Could ER Stress Be A Major Link Between Oxidative Stress And Autoimmunity In Vitiligo?

Mohmmad Shoaib Mansuri1, Mala Singh1, Shahnawaz D jadeja1, Amina R Gani1, Roma Patel1, Mitesh Dwivedi1, Naresh C Laddha1, Ansarullah2, Ramachandran AV2 and Rasheedunnisa Begum1,2

1Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat -390002, India
2Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat -390002, India

Abstract

Vitiligo is an acquired pigmentary disorder characterized by areas of depigmented skin resulting from loss of epidermal melanocytes. The cause of the destruction of epidermal melanocytes is complex and not yet fully understood. However, there are several hypotheses related to biochemical, neural and genetic aspects as well as oxidative stress and autoimmune mechanisms proposed to understand this disorder. Oxidative stress has a role in vitiligo onset, while autoimmunity contributes to disease progression. In this review, we discuss the mechanisms that link triggering factors with the disease progression. Oxidative stress causes disruption in redox potentials that extend to the Endoplasmic Reticulum (ER), causing accumulation of misfolded proteins, which activates the Unfolded Protein Response (UPR). Melanocytes at the periphery of vitiligo lesions show dilation of the ER. Following exposure to various triggers of vitiligo melanocytes produce cytokines that activate immune response. These studies expand our understanding of the underlying mechanisms of melanocyte loss in vitiligo highlighting the possible mechanisms linking ER stress to oxidative stress and autoimmunity.

Keywords: Vitiligo; Oxidative stress; ER stress; Unfolded protein response; Auto immunity; Inflammation

Abbreviations: ROS: Reactive Oxygen Species; LPO: Lipid Peroxidation; ER: Endoplasmic Reticulum; UPR: Unfolded Protein Response; IRE1: Inositol-Requiring Enzyme-1; PERK: Protein Kinase RNA (PKR)-like ER Kinase; ATF6: Activating Transcription Factor-6; ERAD: ER-Associated Protein Degradation; BiP: Binding immunoglobulin Protein; eIF2α: eukaryotic Initiation Factor 2 α; GPx: Glutathione Peroxidase; CHOP: CCAAT-Enhancer Binding Protein Homologous Protein; JNK: Janus Kinase; Hcy: Homocysteine; NSV: Non-Segmental Vitiligo

Introduction

Vitiligo is an acquired, hypomelanotic skin disease characterized by circumscribed depigmented macules on the skin due to melanocyte loss. The worldwide prevalence of vitiligo is ~0.5-1% [1]. Vitiligo starts at the age of 20 years, in almost 50% of the patients and both males and females are affected [2-4]. Affected persons suffer from social and family stigma and, in particular, are subject to ostracization from the marital point of view [5-9]. Vitiligo has been found to be associated with a number of other autoimmune diseases [10,11]. Vitiligo is a multifactorial polygenic disorder with a complex pathogenesis [2,12-15]. In vitiligo patients, skin melanocytes are partially or completely lost, and several theories have been put forward to explain the etiology of the disease such as oxidative stress, autoimmunity, neural and genetic hypotheses [2,12,16,17]. Melanocyte death may occur due to intrinsic and/or extrinsic factors (Figure 1). Histological investigations have demonstrated presence of inflammatory infiltrate of mononuclear cells in the upper dermis and at the dermal-epidermal junction of peri-lesional skin of Non-Segmental Vitiligo (NSV) patients [18]. The initiation mechanism of this microinflammatory reaction is still not clear, nevertheless local triggers are reported to signal the innate immune system of skin that trigger adaptive immune responses targeting melanocytes [19,20]. There is wide range of evidence that show vitiligo to be a systemic rather than a local disorder. Impairment of humoral and cell-mediated immunity has been recognized in vitiligo patients [17,21]. Moreover, increased local and systemic cytokine expression has also been observed in vitiligo patients [22-31]. Many studies have addressed the key role of oxidative stress in melanocyte death and anti-melanocyte immune responses; however, the relationship between them remains unclear. Recently, we have reported a positive correlation between increased Lipid Peroxidation (LPO) levels and presence of circulating anti-melanocyte antibodies in vitiligo patients [32]. Reactive Oxygen Species (ROS) are produced as byproducts of melanogenesis controlled by various antioxidant enzymes [33-35]. Oxidative stress is considered to be the initial triggering event in the pathogenesis of melanocyte destruction [36]. Vitiligo is accompanied by oxidative stress characterized by overproduction and accumulation of H2O2 and melanocyte destruction [37-39]. For the interconnection between oxidative stress and autoimmunity it has been suggested that oxidative stress may have a role in vitiligo onset, while autoimmunity contributes towards the disease progression [32,40]. Furthermore, Toosi et al. [41] demonstrated accumulation of misfolded proteins and activation of Unfolded Protein Response (UPR) in the endoplasmic reticulum due to redox disruptions caused by oxidative stress. Protein misfolding in the ER has been reported to contribute to the pathogenesis of many human diseases (Table 1). Though unfolded proteins have the potential to bring about ER homeostasis restoration and cell survival by the activation of Inositol-Requiring Enzyme-1 (IRE1), Protein Kinase RNA (PKR)-like ER kinase (PERK) and Activating Transcription Factor-6 (ATF6) pathways, persistent stress conditions can on the other hand trigger apoptosis [42-45] (Figure 2). Furthermore, inhibited UPR can contribute to the activation of autoimmune response by way of generation of self-altered antigens during degradation of misfolded proteins, besides release of neo-antigens by apoptotic cells, and altered immune-tolerance mechanisms in cells with an anomalous UPR [46].

These findings tend to suggest the possibility of a crosstalk between

*Corresponding author: Prof. Rasheedunnisa Begum, Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat -390002, India, Tel: +91 265-2795594; E-mail: rasheedunnisab@yahoo.co.in

Received June 26, 2014; Accepted July 14, 2014; Published July 16, 2014

Citation: Mansuri MS, Singh M, Jadeja SD, Gani AR, Patel R, et al. (2014) Could ER Stress Be A Major Link Between Oxidative Stress And Autoimmunity In Vitiligo?. Pigmentary Disorders 1: 123. doi:10.4172/2376-0427.1000123

Copyright: © 2014 Mansuri MS. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Oxidative Stress in Vitiligo

Oxidative stress is a consequence of imbalance between pro and antioxidant activities in cells. Reactive intermediates formed by oxidative stress damage cellular macromolecules like proteins, carbohydrates, DNA and lipids [34,35]. The accumulation of H2O2 in vitiligo patients disrupts the recycling of (6R)-L-erythro-5,6,7,8-tetrahydriobioterin (6BH4) due to deactivation of 4a-OH-BH4 dehydratase. The characteristic fluorescence of the affected skin under Wood’s lamp (UVA 351 nm) is a property of 6- and 7-biopterin, tetrahydrobiopterin (6BH4) due to deactivation of 4a-OH-BH4 dehydratase. Moreover, photolysis of sepiapterin and 6-biopterin produces H2O2 by UVA/UVB irradiation. The aromatic amino acids L-phenylalanine, L-tyrosine and L-tryptophan are substrates for melanogenesis wherein 6BH4 is an essential electron donor in their hydroxylation. Apparently, 6BH4 is an essential component of the pigment generating system [48]. Moreover, photolysis of sepiapterin and 6-biopterin to P-6-COOH by UVA/UVB irradiation.

Oxidative stress in vitiligo [55]. SOD is a group of metallo-enzymes that scavenge and dismutate superoxide (O2-) anion in its detoxification process resulting in the formation of O2 and H2O2 [56]. Increased SOD levels have been reported in vitiliginous and non-vitiliginous skin from vitiligo patients [57]. Our recent study has also shown significantly higher activity of all three isoforms of SOD i.e. SOD1, SOD2 and SOD3 in vitiligo patients [58]. Other reports have also shown increased SOD activity in whole blood and serum [59,60] as well as peripheral mononuclear cells [61] from vitiligo patients. In addition, we have reported increased transcript levels of SOD2 and SOD3 in vitiligo patients suggestive of their increased activity in patients [58]. Another antioxidant enzyme GPx converts H2O2 and other peroxides into H2O protecting important cellular proteins and membranes from the potential damaging effect of ROS and LPO [62]. Earlier studies had revealed decreased GPx activity in both normal and skin biopsy of vitiligo patients [51,63]. Hasse et al. [64] have shown lower levels of GPx in the epidermis of lesional and non-lesional skin from vitiligo patients. Moreover, Maisa et al. [33] have reported higher levels of GPx during vitiligo progression indicating an imbalance of antioxidants in the epidermis of vitiligo patients. Our previous studies have shown decreased erythrocyte GPx activity in patients with vitiligo [60,65]. Recently, we have found positive genotype-phenotype correlations for the two exonic polymorphisms of GPX1 with its decreased activity. Furthermore, we have also found decreased catalase and G6PD activities in vitiligo patients [12,60,65] resulting into increased H2O2 accumulation. Moreover, Hasse et al. [66] have reported that accumulation of millimolar concentrations of H2O2 can affect antioxidant enzymes as proved by low blood catalase and GPx activity in vitiligo patients. Increased SOD and decreased catalase and GPx activities could be responsible for the accumulation of H2O2 which underlies Fenton and/or Haber -Weiss reaction to produce hydroxyl radicals leading to lipid, protein and DNA damage [56].

Table 1: Involvement of oxidative stress, ER stress and autoimmunity in human diseases.

