High energy photons from passage of jets through quark gluon plasma

Rainer J. Fries and Berndt Müller
Department of Physics, Duke University, Durham, NC 27708-0305

Dinesh K. Srivastava
Department of Physics, Duke University, Durham, NC 27708-0305
Physics Department, McGill University, 3600 University Street, Montreal, H3A 2T8, Canada and
Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata 700 064, India

(Dated: October 25, 2018)

We calculate the production of high energy photons from Compton scattering and annihilation of a quark jet passing through a quark gluon plasma produced in a relativistic heavy ion collision. The contributions are large and reflect the momentum distribution of the jets and the initial conditions of the plasma.

Relativistic heavy ion collisions are studied with the aim of producing a plasma of quarks and gluons (QGP). Photons are considered to be an important probe for the investigation of the formation and evolution of such a plasma due to their weak final-state interactions \[1\]. Once produced they carry the information about the conditions of the environment in which they were created, encoded in their momentum distribution, thus providing a glimpse deep into the bulk of strongly interacting matter. Though most of the measured photons have their origin in the decay of hadrons after the QGP phase, it has become possible to isolate the direct photons produced in such collisions \[2\].

The sources of direct photons considered so far include quark annihilation, Compton scattering, and bremsstrahlung following the initial hard scattering of partons of the nuclei \[3\], as well as thermal photons from the QGP \[4, 5\], and from hadronic interactions in the hot hadronic gas after the hadronization of the plasma \[3, 6\].

The pre-equilibrium production of photons has also been investigated by several authors \[10\]. Results are available for production from the entire history of the system \[11\].

In this letter we study a new source of direct photons originating from the passage of the produced high energy quark jets through the QGP (jet-photon conversion). A fast quark passing through the plasma will produce photons by Compton scattering with the thermal gluons and annihilation with the thermal antiquarks. This process is higher order in \(\alpha_s\) compared with photons from initial hard scatterings, but it is not a subleading contribution, since it corresponds to double scattering, which is enhanced by the size of the system. For cold nuclear matter this effect is encoded in multi-parton matrix elements which are enhanced by powers of \(A^{1/3} \[12\]. Below, we find that this source is at least comparable in strength to the other direct photon sources and even dominates in the range \(p_{\perp} \leq 6\) GeV for Au+Au collisions at the Relativistic Heavy Ion Collider (RHIC).

We also demonstrate that the \(p_{\perp}\)-distribution of these photons is directly proportional to the momentum distribution of jets at an early stage after their production, before they have lost energy on their travel through the plasma. Since the measured high-\(p_t\) hadron spectrum is proportional to the spectrum of partons after they have left the plasma, a comparison of both spectra could provide a quantitative determination of the energy loss and help confirm the mechanism of jet quenching \[13, 14\].

Furthermore, the photon yield depends on the integrated density of the matter traversed by the jets and thus can provide a measurement of this quantity. We emphasize that our mechanism is distinct from the back-to-back correlation among direct photons and leading hadrons, which was proposed as a direct measurement of the jet energy loss in dense matter \[15\].

The idea of jet-photon conversion is based on the properties of the annihilation and Compton cross sections. The kinematics of the annihilation of a quark antiquark pair \((q + \bar{q} \rightarrow \gamma + g)\) is expressed in terms of the Mandelstam variables \(s = (p_q + p_{\bar{q}})^2\), \(t = (p_q - p_{\bar{q}})^2\) and \(u = (p_{\bar{q}} - p_q)^2\), where the \(p_j\) are the four-momenta of the particles. The differential cross section at Born level for massless \(q\) and \(\bar{q}\) has the form

\[
de\sigma/dt = 8\pi\alpha_s e_q^2 (u/t + t/u) / 9s^2
d\]

where \(e_q\) is the fractional charge of the annihilating quarks. This implies that the largest contribution to the production of photons arises from small values of \(t\) or \(u\), corresponding to \(p_{\gamma} \approx p_q\) or \(p_{\gamma} \approx p_{\bar{q}}\). The process can be visualized as a conversion of one of the annihilating quarks to a photon. This picture immediately suggests that the photons from this process provide a direct measurement of the quark (or antiquark) momentum. For the Compton process \((g + q \rightarrow \gamma + q)\) we have

\[
de\sigma/dt = -\pi\alpha_s e_q^2 (u/s + s/u) / 3s^2
\]

