IDENTIFICATION OF TWO CATEGORIES OF OPTICALLY BRIGHT γ-RAY BURSTS

Enwei Liang1,2 and Bing Zhang1

1Department of Physics, University of Nevada, Las Vegas, NV 89154, USA
2Physics Department, Guangxi University, Nanning 530004, P. R. China

ABSTRACT

We present the results of a systematical analysis of the intrinsic optical afterglow light curves for a complete sample of gamma-ray bursts (GRBs) observed in the period from Feb. 1997 to Aug. 2005. These light curves are generally well-sampled, with at least four detections in the R band. The redshifts of all the bursts in the sample are available. We derive the intrinsic R band afterglow lightcurves (luminosity versus time within the cosmic proper rest frame) for these GRBs, and discover a fact that they essentially follow two universal tracks after 2 hours since the GRB triggers. The optical luminosities at 1 day show a clear bimodal distribution, peaking at 1.4×10^{46} erg s$^{-1}$ for the luminous group and 5.3×10^{44} ergs s$^{-1}$ for the dim group. About 75% of the GRBs are in the luminous group, and the other 25% belong to the dim group. While the luminous group has a wide range of redshift distribution, the bursts in the dim group all appear at a redshift lower than 1.1.

Subject headings: gamma rays: bursts—gamma rays: observations—methods: statistical

1. INTRODUCTION

Gamma-ray bursts (GRBs) are believed to be the brightest electromagnetic explosions in the universe after the identification of their cosmic origin (Metzger et al. 1997). Two categories of these erratic, transient events have been identified, i.e. long-soft and short-hard (Kouveliotou et al. 1993). The association of long GRBs with very energetic core-collapse supernovae has now been well established (Galama et al. 1998; MacFadyen et al. 1999; Bloom et al. 1999; Stanek et al. 2003; Hjorth et al. 2005; Thomsen et al. 2004; Malesani et al. 2004). Several short GRBs have been localized and observed by Swift and HETE-2 recently, which are found to reside in nearby galaxies, some of which are of early-type with little star formation (Gehrels et al. 2005; Fox et al. 2005; Villasenor et al. 2005; Hjorth et al. 2005a; Barthelmy et al. 2005; Berger et al. 2005). This indicates that they have a distinct origin from the long species. Most of the well localized GRBs, both long and short, are followed by long-lived, decaying afterglows in longer wavelengths (Costa et al. 1997; Paradijs et al. 1997; Frail et al. 1997; Gehrels et al. 2005; Fox et al. 2005). Long GRBs have been themselves classified into two groups, optically bright and optically dark, based on whether or not an optical transient is detected to a given brightness limit at a given time delay (e.g. Groot et al. 1998; Fynbo et al. 2001; Berger et al. 2002; Jacobsson et al. 2004; Rößl et al. 2005). The origin of optically dark GRBs is still unclear. Very early, tight upper limits made by the Swift UV-Optical Telescope indicate that the darkness is not caused by observational biases (Roming et al. 2005). Based on X-ray afterglow data, a tentative bimodal distribution of X-ray luminosities has been also noticed (Böer & Gendre 2000; Gendre & Böer 2005).

Over more than 8 years of optical afterglow hunting, more than 70 optically-bright GRBs have been detected, among which 44 bursts have well-sampled light curves and redshift measurements (§2). In this Letter we present a systematical analysis to these 44 optical afterglow light curves in the cosmic rest frame. We find a fact that their late-time lightcurves follow two apparent universal tracks (§3). We then conclude that within the optically bright GRBs there exist two sub-categories, the luminous group and the dim group (§4). Cosmological parameters $\Omega_M = 0.3$, $\Omega_{\Lambda} = 0.7$, and $H_0 = 71$ km Mpc$^{-1}$ s$^{-1}$ have been adopted throughout this Letter.

2. DATA

We make a complete search from the literature for the R-band afterglow light curves detected during the time period from Feb. 1997 to Aug. 2005. We obtain a GRB sample with 44 GRBs, which is tabulated in Table 1. These light curves have at least four detections in the R-band. The redshifts of the bursts are available. We collect the following data for these bursts from published papers or from GCN reports if the former are not available, i.e. redshift (z), R-band magnitude, spectral index (β), and extinction by the host galaxy (A_V). For those bursts whose β and A_V are not available, we take $\beta = 0.75$, the mean value of β in our sample, and $A_V = 0$. Galactic extinction correction is made by using a reddening map presented by Schlegel et al. (1998). The extinction curve of the Milky Way (Pei 1992) is adopted to calculate the extinction in the local frame of the GRB host galaxy. The k-correction in magnitude is calculated by $k = -2.5(\beta - 1) \log(1 + z)$. For late time data, possible flux contribution from the host galaxy is subtracted.

