Carbohydrate-induced secretion of glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1

Yusuke Seino1*, Ryuya Maekawa1, Hidetada Ogata1, Yoshitaka Hayashi2

1Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine and 2Department of Genetics, Division of Stress Adaptation and Recognition, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan

Keywords
Carbohydrates, Glucagon-like peptide-1, Glucose-dependent insulinotropic polypeptide

*Correspondence
Yusuke Seino
Tel.: +81-52-744-2142
Fax: +81-52-744-2212
E-mail address: yusuke@med.nagoya-u.ac.jp

J Diabetes Investig 2016; 7: 27–32
doi: 10.1111/jdi.12449

INTRODUCTION
Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are incretin hormones that amplify glucose-induced insulin secretion from pancreatic β-cells. Enteral ingestion of nutrition, such as carbohydrate, fat and protein, induces GIP secretion from K-cells and GLP-1 secretion from L-cells. GIP stimulates glucagon secretion from pancreatic α-cells, and promotes uptake of glucose and fat, and also accumulates triglyceride into adipose tissue. In contrast, GLP-1 suppresses glucagon secretion and inhibits gastric emptying1,2. These findings suggest that GLP-1 is the more suitable target for the improvement of glucose metabolism. However, L-cells are present mostly in the jejunum, ileum and colon, whereas K-cells are predominantly present in duodenum. Furthermore, GIP secretion from the duodenum plays an important role in regulating postprandial glycemic levels through its glucose-dependent potentiation of early-phase insulin secretion. GLP-1 secretion by nutrients is biphasic3, and the transient early-phase GLP-1 secretion is considered to be mediated by the vagal nerve4. In the present review, we discuss recent advances in understanding the regulatory mechanisms involved in the secretion of GIP and GLP-1 stimulated by carbohydrates, including artificial sweeteners.

GIP AND GLP-1 SECRETION INDUCED BY GLUCOSE
Plasma GIP and GLP-1 levels are elevated after oral glucose ingestion in both humans and rodents3,5,6. However, intravenous or intraperitoneal administration of glucose does not increase plasma GIP or GLP-1 levels3,5,7. In humans, plasma GIP levels peak within 5 min, whereas plasma GLP-1 levels peak at 30 min after glucose loading3. The mechanism and role of GIP secretion by glucose is therefore distinct from that of GLP-1 secretion.

ROLE OF TASTE RECEPTORS IN SECRETION OF GIP AND GLP-1
It has been reported that artificial sweeteners contribute to the secretion of incretins8. Sweeteners bind to sweet taste receptors, which consist of the heterodimers of the G-protein-coupled type 1 taste receptors (T1R2 and T1R3) to activate the signal cascade in which α-gustducin is involved. Artificial sweeteners stimulate two signal transduction pathways: a cyclic adenosine monophosphate-dependent pathway and a phospholipase C-Ins(1,4,5)P3-depen-
dent pathway. The intracellular Ca concentration is increased by these pathways’ activation, which induces membrane depolarization\(^3\). Artificial sweeteners do not affect GIP secretion in mice, rats and humans\(^{10-12}\), and glucose-induced GIP secretion is maintained in α-gustducin deficient mice\(^{13}\). Thus, the sweet receptor appears to play a minor role in the regulation of GIP secretion. Indeed, in primary murine K-cells, the expression of the sweet taste receptor is low, and the artificial sweetener sucralose does not stimulate GIP secretion from primary proximal small intestinal culture\(^{14}\). In contrast, GLP-1 secretion by glucose is severely impaired in α-gustducin-deficient mice\(^{13}\), indicating that GLP-1 secretion is induced through the sweet taste signal. However, in primary murine L-cells, the expression of the sweet taste receptor is very low\(^{15}\), and artificial sweetener does not induce GLP-1 secretion from either primary proximal small intestinal culture or isolated perfused rat small intestine\(^{15,16}\). Furthermore, in α-gustducin-deficient mice, glucose uptake in response to luminal carbohydrate concentrations through sodium-dependent glucose transporter (SGLT1) in enterocytes, which plays an important role in glucose-induced GIP and GLP-1 secretion, is also impaired\(^{8}\). Therefore, the contribution of α-gustducin to the regulation of secretion of GLP-1 requires further exploration.

