WAVEFRONT SETS OF CONVOLUTIONS OF DISTRIBUTIONS WITH (WEIGHTED) LINE INTEGRAL DISTRIBUTIONS

BRIAN SHERSON

Excluding pathological cases of curves $\gamma \in C^\infty ((-\varepsilon, \infty), \mathbb{R}^n)$, for some $\varepsilon > 0$, the following line integral:

$$\langle T_{\gamma}, \phi \rangle = \int_0^\infty \phi (\gamma(t)) \|\gamma'(t)\| \, dt, \quad \phi \in \mathcal{S} (\mathbb{R}^n),$$

defines a distribution. Moreover, if we replace $\|\gamma'(t)\|$ with any bounded positive weight function $v \in C^\infty ((-\varepsilon, \infty))$ for some $\varepsilon > 0$, the following also defines a distribution:

$$\langle T_{\gamma, v}, \phi \rangle = \int_0^\infty \phi (\gamma(t)) v(t) \, dt, \quad \phi \in \mathcal{S} (\mathbb{R}^n),$$

provided that either $\|\gamma'(t)\|$ is bounded away from zero, or v decays sufficiently fast so that the above integral converges for any $\phi \in \mathcal{S} (\mathbb{R}^n)$.

The convolution of distributions u_1 and u_2, once of which has compact support, is defined in Hörmander[?], as the unique distribution $u = u_1 \ast u_2$ satisfying:

$$u_1 \ast (u_2 \ast \phi) = u \ast \phi, \quad \phi \in C^\infty_0 (\mathbb{R}^n).$$

As such, $w \ast T_{\gamma}$ and $w \ast T_{\gamma, v}$ are well-defined as distributions whenever $w \in \mathcal{E}' (\mathbb{R}^n)$. This will give rise to formally defining the notations

$$w \ast T_{\gamma} (\xi) = \int_0^\infty w (\xi - \gamma(t)) \|\gamma'(t)\| \, dt,$$
$$w \ast T_{\gamma, v} (\xi) = \int_0^\infty w (\xi - \gamma(t)) v(t) \, dt,$$

both of which will agree with the usual notion of an integral converging for almost every $\xi \in \mathbb{R}^n$ whenever $w \in \mathcal{L}^1 (\mathbb{R}^n)$. We will explore such convolutions, as well as their wavefront sets, particularly exploring how the convolution scatters the singularities of w. However, we will require a more direct formulation of such convolutions than the definition of convolution given in Hörmander provides for.

To avoid pathological cases, we will focus on choices of w and γ for which given any ξ, $\xi - \gamma(t)$ lies outside the support of w for t sufficiently large.

1. The Distributional Directional Antiderivative

We may begin by extending the idea of directional antiderivatives to compactly-supported distributions. In particular, given $\tilde{\nu} \in S^{n-1}$, we want to focus on the directional antiderivatives of the form:

$$\mathcal{I}_\tilde{\nu} f (\tilde{\nu} + s \tilde{\nu}) = \int_{-\infty}^s f (\tilde{\nu} + t \tilde{\nu}) \, dt, \quad \tilde{\nu} \in \tilde{\nu}^\perp, s \in \mathbb{R}.$$
Let ψ be defined as defined above in terms of ψ_1. We then define the distributional directional antiderivative

\begin{equation}
I_{\nu} \phi (\mathbf{u} + t\mathbf{v}) = \int_{-\infty}^{t} \phi (\mathbf{u} + s\mathbf{v}) - X_{\nu} \phi \otimes \psi_0 (\mathbf{u} + s\mathbf{v}) \, ds, \quad \mathbf{u} \in \mathbf{v}^\perp, \ t \in \mathbb{R},
\end{equation}

where $X_{\nu} : \mathcal{S}(\mathbb{R}^n) \to \mathcal{S}(\mathbf{v}^\perp)$ denotes the x-ray transform restricted to the direction \mathbf{v}, and the tensor product $X_{\nu} \phi \otimes \psi_0$ is interpreted as:

$$X_{\nu} \phi \otimes \psi_0 (\mathbf{u} + s\mathbf{v}) = X_{\nu} (\mathbf{u}) \psi_0 (s), \quad \mathbf{u} \in \mathbf{v}^\perp, \ s \in \mathbb{R}.$$

We then define the distributional directional antiderivative by

$$\langle I_{\nu} w, \phi \rangle = - \langle w, I_{\nu} \phi \rangle.$$

Since we defined I_{ν} in a way that depends on an arbitrary choice of ψ_0, we will want to verify that a different choice of ψ_0 will not alter I_{ν}.

Proposition 1.2. While $I_{\nu} \phi$ depends on choice of ψ_0, $I_{\nu} w$ does not, so long as $\text{supp} \psi_0 \subseteq (-\infty, t_{\min})$.

Proof. Let $\psi_0, \psi_1 \in C_0^\infty (\mathbb{R})$ both have support in $(-\infty, t_{\min})$, and take I_{ν}^0 and I_{ν}^1 as defined above in terms of ψ_0 and ψ_1, respectively. Then for $\phi \in \mathcal{S}(\mathbb{R}^n)$ we observe that:

$$I_{\nu}^0 \phi (\mathbf{u} + t\mathbf{v}) - I_{\nu}^1 \phi (\mathbf{u} + t\mathbf{v})$$

$$= \int_{-\infty}^{t} \phi (\mathbf{u} + s\mathbf{v}) - X_{\nu} \phi \otimes \psi_0 (\mathbf{u} + s\mathbf{v}) \, ds$$

$$- \int_{-\infty}^{t} \phi (\mathbf{u} + s\mathbf{v}) - X_{\nu} \phi \otimes \psi_1 (\mathbf{u} + s\mathbf{v}) \, ds$$

$$= X_{\nu} \phi (\mathbf{u}) \int_{-\infty}^{t} (\psi_0 (s) - \psi_1 (s)) \, ds.$$

