DIAZOTROPH ACTIVITY REGULATING STRATEGY UNDER THEIR INTRODUCTION IN AGROCENOSES

S. F. Kozar

Institute of Agricultural Microbiology and Agroindustrial Manufacture, NAAS
97 Shevchenka str., Chernihiv, 14035; Ukraine; e-mail: kozarsf@gmail.com

Objective. Investigate approaches to managing the activity of soil diazotrophs and propose a strategy for its regulation. Methods. Theoretical, vegetation and field experiments, microbiological, gas chromatographic, mathematical and statistical. Results. The activity of beneficial soil microorganisms can change under the action of temperature, humidity, chemical compounds of various origin, and other microorganisms. It was established that, taking into account a significant variety of factors, it is necessary to develop a set of specific ways to increase the growth and functional activity of nitrogen-fixing bacteria, as well as their viability. It has been proved that the combination of diazotrophs forms an effective symbiotic leguminous-rhizobial system, which provides additional biological nitrogen in agrocenoses. At the same time, there was an increase in plant mass, chlorophyll content in the leaves, protein and oil content in the products. The combined use of diazotrophs increases the yield, in particular, soybeans by 9–16% compared with inoculation by pure bacterial culture. Conclusion. Based on the analysis and generalization of the obtained research results, a strategy for regulating the activity of diazotrophs for their effective introduction into agrocenoses is proposed, which consists in combining bacteria of different species, selecting conditions for their co-cultivation and application upon stabilisation of the number of viable bacterial cells. The proposed strategy involves solving the problem by obtaining an inoculant, which is characterized by a high titre and a stable number of viable cells, which allows to obtain an effective nitrogen-fixing system. The strategy is tried-and-tested on the example of regulating the growth and functional activity of soybean nodule bacteria by combining diazotrophs of different species, substantiating the conditions of their co-cultivation and application to ensure positive interaction in the form of commensalism, as well as by regulating viability of diazotrophs by adding stabilisers to the medium.

Key words: nitrogen-fixing bacteria, growth activity, nitrogen fixation, viability, diazotroph activity regulating strategy.
zotrophs is the fixation of atmospheric nitrogen [4], it is necessary to ensure the formation of an effective nitrogen-fixing system, which occurs as a result of the interaction between bacteria and a particular crop. The formation of such a system is impossible without the introduction of a sufficient number of diazotrophs into the appropriate agroecosystem, which can be done by using inoculum with a high titre. However, even having such an inoculant, it is necessary to ensure maximum stability of viable bacterial cells during storage and use [5].

The titre of nitrogen-fixing cells in the inoculant depends on their growth activity during cultivation [6]; the stability of the number of diazotrophs that can be introduced into agroecosystems depends on the viability of these microorganisms [7–9], and the formation of an effective nitrogen-fixing system — also on the implementation of the functional activity of microorganisms.

In ecosystems, microorganisms cannot be considered in isolation, because there is a constant interaction between them [10–14], which can significantly affect their activity. Therefore, it is important to study mixed cultures of microorganisms, including soil nitrogen-fixing bacteria, for maximum implementation of their potential for practical purposes.

In view of the above, it is important to determine the functional activity and viability of diazotrophs under the action of biotic and abiotic factors, as these studies may be the basis of a strategy to regulate the activity of beneficial soil bacteria.

Objective. Investigate approaches to managing the activity of soil diazotrophs and propose a strategy for its regulation.

Materials and methods. Bacteria used in these experiments, Azospirillum brasilense sp. 7 (typical strain), Azospirillum brasilense 410 (V. V. Volkohon), A. brasilense 18-2 (V. I. Lokhova, O. V. Nadkernychna), Azotobacter chroococcus M-70 (Yu. M. Mochalov, V. I. Kanivets), Azotobacter vinelandii M-X (Yu. M. Mochalov, V. I. Kanivets), Bradyrhizobium japonicum M-8 (M. Z. Tolkachev), B. japonicum 6346 (A. T. Novikova), Rhizobium leguminosarum bv. viciae 2486, Rh. leguminosarum bv. viciae 250a (A. F. Antypchuk, A. T. Novikova), Rh. leguminosarum 31 (M. Z. Tolkachev), Rhizobium radiobacter = Agrobacterium radiobacter 204 (M. K. Sherstoboev, A. V. Khotianovych, V. P. Patyka), Enterobacter aerogenes 30-φ (O. O. Berestetskyi, A. V. Yermolina, V. P. Patyka), Pseudomonas fluorescens B-17 (typical strain). Microorganisms were obtained from the Collection of Beneficial Soil Microorganisms of the Institute of Agricultural Microbiology and Agroindustrial Manufacture of the NAAS. We sincerely gratitude to the authors for their kindly provided strains.

Agricultural crops. Soybean of the varieties Lehenda, Suziria, Poltava. Winter wheat of the variety Poliska 90. Winter rye of the variety Borotba. Winter barley of the variety Honar.

The experiments were performed at the Institute of Agricultural Microbiology and Agroindustrial Manufacture of the NAAS on leached light loam chernozem, which contains from 2.8 % to 3.4 % of humus (according to Tiurin), from 0.27 % to 0.31 % of total nitrogen, about 15 mg/100 g of soil P₂O₅ (according to Kirsanov), from 13 mg/100 g of soil to 16 mg/100 g of K₂O (according to Maslova), pH = 5.9–6.5. Planning and conducting field experiments were performed according to Dospekhov [15].

The number and growth parameters of microorganisms in the bacterial suspension were determined by microbiological methods [16–19]. Studies of the nitrogen fixation activity of microorganisms were performed by the acetylene method [20; 21] on a Chrom-4 gas chromatograph with a flame ionization detector. Steel sorption columns were filled with sorbent Porapak Q 60–80 mesh. Thermostat temperature was 40 °C. Consumption of gases: hydrogen — 15 cm³/min, nitrogen — 100 cm³/min, air — 500 cm³/min.

