UNIMODULAR ROWS OVER MONOID EXTENSIONS
OF OVERRINGS OF POLYNOMIAL RINGS

MARIA A. MATHEW AND MANOJ K. KESHARI

ABSTRACT. Let \(R \) be a commutative Noetherian ring of dimension \(d \) and \(M \) a commutative cancellative torsion-free seminormal monoid. Then (1) Let \(A \) be a ring of type \(R[d, m, n] \) and \(P \) be a projective \(A[M] \)-module of rank \(r \geq \max\{2, d+1\} \). Then the action of \(E(A[M] \oplus P) \) on \(Um(A[M] \oplus P) \) is transitive and (2) Assume \((R, m, K)\) is a regular local ring containing a field \(k \) such that either \(\text{char } k = 0 \) or \(\text{char } k = p \) and \(\text{tr-deg } K/\mathbb{F}_p \geq 1 \). Let \(A \) be a ring of type \(R[d, m, n]^\ast \) and \(f \in R \) be a regular parameter. Then all finitely generated projective modules over \(A[M] \), \(A[M]f \) and \(A[M] \otimes_R R(T) \) are free. When \(M \) is free both results are due to Keshari and Lokhande [10].

1. Introduction. In this paper, rings are commutative Noetherian with unity and modules are finitely generated.

Let \(R \) be a ring of dimension \(d \). A ring \(A \) is called of type \(R[d, m, n] \) if it is an overring of a polynomial ring \(R[X_1, \ldots, X_m] \) given by \(A = R[X_1, \ldots, X_m, f_1(l_1)^{-1}, \ldots, f_n(l_n)^{-1}] \), where \(f_i \in R[T] \) and either \(l_i \) is some indeterminate \(X_{ij} \) for all \(i \) or \(R \) contains a field \(k \) and \(l_i = \sum_{j=1}^m \alpha_{ij} X_j - r_i \), where \((\alpha_{i1}, \ldots, \alpha_{im}) \in k^m - \{0\} \) and \(r_i \in R \) for all \(i, j \). We say that \(A \) is a ring of type \(R[d, m, n]^\ast \) if we further assume that \(f_i(T) \in k[T] \) and \(r_i \in k \) for all \(i \).

A monoid \(M \) is cancellative if \(ax = ay \) implies \(x = y \) for \(a, x, y \in M \). A cancellative monoid is torsion-free if for \(x, y \in M \) and \(n > 0 \), \(x^n = y^n \) implies \(x = y \).

A projective \(R \)-module \(P \) is cancellative if for any projective \(R \)-module \(Q \), \(P \oplus R^n \simeq Q \oplus R^n \) implies \(P \simeq Q \). Equivalently, by Bhatwadekar ([1], Proposition 2.17), \(\text{Aut}(P \oplus R^n) \) acts transitively on the set \(Um(P \oplus R^n) \) of unimodular elements for all \(n \geq 1 \).

2020 Mathematics Subject Classification. 13C10.

Keywords and phrases. unimodular rows, monoid algebra, cancellation, projective modules.

Received by the editors 09, 15, 2020.
In [10], Keshari and Lokhande proved that if A is a ring of type $R[d, m, n]$ and P is a projective A-module of rank $\geq \max \{2, \dim R + 1\}$, then $E(A \oplus P)$ acts transitively on $Um(A \oplus P)$. This result was proved by Dhorajia and Keshari [4], when l_i is some indeterminate X_{i_j} for all i. We extend above result to monoid algebra $A[M]$ as follows.

Theorem 1.1. Let A be a ring of type $R[d, m, n]$ and M be a commutative cancellative torsion-free seminormal monoid. Let P be a projective $A[M]$-module of rank $r \geq \max \{2, d + 1\}$. Then $E(A[M] \oplus P)$ acts transitively on $Um(A[M] \oplus P)$. In particular, P is cancellative.

Gabber [6] proved that for a field k, all finitely generated projective $k[0, m, n]^*$-modules are free. It was generalized by Keshari and Lokhande [10] for projective $R[d, m, n]^*$-modules, where (R, m, K) is a regular local ring containing a field k such that either $\text{char } k = 0$ or $\text{char } k = p$ and $\text{tr-deg } K/F \geq 1$.

