Supplementary Information

Analysis of the Role of the Mc4r System in Development, Growth, and Puberty of Medaka

Ruiqi Liu, Masato Kinoshita, Mateus C. Adolfo, Manfred Schartl
Supplementary Material

Figure legends

Figure S1. Phylogenetic analysis of fish species. (A) Mc4r (Mc5r as outgroup), (B) Mrap2 (Mrap1 as outgroup), (C) Agrp1 (Agrp2 as outgroup). The phylogeny was inferred using the maximum-likelihood method. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1000 replicates) are shown next to the branches. Branches with bootstrap lower than 60 were collapsed.

Figure S2. Whole mount in situ hybridization detection of mc4r and mrap2 genes in adult brains. (A) mc4r and mrap2 sense probes used as negative control showing no background signals in male and female brains. Scale bar: 100 µm. (B) mc4r and mrap2 were in part co-expressed in the same region of the hypothalamus. Scale bar: whole section 200 µm, magnified view 100 µm. Brain areas in detail: v3: third ventricle, PPa: anterior parvocellular preoptic nucleus, PMp: parvocellular part magnocellular preoptic nucleus, HD: dorsal periventricular hypothalamus, HV: ventral periventricular hypothalamus, LH: lateral nucleus of hypothalamus, OT: optic tectum, PGZ: periventricular grey zone, vm: mesencephalic ventricle, NDTL: diffuse nucleus of lateral torus, Tl: longitudinal torus.

Figure S3. Effect of mc4r on medaka development and puberty. (A) Mc4r knockout is a -2+3KO, which has a deletion of 2 nt and an addition of 3 nt at the TALEN cut site. This creates a frameshift mutation, resulting in a truncated protein. (B) Schematic drawing of the two-chamber aquarium, which warrants an identical environment for WT and KO. (C) Percentage of fish reaching puberty at a certain age. Note: males and females show no significant difference in puberty timing in three trials (males: C1, C3, C5; females: C2, C4, C6).
Figure S1
A

O. latipes

Preoptic region	Hypothalamus		
	anterior	middle	posterior
Mc4r	v3	v3	v3
female	HD	HD	
	LH	LH	
male			
Mrap2	v3	v3	v3
female	HD	HD	
	LH	LH	
male			

B

Antisense Mc4r

Antisense Mrap2

Figure S2
Sequence of the *mc4r* gene and Mc4r protein in Mc4r-KO medaka

![Sequence of the mc4r gene and Mc4r protein in Mc4r-KO medaka](image)

Two chamber aquarium

![Two chamber aquarium](image)

Figure S3
Supplementary Tables

Table S1. List of accession numbers of sequences of various species used in the study.
All sequences are obtained from Ensembl Database or NCBI.

Gene	Specie	bp	Protein	Exon	Transcript ID	Protein ID
Mc4r	Amazon molly	990	329aa	1	ENSPFOT00000021127	ENSPFOP00000021099.2
Mc4r	Cave fish	1008	335aa	1	ENSAMXT00000027076	ENSAMXP00000027055.1
Mc4r	Coelacanth	990	329aa	1	ENSLACT0000000489	ENSLACP00000000487.1
Mc4r	Elephant shark	1017	338aa	2	XM_007895520.1	XP_007893711.1
Mc4r	Fugu	969	322aa	1	NM_001032560.1	NP_001027732.1
MC4R	Human	1666	332aa	1	ENST000000299766	ENSP000000299766.3
McrB	Lamprey	1035	344aa	1	BK007095.1	DAA34034.1
Mc4r	Medaka	1941	321aa	1	XM_004081195.4	XP_004081243.1
Mc4r	Southern Platypush	963	320aa	1	KF650657.1	AHC02892.1
Mc4r	Spotted gar	5875	333aa	1	XM_015354632.1	XP_015210118.1
Mc4r	Tetraodon	981	326aa	1	ENSTNIT000000017378	ENSTNIP000000011538.1
Mc4r	Tilapia	984	327aa	1	ENSONIT000000025784	ENSONIP000000025763.1
Mc4r	Zebrafish	1084	326aa	1	ENSDART000000019555	ENSDARP0000000257547.2
MC5R	Human	1319	325aa	1	NM_005913.2	NP_005904.1
Mc5r	Fugu	1023	340aa	4	NM_001032765.1	NP_001027937.1
Mc5r	Spotted gar	2852	328aa	2	XM_015357781.1	XP_015213267.1
Mc5r	Coelacanth	981	326aa	1	XM_005996516.1	XP_005996578.1