ROLE OF FRUCTOSE TRANSPORTER IN SECRETION OF GIP AND GLP-1

Fructose is transported by a facilitative glucose transporter 5 (GLUT5) localized in the apical membrane of enterocytes and is metabolized mainly in liver. GLUT5 is highly expressed in pancreatic β-cells, K-cells and L-cells\(^{14,15}\). In mice, rats and humans, fructose does not significantly stimulate GIP secretion under normal conditions\(^{17-19}\). However, in insulin resistance ob/ob diabetic mice and streptozotocin (STZ)-induced insulin-deficient diabetic mice, fructose significantly induces GIP secretion\(^{17,20}\). In primary proximal small intestinal culture, fructose stimulates GIP secretion, although the GIP secretory response to fructose is lower than that to glucose\(^{14}\). Therefore, the mechanism of fructose-induced GIP secretion remains largely to be elucidated. In contrast, fructose significantly stimulates GLP-1 secretion in mice, rats and humans\(^{17,18}\). These results accord with an in vitro study using a GLUTag cell line showing that fructose significantly stimulates GLP-1 secretion\(^{21}\). It is reported that fructose directly induces insulin secretion in a glucose-dependent manner\(^{17,22}\). Whether or not fructose is metabolized in K-cells or L-cells, and the differential regulatory machinery for the secretion of GIP and GLP-1 by fructose should be investigated in further study.

SGLT1 CONTRIBUTION TO GLUCOSE-INDUCED GIP AND GLP-1 SECRETION

SGLT1, a member of the SLC5 family, localizes in the brush border or apical membrane of enterocytes, and plays an important role in the transfer of glucose or galactose from intestinal lumen into intestinal cytosol when accompanied by sodium\(^{23}\). The expression of SGLT1 is highest in the duodenum, and is reduced in the lower intestine\(^{24}\). Thus, the expression pattern of SGLT1 is similar to that of GIP secreting K-cells\(^{25}\). The mechanism of glucose-induced GLP-1 secretion has been investigated by in vitro study using the GLUTag cell line or primary murine L-cells\(^{15,21,26}\). It has been clarified that GLP-1 secretion is mediated by an influx of sodium through SGLT1, which induces membrane depolarization and voltage dependent-Ca\(^{2+}\) entry\(^{15,21,26}\). In contrast, the mechanism of glucose-induced GIP secretion has not been characterized, because there have been few cell lines suitable for analysis.

Recently, the contribution of SGLT1 to glucose-induced GIP and GLP-1 secretion in vivo has been analyzed by using SGLT1 substrate, SGLT1 inhibitor and mice deficient for SGLT1\(^{10,27-29}\). Oral administration of a SGLT1 substrate, α-methyl-D-glucopyranoside, which induces sodium influx but is not metabolized, stimulates GIP secretion\(^{30}\). Glucose-induced GIP secretion is completely blocked in mice administered glucose combined with the SGLT1 inhibitor phlorizin\(^{10}\). Furthermore, glucose-induced GIP secretion is completely abolished in SGLT1-deficient mice, and mice treated with a dual SGLT1 and SGLT2 inhibitor\(^{28,29}\). These findings show that glucose-induced GIP secretion is SGLT1-dependent.

In contrast, GLP-1 secretion is only temporally induced by α-methyl-D-glucopyranoside administration\(^{30}\). Glucose-induced GLP-1 secretion is completely blocked at 5 min after glucose load in SGLT1-deficient mice, and in dual SGLT1 and SGLT2 inhibitor treated mice\(^{28,29}\). However, GLP-1 oversecretion is observed from 1 to 6 h after glucose administration both in SGLT1-deficient mice, and in dual SGLT1 and SGLT2 inhibitor treated mice\(^{28,29}\). These findings show that glucose-induced GLP-1 secretion includes two phases; an early-phase, which is SGLT1-dependent, and a late-phase, which is SGLT1-independent. GLP-1 secretion by nutrients is well known to be biphasic\(^3\), and the transient early-phase GLP-1 secretion is partially mediated by the vagal nerve\(^4\). In addition, it is considered that early-phase GLP-1 is secreted from L-cells in the proximal small intestine, and that late-phase GLP-1 is secreted from the distal intestine. Thus, differences in expression of SGLT1 along the intestinal tract and the machinery of GLP-1 secretion requires detailed examination in future study.