3. THE BIMODAL LUMINOSITY EVOLUTIONS

1A full version of the GRB sample with references to the observational data are available in the electronic version

2We collect the β and the extinction A_V of each burst from the same literature to reduce the uncertainties introduced by different authors.

3We also tried other types of extinction curves, and found that our results are insensitive to the extinction model adopted.
We convert the corrected magnitudes to fluxes (F_c) by using the photometric zero points given by Fukugita et al. (1995). The luminosity at the cosmic proper time t', $L_R(t')$, is calculated by $L_R(t') = 4\pi D_L^2(z) F_c$, where $D_L(z)$ is the luminosity distance at z. The luminosity error is calculated by $\Delta \log L_R = 0.16(\Delta R^2 + \Delta A_R^2) + [\Delta \log (1+z)]^2/2$, where ΔR is the observed uncertainty of the R band magnitude, ΔA_R is the uncertainty of the host galaxy extinction at the cosmic rest frame wavelength $\lambda_{R*} = \lambda_R/(1+z)$, and $[\Delta \log (1+z)]^2$ is the error of the k-correction.

The intrinsic R-band light curves [$L_R(t')$ vs. t'] are displayed in Figure 1 for 42 bursts. The two nearby GRBs, 980425 and 031203 are not included, since their light curves are significantly contaminated by the underlying supernova component (Galama et al. 1998; Thomsen et al. 2004). It is found that although the light curves at $t' < 0.1$ days vary significantly, they are clustered and follow two apparent universal tracks at $t' > 0.1$ days, indicating that within the optically bright GRBs there exist two well-separated sub-categories. The majority of the bursts ($\sim 75\%$) comprises an optically luminous GRB group, which includes the well-studied GRBs such as 030329, 990123 and 990510. It is interesting that although the isotropic gamma-ray energy ($E_{\gamma,iso}$) of GRB 990123 and GRB 030329 differ by almost 2 orders of magnitude, their late optical afterglow luminosities are similar.4 The other $\sim 25\%$ GRBs in our GRB sample comprises the dim group, with the representative bursts being GRBs 021211 and 041006. We zoom in these light curves in the time regime from 0.1 days to 10 days in the inset of Figure 1. The bimodal lightcurve trajectories during this are more clearly visible. Based on the separation of the two groups by the luminosity at 1 day ($\log L_{R,1d}/\text{erg cm}^{-2} = 45.15$, see Figure 2) and adopting a typical temporal decay index ~ -1.2, we draw a division line for the two groups as $\log L_R = 45.15 - 1.2 \log t'$ (the dashed line in Figure 1). It is found that 25 (out of 34) and 7 (out of 10) light curves in the luminous and dim groups, respectively, cover this time regime and do not cross over the division line. They are the most representative (with the smallest scatter) ones in both groups. The bursts in the luminous group are typically brighter than those in the dim group by a factor of ~ 30.

We read off or extrapolate/interpolate the luminosity at a given epoch from the light curves, and perform rigorous statistics to access the bimodality of our sample. We first select the intrinsic luminosity at 1 day for our purpose. Our consideration is two folds. First, the early optical light curves may have contributions from the reverse shock component or additional energy injection from the central engine. The optical band may be below the cooling frequency or even below the typical synchrotron frequency so that the flux sensitively depends on many unknown shock parameters. On the other hand, the late emission is fainter and may contain luminosity contamination from the host galaxy. Second, most of the observations were made around this epoch. This makes the luminosity derivations more reliable. Figure 2 shows the 2-dimensional distribution of the intrinsic R-band luminosity at 1 day5, $L_{R,1d}$, versus $E_{\gamma,iso}$ (panel a), and the distributions of the two quantities, respectively (panels b and c). Flux thresholds in both the γ-ray and the optical bands introduce selection effects against low-energy, low-luminosity bursts, and these are indicatively marked as the grey regions in Figure 2. There are three most prominent outliers whose light curves deviate from the universal light curves, i.e. GRBs 970508, 030226, and 050408. They are excluded in the statistical analyses (see more detailed discussion in §4). While the $E_{\gamma,iso}$ distribution displays a power-law with sharp cutoff around $10^{51.5}$ ergs (due to the selection effect), $\log L_{R,1d}$ shows a well-defined bimodal distribution, which is well fitted by a two Gaussian model centered at $\log L_{c,1} = 44.66$ with $\sigma_1 = 0.41$ and $\log L_{c,2}/\text{erg s}^{-1} = 46.15$ with $\sigma_2 = 0.77$. The bimodality is at a confidence level of 3σ tested by a classification algorithm with the minimum Euclidian distance discriminant and the KMM algorithm (Ashman et al. 1994). A bootstrap test (10^5 bootstrap samples) shows that the distributions of the means of $\log L_{R,1d}$ of the two groups and their covariance (c) are normal, which gives $\log L_{c,1}/\text{erg s}^{-1} = 44.72^{+0.36}_{-0.36}$, $\log L_{c,2}/\text{erg s}^{-1} = 46.15^{+0.14}_{-0.20}$, and $c = 0.11^{+0.16}_{-0.06}$ at 3σ significance level. These results indicate that the bimodality is not due to statistical fluctuations.

