FULLY AUTOMATED HAND HYGIENE MONITORING IN OPERATING ROOM USING 3D CONVOLUTIONAL NEURAL NETWORK

Minjee Kim
Department of Biomedical Engineering
University of Ulsan College of Medicine
Asan Medical Center, Seoul, South Korea
minjeekim00@gmail.com

Joonmyeong Choi
Department of Medicine
University of Ulsan College of Medicine
Asan Medical Center, Seoul, South Korea
jm5901@gmail.com

Namkug Kim
Department of Convergence Medicine
University of Ulsan College of Medicine
Asan Medical Center, Seoul, South Korea
namkugkim@gmail.com

ABSTRACT

Hand hygiene is one of the most significant factors in preventing hospital acquired infections (HAI) which often be transmitted by medical staffs in contact with patients in the operating room (OR). Hand hygiene monitoring could be important to investigate and reduce the outbreak of infections within the OR. However, an effective monitoring tool for hand hygiene compliance is difficult to develop due to the visual complexity of the OR scene. Recent progress in video understanding with convolutional neural net (CNN) has increased the application of recognition and detection of human actions. Leveraging this progress, we proposed a fully automated hand hygiene monitoring tool of the alcohol-based hand rubbing action of anesthesiologists on OR video using spatio-temporal features with 3D CNN. First, the region of interest (ROI) of anesthesiologists’ upper body were detected and cropped. A temporal smoothing filter was applied to the ROIs. Then, the ROIs were given to a 3D CNN and classified into two classes: rubbing hands or other actions. We observed that a transfer learning from Kinetics-400 is beneficial and the optical flow stream was not helpful in our dataset. The final accuracy, precision, recall and F1 score in testing is 0.76, 0.85, 0.65 and 0.74, respectively.

1 INTRODUCTION

Hand hygiene has been considered as the most crucial action to prevent infections such as hospital acquired infections (HAI). Many studies support that appropriate hand hygiene shows significant reduction of infections and enhances a patient safety in hospitals. As a part of a campaign, healthcare organizations have suggested the guidelines of hand hygiene. Despite of those efforts, the rates of hand hygiene compliance remain poor in most countries [Barrera et al., 2011] [Loftus et al., 2019].

The lack of compliance with hand hygiene can also be observed among medical staffs in the operating room (OR). Anesthesiologists, in particular, are highly involved in numerous activities that can affect HAI such as intubating a patient, accessing intravenous catheters, injecting of anesthetic drugs and airway management. However, the potential risk of HAI from anesthesiologist’s hand disinfection has been underestimated.

A recent study shows that repeated monitoring and positive feedback on hand hygiene increased compliance with the recommended guidelines. An effective monitoring tool, however, is still difficult to find in hospital. The standard method of monitoring hand hygiene is conducted through a direct observation by trained observers within a specific monitoring period. This method is highly
labor-intensive and subject to biases with the nature of sampling and the Hawthorne effect (Srigley et al., 2014), the effect that people modify their behaviors by perception of being observed.

We proposed a fully automated hand hygiene monitoring tool using two-stream inflated 3D CNN, I3D (Carreira & Zisserman, 2017). We leveraged a transfer learning from the network learned from Kinetics-400 (Kay et al., 2017), a large video dataset for human action classification, containing 400 categories with approximately 300,000 video clips. Also, we investigated the effect of optical flow stream for small-scale hand actions. Our study can further be expanded to analyze workflow patterns of hand hygiene providing a holistic understanding of hand hygiene protocols of ORs.

2 RELATED WORK

A few previous studies have been conducted to develop an effective hand hygiene monitoring tool in hospital. For ORs, Bellaard-Smith & Gillespie (2012) have implemented a mobile-based tool that can instantly record the hand hygiene compliance during direct observations. This tool helps to collect quantitative data but could not overcome the sampling bias of the direct observation. In ICUs, Zhang et al. (2017) utilized the activation data of smart hand sanitizers to predict hand hygiene compliance. In outpatient settings, Geilleit et al. (2018) proposed a real-time notification system by building a virtual line with an infrared sensor. These methods generally have a high accuracy of use of hand sanitizers yet require multiple sensors which are not suitable for ORs. Vision-based automatic monitoring tools with top-down view cameras are implemented by Yeung et al. (2016) and Haque et al. (2017), which limits the monitoring to the location of hand sanitizer dispensers.