For t below or above both supports of ψ_0 and ψ_1, this integral is zero. In particular, the support of $I_{\nu}^0 \phi - I_{\nu}^1 \phi$ is contained inside $\mathbf{v}^\perp + (-\infty, t_{\min}) \mathbf{v}$. Hence:

$$\langle I_{\nu}^0 w, \phi \rangle - \langle I_{\nu}^1 w, \phi \rangle = - \langle w, I_{\nu}^0 \phi \rangle + \langle w, I_{\nu}^1 \phi \rangle$$

$$- \langle w, I_{\nu}^0 \phi - I_{\nu}^1 \phi \rangle$$

$$= 0.$$

We now wish to verify that I_{ν} acts on functions in $L^1 (\mathbb{R}^n)$ satisfying the support condition in the desired manner.
Proposition 1.3 (Distributional Anti-partial derivative of L^1 functions). If $f \in L^1(\mathbb{R}^n)$ satisfies the support condition \[1.1\] then $I_\varphi f$ is in fact a function given by

$$I_\varphi f (\vec{u} + s\vec{v}) = \int_{-\infty}^{s} f (\vec{u} + t\vec{v}) \, dt.$$

Proof. Let $t_{\min} = \min_{x \in \text{supp} f} \vec{x} \cdot \vec{v}$, and choose ψ_0 as described in \[1.1\]. Observe:

$$\langle I_\varphi f, \phi \rangle = -\langle f, I_\varphi \phi \rangle = -\int_{\mathbb{R}^n} f (\vec{x}) I_\varphi \phi (\vec{x}) \, d\vec{x} = -\int_{\mathbb{R}^n} \int_{\mathbb{R}} f (\vec{u} + t\vec{v}) I_\varphi \phi (\vec{u} + t\vec{v}) \, dt \, d\vec{u}$$

$$= -\int_{\mathbb{R}^n} \int_{\mathbb{R}} f (\vec{u} + t\vec{v}) \left(\phi (\vec{u} + s\vec{v}) - X_{\varphi} \phi \otimes \psi_1 (\vec{u} + s\vec{v}) \right) \, ds \, dt \, d\vec{u}$$

$$= \int_{\mathbb{R}^n} \int_{\mathbb{R}} \int_{-\infty}^{\infty} f (\vec{u} + t\vec{v}) \left(\phi (\vec{u} + s\vec{v}) - X_{\varphi} \phi \otimes \psi_1 (\vec{u} + s\vec{v}) \right) \, ds \, dt \, d\vec{u}$$

The latter integral vanishes for all s, since:

$$\int_{-\infty}^{s} f (\vec{u} + t\vec{v}) \, dt = 0, \quad s < t_{\min},$$

and:

$$\psi_0 (s) = 0, \quad s > t_{\min}.$$

Hence:

$$\langle I_\varphi f, \phi \rangle = \int_{\mathbb{R}^n} \int_{\mathbb{R}} \int_{-\infty}^{s} f (\vec{u} + t\vec{v}) \, dt \, \phi (\vec{u} + s\vec{v}) \, ds \, d\vec{u}. \tag*{\blacksquare}$$

Proposition 1.4. For $w \in \mathcal{E}'(\mathbb{R}^n)$:

$$\mathcal{D}_\varphi I_\varphi w = w, \quad I_\varphi \mathcal{D}_\varphi w = w.$$

Proof. We first observe that for $\phi \in \mathcal{S}(\mathbb{R}^n)$, $X_{\varphi} \mathcal{D}_\varphi \phi = 0$, and so:

$$I_\varphi \mathcal{D}_\varphi \phi (\vec{u} + t\vec{v}) = \int_{-\infty}^{t} \phi (\vec{u} + s\vec{v}) \, ds = \phi (\vec{u} + t\vec{v}).$$

Then:

$$\langle \mathcal{D}_\varphi I_\varphi w, \phi \rangle = -\langle I_\varphi w, \mathcal{D}_\varphi \phi \rangle = \langle w, \mathcal{D}_\varphi \phi \rangle = \langle w, \phi \rangle.$$

On the other hand:

$$\mathcal{D}_\varphi I_\varphi \phi (\vec{u} + t\vec{v}) = \phi (\vec{u} + s\vec{v}) - X_{\varphi} \phi \otimes \psi_0 (\vec{u} + t\vec{v}),$$
and since $X_\varphi \hat{\otimes} \psi_0$ is supported away from the support of w, a similar computation also yields:

$$\mathcal{I}_\varphi D_\varphi w = w.$$ \hfill \square

Proposition 1.5. Let $U \subseteq \mathbb{R}^n$ be open and assume U is invariant under translation in the direction $-\bar{v}$. That is, $U - t\bar{v} \subseteq U$ for $t \geq 0$. If $w_1, w_2 \in E'(\mathbb{R}^n)$, and are equal on U, then $\mathcal{I}_\varphi w_1 = \mathcal{I}_\varphi w_2$ are equal on U.

Proof. Let ϕ be supported in U. Then if we inspect:

$$\mathcal{I}_\varphi \phi (\bar{u} + t\bar{v}) = \int_{-\infty}^{t} \phi (\bar{u} + s\bar{v}) - X_\varphi \otimes \psi_0 (\bar{u} + s\bar{v}) \, ds,$$

Then for $\bar{u} + t\bar{v} \notin U$, we must have $\bar{u} + \tau\bar{v} \notin U$ for $\tau \geq t$ and so:

$$\mathcal{I}_\varphi \phi (\bar{u} + t\bar{v}) = \int_{-\infty}^{\infty} \phi (\bar{u} + s\bar{v}) \, ds - X_\varphi \phi (\bar{u}) \int_{-\infty}^{t} \psi_0 (s) \, ds$$

$$= X_\varphi \phi (\bar{u}) \int_{t}^{\infty} \psi_0 (s) \, ds.$$

In particular, $\mathcal{I}_\varphi \phi (\bar{u} + t\bar{v}) = 0$ when $\bar{u} + t\bar{v} \notin U$ and $t \geq t_{\text{min}}$. In particular:

$$\text{supp} \mathcal{I}_\varphi \phi \subseteq U \cup V, \quad V = \{\bar{u} + t\bar{v} : t < t_{\text{min}}\}.$$

