Pharmacokinetics of anidulafungin during albumin dialysis

Gerardo Aguilar1*, José Ramón Azanza2, Belén Sádaba2, Rafael Badenes1, Carlos Ferrando1, Carlos Delgado1, Javier Hernández3, María Asunción Parra2, Jaume Puig1, José A Carbonell1, David Navarro4,5 and F Javier Belda1,5

In the ICU setting, current guidelines recommend echinocandins as the first-line treatment for invasive candidiasis [1]. Albumin dialysis (AD) has been used in the ICU as supportive therapy for hepatic failure, but this technique can significantly enhance drug elimination [2]. We prescribed anidulafungin for suspected invasive candidiasis in a patient with severe liver failure treated with AD and measured the plasma concentrations of the drug using high-performance liquid chromatography.

This study (GEF-ANI-2010-02) was approved by the local ethics committee (INCLIVA, Institute of Research, Valencia, Spain) and written informed consent was obtained from the patient’s next of kin. An adult patient was admitted to our ICU with acute liver failure after major hepatectomy for metastasis. The patient was given anidulafungin (200 mg loading dose on day 1, followed by 100 mg daily) for suspected invasive candidiasis. On the fourth day, the patient developed encephalopathy and complained of increasing pruritus. AD using the Molecular Adsorbent Recirculating System (Gambro Hospal AG, Zurich, Switzerland) was therefore started while waiting for liver function to improve. Arterial blood, urine, and dialysate samples were collected at different times after the first AD session was initiated: before starting the fourth anidulafungin infusion and at 0.5, 1, 1.5, 2, 4, 6, and 8 hours after starting the infusion. The last samples (8 hours) were obtained when AD was finished. Anidulafungin was well tolerated without relevant adverse effects.

The following pharmacokinetic parameters were calculated: area under the concentration curve from 0 to 8 hours using the linear trapezoidal rule, and the elimination half-life with noncompartmental analysis. The values for the peak plasma concentration, the through plasma concentration, and the time to reach the peak plasma concentration were calculated from the observed values (Figure 1).

In the ICU setting, current guidelines recommend echinocandins as the first-line treatment for invasive candidiasis [1]. Albumin dialysis (AD) has been used in the ICU as supportive therapy for hepatic failure, but this technique can significantly enhance drug elimination [2]. We prescribed anidulafungin for suspected invasive candidiasis in a patient with severe liver failure treated with AD and measured the plasma concentrations of the drug using high-performance liquid chromatography.

In the ICU setting, current guidelines recommend echinocandins as the first-line treatment for invasive candidiasis [1]. Albumin dialysis (AD) has been used in the ICU as supportive therapy for hepatic failure, but this technique can significantly enhance drug elimination [2]. We prescribed anidulafungin for suspected invasive candidiasis in a patient with severe liver failure treated with AD and measured the plasma concentrations of the drug using high-performance liquid chromatography.

In the ICU setting, current guidelines recommend echinocandins as the first-line treatment for invasive candidiasis [1]. Albumin dialysis (AD) has been used in the ICU as supportive therapy for hepatic failure, but this technique can significantly enhance drug elimination [2]. We prescribed anidulafungin for suspected invasive candidiasis in a patient with severe liver failure treated with AD and measured the plasma concentrations of the drug using high-performance liquid chromatography.

In the ICU setting, current guidelines recommend echinocandins as the first-line treatment for invasive candidiasis [1]. Albumin dialysis (AD) has been used in the ICU as supportive therapy for hepatic failure, but this technique can significantly enhance drug elimination [2]. We prescribed anidulafungin for suspected invasive candidiasis in a patient with severe liver failure treated with AD and measured the plasma concentrations of the drug using high-performance liquid chromatography.

In the ICU setting, current guidelines recommend echinocandins as the first-line treatment for invasive candidiasis [1]. Albumin dialysis (AD) has been used in the ICU as supportive therapy for hepatic failure, but this technique can significantly enhance drug elimination [2]. We prescribed anidulafungin for suspected invasive candidiasis in a patient with severe liver failure treated with AD and measured the plasma concentrations of the drug using high-performance liquid chromatography.

