Mikako Inokuchi, Nobutake Matsuo, John I Takayama and Tomonobu Hasegawa*

Population-based waist circumference reference values in Japanese children (0–6 years): comparisons with Dutch, Swedish and Turkish preschool children

https://doi.org/10.1515/jpem-2020-0418
Received July 13, 2020; accepted November 12, 2020; published online December 18, 2020

Abstract

Background: During 1978–1981 the Japanese Standards Association conducted a national survey to collect 64 distinct body measurements for Japanese children and adults. During 1978–1981, the prevalence of childhood obesity was relatively low yet the population was well nourished in Japanese children. The aim of this study is to construct waist circumference and waist circumference to stature ratio reference centile curves for Japanese preschool children.

Methods: We utilized 1978–1981 national survey data on body sizes. There are 4937 boys and 4758 girls age 0–6 years for waist circumference measurements. Waist circumference was measured at the level of the umbilicus. Using LMS method, centile curves were constructed for waist circumference and waist circumference to stature ratio. These reference values were compared with those of Dutch, Swedish and Turkish children.

Results: Centile reference curves were made for clinical and epidemiological use. Japanese children had smaller waist circumference centile values as compared to waist circumference measured at the midpoint of the lowest rib cage and the iliac crest of Dutch, Swedish and Turkish children. However, Japanese children had comparable waist circumference to stature ratio centile values to those of Dutch and Turkish children.

Conclusions: This study presents the first age-, sex-, and ethnicity-specific reference values for waist circumference and waist circumference to stature ratio in Japanese preschool children.

Keywords: body proportion; growth curves; Japanese Standards Association; LMS method; nationally representative data.

Introduction

Various measurements are used to define and calculate overweight and obesity in children. The body mass index (BMI) is the most widely used tool to assess overweight and obesity. However, this index has limitations when used in children. BMI correlates not only with fat mass but also with fat-free mass; while it has high specificity, it has low sensitivity [1]. Finally, BMI provides no indication of body fat distribution and obesity-related morbidity is more strongly attributed to abdominal obesity rather than general obesity in children [2, 3].

Waist circumference (WC) has been shown to be a highly sensitive and specific marker of abdominal fat accumulation in children. While it cannot distinguish between subcutaneous and visceral fat [4], WC may be a better indicator of obesity-related disease risk. Children who are younger than 6 years have been excluded when metabolic syndrome was defined because of insufficient data for this age-group. We, therefore, tried to establish WC reference centile curves for Japanese children (0–6 years of age). The International Diabetes Federation (IDF) proposed to use the 90th centile as a cut-off for WC [5].

The Japanese Standards Association 1978–1981 survey of body segments offers a unique opportunity to utilize high quality nationally representative data in Japanese children [6]. We have previously proposed the 1978–1981 population as baseline year of references for BMI, since either undernutrition in poverty or unhealthy dieting in affluent society was relatively rare in 1978–1981, as supported by several national surveys on nutrition and youth behavior [7]. If we set forth cut-offs of BMI >95th centile of

*Corresponding author: Tomonobu Hasegawa professor, Department of Pediatrics, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan, Phone: +81) 3 3353 1211, ext 62365, Fax: +81) 3 5379 1978, E-mail: thaseg@keio.jp
Mikako Inokuchi, Health Center, Keio University, Tokyo, Japan; and Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
Nobutake Matsuo, Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan; The Institute for Healthcare Quality Improvement, Tokyo Healthcare Foundation, Tokyo, Japan; and National Center for Child Health and Development, Tokyo, Japan
John I Takayama, Department of Pediatrics, University of California San Francisco School of Medicine, San Francisco, USA

Open Access. © 2020 Mikako Inokuchi et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International License.
the 1978–1981 reference population as a measure of overweight, this implies that the prevalence of overweight is 5% by definition in the 1978–1981 survey population, and is 11.0% in boys and 8.5% in girls, respectively, in the 1992–1994 population [8]. From 1978–1981 and 1992–1994 Japanese Standards Association and Research Institute of Human Engineering for Quality Life, as sponsored by Ministry of International Trade and Industry, conducted nationally representative survey on various anthropometric measurements of Japanese children and adults. For the third time, the 2004–2006 national survey was performed only for adults, allegedly due to budgetary limitations. WC was measured in children in the 1978–1981 and 1992–1994 surveys. Comparison between the 1978–1981 and 1992–1994 WC charts showed a large increase in WC over time.

