Interactive effects of elevated CO₂ concentration and combined heat and drought stress on tomato photosynthesis

Rong Zhou 1*, Xiaqing Yu 2, Junqin Wen 2, Nikolaj Bjerring Jensen 1, Thayna Mendanha dos Santos 1, Zhen Wu 2, Eva Rosenqvist 3 and Carl-Otto Ottosen 1*

Abstract

Background: Extreme weather events are predicted to increase, such as combined heat and drought. The CO₂ concentration ([CO₂]) is predicted to approximately double by 2100. We aim to explore how tomato physiology, especially photosynthesis, is affected by combined heat and drought under elevated [CO₂] (e [CO₂]).

Results: Two genotypes, ‘OuBei’ (’OB’, Solanum lycopersicum) and ‘LA2093’ (S. pimpinellifolium) were grown at a [CO₂] (atmospheric [CO₂], 400 ppm) and e [CO₂] (800 ppm), respectively. The 27-days-old seedlings were treated at 1) a [CO₂], 2) a [CO₂] + combined stress, 3) e [CO₂] and 4) e [CO₂] + combined stress, followed by recovery. The PN (net photosynthetic rate) increased at e [CO₂] as compared with a [CO₂] and combined stress inhibited the PN.

Combined stress decreased the Fv/Fm (maximum quantum efficiency of photosystem II) of ‘OB’ at e [CO₂] and that of ‘LA2093’ in regardless of [CO₂]. Genotypic difference was observed in the e [CO₂] effect on the gas exchange, carbohydrate accumulation, pigment content and dry matter accumulation.

Conclusions: Short-term combined stress caused reversible damage on tomato while the e [CO₂] alleviated the damage on photosynthesis. However, the e [CO₂] cannot be always assumed have positive effects on plant growth during stress due to increased water consumption. This study provided insights into the physiological effects of e [CO₂] on tomato growth under combined stress and contributed to tomato breeding and management under climate change.

Keywords: Tomato, Elevated CO₂ concentration, Combined heat and drought, Recovery, Plant physiology
Co-occurrence of different abiotic stresses lead to complex responses of plants that can not be deduced from single stresses [8]. Among the abiotic stresses, increased temperature and water deficit are the two main constraints to agricultural production that often co-occur in the field [9, 10]. The e [CO2] in atmosphere contributes to global warming and induces changes in precipitation patterns, which leads to water scarcity in many areas [11]. Along with the e [CO2], global change predicts more frequent abiotic stresses such as heat and drought in future climate, which will complicate the effect of e [CO2] on plants [12, 13]. To date, most researches have focused on the response of plants to e [CO2] at single abiotic stresses. For instance, Jiang et al. (2016) showed that the e [CO2] mitigated the damage of moderate and severe drought stress [12]. The e [CO2] could enhance water-use efficiency and improve plant water relation through decreasing leaf gs at drought stress [14, 15]. The thresholds for fraction of transpirable soil water when PN and gs began to drop were lower in plants at e [CO2] than a [CO2] along with progressive soil drying, indicating the [CO2] hindered gas exchange response to drought [16]. On the other hand, the e [CO2] generally alleviated the heat stress damage in terms of plant physiology, such as photosynthesis, hydrogen peroxide (H2O2) generation and stomatal movement characteristics [13, 17].

However, it is important and meaningful to consider the co-occurrence of heat and drought for future crop breeding and management [18]. The crosstalk between e [CO2] and combined drought and heat has been investigated in Arabidopsis thaliana [19, 20], Triticum aestivum [21, 22], Brassica napus [23] and C3 grassland [24]. The stress-mitigating e [CO2] effect operates in Arabidopsis thaliana by up-regulating the antioxidant defense system and decreasing photorespiration [19] and reducing the negative influence on sugar and amino acid metabolism with less extent of metabolic alteration [20]. Fitzgerald et al. (2016) showed that the e [CO2] enhanced wheat yield in semi-arid environments with heat waves [21], while de Oliveira et al. (2013) indicated that the effect on wheat biomass and yield was dependent on environmental conditions. This is important to efficiently predict the complex effects of climate changes on crops. We will also help to manage the challenges of future food security under climate changes accompanied by increased population through tomato breeding using tolerant wild species.

