Review article

Role of traditional Islamic and Arabic plants in cancer therapy

Rizwan Ahmad a, *, Niyaz Ahmad b, Atta Abbas Naqvi c, Adeeb Shehzad e, Mastour Safer Al-Ghamdi d

a Natural Products and Alternative Medicines, College of Clinical Pharmacy, University of Dammam, Dammam, Saudi Arabia
b Department of Pharmacoeconomics, College of Clinical Pharmacy, University of Dammam, Dammam, Saudi Arabia
c Department of Pharmacy Practice, College of Clinical Pharmacy, University of Dammam, Dammam, Saudi Arabia
d Department of Pharmacology, College of Clinical Pharmacy, University of Dammam, Dammam, Saudi Arabia
e Department of Biomedical Engineering and Sciences, School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology, Islamabad, Pakistan

ABSTRACT

Ethno pharmacological relevance: This review article underlines individual Traditional Islamic and Arabic plant (TAI) and their role in treating cancer. The aim of the study is to specifically evaluate the progress of herbs, Arabic and Islamic traditional herbs in particular, applied in cancer treatment, so far.

Materials and methods: Islamic and Arabic plants were selected and identified through different literature survey using “Google scholar”, “Web of science”, “Scopus” and “PubMed”. Each plant, from identified Arabic and Islamic plants list, was individually searched for the most cited articles in the aforementioned databases using the keywords, “Anticancer”, “Uses in cancer treatment”, “Ethno pharmacological importance in cancer” etc.

Results: The current review about Islamic and Arabic plants illuminates the importance of Islamic and Arabic plants and their impact in treating cancer. There is a long list of Islamic and Arabic plants used in cancer as mentioned in review with enormous amount of literature. Each plant has been investigated for its anticancer potential. The literature survey as mentioned in table shows; these plants are widely utilized in cancer as a whole, a part thereof or in the form of isolated chemical constituent.

Conclusions: This review strongly supports the fact; Arabic and Islamic traditional plants have emerged as a good source of complementary and alternative medicine in treating cancer. Traditional Arab-Islamic herbal-based medicines might be promising for new cancer therapeutics with low toxicity and minimal side effects. The plants used are mostly in crude form and still needs advance research for the isolation of phytochemicals and establishing its cellular and molecular role in treating cancer.

1. Introduction

The use of herbal medicine is leading modality, followed in Middle East, Europe, Israel and certain other advance countries, in order to treat cancer patients. According to latest WHO reports, even advanced countries have adapted traditional system of herbal treatment including; Belgium (31%), Australia (48%), France (49%), Canada (70%) and Germany (77%). The 25% of the crude drugs used in last two decades are derived from plants, out of which only 5–15% have been investigated for bioactive compounds. Recent surveys reveal the use of such phytochemical for cancer treatment due to the fact; relatively low/nontoxic, antitumor property with minimal side effects, failure of the standard cancer therapy. A research finding on complementary and alternative medicines identified 143 articles from different Middle-Eastern countries. The report findings performed in Turkey, Israel and other advance countries showed, half of the patient diagnosed with cancer used CAM therapy even during chemotherapy.1

The history of cancer treatment reveals, the interest in cancer treatment goes back to the times of Islamic renaissance scholar. As suggested by the famous scholar “Avicenna”, “if it is the start of a cancer, it is possible to make it static and prevent it from growth and hence ulceration”. Sometimes it happens, that the starting
cancer may be cured, but once it reaches to advance stages, verily it will not. In order to reduce resistance to the existing mechanisms, modern medical research shifted its focus towards finding of new anticancer agents as an alternate. The most promising alternate which took place are herbs and other natural plant products. The easy availability, low in cost along with possessing minimal side effects, makes the herbs as mainstream for treating and playing a vital role in the prevention and treatment of cancer. The wisdom of the past in the shape of folkloric and traditional uses served the better source for treatment of various human diseases including cancer. The most emerging role as observed for treatment or prevention in case of cancer was disclosed by Traditional Arab-Islamic (TAI) herbal-based medicines. The literature from ancient time as well as the use of Arabic and Islamic plants for cancer treatment by various Muslim and religious scholars, in contrast with standard use of these herbs in cancer now-a-days by different physicians and practitioners, is a self-comprehensible prove revealing the role of TAI herbs in cancer. The TAI herbs are promising for new cancer therapeutics due to low toxicity and minimal side effects also.

Despite of advancement in treating diseases, the hallmark to cure cancer completely is not accomplished till date. Although, endless efforts of researcher to eradicate cancer led to different molecular and cellular understanding i.e. signal transduction involved in angiogenesis, protein expression and apoptosis, the morbidity of this disease is so far rising. Research statistics showed that 20% of death in the world results from cancer, affecting more than one third of the world population. Several treatment are available i.e. drugs from synthetic or semisynthetic origin, radiation therapy, chemotherapy etc. but these approaches are less effective and accompanied by severe side effects in most of the cases. The major effective alternate is herbal treatment, with less side effects and potentially safer in cancer. The CAM study conducted (2007) in the U.S. population reports; almost 4 out of 10 adults had used some form of CAM within the past year. The American spent 33.0 billion U.S dollar (USD), accounting for 11.2% of total out-of-pocket health care expenditure, on Traditional products. Even in the more developed countries the use of CAM and traditional medicine is comparably extensive. According to WHO latest fact sheet; in India 70% of the population, in Ethiopia more than 90% of the population depends on traditional medicine for primary health care. Proportionally, more than 70% population in Chile and 40% population in Colombia adopted the traditional medicine for their healthcare system. The China (40%), too is in the list of countries using traditional medicine.

The importance of the traditional herbal medicine can be assumed from the fact that, the number of member state regulating the herbal medicine increased from 65 (1999) to 119 (2012) along with the upgradation of the research institute for herbal medicine from 19 (1999) to 73 (2012), respectively.

The demand of traditional medicines and practitioners is raising on regular basis. The fact can be supported by the enormous data available i.e. an increase of 30% (1995–2005), when 750,000 visits were recorded in a two week period in Australia; 907 million visits (2005) for the Traditional Chinese medicines, accounting for 18% of all medical visits; a total of 18226 traditional health care services for 80% of population in Lao People’s Democratic Republic and the 560 U.S dollar/annum out-of-pocket expenditure for traditional medicines in Saudi Arabia. Likewise, hundreds of literature data is available, which just shows the importance and utilization of herbal and traditional medicine for the treatment of diseases including cancer.

The study plans; to evaluate the claims i.e. TAI plants have folkloric uses in treatment of cancer. The main focus is on TAI alternative medicinal plants for establishing their role in prevention, treatment or procurement of cancer. This review is an eye-bird view on the ancient TAI plants used in cancer treatment along with herbal treatment research.

1.1. Cancer

Cancer, more appropriately described as, an uncontrolled growth or cell proliferation which invades other tissues as well. The mechanism behind tissue invading is through direct cell migration or blood and lymphatic system. The risk factors for cancer consist of chemicals, radiations, unhealthy diet, environmental factors, infection and tobacco smoke.

There are hundred different types of cancer usually named by the tissue or organ or type of cell in which they begins. There severity can be benign (usually earlier stage) or malignant (end stage, mostly called cancer). Cancer identified in earlier stages are cured most likely, as mentioned in their first time treatments of cancer, by Avicenna, Abulcasis and Rhazes in the earlier Islamic and Arabic era.

