Factors associated with higher falling risk in elderly diabetic patients with lacunar stroke

Jianlan Jin, Song Wen, Yanyan Li, Mingyue Zhou, Qingqing Duan and Ligang Zhou*

Abstract

Purpose: The aim of this study is to explore the factors associated with the fall risk in type 2 diabetes (T2D) patients with a lacunar stroke.

Materials and methods: We compiled data of 146 T2D patients (mean age 68 years), including the Morse fall scale data (MFS), nutrition score, self-care scale, laboratory data, and data from continuous glucose monitoring system (CGMS) from 2019 to 2021 in Shanghai Pudong Hospital. Thereby, we evaluated the associations between MFS and other clinical parameters.

Results: The analyses showed that there were significantly increased size and numbers of lacunar infarction (p < 0.05). Furthermore, the greater risk group had an older mean age (p < 0.05), and significant decreased estimated glomerular filtration rate (eGFR), total triglyceride (TG), while increased microalbuminuria, magnesium, lipoprotein A (LP(a)), anti-thyroid peroxidase antibody (TPOAb) (p < 0.05). However, the time in range (TIR) was very comparable (p > 0.05). The correlational study revealed the higher score of MFS was associated with the age (r = 0.41), number of lacunar infarction (r = 0.18), nutrition score (r = 0.20), self-care score (r = −0.43), serum creatine level (r = 0.19), eGFR (r = −0.26) (p < 0.05). The total numbers of lacunar infarction were associated with age (r = 0.36), eGFR (r = −0.40), homocysteine level (r = 0.33) (p < 0.05).

Conclusions: Age, nutrition, self-care ability, and renal function are all critical factors associated with the risk of fall in T2D with lacunar infarction. The age, eGFR, and homocysteine are closely associated with lacunar infarction, suggesting that in T2D, evaluation of kidney dysfunction, homocysteine level in the elderly can predict lacunar infarcts and falls.

Keywords: Type 2 diabetes, Fall risk, Lacunar infarction, Age, Microvascular diseases

Introduction

The risk of falling in elderly type 2 diabetic patients is a serious concern that should be assessed as soon as the patients are admitted to the hospital [1, 2]. The fall could start various cycles that affect the patient’s overall outcome [3]. Most fall complications include bone fracture, bedridden, infections, malnutrition, hypoactivity, coagulation disarrangement, and other expected fall-related consequences. Each year, one-third of persons over the age of 65 and one-half of adults over the age of 80 are predicted to fall worldwide [4]. Complications of microvascular diseases were frequently found in the health context among the multi-factors impacting the risk of falling. Lacunar infarction is most typically detected on magnetic resonance imaging (MRI), and it is thought to be caused by arteriosclerotic microvascular dysfunction in the subcortical brain. T2D plays a role in this pathological development. The implications of taking care of lacunar infarction are due to its higher association with

1 Jianlan Jin and Song Wen contributed equally to this work.
2*Correspondence: zhouligang@yahoo.com
3 Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, Shanghai Pudong Hospital, Shanghai 201399, China
Full list of author information is available at the end of the article
subsequent episodes of stroke or cognitive impairment in T2D [5, 6], and the chronic global cerebral hypoperfusion, causing progressive cerebral atrophy, [7]. Indeed, half of the patients with a first-ever lacunar infarct have mild cognitive impairment of subcortical vascular features and its presence may be a predictor of subcortical vascular dementia in the medium-long term [8]. The majority of lacunar infarctions, on the other hand, were ignored clinically due to minimal symptoms and were only discovered by MRI a few years later. As a result, MRI screening is essential to detect potential lacunar infarction in T2D patients who do not have severe neurological symptoms [9]. Due to the conditions limiting the examinations of MRI in some T2D patients who have a high propensity to fall, the surrogate examination for evaluation may be necessary, thus in the present study, we analyzed the possible indices that had a higher correlation with the high risk of fall in T2D patients defined by a commonly used nursing scale: Morse Fall Scale (MFS) [10]. The present study also explored the association between MFS and other clinical parameters.