Results
The PN and gs of ‘OB’ and ‘LA2093’ at a [CO2] was significantly lower than that at e [CO2] at control condition (Figs. 2A, B and 3A, B). Combined heat and drought stress significantly decreased the PN of ‘OB’ and ‘LA2093’ plants at both a [CO2] and e [CO2] (Figs. 2A and 3A). The PN of ‘OB’ and ‘LA2093’ plants at a [CO2] during the recovery stage showed no significant difference from the controls (Figs. 2A and 3A). The PN of ‘OB’ plants at e [CO2] during recovery were significantly higher than that during combined stress but lower than control, while that of ‘LA2093’ increased to higher level during recovery from HS (heat stress) and showed no significant difference with control (Figs. 2A and 3A). The gs of ‘OB’ and ‘LA2093’ plants at e [CO2] during combined stress, and recovery from DS (drought stress) and HS was significantly lower that under control, while that of the plants at a [CO2] showed no significant difference (Figs. 2B and 3B). The e [CO2] increased the gs of the plants from both genotypes as compared with a [CO2] (Figs. 2B and 3B). The E (transpiration rate) of ‘OB’ and ‘LA2093’ at a [CO2] during combined stress and recovery from DS were significantly higher than control (Figs. 2C and 3C). Nevertheless, the E and Ci of ‘OB’ plants at e [CO2] during combined stress and recovery from HS and ‘LA2093’ plants at e [CO2] during combined stress and recovery from DS were significantly lower than control (Figs. 2C, D and 3C, D). Moreover, leaf temperature of ‘OB’ and ‘LA2093’ at both a [CO2]
and e [CO₂] during combined stress and recovery from DS were significantly higher than the respective controls (Figs. 2E and 3E).

The combined stress significantly decreased the Fᵥ/Fₘ (maximum quantum efficiency of photosystem II) of 'OB' at e [CO₂] and 'LA2093' at both a [CO₂] and e [CO₂] (Fig. 4). The Fᵥ/Fₘ of both genotypes during the recovery from DS was significantly lower than the respective controls regardless of CO₂ concentration (Fig. 4). By comparison, there was no significant difference in Fᵥ/Fₘ between all the treatments during the recovery from HS (Fig. 4).

The stomata and pore length and stomata area of 'OB' at e [CO₂] was higher, while those at e [CO₂] + combined stress was lower as compared with a [CO₂] and a [CO₂] + combined stress (Fig. 5A, C, E). The length and width of stomata and pore as well as stomata area of 'LA2093' at a [CO₂] + combined stress was smallest among the four treatments (Fig. 5A, B, C, D, E). The stomatal density of ‘OB’ at e [CO₂] + combined stress was highest than the other three treatments (Fig. 5F).

Combined stress with e [CO₂] showed distinct effects on the chlorophyll and carotenoid content of the genotypes. The chlorophyll a and b content in the leaves of 'OB' at e [CO₂] with or without combined stress significantly increased than the control at a [CO₂] (Fig. 6A, B). However, the chlorophyll a and carotenoid content in the leaves of 'LA2093' at a [CO₂] + combined stress, e [CO₂] and e [CO₂] + combined stress were significantly lower than control at a [CO₂] (Fig. 6A, C). The combined stress significantly decreased the chlorophyll a/b in the leaves of both genotypes regardless of CO₂ concentration (Fig. 6D).

