The enigma of *Calonectria* species occurring on leaves of *Ilex aquifolium* in Europe

Christian Lechat¹, Pedro W. Crous² and Johannes Z. Groenewald²

¹AscoFrance, 64 route de Chizé, F-79360, Villiers en Bois, France; corresponding author e-mail: lechat@ascofrance.fr
²CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands

Abstract: Species of *Calonectria* are common saprobes and plant pathogens on a wide range of hosts occurring in subtropical to tropical regions of the world. The aim of the present study was to resolve the status of new *Calonectria* collections obtained on *Ilex* leaves from France. Based on DNA sequence data of their β-tubulin and histone gene regions, as well as morphology, the new collections matched the ex-type strain of *Cylindrocladium ilicicola*. On the host and in culture, yellow to brownish-yellow perithecia were observed that did not stain red in 3 % KOH. Based on these results, *C. ilicicola* and its purported teleomorph, *Ca. pyrochroa*, were shown to represent two distinct species, as the latter has bright red perithecia that stain purple in KOH. A new combination, *Ca. lauri*, based on *Tetracytum lauri*, is subsequently proposed for *C. ilicicola*. *Calonectria lauri* is distinct from *Ca. ilicicola*, a pathogen commonly associated with *Cylindrocladium* black rot of peanut. Finally, *Ca. canadiana* is proposed as new name for *Cy. canadiense*, which is a nursery pathogen involved with root rot of several tree genera in Quebec, Canada.

Key words: Hypocreales
Calonectria
Cylindrocladium
Ilex aquifolium
TUB
HIS
systematics

Article info: Submitted: 1 September 2010; Accepted: 29 September 2010; Published: 2 November 2010.

INTRODUCTION

Species of *Calonectria* are members of *Nectriaceae* (*Hypocreales, Ascomycetes*) (Lombard 2010a–c). *Nectriaceae* are characterised by having uniculate, orange to purple, superficial ascomata (Rossman et al. 1999). *Calonectria* is easily distinguished from other members of the family based on its *Cylindrocladium* anamorphs. Formerly *Cylindrocladium* also included members of *Cylindrocladiella*, a genus that accommodates *Cylindrocladium*-like species with small conidia (Boesewinkel 1982, Victor et al. 1998) and *Nectricladiella* telemorphs (Schoch et al. 2000). Other morphologically similar genera that have also since been separated from this complex include *Xenocyndrocladium* (Decock et al. 1997), *Curvicladiella* (Crous et al. 2006a) and *Dematiocladium* (Crous et al. 2005). Following the approach of Crous et al. (2006b, 2008, 2009a, b) with other fungal groups, Lombard et al. (2009, 2010a–d) chose to use the older *Calonectria* name for the genus, irrespective whether the teleomorph or *Cylindrocladium* anamorph, unnamed microconidial, megaconidial, or chlamydospore-like synanamorph was observed. All taxa are since accommodated in *Calonectria*, which is a monophyletic genus (Lombard et al. 2010a–c).

Most species of *Calonectria* occur commonly in soil, especially in subtropical to tropical regions of the world. Although the genus was originally regarded as saprobic (Graves 1915), taxa have since been proven to be important plant pathogens, associated with a wide host range of plants, causing disease symptoms ranging from leaf spots to stem cankers, damping off, cutting rot, root and fruit rot (Crous et al. 2004b, 2006a, Lombard et al. 2009, 2010a, d). Major diseases attributed to *Calonectria* infections include *Cylindrocladium* black rot of *Arachis hypogaea* (peanut), and red crown rot of *Glycine max* (soybean) (Crous et al. 1993, Wright et al. 2010), as well as root rot and leaf diseases of numerous diverse hosts (Crous et al. 2004b, 2006a).

Over the past few years, a species of *Calonectria* was collected from leaves of *Ilex aquifolium* in France. Presently four species of *Calonectria* have been described from *Ilex* (*Aquifoliaceae*), namely *Calonectria* morganii on *Ilex paraguayensis* in Argentina, and *Ilex vomitoria* in Florida (USA); *Calonectria avesiculata on Ilex* spp. in Georgia and Florida (USA), *Cylindrocladium ilicicola* (as *Calonectria pyrochroa*) on *Ilex aquifolium* on Clare Island (Ireland), and *Calonectria spathulata on Ilex paraguariensis* in
Brazil (Crous 2002). Hawksworth & Sivanesan (1976) also reported a Calonectria species on Ilex aquifolium from Slapton, South Devon, England, which appears to be undescribed, with ascospores 3-septate, 14–22 ×3–4 µm. The collection obtained from France and treated in this study, is morphologically distinct from taxa presently reported from Ilex.

