Blazar constraints on neutrino-dark matter scattering

James M. Cline, Shan Gao, Fangyi Guo, Zhongan Lin, Shiyuan Liu, Matteo Puel, Phillip Todd, and Tianzhuo Xiao

McGill University, Department of Physics, 3600 University Street, Montréal, QC H3A2T8 Canada

Neutrino emission in coincidence with gamma rays has been observed from the blazar TXS 0506+056 by the IceCube telescope. Neutrinos from the blazar had to pass through a dense spike of dark matter (DM) surrounding the central black hole. The observation of such a neutrino implies new upper bounds on the neutrino-DM scattering cross section as a function of the DM mass. The constraint is stronger than existing ones for a range of DM masses, if the cross section rises linearly with energy. For constant cross sections, competitive bounds are also possible, depending on details of the DM spike.

1. Introduction. The possible interactions of dark matter (DM) with ordinary matter have been constrained in many ways. The most challenging category is DM-neutrino interactions, due to the difficulty of observing neutrinos. A promising strategy is to consider astrophysical sources of high-energy neutrinos, that could accelerate light DM particles to energies that would make them detectable in ground-based DM and neutrino search experiments [1–3]. This only works if, in addition to DM-ν interactions, there can also be scattering of DM from nuclei or electrons in the detector.

A more model independent strategy is to use the fact that a 290 TeV neutrino, known as event IC-170922A, has been observed by the IceCube experiment and was identified as coming from the blazar TXS 0506+056 [4]. Ref. [5] set limits on the DM-ν scattering cross section using the fact that the neutrino had to pass through cosmological and galactic DM between the blazar and the Earth. In this work, we derive stronger limits, using the fact that the neutrino also had to traverse the dense DM spike surrounding the supermassive black hole powering TXS 0506+056.

IceCube additionally reported a statistical excess of lower energy neutrinos prior the 2017 flare of TXS 0506+056 [6], but the claimed excess is too large to be explained by state-of-the-art one-zone blazar models, likely requiring more complicated modelling [7–12]. Hence we do not include it in the present analysis. There have also been several candidate associations between neutrinos detected by IceCube and known γ-ray blazars subsequent to IC-170922A (e.g. [13–20]). Since none of them have been confirmed by the IceCube collaboration, we do not include them in this study.

2. Expected neutrino events. We start by describing the theoretical models of neutrino emission from blazars and the expected flux from TXS 0506+056. The observed spectra of electromagnetic emission from blazars is well described by leptohadronic models [11, 12, 21–23], in which protons and electrons are shock-accelerated to create a relativistic jet, in a magnetized region that produces synchrotron radiation. The jet extends to distances \(\sim 10^{11} \text{ km} \) [22–24], around 1000 times smaller than the extent of the DM spike to be described in Section 3. Proton-photon interactions in the jet produce pions, whose decays are the source of high-energy neutrinos.

Purely hadronic models are also able to fit the combined electromagnetic spectra at optical, X-ray and gamma-ray frequencies, but they lead to either a detectable neutrino flux at much higher energies or a negligible low flux at energies compatible with IC-170922A [22, 23]; hence we focus on lepto-hadronic models in the following. The impact of different choices is discussed at the end of section 4. Under the steady state approximation, the hadronic model of Ref. [22] predicts a neutrino flux between \(E_\nu \sim 100 \text{ TeV} \) and 10 EeV, that peaks at a value \(E_\nu \sim 10 \text{ PeV} \), which is orders of magnitude higher than IC-170922A. We find that the probability of observing a neutrino with energy \(\lesssim 300 \text{ TeV} \) is \(\sim 3 \% \) in this model. Hence we consider it to be disfavored for explaining IC-170922A.

On the other hand, the neutrino flux predicted by the lepto-hadronic model of Ref. [12], based on a fully time-dependent approach, peaks near \(E_\nu = 100 \text{ TeV} \), and is compatible with the observation. Within the quasi-two neutrino oscillation approximation [12], the flux is well-fit by the formula

\[
\log_{10} \Phi_\nu(E_\nu) = -F_0 - \frac{F_1 x}{1 + F_2 |x|^2},
\]

with \(F_0 = 13.22, F_1 = 1.498, F_2 = -0.00167, F_3 = 4.119, \) and \(x = \log_{10}(E_\nu/\text{TeV}) \in [-1.2, 4.2] \). The expected number of muon neutrino events observed at IceCube is given by

\[
N_{\text{pred}} = t_{\text{obs}} \int dE_\nu \Phi_\nu(E_\nu) A_{\text{eff}}(E_\nu),
\]

where \(t_{\text{obs}} \) is the time interval of observation, \(\Phi_\nu \) is the predicted neutrino flux from the blazar, and \(A_{\text{eff}} \) is an effective area for detection, which depends on the geometry of the source direction and \(E_\nu \), and encodes the probability for a neutrino to convert to a muon through weak interactions. Data for \(A_{\text{eff}} \) from TXS 0506+056 is provided by IceCube [24]. For the campaign IC86c during JD (Julian day) 57161 – 58057 that observed IC-170922A, \(t_{\text{obs}} = 898 \text{ d}, \) and the reconstructed energy was \(E_\nu = 290 \text{ TeV} \). This yields \(N_{\text{pred}} \approx 2.0 \) from the flux \(\Phi_\nu \), compatible with the observed event. We adopt this as the input model for constraining the DM-ν cross section in the following.
3. Dark matter spike. The overdensity of DM surrounding the central black hole plays a crucial role for containing ν-DM scattering from the blazar. The possibility of adiabatic accretion of DM around the black hole (BH) was first considered by Gondolo and Silk in Ref. [23]. They derived an inner radius for the spike of $r_i = 4R_S$, where $R_S = 2GM_BH$ is the BH Schwarzschild radius, and an outer profile $\rho'(r) \equiv N (1 - 4R_S/r)^3 r^{-\alpha}$ with $\alpha = (9 - 2\gamma)/(4 - \gamma) \in [2.25, 2.5]$, depending on the inner cusp of the initial DM halo density, $\rho \sim r^{-\gamma}$, with $0 \leq \gamma \leq 2$. The normalization N of ρ' can be determined using the finding that the mass of the spike is of the same order as M_BH [20], $4\pi \int_{r_i}^{r_o} dr r^2 \rho' \approx M_BH$, within a radius of typical size $r_o \approx 10^5 R_S$ [27]. The BH mass of the blazar TXS 0506+056 is estimated to be $3.09 \times 10^8 M_\odot$ [23]. In Ref. [28], it was argued that gravitational scattering of DM with stars in the central region would lead to dynamical relaxation to a less cuspy profile with $\alpha = 3/2$; hence we also consider this possibility below.