Gubeladze [7] proved that for a principal ideal domain R and a commutative cancellative torsion-free seminormal monoid M, all finitely generated projective $R[M]$-modules are free. In developing an algebraic approach to Gubeladze’s proof, Swan [15] extended Gubeladze result to rings of higher dimension via introduction of a class of domains \mathcal{R}_n with $n > 0$ such that if $R \in \mathcal{R}_n$, then

1. the localization of R with respect to any maximal ideal of R belongs to \mathcal{R}_n,
2. $R(X) \in \mathcal{R}_n$, where $R(X)$ is the localization of $R[X]$ with respect to the multiplicative set consisting of all monic polynomials in X,
3. if R is local, then all projective modules of rank n over $R[X, X^{-1}]$ are free.

Let $\mathcal{P}_n(R)$ denote the isomorphism class of finitely generated projective R-modules of constant rank n. Swan [15] proved the result: Let $R \in \mathcal{R}_n$ and M be a commutative cancellative torsion-free seminormal monoid with U as the group of units of M. If $\mathcal{P}_n(R) \rightarrow \mathcal{P}_n(R[U])$ is onto, then $\mathcal{P}_n(R) \rightarrow \mathcal{P}_n(R[M])$ is onto, i.e., all projective $R[M]$-modules of rank n are extended from R.

Let us recall Quillen’s conjecture [13], Q_n: If (A, m) is a regular local ring of dimension n and $u \in m \setminus m^2$, then all projective A_u-modules are
free. Bhatwadekar and Rao [2] proved that Q_n is true when R is a regular k-spot, i.e., when R is the localization of some affine k-algebra at a regular prime ideal. More generally, they proved the result: Let (R, m) be a regular k-spot with infinite residue field and $f \in m \setminus m^2$ be a regular parameter. If B is one of R, $R(T)$ or R_f, then projective modules over $B[X_1, \ldots, X_n, Y_1^{\pm1}, \ldots, Y_m^{\pm1}]$ are free.

Swan [15] used the above result and proved that all localizations of regular affine algebras over fields belong to R_n for all $n > 0$. This in conjugation with Popescu’s result ([12], Theorem 3.1) gives an even bigger class of rings $R[d, m, n]^*$ in R_n. Our fourth section deals with such class of domains and yields the following

Theorem 1.2. Let A be a ring of type $R[d, m, n]^*$, where (R, m, K) is a regular local ring containing a field k such that either $\text{char } k = 0$ or $\text{char } k = p$ and $\text{tr-deg } K/F_p \geq 1$. Let M be a commutative cancellative torsion-free seminormal monoid. Then

1. all projective $A[M]$ and $A[M] \otimes_R R(T)$-modules are free;
2. if $f, g \in R$ form a part of a regular system of parameters, then all projective $A[M]_f$ and $A[M]_{fg}$-modules are free;
3. if $g_1, \ldots, g_t \in R$ form a part of a regular system of parameters, then projective $A[M]_{g_1 \cdots g_t}$-modules of rank $\geq t$ are free.

Though one should note that the above result doesn’t hold for rings of the type $R[d, m, n]$, counterexamples have been provied in [10].

2. Preliminaries. Given a projective R-module P, $Um(P)$ denotes the set of unimodular elements of P and $E(P \oplus R)$ denotes the subgroup of $\text{Aut}(P \oplus R)$ generated by transvections. See [10] for basic definitions.

Transvections define an action on the set of unimodular elements $Um(P)$. For $p, q \in Um(P)$, the notation $p \sim_R q$ means that they are in the same orbit via the $E(P)$ action. When P is free, the action translates to that of multiplication on the right. The equivalence of p and q is loosely written as $p \sim_R q$, where P is understood.

This paper generalizes the following theorem by Gubeladze ([9], Theorem 1.1)
Theorem 2.1. Let R be a ring of dimension d and M be a commutative cancellative monoid. Then $E_r(R[M])$ acts transitively on $Um_r(R[M])$, if $r \geq \max\{3, d + 2\}$.