Disease	Oxidative Stress	ER Stress	Autoimmunity
Vitiligo	Yes [32,40,60]	Yes [72,108]	Yes [32,40]
Type I Diabetes	Yes [256]	Yes [257]	Yes [258]
Type II Diabetes	Yes [259]	Yes [260,261]	No
Alzheimer’s disease	Yes [262]	Yes [263,264]	No
Parkinson’s Disease	Yes [265,266]	Yes [267,268]	No
Cancer	Yes [269]	Yes [270,271]	No
Arthrosclerosis	Yes [272]	Yes [273,274]	No
Myocardial Infarction	Yes [275,276]	Yes [277]	No
Heart Failure	Yes [278]	Yes [279]	No
Inflammatory Bowel Disease	Yes [280]	Yes [281]	Yes [282]

Neural hypothesis suggests that various neurochemical mediators including acetylcholine secreted by the nerve endings to be toxic to melanocytes leading to their destruction. Decreased acetylcholine esterase (AChE) activity has been shown in vitiliginous skin during...
depigmentation [84], suggesting that acetylcholine may aggravate the progression of vitiligo. In addition, decreased sweating in the depigmented epidermis of patients also suggests possible cholinergic involvement in vitiligo [85]. Moreover, Schallreuter et al. [86] have shown H2O2 mediated oxidation of AChE further emphasizing the role of oxidative stress in the precipitation of vitiligo. The inactivation of AChE has been proposed to be due to oxidation of Trp432, Trp435 and Met436 residues by H2O2 [86]. Acetylcholine has an inhibitory effect on melanocyte DOPA oxidase activity affecting melanin production [84]. Our previous studies have in fact shown decrease in blood AChE activity [87] and significant increase in lipid peroxidation levels in vitiligo patients [32,40,60,65,87]. These reports provide evidence for AChE inhibition in vitiligo patients to be due to high oxidative stress. Acetylcholine thus accumulated may lead to the destruction of melanocytes resulting in the precipitation of vitiligo.

The above literature review emphasizes the role of oxidative stress in the pathogenesis of vitiligo and indicates oxidative stress to be a more generalized course of action rather than a localized phenomenon. This could be one of the reasons for developing new lesions in vitiligo patients in the course of the disease [57]. Oxidative stress can also lead to the activation of stress signaling pathways and their transcription factors [88,89]. Even though the exact molecular mechanisms by which ROS activate these pathways are not understood, their activation can lead to different consequences, including growth arrest, senescence, upregulation of death proteins, and cell death by apoptosis or necrosis. Cells undergo apoptosis by cell surface, ER or mitochondrial pathways. In our earlier review, we had addressed the interplay between oxidative stress and immune system in vitiligo [40]. In the current review, we focus on structural and functional aberrations of ER linking oxidative stress with autoimmunity in vitiligo pathogenesis.

ER Stress in Vitiligo

In eukaryotic cells, the ER is crucial for synthesis, folding and maturation of proteins, lipid metabolism, and homeostasis of intracellular Ca2+ and redox potential. Previous studies of Schallreuter et al. [90,91] have shown perturbed calcium homeostasis in vitiliginous melanocyte and keratinocyte cells, suggesting altered ER functions in vitiligo. Protein folding and modifications in the ER are highly sensitive to disturbances in ER homeostasis involving glycosylation, ER Ca2+ store, mRNA translation, oxidative stress, energy deprivation, metabolic challenge, and inflammatory stimuli. The accumulation of unfolded and misfolded proteins in the ER lumen, termed ER stress, activates intracellular signaling pathways to resolve the protein folding defect. This UPR tends to increase the capacity of ER protein folding and modification by reducing global protein synthesis, and activating ER-Associated Protein Degradation (ERAD). If ER stress is too severe or chronic, or the UPR is compromised and not able to restore the protein-folding homeostasis, numerous apoptotic signaling pathways get activated [92-94]. Preclinical and clinical studies in the past decade indicate ER stress and UPR to have a significant impact in the pathogenesis of multiple human disorders including vitiligo (Table 1). The ER stress response involves 3 distinct mechanisms: (i) translational attenuation of global protein synthesis (ii) transcriptional activation of chaperone and ERAD genes and (iii) ERAD mediated translocation of misfolded or aggregated ER proteins to the cytoplasm for proteasomal degradation [95]. The alteration in ER Ca2+ homeostasis can result in the activation of cytosolic calpains. They play a major role in ER mediated apoptosis by processing and activating caspase-12 and caspase-4 [96,97]. Severe and/or prolonged ER stress generally result in apoptotic cell death. The pro-apoptotic transcription factor CCAAT-enhancer binding protein homologous protein (CHOP) is strongly induced in response to ER stress [98] (Figure 2). Further, ROS cause protein damage leading to accumulation of misfolded proteins in the ER lumen. Many studies have shown H2O2 induced ER stress response factors cited above in different cells including human oral keratinocytes [99]. Apoptosis mediated by ER stress involves increased expression of CHOP, cleavage of calpastatin, and activation of calpains, caspase-4 and -12. Caspase-4 cleavage and up-regulation of CHOP were shown to be induced by peroxide radical in human oral keratinocytes [99]. Exact mechanism(s) regulating ER stress mediated apoptosis is (are) not fully understood. Several different pathways have been implicated including the

![Figure 1: Overview of ER Stress Signaling Pathways](image-url)

Figure 1: Overview of ER Stress Signaling Pathways: Activation of protective responses by UPR involves signal transduction through the IRE1, PERK and ATF pathways. PERK, IRE1, and ATF6 act as ER stress sensors by binding to the ER chaperone BiP, and by which they remain inactive under normal condition. Upon the accumulation of unfolded proteins, BiP preferentially binds to the unfolded proteins, which results in the release of PERK, IRE1, and ATF6. IRE1, once released from BiP, induces XBP1 by promoting the splicing of its mRNA. XBP1 regulates chaperone induction and ERAD in response to ER stress. IRE1 also activates JNK which leads to cytochrome C release from mitochondria and activation of effector caspases leading to apoptosis. The released PERK phosphorylates eIF2α to suppress the overall transcription of mRNAs while selectively enhances the transcription of genes implicated in UPR such as the ATF4 mRNA. ATF4 thus forms initiates the transcription of UPR target genes like CHOP which represses antiapoptotic BCL2 proteins and activated proapoptotic Bax/Bak leading to apoptosis. The release of ATF6 from BiP results in the translocation of ATF6 to the Golgi apparatus, where ATF6 is cleaved and then translocates into the nucleus, and initiates the transcription of target genes.
apoptosis in the ER of HeLa cells to be dependent on Ca²⁺, calpain and XBP1 response. Ren et al. [117] have shown both increased expression of phenols. Interestingly, they observed increased production of IL6 and XBP1 butyl phenol (4-TBP) and Monobenzyl Ether of Hydroquinone involving early events associated with induction of vitiligo by 4-tertiary or tyrosinase gene itself [116]. Toosi et al. [41] in their investigations oculocutaneous albinism type 2 gene (OCA2) [114] and OCA4 [115] in chaperone genes [tyrosinase-related protein 1 (TRP1) [113], misfolding and retention can be a consequence of either mutations such post-translational modifications require classical ER chaperones including N-linked glycosylation [109], and disulfide bond dependent enzyme in melanogenesis, undergoes post-translational modifications, by thapsigargin induced ER stress. Tyrosinase which is a rate-limiting enzyme in melanogenesis, undergoes post-translational modifications, including N-linked glycosylation [109], and disulfide bond dependent folding [110] in the ER to attain a functional tertiary structure [111]. Such post-translational modifications create classical ER chaperones [110] in addition to melanocyte-specific factors [112]. Tyrosinase misfolding and retention can be a consequence of either mutations in chaperone genes [tyrosinase-related protein 1 (TRP1) [113], ocucutaneous albinism type 2 gene (OCA2) [114] and OCA4 [115] or tyrosinase gene itself [116]. Tosi et al. [41] in their investigations involving early events associated with induction of vitiligo by 4-tertiary butyl phenol (4-TBP) and Monobenzyl Ether of Hydroquinone (MBEH) have shown ER stress in human melanocytes. They have also shown increased expression of XBP1, after exposure of melanocytes to phenols. Interestingly, they observed increased production of IL6 and IL8 upon XBP1 activation in their studies on induced vitiligo suggesting cytokine production by melanocytes linking to an activation of immune response. Ren et al. [117] have shown both increased expression of XBP1 in the lesional skin of vitiligo patients and association of XBP1 polymorphisms with increased risk of developing vitiligo. Oxidative stress induced ER dysfunction may involve non-functional thio-redoxin domain containing 5 (TXNDC5) chaperone protein that has a protein disulphide isomerase-like domain to bring about protein folding. Three exonic SNPs of TXNDC5 and their susceptible haplotypes were found to be significantly associated with vitiligo [118]. Earlier report indicates localization of both pro- and anti-apoptotic members of the BCL2 family in ER and together they regulate homeostasis and cell death in response to signals that impact ER function [119]. These proteins function at the potential point of integration between IRE1 and CHOP mediated apoptosis. Abdel-Aal et al. [120] have shown decreased BCL2 expression in lesional, peri-lesional and non-lesional vitiligious skin as well as increased expression of p53 in the lesional skin from vitiligo patients. These findings emphasize increased susceptibility of melanocytes to apoptosis in the vitiliginous skin.

Autoimmunity in Vitiligo

Case reports on inflammatory vitiligo furnished the first hint for the involvement of T cells in the pathogenesis of vitiligo [121-123]. Immune-mediated responses are consistently observed in progressive vitiligo at the periphery of depigmenting patches. Histopathological investigations of the peri-lesional skin support lymphocyte involvement in the depigmentation process. Immunohistochemical studies have also confirmed the presence of infiltrating T cells and their frequent opposition to peri-lesional melanocytes in skin biopsies from vitiligo patients [124,125]. Notably, similar in situ T cell infiltrates, primarily CD8⁺ T cells, have also been detected in generalized vitiligo [126-131]. T cells are more prevalent in vitiligo peri-lesional skin than in surrounding non-lesional skin. The lymphocyte infiltrate consists essentially of CD8⁺ T cells with occasional CD4⁺ T cells [124]. The prevalence of cytotoxic T cells and their co-localization with surviving melanocytes suggest T cell mediated cytotoxicity towards the melanocytes [132]. Various other studies including ours show decrease in systemic CD4⁺ T-cells and an increase in CD8⁺ T-cells with consequent decrease in CD8⁺/CD4⁺ ratio in vitiligo patients, suggesting role of CD8⁺ cells in melanocyte death [133-136]. Recently, studies have shown a defective functionality and decreased frequency of regulatory T cells (Tregs) in vitiligo patients suggestive of the unchecked activation of CD8⁺ cells [136,137]. Furthermore, Bertolotti et al. [131] have also reported the presence of IFNα secreting plasmacytoid dendritic cells (pDC) in the infiltrate of progressive vitiligo. IFNα induces the expression of MxA, which encodes a guanosine triphosphate (GTP)-metabolizing protein. Association of MxA with the expression of chemokine (C-X-C motif) ligand 9 [CCL9] correlates well with the recruitment of chemokine (C-X-C motif) receptor 3⁺ [CXCR3⁺] immune cells. Further, they also showed increased expression of MxA in peri-lesional skin in close opposition to surviving melanocytes within the T-cell infiltrate. In contrast, MxA was not evident in lesional skin, suggesting that IFNα production is an early event in the progression of the disease. Autoimmune aspect of vitiligo pathogenesis is strongly supported by the presence of auto-reactive T-cells [17,124,138].

