Butein effects in colitis and interleukin-6/signal transducer and activator of transcription 3 expression

Sehe Dong Lee, Jung Wan Choe, Beom Jae Lee, Myoung Hee Kang, Moon Kyung Joo, Ji Hoon Kim, Jong Eun Yeon, Jong-Jae Park, Jae Seon Kim, Young-Tae Bak

AIM: To evaluate the effects of butein on inflammatory cytokines, matrix metalloproteinase-9 (MMP-9), and colitis in interleukin (IL)-10-/- mice.

METHODS: To synchronize colitis, 8- to 10-wk-old IL-10-/- mice were fed pellet-chow containing piroxicam for 2 wk. Subsequently, phosphate-buffered saline or butein (1 mg/kg per day, ip) was injected for 4 wk. Histologic scores, inflammatory cytokines, MMP-9 and phosphorylated signal transducer and activator of transcription 3 (pSTAT3) expressions were analyzed in IL-10-/- mice and in Colo 205 cells.

RESULTS: Butein reduced the colonic inflammatory score by > 50%. Expression levels of IL-6, IL-1β, interferon (IFN)-γ and MMP-9 were decreased in the colons of mice exposed to butein, whereas other inflammatory cytokines (IL-17A, IL-21 and IL-22) were unchanged. Immunohistochemical staining for pSTAT3 and MMP-9 was significantly decreased in the butein-treated groups compared with the controls. Butein inhibited IL-6-induced activation of STAT3 in Colo 205 cells.

CONCLUSION: Butein ameliorated colitis in IL-10-/- mice by regulating IL-6/STAT3 and MMP-9 activation.

Key words: Butein; Interleukin-6/signal transducer and activator of transcription 3; Colitis; Inflammatory bowel disease; Matrix metalloproteinase-9

© The Author(s) 2015. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: This study examined if butein, a naturally derived substance, has therapeutic effects in an animal model of inflammatory bowel disease, interleukin (IL)-10-/- mice. The results show that butein suppressed bowel inflammation and interfered with the IL-6/signal transducer and activator of transcription 3 and matrix metalloproteinase-9 pathways, suggesting that butein
INTRODUCTION

Inflammatory bowel diseases (IBDs), including Crohn’s disease (CD) and ulcerative colitis, are chronic diseases that are occasionally complicated by bowel perforations, strictures and fistulas[1,2]. The overall risk of colorectal cancer among patients with ulcerative colitis is about ten times higher than that of the general population[3,4]. In Asia, including South Korea, the occurrence of colon cancer and IBD has recently increased due to environmental factors such as the influence of Westernized lifestyles. This incidence pattern is expected to continue[2]. Immunosuppressive agents and 5-amino-salicylic acid have classically been used as treatments for IBD. Inhibition of tumor necrosis factor (TNF), an inflammatory cytokine, has been considered as a therapeutic target. Many studies have focused on diverse biologic agents to treat IBD, but a completely efficient treatment agent has not yet been discovered. Research continues for the development of new alternative drugs and in clinical trials[5,6].

IBD results from immune modulation abnormalities; helper T cells, in particular, play a critical role in the development of disease. CD is largely associated with abnormal activation of Th1-related cytokines [interleukin (IL)-1β, interferon (IFN)-γ, TNF-α], IL-6 and IL-22; in addition, the importance of Th17-related cytokines in the emergence of CD has recently been highlighted[7]. IL-10^{-/-} mice are known to be an appropriate animal model for CD due to the similarity of their condition to CD morbidity. In these mice, the manifestation of bowel inflammation-induced strictures and fistulas[10,11] have been reported in an in vitro study using prostate cancer cells[8,9]. However, to our knowledge, no study has yet been conducted that examines the therapeutic effects of butein on bowel inflammation and colon cancer. This study, therefore, aims to evaluate the interfering effects of butein on inflammatory cytokines and MMP-9 in IL-10^{-/-} mice and ultimately to examine the therapeutic effects of butein.

MATERIALS AND METHODS

Experimental animals

IL-10^{-/-} mice were purchased from Jackson Laboratories (Bar Harbor, ME, United States). All mice were housed and bred in the animal care facility of Korea University Guro Hospital.

