Abstract

Background and Aim: Mechanical ventilation is essential for supporting patients’ respiratory function when they are under general anesthesia. For cats with limited lung capacity, the different effects of volume-controlled ventilation (VCV) and pressure-controlled ventilation (PCV) on respiratory function remain elusive. The objective of the present study was to compare the efficacy of VCV and PCV in cats under general anesthesia using a cuffed endotracheal tube (ETT).

Materials and Methods: Twelve healthy cats were randomly allocated to either a VCV or PCV group. Five tidal volumes (6, 8, 10, 12, and 14 mL/kg) were randomly applied to assess the efficacy of VCV, and respiratory rates were adjusted to achieve a minute ventilation of 100 mL/kg/min. Peak inspiratory pressures (4, 5, 6, 7, and 8 mmHg) were randomly applied to assess the efficacy of PCV, and respiratory rates were adjusted to achieve a minute ventilation of 100 mL/kg/min. Blood pressure, gas leakages, and end-tidal CO₂ were recorded from 60 trials for airway control during the use of VCV or PCV. Data were compared using Fisher’s exact test with a significance level of p<0.05.

Results: Leaks did not differ between VCV (1/60 events) and PCV (0/60 events; p=0.500). Hypercapnia was identified when using VCV (6/60 events) less frequently than when using PCV (7/60 events; p=0.762), but did not reach statistical significance. Hypotension (mean arterial blood pressure <60 mmHg) occurred less frequently with VCV (0/60 events) than with PCV (9/60 events; p=0.003). Moreover, VCV provided a significantly lower work of breathing (151.10±65.40 cmH₂O mL) compared with PCV (187.84±89.72 cmH₂O mL; p=0.05).

Conclusion: VCV in cats using a cuffed ETT causes less hypotension than PCV. It should be noted that VCV provides a more stable tidal volume compared with PCV, resulting in a more stable minute volume. Nonetheless, VCV should not be used in patients with an airway obstruction because higher peak airway pressure may occur and lead to lung injury.

Keywords: endotracheal tube, hypotension, pressure-controlled ventilation, respiratory work, volume-controlled ventilation.

Introduction

Endotracheal tube (ETT) intubation is considered the gold standard for maintaining airway patency when administering anesthesia to small animals, including cats [1,2]. Endotracheal intubation is indicated for patients requiring general anesthesia or those with hypoxia, respiratory fatigue, or apnea [3]. Intubation with an ETT helps prevent aspiration pneumonia and provides the option to apply controlled mechanical ventilation [1,4,5]. In practice, the depth of general anesthesia is usually controlled by spontaneous respiration and mechanical controlled ventilation. The primary indications for mechanical ventilation are persistent severe hypoxemia (PaO₂<60 mmHg), persistent severe hypercapnia (hypoventilation), and persistent excessive respiratory effort that may lead to respiratory muscle fatigue and exhaustion, and severe circulatory shock [6,7]. Mechanical ventilation is also essential in the perioperative period for the successful treatment of many surgical procedures [8]. It supports the patient’s respiratory function while under anesthesia, promotes gas exchange, supports recovery from anesthesia, stabilizes hemodynamics in the intensive care unit, and supports weaning to successful extubation [9,10]. Furthermore, intra-abdominal hypertension leads to decreased lung volume and lung compliance, and increased airway resistance, resulting in acute respiratory distress syndrome and eventually requiring mechanical ventilation [11].

At present, there are various ventilation modes of anesthetic mechanical ventilators [12]. The most commonly used modes are volume-controlled ventilation (VCV) and pressure-controlled ventilation (PCV). VCV is the most popular mode for the perioperative period [13]. VCV has been the traditional controlled ventilation mode in anesthesia; the tidal volume is
Mechanical controlled ventilation and monitoring

