Reproductive biology of *Scinax fuscomarginatus* (Anura, Hylidae) in south-eastern Brazil

L. F. TOLEDO & C. F. B. HADDAD

Departamento de Zoologia, Instituto de Biociências, Universidade Estadual Paulista, Rio Claro, Brazil

(Accepted 14 June 2005)

Abstract

The present study describes the reproductive biology of *Scinax fuscomarginatus* in a remnant of Cerrado in south-eastern Brazil. Observations were made between September 2002 and March 2004 at Estação Ecológica de Itirapina, State of São Paulo, south-eastern Brazil. Breeding activities occurred in lentic and temporary bodies of water during the rainy season. *Scinax fuscomarginatus* exhibited a prolonged breeding pattern and a lek mating system. Males were smaller than females and defended individual calling areas through acoustic and physical interactions. Resident males consistently won encounters, but did not differ in size or mass from intruder males. Satellite behaviour was observed, but no female or amplexed pair interception was registered. *Scinax fuscomarginatus* exhibited low operational sex ratios and the general reproductive mode in which eggs are laid in the water and tadpoles are aquatic. Amplexus was axillary and the eggs were deposited at the bottom of temporary ponds. Details on oocytes, egg masses, and eggs are included.

Keywords: Anura, aggressive behaviour, Cerrado, chorus organization, hylid treefrog, reproduction, temporary pond

Introduction

Studies of anurans in the Neotropical natural environment have focused mainly on the reproductive biology of the species, such as temporal and spatial distribution, and sometimes, examine the possible influence of abiotic factors on the reproductive activity of males (e.g. Aichinger 1987; Martins 1988, 1993; Haddad and Cardoso 1992; Pombal 1997; Bernarde and Machado 2001; Freitas et al. 2002; Wogel et al. 2002; Guimarães and Bastos 2003). Some detailed studies investigated factors that might be involved in sexual selection, verifying quantitative reproductive aspects and size–fecundity relationships (e.g. Prado et al. 2000; Bastos and Haddad 2001).

Studies of territoriality, including agonistic interactions for limited resources such as calling sites, egg-laying sites, and/or females, have also been important in understanding natural history and variation among anurans (Wells 1977a, 1978; Cardoso and Haddad 1984; Bastos and Haddad 1995, 2002; Martins et al. 1998). Indeed, female mate choice
May be influenced by the result of the aggressive interactions among males (Arak 1983; Olson et al. 1986; Wagner and Sullivan 1992; Brenowitz and Rose 1999). Therefore, sexual selection may be a causal factor in the size sexual dimorphism found in the majority of the anuran species (Shine 1979).

Most species in the genus *Scinax* Wagler, 1830 exhibit sexual dimorphism in size, with females generally being larger than males (Lutz 1973; Heyer et al. 1990). The genus is also characterized by having diverse reproductive modes: foam nests (*S. rizibilis* (Bokermann, 1964): Haddad et al. 1990); eggs deposited in lotic water bodies (e.g. *S. albicans* (Bokermann, 1967) and *S. trapicheiroi* (Lutz, 1954): Carvalho e Silva and Carvalho e Silva 1994); and, in the majority of the species, the general reproductive mode (Haddad and Prado 2005): eggs are deposited in lentic aquatic environments where the tadpoles develop (Lutz 1973; Haddad et al. 1990; Bourne 1992; Bevier 1997; Toledo et al. 2003). With regard to the reproductive strategy (*sensu* Wells 1977a), some *Scinax* species exhibit the explosive reproductive pattern (e.g. *S. fuscovarius* (Lutz, 1925): Bertoluci 1998; Toledo et al. 2003; *S. ruber* (Laurenti, 1768): Bourne 1992; Bevier 1997; *Scinax similis* (Cochran, 1952): Toledo et al. 2003) and some species exhibit the prolonged reproductive pattern (e.g. *S. albicans*: Carvalho e Silva and Carvalho e Silva 1994; *S. boulenzeri* (Cope, 1887): Bevier 1997; *S. rizibilis*: Bastos and Haddad 1999; *S. centralis* Pombal and Bastos, 1996 and *S. fuscomarginatus* (Lutz, 1925): Bernarde and Kokubum 1999; Bastos et al. 2003; Toledo and Haddad 2005).

