Assembly of Na$_3$V$_2$(PO$_4$)$_2$F$_3$@C Nanoparticles in Reduced Graphene Oxide Enabling Superior Na$^+$ Storage for Symmetric Sodium Batteries

Ye Yao,a Lu Zhang,a Yu Gao*,a, Gang Chen,a Chunzhong Wanga and Fei Du*,a

Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, People’s Republic of China

Email: dufeijlu.edu.cn; gaoyu@jlu.edu.cn
Figure S1. SEM (a) and TEM (b) of NVPF@C
Figure S2. Charge-discharge profiles of the NVPF@C and NVPF@C@rGO.
Figure S3. Equivalent circuit for the Nyquist plots of the NVPF@C and NVPF@C@rGO.
Figure S4. Linear fitting of Z' vs. $\omega^{-1/2}$ of NVPF@C and NVPF@C@rGO.
Figure S5. Charge-discharge profile of NVPF@C@rGO in the voltage range of 0.01-2.0V at 1C rate.
Figure S6. Cycle performance of NVPF@C@rGO symmetric full cell at 1C.