In recent years there have been several revisions focused on either Calonectria or its anamorph genus, Cylindrocladium (Rossman 1979, Peerally 1991, Crous & Wingfield 1994, Crous 2002). The first attempt to provide a molecular phylogeny of the genus was that of Schoch et al. (2001) based on β-tubulin DNA sequences. This gene region, however, proved insufficiently variable to reliably distinguish all species complexes in the genus (Kang et al. 2001a, b, Henricot & Culham 2002, Crous et al. 2004b, 2006a). Since then, a concerted effort has been made to generate a multi-gene phylogeny for taxa in the genus, and identify the best suited gene for species delimitation (Lombard et al. 2009, 2010a–d). Based on these findings, a combination of β-tubulin DNA sequence data, supplemented with either calmodulin or elongation factor 1-α, proved the most effective in distinguishing all known taxa.

The aim of the present study was to compare the new collections on Ilex from France to all species known in the genus, using morphology and DNA sequence analyses of their β-tubulin and histone gene regions in order to determine if it represented a novel taxon.

MATERIALS AND METHODS

Isolates

Single ascospore isolates were obtained from leaves of Ilex aquifolium as explained in Crous & Wingfield (1994). Isolates were incubated on plates of 2 % malt extract agar (MEA), 2 % potato-dextrose agar (PDA) and oatmeal agar (OA) (Crous et al. 2009c) for 7 d at 25 ºC under continuous near-UV light, to promote sporulation. Reference strains are maintained in the CBS-KNAW Fungal Biodiversity Centre (CBS) Utrecht, The Netherlands.

DNA isolation, amplification and analyses

Genomic DNA was isolated from fungal mycelium grown on MEA, using the UltraCleanTM Microbial DNA Isolation Kit (MoBio Laboratories, Inc., Solana Beach, CA, USA) according to the manufacturer’s protocol. Two loci were amplified and sequenced as explained in Crous et al. (2004b) and Lombard et al. (2010c), namely, part of the β-tubulin gene (TUB), amplified with primers T1 (O’Donnell & Cigelnik 1997) and CYLTUB1R (Crous et al. 2004b); and part of the histone H3 gene (HIS) using primers CYLH3F and CYLH3R (Crous et al. 2004b). Part of the nuclear rDNA operon spanning the 3' end of the 18S nrRNA gene (SSU), the first internal transcribed spacer (ITS1), the 5.8S nrRNA gene, the second ITS region (ITS2) and the 5' end of the 28S nrRNA gene (LSU) was amplified for some isolates as explained in Lombard et al. (2010c). The generated sequences were compared with other fungal DNA sequences from NCBI’s GenBank sequence database using a blastn search; TUB sequences with high similarity were added to the alignment and the result of sequences of the other loci were used as confirmation (not shown). The additional GenBank sequences were manually aligned using Sequence Alignment Editor v. 2.0a11 (Rambaut 2002). Phylogenetic analyses of the aligned sequence data were performed using PAUP (Phylogenetic Analysis Using Parsimony) v. 4.0b10 (Swofford 2003) and consisted of neighbour-joining analyses with the uncorrected (“p”), the Kimura 2-parameter and the HKY85 substitution models. Alignment gaps were treated as missing data and all characters were unordered and of equal weight. Any ties were broken randomly when encountered. For parsimony analyses, alignment gaps were treated as a fifth character state and all characters were unordered and of equal weight. Maximum parsimony analysis was performed using the heuristic search option with 100 random (ITS) or simple (LSU) taxa additions and tree bisection and reconstruction (TBR) as the branch-swapping algorithm. Branches of zero length were collapsed and all multiple, equally parsimonious trees were saved. The robustness of the trees obtained was evaluated by 1 000 bootstrap replications (Hillis & Bull 1993). Tree length (TL), consistency index (CI), retention index (RI) and rescaled consistency index (RC) were calculated. Sequences derived in this study were lodged at GenBank (<ncbi.nlm.nih.gov>), the alignment in TreeBASE (<treebase.org/treebase/index.html>), and taxonomic novelties in MycoBank (<MycoBank.org>; Crous et al. 2004a).

