A XENON SOLAR NEUTRINO DETECTOR

A.Sh. Georgadze*, H.V. Klapdor-Kleingrothaus†, H. Päs†
and Yu.G. Zdesenko*

*Institute for Nuclear Research, 252028, Kiev, Ukraine
†Max-Planck-Institut für Kernphysik,
P.O. Box 103980, D-69029 Heidelberg, Germany

Abstract
The neutrino capture by 131Xe with a threshold at 352 keV as reaction to detect solar neutrinos is examined. The most important feature of this process is its high sensitivity to beryllium neutrinos, which contribute approximately 40% to the total capture rate (45 SNU) assuming the fluxes predicted by the Standard Solar Model of [3]. The procedure of extraction of the daughter cesium atoms from liquid xenon as well as other technical problems concerning preparation of the cesium sample, low background measurements and side reactions for a possible realisation as a solar neutrino detector are discussed. The expected counting rate according to the SSM of [3] for a 131Xe detector is ≈ 1500 events/y·kton. The results of such a detector will be important for solving the puzzle of the possible existence of vacuum oscillations or the MSW effect and/or input parameters of the Standard Solar Models.

1 Introduction
Reconciling the Kamiokande and Homestake experiments one was led to the conclusion that not only 8B but 7Be neutrinos suffer considerable reduction with respect to predictions of the SSM. The GALLEX [1] and SAGE [2] results support this conclusion. In particular, the SSM prediction for the gallium experiment is 113 – 132 SNU [3],[4],[5]. Since the pp neutrino flux is almost model independent and closely tied with the solar luminosity it was supposed that its contribution to the GALLEX result can be predicted with reasonable precision to be 70 SNU [3]. The boron neutrino contribution fixed by the Kamiokande data in model independent way is equal to 7 SNU. Thus, comparing theoretical and experimental results one can see that in the gallium data there is no room for beryllium neutrinos which are expected to contribute 31 – 34 SNU or 25 – 27% of the total flux in the SSMs. After calibration of the GALLEX experiment with a 51Cr neutrino source a deficit of 7Be neutrinos was claimed at a 3σ confidence level [6]. Efforts to explain the reduction of beryllium neutrinos on the basis of variation of the input parameters of the standard solar models were unsuccessful until now according to [7].
Therefore the 7Be neutrino deficit should be proved in another experiment with essential sensitivity to beryllium neutrinos.

In fact, the most important parameter of the detector is the relative ratio of the 7Be to pp neutrino yield, which should be larger than in the 71Ga experiments. The latter means that the threshold of the detector should be low enough to avoid possible effects of reduction of the 7Be neutrino capture cross section near the threshold, and high enough to reduce the relative contribution of the pp neutrinos in the total yield.

There is a number of solar neutrino detectors proposed for the near and far future. Two of them, Superkamiokande [8] (in operation now) and SNO [9] (Sudbury Neutrino Observatory which will start data taking in the nearest future) are sensitive to boron neutrinos mainly. Therefore these experiments will give no full solution of the problem. The same conclusion is true for ICARUS [10] (a multipurpose liquid argon drift detector which will operate in the Gran Sasso Underground Laboratory). The HELLAZ detector [11] (2000 m3 helium TPC at 5 bar, 77K) would be sensitive to pp and 7Be neutrinos but is far away from real operation, as many other proposals like HERON [12], 81Br [13], 115In [14] and detectors based on low temperature techniques [15], because all of them are in very early stages of their development.

Only two of the proposals, BOREXINO and an iodine detector, that both would be able to detect 7Be neutrinos should be on line relatively soon.

