Effectiveness of orally-delivered double-stranded RNA on gene silencing in the stinkbug *Plautia stali*

Yudai Nishide, Daisuke Kageyama, Yoshiaki Tanaka, Kakeru Yokoi, Akiya Jouraku, Ryo Futahashi, Takema Fukatsu

1 National Agriculture and Food Research Organization (NARO), Institute of Agrobiological Sciences Ohwashi, Tsukuba, Japan, 2 National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan, 3 Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan, 4 Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan

* nishiyu0@affrc.go.jp (YN); t-fukatsu@aist.go.jp (TF)

Abstract

Development of a reliable method for RNA interference (RNAi) by orally-delivered double-stranded RNA (dsRNA) is potentially promising for crop protection. Considering that RNAi efficiency considerably varies among different insect species, it is important to seek for the practical conditions under which dsRNA-mediated RNAi effectively works against each pest insect. Here we investigated RNAi efficiency in the brown-winged green stinkbug *Plautia stali*, which is notorious for infesting various fruits and crop plants. Microinjection of dsRNA into *P*. *stali* revealed high RNAi efficiency–injection of only 30 ng dsRNA into last-instar nymphs was sufficient to knockdown target genes as manifested by their phenotypes, and injection of 300 ng dsRNA suppressed the gene expression levels by 80% to 99.9%. Knock-down experiments by dsRNA injection showed that multicopper oxidase 2 (MCO2), vacuolar ATPase (vATPase), inhibitor of apoptosis (IAP), and vacuolar-sorting protein Snf7 are essential for survival of *P*. *stali*, as has been demonstrated in other insects. By contrast, *P*. *stali* exhibited very low RNAi efficiency when dsRNA was orally administered. When 1000 ng/μL of dsRNA solution was orally provided to first-instar nymphs, no obvious phenotypes were observed. Consistent with this, RT-qPCR showed that the gene expression levels were not affected. A higher concentration of dsRNA (5000 ng/μL) induced mortality in some cohorts, and the gene expression levels were reduced to nearly 50%. Simultaneous oral administration of dsRNA against potential RNAi blocker genes did not improve the RNAi efficiency of the target genes. In conclusion, *P*. *stali* shows high sensitivity to RNAi with injected dsRNA but, unlike the allied pest stinkbugs *Halyomorpha halys* and *Nezara viridula*, very low sensitivity to RNAi with orally-delivered dsRNA, which highlights the varied sensitivity to RNAi across different species and limits the applicability of the molecular tool for controlling this specific insect pest.
Introduction

Since its discovery at the end of the previous century, gene silencing mediated by administration of double-stranded RNA (dsRNA), called RNA interference (RNAi), has been a powerful technique for unveiling gene functions. Following the discovery of RNAi in the nematode Caenorhabditis elegans [1], high sensitivity to RNAi was found in coleopteran insects such as the red flour beetle Tribolium castaneum [2, 3], the Colorado potato beetle Leptinotarsa decemlineata [4], and the western corn rootworm Diabrotica virgifera [5]. By contrast, lepidopteran, dipteran and Odonata insects were found to be less sensitive to RNAi [6–8]. Previous RNAi studies have uncovered a substantial amount of variability in RNAi sensitivity among different insect species and lineages, but it is obscure what relationship exists between RNAi sensitivity and insect taxa.

Conventionally, RNAi experiments have relied on dsRNA injection into insect bodies because of generally efficient gene silencing by this method. However, injection entails several problems including immune and wound stresses especially in small insects. By contrast, oral delivery of dsRNA is less traumatic and easier to perform because no special equipment is needed. Additionally, RNAi by feeding is practically applicable to crop protection [5, 9], which has become one of the promising techniques for pest management over the past decade. Here, a critical challenge in developing insect-specific molecular biopesticides is to find effective and reliable methods for delivery of dsRNA into pest insect bodies. Arming plants with dsRNA has been suggested [10], but all such methods hinge on the idea that crop is deployed with the corresponding dsRNA of essential insect genes. This approach could reduce our dependence on chemical insecticides and could combat insect resistance to chemical insecticides [11, 12]. An example of deploying dsRNA to plants is provided by transgenic maize to control the western corn rootworm D. virgifera [5, 13, 14]. RNAi by feeding mediated by transgenic rice that produces dsRNA was tested and successfully inhibited gene expression in the brown planthopper Nilaparvata lugens, although lethal phenotypes were not observed [15, 16]. Because RNAi exhibits species specificity, fewer concerns arise for off-target effects, an important issue in crop protection [17–19]. The efficiency of RNAi delivered by feeding varies considerably among different species including hemipterans [20].