Baseline values for pulmonary and cardiovascular measurements were recorded during spontaneous ventilation after intubation. When breathing and the depth of anesthesia were stable, mechanical ventilation was initiated by the anesthesia machine (Flow-i, Maquet Critical Care AB, Sweden; Figure-1). The inspiratory-to-expiratory time ratio (I:E ratio) was set at 1:2. Ventilation of cats in the VCV group was controlled by VCV. Five inspiratory tidal volumes (VTi) (6, 8, 10, 12, and 14 mL/kg) were randomly applied during the study to assess the efficacy of VCV, and the respiratory rates (6-20 breaths/min) were adjusted to achieve a minute ventilation of 100 mL/kg/min. Ventilation of cats in the PCV group was controlled by PCV with a respiratory rate of 6-20 breaths/min to achieve a minute ventilation of 100 mL/kg/min. The tidal volume delivered to the patient in PCV was controlled by VCV. Five inspiratory tidal volumes (VTi) (6, 8, 10, 12, and 14 mL/kg) were randomly applied during the study to assess the efficacy of PCV, and the respiratory rates (6-20 breaths/min) were adjusted to achieve a minute ventilation of 100 mL/kg/min.
by PCV. The PIP (4, 5, 6, 7, and 8 mmHg) was randomly applied to assess the efficacy of PCV, and the respiratory rates (6-20 breaths/min) were adjusted to achieve a minute ventilation of 100 mL/kg/min. The VTi and PIP were randomly changed every 3 min in each group. Oxygen saturation (SpO$_2$), heart rate, EKG, body temperature, and non-invasive blood pressure were recorded every minute by the monitoring machine (CARESCAPE Monitor B650, GE Healthcare Finland Oy, Finland). The ETCO$_2$, respiratory rate, VTi, expiratory tidal volume (VTe), PIP, sevoflurane concentration, and gas leakage were monitored every minute by the anesthesia machine (Flow-i, Maquet Critical Care AB). Hypotension was defined as a mean arterial blood pressure <60 mmHg. To detect leakage, the difference between VTi and VTe was monitored. Hypercapnia was defined as ETCO$_2$ >45 mmHg. Hypothermia was monitored and prevented with a water-circulating blanket (Warm Pad TP700, Soar Medical-Tech. Co., Ltd., Taiwan) placed under the cat’s body and a Bair Hugger warming blanket (Breeze, Be Hos Group Ltd., Thailand).

Recovery

All cats were monitored for 1 h after extubation for upper respiratory airway discomfort, including stridor, coughing, retching, and hoarse voice. After full recovery from the general anesthesia, the cats were returned to their owners. The owners were instructed to record any abnormal signs in the first 24 h at home.

Statistical analysis

STATA 12 (StataCorp, College Station, TX, USA) was used to estimate the required sample size using a t-test for paired samples to detect a difference in hypercapnia between VCV and PCV, using an alpha value of 0.05 (two-tailed test), a beta value of 0.8, and an effect size of 5 mmHg. All data were tested for normality using a Shapiro–Wilk test. All parametric data, including dosage of propofol and static respiratory measurements of the cats in the VCV and PCV groups, were analyzed using a paired t-test. A non-parametric Wilcoxon signed-rank test was used to compare the difference in the respiratory work between PCV and VCV. The association of leakage and hypercapnia was determined using Fisher’s exact test. The significance level was set at p<0.05.

Results

For each tidal volume and inspiratory pressure, respiratory rates were adjusted in each cat to allow a minute ventilation of 100 mL/kg/min, and there was no significant difference in respiratory minute volume between the VCV and PCV groups (p>0.05; Figure-2). Airway leakage (>20% of the baseline tidal volume) was compared between the VCV and PCV groups (Table-1). There was no significant difference in the number of leakages between the VCV group (1/60 events) and PCV group (0/60 events; p=0.50).

Hypotension (mean arterial blood pressure <60 mmHg) was compared between the VCV and PCV groups. Hypotension was identified when using VCV (6/60 events) less frequently than when using PCV (7/60 events). No significant difference in the number of hypercapnia occurrences between the VCV and PCV groups was detected (p=0.76) (Table-1).

