Dipolar and scalar 3He-129Xe frequency shifts in mm-sized stemless cells

M. E. Limes, N. Dural, and M. V. Romalis
Department of Physics, Princeton University, Princeton, New Jersey, 08544, USA

E. L. Foley, T. W. Kornack, A. Nelson, and L. R. Grisham
Twinleaf LLC, Princeton, New Jersey, 08544, USA

(Dated: June 5, 2018)

We describe a 3He-129Xe comagnetometer operating in stemless anodically bonded cells with a 6 mm3 volume and a 129Xe spin coherence time of 300 s. We use a 87Rb pulse-train magnetometer with co-linear pump and probe beams to study the nuclear spin frequency shifts caused by spin polarization of 3He. By systematically varying the cell geometry in a batch cell fabrication process we can separately measure the cell shape dependent and independent frequency shifts. We find that a certain aspect ratio of the cylindrical cell can cancel the effects of 3He magnetization that limit the stability of vapor-cell comagnetometers. Using this control we also observe for the first time a scalar 3He-129Xe collisional frequency shift characterized by an enhancement factor $\kappa_{\text{HeXe}} = -0.011 \pm 0.001$.

PACS numbers: 32.30.Dx, 06.30.Gv,39.90.+d

Atomic spin comagnetometers [1] are used in a number of precision fundamental physics experiments [2]. Recent efforts on miniaturization of atomic sensors [3, 4] have also led to the development of chip-scale systems for polarization of nuclear spins that have been used to search for new short-range spin-dependent forces [5] as well as for inertial rotation sensing [6–10], for magnetometry [11], and microfluidic NMR detection [12, 13]. These applications use mm-sized vapor cells containing alkali metals and noble gas isotopes with nuclear spins, such as 129Xe or 131Xe, which are polarized by optical pumping and spin exchange. The sensitivity in such experiments is determined by the nuclear-spin coherence time, which is often dominated by spin interactions with cell walls and is typically short in small cells that have a large surface-to-volume ratio. Here we demonstrate batch fabrication of stemless anodically bonded cells containing 3He and 129Xe with nuclear-spin coherence times of 4 hours and 300 s, respectively. This is a factor of 10 to 100 improvement in the 129Xe coherence time compared with prior results and the first detection of 3He signals in micro-fabricated cells.

Batch cell fabrication using anodic bonding allows for excellent control of the cell geometry. Typical glass blown or optically contacted cells have a glass stem for cell filling and sealing [8, 14]. Others have made stemless cells by allowing 3He to diffuse through quartz walls at a high temperature [15]. The cell shape affects the dipolar magnetic interactions between spin-polarized nuclei [16] that can cause significant frequency shifts in precision measurements using nuclear-spin comagnetometers [17] and are subject of some controversy [18]. Here we form cells using a silicon wafer with an array of 2 mm diameter drilled holes covered on both sides with anodically-bonded alumino-silicate glass plates. By making a slight wedge in the Si wafer we fabricate a number of cylindrical cells in one batch with varying height to diameter aspect ratios.

We systematically study the effects of nuclear-spin dipolar fields in a new regime where atomic diffusion is much faster than other time scales, unlike previous NMR experiments on liquids and gases [19, 20]. We find that for a certain cylindrical cell aspect ratio the average dipolar fields are eliminated, in good agreement with our theoretical analysis. An optimal and well-defined geometry will improve stability of nuclear-spin comagnetometers.

Control of long-range dipolar fields allows us to resolve a small scalar frequency shift between 3He and 129Xe nuclear spins mediated by a second-order electron Fermi-contact interaction. Such through-space J-coupling in van der Waals molecules has been theoretically studied in NMR [21, 23] and was first observed experimentally between 129Xe and 1H in a liquid mixture of Xe and pentane [24]. Here we report the first observation of spin-spin J-coupling between nuclear spins in the gas phase.