In this study, we tested the efficiency of RNAi by injection and feeding of dsRNA in the brown-winged green stinkbug Plautia stali (Hemiptera: Pentatomidae). Previous studies reported that dsRNA injection suppresses gene expression in this species [21–23], and maternal RNAi also works effectively [24]. However, the effect of orally-delivered dsRNA is unknown. P. stali has attracted much attention in the field of microbiology and evolutionary biology regarding insect–symbiont interactions [25–30]. Development of a reliable method for RNAi by feeding will accelerate the functional studies on symbiosis-related genes even in very tiny first-instar nymphs of P. stali, in which symbiont transmission and establishment occur [26, 30]. Furthermore, because P. stali is a notorious agricultural pest infesting various fruits and crop plants [31], RNAi by feeding would provide a useful method for control and management of P. stali and other pest stinkbugs.

Materials and methods

Insects

Adult insects of P. stali were collected at a forest edge in the National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan, from which an inbred laboratory strain was established. A mass-reared colony of the strain was used as the source of experimental insects. The insects were reared in plastic containers (150 mm in diameter, 60 mm high) with
raw peanuts, dry soybeans, and drinking water supplemented with 0.05% ascorbic acid at 25°C ± 1°C under a long-day regime of 16 h light and 8 h dark as previously described [29].

Target genes

RNAi efficiencies are often highly variable across different target genes [32, 33]. In this study, we selected four target genes: vacuolar ATPase (vATPase), inhibitor of apoptosis (IAP), multicopper oxidase 2 (MCO2), and vacuolar-sorting protein Snf7. vATPase and IAP were reported to cause high mortalities upon effective RNAi in several hemipteran insects [17, 34–41], and therefore, they are regarded as promising targets for pest control. For vATPase gene, we performed RNAi using three distinct dsRNAs designed to target the subunits D, H, and E, respectively. RNAi suppression of MCO2 causes high mortality in nymphal insects of *P. stali* [24]. Snf7 is a well-known target gene for controlling the western corn rootworm *D. virgifera* [5, 13, 14].

Detection and sequencing of target genes

Total RNAs were extracted from the whole bodies of adult females approximately 5 days after ecysis using the RNeasy Mini Kit (Qiagen, Hilden, Germany). Complementary DNAs (cDNAs) were sequenced by Illumina HiSeq 2500 with paired-end 101 bp (Macrogen Japan Corp., Kyoto, Japan), and the generated raw reads (accession numbers DRR118506–DRR118507) were analyzed as previously described [23]. The assembled sequences were subjected to BLASTx database searches, by which multicopper oxidase 2 (*PsMCO2*; accession number LC495720), vacuolar ATPase (*PsvATPase*; accession numbers LC581883–LC581885), inhibitor of apoptosis (*PsIAP*; accession number LC581886), Snf7 (*PsSnf7*; accession number LC581887), dsRNase (*PsdsRNase*; accession number LC581888), and fatty acid synthase (*Psfasn*; accession number LC581889) were identified. On the basis of each predicted sequence, we designed primer pairs for quantitative RT-PCR and RNAi (S1 and S2 Tables).

dsRNA synthesis

Template preparation for dsRNA synthesis was performed by PCR using the designed primers (S2 Table) in combination with the T7 promoter sequence at the 5’ end. PCR was done by 35 cycles of 10 sec at 96°C, 30 sec at 55°C and 1 min at 72°C using Takara EX taq (Takara Bio, Shiga, Japan). PCR products were purified using the QIAquick Gel Extraction kit (Qiagen, Hilden, Germany) and subjected to transcription into dsRNA using RiboMAX Large Scale RNA Production Systems (Promega, Madison, WI, USA). pEGFP-L1 (Takara Bio) was used as template of enhanced green fluorescent protein (EGFP). The concentrations of dsRNA were estimated by Nanodrop Lite (Thermo Fisher Scientific, Wilmington, DE, USA).

RNAi knockdown of target genes through injection

For suppression of the mRNA levels of target genes by injection, newly molted fifth (last) instar nymphs were injected with dsRNA solution (approximately 3 μL) into the ventral septum between the thoracic and abdominal segments.

RNAi knockdown of target genes through feeding

For RNAi by feeding, fifth-instar or first-instar nymphs were reared under the conditions similar to those for the stock colony as cited above, except for the drinking water ingredients. Newly molted fifth-instar nymphs were supplied with an absorbent cotton (3 × 3 cm; Iwatsuki, Tokyo, Japan) soaked with 6 mL of dsRNA solution (100 or 1000 ng/μL), and newly hatched
first-instar nymphs were supplied with one-eighth cut absorbent cotton soaked with 800 μL of dsRNA solution (100, 1000, or 5000 ng/μL) in a plastic dish. During the experiments, the absorbent cotton soaked with dsRNA solution was kept being available for *P. stali*.

