Universal Neyman-Pearson Classification

with a Known Hypothesis

Parham Boroumand and Albert Guillén i Fàbregas

Abstract

We propose a universal classifier for binary Neyman-Pearson classification where null distribution is known while only a training sequence is available for the alternative distribution. The proposed classifier interpolates between Hoeffding’s classifier and the likelihood ratio test and attains the same error probability prefactor as the likelihood ratio test, i.e., the same prefactor as if both distributions were known. In addition, like Hoeffding’s universal hypothesis test, the proposed classifier is shown to attain the optimal error exponent tradeoff attained by the likelihood ratio test whenever the ratio of training to observation samples exceeds a certain value. We propose a lower bound and an upper bound to the training to observation ratio. In addition, we propose a sequential classifier that attains the optimal error exponent tradeoff.

I. INTRODUCTION

The problem of deciding between multiple statistical descriptions of a given observation is one of the main problems in statistics and finds applications in a number of fields including engineering, signal processing, medicine and finance among others (see e.g. [1]). Depending of whether or not the possible probability distributions of the observation are known, the problem is termed hypothesis testing or classification. In the case where there are only two possible distributions of the observation one typically refers to these decision problems as binary. When priors on the distributions are available, the problem is cast as Bayesian and the average probability of error determines the quality of the detection. In the absence of priors, the design of tests and classifiers minimizes one pairwise error probability while keeping the other upper bounded by a constant. This setting, proposed by Neyman and Pearson [2] has been adopted as the de-facto test design setting since it allows for both pairwise error probabilities being bounded, unlike average risk minimization.

Upon observing a vector of n observations, the hypothesis test that minimizes the above pairwise error probability tradeoff when the two possible distributions are known is given by the likelihood ratio test [2]. Instead, when decisions need to be made each time a new observation arrives, the sequential probability ratio test provides the best exponential decay of the error probability (or error exponent) [3], [4]. When one of the hypothesis distributions belongs to some class of distributions and only the class is known, Hoeffding proposed the generalized likelihood ratio test that attains the optimal error exponent [5]. When the distributions are not

P. Boroumand is with the Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, U.K. (e-mail: pb702@cam.ac.uk).

A. Guillén i Fàbregas is with the Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, U.K., and also with the Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain (e-mail: guillen@ieee.org)

This work was supported in part by the European Research Council under Grant 725411 and by the Spanish Ministry of Economy and Competitiveness under Grant PID2020-116683GB-C22.
known, several classifiers such as logistic regression, support vector machines, naive Bayes, have been proposed in the literature [6], [7], [8], [9]. However, none of these classifiers ensures a guarantee on the type-I error probability resulting in the possibility of a large type-I errors. In the Neyman-Pearson setting, [10] gives uniform bounds on type-I error probability for the plugin likelihood ratio test when both distributions are unknown, and only training sequences from both distributions are available. Gutman [11] proposed universal classifiers that guarantee a certain type-I error exponent under any probability distribution pair while achieving the lowest type-II error probability. Tan [12] proved the second order optimality of Gutman’s classifier.

This paper considers the setting when the null hypothesis generating distribution is known while only a training sample is available for the alternative hypothesis. This can be the case in the unbalanced training sample size when a large number of training samples is available for the null hypothesis so that with high accuracy, the distribution can be estimated. In contrast, the alternative distribution cannot be accurately estimated due to small number of training samples. The scenario when the number of test and training samples is fixed can also be viewed as composite hypothesis testing with known null hypothesis and an additional training sequence. Hoeffding’s test can achieve the optimal error exponent when the null hypothesis distribution is given. However, the prefactor attained by Hoeffding’s test is only optimal for distributions defined over binary alphabets.

In this paper, we propose a classifier that achieves the optimal prefactor using the additional training samples while attaining the optimal error exponent tradeoff whenever the training to observation sample ratio exceeds a certain value. The proposed classifier interpolates between the plugin likelihood ratio and Hoeffding’s tests. We also study the case when the test and training samples are generated sequentially. There is no classifier similar to Hoeffding’s in this scenario that can achieve the error exponent gain by taking test samples sequentially when only the null hypothesis is known. However, our proposed classifier can improve the achievable error exponent by using the additional training samples from the unknown distribution.

This paper is structured as follows. Section II introduces notation and reviews the preliminaries about the likelihood ratio test and Hoeffding’s generalized likelihood ratio test. Section III proposes the new classifier for a fixed sample size setting and shows the finite length improvements over Hoeffding’s test. Section IV discusses the classification problem in the Stein regime and shows the optimality of Gutman’s test in this regime. Section V proposes a sequential classifier achieving the highest error exponent tradeoff in the proposed setting. Proofs of the main results can be found in the Appendices.

II. Preliminaries

Consider the following binary classification problem where an observation $x = (x_1, \ldots, x_n)$ is generated in an i.i.d. fashion from either of two possible distributions P_0 or P_1 defined on the probability simplex $P(X)$ with alphabet size $|X| < \infty$. We assume that the distribution P_0 is known while only a sequence of training samples $X = (X_1, \ldots, X_k) \sim P_1^k$ generated in an i.i.d. fashion from P_1 is available; training and test sequences are sampled independently from each other. We also assume that both $P_0(x) > 0$, $P_1(x) > 0$ and $\frac{P_0(x)}{P_1(x)} \leq c$ for each $x \in X$ for some positive c. Also we let k, the length of the training, be such that $k = \alpha n$ for some positive α.

The type of an n-length sequence y is defined as $\hat{T}_y(a) = \frac{N(a|y)}{n}$, where $N(a|y)$ is the number of occurrences of symbol $a \in X$ in sequence y. The types of the observation and training sequences x, X are denoted by
where \(\tilde{T}_x, \tilde{T}_X \) respectively. The set of all sequences of length \(n \) with type \(P \), denoted by \(T^n_P \), is called the type class. The set of types formed with length \(n \) sequences on the simplex \(\mathcal{P}(\mathcal{X}) \) is denoted as \(\mathcal{P}_n(\mathcal{X}) \).

Let \(\phi(X, x) : \mathcal{X}^k \times \mathcal{X}^n \rightarrow \{0, 1\} \) be a classifier that decides the distribution that generated the observation \(x \) upon processing the training sequence \(X \). We consider deterministic classifiers \(\phi \) that decide in favor of \(P_0 \) if \(x \in A_0(P_0, X) \), where \(A_0(P_0, X) \subset \mathcal{X}^n \) is the decision region for the first hypothesis and is a function of \(P_0 \) and the training samples \(X \). We define \(A_1(P_0, X) = \mathcal{X}^n \setminus A_0 \) to be the decision region for the second hypothesis. If we assume no prior knowledge on either distribution, the two possible pairwise error probabilities determine the performance of the classifier. Specifically, the type-I and type-II error probabilities are defined as

\[
\epsilon_0(\phi) = \sum_{X \in \mathcal{X}^k} P_1(X) \sum_{x \in A_1(P_0, X)} P_0(x^n),
\]

\[
\epsilon_1(\phi) = \sum_{X \in \mathcal{X}^k} P_1(X) \sum_{x \in A_0(P_0, X)} P_1(x^n).
\]

In the case where both distributions are known, the training sequence is not needed and the classifier becomes a hypothesis test. In this case, the classifier is said to be optimal whenever it achieves the optimal error probability tradeoff given by

\[
\min_{\phi : \epsilon_0(\phi) \leq \xi} \epsilon_1(\phi),
\]

where \(\xi \in [0, 1] \). It is well known that likelihood ratio test defined as

\[
\phi^{\text{lrt}}(x) = \mathbb{I}\left\{ \frac{P^n(x)}{P_0^n(x)} \geq e^{n\gamma} \right\},
\]

attains the optimal tradeoff \(\xi^* \) for every \(\gamma \). The likelihood ratio test can also be expressed as a function of the type of the observation \(\tilde{T}_x \) as \(\phi^{\text{lrt}}(\tilde{T}_x) = \mathbb{I}\{D(\tilde{T}_x\|P_0) - D(\tilde{T}_x\|P_1) \geq \gamma\} \).

where \(D(P\|Q) = \sum_X P(x) \log \frac{P(x)}{Q(x)} \) is the relative entropy between distributions \(P \) and \(Q \). The optimal error exponent tradeoff \((E_0, E_1) \) is defined as

\[
E^*_0(E_1) \triangleq \sup \left\{ E_1 \in \mathbb{R}_+ : \exists \phi, \exists n_0 \in \mathbb{Z}_+ \text{ s.t. } \forall n > n_0, \epsilon_0(\phi) \leq e^{-nE_0} \text{ and } \epsilon_1(\phi) \leq e^{-nE_1} \right\}.
\]

By using Sanov’s Theorem \([13], [15] \), the optimal error exponent tradeoff \((E_1, E_0) \), attained by the likelihood ratio is given by

\[
E_0(\phi^{\text{lrt}}) = \min_{Q \in \mathcal{Q}_0(\gamma)} D(Q\|P_0),
\]

\[
E_1(\phi^{\text{lrt}}) = \min_{Q \in \mathcal{Q}_1(\gamma)} D(Q\|P_1),
\]

where

\[
\mathcal{Q}_0(\gamma) = \{ Q \in \mathcal{P}(\mathcal{X}) : D(Q\|P_0) - D(Q\|P_1) \geq \gamma \},
\]

\[
\mathcal{Q}_1(\gamma) = \{ Q \in \mathcal{P}(\mathcal{X}) : D(Q\|P_0) - D(Q\|P_1) \leq \gamma \}.
\]

Furthermore, the minimizing distribution in \(\text{(7), (8)} \) is the tilted distribution

\[
Q_{\lambda^*}(x) = \frac{P_0^n(x) P_1^n(1-x)}{\sum_{a \in \mathcal{X}} P_0^n(1-x) P_1^n(a)}{1 - \lambda^*},
\]

\[0 \leq \lambda^* \leq 1, \]
where λ^* is the solution of $D(Q_{\lambda^*} \| P_0) - D(Q_{\lambda^*} \| P_1) = \gamma$.

The classification problem described above with known P_0 and a training sequence from P_1, can also be viewed as the composite binary hypothesis problem where additional training sequence samples are given for the second hypotheses. In the case of a composite hypothesis testing problem where P_0 is given, and the other hypothesis is unrestricted to $P(X)$, Hoeffding proposed in [5] a generalized likelihood-ratio test given by

$$
\phi_{\text{glrt}}(x) = \mathbb{1}\left\{ D(\hat{T}_X \| P_0) > E_0 \right\},
$$

which attains the optimal error exponent tradeoff in (6). By Sanov’s theorem, the error exponent of Hoeffding’s test is given by

$$
E_0(\phi_{\text{glrt}}) = E_0,
$$

$$
E_1(\phi_{\text{glrt}}) = \min_{Q \in P(X), D(Q \| P_0) \leq E_0} D(Q \| P_1),
$$

where the minimizing distributions in (14) is given by

$$
Q_{\mu^*}(x) = \frac{P_{\mu^*}^0(x)P_{1+\mu^*}^1(x)}{\sum_{a \in X} P_{\mu^*}^0(a)P_{1+\mu^*}^1(a)}, \quad \mu^* \geq 0,
$$

and μ^* is the solution to $D(Q_{\mu^*} \| P_0) = E_0$. Using a large deviations refinement [16], [17], the type-I error probability of the likelihood ratio test is

$$
\epsilon_0(\phi_{\text{lrt}}) = \frac{1}{\sqrt{n}} e^{-nE_0\left(c + o(1)\right)},
$$

while, Hoeffding’s test type-I error probability is given by [18], [16]

$$
\epsilon_0(\phi_{\text{glrt}}) = n^{\frac{|X|-3}{2}} e^{-nE_0\left(c' + o(1)\right)}
$$

where c, c' are constants that only depend on P_0, P_1 and the corresponding test thresholds. As a result, when the number of observations is large, Hoeffding’s test, although attaining the optimal error exponent tradeoff, suffers in exponential prefactor when compared to the likelihood ratio’s $\frac{1}{\sqrt{n}}$ for observation alphabets such that $|X| > 2$.

III. FIXED SAMPLE SIZED UNIVERSAL CLASSIFIER

In this section, we propose a classifier that interpolates between the likelihood ratio and Hoeffding’s tests that attains a prefactor that is independent of the alphabet size and is equal to $\frac{1}{\sqrt{n}}$. In addition, we show that if the ratio of training samples to the number of test samples α exceeds a certain threshold, the proposed test also achieves the optimal error exponent tradeoff.

Hoeffding’s test can favor the second hypothesis for test sequences with types close to P_0 while far from P_1. Suppose we have a training sequence type \hat{T}_X, we can relax the Hoeffding’s test from a ball centered at P_0 to a hyperplane tangent to the Hoeffding’s test ball, directed towards the type of the training sequence. As we will see, this is precisely what enables the improvement in the prefactor of the type-I probability of error.

We propose the following classifier

$$
\phi_{\beta}(\hat{T}_X, T_X) = \mathbb{1}\left\{ \beta D(\hat{T}_X \| \hat{T}_X) - D(\hat{T}_X \| P_0) \leq \gamma(E_0, T_X) \right\},
$$
where $0 \leq \beta \leq 1$ controls how much the training weights in the decision, the threshold $\gamma(E_0, Q_1)$ is given by

$$\gamma(E_0, Q_1) = \beta \min_{Q \in \mathcal{P}(\mathcal{X})} D(Q \| Q_1) - E_0, \quad (19)$$

the perturbed training type $\hat{T}_X(a)$ is

$$\hat{T}_X(a) = (1 - \delta_n)T_X(a) + \frac{\delta_n}{|\mathcal{X}|}, \quad (20)$$

where, δ_n can be chosen as any function of the order $o(n^{-1})$. We add this small perturbation of the training type to avoid the cases where some of the alphabet symbols have not been observed in the training sequence.

We define the decision regions of the proposed classifier by

$$A_0(T_X, \beta) = \{Q : Q \in \mathcal{P}(\mathcal{X}), \phi_\beta(Q, \hat{T}_X) = 0\}, \quad (21)$$

$$A_1(T_X, \beta) = \{Q : Q \in \mathcal{P}(\mathcal{X}), \phi_\beta(Q, \hat{T}_X) = 1\}. \quad (22)$$

Observe that when $\beta = 0$ we recover Hoeffding’s test while for $\beta = 1$ the test is reminiscent of a likelihood ratio test where instead of P_1, we have the perturbed training type $\hat{T}_X(a)$. Intuitively, as long as we have enough training samples, the training type $\hat{T}_X(a)$ will be close to P_1 and we will attain the optimal error exponent tradeoff. This is indeed what will be shown next.

Figure 1 illustrates the proposed classifier for a realization of the training sequence when $\beta = 1$. The proposed classifier becomes the plug-in likelihood ratio test, where the test’s threshold has been adjusted by the training samples such that the resulting hyperplane of the likelihood ratio test is tangent to the relative entropy ball of radius E_0 centered at P_0. The type-I error exponent will be equal to E_0 for any realization of \hat{T}_X. However, the type-II error exponent for a given training sample $E_1(\hat{T}_X)$ is the projection of P_1 into the separating hyperplane determined by the test, which is the function of the training sequence and can vary accordingly.

Next, we find a refined expression for the type-I error probability and show that the error probability prefactor is $O(\sqrt{n})$, i.e., of the same order of the prefactor achieved by the likelihood ratio test.

Theorem 1. For every $P_0, P_1, 0 < \beta \leq 1$ the type-I probability of error of the classifier ϕ_β defined in (18) can be expressed as

$$\epsilon_0(\phi_\beta) = \frac{1}{\sqrt{n}} e^{-nE_0(c + o(1))}, \quad (23)$$
where c is a positive constant that only depends on the data distributions and E_0.

Proof. The proof can be found in Appendix A.

Having established the improvement of the prefactor of the type-I error probability, we are ready to study the type-II error exponent of our proposed classifier.

Theorem 2. For every P_0, P_1 there exists a finite training to sample size ratio α^*_β such that for any $\alpha > \alpha^*_\beta$ we have

$$E_1(\phi_\beta) = E_1^*(E_0),$$

(24)

that is, for any E_0, the proposed classifier achieves the optimal error exponent tradeoff defined in (6).

Proof. The proof can be found in Appendix B.

We have shown that the classifier proposed in (18) not only achieves the optimal error exponent tradeoff for $\alpha > \alpha^*_\beta$ but also achieves the same prefactor of the type-I error probability of the likelihood ratio test. This represents a significant improvement with respect to the Hoeffding’s universal test for observation alphabets $|X| > 2$. However, this might come as an expense of worse polynomial decay of type-II error probability. In the following result, by using the refinements of large deviation techniques, we show that this is not the case and that the proposed classifier achieves the same prefactor as the type-II error probability of the likelihood ratio test, establishing the optimality of the proposed classifier up to a constant.

Theorem 3. For every P_0, P_1, and $\alpha^*_\beta < \alpha$ the type-II probability of error of the classifier ϕ_β is

$$\epsilon_1(\phi_\beta) = \frac{1}{\sqrt{n}} e^{-nE_1(E_0, P_i)}(c + o(1)),$$

(25)

where c is a positive constant depending only on data distributions and E_0.

Proof. The proof can be found in Appendix C.

Example 1. We present a numerical example to illustrate the performance of the proposed classifier in (18). Consider two trinary distributions $P_0 = [0.3, 0.3, 0.4], P_1 = [0.35, 0.35, 0.3]$ and set $\alpha = 2$ and $E_0 = 0.005$. Each point in the figure is obtained by estimating the average error probability as follows. For each length of the test sequence n, we estimate the type-I and type-II error probabilities of the classifier in (18) as well as those of the likelihood ratio test in (5) and Hoeffding’s classifier over 5×10^7 independent experiments. As it can be seen in Figures 2, the type-I error exponent of the likelihood ratio test and the proposed classifier are very close to each other and outperform the Hoeffding’s test. In addition, we observe that the type-II error exponent of the proposed classifier is slightly worse than that of the likelihood ratio and Hoeffding’s tests for small n; as n increases, the proposed classifier achieves the optimal exponent. In addition, in order to clearly observe the effect of the prefactor, in Figures 3 we plot $\log \frac{\epsilon_i(\phi_\beta)}{\sqrt{n} e^{-nE_i(E_0, P_i)}}$ for $i \in \{0, 1\}$ for the same classifiers. We first notice that in the case of $\log \frac{\epsilon_i(\phi_\beta)}{\sqrt{n} e^{-nE_i(E_0, P_i)}}$, the three classifiers achieve the optimal $\frac{1}{\sqrt{n}}$ prefactor, though with different constants. We also observe that $\log \frac{\epsilon_i(\phi_\beta)}{\sqrt{n} e^{-nE_i(E_0, P_i)}}$ converges to a constant for the likelihood ratio test and
the new classifier, as predicted by our analysis. Instead, as (17) suggests, Hoeffding’s classifier fails to attain the optimal $\frac{1}{\sqrt{n}}$ prefactor for ϵ_0.

Fig. 2. Type-I and type-II error exponents for the likelihood ratio test, Hoeffding’s test and the proposed classifier.

Theorem 2 shows that the classifier in (18) can achieve the optimal error exponent tradeoff if the training to sample ratio α is large enough. As it is evident by the proof of Theorem 2, the proposed classifier cannot achieve the optimal error exponent tradeoff for α close to zero. Therefore, it is desirable to find the smallest α_β^* such that the above theorem holds. The next results introduce lower and upper bounds to α_β^*.
Fig. 3. $\log \frac{e_{i}(\phi)}{\sqrt{n}}$ for $i \in \{0, 1\}$ and for the likelihood ratio test, Hoeffding’s test and the proposed classifier.

Theorem 4. For every $P_0, P_1 \in \mathcal{P}(\mathcal{X})$, and $E_0 > 0$, we have $\alpha_{\beta} \leq \alpha^*_\beta$ where

$$\alpha_{\beta} = -\Lambda_{\min}(H),$$

where Λ_{\min} is the smallest eigenvalue of the matrix

$$H = \beta \eta^*_\beta \sqrt{J} \left[Q + \eta^*_1 V + (1 - \eta^*_1) W - T \right] \sqrt{J},$$

where $W = w w^T$, $V = v v^T$, $Q = q q^T$ and

$$w^T = \frac{1}{\sqrt{\text{Var}_Q \log \frac{Q_{\mu^*}(1)}{P_0(1)}}} \left(Q_{\mu^*}(1) \log \frac{Q_{\mu^*}(1)}{P_0(1)} - E_0, \ldots, Q_{\mu^*}(|\mathcal{X}|) \log \frac{Q_{\mu^*}(|\mathcal{X}|)}{P_0(|\mathcal{X}|)} - E_0 \right).$$
\[v = \frac{1}{\sqrt{\text{Var} Q_{\eta}^*(\Omega)}} (Q_{\eta}^*(1)\Omega(1), \ldots, Q_{\eta}^*(|\mathcal{X}|)\Omega(|\mathcal{X}|)), \]

(29)

\[\Omega(i) = \beta \log \frac{P_1(i)}{P_0(i)} + (1 - \beta) \log \frac{Q_{\eta}^*(i)}{P_0(i)}, \quad i \in \mathcal{X}, \]

(30)

\[q = (Q_{\mu}^*(1), \ldots, Q_{\mu}^*(|\mathcal{X}|)), \]

(31)

\[T = \text{diag}(Q_{\mu}^*), \quad J = \text{diag}\left(\frac{1}{P_1}\right), \]

(32)

where \(Q_{\mu}^* \) is defined in (15) when \(Q_1 = P_1 \), and \(Q_{\eta}^* \) defined in (213), is the projection of \(P_1 \) onto \(A_0(P_1, \beta) \) which equals to \(Q_{\mu}^* \). Furthermore, \(\eta_{\beta}^* \) is the optimal Lagrange multiplier in (210) for \(0 < \beta \leq 1 \). Moreover, for \(|\mathcal{X}| \geq 6\) by further lower bounding \(\alpha_{\beta} \) we have

\[\beta \eta_{\beta}^* \left[\frac{Q_{\eta}^*}{P_1} \right]^{(3)} \leq \Omega_{\beta}, \]

where \(\left[\frac{Q_{\eta}^*}{P_1} \right]^{(3)} \) is the third largest value of \(\frac{Q_{\eta}^*(i)}{P_1(i)} \) for \(i \in \{1, \ldots, |\mathcal{X}|\} \).