There is no standardized method of measurement for WC; and several different methods of measurement are currently in use, leading to potential confusion. There are four commonly recommended WC measurement sites along the body and all sites were not equivalently associated with metabolic risk [9]. However, Harrington et al. concluded that WC measurement site did not affect relationships with visceral adiposity and cardiometabolic risk factors in children [10]. Measurement at the umbilical level was adopted in this study, since the measurements were primarily for garments under 0–6 year olds. The previous studies (study subjects 6–18 years old) [11, 12] and present study (study subjects 0–6 years old) were combined to complete national reference values of WC and waist circumference to stature ratio (WC/S), making successive data tracking feasible. The measurement sites of WC (6–18 years of age) were different between sexes: for boys, WC was measured at the level of the top of the iliac crest (waist circumference 2: WC2); and for girls, WC was measured at the level of maximum waist narrowing (waist circumference 1: WC1).

There are only limited data on WC in infants and preschoolers covering 0–6 years of age. Those include Dutch, Swedish and Turkish studies performed in 1996–1997, 2006, and 2009–2010, respectively [13–15]. For Dutch, Swedish and Turkish infants and preschoolers, WC was measured at the midpoint of the lowest rib cage and the iliac crest (waist circumference 3: WC3). Although the WC measurement sites differ among investigators, each reflects abdominal fat accumulation well [10].

Subjects and methods

We conducted a secondary analysis of previously collected nationally representative data by the Japanese Standards Association from 1978–1981 as sponsored by the Japanese Ministry of International Trade and Industry [6]. The analyses were based on WC and waist circumference to stature ratio (WC/S) for 4937 boys and 4758 girls, 0–6 years of age; measurements were conducted by trained personnel. Stature was measured to the nearest 0.1 cm. WC was measured, using a tape measure placed around the waist at the level of the umbilicus (waist circumference measured at the level of the umbilicus: WCu). During the measurement, 0–1 year olds were placed in the supine position and 2–7 year olds in the standing position. Holding a subject in arms would give erroneously large value of WC, therefore, this was carefully avoided.

Reference centile curves for WCu and WCu/S were constructed using the LMS method [16–18]. The LMS method summarizes the centiles by three smooth curves representing skewness (L curve), the median (M curve) and coefficient of variation (S curve). This assumes that the distribution of the measurements, as summarized by the median, coefficient of variation (CV) and degree of skewness, changes smoothly with age. The LMS transformation equation is:

$$X = M (1 + LSZ)^{1/L}$$

where X is the physical measurement and Z is the z-score that corresponds to the centile.

This study constructed the WCu and WCu/S reference curves for younger children (0–6 years of age) along with WC (boys, WC2; girls, WC1) and WC/S (boys, WC2/S; girls, WC1/S) reference curves for older children (6–18 years of age) [11,12]. Data of each subject was obtained from the same nationally representative survey by the Japanese Standards Association in 1978–1981. WC and WC/S reference data of children (6–18 years of age) were calculated from L, M and S values reported in each reference paper [11, 12].

The WCu and WCu/S reference data of Japanese younger children (0–6 years of age) were compared with the WC3 and WC3/S reference data of Dutch, Swedish and Turkish infants and preschoolers [13–15]. The 50th centile values of WC3/S for Dutch preschool children were calculated from 0 standard deviation (SD) values of WC3 reference/mean values of stature [13, 19]. The 50th centile values of WC3/S for Swedish preschool children were the median values of WC3/S reported in the reference paper [14]. The 50th centile values of WC3/S for Turkish preschool children were calculated from 50th centile values of WC3 reference/50th centile values of stature reference [15, 20].