In sap-sucking insects, RNAi efficiency has often been tested by plant-mediated dsRNA delivery [41–43]. Notably, a previous study on the brown marmorated stinkbug *Halyomorpha halys* belonging to the Pentatomidae (the same family as *P. stali*) showed that nymphs fed with green bean pods immersed in dsRNA solution showed effective suppression of the target gene expression [44]. In this study, we prepared dsRNA-treated green bean pods according to the previous study with some modifications. Commercially available green bean pods (*Phaseolus vulgaris*) were washed with 0.2% sodium hypochlorite and then washed three times with water. The bean pods were trimmed from the calyx end to a total length of 7.5 cm and immersed in a 1.6 mL of 67 ng/μL dsRNA solution. The immersed green bean pods were fed to fifth-instar nymphs of *P. stali*. To minimize evaporation of the dsRNA solution, we sealed the gap between the bean pods and solution with parafilm (Bemis Company, Oshkosh, WI, USA). The bean pods were replaced every three days, on which the fifth-instar nymphs were reared until adult emergence.

Quantification of gene expression

To estimate RNAi efficiency, total RNA samples were extracted from the whole bodies of first- or fifth-instar nymphs and reverse-transcribed into cDNA using the High-Capacity cDNA Reverse Transcription Kit (Thermo Fisher Scientific, Waltham, MA, USA). Quantitative RT-PCR of the target genes was conducted using LightCycler 480 or LightCycler 96 with LightCycler 480 SYBR Green Master (Roche Diagnostics, Basel, Switzerland). The gene expression levels were estimated by absolute quantification, and relative expression levels were calculated to ribosomal protein L32 (rpL32) gene. Standard curves were generated using 7 steps of ten-fold serial dilutions of each sequence inserted into the plasmid pGEM-T (Promega, Madison, WI, USA). We confirmed that melting curves in each gene showed similar patterns between samples. We also confirmed that Ct value of rpL32 was similar irrespective of samples/treatments. The mean expression level of the control treatment with dsRNA of EGFP was designated as 1.0, and all expression levels were normalized to the control level.

Results and discussion

Effects of dsRNA injection

RNAi of *PsMCO2*, *PsvATPase*, *PsIAP*, and *PsSnf7* by injection with 300 ng dsRNA resulted in high mortality of the injected fifth-instar nymphs, although the mortality and the timing of death varied among the different genes. Nymphs injected with either *PsMCO2* dsRNA or *PsIAP* dsRNA never reached adulthood (Fig 1A). Injection with *PsvATPase* dsRNA led to high mortality irrespective of the targeted subunits. As demonstrated in our previous study [24], the nymphs injected with *PsMCO2* dsRNA died during molting without reaching adulthood. Similar to *PsMCO2*, RNAi of *PsvATPase* induced nymphal mortality during molting. By contrast, the nymphs injected with *PsIAP* dsRNA died 2 to 3 days after injection, and those injected with *PsSnf7* dsRNA died 3 to 4 days after injection, with no relation to the molting events (Fig 1B).

Quantitative RT-PCR confirmed that RNAi by injection efficiently worked for the six genes. Even the least effective gene among the six, *PsMCO2*, exhibited over 80% reduction upon injection with *PsMCO2* dsRNA compared with the control injected with EGFP dsRNA (Fig 1C). The other genes exhibited much higher reduction: 98.0% for *PsvATPase* subunit D,
98.8% for *PsvATPase* subunit H, 99.3% for *PsvATPase* subunit E, 95.9% for *PsIAP*, and 99.9% for *PsSnf7*. Taken together with the previous studies [23, 24], the silencing efficiency in *P. stali* is relatively high among hemipteran insects [33] and similar to the brown marmorated stinkbug *H. halys* [45].

