On the rationality and continuity of logarithmic growth filtration of solutions of p-adic differential equations

Shun Ohkubo *

February 13, 2015

Abstract

We study the asymptotic behavior of solutions of Frobenius equations defined over the ring of overconvergent series. As an application, we prove Chiarellotto-Tsuzuki’s conjecture on the rationality and the right continuity of Dwork’s logarithmic growth filtrations associated to ordinary linear p-adic differential equations with Frobenius structures.

Contents

1 Introduction 2

2 Summary of notation 4

2.1 Coefficient rings 4

2.2 Various rings of functions 4

2.3 Filtration and Newton polygon 6

3 Chiarellotto-Tsuzuki’s conjectures and main theorem 6

3.1 σ-modules 6

3.2 Log-growth filtration 7

3.3 Chiarellotto-Tsuzuki’s conjectures 8

3.4 Main theorem 9

4 Log-growth of analytic ring 9

4.1 Overconvergent rings 9

4.2 Log-growth filtration over $\Gamma_{\text{con}}[p^{-1}]$ 10

4.3 Chiarellotto-Tsuzuki’s conjecture over $\Gamma_{\text{con}}[p^{-1}]$ 13

4.4 Example: p-adic differential equations with nilpotent singularities 13

5 Generic cyclic vector 14

5.1 Proof of Theorem 5.2 15

6 Frobenius equation and log-growth 16

6.1 Estimation of upper bound 17

6.2 Estimation of lower bound 18

6.3 Proof of Theorem 6.1 21

7 Proof of Theorem 4.19 21

8 Appendix: diagram of rings 24

*Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba Meguro-ku Tokyo 153-8914, Japan. E-mail address: shun.ohkubo@gmail.com
1 Introduction

We consider an ordinary linear p-adic differential equation

$$Dy = \frac{d^n y}{dx^n} + a_{n-1} \frac{d^{n-1} y}{dx^{n-1}} + \cdots + a_0 y = 0,$$

whose coefficients are bounded on the p-adic open unit disc $|x| < 1$. We define its solution space by

$$\text{Sol}(D) := \{ y \in \mathbb{Q}_p[x]; Dy = 0 \}.$$

In her study of p-adic elliptic functions, Lutz proves that any solution y of $Dy = 0$ has a non-zero radius of convergence r ([Lut37, Théorème IV]). In the paper [Dwo73], Dwork studies the asymptotic behavior of y near the boundary $|x| = r$ assuming that any solution of $Dy = 0$ converges in a common open disc $|x| < r$. For simplicity, we assume $r = 1$. The most general result in this viewpoint is that y has a logarithmic growth (log-growth) $n - 1$, that is,

$$\sup_{|x|=\rho} |y(x)| = O((\log (1/\rho))^{1-n}) \text{ as } \rho \uparrow 1.$$

Dwork also defines the so-called special log-growth filtration of $\text{Sol}(D)$ by

$$\text{Sol}_\lambda(D) := \{ y \in \text{Sol}(D); \sup_{|x|=\rho} |y(x)| = O((\log (1/\rho))^{-\lambda}) \text{ as } \rho \uparrow 1 \}.$$

We assume that the a_i’s are rational functions over \mathbb{Q}_p. Over the p-adic field, a naïve analogue of analytic continuation fails. In particular, the existence of local solutions of $Dy = 0$ at the disc $|x-a| < 1$ for any a does not imply the existence of global solutions. Even the p-adic exponential series $e^x = 1 + x + 2^{-1}x^2 + \ldots$, which is a solution of $dy/dx = y$, has radius of convergence $p^{-1/(p-1)}$. Hence, it is natural to ask how the special log-growth filtration varies from a disc to disc. Assume $p \neq 2$. In [Dwo82], Dwork gives an answer to this question for the hypergeometric differential equation

$$Dy = x(1-x) \frac{d^2 y}{dx^2} + (1-2x) \frac{dy}{dx} - \frac{1}{4} y = 0,$$

which arises from the Legendre family of elliptic curves over \mathbb{F}_p

$$E_2 : z^2 = w(w-1)(w-x), \ x \neq 0, 1.$$

Due to its geometric origin, the hypergeometric differential equation admits a Frobenius structure: let $\bar{a} \in \mathbb{F}_p$, $\bar{a} \neq 0, 1$ and $a \in \mathbb{Z}_p$, a lift of \bar{a}. The Frobenius slopes of the solution space of $Dy = 0$ at the disc $|x-a| < 1$ are $0, 1$ if $E_{\bar{a}}$ is ordinary, and $1/2, 1/2$ if $E_{\bar{a}}$ is supersingular. Dwork proves that the special log-growth filtration at the disc $|x-a| < 1$ coincides with the Frobenius slope filtration at the disc $|x-a| < 1$.

In the last few decades, p-adic differential equations are extensively studied in many perspectives. As for the existence of solutions, André, Kedlaya, and Mebkhout ([And02],[Ked04],[Meb02]) independently prove the p-adic local monodromy theorem which asserts the quasi-unipotence of p-adic differential equations defined over the Robba ring with Frobenius structures. Additionally, several striking applications of p-adic differential equations emerge: for example, Berger relates a certain p-adic representation of the absolute Galois group of \mathbb{Q}_p to a p-adic differential equation over the Robba ring, then proves Fontaine’s p-adic monodromy conjecture by using the p-adic local monodromy theorem ([Ber02]).

However, Dwork’s works on the log-growth of solutions of p-adic differential equations have been forgotten for a long time until Chiarellotto and Tsuzuki drew an attention to it in [CT09]. We briefly summarize some recent developments on this subject.

- In [CT09], Chiarellotto and Tsuzuki formulate a fundamental conjecture on the log-growth filtrations for p-adic differential equations with Frobenius structures (see Conjecture 3.3). Their conjecture is two-fold. The first part can be stated as follows:

Conjecture A (Conjecture 3.3 (i)). Let $Dy = 0$ be a p-adic differential equation with a Frobenius structure. Then, the breaks of the filtration $\text{Sol}_\lambda(D)$ are rational and $\text{Sol}_\lambda(D) = \cap_{\mu>\lambda} \text{Sol}_\mu(D)$ for all $\lambda \in \mathbb{R}$.

The second part is about a comparison of the log-growth filtration and the Frobenius slope filtration under a certain technical assumption, which is based on Dwork’s work on the hypergeometric differential equation. They prove the conjecture in the rank 2 case in [CT09]. They also give a complete answer to a generic version of their conjecture in [CT11].

- In [And08], André proves Dwork’s conjecture on a specialization property for the log-growth filtration, which is an analogue of Grothendieck-Katz specialization theorem on Frobenius structure.

- In [Ked10], Kedlaya studies effective convergence bounds on the solutions of p-adic differential equations with nilpotent singularities, which allows the a_i’s to have a pole at $x = 0$. Then, he proves a partial generalization of Chiarellotto-Tsuzuki’s earlier works to p-adic differential equations with nilpotent singularities.

Our main result in this paper is

Main Theorem (Theorem 3.7 (i)). *Conjecture A is true.*

Under a certain technical assumption, we also prove the second part of Chiarellotto-Tsuzuki’s conjecture (Theorem 3.7 (ii)).

Strategy of proof

We sketch the proof of the rationality of breaks of the filtration $\text{Sol}_i(D)$. Let $\mathbb{Q}_p[x]_0 := \mathbb{Z}_p[x][p^{-1}]$ be the ring of bounded functions on the open unit disc, and σ a \mathbb{Q}_p-algebra endomorphism of $\mathbb{Q}_p[x]_0$ such that $\sigma(x) = x^p$. Instead of a naïve p-adic differential equation $Dy = 0$, we consider a finite free $\mathbb{Q}_p[x]_0$-module M of rank n endowed with an action of d/dx. The existence of a Frobenius structure of $Dy = 0$ is equivalent to the existence of a σ-semi-linear structure φ on M compatible with ∇. In [CT09], Chiarellotto and Tsuzuki establish a standard method for studying the log-growth filtration associated to M as follows. We fix a cyclic vector e of M as a σ-module over the fraction field of $\mathbb{Q}_p[x]_0$. Let $V(M)$ be the set of horizontal sections of M after tensoring with the ring of analytic functions over the open unit disc. Let $v \in V(M)$ be a Frobenius eigenvector, i.e., $\varphi(v) = \lambda v$ for some $\lambda \in \mathbb{Q}_p$. If we write v as a linear combination of $e, \varphi(e), \ldots, \varphi^{n-1}(e)$, then the coefficient f of $\varphi^{n-1}(e)$ satisfies a certain Frobenius equation

$$b_n f^{\sigma^n} + b_{n-1} f^{\sigma^{n-1}} + \cdots + b_0 f = 0, \quad b_i \in \mathbb{Q}_p[x]_0.$$

Then, the rationality of breaks of $\text{Sol}_i(D)$ is reduced to the rationality of the log-growth of f, i.e., the existence of $\lambda \in \mathbb{Q}$ such that

$$\sup_{|x|=\rho} |f(x)| = O((\log (1/\rho))^{-\lambda}) \text{ as } \rho \uparrow 1$$

and

$$\sup_{|x|=\rho} |f(x)| \neq O((\log (1/\rho))^{-\mu}) \text{ as } \rho \uparrow 1$$

for any $\mu < \lambda$. The rationality of the log-growth of f is proved by Chiarellotto and Tsuzuki in [CT09] when $n = 2$, then by Nakagawa in [Nak13] when n is arbitrary under the assumption that the number of breaks of the Newton polygon of $b_n X^n + b_{n-1} X^{n-1} + \cdots + b_0$ as a polynomial over the Amice ring \mathcal{E} is equal to n. Nakagawa’s assumption is too strong since it is equivalent to assuming that the number of breaks of the Frobenius filtration of M tensored with \mathcal{E} is equal to n. Unfortunately, a naïve attempt to generalize Nakagawa’s result without the assumption on the Newton polygon seems to fail.

To overcome difficulty, we carefully choose a cyclic vector e in § 5: by definition, the Newton polygon of $b_n X^n + b_{n-1} X^{n-1} + \cdots + b_0$ is the lower convex hull of some set of points associated to the b_i’s. Our requirement for e is that each plotted point belongs to the Newton polygon. The construction of e is done after a certain base change which is described in Kedlaya’s framework of analytic rings. By using our cyclic vector e, the corresponding Frobenius equation is defined over Kedlaya’s ring. Hence, we need to introduce a notion of log-growth on Kedlaya’s ring (§ 4). Then, we generalize Nakagawa’s calculation in § 6. Finally, we obtain the rationality of the log-growth filtration of $V(M)$ in § 7.
2 Summary of notation

We summarize our notation in this paper. Basically, we adopt the notation in [CT11]. In the appendix, we have a diagram describing relations between various rings defined in the following.

2.1 Coefficient rings

\(p \) : a prime number.

\(K \) : a complete discrete valuation field of characteristic \((0, p)\).

\(\mathcal{O}_K \) : the integer ring of \(K \).

\(k_K \) : the residue field of \(K \).

\(\pi_K \) : a uniformizer of \(\mathcal{O}_K \).

\(| \cdot | \) : the \(p \)-adic absolute value on \(K \)\(^{\text{alg}} \) associated to a valuation of \(K \), normalized by \(| p | = p^{-1} \).

\(q \) : a positive power of \(p \).

\(q^s \in \mathbb{Q} \) : Let \(s \) be a rational number and write \(s = a/b \) with relatively prime \(a, b \in \mathbb{Z} \). The notation \("q^s \in \mathbb{Q}" \) means that \(b \) divides \(f \), and we put \(q^s := p^{a/b} \).

\(\sigma \) : a \(q \)-Frobenius on \(\mathcal{O}_K \), i.e., local ring endomorphism of \(\mathcal{O}_K \) such that \(\sigma(a) \equiv a^q \mod \pi_K \).

\(K^\sigma \) : the injective limit of \(K \)

\[K \xrightarrow{\sigma} K \xrightarrow{\sigma} \ldots. \]

We regard \(K^\sigma \) as an extension of \(K \). Then, \(K^\sigma \) is a Henselian discrete valuation field, whose value group coincides with the value group of \(K \), with residue field \(k_K^{p^{-\infty}} \).

\(K^{\sigma, \text{ur}} \) : the completion of the maximal unramified extension of \(K^\sigma \). Then \(K^{\sigma, \text{ur}} \) is a complete discrete valuation field, whose value group coincides with the value group of \(K \), with the residue field \(k_K^{\text{alg}} \).

Moreover, \(\sigma \) induces a \(q \)-Frobenius on \(K^{\sigma, \text{ur}} \).

2.2 Various rings of functions

\(x \) : an indeterminate.

\(| \cdot |_{0, \text{naive}}(\rho) \) : the multiplicative map

\[K[x] \to \mathbb{R}_{\geq 0} \cup \{ \infty \}; \sum a_n x^n \mapsto \sup_{n \in \mathbb{N}} |a_n| \rho^n \]

defined for \(\rho \in [0, 1] \).

\(K\{x\} \) : the \(K \)-algebra of analytic functions on the open unit disc \(|x| < 1 \), i.e.,

\[K\{x\} := \left\{ \sum_{n \in \mathbb{N}} a_n x^n \in K[x]; |a_n| \rho^n \to 0 \ (n \to \infty) \forall \rho \in [0, 1) \right\}. \]

Note that \(| \cdot |_{0, \text{naive}}(\rho) \) defines a multiplicative non-archimedean norm on \(K\{x\} \).

\(K\{x\}_\lambda \) : the Banach \(K \)-subspace of power series of logarithmic growth (log-growth) \(\lambda \) in \(K\{x\} \) for \(\lambda \in \mathbb{R}_{\geq 0} \), i.e.,

\[K\{x\}_\lambda := \left\{ \sum_{n \in \mathbb{N}} a_n x^n \in K[x]; \sup_{n \in \mathbb{N}} |a_n|/(n+1)^\lambda < \infty \right\} \]

\[= \left\{ f \in K\{x\}; |f|_{0, \text{naive}}(\rho) = O((\log (1/\rho))^{-\lambda}) \text{ as } \rho \uparrow 1 \right\}. \]
where the last equality follows from [And08, Lemma 2.2.1 (iv)]. Note that \(K[[x]]_0 \) coincides with the ring of bounded functions on the open unit disc \(|x| < 1 \), i.e.,

\[
K[[x]]_0 = \mathcal{O}_K[x][\pi_K^{-1}] = \left\{ \sum_{n \in \mathbb{N}} a_n x^n \in K[x] ; \sup_{n \in \mathbb{N}} |a_n| < \infty \right\}.
\]

We define \(K[x]_\lambda := 0 \) for \(\lambda \in \mathbb{R}_{<0} \). Note that \(K[x]_\lambda \) is stable under the derivation \(d/dx \).

