ALMOST AUTOMORPHIC DELAYED DIFFERENTIAL EQUATIONS AND LASOTA-WAZEWSKA MODEL

ANÍBAL CORONEL
GMA, Departamento de Ciencias Básicas
Facultad de Ciencias, Universidad del Bío-Bío
Campus Fernando May, Chillán, Chile

CHRISTOPHER MAULEN, MANUEL PINTO
Departamento de Matemáticas, Facultad de Ciencias
Universidad de Chile, Chile

DANIEL SEPÚLVEDA
Escuela de Matemáticas y Estadísticas
Universidad Central de Chile, Santiago, Chile

(Communicated by Chongchun Zeng)

Abstract. Existence of almost automorphic solutions for abstract delayed differential equations is established. Using ergodicity, exponential dichotomy and Bi-almost automorphicity on the homogeneous part, sufficient conditions for the existence and uniqueness of almost automorphic solutions are given.

1. Introduction. The development of the theory of almost periodic type functions has been strongly stimulated by problems arisen in differential equations, stability theory, dynamical systems and many other areas of science. Nowadays, there exists also a wide range of applications starting from the basic mathematical models based on linear ordinary differential equations, including nonlinear linear ordinary differential equations, differential equations in Banach space and also partial differential equations. Moreover, there exist several related concepts which arise as generalizations of the almost periodic concept. For example, the notions of almost automorphic, asymptotically almost periodic, asymptotically almost automorphic and pseudo almost periodic. There is a significant variety in literature regarding the results and their applications in engineering and science. For instance, asymptotically almost periodic functions [20–23, 30–32, 36, 44], and pseudo almost periodic functions [10, 11, 13, 31]. Moreover, we recall that N’Guèrekata has given a huge impulse to the study of almost automorphic solutions of differential equations [1, 8–15, 17, 18, 24, 26, 28, 29]. For some recent results of almost automorphic differential equations consult also [6, 7].

2010 Mathematics Subject Classification. Primary: 43A60, 65L03; Secondary: 92D25.
Key words and phrases. Abstract delay differential equations, almost automorphic, exponential dichotomy, ergodicity, evolution operator.

* Corresponding author: acoronel@ubiobio.cl.
In this paper we are initially motivated by a biological-mathematical model which is a delayed differential equation of the following type

\[y'(t) = -\delta(t)y(t) + p(t)g(y(t - \tau)), \]

with \(\tau > 0 \), \(\delta \) and \(p \) almost automorphic functions and \(g \) a Lipschitz function. Then, we focus our attention on the existence and uniqueness of solutions of the following delayed differential equation

\[y' = A(t)y + f(t) + g(t, y(t - \tau)) \quad \text{with} \quad \tau \geq 0, \quad (1) \]

under several assumptions on \(A, f \) and \(g \). Naturally, the assumptions on \(A \) and \(f \) are related to the almost automorphic behavior and the assumptions on \(g \) are mainly related to a Lipschitz requirement. We note that (1) naturally include as particular cases the following equations

\[y' = A(t)y, \quad (2) \]
\[y' = A(t)y + f(t), \quad (3) \]
\[y' = A(t)y + f(t) + g(t, y(t)). \quad (4) \]

Thus, following a natural sequence of the classical systemic study of ordinary differential equations we start by analyzing the homogeneous linear equation (2). Then, we develop the theory for the non-homogeneous linear equation (3) by applying the method of variation of parameters. Thirdly, we analyze the nonlinear equation (4) by using the fixed point arguments. Finally, by a composition result of automorphic functions we get an extension of the results for (4) to the delay equation (1).

The main contributions and the organization of the paper are given as follows. In section 2 we introduce the general assumptions, recall the concepts related to the almost automorphic notion, we define a convolution operator and get the results for (2). To be more precise in this section, we obtain some conditions for the exponential dichotomy by using ergodic functions and we prove the Bi-almost periodicity and Bi-almost automorphy of the Green function when the evolution operator commutes with the projection. We note that the integral Bi-almost automorphy of the Green function is fundamental to obtain the main results. In section 3 almost automorphy of solutions of nonautonomous systems (3), (4) and (1) are obtained. Here, the results of almost automorphy of the differential equation solutions are obtained by assuming that \(A \) and \(f \) are almost automorphic and \(g \) satisfies (5). Finally, in section 4 we study a biological model establishing an explicit condition under which there exists a unique almost automorphic solution of the Lasota-Wazewska equation.

2. Preliminaries. In this section we present some general assumptions, we precise the concepts related to the almost automorphic notion, we recall the notion of ergodic functions, we define a convolution operator and the \(\alpha \)-exponential dichotomy and introduce several results for the homogeneous equation (2) in the scalar, the system and the abstract cases.

2.1. General assumptions. Here we present two general assumptions. First, throughout of the paper \((V, \| \cdot \|_V) \) there will be a Banach space and let \((BC(\mathbb{R}, V), \| \cdot \|_{\infty}) \) to denote the Banach space of bounded continuous functions from \(\mathbb{R} \) into \(V \) endowed with the sup norm \(\| \varphi \|_{\infty} = \sup_{t \in \mathbb{R}} \| \varphi(t) \|_V \). Second, regarding to the assumptions on the coefficients \(A, f \) and \(g \) for equations (1)-(4) we comment that it will be specifically done on the hypothesis of each result. However, in order to
give a unified presentation, we introduce some notation related to the assumption of the local Lipschitz behavior of \(g \). Indeed, given a function \(g \), it is assumed that:

\[
\begin{align*}
(g_0) & \quad g(t,0) = 0 \text{ for all } t \in \mathbb{R}; \\
(g_1) & \quad \text{The function } g(t,y) \text{ is continuous on } \mathbb{R} \times \Delta(\varphi_0, \rho) \text{ with } \Delta(\varphi_0, \rho) \text{ the open ball centered in a given (fix) function } \varphi_0 : \mathbb{R} \to \mathbb{V} \text{ and with radius } \rho \in \mathbb{R}^+, \text{ i.e.,} \\
& \quad \Delta(\varphi_0, \rho) = \left\{ \varphi : \mathbb{R} \to \mathbb{V} \, \middle| \, \| \varphi - \varphi_0 \|_\infty \leq \rho \right\}.
\end{align*}
\]

In particular, in subsections 3.2-3.3 it will be assumed that \(\varphi_0(t) = \int_\mathbb{R} G(t,s)f(s)ds \) with \(G \) the Green function defined on (49);

\[
\begin{align*}
(g_2) & \quad \text{There exists a positive constant } L \text{ such that the inequality} \\
& \quad \| g(t,y_1) - g(t,y_2) \| \leq L \| y_1 - y_2 \|, \\
& \quad \text{holds for all } (t,y_1,y_2) \in \mathbb{R} \times \Delta(\varphi_0, \rho)^2.
\end{align*}
\]

This set of conditions \((g_0)-(g_2)\) appear in several parts of the paper, particularly when we study the nonlinear equations in subsections 3.2-3.3.

2.2. Almost automorphic notion and related concepts.

We recall that the almost automorphic functions have been developed by Bochner [2, 3] as a generalization of almost periodic functions. We recall that a function \(f \in BC(\mathbb{R}, \mathbb{V}) \) is called Bohr almost periodic [9] if for each \(\epsilon > 0 \), there exists \(l_\epsilon > 0 \) such that every interval of length \(l_\epsilon \) contains a number \(\xi \) with the property: \(\| f(t+\xi) - f(t) \|_V \leq \epsilon \) for all \(t \in \mathbb{R} \).

The set of Bohr almost periodic will be denoted by \(BC(\mathbb{R}, \mathbb{V}) \). Then, we precise the concept of almost automorphic functions and matrices.

Definition 2.1. Consider \(V \) a Banach space. Then,

(i) A continuous function \(\psi : \mathbb{R} \to \mathbb{V} \) is called an almost automorphic function if for any sequence of real numbers \(\{ \tau_n \}_{n=1}^\infty \), there exists a subsequence \(\{ \tilde{\tau}_n \}_{n=1}^\infty \) such that the limit of the sequence \(\{ \psi(t+\tau_n) \}_{n=1}^\infty \), denoted by \(\tilde{\psi}(t) \), is well defined for all \(t \in \mathbb{R} \) and the sequence \(\{ \tilde{\psi}(t-\tau_n) \}_{n=1}^\infty \) converges pointwise on \(\mathbb{R} \) to \(\psi(t) \), or equivalently

\[
\tilde{\psi}(t) = \lim_{n \to \infty} \psi(t+\tau_n) \quad \text{and} \quad \psi(t) = \lim_{n \to \infty} \tilde{\psi}(t-\tau_n)
\]

are well defined for all \(t \in \mathbb{R} \). The collection of all almost automorphic functions from \(\mathbb{R} \) to \(\mathbb{V} \) is denoted by \(AA(\mathbb{R}, \mathbb{V}) \).