Materials and methods
Source of in-patient data
T2D Patients’ information was collected from the in-patient information system at Shanghai Pudong Hospital. We included 146 adult T2D patients with lacunar infarction from 2019 to 2021 in the Department of Endocrinology. The inclusion criteria of these patients were who had regular locomotor activity and an MRI scan that revealed the presence of cerebral lacunar infarction. The T2D diagnosis made using World Health Organization (WHO) guidelines published in 1999. The patients with type 1 diabetes mellitus (T1D), specific type of diabetes mellitus (DM), gestational DM, other secondary DM were excluded from the study. Other diseases, such as acute stroke, stroke with severe paralyze, arrhythmia, and temporary brain ischemia, severe infection were among the exclusion criteria. Severe diabetic conditions such as diabetic ketoacidosis, hyperglycemic hypersmolar state were also excluded.

Ethical statement
The institution approved the publication of this research article of Shanghai Pudong Hospital, Fudan University. Informed written consent was obtained to publish this study and accompanying images.

Collecting the data on the scores of Morse fall scale (MFS), nutrition score, self-care scale
The scale of MFS, nutrition score, self-care scale of each patient was evaluated by trained, employed nurses of our department. The MFS developed to identify patients at risk of falling consists of the following six items: (a) history of falling (0=no, 25=yes); (b) secondary diagnosis (0=no, 15=yes); (c) ambulatory aid (0=bed rest/nurse assist, 15=crutches/cane/walker, 30=furniture); (d) intravenous (IV) or heparin lock (0=no, 20=yes); (e) gait (0=normal/bed rest/immobile, 10=weak, 20=impaired); and (f) mental status (0=oriented to own ability, 15=forgets limitations).

The nutrition score were determined using Nutritional Risk Screening Scale (NRS-2002), which includes 3 sections: (a) nutrition status (0=None; 1=mild, weight loss >5% in 3 months or 50–75% of the normal food intake in the last week; 2=moderate, weight loss >5% in 2 months or BMI 18.5–20.5 kg/m2 and reduced general condition or 25–50% of the normal food intake in the last week; 3=severe, weight loss >5% in 1 month or BMI <18.5 kg/m2 and reduced general condition or 0–25% of the normal food intake in the last week); (b) stress metabolism (severity of the disease) (0=None; 1=Mild stress metabolism: patient is mobile; increased protein requirement can be covered with oral nutrition; Hip fracture, chronic disease especially with complications e.g., liver cirrhosis, COPD, diabetes, cancer, chronic hemodialysis; 2=Moderate: patient is bedridden due to illness; Highly increased protein requirement, may be covered with oral nutrition; Stroke, hematologic cancer, severe pneumonia, extended abdominal surgery; 3=severe stress metabolism: patient is critically ill (intensive care unit); very strongly increased protein requirement can only be achieved with (par) enteral nutrition; APACHE-II >10, bone marrow transplantation, head traumas); (c) age (0=below 70 years; 1=above 70 years).

Total score were (a)+(b)+(c)≥3 points: patient is at nutritional risk.
Nutritional care plan should be set up; <3 points: repeat screening weekly.

The self-care assessment adopted the scale of Barthel index assessment likert, which includes: (a) self intake ability(10=total self care reserved; 5=need some help; 0=total dependent); (b) Bathing ability (5=total self care reserved; 0=dependent); (c) grooming ability (5=total; 0=dependent); (d) dressing ability (10=total; 5=need some help; 0=dependent); (e) defecation ability (10=can control; 5=merely no incontinence; 0=incontinence or coma); (f) urinary ability (10=can control; 5=merely no incontinence; 0=incontinence or catheterization); (g) self toilet ability (10=total self care reserved; 5=need some help; 0=total dependent); (h) transfer ability (15=total self-care reserved; 10=need 1 person assist or instruction; 5=need 2 persons help; 0=total dependent); (i) walk ability (15=total self-care reserved; 10=need 1 person assist or instruction; 5=in wheel chair; 0=total dependent); (j) stair ability (10=total self care reserved; 5=need some help;
The standard scales of each patient were evaluated and completed on the day of patient arrived at the department based on the patient’s locomotor activity, nutrition status, and self-care function. Finally, the doctors were informed about each patient’s risk of falling to make the proper clinical decision. Patients were classified as high-risk or low-risk depending on whether their MFS score was greater than 45.