Reagents

Butein and piroxicam were purchased from Sigma-Aldrich Inc. (St. Louis, MO, United States). Butein and piroxicam were purchased from Sigma-Aldrich Inc. (St. Louis, MO, United States). Butein from Accurate Chemical (Westbury, NY, United States), a deciduous tree from the Anacardiaceae family, both grows natively in various places and is cultivated in South Korea. Urushiol, the major constituent, is primarily responsible for the toxicity. Other constituents, such as butein (3,4,2’,4’-tetrahydroxychalcone), have been found in in vitro studies to have antioxidant and anti-inflammatory effects and to suppress tumor cell proliferation and angiogenesis[14-18]. One in vitro study demonstrated that butein inhibits the activation of nuclear factor kappa B (NF-κB) through inhibition of TNF-α, IL-6 and IL-8 in human mast cells[19].

Matrix metalloproteinase (MMP), an enzyme that degrades zinc-dependent gelatin matrices, serves an important role in inflammatory cell infiltration, cytokine activation and tissue injury, reformation and recovery. MMP-9 is specifically known to be closely associated with rheumatoid arthritis, atherosclerosis, colon cancer and IBD. The suppressive effects that butein has on MMP-9 activation have been reported in an in vitro study using prostate cancer cells[10,11]. However, to our knowledge, no study has yet been conducted that examines the therapeutic effects of butein on bowel inflammation and colon cancer. This study, therefore, aims to evaluate the interfering effects of butein on inflammatory cytokines and MMP-9 in IL-10^{-/-} mice and ultimately to examine the therapeutic effects of butein.
GAPDH and donkey anti-rabbit antibodies were purchased from Santa Cruz Biotechnology Inc. (Dallas, TX, United States), and anti-rabbit and mouse-HRP-labeled polymers were purchased from Dako of Agilent Technologies (Glostrup, Denmark).

Colitis induction
To synchronize and accelerate colitis, 8-wk-old IL-10\(^{-/-}\) mice were treated with piroxicam as previously described\(^{[22,23]}\). In brief, a lower dose of piroxicam (60 mg/250 g chow) was administrated for 7 d followed by a higher dose of piroxicam (80 mg/250 g chow) for 7 d. Mice were then placed on normal chow for the remainder of the experimental period. On days 15-28, 1 mg/kg of butein or PBS was administered daily to mice, and mice were sacrificed on the 28\(^{th}\) day (Figure 1). This experiment was performed in accordance with the guidelines of the Korea University Animal Ethics Committee.

Colitis assessment
Entire colons were dissected longitudinally and made into Swiss rolls. The tissues were fixed in 10\% formalin for 14-16 h, embedded in paraffin and 4-µm sections were cut and stained with hematoxylin and eosin. The degree of colitis was assessed using the inflammation scoring system as described previously with slight modifications\(^{[24]}\) (Table 1).

Cell lines and cultures
The human colon cancer cell line, Colo 205, was purchased from the American Type Culture Collection (Manassas, VA, United States). Cells were cultured in RPMI media containing 1% penicillin-streptomycin (Sigma) and 10% heat-inactivated fetal bovine serum in 5% CO\(_2\) at 37 \(^\circ\)C. Cells were maintained at -70 \(^\circ\)C for future analysis.

Colonic epithelial cell isolation
Colonic epithelial cells were isolated as previously described\(^{[25]}\). Mouse colonic tissues were washed using cold PBS and opened longitudinally. Colons were irrigated with cold Ca\(^{2+}\)- and Mg\(^{2+}\)-free Hank’s balanced salt solution (CMF-HBSS). The tissue was then transferred to 5 mL CMF-HBSS containing 10 mmol/L dithiothreitol (1:100; Sigma-Aldrich Inc.) and 50 nmol/L calyculin A (1:200; Wako, Richmond, VA, United States) and incubated in rotator for 30 min at 4 \(^\circ\)C. The tissue was then transferred to another 5 mL CMF-HBSS solution containing 1 mmol/L ethylenediaminetetraacetic acid and 50 nmol/L calyculin A, and incubated at 4 \(^\circ\)C for 1 h. Colonic tissues were removed from the tube, and epithelial cells were isolated by centrifugation at 300 rpm for 5 min. The supernatant was removed, and the remaining cells were snap-frozen in liquid nitrogen and maintained at -70 \(^\circ\)C for future analysis.