Proof. The proof can be found in Appendix D.

Example 2. Letting the distributions \(P_0 = \text{Bern}(0.3), P_1 = \text{Bern}(0.4) \), we have set \(E_0 = 0.005 \). Figure 4 shows the relation of the \(\alpha_{\beta} \) for \(0 < \beta < 1 \). As can be seen from the figure, \(\alpha_{\beta} \) is increasing in \(\beta \) and is equal to zero for \(\beta = 0 \) as expected, since for \(\beta = 0 \) the proposed classifier is equal to universal Hoeffding’s test and achieves the optimal type-II error exponent for every \(P_1 \). However, \(\beta = 0 \), as discussed before, is the singularity point as the type-I error probability prefactor loses its independence from dimension.

We next find an upper bound on the optimal training to observation ratio \(\alpha_{\beta}^* \).

Theorem 5. For every \(P_0, P_1 \in \mathcal{P}(\mathcal{X}) \), and \(E_0 > 0 \), we have that \(\alpha_{\beta}^* \leq \bar{\alpha} \) where

\[\bar{\alpha} = \frac{\lambda^*(4 + \lambda^*)(1 + \kappa)}{(P_{1\min}^\text{min})^2}, \]

(34)

\[P_{1\min}^\text{min} \triangleq \min_{x \in \mathcal{X}} P_1(x), \quad \lambda^* \text{ is the optimal Lagrange multiplier in (11), and} \]

\[\kappa = \sqrt{\frac{E_1(E_0, P_1)}{\lambda^*(4 + \lambda^*)}}. \]

(35)

Proof. The proof can be found in Appendix E.

Note that the upper bound (35) and lower bound (33) to \(\alpha_{\beta}^* \) suggests that as \(P_1 \) approaches the probability simplex boundaries, i.e., as \(P_{1\min}^\text{min} \) approaches zero, the classification problem becomes more challenging, and we need more training samples to achieve the optimal exponents. For the classification problem in the Example 2 the upper bound in (35) gives \(\bar{\alpha} = 14.19 \), i.e., if the ratio of training samples to the number of test samples exceeds 14.19 the proposed test with \(\beta = 1 \) achieves (23), (25). See [19] for general conditions between alphabets size and training sample size when both hypotheses are unknown.
Fig. 4. Lower bound on the required training to test sample ratio α/β for achieving the optimal error exponent trade-off with the proposed classifier for $0 < \beta \leq 1$.

IV. ST EIN REGIME CLASSIFICATION

In this section, we will study the classification problem in the Stein regime. For the case where both hypotheses are known, the Stein regime is defined as the highest error exponent under one hypothesis when the error probability under the other hypothesis is at most some fixed ϵ (see e.g., [13])

$$E_1(\epsilon) \triangleq \sup \{ E_1 \in \mathbb{R}_+ : \exists \phi, \exists n_0 \in \mathbb{Z}_+ \text{ s.t. } \forall n > n_0 \epsilon_0(\phi) \leq \epsilon \text{ and } \epsilon_1(\phi) \leq e^{-nE_1} \}. \quad (36)$$

The optimal $E_1(\epsilon)$, given by [13]

$$E_1^{(c)}(\phi^{\text{lr}}) = D(P_0||P_1), \quad (37)$$

can be achieved by setting the threshold in (5) to be $\gamma = -D(P_0||P_1) + \frac{c}{\sqrt{n}}$, where c is a constant that depends on distributions P_0, P_1 and ϵ. Similarly, our setting where P_0 is known and a training sequence of the second hypothesis is available, we can define the Stein exponent as the highest error exponent under one hypothesis when the error probability under the other hypothesis is at most some fixed ϵ for all probability distributions \tilde{P}_1, i.e.,

$$E_1^{(c)} \triangleq \sup \{ E_1 \in \mathbb{R}_+ : \exists \phi, \exists n_0 \in \mathbb{Z}_+ \text{ s.t. } \forall n > n_0, \forall \tilde{P}_1 \in \mathcal{P}(\mathcal{X}), \epsilon_0(\phi|P_0, \tilde{P}_1) \leq \epsilon \text{ and } \epsilon_1(\phi|P_0, P_1) \leq e^{-nE_1} \}, \quad (38)$$

where $\epsilon_0(\phi|P_0, \tilde{P}_1)$ is the error probability when the generating distributions are P_0, \tilde{P}_1, i.e., for all possible distributions \tilde{P}_1 the type-I probability of error is bounded by some ϵ and $E_1^{(c)}$ is the maximum achievable type-II error exponent under the actual distribution generating data P_1. Similarly,

$$E_0^{(c)} \triangleq \sup \{ E_0 \in \mathbb{R}_+ : \exists \phi, \exists n_0 \in \mathbb{Z}_+ \text{ s.t. } \forall n > n_0, \epsilon_0(\phi|P_0, P_1) \leq e^{-nE_0}, \epsilon_1(\phi|P_0, \tilde{P}_1) \leq \epsilon \forall \tilde{P}_1 \in \mathcal{P}(\mathcal{X}) \}. \quad (39)$$
In other words, we are interested in the best possible error exponent for one of the hypothesis while the probability of error under alternative hypothesis is some ε universally for any distribution P₁.

Theorem 6. Let ε ∈ (0, 1), then for any probability distributions P₀, P₁, the Stein regime exponents are given by

\begin{align*}
E^{(ε)}_1 &= D(P_0 ∥ P_1), \\ E^{(ε)}_0 &= D_{\frac{1}{1+α}}(P_1 ∥ P_0),
\end{align*}

where \(D_ρ(P_1 ∥ P_0) = \frac{1}{ρ-1} \log \sum_{x \in X} P_1^ρ x P_0^{1-ρ} \) is the Rényi divergence of order ρ.

Proof. The proof can be found in Appendix K.

Observe that \(E^{(ε)}_1 \) is equal to the Stein exponent for the likelihood ratio test where both distributions are known. However, since Rényi divergence is a non-decreasing function of its order and \(\frac{α}{1+α} < 1 \) hence \(E^{(ε)}_0 \) is strictly smaller than the Stein regime exponent achieved by the likelihood ratio test.

V. SEQUENTIAL CLASSIFICATION WITH A KNOWN HYPOTHESIS

In this section, we study sequential classification with a known hypothesis. When both hypotheses are known, the sequential probability ratio test can achieve higher exponents compared to the likelihood ratio test. When only one of the hypotheses is known, Hoeffding’s test can achieve the best error exponent achieved by the likelihood ratio test in the fixed sample size scenario. However, there is no counterpart to Hoeffding’s test in the sequential case when only one of the hypotheses is known, i.e., no classifier can achieve the same error exponent performance as the sequential probability ratio test [3]. We propose a classifier inspired by the sequential probability ratio test and show that having training samples from the second hypothesis can improve the error exponent tradeoff compared to the fixed sample-sized classification.

In the sequential setting, the number of samples is a random variable called the stopping time \(τ \), taking values in \(\mathbb{Z}_+ \). A sequential classifier is a pair \(Φ = (φ : X^τ × X^{ατ} → \{0, 1\}, τ) \), where for every \(n ⩾ 0 \) the event \(\{τ ⩽ n\} ∈ \mathcal{F}_n \), and \(\mathcal{F}_n \) is the sigma-algebra induced by random variables \(x^n, X^{αn} \), i.e., \(σ(x^n, X^{αn}) \).

We also assume that at every stage, additional training and test samples are available to the classifier, such that \(α = \frac{k}{n} \) remains constant. Moreover, \(φ \) is a \(\mathcal{F}_τ \) measurable decision rule, i.e., the decision rule determined by casually observing the sequence \(x^n, X^{αn} \). In other words, at each time instant, the test attempts to decide in favor of one of the hypotheses or chooses to take new samples from the source \(P_1 \) as well as new samples from the unknown data source.

The two possible pairwise error probabilities that measure the performance of the test are defined as

\begin{equation}
ε_0(Φ) = \mathbb{P}_0[φ(x^τ, X^{ατ}) \neq 0], \quad ε_1(Φ) = \mathbb{P}_1[φ(x^τ, X^{ατ}) \neq 1],
\end{equation}

where the probabilities are over \(P_0, P_1 \), respectively. Similarly to the sequential hypothesis testing case we define the optimal error exponent as

\begin{equation}
E^*_1(E_0) ≜ \sup \left\{ E_1 ∈ \mathbb{R}^+ : \exists Φ, \exists n ∈ \mathbb{Z}_+ \text{ s.t. } E_{P_0}[τ] ⩽ n, E_{P_1}[τ] ⩽ n, \ ε_0(Φ) ⩽ 2^{-nE_0} \text{ and } ε_1(Φ) ⩽ 2^{-nE_1} \right\}.
\end{equation}
When both hypotheses are known, the sequential probability ratio test (SPRT) $\Phi = (\phi, \tau)$ proposed by Wald \[20\] achieves the optimal exponent tradeoff. The sequential probability ratio test is given by

$$\tau = \inf \{ t \geq 1 : S_t \geq \gamma_0 \text{ or } S_t \leq -\gamma_1 \},$$

(44)

where

$$S_n = \sum_{i=1}^{t} \log \frac{P_0(x_i)}{P_1(x_i)},$$

(45)

is the accumulated log-likelihood ratio (LLR) of the observed sequence x and the thresholds γ_0, γ_1 are two positive real numbers. Moreover, the test makes a decision according to the rule

$$\phi(T_x) = \begin{cases}
0 & \text{if } S_\tau \geq \gamma_0 \\
1 & \text{if } S_\tau \leq -\gamma_1.
\end{cases}$$

(46)

It is shown in \[20\] that the above test attains the optimal error exponent tradeoff, i.e., as thresholds γ_0, γ_1 approach infinity, the test achieves the best error exponent trade-off in (43). It is known that the error probabilities of sequential probability ratio test as a function of γ_0 and γ_1 are \[21\]

$$\epsilon_0 = c_0 \cdot e^{-\gamma_1}, \quad \epsilon_1 = c_1 \cdot e^{-\gamma_0},$$

(47)

as $\gamma_0, \gamma_1 \to \infty$ where c_0, c_1 are positive constants. Moreover, it can also be shown that

$$E_{P_0}[\tau] = \frac{\gamma_0}{D(P_0\|P_1)}(1 + o(1)), \quad E_{P_1}[\tau] = \frac{\gamma_1}{D(P_1\|P_0)}(1 + o(1)).$$

(48)

(49)

Therefore, according to definition (43), the optimal error exponent tradeoff is given by,

$$E_0 = D(P_1\|P_0), \quad E_1 = D(P_0\|P_1),$$

(50)

where thresholds γ_0, γ_1 are chosen as

$$\gamma_0 = n(D(P_0\|P_1) + o(1)), \quad \gamma_1 = n(D(P_1\|P_0) + o(1)).$$

(51)

Hence, the sequential probability ratio test achieves the Stein regime error exponents achievable by the standard likelihood ratio test \[2\] simultaneously.

For every fixed n, we propose the following sequential classifier

$$\tau = \inf \{ t \geq n : S_t(T_x, \hat{T}_X) \geq \gamma_{0,n}(t) \text{ or } S_t(T_x, \hat{T}_X) \leq -\gamma_{1,n}(t) \},$$

(52)

where

$$S_t(T_x, \hat{T}_X) = \sum_{i=1}^{t} \log \frac{P_0(x_i)}{\hat{P}'_X(x_i)},$$

(53)

is the accumulated log-likelihood ratio (LLR) using the plug-in perturbed type of the training sequence evaluated at the observed sequence x, and

$$\hat{T}'_X = (1 - \delta_n)T_X + \frac{\delta_n}{|X|}$$

(54)

where $\delta_n = o(n^{-1})$ and $\gamma_{0,n}(t), \gamma_{1,n}(t)$ are chosen as

$$\gamma_{0,n}(t) = nD(P_0\|\hat{T}'_X) + (4|X| + 4) \log(t + 1), \quad \gamma_{1,n}(t) = nD(T_X\|P_0) + (4|X| + 4) \log(t + 1),$$

(55)
and the test makes a decision according to the rule
\[
\phi(\hat{T}_x, \hat{T}_X) = \begin{cases}
0 & \text{if } S_\tau(\hat{T}_x, \hat{T}_X) \geq \gamma_{0,n}(t) \\
1 & \text{if } S_\tau(\hat{T}_x, \hat{T}_X) \leq -\gamma_{1,n}(t),
\end{cases}
\] (56)
where \(\hat{T}_x, \hat{T}_X\) are types of the test and training samples at the stopping time \(\tau\). As can be seen from the above expressions, the proposed classifier is the plugin sequential probability ratio test, replacing \(P_1\) by the perturbed training type \(\hat{P}_0\).

The next theorem gives a lower bound on the achievable error exponent tradeoff of the proposed sequential classifier.

Theorem 7. For every \(P_0, P_1\), there exists a training to observation ratio \(\alpha_{seq}^*\) such that for any \(\alpha \geq \alpha_{seq}^*\), the sequential classifier \(\Phi_{seq} = (\phi(\hat{T}_x, \hat{T}_X), \tau)\) defined in (52), (56) achieves
\[
E_0(\Phi_{seq})E_1(\Phi_{seq}) \geq D(P_0 \parallel P_1)D_{\frac{\alpha}{1+\alpha}}(P_1 \parallel P_0).
\] (57)
Furthermore, the average stopping times of the classifier satisfy
\[
\mathbb{E}_{P_0}[\tau] = \mathbb{E}_{P_1}[\tau] = n(1 + o(1)).
\] (58)

Proof. The proof can be found in Appendix L.

This theorem shows that similar to the hypothesis testing problem with known distributions, the proposed sequential classifier can achieve the Stein regime exponents simultaneously when only one of the distributions is known.

Example 3. In Figures 5, we present a numerical example to illustrate the performance of the proposed sequential classifier in \(\Phi_{seq}\) with \(\gamma_{0,n}(t) = nD(\hat{P}_0 \parallel \hat{P}_X), \gamma_{1,n}(t) = nD(\hat{T}_X \parallel \hat{P}_0)\). Consider two binary distributions \(P_0 = \text{Bern}(0.45), \text{Bern}(0.55)\) and set \(\alpha = 10\). Each point in the figures is obtained by estimating the average error probability as follows. For each length of the test sequence \(n\), we estimate the type-I and type-II error probabilities of the sequential classifier in (53) by generating a sample from the test source and \(\alpha\) samples from \(P_1\) until the test stops and makes a decision. We have plotted the \(-\frac{1}{n}\log \epsilon_i\) for \(i \in \{0, 1\}\). We can notice that the type-I error exponent converges to \(D_{\frac{\alpha}{1+\alpha}}(P_1 \parallel P_0)\) while the type-II error exponent tends to \(D(P_0 \parallel P_1)\) as Theorem 7 suggests.

Theorem 8. For every sequential classifier \(\Phi_{seq} = (\phi_{seq}(\hat{T}_x, \hat{T}_X), \tau)\), such that \(\mathbb{E}_{P_0}[\tau] \leq n, \mathbb{E}_{P_1}[\tau] \leq n\), we have
\[
\max_{\Phi_{seq}} \min_{P_1 \in \mathcal{P}(X)} E_0(\Phi_{seq})E_1(\Phi_{seq}) \leq D(P_0 \parallel P_1)D_{\frac{\alpha}{1+\alpha}}(P_1 \parallel P_0).
\] (59)
This suggests that the proposed sequential classifier is universal in the sense that it achieves the highest error exponent tradeoff over all possible classifiers and distributions \(P_1\).

Proof. The proof can be found in Appendix M.
Appendix A

Proof of Theorem 1

First, we prove that for every realization of the training sequence \hat{T}_X, the type-I error exponent is equal to E_0. Note that the solution to the optimization problem in (19) is a convex problem, and by the Karush-Kuhn-Tucker (KKT) conditions [22], the minimizer is unique and is the tilted distribution of P_0 and \hat{T}_X', i.e.,

$$Q_{\mu^*}(x) = \frac{P_0^{\mu^*}(x)\hat{T}_X' \frac{1}{\mu^*}(x)}{\sum_{a \in X} P_0^{\mu^*}(a)\hat{T}_X' \frac{1}{\mu^*}(a)},$$ \hspace{1cm} (60)
and \(\mu^* \) is the solution to

\[
D(Q_{\mu^*} \mid P_0) = E_0.
\]

(61)

Therefore, the classifier threshold in (19) can be written as

\[
\gamma(E_0, \hat{T}'_X) = \beta D(Q_{\mu^*} \mid \hat{T}'_X) - D(Q_{\mu^*} \mid P_0).
\]

(62)

Now by Sanov’s theorem, we can find the type-I error exponent by solving (7) when \(P_1 \) replaced by \(\hat{T}'_X \) and \(\gamma \) is replaced by (62). This optimization problem is convex in \(Q \) for every \(\hat{T}'_X \) when \(\beta = 1 \), however for \(\beta < 1 \) this is not the case and the KKT conditions are only necessary conditions. Spelling out the Lagrangian we obtain the KKT conditions

\[
L(Q, \lambda, \nu) = D(Q \mid P_0) + \lambda \left(\beta D(Q \mid \hat{T}'_X) - D(Q \mid P_0) - \gamma(E_0, \hat{T}'_X) \right) + \nu \left(\sum_{x \in \mathcal{X}} Q(x) - 1 \right)
\]

(63)

\[
\frac{\partial L(Q, \lambda, \nu)}{\partial Q(x)} = 1 + \log \frac{Q(x)}{P_0(x)} + \lambda \left(\beta + \beta \log \frac{Q(x)}{\hat{T}'_X(x)} - 1 - \log \frac{Q(x)}{P_0(x)} \right) + \nu.
\]

(64)

Setting the derivative to zero, we get

\[
Q_{\beta, \lambda^*}(x) = \frac{P_0^{1+\lambda x} \hat{T}'_X^{1-\lambda x} \hat{T}'_X(x)}{\sum_{a \in \mathcal{X}} P_0^{1+\lambda a} \hat{T}'_X^{1-\lambda a} (a)}, \quad 0 \leq \lambda^*,
\]

(65)

and by complementary slackness condition (22)

\[
D(Q_{\beta, \lambda^*} \mid P_0) - \beta D(Q_{\beta, \lambda^*} \mid \hat{T}'_X) = D(Q_{\mu^*} \mid P_0) - \beta D(Q_{\mu^*} \mid \hat{T}'_X).
\]

(66)

Note that, \(\lambda^* \) cannot be zero as that sets \(Q_{\beta, \lambda^*} = P_0(x) \) which is invalid solution when \(E_0 > 0 \). It is easy to see that this equality is satisfied when \(\frac{1+\lambda x}{1-\lambda x+\lambda} = \frac{1+\mu^*}{1+\mu^*} \). It is also easy to see this is the unique solution as \(\frac{1+\lambda x}{1-\lambda x+\lambda} \) is strictly decreasing function in \(\lambda^* \) and hence \(D(Q_{\beta, \lambda^*} \mid P_0) \) and \(D(Q_{\beta, \lambda^*} \mid \hat{T}'_X) \) are strictly increasing and strictly decreasing in \(\lambda^* \) respectively. Therefore, we get

\[
D(Q_{\beta, \lambda^*} \mid P_0) = E_0.
\]

(67)

Next, by rewriting the type-I error probability as a function of the types of the training and observation sequences \(\hat{T}_X, \hat{T}_X \) we have

\[
\epsilon_0(\phi_\beta) = \sum_{\hat{T}_X \in P_0(X)} \sum_{\hat{T}_X \in P_0(X), \phi_\beta(\hat{T}_X, \hat{T}_X) = 1} P_0(\hat{T}_X) \sum_{\hat{T}_X \in P_0(X)} P_0(\hat{T}_X),
\]

(68)

that is the type-I error exponent is equal to \(E_0 \) for every realization of training sequence \(\hat{T}_X \). As the hypothesis test is a type base test, and by letting \(P_0(T'_0) = n^{-\frac{|\lambda|+1}{2}} e^{-nD(Q \mid P_0)(1 + o(1))} \) (23), we obtain

\[
\epsilon_0(\phi_\beta) = \sum_{\hat{T}_X \in \mathcal{A}_1(\hat{T}_X, \beta)} P_1(\hat{T}_X) \sum_{\hat{T}_X \in \mathcal{A}_1(\hat{T}_X, \beta)} n^{-\frac{|\lambda|+1}{2}} e^{-nD(\hat{T}_X \mid P_0)(1 + o(1)).}
\]

(69)

To find the polynomial decay of the error probability, we use the following theorems by (24), (16), (25), to approximate the summation by an integral and then use the saddle point approximation. We also use the shorthand notation \(a_n \approx b_n \) for any two positive real sequences such that \(\log \frac{a_n}{b_n} = O(1) \).
Theorem 9. \[24\] Suppose \(\psi : \mathbb{R}^d \to \mathbb{R} \) is a Lipschitz continuous function and the open set \(\mathcal{D} \subseteq \mathbb{R}^d \) has minimally smooth boundary. Then
\[
\sum_{w \in \mathcal{D} \cap \mathcal{P}_0(\mathcal{X})} e^{-k\psi(w)} \leq k^d \int_{\mathcal{D}} e^{-k\psi(w)} \, dw. \tag{70}
\]

The precise definition of minimally smooth boundary can be found in \[24\]; we only work with smooth boundaries which are also minimally smooth.

