Materials Research Express

PAPER

Synthesis, structural and thermal characterization of silica glasses containing BaO, SrO and ZnO oxides

Kamel Atamnia1,2 E, Soufyane Satha2, Hamid Satha2 and Maurice François Gonon3

1. Département de Génie des Procédés, Université Mohammed Seddik Benyahia, Jijel, Algérie
2. Laboratoire LSPN, Université 8 mai 1945 Guelma, BP 401, Guelma 24000, Algeria
3. Research Institute for Materials Science and Engineering, University of Mons, 56, rue de l’Epargne, 7000 Mons, Belgium

E-mail: k_atamnia2002@hotmail.fr

Keywords: glass, glass transition temperatures (Tg), network modifier oxides, differential scanning calorimetric analysis (DSC)

Abstract

Alternatives to lead crystal glass were initially selected from CD-ROM ‘interglad’ data, and then elaborated. These samples have properties closer to those of conventional lead crystal, are completely lead free. In this study, vitrifiable mixtures based on silicon, barium, strontium and zinc oxides were melted at 1450 °C, annealed at 580 °C, and characterized by x-ray diffraction, infrared spectroscopy, Raman spectroscopy and Calorimetric Thermal Analysis (DSC). X-ray diffraction confirms the amorphous character of all investigated glasses. The vibration bands are identified by infrared and Raman spectroscopy. These results highlight the influence of glass composition on structural properties. The glass transition temperatures (Tg) were determined by differential scanning calorimetric analysis (DSC). The obtained results vary from 546.8 °C to 632.6 °C, confirming the effect of the composition on the thermal properties.

1. Introduction

Crystal glass is made up mainly of lead and silica. The insertion of lead in crystal glass composition poses many problems related to public health and respect for the environment [1]. To overcome this inconvenience, alternatives to lead crystal have been proposed [2–4].

Based on the CD-rom ‘interglad’ data [3], compositions contain barium, strontium and zinc oxides were chosen. The samples were developed in a previous work [3], in which showed properties close to those of traditional lead crystal (refractive index, density, microhardness, thermal expansion and viscosity) have been taken up and studied in this present work.

The introduction of these oxides into crystal glass composition makes understanding their effects necessary to develop an alternative to lead crystal.

An industrial silica glass consists of three types of oxides: network formers, network modifiers and intermediates [6]. The last category can behave as a network former or a network modifier. In soda-lime glasses, it is commonly understood that alkaline earths M2+ and alkaline M+ metal ions modify the silicate glass network by introducing non-bridging oxygens (NBO). The intermediate oxides include Al\textsubscript{2}O\textsubscript{3} [7]. To understand the exact role of such oxide on the structural and thermal properties of a glass, it is necessary to consider all the constituting oxides present in the vitrifiable mixture. Thus, when adding Al\textsubscript{2}O\textsubscript{3} in a glass containing M2+ or M+ ions, the Al3+ ions mainly forms [AlO\textsubscript{4}]+tetrahedronsif (M2+ + M+)/Al\textsubscript{2}O\textsubscript{3} ratio is much greater than 1 [8]. Under these conditions, Al\textsubscript{2}O\textsubscript{3} is a network formers. Conversely, for lower ratios, Al\textsubscript{2}O\textsubscript{3} behave as a network modifier.

The three oxides investigated in the present work (i.e. BaO, SrO and ZnO) are classified as intermediate and network modifiers [9].

ZnO acts in the same way than Al\textsubscript{2}O\textsubscript{3} [10]. When associated to low alkaline ions fractions in the vitrifiable mixture, Zn2+ is a modifying ion by creating two non-bridging oxygens.

© 2020 The Author(s). Published by IOP Publishing Ltd
On the other hand, if there are enough of alkaline ions, Zn$^{2+}$ can be placed in tetrahedral position and then acts as a network former [11, 12]. Valences equilibrium is provided by two neighboring alkaline ions. In high silica and alumina content glasses, some authors report that zinc oxide acts as a network former from an amount of 10% by mass [13].

BaO [14] and SrO [15, 16] are alkaline earths modifier oxides. In the presence of alkaline oxides, BaO as a strong melting effect and promotes the formation of a liquid phase below 1000 °C [17]. At high content (14% by weight), it causes anomalies in glass viscosity as well as in the temperature of dilatometric softening [18]. This oxide improves the ability of glass formation and gives good optical properties [19]. The corrosion of glasses (expressed as weight loss) is increased by SrO content [20].