The knockdown of *PsMCO2* resulted in physical defects in cuticle sclerotization and pigmentation. When different concentrations of dsRNA targeting *PsMCO2* were injected, 300 and 30 ng of *PsMCO2* dsRNA caused clear phenotypes in fifth-instar nymphs. Injection of 300 ng dsRNA killed all of the nymphs during molting, and injection of 30 ng dsRNA killed most of them during molting. The one nymph that reached adulthood remained soft and unpigmented, could not feed, and eventually died (Fig 1D). Nymphs injected with 3 ng or lower concentrations of dsRNA did not show any obvious phenotypes in cuticle sclerotization or pigmentation, although accidental death was sometimes observed. These results demonstrate that 30 ng of dsRNA may be a requisite dose to suppress gene expression in fifth-instar nymphs (body weight ~100 mg).

https://doi.org/10.1371/journal.pone.0245081.g001
Effects of orally-delivered dsRNA on fifth-instar nymphs

When 100 or 1000 ng/μL of PsMCO2 dsRNA solution was supplied to fifth-instar nymphs instead of water, no nymphs showed obvious phenotypes (n = 17 for 100 ng/μL dsRNA solution; n = 18 for 1000 ng/μL dsRNA solution).

We next assessed the effectiveness of plant-mediated RNAi (Fig 2A). When fifth-instar nymphs were fed with green bean pods, around 60%–70% of the nymphs reached adulthood (Fig 2B and 2C). While the survival rates of P. stali on green bean pods were relatively low compared with stock colonies fed with raw peanuts and dried soybeans, the plant-mediated 67 ng/μL of dsRNA administration targeting PsvATPase and PsIAP exhibited little effects on survival of the insects. Quantitative RT-PCR suggested that the plant-mediated RNAi might be effective for PsvATPase (approximately 27% reduction; \(P = 0.01 \) by t-test) but not for PsIAP.
(Fig 2D). Compared with the previous study on *H. halys* [44], the plant-mediated RNAi showed lower effectiveness in *P. stali*, although the target genes are different between these studies. The previous study demonstrated that green bean pods immersed in 67 ng/μL of juvenile hormone acid O-methyltransferase (JHAMT) dsRNA solution reduced the corresponding gene expression in the insects by over 70% and green bean pods immersed in 17 ng/μL of vitellogenin dsRNA solution reduced the corresponding gene expression in the insects by over 50%, although no phenotypic descriptions were provided.

Effects of orally-delivered dsRNA on first-instar nymphs

After hatching, all newborn first-instar nymphs of *P. stali* actively imbibed water without feeding, by which the nymphs became larger in size (Fig 3A), gained an additional body weight by around 0.43 mg (Fig 3B), and molted to second instar three or four days later. These observations indicate that the first-instar nymphs consistently ingest about 0.43 μL of water.

The first-instar nymphs fed with dsRNA solution at concentrations of 100 or 1000 ng/μL (estimated dsRNA intake amounts were 43 and 430 ng, respectively) did not show obvious mortality for all the target genes when compared with the nymphs fed with EGFP dsRNA at the same concentrations (*P* > 0.05; t-test; Fig 3C). Considering that 30 ng of dsRNA is...
sufficient for suppressing the gene expression when injected into fifth-instar nymphs (Fig 1D), *P. stali* appears to exhibit very low sensitivity to orally-delivered dsRNA.

In the first-instar nymphs fed with 1000 ng/μL dsRNA solution, no significant differences were observed in the expression levels of any of the genes tested (t-test with Bonferroni correction; Fig 3D). At 5000 ng/μL, RNAi of *PsIAP* showed slightly higher mortality compared with the control (5000 ng/μL of EGFP dsRNA) (*P* = 0.08; t-test; Fig 3C), although RNAi of *PsvATPase* subunit D exhibited no obvious lethality. In agreement with this, the nymphs fed with 5000 ng/μL *PsIAP* dsRNA (estimated intake, 2,150 ng) showed an around 50% decrease in the gene expression but not in the case of *PsvATPase* subunit D (Fig 3E). The observations that RNAi of *PsIAP* was weakly effective at the dose of 5000 ng/μL but not at 1000 ng/μL indicate that the sensitivity to orally-delivered dsRNA for this target gene is very low in *P. stali*. Comparing with the previous study in the southern green stinkbug *Nezara viridula*, which showed that orally-administered 3000 ng/μL dsRNA of vATPase suppresses gene expression and leads to high mortality [46], *P. stali* showed lower sensitivity to orally-delivered dsRNA. In the Asian citrus psyllid *Diaphorina citri*, 50% reduction of IAP expression by RNAi was reported to cause high mortality [41], which may be attributable to different sensitivities between the insect species.