Morphology

Characteristics in culture were determined after 7 d on MEA, PDA and OA (Crous et al. 2009c). Morphological descriptions were based on sporulating cultures on synthetic nutrient-poor agar (SNA) (Nirenburg 1981, Lombard et al. 2009) and carnation leaf agar (CLA) (Crous et al. 2009c). Slide preparations were made from sporulating cultures (SNA for anamorph, CLA for teleomorph) in clear lactic acid, with 30 measurements determined per structure, and observations made with a Nikon SMZ1500 dissecting microscope, and with a Zeiss Axioscope 2 microscope using differential interference contrast (DIC) illumination. Colony characters and pigment production were noted after 7 d of growth on MEA, PDA and OA (Crous et al. 2009c) incubated at 25 ºC. Colony colours (surface and reverse) were rated according to the colour charts of Rayner (1970).
Table 1. Collection details and GenBank accession numbers of isolates of *Calonectria lauri* included in this study.

Strain No.	Substrate	Country	Collector(s)	GenBank Accession No. (TUB, HIS, ITS)
CPC 15683	Leaves of *Ilex aquifolium*	Netherlands	W. Gams	FR694682, FR694676, FR694679
CBS 126269 = CPC 17978	Leaves of *I. aquifolium*	France	A. Gardiennet	FR694683, FR694677, FR694680
CBS 553.69 = IMI 299390	Root of *Buxus sempervirens*	Belgium	—	FR694684, FR694678, —
CBS 749.70	*I. aquifolium*	Netherlands	H.A. van der Aa	FR694685, GQ267250, GQ280584

1CBS: CBS Fungal Biodiversity Centre, Utrecht, The Netherlands; CPC: Culture collection of P.W. Crous, housed at CBS; IMI: International Mycological Institute, CAB-Bioscience, Egham, Bakeham Lane, UK.

2TUB: partial beta-tubulin gene; HIS: partial histone H3 gene; ITS: Internal transcribed spacers 1 and 2 together with 5.8S nrDNA.

RESULTS

Phylogeny

Approximately 600, 480 and 680 bases were determined for the isolates indicated in Table 1 for TUB, HIS and ITS, respectively. Of the β-tubulin gene, 522 bases were used for phylogenetic analyses in the manually adjusted alignment containing 32 isolates (including the outgroup sequence). Of these 522 characters (including alignment gaps), 180 were parsimony-informative, 47 were variable and parsimony-uninformative, and 295 were constant. Neighbour-joining analysis using the three substitution models, as well as the parsimony analysis, yielded trees with exactly the same topologies. Parsimony analysis of the alignment yielded a single most parsimonious tree (TL = 381 steps; CI = 0.816; RI = 0.953; RC = 0.778), which is shown in Fig. 1.

Taxonomy

Calonectria lauri (Vanderw.) Lechat & Crous, comb. nov.

MycoBank MB517423

(Fig. 2)

Basionym: Tetracytum lauri Vanderw., Parasitica 1: 145. 1945. (as "laurii").

= *Candelospora ilicicola* Hawley, Proc. Roy. Irish Acad. 31: 11. 1912. [non *Calonectria ilicicola* Boedijn & Reitsma, 1950]

= *Cylindrocladium ilicicola* (Hawley) Boedijn & Reitsma, Reinwardtia 1: 57. 1950.

Typos: IRELAND, Clare Island, *Ilex aquifolium*, Hawley, K (M) 61269!, holotype of *Cyl. ilicicola*, IMI 76542 isotype. *NETHERLANDS*, South-East Limburg, Vijlenerbos, Vijlen, *Ilex aquifolium*, Aug. 1970, H.A van der Aa, epitype CBS H-15110, ex-epitype culture CBS 749.70.

