Znf76 is associated with development of the eyes, midbrain, MHB, and hindbrain in zebrafish embryos

Jangham Jung, S. Udhaya Kumar, Issac Choi, Tea-Lin Huh and Myungchull Rhee

Introduction

Zinc finger proteins conduct a plethora of molecular functions, and contain one or more zinc atoms that play a major role in stabilizing the protein (Laity et al. 2001). In most species, the Cys2His2 (C2H2) domains serve as a transcription factor and recognize specific DNA sequences for gene regulation; zinc finger proteins with these domains are commonly known as the DNA-binding group (Laity et al. 2001). These C2H2 residues are highly conserved among vertebrates and contain 9 repeats of 30 cysteine and histidine amino acids (Brown et al. 1985; Miller et al. 1985). The family of zinc finger proteins can be classified into different fold groups, including C2H2-like, gag knuckle, treble clef, zinc ribbon, Zn2/Cys6, and TAZ2 domain-like, which, together with zinc-binding loops, confer folding and stability (Krishna et al. 2003). Zinc finger protein 76 (ZNF76) is a general transcription repressor targeting the TATA-binding protein (TBP) through a process regulated by sumoylation (Zheng and Yang 2004). ZNF76 is acetylated by p300 and deacetylated by histone deacetylase 1. Acetylation of ZNF76 leads to desumoylation of ZNF76, which attenuates its interaction with TBP (Zheng and Yang 2006). There are several studies that support an essential functional role for ZNF76 in central nervous system development (Armstrong et al. 1995; Kim et al. 1997). Mutagenesis studies in vivo have shown that some zinc finger proteins function as key regulators in the specification of dopaminergic and serotonergic neuronal cell fate (Dittrich et al. 1997; Lundell and Hirsh 1998; Guo et al. 2000). However, the potential embryological functions of ZNF76 have not yet been examined in vertebrate animal models.

Here, we use zebrafish as an animal model to address the function of ZNF76 in vertebrate embryonic development. We report for the first time the spatiotemporal expression patterns of zebrafish znf76 and outline the molecular networks that may be associated with the functions of Znf76 in zebrafish embryos.

Materials and methods

Znf76 sequence analysis

Phylogenetic tree analysis was executed to investigate the evolutionary relationship between zebrafish Znf76 (NP_001071078.1) with human ZNF76 (NP_003418.2),...
Chimpanzee ZNF76 (XP_001172167.1), mouse ZNF76 (NP_766205.1), chicken ZNF76 (XP_004935082.1), and Xenopus Znf76 (XP_017948566.1). Neighbor-joining method was applied for the phylogenetic tree, which was generated with the online available software, MEGA7.0 (https://www.megasoftware.net). Information about amino acids sequence for human, chimpanzee, mouse, chicken, Xenopus, and zebrafish was collected from the available proteins in NCBI, https://www.ncbi.nlm.nih.gov/protein/.

Zebrafish maintenance and embryo generation

Wild type synchronized embryos were collected by natural breeding and maintained at 28.8°C. Zebrafish adult fishes and embryos were stored in the cycle of 10-hour dark/14-hour light and morphological confirmation was confirmed as mentioned in Kimmel et al. 1995. Phenylthiourea (PTU) with 0.2 mM concentration was introduced after passing 9 hpf to stop melanogenesis in the embryos.

RNA preparation, cDNA synthesis, and RT–PCR

RA&BLUE™ Total RNA Extraction kit (INTRON Biotechnology) was applied to isolate total RNA from various stages of zebrafish embryos and cDNA was synthesized with M-MLV Reverse Transcriptase (Enzynomics) with Oligo (dT)20 primer with the collected total RNA (Kumar et al. 2017). Designed oligos were employed to amplify the zebrafish znf76 specific template (237 bp) with PCR experiment from various stages of embryos Forward primer; 5’ CGA CAT CAT CAG CTC ACA CCT G 3’ and Reverse primer; 5’ GCC TCC TCT AAC GTC TGT TGA TC 3’. The β-actin (500 bp) oligos were used as an internal control for this experiment, Forward Primer; GAG GAG CAC CCC GTC CTG C and Reverse Primer; GAT GGC TGG AGG GGC TTC A, Reverse Primer; ATC ACT GAT CAC CCC GTC CTG C and Reverse Primer; GAT GGC TGG AGG GGC TTC A. After completing the amplification, znf76 cloning was performed in pcGlobin2 vector (Ro et al. 2004). Sequencing of the plasmid construct confirmed the insert in the pcGlobin2 vector. Linearization of the plasmid construct was done before synthesizing znf76 capped mRNA with mMessage mMachine® High Yield Capped RNA Transcription Kit (Ambion® Applied Biosystems) and purified capped mRNA was injected (50pg and 100pg) in 1-cell stage of zebrafish embryos, phenol red dye with distilled water was injected as vehicle control in similar volume. Observation of the phenotypes of each embryos was done in every 6 h and images were taken at 24 hpf of the embryos.

