Synthesis and characterization of gold nanorods and their application for photothermal cell damage

Mohd Samim 1
CK Prashant 2
AK Dinda 2
AN Maitra 3
Indu Arora 4
1Department of Chemistry, Hamdard University, Hamdard Nagar, New Delhi, 2Department of Pathology, All India Institute of Medical Sciences, New Delhi, 3Department of Chemistry, University of Delhi, Delhi, 4Department of Biomedical Sciences, Shaeed Raiguru College of Applied Sciences, University of Delhi, Delhi, India

Background: Gold nanorods show a surface plasmon resonance (SPR) band at the near infra-red (NIR) region which enables them to produce heat on irradiation with a NIR laser. As a result of this, gold nanorods have the potential to be used as thermal therapeutic agents for selective damage to cancer cells, bacterial cells, viruses, and DNA.

Methods: Gold nanorods with an aspect ratio of approximately 5 were prepared by exploiting the normal micellar route of a water/dioctyl sulfosuccinate (Aerosol-T)/hexane system. The shape and size of the gold nanorods were characterized by surface plasmon bands at 520 nm and 980 nm, and by atomic force microscopy and transmission electron microscopy.

Results: The length of the gold nanorods was 100 nm and their diameter was 20 nm. X-ray diffraction analysis demonstrated that the gold nanorods formed were metallic in nature. The gold nanorods showed good photothermolysis activity.

Conclusion: Gold nanorods injected subcutaneously and irradiated with 980 nm laser caused injury to rat tissue, demonstrating that gold nanorods may be used to kill cancerous cells in tumor tissue.

Keywords: nanorods, gold, micellar system, photothermolysis

Introduction

Thermal therapeutics have several advantages over conventional techniques, being minimally invasive and relatively simple to perform, and having the potential to treat tumors embedded in vital regions where surgical resection is not feasible. Simple heating techniques have severe limitations in discriminating between tumor and surrounding healthy tissue, and often heat tissues between the source and the target site. Photothermal therapy using gold nanorods irradiated with near-infrared laser can damage cells and has great potential to cause selective damage to cancer cells, bacterial cells, viruses, and DNA. On irradiation by near-infrared laser, gold nanorods warm up very quickly and reach a threshold temperature with a nonlinear effect, leading to irreparable target damage. With the burst of research activity in the area of nanomedicine, a variety of nanostructures with special optical properties have been developed rapidly, and have biomedical applications. Noble metal nanoparticles have emerged as powerful photothermal therapy agents in the field of cancer therapeutics, because they have enhanced cross-sectional absorption, which is four to five times greater than that of conventional photoabsorbing dyes. As a result, effective laser therapy is carried out at relatively lower energies, rendering the therapy minimally invasive. Moreover, metal nanoparticles are very photostable and therefore...
less prone to photobleaching. Nowadays, gold nanorods,14–17
gold nanospheres,18,19 and nanoshells20–23 are showing promise
in the field of photothermal therapy because of their ease of
preparation, ready multifunctionalization, and tunable optical
properties. Using deep-penetrating near-infrared laser,
several groups have investigated the treatment of cancer by
hyperthermia. In this paper, we describe novel laser-induced
thermal therapy using gold nanorods. Depending upon their
aspect ratio, nanorods absorb or scatter light at desired wave-
lengths across the visible and near-infrared regions.24 In this
experiment, we used gold nanorods to produce radiation at
the near-infrared region of 980 nm instead of at 520 nm, as
commonly used for ultrafine gold nanospheres.

Materials and methods
Materials
The chemicals used in this study, including auric chloride,
hexane, absolute alcohol, and hydrazine hydrate, were
purchased from Spectrochem Ltd (New Delhi, India), and
dioctyl sulfo succinate sodium salt (AOT) was purchased
from ACROS Organics (Fair Lawn, NJ). These reagents
were used without further purification.

