The Potential Impact of Biofield Treatment on Physical, Structural and Mechanical Properties of Stainless Steel Powder

Mahendra Kumar Trivedi, Gopal Nayak, Shrikant Patil, Rama Mohan Tallapragada, Omprakash Latiyal, Snehasis Jana

To cite this version:
Mahendra Kumar Trivedi, Gopal Nayak, Shrikant Patil, Rama Mohan Tallapragada, Omprakash Latiyal, et al.. The Potential Impact of Biofield Treatment on Physical, Structural and Mechanical Properties of Stainless Steel Powder. Applied Mechanical Engineering, Omics Publishing Group, 2015, 4 (4), pp.1000173. hal-01412136

HAL Id: hal-01412136
https://hal.archives-ouvertes.fr/hal-01412136
Submitted on 8 Dec 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License
Abstract

Stainless steel (SS) has gained extensive attention due to its high corrosion resistance, low maintenance, familiar lustre, and superior mechanical properties. In SS, the mechanical properties are closely related with crystal structure, crystallite size, and lattice strain. The aim of present study was to evaluate the effect of biofield treatment on structural, physical and mechanical properties of SS powder. SS (Grade-SUS316L) powder was divided into two parts denoted as control and treatment. The treatment part was received Mr. Trivedi’s biofield treatment. Control and treated SS samples were characterized using particle size analyzer, X-ray diffraction (XRD), and Fourier transform infrared (FT-IR) spectroscopy. Result showed that biofield treatment has significantly reduced the particle size \(d_{90} \), \(d_{99} \), and \(d_{99} \) (size, below which 90, 99, and 99% particles were present, respectively) of SS powder up to 7.42, 12.93, 30.23, and 41.98% respectively, as compared to control. XRD result showed that the unit cell volume of SS was altered after biofield treatment. Moreover, crystallite size was significantly reduced upto 70% in treated SS as compared to control. The yield strength calculated using Hall-Petch equation, was significantly increased upto 216.5% in treated SS, as compared to control. This could be due to significant reduction of crystallite size in treated SS after biofield treatment. In FT-IR spectra, intensity of the absorption peak at wavenumber 1107 cm\(^{-1}\) (control) attributing to Fe-O-H bond was diminished in case of treated SS. These findings suggest that biofield treatment has substantially altered the structural, physical and mechanical properties of treated SS powder.

Keywords: Biofield treatment; Austenitic stainless steel; X-ray diffraction; FT-IR; SUS316L

Introduction

Stainless steel (SS), invented in the beginning of the 20th century, is known for high resistance to corrosion and staining. It primarily consists of iron (Fe), nickel (Ni), chromium (Cr) and molybdenum (Mo). Based on microstructure, SS is classified into three categories: austenitic, ferritic, and martensitic. The austenitic SS is mainly responsible for corrosion resistance properties and nonmagnetic behaviour. It exist in the form of face centred cubic (FCC) crystal structure with nickel(12-15 wt.%), chromium(16-18 wt.%). Due to high content of Cr, it is suitable for high corrosion resistance applications [1]. Beside this, the superior mechanical properties of austenitic SS is very useful for nuclear fuel clad tubes and fuel assembly [2]. Nano crystalline austenitic SS is mainly consist of large volume fraction of crystallite and crystallite boundaries, which significantly alters their physical and mechanical properties [3]. Further, it is well known fact that the crystallite size of metals are inversely proportional to its yield strength and hardness [4]. Additionally, the mechanical properties of austenitic SS strongly depends on the chemical composition and lattice strain i.e. higher the lattice strain, higher is yield strength. Thus, it is possible to change the mechanical properties of metals by modulating the crystallite size and lattice strain. Currently, in steel industries, mechanical properties of austenitic SS are mainly controlled through various heat treatment process such as annealing, normalizing and quenching etc [5-7]. In heat treatment process, crystallite refinement is strongly required by steel industries in order to increase the strength of material [8]. Furthermore, the heat treatment processes require costly equipment set up and high power supply, to modulate the mechanical properties. Due to this, it becomes important to study an alternative and economically safe approach that could be utilized to modify the physical and structural properties of SS powder.

Recently, several researchers have reported that human body functions as macroscopic quantum system [9-13]. The famous Physicist Feynman had explained the scientific aspects behind quantum biology using quantum-electrodynamics and quantum-chromodynamics [14]. In other words, each quantum system consists of quantum-domains that have some oscillators within, which generate the potential field. Due to this, a human has ability to harness the energy from environment/universe and can transmit into any object (living or non-living) around the Globe. The object(s) always receive the energy and responded into useful way that is called biofield energy. This process is known as biofield treatment.