They target melanocyte-specific antigens, such as melan-A/MART1, Gp100/Pmel 17 (a melanosomal matrix glycoprotein), tyrosinase [139-141], TRP1 and TRP2 [132,142] that are localized primarily on Gp100/Pmel 17 ([139-141], TRP1 and TRP2 [132,142] that are localized primarily on Gp100/Pmel 17 ([139-141], TRP1 and TRP2 [132,142]) that are localized primarily on Gp100/Pmel 17 ([139-141], TRP1 and TRP2 [132,142]) that are localized primarily on Gp100/Pmel 17 ([139-141], TRP1 and TRP2 [132,142]) that are localized primarily on Gp100/Pmel 17 ([139-141], TRP1 and TRP2 [132,142]) that are localized primarily on Gp100/Pmel 17 ([139-141], TRP1 and TRP2 [132,142]) that are localized primarily on Gp100/Pmel 17 ([139-141], TRP1 and TRP2 [132,142]) that are localized primarily on Gp100/Pmel 17 ([139-141], TRP1 and TRP2 [132,142]) that are localized primarily on Gp100/Pmel 17 ([139-141], TRP1 and TRP2 [132,142]) that are localized primarily on Gp100/Pmel 17 ([139-141], TRP1 and TRP2 [132,142]) that are localized primarily on Gp100/Pmel 17 ([139-141], TRP1 and TRP2 [132,142]) that are localized primarily on Gp100/Pmel 17 ([139-141], TRP1 and TRP2 [132,142]) that are localized primarily on Gp100/Pmel 17 ([139-141], TRP1 and TRP2 [132,142]) that are localized primarily on Gp100/Pmel 17 ([139-141], TRP1 and TRP2 [132,142]) that are localized primarily on Gp100/Pmel 17 ([139-141], TRP1 and TRP2 [132,142]) that are localized primarily on Gp100/Pmel 17 ([139-141], TRP1 and TRP2 [132,142]) that are localized primarily on Gp100/Pmel 17 ([139-141], TRP1 and TRP2 [132,142]) that are localized primarily on Gp100/Pmel 17 ([139-141], TRP1 and TRP2 [132,142]) that are localized primarily on Gp100/Pmel 17 ([139-141], TRP1 and TRP2 [132,142]) that are localized primarily on Gp100/Pmel 17 ([139-141], TRP1 and TRP2 [132,142]) that are localized primarily on Gp100/Pmel 17 ([139-141], TRP1 and TRP2 [132,142]) that are localized primarily on Gp100/Pmel 17 ([139-141], TRP1 and TRP2 [132,142]) that are localized primarily on Gp100/Pmel 17 ([139-141], TRP1 and TRP2 [132,142]) that are localized primarily on Gp100/Pmel 17 ([139-141], TRP1 and TRP2 [132,142]) that are localized primarily on Gp100/Pmel 17 ([139-141], TRP1 and TRP2 [132,142]) that are localized primarily on Gp100/Pmel 17 ([139-141], TRP1 and TRP2 [132,142]) that are localized primarily on Gp100/Pmel 17 ([139-141], TRP1 and TRP2 [132,142]) that are localized primarily on Gp100/Pmel 17 ([139-141], TRP1 and TRP2 [132,142]) that are localized primarily on Gp100/Pmel 17 ([139-141], TRP1 and TRP2 [132,142]) that are localized primarily on Gp100/Pmel 17 ([139-141], TRP1 and TRP2 [132,142]) that are localized primarily on Gp100/Pmel 17 ([139-141]...
leading to the progression of vitiligo. Genes within class II region of the major histocompatibility complex (MHC) are associated with several autoimmune diseases [150]. This highly polymorphic region includes several genes involved in the processing and presentation of antigens to the immune system including low molecular weight polypeptide 2 and 7 (LMP2 and LMP7) and transporter associated with antigen processing 1 and 2 (TAP1 and TAP2). Though LMP/TAP gene cluster is located on MHC class II region of chromosome 6, it is involved in antigen presenting function of MHC class I molecule. Different researchers have reported association of LMP7 and TAP1 with vitiligo susceptibility [151]. LMP2 and LMP7 are also involved in the degradation of ubiquitin tagged cytoplasmic proteins to peptides while, TAP1 and TAP2 are involved in transportation of peptides into the endoplasmatic reticulum for exposure to nascent MHC class I molecules [150]. MHC-I molecules are crucial in the regulation of cytotoxic effector functions of Natural Killer (NK) cells and T cells. MHC-I molecules present antigens to cytotoxic T cells and are part of the recognition signals that regulate activation of NK cells [152]. Usually, antigenic peptides are generated by proteasomal degradation of cytosolic proteins and consequently translocated to ER by TAP. In the ER, assembly of MHC class I a chain, β2-microglobulin and peptides is guided by chaperones [150]. On the other hand antigenic peptides are associated with the chaperones GRP94, GP96, PDI and calreticulin [153-156]. Functional class I- peptide complexes are then transported to the cell surface. A necessary condition for the successful completion of this complex process is glycosylation and correct folding of MHC class I heavy chain in the ER. A failure in the above results in their slow or inefficient transport to the cell surface [157-161]. ER stress may result in decreased expression of MHC class I on the cell surface, thereby preventing the recognition of cells by the adaptive and innate immune system [162,163]. It has been reported that defects in the expression of different components of the MHC class I antigen processing machinery; such as the proteasomal subunits LMP2 and LMP7 and the peptide transporters TAP1 and TAP2, account for impaired MHC class I surface expression [151]. Further, an inappropriate expression or functioning of LMP7 might inhibit antigen processing and presentation, leading to a loss of peripheral tolerance to self-antigens and occurrence of several autoimmune diseases [151]. In this context, Ulianich et al. [152] have shown ER stress induced decrease in surface expression of MHC class I in thyroid cells. This effect was accompanied by activation of NK cells and their cytotoxicity to thyroid cells by increased IFNγ production. Together, these data indicate ER stress induced reduction in MHC class I expression and reduced NK-cells self-tolerance. It has been shown that IFNγ induces LMP and TAP subunits [151]. Our previous study found IFNγ mRNA and serum protein levels to be high in vitiligo patients [30]. Taken together these results suggest IFNγ induced expression of MHC-I, MHC-II and TAP on melanocytes. Recently, it has been shown that IFNγ induces senescence in melanocytes [164]. IFNγ signaling impedes maturation of melanosomes by concerted downregulation of some pigmentation genes that leads to IFNγ–mediated hypo- pigmentation of melanocytes [165]. IFNγ and TNFα induce the expression of ICAM1 on melanocytes [166]. We recently, reported increased levels of IFNγ, TNFα and TNFβ [31]. Levels of ICAM1 are found to be upregulated in melanocytes of peri-lesional of vitiligo patients [167]. Our recent study has also shown increased ICAM1 transcript levels in vitiligo patients [30]. T cell melanocyte binding is enhanced by increased expression of ICAM1 on melanocytes [167]. A melanocyte is in close association with ~32 keratinocytes in the epidermal melanin unit. Keratinocytes synthesize cytokines, such as TNFα, IL1α, IL6, and transforming growth factor β (TGFβ), which are paracrine inhibitors of melanocyte proliferation and melanogenesis. In numerous cell types, TNFα plays an important role in apoptosis through activation of the receptor-mediated apoptotic pathway [168]. Moreover, TNFα can also inhibit melanocyte stem cell differentiation [169]. NACHT leucine-rich repeat protein 1 (NLRP1), known to be involved in inflammation and apoptosis [170,171], modulates the response of cells towards proinflammatory cytokines such as IL1β, IFNγ and TNFα. Recently, we have found increased expression of NLRP1 in vitiligo patients [172]. Bassiouny et al. [173] have found increased level of IL17 and its positive correlation with disease progression in both the lesional skin and sera of vitiligo patients. Zhao et al. [174] found decreased levels of anti-inflammatory cytokine IL10 in vitiligo patients. All the above studies indicate the significant role of immune mechanisms in the progression of vitiligo that finds support from the reported favourable response to immunosuppressive treatments [175].