(ii) A matrix valued function \(A : \mathbb{R} \to \mathbb{C}^{d_1 \times d_2} \) is called an almost automorphic matrix valued function or equivalently (most of the time by briefness) \(A(t) \in \mathbb{C}^{d_1 \times d_2} \) is called an almost automorphic matrix if for any sequence \(\{ \xi_n \}_{n=1}^\infty \subset \mathbb{R} \), there exists a subsequence \(\{ \tilde{\xi}_n \}_{n=1}^\infty \) of \(\{ \xi_n \}_{n=1}^\infty \) and a matrix \(B(t) \in \mathbb{C}^{d_1 \times d_2} \) such that the sequences \(\{ A(t+\tilde{\xi}_n) \}_{n=1}^\infty \) and \(\{ B(t-\xi_n) \}_{n=1}^\infty \) converges pointwise to \(B(t) \) and \(A(t) \), respectively.

We note that the convergence in (i) is pointwise. Then, the function \(\hat{\psi} \) in (i) is measurable, but not necessarily continuous. Moreover, we note if we consider that the convergence in definition 2.1 is uniform on \(\mathbb{R} \) instead of pointwise convergence, we get that the function \(\psi \) is Bohner almost periodic. It is well known that both definitions of almost periodicity (Bohr and Bochner) are equivalents, see [9]. The space of almost periodic functions is denoted by \(AP(\mathbb{R}, \mathbb{V}) \). Now, we note that \(AP(\mathbb{R}, \mathbb{V}) \) and \(AA(\mathbb{R}, \mathbb{V}) \) are vectorial spaces and \(AP(\mathbb{R}, \mathbb{V}) \) is a proper subspace of \(AA(\mathbb{R}, \mathbb{V}) \). For instance, \(\psi(t) = \cos \left(\sqrt{2}t \right) \) is an almost periodic
function but it is not almost authomorphic. Similarly, it is proven that the inclusion $AP(\mathbb{R}, V) \subset BC(\mathbb{R}, V)$, for an extensive discussion consult \cite{1,3,5,12,15,17,18,24,26,29,37,38,42,46,48}.

To close this subsection we introduce two additional facts. First, we note that the simpler equation (3) with $A \equiv 0$, i.e., $y'(t) = f(t)$, with $f \in AA(\mathbb{R}, V)$ does not necessarily have a solution $y \in AA(\mathbb{R}, V)$. However, this fact is true in a uniformly convex Banach space V and hence in every Hilbert space, see Theorem 2.2. Second, we need a composition result \cite{8}, which will be fundamental for the analysis of (4) and (1), see Proposition 1.

Theorem 2.2. Denote by C_0 the vectorial space formed by the functions which vanish at infinity. Consider that V is a Banach space which does not contain C_0 as an isomorphic subspace and let $f \in AA(\mathbb{R}, V)$. Then, the function $F(t) = \int_{-T}^{T} f(s)ds$ is in $AA(\mathbb{R}, V)$ if and only if it is bounded. The Banach space with this property for F will be called a Banach space with the Bohl-Bohr property.

Definition 2.3. \cite{8} Let X and Y be two Banach spaces. A continuous function $f : \mathbb{R} \times X \to Y$ is said to be almost automorphic in t uniformly with respect to x in X if the two following conditions hold: (i) $\forall x \in X, f(\cdot, x) \in AA(\mathbb{R}, Y)$, and (ii) f is uniformly continuous on each compact K of X with respect to the second variable x.

Proposition 1. Let $g : \mathbb{R} \times V \to V$ a function such that is almost automorphic in t uniformly with respect to y in V and g satisfies the assumptions given on (5). Then, $g(t, \Delta(t)) \in AA(\mathbb{R}, V)$ for all $\varphi \in AA(\mathbb{R}, \Delta(\varphi_0, \rho))$.

2.3. **Ergodic functions.** Here we introduce the concept of ergodic functions and deduce that these types of functions imply naturally an exponential behavior (or α-exponential dichotomy to be more precise).

Definition 2.4. A function $f \in BC(\mathbb{R}, V)$ is called an ergodic function if the limit

$$M(f) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} f(s)ds$$

exists uniformly with respect to $\xi \in \mathbb{R}$ and its value is independent of ξ. The complex number $M(f)$ is called the mean of the function f.

The mean of an ergodic function has several properties, a complete list of properties may be consulted in \cite{49}. Among these useful basic properties, we only recall the translation invariance property, since it will be used frequently in the proofs given below. Indeed, the translation invariance property of $M(f)$, set that $M(f)$ satisfies the following identity

$$M(f) = M(f_\xi),$$

where f_ξ denotes a ξ-translation of f, i.e. $f_\xi(t) = f(t + \xi)$ for all $t \in \mathbb{R}$ and any arbitrarily given $\xi \in \mathbb{R}$ (but fixed).

Lemma 2.5. Consider $\mu \in BC(\mathbb{R}, \mathbb{C})$ an ergodic function with $\text{Re}(M(\mu)) \neq 0$ and also consider $\alpha \in \mathbb{R}^+$. Then, there exist two positive constants T_0 (big enough) and c such that the two assertions given below are valid:
Let us denote by $\mathcal{L}(\varphi) = \int h(t-s)\varphi(s)ds$, $h \in L^1(\mathbb{R})$, $t \in \mathbb{R}$, for all $\varphi \in L^\infty(\mathbb{R})$. Some properties of \mathcal{L}, which will be needed in the proof of the main results, are summarized in the following lemma.

Lemma 2.6. Consider \mathcal{L} the convolution operator defined by (14). Then, the spaces $BC(\mathbb{R})$, $AP(\mathbb{R})$ and $AA(\mathbb{R})$ are invariants under the operator \mathcal{L}. Moreover, the inequalities

\[
\|\mathcal{L}\varphi\|_{L^\infty(\mathbb{R})} \leq \|\varphi\|_{L^\infty(\mathbb{R})} \|h\|_{L^1(\mathbb{R})} \quad \text{for } \varphi \in BC(\mathbb{R}),
\]

\[
\|\mathcal{L}\varphi - \mathcal{L}\varphi\|_{L^\infty(\mathbb{R})} \leq \|\eta\|_{L^\infty(\mathbb{R})} \|\varphi\|_{L^\infty(\mathbb{R})} \|h\|_{L^1(\mathbb{R})} \quad \text{for } (\xi, \varphi) \in \mathbb{R} \times AP(\mathbb{R}),
\]

hold. Here $\mathcal{L}\varphi_\xi$ and φ_ξ are the ξ-translation functions for $\mathcal{L}\varphi$ and φ, respectively.

Proof. Let us select $\varphi \in AA(\mathbb{R})$. Then, by Definition 2.1, given an arbitrary sequence of real numbers $\{\tau_n\}_{n=1}^\infty$, there exists a subsequence $\{\tau_{n'}\}_{n=1}^\infty$ such
that (6) is satisfied. Now, if we consider \(\psi = L(\varphi) \), we have that (6) is equivalently rewritten as follows

\[
\hat{\psi}(t) = \lim_{n \to \infty} \psi(t + \tau_n) \quad \text{and} \quad \psi(t) = \lim_{n \to \infty} \hat{\psi}(t - \tau_n). \quad (17)
\]

Indeed, this fact can be proved by application of Lebesgue’s dominated convergence theorem, since

\[
\hat{\psi}(t) = \lim_{n \to \infty} L(\varphi_{\tau_n})(t) = \lim_{n \to \infty} \int_{\mathbb{R}} h(r)\varphi_{\tau_n}(t - r)dr
\]

\[
= \int_{\mathbb{R}} h(r)\hat{\varphi}(t - r)dr = L(\hat{\varphi})(t).
\]

Let us consider \(\varphi \in BC(\mathbb{R}) \), then we deduce (15) by application of the H"older inequality. Now, from (15) we follow the invariance of \(BC(\mathbb{R}) \).

We note that, if we define

\[
h_1(x) = \begin{cases}
\exp(-\alpha x), & x > 0, \\
0, & \text{otherwise},
\end{cases}
\]

\[
h_2(x) = \begin{cases}
\exp(\alpha x), & x < 0, \\
0, & \text{otherwise},
\end{cases}
\]

for some \(\alpha \in \mathbb{R}^+ \) and denote by \(\mathcal{L}_1 \) and \(\mathcal{L}_2 \) the corresponding convolution operators associated with \(h_1 \) and \(h_2 \), respectively. Then, we get an interesting result by application of Lemma 2.6. More precisely, we have the following Corollary.