\(\mathcal{E} \) : the fraction field of the \(p \)-adic completion of \(\mathcal{O}_K[[x]][x^{-1}] \), i.e.,

\[
\mathcal{E} := \left\{ \sum_{n \in \mathbb{Z}} a_n x^n \in K[[x]][x^{-1}] ; \sup_{n \in \mathbb{Z}} |a_n| < \infty, |a_n| \to 0 \text{ as } n \to -\infty \right\}.
\]

Note that \(\mathcal{E} \) is canonically endowed with a norm which is an extension of \(|·|_0^{\text{naive}}(1)\). Then, \((\mathcal{E}, |·|_0^{\text{naive}}(1))\) is a complete discrete valuation field of mixed characteristic \((0,p)\) with uniformizer \(\pi_K \) and residue field \(k_K((x)) \).

\(\mathcal{E}^\dagger \) : the ring of overconvergent power series in \(\mathcal{E} \), i.e.,

\[
\mathcal{E}^\dagger := \left\{ \sum_{n \in \mathbb{Z}} a_n x^n \in \mathcal{E} ; |a_n| \rho^n \to 0 \text{ (}n \to -\infty\text{) for some } \rho \in (0,1) \right\}.
\]

Note that \((\mathcal{E}^\dagger, |·|_0^{\text{naive}}(1))\) is a Henselian discrete valuation field whose completion is \(\mathcal{E} \).

\(\mathcal{R} \) : the Robba ring with variable \(x \) and coefficient \(K \), i.e.,

\[
\mathcal{R} := \left\{ \sum_{n \in \mathbb{Z}} a_n x^n \in K[[x]][x^{-1}] ; |a_n| \rho^n \to 0 \text{ (}n \to \pm\infty\text{) }\forall \rho \in (\rho_0,1) \text{ for some } \rho_0 \in (0,1) \right\}.
\]

\(\sigma \) : a \(q \)-Frobenius on \(\mathcal{O}_K[[x]] \), which is an extension of \(\sigma \), defined by fixing \(\sigma(x) \in x^q \mod \mathfrak{m}_K \mathcal{O}_K[[x]] \). Note that \(\sigma \) induces ring endomorphisms on \(K[[x]], K\{x\}, \mathcal{E}, \mathcal{E}^\dagger \) and \(\mathcal{R} \), and \(K[[x]]_\lambda \) is stable under \(\sigma \) ([Chr83, 4.6.4]).

\(t \) : another indeterminate. In the literature, \(t \) is called Dwork’s generic point.

\(\mathcal{E}_t \) : a copy of \(\mathcal{E} \) in which \(x \) is replaced by \(t \).

\(\mathcal{E}_t[X - t]_0 \) : the ring of bounded functions on \(|X - t| < 1 \) with variable \(X - t \) and coefficient \(\mathcal{E}_t \). We endow \(\mathcal{E}_t[X - t]_0 \) with \(\mathcal{E} \)-algebra structure by the \(K \)-algebra homomorphism

\[
\tau : \mathcal{E} \to \mathcal{E}_t[X - t]_0; f \mapsto \sum_{n \in \mathbb{N}} \frac{1}{n!} \left(\frac{d^n f}{dx^n} \right) \bigg|_{x=t} (X - t)^n.
\]

Since \(\tau(K) \subset \mathcal{E}_t \) and \(\tau(x) = X \), \(\tau \) is equivariant under the derivations \(d/dx \) and \(d/dX \). We define a \(q \)-Frobenius on \(\mathcal{E}_t[X - t]_0 \) by \(\sigma|_{\mathcal{E}_t} = \sigma \) (by identifying \(t \) as \(x \)) and \(\sigma(X - t) = \tau(\sigma(x) - \sigma(x)|_{x=t}) \). Then, \(\tau \) is also \(\sigma \)-equivariant.

\(\mathcal{E}_t[X - t]_\lambda \) : the Banach \(\mathcal{E}_t \)-subspace of power series of log-growth \(\lambda \) in \(\mathcal{E}_t\{X - t\} \).

Let \(R \) be either \(K[[x]]_0, K\{x\}, \mathcal{E}, \mathcal{E}^\dagger, \mathcal{E}_t, \mathcal{R} \). We define \(\Omega^n_R := Rdx \) with a \(K \)-linear derivation \(d : R \to \Omega^n_R; f \mapsto (df/dx)dx \). We also endow \(\Omega^n_R \) with a semi-linear \(\sigma \)-action defined by \(\sigma(dx) := d\sigma(x) \). For \(\mathcal{E}_t[X - t]_0 \) and \(\mathcal{E}_t\{X - t\} \), we also define a corresponding \(\Omega^n_\bullet \) by replacing \(K \) and \(x \) by \(\mathcal{E}_t \) and \(X - t \) respectively.
2.3 Filtration and Newton polygon

Let V be a finite dimensional vector space over a field F. Let $V^\bullet = \{V^\lambda\}_{\lambda \in \mathbb{R}}$ be a decreasing filtration of V. Then, we define

$$V^{\lambda^-} := \bigcap_{\mu < \lambda} V^\mu, \quad V^{\lambda^+} := \bigcup_{\mu > \lambda} V^\mu.$$

We say that $\lambda \in \mathbb{R}$ is a break of V^\bullet if $V^{\lambda^-} \neq V^{\lambda^+}$. We also define the multiplicity of λ as $\dim_F V^{\lambda^-} - \dim_F V^{\lambda^+}$. We say that V^\bullet is rational if all breaks of V^\bullet are rational. We say that V^\bullet is right continuous if $V^\lambda = V^{\lambda^+}$ for all $\lambda \in \mathbb{R}$. We say that V^\bullet exhaustive or separated if $\bigcup_\lambda V^\lambda = V$ or $\bigcap_\lambda V^\lambda = 0$ respectively.

Similarly, for an increasing filtration $V^\bullet = \{V_\lambda\}_{\lambda \in \mathbb{R}}$ of V, we define

$$V_{\lambda^-} := \bigcup_{\mu > \lambda} V^\mu, \quad V_{\lambda^+} := \bigcap_{\mu < \lambda} V^\mu.$$

We also define a break, a rationality, and a right continuity of V^\bullet by replacing superscripts by subscripts.

We define the Newton polygon of a filtration as follows ([CT09, 3.3]). Let $\{V^\lambda\}_{\lambda \in \mathbb{R}}$ (resp. $\{V_\lambda\}_{\lambda \in \mathbb{R}}$) be a decreasing (resp. increasing) filtration of V. Let $\lambda_1 < \cdots < \lambda_n$ be the breaks of the filtration V^\bullet (resp. V^\bullet) with multiplicities m_1, \ldots, m_n. We define the Newton polygon of V^\bullet (resp. V^\bullet) as the piecewise linear function in the xy-plane whose left endpoint is $(0, 0)$, with slopes $\lambda_1, \ldots, \lambda_n$ whose projections to the x-axis have lengths m_1, \ldots, m_n.

3 Chiarellotto-Tsuizuki’s conjectures and main theorem

We first recall the definition of (σ, ∇)-modules over $K[x]_0$ and E. Then, we recall the definition of the log-growth filtrations for (σ, ∇)-modules over $K[x]_0$ and E, and recall Chiarellotto-Tsuizuki’s conjectures. After recalling known results on the conjectures, we state our main results. Our basic references are [CT09], [CT11], and [Ked10].

3.1 σ-modules

Let R be a commutative ring with a ring endomorphism δ. We denote $\delta(r)$ by r^δ if no confusion arises. A δ-module M is a finite free R-module M endowed with an R-linear isomorphism $\varphi : \delta^* M := R \otimes_R M \to M$. We can view M as a left module over the twisted polynomial ring $R\{\delta\}$ ([Ked10, 14.2.1]). If we regard φ as a δ-linear endomorphism of M, then (M, φ^n) for $n \in \mathbb{N}$ is a δ^n-module over R. For $\alpha \in R^\times$, $(M, \alpha \varphi)$ is also a δ-module over R.

Let M be a σ-module over K (K might be E). We recall the Frobenius slope filtration of M ([CT09, § 2]). We say that M is étale if there exists an \mathcal{O}_K-lattice \mathfrak{M} of M such that $\varphi(\mathfrak{M}) \subset \mathfrak{M}$ and $\varphi(\mathfrak{M})$ generates \mathfrak{M}. We say that M is pure of slope $\lambda \in \mathbb{R}$ if there exists $n \in \mathbb{N}_{>0}$ and $\alpha \in K$ such that $\log_{q^n} |\alpha| = -\lambda$ and $(M, \alpha^{-1} \varphi^n)$ is étale ([CT09, 2.1]). For a σ-module M over K, there exists a unique increasing filtration $\{S_\lambda(M)\}_{\lambda \in \mathbb{R}}$, called the slope filtration, of M such that $S_\lambda(M)/S_{\lambda^-}(M)$ is pure of slope λ. We call the breaks of $S_\lambda(M)$ the Frobenius slopes of M. The following are basic properties of the slope filtration:

- The slope filtration of M is exhaustive, separated, and right continuous.

- The Frobenius slopes of M are rational.

- The slope filtration of (M, φ^n) is independent of the choice of $n \in \mathbb{N}_{>0}$.

Assume that k_K is algebraically closed. Then, any short exact sequence of σ-modules splits ([Ked10, 14.3.4, 14.6.6]). Moreover, let M be a σ-module over K such that $q^n \in \mathbb{Q}$ for any Frobenius slope λ of M. Then, M admits a basis consisting of elements of the form $\varphi(v) = q^n v$ ([Ked10, 14.6.4]); we call v a Frobenius eigenvector of slope λ. In this situation, for any σ-submodules M' and M'' of M, we have $M' \subset M''$ if and only if any Frobenius eigenvector v of M' belongs to M''.

6
3.2 Log-growth filtration

Let R be either $K[[x]]_0$ (K might be E, E^\dagger, E, or \mathbb{R}). A ∇-module over R is a finite free R-module M endowed with a connection, i.e., a K-linear map

\[\nabla : M \rightarrow M \otimes_R \Omega^1_R = Mdx \]

satisfying

\[\nabla(am) = m \otimes da + a\nabla(m) \]

for $a \in R$ and $m \in M$. A (σ, ∇)-module over R is a σ-module (∇, φ) over R with a connection ∇ such that the following diagram is commutative:

\[
\begin{array}{ccc}
M & \xrightarrow{\nabla} & M \otimes_R \Omega^1_R \\
\varphi \downarrow & & \varphi \otimes \sigma \\
M & \xrightarrow{\nabla} & M \otimes_R \Omega^1_R.
\end{array}
\]

(1) Special log-growth filtration ([CT09, 4.2])

Let M be a (σ, ∇)-module of rank n over $K[[x]]_0$. We define the space of horizontal sections of M by

\[V(M) := (M \otimes_{K[[x]]_0} K\{x\})^{\nabla=0} \]

and define the space of solutions of M by

\[\text{Sol}(M) := \text{Hom}_{K[[x]]_0}(M, K\{x\})^{\nabla=0} \]

\[:= \{ f \in \text{Hom}_{K[[x]]_0}(M, K\{x\}); d(f(m)) = (f \otimes \text{id})(\nabla(m)) \forall m \in M \}. \text{ (see [Ked10, p. 82])} \]

Both $V(M)$ and $\text{Sol}(M)$ are known to be K-vector spaces of dimension n, and there exists a perfect pairing

\[V(M) \otimes_K \text{Sol}(M) \rightarrow K \]

induced by the canonical pairing $M \otimes_{K[[x]]_0} M^\vee \rightarrow K[[x]]_0$, where M^\vee denotes the dual of M. For $\lambda \in \mathbb{R}$, we define

\[\text{Sol}_\lambda(M) := \text{Hom}_{K[[x]]_0}(M, K[[x]]_\lambda) \cap \text{Sol}(M), \]

which induces an increasing filtration of $\text{Sol}(M)$. We say that M is solvable in $K[[x]]_\lambda$ if $\dim_K \text{Sol}_\lambda(M) = n$. We define

\[V(M)^\lambda := \text{Sol}_\lambda(M)^\perp, \]

where $(\cdot)^\perp$ denotes the orthogonal space with respect to the the above pairing. We call the decreasing filtration $\{V(M)^\lambda\}_\lambda$ the special log-growth filtration of M. Note that $\text{Sol}_\bullet(M)$ and $V(M)^\bullet$ are exhaustive and separated. Moreover, $V(M)^\lambda$ (resp. $\text{Sol}_\lambda(M)$) is a σ-submodule of $V(M)$ (resp. $\text{Sol}(M)$) ([CT09, 4.8]).

Example. Let

\[Dy = \frac{d^n y}{dx^n} + a_{n-1} \frac{d^{n-1}y}{dx^{n-1}} + \cdots + a_0 y = 0, \quad a_i \in K[[x]]_0 \]

be an ordinary linear p-adic differential equation. As in the introduction, we define

\[\text{Sol}(D) := \{ y \in K[[x]]; Dy = 0 \} \supset \text{Sol}_\lambda(D) := \{ y \in K[[x]]_\lambda; Dy = 0 \}. \]

We define a ∇-module $M := K[[x]]_{0e_0} \oplus \cdots \oplus K[[x]]_{0e_{n-1}}$ by

\[\nabla(e_i) = \begin{cases} e_{i+1} dx & \text{if } 0 \leq i \leq n-2 \\ -(a_{n-1} e_{n-1} + \cdots + a_0 e_0) dx & \text{if } i = n-1. \end{cases} \]

Then, we have the canonical isomorphism

\[\text{Sol}(M) \rightarrow \text{Sol}(D); f \mapsto f(e_0), \]

under which we have

\[\text{Sol}_\lambda(M) = \text{Sol}_\lambda(D). \]
(II) Generic log-growth filtration ([CT09, § 4.1])

Let M be a (σ, ∇)-module over \mathcal{E}. We denote by $\tau^* M$ the pull-back of M under $\tau : \mathcal{E} \to \mathcal{E}/[X - t], 0$, which is a (σ, ∇)-module over $\mathcal{E}/[X - t], 0$. By a theorem of Robba, there exists a unique (σ, ∇)-submodule M^λ of M for $\lambda \in \mathbb{R}$ characterized as a minimal (σ, ∇)-submodule of M such that $\tau^*(M/M^\lambda)$ is solvable in $\mathcal{E}/[X - t], 0$ ([CT09, 4.1]). We call the decreasing filtration $\{M^\lambda\}_{\lambda \in \mathbb{R}}$ of M the log-growth filtration of M. Note that M^\bullet is exhaustive and separated, and if $M \neq 0$, then $M^\lambda \neq M$ for $\lambda \in \mathbb{R}_{\geq 0}$.