Cross Talk between Oxidative Stress, ER stress and Immune System in Vitiligo

Vitiligo is believed to be a multifactorial, polygenic disorder and the exact underlying mechanisms and involvement of specific triggering factors are hitherto not well understood. Several hypotheses have been proposed for explaining the disappearance of melanocytes. We aim to link the plausible components identified in various hypotheses that may help detect the potential pathways participating in vitiligo pathogenesis and also understand the possible etiology of vitiligo. Numerous studies indicate possible cross talk between ER and oxidative stresses; however the mechanistic link is not fully understood [98]. Oxygen-utilizing metabolic processes such as oxidative phosphorylation in mitochondria generate ROS. ER provides a favorable oxidizing environment for protein folding and disulfide bond formation before transport to Golgi. Protein misfolding in the ER may lead to ROS generation through some possible mechanisms- (i) Binding of misfolded proteins to chaperones like BIP that consumes ATP can result in compensatory increase in oxidative phosphorylation in mitochondria and consequent generation of ROS and (ii) ROS may also be produced during disulfide bond formation and protein folding in the ER by way of transfer of electrons from thiol groups in folding substrates catalyzed by Protein Disulfide Isomerase (PDI) and ER Oxidoreductase 1 (ERO1) to molecular oxygen leading to the formation of H₂O₂ [176-178]. Protein misfolding in the ER lumen can cause escape of Ca²⁺ from the ER [179] that will be taken up by mitochondria wherein they can cause disruption in the electron transport chain. Oxidation of cysteine residues during disulfide bond formation in the ER may considerably contribute to oxidative stress [176,177]. Malhotra et al. [180] have shown that accumulation of unfolded proteins in the ER lumen is sufficient to produce ROS and that both ROS and unfolded proteins are required in concert to activate the UPR and apoptosis. These findings propose that unfolded proteins in the ER lumen signal ROS formation and they in turn can act as second messengers to activate UPR and induce apoptosis. Increasing evidence tends to suggest the expression of immunoglobulin heavy-chain binding protein (BiP)/ glucose-regulated protein 78 (GRP78), calnexin, calreticulin (CRT), GRP94 /gp96, oxygen regulated protein 150 (ORP150)/ GRP170, homocysteine-induced ER protein (Herp) and heat shock protein 47 (hsp47)/ SerpinH1 during ER stress, a few of which also present at the cell surface, can play pathophysiological roles as pro- or anti-inflammatory factors in autoimmune and inflammatory diseases [181,182]. GRP78 is a molecular chaperone, also known as BiP, initiates signaling cascades of UPR [183] (Figure 2). Various reports that show participation of GRP78 in antibody generation, T cell proliferation, and pro-inflammatory cytokine production can therefore serve as one of the potential factors in the precipitation of autoimmune diseases [184-186]. Xue et al. [187] have
demonstrated TNFα induction of UPR, including PERK-mediated eIF2α phosphorylation, and ATF6- and IRE1-mediated induction of sXBP1, by way of ROS-dependent pathways. Reported autoimmune mediated β-cell destruction in type 1 diabetes by ER stress [188,189] provides support to the above contention. Involvement of UPR in the pathogenesis of vitiligo is suggested by the presence of dilated ER in the peri-lesional skin of vitiligo patients [72]. It is well accepted that the presence of antimalanocyte antibodies can serve as a marker for the initiation and progression of autoimmunity in vitiligo [10,32,146]. Studies have shown IRE1 modulation of antibody producing B cell proliferation. Scarcity of IRE1α shown to hinder differentiation of pro-B cells into pre-B cells [190] while, XBP1 is essential for antibody production by mature B cells [191]. B-cell receptor (BCR) is reported to induce ubiquitin-mediated degradation of BCL-6, a repressor for B lymphocyte- induced maturation protein 1 (BCLIP1) [192]. BCLIP1 that downregulates the expression of B-cell lineage- specific activator protein (BSAP) [193] is suggested to function as a repressor for XBPI [194]. Many studies have highlighted the importance of innate immunity in the pathogenesis of vitiligo [40,131] while, components of the UPR pathway are known to regulate innate immune response [174]. Various models support the notion that an inadequate UPR and aberrant protein folding may contribute to autoimmunity through four possible mechanisms: (i) recognition of misfolded proteins by autoreactive immune cells; (ii) release of neo-auto antigens and UPR-related auto antigens by cells that are dying from unrecoverable levels of ER stress, with subsequent provocation of autoimmunity; (iii) indirect contributions to autoimmunity through impairment of immune-tolerance mechanisms in cells with an abnormal UPR and (iv) conferring resistance to UPR mediated apoptosis or a survival advantage to autoreactive cells by upregulating ERAD-associated proteins [46].

UPR is linked with inflammatory cytokines through various mechanisms including ROS, NFκB, and JNK. Excessive load of protein folding in ER may lead to oxidative stress [177]. The expression of ER stress-associated transcription factor, c-AMP responsive element binding protein H (CREBH), is stimulated by IL1β and IL6, which in turn govern the transcription of two critical factors implicated in innate immune response, i.e., serum amyloid P-component and Creative protein [190]. Furthermore, the differentiation of dendritic cells (DCs) is regulated by XBPI [195]. Increased levels of XBPI mRNA splicing are found in DCs and, XBPI deficient mice showed altered development of both conventional and plasmacytoid DCs. XBPI deficient DCs are at risk to ER stress-induced apoptosis [195]. Additionally, IL23 secretion from DCs is regulated by CHOP. CHOP directly binds to IL23 gene and regulate its transcription [196]. Vitiligo inducing phenols trigger UPR in melanocytes and upregulate the expression of IL6, and IL8. Co-treatment with XBPI inhibitor reduces IL6 and IL8 production induced by phenols while, overexpression of XBPI alone increases their expression [41]. Interestingly, increased expression of XBPI has been observed in lesioned skin of vitiligo [117], emphasizing its involvement in ER stress and autoimmune mediated melanocyte destruction. Apart from IRE1, the PERK pathway of UPR is also associated with innate immune response. PERK signaling is reported to activate antioxidant pathway by promoting ATF4 and nuclear factor-erythroid-derived 2-related factor 2 (NRF2) [176,197] whereas, loss of PERK enhances ROS accumulation induced by toxic chemicals [176,198]. The IRE1 pathway can recruit IκB kinase (IKK), leading to the activation of NFκB, an important regulator of inflammation [199].

As a result, NFκB activation and TNFα production are reduced in cells lacking IRE1 [199]. Our previous study has shown increased TNFα levels in vitiligo patients [29] and TNFα has shown to induce UPR in an ROS-dependent manner [187]. In contrast to TNFα, oxidative stresses by H₂O₂ or arsenite only induces eIF 2α phosphorylation, but not activation of PERK- or IRE1-dependent pathways, indicating the specificity of downstream signaling induced by various oxidative stressors. Furthermore, the IRE1 pathway activates JNK, inducing the expression of inflammatory genes by activating activator protein 1 (AP1) [200]. ATF6 can also activate NFκB pathway [201].

Cytokines have been evidenced to activate the expression of inductive nitric oxide synthase (iNOS), leading to excessive Nitric Oxide (NO) production. Interestingly, cytokines are reported to induce ER stress via iNOS and JNK pathways. NO has also been suggested to be an important mediator of cell death. Inflammatory cytokines including IL1β, IFNγ and TNFα can induce iNOS expression which then produces copious amount of NO [202]. JNK pathway is activated by IL1β [203]. Activation of ER stress pathway is stimulated by IL1β and IFNγ leading to apoptosis via NO synthesis [204]. Our previous studies have shown increased expression levels of TNFα [29], IFNG [30] and IL1β [205] in patients with vitiligo. Increased level of NO induces DNA damage and results in apoptosis via p53 pathway or necrosis via poly (ADP-ribose) polymerase (PARP) pathway [206]. In addition, NO depletes ER Ca²⁺ storage by means of activating Ca²⁺ channels or inhibiting Ca²⁺ pumps [207,208]. Depleted ER Ca²⁺ levels leads to ER stress and apoptosis through induction of CHOP signaling [209]. Imbalance of various pro-inflammatory and anti-inflammatory cytokines has been reported in the microenvironment of vitiliginous skin. IL17 works to activate the production of other cytokines, including IL1 and IL6, and can potentiate other local inflammatory mediators like TNFα [173,210]. Keratinocyte dysfunction along with increased TNFα and IL6 production has been reported in vitiligo patients [211]. H₂O₂ is known to induce NFκB in nuclear extracts and increase phosphorylated p38 MAPK levels in cells. NFκB is present in the cytoplasm as an inactive NFκB complex. In response to various stimuli, the latent cytoplasmic NFκB/IκBα complex dissociates and activated NFκB translocates to the nucleus and induces the expression of relevant genes, including various cytokines genes [212]. The build-up of ROS causes protein misfolding in the ER which, may result in possible immune system defects precipitating inappropriate autoimmune response against melanocytes (Figure 3). Calcretulin (CRT) is a ubiquitous protein localized predominantly in the ER and plays a major role in intracellular Ca²⁺ homeostasis [213-216]. Cell surface localization of CRT has been reported on T cells, neutrophils, monocytes, macrophages and dendritic cells [217-220]. Localization of cell surface CRT reportedly affects antigen presentation, complement activation [221-223] and clearance of apoptotic cells [218]. Recently, Zhang et al. [224] have reported increased CRT expression in response to H₂O₂ in human melanocytes leading to apoptosis. In addition, CTR- treated peripheral blood mononuclear cells or stressed melanocytes show higher IL6 and TNFα levels. Higher CRT expression in vitiligo patients is positively correlated with lesion area and duration of disease. The exposure of CRT on the plasma membrane can precede anthracycline-induced apoptosis and is required for cell death to be perceived as immunogenic [225]. Several studies have found translocation of intracellular CRT to the cell surface in response to anthracycline and high doses of irradiation in a variety of human and rodent cancer cells, including melanoma [226-228]. Surface CRT then initiates an apoptotic signal [229] which is critical for the recognition and engulfment by DCs. In contrast, apoptotic cells have been suggested to be phagocytized because of their lack of CD47 expression and the coordinated upregulation of cell surface CRT in fibroblasts, neutrophils, and Jurkat T cells [218]. Interestingly, Zhang et al. [224]
These findings demonstrate translocation of CRT to the cell membrane and this correlates with decreased CD47 levels, suggesting increased susceptibility to H₂O₂ mediated oxidative stress induced apoptosis and autoimmune response. [Abbreviations: GPx (Glutathione Peroxidase), G6PD (Glucose 6 Phosphate Dehydrogenase), SOD (Superoxide Dismutase), ROS (Reactive Oxygen Species), TNFα (Tumor Necrosis Factor- alpha), TNFβ (Tumor Necrosis Factor - beta), IL1B (Interleukin 1-beta), NFXB (Nuclear Factor kappa – beta), UPR (Endoplasmic Reticulum Associated Degradation), LMP7 (Low Molecular Weight Polypeptide 7), TAP1 (Transporter Associated With Antigen Processing 1), Treg (T regulatory Cells), T effector cells), (Interleukins - IL6, IL8, IL10, IL17A), CTLA4 (Cytotoxic T lymphocyte associated antigen 4)]

Figure 3: Cross talk between oxidative stress, ER stress and immune system in melanocyte death: Decrease in antioxidant enzymes leads to ROS formation, ultimately leading to oxidative stress. Oxidative stress induces ER stress leading to activation of Unfolded Protein Response (UPR) which in turn activates autoimmune response.

| Abbreviations: GPx (Glutathione Peroxidase), G6PD (Glucose 6 Phosphate Dehydrogenase), SOD (Superoxide Dismutase), ROS (Reactive Oxygen Species), TNFα (Tumor Necrosis Factor- alpha), TNFβ (Tumor Necrosis Factor - beta), IL1B (Interleukin 1-beta), NFXB (Nuclear Factor kappa – beta), UPR (Endoplasmic Reticulum Associated Degradation), LMP7 (Low Molecular Weight Polypeptide 7), TAP1 (Transporter Associated With Antigen Processing 1), Treg (T regulatory Cells), T effector cells), (Interleukins - IL6, IL8, IL10, IL17A), CTLA4 (Cytotoxic T lymphocyte associated antigen 4) |

have shown increased surface levels of CRT in response to H₂O₂ and this correlates with decreased CD47 levels, suggesting increased susceptibility to H₂O₂ mediated oxidative stress induced apoptosis [230]. These findings demonstrate translocation of CRT to the cell surface, via H₂O₂ induced oxidative stress to play an essential role in melanocyte apoptosis suggesting a relationship between apoptosis and immune responses during melanocyte destruction. Nevertheless, the relationship between CRT and ROS-induced apoptosis in melanocytes is still not fully explored. However, the defective Ca²⁺ homeostasis in vitiligo patients [90,91] certainly proposes a crucial role of CRT and thus the ER stress in vitiligo pathogenesis.