Similar to the changes in chlorophylls and carotenoid content, the effects of combined stress and e [CO₂] on carbohydrates content are genotype dependent. The glucose content in the leaves of 'LA2093' at a [CO₂] + combined stress was significantly lower than the other treatments (Fig. 7A). The fructose content in the leaves of 'LA2093' at a [CO₂] + combined stress significantly decreased as compared with e [CO₂] and e [CO₂] + combined stress (Fig. 7B). These suggested that the e [CO₂] had a stress-mitigating effect on the monosaccharide accumulation of 'LA2093'. The e [CO₂] + combined stress significantly increased the sucrose content in the leaves of 'OB' in comparison with that at a [CO₂] (Fig. 7C). The starch content in the leaves of 'OB' and 'LA2093' at e [CO₂] was significantly higher than that at a [CO₂] and a [CO₂] + combined stress (Fig. 7D).

The leaf FW (fresh weight) and DW (dry weight) of 'OB' at e [CO₂] were significantly higher than a [CO₂] regardless of stress after both stress and recovery stage.
Both genotypes grown at \(e[\text{CO}_2] \) + combined stress showed wilted leaves and weak growth during the stress; however, the symptoms disappeared after the recovery (Fig. 9). The root did not show visible difference between the four treatments during stress and recovery (Fig. 9).

Discussion

In recent years, the interaction between \(e[\text{CO}_2] \) and abiotic stress conditions has drawn more attention \[28\]. The predicted increase in \([\text{CO}_2]\) is expected to lead to more frequent extreme high temperature and/or drought episodes \[29\]. Reduced irrigation together with \(e[\text{CO}_2] \) could improve tomato fruit quality at high N supply \[27\]. The \(e[\text{CO}_2] \) enhanced water use efficiency and reduced the negative influence of heat stress on tomato partially due to \(e[\text{CO}_2] \)-induced respiratory burst oxidase 1/RBOH1-dependent \(\text{H}_2\text{O}_2 \) accumulation and stomatal closure \[13\]. Our previous results showed that combined heat and drought lead to unique physiological responses of tomatoes as compared with single stress \[30\]. Thereby, the interaction between the \(e[\text{CO}_2] \) and combined stress on tomato physiology is complex, which cannot be determined by the effect of \(e[\text{CO}_2] \) and one stress only. However, little is known about whether the \(e[\text{CO}_2] \) can change the response of tomatoes at combined stress such as heat and drought.

The physiological and transcriptional response in *Arabidopsis thaliana* showed that photosynthesis, as a fundamental biological process, was a major target of climate extreme like combined heat waves and drought \[19\]. The \(e[\text{CO}_2] \) increased the \(P_N \) of both genotypes in comparison with a \([\text{CO}_2]\) without combined stress, in agreement with the previous studies showing that the plants grown under \(e[\text{CO}_2] \) have higher photosynthetic capacity \[17, 25\]. Zinta et al. (2014) showed that the combined stress inhibited the \(P_N \) of *Arabidopsis thaliana* regardless of \([\text{CO}_2]\) \[19\]. The lower \(P_N \) of tomato at \(a[\text{CO}_2] \) is due to non-stomatal factor since the \(g_s \) and \(C_i \) were unaffected, while the \(P_N \) of tomato at \(e[\text{CO}_2] \)
accompanied by drops in both g_s and C_i was attributed to stomatal factor during combined stress (Fig. 10), according to the description of Von Caemmerer and Farquhar (1981) [31]. Surprisingly, the $e\ [CO_2]$ increased the g_s of both tomato genotypes as compared with a $[CO_2]$ as the g_s has been commonly reported to decrease when plants were grown at $e\ [CO_2]$ [13, 32]. The increased stomatal area due to the elongation of stomatal as indicated by longer length and unchanged width of stomatal and pore in plants at $e\ [CO_2]$ corresponded to the result of g_s (Fig. 10). By comparison, Chavan et al. (2019) found no difference in the g_s of wheat plants grown and measured at $a\ [CO_2]$ and $e\ [CO_2, 17]$, while Zinta et al. (2014) reported the g_s of Arabidopsis thaliana plants grown at $e\ [CO_2]$ increased at unstressed condition [19]. However, the reason behind for the inconsistent change of g_s caused by $e\ [CO_2]$ need to be further clarified, which could depend on plant species or developmental stage and be linked to limitation in water or nutrients. Moreover, the $e\ [CO_2]$ alleviated the reduction in P_N in heat-tolerant tomato under combined stress since the P_N at $e\ [CO_2] +$ combined stress was higher than a $[CO_2] +$ combined stress for ‘LA2093’. This $e\ [CO_2]$-alleviating effect on plant grown at combined heat and drought has been reported in Arabidopsis thaliana [19, 20], Triticum aestivum [21] and C3 grassland [24]. We suggest that one of the key factors that influenced the alleviation of $e\ [CO_2]$ is the sensitivity of the genotype to stress conditions (Fig. 10). More importantly, the P_N of the heat-tolerant tomato plant at $e\ [CO_2]$ fully recovered from the combined stress, while that of ‘OB’ did not, although the P_N of both genotypes at $a\ [CO_2]$ fully recovered. Thereby, the differential genotypic response to the $e\ [CO_2]$ effect on the P_N of plants happened both during stress and recovery (Fig. 10). The underlying genotypic difference need to verify in further studies, particularly for crop improvement to adapt to future $e\ [CO_2]$ atmosphere.