The number of representatives of certain physiological and trophic groups of microorganisms in the rhizosphere soil of plants was determined by the plate method via deep seeding on agar media [21; 22]: meat-peptone agar (MPA) to account for microorganisms that use mainly organic forms of nitrogen, starch-ammonia agar (SAA) — for microorganisms that absorb mainly nitrogen of mineral compounds. The number of micromycetes was determined on acidified Czapek medium.

Statistical processing was performed according to generally accepted methods in mathematical statistics using Microsoft Excel. To assess the significance of the differences between the variants of the experiments, the least signifi-
cant difference was calculated (HIP65).

Results and discussion. The activity of nitrogen-fixing bacteria is not stable and unchangeable, as we have shown after a range of different experiments. In particular, the effect on diazotrophs was studied:

1) chemical substances of different nature [23–26];
2) soil microorganisms [27–33];
3) abiotic environmental factors [34–36].

Based on the analysis of the obtained results, a general strategy for regulating growth and functional activity, as well as the viability of diazotrophs is proposed. This strategy involves combination of diazotrophs of different species, selection of conditions for their co-cultivation and use upon stabilizing the number of viable bacterial cells (Fig. 1).

The strategy is developed on the pattern of regulating the activity of *B. japonicum* to increase productivity of a particular crop, namely soybeans.

Given the extremely large number of different factors that can potentially affect soybean nodule bacteria, it was necessary to identify specific factors that can significantly affect the activity and viability of the studied microorganisms. In our opinion, it is necessary to minimize the number of selected factors, as their increase may reduce the ability to manage them.

When selecting the factors that affect the introduction of nodule bacteria in soybean agroecoses, it is necessary to take into account the fact that the regulation of growth and functional activity of diazotrophs necessitates activation of the vital processes of microorganisms, and improvement in viability is achieved by reducing bacterial activity, i.e. by bringing them to a state of rest and maintenance in such a state for the required period. Therefore, there is a need to divide the factors into two blocks.

Since in nature, soil diazotrophs function upon constant interaction with other bacteria [37–39], for example, nodule bacteria with associative and free-living nitrogen fixers, one of the effective biotic factors is the use of mixed cultures of microorganisms to increase their growth and functional activity. A feature of our proposed approach to the selection and combination of *B. japonicum* with other soil diazotrophs is the use of microorganisms complementary to nodule bacteria to manage their activity. At the same time, the known combinations of beneficial soil microorganisms in the inoculant aim to expand the spectrum of action of biological preparations: e.g. to improve nitrogen and phosphorus nutrition [40, 41].

Quite often these combinations are mechanism in nature, without a comprehensive scientific substantiation and without answers to the

![Fig. 1. General strategy for regulating activity of soil diazotrophs.](image)
following questions: how does one microorganism affect the growth activity of another; what is the optimal quantitative ratio of the cells of different types of microorganisms; whether the effect of combining two or more microorganisms is greater than the simple sum of the effects of each individual microorganism, etc.

Furthermore, an important factor influencing diazotrophs during their introduction into agroecosystems is ensuring the viability of these bacteria [42; 43], which is influenced by a number of factors [44–47]: temperature, humidity, chemical substances of different nature, etc. The maintenance of diazotrophs can be achieved by transferring bacteria to a state of rest and protective action of certain substances due to the ability to form a protective cover [48; 49].

It is proposed to manage the activity of *B. japonicum* by regulating their growth and functional activity due to combining diazotrophs with the selection of conditions for their co-cultivation and use to ensure positive interaction in the form of commensalism, as well as by regulating the viability of diazotrophs by adding stabilizers to the medium (Fig. 2).

At the next stage, a number of studies were conducted to confirm the correctness of the selected strategy. Initially, the growth activity of soybean nodule bacteria under the action of suspensions containing metabolites of other diazotrophs was studied. No significant positive effect of suspensions of nitrogen-fixing bacteria belonging to rhizobia, azotobacter, pseudomonads, agrobacteria and enterobacter on the growth of soybean nodule bacteria was found. At the same time, high concentrations of suspensions of these microorganisms inhibited the growth of *B. japonicum* strains. Addition of the bacterial suspension with metabolites of *A. brasilense* in low concentrations to the culture medium for the cultivation of nodule bacteria had a positive effect on the growth activity of soybean nodule bacteria.

Upon mixed cultivation of *B. japonicum* and *A. brasilense*, microorganisms can directly affect the viability of bacterial cells of other species, resulting in an increase in both growth and functional activity. Given the different needs of the studied bacteria in food sources, we have developed a new semi-synthetic nutrient medium for their co-cultivation [50].

The production of physiologically active compounds by diazotrophs in pure and mixed culture has been studied. It has been shown that the amount of cytokinins and gibberellins increases, the content of abscisic acid and the auxin/cytokinin ratio decreases compared to variants with pure cultures of microorganisms in

![Fig. 2. Strategy for regulating Bradyrhizobium japonicum activity.](image-url)
the culture fluid of nodule bacteria and azospirilla when they are co-cultivated [51]. The use of soybean nodule bacteria and azospirilla in a mixed culture promotes the formation of a more efficient symbiotic apparatus: the number and weight of nodules increases, nitrogen-fixing activity improves [52].

Various chemical compounds have been tested as stabilizers in the medium. During storage of the inoculum, the titre of bacteria grown with stabilizers decreases more slowly, which indicates the feasibility of using these substances to extend the shelf life of *B. japonicum*. The most effective stabilizer, which in our studies was sodium alginate, and its optimal concentration, which helps maintain the viability and functional activity of soybean nodule bacteria in a liquid medium for 4 months were selected [53; 54].

