Simulating 3-symbol Turing machines with SIMD||DNA

David Doty
University of California, Davis, USA

Aaron Ong
University of California, Davis, USA

Abstract

SIMD||DNA [12] is a model of DNA strand displacement allowing parallel in-memory computation on DNA storage. We show how to simulate an arbitrary 3-symbol space-bounded Turing machine with a SIMD||DNA program, giving a more direct and efficient route to general-purpose information manipulation on DNA storage than the Rule 110 simulation of Wang, Chalk, and Soloveichik [12]. We also develop software [10] that can simulate SIMD||DNA programs and produce SVG figures.

2012 ACM Subject Classification Theory of computation → Models of computation

Keywords and phrases DNA storage, strand displacement, parallel computation

Digital Object Identifier 10.4230/LIPIcs...

Supplementary Material simulator: https://github.com/UC-Davis-molecular-computing/simd-dna

Acknowledgements The authors were supported by NSF grants 1900931 and 1844976.

1 Introduction

DNA storage typically encodes information in the choice of DNA sequences [1, 3, 7], so that reading and writing require expensive sequencing (reading DNA) and synthesis (writing DNA) steps. An alternative “nicked storage” scheme of Tabatabaei et al. [11] uses a single long strand called a register, with a fixed sequence. Information is stored in the choice of short complementary strands to bind to the register. This gives the potential to process the stored information using DNA strand displacement (see Figure 1), which reconfigures which DNA strands are bound, without changing their sequences. Thus manipulation of the stored information (i.e., computation) can potentially be done in vitro with simpler lab steps than DNA sequencing or synthesis.

![Figure 1](https://example.com/figure1.png) DNA strand displacement (see [9] for more details). An input DNA strand (turquoise) binds to the short toehold region of a complementary strand (pink) and displaces the output strand (purple). The toehold region is so-called because, although too short to bind stably, it allows temporary binding of the input, giving it a “foot in the door” to begin the displacement process.

The SIMD||DNA model of Wang, Chalk, and Soloveichik [12] is an abstract model of such a system. It allows parallel in-memory computation on several copies of the register; each register may store different data. In the experimental implementation, each register strand is attached to a magnetic bead, enabling elution: washing away strands not bound to a register, while keeping the registers (and their bound strands) in the solution due to their attachment to the bead. This motivates the “multi-stage” SIMD||DNA model of DNA strand displacement, which at a high level works as follows. Each stage is called an instruction,

© David Doty, Aaron Ong; licensed under Creative Commons License CC-BY 4.0
Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany
consisting of a set of strands to add to the solution. It is assumed that strand displacement reactions proceed until the solution reaches equilibrium, at which point all strands and complexes not attached to a register are washed away. The strands for the next instruction are then added. A key aspect of the model is that the wash step can constrain what strand displacement reactions are possible afterward, compared to “one-pot” strand displacement schemes that mix all strands from the start. This gives the SIMD||DNA model potentially more power than one-pot DNA strand displacement. Wang, Chalk, and Soloveichik [12] showed SIMD||DNA programs for binary counting and simulating cellular automata Rule 110, and Chen, Solanki, and Riedel [2] showed SIMD||DNA programs for sorting, shifting and searching in parallel. See Section 2 for a formal definition and [12] for more details and motivation for the model.

A major theoretical result of [12] is a SIMD||DNA program that simulates a space-bounded version of cellular automata Rule 110. When space is unbounded, Rule 110 is known to be efficiently Turing universal, i.e., able to simulate any single-tape Turing machine [4] with only a polynomial-time slowdown [5], though by an awkward indirect construction and encoding with very large constant factors. We show how to simulate an arbitrary 3-symbol space-bounded single-tape Turing machine directly with a SIMD||DNA program. Since custom manipulation of bits is much easier to program in a Turing machine than Rule 110, this gives a more direct, efficient, and conceptually simple method of general-purpose information processing on nicked DNA storage. Although we have not worked out the details, it seems likely that the construction can be extended straightforwardly to Turing machines with alphabet sizes larger than 3. However, it is straightforward to simulate a larger-alphabet Turing machine M with a 3-symbol Turing machine S, for example representing each of 16 non-blank symbols of M by 4 consecutive bits of S.