The Institutional Review Board of Keio University School of Medicine approved the study.

Results

Table 1 shows number of subjects, mean and SD for WCu and WCu/S. Since the number of subjects under 0.25 years
of age and over 6.25 years of age were less than 50 in both sexes, we excluded these age groups and final data used is based on measurements for 4855 boys and 4688 girls.

Table 2 shows the Box-Cox power L, the adjusted mean M, the coefficient variation S values for WCu and WCu/S by age range and sex for Japanese preschool children. Figure 1 shows WCu-for-age, 0–6 years of age, and WC-for-age, 6–18 years of age [11], the 3rd, 10th, 25th, 50th, 75th, 90th, and 97th centile curves. Figure 2 shows WCu/S-for-age, 0–6 years of age, and WC/S-for-age, 6–18 years of age [12], the 3rd, 10th, 25th, 50th, 75th, 90th, and 97th centile curves. The reference curves of WCu-for-age and WCu/S-for-age were similar in boys and girls aged 0–6 years of age. There were apparent differences between WCu and WC1, and between WCu/S and WC1/S at age 6 years in girls, with WCu and WCu/S being significantly greater than WC1 and WC1/S, respectively. These combined national reference values of WC and WC/S make successive data tracking feasible.

Figure 3 presents WCu 50th centile curve for Japanese preschool children in comparison with WC3 50th centile curves for Dutch, Swedish and Turkish preschool children. Japanese preschool children had smaller WCu centile values as compared to WC3 of Dutch, Swedish and Turkish preschool children. Figure 4 presents WCu/S 50th centile curve for Japanese preschool children in comparison with WC3/S 50th centile curves for Dutch, Swedish and Turkish preschool children. Japanese preschool children had comparable WCu/S centile values to WC3/S of Dutch and Turkish preschool children.

Discussion

1978–1981 as baseline year

This study presents the first centile reference curves for WCu and WCu/S for Japanese children 0–6 years of age, based on the 1978–1981 national survey data. Using the same 1978–1981 survey data, we previously determined the centile reference curves for BMI in Japanese children 2–18 years of age [21, 22] and for WC and WC/S in Japanese children 6–18 years of age [11, 12].

Thus, 1978–1981 is a critical period for anthropometric data of Japanese children: The 1978–1981 survey generated 64 distinct body measurements and proportions which could be used for possible future studies [6]. The BMI centile reference curves were prepared using 1978–1981 data as baseline values to assess population trend in weight. During 1978–1981, the prevalence of childhood obesity was relatively low yet the population was well nourished [21, 22].

According to the National Growth Survey on Preschool Children, the mean stature and the mean weight remained stable from 1980–2010 [23]. Comparing BMI between the 1978–1981 reference value [21, 22] and the 2000 reference value [24, 25] for school-age children, the 2000 reference values were much larger than the 1978–1981 reference values; however, for preschool-age children, the 2000 reference values were the same as or slightly smaller than the 1978–1981 reference values [26]. Therefore, we believe that the 1978–1981 reference data is usable and
Table 2: L, M, S values for WCu and WCu/S for Japanese preschool children (0–6 years).