A recent progress of deep learning architectures in video domain enables to extract spatio-temporal features of human actions in video-level (Tran et al., 2014; Hara et al., 2017). The semantic features of human actions can be utilized to monitor and assess hand hygiene compliance in ORs.

3 OPERATING ROOM DATASET

3.1 DATA ACQUISITION

The Institutional review board for human investigations at the cooperative hospital approved the retrospective study with a waiver of informed consent. The videos were collected for four months from a single OR of the hospital. The video recording was performed throughout multiple surgeries consecutively. We then selected pre- and post-operative scenes only as shown in Figure 1, in which anesthesiologists are intensively involved. Faces of medical staffs and patients were blurred in all the images used for training. The videos were recorded at 15 fps in 640×480 resolution.

![Figure 1: An example of work process of the surgical team (medical staffs) in the OR. Induction phase is the transition from an awake state to an anesthetized state and emergence phase is from the sleep state to full consciousness. We included only pre- and post-operative procedures in the dataset.](image)

3.2 SYNTHETIC DATA

Synthetic data is often combined with real-world data to address the lack of available dataset. In our study, the deficiency was possibly derived from poor hand hygiene compliance, annotation missing and confined field of view of the camera. We additionally recorded an hour-long video under a simulated situation close to a real surgical settings. Accompanied with an anesthesiologist, eight people who are not medical staffs repeatedly rubbed their hands with the hand sanitizers installed in the same OR. The synthetic data was included in a training dataset only and a detail number of video clips is stated in 3.6.
3.3 Data Annotation

To build upon a dataset that holds meaningful actions related to hand hygiene protocols, we annotated actions including 4 classes: rubbing hands, intubating, wearing and removing gloves. Among untrimmed videos, we selectively chose video clips containing those actions. Since our aim is to detect an alcohol-based hand rubbing action of anesthesiologists in the OR, we labeled rubbing hands as 1 and the other actions as 0.

3.4 Medical Staff Detection

![Figure 2: (Left) COCO-18 key-point format for human pose skeleton. (Right) The rendered skeleton outputs of pose estimation. The upper body ROIs were calculated with six key-points of two shoulders, elbows and wrists.](image)

We utilized a real-time pose estimation library, OpenPose (Cao et al., 2017), which automatically extracts 2d human body key-points of multi-person on single images. We chose a COCO-18 format with x, y coordinates of 18 body parts from eye to ankle as standard. Since hand rubbing is mostly focused on upper body, we calculated upper body ROIs using six key-points of two shoulders, elbows and wrists and added some margins as shown in Figure 2. The coordinates were further used as data augmentation during training as detailed in 4.1.

3.5 Action Linking and Temporal Smoothing

In order to link the ROIs to the same person along with a video clip, we calculated the intersection over union (IoU) for every detected person in the next image and assigned it with the person with the highest score. False assignments were manually corrected. Additionally, we applied a simple moving average (SMA) filter to reduce temporal shakes of the ROIs. The equation of SMA is:

$$y[n] = \sum_{k=0}^{L-1} x[n-k]$$

where L is the duration of discrete time of input vector x and y is the output vector of the average of the previous L vectors. We set L to be 4 which derived empirically.

3.6 Data Statistics

A total of 45 untrimmed videos were acquired, of which 19 videos were confirmed to contain the target action, rubbing hands. The remaining videos were ignored. Each untrimmed video is eight hours in length and has one to eight occurrences of hand rubbing action. The total video clips are composed of 176 clips, of which 97 clips were labeled as rubbing hands, of which 79 clips were labeled as other actions. Each clip has the number of image frames with a range from 16 to 152. We split all video clips into 10:1:1 for training, validation and testing, respectively. All datasets keep the ratio of each class and do not share the video clips recorded in the same date.
Table 1: Description of the number of the video clips (the image frames) filmed in a real world and synthetic data. Other actions include intubating, wearing, removing gloves, etc. The number of data with augmentation was calculated using only temporal method, not spatial method stated in 4.1.