Our construction was designed and tested using software we developed [10] for simulating the SIMD||DNA model. It is able to take a description of an arbitrary SIMD||DNA program: a list of instructions, where each instruction is a set of DNA strands to add. It produces figures indicating visually how the steps work, both with text printed on the command line (for quickly testing ideas) and SVG figures, such as most of those in this paper.

Model

In this section we define the model of SIMD||DNA [12].

See Figure 2 for notational conventions in the SIMD||DNA model and an explanation of the basic strand displacement reactions. The register strand is on the bottom in each sub-figure, with a yellow round “magnetic bead” depicted on the left (bead not depicted in subsequent figures). A DNA strand has an orientation, with one end called the 5′ end and the other called the 3′ end; by convention strands are drawn as arrows with the arrowhead on the 3′ end. The register strand has its 3′ end on the left and 5′ end on the right. The model allows multiple registers to be present in solution at once, each possibly configured differently. However, it is assumed that register strands are sufficiently dilute that they do not interact with each other or with strands that have been displaced from other registers. Thus all figures depict only a single register and instruction strands that interact with it.

The register strand is divided into cells, which are further divided into domains. Each domain can be thought of as a fixed-length DNA sequence with relatively weak binding (e.g., 5-7 bases). A strand is stably attached to the register strand only if it is bound by at least two domains, but one domain is sufficiently long to act as a “toehold” to help initiate strand displacement (Figure 2(c-f)). Within a cell with d domains, each domain is unique
Figure 2 Notational conventions and reactions in the SIMD||DNA model. The register strand is on the bottom in each subfigure, with a yellow round “magnetic bead” depicted on the left (not depicted in subsequent figures). Lightly shaded gray or pink regions denote bonds (double-stranded regions), but later figures omit this and simply draw a forward strand (one with $5'$ end on left and $3'$ end on right) immediately above the domains to which it is bound on the register strand. (a) Conventions for domain names of strands. Domains are numbered $1, \ldots, d$ within each cell; $d = 6$ in Figure 2(a) and $d = 18$ in subsequent figures. The register strand has the starred versions of these domains. If a top strand is horizontal over domain i, it has domain i. If it is diagonal over the whole domain, it has an unlabelled domain distinct from all register domains (used as a toehold overhang for detachment, see subfigure (c)). If two strands both partially cover a domain then they both have that domain. (b) A forward instruction strand can attach if at least two complementary consecutive domains are unbound on the register. (c) Reverse instruction strands can bind to toehold overhangs on forward bound strands to detach them from the register. The fact that the (unlabelled) toeholds are complementary is indicated by a diagonal bend in the reverse strand matching. (d) Forward instruction strands can do toehold-mediated strand displacement, one-way if the displacing strand contains all the domains of the displaced strand. (e) If the displacing strand is missing the last domain of the displaced, displacement can also happen, known as toehold exchange. This is often called “reversible” since it conserves the number of bound domains, but in the SIMD||DNA model, instruction strands are added in large excess over registers, making it effectively irreversible due to the entropic bias toward binding the instruction strand. Thus it is depicted with irreversible arrows in the figure. (f) Two forward strands can cooperate to displace a single bound top strand, even if neither has enough domains to displace on its own.

and assumed to be named $1, 2, \ldots, d$. The register strand has the starred version of these domains, e.g., $1^*, 2^*, 3^*, 4^*, 5^*, 6^*, 1^*, 2^*, 3^*, 4^*, 5^*, 6^*$ reading from the register’s $3'$ to $5'$ end (left to right) in Figure 2(a). All cells have the same ordered list of domains, so for example in Figure 2(a), domain 5 in cell 1 is the same DNA sequence as domain 5 in cell 2.