We now choose a partition of unity ρ_U and ρ_V for U and V so that $\rho_U + \rho_V = 1$ on $U \cup V$, supp $\rho_U \subseteq U$, and supp $\rho_V \subseteq V$. Then

$$\langle \mathcal{I}_\varphi w_1, \phi \rangle = - \langle w_1, \mathcal{I}_\varphi \phi \rangle$$

$$= - \langle w_1, \rho_U \mathcal{I}_\varphi \phi \rangle - \langle w_1, \rho_V \mathcal{I}_\varphi \phi \rangle$$

$$= - \langle w_2, \rho_U \mathcal{I}_\varphi \phi \rangle - \langle w_2, \rho_V \mathcal{I}_\varphi \phi \rangle$$

$$= - \langle w_2, \mathcal{I}_\varphi \phi \rangle$$

$$= \langle \mathcal{I}_\varphi w_2, \phi \rangle. \hfill \square$$

Proposition 1.6. Let $t_0 > t_{\text{max}} = \max_{\bar{x} \in \text{supp} \, \bar{w}} \bar{x} \cdot \bar{v}$, then define w^* by:

$$(w^*, \phi) = \langle w, \phi (\bar{x} + t\bar{v}) - \phi (\bar{x} + (2t_0 - t) \bar{v}) \rangle.$$

Then w^* and $\mathcal{I}_\varphi w^*$ are distribution with odd and even symmetries across the hyperplane \{ $t = t_0$ \}, and furthermore, $\mathcal{I}_\varphi w^*$ is compactly supported, and is equal to $\mathcal{I}_\varphi w$ on \{ $t < t_0$ \}.

Proof. We observe

$$\langle w^*, \phi (\bar{u} + (2t_0 - t) \bar{v}) \rangle = \langle w, \phi (\bar{u} + (2t_0 - t) \bar{v}) - \phi (\bar{u} + t\bar{v}) \rangle$$

$$= - \langle w, \phi (\bar{u} + t\bar{v}) - \phi (\bar{u} + (2t_0 - t) \bar{v}) \rangle$$

$$= - \langle w^*, \phi (\bar{u} + t\bar{v}) \rangle.$$
This implies that if ϕ has even symmetry across $\{t = t_0\}$, then $\langle w^*, \phi \rangle = 0$. Then

$$
\langle \mathcal{I}_\phi w^*, \phi (\bar{u} + (2t_0 - t) \bar{v}) \rangle = -\langle w^*, \mathcal{I}_\phi \{ \phi (\bar{u} + (2t_0 - t) \bar{v}) \} \rangle
$$

$$
= -\langle w^*, \int_{-\infty}^{t} \phi (\bar{u} + (2t_0 - s) \bar{v}) - \mathcal{X}_\phi \phi \otimes \psi_0 (\bar{u} + t \bar{v}) \rangle \ ds \rangle
$$

$$
= -\langle w^*, \int_{2t_0 - t}^{\infty} \phi (\bar{u} + s \bar{v}) - \mathcal{X}_\phi \phi \otimes \psi_0 (\bar{u} + (2t_0 - s) \bar{v}) \rangle \ ds \rangle
$$

$$
= \langle w^*, \int_{-\infty}^{t} \phi (\bar{u} + s \bar{v}) - \mathcal{X}_\phi \phi \otimes \psi_0 (\bar{u} + (2t_0 - s) \bar{v}) \rangle \ ds \rangle
$$

$$
= -\langle w^*, \mathcal{I}_\phi \phi \rangle + \langle w^*, \mathcal{X}_\phi \phi (\bar{u}) \int_{-\infty}^{t} \psi_0 (s) - \psi_0 (2t_0 - s) \rangle \ ds \rangle.
$$

We then observe that $\int_{-\infty}^{t} \psi_0 (s) - \psi_0 (2t_0 - s) \ ds$ has even symmetry across $\{t = t_0\}$, and so:

$$
\langle \mathcal{I}_\phi w^*, \phi (\bar{x} + (2t_0 - t) \bar{v}) \rangle = \langle \mathcal{I}_\phi w^*, \phi \rangle.
$$

The symmetry easily implies that $\mathcal{I}_\phi w^*$ must be compactly-supported. Furthermore, it is clear that $w = w^*$ on $\{t < t_0\}$, so we have $\mathcal{I}_\phi w = \mathcal{I}_\phi w^*$ on $\{t < t_0\}$.

We will now establish a relationship between $WF(w)$ and $WF(\mathcal{I}_\phi w)$. But first, we start with the following theorem:

Theorem 1.7 (Microlocal property[7]). If P is a differential operator of order m with \mathcal{C}^∞ coefficients on a manifold X, then:

$$
WF(u) \subseteq \text{Char} \ P \cup WF(Pu), \quad u \in \mathcal{G}'(X),
$$

where the characteristic set $\text{Char} \ P$ is defined by

$$
\text{Char} \ P = \left\{ \left(\bar{x}, \bar{\xi} \right) \in T^* (X) \left| P_m \left(\bar{x}, \bar{\xi} \right) = 0 \right\} = \mathbb{R}^n \times \mathbb{v}^\perp,
$$

and P_m is the principal symbol of P.

In the case that P is merely a directional derivative, i.e., $P = \mathcal{D}_\xi$, then $P_m \left(\bar{x}, \bar{\xi} \right) = i\bar{\xi} \cdot \bar{v}$, and so

$$
\text{Char} \ P = \mathbb{R}^n \times \mathbb{v}^\perp.
$$

While[7] implies that \mathcal{I}_ϕ will extend the wavefront set of a distribution by at most $\mathbb{R}^n \times \left(\mathbb{v}^\perp \setminus \bar{0} \right)$, the following result states that $\mathcal{I}_\phi w$ will not contain an element $(\bar{x}, \bar{\eta}_0) \in \mathbb{R}^n \times \mathbb{v}^\perp$ in its wavefront set if $WF(w)$ omits $\mathbb{R}^n \times \{\bar{\eta}_0\}$ altogether.