The spike density is reduced relative to these initial profiles if there is subsequent DM annihilation, leading to a maximum density of $\rho_e = m_e/(\langle\sigma v\rangle t_{BH})$, where m_e is the DM mass, $\langle\sigma v\rangle$ is an effective annihilation cross section, and t_{BH} is the age of the BH. The spike density then becomes $\rho_\chi = \rho_e \rho'/(\rho_e + \rho')$. The quantity $\langle\sigma v\rangle$ is “effective” in the sense that it could be negligible even if the actual annihilation cross section is large. This would be the case for asymmetric dark matter, in which the symmetric component has completely annihilated away in the early universe. Then annihilations would have no effect at later times, when the DM spike is formed. To illustrate the range of possible outcomes from varying $\langle\sigma v\rangle$, we follow Ref. [3] by considering three benchmark models BM1-BM3, in which $\langle\sigma v\rangle = (0, 0.01, 3) \times 10^{-26} \text{cm}^3/\text{s}$, respectively, and $t_{BH} = 10^9 \text{yrs}$. These models assumed $\alpha = 7/3$ in $\rho' \sim r^{-\alpha}$. We also consider models BM1’-BM3’ using the less cuspy value $\alpha = 3/2$.

The probability for neutrinos to scatter from DM in the spike depends on the DM column density,

$$\Sigma_\chi = \int_{R_{em}}^{\infty} dr \rho_\chi \approx A_\Sigma \left(\frac{m_\chi}{1 \text{MeV}} \right)^{1-B_\Sigma} \text{MeV},$$

where $R_{em} \approx R' \delta \sim 2 \times 10^{17} \text{cm}$ is the distance from the central BH to the position in the jet where neutrinos and photons are likely to be produced [28]. $R' \sim 10^{16} \text{cm}$ is the comoving size of the spherical emission region and $\delta \sim 20$ is the Doppler factor for the lepto-hadronic model of Ref. [12]. One finds that Σ_χ/m_χ can be accurately fit by a power law, $\Sigma_\chi/m_\chi = A_\Sigma (\text{MeV}/m_\chi)^B_\Sigma$, with $B_\Sigma = 1$ for the case of $\langle\sigma v\rangle = 0$, and a fractional power when annihilation occurs. The parameters A_Σ, B_Σ for the benchmark models are given in Table I. Although the DM spike does not extend to arbitrary distances, the integral in Eq. (3) converges around $10 R_S$ in the case of no DM annihilation, and at larger radii $\sim (10^8 - 10^9) R_S$ for the cases with annihilation.

4. Neutrino attenuation by DM. One can make an initial estimate for the maximum DM-ν scattering cross section $\sigma_{\nu\chi}$ as being inverse to the column density Σ_χ/m_χ of the DM spike surrounding the central BH of TXS 0506+056. To be more quantitative, we recomputed the expected number of IceCube events from the 2017 flare that led to the observed event, taking into account the attenuation from scattering on DM. The analogous computation for scattering of neutrinos by galactic DM has been considered in Ref. [39]. The evolution of the flux due to scattering is described by the cascade equation,

$$\frac{d\Phi(E_\nu)}{dE_\nu} = -\sigma_{\nu\chi} \Phi + \int_{E_\nu}^{E'_\nu} \frac{dE_{\nu'}}{dE_{\nu'}} \frac{d\sigma_{\nu\chi}}{dE_{\nu'}} (E_{\nu'} - E_\nu) \Phi(E_{\nu'}),$$

where $\tau = \Sigma(r)/m_\chi = \int dr \rho_\chi/m_\chi$ is the accumulated column density. The second term represents the effect of neutrino energies being redistributed, rather than simply being lost from the beam.

To proceed, we must make an assumption about the energy dependence of the cross section. In section 6 we will discuss particle physics models that predict $\sigma_{\nu\chi}(E_{\nu'})$. A particularly simple and well-
motivated choice is linear energy dependence,
\[
\sigma_{\nu \chi} = \sigma_0 \frac{E_\nu}{E_0},
\]
taking the reference energy \(E_0 = 290 \text{ TeV} \) to be that of the observed event. Approximating the scattering as being isotropic in the center of mass frame, one can show that \(d\sigma_{\nu \chi}/dE_\nu = \sigma_{\nu \chi}/E_\nu = \sigma_0/E_0 \). The cascade equation can be discretized, choosing equal logarithmic intervals \(\Delta x \) in \(x = \log_{10}(E_\nu/\text{TeV}) \). Defining a dimensionless column density \(y = (m_\chi/\Sigma_\chi) \tau \), it takes the form
\[
\frac{d\Phi}{dy} = A \left(-\hat{E}_\nu \Phi_1 + \Delta x \ln \sum_{j=1}^N \hat{E}_j \Phi_j \right)
\]
where \(A = (\Sigma_\chi/m_\chi)(\sigma_0/E_0) \), \(\hat{E}_\nu = 10^{2y} \) is the energy in TeV units, \(E_0 = 290 \) and \(y \in [0,1] \).