We use 87Rb to polarize the nuclear spins by spin-exchange and detect their spin precession with an in-situ 87Rb magnetometer [25, 26]. Rb experiences enhanced magnetic fields from nuclear spins due to spin-exchange collisions [27, 29], which gives a high signal-to-noise ratio in the comagnetometer. The pulse-train magnetometer described in [26] is adapted here for use with anodically-bonded cells having only a single optical axis by using counter-propagating pump and probe (Fig. 1a). After an initial pump time of 30-50 sec to polarize nuclear spins along the bias magnetic field \hat{z}, the polarization of the on-resonant 795 nm pump laser is switched between σ^+ and σ^- light with an electro-optic modulator (EOM) at 13 kHz. Simultaneously 3 μs long magnetic field π pulses are applied along \hat{y} to flip the 87Rb polarization back and forth along \hat{z}. The high π pulse repetition rate allows for spin-exchange relaxation suppression in the bias field $B_0 \approx 5$ mG [26]. The 87Rb polarization projection on \hat{z} is detected with paramagnetic Faraday rotation of an off-resonant probe beam passing through the cell.
to a balanced polarimeter. An acousto-optic modulator turns on the probe laser only during the π pulses to avoid unnecessary probe broadening during pumping intervals. A constant B_y field causes an advancement or retardation of the 87Rb polarization phase during the π pulse flip (Fig. 1b). The balanced polarimeter signal is sent to a lock-in amplifier referenced to half the EOM frequency giving a lock-in output proportional to B_y. We obtain a sensitivity of 300 fT/√Hz in our miniature cells, and are able to operate this scheme with B_0 parallel or perpendicular to the cell’s optical axis.

We make miniature vapor cells using an anodically bonded glass-Si-glass construction in a custom-built system able to fabricate cells containing isotopically enriched alkali metals and noble gases. The Si wafer is 2 mm nominal thickness with a 7 × 7 array of machined holes with a diameter $d = 2.005 ± 0.005$ mm. We polished one side of some wafers at a small angle to obtain a cell height variations of 1.666 mm to 1.988 mm. The wafer is baked under high vacuum inside the fabrication system to remove contaminants. We close the cells with 0.2 mm thick aluminosilicate glass SD-2 that has low 3He permeability. After anodically bonding glass on one side of the wafer, we distill 99.9% isotopically pure 87Rb metal and bond the second glass in an atmosphere of 80 torr N$_2$, 6.5 torr 129Xe, and 1400 torr of 3He. Heating during anodic bonding can cause buffer gas pressure loss in cells of up to 30%. A cryogenic storage system recovers the remnant buffer gas mixture for future use.

The dominant sources of 129Xe spin relaxation are collisions with cell walls and Rb-Xe collisions. Collisional Xe-Xe and magnetic field gradient relaxations are negligible. 129Xe is first polarized along a B_0 parallel to the optical axis by continuously pumping 87Rb. We can also polarize 129Xe with B_0 perpendicular to the optical axis by applying fast π pulses with σ_+/σ_- pumping that give a time-averaged Rb polarization along B_0. A tipping pulse places the 129Xe spins perpendicular to B_0 and 129Xe precession and decay is detected with the pulse-train 87Rb magnetometer. A representative signal is shown in Fig. 2a. We fit the data to the function $A \exp(-t/T_2) \sin(\omega_{\text{Xe}} t)$. We measure the 129Xe $1/T_2$ as a function of cell temperature and Rb density as shown in Fig. 2b and extract a 129Xe wall relaxation time $T_w = 305 ± 5$ s. We check the 3He and 87Rb densities by measuring the Rb absorption spectrum of the probe laser. In this cell we find the Rb absorption FWHM of 23.4 ± 1 GHz corresponding to 1000 torr 3He. From the slope in Fig. 2b we find a Rb-Xe spin-exchange rate of $(7.8 ± 0.7) \times 10^{-16}$ cm3/s in agreement with a calculation of the spin-exchange rate 7.2×10^{-16} cm3/s based on previously measured cross-sections. This indicates T_w does not change significantly across our temperature range. The inset of Fig. 2 shows the Rb magnetometer can shorten 129Xe T_2 by causing a Rb polarization

FIG. 1. (a) Parallel pump-probe pulsed 87Rb magnetometer with one optical axis along \hat{z}. (b) An EOM square wave alternates σ^+ / σ^- pump light and σ_{\pm} pulses are applied to retain 87Rb polarization. We shutter the probe laser with an AOM to detect only 87Rb polarization transitions. Any extra B_y field changes the 87Rb transition phase and is detected with a lock-in referenced to half the EOM square wave frequency.

