International Surgery
The clinicopathological characteristics and genetic alterations of gastric cancer patients according to the Lauren classification
--Manuscript Draft--

Manuscript Number: INTSURG-D-20-00022

Full Title: The clinicopathological characteristics and genetic alterations of gastric cancer patients according to the Lauren classification

Article Type: Original Article

Keywords: gastric cancer; Lauren classification; clinicopathological feature; genetic alteration; prognosis

Corresponding Author: Wen-Liang Fang
Taipei Veterans General Hospital
Taipei, TAIWAN

Corresponding Author Secondary Information:

Corresponding Author's Institution: Taipei Veterans General Hospital

Corresponding Author's Secondary Institution:

First Author: Han-Fang Cheng

First Author Secondary Information:

Order of Authors: Han-Fang Cheng
Kuo-Hung Huang
Ming-Huang Chen
Wen-Liang Fang
Chien-Hsing Lin
Yee Chao
Su-Shun Lo
Anna Fen-Yau Li
Chew-Wun Wu
Yi-Ming Shyr

Abstract:
Objective
The Lauren classification is an important histological classification of gastric cancer (GC) with different biological behaviors between histological types.

Background
To date, there are few reports on the genetic alterations and survival differences between different histological types according to the Lauren classification.

Methods
In total, 433 GC patients undergoing surgery were enrolled. The clinicopathological features, prognoses, and genetic alterations of the different Lauren types were compared.

Results
Diffuse-type GC was associated with a younger age, female predominance, more Borrmann type 3 and 4 tumors, more advanced pathological tumor (T) and node (N) categories, more tumor recurrences (especially peritoneal recurrence), and worse 5-year overall survival and disease-free survival rates than intestinal-type GC and mixed-type GC. Regarding genetic alterations, mixed-type GC was associated with more TP53 mutations than intestinal-type GC and diffuse-type GC. Multivariate analysis demonstrated the following independent prognostic factors: age, Lauren classification, and pathological T and N categories. Regarding mixed-type GC, diffuse-type major tumors were associated with more lymphovascular invasion, a more advanced N category and TNM stage, and fewer PI3K/AKT pathway mutations than intestinal-type major tumors.

Conclusions

Diffuse-type GC had unfavorable clinicopathological features and a worse prognosis than intestinal-type GC. For mixed-type GC, the clinicopathological features and genetic alterations were different between intestinal-type major tumors and diffuse-type major tumors.
The clinicopathological characteristics and genetic alterations of gastric cancer patients according to the Lauren classification

Type of study: Original study

Running title: Genetic alterations in different Lauren types of gastric cancer

Han-Fang Cheng¹,², Kuo-Hung Huang¹,², Ming-Huang Chen²,³, Wen-Liang Fang¹,², Chien-Hsing Lin⁴, Yee Chao²,³, Su-Shun Lo²,⁵, Anna Fen-Yau Li²,⁶, Chew-Wun Wu¹,², Yi-Ming Shyr¹,²

¹Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
²School of Medicine, National Yang-Ming University, Taipei, Taiwan
³Center of Immuno-Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
⁴Genome Research Center, National Yang-Ming University, Taipei, Taiwan
⁵National Yang-Ming University Hospital, Yilan, Taiwan
⁶Department of Pathology, Taipei Veterans General Hospital, Taipei, Taiwan
*Address correspondence. Dr. Wen-Liang Fang, Division of General Surgery.

Department of Surgery, Taipei Veterans General Hospital, No. 201, Section 2, Shipai Road, Beitou District, Taipei 11217, Taiwan.

Tel: +886-2-2875-7536 Fax: +886-2-2875-7537

E-mail: s821094@hotmail.com

Conflict of interest

The authors declare that they have no conflict of interest.

