of degree two and belongs to Selberg class. Therefore, an analogue of the Riemann hypothesis exists for this function which claims that all its non-trivial zeros lie on the critical line $\Re s = \frac{1}{2}$. In this work we prove the following theorem.

Theorem 1. Suppose that $f(z) = \sum_{n=1}^{+\infty} a(n) e^{2\pi inz}$ is an automorphic cusp form of integral weight $k \geq 1$ for the group $\Gamma_0(D)$ with character χ modulo D, which is also an eigenfunction of all the Hecke operators T_n for $n = 1, 2, \ldots$. Define $L(s) = L_f(s)$ by the equalities (3) and (4), and set $N_0(T)$ to be the number of odd order zeros of $L(s)$ on the interval $\{s = \frac{1}{2} + it, 0 < t \leq T\}$. Then $N_0(T) \geq cT \ln T$ with some constant $c > 0$.

Notice that if $N(T)$ is the number of zeros of $L(s)$ in the rectangle $\{s \mid 0 \leq \Re s \leq 1, 0 < \Im s \leq T\}$, then the asymptotic formula holds

$$N(T) = \frac{T}{\pi} \ln \frac{T}{\pi c_1} + O(\ln T) \quad \text{when} \quad T \to +\infty;$$

thus we have

Corollary 1. A positive proportion of non-trivial zeros of $L_f(s)$ lie on the critical line.

An example of $L(s)$ considered in this work is a Hecke L-function with complex class group character on ideals of imaginary quadratic field $\mathbb{Q}(\sqrt{-D})$ (since there is a corresponding form f from $S_1(\Gamma_0(D), \chi_D)$).

§2. Main and auxiliary statements

Hereafter we suppose that k (the weight of the form f) and D (the level of the form f) are fixed numbers.

The main idea of the proof belongs to A. Selberg which is served by introducing a “mollifier”. Define numbers $\alpha(\nu)$ by the equality

$$\sum_{\nu=1}^{+\infty} \alpha(\nu) \nu^{-s} = \prod_{p>256} \left(1 - \frac{r(p)}{2p^s}\right). \quad (5)$$

Suppose that $X \geq 3$ and set

$$\beta(\nu) = \alpha(\nu) \left(1 - \frac{\ln \nu}{\ln X}\right)^+, \quad \text{where} \quad x^+ = \max(0, x). \quad (6)$$
Let us define a mollifier $\varphi(s)$ by the formula

$$\varphi(s) = \sum_{\nu=1}^{+\infty} \beta(\nu) \nu^{-s}. $$

Suppose $\delta > 0$,

$$\mathfrak{F}(t) = \frac{1}{\sqrt{2\pi}} \Lambda \left(\frac{1}{2} + it \right) \left| \varphi \left(\frac{1}{2} + it \right) \right|^2 \exp \left(\left(\frac{\pi}{2} - \delta \right) t \right). \quad (7)$$

The functional equation for $L(s)$ yields that $\theta^{-1/2} \mathfrak{F}(t)$ is real-valued for real t. Observe also, that odd order zeros of $\theta^{-1/2} \mathfrak{F}(t)$ are those of $L(1/2 + it)$.

For $0 < h_1 < 1$, put

$$I_1(t) = \int_{-h_1}^{h_1} |\theta^{-1/2} \mathfrak{F}(t + u)| du = \int_{-h_1}^{h_1} |\mathfrak{F}(t + u)| du,$$

$$I_2(t) = \left| \int_{-h_1}^{h_1} \theta^{-1/2} \mathfrak{F}(t + u) du \right| = \left| \int_{-h_1}^{h_1} \mathfrak{F}(t + u) du \right|.$$

Let $T > 1$ be a sufficiently large number. Define E_1 as a set of points $t \in (1, T)$, such that for $t \in E_1$ the inequality

$$I_1(t) > I_2(t)$$

holds. By E_2 denote the complementary set to E_1, i.e., the set of all points $t \in (1, T)$ with

$$I_1(t) = I_2(t).$$

If $\mu(E_1)$ denotes the measure of the set E_1, then the number of odd order zeros of the function $\theta^{-1/2} \mathfrak{F}(t)$ on the interval $(0, T)$ is not less than $\frac{\mu(E_1)}{2h_1} - 1$ (see [1] or [15]).

Now the main statement of this work is a consequence of the following theorem.

Theorem 2. Suppose that $0 < \delta < \delta_0$, where $\delta_0 < 1/10$ is some small positive number, $0 < h_1 < 1$, $X \geq 3$ and $\delta X^{86} e^{1/4} \leq 1$. Then the following estimates are valid:

a) $\int_{1}^{+\infty} I_1(t) dt \gg \delta^{-1} h_1$,

b) $\int_{-\infty}^{+\infty} I_2^2(t) dt \ll \delta^{-1} h_1^2 \ln \frac{\delta^{-1}}{\ln X}$,

c) $\int_{-\infty}^{+\infty} I_2^2(t) dt \ll \delta^{-1} \frac{h_1}{\ln X}$, where the constants implied in Vinogradov’s signs \ll, \gg are absolute.
To derive the main result, set in theorem \[2\]
\[
\delta = T^{-1}, \quad X = T^{1/100}, \quad h_1 = \frac{A}{\ln X},
\]
where \(A\) is a sufficiently large positive constant, and write the following chain of relations
\[
I_3 = \int_1^T I_1(t)dt = \int_{E_1} I_1(t)dt + \int_{E_2} I_1(t)dt = \int_{E_1} I_1(t)dt + \int_{E_2} I_2(t)dt \leq I_1 + I_2,
\]
where
\[
I_1 = \int_{E_1} I_1(t)dt \leq (\mu(E_1))^{1/2} \left(\int_{-\infty}^{+\infty} I_1^2(t)dt\right)^{1/2},
\]
\[
I_2 = \int_1^T I_2(t)dt \leq T^{1/2} \left(\int_{-\infty}^{+\infty} I_2^2(t)dt\right)^{1/2}.
\]
The result c) of theorem \[2\] entails
\[
I_2 \ll T \left(\frac{h_1}{\ln X}\right)^{1/2}.
\]
Hence, by virtue of the estimate a), for sufficiently large \(A\) we have
\[
I_3 \geq 2I_2.
\]
Therefore, \(I_1 \geq I_3/2\), and thus the relations a) and b) of theorem \[2\] imply the estimates
\[
Th_1 \ll I_3 \ll (\mu E_1)^{1/2} \left(Th_1^2 \frac{\ln T}{\ln X}\right)^{1/2},
\]
or
\[
\mu(E_1) \gg T.
\]
Thereby, the number of odd order zeros of \(\theta^{-1/2} \zeta(t)\) (that is of \(L(1/2 + it)\)) on the interval \(0 < t \leq T\) is estimated from below by the quantity of order
\[
\mu(E_1)h_1^{-1} \gg T \ln X \gg T \ln T.
\]
Now it only remains to establish the statement of theorem \[2\]

Proof of the assertion a) of theorem \[2\] repeats the proof of a similar relation while considering the Riemann zeta-function instead of \(L(s)\) (see \[15\], §6.3).