The F_v/F_m has been widely and successfully applied to identify stress damage on plants’ photosynthetic apparatus [33]. The $e\ [CO_2]$ did not alleviate the negative effects caused by short-term combined stress (12 h) as indicated by the decreased F_v/F_m in both genotypes at $e\ [CO_2] +$ combined stress. Accordingly, the alleviating

Fig. 3 (A) Net photosynthetic rate (P_N), (B) stomatal conductance (g_s), (C) transpiration rate (E), (D) intracellular CO_2 concentration (C_i) and (E) leaf temperature in the first fully expanded leaves of wild tomato ‘LA2093’ from the top during different treatments. Treatments, sampling and data analysis are as in Fig. 2.
effect of e [CO\(_2\)] on F\(_{v}/F_m\) was observed in plants exposed to a longer duration (7 days) to combined stress compared with 2 day and 4 days of exposure as shown by Zinta et al. (2014) [19]. The tomato plants did not fully recover and continued to deteriorate after watering, as indicated by the consistent low F\(_{v}/F_m\). This result could be explained by the longer duration of heat stress, as the high temperature persisted even though the plants were irrigated. However, the plants fully recovered in terms of F\(_{v}/F_m\) after being exposed to control temperature.

Zinta et al. (2014) showed there were no difference in chlorophylls content of Arabidopsis thaliana induced by e [CO\(_2\)] or combined stress for 4 days, but combined stress for 8 days decreased the chlorophylls content regardless of [CO\(_2\)] [19]. The chlorophyll \(a\) and \(b\) content of ‘OB’ at e [CO\(_2\)] regardless of combined stress was higher than a [CO\(_2\)] and combined stress decreased the content of chlorophyll \(a\) of ‘LA2093’ indicating that content depended on genotypes. The chlorophyll \(a/b\) of both genotypes at combined stress decreased in regardless of [CO\(_2\)], indicating an oxidative stress damage [34].

In accordance with Li et al. (2013) [35] and Zinta et al. (2018) [20], the e [CO\(_2\)] enhanced the starch accumulation of plants without stress conditions. The glucose, fructose and starch of ‘LA2093’ at e [CO\(_2\)] + combined stress was higher than that at a [CO\(_2\)] + combined stress. Together with the higher sucrose content at e [CO\(_2\)] + combined stress than a [CO\(_2\)], it could indicate that e [CO\(_2\)] could alter the carbohydrate metabolism and induce carbohydrates accumulation by enhancing photosynthesis without/with combined stress [19, 35].