Analyses on the data of continuous glycemic monitor system (CGMS), laboratory blood and urine tests, and MRI

The data of CGMS including time in range (TIR), time above range > 13.9 mmol/L (TAR > 13.9 mmol/L), TAR > 10 mmol/L, time below range < 3.9 mmol/L (TBR < 3.9 mmol/L), and TBR < 3 mmol/L, were analyzed. The CGMS indices including TIR, TAR > 10 mmol/L, TAR > 3 mmol/L, showed no statistical significant (TIR, p = 0.73; TAR > 10 mmol/L, p = 0.84; TAR > 3 mmol/L, p = 0.98; TAR < 3.9 mmol/L, p = 0.54; TAR < 3.0 mmol/L, p = 0.41) (Table 2).

The comparisons of laboratory data between the high-risk group and low-risk group

We found, in the kidney function and regular urine tests, the eGFR (calculated via formula of CKD-EPI) was significantly reduced in high-risk group (p = 0.02); whereas the microalbumin (represented as albumin creatine ratio mg/g) increased distinctively (p = 0.003). The serum level of magnesium was also increased in high-risk group significantly (p = 0.02). In terms of plasma lipids and lipoproteins, we found the level of TG decreased substantially (p = 0.006); whereas that of LP(a) increased markedly (p = 0.04). Moreover, we found the level of TPOAb significantly increased in high-risk group (p = 0.002) (Table 2).

Association of the Morse fall scale (MFS) with multi-factors including metabolic parameters

We found in two groups the age (r = 0.41, p < 0.001), nutrition assessment score (r = 0.2, p = 0.02), self-care assessment score (r = −0.43, p < 0.001), total numbers of lacunar infarction (r = 0.18, p = 0.03), the level of
Table 1 The baseline characteristics and the features on the lacunar measured in MRI in low or high risk patients

Characteristic	Total cohorts	Low risk cohorts	High risk cohorts	p-Value
Patients (n)	146	31	115	/
Age (years)	68.34±11.23	62.32±12.79	69.96±10.24**	<0.001
Gender (M/F)	69/77	14/17	55/60	0.792
BMI (Kg/m²)	25.70±3.72	26.53±4.24	25.32±3.43**	0.240
FPG (mmol/l)	7.27±2.38	7.75±2.68	7.11±2.24	0.337
TC (mmol/l)	4.23±1.07	4.46±1.14	4.17±1.05	0.215
TG (mmol/l)	1.65±0.94	2.11±1.12	1.53±0.86**	0.006
LDL (mmol/l)	2.63±0.99	2.73±1.08	2.60±0.97	0.558
HDL (mmol/l)	1.07±0.31	1.04±0.30	1.08±0.31	0.606
HbA1c (%)	9.07±2.33	9.19±2.41	9.04±2.32	0.766
Lp(a) (mg/L)	318.97	38.79		
Nutrient assessment	1.61±0.77	1.52±1.00	1.63±0.71	0.45
Self-care assessment	94.69±53.50	96.94±9.19	94.09±60.14	0.79
Lacunar size (mm)				
0-3 mm	2.23±0.96	1.86±1.22	2.33±0.85*	0.047
3-5 mm	1.59±2.16	0.43±1.33	1.91±2.24***	<0.001
5-10 mm	3.99±3.97	2.66±3.75	4.35±3.07*	0.034
10-15 mm	2.59±5.15	1.14±3.33	2.98±5.45*	0.026
15-20 mm	0.84±3.76	0.00±0.00	1.07±4.22**	0.008
Lacunar numbers				
0.3 mm	9.09±7.72	7.45±7.85	9.53±7.65	0.184
3-5 mm	1.53±3.87	0.29±1.01	1.870±4.27***	<0.001
5-10 mm	1.79±2.35	0.84±1.66	2.05±2.45**	0.002
10-15 mm	0.47±1.26	0.19±0.65	0.55±1.37*	0.043
15-20 mm	0.07±0.33	0.00±0.00	0.09±0.26*	0.012
Total numbers	12.96±10.89	8.77±8.95	14.09±11.12*	0.015