To derive the assertions b) and c) of theorem \[2\] we employ the following auxiliary lemma.
Lemma 1. Suppose that $\mathcal{F}(y)$ is given by the formula (7), and

$$G(y) = \left| \sum_{n, \nu_1, \nu_2 \in \mathbb{N}} r(n)\beta(\nu_1)\beta(\nu_2) \frac{y}{\nu_2} \exp \left(-\frac{2\pi n\nu_1}{\sqrt{D}\nu_2} y \left(\sin \delta + i \cos \delta \right) \right) \right|^2. \quad (8)$$

Then

$$\int_{-\infty}^{+\infty} \left(\int_{-h_1}^{h_1} |\mathcal{F}(t+u)| du \right)^2 dt \leq 8h_1^2 \int_1^{+\infty} G(y) dy,$$

and

$$\int_{-\infty}^{+\infty} \left(\int_{-h_1}^{h_1} |\mathcal{F}(t+u)| du \right)^2 dt \leq 8h_1^2 \int_1^{+\infty} G(y) dy + 8 \int_{1}^{H} \frac{G(y)}{\ln^2 y} dy,$$

where $H = e^{1/h_1}$.

The proof of this result is contained in [16] (lemma 3 and 4).

Let us formulate now the main lemmas, from which the statement of theorem 2 will follow easily.

Lemma 2. Assume that $G(y)$ is defined by the formula (8). Then under the conditions of theorem 2, for $1 \leq x \leq e^{1/h_1}$ the estimate

$$J(x, \theta) = \int_{x}^{+\infty} G(u) u^{-\theta} du \ll \frac{\delta^{-1}}{\theta x^\theta \ln X}$$

is valid uniform in θ from the interval $0 < \theta \leq 1/4$.

The core of the proof of lemma 2 relies on the following two lemmas. Lemma 3 is related to an estimation of a “diagonal” term (estimation of Selberg sums), and lemma 4 accordingly to a “non-diagonal” term. Let us adopt further the following notation:

- $\overline{K}(s) = \overline{K(\overline{s})}$,

- $p^\alpha | m$ means that p^α divides m, but $p^{\alpha+1} \nmid m$.

Lemma 3. Let $0 \leq \theta \leq 1/4$, and define the sum $S(\theta)$ by the equality

$$S(\theta) = \sum_{\nu_1, \ldots, \nu_4 \leq X} \frac{\beta(\nu_1)\beta(\nu_2)\beta(\nu_3)\beta(\nu_4)}{\nu_2 \nu_4} \left(\frac{q}{\nu_1 \nu_3} \right)^{1-\theta} K \left(\frac{\nu_1 \nu_4}{q}, 1 - \theta \right) K \left(\frac{\nu_2 \nu_3}{q}, 1 - \theta \right),$$

where

$$q = (\nu_1 \nu_4, \nu_2 \nu_3).$$
\[K(m, s) = \prod_{p|m} \left(1 + \frac{|r^2(p)|}{p^s} + \frac{|r^2(p^2)|}{p^{2s}} + \ldots \right)^{-1} \times \prod_{p^\alpha|\nu} \left(\frac{r(p^{\alpha}) + \frac{r(p^{\alpha+1})}{p^s} + \frac{r(p^{\alpha+2})}{p^{2s}} + \ldots}{p^s} \right). \]

Then the estimate
\[S(\theta) \ll \frac{X^{2\theta}}{\ln X} \]
holds uniformly in \(\theta \).

Lemma 4. Let \(N \gg 1, (m_1, m_2) = 1, m_1^8 m_2^9 \leq N, \ l \leq N^{10/11}, \)
\[S = \sum_{n=1}^{N-1} r(n) \left(\frac{m_1 n + l}{m_2} \right) \]
(assuming that the function \(r(\cdot) \) vanishes for non-integral argument). Then for arbitrary \(\varepsilon > 0 \) the following estimate is valid:
\[S \ll \varepsilon N^{10/11 + \varepsilon} m_1^{8/11} m_2^{-2/11}. \]

Lemma 4 implies the following

Corollary 2. The function
\[D_{m_1, m_2}(s, l) = \sum_{n=1}^{+\infty} \frac{r(n) r\left(\frac{m_1 n + l}{m_2} \right)}{(m_1 n + l/2)^s} \]
has an analytic continuation in the half-plane \(\text{Re } s > 10/11, \) and, moreover, for \(0 < \varepsilon_0 \leq 1/11, \) in the region \(\text{Re } s \geq 10/11 + \varepsilon_0 \) the estimate
\[D_{m_1, m_2}(s, l) \ll \varepsilon_0 \frac{|s|}{m_1^{4/11} + \varepsilon_0} \left((m_1^8 m_2^9)^{1/11 - 4/9} + l^{1/11 - 14/9} \right) \]
holds true.

The deduction of corollary 2 from lemma 4 is contained in [16]. The main tool for obtaining the statement of lemma 4 is Jutila’s variant of circle method ([17], [18]), which we also used to prove similar result [16] (lemma 7) for coefficients \(r(n) \) of automorphic cusp forms of weight \(k = 1. \) A modification in the proof of the statement for an arbitrary weight \(k \) is that one has to use the following analogue of lemma 10 in [16]: let \(q \equiv 0(\mod D), \ (a, q) = 1, aa^* \equiv 1(\mod q), \) and let \(k(t) \) be a smooth (for example, twice continuously differentiable) function with compact support on \((0, +\infty)\). Then
\[\sum_{n=1}^{+\infty} r(n) k(n) e^{2\pi i \frac{s}{q} n} = \chi(a) \sum_{n=1}^{+\infty} r(n) e^{-2\pi i \frac{s}{q} n} k(n), \]
where \(\tilde{k}(n) = \frac{2\pi i}{q} \int_0^{+\infty} k(t) J_{k-1} \left(\frac{4\pi \sqrt{nt}}{q} \right) dt \), and \(J_{k-1}(t) \) is Bessel function.