Males of *S. fuscomarginatus* aggregate around permanent or temporary ponds for reproduction, and use the surrounding vegetation as calling sites (references in Toledo and Haddad 2005). Four different vocalizations were described (Toledo and Haddad 2005) and its reproductive effort relationships were briefly discussed before (Prado and Haddad 2003). *Scinax fuscomarginatus* lays its eggs directly in lentic water bodies (Bastos et al. 2003) and its larval development has already been described (as *Hyla parkeri* in Vizotto 1967; and as *Oloolygon fuscomarginata* in Altig and Johnston 1986).

Herein, we studied the reproductive biology of *S. fuscomarginatus* and report on: (1) the spatial and temporal organization of the individuals at the breeding site; (2) behaviours important for reproduction, such as pair formation, aggressive interactions among males, and male satellite behaviour; (3) quantitative aspects of reproduction, such as female fecundity, reproductive effort of females, and sexual dimorphism; and (4) egg-mass characteristics.

Material and methods

Study site

The present study was carried out at the Estação Ecológica de Itirapina (EEI), located in the municipalities of Itirapina and Brotas, central State of São Paulo, south-eastern Brazil. The EEI has approximately 2300 ha of natural vegetation, including at least five distinct Cerrado physiognomies (Martins 2001). Lentic and temporary ponds are often formed on the physiognomies of “campo sujo” and “campo limpo” during the warm and rainy season of the year (between November and March).

Data collection

Observations were made monthly, lasting from 4 to 10 consecutive days, and were conducted between September 2002 and March 2004. Observations began about 1 h
before sunset and finished when the calling activity decreased considerably (when only one or two males remained calling), or ceased. During the observations, headlamps were used, and the focal animal was only dimly illuminated. Sampling methods included *ad libitum*, focal-animal, all occurrences of some behaviours, and sequences (Altmann 1974; Lehner 1996).

For individual recognition, the animals were toe-clipped following Waichman (1992), and released exactly at the same place from where they were captured. Individuals were weighed to the nearest 0.05 g and the snout–vent length (SVL) was measured with callipers to the nearest 0.05 mm; for females these measurements are taken after oviposition. Air temperature, observation time, distance to the nearest conspecific individual, distance from water and height from the ground of the male’s calling site, sex, and presence or absence of ova in the females were also recorded.

The operational sex ratio was determined according to Emlen and Oring (1977): OSR = ratio of fertilizable females to sexually active males on the studied night. Eggs were obtained from clutches deposited by pairs, placed in plastic bags and preserved in 5% formalin 48–72 h after spawning. The eggs were counted, measured, and classified according to Gosner’s table (Gosner 1960).

Analysis

The homogeneity of variances and normality of the data set were verified. For comparisons between body mass and SVL of winner versus loser males involved in agonistic interactions, or between calling/dominant versus silent/satellite males, we used a paired *t* test. The comparison between body mass and SVL of males and females was made with a Mann–Whitney *U* test. In all cases, significant values were considered when *P* < 0.05 (Zar 1999). Descriptive statistics are given as mean ± SD.

Results

The reproductive period of *Scinax fuscomarginatus* at EEI, based on the calling activity of males, lasted approximately 3.5 months in each rainy season, from the middle of December 2002 to the end of March 2003, and from the beginning of December 2003 to the middle of March 2004, the same time the temporary lentic ponds were filled.

Only males were observed at the reproductive aggregations in the beginning of the reproductive season. Females were found about 20 days after the beginning of the calling activity. Females were larger (23.17 ± 0.30 mm; *N* = 5) than males (22.21 ± 0.77 mm; *N* = 52) (*U* = 251.2; *P* = 0.03), but not significantly heavier (females body mass = 0.58 ± 0.06 g; *N* = 5; males body mass = 0.56 ± 0.07 g; *N* = 51) (*U* = 170.5; *P* = 0.43). The first aquatic larvae were found ca 30 days after the beginning of the calling season in the same ponds where the observations were conducted. Metamorphic individuals were found 40 and 50 days after the beginning of the calling season, perched on branches of vegetation above the water or swimming in the ponds.