Corollary 1. Consider \(\alpha \in \mathbb{R}^+ \) and the operators \(\mathcal{L}_i, \ i = 1, 2 \) defined by

\[
\mathcal{L}_1(\varphi)(t) = \int_{-\infty}^t e^{-\alpha(t-s)}\varphi(s)ds \quad \text{and} \quad \mathcal{L}_2(\varphi)(t) = \int_t^{\infty} e^{\alpha(t-s)}\varphi(s)ds, \quad (18)
\]

respectively. Then, the spaces \(BC(\mathbb{R}) \), \(AP(\mathbb{R}) \) and \(AA(\mathbb{R}) \) are invariants under the operator \(\mathcal{L}_i, \ i = 1, 2 \). Moreover, the inequalities (15) and (16) are satisfied with \(\mathcal{L}_i, i = 1, 2, \) instead of \(\mathcal{L} \).

2.5. **Some concepts and properties related to equation (2).** In this subsection we study the equation (2). In order to introduce the concepts and results, we recall the standard notation of fundamental matrix and flow associated with (2), which are denoted by \(\Phi_A \) and \(\Psi_A \), respectively. More precisely

Given a matrix \(A(t) \), then the notation \(\Phi_A = \Phi_A(t) \) and \(\Psi_A \) are used for a fundamental matrix of the system (2) and for the application defined as follows

\[
\Psi_A(t, s) = \Phi_A(t)\Phi_A^{-1}(s). \quad (19)
\]

Lemma 2.7. Consider the notation (19). Then, the identities

\[
\Psi_A(t, s) - \Psi_B(t, s) = \int_s^t \Psi_B(t, r)[A(r) - B(r)]\Psi_A(r, s)dr, \quad (20)
\]

\[
\Psi_A(t + \xi, s + \xi) - \Psi_B(t, s) = \int_s^t \Psi_B(t, r)[A(r + \xi) - B(r)]\Psi_A(r + \xi, s + \xi)dr, \quad (21)
\]

are satisfied for all \((t, s, \xi) \in \mathbb{R}^3 \).

Proof. Let us denote by \(H \) the function defined by the following correspondence rule \(H(t, s) = \Psi_A(t, s) - \Psi_B(t, s) \). Then, by a partial differentiation of \(H \) with
Lemma 2.8. Consider the notation \([19]\) and the sets \(\overline{\mathbb{R}}^2\) and \(\mathbb{R}^2\) defined as follows
\[
\overline{\mathbb{R}}^2 = \left\{(s,t) \in \mathbb{R}^2 : s > t\right\} \quad \text{and} \quad \mathbb{R}^2 = \left\{(s,t) \in \mathbb{R}^2 : s < t\right\},
\]
respectively. Assume that the following three statements are true: \(A(t)\) is an almost periodic matrix (see definition \([21]\)), \(P\) is a constant projection matrix that commutes with \(\Phi_A\) and for some given positive constants \(c\) and \(\alpha\) the inequality
\[
\|\Psi_A(t,s)P\| \leq c \exp(-\alpha|t-s|), \tag{22}
\]
is satisfied for all \((t,s) \in \overline{\mathbb{R}}^2\) (or for all \((t,s) \in \mathbb{R}^2\)). Then, for all \((t,s,\xi) \in \overline{\mathbb{R}}^2 \times \mathbb{R}\) (respectively \((t,s) \in \mathbb{R}^2 \times \mathbb{R}\)), there exist two real constants \(c_1 > 0\) and \(\alpha' \in [0,\alpha]\), such that
\[
\|\Psi_A(t+\xi, s+\xi)P - \Psi_A(t,s)P\| \leq c_1 \|A(\cdot + \xi) - A(\cdot)\|_\infty \exp(-\alpha'|t-s|). \tag{23}
\]
In particular, if \(\xi\) is an \(\epsilon\)-almost period of \(A\) the inequality
\[
\|\Psi_A(t+\xi, s+\xi)P - \Psi_A(t,s)P\| \leq c_1 \epsilon \exp(-\alpha'|t-s|), \tag{24}
\]
is satisfied for all \((t,s,\xi) \in \overline{\mathbb{R}}^2 \times \mathbb{R}\) (respectively \((t,s) \in \mathbb{R}^2 \times \mathbb{R}\)) or equivalently \(\Psi_A(t,s)P\) is \(\epsilon\)-almost periodic.

Proof. Since the proofs with \((t,s,\xi) \in \overline{\mathbb{R}}^2 \times \mathbb{R}\) or with \((t,s,\xi) \in \mathbb{R}^2 \times \mathbb{R}\) are analogous, we consider only one of the cases. Then, in order to fix ideas, let us consider \((t,s,\xi) \in \overline{\mathbb{R}}^2 \times \mathbb{R}\) and recall the notation \(\Delta_\xi\) defined by
\[
\Delta_\xi F(x) = F(x+\xi) - F(x) \quad \text{for any function } F. \tag{25}
\]
In particular, for instance, we have that \(\Delta_\xi \Phi(t,s) = \Phi(t+\xi, s+\xi) - \Phi(t,s)\) and \(\Delta_\xi A(t) = A(t+\xi) - A(t)\). From \([20]\) and the hypothesis that \(P\) is a constant
projection matrix, i.e. $P^2 = P$, which commutes with $\Phi(t)$ for every $t \in \mathbb{R}$, we have that
\[
\Delta_\xi \Psi_A(t,s)P = \int_s^t \Psi_A(t,r)P \Delta_\xi A(r)\Psi_{A\xi}(r,s)Pdr.
\]
(26)

Now, by the assumption (22) we follow that (26) implies the following estimate
\[
\|\Delta_\xi \Psi_A(t,s)P\| \leq c \exp(-\alpha|t-s|) \int_s^t \|\Delta_\xi A(r)\|dr
\]
\[\leq c \exp(-\alpha|t-s|) \|\Delta_\xi A\| |t-s|,
\]
which implies (23). The inequality (24) follows immediately from (23) using the fact that ξ is an ϵ-almost period of A.

Definition 2.9. Consider the notation (19). If the fact that $A(t)$ is an almost automorphic matrix (see definition 2.1-(ii)) implies the following convergence
\[
\lim_{n \to \infty} \int_{-\infty}^0 \left(\Psi_{A_{\xi_n}} - \Psi_B\right)(t,s)P \, ds = \lim_{n \to \infty} \int_{-\infty}^0 \left(\Psi_{B - \xi_n} - \Psi_A\right)(t,s)P \, ds = 0,
\]
(27)

the application Ψ_A is called integrally Bi-almost automorphic on $]-\infty,t]$. Similarly, if the almost automorphic behavior of $A(t)$ implies the following convergence
\[
\lim_{n \to \infty} \int_0^\infty \left(\Psi_{A_{\xi_n}} - \Psi_B\right)(t,s)P \, ds = \lim_{n \to \infty} \int_0^\infty \left(\Psi_{B - \xi_n} - \Psi_A\right)(t,s)P \, ds = 0,
\]
(28)

the application Ψ_A is called integrally Bi-almost automorphic on $[t,\infty[$. Here $\{\xi_n\}_{n=1}^\infty$ and $B(t)$ denotes the subsequence and the matrix with the properties given on definition 2.1-(ii).

Lemma 2.10. Consider the notation (19). If the assumptions of Lemma 2.8 hold, then Ψ_A is integrally Bi-almost automorphic on $]-\infty,t]$ and on $[t,\infty[$.

Proof. Let us consider that $A(t)$ is an almost automorphic matrix. Then by definition 2.1-(ii) we follow that for any sequence $\{\xi_n\}_{n=1}^\infty \subset \mathbb{R}$, there exists a subsequence $\{\xi_n\}_{n=1}^\infty$ of $\{\xi_n\}_{n=1}^\infty$ and a matrix $B(t)$ such that
\[
\lim_{n \to \infty} A_{\xi_n}(t) = B(t) \quad \text{and} \quad \lim_{n \to \infty} B_{-\xi_n}(t) = A(t) \quad \text{for all } t \in \mathbb{R}.
\]
(29)