In the ICU setting, current guidelines recommend echinocandins as the first-line treatment for invasive candidiasis [1]. Albumin dialysis (AD) has been used in the ICU as supportive therapy for hepatic failure, but this technique can significantly enhance drug elimination [2]. We prescribed anidulafungin for suspected invasive candidiasis in a patient with severe liver failure treated with AD and measured the plasma concentrations of the drug using high-performance liquid chromatography.

In the ICU setting, current guidelines recommend echinocandins as the first-line treatment for invasive candidiasis [1]. Albumin dialysis (AD) has been used in the ICU as supportive therapy for hepatic failure, but this technique can significantly enhance drug elimination [2]. We prescribed anidulafungin for suspected invasive candidiasis in a patient with severe liver failure treated with AD and measured the plasma concentrations of the drug using high-performance liquid chromatography.
Abbreviations
AD: Albumin dialysis.

Competing interests
GA received funds for speaking at meetings organised on behalf of Astellas, Gilead, Merck Sharp and Dohme (MSD), and Pfizer. GA also received unrestricted research grants from Astellas, MSD, and Pfizer. JRA received funds for speaking at symposia organised on behalf of Pfizer, and also received unrestricted research grants from Gilead and Pfizer. DN received funds for speaking at meetings organised on behalf of Astellas, MSD, and Pfizer. DN also received unrestricted research grants from Astellas and Pfizer. The remaining authors declare that they have no competing interests.

Authors’ contributions
GA conceived of the study, participated in its design and helped to draft the manuscript. JRA, BS and MAP carried out the pharmacokinetics study and participated in the design of the study. RB, CF, CD, JP, JAC and JH participated in the analysis and interpretation of data. DN and FJB helped to draft the manuscript and participated in the design and coordination of the study. All authors read and approved the final manuscript.

Acknowledgements
This case report was funded by Pfizer Spain.

References
1. Cornely OA, Baratti M, Calandra T, Garbino J, Küllberg BJ, Lortholary O, Meersseman W, Akova M, Arendrup MC, Arikan-Akdagli S, Bille J, Castagnola E, Cuenca-Estrella M, Donnelly JP, Groll AH, Herbrecht R, Hope WW, Jensen HE, Lass-Flohl C, Petrikos G, Richardson MD, Rolides E, Verweij PE, Viscoli C, Ullmann AJ, ESCMID Fungal Infection Study Group. ESCMID* guideline for the diagnosis and management of Candida diseases 2012: non-neutropenic adult patients. Clin Microbiol Infect. 2012, Suppl 7:19–37.
2. Mitzner SR: Albumin dialysis: an update. Curr Opin Nephrol Hypertens. 2007, 16:589–595.
3. Vogelsinger H, Joannidis M, Kountchev J, Bellmann-Weiler R, Wiedermann CJ, Bellmann R: Pharmacokinetics of liposomal amphotericin B during extracorporeal albumin dialysis. Artif Organs. 2006, 30:118–121.
4. Weiler S, Vogelsinger H, Joannidis M, Dunzendörfer S, Bellmann R. Influence of albumin dialysis on pharmacokinetics of amphotericin B colloidal dispersion and amphotericin B lipid complex. Artif Organs. 2011, 35:667–671.

Figure 1 Pharmacokinetics of anidulafungin in a patient on albumin dialysis. The peak plasma concentration with the 100 mg dose on day 4 was 9.45 mg/l. The area under the concentration curve from 0 to 8 hours was 53.70 hours*mg/l. The elimination half-life was 17.81 hours.

Published: 31 Mar 2014

10.1186/cc13805

Cite this article as: Aguilar et al.: Pharmacokinetics of anidulafungin during albumin dialysis. Critical Care 2014, 18:422