Evidence-Based Management and Factors Associated With Return to Play After Acute Hamstring Injury in Athletes

A Systematic Review

Samuel S. Rudisill,*†‡ BS, Michael P. Kucharik,† BS, Nathan H. Varady,†§ MD, MBA, and Scott D. Martin,† MD

Investigation performed at Sports Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Partners Health System, Boston, Massachusetts, USA

Background: Considering the lengthy recovery and high recurrence risk after a hamstring injury, effective rehabilitation and accurate prognosis are fundamental to timely and safe return to play (RTP) for athletes.

Purpose: To analyze methods of rehabilitation for acute proximal and muscular hamstring injuries and summarize prognostic factors associated with RTP.

Study Design: Systematic review; Level of evidence, 4.

Methods: In August 2020, MEDLINE, CINAHL, Cochrane Central Register of Controlled Trials, and SPORTDiscus were queried for studies examining management and factors affecting RTP after acute hamstring injury. Included were randomized controlled trials, cohort studies, case-control studies, and case series appraising treatment effects on RTP, reinjury rate, strength, flexibility, hamstrings-to-quadriceps ratio, or functional assessment, as well as studies associating clinical and magnetic resonance imaging factors with RTP. Risk of bias was assessed using the Cochrane Risk-of-Bias Tool for Randomized Trials or the Methodological Index for Non-Randomized Studies (MINORS).

Results: Of 1289 identified articles, 75 were included. The comparative and noncomparative studies earned MINORS scores of 18.8 ± 1.3 and 11.4 ± 3.4, respectively, and 12 of the 17 randomized controlled trials exhibited low risk of bias. Collectively, studies of muscular injury included younger patients and a greater proportion of male athletes compared with studies of proximal injury. Surgery for proximal hamstring ruptures achieved superior outcomes to nonoperative treatment, whereas physiotherapy incorporating eccentric training, progressive agility, and trunk stabilization restored function and hastened RTP after muscular injuries. Platelet-rich plasma injection for muscular injury yielded inconsistent results. The following initial clinical findings were associated with delayed RTP: greater passive knee extension of the uninjured leg, greater knee extension peak torque angle, biceps femoris injury, greater pain at injury and initial examination, “popping” sound, bruising, and pain on resisted knee flexion. Imaging factors associated with delayed RTP included magnetic resonance imaging-positive injury, longer lesion relative to patient height, greater muscle/tendon involvement, complete central tendon or myotendinous junction rupture, and greater number of muscles injured.

Conclusion: Surgery enabled earlier RTP and improved strength and flexibility for proximal hamstring injuries, while muscular injuries were effectively managed nonoperatively. Rehabilitation and athlete expectations may be managed by considering several suitable prognostic factors derived from initial clinical and imaging examination.

Keywords: hamstring injury; imaging; rehabilitation; return to play

Hamstring injury is one of the most common injuries among athletes. Athletes involved in activities requiring high-speed running or stretching to extreme muscle lengths are particularly subject to hamstring injury, which is classified according to location within the muscle complex, specific muscle(s) affected, severity, and chronicity. Because of the complex anatomic and biomechanical properties necessary to facilitate movement at both the hip and the knee, however, uniform assessment of hamstring injury epidemiology is challenging. Determining whether the injury affects the proximal origin or muscle belly is an important first step to elucidating injury epidemiology.
understanding clinical presentation, and identifying potential complications. Proximal hamstring injuries occur predominantly in middle-aged patients and are often more severe, usually associated with prolonged convalescence and carrying greater risk for complications such as postoperative weakness and sciatic nerve injury. Conversely, muscular injuries occur more commonly in younger male athletes with risk factors such as strength or flexibility deficits, and although initially milder than proximal injuries, there exists substantial risk for recurrent injury of greater severity.

Consideration of injury location is also important when determining clinical management. Although approach to rehabilitation is tailored according to injury location, severity, and patient goals of therapy, management generally includes physiotherapy with possible concomitant surgical intervention or injections of platelet-rich plasma (PRP). Despite extensive research investigating methods of rehabilitation and advances in therapeutic techniques designed to return athletes to competition quickly while minimizing reinjury risk, acute hamstring injury continues to account for significant absence from sports, and little consensus has been reached regarding optimal management strategies. Accurate prediction of time to return to play (RTP) is necessary to guide activity progression and manage patient expectations for recovery. Although clinicians often rely on clinical and structural factors gleaned from initial examination and magnetic resonance imaging (MRI) scans to inform their prognosis, whether these adequately correlate with recovery time remains a topic of debate.

The purpose of this study was to systematically review the literature concerning evidence-based management of acute proximal and muscular hamstring injuries in athletes and to report the baseline clinical and MRI factors associated with RTP.

METHODS

Research Framework

The design and reporting of this systematic review are compliant with the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines.

Eligibility Criteria

English-language articles examining management and factors affecting RTP after acute hamstring injury were considered for eligibility, and those meeting each of the following criteria were included: (1) the article employed a randomized controlled trial (RCT), cohort, case-control, or case series design; (2) patients had sustained acute proximal or muscular hamstring injury, defined as <6 weeks between injury and initial evaluation; (3) the authors investigated the effects of a well-described intervention on hamstring rehabilitation or associated baseline clinical or MRI assessment findings with RTP; and (4) outcome measures included time to RTP, reinjury rate, hamstring strength, hamstring range of motion (ROM), hamstrings-to-quadriceps (H:Q) ratio, or results of standardized functional assessment. Studies limited to only chronic tendinopathy or only recurrent hamstring injuries were excluded.

Information Sources and Search

Searches of MEDLINE (1966 to present), CINAHL (1981 to present), Cochrane Central Register of Controlled Trials (1996 to present), and SPORTDiscus (1949 to present) were conducted in August 2020. To identify articles pertinent to acute hamstring injury management and prognosis, a comprehensive search strategy was developed using applicable Medical Subject Headings terms and keywords (see Appendix Table A1). Subsequent manual inspection of included article reference lists ascertained any additional relevant articles not found via the computerized search.

Study Selection

Two reviewers (S.S.R. and M.P.K.) independently screened all articles on the basis of title and abstract using a specialized systematic review software (Covidence systematic review software; Veritas Health Innovation). Potentially eligible articles underwent full-text review prior to final determination of study inclusion. Any disagreements between reviewers were resolved via discussion.

Data Collection

Based on the Cochrane Handbook for Systematic Reviews of Interventions recommendations for data extraction, a custom data extraction form was developed to collect information on study design; methods; population; intervention(s); and outcome measures, including time to RTP, reinjury rate, hamstring strength, hamstring ROM, H:Q.

References

1References 3, 9, 10, 14, 41, 45, 46, 49, 56–58, 70, 73, 76, 82.
2References 4, 11–13, 15, 17–20, 23, 26, 47, 48, 51–54, 62, 68, 72, 77, 81, 87.
3References 1, 16, 21, 33, 37, 39, 50, 65, 66, 88, 89.

*Address correspondence to Samuel S. Rudisill, BS, Sports Medicine Center, Department of Orthopaedic Surgery, Massachusetts General Hospital, Partners Health System, 55 Fruit Street, Boston, MA 02114, USA (srudisill24@gmail.com).
†Sports Medicine Center, Department of Orthopaedic Surgery, Massachusetts General Hospital, Partners Health System, Boston, Massachusetts, USA.
‡Rush Medical College of Rush University, Chicago, Illinois, USA.
§Department of Orthopaedic Surgery, Hospital for Special Surgery, New York, New York, USA.

One or more of the authors has declared the following potential conflict of interest or source of funding: Funding was provided by the Conine Family Fund for Joint Preservation. S.D.M. has received education payments from Karios Surgical and honoraria from Allergan. AOSSM checks author disclosures against the Open Payments Database (OPD). AOSSM has not conducted an independent investigation on the OPD and disclaims any liability or responsibility relating thereto.
ratio, and/or standardized functional assessment. All data were extracted by a single reviewer (S.S.R.) and verified by a second reviewer (M.P.K.).