When using the inoculant based on nodule bacteria and azospirilla with sodium alginate, an increase in the mass of soybean plants in all phases of development, an increase in soybean yield by 0.23–0.4 t/ha, or 9–16 %, compared with inoculation with pure culture of nodule bacteria, was reported. At the same time, the protein and oil content in the products increased.

The combined use of *B. japonicum* and *A. brasilense* is characterized by a higher level of both economic and energy efficiency compared to the variant without inoculation and the variant with a pure culture of nodule bacteria. The implementation of the strategy for managing the activity of diazotrophs during their introduction into soybean agroecosystems is schematically presented in Fig. 3.

Conclusion. Based on the analysis and generalization of our study results, a strategy for regulating the activity of diazotrophs for their effective introduction into agroecosystems is proposed, which consists in combining bacteria of different species, selecting conditions for their co-cultivation and use upon stabilisation of the number of viable bacterial cells. The proposed strategy involves solving the problem by obtaining an inoculant, which is characterized by a high titre and a more stable number of viable cells, which allows to obtain an efficient nitrogen-fixing system.

The strategy is tested on the pattern of regulating the growth and functional activity of soybean nodule bacteria by combining diazotrophs of different species, justifying the conditions of their co-cultivation and use to ensure positive interaction in the form of commensalism, and by regulating the viability of diazotrophs via adding stabilizers to the medium.

Fig. 3. Implementation of the strategy for regulating *Bradyrhizobium japonicum* activity.
REFERENCES

1. Patyka, V. P. (2003). Biolohichniy azot [Biological nitrogen]. Kyiv [in Ukrainian].

2. Volkohon, V. V. (2006). Mikrobiini Preparaty v Zemlerobstvi. Teoriia i praktyka [Microbial Preparations in Agriculture. Theory and practice]. Kyiv [in Ukrainian].

3. Volkohon, V. V. (2007). Mikrobiolohichni aspekty optymizatsii azotnogo udobrennia silko-
hospodarskikh kultur [Microbiological aspects of nitrogen fertilizer optimization of agricultural crops]. Kyiv [in Ukrainian].

4. Morhun, V. V., Kots, S. Ya. (2018). Rol biol-
lohhichnho azotu v azotnomu zhyvlen
nyi roslyn. [The role of biological nitrogen in nitrogen nutrition of plants]. Visnyk Nationalnoi Akademii Nauk Ukrains
ny, 1, 62–74, Kyiv [in Ukrainian].

5. Kurysh, Y. K., Melnykova, N. N. (2011). Vlijianye hlynsytikh myneralov na rost y noduliat-
ykh mykroorhanyzmov y kletok. [The role of clay minerals on growth and nodulation activity of Bradyrhizobium japonicum]. Mikrobiolo-
hichnyi zhurnal, 73(4), 36–40 [in Ukrainian].

6. Stephens, J. H. G., Rask, H. M. (2000). Inoculant production and formulation. Field crops re-
search, 65, 249–258. https://doi.org/10.1016/S0378-4290(99)00090-8

7. Date, R. A. (2001) Advances in inoculant technology: a brief Review. Australian journal of experimental agriculture, 41, 3, 321–325. https://doi.

org/10.1071/EA00006

8. Brockwell, J., Bottomley, P. J. (1995). Recent advances in inoculant technology and prospects for the future. Soil Biology and Biochemistry, 27 (4–
5), 683–697. https://doi.org/10.1016/0038-0717(95)9
8649-9

9. Crawford, S. L., Berryhill, D. L. (1983). Survival of Rhizobium phaseoli in coal-based Legume inoculants applied to seeds. Applied and environ-
mental microbiology, 45(2), 703–705. https://doi.

org/10.1128/aem.45.2.703-705.1983

10. Argaw, A. (2012). Evaluation of co-
inoculation of Bradyrhizobium japonicum and phos-
phate solubilizing Pseudomonas spp. effect on soy-
bean (Glycine max L. (Merr.)) in Assossa Area. Journal of agricultural science and technology, 14, 213–224.

11. Askary, M., Mostajeran, A., Amoogha-
ei, R., & Mostajeran, M. (2009). Influence of the co-
inoculation Azospirillum brasilense and Rhizobium meliloti plus 2.4-D on grain yield and N, P, K con-
tent of Triticum aestivum (cv. Baccros and Ma-
hadi). American-Eurasian Journal of Agricultural &
Environmental Science, 5(3), 296–307.

12. Vorobei, N. A., Patsko, O. V., Kots, S. Ia., &
Parshykova, T. V. (2009). Fiziologichni osobylosti rozvytku liutserny za inokulatsii zmishanymy kultu-
ramy azotfiksuvalnykh mikroorhanizmiv [Physi-
ological features of alfalfa development by inocula-
tion with mixed cultures of nitrogen-fixing microor-
ganisms]. Fyzyolohiya y byokhymyia kulturnykh
rasteni — Physiology and Biochemistry of Cult-
vated Plants, 41 (1), 345–352. [in Ukrainian].

13. Aung, T. T., Tittabutr, P., Boonkerd, N.,
Herridge, D., & Teaunmoong, N. (2013). Co-in-
oculation effects of Bradyrhizobium japonicum and Azospirillum sp. on competitive nodulation and rhiz-
osphere eubacterial community structures of soy-
bean under rhizobia-established soil conditions. Af-
rican Journal of Biotechnology, 12 (20), 2850–2862.

14. Murodova, S. S., Davranov, K. D. (2014).
Kompleksnyie mykrobynie preparaty. Prymenenie
vy selskohoziaistvennoi praktyke [Complex micro-
bial preparations. Application in agricultural prac-
tice]. Biotechnologia Acta, 7 (6). (pp. 92–101) [in Ukrainian].

