EXISTENCE AND UNIQUENESS OF SOLUTIONS TO NON-ABELIAN MULTIPLE VORTEX EQUATIONS ON GRAPHS

YUANYANG HU

ABSTRACT. Let \(G = (V, E) \) be a connected finite graph. We study a system of non-Abelian multiple vortex equations on \(G \). We establish a necessary and sufficient condition for the existence and uniqueness of solutions to the non-Abelian multiple vortex equations.

Mathematics Subject Classification (2010) 35A01, 35R02.
Key words: variational method, vortex, finite graph, equation on graphs

1. INTRODUCTION

Vortices play important roles in many areas of theoretical physics including condensed-matter physics, cosmology, superconductivity theory, optics, electroweak theory, and quantum Hall effect. In the past two decades, the topological, non-topological and doubly periodic multivortices to self-dual Chern-Simons model, Chern-Simons Higgs model, the generalized self-dual Chern-Simons model, Abelian Higgs model, the generalized Abelian Higgs model and non-Abelian Chern–Simons model were established; see, for example, [5, 10, 18, 22, 23, 24, 27] and the references therein. Wang and Yang [25] studied Bogomol'nyi system arising in the abelian Higgs theory defined on a rectangular domain and subject to a 't Hooft type periodic boundary condition and established a sufficient and necessary condition for the existence of multivortex solutions of the Bogomol’nyi system. Caffarelli and Yang [6] established the existence of periodic multivortices in the Chern–Simons Higgs Model. In particular, Lin and Yang [20] investigated a system of non-Ablian multiple vortex equations governing coupled \(SU(N) \) and \(U(1) \) gauge and Higgs fields which may be embedded in a supersymmetric field theory framework.

In recent years, equations on graphs have attracted extensive attention; see, for example, [3, 4, 7, 8, 11, 14, 15, 16, 17, 26] and the references therein. Ge, Hua and Jiang [9] proved that there exists a uniform lower bound for the energy, \(\sum_G e^u \) of any solution \(u \) to the equation \(\Delta u + e^u = 0 \) on graphs. Huang, Wang and Yang [14] studied the Mean field equation and the relativistic Abelian Chern-Simons equations (involving two Higgs particles and any two gauge fields) on any finite connected graphs and established some existence results. Huang, Lin and Yau [15] proved the existence of solutions to the following mean field equations

\[
\Delta u + e^u = \rho_0
\]

and

\[
\Delta u = \lambda e^u (e^u - 1) + 4\pi \sum_{j=1}^{M} \delta_{p_j}
\]

1 School of Mathematics and Statistics, Henan University, Kaifeng, Henan 475004, P. R. China.
Emails: yuanyhu@mail.ustc.edu.cn (Y. Hu).
on graphs.

Let $G = (V, E)$ be a connected finite graph, V denote the vertex set and E denote the edge set.

Inspired by the work of Huang-Lin-Yau [15], we investigate a system of non-Abelian multiple vortex equations

$$
\Delta u_1 = -N m_e^2 + m_e^2 \left(\frac{u_1}{N} + \frac{(N-1)}{N} u_2 + (N - 1) \frac{u_1}{N} \frac{u_2}{N} \right) + 4\pi \sum_{j=1}^{n} \delta_{p_j}(x),
$$

$$
\Delta u_2 = m_g^2 \left(\frac{u_1}{N} + \frac{(N-1)}{N} u_2 - \frac{u_1}{N} \frac{u_2}{N} \right) + 4\pi \sum_{j=1}^{n} \delta_{p_j}(x)
$$

on G, where n, N are positive integers, m_e, m_g are constants and δ_{p_j} is the dirac mass at vertex p_j.

Let $\mu : V \to (0, +\infty)$ be a finite measure, and $|V| = \text{Vol}(V) = \sum_{x \in V} \mu(x)$ be the volume of V.

We state our main result as follows.

Theorem 1.1. Equations (1.1) admits a unique solution if and only if

$$
|V| > \frac{4\pi n}{Nm_e^2} + \frac{4\pi n (N - 1)}{Nm_g^2}.
$$

The paper is organized as follows. In Section 2, we introduce preliminaries. Section 3 is devoted to the proof of Theorem 1.1.