Note: BMI Body mass index; FPG Fasting plasma glucose; TC Total cholesterol; TG Total triglyceride; LDL Low-density lipoprotein; HDL High-density lipoprotein; HbA1c Glycosylated hemoglobin A1c. *: p < 0.05; **: p < 0.01; ***: p < 0.001

Table 2 Comparisons of CGMS indices and significant metabolic related factors in higher fall-risks between the high-risk and low-risk groups

Characteristic	Total cohorts	Low risk cohorts	High risk cohorts	p-Value
TIR %	74.65±20.77	73.40±22.99	74.96±20.23	0.73
TAR > 13.9 mmol/L %	0.05±0.10	4.86±8.17	4.92±9.89	0.98
TAR > 10 mmol/L %	0.25±0.20	25.68±21.75	24.87±19.49	0.84
TBR < 3.9 mmol/L %	0.01±0.09	0.27±0.78	1.39±10.05	0.54
TBR < 3 mmol/L %	0.00029±0.002	0.00±0.01	0.04±0.23	0.41
eGFR (ml/min*1.73m²)	86.49±24.50	97.35±22.75	83.65±24.26*	0.02
Microalbuminuria (mg/g)	38.79±50.24	20.69±28.78	43.88±53.80**	0.003
Magnesium (mmol/L)	0.79±0.08	0.77±0.05	0.80±0.09*	0.02
Lp(a) (mg/L)	318.97±312.65	168.95±213.26	359.15±324.12*	0.04
TPOAb (IU/mL)	113.23±285.22	35.93±9.58	134.45±319.01**	0.002

Note: TIR Time in range; TAR Time above range; TBR Time below range. eGFR Estimated glomerular filtration rate; Lp(a) Lipoprotein A; TPOAb Thyroid peroxidase antibody. *: p < 0.05; **: p < 0.01; ***: p < 0.001

serum creatine (r = 0.19, p = 0.04), and eGFR (r = −0.26, p = 0.007) were significantly correlated with the score of MFS (Fig. 1).

Association of the metabolic parameters with the size and numbers of lacunar infarction in MRI

We further investigated the metabolic parameters linked
to the size and quantity of lacunar infarctions in MRI. Unfortunately, the findings revealed that only age, eGFR, and homocysteine levels were substantially associated to the size and number of lacunar infarctions (total numbers: age: $r = 0.36$, $p < 0.001$; eGFR: $r = -0.4$, $p < 0.001$; homocysteine: $r = 0.33$, $p = 0.03$) (Fig. 2).

Discussion

In this study, we examined the factors contributing to a high risk of falling in T2D patients with lacunar infarction and found that age, the number of lacunar infarctions on MRI, SCR, eGFR, malnutrition, and self-care functions are all significant factors. First, we compared the disparity on metabolic parameters, nutrition score, and self-care score between high-risk and low-risk groups determined by MFS score. We only found ages were significantly older in the high-risk group (mean age 69.96 ± 10.24 years), demonstrating the tendency of a high incidence of falls in elderly T2DM patients due to deterioration of physical function [11]. However, we found no statistical differences in nutritional status and self-care scores between the two groups, suggesting the two groups are comparable in nutrition state and self-care function.