1.2. Importance of plants

The advancement in drug discovery technology, diversification of the health sector and reduced funding for natural product-based drug discovery, couldn’t kneel the herbs and herbal treatment systems. The natural products from plants and biological sources still remain an unlimited and uncondensed source of new phytochemicals and nutraceuticals. The World Health Organization estimates; about 80% of the world population presently uses herbal-based medicines for some aspect of primary health care. The fact sheet also mentions the fact; herbal medicines are the most lucrative form of traditional medicine, generating billions of dollars in revenue. The era of 1984 – 2003, witnessed numerous natural product-derived small molecules patent, despite of decrease in the industrial funding for natural product-based drug discovery, at the same time. A comprehensive review of human drugs introduced since 1981 suggests that, out of 847 small molecule-based drugs, 43 were natural products, 232 were derived from natural products (usually semi synthetically), and 572 were synthetic molecules. However, 262 of the 572 synthetic molecules had a natural product inspired pharmacophore or could be considered natural product analogs. Natural products continue to make the most dramatic impact in the area of cancer. From 155 anticancer drugs developed since the 1940s, only 27% could not be traced to natural products, with 47% being either a natural product or a direct derivation thereof. According to recent surveys, there are about 450 medicinal plants in the Eastern region of the Mediterranean and about 230 medicinal plants in the coastal Mediterranean region in Egypt. These plants are used by healers for the treatment and prevention of almost all types of human disease, such as cancer; skin, respiratory, digestive, and liver diseases; diabetes and others.

1.3. Importance of Islamic and Arabic plants

Advanced tumors are treated usually by chemotherapy and although these drugs are effective, they are associated with severe adverse events and drug resistance. Traditional Arab-Islamic herbal-based medicines might be promising candidates for new cancer therapeutics with low toxicity and minimal side effects.

The origins of Arab-Islamic medicine can be traced back to the time of the Prophet Mohammad, Peace Be upon Him (PBUH) as a significant number of Hadiths concerning medicine are attributed
The search for appropriate synonyms of each plant is a laborious task and requires the use of multiple databases and other resources. The database used for literature search was “PubMed” and “ScienceDirect” web of science. To conduct the research, the keywords used were “Islamic plants” and “Arabic plants” in order to cover or evaluate the progress of plants in cancer treatment. This study summarises the research activities specifically in the area of cancer and will help the researchers in order to utilise the available knowledge under one heading, for the overall course of the disease. Certain inclusions (e.g., garlic and onion) were also considered for their potential cancer-preventive effects within their diverse pharmacological properties. Since cancer evolves over a long period of time, the treatments of cancer patients with chemical therapy have serious side effects. Recently herbal medicines have been utilised in cancer, as they exhibit an extensive spectrum of biological activities such as stimulation of the immune system, antibacterial, antiviral, anti-hepatotoxic, anti-ulcer, anti-inflammatory, anti-mutagenic, and anti-cancer effects.5,7,26

The Islamic and Arabic plants used in the review were mentioned and referenced from the literature sources i.e. the following table mentioned in Table 1. The literature study showed that the plants used in cancer treatment showed the potential curing and their respective use in cancer as anti-inflammatory, anti-mutagenic, anti-cancer, and anti-disease. The Table 1, mentions all the research work and literature studies for individual plants. The list mentioned in Table 1, covers the research work and literature studies for individual plants. The list mentioned in Table 1, covers the research work and literature studies for individual plants.
Table 1
Ethno-pharmacological profile of Islamic and Arabic Plants used in treatment of cancer.

| Plant name       | English name | Ethno pharmacological profile in cancer                                                                 | References |
|------------------|--------------|--------------------------------------------------------------------------------------------------------|------------|
| Acacia seyal     | Acacia       | Demonstrated potential cytotoxic activities on the cancer cells HepG2 (hepatocellular carcinoma), MCF-7 (breast adenocarcinoma), A549 (lung carcinoma) and HCT-116 (colorectal carcinoma); Prevents the development of cancer. | 55–57      |
| Acorus calamus   | Sweet flag   | Extract inhibits growth of several cell lines of mouse and human origin; Protects most of the changes in the rat brain induced by noise-stress; Studies have reported a wide range of pharmacological activities exhibited by Acorus rhizome and its constituents, particularly α- and β-asarone. | 58–60      |
| Arum palaestinum | Palestine    | Showed cytotoxic effects on human cancer cell line H0-8910 & 7721; Reduced glycaemia levels in patients with colorectal cancer; Demonstrated cytotoxicity against cancer cell lines of larynx carcinoma (HEp-2) and breast carcinoma (MCF-7). | 61–64      |
| Allium cepa      | Onion        | Low risk of colorectal, breast, and lung cancers was found in individuals using onion and garlic; Reduces the risk of esophageal and stomach cancer, distal colon cancer; Reduces the ratio of prostate cancer by 30–50%. | 29,30,68–77|
| Allium sativum   | Garlic       | Death ratio (attributed to stomach cancer) was reduced by 10 fold with the use of garlic; Low risk of colorectal, breast and lung cancer due to onion & garlic use; Reduces the risk of esophageal and stomach cancer, distal colon cancer; Reduces the ratio of prostate cancer by 30–50%. | 29,30,68–75,78|
| Aloe vera        | Aloe         | Aqueous cream was useful in reducing dry desquamation and pain related to radiation therapy; The use of mild soap and Aloe vera gel showed a protective effect towards skin reactions in patients undergoing radiation therapy; Studies reported presence of anticancer activity and extract of aloe vera demonstrated suppression of cell proliferation in human neuroblastoma cell lines (IMR-32, TCGW, CHP-126 and NBL-S); Hydroxynaphthoquinone compound Aloe emodin (AE) demonstrated antineoplastic activity in metastatic human melanoma cell lines and in primary stem-like cells (melanospheroids). | 79–84      |
| Anethum graveolens | Dill       | Anethofuran a potential cancer chemopreventive has been isolated. | 39,85      |
| Apium graveolens | Celery       | Bioassay guided isolation resulted different compounds, out of which, 3-n-butyl phthalide and sedanolide were both active in tumor inhibition; Topoisomerase-1 and II enzymes inhibitory compounds, Senkyunolide-N, Senkyunolide-J & 3-hydroxymethyl-6-methoxy-2, 3-dihydro-1H-indol-2-ol have been isolated from the seeds; The seed extract of celery demonstrated antiproliferative activity and apoptosis on human stomach cancer cell line BGC-823. | 86–89      |
| Artemisia absinthium | Wormwood   | Artemisia absinthium induced anti-proliferative effects on human breast cancer cells trigger apoptosis in both cell lines through the modulation of Bcl-2 family proteins and the MEK/ERK pathway; Wormwood (Artemisia absinthium) suppresses tumor necrosis factor alpha; A. absinthium and A. vulgaris demonstrated cytotoxic activity in breast cancer cell line (MCF7) and human embryonic kidney normal cell line (HEK293). | 4.90–92    |
| Arum palaestinum | Palestine Arum | Treatment of different human cancer cell lines with the ethyl acetate fraction led to dose-dependent suppression in the proliferation of both breast carcinoma cells (MCF-7) & lymphoblastic leukemia cells (1301); A novel alkylated piperezine was isolated which showed a significant cytotoxicity against cultured tumor cell lines In vitro. | 77,93–96   |
| Astoma seseliformum | Astorna | Study showed inhibition of prostate cancer spheroids and reduce growth rate of prostate tumors in mice. | 4          |
| Beta vulgaris    | Beet-Root    | An in-vivo anti-tumor promoting activity evaluation against the mice skin and lung bioassays revealed a significant tumor inhibitory effect; The cytotoxic effect of the red beetroot extract in the androgen-independent human prostate cancer cells (PC-3) and in the well-established estrogen receptor-positive human breast cancer cells (MCF-7) suggested a potent anticancer activity; Betanin/isobetanin extract demonstrated anticancer activity in MCF-7 treated cells. | 97–100     |
| Boswellia carterii | Olibanum | Acetyl-11-keto-β-boswellic acid, a compound isolated from Boswellia carterii, caused G1-phase cell cycle arrest with an induction of p21 and a reduction of cyclin D1 as well as prostate cancer cells; Frankincense oil derived from Boswellia carterii induces tumor cell specific cytotoxicity; Extracts of the plant demonstrated cytotoxicity in HepG2 and HCT 116 cell lines. | 101–104    |
| Brassica nigra   | Mustard      | Mustard acts as a potent antagonist of the adverse biological effects of the ultimate metabolites of Benzo[a]pyrene mutagenicity; Tumoridical activity was demonstrated in vivo Drosophila melanogaster (SMART) and the in vitro HL60 (human promyelocytic leukemia cell line) systems; Mustard essential oil, allyl isothiocyanate (AITC) exhibited ant neoplastic activity on bladder cancer cell lines carrying a wild type (wt; RT4) or mutated (T24) TP53 gene. | 105–108    |
| Brassica oleracea | Wild Cabbage | Inhibit the growth of estrogen receptor (ER)–positive (ER+; MCF-7 and BT474) and ER-negative (ER–; MDA-MB-231, 4,77,109,110) breast cancer cell lines; Reduced glycemia levels in patients with colorectal cancer; Studies have reported a wide range of pharmacological activities exhibited by Acorus rhizome and its constituents, particularly α- and β-asarone. | 111–114    |
| Bryonia syrica    | Syrian Bryony | Protein is isolated from caper, which inhibited proliferation of hepatoma HepG2 cells, colon cancer HT29 cells and breast cancer MCF-7 cells; Essential oil and aqueous infusion showed high inhibitory effect on HT-29 cell proliferation and on nuclear factor κB (NF-κB) activity; Study reported C. spinosa extract mediated apoptosis through mitochondrial pathway in SGC-7901 cells. | 4.77       |
| Capparis spinosa | Caper        | Senna aqueous extract avoid H2O2-induced mutagenesis and toxicity in Escherichia coli IC203 (uvrA oxyR) and IC205 (uvrA mutM) strains; | 115–117    |
Table 1 (continued)

