Deriving Law-Abiding Instances

Ryan Scott
Vikraman Choudhury
Ryan Newton
Indiana University
{rgscott,vikraman,rrnewton}@indiana.edu

Niki Vazou
University of Maryland
nvazou@cs.umd.edu

Ranjit Jhala
UC San Diego
jhala@cs.ucsd.edu

Abstract
Liquid Haskell augments the Haskell language with theorem proving capabilities, allowing programmers to express and prove class laws. But many of these proofs require routine, boilerplate code and do not scale well, as the size of proof terms can grow super-linearly with the size of the datatypes involved in the proofs.

We present a technique to derive Haskell proof terms by leveraging datatype-generic programming. Our observation is that we can take any algebraic datatype, generate an equivalent representation type, and have Liquid Haskell automatically construct (and prove) an isomorphism between the original type and the representation type. This reduces many proofs down to easy theorems over simple algebraic “building block” types, allowing programmers to write generic proofs cheaply and cheerfully. We applied our technique to derive verified instances of the Eq, Ord, Semigroup, Monoid and Functor Haskell classes for commonly used algebraic datatypes.

1 Introduction
Many widely used type classes abstract over operators that must obey algebraic laws. With Liquid Haskell [14], these type class laws can be encoded as refinement type specifications. For instance, TotalOrd extends the Haskell Ord class with the total method that encodes the proof obligation that (≤) should be total:

{-@ class Ord a ⇒ TotalOrd a where
 total :: x:a → y:a → (x ≤ y || y ≤ x) @-}

The type specification of total, defined in the special Liquid Haskell comments {-@ . . . @-}, states that for all values x and y there exists a proof that x ≤ y or y ≤ x, thus encoding the totality of (≤). Users of TotalOrd can rest assured that (≤) is indeed total, but when defining an instance of TotalOrd, a proof of totality must be provided.

Haskell programs can be used to encode such proofs [12, 13]. Yet, proof deployment can be tedious. Implementing many proofs can involve excessive amounts of boilerplate code. Even worse, the size of some proofs can grow super-linearly in the size of the data type used, as the proofs can grow extremely quickly due to the sheer number of cases one has to exhaust (§ 2.4).

In this paper, we set out to minimize this boilerplate and develop a style of proof-carrying programming that scales well as the size of a data type grows. To do so, we adapt a style of datatype-generic programming in the tradition of the Glasgow Haskell Compiler’s GHC.Generics module 1. That is to say, for some data type about which we want to prove a property, we first consider a representation type which is isomorphic to the original data type. This representation type is the composition of several very small data types. By proving the property in question for these small, representational data types, we can compose these proofs and use them to prove the property for the original data type by taking advantage of the isomorphism between the original and representation types.

To use TotalOrd as an example of how this would be accomplished, the author of the TotalOrd class would need to implement (1) definitions for total orderings on the generic representation types, and (2) a way to derive a total ordering for a type a, reusing a proof from its representation type (which is provably isomorphic to a):

instance (TotalOrd (Rep a), GenericIso a)
 ⇒ TotalOrd a where

With this generic derivation in hand, Haskell’s standard class resolution will derive the proper (provably correct) TotalOrd instance for any type that is an instance of GenericIso, a class which carries the proof of isomorphism. We can automate this process of deriving law-abiding instances further by defining a Template Haskell function deriveIso which derives the GenericIso instances with minimal effort. For instance, one can derive a provably total Ord instance of the user-defined data type Nat with just:

data Nat = Zero | Succ Nat
deriveIso ''Nat -- derives: instance GenericIso Nat
instance TotalOrd Nat

We provide an implementation of these ideas using Liquid Haskell and the Glasgow Haskell Compiler, located at http://bit.ly/2qFbei6.

The contributions of this paper are:

- We extend Haskell typeclasses to verified typeclasses which have explicit proofs of typeclass laws (§ 2).

1http://hackage.haskell.org/package/base-4.9.1.0/docs/GHC-Generics.html
• We propose an extension to GHC generics which adds proofs of isomorphism between the original datatype and its representation type, with some machinery to automatically derive the proofs (§ 3), and
• We use the “generic isomorphism” machinery to derive verified instances for the Eq, Ord, Functor, and Monoid verified typeclasses (§ 4).

2 Law-Abiding Type Classes

We start with an overview of our approach for deriving class instances that are verified to satisfy class laws. First, we briefly review Liquid Haskell refinement types and show how to formally specify laws as refinement types. Second, we show how to manually create instances that satisfy the laws (what we call the “direct approach”), and demonstrate how the direct approach scales poorly as the size of data types grows. Third, we show an alternative approach that advocates composing simple verified instances to obtain compound ones. Then in section 3, we show how the above process of composition can be automated via isomorphisms, in the style of GHC’s generic deriving [8], yielding an automatic way of obtaining verified type class instances.

2.1 Liquid Haskell as a Theorem Prover

Liquid Haskell extends the grammar of Haskell types to include refinements. For example, the following narrows the set of Int values by ruling out zero:

```haskell
type NonZero = ( n:Integer | n /= 0 )
```

Refinement types like the above are checked automatically in Liquid Haskell, which internally uses an SMT solver. The Liquid Haskell implementation assumes that the SMT solver’s notion of integer arithmetic is consistent with Haskell’s, and thus many arithmetic properties become automatically verifiable.

Consider, however, that we want to verify a property such as length (tail ls) == length ls - 1. Here the tail function is defined with regular Haskell code, and must somehow be lifted into the refinement logic. This is the premise of refinement reflection [12], a recent addition to Liquid Haskell. Using this approach, Liquid Haskell lifts Haskell definitions into the logic, leaving them initially uninterpreted, but unfolding their definitions once every time they are referenced in an explicit proof of the property.

Thus Liquid Haskell goes beyond automatically-checked refinements and allows proofs about Haskell code written as Haskell code. In these proofs, Haskell’s arrow type encodes implication, Haskell branches encode proof case-splits, and recursion encodes induction. Together with a library of proof combinators included with Liquid Haskell, these enable proofs that are similar to their pencil-and-paper analogues. We will see examples of such proofs as we proceed in this paper.

2.2 Specifying Law-Abiding Classes

Classes Recall the following simplified definition of the Eq and Ord type classes that provide abstractions for datatypes which support equality and ordering checks:

```haskell
class Eq a where
  (==) :: a → a → Bool

class Ord a ⇒ Ord a where
  (≤) :: a → a → Bool
```

Laws Typically, we require that any instance of Ord is a total order that satisfies the following laws:

- Reflexivity ∀x. x ≤ x
- Totality ∀x, y. x ≤ y ∨ y ≤ x
- Antisymmetry ∀x, y. x ≤ y ∧ y ≤ x ⇒ x = y
- Transitivity ∀x, y, z. x ≤ y ∧ y ≤ z ⇒ x ≤ z

Specifying Laws as Refinement Types We can encode the above laws as refined function types:

```haskell
type Refl a = x:a → (x ≤ x)
type Total a = x:a → y:a → (x≤y || y≤x)
type Anti a = x:a → y:a → (x≤y ∧ y≤x ⇒ x == y)
type Trans a = x:a → y:a → z:a → (x≤y≤z ⇒ x≤z)
```

In Liquid Haskell, these type refinements must be written inside a special comment, recognized by Liquid Haskell and separated from the plain Haskell types. We show only the Liquid Haskell type signatures above for brevity. We write \langle p \rangle to abbreviate \langle v:Proof|p \rangle, that is, the set of values of type Proof such that the predicate \(p \) holds. 2 Refinement type checking [12] ensures that any inhabitant of Refl \(a \) (and respectively, Total \(a \), Trans \(a \), Anti \(a \)) is a concrete proof that the corresponding law holds for the type \(a \), by demonstrating that the law holds for all (input) values of type \(a \).