Male *S. fuscomarginatus* used the vegetation bordering temporary ponds as calling sites. Despite the apparently erratic distribution of the calling sites around the temporary ponds, 52% of the calling males (*N*_{total} = 56) were found separated by 100–300 cm from each other. When distances were equal to or less than 30 cm, male–male interactions were observed (Figure 1), suggesting that calling territories of *S. fuscomarginatus* were about 60 cm in diameter. Inside the acoustic space of a resident male two sorts of interactions were
observed when intruder males approached. First, while the dominant male was calling, one or two other males assumed a submission posture, remaining silently as satellite males. Alternatively, the resident male aggressively defended its calling site, and if the intruder persisted, physical combat resulted (Figure 2).

When an intruder male approached, the resident calling male turned towards the intruder and started to emit territorial calls. If the intruder did not assume a submissive posture, with the head and belly touching the substrate, and with the vocal sac deflated,

![Diagram]

Figure 2. Summary of the agonistic interactions between adult males of *Scinax fuscomarginatus* at Estação Ecológica de Itirapina, State of São Paulo, south-eastern Brazil.
both males initiated an acoustic exchange. First, the intruder emitted few advertisement calls, but soon began to emit territorial calls. Males called intensively, interrupted by silent periods of up to 30 s until the acoustic exchange restarted when one of the males called again. On one occasion, during the calling context, both resident and intruder performed rapid extension and contraction of arms and legs.

If the intruder did not assume a satellite strategy ($N=7$) or did not move away ($N=3$), the resident male approached the intruder using short-distance hops, and initiated physical combat. During the combat, males gave chest-to-chest hugs, with the heads orientated in the same direction, and both males emitted fighting calls. The fight finished when the loser males (which were also the intruders) moved away. These interactions lasted for 15 and 70 s.

Resident males always won these interactions. These males were not significantly larger ($t=1.23; \text{df}=5; P=0.27$) nor heavier ($t=1.17; \text{df}=5; P=0.30$) than intruders or satellite males (Table I). Females were not observed defending areas or involved in agonistic interactions.

In three observations of satellite males, the dominant males were removed by the observer and after 2–4 min the satellite males began to produce advertisement calls. Satellite males were observed regardless of chorus density and no females were observed near groups of dominant and satellite males.

Throughout the study, nine females were observed, five of which were captured. The average operational sex ratio obtained for nights when females were present was 0.083 ($\text{SD}=0.053$; range=$0.025–0.143$; $N=6$ nights). Two females with ovules at different stages of development were captured near the temporary ponds in January 2003; only females with mature ova were found in the breeding site moving toward calling males. Gravid females ($N=4$) were also observed motionless for up to 4 min in front of calling males, with their heads orientated toward them. After that, females were observed moving toward the nearest male, or in the direction of other males in the vicinity. When a male perceived the presence of a female, he moved toward her, producing courtship calls with short duration and low energy intensity ($N=1$). When the male was less than 10 cm from the female, he jumped on the female’s dorsum and entered into axillary amplexus.

During amplexus, the male pressed his ventral region to the dorsal surface of the female. He arhythmically contracted his arms on the female’s flanks at a rate of six to eight per minute. Pair formation occurred, on average, 2 h after sunset (range=1 h 5 min to 2 h 25 min; $N=4$). The female moved down from the vegetation branches to the pond’s water level between 2 h 30 min and 4 h after the amplexus (mean=3 h 15 min; $N=4$). At the

| Table I. Body mass and snout–vent length (SVL) of *Scinax fuscomarginatus* males (winners or dominants and losers or satellites) of the agonistic encounters observed at the Estação Ecológica de Itirapina, State of São Paulo, Brazil. |
|-----------------|-----------------|-----------------|-----------------|
| | Encounters without combat | | Encounters with combat |
| | SVL (mm) | Mass (g) | | SVL (mm) | Mass (g) |
| Winners or dominants | 22.2 ±0.74 | 0.57 ±0.06 | (21.0–23.0; 5) | 21.9 | 0.6 |
| Losers or satellites | 22.4 ±1.48 | 0.55 ±0.08 | (20.0–24.0; 7) | 21.8 | 0.6 |

Values of SVL and mass are expressed as mean ± SD (range; N). The males were captured, measured, and weighed in only one combat.
pond, the paired female jumped into the water and remained floating on the surface or resting on the emerging branches of the aquatic vegetation for approximately 5 min. Subsequently, the pair dived and remained submerged for up to 20 s before returning to the surface. These dives, during which oviposition occurred, were repeated four to six times, 5 h 30 min after sunset (range=4 h 45 min to 6 h 5 min; N=4). The male released the female while still in water, and the individuals rapidly moved to the edge of the ponds, hiding on the nearest vegetation clump (N=3).