There exists a dual version of the log-growth filtration: for $\lambda \in \mathbb{R}$, we set $M_\lambda := ((M^\vee)^\lambda)^\perp$, where $(\cdot)^\perp$ denotes the orthogonal space with respect to the canonical pairing $M \otimes \mathcal{E} \otimes M^\vee \to \mathcal{E}$. Then, M_λ is a maximal (σ, ∇)-submodule of M such that $\tau^* M_\lambda$ is solvable in $\mathcal{E}/[X - t], 0$. Note that if $M \neq 0$, then $M_\lambda \neq 0$ for $\lambda \in \mathbb{R}_{\geq 0}$ by $(M^\vee)^\lambda \neq M$.

Note that the Frobenius slope filtration of M is stable under the action of ∇ ([CT09, 6.2]).

Definition 3.1. Let M be a (σ, ∇)-module over $K[\![x]\!]_0$.

(i) The Frobenius slope filtration $S_\bullet(V(M))$ of $V(M)$ is called the special Frobenius filtration of M ([CT09, 6.7]). We call a Frobenius slope of $V(M)$ a special Frobenius slope of M.

(ii) We put $M_\varepsilon := \mathcal{E} \otimes_{K[\![x]\!]} M$, which is a (σ, ∇)-module over \mathcal{E}. The Frobenius slope filtration $S_\bullet(M_\varepsilon)$ of M_ε is called the generic Frobenius filtration of M ([CT09, 6.1]). We call a Frobenius slope of M_ε a generic Frobenius slope of M.

3.3 Chiarellotto-Tsuzuki’s conjectures

Dwork potentially observes that the log-growth and Frobenius slope filtrations can be compared. To formulate conjectures based on his observation, Chiarellotto and Tsuzuki introduce the following technical conditions:

Definition 3.2.

(i) ([CT11, 6.1]) Let M be a (σ, ∇)-module over \mathcal{E}. We say that M is pure of bounded quotient (PBQ for short) if M/M^0 is pure as a σ-module.

(ii) ([CT11, 5.1]) Let M be a (σ, ∇)-module over $K[\![x]\!]/0$. We say that M is PBQ if M_ε is PBQ. We say that M is horizontal of bounded quotient (HBQ for short) if there exists a quotient \overline{M} of M as a (σ, ∇)-module such that there exists a canonical isomorphism $\overline{M}_\varepsilon \cong M_\varepsilon/M_\varepsilon^0$. Finally, we say that M is horizontally pure of bounded quotient (HPBQ for short) if M is PBQ and HBQ.

The following conjectures are first formulated by Chiarellotto and Tsuzuki in [CT09, § 6.4]. In this paper, we use the equivalent forms in [CT11].

Conjecture 3.3 (the conjecture LGF$_{K[\![x]\!]}$ ([CT11, 2.5])). Let M be a (σ, ∇)-module over $K[\![x]\!]/0$.

(i) The special log-growth filtration of M is rational and right continuous.

(ii) Let λ_{max} be the highest Frobenius slope of M_ε. If M is PBQ, then we have

$$V(M)^\lambda = (S_{\lambda - \lambda_{\text{max}}}(V(M^\vee)))^\perp$$

for all $\lambda \in \mathbb{R}$. Here, $(\cdot)^\perp$ denotes the orthogonal space with respect to the canonical pairing $V(M) \otimes K V(M^\vee) \to K$.

Conjecture 3.4 (the conjecture LGF$_{\mathcal{E}}$ ([CT11, 2.4])). Let M be a (σ, ∇)-module over \mathcal{E}.

(i) The log-growth filtration of M is rational and right continuous.

(ii) Let λ_{max} be the highest Frobenius slope of M. If M is PBQ, then we have

$$M^\lambda = (S_{\lambda - \lambda_{\text{max}}}(M^\vee))^\perp$$

for all $\lambda \in \mathbb{R}$. Here, $(\cdot)^\perp$ denotes the orthogonal space with respect to the canonical pairing $M \otimes _{\mathcal{E}} M^\vee \to \mathcal{E}$.

To prove Chiarellotto-Tsuzuki’s conjectures, we may assume that k_K is algebraically closed as remarked in [CT11, p. 42]. In the following, we recall known results on Chiarellotto-Tsuzuki’s conjectures.
Theorem 3.5 ([CT11, Theorem 7.1, 7.2]). The conjecture LGF is true.

Hence, the remaining part of Chiarellotto-Tsuuzuki's conjectures is the conjecture LGF_{K[x]_0}.

Theorem 3.6. Let M be a (σ, ∇)-module of rank n over K[[x]]_0.

(i) ([CT09, Theorem 7.1 (2)]) The conjecture LGF_{K[x]_0} is true if n ≤ 2.

(ii) ([CT11, Theorem 8.7]) The conjecture LGF_{K[x]_0} (i) is true if M is HBQ.

(iii) ([CT09, Theorem 6.17]) For all λ ∈ R, we have

\[V(M)^λ \subset (S_{λ−λ\max}(V(M^\vee)))\perp. \]

(iv) ([CT11, Theorem 6.5]) The conjecture LGF_{K[x]_0} (ii) is true if M is HPBQ.

(v) ([CT11, Proposition 7.3]) If the conjecture LGF_{M} (ii) is true for an arbitrary M, then the conjecture LGF_{K[x]_0} (ii) is true for an arbitrary M.

3.4 Main theorem

Our main result of this paper is

Theorem 3.7. (i) The conjecture LGF_{K[x]_0} (i) is true for an arbitrary M.

(ii) The conjecture LGF_{K[x]_0} (ii) is true if the number of Frobenius slopes of M_{E} is less than or equal to 2.

As mentioned in the introduction, we will study (σ, ∇)-modules over E⁺ rather than over K[[x]]_0. Theorem 3.7 will follow from Theorem 4.19, which is a counterpart of Theorem 3.7 for (σ, ∇)-modules over E⁺.

4 Log-growth of analytic ring

In [Ked04] and [Ked05], Kedlaya gives functorial constructions of various analytic rings associated to a certain extension of k_{K}(x). We recall some of his construction. After defining a notion of log-growth on Kedlaya's analytic rings, we develop a theory of log-growth filtrations for (σ, ∇)-modules over E⁺.

Notation 4.1. We put \(\Gamma := \mathcal{O}_{E} \subset \Gamma_{\text{alg}} := \mathcal{O}_{E^\times,ur} \) for a compatibility with the notation in the references. We denote the norm \(|·|_{\text{native}(1)} \) on \(\Gamma[p^{-1}] \) by \(|·|_{0}(1) \), and extend \(|·|_{0}(1) \) to \(\Gamma_{\text{alg}}[p^{-1}] \).

Remark 4.2. The definition of \(\Gamma_{\text{alg}} \) in [Ked04], which coincides with our \(\Gamma_{\text{alg}} \), is different from that in [Ked05]: the latter contains our \(\Gamma_{\text{alg}} \), but the residue field is the completion of \(k_{K}(x)_{\text{alg}} \). Since the definition of \(\Gamma_{\text{alg}} \) comes out the same as mentioned in [Ked05, 2.4.13], we may make (careful) use of the results of [Ked05].

4.1 Overconvergent rings

We define subrings \(\Gamma_{\text{con}} \) and \(\Gamma_{\text{con}}^{\text{alg}} \) of \(\Gamma \) and \(\Gamma_{\text{alg}} \) respectively as follows: For \(f \in \Gamma_{\text{alg}}[p^{-1}] \), we have a unique expression

\[f = \sum_{i \geq -\infty} \pi_{k_{K}[x]}(\pi_{k_{K}[x]}(\cdots(\pi_{k_{K}[x]}[x])) \right). \]

with \(\pi_{k_{K}[x]}(\pi_{k_{K}[x]}(\cdots(\pi_{k_{K}[x]}[x])) \right) \) denotes Teichmüller lift. We define the partial valuation \(v_{n} : \Gamma_{\text{alg}}[p^{-1}] \rightarrow \mathbb{R} \cup \{\infty\} \) by

\[v_{n}(f) := \min_{i \leq n} \{v(i)\}. \]

For \(r \in \mathbb{R}_{\geq 0} \), we denote by \(\Gamma_{r}^{\text{alg}} \) the subring of \(f \in \Gamma_{\text{alg}} \) such that \(\lim_{n \rightarrow \infty}(rv_{n}(x) + n) = \infty \). On \(\Gamma_{r}^{\text{alg}}[p^{-1}] \setminus \{0\} \), we define the non-archimedean valuation

\[w_{r}(f) := \min_{n \in \mathbb{N}} (rv_{n}(x) + n). \]
Lemma 4.7. We have the following:

\[\text{Fil} \Gamma \text{ close to 1 from the left. We define } \Gamma_{\text{alg}}^{\text{con}} \text{ ([Ked05, 2.3.7]). Both } \Gamma_{\text{alg}}^{\text{con}} \text{ and } \Gamma_{\text{alg}} \text{ define the slopes of Definition 4.3 ([Ked04, 3.5]) and hence } \Gamma_{\text{alg}}^{\text{con}} \text{ is stable under } \sigma \text{ and } |\sigma(\cdot)|_0(\rho) = |\cdot|_0(\rho^0) \text{ for } \rho \in (0, 1). \]

Definition 4.3 ([Ked04, 3.5]). Let \(f \in \Gamma_{\text{con}}^{\text{alg}}[p^{-1}] \) a non-zero element. We define the Newton polygon NP\((f)\) of \(f \) as the lower convex hull of the set of points \((v_n(f), n)\), minus any segments of slopes less than \(-r\) from the left end and/or any segments of non-negative slope on the right end of the polygon. We define the slopes of \(f \) as the negatives of the slopes of NP\((f)\). We also define the multiplicity of a slope \(s \in (0, r) \) of \(f \) as the positive difference in y-coordinate between the endpoints of the segment of NP\((f)\) of slope \(-s\).

The following simple fact is one of the key ingredients in this paper.

Lemma 4.4 (cf. [Nak13, Lemma 2.6]). Let \(f \in \Gamma_{\text{con}}^{\text{alg}}[p^{-1}] \). Then, there exists \(\rho_0 \in \mathbb{R}_{>0} \) and \(a \in \mathbb{Q} \) such that

\[|f|_0(\rho) = \rho^a|f|_0(1) \text{ for all } \rho \in (\rho_0, 1]. \]

Proof. We may assume \(f \neq 0 \) and \(f \in \Gamma_{\text{con}}^{\text{alg}}[p^{-1}] \) for some \(r > 0 \). Since the number of the slopes of NP\((f)\) with non-zero multiplicities is finite by [Ked05, 2.4.6], we may assume that \(f \) has no slopes after choosing \(r \) sufficiently small. By [Ked05, 2.4.6] again, there exists a unique integer \(n \) such that \(v_n(f) = v_{n,s}(f) \) for all \(s \in (0, r) \). Then, we have \(|f|_0(p^{-s}) = (p^{-s})^{v_n(f)/e_K}|\pi_K|^n \) for any \(s \in (0, r) \), where \(e_K \) is the absolute ramification index of \(K \). By taking the limit \(s \downarrow 0 \), we obtain the assertion for \(\rho_0 = p^{-r} \) and \(a = v_n(f)/e_K \).

4.2 Log-growth filtration over \(\Gamma_{\text{con}}[p^{-1}] \)

Throughout this section, let \(\bullet \in \{ , \text{alg} \} \). Let \(\Gamma_{\text{an}, \bullet}^\ast \) be the Fréchet completion of the ring \(\Gamma_{\text{an}, \bullet}^\ast[p^{-1}] \) with respect to the family of valuations \(\{w_n\}_{s \in (0, r]} \) ([Ked04, 3.3]). We define \(\Gamma_{\text{an}, \bullet}^{\text{con}} := \cup_{\rho \in \mathbb{R}_{>0}} \Gamma_{\text{an}, \bullet}^\ast \). Then, we have \(\Gamma_{\text{an}, \bullet}^{\text{con}} = \mathcal{R} \), in particular, \(\Gamma_{\text{an}, \bullet}^{\text{con}} \) contains \(K\{x\} \). By continuity, \(\Gamma_{\text{an}, \bullet}^{\text{con}} \) is endowed with a family of non-archimedean valuations induced by \(\{v_n\}_{n \in \mathbb{Z}} \) and \(\{w_n\}_{s \in (0, r]} \). Also, the norm \(|\cdot|_0(p^{-r}) \) extends to \(\Gamma_{\text{an}, \bullet}^{\text{con}} \). As before, we can define a value \(|f|_{0, \bullet}[p^{-1}] = \mathcal{E}^\dagger \) and \(\Gamma_{\text{an}, \bullet}^{\text{con}} = \mathcal{R} \) as rings. However, the partial norms \(|\cdot|_{0, \text{naive}}^{\text{naive}} \) on \(\Gamma_{\text{an}, \bullet}^{\text{con}} \) and \(|\cdot|_0 \) on \(\mathcal{R} \) coincide with each other only when \(\rho \) is sufficiently large ([Ked05, 2.3.5]). For this reason, we will distinguish \(\Gamma_{\text{con}}[p^{-1}] \) and \(\Gamma_{\text{an}, \bullet}^{\text{con}} \) from \(\mathcal{E}^{\dagger} \) and \(\mathcal{R} \) respectively as normed rings.

Definition 4.6 (Log-growth of analytic ring (cf. [Nak13, 2.8])). For \(\lambda \in \mathbb{R} \), we denote by \(\text{Fil}_\lambda \Gamma_{\text{an}, \bullet}^{\text{con}} \) the subspace of \(f \in \Gamma_{\text{an}, \bullet}^{\text{con}} \) such that

\[|f|_{0, \bullet}(\rho) = O((\log(1/\rho))^{-\lambda}) \text{ as } \rho \uparrow 1. \]

Note that \(\text{Fil}_\lambda \Gamma_{\text{an}, \bullet}^{\text{con}} = 0 \) for \(\lambda \in \mathbb{R}_{<0} \) by Lemma 4.7 (i) below. Also, Lemma 4.7 implies that \(\text{Fil}_\lambda \Gamma_{\text{an}, \bullet}^{\text{con}} \) forms an increasing filtration of \(\sigma \)-stable \(\Gamma_{\text{con}}[p^{-1}] \)-subspaces of \(\Gamma_{\text{an}, \bullet}^{\text{con}} \).

Lemma 4.7. We have the following:

(i) For a non-zero \(f \in \Gamma_{\text{an}, \bullet}^{\text{con}} \),

\[\liminf_{\rho \uparrow 1} |f|_{0, \bullet}(\rho) > 0. \]

(ii) \(\text{Fil}_0 \Gamma_{\text{an}, \bullet}^{\text{con}} = \Gamma_{\text{con}}[p^{-1}], \text{ Fil}_0 \Gamma_{\text{an}, \bullet}^{\text{algebraic}} \supset \Gamma_{\text{con}}[p^{-1}]. \)

(iii) \(K\{x\} \cap \text{Fil}_\lambda \Gamma_{\text{an}, \bullet}^{\text{con}} = K[x]_\lambda \) for \(\lambda \in \mathbb{R} \).