In the next step, we compared the size and numbers of lacunar infarction in MRI in two groups, and intriguingly, we found that all sizes and numbers of lacunar infarction were increased significantly in high-risk groups, suggesting the size and numbers of lacunar infarction is a critical factor that could lead to the fall in T2D patients. Lacunar infarction is one of the most critical MRI markers for diagnosing cerebral small vessel disease (CSVD), and when combined with other signs such as white matter hyperintensity (WMH), cerebral microbleeds (CMB), and enlarged perivascular spaces (EPVS), it can predict a higher risk of stroke in 5 years or more [12]. The CSVD belongs to the microvascular diseases, and its underlying pathological promoters include cerebral amyloid angiopathy (CAA) in ages exceed 55 years and atherosclerotic angiopathy with longstanding hypertension (HT) and diabetes mellitus (DM) [12–14] According to the clinical studies, half of the patients presented with initial lacunar infarction may influence cognitive function, which may be a predictor of subcortical vascular dementia in the medium-long term. Especially, mild neuropsychological disturbances (57.5%) are not infrequent in acute lacunar infarcts in patients with atypical lacunar syndrome and pure motor hemiparesis [8]. Therefore, the presence of cognitive impairment as the possible result of lacunar infarction could also be considered to be associated with an increased risk of falls.

In addition, we analyzed the glycemic state on admission to the department 3 days later by CGMS in two groups. However, we found the TIR was generally similar.
between the two groups, indicating that in the context of positive glucose control and preventing major hypoglycemia, the glucose level was not the indispensable predictor of the high-risk fall in T2D patients with lacunar infarction. Besides, we also did not figure out any disparity in both fasting and 2-hour-postprandial levels of c-peptide and insulin, and HbA1c. These findings may suggest that unless the major fluctuate in severe hyperglycemia or hypoglycemia, the propensity of fall is seemingly lower in T2D patients with lacunar infarction. Nonetheless, the glycemic level is critical to the micro- or macro-vascular pathological change [15]. Our findings suggested that glucose levels are not linked to the risk of falling at this loose glucose control level.

Furthermore, we compared renal function, regular urine tests, electrolytes, plasma lipids, lipoprotein, and thyroid function, all of which could play a vital role in the elevated risk of falling. We observed that eGFR was reduced, associated with increased microalbuminuria, indicating a diabetic-related microvascular change that could be an equivalent marker to CSVD pathological changes [16]. We also found TG was decreased whereas the LP(a) increased, which was consistent with the findings that LP(a) is a biomarker of cerebral cardiovascular disease [17]. We also found that TPOAb is significantly higher in the high-risk group. According to a recent study, the thyroid autoimmunity biomarker is related to metabolic syndrome in euthyroid patients [18]. All patients are in a euthyroid state, and we also discovered that TPOAb is much more significant in the high-risk group, indicating that the high-risk group is at a higher risk of metabolic syndrome [18, 19].

According to recent studies, in individuals with T2D, the risk factors for atherosclerosis macro-cardiovascular disease (macro-ASCVD) and atherosclerosis micro-cardiovascular disease (micro-ASCVD) may be partially distinct [20]. Combined lines of evidence suggest that LDL-cholesterol has a causal effect on the risk of peripheral arterial disease and chronic kidney disease (CKD), both of which represent manifestations of macro-ASCVD due to atherosclerosis and accumulation of LDL particles in the arterial wall. In contrast, there is limited evidence for a causal effect on the risk of microvascular disease. Hyperglycemia has a causal effect on the risk of micro-and macrovascular disease, and glucose-lowering may benefit the risk of micro-ASCVD and the risk of CKD and eGFR in studies [20, 21]. Thus, in present studies, we may find that in elderly T2D patients, the increased sizes and numbers of lacunar infarction may correspond with the reduced eGFR and increased microalbuminuria in high-risk groups.

Fig. 2 The heatmap shows the factors associated with the size and numbers of lacunar infarction: the age and level of the homocysteine were positively correlated whereas the eGFR was negatively correlated with the size and numbers of lacunar infarction.
Furthermore, we utilized Spearman’s correlational analysis to examine the relationship between the risk of falling and the factors mentioned above. The results revealed that age, nutrition status, self-care function, the total number of lacunar infarctions, SCr, and eGFR were all consistently related to the MFS score. These laboratory and imaging characteristics may indicate that strict hypoglycemia therapy should be avoided in clinical practice because of the risk of falls in older patients with brain and renal dysfunction. We also conducted a correlational analysis of the related factors in patients. We found that consistent with prior studies, the level of eGFR, which could be an equivalent biomarker of CSVD [22], could evaluate and forecast the risk of lacunar infarction or major stroke in T2D patients, along with homocysteine, a biomarker of cerebral cardiovascular diseases, could evaluate and forecast the risk of lacunar infarction or major stroke in T2D patients [23].