2. Preliminary results

For each edge $xy \in E$, we suppose that its weight $w_{xy} > 0$ and that $w_{xy} = w_{yx}$. For any function $u : V \to \mathbb{R}$, the Laplacian of u is defined by

$$
\Delta u(x) = \frac{1}{\mu(x)} \sum_{y \sim x} w_{yx} (u(y) - u(x)),
$$

where $y \sim x$ means $xy \in E$. The gradient form of u is defined by

$$
\Gamma(u, v)(x) = \frac{1}{2\mu(x)} \sum_{y \sim x} w_{xy} (u(y) - u(x))(v(y) - v(x)).
$$

Denote the length of the gradient of u by

$$
|\nabla u(x)| = \sqrt{\Gamma(u, u)(x)} = \left(\frac{1}{2\mu(x)} \sum_{y \sim x} w_{xy} (u(y) - u(x))^2 \right)^{1/2}.
$$

We denote, for any function $u : V \to \mathbb{R}$, an integral of u on V by $\int_{V} u d\mu = \sum_{x \in V} \mu(x)u(x)$. For $p \geq 1$, denote $\|u\|_p := \left(\int_{V} |u|^p d\mu \right)^{1/p}$. As in [3], we define a sobolev space and a norm by

$$
W^{1,2}(V) = \left\{ u : V \to \mathbb{R} : \int_{V} \left(|\nabla u|^2 + u^2 \right) d\mu < +\infty \right\},
$$
and
\[\|u\|_{H^1(V)} = \|u\|_{W^{1,2}(V)} = \left(\int_V (|\nabla u|^2 + u^2) \, d\mu \right)^{1/2}. \]

The following Sobolev embedding and Poincaré inequality will be used later in the paper.

Lemma 2.1. (3 Lemma 5) Let \(G = (V, E) \) be a finite graph. The Sobolev space \(W^{1,2}(V) \) is precompact. Namely, if \(u_j \) is bounded in \(W^{1,2}(V) \), then there exists some \(u \in W^{1,2}(V) \) such that up to a subsequence, \(u_j \to u \) in \(W^{1,2}(V) \).

Lemma 2.2. (3 Lemma 6) Let \(G = (V, E) \) be a finite graph. For all functions \(u : V \to \mathbb{R} \) with \(\int_V u \, d\mu = 0 \), there exists some constant \(C \) depending only on \(G \) such that \(\int_V u^2 \, d\mu \leq C \int_V |\nabla u|^2 \, d\mu \).

3. The Proof of Theorem 1.1

Since \(\int_V -\frac{4\pi n}{|V|} + 4\pi \sum_{j} \delta_{x_j}(x) \, d\mu = 0 \), the equation
\[\Delta u_0 = -\frac{4\pi n}{|V|} + 4\pi \sum_{j} \delta_{x_j}(x), \quad x \in V; \quad u_0 \leq 0 \tag{3.1} \]
admits a solution \(u_0 \). Let \(v_1 = u_1 - u_0, v_2 = u_2 - u_0 \). Then we know \((v_1, v_2) \) satisfies
\[\Delta v_1 = -Nm_e^2 + \frac{4\pi n}{|V|} + m_e^2 \left(e^{u_0 + \frac{v_1}{m} + \frac{(N-1)}{m}v_2} + [N-1]e^{\frac{v_1}{m} - \frac{v_2}{m}} \right), \]
\[\Delta v_2 = \frac{4\pi n}{|V|} + m_g^2 \left(e^{u_0 + \frac{v_1}{m} + \frac{(N-1)}{m}v_2} - e^{\frac{v_1}{m} - \frac{v_2}{m}} \right). \tag{3.2} \]

Define the energy functional
\[J(v_1, v_2) = \int_V \left\{ \frac{1}{2m_e^2} \Gamma(v_1, v_1) + \frac{(N-1)}{2m_g^2} \Gamma(v_2, v_2) + Ne^{u_0 + \frac{v_1}{m} + \frac{(N-1)}{m}v_2} + N(N-1)e^{\frac{v_1}{m} - \frac{v_2}{m}} \right\} \, d\mu. \tag{3.3} \]

We give a necessary condition for the existence of solutions to (1.1) by the following lemma.