Letting \(T_X^{\beta} \) be fixed, it can be shown that \(\phi(Q) = D(Q\|P_0) - \beta D(Q\|\hat{T}_X^\beta) \) is a smooth function, and hence we can conclude the boundary of the decision region \(\mathcal{A}_0(T_X, \beta) \) is a smooth manifold \[26\]. Furthermore, by the continuous differentiability of \(\psi(Q) = D(Q\|P_0) \) in \(Q \), the conditions of the Theorem 9 are satisfied and we can approximate the summation in \[69\] by the integral
\[
\sum_{w \in \mathcal{A}_1(T_X, \beta) \cap D_0(\mathcal{X})} e^{-n D(w\|P_0)} \leq n^{1/2} \int_{\mathcal{A}_1(T_X, \beta)} e^{-n D(w\|P_0)} \, dw. \tag{71}
\]

Next we will use the following theorem which can be derived from \[16\] to approximate the integral.

Theorem 10. \[16\] For a set \(\Gamma \) in \(\mathbb{R}^d \) having smooth boundary with a unique dominating point \(\nu \) where the large deviation rate function \(I(x) \) is minimized with \(I(\nu) = a \), let the level surface \(S_0 = \{ x \in \mathbb{R}^d : I(x) = a \} \) be described locally by \(x_d = f(x) \), where \(x = (x_1, \ldots, x_{d-1}) \), and let the region \(\Gamma \) be bounded by the surface \(x_d = g(x) \), where \(g(x) \) is a three times differentiable function of \(x \) in a neighbourhood of \(0 \). If the Hessians of \(g \) and \(f \) at \(0 \) satisfy \(H_g(0) > H_f(0) \) then
\[
\int_{w \in \Gamma} e^{-n D(w\|P_0)} \, dw = n^{-\frac{d+1}{2}} e^{-na}(d_0 + o(1)), \tag{72}
\]
where

Since the optimizing distribution solving Sanov’s Theorem is unique and equal to \(Q_{\lambda^*} \), the dominating point is unique. Hence, we only need to prove the the Hessian of the decision region \(\mathcal{D} \) minus the Hessian of the level surface \(S_{E_0} = \{ Q \in \mathcal{P}(\mathcal{X}) : D(Q\|P_0) \leq E_0 \} \) is positive definite matrix. Writing \(Q_{\beta, \lambda^*}(|\mathcal{X}|) = 1 - \sum_{\beta=1}^{2^{d-1}} Q_{\beta, \lambda^*}(x) \) and taking the derivatives we have:
\[
H_{\mathcal{D}}^{(|\mathcal{X}|^{-1}) \times (|\mathcal{X}|^{-1})} = -(1 - \beta) \left(\text{diag} \left(\frac{1}{Q_{\beta, \lambda^*}} \right) + \frac{11^T}{Q_{\beta, \lambda^*}(|\mathcal{X}|)} \right), \tag{73}
\]
\[
H_{S_{E_0}}^{(|\mathcal{X}|^{-1}) \times (|\mathcal{X}|^{-1})} = - \text{diag} \left(\frac{1}{Q_{\beta, \lambda^*}} \right) - \frac{11^T}{Q_{\beta, \lambda^*}(|\mathcal{X}|)} , \tag{74}
\]
and hence
\[
H_{S_{E_0}} - H_{\mathcal{D}} = \beta \text{diag} \left(\frac{1}{Q_{\beta, \lambda^*}} \right) + \beta \frac{11^T}{Q_{\beta, \lambda^*}(|\mathcal{X}|)}, \tag{75}
\]
which is positive for any \(\beta > 0 \). Therefore, by \[69\], \[71\], \[72\], we have
\[
\epsilon_0(\phi_{\beta}) = \sum_{T_X} P_{\lambda}(T_X) n^{-|\mathcal{X}|^{-1}} n^{|\mathcal{X}|^{-1}} n^{-|\mathcal{X}|} e^{-nE_0}(c + o(1)) \tag{76}
\]
\[
= \sum_{T_X} P_{\lambda}(T_X) n^{-E_0}(c + o(1)). \tag{77}
\]
Finally, since c is finite, positive, and only depends on P_0, P_1, E_0, there exists a \tilde{c} such that

$$\epsilon_0(\phi_0) = \frac{1}{\sqrt{n}} e^{-nE_0(\tilde{c} + o(1))},$$

(78)

which concludes the proof.

APPENDIX B

Proof of Theorem 2

Using standard properties of the method of types [23], the type-II probability of error can be written as

$$\epsilon_1(\phi_0) = \sum_{x, x. \phi_0(T_n, T_N) = 0} P_1(X) P_1(x)$$

(79)

$$= \sum_{Q \in P_n(X), Q_1 \in P_n(X), \phi(Q, Q_1) = 0} P_1(T_{Q_1}^O) P_1(T_{Q_1}^{\delta})$$

(80)

$$\leq \sum_{Q \in P_n(X), Q_1 \in P_n(X), \phi(Q, Q_1) = 0} e^{-nD(Q||P_1) - kD(Q_1||P_1)}$$

(81)

$$\leq (n + 1)^{|X|}(k + 1)^{|X|} 2^{-nE_1(n)(\phi_0)}$$

(82)

where

$$E_1^{(n)}(\phi_0) = \min_{Q, Q_1} D(Q||P_1) + \alpha D(Q_1||P_1).$$

(83)

It is worth observing that this optimization problem is non-convex. In addition, lower bounding (80) yields

$$\epsilon_1(\phi_0) \geq (n + 1)^{-|X|}(k + 1)^{-|X|} e^{-nE_1(n)(\phi_0)}.$$

(84)

Observe that the proposed test ϕ_0 depends on n; hence if the limit of (83) as n goes to infinity exists, then the limit is the type-II error exponent. Using a change of variable, we can write (83) as

$$\tilde{E}_1^{(n)}(\phi_0) = \min_{Q, Q_1} D(Q||P_1) + \alpha D(Q_1||P_1) + \frac{\delta_n}{1 - \delta_n} U \| P_1 \|$$

(85)

$s.t. \beta D(Q||Q_1) - D(Q||P_0) \geq \gamma(E_0, Q_1)$

$Q \in P(X)$

$Q_1 \in (1 - \delta_n)P(X) + \delta_n U$

where U is the uniform distribution on $P(X)$. Now, by using a Taylor expansion of $D\left(\frac{1 - \delta_n}{1 - \delta_n} U \| P_1 \right)$ around $\delta_n = 0$, we get

$$\tilde{E}_1^{(n)}(\phi_0) = \min_{Q, Q_1} D(Q||P_1) + \alpha D(Q_1||P_1) + O\left(\frac{\delta_n}{1 - \delta_n}\right)$$

(86)

$s.t. \beta D(Q||Q_1) - D(Q||P_0) \geq \gamma(E_0, Q_1)$

$Q \in P(X)$

$Q_1 \in (1 - \delta_n)P(X) + \delta_n U$

Therefore, we can approximate the type-II error exponent by

$$E_1^{(n)}(\phi_0) = \min_{Q, Q_1} D(Q||P_1) + \alpha D(Q_1||P_1)$$

(87)
where
\[\mathcal{P}_{\delta_n}(\mathcal{X}) = \{ Q : Q = (1 - \delta_n)P + \delta_n U, P \in \mathcal{P}(\mathcal{X}) \}, \tag{88} \]
and the approximation error is of order \(O(\frac{\delta_n}{1 - \delta_n}) \). Letting \(\delta_n = o(n^{-1}) \) we have
\[\epsilon_1(\phi_\beta) = e^{-nE_1^{(n)}(\phi_\beta) + o(1)} \approx e^{-nE_1^{(n)}(\phi_\beta)}. \tag{89} \]
Hence, the type-II error exponent can be calculated as the limit of (87) when \(n \) goes to infinity. We also define following optimization problems. For every \(Q_1 \in \mathcal{P}_{\delta_n}(\mathcal{X}) \), let
\[E_1(E_0, Q_1) = \min_{Q \in \mathcal{P}(\mathcal{X}), Q_1 \in \mathcal{P}_{\delta_n}(\mathcal{X})} D(Q \parallel P_1), \tag{90} \]
which is the error exponent when the type of the training sequence is \(Q_1 \). Also, let
\[E_1^{(n)}(E_0, r) = \min_{D(Q_1 \parallel P_1) \leq r} E_1(E_0, Q_1). \tag{91} \]
The latter optimization problem is the worst case achievable error exponent by \(\phi_\beta \) if we know the training sequence type \(Q_1 \) is inside a relative entropy ball around the original distribution \(P_1 \) of radius \(r \) \cite{sason2006}. Using (90), (91), we can write (87) as
\[E_1^{(n)}(\phi_\beta) = \min_{D(Q_1 \parallel P_1) \leq r} E_1^{(n)}(E_0, r) + \alpha r \tag{92} \]
where in (94) we used the KKT conditions to show that the minimizer \(Q_1^* \) of (94) should satisfy the inequality condition \(D(Q_1 \parallel P_1) \leq r \) with equality, i.e., \(D(Q_1^* \parallel P_1) = r \). We will use (95) to analyze the behaviour of the non-convex problem in (93). We also define \(r_c \) as
\[r_c = \min_{Q_1 \in \mathcal{P}(\mathcal{X}), Q_1(i) = 0} D(Q_1 \parallel P_1), \tag{96} \]
that is the minimum distance between \(P_1 \) and distributions on the boundary of the probability simplex \(\mathcal{P}(\mathcal{X}) \). Since \(P_1(i) \) is non zero for every \(i \), therefore \(r_c > 0 \), and we can lower bound \(E_1^{(n)}(\phi_\beta) \) by
\[E_1^{(n)}(\phi_\beta) \geq \min \left\{ \epsilon_1^{(n)}(E_0, r) + \alpha r, \alpha(r_c - \epsilon) \right\}, \tag{97} \]
where \(0 < \epsilon < r_c \), and we used the fact that \(E_1^{(n)}(E_0, r) \geq 0 \) for \(r \geq 0 \) by non-negativity of relative entropy. For \(r \in [0, r_c - \epsilon] \), we also define \(E_1(E_0, r) \) as
\[E_1(E_0, r) = \lim_{n \to \infty} E_1^{(n)}(E_0, r) \tag{98} \]
\[= \lim_{n \to \infty} \min_{D(Q_1 \parallel P_1) \leq r} E_1(E_0, Q_1) \tag{99} \]
\[= \min_{D(Q_1 \parallel P_1) \leq r} E_1(E_0, Q_1). \tag{100} \]
Next, we use the following lemma to find a lower bound on type-I error exponent.

Lemma 11. Let \(r \in [0, r_c) \), then for every \(n \in \mathbb{Z}^+ \), the exponent functions \(E_1^{(n)}(E_0, r) \), and \(E_1(E_0, r) \) are continuous in \(r \).

The proof of Lemma 11 relies on Berge’s maximum theorem and we defer it to Appendix E. Taking the limit of \(E_1^{(n)}(\phi_{\beta}) \) when \(n \) goes to infinity, we have

\[
E_1(\phi_{\beta}) = \lim_{n \to \infty} E_1^{(n)}(\phi_{\beta})
\]

\[
\geq \lim_{n \to \infty} \min_{0 \leq r \leq r_c - \epsilon} \left\{ E_1^{(n)}(E_0, r) + \alpha r, \alpha(r_c - \epsilon) \right\}
\]

\[
= \min_{0 \leq r \leq r_c - \epsilon} \left\{ E_1(E_0, r) + \alpha r, \alpha(r_c - \epsilon) \right\},
\]

(101)

In order to show (102), by Lemma 11, \(E_1^{(n)}(E_0, r) \), and \(E_1(E_0, r) \) are continuous on the compact interval \([0, r_c - \epsilon].\) Also, since \(E_1^{(n)}(E_0, r) \geq E_1^{(n+1)}(E_0, r) \) for every \(r \) in the domain, by Dini’s theorem the convergence of \(E_1^{(n)}(E_0, r) \) is uniform \([29].\) Finally, since the convergence is uniform we can interchange the minimum and limit to get (102).

When \(r = 0 \), we have \(Q_1 = P_1 \) and \(\gamma(E_0, P_1) = \beta E_1^1(E_0) - E_0 \), resulting \(E_1(E_0, r = 0) = E_1^1(E_0) \) where \(E_1^1(E_0) \) is the optimal error exponent tradeoff in (6). Moreover, for \(r_1 \leq r_2 \), we have \(B(P_1, r_1) \subseteq B(P_1, r_2) \) where \(B(P, r) = \{ Q \in \mathcal{P}(X) : D(Q||P) \leq r \} \). Hence \(E_1(E_0, r) \) is a non-increasing function of \(r \). Therefore, the sufficient condition to have \(E_1(\phi_{\beta}) = E_1^1(E_0) \) is

\[
\min_{0 \leq r \leq r_c - \epsilon} \left\{ E_1(E_0, r) + \alpha r, \alpha(r_c - \epsilon) \right\} = E_1(E_0, r = 0).
\]

(103)

Equivalently, letting \(\epsilon \) go to zero, (103) can be written as the following two sufficient conditions

\[
E_1(E_0, r) + \alpha r \geq E_1(E_0, r = 0) \quad \forall r : 0 \leq r < r_c,
\]

\[
\alpha > \frac{E_1(E_0, r = 0)}{r_c}.
\]

(104)

(105)

Hence, letting

\[
\alpha^*_\beta = \max \left\{ \sup_{0 \leq r < r_c} \frac{E_1(E_0, r = 0) - E_1(E_0, r)}{r}, \frac{E_1(E_0)}{r_c} \right\}
\]

(106)

for any \(\alpha > \alpha^*_\beta \), we have \(E_1(\phi_{\beta}) = E_1^1(E_0) \). Finally, since \(E_1(E_0, r) \) is non-increasing and continuous on \(r \in [0, r_c) \), and \(-\frac{\partial E_1(E_0, r)}{\partial r} \bigg|_{r=0} < \infty \) as it will be proved in Theorem 4, the supremum in (106) is finite and

\[
0 < \alpha^*_\beta < \infty,
\]

(107)

and this concludes the proof.

APPENDIX C

PROOF OF THEOREM 4

Using the method of types, the type-II probability of error can be written as

\[
\epsilon_1(\phi_{\beta}) = \sum_{x, X \phi_{\beta}(T_x, T_X) = 0} P_1(X) P_1(x)
\]

(108)

\[
= \sum_{Q_t \in \mathcal{P}_n(X)} P_1(T^0_{Q_t} \cap \mathcal{P}_n(X)) \sum_{Q_{\phi_{\beta}(Q, Q_t) = 0}} P_1(T^0_{Q_t})
\]

(109)

June 24, 2022 DRAFT
\[\sum_{Q_1 \in \mathcal{P}(X) \cap \mathcal{P}_{\phi_a}(X)} ck^{-|X|+1} e^{-kD(Q_1 \parallel P_1)} \sum_{Q \in \mathcal{P}(X), \phi(Q, Q_{1})=0} P_k(T^n_Q) \]

(110)

where in the last step we used [23]

\[P_k(T^n_{Q_1}) \approx k^{-|X|+1} e^{-kD(Q_1 \parallel P_1)}. \]

(111)

We need to show that conditioned on the training sequence having a type \(Q \), the conditional type-II error probability is

\[\sum_{Q \in \mathcal{P}(X), \phi(Q, Q_{1})=0} P_k(T^n_{Q}) = \frac{1}{\sqrt{n}} e^{-nE_1(E_0, Q_1) \left(c + o(1) \right)}, \]

(112)

when \(E_1(E_0, Q_1) \) is positive, i.e., the error decay has a prefactor of \(\frac{1}{\sqrt{n}} \). We first show that for any classifier with \(0 \leq \beta \leq 1 \) we can upper bound the type-II error probability by the classifier type-II error probability with \(\beta = 1 \).

Lemma 12. For every fixed \(Q_1 \) and for every \(\beta_1 \leq \beta_2 \) we have \(\mathcal{A}_0(Q_1, \beta_1) \subseteq \mathcal{A}_0(Q_1, \beta_2) \).

Proof. Let \(Q \in \mathcal{A}_0(Q_1, \beta_1) \), we need to show that for every such \(Q \) , we have \(Q \in \mathcal{A}_0(Q_1, \beta_2) \). We then have

\[D(Q \parallel P_0) - \beta_1 D(Q \parallel Q_1) \leq D(Q_{\mu^*} \parallel P_0) - \beta_1 D(Q_{\mu^*} \parallel Q_1) \]

(113)

where \(Q_{\mu^*} \) is the solution to optimization in \(\gamma(E_0, Q_1) \) in (60) and is independent of \(\beta \). Furthermore,

\[D(Q \parallel P_0) - \beta_2 D(Q \parallel Q_1) \leq D(Q_{\mu^*} \parallel P_0) - \beta_2 D(Q_{\mu^*} \parallel Q_1) + (\beta_2 - \beta_1) \left(D(Q_{\mu^*} \parallel Q_1) - D(Q \parallel Q_1) \right). \]

(114)

Similarly to the proof of Theorem 11 using the KKT conditions it can be shown that the projection of \(Q_1 \) to the set \(\mathcal{A}(Q_1, \beta) \) also equals to \(Q_{\mu^*} \), i.e.,

\[Q_{\mu^*} = \arg \min_{D(Q \parallel P_0) - \beta_1 D(Q \parallel Q_1) \leq \gamma(E_0, Q_1)} D(Q \parallel Q_1). \]

(115)

Hence for every \(Q \in \mathcal{A}_0(Q_1, \beta_1) \) we have

\[D(Q_{\mu^*} \parallel Q_1) \leq D(Q \parallel Q_1), \]

(116)

and by (114)

\[D(Q \parallel P_0) - \beta_2 D(Q \parallel Q_1) \leq D(Q_{\mu^*} \parallel P_0) - \beta_2 D(Q_{\mu^*} \parallel Q_1), \]

(117)

i.e., \(Q \in \mathcal{A}_0(Q_1, \beta_2) \) which concludes the proof. \(\square \)

Therefore we can upper bound the error probability by setting \(\beta = 1 \). Since for every fixed \(Q_1 \) the test is the Neyman-Pearson test using the mismatched distribution \(Q_1 \), the decision region boundary is characterised by a hyperplane and by [24] the conditional type-II error probability prefactor equals to \(\frac{1}{\sqrt{n}} \) for every \(Q_1 \). Hence, substituting (112) into (110) we have

\[\epsilon_1(\phi_\beta) \leq \sum_{Q_1 \in \mathcal{P}(X) \cap \mathcal{P}_{\phi_a}(X)} \frac{k^{-|X|+1}}{\sqrt{n}} e^{-kD(Q_1 \parallel P_1)} e^{-nE_1(E_0, Q_1) \left(c + o(1) \right)}. \]

(118)

Observe that one can also use the similar approach in the proof of Theorem 11 to show stronger result that for all \(0 < \beta \leq 1 \) the prefactor equals to \(\frac{1}{\sqrt{n}} \). Also notice that by choosing some small enough \(\delta_n > 0 \), and
constraining $\hat{T}_{X} \in \mathcal{P}_{n}(\mathcal{X})$, the approximation error caused by substituting \hat{T}_{X} by \hat{T}_{X} can be summarized in the $c + o(1)$ term in (118), and we get

$$
\epsilon_{1}(\phi_{\beta}) \asymp n^{-\frac{1}{k}} \sum_{Q_{1} \in \mathcal{P}_{n}(\mathcal{X})} e^{-k\psi(Q_{1})},
$$

(119)

$$
\psi(Q_{1}) = \frac{1}{\alpha} E_{1}(E_{0}, Q_{1}) + D(Q_{1}\|P_{1}),
$$

(120)

where we used the fact that $\alpha = \frac{1}{n}$ is fixed and independent of n, k.