Interestingly, galactose, another monosaccharide transported through SGLT1, induces secretion of both GIP and GLP-1 in vivo\(^{30,31}\).

ADENOSINE TRIPHOSPHATE-SENSITIVE K CHANNEL CONTRIBUTION TO GLUCOSE-INDUCED GIP AND GLP-1 SECRETION

The adenosine triphosphate-sensitive K (K\(_{ATP}\)) channel consists of Kir6.2 and sulfonylurea receptor 1 (SUR1) subunits. In pancreatic β-cells, the K\(_{ATP}\) channel plays an essential role in glucose-induced insulin secretion. Glucose transported through GLUT2 is metabolized, and the resulting increase in the intracellular adenosine triphosphate/adenosine diphosphate ratio...
leads to closure of the K_{ATP} channel and membrane depolarization, influx of Ca through the voltage-dependent Ca channel, and hormone secretion. It has been reported that a glucose-sensing molecule, such as GLUT2, glucokinase or K_{ATP} channels, are expressed in primary murine K- or L-cells, as in pancreatic β-cells. It also has been reported that tolbutamide, a sulfonylurea, directly stimulates GIP and GLP-1 secretion from primary small intestine culture or colon culture, respectively. However, oral sulfonylurea therapy does not potentiate secretion of GIP or GLP-1 during oral glucose tolerance tests (OGTT) either in healthy subjects or type 2 diabetic patients, or in subjects with K_{ATP} channel gain-of-function mutations. In addition, neither GIP nor GLP-1 secretion during OGTT differ between subjects with heterozygous glucokinase gene mutations and control subjects. Therefore, the physiological relevance of glucose-sensing molecules expressed in K- or L-cells remains unclear.

In contrast, the contribution of the K_{ATP} channel to glucose-induced GIP secretion in vivo was recently reported. Glucose-induced GIP secretion is enhanced in STZ-induced diabetic mice and rats. Although the SGLT1 inhibitor phlorizin completely blocks glucose-induced GIP secretion in normoglycemic mice, in STZ-diabetic mice, phlorizin only partially blocks glucose-induced GIP secretion, but completely blocks it when combined with pretreatment with the K_{ATP} channel activator diazoxide. These results suggest that under normal conditions, glucose-induced GIP secretion is SGLT1-dependent, whereas under STZ-induced hyperglycemic conditions, glucose-induced GIP secretion is dependent on both SGLT1 and the K_{ATP} channel in vivo. This hypothesis is summarized in Figure 1; the metabolic pathway in K-cells in vitro under normal and hyperglycemic condition requires investigation in future study.

The GLP-1 secretion in response to high-dose sulfonylurea has been shown in perfused rat small intestine experiments. The authors suggest that a K_{ATP} channel-dependent pathway plays an important role in glucose-induced GLP-1 secretion when glucose passes through GLUT2 in L-cells. This accords with the fact that glucose-induced GLP-1 secretion, but not GIP secretion, is reduced in GLUT2-deficient mice. Another group reported that GLP-1 is secreted in response to sulfonylurea from colon explants, but not from ileum explants in mice. The differential mechanism of GLP-1 secretion between the small intestine and large intestine should also be investigated in future study.