To solve Eq. (6), one can either evolve the initial condition from \(y = 0 \) to \(y = 1 \) by incrementing in \(y \), or use the algorithm presented in Ref. \([40]\). We have checked that both methods give the same results, resulting in the 90\% C.L. limit
\[
A \equiv \frac{\Sigma_\chi \sigma_0}{m_\chi E_0} < 0.0047
\]
by demanding the number of events giving a neutrino of energy \(E_\nu \geq 290 \text{ TeV} \) be greater than 0.1. The corresponding constraints in the plane of \(\sigma_0 \) versus \(m_\chi \) are plotted in Fig. 4 for the six DM spike models. The constraint (7) can be expressed as \(\sigma_0 < 1.4 m_\chi/\Sigma_\chi \), in agreement with the initial estimate. The effects of other kinds of energy dependence of \(\sigma_{\nu \chi} \) are considered in Section 6.\([102]\)

We find that the constraint (7) is strengthened by a factor of \(\sim 4 \) for hadronic production models, like those of Refs. \([12,22]\), relative to lepto-hadronic ones. In fact, a nonvanishing \(\sigma_{\nu \chi} \) at such levels could reduce the too-high energies predicted by hadronic models, to better explain the IC-170922A event, but interpreted as an upper limit it is more stringent than Eq. (7), hence our adoption of lepto-hadronic models is a conservative choice.

5. Comparison to previous limits. A model-independent signal of neutrino-DM interactions is the suppression in the primordial density fluctuations at temperatures \(\sim 1 \text{ eV} \), which would produce detectable effects in the cosmic microwave background (CMB) and matter power spectrum \([30,31,41-44]\). For a constant scattering cross section, Ref. \([41]\) derived a limit of \(\sigma_{\nu \chi} \lesssim 10^{-3} (m_\chi/\text{MeV}) \text{ cm}^2 \) for massless neutrinos, which becomes weaker by about five orders of magnitude if a neutrino mass of \(\sim 0.06 \text{ eV} \) is properly included \([30]\). A more recent analysis using Lyman-\(\alpha \) forest data found a mild preference for DM interacting with massive neutrinos, which requires confirmation \([31]\).

Besides its effect on cosmology, DM-\(\nu \) scattering can also be probed in direct detection experiments and neutrino observatories, if further assumptions about the DM interaction with either leptons or nucleons are made. A prominent example involves boosting DM within our galaxy by astrophysical neutrinos such as those coming from stars \([32,45]\), diffuse supernovae \([2,46-48]\) or from supernova SN1987A \([33]\), leading to larger energy deposition than could occur for light DM particles. Alternative ways to probe DM scattering with neutrinos is via attenuation of neutrino fluxes from supernovae \([41,49]\) and the galactic centre \([50]\), delayed neutrino propagation \([51,53]\), and through effects in the extragalactic distribution and spectra of PeV neutrinos \([51,53]\).

Fig. 2 shows a compilation of the most stringent bounds on \(\sigma_{\nu \chi} \), after rescaling them to the common energy scale \(E_0 = 290 \text{ TeV} \), assuming Eq. (5). Here we include also constraints on DM-electron scattering, since it is natural for neutrinos and electrons to interact with DM with the same strength, as discussed in the next section. DM-\(e \) scattering can be probed in a variety of ways. It would alter the CMB anisotropies, the shape of the matter power spectrum and the abundance of Milky-Way satellites \([56,58]\), cause CMB spectral distortions \([59,60]\), and heat or cool the gas in dwarf galaxies \([61]\). Similarly to the neutrino case, DM particles can be boosted by cosmic rays \([62,62]\), particles in the solar interior \([54]\) or in the relativistic jets of blazars \([11,11] \) and be directly detected. Standard direct detection constraints on light DM particles can apply \([55,58,63,64]\). DM-electron scattering can alter the cosmic ray spectrum \([63]\), and potentially heat neutron stars \([61,60]\) and white dwarfs \([67]\).

The new blazar limits on \(\sigma_{\nu \chi} \) shown in Fig. 2, assuming \(\sigma_{\nu \chi} \propto E_\nu \), are several orders of magnitude
stronger than existing ones for sub-GeV DM, when the latter are rescaled to the blazar neutrino energy. In the case of light mediators that could lead to a constant-in-energy cross section, we lose this advantage, as shown in Fig. 1.

6. Particle physics models. The simplest models for DM-ν scattering involve the exchange of a vector boson Z' between DM and neutrinos. We assume coupling $g_ν$ to all flavors of neutrinos, and coupling $g_χ$ to DM, taken to be a complex scalar; by dimensional analysis, the results are expected to be insensitive to the spin of the DM. (Exact expressions for $σ(E)$ in various models can be found in the appendix of Ref. [39].) At energies $E_ν ≫ m_χ$, the cross section goes as

$$σ_ν ≅ \frac{g_ν^2 g_χ^2}{4π m_{Z'}^2} \left[1 - \frac{m_{Z'}^2}{s} \ln \left(1 + \frac{s}{m_{Z'}^2} \right) \right], \quad (8)$$

where $s ≡ 2m_ν E_ν$, equally for scattering of neutrinos or muons on DM. For $m_{Z'} \gg m_ν E_ν$, $σ_ν$ rises linearly with $E_ν$ by expanding the logarithm to second order in $s/m_{Z'}^2$, while for $E_ν ≫ m_{Z'}^2/m_χ$, $σ_ν$ saturates to a constant value. The corresponding differential cross section that appears in the second term of the cascade equation (4) is

$$\frac{dσ_ν}{dE_ν} (E_ν→E_ν') = \frac{(g_ν^2 g_χ^2/4π)(m_χ E_ν/E_ν')}{(m_{Z'}^2 + 2m_χ (E_ν' - E_ν))^2}. \quad (9)$$

This model is similar to that in Eq. (5) in having $σ_ν ∝ E_ν$, at low energy, but it is physically distinct because the differential scattering implied by (9) is not isotropic. One can show that its behavior in the cascade equation is determined by just two (dimensionless) parameters, that we take to be

$$A' = \frac{g_ν^2 g_χ^2 m_{Z'} \cdot (1 \text{ TeV})}{4π m_{Z'}^2}, \quad B' = \frac{m_χ \cdot (1 \text{ TeV})}{m_{Z'}^2}. \quad (10)$$

With this choice, A' plays the same role of A in Eq. (6) in the low-energy regime where $σ_ν ∝ g_ν g_χ m_χ E_ν/(4π m_{Z'}^2)$. By solving the cascade equation on a grid of values in the $A'-B'$ plane, again demanding at least 0.1 predicted IceCube events above 200 TeV, we obtain the constraint shown in Fig. 3. We translate the A' versus B' bound into the microscopic model parameters, $g_ν g_χ$ versus $m_{Z'}$ in Fig. 4 for some choices of the DM spike models and DM masses. For comparison, the most stringent related constraint from $Z → 4ν$ is also shown [36 99], for the case that $g_χ = g_κ$.