An instruction is a set of strands that are added to the solution at once. Figure 2(b-f) shows the various reactions that these strands might conduct to change the configuration of strands attached to the register. Multiple reactions can occur in a cascade in a single instruction. In particular, the model is nondeterministic, and in general multiple reactions might be possible. It is the job of the system designer to ensure that only one final configuration can result no matter the order of reactions. Instruction strands can either be forward ($3'$ arrow
Simulating 3-symbol Turing machines with SIMD||DNA

3 Simulation of Turing machine in SIMD||DNA

In this section we describe how to simulate an arbitrary 3-symbol single-tape Turing machine with SIMD||DNA instructions.

3.1 High-level overview of construction

Since the SIMD||DNA model as defined has no mechanism to grow the register strand, it can only simulate a fixed-space-bound Turing machine (a.k.a., linear-bounded automaton), which starts with s total tape cells and never moves the tape head off of them. A 3-symbol, space-s Turing machine has three tape symbols: 0, 1, △. The binary input $x \in \{0, 1\}^\leq s$ is represented by string $x \triangleleft s - |x|$ on the tape in the initial configuration, i.e. x padded with enough blank symbols to make s total tape cells. We use as a running example the 5-transition Turing machine in Figure 3, which increments a binary number.

Each cell of the register represents a tape cell of the Turing machine. If the Turing machine has t total transitions, then each cell uses $d = 2t + 8$ domains.

For each Turing machine, there is a fixed sequence of instructions that, after executing, will update the register to represent the next configuration of the Turing machine.

The cell with the tape head is the only cell with uncovered register domains. Which domains are uncovered (known as a transition region) represents both the current state of
the Turing machine and the symbol written on that tape cell. For all other cells, a disjoint region (the symbol region) represents the symbol on that cell through its pattern of nicks. On the cell with the tape head, the symbol region has no nicks (and represents no symbol) since it is covered by a longer 8-domain strand.

3.2 Representation of Turing machine tape cell as a register cell

In the SIMD||DNA representation of a Turing machine, each register cell represents a single Turing machine tape cell. We represent each Turing machine with tape alphabet $\Gamma = \{0, 1, \sqcup\}$, state set Q, and halt state h, as a set of transitions, where each transition $(q,b) \rightarrow (r,c,m)$ means that if the Turing machine is in state $q \in Q \{h\}$ reading symbol $b \in \Gamma$, it changes to state r, writes symbol c, and moves one cell by $m \in \{L,R\}$ (left or right). Since the Turing machine is deterministic, for each state-symbol pair, there is at most one transition with that pair on the left. (But some such pairs could be undefined, e.g., there is no $(b,\sqcup) \rightarrow \ldots$ transition in Figure 3.)

Representation of tape cell with tape head

We take every state-symbol pair $(q,\sigma) \in (Q\{h\}) \times \Gamma$ (each possible left side of a transition) and represent each as two consecutive domains in a SIMD||DNA register cell. See Figure 4. Recall the binary incrementing Turing machine of Figure 3. It has five transitions: $(a,0) \rightarrow (a,0,R)$, $(a,1) \rightarrow (a,1,R)$, $(a,\sqcup) \rightarrow (b,\sqcup,L)$, $(b,0) \rightarrow (1,h,L)$, $(b,1) \rightarrow (0,b,L)$. We call the pair on the left the transition input. Each of the given transition inputs is represented in the SIMD||DNA cell using two domains, requiring ten domains total for our example. Since each register cell represents a cell in M, we must denote the presence of the tape head on one of the cells. If the tape head is present on a given cell and if the current Turing machine configuration has a valid transition, then the two domains that represent that transition will have no top strand attached to them, leaving them exposed. For example, if the tape head is on a cell with the 0 symbol, and the Turing machine is currently in state
Simulating 3-symbol Turing machines with SIMD||DNA

If the tape head is not present on a cell, or if no valid transitions exist for the current configuration,\(^2\) then every transition region is covered by 2-domain strands. Eight additional domains at the rightmost part of the cell, called the symbol region represent the current symbol written on that cell.