Cells under stress halt typical protein synthesis in favor of heat shock protein (HSP) and/or GRP synthesis [231,232]. In the ER, this can induce the UPR which upregulates HSPs [233]. Among larger HSPs, inducible HSP70 (HSP70i) is unique for its secretion from cells as a chaperokine [234]. The unique secretory property of HSP70i may be attributed at least in part to its cellular location, associated with melanomes [235]. HSP70i is exported by cells through the endolysosomal pathway [236]. A rise in intracellular Ca²⁺ serves as a signal for exocytosis [237].

HSP70i can stimulate proliferation and cytotoxicity of NK cells [238], and enhances leukotriene secretion by mast cells [239]. Moreover, HSP70i has shown to induce maturation and type-1 polarizing cytokine production by DCs and stimulate cross-priming of T cells [241], breaking the tolerance and inducing autoimmune mediated tissue destruction in mice [241]. Mosenson et al. [242] reported that modified HSP70i prevents T cell-mediated depigmentation. In addition, they have also shown HSP70i induces an inflammatory DC phenotype in both vitiligo mouse models as well as in vitiligo patients, which is necessary for depigmentation [242,243]. Interestingly, mutant HSP70iQ435A has been shown to prevent and reverse the depigmentation in different mouse models prone to vitiligo. These findings indicate a vital role of HSP70 in precipitation of vitiligo and targeting HSP70i might be a promising approach towards the treatment of vitiligo [242-244].

Genetic and pathophysiological studies provide strong evidence for vitiligo to be a polygenic, multifactorial disorder. The genome-wide association studies provide a partial explanation for the heritability of vitiligo but polymorphism in various candidate genes may play a crucial role in the disease phenotype, such as progression or age of onset [245]. Most vitiligo susceptibility loci encode melanocyte components, and antioxidant and immune-regulatory proteins [40,246]. For example, associations have been established between vitiligo pathogenesis and polymorphisms in tyrosinase (TYR) [247], catalase (CAT) [65], glutathione peroxidase (GPX) [65], melanocortin 1 receptor (MC1R) [248], major histocompatibility complex (MHC) [249], NACHT leucine-rich repeat protein 1 (NLRP1) [172], tumor necrosis factor A (TNFA) [29], interferon-γ (IFNG) [30], intercellular adhesion molecule-1 (ICAM1) [30], tumor necrosis factor B (TNFB) [31], superoxide dismutase (SOD) [58], cytotoxic T lymphocyte associated antigen 4 (CTLA4) [250], interleukin 4 (IL4) [28], melanocyte proliferating gene (MYGI) [251], X-box binding protein 1 (XBP1) [117], and methyltetrahydrofolate reductase (MTHFR) [252]. Both protective and susceptibility-increasing effects have been found in the case of different polymorphisms in these genes [253,254]. Interestingly, our recent study on skin miRNA profiling from non-segmental vitiligo have shown 38 differentially expressed miRNA signatures in patients [255]. In the light of the above studies, it can be proposed that ER stress could also result due to variations at genetic levels involving the genes participating in the specific pathways contributing to ER function in these patients.

Conclusions

The cross talk between oxidative stress, ER stress and autoimmunity appears crucial and may emerge as a critical aspect of vitiligo pathogenesis. The present article suggests that oxidative stress may be the initial triggering event to precipitate vitiligo, which is then exacerbated by contribution of ER and autoimmune factors together with oxidative stress. However, more detailed studies focusing on ER stress are required for understanding the major role of ER stress in oxidative stress and autoimmunity mediated pathogenesis of vitiligo. Further, delineation of the melanocyte-specific UPR would be of significance in developing and evaluating the efficacy of response modifying compounds that can be used to prevent melanocyte death in vitiligo.

References

1. Taieb A, Picardo M (2007) The definition and assessment of vitiligo: a consensus report of the Vitiligo European Task Force. Pigment Cell Res 20: 27-35.
2. Agrawal D, Sahani MH, Gupta S, Begum R (2001) Vitiligo -etiopathogenesis and therapy. J MS University of Baroda (Sci., Tech. And Med) 48: 97-106.
3. Huggins RH, Schwartz RA, Janniger CK (2005) Vitiligo. Acta Dermatovenereol Alp Panonica Adriat 14: 137–142, 144–145.
4. Taieb A, Picardo M (2009) Clinical practice. Vitiligo. N Engl J Med 360: 160–169.
5. Mehta NR, Shah KC, Theodore C, Vyas VP, Patel AB (1973) Epidemiological study of vitiligo in Surat area, South Gujarat. Indian J Med Res 61: 145-106.
6. Parsad D, Pandhi R, Dogra S, Kanwar AJ, Kumar B (2003) Dermatology life quality index score in vitiligo and its impact on the treatment outcome. Br J Dermatol 148: 373–374.
7. Noh S, Kim M, Park CO, Hann SK, Oh SH (2013) Comparison of the
psychological impacts of asymptomatic and symptomatic cutaneous diseases: vitiligo and atopic dermatitis. Ann Dermatol 25: 454-461.
8. Silverberg JI, Silverberg NB (2014) Quality of life impairment in children and adolescents with vitiligo. Pediatr Dermatol 31: 309-318.
9. Al-Shobaili HA (2014) Correlation of clinical efficacy and psychosocial impact on vitiligo patients by excimer laser treatment. Ann Saudi Med 34: 115-121.
10. Alkhaateeb A, Fain PR, Thody T, Bennett DC, Spitz RA (2003) Vitiligo and associated autoimmune diseases in Caucasian probands and their families. Pigment Cell Res 16: 208-214.
11. Boelaert K, Newby PR, Simmonds MJ, Holder RL, Carr-Smith JD, et al. (2010) Prevalence and relative risk of other autoimmune diseases in subjects with autoimmune thyroid disease. Am J Med 123: 183.
12. Shaji EM, Rasheedunnisa B (2006) Antioxidant status of segmental and non-segmental vitiligo. Pig Cell Res 19: 179-180.
13. Kostopoulos P, Jouary T, Quintard B, Ezzeddine K, Marques S, et al. (2009) Objective versus subjective factors in the psychological impact of vitiligo: the experience from a French referral centre. Br J Dermatol 161: 128-133.
14. Masahayekhi V, Javidi Z, Kifar B, Manteghi AA, Saadatian V, et al. (2010) Quality of life in patients with vitiligo: a descriptive study on 83 patients attending a PUVA therapy unit in Imam Reza Hospital, Mashad. Indian J Dermatol Venereol Leprol 76: 692.
15. Wang KY, Wang KH, Zhang ZP (2011) Health-related quality of life and marital quality of vitiligo patients in China. J Eur Acad Dermatol Venereol 25: 429-435.
16. Kemp EH, Waterman EA, Weetman AP (2001) Autoimmune aspects of vitiligo. Autoimmunity 34: 65-77.
17. Ongenae K, Van Geel N, Naeyaert JM (2003) Evidence for an autoimmune pathogenesis of vitiligo. Pig Cell Res 16: 799-806.
18. van den Boom JG, Picavet DI, van Swieten PV, van Veen HA, Konijnenberg D, et al. (2011) Skin-depigmenting agent monobenzone induces potent T-cell autoimmunity toward pigmented cells by tyrosinase haptenation and melanosome autophagy. J Invest Dermatol 131: 1240–1251.
19. Castanet J, Ortonne JP (1997) Pathophysiology of vitiligo. Clin Dermatol 15: 845-851.
20. Honda Y, Okubo Y, Koga M (1997) Relationship between levels of soluble interleukin-2 receptors and the types and activity of vitiligo. J Dermatol 24: 561-563.
21. Yu HS, Chang KL, Yu CL, Li HF, Wu MT, et al. (1997) Alterations in IL-6, IL-8, GM-CSF, TNF-alpha, and IFN-gamma release by peripheral mononuclear cells in patients with active vitiligo. J Invest Dermatol 108: 527-529.
22. Caixa T, Hongwen F, Xinan L (1999) Levels of soluble interleukin-2 receptor in the sera and skin tissue fluids of patients with vitiligo. J Dermatol Sci 21: 59-62.
23. Moretti S, Spallanzani A, Amato L, Hautmann G, Gallarini I, et al. (2002) New insights into the pathogenesis of vitiligo: Imbalance of epithelial cytokines at sites of lesions. Pigment Cell Res 15: 87-92.
24. Zailaie MZ (2005) Decreased proinflammatory cytokine production by peripheral mononuclear cells from vitiligo patients following aspirin treatment. Saudi Med J 26: 799-805.
25. Grimes PE (2004) White patches and bruised souls: advances in the pathogenesis and treatment of vitiligo. J Am Acad Dermatol 51: 55-7.
26. Inman M, Laddha NC, Dwivedi M, Mansuri MS, Singh J, et al. (2012) Interleukin-4 genetic variants correlate with its transcript and protein levels in patients with vitiligo. Br J Dermatol 167: 314-323.
27. Laddha NC, Dwivedi M, Begum R (2012) Increased Tumor Necrosis Factor (TNF)-α and its promoter polymorphisms correlate with disease progression and higher susceptibility towards vitiligo. PLoS One 7: e52298.
28. Laddha NC, Laddha NC, Shah K, Shah BJ, Begum R (2013) Involvement of interferon-gamma genetic variants and intercellular adhesion molecule-1 in onset and progression of generalized vitiligo. J Interferon Cytokine Res 33: 646-659.
29. Laddha NC, Dwivedi M, Gani AR, Mansuri MS, Begum R (2013) Tumor necrosis factor B (TNFB) genetic variants and its increased expression are associated with vitiligo susceptibility. PLoS One 8: e81736.
30. Laddha NC, Dwivedi M, Mansuri MS, Singh M, Gani AR, et al. (2014) Role of oxidative stress and autoimmunity in onset and progression of vitiligo. Exp Dermatol 23: 352-353.
31. Maresca V, Roccella M, Roccella F, Camera E, Del Porto G, et al. (1997) Increased sensitivity to peroxidative agents as a possible pathogenic factor of melanocyte damage in vitiligo. J Invest Dermatol 109: 310-313.
32. Hensley K, Robinson KA, Gabbita SP, Saltman S, Floyd RA (2000) Reactive oxygen species, cell signaling, and cell injury. Free Radic Biol Med 28: 1456-1462.
33. Nordberg J, Amrè ES (2001) Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic Biol Med 31: 1287-1312.
34. Schallreuter KU (1999) Successful treatment of oxidative stress in vitiligo. Skin Pharmacol Appl Skin Physiol 12: 132-138.
35. Bowers RR, Lujan J, Biboso A, Kriedel S, Varkey C (1994) Premature avian melanocyte death due to low antioxidant levels of protection: fowl model for vitiligo. Pigment Cell Res 7: 409-418.
36. Knight JA (1995) Diseases related to oxygen-derived free radicals. Ann Clin Lab Sci 25: 111-121.
37. Yildirim M, Baysal V, Inaloz HS, Can M (2004) The role of oxidants and antioxidants in generalized vitiligo at tissue level. J Eur Acad Dermatol Venereol 18: 683-686.
38. Laddha NC, Dwivedi M, Mansuri MS, Gani AR, Anasrullah M, et al. (2013) Vitiligo: Interplay between oxidative stress and immune system. Exp Dermatol 22: 245-250.
39. Toosi S, Orlov SJ, Manga P (2012) Vitiligo-inducing phenols activate the unfolded protein response in melanocytes resulting in upregulation of IL6 and IL8. J Invest Dermatol 132: 2691-2699.
40. Lipson KL, Fonseca SG, Umaro F (2006) Endoplasmic reticulum stress-induced apoptosis and auto-immunity in diabetes. Curr Mol Med 6: 71-77.
41. Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8: 519-529.
42. Fonseca SG, Burcin M, Gromada J, Umaro F (2009) Endoplasmic reticulum stress in beta-cells and development of diabetes. Curr Opin Pharmacol 9: 763-770.
43. Chen Y, Brandizzi F (2013) IRE1: ER stress sensor and cell fate executor. Trends Cell Biol 23: 547-555.
44. Todd DJ, Lee AH, Gimlicher LH (2008) The endoplasmic reticulum stress response in immunity and autoimmunity. Nat Rev Immunol 8: 663-674.
45. Rokos H, Beazley WD, Schallreuter KU (2002) Oxidative stress in vitiligo: photo-oxidation of pterines produces H2O2 and pterin-6-carboxylic acid. Biochem Biophys Res Commun 292: 805-811.
46. Schallreuter KU, Moore J, Wood JM, Beazley WD, Peters EM, et al. (2001) Epidermal H2O2 accumulation alters tetrahydrobiopterin (BBH4) recycling in vitiligo: identification of a general mechanism in regulation of all BBH4-dependent processes. J Invest Dermatol 116: 167-174.
47. Shaker OG, El-Tahlawi SM (2008) Is there a relationship between homocysteine and vitiligo? A pilot study. Br J Dermatol 159: 720-724.
48. Salem MM, Shalab M, Gibbons NC, Chavan B, Thornton JM, et al. (2009) Enhanced DNA binding capacity on up-regulated epidermal wild-type p53 in vitiligo by H2O2-mediated oxidation: a possible repair mechanism for DNA damage. FASEB J 23: 3790-3807.
49. Beazley WD, Gaze D, Panske A, Panzig E, Schallreuter KU (1999) Serum selenium levels and blood glutathione peroxidase activities in vitiligo. Br J Dermatol 141: 301-303.
50. Weiss N, Zhang YY, Heyrick S, Briel C, Loscalzo J (2001) Overexpression of cellular glutathione peroxidase rescues homocyst(e)ine-induced endothelial dysfunction. Proc Natl Acad Sci U S A 98: 12503-12508.
51. Wang XY, Luo YL, Wang W, Zhang Y, Chen Q, et al. (2012) Association between MTHFR A1298C polymorphism and neural tube defect susceptibility: a metaanalysis. Am J Obstet Gynecol 206: 251.
52. Chen JX, Shi Q, Wang XW, Guo S, Dai W, et al. (2014) Genetic polymorphisms
in the methyleneetrahydrofolate reductase gene (MTHFR) and risk of vitiligo in Han Chinese populations: a genotype-phenotype correlation study. Br J Dermatol 170: 1092-1099.