Risk-of-Bias and Quality Assessment

A risk-of-bias assessment was performed for all included studies. RCTs were assessed using the Revised Cochrane Risk-of-Bias Tool for Randomized Trials, which appraises studies based on patient randomization, assignment to intervention, availability of outcome data, outcome measurement, and selection of reported results. Overall risk of bias for each RCT was judged as “low,” “some concerns,” or “high.” Non-randomized studies were assessed using the Methodological Index for Non-Randomized Studies (MINORS) tool. The MINORS tool represents a 12-item assessment of methodological value, with 8 criteria indicated for noncomparative studies and an additional 4 criteria indicated for comparative studies. Each criterion was scored from 0 to 2, with higher overall scores indicating higher quality of evidence.

Statistical Analysis

Patient characteristics were quantified using descriptive statistics, calculated as weighted means and standard deviations across included studies. We used t tests to identify any differences in characteristics between patients with acute proximal and muscular hamstring injuries. A P value < .05 was used to determine statistical significance. Stata (Version 13.1; StataCorp) software was used for all statistical analyses.

RESULTS

Study Selection

The database search retrieved 1704 articles, with an additional 22 identified via manual search as potentially relevant. After removing duplicates, 1289 articles were screened on the basis of title and abstract. A total of 126 articles were retained for full-text review, of which 51 were excluded for failure to satisfy the inclusion criteria, and 75 were included (Figure 1).

Study Characteristics

A total 45 of the included studies pertained to injury management, 5 defined factors associated with RTP, and 5 integrated both. Studies investigated 3 to 360 male and female athletes engaged in various sports of all competitive levels with a mean age of 14 to 58 years. Of the studies pertaining to injury management, 22 concerned injuries to the proximal origin, and 28 were specific to muscular injuries. A variety of techniques and programs were assessed according to recovery time, reinjury risk, and degree of functional improvement, including surgical and nonsurgical treatment, PRP injection, and physiotherapeutic interventions. There was a lack of uniformity across studies regarding diagnostic methods, criteria for RTP, and assessment of outcomes. Prognostic studies determined whether baseline findings were correlated with time to RTP by conducting clinical and/or MRI assessment shortly after injury.

Of note, study samples were duplicated in a few articles. Specifically, injuries to the 18 sprinters and 15 dancers described in Askling et al were also investigated separately in 2 other studies by the same authors. Hamilton et al, Jacobsen et al, van der Made et al, and Wangensteen et al additionally shared considerable overlap in patient populations due to their use of pooled data from a prior RCT.

Risk-of-Bias Assessment

Seventeen RCTs were included, of which 12 were determined to present low risk of bias, and 5 were judged to raise some concerns. Nonrandomized studies comprised 11 comparative and 47 noncomparative studies.
models with average scores of 18.8 ± 1.3 and 11.4 ± 3.4 on MINORS assessment, respectively.

Synthesis of Results

Patient Characteristics. Acute hamstring injuries were classified according to location within the muscle complex. Collectively, 775 patients with proximal hamstring injury and 1057 patients with muscular hamstring injury were assessed by the included studies. Studies investigating methods of proximal injury management generally included younger patients and a greater proportion of male patients compared with studies of proximal hamstring injury rehabilitation (Table 1).

Management. Management of hamstring injury was also dependent upon localization to the proximal origin or muscle belly. Time to RTP and reinjury rate at final follow-up are listed according to intervention in Tables 2 to 4. Because of extensive variation in the methods of measuring and reporting hamstring strength, ROM, H:Q ratio, and functional assessment, individual study results for these outcomes are discussed in the text only and not presented in the tables.

Proximal Injuries. To determine optimal treatment for acute proximal hamstring injuries, 22 studies investigated the efficacy of surgical and nonsurgical intervention (Table 2). When supplemented with postoperative rehabilitation, surgical repair for partial avulsion was associated with a high rate of RTP and low levels of pain and functional limitation. Piposar et al found no differences in objective outcomes between operative and nonoperative management, although subjective results were superior after surgery. Satisfactory operative results were also observed in the context of complete avulsion, regardless of tendon retraction or ischial tuberosity fracture. Mean hamstring strength recovered to 78.0% to 94.6% within 12 months of surgery, and the rate of RTP surpassed 75% although up to 45% of patients reported decreased level of activity. Two studies measuring hamstring ROM demonstrated >90% recovery within 12 months of surgical repair. Functional outcomes did not differ by sex in any study except that by Chahal et al., in which all 4 patients experiencing poor outcomes were female. Comparatively, nonoperative management of complete proximal avulsion resulted in noticeable strength deficits and lower functional scores.

Muscular Injuries. Management of acute muscular hamstring injury was the focus of 28 studies. Eleven studies evaluated the efficacy of autologous PRP or autologous conditioned serum injection using various injection volumes, locations, and frequencies (Table 3). Although 3 studies found patients receiving PRP achieved earlier RTP than controls by 10 to 15 days, 5 studies showed no such effect. Despite finding no relationships between PRP injection and days or practices missed because of hamstring injury in National Football League athletes, Bradley et al reported PRP injection to be associated with fewer games missed. Zanon et al noted a decreased reinjury rate in patients receiving PRP in the short term; however, the long-term rate was not different from that of controls. None of the included studies concerning PRP or autologous conditioned serum injection reported the H:Q ratio or standardized functional assessment.

Physiotherapeutic programs for acute hamstring muscular injuries were assessed in 15 studies (Table 4). Eccentric training enabled faster RTP for elite soccer and track and field athletes compared with conventional training regardless of whether the injury was of sprinting or stretching type. Reinjury rate did not differ between eccentric and conventional rehabilitation protocols. However, athletes fully compliant with an eccentric training program experienced fewer reinjuries and reduced strength deficits compared with noncompliant patients. Reinjury risk was further reduced via an individualized rehabilitation algorithm designed to address risk factors, although this approach resulted in possibly slower RTP.

Kim et al found stretching and ROM exercises were effective in restoring passive ROM and reducing pain in athletes with grade 2 injury, but active ROM and strength were not improved. Active ROM was increased by increasing the frequency of stretching from 1 to 4 daily sessions, however, as patients were quicker to normalize flexibility between injured and uninjured limbs and RTP. Stretching after icing (“cryostretching”) yielded greater increases in active knee extension and lower extremity functional scale scores compared with icing alone. A stretching and strengthening (STST) intervention was compared with progressive agility and trunk stabilization (PATS) by Sherry and Best, who reported similar time to RTP between groups but a significantly greater reinjury.
rate in the 12 months after STST. Silder et al.76 compared a progressive running and eccentric strengthening program with PATS and found no benefit in RTP, reinjury risk, strength, or ROM. Notably, all 25 athletes in this study displayed residual injury markers on MRI scans at RTP, and half of those who experienced reinjury did so within 2 weeks.

