RESEARCH PAPER

Osmotic stress is accompanied by protein glycation in Arabidopsis thaliana

Gagan Paudel1,2,*, Tatiana Bilova1,2,3,*, Rico Schmidt4, Uta Greifenhagen2, Robert Berger1, Elena Tarakhovskaya3, Stefanie Stöckhardt5, Gerd Ulrich Balcke6, Klaus Humbeck5, Wolfgang Brandt1, Andrea Sinz4, Thomas Vogt6, Claudia Birkemeyer2, Ludger Wessjohann1 and Andrej Frolov1,2,†

1 Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
2 Faculty of Chemistry and Mineralogy, Universität Leipzig, Leipzig, Germany
3 Department of Plant Physiology and Biochemistry, St Petersburg State University, St Petersburg, Russia
4 Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther Universität Halle-Wittenberg, Halle (Saale), Germany
5 Department of Plant Physiology, Martin-Luther Universität Halle-Wittenberg, Halle (Saale), Germany
6 Department of Metabolic and Cell Biology, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany

* These authors contributed equally to the manuscript.
† Correspondence: afrolov@ipb-halle.de

Received 3 May 2016; Editorial decision 9 September 2016; Accepted 9 September 2016

Editor: Robert Hancock, The James Hutton Institute

Abstract

Among the environmental alterations accompanying oncoming climate changes, drought is the most important factor influencing crop plant productivity. In plants, water deficit ultimately results in the development of oxidative stress and accumulation of osmolytes (e.g. amino acids and carbohydrates) in all tissues. Up-regulation of sugar biosynthesis in parallel to the increasing overproduction of reactive oxygen species (ROS) might enhance protein glycation, i.e. interaction of carbonyl compounds, reducing sugars and α-dicarbonyls with lysyl and arginyl side-chains yielding early (Amadori and Heyns compounds) and advanced glycation end-products (AGEs). Although the constitutive plant protein glycation patterns were characterized recently, the effects of environmental stress on AGE formation are unknown so far. To fill this gap, we present here a comprehensive in-depth study of the changes in Arabidopsis thaliana advanced glycated proteome related to osmotic stress. A 3 d application of osmotic stress revealed 31 stress-specifically and 12 differentially AGE-modified proteins, representing altogether 56 advanced glycation sites. Based on proteomic and metabolomic results, in combination with biochemical, enzymatic and gene expression analysis, we propose monosaccharide autoxidation as the main stress-related glycation mechanism, and glyoxal as the major glycation agent in plants subjected to drought.

Key words: Advanced glycation end-products (AGEs), Arabidopsis thaliana, crop quality, drought stress, food quality, glycation, label-free quantification, plant proteomics, two-dimensional chromatography.

Introduction

Environmental stress is one of the major factors reducing crop plant productivity all over the world, and drought represents its most important manifestation (Cruz de Carvalho, 2008). The oncoming climate changes are making drought, usually defined as a period of lower than normal precipitation that limits a plant’s productivity in a natural...
or agricultural system (Brunner et al., 2015), an important economic factor directly influencing the yield and quality of crops. Additionally, several other environmental stress factors like high salinity, reduced or increased temperatures, as well as their combinations, result in a reduced water availability and cause the appearance of drought symptoms (Verslues et al., 2006). On the physiological level, water deficiency triggers reduction of stomatal aperture, decrease of CO₂ assimilation rate and growth inhibition (Chaves et al., 2009). This leads to an imbalance between the generation of reduction equivalents by the light reactions and their consumption in the Calvin cycle. In turn, this increases the rates of single electron reduction of molecular oxygen by the redox proteins of the chloroplasts and mitochondrial electron transport chains and enhances production of reactive oxygen species (ROS): first, singlet oxygen (¹O₂) and superoxide anion radical (O₂⁻), and further, hydrogen peroxide (H₂O₂), nitric oxide (NO) and the hydroxyl radical (·OH) (Kar, 2011). When production of these ROS overwhems their detoxification, oxidative stress develops (Gill and Tuteja, 2010), and the rates of lipid peroxidation (Mirzaee et al., 2013), monosaccharide autoxidation (Wolff and Dean, 1987), and oxidative degradation of proteins (Berlett and Stadtman, 1997) increase. The generated products of lipid and sugar oxidative degradation, hydroxycarbons and α-oxocarbons, are potent protein modification agents and can trigger essential changes in the structure and function of polypeptides (Lennicke et al., 2016).

As the plant stress response is accompanied by rapid accumulation of mono- and oligosaccharides (Arbona et al., 2013), as well as increases in the concentration of some amino acids and peptides, glycation might contribute significantly to stress-related protein damage (Bechtold et al., 2009). Indeed, reducing sugars (both aldoses and ketoses) interact with protein amino groups, yielding the corresponding keto- and aldamines (i.e. Amadori and Heyns compounds; Hodge, 1955; Heyns and Noack, 1962). These early glycation products, as well as free sugars, readily autoxidize to yield highly reactive α-dicarbonyl compounds, presumably glyoxal (GO), methylglyoxal (MGO) and 3-deoxyglucosone (3-DG), potent intermediates of advanced glycation (Fig. 1; Wolff and Dean, 1988). Their interaction with lysyl amino and arginyl guanidinium groups results in formation of so-called advanced glycation end-products (AGEs)—protein Maillard compounds also found to accumulate during thermal processing of foods (Greifenhagen et al., 2015). Upon their absorption in the human intestine, AGEs interact with endothelial and macrophage pattern recognition receptors for AGEs (e.g. RAGEs) and trigger nuclear factor-κB (NF-κB)-mediated expression of pro-inflammatory molecules (Goldin et al., 2006), thus contributing to the local and systemic subclinical inflammation underlying atherosclerosis and accompanying pathologies (Nettleton et al., 2007).

Over the last decades, multiple biologically relevant AGEs were reported. Among them, N⁶-(carboxymethyl)lysine (CML; van de Kerkhof et al., 2004), N⁶-(carboxyethyl)lysine (CEL; Zhu et al., 2012), ε-(2′-formyl-5′-hydroxymethyl-pyrrolyl)-L-norleucine (pyrraline; Foerster and Henle, 2003), and glyceraldehyde-derived pyridinium (GLAP; Usui et al., 2007) are the best-characterized lysine-derived products. For arginine residues, Schwarzenbolz and coworkers described 1-(4-amino-4-carboxybutil)-2-imino-5-oxo-imidazolidine (Glarg) formed in the reaction with glyoxal (Schwarzenbolz et al., 1997) and yielding N⁶-carboxyethylarginine (CMA) under physiological conditions (Glomb and Lang, 2001). Methylglyoxal forms methylglyoxal-derived hydroimidazolones (MG-Hs) with N⁶-(5-methyl-4-oxo-5-hydroimidazolone-2-yl)-L-ornithine (MG-H1) as the major representative (Henle et al., 1994). Hydrolysis of another MG-H, namely 2-amino-5-(2-amino-4-hydro-4-methyl-5-imidazolol-1-yl)pentanoic acid (MG-H3) yields carboxyethyl-L-arginine (CEA) (Gruber and Hofmann, 2005). Sequential modification of an arginine with two methylglyoxal molecules results in N⁶-(5-hydroxy-4,6-dimethylpyrimidine-2-yl)-L-ornithine (arginypiridine, Argpyr; Shipanova et al., 1997) and N⁶-(4-carboxy-4,6-dimethyl-5,6-dihydroxy-1,4,5,6-tetrahydropyrimidine-2-yl)-L-ornithine (tetrahydropyrimidine, TH-Pyr; Oya et al., 1999).

A few years ago, Bechtold et al. (2009) reported an increase in the total content of different individual AGE classes (detected as glycated amino acids after exhaustive hydrolysis) upon the application of experimental environmental stress to Arabidopsis plants. Most recently, Bilova et al. (2016) characterized hundreds of constitutively glycated proteins in Arabidopsis and Brassica napus. However, the effects of environmental changes on the plant glycated proteome were not considered so far. To fill this gap, we describe here the effects of short-term osmotic stress on the advanced glycation patterns in the Arabidopsis proteome and characterize, to the best of our knowledge, for the first time the group of stress-specifically AGE-modified proteins along with the pathways of advanced glycation.