The following is a slightly modified version of a lemma due to Lindel ([11], Lemma 1.1) and will follow from ([4], Lemma 3.9).

Lemma 2.2. Let P be a projective $R[d,m,n]$-module of rank r. Then there exists an $s \in R$, which satisfies the following

1. P_s is free,
2. there exists $p_1, \ldots, p_r \in P$ and $\phi_1, \ldots, \phi_r \in P^*$ such that $(\phi_i(p_j)) = \text{diagonal}(s, \ldots, s)$,
3. $sP \subset p_1R + \ldots + p_rR$,
4. the image of s in R_{red} is a non-zerodivisor,
5. $(0 : sR) = (0 : s^2R)$.

Following is due to Dhorajia and Keshari ([5], Lemma 3.3)

Lemma 2.3. Let B be a ring and P be a projective B-module of rank r. Let $s \in B$ be as in the above lemma and $B' = \frac{B[x]}{(x^2 - s^2x)}$. Assume that $E_{r+1}(B')$ acts transitively on $Um_{r+1}(B')$. Then given $(b, p) \in Um(B \oplus P, s^2B)$, there exists $\varepsilon \in E(B \oplus P)$ such that $\varepsilon(b, p) = (1, 0)$.

A commutative diagram of rings

\[
\begin{array}{ccc}
R & \xrightarrow{g_1} & R_1 \\
\downarrow{g_2} & & \downarrow{f_1} \\
R_2 & \xrightarrow{f_2} & R'
\end{array}
\]

has Milnor patching property for unimodular rows if for every $r \geq 3$ and $v_1 \in Um_r(R_1)$ such that $f_1(v_1) \sim e_1$, there exists a pullback $v \in R$ such that $g_1(v) \sim R_1 v_1$.
A Generalized Karoubi square is a commutative square where $R_2 = S^{-1}R$, $R' = g_1(S)^{-1}R_1$ and the map g_1 is an analytic epimorphism along $S \subset R$.

Gubeladze ([8], Proposition 9.1) proved that a generalized Karoubi square has Milnor patching property for unimodular rows. This plays a vital role in patching of unimodular elements.

A monoid M is a set with an associative operation $M \times M \to M$ with unity. We will use multiplicative notation for the operations in M. Monoids isomorphic to \mathbb{Z}_r^+ are called free monoids of rank r. One can refer to ([3], Chapter 2) for a detailed read. Given a ring R, similar to that of a polynomial algebra, we talk about the monoid algebra $R[M]$, generated as a free R-module with basis as elements of M and coefficients in R. By $R[d, m, n][M]$, we mean a monoid algebra with coefficients in a ring A of type $R[d, m, n]$, i.e. $A[M]$.

3. Cancellation of Projective Modules.

Proposition 3.1. Let A be a ring of type $R[d, m, n]$ and M be a commutative cancellative monoid. Then $E_r(A[M])$ acts transitively on $Um_r(A[M])$, if $r \geq \max\{3, d+2\}$.

Proof. We use induction on n. For $n = 0$, the result follows from Theorem 2.1 by choosing the monoid as $M[X_1, \ldots, X_m] \simeq M \oplus \mathbb{Z}_m^n$.

Assume $n > 0$. For the ring A of the first type where each l_i is a variable X_i, we may assume that $l_n = X_m$. Consider the multiplicative subset $S = 1 + \sum_{i=1}^{m-1} f_i R[X_m]$ and write $A_S = R'[d, m - 1, n - 1] = R'[X_1, \ldots, X_{m-1}, f_1(l_1)^{-1}, \ldots, f_{n-1}(l_{n-1})^{-1}]$, where $R' = R[X_m]_{f, S}$. Let $a = (a_1, \ldots, a_r) \in Um_r(A[M])$. As $\dim R' = d$, by induction on n, $a \sim_{A_S[M]} e_1 = (1, 0, \ldots, 0)$. Choose an $s \in S$ such that there exists $\sigma' \in E_r(A_s[M])$ with $\sigma'(a) = e_1$.