Theorem 1.8 (Main Result). Let $w \in \mathcal{E}'(\mathbb{R}^n)$, and $\bar{\eta}_0 \in \mathbb{v}^\perp$. If:

$$
WF(w) \cap (\mathbb{R}^n \times \{\bar{\eta}_0\}) = \emptyset,
$$

then:

$$
WF(\mathcal{I}_\phi w) \cap (\mathbb{R}^n \times \{\bar{\eta}_0\}) = \emptyset.
$$
Proof. Let \(w^* \) be the distribution extending \(w \), having odd symmetry across a plane \(\{ t = t_0 \} \), with \(t_0 \) large enough so that \(w = w^* \) on \(\{ t < t_0 \} \). Then:
\[
WF (w^*) \cap (\mathbb{R}^n \times \{ \vec{\eta}_0 \}) = \emptyset,
\]
and it will suffice to show that:
\[
WF (\mathcal{I}_Q w^*) \cap (\mathbb{R}^n \times \{ \vec{\eta}_0 \}) = \emptyset.
\]
Indeed, since \(\mathcal{I}_Q w^* \) and \(w^* \) are compactly-supported distribution, their Fourier transforms exist as entire functions, and:
\[
i \tau \hat{\mathcal{I}_Q w^*} (\vec{\eta} + \tau \vec{v}) = \hat{w^*} (\vec{\eta} + \tau \vec{v}), \quad \vec{\eta} \in \vec{v}^\perp, \tau \in \mathbb{R}.
\]
Because of the odd symmetry of \(w^* \) across the plane \(\{ t = t_0 \} \), \(\hat{w^*} \) vanishes on \(\vec{v}^\perp \), and also:
\[
\hat{\mathcal{I}_Q w^*} (\vec{\eta} + \tau \vec{v}) = \begin{cases} \hat{w^*} (\vec{\eta} + \tau \vec{v}), & \text{if } \tau \neq 0, \\ -i \mathcal{D}_Q \hat{w^*} (\vec{\eta}), & \text{if } \tau = 0,
\end{cases}
\]
for \(\vec{\eta} \in \vec{v}^\perp \) and \(\tau \in \mathbb{R} \). The case \(\tau = 0 \) comes from an application of l'Hôpital's rule. However, \(-i \mathcal{D}_Q \hat{w^*} = -i \hat{w^*} \), and:
\[
WF (-i \hat{w^*}) \subseteq WF (w^*),
\]
so we can expect \(-i \mathcal{D}_Q \hat{w^*} (\vec{\xi}) \) to decay rapidly in an open conic neighborhood \(\Gamma \) of \(\vec{\eta}_0 \). For our following argument, we will require that \(\Gamma \) be chosen to be convex in \(\tau \), i.e., if \(\vec{\eta} + \tau \vec{v} \in \Gamma \) for \(k = 1, 2 \), and \(\tau_1 < \tau_2 \), then \(\vec{\eta} + \tau \vec{v} \in \Gamma \) for \(\tau_1 \leq \tau \leq \tau_2 \). In particular, we can set:
\[
\Gamma = \left\{ \sigma \vec{\eta}_0 + \vec{\xi} + \tau \vec{v} : \sigma, \tau > 0, \vec{\xi} \in \vec{v}^\perp \cap \vec{\eta}_0^\perp, \max \{ \| \vec{\xi} \|, \| \tau \| \} < \varepsilon \sigma \right\},
\]
for some \(\varepsilon > 0 \) sufficiently small. Then for each \(N \geq 0 \), we can choose \(C_N \) so that:
\[
\left| \mathcal{D}_Q \hat{w^*} (\vec{\eta} + \tau \vec{v}) \right| \leq C_N \left(1 + \| \vec{\eta} \|^2 + \tau^2 \right)^{-N/2}, \quad \vec{\eta} \in \vec{v}^\perp, \tau \in \mathbb{R}, \vec{\eta} + \tau \vec{v} \in \Gamma.
\]
This bound on the derivative then gives us the following bound on \(\hat{w^*} \):
\[
\left| \hat{w^*} (\vec{\eta} + \tau \vec{v}) \right| \leq C_N \left(1 + \| \vec{\eta} \|^2 + \tau^2 \right)^{-N/2} |\tau|, \quad \vec{\eta} \in \vec{v}^\perp, \tau \in \mathbb{R}, \vec{\eta} + \tau \vec{v} \in \Gamma.
\]
It then follows immediately that:
\[
\left| \hat{\mathcal{I}_Q w^*} (\vec{\eta} + \tau \vec{v}) \right| \leq C_N \left(1 + \| \vec{\eta} \|^2 + \tau^2 \right)^{-N/2}, \quad \vec{\eta} \in \vec{v}^\perp, \tau \in \mathbb{R}, \vec{\eta} + \tau \vec{v} \in \Gamma.
\]
As this is true for arbitrary \(N \geq 0 \), this proves that:
\[
WF (\mathcal{I}_Q w^*) \cap (\mathbb{R}^n \times \{ \vec{\eta}_0 \}) = \emptyset.
\]
Since \(\mathcal{I}_Q w = \mathcal{I}_Q w^* \) on \(\{ t < t_0 \} \), we can say that:
\[
WF (\mathcal{I}_Q w) \cap (\{ t < t_0 \} \times \{ \vec{\eta}_0 \}) = \emptyset,
\]
and then let \(t_0 \to \infty \) to obtain:
\[
WF (\mathcal{I}_Q w) \cap (\mathbb{R}^n \times \{ \vec{\eta}_0 \}) = \emptyset.
\]
The above result implies that the only way $I_{\vec{v}}w$ can include an element $(\vec{x}_0, \vec{\eta}_0) \in \mathbb{R}^n \times \vec{v}^\perp$ in its wavefront set is if w itself already contains some element of $\mathbb{R}^n \times \{\vec{\eta}_0\}$. The following result further refines the previous result by describing a necessary condition on \vec{x}_0 in order for $I_{\vec{v}}w$ to contain $(\vec{x}_0, \vec{\eta}_0)$ in its wavefront set. Intuition tells us that $(\vec{x}_0 - t\vec{v}, \vec{\eta}_0)$ must already belong to the wavefront set of w for some $t \geq 0$.