4 METHODS

4.1 DATA AUGMENTATION

To overcome the dearth of dataset, we used data augmentation techniques spatially and temporally. Spatially, a real-time multi-scale cropping around the upper body region was applied. We randomly selected areas that are 1 to 1.75 times of the size of the original coordinates containing the upper body region. In addition, we applied a random horizontal flipping with a probability of 0.5 and brightness jittering with an extent from -0.1 to 0.1. For testing, we used the upper body cropping with the original ROI size. All of the input was scaled to 224 pixel size and center-cropped. Temporally, for rubbing hands class, we picked all possible starting frames in a single clip enough to have a consecutive 16 frames. For other actions class, we set a step size of 4 in frames between each clip. None of the temporal techniques were applied in testing.

4.2 HAND RUBBING ACTION CLASSIFICATION

We chose I3D model, an Inception-v1 architecture\cite{Szegedy14} that inflates 2D into 3D convolutions. Two I3D networks for RGB and optical flow inputs were separately and jointly trained on our dataset to explore the effect of optical flow modality. The optical flow was computed with a TV-L1 algorithm implemented in OpenCV library. The I3D was pretrained on a large video dataset for human action classification, Kinetics-400, with 400 categories including 9 hand-related human actions: air drumming, applauding, clapping, cutting nails, doing nails, drumming fingers, finger snapping, pumping fist and washing hands. The pretrained I3D was then fine-tuned with an additional 1x1x1 convolution after the last convolutional network and a sigmoid output was used to account for the binary classification of hand rubbing action. All the layers before and including the average pooling layer were frozen when training. We chose the number of input frames to be 16 to give to this architecture.

5 EXPERIMENTAL RESULTS

5.1 HAND RUBBING ACTION CLASSIFICATION

We set a training experiment on RGB stream I3D model as baseline and compared with optical flow model which trained separately. Then, we evaluated and compared three models including RGB, optical flow (Flow) and the pooling model (RGB+Flow) using I3D (Table 2). All methods were evaluated per video clip in testing.

Table 2: Ablation studies for classification of hand rubbing using RGB, optical flow (Flow) and the joint model (RGB+Flow) using I3D.

Model	Accuracy	Precision	Recall	F1 score
I3D (RGB)	0.76	0.85	0.65	0.74
I3D (Flow)	0.62	1.00	0.22	0.36
I3D (RGB+Flow)	0.61	0.94	0.28	0.43
Table 2 shows that RGB model which trained separately results in the best performance among three models, outperforming in accuracy, recall and f1 score. The result suggests that optical flow model is not helpful when trained separately and jointly when using our dataset. By pooling the model with optical flow stream, we observed 0.15 decrease in accuracy.

Figure 3: Small-scale actions of hand rubbing and other hand-related actions (glove wearing) in RGB and optical flow modality. (Top) Input images of hand rubbing action. (Bottom) False positive example in RGB model in testing. Input images of glove wearing action.

6 DISCUSSIONS & LIMITATIONS

We demonstrate that hand hygiene actions of medical staffs in OR can automatically be detected and monitored using spatio-temporal features with 3D CNN. It is encouraging that the challenges of small video datasets can be solved with the significant benefits of a pre-trained network trained on a large video dataset. The contribution of optical flow modality is much less useful in a small-scale hand action dataset than a large-scale action dataset.

We now analyze the results of optical flow model. Optical flow model alone was not able to properly predict the actions, scoring a perfect precision of 1.0 and a low recall of 0.22, which means the model returned none of the target class, rubbing hands. Previous studies have demonstrated that two-stream architectures have superior performance on many human action classification benchmark datasets (Carreira & Zisserman [2017]), but the pooled model on our dataset resulted in 0.15, 0.37 and 0.31 decrease in accuracy, recall and f1 score, respectively. This gap of the impact of optical flow model reflects the different characteristics among the datasets. In benchmark datasets such as UCF-101 (Soomro et al. [2012]), HMDB-51 (Kuehne et al. [2011]), and Kinetics-400, the majority of the video clips are either with a single person performing large-scale actions like running and golf-swing or with a distinctive object or background like biking and playing cello. On the other hand, our dataset consists of the video clips with multi person performing very subtle motions of hands (Figure 3). There are several limitations to this study. Abundant videos collected from different ORs should be trained to generalize our model in unseen surgical setup. The category of other actions needs to be expanded to analyze other hand hygiene-related activities such as touching patients or surgical instrument in ORs. Moreover, occlusion of hand location should be considered.