Mr. Trivedi’s biofield treatment has known to alter the characteristics in various things at atomic, molecular and physical level in many fields such as material science [15-22], microbiology [23-25], biotechnology [26,27] and agriculture [28-30]. The biofield treatment has also shown significant results in graphite carbon, for instance, the unit cell volume was decrease by 1% and crystallite size was increased by 100% after treatment [16]. In the present study, we evaluated for the first time, an impact of biofield treatment on physical, structural and mechanical properties SS powder.
Experimental

The SS powder (Grade-SUS316L) was purchased from Alfa Aesar, USA. The sample was equally divided into two parts. The control and treated groups were analyzed using X-ray Diffraction (XRD) using a diffractometer system, which had a copper anode with nickel filter. The radiation of wavelength used by the XRD system was 1.54056 Å. The data obtained from this XRD were in the form of a chart of 2θ vs. d spacing. FT-IR Spectroscopy

For particle size analysis, laser particle size analyzer SYMPATEC HELOS-BF was used, which had a detection range of 0.1-875 μm. The particle size data was collected in the form of a chart of particle size distribution curve. The percent change in particle size was calculated using the following equation:

\[
\% \text{ change in particle size } = \left(\frac{(d_{99})_{\text{Treated}} - (d_{99})_{\text{Control}}}{(d_{99})_{\text{Control}}} \right) \times 100
\]

Where, \(d_{99} \) is the size below which 99% particles are present, respectively.

X-ray diffraction study

XRD analysis was carried out on Phillips, Holland PW 1710 X-ray diffractometer system, which had a copper anode with nickel filter. The radiation of wavelength used by the XRD system was 1.54056 Å. The data obtained from this XRD were in the form of a chart of 2θ vs. d spacing. FT-IR Spectroscopy

For particle size analysis, laser particle size analyzer SYMPATEC HELOS-BF was used, which had a detection range of 0.1-875 μm. The particle size data was collected in the form of a chart of particle size distribution curve. The percent change in particle size was calculated using the following equation:

\[
\% \text{ change in particle size } = \left(\frac{(d_{99})_{\text{Treated}} - (d_{99})_{\text{Control}}}{(d_{99})_{\text{Control}}} \right) \times 100
\]

Where, \(d_{99} \) is the size below which 99% particles are present, respectively.

X-ray diffraction study

XRD analysis was carried out on Phillips, Holland PW 1710 X-ray diffractometer system, which had a copper anode with nickel filter. The radiation of wavelength used by the XRD system was 1.54056 Å. The data obtained from this XRD were in the form of a chart of 2θ vs. d spacing. FT-IR Spectroscopy

For particle size analysis, laser particle size analyzer SYMPATEC HELOS-BF was used, which had a detection range of 0.1-875 μm. The particle size data was collected in the form of a chart of particle size distribution curve. The percent change in particle size was calculated using the following equation:

\[
\% \text{ change in particle size } = \left(\frac{(d_{99})_{\text{Treated}} - (d_{99})_{\text{Control}}}{(d_{99})_{\text{Control}}} \right) \times 100
\]

Where, \(d_{99} \) is the size below which 99% particles are present, respectively.

X-ray diffraction study

XRD analysis was carried out on Phillips, Holland PW 1710 X-ray diffractometer system, which had a copper anode with nickel filter. The radiation of wavelength used by the XRD system was 1.54056 Å. The data obtained from this XRD were in the form of a chart of 2θ vs. d spacing. FT-IR Spectroscopy

For particle size analysis, laser particle size analyzer SYMPATEC HELOS-BF was used, which had a detection range of 0.1-875 μm. The particle size data was collected in the form of a chart of particle size distribution curve. The percent change in particle size was calculated using the following equation:

\[
\% \text{ change in particle size } = \left(\frac{(d_{99})_{\text{Treated}} - (d_{99})_{\text{Control}}}{(d_{99})_{\text{Control}}} \right) \times 100
\]

Where, \(d_{99} \) is the size below which 99% particles are present, respectively.

X-ray diffraction study

XRD analysis was carried out on Phillips, Holland PW 1710 X-ray diffractometer system, which had a copper anode with nickel filter. The radiation of wavelength used by the XRD system was 1.54056 Å. The data obtained from this XRD were in the form of a chart of 2θ vs. d spacing. FT-IR Spectroscopy

For particle size analysis, laser particle size analyzer SYMPATEC HELOS-BF was used, which had a detection range of 0.1-875 μm. The particle size data was collected in the form of a chart of particle size distribution curve. The percent change in particle size was calculated using the following equation:

\[
\% \text{ change in particle size } = \left(\frac{(d_{99})_{\text{Treated}} - (d_{99})_{\text{Control}}}{(d_{99})_{\text{Control}}} \right) \times 100
\]

Where, \(d_{99} \) is the size below which 99% particles are present, respectively.