Specifying Law-Abiding Classes We can specify law-abiding classes by extending the Ord class to a VerifiedOrd subclass with four more fields that must be inhabited by proofs that demonstrate that the corresponding laws hold for the instance:

```haskell
class Ord a ⇒ VerifiedOrd a where
  refl :: Refl a
  total :: Total a
  anti :: Anti a
  trans :: Trans a
```

2 Here, Proof is simply a type alias for the unit type \(\text{()} \) in Liquid Haskell’s library of proof combinators. Since the proofs carry no useful information at runtime, the unit type suffices as a runtime witness to a proof.
2.3 Law-Abiding Instances: The Direct Approach

Next, let’s create a `VerifiedOrd` instance for a simple data type:

```haskell
data A = A Int
  deriving Eq

instance Ord A where
  (A s1) ≤ (A s2) = (s1 ≤ s2)
```

The reflexivity of A can be proved with proof combinators like so:

```haskell
reflA :: Refl A
reflA x@(A s) = x ≤ x =. s ≤ s
** QED
```

The implementation of `reflA` is a function that shows that the reflexivity law holds for every `x :: A`. The function uses the proof combinators

```haskell
(=.) :: x:a → y:{ a | x = y } → { v:a | v = x }
x =. _ = x
```

```haskell
data QED = QED

(**): :: a → QED → Proof
_ ** _ = ()
```

The type of the `(=.)` function ensures that the left- and right-hand sides are equal (according to `=`), the SMT solver’s notion of equality). QED and `(**)` provide a way to link a chain of equations into a `Proof`. Using these combinators allows us to build refinement proofs in “equational reasoning” style.

Note that the key step for the proof of `reflA` is the line `x ≤ x`. The underlying SMT solver knows how to reason about `Ints` directly, so Liquid Haskell is able to conclude that `x ≤ x` for all `Ints x`, without requiring any lemmas about `Int` arithmetic.

We can prove antisymmetry, transitivity and totality for `A` in much the same way as we did for reflexivity:

```haskell
antiA :: Anti A
antiA x@(A s1) y@(A s2)
  = (x ≤ y ∧ y ≤ x)
  =. (s1 ≤ s2 ∧ s2 ≤ s1)
  =. (s1 == s2)
  =. (x == y)
  ** QED

transA :: Trans A
transA x@(A s1) y@(A s2) z@(A s3)
  = (x ≤ y ∧ y ≤ z)
  =. (s1 ≤ s2 ∧ s2 ≤ s3)
  =. (s1 ≤ s3)
  =. (x ≤ z)
  ** QED
```

Once these proofs have been established, we can package them up into a `VerifiedOrd` instance for `A`:

```haskell
instance VerifiedOrd A where
  refl = reflA
  anti = antiA
  trans = transA
  total = totalA
```

2.4 Scaling Up the Direct Approach

Next, let’s see how to repeat the process of writing a `VerifiedOrd` instance for a more complicated data type. We shall see that while this is possible, the proofs quickly start to become unpleasant, as they will require a lot of boilerplate code. To see this, consider a data type with two constructors:

```haskell
data B = B1 Int | B2 Int
  deriving Eq

instance Ord B where
  (B1 s1) ≤ (B1 s2) = (s1 ≤ s2)
  (B2 s1) ≤ (B2 s2) = (s1 ≤ s2)
  (B1 {}) ≤ (B2 {}) = True
  (B2 {}) ≤ (B1 {}) = False
```

The proof of reflexivity does not change significantly, as it amounts to adding another case for the additional constructor:

```haskell
reflB :: Refl B
reflB x@(B1 s) = (x ≤ x)
reflB x@(B2 s) = (x ≤ x)
  ** QED
```

```haskell
antiB :: Anti B
antiB x@(B1 s1) y@(B1 s2)
  = (x ≤ y ∧ y ≤ x)
  =. (s1 ≤ s2 ∧ s2 ≤ s1)
  =. (s2 == s1)
  =. (x == y)
  ** QED

transB :: Trans B
transB x@(B1 s1) y@(B1 s2) z@(B1 s3)
  = (x ≤ y ∧ y ≤ z)
  =. (s1 ≤ s2 ∧ s2 ≤ s3)
  =. (s1 ≤ s3)
  =. (x ≤ z)
  ** QED
```

The proof of antisymmetry, however, becomes a bit more complicated. We now require a case for every pairwise combination of constructors:

```haskell
antiB :: Anti B
antiB x@(B1 s1) y@(B1 s2)
  = (x ≤ y ∧ y ≤ x)
  =. (s1 ≤ s2 ∧ s2 ≤ s1)
  =. (s2 == s1)
  =. (x == y)
  ** QED
```
With multiple constructors, there are cases where the hypothesis does not hold—namely, when comparing a B1 value with a B2 value. As the hypothesis reduces to False, the entire implication is vacuously true, so concluding with False suffices to prove the output refinement.

Boilerplate Blowup However, something worrying has happened here. The proof of antisymmetry for \(\land \) only took two cases, whereas the corresponding proof for B took four cases. If we were to add a third constructor, then the antisymmetry proof would take nine cases. In other words, the size of this proof is growing quadratically with the number of constructors!

The other proofs needed for `VerifiedOrd` also grow quickly. Like antisymmetry, the proof of totality grows quadratically, since it must consider every pairwise combination of two constructors. The proof of transitivity has an even more noticeable increase in size growth, since it must match on every combination of three B values: while the one-constructor variant of the proof of transitivity has one case, the two-constructor variant would have eight cases, and a three-constructor variant would have 27 cases.

Perhaps even more troublesome than the size of these proofs themselves is the fact that most of these cases are sheer boilerplate. For instance, the proof of antisymmetry follows a predictable pattern. For the cases where the constructors are both the same, we compare the fields of the constructors, appeal to properties of `Int` arithmetic, and conclude that the two values are equal. For the cases where different constructors are being matched, one comparison will end up being False, causing the whole hypothesis to be False. This is routine code that is begging to be automated with a proof-reuse technique.

3 Deriving Law-Abiding Instances

Having seen the tedium of manually constructing proofs, we present a solution. Notably, our approach does not require adding new features to Liquid Haskell itself—instead, we use a technique based on extensions already found in the Glasgow Haskell Compiler (GHC).

We adapt an approach from the datatype-generic programming literature where we take an algebraic data type and construct a representation type which is isomorphic to it [8]. The representation type itself is a composition of small data types which represent primitive notions such as single constructors, products, sums, and fields. We also establish a type class for witnessing the isomorphism between a data type and its representation type.

With these tools, we can shift the burden of proof from the original data type (which may be arbitrarily complex) to the handful of simple data types which make up representation types. Moreover, since all Haskell 98 data types can be expressed in terms of these representational building blocks, proving a property for these data types is enough to prove the property for this whole class of algebraic data types.

3.1 A Primer on Datatype-Generic Programming

To build up representation types, we build upon the API from the GHC.Generics module [8]. First, we utilize a type class which captures the notion of conversion to and from a representation type:

```haskell
class Generic a where
  type Rep a :: * -> *
  from :: a -> Rep a x
  to :: Rep a x -> a
```

The `Rep` type itself will always be some combination of the following data types:

- `data U1 p = U1`. This is used to represent a constructor with no fields.
- `newtype Rec0 p c = Rec0 c`. This is used to represent a single field in a constructor.
- `data (f ::: g) p = (f p) ::: (g p)`. This is used to represent the choice between two consecutive fields in a constructor.
- `data (f ::: g) p = L1 (f p) | R1 (g p)`. This is used to represent the choice between two consecutive constructors in a data type.