Now, from the identity (20), we deduce that the assumption (22) implies the following bounds
\[
\left\|\left(\Psi_{A_{\xi_n}} - \Psi_B\right)(t,s)P\right\| \leq c \exp(-\alpha|t-s|) \left\|\int_s^t (A_{\xi_n} - B)(r)dr\right\|
\]
\[\leq c_1 \exp(-\alpha'|t-s|) \left(\|A\| + \|B\|\right),
\]
(30)

\[
\left\|\left(\Psi_{B - \xi_n} - \Psi_A\right)(t,s)P\right\| \leq c \exp(-\alpha|t-s|) \left\|\int_s^t (B_{-\xi_n} - A)(r)dr\right\|
\]
\[\leq c_1 \exp(-\alpha'|t-s|) \left(\|A\| + \|B\|\right),
\]
(31)

for all $(t,s,n) \in \mathbb{R}^2 \times \mathbb{N}$ and some real constants $c_1 > 0$ and $\alpha' \in]0,\alpha[$. Then, by applying four times the Lebesgue's dominated convergence theorem we deduce the integral Bi-almost automorphic property of Ψ_A. Indeed, by the first limit given in (29) we deduce that for each $(s,t) \in \mathbb{R}^2$ the integral $\int_s^t ||A_{\xi_n} - B(r)||dr$ converges to 0 when $n \to \infty$. Then, with this convergence in mind, in a second application, from
we get that for each \(t \in \mathbb{R} \) the integral \(\int_{-\infty}^{t} \|(\Psi_{A_{\xi_n}} - \Psi_B)(t, s)\| ds \) converges to 0 when \(n \to \infty \). Similarly, applying twice more the Lebesgue’s theorem (in the second integral \((29) \) and in the inequality \((31) \)) we deduce that for each \((s, t) \in \mathbb{R}^2 \) the integral \(\int_{-\infty}^{t} \|(B - \xi_n - A)(r)\| dr \) converges to 0 when \(n \to \infty \) and for each \(t \in \mathbb{R} \) the integral \(\int_{-\infty}^{t} \|(\Psi_{B - \xi_n} - \Psi_A)(t, s)\| ds \) converges to 0 when \(n \to \infty \). Thus, \((27) \) holds and \(\Psi_A \) is integrally Bi-almost automorphic function. The proof of \((28) \) can be obtained by similar arguments.

Definition 2.11. Consider the notation \((19) \). The linear system \((2) \) has an \(\alpha \)-exponential dichotomy if there exists a projection \(P \) and two positive constants \(c \) and \(\alpha \) such that for all \((t, s) \in \mathbb{R}^2 \) the estimate

\[
\|G_A(t, s)\| \leq c \exp(-\alpha |t - s|)
\]

with

\[
G_A(t, s) = \begin{cases}
\Phi_A(t)P\Phi_A^{-1}(s), & t \geq s, \\
-\Phi_A(t)(I - P)\Phi_A^{-1}(s), & t < s,
\end{cases}
\]

is satisfied. The matrix \(G_A \) is called the Green matrix associated with the dichotomy.

Lemma 2.12. Consider the notation \((19) \) and define the Green operator \(\Gamma \) as follows

\[(\Gamma \varphi)(t) = \int_{-\infty}^{\infty} G(t, s)\varphi(s) ds, \quad t \in \mathbb{R}.
\]

Assume that \(A(t) \) is an almost automorphic matrix and \((2) \) has an exponential dichotomy such the its projection commutes with the fundamental matrix \(\Phi_A \). Then, the following assertions are satisfied:

(i) The Green matrix \(G_A \) is integrally Bi-almost automorphic.

(ii) The spaces \(BC(\mathbb{R}, V), AP(\mathbb{R}, V) \) and \(AA(\mathbb{R}, V) \) are invariants under the operator \(\Gamma \). Moreover, there exist two positive constants \(c_1 \) and \(c_2 \) such that the following inequalities

\[
\|\Gamma \varphi\| \leq \frac{2c\|\varphi\|_{\infty}}{\alpha} \quad \text{for } \varphi \in BC(\mathbb{R}, V),
\]

\[
\|(\Delta_\xi \Gamma \varphi)(t)\| \leq c_1 \|\varphi\|_{\infty} \sum_{i=1}^{2} L_i(\|\Delta_\xi A\|) + c_2 \sum_{i=1}^{2} L_i(\|\Delta_\xi \varphi\|) \quad \text{for } \varphi \in AP(\mathbb{R}, V),
\]

are satisfied. Here \(L_i \) and \(\Delta_\xi \) denotes the operators defined on \((18) \) and \((25) \), respectively.

Proof. The proofs of (i) and (ii) are straightforward. Indeed, for (i), let us consider \(A(t), B(t) \) and \(\{\xi_n\}_{n=1}^{\infty} \) as given in the proof of Lemma 2.10. Now, by the assumptions we can deduce that

\[
\int_{-\infty}^{\infty} \|(G_{A_{\xi_n}} - G_B)(t, s)\| ds \to 0 \quad \text{and} \quad \int_{-\infty}^{\infty} \|(G_{B - \xi_n} - G_A)(t, s)\| ds \to 0,
\]

when \(n \to \infty \), where \(G_A \) is the Green matrix defined on \((32) \). Thus, we can follow that \(G_A \) is integrally Bi-almost automorphic. Meanwhile, we follow the proof of (ii) by application of Lemmas 2.5, 2.6 and 2.12 (i). \(\square \)

3. **Main results.** In this section we present several results of Massera type for \((3) \) and \((1) \) and related with the almost automorphic behavior of the \(A \) and \(f \).
3.1. Results for \([3]\). Here we present a result for the scalar abstract case, see Theorem 3.1. Then, we can extend this result to linear triangular systems and general linear constant systems, see Theorem 3.2. We also present a simple and useful relation between finite and infinite dimension that is deduced from Theorem 3.3. Finally, we present to results on the general case, see Theorems 3.4 and 3.5.

Theorem 3.1. Consider the equation \([3]\) with \(A = \mu : \mathbb{R} \to \mathbb{C}\) and denote by \(g\) the application defined by

\[
g(s, t) = \exp \left(\int_s^t \mu(r) dr \right).
\]

Then, the following assertions are valid:

(i) Assume that \(\mu\) is a function that belongs to \(AA(\mathbb{R}, \mathbb{C})\) satisfying \(M(\text{Re}(\mu)) \neq 0\). Then, a solution \(y\) of equation \([3]\) is bounded if and only if \(y \in AA(\mathbb{R}, V)\) or equivalently the unique solution of equation \([3]\) belonging to \(AA(\mathbb{R}, V)\) is given by

\[
y(t) = \begin{cases}
\int_{-\infty}^t g(s, t)f(s)ds, & M(\text{Re}(\mu)) < 0, \\
-\int_t^\infty g(s, t)f(s)ds, & M(\text{Re}(\mu)) > 0.
\end{cases}
\]

(ii) Assume that \(\mu(t) = \text{i}a(t)\) with \(\int_0^1 a(s)ds\) bounded and \(V\) a Bohl-Bohr Banach space. Then, a solution \(y\) of equation \([3]\) is bounded if and only if \(y\) belongs to \(AA(\mathbb{R}, V)\) and is given by

\[
y(t) = \exp \left(\int_0^t a(r) dr \right)v + \int_t^t \exp \left(\int_s^t a(r) dr \right)f(s) ds \quad \text{for all } v \in V.
\]

Proof. (i) Before proving the item we deduce two estimates (see (37) and (38)) and introduce some notation (see [39] to [40]). Firstly, by Lemma 2.5 we can deduce that the scalar equation \(x' = \mu(t)x\) has an \(\alpha\)-exponential dichotomy. Indeed, we note that by the hypothesis \(M(\text{Re}(\mu)) \neq 0\) we can always select \(\alpha\) satisfying \(M(\text{Re}(\mu)) \geq \alpha > 0\). Then, by application of Lemma 2.5 we have that there exist a positive constant \(c\) such that

\[
|g(t, s)| \leq c \exp(-\alpha|t - s|) \quad \text{with } g \text{ defined in (33)}.
\]

Moreover, by application of Lemma 2.8 and integration on \(s\), we deduce that there exists \(c_1 \in \mathbb{R}^+\) and \(\alpha' \in [0, \alpha]\) such the following inequalities

\[
\int_{-\infty}^t |D_\xi g(t, s)| |f_\xi(s)| ds \leq \frac{c_1}{\alpha'} \|f\|\|\Delta_\xi \mu\|\|\Delta_\xi \mu\| \quad \text{for all } t \in \mathbb{R},
\]

\[
\int_t^\infty |D_\xi g(t, s)| |f_\xi(s)| ds \leq \frac{c_1}{\alpha'} \|f\|\|\Delta_\xi \mu\|\|\Delta_\xi \mu\| \quad \text{for all } t \in \mathbb{R},
\]

hold. Now, let us consider \(\{\xi_n\}_{n=1}^\infty\) a sequence in \(\mathbb{R}\). Then, by the assumption that \(\mu\) belongs to \(AA(\mathbb{R}, V)\), there exists a subsequence \(\{\xi'_n\}_{n=1}^\infty\) of \(\{\xi_n\}_{n=1}^\infty\) and the function \(\tilde{\mu}\) such that

\[
\lim_{n \to \infty} \mu_{\xi'_n}(t) = \tilde{\mu}(t), \quad \lim_{n \to \infty} \tilde{\mu}_{-\xi'_n}(t) = \mu(t), \quad \text{for all } t \in \mathbb{R}.
\]