Materials and methods

Reagents

Unless stated otherwise, materials were obtained from the following manufacturers: AAT Bioquest®, Inc. (Sunnyvale, CA, USA): Amplite Fluorimetric Glutathione GSH/GSSG Ratio Assay Kit; AppliChem GmbH (Darmstadt, Germany): Tris (ultrapure); Biosolve (Valkenswaard, The Netherlands): acetonitrile (MS grade); Biomol GmbH, Hamburg, Germany: goat anti-2,4-dinitrophenylhydrazine...
leaves were weighed and immediately submerged for 2 h at room temperature (RT) in 4.5 ml of sucrose solutions (0.1–1 mol l⁻¹) in Petri dishes (2 cm diameter) covered with glass slides. Afterwards, the leaves were carefully blotted, weighed, and the weight loss or gain was documented. The ψₛ values were calculated by the Van’T Hoff equation (ψₛ = −RTM), where M denotes the sugar molar concentration and no changes in leaf weight. The ψₛ values of the agar medium (collected into 1.5 ml polypropylene tubes from the surface and bottom of each pot) were determined by vapor pressure osmometer (Vapro 5520, Wescor Inc., Logan, UT, USA).

Physiological and biochemical assays

The stomatal conductance, PS II efficiency (variable fluorescence (Fv)/maximal fluorescence (Fm₀)), and relative chlorophyll content were determined by means of a diffusion porometer (Delta-T Devices Ltd, Cottbus, Germany), photosynthesis yield analyzer (Walz GmbH, Effeltrich, Germany), and chlorophyll meter (Konica Minolta, Langenhen, Germany), respectively, according to established protocols (Morison, 1998; Silva et al., 2007) using the three youngest leaves (11th–13th) of each plant (n=9). The fresh and dry leaf weights were determined for all plant leaves before and after a 3 d incubation at 80 °C, respectively. The leaf relative water content (LRWC) was calculated as follows: LRWC (%)=(fresh weight–dry weight)/fresh weight×100.

Lipid hydroperoxides were quantified by oxidation of a Fe(II)-xenyl orange complex as described by Griffiths et al. (2000) with modifications (Supplementary Protocol S1 at JXB online).

Determination of H₂O₂ contents relied on the modified method of Gay et al. (1999) (Supplementary Protocol S2). Malondialdehyde (MDA) contents were determined as described by Velikova et al. (2000) using approximately 25 mg of plant material (Supplementary Protocol S3). Ascorbic and dehydroascorbic acids were quantified in leaf tissue as described by Huang et al. (2005) with minor modifications (Supplementary Protocol S4). Reduced and oxidized glutathione (GSH and GSSG, respectively) and glyoxalase II activity were quantified as described by Bilova et al. (2016). Analysis of leaf ascorbic acid (ABA) contents was based on the method of Balcke et al. (2012). Gene expression analysis was performed by RT-qPCR using commercially available kits and results were calculated according to Schmittgen and Livak (2008) (Supplementary Protocol S5). Details of primer sequence of genes are summarized in Supplementary Table S1.

Protein isolation

The total protein content was isolated by phenol extraction as described by Isaacson et al. (2006). In detail, 650 µl of ice-cold phenol extraction buffer (0.7 mol l⁻¹ sucrose, 0.1 mol l⁻¹ KCl, 5 mmol l⁻¹ EDTA, 2% (v/v) mercaptoethanol and 1 mmol l⁻¹ protease inhibitor mixture in 0.5 mol l⁻¹ Tris–HCl buffer, pH 7.5) was added to approximately 250 mg of plant material and vortexed for 30 s. Directly afterwards, 650 µl of phenol saturated with 0.5 mol l⁻¹ Tris–HCl buffer (pH 7.5) was added and the suspension was shaken for 30 min at 900 r.p.m. (4 °C) and centrifuged at 5000 g for 30 min at 4 °C. The upper phenol phase was collected and supplemented with an equal volume of phenol extraction buffer. Water-soluble substances were re-extracted twice as described above. Finally, five volumes (1 ml) of ice-cold 0.1 mol l⁻¹ ammonium acetate in methanol was added to the collected phenol phase (approximately 200 µl) and the samples were left at −20 °C overnight. Next morning, the samples were centrifuged for 30 min at 5000 g (4 °C) and supernatants were discarded. The pellets were washed twice with ice-cold methanol and once with acetone (resuspended by vortexing for 3 min followed by centrifugation at 5000 g for 10 min) and dried by air flow under the hood.

Tryptic digestion

Proteins were reconstituted in 200 µl of 100 mmol l⁻¹ Tris–HCl (pH 7.5) containing 8 mol l⁻¹ urea, 2 mol l⁻¹ thiourea and 0.2% Progena.
acidic anionic surfactant II. Protein concentrations were determined by the Bradford assay in 96-well plate format as described elsewhere (Frolov et al., 2014a) (Supplementary Protocol S6). Protein (200 µg) was complemented with TCEP (50 mmol l⁻¹, 10 µl), diluted with aqueous ammonium hydrogen carbonate solution (50 mmol l⁻¹) to obtain a final volume of 100 µl, and incubated at 37 °C for 30 min. The samples were cooled to RT, alkylated with iodoacetamide (0.1 mol l⁻¹, 11 µl) in the darkness for 60 min at 4 °C, and diluted eight-fold with 50 mmol l⁻¹ ammonium bicarbonate solution. Trypsin (0.4 µg µl⁻¹ in 50 mmol l⁻¹ ammonium hydrogen carbonate) was added sequentially two times (in 1:20 and 1:50 enzyme/substrate ratio) and incubations were performed at 37 °C for 5 and 12 h, respectively. Afterwards, 10% (v/v) aq. trifluoroacetic acid (UV grade) was added to give a final concentration of 1% (v/v), and the digests were incubated at 37 °C for 20 min to destroy the Progentan anionic surfactant. Afterwards, the completeness of the digestion was determined by SDS-PAGE analysis (Supplementary Protocol S7). The digests were loaded on Oasis HLB cartridges (10 mg, 30 µm; Waters GmbH, Eschborn, Germany) mounted on the Chromabond vacuum manifold (Macherey Nagel, Düren, Germany). After washing with 1 ml 0.1% (v/v) aq. formic acid, retained tryptic peptides were subsequently eluted with 335 µl of 40%, 60% and 80% (v/v) aq. acetonitrile. The combined eluates were concentrated under vacuum for 30 min, freeze-dried overnight, and stored at -20 °C.

Western blotting
Anti-dinitrophenylhydrazine (DNP) Western blot analysis was performed as described by Fedorova et al. (2010), with modifications. The proteins separated by SDS-PAGE (Supplementary Protocol S7) were transferred electrophoretically (100 V, 60 min) to a PVDF membrane pre-activated with ethanol and equilibrated in 39 mmol l⁻¹ glycine/48 mmol l⁻¹ Tris buffer (pH 10.4) for 1 h. The membrane-bound protein carbonyls were derivatized with 1 mg l⁻¹ 2,4-dinitrophenylhydrazine in 2 mol l⁻¹ HCl (30 min), washed with methanol and blocked for 1 h with AdvanBlock™-PF protein-free blocking solution. Afterwards the membrane was treated with primary antibodies (Bethyl A150-117A goat anti-DNP, 1:30 dilution) and secondary antibodies (Bethyl A50-201D2 donkey anti-goat IgG H&L DyLight® 488, 1:20 dilution) were washed in 24-well plates with Washing Solution), and treated with secondary antibodies (Bethyl A50-201D2 donkey anti-goat IgG H&L DyLight® 488, 1:200000, darkness, 1 h). The carboxylated proteins were visualized by the gel imager Chemi Doc MP (Bio-Rad Laboratories GmbH, München, Germany) at λₜₕ=493 nm, λₑₜₕ=518 nm by using the Bio-Rad Image Lab 5.1 software.