Recalling the B data type from earlier:

```haskell
data B = B1 Int | B2 Int
```

We define its canonical Generic instance like so:

```haskell
instance Generic B where
  type Rep B = Rec0 Int ::: Rec0 Int
  from (B1 i) = L1 (Rec0 i)
  from (B2 i) = R1 (Rec0 i)
  to (L1 (Rec0 i)) = B1 i
  to (R1 (Rec0 i)) = B2 i
```

Here, we see that because B has two constructors (B1 and B2), the (:::) type is used once to represent the choice between B1 and B2. The `Int` field of each constructor is likewise

1The actual implementation features another data type, M1, which is used only for metadata. For the sake of simplicity, we have left it out of the discussion in this paper.
represented with a \(\text{Rec0} \) type. We call this instance "canonical" because with GHC's \text{DeriveGeneric} \footnote{They are however not enough to represent the full spectrum of generalized abstract data types (GADTs) \cite{10}. Some other generic programming libraries \cite{10,15} present different designs that allow representing some features of GADTs, but the question of how to incorporate GADTs into a GHC \text{Generics}-style API remains open.} extension, this instance is generated automatically with only this line of code:

\[
\text{deriving instance} \, \text{Generic} \, B
\]

It should be emphasized that the four types \(\text{U1}, \text{Rec0}, (\mathbin{*:*}) \), and \((\mathbin{*:*}) \) are enough to represent \textit{any} Haskell 98 \footnote{There are many possible orderings on products, but only lexicographic ordering preserves the total order properties.} data type. For instance, if one were to add more fields to the \(B_1 \) constructor, then its corresponding \text{Rep} \ type would change by adding additional occurrences of \((\mathbin{*:*}) \) for each field. Therefore, these four data types conveniently provide a unified way to describe the structure of any data type, a property which will be useful shortly.

While \text{Generic} is convenient for quickly coming up with representation types, it alone isn't enough for our needs, as we need to be able to use the \textit{proof} that the \text{from} and \text{to} functions form an isomorphism. In pursuit of that goal, we define a subclass of \text{Generic} with two proof methods that express the fact that \text{from} and \text{to} are mutual inverses.

\[
\text{class} \, \text{Generic} \, a \Rightarrow \text{GenericIso} \, a \, \text{where}
\]

\[
\text{tof} \colon : x : a \rightarrow \{ \text{to from} \, x = \text{=} \}
\]

\[
\text{fort} \colon : x : \text{Rep} \, a \rightarrow \{ \text{from to} \, x = \text{=} \}
\]

To demonstrate how the proofs in a \text{GenericIso} instance look, we give an example instance for \(B \):

\[
\text{instance} \, \text{GenericIso} \, B \, \text{where}
\]

\[
\text{tof} \, \text{x@}(B1 \, \text{i}) = \text{to from} \, \text{=} \text{x}
\]

\[
\text{fort} \, \text{x@}(B2 \, \text{i}) = \text{from to} \, \text{=} \text{x}
\]

Unlike \text{Generic}, there is no built-in GHC mechanism for deriving instances of \text{GenericIso}, so one might reasonably worry that \text{GenericIso} is itself a source of boilerplate. We use \text{Template Haskell} \cite{11} to mimic GHC's \text{deriving} mechanism and automatically derive \text{GenericIso} instances. Concretely, we define the \text{Template Haskell} function \text{deriveIso} that, given a name of a type constructor, derives the declarations of the corresponding instances of \text{Generic} and \text{GenericIso}.

\[
\text{deriveIso} \colon \text{Name} \rightarrow Q \, [\text{Dec}]
\]

As a demonstration, all of the code for the \text{Generic} and \text{GenericIso} instances for \(B \) written earlier in this section can be reduced to:

\[
\text{data} \, B = B1 \, \text{Int} \mid B2 \, \text{Int}
\]

\[
\text{deriveIso} \, "B"
\]

where "'B" is the Template Haskell Name that represents the type constructor \(B \).

3.2 Proofs over Representation Types

Having identified the four basic data types which can be composed in various ways to form representation types, the next task is to write proofs for these four types. We will do so by continuing our earlier \text{VerifiedOrd} \ example from Section 2, and in the process show how one can obtain a valid total ordering for any algebraic data type by using this technique.

The \(\text{U1} \) data type has an extremely simple \text{Ord} instance:

\[
\text{instance} \, \text{Ord} \, (\text{U1} \, \text{p}) \, \text{where}
\]

\[
\text{U1} \leq \text{U1} = \text{True}
\]

The \text{VerifiedOrd} instance is similarly straightforward, so we will elide the details here.

The \text{Ord} instance for the \text{Rec0} type will look familiar:

\[
\text{instance} \, \text{Ord} \, c \Rightarrow \text{Ord} \, (\text{Rec0} \, c \, \text{p}) \, \text{where}
\]

\[
(\text{Rec0} \, \text{r1}) \leq (\text{Rec0} \, \text{r2}) = \text{(r1} \leq \text{r2)}
\]

This is essentially the same \text{Ord} instance that we used for \(A \) in Section 2.3, except abstracted to an arbitrary field of type \(c \). The \text{VerifiedOrd} instance for \text{Rec0} also mirrors that of \(A \), so we will also leave out the details here.

The \((\mathbin{*:*}) \) type, which serves the role of representing two fields in a constructor, is also the simplest possible product type, with two conjuncts. We can enforce a valid total order on such a type by using the lexicographic ordering. \footnote{There are many possible orderings on products, but only lexicographic ordering preserves the total order properties.} We first check if the left fields are equal. If so, we compare the right fields. Otherwise, we return the comparison on the left fields:

\[
\text{instance} \, \text{Ord} \, (f \, \text{p}), \, \text{Ord} \, (g \, \text{p}) \Rightarrow
\]

\[
\text{Ord} \, ((f \mathbin{*:*} g) \, \text{p}) \, \text{where}
\]

\[
(x1 \mathbin{*:} y1) \leq (x2 \mathbin{*:} y2)
\]

\[
\text{if} \ x1 = x2 \ \text{then} \ y1 \leq y2 \ \text{else} \ x1 \leq x2
\]

It can be shown that given suitable \text{VerifiedOrd} proofs for the fields' \(f \) and \(g \), this ordering for \((\mathbin{*:*}) \) is reflexive:

\[
\text{leqProdRef1} \colon \text{(VerifiedOrd} \, (f \, \text{p}), \, \text{VerifiedOrd} \, (g \, \text{p})) \Rightarrow
\]

\[
\text{Ord} \, ((f \mathbin{*:*} g) \, \text{p}) \, \text{where}
\]

\[
\text{t@}(x \mathbin{*:} y) =
\]

\[
\text{(t} \leq \text{t)}
\]

\[
\text{. (if} \ x = x \ \text{then} \ y \leq y \ \text{else} \ x \leq x)
\]

\[
\text{. y} \leq y
\]
Note that we use an additional proof combinator (:): here:

(:) :: (Proof → a) → Proof → a
f :: y = f y

One should read (:) as being “prove the equational step on the left-hand side by using the lemma on the right-hand side”. In the case of leqProdRefl, we were able to prove that y ≤ y is true precisely because of the assumption that y was reflexive. The remaining proofs of antisymmetry, transitivity, and totality for (:*) can be found in Appendix A.1. Putting all of these proofs together gives us the following VerifiedOrd instance:

instance (VerifiedOrd (f p), VerifiedOrd (g p)) ⇒ VerifiedOrd ((f ::* g) p) where
 refl = leqProdRefl
 antisym = leqProdAntisym
 trans = leqProdTrans
 total = leqProdTotal