Whenever the tape head is present on a cell, the symbol region is covered by a single 8-domain strand that does not encode any symbol, since the symbol information is already encoded in the transition region with an open toehold.

3.3 Detailed description of SIMD||DNA instructions simulating a Turing machine

We designed an algorithm that converts Turing machine specifications from https://turingmachine.io into SIMD||DNA representations, along with the equivalent instructions. Each transition \(\tau_i\) has an associated sublist of instructions \(L_i\), and, not knowing which transition is applicable

\(^2\) For example, if the machine has halted; see the bottom register configuration of Figure 9 for a case where the state is non-halting but no valid transition exists.
Figure 6 An overview of the first 19 instructions of the construction, which represent the $(a, 0) \rightarrow (a, 0, R)$ transition of the Turing machine shown in Figure 3. Instructions marked with a red cross are fully inert, meant for cases not exhibited by this register.

to the current configuration, we simply add instruction strands in order from L_1, L_2, \ldots. For $i \neq j$, to ensure that L_j instructions have no effect when the current applicable transition is τ_i, we “plug” the open domains of other transition regions with a strand and remove the plug strand once it’s time to process that transition. Because the SIMD||DNA model allows parallel computation among multiple registers in the same solution, this prevents instructions meant for one configuration from affecting registers currently not in that configuration. In the beginning, all transition regions are plugged, where the order of processing for the transitions is arbitrary.

Pre-plug and post-plug strands to protect instructions for inapplicable transitions from affecting configuration

The full list of instructions to simulate a Turing machine transition works as follows. Recall that in the “clean” configurations shown in Figure 5, the only exposed register domains
are on the cell representing the tape head. The first instruction in the entire list contains pre-plug strands for each transition region. At the end of each instruction sublist L_i, a post-plug strand is also placed on the transition region that represents the Turing machine’s next applicable transition. Examples of both can be seen in Figure 7. These strands act like a “chemical protecting group” that prevents instruction sublists L_i from modifying the register unless they apply to the intended transition. The difference between the pre-plug and post-plug strands is that pre-plug strands protect the configuration when using instructions strands before the applicable transition, whereas post-plug strands protect the configuration when using instructions strands after the applicable transition. In the left part of Figure 7, because the register has a pre-plug strand in $(a,___),$ it means that the instruction sublist $L_{(a,___)}$ has not been applied to it yet. Instruction sublists for the other transitions $(a,0) \rightarrow \ldots$, $(a,1) \rightarrow \ldots$, $(b,0) \rightarrow \ldots$, $(b,1) \rightarrow \ldots$ will be inert, not affecting the register. The first instruction of $L_{(a,___)}$ will remove this pre-plug strand so that any register in the $(a,___)$ configuration can be processed. The instruction sublists will result in a configuration like that of the bottom of Figures 8 and 9. Figure 9 shows instructions that affect the cell where the tape head was (right cell), not where it will be next (left cell), which is why the left cell is the same in both Figures 8 and 9. This almost represents the next Turing machine configuration, but with the appropriate transition region covered by a post-plug strand. The final instruction in the entire list (Figure 7) removes this post-plug strand, restoring the register configuration to be as shown in Figure 5.

The post-plug strand placed on the transition region at the end of simulating a transition has a different purpose from the pre-plug strand placed in instruction 1. Its purpose is to prevent the register from updating its state multiple times in the same instruction iteration. For example, if a register has a post-plug strand on the $(b,1)$ region (indicating that it has been processed and that its next transition is $(b,1)$), and the instruction sublist that processes $(b,1)$ comes after, the register will be unaffected by $(b,1)$’s deprotecting instruction, keeping it inert throughout. The final instruction in the entire iteration removes these post-plug strands from the registers, as seen in Figure 7, preparing the registers for the next iteration of the instruction set.