Measuring the work of breathing is necessary to evaluate the status of patients during the use of mechanical controlled ventilation [19]. The work of breathing, the integral of the product of volume and pressure, was also compared between the VCV and

![Figure-1: Multiple monitoring devices of pressure, flow, end-tidal CO$_2$, and lung volume in cats with a cuffed endotracheal tube ventilated with volume-controlled ventilation (VCV) and pressure-controlled ventilation (PCV).](image)

![Figure-2: Comparison of minute ventilation in cats with a cuffed endotracheal tube ventilated with volume-controlled ventilation (VCV) and pressure-controlled ventilation (PCV).](image)
PCV groups. The respiratory work in the PCV group was significantly higher than that in the VCV group (p<0.05; Figure-3). A higher respiratory work indicates that a greater amount of energy is required to overcome the elastic and resistive properties of the respiratory system.

Discussion

The efficacy of ETT in cats under general anesthesia with VCV or PCV was evaluated in the present study. Our results revealed no difference in leakages when comparing VCV and PCV. Hypercapnia was less frequently identified when using VCV compared with PCV, but the frequency did not reach statistical significance. Hypotension occurred at a significantly lower frequency in the VCV group than in the PCV group. Moreover, VCV provided significantly lower work of breathing compared with PCV. Our results suggested that VCV not only provided a more stable tidal volume compared with PCV but also was associated with fewer complications.

Leakage during ventilation was evaluated in the present study. Our results indicated that there was no significant difference in respiratory leakage between VCV and PCV. Peak pressure below the cuff pressure and high-volume/low-pressure cuffs was used; therefore, there was no leakage in the present study. In a previous study, airway leakages were found less in the ETT group than in the supraglottic airway device group because the ETT provides a better air seal than supraglottic airway devices [1]. The cuff pressure of an ETT should be 20–30 cm H\(_2\)O to minimize damage to tracheal mucosa, the increased risk of aspiration pneumonia, and interference with mechanical ventilation [1,7]. The volume of dead space is also influenced by the alteration of tidal volume and the frequency of ventilation [20]. In the present study, ETCO\(_2\) was monitored, and the dead space volume of the ETT and the minute ventilation in both groups were controlled. There was no significant difference in the presence of hypercapnia when comparing VCV and PCV. Nonetheless, a higher occurrence of hypotension in cats with PVC was identified compared with VCV. Positive pressure ventilation has both positive and negative hemodynamic effects [9]. The positive effects are improving gas exchange, decreasing the work of breathing, and resting the respiratory muscles. Ventilation may induce hemodynamic changes by altering systemic venous return [21]. When the lung volume changes and intrathoracic pressure is increased, there can be a reduction in systemic venous return to the heart and, at the same time, a decrease in afterload to the left ventricle and cardiac output [6,7,9,22].

The indications of mechanical ventilation for VCV and PCV are severe hypoxemia despite oxygen therapy (PaO\(_2\)<60 mmHg), severe hyperventilation (PCO\(_2\)>60 mmHg), severe circulatory shock, and excessive work of breathing [23]. The work of breathing is determined by the pressure-volume characteristics of the respiratory system. Work is needed to overcome the tendency of the lung to collapse. Our results revealed that VCV is associated with a lower work of breathing and a more stable tidal volume compared with PCV, resulting in a more stable minute volume. It should be noted that chronic use of a ventilator is associated with increased work of breathing and may lead to respiratory failure in humans. Thus, a mechanical ventilator with a lower work of breathing is preferred. Nonetheless, VCV should not be used in patients with

Table 1: Airway leakage and hypercapnia identified in cats undergoing volume-controlled ventilation and pressure-controlled ventilation.

Volume-controlled ventilation	Pressure-controlled ventilation
Tidal volume (mL/kg)	**Peak inspiratory pressure (cmH\(_2\)O)**
Leak>20% of baseline (no. of cats)	Leak>20% of baseline (no. of cats)
Hypercapnia (CO\(_2\)>45 mmHg) (no. of cats)	Hypercapnia (CO\(_2\)>45 mmHg) (no. of cats)
Total	Total
6	4
8	5
10	6
12	7
14	8
Total	**Total**
12	8

Table 2: Effects of ventilation on occurrence of hypotension in cats undergoing volume-controlled ventilation and pressure-controlled ventilation.