Gas chromatography–mass spectrometry
Profiling of primary metabolites and α-dicarbonyls relied on established methods (Milkovska-Stamenova et al., 2015; Bilova et al., 2016) using the parameters summarized in Supplementary Table S2. The trimethylsilyl-methoxime derivatives of the analytes were annotated by retention time indexes (determined with C10–C32 alkanes) and mass spectral similarity search against the NIST08 database and an in-house library. Quantification of carboxydrates was performed by integration of the corresponding extracted ion chromatograms (m/z±0.05 Da) for representative intense signals at specific retention times (tₚ).

Hydrophilic interaction liquid chromatography
Hydrophilic interaction liquid chromatography (HILIC) was performed as described by Singer et al. (2010) with modifications. In detail, tryptic digests (100 µg) were reconstituted in 40 µl of 0.1% (v/v) aq. formic acid before 260 µl of acetonitrile was added in three portions (60, 100 and 100 µl) followed by 30 s of vortexing after each addition. Of the sample, 290 µl was separated by a Luna 3u HILIC (silica, 100 × 2 mm, particle size 3 µm, Phenomenex, Aschaffenburg, Germany) using an Äktapurifier HPLC system, equipped with A-905 autosampler, P-903 gradient pump binary pump, UV-900 UV-Vis detector, and FraC-950 fraction collector (GE Healthcare, Solingen, Germany). The separations were performed by linear gradients of aq. ammonium acetate in acetonitrile using the conditions summarized in Supplementary Table S3. The collected fractions (5 × 1 ml) were dried under reduced pressure, reconstituted in 60% (v/v) acetonitrile in 0.1% (v/v) aq. formic acid and diluted with 0.1% (v/v) formic acid (Supplementary Table S4).

Nano-liquid chromatography–mass spectrometry analysis
The plant tryptic digests (70 ng) or individually diluted HILIC fractions were loaded on a nanoACQUITY UPLC™ Symmetry trap column (C₁₈-phase, ID 180 µm, length 2 cm, particle size 5 µm) and then separated on a nanoACQUITY UPLC BEH130 column (C₁₈-phase, ID 0.1 mm, length 10 cm, particle size 1.7 µm) using a nanoACQUITY UPLC system controlled by MassLynx X.4.1 software (Waters GmbH). The method settings and separating conditions are summarized in Supplementary Table S5. The column effluents were transferred via a PicoTip on-line nano-electrospray ionization (ESI) emitter to an LTQ Orbitrap XL electron-transfer dissociation mass spectrometer equipped with a nano-ESI source and controlled by Xcalibur 2.0.7 software (Thermo Fisher Scientific, Bremen, Germany). Analysis relied on a full mass spectrometry (MS) scan in the Orbitrap, followed by collision-induced dissociation fragmentation in the linear ion trap in data-dependent acquisition mode for the six most intense signals with charge states ranging from 2+ to 5+ using the MS settings summarized in Supplementary Table S6. For protein quantification, the LTQ Orbitrap XL-MS equipped with a nano-ESI source (Proxeon) was coupled on-line to a Dionex 3000 HPLC (Thermo Fisher Scientific). Identification of peptide sequences and protein annotation relied on the Sequest search against an Arabidopsis protein database (Arabidopsis thaliana proteome reviewed, Uniprot, http://www.ebi.ac.uk/refence_proteomes) using modification-specific mass increments and appropriate result filtering (Supplementary Table S6). The search was performed in automatic mode using the Proteome Discoverer 1.4 Software (Thermo Fisher Scientific) with false discovery rate of 0.01 (reversed decoy database). Different advanced glycation and oxidation modifications (Supplementary Table S6) were used in different combinations as search templates. The sequences of stress-specific peptides were confirmed by manual interpretation using the QualBrowser application of the Xcalibur 2.0.7 software as described elsewhere (Greifenhagen et al., 2014; Schmidt et al., 2015). Label-free quantification of AGE-modified peptides relied on integration of the corresponding extracted ion chromatograms (XICs) (m/z±20.02) at specific retention times using LCquan software (Thermo Fisher Scientific). The proteome quantitation was carried out with Progenesis QI software (Nonlinear Dynamics, Newcastle Upon Tyne, UK) using automatic alignment and peak picking (medium sensitivity) of individual HILIC fractions and subsequent combination of separate pre-fractions. Identification was performed with the MASCOT search engine using the Arabidopsis database (as mentioned above). The signals were normalized, using the total peak areas of one chromatographic analysis. Annotation of protein functions was performed by means of MapMan software (Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany, http://mapman.gabipd.org).

Results
Stress establishment and characterization
After 2 weeks’ growth on agar medium and 4 weeks’ growth in aq. culture, the plants developed a rosette of approximately 6–8 cm diameter and 0.5–1.0 g weight. On the third day after the plant transfer to agar saturated with Murashige and
and Skoog medium, no signs of osmotic stress could be seen.
In contrast, clear loss of turgor was observed with the plants
transferred to pots infused with PEG (Fig. 2A, B), although
the water potential (ψ_w) did not change in comparison with
the controls (Fig. 2C). However, a 50\% decrease of agar ψ_w
only upon saturation with PEG was registered (Fig. 2D, t-test,
$P=6.5 \times 10^{-3}$). This reduction was equal in the whole agar
volume (ψ_w relative standard deviation did not exceed 10\%).

The observed plant dehydration was accompanied by a 14.3-fold increase of abscisic acid (ABA) content (t-test, $P=0.001$, Fig. 3A), stomata closure (Fig. 3B, t-test, $P=1.1 \times 10^{-3}$), and a reduction of photosystem II (PSII) efficiency (t-test, $P=7.1 \times 10^{-4}$, Fig. 3C), whereas the leaf relative
water content (LRWC) and chlorophyll contents were unchanged (Supplementary Fig. S1A, B). On the biochemical
level, the osmotic stress was manifested with an increase in the
contents of thiobarbituric acid-reactive substances, expressed as malondialdehyde (MDA) equivalents (Fig. 3D, t-test, $P=0.006$). It was accompanied by the approximately
2.5-fold increase in ascorbic acid (Asc; t-test, $P=0.02$) and
about a 2-fold increase (t-test, $P=0.036$) in GSH amounts
(Fig. 2E and F, respectively), whereas the abundances of their oxidized counterparts (dehydroascorbic acid (DHA) and GSSG) did not show changes (Supplementary Fig. S1C, D).

Nevertheless, the Asc/DHA and GSH/GSSG ratios were un
changed (Supplementary Fig. S1E, F), which indicated
preserved antioxidant capacity of the ascorbate–glutathione
cycle. Additionally, development of stress was confirmed by
the accumulation of osmolytes: a 152- and 2.7-fold abun
dance increase was registered for proline (t-test, $P=0.007$) and sucrose (t-test, $P=0.004$), respectively (Fig. 3G, H).

The gas chromatography–mass spectrometry (GC-MS)-
based profiling of primary metabolites revealed an increase
in leaf tissue contents of other (besides proline) amino acids and some intermediates of the tricarboxylic acid cycle (Supplementary Fig. S2). Moreover, multiple sugars, also known to be potent glycation agents (e.g. arabinose, ribose, sugar phosphates) were clearly up-regulated (Supplementary Fig. S3). However, surprisingly, the lev
els of α-dicarboxyls (glyoxal and methylglyoxal) remained unchanged (Supplementary Fig. S4). The RT-qPCR analysis
revealed a two-fold decrease of the cytosolic ascorbate peroxidase 1 ($APX1$, $At1g07890$) transcript abundance, whereas the transcripts of cytosolic glutathione reductase ($GRcyc$, $At3g24170$) and 9-cis-epoxycarotenoid dioxygenase 3 ($NCED3$, $At3g14440$) were up-regulated two- and three-fold, respectively (Fig. 4A). The expression levels of glyoxalase I
and II ($GLXI$, $At1g08110$ and $GLX2$, $At2g43340$) were not
affected by the stress conditions, although the hydrolyase activity
of the corresponding GLX2 product was slightly increased
(0.71 vs 0.53 μmol min$^{-1}$ g f.w.$^{-1}$ in controls, Fig. 4B).