Results

Zebrafish znf76 encodes a novel C2H2 Zn finger protein

We performed a bioinformatic search to identify zebrafish Znf76 (NCBI Refseq: NP_001071078.1), which is an ortholog of human ZNF76 (NCBI Refseq: NP_003418.2). We also compared the nucleotide sequences of znf76 from the ENSEMBL (ID: ENSDARG00000013279) and NCBI GenBank (CU855848.15) databases to confirm its genomic organization (Nt 699,488–715,669). znf76 is located on linkage group (LG) 22 in zebrafish and LG 6 in humans. Zebrafish Znf76 is composed of 516 amino acids. To assess whether zebrafish Znf76 is homologous with the protein in other vertebrates, we performed amino acid sequence alignment using Clustal Omega (https://www.ebi.ac.uk/Tools/msa/clustalo/) and plotted the results with Espript 3.0 (http://espript.ibcp.fr) (Goujon et al. 2010; Sievers et al. 2011; McWilliam et al. 2013). At the protein level, zebrafish Znf76 shares 59% sequence similarity with human ZNF76. Multiple sequence alignment of zebrafish Znf76 shows that the C2H2 domain is highly conserved among vertebrates (Figure 1(A)) and that the protein shares approximately 59–60% amino acid sequence similarity with Homo
sapiens (NP_003418.2), Mus musculus (NP_766205.1), Rattus norvegicus (NP_001128227.1), Gallus gallus (XP_426401.3), and Xenopus tropicalis (XP_017948566.1) (Figure 1(B)). These data demonstrate that zebrafish Znf76 is a homolog of human ZNF76.

Spatiotemporal distribution of znf76 transcripts during zebrafish embryogenesis

To investigate the spatiotemporal expression patterns of znf76 during zebrafish embryogenesis, we conducted whole-mount in situ hybridization (WISH) at various developmental stages using a znf76-specific antisense RNA probe. Maternal znf76 transcripts were detected at low levels in embryos at the 1-cell stage (Figure 2(A)); zygotic transcripts were significantly increased at the sphere stage (Figure 2(C)). Distribution of znf76 transcripts was polarized to the anterior and posterior regions at the bud stage (Figure 2(F)). znf76 transcripts were further restricted to the trigeminal placode and proctodeum posterior gut at the late somite stage, 18 h postfertilization (hpf) (Figure 2(G)). At 24 hpf, they were specifically localized at the midbrain–hindbrain boundary (MHB) and in the hindbrain and developing eyes of the embryos (Figure 2(H)). These observations show that the distribution of znf76 transcripts is modulated spatiotemporally and that znf76 transcripts are restricted to the CNS during the later stages of embryonic development.

Ectopic expression of znf76 causes phenotypic defects in the eyes, MHB, hindbrain, and spinal cord

To investigate the functions of Znf76 in zebrafish embryogenesis, we induced ectopic expression of znf76 by microinjecting znf76 capped mRNA into zebrafish

Figure 1. (A) Phylogenic analysis of Znf76 in higher vertebrates The neighbor-joining method of MEGA7.0 was used to derive the phylogenetic tree for the amino acid sequences of human (NP_003418.2), chimpanzee (XP_001172167.1), mouse (NP_766205.1), chicken (XP_004935082.1), Xenopus (XP_017948566.1), and zebrafish (NP_001071078.1) Znf76, which were collected from the NCBI database. The scale bar represents branch distance.