Volume-controlled ventilation	Pressure-controlled ventilation					
Tidal volume (mL/kg)	**Pressure (mmHg)**					
Hypotension (<60 mmHg)	**Hypotension (<60 mmHg)**					
Positive	Negative	Positive	Negative			
6	0	12	4	3	9	0.217
8	0	12	5	2	10	0.478
10	0	12	6	3	9	0.217
12	0	12	7	0	12	1.000
14	0	12	8	1	11	1.000
Total	0	60	30	9	51	0.003
especially those examining the long-term effects of mechanical ventilation, are required to further evaluate the effects of VCV and PCV in patients with prolonged use of mechanical ventilators.

Conclusion

Our results indicate that VCV causes less hypotension than PCV. VCV also provides a more stable tidal volume compared with PCV, resulting in a more stable minute volume. Nonetheless, VCV should not be used in patients with an airway obstruction because a higher peak airway pressure may occur and lead to lung injury.

Authors’ Contributions

NN: Designed the study, conducted literature review, performed the study, interpreted data, and drafted manuscript. NT: Designed the study, interpreted data, and reviewed the manuscript. All authors read and approved the final manuscript.

Acknowledgments

The present study was financially supported by the Faculty of Veterinary Medicine, Kasetsart University, Thailand (Grant no. KU-VET-RPDF#04/61). The authors would like to thank the staff at Kasetsart Veterinary Teaching Hospital, Bangkhen, and the cat owners who participated in this study.

Competing Interests

The authors declare that they have no competing interests.

Publisher’s Note

Veterinary World remains neutral with regard to jurisdictional claims in published institutional affiliation.

References

1. Niyatiwatchanchai, N. and Thengchaisri, N. (2020) Clinical assessment of the efficacy of supraglottic airway devices compared with endotracheal tubes in cats during volume-controlled ventilation. *J. Vet. Sci.*, 21(2): 1-10.

2. Sideri, A.I., Galatos, A.D., Kazakos, G.M. and Gouletsou, P.G. (2009) Gastro-oesophageal reflux during anaesthesia in the kitten: Comparison between use of a laryngeal mask airway or an endotracheal tube. *Vet. Anaesth. Analg.*, 36(6): 547-554.

3. Reminga, C. and King, I.G. (2017) Oxygenation and ventilation. In: Kirby, R. and Linklater, A., editors. *Monitoring and Intervention for the Critically Ill Small Animal: The Rule of 20*. 1st ed. John Wiley and Sons, Inc., Iowa. p109-136.

4. Briganti, A., Portela, D.A., Barsotti, G., Romano, M. and Breggi G. (2012) Evaluation of the endotracheal tube cuff pressure resulting from four different methods of inflation in dogs. *Vet. Anaesth. Analg.*, 39(5): 488-494.

5. Prasse, S.A., Schrack, J., Wenger, S. and Mosing, M. (2016) Clinical evaluation of the v-gel supraglottic airway device in comparison with a classical laryngeal mask and endotracheal intubation in cats during spontaneous and controlled mechanical ventilation. *Vet. Anaesth. Analg.*, 43(1): 55-62.

6. Fantoni, D.T., Ida, K.K., Lopes, T.F.T., Otsuki, D.A., Auler, Jr., J.O.C. and Ambrosio, A.M. (2016) A comparison...
of the cardiopulmonary effects of pressure controlled ventilation and volume controlled ventilation in healthy anesthetized dogs. *J. Vet. Emerg. Crit. Care*, 26(4): 524-530.

7. Hopper, K. and Mellema, M. (2020) Mechanical ventilation. In: Bruyette, D.S., editor. Clinical Small Animal Internal Medicine Volume I. 1st ed. John Wiley and Sons, Inc., Iowa. p393-402.

8. Moningi, S., Elmati, P.K., Rao, P., Kanithi, G., Kulkarmi, D.K. and Ramachandran, G. (2017) Comparison of volume control and pressure control ventilation in patients undergoing single level anterior cervical disectomy and fusion surgery. *Indian J. Anaesth.*, 61(10): 818-825.