The leaf FW and DW of ‘OB’ treated at e [CO\(_2\)] and e [CO\(_2\)] + combined stress was higher than that at a [CO\(_2\)] and a [CO\(_2\)] + combined stress during both stress and recovery (Fig. 8), but there were no difference in stem FW and DW (Data not shown). Our finding corresponds to the results by Pazzagli et al. (2016) [14], Chavan et al. (2019) [17], Fitzgerald et al. (2016) [21] and Ainsworth and Long (2005) [32], showing that the e [CO\(_2\)] enhance the biomass production of plants. This could be partially explained by increased photo-assimilates in source leaves of tomato grown at e [CO\(_2\)] as a consequence of increased \(P_N\). In addition, the response of biomass accumulation to e [CO\(_2\)] differed between the tomato genotypes. The ‘LA2093’ showed no significant difference in biomass at e [CO\(_2\)], which could be due to increased leaf dark respiratory rate accompanied by high carbohydrates availability to increase glycolysis and tricarboxylic acid (TCA) cycle flux [35].

Both genotypes grown at e [CO\(_2\)] were more sensitive to combined stress than those grown at a [CO\(_2\)] (Fig. 9). This correspond to the fact that combined stress lead to a higher
drop in P_N of the plants grown at e $[CO_2]$ than those grown at a $[CO_2]$. The explanations could be that the plants at e $[CO_2]$ generally had more biomass accumulation and higher g_s as compared with a $[CO_2]$, leading to higher transpiration and more irrigation requirement. This created a situation that the water depletion of tomatoes at e $[CO_2]$ happened faster and the growing media become drier [36] and thereby the severity of water deficit at combined stress was higher. The g_s, at drought of Fagus sylvatica L. grown from seed for two seasons at e $[CO_2]$ was higher instead of lower than a $[CO_2]$, causing faster soil drying [37]. Moreover, the g_s was less sensitive to induce ABA accumulation in tomato at e $[CO_2]$ and thereby ABA signaling could not play role in stromatal closure at water deficit condition [36]. There may be harmful influences of the e $[CO_2]$ for some species on plant-water relations in some cases [38]. Hence, the e $[CO_2]$ cannot be always assumed have positive effects on plant growth due to other limiting factors.

Conclusion

The climate changes including e $[CO_2]$, heat and drought interact with each other under field conditions, which can lead to effects that are remarkably different from single stress exposures. As compared with a $[CO_2]$, the e $[CO_2]$ increased the P_N of both tomato genotypes. However, the combined stress inhibited the P_N regardless of $[CO_2]$ and genotype. The F_v/F_m remained lower during recovery from drought, but fully recovered after being exposed to control temperature. The e $[CO_2]$ environment could enhance the biomass production of plant, but the magnitude of the effects depended on plant genotypes. Genotypic difference was observed in e $[CO_2]$ effect on the P_N, carbohydrate accumulation, pigment content and dry matter accumulation. The e $[CO_2]$ cannot be always assumed have positive effects on plant growth during stress conditions due to its deleterious effects on
plant-water relations. This study offers insights into the understanding of physiological responses of tomatoes to the interactive effects of future climate factors, which is vital to identify resilient crops for future climate regimes.

Methods

Growth conditions

The seeds from tomato ‘OuBei’ (’OB’) (*Solanum lycopersicum*) were acquired from Northern Nuohua co. LTD, China. The seeds of wild heat-tolerant tomato ‘LA2093’...
Fig. 8: Leaf FW and DW of tomato ‘OB’ and ‘LA2093’ during (a, b) stress stage and (c, d) recovery stage for 20 h. FW and DW was the abbreviation of fresh and dry weight. Treatments are as in Fig. 5. The data represent average values ± SD (n = 3). Different small letters showed significant differences (P < 0.05).