To establish the above relation one has to notice for an automorphic cusp form \(f \in S_k(\Gamma_0(D), \chi) \),
\[
f(z) = \sum_{n=1}^{+\infty} a(n) e^{2\pi i n z},
\]
that the equality
\[
f \left(\frac{a}{q} + i w \right) = \frac{\chi(a)}{(-iqw)^k} f \left(-\frac{a}{q} - \frac{1}{iq^2 w} \right), \quad \text{Re} \ w > 0,
\]
holds, which implies the relation
\[
\sum_{n=1}^{+\infty} a(n) k(n) e^{2\pi i \frac{a}{q} n} = i^{k-1} \frac{\chi(a)}{q^k} \sum_{n=1}^{+\infty} a(n) e^{-2\pi i \frac{a}{q} n} \int k(t) \left(\int_{c-i\infty}^{c+i\infty} \frac{1}{w^{k-1}} e^{-\frac{2\pi}{q} \sqrt{nt}} e^{2\pi tw} dw \right) dt.
\]

Thus, by virtue of the identity
\[
\frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} e^{as-bs^{-1}} \frac{ds}{s^k} = \left(\frac{a}{b} \right)^{\frac{k-1}{2}} J_{k-1}(2\sqrt{ab}),
\]
which is valid for \(a, b, c > 0, \ k \geq 1 \) (see [19], §7.3.3), we have that the integral enclosed in parenthesis in the previous relation is equal to
\[
2\pi i q^{k-1} \left(\frac{t}{n} \right)^{\frac{k-1}{2}} J_{k-1} \left(\frac{4\pi \sqrt{nt}}{q} \right).
\]

To complete the proof of that auxiliary statement one has to set \(k(t) = k_1(t) t^{\frac{1-k}{2}} \) in the formula (10) and recall that \(r(n) = a(n) n^{\frac{1-k}{2}} \).

§3. Proof of statements b) and c) of theorem 2

Let us prove assertions b) and c) of theorem 2 using the lemmas formulated above.

Proof of the statement c). For \(H = e^{1/h_1} \), applying lemma 2 with \(\theta = 1/4 \), we get the estimate
\[
\int_1^H G(x) dx = - \int_1^H x^\theta \frac{d}{dx} J(x, \theta) dx = - x^\theta J(x, \theta) \bigg|_{x=1}^{x=H} + \theta \int_1^H x^{\theta-1} J(x, \theta) dx \leq \frac{\delta^{-1}}{\theta \ln X} + \frac{\delta^{-1} \ln H}{\ln X} \leq \frac{\delta^{-1}}{h_1 \ln X}.
\]
Similarly, with $\theta = 1/4$ we have

$$\int_{\ln^2 x}^{+\infty} G(x) dx = -\int_{\ln^2 x}^{+\infty} x^\theta d\frac{d}{dx} J(x, \theta) dx$$

$$= -\frac{x^\theta}{\ln^2 x} J(x, \theta) \bigg|_{x=H}^{x=+\infty} + \int_{H}^{+\infty} J(x, \theta) x^\theta \left(\frac{\theta}{x \ln^2 x} - \frac{2}{x \ln^3 x} \right) dx$$

$$\ll \frac{\delta^{-1}}{\theta \ln X \ln^2 H} + \frac{\delta^{-1}}{\ln X \ln H} + \frac{\delta^{-1}}{\theta \ln X \ln^2 H} \ll \frac{\delta^{-1}h_1}{\ln X}.$$

Now the statement $)$ follows from lemma \blacksquare

Proof of the statement b). Application of lemma 2 with $x = 1$, $\theta = \frac{1}{\ln \delta^{-1}}$ gives

$$\int_{1}^{\delta^{-2}} G(u) du \ll \int_{1}^{+\infty} G(u) u^{-1/\ln \delta^{-1}} du \ll \frac{\delta^{-1} \ln \delta^{-1}}{\ln X}.$$

Using formula (8), we estimate the integral on the interval $(\delta^{-2}, +\infty)$ of $G(u)$ by the following expression

$$\int_{\delta^{-2}}^{+\infty} G(u) du \ll \sum_{n_1, n_2, \nu_1, \nu_2, \nu_3, \nu_4} \frac{|r(n_1) r(n_2) \beta(\nu_1) \beta(\nu_2) \beta(\nu_3) \beta(\nu_4)|}{\nu_2 \nu_4} \times$$

$$\times \int_{\delta^{-2}}^{+\infty} \text{exp} \left(-\frac{2\pi}{\sqrt{D}} \left(\frac{n_1 \nu_1}{\nu_2} + \frac{n_2 \nu_3}{\nu_4} \right) \delta x \right) dx.$$

Let $A = \frac{2\pi}{\sqrt{D}} \left(\frac{n_1 \nu_1}{\nu_2} + \frac{n_2 \nu_3}{\nu_4} \right)$. From the equality

$$\int_{\delta^{-2}}^{+\infty} \text{exp}(-Ax) dx = \frac{e^{-A\delta^{-2}}}{A}$$

we obtain the following estimate:

$$\int_{\delta^{-2}}^{+\infty} G(u) du \ll \delta^{-1} \sum_{n_1, n_2, \nu_1, \nu_2, \nu_3, \nu_4} \frac{|r(n_1) r(n_2) \beta(\nu_1) \beta(\nu_2) \beta(\nu_3) \beta(\nu_4)|}{(n_1 \nu_1 \nu_4 + n_2 \nu_2 \nu_3)} \text{exp} \left(-\frac{2\pi}{\sqrt{D}} \delta^{-1} \left(\frac{n_1 \nu_1}{\nu_2} + \frac{n_2 \nu_3}{\nu_4} \right) \right)$$

$$\ll \delta^{-1} \sum_{n_1, n_2, \nu_1, \nu_2, \nu_3, \nu_4} \frac{|r(n_1) r(n_2) \beta(\nu_1) \beta(\nu_2) \beta(\nu_3) \beta(\nu_4)|}{\sqrt{n_1 n_2 \nu_1 \nu_2 \nu_3 \nu_4}} \text{exp} \left(-\frac{2\pi}{\sqrt{D}} \delta^{-1} \left(\frac{n_1 \nu_1}{\nu_2} + \frac{n_2 \nu_3}{\nu_4} \right) \right)$$

$$\leq \delta^{-1} \left(\sum_{n_1 \nu_2 \leq \nu_1} \frac{1}{\nu_1 \nu_2} \sum_{n} |r(n)| \sqrt{n} \text{exp} \left(-\frac{2\pi}{\sqrt{D}} n \delta^{-1} \nu_1 \nu_2 \nu_3 \nu_4 \right) \right)^2.$$
Since $|r(n)| \leq \tau(n)$, and $\nu_2 \leq X \leq \delta^{-1/3}$, then

$$\sum_{n=1}^{+\infty} \frac{|r(n)|}{\sqrt{n}} \exp\left(-\frac{2\pi \sqrt{D}}{\sqrt{\nu_2}} \delta^{-1}\right) \ll \exp\left(-\sqrt{\delta^{-1}}\right).$$

Hence,

$$\int_{\delta^{-2}}^{+\infty} G(u) du \ll \delta^{-1} X \exp\left(-\sqrt{\delta^{-1}}\right) \ll 1.$$