Consider the following fibre product diagram

$$
\begin{array}{ccc}
C[M] & \longrightarrow & A[M] \\
\downarrow & & \downarrow \\
C_s[M] & \longrightarrow & A_s[M]
\end{array}
$$
where \(C = R[X_1, \ldots, X_m, f_1(l_1)^{-1}, \ldots, f_{n-1}(l_{n-1})^{-1}] \) is of type \(R[d, m, n-1] \) and \(A = C_{f_n} \). As the diagram above has Milnor patching property for unimodular rows, there exists a \(c \in Um_r(C[M]) \) such that \(p(c) \sim a \). By induction on \(n \), \(c \sim e_1 \) and hence their respective images \(a \sim e_1 \).

The proof for the ring of the second type follows through if the following reduction is considered. Let \(l_n = \sum k_i X_i - r \), where \(k_i \in k \) are not all zero and \(r \in R \). Choose a \(\phi \in E_m(k) \), such that \((k_1, \ldots, k_m) = (0, \ldots, 0, 1) \phi \). By changing the variables \((X_1, \ldots, X_m) \) to \(\phi(X_1, \ldots, X_m) \), we can assume \(l_n = X_m + r \). Again transforming the variable \(X_m \) using the translation \(X_m \mapsto X_m - r \), we may assume that \(l_n = X_m \). Use the above arguments to complete the proof. \(\square \)

Following is a direct consequence of the above result, proof of which follows in spirit to that of (4, Theorem 3.8)

Corollary 3.2. Let \(A \) be a ring of type \(R[d, m, n] \) and \(M \) be a commutative cancellative monoid. Then the canonical map \(\phi_r : GL_r(A[M])/E_r(A[M]) \to K_1(A[M]) \) is surjective for \(r \geq \{2, \dim R + 1\} \).

The following corollary follows directly from Lemma 2.2 by utilizing Proposition 3.1.

Corollary 3.3. Let \(A \) be a ring of type \(R[d, m, n] \) and \(M \) be a commutative cancellative torsion-free seminormal monoid. Let \(P \) be a projective \(A[M] \)-module of rank \(r \). Then there exists \(s \in R \) satisfying the properties of Lemma 2.2.

Proof. It is enough to show that there exists an \(s \in R \) such that \(P_s \) is free. We can assume that \(R \) is reduced. Let \(S \) be the set of non-zerodivisors of \(R \). Then \(S^{-1}R \) is a direct product of fields. Hence without loss of generality, we may assume that \(S^{-1}R \) is a field. By Gabber ([6], Theorem 2.1), all projective \(S^{-1}A \) modules are free. By Swan ([14], Corollary 1.3), projective modules over \(S^{-1}A[M] \) are extended from \(S^{-1}A \), hence are free. Thus we can choose an \(s \in R \) such that \(P_s \) is free. \(\square \)
Theorem 3.4. Let A be a ring of type $R[d, m, n]$ and M be a commutative cancellative torsion-free seminormal monoid. Let P be a projective $A[M]$-module of rank $r \geq \max\{2, d + 1\}$. Then $E(A[M] \oplus P)$ acts transitively on $Um(A[M] \oplus P)$. In particular, P is cancellative.

Proof. Without loss of generality, we can assume A is reduced with connected spectrum. If $d = 0$, then P is free by Corollary 3.3 and the result follows from Proposition 3.1.

Assume $d > 0$. Let $(a, p) \in Um(A[M] \oplus P)$. By Corollary 3.3 choose a non-zerodivisor $s \in R$ satisfying the hypothesis of the Lemma 2.2 and let “−” denote reduction modulo $s^2A[M]$. Then by induction on d, $(\bar{a}, \bar{p}) \sim (1, 0)$. Since an element of $E(A[M] \oplus P)$ can be lifted to an element of $E(A[M] \oplus P)$, we may assume that $(a, p) \in Um(A[M] \oplus P, s^2A[M])$. By Lemma 2.3 $(a, p) \sim (1, 0)$ and hence $E(A[M] \oplus P)$ acts transitively on $Um(A[M] \oplus P)$. □

4. Generalization of Swan’s result. Using techniques similar to that of the previous section, the following can be derived.