Protein isolation and tryptic digestion
To cover all changes in the AGE proteome, the total protein
fraction was extracted from ground leaf material. For this,
a phenol extraction protocol was selected as the most effec
tive and straightforward approach (Isaacs et al., 2006). There
fore, each sample was isolated from two portions of tissue
(approximately 250 mg each). The dried protein residues were
combined after reconstitution. The protein concentrations and
yields obtained were in the range of 1.5–3.7 mg ml$^{-1}$ and 0.7–
1.5 mg g$^{-1}$ fresh weight, respectively (Supplementary Table S7).
The precision of the protein determination was confirmed by
SDS-PAGE. The UV densities at 595 nm (obtained by the Gel
Doc™ EZ Imager equipped with Image Lab software; Bio-
Rad, München, Germany) were $2.40 \times 10^{6} \pm 5.31 \times 10^{5}$ arbitrary units (relative standard deviation: 22\%), thereby confirming
sufficient precision of the Bradford assay (Supplementary Fig.
S5, Supplementary Table S7). The following tryptic digestion
was considered to be complete, when the RuBisCO large sub
unit band was not detectable any more (Supplementary Fig. S6),
demonstrating a digestion efficiency better than 95\% (assuming the
sensitivity of the staining is better than 30 ng (Frolov et al.,
2014a) and RuBisCO content of at least 20\% of the total leaf
protein (Cellar et al., 2008)).

Protein quantification
Overall 351 differentially expressed proteins could be quantified by at least two unique unmodified peptides (Supplementary
Table S8). Among these, 80 were significantly regulated
($P<0.05$) within the control groups: 25 proteins showed higher
abundances in the stress group, whereas 55 proteins were sig
ificantly more highly expressed in the control group.

Identification of AGE-modified sites in proteins
On the basis of all data-dependent acquisition (DDA) experi
ments, altogether 785 AGE-containing peptides (representing

Fig. 2. Arabidopsis plants grown for 3 d on a 0.8\% agar medium infused with half-strength Murashige and Skoog medium in 6 mmol l$^{-1}$ MES buffer (pH 5.7) in the absence (A) and presence (B) of 172.27 g l$^{-1}$ PEG 8000 (overlay ψ_w=–0.4 MPa), and ψ_w of plants (C) and corresponding agar medium (D) determined after plant harvesting. ** denotes statistical significance at the confidence levels $P<0.01$.
724 proteins) could be annotated with a high confidence (XCorr≥2.20 for doubly and 3.75 for highly charged peptides) in both treatment groups. The localization of AGE-modified amino acids could be unambiguously identified by characteristic series of b- and y-ions observed in the corresponding tandem mass spectra (Fig. 5A). After the cross-annotation of identified peptides in all samples by m/z of the corresponding quasi-molecular ions (Fig. 5B), the majority of AGE peptides (797 hits) were common for both groups, while only 33 and 62 species were unique for control and stressed plants, respectively (in total 855 proteins). Although all glycated peptides were identified with a high confidence, identification of proteins must rely at least on two peptides (Carr et al., 2014). Thus, annotation of a second peptide (besides an AGE-modified one) was necessary to identify each protein. To identify the second peptides for all 855 proteins, the raw data representing individual HILIC fractions, acquired in three gas phase fractionation segments without application of exclusion lists, were searched against a FASTA file (generated by DNA and protein sequence alignment software) containing sequence information of the glycated proteins. The search revealed altogether 306 proteins represented by 341 AGE-modified peptides (Fig. 6). In the stress-treated group, 297 proteins were annotated, 31 of which were stress-specific, whereas the control group comprised 275 glycated proteins. The pattern of AGE-modified peptides found in control group is summarized in Supplementary Table S9.

The pattern of individual AGE classes was dominated by CML, CMA (or isomeric glyoxal-derived dihydroxymidazolinedione, GD-HI (Frolov et al., 2014b) and MG-H (Supplementary Fig. S7). To assess the effect of osmotic stress on the patterns of individual AGEs, we considered the number of the modified tryptic peptides, representing corresponding structures. Surprisingly, a differential accumulation of individual AGE classes was observed. Thus, the plants subjected to osmotic stress showed essentially higher absolute numbers of unique peptides
containing Glarg and CMA/GD-HI residues (Fig. 7A, B). To a lesser extent, stress-related increases in the number of modification sites were observed for CEL, GLAP, MG-H, CML, and CEA or methylglyoxal-derived dihydroxyimidazolidine (MGD-HI) (Fig. 7C and Supplementary Fig. S8C, D, E and F, respectively). In contrast to the former AGE types, the patterns of pyrraline, Argpyr and TH-Pyr were not affected by osmotic stress (Fig. 7D and Supplementary Fig. S8A and B, respectively).

The group of unique stress-specific peptides comprised 32 peptides, representing 31 proteins with totally 41 AGE sites (Table 1), and was dominated by three specific modifications, namely Glarg, CML and CMA/GD-HI. All these modifications represented more than 62% of the unique modified residues and originated metabolically from the same carbonyl compound, glyoxal, or, like CML, partly from free sugars and early glycation products (Ferreira et al., 2003) (Fig. 8). Surprisingly, each of the individual methylglyoxal-derived modifications (CEA/MGD-HI, MG-H, Argpyr and TH-Pyr) represented only 2–10% of the total stress-specifically modified residues and comprised only one-fifth of modified residues in total. The functional annotation of these proteins revealed 10 functional classes, dominated by proteins involved in transcription with four entries, followed by three entries each of proteins involved in photosynthesis, lipid metabolism and protein metabolism. The functional annotation for seven entries was not assigned (Table 1, Supplementary Fig. S9).

Quantification of AGE-modified tryptic peptides

In the next step, we performed label-free quantification of the AGE-modified peptides identified in both treatment groups (Fig. 6A). All 300 AGE-modified peptides, annotated in both stress and control plants, could be successfully integrated in the Orbitrap-MS scans. For these species, extracted ion chromatograms (XICs) (m/z±0.02) were obtained and peak integration at the specific tR was performed (Fig. 5B). As could be judged from the peak areas integrated in corresponding XICs, the abundance of 12 glycated peptides (representing 15 AGE-modified sites in 12 proteins) changed upon the application of osmotic stress. Among the identified differentially glycated sites, 15 were affected significantly (t-test P<0.05). These sites were represented by 12 peptides originating from 12 proteins. Thus, the abundances were decreased (1.5–2.5-fold) and increased (1.4–27.5-fold) for eight and four AGE-containing peptides, respectively (Supplementary Table S10). The functional annotation of these proteins revealed 10
Table 1. Unique stress-specific AGE-modified peptides identified in the tryptic digests obtained from the Arabidopsis plants grown for three days on the agar medium infused with 172.27 g l⁻¹ PEG 8000