The main goal of the BOREXINO [16] experiment is to measure the flux of 7Be neutrinos via elastic scattering in a 100 tons liquid scintillator target. Within the electron energy window $0.25 < E_e < 0.80$ MeV 80% of the signal comes from 7Be neutrinos leading to a high signal rate of 50 counts per day. It is supposed to use an ultra-pure water, liquid scintillator and selected constructing materials to reduce the background of the detector to the extremely low level of 0.1 counts/day-ton (for a signal/background ratio of 5:1). To date a prototype of the BOREXINO detector with a volume of scintillator of 4.5 m3 was mounted and tested successfully in the Gran Sasso Underground Laboratory [16]. An extremely high purity of the scintillator at the level of $\approx (2-5)\times 10^{-16}$ g/g for 238U and 232Th contamination was demonstrated. The background of the prototype detector in the energy region of 250-800 keV was ≈ 1800 counts/day [16] which is however still much higher than required. Therefore still big efforts and time will be needed to reach the required sensitivity.

An experiment based on the 127I+$\nu \rightarrow ^{127}$Xe$^* + e^-$ neutrino capture reaction to the $3/2^+$ excited state of 127Xe with the threshold at $E_\nu=0.789$ MeV was suggested by Haxton and is in the pilot research stage now [17]. However this project suffers of the strong model dependent theoretical estimation of the total capture rate, ranging between 20 and 135 SNU [18]. Also experimental efforts as the measurement of the charge-exchange reaction 127I (p,n) 127Xe, which could not be normalized to known beta transitions, as well as the attempt to fix the GT distribution in an experiment at LAMPF, [19] where the involved neutrinos had high multipolarities due to their somewhat higher energies, were of limited value in this respect.
Therefore it will be difficult to solve the 7Be neutrino problem within a reasonable time scale using present detectors, and a new detector would be desirable. We discuss here the possibility to use 131Xe as radiochemical detector with a threshold at 352 keV [21] and with good sensitivity to 7Be neutrinos. This possibility is based first on the excellent properties of xenon which allow to use it as a target in a radiochemical experiment as well as on a reliable prediction of the neutrino capture rate in 131Xe [20].

2 Cross sections and capture rates

The proposed detection process is based on the neutrino capture reaction $\nu + ^{131}$Xe $\rightarrow ^{131}$Cs$^+ + e^-$. The low threshold of this reaction allows to record approximately one fifth of the solar neutrino flux from the $p-p$ reaction and both lines from 7Be decay.

The reduced transition probability for neutrino capture by the 131Xe g.s. can be derived from electron capture of 131Cs. The half-life of 131Cs is $T_{1/2} = 9.689$ days [21] and $\log(f_{EC} t_{EC}) = 5.53$ (the f_{EC} value is taken from [22]), which gives $|B_{GT} + B_{GT}^*| = 0.018$.

The cross section for neutrino capture with energy E_ν is defined as

$$\sigma_\nu(E_\nu) = \frac{\alpha^2}{\pi c \hbar^2} \sum_{E'} p_e E_e F(Z, A, E_e) B_{GT}(E')$$

with the nuclear excitation energy E', the electron momentum p_e and energy E_e, the Gamow–Teller matrix elements B_{GT} and the Fermi function $F(Z, A, E_e)$ according to [22].

The capture rates predicted for 131Xe by the SSM of [3] for the ground-state to ground-state transition are presented in Table 1 (in raw a). They indicate the minimum neutrino capture rate, based on the experimentally known transition strength. To take into account the contribution of the excited states we have performed pn–QRPA calculations following the procedure given in [23], [24]. The chosen parameter set included the Nilsson potential parameter of Ragnarsson and Sheline [23], the pairing interaction strength fitted to reproduce the energy gap, the nuclear deformation obtained from the mass formulae of Moeller and Nix [26] for the daughter nucleus 131Cs and the strength of the Gamow Teller interaction obtained by a fit of experimental half life values of the isotope series of the daughter nucleus Cs. This parameter set gave the best reproduction of experimental data. The ground state matrix element 0.018 was taken from the experimental half-life of 131Cs. The proton separation threshold of 5.47 MeV excitation energy in 131Cs was taken from [27].

From the level scheme [28] one can see that four excited states (except the forbidden transition to the $7/2^+$ level) are below the 7Be neutrino capture threshold. Neutrino capture to these states will increase the part of the beryllium neutrinos in the total absorption rate compared to the ground state capture.