Proposition 1.9. Let $U \subseteq \mathbb{R}^n$ be open and assume U is invariant under translation in the direction $-\vec{v}$, and $\vec{\eta}_0 \in \vec{v}^\perp$. If:

\begin{equation}
WF(w) \cap (U \times \{\vec{\eta}_0\}) = \emptyset,
\end{equation}

then:

\begin{equation}
WF(\mathcal{I}_\vec{v}w) \cap (U \times \{\vec{\eta}_0\}) = \emptyset.
\end{equation}

Proof. Let U^* be an open subset of U whose closure is entirely contained in U, and is also closed under translation in the direction $-\vec{v}$, and choose a C^∞ function $\psi \geq 0$ supported in U that is equal to 1 on U^*. Then $\psi w = w$ on U^*, so $\mathcal{I}_\vec{v} (\psi w) = \mathcal{I}_\vec{v} w$, and in fact, we also have $\psi \mathcal{I}_\vec{v} w = \mathcal{I}_\vec{v} w$ on U^*. Furthermore, (1.2) implies:

\begin{equation}
WF(\psi w) \cap (\mathbb{R}^n \times \{\vec{\eta}_0\}) = \emptyset,
\end{equation}

and so:

\begin{equation}
WF(\mathcal{I}_\vec{v} (\psi w)) \cap (\mathbb{R}^n \times \{\vec{\eta}_0\}) = \emptyset.
\end{equation}

We then have:

\begin{equation}
WF(\mathcal{I}_\vec{v} w) \cap (U^* \times \{\vec{\eta}_0\}) = WF(\mathcal{I}_\vec{v} (\psi w)) \cap (U^* \times \{\vec{\eta}_0\})
\subseteq WF(\mathcal{I}_\vec{v} (\psi w)) \cap (\mathbb{R}^n \times \{\vec{\eta}_0\})
= \emptyset.
\end{equation}

Since U^* was arbitrary, and for each $\vec{x} \in U$, we can find such a U^* containing \vec{x}, we can deduce that:

\begin{equation}
WF(\mathcal{I}_\vec{v}w) \cap (U \times \{\vec{\eta}_0\}) = \emptyset.
\end{equation}

Corollary 1.10 (Propagation of singularities of the distributional directional antiderivative). Let $w \in \mathcal{E}'(\mathbb{R}^n)$, define:

\begin{equation}
R_\vec{v}(\vec{x}) = \{\vec{x} + t\vec{v} : t \geq 0\}, \quad \vec{x} \in \mathbb{R}^n, \vec{v} \in S^{n-1},
\end{equation}

and let:

\begin{equation}
V_{\vec{\eta}_0} = \bigcup_{(\vec{x}, \vec{\eta}_0) \in WF(w)} R_\vec{v}(\vec{x}), \quad U_{\vec{\eta}_0} = V_{\vec{\eta}_0}^C, \quad \vec{\eta}_0 \in \vec{v}^\perp.
\end{equation}

Then:

\begin{equation}
WF(\mathcal{I}_\vec{v}w) \subseteq WF(w) \cup \bigcup_{\vec{\eta}_0 \in \vec{v}^\perp} (V_{\vec{\eta}_0} \times \{\vec{\eta}_0\})
= WF(w) \cup \{(\vec{x} + t\vec{v}, \vec{\eta}_0) \mid (\vec{x}, \vec{\eta}_0) \in WF(w), \vec{\eta}_0 \perp \vec{v}, t \geq 0\}.
\end{equation}

Proof. Since $D_\vec{v} \mathcal{I}_\vec{v} w = w$, we can already narrow down $WF(\mathcal{I}_\vec{v} w)$ to:

\begin{equation}
WF(\mathcal{I}_\vec{v}w) \subseteq WF(w) \cup (\mathbb{R}^n \times \vec{v}^\perp).
\end{equation}

We want to be able to replace $\mathbb{R}^n \times \vec{v}^\perp$ with $\bigcup_{\vec{\eta}_0 \in \vec{v}^\perp} (V_{\vec{\eta}_0} \times \{\vec{\eta}_0\})$.

We next observe that for each $\vec{\eta}_0 \in \vec{v}^\perp$, since w is compactly-supported, $V_{\vec{\eta}_0}$ must be closed. Then $U_{\vec{\eta}_0}$ is an open set that is invariant under translation in the direction of $-\vec{v}$, and:

\begin{equation}
WF(w) \cap (U_{\vec{\eta}_0} \times \{\vec{\eta}_0\}) = \emptyset,
\end{equation}

and so:

\begin{equation}
WF(\mathcal{I}_\vec{v}w) \cap (U_{\vec{\eta}_0} \times \{\vec{\eta}_0\}) = \emptyset.
\end{equation}
Therefore, if \((\xi_0, \eta_0) \in WF(\mathcal{I}_w w)\), but \((\xi_0, \eta_0) \notin WF(w)\), then \([1.5]\) indicates that \(\eta_0 \in \nu^\perp\), and then \([1.6]\) would require that \(\xi \notin U_{\eta_0}\), and so \(\{\xi_0, \xi_0\} \in \mathcal{V}_{\eta_0} \times \nu_0\).

Note that if we lift the restriction of compact support on \(w\), we must instead use:

\[
V_{\eta_0} = \bigcup_{(\xi, \eta) \in WF(w)} R_{\mathcal{I}_w}(\xi).
\]

We now strengthen \([1.9]\) by with the next result. Intuitively, even if \((\xi_0, \eta_0) \in WF(\mathcal{I}_w w)\), if \(WF(\mathcal{I}_w w)\) omits some \((\xi_0 + t_0 \nu, \eta_0)\), for some \(t_0 > 0\), then the only way for \(WF(\mathcal{I}_w w)\) to pick up any more elements of the form \((\xi_0 + t \nu, \eta_0)\) for \(t > t_0\) is for \(WF(w)\) to contain some \((\xi_0 + t_1 \nu, \eta_0)\), for some \(t_1 > t_0\).

Proposition 1.11. Let \(w \in \mathcal{E}'(\mathbb{R}^n)\), \(\eta_0 \in \nu^\perp\), and \(U_0\) be a bounded open set, \(t_1 > 0\), and

\[
U_t = U + t \nu, \quad t \in \mathbb{R},
\]

\[
U = \bigcup_{0 \leq t \leq t_1} U_t.
\]

If:

\[
WF(\mathcal{I}_w w) \cap (U_0 \times \{\eta_0\}) = \emptyset,
\]

and:

\[
WF(w) \cap (U \times \{\eta_0\}) = \emptyset,
\]

then:

\[
WF(\mathcal{I}_w w) \cap (U \times \{\eta_0\}) = \emptyset.
\]

Proof. We may assume without loss of generality that \(U_0\) is convex, otherwise, we can apply the following argument to every convex open subset of \(U_0\). Let \(U_0^*\) be an open set whose closure is contained in \(U_0\), then define \(U^*\) in much the same way as \(U\). Now let \(\psi \in \mathcal{C}_c^\infty(U)\) be equal to 1 on \(U^*\). Consider the distributional partial derivative:

\[
D_{\mathcal{I}_w} (\psi \cdot \mathcal{I}_w w) = D_{\mathcal{I}_w} \psi \cdot \mathcal{I}_w w + \psi \cdot w.
\]