Synthesis of gold nanorods
The gold nanorods were prepared in an AOT/water/hexane
reverse system by reduction of gold chloride with hydrazine
hydrate. At increased concentrations of AOT, the spherical
reverse micellar droplets gradually became distorted and
took on a needle-shaped structure. The aqueous needle-
shaped core could be used as a template for synthesis of gold
nanorods. In a typical set, 100 µL of 2% w/v gold chloride
was added to 10 mL of AOT 1 M in hexane. The solution
was stirred for 30–40 minutes until an optically clear reverse
micellar solution was obtained. A calculated amount of
water (1700 µL) was added to maintain the desired \(W_0 \)
 ie, the molar ratio of water to oil. The mixture was stirred
until a transparent microemulsion solution was obtained.
In a similar set of AOT 1 M samples in hexane, 100 µL of
hydrazine (prepared by mixing 5 µL of pure hydrazine
and 995 µL water) was added. The solution was stirred for
30–40 minutes until an optically clear micellar solution was
obtained. After preparation of the above two micelle solu-
tions, they were mixed by dropwise addition of the latter to
the former solution with constant stirring. The color of the
solution changed gradually from yellow to black, indicat-
ing the formation of gold nanorods. The solution was then
stirred for another 2 hours. After stirring, ethanol 4–5 mL
was added to the solution, which was stirred again for
1 minute, and hexane 6–7 mL was then added, with further
stirring for 1 minute. The solution became turbid and was
left undisturbed for 2 hours. This resulted in the formation
of two phases, and black-colored particles separated out at
the interface of the phases. We micropipetted these particles
into an Eppendorf tube and centrifuged them for 2 minutes at
7000 rpm. The pellet of particles formed at the bottom of the
tube was collected after discarding the supernatant. Hexane
1 mL was added to the pellet and the sample was sonicated
until the particles became dispersed. After dispersion, the
sample was centrifuged for 2 minutes at 7000 rpm. This step
was repeated five times to wash away the surfactant.

Physicochemical characterization
of gold nanorods
Optical properties using absorption spectroscopy
in visible region
All spectrophotometric studies were carried out using a
UV-1600 ultraviolet-visible spectrophotometer (Shimadzu,
Kyoto, Japan). One milligram of gold nanorods was dispersed
in 1 mL of distilled \(\text{H}_2\text{O} \) and the solution was thoroughly
sonicated for half an hour. The spectrum was taken by using
simple \(\text{H}_2\text{O} \) as the reference.

Determination of crystallographic structure
by X-ray diffraction
To determine the crystallographic nature of the gold nano-
rods, electron diffraction and X-ray diffraction experiments
were performed on a Bruker AXS D8 diffractometer using
pressed pellets as samples with Ka radiation (11/4 1:5418 p).
The X-ray source used was Cu-K\(\alpha\) radiation at 40 kV and
20 mA, and diffraction was analyzed using a PW 3710
diffractometer (Philips, Amsterdam, the Netherlands), with
0.2 g of lyophilized nanoparticles placed inside the diffrac-
tometer for analysis. X-ray diffraction could provide struc-
tural information for a large portion of the sample, whereas
transmission electron diffraction could provide structural
information for selected areas of the sample.

Size and morphology using transmission
electron microscopy
Transmission electron microscopy (TEM) measurements
were performed using a JEOL Model JEM (JEOL USA Inc,
Peabody, MA) 200–2000× electron microscope operated at
an accelerating voltage of 120 kV. Samples were prepared by
placing small drops of dispersed gold nanorods (lyophilized
powder) into water on formvar-coated copper grids and allow-
ing the solvent to evaporate slowly at room temperature. The
dried grid was then examined under an electron microscope.
Morphology using atomic force microscopy
We carried out all atomic force microscopy (AFM) measurements using a Pico SPM (Molecular Imaging, Phoenix, AZ) operated in an acoustically driven, intermittent contact (“tapping”) mode. We prepared samples for AFM by first diluting the test solutions by at least 100-fold using deionized water. We then placed 5 µL of the final solution directly onto the surface of a freshly cleaved mica disk. The sample was discarded if the solution did not spread evenly across the mica. The samples were dried in air, encased in covered Petri dishes at room temperature for at least 5 hours, and the AFM measurements of the number of features per unit area were found to be highly reproducible.