Two studies demonstrated the benefit of early intervention.45,14 After 24 hours of immobilization, a progressive rehabilitation program developed by Kilcoyne et al.45 returned patients with grade 1 to 2 injury to activity in an average of <2 weeks with a 6-month reinjury rate of 6.3%. Athletes who began physiotherapy 2 days after grade 3 to 4 injury achieved faster RTP than athletes beginning at

\begin{table}[h]
\centering
\begin{tabular}{llllllllll}
\hline
Leads & Author & Risk of Biasa & Injury Type & Intervention & N & Mean ± SD Time to RTP, d & Reinjury Rate, % & Mean Follow-up, mo & Hamstring Strength & Hamstring ROM & H:Q Ratio & Functional Assessment \\
\hline
Armer & (2019)9 & 9 (16) & Partial proximal hamstring avulsion & Surgical & 64 & 333 (range, 150-1440) & — & 78 & X & \\
Ayoub & (2020)11 & 12 (16) & Complete proximal semimembranosus rupture & Surgical & 20 & 83.3 ± 39.9 & 0.0 & 35 & X & X & X & \\
Ayoub & (2020)12 & 12 (16) & Partial/proximal tear of proximal MTJ of long head of biceps & Surgical & 64 & 93.8 ± 35.7 & — & 24 & X & X & X & \\
Barnett & (2015)13 & 10 (16) & Partial/proximal hamstring avulsion & Surgical & 38 & — & — & 54 & X & \\
Best & (2019)15 & 9 (16) & Complete proximal hamstring avulsion & Surgical & 49 & — & — & 28 & X & \\
Biedert & (2015)17 & 9 (16) & Avulsion fracture of ischial tuberosity & Surgical & 3 & — & — & 24 & X & \\
Birmingham & (2011)18 & 11 (16) & Complete proximal hamstring avulsion & Surgical & 23 & 294 (range, 90-1080) & — & 43 & X & X & \\
Blakeney & (2017)19 & 15 (16) & Partial/proximal hamstring avulsion & Surgical & 96 & — & — & 34 & X & \\
Bowman & (2013)20 & 10 (16) & Partial proximal hamstring avulsion & Surgical & 17 & — & — & 32 & X & \\
Chahal & (2012)21 & 9 (16) & Complete proximal hamstring avulsion & Surgical & 13 & — & — & 24 & X & X & \\
Hofmann & (2014)22 & 9 (16) & Complete proximal hamstring avulsion & Nonoperative & 17 & — & — & 31 & X & X & \\
Klingele & (2002)27 & 10 (16) & Complete proximal hamstring avulsion & Surgical & 11 & 180 (range, 90-300) & — & 34 & X & \\
Konan & (2010)28 & 12 (16) & Complete proximal hamstring avulsion & Surgical & 10 & 175 (range, 126-455) & — & 12 & X & X & \\
Lefevre & (2013)31 & 18 (24) & Partial/proximal hamstring avulsion & Surgical & 34 & 171 ± 48 & — & 27 & X & X & X & \\
Léger-St-Jean & (2019)35 & 12 (16) & Complete proximal hamstring avulsion & Surgical & 22 & 120 (IQR, 60-240) & — & 6 & X & \\
Lempainen & (2006)44 & 10 (16) & Partial proximal hamstring avulsion & Surgical & 48 & 150 (range, 30-360) & — & 36 & & & & \\
Pipsar & (2017)52 & 18 (24) & Partial/proximal hamstring avulsion & Surgical & 15 & — & — & 30 & X & X & \\
Sandmann & (2016)56 & 11 (16) & Complete proximal hamstring avulsion & Surgical & 16 & 180 (range, 120-270) & — & 56 & X & X & X & \\
Shambaugh & (2017)57 & 17 (24) & Complete proximal hamstring avulsion & Surgical & 14 & — & — & 43 & X & X & \\
Skaara & (2013)57 & 9 (16) & Partial proximal hamstring avulsion & Surgical & 11 & 30 & — & 30 & X & X & X & \\
Subbu & (2014)58 & 12 (16) & Complete proximal hamstring avulsion & Surgical & 78 & 112 (range, 84-224) & 0.0 & 24 & & & & \\
Willinger & (2020)57 & 13 (16) & Partial/proximal hamstring avulsion & Surgical & 17 & — & — & 56 & X & & \\
\hline
\end{tabular}
\caption{Summary of Studies on Management of Acute Injuries to the Proximal Hamstringa}
\end{table}

aDashes indicate data not reported. H:Q, hamstrings-to-quadriceps ratio; IQR, interquartile range; MTJ, myotendinous junction; ROM, range of motion; RTP, return to play; X, outcome(s) reported.

bReported as Methodological Index for Non-Randomized Studies score (maximum score).
TABLE 3
Summary of Studies Managing Acute Muscular Hamstring Injury Using PRP or Autologous Conditioned Serum

Lead Author (Year)	Risk of Bias	Injury Type	Intervention	N	Mean ± SD Time to RTP, d	Reinjury Rate, %	Mean Follow-up, mo	Hamstring Strength	Hamstring ROM	Additional Outcomes
A Hamid (2014)1	Low	Grade 1	(1) PRP (1 × 3-mL direct injection 5 d postinjury)	14	26.7 ± 7.0c	—	—	X		
			(2) No injection	14	42.5 ± 20.6c	—	—			
Bezuglov (2019)16	Low	BAMIC 2a/2b	(1) PRP (1 × 8-mL direct injection <48 h postinjury)	20	11.4 ± 1.2c	0.0	6			
			(2) Saline (1 × 8-mL direct injection <48 h postinjury)	20	21.3 ± 2.7c	0.0				
Bradley (2020)21	18 (24) Cohen grade 2	(1) PRP (1-3 × 2- to 5-mL direct injections 1 wk apart)	30	22.5 ± 20.1	3.3	—				
			(2) No injection	39	25.7 ± 20.6	2.6	—			
Gaballah (2018)33	Low	Grade 2	(1) PRP (1 × 3-mL direct injection, 5-7 d postinjury)	8	Maximum, 27c	—	—	X		
			(2) No injection	9	Maximum, 43c	—	—			
Guillodo (2015)37	19 (24) Grade 3	(1) PRP (1 × 3-mL direct injection <8 d postinjury)	15	50.9 ± 10.7	—	—				
			(2) No injection	19	32.8 ± 15.7	—	—			
Hamilton (2015)39	Low	Grade 1-2	(1) PRP (3 × 1-mL injections 1 cm apart, <5 d postinjury)	30	21 (95% CI, 18-24)	7.7	6	X		
			(2) PPP (3 × 1-mL injections 1 cm apart, <5 d postinjury)	30	27 (95% CI, 21-33)	10.7	—			
			(3) No injection	30	25 (95% CI, 22-29)	10.3	—			
Lee (2020)50	12 (16) Grade 1-3	PRP (single injection)	8	49 (range, 10-112)	—	—				
Rettig (2013)65	18 (24) Grade 1-2	(1) PRP (1 × 9-mL direct injection <48 h postinjury)	5	20 (range, 16-30)	—	—				
			(2) No injection	5	17 (range, 8-81)	—	—			
Reurink (2015)66	Low	Grade 1-2	(1) PRP (3 × 1-mL injections 1 cm apart at 5 and 10 d postinjury)	41	42 (IQR, 30-58)	27.0	12	X	X	
			(2) Saline (3 × 1-mL injections 1 cm apart at 5 and 10 d postinjury)	39	42 (IQR, 37-56)	29.7	—			
Wright-Carpenter (2004)68	19 (24) Grade 2	(1) Autologous conditioned serum (5 × 1-mL injections over area of injury every 2nd day [mean, 5.4 injections])	6	16.3 ± 3.1c	—	—				
			(2) Actovegin/Traumeel therapy (5 × 1-mL injections over area of injury every second day [mean, 8.3 injections])	5	21.8 ± 4.8c	—	—			

(continued)
9 days, with no difference in reinjury rate within 1 year. Peak hamstring strength was increased in the early group 13 weeks after injury, but this difference disappeared by 26 weeks. Both early and late groups exhibited decreased H:Q ratios compared with the uninjured leg. Hickey et al determined that pain threshold—based rehabilitation failed to accelerate RTP or influence reinjury rate relative to pain-free therapy. However, isometric hamstring strength was 15% greater after 2 months of training in the pain-threshold group. The Primal Reflex Release Technique, a method of downregulating the autonomic nervous system to reset reflexes via reciprocal inhibition, was shown to significantly increase active and passive ROM as well as functional scores. A neurologically based approach was also examined by Kornberg and Lew, who reported that slump stretching resulted in fewer games missed after grade 2 injury in Australian Rules football players. Last, an RCT by Medeiros et al investigating low-level laser therapy revealed no effect in any reported outcome measure.