Nr.	Peptide sequence	m/z	z	XCorr	tR	Site	Accession number	Protein name*
1	QRY[M-H][MPSVG]CISAVLKK[C]	1174.12	2	2.2	1.85	R_{9004}, R_{9118}	Q51B05	Separase¹
2	MLW[CMA]CNWVKQRK	868.42	2	2.2	16.99	R_{4}	Q3EDAA	Putative pentatricopeptide repeat-containing protein A1tg16830²
3	[M-H][MNT}[CE]LVSNVWNRKR	939.47	2	2.2	19.65	R_{586}, K_{512}	Q9LH71	Mechnosensitive ion channel protein 5²
4	H[GALAP][AEATMN]TRVAVGK	1035.02	2	2.5	17.45	K_{583}	Q9S8B3	Protein MODIFIER OF SNC1 ¹²
5	[C]EL[M]DRAFVL[ERV][M]CMA	1022	2	2.3	22.68	K_{334}, R_{608}	Q3EDFA	Pentatricopeptide repeat-containing protein A1tg09900²
6	CNPSVL[C]C[YL]D[IS][H][C]MQRK	1307.61	2	2.3	28.65	K_{68}	Q9M204	RNA cytidine acetyltransferase 2²
7	FGKVGADWAY[GALAP]GMREK	1038.5	2	2.5	32.5	K_{564}	Q9LR09	Pentatricopeptide repeat-containing protein A1tg14770, mitochondrial²
8	IEESLE[IND][VTR][YLP][Argpyr]	1164.59	2	2.5	35.89	R_{527}	Q8AVG6	Pentatricopeptide repeat-containing protein A1tg17525, mitochondrial²
9	TGLKLE[P]GPR[CM][S]PL	865.97	2	2.2	18.37	K_{572}	Q9M3B6	Plastidial pyruvate kinase 4, chloroplastic³
10	QGLLSEI[G]L[GR][M]NK	954.61	2	2.3	18.56	R_{570}	Q5DN9	Phospholipase A1-Ialphal₂, chloroplastic³
11	MLDFD[C][G][CMA]	637.79	2	2.4	34.01	R_{56}	Q9CS22	ATP-citrate synthase beta chain protein 1³
12	MIKEF[A][CM][L][G]M[H]-[M]C	969.47	2	2.2	19.11	R_{532}, R_{506}	Q9S8L0	Zinc-finger homeodomain protein 7⁴
13	E[C]M[A]AVY[SG]C[SK]G	829.91	2	2.5	21.38	K_{490}	Q9SK74	Zinc finger CCCH domain-containing protein 2¹⁴
14	N[G][GALAP][AE][AGTS][K]SSQA[Q]	1060.48	2	2.3	23.76	K_{509}	Q9SK74	Zinc finger CCCH domain-containing protein 2¹⁴
15	ELQI[G][G]L[GALAP][MF]DC[O]	984.95	2	2.3	32.19	R_{126}, R_{113}	Q7XJ5	Agamous-like MAD5-box protein AGL9⁰
16	MVAP[WR]CMA[PS]V	782.89	2	2.2	19.59	K_{57}	Q9LH3	Probable protein phosphatase 2C 38⁸
17	[G][G]LPQ[GLYS][C][E]I	780.42	2	2.3	19.6	R_{51}, K_{10}	Q9K2G0	NADP-dependent malic enzyme ³⁶⁷
18	HVLSFAF[TH][T][P]YPG	1050.56	2	2.2	20.44	R_{56}	Q8H166	Thiol protease aleurain³⁷
19	ELST[DSLPS][ALP][C]	786.92	2	2.3	30.54	R_{40}	Q9SFX2	U-box domain-containing protein 43⁷
20	MG[TL]NP[GLP][F][M][C]-[G]	839.91	2	2.2	33.38	R_{483}	Q0WRU7	Peptidyl-prolyl cis-trans isomerase FKBP20-2, chloroplastic³¹
21	SG[G][G]L[GR]TGRAGNTG[V]AVTL[YS]R	1110.57	2	2.4	21.07	R_{906}	Q3S189	DEAD-box ATP-dependent RNA helicase 7⁶
22	LWDL[C][E][ALP]	615.35	2	2.2	35.34	R_{424}, R_{425}	O22785	Pre-mRNA-processing factor 19 homolog 2⁶⁹
23	G[G][GR]	801.14	4	4.1	24.33	R_{467}	P23321	Oxygen-evolving enhancer protein 1-1, chloroplastic³⁹
24	GGGTGYDAVLPA[GGGRG][D][E][EL][V]KEN	924.42	3	4	24.76	K_{552}	O03042	Ribulose bisphosphate carboxylase large chain⁹
25	LSQG[TL]PDG[S]AVL[GLAP][EVE][G][ALP]	828.73	3	4.4	30.38	K_{140}, K_{146}	P10795	Ribulose bisphosphate carboxylase small chain 1A, chloroplastic³⁹
26	WSPELA[AL]AC[CM]-[C]WL	790.35	2	2.5	32.89	K_{683}	O03042	Ribulose bisphosphate carboxylase large chain⁹
27	ELCGR[VG]SDDIEK[T][C]	954.97	2	2.2	24.46	K_{233}	Q9LYN8	Leucine-rich repeat receptor protein kinase EMS1¹⁰
28	MKD[TR][K]I[GLR]	778.41	2	2.3	25.6	R_{52}	Q96524	Cryptochrome-2, K⁴⁰
29	KSNW[IS][G][N]PD[SR]	958.47	2	2.2	27.41	R_{752}	Q9ZT82	Callose synthase 1²¹¹
30	TLQALQ[GY][Q][P][N]DEPVAPGW[C][ML][P]GEK	968.79	3	4.5	30.41	K_{546}	Q96291	2-Cys peroxiredoxin BAS1, chloroplastic¹²
31	GGYW[GLCL]DN[LY][PL][PS][G]	1101.46	2	2.3	31.48	R_{416}	Q3E8E5	Putative myrosinase ³¹³
32	NLNG[C][G]M[KW][C][ML]D[FR]	926.95	2	2.2	35.54	R_{511}, K_{507}	Q9ST76	ABC transporter A family member 6¹⁴

*The peptides are listed in order of protein functional groups: ¹cell division and cell cycle; ²unclassified, no ontology and unknown; ³lipid metabolism; ⁴regulation of transcription; ⁵protein modification; ⁶energy metabolism; ⁷protein metabolism; ⁸RNA metabolism; ⁹photosynthesis; ¹⁰regulation/signaling; ¹¹cell wall biosynthesis; ¹²redox; ¹³enzyme families; ¹⁴transport.

Thus drought conditions promoted significantly (1.5-fold, t-test P=0.029) protein carbonylation (Supplementary Fig. S11).

Protein carbonylation

The quantification analysis relied on density of immunofluorescence of whole sample lines. The fluorescence intensity observed in the control and stressed plants was 14.8 × 10⁶±2.5 × 10⁵ and 22.3 × 10⁶±3.0 × 10⁵, respectively. Thus drought conditions promoted significantly (1.5-fold, t-test P=0.029) protein carbonylation (Supplementary Fig. S11).

Discussion

Drought establishment and stress response

Long-term withholding of water, applied to plants grown in soil, is a common experimental strategy used in drought stress research (Koffler et al., 2014). Under these conditions,
the water potential (ψ_w) of the soil is gradually reduced in the course of experiments. Although the rates of soil drying differ from pot to pot, this variability might not affect reproducibility over long periods. However, the study of short-term drought responses needs to rely on constant ψ_w, as only this can provide reproducible and well-interpretable results. In this context, growth of plants in polyethylene glycol (PEG)-containing medium is the method of choice, as this substance does not penetrate plant cells, and does not cause plasmolysis (in contrast to mannitol and sorbitol) (Verslues et al., 2006). Even more advantageous is the use of PEG-saturated agar as a medium: it relies on a solid substrate with constant moisture. Hence, the reducible sugar/early glycation products/MGO; white, sugar/early glycation end-products/GO; dark grey with white marks, GO; light grey, MGO.

Characterization of the AGE-modified proteome

Although the methods to analyze plant glycoproteins are well established (Song et al., 2013), the approaches for characterization of plant glycated proteome were proposed only recently (Bilova et al., 2016). However, analysis of AGEs (in most cases structurally not related to carbohydrates) cannot rely on regular enrichment procedures, conventional for glycoproteomics (Zhang et al., 2011). Because of the high heterogeneity of AGE structures, antibody-based two-dimensional gel electrophoresis (2D-GE) techniques are hardly applicable to analysis of advanced glycation, as Western blotting conditions need to be optimized and validated for multiple primary antibodies of mostly unknown specificity. Hence, application of the liquid chromatography-based techniques is desired for AGE analysis. However, due to plenty of existing AGE structures and extremely low relative abundances of individual modified peptides, the only way to overcome the so-called undersampling effect and to increase the rates of AGE discovery is implementation of fractionation techniques. Therefore, here we combined in one analytical workflow pre-fractionation on the level of chromatographic separation (Bollineni et al., 2011), and gas phase fractionation in combination with so-called exclusion lists in the step of MS analysis (Frolov et al., 2014a). To the best of our knowledge, this methodological platform was applied in glycation research for the first time, although pre-fractionation with HILIC proved to be an effective tool in the study of protein carbonylation and phosphorylation in application to human proteomics (Singer et al., 2010; Bollineni et al., 2011).