Now the statement b) of theorem 2 follows from lemma 1. □

§4. Proof of main lemma 2

Similarly to the proof in [10], we introduce a non-negative smooth factor $\phi(u) \in C^2(0, +\infty)$, having the property

$$\phi(u) = \begin{cases} 0, & u \leq 1/2 \\ 1, & u \geq 1. \end{cases}$$

Then

$$J(x, \theta) \leq \int_{0}^{+\infty} \phi\left(\frac{u}{x}\right) G(u) u^{-\theta} du = x^{1-\theta} \int_{0}^{+\infty} \phi(u) G(u x) u^{-\theta} du. \quad (11)$$

We need several auxiliary relations for estimation of the last integral. For $\text{Re } s > 1$, define

$$\Phi(s, y) = \int_{0}^{+\infty} \phi(u) u^{-s} \exp(-2\pi i y u) du.$$

We then have

$$\Phi^*(s) := \int_{0}^{+\infty} \phi'(u) u^{-s+1} du = (s - 1) \Phi(s, 0).$$

Since ϕ' is a function with compacts support, then $\Phi^*(s)$ is an entire function. Therefore, $\Phi^*(s)$ is the analytical continuation of $(s - 1) \Phi(s, 0)$ to the whole complex plane. Moreover, for $\text{Re } s$ from any bounded interval, the estimate

$$\Phi^*(s) = O(1)$$

holds, where constant in O - symbol is absolute. For $y > 0$, integration by parts twice gives

$$\Phi(s, y) = O(|s|^2 y^{-2}).$$
Square out the modulus of the sum in the expression (8) for $G(x)$, we get

$$G(x) = \sum_{\nu_1, \nu_2, \nu_3, \nu_4} \frac{\beta(\nu_1)\beta(\nu_2)\beta(\nu_3)\beta(\nu_4)}{\nu_2\nu_4} \left(\sum_{n=1}^{+\infty} r(n)r \left(\frac{nm_1}{m_2} \right) \exp \left(-\frac{4\pi}{\sqrt{D}} \frac{nm_1}{Q} x \sin \delta \right) \right) + 2 \text{Re} \sum_{l \geq 1} \exp \left(-\frac{2\pi i}{\sqrt{D}} x \cos \delta \right) \sum_{n=1}^{+\infty} r(n)r \left(\frac{nm_1 + l}{m_2} \right) \exp \left(-\frac{4\pi}{\sqrt{D}} \frac{(nm_1 + l/2)}{Q} x \sin \delta \right),$$

where the following notion were used

$$q = (\nu_1\nu_4, \nu_2\nu_3), \quad Q = \frac{\nu_2\nu_4}{q}, \quad m_1 = \frac{\nu_1\nu_4}{q}, \quad m_2 = \frac{\nu_2\nu_3}{q}.$$

By Mellin’s transform formula for Euler Gamma-function, $e^{-x} = \frac{1}{2\pi i} \int_{2-i\infty}^{2+i\infty} \Gamma(s)x^{-s}ds$, we find

$$J(x, \theta) \leq J_1(x, \theta) + J_2(x, \theta),$$

where

$$J_1(x, \theta) = x^{1-\theta} \sum_{\nu_1, \nu_2, \nu_3, \nu_4} \frac{\beta(\nu_1)\beta(\nu_2)\beta(\nu_3)\beta(\nu_4)}{\nu_2\nu_4} \times \left(\frac{1}{2\pi i} \int_{2-i\infty}^{2+i\infty} D_{m_1, m_2}(s, 0) \Gamma(s) B^{-s}\Phi(s + \theta, 0) ds \right),$$

$$J_2(x, \theta) = 2x^{1-\theta} \sum_{\nu_1, \nu_2, \nu_3, \nu_4} \frac{\beta(\nu_1)\beta(\nu_2)\beta(\nu_3)\beta(\nu_4)}{\nu_2\nu_4} \times \left(\text{Re} \sum_{l \geq 1} \frac{1}{2\pi i} \int_{2-i\infty}^{2+i\infty} D_{m_1, m_2}(s, l) \Gamma(s) B^{-s}\Phi(s + \theta, B_1l) ds \right),$$

$$D_{m_1, m_2}(s, l) = \sum_{n=1}^{+\infty} r(n)r \left(\frac{m_1n+l}{m_2} \right) \left(\frac{m_1n+l}{m_2} \right)^s,$$

$$B = \frac{4\pi x \sin \delta}{\sqrt{DQ}}, \quad B_1 = \frac{x \cos \delta}{\sqrt{DQ}}.$$

For a given positive integer m, denote by $M_1(m)$ the subset of positive integers constituted by 1 and by all numbers with the same set of prime divisors as m has. Since $(m_1, m_2) = 1$, we have

$$D_{m_1, m_2}(s) = D_{m_1, m_2}(s, 0) = \frac{1}{(m_1 m_2)^s} \sum_{n=1}^{+\infty} \frac{r(nm_2)r(nm_1)}{n^s}$$

$$= \frac{1}{(m_1 m_2)^s} K(m_1, s) K(m_2, s) D(s),$$

$$K(m, s) = \frac{1}{(m)^s} \sum_{n=1}^{+\infty} \frac{r(n)}{n^s}.$$
where

\[D(s) = \sum_{n=1}^{+\infty} \frac{|r(n)|^2}{n^s}, \]

\[K(m, s) = \prod_{p|m} \left(1 + \frac{|r(p)|^2}{p^s} + \frac{|r(p^2)|^2}{p^{2s}} + \ldots \right)^{-1} \times \prod_{p^\alpha|m} \left(\frac{r(p^\alpha)}{p^s} + \frac{r(p^\alpha+1)r(p)}{p^{2s}} + \frac{r(p^\alpha+2)r(p^2)}{p^{3s}} + \ldots \right) \]

\[= \sum_{k \in M_1(m)} \frac{r(mk)r(k)}{k^s} \left(\sum_{k \in M_1(m)} \frac{|r(k)|^2}{k^s} \right)^{-1}. \]