The objective of this work is to synthesis new silica glasses containing BaO, SrO and ZnO oxides and highlight the effects of these oxides on the structural and thermal properties of these materials. This work aims at completing previous study on this family of glasses [21].
2. Materials and experimental methods

Glass samples were prepared from chemically pure grade reagents. The chemicals included SrO, BaO, K$_2$O and Na$_2$O were introduced in the form of their respective anhydrous carbonates, while SiO$_2$, Al$_2$O$_3$, ZnO and As$_2$O$_3$ were introduced under oxide form. All raw materials were purchased from Aldrich and used without further purification.

Vitrifiable mixtures were melted in platinum crucibles at 1450 °C for 4 h, then resulting glasses are annealed at 580 °C for 2 h, after that the furnace was cooled down to room temperature. Two series of fusion A and B were realized. Five (05) compositions were retained for each fusion A (A$_1$, A$_2$, A$_3$, A$_4$ and A$_5$), B (B$_1$, B$_2$, B$_3$, B$_4$ and B$_5$) as shown in tables 1 and 2.

Figure 2. X-ray diffraction patterns of series B.

Figure 3. IR spectra (Transmittance) of series A.
3. Experimental methods

X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy were used for the structural characterization. The differential scanning calorimetric (DSC) was applied for thermal characterization.

4. Results and discussions

4.1. X-ray diffraction

The x-ray analyses of the samples after melting at 1450 °C were realized on a Bruker type diffractometer (λ_{Cu Kα} = 1.5418 Å, 40 KV, 30 mA, 2θ from 10 to 70° with a rate of two (2°) degrees per minute).

The x-ray diffraction patterns are presented in figures 1 and 2. None of those patterns show diffraction peaks that could be associated to any crystalline phase. The wide bumps centered at 2θ ≈ 27–29° highlight the amorphous nature of all the samples.

Figure 4. IR spectra (Transmittance) of series B.

Figure 5. Raman spectra of series A.
4.2. Infrared spectroscopy
Fourier Transform Infrared Spectrometry (FTIR) was operated thanks to a SHIMADZU IR Affinity Spectrophotometer. Figures 3 and 4 show the IR spectra collected on series A and B respectively.

The infrared spectra of synthesized glasses are mainly similar. The most important changes are in the 600–1300 cm\(^{-1}\) frequency range (see the insets in figures 3 and 4).

Two absorption bands of low intensity situated at about 2850 and 2920 cm\(^{-1}\) are attributed to the hydrogen bonds in the glass network; some authors think that these bands are characteristic of soda-lime glasses, although they do not exist in all of our samples\(^{[22]}\).

The two doublets observed in the neighborhood of 2346–2374 cm\(^{-1}\) and 1510–1555 cm\(^{-1}\) are associated to the hydroxyl (OH) bonds formed on the non-bridging oxygen sites\(^{[23, 24]}\). Vibration frequencies in the 750–770 cm\(^{-1}\) region may be due to the presence of Si-O-Zn bonds\(^{[25]}\). The band between 1030–1050 cm\(^{-1}\) is attributed to Si-O-Na\(^+\) (NBO) bond stretching vibrations\(^{[26]}\). The bands at about 600–850 cm\(^{-1}\) and
950–1200 cm\(^{-1}\) are attributed to the symmetric and asymmetric stretching vibrations of Si-O-(Si, Al) bonds respectively [27].

In barium strontium titanate borosilicate glasses doped with La\(_2\)O\(_3\), the authors remark the effect of BaO/SrO ratio in bands position and intensity. The bands situated in 2853–2924 and 2340–2365 cm\(^{-1}\) remain unaffected. Absorption band at around 983 cm\(^{-1}\) is attributed to a stretching vibration of B-O-Si [28].

4.3. Raman spectroscopy

The Raman specters were obtained on a Jobin Yvon T64000 spectrophotometer coupled with an Olympus confocal microscope. The excitation source is a laser ionized by argon (principal ray equal 514.5 nm, power 400 mW), equipped by CCD detector and refrigerated with liquid nitrogen.

The specters are shown in figures 5 and 6. The band at 470 cm\(^{-1}\) is attributed to the symmetric stretching vibration of bridging oxygens in the glass network (Q\(^4\)); this band corresponds to high SiO\(_2\)/(Na\(_2\)O + K\(_2\)O)

Glass n°	T\(_g\) (°C)
A1	588.6
A2	546.8
A3	598.4
A4	590.6
A5	552.8

Table 4. The glass transition temperature (T\(_g\)) of series B.

Glass n°	T\(_g\) (°C)
B1	632.6
B2	595.5
B3	622.0
B4	606.1
B5	569.3

Figure 8. DSC curves of Series B.
The in electric furnaces.

characterization techniques. thus the structural evolution as a function of the content of these oxides.