Similarly, given the sequence \(\{\xi'_n\}_{n=1}^\infty\), by the hypothesis \(f \in AA(\mathbb{R}, V)\) there exists a subsequence \(\{\xi''_n\}_{n=1}^\infty\) of \(\{\xi'_n\}_{n=1}^\infty\) and the function \(\tilde{f}\) such that

\[
\lim_{n \to \infty} f_{\xi''_n}(t) = \tilde{f}(t), \quad \lim_{n \to \infty} \tilde{f}_{-\xi''_n}(t) = f(t), \quad \text{for all } t \in \mathbb{R}.
\]
Now we develop the proof of the item. Indeed, we consider that \(y \) is defined by (34) and we prove that \(y \) belongs to \(AA(\mathbb{R}, V) \). Let us start by considering the notation \(y_{\pm} \) and \(\tilde{y}_{\pm} \) for the functions defined as follows

\[
y_{+}(t) = \int_{-\infty}^{t} g(t,s)f(s)\,ds, \quad \tilde{y}_{+}(t) = \int_{-\infty}^{t} g(t,s)\tilde{f}(s)\,ds, \\
y_{-}(t) = -\int_{t}^{\infty} g(t,s)f(s)\,ds \quad \text{and} \quad \tilde{y}_{-}(t) = -\int_{t}^{\infty} g(t,s)\tilde{f}(s)\,ds,
\]

respectively. Then, by algebraic rearrangements we deduce that

\[
(y_{+})\xi(t) - \tilde{y}_{+}(t) = \int_{-\infty}^{t} \Delta_\xi g(t,s)f_\xi(s)\,ds + \int_{-\infty}^{t} g(t,s)(f_\xi - \tilde{f})(s)\,ds,
\]

\[
(y_{-})\xi(t) - \tilde{y}_{-}(t) = -\int_{t}^{\infty} \Delta_\xi g(t,s)f_\xi(s)\,ds - \int_{t}^{\infty} g(t,s)(f_\xi - \tilde{f})(s)\,ds,
\]

Now, by using the Lebesgue dominated convergence theorem we get that the four integrals on (43)-(44) converge to 0 when \(n \to \infty \). Indeed, by (37) and (39) we follow that the first integral in (43) converges to 0 when \(n \to \infty \). We see that the second integral in (43) vanishes when \(n \to \infty \) by consequence of (40). Meanwhile, we note that both integrals in (44) converge to 0 when \(n \to \infty \) by application of (38), (39) and (40). Consequently, we have that

\[
\lim_{n \to \infty} (y_{\pm})_\xi(t) = \tilde{y}_{\pm}(t) \quad \text{for all } t \in \mathbb{R}.
\]

Similarly, we can prove that \((\tilde{y}_{\pm})_\xi(t) \to y(t) \) for all \(t \in \mathbb{R} \) and when \(n \to \infty \). Hence \(y \in AA(\mathbb{R}, V) \).

(ii) Noticing that \(h(s) = \exp(i \int_{0}^{s} a) f(s) \in AA(\mathbb{R}, V) \) and the Banach space \(V \) has the Bohl-Bohr property we follow the proof by application of Theorem 2.2. \(\square \)

Theorem 3.2. Consider that \(A(t) \in AA(\mathbb{R}, \mathbb{C}^{p \times p}) \) is an upper triangular of order \(p \times p \). Then the following assertions are valid:

(i) Assume that \(A(t) \) satisfies the condition \(\Re(M(a_{ii})) \neq 0 \) for all \(i = 1, \ldots, p \) and \(f \in AA(\mathbb{R}, V^p) \). Then, a solution \(y \) of (3) is bounded if and only if \(y \in AA(\mathbb{R}, V^p) \).

(ii) Assume that \(A(t) \) satisfies the condition

\[
a_{kk}(t) = i\beta_k(t) \quad \text{with} \quad \int_{0}^{t} \beta_k(s)\,ds \quad \text{bounded for all } k = 1, \ldots, p.
\]

Assume that the Banach space \(V \) has the Bohl-Bohr property. Then any solution \(y \) of system (3) is bounded if and only if \(y \) belongs \(AA(\mathbb{R}, V^p) \).

Proof. (i) If we consider that \(A(t) \) is a triangular matrix, we have that the system (3) is of the following type

\[
y'_{1} = a_{11}(t)y_{1} + a_{12}(t)y_{2} + a_{13}(t)y_{3} + \cdots + a_{1p}(t)y_{p} + f_{1}(t) \\
y'_{2} = a_{22}(t)y_{2} + a_{23}(t)y_{3} + \cdots + a_{2p}(t)y_{p} + f_{2}(t) \\
\vdots \\
y'_{p} = a_{pp}(t)y_{p} + f_{p}(t).
\]

Assume the system (3) is of the following type

\[
y'_{1} = a_{11}(t)y_{1} + a_{12}(t)y_{2} + a_{13}(t)y_{3} + \cdots + a_{1p}(t)y_{p} + f_{1}(t) \\
y'_{2} = a_{22}(t)y_{2} + a_{23}(t)y_{3} + \cdots + a_{2p}(t)y_{p} + f_{2}(t) \\
\vdots \\
y'_{p} = a_{pp}(t)y_{p} + f_{p}(t).
\]
We note that the p-th equation in (47) can be analyzed by application of Theorem 3.1. Indeed, by Theorem 3.1-(i), we have that there exists $y_p \in AA(\mathbb{R}, V)$ given by

$$y_p(t) = \begin{cases} \int_{-\infty}^{t} g_p(s,t)f(s)ds, & M(\text{Re}(\mu_p)) < 0, \\ -\int_{t}^{\infty} g_p(s,t)f(s)ds, & M(\text{Re}(\mu_p)) > 0, \end{cases}$$

with $g_p(s,t) = \exp\left(\int_{s}^{t} a_{pp}(r)dr\right)$. Similarly, by substituting $y_p \in AA(\mathbb{R}, V)$ in $(p - 1)$-th equation of (47) and by a new application of Theorem 3.1-(i) we can find an explicit expression for $y_{p-1}(t)$. This argument can be repeated to construct $y_{p-2}(t), y_{p-3}(t), \ldots, y_2(t)$ and $y_1(t)$ by backwards substitution and application of Theorem 3.1-(i) in the system (47). Hence, we can construct $y(t)$ and also get that the conclusion of the theorem 3.2-(i) is valid.

(ii) The proof of this item is similar to the proof of the precedent item (i) of the Theorem 3.2. In a broad sense, in this case we apply Theorem 3.1-(ii) instead of Theorem 3.1-(i) and similarly we use backwards substitution.

Theorem 3.3. Let V be a Banach space having the Bohr-Bohr property. Let $\{\mu_i\}_{i=1}^{p}$ be the eigenvalues of the $p \times p$ constant matrix A satisfying $|\mu_i| = 1$. Then any bounded solution of (3) $y \in AA(\mathbb{R}, V^p)$. When all the eigenvalues μ_i are distinct, these solutions have the form

$$y(t) = \exp(At) \left[v + \int_{0}^{t} \exp(-As)f(s)ds \right] \text{ for all } v \in V^p. \quad (48)$$

In the general case, a formula for the bounded solutions can be also obtained.

Proof. Note that, by hypothesis, A is a $p \times p$ constant matrix and naturally in this case (2) is a constant system. Now, if $\{\mu_i\}_{i=1}^{p}$ are distinct, the constant system (2) is similar to a diagonal system. Then, without loss of generality, we can suppose that A is an upper triangular matrix. Hence, the result (48) is followed by application of the Theorem 3.2-(i).