Next we approximate the summation by an integral using Theorem $[9]$ As shown in Theorem $[2]$

$$
P_{1} = \arg \min_{Q_{1}: D(Q_{1}\|P_{1}) < \epsilon} \psi(Q_{1})
$$

(121)

for $\alpha^{*}_{\beta} < \alpha$. We show that the terms in the summation (119) where Q_{1} is in the vicinity of the P_{1} dominate the summation. Let $\mathcal{D} = \mathcal{P}(\mathcal{X})$ and $\mathcal{D}' = \mathcal{B}(P_{1}, \epsilon)$ where $\epsilon = \frac{s \log k}{k}$, $s > 0$. We can split the summation (119) as

$$
\sum_{Q_{1} \in \mathcal{D}' \cap \mathcal{P}_{n}(\mathcal{X})} e^{-k\psi(Q_{1})} = \sum_{Q_{1} \in \mathcal{D}' \cap \mathcal{P}_{n}(\mathcal{X})} e^{-k\psi(Q_{1})} + \sum_{Q_{1} \in \mathcal{D}' \cap \mathcal{P}_{n}(\mathcal{X})} e^{-k\psi(Q_{1})}.
$$

(122)

By Theorem $[4]$ $\psi(Q_{1})$ achieves its minimum at $Q_{1} = P_{1}$ for $\alpha > \alpha^{*}_{\beta}$, i.e., $\psi(Q_{1}) > \psi(P_{1})$ for $Q_{1} \neq P_{1}$. Hence, by the mean value theorem and using a Taylor series expansion of $\psi(Q)$ around $Q_{1} = P_{1}$ for $Q_{1} \in (\mathcal{D}')^{c}$ we get

$$
\psi(Q_{1}) = \psi(P_{1}) + \frac{1}{2} \theta_{P_{1}}^{T} \hat{H}(Q_{1}) \theta_{P_{1}}
$$

(123)

where $\theta_{P_{1}}$ is the difference vector $Q_{1} - P_{1}$ defined in (144), and $\hat{H}(Q_{1})$ is a positive definite matrix for every $Q_{1} \in (\mathcal{D}')^{c}$. Also, we have used the result form Theorem $[4]$ that the first order term of the expansion is zero. Furthermore, note that by the condition $Q_{1} \in (\mathcal{D}')^{c}$ we have $\|\theta_{P_{1}}\|_{\infty}^{2} \geq O(\epsilon)$. Hence for large enough n we have

$$
\sum_{Q_{1} \in (\mathcal{D}')^{c} \cap \mathcal{P}_{n}(\mathcal{X})} e^{-k\psi(Q_{1})} \leq (k + 1)^{\mathcal{X}} e^{-k \left(\frac{1}{2} E_{1}(E_{0}, P_{1}) + \frac{1}{2} \Lambda_{\min}(\hat{H}(Q_{1})) \right)}
$$

(124)

where $\Lambda = \min_{Q_{1} \in (\mathcal{D}')^{c}} \Lambda_{\min}(\hat{H}(Q_{1}))$, and $\Lambda_{\min}(\cdot)$ is the smallest eigenvalue of a matrix. Note that Λ is strictly positive since $\psi(Q_{1}) > \psi(P_{1})$ for $Q_{1} \neq P_{1}$. Finally, by setting $s \geq \frac{3}{2}(\mathcal{X} + \frac{3}{2})$ we have

$$
\sum_{Q_{1} \in (\mathcal{D}')^{c} \cap \mathcal{P}_{n}(\mathcal{X})} e^{-k\psi(Q_{1})} \leq n^{-\frac{\mathcal{X}}{2}} e^{-n E_{1}(E_{0}, P_{1}) + O(n^{-1})}.
$$

(125)

It remains to bound the first term in (122). By the envelope theorem $[30]$ as shown in Lemma $[14]$ we can conclude that $\psi(w) : \mathbb{R}^{\mathcal{X}}^{-1} \rightarrow \mathbb{R}$ is continuously differentiable and hence Lipschitz on \mathcal{D}'. Furthermore, \mathcal{D}' is a C^{∞} manifold, and hence $\mathcal{D'}$ has a minimally smooth boundary. Therefore, by Theorem $[9]$ we have

$$
\epsilon_{1}(\phi_{\beta}) \asymp n^{\frac{|\mathcal{X}|}{2}} \int_{\mathcal{D}'} e^{-k\psi(w)} \, dw.
$$

(126)

By using a Taylor series expansion of $\psi(w)$ around $w = P_{1}$, and Lemma $[14]$ we have

$$
\epsilon_{1}(\phi_{\beta}) \asymp n^{\frac{|\mathcal{X}|}{2}} \int_{\mathcal{D}'} e^{-n \left(E_{1}(E_{0}, P_{1}) + \frac{1}{2} \langle w - P_{1}, L_{H} + \alpha J \rangle (w - P_{1}) \right) + O(\epsilon) \right)} \, dw - P_{1}.
$$

(127)
Note that \(w \) is bounded to the the \(|\mathcal{X}| - 1\) dimensional probability simplex as \(w \in \mathcal{D}' \). Hence for every \(w - P_1 \) there exists a \(|\mathcal{X}| \times |\mathcal{X}|\) rotation matrix \(R \) such that for every \(w \in \mathcal{P}(\mathcal{X}) \) we have \(e_{|\mathcal{X}|}^T R(w - P_1) = 0 \), where \(e_{|\mathcal{X}|} \) is the unit vector with 1 in the \(|\mathcal{X}|\)th coordinate and 0 otherwise. Letting \(w' = R(w - P_1) \) we have

\[
e_1(\phi_\beta) \leq n \frac{|\mathcal{X}| - 2}{|\mathcal{X}|} \int_{D' \cap [0, \mathcal{X}]} e^{-n (E_1(E_0, P_1) + \frac{1}{2} \langle R^T w', (H_2 + \alpha J)R^T w' \rangle + O(\epsilon^2))} dR^T w',
\]

where we have used \(RR^T = I \). Furthermore, from the proof of Theorem \ref{thm:main} \(H_2 + \alpha J \) is strictly positive definite and hence full rank for \(\alpha^* < \alpha \). Using a change of variables \(y = \sqrt{n} w' \) we have \(dy = n^{-\frac{|\mathcal{X}| - 1}{2}} d\omega' \), and

\[
e_1(\phi_\beta) \leq n^{-\frac{1}{2}} e^{n E_1(E_0, P_1)} \int_{D'} e^{-\frac{1}{2} \langle R^T y, (H_2 + \alpha J)R^T y \rangle + O(\sqrt{|\mathcal{X}|})} dy,
\]

where the integral is a Gaussian integral and equals to \(c' + o(1) \) for a constant \(c' \) and this concludes the proof.

APPENDIX D

PROOF OF THEOREM \ref{thm:main}

From \eqref{eq:gradient} we have

\[
\alpha_{i_j} \triangleq \frac{\partial E_1(E_0, r)}{\partial r} \bigg|_{r=0} \leq \alpha^*_j.
\]

To find the derivative of \(E_1(E_0, r) \) at \(r = 0 \), we use a Taylor series expansion of \(E_1(E_0, Q_1) \) around \(Q_1 = P_1 \). We use the following lemmas in our proof. First lemma provides the first and second derivative of \(\gamma(E_0, Q_1) \).

Lemma 13. For every \(P_0, P_1 \in \mathcal{P}(\mathcal{X}) \), the gradient of threshold function \(\gamma(E_0, Q_1) \) is

\[
\frac{\partial \gamma(E_0, Q_1)}{\partial Q_1(i)} = -\beta \frac{Q_\mu^*(i)}{Q_1(i)}.
\]

Furthermore the Hessian matrix of \(\gamma(E_0, Q_1) \) evaluated at \(Q_1 = P_1 \) is

\[
H_1 = H(Q_1) = \nabla^2 Q_1 \gamma(E_0, Q) \bigg|_{Q_1 = P_1}
\]

\[
= \beta J \left(\frac{\mu^* T}{1 + \mu^*} + \frac{1}{(1 + \mu^*)} (Q + W) \right) J,
\]

where \(W = ww^T, Q = qq^T \) and

\[
w^T = \frac{1}{\sqrt{\text{Var}_{Q_\mu^*} \left(\log \frac{Q_\mu^*(1)}{P_0(1)} \right)}} \left(Q_\mu^*(1) \log \left(\frac{Q_\mu^*(1)}{P_0(1)} \right) - E_0, \ldots, Q_\mu^*(|\mathcal{X}|) \log \left(\frac{Q_\mu^*(|\mathcal{X}|)}{P_0(|\mathcal{X}|)} \right) - E_0 \right),
\]

\[
q = \left(Q_\mu^*(1), \ldots, Q_\mu^*(|\mathcal{X}|) \right),
\]

\[
T = \text{diag} \left(Q_\mu^* \right), \quad J = \text{diag} \left(\frac{1}{Q_1} \right),
\]

and \(Q_\mu^*, \mu^* \) are defined as in \eqref{eq:mu_star} and \eqref{eq:mu_star_def}.

Proof. The proof can be found in Appendix \ref{app:proofs}.
Next using the derivatives of $\gamma(E_0, Q_1)$, and (2) we can find the derivatives of the exponent function $E_1(E_0, Q_1)$.

Lemma 14. For every $P_0, P_1 \in \mathcal{P}(\mathcal{X})$, the gradient of the exponent function $E_1(E_0, Q_1)$ evaluated at $Q_1 = P_1$ is

$$\left. \frac{\partial E_1(E_0, Q_1)}{\partial Q_1(i)} \right|_{Q_1 = P_1} = 0. \quad (138)$$

Furthermore, the Hessian matrix evaluated at $Q_1 = P_1$ is

$$H_2 \triangleq \nabla^2_{Q_1} E_1(E_0, Q_1) \bigg|_{Q_1 = P_1} = \beta \eta^*_\beta J [Q + \eta^*_1 V + (1 - \eta^*_1) W - T] J \quad (139)$$

where η^*_β and η^*_1 are the optimal Lagrange multipliers in (210) when $0 < \beta \leq 1$ and $\beta = 1$ respectively, and $V = V^T$.

$$v = \frac{1}{\text{Var} Q_\eta^*_\beta (\Omega)} \left(Q_{\eta^*_\beta} (1) (\Omega(1) - (E_0 - \beta E_1)), \ldots, Q_{\eta^*_\beta} (|\mathcal{X}|) (\Omega(|\mathcal{X}|) - (E_0 - \beta E_1)) \right), \quad (141)$$

$$\Omega(i) = \beta \log \frac{P_1(i)}{P_0(i)} + (1 - \beta) \log \frac{Q_{\eta^*_\beta}(i)}{P_0(i)}, i \in \mathcal{X}. \quad (142)$$

Proof. The proof can be found in Appendix [1].

Lemma 14 shows that the gradient of $E_1(E_0, Q_1)$ respect to Q_1 is zero at $Q_1 = P_1$ which is due to the choice of the threshold function $\gamma(E_0, Q_1)$. Note that in the case of the plugin classifier with the fixed threshold the gradient is non zero which results in $\frac{\partial E_1(E_0, r)}{\partial r} \bigg|_{r = 0} = \infty$. Next by using a Taylor series expansion of $E_1(E_0, Q_1)$ and the relative entropy in (100) we can get the following lemma.

Lemma 15. For any $P_0, P_1 \in \mathcal{P}(\mathcal{X})$, the approximation

$$E_1(E_0, r) = E_1^*(E_0) + \min_{\theta_{P_1} \leq r, \theta_{P_1} = 0} \frac{1}{2} \theta_{P_1}^T H_2 \theta_{P_1} + o(r), \quad (143)$$

where

$$\theta_{P_1} = \left(Q_1(1) - P_1(1), \ldots, Q_1(|\mathcal{X}|) - P_1(|\mathcal{X}|) \right)^T, \quad (144)$$

holds.

Proof. The proof can be found in Appendix [1].

We can further simplify the convex optimization problem in (133), using the following lemma.

Lemma 16. For J, H_2 defined in (32), (139), we have

$$\min_{\psi_{P_1} \leq r, \psi_{P_1} = 0} \frac{1}{2} \psi_{P_1}^T H \psi_{P_1} = \min_{\theta_{P_1} \leq r, \theta_{P_1} = 0} \frac{1}{2} \theta_{P_1}^T H_2 \theta_{P_1}, \quad (145)$$

where

$$H = \beta \eta^*_\beta \sqrt{J} \left[Q + \eta^*_1 V + (1 - \eta^*_1) W - T \right] \sqrt{J}. \quad (146)$$
Further upper bounding the \(\Lambda \) eigenvalues which is the case for \(|X| \geq 4 \) by Weyl’s inequality \([31]\), it can be shown that at the optimal solution \(\psi_{\hat{r}} \), the inequality constraint of optimization \((145)\) is satisfied with equality, hence

\[
\min_{\frac{1}{2}\psi_{\hat{r}}^T \psi_{\hat{r}} \leq r} \frac{1}{2} \psi_{\hat{r}}^T H \psi_{\hat{r}} = r \min_{\frac{1}{2}\psi_{\hat{r}}^T \psi_{\hat{r}} \leq r} \frac{1}{2} \psi_{\hat{r}}^T H \psi_{\hat{r}}
\]

\[
= \Lambda_{\min}(H)r
\]

(147)

where \(\Lambda_{\min}(H) \) is the smallest eigenvalue of \(H \). Taking the derivative of \((143)\) and setting \(r = 0 \), we obtain

\[
\Psi_{\beta} = -\Lambda_{\min}(H).
\]

(149)

Further upper bounding the \(\Lambda_{\min}(H) \) using Weyl’s inequality \([31]\), we get

\[
-\Lambda_{\min}(H) \geq \beta \eta_{\beta}^* \left[\frac{Q_{0}^*}{P_1^*} \right]_{(3)}
\]

(150)

where we have used the fact that \(Q + \eta_1^* V + (1 - \eta_1^*) W \) can only have three nonzero eigenvalues as \(Q, V, W \) are rank one matrices.

APPENDIX E

PROOF OF THEOREM S

By Lemma\([12]\) we can see that for every \(\beta_1 \leq \beta_2 \) we have \(A_0(Q_1, \beta_1) \subseteq A_0(Q_1, \beta_2) \), and hence \(E_1(E_0, Q_1) \) is non-increasing in \(\beta \). Therefore, to find an upper bound for \(\alpha_{\beta}^* \) we can find an upper bound to \(\alpha^* = \alpha_{\beta=1}^* \) and that would be an upper bound to any test with \(\beta < 1 \). Hence we let \(\beta = 1 \) in the rest of the proof.

To upper bound \(\alpha^* \) in \((106)\) we first find a lower bound to \(E_1(E_0, r) \). Rewriting \(E_1(E_0, Q_1) \) in the dual form we have \([27]\)

\[
E_1(E_0, Q_1) = \max_{\nu \geq 0} -\nu \gamma(E_0, Q_1) - \log \sum_{a \in X} P_0^\nu(a) P_1(a) Q_1^{-\nu}(a).
\]

(151)

Setting \(\nu = \lambda^* \) where \(\lambda^* \) is the optimal Lagrange multiplier in \((11)\) when \(P_1 \) is known in the test. We get

\[
E_1(E_0, Q_1) \geq -\lambda^* \gamma(E_0, Q_1) - \log \sum_{a \in X} P_0^{\lambda^*}(a) P_1(a) Q_1^{-\lambda^*}(a).
\]

(152)

By the Taylor remainder theorem, for every \(Q_1 \in B(P, r) \) where \(r < r_c \), we have

\[
E_1(E_0, Q_1) \geq E_1(E_0, P_1) + \frac{1}{2} \theta_0^T \Sigma(Q_1) \theta P_1,
\]

(153)

where

\[
\Sigma(Q_1) = -\lambda^* H(Q_1) - \lambda^* (1 + \lambda^*) \text{diag} \left(\frac{Q_{\lambda^*}^*}{Q_1^*} \right) + (\lambda^*)^2 u^T u,
\]

(154)

\[
H(Q_1) = \nabla^2_{Q_1} \gamma(E_0, Q),
\]

(155)

\[
u = \left(\frac{\hat{Q}_{\lambda^*}(1)}{Q_1(1)}, \ldots, \frac{\hat{Q}_{\lambda^*}(k)}{Q_1(k)} \right)^T,
\]

(156)

\[
\hat{Q}_{\lambda^*}(x) = \frac{P_0^{\lambda^*}(x) P_1(x) Q_1^{-\lambda^*}(x)}{\sum_{a \in X} P_0^{\lambda^*}(a) P_1(a) Q_1^{-\lambda^*}(a)},
\]

(157)
evaluated at some $\tilde{Q}_1 \in \mathcal{B}(P_1, r)$, and θ_{P_1} is difference vector $Q_1 - P_1$ defined in (144). $H(Q_1)$ is the Hessian matrix of the threshold function in (134). Note that we used the fact that the gradient of RHS in (152) evaluated at $Q_1 = P_1$ is equal to zero, hence we only need to control the second order term. Letting

$$\Lambda(\Sigma, r) = \min_{\tilde{Q}_1 \in \mathcal{B}(P_1, r)} \Lambda_{\text{min}}(\Sigma(\tilde{Q}_1)),$$

where $\Lambda_{\text{min}}(\Sigma(\tilde{Q}_1))$ is the smallest eigenvalue of $\Sigma(\tilde{Q}_1)$. We can further lower bound $E_1(E_0, Q_1)$ by

$$E_1(E_0, Q_1) \geq E_1(E_0, P_1) + \frac{\Lambda(\Sigma, r)}{2} \theta_{P_1}^T \theta_{P_1},$$

Substituting (159) in (100) we get

$$E_1(E_0, r) \geq \min_{Q_1 \in \mathcal{P}(\lambda^*)} E_1(E_0, P_1) + \frac{\Lambda(\Sigma, r)}{2} \theta_{P_1}^T \theta_{P_1}. \quad (160)$$

Similarly to $E_1(E_0, Q_1)$, by using a Taylor series expansion of $D(Q_1 \parallel P_1)$ around $Q_1 = P_1$ and using the remainder theorem, for every $Q_1 \in \mathcal{B}(P_1, r)$ we have

$$D(Q_1 \parallel P_1) \geq \frac{\Lambda(J, r)}{2} \theta_{P_1}^T \theta_{P_1},$$

$$J(\tilde{Q}_1) = \text{diag} \left(\frac{1}{Q_1(1)}, \ldots, \frac{1}{Q_1(|X|)} \right). \quad (161)$$

Therefore, by (160), and (161) we get

$$E_1(E_0, r) \geq E_1(E_0, P_1) + \frac{\Lambda(\Sigma, r)}{\Lambda(J, r)} r. \quad (163)$$

By Weyl’s inequality [31] we have

$$\Lambda(\Sigma, r) \geq \min_{\tilde{Q}_1 \in \mathcal{B}(P_1, r)} -\lambda^* \left(\frac{\mu^*}{1 + \mu^*} \left[\frac{Q_{\mu^*}^*}{Q_1^*} \right]_{(1)} + \frac{1}{1 + \mu^*} (\|w_{Q_1^*}^2 + \|q_{\tilde{Q}_1^*}^2 \|) \right) - \lambda^* (1 + \lambda^*) \left[\frac{Q_{\lambda^*}}{Q_1^*} \right]_{(1)} \geq - \lambda^* (4 + \lambda^*) \left(\frac{1}{Q_1^{1 \min}(r)} \right)^2.$$

(164)

(165)

where

$$Q_1^{1 \min}(r) = \min_{\tilde{Q}_1 \in \mathcal{B}(P_1, r)} \tilde{Q}_1^*(a),$$

(166)

and we used $Q_{\lambda^*}(a), Q_{\mu^*}(a) \leq 1$ for all $a \in \mathcal{X}$ and $\mu^* \geq 0$. Finally, by $\Lambda(J, r) \geq 1$ we get

$$E_1(E_0, r) \geq E_1(E_0, P_1) - \lambda^* (4 + \lambda^*) \left(\frac{1}{Q_1^{1 \min}(r)} \right)^2 r. \quad (167)$$

By the Pinsker’s inequality [13], we have $\|\theta_{P_1}\|_1 \leq \sqrt{2r}$, hence $Q_1^{1 \min} \geq P_1^{1 \min} - \frac{\sqrt{2r}}{r}.$

$$E_1(E_0, r) \geq E_1(E_0, P_1) - \lambda^* (4 + \lambda^*) \left(\frac{\sqrt{2} \kappa}{P_1^{1 \min} - \sqrt{2r}} \right)^2. \quad (168)$$

Since $E_1(E_0, r) \geq 0$ for all $r \geq 0$ we can improve the lower bound to

$$E_1(E_0, r) \geq \left\{ E_1(E_0, P_1) - \lambda^* (4 + \lambda^*) \left(\frac{\sqrt{2} \kappa}{P_1^{1 \min} - \sqrt{2r}} \right)^2 \right\} 1[r \leq \bar{r}]. \quad (169)$$

where

$$\bar{r} = \left(\frac{\kappa P_1^{1 \min}}{1 + \kappa} \right)^2.$$

(170)
Next by (106), (169), we have
\begin{align}
\alpha^*_\theta &\leq \max \left\{ \max_{0 \leq r \leq r_c} \lambda^*(4 + \lambda^*) \left(\frac{1 - r}{P_{1\min} - \sqrt{r}} \right)^2, \frac{E_1(E_0, P_1)}{r_c} \right\} \tag{171} \\
&= \frac{\lambda^*(4 + \lambda^*)}{(P_{1\min} - \sqrt{r})^2} \tag{172} \\
&= \frac{\lambda^*(4 + \lambda^*)(1 + \kappa)}{(P_{1\min})^2} \tag{173}
\end{align}
where we have dropped the second term in the maximization as it is derived by letting \(E_1(E_0, r) \) to be a straight line from \(E_1(E_0, r = 0) \) at \(r = 0 \) to \(r = r_c \) and the first term in the maximization is derived by the lower bound to \(E_1(E_0, r) \), and \(\bar{r} < r_c \), hence the first term dominates. This concludes the proof.