Lemma 3.1. If (1.1) admits a solution, then
\[N|V| > \frac{4\pi n}{m_e^2} + \frac{4\pi n(N-1)}{m_g^2}. \tag{3.4} \]

Proof. Integrating (3.2), we deduce that
\[\int_V \left(e^{u_0 + \frac{v_1}{m} + \frac{(N-1)}{m}v_2} + [N-1]e^{\frac{v_1}{m} - \frac{v_2}{m}} \right) \, d\mu = N|V| - \frac{4\pi n}{m_e^2}, \]
\[\int_V \left(e^{u_0 + \frac{v_1}{m} + \frac{(N-1)}{m}v_2} - e^{\frac{v_1}{m} - \frac{v_2}{m}} \right) \, d\mu = -\frac{4\pi n}{m_g^2}, \tag{3.5} \]
which is equivalent to
\[
N \int_V e^{\frac{v_0 + N}{N} + \frac{(N-1)}{N} v_2} \, d\mu = N |V| - \frac{4\pi n}{m_e^2} - \frac{4\pi n (N-1)}{m_h^2},
\]
\[
N \int_V e^{\frac{\frac{1}{N}}{N} + \frac{w}{N}} \, d\mu = \left(|V| - \frac{4\pi n}{m_e^2} \right) + \frac{4\pi n}{m_h^2}.
\]

Then the desired conclusion follows.

We now complete the proof. \(\square\)

Next, we give a priori bounds for a solution to (1.1).

Lemma 3.2. Suppose that \((v, w)\) is a solution of (1.1). Then we have \(v < 0, w < 0\) and \(v - w < \frac{N}{N-1}\).

Proof. Let \(M := \max_{x \in V} w = w(x_0)\). We claim that \(M < 0\). Otherwise, \(w(x_0) \geq 0\). Thus, we have
\[
\Delta w(x_0) = m_g^2 \left(e^{\frac{N}{N} w} - e^{\frac{N}{N} w} \right) + 4\pi \sum_{j=1}^{n} \delta_{p_j}(x) \mid_{x=x_0} > 0.
\]

On the other hand, by (2.1), we obtain
\[
\Delta w(x_0) \leq 0.
\]
This is impossible. Thus, we have
\[
w(x) < 0
\]
for all \(x \in V\).

Next, we show that \(M_1 := \max_{x \in V} v = v(x_1) < 0\). Suppose by way of contradiction that \(M_1 \geq 0\). Let
\[
F(t) := e^{\frac{N-1}{N} t} + (N-1) e^{-\frac{t}{N}}.
\]
Then it is easy to check that
\[
F'(t) := \frac{N-1}{N} e^{-\frac{t}{N}} (e^t - 1).
\]
Thus we have
\[
F(t) > F(0) = N, \ t < 0.
\]
It follows that
\[
e^{\frac{N-1}{N} t} + (N-1) e^{-\frac{t}{N}} > N, \ t < 0.
\]
Thus, we have
\[
\Delta v(x_1) = -Nm_e^2 + m_e^2 (e^{\frac{N}{N} w} + (N-1) e^{\frac{N}{N} w}) + 4\pi \sum_{j=1}^{n} \delta_{p_j}(x) > 0.
\]
By (2.1), we see that \(0 \geq \Delta v(x_1)\), this a contradiction. Thus we obtain \(v < 0\) for all \(x \in V\).
Now, we show that $M_3 := \max_{x \in V} (v - w) = (v - w)(y_0) < N \ln \frac{N}{N - 1}$. Assume the assertion is false, then we deduce that

$$\Delta \left(\frac{v}{N} - \frac{w}{N} \right)(y_0) = \left(\frac{m_e^2 - m_g^2}{N} \right) e^{N-1} w + \left(\frac{N - 1}{N} m_e^2 + \frac{m_g^2}{N} \right) e^{N-1} - m_e^2 \bigg|_{y=y_0}$$