The dominant contribution now comes from the region of small \(u\), when \(p_{\gamma} \approx p_q\), corresponding to the conversion of the quark (or the antiquark) into a photon. Following \[16, 17\] we approximate the invariant photon differential cross sections for the annihilation and Compton processes as

\[
E_\gamma \frac{d\sigma^{(a)}}{d^3p_\gamma} \approx \sigma^{(a)}(s) \frac{1}{2} E_\gamma \left[\delta(p_{\gamma} - p_q) + \delta(p_{\gamma} - p_{\bar{q}}) \right]
\] (1)
\[E_\gamma \frac{d\sigma}{d^3p_\gamma} \approx \sigma^{(C)}(s) E_\gamma \delta(p_\gamma - p_q). \]

(2)

Here \(\sigma^{(a)}(s) \) and \(\sigma^{(C)}(s) \) are the corresponding total cross sections. Now consider an ensemble of fast quarks passing through a hot medium. A certain fraction, determined by the total cross section, will undergo these annihilation or Compton processes initiated by the medium and will emit photons. Whenever this happens the energy of the emitted photon will reflect the initial energy of the converted quark.

Using (12) the rate of production of photons due to annihilation and Compton scattering are given by \[16\]

\[\begin{align*}
E_\gamma \frac{dN^{(a)}}{d^4x} d^3p_\gamma &= \frac{16 E_\gamma}{(2\pi)^6} \sum_{q=1}^{N_f} f_q(p_\gamma) \left[1 + f_{\bar{q}}(p) \right] \sigma^{(a)}(s) \left(\begin{array}{c} \sqrt{s(s - 4m^2)}/2E_\gamma \end{array} \right) + \left(q \leftrightarrow \bar{q} \right), \\
E_\gamma \frac{dN^{(C)}}{d^4x} d^3p_\gamma &= \frac{16 E_\gamma}{(2\pi)^6} \sum_{q=1}^{N_f} f_q(p_\gamma) \left[1 - f_q(p) \right] \sigma^{(C)}(s) \left(\frac{8 - m^2}{2E_\gamma} \right) + \left(q \rightarrow \gamma \right).
\end{align*} \]

(3)

(4)

The \(f_i \) are distribution functions for the quarks, antiquarks, and gluons. Inserting thermal distributions for the gluons and quarks one can obtain an analytical expression for these emission rates for an equilibrated medium \([4, 5, 16]\).

We propose that the phase-space distribution of the quarks and gluons produced in a nuclear collision can be approximately decomposed into two components, a thermal component \(f_{th} \) characterized by a temperature \(T \) and a hard component \(f_{jet} \) given by hard scattering of partons and limited to transverse momenta \(p_\perp \gg 1 \text{ GeV/c} \):

\[f(p) = f_{th}(p) + f_{jet}(p). \]

We note that \(f_{jet} \) dominates for large momenta, while at small momenta \(f \) is completely given by the thermal part.

The phase-space distribution for the quark jets propagating through the QGP is given by the perturbative QCD result for the jet yield \([14]\):

\[f_{jet}(p) = \frac{1}{g_q (2\pi)^3} \frac{dN_{jet}}{d^3p_{\perp} dy} R(r) \times \delta(q - y) \Theta(\tau - \tau_i) \Theta(\tau_{max} - \tau) \Theta(R_{\perp} - r). \]

(5)

where \(g_q = 2 \times 3 \) is the spin and colour degeneracy of the quarks, \(R_{\perp} \) is the transverse dimension of the system, \(\tau_i \sim 1/p_{\perp} \) is the formation time for the jet and \(\eta \) is the space time rapidity. \(R(r) \) is a transverse profile function. We shall take \(\tau_{max} \) as the smaller of the life-time \(\tau_f \) of the QGP and the time \(\tau_d \) taken by the jet produced at position \(r \) to reach the surface of the plasma. The boost invariant correlation between the rapidity \(y \) and \(\eta \) is assumed here \([13]\). Similar results are obtained when a Gaussian correlation between \(y \) and \(\eta \), characterized by a width \(\Delta_p \sim 2/p_{\perp} \cosh y \) is assumed \([19]\).