Surgical intervention for muscular injury was examined in 2 studies. Lempainen et al (MINORS score, 10/16) assessed outcomes of surgical repair for muscular retraction with concomitant complete rupture of the central hamstring tendon, reporting RTP within 4 months and no reinjuries by 1 year for the 2 patients with nonrecurrent injury included in the study. In addition, Cooper and Conway (MINORS score, 18/24) compared surgical and nonoperative treatments for complete distal semitendinosus rupture and found no difference in time to RTP. However, 42% of patients treated nonoperatively did not achieve acceptable results and required subsequent surgical intervention.

Table 3 (continued)

Lead Author (Year)	Risk of Bias^b	Injury Type	Intervention	N	Mean ± SD Time to RTP, d	Reinjury Rate, %	Mean Follow-up, mo	Hamstring Strength	Hamstring ROM
Zanon (2016)⁸⁹	12 (16)	Grade 2	PRP (2-3 × 3-mL injections at 72 h and 7 d postinjury)	25	35.1 ± 18.9	12.0	37		

Dashes indicate data not reported. BAMIC, British Athletics Muscle Injury Classification; IQR, interquartile range; PPP, platelet-poor plasma; PRP, platelet-rich plasma; ROM, range of motion; RTP, return to play; X, outcome(s) reported.

^bReported as Methodological Index for Non-Randomized Studies score (maximum score) for nonrandomized studies or Cochrane Risk-of-Bias Tool for Randomized Trials.

^cSignificant difference between interventions (P < .05).

References 1, 2, 5–10, 36, 44, 45, 55, 59, 69, 84–86.
TABLE 4
Summary of Studies Managing Acute Injuries to Hamstring Muscle With Physiotherapy

Lead Author	Risk of Bias	Injury Type	Intervention(s)	N	Mean ± SD Time to RTP, d	Reinjury Rate, %	Mean Follow-up, d	Hamstring Strength	Hamstring ROM	H-Q Ratio	Functional Assessment
Albertin (2020)	10 (16)	Grade 2	Primal Reflex Release Technique	6	—	—	—	X	X		
Asking (2013)	Some	Sprinting or stretching	(1) L-protocol	37	28 ± 15	0.0	12				
Asking (2014)	Some	Sprinting or stretching	(2) C-protocol	38	51 ± 23	2.6					
Bayer (2018)	Low	Munich type 3-4	(1) Early rehab	20	62.5 (IQR, 48.8-77.9)	9.1	12	X	X		
Low	Grade 1-2	(2) Delayed rehab	22	83.0 (IQR, 64.5-97.3)	—	—					
Hickey (2020)	Low	Grade 1-2	(1) Pain-threshold rehab	21	17 (95% CI, 11-24)	9.5	6	X			
Kilcoyne (2011)	Low	Grade 1-2	Early, progressive rehab	48	11.9 (range, 5-23)	6.3	6				
Low	Grade 2	Stretching and ROM-based rehab	13	—	—	2	X	X			
Kornberg (1989)	Some	Grade 1	(1) Slump stretching	12	1 absent >1 game	—	—				
Malliaropoulos (2004)	Low	Grade 2	(1) 1-4 daily stretching	40	15.1 ± 0.8	—	—	X			
Medianius (2020)	Low	Grade 1-2	(2) Delayed stretching	40	13.3 ± 0.7	—	—				
Mendiguchia (2017)	Low	Grade 1	(1) Rehbat algorithm	24	25.5 ± 7.8	4.2	6				
Sefiddhashti (2018)	Some	Grade 1-2	(1) Cryotherapy with stretching	18	—	—	0.25	X	X		
Sherry (2004)	Low	Grade 1-2	(2) Cryotherapy alone	19	—	—	—				
Silder (2013)	Low	Grade 1-2	(1) PATS protocol	12	22 ± 8.5	7.7	12	X			
Tyler (2017)	11 (16)	Grade 1-3	Eccentric strength protocol	50	77 ± 70	8.0	24	X			

aDashes indicate data not reported. C-protocol, conventional protocol; H-Q, hamstrings-to-quadriceps ratio; IQR, interquartile range; L-protocol, lengthening protocol; LLLT, low-level laser therapy; PATS, progressive agility and trunk stabilization; PRES, progressive running and eccentric strengthening; rehab, rehabilitation; ROM, range of motion; RTP, return to play; STST, stretching and strengthening; X, outcome(s) reported.

bReported as Methodological Index for Non-Randomized Studies score (maximum score) for nonrandomized studies or Cochrane Risk-of-Bias Tool for Randomized Trials.

cSignificant difference between interventions ($P < .001$).

dSignificant difference between interventions ($P < .05$).

Muscle, presence of extramuscular fluid, distance from ischium, and the Cohen MRI score. Of note, the Cohen MRI score refers to an assessment tool designed to evaluate hamstring injuries on the basis of patient age, muscles involved, injury location, extent of injury, and retraction.

DISCUSSION

This review assessed management of acute proximal and muscular hamstring injuries by reviewing interventions and prognostic factors associated with RTP. According to the literature, patients undergoing surgical treatment for partial or complete proximal hamstring ruptures achieved consistently better outcomes compared with those managed nonoperatively. For patients with acute muscular injuries, physiotherapy incorporating eccentric training and PATS, progressive running and eccentric strengthening; rehab, rehabilitation; ROM, range of motion; RTP, return to play; STST, stretching and strengthening; X, outcome(s) reported.

References 6–10, 24, 27, 30, 44, 59, 69, 76.
TABLE 5
Summary of Studies Assessing Prognostic Value of Baseline Assessment

Lead Author (Year)	Risk of Bias	N	Clinical	MRI
Askling (2014)	Low	28	X	
Askling (2013)	Some concerns	36	X	
Cohen (2006)	Low	20	X	
Pomeranz (1999)	Low	10	X	
Schneider-Kolsky (2006)	Low	20	X	
Silder (2013)	Low	12	X	
Slavotinek (2009)	Low	12	X	
van der Made (2018)	Low	14	X	
Verrall (2009)	Low	12	X	X
Wangensteen (2015)	Low	11	X	
Warren (2010)	Low	13	X	

MRI, magnetic resonance imaging; X, outcome(s) reported.

Reported as Methodological Index for Non-Randomized Studies score (maximum score) for nonrandomized studies or Cochrane Risk-of-Bias Tool for Randomized Trials.

enabled faster RTP.14,45 Slump stretching49 and reflexive release techniques3 also offered functional benefit by addressing neurologic components of hamstring strain. Regarding the efficacy of PRP injection, results were inconclusive, confounded by a lack of standardization in PRP formulation and injection protocol. Similar inconsistencies have been reported in recent meta-analyses,3,5,61,71,75 emphasizing the need to determine the optimal injection protocol for standard use in future research investigating the effect of PRP on time to RTP. Overall, although the quality of evidence of included studies varied, the diverse methods and predictive factors examined warrant consideration by clinicians seeking to optimize injury recovery.

Studies quantifying the prognostic value of baseline assessments have indicated that certain clinical and MRI findings are correlated with time to RTP. Clinical factors associated with accelerated RTP included lesser deficit in strength of the injured leg relative to the uninjured leg44 and shorter physician-predicted recovery time,69 whereas prolonged time to RTP was observed in patients with greater pain,36,44,84,85 injury to the biceps femoris,69 and longer physician-69,84 and self-predicted59 recovery times. It is possible that patients with greater strength and decreased pain in the injured leg at baseline may be able to begin physiotherapeutic activity and facilitate rehabilitation sooner after injury, resulting in earlier RTP. On MRI scans, findings indicating greater injury severity at initial presentation, such as greater lesion size,24,54,84 tendinous/myotendinous rupture,25,63,64,83 and greater number of muscles affected,40 were correlated with prolonged RTP. Despite associations of initial examination and MRI findings with time to RTP, accurate prognostication of recovery time remains difficult. In a multivariate analysis of 180 patients, Wangensteen et al85 determined that a single clinical examination at initial presentation accounted for 29\% of variance in time to RTP, whereas supplementation with MRI findings explained only an additional 2.8\%. Jacobsen et al44 likewise reported that 59.0\% and 8.6\% of variance in RTP was accounted for by clinical and MRI examination, respectively, suggesting the added benefit of MRI findings in prognosticating RTP is less pronounced.