In order to further examine the bimodal distribution at different epochs, we also derive the distributions at $\log t'/1\text{day} = -0.5$ and 0.5, respectively. We find that the distribution of the luminosities at $\log t'/1\text{day} = 0.5$ is bimodal with a 3σ significance level. The bimodality of the luminosity distribution at $\log t'/1\text{day} = -0.5$ has a lower (i.e. 2σ) statistical significance. Nonetheless, the distribution still stands with a gap at $\log L_{R}/\text{erg s}^{-1} = 45.5$. The lower significance is expected, because of the various factors (e.g. reverse shock, early injection, etc) concerning the early afterglows.

4. CONCLUSIONS AND DISCUSSION

We have derived the intrinsic R band afterglow lightcurves within the cosmic proper rest frame with a completed sample observed from Feb. 1997 to Aug. 2005. These light curves follow two apparent universal tracks after 2 hours since the GRB triggers. The optical luminosity at 1 day clearly shows a bimodal distribution, with the peak luminosities being 1.4×10^{50} erg s$^{-1}$ for the luminous group and 5.3×10^{44} ergs s$^{-1}$ for the dim group.

One interesting feature for the dim group is that these bursts all appear to have low redshifts. It has been previously speculated that nearby GRBs might be different from their cosmological brethren (Norris 2002; Soderberg et al. 2004; Guetta et al. 2004). In our sample, the two well-known nearby GRBs, 980425 and 031203, both belong to the dim group. Except GRB 980613 ($z = 1.096$) and GRB 021211 ($z = 1.006$), other bursts in the dim

4We notice that Nardini et al. (2005) independently obtained the same result during the process when our paper was being reviewed.

5In view of the difficulty of subtracting the supernova contribution from GRB 980425 (Galama et al. 1998) and GRB 031203 (Thomsen et al. 2004), we use the first two data points (which are around 1 day) in each burst’s light curve to derive the upper limits of their luminosities at 1 day, both giving $\sim 7 \times 10^{43}$ erg s$^{-1}$. The Galactic extinction corrected luminosities are 8.3×10^{43} erg s$^{-1}$ for GRB 980425 and 9.2×10^{44} erg s$^{-1}$ for GRB 031203.
group all have $z < 1$. Besides the low-z property, the bursts in the dim group all have an isotropic γ-ray energy much lower than that of the bursts in the luminous group. They also have simple lightcurves. All the bursts in the dim group have a single gamma-ray pulse, except for GRB 990712 who has two well-separated pulses. We notice that the observed R-band magnitudes for the dim GRBs are generally $\sim (21 - 22.5)$ mag a few days after the trigger. Although a burst with log(L_R/erg s$^{-1}$) = 44.72 (the typical 1-day optical luminosity for the dim group) should be detected up to $z = 2.4$ for an observation threshold of $R \sim 22.5$ mag, the efficiency to detect optical transients fainter than $R \sim 21$ is dramatically reduced. The observational bias for the deficit of high-redshift, optical-dim GRBs thus cannot be ruled out.

The extinction effects have been carefully taken into account. The data indicate that the dim GRBs do not exhibit significantly higher extinction than the luminous ones. It has been suggested that dust in the host galaxy may be destroyed by early radiation from γ-ray bursts and their afterglows (Waxman et al. 2000; Fruchter et al. 2001). It is found that the optical extinctions are $10 - 100$ times smaller than what are expected from the X-ray absorption (Galama et al. 2001), and that the dimness of GRB 021211, a representative burst in our dim group, could not be explained by the extinction effect (Holland et al. 2004). The apparent bimodality therefore could not be interpreted by the extinction effect. Our results then suggest that there might be two types of progenitors or two types of explosion mechanisms in operation.

Some GRBs show an initial shallow decay before landing onto the luminous branch. GRB 970508 is the most prominent one. The light curve is initially almost flat before re-brightening at about 0.5 days, peaks at 1 day, and eventually settles onto the luminous branch, although with significant fluctuations (Pedersen et al. 1998). These fluctuations are similar to those observed in GRBs 000301C, 021004, and 030329. The initial shallow decay and fluctuations are thought to be due to additional energy injections during the afterglow phase (Dai & Lu 2001; Björnsson et al. 2004; Fox et al. 2003; Zhang et al. 2005). GRBs 050408 and 050319 have the similar behavior. When injection is essentially over, the total afterglow kinetic energies of these bursts are similar to those of the bursts in the luminous group. Therefore they should be classified into the luminous group. Another type of outliers are those light curves with a sharp rapid decay at early times. GRB 030226 is the most prominent one in our sample. This may be attributed by an early jet break, and the rapid decay effect is due to the sideways expansion of the jet, which significantly reduces the optical luminosity (Rhoads 1999).