15. Dospekhov, B. A. (1985). Metodyka polevo-
ho opyta (s osnovamy statistyshcheskoi obrabotki
rezultatov yssledovanyi) [Methods of field experience
(with the basics of statistical processing of research
results]. Moskva: Ahropromyzydat [in Russian].

16. Shlehel, H. (1987). Obshchaya mykobylo-
hichya [General microbiology]. Moskva: Myr [in Russian].

17. Shylnykov, V. K. (2005). Praktikum po
mykobyloholyy [Workshop on Microbiology]. Mos-
ksva: Drofa [in Russian].

18. Bykov, V. A., Vynarov, A. Ju., & Sher-
stobytov, V. V. (1985). Raschet protsessov mykro-
byloholycheskikh pryzyvodstv [Calculation of micro-
biological production processes]. Kyiv: Tekhnyka
[in Russian].

19. Pert, S. D. (1978). Osnovy kultyvyrovanija
mykroorhanizmov y kletok [Fundamentals of Culturing
Microorganisms and Cells]. Moskva: Myr [in Russian].

20. Hardy, R. W. F., Hotsren, R. D., Jack-
son, E. K., & Burns, R. C. (1968). The acetylene-
ethylene assay for N2 fixation: laboratory and field
evaluation. Plant Physiol, 43 (8), 1185–1207. https://doi.org/10.1104/pp.43.8.1185

21. Hardy, R. W. F., Burns, R. C., Holsten, R. D.
(1973). Applications of the acetylene-ethylene assay
for measurement of nitrogen fixation. Soil Biology
and Biochemistry, 5 (1), 47–81.

22. Volkohon, V. V. (2010). Eksperymentalna
gruntova mikrobiolohia [Experimental soil micro-
biology]. Kyiv: Ahrama nauka [in Ukrainian].

23. Kozar, S. F., Symonenko, E. P., Lyn-
nyk, V. O., & Kaplunenko, V. H. (2015). Influence
of nanocarboxylates of microelements on Rhizobium
radiobacter 204 growth-regulating activity. Silsko-
hospodarska mikrobiolohia — Agricultural mi-
icrobiology, 22, 3–8. https://doi.org/10.35868/1997-
3004.22.3-8
24. Ievtushenko, T. A., Kozar, S. F., & Pyshchur, I. M. (2018, October). Vplyv nanokarboksylativ mikroelementiv na rostovu i funktsionalnu aktyvnist Bradyrhizobium japonicum [Influence of microelement nanocarboxylates on growth and functional activity of Bradyrhizobium japonicum]. Mikrobiolohiia v suchasnomu silskohospodarskomu vyrobnyctvi: tezy dopovidi XI naukovo-konferentsii molodykh vchenykh (pp. 20–22), Chernihiv [in Ukrainian].

25. Kozar, S. F., Yevtushenko, T. A., Usmanova, T. O., & Symonenko, Ye. P. (2017). Mikrobiotsenoz ryzosfernoho gruntu ta produktivnist pshenitsy ozymoi za vykorysta-

26. Kozar, S. F., Symonenko, E. P., Volkohon, V. V., & Volkogon, M. V. (2019). Nanocarboxylates of molybdenum and of iron enhance the functional activity of Rhizobium radiobacter 204. Applied Nanoscience, 9(5), 795–800. https://doi.org/10.1007/s13204-018-00939-6

27. Kozar, S. F. (2003). Antahonistichni vidnosny batsyl iz predstavnykiv za bradyrhizobia ta disinfeksii metali u khovykh prats Umanskoho derzhavnoho ahrarnoho universytetu: osnovy formuvannia produktyvnosti silskohospodarskykh kultur [Antagonistic species of bacilli from representatives of primordial diazotrophs and the prospect of victorious complexes in growing silky cultures]. Visnyk ahrarnoi nauky Prychornomoria, 17, 23–29 [in Ukrainian]. https://doi.org/10.35868/1997-3004.30.13-19

28. Kozar, S. F., Ushakova, M. A. (2004). Antahonizm azotobakteria shchodo gruntu diazotrofiv ta vplyv kompleksiv bakterii na rizh Roslyn [Antagonism of azotobacter from rodent diazotrophs and infusion of bacterium complexes on the growth of roslin]. Ahroekologichnyi zhurnal — Agroecological journal, 2, 31–34 [in Ukrainian].

29. Kozar, S. F. (2008). Kompleksne zastosuvannia diazotrofiv dla pidvyshchennia urozhainosti ozymoho zhytia [Integrated use of diazotrophs for increasing the yield of winter crops]. Zhurnaly naukovykh prats Umanskooho derzhavnoho ahrarnoho universytetu: osnovy formuvannia produktyvnosti silskohospodarskykh kultur za intensyvnykh tehnologii vyroschuvalnia — Collected works of Uman state university of horticulture: bases of formation of productivity of agricultural crops at intensive technologies of cultivation (pp. 312–316) [in Ukrainian].

30. Kozar, S. F., Ushakova, M. A., & Pohorylko, N. V. (2002). Stvorennia shchuchnykh asotsiatsii diazotrofiv dlia inokuliatsii ozymoho zhytia [The creation of piece associations of diazotrophs for the inoculation of winter crops]. Stalyi rozvytok ahroekosystem: tezy dopovidi mizhnarodnoi naukovoi konferentsii (pp. 105–107), Vinnytsia [in Ukrainian].

31. Kozar, S. F. (2005). Biolohichna efektyvnist kompleksnogo zastosuvannia mikrobykh preparatov [Biological efficiency of complex storage of microbial preparations]. Silskohospodarska microbiolohiia — Agricultural microbiology, 1–2, 86–94 [in Ukrainian].