X-ray diffraction study

XRD analysis was carried out on Phillips, Holland PW 1710 X-ray diffractometer system, which had a copper anode with nickel filter. The radiation of wavelength used by the XRD system was 1.54056 Å. The data obtained from this XRD were in the form of a chart of 2θ vs. d spacing. FT-IR Spectroscopy

For particle size analysis, laser particle size analyzer SYMPATEC HELOS-BF was used, which had a detection range of 0.1-875 μm. The particle size data was collected in the form of a chart of particle size distribution curve. The percent change in particle size was calculated using the following equation:

\[
\% \text{ change in particle size } = \left(\frac{(d_{99})_{\text{Treated}} - (d_{99})_{\text{Control}}}{(d_{99})_{\text{Control}}} \right) \times 100
\]

Where, \(d_{99} \) is the size below which 99% particles are present, respectively.

X-ray diffraction study

XRD analysis was carried out on Phillips, Holland PW 1710 X-ray diffractometer system, which had a copper anode with nickel filter. The radiation of wavelength used by the XRD system was 1.54056 Å. The data obtained from this XRD were in the form of a chart of 2θ vs. d spacing. FT-IR Spectroscopy

For particle size analysis, laser particle size analyzer SYMPATEC HELOS-BF was used, which had a detection range of 0.1-875 μm. The particle size data was collected in the form of a chart of particle size distribution curve. The percent change in particle size was calculated using the following equation:

\[
\% \text{ change in particle size } = \left(\frac{(d_{99})_{\text{Treated}} - (d_{99})_{\text{Control}}}{(d_{99})_{\text{Control}}} \right) \times 100
\]

Where, \(d_{99} \) is the size below which 99% particles are present, respectively.

X-ray diffraction study

XRD analysis was carried out on Phillips, Holland PW 1710 X-ray diffractometer system, which had a copper anode with nickel filter. The radiation of wavelength used by the XRD system was 1.54056 Å. The data obtained from this XRD were in the form of a chart of 2θ vs. d spacing. FT-IR Spectroscopy

For particle size analysis, laser particle size analyzer SYMPATEC HELOS-BF was used, which had a detection range of 0.1-875 μm. The particle size data was collected in the form of a chart of particle size distribution curve. The percent change in particle size was calculated using the following equation:

\[
\% \text{ change in particle size } = \left(\frac{(d_{99})_{\text{Treated}} - (d_{99})_{\text{Control}}}{(d_{99})_{\text{Control}}} \right) \times 100
\]

Where, \(d_{99} \) is the size below which 99% particles are present, respectively.

X-ray diffraction study

XRD analysis was carried out on Phillips, Holland PW 1710 X-ray diffractometer system, which had a copper anode with nickel filter. The radiation of wavelength used by the XRD system was 1.54056 Å. The data obtained from this XRD were in the form of a chart of 2θ vs. d spacing. FT-IR Spectroscopy

For particle size analysis, laser particle size analyzer SYMPATEC HELOS-BF was used, which had a detection range of 0.1-875 μm. The particle size data was collected in the form of a chart of particle size distribution curve. The percent change in particle size was calculated using the following equation:

\[
\% \text{ change in particle size } = \left(\frac{(d_{99})_{\text{Treated}} - (d_{99})_{\text{Control}}}{(d_{99})_{\text{Control}}} \right) \times 100
\]

Where, \(d_{99} \) is the size below which 99% particles are present, respectively.
SS powder. Similar results of particle size reduction in titanium and antimony had been reported by our group in previous studies [15,17].

X-ray diffraction (XRD)

XRD results of control and treated SS samples are depicted in Figures 4–6. It was found that the lattice parameter of unit cell slightly altered in biofield treated samples (T1: -0.02%, T2: 0.05%, T3: 0.04%) as compared to control. This change in lattice parameter led to alter the unit cell volume slightly by -0.06%, 0.13%, and 0.12% in treated T1, T3, and T4 respectively as compared to control (Figure 4). It indicates that both kind of stress (compressive and tensile) might present in treated SS powder, after biofield treatment [15,16]. Thus, it is hypothesised that the high-energy milling induced through biofield treatment may lead to generate tensile and compressive stress in SS powder that resulted into alteration of lattice parameter and unit cell volume. Besides this, the crystallite size was computed using Scherrer formula is presented in Figure 5. It was found that crystallite size was 148.44 nm in control, whereas crystallite size of treated samples was 74.2, 44.53, and 63.61 nm in T1, T3 and T4, respectively. It indicates that crystallite size was significantly reduced by 50, 70, and 57.15% in treated T1, T3 and T4 respectively, as compared to control (Figure 4). The existence of severe lattice strains are evidenced by the change in lattice parameters (Figure 4). Thus, it is assumed that presence of these internal strain may leads to fracture the grains into sub grains and decrease the crystallite size [21]. On the other hand, the relation between strength of material and crystallite size is given by Hall-Patch equation as given below:

$$\sigma = \sigma_0 + k / \sqrt{G}$$

(1)