The contribution of K_{ATP} channels to glucose-induced GIP or GLP-1 secretion has been investigated using K_{ATP} channel-deficient mice. In these mice, glucose-induced GIP secretion is enhanced, although glucose-induced GLP-1 secretion is not changed compared with those in wild-type mice. Sglt1 messenger ribonucleic acid expression in duodenum and glucose uptake is increased in K_{ATP} channel-deficient mice compared with those in wild-type mice. These results suggest that

![Figure 1](http://onlinelibrary.wiley.com/journal/jdi) | Glucose-dependent insulinotropic polypeptide (GIP) secretory mechanism induced by glucose in K-cells. Under the normoglycemic state, adenosine triphosphate-sensitive K_{ATP} (KATP) channels in K-cells are closed in the basal condition. On glucose loading, glucose transported through sodium-dependent glucose transporter (SGLT1) induces membrane depolarization and GIP secretion from K-cells. Under the hyperglycemic condition, KATP channels in K-cells are open in basal condition. On glucose loading, incremental increase in ATP closes the KATP channel and depolarizes the membrane, generating an increase in GIP secretion in addition to the SGLT1-dependent GIP secretion. GK, glucokinase; GLUT5, glucose transporter 5.
in the absence of K_{ATP} channels, SGLT1 in the duodenum might play some role in the compensatory mechanism for glucose uptake and/or in GIP secretion in vivo.

The issues below require clarification regarding the contribution of K_{ATP} channels in GIP and GLP-1 secretion.

1. Localization of GLUT2: can GLUT2 localize in apical membrane in K-cells or L-cells to transport glucose from intestinal lumen? Can glucose be transported into cytosol of intestinal endocrine cells through basolateral GLUT2?

2. The interaction between intestinal absorptive epithelial cells and K-cells or L-cells regarding glucose flow.

3. The functional relationship between SGLT1 and the K_{ATP} channel in intestinal endocrine cells.

GIP AND GLP-1 SECRETION IN ISLETS

It was recently reported that GIP and GLP-1 are also expressed in pancreatic islets. GIP is expressed in the embryonic pancreas or pancreatic α-cells in mice, pythons and humans. Fujita et al. reported that GIP secreted from α-cells is a shorter isoform, GIP$_{1-42}$, which is different from GIP$_{1-30}$ secreted from intestinal K-cells. They also found that GIP$_{1-30}$ is secreted from human and mice islets by arginine stimulation, and that GIP$_{1-30}$ contributes to glucose-induced insulin secretion from isolated islets in vitro. In mice deficient in proglucagon-derived peptides, the insulin secretory response is enhanced during OGTT or intraperitoneal glucose tolerance test although GLP-1 is absent. In these mice, immunohistochemical study shows GIP expression in pancreatic β-cells, and enhanced glucose-induced insulin secretion from isolated islets is observed. Furthermore, the insulin secretory response during OGTT or intraperitoneal glucose tolerance test and glucose-induced insulin secretion from isolated islets is remarkably reduced in mice deficient in both the GIP receptor and proglucagon-derived peptides. These results show that islet-derived GIP contributes to glucose-induced insulin secretion. Whether or not islet-derived GIP participates in glucose-induced insulin secretion under hyperglycemic condition or β-cell protection should be characterized in future study.

Glucagon and GLP-1 are produced from the same precursor, proglucagon. In pancreatic α-cells, glucagon is produced through cleavage by the enzyme prohormone convertase 1/2; in intestinal L-cells, GLP-1 and GLP-2 are produced through cleavage by enzyme prohormone convertase 1/3. It is reported that GLP-1 production in islets or the pancreas is increased in mice deficient in glucagon action, mice fed with a high-fat diet and STZ-treated rats, mainly as a result of increased prohormone convertase 1/3 expression in pancreatic α-cells. In addition, GLP-1 secreted from isolated non-diabetic mice or human islets potentiates glucose-induced insulin secretion, showing that islet-derived GLP-1 contributes to glucose-induced insulin secretion under normal conditions. Furthermore, GLP-1 secreted from islets is considered to play an important role in protection from β-cell damage.

The machinery of glucose-induced GIP or GLP-1 secretion from islets under physiological condition or in diabetic states is not well known; it has recently been reported that SGLT1 and SGLT2 are found in pancreatic α-cells in addition to K_{ATP} channels. Whether or not SGLT1 or the K_{ATP} channel contributes to glucose-induced GIP or GLP-1 secretion from pancreatic α-cells should be investigated in future study.