Age, years	Boys WCu	Girls WCu	Boys WCu/S	Girls WCu/S
	L M S	L M S	L M S	L M S
0.25	-0.76 40.7 0.065	-1.14 39.8 0.062	1.68 0.65 0.059	-0.75 0.65 0.062
0.50	-0.76 41.4 0.063	-0.93 40.6 0.061	0.76 0.62 0.061	-0.56 0.62 0.062
0.75	-0.76 42.3 0.061	-0.70 41.2 0.059	0.21 0.59 0.060	-0.40 0.59 0.060
1.00	-0.78 43.1 0.059	-0.47 42.0 0.058	0.00 0.58 0.059	-0.32 0.57 0.057
1.25	-0.84 44.0 0.058	-0.27 43.3 0.057	-0.06 0.56 0.057	-0.29 0.57 0.056
1.50	-0.92 44.9 0.056	-0.18 44.6 0.056	-0.08 0.56 0.056	-0.29 0.56 0.055
1.75	-1.02 45.6 0.055	-0.20 45.4 0.056	-0.09 0.55 0.055	-0.30 0.56 0.054
2.0	-1.13 46.3 0.054	-0.30 46.0 0.056	-0.10 0.55 0.054	-0.33 0.55 0.054
2.5	-1.35 47.1 0.053	-0.62 46.9 0.057	-0.16 0.53 0.051	-0.47 0.53 0.054
3.0	-1.54 47.7 0.052	-0.97 47.5 0.058	-0.31 0.51 0.050	-0.75 0.52 0.054
3.5	-1.71 48.1 0.053	-1.37 48.2 0.059	-0.55 0.50 0.050	-1.04 0.50 0.055
4.0	-1.88 48.6 0.054	-1.76 48.8 0.061	-0.89 0.49 0.051	-1.33 0.49 0.055
4.5	-2.09 49.1 0.055	-2.01 49.1 0.062	-1.36 0.48 0.052	-1.64 0.48 0.055
5.0	-2.32 49.6 0.057	-2.27 49.5 0.063	-1.87 0.47 0.053	-1.91 0.47 0.057
5.5	-2.59 50.3 0.060	-2.62 50.0 0.065	-2.36 0.46 0.055	-2.11 0.46 0.059
6.0	-2.88 50.9 0.063	-2.90 50.4 0.067	-2.84 0.45 0.056	-2.37 0.45 0.062
6.25	-3.01 51.2 0.064	-2.99 50.6 0.067	-3.15 0.45 0.057	-2.51 0.45 0.063
appropriate for preschool age children in recent years. The reference values developed in this study could be used to evaluate longitudinal WC and WC/S of an individual throughout childhood. The reference values for 6–18 years of age were previously reported based on 1978–1981 survey [11, 12] (Figures 1 and 2). However, it is necessary to measure two types of WC (boys: WCu and WC2, girls: WCu and WC1) at 6 years of age, since the methods of measurement for WC are different between this study and the previous study [11, 12].

Foreign studies

There are only limited number of publications on WC in young infants and preschoolers covering 0–6 years of age: Dutch study (0–21 years) in 1996–1997 data [13], Swedish study (0–5 years) on 2006 data [14], and Turkish study (0–6 years) on 2009–2010 data [15]. In contrast, Japanese study is based on data collected in 1978–1981. For all the foreign studies, WC was measured at the midpoint of the lowest rib cage and the iliac crest (WC3). The Dutch reference values of WC3 were based on data from 14500 children and adults of Dutch origin aged 0–21 years in the Fourth Dutch Growth Study in 1996–1997. The Swedish reference values of WC3 and WC3/S were based on data from 4502 children, 0–5 years of age, living in County of Holland in the south-west of Sweden in 2006. The Turkish reference values of WC3 were based on data from 2947 children, 0–6 years of age, living in Kayseri, one of the five great cities in 2009–2010. Dutch reference and Turkish reference were constructed using LMS method, and Swedish reference was constructed using the Box-Cox-power-exponential distribution. The present study utilized nationally representative WCu data on 9543 Japanese children, age 0–6 years, by LMS method.

Among the four populations studied, Japanese preschool children had the smallest WC (Figure 3). In children, a limited number of studies have documented the difference in absolute WC measurements between WCu and WC3,
showing that WCu is larger than or not significantly different from WC3. Harrington et al. found that WCu yield higher values than WC3 in White (males and females) and African American females, and do not significantly differ from WC3 in African American males, in children aged 5–18 years [10]. Yang and Wang compared WC measurements between WC measured at 1 cm above the umbilicus and WC3 in Chinese children aged 9–19 years, and found that WC measured at 1 cm above the umbilicus yield higher values than WC3 in males, and do not significantly differ from WC3 in females [27]. Therefore, even considering the difference in the measurement of WC, Japanese preschool children might have smaller WC than the three other countries. However, for preschoolers, as far as we know, the differences are not documented.