The Gamow-Teller strength calculated by pn–QRPA results for beryllium neutrinos in a capture rate of 17.8 SNU which is only slightly larger than capture to the ground-state of 131Cs alone (13.6 SNU, see Table 1). However, the determination of matrix elements for the transitions to
the low-lying excited states, as needed for pep, 7Be, 13N, 15O neutrinos, in nuclear structure calculations, includes considerable uncertainties.

To check the parameters of our model calculations we have evaluated the contribution of these states phenomenologically from the systematics of known beta-decay rates in the vicinity of the mass number 131. There are some β^- decays of 127Te\rightarrow^{127}I, 129Te\rightarrow^{129}I, 133Xe\rightarrow^{133}Cs, 135Xe\rightarrow^{135}Cs, which are similar to the 131Xe\rightarrow^{131}Cs (3/2$^+$)$^\text{g.s.} \rightarrow (5/2^+$) transition.

For all these cases the transition strength to the first 5/2$^+$ state is systematically several times larger then for the 5/2$^+_2$ state. The 3/2$^+ \rightarrow 3/2^+$ and 3/2$^+ \rightarrow 1/2^+$ transitions are considerably weaker compared to the transition to the 5/2$^+$ excited level. Consequently, according to these arguments the contribution of the low-lying excited states to the beryllium rate estimated in this way would not exceed 5% of the ground state rate.

The cross section for boron neutrinos cannot be inferred reliably from beta-decay systematics due to the large increase in the capture cross section for 8B neutrinos caused by the GT strength to exited states with energies between 2-7 MeV above the ground state of 131Cs. The QRPA calculations produce for boron neutrinos a rate of 12.7 SNU which is stable enough to variation of model parameters to an accuracy of 20–30%. The obtained capture rate for boron neutrinos is comparable with the contribution of boron neutrinos for other heavy nuclei, 71Ga, 81Br, 127I, 115In (see Table 1).

We have calculated a total neutrino capture rate for 131Xe of 45.2 ± 6 SNU assuming the fluxes predicted by the SSM of [3]. The uncertainty of the total capture rate is estimated to be of the order of 25–30% and has been determined mainly by variations of the parameters in the model calculations for the transitions to the highly exited states of 131Cs. The possible (p,n) measurement of the transition strength to excited states may allow to reduce the uncertainty of the total capture rate. It should be mentioned also that the xenon detector can be calibrated with a 51Cr neutrino source, as it was successfully performed for GALLEX [1]. Such a procedure can precisely determine the efficiency of beryllium neutrino detection and will decrease the uncertainty of the contribution of the excited states. All described points lead to the statement that the uncertainties for the proposed xenon detector are clearly smaller then for other detectors suggested to measure beryllium neutrinos.

The predicted integral rate of absorption events (including the contribution of the excited states) for the xenon detector from the main neutrino sources is, for the SSM of [3], $R \approx 1500$ events/kton \cdot y.
3 Remarks on a possible detector realisation and the background

The half-life of ^{131}Cs ($t_{1/2} = 9.688 d$) and the physical properties of xenon allow to build up a detector of neutrino capture events based on the extraction of the reaction products ^{131}Cs from the xenon target and subsequent observation of their decays. The abundance of ^{131}Xe is as large as 21.18% and therefore natural xenon may be used as a target. For reasonable dimensions of the vessel the xenon must be kept in liquid form. The density of liquid xenon is 3.06 g/cm3, the boiling temperature (165 K) is higher than for nitrogen, thus it is not difficult from a technical point of view to build up a liquid xenon target with a mass of one kiloton. Note that a dewar for 600 tons of liquid argon (i.e. ≈ 1.4 kton of liquid xenon) was designed for the first stage of the ICARUS experiment [10].

For cesium extraction the considerable difference of chemical properties of xenon and cesium can be exploited. The ionization potential of cesium atoms (3.8 eV) is the lowest among all elements. The Cs$^+$ ions formed in the process of neutrino capture will be kept in this state because the ionization potential of xenon atoms is much higher (12.1 eV), therefore there will be no free electrons to recombine with cesium ions. Electrons can be produced by natural radioactivities and cosmic rays but estimations show that such processes will be negligible if the detector will be placed in a proper underground environment and the purity of xenon will be kept on a sufficient level. Xenon is an inert gas which can be purified to the level of better than 1 ppb (residual oxygen less than 0.1 ppb) [29], [30].