Source of support

This study was supported by the grants from the Ministry of Science and Technology, Taiwan (107-2314-B-075 -007) and Taipei Veterans General Hospital, Taiwan (V109C-105). The funding sources had no role in the study design, data analysis, writing and submission of the manuscript.
The clinicopathological characteristics and genetic alterations of gastric cancer patients according to the Lauren classification

Type of study: Original study

Running title: Genetic alterations in different Lauren types of gastric cancer

Han-Fang Cheng1,2, Kuo-Hung Huang1,2, Ming-Huang Chen2,3, Wen-Liang Fang1,2, Chien-Hsing Lin4, Yee Chao2,3, Su-Shun Lo2,5, Anna Fen-Yau Li2,6, Chew-Wun Wu1,2, Yi-Ming Shyr1,2

1Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
2School of Medicine, National Yang-Ming University, Taipei, Taiwan
3Center of Immuno-Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
4Genome Research Center, National Yang-Ming University, Taipei, Taiwan
5National Yang-Ming University Hospital, Yilan, Taiwan
6Department of Pathology, Taipei Veterans General Hospital, Taipei, Taiwan

*Address correspondence. Dr. Wen-Liang Fang, Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, No. 201, Section 2, Shipai Road, Beitou District, Taipei 11217, Taiwan.
Tel: +886-2-2875-7536 Fax: +886-2-2875-7537
E-mail: s821094@hotmail.com

Conflict of interest
The authors declare that they have no conflict of interest.

Source of support

This study was supported by the grants from the Ministry of Science and Technology, Taiwan (107-2314-B-075 -007) and Taipei Veterans General Hospital, Taiwan (V109C-105). The funding sources had no role in the study design, data analysis, writing and submission of the manuscript.
Abstract

Objective: The Lauren classification is an important histological classification of gastric cancer (GC) with different biological behaviors between histological types.

Background: To date, there are few reports on the genetic alterations and survival differences between different histological types according to the Lauren classification.

Methods: In total, 433 GC patients undergoing surgery were enrolled. The clinicopathological features, prognoses, and genetic alterations of the different Lauren types were compared.

Results: Diffuse-type GC was associated with a younger age, female predominance, more Borrmann type 3 and 4 tumors, more advanced pathological tumor (T) and node (N) categories, more tumor recurrences (especially peritoneal recurrence), and worse 5-year overall survival and disease-free survival rates than intestinal-type GC and mixed-type GC. Regarding genetic alterations, mixed-type GC was associated with more TP53 mutations than intestinal-type GC and diffuse-type GC. Multivariate analysis demonstrated the following independent prognostic factors: age, Lauren classification, and pathological T and N categories. Regarding mixed-type GC, diffuse-type major tumors were associated with more lymphovascular invasion, a more advanced N category and TNM stage, and fewer PI3K/AKT pathway mutations than intestinal-type major tumors.

Conclusions: Diffuse-type GC had unfavorable clinicopathological features and a worse prognosis than intestinal-type GC. For mixed-type GC, the clinicopathological features and genetic alterations were different between intestinal-type major tumors and diffuse-type major tumors.

Keywords: gastric cancer; Lauren classification; clinicopathological feature; genetic
alteration; prognosis
Introduction

Gastric cancer (GC) is the sixth most common cancer and the second most common cause of cancer-related deaths worldwide.\(^1\) Surgical resection with curative intent remains the major therapeutic treatment for GC.

According to the Lauren classification proposed since 1965,\(^2\) gastric adenocarcinoma is divided into two major histological types: intestinal-type and diffuse-type. The two histological types have distinct clinicopathological and molecular features.\(^3\)-\(^5\) Diffuse-type GC is associated with a younger age, female predominance, a more advanced pathological tumor, node, metastasis (TNM) stage, and a worse prognosis than intestinal-type GC.\(^3\),\(^4\) A meta-analysis with 61,468 patients enrolled demonstrated that diffuse-type GC is an independent prognostic factor, which is not altered by race, stage, and exposure to chemotherapy.\(^6\) Regarding molecular differences, TP53 is the only mutated gene that occurs in both types of GC, while microsatellite instability (MSI) is more common in intestinal-type GC than in diffuse-type GC.\(^5\)

Some GC tissues, the so-called mixed-type, exhibit histological heterogeneity and consist of a mixture of intestinal and diffuse types. Our previous study\(^4\) showed that the clinicopathological features and prognosis of mixed-type GC were similar to those of diffuse-type GC. The survival rate of mixed-type GC was even reported to be worse than that of intestinal-type or diffuse-type GC.\(^7\) However, whether the major histological component has an impact on the clinicopathological and molecular features in mixed-type GC patients is still unknown.

In this study, we hypothesized that the major histological component in mixed-type GC might be associated with clinicopathological and molecular features. To verify our hypothesis, we divided patients with mixed-type GC into two groups
according to the major histological component: the intestinal-type major and diffuse-type major groups. The clinicopathological and molecular features were compared between the two subtypes. In addition, we compared the clinicopathological features, recurrence patterns, prognoses, and genetic alterations of the three histologic types, namely intestinal-type, diffuse-type, and mixed-type GC, according to the Lauren classification.