In a similar vein, we can come up with a VerifiedOrd instance for the (:+:) type. (:+:) not only represents choice between two constructors, it is also the simplest possible sum type, with two disjuncts. A total ordering on sums is defined so that everything in the L1 constructor is less than everything in the R1 constructor:

instance (Ord (f p), Ord (g p)) ⇒ Ord ((f :+: g) p) where
 leqSumRefl s@(L1 x) = (s ≤ s) =. x ≤ x
 =. True :: refl x
 ** QED
 leqSumRefl s@(R1 y) = (s ≤ s) =. y ≤ y
 =. True :: refl y
 ** QED

Here is an example of a VerifiedOrd-related proof for (:+:), establishing reflexivity:

leqSumRefl :: (VerifiedOrd (f p), VerifiedOrd (g p)) ⇒ u:(f :+: g) p → { u ≤ u }
leqSumRefl s@(L1 x) = (s ≤ s)
 =. x ≤ x
 =. True :: refl x
 ** QED
leqSumRefl s@(R1 y) = (s ≤ s)
 =. y ≤ y
 =. True :: refl y
 ** QED

This proof bears a strong resemblance to the reflexivity proof for B in Section 2.3. This similarity is intended, as the structure of the B data type is quite similar to that of (:+:). The remaining proofs for (:+:) can be found in Appendix A.2. Finally, we obtain the following VerifiedOrd instance for (:+:):

instance (VerifiedOrd (f p), VerifiedOrd (g p)) ⇒ VerifiedOrd ((f :+: g) p) where
 refl = leqSumRefl
 antisym = leqSumAntisym
 trans = leqSumTrans
 total = leqSumTotal

We wish to place particular emphasis on the fact that these VerifiedOrd instances are compositional. That is, we can put together whatever combination of (:+:), (:*), U1, and Rec0 we wish, and we will ultimately end up with a structure which has a valid VerifiedOrd instance. This is crucial, as it ensures that this technique scales up to real-world data types.

3.3 Reusing Proofs

Given a VerifiedOrd instance for a representation type, how can we relate it back to the original data type to which it is isomorphic? The answer lies in the GenericIso class from before. GenericIso has enough power to take a VerifiedOrd proof for one type and reuse it for another type.

To begin, we will need a way to compare two values of a type that is an instance of Generic, given that its representation type Rep is an instance of Ord:

leqIso :: (Ord (Rep a x), Generic a) ⇒ (a → a → Bool)
leqIso x y = (from x) ≤ (from y)

We can straightforwardly prove that leqIso is a total order:

leqIsoRefl :: (VerifiedOrd (Rep a x), GenericIso a) ⇒ x:a → { leqIso x x }
leqIsoRefl x = leqIso x x =. (from x) ≤ (from x)
 =. True :: refl (from x)
 ** QED

The proof of antisymmetry relies on the fact that from is an injection, which follows from the proof of isomorphism.

fromInj :: GenericIso a ⇒ x:a → y:a
 ⇒ u:(from x == from y) → { u ≤ u }
leqIsoAntisym x y =
 fromInj x y =
 from x == from y
 =. to (from x) == to (from y)
 =. x == to (from y) :: tof x
 =. x == y :: tof y
 ** QED
\[
\begin{align*}
= & \ ((\text{from } x) \leq (\text{from } y) \land (\text{from } y) \leq (\text{from } x)) \\
= & \ (\text{from } x) \equiv (\text{from } y) \\
\therefore \ & \ \text{antisym } (\text{from } x) \ (\text{from } y) \\
= & \ \text{leqIso } \text{fromInj } x \ y
\end{align*}
\]

QED

\[\begin{align*}
\text{leqIsoTrans } & \quad:: \ (\text{VerifiedOrd } (\text{Rep a } x), \text{GenericIso } a) \\
& \Rightarrow \ x : a \rightarrow y : a \\
& \rightarrow \ {\{ \ \text{leqIso } x \ y \land \text{leqIso } y \ z \Rightarrow \text{leqIso } x \ z \}} \\
\text{leqIsoTotal } & \quad:: \ (\text{VerifiedOrd } (\text{Rep a } x), \text{GenericIso } a) \\
& \Rightarrow \ x : a \rightarrow y : a \\
& \rightarrow \ {\{ \ \text{leqIso } x \ y \lor \text{leqIso } y \ x \}} \\
\end{align*}\]

QED

\[\begin{align*}
\text{instance } \text{VerifiedOrd } B \\
\end{align*}\]

This small amount of code does a tremendous amount of heavy lifting. Recall (§ 3.1) for Generic and GenericIso:

\[\begin{align*}
\text{instance } \text{Generic } B & \quad\text{where} \\
& \quad\text{type } \text{Rep } B = \text{Rec}0 \text{ Int } ::+ \text{Rec}0 \text{ Int} \\
& \ldots
\end{align*}\]

\[\begin{align*}
\text{instance } \text{GenericIso } B & \quad\text{where} \\
& \quad\ldots
\end{align*}\]

Type class resolution will fill in the implementations for the Ord and VerifiedOrd instances for B, if we have Ord and VerifiedOrd instances for Int, Rec0 and (:+:). A VerifiedOrd Int instance is trivial to create, as the SMT solver’s reasoning about Ints makes the proofs simple, and we demonstrated how to write the proofs for (:+:) in Section 3.2.

Our derivation technique, as presented, works for recursive datatypes too. For instance assume the recursive definition of natural numbers.

\[\begin{align*}
\text{data } \text{Nat} & = \text{Zero} \mid \text{Suc } \text{Nat} \\
& \quad\text{deriving Eq}
\end{align*}\]

Then we derive a VerifiedOrd instance for Nat simply by deriving all the appropriate Generic, GenericIso and Ord classes\(^6\).

\[\begin{align*}
& \quad\text{deriveIso } ^{''}\text{Nat} \\
& \quad\text{instance } \text{Ord } \text{Nat} \\
& \quad\text{instance } \text{VerifiedOrd } \text{Nat}
\end{align*}\]

4 Evaluation

To evaluate our approach for deriving lawful instances, we extended a set of commonly used Haskell type classes with associated proof obligations (summarized in Table 1) and implemented proof carrying instances for the Haskell data types of Table 2. Our implementation can be accessed at \texttt{http://bit.ly/2qFbei6}. In this section, we describe the five lawful type classes (section 4.1) and the law-abiding instances that we derived for them (section 4.2). We conclude by summarizing the benefits (section 4.3) and limitations (Sections 4.4 and 4.5) of our technique.

4.1 Lawful Type Classes

We used refinement types to specify the laws for five standard type classes as presented in Table 1.

1. Total Orders Our primary example from section 2 was the Ord type class, which can be verified to be a total order.

2. Equivalences Next we specify the equivalence properties in Ord’s superclass, Eq.

\[\begin{align*}
& \quad\text{class } \text{Eq } a \quad\text{where} \\
& \quad\text{(==) }:: a \rightarrow a \rightarrow \text{Bool}
\end{align*}\]

\(^6\)Note that the methods in the derived instance are only guaranteed to terminate for strictly positive datatypes.
Equality should be an equivalence relation—that is, it should satisfy the laws of reflexivity, symmetry, and transitivity (expressed directly as refined function types):

- type ReflEq a = x:a → (x == x)
- type SymEq a = x:a → y:a → (x == y ⇒ y == x)
- type TransEq a = x:a → y:a → z:a
 → (x == y ∧ y == z ⇒ x == z)

These type signatures are used in the class methods of VerifiedEq in Table 1. The process for generically creating VerifiedEq instances is extremely similar to the process for VerifiedOrd, as outlined in section 2.

