Hepatic angiosarcoma with clinical and histological features of Kasabach-Merritt syndrome

Sanya Wadhwa, Tae Hun Kim, Leah Lin, Gary Kanel, Takeshi Saito

Sanya Wadhwa, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States

Takeshi Saito, Department of Medicine, Molecular Microbiology and Immunology, and Pathology, Division of Gastrointestinal and Liver Diseases, Keck School of Medicine of USC, University of Southern California, 2011 Zonal Avenue, HMR 801A, Los Angeles, CA 90033, United States

Tae Hun Kim, Gary Kanel, Department of Pathology, University of Southern California, Keck School of Medicine, Los Angeles, CA 90033, United States

Leah Lin, Department of Radiology, University of Southern California, Keck School of Medicine, Los Angeles, CA 90033, United States

Author contributions: Wadhwa S gathered information of the case, reviewed the literature, and wrote the manuscript; Kim TH and Kanel G provided pathological interpretation of liver biopsy; Lin L provided interpretation of radiographic imaging, Saito T oversaw the manuscript preparation; all of the authors contributed to the intellectual content.

Institutional review board statement: This case report was exempt from the Institutional Review Board standards at University of Southern California.

Informed consent statement: The patient involved in this study was deceased so no informed consent was obtained.

Conflict-of-interest statement: All the authors have no conflicts of interests to declare.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Manuscript source: Unsolicited manuscript

Abstract

Hepatic angiosarcoma is a mesenchymal tumor originating from liver sinusoidal endothelial cells. It is an extremely rare malignant neoplasm accounting for less than 1% of primary malignant liver tumors. The deregulated coagulopathy that can be seen in hepatic angiosarcoma fulfills the clinical diagnostic criteria of disseminated intravascular coagulation. However, the mechanism that governs this coagulopathy has been poorly understood. This case report provides histological evidence of the consumption of coagulation factors along with trapped platelets occurring within the tumor, which is the foundation for the concept of Kasabach-Merritt syndrome (KMS). KMS is characterized by thrombocytopenia and hyperconsumption of coagulation factors within a vascular tumor. However, KMS associated with angiosarcoma has not been well recognized. This case report describes, for the first time, the histological evidence of KMS that occurred in an extremely rare mesenchymal malignant tumor of the liver.

Key words: Hepatic angiosarcoma; Kasabach-Merritt syndrome; Vascular tumor
Hepatic angiosarcoma arises from vascular endothelial cells within the liver[1,2]. It is believed that in the past, the malignant transformation of vascular endothelial cells was mediated or triggered by environmental or industrial toxins, such as vinyl chloride, arsenic, and thorium dioxide, however despite tighter regulations of these toxins, there is still a constant number of reports of angiosarcoma without any such association. The unique clinical characteristic of angiosarcoma is the pronounced dysregulation of the coagulation system and accordingly, this has been primarily utilized as a palliative measure[3].

The tissue demonstrated a mesenchymal tumor infiltrating the sinusoids with anastomosing, dilated vascular channels lined by atypical cells (Figure 4A).

The clinical entity of Kasabach-Merritt syndrome (KMS) is characterized by thrombocytopenia and hyper-consumption of coagulation factors within a vascular tumor. KMS is typically seen in the pediatric population however there have been reports of KMS occurring in association with adult vascular tumors. Based on laboratory findings, it is hard to differentiate KMS from disseminated intravascular coagulation. Here, we describe, for the first time the histological evidence validating the concept of KMS.

INTRODUCTION

The tissue demonstrated a mesenchymal tumor infiltrating the sinusoids with anastomosing, dilated vascular channels lined by atypical cells (Figure 4A).
Immunohistochemical studies demonstrated tumor cells strongly expressed CD34, suggesting a vascular endothelial origin (Figure 4B). Of note, the uninvolved region showed no evidence of chronic liver disease. Based on these findings, the diagnosis of angiosarcoma was made.

DISCUSSION

In this case report we described a case of hepatic angiosarcoma in a young male with no evidence of cirrhosis and no prior history of exposure to the aforementioned chemicals through his occupation or medical use. In addition, this patient had no history of use of anabolic steroids or conditions that were associated with the onset of angiosarcoma. Therefore, the diagnosis of idiopathic hepatic angiosarcoma was made. Consistent with other reports, this case also manifested with significant coagulopathy which is a unique feature of hepatic angiosarcoma. As described in our case, the results of the blood tests fit well into the diagnostic criteria of DIC.

Our histological investigation found increased expression of von-Willebrand factor (vWF)/factor VIII within the tumor cells, the formation of fibrin nets, and platelet aggregation within the dilated sinusoids of
Figure 3 Multiphase axial magnetic resonance images of hepatic angiosarcoma. A: Precontrast image shows multiple mildly intense diffuse masses and areas of increased density in center lesions (thick arrows); B: Arterial phase demonstrates multifocal masses with peripheral enhancement; C: Portal venous phase illustrates multiple, discrete low intensity tumors; D: Delayed phase shows mild persistent enhancement of low intensity tumors (arrow) without definite washout.