Ascomata perithecial, solitary, scattered, subglobose to ovoid, 450–550 µm high × 380–420 µm diam, superficial, not obviously stromatic but difficult to remove from the substratum because basal cells of ascomata remain immersed in the substratum, yellow to brownish-yellow, dark-red at base, not changing colour in 3 % KOH or lactic acid, warted except at ostiolar region, ostiole papillate, composed of palisade-like, cylindrical to narrowly ellipsoidal ascomata. *Ascomatal wall* 50–65 µm thick of two regions; outer region comprising warts 50–55 µm thick, composed of globose to nearly angular, thick-walled cells, 12–18 × 3–5 µm, yellow, wall 1.5–2 µm thick; inner region 5–10 µm thick, composed of flattened, ellipsoidal cells, 12–18 × 3–5 µm, hyaline; warts globose to subglobose 25–40 × 15–30 µm, yellow. *Asci* clavate, long stiptitate, 110–130 × 17–22 µm, 8-spored, multisporate. *Ascospores* narrowly fusiform with rounded ends, slightly curved, guttulate, hyaline, smooth, (53–)60–86(–89) × 6.5–8(–9) µm, 3-septate, not constricted at the septa or constricted when overmature. *Conidiophores* consisting of a stipe bearing a penicillate arrangement of fertile branches, a stipe extension, and a terminal vesicle; stipe sepalate, hyaline, smooth, 40–150 × 3–5 µm; stipe extensions septate, straight to flexuous, 120–200 × 20 long, 2.5–3 µm wide at the apical septum, terminating in an obpyriform to ellipsoid vesicle, (5–)7–8(–10) µm diam. *Conidiogenous apparatus* with primary branches aseptate or 1-septate, 15–20 × 4–5 µm; secondary branches aseptate, 8–15 × 4–5 µm; tertiary branches aseptate, 10–15 × 4–5 µm, each terminal branch producing 2–4 phialides; phialides doliform to reniform, hyaline, aseptate, 6–12 × 2.5–4 µm; apex with minute periclinal thickening and inconspicuous collarette. *Conidia* cylindrical, rounded at both ends, straight, (45–)55–68(–73) × (4–)5–6(–7) µm (av. = 60 × 5.5 µm), (1–)3-septate, lacking a visible abscission scar, held in parallel cylindrical clusters by colourless slime. *Megaconidia* and *microconidia* unknown.

Culture characteristics: Colonies on MEA sienna to brick on the surface, and sienna in reverse; sienna on OA (surface); sienna to umber on PDA (surface), and umber in reverse; chlamydospores on MEA moderate, occurring throughout the medium, with sparse to moderate sporulation on aerial mycelium.

Additional specimens examined: *NETHERLANDS*, Hilversum, on leaves of *Ilex aquifolium*, 11 Nov. 2008, W. Gams, CPC 15683 = CBS 128031, CPC 15684, CPC 15685. *FRANCE*, Pressigny (52), on leaves of *Ilex aquifolium*, 05 Dec. 2009, A. Gardiennet, AG09308, CBS H-20476, culture CPC 17978 = CBS 126269; Forêt de Chizé, Villiers en Bois (79) on leaves...
Fig. 1. Single most parsimonious trees obtained from a heuristic search with 100 random taxon additions of the β-tubulin sequence alignment. The scale bar shows 10 changes and bootstrap support values from 1000 replicates are shown at the nodes. The tree was rooted to *Cylindrocladiella lageniformis* (GenBank AY725652).
Calonectria lauri sp. nov.

Fig. 2. Calonectria lauri and its Cylindrocladium anamorph. A, B. Yellowish perithecia in vivo (A), and in vitro (B). C. Cylindrocladium anamorph. D. Vertical section through perithecium, showing wall anatomy. E. Ascospores. F–H. Conidiophores. I–L. Conidiogenous apparatus with phialides. M. Ellipsoid to obpyriform vesicles. N. Three-septate conidia. Scale bars: A, B = 200 µm, C, E–H, M = 8 µm, D, J–L, N = 10 µm, I = 5.5 µm.
of *Ilex aquifolium*, 19 Sept. 2006, C. Lechat, CLL696. **Belgium**, Gent, on roots of *Buxus sempervirens*, July 1969, A. Roos, IMI 299390 = CBS 553.69.