This study has several important limitations. First, the strength of any systematic review is dependent upon the quality of evidence of included studies. This review included 17 RCTs, of which 5 were determined as raising “some concerns” on risk-of-bias assessment. The remaining 58 studies consisted of cohort, case-control, and case series study designs included in an effort to be comprehensive in evaluating rehabilitative techniques. When critically appraised, comparative nonrandomized studies achieved a mean MINORS score of 18.8 ± 1.3, and noncomparative nonrandomized studies achieved a score of 11.4 ± 3.4. These scores indicate a reasonable risk of bias and are mainly attributable to a lack of prospective data collection, blinding, and/or prospective calculation of sample size. Differences in study design, patient population, and outcome measures limited direct comparisons between studies and precluded data pooling for meta-analyses, making it difficult to draw concrete conclusions in circumstances of conflicting results. This was particularly apparent when analyzing the efficacy of PRP injection for treatment of hamstring muscular injury, as studies varied in terms of volume, location, and number of injections. With regard to studies examining the prognostic value of clinical and MRI examination, the majority conducted only univariate analyses correlating baseline findings with RTP. Furthermore, criteria for RTP and methods of functional assessment were inconsistent, likely explaining some of the variance in time to RTP across studies. Future large-scale research using standardized RTP criteria and outcome measures are required to determine reliable associations between baseline findings and RTP prognosis via multivariate analysis.
TABLE 6
Baseline Assessment Findings and Prognostic Relationships With RTP Times

Clinical Factors	MRI Factors
RTP Prognosis: Accelerated	
Pain during outer-range strength test	BAMIC grade 0⁶¹
Midrange strength as % of uninjured leg	Shorter radiologist-predicted time to RTP⁶⁸
SLR flexibility of uninjured leg	Shorter length of lesion⁶⁶
Greater physiotherapy attendance	Smaller injury CSA⁶⁶
Shorter clinician-predicted time to RTP	MRI-negative injury^{9,10,33,62}
Lower grade of injury	Single muscle/tendon involvement²³
Sprinting-type vs stretching-type injury	Lower % of muscle/tendon involvement²³
Lower radiologic grade of injury	Lower radiologic grade of injury^{23,29}
Injuries not involving proximal tendon[*]	Lower Cohen MRI score²³
RTP Prognosis: No Effect	
Sex⁴³	Craniocaudal length of injury^{6,7,8,26,42,57}
Dominant vs nondominant limb^{2,42,43}	Mediolateral width of injury^{6,7,42}
Sudden vs gradual pain onset⁴²	Depth of injury^{7,30}
Injury during game vs training⁴²	Volume of edema^{7,26,57}
Forced to cease activity within 5 min⁴²	Tendon involvement^{30,42}
Ability to walk/jog pain-free⁴²	Myofascial involvement^{30,42}
No. of days to walk pain-free^{42,57}	Muscle (most) involved^{24,29,30,37,42,57,61,75,82}
No. of days to ascend stairs pain-free⁸³	Injury CSA as % of total muscle CSA^{26,42,57}
Mechanism of injury^{2,42,57,82,83}	Distance of injury from ischium^{7,8,42,57,82}
History of low back pain^{42,82}	Intra- or intermuscular hemorrhage⁶⁶
History of lower limb injury⁴²	Site of injury within the muscle^{30,31,61,75}
History of lower limb surgery⁴²	Grade 1 vs grade 2 injury^{29,61}
Pain on 1- or 2-leg squat⁴²	MRI grade of injury⁵⁷
Pain on palpation of injured area^{5,42}	Presence of extramuscular fluid⁵⁷
Craniocaudal length of palpated pain^{1,6,7,42,57}	Partial disruption of the central tendon⁸⁰
Mediolateral width of palpated pain⁴²	Amount of central tendon retraction⁸⁰
Distance of palpated pain from ischium^{35,42,57}	BAMIC type a vs b⁶¹
Location of point of highest palpated pain^{7,8}	
Site of injury within the muscle^{43,49,55,81,83}	
No. of muscles injured²	
Positive vs negative slump test^{82,83}	
Frequency of physiotherapy²	
Grade of injury^{2,43}	

Table 6 (continued)

Clinical Factors	MRI Factors
RTP Prognosis: Delayed	
Female sex²	Volume of injury^{6,42,75}
Greater PKE range of uninjured leg⁶⁶	Greater cranio-caudal length of injury^{6,10,24,30,66,73}
Greater peak torque angle in knee extension⁴²	Greater width of edema³⁰
Higher grade of injury⁶⁶	Greater length of lesion as % of height³¹
Injury to biceps femoris⁶⁶	Greater depth of injury⁶
Shorter distance of pain to ischium^{7,9,10}	Longer radiologist-predicted time to RTP⁶⁶
Stretching-type vs sprinting-type injury^{6,10}	Larger injury CSA^{6,33,62,66,75}
Greater maximum pain at time of injury^{42,82}	Involvement of proximal tendon^{8,10}
Worst VAS pain score >6³⁵	Proximal vs distal injuries⁶
Higher VAS pain score at initial examination³⁴	Shorter distance of injury to ischium^{8,9,10}
“Popping” sound at time of injury³⁵	Higher Cohen MRI score^{23/score> 10³⁹}
Bruising³⁵	MRI-positive injury⁸¹
Greater deficit in passive SLR⁵⁷	Greater % of muscle/tendon involvement²³
Longer clinician-predicted time to RTP^{66,81}	Complete tendinous/myotendinous rupture⁶²
Forced to cease activity within 5 min⁸²	Complete central tendon disruption^{34,80}
Greater length of palpated pain⁸²	Presence of central tendon waviness⁸⁰
Pain on resisted knee flexion⁸²	Greater central tendon retraction²³
>1 wk to initial consultation²	Higher radiologic grade of injury^{23,29,30,37,61,82}
Recurrent muscle injury²	Greater No. of muscles involved³⁹
Greater active knee ROM deficit^{35,53}	Distal tendinous or myotendinous injury⁶²
Longer self-predicted time to RTP⁶⁶	Peri-tendinous fluid collection⁶²
Lower level of sport⁸	
>1 d to walk pain-free⁸³	

⁴ACL, anterior cruciate ligament; BAMIC, British Athletics Muscle Injury Classification; CSA, cross-sectional area; MRI, magnetic resonance imaging; NSAID, nonsteroidal anti-inflammatory drug; PKE, passive knee extension; ROM, range of motion; RTP, return to play; SLR, straight-leg raise; VAS, visual analog scale.
Surgical intervention offers substantial benefits over non-operative care for treatment of acute partial and complete proximal hamstring ruptures, while muscular injuries are effectively treated with physiotherapy encompassing eccentric training and PATS. The efficacy of PRP, however, remains controversial. Prognostication of RTP is of great importance, and the ability to accurately predict recovery time can be improved with a thorough clinical examination shortly after injury. Although the added benefit may be limited, structural factors observed on MRI scans can also inform RTP prognosis. Future high-quality research evaluating novel therapeutic protocols and prognostic determinants of RTP is needed to further enhance rehabilitation and better predict recovery timelines for athletes with acute hamstring injury.