Immunohistochemistry
For the proliferation assay, 1 mg 5-Bromo-2’-Deoxyuridine (BrdU; Sigma-Aldrich Inc.) was injected into mice 2 h before sacrifice. Formalin-fixed, paraffin-embedded sections were processed for immunohistochemistry. Paraffin-embedded slides were deparaffinized and hydrated. Antigen retrieval was performed using Target retrieval solution in a decloaking chamber followed by staining with antibodies against pSTAT3 (1:100), BrdU (1:200) or MMP-9 (1:100) followed by anti-rabbit or anti-mouse-HRP-labeled polymers. Sections were developed using 3,3’-diaminobenzidine tetrahydrochloride and counterstained with hematoxylin.

Western blot
Protein was extracted from isolated colonic epithelial cells and Colo 205 cells using protein extraction buffer (Fisher Thermo Scientific Inc., Waltham, MA, United States) as described by the manufacturer. Extracted protein concentrations were measured using the BCA method, and 30 µg protein samples were separated on a 10% sodium dodecyl sulfate-polyacrylamide gel, transferred to

Table 1: Histologic scores

Grade	Description
0	Normal tissue
1	One or a few multifocal mononuclear cell infiltrates in the lamina propria
2	Marked epithelial hyperplasia
3	Ulcers were occasionally observed
4	Ulcers were more than grade 3 lesions

Figure 1 Experimental protocol for the interleukin-10\(^{-/-}\)-piroxicam colitis model. IL: Interleukin; ip: Intraperitoneal injection.
It has been established that induction with piroxicam upregulated in IL-10-/- mice, together with significantly increased MMP-9, two weeks after the last administration of piroxicam. IL-10-/- mice that received 2-wk-treatment with butein demonstrated significantly reduced expression of IFN-γ, IL-1β, IL-6 and MMP-9 mRNA in the proximal colon, while there was no effect on the expression of IL-17a, IL-21, IL-22 and MMP-2 (Figure 3).

Butein treatment inhibits inflammatory cytokines and MMP-9 in the colons of IL-10-/- mice

Previous studies have shown that colitis in IL-10-/- mice is induced by dysregulation of Th1-mediated cytokines, including IL-1β, IFN-γ and IL-6. The Th1 cytokines, IFN-γ, IL-1β, IL-6, IL-21, IL-23 and IL-12β were heavily upregulated in IL-10-/- mice, together with significantly increased MMP-9, two weeks after the last administration of piroxicam. IL-10-/- mice that received 2-wk-treatment with butein demonstrated significantly reduced expression of IFN-γ, IL-1β, IL-6 and MMP-9 mRNA in the proximal colon, while there was no effect on the expression of IL-17a, IL-21, IL-22 and MMP-2 (Figure 3).

Butein treatment results in reduced STAT3 and MMP-9 expression in the colons of IL-10-/- mice

Knowing that STAT3 is part of a major intrinsic pathway for inflammation and inflammation-associated cancers that are mediated and activated by cytokines, chemokines and other mediators including IL-6, IL-1β and macrophage colony-stimulating factor, we investigated STAT3 activity in the colons of IL-10-/- mice. Increased STAT3 activity was noted in inflamed colonic epithelial cells, which was inhibited by butein treatment, as noted both in immunohistochemistry and Western blots (Figure 4).

Butein treatment suppressed MMP-9 expression, which was noted in adjacent inflammatory cells in mice with colitis and ulcerations in control mice. To evaluate proliferation, a BrDU incorporation assay was performed by immunohistochemical analysis. There was no significant difference between the control and butein treatment groups (Figure 5).

Butein inhibits STAT3 phosphorylation induced by IL-6 in human Colo 205 cells

We investigated the effects of butein on the modulation of IL-6/STAT3 activation in vitro using Colo 205 cells. Exposure to IL-6 for different times and at different concentrations increased phosphorylation of STAT3. Butein treatment suppressed the phosphorylation of STAT3 induced by IL-6 (25 ng/mL) at a concentration of 10 µmol/L (Figure 6).

DISCUSSION

The objective of this study was to examine whether...
butein, a naturally derived substance, had therapeutic effects in IL-10−/− mice, an IBD model. The occurrence of IBD significantly decreased in mice injected with butein; butein blocked the IL-6/STAT3 signal trans...
mission pathway and suppressed MMP-9 activation. Butein, a major constituent of *Toxicodendron vernicifluum*, can also be found in the stems of *Semecarpus anacardium* and in the heartwood of *Dalbergia odorifera*, as well as other plants. Previous studies have reported that butein has anti-oxidant, anti-inflammatory and antitumor effects, and that it suppresses angiogenesis[26-29]. Butein is known to suppress cell proliferation and promote apoptosis in both solid and hematologic tumors; it is also less toxic than urushiol, another constituent of *Toxicodendron vernicifluum*[30,31]. Butein's effects on tumor cells arise as a result of suppressing c-Src and JAK1/JAK2 activation, thus inhibiting the IL-6/STAT3 pathway. Butein also directly inhibits the expression of Bcl-xL, Bcl-2 and cyclin D1, the target genes of STAT3[31]. STAT3 plays an important role in cytokine receptor transmission, which is a system that connects a membrane receptor to nuclear transcription and is principally activated by gp130-related cytokines, the most representative of which is IL-6.