Fig. 9: Plant morphology of tomato ‘OB’ and ‘LA2093’ during stress stage and recovery stage for 20 h, respectively. Treatments are as in Fig. 5.
(S. pimpinellifolium) [39] were provided by Nanjing Agricultural University. The seeds were sown in plastic pots (9 cm height, 11 cm-diameter) in two separate compartments (compartment 1: 400 ppm [CO₂]; compartment 2: 800 ppm [CO₂]) of a greenhouse at the Department of Food Science, Aarhus University, Aarslev, DK (55.30 N, 10.44E). There were 36 plants per genotype per compartment. The commercial substrate used was Pindstrup 2 (Pindstrup Mosebrug A/S, Ryomgaard, Denmark). The seedlings were grown at approximately 23/16 °C (day/night), relative humidity of 40–60% and 150–300 μmol m⁻² s⁻¹ photosynthetic photon flux density (PPFD). The nutrition solution (pH = 6, EC = 2.18, K = 275 ppm, N = 191 ppm and P = 35 ppm) was applied to 18-day-old seedlings every day. Six days later, the 24-day-old seedlings in compartment 1 were moved to climate chamber 1 with the level of [CO₂] (400 ppm), while those in compartment 2 were moved to climate chamber 2 with the level of [CO₂] (800 ppm). The temperature was set at 25 °C for 15 h during daytime (05:00–20:00) and at 20 °C for 9 h during nighttime (20:00–05:00) in both chambers. The setting of relative humidity and PPFD in both chambers was 60% and 300 μmol m⁻² s⁻¹ PPFD provided by LED (FL300 sunlight, Fionia Lighting, Søndersø Denmark), respectively. The nutrition solution was applied every day by flooding the bench for about 10 min.

The plants were acclimated in the chambers for 3 days and then the 27-day-old plants in chamber 1 and 2 were equally distributed to chamber 3 and chamber 4, respectively. The four treatments were imposed: (1) a [CO₂] in chamber 1, 400 ppm [CO₂] + 25/20 °C + irrigation; (2) e [CO₂] in chamber 2, 800 ppm [CO₂] + 25/20 °C + irrigation; (3) a [CO₂] + combined stress in chamber 3, 400 ppm [CO₂] + 35/30 °C + no irrigation and (4) e [CO₂] + combined stress in chamber 4, 800 ppm [CO₂] + 35/30 °C + no irrigation. There were 18 plants per treatment per genotype. Based on our preliminary test, the irrigation was stopped 4 hours before the high temperature since it took time to make drought stress happen after withdrawing the irrigation, while heat stress happen quickly (10–20 min) after increasing the temperature. Thereby, the irrigation was withdrawn at 16:00 and the temperature was increased to 30 °C at 20:00 for the plants at combined stressed. The combined stress was regarded to begin at 20:00 on day 0. After 20 h of the treatments when the plants at combined stress has shown macroscopic stress phenotype, the irrigation was restarted at 16:00 on day 1 in the same way as the control. This stage from 16:00 on day 1 until 8:00 on day 2 (16 h) was defined as the recovery from DS. The temperature was changed to 25/20 °C from 8:00 until 14:00 on day 2 (6 h) for the plants at combined stress. This stage was defined as the recovery from HS. The experimental time line of treatments was shown in Fig. 1.

Gas exchange

The P_N, g_s, E, C_i and leaf temperature were measured in the first fully expanded leaf from the top of the plants with four replications. The measurements were taken at 8:00 on day 1 after 12 h of the stress treatments, at 8:00 on day 2 after 16 h of recovery from DS and 12:00 on day 2 after 4 h of recovery from HS using portable

![Fig. 10](image)

Fig. 10 The overall effects of e [CO₂] on tomato photosynthesis at combined stress and recovery.
photosynthesis system (CIRAS-2, PP Systems, Amersbury, USA). The light level, temperature and CO₂ concentration settings of the cuvette during the measurements corresponded to the respective growing conditions. The records were taken when the parameters were considered stable. The average of the six records within the last 1 min were regarded as the results.