9. Kocis, K.C., Dekeon, M.K., Rosen, H.K., Bandy, K.P., Crowley, D.C., Bove, E.L. and Kulik, T. (2001) Pressure-regulated volume control vs volume control ventilation in infants after surgery for congenital heart disease. *Pediatr. Cardiol.*, 22(3): 233-237.

10. McDonell, W.N. and Kerr, C.L. (2015) Physiology, pathophysicsiology, and anesthetic management of patients with respiratory disease. In: Grim, K.A., Lamont, L.A., Tranquilli, W.J., Greene, S.A. and Robertson, S.A., editors. Veterinary Anesthesia and Analgesia. 5th ed. John Wiley and Sons, Inc., Iowa. p513-555.

11. Yin, J., Pan, X., Jia, J., Sun, S. and Wan, B. (2019) Comparison of pressure-regulated volume control ventilation and pressure control ventilation in patients with abdominal compartment syndrome. *Exp. Ther. Med.*, 17(3): 1952-1958.

12. Harikumar, G., Greenough, A. and Rafferty, G.F. (2008) Ventilator assessment of respiratory mechanics in paediatric intensive care. *Eur. J. Pediatr.*, 167(3): 287-291.

13. Tyagi, A., Kumar, R., Sethi, A.K. and Mohta, M. (2011) A comparison of pressure-controlled and volume-controlled ventilation for laparoscopic cholecystectomy. *Anaesthesia*, 66(6): 503-508.

14. Mosley, C.A. (2015) Anesthesia equipment. In: Grim, K.A., Lamont, L.A., Tranquilli, W.J., Greene, S.A. and Robertson, S.A., editors. Veterinary Anesthesia and Analgesia. 5th ed. John Wiley and Sons, Inc., Iowa. p23-85.

15. Bagchi, A., Rudolph, M.L., Ng, P.Y., Timm, F.P., Long, D.R., Shafei, S., Ladha, K., Vidal Melo, M.F. and Eikermann, M. (2017) The association of postoperative pulmonary complications in 109,360 patients with pressure-controlled or volume-controlled ventilation. *Anaesthesia*, 72(11): 1334-1343.

16. Tugrul, M., Cemec, E., Karadeniz, H., Senturk, M., Pembe, K. and Akpir, K. (1997) Comparison of volume controlled with pressure controlled ventilation during one-lung anaesthesia. *Br. J. Anaesth.*, 79(3): 306-310.

17. Thengchaisri, N., Steiner, J.M., Suchodolski, J.S. and Sattasathuchana, P. (2017) Association of gingivitis with dental calculus thickness or dental calculus coverage and subgingival bacteria in feline leukemia virus and feline immunodeficiency virus-negative cats. *Can. J. Vet. Res.*, 81(1): 46-52.

18. Gurney, M., Cripps, P. and Mosing, M. (2009) Subcutaneous pre-anaesthetic medication with acepromazine-buprenorphine is effective as and less painful than intramuscular route. *J. Small Anim. Pract.*, 66(6): 503-508.

19. Monjezi, M. and Jamaati, H. (2020) The effects of pressure-versus volume-controlled ventilation on ventilator work of breathing. *Biomed. Eng. Online*, 19(1): 72.

20. West, J.B. and Luks, A.M. (2016) West’s Respiratory Physiology: The Essentials. 10th ed. Wolters Kluwer, Philadelphia, PA. p26-39.

21. Pinsky, M.R. (1990) The effects of mechanical ventilation on the cardiovascular system. *Crit. Care Clin.*, 6(3): 663-678.

22. Costanzo, L.S. (1995) Physiology. 1st ed. Williams and Wilkins, Philadelphia, PA. p107-127.

23. Hopper, K. and Powell, L.L. (2013) Basic of mechanical ventilation for dogs and cats. *Vet. Clin. Small. Anim. Pract.*, 43(4): 955-969.

24. Tripathi, V.N. and Misra, S. (2001) Mechanical ventilation in pediatric practice. *Indian Pediatr.*, 38(2): 147-156.