Methods

Patients and sample collection

A total of 433 patients who underwent gastrectomy for gastric adenocarcinoma between 2005 and 2010 were enrolled. Patients who had gastric stump cancer or a history of previous gastric surgery were excluded. Subtotal gastrectomy was performed for distal or middle third lesions, while total gastrectomy was performed for proximal third lesions. According to the Lauren classification, the enrolled patients were separated into three groups: intestinal-type, diffuse-type and mixed-type GC. For mixed-type GC, we divided the patients into two subgroups according to the histologic type: intestinal-type major (more than 50% of cancer cells were intestinal-type) and diffuse-type major (more than 50% of cancer cells were diffuse-type). All surgical specimens were examined by experienced pathologists.

The tumor tissues and normal gastric mucosa tissues were collected and stored in a biobank at our institution. The study was approved by the Ethical Committee of Taipei Veterans General Hospital. The study was performed in accordance with the Declaration of Helsinki. Written informed consent before tumor tissue collection was obtained from all study participants. The pathological staging of the GC was performed according to the 8th American Joint Committee on Cancer (AJCC)/Union
for International Cancer Control (UICC) TNM classification system.

Follow-up

Follow-up examinations were performed at our outpatient department every 3 months. Tumor recurrence was diagnosed by biopsies or by imaging studies when biopsies were not obtained. Tumor recurrence was classified as locoregional, hematogenous, distant lymphatic, or peritoneal. Tumor recurrence in the hepatoduodenal ligament, celiac axis, or peripancreatic region was defined as locoregional recurrence. Remote lymphatic metastasis (in the para-aortic, Virchow’s, and inguinal nodes) and pulmonary lymphangitic spread were defined as distant lymphatic recurrence.

Analysis of Helicobacter pylori infections, Epstein-Barr virus infections, microsatellite instability status, and genetic alterations

DNA extraction from tissue specimens was performed using the QIAamp DNA Tissue Kit (Qiagen, Valencia, CA) according to a previous report.

Both tumor and nontumor tissues were assessed for Helicobacter pylori (HP) infection with the polymerase chain reaction (PCR) method. The reference sequence of the HP reference genome (GenBank: AE000511.1) was used as described in a previous report.

Epstein-Barr virus (EBV) DNA assays were carried out using the Sequenom MassARRAY system (Sequenom, San Diego, CA).

For analysis of microsatellite instability (MSI) status, five reference microsatellite markers, D5S345, D2S123, D17S250, BAT25 and BAT26, were used to determine MSI status. MSI-high (MSI-H) was defined as ≥ 2 loci of instability with
5 markers, while MSI-low/stable (MSI-L/S) was defined as one locus or without MSI loci.¹¹

A MassARRAY system (Agena, San Diego, CA) was used to identify mutations in 8 GC-related genes (TP53, ARID1A, PTEN, PIK3CA, AKT1, AKT2, AKT3, and BRAF).¹⁰ Among them, PI3K/AKT pathway genetic mutations were defined as mutations identified in PIK3CA, PTEN, AKT1, AKT2, or AKT3.

The copy number of the PIK3CA gene was analyzed by quantitative real-time PCR, and the primer sequences of the long interspersed nuclear element-1 (LINE1 element) were used as an internal reference target.¹²

Statistical analysis

IBM SPSS Statistics 25.0 was used for statistical analyses. A χ² test with Yates correction or Fisher’s exact test was used to compare the categorical data. Overall survival (OS) was defined from the date of surgery to the date of death or last follow-up. The Kaplan–Meier method was used to perform the survival analysis and draw survival curves for OS. Univariate analysis of the covariates (prognostic factors) of OS was performed first. The covariates with P value <0.05 were selected for the entry of Cox proportional hazards model. Multivariate analysis using Cox proportional hazards model with likelihood ratio (forward stepwise) test for several steps of iteration was performed. A P value < 0.05 was defined as statistically significant.

Results

Clinicopathological features

As shown in Table 1, diffuse-type GC was associated with a younger age, female predominance, more Borrmann type 3 and 4 tumors, and more pathological T4
category than intestinal-type and mixed-type GCs. Intestinal-type GC were associated with fewer pathological N3 category than diffuse-type and mixed-type GCs.