Proposition 4.1. Let R be a UFD of dimension 1, M be a commutative cancellative torsion-free seminormal monoid and $A = R[1, m, n]$. Then all projective $A[M]$-modules are free.

Proof. Let P be a projective $A[M]$-module. We will induct on n. If $n = 0$, then $A[M] = A[M \oplus \mathbb{Z}_m^+].$ By [7], P is free.

Assume $n > 0$. First assume that A is of the type where all l_i are variables. We can assume $l_n = X_m$. Consider the multiplicative subset $S = 1 + f_nR[X_m]$ and rewrite $A_S = R'[1, m - 1, n - 1] = R'[X_1, \ldots, X_{m-1}, f_1(l_1)^{-1}, \ldots, f_{n-1}(l_{n-1})^{-1}, f_n]$, where $R' = R[X_m]_{f_nS}$ is a 1-dimensional UFD. By induction on n, P_S is free, choose a $g \in R[X_m]$ such that P_{1+f_ng} is free.

Let $C = R[X_1, \ldots, X_m, f_1(l_1)^{-1}, \ldots, f_{n-1}(l_{n-1})^{-1}]$ be the subring of A of type $R[1, m, n-1]$. Then $A = C_{f_n}$. By Milnor patching, we get P is extended from $C[M]$. By induction on n, projective $C[M]$-modules are free. Therefore, P is free.
The proof when \(l_i \) are of the second type follows in a similar fashion to that of Proposition 3.1.

Swan's criterion for a non local ring \(R \) can be condensed and simply put as: A commutative domain \(R \) is an element of the collection \(\mathcal{R}_n \) if all projective modules of rank \(n \) over \(R_m[x, x^{-1}] \) and \(R(t)_n[x, x^{-1}] \) are free, where \(m \in \text{max}(R) \) and \(n \in \text{max}(R(t)) \). The following theorem due to Popescu ([12], Theorem 3.1) helps us visualize this collection better using Theorem 4.5. A ring \(R \) is essentially of finite type over a ring \(S \), if \(R \) is the localization of an affine \(S \)-algebra \(T \) at a multiplicatively closed subset of \(T \).

Theorem 4.2. Let \(R \) be a regular local ring containing a field \(k \). Then \(R \) is a filtered inductive limit of regular local rings essentially of finite type over \(\mathbb{Z} \).

Theorem 4.3. The class of regular domains containing a field belongs to \(\mathcal{R}_n \) for all \(n > 0 \).

Proof. It is enough to show that if \(R \) is a regular local ring containing a field \(k \), then projective \(R[X, X^{-1}] \)-modules are free. If \(P \) is a projective \(R[X, X^{-1}] \)-module, then by Theorem 4.2, we may assume that \(R \) is a regular \(\mathbb{Z} \)-spot and in particular a regular spot over the prime subfield of \(k \). By Swan's result [15], \(P \) is free.

The following theorem can be found in ([15], Theorem 1.2)

Theorem 4.4. Let \(R \in \mathcal{R}_n \) and \(M \) be a commutative cancellative torsion-free seminormal monoid with \(U \) as its group of units. Then the following is a patching diagram

\[
\begin{array}{ccc}
\mathcal{P}_n(R) & \longrightarrow & \mathcal{P}_n(R[M]) \\
\downarrow & & \downarrow \\
\mathcal{P}_n(R) & \longrightarrow & \mathcal{P}_n(RU)
\end{array}
\]
This theorem gives us a way to see when projective modules over $R[M]$ are extended from R. If U is trivial, then all projective $R[M]$-modules of rank n are extended from R. Also, U being torsion free, is a filtered limit of finite rank free abelian groups. This leads to applications, when sufficient information regarding $P_n(R[Z^r])$ is provided.