After the t_m- and m/z-based verification of DDA results, 32 AGE-modified peptides (i.e. approximately 10% of the total detected number in the group subjected to osmotic stress) could be considered as unique (i.e. not detected in controls). Therefore, it cannot be excluded that the patterns of the stress-specific peptides would change when the analysis is performed with more sensitive mass analyzers (e.g. modern QTof instruments). Functional annotation of the stress-specific proteins revealed 14 groups of polypeptides potentially damaged by AGE modifications under drought stress conditions (Table 1, Supplementary Fig. S9). Some of these proteins were reported earlier to be affected by environmental stress. Their modified state, proved here, can, at least partly, underlie these changes by regulatory effects and enhancement of protein catabolism upon non-enzymatic
protein modifications. Thus, the stress-specific carboxymethylation of acetyl-CoA carboxylase observed here (i.e. one of the major lipid biosynthesis enzymes, Supplementary Table S10) was in accordance with the up-regulation of this protein under drought conditions (Kottapalli et al., 2009). Detection of analogously modified ABC transporter (Table 1) can be underlain by its up-regulation as well (Kang et al., 2011).

It is known that loss of the NFX1-type zinc finger protein (NFXL2) gene results in elevated ABA levels, reduced stomatal conductance, and enhanced drought tolerance (Lisson et al., 2011). The advanced glycation at R120 (CMA) observed here could represent the natural mechanism impacting in the ABA-dependent regulatory events.

Obviously, the structural changes, related to advanced glycation, might affect functional state and activity of proteins. To address the possibility of these effects, we performed homology modeling for the stress-specifically glycated proteins (Supplementary Protocol S8, Supplementary Table S11). We find this approach advantageous in comparison to enzymatic activity tests, as in the latter case the structure-related effects of glycation can be hardly distinguished from inhibition and allosteric regulatory events. Moreover, it is necessary to take into account the fact that glycation occurs simultaneously at multiple sites, which prevents synthesis of standards with the desired glycation status. Evaluation of the resulting models revealed mostly surface localization of glycation sites. Obviously, it can directly affect assembly and integrity of oligomeric proteins, which according to our results can be the case for RuBisCO, both small and large subunits of which are surface glycated (Table 1). Indeed, earlier, Yamauchi and co-workers described in vitro inactivation of this enzyme in the presence of glycation agents (Yamauchi et al., 2002). The carboxymethylation at K13 and K25 observed here respectively for two different peptides might contribute to partial in vivo RuBisCO inactivation. Further, the proteins interacting with nucleic acids were typically glycated by arginines of DNA/RNA-binding domains (e.g. the homeobox domain of the zinc finger homeodomain protein 7 or coiled-coil domain of the agamous-like MADS-box protein). This fact was in accordance with previous observations (Thornalley, 2003).

Glycation of enzymes can directly affect substrate- or metal-binding centers. For example, glycation of the arginine 436 in the DEAD-box ATP-dependent RNA helicase (Fig. 9) leads to a conformational change of this residue. Therefore, it cannot be excluded that in the active site the binding of ATP (magenta carbon atoms) will also be influenced due to backbone conformational alterations. Analogously, in myrosinase 3, glycation of R416 might affect binding of substrate (residues 411 and 412). Similarly, glycation was observed in the catalytic domains of cryptochrome-2 (photolyase domain) and thioredoxin domain of 2-cys peroxiredoxin BAS 1.

Remarkably, only seven AGE classes (among those considered here) demonstrated higher numbers of stress-specific modification sites (Fig. 7A–C and Supplementary Fig. S8C–F). The most striking differences were observed for the peptides containing the two glyoxal-derived residues: Glarg and its hydrolysis product, CMA. It is important to mention that the increment of 58 m/z can also correspond to GD-HI, known to be the Glarg precursor (Frolov et al., 2014b). In contrast, the differences in the modification rates were less pronounced for the methylglyoxal-derived modifications (MG-H and CEA), which was in accordance with higher abundance of glyoxal in leaf tissues (Supplementary Fig. S4).

Lower abundances of methylglyoxal can be explained by the high levels of antioxidants and carbonyl scavengers, as well as high or specific activity of the glyoxalase system, responsible for detoxication of α-dicarbonyls, where GSH plays the central role (Yadav et al., 2008; Gill and Tuteja, 2010). Finally, the modifications originating solely from sugars and their degradation products (GLAP and pyrraline) were the least abundant. The number of GLAP-modified sites was increased by stress while pyrraline sites were left unaffected. These data were confirmed by the origin of the stress-specific AGE-modified peptides: 62% of the species at least partly originated from glyoxal (Fig. 8). This clearly indicates that glyoxal is the main intermediate of AGE formation under drought conditions. As the levels of individual carbohydrates were increased upon 3 d of stress application (Supplementary Fig. S3), it is logical to assume that sugar autoxidation might be the primary source of glyoxal (Thornalley et al., 1999), although lipid peroxidation cannot be excluded as well. These enhanced levels of monosaccharide autoxidation can be explained by accumulation of sugars in the presence of transition metal ions in parallel to the development of oxidative stress (Wolf and Dean, 1987). Thus, up-regulation of galactinol, glucose-6-phosphate, and dihydroxyacetone phosphate might be the reason for enhanced glycation of plant proteins (Supplementary Fig. S3), which is in agreement with the high reactivity of these sugars in model peptide-based glycation systems (Bilova et al., 2016). This fact was additionally confirmed by a strong correlation in abundance changes in the presence of transition metal ions in parallel to the development of oxidative stress (Wolf and Dean, 1987). Thus, up-regulation of galactinol, glucose-6-phosphate, and dihydroxyacetone phosphate might be the reason for enhanced glycation of plant proteins (Supplementary Fig. S3), which is in agreement with the high reactivity of these sugars in model peptide-based glycation systems (Bilova et al., 2016). This fact was additionally confirmed by a strong correlation in abundance changes
observed for these sugars and malondialdehyde equivalents (see Supplementary Calculations S1).

Surprisingly, the leaf contents of α-dicarbonyl products (glyoxal and methylglyoxal) characteristic for this pathway were slightly decreased (Supplementary Fig. S4). Based on our data, this can be explained by several factors: (i) the strong up-regulation of amino acid biosynthesis (Supplementary Fig. S2) and enhancement of α-dicarbonyl scavenging, (ii) relatively high contents of GSH (Fig. 3F), (iii) increase of α-dicarbonyl detoxification via glyoxalase system (Fig. 4B), and (iv) enhanced involvement of α-dicarbonyl in reactions with amino acid side chains of proteins with formation of AGEs (Figs 6 and 7A, B). The latter assumption was also confirmed by statistically significant increases in the degree of protein carbonylation under the drought conditions (Supplementary Fig. S11).

Thus, our results provide the proteomic and metabolomic support for the results of Bechtold and co-workers, obtained on the amino acid level by exhaustive enzymatic protein hydrolysis (Bechtold et al., 2009). The observation of only a few pyrraline modification sites supports the assumption about the minor importance of the early glycation pathway in AGE formation. This is in contrast to mammalian systems, where osone-, glyoxal-, and methylglyoxal-derived AGEs are present in comparable abundances (Ahmed et al., 2005).

Conclusions

Due to the pronounced pro-inflammatory effect of AGEs in the human organism (Lennicke et al., 2016), consumption of these products might impact the development of systemic sub-clinical inflammation and related diseases, like atherosclerosis and diabetes mellitus. Thus, accumulation of AGEs during food processing and growth of crop plants in the field ideally has to be avoided. In this study we demonstrate that even a short-term application of osmotic stress (which corresponds well to agricultural practice) clearly enhances the rate of protein glycation in Arabidopsis: 43 AGE-modified proteins (i.e. 14% of the total AGE-containing proteome) were affected by this environmental factor. Obviously, longer exposure to osmotic stress might increase this protein damage, potentially harmful for mammals and with yet unknown consequences for the plants themselves. This aspect needs to be addressed by long-term stress experiments, supported with further functional assays. This also needs to be considered when new strategies to increase the drought tolerance in plants are developed. In this context, prospective anti-glycation agents (e.g. scavengers of reactive carbonyls) can be applied to protect plant proteins against advanced glycation.