3. Semigroups

Next, we specify the associativity law for semigroups. The Semigroup class comes equipped with a binary operation (<>), that provides a way to combine two values into one.

```
class Semigroup a ⇒ VerifiedSemigroup a where
assoc :: Assoc a
```

The proof obligation for (<>), as outlined in section 2, is that (<>), which provides a way to combine two values into one.

```
type Assoc a = x:a → y:a → z:a
  → (x <> (y <> z) = (x <> y) <> z)
```

The process of generically creating VerifiedSemigroup instances slightly differs from that of VerifiedOrd (from section 2), since Semigroup features a class method with the type parameter in the result position of a function—that is, the type parameter is used covariantly as well as contravariantly. This means that in order to turn a VerifiedSemigroup instance into a VerifiedSemigroup instance, one must use the fmap function—which was unused up to this point—as well as from.

4. Monoids

On top of Semigroup, its subclass Monoid grants the ability to conjure up an identity element:

```
class Monoid a ⇒ VerifiedMonoid a where
  lident :: LIdent a
  rident :: RIdent a
```

Monoid has two more proof obligations which dictate how empty should interact with the (<>), as outlined in section 2, and the left and right identity element:

```
type LIdent a = x:a → (empty <> x = x)
type RIdent a = x:a → (x <> empty = x)
```

There is an interesting question to be asked about whether one can sensibly write generic Semigroup or Monoid instances for sum types. Unlike the Eq or Ord classes, where it is straightforward to implement generic instances for types with multiple constructors (represented by the type (:+:)), for Semigroup and Monoid the choice is not clear. Trying to combine values from different constructors with (<>)) would require arbitrarily picking whether the left or right constructor should be used, for instance. As a result, we did not pursue any VerifiedSemigroup or VerifiedMonoid instances for sum types.

5. Functors

Finally we specify the laws on the Functor class:

```
class Functor f ⇒ VerifiedFunctor f where
  fmapId :: FmapId f
  fmapCompose :: FmapCompose f
```

We use the standard Haskell definitions for identity and composition:

```
type FmapId f
  = z:(f a) → (fmap id z = z)
type FmapCompose f
  = x:(b → c) → y:(a → b) → z:(f a)
  → (fmap (x . y) z = (fmap x . fmap y) z)
```

At the time of writing, Monoid is not actually a subclass of Semigroup in GHC's base library. For the sake of making the presentation more convenient, however, we will pretend it is.
Unlike the previous four classes that are defined over types (of kind \((\star)\)), Functor is defined over type constructors (of kind \((\star \to \star)\)). To derive law-abiding instances over these kinds of classes, we need to generalize our earlier machinery to work over \((\star \to \star)\)-kinded types.

Generic Derivations for Type Constructors. The Generic1 class handles \((\star \to \star)\)-kinded types.

```haskell
class Generic1 (f :: \(\star \to \star\)) where
    type Rep1 f :: \(\star \to \star\)
    from1 :: \(\forall\ a.\ f\ a \to \text{Rep1}\ f\ a\)
    to1 :: \(\forall\ a.\ \text{Rep1}\ f\ a \to f\ a\)
```

The Generic1 class handles \((\star \to \star)\)-kinded types.

```haskell
instance Functor Phantom where
    fmap f (Phantom i) = Phantom i
```

We see that Rep1 handles direct occurrences of the type parameter, Rec1 handles cases where the type parameter is underneath an application of some type, and (\(\text{...}\)) is used when there are multiple levels of type applications covering the type parameter. For all other field types, Par1 is used.

Finally, following section 2, we define the Template Haskell derivation function deriveIso1 that, given the name of a data type constructor, derives the proper Generic1 and GenericIso1 instances.

```haskell
deriveIso1 :: Name \(\to\) Q [Q]
```

4.2 Law-Abiding Instances

We used our approach to derive law-abiding instances of the above type classes for data types of Identity, Maybe, Either, List, and Triple as defined in table 2. As discussed in section 4.1, we do not attempt to derive Semigroup and Monoid instances for the sum types Maybe, Either, and List. We selected the five data types in table 2 because they provide a healthy variety of structure, encompassing types with product, sum, and nullary constructors. Moreover, they provide interesting test cases for VerifiedFunctor as, e.g., the list type features the type parameter \(a\) in both a direct occurrence and underneath the List type constructor (in the Cons constructor).

To recap the advantage of our approach, we describe how each instance was verified, using the VerifiedFunctor instance for List as an example.

At the library site, the developer defines the verified class together with its laws:

```haskell
type FmapId f = \(\forall\ a.\ z:(f\ a) \to (f\ a)\)

type FmapCompose f = \(\forall\ a\ b\ c.\ x:(b \to c) \to y:(a \to b) \to z:(f\ a) \to f\ (x \cdot y)\)
```

```haskell
class Functor f \(\Rightarrow\) VerifiedFunctor f where
    fmapId :: FmapId f
    fmapCompose :: FmapCompose f
```

To allow semi-automatic derivation of law-abiding instances, the library developer needs to provide two further pieces of code:

1. the verified instances for the representation types needed to support the original data type, and
2. a way to convert a verified instance for the representation type back to the original data type.

Code 1. In our example, the library-writer must create VerifiedFunctor instances for the U1, Par1, Par1, (\(\text{...}\)), and Rec1 types. These instances will be used to derive the VerifiedFunctor instance for List since it has the following representation type:

```haskell
type Rep1 List = U1 :*: (Par1 :*: Rec1 List)
```
Code 2. Then, one needs to define how to convert a `VerifiedFunctor` instance for the representation type of `f` into a `VerifiedFunctor` instance for `f` itself.

```haskell
instance (VerifiedFunctor (Rep1 f), GenericIso1 f) ⇒ VerifiedFunctor f
```

This instance definition can be defined using the techniques from Section 3.2.

At the user site, first the data type is defined. For our example, we use Lists.

```haskell
data List a = Nil | Cons a (List a)
```

Next, we use Template Haskell to automate the creation of `Generic1` and `GenericIso1` instances for the data type:

```haskell
deriveIso1 "List"
```

Finally, we derive the law-abiding instance definition of `List` as a `VerifiedFunctor` by simply by writing the following instance declaration:

```haskell
instance VerifiedFunctor List
```

4.3 Proof Burden for Direct and Derived Instances

We would like to emphasize the differences between our generic derivation approach and the direct approach of writing out the proofs directly.

In the direct approach, the library writer does not need to write anything that resembles Code 2, since there are no data type conversions to be found. In this sense, there is a cost to the generic approach that is not present in the direct approach. Importantly, though, this cost only has to be paid once for each class, because this code for converting `VerifiedFunctor` instances between types can be reused for every subsequent data type that needs a `VerifiedFunctor` instance.

Additionally, the direct approach’s costs significantly outweigh the generic approach’s costs. To implement Code 1 in the generic approach, one must write proof code for a certain number of “building block” data types, *but no more than that*. After these proofs have been written, there are no additional costs that arise later when writing other verified instances, as these proofs can be reused for other datatypes that have representation types with the same underlying building block types. In contrast, the direct approach requires writing (and re-writing) proof code for every verified instance.