Application of gold nanorods in photothermal therapy
Photothermolysis
Wistar rats aged 6–8 weeks were used in this study. The animals were maintained according to the guideline approved by the Institutional Animal Care and Use Committee. Three disease-free rats were shaved clean and six spots of around 1.5 cm in diameter were marked dorsally (as shown in Figure 5). Four skin spots were painted with the gold nanorod dispersion and
one spot was injected with the gold nanorod dispersion. The particles were suspended in sterile double-distilled water 1 mg/mL. The painted areas and the injected area were irradiated with an infrared-based laser beam of wavelength 980 nm and power 200 mW. The irradiation times were 3, 5, 10, and 15 minutes for the painted spots; one spot was left unpainted and injected with saline solution as a control, while the sixth spot was injected with 300 µL of gold nanorod dispersion solution. Both the control and intradermally injected spots were irradiated for 15 minutes. After the procedure, the rats were sacrificed, and the skin spots were dissected out and processed further for histological evaluation.

Sections stained with hematoxylin and eosin and of varying dimensions and thickness were cleared in xylene and mounted with dibutyl phthalate xylene using cover slips. The slides were then observed under an upright microscope (Eclipse 600; Nikon, Tokyo, Japan), and images were captured with a digital charged-coupled device camera (DP-71; Olympus, Tokyo, Japan) mounted on the microscope.

Results and discussion

Figures 6A and 6B represent the macroscopic and microscopic images, which do not show any evidence of necrosis or tissue damage in the nonpainted or noninjected skin spots. Gross examination revealed bluish-black discoloration in the subcutaneous tissue below the skin flap as shown in Figure 6, which was restricted to the area of gold nanorod injection. Histological examination of the laser-exposed area showed coagulative necrosis of the skin and subcutaneous tissue, including the skin appendages. There was infiltration of inflammatory cells by neutrophils (Figure 6D).

The shape of the surfactant aggregate plays an important role in providing the template for the shape of the nanoparticles. Spherical gold nanoparticles of size 8–18 nm can be prepared in AOT 0.1 M.25,26 With the increased concentration of surfactant, the spherical shape is distorted and the aggregate becomes prolate-shaped.
Gold nanorods and photothermal cell damage

Therefore, when the gold salt is reduced in AOT, rod-shaped gold nanoparticles are formed. We prepared gold nanorods of various aspect ratios using AOT concentrations of 0.5 M to 1 M, and found that the nanorods formed had an aspect ratio of 5 at a 1 M concentration of AOT and $W = 10$. On dispersion in water, these nanorods had a strong absorption band at 980 nm, so we adopted this protocol as standard for our all subsequent experiments. Colloidal dispersion of the metal showed absorption bands or broad regions of absorption in the ultraviolet-visible range. These are due to the excitation of plasmon resonance or interband transition, and are a characteristic property of the metallic nature of the particles. The absorption spectra for the gold nanorods were characterized by a dominant surface plasmon resonance band at a longer wavelength of 980 nm, corresponding to longitudinal resonance, and a much weaker transverse resonance at a shorter wavelength of 535 nm, as shown in Figure 1. Optical spectra clearly showed the formation of ultrafine gold nanorods. A representative TEM image and size distribution of a gold nanorod synthesized at a chloroplatinic acid concentration of 2% is shown in Figure 3. TEM micrographs of the gold nanorod particles obtained showed well-defined nanoscaling, with highly monodispersed, rod-shaped gold nanorods and a low polydispersity index. From the TEM image, it is apparent that the particle diameter is less than 20 nm. The TEM images indicate the well-defined, rod-shaped morphology of the gold nanorods. Figure 4A shows a representative AFM image of a gold nanorod which also clearly indicates the rod-shaped morphology, and Figure 4B shows that the diameter is less than 20 nm. A face-centered cubic close packing arrangement of the gold nanorods was evident from X-ray diffraction and selected diffraction studies of electrons in specific areas. Figure 2 shows the X-ray diffraction pattern for the gold nanorods. The peak positions are consistent with metallic gold. Sharp peaks for gold are observed, which indicate the crystalline nature of the product. A strong peak at $2\theta = 38^\circ$ and 44° corresponds exactly with a diffractogram of crystalline metallic gold reported previously. The inset in Figure 2 shows the selected area electron diffraction of these particles, which reveals only diffuse ring patterns, most probably attributable to the small particle size and polycrystalline nature of the particle core. Nevertheless, the diffraction features are consistent with the face-centered cubic crystalline structure of bulk metallic gold, with the two brightest rings corresponding to the diffraction planes of 111 and 200.