Our current research is limited by the data from the single-center. We gathered the data for the carotid artery from ultrasound, bone mineral density (BMD) exams, electromyography, and other sources. However, we did not quantify it or include it in the analyses because we believe they are incompatible with our goal of studying the effect of microvascular disorder and lacunar infarctions in the brain on the fall.

Conclusion
The role of microvascular disease in T2D patients’ risk of falling, as measured by the MFS, was studied. According to our findings, age, nutritional status, self-care function, and microvascular abnormality as evaluated by eGFR and lacunar infarction were all connected to the risk of falling in older T2D patients. Even in glycemic well-controlled older T2D patients, evaluating the nutritional status, self-care capacity, and microvascular state could help predict fall risk and improve in-patient safety.

Statement on guideline
The study was in accordance with related institutional guidelines on clinical study and regulations of human participants investigation of Shanghai Pudong Hospital, Fudan University.

Acknowledgements
We would thank staff of Shanghai Pudong Hospital for whom provide numerous invaluable contributions to this study.

Authors’ contributions
Jianlan Jin RN and Dr. Song Wen and Prof. Ligang Zhou completed the drafting of this article; Jianlan Jin and Dr. Yanyan Li were responsible for the collection of data; Dr. Song wen and Mingyue Zhou performed the software analyses and figures layout; Dr. Qingqiang Duan was responsible for the clinical ideas and treatment of patients; Prof. Ligang Zhou is major responsible for the administration of this study, and correspondence of this article. The author(s) read and approved the final manuscript.

Funding
This work was supported by the Project of Key Medical Discipline of Pudong Hospital of Fudan University (Zdkx2020–11), Project of Key Medical Specialty and Treatment Center of Pudong Hospital of Fudan University (Zdkx2020–24, Special Department Fund of the Pudong New Area Health Planning Commission (PWZk2017–03), Integrative Medicine special fund of Shanghai Municipal Health Planning Committee (ZYHY- ZXJHZX-2-201712), National Natural Science Foundation of China (81370932), Outstanding Leaders Training Program of Pudong Health Bureau of Shanghai (PWR110–06), the Outstanding Clinical Discipline Project of Shanghai Pudong (PW1gy-2018-08), the Natural Science Foundation of China (21675034), Shanghai Natural Science Foundation (19ZR1447500).

Availability of data and materials
All data generated or analyzed during this study are included in this published article.

Declarations

Ethics approval and consent to participate
The study including surveys, sampling, examinations, and access or utilize of the raw data for this study have obtained ethics approvals and permissions from the Ethics Committee of Shanghai Pudong Hospital (NO. WZ-010). The informed consent was received from study participants before the whole Study. The guidelines outlined and procedures were under the Declaration of Helsinki. All the data used in this study were anonymized before its use.

Consent for publication
Not applicable.

Competing interests
The authors declare that there is no competing interests related to this study.

Author details
1 Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai 201399, China. 2 Helen Driller Family Comprehensive Cancer Center, University of California, San Francisco, USA. 3 Department of Radiology, Shanghai Pudong Hospital, Fudan University, Shanghai 201399, China. 4 Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, Shanghai Pudong Hospital, Shanghai 201399, China.