Remark 1. The authors gratefully acknowledge

Acknowledgments

A dozen of lead free crystal glass compositions containing BaO, SrO and ZnO oxides were successfully synthesized by conventional melting method in platinum crucibles at 1450 °C, then annealed at 580 °C for 2 h in electric furnaces.

The peak at about 780 cm⁻¹ is due to the presence of BaO [31], it becomes less important with the decrease of this oxide (A₄, A₅).

The band between 1150 and 1200 cm⁻¹ is due to the Q⁴ species of vitreous silica [32]. The peak at 1100 cm⁻¹ is attributed to the stretching modes of Si-O bond in Q³ species of silica glass [33]. The interval between 980–1000 cm⁻¹ is attributed to the stretching vibrations of the Si-O bond in Q² species [34]. The band between 900–950 cm⁻¹ is due to the symmetrical stretching vibrations of Q¹ species [35]. The band at 800–880 cm⁻¹ is due to the symmetrical stretching vibrations of Q⁰ species (monomers) [36].

In barium strontium titanate borosilicate glasses doped with ferric oxide, A. K. Yadava & C. R. Gautam fined the symmetric stretching vibrations of Si-O in Q⁷ in the range 988–998 cm⁻¹. The band between 1006 and 1037 cm⁻¹ is attributed to of Q⁷ units, while the peak in range 1207–1212 cm⁻¹ has been attributed to stretching vibrations of Q⁴ group [19].

4.4. Differential scanning calorimetry (DSC)

Glass transition temperature (Tg) was measured by differential scanning calorimetry (DSC) method combined with thermogravimetry (TG) at the heating rate 10 °C min⁻¹. Figures 7 and 8 show the curves obtained by DSC type NETZSCH STA 449 F3 Jupiter. Glass powder samples weighing 240 mg. The results are presented in tables 3 and 4 [37, 38].

In general, the glass transition temperature (Tg) is variable for each series. It extends in temperature range named transition interval; it mainly depends on heating rate and chemical composition of glass. This parameter corresponds to viscosity value of approximately 10¹³ poise. In pure silica glasses, the glass transition temperature (Tg) is around 1100 °C [39]. For the studied compositions, this parameter is much smaller; because these materials contain significant quantities of melting oxides. The transition interval varies from 546.8 °C to 632.6 °C like as shown in tables 3 and 4. We will have two remarks to mention.

Remark 1.

The samples (B₁, A₄ and A₅) show a decrease in (Tg) temperature with increasing of SrO content. The evolution of glass transition temperature (Tg) is inversely proportional with fluxing oxides quantities (A₃, A₄, A₅). When the fluxing oxides content is practically stable (A₄ and A₅); the subtraction even a small amount of ZnO decreases rapidly (Tg). The insertion of a small quantity of ZnO into the vitrifiable mixtures (A₂, A₃ and A₄) increases rapidly (Tg).

Remark 2.

The molar ratio: C = ZnO/BaO is the mainly parameter that influences the transition temperatures of the elaborated glasses [40]; if C > 1, the evolution is proportional with Tg (B₁, B₄). However, when C < 1; the variation is inversely proportional to Tg (A₃, B₂ and B₃).

In small quantities in front of ZnO, barium oxide has the property to create non-bridging oxygens [41]. It can then play the role of a network modifier.

5. Conclusion

A dozen of lead free crystal glass compositions containing BaO, SrO and ZnO oxides were successfully synthesized by conventional melting method in platinum crucibles at 1450 °C, then annealed at 580 °C for 2 h in electric furnaces.

The influence of composition on structural and thermal properties of glasses was implemented by various characterization techniques.

Indeed, x-ray diffraction, infrared and Raman spectroscopies showed the amorphous nature of all glasses, thus the structural evolution as a function of the content of these oxides.

The glass transition temperatures were calculated from calorimetric thermal analysis curves (DSC) confirm the influence of composition on thermal properties of glasses ranging from 546.8 °C to 632.6 °C.