7 CONCLUSIONS

We proposed a fully automated hand hygiene monitoring tool in ORs using 3D CNN. With a combination of pose estimation and cropping upper body regions, we were able to detect the medical staff in ORs. We additionally applied a temporal smoothing filter after linking upper body ROIs along with a video clip. Synthetic data, a transfer learning and data augmentation using body key-points were utilized to overcome the small size dataset. The experimental results have demonstrated that I3D network with RGB stream outperforms optical flow and the joint model.
REFERENCES

Lena Barrera, Walter Zingg, Fabian Mendez, and Didier Pittet. Effectiveness of a hand hygiene promotion strategy using alcohol-based handrub in 6 intensive care units in colombia. *American journal of infection control*, 39:633–9, 05 2011. doi: 10.1016/j.ajic.2010.11.004.

Elizabeth Bellard-Smith and Elizabeth Gillespie. Implementing hand hygiene strategies in the operating suite. *Healthcare Infection*, 17:33–37, 04 2012. doi: 10.1071/HI12002.

Zhe Cao, Tomas Simon, Shih-En Wei, and Yaser Sheikh. Realtime multi-person 2d pose estimation using part affinity fields. In *The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, July 2017.

J. Carreira and Andrew Zisserman. Quo vadis, action recognition? a new model and the kinetics dataset. pp. 4724–4733, 07 2017. doi: 10.1109/CVPR.2017.502.

Roel Geilleit, Hen Qian, Chia Chong, Loh Poh, Pang Lan, Gregory Peterson, Ng Chong, Anita Huis, and Dirk De Korne. Feasibility of a real-time hand hygiene notification machine learning system in outpatient clinics. *Journal of Hospital Infection*, 100, 04 2018. doi: 10.1016/j.jhin.2018.04.004.

Albert Haque, Michelle Guo, Alexandre Alahi, Serena Yeung, Zelun Luo, Alisha Rege, Jeffrey Jopling, N. Downing, William Beninati, Amit Singh, Terry Platchek, Arnold Milstein, and Fei Fei Li. Towards vision-based smart hospitals: A system for tracking and monitoring hand hygiene compliance. 08 2017.

Kensho Hara, Hirokatsu Kataoka, and Yutaka Satoh. Can spatiotemporal 3d cnns retrace the history of 2d cnns and imagenet? 2018 *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 6546–6555, 2017.

Will Kay, João Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sudheendra Vijayanarasimhan, Fabio Viola, Tim Green, Trevor Back, Apostol Natsav, Mustafa Suleyman, and Andrew Zisserman. The kinetics human action video dataset. *ArXiv*, abs/1705.06950, 2017.

Hilde Kuehne, Hueihan Jhuang, Estibaliz Garrote, Tomaso Poggio, and Thomas Serre. Hmdb: A large video database for human motion recognition. *2011 International Conference on Computer Vision*, pp. 2556–2563, 2011.

Michael J Loftus, Chloë Guitart, Ermira Tartari, Andrew J Stewardson, Fatma A. Amer, Fernando Bellissimo-Rodrigues, Yew Fong Lee, Shaheen Mehtar, Buyiswa Lizzie Sithole, and Didier Pittet. Hand hygiene in low- and middle-income countries: A position paper of the international society for infectious diseases. *International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases*, 2019.

Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. Ucf101: A dataset of 101 human actions classes from videos in the wild. *ArXiv*, abs/1212.0402, 2012.

Jocelyn A. Srigley, Colin D. Furness, Gavin Baker, and Michael Gardam. Quantification of the Hawthorne effect in hand hygiene compliance monitoring using an electronic monitoring system: a retrospective cohort study. In *BMJ quality & safety*, 2014.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. 2015 *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 1–9, 2014.

Du Tran, Lubomir D. Bourdev, Rob Fergus, Lorenzo Torresani, and Manohar Paluri. Learning spatiotemporal features with 3d convolutional networks. 2015 *IEEE International Conference on Computer Vision (ICCV)*, pp. 4489–4497, 2014.

Serena Yeung, Alexandre Alahi, Albert Haque, Boya Peng, Zelun Luo, Amit Singh, Terry Platchek, Arnold Milstein, and Fei-Fei Li. Vision-based hand hygiene monitoring in hospitals. In *AMIA*, 2016.

Peng Zhang, Jules White, Douglas C. Schmidt, and Tom Dennis. Applying machine learning methods to predict hand hygiene compliance characteristics. 2017 *IEEE EMBS International Conference on Biomedical & Health Informatics (BHI)*, pp. 353–356, 2017.