Note the duality between pre-plug and post-plug instructions. All pre-plug strands are included in the first instruction, though only one of them will bind (the one matching the applicable transition), and instruction strands removing all post-plug strands are included as part of the last instruction, though only one will find its complementary post-plug strand to remove. On the other hand, each pre-plug instruction is removed more specifically, by
adding a single complementary strand to remove it just prior to the sublist of instructions corresponding to the applicable transition. Similarly, each post-plug strand is added by itself, at the end of the instruction sublist corresponding to the applicable transition.

In the next section, we will describe the details of the instruction sublists that represent the Turing machine transitions.

Sublist of instructions representing a single Turing machine transition

Figure conventions. For the figures explaining SIMD||DNA instructions that simulate a single transition of the Turing machine (Figure 8 and beyond), we use the following conventions in figures. Several register configurations are shown, but they are not necessarily consecutive. Each is numbered with its absolute index in the list of all 86 instructions implementing the Turing machine of Figure 3. An example with all instructions shown can be found in Appendix C. If two adjacent configurations have non-consecutive instruction indices, this means that the instructions not shown are inert: their strands do not affect the register in that configuration. The instruction strands that have just been added are always shown above the register, with a solid line if they will do a reaction as in Figure 2, and with a dashed line if that instruction strand is inert for that configuration. The final configuration in each figure does not show any instruction strands, but for all figures there is a followup figure showing what happens next from that configuration (possibly the followup is Figure 7, the final instruction in the entire program, removing the post-plug strand from the next applicable transition region).

Each Turing machine transition is individually processed by a sublist of instructions. The pre-plug strand is first removed by an instruction containing its complementary strand, so that its corresponding transition region in the cell can be used as a toehold, such as instruction 38 in Figure 8. The next instructions then update the contents of the current cell to encode the symbol that the tape head writes. For example, in Figure 9, the transition \((a, □) \rightarrow (b, □, L)\) is represented, and the strand encoding of □ is placed in the right cell after the tape head writes on it and moves left. After that, the instructions check the contents of the tape head’s new location and determine the Turing machine’s next configuration. In Figure 8, the tape head moves to the left cell and finds a 1, and the Turing machine goes to state b, so it leaves a post-plug strand on \((b, 1)\)’s transition region to show that the register has been processed for that instruction iteration, as seen in instruction 46.

Left versus right tape head moves

In the SIMD||DNA instructions implementing a single transition, there are two sublists: next-cell instructions and previous-cell instructions. As their names indicate, next-cell instructions update the contents of the tape head’s destination, while previous-cell instructions update the contents of the tape head’s former location. Other factors such as the symbol to be written on the current cell and the next applicable transition region only introduce minor variations in the instruction strands.

For transitions moving the tape head left, the next-cell instructions precede the previous-cell instructions (see Figures 8–11). For transitions moving the tape head right, this order is reversed (see Figures 12 and 13–15).

Left tape head moves

Figure 8 shows the next-cell instructions for transition \((a, □) \rightarrow (b, □, L)\), for the special case when the cell to the left of the tape head has the symbol 1. Figure 10 shows the next-cell
Simulating 3-symbol Turing machines with SIMD||DNA

Instructions for the same transition when the cell to the left of the tape head has the symbol 0, and Figure 11 shows the next-cell instructions when the cell to the left has the symbol \(\downarrow \). Note that in any given configuration, the same instructions will result in exactly one of the situations depicted in Figures 8, 10, and 11. Once these next-cell instructions are applied, the leftmost domain of the previous cell will serve as a toehold for the previous-cell instructions that follow in Figure 9.