| Plant name               | English name | Ethno pharmacological profile in cancer                                                                 | References |
|--------------------------|--------------|---------------------------------------------------------------------------------------------------------|------------|
| Ceterach officinarum     | Yellow pincushion | Rhein (0.1 and 1 µg/ml) significantly reduced cell proliferation as well as mitogen-activated protein (MAP) kinase activation. | 4,39,118,119 |
| Chrysanthemum coronarium | Crown Daisy | Sesquiterpene lactones is isolated, which showed weak activities against human cancer cell lines such as A549, PC-3, HCT-15; Dihydroxypropanes derivatives isolated were also examined for their cytotoxic activity against such human cell lines as A549, PC-3 and HCT-15; Essential oil of Chrysanthemum coronarium demonstrated antiproliferative effect in human colon cancer cell lines. | 4,39,120–122 |
| Cichorium intybus         | Chicory      | Chichory showed tumor-inhibitory effect against Ehrlich ascites carcinoma in mice; Protected DNA against oxidative damage to its deoxyribose moiety; Demonstrated notable growth inhibition in leukemia cell lines. | 77,123–125 |
| Cinnamomum camphora      | Camphor      | Camphorin isolated, which showed inhibition to the human hepatocarcinoma cell-line 7721 and solid melanoma in the skin of the nude mouse; Sublime a novel Cinnamomum monoterpenoid, was evaluated against A549 (human lung cancer cell), and DU-145 and LNCAP (human prostate cancer cell lines). | 126–128 |
| Citrullus colocynthis     | Cucumcyth    | Cucubacin glucosides exhibit pleiotropic effects on cells, causing both cell cycle arrest and apoptosis; Cucubatin-type tripterpenes glucoside had potent inhibitory activity on HepG2. | 129–131 |
| Commiphora molmol        | Myrrh        | C. molmol offered protection against mucosal damage caused by indomethacin and its combination with ethanol; Emulsion used protected against PABA-induced hepatic oxidative damage and immunotoxicity; Hybrids from the compound Myrrhanone-C demonstrated significant anticancer activity in human lung A-549, cervical (Hela), breast (MCF-7), renal (ACHN), colon (Colo-205) and mouse melanoma (B-16) cell lines; Gulgulipid extract from the plant exhibited anticancer activity in human prostate cancer cell line LNCAP (androgen-dependent) and its androgen-independent variant (C81). | 132–136 |
| Crataegus azarolus        | Hawthorn     | Hexanic extract caused cytotoxic effect against larynx Hep2 cells; Crataegus azarolus ethyl acetate extract showed antiproliferative activity and apoptosis in human metastatic colorectal cancer cell lines HCT-116 and HT-29; It also demonstrated growth inhibition in mice B16F10 melanoma cells and inhibited melanin synthesis. | 139–143 |
| Crocus sativus            | Saffron      | Crocin from Crocus Sativus possesses significant Anti-Proliferation effects on human colorectal cancer cells; human lung adenocarcinoma cell lines A549 and SPC-A1 and mice MCF-7 cell lines Isolated carotenoid ingredients of saffron demonstrated cytotoxic activity against in vitro tumor cells. | 144–147 |
| Cucumis melo              | Cucumber     | Cucubinate-type triterpenoids showed significant cytotoxic activity against the proliferation of A549/ATCC and BEL7402 cells in vitro; Reduces risk of cancer and other chronic diseases; Cucubatin C (CuC) isolated from the plant may have antiinflammatory activity in glioma therapy. | 144–147 |
| Matricaria aurea           | Chamomile    | Exhibited cytotoxic effect on PC-3, A-549 and MCF-7 cancer cells; showed positive effects in Anti-genotoxicity studies. Apigenin glucosides are present which inhibited cancer cell growth; Bisabolol and a-Bisabolol-Rich Oils showed anticancer properties. | 148–151 |
| Narcissus tuzetta         | Bunchflower daffodil | Extracts strongly decreased the survival rate of cell lines: HE-60, K562, KT1/A3, and A3R; Pseudolycoreine alkaloid showed remarkable antileukemic activity; Fractions of narcissus bulbs has been demonstrated against Ehrlich ascites tumor and # 6C3HED solid lymphosarcoma cells in mice; Cytotoxic effect was studied for different part of the plant. | 152–154 |
| Nigella sativa            | Black seed   | Seeds ethanol extract possess antitumor activity in mice tumor primary cells; Thymoquinone, main active compound inhibited cell proliferation of many types of cancer cell lines i.e. breast, ovarian and human pancreatic adenocarcinoma, colorectal cancer, uterine sarcoma, human osteosarcoma, neoplastic keratinocytes and fibroascoma, lung carcinoma and suppression of, anti-apoptotic genes expression (e.g., IAP1, IAP2, XIAP Bcl-2, Bcl-xl), NF-kappa B activation pathway and thus enhances apoptosis induction. | 155–164 |
| Olea europaea             | Olive        | Hydroxytyrosol was found to induce apoptosis and arrest cell cycle progression at the G1 phase; Incidence of breast cancer was 70% less in rats group fed with olive oil; The oil extract was shown to reduce DNA damage (initiation), increase barrier function (promotion), and reduce cell invasion of surrounding tissue (metastasis); Oleuropein and hydroxytyrosol, major phenolic compound of olive oil, decreased cell viability, inhibited cell proliferation, induced cell apoptosis in MCF-7 breast cancer cells and may possibly be used to prevent cardiotoxicity induced by doxorubicin; Phenolic obtained extract from virgin olive oil was effective as antiproliferative and apoptosis-inducer in HL60 cells. | 165–172 |
| Peganum harmala           | Harmala, Africa Rue | Harmane alkaloids present causes DNA topoisomerase inhibition; Harine alkaloids present showed cytotoxicity against HL60 and K562 cell lines; Showed minor antitumor activity against several cell lines (human bladder carcinoma RT112, human laryngeal carcinoma Hep2 and human myelogenous leukemia K562); 8-carboline compounds are inhibitors of cyclin dependent kinases; Alkaloids isolated from the plant exhibited antiproliferative activity in human gastric cancer cells MGC-803. | 173–177 |
| Pistacia Lentiscus        | Mastic Tree  | Anthocyanins extracted induces apoptosis in haematopoietic cell carcinoma; P. lentiscus inhibit proliferation and induce death of HCT116 human colon cancer cells in vitro; Increase cell membrane integrity in cultured PC2 and HepG2 cells; Fixed oil and phenolic extract of the plant demonstrated antiproliferative activity in BHK21 cancer cell lines. | 178–181 |
| Punica granatum           | Pomegranate  | Fruit extract decreases proliferation and induced apoptosis of DU-145 prostate cancer cells and suppressed invasive potential of PC-3 cells; Showed significant inhibition of tumor growth in prostate tumor model mice; It is effective in inhibition of lung tumorigenesis in mice; Pomegranate inhibits inflammatory cell signaling in colon cancer; Peel and seeds oil have been shown to be effective against tumor cell proliferation, cell cycle, invasion and angiogenesis; | 182–192 |