In a realistic model, Z' should couple not only to neutrinos, but to charged leptons in the SU(2)$_L$ doublets, and to baryons so that the theory is anomaly-free. This leads to numerous further constraints in the parameter space of $g_ν$ versus $m_{Z'}$, which are beyond the scope of the present work. We will consider this aspect in an upcoming paper [100].

7. Summary and conclusions. It is not disputed that dark matter accumulates in the vicinity of supermassive black holes that power active galactic nuclei, but there are significant uncertainties from astrophysics, including the initial neutrino flux and the location along the jet where neutrinos are likely to be produced, and from the density profile of the DM spike and the effective DM annihilation cross section. Despite these uncertainties, we find strong and conservative constraints on the elastic scattering cross section $σ_ν$ for DM-neutrino scattering, so long as the IceCube event IC-170922A indeed came from the blazar TXS 0506+056 during its 2017 flare, as is widely believed.

Since the single event has a unique neutrino energy E_0, our constraint applies to $σ_ν$ at that energy. A natural hypothesis is that such interactions arise from exchange of a massive mediator, which leads to the prediction of linear energy dependence, $σ_ν = σ_0 E_ν/E_0$ at sufficiently low energies. Under that assumption, we compared our limit to previous ones in the literature, which are set at much lower energies.

Even in the least optimistic case (models BM3-BM3'), our limits improve on the existing ones by several orders of magnitude, if rescaled to E_0, for sub-GeV DM masses (see Fig. 2). The stronger of our constraints (BM1-BM1') are likely to be appli-
cable in the case of asymmetric DM, where the effective annihilation cross section is essentially zero, due to the negligible proportion of a symmetric component that is necessary to have annihilation. Our constraints are weakened if the mediator mass is sufficiently small, which causes the cross section to stop rising with energy at a scale of order m_T^2/m_X, becoming constant at higher energies, and thereby reducing the leverage of our bound coming from the 290 TeV scale (see Fig. 1).

A further natural assumption, motivated by SU(2)$_L$ gauge symmetry in the standard model, is that charged leptons should have an equal cross section with DM relative to neutrinos, allowing us to compare to existing electron-DM scattering constraints. Here too our constraints improve on previous limits, for linearly rising cross sections.

We look forward to future observations by neutrino telescopes that may confirm the multimessenger signals from blazars, and perhaps lead to refined constraints on lepton-DM scattering.

Acknowledgments. We thank Sargis Gasparyan, Rebecca Leane, Kohta Murase, Foteini Oikonomou, Paolo Padovani, Ken Ragan, Aaron Vincent and Jin-Wei Wang for helpful correspondence. This work was supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada.