The two apparent universal lightcurve tracks at later times are intriguing. It is widely believed that afterglows are synchrotron emission from shocked circumburst medium as the fireball is decelerated (Mészáros & Rees 1997; Sari et al. 1998; see also reviews by Mészáros 2002, Zhang & Mészáros 2004, Piran 2005). At a late enough epoch, the optical band may be above both the typical synchrotron frequency and the synchrotron cooling frequency. In such a spectral regime and at a particular epoch (e.g. $t' = 1$ d), the optical luminosity $L_{R,1d} \propto E_{\text{iso}}^{(p+2)/4} \epsilon_e^{-1} \epsilon_B^{(p-2)/4}$, where E_{iso} is the isotropic kinetic energy of the fireball, ϵ_e and ϵ_B are shock energy equipartition factors for electrons and magnetic fields, respectively, and p is the electron spectral index. We can see that $L_{R,1d}$ is medium-density-independent, and only weakly depends on ϵ_B. The universal afterglow luminosity therefore suggests that both E_{iso} and ϵ_e are standard values around 1 day for each subclass. A standard ϵ_e suggests universal properties of relativistic shocks. A standard E_{iso} on the other hand, is intriguing, since E_{γ} varies for 4 orders of magnitude among long duration GRBs and they generally follow a power-law distribution with a cutoff at low luminosity end (Schmidt 2001, Norris 2002). They become standard only when jet beaming correction is taken into account (Frail et al. 2001). Our results are consistent with the picture that GRBs with a higher E_{iso} tends to have a higher γ-ray emission efficiency (Lloyd-Ronning et al. 2004). The E_{iso} derived using 10-hour X-ray data requires a jet beaming correction to achieve a standard value (Berger et al. 2003). The early X-ray afterglows in the cosmic proper frame for a group of GRBs observed with the Swift X-Ray Telescope indicate a large scatter of E_{iso} at early time (Chincarini et al. 2005). Our results therefore suggest a possible evolution of E_{iso} with time. One scheme might be that GRB jets are initially structured (Zhang & Mészáros 2002; Rossi et al. 2002), and the early γ-ray and X-ray properties are sensitive to the observer's viewing angle. The jet structure tends to smear out with time, so that at later times, the outflow is more isotropic and the viewing angle effect no longer plays an essential role.

We appreciate constructive comments from the referees during the reviewing process of this paper both in ApJ Letters and Nature. This work is supported by NASA under grants NNG05GB67G, NNG05GH92G, and NNG05GH91G, as well as the National Natural Science Foundation of China (No. 10463001).

REFERENCES

Ashman, K. M., Bird, C. M., & Zepf, S. E. 1994, AJ, 108, 2348
Barthelmy, S. D., et al. 2005, Nature, 438, 994
Berger, E., et al. 2002, ApJ, 581, 881
Berger, E., Kulkarni, S. R., & Frail, D. A. 2003, ApJ, 590, 379
Berger, E., et al. 2005, Nature, 438, 988
Björnsson, G., Gudmundsson, E. H., & Jóhannesson, G. 2004, ApJ, 615, L77
Bloom, J. S., et al. 1999, Nature, 401, 453
Boër, M. & Gendre, B. 2000, A&A, 361, 521
Chincarini, G., et al. 2005; ApJ, submitted
Costa, E., et al. 1997, ApJ, 487, 783
Dai, Z. G. & Lu, T. 2001, A&A;367, 501
Fox, D. W., et al. 2003, Nature, 422, 284
Fox, D. B., et al. 2005, Nature, 437, 845
Frail, D. A., et al. 1997, Nature, 389, 261
Frail, D. A., et al. 2001, ApJ, 562, L55
Fruchter, A., Krolik, J. H., & Rhoads, J. E. 2001, ApJ, 563, 597
Fukugita, M., Shimasaku, K., & Ichikawa, T. 1995, PASP, 107, 945
Fynbo, J. U., et al. 2001, A&A, 369, 373
Galama, T. J., & Wijers, R. A. M. J. 2001, ApJ, 549, L209
Galama, T. J., et al. 1998, Nature, 395, 670
Gehrels, N., et al. 2005, Nature, 437, 851
Gendre, B. & Boër, M. 2005, A&A, 430, 465
Groot, P. J., et al. 1998, ApJ, 493, L27
Guetta, D., et al. 2004, ApJ, 615, L73
Hjorth, J., et al. 2003, Nature, 423, 847
Hjorth, J., et al. 2006a, ApJ, 630, L117
Hjorth, J., et al. 2006b, Nature, 437, 859
Table 1