If a prime \(p \) divides \(m_j \), then \(p > 256 \); this entails that, for \(\text{Re } s \geq 1/2 \),

\[\left| 1 + \frac{|r(p)|^2}{p^s} + \frac{|r(p^2)|^2}{p^{2s}} + \ldots \right| > 0 \]

and, therefore, for a fixed \(m_j \), that \(K(m_j, s) \) is an analytic function in the region \(\text{Re } s \geq 1/2 \). Moreover, for either \(m = m_1 \) or \(m = m_2 \), in this region the following estimate is valid

\[|K(m, s)| \leq \prod_{p|m} \left(1 - \frac{2}{256^{1/2}} - \frac{3}{256} - \frac{4}{256^{3/2}} - \ldots \right)^{-1} \times \tau(m) \prod_{p^\alpha|m} \left(1 + \frac{\alpha+2}{\alpha+1} \cdot \frac{2}{256^{1/2}} + \frac{\alpha+3}{\alpha+1} \cdot \frac{3}{256} + \frac{\alpha+4}{\alpha+1} \cdot \frac{4}{256^{3/2}} + \ldots \right) \]

\[\leq \tau(m) \prod_{p|m} \left(1 - \frac{1}{4} - \frac{1}{4^2} - \frac{1}{4^3} - \ldots \right)^{-1} \left(1 + \frac{3}{16} \cdot \frac{2}{16} + \frac{4}{16^2} + \frac{3}{16^3} + \frac{5}{16^4} + \ldots \right) \]

\[= \tau(m) \prod_{p|m} \frac{3}{2} \left(\sum_{n \geq 2} \frac{n(n-1)}{2} \cdot \frac{1}{16^{n-2}} \right) \leq \tau(m) \prod_{p|m} 3 \leq \tau(m) \tau_3(m) \leq \tau_6(m), \]

(12)

where \(\tau_i(n) = \sum_{n_1 \ldots n_i = n} 1 \). Also, \(D(s) \) can be meromorphically continued to the whole complex plane with the pole of first order at \(s = 1 \) (see [20]). This gives a meromorphic continuation of \(D_{m_1, m_2}(s) \) into half-plane \(\text{Re } s > 1/2 \).

In order to estimate \(J_1(x, \theta) \), move the contour of integration in

\[\int_{2-i\infty}^{2+i\infty} D_{m_1, m_2}(s)\Gamma(s)B^{-\theta}\Phi(s+\theta, 0)ds = \int_{2-i\infty}^{2+i\infty} \frac{K(m_1, s)K(m_2, s)D(s)\Gamma(s)\Phi^*(s+\theta)(Bm_1m_2)^{-s}}{s+\theta-1}ds \]
to the line \(\Re s = 2/3 \). We, therefore, pass simple poles at \(s = 1 \), \(s = 1 - \theta \). Denoting as \(\mathcal{D} \) the residue of \(D(s) \) at \(s = 1 \), we get

\[
\frac{1}{2\pi i} \int_{2-i\infty}^{2+i\infty} D_{m_1,m_2}(s)\Gamma(s)B^{-s}\Phi(s,\theta,0)ds = \frac{\mathcal{D}K(m_1,1)\overline{K}(m_2,1)\Phi^*(1+\theta)}{Bm_1m_2}\theta
\]

\[
+ \frac{K(m_1,1-\theta)\overline{K}(m_2,1-\theta)D(1-\theta)\Gamma(1-\theta)\Phi^*(1)}{(Bm_1m_2)^{1-\theta}} + O\left(\frac{(m_1m_2)^{1/3}}{(Bm_1m_2)^{2/3}}\right)
\]

\[
= \frac{c(\theta)K(m_1,1)\overline{K}(m_2,1)}{\theta x_1^\delta} \sum_{\nu_1} \frac{1}{\nu_1^\nu_3} + \frac{c'(\theta)K(m_1,1-\theta)\overline{K}(m_2,1-\theta)D(1-\theta)}{(x_1^\delta)^{1-\theta}} \left(\frac{q}{\nu_1^\nu_3}\right)^{1-\theta}
\]

\[
+ O\left(\frac{1}{(x_1^\delta)^{2/3} (\nu_1^\nu_3)^{1/3}}\right),
\]

where \(c(\theta) \), \(c'(\theta) \) are constants that depend on \(\theta \) and, for \(0 < \theta \leq 1/4 \), are bounded. Applying estimate \(D(1-\theta) \ll \theta^{-1} \) and lemma \(\text[3] \) we arrive at the following relation:

\[
J_1(x, \theta) \ll \frac{|S(0)|}{\theta x_1^\delta} + \frac{|S(\theta)|}{\theta^{-1}} + \frac{x_1^{1/3}}{x_1^\delta} \sum_{\nu_1 \leq X} \frac{1}{(\nu_1^\nu_3)^{1/3} (\nu_1^\nu_4)^{2/3}} \ll \frac{\delta^{-1}}{\theta x_1^\delta \ln X} \left(1 + (X^2 e^{\frac{1+1/12}{3}} \delta^2 + X^2 (\ln X) e^{\frac{1+1/12}{3}} \delta^{1/3})\right) \ll \frac{\delta^{-1}}{\theta x_1^\delta \ln X},
\]

since we used \(X^3 e^{\frac{1+1/12}{3}} \delta^{-1} \ll 1 \).

Now let us estimate the “non-diagonal” term \(J_2(x, \theta) \). It follows from corollary \(\text[2] \) to lemma \(\text[4] \) that we can move the path of integration in the integral \(J_2(x, \theta) \) to the line \(\Re s = 11/12 \). Using the statement of lemma \(\text[4] \) we obtain the estimate

\[
J_2(x, \theta) \ll x_1^{-\theta} \sum_{\nu_1 \leq X} \frac{1}{\nu_1^\nu_4} \sum_{l \geq 1} \frac{1}{B_1^{11/12} B_1^{2/12}} (m_1 m_2)^{-2/11 + l/10} (m_1^{-10/11} m_2^{-1})
\]

\[
\ll \frac{\delta^{-11/12}}{x_1^\theta} \sum_{\nu_1 \leq X} \frac{Q^{2+11/12}}{\nu_1^\nu_4} (m_1 m_2)^{-2/11} \ll \frac{\delta^{1+11/12}}{x_1^\theta} \sum_{\nu_1 \leq X} \frac{Q^{1+11/12}}{m_1 m_2} \ll \frac{\delta^{-11/12}}{x_1^\theta} (X^2)^{1+1/12} (X^{3+11/12})^4
\]

\[
\ll \frac{\delta^{-11/12}}{x_1^\theta} X^{4/3} \ll \frac{\delta^{-1}}{x_1^\theta \ln X},
\]

since \(X \leq \delta^{-1/80} \). The lemma is proved. \(\Box \)

§5. Proof of lemma \(\text[3] \) estimation of Selberg sums

Application of Möbius inversion formula to \(f \), that is

\[
f(q) = \sum_{d|q} \sum_{m|d} \mu(m) f \left(\frac{d}{m} \right),
\]
gives the identity
\[q^{1-\theta} K \left(\frac{\nu_1 \nu_4}{q}, 1 - \theta \right) K \left(\frac{\nu_2 \nu_3}{q}, 1 - \theta \right) = \sum_{d|q} \sum_{m|d} \mu(m) \left(\frac{d}{m} \right)^{1-\theta} \times \]
\[\times K \left(\frac{\nu_1 \nu_4 m}{d}, 1 - \theta \right) K \left(\frac{\nu_2 \nu_3 m}{d}, 1 - \theta \right). \]