We calculate the jet production and the direct production of photons in lowest order pQCD \([3]\). We have used the CTEQ5L parton distributions \([20]\) and EKS98 nuclear modifications \([21]\) with the scale set to \(p_{\perp} \). We further use a \(K \)-factor of 2.5 in the jet production to account for higher order corrections, cf. \([22]\). We neglect the weak dependence of \(K \) on \(p_{\perp} \) and \(\sqrt{S} \) in this study \([23]\). Our results for the number of quarks, antiquarks and gluons at \(y = 0 \) can be parameterized as

\[\frac{dN_{jet}}{d^2p_{\perp} dy} \bigg|_{y=0} = T_{AA} \frac{d\sigma_{jet}}{d^2p_{\perp} dy} \bigg|_{y=0} = K \frac{a}{(1 + p_{\perp}/b)c}. \]

(6)

Here \(T_{AA} = 9A^2/8\pi R_{QCD}^2 \) is the nuclear thickness for a head-on collision. Numerical values for the parameters \(a, b \) and \(c \) are listed in Table \([11]\).

The integral over \(p \) in Eqs. \([3]\) and \([4]\) is dominated by small momenta. We can therefore drop the jet part in the decomposition of the distributions \(f(p) \) in the integrands and approximate them by the thermal part. After performing the integrals the results for annihilation and Compton scattering are identical and read \([16]\)

\[E_\gamma \frac{dN^{(a)}}{d^3p_{\perp} d^4x} = E_\gamma \frac{dN^{(C)}}{d^3p_{\perp} d^4x} = \frac{\alpha \sigma_m}{8\pi} \sum_{f=1}^{N_f} \left(\frac{e_{q_f}}{c} \right)^2 \times [f_q(p_q) + f_{\bar{q}}(p_{\bar{q}})] T^{2} \ln \left\{ \frac{4E_\gamma T}{m^2} \right\} + C \]

(7)

with \(C = -1.916 \). We have included the three lightest quark flavours so that \(\sum_f e_{q_f}^2/e^2 = 2/3 \).

Once again we apply the decomposition of the distributions to \([7]\). Inserting the thermal part we recover the known rate of emission of high energy photons from interactions within the plasma. Since we are dealing with (nearly) massless partons we have to address the infrared divergence in \([7]\) in the limit \(m \to 0 \). It has been shown \([1, 16]\) that the divergence can be eliminated by including higher-order effects from the interaction of the quarks in the thermal medium with the result that
\(m^2 \) in the argument of the logarithm must be replaced with \(2m^2_{th} = g^2 T^2 / 3 \). We assume that these considerations remain valid for the emission of photons even when one of the partons is from a jet while the other one is from a thermal medium. This assumption remains to be verified. We add that the thermal photon production from the plasma has recently been calculated up to two loops [1] and to complete leading order [2], and is about a factor of two larger than the lowest order results given here. It will be of considerable interest to extend our present work to account for these effects.

Now the rate of high energy photon emission from the passage of quark jets through the QGP is obtained by substituting the jet contributions for \(f_q \) and \(f_{\overline{q}} \) in (7). In order to calculate the photon yields we specify our model for the medium. Here we are interested in the emission of photons from the QGP phase alone. We assume that a thermally and chemically equilibrated plasma is produced in the collision at time \(\tau_0 \) with temperature \(T_0 \), and we ignore the transverse expansion of the plasma. Further assuming an isentropic longitudinal expansion [18], we can relate \(T_0^3 / \tau_0 \) to the observed particle rapidity density \(dN/dy \). We take \(dN/dy \approx 1260 \), based on the charged particle pseudorapidity density measured by the PHOBOS experiment [24] for central collisions of Au nuclei at \(\sqrt{S_{NN}} = 200 \) GeV. For central collision of Pb nuclei at LHC energies we use \(dN/dy \approx 5625 \) estimated by [25]. Imposing a rapid thermalization limited by \(\tau_0 \approx 1/3 T_0 \) [26] we fix our initial conditions to be \(T_0 = 446 \) MeV and \(\tau_0 = 0.147 \) fm/c for RHIC and \(T_0 = 897 \) MeV and \(\tau_0 = 0.073 \) fm/c for LHC.