Gene	Specie	bp	Protein	Exon	Transcript ID	Protein ID
Mrap2	Amazon molly	2390	255aa	3	ENSPFOT00000019455	ENSPFOP00000019433.2
Mrap2	Cave fish	1511	218aa	3	XM_007237278.3	XP_007237340.2
Gene	Specie	bp	Protein	Exon	Transcript ID	Protein ID
------	----------------	------	---------	------	----------------------	-----------------------------
Pomca-1	Amazon molly	224	249aa	3	XM_007569070.2	XP_007569132.2
Pomca-2	Amazon molly	794	183aa	3	XM_016681012.1	XP_016536498.1
Pomcb	Amazon molly	102	236aa	3	ENSPFOT0000003135	ENSPFOP0000003131.1
Pomca	Cave fish	100	221aa	3	XM_007244678.2	XP_007244740.2
Pomcb	Cave fish	878	197aa	3	XM_015607051.2	XP_015462537.2
gene	species	bp	protein	exon	transcript ID	protein ID
-------	---------------	------	---------	------	--------------------------------	--------------------------
Pomc	Coelacanth	768	255aa	2	ENSLACT00000013386	ENSLACP00000013290.1
Pomc	Elephant shark	114	341aa	2	XM_007911414.1	XP_007909605.1
Pomca	Fugu	657	218aa	2	XM_011606335.1	XP_011604637.1
Pomcb	Fugu	287	218aa	3	XM_003971727.2	XP_003971776.1
POMC	Human	142	267aa	3	ENST00000405623	ENSP00000384092.1
Poc	Lamprey	102	278aa	2	D55628.1	BAA09491.1
Pom	Lamprey	204	245aa	2	D55629.1	BAA09492.1
Pomca-1 (Pomc-like)	Medaka	235	265aa	3	XM_023959757.1	XP_023815525.1
Pomca-2	Medaka	898	212aa	3	XM_004066456.3	XP_004066504.1
Pomcb	Medaka	684	227aa	2	ENSORLT0000001868657	ENSORLP00000018656.1
Pomca-1	Southern Platytfish	713	209aa	2	ENSXMAT0000001214	ENSXMAP0000001210.1
Pomca-2	Southern Platytfish	144	257aa	3	ENSXMAT00000006432	ENSXMAP00000006424.1
Pomcb	Southern Platytfish	140	236aa	3	ENSXMAT00000003692	ENSXMAP00000003687.1
Poc	Spotted gar	143	266aa	3	ENSLOCT0000002060647	ENSLOC00000020612.1
Pomca-1	Tilapia	196	216aa	3	ENSONIT00000009130	ENSONIP00000009125.1
Pomca-2	Tilapia	814	208aa	2	ENSONIT00000023610	ENSONIP00000023589.1
Pomcb	Tilapia	153	280aa	3	XM_005454720.3	XP_005454777.1
Pomca	Zebrasfish	122	222aa	3	ENSDART000000063333	ENSDARP00000006332.5
Pomcb	Zebrasfish	648	215aa	2	ENSDART0000000100751	ENSDARP000000091524.2

Aggrp	Gene	Specie	bp	Protein	Exon	Transcript ID	Protein ID
Aggrp1	Amazon	767	141aa	3	ENSPFOT0000000	ENSPFOP000000024	
Animal	Species	Length (aa)	Accession	Percent Identity			
----------------	--------------	-------------	-----------------	------------------			
Agrp1 Cave fish	2445	5	XM_022667066.1	XP_022522787.1			
Agrp1 Cod	1364	3	BR000938.1	FAA00762.1			
Agrp1 Elephant shark	588	4	XM_007889599.1	XP_007887790.1			
Agrp1 Fugu	529	3	ENSTRUT00000009422	ENSTRUP0000009367.1			
Agrp2 Fugu	907	3	ENSTRUT00000009410	ENSTRUP0000009355.1			
AGRP Human	764	4	ENST00000290953	ENSP00000290953.2			
Agrp1 Medaka	3293	3	XM_011487064.3	XP_011485366.1			
Agrp2 Medaka	1737	3	XM_004078892.4	XP_004078940.1			
Agrp1 Southern Platypus	578	3	ENSXMAT00000009960	ENSXMAP000000946.1			
Agrp1 Spotted gar	769	4	XM_006641519.2	XP_006641582.2			
Agrp2 Spotted gar	3439	4	ENSLOCT00000012669	ENSLCP00000012645.1			
Agrp1 Stickleback	1130	3	BR000932.1	FAA00758.1			
Agrp2 Stickleback	3507	3	BR000927.1	FAA00754.1			
Agrp1 Tetraodon	393	3	ENSTNIT00000013316	ENSTNIP00000013124.1			
Agrp1 Tilapia	429	3	ENSONIT00000004065	ENSONIP00000004064.1			
Agrp1 Zebrafish	676	4	ENSDART000000135250	ENSDARP00000116390.1			
Table S2. Primers used in this study.