Since \(D_w \psi\) vanishes on \(U^*\), we have \(D_{\mathcal{I}_w} (\psi \cdot \mathcal{I}_w w) = w\) on \(U^*\), and since:

\[
WF(w) \cap (U^* \times \{\eta_0\}) \subseteq WF(w) \cap (U \times \{\eta_0\}) = \emptyset,
\]

we have:

\[
WF(D_{\mathcal{I}_w}(\psi \cdot \mathcal{I}_w w)) \cap (U^* \times \{\eta_0\}) = \emptyset.
\]

Furthermore, since:

\[
WF(\mathcal{I}_w w) \cap (U_0 \times \{\eta_0\}) = \emptyset,
\]

it must also follow that:

\[
WF(D_{\mathcal{I}_w}(\psi \cdot \mathcal{I}_w w)) \cap (U_0 \times \{\eta_0\}) = \emptyset,
\]

and so:

\[
WF(D_{\mathcal{I}_w}(\psi \cdot \mathcal{I}_w w)) \cap (U_0 \cup U^* \times \{\eta_0\}) = \emptyset.
\]

We can replace \(U_0 \cup U^*\) with \(\bigcup_{t \leq 0} U_t \cup U^*\), as that introduces no points that are inside the support of \(\psi\) (hence the requirement that \(U_0\) be convex), and is also invariant under translation in the direction \(-\nu\), and so we again apply \([1.5]\) to obtain:

\[
WF(\psi \cdot \mathcal{I}_w w) \cap ((U_0 \cup U^*) \times \{\eta_0\}) = \emptyset.
\]
In particular,
\[\text{WF} (I_\varphi w) \cap (U^* \times \{ \tilde{t}_0 \}) = \emptyset, \]
and since \(U_0^* \) was arbitrary, we can replace \(U^* \) with \(U \):
\[\text{WF} (I_\varphi w) \cap (U \times \{ \tilde{t}_0 \}) = \emptyset. \]

We now wish to extend the distributional directional antiderivative further by replacing the support condition \(1.11\) with an even weaker condition, that there exists a \(t_{\text{min}} \in C^\infty (\overline{v^+}) \) such that
\[\text{supp } w \subseteq \{ \tilde{u} + t\tilde{v} \mid \tilde{u} \in \overline{v^+}, t > t_{\text{min}} (\tilde{u}) \}. \]

Notice this includes the previous support condition by considering the case that \(t_{\text{min}} \) is a constant. If we let \(\chi (\tilde{x}) = \tilde{x} - t_{\text{min}} (\tilde{u}) \tilde{v} \), then the pullback \(\chi^* w \) has the support condition \(\inf_{\tilde{x} \in \text{supp } \chi^* w} \tilde{x} \cdot \tilde{v} > 0 \), and so we can define \(I_\varphi w \) by conjugating \(I_\varphi \) with the pullback map \(\chi^* \). We will want to be sure that this does not change \(I_\varphi w \), however.

Proposition 1.12. Let \(w \) satisfy \(1.1\) and define \(\chi (\tilde{x}) = \tilde{x} - t_{\text{min}} \tilde{v} \). Then \(\chi^{-*} I_\varphi \chi^* w = I_\varphi w \).

Proof. It is important to note that \(\chi I_\varphi \chi^* = I_\varphi \). For some \(\psi_0 \in C_0^\infty (\mathbb{R}^-) \), we have
\[
\langle \chi^{-*} I_\varphi \chi^* w, \phi \rangle = -\langle \chi^* w, I_\varphi \chi^* \phi \rangle = -\langle \chi^* w, \int_{-\infty}^t \chi^* \phi (\tilde{u} + s\tilde{v}) - \chi_\varphi (\chi^* \phi) \otimes \psi_0 (\tilde{u} + s\tilde{v}) \ ds \rangle \\
= -\langle \chi^* w, \int_{-\infty}^t \phi (\tilde{u} + (s - t_{\text{min}}) \tilde{v}) - \chi_\varphi \phi \otimes \psi_0 (\tilde{u} + s\tilde{v}) \ ds \rangle \\
= -\langle \chi^* w, \int_{-\infty}^{t-t_{\text{min}}} \phi (\tilde{u} + s\tilde{v}) - \chi_\varphi \phi \otimes \psi_0 (\tilde{u} + (s + t_{\text{min}}) \tilde{v}) \ ds \rangle \\
= -\langle \chi^* w, \int_{-\infty}^{t-t_{\text{min}}} \phi (\tilde{u} + s\tilde{v}) - \chi_\varphi \phi \otimes \chi^{-*} \psi_0 (\tilde{u} + s\tilde{v}) \ ds \rangle \\
= -\langle \chi^* w, I_\varphi \phi (\tilde{u} + (t - t_{\text{min}}) \tilde{v}) \rangle \\
= -\langle w, \chi^{-*} \{ I_\varphi \phi (\tilde{u} + (t - t_{\text{min}}) \tilde{v}) \} \rangle \\
= -\langle w, I_\varphi \phi (\tilde{u} + t\tilde{v}) \rangle \\
= \langle I_\varphi w, \phi \rangle,
\]
where \(\chi^{-*} \psi_0 (t) = \psi_0 (t + t_{\text{min}}) \).

Thus, we may define \(I_\varphi w \) when \(w \) satisfies the weaker support condition as follows:

Definition 1.13. Let \(w \in \mathcal{D}' (\mathbb{R}^n) \) have the support condition \(1.7\). Define
\[I_\varphi w = \chi^{-*} I_\varphi \chi^* w, \]
where \(\chi (\tilde{x}) = \tilde{x} - t_{\text{min}} (\tilde{u}) \tilde{v} \).

We can also verify that this definition is independent of the choice of \(\chi \) so long as \(1.7\) is satisfied. We will omit this proof as it would proceed in a fashion similar to the above computation.