Despite of many still unknown details of the behaviour of the Cs$^+$ ions in liquid xenon, the possible procedure of the extraction of the daughters would be developed on the base of the methods described in [31], [32], where the behaviour of Ba$^{++}$ ions in liquid and gaseous xenon was studied (with the aim to detect the daughter products of double beta decay of ^{136}Xe). In the way as was suggested in [32] one or several electrodes can be placed in the dewar with xenon and biased with high negative potential which supplies an electric field of about 1 kV/cm in the vessel volume. The drifting mobility of positively charged ions in liquid xenon is of the order of $3 \cdot 10^{-4}$ cm2/V·s [33], thus the collection time of produced Cs$^+$ ions over several meters distance will not exceed half an hour. Collected on the electrode, the Cs$^+$ ions will be frozen on the surface and kept there for the whole exposure time. Then the collector electrode will be removed from the dewar (with proper precautions to exclude any possible contamination) to prepare the cesium sample, following the technique which was developed in [34].

The measurement of the electron capture of ^{131}Cs to ^{131}Xe can be performed by means of detection of the Auger electrons and X-rays in a low background counter. Due to the relatively high energies of the K- and L-lines in ^{131}Cs decay, which are 35 keV and 5 keV, respectively, a possible method of measurement could be developed on the base of Si semiconductor detectors.
and a thin solid 131Cs sample introduced between them.

One of the most crucial issues for the detection of neutrino capture events is the background related with side reactions that may produce cesium isotopes decaying by electron capture with life time long enough in order to penetrate to the cesium counter. There are four cesium isotopes, 129Cs, 130Cs, 131Cs and 132Cs, whose half-lives are longer than several seconds. The contribution of 130Cs is limited due to the low abundance of this isotope of 4.1%. Two of them, 129Cs and 132Cs are decaying to exited states of xenon and therefore can be eliminated by means of registration of the γ-rays. The same is true for 134Cs, 136Cs and 137Cs, which may be present in xenon or can be produced in spontaneous fission of 238U. They decay to excited states of barium producing characteristic gamma-rays and therefore can be eliminated.

Thus mainly 131Cs created in side reactions can produce a substantial background.

Protons appear mainly as products of cosmic muons. The relevant reaction 131Xe$(p, n)^{131}$Cs is usually a main source of background in solar neutrino experiments. The cross-section of this reaction is presently unknown. The contribution of this reaction can be determined in direct measurement of the reaction products in the way as it was done in the GALLEX experiment. In this case some amount of concentrate solution was exposed to a muon beam at CERN.

Neutrons from natural radioactivity with energies of several MeV may take part in (n, γ) reactions. For these reactions there is no path to 131Cs via 130Xe$(n, \gamma)^{131}$Xe followed by beta decay to cesium, since 131Xe is stable. Fast neutrons produced by cosmic muons may induce the reaction 131Xe$(n,p)^{131}$I followed by 131Xe$(p,n)^{131}$Cs but its yield is small compared to reactions with primary cosmic rays protons.

Cesium isotopes can be produced in spontaneous fission of possible 238U impurities. Fortunately the relative yield of 131Cs is quite small, since the cesium isotopes fission products appear with mass numbers mainly above 136. The xenon purification to a level of 10^{-15} g/g for uranium and thorium impurities will reduce the amount of 131Cs to a negligible level.

Alpha particles may take part in the following reactions producing 131Cs: 128Xe $(\alpha, n)^{131}$Ba (followed by electron capture to 131Cs); 128Xe$(\alpha,p)^{131}$Cs. Secondary protons from the latter reaction also may produce cesium via (p,n) reactions. The naturally occurring alpha particles from the uranium and thorium series have average energies of several MeV with maximum at 9.0 MeV which is much smaller than the Coulomb barrier of 17.5 MeV. Therefore cross sections of these reactions are strongly suppressed. Alpha particles also appear as spallation products of cosmic muons with energy high enough to drive these reactions. However the muon flux deep underground is very weak (e.g., less than $1/(m^2 \cdot h)$ at the Gran Sasso Laboratory), and since the cross sections are very small (on the order of $10^{-29} cm^2$ per nucleon) the higher-energy alpha particles arising in the detector volume will not produce more then a few cesium atoms per year.