Figure 1. (B) Homology analysis The CLUSTAL OMEGA multiple sequence alignment tool was used to align the amino acid sequences of Znf76 and homologs in other vertebrates. The alignment shows extensive similarity between zebrafish Znf76 and homologs in other vertebrates, suggesting that six C2H2 domains (triangle shapes) are evolutionarily conserved in vertebrate development.
embryos at the 1- or 2-cell stage. Embryos microinjected with 50 pg of \textit{znf76} mRNA showed significantly retarded epiboly formation (data not shown). When the \textit{znf76} mRNA-injected embryos reached 24 hpf, they showed various detailed phenotypic defects such as smaller eyes, a reduction in brain size accompanying an obscure MHB, a shortened anteroposterior axis, and a twisted spinal cord (Figure 3(B,E)). A control group microinjected with phenol red dye diluted in distilled water had a normal phenotype (Figure 3(A,D)). When 100 pg of \textit{znf76} mRNA was injected per embryo, the phenotypic defects became more extreme (Figure 3(C,F)). The chart in Supplementary Table 1 illustrates the severity of defects in the size of the eyes, classified into four groups: normal, intermediate, severe, and dead. The severity of the phenotypic defects was proportional to the amount of \textit{znf76} mRNA microinjected. Taken together, these results suggest that overexpression of \textit{znf76} disturbs the normal development of the eyes, MHB, hindbrain, and spinal cord.

Figure 2. Spatiotemporal expression of zebrafish \textit{znf76} during embryonic development WISH experiments performed with a \textit{znf76} antisense RNA probe at the 1-cell (A), high (B), sphere (C), 30% epiboly (D), shield (E), tail bud (F), 18 hpf (G), and 24 hpf (H) stages. All the images are from the lateral view (A–H). \textit{znf76} transcripts were zygotically expressed in the early stages and were reduced in the 30% epiboly and shield stages (D,E). \textit{znf76} transcripts were present in the head and tail region (red arrowheads) at the tail bud stage (F) and then became progressively restricted to the trigeminal placode and proctodeum posterior gut, with a significant reduction in expression by the late somite stage (18 hpf) (G). At 24 hpf (H), \textit{znf76} transcripts were restricted to Mb, MHB, and Hb-N. Red arrowheads show the anatomical structures. Mb – midbrain, MHB – midbrain–hindbrain boundary, Hb-N – hindbrain neurons, E – eye, ES – Embryonic shield. Scale bar: 100 µm.

Figure 3. Effects of ectopic expression of \textit{znf76} mRNA in zebrafish embryos Lateral view of the embryos (A–C) and magnified lateral view of the embryos (D–F) at 24 hpf. (A,D) WT zebrafish embryo injected with phenol red dye in distilled water, (B,E) zebrafish embryo injected with 50 pg of \textit{znf76} mRNA, and (C,F) zebrafish embryo injected with 100 pg of \textit{znf76} mRNA. Microinjection of 50 or 100 pg of \textit{znf76} mRNA was performed at the 1-cell stage to induce overexpression. Red arrowheads indicate the specific tissues altered at 24 hpf by 50 or 100 pg of \textit{znf76} mRNA injection, compared with the WT; red dotted circles indicate the size of the eyes. NT – neural tube, SC – spinal cord, Hb – hindbrain, Mb – midbrain, E – eye, TB – tail bud, NT – neural tube. Scale bars 100 µm.
Marker-gene studies in zebrafish embryos overexpressing znf76

To identify the molecular events associated with the biological functions of Znf76, we used WISH to analyze embryos ectopically expressing znf76, using the molecular markers pax2a, rx1, and fgf8a (Krauss et al. 1991; Reifers et al. 1998; Chuang et al. 1999). pax2a is a transcription factor that controls the regulatory gene network that maintains MHB specification (Krauss et al. 1992) and is involved in the specification of the otic placode (Hans et al. 2004). At 24 hpf, ectopic expression of znf76 markedly reduced both the level of pax2a transcripts and the area containing pax2a transcripts in the MHB, optic stalk, and hindbrain (Figure 4(C,D)), compared with the WT (Figure 4(A,B)). During development, cells in the retina differentiate, ultimately giving rise to the bipolar, photoreceptor, and ganglion cell layers (Chuang et al. 1999). Because ectopic expression of znf76 disturbed normal development of the eyes (Figure 3(E,F)), we used WISH to measure the levels of rx1, a molecular marker for the retina, in embryos overexpressing znf76. In the control group, rx1 transcripts were abundant and restricted to the neural retina at 24 hpf (Figure 4(E,F)), but in embryos ectopically expressing znf76, rx1 transcripts were significantly reduced in the central marginal zone (CMZ) of the eyes (Figure 4(G,H)). fgf8a governs the organization of the midbrain and hindbrain by controlling the proliferation and differentiation of cells in these regions (Raible and Brand 2004; Harris et al. 2011). In our WISH analysis, fgf8a transcripts were significantly reduced at 24 hpf in the midbrain and hindbrain regions of embryos ectopically expressing znf76 (Figure 4(K,L)) compared with the WT (Figure 4(I,J)). These observations support the hypothesis that znf76 is associated with proper development and differentiation of the MHB, midbrain, hindbrain, and eyes in zebrafish embryogenesis.