CONCLUSIONS

There are several well-known distinct characteristics in the secretory responses to carbohydrates between GIP and GLP-1: the localization of secreting cells in the gastrointestinal tract, the response to fructose, and the contribution of SGLT1 and the K_{ATP} channel. In vitro analysis using primary K-cells or L-cells obtained from various parts of the gastrointestinal tract will further clarify novel physiological and pathological aspects of GIP and GLP-1.

ACKNOWLEDGMENTS

This work was supported by grants for young researchers from the Japan Association for Diabetes Education and Care, and Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science to YS (25461338).

DISCLOSURE

YS received speaker fees from MSD and Eli Lilly. YH received speaker fees from Ono, Sumitomo Dainippon Pharma, Kissei, Mitsubishi Tanabe Pharma and Astellas Pharma. YS received a research grant from Sanwa Kagaku Kenkyusho co., LTD.

REFERENCES

1. Baggio LL, Drucker DJ. Biology of incretins: GLP-1 and GIP. Gastroenterology 2007; 132: 2131–2157.

2. Seino Y, Yabe D. Glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1: incretin actions beyond the pancreas. J Diabetes Invest 2013; 4: 108–130.

3. Herrmann C, Göke R, Richter G, et al. Glucagon-like peptide-1 and glucose-dependent insulin-releasing polypeptide plasma levels in response to nutrients. Digestion 1995; 56: 117–126.

4. Rocca AS, Brubaker PL. Role of the vagus nerve in mediating proximal nutrient-induced glucagon-like peptide-1 secretion. Endocrinology 1999; 140: 1687–1694.

5. Cataland S, Crockett SE, Brown JC, et al. Gastric inhibitory polypeptide (GIP) stimulation by oral glucose in man. J Clin Endocrinol Metab 1974; 39: 223–228.

6. Sakamoto E, Seino Y, Fukami A, et al. Ingestion of a moderate high-sucrose diet results in glucose intolerance with reduced liver glucokinase activity and impaired glucagon-like peptide-1 secretion. J Diabetes Invest 2012; 3: 432–440.

7. Fukami A, Seino Y, Ozaki N, et al. Ectopic expression of GIP in pancreatic β-cells maintains enhanced insulin secretion in
mice with complete absence of proglucagon-derived peptides. Diabetes 2013; 62: 510–518.

8. Margolskee RF, Dyer J, Kokrashvili Z, et al. T1R3 and gustducin in gust sense sugars to regulate expression of Na+-glucose cotransporter 1. Proc Natl Acad Sci U S A 2007; 104: 15075–15080.

9. Lindemann B. Receptors and transduction in taste. Nature 2001; 413: 219–225.

10. Ogata H, Seino Y, Harada N, et al. KATP channel as well as SGLT1 participates in GIP secretion in the diabetic state. J Endocrinol 2014; 222: 191–200.

11. Fujita Y, Wideman RD, Speck M, et al. Incretin release from gut is acutely enhanced by sugar but not by sweeteners in vivo. Am J Physiol Endocrinol Metab 2009; 296: E473–E479.

12. Ma J, Bellon M, Wishart JM, et al. Effect of the artificial sweetener, sucralose, on gastric emptying and incretin hormone release in healthy subjects. Am J Physiol Gastrointest Liver Physiol 2009; 296: G735–G739.

13. Jang H, Kokrashvili Z, Theodorakis MJ, et al. Gut-expressed gustducin and taste receptors regulate secretion of glucagon-like peptide-1. Proc Natl Acad Sci U S A 2007; 104: 15069–15074.

14. Parker HE, Habib AM, Rogers GJ, et al. Nutrient-dependent secretion of glucose-dependent insulino tropic polypeptide from primary murine K cells. Diabetologia 2009; 52: 289–298.

15. Reimann F, Habib AM, Tolhurst G, et al. Glucose sensing in L cells: a primary cell study. Cell Metab 2008; 8: 532–539.

16. Kuhre RE, Frost CR, Svendsen B, et al. Molecular mechanisms of glucose-stimulated GLP-1 secretion from perfused rat small intestine. Diabetes 2015; 64: 370–382.