55. Begum R (2014) Methylenetetrahydrofolate reductase (MTHFR): could it be a small piece in vitiligo jigsaw puzzle? Br J Dermatol 170: 1099-1010.

56. Koca R, Armutcu F, Altintazar HC, Gürel A (2004) Oxidant-antioxidant enzymes and lipid peroxidation in generalized vitiligo. Clin Exp Dermatol 29: 406-409.

57. Sravani PV, Babu NK, Gopal KV, Rao GR, Rao AR, et al. (2009) Determination of oxidative stress in vitiligo by measuring superoxide dismutase and catalase levels in vitiliginous and non-vitiliginous skin. Indian J Dermatol Venerol Leprol 75: 288-271.

58. Laddha NC, Dwivedi M, Gani AR, Shahjami EM, Begum R (2013) Involvement of superoxide dismutase isoenzymes and their genetic variants in progression of and higher susceptibility to vitiligo. Free Radic Biol Med 65: 1110-125.

59. Bhawan J, Bhutani LK (1983) Keratinocyte damage in vitiligo. J Cutan Pathol 10: 207-212.

60. Bosey RE, Liu YY, Medrano EE, Nordlund JJ (1991) Structural aberration of the rough endoplasmic reticulum and melanosome compartmentalization in long-term cultures of melanocytes from vitiligo patients. J Invest Dermatol 97: 395-404.

61. Moellmann G (1992) Keratinocytes in vitiligo. J Invest Dermatol 99: 665.

62. Tobin DJ, Swanson NN, Pittelkow MR, Peters EM, Schallreuter KU (2000) Melanocytes are not absent in lesional skin of long duration vitiligo. J Pathol 191: 407-416.

63. Kops GJ, Dansen TB, Polderman PE, Saarloos I, Wirtz KW, et al. (2002) Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress. Nature 419: 316-321.

64. Hasse S, Laddha NC, Chatterjee S, Gani AR, Malek RA, et al. (2007) Association of catalase T/C exon 9 and glutathione peroxidase codon 200 polymorphisms in relation to their activities and oxidative stress with vitiligo susceptibility in Gujarat population. Pigment Cell Res 20: 405-407.

65. Dell’Anna ML, Urbanelli S, Mastrofrancesco A, Camera E, Iacovelli P, et al. (2004) Alterations of mitochondria in peripheral blood mononuclear cells of vitiligo patients. Pigment Cell Res 16: 553-559.

66. Halliwell B, Gutteridge JM, Cross CE (1992) Free radicals, antioxidants, and peroxidation of catalase T/C exon 9 and glutathione peroxidase activities and nitrate levels in vitiligo patients. Int J Dermatol 31: 598-602.

67. Dammak I, Boudaya S, Ben Abdallah F, Turki H, Attia H, et al. (2009) Reactive oxygen species, calcium imbalance, or what else? Exp Dermatol 17: 110-115.

68. Hazneci E, Karabulut AB, Özdalayır C, batıoğlu YK, Doğanak G, et al. (2005) A comparative study of superoxide dismutase, catalase, and glutathione peroxidase activities and nitrate levels in vitiligo patients. Int J Dermatol 44: 638-640.

69. Jain D, Misra R, Kumar A, Jaiswal G (2008) Levels of malondialdehyde and reactive oxygen species in the blood of patients with vitiligo of age group 11-20 years. Indian J Physiol Pharmacol 52: 297-301.

70. Elwary SM1, Headley K, Schallreuter KU (1997) Calcium homeostasis influences epidermal sweating in patients with vitiligo. Br J Dermatol 137: 81-85.

71. Elwary SM1, Elwary SM, Gibbons NC, Rokos H, Wood MJ (2004) Activation/deactivation of acetylcholinesterase by H2O2: more evidence for oxidative stress in vitiligo. Biochem Biophys Res Commun 315: 502-508.

72. Schallreuter KU, Elwary SM, Gibbons NC, Rokos H, Wood MJ (2004) Activation/deactivation of acetylcholinesterase by H2O2: more evidence for oxidative stress in vitiligo. Biochem Biophys Res Commun 315: 502-508.

73. Schallreuter KU, Wittkopp MP (1988) Defective calcium uptake in keratinocyte cell cultures from vitiliginous skin. J Biol Chem 263: 25692-25705.

74. Schallreuter KU, Wittkopp MP, Butchner G, Swanson N, et al. (1996) Increased monoamine oxidase A activity in the epidermis of patients with vitiligo. Arch Dermatol Res 288: 299-305.

75. Bars H (1989) Modulation of melanocytic activity by acetylcholine. Acta Anat (Basel) 136: 139-141.

76. Elwary SM1, Headley K, Schallreuter KU (1997) Calcium homeostasis influences epidermal sweating in patients with vitiligo. Br J Dermatol 137: 81-85.

77. Schroder M, Kaufman RJ (2005) ER stress and the unfolded protein response. Semin Cell Dev Biol 18: 716-731.

78. Elwary SM1, Elwary SM, Gibbons NC, Rokos H, Wood MJ (2004) Activation/deactivation of acetylcholinesterase by H2O2: more evidence for oxidative stress in vitiligo. Biochem Biophys Res Commun 315: 502-508.