APPENDIX F

PROOF OF LEMMA \textit{[11]}

We need to prove the the continuity of \(E_1(E_0, r) \) on \(r \in [0, r_c) \). To prove this, we will use the Berge’s Maximum Theorem stated below \[28\].

Proposition 17 (Berge’s Maximum Theorem). Let \(X \subseteq \mathbb{R}^n \) and \(\Theta \subseteq \mathbb{R}^m \). Let \(F : X \times \Theta \to \mathbb{R} \) be a continuous function, and let \(G : \Theta \to X \) be a compact valued and continuous correspondence. Then the maximum value function
\[
V(\Theta) = \max_{X \in G(\Theta)} F(X, \Theta)
\]
is well-defined and continuous, and the optimal policy correspondence
\[
X^*(\Theta) = \{ X \in G(\Theta) | F(X, \Theta) = V(\Theta) \}
\]
is nonempty, compact valued, and upper hemicontinuous.

We first prove that correspondence \(G_1(Q_1) = \{ Q \in \mathcal{P}(X) : D(Q, P_0) - D(Q, Q_1) \geq \gamma(E_0, Q_1) \} \) is a continuous correspondence for \(Q_1 \in \mathcal{P}_B(X) \). Then by Berge’s theorem \(E_1(E_0, Q_1) \) is continuous on \(Q_1 \) over \(\mathcal{P}_B(X) \). Next, by showing the continuity of the correspondence \(G_2(r) = \{ Q_1 \in \mathcal{P}_B(X) : D(Q_1, P_1) \leq r \} \), we conclude the continuity of \(E_1(E_0, r) \) in \(r \) by Berge’s maximum theorem. So we only need to prove that \(G_1, G_2 \) are compact and continuous correspondences. Note that \(Q \) and \(Q_1 \) are subsets of \(\mathbb{R}^{|X|} \) and also \(G_1(Q_1), G_2(Q) \) are both closed and bounded, hence By Heine-Borel theorem \[29\] both \(G_1, G_2 \) are compact. To prove the continuity of a correspondence we need to prove the upper and lower hemicontinuity of the correspondence.

Definition. The compact valued correspondence \(\mathcal{G} \) is upper hemicontinuous at \(\theta \in \Theta \) if \(\mathcal{G}(\theta) \) is nonempty and if, for every sequence \(\{ \theta^{(j)} \} \) with \(\theta^{(j)} \to \theta \) and every sequence \(\{ X^{(j)} \} \) with \(X^{(j)} \in \mathcal{G}(\theta^{(j)}) \) for all \(j \), there exists a convergent subsequence \(\{ X^{(j_k)} \} \) such that \(X^{(j_k)} \to X \in \mathcal{G}(\theta) \).

To prove upper hemicontinuity of \(G_1(Q_1) \), fix \(Q_1 \in \mathcal{P}_B(X) \) and assume for every \(1 \leq j \), \(Q_1^{(j)} \in \mathcal{P}_B(X) \) be a sequence converging to \(Q_1 \). Moreover, assume for every \(j \) there exists a \(Q^{(j)} \) such that \(Q^{(j)} \in G_1(Q_1^{(j)}) \) for all \(j \). By the definition of convergence in metric spaces, since \(Q_1^{(j)} \to Q_1 \), then there exists a closed bounded set \(Q_2 \subseteq \mathcal{P}_B \), such that for all large enough \(j \), we have \(Q_1^{(j)} \in Q_2 \subseteq \mathbb{R}^{|X| - 1} \). Furthermore, since for every \(Q_1^{(j)} \),
$G_1(Q_1^{(j)})$ is an intersection of a half space created by the classifier and the probability simplex, $Q^{(j)} \in G_1(Q_1)$ will lie in a closed and bounded subset of $\mathbb{R}^{|X|-1}$. Therefore, for large enough j, the tuple $(Q^{(j)}, Q_1^{(j)})$ also lies in a closed and bounded subset of $\mathbb{R}^{2|X|-2}$. Finally, by the Bolzano-Weierstrass theorem, each bounded sequence in the Euclidean space $\mathbb{R}^{2|X|-2}$ has a convergent subsequence $(Q^{(j_k)}, Q_1^{(j_k)})$ with the limit point (Q, Q_1). Finally, since each element of this convergent subsequence satisfies the constraint in $G_1(Q_1)$, then by showing the continuity of $\gamma(E_0, Q_1)$ in Q_1, we can conclude that the limit point will also satisfy $Q \in G_1(Q_1)$ and gives the upper hemicontinuity. To prove the continuity of $\gamma(E_0, Q_1)$, note that $D(P\|Q)$ is continuous in the pair for any $P \in \mathcal{P}(X)$ and $Q \in \mathcal{P}_b(X)$ where $\delta > 0$. Hence, by the Berge’s theorem, $\gamma(E_0, Q_1)$ is continuous in $Q_1 \in \mathcal{P}_b(X)$, and the optimizer $Q_\mu(Q_1)$ is upper hemicontinuous. Also, since by (60), $Q_\mu(Q_1)$ is single valued, we get that $Q_\mu(Q_1)$ is in fact continuous in Q_1.

Definition. The correspondence G is lower hemicontinuous at $\theta \in \Theta$ if $G(\theta)$ is nonempty and if, for every $X \in G(\theta)$ and every sequence $\{\theta^{(j)}\}$ such that $\theta^{(j)} \to \theta$, there is a $1 \leq J$ and a sequence $\{X^{(j)}\}$ such that $X^{(j)} \in G(\theta^{(j)})$ for all $J \leq j$ and $X^{(j)} \to X$.

To prove the lower hemicontinuity of $G_1(Q_1)$, let $Q_1 \in \mathcal{P}(X)$ and $Q \in G_1(Q_1)$ be fixed. Also, let $Q_1^{(j)} \in \mathcal{P}(X)$ be a sequence converging to Q_1. Next we construct the sequence $Q^{(j)}$ such that for every j, $Q^{(j)} \in G_1(Q_1^{(j)})$ and $Q^{(j)} \to Q$. Note that for every $Q_1^{(j)}$, the correspondence is a half space characterized by the hyperplane

$$H^{(j)} = \{Q \in \mathcal{P}(X) : (Q - Q_\mu(Q_1^{(j)}))^T n^{(j)} = 0\},$$

where $n^{(j)}$ is

$$n^{(j)} = \left(\log \frac{Q_\mu(Q_1^{(j)})(1)}{P_0(1)}, \ldots, \log \frac{Q_\mu(Q_1^{(j)})(|X|)}{P_0(|X|)}\right)^T.$$

Also for every $Q^{(j)}$, define the line passing P_0 and intersecting $H^{(j)}$ as

$$L(Q^{(j)}) = \beta P_0 + (1 - \beta)Q^{(j)}, \beta \in [0, 1],$$

$$Q^{(j)}_\uparrow = \{P : P = \beta P_0 + (1 - \beta)Q, \beta \in \mathbb{R}\} \cap H^{(j)}.$$

Moreover, for every Q, let $Q = \beta^* P_0 + (1 - \beta^*)Q_1$. Finally, we can define the sequence $Q^{(j)}$ as

$$Q^{(j)} = \beta^* P_0 + (1 - \beta^*)Q^{(j)}_\uparrow.$$ (180)

By our construction, it is clear that for every j, $Q^{(j)} \in G_1(Q_1^{(j)})$. Moreover, by continuity of $Q_\mu(Q^{(j)})$, we conclude that $H^{(j)} \to H$ and consequently $Q^{(j)}_\uparrow \to Q_1$, and $Q^{(j)} \to Q$.

Next, we show the continuity of $G(r)$. To show the upper hemicontinuity of the correspondence, we can use the same argument as the upper hemi-continuity of $G_1(Q_1)$. So it only remains to prove the lower hemicontinuity. Let $0 \leq r$ and $Q_1 \in \mathcal{P}_b(X)$ be fixed. Also, let $0 \leq r^{(j)}$ is a sequence converging to r. Construct $Q_1^{(j)} \in \mathcal{P}_b(X)$ as

$$Q_1^{(j)} = \left(\frac{r^{(j)}}{r}\right)Q_1 + \left(1 - \frac{r^{(j)}}{r}\right)P_1.$$ (181)

It is clear that $Q_1^{(j)} \to Q_1$ as $r^{(j)} \to r$. Also by convexity of KL-divergence we get

$$D(Q_1^{(j)}\|P_1) \leq \frac{r^{(j)}}{r} D(Q_1\|P_1) \leq r^{(j)}.$$ (182)
where in the last inequality we used the fact that \(Q_1 \in G(r) \). Therefore, \(Q_1^{(j)} \in G(r^{(j)}) \), and that gives the lower hemicontinuity of \(G(r) \), and concludes the proof.

APPENDIX G
PROOF OF LEMMA 13

By the envelope theorem [30], we can find the partial derivative simply by taking the derivative of Lagrangian and evaluating at its optimal solution. Writing the Lagrangian we have

\[
L(Q, Q_1, \mu, \nu) = D(Q\|Q_1) + \mu(D(Q\|P_0) - E_0) + \nu\left(\sum_{x \in N} Q(x) - 1\right),
\]

hence

\[
\frac{\partial \gamma}{\partial Q_1(j)} = \frac{\beta \partial L}{\partial Q_1(j)}\bigg|_{Q=Q_\mu^*} = -\beta \frac{Q_\mu^*(j)}{Q_1(j)}.
\]

Taking the second order partial derivative, we get

\[
\frac{\partial^2 \gamma}{\partial Q_1(i)\partial Q_1(j)} = \beta\left(-\frac{1}{Q_1(j)} \frac{\partial Q_\mu^*(j)}{\partial Q_1(i)} + \frac{Q_{\mu^*}(i)}{Q_1^2(i)} I\{i = j\}\right).
\]

Therefore, we need to find the sensitivity of \(Q_\mu^* \), the optimal solution of optimization (18), to local changes in \(Q_1 \). [32] presents a general approach to find the partial derivative of primal and dual variables solution with respect to any parameter of the optimization problem. For ease of reference, we state this result. The result in [32] is more general; however, we only state the version we need in our proof.

Proposition 18. Consider the following primal non-linear programming problem:

\[
\min_{x: \ g(x, a) \leq 0 \ h(x, a) = 0} z = f(x, a),
\]

where \(f, g, h : \mathbb{R}^n \times \mathbb{R}^p \rightarrow \mathbb{R} \), and \(f, g, h \in C^2 \). Let \(\mu, \nu \) be the Lagrange multipliers corresponding to inequality and equality constraint. Furthermore, assume at the optimal solution the constraints are active and \(\mu^* \neq 0 \), then

\[
\begin{pmatrix}
\frac{\partial x}{\partial a}, \frac{\partial \nu}{\partial a}, \frac{\partial \mu}{\partial a}, \frac{\partial z}{\partial a}
\end{pmatrix}^T = U^{-1} S
\]

where

\[
U = \begin{pmatrix}
F_{xx} & H_x & G_x & 0 \\
H_x^T & 0 & 0 & 0 \\
G_x^T & 0 & 0 & 0 \\
F_z & 0 & 0 & -1
\end{pmatrix}, \quad S = -\begin{pmatrix}
F_{xa} \\
H_a^T \\
G_a^T \\
F_a^T
\end{pmatrix}
\]

and \(0 \) is the matrix with entries equal to zero with the corresponding dimensions and the submatrices are defined as

\[
F_{xx} = \nabla_{xx} f(x^*, a) + \mu^* \nabla_{xx} g(x^*, a) + \nu^* \nabla_{xx} h(x^*, a),
\]

\[
F_{xa} = \nabla_{xa} f(x^*, a) + \mu^* \nabla_{xa} g(x^*, a) + \nu^* \nabla_{xa} h(x^*, a),
\]

\[
(190)
\]
By the blockwise inversion formula, we have

\[
U^{-1} = \begin{pmatrix}
A^{-1} + A^{-1}BMCA^{-1} & -A^{-1}BM \\
-MCA^{-1} & M
\end{pmatrix},
\]

where \((x^*, \mu^*, \nu^*)\) is the optimal primal and dual variable solutions. Moreover, \(F_x, F_a, G_x, G_a, H_x, H_a\) are gradient of \(f, g, h\) respect to \(x, a\) evaluated at \(x^*\) respectively.

Using this proposition we can find \(\frac{\partial Q_{1*}}{\partial Q_1}\) in equation (186). Letting \(x = Q_1\) and \(a = Q_1\) we have

\[
F_{QQ} = (1 + \mu^*) \text{diag} \left(\frac{1}{Q_{1*}(1)}, \ldots, \frac{1}{Q_{1*}(|X|)} \right),
\]

(191)

\[
F_{Q_1} = - \text{diag} \left(\frac{1}{Q_1(1)}, \ldots, \frac{1}{Q_1(|X|)} \right),
\]

(192)

\[
F_Q = \left(1 + \log \frac{Q_{1*}(1)}{Q_1(1)}, \ldots, 1 + \log \frac{Q_{1*}(|X|)}{Q_1(|X|)} \right)^T,
\]

(193)

\[
F_{Q_1} = \left(- \frac{Q_{1*}(1)}{Q_1(1)}, \ldots, - \frac{Q_{1*}(|X|)}{Q_1(|X|)} \right)^T,
\]

(194)

\[
G_Q = \left(1 + \log \frac{Q_{1*}(1)}{P_0(1)}, \ldots, 1 + \log \frac{Q_{1*}(|X|)}{P_0(|X|)} \right)^T,
\]

(195)

\[
G_{Q_1} = (0, \ldots, 0)^T,
\]

(196)

\[
H_Q = (1, \ldots, 1)^T,
\]

(197)

\[
H_{Q_1} = (0, \ldots, 0)^T.
\]

(198)

Writing matrix \(U\) as

\[
U = \begin{pmatrix}
A^{(|X| \times |X|)} & B^{(|X| \times 3)} \\
C^{(3 \times |X|)} & D^{(3 \times 3)}
\end{pmatrix},
\]

(199)

we have

\[
A = (1 + \mu^*) \text{diag} \left(\frac{1}{Q_{1*}(1)}, \ldots, \frac{1}{Q_{1*}(|X|)} \right),
\]

(200)

\[
B = \begin{pmatrix}
1 & 1 + \log \frac{Q_{1*}(1)}{P_0(1)} & 0 \\
\vdots & \vdots & \vdots \\
1 & 1 + \log \frac{Q_{1*}(|X|)}{P_0(|X|)} & 0
\end{pmatrix},
\]

\[
C = \begin{pmatrix}
1 & \ldots & 1 \\
1 + \log \frac{Q_{1*}(1)}{P_0(1)} & \ldots & 1 + \log \frac{Q_{1*}(|X|)}{P_0(|X|)} \\
1 + \log \frac{Q_{1*}(1)}{Q_1(1)} & \ldots & 1 + \log \frac{Q_{1*}(|X|)}{Q_1(|X|)}
\end{pmatrix},
\]

\[
D = \begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{pmatrix}.
\]

(201)

Also writing \(S\) as

\[
S = \begin{pmatrix}
P^{(|X| \times |X|)} \\
K^{(3 \times |X|)}
\end{pmatrix},
\]

(202)

we have

\[
F = \text{diag} \left(\frac{1}{Q_1(1)}, \ldots, \frac{1}{Q_1(|X|)} \right),
\]

(203)

\[
K = \begin{pmatrix}
0 & \ldots & 0 \\
0 & \ldots & 0 \\
\frac{Q_{1*}(1)}{Q_1(1)} & \ldots & \frac{Q_{1*}(|X|)}{Q_1(|X|)}
\end{pmatrix}.
\]

(204)

By the blockwise inversion formula, we have

\[
U^{-1} = \begin{pmatrix}
A^{-1} + A^{-1}BMCA^{-1} & -A^{-1}BM \\
-MCA^{-1} & M
\end{pmatrix},
\]

(205)
where \(M = (D - CA^{-1}B)^{-1} \). Since we are only interested in \(\partial Q_{\mu^*} \) it suffices to find the first \(|X| \) rows of \(U^{-1} \). Applying the block inversion formula to find \(M \) we get

\[
BM = \frac{1 + \mu^*}{\textrm{Var}_{Q_{\mu^*}}(\log \frac{Q_{\mu^*}}{P_1})} \begin{pmatrix}
(1 + E_0)(\log \frac{Q_{\mu^*}(1)}{P_1(1)}) - E_0 - \textrm{Var}_{Q_{\mu^*}}(\log \frac{Q_{\mu^*}}{P_1}), & -(\log \frac{Q_{\mu^*}(1)}{P_1}) - E_0, & 0 \\
\vdots & \vdots & \vdots \\
(1 + E_0)(\log \frac{Q_{\mu^*}(i)}{P_1(i)}) - E_0 - \textrm{Var}_{Q_{\mu^*}}(\log \frac{Q_{\mu^*}}{P_1}), & -(\log \frac{Q_{\mu^*}(i)}{P_1}) - E_0, & 0
\end{pmatrix}
\]

(206)

where we used that at the optimal solution \(D(Q_{\mu^*}||P_0) = E_0 \). Furthermore, we get

\[
A^{-1}BMCA^{-1} = -\frac{1}{1 + \mu^*}(Q + W).
\]

(207)

Finally, by the structure of \(K \) and \(BM \) we can easily see that

\[
-\frac{1}{Q_1}(\frac{\partial Q_{\mu^*}}{\partial Q_1})|_{Q_1=P_3} = -F(A^{-1} + A^{-1}BMCA^{-1})F
\]

(208)

Substituting (208) into (186) we get the Hessian matrix in (134).

APPENDIX H

PROOF OF LEMMA 14

Similar to Lemma 13 by writing the Lagrangian and using the envelope theorem 30 we have

\[
L(Q, Q_1, \eta, \nu) = D(Q||P_1) + \eta(D(Q||P_0) - \beta D(Q||Q_1) + \gamma(E_0, Q_1)) + \nu\left(\sum_{x \in X} Q(x) - 1\right),
\]

(210)

hence

\[
\frac{\partial E_1(E_0, Q_1)}{\partial Q_1(j)} = \frac{\partial L}{\partial Q_1(j)}\bigg|_{Q=\hat{Q}_{\eta^*}} = \eta^*\left(\frac{\beta \hat{Q}_{\eta^*}(j)}{Q_1(j)} + \frac{\partial \gamma}{\partial Q_1(j)}\right),
\]

(211)

\[\hat{Q}_{\eta^*}(x) = \frac{P_{1+\eta^*-\beta\eta^*}(x)Q_{1+\eta^*-\beta\eta^*}(x)P_{1+\eta^*-\beta\eta^*}(x)}{\sum_{a \in X} P_{1+\eta^*-\beta\eta^*}(a)Q_{1+\eta^*-\beta\eta^*}(a)P_{1+\eta^*-\beta\eta^*}(a)}\]

(212)

Letting \(Q_1 = P_3 \), we get

\[
Q_{\eta^*}(x) = \frac{P_{1+\eta^*-\beta\eta^*}(x)P_{1+\eta^*-\beta\eta^*}(x)}{\sum_{a \in X} P_{1+\eta^*-\beta\eta^*}(a)P_{1+\eta^*-\beta\eta^*}(a)}.
\]

(213)

Furthermore, since \(D(Q_{\eta^*}||P_0) = E_0 \), it is easy to see that, \(Q_{\eta^*} = Q_{\lambda^*} \) in (11), and \(\frac{\eta^*}{1+\eta^*} = \lambda^* \). Also, by (67) \(Q_{\eta^*} = Q_{\mu^*} \), and finally from (131) we conclude that

\[
\left(\frac{\beta \hat{Q}_{\eta^*}(j)}{Q_1(j)} + \frac{\partial \gamma}{\partial Q_1(j)}\right)|_{Q_1=P_3} = \frac{\beta Q_{\eta^*}(j)}{P_1(j)} - \frac{\beta Q_{\mu^*}(j)}{P_1(j)}
\]

(214)

\[
= 0,
\]

(215)

which concludes (138). Next, by taking the second derivative of (211) we get

\[
\frac{1}{\beta} \frac{\partial^2 E_1(E_0, Q_1)}{\partial Q_1(i)Q_1(j)} = \frac{\partial^\eta^*}{\partial Q_1(i)}\left(\frac{\hat{Q}_{\eta^*}(j)}{Q_1(j)} + \frac{1}{\beta} \frac{\partial \gamma}{\partial Q_1(j)}\right) + \eta^*\left(\frac{1}{Q_1(j)} \frac{\partial \hat{Q}_{\eta^*}(j)}{\partial Q_1(i)} - \frac{\hat{Q}_{\eta^*}(i)}{Q_1^2(i)}[i = j] + \frac{1}{\beta} \frac{\partial^2 \gamma}{\partial Q_1(i)Q_1(j)}\right).
\]

(216)