FIG. 2. a) Spin precession signal from 129Xe at 73.3°C with $T_2 = 308$ sec. The inset shows a picture of the cell. b) The dependence of 129Xe T_2 on the Rb number density. The inset shows that at 120°C 87Rb pump light intensity and deviations of π pulse amplitude from optimal conditions shorten 129Xe T_2 due to Xe diffusion in a 87Rb polarization gradient.
gradient that 129Xe diffuses through. The additional relaxation depends on the 87Rb pump laser power and the accuracy of 87Rb π pulses. We find that increasing the 87Rb π pulse repetition rate reverses the Rb gradient more rapidly and decreases relaxation due to 129Xe diffusion. For accurate T_2 measurements we use proper π pulses and low pump power.

We study magnetic dipolar interactions between 3He and 129Xe spins in the regime where atomic diffusion across the cell is much faster than the time scales of dipolar interactions and spin relaxation. Each spin-1/2 species has a uniform nuclear magnetization \mathbf{M} inside the cell, unlike the regime typically studied in NMR [11, 39]. The spin precession frequencies are determined by the volume average magnetic field inside the cell, which can be calculated using the magnetometric demagnetizing factors $\langle H_i \rangle_V = -n_i M_i, (i=x,y,z)$ [39]. An analytical expression for $n_i(\gamma)$ was found for cylinder, where $\gamma = h/d$ is the height over diameter [37, 58]. The demagnetizing factors satisfy $n_x + n_y + n_z = 1$. For a cylinder with $\gamma = 0.9065$, $n_i = 1/3$, the same as for a sphere.

The classical average magnetic field needs to be corrected by separating out the contact term $2\mu_0\delta(t)\mathbf{m}/3$ of the dipolar field for a point dipole \mathbf{m}, which can be enhanced or suppressed depending on interactions between atoms that can be parametrized by κ [39]. We write

$$\langle B_i^d \rangle_V = \mu_0 \left[M_i - n_i M_i + \frac{2}{3}(\kappa - 1) M_i \right]. \tag{1}$$

Spin precession in the presence of a constant bias field and small nuclear-spin dipolar fields is described by Bloch equations. In our case only 3He has a significant magnetization. The dipole field experienced by 129Xe can be written as $\langle B^d_{Xe} \rangle_V = \mu_0(1/3 - n_z + 2\kappa_{HeXe}/3)M_{He}^d$, where the z axis is defined by the magnetic field direction. The rotating components of the 3He magnetization do not have a net effect on 129Xe precession frequency to first order in M_{He}^d. In contrast, the 3He precession frequency is affected by the secular co-rotating components of the 3He dipolar field but is not affected by the scalar contact interaction. One can write [40, 41]:

$$\frac{\langle B^{He} \rangle_V}{\mu_0} = \left(\frac{n_z}{2} - \frac{1}{6}\right)M_{He}^d + \frac{3}{2} \left(\frac{1}{3} - n_z\right)M_{He}^d \cdot \hat{z}. \tag{2}$$

The first term on the right hand side does not generate any frequency shift, since it gives $\langle B^{He} \rangle_V \parallel M_{He}$. The effective dipolar field responsible for a 3He frequency shift is given by the second term. It is 3/2 times larger than for 129Xe and both are proportional to the M_{He}^d projection.

We study dipolar fields in our cells by first polarizing 3He for several hours and creating a small 129Xe polarization. We then apply a tipping pulse calculated to leave a certain percentage of M_{He} along B_0 and place 129Xe magnetization in the transverse plane. Noble-gas precession signals are recorded in a Ramsey-style sequence for about 100 s, with two detection periods separated by a dark period that has a rotating, two-axis decoupling pulse train applied [26]. This decoupling pulse train removes noble-gas frequency shifts due to 87Rb back-polarization and nulls Bloch-Siegert shifts introduced by the pulse train. Each detection period is fit to two decaying sine waves to extract the phases with which the noble gases enter and leave the dark period. Knowing the number of cycles elapsed during the dark period, we find the in-the-dark free-precession frequencies of the noble gases ω_{He} and ω_{Xe}. We divide ω_{He} and ω_{Xe} by their gyromagnetic ratios γ_{He}, γ_{Xe} [42] to find the dipolar fields experienced by 3He and 129Xe due to the \hat{z} projection of the 3He magnetization M_{He}^d. After the Ramsey measurement we place M_{He} along or against B_0 by using dumping feedback [13]. We avoid systematic errors from B_0 drift and remnant 129Xe polarization projection onto B_0 by using identical tipping pulses while alternating the initial M_{He} projection along B_0. M_{He} is found by comparing the amplitude of the fitted 3He signal to the 87Rb magnetome-
ter response from a known magnetic field and dividing by \(2\mu_0\kappa_{RbHe}/3\) to account for Rb–\(^3\)He contact interactions. We neglect a 1% correction from the long-range dipolar effect of \(M_{He}\) on \(^87\)Rb. The Ramsey sequence is repeated for many \(M_{He}\) values and tipping angles to measure the slope \(B^d/\mu_0 M_{He}\).