Gravid females had a mean of 346 ± 33.5 ova in their ovaries (range=316–382; N=4), that were 0.82 mm in diameter (SD=0.07; range=0.74–0.93 mm; N=12). Ovules were black on the animal pole and beige on the vegetative pole. The egg mass was a single circular layer of eggs, whose coloration and diameter were similar to those of the ova. Eggs had two gelatinous capsules (not visible in the ovules). Eggs at stage 13 had a mean diameter of 0.98 ± 0.07 mm (range=0.86–1.08 mm; N=18). The inner gelatinous capsule had a mean diameter of 1.17 mm ± 0.04 (range=1.13–1.19 mm; N=6) while the outer capsule had a mean diameter of 2.65 ± 0.34 mm (range=2.22–3.33 mm; N=8). When submerged in water, the eggs remained with the animal pole upwards.

Four amplexed pairs were measured and weighed. Male body mass was 65.17% of the female body mass after egg-laying (SD=4.25; range=62.5–71.43%). Male SVL was 95.76% of the female SVL (SD=2.45; range=93.3–99.13%). The mass of ova represented 37.13% of the mass of the females after oviposition (SD=9.72; range=23.08–45.45%; N=4). A mean of 86.22% of the eggs were fertilized (SD=11.19; range=75.63–97.94%; N=3).

Discussion

Scinax fuscomarginatus at the EEI is a prolonged breeder (*sensu* Wells 1977a): individuals participated in an extended reproductive season that persisted for at least 3 months; males called to attract females; males did not actively search for females; males did not attempt to dislodge paired males; and males defended calling sites using acoustic and physical aggressive interactions.

The reproductive system of *S. fuscomarginatus* is here classified as lek, in concordance with the criteria proposed by Bradbury (1981). Such classification is based on that (1) there was no parental care; (2) males formed exhibition arenas around temporary ponds; (3) females moved around the arena having the opportunity for sexual selection, evaluating acoustic displays produced by males; and (4) the calling site did not grant any resource required by females, besides the male. Besides this, the lek system of reproductive choruses is proposed to occur in species that (1) have prolonged breeding patterns, in which females attend the choruses in an asynchronous manner, while males remain in reproductive activity (calling) during the whole reproductive season of the females; (2) have low operational sex ratios; and (3) males are incapable of controlling essential resources for females (Emlen and Oring 1977). The lek mating system seems to be widespread among hylids, since it has also been described for other species, such as *Hyla elegans* Wied-Neuwied, 1824, *H. minuta* Peters, 1872, *Scinax rizibilis*, and *S. ruber* (Bourne 1992; Haddad and Cardoso 1992; Bastos and Haddad 1996, 1999).

Adult males of *S. fuscomarginatus* defend calling sites during the breeding season. The escalated aggressive behaviour observed (see also Bastos and Haddad 1995, 2002; Martins and Haddad 1998) was sufficient for defending sites from intruding males, in most of cases without leading to physical interactions. The rarity of physical interactions observed in this
study may also be related to the abundant availability of calling sites, and low population density, at the studied ponds.

The lack of differences in body mass and SVL between dominant and satellite, winner and loser males, and the lack of differences in body mass between females and males may be related to the small sample size, and/or to the low precision of the scale used in the field. Males who won the territorial interactions were the resident males, a recurrent situation among hylids, probably because resident males are typically in better physical conditions when compared to the intruders (references in Bastos and Haddad 2001) or satellite males (Robertson 1986; Haddad 1991; Guimarães and Bastos 2003).