Discussion

The spatiotemporal expression pattern of znf76 in normally developing embryos and the phenotypic defects induced by ectopic expression of znf76 both strongly support the hypothesis that transcriptional regulation of znf76 is important for proper development of the eyes, MHB, and hindbrain. We thus searched for cis-acting elements that might be present in the regulatory regions of znf76. As shown in Figure 4(K,L), fgf8a transcripts were almost completely absent at 24 hpf in the midbrain and hindbrain regions of embryos ectopically expressing znf76. Fgf8a governs the organization of the midbrain and hindbrain (Raible and Brand 2004; Harris et al. 2011), and extracellular signal-related kinases (ERKs) are known to be involved in the downstream FGF8 signaling pathways (Harada et al. 2016). Therefore, we tested the inhibitory effects of ERKs on zebrafish embryonic development by applying two ERK inhibitors, UO126 for ERK1/2 and SB203580 for ERK3/4, which are frequently used to block ERK signaling pathways in vitro (Newton et al. 2000). Our preliminary data indicate that inhibition of ERK signaling in zebrafish embryos mimics the effects of overexpression of znf76 in terms of the spatiotemporal expression patterns of pax2a, rx1, and fgf8a in embryos at 24 hpf (data not shown). Furthermore, measurements of the transcriptional activity of the znf76 promoter region show that the two ERK inhibitors

![Figure 4. Marker analysis in znf76-overexpressing embryos](Image)
repress the transcription of znf76 (data not shown). It is worth noting that ectopic expression of znf76 altered the expression level and pattern of pax3a and rx1 transcripts (Figure 4), but not of other molecular marker genes, such as emx1 and rx3 (Supplementary Figure 1). It is thus probable that Znf76 is associated with the development of the eyes, midbrain, MH8, and hindbrain in zebrafish embryos through gene-specific transcriptional regulation in response to ERK signaling pathways.

Acknowledgement

This work was supported by research fund of Chungnam National University.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was supported by Chungnam National University [grant number 0].

References

Anuppalle M, Maddirevula S, Kumar A, Huh T-L, Choe J, Rhee M. 2017. Expression patterns of prune2 is regulated by Notch and retinoic acid signaling pathways in the zebrafish embryogenesis. Gene Expr Patterns. 23–24:45–51.

Armstrong RC, Kim JG, Hudson LD. 1995. Expression of myelin transcription factor I (MyT1), a “Zinc-Finger” DNA-binding protein, in developing oligodendrocytes. Glia. 14:303–321.

Brown RS, Sander C, Argos P. 1985. The primary structure of transcription factor IIIA has 12 consecutive repeats. FEBS Lett. 186:271–274.

Chuang JC, Mathers PH, Raymond PA. 1999. Expression of three Rx homeobox genes in embryonic and adult zebrafish. Mech Dev. 84:195–198.

Dittrich R, Bossing T, Gould AP, Technau GM, Urban J. 1997. The differentiation of the dorsal motor neurons in the Drosophila ventral nerve cord depends on the combined function of the zinc finger proteins Eagle and Huckebein. Dev. 124:2515–2525.

Goujon M, McWilliam H, Li W, Valentijn F, Squizzato S, Paern J, Lopez R. 2010. A new bioinformatics analysis tools framework at EMBL-EBI. Nucl Acids Res. 38:695–699.

Guo S, Yamaguchi Y, Schilbach S, Wada T, Lee J, Goddard A, French D, Hanada H, Rosenthal A. 2000. A regulator of transcriptional elongation controls vertebrate neuronal development. Nat. 408:366–369.

Hans S, Liu D, Westerfield M. 2004. Pax8 and Pax2a function synergistically in otic specification, downstream of the Foxi1 and Dbx3b transcription factors. Dev. 131:5091–5102.

Harada H, Sato T, Nakamura H. 2016. Fgf8 signaling for development of the midbrain and hindbrain. Dev Growth Differ. 58:437–445.

Harris WA, Sanes DH, Reh TA. 2011. Development of the nervous system, 3rd ed. Boston: Academic Press.