Supplementary data

Supplementary data are available at JXB online.

Protocol S1. Determination of lipid hydroperoxide contents.

Protocol S2. Determination of hydrogen peroxide contents.

Protocol S3. Determination of malondialdehyde (MDA) contents.

Protocol S4. Determination of ascorbic and dehydroascorbic acid contents.

Protocol S5. Gene expression analysis.

Protocol S6. Determination of protein concentrations by the Bradford assay.

Protocol S7. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE).

Protocol S8. Protein homology modeling.

Calculations S1. Linear regression analysis

Fig. S1. Characterization of stress parameters in A. thaliana plants.

Fig. S2. Relative abundances of organic acids in A. thaliana leaf tissues.

Fig. S3. Relative abundances of carbohydrates in A. thaliana leaf tissues.

Fig. S4. The contents of free glyoxal and methylglyoxal in A. thaliana leaf tissues.

Fig. S5. SDS-PAGE of individual A. thaliana leaf protein isolates.

Fig. S6. SDS-PAGE of individual A. thaliana leaf protein tryptic digests.

Fig. S7. Distribution of AGEs by classes in the proteins obtained from control A. thaliana plants.

Fig. S8. Numbers of modified peptides representing specific AGE classes identified by MS/MS fragmentation patterns in A. thaliana drought-treated and control plants.

Fig. S9. Functional annotation of the unique osmotic stress-specifically AGE-modified A. thaliana proteins.

Fig. S10. Functional annotation of the AGE-modified A. thaliana proteins demonstrating significantly (P≤0.05) different abundances (in comparison with controls) of corresponding glycation sites.

Fig. S11. Anti-dinitrophenylhydrazine western blot analysis for detection of protein carbonylation.

Fig. S12. The water potentials and leaf relative water contents of A. thaliana plants grown for three and seven days in presence and absence of PEG-induced osmotic stress.

Fig. S13. Principal component analysis (PCA) of the primary metabolites and drought stress markers.

Table S1. Primer sequences for target and reference genes used in RT-qPCR assays.

Table S2. GC separation conditions and EI-Q-MS settings for metabolite analysis.

Table S3. Parameters of the HILIC separation method.

Table S4. Reconstitution of HILIC fractions for nanoUPLC-MS/MS experiments.

Table S5. Parameters of the nanoUPLC separation method.

Table S6. Instrument settings applied for ESI-Orbitrap-LIT-MS experiments.

Table S7. Protein recoveries and total UV densities calculated for individual samples separated by SDS-PAGE.

Table S8. Differentially abundant proteins related to the osmotic stress in A. thaliana leaf.

Table S9. Glycation sites detected in control A. thaliana plants.
Table S10. Glycation sites in *A. thaliana* plants affected significantly by PEG osmotic stress.

Table S11. Summary of protein homology modeling performed for the stress-specifically AGE-modified proteins peptides.

Acknowledgements

We thank Prof. Dr. Ralf Hoffmann (Universität Leipzig) for providing lab facilities. We are also grateful to Prof. Dr. Kirsten Bacia and Mona Groß (Martin-Luther Universität Halle-Wittenberg) for assistance in the measurements of agar water potential, as well as to Hagen Stellmach for the help in sample preparation for the analysis of phytohormones and to Dr. Galina Smolikova (St. Petersburg University) for the assistance with multivariate statistical analyses. Financial support from the ‘Deutsche Forschungsgemeinschaft’ (DFG, FR-31172-1) to AF and TB, the ‘Bundesministerium für Bildung und Forschung’ (BMBF) to CB, the Ernst-Schering Foundation to UG, the Nord Pas de Calais Regional Council (France) to GP, as well as the Deutscher Akademischer Austauschdienst (DAAD Program ‘Dmitry Mendeleev’) to TB and ET, and of the Agrochemical Institute Piesteritz (SKWP and the state of Saxony-Anhalt) of the ‘Science Campus Halle Plant-Based Bioeconomy’ to RB and LAW are gratefully acknowledged.

References

Ahmed N, Babaei-Jadidi R, Howell SK, Thornalley PJ, Beisswenger PJ. 2005. Glycated and oxidized protein degradation products are indicators of fasting and postprandial hyperglycemia in diabetes. Diabetes Care 28, 2465–2471.

Arbora V, Manzi M, Ollas C, Gomez-Cadenas A. 2013. Metabolomics as a tool to investigate abiotic stress tolerance in plants. International Journal of Molecular Science 14, 4885–4911.

Balcke GU, Handrick V, Bergau N, Fichtner M, Henning A, Stellmach H, Tissier A, Hause B, Frolov A. 2014. An UPLC-MS/MS method for highly sensitive high-throughput analysis of phytohormones in plant tissues. Methods 8, 47.

Bechtold U, Rabbani N, Mullineaux PM, Thornalley PJ. 2009. Quantitative measurement of specific biomarkers for protein oxidation, nitration and glycation in Arabidopsis leaves. The Plant Journal 59, 661–671.

Berlett BS, Stadtman ER. 1997. Protein oxidation in aging, disease, and oxidative stress. Journal of Biological Chemistry 272, 20313–20316.

Bilova T, Lukasheva E, Brauch D, et al. 2016. A snapshot of the plant glycated proteome: structural, functional and mechanistic aspects. Journal of Biological Chemistry 291, 7621–7636.

Bollini RC, Hoffmann R, Fedorova M. 2011. Identification of protein carbonylation sites by two-dimensional liquid chromatography in combination with M. Journal of Proteomics 74, 2338–2350.

Bou R, Codony V, Bergau N, Fichtner M, Henning A, Stellmach H, Tissier A, Hause B, Frolov A. 2012. An UPLC-MS/MS method for highly sensitive high-throughput analysis of phytohormones in plant tissues. Methods 8, 47.

Greifenhagen U, Frolov A, Hoffmann R. 2015. Oxidative degradation of N-fructosylamine-substituted peptides in heated aqueous systems. Amino Acids 47, 1065–1076.

Greifenhagen U, Nguyen VD, Moschner J, Giannis A, Frolov A, Hoffmann R. 2014. Sensitive and site-specific identification of carboxymethylated and carboxyethylated peptides in tryptic digests of proteins and human plasma. Journal of Proteome Research 14, 768–777.

Griffiths G, Leverentz M, Silkowski H, Gill N, Sanchez-Serrano JJ. 2000. Lipid hydroperoxide levels in plant tissues. Journal of Experimental Botany 51, 1363–1370.

Gruber P, Hoffmann T. 2005. Chemoselective synthesis of peptides containing major advanced glycation end-products of lysine and arginine. Journal of Peptide Research 66, 111–124.

Harb A, Krishnan A, Ambavaram MM, Pereira A. 2010. Molecular and physiological analysis of drought stress in Arabidopsis reveals early responses leading to acclimation in plant growth. Plant Physiology 154, 1254–1271.

Henle T, Walter AW, Haeßner R, Klostermeyer H. 1994. Detection and identification of a protein-bound imidazolone resulting from the reaction of arginine residues and methylglyoxal. Zeitschrift für Lebensmittel-Untersuchung und Forschung 199, 55–58.

Heyns K, Noack H. 1962. Die Umsetzung von D-Fructose mit L-Lysin und L-Arginin und deren Beziehung zu nichtenzymatischen Bräunungsreaktionen. Chemische Berichte 95, 720–727.

Hodge JE. 1955. The Amadori rearrangement. Advances in Carbohydrate Chemistry 10, 169–205.

Huang C, He W, Guo J, Chang X, Su P, Zhang L. 2005. Increased sensitivity to salt stress in an ascorbate-deficient Arabidopsis mutant. Journal of Experimental Botany 56, 3041–3049.