$$> \frac{N - 1}{N} m_e^2 e^{N-1} w - m_e^2 \bigg|_{y=y_0}$$

$$\geq 0. \quad (3.10)$$

By (2.1), we have

$$0 \geq \Delta \left(\frac{v}{N} - \frac{w}{N} \right)(y_0). \quad (3.11)$$

This is impossible. Thus we have

$$v - w < N \ln \frac{N}{N - 1} \leq \frac{N}{N - 1} \tag{3.12}$$

for all $x \in V$. □

Let $\lambda_1 = m_e^2$, $\lambda_2 = m_g^2$, $v = v_1$ and $w = v_2$ in (3.2). Then we have

$$\Delta v = \lambda_1 \left(e^{u_0} e^{w} \frac{N-1}{N} w + (N - 1) e^{w} - N \right) + \frac{4\pi n}{|V|}, \quad (3.13)$$

$$\Delta w = \lambda_2 \left(e^{u_0} e^{w} \frac{N-1}{N} w - e^{w} \right) + \frac{4\pi n}{|V|}. \quad (3.14)$$

In order to prove Lemma 3.4, we need the following lemma.

Lemma 3.3. Suppose that u satisfies $\Delta u = f$ and $\int_V u d\mu = 0$. Then we there exists $\hat{C} > 0$ such that

$$\max_{x \in V} |u(x)| \leq \hat{C} ||f||_{L^2(V)}. \tag{3.19}$$

Proof. From $\Delta u = f$, we deduce that

$$\int_V \Gamma(u, u) d\mu = -\int_{x \in V} f u d\mu. \quad (3.15)$$

By Cauchy inequality with $\epsilon (\epsilon > 0)$ and Lemma 2.2, there exists $C > 0$ such that

$$\int_V \Gamma(u, u) d\mu \leq \frac{1}{4\epsilon} \int_V f^2 d\mu + \epsilon C \int_V \Gamma(u, u) d\mu. \tag{3.16}$$

Taking $\epsilon = \frac{1}{2\hat{C}}$ in (3.16), we have

$$\int_V \Gamma(u, u) d\mu \leq C \int_V f^2 d\mu. \quad (3.17)$$

Applying Lemma 2.2, we know that

$$||u||_{L^2(V)} \leq C ||f||_{L^2(V)}. \tag{3.18}$$

Then we deduce that there exists constant $\bar{C} > 0$ such that

$$|u(x)| \leq \bar{C} ||f||_{L^2(V)} \tag{3.19}$$
for all \(x \in V \).

We now complete the proof. \(\square \)

To show that Theorem 1.1, we need the following Lemma.

Lemma 3.4. Let \(\lambda_1 = m_2^+ \) and \(\lambda_2 = m_2^- \). Set \(\{(v_k, w_k)\} \) be a sequence of solutions to equations (3.13) - (3.14) with \(\lambda_1 = \lambda_{1,k} \) and \(\lambda_2 = \lambda_{2,k} \). Assume that \(\lambda_{1,k} \to \lambda_1, \lambda_{2,k} \to \lambda_2 \) and

\[
\sup \{|v_k(x)| + |w_k(x)| \mid x \in V\} \to \infty \quad (3.20)
\]

as \(k \to +\infty \). Then \(\lambda_1 \) and \(\lambda_2 \) satisfy

\[
|V| = \frac{4\pi n}{N\lambda_1} + \frac{4\pi n(N - 1)}{N\lambda_2}. \quad (3.21)
\]

Proof. Denote

\[
\Delta v_k = \lambda_{1,k} \left(e^{u_0} e^{\frac{N-1}{N} w_k(x)} + (N-1)e^{\frac{w_k-w_k}{N}} - N \right) + \frac{4\pi n}{|V|} := f_k,
\]

\[
\Delta w_k = \lambda_{2,k} \left(e^{u_0} e^{\frac{w_k-w_k}{N}} - e^{\frac{w_k-w_k}{N}} \right) + \frac{4\pi n}{|V|} := g_k.
\]

Denote \(\bar{v}_k := \int_V v_kd\mu \) and \(\bar{w}_k := \int_V w_kd\mu \). Since \(\int_V v_k - \bar{v}_k = 0 \), by Lemma 3.3 and Lemma 3.2 we deduce that there exists \(C_N > 0 \) so that

\[
\max_V (|v_k - \bar{v}_k|) \leq C_1 ||f_k||_{L^2(V)} \leq C_N \quad (3.24)
\]

and

\[
\max_V (|w_k - \bar{w}_k|) \leq C_2 ||g_k||_{L^2(V)} \leq C_N. \quad (3.25)
\]