GRB	z	$\beta(\Delta \beta)$	$A_{V, host}(\Delta A_{V, host})$	GRB	z	$\beta(\Delta \beta)$	$A_{V, host}(\Delta A_{V, host})$
970228	0.695	0.780(0.022)	0.5	970508	0.835	1.11	0
971214	3.42	0.87(0.13)	0.43 (0.08)	980326	1.0	0.8(0.4)	0
980425	0.0085	-	-	980613	1.096	0.60	0.45
980703	0.966	1.013 (0.016)	1.50 (0.11)	990123	1.6004	0.750 (0.068)	0
990510	1.6187	0.55	0	990712	0.434	0.99 (0.02)	0
991208	0.706	0.75	0	991216	1.02	0.60	0
990313	4.5	0.70	0.18	000301C	0.0085	-	-
990613	1.118	0.75	0.96	000926	1.09	0.60	0
011121	0.36	0.80(0.15)	0	000926	2.066	1.00(0.18)	0.18(0.06)
020124	3.198	0.91 (0.14)	0	030326	2.066	1.00(0.18)	0.18(0.06)
020813	1.25	0.85(0.07)	0.14(0.04)	011211	0.36	0.80(0.15)	0
021004	2.335	0.39	0.3	0209303	0.25	-	-
030226	1.98	0.70(0.03)	0	030329	0.17	0.5	0.30(0.03)
030328	1.52	-	-	030429	2.65	0.75	0.34
031203	0.105	-	-	040924	0.859	0.70 (0)	0
041006	0.716	0.55	0	050319	3.24	-	-
050408	1.24	-	-	050525	0.606	0.97(0.10)	0.25(0.16)
050730	3.97	-	-	050730	2.65	2.615	-

a GRBs marked as bold fonts belong to the low-optical-luminosity group, with separation at $L_{R,1d} \sim 1.4 \times 10^{45}$ erg. s$^{-1}$ (see Figure 2).

Holland, S. T, et al., 2004, ApJ, 128, 1955
Jakobsson, P., et al. 2004, ApJ, 617, L21
Kouveliotou, C., et al. 1993, ApJ, 413, L101
Lloyd-Ronning, N. M. & Zhang, B. 2004, ApJ, 613, 477
MacFadyen, A. I. & Woosley, S. E. 1999, ApJ, 524, 262
Malesani, D., et al. 2004, ApJ, 609, L5
Mészáros, P. & Rees, M. J. 1997, ApJ, 476, 232
Mészáros, P. 2002, ARA&A, 40, 137
Metzger, M. R., et al. 1997, Nature, 387, 879
Nardini, N., et al. 2005, A&A, submitted (astro-ph/0508447)
Pedersen, H., et al. 1998, ApJ, 496, 311
Pei, Y. C. 1992, ApJ, 395, 130
Piran, T. 2005, Rev. Mod. Phys., 76, 1143
Rhoads, J. E., 1999, ApJ, 525, 737
Rol, E., et al. 2005, ApJ, 624, 868
Roming, P. W. A., et al. 2005, ApJ, submitted (astro-ph/0509273)
Rossi, E., Lazzati, D., & Rees, M. J. 2002, MNRAS, 332, 945
Sari, R., Piran, T., & Narayan, R. 1998, ApJ, 497, L17
Schlegel, D. J., Finkbeiner, D. P, & Davis, M. 1998, ApJ, 500, 525
Schmidt, M. 2001, ApJ, 552, 36
Soderberg, A. M., et al. 2004, Nature, 430, 648
Stanek, K. Z., et al. 2003, ApJ, 591, L17
Thomson, B., et al. 2004, A&A 419, L21
van Paradijs, J. et al. 1997, Nature, 386, 686
Villasenor, J. S, et al. 2005, Nature, 437, 855
Waxman, E. & Draine, B. T. 2000, ApJ, 537, 796
Zhang, B., et al. 2006, ApJ, in press (astro-ph/0508321)
Zhang, B. & Mészáros, P. 2002, ApJ, 571, 876
Zhang, B. & Mészáros, P. 2004, Int. J. Mod. Phys. A, 19, 2385
Fig. 1.— The R-band light curves \((L_R(t') \text{ vs. } t') \) in the cosmic proper rest frame. The dashed line is a division of the two groups of GRBs, \(\log L_R = 45.15 - 1.2 \log t' \). The upper inset zooms in the light curves in the time regime from 0.1 days to 10 days. Those bursts marked with blue color in the figure legend belong to the dim group.
Fig. 2.— The 2-dimensional distribution of $L_{R,1d}$ and $E_{\gamma,iso}$ (panel a), as well as the distributions of both quantities (panels b and c) for the bursts in our sample. The significant outliers, GRBs 030226, 970508, and 050408 have been excluded. The $E_{\gamma,iso}$ has been corrected to the band pass $20 - 2000$ keV in the rest frame according to the spectral parameters of prompt gamma-ray emission. The circled-crosses are the means of the two quantities for the two groups (excluding those bursts with limits). The grey area marks the parameter region in which the flux-threshold selection effect plays a dominant role. The dotted line in panel (b) is the best fit using a two Gaussian model. The perpendicular dotted-line is the separation between the dim and the luminous groups in the two Gaussian model.
Appended below is the full version of Table 1 with references to the observational data. It is available in the electronic version in ApJ Letters.