Isaacson T, Damasceno CM, Saravanan RS, He Y, Catala C, Saladie M, Rose JK. 2006. Sample extraction techniques for enhanced proteomic analysis of plant tissues. Nature Protocols 1, 769–774.

Kang J, Park J, Choi H, Burla B, Kretzschmar T, Lee Y, Martinoa E. 2011. Plant ABC transporters. Arabidopsis Book 9, e0153.

Ker R. 2011. Plant responses to water stress: role of reactive oxygen species. Plant Signaling and Behavior 6, 1741–1745.

Koffler BE, Luschin-Ebengreuth N, Stabentheiner E, Müller M, Zechmann B. 2014. Compartment specific response of antioxidants to drought stress in Arabidopsis. Plant Science 227, 133–144.
Morison JIL. Physiology: Relationship between molecular weight and vapor pressure deficit. Plant Cell and Environment 32, 380–407.

Lennicke C, Rahn J, Heimer N, Lichtenfelis R, Wessjohann LA, Seliger B. 2016. Redox proteomics: Methods for the identification and enrichment of redox-modified proteins and their applications. Proteomics 16, 197–213.

Lisso J, Schroder F, Fisahn J, Mussig C. 2011. NFX1-LIKE2 (NFXL2) suppresses abscisic acid accumulation and stomatal closure in Arabidopsis thaliana. PLoS ONE 6, e26982.

Liu S, Li H, Lv X, Ahammed GJ, Xia X, Zhou J, Shi K, Asami T, Yu J, Zhou Y. 2016. Grazing cucumber onto loofa improves drought tolerance by increasing ABA biosynthesis and sensitivity. Scientific Reports 6, 20212.

Milkovska-Stamenova S, Schmidt F, Frolav O, Birkemeyer C. 2015. GC-MS method for the quantitation of carbohydrate intermediates enrichment of redox-modified proteins and their applications. Proteomics 15, 5911–5919.

Mirzaee M, Moieni A, Ghanati F. 2013. Effects of drought stress on the lipid peroxidation and antioxidant enzyme activities in two canola (Brassica napus L.) cultivars. Journal of Agricultural and Food Chemistry 63, 5911–5919.

Money NP. 1989. Osmotic pressure of aqueous polyethylene glycols. Relationship between molecular weight and vapor pressure deficit. Plant Physiology 91, 766–769.

Morison JIL. 1998. Stomatal response to increased CO2 concentration. Journal of Experimental Botany 49, 443–452.

Nagai R, Araki T, Hayashi CM, Hayase F, Horiiuchi S. 2003. Identification of Nε-(carboxyethyl)lysine, one of the methylglyoxal-derived AGE structures, in glucose-modified protein: mechanism for protein modification by reactive aldehydes. Journal of Chromatography B, Analytical Technologies in Biomedical and Life Sciences 788, 75–84.

Nettenlon JA, Steffen LM, Schulze MB, Jenny NS, Barr RG, Bertoni AG, Jacobs DR Jr. 2007. Associations between markers of subclinical atherosclerosis and dietary patterns derived by principal component analysis and reduced rank regression in the Multi-Ethnic Study of Atherosclerosis (MESA). The American Journal of Clinical Nutrition 85, 1615–1625.

Oya T, Hattori N, Mizuno Y, Miyata S, Maeda S, Osawa T, Uchida K. 1999. Methylglyoxal modification of protein. Chemical and immunochemochemical characterization of methylglyoxal-arginine adducts. Journal of Biological Chemistry 274, 18492–18502.

Rayle DL, Ross CW, Robinson N. 1982. Estimation of osmotic parameters accompanying zeatin-induced growth of detached cucumber cotyledons. Plant Physiology 70, 1634–1636.

Schmidt R, Böhme D, Singer D, Frolav O. 2015. Specific tandem mass spectrometric detection of AGE-modified arginine residues in peptides. Journal of Mass Spectrometry 50, 613–624.

Schmittgen TD, Livak KJ. 2008. Analyzing real-time PCR data by the comparative Ct method. Nature Protocols 3, 1101–1108.

Schwarzenbolz U, Henle T, Haeßner R, Klostermeyer H. 1997. On the reaction of glyoxal with proteins. Zeitschrift für Lebensmittel-Untersuchung und Forschung A 205, 121–124.

Shipanova IN, Glomb MA, Nagaraj RH. 1997. Protein modification by methylglyoxal: chemical nature and synthetic mechanism of a major fluorescent adduct. Archives of Biochemistry and Biophysics 344, 29–36.

Silva MdA, Jifon JL, DaSilva JAG, Sharma V. 2007. Use of physiological parameters as fast tools to screen for drought tolerance in sugarcane. Brazilian Journal of Plant Physiology 19, 193–201.

Singer D, Kuhlmann J, Muschket M, Hoffmann R. 2010. Separation of multiphosphorylated peptide isomers by hydrophilic interaction chromatography on an aminopropyl phase. Analytical Chemistry 82, 6409–6414.

Song W, Mentink RA, Henquet MG, Cordewener JH, van Dijk AD, Bosch D, America AH, van der Krol AR. 2013. N-glycan occupancy of Arabidopsis N-glycoproteins. Journal of Proteomics 93, 343–355.

Thornalley PJ. 2003. Glyoxalase I – structure, function and a critical role in the enzymatic defence against glycation. Biochemical Society Transactions 31, 1343–1348.

Thornalley PJ, Langborg A, Minhas HS. 1999. Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose. Biochemical Journal 344, 109–116.

Usui T, Shimohira K, Watanabe H, Hayase F. 2007. Detection and determination of glyceroldehyde-derived pyridinium-type advanced glycation end product in streptozotocin-induced diabetic rats. Bioscience, Biotechnology and Biochemistry 71, 442–448.

van de Kerkhof J, Schalkwijk CG, Konings CJ, Cheriex EC, van der Sande FM, Scheffer PG, ter Wee PM, Leunissen KM, Kooman JP. 2004. Nε-(carboxymethyl)lysine, Nε-(carboxethyl)lysine and vascular cell adhesion molecule-1 (VCAM-1) in relation to peritoneal glucose prescription and residual renal function; a study in peritoneal dialysis patients. Nephrology Dialysis Transplantation 19, 910–916.

van der Weele CM, Spollen WG, Sharp RE, Baskin TI. 2000. Growth of Arabidopsis thaliana seedlings under water deficit studied by control of water potential in nutrient-agar media. Journal of Experimental Botany 51, 1555–1562.

Velikova V, Yordanov I, Edreva A. 2000. Oxidative stress and some antioxidant systems in acid rain-treated bean plants. Plant Science 151, 59–66.

Verslues PE, Agarwal M, Katiyar-Agarwal S, Zhu J, Zhu JK. 2006. Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. The Plant Journal 45, 523–539.

Wolff SP, Dean RT. 1987. Glucose autooxidation and protein modification. The potential role of ‘autooxidative glycosylation’ in diabetes. Biochemical Journal 245, 243–250.

Wolff SP, Dean RT. 1988. Aldehydes and dicarbonyls in non-enzymic glycosylation of proteins. Biochemical Journal 249, 618–619.

Yadav SK, Singla-Pareek SL, Sopory SK. 2008. An overview on the role of methylglyoxal and glyoxalases in plants. Drug Metabolism and Drug Interactions 23, 51–68.

Yamauchi Y, Ejiri Y, Tanaka K. 2002. Glycation by ascorbic acid causes loss of activity of ribulose-1,5-bisphosphate carboxylase/oxygenase and its increased susceptibility to proteases. Plant and Cell Physiology 43, 1334–1341.

Zhang Y, Giboulot A, Zivy M, Valot B, Jamet E, Albenne C. 2011. Combining various strategies to increase the coverage of the plant cell wall glycoproteome. Phytochemistry 72, 1109–1123.

Zhu J, Yang K, Jing Y, Du R, Zhu Z, Lu L, Zhang R. 2012. The effects of low-dose Nε-(carboxymethyl)lysine (CML) and Nε-(carboxethyl)lysine (CEL), two main glycation free adducts considered as potential uramic toxins, on endothelial progenitor cell function. Cardiovascular Diabetology 11, 90.