(iv) \(\sigma(\text{Fil}_\lambda \Gamma_{\text{an}, \bullet}^{\text{con}}) \subset \text{Fil}_\lambda \Gamma_{\text{an}, \bullet}^{\text{con}} \) for \(\lambda \in \mathbb{R} \).
Proof. (i) We choose \(r > 0 \) sufficiently small such that \(f \in \Gamma_{an,r} \). Then, we have \(w_r(f) \neq 0 \) by \(f \neq 0 \).

In particular, there exists \(n \in \mathbb{Z} \) such that \(v_n(f) \neq 0 \). By definition, \(w_n(f) \leq sv_n(f) + n \) for all \(s \in (0, r) \). Therefore, \(\lim_{s \to 0} w_n(f) \leq n < \infty \), which implies the assertion.

(ii) By Lemma 4.4, we have only to prove that \(f \in \Gamma_{an,\log}\Gamma \) belongs to \(\Gamma_{an,\log}^{[p^{-1}]} \). Since \(|f|_0(\rho) = O(1) \) as \(\rho \uparrow 1 \), there exist a constant \(C \) and \(r > 0 \) such that \(C < w_n(f) \) for all \(s \in (0, r) \). If \(v_n(f) < \infty \), then we have \(C < n \) by taking the limit \(s \to 0 \) in the inequality \(w_n(f) \leq sv_n(f) + n \). Hence, we have \(v_n(f) = \infty \) for all sufficiently small \(n \in \mathbb{Z} \). If we take \(l \in \mathbb{Z} \) such that \(v_n(\pi_K f) = \infty \) for all \(n < 0 \), then we have \(\pi_K f \in \Gamma L \) by [Ked05, 2.3.5], i.e., \(f \in \Gamma_{an,\log}[\pi_K^{-1}] = \Gamma_{an,\log}^{[p^{-1}]} \).

(iii) It follows from the fact that for \(f \in \Gamma \{ x \} \), we have \(|f|_0(\rho) = |f|^{\text{naive}}_0(\rho) \) for \(\rho \) sufficiently close to 1 from the left ([Ked05, 2.3.5]).

(iv) It follows from \(|\sigma(\gamma)|_0(\rho) = |\cdot|_0(\rho^\gamma) \).

(v) The assertion follows from the multiplicativity of the norm \(|\cdot|_0(\rho) \).

\[\Box \]

Remark 4.8. In (i), the equality in the latter case does not hold. Indeed, there exists \(f \in \Gamma_{an,\log}^{\text{alg}} \) such that \(v_n(f) = \infty \) for \(n \in \mathbb{Z}_{\leq 0} \), but \(f \notin \Gamma_{an,\log}^{\text{alg}} \) ([Ked05, 2.4.13]).

Definition 4.9 (A log extension of \(\Gamma_{an,\log,\log} \)). We put \(\Gamma_{an,\log,\log} := \Gamma_{an,\log}[\log x] \), where \(\log x \) is an indeterminate. We can extend \(\sigma \) to \(\Gamma_{an,\log,\log} \) as follows:

\[\sigma(\log x) := q \log x + \sum_{i=1}^{+\infty} (-1)^{i-1} \left(\frac{\sigma(x)}{x} - 1 \right)^i \]

Moreover, we extend \(d/dx \) to \(\Gamma_{an,\log,\log} = R[\log x] \) by

\[\frac{d}{dx}(\log x) = \frac{1}{x} \]

or

We also define the notion of \((\sigma, \nabla) \)-modules over \(\Gamma_{an,\log,\log} \) by setting \(R = \Gamma_{an,\log,\log} \) and \(\Omega_R^1 = \Gamma_{an,\log,\log,\log} \).

For \(\rho \in (0, 1) \), we put \(r := -\log \rho, \rho \) and extend \(|\cdot|_0(\rho) \) to \(\Gamma_{an,r}^{\text{log,\log}} \) by

\[|\sum_{i \in \mathbb{N}} a_i(\log x)^i|_0(\rho) := \sup_{i \in \mathbb{N}} |a_i|_0(\rho) \cdot (\log (1/\rho))^{-i}, \]

Lemma 4.10. The function \(|\cdot|_0(\rho) \) is a multiplicative non-archimedean norm on the ring \(\Gamma_{an,r}^{\text{log,\log}}[\log x] \).

Proof. We have only to check the multiplicativity of \(|\cdot|_0(\rho) \). Let \(f = \sum a_i(\log x)^i \), \(g = \sum b_j(\log x)^j \in \Gamma_{an,r}^{\text{log,\log}}[\log x] \). We have \(|fg|_0(\rho) \leq |f|_0(\rho) \cdot |g|_0(\rho) \) by definition. We prove the converse. Let \(i_0 \) (resp. \(j_0 \)) be the minimum \(i \) (resp. \(j \)) such that \(|f|_0(\rho) = |a_{i_0}|_0(\rho) \cdot (\log (1/\rho))^{-i_0} \) (resp. \(|g|_0(\rho) = |b_{j_0}|_0(\rho) \cdot (\log (1/\rho))^{-j_0} \)). For \(i_1 < i_0 \) and \(j_0 \leq j_1 \), we have

\[|a_{i_1}b_{j_0}(\log x)^{i_1+j_0}|_0(\rho) > |a_{i_1}|_0(\rho) \cdot (\log (1/\rho))^{-i_1} \cdot |b_{j_0}|_0(\rho) \cdot (\log (1/\rho))^{-j_0} \geq |b_{j_1}|_0(\rho) \cdot (\log (1/\rho))^{-j_1}, \]

and hence \(|a_{i_1}b_{j_0}(\log x)^{i_1+j_0}|_0(\rho) > |a_{i_1}|_0(\rho) \cdot (\log (1/\rho))^{-i_1+j_1} \). Similarly, we have

\[|a_{i_1}b_{j_0}(\log x)^{i_1+j_0}|_0(\rho) > |a_{i_1}b_{j_1}(\log x)^{i_1+j_1}|_0(\rho) \]

for \(i_1 \geq i_0 \) and \(j_0 > j_1 \). Therefore, we have

\[|fg|_0(\rho) \geq \sum_{i+j=i_0+j_0} a_i b_j (\log x)^{i+j}|_0(\rho) = |f|_0(\rho) \cdot |g|_0(\rho). \]

\[\Box \]
Definition 4.11. We define a log-growth filtration of $\Gamma_{\log,\an,\con}$ by

$$\Fil_\lambda \Gamma_{\log,\an,\con} := \bigoplus_{i=0}^{|\lambda|} \Fil_{\lambda-i} \Gamma_{\an,\con} \cdot (\log x)^i$$

for $\lambda \in \mathbb{R}_{\geq 0}$ and $\Fil_\lambda \Gamma_{\log,\an,\con} := 0$ for $\lambda \in \mathbb{R}_{<0}$. Here, $|\lambda|$ denotes the greatest integer less than or equal to λ. For $\lambda \in \mathbb{R}$, we say that $y \in \Gamma_{\log,\an,\con}$ has a log-growth λ if $y \in \Fil_\lambda \Gamma_{\log,\an,\con}$. Moreover, we say that f is bounded if f has a log-growth 0. Let

$$\log\text{-}\text{submodule of } V$$

be equal to λ.

Remark 4.14. (i) The assertion follows from Lemma 4.7 (i).

(ii) The assertion follows from $\sum_{i=1}^\infty \frac{(-1)^{i-1}}{i} \left(\frac{\sigma(x)}{x} - 1 \right)^i \in \Gamma_{\con}[p^{-1}] = \Fil_0 \Gamma_{\an,\con}$ ([Ked04, 6.5]).

(iii) The assertion follows from Lemma 4.7 (iv).

Lemma 4.12. (i) For $f \in \Gamma_{\log,\an,\con}$ and $\lambda \in \mathbb{R}$, we have $f \in \Fil_\lambda \Gamma_{\log,\an,\con}$ if and only if

$$|f|_0(\rho) = O((\log (1/\rho))^{-\lambda})$$

as $\rho \uparrow 1$.

(ii) $\sigma(\Fil_\lambda \Gamma_{\log,\an,\con}) \subset \Fil_\lambda \Gamma_{\log,\an,\con}$ for $\lambda \in \mathbb{R}$.

(iii) $\Fil_{\lambda_1} \Gamma_{\log,\an,\con} \cdot \Fil_{\lambda_2} \Gamma_{\log,\an,\con} \subset \Fil_{\lambda_1+\lambda_2} \Gamma_{\log,\an,\con}$ for $\lambda_1, \lambda_2 \in \mathbb{R}$.

Proof. (i) The assertion follows from Lemma 4.7 (i).

(ii) The assertion follows from $\sum_{i=1}^\infty \frac{(-1)^{i-1}}{i} \left(\frac{\sigma(x)}{x} - 1 \right)^i \in \Gamma_{\con}[p^{-1}] = \Fil_0 \Gamma_{\an,\con}$ ([Ked04, 6.5]).

(iii) The assertion follows from Lemma 4.7 (iv).

Definition 4.13 (Log-growth filtration). Let M be a (σ, ∇)-module of rank n over $\Gamma_{\con}[p^{-1}]$. We put

$$\mathfrak{M}(M) := (\Fil_{\log,\an,\con} \otimes_{\Gamma_{\con}[p^{-1}]} M)^{\nabla=0},$$

$$\mathfrak{Sol}(M) := \Hom_{\Gamma_{\con}[p^{-1}]}(M, \Fil_{\log,\an,\con})^{\nabla=0} \cong \mathfrak{M}(M^\vee).$$

We say that M is solvable in $\log_{\an,\con}$ if $\dim_K \mathfrak{M}(M) = n$. In this case, we define

$$\mathfrak{Sol}_1(M) := \Hom_{\Gamma_{\con}[p^{-1}]}(M, \Fil_1 \Gamma_{\log,\an,\con}) \cap \mathfrak{Sol}(M)$$

and

$$\mathfrak{M}(M)^{\lambda} := \mathfrak{Sol}_1(M)^{\perp}$$

where $(\cdot)^\perp$ denotes the orthogonal space with respect to the canonical pairing $\mathfrak{M}(M) \otimes_K \mathfrak{Sol}(M) \rightarrow K$.

We call the decreasing filtration $\{\mathfrak{M}(M)^{\lambda}\}$ the special log-growth filtration of M.

Note that if M is a (σ, ∇)-module over $\Gamma_{\con}[p^{-1}]$ solvable in $\log_{\an,\con}$, then $\mathfrak{M}(M)$ is a σ-module over K by the injectivity of $\varphi : \mathfrak{M}(M) \rightarrow \mathfrak{M}(M)$. By Lemma 4.12 (ii), $\mathfrak{M}(M)^{\lambda}$ (resp. $\mathfrak{Sol}_1(M)$) is a σ-submodule of $\mathfrak{M}(M)$ (resp. $\mathfrak{Sol}(M)$).

Remark 4.14. We can define a special log-growth filtration for an arbitrary (σ, ∇)-module over $\Gamma_{\con}[p^{-1}]$ as follows. Let M be a (σ, ∇)-module over $\Gamma_{\con}[p^{-1}]$. Then, there exists a finite étale extension Γ^\prime/Γ, corresponding to a certain finite separable extension $l/k(x)$, such that $M^\prime := \Gamma_{\con}^l[p^{-1}] \otimes_{\Gamma_{\con}[p^{-1}]} M$ is solvable in $\Gamma_{\log,\an,\con}$ by the log version of the p-adic local monodromy theorem ([Ked04, 6.13]). Similarly as above, we may define a log-growth filtration of M^\prime.

The log-growth filtrations are compatible with the base change $K[x]_0 \rightarrow \mathcal{E}^\prime = \Gamma_{\con}[p^{-1}]$.

Lemma 4.15. Let M be a (σ, ∇)-module over $K[x]_0$. Then, the (σ, ∇)-module $\Gamma_{\con}[p^{-1}] \otimes_{K[x]_0} M$ over $\Gamma_{\con}[p^{-1}]$ is solvable in $\log_{\an,\con}$. Moreover, the canonical map

$$\iota : V(M) \rightarrow \mathfrak{M}(\Gamma_{\con}[p^{-1}] \otimes_{K[x]_0} M)$$

is an isomorphism, and preserves the Frobenius filtrations and the log-growth filtrations.

Proof. Since the natural inclusion $K\{x\} \rightarrow \Gamma_{\log,\an,\con}$ is compatible with Frobenius and differentials, $\Gamma_{\con}[p^{-1}] \otimes_{K[x]_0} M$ is solvable in $\log_{\an,\con}$, and ι is an isomorphism of σ-modules over K. The rest of the assertion follows from $\Fil_1 \Gamma_{\log,\an,\con} \cap K\{x\} = \Fil_1 \Gamma_{\an,\con} \cap K\{x\} = K\{x\}_\lambda$ (Lemma 4.7 (iii)).
4.3 Chiarellotto-Tsuzuki’s conjecture over $\Gamma_{\text{con}}[p^{-1}]$

We formulate an analogue of Theorem 3.7 for (σ, ∇)-modules over $\Gamma_{\text{con}}[p^{-1}]$.

Assumption 4.16. In this section, we assume that k_K is algebraically closed for simplicity.

Definition 4.17. Let M be a (σ, ∇)-module over $\Gamma_{\text{con}}[p^{-1}]$ solvable in $\Gamma_{\log, \text{an, con}}$.

(i) We call a Frobenius slope of $\mathfrak{M}(M)$ a special Frobenius slope of M.

(ii) We put $M_\mathcal{E} := \mathcal{E} \otimes_{\Gamma_{\text{con}}[p^{-1}]} M$, which is a (σ, ∇)-module over \mathcal{E}. We call a Frobenius slope of $M_\mathcal{E}$ a generic Frobenius slope of M.

Proposition 4.18. Let M be a (σ, ∇)-module over $\Gamma_{\text{con}}[p^{-1}]$ solvable in $\Gamma_{\log, \text{an, con}}$. Let λ_{max} be the highest Frobenius slope of $M_\mathcal{E}$.

(i) (Analogue of [CT09, Theorem 6.17]) We have

$$\mathfrak{M}(M)^\lambda \subset \left(S_{\lambda-\lambda_{\text{max}}} (\mathfrak{M}(M^\vee))\right)^\perp$$

for all $\lambda \in \mathbb{R}$. Here, $(\cdot)^\perp$ denotes the orthogonal space with respect to the canonical pairing $\mathfrak{M}(M) \otimes_K \mathfrak{M}(M^\vee) \to K$.

(ii) If $M_\mathcal{E}$ is PBQ, then

$$\mathfrak{M}(M)^0 = \left(S_{-\lambda_{\text{max}}} (\mathfrak{M}(M^\vee))\right)^\perp.$$

Theorem 4.19 (Generalization of Theorem 3.7). Let M be a (σ, ∇)-module over $\Gamma_{\text{con}}[p^{-1}]$ solvable in $\Gamma_{\log, \text{an, con}}$.

