Awake Microlaparoscopy with the Insuflow® Device

Oscar D. Almeida, Jr., MD

ABSTRACT

Background and Objectives: Patients undergoing laparoscopy often complain of shoulder pain, shivering, or both following laparoscopy. An increase in awake microlaparoscopic procedures has been reported. The objective of this study was to investigate the usefulness of heating and humidifying the carbon dioxide gas for the pneumoperitoneum with the Insuflow® device (Lexion Medical, St. Paul, Minnesota) during awake microlaparoscopic procedures.

Methods: Awake microlaparoscopy was performed with the Insuflow® device for heating and humidifying the carbon dioxide for the pneumoperitoneum.

Results: The incidence of transient shoulder pain in the Insuflow® group was 5% compared with 40% in the dry carbon dioxide group. No patient in the Insuflow® group complained of shivering, whereas 55% in the control group had shivering. Fogging of the microlaparoscope lens was decreased in the Insuflow® group.

Conclusions: Heating and humidifying the carbon dioxide gas produced fewer patient complaints of shoulder pain and shivering and decreased fogging of the microlaparoscope lens compared with procedures done with dry carbon dioxide during awake microlaparoscopic procedures.

Key Words: Microlaparoscopy, Pneumoperitoneum, Insuflow® device, Carbon dioxide.

INTRODUCTION

Recent advances in techniques and instrumentation have made awake microlaparoscopy a viable option for many laparoscopic procedures. Peritoneal irritation is especially obvious during awake procedures because peritoneal irritation occurs when patients are under general anesthesia but are non compos mentis and only perceive the peritoneal pain when they awaken. Dry carbon dioxide provokes irritation and pain on peritoneal surfaces. Patients undergoing laparoscopy often complain of shoulder pain, shivering, or both, following laparoscopy. Heating and humidification of the carbon dioxide gas at a physiologic level decreases hypothermia and tissue desiccation. Local tissue hypothermia results from the rapid evaporation from tissue surfaces of peritoneal fluid water into the dry jet of insufflation gas. In addition, cold dry carbon dioxide promotes fogging of the laparoscope lens.

MATERIALS AND METHODS

Between January 1999 and October 2000, a prospective, nonrandomized study of 40 women with chronic pelvic pain who failed conservative medical therapy underwent awake microlaparoscopy in our office microlaparoscopy suite or the ambulatory surgery center of a private community hospital. Patients selected had preoperative American Society of Anesthesiologists physical status class I or II, and no history of psychiatric anxiety disorders or morbid obesity. None of the women had a history of intolerance to benzodiazepines or lidocaine, long-term drug addiction, cardiac or respiratory disease, neuropathic or swallowing disorders, or hepatic or renal encephalopathy.

Patients took nothing by mouth for a minimum of 7 hours before surgery and received a preoperative pre-load of Ringer's lactate solution. Conscious sedation (atropine 0.2 mg, ondansetron hydrochloride 4 mg, midazolam hydrochloride 1 mg, and fentanyl citrate 250 leg) was given intravenously until satisfactory levels of sedation and comfort were obtained. The patients were prepared and draped, and a Foley catheter inserted. Administration of paracervical, periumbilical, and supra-pubic blocks at the operative sites with 1% lidocaine with...
epinephrine 1:100,000, 10 mL buffered with sodium bicarbonate (10:1 dilution) was undertaken.

The pneumoperitoneum was administered in a single dose of 1.5 liters in the dry CO₂ group with standard insufflation tubing. Patients in the Insuflow® (Lexion Medical, St. Paul, Minnesota) group received continuous heated and humidified CO₂ at a setting of 6 mm Hg and a volume of up to 4 liters for the pneumoperitoneum. During the procedure, the surgeon observed the occurrence of lens fogging. Following completion of the procedure, an active effort to eliminate as much of the gas medium was made by applying pressure to the anterior and sides of the abdomen and pelvis with the patient in the Trendelenburg position prior to removal of the trocars. Upon completion of the procedure, patients were asked about the presence or absence of shoulder pain and were observed for shivering.