The differences of WC between Japanese and Dutch and Turkish preschool children disappear, if WC/S is compared. However, the differences of WC between Japanese and Swedish preschool children persist when adjusted for stature (Figure 4). The results in our study are consistent with a study of a sample of Chinese children. Zong et al. constructed the reference values of WC and WC/S for Chinese children aged 3–7 years and compared them with the reference values for children in other countries, including those in the Netherlands [13] and in Sweden [14]. They reported that the median WC and WC/S curves in Chinese children were generally lower than those in comparison countries [28].

WC/S, as expected, is a useful index in comparative study involving various body size groups. The reason for uniquely high WC/S in Swedish preschool children remains unknown. The factors that contribute to the observed differences are likely to be heterogeneous in nature, including the differences of body size of each population, benchmark in measurement, the year of study (secular trends), small sample size of young infants (edge effect) and the smoothing methods used for the references. Roswall et al. discussed that the difference in WC between Swedish and Dutch could be due to the fact that there was a 10 years difference between these studies, with a secular trend interfering, or it could be due to genuine differences between the two populations [14]. They also discussed that the data from German preschool children aged 3–5 years [29] are identical to their data, even though some minor differences in WC but not in WC/S were found exclusively in females.

Diagnosis of obesity in preschool children

Diagnosis of obesity has not been established in preschool children due to the lack of sufficient data. There are several reports on the significance of measuring WC in preschool children. Taylor et al. showed WC performing well as an indicator of high trunk fat mass in preschool children [30]. It has also been reported that WC was independently associated with high blood pressure, in the overweight/obese preschool Chinese children [31]. These studies suggest that WC reflects abdominal fat and it cannot be denied that WC may be related to cardiovascular risks such as hypertension, even in preschool children. Therefore, at the moment, we propose that measurement and longitudinal evaluation of WC be performed for infants and preschoolers at the time of well-baby clinic visit.

The international WC cutoffs were developed to screen central obesity in children and adolescents aged 6–18 years, using the pooled data on WC of children and adolescents from eight countries in different regions (Bulgaria, China, Iran, Korea, Malaysia, Poland, Seychelles, and Switzerland) [32]. The age- and sex-specific 90th centile WC cutoffs were calculated in children and adolescents with normal weight (excluding youth with obesity, overweight or underweight) by linking the centile with cardiovascular risk. The cut-off values of WC aged of 6 years (58.7 cm for boys and 57.9 cm for girls) correspond to 97th centile for boys and 96th centile for girls, respectively, in the WC reference values for Japanese preschool children in our study. These centile values may be useful in monitoring the growth of WC in Japanese preschool children.

Generally, the cut-offs of WC and WC/S are developed for early detection of abdominal obesity and its associated cardiovascular risk, but it is difficult to determine the cutoffs because preschool children have less disease related to abdominal obesity than school-aged children, adolescents and adults. Thus, further research might be necessary to develop the cut-offs of WC and WC/S for preschool children. Our study presented WC and WC/S centile reference values for Japanese preschool children which may be useful to monitor growth, as well as weight and BMI, and to evaluate abdominal fat distribution of Japanese preschool children.

‘Thin fat’ phenotype

The previous comparative studies showed that for the same BMI, age and gender, Asians had a higher body fat percentage [33]. Unfortunately, Japanese preschool children have no such data available. Asians in general tend to have a higher abdominal fat compared to Caucasians. Among Asians, Indians have the highest body fat percentage followed by Malays and Chinese. Krishnaveni et al. showed that South Indian babies have a muscle-thin but adipose
Conclusions

This study presents for the first time reference values for WC and WC/S in Japanese preschool children (0–6 years). Tracking WC in early childhood may be the key to understanding the truncal fat adiposity.

Acknowledgments: The authors thank Japanese Standards Association for providing the data in computer-readable form.

Research funding: None declared.

Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Competing interests: The funding organizations played no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the report for publication.