[1] J.-W. Wang, A. Granelli, and P. Ullio, “Direct Detection Constraints on Blazar-Boosted Dark Matter,” Phys. Rev. Lett. 128 (2022) 221104, arxiv:2111.13644 [astro-ph.HE]
[2] D. Ghosh, A. Guha, and D. Sachdeva, “Exclusion limits on dark matter-neutrino scattering cross section,” Phys. Rev. D 105 no. 10, (2022) 103029, arxiv:2110.00025 [hep-ph]
[3] A. Granelli, P. Ullio, and J.-W. Wang, “Blazar-boosted dark matter at Super-Kamiokande,” JCAP 07 no. 07, (2022) 013, arxiv:2202.07598 [astro-ph.HE]
[4] IceCube, Fermi-LAT, MAGIC, AGILE, ASAS-SN, HAWC, H.E.S.S., INTEGRAL, Kanata, Kiso, Kapteyn, Liverpool Telescope, Subaru, Swift NuSTAR, VERITAS, VLA/17B-403 Collaboration, M. G. Aartsen et al., “Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A,” Science 361 no. 6398, (2018) eaat1378, arxiv:1807.08816 [astro-ph.HE]
[5] K.-Y. Choi, J. Kim, and C. Rott, “Constraining dark matter-neutrino interactions with IceCube-170922A,” Phys. Rev. D 99 no. 8, (2019) 083018, arxiv:1903.03302 [astro-ph.CO]
[6] IceCube Collaboration, M. G. Aartsen et al., “Neutrino emission from the direction of the blazar TXS 0506+056 prior to the IceCube-170922A alert,” Science 361 no. 6398, (2018) 147–151, arxiv:1807.08794 [astro-ph.HE]
[7] A. Keivani et al., “A Multimessenger Picture of the Flaring Blazar TXS 0506+056: implications for High-Energy Neutrino Emission and Cosmic Ray Acceleration,” Astrophys. J. 864 no. 1, (2018) 84, arxiv:1807.04537 [astro-ph.HE]
[8] K. Murase, F. Oikonomou, and M. Petropoulou, “Blazar Flares as an Origin of High-Energy Cosmic Neutrinos?,” Astrophys. J. 865 no. 2, (2018) 124, arxiv:1807.04748 [astro-ph.HE]
[9] A. Reimer, M. Boettcher, and S. Buson, “Cascading Constraints from Neutrino-emitting Blazars: The Case of TXS 0506+056,” Astrophys. J. 881 no. 1, (2019) 46, arxiv:1812.05654 [astro-ph.HE]
[10] X. Rodrigues, S. Gao, A. Fedynitch, A. Palladino, and W. Winter, “Leptohadronic Blazar Models Applied to the 2014–2015 Flare of TXS 0506+056,” Astrophys. J. Lett. 874 no. 2, (2019) L29, arxiv:1812.05939 [astro-ph.HE]
[11] M. Petropoulou et al., “Multi-Epoch Modeling of TXS 0506+056 and Implications for Long-Term High-Energy Neutrino Emission,” Astrophys. J. 891 (2020) 115, arxiv:1911.04010 [astro-ph.HE]
[12] S. Gasparyan, D. Bégué, and N. Sahakyan, “Time-dependent leptohadronic modelling of the emission from blazar jets with SOPRANO: the case of TXS 0506 + 056, 3HSP J095507.9 + 355101, and 3C 279,” Mon. Not. Roy. Astron. Soc. 509 no. 2, (2021) 2102–2121, arxiv:2110.01549 [astro-ph.HE]
[13] X. Rodrigues, S. Garrappa, S. Gao, V. S. Paliya, A. Franchkoviai, and W. Winter, “Multiwavelength and Neutrino Emission from Blazar PKS 1502 + 106,” Astrophys. J. 912 no. 1, (2021) 54, arxiv:2009.04026 [astro-ph.HE]
[14] P. Giommi, P. Padovani, F. Oikonomou, T. Glauch, S. Paiano, and E. Resconi, “3HSP J095507.9+355101: a flaring extreme blazar coincident in space and time with Icecube-200: PeV neutrino event,” Astron. Astrophys. 640 (2020) L4, arxiv:2003.06405 [astro-ph.HE]
[15] Fermi-LAT, ASAS-SN, IceCube Collaboration, S. Garrappa et al., “Investigation of two Fermi-LAT gamma-ray blazars coincident with high-energy neutrinos detected by IceCube,” Astrophys. J. 880 no. 2, (2019) 880:103, arxiv:1901.10806 [astro-ph.HE]
[16] M. Kadler et al., “Coincidence of a high-fluence blazar outburst with a PeV-neutrino event,” Nature Phys. 12 no. 8, (2016) 807–814, arxiv:1602.02012 [astro-ph.HE]
[17] N. Sahakyan, P. Giommi, P. Padovani, M. Petropoulou, D. Bégué, B. Boccardi, and S. Gasparyan, “A multi-messenger study of the blazar PKS 0735+17: a new major neutrino source candidate,” arxiv:2204.05060 [astro-ph.HE]
[18] IceCube Collaboration, R. Abbasi et al., “Search for Multi-flare Neutrino Emissions in 10 yr of IceCube Data from a Catalog of Sources,” Astrophys. J. Lett. 920 no. 2, (2021) L45, arxiv:2109.05818 [astro-ph.HE]
[19] P. Giommi, T. Glauch, P. Padovani, E. Resconi, A. Turcati, and Y. L. Chang, “Dissecting the
regions around IceCube high-energy neutrinos: growing evidence for the blazar connection,"
Mon. Not. Roy. Astron. Soc. 497 no. 1, (2020) 865-878.
arXiv:2001.09355 [astro-ph.HE]

[20] A. Franchekowski *et al.*, “Patterns in the Multiwavelength Behavior of Candidate Neutrino Blazars,”
Astrophys. J. 893 no. 2, (2020) 162.
arXiv:2001.10232 [astro-ph.HE]

[21] A. Mucke and R. J. Protheroe, “A Proton synchrotron blazar model for flaring in Markarian 501,”
Apastroph. 15 (2001) 121-130.
arXiv:astro-ph/0004052

[22] M. Cerruti, A. Zech, C. Boisson, G. Emery, S. Inoue, and J. P. Lenain, “Leptohadronic single-zone models for the electromagnetic and neutrino emission of TSG 0506-056.”
Mon. Not. Roy. Astron. Soc. 483 no. 1, (2019) L12-L16.
arXiv:1807.04335 [astro-ph.HE]

[23] S. Gao, A. Fedynitch, W. Winter, and M. Pohl, “Modelling the coincident observation of a high-energy neutrino and a bright blazar flare,”
Nature Astron. 3 no. 1, (2019) 88-92.
arXiv:1807.04275 [astro-ph.HE]

[24] IceCube Collaboration.
https://icecube.wisc.edu/data-releases/2018/07/

[25] P. Gondolo and J. Silk, “Dark matter annihilation at the galactic center,”
Phys. Rev. Lett. 83 (1999) 1719-1722.
arXiv:astro-ph/9906391

[26] P. Ullio, H. Zhao, and M. Kamionkowski, “A dark matter spike at the galactic center?,”
Phys. Rev. D 64 (2001) 043504.
arXiv:astro-ph/0101481

[27] M. Gorchtein, S. Profumo, and L. Ubaldi, “Probing Dark Matter with AGN Jets,”
Phys. Rev. D 82 (2010) 083514.
arXiv:1008.2230 [astro-ph.HE]

[28] Erratum: Phys. Rev. D 84, 069903 (2011).

[29] IceCube Collaboration.
https://icecube.wisc.edu/data-releases/2018/07/

[30] P. Padovani, F. Oikonomou, M. Petropoulou, M. Gorchtein, S. Profumo, and L. Ubaldi, “TXS 0506+056, the neutrino emission of TXS 0506+056,”
Astropart. Phys. 484 (2021) 150014.
arXiv:2001.00948 [hep-ph]

[31] O. Mena, J. Stadler, and Y. Y. Y. Wong, “The cosmic-Neutrino-boosted dark matter (BDM),”
*arXiv:2101.11262 [hep-ph]

[32] Y.-H. Lin, W.-H. Wu, M.-R. Wu, and H. T.-K. Wong, “Searching for Afterglow: Light Dark Matter boosted by Supernova Neutrinos,”
*arXiv:2205.06664 [hep-ph]

[33] A. N. M. Passuelo, J. Pradler, and A. Ritz, “Directly Detecting MeV-scale Dark Matter via Solar Reflection,”
Phys. Rev. Lett. 120 no. 14, (2018) 141801.
arXiv:1708.03642 [hep-ph]

[34] Sensei Collaboration.
Erratum: Phys. Rev. Lett. 121, 259903 (2018).
arXiv:1804.01137 [astro-ph.CO]