Where, σ is strength of the material, σ_0 is a material constant for the starting stress for dislocation movement, k is the strengthening coefficient, G is crystallite size.

Singh et al. reported the $k=575$ MPa μm $^{1/2}$, $\sigma_0=150$ MPa for true strain less than 0.02 [31]. Yield strength was computed using these constants and results are shown in Figures 7 and 8. It was found that yield strength of 2086.8 Mpa in control, which increased to 4024.6, 6606.3, and 4669.7 MPa in treated SS samples T1, T3 and T4, respectively. This indicates that the yield strength was significantly enhanced by 92.86, 216.5, and 123.7% in treated SS samples T1, T3, and T4 respectively as compared to control. It is already reported that the strength of materials can be modulated by changing the crystallite size. The decrease in crystallite size in treated SS powder results into increase...
the crystallite boundaries. Thus, higher crystallite boundaries in treated SS powder hindered the dislocation movement gliding along the slip planes and thereby increased yield strength [4]. Thus, it is postulated that biofield treated SS powder could be more useful in automobile parts and nuclear reactor applications.

FT-IR spectroscopy

FT-IR spectrum of control and treated SS powder are shown in Figure 9. The absorption peaks observed at wavenumber 3786 and 1606 cm⁻¹ (control) and 3759, 3450, and 1542 cm⁻¹ (treated) were assigned to bonding vibration of water molecules due to moisture absorption by sample. Another peak observed at wavenumber 506 cm⁻¹ in control and treated SS sample were due to Cr-O bond vibrations [32]. Peak found at wavenumber 1107 cm⁻¹ (control) attributed to Fe-O-H bond vibrations, was completely diminished in treated SS. It may be due to alteration in F-O-H bond at atomic level through biofield treatment [32]. Thus, it is hypothesized that biofield treatment may be acting at atomic level to cause these alteration.

Conclusion

In summary, the biofield treatment has significantly reduced the particle size and crystallite size in SS powder. Average particle size was reduced upto 12.93% in treated SS powder as compared to control. In addition, the reduction in crystallite size upto 70% after biofield treatment led to increase in yield strength by 216.57% as compared to control (Hall-Petch effect). This could be due to increase in crystallite boundaries after biofield treatment, which hindered the dislocation movement and thereby increased yield strength. FT-IR spectra showed peak at wavenumber 1107 cm⁻¹ in control, which assigned to Fe-O-H was significantly reduced in treated SS. It might be due to alteration of bond properties in treated SS after biofield treatment. Based on these promising results, it is expected that biofield treatment could be applied to improve the mechanical properties of SS powder for nuclear reactor, appliances, and automobile.

Acknowledgement

Authors gratefully acknowledged to Dr. Cheng Dong of NLSC, Institute of Physics, and Chinese academy of Sciences for providing the facilities to use PowderX software for analyzing XRD data.

References

1. Silva G, Baldissara MR, Triches EDS, Cardoso KR (2013) Preparation and characterization of stainless steel 316L/HA biocomposite. Mater Res 16: 304-309.
2. Desu RK, Krishnamurthy HN, Balu A, Gupta AK, Singh SK (2015) Mechanical properties of austenitic stainless steel 304L and 316L at elevated temperatures. J Mater Res Technol (In press).
3. Meyers MA, Mishra A, Benson DJ (2006) Mechanical properties of nano crystalline materials. Prog Mater Sci 51: 427-556.
4. Callister WD (2008) Fundamentals of materials science and engineering: An integrated approach. (3rdedn), John Wiley and Sons.
5. Tanwar AK (2015) Effect of various heat treatment processes on mechanical
properties of mild steel and stainless steel. AJRSTEM 57:61.

6. Tukur SA, Dambatta MA, Ahmed A, Muaz NM (2014) Effect of Heat treatment temperature on mechanical properties of the AISI 304 stainless steel. Intl J Innov Res Sci, Eng Technol 3: 9516-9520.