(i) The special log-growth filtration of M is rational and right continuous.

(ii) Let λ_{max} be the highest Frobenius slope of $M_\mathcal{E}$. Assume that $M_\mathcal{E}$ is PBQ and the number of the Frobenius slopes of $M_\mathcal{E}$ is less than or equal to 2. Then,

$$\mathfrak{M}(M)^\lambda = \left(S_{\lambda-\lambda_{\text{max}}} (\mathfrak{M}(M^\vee))\right)^\perp$$

for all $\lambda \in \mathbb{R}$.

Theorem 3.7 follows from Theorem 4.19 by Lemma 4.15. The proofs of Proposition 4.18 and Theorem 4.19 will be given in § 7.

Remark 4.20. Obviously, one can formulate an analogue of Conjecture 3.3 (ii) for a (σ, ∇)-module over $\Gamma_{\text{con}}[p^{-1}]$ such that $M_\mathcal{E}$ is PBQ.

4.4 Example: p-adic differential equations with nilpotent singularities

In [Ked10, § 18], Kedlaya studies effective bounds on the solutions of p-adic differential equations with nilpotent singularities. As an application, he proves a nilpotent singular analogue of Theorem 3.6 (iii) ([Ked10, Remark 18.4.4, Theorem 18.4.5]). In this subsection, we explain that a nilpotent singular analogue of Theorem 3.7 follows from Theorem 4.19.

In the following, we assume $\sigma(x) = x^q$. We define $\Omega^1_{K[x]}(\log)$ as a σ-module of rank 1 over $K[x]_0$ with basis dx/x such that $\sigma^*(1 \otimes \text{dx}/x) := q\text{dx}/x$. Let $d : K[x]_0 \to \Omega^1_{K[x]}(\log) = K[x]_0 dx/x : f \mapsto xdf/\text{dx} \cdot dx/x$ be the canonical derivation on $K[x]_0$. We define a log (σ, ∇)-module over $K[x]_0$ similarly as in § 3.2 by setting $R = K[x]_0$ and $\Omega^1_R = \Omega^1_{K[x]}(\log)$.

As in Definition 4.11, we define a log-growth filtration of $K[x][\log x]$ as

$$K[x][\log x]_\lambda := \bigoplus_{i=0}^{\lfloor \lambda \rfloor} K[x]_{\lambda-i}(\log x)^i$$

for $\lambda \in \mathbb{R}_{\geq 0}$ and $K[x][\log x]_\lambda := 0$ for $\lambda \in \mathbb{R}_{<0}$. For a log (σ, ∇)-module M over $K[x]_0$, we define $V(M) := (K[x][\log x]_0 \otimes_{K[x]_0} M)^{\nabla=0}$. By Dwork’s trick, $V(M)$ is of dimension n ([Ked10, Corollary 17.2.4]). We define a special log-growth filtration $V(M)^\bullet$ of M as in § 3.2 by replacing $K[x]_\lambda$ by $K[x][\log x]_\lambda$.

13
Example. (i) A \((\sigma, \nabla)\)-module over \(K[[x]]_0\) can be regarded as a log \((\sigma, \nabla)\)-module over \(K[[x]]_0\) by identifying \(dx\) as \(x \cdot dx/x\). The special log-growth filtration of \(M\) as a non-log or log \((\sigma, \nabla)\)-module coincides with each other.

(ii) Let \(M := K[[x]]_0 e_1 \oplus K[[x]]_0 e_2\) be the log \((\sigma, \nabla)\)-module of rank 2 over \(K[[x]]_0\) define by
\[
\nabla(e_1, e_2) = (0, e_1 dx/x), \quad \varphi(e_1, e_2) = (e_1, q e_2).
\]
Then, \(V(M)\) has a basis \(\{e_1, -\log x \cdot e_1 + e_2\}\). Moreover, the Frobenius slopes of \(V(M)\) are 0, 1, and we have
\[
V(M)^\lambda = \begin{cases}
V(M) & \text{if } \lambda < 0 \\
ke & \text{if } 0 \leq \lambda < 1 \\
0 & \text{otherwise.}
\end{cases}
\]

Our main result in this subsection is

Theorem 4.21. An analogue of Theorem 3.7 for log \((\sigma, \nabla)\)-modules over \(K[[x]]_0\) holds.

Proof. It follows from Theorem 4.19 thanks to Lemma 4.22 below.

Lemma 4.22. Let \(M\) be a log \((\sigma, \nabla)\)-module over \(K[[x]]_0\). Then, the \((\sigma, \nabla)\)-module \(\Gamma_{\text{con}}[p^{-1}] \otimes_{K[X]} M\) over \(\Gamma_{\text{con}}[p^{-1}]\) is solvable in \(\Gamma_{\text{log, an, con}}\). Moreover, the canonical map
\[
\iota : V(M) \to \mathfrak{M}(\Gamma_{\text{con}}[p^{-1}] \otimes_{K[X]} M)
\]
is an isomorphism, and preserves the Frobenius filtrations and the log-growth filtrations.

Proof. Similar to the proof of Lemma 4.15.

5 Generic cyclic vector

In this section, we prove a key technical result in this paper concerned with a \(\sigma\)-module over \(\Gamma_{\text{con}}^{\text{alg}}[p^{-1}]\).

Definition 5.1. Let \(R\) be either \(\Gamma_{\text{con}}^{\text{alg}}[p^{-1}]\) or \(\Gamma_{\text{con}}^{\text{alg}}[p^{-1}]\).

(i) For \(f(\sigma) = a_0 + a_1 \sigma + \cdots + a_n \sigma^n \in R[\sigma]\) a twisted polynomial, we define the Newton polygon \(\text{NP}(f(\sigma))\) of \(f(\sigma)\) as the lower convex hull of the set of points
\[
\{(i, -\log q |a_i|_0(1)); 0 \leq i \leq n\}.
\]
A slope of \(\text{NP}(f(\sigma))\) is called a slope of \(f(\sigma)\) (cf. [Ked10, 2.1.3]). We consider the following condition \((*)\) on \(f(\sigma)\):
\[
(*) : \text{ each point } (i, -\log q |a_i|_0(1)) \text{ belongs to } \text{NP}(f(\sigma)).
\]

(ii) Let \(M\) be a \(\sigma\)-module of rank \(n\) over \(R\). When \(R = \Gamma_{\text{con}}^{\text{alg}}[p^{-1}]\), we call a Frobenius slope (resp. the Newton polygon) of \(\Gamma_{\text{con}}^{\text{alg}}[p^{-1}] \otimes_R M\) a generic Frobenius slope (resp. the generic Newton polygon) of \(M\). We say that an element \(e \in M\) is a cyclic vector if \(e, \varphi(e), \ldots, \varphi^{n-1}(e)\) is a basis of \(M\) over \(R\). For a cyclic vector \(e\), we have a unique relation
\[
\varphi^n(e) = -(a_{n-1} \varphi^{n-1}(e) + \cdots + a_0 e)
\]
with \(a_i \in R\). We put \(f_e(\sigma) := a_0 + a_1 \sigma + \cdots + \sigma^n \in R[\sigma]\). Note that \(\text{NP}(f_e(\sigma))\) coincides with the (generic) Frobenius Newton polygon of \(M^e\) ([Ked10, 14.5.7]).

We say that a cyclic vector \(e \in M\) is generic if \(f_e(\sigma)\) satisfies the condition \((*)\).

Theorem 5.2. Let \(M\) be a \(\sigma\)-module over \(\Gamma_{\text{con}}^{\text{alg}}[p^{-1}]\) (resp. \(\Gamma_{\text{con}}^{\text{alg}}[p^{-1}]\)). Assume \(q^* \in \mathbb{Q}\) for any (resp. generic) Frobenius slope \(s\) of \(M\). Then, there exists a generic cyclic vector of \(M\).

In the next subsection, we will see that there exists a non-empty open subset \(U\) of \(M\) such that \(v \in U\) is a generic cyclic vector. In this sense, there exist plenty cyclic vectors satisfying the condition \((*)\). So, the condition \((*)\) is referred to being generic.
5.1 Proof of Theorem 5.2

To prove Theorem 5.2, we first construct a generic cyclic vector over $\Gamma^{\mathrm{alg}}[p^{-1}]$. Then, we deform it to obtain a generic cyclic vector over $\Gamma^{\mathrm{can}}[p^{-1}]$. We first recall Kedlaya’s algorithm to compute an annihilator of an element of a σ-module over $\Gamma^{\mathrm{alg}}[p^{-1}]$ ([Ked05, 5.2.4]).

Construction 5.3. Let $R := \Gamma^{\mathrm{alg}}[p^{-1}]$. Let M be a σ-module of rank n over R with Frobenius slopes $s_1 \leq \cdots \leq s_n$ with multiplicities. Assume $q^{e_i} \in \mathbb{Q}$ for all i. Then, we can choose an R-basis e_1, \ldots, e_n of M such that $\varphi(e_i) = q^{e_i} e_i$ for all i. Fix $x_1, \ldots, x_n \in R$ and put $v := x_1 e_1 + \cdots + x_n e_n$. We will define $v_l \in M$ for $1 \leq l \leq n$ by induction on l. Put $v_1 := v$. Given v_l, write $v_l = x_{l,1} e_1 + \cdots + x_{l,n} e_n$ with $x_{l,i} \in R$ and define

$$b_l := \begin{cases} q^{s_l} \cdot \sigma(x_{l,i})/x_{l,i} & \text{if } x_{l,i} \neq 0 \\ 0 & \text{otherwise} \end{cases}$$

and $v_{l+1} := (\sigma - b_l)v_l$. Then, we have $v_l \in R e_1 + \cdots + R e_n$ and $(\sigma - b_n) \cdots (\sigma - b_1)v = 0$. We write

$$(\sigma - b_n) \cdots (\sigma - b_1) = \sigma^n + \sum_{c_0 \in R} \cdots + \sum_{c_{n-1} \in R} c_i R$$

in $R[\sigma]$. By construction, we may regard $x_{l,i} = x_{l,i}(x)$, $b_l = b_l(x)$, and $c_i = c_i(x)$ as functions of $x = (x_1, \ldots, x_n) \in R^n$ with values in R. We also regard $v = v(x)$ as a function of x with values in M.

Lemma 5.4. We keep the notation in Construction 5.3.

(i) For $x \in R^n$, $v(x)$ is a cyclic vector of M if and only if $x_{1,1}(x)x_{2,2}(x) \cdots x_{n,n}(x) \neq 0$.

(ii) For $x \in R^n$, $v(x)$ is a generic cyclic vector of M if and only if $x_{1,1}(x)x_{2,2}(x) \cdots x_{n,n}(x) \neq 0$ and $-\log_q |c_l(x)|_{(1)} = s_1 + \cdots + s_{n-l}$ for all i.

(iii) Let $x^{(0)} \in R^n$. Assume that any of $b_1(x^{(0)}), \ldots, b_n(x^{(0)})$ is non-zero. Then, there exists an open neighborhood $U \subset R^n$ of $x^{(0)}$ (with respect to the topology induced by $| \cdot |_{(1)}$) such that all b_l and $x_{l,i}$ are continuous on U. In particular, all c_i are also continuous on U.

Proof. (i) By construction, there exists an upper triangular matrix T whose diagonals are $(1, \ldots, 1)$ such that $(v_1, v_2, \ldots, v_n) = (v, \sigma(v), \ldots, \sigma^{n-1}(v))T$. Since $\{x_{l,1}, \ldots, x_{l,n}\}$ is an upper triangular matrix, we obtain the assertion.

(ii) It follows from (i) and the fact that the slopes of $\sigma^n + \sum_{c_0 \in R} \cdots + \sum_{c_{n-1} \in R} c_i R$ with multiplicities.

(iii) By induction on $l \in \{1, \ldots, n\}$, we construct an open neighborhood $U_l \subset R^n$ of $x^{(0)}$ such that $x_{1,1}, \ldots, x_{l,n}$ and b_l are continuous on U_l, and x_{l+1} is non-zero on U_l. Once we construct the U_l’s, $U := U_1 \cap \cdots \cap U_n$ satisfies the desired condition. First, note that $x_{l,1}(x^{(0)}) \neq 0$ for all l by assumption. The assertion is trivial for $l = 1$ by setting $U_1 := \{x \in R^n; x_1(x) \neq 0\}$. Given U_{l-1}, let $U_l' := U_{l-1} \cap \{x \in R^n; x_{l,1}(x) \neq 0\}$, which is an open neighborhood of $x^{(0)}$. By the induction hypothesis, $x_{l,i} = \sigma(x_{l,i})q^{s_i} - b_{l-1}x_{l-1,i}$ is continuous on U_l'. We set $U_l := U_l' \cap \{x \in R^n; x_{l,1}(x) \neq 0\}$. Then, $U_l \subset R^n$ is open neighborhood of $x^{(0)}$ on which b_l is continuous on U_l as desired.

Lemma 5.5. Let $s_1 \leq s_2 \leq \cdots \leq s_n$ be rational numbers such that $q^{s_i} \in \mathbb{Q}$. Then, the slopes of $f(\sigma) := (\sigma - q^{s_1} x) \cdots (\sigma - q^{s_n} x) \in \Gamma[p^{-1}][\sigma]$ are $-s_n \leq \cdots \leq -s_1$ with multiplicities. Moreover, $f(\sigma)$ satisfies the condition (*)

Proof. We write

$$f(\sigma) = \sigma^n + a_{n-1}\sigma^{n-1} + \cdots + a_0, \quad a_i \in \Gamma[p^{-1}].$$

Then, we have

$$a_{n-i} = \sum_{1 \leq j(1) < \cdots < j(i) \leq n} (-1)^i q^{s_{j(1)} + \cdots + s_{j(i)}} \cdot x_{j(i)-1}^{(i)-1} \cdots x_{j(1)-1}^{(1)-1}. $$

Hence, $a_{n-i}/q^{s_{j(1)} + \cdots + s_{j(i)}}$ is a polynomial over \mathbb{Z} whose lowest term is equal to $(-1)^i q^{s_{j(1)} + \cdots + s_{j(i)}}$. In particular, $-\log_q |a_{n-i}|_0(1) = s_1 + \cdots + s_i$, which implies the assertion. \[\square\]
Proof of Theorem 5.2. We first consider the case where M is a σ-module over $R := \Gamma^{\text{alg}}[p^{-1}]$. Let $s_1 \leq s_2 \leq \cdots \leq s_n$ be the Frobenius slopes of M with multiplicities. By Lemma 5.5, the slopes of the σ-module $M' := R(\sigma)/R(\sigma)(\sigma - q^s x) \cdots (\sigma - q^n x)$ are s_1, \ldots, s_n with multiplicities. Recall that σ-modules over R are classified by its slopes with multiplicities by Dieudonné-Manin theorem ([Ked10, 14.6.3]). Hence, there exists an isomorphism of σ-modules $M \cong M'$. By Lemma 5.5, $1 \in M'$ is a generic cyclic vector.