Theorem 3.4. Consider $A : V \to V$ an infinitesimal generator of a C_0 group of bounded linear operators $T(t)$ with $t \in \mathbb{R}$ and define the Green function

$$G(t,s) = \begin{cases} T(t-s)P, & t \geq s \\ -T(t-s)(I-P), & t \leq s. \end{cases} \quad (49)$$

Assume that A has an α-exponential dichotomy, i.e., there exist two constants c and α such that

$$\|G(t,s)\| \leq ce^{-\alpha|t-s|} \text{ for all } (t,s) \in \mathbb{R}^2. \quad (50)$$

Then if $f \in AA(\mathbb{R}, V)$, equation (3) has a unique solution $y \in AA(\mathbb{R}, V)$ given by

$$y(t) = \int_{\mathbb{R}} G(t,s)f(s)ds \text{ for all } t \in \mathbb{R} \quad (51)$$

and satisfying the following estimate

$$\|y\|_{\infty} \leq \frac{2c}{\alpha} \|f\|_{\infty}. \quad (52)$$
Proof. From (49) and (50) and \(y \in BC(\mathbb{R}, V) \)
\[
\lim_{s \to \pm \infty} \|G(t, s)y(s)\| = 0
\] (53)

Indeed, for \(t \geq s \) we have that \(\|G(t, s)y(s)\| \leq ce^{-\alpha(t-s)}\|y\|_{\infty} \), which implies that \(\|G(t, s)y(s)\| \to 0 \) when \(s \to -\infty \). Similarly, we get that \(\|G(t, s)y(s)\| \) vanishes when \(s \to \infty \). We note that, for \(t \in \mathbb{R} \) (fix), applying \(T(t-s) \) on the identity \(y'(s) = Ay(s) + f(s) \) and using the fact that \(A \) commutes with \(T(t) \) on the domain of \(A \), we get
\[
T(t-s)y'(s) = T(t-s)Ay(s) + T(t-s)f(s) = AT(t-s)y(s) + T(t-s)f(s).
\] (54)

Now, the proof consists of three main parts: (a) we prove that the solution \(y \) of \([5] \) is given by \([51]\); (b) we prove that \(y \in AA(\mathbb{R}, V) \) and (c) we prove the uniqueness. (a). Proof of that the solution \(y \) of \([3] \) is given by \([51]\). Firstly, we note that a formal integration of \([54]\) on \(s \in (-\infty, t) \) gives the following identity
\[
\int_{-\infty}^{t} T(t-s)Py'(s)ds = \int_{-\infty}^{t} AT(t-s)Py(s)ds + \int_{-\infty}^{t} T(t-s)Pf(s)ds.
\] (55)

Moreover we have that
\[
\frac{d}{ds}T(t-s)y(s) = -AT(t-s)y(s) + T(t-s)y'(s).
\] (56)

Then an integration on \(s \in [r, t] \) implies the following relation
\[
Py(t) - T(t-r)Py(r) = -\int_{r}^{t} AT(t-s)Py(s)ds + \int_{r}^{t} T(t-s)Py'(s)ds.
\] (57)

Now, by \([53]\) letting \(r \to -\infty \), we deduce that
\[
Py(t) = -\int_{-\infty}^{t} AT(t-s)Py(s)ds + \int_{-\infty}^{t} T(t-s)Py'(s)ds.
\] (58)

Here, we note that a integration of \([54]\) on \(s \in [t, \infty) \) with \(Q = I - P \) gives
\[
\int_{t}^{\infty} T(t-s)Qy'(s)ds = \int_{t}^{\infty} AT(t-s)Qy(s)ds + \int_{t}^{\infty} T(t-s)Qf(s)ds.
\] (59)

and a integration of \([56]\) on \(s \in [t, r] \) yield
\[
T(t-r)Qy(r) - Qy(t) = \int_{t}^{r} -AT(t-s)Qy(s)ds + \int_{t}^{r} T(t-s)Qy'(s)ds.
\]

Now, by \([53]\) and letting \(r \to \infty \) in the last relation we get
\[
-(I-P)y(t) = -\int_{t}^{\infty} AT(t-s)(I-P)y(s)ds + \int_{t}^{\infty} T(t-s)(I-P)y'(s)ds.
\] (60)

The relation \([60]\) together with \([59]\) yields
\[
-(I-P)y(t) = \int_{t}^{\infty} T(t-s)(I-P)f(s)ds.
\] (61)
Then, from (55), (58) and (61) we obtain
\[y(t) = P y(t) + (I - P) y(t) \]
\[= \int_{-\infty}^{t} T(t - s) P f(s) ds - \int_{t}^{\infty} T(t - s) (I - P) f(s) ds \]
\[= \int_{\mathbb{R}} G(t, s) f(s) ds. \]

Thus, we conclude the proof of (51).

(b). Proof \(y \in AA(\mathbb{R}, V) \). The proof of this property is followed from (62), the hypothesis \(f \in AA(\mathbb{R}, V) \) and application of Lemma 2.12.

(c). Proof of uniqueness of bounded solutions. The uniqueness of the bounded solution for (3) follows by the fact that \(x \equiv 0 \) is the unique bounded solution on \(\mathbb{R} \) of the linear equation (2). Indeed, if \(x \in BC(\mathbb{R}, V) \) is a solution of the linear system we have that \(x(t) = P x(t) + (I - P) x(t) = x_1(t) + x_2(t) \). Note that \(x_1 \to \infty \) as \(t \to -\infty \) and \(x_2 \to -\infty \) as \(t \to \infty \), by the exponential dichotomy. Finally, we note that (52) is a consequence of (62).

\[\square \]

\textbf{Theorem 3.5.} Assume that \(A \in AA(\mathbb{R}, \mathcal{C}^{p \times p}) \) and (2) has an exponential dichotomy with a projection \(P \) that commutes with the fundamental matrix \(\Phi_A(t) \). Assume that \(f \in AA(\mathbb{R}, V^p) \). Then, the linear non-homogeneous equation (3) has a unique \(AA(\mathbb{R}, V^p) \) solution given by
\[y(t) = \int_{\mathbb{R}} G(t, s) f(s) ds, \]
satisfying (52).

\textbf{Proof.} By application of Lemma 2.12. \(\square \)

\textbf{Theorem 3.6.} Consider \(V \) be a Hilbert space and \(A \) a linear compact operator on \(V \). Suppose that \(V = \bigoplus_{k=1}^{\infty} V_k \) is a Hilbert sum such that \(V_k \) is a finite dimensional subspace of \(V \) for each \(k \in \mathbb{N} \). Suppose that each orthogonal projection \(P_k \) on \(V_k \) commutes with \(A \). If \(f \in AA(\mathbb{R}, V) \), then every bounded solution \(y \) of (3) is belongs \(AA(\mathbb{R}, V) \).

\textbf{Proof.} Noticing that for any \(y \in V \), we have that \(y = \sum_{k=1}^{\infty} P_k y = \sum_{k=1}^{\infty} y_k \). Then, by the fact that \(A \) is bounded on \(V \), we deduce that
\[A y = \sum_{k=1}^{\infty} A y_k = \sum_{k=1}^{\infty} A P_k y = \sum_{k=1}^{\infty} P_k A y. \]

Now, from the hypothesis that \(f \in AA(\mathbb{R}, V) \), we have that for any subsequence \(\{ \tilde{\tau}_n \}_{n=1}^{\infty} \subset \mathbb{R} \), there exists a subsequence \(\{ \tau_n \}_{n=1}^{\infty} \subset \{ \tilde{\tau}_n \}_{n=1}^{\infty} \) and a function \(\tilde{f} \) such that \(f_n(t) \to \tilde{f}(t) \) and \(f_{n-\tau_n}(t) \to f(t) \) pointwise on \(\mathbb{R} \) when \(n \to \infty \). Then, by compactness of \(A \) we deduce that \(A f_{\tau_n}(t) \to A \tilde{f}(t) \) and \(A f_{n-\tau_n}(t) \to A f(t) \) pointwise on \(\mathbb{R} \) when \(n \to \infty \). Now, choosing \(y_k(t) = P_k y(t) \) and assuming that \(y \) is the solution of the equation (3) we can deduce that
\[y'_k = P_k y' = P_k (A y(t) + f(t)) = A P_k y(t) + P_k f(t) = A y_k(t) + P_k f(t) \]
or equivalently \(y_k \) satisfies the equation (3) in the finite dimensional space \(V_k \) with \(P_k f(t) \in AA(\mathbb{R}, V_k) \) since \(P_k \) is a bounded linear operator. Thus, \(y_k \) is bounded.
if and only if \(y_k \in AA(\mathbb{R}, V_k) \). Now, if \(y(t) \) is bounded the set \(\{ Ay(t) | t \in \mathbb{R} \} \) is relatively compact in \(V \). Hence \(\sum_{k=1}^{\infty} P_k Ay(t) = Ay(t) \) uniformly on \(\mathbb{R} \).

On the other hand, \(P_k Ay(t) \in AA(\mathbb{R}, V_k) \) since \(P_k Ay(t) = Ap_k y(t) = Ay_k(t) \). Then, \(Ay(t) \in AA(\mathbb{R}, V) \) and \(y(t) \) satisfies the equation \((64) \). Therefore, using the Theorem 2.2 \(y \in AA(\mathbb{R}, V) \) since \(y \in BC(\mathbb{R}, V) \) and \(V \) is a Hilbert space. \(\Box \)

3.2. Results for \((4) \). Before to start we recall the notation \(\Delta(\varphi_0, \rho) \) and \(\varphi_0 \) given on \([9] \). Here, in this subsection, we present two results for \((4) \) assuming fundamentally that \(g \) satisfies the assumptions given on \([5] \) and \(f \) a function such that the inequality

\[
\| f \| \leq \frac{\alpha \rho}{2c}, \tag{64}
\]

is satisfied for some positive constants \(\alpha \) and \(c \), then \(0 \in \Delta(\varphi_0, \rho) \) or equivalently \(\| \varphi_0 \| \leq \rho \).