[35] Sensei Collaboration. L. Barak et al., “SENSEI: Direct-Detection Results on sub-GeV Dark Matter from a New Skipper-CCD,”
Phys. Rev. Lett. 125 no. 17, (2020) 171802.
arXiv:2004.11378 [astro-ph.CO]

[36] R. Essig, T. Volansky, and T.-T. Yu, “New Constraints and Prospects for sub-GeV Dark Matter Scattering off Electrons in Xenon,”
Phys. Rev. D 96 no. 4, (2017) 043017.
arXiv:1703.00910 [hep-ph]

[37] DarkSide-50 Collaboration, P. Agnes *et al., “Search for dark matter particle interactions with electron final states with DarkSide-50,”*
arXiv:2207.11968 [hep-ex]

[38] XENON Collaboration, E. Aprile *et al., “Light Dark Matter Search with Ionization Signals in XENON1T,”*
Phys. Rev. Lett. 123 no. 25, (2019) 251801.
arXiv:1907.11485 [hep-ex]

[39] C. A. Argüelles, A. Kheirandish, and A. C. Vincent, “Imaging Galactic Dark Matter with High-Energy Cosmic Neutrinos,”
Phys. Rev. Lett. 119 no. 20, (2017) 201801.
arXiv:1703.00451 [hep-ph]

[40] A. C. Vincent, C. A. Argüelles, and A. Kheirandish, “High-energy neutrino attenuation in the Earth and its associated uncertainties,”
JCAP 11 (2017) 012.
arXiv:1706.09895 [hep-ph]

[41] G. Mangano, A. Melchiorri, P. Serra, A. Cooray, and M. Kamionkowski, “Cosmological bounds on dark matter-neutrino interactions,”
Phys. Rev. D 74 (2006) 043517.
arXiv:astro-ph/0606190

[42] C. Boehm, M. J. Dolan, and C. McCabe, “A Lower Bound on the Mass of Cold Thermal Dark Matter from Planck,”
JCAP 08 (2013) 041.
arXiv:1303.6270 [hep-ph]

[43] B. Bertoni, S. Ipek, D. McKeen, and A. E. Nelson, “Constraints and consequences of reducing small scale structure via large dark matter-neutrino interactions,”
JHEP 04 (2015) 170.
arXiv:1412.3113 [hep-ph]

[44] R. J. Wilkinson, C. Boehm, and J. Lesgourgues, “Constraining Dark Matter-Neutrino Interactions using the CMB and Large-Scale Structure,”
JCAP 05 (2014) 011.
arXiv:astro-ph.CO 1401.7597

[45] Y. Zhang, “Speeding up dark matter with solar neutrinos,”
Phys. Rev. D 82 no. 1, (2010) 013517.
arXiv:0905.0388 [hep-ph]

[46] M. R. Mosblech, C. Boehm, S. Hannestad, O. Mena, J. Studier, and Y. Y. Y. Wong, “The full Boltzmann hierarchy for dark matter-massive neutrino interactions,”
JCAP 03 (2021) 066.
arXiv:2011.04206 [astro-ph.CO]

[47] D. C. Hooper and M. Luca, “Hints of dark matter-neutrino interactions in Lyman-α data,”
Phys. Rev. D 105 no. 10, (2022) 103504.
arXiv:2110.04024 [astro-ph.CO]

[48] Y. Jho, J.-C. Park, S. C. Park, and P.-Y. Tseng, “Cosmic-Neutrino-Boosted Dark Matter (νBDM),”
arXiv:2101.11262 [hep-ph]

[49] Y.-H. Lin, W.-H. Wu, M.-R. Wu, and H. T.-K. Wong, “Searching for Afterglow: Light Dark Matter boosted by Supernova Neutrinos,”
arXiv:2205.06664 [hep-ph]

[50] IceCube Collaboration, A. McMullen, A. Vincent, C. Arguelles, and A. Schneider, “Dark matter neutrino scattering in the galactic centre with IceCube,”
JINST 16 no. 08, (2021) C08001.
arXiv:2107.11491 [astro-ph.HE]

[51] S. Koren, “Neutrino – Dark Matter Scattering
and Coincident Detections of UHE Neutrinos with EM Sources," JCAP 09 (2019) 013,
[arXiv:1903.05096 [hep-ph]]

[52] K. Murase and I. M. Shoemaker, “Neutrino Echoes from Multimessenger Transient Sources,"
Phys. Rev. Lett. 123 no. 24, (2019) 241102,
[arXiv:1903.08607 [hep-ph]]

[53] J. A. Carpio, A. Kleinardisch, and K. Murase, “Time-delayed neutrino emission from supernovae as a probe of dark matter-neutrino interactions,"
[arXiv:2204.09650 [hep-ph]]

[54] J. H. Davis and J. Silk, “Spectral and Spatial Distortions of PeV Neutrinos from Scattering with Dark Matter,"
[arXiv:1505.01843 [hep-ph]]

[55] W. Yu, “Highly-boosted dark matter and cutoff for cosmic-ray neutrinos through neutrino portal,"
EPJ Web Conf. 208 (2019) 04003,
[arXiv:1809.08610 [hep-ph]]

[56] C. Dvorkin, K. Blum, and M. Kamionkowski, “Constraining Dark Matter-Baryon Scattering with Linear Cosmology,"
Phys. Rev. D 89 no. 2, (2014) 023519,
[arXiv:1311.2937 [astro-ph.CO]]

[57] M. A. Buen-Abad, R. Essig, D. McKeen, and D. V. Nguyen, D. Sarnaaik, K. K. Boddy, E. O. Nadler, and V. Glosveic, “Observational constraints on dark matter scattering with electrons,"
Phys. Rev. D 104 no. 10, (2021) 103521,
[arXiv:2107.12380 [astro-ph.CO]]

[58] Y. Ali-Ha¨ımoud, J. Chluba, and M. Kamionkowski, “Constraining Dark Matter Interactions with Standard Model Particles from Cosmic Microwave Background Spectral Distortions,"
Phys. Rev. Lett. 115 no. 7, (2015) 071304,
[arXiv:1506.04745 [astro-ph.CO]]