Figure 8 First half of instructions (next-cell instructions) to implement transition \(a, \downarrow \rightarrow b, \downarrow \), in the case that the cell to the left (where the tape head will move) has a symbol 1. After instruction 46, the left cell (where the tape head will move next) now encodes the next state \(b \) and the symbol 1 on the new tape cell. Rather than show a red cross, inert instructions are instead omitted in this figure and the following ones. Inert instructions (40, 42, 47, 48) are used when the cell to the left has a symbol 0 or \(\uparrow \) on it instead. Figures 10 and 11 respectively show these cases. Figure 9 shows instructions completing the transition by writing \(\downarrow \) over the right cell. In instruction 38, the transition region is first unplugged to expose the toehold. The strands in instruction 39 cascade until the left cell’s symbol region, allowing the instructions to branch out depending on the tape content of the left cell. The remaining instructions process the left cell so that it encodes the next configuration. In instruction 46, a special post-plug strand whose leftmost domain is orthogonal is attached to the region that represents the next configuration; this strand will be removed once all transitions have been processed. The angled dashed strands to the right of the register indicate that no cells are present to the right of the rightmost cell; if there were another cell, then one more domain of each of these strands would be horizontal, bound to the leftmost domain of the cell to the right (just as with their solid counterparts to the left).
3.4 Complexity of construction

A common metric of “complexity” of DNA systems is the number of unique domains they require. Fewer is better because it is a nontrivial task to design orthogonal domains: domains that, if they are not perfectly complementary, will have low binding affinity. Low domain complexity is particular important in SIMD||DNA, where each domain is considered “toehold-length”: sufficiently short (5-7 bases) that the off-rate of a strand bound by a single domain is large enough to detach in a short amount of time. There are only $4^7 = 16384$ DNA sequences of length 7. In practice even fewer are available: half are complementary to the other half, leaving only 8192 available to assign to the unstarred versions of each domain. DNA sequence design heuristics such as the “3-letter code” (using only A,T,C for forward strands, thus only A,T,G for the register and reverse strands) reduce this number to $3^7 = 2187$. Reasonable design constraints, e.g., avoiding almost equal domains such as 5′-AAAAAAG-3′ and 5′-AAAAAAAAA-3′, which both bind almost equally strongly to 3′-TTTTTTTTTTT-5′, further
Our construction uses $d = 2t + 8$ total unique DNA domains (which repeat throughout the register), where t is the number of transitions of the simulated Turing machine. Each transition is represented by 2 domains, assumed to be bound strongly enough not to spontaneously dissociate. (The construction can be altered to use more domains, in case this assumption is overly ideal.) To simulate a Turing machine with space bound s, the register has s “cells”, where each cell is simply a copy of one each of the d domains $1, \ldots, d$. Thus, if each domain consists of k nucleotides, the register strand has $k \cdot s \cdot (2t + 8)$ total nucleotides. There is an 11-state, 3-symbol universal Turing machine (directly simulating another Turing machine) with 32 transitions \[6\], giving $2 \cdot 32 + 8 = 72$ total domains required in the worst case. However, specialized non-universal Turing machines with a smaller number of transitions (for example the 5-transition binary incrementor of Figure 5) could accomplish many computationally sophisticated tasks.

Each Turing machine transition can be represented by approximately 16 SIMD||DNA instructions. The exact number varies depending on the specific properties of the transition in question, such as the the direction of the tape head, the symbol to be written, and whether any of the possible next configurations are halting or not. This range has constant upper and lower bounds, however, so the total number of instructions is in $O(t)$, where t is the number of transitions in the Turing machine. Because the size of the cell increases in $O(t)$ due to the transition regions, the number of DNA strands present in some instructions also scales by a factor of $O(t)$, most notably the instructions that cause a cascade of toehold exchanges, such as instructions 3 to 7 in Figures 12 and 13.