4.4 Limitations and Future Work

Our current prototype differs from the presentation in Section 3 in a couple of ways.

Liquid Haskell Doesn’t Support Type Classes First, Liquid Haskell does not fully support refining all features of type classes of the time of writing. This is a limitation which could be overcome with a future implementation. We work around this in our prototype by using an explicit dictionary style that is equivalent to how type classes are desugared internally in GHC. For instance, we reify the `Eq` type class as

```haskell
data Eq a = Eq { (==) :: a → a → Bool }
```

We then explicitly pass around `Eq` “instances” as data type values. This makes the implementation a bit more verbose, but is otherwise functionally equivalent to our presentation earlier in the paper.

Template Haskell Doesn’t Support Comments The other limitation which our prototype must work around is the lack of Template Haskell support for generating comments. Recall that Liquid Haskell refinements are expressed in comments of the form `{@ ... @}`. This poses a challenge for us, as we use Template Haskell to implement the `deriveIso` function, which is intended to create `GenericIso` instances and the associated refinement-containing comments that accompany the instances. That is, ideally

```haskell
would suffice to generate the following Haskell code:
```

```haskell
instance Generic Foo where
to = ...
from = ...
```

```haskell
instance GenericIso Foo where
{ @ tof :: x:Foo → (from (to x) == x) @ -}
tof = ...
{ @ fot :: x:Rep Foo x → (from (to x) == x) @ -}
fot = ...
```

Unfortunately, Template Haskell currently does not support splicing in declarations that contain comments as in the code above, so doing everything in one fell swoop is not possible at the moment. To work around this limitation, we require users to write the comments themselves:

```haskell
instance GenericIso Foo where
{ @ tof :: x:Foo → (to (from x) == x) @ -}
{ @ fot :: x:Rep Foo x → (from (to x) == x) @ -}
```

We intend to resolve this by extending Template Haskell to support comment generation.

4.5 A Note on Performance

One limitation to watch out for is the efficiency of the verified instances at runtime. A consequence of using GHC.Generics is that there are many intermediate data types used, and this can lead to runtime performance overheads if GHC does not optimize away the conversions to and from the intermediate types. It is sometimes possible to tune GHC’s optimization flags to achieve performance that is
comparable to direct, hand-written code [9], but as a general rule, code written with GHC.Generics tends to be slower overall.

We do not offer a solution to this problem in this paper, but it is worth noting that many of the classes that we discuss can be derived in GHC through other means. For instance, one can derive efficient implementations of the Eq, Ord, and Functor classes by writing

```
data Pair a = MkPair a a
  deriving (Eq, Ord, Functor)
```

One thing we wish to explore in the future is verifying instances derived in this fashion. This will be non-trivial as the code that GHC derives often uses primitive operations that can be tricky to reason about. If this were implemented, we could quickly verify a set of commonly used type classes and have them be fast, too.

5 Aside: Logic

The idea of proof reuse is motivated from model theory in mathematical logic. First-order model theory studies properties of models of first-order theories using tools from universal algebra. In particular, preservation theorems study the closure properties of classes of models across algebraic operations. By interpreting Haskell type classes and verified type classes as algebraic objects, we can borrow these ideas to do generic proving and verified programming.

A Haskell type class can be interpreted as a signature in the sense of universal algebra, that is, a collection of function and relation symbols with fixed arities. Relations are identified with propositions, that is, functions whose codomain is Bool. For example, the type class Eq corresponds to the signature \(\sigma_{Eq} := (\equiv) \), and the Ord class corresponds to the signature \(\sigma_{Ord} := (\leq, \equiv) \). "Type class laws", expressed as first-order axioms using refinement reflection are identified as a first-order theory, that is, a set of first-order statements (identified up to logical equivalence). For example, for VerifiedOrd, we have the theory of total orders given by \(T_{Ord} \) with the axioms for reflexivity, antisymmetry, transitivity, and totality.

We can now interpret building an instance of a verified type class model-theoretically. A type is an instance of a verified type class, if it forms a structure in that signature, and is also a model of the first-order theory. For example, a type \(a \) is an instance of VerifiedOrd, if there are operations \(=^a \), \(\leq^a \) so that \(A := (a, =^a, \leq^a) \) is a \(\sigma_{Ord} \) structure, and \(A \models T_{Ord} \), that is, \(A \) is a model of \(T_{Ord} \).

Given a first-order theory \(T \) and \(K \), the class of models of \(T \), one can ask if \(K \) is closed under algebraic operations like products (\(P(K) \)), coproducts (\(C(K) \)), substructures (\(S(K) \)), homomorphic images (\(H(K) \)), isomorphic images (\(I(K) \)). The answers to some of these are well known [6].

\begin{itemize}
 \item \(I(K) = K \) for any \(T \).
 \item \((\text{Loś-Tarski}) \) \(S(K) = K \) \iff \(T \) is universal.
 \item \(SP(K) = K \) \iff \(T \) is a Horn-clause theory.
 \item \((\text{Birkhoff}) \) \(HSP(K) = K \) \iff \(T \) is equational.
\end{itemize}

This gives a firm theoretical foundation for our technique for shorter refinement reflection proofs. The fact that classes of models are closed under products means that if we can prove a property for two types, then we can immediately conclude that the property holds for a constructor with those two types as fields. Similarly, closure under coproducts lets us conclude that if a property holds for two constructors, then that property holds for a sum type composed of those two constructors. Closure under substructures means that we can use an injective embedding to reduce the proof to one for a different datatype. Lastly, closure under isomorphism lets us say that if we can prove a property for one data type, then we can conclude the property for any other data type with an isomorphic structure.

6 Related Work

Several languages with dependent types offer some degree of automation via datatype-generic programming. Danvy [5] develops a dependent type theory in Agda which, by encoding inductive data types in a universe of descriptions, allows deriving decidable (and boolean) equality in a straightforward manner. Al-Sibahi [1] presents a similar implementation of described types in Idris, based off of the dependent type theory by Chapman et al. [4], and demonstrates its utility in deriving instances of decidable equality, Functor, pretty-printing, and generic traversals. Altenkirch et al. also develop several universes of types in Epigram, which can be used to implement generic zipper options [2].

Liquid Haskell takes a somewhat different approach to equational reasoning than Agda and Idris. With refinement reflection, the programmer states the propositions as refinements, and Liquid Haskell is tasked with finding the proofs (with some gentle assistance by the programmer). The proof code simply acts as a guide to the SMT solver in determining satisfiability. In Agda and Idris, however, more responsibility is placed on the programmer to implement the details of proofs, as their typecheckers do not leverage a solver. In this way, refinement reflection inverts the relative importances of propositions and proofs, and by incorporating statements from propositions into the SMT solver, Liquid Haskell makes propositions "whole-program".

One thing to note is that while the datatype generic programming techniques in dependently typed languages like Agda, Idris, and Epigram are strictly more powerful, as they need to support a richer universe of datatypes than what Haskell offers, it comes with a burden of a higher learning curve. For instance, Al Sibahi notes that in the generic programming library he developed for Idris, "it requires considerable effort to understand the type signatures for even simple operations." [1] In contrast, the generic programming
library we use here is designed to be relatively straightforward to implement, simple to explain, and give decently understandable type error messages.