79. Shajil EM, Marfatia YS, Begum R (2006) Acetylcholine esterase levels in the blood of vitiligo patients. Arch Dermatol Res 298: 289-291.

80. Circo ML, Ay TW (2010) Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med 48: 749-762.

81. Fulda S, Gorman AM, Horii O, Samali A (2010) Cellular stress responses: cell survival and cell death. Int J Cell Biol 2010: 214074.

82. Schallreuter KU, Wittkopp MP (1988) Defective calcium uptake in keratinocyte cell cultures from vitiliginous skin. Arch Dermatol Res 280: 137-139.

83. Schallreuter KU, Wittkopp MP, Butchner G, Swanson N, et al. (1996) Increased monoamine oxidase A activity in the epidermis of patients with vitiligo. Arch Dermatol Res 288: 14-18.

84. Schallreuter KU, Wittkopp MP, Butchner G, Swanson N, et al. (1996) Increased monoamine oxidase A activity in the epidermis of patients with vitiligo. Arch Dermatol Res 288: 14-18.
107. Galardi E, Mehregan AH, Hashimoto K (1993) Ultrastructural study of vitiligo.

106. Moellmann G, Klein-Angerer S, Scollay DA, Nordlund JJ, Lerner AB (1982)

105. Le Poole IC, Boissy RE, Sarangarajan R, Chen J, Forristal JJ, et al. (2000)

104. Le Poole C, Boissy RE (1997) Vitiligo. Semin Cutan Med Surg 16: 3-14.

102. Won SJ, Ki YS, Chung KS, Choi JH, Bae KH, et al. (2010) 3α,23-

101. Fischer H, Koenig U, Eckhart L, Tschachler E (2002) Human caspase 12 has

100. Pallepati P, Averill-Bates DA (2011) Activation of ER stress and apoptosis by

99. Min SK, Lee SK, Park JS, Lee J, Paeng JY, et al. (2008) Endoplasmic reticulum stress is involved in hydrogen peroxide induced apoptosis in immortalized and malignant human oral keratinocytes. J Oral Pathol Med 37: 490-498.

106. Moellmann G, Klein-Angerer S, Scollay DA, Nordlund JJ, Lerner AB (1982)

105. Le Poole IC, Boissy RE, Sarangarajan R, Chen J, Forristal JJ, et al. (2000)

104. Le Poole C, Boissy RE (1997) Vitiligo. Semin Cutan Med Surg 16: 3-14.

102. Won SJ, Ki YS, Chung KS, Choi JH, Bae KH, et al. (2010) 3α,23-

101. Fischer H, Koenig U, Eckhart L, Tschachler E (2002) Human caspase 12 has

100. Pallepati P, Averill-Bates DA (2011) Activation of ER stress and apoptosis by

99. Min SK, Lee SK, Park JS, Lee J, Paeng JY, et al. (2008) Endoplasmic reticulum stress is involved in hydrogen peroxide induced apoptosis in immortalized and malignant human oral keratinocytes. J Oral Pathol Med 37: 490-498.

106. Moellmann G, Klein-Angerer S, Scollay DA, Nordlund JJ, Lerner AB (1982)

105. Le Poole IC, Boissy RE, Sarangarajan R, Chen J, Forristal JJ, et al. (2000)

104. Le Poole C, Boissy RE (1997) Vitiligo. Semin Cutan Med Surg 16: 3-14.

102. Won SJ, Ki YS, Chung KS, Choi JH, Bae KH, et al. (2010) 3α,23-

101. Fischer H, Koenig U, Eckhart L, Tschachler E (2002) Human caspase 12 has

100. Pallepati P, Averill-Bates DA (2011) Activation of ER stress and apoptosis by

99. Min SK, Lee SK, Park JS, Lee J, Paeng JY, et al. (2008) Endoplasmic reticulum stress is involved in hydrogen peroxide induced apoptosis in immortalized and malignant human oral keratinocytes. J Oral Pathol Med 37: 490-498.
tyrosinase and gp100 in vitiligo by the use of high-molecular-histocompatibility complex/peptide tetramers: the role of cellular immunity in the etiopathogenesis of vitiligo. J Invest Dermatol 117: 326-332.

143. Kemp EH, Gawrjakod DJ, Watson PF, Weetman AP (1998) Autoantibodies to human melanocyte-specific protein pmel17 in the sera of vitiligo patients: a sensitive and quantitative radiomunocassay (RIA). Clin Exp Immunol 114: 333-338.

144. Kemp EH, Waterman EA, Gawrjakod DJ, Watson PF, Weetman AP (1998) Autoantibodies to tyrosinase-related protein-1 detected in the sera of vitiligo patients using a quantitative radiobinding assay. Br J Dermatol 139: 795-805.

145. Hearing VJ (1999) Biochemical control of melanogenesis and melanosomal organization. J Invest Dermatol Symp Proc 4: 24-28.

146. Pradhan V, Patwardhan M, Thakkar V, Khopkar U, et al. (2013) Vitiligo patients from India (Mumbai) show differences in clinical, demographic and autoantibody profiles compared to patients in western countries. J Eur Acad Dermatol Venereol 27: 279-286.

147. Hedstrand H, Ekwall O, Olsson MJ, Landgren E, Kemp EH, et al. (2001) The unfolded protein response in primary Sjögren’s syndrome is associated with immune activation in ex vivo cultured lymphocytes. Arthritis Rheum 44: 1078-1080.

148. Naughton GK, Reggiardo D, Bystyn JC (1986) Correlation between vitiligo antibodies and extent of depigmentation in vitiligo. J Am Acad Dermatol 15: 978-981.

149. Paner E, Cresswell P (1998) Mechanisms of MHC class I-restricted antigen processing. Annu Rev Immunol 16: 323-358.

150. Casp CB, She JX, McCormack WT (2003) Genes of the LMP/TAP cluster. Curr Opin Immunol 15: 492-499.

151. Ulianich L, Terrazzano G, Annunziatella M, Ruggiero G, Beguinot F, et al. (1996) Identification of an immunodominant viral peptide that is endogenously bound to the stress protein gp96. Proc Natl Acad Sci U S A 93: 6135-6139.

152. Lammert E, Arnold D, Nijenhuis M, Momburg F, Hämmerling GJ, et al. (1997) TAP-translocated peptides specifically bind proteins transitioning in the endoplasmic reticulum, including gp96, protein disulfide isomerase and calreticulin. Eur J Immunol 27: 2441-2449.

153. Deniaud A, Sharaf el dein O, Maillier E, Poncet D, Kroemer G, et al. (2008) Calnexin functions as an endoplasmic reticulum exitosome in nonviral hemagglutination. J Biol Chem 283: 18615-18629.

154. Bassiouny DA, Shaker O (2011) Role of interleukin-17 in the pathogenesis of vitiligo. Clin Exp Dermatol 36: 292-297.

155. Wang S, Zhou M, Lin F, Liu D, Hong W, et al. (2014) Interferon-β induces senescence in normal human melanocytes. PLoS One 9: e93232.

156. Natarajan VT, Ganju P, Singh A, Vijayan V, Kirby K, et al. (2014) IFN-γ signaling maintains skin pigmentation homeostasis through regulation of melanosome maturation. Proc Natl Acad Sci U S A 111: 2301-2306.

157. Yohn JJ, Critelli M, Lyons MB, Norris DA (1990) Modulation of melanocyte intercellular adhesion molecule-1 by immune cytokines. J Invest Dermatol 95: 233-237.

158. al Badri AM, Foulis AK, Todd PM, Girouxch JJ, Gudjonde JE, et al. (1993) Abnormal expression of MHC class II and ICAM-1 by melanocytes in vitiligo. J Pathol 169: 203-206.

159. Park YJ, Yoo SA, Kim WU (2014) Role of endoplasmic reticulum stress in health and disease. Curr Opin Cell Biol 26: 444-452.

160. Gordon TP, Bolstad AI, Rischmueller M, Jonsson R, Waterman SA (2001) Autoantibodies in primary Sjögren’s syndrome: new insights into mechanisms of autoantibody diversification and disease pathogenesis. Autoimmunity 34: 123-132.