Previous studies have suggested the possibility that, in such hemipteran insects as *A. pisum*, *Myzus persicae*, *Lygus lineolaris* and *Bemisia tabaci*, dsRNA in the midgut or saliva may be responsible for the low sensitivity of these insects to RNAi by orally-delivered dsRNA [20, 47–49]. In the oriental fruit fly *Bactrocera dorsalis*, another blocker of RNAi, fasn, was identified [50]. In an attempt to improve the RNAi efficiency, we conducted RNAi experiments in which dsRNA against these potential RNAi blocker genes was simultaneously administrated orally with dsRNA against the target genes. When 1000 ng/μL dsRNA of either *PsdsRNase* or *Psfasn* was orally administrated to first-instar nymphs of *P. stali* together with 1000 ng/μL dsRNA of either *PsvATPase* subunit D or *PsIAP*, no effects on the insect mortality were detected (Fig 4). Possible explanations as to why no obvious effects of *PsdsRNase* RNAi were observed in *P. stali* are (1) low sensitivity to RNAi with orally-delivered dsRNA of *PsdsRNase* in *P. stali*, (2) degradation of *PsdsRNase* dsRNA by dsRNase in the intestine of *P. stali* before cellular uptake, or (3) possible effects of other nucleases present in the intestine of *P. stali*. In the desert locust *Schistocerca gregaria*, it was reported that RNAi of dsRNases did not improve the sensitivity to RNAi [51]. Fasn plays an important role in the loss of endocytic ability for dsRNA in *B. dorsalis* [50], but may not in *P. stali*. Other possible explanation causing the low sensitivity to feeding RNAi may be factors blocking cellular uptake and endosomal escape of dsRNA [52].

Conclusions

As previously shown, the brown-winged green stinkbug *P. stali* exhibits high RNAi sensitivity to injected dsRNA. Here, we demonstrate by RNAi experiments that *PsMCO2*, *PsvATPase*, *PsIAP*, and *PsSnf7* are essential for survival of *P. stali*, suggesting the possibility that these genes may potentially be useful for controlling the pest stinkbug. Meanwhile, *P. stali* shows very limited sensitivity to orally-delivered dsRNA, where only an extremely high concentration of dsRNA (5000 ng/μL) can induce weak phenotypes depending on the target gene. In the stinkbugs *H. halys* and *N. viridula* belonging to the same family Pentatomidae, by contrast, orally-delivered dsRNA effectively causes gene silencing. These results indicate that sensitivity to orally-delivered dsRNA may vary among closely-related species, which highlight the importance of optimizing dsRNA administration protocol for each pest insect species. Attempts to improve the efficiency of orally-delivered RNAi in *P. stali* by, for example, supplementation of cationic nanoparticles [53, 54] should be conducted in future studies.
Supporting information

S1 Table. Primer sequences for quantitative RT-PCR.
(XLSX)

S2 Table. Primer sequences for RNAi.
(XLSX)

Acknowledgments

We thank Masae Takashima for maintaining stinkbug colonies and technical assistance.

Author Contributions

Conceptualization: Yudai Nishide, Yoshiaki Tanaka.

Data curation: Yudai Nishide.

Formal analysis: Yudai Nishide, Kakeru Yokoi, Akiya Jouraku, Ryo Futahashi.

Funding acquisition: Yudai Nishide, Takema Fukatsu.

Fig 4. Effects of simultaneous feeding of dsRNA against potential RNAi blocker genes on RNAi efficiency of target genes. Survival rates of first-instar nymphs. The first-instar nymphs were reared with dsRNA solutions in which dsRNA against each gene is present at a concentration of 1000 ng/μL. In comparison with the control treatment (EGFP), no statistically significant differences in survival rates were detected by t-test. 20 nymphs were tested for each gene and the mean rates of molting to second instar were calculated. The experiment was performed in three parallels. Numbers above bars show total sample sizes.

https://doi.org/10.1371/journal.pone.0245081.g004
Investigation: Yudai Nishide.

Methodology: Yudai Nishide.

Project administration: Yudai Nishide, Takema Fukatsu.

Resources: Yudai Nishide.

Supervision: Yudai Nishide, Daisuke Kageyama, Yoshiaki Tanaka, Ryo Futahashi, Takema Fukatsu.

Validation: Yudai Nishide.

Visualization: Yudai Nishide, Daisuke Kageyama.

Writing – original draft: Yudai Nishide.

Writing – review & editing: Daisuke Kageyama, Yoshiaki Tanaka, Ryo Futahashi, Takema Fukatsu.