Maximum quantum efficiency of photosystem II (Fv/Fm)
The Fv/Fm in the first fully expanded leaf from the top of the plants was measured using Handy PEA (Hansatech Instrument, King’s Lynn, England). The leaf was dark adapted for 20 min with a leaf clip. The measurements with four replications were taken at 10:00 on day 1 after 14 h of the stress treatments, at 10:00 on day 2 after 18 h of recovery from DS and 14:00 on day 2 after 6 h of recovery from HS.

Stomatal traits
Original imprints were obtained by evenly painting the impression material (elite HD+, Zhermack, Badia Polesine, Italy) to the leaf surface. The imprints were transferred by applying nail varnish to the original imprints. Image data was acquired using a Nikon AZ100 microscope (Nikon Corp., Tokyo, Japan) equipped with a Nikon DS-Fi1 camera. There were four imprints from the abaxial leaf surface of the four plants per treatment. For each imprint, four photos were taken at different locations in the slide. Stomata number was counted for each picture excluding those cut by the picture border and stomatal density was calculated per area. For all stomata, stomatal length, stomatal width, pore length, pore width and stomata area (the area of the rectangle encasing the stomata) were investigated.

Chlorophyll and carbohydrate content
The first fully expanded leaf from the top were harvested during the stress treatments for 20 h. One leaf disk (2.96 cm²) per plant were punched using a cork-borer for chlorophyll content measurements with three replications per treatment. The leaf samples were freeze-dried and grounded before carbohydrate content measurements. Chlorophyll and carbohydrate content were determined according to Zhou et al. (2015) [39].

Fresh and dry weight (FW and DW) of leaf
The leaf FW and DW of the plants with three replications during the stress and recovery was determined using an analytical balance. The leaf DW were measured after putting the fresh samples at 80 °C in a constant flux oven for 48 h.

Data analysis
The photosynthesis and Fv/Fm data of each cultivar at a [CO₂] and e [CO₂] during the control condition, combined stress, recovery from DS and recovery from HS were analyzed by one-way Analysis of variance (ANOVA) (Duncan’s post hoc test) using SPSS 16.0 (SPSS Inc. Chicago, IL). The stomatal, pigment and carbohydrate content as well as biomass data of each cultivars at a [CO₂] and a [CO₂] + combined stress, e [CO₂] and e [CO₂] + combined stress were analyzed by one-way ANOVA (Duncan’s post hoc test). To perform the one-way ANOVA in SPSS, choose ‘Analyze’ → ‘General Linear Model’ → ‘Univariate’ after inputting data based on the methods from DeCoster and Claypool (2004) [40]. The significant levels were at 0.05.

Abbreviations
a [CO₂]: atmospheric CO₂ concentration; ANOVA: Analysis of variance; Ci: intercellular CO₂ concentration; [CO₂]: CO₂ concentration; DW: Dry weight; E: Transpiration rate; e [CO₂]: elevated CO₂ concentration; Fv/Fm: Maximum quantum efficiency of photosystem II; FW: Fresh weight; g: stomatal conductance; H₂O₂: Hydrogen peroxide; Pn: Net photosynthetic rate; PPFD: Photosynthetic photon flux density; TCA: Tricarboxylic acid

Acknowledgements
We appreciated the help from Eje Mattis Röndahl as well as Kaj Ole Dideriksen for the management of plant materials and climate chambers.

Authors’ contributions
RZ made the experimental design and conducted the experiment. RZ, XY and NBJ were involved in data analysis. COO, JW, ZW, XY, TMS and ER gave valuable advice and comments. All the authors have approved the submission of the final manuscript.

Funding
The work got financial support from the funding of Aarhus University Research Foundation (AUFF grant, 30379) and the funders acted no role in performing experiment and manuscript preparation.