(continued on next page)
results in treating or reducing the cancer progression. Most of the aforementioned (Table 1) plants have been studied in-depth for the immunomodulatory and cancer treatment purposes i.e. *N. sativa*, *Accacia seyal*, *A. sativum*, *Olea europaea*, *Vitis vinifera*, resulting in isolation of lead compound with promising results in treating cancer. Resveratrol is a leading example isolated from *V. vinifera* applied effectively in treating cancer. Likewise Thymoquinone from *N. sativa* is proved an immunomodulatory for treatment in cancer therapy along with alliin and allilcin from *A. sativum* and *Oleae europeae* showed antioxidant and anticancer effects.

The aforementioned examples are an indication for the folkloric TAI plants implicated in the form of crude extract, fractions or sub-fraction in treating cancer, to be studied further in order to isolate active drug for cancer treatment. This review article provides data regarding TAI plants having folkloric uses and utilized in TAI system for treating cancer. The purpose of this study is to highlight these plants in order to be studied more for their biological, therapeutic and toxicological properties. Advancement in science and analytical techniques provides opportunities to study these plants for reducing any toxicological effects related to the use of these plants in cancer. These plants, as showed considerable results in treating cancer, even in the form of crude extract can be converted to nanoparticles or nanoemulsions in order to enhance its bioavailability and targeted therapy in the affected areas of cancer. These plants have a wide scope to be utilized for covering the deficient areas and hurdles of treating cancer as they having reports for folkloric uses with well-established research literature mentioned in Table 1 for individual plants.

The Table 1, helps to provide a list of plants used in cancer as well as available literature in order to accomplish the purpose of study i.e. TAI plants needs more research exploration. Despite the fact, some plants have been studied in the form of crude extract as well as isolation of therapeutic ingredient, via bioassay guided isolation, still most of the plants having lack of studies with respect to toxicity and mechanism involved during cancer treatment and hence needs further research profiling. Similarly most of the isolated active drugs showed greater toxicity as compared to crude extract. Table 1 gathers all these plants and the literature study regarding use in cancer providing sufficient information to use these plants in crude form as well as combination of these plants in raw or crude extract form for the treatment of cancer.

As mentioned in table, different types of cancer and tumors have been treated with these TAI plants which includes; hepatocellular carcinoma, breast adeno carcinoma, lung carcinoma, colorectal carcinoma, colorectal, breast, and lung cancers, esophageal and stomach cancer, prostate cancer, solid melanoma in the skin and benign prostate hyperplasia. The TAI plants showed cytotoxicity against different cell lines i.e.; larynx Hep-2 cells, BJAB cells, PC-3, A-549 and MCF-7 cancer cells, PC12 and HepG2 cells, HCT116 human colon cancer cells, human bladder carcinoma RT112, human laryngeal carcinoma Hep2 and human myelogenous leukemia K562, HL60 and K562 cell lines, 6C3HED solid lymphosarcoma cells, A549 (human lung cancer cell), and DU-145 and LNCaP (human prostate cancer cell lines), (ER)-positive (ER+); MCF-7 and BT474 and ER-negative (ER-); MDA-MB-231 and BT20) human breast cancer cell lines and HO-8910 & 7721 cell lines showing effective cancer treatment by these plants.

Different mechanism i.e.; chemo preventive, antioxidants, Topoisomerase-I and II enzymes inhibition, suppresses tumor necrosis factor alpha, G1-phase cell cycle arrest with an induction of p21 and a reduction of cyclin D1, inhibitory effect on nuclear factor κB (NF-κB) activity, mitogen-activated protein (MAP) kinase activation, protected DNA against oxidative damage to its deoxyribose moiety and inhibition of adenosine deaminase activity in prostate cancer were evaluated for these TAI showing promising result. The literature cited in current review article highlights the lead compounds isolated which may be a target and source of new drug development for researchers in order to modify, carry out SAR and study new pathways in order to find a complete cure for cancer. The lead compounds isolated and discussed are; Hirsutane, Flavonoid glycosides, Lignans, isoflavones, and phenolic acids, Anthocyanins, Oleanane and Harmine alkaloids, Oleuropein and hydroxytyrosol, Hydroxytyrosol, Thymoquinone, Pseudolycoreine alkaloid, Cucurbitane-type triterpenoids, Crocin and carotenoid ingredients of saffron, Cucurbitacin-type triterpene glucoside, Subamone a novel *Cinnamomum* monoterpenoid and Camphorin,