We plot the effective dipolar field experienced by \(^3\)He and \(^{129}\)Xe due to \(M_{He}^2\) for a cell with \(h = 1.718\) mm, \(d = 2.005\) mm at 120°C in Fig. 3a. We repeat the measurements with \(B_0\) parallel and perpendicular to the optical axis of the cylindrical stemless cell. In Fig. 3b we plot the slope of the dipolar field \(B^d/\mu_0 M_{He}^2\) as a function of the cell aspect ratio \(h/d\) for several cells. Solid lines in Fig. 3 represent first-principles calculations of the dipolar fields using the expression for \(n_i(\gamma)\). The only free parameter is the value \(\kappa_{HeXe} = -0.011 \pm 0.001\), where the error is determined by \(M_{He}^2\) calibration uncertainty. The relative size of the long-range dipolar frequency shifts for the four cases are related to each other by simple ratios shown in Table I, which are applicable for any cell with uniaxial symmetry.

The existence of a finite \(\kappa_{HeXe}\) implies that the cell aspect ratio required to cancel the \(^3\)He magnetization effect on the frequency ratio in the comagnetometer is different from the condition \(n_i = 1/3\). Indeed, we find that for our cell with \(h/d = 0.857\), the comagnetometer frequency ratio \(f_r\), is insensitive within errors of \(M_{He}^2\) for \(B_0\) parallel to the cell axis, as shown in the bottom panel of Fig. 3. The temperature dependence of \(\kappa_{HeXe}\), shown in the inset of Fig. 3, is relatively weak. Operation of a \(^3\)He–\(^{129}\)Xe comagnetometer in a well-defined cylindrical cell with this aspect ratio will improve its long-term stability.

The contact spin-spin \(J\) couplings for noble gases have been calculated for \(^{129}\)Xe–\(^{131}\)Xe and for \(^3\)He. For spin couplings in gases and liquids with fast molecular motion it is more convenient to parametrize the interaction in terms of \(\kappa\) [21, 39]:

\[
\kappa = -\frac{3\pi}{\mu_0\gamma_1^2\gamma_2^2 h} \int 4\pi r^2 g(r)J(r)dr
\]

where \(g(r)\) is the radial intermolecular distribution function. For example, for the \(^{129}\)Xe–\(^{131}\)Xe calculation the low gas density limit can be obtained by considering two Xe atoms confined to a spherical cavity of a certain size [44]. It gives \(\kappa_{^{129}\text{Xe–}^{131}\text{Xe}} = -0.27\), which may give observable effects in \(^{129}\)Xe–\(^{131}\)Xe co-magnetometers [1]. The \(^{129}\)Xe–\(^1\)H contact interaction was measured and calculated in [21], \(\kappa_{^{129}\text{Xe–}^1\text{H}} = -0.0014\). The value of \(\kappa\) increases for heavier atomic pairs, as can be expected.

The cells fabricated for this experiment were used to test the comagnetometer and gyroscope performance of the system [20]. In a cell temperature operating at 120°C the Cramér-Rao frequency uncertainty lower bound using the best signal-to-noise ratio measured for \(^3\)He and \(^{129}\)Xe signals was found to be 0.005 deg/\(\sqrt{h}\). We also operated the comagnetometer for an extended period of time to determine its long-term stability. In Fig. 4 we compare the Allan deviation for the Ramsey-style sequence with active Rb depolarization and for continuous measurements with the Rb \(\pi\)-pulse train magnetometer. In both cases the frequency uncertainty is limited by the \(^3\)He frequency error due to low steady-state \(M_{He}\) at a temperature that allows for long \(^{129}\)Xe \(T_2\). Using cells with higher \(^3\)He pressure and the optimum aspect ratio would improve the performance.

In conclusion, we have demonstrated fabrication of miniature anodically bonded vapor cells containing \(^3\)He, \(^{129}\)Xe, \(^{87}\)Rb, and \(N_2\) with very long \(^{129}\)Xe and \(^3\)He coherence times. Precise control over the cell geometry allowed us to make detailed measurements of the long-range nuclear dipolar fields due to \(^3\)He magnetization in the regime of fast atomic diffusion, which are in good agreement with calculations. We observe a small but finite scalar interaction between \(^3\)He and \(^{129}\)Xe. As a result, the optimal cell shape for operation of a comagnetometer is different from a sphere.