We consider the case where M is a σ-module over $\Gamma^{\text{alg}}[p^{-1}]$. We have only to prove that there exists $f \in M$ which is a generic cyclic vector of $M^{\text{alg}} := \Gamma^{\text{alg}}[p^{-1}] \otimes_{\Gamma^{\text{alg}}[p^{-1}]} M$. We apply Construction 5.3 to M^{alg}. We choose a generic cyclic vector e of M^{alg} and write $e = v(x^{(0)})$ with $x^{(0)} \in R^n$. By Lemma 5.4 (ii) and (iii), there exists an open neighborhood $U \subset R^n$ of $x^{(0)}$ such that $v(x)$ is a generic cyclic vector of M^{alg} for all $x \in U$. We choose a $\Gamma^{\text{alg}}[p^{-1}]$-basis f_1, \ldots, f_n of M. For $y = (y_1, \ldots, y_n) \in R^n$, we define $w(y) := y_1 f_1 + \cdots + y_n f_n$. For $x \in R^n$, there exists a unique $y = y(x) \in R^n$ such that $v(x) = w(y)$, and the map $x \mapsto y(x)$ is a homeomorphism ([Ked10, 1.3.3]). Hence, there exists an open neighborhood $V \subset R^n$ of $y(x^{(0)})$ such that $w(y)$ is a generic cyclic vector of M^{alg} for all $y \in V$. Since Γ^{alg} is dense in Γ^{alg}, $w(y) \in M$ for $y \in V \cap (\Gamma^{\text{alg}}[p^{-1}])^n \neq \emptyset$ is a generic cyclic vector of M^{alg}. \hfill \qed

6 Frobenius equation and log-growth

In [CT09, § 7.2], Chiarellotto and Tsuzuki compute the log-growth of a solution y of a Frobenius equation

$$ay + by^\sigma + cy^2 = 0, \quad a, b, c \in K[x]_0.$$

In [Nak13], Nakagawa proves a generalization of Chiarellotto-Tsuzuki's result for a Frobenius equation

$$a_0 y + a_1 y^\sigma + \cdots + a_n y^n = 0, \quad a_i \in \mathcal{E}^j$$

under the assumption that the number of breaks of the Newton polygon of $a_0 + a_1 \sigma + \cdots + a_n \sigma^n$ is equal to n. We generalize Nakagawa's result without any assumption on the Newton polygon:

Theorem 6.1 (A generalization of Nakagawa's theorem ([Nak13, 1.1])). Let $f(\sigma) = a_0 + a_1 \sigma + \cdots + a_n \sigma^n \in \Gamma^{\text{alg}}_{\text{con}}[p^{-1}](\sigma)$, $a_0 \neq 0$, $a_n \neq 0$, $n \geq 1$

be a twisted polynomial satisfying the condition (*) in Definition 5.1 (ii) with slopes $-s_1 < \cdots < -s_k$. If $y \in \Gamma^{\text{alg}}_{\log, \text{an, con}}$ is a solution of the Frobenius equation

$$f(\sigma)y = a_0 y + a_1 y^\sigma + \cdots + a_n y^n = 0,$$

then y is either bounded or exactly of log-growth s_j for some j such that $s_j > 0$.

Remark 6.2. For a (σ, ∇)-module M of rank n over $\Gamma_{\text{con}}[p^{-1}]$, we will construct a Frobenius equation $f(\sigma)y = 0$ satisfying the assumption of Theorem 6.1 (see Construction 7.1). The ambiguity of the log-growth of y in Theorem 6.1 is due to the fact that M_E/M_E^p may not be pure as a σ-module. One can expect that if M is PBQ, then y is exactly of log-growth s_1, as is the case for $n = 2$ ([CT09, 7.3]).

We divide the proof into two parts: the first part is an estimation of an upper bound of the log-growth of y (easier), and the second part is an estimation of a lower bound of the log-growth of y (harder). The condition (*) will be used only in the second part. The integer j in Theorem 6.1 will be determined in § 6.3.

Notation 6.3. In this section, we keep the notation in Theorem 6.1. Let $0 = i(0) < i(1) < \cdots < i(k) = n$ be the x-coordinates of the vertices of NP$(f(\sigma))$. By Lemma 4.4, there exists a real number ρ_0 sufficiently close to 1 from the left such that for all $i \in \{0, 1, \ldots, n\}$, we have

$$a_i \in \Gamma^{\text{alg}}_r, \quad y \in \Gamma^{\text{alg}}_{\log, \text{an, r}},$$

where $r = -\log(p \rho_0^n)$ and

$$|a_i|_{0}(\rho) = \rho^{|a_i|_{0}(1)} \quad \forall \rho \in [\rho_0^n, 1)$$

for some $\alpha(i) \in \mathbb{Q}$; we fix such a ρ_0.

16
6.1 Estimation of upper bound

Proposition 6.4 (A refinement of [CT09, 6.12]). Let $j \in \{0, \ldots, k-1\}$. We assume

\[
\sup_{i(j-1) \leq i \leq i(j)} |a_iy^{\sigma}|_0(\rho) \leq \sup_{i(j)+1 \leq i \leq n} |a_iy^{\sigma}|_0(\rho) \ \forall \rho \in [\rho_0, 1);
\]

(2)

when $j = 0$, we set $\sup_{i(j-1) \leq i \leq i(j)} |a_iy^{\sigma}|_0(\rho) = |a_0y|_0(\rho)$.

(i) For any $\rho \in [\rho_0, 1)$ and $m \in \mathbb{N}$, there exist an integer $N \in \{0, \ldots, n-1\}$, which depends only on m, and a sequence ε_{iu} of integers, which depends on ρ and m, defined for

\[I_m := \{(i, u) \in \mathbb{Z}^2; i(j) + 1 \leq i \leq n, -m - i(j) \leq u \leq 0\}\]

satisfying the following conditions:

(a) \[
\log |y|_0(\rho^{q^m}) - \log |y|_0(\rho^{q^N}) \leq \sum_{(i, u) \in I_m} \varepsilon_{iu} \log |a_i/a_{i(j)}|_0(\rho^{q^m});
\]

(b) $\varepsilon_{iu} \in \{0, 1\}$ and

\[
\sum_{(i, u) \in I_m} (i - i(j))\varepsilon_{iu} = m - N.
\]

(ii) y has a log-growth s_{j+1}.

Proof. (i) Fix ρ and we proceed by induction on m. When $m \leq n-1$, we set $N = m$ and $\varepsilon_{iu} \equiv 0$.

Then, we have nothing to prove. Assume that the assertion is true for the integers less than or equal to $m-1$ with $m \geq n$. By (2) for $\rho = \rho^{q^m-i(j)}$, we have

\[
|a_{i(j)}y^{\sigma(i(j))}|_0(\rho^{q^m-i(j)}) \leq \sup_{i(j)+1 \leq i \leq n} |a_iy^{\sigma}|_0(\rho^{q^m-i(j)}).
\]

(3)

We choose $i' \in \{i(j) + 1, \ldots, n\}$ such that

\[
\sup_{i(j)+1 \leq i \leq n} |a_iy^{\sigma}|_0(\rho^{q^m-i(j)}) = |a_{i'}y^{\sigma_{i'}}|_0(\rho^{q^m-i(j)}).
\]

(4)

By (3) and (4),

\[
\log |y|_0(\rho^{q^m}) - \log |y|_0(\rho^{q^m-i(j)+i'}) \leq \log |a_{i'}/a_{i(j)}|_0(\rho^{q^m-i(j)}).
\]

(5)

By the induction hypothesis for $m + i(j) - i'$, there exist an integer $N \in \{0, \ldots, n-1\}$ and a sequence ε_{iu}' of 0 or 1 defined for $I_{m+i(j)-i'}$ such that

\[
\log |y|_0(\rho^{q^m-i(j)+i'}) - \log |y|_0(\rho^{q^N}) \leq \sum_{(i, u) \in I_{m+i(j)-i'}} \varepsilon_{iu}' \log |a_i/a_{i(j)}|_0(\rho^{q^m}),
\]

(6)

\[
\sum_{(i, u) \in I_{m+i(j)-i'}} (i - i(j))\varepsilon_{iu}' = m + i(j) - i' - N.
\]

(7)

For $(i, u) \in I_m$, we define

\[
\varepsilon_{iu} := \begin{cases}
\varepsilon_{iu}' & \text{if } (i, u) \in I_{m+i(j)-i'} \\
1 & \text{if } (i, u) = (i', -m - i(j)) \\
0 & \text{otherwise.}
\end{cases}
\]

Then, by adding (5) to (6), the inequality in (a) follows. The condition $\varepsilon_{iu} \in \{0, 1\}$ follows by construction, and the equality in (b) follows from (7).
Proof. For $0 < \rho \in [\rho_0, 1)$, by applying (i) to $(\rho, m) = (\rho^m, m)$, there exist an integer $N(m) \in \{0, \ldots, n-1\}$ and a sequence $\varepsilon_{iu}^{(m)}$ of 0 or 1 defined for $(i, u) \in \mathcal{I}_m$ such that
\[
\log |y|_{0}(\rho) - \log |y|_{0}(\rho^{m-N(m)}) \leq \sum_{(i, u) \in \mathcal{I}_m} \varepsilon_{iu}^{(m)} \log |a_i/a_{i(j)}|_{0}(\rho^{m})
\]
(8)
\[
\sum_{(i, u) \in \mathcal{I}_m} (i - i(j)) \varepsilon_{iu}^{(m)} = m - N(m).
\]
(9)
For $i(j) + 1 \leq i \leq n$, there exist $v(i) \in \mathbb{Q}$ such that
\[
|a_i/a_{i(j)}|_{0}(\rho) = \rho^{v(i)}|a_i/a_{i(j)}|_{0}(1) \forall \rho \in [\rho_0, 1)
\]
by Notation 6.3. Moreover,
\[
\frac{1}{i - i(j)} \log |a_i/a_{i(j)}|_{0}(1) \geq -s_{j+1}
\]
(11)
by the convexity of the Newton polygon of $f(\sigma)$. By (10) and (11),
\[
\text{RHS of (8)} \leq \sum_{(i, u) \in \mathcal{I}_m} \varepsilon_{iu}^{(m)} q^u v(i) \log \rho + \sum_{(i, u) \in \mathcal{I}_m} (i - i(j)) \varepsilon_{iu}^{(m)} s_{j+1} \log q.
\]
(12)
Let $v := \max\{v(i) ; i(j) + 1 \leq i \leq n\}$. Then, the first summation in RHS of (12) is bounded above by
\[
\sum_{(i, u) \in \mathcal{I}_m} \varepsilon_{iu}^{(m)} q^u \log (1/\rho) \leq \sum_{(i, u) \in \mathcal{I}_m} q^u \log (1/\rho) = (n - i(j)) \frac{1 - q^{-m-i(j)-1}}{1 - q^{-1}} v \log (1/\rho) \leq n \frac{q}{q-1} v \log (1/\rho_0).
\]
By (9), the second summation in RHS of (12) is equal to
\[
(m - N(m)) s_{j+1} \log q.
\]
Thus, (8) leads to
\[
|y|_{0}(\rho) \leq C |y|_{0}(\rho^{m-N(m)}) \cdot q^{m-N(m)} s_{j+1}
\]
\[
= C |y|_{0}(\rho^{m-N(m)}) \cdot (\log (1/\rho^{m-N(m)})^{s_{j+1}} \cdot (\log (1/\rho))^{-s_{j+1}},
\]
(13)
where $C := \exp\{u(q-1)^{-1} v \log (1/\rho_0)\}$ is a constant independent of ρ. Since $\rho^{m-N(m)} \in [\rho_0^{-q^{-1}} ; \rho_0^{-q^{-1} + 1}]$, the functions $|y|_{0}(\rho^{m-N(m)})$ and $(\log (1/\rho^{m-N(m)}))^{s_{j+1}}$ are bounded when ρ runs over $[\rho_0, 1)$; note that the function $|\rho_0, 1) \rightarrow \mathbb{R} ; \rho \mapsto |y|_{0}(\rho)$ is continuous. Thus, (13) implies the desired estimation
\[
|y|_{0}(\rho) = O((\log (1/\rho))^{-s_{j+1}}) \text{ as } \rho \uparrow 1.
\]
\[
\square
\]

6.2 Estimation of lower bound

We start with converting the condition (*) into the lemma:

Lemma 6.5. For any $j \in \{0, \ldots, k-1\}$, $i \in \{i(j+1) + 1, \ldots, n\}$, and $i' \in \{0, \ldots, i(j+1) - 1\}$, we have
\[
\log |a_{i'}|_{i(i+1)+1} |0(1) - \log |a_{i'}|_{0(1)} > \log |a_{i'}|_{0(1)} - \log |a_{i(i+1)}|_{0(1)}.
\]

Proof. For $0 \leq i \leq n$, we denote by P_i the point $(i, -\log_{\rho_0} |a_i|_{0(1)})$. We also denote by L_1 and L_2 the segments $P_i P_{i + (j+1)}$ and $P_{i(j+1)} P_i$ respectively. Let a and b be the slopes of L_1 and L_2 respectively. We have only to prove $a < b$. Let us consider separately the cases where $i' - i(j+1) + i \leq i(j+1)$ or $i' - i(j+1) + i > i(j+1)$. In the first case, we have $a < -s_{j+1}$ by the condition (*). By the convexity of the Newton polygon of $f(\sigma)$, we have $-s_{j+1} \leq b$. Hence, $a < b$. In the latter case, the segment L_1 intersects with L_2. Since $P_{i(j+1)}$ is under L_1, we have $a < b$.

\[
\square
\]

18
Proof. When we have Assumption in Proposition 6.4. By Lemmas 4.4 and 6.5, after choosing ρ_0 sufficiently large if necessary, we may assume the following condition: for any $j \in \{0, \ldots, k - 1\}$, $i \in \{i(j + 1) + 1, \ldots, n\}$, and $i' \in \{0, \ldots, i(j + 1) - 1\}$, we have

$$
\log |a_{i' - i(j+1)+1}|_{0}(\rho_2) - \log |a_{i'}|_{0}(\rho_2) > \log |a_{i}|_{0}(\rho_3) - \log |a_{i(j+1)}|_{0}(\rho_3) \quad \forall \rho_2, \rho_3 \in [\rho_0, 1);
$$

(14)
due to the both sides of the inequality are continuous with respect to ρ_2 and ρ_3 respectively, and converge to $\log |a_{i' - i(j+1)+1}|_{0}(1) - \log |a_{i'}|_{0}(1)$ and $\log |a_{i}|_{0}(1) - \log |a_{i(j+1)}|_{0}(1)$ as $\rho_2, \rho_3 \uparrow 1$ respectively.