### Table 1 (continued)

| Plant name | English name | Ethno pharmacological profile in cancer | References |
|------------|--------------|----------------------------------------|------------|
| Quercus calliprinos | Palestine Oak | Methanolic extract of peel and seeds exhibited antitumor activity in A549 (lung non small cell carcinoma), MCF-7 (breast adenocarcinoma), SKOV3 (ovarian cancer cells), and PC-3 (prostate adenocarcinoma) cells; Polyphenolic-rich extracts of the non-edible parts of *P. granatum* induced apoptosis in human U266 multiple myeloma cells. | 4,5,7,193 |
| Thymus vulgaris | Thyme | Exhibited cytotoxic effect against PC-3, A-549 and MCF-7 cancer cells; Demonstrated notable growth inhibition in leukemia cell lines. | 125,148,193 |
| Triticum aestivum | Wheat | Wheat bread can prevent colon tumorigenesis; Lignans (in wheat) are also thought to be involved in cancer prevention in mice probably by apoptotic mechanisms; Bioactive components i.e. vitamins, lignans, isoflavones, and phenolic acids act as antioxidants or via mechanisms related to inhibition of tumor progression; Demonstrated antiproliferative activity in HCT 116 and A549 cancer cell lines; A phenolic compound in the plant Triticumoside demonstrated apoptosis in human lung cancer cells. | 194–199 |
| Zingiber officinal | Ginger | Exhibited cytotoxic effect against PC-3, A-549 and MCF-7 cancer cells; | 148,200–202 |
| Urtica pilulifera | Stinging Nettle | Studies reported the benefits of ginger supplementation in reducing risk of liver cancer and breast neoplasms. | 4,39,203–206 |
| Viscum cruciatum | Red-berry mistletoe | Hexanoic extract showed cytotoxic effect against larynx Hep-2 cells; | 4,39,137,207,208 |
| Vitis vinifera | Grapes | Exhibited cytotoxic effect against PC-3, A-549 and MCF-7 cancer cells; | 148,209–213 |
| *A. sativum* | Saffron | Alkaloid, Cucurbitane-type triterpenoids, Crocin and carotenoid ingredients of saffron, Cucurbitacin-type triterpenoid, Oleuropein, Hydroxytyrosol, Hydroxytyrosol, Thymoquinone, Pseudolycoreine alkaloid, Cucurbitane-type triterpenoids, Crocin and carotenoid | 4,39,209–213 |
Sesquiterpene lactones and Dihydroxychrysanolidone derivatives, Acetyl-11-keto-β-boswellic acid, 3-n-butyl phthalide and sedanolide and Senkyunolide-N, Senkyunolide-J & 3-hydroxymethyl-6-methoxy-2, 3-dihydro-1H-indol-2-ol and Anethofuran. The nature and structures as well as classes of aforementioned compounds are source of knowledge for finding effective class of drugs to be utilized in cancer treatment.

The table also includes herbs which are used as food or nutraceuticals. These Arabic and Islamic plants, used in any of the modality as aforementioned, showed the better alternative source for the treatment of cancer and malignancies. The extracted material from literature survey of these Arabic and Islamic traditional medicinal plants as mentioned in Table 1 justifies the fact; Arabic and Islamic traditional plant as medicine, are well documented in literature. The next major outcome of the study proved significant is; the active use of these folkloric used traditional plants by most of the practitioners, even today. These plants are the major source for research too and numerous pharmacological, toxicological, biological and cytotoxicity studies have been carried out for these herbs as shown by the unlimited literature available for each plant.

4. Conclusion

The wisdom of the past led to the discovery of chemopreventive drugs. The Arabic and Islamic plants studied in this review article are more important as alternate for cancer research and treatment. These traditional plants and their folkloric/traditional pharmacological profile need to be preserved. The main area of emphasis; isolation of the active chemical having potency to treat cancer with minimal side effects and ensuring the safe use of these medicinal plants, should be strived more. These plants need effective utilization in order to make a hallmark through complete cancer cure and cheap regimen to be available for ordinary population.