Initial recurrence patterns

As shown in Table 2, patients with diffuse-type GC had more tumor recurrences than patients with intestinal-type or mixed-type GC (39.7% vs. 28.0% vs. 22.6%, \(P=0.019\)). Regarding the initial recurrence patterns, patients with diffuse-type GC had more distant metastases than patients with intestinal-type or mixed-type GC (34.7% vs. 25.2% vs. 19.4%, \(P=0.036\)), and peritoneal recurrences were especially notable (24.0% vs. 9.8% vs. 7.5%, \(P<0.001\)). There were no differences in locoregional recurrence or distant lymphatic recurrence between the three groups.

Analysis of genetic alterations

As shown in Table 3, patients with mixed-type GC had more TP53 mutations than those with intestinal-type or diffuse-type GC (18.4% vs. 8.4% vs. 7.9%, \(P=0.010\)). There were no significant differences in MSI phenotype or other genetic alterations between the three different histologic types.

Survival analysis

As shown in Figure 1A, the 5-year OS (51.2% vs. 45.2% vs. 38.1%, \(P=0.035\)) rates were significantly higher in intestinal-type GC, followed by mixed-type GC and diffuse-type GC.

The univariate analysis demonstrated that age, gender, tumor location, lymphovascular invasion, Lauren classification, and pathological T and N categories were significantly associated with OS. The aforementioned seven covariates were included in the multivariate analysis. The multivariate analysis using Cox proportional hazards model demonstrated that age, Lauren classification, and pathological T and N categories were independent prognostic factors (Table 4).
Analysis of the clinicopathological features and genetic alterations of mixed-type GC according to the major histological component

As shown in Table 5, regarding mixed-type GC, diffuse-type major GC was associated with more lymphovascular invasion, a more advanced pathological N category and a higher TNM stage than intestinal-type major GC.

As shown in Figure 1B, the 5-year OS (50.1% vs. 51.2%, P=0.636) rates were not significant different between the intestinal-type major tumors and the intestinal-type GC, while the 5-year OS (41.3% vs. 38.1%, P=0.294) rates were not significantly different between the diffuse-type major tumors and the diffuse-type GC.

Regarding genetic alterations (Table 3), diffuse-type major GC was associated with fewer PI3K/AKT pathway mutations (4.8% vs. 17.6%, P=0.026) than intestinal-type major GC.

Discussion

Our results showed that diffuse-type GC had unfavorable clinicopathological features and a worse prognosis than intestinal-type GC or mixed-type GC. Mixed-type GC was associated with more TP53 mutations than intestinal-type or diffuse-type GC. Regarding mixed-type GC, diffuse-type major GC was associated with more lymphovascular invasion, a more advanced N category and TNM stage, and fewer PI3K/AKT pathway mutations than intestinal-type major GC.

Diffuse-type GC was reported to be associated with a worse prognosis than intestinal-type GC,\(^3,4\) which is similar to our results. In addition, similar clinicopathological features and prognoses were observed between mixed-type GC and intestinal-type GC in the present study. Our previous study\(^4\) showed that the clinicopathological features and prognosis of mixed-type GC were similar to those of
diffuse-type GC; both aforementioned histological types had unfavorable clinicopathological features and worse prognoses than intestinal-type GC. Mixed-type GC was even reported to have worse survival than intestinal-type and diffuse-type GC. We hypothesized that the discrepant results between the present study and our previous study and other series might be due to differences in patient numbers and the major component of the histological type in mixed-type GC. To verify our hypothesis, we divided mixed-type GC into intestinal-type major and diffuse-type major. The 5-year OS rate of mixed-type GC was slightly lower for patients with diffuse-type major tumors than for those with intestinal-type major tumors, with no significant difference (41.3% vs. 50.1%, $P=0.386$), and patients with diffuse-type major tumors had significantly more lymphovascular invasion, a more advanced pathological N category and a higher TNM stage than patients with intestinal-type major tumors. In addition, as shown in Figure 1B, the survival curve for intestinal-type major tumors was close to that for intestinal-type GC, while the survival curve for diffuse-type major tumors was close to that for diffuse-type GC. It is reasonable that the biological behavior of mixed-type GC might be related to the major histologic component of either intestinal-type or diffuse-type tumors.