(217)
Letting $Q_1 = P_1$ the first term is zero, hence we only require to find $\frac{\partial Q_\beta}{\partial Q_1(\cdot)}|_{Q_1=P_1}$. For simplicity in calculations, we write all the expressions in term of the optimal Lagrange multipliers when $\beta = 1$. Since for every $0 < \beta \leq 1$ the optimizing distribution Q when $Q_1 = P_1$ is the tilted distribution of P_0, and P_1 and since for every such Q, the optimizing distribution should satisfy the condition (67), hence the tilted exponent is equal for every β and by equating the exponents in (213) we can define

$$\rho \triangleq \frac{\eta^\beta}{\eta^1} = 1 + \eta^\beta - \beta \eta^1,$$

(218)

where η^β is the Lagrange multiplier for arbitrary β and η^1 is the Lagrange multiplier when $\beta = 1$. Using proposition [18] and letting $x = Q$, and $a = Q_1$, and setting $Q_1 = P_1$, we have

$$F_{QQ}^\beta = \rho F_{QQ}, \quad F_{Q_1}^\beta = \rho F_{QQ_1},$$

(219)

$$F_{Q}^\beta = F_{Q}, \quad F_{Q_1}^\beta = B_{Q},$$

(220)

$$G_{Q}^\beta = \beta G_{Q} + (1 - \beta)F_{Q}, \quad G_{Q_1}^\beta = G_{Q_1},$$

(221)

$$H_{Q}^\beta = H_{Q}, \quad H_{Q_1}^\beta = H_{Q},$$

(222)

where

$$F_{QQ} = \text{diag}\left(\frac{1}{Q_{\eta^1}(1)}, \ldots, \frac{1}{Q_{\eta^1}(|X|)}\right),$$

(223)

$$F_{Q_1} = \lambda_1 \text{diag}\left(\frac{1}{P_1(1)}, \ldots, \frac{1}{P_1(|X|)}\right),$$

(224)

$$F_{Q} = \left(1 + \log \frac{Q_{\eta^1}(1)}{P_1(1)}, \ldots, 1 + \log \frac{Q_{\eta^1}(|X|)}{P_1(|X|)}\right)^T,$$

(225)

$$F_{Q_1} = (0, \ldots, 0)^T,$$

(226)

$$B_{Q} = \left(1 + \log \frac{Q_{\eta^1}(1)}{P_0(1)}, \ldots, 1 + \log \frac{Q_{\eta^1}(|X|)}{P_0(|X|)}\right)^T,$$

(227)

$$G_{Q} = \left(\log \frac{P_1(1)}{P_0(1)}, \ldots, \log \frac{P_1(|X|)}{P_0(|X|)}\right)^T,$$

(228)

$$G_{Q_1} = \left(\frac{\hat{Q}_{\eta^1}(1)}{Q_1(1)} + \frac{\partial \gamma}{\partial Q_1(1)}|_{Q_1=P_1}, \ldots, \frac{\hat{Q}_{\eta^1}(|X|)}{Q_1(|X|)} + \frac{\partial \gamma}{\partial Q_1(|X|)}|_{Q_1=P_1}\right)^T,$$

(229)

$$= (0, \ldots, 0)^T,$$

(230)

$$H_{Q} = (1, \ldots, 1)^T,$$

(231)

$$H_{Q_1} = (0, \ldots, 0)^T.$$

(232)

Similar to the Lemma [13] we can write U as

$$U_{\beta} = \begin{pmatrix} A_{\beta}^{(|X| \times |X|)} & B_{\beta}^{(|X| \times 3)} \\ C_{\beta}^{(3 \times |X|)} & D_{\beta}^{(3 \times 3)} \end{pmatrix},$$

(233)
where

\[A_\beta = \rho A_1 \]
\[B_\beta = \beta B_1 + (1 - \beta) E_0 \]
\[C_\beta = \beta C_1 + (1 - \beta) L_0 \]
\[D_\beta = D_1 \]

and

\[
A_1 = \text{diag} \left(\frac{1}{Q_{\eta^*_1}(1)}, \ldots, \frac{1}{Q_{\eta^*_1}(|\mathcal{X}|)} \right), \quad D_1 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix},
\]

\[
B_1 = \begin{pmatrix} 1 & \log \frac{P_1(1)}{P_0(1)} & 0 \\ \vdots & \vdots & \vdots \\ 1 & \log \frac{P_1(|\mathcal{X}|)}{P_0(|\mathcal{X}|)} & 0 \end{pmatrix}, \quad E_0 = \begin{pmatrix} 1 & 1 + \log \frac{Q_{\eta^*_1}(1)}{P_0(1)} & 0 \\ \vdots & \vdots & \vdots \\ 1 & 1 + \log \frac{Q_{\eta^*_1}(|\mathcal{X}|)}{P_0(|\mathcal{X}|)} & 0 \end{pmatrix},
\]

\[
C_1 = \begin{pmatrix} 1 & \log \frac{P_1(1)}{P_0(1)} & \cdots & \log \frac{P_1(|\mathcal{X}|)}{P_0(|\mathcal{X}|)} \\ \log \frac{P_1(1)}{P_0(1)} & \cdots & \log \frac{P_1(|\mathcal{X}|)}{P_0(|\mathcal{X}|)} \\ 1 + \log \frac{Q_{\eta^*_1}(1)}{P_0(1)} & \cdots & 1 + \log \frac{Q_{\eta^*_1}(|\mathcal{X}|)}{P_0(|\mathcal{X}|)} \end{pmatrix}, \quad L_0 = \begin{pmatrix} 1 & \log \frac{Q_{\eta^*_1}(1)}{P_0(1)} & \cdots & \log \frac{Q_{\eta^*_1}(|\mathcal{X}|)}{P_0(|\mathcal{X}|)} \\ 1 + \log \frac{Q_{\eta^*_1}(1)}{P_0(1)} & \cdots & \log \frac{Q_{\eta^*_1}(|\mathcal{X}|)}{P_0(|\mathcal{X}|)} \\ 1 + \log \frac{Q_{\eta^*_1}(1)}{P_0(1)} & \cdots & 1 + \log \frac{Q_{\eta^*_1}(|\mathcal{X}|)}{P_0(|\mathcal{X}|)} \end{pmatrix},
\]

Also writing \(S \) as

\[
S = \begin{pmatrix} -F_{Q_1}^\beta \\ K \end{pmatrix},
\]

we have

\[
K^{(3 \times |\mathcal{X}|)} = \begin{pmatrix} 0 & \cdots & 0 \\ 0 & \cdots & 0 \\ 0 & \cdots & 0 \end{pmatrix}.
\]

By block inversion formula in (238), and similar arguments as in Lemma 13 we have

\[
A_\beta^{-1} B_\beta \left(D_\beta - C_\beta A_\beta^{-1} B_\beta \right)^{-1} C_\beta A_\beta^{-1} = -\frac{1}{\rho} \left(T^2 + V \right),
\]

where \(V = vv^T \) and

\[
v = \frac{1}{\sqrt{\text{Var} \ Q_{\eta^*_1}(\Omega)}} \left(Q_{\eta^*_1}(1)\Omega(1), \ldots, Q_{\eta^*_1}(|\mathcal{X}|)\Omega(|\mathcal{X}|) \right),
\]

\[
\Omega(i) = \beta \log \frac{P_1(i)}{P_0(i)} + (1 - \beta) \log \frac{Q_{\eta^*_1}(i)}{P_0(i)}, \quad i \in \mathcal{X},
\]

Finally, by the structure of \(S \), we can easily derive

\[
\text{diag} \left(\frac{1}{P_1} \right) \ast \left(\frac{\partial Q_{\eta^*_1}}{\partial Q_1} \right)_{Q_1=P_1} = J \left[-T + (T^2 + V) \right] J.
\]
Moreover, approximating the inequality constraint can result in an error of \(\| \text{inequality constraint} \) and the fact that it imposes a constraint on the length of the vector \(\eta_1^* \). By substituting the expansions (248) and (249) in (100) we obtain

\[
E_1(E_0, Q_1) = E_1(E_0, P_1) + \theta_{P_1}^T \nabla E_1(E_0, Q_1) \big|_{Q_1 = P_1} + \frac{1}{2} \theta_{P_1}^T H_2 \theta_{P_1} + o(\| \theta_{P_1} \|_2^2). \tag{248}
\]

The first term in the expansion is \(E_1^*(E_0) \), also by Lemma 14 the gradient evaluated at \(Q_1 = P_1 \) is zero. Further approximating the constraint in (91), we get

\[
D(Q_1 \| P_1) = \frac{1}{2} \theta_{P_1}^T J \theta_{P_1} + o(\| \theta_{P_1} \|_2^2). \tag{249}
\]

By substituting the expansions (248) and (249) in (100) we obtain

\[
E_1(E_0, r) = E_1^*(E_0) + \min_{\frac{1}{2} \theta_{P_1}^T J \theta_{P_1} + o(\| \theta_{P_1} \|_2^2) \leq r} \frac{1}{2} \theta_{P_1}^T H_2 \theta_{P_1} + o(\| \theta_{P_1} \|_2^2). \tag{250}
\]

To find the error of above approximation as a function of \(r \), first note that we can take \(o(\| \theta_{P_1} \|_2^2) \) out of minimization and substitute it with \(o(\| \theta_{P_1}^* \|_2^2) \) where \(\theta_{P_1}^* \) is the optimal solution of the minimization. Moreover, approximating the inequality constraint can result an error of \(o(\sqrt{r}) \) in \(\| \theta_{P_1}^* \|_2 \). Therefore, by inequality constraint and the fact that it impose a constraint on the length of the vector \(\theta \) we have that

\[\| \theta_{P_1}^* \|_2 \leq c \sqrt{r} + o(\sqrt{r}) \]

where \(c \) is independent from \(r \) and only depends on \(J, H_2 \). This argument and (250) concludes (143).

APPENDIX J

PROOF OF LEMMA 16

Since \(J \) is a diagonal matrix with non zero diagonal entries, we have

\[
\sqrt{J} = \text{diag} \left(\frac{1}{\sqrt{P_1(1)}}, \ldots, \frac{1}{\sqrt{P_1(\|X\|)}} \right). \tag{251}
\]

Letting \(\psi_{P_1} = \sqrt{J} \theta_{P_1} \), we obtain

\[
\frac{1}{2} \theta_{P_1}^T H_2 \theta_{P_1} = \frac{1}{2} \psi_{P_1}^T H \psi_{P_1}, \tag{252}
\]

\[
\frac{1}{2} \theta_{P_1}^T J \theta_{P_1} = \frac{1}{2} \psi_{P_1}^T \psi_{P_1}, \tag{253}
\]

\[
1^T \theta_{P_1} = 1^T \sqrt{J}^{-1} \psi_{P_1}. \tag{254}
\]

Next we need to show that we can drop the equality constraint. Note that \(\sigma_1 \triangleq \frac{\sqrt{J}^{-1} 1}{\| \sqrt{J}^{-1} 1 \|} \) is in the null space of \(H \), i.e.,

\[
H \sqrt{J}^{-1} 1 = \beta \eta_1^* \sqrt{J} \left[Q + \eta_1^* V + (1 - \eta_1^*) W - T \right] 1 = 0 \tag{255}
\]
since \(v^T 1 = 0, w^T 1 = 0, T 1 = q \). Now, assume the optimizer of the second optimization in (145) is of the form
\[
\psi_{P_1} = \rho_1 \sigma_1 + \rho_2 \sigma_2,
\] (256)
where \(\sigma_1 \perp \sigma_2, \| \sigma_2 \| = 1 \). Then
\[
\psi_{P_1}^T H \psi_{P_1} = (\rho_1 \sigma_1 + \rho_2 \sigma_2)^T H (\rho_1 \sigma_1 + \rho_2 \sigma_2)
\] (257)
\[
= \rho_2^2 \sigma_2^T H \sigma_2
\] (258)
where we also used \(H \sigma_1 = 0, H = H^T \). Assuming \(H \) has negative eigenvalues (otherwise, both optimizations are equal to zero), the inequality constraint should be satisfied with equality. Then
\[
\psi_{P_1}^T H \psi_{P_1} = \left(2r - \rho_1^2 \right) \sigma_2^T H \sigma_2.
\] (259)
Therefore, to achieve the minimum, \(\rho_1 \) must be zero, which concludes the proof.

APPENDIX K

PROOF OF THEOREM 6

By Theorem 2, it can be shown that by taking \(E_0 = \Theta(n^{-1}) \) there exists an \(\alpha \) such that the proposed classifier (18) achieves \(E_1 = D(P_0 \| P_1) \) which is equal to the Stein regime exponent of hypothesis testing with known distributions, and hence the (38) is equal to \(D(P_0 \| P_1) \). In fact, there is no need for a training sequence to achieve the (38). Since Hoeffding’s test achieves the optimal error exponent tradeoff only by having the distribution \(P_0 \), it is easy to see that the Hoeffding test achieves the Stein regime exponent for the unknown distribution for any \(P_1 \). However, to achieve the largest error exponent under \(P_0 \) such that it guarantees that for any \(P_1 \) the type-II probability of error is bounded by some \(\epsilon \in (0, 1) \), Hoeffding’s and our proposed classifier are not universal, since for any choice of threshold \(E_0 > 0 \), the type-II probability of error for any distribution \(P_1 \) such that \(D(P_1 \| P_0) < E_0 \) converges to one. We show that Gutman’s universal test (11) achieves the largest type-I error exponent while the type-II probability of error is bounded away from one. Using the Gutman’s test we obtain
\[
D_{GJS}^\alpha(\hat{T}_x \| \hat{T}_X) \leq \frac{1}{2n} G_{|X|-1}^{-1}(\epsilon),
\] (260)
where
\[
D_{GJS}^\alpha(Q \| P) = D(Q \left\| \frac{Q + \alpha P}{1 + \alpha} \right) + \alpha D\left(P \left\| \frac{Q + \alpha P}{1 + \alpha} \right)\right),
\] (261)
is the generalized Jensen-Shannon divergence and \(G_{|X|-1}(\cdot) \) is the inverse of the complementary CDF of a chi-squared random variable with \(a \) degrees of freedom; [12] shows that Gutman test with the chosen threshold achieves type-II error probability of \(\epsilon \) for any \(P_1 \) and achieves the type-I error exponent \(D_{\alpha \rightarrow \infty}(P_1 \| P_0) \). We prove the converse showing that the achievable error exponent using Gutman’s test is, in fact the Stein’s regime exponent defined in (38). Note that as \(\alpha \rightarrow \infty \), i.e., when the number of training samples is much larger than the number of test samples, then the exponent \(D_{\alpha \rightarrow \infty}(P_1 \| P_0) \) converges to \(D(P_1 \| P_0) \) which is the Stein regime error exponent under when both distributions are known. We prove the asymptotic optimality of Gutman’s test.
in this setting. Specifically, we show that for any test such that the type-I error exponent $E_{1}^{(c)} > D_{\pi n}(P_{1}||P_{0})$, there exists a P_{1} such that type-II probability of error of the test goes to one, i.e., for any test ϕ_{n} such that

\[
\limsup_{n \to \infty} \epsilon_{1}(\phi_{n}) \leq \epsilon
\]

(262)

for all $P_{1} \in \mathcal{P}(\mathcal{X})$ then

\[
\lim_{n \to \infty} E_{1}^{(c)}(\phi_{n}) \leq D_{\pi n}(P_{1}||P_{0}).
\]

(263)

First, by the lemma 6 in [12], any optimal test can be converted to a test based on samples type, and the error probabilities of such a test only change by a constant factor. Hence, the converted type-based test is asymptotically optimal, and we can limit the classifiers to type-based ones when studying the error exponent. Next, using the similar idea to [12] we show that in order to have a type-II error probability bounded away from one for every P_{1}, the classifier necessarily needs to decide in favor of the second hypothesis when $\|T_{x} - \bar{T}_{X}\| \leq \delta$, for $\delta > 0$, since under P_{1} the types of the test and training sequence will converge to P_{1}. Also, we only look at deterministic test as it can be shown that randomizing the test cannot increase the error exponents. We have the following lemma.

Lemma 19. Let $\epsilon \in (0, 1)$ and X^{k}, x^{n} be two independent i.i.d sequences, generated by distribution P. Then

\[
P\left(\max_{a \in \mathcal{X}} |\hat{T}_{X}(a) - \hat{T}_{x}(a)| \geq \epsilon\right) \leq 2|\mathcal{X}|e^{-n\epsilon^{2}} + 2|\mathcal{X}|e^{-\alpha n\epsilon^{2}}.
\]

(264)

Proof. By the triangle inequality, union bound, and the Hoeffding’s inequality [33], we have

\[
P\left(\max_{a \in \mathcal{X}} |\hat{T}_{X}(a) - \hat{T}_{x}(a)| \geq \epsilon\right) = P\left(\max_{a \in \mathcal{X}} |\hat{T}_{X}(a) - P(a) + P(a) - \hat{T}_{x}(a)| \geq \epsilon\right)
\]

(265)

\[
\leq P\left(\max_{a \in \mathcal{X}} |\hat{T}_{X}(a) - P(a)| + |\hat{T}_{x}(a) - P(a)| \geq \epsilon\right)
\]

(266)

\[
\leq P\left(\max_{a \in \mathcal{X}} |\hat{T}_{X}(a) - P(a)| + \max_{a \in \mathcal{X}} |\hat{T}_{x}(a) - P(a)| \geq \epsilon\right)
\]

(267)

\[
\leq P\left(\max_{a \in \mathcal{X}} |\hat{T}_{X}(a) - P(a)| \geq \frac{\epsilon}{2} + \max_{a \in \mathcal{X}} |\hat{T}_{x}(a) - P(a)| \geq \frac{\epsilon}{2}\right)
\]

(268)

\[
\leq P\left(\max_{a \in \mathcal{X}} |\hat{T}_{X}(a) - P(a)| \geq \frac{\epsilon}{2}\right) + P\left(\max_{a \in \mathcal{X}} |\hat{T}_{x}(a) - P(a)| \geq \frac{\epsilon}{2}\right)
\]

(269)

\[
\leq \sum_{a \in \mathcal{X}} P\left(|\hat{T}_{X}(a) - P(a)| \geq \frac{\epsilon}{2}\right) + \sum_{a \in \mathcal{X}} P\left(|\hat{T}_{x}(a) - P(a)| \geq \frac{\epsilon}{2}\right)
\]

(270)

\[
\leq 2|\mathcal{X}|e^{-2n(\frac{\epsilon}{2})^{2}} + 2|\mathcal{X}|e^{-2k(\frac{\epsilon}{2})^{2}},
\]

(271)

which concludes the lemma. \hfill \Box

Lemma 20. Let $(Q, Q_{1}) \in \mathcal{P}_{n}(\mathcal{X}) \times \mathcal{P}_{k}(\mathcal{X})$ satisfy

\[
\max_{a \in \mathcal{X}} \{|Q(a) - Q_{1}(a)|\} \leq \sqrt{\frac{2}{(\alpha \wedge 1)n} \log \frac{4|\mathcal{X}|}{1 - \epsilon}}.
\]

(272)

Then for any type based test $\phi_{n}(\hat{T}_{x}, \hat{T}_{X})$ such that for all distributions $\hat{P}_{1} \in \mathcal{P}(\mathcal{X})$,

\[
\epsilon_{1}(\phi_{n}(\hat{T}_{x}, \hat{T}_{X})) < \epsilon, \quad \epsilon \in (0, 1),
\]

(273)

we have $\phi_{n}(Q, Q_{1}) = 1$.

June 24, 2022
Proof. We prove this lemma by contradiction. Assume there exists a type dependent test \(\phi_n \) such that \(\epsilon_1(\phi_n(\tilde{T}_x, \tilde{T}_X)) < \epsilon \), and \(\phi_n(Q, Q_1) = 0 \) for types \(Q, Q_1 \) satisfying (272). We have also used the notation \(a \land b = \min\{a, b\} \).