Inserting this formula to the expression for \(S(\theta) \), we find that
\[S(\theta) = \sum_{\nu_1, \ldots, \nu_4 \leq X} \frac{\beta(\nu_1) \beta(\nu_2) \beta(\nu_3) \beta(\nu_4)}{\nu_2 \nu_4 (\nu_1 \nu_3)^{1-\theta}} \sum_{d|q} \sum_{m|d} \mu(m) \left(\frac{d}{m} \right)^{1-\theta} \times \]
\[\times K \left(\frac{\nu_1 \nu_4 m}{d}, 1 - \theta \right) K \left(\frac{\nu_2 \nu_3 m}{d}, 1 - \theta \right) = \sum_{d \leq X^2} \sum_{m|d} \mu(m) \left(\frac{d}{m} \right)^{1-\theta} |g(d, m)|^2, \]
where
\[g(d, m) = \sum_{\nu_1 \nu_4 \equiv 0 (\mod d)} \frac{\beta(\nu_1) \beta(\nu_4)}{\nu_1^{1-\theta} \nu_4} K \left(\frac{\nu_1 \nu_4 m}{d}, 1 - \theta \right). \]

Further, represent numbers \(\nu_j \) in the form \(\nu_j = \delta_j \nu_j' \), where \((\nu_j', d) = 1 \), and all prime divisors of \(\delta_j \) are those (coincident) of \(d \), i.e., \(\delta_j \in M_1(d) \). Then
\[g(d, m) = \sum_{\delta_1 \delta_4 \equiv 0 (\mod d)} \frac{1}{(\delta_1^{1-\theta} \delta_4)} \sum_{\delta_j \leq X, (\nu_j, d) = 1} \frac{\beta(\delta_1 \nu_1) \beta(\delta_4 \nu_4)}{\nu_1^{1-\theta} \nu_4} K \left(\frac{\delta_1 \delta_4 m}{d}, \nu_1 \nu_4, 1 - \theta \right). \]

From the definition (3) of \(\beta(\nu) \) it follows, that
\[g(d, m) = \frac{1}{\ln^2 X} \sum_{\delta_1 \delta_4 \equiv 0 (\mod d)} \frac{\alpha(\delta_1) \alpha(\delta_4)}{\delta_1^{1-\theta} \delta_4} K \left(\frac{\delta_1 \delta_4 m}{d}, 1 - \theta \right) \times \]
\[\times \sum_{\nu_j \leq X/\delta_1, (\nu_j, d) = 1} \frac{\alpha(\nu_j) \alpha(\nu_4)}{\nu_1^{1-\theta} \nu_4} K \left(\nu_1 \nu_4, 1 - \theta \right) \ln \frac{X}{\delta_1 \nu_1} \ln \frac{X}{\delta_4 \nu_4}. \]

We apply the following identity, which is valid for two multiplicative functions \(f_1 \) and \(f_2 \), that are non-zero only for square free numbers:
\[\sum_{l_1 \leq y_1, (l_1, a) = 1, (l_1, t_2) = 1} f_1(l_1) f_2(l_2) f(l_1, l_2) = \sum_{r, a = 1} \mu(r) f_1(r) f_2(r) \sum_{\lambda_1 r \leq y_1, (\lambda_1, ra) = 1} \sum_{\lambda_2 r \leq y_2, (\lambda_2, ra) = 1} f_1(\lambda_1) f_2(\lambda_2) f(r \lambda_1, r \lambda_2). \]
Therefore, we get
\[
g(d, m) = \frac{1}{\ln^2 X} \sum_{\substack{\delta_1 \delta_4 \equiv 0 \pmod{d} \\
\delta_j \in \mathcal{M}_1(d)}} \frac{\alpha(\delta_1) \alpha(\delta_4)}{\delta_1 \delta_4} K \left(\frac{\delta_1 \delta_4 m}{d}, 1 - \theta \right) \times
\]
\[
\times \sum_{(n, d) = 1} \frac{\alpha^2(n)}{n^{2 - \vartheta}} K(n^2, 1 - \theta) \sum_{(r, dn) = 1} \mu(r) \alpha^2(r) K^2(r, 1 - \theta) \times
\]
\[
\left(\sum_{\lambda_1 \delta_1 nr \leq X, (\lambda_1, dnr) = 1} \frac{\alpha(\lambda_1) K(\lambda_1, 1 - \theta)}{\lambda_1^{1 - \vartheta}} \ln \frac{X}{\delta_1 nr \lambda_1} \right) \times
\]
\[
\left(\sum_{\lambda_4 \delta_4 nr \leq X, (\lambda_4, dnr) = 1} \frac{\alpha(\lambda_4) K(\lambda_4, 1 - \theta)}{\lambda_4^{1 - \vartheta}} \ln \frac{X}{\delta_4 nr \lambda_4} \right).
\]

Further we show that, for \(0 \leq \theta, \gamma \leq \frac{1}{4}, N \geq 1, X_1 \geq 1\), the following estimate holds
\[
S_\theta(X_1, \gamma, N) = \sum_{\lambda \leq X_1, (\lambda, N) = 1} \frac{\alpha(\lambda) K(\lambda, 1 - \theta)}{\lambda^{1 - \gamma}} \ln \frac{X_1}{\lambda} \ll X_1^\gamma \sqrt{\ln(X_1 + 2)} \prod_{p \mid N} \left(1 + \frac{1}{p} \right)^2.
\]
(13)

The equality
\[
\prod_{p > 256} \left(1 + \frac{|r(p)|}{p^s} + \frac{|r(p)|^2}{4p^{2s}} \right) = \prod_{p > 256} \left(1 + \frac{|r(p)|^2}{2p^s} \right)^2
\]
\[
= \left(\sum_{n=1}^{\infty} \frac{|\alpha(n)|}{n^s} \right)^2 = \sum_{n=1}^{\infty} \frac{1}{n^s} \left(\sum_{n_1 n_2 = n} |\alpha(n_1) \alpha(n_2)| \right)
\]
entails that the function \(b(n) = \sum_{n_1 n_2 = n} |\alpha(n_1) \alpha(n_2)|\) is multiplicative, and that also due to the inequality \(|r(p)| < 4\) (where \(p\) is any prime number), for \(n \mid d\),
\[
b(nd) \leq b(d).
\]