REFERENCES

1. A Hamid MS, Mohamed Ali MR, Yusof A, George J, Lee LPC. Platelet-rich plasma injections for the treatment of hamstring injuries: a randomized controlled trial. Am J Sports Med. 2014;42(10):2410-2418.
2. A Hamid MS, Yusof A, Mohamed Ali MR. Pattern of muscle injuries and predictors of return-to-play duration among Malaysian athletes. Singapore Med J. 2013;54(10):587-591.
3. Albertin ES, Walters M, May J, Baker RT, Naspany A, Cheatham S. An exploratory case series analysis of the use of Primal Reflex Release Technique™ to improve signs and symptoms of hamstring strain. Int J Sports Phys Ther. 2020;15(2):263-273.

CONCLUSION

The Orthopaedic Journal of Sports Medicine Return to Play After Hamstring Injury

11. Ayuob A, Kayani B, Haddad FS. Acute surgical repair of complete, partial-thickness tears of the proximal biceps femoris: a prospective study of 64 patients treated surgically. Am J Sports Med. 2020;48(8):1974-1982.
12. Barnett AJ, Negus JJ, Barton T, Wood DG. Reattachment of the proximal hamstring origin: outcome in patients with partial and complete tears. Knee Surg Sports Traumatol Arthrosc. 2015;23(7):2130-2135.
13. Bayer ML, Hoegberget-Kalisz M, Jensen MH, et al. Role of tissue perfusion, muscle strength recovery, and pain in rehabilitation after acute muscle strain injury; a randomized controlled trial comparing early and delayed rehabilitation. Scand J Med Sci Sports. 2018;28(12):2579-2591.
14. Best R, Eberle J, Beck F, Beckmann J, Becker U. Functional impairment after successful surgical reconstruction for proximal hamstring avulsion. Int Orthop. 2019;43(10):2341-2347.
15. Bezuglov E, Maffulli N, Tokareva A, Achkasov E. Platelet-rich plasma in hamstring muscle injuries in professional soccer players: a pilot study. Muscles Ligaments Tendons J. 2019;9(1):112-118.
16. Biedert RM. Surgical management of traumatic avulsion of the ischial tuberosity in young athletes. Clin J Sport Med. 2015;25(1):67-72.
17. Birmingham P, Muller M, Wickiewicz T, Cavanaugh J, Rodeo S, Warren R. Functional outcome after repair of proximal hamstring avulsions. J Bone Joint Surg Am. 2011;93(19):1819-1826.
18. Blakeney WG, Zilko SR, Edmonston SJ, Schupp NE, Annear PT. A prospective evaluation of proximal hamstring tendon avulsions: improved functional outcomes following surgical repair. Knee Surg Sports Traumatol Arthrosc. 2017;25(6):1943-1950.
19. Bowman KF, Cohen SB, Bradley JP. Operative management of partial-thickness tears of the proximal hamstring muscles in athletes. Am J Sports Med. 2013;41(6):1363-1371.
20. Bradley JP, Lawyer TJ, Ruel S, Towers JD, Arner JW. Platelet-rich plasma shorts return to play in National Football League players with acute hamstring injuries. Orthop J Sports Med. 2020;8(4):2325967120911731.
21. Carlson C. The natural history and management of hamstring injuries. Curr Rev Musculoskelet Med. 2008;1(2):120-123.
22. Chahal J, Bush–Joseph CA, Chow A, et al. Clinical and magnetic resonance imaging outcomes after surgical repair of complete proximal hamstring ruptures: does the tendon heal? Am J Sports Med. 2012;40(10):2325-2330.
23. Cohen SB, Towers JD, Zaga A, et al. hamstring injuries in professional football players: magnetic resonance imaging correlation with return to play. Sports Health. 2011;3(5):423-430.
24. Comin J, Malliaras P, Baquie P, Barbou T, Connell D. Return to competitive play after hamstring injuries involving disruption of the central tendon. Am J Sports Med. 2013;41(1):111-115.
25. Cooper DE, Conway JE. Distal semitendinosus ruptures in elite-level athletes. Am J Sports Med. 2010;38(6):1174-1178.
26. Crema MD, Godoy IRB, Abdalla RJ, de Aquino JS, Ingham SJM, Skaf AY. Hamstring injuries in professional soccer players: extent of MRI-detected edema and the time to return to play. Sports Health. 2018;10(1):75-79.
27. Cumpton M, Li T, Page MJ, et al. Updated guidance for trusted systematic reviews: a new edition of the Cochrane Handbook for Systematic Reviews of Interventions. Cochrane Database Syst Rev. 2019;10:ED000142.
28. Ekstrand J, Healy JC, Waldén M, Lee JC, English B, Häggström M. Hamstring muscle injuries in professional football: the correlation of MRI findings with return to play. Br J Sports Med. 2012;46(2):112-117.
29. Ekstrand J, Lee JC, Healy JC. MRI findings and return to play in football: a prospective analysis of 255 hamstring injuries in the UEFA Elite Club Injury Study. Br J Sports Med. 2016;50(12):738-743.
30. Ekstrand J, Wäldén M, Häggström M. Hamstring injuries have increased by 4% annually in men’s professional football, since 2001: a 13-year longitudinal analysis of the UEFA Elite Club Injury Study. Br J Sports Med. 2016;50(12):731-737.
31. Engebretsen AH, Myklebust G, Holme I, Engebretsen L, Bahr R. Intrinsic risk factors for hamstring injuries among male soccer players: a prospective cohort study. Am J Sports Med. 2010;38(6):1147-1153.
32. Gaballah A, Elgedi A, Bressel E, Shakkah N, Abdi-Alghany A. Rehabilitation of hamstring strains: does a single injection of platelet-rich plasma improve outcomes? (Clinical study). Sport Sci Health. 2018;14(2):439-447.
33. Gibbs NJ, Cross TM, Cameron M, Houang MT. The accuracy of MRI in predicting recovery and recurrence of acute grade one hamstring injury.
muscle strains within the same season in Australian Rules football players. J Sci Med Sport. 2004;7(2):248-258.
35. Grassi A, Napoli F, Romandini I, et al. Is platelet-rich plasma (PRP) effective in the treatment of acute muscle injuries? A systematic review and meta-analysis. Sports Med. 2018;48(4):971-989.
36. Guillozo Y, Here-Dorigrac C, Thoribé B, et al. Clinical predictors of time to return to competition following hamstring injuries. Muscles Ligaments Tendons J. 2014;4(3):386-390.
37. Guillozo Y, Madougas G, Simon T, Le Dauphin H, Saura A. Platelet-rich plasma (PRP) treatment of sports-related severe acute hamstring injuries. Muscles Ligaments Tendons J. 2015;5(4):284-288.
38. Hallén A, Ekstrand J. Return to play following muscle injuries in professional footballers. J Sports Sci. 2014;32(13):1229-1236.
39. Hamilton B, Tojl. Almusza E, et al. Platelet-rich plasma does not enhance return to play in hamstring injuries: a randomised controlled trial. Br J Sports Med. 2015;49(14):943-950.
40. Hamilton B, Wangensteen A, Whiteley R, et al. Cohen’s MRI scoring system has limited value in predicting return to play. Knee Surg Sports Traumatol Arthrosc. 2018;26(4):1288-1294.
41. Hickey JT, Timmins RG, Maniar N, et al. Pain-free versus pain-threshold rehabilitation following acute hamstring strain injury: a randomised controlled trial. J Orthop Sports Phys Ther. 2020;50(2):91-103.
42. Hofmann KJ, Paggi A, Connors D, Miller SL. Complete avulsion of the proximal hamstring insertion: functional outcomes after nonsurgical treatment. J Bone Joint Surg Am. 2014;96(12):1022-1025.
43. Irger M, Willinger L, Lacheta L, Pogorzelski J, Imhoff AB, Feucht MJ. Proximal hamstring tendon avulsion injuries occur predominately in middle-aged patients with distinct gender differences: epidemiologic analysis of 263 surgically treated cases. Knee Surg Sports Traumatol Arthrosc. 2020;28(4):1221-1229.
44. Jacobsen P, Witvrouw E, Muxart P, Tojl JL, Whiteley R. A combination of initial and follow-up physiotherapist examination predicts physician-determined time to return to play after hamstring injury, with no added value of MRI. Br J Sports Med. 2016;50(7):431-439.