Then the type-II probability of error for such test is
\[
\epsilon_1(\phi_n) = P_1(\phi_n(\tilde{T}_x, \tilde{T}_X) = 0) \geq P_1(\phi_n(\tilde{T}_x, \tilde{T}_X) = 0, \tilde{T}_x = Q, \tilde{T}_X = Q_1).
\]

Conditioning on training and test sequences, we have
\[
\epsilon_1(\phi_n) \geq P_1(\phi_n(\tilde{T}_x, \tilde{T}_X) = 0|\tilde{T}_x = Q, \tilde{T}_X = Q_1)P_1(\tilde{T}_x = Q, \tilde{T}_X = Q_1)
\]
\[
= P_1(\tilde{T}_x = Q, \tilde{T}_X = Q_1)
\]
\[
\geq \left(1 - \frac{(1 - \epsilon) - (1 - \epsilon)}{2}\right)
\]
\[
\geq \epsilon
\]

where in the last step we used the Lemma [19] Therefore, for any probability distribution \(P_1 \) the type-II error probability exceeds \(\epsilon \) which contradicts the assumption. Hence any type based classifier that achieves \(\epsilon_1(\phi_n) < \epsilon \) for all distributions of \(\tilde{P}_1 \in \mathcal{P}(\mathcal{X}) \), should satisfy \(\phi(\tilde{T}_x, \tilde{T}_X) = 1 \) for sufficiently close types \(\tilde{T}_x, \tilde{T}_X \). □

Finally by the method of types, we can lower bound the type-I probability of error as
\[
\epsilon_0 = P_0(\phi_n(Q, Q_1) = 1) \geq (n + 1)^{-|\mathcal{X}|}(k + 1)^{-|\mathcal{X}|} \sum_{\phi_n(Q, Q_1) = 1} e^{-n(D(Q\|P_0) + D(Q_1\|P_1) + \alpha D(Q\|P_0) + \alpha D(Q_1\|P_1))}
\]
\[
\geq (n + 1)^{-|\mathcal{X}|}(k + 1)^{-|\mathcal{X}|} e^{-n\left(\min_{\phi_n(Q, Q_1) = 1} D(Q\|P_0) + \alpha D(Q_1\|P_1)\right)}.
\]

Therefore for any type based test the type-I error exponent is upper bounded by
\[
E_0(\phi) \leq \lim_{n \to \infty} \min_{\phi_n(Q, Q_1) = 1} D(Q\|P_0) + \alpha D(Q_1\|P_1).
\]

Now by Lemma [20] for any test with type-II error probability bounded away from one, we have
\[
E_0(\phi) \leq \lim_{n \to \infty} \min_{\max_{a \in \mathcal{X}} |Q(a) - Q_1(a)| \leq \sqrt{\frac{2 \log \frac{4|\mathcal{X}|}{\epsilon}}{\epsilon n}}} D(Q\|P_0) + \alpha D(Q_1\|P_1)
\]
\[
= \lim_{n \to \infty} \min_{Q \in \mathcal{P}(\mathcal{X})} D(Q\|P_0) + \alpha D(Q_1\|P_1) + o(1)
\]
\[
= \min_{Q \in \mathcal{P}(\mathcal{X})} D(Q\|P_0) + \alpha D(Q_1\|P_1)
\]
\[
= D_{\mathcal{P}(\mathcal{X})}(P_1\|P_0)
\]

where the last step follows from e.g. [33]. This concludes the proof. Observe that the proof can be easily generalized for the case where both probability distributions are unknown and only training samples from both are given, i.e., the largest type-I error exponent achievable when the type-II error probability is bounded away from one is also \(D_{\mathcal{P}(\mathcal{X})}(P_1\|P_0) \), and Gutman’s test can achieve it.
We first find the error probabilities as a function of thresholds, and then we find the average stopping time under each hypothesis. The type-I error probability can be upper bounded by

\[
\epsilon_0 \leq \sum_{t=n}^{\infty} \mathbb{P}\left[t(D(\tilde{T}_n \| P_0) - D(\tilde{T}_n \| \tilde{T}_n^t)) \geq \gamma_{1,n}(t)\right].
\]

(288)

By the method of types [13], we have

\[
\epsilon_0 \leq \sum_{t=n}^{\infty} \sum_{(Q, Q_1) \in \mathcal{Q}_{01}(t) \cap P_0(X) \times P_n(x(X))} e^{-t(D(Q\|P_0) + \alpha D(Q_1\|P_1)}
\]

(289)

\[
\leq \sum_{t=n}^{\infty} (\alpha t + 1)^{|X|}(t + 1)^{|X|} e^{-E_{01}(t)},
\]

(290)

where

\[
E_{01}(t) = \min_{(Q, Q_1) \in \mathcal{Q}_{01}(t)} t(D(Q\|P_0) + \alpha D(Q_1\|P_1)),
\]

(291)

\[
\mathcal{Q}_{01}(t) = \left\{(Q, Q_1) : D(Q\|P_0) - D(Q_1\|Q_1) \geq \frac{\gamma_{1,n}(t)}{t}, Q_1 = (1 - \delta_n)Q + \delta_n U\right\}.
\]

(292)

Similarly to the proof of the Theorem [2] we can expand all the exponents defined in this proof around Q_1 and by choosing $\delta_n = o(n^{-1})$ the error term of the expansion vanishes as n goes to infinity and we can substitute Q_1' with Q_1 for $Q_1 \in \mathcal{P}_{\delta_n}(X)$. This is also true for all the exponent function we define in the rest of the proof. For every fixed Q_1 we can use the dual form of the optimization (291) over Q to get (27)

\[
E_{01}(t) = \min_{Q_1 \in \mathcal{P}_{\delta_n}(X)} \left(\max_{\lambda \geq 0} \gamma_{1,n}(t) \lambda - t \log \sum_{x \in X} P_0^{1-\lambda}(x)Q_1^\lambda(x)\right) + \alpha t D(Q_1\|P_1).
\]

(293)

Substituting $\gamma_{1,n}(t) = n D(Q_1\|P_0) + (4|X| + 4) \log(t + 1)$ and setting $\lambda = 1$ to get a lower bound, we obtain

\[
E_{01}(t) \geq (4|X| + 4) \log(t + 1) + n \min_{Q_1 \in \mathcal{P}_{\delta_n}(X)} D(Q_1\|P_0) + \frac{\alpha t}{n} D(Q_1\|P_1),
\]

(294)

where for large enough n

\[
E_{01}(t) \geq (4|X| + 4) \log(t + 1) + n D_{\beta(t)}(P_1\|P_0),
\]

(295)

and

\[
\beta(t) = \frac{\alpha t}{1 + n^t}.
\]

(296)

Furthermore as $\beta(t)$ is strictly increasing function in t and $D_{\beta(t)}(P_1\|P_0)$ is a non-decreasing function in β [34], then for all $t \geq n$ we have

\[
D_{\frac{n^t}{1+\alpha t}}(P_1\|P_0) \leq D_{\beta(t)}(P_1\|P_0).
\]

(297)

Therefore, by (295), (297)

\[
\epsilon_0 \leq \sum_{t=n}^{\infty} (\alpha t + 1)^{|X|}(t + 1)^{-3|X| - 4} e^{-n D_{\frac{n^t}{1+\alpha t}}(P_1\|P_0)}
\]

(298)

\[
\leq c e^{-n D_{\beta(t)}(P_1\|P_0)},
\]

(299)

where c is a positive constant.
Next, we find a lower bound to the type-II error exponent. Upper bounding the type-II error probability, we have
\[
\epsilon_1 \leq \sum_{t=n}^{\infty} P \left[t (D(\hat{T}_x || \hat{T}_x) - D(\hat{T}_x || P_0)) \geq \gamma_{0,n}(t) \right].
\] (300)
By the method of types, we have
\[
\epsilon_1 \leq \sum_{t=n}^{\infty} \sum_{(Q, Q') \in \mathcal{Q}_{10}(t) \cap \mathcal{P}_r(\mathcal{X}) \times \mathcal{P}_n(\mathcal{X})} e^{-t \left(D(Q||P_0) + \alpha D(Q_1||P_1) \right)}
\] (301)
\[
\leq \sum_{t=n}^{\infty} (at + 1)^{|\mathcal{X}|} (t + 1)^{|\mathcal{X}|} e^{-E_{10}(t)},
\] (302)
where
\[
E_{10}(t) = \min_{(Q, Q') \in \mathcal{Q}_{10}(t)} t \left(D(Q||P_1) + \alpha D(Q_1||P_1) \right),
\] (303)
\[
Q_{10}(\gamma) = \left\{ (Q, Q_1) : D(Q||Q_1) - D(Q||P_0) \geq \frac{\gamma_{0,n}(t)}{t}, Q_1' = (1 - \delta_n)Q_1 + \delta_n U \right\}.
\] (304)
We show that there exists a finite \(\alpha_{eq}^* \) such that for every \(\alpha \geq \alpha_{eq}^* \), the achievable type-II error exponent is lower bounded by \(nD(P_0||P_1) \). Similarly to the fixed sample sized case, for every \(Q_1 \in \mathcal{P}_{\delta_n}(\mathcal{X}) \), let
\[
E_{10}(Q_1, t) = \min_{D(Q||P_1) \geq \frac{\gamma_{0,n}(t)}{t}} tD(Q||P_1),
\] (305)
which is the error exponent when the type of the training sequence is \(Q_1 \). We also define
\[
E_{10}(r, t) = \min_{Q_1 \in \mathcal{P}_{\delta_n}(\mathcal{X})} E_{10}(Q_1, t).
\] (306)
Next, we will Taylor expand \(E_{10}(r, t) \). It is sufficient to show that there exists a finite \(\alpha \) such that
\[
\inf_{n \geq t} \inf_{0 \leq r \leq \frac{r_e}{2}} E_{10}(r, t) + \alpha r \geq nD(P_1||P_0) + (2|\mathcal{X}| + 2) \log(t + 1).
\] (307)
Equivalently, (307) can be written as the following condition
\[
E_{10}(r, t) + \alpha r \geq nD(P_1||P_0) + (2|\mathcal{X}| + 2) \log(t + 1) \quad \forall r : \quad 0 \leq r \leq \frac{r_e}{2}, n \leq t, t \in \mathbb{N}.
\] (308)
Using a Taylor series expansion of \(E_{10}(r, t) \) around \(r = 0 \) we have [27]
\[
E_{10}(r, t) \geq E_{10}(r = 0, t) + z_1(t) \sqrt{t} \mathbb{1}\{t \geq n + 1\} + hr \mathbb{1}\{t = n\}
\] (309)
where
\[
z_1(t) = \inf_{0 \leq r \leq \frac{r_e}{2}} \frac{\partial E_{10}(r, t)}{\partial \sqrt{r}}
\] (310)
\[
= \inf_{D(Q||P_1) \leq \frac{r_e}{2}} \sqrt{\text{Var}_{P_1} \left(\lambda^*(t) \frac{Q_{\lambda^*(t)} - \frac{D(Q_1||P_0)}{Q_1}}{Q_1} \right)},
\] (311)
\[
h = \frac{1}{2} \inf_{0 \leq r \leq \frac{r_e}{2}} \frac{\partial^2 E_{10}(r, t = n)}{\partial \sqrt{r}^2}.
\] (312)
where \(Q_{\lambda^*(t)}, \lambda^*(t) \) are the minimizing distribution and the Lagrange multiplier in (305). We have used the fact that for \(t = n \) the optimization problem \(E_{10}(r, t = n) \) is the same as the fixed sample sized classifier and hence we can use the result of the Theorem [5] to lower bound the exponent by \(hr \mathbb{1}\{t = n\} \) for some finite \(h \).
Also for every \(n < t \), the Taylor expansion of \(E_{10}(r, t) \) has a nonzero first order term, hence the expansion includes \(\sqrt{r} \). Writing \(E_{10}(r = 0, t) \) in the dual form, we have the lower bound

\[
E_{10}(r = 0, t) \geq \max_{\frac{t}{2} \leq \lambda} \gamma - \log \sum_{x \in \mathcal{X}} P_0^\lambda(x) P_1^{1-\lambda}(x),
\]

where \(\gamma = \left. \frac{2a_n(t)}{t} \right|_{Q_1 = P_1} \). Then \(E_{10}(r = 0, t) \) is convex as it is the supremum of linear functions in \(\gamma \). Hence, we can lower bound \(E_{10}(r = 0, t) \) by expanding it around \(\gamma = \frac{n D(P_0 \| P_1)}{t} \) using the envelope theorem we get

\[
E_{10}(r = 0, t) \geq \tilde{E}_{10}(r = 0, t) + (2|\mathcal{X}| + 2) \log(t + 1)
\]

where

\[
\tilde{E}_{10}(r = 0, t) = t \max_{\frac{t}{2} \leq \lambda} \frac{n D(P_0 \| P_1)}{t} - \log \sum_{x \in \mathcal{X}} P_0^\lambda(x) P_1^{1-\lambda}(x).
\]

Further expanding \(\tilde{E}_{10}(r = 0, t) \) around \(t = n \) we have

\[
E_{10}(r, t) \geq n D(P_1 \| P_0) + (2|\mathcal{X}| + 2) \log(t + 1)
\]

\[
+ m(t-n)\mathbb{1}\{t > 2n\} + m(t-n)^2 \mathbb{1}\{t \leq 2n\} + z_1(t) \sqrt{r} \mathbb{1}\{t \geq n + 1\} + hr \mathbb{1}\{t = n\}
\]

where we have used the fact that \(\frac{\partial \tilde{E}_{10}(r = 0, t)}{\partial t} \bigg|_{t = n} = 0 \), and

\[
m = \min \left\{ \inf_{2n < t} \frac{\partial \tilde{E}_{10}(r = 0, t)}{\partial t}, 2 \inf_{n \leq t \leq 2n} \frac{\partial^2 \tilde{E}_{10}(r = 0, t)}{\partial t^2} \right\}.
\]

We have expanded \(\tilde{E}_{10}(r = 0, t) \) as above since it behaves linearly as \(t \) goes to infinity while quadratically for \(t \) close to \(n \). Using Proposition \([18]\) we have

\[
\frac{\partial \tilde{E}_{10}(r = 0, t)}{\partial t} = -\log \sum_{x \in \mathcal{X}} P_0^{\lambda^*(t)}(x) P_1^{1-\lambda^*(t)}(x),
\]

\[
\frac{\partial^2 \tilde{E}_{10}(r = 0, t)}{\partial t^2} = \frac{(\sum Q^*(t) \log \frac{P_0}{P_1})^2}{t \Var P_1 \left(\log \frac{P_0}{P_1} \right)}.
\]

which are finite and strictly positive for any \(2n < t, n \leq t \leq 2n \), respectively, since \(Q^*(t) \) is a probability distribution and \(\frac{t}{2} \leq \lambda^*(t) < 1 \) is the optimizer in \([315]\). From condition \([308]\) by substituting the approximation \([316]\), we need that

\[
m \left((t - n) \mathbb{1}\{t > 2n\} + (t - n)^2 \mathbb{1}\{t \leq 2n\} \right) + z_1(t) \sqrt{r} \mathbb{1}\{t \geq n + 1\} + hr \mathbb{1}\{t = n\} + \alpha r \geq 0
\]

for every \(0 \leq r, n \leq t, t \in \mathbb{N} \). For \(\alpha = \frac{\log n}{n} \), letting \(r^* = \frac{z_1(0) \mathbb{1}\{t > n + 1\}}{4(\alpha t + h \mathbb{1}\{t = n\})} \) to minimize the LHS of \([320]\) over \(r \) we get the condition

\[
m \left((t - n) \mathbb{1}\{t > 2n\} + (t - n)^2 \mathbb{1}\{t \leq 2n\} \right) - \frac{\rho(t)}{4(\alpha t + h \mathbb{1}\{t = n\})} \geq 0,
\]

where

\[
\rho(t) = z_1^2(t) \mathbb{1}\{t \geq n + 1\}
\]

and we have used that \(0 \leq z_1(t) < \infty \) by \([311]\) since for every \(Q_1 \) satisfying \(D(Q_1 \| P_1) \leq \frac{c}{t}, \lambda^*(t) \) is finite and \(Q_{\lambda^*(t)} \) is a probability distribution, hence the variance in \([311]\) is finite. Moreover, \(\rho(t) \) equals to zero at \(t = n \) and it is finite for every \(t \in \mathbb{N} \) with finite limit as \(t \to \infty \). Hence there exists a finite \(c_1 \) such that
\[\rho(t) \leq c_1 \left((t-n)^2 \mathbb{I}\{t > 2n\} + (t-n)^2 \mathbb{I}\{t \leq 2n\} \right) \quad \text{for } t \in \mathbb{N}. \]
Then, by further relaxing condition (320), we need
\[\left((t-n)^2 \mathbb{I}\{t > 2n\} + (t-n)^2 \mathbb{I}\{t \leq 2n\} \right) (m - c_1 \frac{1}{4} \alpha t) \geq 0, \quad (323) \]
where we have dropped the \(h \mathbb{I}\{t = n\} \) term as it is only nonzero for \(t = n \) which sets \((t-n) \) and \((t-n)^2 \) to zero. Therefore, if \(\alpha > \frac{4m}{c_1} \), the sufficient condition is satisfied and
\[E_{10}(t) \geq nD(P_0||P_1) + (2|X| + 2) \log(t+1) \quad (324) \]
for all \(n \leq t, t \in \mathbb{N}, 0 \leq r \leq \frac{r}{2} \). Therefore, for \(\alpha > \max \left\{ \frac{4m}{c_1}, \frac{2D(P_0||P_1)}{r|X|}, 4|X| + 4 \right\} \), by substituting (324) in (302), we get
\[\epsilon_1 \leq c \alpha e^{-nD(P_0||P_1)}, \quad (325) \]
where \(c \) is a positive constant.

Next, we find the average stopping times of the proposed sequential classifier. We first show the convergence of \(\tau \) in probability under each hypothesis, and by proving its uniform integrability, we can conclude its convergence in the \(L^1 \) norm. The following lemma states that for every \(n \) the classifier stops with the probability of one.

Lemma 21. Let \(\tau_0, \tau_1 \) be the the smallest time that the sequential classifier crosses threshold \(\gamma_{0,n}(t) \) or \(\gamma_{1,n}(t) \) respectively, i.e.,
\[\tau_0 = \inf \{ t \geq n : S_t \geq \gamma_{0,n}(t) \}, \quad \tau_1 = \inf \{ t \geq n : S_t \leq -\gamma_{1,n}(t) \}. \quad (326) \]
Then for \(i \in \{0, 1\}, \ t \geq n, \)
\[P_i[\tau_i > t] \leq c_i(t+1)^d|X| e^\xi n e^{-tE_i}, \quad (327) \]
where \(E_i, \xi, c_i, d_i > 0 \) and finite.

Proof. By the method of types the probability of passing the threshold \(\gamma_{0,n}(t) \) under the first hypothesis at a time after \(t \geq n \) can be upper bounded by
\[P_0[\tau_0 > t] \leq P_0[S_t \leq \gamma_{0,n}(t)] \leq P_0 \left[D(T_{\hat{T}_0}||\hat{T}_X) - D(T_{\hat{T}_\rho}||P_0) \leq \frac{\gamma_{0,n}(t)}{t} \right] \quad (328) \]
\[\leq \sum_{(Q,Q_1) \in \mathcal{Q}_{00} \cap \mathcal{P}_1} e^{-t(D(Q||P_0) + \alpha D(Q||P_1))} \quad (329) \]
\[\leq (\alpha t + 1)^{|X|} (t+1)^{|X|} e^{-E_0(t)}, \quad (330) \]
where
\[E_0(t) = \min_{(Q,Q_1) \in \mathcal{Q}_{00}(t)} t \left(D(Q||P_0) + \alpha D(Q||P_1) \right), \quad (331) \]
\[\mathcal{Q}_{00}(t) = \left\{ (Q,Q_1) : D(Q||P_0) - D(Q||P_1) \geq \frac{-\gamma_{0,n}(t)}{t} \right\}. \quad (332) \]
For every fix Q_1 we can use the dual form of the optimization over Q to get [27]

\[
E_0(t) = \min_{Q_1 \in P(X)} \left(t \max_{0 \leq \lambda \leq 1} \frac{\gamma_0(t)}{t} - \log \sum_{x \in X} P_0^{1-\lambda}(x)Q_1^\lambda(x) + \alpha tD(Q_1||P_1) \right) \tag{334}
\]

For every fix Q_1 we can use the dual form of the optimization over Q to get [27]

\[
E_0(t) \geq \min_{Q_1 \in P(X)} \left(t \max_{0 \leq \lambda \leq 1} \frac{\gamma_0(t)}{t} - \log \sum_{x \in X} P_0^{1-\lambda}(x)Q_1^\lambda(x) + \alpha tD(Q_1||P_1) \right) \tag{335}
\]

Let

\[
E(\gamma) = \max_{0 \leq \lambda \leq 1} \lambda \gamma - \log \sum_{x \in X} P_0^{1-\lambda}(x)Q_1^\lambda(x).
\]

Then $E(\gamma)$ is convex as it is the supremum of linear functions in γ [22]. Therefore letting the E_0 to be the nonzero minimum of the optimization, we have

\[
E \left(\frac{\gamma}{t} \right) \geq E_0 + \frac{\partial E(\gamma)}{\partial \gamma} \bigg|_{\gamma=0} \frac{\gamma}{t}. \tag{337}
\]

Applying the expansion to (335) we get

\[
E_0(t) \geq t \min_{Q_1 \in P(X)} \left(C(P_0||Q_1) - \frac{\log(t+1)}{t} + \alpha tD(Q_1||P_1) \right) \tag{338}
\]

where we have used $\frac{\partial E(\gamma)}{\partial \gamma} = \lambda^*$ with $\lambda^* \leq 1$ to be the Lagrange multiplier solving (335), and lower bounding $E_0(t)$ by setting $\lambda^* = 1$. Moreover, $C(P_0||Q_1) = \max_{0 \leq \lambda \leq 1} -\log \sum_{x \in X} P_0^{1-\lambda}(x)Q_1^\lambda(x)$ is the Chernoff information. Further lower bounding $E_0(t)$ we get

\[
E_0(t) \geq t \min_{Q_1 \in P(X)} \left(C(P_0||Q_1) - \frac{\log(t+1)}{t} + \alpha tD(Q_1||P_1) \right) \tag{339}
\]

where $(x)^+ = \max\{x,0\}$. Choosing $\zeta > \frac{D(P_0||P_1)}{C(P_0||P_1)}$, for every $t \geq \zeta n$ the solution to the optimization (340) is nonzero since $\alpha tD(Q_1||P_1)$ can be zero if and only if $Q_1 = P_1$ while the first term $C(P_0||Q_1) - \frac{1}{\zeta}D(P_0||Q_1)$ is nonzero for that choice of Q_1. Therefore, we have

\[
E_0(t) \geq -(4|X|+4) \log(t+1) + E_0 t \{t \geq \zeta n\} \tag{341}
\]

\[
\geq -(4|X|+4) \log(t+1) + E_0 t (1 - \frac{n}{t}) \tag{342}
\]

\[
= -(4|X|+4) \log(t+1) + E_0 t - \xi_0 n \tag{343}
\]

where $\xi_0 = E_0 \zeta, E_0 > 0$. Substituting (343) in (331) gives (327). To prove the result under the hypothesis P_1, let

\[
E_1(t) = \min_{(Q,Q_1) \in \mathcal{Q}_{11}(t)} \{ (Q,Q_1) : D(Q||Q_1) - D(Q||P_0) \geq -\frac{\gamma_0(t)}{t} \}, \tag{344}
\]

\[
\mathcal{Q}_{11}(t) = \{ (Q,Q_1) : D(Q||Q_1) - D(Q||P_0) \geq -\frac{\gamma_0(t)}{t} \}. \tag{345}
\]
Similar to the steps for hypothesis P_0, we have

$$E_1(t) + \lambda^*(4|\mathcal{X}| + 4) \log(t + 1)$$

$$\geq t \min_{Q_i \in P_i(\mathcal{Y}_i)} \left(\max_{0 \leq \lambda} - \log \sum_{x \in \mathcal{X}} P_i(x)Q_i(x)^{\lambda}P_0^\lambda \right) - \frac{\lambda}{t} \lambda^* D(Q_i||P_0) + \alpha D(Q_i||P_1)$$

$$\geq t \min_{Q_i \in P_i(\mathcal{Y}_i)} D(Q||P_i) + \frac{\alpha}{2} D(Q_i||P_1) + \min_{Q_1} \frac{\alpha}{2} t D(Q_i||P_1) + n \lambda^* D(Q_i||P_0)$$

$$\geq t \min_{Q_i \in P_i(\mathcal{Y}_i)} D(Q||P_i) + \frac{\alpha}{2} D(Q_i||P_1) + n \min_{Q_i} \frac{\alpha}{2} \lambda^* D(Q_i||P_0) - \lambda^* D(Q_i||P_0)$$

$$= E_1(t - \xi_1 n)$$

where in the last step we used the fact that both optimizations are finite and $E_1 > 0, \xi_1 > 0$, and where λ^* is the Lagrange multiplier solving the maximization in (347). This concludes the proof.