Notes: The name *Calonectria ilicicola* is already occupied, and thus the next available epithet for this species in *Calonectria* is that of *Tetracytum lauri*. **Calonectria lauri** is phylogenetically closely related to *Ca. citri* (known on *Citrus* from Florida). Morphologically the two species can be separated in that *Ca. citri* has ellipsoid to pyriform or obovoid vesicles, and 3-septate conidia that are slightly shorter and narrower, (25–)53–60(–65) × 3–4(–5) µm (Crous 2002).

DISCUSSION

The genus *Calonectria* is based upon *Calonectria pyrochroa* (on *Platanus* leaf litter, France, lectotype BP1), which Rosman (1979) found to be indistinguishable from *C. daldiniana* (on *Magnolia grandiflora* leaf litter, Italy, holotype RO). A separate collection from decaying leaves of *Pittosporum undulatum* collected in Madeira (CUP-MM 2407) produced a *Cylindrocladium* anamorph with clavate vesicles, which later led Rosman (1983) to conclude that the oldest anamorph epithet that could be linked to *Ca. pyrochroa* was *C. ilicicola*.

Brayford & Chapman (1987) reported a wilting disease of *Laurus nobilis* in nurseries on the Isles of Scilly, and later on *Arbutus andrachnoides* and *Gaultheria shallon* in West Devon, UK. The causal organism was identified as *C. ilicicola*, but incorrectly linked to the teleomorph name, *Ca. ilicicola*. Based on a molecular comparison of ex-type strains, Crous et al. (1993) showed *Ca. ilicicola* was the teleomorph of *C. parasiticum*, a major pathogen associated with *Cylindrocladium* black rot of peanut. In a later study, Crous & Wingfield (1994) accepted the relationship between *Ca. pyrochroa* and *C. ilicicola*, as there were no cultures available at the time to refute this proposed link (Crous 2002). Following a revision of *Cylindrocladium* strains in the CBS culture collection, Crous et al. (2006a) discovered a strain linked to a specimen that closely matched the type of *C. ilicicola*, and subsequently designated CBS 749.70 (on *Ilex aquifolium*, the Netherlands) as ex-epitype strain for *C. ilicicola*. Sequence data derived from the ex-epitype strain, and morphology, proved to be identical to that of the new collection obtained from France (Figs 1–2), confirming it to be *C. ilicicola*.

However, isolate CBS 126269 produced a *Calonectria* teleomorph in culture, which is clearly distinct from *Ca. pyrochroa*. The latter species (and its synonyms) have scarlet-red perithecia, which turn purple in 2% KOH (Rosman 1979). The present collection (on the host and on CLA in culture), forms yellow to brownish yellow perithecia that do not discoulour in KOH (except at the perithecial base). The teleomorph of *C. ilicicola* could therefore not be *Ca. pyrochroa* as currently accepted (Lombard et al. 2010c). Because the name *C. ilicicola* is already occupied by the pathogen causing *Cylindrocladium* black rot of peanut (Crous et al. 1993), a new name, *Ca. lauri*, is proposed for this species, which appears to occur commonly on *Laurospira*, *Ilex*, as well as several other hosts in Europe (Brayford & Chapman 1987). Presently no cultures are available of *Ca. pyrochroa*, and further collections will have to be made from *Platanus* leaf litter in France to help clarify the morphology of its *Cylindrocladium* anamorph.

APPENDIX

In the recent treatment of the genus *Calonectria*, Lombard et al. (2010c) allocated the name *Cylindrocladium canadense* to *Calonectria* as *Ca. canadensis* (J.C. Kang, Crous & C.L. Schoch) L. Lombard, M.J. Wingf. & Crous, but overlooked the older existing name, *Ca. canadensis* (Ellis & Everh.) Berl. & Voglino. A new combination is required to resolve this homonym as follows:

Calonectria canadensis L. Lombard, M.J. Wingf. & Crous, **nom. nov.**

MycoBank MB517424

Basionym: *Cylindrocladium canadense* J.C. Kang, Crous & C.L. Schoch, Syst. Appl. Microbiol. 24: 210. 2001.

= *Calonectria canadensis* (J.C. Kang, Crous & C.L. Schoch) L. Lombard, M.J. Wingf. & Crous, Stud. Mycol. 66: 56, 2010, non *Calonectria canadensis* (Ellis & Everh.) Berl. & Voglino, Addendum to Syll. Fung. 4: 212. 1886.