45. Kilcoyne JT, Timmins RG, Maniar N, et al. Pain-free versus pain-threshold rehabilitation following acute hamstring strain injury: a randomised controlled trial. J Orthop Sports Phys Ther. 2020;50(2):91-103.
46. Klinege KE, Sallay PL. Surgical repair of complete proximal hamstring tendon rupture. Am J Sports Med. 2002;30(5):742-747.
47. Konan S, Haddad F. Successful return to high level sports following early surgical repair of complete tears of the proximal hamstring tendons. Int Orthop. 2010;34(1):119-123.
48. Kornberg C, Lew P. The effect of stretching neural structures on grade one hamstring injuries. J Orthop Sports Phys Ther. 1989;10(12):481-487.
49. Lee KY, Baker HP, Hanaoka CM, Tjong VK, Terry MA. Treatment of patellar and hamstring tendinopathy with platelet-rich plasma in varsity collegiate athletes: a case series. J Orthop. 2020;18:91-94.
50. Lefevre N, Bohu Y, Naouri J, Klouche S, Herman S. Returning to play following muscle injuries in professional footballers. J Sports Sci. 2014;32(13):1229-1236.
51. Leger-St-Jean B, Gorica Z, Magnussen RA, Vasileff WK, Kaeding CC. Is platelet-rich plasma (PRP) effective in the treatment of acute muscle injuries? A systematic review and meta-analysis. Sports Med. 2018;48(4):971-989.
52. Mallette DM, Aim T, Vaet MA, Baronin BM. Effects of low-level laser therapy on hamstring strain injury rehabilitation: a randomized controlled trial. Phys Ther Sport. 2020;42:124-130.
53. Mendiguchia J, Martinez-Ruiz E, Edouard P, et al. A multifactorial, criteria-based progressive algorithm for hamstring injury treatment. Med Sci Sports Exerc. 2017;49(7):1482-1492.
54. Moen MH, Reurink G, Weir A, Tojl J, Maas M, Goudsward GJ. Predicting return to play after hamstring injuries. Br J Sports Med. 2014;48(18):1358-1363.
55. Moher D, Liberati A, Tetzlaff J, Altman DG; The PRISMA Group. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA statement. PLoS Med. 2009;6(7):e1000097.
56. Pas HL, Reurink G, Tojl JL, Weir A, Winters M, Moen MH. Efficacy of rehabilitation (lengthening) exercises, platelet-rich plasma injections, and other conservative interventions in acute hamstring injuries: an updated systematic review and meta-analysis. Br J Sports Med. 2015;49(18):1197-1205.
57. Pickard RJ, Vinod AV, Olsen JR, Lacerte E, Miller SL. High-grade partial and retracted (<2 cm) proximal hamstring ruptures. Orthop J Sports Med. 2017;5(2):23259671762507.
58. Pollock N, Patel A, Chakraverty J, Suokas A, James SL, Chakraverty R. Time to return to full training is delayed and recurrence rate is higher in an intratendinous (‘c’) acute hamstring injury in elite track and field athletes: clinical application of the British Athletics Muscle Injury Classification. Br J Sports Med. 2016;50(5):305-310.
59. Pomeranz SJ, Heidt RS Jr. MR imaging in the prognostication of hamstring injury: work in progress. Radiology. 1993;189(3):897-900.
60. Rettig AC, Meyer S, Bhadra AK. Platelet-rich plasma in addition to rehabilitation for acute hamstring injuries in NFL players: clinical effects and time to return to play. Orthop J Sports Med. 2013;1(1):2325967113494354.
61. Reurink G, Goudsward GJ, Moen MH, et al. Rationale, secondary outcome scores and 1-year follow-up of a randomised trial of platelet-rich plasma injections in acute hamstring muscle injury: the Dutch Hamstring Injection Therapy study. Br J Sports Med. 2015;49(18):1206-1212.
62. Ribeiro-Alvares JB, Marques VB, Vaet MA, Baronin BM. Four weeks of Nordic hamstring exercise reduce muscle injury risk factors in young adults. J Strength Cond Res. 2018;32(5):1254-1262.
63. Sandmann GH, Hahn D, Amerehler M, et al. Mid-term functional outcome and return to sports after proximal hamstring tendon repair. Int J Sports Med. 2016;37(7):570-576.
64. Schneider-Kolsky ME, Hoving JL, Warren P, Connell DA. A comparison between clinical assessment and magnetic resonance imaging of acute hamstring injuries. Am J Sports Med. 2006;34(6):1008-1015.
65. Selidadda L, Ghotbi N, Salavati M, Farhadi A, Mazaheri M. The effects of cryotherapy versus cryostretching on clinical and functional outcomes in athletes with acute hamstring strain. J Bodyw Mov Ther. 2018;22(3):805-809.
66. Seow D, Shimozono Y, Tengku Yusof TNB, Yasui Y, Massey A, Kennedy JG. Platelet-rich plasma injection for the treatment of hamstring injuries: a systematic review and meta-analysis with best-worst case analysis. Am J Sports Med. 2021;49(2):529-537.
67. Shambaugh BC, Olsen J, Kellium EL, Lacerte E, Miller SL. A comparison of nonoperative and operative treatment of complete proximal hamstring ruptures. Orthop J Sports Med. 2017;5(18):232596717628551.
68. Sherry MA, Best TM. A comparison of 2 rehabilitation programs in the treatment of acute hamstring strains. J Orthop Sports Phys Ther. 2004;34(3):116-125.
69. Sherry MA, Johnston TS, Heiderscheit BC. Rehabilitation of acute hamstring strain injuries. Clin Sports Med. 2015;34(2):263-284.
70. Sheth U, Dwyer T, Smith I, et al. Does platelet-rich plasma lead to earlier return to sport when compared with conservative treatment in...
acne muscle injuries? A systematic review and meta-analysis. Arthroscopy. 2018;34(1):281-288.e281.
76. Silder A, Sherry MA, Sanfilippo J, Tuile M, Hetzel SJ, Heiderscheit BC. Clinical and morphological changes following 2 rehabilitation programs for acute hamstring strain injuries: a randomized clinical trial. J Orthop Sports Phys Ther. 2013;43(5):284-299.
77. Skaara HE, Moksnes H, Frihagen F, Stuge B. Self-reported and performance-based functional outcomes after surgical repair of proximal hamstring avulsions. Am J Sports Med. 2013;41(11):2577-2584.
78. Slavotinek JP, Verrall GM, Barnes PG, Fon GT. Diagnostic and prognostic value of clinical findings in 83 athletes with posterior thigh injury: comparison of clinical findings with magnetic resonance imaging documentation of hamstring muscle strain. Am J Sports Med. 2003;31(6):969-973.
79. Wangensteen A, Almusa E, Boukarroum S, et al. MRI does not add value over and above patient history and clinical examination in predicting time to return to sport after acute hamstring injuries: a prospective cohort of 180 male athletes. Br J Sports Med. 2015;49(24):1579-1587.
80. Warren P, Gabbe BJ, Schneider-Kolsky M, Bennell KL. Clinical predictors of time to return to competition and of recurrence following hamstring strain in elite Australian footballers. Br J Sports Med. 2010;44(6):415-419.
81. Willinger L, Siebenlist S, Lacheta L, et al. Excellent clinical outcome and low complication rate after proximal hamstring tendon repair at mid-term follow up. Knee Surg Sports Traumatol Arthrosc. 2020;28(4):1230-1235.
82. Wright-Carpenter T, Klein P, Schaferhoff P, Appell HJ, Mir LM, Wehling P. Treatment of muscle injuries by local administration of autologous conditioned serum: a pilot study on sportsmen with muscle strains. Int J Sports Med. 2004;25(8):588-593.
83. van der Made AD, Almusa E, Whiteley R, et al. Intramuscular tendon involvement on MRI has limited value for predicting time to return to play following acute hamstring injury. Br J Sports Med. 2018;52(2):83-88.
84. Verrall GM, Slavotinek JP, Barnes PG, Fon GT. Diagnostic and prognostic value of clinical findings in 83 athletes with posterior thigh injury: comparison of clinical findings with magnetic resonance imaging documentation of hamstring muscle strain. Am J Sports Med. 2003;31(6):969-973.