It should be stressed, however, that all mentioned points concerning the extraction of 131Cs ions, preparation and measurement of the sample as well as careful consideration of the background
Table 1: Capture rates predicted by the standard solar model of [3] when using the Gamow-Teller strength distribution calculated in this work for 131Xe, and capture rates for some other targets from [3], given in SNU (a – capture rates for the ground-state to ground-state transitions; b – capture rates including transitions to excited states).

Isotope	p-p	pep	7Be	8B	12N	13O	Total
37Cl	0.0	0.2	1.1	6.1	0.1	0.3	7.9
40Ar	0.0	0.0	0.0	1.7	0.0	0.0	1.7
71Ga	70.8	3.0	34.3	14.0	3.8	6.1	132.0
115In	468.0	8.1	116.0	14.4	13.6	18.5	639.0
127I	1.85	14.0	18.4	0.727	2.43	36.4	132.1
131Xe	a						
	b	8.7	0.9	13.6	0.5	1.1	1.3
		9.7	1.6	17.9	12.7	1.8	45.2

have to be the subject of additional investigation.

4 Conclusion

A solar neutrino problem evidently exists (in particular for 7Be neutrinos). Several possible solutions including “terrestrial”, “astrophysical” and “particle physics” solutions were considered. Therefore the 7Be neutrino deficit should be proved by another detector with a better relative ratio of the 7Be to the pp neutrino detection than 71Ga experiments. We have outlined why in addition to the present efforts in this direction, as BOREXINO, a further detector is needed.

In the present work a new solar neutrino detector is proposed which meets this requirement. It is based on neutrino capture in 131Xe with a threshold at 352 keV. The total capture rate for this reaction is calculated to be equal to 45.2 SNU. A one kiloton detector will produce a net neutrino signal of ≈ 1500 events/yr. The main advantage of the proposed xenon detector is the high sensitivity to 7Be neutrinos, which contribute $\approx 37\%$ of the total capture rate.

The uncertainties of the calculated capture rates reflect the contributions from the highly excited states of 131Cs and may be decreased significantly by measuring the transition strength to excited states in (p,n) reactions and by calibration of the 131Xe detector with a 51Cr neutrino source. Due to the high abundance of 131Xe (21.18%) and the physical properties of xenon, there are no technical restrictions to build up the proposed detector with a mass of one kiloton of natural liquid xenon. A procedure of extraction of the daughter cesium atoms from xenon is proposed which is based on collection of Cs$^+$ ions on a collector biased with negative potential. The additional research and development for all technical subjects as well as for contributions of side reactions are in progress now.

The feasibility of the proposed xenon detector depends on the particular cost of the xenon. Since the price of xenon in the last years fell down significantly, the cost of large quantities of
this gas, and even of enriched 131Xe, is no longer prohibitive.
The comprehensive analysis of data from the xenon detector together with the results of the
gallium, chlorine and Superkamiokande experiments would allow to determine the pp, 7Be and
8B neutrino fluxes.
This information will be important to constrain solar parameters, or check the existence of
vacuum oscillations and MSW effect and finally may help to solve one of the most longstanding
puzzles of modern physics.

Acknowledgements

We thank F.A. Danevich and M. Hirsch for useful discussions. A.Sh.G. and Yu.G.Z. are sup-
ported by the Science and Technology Center of Ukraine (contract No. 411).

References

[1] GALLEX Collab., P. Anselmann et al., Phys. Lett. B 357 (1995) 237;
 Proc. Neutrino 96, Helsinki, Finland, June 1996, to be published.

[2] SAGE Collab., J.N. Abdurashitov et al., Phys. Lett. B328 (1994) 234;
 Nucl. Phys. B (Proc. Suppl.) 48 (1996) 299.