The notion of reusing proofs over isomorphic types is also a familiar idea in the dependent types community. Barthe and Pons [3] formalize a theory of type isomorphisms in a modified version of the Calculus of Inductive Constructions. Type isomorphisms are extremely similar to the GenericIso class in Section 3.1. A type isomorphism between types A and B is essentially a pair of two well typed functions $f : A \to B$ and $g : B \to A$ that are mutual inverses (i.e., that $f(g(x)) = x$ and $g(f(x)) = x$ for all x) which allow one to take a proof of a property over A and reuse it for B, and vice versa. Barthe and Pons use as motivation the ability to, for instance, reuse a proof of Peano (unary) natural numbers, which can be easier to reason about, for binary natural numbers, which can be used for more efficient algorithms. The technique could be adapted for inductive data types and their corresponding representations as well.

Isomorphisms (or equivalences) are also well studied in Homotopy Type Theory, and having a computational interpretation for univalence would mean that all type constructors act functorially on isomorphisms. This allows one to rewrite terms between isomorphic types, witnessed by a path, which facilitates type-generic programming. Some possible applications to generic programming are discussed by Licata and Harper in their work on 2-dimensional type theory [7].

7 Conclusion

We presented how law-abiding type class instances can be derived via generic programming. Class laws are encoded as refinement type specifications. The library author’s only responsibility is to provide proofs of the laws on generic representation types, and to implement a way to derive a verified instance for a type by reusing the proofs from its (provably isomorphic) representation type. Then, Haskell’s standard class resolution will derive provably law-abiding instances. We used this technique on the commonly used Haskell classes Eq, Ord, Semigroup, Monad, and Functor. Even though our technique currently suffers from various engineering limitations, it suggests a clean route towards semi-automated verification of class proofs by combining datatype-generic programming and type class resolution.

References

[1] Ahmad Salim Al-Sibahi. 2014. The Practical Guide to Levitation. Master’s thesis. IT University of Copenhagen, Copenhagen, Denmark. http://itu.dk/people/asal/pubs/msc-thesis-report.pdf

[2] Thorsten Altenkirch, Conor McBride, and Peter Morris. 2007. Generic Programming with Dependent Types. In Proceedings of the 2006 International Conference on Datatype-generic Programming (SSDGP’06). Springer-Verlag, Berlin, Heidelberg, 209–257. http://dl.acm.org/citation.cfm?id=1782894.1782898

[3] Gilles Barthe and Olivier Pons. 2001. Type Isomorphisms and Proof Reuse in Dependent Type Theory. In Proceedings of the 4th International Conference on Foundations of Software Science and Computation Structures (FoSSaCS’01). Springer-Verlag, London, UK, 57–71. http://dl.acm.org/citation.cfm?id=646793.704711

[4] James Chapman, Pierre-Édouard Dagand, Conor McBride, and Peter Morris. 2010. The Gentle Art of Levitation. In Proceedings of the 15th ACM SIGPLAN International Conference on Functional Programming (ICFP ’10). ACM, New York, NY, USA, 3–14. DOI: http://dx.doi.org/10.1145/1863543.1863547

[5] Pierre-Édouard Dagand. 2013. A cosmology of datatypes: reusability and dependent types. Ph.D. Dissertation. University of Strathclyde, Glasgow, UK. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=22713

[6] Wilfrid Hodges. 1997. A shorter model theory. Cambridge university press.

[7] Daniel R. Licata and Robert Harper. 2012. Canonicity for 2-dimensional type theory. In ACM SIGPLAN Notices, Vol. 47. ACM, 337–348.

[8] José Pedro Magalhães, Atze Dijkstra, Johan Jeuring, and Andres Löh. 2010. A Generic Deriving Mechanism for Haskell. In Proceedings of the Third ACM Haskell Symposium on Haskell (Haskell ’10). ACM, New York, NY, USA, 37–48. DOI: http://dx.doi.org/10.1145/1863523.1863529

[9] José Pedro Magalhães, Stefan Holdermans, Johan Jeuring, and Andres Löh. 2010. Optimizing Generics is Easy!. In Proceedings of the 2010 ACM SIGPLAN Workshop on Partial Evaluation and Program Manipulation (PEPM ’10). ACM, New York, NY, USA, 33–42. DOI: http://dx.doi.org/10.1145/1706356.1706366

[10] José Pedro Magalhães and Johan Jeuring. 2011. Generic Programming for Indexed Datatypes. In Proceedings of the Seventh ACM SIGPLAN Workshop on Generic Programming (WGP ’11). ACM, New York, NY, USA, 37–46. DOI: http://dx.doi.org/10.1145/2036918.2036924

[11] Tim Sheard and Simon Peyton Jones. 2002. Template Meta-programming for Haskell. SIGPLAN Not. 37, 12 (Dec. 2002), 60–75. DOI: http://dx.doi.org/10.1145/636517.636528

[12] Niki Vazou and Ranjit Jhala. 2016. Reflection Refinement (or, how to turn your favorite language into a proof assistant using SMT). CoRR abs/1610.04641 (2016). http://arxiv.org/abs/1610.04641

[13] Niki Vazou, Leonidas Lampropoulos, and JEÇ Polakow. 2017. A Tale of Two Provers: Verifying Monoidal String Matching in Liquid Haskell and Coq. (2017). https://nikivazou.github.io/static/Haskell17/main.pdf

[14] Niki Vazou, Eric L. Seidel, Ranjit Jhala, Dimitrios Vytiniotis, and Simon Peyton-Jones. 2014. Refinement Types for Haskell. SIGPLAN Not. 49, 9 (Aug. 2014), 269–282. DOI: http://dx.doi.org/10.1145/2602915.2628161

[15] Alexey Rodriguez Yakushev and Johan Jeuring. 2009. Enumerating Well-Typed Terms Generically. In AALP.
A Appendix

A.1 Full VerifiedOrd instance for (\texttt{*:}):

```plaintext
instance (Ord (f p), Ord (g p)) ⇒
Ord ((f \texttt{*:} g) p) where
(x1 \texttt{*:} y1) ≤ (x2 \texttt{*:} y2) =
  if x1 == x2 then y1 ≤ y2 else x1 ≤ x2
```

\texttt{leqProdRefl}:

```plaintext
:: (VerifiedOrd (f p), VerifiedOrd (g p)) ⇒ Refl ((f \texttt{*:} g) p)
leqProdRefl t@(x \texttt{*:} y) =
  (t ≤ t)
  =. (if x == x then y ≤ y else x ≤ x)
  =. True :: refl y
** QED
```

\texttt{leqProdAntisym}:

```plaintext
:: (VerifiedOrd (f p), VerifiedOrd (g p)) ⇒ Anti ((f \texttt{*:} g) p)
leqProdAntisym p@(x1 \texttt{*:} y1) q@(x2 \texttt{*:} y2) =
  (p ≤ q ∧ q ≤ p)
  =. ((if x1 == x2 then y1 ≤ y2 else x1 ≤ x2) ∧
       (if x2 == x1 then y2 ≤ y1 else x2 ≤ x1))
  =. (if x1 == x2 then y1 == y2 else x1 ≤ x2 ∧ x2 ≤ x1) :: antisym y1 y2
  =. (if x1 == x2 then y1 == y2 else x1 ≤ x2 ∧ x2 ≤ x1) :: antisym x1 x2
  =. (x1 == x2 ∧ y1 == y2)
  =. (p == q)
** QED
```