To estimate the function $|y|_{0}(\rho)$ of ρ from above, we need to consider several inequalities such as the assumption in Proposition 6.4.

Assumption 6.7. Let $j \in \{0, \ldots, k - 1\}$. In the rest of this subsection, we assume the following:

$$
\sup_{i(0) \leq i \leq i(1)} |a_{i} y^{\sigma'}|_{0}(\rho) \leq \sup_{i(1) + 1 \leq i \leq n} |a_{i} y^{\sigma'}|_{0}(\rho) \forall \rho \in [\rho_0^{-n}, 1),
$$

$$
\sup_{i(1) \leq i \leq i(2)} |a_{i} y^{\sigma'}|_{0}(\rho) \leq \sup_{i(2) + 1 \leq i \leq n} |a_{i} y^{\sigma'}|_{0}(\rho) \forall \rho \in [\rho_0^{-n}, 1),
$$

$$
\vdots
$$

$$
\sup_{i(j-1) \leq i \leq i(j)} |a_{i} y^{\sigma'}|_{0}(\rho) \leq \sup_{i(j) + 1 \leq i \leq n} |a_{i} y^{\sigma'}|_{0}(\rho) \forall \rho \in [\rho_0^{-n}, 1);
$$

when $j = 0$, we set $\sup_{i(j-1) \leq i \leq i(j)} |a_{i} y^{\sigma'}|_{0}(\rho) := |a_{0} y|_{0}(\rho)$. We also assume

$$
\sup_{i(j) \leq i \leq i(j+1)} |a_{i} y^{\sigma'}|_{0}(\rho) > \sup_{i(j+1) + 1 \leq i \leq n} |a_{i} y^{\sigma'}|_{0}(\rho) \exists \rho \in [\rho_0^{-n}, 1);
$$

when $j = k - 1$, we set $\sup_{i(j+1) + 1 \leq i \leq n} |a_{i} y^{\sigma'}|_{0}(\rho) := 0$.

Lemma 6.8. Assume that $\rho_1 \in [\rho_0^{-n}, 1)$ satisfies

$$
\sup_{i(j) \leq i \leq i(j+1)} |a_{i} y^{\sigma'}|_{0}(\rho_1) > \sup_{i(j+1) + 1 \leq i \leq n} |a_{i} y^{\sigma'}|_{0}(\rho_1).
$$

(i) We have

$$
\sup_{0 \leq i \leq i(j+1) - 1} |a_{i} y^{\sigma'}|_{0}(\rho_1) \geq |a_{i(j+1)} y^{\sigma'(j+1)}|_{0}(\rho_1).
$$

(ii) Let $i' \in \{0, \ldots, i(j+1) - 1\}$ be an integer such that

$$
|a_{i'} y^{\sigma'}|_{0}(\rho_1) = \sup_{0 \leq i \leq i(j+1) - 1} |a_{i} y^{\sigma'}|_{0}(\rho_1).
$$

Then, we have

$$
\sup_{i(j) \leq i \leq i(j+1)} |a_{i} y^{\sigma'}|_{0}(\rho_1^{j'-i(j+1)}) > \sup_{i(j+1) + 1 \leq i \leq n} |a_{i} y^{\sigma'}|_{0}(\rho_1^{j'-i(j+1)}).
$$

Proof. (i) Suppose the contrary. Then, we have $|a_{i(j+1)} y^{\sigma'(j+1)}|_{0}(\rho_1) > \sup_{i \neq i(j+1)} |a_{i} y^{\sigma'}|_{0}(\rho_1) \geq 0$ by Assumption 6.7. Since $|\cdot|_{0}(\rho)$ is a non-archimedean norm, we have $|a_{i(j+1)} y^{\sigma'(j+1)}|_{0}(\rho_1) = 0$ by (1), which is a contradiction.

(ii) By (i) and Assumption 6.7, we have

$$
|a_{i'} y^{\sigma'}|_{0}(\rho_1) = \sup_{0 \leq i \leq n} |a_{i} y^{\sigma'}|_{0}(\rho_1).
$$

(15)
For $i \in \{i(j+1) + 1, \ldots, n\}$, we have

\[
\log |y^{a_i(j+1)}(\rho_1) - a_i y^{a_i(j+1)}(\rho_1)| - \log |y^{a'_{i(j+1)}}| - \log |y^{a'_{i(j+1)+1}}| = \log |y| o(\rho_1^{a_i}) - \log |y| o(\rho_1^{a'_{i(j+1)+1}})
\]

\[
= \log |a_i y^{a_i(j+1)}(\rho_1) - a'_i y^{a'_{i(j+1)+1}}| - \log |y| o(\rho_1) + \log |a_i y^{a_i}| - \log |y| o(\rho_1^{a'_{i(j+1)+1}}).
\]

Thus, we obtain

\[
|a_i y^{a_i(j+1)}(\rho_1^{a_i(j+1)+1}) > \sup_{i(j+1)+1 \leq i \leq n} |a_i y^{a_i(j+1)}| |a_i y^{a_i}| o(\rho_1^{a_i(j+1)+1}),
\]

which implies the assertion. □

Construction 6.9. Fix $\rho_1 \in [\rho_0, 1)$ such that

\[
\sup_{i(j+1) \leq i \leq i(j+1)+1} |a_i y^{a_i(j+1)+1}| o(\rho_1) > \sup_{i(j+1)+1 \leq i \leq n} |a_i y^{a_i}| o(\rho_1).
\]

By induction on $l \in \mathbb{N}$, we will construct a strictly decreasing sequence $\{m(l)\}_l$ of integers less than or equal to $i(j+1)$, and a sequence $\epsilon_{iu}^{(l)}$ of integers defined for

\[
\mathcal{I}_l := \{(i, u) \in \mathbb{Z}^2 : 0 \leq i \leq i(j+1) - 1, m(l) - i(j+1) \leq u \leq 0\}
\]

satisfying the following conditions:

(a) \[
\log |y| o(\rho_1^{m(l)}) - \log |y| o(\rho_1^{a_i(j+1)+1}) \geq \sum_{(i, u) \in \mathcal{I}_l} \epsilon_{iu}^{(l)} \log |a_i y^{a_i(j+1)+1}| o(\rho_1^{a_i}).
\]

(b) $\epsilon_{iu}^{(l)} \in \{0, 1\}$ and \[
\sum_{(i, u) \in \mathcal{I}_l} (i(j+1) - i) \epsilon_{iu}^{(l)} = i(j+1) - m(l).
\]

(c) \[
\sup_{i(j+1) \leq i \leq i(j+1)+1} |a_i y^{a_i(j+1)+1}| o(\rho_1^{a_i(j+1)+1}) > \sup_{i(j+1)+1 \leq i \leq n} |a_i y^{a_i}| o(\rho_1^{a_i(j+1)+1}).
\]

We set $m_0 := i'$ where i' is defined in Lemma 6.8 (ii), and define

\[
\epsilon_{iu}^{(0)} := \begin{cases} 1 & \text{if } (i, u) = (i', 0) \\ 0 & \text{otherwise.} \end{cases}
\]

Since $|a_i y^{a_i}| o(\rho_1) \geq |a_i y^{a_i(j+1)+1}| o(\rho_1)$ by Lemma 6.8 (i), the condition (a) follows. The condition (b) follows by definition. The condition (c) follows from Lemma 6.8 (ii).

Given $m(l)$ and $\epsilon_{iu}^{(l)}$, we can apply Lemma 6.8 to $\rho_1 = \rho_1^{a_i(j+1)+1}$ by the condition (c) for $m(l)$; let $i' \in \{0, \ldots, i(j+1) - 1\}$ be the integer defined in Lemma 6.8 (ii). Since $|a_i y^{a_i(j+1)+1}| o(\rho_1^{a_i(j+1)+1}) \geq |a_i y^{a_i(j+1)+1}| o(\rho_1^{a_i(j+1)+1})$ by Lemma 6.8 (i), we have

\[
\log |y| o(\rho_1^{a_i(j+1)+1}) - \log |y| o(\rho_1^{a_i(j+1)+1}) \geq \log |a_i y^{a_i(j+1)+1}| o(\rho_1^{a_i(j+1)+1}).
\]

We put $m(l+1) := m(l) - i(j+1) + i' < m(l)$ and define $\epsilon_{iu}^{(l+1)}$ for $(i, u) \in \mathcal{I}_{l+1}$ by

\[
\epsilon_{iu}^{(l+1)} := \begin{cases} \epsilon_{iu}^{(l)} & \text{if } (i, u) \in \mathcal{I}_l \\ 1 & \text{if } (i, u) = (i', m(l) - i(j+1)) \\ 0 & \text{otherwise.} \end{cases}
\]

We verify the conditions (a), (b), and (c). By adding (16) to the inequality in (a) for $m(l)$, the condition (a) follows. The condition (b) follows by construction. The condition (c) follows from Lemma 6.8 (ii).
Proposition 6.10. If y is non-zero and has a log-growth $\alpha \in \mathbb{R}_{\geq 0}$, then $\alpha \geq s_{j+1}$.

Proof. Obviously, we may assume $s_{j+1} > 0$. For $i \in \{0, \ldots, i(j+1) - 1\}$, there exists $v(i) \in \mathbb{Q}$ such that

$$|a_{i(j+1)}/a_i|_0(\rho) = \rho^{v(i)}|a_{i(j+1)}/a_i|_0(1) \quad \forall \rho \in [\rho_0^n, 1),$$

where $\rho_0 = 0$. Therefore, the assumption follows from Propositions 6.4 and 6.10.

Moreover,

$$-\frac{1}{i(j+1)-t}\log_q |a_{i(j+1)}/a_i|_0(1) \leq -s_{j+1}.$$

by the convexity of the Newton polygon of $f(\sigma)$.

We keep the notation in Construction 6.9. By (17), (18), and the inequality (a) for $m(l)$, we have

$$\log |y|_0(\rho^{m(l)}) - \log |y|_0(\rho^{q^{i(j+1+1)})}) \geq \sum_{(i,u) \in I_i} \varepsilon_{iu}^{(l)} q^u v(i) \log \rho_1 + \sum_{(i,u) \in I_i} (i(j+1)-i)\varepsilon_{iu}^{(l)} s_{j+1} \log q.$$

Let $v := \inf\{\pm v(i); 0 \leq i \leq i(j+1) - 1\}$. Then, the first summation in RHS of (19) is bounded below by

$$\sum_{(i,u) \in I_i} \varepsilon_{iu}^{(l)} q^u v(1/\rho_1) \geq \sum_{(i,u) \in I_i} q^u v \log (1/\rho_1) = (i(j+1)-1)q^{m(l)-i(j+1)-1} \log (1/\rho_1) \geq nq/q - v \log (1/\rho_1).$$

By the condition (b) for $m(l)$, the second summation in RHS of (19) is equal to

$$(i(j+1) - m(l))s_{j+1} \log q.$$

Therefore, (19) leads to

$$|y|_0(\rho^{m(l)}) \geq C |y|_0(\rho^{q^{i(j+1+1)})} q^{i(j+1)-m(l)s_{j+1+1}} = C |y|_0(\rho^{q^{i(j+1+1)})} q^{i(j+1)s_{j+1+1}} (1/\rho_1)^{s_{j+1+1}},$$

where $C := \exp\{nu(q - 1)^{-1}v \log (1/\rho_1)\}$. Note that

$$C |y|_0(\rho^{q^{i(j+1+1)})} q^{i(j+1)s_{j+1+1}} (1/\rho_1)^{s_{j+1+1}}$$

is a positive constant independent of l. Since $m(l) \rightarrow -\infty$ as $l \rightarrow \infty$, (20) implies

$$|y|_0(\rho) \neq O((\log (1/\rho))^{-\beta})$$

as $\rho \uparrow 1$

for any $\beta \in \mathbb{R}_{< s_{j+1}}$. \hfill \Box

6.3 Proof of Theorem 6.19

Let ρ_0 be as in Notation 6.6. For $j \in \{0, 1, \ldots, k-2\}$, we consider the following condition on y:

$$(C_j) : \quad \sup_{i(j) \leq i \leq i(j+1)} |a_i y^\sigma|_0(\rho) \leq \sup_{i(j+1) + 1 \leq i \leq n} |a_i y^\sigma|_0(\rho) \quad \forall \rho \in [\rho_0, 1).$$

Let $j \in \{0, \ldots, k-2\}$ be the least integer such that the condition (C_j) does not hold; if the condition (C_j) holds for all j, then we set $j = k - 1$. Then, j satisfies the assumption in Proposition 6.4: when $j = 0$, the assumption follows from (1). Also, j satisfies Assumption 6.7; when $j = k - 1$, the assumption follows from $y \neq 0$. Therefore, the assertion follows from Propositions 6.4 and 6.10.

7 Proof of Theorem 4.19

In this section, we assume that k_K is algebraically closed as in Assumption 4.16. For a (σ, ∇)-module over $K[x]_0$, Chiarello and Tsuuki define a Frobenius equation ([CT09, Proof of Theorem 6.17 (i)]). Then, they interpret their conjecture $LG_{K[\tau]_0}$ as a problem on the Frobenius equation. For a (σ, ∇)-module over $\Gamma_{\text{con}}[p^{-1}]$, their method can be applied as follows.
Lemma 7.2. We keep the notation in Construction 7.1. By [CT11, 4.2], the above exact sequence splits as a sequence of (i) Since we have:

\[v = y_0 e + y_1 \varphi(e) + \cdots + y_{n-1} \varphi^{n-1}(e), \quad y_i \in \Gamma_{\log, an, con}^{\text{alg}}. \]

Then, we obtain the relation

\[
\begin{pmatrix}
1 & -a_0 \\
& \ddots & \ddots & \ddots \\
& & 1 & -a_{n-1}
\end{pmatrix}
\begin{pmatrix}
y_0 \\
y_1 \\
\vdots \\
y_{n-1}
\end{pmatrix}
= \gamma
\begin{pmatrix}
y_0 \\
y_1 \\
\vdots \\
y_{n-1}
\end{pmatrix}.
\]

(21)

By elimination, \(y := y_{n-1} \) satisfies the following Frobenius equation:

\[
y = - \sum_{0 \leq i \leq n-1} \frac{\sigma^i (a_{n-i-1})}{\gamma \sigma(\gamma) \cdots \sigma^i(\gamma)} \sigma^i(y). \tag{22}
\]

Note that the slopes of the twisted polynomial

\[1 + \frac{a_{n-1}}{\gamma} + \cdots + \frac{a_0}{\gamma \sigma(\gamma) \cdots \sigma^{n-1}(\gamma)} \sigma^n \]

are \(-s_k - s < \cdots < -s_1 - s\), where \(s = -\log_q |\gamma| \).