References

1. Freedman DS, Wang J, Maynard LM, Thornton JC, Mei Z, Pierson RN, et al. Relation of BMI to fat and fat-free mass among children and adolescents. Int J Obes 2005;29:1–8.
2. Freedman DS, Serdula MK, Srinivasan SR, Berenson GS. Relation of circumferences and skinfold thicknesses to lipid and insulin concentrations in children and adolescents: the Bogalusa heart study. Am J Clin Nutr 1999;69:308–17.
3. Katzmarzyk PT, Srinivasan SR, Chen W, Malina RM, Bouchard C, Berenson GB. Body mass index, waist circumference, and clustering of cardiovascular disease risk factors in a biracial sample of children and adolescents. Pediatrics 2004;114: e198–205.
4. Karlsson AK, Kullberg J, Stokland E, Alivin K, Gronowitz E, Svensson PA, et al. Measurements of total and regional body composition in preschool children: a comparison of MRI, DXA, and anthropometric data. Obesesity 2013;21:1018–24.
5. Zimmet P, Alberti G, Kaufman F, Tajima N, Silink M, Arslanian S, et al. The metabolic syndrome in children and adolescents. Lancet 2007;369:2059–61.
6. Japanese Standards Association. Report of the Japanese body size measurements to establish sizing systems for garments from 1978 to 1981. Tokyo, Japan: Japanese standards Association; 1984. (in Japanese).
7. Japanese Ministry of Health, Labour and Welfare. Report of the 1978–1981 national health and nutrition survey (in Japanese). Available from: http://www.nibiohm.go.jp/eliken/chosa/kokumin_eiyou/ [Accessed 12 Dec 2020].
8. Inokuchi M, Matsuo N, Takayama JI, Hasegawa T. Prevalence of central fatness in 1992-1994: 40% of Japanese boys 6–17 years. Endocr J 2018;65:213–20.
9. Johnson ST, Kuk JL, Mackenzie KA, Huang TT, Rosychuk RJ, Bail GD. Metabolic risk varies according to waist circumference measurement site in overweight boys and girls. J Pediatr 2010;156:247–52.
10. Harrington DM, Staiano AE, Broyles ST, Gupta AK, Katzmarzyk PT. Waist circumference measurement site does not affect relationships with visceral adiposity and cardiometabolic risk factors in children. Pediatr Obes 2013;8:199–206.
11. Anzo M, Inokuchi M, Matsuo N, Takayama JI, Hasegawa T. Waist circumference by age and sex for Japanese children based on the 1978–1981 cross-sectional national survey data. Ann Hum Biol 2015;42:56–61.
12. Inokuchi M, Matsuo N, Takayama JI, Hasegawa T. Waist-to-height ratio centiles by age and sex for Japanese children based on the 1978-1981 cross-sectional survey data. Int J Obes 2016;40:65–70.
13. Fredriks AM, van Buuren S, Fekkes M, Verloove-Vanhorick SP, Wit JM. Are age references for waist circumference, hip circumference and waist-hip ratio in Dutch children useful in clinical practice? Eur J Pediatr 2005;164:216–22.
14. Roswall J, Bergman S, Almqvist-Tangen G, Alm B, Niklasson A, Nierop AF, et al. Population-based waist circumference and waist-to-height ratio reference values in preschool children. Acta Paediatr 2009;98:1632–6.
15. Hatipoglu N, Mazicioglu MM, Poyrazoglu S, Borlu A, Horoz D, Kurtoglu S. Waist circumference percentiles among Turkish children under the age of 6 years. Eur J Pediatr 2013;172:59–69.
16. Cole TJ. The LMS method for constructing normalized growth standards. Eur J Clin Nutr 1990;44:45–60.
17. Cole TJ, Green PJ. Smoothing reference centile curves; the LMS method and penalized likelihood. Stat Med 1992;11:1305–19.
18. Pan H, Cole TJ. LMSchartmaker Pro, a program to construct growth references using the LMS method. Version 2.54 South Shields, UK: Harlow Printing Ltd. Available from: https://www.healthforallchildren.com/shop-base/shop/software/Lmschartmaker-pro/ [Accessed 12 Dec 2020].
19. Fredriks AM, van Buuren S, Burgmeijer RJ, Meulmester JF, Beuker RJ, Brugman E, et al. Continuing positive secular growth change in The Netherlands 1955-1997. Pediatr Res 2000;47:316–23.
20. Altunay C, Kondolot M, Poyrazoglu S, Öztürk A, Mazicioglu MM, Kurtoglu S. Weight and height percentiles for 0-84-month-old children in Kayseri—a central Anatolian city in Turkey. J Clin Res Pediatr Endocrinol 2011;3:184–91.
21. Inokuchi M, Hasegawa T, Anzo M, Matsuo N. Standardized centile curves of body mass index for Japanese children and adolescents based on the 1978–1981 national survey data. Ann Hum Biol 2006;33:444–53.
22. Inokuchi M, Matsuo N, Anzo M, Hasegawa T. Body mass index reference values (mean and SD) for Japanese children. Acta Paediatr 2007;96:1674–6.