References

1. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in *Caenorhabditis elegans*. Nature. 1998; 391: 806–811. https://doi.org/10.1038/35888 PMID: 9486653

2. Tomoyasu Y, Miller SC, Tomita S, Schoppmeier M, Grossmann D, Bucher G. Exploring systemic RNA interference in insects: a genome-wide survey for RNAi genes in *Tribolium*. Genome Biology. 2008; 9: R10. https://doi.org/10.1186/gb-2008-9-1-r10 PMID: 18201385

3. Miller SC, Miyata K, Brown SJ, Tomoyasu Y. Dissecting Systemic RNA Interference in the Red Flour Beetle *Tribolium castaneum*: Parameters Affecting the Efficiency of RNAi. PLOS ONE. 2012; 7: e47431. https://doi.org/10.1371/journal.pone.0047431 PMID: 23133513

4. Zhu F, Xu J, Palli R, Ferguson J, Palli SR. Ingested RNA interference for managing the populations of the Colorado potato beetle, *Leptinotarsa decemlineata*. Pest Management Science. 2011; 67: 175–182. https://doi.org/10.1002/ps.2048 PMID: 21061270

5. Baum JA, Bogartr T, Clinton W, Heck GR, Ilagan O, et al. Control of coleopteran insect pests through RNA interference. Nature Biotechnology. 2007; 25: 1322–1326. https://doi.org/10.1038/nbt1359 PMID: 17982443

6. Terenius O, Papanicolaou A, Garbutt JS, Eleftherianos I, Huvenne H, Kanginakudru S, et al. RNA interference in Lepidoptera: An overview of successful and unsuccessful studies and implications for experimental design. Journal of Insect Physiology. 2011; 57: 231–245. https://doi.org/10.1016/j.jinsphys.2010.11.006 PMID: 21078327

7. Miller SC, Brown SJ, Tomoyasu Y. Larval RNAi in *Drosophila*. Dev Genes Evol. 2008; 218: 505–510. https://doi.org/10.1007/s00427-008-0238-8 PMID: 18663472

8. Okude G, Futahashi R, Kawahara-Miki R, Yoshitake K, Yajima S, Fukatsu T. Electroporation-mediated RNA interference reveals a role of the multicopper oxidase 2 gene in dragonfly cuticular pigmentation. Appl Entomol Zool. 2017; 52: 379–387. https://doi.org/10.1007/s13355-017-0489-9

9. Gordon KHJ, Waterhous PM. RNAi for insect-proof plants. Nat Biotechnol. 2007; 25: 1231–1232. https://doi.org/10.1038/nbt1359 PMID: 17989682

10. Joga MR, Zotti MJ, Smagghie G, Christoens O. RNAi Efficiency, Systemic Properties, and Novel Delivery Methods for Pest Insect Control: What We Know So Far. Front Physiol. 2016; 7. https://doi.org/10.3389/fphys.2016.00553 PMID: 27909411

11. Klümper W, Quim M. A Meta-Analysis of the Impacts of Genetically Modified Crops. PLOS ONE. 2014; 9: e111629. https://doi.org/10.1371/journal.pone.0111629 PMID: 25365303

12. Zhang J, Khan SA, Heckel DG, Bock R. Next-Generation Insect-Resistant Plants: RNAi-Mediated Crop Protection. Trends in Biotechnology. 2017; 35: 871–882. https://doi.org/10.1016/j.tibtech.2017.04.009 PMID: 28822479

13. Bolognesi R, Ramaseshadr P, Anderson J, Bachman P, Clinton W, Flannagan R, et al. Characterizing the Mechanism of Action of Double-Stranded RNA Activity against Western Corn Rootworm (*Diabrotica virgifera virgifera LeConte*). PLOS ONE. 2012; 7: e47534. https://doi.org/10.1371/journal.pone.0047534 PMID: 23071620
14. Khajuria C, Iwashita S, Wiggins E, Flagel L, Moar W, Pleau M, et al. Development and characterization of the first dsRNA-resistant insect population from western corn rootworm. *Diabrotica virgifera virgifera* LeConte. *PLOS ONE.* 2018; 13: e0197059. https://doi.org/10.1371/journal.pone.0197059 PMID: 29758046

15. Zha W, Peng X, Chen R, Du B, Zhu L, He G. Knockdown of Midgut Genes by dsRNA-Transgenic Plant-Mediated RNA Interference in the Hemipteran Insect *Nilaparvata lugens.* *PLOS ONE.* 2011; 6: e20504. https://doi.org/10.1371/journal.pone.0020504 PMID: 21655219

16. Yu R, Xu X, Liang Y, Tian H, Pan Z, Jin S, et al. The Insect Ecdysone Receptor is a Good Potential Target for RNAi-based Pest Control. *Int J Biol Sci.* 2014; 10: 1171–1180. https://doi.org/10.7150/ijbs.9598 PMID: 25516715