[59] Y. Ali-Ha¨ımoud, “Testing dark matter interactions with CMB spectral distortions,"
Phys. Rev. D 103 no. 4, (2021) 043541,
[arXiv:2101.04070 [astro-ph.CO]]

[60] D. Wadkar and G. R. Farrar, “Gas-rich dwarf galaxies as a new probe of dark matter interactions with ordinary matter,"
Phys. Rev. D 103 no. 12, (2021) 123028,
[arXiv:1903.12190 [hep-ph]]

[61] C. V. Cappiello and J. F. Beacom, “Strong New Limits on Light Dark Matter from Neutrino Experiments,"
Phys. Rev. D 100 no. 10, (2019) 103011,
[arXiv:1906.11283 [hep-ph], Erratum: Phys. Rev. D 104, 069901 (2021)]

[62] Y. Ema, F. Sala, and R. Sato, “Light Dark Matter at Neutrino Experiments,"
Phys. Rev. Lett. 122 no. 18, (2019) 181802,
[arXiv:1811.00520 [hep-ph]]

[63] Q.-H. Cao, R. Ding, and Q.-F. Xiang, “Searching for sub-MeV boosted dark matter from xenon electron direct detection,"
Chin. Phys. C 45 no. 4, (2021) 045002,
[arXiv:2006.12767 [hep-ph]]

[64] C. Xia, Y.-H. Xu, and Y.-F. Zhou, “Constraining light dark matter upscattered by ultrahigh-energy cosmic rays,"
Nucl. Phys. B 969 (2021) 115470,
[arXiv:2009.00353 [hep-ph]]

[65] J. B. Dent, B. Dutta, J. L. Newstead, I. M. Shoemaker, and N. T. Arelano, “Present and future status of light dark matter models from cosmic-ray electron upscattering,"
Phys. Rev. D 103 (2021) 095015,
[arXiv:2010.09749 [hep-ph]]

[66] T. Bringmann and M. Pospelov, “Novel direct detection constraints on light dark matter,"
Phys. Rev. Lett. 122 no. 17, (2019) 171801,
[arXiv:1810.10543 [hep-ph]]

[67] J. B. Dent, B. Dutta, J. L. Newstead, and I. M. Shoemaker, “Bounds on Cosmic Ray-Boosted Dark Matter in Simplified Models and its Corresponding Neutrino-Floor,"
Phys. Rev. D 101 no. 11, (2020) 116007,
[arXiv:1907.03782 [hep-ph]]

[68] Y. W. Wang, L. Wu, J. M. Yang, H. Zhou, and B. Zhu, “Cosmic ray boosted sub-GeV gravitationally interacting dark matter in direct detection,"
JHEP 12 (2020) 072,
[arXiv:1912.09904 [hep-ph], Erratum: JHEP 02, 052 (2021)].

[69] G. Guo, Y.-L. S. Tsai, and M.-R. Wu, “Probing cosmic-ray accelerated light dark matter with IceCube,"
JCAP 10 (2020) 049,
[arXiv:2004.03161 [astro-ph.HE]]

[70] J.-C. Feng, X.-W. Kang, C.-T. Lu, Y.-L. S. Tsai, and Boosted effects,"
Chin. Phys. C 46 no. 8, (2022) 085103,
[arXiv:2008.07116 [hep-ph]]

[71] S.-F. Ge, J. Liu, Q. Yuan, and N. Zhou, “Diurnal Effect of Sub-GeV Dark Matter Boosted by Cosmic Rays,"
Phys. Rev. Lett. 126 no. 9, (2021) 091804,
[arXiv:2005.09480 [hep-ph]]

[72] Y. Jho, J.-C. Park, S. G. Park, and P.-Y. Tseng, “Leptonic New Force and Cosmic-Ray Boosted Dark Matter for the XENON1T Excess,"
Phys. Lett. B 811 (2020) 135863,
[arXiv:2006.13910 [astro-ph.HE]]

[73] W. Cho, K.-Y. Choi, and S. M. Yoo, “Searching for boosted dark matter mediated by a new gauge boson,"
Phys. Rev. D 102 no. 9, (2020) 095010,
[arXiv:2007.04555 [hep-ph]]

[74] Z.-H. Lei, J. Tang, and B.-L. Zhang, “Constraints on cosmic-ray boosted dark matter in CDEX-10,"
Chin. Phys. C 46 no. 8, (2022) 085103,
[arXiv:2008.07116 [hep-ph]]

[75] G. Guo, Y.-L. S. Tsai, M.-R. Wu, and Q. Yuan, “Elastic and Inelastic Scattering of Cosmic-Rays on Sub-GeV Dark Matter,"
Phys. Rev. D 102 no. 10, (2020) 103504,
[arXiv:2008.12137 [astro-ph.HE]]

[76] Y. Ema, F. Sala, and R. Sato, “Neutrino experiments probe hadrophilic light dark matter,"
SciPost Phys. 10 no. 3, (2021) 072,
[arXiv:2011.01939 [hep-ph]]

[77] V. V. Flambaum, L. Lu, L. Wu, and B. Zhu, “Constraining sub-GeV dark matter from Migdal and Boosted effects,"
[arXiv:2012.09751 [hep-ph]]

[78] N. F. Bell, J. B. Dent, B. Dutta, S. Ghosh, J. Kumar, J. L. Newstead, and I. M. Shoemaker, “Cosmic-ray upscattered inelastic dark matter,"
Phys. Rev. D 104 (2021) 076020,
[arXiv:2108.05683 [hep-ph]]

[79] J.-C. Feng, X.-W. Kang, C.-T. Lu, Y.-L. S. Tsai, and F.-S. Zhang, “Revising inelastic dark matter direct detection by including the cosmic ray acceleration,"
JHEP 04 (2022) 080,
[arXiv:2110.05883 [hep-ph]]

[80] W. Wang, L. Wu, W.-N. Yang, and B. Zhu, “The Spin-dependent Scattering of Boosted Dark Matter,"
[arXiv:2111.04000 [hep-ph]]