This work was funded by DARPA and NSF.

\(^{129}\)Xe field	\(^{129}\)Xe theory	\(^3\)He field	\(^3\)He theory		
\(B_0\)		1	1	1.50 ± 0.02	3/2
\(B_0\) ⊥	-0.44 ± 0.03	-1/2	-0.72 ± 0.03	-3/4	

TABLE I. Relative size of the slopes \((B^d/\mu_0 M_{He}^2)/(h/d)\) from fits to Fig. 3 scaled to the \(^{129}\)Xe \(B_0\) || case.

FIG. 4. Allan deviation for continuous comagnetometer measurements and Ramsey-style sequence with active Rb depolarization in a batch-fabricated anodically bonded cell at 120°C.

[1] S. K. Lamoreaux, J. P. Jacobs, B. R. Heckel, F. J. Raab, and E. N. Fortson, Phys. Rev. Lett. 57, 3125 (1986).
[2] M. Safronova, D. Budker, D. DeMille, D. F. J. Kimball, A. Derevianko, and C. W. Clark, arXiv:1710.01833.
[3] L.-A. Lie, S. Knappe, J. Moreland, H. Robinson, L. Hollberg, and J. Kitching, Appl. Phys. Lett. 84, 2694 (2004).
[4] S. Knappe et al., J. Opt. A: Pure Appl. Opt. 8, S318 (2006).
[5] M. Bulatowicz, R. Griffith, M. Larsen, J. Mirijanian, C. B. Fu, E. Smith, W. M. Snow, H. Yan, and T. G. Walker, Phys. Rev. Lett. 111, 102001 (2013).
[6] E. A. Donley, J. L. Long, T. C. Liebisch, E. R. Hodby, T. A. Fisher, and J. Kitching, Phys. Rev. A 79, 013420 (2009).
[7] E. A. Donley, in 2010 IEEE Sensors Proc. (2010) p. 17.
[8] M. Larsen and M. Bulatowicz, in 2012 IEEE Int. Freq. Cont. Symp. Proc. (2012).
[9] T. Walker and M. Larsen, Adv. Atom, Mol. Opt. Phys. 65, 373 (2016).
[10] G. Büchs, S. Karlen, T. Overstolz, N. Torcheboeuf, E. Onillon, J. Haesler, and D. L. Boiko, AIP Conf. Proc. 1936, 020011 (2018).
[11] M. Bulatowicz and M. Larsen, in 2012 IEEE/ION PLANS Proc. (2012) p. 1088.
[12] R. Jiménez-Martínez et al., Nat. Comm. 5, 3908 (2014).
[13] D. Kennedy et al., Sci. Rep. 7, 43994 (2017).
[14] E. A. Donley, J. L. Long, T. C. Liebisch, E. R. Hodby, T. A. Fisher, and J. Kitching, Phys. Rev. A 79, 013420 (2009).
[15] A. Maul, P. Blümler, W. Heil, A. Nikiel, E. Otten, A. Petrich, and T. Schmidt, Rev. Sci. Instr. 87, 015103 (2016).
[16] E. J. Eklund, A. M. Shkel, S. Knappe, E. Donley, and J. Kitching, Sensors and Act. A: 143, 175 (2008).
[17] M. V. Romalis, D. Sheng, B. Saam, and T. G. Walker, Phys. Rev. Lett. 113, 163002 (2014).
[18] M. E. Limes, D. Sheng, and M. V. Romalis, Phys. Rev. Lett. 120, 033401 (2018).
[19] Z. L. Ma, E. G. Sorte, and B. Saam, Phys. Rev. Lett. 106, 193005 (2011).
[20] W. Warren, W. Richter, and B. Farmer, Science 262, 2005 (1993).
[21] P. Zänker, J. Schmiedeskamp, H. W. Spiess, and R. H. Acosta, Phys. Rev. Lett. 100, 213001 (2008).
[22] M. Pecul, J. Chem. Phys. 113, 10835 (2000).
[23] A. Bagno and G. Saielli, Chem. Eur. J. 9, 1486 (2003).
[24] M. V. Romalis, Proc. Nat. Acad. Sci. 109, 12393 (2012).