Using this inequality and the estimate \(|K(n, 1 - \theta)| \leq \tau_6(n)\) (see (12)), we find that
\[
\sum_{\delta_1 \delta_4 \equiv 0 \pmod{d}, \delta_j \in \mathcal{M}_1(d)} \frac{|\alpha(\delta_1) \alpha(\delta_4)|}{\delta_1 \delta_4} K \left(\frac{\delta_1 \delta_4 m}{d}, 1 - \theta \right) \leq \frac{1}{d} \sum_{n \mid d} \frac{\tau_6(n)}{n} |K(nm, 1 - \theta)| \sum_{\delta_1 \delta_4 = nd} |\alpha(\delta_1) \alpha(\delta_4)|
\]
\[
\leq \tau_6(m) \frac{b(d)}{d} \prod_{p \mid d} \left(1 + \frac{\tau_6(p)}{p} \right).
\]
From this and (13) we get

$$S(\theta) \ll X^{2\theta} (\ln X)^{-2} \sum_{d \leq X^2} \frac{b^2(d)}{d^{1+\theta}} \prod_{p | d} \left(1 + \frac{1}{p}\right)^8 \left(1 + \frac{\tau_6(p)}{p}\right)^2 \left(1 + \frac{\tau_6^2(p)}{p^{1-\theta}}\right) \sum_{m | d} \frac{\mu^2(m)\tau_6^2(m)}{m^{1-\theta}}$$

$$\leq X^{2\theta} (\ln X)^{-2} \sum_{d \leq X^2} \frac{b^2(d)}{d^{1+\theta}} \prod_{p | d} \left(1 + \frac{1}{p}\right)^8 \left(1 + \frac{\tau_6(p)}{p}\right)^2 \left(1 + \frac{\tau_6^2(p)}{p^{1-\theta}}\right).$$

Now if p is sufficiently large, and $0 \leq \theta \leq \frac{1}{4}$, then

$$\left(1 + \frac{1}{p}\right)^8 \left(1 + \frac{\tau_6(p)}{p}\right)^2 \left(1 + \frac{\tau_6^2(p)}{p^{1-\theta}}\right) \leq 1 + \frac{1}{\sqrt{p}};$$

whence,

$$\prod_{p | d} \left(1 + \frac{1}{p}\right)^8 \left(1 + \frac{\tau_6(p)}{p}\right)^2 \left(1 + \frac{\tau_6^2(p)}{p^{1-\theta}}\right) \ll \prod_{p | d} \left(1 + \frac{1}{\sqrt{p}}\right) \leq \sum_{m | d} \frac{1}{\sqrt{m}}.$$

From this inequality we find:

$$S(\theta) \ll X^{2\theta} (\ln X)^{-2} \sum_{d \leq X^2} \frac{b^2(d)}{d^{1+\theta}} \sum_{m | d} \frac{1}{\sqrt{m}}$$

$$\leq X^{2\theta} (\ln X)^{-2} \sum_{m \leq X^2} \frac{1}{\sqrt{m}} \sum_{d \leq X^2} \frac{b^2(d)}{d^{1+\theta}}$$

$$\leq X^{2\theta} (\ln X)^{-2} \sum_{m \leq X^2} \frac{b^2(m)}{m^{3/2+\theta}} \sum_{d \leq X^2} \frac{b^2(d)}{d^{1+\theta}}$$

$$\ll X^{2\theta} (\ln X)^{-2} \sum_{d \leq X^2} \frac{b^2(d)}{d} \ll X^{2\theta} (\ln X)^{-1}.$$

The last estimate in the previous formula is provided by the following one

$$\sum_{n=1}^{+\infty} \frac{b^2(n)}{n^s} = \prod_{p>256} \left(1 + \frac{|r(p)|^2}{p^s} + \frac{|r(p)|^4}{16p^{2s}}\right) = \prod_{p>256} \left(1 + \frac{|r(p)|^4}{16p^{2s}(1 + \frac{|r(p)|^2}{p^s})}\right)$$

$$= \sum_{n=1}^{+\infty} \frac{1}{n^s} \left(\sum_{n_1n_2=n} b_1(n_1)b_2(n_2) \right),$$

where

$$\sum_{n=1}^{+\infty} \frac{b_1(n)}{n^s} = \prod_{p>256} \left(1 + \frac{|r(p)|^2}{p^s}\right), \quad \sum_{n=1}^{+\infty} \frac{b_2(n)}{n^s} = \prod_{p>256} \left(1 + \frac{|r(p)|^4}{16p^{2s}(1 + \frac{|r(p)|^2}{p^s})}\right)$$

and, thus,

$$\sum_{d \leq X^2} \frac{b^2(d)}{d} \leq \sum_{n_1n_2 \leq X^2} \frac{b_1(n_1)b_2(n_2)}{n_1n_2} \leq \prod_p \left(1 + \frac{|r(p)|^4}{16p^2(1 + \frac{|r(p)|^2}{p})}\right) \sum_{n_1 \leq X^2} \frac{|r(n_1)|^2}{n_1} \ll \ln X,$$
in view of the equality (20)

$$\sum_{n \leq x} |r(n)|^2 = cx + O(x^{3/5}), \quad c > 0$$

(see 21 for O-estimate of the present sum, which is also enough to obtain the desired result).

We then left to show the truth of estimate (13) for the sum $S_\theta(X_1, \gamma, N)$. Without loss of generality, we may assume that $X_1 \geq 10$, and that, for every $p|N$, the condition $p > 256$ is fulfilled. For $\text{Re } s > 1$, consider the generated function

$$h_{\theta,N}(s) = \sum_{(n,N)=1} \frac{\alpha(n)K(n,1-\theta)}{n^s} = \prod_{p|N} \left(1 + \frac{\alpha(p)K(p,1-\theta)}{p^s}\right)$$

$$= \prod_{p>256 \atop (p,N)=1} \left(1 - \frac{r(p)K(p,1-\theta)}{2p^s}\right) = \prod_{p} \left(1 + \frac{|r(p)|^2}{p^s} + \frac{|r(p^2)|^2}{p^{2s}} + \ldots\right)^{-1/2} \times$$

$$\times \prod_{p>256 \atop (p,N)=1} \left(1 + \frac{|r(p)|^2}{p^s} + \frac{|r(p^2)|^2}{p^{2s}} + \ldots\right)^{1/2} \left(1 - \frac{r(p)K(p,1-\theta)}{2p^s}\right) \times$$

$$\times \prod_{p|(256)!N} \left(1 + \frac{|r(p)|^2}{p^s} + \frac{|r(p^2)|^2}{p^{2s}} + \ldots\right)^{1/2}.$$