STAT3, a principal mechanism of the inflammatory reaction and inflammation-related malignant tumors, is involved in the inflammatory reaction and inflammation-related malignant changes from the initial stage to tumor progression. STAT3 modulates the activity of NF-κB and is activated by the IL-6/JAK signal pathway[32-34]. The IL-6/JAK/STAT3 signal system promotes tumorigenesis by inducing cellular or epigenetic changes that follow intracellular inflammation. IL-6/JAK/STAT3, activated by gp130-related IL-6, IL-22, cytokines, and other growth factors, is found to be active in multiple malignant tumors, such as multiple myeloma, lymphoma, hematologic malignancies, breast cancer and prostate cancer.

In this study, IL-6 mRNA expression was increased in IL-10−/− mice with bowel inflammation, and STAT3 activation was also observed in colonic epithelial cells with inflammation and ulcers following the inflammation. Butein inhibited the expression of STAT3 in epithelial
cells, which was demonstrated by immunohistochemical staining and Western blot analysis. We also found that MMP-9 expression in the colonic tissues was blocked by butein. In vitro experiments showed that IL-6-activated MMP-9 was highly concentrated, and this activity was blocked by butein. MMP-9 is closely connected with tissue remodeling and tumor metastasis, and is secreted with MMP-2 from tumor cells, inflammatory cells and cell matrix cells [35]. In a previous in vitro study, butein was reported to inhibit the activation of MMP-9 [36]. Similarly, we found that butein blocked the increased expression of MMP-9 in inflammatory cells, and infiltration of muscle layer in bowel inflammation or inflammation-induced ulcers.

Here, we present the first in vivo study examining the therapeutic effects of butein in an animal model of bowel inflammation. There were a few limitations to our study. First, there was no confirmatory analysis of MMP-9 with zymography for analyzing MMP-9 activation after butein treatment. Second, we did not determine whether the protein expression of IL-6 matched mRNA levels. Third, we had other limitations related to our experiment methods. These shortcomings will be further modified in future studies. Finally, no quantitative analysis of inflammatory cytokine activation was undertaken, and the analysis of the signal transmission system was limited to epithelial cells. It is reasonable to state that IL-10-/- mice are not an appropriate model to study the proliferation and recovery of epithelial cells, as they are a model principally defined by the degree of inflammatory cytokine expression. This limitation could be overcome by conducting additional experiments with other study models. In doing so, the therapeutic effects of butein could be evaluated more accurately.

The results of this study regarding the interfering effects of butein on the IL-6/STAT3-MMP-9 pathway are similar to those of an in vitro study that used established malignant tumor cells. Considering that the suppression of bowel inflammation and the recovery capability of the injured mucous membrane are critical

Figure 4 Butein treatment decreased mucosal expression of phosphorylated signal transducer and activator of transcription 3 and matrix metalloproteinase-9 expression in interleukin-10-/- mice. A: Immunohistochemical staining for phosphorylated signal transducer and activator of transcription 3 (pSTAT3) and matrix metalloproteinase (MMP)-9 detected nuclei of epithelial cells or stromal cells of interleukin (IL)-10-/- mice (black arrows); B: Western blot analysis revealed reduced pSTAT3 protein expression in intestinal epithelial cells of butein-treated IL-10-/- mice (n = 3). PBS: Phosphate-buffered saline.
for IBD treatment, the findings obtained from the BrdU analysis indicating that the cell proliferation necessary for the recovery of the mucous is not affected by butein treatment further supports the clinical applicability of butein in treating IBD.

Chronic inflammation is a major mechanism of malignant tumors. The incidence of malignant tumors in the colon and the small intestine is significantly increased with IBD such as ulcerative colitis and CD. The IL-6/STAT3 pathway is an important pathway for the initiation of inflammation-mediated malignant tumors, and MMP-9 is an essential signal transmission system related to the metastasis of malignant tumors. In IBD patients, the expression of IL-6 is increased, and the expression of MMP-9 is known to serve a critical role in pathogenesis.