Satellite behaviour was rarely observed in this study, and female interception by satellite males was not observed. Therefore, satellite male behaviour in *S. fuscomarginatus* could be related to the dynamics of the chorus (Robertson 1986; Bevier 1997). For example, they could be waiting for the availability of calling sites, abandoned by dominant males (Wells 1977b). Alternatively, satellite males could be waiting for a change in the physical condition of dominant males, as there is considerable energetic costs in calling for consecutive days (Bevier 1997), promoting alternation of dominance at a calling site (Robertson 1986). However, these alternatives do not exclude the possibility of satellite males waiting to intercept females attracted by the dominant males.

Females had greater SVLs than males. This dimorphism could be related to greater fecundity associated with greater SVL (Crump 1974; Shine 1979) or could be related to different growth rates between the sexes (Halliday and Verrell 1988). The hypothesis of different mortality rates among the sexes (Shine 1979; Monnet and Cherry 2002) is unlikely because *S. fuscomarginatus* probably has an annual life cycle, since there were no recaptures from one reproductive season to the other (L. F. Toledo, unpublished data). Therefore, all individuals that attended the chorus should be same age, ca 1 year.

Pair formation behaviour was similar to other hylid species, because males did not wait for a female contact before the amplexus (Morris 1989; Bastos and Haddad 1996; Haddad and Sawaya 2000). This behaviour may be a strategy to avoid interception of the females by satellite or neighbouring males (Arnold 1976; Haddad 1991; Carvalho e Silva and Carvalho e Silva 1994). In many hylids, pairs that form above vegetation remain practically motionless for a few hours until they move down to the water for oviposition (e.g. Carvalho e Silva and Carvalho e Silva 1994; Bastos and Haddad 1996; present study). During this period, the female could be receiving a stimulus for oviposition (see Scarlata and Murphy 2003), such as the arhythmic compression of her flanks by the male (present study). This could also be another strategy to reduce the chances of pair interception and displacement of the amplexed male by waiting for surrounding males to stop calling activity and/or leave the neighbourhoods (Bastos and Haddad 1996; Bertoluci 1998).

Acknowledgements

Denis V. Andrade, Denise Rossa-Feres, Itamar Martins, Cynthia P. A. Prado, Stefan Lötters, and Peter J. Hayward made invaluable suggestions on previous versions of the manuscript. The authors are also grateful to the researchers of EEI for field assistance; Denise Zancheta for allowing access to the EEI; IBAMA (Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis) and IF (Instituto Florestal) for providing permits (licence no. 026/02—IBAMA/RAN, proc. no. 02001.002893/02-61 and autos no. 41.012/02—IF/COTEC letter 471/2002); IDEA WILD for equipment donation;
CNPq (proc. no. 130417/2003-3) for the Master’s scholarship, CNPq and FAPESP (proc. no. 01/13341-3) for funding the Herpetology laboratory.