We also wish to show \(1.10\) also applies to this extension of \(I_\varphi \).
Proof. Notice that
\[\mathcal{D} \chi = \begin{bmatrix} I_{\mathfrak{v}^\perp} & 0 \\ D_{t_{\min}} & 1 \end{bmatrix}, \]
which implies that \(\mathcal{D} \chi^T \) and \(\mathcal{D} \chi^{-T} \) both fix \(\mathfrak{v}^\perp \). Thus,

\[
WF(\mathcal{I}_w) = WF(\chi^* \mathcal{I}_w) = \chi^{-*} (WF(\chi^* w) \cup \{(\bar{x} + t\mathfrak{v}, \bar{\eta}_0) \mid \bar{x}, \bar{\eta}_0 \in WF(\chi^* w), \bar{\eta}_0 \perp \mathfrak{v}, t \geq 0\})
\]

\[
= WF(w) \cup \{(\chi^{-1}(\bar{x} + t\mathfrak{v}), \bar{\eta}_0) \mid \chi^{-1}(\bar{x}), \bar{\eta}_0 \in WF(w), \bar{\eta}_0 \perp \mathfrak{v}, t \geq 0\}
\]

\[
= WF(w) \cup \{(\bar{x} + t\mathfrak{v}, \bar{\eta}_0) \mid (\bar{x}, \bar{\eta}_0) \in WF(w), \bar{\eta}_0 \perp \mathfrak{v}, t \geq 0\}.
\]

\[CW \]

Definition 1.14. We will use the more familiar notation:
\[
\int_0^\infty w(\bar{x} - t\mathfrak{v}) \, dt
\]
to refer to \(\mathcal{I}_w \).

2. General line integrals

Now that we have given meaning to the integral \((1.8)\) we now wish to give meaning to the following integral:
\[
\int_0^\infty w(\bar{x} - \tilde{\gamma}(t)) v(t) \, dt,
\]
given a \(\tilde{\gamma} \in C^\infty((-\varepsilon, \infty); \mathbb{R}^n) \) and positive-valued \(v \in C^\infty((-\varepsilon, \infty), \mathbb{R}) \), for some \(\varepsilon > 0 \), with \(\tilde{\gamma}(0) = \bar{0} \), and \(\tilde{\gamma}'(t) \neq 0 \) for all \(t > -\varepsilon \). It will also be necessary to impose a support condition that \(w(\bar{x} - \gamma(t)) \) has bounded support in the variable \(t \) to avoid a pathological choice of \(\tilde{\gamma} \), e.g., a choice of \(\tilde{\gamma} \), that given some \(w \in L^1(\mathbb{R}^n) \), the above integral may fail to converge for \(\bar{x} \) in some open set.

We observe that in the case that \(w \in L^1(\mathbb{R}^n) \), the above integral can be interpreted as
\[
\int_0^\infty w(\bar{x} - \tilde{\gamma}(y + t)) \, dt \bigg|_{y=0}.
\]

The notation \(w(\bar{x} - \tilde{\gamma}(y)) \) refers to pulling back \(w \) by the map \(\chi(\bar{x}, y) = \bar{x} - \tilde{\gamma}(y) \).

We then compute the distributional antiderivative in the direction \((\bar{0}, -1)\), the direction corresponding to the negative \(y \)-axis. This antiderivative is then pulled back by the map
\[
\psi_0(\bar{x}) = (\bar{x}, 0).
\]

For ease of notation, we will specialize to the case \(\tilde{\gamma}(0) = \bar{0} \). A result for the general case can be achieved via translations.
Definition 2.1. Let \(w \) be a distribution in \(\mathbb{R}^n \), and \(\dot{\gamma} \in C^\infty ((-\varepsilon, \infty) ; \mathbb{R}^n) \) a curve for some \(\varepsilon > 0 \), with \(\dot{\gamma}(0) = \dot{0} \) and \(\dot{\gamma}'(t) \neq 0 \), and assume the pullback
\[
\chi^* w = w(\overline{x} - \dot{\gamma}(y))
\]
has support bounded in \(y \). Then the integral:
\[
\int_0^\infty w(\overline{x} - \dot{\gamma}(t)) \, dt,
\]
is defined as:
\[
\int_0^\infty w(\overline{x} - \dot{\gamma}(y + t)) \, dt \bigg|_{y=0}.
\]
That is,
\[
\int_0^\infty w(\overline{x} - \dot{\gamma}(t)) \, dt = \psi_0^* T(\delta_{-1}) (\chi^* w).
\]
If additionally, \(\nu \in C^\infty ((-\varepsilon, \infty)) \) is a positive-valued weight function, we can then define:
\[
(2.2) \quad \int_0^\infty w(\overline{x} - \dot{\gamma}(t)) \nu(t) \, dt = \int_0^\infty w(\overline{x} - \dot{\gamma}(y + t)) \nu(y + t) \, dt \bigg|_{y=0} = \psi_0^* T(\delta_{-1}) (\chi^* w \nu).
\]

We then extend 1.10 to a more general result for the integral 2.1

Theorem 2.2. If \(w \in \mathcal{E}'(\mathbb{R}^n) \) is a distribution such that the support in \(y \) of \(w(\overline{x} - \dot{\gamma}(y)) \) is bounded, then:
\[
WF \left\{ \int_0^\infty w(\overline{x} - \dot{\gamma}(t)) \nu(t) \, dt \right\} \subseteq WF(w),
\]
\[
\subseteq \left\{ (\overline{x}, \xi) \mid \exists t \geq 0 : \xi \perp \gamma'(t) \land (\overline{x} - \dot{\gamma}(t), \dot{\xi}) \in WF(w) \right\}.
\]

Proof. We may, without loss of generality, set \(\nu = 1 \), as doing so will not alter the wavefront sets involved in this proof. With:
\[
\chi(\overline{x}, y) = \overline{x} - \dot{\gamma}(y).
\]
We observe that:
\[
\mathcal{D}_\chi(\overline{x}, y) = \left[I_n \quad \gamma'(y) \right], \quad \mathcal{D}_\chi(\overline{x}, y)^T = \left[I_n \ \gamma'(y)^T \right],
\]
and so \(\ker \mathcal{D}_\chi(\overline{x}, y)^T \) is trivial, indicating that the pullback \(w(\overline{x} - \dot{\gamma}(y)) \) is indeed well-defined, and:
\[
WF \{ w(\overline{x} - \dot{\gamma}(y)) \} \subseteq \chi^* WF(w),
\]

\[
(2.3) \quad \chi^* WF(w) = \left\{ (\overline{x}, y), \left(\dot{\xi}, \gamma'(y) \cdot \dot{\xi} \right) : (\overline{x} - \dot{\gamma}(y), \dot{\xi}) \in WF(w) \right\}.
\]