(‘thin-fat’) phenotype characterized by larger subscapular skin fold thickness. The phenotype persists in childhood [34]. They stated the phenotype may be the forerunner of a diabetogenic phenotype of south Asian adults. We anticipate that the present study about WC data for Japanese preschool children (0–6 years) will help to clarify the possibility of having the ‘thin-fat’ phenotype from the relationship between WC and BMI for Japanese children of Asian ethnicity.
23. Japanese Ministry of Health, Labour and Welfare. Report of the 2010 national growth survey on preschool children (In Japanese). Available from: https://www.mhlw.go.jp/stf/houdou/0000042861.html. [Accessed 12 Dec 2020].

24. Kato N, Sato K, Takimoto H, Sudo N. BMI for age references for Japanese children—based on the 2000 growth survey. Asia Pac J Publ Health 2008;20:118–27.

25. Kato N, Takimoto H, Sudo N. The cubic functions for spline smoothed L, S and M values for BMI reference data of Japanese children. Clin Pediatr Endocrinol 2011;20:47–9.

26. Inokuchi M, Matsuo N, Takayama JI, Hasegawa T. National anthropometric reference values and growth curves for Japanese children: history and critical review. Ann Hum Biol 2019;46:287–92.

27. Yang C, Wang L. Comparisons of waist circumference measurements at five different anatomical sites in Chinese children. BioMed Res Int 2017;2017:7678613. [Epub 2017 Feb 2].

28. Zong X, Li H, Zhang Y, Wu H. Waist circumference and waist-to-height ratio in Chinese pre-school children: results from the 5th National Survey in 2015. Ann Hum Biol 2018;45:440–6.

29. Schwandt P, Kelishadi R, Haas GM. First reference curves of waist circumference for German children in comparison to international values: the PEP Family Heart Study. World J Pediatr 2008;4:259–66.

30. Taylor RW, Williams SM, Grant AM, Ferguson E, Taylor BJ, Goulding A. Waist circumference as a measure of trunk fat mass in children aged 3 to 5 years. Int J Pediatr Obes 2008;3:226–33.

31. Chen B, Li H. Waist circumference as an indicator of high blood pressure in preschool obese children. Asia Pac J Clin Nutr 2011;20:557–62.

32. Xi B, Zong X, Kelishadi R, Litwin M, Hong YM, Poh BK, et al. International waist circumference percentile cutoffs for central obesity in children and adolescents aged 6 to 18 years. J Clin Endocrinol Metab 2020;105:e1569–83.

33. Wulan SN, Westerterp KR, Plasqui G. Ethnic differences in body composition and the associated metabolic profile: a comparative study between Asians and Caucasians. Maturitas 2010;65:315–9.

34. Krishnaveni GV, Hill JC, Veena SR, Leary SD, Saperia J, Chachyamma KJ, et al. Truncal adiposity is present at birth and in early childhood in South Indian children. Indian Pediatr 2005;42:527–38.