Suppose \(\sup_V \{|v_k(x)| \mid x \in V\} \to \infty \). Since \(v_k + u_0 < 0 \), we deduce that

\[
\bar{v}_k \leq -\int_V u_0d\mu.
\]

From (3.24), we deduce that \(v_k(x) \to -\infty \) and \(\bar{v}_k \to -\infty \) uniformly on \(V \) as \(k \to +\infty \). From Lemma 3.2, we see that

\[
\bar{v}_k - \bar{w}_k \leq \frac{N}{N - 1} |V|.
\]

Suppose that

\[
\liminf_{k \to \infty} (\bar{v}_k - \bar{w}_k) = -\infty.
\]

Subject to passing a subsequence, we have

\[
\lim_{k \to \infty} (\bar{v}_k - \bar{w}_k) = -\infty.
\]

From (3.24) and (3.25), we deduce that

\[
v_k(x) - w_k(x) \to -\infty \text{ uniformly on } V \text{ as } k \to +\infty.
\]

It follows that \(f_k \to -N\lambda_1 + \frac{4\pi n}{|V|} \). It follows from (3.24) that, by passing to a subsequence, \(v_k - \bar{v}_k \to v \) (say). Letting \(k \to +\infty \) in \(\Delta(v_k - \bar{v}_k) = f_k \). Then we have \(\Delta v = -N\lambda_1 + \frac{4\pi n}{|V|} \) on \(V \). This implies that

\[
N\lambda_1 |V| = 4\pi n.
\]
By Lemma 3.1 we deduce that
\[N|V| > \frac{4\pi n}{\lambda_{1,k}} + \frac{4\pi (N-1)n}{\lambda_{2,k}}, \]
and hence that \(|V| > \frac{4\pi n}{\lambda_{1,N}} \). This is impossible. Thus \(\{\bar{v}_k - \bar{w}_k\} \) is bounded. Therefore, \(\bar{w}_k \to -\infty \) as \(k \to \infty \). By (3.25), we see that
\[v_k \to -\infty \quad \text{as} \quad k \to \infty. \]

By passing to a subsequence, we have
\[v_k - \bar{v}_k \to v, \quad w_k - \bar{w}_k \to W \]
uniformly for \(x \in V \) as \(k \to \infty \). Thus, we deduce that
\[\Delta v = \lambda_1 \left((N-1)e^{\frac{v-w+\sigma}{n}} - N \right) + \frac{4\pi n}{|V|}, \]
\[\Delta W = \frac{4\pi n}{|V|} - \frac{\lambda_2 e^{\frac{v-w+\sigma}{n}}}{N}, \]
and hence that
\[\int_V e^{\frac{v-w+\sigma}{n}} d\mu = \frac{N|V|}{N-1} - \frac{4\pi n}{\lambda_1 (N-1)}, \]
\[\int_V e^{\frac{v-w+\sigma}{n}} d\mu = \frac{4\pi n}{\lambda_2}. \]
Therefore, we conclude that
\[|V| = \frac{4\pi n}{N\lambda_1} + \frac{4\pi (N-1)n}{N\lambda_2}. \]

We now complete the proof.

We will give the proof of Theorem 1.1 by applying Lemma 3.4 and the following Lemma.

Lemma 3.5. Assume that \(\lambda_1 = \lambda_2 \). Then equations (3.13) - (3.14) admits a unique solution if and only if \(|V| > \frac{4\pi n}{\lambda_1} \).