Lemma 22. For $i \in \{0, 1\}$

$$|\gamma_{i,n}(t + 1) - \gamma_{i,n}(t)| \xrightarrow{a.s.} 0,$$

as $t \to \infty$.

Proof. We first show the lemma for $i = 0$. By the triangle inequality and the definition of KL-divergence, we have

$$|\gamma_{0,n}(t + 1) - \gamma_{0,n}(t)| \leq (4|\mathcal{X}| + 4) \log(t + 1) - \log(t) + n \left| \sum_{x \in \mathcal{X}} P_0(x) \log \frac{\hat{T}_{X}^{1:1\alpha(t+1)}(x)}{T_{X}^{1:1\alpha}(x)} \right|$$

$$\leq \frac{c}{t} + n \left| \sum_{x \in \mathcal{X}} P_0(x) \log \frac{\hat{T}_{X}^{1:1\alpha(t+1)}(x)}{T_{X}^{1:1\alpha}(x)} \right|$$

$$\leq \frac{c}{t} + n \left| \sum_{x \in \mathcal{X}} P_0(x) \log \frac{t}{t + 1} + \frac{1}{t + 1} \frac{T_{X}^{1:1\alpha(t+1)}(x)}{T_{X}^{1:1\alpha}(x)} \right| \to 0$$

where $\hat{T}^{i:j}_X$ is the type of the sequence (X_1, \ldots, X_j), and in the last step, the logarithm will be either zero or goes to zero as t goes to infinity. Next, for $\gamma_{1,n}(t)$, by the triangle inequality and the L_1 bound on entropy [13] we have

$$|\gamma_{1,n}(t + 1) - \gamma_{1,n}(t)| \leq (4|\mathcal{X}| + 4) \log(t + 1) - \log(t) + n \left| H(\hat{T}_{X}^{1:1\alpha(t+1)}) - H(\hat{T}_{X}^{1:1\alpha}) \right|$$

$$+ n \left| \sum_{x \in \mathcal{X}} (\hat{T}_{X}^{1:1\alpha(t+1)}(x) - \hat{T}_{X}^{1:1\alpha}(x)) \log P_0(x) \right|$$

$$\leq \frac{c}{t} - n \|\hat{T}_{X}^{1:1\alpha(t+1)} - \hat{T}_{X}^{1:1\alpha}\|_1 \log \frac{\|\hat{T}_{X}^{1:1\alpha(t+1)} - \hat{T}_{X}^{1:1\alpha}\|_1}{|\mathcal{X}|} + c' \|\hat{T}_{X}^{1:1\alpha(t+1)} - \hat{T}_{X}^{1:1\alpha}\|_1$$

$$\leq \frac{c}{t} + n \frac{1}{t + 1} \log \frac{1}{|\mathcal{X}|^2(t + 1)} + \frac{c'}{t + 1} \to 0,$$
Now by the finiteness of τ_0 for every n, and the definition of τ_0, there exists a finite τ_0 with probability one such that
\[S_{\tau_0 - 1} < \gamma_{0,n}(\tau_0 - 1), \quad \gamma_{0,n}(\tau_0) \leq S_{\tau_0} \text{ w.p.1.} \quad \text{(359)}\]
Furthermore, for every τ_0 we have
\[\frac{S_{\tau_0}}{\tau_0} = D(\hat{T}_x^{\tau_0} \| \hat{T}_X^{\tau_0}) - D(\hat{T}_x^{\tau_0} \| P_1) + o(1). \quad \text{(360)}\]
Also, since by design $\tau_0 \geq n$, using the WLLN, and the continuous mapping theorem, as $n \to \infty$, we get
\[\frac{S_{\tau_0}}{\tau_0} \overset{P}{\to} D(P_0 \| P_1), \quad \frac{S_{\tau_0 - 1}}{\tau_0 - 1} \overset{P}{\to} D(P_0 \| P_1). \quad \text{(361)}\]
Therefore, by Lemma 21, Lemma 22, and (359), (361) we can conclude that
\[\frac{\gamma_{0,n}(\tau_0)}{\tau_0} \overset{P}{\to} D(P_0 \| P_1), \quad \text{as} \ n \to \infty. \quad \text{(362)}\]
as $n \to \infty$. Also, we have
\[\frac{\gamma_{0,n}(\tau_0)}{\tau_0} = \frac{n}{\tau_0} D(P_0 \| \hat{T}_X) + \frac{\log(\tau_0 + 1)}{\tau_0}, \quad \text{(363)}\]
and by assumption $\max_{x \in X} \frac{P_0(x)}{P_1(x)} \leq c$, $D(P_0 \| \hat{T}_X)$ is a consistent estimator of $D(P_0 \| P_1)$ [35], and hence
\[D(P_0 \| \hat{T}_X) \overset{P}{\to} D(P_0 \| P_1). \quad \text{(364)}\]
Finally by [362], [363], [364], and using continuous mapping theorem [36], we have
\[\frac{\tau_0}{n} \overset{P}{\to} 1, \quad \text{as} \ n \to \infty. \quad \text{(365)}\]
To show the convergence in L^1 we only need to prove the uniform integrability of the sequence of random variables $\frac{\tau_0}{n}$, where τ_0 depends on n. Equivalently, we need to show that,
\[\lim_{t \to \infty} \sup_{n \geq 1} \mathbb{E}_{P_0} \left[\frac{\tau_0}{n} I \left\{ \frac{\tau_0}{n} \geq t \right\} \right] = 0. \quad \text{(366)}\]
By (327), we can upper bound the given expectation in (366) as
\[\mathbb{E}_{P_0} \left[\frac{\tau_0}{n} I \left\{ \frac{\tau_0}{n} \geq t \right\} \right] = \frac{1}{n} \sum_{m=1}^{\infty} P_0 \left[\tau_0 - tn \geq m \right] \quad \text{(367)}\]
\[\leq \frac{1}{n} t e^{-n(t E_0 - \zeta_0)} \sum_{m=0}^{\infty} c(m + tn + 1) \frac{e^{-m E_0}}{E_0}. \quad \text{(368)}\]
Hence the expectation is vanishing as $t \to \infty$ for every n giving the uniform integrability of $\frac{\tau_0}{n}$, and hence convergence in L^1 [37], i.e,
\[\lim_{n \to \infty} \mathbb{E}_{P_0} \left[\frac{\tau_0}{n} - 1 \right] = 0. \quad \text{(369)}\]
Finally, we prove the convergence of τ. By (325), (362) and the union bound, we obtain
\[P_0 \left[\left| \frac{\tau}{n} - 1 \right| \geq \epsilon \right] \leq P_0 \left[\left| \frac{\tau}{n} - 1 \right| \geq \epsilon, \phi = 0 \right] + P_0[\phi = 1] \quad \text{(370)}\]
\[= P_0 \left[\left| \frac{\tau_0}{n} - 1 \right| \geq \epsilon \right] + \epsilon_0, \quad \text{(371)}\]
which tends to 0 as $n \to \infty$, establishing the convergence of $\frac{\tau}{n}$ in probability. Now, using that $\tau \leq \tau_0$ we have
\[\mathbb{E}_{P_0} \left[\frac{\tau}{n} I \left\{ \frac{\tau}{n} \geq t \right\} \right] \leq \mathbb{E}_{P_0} \left[\frac{\tau_0}{n} I \left\{ \frac{\tau_0}{n} \geq t \right\} \right]. \quad \text{(372)}\]
Therefore, uniform integrability of τ_0 gives the uniform integrability of τ, and hence convergence in L^1 norm and also expectation of $\frac{\tau}{n}$, which concludes the proof.

APPENDIX M

PROOF OF THEOREM 8

For the type-II error exponent, the converse for sequential hypothesis testing is applicable, i.e., for every sequential test with $E_{P_0}[\tau] \leq n$, we have $E_1 \leq D(P_0\|P_1)$ [38]. To find an upper bound to E_0 we use the following lemma.

Lemma 23. For any type based sequential test Φ^{seq}, let $\tau \in N_1^n$, where $N_1^n = \{1, \ldots, n\}$ is the typical stopping time set such that

$$P_1(\tau \in N_1^n) \geq 1 - \frac{\epsilon}{2}. \tag{373}$$

Also for every t, let $(x^t, X^{\alpha t}) \in B_t^\alpha$ where

$$B_t^\alpha = \left\{(x^t, X^{\alpha t}) : \max_{a \in X} \left\{|\hat{T}_a(a) - \hat{T}_X(a)|\right\} \leq \frac{2}{(\alpha \wedge 1)t} \log \frac{8 |X|}{\epsilon}\right\}. \tag{374}$$

Then for any type based test $(\phi(\hat{T}_x, \hat{T}_X), \tau)$ such that for all distributions $P_1 \in \mathcal{P}(X)$,

$$\epsilon \varphi(x^\tau, X^{\alpha \tau}) < \epsilon, \quad \epsilon \in (0, \frac{1}{2}), \tag{375}$$

we have

$$P\left[\phi(x^\tau, X^{\alpha \tau}) = 1, (x^\tau, X^{\alpha \tau}) \in B_t^\alpha, \tau \in N_1^n\right] \geq 1 - 2\epsilon. \tag{376}$$

Proof. We prove the lemma by contradiction. Assume

$$P\left[\phi(x^\tau, X^{\alpha \tau}) = 1, (x^\tau, X^{\alpha \tau}) \in B_t^\alpha, \tau \in N_1^n\right] < 1 - 2\epsilon. \tag{377}$$

Then

$$2\epsilon \varphi(P\left[\phi(x^\tau, X^{\alpha \tau}) \neq 1 \cup (x^\tau, X^{\alpha \tau}) \notin B_t^\alpha \cup \tau \notin N_1^n\right] \leq P\left[\phi(x^\tau, X^{\alpha \tau}) \neq 1\right] + P\left[(x^\tau, X^{\alpha \tau}) \notin B_t^\alpha\right] + P\left[\tau \notin N_1^n\right] \tag{378}$$

$$\leq \epsilon_1 + \epsilon + \frac{\epsilon}{4} + \frac{\epsilon}{2}. \tag{379}$$

where in the last step we used Lemma 19. Hence, $\epsilon \leq \epsilon_1$ which is a contradiction and hence (376) holds.

By Lemma 23 we can conclude that if the condition (376) does not hold there exists a distribution P_1 such that the type-II error probability is bounded away from zero and hence the type-II error exponent of such test equals to zero. Therefore, by (376) we can lower bound the ϵ_0 for any test with nonzero E_1 as

$$\epsilon_0 = P(\phi(x^\tau, X^{\alpha \tau}) = 1) \geq P(\phi(x^\tau, X^{\alpha \tau}) = 1, (x^\tau, X^{\alpha \tau}) \in B_t^\alpha, \tau \in N_1^n) \tag{380}$$

$$= P(\phi(x^\tau, X^{\alpha \tau}) = 1, (x^\tau, X^{\alpha \tau}) \in B_t^\alpha, \tau \in N_1^n) \leq P\left[(x^\tau, X^{\alpha \tau}) \in B_t^\alpha, \tau \in N_1^n\right]. \tag{381}$$
By the previous lemma, we can lower bound the first probability by \(1 - 2\epsilon\). Also, let \(\epsilon\) to be sufficiently small, such that \(n \in \mathcal{N}_1 = \{1, ..., N\}\), then by the method of types

\[
\epsilon_0 \geq (1 - 2\epsilon) \sum_{t=1}^{N} \mathbb{P}\left(\{x^*, X^\alpha\} \in B_t^c \mid \tau = t\right) \mathbb{P}_0[\tau = t]\]

(384)

\[
\geq (1 - 2\epsilon) \sum_{t=1}^{n} (t + 1)^{-|X|}(\alpha t + 1)^{-|X|}e^{-t \min_{Q, Q_1} \in B_t^c D(Q \mid P_0) + \alpha D(Q_1 \mid P_1)} \mathbb{P}_0[\tau = t]\]

(385)

\[
\geq (1 - 2\epsilon) e^{-n \min_{Q, Q_1} \in B_t^c D(Q \mid P_0) + \alpha D(Q_1 \mid P_1)} \mathbb{P}_0[|\tau| \leq n]
\]

(386)

(387)

where \(c\) is a positive constant. Now by \(\mathbb{E}_P[\tau] \leq n\), the optimal test should stops by the time \(n\) with a positive probability, i.e., \(\mathbb{P}_0[\tau \leq n] > 0\), since otherwise, \(\mathbb{E}_P[\tau] > n\). Finally, by letting \(\epsilon \to 0\), \(n \to \infty\), we have

\[
E_0 \leq D_{\text{TV}}(P_1 \mid P_0).
\]

(388)

Hence, for any sequential test with a finite stopping time, and the type-II error probability that is bounded away from one for every distribution \(P_1\), the type-I error exponent is bounded by \(D_{\text{TV}}(P_1 \mid P_0)\), which concludes the proof.

References

[1] E. L. Lehmann and J. P. Romano, *Testing statistical hypotheses*, Springer Texts in Statistics. Springer, New York, third edition, 2005.

[2] J. Neyman and E. S. Pearson, “On the problem of the most efficient tests of statistical hypotheses,” *Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character*, vol. 231, pp. 289–337, 1933.

[3] A. Wald and J. Wolfowitz, “Optimum character of the sequential probability ratio test,” *Ann. Math. Statist.*, vol. 19, no. 3, pp. 326–339, 09 1948.

[4] Yonglong Li and Vincent Y. F. Tan, “Second-order asymptotics of sequential hypothesis testing,” *IEEE Trans. Inf. Theory*, vol. 66, no. 11, pp. 7222–7230, 2020.

[5] W. Hoeffding, *Asymptotically Optimal Tests for Multinomial Distributions*, pp. 431–471, Springer New York, New York, NY, 1994.

[6] Corinna Cortes and Vladimir Vapnik, “Support-vector networks,” *Machine learning*, vol. 20, no. 3, pp. 273–297, 1995.

[7] Trevor Hastie, Robert Tibshirani, Jerome H Friedman, and Jerome H Friedman, *The elements of statistical learning: data mining, inference, and prediction*, vol. 2, Springer, 2009.

[8] Luc Devroye, László Györfi, and Gábor Lugosi, *A probabilistic theory of pattern recognition*, vol. 31, Springer Science & Business Media, 2013.

[9] T. Cover and P. Hart, “Nearest neighbor pattern classification,” *IEEE Trans. Inf. Theory*, vol. 13, no. 1, pp. 21–27, 1967.

[10] X. Tong, “A plug-in approach to neyman-pearson classification,” *Journal of Machine Learning Research*, vol. 14, no. 56, pp. 3011–3040, 2013.

[11] M. Gutman, “Asymptotically optimal classification for multiple tests with empirically observed statistics,” *IEEE Trans. Inf. Theory*, vol. 35, no. 2, pp. 401–408, Mar. 1989.

[12] Lin Zhou, Vincent Y F Tan, and Mehul Motani, “Second-order asymptotically optimal statistical classification,” *Information and Inference: A Journal of the IMA*, vol. 9, no. 1, pp. 81–111, 01 2019.

[13] T. M. Cover and J. A. Thomas, *Elements of Information Theory 2nd Edition (Wiley Series in Telecommunications and Signal Processing)*, Wiley-Interscience, July 2006.

[14] I. Csiszár and P.C. Shields, “Information theory and statistics: A tutorial,” *Foundations and Trends® in Communications and Information Theory*, vol. 1, no. 4, pp. 417–528, 2004.

[15] A. Dembo and O. Zeitouni, *Large Deviations Techniques and Applications*, vol. 95, 01 2010.

[16] M. Iltis, “Sharp asymptotics of large deviations,” *Journal of Theoretical Probability*, vol. 8, no. 3, pp. 501–522, Jul 1995.

[17] G. Vazquez-Vilar, A. Guillén i Fàbregas, T. Koch, and A. Lanchó, “Saddlepoint approximation of the error probability of binary hypothesis testing,” *2018 IEEE International Symposium on Information Theory (ISIT)*, pp. 2306–2310, 2018.
[18] Y. Li, S. Nitinawarat, and V. V. Veeravalli, “Universal outlier hypothesis testing,” IEEE Trans. Inf. Theory, vol. 60, no. 7, pp. 4066–4082, July 2014.

[19] Benjamin G. Kelly, Aaron B. Wagner, Thitidej Tularak, and Pramod Viswanath, “Classification of homogeneous data with large alphabets,” IEEE Trans. Inf. Theory, vol. 59, no. 2, pp. 782–795, 2013.

[20] A. Wald, “Sequential Tests of Statistical Hypotheses,” The Annals of Mathematical Statistics, vol. 16, no. 2, pp. 117 – 186, 1945.

[21] M. Woodroofe, Nonlinear Renewal Theory in Sequential Analysis, Society for Industrial and Applied Mathematics, 1982.

[22] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, New York, NY, USA, 2004.

[23] I. Csiszár and J. Körner, Information theory: coding theorems for discrete memoryless systems, Cambridge University Press, 2011.

[24] I.M. Chakravarti, Asymptotic theory of statistical tests and estimation: in honor of Wassily Hoeffding, Academic Press, 1980.

[25] P. Ney, “Dominating points and the asymptotics of large deviations for random walk on \mathbb{R}^d,” The Annals of Probability, vol. 11, no. 1, pp. 158–167, 1983.

[26] John M Lee, “Smooth manifolds,” in Introduction to Smooth Manifolds, pp. 1–31. Springer, 2013.

[27] P. Boroumand and A. Guillén i Fàbregas, “Mismatched binary hypothesis testing: Error exponent sensitivity,” IEEE Trans. Inf. Theory, pp. 1–1, 2022.

[28] C. Berge, Topological Spaces: Including a Treatment of Multi-valued Functions, Vector Spaces, and Convexity, Dover books on mathematics, Dover Publications, 1997.

[29] W. Rudin, Principles of mathematical analysis, vol. 3, McGraw-hill New York, 1964.

[30] P. Milgrom and I. Segal, “Envelope theorems for arbitrary choice sets,” Econometrica, vol. 70, no. 2, pp. 583–601, 2002.

[31] Roger A. Horn and Charles R. Johnson, Topics in Matrix Analysis, Cambridge University Press, 1991.

[32] E. Castillo, A. J. Conejo, C. Castillo, R. Mínguez, and D. Ortigosa, “Perturbation approach to sensitivity analysis in mathematical programming,” Journal of Optimization Theory and Applications, vol. 128, no. 1, pp. 49–74, 2006.

[33] S. Boucheron, G. Lugosi, and P. Massart, Concentration Inequalities: A Nonasymptotic Theory of Independence, Oxford University Press, 2013.

[34] T. van Erven and P. Harremoës, “Rényi divergence and Kullback-Leibler divergence,” IEEE Trans. Inf. Theory, vol. 60, no. 7, pp. 3797–3820, 2014.

[35] Y. Bu, S. Zou, Y. Liang, and V.V. Veeravalli, “Estimation of kl divergence: Optimal minimax rate,” IEEE Trans. Inf. Theory, vol. 64, no. 4, pp. 2648–2674, 2018.

[36] S. Resnick, A probability path, Springer, 2019.

[37] P. Billingsley, Probability and Measure, John Wiley and Sons, second edition, 1986.

[38] Y. Polyanskiy and S. Verdú, “Binary hypothesis testing with feedback,” Information Theory and Applications Workshop (ITA), 2011.