GRB	z	$\beta (\Delta \beta)$	$A_{V,\text{host}} (\Delta A_{V,\text{host}})$	Ref\(^b\)
970228	0.695	0.780(0.022)	0.5	1:2:2-3
970508	0.835	1.11	0	4:5:5-6
971214	3.42	0.87(0.13)	0.43 (0.08)	7:8:8-9
980326	1.0	0.8(0.4)	0	10:10:10-11
980425	0.0085	-	-	12::13
980613	1.096	0.60	0.45	14:15:15
980703	0.966	1.013 (0.016)	1.50 (0.11)	16:17:17-20
990123	1.6004	0.750 (0.068)	0	21:22:22-24
990510	1.6187	0.55	0	25:26:26-28
990712	0.434	0.99 (0.02)	0	25:29:29-30
991208	0.706	0.75	0	31:32:32
991216	1.02	0.60	0	33:33:33:34
000131	4.5	0.70	0.18	35:35:35
000301C	2.03	0.70	0.09	36:37:37
000418	1.118	0.75	0.96	38:39:39
000911	1.058	0.724(0.006)	0.39	40:41:41-42
000926	2.066	1.00(0.18)	0.18(0.06)	43:44:44
010222	1.477	1.07 (0.09)	0	45:46:46
011121	0.36	0.80(0.15)	0	47:48:48
01121	2.14	0.56(0.19)	0.08(0.08)	49:50:51-54
020124	3.198	0.91 (0.14)	0	55:55:55-56
020405	0.69	1.43(0.08)	0	57:58:58-59
020813	1.25	0.85(0.07)	0.14(0.04)	60:61:61-62
020903	0.25	-	-	63::63
021004	2.335	0.39	0.3	64:65:65-66
021211	1.01	0.69	0	67:68:68-70
030226	1.98	0.70(0.03)	0	71:72:72-73
030323	3.372	0.89(0.04)	< 0.5	74:74:74
030328	1.52	-	-	75::76-83
030329	0.17	0.5	0.30(0.03)	84:85:85-87
030429	2.65	0.75	0.34	88:89:89
030723	2.10	1.0	0.4	90:90:90
031203	0.105	-	-	91::92
040924	0.859	0.70 (0)	0.16	93:94:94-101
041006	0.716	0.55	0	102:102:102
050315	1.949	-	-	104::105:107
050319	3.24	-	-	108::109-115
050401	2.90	-	-	116::117-121
050408	1.24	-	-	122::123-128
050502	3.793	-	-	129::130
050525	0.606	0.97(0.10)	0.25(0.16)	131:132:132-133
050730	3.97	-	-	134::134-141
050820	2.615	-	-	142::143-148

Notes:

a GRBs marked as bold font belong to the low-optical-luminosity group; others belong to the high-optical-luminosity group.

b References: three groups of references separated by semicolons are for $z; \beta$ and host galaxy extinction; light curve data, respectively. A hyphen is marked when no reference is available.
References:

1. Bloom, J. S., Djorgovski, S. G., & Kulkarni, S. R. 2001, ApJ, 554, 678
2. Galama, T. J., et al. 2000, ApJ, 536, 185
3. Sahu, K. C., et al. 1997, nature, 387, 476
4. Bloom, J. S., et al. 1998, ApJ, 507, L25
5. Galama, T. J., et al. 1998, ApJ, 497, L13
6. Sokolov, V.V., et al. 1998, A&A, 334, 117
7. Kulkarni, S. R., et al. 1998, nature, 393, 35
8. Wijers, R. A. M. J. & Galama, T. J. 1999, ApJ, 523, 177
9. Diercks, A., et al. 1998, ApJ, 503, L105
10. Bloom, J. S., et al. 1999, nature, 401, 453
11. Groot, P. J., et al. 1998, ApJ, 502, L123
12. Tinney, C., Stathakis, R., Cannon, R., & Galama, T. J. 1998, IAU 6896, 1
13. Galama, T. J., et al. 1998, nature, 395, 670
14. Djorgovski, S. G., Bloom, J. S., & Kulkarni, S. R. 2003, ApJ, 591, L13
15. Hjorth, J., et al. 2002, ApJ, 576, 113
16. Djorgovski, S. G., et al. 1998, ApJ, 508, L17
17. Vreeswijk, P. M., et al. 1999, ApJ, 523, 171
18. Bloom, J. S., et al. 1998, ApJ, 508, L21
19. Castro-Tirado, A. J., et al. 1999, ApJ, 511, L85
20. Frail, D. A., et al. 2003, ApJ, 590, 992
21. Kulkarni, S. R., et al. 1999, nature, 398, 389
22. Holland, S., Bjornsson, G.; Hjorth, J., Thomsen, B. 2000, A&A, 364, 467
23. Fruchter, A. S., et al. 1999, ApJ, 519, L13
24. Castro-Tirado, A. J., et al. 1999, Sci., 283, 2069
25. Vreeswijk, P. M., et al. 2001, ApJ, 546, 672
26. Beuermann, K., et al. 1999, A&A, 352, L26
27. Harrison, F. A., et al. 1999, ApJ, 523, L121
28. Stanek, K. Z., et al. 1999, ApJ, 522, L39
29. Sahu, K. C., et al. 2000, ApJ, 540, 74
30. Hjorth, J., et al. 2000, ApJ, 534, L147
31. Djorgovski, S. G., et al. 1999, GCN 481
32. Sagar, R., et al. 2000, BASI 28, 15
33. Djorgovski, S. G., et al. 1999, GCN 510
34. Halpern, J. P., et al. 2000, ApJ, 543, 697
35. Andersen, M. I., et al. 2000, A&A, 364, L54
36. Castro, S. M., et al. 2000, GCN, 605
37. Jensen, B. L., et al. 2001, A&A, 370, 909
38. Bloom, J. S., et al. 2003, AJ, 125, 999
39. Klose, L., et al. 2000, ApJ, 545, 271
40. Price, P. A., et al. 2002, ApJ, 573, 85
41. Masetti, N., et al. 2005, A&A, 438, 841
42. Lazzati, D., et al. 2001, A&A, 378, 996
43. Castro, S. M., et al. 2001, GCN, 851
45. Mirabal, N., et al. 2002, ApJ, 578, 818
46. Stanek, K. Z., et al. 2001, ApJ, 563, 592
47. Garnavich, P. M., et al. 2003, ApJ, 582, 924
48. Greiner, J., et al. 2003, ApJ, 599, 1223
49. Gladders, M. et al. GCN, 1209
50. Jakobsson, P. et al. 2003, A&A, 408, 941
51. Holland, S. T., et al. 2002, ApJ, 124, 639
52. Pandey, S. B., et al. 2003, A&A, 408, L21
53. Weidong Li 2003, ApJ, 586, L9
54. D. W. Fox et al. ApJ 586. L5-L8.
55. Hjorth, J., et al. 2003, ApJ, 597, 699
56. Berger, E., et al. 2002, ApJ, 581, 981
57. Price, P. A., et al. 2003, ApJ, 589, 838
58. Bersier, D., et al. 2003, ApJ, 583, L63
59. Masetti, N., et al. 2003, A&A, 404, 465
60. Barth, A. J., et al. 2003, ApJ, 584, L47
61. Urata, Y., et al. 2003, ApJ, 595, L21
62. Covino, Y. S. et al. 2003, A&A, 404, L5
63. Soderberg, A. M., et al. 2004, ApJ, 606, 994
64. Giannini, T., et al. 2004, GCN 1678
65. Holland, S. T., et al. 2003, ApJ, 125, 2291
66. Fox, D. W., et al. 2003, nature, 422, 284
67. Vreeswijk, P., et al. 2003, GCN, 1785
68. Fox, D. W., et al. 2003, ApJ, 586, L5
69. Holland, S. T., et al. 2004, ApJ, 128, 1955
70. Li, W. D., et al. 2003, ApJ, 586, L9
71. Greiner, J., et al. 2003, GCN, 1886
72. Klose, S., et al. 2004, ApJ, 128, 1942