Primers	Sequences	Comments
MF_ef1a1-f01	GCCCTGGACACAGAGACTTCATCA	RT-qPCR for Elf1a
MF_ef1a1-r01	AAGGGGCTCGGGTGGAGTCCAT	RT-qPCR for Elf1a
Mc4r_Ol_F	GGCAACCTGAGCATTCCTGTCA	RT-qPCR for Mc4r
Mc4r_Ol_R	ATGTAGCGGTCAACGGCAATGG	RT-qPCR for Mc4r
MRAP2a_Ol_F	CGCACGACGCAGTGAATGT	RT-qPCR for Mrap2
MRAP2a_Ol_R	ACCGCCAGTCCAACCCAGAA	RT-qPCR for Mrap2
Pomca_Ol_F	TGGACTCTGAGAGCATGAC	RT-qPCR for Pomca
Pomca_Ol_R	AAGGGATCTGAGGGAGGGAGGAG	RT-qPCR for Pomca
Pomcb_Ol_F	TTGCTGGCTTGGTGTGTTCT	RT-qPCR for Pomcb
Pomcb_Ol_R	AGGTCTGGGCTTTCCAGTTTGAG	RT-qPCR for Pomcb
AgRP_Ol_F	CATCCCCTACACGACATCGCT	RT-qPCR for Agrp1
AgRP_Ol_R	GCCGCAGTAACAGATGGGCATT	RT-qPCR for Agrp1
Mc4r_Ol_F2	CCTGGGAGGACAGAAAGA	PCR for Mc4r in situ hybridization probe synthesis
Mc4r_Ol_R2	ATGAAGAGGATACCCGACA	PCR for Mc4r in situ hybridization probe synthesis
MRAP2a_Ol_F2	ACGAGTTATGACGACGAG	PCR for Mrap2 in situ hybridization probe synthesis
MRAP2a_Ol_R2	GATGGTGTTACTCCCTGTT	PCR for Mrap2 in situ hybridization probe synthesis
Table S3. Chromosomal location of Mc4r signaling system genes. Linkage group: LG.

gene	Southern platyfish	medaka
sex chromosome	LG21	LG1
mc4r	LG21	LG 20
mrap2	LG15	LG24
pomca1	LG13	LG11
pomca2	LG24	LG2
pomcb	LG15	LG24
agrp1	LG4	LG3
agrp2	LG6 (asip2b)	LG17
Table S4. Medaka developmental stages.
Days post fertilization: dpf; stage: S.

Days	Number of eggs in each pool	Stages
0dpf	100	S10-11
1dpf	50	S21-22
2dpf		S26
3dpf		S30
4dpf		S33
5dpf	30	S35
6dpf		S37
8dpf		8dpf
		Hatch
10dpf	15	10dpf
15dpf		15dpf
20dpf		20dpf
Supplementary sequences

Mc4r sequences in wild-type medaka.

>Ol_Mc4r_WT
ATGAACTCCACTCTGCTCCCTTATGGGTCGGTCCCCAACAGAACCTCCTCCTCGGCCACTCCTCCTCACCTGAGCTCTGCTGCTGGAGAACATCTGGTTGTTGCTGCGATCGTTAAAAACAAGAACCTCCTCCACCTCGGCTACATGATCTCCACTGAGGTCTTCCTCACTTTGGGCATCATCAGCCTGCTGGAGAACATCTGGTTGTTGCTGCGATCGTTAAAAACAAGAACCTCCACTCCCCCATGTACTTTTATCTGCAGCCTCGCAGTAGCCGATATGT

>TGGTCAGCGTCTCCAACGCGTCTGAGACC
ATCGTCATAGCGCTCATTAACGGAGGCAACCTGAGCATTCCTGTCAGGCTCATCAAGAGCATGGACAATGTGTTTGACTCCATGATCTGCAGCTCTCTGCTGGCCTCCATCTGCAGCTTGCTGGCCATTGCCGTTGACCGCTACATCACCATCTTCTACGCTCTGCGATACCCACAACATCGTGACGCTGCGGCGAGCAGCCGTGGTCATCAGCAGCATCTGGACGTGCTGCATTGTGTCGGGTATCCTCTTCATCATCTACTCGGAGAGTACCACGGTGCTCATCTGTCTCATCACCATGTTCTTCACCATGCTGGTGCTCATGGCCTCCCTCTATGTCCACTGTTCATCATGCCACTGCTCTGCTTCCACCTCATCCTGATCACCTGC