References

1. World Health Organization, W.H.O. Traditional Medicine Strategy; 2014–2023. available at: http://www.who.int/en/
2. National Centre for Complementary and Alternative Medicine. National Survey Reports on Consumer Spending for CAM Products and Services; 2011. http://nccam.nih.gov/health/whatiscam/
3. Avi Senna AH. Alkanoon Fi Alith (The Rules of Medicine); 1037. Four Volumes, Printed in 1993 by El Aldin Publications, Beirut, Lebanon (in Arabic).
4. Zaid H, Rayyan A, Said O, Said B. Cancer treatment by Geo-Arab and Islamic herbal medicine. Open Nutraceuticals J. 2010;3:203–212.
5. Saad B, Azaizeh H, Said O. Arab herbal medicine. Bot Med Clin Pract. 2008;4:31.
6. Saad B, Azaizeh H, Abu-Hijleh G, Said O. Safety of traditional Arab herbal medicine. eCAM. 2006;3:433–439.
7. Saad B, Azaizeh H, Said O. Arab herbal medicines. Bot Med. 2008;16:32.
8. Said O, Fulder S, Khalil K, Azaizeh H, Kassis E, Saad B. Maintaining a physiologic blood glucose level with ‘glucoselev’, a combination of four anti-diabetes plants used in the traditional Arab herbal medicine. eCAM. 2008;5: 421–428.
9. Toni I, Flaminii E, Mercatali L, Sacanna E, Serra P, Amadori D. Pathogenesis of osteoblastic bone metastases from prostate cancer. Cancer. 2010;116: 1406–1418.
10. Barnes PM, Bloom B, Nahin RL. Complementary and alternative medicine use among adults and children: United States. Natl Health Stat Rep. 2007;12:1–23.
11. World Health Organization, W.H.O. at 11–12. TM Strategy, supra note 4.
12. World Health Organization, W.H.O. at supra note 4.
13. World Health Organization, W.H.O. at 11. TM Strategy, supra note 4.
14. World Health Organization, W.H.O. at 1. TM Strategy, supra note 4.
15. Australian social trends. Complementary Therapies; 2008. Sydney, Australian Bureau of Statistics, 2008 (Report No.4102.0) http://www.abs.gov.au/AUSSTATS/abs.
16. Report of a survey on ToCM basic situation in 2009. 2011 (in Chinese). Place of publication, State Administration of Traditional Chinese Medicine.
17. Lao Ministry of Health and World Health Organization. Health Service Delivery Profile, Lao PDR; 2012; 2012. Compiled in collaboration between WHO and Ministry of Health, Lao PDR, 2012 http://www.wpro.who.int/health_services/service_delivery_profile_lao2012.pdf.
52. Yildirim Y, Tinar S, Yorgun S, et al. The use of complementary and alternative medicine (CAM) therapies by Turkish women with gynaecological cancer. Eur J Cancer. 2005;41:1993–2005.
53. Paltel A, Hafez E, Elsaid F, Amanullah M. Anti-cancer action of a new recombinant protein from the homeo-symbiotic fungus Aspergillus acapsulatus. Anticancer Res. 2014;34:51–3.
54. Mehrotra S, Mishra KP, Maurya R, et al. Anticellular and immunosuppressive properties of ethanolic extracts of Acorus calamus rhizome. Int Immunopharmacol. 2003;3:53–61.
55. Manikanth S, Srikumar R, Parthasarathy NJ, Devi RS. Protective effect of Acorus calamus LINN on free radical scavengers and lipid peroxidation in discrete regions of brain against noise stress exposed rat. Biol Pharm Bull. 2005;28:2372–2378.
56. El-Hallouty SM, Fayad W, Meky NH, EL-Menshawi BS, Wassel GM, Hasabo AA. In vitro anticancer activity of some Egyptian plant extracts against different human cancer cell lines. Int J Pharm Res Technol. 2015;8:267–272.
57. Patel A, Hafez E, Elsaid F, Amanullah M. Anti-cancer action of a new recombinant protein from the homeo-symbiotic fungus Aspergillus acapsulatus. Anticancer Res. 2014;34:51–3.
58. Said O, Zaid H, Saad B. Greco-Arab and Islamic herbal medicine and cancer chemotherapy: a simultaneous case-referent study of a high-epidemic area in Jiangsu Province, China. Jpn J Cancer Res. 1999;90:614–621.
59. Setiawan VW, Yu GP, Lu QY. Allium vegetables and stomach cancer risk in China. Asia Pac J Cancer Prev. 2005;6:387–395.
60. Colli JL, Amling CL. Chemoprevention of prostate cancer: what can be recommended to patients? Search results. Curr Urol Rep. 2009;10:165–171.
61. Haung AW, Chokalingam AP, Gao YT, et al. Allium vegetables and risk of prostate cancer: a population-based study. J Natl Cancer Inst. 2002;94:1648–1651.
62. Kim JY, Kwon O. Garlic intake and cancer risk: an analysis using the Food and Drug Administration's evidence-based review system for the scientific evaluation of health claims. Am J Clin Nutr. 2009;89:257–264.
63. Said O, Zaid H, Saad B. Greco-Arab and Islamic herbal medicine and cancer treatment/prevention. In: Watson RR, Preedy VR, eds. Foods, Herbs, and their Extracts: Cancer Treatment and Prevention. Taylor & Francis Group; 2009.
64. El-Hallouty SM, Fayad W, Meky NH, EL-Menshawi BS, Wassel GM, Hasabo AA. In vitro anticancer activity of some Egyptian plant extracts against different human cancer cell lines. Int J Pharm Res Technol. 2015;8:267–272.
65. Seyf P, Mostafaei A, Mansouri K, Arshadi D, Mohammadi-Motlagh Hamid-Reza, Kiani A. In vitro and in vivo anti-angiogenesis effect of shallot (Allium cepa L.) extracts possess differential antitumor activity and cytotoxicity to cancer cells. Int J Med Mushrooms. 2015;17:471–479.
66. Seyf P, Mostafaei A, Mansouri K, Arshadi D, Mohammadi-Motlagh Hamid-Reza, Kiani A. In vitro and in vivo anti-angiogenesis effect of shallot (Allium cepa L.) extracts possess differential antitumor activity and cytotoxicity to cancer cells. Int J Med Mushrooms. 2015;17:471–479.
67. Hsu YT, Chia CC, Chen PJ, Huang SE, Huang SC, Kuo PL. Shallot and licorice constituent isoliquiritigenin arrests cell cycle progression and induces apoptosis through the induction of ATM/p53 and initiation of the mitochon-drial system in human cervical carcinoma HeLa cells. Mol Nutr Food Res. 2009;53:826–835.
68. Mei X, Wang MC, Xu HX. Garlic and gastric cancer—the effect of garlic on nitrite and nitrate in gastric juice. Acta Nutr Sin. 1982;4:53–56.
69. Takezaki T, Gao CM, Ding JH, Liu TK, Li MS, Tajima K. Comparative study of lifestyles of residents in high and low risk areas for gastric cancer in Jiangsu Province, China; with special reference to allium vegetables. J Epidemiol. 1996;6:297–305.
70. Doerr C, Van den Brandt PA, Goldbohm RA, Sturmans F. Consumption of vegetables against both oesophageal and stomach cancer: a simultaneous case-referent study of a high-epidemic area in Jiangsu Province, China; with special reference to allium vegetables. J Epidemiol. 1996;6:297–305.
71. Lou Hong-Xiang. Inhibitory effect of acetyl-11-keto-β-boswellic acid on mouse tumor cells. Arch Med Res. 1976;7:38–44.
72. Gore S, Hafez E, Elsaid F, Amanullah M. Anti-cancer action of a new recombinant protein from the homeo-symbiotic fungus Aspergillus acapsulatus. Anticancer Res. 2014;34:51–3.
73. Gao LL, Feng L, Yao ST, et al. Molecular mechanisms of celery seed extract induced apoptosis via a phase cell cycle arrest in the B16F10 melanoma cancer cell line. Asia Pac J Cancer Prev. 2011;12:2601–2606.
74. Shi A, Hasan TN, Syed NA, et al. Artemisia absinthium (AA): a novel potent complementary and alternative medicine for breast cancer. Mol Biol Rep. 2012;39:7373–7379.
75. Krebs S, Omer TN, Omer B. Wormwood (Artemisia absinthium) suppresses tumor necrosis factor alpha and accelerates healing in patients with Crohn’s disease — a controlled clinical trial. Phytomedicine. 2010;17:305–309.
76. Gordanian B, Behbahani M, Carapetian J, Faziati M. In vitro evaluation of cytotoxic activity of flower, leaf, stem and root extracts of five Artemisia species. Res Pharm Sci. 2014;9:51–96.
77. El-Dosoky SK, Kim KH, Dh P, SY, Eweas AF, Gamal-Eldeen AM, Kim Young-Kyoon. A new pyrrole alkaloid isolated from Arum palatum Boiss. and its biological activities. Article Drug Discovery Arch Pharm Res. 2007;30:927–931.
78. El-Dosoky SK, Ryu SY, Kim Young-Kyoon. Piperazurin, a new bioactive alkaloid from Arum palatum Boiss. Tetrahedron Lett. 2007;48:4015–4017.
79. Ali-Shtayeh MS, Jamous RM, Al-Shafee JH, et al. Traditional knowledge of wild edible plants used in Palestine (Northern West Bank): a comparative study. J Ethnobiol Ethnomed. 2008;4:13.
80. Cole B, Burgoyne T, Lee A, Stehno-Bittel L, Zaid G. Erratum to: Arum Palae-stinum with isovanillin, linolenic acid and β-sitosterol inhibits prostate cancer spheroids and reduces the growth rate of prostate tumors in mice. BMC Complement Altern Med. 2011;11:280–284 (formerly Current Molecular Chemistry – Critical Evaluations).
81. Georgiev V, Weber J, Kneschke Eva-Maria, Denev PN, Bley T, Pavlov AI. Antioxidant and antioxidant activity of plants and hairy root cultures of the red beetroot Beta vulgaris cv. Detroit dark red. Plant Foods Hum Nutr. 2010;65:105–111.
82. Nowackli L, Vigneron P, Rotellini L, et al. Betanin-enriched red beetroot (Beta vulgaris L.) extract induces apoptosis and autophagic cell death in MCF-7 human breast cancer cells. J Tradit Complement Med. 2015;15:322.
83. Yuan Hui-Qing, Kong Feng, Wang Xiao-Ling, Young YFC, Hu Xiao-Yan. Lou Hong-Xiang. Inhibitory effect of acetyl-11-keto-β-boswellic acid on androgen receptor by interference of Sp1 binding activity in prostate cancer cell line (LNCaP). Arch Pharm Res. 2010;33:211–216.
84. Frank FM, Yang Q, Oiban J, et al. Frankincense oil derived from Boswellia carteri induces tumor cell specific cytotoxicity. BMC Complement Altern Med. 2009;9:6.
85. Chevrest MR, Ryan AE, Lee DY, Zhongze M, Wu-Yan Z, Via CS. Boswelia carteri extract inhibits TH1 cytokines and promotes TH2 cytokines in vitro. Clin Diag Lab Immunol. 2005;12:575–580.
86. Ahmed HH, Abd-Rabou AA, Hassan AZ, Rotob SE. Phytochemical analysis and anti-cancer investigation of Salvia serrata bioactive constituents in vitro. Asian Pac J Cancer Prev. 2015;16:7179–7188.
87. Polaka K, Kumar PU, Krishnaswamy K. Effect of Brassica nigra on Benzo[a]pyrene mutagenicity. Food Chem Toxicol. 1994;32:777–781.
88. Zulakova H, Vakal J. The role and effects of glucosinolates of Brassica species — a review. Rost Nutrition. 2002;48:175–180.
89. Lozano-Baena MD, Tassot I, Obregón-Cano S, de Haro-Balloon A, Muñoz-Serrano A, Alonso-Moraga A. Antigenotoxicity and tumor growing inhibition by Leafy Brassica carinata and Sinigrin. Molecules. 2015;20:15748–15765.
108. Sávio AL, da Silva GN, Salvadori DM. Inhibition of bladder cancer cell prolifera-
tion by allyl isothiocyanate (mustard essential oil). Mutat Res. 2015;771:164–450.