References
Aichinger M. 1987. Annual activity patterns of anurans in a seasonal Neotropical environment. Oecologia 71:583–592.
Altig R, Johnston GF. 1986. Major characteristics of free-living anuran tadpoles. Smithsonian Herpetological Information Service 67:1–75.
Altmann J. 1974. Observational study of behavior: sampling methods. Behaviour 15:227–267.
Arak A. 1983. Male–male competition and mate choice in anuran amphibians. In: Bateson P, editor. Mate choice. Cambridge: Cambridge University Press. p 181–210.
Arnold SJ. 1976. Sexual behaviour, sexual interference and sexual defense in salamanders Ambystoma maculatum, A. tigrinum and Plethodon jordani. Zeitschrift für Tierpsychologie 42:247–300.
Bastos RP, Haddad CFB. 1995. Vocalizações e interações acústicas em Hyla elegans (Anura, Hylidae) durante atividade reprodutiva. Naturalia 20:165–176.
Bastos RP, Haddad CFB. 1996. Breeding activity of the neotropical treefrog Hyla elegans (Anura, Hylidae). Journal of Herpetology 30:355–360.
Bastos RP, Haddad CFB. 1999. Atividade reprodutiva de Scinax rizibilis (Bokermann) (Anura, Hylidae) na floresta Atlântica, sudeste do Brasil. Revista Brasileira de Zoológia 16:409–421.
Bastos RP, Haddad CFB. 2001. Larvas de Scinax rizibilis (Bokermann) (Anura, Hylidae): avaliando o efeito parental. Revista Brasileira de Zoológia 18:1127–1133.
Bastos RP, Haddad CFB. 2002. Acoustic and aggressive interactions in Scinax rizibilis (Anura: Hylidae) during the reproductive activity in southeastern Brazil. Amphibia-Reptilia 23:97–104.
Bastos RP, Motta JAO, Lima LP, Guimarães LD. 2003. Anfíbios da Floresta Nacional de Silvânia, Estado de Goiás. Golânia (Brazil): Stylo Gráfica e Editora.
Bernarde OS, Kokubum MNC. 1999. Anurofauna do Município de Guararapes, Estado de São Paulo, Brasil (Amphibia: Anura). Acta Biologica Leopoldensia 21:89–97.
Bernarde OS, Machado RA. 2001. Riqueza de espécies, ambientes de reprodução e temporada de vocalização da anurofauna em Três Barras do Paraná, Brasil (Amphibia: Anura). Cuadernos de Herpetología 14:93–104.
Bertoluci J. 1998. Annual patterns of breeding activity in Atlantic rainforest anurans. Journal of Herpetology 32:607–611.
Bevier CR. 1997. Breeding activity and chorus tenure of two Neotropical hylid frogs. Herpetologica 53:297–311.
Bourne GR. 1992. Lekking behavior in the Neotropical frog Oloolygon rubra. Behavioral Ecology and Sociobiology 31:173–180.
Bradbury JW. 1981. The evolution of leks. In: Alexander RD, Tinkle D, editors. Natural selection and social behavior. New York: Chiron Press. p 138–169.
Brenowitz EA, Rose GJ. 1999. Female choice and plasticity of male calling behaviour in the pacific treefrog. Animal Behaviour 57:1337–1342.
Cardoso AJ, Haddad CFB. 1984. Variabilidade acústica em diferentes populações e interações agressivas de Hyla minuta (Amphibia, Anura). Ciência e Cultura 36:1393–1399.
Carvalho e Silva SP, Carvalho e Silva AMPT. 1994. Descrição das larvas de Oloolygon albicans e de Oloolygon trapicheiroi com considerações sobre sua biologia (Amphibia, Anura, Hylidae). Revista Brasileira de Biologia 54:55–62.
Crump ML. 1974. Reproductive strategies in a tropical anuran community. Miscellaneous Publication of the Museum of Natural History of the University of Kansas 61:1–68.
Emlen ST, Oring LW. 1977. Ecology, sexual selection, and the evolution of mating systems. Science 197:215–223.
Freitas EFL, Spirandeli-Cruz EF, Jim J. 2002. Comportamento reprodutivo de Leptodactylus fuscus (Schneider, 1799) (Anura: Leptodactylidae). Comunicações do Museu de Ciências e Tecnologia da PUCRS, Série Zoológica 14:121–132.
Gosner KL. 1960. A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16:183–190.
Guimarães LD, Bastos RP. 2003. Vocalizações e interações acústicas em Hyla raniceps (Anura, Hylidae) durante a atividade reprodutiva. Iheringea, Série Zoológica 92:149–158.
Haddad CFB. 1991. Satellite behavior in the Neotropical treefrog Hyla minuta. Journal of Herpetology 25:226–229.
Reproductive biology of Scinax fuscomarginatus 3037