These particles were subsequently used as photothermolysis agents, to examine the feasibility of nanorod-assisted photothermal therapy. This technique takes advantage of the strong near-infrared absorption of nanorods, and a new class of gold nanoparticles with tunable optical properties that can undergo passive extravasation in tumor vasculature. Due to
their nanoscale size, nanorods (<80 nm diameter) with peak optical absorption in the near-infrared range were injected subcutaneously or painted on six dorsal spots in three rats. Spots were then illuminated with a diode laser (980 nm, 200 mW). All three treated rats had been healthy over the previous 24 hours. Following laser exposure, the animals were sacrificed, and the treated skin areas were examined macroscopically. Biopsies were then taken from the area and fixed in 10% formalin for histological examination. Gross examination revealed bluish black discoloration of the subcutaneous tissue below the skin flap restricted to the area of injection of the gold nanorods. Histological examination of the laser-exposed area showed coagulative necrosis of the skin and subcutaneous tissue, including the skin appendages. In the shaven control rat tissue, 0.2 mL of normal saline was injected, and the area was exposed to laser for the same duration. The area was examined both macroscopically and microscopically, and no evidence of necrosis or tissue damage was found. Photomicrographs were taken of tissue sections stained with hematoxylin and eosin at a magnification of 200×. This simple, noninvasive procedure shows great promise as a technique for selective photothermal tumor ablation.

Conclusion
This paper describes the preparation and characterization of gold nanorods by exploiting the normal micellar route of water/AOT/hexane. The shape and size of the gold nanorods were measured by AFM and TEM. The gold nanorods showed good photothermolytic activity. Gold nanorods injected subcutaneously and irradiated with 980 nm laser caused injury to rat tissue.

Disclosure
The authors report no conflicts of interest in this work.