Our results point to the possibility of applying butein to bowel inflammation-induced colon cancer, as butein suppressed bowel inflammation and interfered with the IL-6/STAT3 and MMP-9 pathways in IL-10−/− mice. It is therefore important to further investigate the effects of butein on the occurrence of bowel inflammation-related colon cancer.

COMMENTS

Background

The therapeutic effects of natural substances on inflammation and tumors are being widely studied. Butein has been found in vitro studies to have antioxidant and anti-inflammatory effects and to suppress tumor cell proliferation and angiogenesis.

Research frontiers

The suppressive effects that butein has on matrix metalloproteinase-9 (MMP-9) activation have been reported in an in vitro study using several cancer cells. However, no study has yet to be conducted that examines the therapeutic effects of butein on bowel inflammation and colon cancer. This study, therefore,
aims to evaluate the interfering effects of butein on inflammatory cytokines and MMP-9 in interleukin (IL)-10 mice, an inflammatory bowel disease model, and ultimately to examine the therapeutic effects of butein.

Innovations and breakthroughs

The results suggest that butein could be used to treat bowel inflammation-induced colon cancer, as it suppressed bowel inflammation and interfered with the IL-6 signal transducer and activator of transcription 3 (STAT3) and MMP-9 pathways in IL-10 mice. To our knowledge, while there have been several in vitro studies on tumor cells, this is the first in vivo study to show the effect of butein in mice with colitis.

Applications

The study results suggest that it is important to represent the inhibitory effects of butein on the occurrence of bowel inflammation-related colon cancer by regulating IL-6/STAT3 and MMP-9 activation.

Peer review

The authors examined whether butein, a naturally derived substance, had therapeutic effects in IL-10 mice, a model of inflammatory bowel disease. Butein blocked the IL-6/STAT3 signal transduction pathway and suppressed MMP-9 activation. The results are interesting and may represent the effects of butein on the occurrence of bowel inflammation-related colon cancer.

REFERENCES

1. Karlen P, Løtberg R, Broström O, Leijonmarck CE, Hellers G, Persson PG. Increased risk of cancer in ulcerative colitis: a population-based cohort study. *Am J Gastroenterol* 1999; 94: 1047-1052 [PMID: 10204081 DOI: 10.1111/j.1572-0241.1999.01012.x]

2. Cosnes J, Gower-Rousseau C, Seksik P, Cortot A. Epidemiology and natural history of inflammatory bowel diseases. *Gastroenterology* 2011; 140: 1785-1794 [PMID: 21530745 DOI: 10.1053/j.gastro.2011.01.055]

3. Ekbold A, Helmick C, Zack M, Adami HO. Ulcerative colitis and colorectal cancer. A population-based study. *N Engl J Med* 1990; 323: 1228-1233 [PMID: 2215606 DOI: 10.1056/NEJM19910013231802]

4. Bernstein CN, Blanchard JF, Kliewer E, Wajda A. Cancer risk in patients with inflammatory bowel disease: a population-based study. *JAMA* 2009; 301: 854-862 [PMID: 19522470 DOI: 10.1001/jama.2009.622]

5. Pleyse SE, Targan SR. Future therapeutic approaches for inflammatory bowel diseases. *Gastroenterology* 2011; 140: 1838-1846 [PMID: 21530750 DOI: 10.1053/j.gastro.2011.02.014]

6. Rutgeerts P, Vermeire S, Van Assche G. Biological therapies for inflammatory bowel diseases. *Gastroenterology* 2009; 136: 1182-1197 [PMID: 19243937 DOI: 10.1053/j.gastro.2009.02.001]

7. Strober W, Fuss J. Proinflammatory cytokines in the pathogenesis of inflammatory bowel diseases. *Gastroenterology* 2011; 140: 1756-1767 [PMID: 21530742 DOI: 10.1053/j.gastro.2011.02.016]

8. Hale LP, Gottfried MR, Swidsinski A. Piroxicam treatment of IL-10-deficient mice enhances colonic epithelial apoptosis and mucosal exposure to intestinal bacteria. *Inflamm Bowel Dis* 2009; 15: 1060-1069 [PMID: 19306768 DOI: 10.1007/s10034-009-0787-6]