Lemma 7.2. We keep the notation in Construction 7.1.

(i) For \(\lambda \in \mathbb{R} \), we have \(v \in \mathfrak{sol}_\lambda(M) \) if and only if \(y \in \text{Fil}_\lambda \Gamma_{\log, an, con}^{\text{alg}} \).

(ii) We have either \(v \in \mathfrak{sol}_0(M) \) or \(v \in \mathfrak{sol}_{s+j}(M) \setminus \mathfrak{sol}_{(s+j)-}(M) \) for some \(j \) such that \(s + j > 0 \).

Proof. (i) Since we have

\[
\mathfrak{sol}_\lambda(M) \subset \text{Fil}_\lambda \Gamma_{\log, an, con} \otimes_R M^\vee \subset \text{Fil}_\lambda \Gamma_{\log, an, con}^{\text{alg}} \otimes_R M^\vee \cong \text{Fil}_\lambda \Gamma_{\log, an, con}^{\text{alg}} \otimes_{\Gamma_{\log, an, con}^{\text{alg}}} \Gamma_{\log, an, con}^{\text{alg}} \otimes_R M^\vee,
\]

\(v \in \mathfrak{sol}_\lambda(M) \) implies \(y \in \text{Fil}_\lambda \Gamma_{\log, an, con}^{\text{alg}} \). Assume \(y \in \text{Fil}_\lambda \Gamma_{\log, an, con}^{\text{alg}} \). By (21) and Lemma 4.12, we have \(y_i \in \text{Fil}_\lambda \Gamma_{\log, an, con}^{\text{alg}} \otimes_R M^\vee \). Since \(\text{Fil}_\lambda \Gamma_{\log, an, con}^{\text{alg}} \cap \Gamma_{\log, an, con} \) by induction on \(j \). Hence, \(v \in \text{Fil}_\lambda \Gamma_{\log, an, con}^{\text{alg}} \otimes_R M^\vee \). Since \(\text{Fil}_\lambda \Gamma_{\log, an, con}^{\text{alg}} \cap \Gamma_{\log, an, con} = \text{Fil}_\lambda \Gamma_{\log, an, con} \), by definition, we have \(v \in \text{Fil}_\lambda \Gamma_{\log, an, con} \otimes_R M^\vee \), i.e., \(v \in \mathfrak{sol}_\lambda(M) \).

(ii) The assertion follows from (i) and Theorem 6.1.

We will deduce Proposition 4.18 and Theorem 4.19 from Lemma 7.2 (ii) and the following lemma.

Lemma 7.3. Let \(M \) be a \((\sigma, \nabla) \)-module over \(\mathcal{E} \) and \(\lambda_{\max} \) the highest Frobenius slope of \(M \). If \(M \) is PBQ, then \((M^\vee)_0 \) is pure of slope \(-\lambda_{\max}\) as a \(\sigma \)-module.

Proof. Note that \((M^\vee)_0 \cong (M/M^0)^\vee\) is pure as a \(\sigma \)-module by assumption. Moreover, the Frobenius slope \(\lambda \) of \((M^\vee)_0\) is greater than or equal to \(-\lambda_{\max}\). Suppose that the assertion is false, i.e., \(\lambda > -\lambda_{\max} \). Let \(M' \) be the inverse image of \(M'' := S_{-\lambda_{\max}} (M^\vee/(M^\vee)_0) \) under the canonical projection \(M^\vee \to M^\vee/(M^\vee)_0 \). By assumption, \(M'' \neq 0 \) and there exists a short exact sequence of \((\sigma, \nabla)\)-modules over \(\mathcal{E} \):

\[
0 \longrightarrow (M^\vee)_0 \longrightarrow M' \longrightarrow M'' \longrightarrow 0.
\]

By [CT11, 4.2], the above exact sequence splits as a sequence of \((\sigma, \nabla)\)-modules. Since \(M''_0 \neq 0 \), we have \((M^\vee)_0 \subseteq M'_0 \subset (M^\vee)_0\), which is a contradiction.
Proof of Proposition 4.18. By replacing \((M, \varphi, \nabla)\) by \((M, \varphi^h, \nabla)\) for sufficiently large \(h \in \mathbb{N}\), we may assume \(q^* \in \mathbb{Q}\) for all special and generic Frobenius slopes \(s\) of \(M\). Then, we may apply Construction 7.1 to \(M\). We keep the notation in Construction 7.1. Note that \(s_k = \lambda_{\max}\) by definition.

(i) Let \(v \in \mathfrak{Sol}(M)\) be a non-zero Frobenius eigenvector of slope \(s\). By Grothendieck-Katz specialization theorem ([Ked10, 15.3.2]), we have \(s \geq -s_k\). By Lemma 7.2 (ii), we have \(v \in \mathfrak{Sol}_{s+s_j}(M)\). Hence, we have \(S_{\lambda-\lambda_{\max}}(\mathfrak{Sol}(M)) \subset \mathfrak{Sol}_\lambda(M)\) for all \(\lambda \in \mathbb{R}\). By taking \((-)^+\) with respect to the canonical pairing \(\mathfrak{U}(M) \otimes_K \mathfrak{Sol}(M) \rightarrow K\), we obtain \((S_{\lambda-\lambda_{\max}}(\mathfrak{U}(M')))^+ \subset \mathfrak{U}(M)^\lambda\).

(ii) Since \(\mathfrak{Sol}_0(M) = (M^\vee)^{\mathbb{Q}=0}\), we have \(\mathfrak{Sol}_0(M) \subset (M^\vee)_0\) by the characterization of \((M^\vee)_0\). By Lemma 7.3, \((M^\vee)_0\), and hence \(\mathfrak{Sol}_0(M)\) is pure of slope \(-\lambda_{\max}\) as a \(\sigma\)-module, i.e., \(\mathfrak{Sol}_0(M) \subset S_{-\lambda_{\max}}(\mathfrak{Sol}(M))\). Similarly as in the proof of (i), we obtain \((S_{-\lambda_{\max}}(\mathfrak{U}(M')))^+ \subset \mathfrak{U}(M)^0\).

\(\blacksquare\)

Proof of Theorem 4.19. Similarly as in the proof of Proposition 4.18, we may apply Construction 7.1 to \(M\) again.

(i) By the definition of \(\mathfrak{U}(M)^*\), we have only to prove that the filtration \(\mathfrak{Sol}_0(M)\) is rational and right continuous.

We first prove the rationality of breaks \(\lambda\) of \(\mathfrak{Sol}_0(M)\). We may assume \(\lambda > 0\). Since \(\mathfrak{Sol}_{\lambda-}(M)\) is a direct summand of \(\mathfrak{Sol}_{\lambda+}(M)\) as a \(\sigma\)-module, we can choose a Frobenius eigenvector \(v \in \mathfrak{Sol}_{\lambda+}(M)\setminus \mathfrak{Sol}_{\lambda-}(M)\) of slope \(s\). By \(v \notin \mathfrak{Sol}_0(M)\) and Lemma 7.2 (ii), we have \(v \in \mathfrak{Sol}_{s+s_j}(M)\setminus \mathfrak{Sol}_{(s+s_j)-}(M)\) for some \(j\) such that \(s + s_j > 0\), i.e., \(\lambda = s + s_j \in \mathbb{Q}\).

We prove the right continuity of \(\mathfrak{Sol}_0(M)\). Suppose the contrary, i.e., there exists \(\lambda \in \mathbb{R}_{\geq 0}\) such that \(\mathfrak{Sol}_\lambda(M) \neq \mathfrak{Sol}_{\lambda+}(M)\). Let \(\Delta(M)\) be the set of rational numbers consisting of \(0\) and \(s + s_j\) where \(s\) is a Frobenius slope of \(\mathfrak{Sol}(M)\). Fix \(\lambda' \in \mathbb{R}_{\geq 0}\) sufficiently close to \(\lambda\) such that \(\mathfrak{Sol}_{\lambda+}(M) = \mathfrak{Sol}_{\lambda'}(M)\) and \(\Delta(M) \cap (\lambda, \lambda'] = \emptyset\). Since \(\mathfrak{Sol}_\lambda(M)\) is a direct summand of \(\mathfrak{Sol}_{\lambda+}(M)\) as a \(\sigma\)-module, we can choose a Frobenius eigenvector \(v \in \mathfrak{Sol}_{\lambda+}(M)\setminus \mathfrak{Sol}_\lambda(M)\) of slope \(s\). By Lemma 7.2 (ii), we have either \(v \in \mathfrak{Sol}_0(M)\) or \(v \in \mathfrak{Sol}_{s+s_j}(M)\setminus \mathfrak{Sol}_{(s+s_j)-}(M)\) for some \(j\) such that \(s + s_j > 0\). In the first case, we have \(v \in \mathfrak{Sol}_\lambda(M)\), which is a contradiction. In the latter case, we have \(s + s_j > \lambda\) by \(v \in \mathfrak{Sol}_{s+s_j}(M)\). Since \(v \notin \mathfrak{Sol}_{(s+s_j)-}(M)\), we have \(\lambda' \leq s + s_j\). Hence, we have \(s + s_j \in \Delta(M) \cap (\lambda, \lambda'] = \emptyset\), which is contradiction.

(ii) By Proposition 4.18 (i), we have only to prove \(\mathfrak{Sol}_\lambda(M) \subset S_{\lambda-\lambda_{\max}}(\mathfrak{Sol}(M))\) for all \(\lambda \geq 0\). Let us consider separately the cases where \(k = 1\) or \(k = 2\). In the first case, since \(\mathfrak{Sol}(M)\) is pure of slope \(-\lambda_{\max}\) by Grothendieck-Katz specialization theorem, the assertion is trivial. In the latter case, let \(v \in \mathfrak{Sol}_\lambda(M)\) be a non-zero Frobenius eigenvector of slope \(s\). By Grothendieck-Katz specialization theorem, we have \(-s_2 \leq s \leq -s_1\). Hence, we have either \(v \in \mathfrak{Sol}_0(M)\) or \(v \in \mathfrak{Sol}_{s+s_2}(M)\setminus \mathfrak{Sol}_{(s+s_2)-}(M)\) by Lemma 7.2 (ii). In the first case, \(v \in \mathfrak{Sol}_0(M) = S_{-s_2}(\mathfrak{Sol}(M)) \subset S_{\lambda-s_2}(\mathfrak{Sol}(M))\) by Proposition 4.18 (ii). In the latter case, we have \(s + s_2 \leq \lambda\). Hence, \(v \in S_s(\mathfrak{Sol}(M)) \subset S_{\lambda-s_2}(\mathfrak{Sol}(M))\).

\(\blacksquare\)

Remark 7.4. Let \(M\) be a \((\sigma, \nabla)\)-module over \(\Gamma_{\text{con}}[p^{-1}]\) solvable in \(\Gamma_{\log, \text{an, con}}\). We can expect that any break \(\lambda\) of the special log-growth filtration of \(M\) is of the form \(-s + \lambda_{\max}\) where \(s\) is a special Frobenius slope of \(M\). At this point, as in the proof of Theorem 4.19 (i), we can prove only that \(\lambda\) is of the form \(-s + s'\) where \(s\) (resp. \(s'\)) is a special (resp. generic) Frobenius slope of \(M\) such that \(-s + s' \geq 0\).
8 Appendix: diagram of rings

For $0 \leq \lambda_1 \leq \lambda_2$, we have the following diagram of rings: all the morphisms are the natural inclusions.

\[
\begin{array}{ccccccc}
K[[x]]_0 & \to & K[[x]]_{\lambda_1} & \to & K[[x]]_{\lambda_2} & \to & K[[x]] \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
\Gamma[p^{-1}] & \to & \Gamma_{\text{an,con}}[p^{-1}] & \to & \text{Fil}_{\lambda_1} \Gamma_{\text{an,con}} & \to & \text{Fil}_{\lambda_2} \Gamma_{\text{an,con}} \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
\mathcal{E} & \to & \mathcal{E}^\dagger & \to & \Gamma_{\text{an,con}} & \to & \mathcal{R}.
\end{array}
\]

Acknowledgement

The author is indebted to Professor Nobuo Tsuzuki for drawing the author’s attention to Nakagawa’s paper [Nak13], and suggesting Remark 6.2. The author is supported by Research Fellowships of Japan Society for the Promotion of Science for Young Scientists.

References

[And02] Y. André, Filtrations de type Hasse-Arf et monodromie p-adique, Invent. Math. 148 (2002), no. 2, 285–317.

[And08] Y. André, Dwork’s conjecture on the logarithmic growth of solutions of p-adic differential equations. Compos. Math. 144 (2008), no. 2, 484–494.

[Ber02] L. Berger, Représentations p-adiques et équations différentielles, Invent. Math. 148 (2002), no. 2, 219–284.

[CT09] B. Chiarellotto and N. Tsuzuki, Logarithmic growth and Frobenius filtrations for solutions of p-adic differential equations, J. Inst. Math. Jussieu 8 (2009), no. 3, 465–505.

[CT11] B. Chiarellotto and N. Tsuzuki, Log-growth filtration and Frobenius slope filtration of F-isocrystals at the generic and special points, Doc. Math. 16 (2011), 33–69.

[Chr83] G. Christol, Modules différentiels et équations différentielles p-adiques, Queen’s Papers in Pure and Applied Mathematics, 66. Queen’s University, Kingston, ON, 1983. vi+218 pp.

[Dwo73] B. Dwork, On p-adic differential equations. II. The p-adic asymptotic behavior of solutions of ordinary linear differential equations with rational function coefficients, Ann. of Math. (2) 98 (1973), 366–376.

[Dwo82] B. Dwork, Lectures on p-adic differential equations, With an appendix by Alan Adolphson, Grundlehren der Mathematischen Wissenschaften, 253, Springer-Verlag, New York-Berlin, 1982. viii+310 pp.

[Ked04] K. Kedlaya, A p-adic local monodromy theorem, Ann. of Math. (2) 160 (2004), no. 1, 93–184.

[Ked05] K. Kedlaya, Slope filtrations revisited, Doc. Math. 10 (2005), 447–525.

[Ked10] K. Kedlaya, p-adic differential equations, Cambridge Studies in Advanced Mathematics, 125. Cambridge University Press, Cambridge, 2010. xviii+380 pp.

[Lut37] E. Lutz, Sur l’équation $y^2 = x^3 - Ax - B$ dans les corps p-adiques, J. Reine Angew. Math. 177 (1937), 238–247.

[Meb02] Z. Mebkhout, Analogue p-adique du théorème de Turrittin et le théorème de la monodromie p-adique, Invent. Math. 148 (2002), no. 2, 319–351.

[Nak13] T. Nakagawa, The logarithmic growth of an element of the Robba ring which satisfies a Frobenius equation, Tohoku Math. J. (2) 65 (2013), no. 2, 179–198.

24