It was reported that in a subset of patients, diffuse-type GC that developed from intestinal-type GC had $PIK3CA$ mutations and that these tumors were susceptible to $mTOR$ inhibitors. Our novel findings demonstrated that for mixed-type GC, patients with intestinal-type major GC had more $PI3K/AKT$ pathway mutations than patients with diffuse-type major GC (17.6% vs. 4.8%, $P=0.026$). In addition, intestinal-type GC was associated with a slightly higher frequency of $PI3K/AKT$ pathway mutations than diffuse-type and mixed-type GC (17.4% vs. 10.5% vs. 10.5%). We hypothesized that $PI3K/AKT$ pathway mutations might play an important role in the development of
intestinal-type GC, and even in the intestinal-type major category of mixed-type GC. Targeted therapy might be beneficial for this subgroup of patients and further studies are required to validate our hypothesis. To date, there has been no report regarding the prognostic impact of the major histologic component on the mixed-type GC. Our results might provide useful information for future studies and management of this subtype of GC.

To date, it has been reported that genetic mutations are distinct between intestinal-type and diffuse-type of GC; only TP53 genetic mutations occur regularly in both intestinal and diffuse-type of GC.\(^5\) In the present study, the frequency of TP53 mutation was comparable between intestinal-type and diffuse-type (8.4% vs. 7.9%), which was significantly lower than mixed-type GC (18.4%). Whether more TP53 mutations are associated with the development of mixed-type GC has not yet been reported. Further in vitro and in vivo studies and studies enrolling more patients are required to validate our results.

There are some limitations in the present study. First, this is a retrospective study and selection bias exists. Second, the patient number is small in some subgroup analyses, and a study with more patients is required to validate our results. Third, the genetic panel was limited in the present study, as current practice NGS panels are more readily available. Although the expression of some genetic mutations was significantly different between different Lauren classifications of GC in the present study, a comprehensive study of genetic alterations is required to better understand gastric carcinogenesis and provide useful information for GC treatment in the future.

Conclusions

Diffuse-type GC had unfavorable clinicopathological features and a worse
prognosis than intestinal-type GC. For mixed-type GC, the clinicopathological features and genetic alterations were different depending on the major histological component of either intestinal-type or diffuse-type tumors.

Declarations

Informed consent policy

This study was approved by the Institutional Review Board of Taipei Veterans General Hospital (IRB No.: 2020-06-001BC) and in accordance with the Ethical Principles for Medical Research Involving Human Subjects, as outlined in The Declaration of Helsinki.

Availability of data and material

All data generated or analyzed during this study are included in this published article and its supplementary information files.

Acknowledgements

We thank Dr. Anna Fen-Yau Li for pathological diagnosis of Lauren’s classification of GC and Dr. Chien-Hsing Lin for the analysis of genetic alterations.

Conflict of interest

All the authors have no conflict of interest in relation with the manuscript.

Author’s Contributions

WLF and KHH analyzed and interpreted the patient data regarding the clinicopathological features and survival analysis. HFC prepared the original draft.
WLF reviewed and edited the manuscript. AFL performed the histological examinations of gastric cancer. All authors read the approved the final manuscript.
References

1. Ferlay J, Colombet M, Soerjomataram I, Mathers C, Parkin DM, Piñeros M et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. *Int J Cancer* 2019;144(8):1941-1953.

2. Lauren P. The two histologic main types of gastric carcinoma: diffuse and so-called intestinal type carcinoma. An attempt at a histo-clinical classification. *Acta Pathol Microbid Scan* 1965;64:31-49.

3. Qiu MZ, Cai MY, Zhang DS, Wang ZQ, Wang DS, Li YH et al. Clinicopathological characteristics and prognostic analysis of Lauren classification in gastric adenocarcinoma in China. *J Transl Med* 2013;11:58.

4. Chen YC, Fang WL, Wang RF, Liu CA, Yang MH, Lo SS et al. Clinicopathological Variation of Lauren Classification in Gastric Cancer. *Pathol Oncol Res* 2016;22(1):197-202.

5. Vauhkonen M, Vauhkonen H, Sipponen P. Pathology and molecular biology of gastric cancer. *Best Pract Res Clin Gastroenterol* 2006;20(4):651-674.

6. Petrelli F, Berenato R, Turati L, Mennitto A, Steccanella F, Caporale M et al. Prognostic value of diffuse versus intestinal histotype in patients with gastric cancer: a systematic review and meta-analysis. *J Gastrointest Oncol* 2017;8(1):148-163.