9. Brown JB, Lee G, Grimm GR, Barrett TA. Therapeutic benefit of pentostatin in severe IL-10(-/-) colitis. *Inflamm Bowel Dis* 2008; 14: 880-887 [DOI: 10.1002/ibd.20410]

10. Surh YJ. Cancer chemoprevention with dietary phytochemicals. *Nat Rev Cancer* 2003; 3: 768-780 [PMID: 14570043 DOI: 10.1038/nrc1189]

11. Tan AC, Konczak I, Sze DM, Ramzan I. Molecular pathways for cancer chemoprevention by dietary phytochemicals. *Nutr Cancer* 2011; 63: 495-505 [PMID: 2150099 DOI: 10.1080 /01635581.2011.538953]

12. Neergheen VS, Bahouron T, Taylor EW, Jen LS, Aruoma OI. Targeting specific cell signaling transduction pathways by dietary and medicinal phytochemicals in cancer chemoprevention. *Toxicology* 2010; 278: 229-241 [PMID: 19850100 DOI: 10.1016/j.tox.2009.10.010]
Butein on tumor necrosis factor-α-induced expression of cell adhesion molecules in human lung epithelial cells via inhibition of reactive oxygen species generation, NF-κB activation and Akt phosphorylation. Int J Mol Med 2012; 30: 1357-1364 [PMID: 23064245 DOI: 10.3892/ijmm.2012.1158]

28 Sehrawat A, Kumar V. Butein imparts free radical scavenging, anti-oxidative and proapoptotic properties in the flower extracts of Butea monosperma. Biocell 2012; 36: 63-71 [PMID: 23185781]

29 Chung CH, Chang CH, Chen SS, Wang HH, Yen JY, Hsiao CJ, Wu NL, Chen YL, Huang TF, Wang PC, Yeh HI, Wang SW. Butein Inhibits Angiogenesis of Human Endothelial Progenitor Cells via the Translation Dependent Signaling Pathway. Evid Based Complement Alternat Med 2013; 2013: 943187 [PMID: 23840271 DOI: 10.1155/2013/943187]

30 Cui Z, Song E, Hu DN, Chen M, Rosen R, McCormick SA. Butein induces apoptosis in human uveal melanoma cells through mitochondrial apoptosis pathway. Curr Eye Res 2012; 37: 730-739 [PMID: 22578288 DOI: 10.3109/02713683.2012.671436]

31 Rajendran P, Ong TH, Chen L, Li F, Shanmugam MK, Vali S, Abbasi T, Kapoor S, Sharma A, Kumar AP, Hui KM, Sethi G. Suppression of signal transducer and activator of transcription 3 activation by butein inhibits growth of human hepatocellular carcinoma in vivo. Clin Cancer Res 2011; 17: 1425-1439 [PMID: 21131551 DOI: 10.1186/1078-0432.CCR-10-1123]

32 Yu H, Pardoll D, Jove R. STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 2009; 9: 798-809 [PMID: 19853135 DOI: 10.1038/nrc2734]

33 Kato T. Stat3-driven cancer-related inflammation as a key therapeutic target for cancer immunotherapy. Immunotherapy 2011; 3: 587-590 [PMID: 21554086 DOI: 10.2217/imt.11.26]

34 Hodge DR, Hurt EM, Farrar WL. The role of IL-6 and STAT3 in inflammation and cancer. Eur J Cancer 2005; 41: 2502-2512 [PMID: 16199153 DOI: 10.1016/j.ejca.2005.08.016]

35 Zheng H, Takahashi H, Murai Y, Cui Z, Nomoto K, Niwa H, Tsuneyama K, Takano Y. Expressions of MMP-2, MMP-9 and VEGF are closely linked to growth, invasion, metastasis and angiogenesis of gastric carcinoma. Anticancer Res 2006; 26: 3579-3583 [PMID: 17094486]

36 Lee SH, Seo GS, Jin XY, Ko G, Sohn DH. Butein blocks tumor necrosis factor alpha-induced interleukin 8 and matrix metalloproteinase 7 production by inhibiting p38 kinase and osteopontin mediated signaling events in HT-29 cells. Life Sci 2007; 81: 1535-1543 [PMID: 17977560 DOI: 10.1016/j.lfs.2007.09.024]

P- Reviewer: Harmanci O, Lakatos PT
S- Editor: Nan J
L- Editor: AmEditor
E- Editor: Ma S