Figure 4 Histopathological findings of tumor needle biopsy suggest the presence of Kasabach-Merritt syndrome. A: Hematoxylin-eosin (H&E) staining of tumor demonstrates dilated vascular channels lined by atypical endothelial cells with hyperchromatic, enlarged nuclei and reticular cytoplasm; B: Immunohistochemical stain for vascular antigen CD34 showing diffuse infiltration of CD34+ cells throughout the sinusoids in the tumor (left of line) with focal aggregation. Uninvolved region (right of line) shows normal liver sinusoidal endothelial cells (LSEC) that highlight the nondilated sinusoids along the cord of hepatocytes; C and D: Immunohistochemical stain of von-Willebrand Factor (vWF)/Factor VIII shows increased expression within tumor cells (left of line) as compared to uninvolved region (right of line). Extracellular aggregate positive for vWF/Factor VIII is seen within dilated sinusoid of angiosarcoma (arrow); E: Phophotungstic acid-hematoxylin stain (PTAH) demonstrates fibrin nets within the tumor seen as extracellular fibrillary structures that stain blue (arrow); F: Periodic acid-Schiff (PAS) stain of the tumor demonstrates glycogen granules within extracellular material of vascular channels, representing clumps of entrapped platelets (shown in rectangle). Note that positive PAS staining of glycogen is also observed in native hepatocytes.
angiosarcoma (Figure 4C-F). Of importance, there was no histological evidence of cirrhosis. These findings strongly suggest hyper-activation of the coagulation cascade as well as entrapment of platelets within the tumor. Therefore, our histological findings are congruent with the proposed concept of KMS.

There are 72 case reports of KMS to date. Of those, 43 cases were associated with hemangioma, 16 with Kaposi hemangioendothelioma/tufted angioma, 8 with angiosarcoma, 2 with lymphangioma, 2 with angiolipoma, and 1 with Merkel cell carcinoma. These cases demonstrated marked abnormalities in coagulation and thrombocytopenia. However, none of these reports provided histological validation of KMS and therefore it remains indistinguishable from tumor-associated DIC.

Our histological investigation proposed the potential mechanism of hyper-activation of the coagulation cascade via up-regulation of vWF/Factor VIII within the dilated sinusoid of the tumor. Moreover, we speculate that the upregulated vWF/Factor VIII results in the downstream formation of fibrin nets and subsequent entrapment of platelets within the tumor. Our findings highly suggest that this is the potential explanation for the significant thrombocytopenia and deregulated coagulation cascade. Thus, our report provides a conceptual advancement for the differentiation of tumor-associated DIC from the systemic manifestation of coagulopathy occurring within the vascular tumor. In conclusion, we report a case of idiopathic hepatic angiosarcoma with features of KMS with clinical and histological evidences.

ACKNOWLEDGMENTS
All of the authors would like to thank Dr. Neil Kaplowitz for his critical review of the manuscript.

COMMENTS
Case characteristics
A 40-year-old man with no past medical history presented with a 2 mo history of worsening abdominal pain and jaundice.

Clinical diagnosis
Distended abdomen with diffuse tenderness and scleral icterus without signs of chronic liver disease.

Differential diagnosis
Hepatocellular carcinoma, metastatic adenocarcinoma, cirrhosis, disseminated intravascular coagulation (DIC).

Laboratory diagnosis
Anemia, thrombocytopenia, decreased albumin, elevated bilirubin, elevated INR, decreased fibrinogen, elevated d-dimer.

Imaging diagnosis
Multiphase computerized tomography and magnetic resonance imaging showed discrete, multifocal, and isodense masses involving all segments of liver, largest measuring 6.5 cm.

Pathological diagnosis
Angiosarcoma with tumor cells strongly expressing CD34 with uninvolved region showing no evidence of chronic liver disease.

Related reports
Kasabach-Merritt syndrome (KMS) has been reported before to occur in association with some adult vascular tumors. However, none of these reports provides histological validation of KMS and thus the disease entity remained indistinguishable from tumor-associated DIC.

Term explanation
KMS is characterized by thrombocytopenia and hyperconsumption of coagulation factors within a vascular tumor. KMS has been well described in the pediatric population but rare in vascular tumors of the adult population.

Experiences and lessons
This entity can be confused for DIC due to similar abnormalities in coagulopathy. However, by histological investigation KMS can be differentiated from DIC.

Peer-review
It is really the first time to describe a case of primary hepatic angiosarcoma with the clinical and histological evidence of KMS.

REFERENCES
1. Molina E, Hernandez A. Clinical manifestations of primary hepatic angiosarcoma. Dig Dis Sci 2003; 48: 677-682 [PMID: 12741455 DOI: 10.1023/A:102268221670]
2. Mani H, Van Thiel DH. Mesenchymal tumors of the liver. Clin Liver Dis 2001; 5: 219-257, vix [DOI: 10.1016/S1089-3261(05)70162-8]
3. Zheng YW, Zhang XW, Zhang JL, Hui ZZ, Du WJ, Li RM, Ren XB. Primary hepatic angiosarcoma and potential treatment options. J Gastroenterol Hepatol 2014; 29: 906-911 [PMID: 24372769 DOI: 10.1111/jgh.12506]
4. Husted TL, Neff G, Thomas MJ, Gross TG, Woodle ES, Buell JF. Liver transplantation for primary or metastatic sarcoma to the liver. Am J Transplant 2006; 6: 392-397 [PMID: 16426326 DOI: 10.1111/j.1600-6143.2005.01179.x]
5. Farid M, Ahn I, Brohl A, Cioffi A, Maki RG. Consumptive coagulopathy in angiosarcoma: a recurrent phenomenon? Sarcoma 2014; 2014: 617102 [PMID: 24693222]
6. Truell JE, Peck SD, Reiquam CW. Hemangiosarcoma of the liver complicated by disseminated intravascular coagulation. A case report. Gastroenterology 1973; 65: 936-942 [PMID: 4796274]
7. O’Rafferty C, O’Regan GM, Irvine AD, Smith OP. Recent advances in the pathobiology and management of Kasabach-Merritt phenomenon. Br J Haematol 2015; 171: 38-51 [PMID: 26126899 DOI: 10.1111/bjh.13557]
8. Sidbury R. Update on vascular tumors of infancy. Curr Opin Pediatr 2010; 22: 432-437 [PMID: 206601884 DOI: 10.1097/MOP.0b013e32833bb764]