[81] C. Xia, Y.-H. Xu, and Y.-F. Zhou, “Production and attenuation of cosmic-ray boosted dark matter,"
JCAP 02 no. 02, (2022) 028,
[arXiv:2111.05559 [hep-ph]]
“Scattering Searches for Dark Matter in Subhalos: Neutron Stars, Cosmic Rays, and Old Rocks,” Phys. Rev. Lett. 128 no. 23, (2022) 231801. [arXiv:2109.04582 [hep-ph]]

R. Essig, A. Manalaysay, J. Mardon, P. Sorensen, and T. Volansky, “First Direct Detection Limits on sub-GeV Dark Matter from XENON10,” Phys. Rev. Lett. 109 (2012) 021301. [arXiv:1206.2644 [astro-ph.CO]]

SuperCDMS Collaboration, R. Agnes et al., “First Dark Matter Constraints from a SuperCDMS Single-Charge Sensitive Detector,” Phys. Rev. Lett. 121 no. 5, (2018) 051301. [arXiv:1804.10697 [hep-ex]] [Erratum: Phys.Rev.Lett. 122, 069901 (2019)].

SuperCDMS Collaboration, D. W. Amaral et al., “Constraints on low-mass, relic dark matter candidates from a surface-operated SuperCDMS single-charge sensitive detector,” Phys. Rev. D 102 no. 9, (2020) 091101. [arXiv:2005.14067 [hep-ex]]

DarkSide Collaboration, P. Agnes et al., “Constraints on Sub-GeV Dark-Matter–Electron Scattering from the DarkSide-50 Experiment,” Phys. Rev. Lett. 121 no. 11, (2018) 111303. [arXiv:1802.06998 [astro-ph.CO]]

SENSEI Collaboration, M. Crisler, R. Essig, J. Estrada, G. Fernandez, J. Tiffenberg, M. Sofo haro, T. Volansky, and T.-T. Yu, “SENSEI: First Direct-Detection Constraints on sub-GeV Dark Matter from a Surface Run,” Phys. Rev. Lett. 121 no. 6, (2018) 061803. [arXiv:1804.00088 [hep-ex]]

SENSEI Collaboration, O. Abramoff et al., “SENSEI: Direct-Detection Constraints on Sub-GeV Dark Matter from a Shallow Underground Run Using a Prototype Skipper-CCD,” Phys. Rev. Lett. 122 no. 16, (2019) 161801. [arXiv:1901.10478 [hep-ex]]

XENON Collaboration, E. Aprile et al., “Emission of single and few electrons in XENON1T and limits on light dark matter,” Phys. Rev. D 106 no. 2, (2022) 022001. [arXiv:2112.12116 [hep-ex]]

DAMIC Collaboration, A. Aguilar-Arevalo et al., “Constraints on Light Dark Matter Particles Interacting with Electrons from DAMIC at SNOLAB,” Phys. Rev. Lett. 123 no. 18, (2019) 181802. [arXiv:1907.12628 [astro-ph.CO]]

EDELWEISS Collaboration, Q. Arnaud et al., “First germanium-based constraints on sub-MeV Dark Matter with the EDELWEISS experiment,” Phys. Rev. Lett. 125 no. 14, (2020) 141301. [arXiv:2003.01046 [astro-ph.GA]]

PandaX-II Collaboration, C. Cheng et al., “Search for Light Dark Matter-Electron Scatterings in the PandaX-II Experiment,” Phys. Rev. Lett. 126 no. 21, (2021) 211803. [arXiv:2101.07479 [hep-ex]]

C. V. Cappiello, K. C. Y. Ng, and J. F. Beacom, “Reverse Direct Detection: Cosmic Ray Scattering With Light Dark Matter,” Phys. Rev. D 99 no. 6, (2019) 063004. [arXiv:1810.07705 [hep-ph]]

N. F. Bell, G. Busoni, and S. Robles, “Capture of Leptophilic Dark Matter in Neutron Stars,” JCAP 06 (2019) 054. [arXiv:1904.09803 [hep-ph]]

N. F. Bell, G. Busoni, S. Robles, and M. Virgato, “Improved Treatment of Dark Matter Capture in Neutron Stars,” JCAP 09 (2020) 028. [arXiv:2004.14888 [hep-ph]]

N. F. Bell, G. Busoni, S. Robles, and M. Virgato, “Improved Treatment of Dark Matter Capture in Neutron Stars II: Leptonic Targets,” JCAP 03 (2021) 086. [arXiv:2010.13257 [hep-ph]]

N. F. Bell, G. Busoni, M. E. Ramirez-Quezada, S. Robles, and M. Virgato, “Improved treatment of dark matter capture in white dwarfs,” JCAP 10 (2021) 083. [arXiv:2104.14367 [hep-ph]]

M. S. Blenkey, S. M. Blenkey, and A. Santamaria, “Invisible width of the Z boson and ‘secret’ neutrino-neutrino interactions,” Phys. Lett. B 301 (1993) 287–291.

J. M. Berryman et al., “Neutrino Self-Interactions: A White Paper,” in 2022 Snowmass Summer Study. 3, 2022. [arXiv:2203.01955 [hep-ph]]

J. M. Cline and M. Puel, “NGC 1068 constraints on neutrino-dark matter scattering,” in preparation (2023).

The effective area can be fit in the region $x \in [-1, 6]$ by $\log_{10} A_{\text{eff}}/\text{cm}^2 \approx 3.57 + 2.007 x - 0.5263 x^2 + 0.0922 x^3 - 0.0072 x^4$.

If the cross section is exactly constant, the second term of the cascade equation (4) is zero and the neutrino flux is exponentially suppressed according to $\Phi \sim \exp \left(-\sigma_{\nu \chi}/m_\chi \right)$. The corresponding 90% C.L. bound on σ_0 becomes $\sigma_0 \lesssim 1.7 m_\chi/\Sigma_\chi$, which is very similar to the result obtained for the case of linear energy-dependent $\sigma_{\nu \chi}$.