73. Pandey, S. B., et al. 2004, A&A, 417, 919
74. Vreeswijk, P. M., et al. 2004, A&A, 419, 927
75. Martini, P., Garnavich, P., & Stanek, K. Z. 2003, GCN 1980
76. Gal-Yam, A., et al. 2003, GCN, 184
77. Fugazza, D., et al. 2003, GCN, 1982
78. Burenin, R., et al. 2003, GCN, 1990
79. Andersen, M. I., et al. 2003, GCN 1992
80. Martini, P., Garnavich P. & Stanek K.Z. 2003, GCN, 1979
81. Bartolini, C. et al. 2003, GCN, 2008
82. Garnavich, P., Martini, P., & Stanek, K.Z. 2003, GCN, 2036
83. Ibrahimov, M. A., et al. 2003, GCN, 2192
84. Bloom, J. S., Morrell, N., & Mohanty, S. 2003, GCN, 2212
85. Bloom, J. S., et al. 2003, AJ, 127, 252
86. Matheson, T., et al. 2003, A&A, 599, 394
87. Torii, K., et al. 2003, ApJ, 597, L101
88. Weidinger, M., et al. 2003, GCN, 2215
89. Jakobsson P., et al. 2004, A&A, 427, 785
90. Fynbo, J. P. U. et al. 2004, ApJ, 609, 962
91. Prochaska, J. X., et al. 2003, GCN, 2482
92. Cobb, B. E., et al. 2004, ApJ, 608, L93
93. Wiersema, K., et al. 2004, GCN, 2800
94. Soderberg, A. M., et al. 2005, ApJ, 627, 877
95. Fox, D. B., et al. 2004, GCN, 2741
96. Khamitov, I., et al. 2004, GCN, 2740
97. Hu, J. H., et al. 2004, GCN, 2743
98. Hu, J. H., et al. 2004, GCN, 2744
99. Fynbo, J. P. U., et al. 2004, GCN, 2747
100. Khamitov, I., et al. 2004, GCN, 2749
101. Khamitov, I., et al. 2004, GCN, 2752
102. Price, P. A., et al. 2004, GCN, 2791
103. Stanek, K. Z., et al. 2005, ApJ, 626, L5
104. Kelson, D. & Berger, E. 2005, GCN, 3101
105. Roming, P. W. A., et al. 2005, Nature, Submitted
106. Cobb, B. E., et al. 2005, GCN, 3104
107. Cobb, B. E., et al. 2005, GCN, 3110
108. Fynbo, J. P. U., et al. 2005, GCN, 3136
109. Yoshiooka, T., et al. 2005, GCN, 3120
110. Torii, K., et al. 2005, GCN, 3121
111. Sharapov, D., et al. 2005, GCN, 3124
112. Misra, K., et al. 2005, GCN, 3130
113. Kiziloglu, U., et al. 2005, GCN, 3139
114. Sharapov, D., et al. 2005, GCN, 3140
115. Greco, G., et al. 2005, GCN, 3142
116. Fynbo, J. P. U., et al. 2005, GCN, 3176
117. McNaught, R., et al. 2005, GCN, 3163
118. D’Avanzo, P., et al. 2005, GCN, 3171
119. Kahharov, B., et al. 2005, GCN, 3174
120. Misra, K., et al. 2005, GCN, 3175
121. Greco, B., et al. 2005, GCN, 3319
122. Berger, E., Gladders, M., & Oemler, G. 2005, GCN, 3201
123. Wiersema, K., et al. 2005, GCN, 3200
124. de Ugarte A., et al. 2005, GCN, 3199
125. Milne, P. A., et al. 2005, GCN, 3258
126. Curran, P., et al. 2005, GCN, 3211
127. Aslan, Z., et al. 2005, GCN, 3198
128. Nysewander, M., et al. 2005, GCN, 3213
129. Prochaska, J. X., et al. 2005, GCN, 3332
130. Mirabal, N., et al. 2005, GCN 3363
131. Foley, R. J., et al. 2005, GCN, 3483
132. Blustin, A. J., et al. 2005, ApJ, in press (astro-ph/0507515)
133. Torii, K. & BenDaniel, M. 2005, GCN, 3470
134. Holman, M., Garnavich, P. & Stanek, K. Z. 2005, GCN 3716
135. Sota, A. et al. 2005, GCN, 3705
136. Burenin, R. et al. 2005, GCN, 3718
137. Klotz, A., Boer, M., & Atteia, J. L. 2005, GCN, 3720
138. Damerdji, Y., et al. 2005, GCN, 3741
139. D’Elia, V. 2005, GCN, 3746
140. Bhatt, B. C. et al. 2005, GCN, 3775
141. Kannappan, S. et al. 2005, GCN, 3778
142. Ledoux, C. et al. 2005, GCN, 3860
143. Fox, D. B. et al. 2005, GCN, 3829
144. Cenko, S. B., et al. 2005, GCN, 3834
145. Bikmaev, I. et al. 2005, GCN, 3853
146. MacLeod, C. et al. 2005, GCN, 3863
147. Khamitov, I. et al. 2005, GCN, 3864
148. Aslan, Z. et al. 2005, GCN, 3896