ACKNOWLEDGEMENTS

The authors thank the technical staff, Arien van Iperen (cultures), Marjan Vermaas (photo plates), and Mieke Starink-Willemsen (DNA isolation, amplification and sequencing) for their invaluable assistance. Drew Minnis (USDA, Beltsville, USA) is also thanked for bringing the homonym associated with epithet “canadensis” to our attention. Finally, we thank Alain Gardiennet for the supply of specimens.

REFERENCES

Boesewinkel HJ (1982) *Cylindrocladiella*, a new genus to accommodate *Cylindrocladium parvum* and other small-spored species of *Cylindrocladium*. Canadian Journal of Botany 60: 2288–2294.
Brayford D, Chapman AU (1987) Cylindrocladium ilicicola on cuttings of evergreen ornamental shrubs in the UK. *Plant Pathology* **36**: 413–414.

Crous PW (2002) *Taxonomy and pathology of Cylindrocladium (Calonectria) and allied genera*. APS Press, St. Paul.

Crous PW, Allegrucci N, Arambarri AM, Cazau MC, Crous PW, Gams W, Stalpers JA, Robert V, Stegehuis G (2005) *Cylindrocladium celtidis* gen. sp. nov. (Nectriaceae, Hypocreales), a new genus from Celtis leaf litter in Argentina. *Mycological Research* **109**: 833–840.

Crous PW, Gams W, Stalpers JA, Robert V, Stegehuis G (2004a) MycoBank: an online initiative to launch mycology into the 21st century. *Studies in Mycology* **50**: 19–22.

Crous PW, Groenewald JZ, Risède J-M, Simoneau P, Hyde KD (2006a) *Calonectria* species and their *Cylindrocladium* anamorphs: species with clavate vesicles. *Studies in Mycology* **55**: 213–226.

Crous PW, Groenewald JZ, Risède J-M, Simoneau P, Hywel-Jones NL (2006b) *Cylindrocladium* anamorphs: species with sphaeropedunculate vesicles. *Studies in Mycology* **50**: 415–430.

Crous PW, Slippers B, Wingfield MJ, Rheedee J, Marasas KO, Burgess T, Barber P, Groenewald JZ (2009a) Novel species of *Mycosphaerellaceae* and *Teratosphaeraceae*. *Persoonia* **23**: 119–146.

Crous PW, Summerell BA, Carnegie AJ, Wingfield MJ, Groenewald JZ (2009b) Unravelling *Mycosphaerella*: do you believe in conspecificity in *Calonectria*? *Persoonia* **23**: 99–118.

Crous PW, Summerell BA, Carnegie AJ, Wingfield MJ, Hunter GC, Burgess TI, Andjic V, Barber PA, Groenewald JZ (2009b) *Cylindrocladium* species associated with dying *Pinus* cuttings. *Persoonia* **23**: 41–47.

Crous PW, Verkley GJM, Groenewald JZ, Samson RA (eds) (2009c) Fungal biodiversity. [CBS Laboratory Manual Series 1]. Centraalbureau voor Schimmelcultures, Utrecht.

Crous PW, Wingfield MJ (1994) A monograph of *Cylindrocladium*, including anamorphs of *Calonectria*. *Mycotaxon* **51**: 341–435.

Crous PW, Wingfield MJ, Alfenas A (1993) *Cylindrocladium parasiticum* sp. nov., a new name for *C. crotalariae*. *Mycological Research* **97**: 889–896.

Crous PW, Wood AR, Okada G, Groenewald JZ (2008) Foliicolous microfungi occurring on *Encephalartos*. *Persoonia* **21**: 135–146.

Decock C, Hennebert GL, Crous PW (1997) *Nectria serpens* sp. nov. and its hyphomycetous anamorph *Xenocylindrocladium* gen. nov. *Mycological Research* **101**: 786–790.

Graves AH (1915) Root rot of coniferous seedlings. *Phytopathology* **5**: 213–217.

Hawkesworth DL, Sivanesan A (1976) New and interesting microfungi from Slapton, South Devonshire: *Ascomycotina II*. *Transactions of the British Mycological Society* **67**: 39–49.