32. Kozar, S. F. (2006). Vplyv mikrobykh preparatov na aktyvnist mikroflory ryzosfernoho gruntu yaroho yachmeniu [Influence of microbial preparations on the activity of microflora in rhizosphere soil of bright barley]. Visnyk KhNAU im. V. V. Dokuchaeva — The Bulletin of the kharkiv national agricultural university of V. V. Dokuchaev, 4, 126–133 [in Ukrainian].

33. Kozar, S. F. (2005). Byolohitcheske elementyi tehnolohyi vyirashchyvannya yarового yachmenia na osnove kompleksnogo yspolzovaniya mykrobnykh preparatov [Biological elements of the technology of growing spring barley based on the integrated use of microbial preparations]. Chernihivskyi derzhavni tsentr naukovo-tekhnicnoksi ekonomichnoi informatsii, 4 [in Ukrainian].

34. Kozar, S. F., Nesterenko, V. M., Yevtushenko, T. A., Firsovska, O. V., & Usmanova, T. O. (2013). Efektyvnist zastosuvannia mikrobykh preparatov ABT v teknholohii vyroshchuvannya tsybuli ripchastoi [The effectiveness of the intake of the microbial drug ABT in the technology of viral cybulization]. Naukovyi visnyk Natsionalnoho universytetu bioreursosiv i pryrodokorystuvannya Ukrainy (Seria “Ahronimia”) — Scientific Bulletin of the National University of Life and Environmental Sciences of Ukraine (Series “Agronomy”). 183 (1), 207-214 [in Ukrainian].

35. Bilokonska, O., Kozar, S. (2020). Viability of Azotobacter chroococcum IMB B-7836 and their influence on cucumber productivity. Anale Universitatii din Oradea, Fascicula Biologie.; XXVII, 2, 111–115.

36. Bilokonska, O. M., Kozar, S. F., Yevtushenko, T. A., & Usmanova, T. O. (2018). Zberezenist bakterii rodu Azotobacter na nasinni Cucumis sativus L. za dii riznych temperature [Preservation of bacteria of the genus Azotobacter on plants Cucumis sativus L. for different temperatures. Silskogospodarska Microbiology]. Silskohospodarska microbiolohiia — Agricultural microbiology, 27, 11–17. [in Ukrainian]. https://doi.org/10.35868/1997-3004.27.11-17

37. Goldenfeld, N., Woese, C. (2007). Biology’s Next Revolution. Nature. 445. https://doi.org/10.1038/445369a
38. Patyka, M. V., Tanchyk, S. P., Kolodiazhnyi, O. Yu., Ivaniuk, M. F., Kruhlov, Yu. V., Melnychuk, M. D., & Patyka, T. I. (2012). Formuvannia bioriznomanittia ta filotypovoi struktury eubakterialnoho kompleksu chornozem v typovoho pry vyroshchuvannia pshenitsi ozymoi. [Formation of bioriznomanittia and phylotype structure of eubacterial complex black soil typical for growing winter wheat]. Dopovidi Nationalnoi akademii nauk Ukrainy — Reports of the National Academy of Sciences of Ukraine, 11, 163–171 [in Ukrainian].

39. Lenheiler, Y., Drevs, H., & Shlehel, H. (2005). Sovremennaya mykrobyolohiya. Prokaryoty: v 2-kh tomakh [Modern microbiology. Prokaryotes: in 2 volumes] Moskov: Myr. [in Russian].

40. De-Bashan, L. E., Hernandez, J., Morey, T., & Bashan, Y. (2004). Microalgae growth-promoting bacteria as “helpers” for microalgae: a novel approach for removing ammonium and phosphorus from municipal wastewater. Water Research, 38 (2), 466–474. https://doi.org/10.1016/j.watres.2003.09.022

41. Patil, G. B., Lakshman, H. C., Mirdhe, R. M., & Agadi, B. S. (2013) Effect of co-inoculation of AM fungi and two beneficial microorganisms on growth and nutrient uptake of Eleusine coracana Gaertn. (Finger millet). Asian Journal of Plant Science and Research, 3 (1), 26–30.

42. Date, R. A. (2001). Advances in inoculant technology: a brief review. Australian Journal of Experimental Agriculture, 41 (3), 321-325.

43. Brockwell, J., Bottomley, P. J. (1995). Recent advances in inoculant technology and prospects for the future. Soil Biology and Biochemistry, 27 (4–5), 683-697. https://doi.org/10.1016/0038-0717(95)98649-9

44. Kremer, R. J., Peterson, H. L. (1983). Effects of Carrier and Temperature on Survival of Rhizobium spp. in Legume Inocula: Development of an Improved Type of Inoculant. Applied and Environmental Microbiology, 45 (6), 1790–1794. https://doi.org/10.1128/aem.45.6.1790-1794.1983

45. Kovalevska, T. M., Kozar, S. F., Krutylo, D. V., Horban, V. P., Romanova, I. M., & Usmanova, T. O. (2015). Metody kultyuvannia ta tryvaloho zberihannya bulbochovykh bakterii v kolektsiakh: metodichni rekomentatsii [The method of cultivation of the trivial harvesting of bulbous bacteria in collections: methodical recommendations]. Chernihiv: ISMAV NAAN [in Ukrainian].