If $0 \leq \theta \leq 1/4$ then the product

$$N_1(s,\theta) = \prod_{p>256 \atop (p,N)=1} \left(1 + \frac{|r(p)|^2}{p^s} + \frac{|r(p^2)|^2}{p^{2s}} + \ldots\right)^{1/2} \left(1 - \frac{r(p)K(p,1-\theta)}{2p^s}\right)$$

$$= \prod_{p>256 \atop (p,N)=1} \left(1 + \frac{|r(p)|^2}{2p^s} + O\left(\frac{1}{p^{2\sigma}}\right)\right) \left(1 - \frac{|r(p)|^2}{2p^s} + O\left(\frac{1}{p^{\sigma+1-\theta}}\right)\right)$$

$$= \prod_{p>256 \atop (p,N)=1} \left(1 + O\left(\frac{1}{p^{2\sigma}}\right) + O\left(\frac{1}{p^{\sigma+1-\theta}}\right)\right), \quad s = \sigma + it,$$

defines an analytic function in the half-plane $\text{Re } s > 1/2$. For the generated function we have the identity

$$h_{\theta,N}(s) = (D(s))^{-1/2}N_1(s,\theta)G_N(s),$$

where

$$D(s) = \sum_{n=1}^{+\infty} \frac{|r(n)|^2}{n^s},$$
\[G_N(s) = \prod_{n \neq 256N} \left(1 + \frac{|r(p)|^2}{p^s} + \frac{|r(p^2)|^2}{p^{2s}} + \ldots \right)^{1/2}. \]

By means of Perron summation formula we find that

\[S_\theta(X_1, \gamma, N) = \frac{1}{2\pi i} \int_{1-i\infty}^{1+i\infty} h_{\theta, N}(s + 1 - \gamma) \frac{X_1^s}{s^2} ds = \frac{X_1^\gamma}{2\pi i} \int_{1-i\infty}^{1+i\infty} \frac{X_1^s}{(s + \gamma)^2} \frac{N_1(s + 1, \theta)G_N(s + 1)}{(D(s + 1))^{1/2}} ds. \]

For \(\text{Re } s \geq 1 \), the following estimates are valid:

\[N_1(s, \theta) \ll 1, \quad 0 \leq \theta \leq 1/4, \]

\[G_N(s) \ll \prod_{p \mid N} \left(1 + \frac{1}{p}\right)^2 = G_N. \]

Move the path of integration from the line \(\text{Re } s = 1 \) to the contour constructed by the semicircle \(\{|s| = (\ln X_1)^{-1}, \ \text{Re } s \geq 0\} \) and the two rays \(\{s = \pm \pm \sqrt{t}, |t| \geq (\ln X_1)^{-1}\} \). For \(D(s) \) in the region \(\text{Re } s \geq 1 \) we shall use an estimate \(|D(s)|^{-1} \ll |s - 1| \). The integral over the semicircle (which we denote as \(K_1 \)) can be estimated in the following way

\[K_1 \ll X_1^\gamma G_N \frac{X_1^{(\ln X_1)^{-1}}}{(\ln X_1)^2} \ll X_1^\gamma (\ln X_1)^{1/2} G_N. \]

For the integral over the rays (which we denote as \(K_2 \)), the relation

\[K_2 \ll X_1^\gamma G_N \int_{(\ln X_1)^{-1}}^{\infty} \frac{t^{1/2}}{t^2} dt \ll X_1^\gamma (\ln X_1)^{1/2} G_N. \]

holds. Thus, the estimate (13) is obtained and, therefore, the lemma is proved. \(\square \)

References

[1] Selberg A. On the zeros of Riemann’s zeta-function // Skr. Norske Vid. Akad. Oslo. v. 10 (1942). p. 1–59.

[2] Levinson N. More than one-third of zeros of Riemann’s zeta-function are on \(\sigma = 1/2 \) // Adv. in Math. v. 13 (1974). p. 383—436.
[3] V. G. Zhuravlev Estimation of constant in Selberg’s theorem on zeros of the Riemann ζ-function on the critical line // Sbor. Issl. Teor. Func. and Func. Anal. — Vladimir (1974). p. 39–51 [in Russian]

[4] Conrey B. Zeros of derivatives of Riemann’s ξ-function on the critical line // J. of Number Theory. v. 16 (1983). p. 49–74.

[5] Conrey B. Zeros of derivatives of Riemann’s ξ-function on the critical line II // J. of Number Theory. v. 17 (1983). p. 71–75.

[6] Anderson R.J. Simple zeros of the Riemann zeta-function // J. of Number Theory. v. 17 (1983). p. 176–182.

[7] Conrey B. More than $2/5$ of the zeros of the Riemann’s zeta-function are on the critical line // J. Reine Angew. Math. v. 399 (1989). p. 1–26

[8] V. G. Zhuravlev Zeros of Dirichlet L - functions on short intervals of the critical line // Zap. Nauch. Sem. LOMI. v.76 (1978) p. 72–88.

[9] Selberg A. Old and new conjectures about class of Dirichlet series // Collected papers, vol. II. Springer-Verlag, Berlin, 1991. p. 47-63.

[10] Hafner J.L. Zeros on the critical line of Dirichlet series attached to certain cusp forms // Math. Ann. vol. 264 (1983). p. 21–37.

[11] Hafner J.L. Zeros on the critical line for Maass wave form L-functions // J. Reine Angew. Math. vol. 377 (1987). p. 127–158.

[12] Iwaniec H. Topics in classical automorphic forms. — AMS: Graduate studies in Math., vol. 17, 1997.

[13] P. Deligne La conjecture de Weil I // Publ. Math. IHES. (1974). v. 43. p. 273–307.

[14] P. Deligne, J.-P. Serre Formes modulaires de poids 1 // Ann. Sci. ENS. (4 ser.) (1974). v. 7 (4). p. 507–530.

[15] S. M. Voronin, A. A. Karatsuba The Riemann zeta-function // M.: Physmatlit (1994) [De Gruyter Expositions in Mathematics, 5, 1992].

[16] I. S. Rezvyakova Zeros of linear combinations of Hecke L - functions on the critical line // Izv. Math. (2010) vol. 74 (6) p.12771314.

[17] Jutila M. Distribution of rational numbers in short intervals // Ramanujan J. vol. 14 (2007). p. 321—327.
[18] Jutila M. Transformations of exponential sums. In Proc. Amalfi Conf. of Anal. Number Th. (E. Bombieri, A. Perelli, S. Salerno and U. Zannier, eds.): Univ. Salerno, 1992, p. 263–270.

[19] H. Bateman, A. Erdélyi Higher transcendental functions II. Moscow: Nauka (1974) [McGraw-Hill, New York, 1953].

[20] Rankin R.A. Contributions to the theory of Ramanujan’s function \(\tau(n) \) and similar arithmetical questions II // Proc. Camb.Phil. Soc. v. 35 (1939). p. 357–372.

[21] E. Hecke Über Modulfunktionen und die Dirichletschen Reihen mit Eulerscher Produktentwicklung, I // Math. Ann. (1937). v. 114. p. 1–28.