Received: 15 April 2022 Accepted: 1 August 2022
Published online: 08 August 2022

References
1. Cameron ID, Dyer SM, Panagoda CE, Murray GR, Hill KD, Cumming RG, et al. Interventions for preventing falls in older people in care facilities and hospitals. Cochrane Database Syst Rev. 2018;9(9):Cd005465.
2. Hendrich AL, Bender PS, Nyhuis A. Validation of the Hendrich II fall model: a large concurrent case/control study of hospitalized patients. Appl Nurs Res. 2003;16(1):9–21.
3. Lee KB, Lee JS, Jeon IP, Choo DY, Baik MJ, Kim EH, et al. An analysis of fall incidence rate and risk factors in an inpatient rehabilitation unit: a retrospective study. Top Stroke Rehabil. 2020;3:1–7.
4. Phelan EA, Ritchey K. Fall prevention in community-dwelling older adults. Ann Intern Med. 2018;169(11):Ttc81–ttc96.
5. Edwards JD, Jacova C, Sepehry AA, Pratt B, Benavente OR. A quantitative systematic review of domain-specific cognitive impairment in lacunar stroke. Neurology. 2013;80(3):315–22.
6. Debette S, Schilling S, Duperron MG, Larsson SC, Markus HS. Clinical significance of magnetic resonance imaging markers of vascular brain injury: a systematic review and Meta-analysis. JAMA Neurol. 2019;76(1):81–94.
7. Ruddollosso S, Rodriguez-Vázquez A, Urla X, Arboux A. The potential impact of neuroimaging and translational research on the clinical Management of Lacunar Stroke. Int J Mol Sci. 2022;23(3):1497.
8. Grau-Olivares M, Arboix A, Bartrés-Faz D, Junqué C. Neuropsychological abnormalities associated with lacunar infarction. J Neurol Sci. 2007;257(1–2):160–5.

9. Vermeer SE, Longstreth WT Jr, Koudstaal PJ. Silent brain infarcts: a systematic review. Lancet Neurol. 2007;6(7):611–9.

10. Baek S, Piao J, Jin Y, Lee SM. Validity of the Morse fall scale implemented in an electronic medical record system. J Clin Nurs. 2014;23(17–18):2434–40.

11. Rubenstein LZ. Falls in older people: epidemiology, risk factors and strategies for prevention. Age Ageing. 2006;35(Suppl 2):ii37–41.

12. Pasi M, Cordonnier C. Clinical relevance of cerebral small vessel diseases. Stroke. 2020;51(1):47–53.

13. Wardlaw JM. What causes lacunar stroke? J Neurol Neurosurg Psychiatry. 2005;76(5):617–9.

14. Jackson C, Sudlow C. Are lacunar strokes really different? A systematic review of differences in risk factor profiles between lacunar and nonlacunar infarcts. Stroke. 2005;36(4):891–901.

15. Laakso M, Kuusisto J. Insulin resistance and hyperglycaemia in cardiovascular disease development. Nat Rev Endocrinol. 2014;10(5):293–302.

16. Jiménez-Balado J, Riba-Llena I, Pizarro J, Palasi A, Penalba A, Ramírez C, et al. Kidney function changes and their relation with the progression of cerebral small vessel disease and cognitive decline. J Neurol Sci. 2020;409:116635.

17. Wilson DP, Jacobson TA, Jones PH, Koschinsky ML, McNeal CJ, Nordestgaard BG, et al. Use of lipoprotein(a) in clinical practice: a biomarker whose time has come: A scientific statement from the National Lipid Association. J Clin Lipidol. 2019;13(3):374–92.

18. Agbaht K, Mercan Y, Kütlu S, Alp démir MF, Sezgin T. Obesity with and without metabolic syndrome: do vitamin D and thyroid autoimmunity have a role? Diabetes Res Clin Pract. 2014;106(1):27–34.

19. Kim HJ, Park SJ, Park HK, Byun DW, Suh K, Yoo MH. Thyroid autoimmunity and metabolic syndrome: a nationwide population-based study. Eur J Endocrinol. 2021;185(5):707–15.

20. Emanci uelsen F, Benn M. LDL-cholesterol versus glucose in microvascular and macrovascular disease. Clin Chem. 2021;67(1):167–82.

21. Stratton IM, Adler AI, Neil HA, Matthews DR, Manley SE, Cull CA, et al. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ. 2000;321(7258):405–12.

22. Yao T, Song G, Li Y, Wang D. Chronic kidney disease correlates with MRI findings of cerebral small vessel disease. Ren Fail. 2021;43(1):255–63.

23. Kaplan P, Tatarkova Z, Sivenova MK, Racay P, Lehotsky J. Homocysteine and mitochondria in cardiovascular and cerebrovascular systems. Int J Mol Sci. 2020;21(20).

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.