Availability of data and materials
The datasets during or analyzed during the current study available from the corresponding authors on reasonable request.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that there have no conflict of interest.

Author details
1Department of Food Science, Aarhus University, Aarhus, Denmark. 2College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China. 3Department of Plant and Environmental Sciences, University of Copenhagen, Taastrup, Denmark.

Received: 11 February 2020 Accepted: 21 May 2020
Published online: 07 June 2020

References
1. Lemonnier P, Ainsworth EA. Crop responses to rising atmospheric [CO₂] and global climate change. In: Food security and climate change. Chichester: Wiley; 2018. p. 51–69.
2. Ainsworth EA, Rogers A. The response of photosynthesis and stomatal conductance to rising [CO₂]: mechanisms and environmental interactions. Plant Cell Environ. 2007;30:258–70.

3. Shi K, Li X, Zhang H, Zhang G, Liu Y, Zhou Y, et al. Guard cell hydrogen peroxide and nitric oxide mediate elevated CO₂-induced stomatal movement in tomato. New Phytol. 2015;208:342–53.

4. Chater C, Peng K, Movahedi M, Dunn JA, Walker HI, Liang YK, et al. Elevated CO₂-induced responses in stomata require ABA and ABA signaling. Curr Biol. 2015;25:2709–16.

5. Zhang S, Li X, Sun Z, Shao S, Hu L, Ye M. Antagonism between phytohormone signalling underlies the variation in disease susceptibility of tomato plants under elevated CO₂. J Exp Bot. 2015;66:1951–63.

6. De Souza AP, Gaspar M, Da Silva EA, Ulian EC, Waclawovsky AJ, Nishiyama S. Effect of alternate partial root-zone irrigation. Funct Plant Biol. 2010;37:1016–28.

7. Prasch CM, Sonnewald U. Simultaneous application of heat, drought, and CO₂-implications for water-limited environments. Plant Cell Environ. 2002;25:1991;153:376–87.

8. Kasajima I. Difference in oxidative stress tolerance between rice cultivars under ambient and elevated atmospheric CO₂ concentration. Crit Rev Plant Sci. 2014;33:298–409.

9. Feng QQ, Li Y, Cheng ZM. Plant molecular and genomic responses to stresses in projected future CO₂ environment. Crit Rev Plant Sci. 2014;33:298–409.

10. Von Caemmerer SV, Fangqiao GD. Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta. 1981;153:376–87.

11. Zandalinas SI, Fritschi FB, Mittler R. Signal transduction networks during drought and osmotic stress in Arabidopsis. Plant Physiol. 2016;170:1045–57.

12. Feng QQ, Li Y, Cheng ZM. Plant molecular and genomic responses to stresses in projected future CO₂ environment. Crit Rev Plant Sci. 2014;33:298–409.

13. Wright IC, Wang YS, Liu FL, Andersen MN, Jensen CR. Improved plant nitrogen nutrition contributes to higher water use efficiency in tomatoes under elevated atmospheric CO₂ concentration. Environ Exp Bot. 2017;139:99–107.

14. Zintz G, AbdElgawad H, Domagalikas MA, Vergauwen L, Knapen D, Nijs J, et al. Physiological, biochemical, and genome-wide transcriptional analysis reveals that elevated CO₂ mitigates the impact of combined heat wave and drought stress in Arabidopsis thaliana at multiple organizational levels. Glob Chang Biol. 2014;20:3670–85.

15. Mariath H, Rao NKS, Ramanan K, Shwathshankara KS, Bhargava P, Pavithra KC. Impact of elevated CO₂ on growth, physiology, yield, and quality of tomato (Lycopersicon esculentum mill) cv. Arka Ashish. Photosynthetica. 2014;52:159–28.

16. Peet MM, Pharr DM, Nelson PV. CO₂-enhanced yield and foliar deformation among tomato genotypes in elevated CO₂ environments. Plant Physiol. 1991;96:713–9.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.