Acknowledgments

The authors gratefully acknowledge (la Direction Générale de la Recherche Scientifique et du développement Technologique, Algérie) DGRSDT for their support in this work.
ORCID iDs

Kamel Atamnia @ https://orcid.org/0000-0001-9670-5643

References

[1] Montgomery R J 1920 J. Am. Ceram. Soc. 3 900–12
[2] Bohkova N M, Trusova E E and Zakharevich G B 2013 Glass Ceram. 70 41–42
[3] Sathe H, Simons J and Remram M 1997 Revue Verre 3 27–30
[4] Bohkova N M and Trusova E E 2012 Glass Ceram. 68 349–352
[5] Suzuki Y 1991 A glass database system for compact disc Am. Ceram. Bull. 70 219–22
[6] Zachariasen W H 1932 J. Am. Chem. Soc. 54 3841–51
[7] Weber R, Sen S, Youngman R E, Hart R T and Benmore C J 2008 J. Phys. Chem. B 112 16726–33
[8] Gao Y, Leng M, Chen Y, Chen Z and Li J 2019 Materials (Basel) 12 206
[9] Yadav A K and Singh P 2015 RSC Adv. 5 67583–609
[10] Partyka J and Leśniak M 2016 Chem. Int. 42 8513–24
[11] Bale S and Rahman S 2012 International Scholarly Research Network 2012 634571
[12] Zamratul M I M, Zaidan A W, Khamirul A M, Nurzilla M and Halim S A 2016 Results in Physics 6 295–8
[13] Rosenthal A B and Garofalini S H 2005 J. Am. Ceram. Soc. 78 821–6
[14] Shelby J E 1979 J. Appl. Physics 50 8010
[15] Marzouk M A and El-Batal H A 2014 Processing and Application of Ceramics 8 167–77
[16] Margha F, El-Bassyouni G and Turky G 2019 Ceram. Int. 45 11838–43
[17] Rachiniyom W, Wiwatkanjanaporn P, Ruangtaweeporn N and Kaewkhao J 2018 Materials Today: Proceedings 5 14189–93
[18] Partyka J, Pesek K, Pasitut K and Gajek M 2016 J. Therm. Anal. Calorim. 125 1095–103
[19] Yudav A K and Gautam C 2015 Spectrosc. Lett. 48 514–20
[20] Bellucci D, Sola A, Salvatori R, Anesi A, Chiariini L and Cannillo V 2017 Mater. Sci. Eng., C 72 566–75
[21] Sathe H and Simons J 2002 Ann. Chem. Sci. Mat. 27 53–9
[22] Zarubin D P 1999 Phys. Chem. Glasses 40 184–92
[23] Saudi H A, Abd-Elalim A, Abou-Elnasr T Z and Mostafa A G 2015 Nature and Science 13 139–45
[24] Rajaramakrishna R, Botta R, Nuntawong N, Ruangtaweeporn N, Sangwaramate N and Kaewkhao J 2018 Journal of Physics: Conf. Series 1120 012104
[25] Armenak A O, Leyla M O, Branislav H, Artem A O and Marek L 2019 Silica: Spectrosc. 103 102921
[26] Senturk U, Lee I, Condrate R and Varner J 1996 Mat. Res. Soc. Symp. Proc. 407 137–42
[27] Chen K, Fang L, Zhang T and Jiang S P 2014 The royal society of chemistry Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A 2 18655–65
[28] Gautam C R and Yadav A K 2013 Optics and Photonics Journal 3 1–7
[29] Sherief M A N, Fatma E B H and Momeni A 2003 Mater. Chem. and Phys. 77 846–52
[30] McMillan P and Pirioiu B 1983 Bull. Mineral. 106 57–75
[31] Rezazadeh L, Baghshahi S, Nozad Golikand A and Hamnabard Z 2014 J. Non-Crystalline Solids 352 8513–44
[32] Montazerian M, Schneider J F, Yekta B E, Marghussian V K, Rodrigues A M and Zanotto E D 2015 J. Phys.: Condens. Matter 27 035402
[33] Rehman Z U, Suk H and Janulewicz K A 2016 J. Non-Crystalline Solids 448 68–73
[34] Ruggendorff H 1991 Glasses and Amorphous Materials, vol. 9 of Materials Science and Technology ed R W Cahn, P Haasen and E J Kramer (Weinheim; VCH) p 797
[35] Ziemath E C and Aegerter M A 1994 J. Mater. Res. 9 216–25
[36] Hutchinson J M 2009 J. Therm. Anal. Calorim. 98 579–89
[37] Zeleznak K J and Hoseney R C 1987 American Association of Cereal Chemists 64 121–4
[38] Bruckner R 1970 J. Non-Crystalline Solids 5 123–75
[39] Kishimoto K, Tricot G, Atsumi T, Mura S, Tanaka K, Takebe H and Saitoh A 2019 Int. J. Appl. Glas. Sci. 1–8
[40] Sheng J, Hongting L, Yadong L, Ya Q and Yunlong Y 2016 J. Non-Crystalline Solids 450 87–94