Proof. Suppose \((v, w)\) is a solution to equations (3.13) - (3.14). Due to \(\lambda_1 = \lambda_2 > 0 \), by mean value Theorem, we deduce that there exists \(\xi \) such that
\[\Delta (v - w) = \lambda_1 e^\xi (v - w). \]
Let \(M := \max_V (v - w) = (v - w)(x_0) \). We claim that \(M \leq 0 \). Otherwise, \(M > 0 \). Then
\[\Delta (v - w)(x_0) = \lambda_1 e^\xi (v - w) \bigg|_{x=x_0} > 0. \]
By (2.1), we see that
\[0 \geq \Delta (v - w)(x_0). \]
This is a contradiction. Thus we have \(v \leq w \) on \(V \). By a similar argument as above, we deduce that \(v \geq w \) on \(V \). Therefore, we conclude that \(v \equiv w \) on \(V \). Thus, \(v \) satisfies
\[\Delta v = \lambda_1 (e^{w_0 + v} - 1) + \frac{4\pi n}{|V|}. \]
It follows from [12] that (3.32) admits a unique solution if and only if \(|V| > \frac{4\pi n}{\lambda_1} \).
Proof of Theorem 1.1. Define
\[\bar{H}^1(V) := \{ u \in H^1(V) | \bar{u} := \int_V u d\mu = 0 \} \]
and \(X := \bar{H}^1(V) \times \bar{H}^1(V) \). Let
\[
\begin{align*}
\int_V f(x, v(x) + a, w(x) + b)dx &= 0, \\
\int_V g(x, v(x) + a, w(x) + b)dx &= 0,
\end{align*}
\]
where
\[
\begin{align*}
f(x, v, w) &= \lambda_1 \left(e^{u_0(x)} e^{\frac{N-1}{N}w} + (N-1) e^{\frac{v-w}{N}} - N \right) + \frac{4\pi n}{|V|}, \\
g(x, v, w) &= \lambda_2 \left(e^{u_0(x)} e^{\frac{N-1}{N}w} - e^{\frac{v-w}{N}} \right) + \frac{4\pi n}{|V|}.
\end{align*}
\]
Denote \(A = \int_V e^{u_0 + \frac{N-1}{N}w} d\mu \), \(B = \int_V e^{\frac{v-w}{N}} d\mu \) and \(C = -\frac{N|V|}{4\pi n} \lambda_2 + \frac{\lambda_2}{\lambda_1} \). Then there exists a unique pair
\[
\begin{align*}
b &= b(v, w) = \ln \frac{BC + (N-1)B}{A(C-1)}, \\
a &= a(v, w) = \frac{1}{N} \ln \frac{BC + (N-1)B}{A(C-1)} + \ln \left(\frac{\lambda_1 N|V| - 4\pi n}{\frac{BC+(N-1)B}{A(C-1)}A + (N-1)B} \right) \lambda_1
\end{align*}
\]
such that
\[
\begin{align*}
\int_\Omega f(x, v(x) + a, w(x) + b)dx &= 0, \\
\int_\Omega g(x, v(x) + a, w(x) + b)dx &= 0.
\end{align*}
\]
For any \((v, w) \in X \), define
\[(Q, W) := T(v, w) \in X, \]
where \((Q, W) \in X \) is the unique solution to the equations
\[
\begin{align*}
\Delta Q &= f(x, v + a, w + b), \\
\Delta W &= g(x, v + a, w + b).
\end{align*}
\]
By a similar argument as Lemma 3.3, we know that \(T \) is completely continuous. Furthermore, by Lemma 3.4 there exists \(M > 0 \) such that
\[
\|Q\|_{H^1(V)} + \|W\|_{H^1(V)} \leq M. \tag{3.35}
\]
Thus, we may define the Leray-Schauder degree \(d(\lambda_1, \lambda_2) \) for \(T \). From Lemma 3.5 there exists a sufficiently large \(\lambda_0 > 0 \) so that \(d(\lambda_0, \lambda_0) = 1 \). In view of
\[
\left\{ (\lambda_1, \lambda_2) \middle| \frac{4\pi n}{N\lambda_1} + \frac{4\pi n(N-1)}{N\lambda_2} \right\}
\]
is path-connected. We see that \(d(\lambda_1, \lambda_2) = d(\lambda_0, \lambda_0) = 1 \). Therefore, \((3.13)-(3.14)\) admits at least one solution. It is easy to check that \(J \) defined by \((3.3)\) is convex in \(H^1(V) \). Thus the solution of \((1.1)\) is unique.

We now complete the proof. □

REFERENCES

[1] Abrikosov A A. On the magnetic properties of superconductors of the second group Sov Phys JETP 1957, 5: 1174–1182.