Most results of [10] proved for the regular ring B can be generalized to $B[M]$, where M is a commutative cancellative torsion-free seminormal monoid. We state some results generalizing the results in Section 4 and 5 of [10].

Theorem 4.5. Let A be a ring of type $R[d, m, n]^*$, where (R, m, K) is a regular local ring containing a field k such that either char $k = 0$ or char $k = p$ and tr-deg $K/F_p \geq 1$. Let M be a commutative cancellative torsion-free seminormal monoid. Then

1. all projective $A[M]$ and $A[M] \otimes_R R(T)$-modules are free;
2. if $f, g \in R$ form a part of a regular system of parameters, then all projective $A[M]_f$ and $A[M]_{fg}$-modules are free;
3. if $g_1, \ldots, g_t \in R$ form a part of a regular system of parameters, then projective $A[M]_{g_1,\ldots,g_t}$-modules of rank $\geq t$ are free.

Proof. Let B be any one of the rings $A, A \otimes R(T), A_f, A_{fg}, A_{g_1,\ldots,g_t}$. Then B is a regular ring containing a field, hence belongs to R_n for all $n > 0$ by Theorem 4.3. When $M = 0$, we are done by [10]. Let U be the group of units of M. If we show that projective $B[U]$-modules are extended from R, then by Theorem 4.3 projective $B[M]$-modules are extended from B. Hence the conclusion will again follow from [10].

Since M and hence U is torsion-free, U is direct limit of finite rank free abelian groups. Then $B[Z^r]$ is of the type $R[d, m + r, n + r]^*$, the result follows from [10]. □

REFERENCES

1. S. M. Bhatwadekar. Projective modules over polynomial rings. In *Algebra*, Trends Math., pages 41–62. Birkhäuser, Basel, 1999.
2. S. M. Bhatwadekar and R. A. Rao. On a question of Quillen. *Trans. Amer. Math. Soc.*, 279(2):801–810, 1983.
3. W. Bruns and J. Gubeladze. *Polytopes, rings, and K-theory*. Springer Monographs in Mathematics. Springer, Dordrecht, 2009.
4. A. M. Dhorajia and M. K. Keshari. Projective modules over overrings of polynomial rings. *J. Algebra*, 323(2):551–559, 2010.
5. A. M. Dhorajia and M. K. Keshari. A note on cancellation of projective modules. *J. Pure Appl. Algebra*, 216(1):126–129, 2012.
6. O. Gabber. On purity theorems for vector bundles. *Int. Math. Res. Not.*, (15):783–788, 2002.
7. J. Gubeladze. The Anderson conjecture and a maximal class of monoids over which projective modules are free. *Mat. Sb. (N.S.*), 135(177)(2):169–185, 271, 1988.
8. J. Gubeladze. The elementary action on unimodular rows over a monoid ring. II. *J. Algebra*, 155(1):171–194, 1993.
9. J. Gubeladze. Unimodular rows over monoid rings. *Adv. Math.*, 337:193–215, 2018.
10. M. K. Keshari and S. A. Lokhande. Projective modules over overrings of polynomial rings and a question of Quillen. *J. Pure Appl. Algebra*, 218(6):1003–1011, 2014.
11. H. Lindel. Unimodular elements in projective modules. *J. Algebra*, 172(2):301–319, 1995.
12. D. Popescu. Polynomial rings and their projective modules. *Nagoya Math. J.*, 113:121–128, 1989.
13. D. Quillen. Projective modules over polynomial rings. *Invent. Math.*, 36:167–171, 1976.
14. R. A. Rao. A question of H. Bass on the cancellative nature of large projective modules over polynomial rings. *Amer. J. Math.*, 110(4):641–657, 1988.
15. R. G. Swan. Gubeladze’s proof of Anderson’s conjecture. In *Azumaya algebras, actions, and modules (Bloomington, IN, 1990)*, volume 124 of *Contemp. Math.*, pages 215–250. Amer. Math. Soc., Providence, RI, 1992.

Department of Mathematics, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India

Email address: maria@math.iitb.ac.in

Department of Mathematics, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India

Email address: keshari@math.iitb.ac.in