7. Zheng HC, Li XH, Hara T, Masuda S, Yang XH, Guan YF et al. Mixed-type gastric carcinomas exhibit more aggressive features and indicate the histogenesis of carcinomas. *Virchows Arch* 2008;452(5):525-534.

8. American Joint Committee on Cancer. AJCC cancer staging manual. 8th ed. New York: Springer; 2017.
9. Fang WL, Lan YT, Huang KH, Liu CA, Hung YP, Lin CH et al. Clinical significance of circulating plasma DNA in gastric cancer. *Int J Cancer* 2016;138(12):2974-83.

10. Fang WL, Huang KH, Chang SC, Lin CH, Chen MH, Chao Y et al. Comparison of the Clinicopathological Characteristics and Genetic Alterations Between Patients with Gastric Cancer with or Without Helicobacter pylori Infection. *Oncologist* 2019;24(9):e845-e853.

11. Fang WL, Chang SC, Lan YT, Huang KH, Chen JH, Lo SS et al. Microsatellite instability is associated with a better prognosis for gastric cancer patients after curative surgery. *World J Surg* 2012;36(9):2131-2138.

12. Fang WL, Huang KH, Lan YT, Lin CH, Chang SC, Chen MH et al. Mutations in PI3K/AKT pathway genes and amplifications of PIK3CA are associated with patterns of recurrence in gastric cancers. *Oncotarget* 2016;7(5):6201-6220.

13. Fukamachi H, Kim SK, Koh J, Lee HS, Sasaki Y, Yamashita K et al. A Subset of Diffuse-Type Gastric Cancer Is Susceptible to mTOR Inhibitors and Checkpoint Inhibitors. *J Exp Clin Cancer Res* 2019;38(1):127.
Figure Legends:

Figure 1. (A) The 5-year OS (51.2% vs. 45.2% vs. 38.1%, P=0.035) rates were significantly higher in intestinal-type GC, followed by mixed-type GC and diffuse-type GC. Mixed-type GC was divided into two groups: intestinal-type major tumors and diffuse-type major tumors. (B) The 5-year OS (50.1% vs. 51.2%, P=0.636) rates were not significant different between the intestinal-type major tumors and the intestinal-type GC, while the 5-year OS (41.3% vs. 38.1%, P=0.294) rates were not significantly different between the diffuse-type major tumors and the diffuse-type GC.
Table 1. Clinical profiles in GC patients with different Lauren types.

Variables	Total patients	Intestinal-type	Diffuse-type	Mixed-type	P value
	n=433	n=167	n=152	n=114	
	n (%)	n (%)	n (%)	n (%)	
Age					<0.001
<65 years	185 (42.7)	53 (31.7)	91 (59.9)	41 (36.0)	
≥65 years	248 (57.3)	114 (68.3)	61 (40.1)	73 (64.0)	
Gender					<0.001
Male	303 (70.0)	132 (79.0)	87 (57.2)	84 (73.7)	
Female	130 (30.0)	35 (21.0)	65 (42.8)	30 (26.3)	
Tumor size					0.202
<5 cm	158 (36.5)	67 (40.1)	47 (30.9)	44 (38.6)	
≥5 cm	275 (63.5)	100 (59.9)	105 (69.1)	70 (61.4)	
Tumor location					0.576
Upper stomach	85 (19.6)	35 (21.0)	31 (20.4)	19 (16.7)	
Middle stomach	149 (34.4)	46 (27.3)	65 (42.8)	38 (33.3)	
Lower stomach	186 (43.0)	86 (51.5)	48 (31.6)	52 (45.6)	
Whole stomach	13 (3.0)	0	8 (5.3)	5 (4.4)	
Gross appearance					0.004
Superficial type	50 (11.5)	17 (10.2)	19 (12.5)	14 (12.3)	
Borrmann type 1	24 (5.5)	12 (7.2)	4 (2.6)	8 (7.0)	
Borrmann type 2	100 (23.1)	45 (26.9)	23 (15.1)	32 (28.1)	
Borrmann type 3	192 (44.3)	76 (45.5)	69 (45.4)	47 (41.2)	
Borrmann type 4	67 (15.5)	17 (10.2)	37 (24.3)	13 (11.4)	
Lymphovascular invasion	307 (70.9)	117 (70.1)	102 (67.1)	88 (77.2)	0.191
HP infection	226 (52.2)	81 (48.5)	80 (52.6)	65 (57.0)	0.370
EBV infection	57 (13.2)	19 (11.4)	23 (15.1)	15 (13.2)	0.612
Pathological T category					0.020
T1	64 (14.8)	27 (16.2)	23 (15.1)	14 (12.3)	
T2	58 (13.4)	31 (18.6)	8 (5.3)	19 (16.7)	
T3	154 (35.6)	50 (29.9)	54 (35.5)	50 (43.9)	
T4	157 (36.3)	59 (35.3)	67 (44.1)	31 (27.2)	
Pathological N category					<0.001
N0	114 (26.3)	56 (33.5)	30 (19.7)	28 (24.6)	
N1	67 (15.5)	32 (19.2)	23 (15.1)	12 (10.5)	
N2	104 (24.0)	45 (26.9)	35 (23.0)	24 (21.1)	
N3	148 (34.2)	34 (20.4)	64 (42.1)	50 (43.9)	
Pathological TNM Stage					0.117
I	83 (19.2)	40 (24.0)	22 (14.5)	21 (18.4)	
II	97 (22.4)	44 (26.3)	28 (18.4)	25 (21.9)	
III	216 (49.9)	71 (42.5)	87 (57.2)	58 (50.9)	
IV	37 (8.5)	12 (7.2)	15 (9.9)	10 (8.8)	