APPENDIX

TABLE A1
Search Strategy

MEDLINE (Ovid)	
1. Exp Hamstring muscles/	
2. ((hamstring* or (biceps adj2 femoris) or semimembranosus or semitendinosus or thigh or (posterior adj2 thigh)) not ACL not cruciate).tw, kw	
3. 1 or 2	
4. Exp "Wounds and Injuries"/	
5. Exp "Sprains and Strains"/	
6. Exp Pain/	
7. (injur* or (leg adj2 injur*) or (sports adj2 injur*) or (athletic adj2 injur*) or strain* or sprain* or tear* or ruptur* or trauma* or pain* or dysfunction*).tw, kw	
8. 4 or 5 or 6 or 7	
9. Exp Therapeutics/	
10. Exp Rehabilitation/	
11. Exp Diagnostic Imaging/	
12. (therap* or rehab* or manag* or interven* or imag*).tw, kw	
13. 9 or 10 or 11 or 12 or 13	
14. Exp "Recovery of Function"/	
15. Exp Sports Medicine/	
16. (recover* or progres* or convalescen* or outcome* or "return to play" or "return to sport" or "return to competition" or "return to participation" or "return to training" or "return-to-play" or "return-to-sport" or "return-to-competition" or "return-to-participation" or "return-to-training").tw, kw	
17. (re-occur* or recur* or reoccur* or re-injur* or reinj*).tw, kw	
18. 14 or 15 or 16 or 17	
19. 3 and 8 and 13 and 18	
20. Limit 19 to (English language and full text)	
21. Limit 20 to MEDLINE	(continued)
CINAHL (EBSCO)	
----------------	----------------
1. (MH “hamstring muscles” OR MH thigh OR TI ((hamstring* or (biceps N2 femoris) or semimembranosus or semitendinosus or thigh or (posterior N2 thigh))) OR AB (hamstring* or (biceps N2 femoris) or semimembranosus or semitendinosus or thigh or (posterior N2 thigh))) NOT TI ACL NOT TI cruciate	
2. MH (“Wounds and Injuries”) OR MH (“Sprains and Strains”) OR MH “Pain” or TI ((injur* or (leg N2 injur*) or (sports N2 injur*) or (athletic N2 injur*) or strain* or sprain* or tear* or rupture* or trauma* or pain* or dysfunction*)) OR AB ((injur* or (leg N2 injur*) or (sports N2 injur*) or (athletic N2 injur*) or strain* or sprain* or tear* or rupture* or trauma* or pain* or dysfunction*))	
3. MH Therapeutics OR MH Rehabilitation OR MH “Diagnostic Imaging” OR TI ((therap* or rehab* or manag* or interven* or imag*)) OR AB ((therap* or rehab* or manag* or interven* or imag*))	
4. MH “Recovery of Function” OR MH “Sports Medicine” OR TI ((recover* or progress* or convalescen* or outcome* or “return to play” or “return to sport” or “return to competition” or “return to participat*” or “return to train*” or “return-to-play” or “return-to-sport” or “return-to-competition” or “return-to-participat*” or “return-to-train*”)) OR AB ((recover* or progress* or convalescen* or outcome* or “return to play” or “return to sport” or “return to competition” or “return to participat*” or “return to train*” or “return-to-play” or “return-to-sport” or “return-to-competition” or “return-to-participat*” or “return-to-train*”))	
5. S1 AND S2 AND S3 AND S4	
6. Narrow by language – English	
7. Limiters – Full text	

Cochrane Central Register for Controlled Trials (EBSCO)	
1. (MH “hamstring muscles” OR MH thigh OR TI ((hamstring* or (biceps N2 femoris) or semimembranosus or semitendinosus or thigh or (posterior N2 thigh))) OR AB (hamstring* or (biceps N2 femoris) or semimembranosus or semitendinosus or thigh or (posterior N2 thigh))) NOT TI ACL NOT TI cruciate	
2. MH (“Wounds and Injuries”) OR MH (“Sprains and Strains”) OR MH “Pain” or TI ((injur* or (leg N2 injur*) or (sports N2 injur*) or (athletic N2 injur*) or strain* or sprain* or tear* or rupture* or trauma* or pain* or dysfunction*)) OR AB ((injur* or (leg N2 injur*) or (sports N2 injur*) or (athletic N2 injur*) or strain* or sprain* or tear* or rupture* or trauma* or pain* or dysfunction*))	
3. MH Therapeutics OR MH Rehabilitation OR MH “Diagnostic Imaging” OR TI ((therap* or rehab* or manag* or interven* or imag*)) OR AB ((therap* or rehab* or manag* or interven* or imag*))	
4. MH “Recovery of Function” OR MH “Sports Medicine” OR TI ((recover* or progress* or convalescen* or outcome* or “return to play” or “return to sport” or “return to competition” or “return to participat*” or “return to train*” or “return-to-play” or “return-to-sport” or “return-to-competition” or “return-to-participat*” or “return-to-train*”)) OR AB ((recover* or progress* or convalescen* or outcome* or “return to play” or “return to sport” or “return to competition” or “return to participat*” or “return to train*” or “return-to-play” or “return-to-sport” or “return-to-competition” or “return-to-participat*” or “return-to-train*”))	
5. S1 AND S2 AND S3 AND S4	
6. Narrow by language – English	
7. Limiters – Full text	

SPORTDiscus (EBSCO)	
1. (MH “hamstring muscles” OR MH thigh OR TI ((hamstring* or (biceps N2 femoris) or semimembranosus or semitendinosus or thigh or (posterior N2 thigh))) OR AB (hamstring* or (biceps N2 femoris) or semimembranosus or semitendinosus or thigh or (posterior N2 thigh))) NOT TI ACL NOT TI cruciate	
2. MH (“Wounds and Injuries”) OR MH (“Sprains and Strains”) OR MH “Pain” or TI ((injur* or (leg N2 injur*) or (sports N2 injur*) or (athletic N2 injur*) or strain* or sprain* or tear* or rupture* or trauma* or pain* or dysfunction*)) OR AB ((injur* or (leg N2 injur*) or (sports N2 injur*) or (athletic N2 injur*) or strain* or sprain* or tear* or rupture* or trauma* or pain* or dysfunction*))	
3. MH Therapeutics OR MH Rehabilitation OR MH “Diagnostic Imaging” OR TI ((therap* or rehab* or manag* or interven* or imag*)) OR AB ((therap* or rehab* or manag* or interven* or imag*))	
4. MH “Recovery of Function” OR MH “Sports Medicine” OR TI ((recover* or progress* or convalescen* or outcome* or “return to play” or “return to sport” or “return to competition” or “return to participat*” or “return to train*” or “return-to-play” or “return-to-sport” or “return-to-competition” or “return-to-participat*” or “return-to-train*”)) OR AB ((recover* or progress* or convalescen* or outcome* or “return to play” or “return to sport” or “return to competition” or “return to participat*” or “return to train*” or “return-to-play” or “return-to-sport” or “return-to-competition” or “return-to-participat*” or “return-to-train*”))	
5. S1 AND S2 AND S3 AND S4	
6. Narrow by language – English	
7. Limiters – Full text	

Table A1 (continued)