Haddad CFB, Cardoso AJ. 1992. Elección del macho por la hembra de Hyla minuta (Amphibia: Anura). Acta Zoologica Lilloana 41:81–91.
Haddad CFB, Pombal JP Jr, Gordo M. 1990. Foam nesting in a hylid frog (Amphibia, Anura). Journal of Herpetology 24:225–226.
Haddad CFB, Prado CPA. 2005. Reproductive modes in frogs and their unexpected diversity in the Atlantic Forest of Brazil. BioScience 55:207–217.
Haddad CFB, Sawaya RJ. 2000. Reproductive modes of Atlantic Forest hylid frogs: a general overview and the description of a new mode. Biotropica 32:862–871.
Halliday TR, Verrell PA. 1988. Body size and age in amphibians and reptiles. Journal of Herpetology 22:253–265.
Heyer RW, Rand AS, Cruz CAG, Peixoto OL, Nelson CE. 1990. Frogs of Boracéia. Arquivos de Zoologia 31:231–410.
Lehner PN. 1996. Handbook of ethological methods. Cambridge: Cambridge University Press.
Lutz B. 1973. Brazilian species of Hyla. Austin: University of Texas Press.
Martins M. 1988. Biologia reprodutiva de Leptodactylus fuscus em Boa Vista, Roraima (Amphibia: Anura). Revista Brasileira de Biologia 48:969–977.
Martins M. 1993. Observations on the reproductive behaviour of the Smith Frog, Hyla faber. Herpetological Journal 3:31–34.
Martins M. 2001) Ecologia dos cerrados de Itirapina [online]. http://eco.ib.usp.br/labvert/siteitirapina/iti.htm.
Monnet JM, Cherry MI. 2002. Sexual size dimorphism in anurans. Proceedings of the Royal Society of London B 269:2301–2307.
Morris MR. 1989. Female choice of large males in the treefrog Hyla chrysoscelis: the importance of identifying the scale of choice. Behavioral Ecology and Sociobiology 25:275–281.
Olson DH, Blaustein AR, O’Hara RK. 1986. Mating patterns variability among western toad (Bufo boreas) populations. Oecologia 70:351–356.
Pombal JP Jr. 1997. Distribuição espacial e temporal de anuros (Amphibia) em uma poça permanente na Serra de Paranapiacaba, sudeste do Brasil. Revista Brasileira de Biologia 57:583–594.
Prado CPA, Haddad CFB. 2003. Testes size in Leptodactylid frogs and occurrence of multimale spawning in the genus Leptodactylus. Journal of Herpetology 37:354–362.
Prado CPA, Uctanabar B, Lopes FS. 2000. Reproductive strategies of Leptodactylus chaquensis and L. podicipinus in the Pantanal, Brazil. Journal of Herpetology 34:135–139.
Robertson JGM. 1986. Male territoriality, fighting and assessment of fighting ability in the Australian frog, Uperoleia rugosa. Animal Behaviour 34:763–772.
Scarlata JK, Murphy CG. 2003. Timing of oviposition by female barking treefrogs (Hyla gratiosa). Journal of Herpetology 37:580–582.
Shine R. 1979. Sexual selection and sexual dimorphism in the Amphibia. Copeia 1979:297–306.
Toledo LF, Haddad CFB. 2003. Acoustic repertoire and calling site of Scinax fuscomarginatus (Anura, Hylidae). Journal of Herpetology 39:455–464.
Toledo LF, Zina J, Haddad CFB. 2003. Distribuição espacial e temporal de uma comunidade de anfibios anuros do Municipio de Rio Claro, Sao Paulo. Holos Environment 3:136–149.
Vizotto LD. 1967. Desenvolvimento de anuros da região noroeste do Estado de Sao Paulo [PhD thesis]. Sao Jose do Rio Preto (Brazil): Faculdade de Filosofia Ciencias e Letras de Sao Jose do Rio Preto.
Wagner WE, Sullivan B. 1992. Chorus organization in the gulf coast toad (Bufo valliceps): male and female behavior and the opportunity for sexual selection. Copeia 1992:647–658.
Waichman AV. 1992. An alphanumeric code for toe clipping amphibians and reptiles. Herpetological Review 23:19–21.
Wells KD. 1977a. The social behaviour of anuran amphibians. Animal Behaviour 25:666–693.
Wells KD. 1977b. Territoriality and male mating success in the green frog (Rana clamitans). Ecology 58:750–762.
Wells KD. 1978. Territoriality in the green frog (Rana clamitans): vocalizations and acoustic behavior. Animal Behaviour 26:1051–1063.
Wogel H, Abrunhosa PA, Pombal JP Jr. 2002. Atividade reprodutiva de Physalaemus signifer (Anura, Leptodactylidae) em ambiente temporário. Iheringea, Série Zoológica 92:57–70.
Zar JH. 1999. Biostatistical analysis. Upper Saddle River (NJ): Prentice Hall.