Henricot B, Culham A (2002) *Cylindrocladium buxicola*, a new species affecting *Buxus* spp., and its phylogenetic status. *Mycologia* **94**: 980–997.

Hillis DM, Bull JJ (1993) An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. *Systematic Biology* **42**: 182–192.

Kang JC, Crous PW, Old KM, Dubinski MJ (2001a) Non-conspecificity of *Cylindrocladium quinqueseptatum* and *Cylindrocladium quinqueseptata* based on a β-tubulin gene phylogeny and morphology. *Canadian Journal of Botany* **79**: 1241–1247.

Kang JC, Crous PW, Schoch CL (2001b) Species concepts in the *Cylindrocladium floridanum* and *Cy. spathiphylly* complexes (Hypocreales) based on multi-allelic sequence data, sexual compatibility and morphology. *Systematic and Applied Microbiology* **24**: 206–217.

Lombard L, Crous PW, Wingfield BD, Wingfield MJ (2010a) Species concepts in *Calonectria* (Cylindrocladium). *Studies in Mycology* **66**: 1–14.

Lombard L, Crous PW, Wingfield BD, Wingfield MJ (2010b) Multigene phylogeny and mating tests reveal three cryptic species related to *Calonectria pauciramosa*. *Studies in Mycology* **66**: 15–30.

Lombard L, Rodas CA, Crous PW, Wingfield BD, Wingfield MJ (2009) *Calonectria* (Cylindrocladium) species associated with dying *Pinus* cuttings. *Persoonia* **23**: 41–47.

Lombard L, Zhou XD, Crous PW, Wingfield BD, Wingfield MJ (2010d) *Calonectria* species associated with cutting rot of *Eucalyptus*. *Persoonia* **24**: 1–11.

Nirenburg HJ (1981) A simplified method for identifying *Fusarium* spp. occurring on wheat. *Canadian Journal of Botany* **59**: 1599–1609.

O’Donnell K, Cigelnik E (1997) Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus *Fusarium* are nonorthologous. *Molecular Phylogenetics and Evolution* **7**: 103–116.

Peerally A (1991) The classification and phytopathology of *Cylindrocladium* species. *Mycotaxon* **40**: 367–366.

Rambaut A (2002) *Sequence Alignment Editor*. Version 2.0. Department of Zoology, University of Oxford, Oxford, UK. Software distributed by author (<http://tree.bio.ed.ac.uk/software/oseal>).

Rayner RW (1970) *A Mycological Colour Chart*. Commonwealth Mycological Institute, Kew.

Rossman AY (1979) *Calonectria* and its type species, *C. daldiniana*, a later synonym of *C. pyrochroa*. *Mycotaxon* **8**: 321–328.

Rossman AY (1983) The phragmosporous species of *Nectria* and related genera. *Mycological Papers* **150**: 1–164.

Rossman AY, Samuels GJ, Rogerson CT, Lowen R (1999) Genera of *Bionectriaceae*, *Hypocreaceae* and *Nectriaceae* (Hypocreales, Ascomycetes). *Studies in Mycology* **42**: 1–248.

Schoch CL, Crous PW, Wingfield BD, Wingfield MJ (2001) Phylogeny of *Calonectria* based on comparisons of β-tubulin DNA sequences. *Mycological Research* **105**: 1045–1052.
Schoch CL, Crous PW, Wingfield MJ, Wingfield BD (2000) Phylogeny of *Calonectria* and selected hypocrealean genera with cylindrical macroconidia. *Studies in Mycology* **45**: 45–62.

Swofford DL (2003) *PAUP*^*^. *Phylogenetic Analysis Using Parsimony (* and Their Methods)*. Version 4.0b.10 Sinauer Associates, Sunderland, Massachusetts.

Victor D, Crous PW, Janse BJH, Zyl WH van, Wingfield MJ, Alfenas AC (1998) Systematic appraisal of species complexes within the hyphomycete genus *Cylindrocladiella*. *Mycological Research* **102**: 273–279.

Wright LP, Davis AJ, Wingfield BD, Crous PW, Brenneman T, Wingfield MJ (2010) Population structure of *Cylindrocladium parasiticum* infecting peanuts (*Arachis hypogaea*) in Georgia, USA. *European Journal of Plant Pathology* **127**: 199–206.