17. Whyard S, Singh AD, Wong S. Ingested double-stranded RNAs can act as species-specific insecticides. *Insect Biochemistry and Molecular Biology.* 2009; 39: 824–832. https://doi.org/10.1016/j.ibmb.2009.09.007 PMID: 19815067

18. Bachman PM, Huizinga KM, Jensen PD, Mueller G, Tan J, Uffman JP, et al. Ecological risk assessment for DvSnf7 RNA: A plant-incorporated protectant with targeted activity against western corn rootworm. *Regulatory Toxicology and Pharmacology.* 2016; 81: 77–88. https://doi.org/10.1016/j.yrtph.2016.08.001 PMID: 27494948

19. Petrick JS, Friedlich GE, Carleton SM, Kessenich CR, Silvanovic A, Zhang Y, et al. Corn rootworm-active RNA DvSnf7: Repeat dose oral toxicity assessment in support of human and mammalian safety. *Regulatory Toxicology and Pharmacology.* 2016; 81: 57–66. https://doi.org/10.1016/j.yrtph.2016.07.009 PMID: 27436086

20. Allen ML, Walker WB. *Saliva of Lygus lineolaris* digests double stranded ribonucleic acids. *Journal of Insect Physiology.* 2012; 58: 391–396. https://doi.org/10.1016/j.jinsphys.2011.12.014 PMID: 22226823

21. Sugahara R, Jouraku A, Nakakura T, Minaba M, Yamamoto T, Shinohara Y, et al. Tissue-specific expression and silencing phenotypes of mitochondrial phosphate carrier paralogues in several insect species. *Insect Molecular Biology.* 2017; 26: 332–342. https://doi.org/10.1111/imb.12297 PMID: 28224717

22. Sugahara R, Minaba M, Jouraku A, Kotaki T, Yamamoto T, Shinohara Y, et al. Characterization of two adenine nucleotide translocase paralogues in the stink bug, *Plautia stali.* *J Pest Sci.* 2016; 41: 44–48. https://doi.org/10.1584/jpestics.D15-080 PMID: 30933102

23. Nishide Y, Kageyama D, Yokoi K, Jouraku A, Tanaka H, Futahashi R, et al. Functional crosstalk across IMD and Toll pathways: insight into the evolution of incomplete immune cascades. *Proceedings of the Royal Society B: Biological Sciences.* 2019; 286: 20182207. https://doi.org/10.1098/rspb.2018.2207 PMID: 30963836

24. Nishide Y, Kageyama D, Hatakeyama M, Yokoi K, Jouraku A, Tanaka H, et al. Diversity and function of multicopper oxidase genes in the stinkbug *Plautia stali.* *Scientific Reports.* 2020; 10: 1–9. https://doi.org/10.1038/s41598-020-60340-8 PMID: 32103072

25. Abe Y, Mishiro K, Takanashi M. Symbiont of brown-winged green bug, *Plautia stali* Scott. *Japanese Journal of Applied Entomology and Zoology (Japan).* 1995 [cited 15 Nov 2018]. Available: http://agris.fao.org/agris-search/search.do?recordID=JP9601691

26. Hosokawa T, Ishii Y, Nikoh N, Fujie M, Satoh N, Fukatsu T. Obligate bacterial mutualists evolving from environmental bacteria in natural insect populations. *Nat Microbiol.* 2015; 1: 1–7. https://doi.org/10.1038/nmicrobiol.2015.11 PMID: 27571756

27. Hosokawa T, Matsuura Y, Kikuchi Y, Fukatsu T. Recurrent evolution of gut symbiotic bacteria in pentatomid stinkbugs. *Zoological Letters.* 2016; 2: 24. https://doi.org/10.1186/s40851-016-0061-4 PMID: 27980805

28. Hayashi T, Hosokawa T, Meng X-Y, Koga R, Fukatsu T. Female-Specific Specialization of a Posterior End Region of the Midgut Symbiotic Organ in *Plautia splendens* and Allied Stinkbugs. *Appl Environ Microbiol.* 2015; 81: 2603–2611. https://doi.org/10.1128/AEM.04057-14 PMID: 2563847

29. Nishide Y, Ondera NT, Tanahashi M, Moriyama M, Fukatsu T, Koga R. Aseptic rearing procedure for the stinkbug *Plautia stali* (Hemiptera: Pentatomidae) by sterilizing food-derived bacterial contaminants. *Appl Entomol Zool.* 2017; 52: 407–415. https://doi.org/10.1007/s13355-017-0495-y