[2] Bogomol’nyi E B. The stability of classical solutions. Soviet J Nuclear Phys, 1976, 24(4): 449-454.

[3] Grigor’yan A, Lin Y, Yang Y Y. Kazdan–Warner equation on graph. Calculus of Variations and Partial Differential Equations, 2016, 55: 1-13.

[4] Bazeia D, da Hora E, dos Santos C, Menezes R. Generalized self-dual Chern–Simons vortices. Phys Rev D 81, 2010, 125014.

[5] Chae D, Imanuvilov O Y. Non-topological solutions in the generalized self-dual Chern- Simons-Higgs theory. Calc Var Partial Differential Equations, 2003, 16(1): 47-61.

[6] Caffarelli L, Yang Y. Vortex condensation in the Chern–Simons Higgs model: an existence theorem. Comm Math Phys, 1995, 168: 321–336.

[7] Ge H. Kazdan–Warner equation on graph in the negative case. Journal of Mathematical Analysis and Applications, 2017, 453: 1022-1027.

[8] Ge H. The pth Kazdan–Warner equation on graphs. Communications in Contemporary Mathematics, 2020, 22(06): 1950052.

[9] Ge H, Hua B, Jiang W. A note on Liouville type equations on graphs. Proceedings of the American Mathematical Society, 2018, 146(11): 4837-4842.

[10] Han X. The Existence of Multi-vortices for a Generalized Self-dual Chern-Simons Model. Nonlinearity, 2013, 26(3): 805-835.

[11] Hu Y. Existence of solutions to a generalized self-dual Chern-Simons equation on finite graphs. arXiv:2202.02525v1 (2022).

[12] Hu Y. Existence and uniqueness of solutions to the Bogomol’nyi equation on graphs. arXiv: 2202.05039 (2022).

[13] Hu Y. Existence and uniqueness of solutions to Bogomol’nyi-Prased-Sommerfeld equations on graphs. arXiv: 2202.09546 (2022).

[14] Huang H Y, Wang J, Yang W. Mean field equation and relativistic Abelian Chern-Simons model on finite graphs. Journal of Functional Analysis, 2021, 281(10): 109218.

[15] Huang A, Lin Y, Yau S T. Existence of Solutions to Mean Field Equations on Graphs. Communications in Mathematical Physics, 2019, 377(1): 613-621.

[16] Liu Z, Chen J, Tian C. Blow-up in a network mutualistic model. Appl Math Lett, 2020, 106: 106402.

[17] Lü Y, Zhong P. Existence of solutions to a generalized self-dual Chern-Simons equation on graphs. arXiv:2107.12535 (2021).

[18] Lin C S, Ponce A C, Yang Y. A system of elliptic equations arising in Chern–Simons field theory. J Funct Anal, 2007, 247: 289–350.

[19] Lin Y, Wu Y. Blow-up problems for nonlinear parabolic equations on locally finite graphs. Acta Mathematica Scientia, 2018, 38(3) : 843-856.

[20] Lin C, Yang Y. Non-Abelian multiple vortices in supersymmetric field theory. Communications in mathematical physics, 2011, 304(2): 433-457.

[21] Nielsen H B, Olesen P. Vortex line models for dual strings. Nuclear Phys B, 1973, 61:45–61.

[22] Nolasco M, Tarantello G. Vortex condensates for the SU(3) Chern–Simons theory. Commun Math Phys, 2000, 201: 599–639.

[23] Tarantello G. Multiple condensate solutions for the Chern–Simons–Higgs theory. J Math Phys, 1996, 37(8): 3769–3796.

[24] Tchrakian D H, Yang Y. The existence of generalised self-dual Chern-Simons vortices. Lett Math Phys, 1996, 36(4): 403-413.

[25] Wang S, Yang Y. Abrikosov’s vortices in the critical coupling. Siam Journal on Mathematical Analysis, 1992, 23(5): 1125-1140
[26] Wu Y. On nonexistence of global solutions for a semilinear heat equation on graphs. Nonlinear Analysis, 2018, 171: 73-84.

[27] Yang Y. Chern-Simons solitons and a nonlinear elliptic equation. Helv Phys Acta, 1998, 71(5): 573-585.