Theorem 3.7. Consider \(A(t) \in AA(\mathbb{R}, C^{p \times p}) \) such that \([2] \) has an \(\alpha \)-exponential dichotomy with a projection \(P \) that commutes with \(\Phi_A \). Assume that \(g \) satisfies the assumptions given on \([3] \) and \(f \) is selected such that the \((64) \) holds. Then, if \(4cL < \alpha \) the equation \((4) \) has a unique solution that belongs to \(AA(\mathbb{R}, V^p) \).

Proof. Let \(\Delta = AA(\mathbb{R}, V^p) \cap \Delta(\varphi_0, \rho) \) and \(G = G(t,s) \) the Green matrix associated to \(\alpha \)-exponential dichotomy, i.e

\[
\| G(t,s) \| \leq c e^{-\alpha |t-s|} \quad \text{for some } c, \alpha \in \mathbb{R}^+ \text{ and for all } (t,s) \in \mathbb{R}^2.
\]

Now, for \(\varphi \in \Delta \), by Proposition 3.5 we follow that the function \(g(t, \varphi(t)) \in AA(\mathbb{R}, V^p) \). Then, by Theorem 3.5 we have that

\[
(\Gamma \varphi)(t) = \int_{\mathbb{R}} G(t,s) [f(s) + g(s, \varphi(s))] ds \tag{65}
\]

is the unique \(AA(\mathbb{R}, V^p) \) solution of the system \((4) \). Moreover, \((\Gamma \varphi)(t) \) satisfies the inequality

\[
\| \Gamma \varphi - \varphi_0 \| \leq \frac{2cL}{\alpha} \| \varphi \| \leq \frac{2cL}{\alpha} (\| \varphi - \varphi_0 \| + \| \varphi_0 \|) \leq \frac{4cL}{\alpha} \rho \leq \rho.
\]

Thus, \(\Delta \) is invariant under \(\Gamma \). Furthermore, we note note that \(\Gamma \) is a contraction, since

\[
\| (\Gamma \varphi_1)(t) - (\Gamma \varphi_2)(t) \| \leq L \int_{\mathbb{R}} |G(t,s)||\varphi_1(s) - \varphi_2(s)| ds \leq \frac{2cL}{\alpha} \| \varphi_1 - \varphi_2 \|.
\]

Hence by the Banach fixed point arguments, we deduce that \(\Gamma \) has a unique fixed point \(\varphi \in \Delta \). Consequently, the function \(\varphi \) is the unique solution of \((4) \). \(\Box \)

Theorem 3.8. Consider that \(A \) is a linear operator satisfying the assumptions given on Theorem 3.3. Assume that \(g \) satisfies the assumptions given on \([5] \) and \(f \) is selected such that the \((64) \) holds. Then, if \(4cL < \alpha \) the equation \((4) \) has a unique mild solution belongs \(AA(\mathbb{R}, V^p) \).

Proof. Let \(\Delta = AA(\mathbb{R}, V) \cap \Delta(\varphi_0, \rho) \) and \(\varphi \in AA(\mathbb{R}, V) \). Then \(\varphi_{-\tau} \in AA(\mathbb{R}, V) \). Now, by the composition Proposition 3.5 we have that \(\psi_\varphi(\cdot) = g(\cdot, \varphi_{-\tau}(\cdot)) \in \)]
Moreover, by applying similar arguments to that used in Theorem 3.7, we deduce that the Green operator
\[(\Gamma \varphi)(t) = \varphi_0(t) + \int_{\mathbb{R}} G(t, s) \psi_\varphi(s) ds\]
maps Δ into Δ and additionally we can prove that $\Gamma : \Delta \to \Delta$ is a strict contraction. Thus, the Banach principle assures the existence of a unique $\varphi \in \Delta$ that satisfies (64). The proof is now complete. \(\square\)

3.3. Results for \((a)\).
In this subsection we generalize the Theorems 3.7 and 3.8 to the case of the delay equation \((a)\).

Theorem 3.9. Consider that $\tau > 0$ is a constant delay. Then, we have that the following assertions are valid:

(i) If A, f and g satisfy the hypothesis of Theorem 3.7. Then, the conclusions of Theorem 3.7 hold for the delayed equation \((a)\).

(ii) If A, f and g satisfy the hypothesis of Theorem 3.8. Then, the conclusions of Theorem 3.8 are true for the delayed equation \((a)\).

Proof. The proof followed by the application of Theorems 3.7 and 3.8, since by Proposition 1 we have that $g(\cdot, \phi(\cdot - \tau)) \in AA(\mathbb{R}, V)$ for every $\phi \in AA(\mathbb{R}, \Delta(\varphi_0, \rho))$. Indeed, this fact is a consequence of the following fact: $\phi \in AA(\mathbb{R}, V)$ implies that the translation $\phi_\tau(\cdot) = \phi(\cdot - \tau)$ belongs to $AA(\mathbb{R}, V)$.

\(\square\)

4. Application to the delayed Lasota-Wazewska model.

The Lasota-Wazewska model is an autonomous differential equation of the form
\[y'(t) = -\delta y(t) + pe^{-\gamma(t-\tau)}, \quad t \geq 0.\] (66)

It was occupied by Wazewska-Czyzewska and Lasota [39] (see also [14, 43]) to describe the survival of red blood cells in the blood of an animal. In this equation, $y(t)$ describes the number of red cells bloods in the time t, $\delta > 0$ is the probability of death of a red blood cell; p, γ are positive constants related to the production of red blood cells by unity of time and τ is the time required to produce a red blood cell.

In this section, we study the following delayed model:
\[y'(t) = -\delta(t)y(t) + p(t)g(y(t - \tau)),\] (67)

where $\tau > 0$, $\delta(\cdot), p(\cdot)$ are positive almost automorphic functions and $g(\cdot)$ is a positive Lipschitz function with Lipschitz constant γ. Equation (67) models several situations in the real life, see [25]. We will assume the following condition

(D) The mean of δ satisfies $M(\delta) > \delta_0 > 0$.

In this section, the principal goal is the following Theorem:

Theorem 4.1. In the above conditions, for γ sufficiently small, the equation (66) has a unique almost automorphic solution.

By Lemma [25], the linear part of equation (66) has an exponential dichotomy. Let $\psi(t)$ be a real almost automorphic function and consider the equation
\[y'(t) = -\delta(t)y(t) + p(t)g(\psi(t - \tau)).\] (68)
Then, the bounded solution for the equation (68) satisfies

\[y(t) = \int_{-\infty}^{t} \exp \left(- \int_{u}^{t} \delta(s) ds \right) p(u) g(u - \tau) du. \]

The homogeneous part of equation of (68) has an exponential dichotomy and since \(\delta \) is almost automorphic function, by Lemma 2.10, it is integrally Bi-almost automorphic. Therefore, Theorem 4.1 follows from Theorem 3.7.

Taking \(g(x) = e^{-\gamma x}, \ \alpha > 0 \), we have the Lasota-Wazewska model:

\[y'(t) = -\delta(t)y(t) + p(t)e^{-\gamma y(t-\tau)}, \ t \geq 0. \] (69)

Corollary 2. For \(\gamma \) small enough, the delayed Lasota-Wazewska model (69) has a unique asymptotically stable almost automorphic solution.

Acknowledgments. A. Coronel thanks for the support of research projects 153109 G/EF and 153209 GI/C at Universidad del Bio-Bío, Chile. M. Pinto, Ch. Maulén and D. Sepúlveda thanks for the support of FONDECYT 1120709 and CONICYT-PCHA/Magíster Nacional/2013-221320155.

REFERENCES

[1] J. Blot, G. Mophou, G. M. N’Guérékata and D. Pennequin, Weighted pseudo almost automorphic functions and applications to abstract differential equations, *Nonlinear Analysis*, 71 (2009), 903–909.

[2] S. Bochner, A new approach to almost periodicity, *Proceedings of the National Academic Science of the United States of America*, 48 (1962), 2039–2043.

[3] S. Bochner, Continuous mapping of almost automorphic and almost periodic functions, *Proceedings of the National Academic Science of the United States of America*, 52 (1964), 907–910.

[4] T. Caraballo and D. N. Cheban, Almost periodic and almost automorphic solutions of linear differential/difference equations without Favard’s separation condition I, *J. Differential Equations*, 246 (2009), 108–128.

[5] T. Caraballo and D. N. Cheban, Almost periodic and almost automorphic solutions of linear differential/difference equations without Favard’s separation condition II, *J. Differential Equations*, 246 (2009), 1164–1186.