30. Oishi S, Moriyama M, Koga R, Fukatsu T. Morphogenesis and development of midgut symbiotic organ of the stinkbug *Plautia stali* (Hemiptera: Pentatomidae). *Zoological Letters.* 2019; 5: 16. https://doi.org/10.1186/s40851-019-0134-2 PMID: 31164991

31. Schaefer CW, Panizzi AR. Heteroptera of Economic Importance. CRC Press; 2000.

32. Christiansen O, Smagghe G. The challenge of RNAi-mediated control of hemipterans. *Current Opinion in Insect Science.* 2014; 6: 15–21. https://doi.org/10.1016/j.cois.2014.09.012 PMID: 23846663
33. Li J, Wang X-P, Wang M-Q, Ma W-H, Hua H-X. Advances in the use of the RNA interference technique in Hemiptera. Insect Science. 2013; 20: 31–39. https://doi.org/10.1111/j.1744-7917.2012.01550.x PMID: 23955823

34. Wuriyanghan H, Falk BW. RNA Interference towards the Potato Psyllid, Bactericera cockerellii, Is Induced in Plants Infected with Recombinant Tobacco mosaic virus (TMV). PLOS ONE. 2013; 8: e66050. https://doi.org/10.1371/journal.pone.0066050 PMID: 23824081

35. Wuriyanghan H, Rosa C, Falk BW. Oral Delivery of Double-Stranded RNAs and siRNAs Induces RNAi Effects in the Potato/Tomato Psyllid, Bactericera cockerellii. PLOS ONE. 2011; 6: e27736. https://doi.org/10.1371/journal.pone.0027736 PMID: 22110747

36. Bansal R, Mittapelly P, Chen Y, Mamidala P, Zhao C, Michel A. Quantitative RT-PCR Gene Evaluation
37. Upadhyay SK, Chandrasekar K, Thakur N, Verma PC, Borgio JF, Singh PK, et al. RNA interference
38. Ghodke AB, Good RT, Golz JF, Russell DA, Edwards O, Robin C. Extracellular endonucleases in the
39. Li H, Guan R, Guo H, Miao X. New insights into an RNAi approach for plant defence against piercing-
40. Singh S, Gupta M, Pandher S, Kaur G, Rathore P, Palli SR. Selection of housekeeping genes and dem-
41. Dong X, Li X, Li Q, Jia H, Zhang H. The inducible blockage of RNAi reveals a role for polyunsatu-
42. Luan J-B, Ghanim M, Liu S-S, Czosnek H. Silencing the ecdysone synthesis and signaling pathway
43. Galdeano DM, Breton MC, Lopes JRS, Falk BW, Machado MA. Oral delivery of double-stranded RNAs
44. Singh S, Gupta M, Pandher S, Kaur G, Rathore P, Palli SR. Selection of housekeeping genes and demon-
45. Wuriyanghan H, Falk BW. RNA interference-mediated knockdown of IAP in Lygus lineolaris induces mortal-
46. Luo Y, Chen Q, Luan J, Chung SH, Van Eck J, Turgeon R, et al. Towards an understanding of the
47. Sharma R, Christiansen O, Taning CN, Smagghe G. RNAi-mediated mortality in southern green stinkbug Nezara viridula by oral delivery of dsRNA. Pest Management Science. n/a. https://doi.org/10.1007/s12038-011-9009-1 PMID: 21451256

48. Spit J, Philips A, Wynant N, Santos D, Plaetinck G, Vanden Broeck J. Knockdown of nuclease activity in the gut enhances RNAi efficiency in the Colorado potato beetle, Leptinotarsa decemlineata, but not in the desert locust, Schistocerca gregaria. Insect Biochemistry and Molecular Biology. 2017; 81: 103–116. https://doi.org/10.1016/j.ibmb.2017.01.004 PMID: 28093313
52. Kunte N, McGraw E, Bell S, Held D, Avila L-A. Prospects, challenges and current status of RNAi through insect feeding. Pest Management Science. 2020; 76: 26–41. https://doi.org/10.1002/ps.5588 PMID: 31419022

53. He B, Chu Y, Yin M, Müllen K, An C, Shen J. Fluorescent Nanoparticle Delivered dsRNA Toward Genetic Control of Insect Pests. Advanced Materials. 2013; 25: 4580–4584. https://doi.org/10.1002/adma.201301201 PMID: 23794475

54. Thairu MW, Skidmore IH, Bansal R, Nováková E, Hansen TE, Li-Byarlay H, et al. Efficacy of RNA interference knockdown using aerosolized short interfering RNAs bound to nanoparticles in three diverse aphid species. Insect Molecular Biology. 2017; 26: 356–368. https://doi.org/10.1111/imb.12301 PMID: 28314050