17. Seino Y, Ogata H, Maekawa R, et al. Fructose induces glucose-dependent insulino tropic polypeptide, glucagon-like peptide-1 and insulin secretion: role of adenosine triphosphate-sensitive K + channels. J Diabetes Invest 2015; 6: 522–526.

18. Kuhre RE, Gribble FM, Hartmann B, et al. Fructose stimulates GLP-1 but not GIP secretion in mice, rats, and humans. Am J Physiol Gastrointest Liver Physiol 2014; 306: G622–G630.

19. Sirinek KR, Levine BA, O’Doriso TM, et al. Gastric inhibitory polypeptide (GIP) release by actively transported, structurally similar carbohydrates. Proc Soc Exp Biol Med 1983; 173: 379–385. Available from: http://www.ncbi.nlm.nih.gov/pubmed/6867011.

20. Flatt PR, Kwasowski P, Bailey CJ. Stimulation of gastric inhibitory polypeptide release in ob/ob mice by oral administration of sugars and their analogues. J Nutr 1989; 119: 1300–1303. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2796243.

21. Gribble FM, Williams L, Simpson AK, et al. A novel glucose-sensing mechanism contributing to glucagon-like peptide-1 secretion from the GLUTag cell line. Diabetes 2003; 52: 1147–1154. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12716745.

22. Kyriazis GA, Soundarapandian MM, Tyberg B. Sweet taste receptor signaling in beta cells mediates fructose-induced potentiation of glucose-stimulated insulin secretion. Proc Natl Acad Sci U S A 2012; 109: E524–E532.

23. Ferraris RP. Dietary and developmental regulation of intestinal sugar transport. Biochem J 2001(Pt 2); 360: 265–276. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1222226&tool=pmcentrez&rendertype=abstract.

24. Yoshikawa T, Inoue R, Matsumoto M, et al. Comparative expression of hexose transporters (SGLT1, GLUT1, GLUT2 and GLUT5) throughout the mouse gastrointestinal tract. Histochem Cell Biol 2011; 135: 183–194.

25. Damholt AB, Kofod H, Buchan AM. Immunocytochemical evidence for a paracrine interaction between GIP and GLP-1-producing cells in canine small intestine. Cell Tissue Res 1999; 298: 287–293. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10571117.

26. Parker HE, Adriaenssens A, Rogers G, et al. Predominant role of active versus facilitative glucose transport for glucagon-like peptide-1 secretion. Diabetologia 2012; 55(9): 2445–55. doi:10.1007/s00125-012-2585-2.

27. Moriya R, Shirakura T, Ito J, et al. Activation of sodium-glucose cotransporter 1 ameliorates hyperglycemia by mediating incretin secretion in mice. Am J Physiol Endocrinol Metab 2009; 297: E1358–E1365.

28. Gorboulev V, Schümann M, Vallon V, et al. Na(+)-o-glucose cotransporter SGLT1 is pivotal for intestinal glucose absorption and glucose-dependent incretin secretion. Diabetes 2012; 61: 187–196.

29. Powell DR, Smith M, Greer J, et al. LX4211 increases serum glucagon-like peptide 1 and peptide YY levels by reducing sodium/glucose cotransporter 1 (SGLT1)-mediated absorption of intestinal glucose. J Pharmacol Exp Ther 2013; 345: 250–259.

30. Ganda OP, Soeldner JS, Gleason RE, et al. Metabolic effects of glucose, mannose, galactose, and fructose in man. J Clin Endocrinol Metab 1979; 49: 616–622. Available from: http://www.ncbi.nlm.nih.gov/pubmed/479351.

31. Ritzel U, Fromme A, Ottilben M, et al. Release of glucagon-like peptide-1 (GLP-1) by carbohydrates in the perfused rat ileum. Acta Diabetol 1997; 34: 18–21. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9134052.

32. El-Ouaghlidi A, Rehring E, Holst JJ, et al. The dipeptidyl peptidase 4 inhibitor vildagliptin does not accentuate glibenclamide-induced hypoglycemia but reduces glucose-induced glucagon-like peptide 1 and gastric inhibitory polypeptide secretion. J Clin Endocrinol Metab 2007; 92: 4165–4171.