[6] S. Castillo and M. Pinto, Dichotomy and almost automorphic solution of difference system, *Electron. J. Qual. Theory Differ. Equ.*, 32 (2013), 17 pp.

[7] A. Chávez, S. Castillo and M. Pinto, Discontinuous almost automorphic functions and almost automorphic solutions of differential equations with piecewise constant arguments, *Electron. J. Differential Equations*, 56 (2014), 13 pp.

[8] P. Cieutat, S. Fatajou and G. M. N’Guérékata, Composition of pseudo almost periodic and pseudo almost automorphic functions and applications to evolution equations, *Applicable Analysis*, 89 (2010), 11–27.

[9] C. Corduneanu, *Almost Periodic Functions*, [With the collaboration of N. Gheorghiu and V. Barbu, Translated from the Romanian by Gitta Bernstein and Eugene Tomer], Interscience Tracts in Pure and Applied Mathematics, No. 22, Interscience Publishers [John Wiley & Sons], New York-London-Sydney, 1968.

[10] A. Coronel, M. Pinto and D. Sepúlveda, Weighted pseudo almost periodic functions, convolutions and abstract integral equations, *J. Math. Anal. Appl.*, 435 (2016), 1382–1399.

[11] C. Cuevas and M. Pinto, Existence and uniqueness of pseudo-almost periodic solutions of semilinear Cauchy problems with non dense domain *Nonlinear Anal.*, 45 (2001), 73–83.

[12] H.-S. Ding, T.-J. Xiao and J. Liang, Asymptotically almost automorphic solutions for some integrodifferential equations with nonlocal initial conditions, *J. Math. Anal. Appl.*, 338 (2008), 141–151.

[13] T. Diagana, *Pseudo Almost Periodic Functions in Banach Space*, Nova Science Publishers, Inc., New York, 2007.
1976 A. CORONEL, CH. MAULÉN, M. PINTO AND D. SEPÚLVEDA

[14] L. Duan, L. Huang and Y. Chen, Global exponential stability of periodic solutions to a delay Lasota-Wazewska model with discontinuous harvesting, Proc. Amer. Math. Soc., 144 (2016), 561–573.

[15] S. Fatoujou, N. V. Minh, G. N’Guérékata and A. Pankov, Stepanov-like almost automorphic solutions for nonautonomous evolution equations, Electronic Journal of Differential Equations, 121 (2007), 1–17.

[16] C. Feng, On the existence and uniqueness of almost periodic solutions for delay logistic equations Appl. Math. Comput., 136 (2002), 487–494.

[17] S. G. Gal and G. M. N’Guérékata, Almost automorphic fuzzy-number-valued functions, Journal of Mathematical Analysis and Applications, 326 (2007), 1–17.

[18] J. A. Goldstein, G. M. N’Guérékata, Almost automorphic solutions of semilinear evolution equations Proc. Amer. Math. Soc., 133 (2005), 2401–2408.

[19] R. C. Grimmer, Resolvent operators for integral equations in a Banach space Trans. Amer. Math. Soc., 273 (1982), 333–349.

[20] E. Hernández and J. P. C. dos Santos, Asymptotically almost periodic solutions for a class of partial integrodifferential equations, Electron. J. Differential Equations, 38 (2006), 1–8.

[21] H. R. Henríquez, M. Pierri and P. Taboas, On S-asymptotically ω-periodic functions on Banach spaces and applications J. Math. Anal. Appl., 343 (2008), 365–382.

[22] H. R. Henríquez, M. Pierri and P. Taboas, Existence of S-asymptotically ω-periodic solutions for abstract neutral equations Bull. Austral. Math. Soc., 78 (2008), 365–382.

[23] Z. C. Liang, Asymptotically periodic solutions of a class of second order nonlinear differential equations Proc. Amer. Math. Soc., 99 (1987), 693–699.

[24] J. Liu, G. M. N’Guérékata and N. V. Minh, A Massera type theorem for almost automorphic solutions of differential equations Journal of Mathematical Analysis and Applications, 299 (2004), 587–599.

[25] E. Liz, C. Martínez and S. Trofimchuk, Attractivity properties of infinite delay Mackey-Glass type equations, Differential and Integral Equations, 15 (2002), 875–896.

[26] N. V. Minh, T. Naito and G. N’Guérékata, A spectral countability condition for almost automorphy of solutions of differential equations Proceedings of the American Mathematical Society, 134 (2006), 3257–3266.

[27] N. V. Minh and T. T. Dat, On the almost automorphy of bounded solutions of differential equations with piecewise constant argument Journal of Mathematical Analysis and Applications, 326 (2007), 165–178.

[28] G. M. N’Guérékata, Topics in Almost Automorphy, Springer-Verlag, New York, 2005.

[29] G. M. N’Guérékata, Almost Automorphic and Almost Periodic Functions in Abstract Spaces, Kluwer Academic/Plenum Publishers, New York, 2001.

[30] S. Nicola and M. Pierre, A note on S-asymptotically periodic functions Nonlinear Analysis, Real World Applications, 10 (2009), 2937–2938.

[31] M. Pinto, Pseudo-almost periodic solutions of neutral integral and differential equations and applications Nonlinear Analysis, 72 (2010), 4377–4383.

[32] M. Pinto and G. Robledo, Cauchy matrix for linear almost periodic systems and some consequences Nonlinear Anal., 74 (2011), 5426–5439.

[33] M. Pinto and G. Robledo, Diagonalizability of nonautonomous linear systems with bounded continuous coefficients J. Math. Anal. Appl., 407 (2013), 515–526.

[34] M. Pinto and G. Robledo, Existence and stability of almost periodic solutions in impulsive neural network models Appl. Math. Comput., 217 (2010), 4167–4177.

[35] M. Pinto, V. Torres and G. Robledo, Asymptotic equivalence of almost periodic solutions for a class of perturbed almost periodic systems, Glasg. Math. J., 52 (2010), 583–592.

[36] W. R. Utz and P. Waltman, Asymptotically almost periodicity of solutions of a system of differential equations Proc. Amer. Math. Soc., 18 (1967), 597–601.

[37] W. A. Veech, Almost automorphic functions Proceedings of the National Academy of Science of the United States of America, 49 (1963), 462–464.

[38] W. A. Veech, Almost automorphic function on groups American Journal of Mathematics, 87 (1965), 719–751.

[39] M. Wazewska-Czyzewska and A. Lasota, Mathematical problems of the red-blood cell system, Ann. Polish Math. Soc. Ser. III,Appl. Math., 6 (1976), 23–40.

[40] F. Wei and K. Wang, Global stability and asymptotically periodic solutions for non autonomous cooperative Lotka-Volterra diffusion system Applied Math. and Computation, 182 (2006), 161–165.
[41] F. Wei and K. Wang, Asymptotically periodic solutions of N-species cooperation system with time delay. *Nonlinear Analysis, Real World and Applications*, 7 (2006), 591–596.

[42] T. Xiao, X. Zhu and J. Liang, Pseudo-almost automorphic mild solutions to nonautonomous differential equations and applications. *Nonlinear Analysis*, 70 (2009), 4079–4085.

[43] Z. Yao, Uniqueness and exponential stability of almost periodic positive solution for Lasota-Wazewska model with impulse and infinite delay. *Math. Methods Appl. Sci.*, 38 (2015), 677–684.

[44] T. Yoshizawa, *Stability Theory and the Existence of Periodic Solutions and Almost Periodic Solutions*, Applied Mathematical Sciences, 14, Springer-Verlag, New York-Heidelberg, 1975.

[45] H. Zhao, Existence and global attractivity of almost periodic solutions for cellular neural network with distributed delays. *Appl. Math. Comput.*, 154 (2004), 683–695.

[46] S. Zaidman, Almost automorphic solutions of same abstract evolution equations, *Istituto Lombardo, Accademia di Science e Letter*, 110 (1976), 578–588.

[47] S. Zaidman, Existence of asymptotically almost-periodic and of almost automorphic solutions for some classes of abstract differential equations, *Annales des Science Mathématiques du Québec*, 13 (1989), 79–88.

[48] M. Zaki, Almost automorphic solutions of certain abstract differential equations. *Annali di Matematica pura et Applicata*, 101 (1974), 91–114.

[49] C. Zhang, *Almost Periodic Type Functions and Ergodicity*, Science Press, Beijing, Kluwer Academic Publishers, Dordrecht, 2003.

Received March 2016; revised November 2016.

E-mail address: acoronel@ubiobio.cl
E-mail address: bleick@ug.uchile.cl
E-mail address: pintoj.uchile@gmail.com
E-mail address: daniel.sep.oe@gmail.com