RESULTS

The microlaparoscopic procedures are shown in Table 1. All patients in both groups tolerated the awake diagnostic and operative microlaparoscopic procedures. However, patients in the Insuflow® group appeared to tolerate the awake procedures better. Patients in the dry CO₂ group did not comfortably tolerate volumes of gas above 1.5 liters, especially for prolonged operative procedures beyond 30 minutes. The Insuflow® group tolerated up to 4 liters continuous CO₂, often beyond 30 minutes.

The incidence of transient shoulder pain was 5% in the Insuflow® group, compared with 40% in the group using standard insufflation tubing. No patient in the Insuflow® group complained of shivering, whereas 55% in the dry carbon dioxide group had shivering. Microlaparoscope lens fogging was noticeably decreased in the Insuflow® group.

DISCUSSION

Bone-dry carbon dioxide pneumoperitoneum produces peritoneal desiccation that increases the incidence of postoperative shoulder pain and shivering.12–13 This effect results from the conversion of CO₂ to carbonic acid on the moist peritoneal surfaces. In this study, peritoneal irritation was more prominent when nonheated, nonhumidi-...
References:

1. Almeida OD Jr. Microlaparoscopic equipment. In: Almeida OD Jr, ed. *Microlaparoscopy*. New York: John Wiley & Sons Inc; 2000:11-18.

2. Almeida OD Jr, Val-Gallas JM. Appendectomy under local anesthesia following conscious pain mapping with microlaparoscopy. *Hum Reprod*. 1998;13(3):588-590.

3. Almeida OD Jr, Val-Gallas JM. Conscious pain mapping. *J Am Assoc Gynecol Laparosc*. 1997;4:587-590.

4. Almeida OD Jr, Val-Gallas JM. Office microlaparoscopy under local anesthesia in the diagnosis and treatment of chronic pelvic pain. *J Am Assoc Gynecol Laparosc*. 1998;5(4):407-410.

5. Almeida OD Jr, Rizk B. Microlaparoscopic ovarian drilling under local anesthesia. *Mid East Fertil Soc J*. 1998;3(2):189-191.

6. Almeida OD Jr. Microlaparoscopic conscious pain mapping in the evaluation of chronic pelvic pain: A case report. *JSLS*. 2002;6:81-83.

7. Jacobs VR, Morrison JE, Mettler L, Mundhenke C, Jonat W. Measurement of CO2 hypothermia during laparoscopy and pelviscopy: How cold it gets and how to prevent it. *J Am Assoc Gynecol Laparosc*. 1999;9(3):289-295.

8. Ott DE, Reich H, Love B, et al. Reduction of laparoscopy-induced hypothermia, postoperative pain and recovery room length of stay by pre-conditioning gas with the Insuflow® device: A prospective randomized controlled multi-center study. *JSLS*. 1998;2:321-329.

9. Garner RE, Wright EB, Ott DE. Maintenance of cell viability at laparoscopy by hydration of O2. *J Am Assoc Gynecol Laparosc*. 2000;7(3):S19.

10. Gray R, Ott D, Henderson AC, Cochran SA, Roth EA. Severe local hypothermia from laparoscopic gas evaporative jet cooling: A mechanism to explain clinical observations. *JSLS*. 1999;3:171-177.

11. Almeida OD Jr, Val-Gallas JM, Browning J. A protocol for conscious sedation in microlaparoscopy. *J Am Assoc Gynecol Laparosc*. 1997;4:591-594.

12. Jacobs VR, Morrison JE, Mundhenke C, Golomebeck K, Jonat W, Hander D. Model to determine resistance and leakage-dependent flow on flow performance of laparoscopic insulators to predict gas flow rate of cannulas. *J Am Assoc Gynecol Laparosc*. 2000;7(3):331-337.

13. Demco L. The effect of heating and humidifying gas on patients undergoing awake laparoscopy. *J Am Assoc Gynecol Laparosc*. 2000;7(3):S11.

14. Almeida OD Jr. Current state of office laparoscopic surgery. *J Am Assoc Gynecol Laparosc*. 2000;7(4):545-546.

Presented at the 9th International Meeting of Laparoendoscopic Surgeons, SLS Annual Meeting and Endo Expo 2000, December 6-9, Orlando, Florida.