T: Tumor; N: Node; TNM: Tumor, Node, Metastasis; bold: statistically significant
Table 2. The initial recurrence pattern in GC patients with different Lauren types.

	Total patients	Intestinal-type	Diffuse-type	Mixed-type	P value
Total patients with recurrence	109 (30.5)	40 (28.0)	48 (39.7)	21 (22.6)	0.019
Locoregional recurrence	40 (11.2)	16 (11.2)	16 (13.2)	8 (8.6)	0.569
Distant metastasis	96 (26.9)	36 (25.2)	42 (34.7)	18 (19.4)	0.036
Peritoneal dissemination	50 (14.0)	14 (9.8)	29 (24.0)	7 (7.5)	<0.001
Hematogenous metastasis	44 (12.3)	20 (14.0)	13 (10.7)	11 (11.8)	0.717
Liver	31 (8.7)	17 (11.9)	8 (6.6)	6 (6.5)	0.213
Lung	6 (1.7)	2 (1.4)	1 (0.8)	3 (3.2)	0.345
Bone	8 (2.2)	4 (2.8)	2 (1.7)	2 (2.2)	0.695
Brain	1 (0.3)	0	0	1 (1.1)	0.155
Adrenal	1 (0.3)	0	1 (0.8)	0	0.861
Skin	4 (1.1)	1 (0.7)	2 (1.7)	1 (1.1)	0.725
Distant lymphatic recurrence	22 (6.2)	8 (5.6)	12 (9.9)	2 (2.2)	0.060

Some patients had more than one recurrence pattern; bold: statistically significant
Variables	Total n=433	Lauren’s classification	Mixed type GC	
		Intestinal-type n=167	Intestinal-type major n=51	
		Diffuse-type n=152	Diffuse-type major n=63	
		Mixed-type n=114	P value	
	n (%)	n (%)	n (%)	
		Intestinal-type	Diffuse-type	
		major n=51	major n=63	
		n (%)	n (%)	P value
MSI status			0.117	0.648
MSI-H	40 (9.2)	12 (7.2)	8 (15.7)	
MSI-L/S	393 (90.8)	155 (92.8)	43 (84.3)	
PIK3CA amplification	153 (35.3)	53 (31.7)	19 (37.3)	
Genetic mutations				
PI3K/AKT pathway	57 (13.2)	29 (17.4)	9 (17.6)	
TP53	47 (10.9)	14 (8.4)	11 (21.6)	
ARID1A	36 (8.3)	16 (9.6)	6 (11.8)	
BRAF	1 (0.2)	1 (0.6)	0	
MSI: microsatellite instability; MSI-H: MSI-high; MSI-L/S: MSI-low/stable; HP: Helicobacter pylori; EBV: Epstein-Barr virus; bold: statistically significant				
Table 4. Univariate and multivariate analysis of factors affecting OS of GC patients.