46. Hartley, E. J., Gemell, L. G., & Deaker, R. (2012). Some factors that contribute to poor survival of rhizobia on preinoculated legume seed. Crop and Pasture Science, 63 (8–9), 858–865. https://doi.org/10.1071/CP12132

47. Stout, D. G., Hall, J. W., Brooke, B. M., Baalim, G., Thompson, D. J. (1993). Effect of storage temperature and time on viability of rhizobia on lime-coated alsike clover (Trifolium hybridum) seed. The Journal of Agricultural Science, 120 (2), 205–211. https://doi.org/10.1017/S0021859600074244

48. Bashan, Y., Hernandez, J. P., Leyva, L. A., & Bacillo, M. (2002). Alginate microbeads as inoculant carriers for plant growth-promoting bacteria. Biology and Fertility of Soils, 35, 359–368. https://doi.org/10.1007/s00374-002-0481-5

49. Bashan, Y., Gonzalez, L. E. (1999). Long-term survival of the plant-growth-promoting bacteria Azospirillum brasilense and Pseudomonas fluorescens in dry alginate inoculant. Applied Microbiology and Biotechnology, 51 (2), 262–266. https://doi.org/10.1007/s00374-002-0481-5

50. Kozar, S. F., Yevtushenko, T. A., & Nesterenko, V. M. (2017). Vplyv chechoviv riznoho khimichnoho skladu na zhyttievedmatnist diazotrofiv na nasinni silskohospodarskykh kultur [The inflow of chechoviv from a small chemistry warehouse to the life of diazotrophs on the national agricultural cultures]. Silskohospodarska mikrobiologhita — Agricultural microbiology, 25, 10–17 [in Ukrainian]. https://doi.org/10.35868/1997-3004.25.10-17

51. Mulder, L., Hogg, B., Bersoult, A., & Cullimore, J. V. (2005). Integration of signalling pathways in the establishment of the legume-rhizobia symbiosis. Physiologia Plantarum, 123 (2), 207–218. https://doi.org/10.1111/j.1399-3054.2005.00448.x

Received 05.04.2021
СТРАТЕГІЯ РЕГУЛЮВАННЯ АКТИВНОСТІ ДІАЗОТРОФІВ ЗА ЇХ ІНТРОДУКЦІЇ В АГРОЦЕНОЗИ СІЛЬСЬКОГОСПОДАРСЬКИХ КУЛЬТУР

С. Ф. Козар
Інститут сільськогосподарської мікробіології та агропромислового виробництва НААН, м. Чернігів
e-mail: kozarsf@gmail.com

Мета. Дослідити підходи щодо управління активністю ґрунтових діазотрофів та запропонувати стратегію її регулювання. Методи. Теоретичні, вегетаційного і польового досліду, мікробіологічні, газохроматографічні, математично-статистичні. Результати. Показано, що активність корисних ґрунтових мікроорганізмів може змінюватися за дії температури, вологості, хімічних сполук різної природи, інших мікроорганізмів. Встановлено, що враховуючи значну різноманітність чинників, необхідна розробка комплексу конкретних способів підвищення ростової й функціональної активності азотфіксувальних бактерій, а також їхньої життєздатності. Доведено, що внаслідок дії діазотрофів формуються ефективна симбіотична бобово-ризобіальна система, що забезпечує надходження додаткового біологічного азоту в агроценози. Водночас відзначено збільшення маси рослин, вмісту хлорофілів у листках, вмісту протеїну та олії в продукції. За сумісного використання діазотрофів збільшується урожайність, зокрема сої — на 9–16 %, якщо порівняти з інокуляцією чистою культурою бактерій.

Висновки. На основі аналізу і узагальнення отриманих результатів досліджень пропонується стратегія регулювання активності діазотрофів для їх ефективної інтродукції в агроценози, яка полягає у поєднанні бактерій різних видів, підборі умов їх сумісного культивування і застосування за стабілізації чисельності життєздатних клітин бактерій. Запропонована стратегія передбачає розв'язання поставленого завдання шляхом отримання інокулянту, який характеризується високим титром і більш стабільною кількістю життєздатних клітин, що дозволяє отримати ефективну азотфіксувальну систему. Стратегія опрацьована на прикладі регулювання ростової й функціональної активності бульбочкових бактерій сої за рахунок поєднання діазотрофів різних видів, обґрунтування умов їх сумісного культивування і застосування для забезпечення позитивної взаємодії за формою коменсалізму, а також шляхом регулювання життєздатності діазотрофів за раціоні у теплому середовищі.

Ключові слова: азотфіксувальні бактерії, ростова активність, азотфіксація, життєздатність, стратегія регулювання активності діазотрофів.

ЦИТОВАНА ЛІТЕРАТУРА
1. Біологічний азот / За ред. В. П. Патики. Київ. 2003. 424 с.
2. Мікробні препарати в землеробстві. Теорія і практика / За ред. В. В. Волкогона. Київ. 2006. 312 с.
3. Волкогон В. В. Мікробіологічні аспекти оптимізації азотного удобрення сільськогосподарських культур. К.: Аграрна наука, 2007. 144 с.
4. Морган В. В., Коць С. Я. Роль біологічного азоту в азотному живленні рослин. Вісник Національної Академії Наук України. 2018. № 1. С. 62–74.
5. Курдіш І. К., Мельникова Н. Н. Влияние глинистых минералов на рост и нодуляционную активность Bradyrhizobium japonicum. Мікробіологічний журнал. 2011. Т. 73 (4). С. 36-40.
6. Stephens J. H. G., Rask H. M. Inoculant production and formulation. Field crops research. 2000. Vol. 65. С. 249–258. https://doi.org/10.1016/S0378-4290(99)00090-8
7. Date R. A. Advances in inoculant technology: a brief Review. Australian journal of experimental agriculture. 2001. Vol. 41 (3). С. 321–325. https://doi.org/10.1071/EA00006
8. Brockwell J., Bottomley P. J. Recent advances in inoculant technology and prospects for the future. Soil Biology and Biochemistry. 1995. Vol. 27 (4–5). С. 683–697. https://doi.org/10.1016/0038-0717(95)98649-9
9. Crawford S. L., Berryhill D. L. Survival of
Rhizobium phaseoli in coal-based Legume inoculants applied to seeds. *Applied and environmental microbiology*. 1983. Vol. 45 (2). C. 703–705. https://doi.org/10.1128/aem.45.2.703-705.1983

10. Argaw A. Evaluation of co-inoculation of Bradyrhizobium japonicum and phosphate solubilizing *Pseudomonas* spp. Effect on soybean (Glycine max L. (Merr.)) in Assossa Area. *Journal of agricultural science and technology*. 2012. Vol. 14. C. 213–224.