161. Xue X, Piao JH, Nakajima A, Sakon-Komazawa S, Kojima Y, et al. (2005) Increased expression of tumor necrosis factor alpha (TNFα) induces the unfolded protein response.
206. Oyadomari S, Mori M (2008) The role for endoplasmic reticulum stress in diabetes mellitus. Endocr Rev 29: 42-61.
205. Laddha NC, Dwivedi M, Mansuri MS, Singh M, Patel HH, et al. (2014) Endoplasmic reticulum stress contributes to beta cell apoptosis in type 2 diabetes. Diabetologia 50: 752-763.
204. Cardozo AK, Ortis F, Storling J, Feng YM, Rasschaert J, et al. (2005) Cytokines downregulate the sarcoplasmic reticulum Ca2+-ATPase expression in skeletal muscle. Biochem J 380: 605-616.
203. Goodall JC, Wu C, Zhang Y, McNeill L, Ellis L, et al. (2010) Endoplasmic reticulum stress pathway. Proc Natl Acad Sci U S A 107: 10845-10850.
202. Kolls JK, Lindén A (2004) Interleukin-17 family members and inflammation. Immunity 21: 487-476.
201. Moretti S, Fabbi P, Baroni G, Berti S, Bani D, et al. (2009) Keratinocyte dysfunction in epidermal epidermises: cytokine microenvironment and correlation to keratinocyte apoptosis. Histol Histopathol 24: 849-857.
200. Oyadomari S, Takeda K, Takiguchi M, Gotoh T, Matsumoto M, et al. (2001) Nitric oxide-induced apoptosis in pancreatic beta cells is mediated by the endoplasmic reticulum stress pathway. Proc Natl Acad Sci U S A 98: 10845-10850.
199. Cullinan SB, Diehl JA (2004) PERK-dependent activation of Nrf2 contributes to redox homeostasis and cell survival following endoplasmic reticulum stress. J Biol Chem 279: 1908-20117.
198. Cullinan SB, Diehl JA (2004) PERK-dependent activation of Nrf2 contributes to redox homeostasis and cell survival following endoplasmic reticulum stress. J Biol Chem 279: 1908-20117.
197. Lin KI, Angelin-Duclos C, Kuo TC, Calame K (2002) Blimp-1-dependent degradation of the BCL-6 transcription factor. Genes Dev 16: 2573-2584.
196. Iwakoshi NN, Pypaert M, Glimcher LH (2007) The transcription factor XBP-1 downstream of Blimp-1, expands the secretory apparatus and other organelles, and increases protein synthesis in plasma cell differentiation. Immunity 21: 81-93.
195. Reimold AM, Ponath PD, Li YS, Hardy RR, David CS, et al. (1996) Transcription factor B cell lineage-specific activator protein regulates the gene for human X-box-binding protein 1. J Exp Med 183: 393-401.
194. Shaffer AL, Shapiro-Shelef M, Iwakoshi NN, Lee AH, Qian SB, et al. (2004) Ecto-5’-nucleotidase-sensitive T cell death receptor pathway through IRE1alpha-mediated NF-kappaB activation and redox homeostasis and cell survival following endoplasmic reticulum stress. J Biol Chem 279: 1908-20117.
193. Niu H, Ye BH, Dalla-Favera R (1998) Antigen receptor signaling induces MAP kinase-mediated phosphorylation and degradation of the BCL-6 transcription factor. Genes Dev 12: 1953-1961.
192. Shaffer AL, Shapiro-Shelef M, Iwakoshi NN, Lee AH, Qian SB, et al. (2004) Activation of the Akt-NF-kappaB pathway by subtilase cytotoxin through the death receptor pathway through IRE1alpha-mediated NF-kappaB activation and redox homeostasis and cell survival following endoplasmic reticulum stress. J Biol Chem 279: 1908-20117.
191. Shaffer AL, Shapiro-Shelef M, Iwakoshi NN, Lee AH, Qian SB, et al. (2004) Activation of the Akt-NF-kappaB pathway by subtilase cytotoxin through the death receptor pathway through IRE1alpha-mediated NF-kappaB activation and redox homeostasis and cell survival following endoplasmic reticulum stress. J Biol Chem 279: 1908-20117.
190. Zhang K, Wong HN, Song B, Miller CN, Scheuner D, et al. (2005) The unfolded protein response sensor IRE1alpha is required at 2 distinct steps in B cell lymphopoiiesis. J Clin Invest 115: 286-291.
189. Laybutt DR, Preston AM, Akerfeldt MC, Kench JG, Busch AK, et al. (2007) Endoplasmic reticulum stress contributes to beta cell apoptosis in type 2 diabetes. Diabetologia 50: 752-763.
188. Ezirik DL, Cardozo AK, Cnop M (2008) The role for endoplasmic reticulum stress accumulation by TNFalpha. J Biol Chem 283: 33917-33925.
187. Bui M, Panter J, Ganesan A, Leong K, Koh W, et al. (2009) Ecto-5’-nucleotidase-sensitive T cell death receptor pathway through IRE1alpha-mediated NF-kappaB activation and redox homeostasis and cell survival following endoplasmic reticulum stress. J Biol Chem 279: 1908-20117.
186. Iwakoshi NN, Pypaert M, Glimcher LH (2007) The transcription factor XBP-1 is essential for the development and survival of dendritic cells. J Exp Med 204: 2267-2275.
185. Goodall JC, Wu C, Zhang Y, McNeill L, Ellis L, et al. (2010) Endoplasmic reticulum stress-mediated transcription factor, CHOP, is crucial for dendritic cell IL-12 expression. Proc Natl Acad Sci U S A 107: 17698-17703.
184. Reimold AM, Ponath PD, Li YS, Hardy RR, David CS, et al. (1996) Transcription factor B cell lineage-specific activator protein regulates the gene for human X-box-binding protein 1. J Exp Med 183: 393-401.
183. Yamazaki H, Hiramatsu N, Hayakawa K, Tagawa Y, Okamura M, et al. (2009) Activation of the Akt-NF-kappaB pathway by subtilase cytotoxin through the ATF6 branch of the unfolded protein response. J Immunol 183: 1480-1487.
182. Del Cid N, Jeffery E, Rizvi SM, Stamer E, Peters LR, et al. (2010) Modes of caiiretulin recruitment to the major histocompatibility complex class I assembly pathway. J Biol Chem 285: 4520-4535.
181. Gardai SJ, McPhillips KA, Frasch SC, Janssen WJ, Starefeldt A, et al. (2005) Cell-surface caiiretulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell 123: 321-334.
180. Porcelli S, Traggiae I, Schenk U, Ferrera D, Matteoli M, et al. (2006) Regulation of peripheral T cell activation by caiiretulin. J Exp Med 203: 461-471.
179. Wang S1, Kaufman RJ (2012) The impact of the unfolded protein response on human disease. J Cell Biol 197: 857-867.
178. Donnelly S, Roake W, Brown S, Young P, Naik H, et al. (2006) Impaired recognition of apoptotic neutrophils by the C1q/caiiretulin and CD91 pathway in systemic lupus erythematosus. Arthritis Rheum 54: 1543-1556.
177. Bogal V, Zhang L, Krajeski S, Ruoslahti E (2008) Mitochondrial-cell/surface protein 332/pc1qR as a molecular target in tumor cells and tumor stroma. Cancer Res 68: 7210-7218.
176. Del Cid N, Jeffery E, Rizvi SM, Stamper E, Peters LR, et al. (2010) Modes of caiiretulin recruitment to the major histocompatibility complex class I assembly pathway. J Biol Chem 285: 4520-4535.
175. Zhang Y, Liu L, Jin L, Yi X, Deng E, et al. (2014) Oxidative stress-induced caiiretulin expression and translocation: new insights into the destruction of melanocytes. J Invest Dermatol 134: 183-191.
174. Panaretakis T, Laane E, Pekovskaja K, Björklund AC, Moustakas A, et al. (2005) Doxorubicin requires the sequential activation of caspase-2, protein kinase Cdelta, and c-Jun NH2-terminal kinase to induce apoptosis. Mol Biol Cell 16: 3821-3831.
173. Obied M, Tesniere A, Panaretakis T, Tuñ R, Jozza N, et al. (2007) Etc-aiiretulin in immunogenic chemotherapy. Immuno Rev 220: 22-34.
172. Perez CA, Fu A, Onisho H, Hallahan DE, Geng L (2009) Radiation induces an antitumour immune response to mouse melanoma. J Invest Dermatol 134: 183-191.
231. Welch WJ (1993) Heat shock proteins functioning as molecular chaperones: their roles in normal and stressed cells. Philos Trans R Soc Lond B Biol Sci 339: 327-333.

232. Jansen G, Määttänen P, Denisov AY, Scarffe L, Schade B, et al. (2012) An interaction map of endoplasmic reticulum chaperones and foldases. Mol Cell Proteomics 11: 710-723.

233. Gardner BM, Pincus D, Gotthardt K, Gallagher CM, Walter P (2013) Endoplasmic reticulum stress sensing in the unfolded protein response. Cold Spring Harb Perspect Biol 5: a013169.

234. Vega VL, Rodríguez-Silva M, Frey T, Gehrmann M, Diaz JC, et al. (2008) Proteomic and bioinformatic characterization of the biogenesis and function of melanosomes. J Proteome Res 7: 3135-3144.

235. Chi A, Valencia JC, Hu ZZ, Yamaguchi H, et al. (2006) Heat shock protein 70 is secreted from tumor cells by a nonclassical pathway involving lysosomal endosomes. J Immunol 177: 7849-7857.

236. Mambula SS, Calderwood SK (2006) Heat shock protein 70 translocates into the plasma membrane after stress and is released into the extracellular environment in a membrane-associated form that activates macrophages. J Immunol 180: 4299-4307.

237. Johnson JD, Flesher M (2006) Releasing signals, secretory pathways, and function of endogenous extracellular heat shock protein 72. J Leukoc Biol 79: 425-434.

238. Nicchitta CV (2003) Re-evaluating the role of heat-shock protein-peptide interactions in tumour immunity. Nat Rev Immunol 3: 427-432.

239. Multhoff G (2009) Activation of natural killer cells by heat shock protein 70. Int J Hyperthermia 25:169-175.

240. Kammerer R, Stober D, Riedl P, Oehninger C, Schirmbeck R, et al. (2012) Role of oxidoemediation in tumour immunity. Nat Rev Immunol 3: 427-432.

241. Miller DG, Garza KM, Oelford B, Elford AR, Ono N, et al. (2003) Hsp70 promotes antigen-presenting cell function and converts T-cell tolerance to autoimmunity in vivo. Nat Med 9: 1469-1476.

242. Mosenson JA, Zloza A, Klarquist J, Barfuss AJ, Guevara-Patino JA, et al. (2012) HSP70 is a critical component of the immune response leading to vitiligo. Pigment Cell Melanoma Res 25: 88-96.

243. Mosenson JA, Zloza A, Nieland JD, Garrett-Mayor E, Eby JM, et al. (2013) Mutant HSP70 reverses autoimmunity deplegmatization in vitiligo. Sci Transl Med 5: 174ra28.

244. Mansuri MS, Singh M, Dwivedi M, Laddha NC, Marfatia YS, et al. (2014) Could ER Stress Be A Major Link Between Oxidative Stress And Autoimmunity In Vitiligo?. Pigmentary Disorders 1: 123. doi:10.4172/2376-0427.1000123
278. Tsutsui H, Kinugawa S, Matsushima S (2011) Oxidative stress and heart failure. Am J Physiol Heart Circ Physiol 301: H2181-2190.

279. Minamino T, Kitakaze M (2010) ER stress in cardiovascular disease. J Mol Cell Cardiol 48: 1105-1110.

280. Almenier HA, Al Menshawy HH, Maher MM, Al Gamal S (2012) Oxidative stress and inflammatory bowel disease. Front Biosci (Elite Ed) 4: 1335-1344.

281. Niederreiter L, Kaser A (2011) Endoplasmic reticulum stress and inflammatory bowel disease. Acta Gastroenterol Belg 74: 330-333.

282. Wen Z, Fiocchi C (2004) Inflammatory bowel disease: autoimmune or immune-mediated pathogenesis? Clin Dev Immunol 11: 195-204.