We model the nuclei as uniform spheres and assume a transverse profile for the initial temperature as \(T(r) = \frac{T_0}{2} \left[1 - r^2 / R^2 \right]^{1/4} \) where \(R = 1.2 A^{1/3} \) fm. We use the same profile \(R(r) = \frac{2}{3} \left[1 - r^2 / R^2 \right] \) for the jet production in (7) while performing the space-time integration \(d^4x = \tau d\tau r dr d\eta d\phi \). The limits of the \(\tau \)-integration are \([\tau_0, \tau_f] \) where \(\tau_f \) is fixed through the relation \(T^3 \tau = \text{const} \), when the temperature reaches \(T_f = 160 \) MeV.

We also give results for the competing photon processes, the direct production in primary hard annihilation or Compton processes and the production via bremsstrahlung from a produced jet parton. For both cases the leading order results can again be found in [3]. No \(K \)-factor is used for direct photon production. Our results here obey the scaling for single photons suggested in [26] from empirical considerations.

In Fig. 1 we plot the results for thermal photons, direct photons due to primary processes, bremsstrahlung photons and the photons coming from jets passing through the QGP in central collision of gold nuclei at \(\sqrt{S_{NN}} = 200 \) GeV at RHIC. We show the photons from jets interacting with the medium (solid line), direct hard photons (long dashed), bremsstrahlung photons (short dashed) and thermal photons (dotted).

In Fig. 2 we plot the results for central collision of lead nuclei at \(\sqrt{S_{NN}} = 5.5 \) TeV at LHC.
partons \(27\) will further enhance the importance of the jet-photon conversion process. The effects of a possible chemical non-equilibrium may be estimated as follows. A reduced quark abundance will enter at least linearly into the thermal rate but can reduce the jet-photon conversion by at most a factor of two, as the Compton contribution will remain unaffected. Therefore the thermal rate will be more strongly suppressed than the jet-photon conversion. Similarly, the jet-photon conversion is only moderately sensitive to the initial conditions and the transit time of the jet in the medium. We have found that increasing \(\tau_0\) to 1 fm/c, keeping \(T_0^3\tau_0\) fixed, reduces our results for RHIC only by about 40 percent.

One may ask how our results will be modified by the energy loss experienced by the quark jets passing through the QGP. This effect will be relatively small for two reasons. First, we are concerned here with quark jets which lose energy at less than half the rate as gluons, which form the dominant fraction of jet events. Second, as the energy loss scales as the square of the distance traveled through the medium \(14\), the average energy loss at the moment of jet-photon conversion is only one-third of the total normal energy loss. This argument implies that, while the high-\(p_T\) hadron spectra encode information about the energy loss in the plasma, the photons from medium induced emission, on average, carry information about jets at an earlier stage. Obviously, the comparison of the high-\(p_T\) hadron and direct photon spectra can shed light on the evolution of the jet spectrum. We believe that this could be a useful method for the analysis of jet quenching and medium effects on hard particles in the QGP. More details of the calculation together with a careful analysis of the assumptions made here will be presented in a forthcoming paper.

In summary, we have discussed a novel mechanism for the production of high energy photons in relativistic heavy ion collisions. The photons arise from the passage of quark jets through the medium, when a quark is converted into a photon due to Compton scattering from a gluon or annihilation by an antiquark. Our calculations indicate that this mechanism is the leading source of directly produced photons at RHIC in the region \(p_T \leq 6\) GeV/c. The spectrum of the resulting photons reflects the initial distribution of the hard scattered quarks and is sensitive to the initial conditions and the traversal time of the jet in the plasma.

This work was supported in part by DOE grants DE-FG02-96ER40945 and DE-AC02-98CH10886 and the Natural Sciences and Engineering Research Council of Canada. RJF is supported by the Fedor Lynen program of the Alexander von Humboldt Foundation.

[1] E. L. Feinberg, Nuovo Cim. 34A, 391 (1976).

[2] M. M. Aggarwal et al. (WA98 collaboration), Phys. Rev. Lett. 85, 3595 (2000).

[3] J. F. Owens, Rev. Mod. Phys. 59, 465 (1987).