	Univariate analysis			Multivariate analysis		
	HR	95%CI	P value	HR	95%CI	P value
Age						
<65 years	1.00			1.00		
≥65 years	1.47	1.145-1.884	<0.001	1.79	1.381-2.331	<0.001
Gender			0.013			
Male	1.00					
Female	0.71	0.535-0.928				
Tumor location			0.002			
Upper stomach	1.00					
Middle stomach	0.64	0.453-0.897				
Lower stomach	0.89	0.648-1.209				
Whole stomach	1.91	0.9989-3.639				
Lymphovascular invasion			<0.001			
No	1.00					
Yes	2.77	2.204-3.788				
Lauren’s type			0.036	0.036		
Intestinal-type	1.00			1.00		
Diffuse-type	1.40	1.061-1.836		1.26	0.945-1.669	
Mixed-type	1.03	0.756-1.405		0.83	0.600-1.154	
Pathological T category			<0.001	<0.001		
T1	1.00			1.00		
T2	1.40	0.771-2.556		1.08	0.580-2.019	
T3	2.68	1.645-4.355		1.43	0.839-2.445	
T4	6.17	3.850-9.900		3.10	1.828-5.261	
Pathological N category			<0.001	<0.001		
N0	1.00			1.00		
N1	1.41	0.894-2.220		1.18	0.738-1.884	
N2	2.08	1.418-3.054		1.39	0.920-2.110	
N3	6.36	4.467-9.068		4.99	3.307-7.525	
MSI status			0.104			
MSI-L/S	1.00					
MSI-H	0.47	0.924-2.349				
PI3K/AKT pathway mutation			0.861			
No	1.00					
Yes	0.97	0.688-1.367				
ARID1A mutation			0.443			
No	1.00					
Yes	0.85	0.551-1.298				
TP53 mutation			0.722			
No	1.00					
Yes	1.07	0.739-1.547				
PIK3CA amplification			0.420			
No	1.00					
Yes	0.90	0.704-1.157				

HR: hazard ratio; MSI: microsatellite instability; MSI-L/S: microsatellite instability-low/stable; MSI-H: microsatellite instability-high; T: Tumor; N: Node; bold: statistically significant.
Table 5. Clinical profiles of mixed-type GC with intestinal-type major tumors and diffuse-type major tumors.

Variables	Intestinal-type major n=51	Diffuse-type major n=63	P value
	n (%)	n (%)	
Age <65 years	19 (37.3)	22 (34.9)	0.796
Age ≥65 years	32 (62.7)	41 (65.1)	
Gender			0.857
Male	38 (74.5)	46 (73.0)	
Female	13 (25.5)	17 (27.0)	
Tumor size <5 cm	23 (45.1)	21 (33.3)	0.200
Tumor size ≥5 cm	28 (54.9)	42 (66.7)	
Tumor location			0.605
Upper stomach	10 (19.6)	9 (14.3)	
Middle stomach	15 (29.4)	23 (36.5)	
Lower stomach	25 (49.0)	27 (42.9)	
Whole stomach	1 (2.0)	4 (6.3)	
Gross appearance			0.027
Superficial type	8 (15.7)	6 (9.5)	
Borrmann type 1	5 (9.8)	3 (4.8)	
Borrmann type 2	16 (31.4)	16 (25.3)	
Borrmann type 3	20 (39.2)	27 (42.9)	
Borrmann type 4	2 (3.9)	11 (17.5)	
Lymphovascular invasion	34 (66.7)	54 (85.7)	0.016
HP infection	29 (56.9)	36 (57.1)	0.976
EBV infection	7 (13.7)	8 (12.7)	0.872
Pathological T category			0.077
T1	10 (19.6)	4 (6.3)	
T2	10 (19.6)	9 (14.3)	
T3	17 (33.3)	33 (52.4)	
T4	14 (27.5)	17 (27.0)	
Pathological N category			0.004
N0	20 (39.2)	8 (12.7)	
N1	3 (5.9)	9 (14.3)	
N2	12 (23.5)	12 (19.0)	
N3	16 (31.4)	34 (54.0)	
Pathological TNM Stage			0.009
I	16 (31.4)	5 (7.9)	
II	10 (19.6)	15 (23.8)	
III	21 (41.2)	37 (58.7)	
IV	4 (7.8)	6 (9.5)	

T: Tumor; N: Node; TNM: Tumor, Node, Metastasis; bold: statistically significant