References
1. Letfullin RR, Joenathan C, George TF, Zharov VP. Laser induced explosion of gold nanoparticles: Potential role for nanophotothermalysis of cancer. Nanomedicine. 2006;1:473–480.
2. Pittilidis CM, JoeEK, WeiX, Anderson RR, Lin CP. Selective cell targeting with light absorbing microparticles and nanoparticles. Biophys J. 2003;84:4023–4032.
3. Zharov VP, Galitovsly E, Viegas M. Photothermal guidance of selective photothermaltherapy with nanoparticles. Proc SPIE. 2004;5319:291–300.
4. Zharov VP, Kim J-W, Everts M, Curiel DT. Self assembling nanoclusters in living systems: Application for integrated photothermal nanodiagnosis and therapy. J Nanomedicine. 2005;1:326–345.
5. Zharov VP, Kim J-W. Amplified laser nanoclusters interaction in DNA, viruses, bacteria, and cancer cells: Potential for nanodiagnostics and nanotherapy. Lasers Surg Med. 2006;Suppl 18:16–17.
6. El-Sayed MA. Some interesting properties of metals confined in time and nanometer space of different shapes. Acc Chem Res. 2001;34:257–264.
7. Niemeyer CM. Nanoparticles, proteins, and nucleic acids: Biotechnology meets materials science. Angew Chem Int Ed Engl. 2001;40:4128–4158.
8. Daniel MC, Astruc D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev. 2004;104:293–346.
9. West JL, Halas NJ. Engineered nanomaterials for biophotonics applications: Improving sensing, imaging, and therapeutics. Annu Rev Biomed Eng. 2003;5:285–292.
10. Xia Y, Halas NJ. Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures. MRS Bull. 2005;30:338–348.
11. Warren CWC, Maxwell DJ, Gao X, Bailey RE, Han M, Nie S. Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotechnol. 2002;13:40–46.
12. Parak WJ, Gerion D, Pellegrino T, et al. Biological applications of colloidal nanocrystals. Nanotechnology. 2003;14:R15–R27.
13. Katz E, Willner I. Integrated nanoparticle-biomolecule hybrid systems: Synthesis, properties, and applications. Angew Chem Int Ed. 2004;43:6042–6108.
14. Huang X, El-Sayed IH, El-Sayed MA. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc. 2006;128:2115–2120.
15. Takahashi H, Niidome T, Nariai A, Niidome Y, Yamada S. Gold nanorod-sensitized cell death: Microscopic observation of single living cells irradiated by pulsed near-infrared laser light in the presence of gold nanorods. Chem Lett. 2006;35:500–501.
16. Takahashi H, Niidome T, Nariai A, Niidome Y, Yamada S. Photothermal reshaping of gold nanorods prevents further cell death. Nanotechnology. 2006;17:4431–4435.
17. HuffTB, TongL, ZhaoY, Hansen MN, ChengJX, WeiA. Hyperthermic effects of gold nanorods on tumor cells. Nanomedicine. 2007;2:125–132.
18. El-Sayed IH, Huang X, El-Sayed MA. Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett. 2006;239:129–135.
19. Huang X, Jain PK, El-Sayed IH, El-Sayed MA. Determination of the minimum temperature required for selective photothermal destruction of cancer cells using immunotargeted gold nanoparticles. Photochem Photobiol. 2006;82:412–417.
20. Hirsch LR, Stafford RJ, Bankson JA, et al. Nanoshell-mediated near infrared thermal therapy of tumors under MR guidance. Proc Natl Acad Sci U S A. 2003;100:13549–13554.
21. Loo CH, Lin A, Hirsch LR, et al. Nanoshell-enabled photons-based imaging and therapy of cancer. Tech Cancer Res Treat. 2004;3:33–40.
22. O’Neal DP, Hirsch LR, Halas NJ, Payne JD, West JL. Photothermal tumor ablation in mice using near infrared absorbing nanoshells. Cancer Lett. 2004;209:171–176.
23. Loo C, Lowery A, Halas NJ, West JL, Drezek R. Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett. 2005;5:709–711.
24. Zharov VP, Letfullin RR, Galitovskaya EN. Microbubbles-overlapping mode for laser killing of cancer cells with absorbing nanoparticle clusters. J Phys D Appl Phys. 2005;38:2571–2581.
25. Herrera DP, Resto O, Briano JG, Rinaldi C. Synthesis and agglomeration of gold nanoparticles in reverse micelles. Nanotechnology. 2005;16:S618.
26. Chiang Ch-L, Hsu M-B, Lai L-B. Control of nucleation and growth of gold nanoparticles in AOT/Span80/isooctane mixed reverse micelles. J Solid State Chem. 2004;177:3891–3895.
27. Pileni MP. The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals. Nat Mater. 2003;2:145–150.
28. Shankar SS, Ahmad A, Parischa R, Sastry M. Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. *J Mater Chem*. 2003;13:1822–1826.

29. Wang HW, Shieh CF, Chen HY, Shiu WC, Russo B, Cao G. Standing [111] gold nanotube to nanorod arrays via template growth. *Nanotechnology*. 2006;17:2689–2694.