[4] J. Kapusta, P. Lichard and D. Seibert, Phys. Rev. D 44, 2774 (1991); Erratum ibid. 47, 4171 (1993).

[5] R. Baier, H. Nakkagawa, A. Niegawa and K. Redlich, Z. Phys. C 53, 433 (1992).

[6] V. V. Goloviznin and K. Redlich, Phys. Lett. B 319, 520 (1993); P. K. Roy et al., Phys. Rev. C 53, 2364 (1996).

[7] P. Aureneche, F. Gelis, R. Kobes and H. Zaracket, Phys. Rev. D 58, 085003 (1998).

[8] P. Arnold, G. D. Moore and L. G. Yaffe, JHEP 0112, 009 (2001).

[9] L. Xiong, E. V. Shuryak and G. E. Brown Phys. Rev. D 46, 3798 (1992); C. Song, Phys. Rev. C 47, 2861 (1993); J. V. Steele, H. Yamagishi and I. Zahed, Phys. Rev. D 56, 5605 (1997); S. Sarkar et al., Nucl. Phys. A 634, 206 (1998).

[10] M. Strickland, Phys. Lett. B 331, 245 (1994); B. Kämpfer and O. P. Pavlenko, Z. Phys. C 62, 491 (1994); Nucl. Phys. A 566, 351c (1994); P. Roy et al., Nucl. Phys. A 624, 687 (1997); D. K. Srivastava, M. G. Mustafa and B. Müller, Phys. Rev. C 56, 1064 (1997); R. Baier, M. Dirks, K. Redlich and D. Schiff, Phys. Rev. D 56, 2548 (1997); D. K. Srivastava and K. Geiger, Phys. Rev. C 58, 1734 (1998); M. G. Mustafa, M. H. Thoma, Phys. Rev. C 62, 014902 (2000); Erratum ibid. 63, 069902 (2001).

[11] See e.g. D. K. Srivastava and B. Sinha, Phys. Rev. C 64, 034902 (2001); D. K. Srivastava, Eur. Phys. J. C 10, 487 (1999), Erratum-ibid. C 20, 399 (2001); T. Peitzmann and M. H. Thoma, Phys. Rept. 364, 175 (2002); P. Huovinen, P. V. Ruuskanen and S. S. Rasanen, Phys. Lett. B 535, 109 (2002).

[12] M. Luo, J. W. Qiu and G. Sterman, Phys. Rev. D 50, 1951 (1994); R. J. Fries, [arXiv:hep-ph/0201311]

[13] M. Gyulassy and X. Wang, Nucl. Phys. B 420, 583 (1994).

[14] R. Baier et al., Nucl. Phys. B 484, 265 (1997).

[15] X. N. Wang, Z. Huang and I. Sarcevic, Phys. Rev. Lett. 77, 231 (1996).

[16] C. Y. Wong, Introduction to High-Energy Heavy Ion Collisions, World Scientific, Singapore (1994).

[17] H. Nadeau, Phys. Rev. D 48, 3182 (1993).

[18] J. D. Bjorken, Phys. Rev. D 27, 140 (1983); R. C. Hwa and K. Kajantie, Phys. Rev. D 32, 1109 (1985).

[19] Z. Lin and M. Gyulassy, Phys. Rev. C 51, 2177 (1995).

[20] H. L. Lai et al. [CTEQ Collaboration], Eur. Phys. J. C 12, 375 (2000).

[21] K. J. Eskola, V. J. Kolhinen and C. A. Salgado, Eur. Phys. J. C 9, 61 (1999).

[22] K. J. Eskola and K. Tuominen, Phys. Rev. D 63, 114006 (2001).

[23] G. G. Barnafoildi et al., J. Phys. G 27, 1767 (2001).

[24] B. B. Back et al. [PHOBOS Collaboration], Phys. Rev. C 65, 061901 (2002).

[25] J. Kapusta, L. D. McLerran and D. K. Srivastava, Phys. Lett. B 283, 145 (1992).

[26] D. K. Srivastava, Eur. Phys. J. C 22, 129 (2001).

[27] J. Jalilian-Marian, K. Orginos and I. Sarcevic, Phys. Rev. C 63, 041901 (2001); Nucl. Phys. A 700, 523 (2002).