4 Conclusion

Our construction, like the Rule 110 simulation of Wang, Chalk, and Soloveichik \[12\], is not Turing universal because it simulates a space-bounded Turing machine. Truly universal computation should be possible without advanced knowledge of the space requirement. An
interesting question (raised also in [12]) is whether a suitable augmentation of the SIMD||DNA model could allow Turing-universal computation. This would require unbounded polymers such as those used in the two-stack machine DNA implementation of Qian, Soloveichik, and Winfree [8]. That paper showed Turing universal computation in the case where only a single copy of certain strands are permitted to exist in solution, simulating only a single stack machine at a time, in contrast to the SIMD||DNA model, where we can operate on many registers, each representing their own Turing machine, in parallel.

Technically the strand displacement reactions of the SIMD||DNA model are currently powerful enough to grow arbitrarily large polymers from a fixed set of strands, as in [8], by alternating top and bottom strands, making a long double-helix with nicks on the top and bottom. However, it is difficult to see how to use the ability of SIMD||DNA to exploit this to simulate a Turing machine represented in this way. If there are multiple bottom strands, i.e., there is a nick on the bottom, then any strand displacement of top strands, upon reaching this nick, would separate the polymer into two complexes to the left and right of this nick, and the right polymer would be lost in the wash step. One could imagine, however, augmenting the model to allow, for example, 3-arm junctions, which could be used to do strand displacement that crosses over the boundary between two bottom strands without separating them (since they would be joined to each other by a strong domain representing the third arm “below” the main helix).

Although some of the toehold exchanges in the SIMD||DNA model are reversible based on the principles of DNA strand displacement, we make the assumption that the applied instructions are not undone by the displaced strands. This is based on the assumption that the instruction strands are present in a sufficiently high concentration that reversal is unlikely. Because multiple registers can be present in the same solution, another possibility to consider is a displaced DNA strand from Register A binding to an open toehold in Register B, such that the attachment is irreversible even with the presence of a high concentration of instruction strands. One open question is to design a system that factors in these possibilities,
Simulating 3-symbol Turing machines with SIMD||DNA

Figure 12 First half (previous-cell instructions) of transition $a, 0 \rightarrow a, 0, R$. Instruction 3's strands cascade to the right side of the current cell, while instruction 4 removes the previously introduced strands. Instruction 5 then covers up all the transition regions and adds the strands of the symbol to be written on the current cell (0 in this example), but leaving the rightmost domain exposed to act as a toehold for the next instructions.

Reducing the likelihood of unexpected strand displacement results.

Another open question is whether a more domain-efficient encoding exists for the Turing machine construction. Given n transitions, $2n$ domains are required to represent them, which has $O(n)$ complexity. However, given d domains, there are 2^{d-1} possible nick patterns among the attached strands, which makes $O(\log n)$ domain complexity possible in theory.
References

1. James Bornholt, Randolph Lopez, Douglas M Carmean, Luis Ceze, Georg Seelig, and Karin Strauss. A DNA-based archival storage system. In ASPLOS 2016: Proceedings of the Twenty-First International Conference on Architectural Support for Programming Languages and Operating Systems, pages 637–649, 2016.

2. Tonglin Chen, Arnav Solanki, and Marc Riedel. Parallel Pairwise Operations on Data Stored in DNA: Sorting, Shifting, and Searching. In DNA 27: 27th International Conference on DNA Computing and Molecular Programming, volume 205, pages 11:1–11:21, 2021. doi:10.4230/LIPIcs.DNA.27.11.

3. George M Church, Yuan Gao, and Sriram Kosuri. Next-generation digital information storage in DNA. Science, 337(6102):1628–1628, 2012.

4. Matthew Cook. Universality in elementary cellular automata. Complex systems, 15(1):1–40, 2004.

5. Turlough Neary and Damien Woods. P-completeness of cellular automaton Rule 110. In ICALP 2006: International Colloquium on Automata, Languages, and Programming, pages 132–143. Springer, 2006.

6. Turlough Neary and Damien Woods. Small fast universal Turing machines. Theoretical Computer Science, 362(1-3):171–195, 2006.