33. Stephens JW, Bodvarsdottir TB, Wareham K, et al. Effects of short-term therapy with glibenclamide and repaglinide on incretin hormones and oxidative damage associated with
postprandial hyperglycaemia in people with type 2 diabetes mellitus. *Diabetes Res Clin Pract* 2011; 94: 199–206.

34. Pearson ER, Flechtner I, Njølstad PR, et al. Switching from insulin to oral sulfonylureas in patients with diabetes due to Kir6.2 mutations. *N Engl J Med* 2006; 355: 467–477.

35. Murphy R, Tura A, Clark PM, et al. Glucokinase, the pancreatic glucose sensor, is not the gut glucose sensor. *Diabetologia* 2009; 52: 154–159.

36. Irwin N, Francis JM, Flatt PR. Insulin modulates glucose-dependent insulinotropic polypeptide (GIP) secretion from enteroendocrine K cells in rats. *Biol Chem* 2011; 392: 909–918.

37. Mace OJ, Schindler M, Patel S. The regulation of K- and L-cell activity by GLUT2 and the calcium-sensing receptor CasR in rat small intestine. *J Physiol* 2012; 590(Pt 12): 2917–2936.

38. Cani PD, Holst JJ, Drucker DJ, et al. GLUT2 and the incretin receptors are involved in glucose-induced incretin secretion. *Mol Cell Endocrinol* 2007; 276: 18–23.

39. Geraedts MC, Takahashi T, Viques S, et al. Transformation of postigestive glucose responses after deletion of sweet taste receptor subunits or gastric bypass surgery. *Am J Physiol Endocrinol Metab* 2012; 303: E464–E474.

40. Miki T, Nagashima K, Tashiro F, et al. Defective insulin secretion and enhanced insulin action in KATP channel-deficient mice. *Proc Natl Acad Sci U S A* 1998; 95: 10402–10406. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=279066&tool=pmcentrez&rendertype=abstract.

41. Miki T, Minami K, Shinozaki H, et al. Distinct effects of glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1 on insulin secretion and gut motility. *Diabetes* 2005; 54: 1056–1063. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15793244.

42. Lee EY, Kaneko S, Jutabha P, et al. Distinct action of the -glucosidase inhibitor miglitol on SGLT3, enteroendocrine cells, and GLP1 secretion. *J Endocrinol* 2014; 224: 205–214.

43. Prasad K, Koizumi M, Tulachan S, et al. The expression and function of glucose-dependent insulinotropic polypeptide in the embryonic mouse pancreas. *Diabetes* 2011; 60: 548–554.

44. Fujita Y, Widerman RD, Asadi A, et al. Glucose-dependent insulinotropic polypeptide is expressed in pancreatic islet alpha-cells and promotes insulin secretion. *Gastroenterology* 2010; 138: 1966–1975.

45. Hayashi Y, Yamamoto M, Mizoguchi H, et al. Mice deficient for glucagon gene-derived peptides display normoglycemia and hyperplasia of islet {alpha}-cells but not of intestinal L-cells. *Mol Endocrinol* 2009; 23: 1990–1999.

46. Hayashi Y. Metabolic impact of glucagon deficiency. *Diabetes Obes Metab* 2011; 13(Suppl. 1): 151–157.

47. Ellingsgaard H, Hauselmann I, Schuler B, et al. Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells. *Nat Med* 2011; 17: 1481–1489.

48. Nie Y, Nakashima M, Brubaker PL, et al. Regulation of pancreatic PC1 and PC2 associated with increased glucagon-like peptide 1 in diabetic rats. *J Clin Invest* 2000; 105: 955–965.

49. Omar BA, Liehua L, Yamada Y, et al. Dipeptidyl peptidase 4 (DPP-4) is expressed in mouse and human islets and its activity is decreased in human islets from individuals with type 2 diabetes. *Diabetologia* 2014; 57: 1876–1883.

50. Bonner C, Kerr-Conte J, Gmyr V, et al. Inhibition of the glucose transporter SGLT2 with dapagliflozin in pancreatic alpha cells triggers glucagon secretion. *Nat Med* 2015; 21: 512–517.