\texttt{leqProdTrans}:

```plaintext
:: (VerifiedOrd (f p), VerifiedOrd (g p)) ⇒ Trans ((f \texttt{*:} g) p)
leqProdTrans p@(x1 \texttt{*:} y1) q@(x2 \texttt{*:} y2) r@(x3 \texttt{*:} y3) =
  case x1 == x2 of
  True → case x2 == x3 of
    True → (p ≤ q ∧ q ≤ r)
    =. (y1 ≤ y2 ∧ y2 ≤ y3)
    =. y1 ≤ y3 :: trans y1 y2 y3
    =. (if x1 == x3
         then y1 ≤ y3
         else x1 ≤ x3)
    =. (p ≤ r)
    ** QED
  False → (p ≤ q ∧ q ≤ r)
    =. (y1 ≤ y2 ∧ x2 ≤ x3)
    =. x1 ≤ x3
    =. (if x1 == x3
         then y1 ≤ y3
         else x1 ≤ x3)
    =. (p ≤ r)
** QED
```

\texttt{leqProdTotal}:

```plaintext
:: (VerifiedOrd (f p), VerifiedOrd (g p)) ⇒ Total ((f \texttt{*:} g) p)
leqProdTotal p@(x1 \texttt{*:} y1) q@(x2 \texttt{*:} y2) r@(x3 \texttt{*:} y3) =
  case x1 == x2 of
  True → case x2 == x3 of
    True → (p ≤ q ∧ q ≤ r)
    =. (y1 ≤ y2 ∧ y2 ≤ y3)
    =. y1 ≤ y3 :: trans y1 y2 y3
    =. (if x1 == x3
         then y1 ≤ y3
         else x1 ≤ x3)
    =. (p ≤ r)
    ** QED
  False → (p ≤ q ∧ q ≤ r)
    =. (y1 ≤ y2 ∧ x2 ≤ x3)
    =. x1 ≤ x3
    =. (if x1 == x3
         then y1 ≤ y3
         else x1 ≤ x3)
    =. (p ≤ r)
** QED
```
instance (VerifiedOrd (f p), VerifiedOrd (g p))
 \Rightarrow VerifiedOrd ((f ::*: g) p) where
 refl = leqProdRefl
 antisym = leqProdAntisym
 trans = leqProdTrans
 total = leqProdTotal

A.2 Full VerifiedOrd instance for (:+:)

instance (Ord (f p), Ord (g p)) \Rightarrow
 Ord ((f :+: g) p) where
 leqSumRefl :: (VerifiedOrd (f p), VerifiedOrd (g p)) \Rightarrow
 Refl ((f :+: g) p) =
 \begin{cases}
 \text{leqRefl} & \text{if } s \leq s \\
 \text{leqRefl} & \text{if } s \leq s
 \end{cases}

leqSumRefl s@(L1 x) = (s \leq s) =. (s \leq s)
 \begin{align*}
 & =. x \leq x \\
 & =. \text{True :: refl x}
 \end{align*}
 ** QED

leqSumRefl s@(R1 y) = (s \leq s) =. (s \leq s)
 \begin{align*}
 & =. \text{True :: refl y}
 \end{align*}
 ** QED

leqSumAntisym :: (VerifiedOrd (f p), VerifiedOrd (g p)) \Rightarrow
 Anti ((f :+: g) p) =
 \begin{cases}
 \text{leqAntisym} & \text{if } p \leq q \land q \leq p \\
 \text{leqAntisym} & \text{if } p \leq q \land q \leq p
 \end{cases}

leqSumAntisym p@(L1 x) q@(L1 y) =
 \begin{align*}
 & =. (x \leq y \land y \leq x) \\
 & =. x \equiv y :: \text{antisym x y}
 \end{align*}
 ** QED

leqSumAntisym p@(L1 x) q@(R1 y) =
 \begin{align*}
 & =. (p \leq q \land q \leq p) \\
 & =. (\text{True} \land \text{False}) \\
 & =. \text{False}
 \end{align*}
 ** QED

leqSumAntisym p@(R1 x) q@(L1 y) =
 \begin{align*}
 & =. (p \leq q \land q \leq p) \\
 & =. (\text{False} \land \text{True}) \\
 & =. \text{False}
 \end{align*}
 ** QED

leqSumAntisym p@(R1 x) q@(R1 y) =
 \begin{align*}
 & =. (p \leq q \land q \leq p) \\
 & =. (\text{False} \land \text{True}) \\
 & =. \text{False}
 \end{align*}
 ** QED

leqSumTrans :: (VerifiedOrd (f p), VerifiedOrd (g p)) \Rightarrow
 Trans ((f :+: g) p) =
 \begin{cases}
 \text{leqTrans} & \text{if } p \leq q \land q \leq p \\
 \text{leqTrans} & \text{if } p \leq q \land q \leq p
 \end{cases}

leqSumTrans p@((L1 x) q@(L1 y) r@(L1 z)) =
 \begin{align*}
 & =. (p \leq q \land q \leq r) \\
 & =. (x \leq y \land y \leq z) \\
 & =. x \equiv z :: \text{trans x y z}
 \end{align*}
 ** QED

leqSumTrans p@((L1 x) q@(R1 y) r@(L1 z)) =
 \begin{align*}
 & =. (p \leq q \land q \leq r) \\
 & =. (x \leq y \land True) \\
 & =. (p \leq r)
 \end{align*}
 ** QED

leqSumTrans p@((L1 x) q@(R1 y) r@(L1 z)) =
 \begin{align*}
 & =. (p \leq q \land q \leq r) \\
 & =. (True \land False) \\
 & =. (p \leq r)
 \end{align*}
 ** QED

leqSumTotal :: (VerifiedOrd (f p), VerifiedOrd (g p)) \Rightarrow
 Total ((f :+: g) p) =
 \begin{cases}
 \text{leqTotal} & \text{if } p \leq q \land q \leq p \\
 \text{leqTotal} & \text{if } p \leq q \land q \leq p
 \end{cases}

leqSumTotal p@((L1 x) q@(L1 y) r@(L1 z)) =
 \begin{align*}
 & =. (x \leq y \land y \leq z) \\
 & =. x \equiv z :: \text{trans x y z}
 \end{align*}
 ** QED

leqSumTotal p@((R1 x) q@(L1 y) r@(L1 z)) =
 \begin{align*}
 & =. (x \leq y \land y \leq z) \\
 & =. x \equiv z :: \text{trans x y z}
 \end{align*}
 ** QED

leqSumTotal p@((R1 x) q@(R1 y) r@(L1 z)) =
 \begin{align*}
 & =. (x \leq y \land y \leq z) \\
 & =. x \equiv z :: \text{trans x y z}
 \end{align*}
 ** QED

leqSumTotal p@((R1 x) q@(R1 y) r@(R1 z)) =
 \begin{align*}
 & =. (x \leq y \land y \leq z) \\
 & =. x \equiv z :: \text{trans x y z}
 \end{align*}
 ** QED
\[(p \leq q \mid \mid q \leq p)\]
\[= (\text{True} \mid \mid \text{False})\]
\[\text{** QED}\]

\text{leqSumTotal \(p@R1 x\) \(q@L1 y\) =}
\[(p \leq q \mid \mid q \leq p)\]
\[= (\text{False} \mid \mid \text{True})\]
\[\text{** QED}\]

\text{leqSumTotal \(p@R1 x\) \(q@R1 y\) =}
\[(p \leq q \mid \mid q \leq p)\]
\[= (x \leq y \mid \mid y \leq x)\]

\[= \text{True} \because \text{total x y}\]
\[\text{** QED}\]

\text{instance (VerifiedOrd \((f \ p), \text{VerifiedOrd } \(g \ p\))}
\[\Rightarrow \text{VerifiedOrd } \((f :+: g) \ p\) \text{ where}\]
\text{refl} = \text{leqSumRef1}\n\text{antisym} = \text{leqSumAntisym}\n\text{trans} = \text{leqSumTrans}\n\text{total} = \text{leqSumTotal}\]