109. Brandi G, Schiavano GF, Zaffaroni N, et al. Mechanisms of action and anti-
proliferative properties of Brassica oleracea juice in human breast cancer cell 
lines. J Nutr. 2005;135:1503–1509.

110. Beecher CW. Cystic fibrosis and the beneficial effects of Brassica oleracea 
leaves of C. melo L. through radical scavenging activity of aqueous extract of Cucumis melo. IJBR. 2011;2:150–156.

111. Lee KD, Park KH, Park KM, Kim JH, Rim YS, Yang MS. Cytotoxic activity and 
genotoxic potential of senna (Cassia angustifolia Vahl.) aqueous extract using in vitro assays. Toxicol In Vitro. 2008;22:212–218.

112. Aymard SN, Abdel-Lateff A, Alarif WM, Patacchioli FR, Badria FA, Ezmirly ST. A review of the application and pharmacological properties of Taxus brevifolia. Int J Oncol. 2012;39:1129–1135.

113. Lee KD, Yang MS, Ha TJ, Park KM, Park KH. Isolation and identi-
cation activities associated with Chrysanthemum coronarium essential oil. Evid Based Complement Altern Med. 2015;2015.

114. Xia D, Zeng Y, Prakash L, Badmaev V, Majeed M, Singh SV. Reactive oxygen species-dependent apoptosis by gugulipid extract of Ayurvedic medicine plant Commiphora molmol in prostate cancer cells is regulated by c-Jun N-terminal kinase. Mol Pharmacol. 2011;79:499–507.

115. Shi M, Ahumada MC, Garcia MD. Extracts from Viscum and Cretaegus are cytotoxic against larynx cancer cells. Z Naturforsch. 1997;52c:42–44.

116. Moustapha N, Pinol RJ, Zorn-Labrie E, et al. Cytotoxicity and anti-proliferative activity, cell cycle arrest, and apoptosis in human HT-29 and HCT-116 colorectal cancer cells. J Cell Biochem. 2016;117:1262–1272.

117. Aung HT, Wang CZ, Ni M, et al. Crocin from Crocus sativus possesses signif-
nificant anti-proliferation effects on human colorectal cancer cells. Exp Oncol. 2007;29:175–180.

118. Abdel-Aal EI, Riverón-Negrete L, Caballero-Ortega H, et al. Use of in vitro assays to assess the potential antioxidant and cytotoxic effects of saffron (Crocus sativus L.). J Ethnopharmacol. 2003;81:731–737.

119. Salomi MJ, Nair SC, Panikkar KR. Inhibitory effects of Nigella sativa and saffron on chemical carcinogenesis in mice. Nutr Cancer. 1991;16:657–672.

120. Chen S, Zhao S, Wang X, et al. Crocin inhibits cell proliferation and enhances 
cisplatin and pemetrexed chemosensitivity in lung cancer cells. Transl Lung Cancer Res. 2015;4:775–783.

121. Bakhsh H, Hakkim FL, Sam S. Molecular mechanism of Crocin induced cas-
pase mediated MCF-7 cell death: in vivo toxicity profiling and in vivo macrophage activation. Asian Pac J Cancer Prev 2016;17:1499–1506.

122. Chen C, Qiang S, Lou L, Zhao W. Cucurbitane-type triterpenoids from the 
medicinal herb, Cucumis melo m. J Nat Prod. 2008;71:824–829.

123. Lester G, Melon (Cucumis melo) fruit nutritional quality and health func-
tionality. HortTechnology. 1997;7:222–227.

124. Vyasuna Devi PA, Sharmila S, Divya Priyanger. S. In-vitro cytotoxicity and free 
radical scavenging activity of aqueous extract of Cucumis melo. JBR. 2011;2:195–209.

125. Lee KD, Park KH, Park KM, Kim JH, Rim YS, Yang MS. Cytotoxic activity and 
structural analogues of Guainolide derivatives from the flower of Chrysan-
themum coronarium L. J Appl Biol Chem. 2003;46:29–32.

126. Lee KD, Yang MS, Ha TJ, Park KM, Park KH. Isolation and identification of dicydroxychoyanolide and its 1-3 epimer from Chrysanthemum coronarium L. Biosci Biotechnol Biochem. 2002;66:862–865.

127. Bardawell SK, Hudaib MM, Tawahe KA, Bashatwall RM. Studies on the in vitro antiproliferative, antimicrobial, and anticholesterol activity 
of aqueous extract with Chrysanthemum coronarium essential oil. Evid Based Complement Altern Med. 2015;2015.

128. Hazra B, Sarkar R, Bhattacharyya S, Roy P. Tumour inhibitory activity of 
chocory root extract against Ehrlich ascites carcinoma in mice. Fitoterapia. 2002;73:730–733.

129. Sultana S, Perwaiz S, Iqbal M, Athar M. Crude extracts of hepatoprotective 
plants, Solanum nigrum and Cichorium intybus inhibit free radical-mediated 
DNA damage. J Ethnopharmacol. 1995;45:189–192.

130. Esmaeileighig, Koushayeh SA, Amghirtoft Z. An investigation of the growth inhibitory capacity of several medicinal plants from Iran on tumor cell lines. Iran J Cancer Prev. 2015;8:4032.

131. Ling Jun, Liu Wang-Yi. Cytotoxicity of two new ribosome-inactivating pro-
teins, cinnamomum and camphor, to carcinomas cells. Cell Biochem Funct. 1996;14:157–161.

132. Lin RJ, Lo WL, Wang YD, Chen CY. A novel cytotoxic monoterpenoid from the 
leaves of Cinnamomum subveniens. Nut Prod Res Former Nat Prod Lett. 2003;17:105–110.

133. Banerjee S, Welsch CW, Rao AR. Modulatory influence of camphor on the 
activities of hepatic carcinogen metabolizing enzymes and the levels of hepatic 
and estrogen-related hepatic enzymes in mice. Cancer Lett. 1995;88:163–169.

134. Tannin-Spitz T, Grossman S, Movrat S, Gottlieb HE, Bergman M. Growth 
inhibitory activity of cucurbitacin glucosides isolated from Citrullus colo-
cynthus on human breast cancer cells. Biochem Pharmacol. 2007;73:56–67.

135. Asyad SN, Abdel-Lateef A, Alarif WM, Al-Tamimi FR, Badria FA, Ezmirly ST. In vitro and in vivo study of curcubatins-type triterpene glucoside from Citrullus colocynthis growing in Saudi Arabia against hepaticcellular car-
noma. Environ Toxicol Pharmacol. 2012;33:245–251.

136. Mukhejee A, Patil SD. Effects of alkaloid rich extract of Citrullus colocynthis fruits on Artemia Salina and Human Cancerous (MCF-7 AND HEPC-2) cells. J PharmacolSciTech. 2012;1:15–19.

137. Al-Harbi MM, Qureshi S, Raza M, Ahmed MM, Afzal M, Shah AH. Gastric antinociception and cytoprotective effect of Commphora molmol in rats. J Ethnopharmacol. 1997;5:141–150.

138. Ashra YMM, EI-Sayed YA, Khamaisa RM, EI-Ashamawy JM. Oxidative stress and immunotoxic effects of lead and their amelioration with myrhh (Commiphora molmol) emulsion. J Nat Prod. 2004;67:224–231.

139. Al-Harbi MM, Qureshi S, Ahmed MM, Rafatullah S, Shah AH. Effect of Commphora molmol (Oleum-gum-resin) on the cytological and biochemical changes induced by cyclophosphamide in mice. Am J Chin Med. 1994;22: 77–83.