11. Askary M., Mostajeran A., Amoaghaee R., Mostajeran M. Influence of the co-inoculation Azospirillum brasilense and Rhizobium meliloti plus 2.4-D on grain yield and N, P, K content of Triticum aestivum (cv. Bacros and Mahdavi). *American-Eurasian Journal of Agricultural & Environmental Sciences*. 2009. Vol. 5 (3). C. 296–307.

12. Vorobey N. A., Packo O. V., Kocь J. Я., Parshikova T. V. Фізіологічні особливості розвитку люцерни за інокуляції змішаними культурами азотфіксувальних мікроорганізмів. *Фізіологія та біохімія культурних растення*. 2009. Т. 41 (4). C. 344–352.

13. Aung T. T., Tittabutr P., Boonkerd N., Herdeidge D., Teamroong N. Co-inoculation effects of Bradyrhizobium japonicum and Azospirillum sp. on competitive nodulation and rhizosphere eubacterial community structures of soybean under rhizobia-established soil conditions. *African Journal of Biotechnology*. 2013. Vol. 12 (20). C. 2850–2862.

14. Муродова С. С., Давранов К. Д. Комплексные микробные препараты. Применение в сельскохозяйственной практике. *Biotechnologia Acta*. 2014. Vol. 7 (6). C. 92–101.

15. Доспехов В. А. Методика полевого опыта (с основами статистической обработки результатов исследований). М. : Агропромиздат. 1985. 351 с.

16. Шлегель Г. Общая микробиология. М. : Мир, 1987. 567 с.

17. Практикум по микробиологии / под ред. В. К. Шильникова, М. Дрофа, 2005. 256 с.

18. Быков В. А., Винаров А. Ю., Шерстобитов В. В. Расчет процессов микробиологических производств. К. : Техника. 1985. 246 с.

19. Перт С. Д. Основы культивирования микробоорганизмов и клеток. М. : Мир, 1978. 330 с.

20. Hardy R. W. F., Hotsren R. D., Jackson E. K., Burns R. C. The acetylene-ethylene assay for N2 fixation: laboratory and field evaluation. *Plant Physiol*. 1968. Vol. 43 (8). C. 1185–1207. https://doi.org/10.1104/pp.43.8.1185

21. Hardy R. W. F., Burns R. C., Holsten, R. D. Applications of the acetylene-ethylene assay for measurement of nitrogen fixation. *Soil Biology and Biochemistry*. 1973. Vol. 5 (1). C. 47–81.

22. Експериментальна грунта мікробіологія / За ред. В. В. Волкогон. К. : Аграрна наука, 2010. 464 с.

23. Kozar S. F., Symonenko E. P., Lynyk V. O., Kaplunenko V. H. Influence of nanocarboxylates of microelements on Rhizobium radiobacter 204 growth-regulating activity. *Сільськогосподарська мікробіологія*. 2015. Вип. 22. C. 3–8. https://doi.org/10.35868/1997-3004.22.3-8

24. Євтушенко Т. А., Козар С. Ф., Пишур І. М. Вплив нанокарбоксилатів мікроелементів на ростову і функціональну активність Bradyrhizobium japonicum. Мікробіологія в сучасному сільськогосподарському виробництві: тези доповіді XI наукової конференції молодих вчених (м. Чернігів, 5–6 жовтня). Чернігів, 2018. C. 20–22.

25. Козар С. Ф., Євтушенко Т. А., Усманова Т. О. Вплив полісахаридно-білкового комплексу на ефективність бактерізації сої Ризогуміном. *Сільськогосподарська мікробіологія*. 2019. Вип. 30. C. 13–19. https://doi.org/10.35868/1997-3004.30.13-19

26. Kozar S. F., Symonenko E. P., Volkovon V. V., Volkogon M. V. Nanocarboxylates of molybdenum and of iron enhance the functional activity of Rhizobium radiobacter 204. *Applied Nanoscience*. 2019. Vol. 9. Num. 5. С. 795–800. https://doi.org/10.1007/s13204-018-00939-6

27. Козар С. Ф. Антагонистичні відносини бактерій щодо грунтових діазотрофів та перспективи використання їхніх комплексів при вирощуванні сільськогосподарських культур. Вісник аграрної науки Принятором’я. 2003. № 3 (1). С. 302–307.

28. Козар С. Ф., Ушакова М. А. Антагонізм азотобактера щодо грунтових діазотрофів та вплив комплексів бактерій на ріст рослин. *Агроекологічний журнал*. 2004. № 2. С. 31–34.

29. Козар С. Ф. Комплексне застосування діазотрофів для підвищення урожайністі озимого жита. Збірник наукових праць Уманського дернового аграрного університету: основи формування продуктивності сільськогосподарських культур за інтенсивних технологій вирощування. 2008. С. 312–316.

30. Козар С. Ф., Ушакова М. А., Погорилько Н. В. Створення штучних асоціацій діазотрофів для інокуляції озимого жита. Євтушенко Т. А. Статистика основних рельєфних формування сільськогосподарських культур за інтенсивних технологій вирощування. 2003. С. 105–107.

31. Козар С. Ф. Біологічна ефективність комплексного застосування мікробних препаратів. *Сільськогосподарська мікробіологія*. 2005. Вип. 1–2. С. 86–94.