7. Lee Organick, Siena Dumas Ang, Yuan-Jyue Chen, Randolph Lopez, Sergey Yekhanin, Konstantin Makarychev, Miklos Z Racz, Govinda Kamath, Parikshit Gopalan, Bichlien Nguyen, Christopher N Takahashi, Sharon Newman, Hsing-Yeh Parker, Cyrus Rashtchian, Kendall Stewart, Gagan Gupta, Robert Carlson, John Mulligan, Douglas Carmean, Georg Seelig, Luis Ceze, and Karin Strauss. Random access in large-scale DNA data storage. Nature Biotechnology, 36(3):242, 2018.

8. Lulu Qian, David Soloveichik, and Erik Winfree. Efficient Turing-universal computation with DNA polymers. In International Workshop on DNA-Based Computers, pages 123–140. Springer, 2010.

9. Georg Seelig, David Soloveichik, David Yu Zhang, and Erik Winfree. Enzyme-free nucleic acid logic circuits. Science, 314(5805):1585–1588, 2006.

10. SIMD||DNA simulator. source code: https://github.com/UC-Davis-molecular-computing/simd-dna, 2021.

11. S Kasra Tabatabaei, Boya Wang, Nagendra Bala Murali Athreya, Behnam Enghiad, Alvaro Gonzalez Hernandez, Christopher J Fields, Jean-Pierre Leburton, David Soloveichik, Huimin Zhao, and Olgica Milenkovic. DNA punch cards for storing data on native DNA sequences via enzymatic nicking. Nature Communications, 11(1):1–10, 2020.

12. Boya Wang, Cameron Chalk, and David Soloveichik. SIMD||DNA: Single instruction, multiple data computation with DNA strand displacement cascades. In DNA 2019: International Conference on DNA Computing and Molecular Programming, pages 219–235, 2019.
A Appendix: Next-cell Instructions

Figure 13 The next-cell instructions for when the right cell contains a blank. The Turing machine enters the \((a, \text{blank})\) configuration afterward.

Figure 14 The next-cell instructions for when the right cell contains the symbol 0, entering the \((a, 0)\) configuration.
Figure 15 The next-cell instructions for when the right cell contains the symbol 1, entering the (a, 1) configuration.
Appendix: \((a, 1)\) Transition Overview

Figure 16 An overview of instructions 20 to 37 of the construction, which represent the \((a, 1) \rightarrow (a, 1, R)\) transition of the Turing machine shown in Figure 3. Because the register in this example is not in the \((a, 1)\) configuration, the instructions in this section do not affect the register, as no toehold is present.
The following figures show the full instruction set on a register whose current value is 01\ldots, where the tape head is on 1 and the current state is \(a\). Because the \((a, 1)\) transition is represented in this configuration, the instruction sublists that represent the other transitions (Figures 17 and 19–21) are fully inert.

Figure 17 The initial pre-plug instruction, as well as the \((a, 0)\) instruction sublist, for a register whose next transition is \((a, 1)\). Note all instructions after the first are inert, because the pre-plug strand blocks all subsequent instructions (as intended since \((a, 0)\) is not the applicable transition.)
Figure 18 The \((a,1)\) instruction sublist for a register whose next transition is \((a,1)\). Instructions 30 to 37 are inert, because they apply to the cases when the cell to the right of \((a,1)\) contains a 0 or a 1.
Figure 19: The (a, ω) instruction sublist after the register was processed by the $(a, 1)$ instruction sublist. Even though the register is now in the (a, ω) configuration, the post-plug strand introduced in instruction 25 prevents the register from being updated a second time using the (a, ω) instructions.
Figure 20 The \((b, 0)\) instruction sublist after the register was processed by the \((a, 1)\) instruction sublist.
Figure 21 The \((b, 1)\) instruction sublist after the register was processed by the \((a, 1)\) instruction sublist, as well as the final deprotecting instruction that removes the post-plug strand.