7. Jithin M, Haneed AA, Jose B, Jacob A (2015) Influence of heat treatment on duplex stainless steel to study the material properties. Intl J Sci Technol Res 4: 291-293.

8. Nakashima H (2008) Trends in materials and heat treatments for rolling bearings. Technical Review- 76. NTN corporation Japan.

9. Del Giudice E, Doglia S, Milani M (1989) Magnetic flux quantization and josephson behavior in living systems. Phys Scrip 40: 786-791.

10. Nobili R (1985) Schrodinger wave holography in brain cortex. Phys Rev A 32: 3618-3626.

11. Popp FA (1989) Electromagnetic Bio-Information. Munchen, Baltimore: Urban & Schwarzenberg.

12. Smith CW (1998) Is a living system a macroscopic quantum system?: Frontier Perspect 7: 9-15.

13. Bohm DA (1952) Suggested interpretation of quantum theory. Phys Rev 85: 166-178.

14. Feynman RP (1949) Space-time approaches to quantum electrodynamics. Phys Rev 76: 769-782.

15. Trivedi MK, Tallapragada RM (2008) A transcendental to changing metal powder characteristics. Met Powder Rep 63: 22-28, 31.

16. Trivedi MK, Tallapragada RM (2009) Effect of super consciousness external energy on atomic, crystalline and powder characteristics of carbon allotrope powders. Mater Res Innov 13: 473-480.

17. Dhabade VV, Tallapragada RM, Trivedi MK (2009) Effect of external energy on atomic, crystalline and powder characteristics of antimony and bismuth powders. Bull Mater Sci 32: 471-479.

18. Trivedi MK, Patil S, Tallapragada RM (2012) Thought intervention through bio field changing metal powder characteristics experiments on powder characteristics at a PM plant. Proceeding of the 2nd International conference on future control and automation 173: 247-252.

19. Trivedi MK, Patil S, Tallapragada RM (2013) Effect of biofield treatment on the physical and thermal characteristics of silicon, tin and lead powders. J Material Sci Eng 2: 125.

20. Trivedi MK, Patil S, Tallapragada RM (2013) Effect of biofield treatment on the physical and thermal characteristics of vanadium pentoxide powder. J Material Sci Eng S11: 201.

21. Trivedi MK, Patil S, Tallapragada RM (2014) Atomic, crystalline and powder characteristics of treated zirconia and silica powders. J Material Sci Eng 3: 144.

22. Trivedi MK, Patil S, Tallapragada RM (2015) Effect of biofield treatment on the physical and thermal characteristics of aluminum powders. Ind Eng Manage 4: 151.

23. Trivedi MK, Patil S, Bhardwaj Y (2008) Impact of an external energy on Staphylococcus epidemis [ATCC –13518] in relation to antibiotic susceptibility and biochemical reactions – An experimental study. J Accord Integr Med 3: 230-235.

24. Trivedi MK, Patil S (2008) Impact of an external energy on Yersinia enterocolitica [ATCC –23715] in relation to antibiotic susceptibility and biochemical reactions: An experimental study. Internet J Alternat Med 6.

25. Trivedi MK, Patil S, Bhardwaj Y (2009) Impact of an external energy on Enterococcus faecalis [ATCC – 51299] in relation to antibiotic susceptibility and biochemical reactions – An experimental study. J Accord Integr Med 5: 119-130.

26. Patil S, Nayak GB, Barve SS, Tembe RP, Khan RR (2012) Impact of biofield treatment on growth and anatomical characteristics of Pogostemon cablin (Benth.). Biotechnology 11: 154-162.

27. Altekar N, Nayak G (2015) Effect of biofield treatment on plant growth and adaptation. J Environ Health Sci 1: 1-9.

28. Shinde V, Sances F, Patil S, Spence A (2012) Impact of biofield treatment on growth and yield of lettuce and tomato. Aust J Basic Appl Sci 6: 100-105.

29. Lenssen AW (2013) Biofield and fungicide seed treatment influences on soybean productivity, seed quality and weed community. Agricultural Journal 8: 138-143.

30. Sances F, Flora E, Patil S, Spence A, Shinde V (2013) Impact of biofield treatment on ginseng and organic blueberry yield. Agrivita J Agric Sci 35.

31. Singh KK, Sangal S, Murty GS (2002) Hall–Petch behaviour of 316L austenitic stainless steel at room temperature. Mater Sci Technol 18: 165-172.

32. Junqueira RMR, Loureiro CRDO, Andrade MS, Buono VTL (2008) Characterization of interference thin films grown on stainless steel surface by alternate pulse current in a sulphotochromic solution. Mat Res 119-130.