CCCAGGAACCCTTACTGCACCTGCTTCATGTCGCACTTCAACATGTACCTCATTCTCATCATGTGCAACTCCGTCATCGACCC CATCATCTACGCTTTCCGGAGCCAGGAGATGAGGAAAACCTTCAAGGAGATCTTCTGCTGCTCCAACGCTCTCCTGTGTGTGA

>Ol_Mc4r_WT
MNSTLPYGSVPNRSLSSATLPDDLGGKQKDSAGCYEQLLSTEVFLTGLISSLENI LVVAAIVKKNLHSPMYFFICSLAVADMLVSVSNASTIVIALINGNLSPVRLIK SMNVDFMICSLLASILSLAIAVDRYITIFILYALRYNHIVTLRRAAVSIWITC CIVSGILFIYYSESTTVCLICLITMFFTMVLVMLASYVMHFLARLHMOKRIAALPGNA PIHQRANMKGATILWIIILGVVVFVCWAPFHLILIMITCPGRNPYCTCFMSHFNMYLIL IMCNSVIDPIIYAFRSQEMRTKFEIFCSSNALLCV

Mc4r sequences in -2/+3 TALEN-knockout medaka.

>Ol-Mc4r_KO-2/+3
ATGAACTCCACTCTGCTCCCTTATGGGTCGGTCCCCAACACAGAACCTCCTCCTCCTCGGCCACTCCTCCTCACCTGAGCTCTGCTGCTGGAGAACATCTGGTTGTTGCTGCGATCGTTAAAAACAAGAACCTCCACTCCCCCATGTACTTTTATCTGCAGCCTCGCAGTAGCCGATATGT

>TGGTCAGCGTCTCCAACGCGTCTGAGACCATCGTCATAGCGCTCATTAACGGAGGCAACCTGAGCATTCCTGTCAGGCTCATCAAGAGCATGGACAATGTGTTTGACTCCATGATCTGCAGCTCTCTGCTGGCCTCCATCTGCAGCTTGCTGGCCATTGCCGTTGACCGCTACATCACCATCTTCTACGCTCTGCGATACCCACAACATCGTGACGCTGCGGCGAGCAGCCGTGGTCATCAGCAGCATCTGGACGTGCTGCATTGTGTCGGGTATCCTCTTCATCATCTACTCGGAGAGTACCACGGTGCTCATCTGTCTCATCACCATGTTCTTCACCATGCTGGTGCTCATGGCCTCCCTCTATGTCCACTGTTCATCATGCCACTGCTCTGCTTCCACCTCATCCTGATCACCTGC

CCCAGGAACCCTTACTGCACCTGCTTCATGTCGCACTTCAACATGTACCTCATTCTCATCATGTGCAACTCCGTCATCGACCCCATCATCTACGCTTTCCGGAGCCAGGAGATGAGGAAAACCTTCAAGGAGATCTTCTGCTGCTCCAACGCTCTCCTGTGTGTGA

>Ol-Mc4r_KO-2/+3
MNSTLPYGSVPNRSLSSATLPDDLGGKQKDSAGCYEQLLSTEVFLTGLISSLENI LVVAAIVKKNLHSPMYFFICSLAVADMLVSVSNASTIVIALINGNLSPVRLIK SMNVDFMICSLLASILSLAIAVDRYITIFILYALRYNHIVTLRRAAVSIWITC CIVSGILFIYYSESTTVCLICLITMFFTMVLVMLASYVMHFLARLHMOKRIAALPGNA PIHQRANMKGATILWIIILGVVVFVCWAPFHLILIMITCPGRNPYCTCFMSHFNMYLIL IMCNSVIDPIIYAFRSQEMRTKFEIFCSSNALLCV
CATTTCTGCTGGCACGTCTGCACATGAAGCGGATCGCGGCGCTGCCGGGCAACGC
GCCCATCCACCGGCGAACATGAAGGGCCTCCACCCTACCATCCTCTTCCGGGCTTGTTTTGTGGTGTGCTGGGCCGGCGTTCTTCTCCACCCTACCATCCTCAGATCACCTG
CCCAGGAACCCTTAACCTGACCTGTTCATGTGCACTTCAACATGTACCTCATTCT
CATCATGTGCAACTCGCTCATGACCCACCATCATCTACGCTTCCGGAGCCAGGAGAT
GAGAAAACTTTCAAGGAGATCTTCTTCATGCTGCTCCACGCTCTCCTGCTGTGTGTA

>Ol_Mc4r_KO-2/+3
MNSTLPYGSVPNRLSSATLPPDLGGQKDSSAGYEQLLISTEVFLTLGIISSLLENI
LVVAAIVKKNLHSPMYFFICSALAVMLVSVSKTV