140. Mallavaadhuni UV, Chandrashhekar M, Nayak VL, Ramkrishna S. Synthesis and anticancer activity of novel fused pyrimidine hybrids of myrhanone C, a bicyclic triterpene of Commphora molmol gum resin. Mol Divers. 2015;19:745–757.
165. Owen RW, Giacosa A, Hull WE, Haubner R, Spiegelhalder B, Bartsch H. The antioxidant/anti-cancer potential of phenolic compounds isolated from olive oil. J Agr Food Chem. 2008;56:1235–1242.

166. Covas MJ. Bioactive effects of olive oil phenolic compounds in humans: reduction of heart disease factors and oxidative damage. Inflammopharmacology. 2008;16:216–218.

167. Fito M, de la Torre B, Farre-Albaladejo M, Khyemenetz O, Marrugat J, Covas MJ. Bioavailability and antioxidant effects of olive oil phenolic compounds in humans: a review. Ann Ist Super Sanita. 2007;43:375–381.

168. Goulas V, Exarchou V, Trogianis AN, et al. Phytochemicals in olive-leaf extracts and their anti-proliferative activity against cancer and endothelial cells. Mol Nutr Food Res. 2009;53:600–608.

169. Han J, Talorete TP, Yamada P, Isoda H. Anti-proliferative and apoptotic effects of oleuropein and hydroxytyrosol on human breast cancer MCF-7 cells. Cytotechnology. 2009;59:45–53.

170. Andreoudi I, Sigala F, Iliodromitis EK. Acute doxorubicin cardiotoxicity is successfully treated with the phytochemical oleuropein through suppression of oxidative and nitrosative stress. J Mol Cell Cardiol. 2007;42:549–558.

171. Viscoli F, Gallo C. Phenolics from olive oil and its waste products. Biological activities in vitro and in vivo studies. World Rev Nutr Diet. 2001;88:233–237.

172. Fahami R, De Bartolomeo A, Rosignoli P, et al. Virgin olive oil phenols inhibit proliferation of human promyelocytic leukaemia cells (HL60) by inducing apoptosis and differentiation. J Nutr. 2006;136:614–619.

173. Sobhani AM, Ebrahimi SA, Mahmoudian M. An in vitro evaluation of human DNA topoisomerase-I inhibition by Peganum harmala L seeds and extract and its beta-carboline alkaloids. J Pharm Sci. 2002;91:19–23.

174. Jahaniani F, Ebrahimi SA, Rahbar-Roshandel N, Mahmoudian M. Xanthomorich is the main cytotoxic component of Dracocephalum kotschyii and a potential beta-carboline alkaloids. Anticancer Res. 2013;55:2022–2028.

175. Li Y, Liang F, Jiang W, et al. DH334, a β-carboline anti-cancer drug, Inhibits the CDK activity of budding yeast. Cancer Biol Ther. 2007;6:8.

176. Wang CH, Zeng H, Wang YH, et al. Antitumor quinazoline alkaloids from the seeds of Peganum harmala. J Asian Pac J Cancer Prev. 2015;16:505–600.

177. Balan KV, Prince J, Han Z, Dimas K, Cladaras M, Wyche JH. Antiproliferative targets, and development autophagy inhibition enhances anthocyanin-induced apoptosis in hepatocellular carcinoma. Mol Cancer Ther. 2008;7:2476–2485.

178. Poudel B, Ki HH, Luyen BT, Lee YM, Kim YH, Kim DK. Antiproliferative, apoptotic and antioxidant effects of Punica granatum (Pomegranate) peel extract on different human cancer cell lines. Nutr Food Res. 2013;57:202–208.

179. Aydos OS, Avc A, Ozkan T, et al. Antiproliferative, apoptotic and antioxidant activities of wheatgrass (Triticum aestivum L) extract on CML (K562) cell line. Turk J Med Sci. 2011;41:567–663.

180. Mathankumar M, Tamizhveli R, Manickam P, Uthayot G. Anticancer activity of oleuropein against Vicia faba (faba bean) plants against human prostate cancer. Life Sci. 2001;88:1592–1604.

181. Kothe R, Uchida H, Minamikawa T, et al. Anticancer or anti-inflammatory activity of flavonoid glycoside 3 from Ficus carica. J Agr Food Chem. 2006;54:980–986.

182. Lujbuncic P, Azaizeh H, Portnaya I, et al. Antioxidant and cytotoxic activities of eight plants used in traditional Arab medicine in Israel. J Ethnopharmacol. 2005;99:43–47.

183. Kusumadewi D, Wiyono D, Hardjowijono B, et al. Antioxidant activities and antimicrobial activities of some traditional Indonesian medicinal plants. Asia Pacific J Cancer Prev. 2014;15:291–295.

184. Mezru F, Shili S, Ben Ali N, Larbi Khouja M, Khaldi A, Maarouf Ljubuncic P, Azaizeh H, Portnaya I, et al. Antioxidant activity and cytotoxicity of oleuropein from Olea europaea L. Antioxidants. 2015;4:602.

185. Kiraz Y, Neergheen-Bhujun VS, Rumiun N, Baran Y. Apoptotic effects of non-analytica polyphenolic extracts from grape stems against breast, colon, renal and thyroid carcinomas in traditional medicine of Jordan. J Ethnopharmacol. 2013;145:728–736.

186. Durak I, Birci H, Devrim E, Sozen S, Avc Aslan. Aqueous extract of Urtica dioica makes significant inhibition on adenosine deaminase activity in prostate tissue from patients with prostate cancer. Cancer Biol Ther. 2004;3:9.

187. Koch E. Extracts from fruits of saw palmetto (Seralea serrulata) and roots of stinging nettle (Urtica dioica): viable alternatives in the medical treatment of benign prostatic hyperplasia and associated lower urinary tract symptoms. J Med Plant Prod Res Plant Med. 2001;67:489–500.

188. Han J, Talorete TP, Yamada P, Isoda H. Anti-proliferative and apoptotic effects of oleuropein and hydroxytyrosol on human breast cancer MCF-7 cells. Cytotechnology. 2007;42:549–558.

189. Aydos OS, Avc A, Ozkan T, et al. Antiproliferative, apoptotic and antioxidant activities of wheatgrass (Triticum aestivum L) extract on CML (K562) cell line. Turk J Med Sci. 2011;41:567–663.

190. Mathankumar M, Tamizhveli R, Manickam P, Uthayot G. Anticancer activity of oleuropein against Vicia faba (faba bean) plants against human prostate cancer. Life Sci. 2001;88:1592–1604.

191. Aydos OS, Avc A, Ozkan T, et al. Antiproliferative, apoptotic and antioxidant activities of wheatgrass (Triticum aestivum L) extract on CML (K562) cell line. Turk J Med Sci. 2011;41:567–663.

192. Mathankumar M, Tamizhveli R, Manickam P, Uthayot G. Anticancer activity of oleuropein against Vicia faba (faba bean) plants against human prostate cancer. Life Sci. 2001;88:1592–1604.

193. Aydos OS, Avc A, Ozkan T, et al. Antiproliferative, apoptotic and antioxidant activities of wheatgrass (Triticum aestivum L) extract on CML (K562) cell line. Turk J Med Sci. 2011;41:567–663.

194. Mathankumar M, Tamizhveli R, Manickam P, Uthayot G. Anticancer activity of oleuropein against Vicia faba (faba bean) plants against human prostate cancer. Life Sci. 2001;88:1592–1604.

195. Aydos OS, Avc A, Ozkan T, et al. Antiproliferative, apoptotic and antioxidant activities of wheatgrass (Triticum aestivum L) extract on CML (K562) cell line. Turk J Med Sci. 2011;41:567–663.