32. Козар С. Ф. Вплив мікробних препаратів на активість мікрофлори ризосферного ґрунту ярової ячменю. *Вісник ХНАУ ім. В. В. Докучаєва*. 2006. 4. С. 126–133.

33. Козар С. Ф. Біологіческие элементы
технології вирощування ярового ячменю на осн
нові комплексного використання бактеріальних
підродів. Чернігівський державний центр на
уково-технічної і економічної інформації. 2005. № 4. 4 с.

34. Козар С. Ф., Нестеренко В. М., Євтушенко Т. А., Фірсовський О. В., Усманова Т. О. Ефективність застосування мікробного препарата АБТ в технології вирощування цибулі ріпчастої. Науковий вісник Національного університету біоресурсів і природокористування України (Серія «Агрономія»). 2013. Вип. 183 (1). С. 207–214.

35. Білоконська О., Козар С. Віалість ризобії Azotobacter chroococcum IMB В-7836 і їхнє вплив на плодючість огірок. Analele Universității din Oradea, Fascicula Biologie. 2020; XXVII, Issue 2. С. 111–115.

36. Білоконська О. М., Козар С. Ф., Євтушенко Т. А., Усманова Т. О. Збереженість бактерії роду Azotobacter на насінні Cuprum sativus L. за дії різних температур. Сільськогосподарська мікробіологія. 2018. Вип. 27. С. 11–17. https://doi.org/10.35868/1997-3004.27.11-17

37. Goldenfeld N., Woese C. Biology’s Next Revolution. Nature. 2007. Vol. 445. С. 369. https://doi.org/10.1038/445369a

38. Патика М. В., Танчик С. П., Колодяжний О. Ю., Іванок М. Ф., Круглов Ю. В., Мельничук М. Д., Патика Т. І. Формування біоризноманіття та філінтової структури еубактеріального комплексу чорнозему типового при вирощуванні пшениці озимої. Доповіді Національної академії наук України. 2012. № 11. С. 163–171.

39. Современная микробиология. Прокартоны: в 2-х тахах / Под ред. Й. Ленгелера, Г. Древ-са, Г. Шлегеля. М.: Мир. 2005.

40. De-Bashan L. E., Hernandez J., Morey T., Bashan Y. Microalgae growth-promoting bacteria as “helpers” for microalgae: a novel approach for removing ammonium and phosphorus from municipal wastewater. Water Research. 2004. № 38 (2). С. 466–474. https://doi.org/10.1016/j.watres.2003.09.022

41. Patil G. B., Lakshman H. C., Mirdhe R. M., Agadi B. S. Effect of co-inoculation of AM fungi and two beneficial microorganisms on growth and nutrient uptake of Eleusine coracana Gaertn. (Finger millet). Asian Journal of Plant Science and Research. 2013. Vol. 3 (1). С. 26–30.

42. Date R. A. Advances in inoculant technology: a brief review. Australian Journal of Experimental Agriculture. 2001. Vol. 41 (3). С. 321–325.

43. Brockwell J., Bottomley P. J. Recent advances in inoculant technology and prospects for the future. Soil Biology and Biochemistry. 1995. Vol. 27 (4–5). С. 683–697. https://doi.org/10.1016/0038-0717 (95)98649-9

44. Kremer R. J., Peterson H. L. Effects of Carrier and Temperature on Survival of Rhizobium spp. in Legume Inocula: Development of an Improved Type of Inoculant. Applied and Environmental Microbiology. 1983. Vol. 45 (6). С. 1790–1794. https://doi.org/10.1128/aem.45.6.1790-1794.1983

45. Ковалевська Т. М., Козар С. Ф., Крутило Д. В., Горбань В. П., Романова І. М., Усманова Т. О. Методи культивування та тривалого зберігання бульбочкових бактерій в колекціях: методичні рекомендації. Чернігів: ИСМАВ НААН. 2015. 36 с.

46. Hartley E. J., Gemell L. G., Deaker R. Some factors that contribute to poor survival of rhizobia on preinoculated legume seed. Crop and Pasture Science. 2012. Vol. 63 (8–9). С. 858–865. https://doi.org/10.1071/CP12132

47. Stout D. G., Hall J. W., Brooke B. M., Baalim G., Thompson D. J. Effect of storage temperature and time on viability of rhizobia on lime-coated alsike clover (Trifolium hybridum) seed. The Journal of Agricultural Science. 1993. Vol. 120 (2). С. 205–211. https://doi.org/10.1017/S0021859600074244

48. Bashan Y., Hernandez J. P., Leyva L. A., Bacilio M. Alginate microbeads as inoculant carriers for plant growth-promoting bacteria. Biology and Fertility of Soils. 2002. Vol. 35. С. 359–368. https://doi.org/10.1007/s00374-002-0481-5

49. Bashan Y., Gonzalez L. E. Long-term survival of the plant-growth-promoting bacteria Azospirillum brasilense and Pseudomonas fluorescens in dry alginate inoculant. Applied Microbiology and Biotechnology. 1999. Vol. 51 (2). С. 262–266. https://doi.org/10.1007/s002530051391

50. Козар С. Ф., Євтушенко Т. А., Нестеренко В. М. Вплив речовин різного хімічного складу на життєздатність діазотрофів на насінні сільськогосподарських культур. Сільськогосподарська мікробіологія. 2017. Вип. 25. С. 10–17. https://doi.org/10.35868/1997-3004.25.10.17

51. Mulder, L., Hogg, B., Bersoult, A., Cullimore, J. V. Integration of signalling pathways in the establishment of the legume-rhizobia symbiosis. Physiologia Plantarum. 2005. Vol. 123 (2). Р. 207–218. https://doi.org/10.1111/j.1399-3054.2005.00448.x

Отримано 05.04.2021