We now wish to show that:
\[
WF \{ w(\overline{x} - \dot{\gamma}(y)) \} = \chi^* WF(w).
\]
Indeed, let \(y_0 > -\varepsilon \), and define:
\[
\psi_{y_0}(\overline{x}) = \left[\overline{x} + \gamma(y_0) \right]_{y_0}.
\]
Then:
\[D_{\psi_{y_0}}(\mathbf{x}) = \begin{bmatrix} I_n \\ 0 \end{bmatrix} \quad D_{\psi_{y_0}}(\mathbf{x})^T = [I_n \ 0], \]
and so:
\[\ker D_{\psi_{y_0}}(\mathbf{x})^T = \left\{ (\mathbf{0}, \eta) : \eta \in \mathbb{R} \right\}. \]
Therefore, the set of normals for \(\psi_{y_0} \) satisfies:
\[N_{\psi_{y_0}} \subseteq (\mathbb{R}^n \times (-\infty, \infty)) \times \left\{ (\mathbf{0}, \eta) : \eta \in \mathbb{R} \right\}, \]
and so \(N_{\psi_{y_0}} \cap WF \{ w(\mathbf{x} - \gamma(y)) \} = \emptyset \). Thus, the pullback \(\psi_{y_0}^* \{ w(\mathbf{x} - \gamma(y)) \} \) is well-defined, and is in fact equal to \(w \). Then:
\[WF(w) = WF(\psi_{y_0}^* \{ w(\mathbf{x} - \gamma(y)) \}) \subseteq \psi_{y_0}^*WF \{ w(\mathbf{x} - \gamma(y)) \}, \]
where:
\[\psi_{y_0}^*WF \{ w(\mathbf{x} - \gamma(y)) \} \]
\[= \left\{ (\mathbf{x}, \xi) : (\mathbf{x} + \gamma(y_0), y_0), (\xi, \eta) \right\} \in WF \{ w(\mathbf{x} - \gamma(y)) \}. \]
Thus, if we chose \((\mathbf{x}, y_0), (\xi', \gamma'(y_0) \cdot \xi') \) \(\in \chi^*WF(w) \), this choice was based on choosing \((\mathbf{x} - \gamma(y_0), \xi) \) \(\in WF(w) \). We then have by (2.4) that \((\mathbf{x} - \gamma(y_0), \xi) \) \(\in \psi_{y_0}^*WF \{ w(\mathbf{x} - \gamma(y)) \} \). That is,
\[\left((\mathbf{x}, y_0), (\xi', \eta) \right) = \left((\mathbf{x} - \gamma(y_0) + \gamma(y_0), y_0), (\xi', \eta) \right) \in WF \{ w(\mathbf{x} - \gamma(y)) \}, \]
for some \(\eta \). Of course, one only needs to choose \(\eta = \gamma'(y_0) \cdot \xi' \), and this will yield the desired set inclusion.

Next, we can use (2.5) to describe \(WF \left\{ \int_0^\infty w(\mathbf{x} - \gamma(y + t)) \, dt \right\} \) as follows:
\[WF \left\{ \int_0^\infty w(\mathbf{x} - \gamma(y + t)) \, dt \right\} \triangleleft WF \{ w(\mathbf{x} - \gamma(y)) \}
\[\subseteq \bigcup_{(\xi, \eta) \perp (\xi', -1)} \left\{ (\mathbf{x}, y - t), (\xi', \eta) \right\} : \]
\[\left((\mathbf{x}, y), (\xi', \eta) \right) \in WF \{ w(\mathbf{x} - \gamma(y)) \}, t \geq 0 \}
\[= \bigcup_{\xi \in \mathbb{R}^n} \left\{ \left((\mathbf{x}, y - t), (\xi', 0) \right) : \left((\mathbf{x}, y), (\xi', 0) \right) \in \chi^*WF(w), t \geq 0 \right\} \]
\[= \bigcup_{\xi \in \mathbb{R}^n} \left\{ \left((\mathbf{x}, y - t), (\xi', 0) \right) : \left(\mathbf{x} - \gamma(y), \xi \right) \in WF(w), \xi \perp \gamma(y), t \geq 0 \right\}. \]
Finally,
\[
WF \left\{ \int_0^\infty w(\vec{x} - \vec{\gamma}(y + t)) \, dt \right|_{y=0} \right\} \\
\subseteq \chi_0^*WF \{w(\vec{x} - \vec{\gamma}(y))\} \cup \chi_0^* \left\{ \left((\vec{x}, y - t), (\vec{\xi}, 0) \right) : \xi \in \vec{\gamma}'(y) \perp, (\vec{x} - \vec{\gamma}(y) , \vec{\xi}) \in WF (w) , t \geq 0 \right\} \\
= WF (w) \cup \\
\left\{ (\vec{x}, \vec{\xi}) \mid \exists t \geq 0 : (\vec{x} - \vec{\gamma}(t) , \vec{\xi}) \in WF (w) , \vec{\xi} \in \vec{\gamma}'(t) \perp \right\}.
\]

It should be noted that the integral 2.1 reduces to the distributional anti-partial derivative developed in the previous section when \(\vec{\gamma} \) parametrizes a ray:
\[
\vec{\gamma}(t) = t \vec{v}, \quad t \geq 0, \vec{v} \in S^{n-1}.
\]

Furthermore, the result obtained in 2.2 in this case is:
\[
WF \left\{ \int_0^\infty w(\vec{x} - \vec{\gamma}(t)) v(t) \, dt \right\} \setminus WF (w) \\
\subseteq \left\{ (\vec{x}, \vec{\xi}) \mid \exists t \geq 0 : \vec{\xi} \perp \vec{\gamma}'(t) \& (\vec{x} - \vec{\gamma}(t) , \vec{\xi}) \in WF (w) \right\} \\
= \left\{ (\vec{x}, \vec{\xi}) \mid \exists t \geq 0 : \vec{\xi} \perp \vec{v} \& (\vec{x} - t \vec{v}, \vec{\xi}) \in WF (w) \right\},
\]

which is an equivalent formulation to 1.4.