[3] J.N.Bahcall and M.H. Pinsonneault, Rev. Mod. Phys. 64 (1992) 885; 67 (1995)
 781;J.N.Bahcall and R.K.Ulrich, Rev. Mod. Phys. 60 (1988) 297.

[4] S. Turek-Chieze and I. Lopez., Ap. J. 408 (1993) 347.

[5] A. Dar and G. Shaviv, Preprint Technion Ph-94-5 (1994);
 G. Shaviv, Nucl. Phys. B (Proc. Suppl.) 38 (1995) 81.

[6] T. Kirsten, Annals of the New York Academy of Sciences, Vol. 759 (1995) 1.

[7] J.N.Bahcall, Nucl. Phys. B (Proc. Suppl.) 48 (1996) 309.

[8] Y. Suzuki, Nucl. Phys. B (Proc. Suppl.) 35 (1994)
 Proc. Neutrino 96, Helsinki, Finland, June 1996, to be published.

[9] SNO Collab., M.E. Moorhead, Nucl. Phys. B (Proc. Suppl.) 48 (1996) 378.

[10] C. Rubbia, Nucl. Phys. B (Proc. Suppl.) 48 (1996) 172.

[11] HELLAZ Collab., G. Bonvicini, Nucl. Phys. B 35 (1994) 438.

[12] S.R. Bandler et al., Journal of Low Temp. Phys. 93 (1993) 785;
 R.E. Lanou, H.J. Maris, and G.M. Seidel, Phys. Rev. Lett., 58 (1987) 2498;
 S.R. Bandler et al., Phys. Rev. Lett. 74 (1995) 3169.

[13] R.D. Scott, Nature 264 (1976) 729;
 J.N. Bahcall, Phys. Rev. C 24 (1981) 2216.
[14] R.S. Raghavan, Phys. Rev. Lett. 37 (1976) 259.
[15] E. Fiorini, Nucl. Phys. B (Proc. Suppl.) 48 (1996) 41.
[16] BOREXINO Collab., G. Bellini, Nucl. Phys. B (Proc. Suppl.) 48 (1996) 363.
[17] W.C. Haxton, Phys. Rev. Lett. 60 (1988) 768.
[18] Yu.S. Lyutostansky and N.B. Shul’gina, Phys. Rev. Lett. 67 (1991) 430.
[19] J. Engel, P.I. Krastev and Lande, Phys. Rev. C 51 (1995) 2837.
[20] A.Sh. Georgadze, H.V. Klapdor-Kleingrothaus, H. Päs, Yu.G. Zdesenko, Astroparticle Physics 7 (1997) 173
[21] Nuclear Data Sheets 72 (1994) 487.
[22] N.B. Gove and M.J. Martin, Nuclear Data Tables 10 (1971) 205.
[23] E. Bender, K. Muto, H.V. Klapdor, Phys. Lett. B 208 (1988) 53;
Z. Phys. A 333 (1989) 125;
K. Muto, E. Bender, T. Oda and H.V. Klapdor–Kleingrothaus, Z. Phys. A 341 (1992) 407.
[24] A. Staudt, E. Bender, K. Muto, H.V. Klapdor-Kleingrothaus, At. Data Nucl. Data Tables 44 (1990) 79.
[25] I. Ragnarsson, R.K. Sheline, Phys. Scr. 29 (1984)385.
[26] P. Moeller, J.R. Nix, At. Data Nucl. Data Tables 39 (1988) 212.
[27] A.H. Wapstra, G. Audi, Nucl. Phys. A 595 (1995) 409. 18
[28] Table of isotopes, ed. by Lederer, C.M., Shirley, V.S. (7-th ed., Wiley, New York, 1978).
[29] P. Belli et al., Nucl. Inst. Meth. in Physics Research A336 (1993) 336.
[30] P. Benetti et al., Nucl. Inst. Meth. in Physics Research A329 (1993) 361.
[31] T.M. Madden, L.W. Mitchell, Nucl. Inst. Meth. in Physics Research A359 (1995) 506.
[32] M.Mijajima et al., IEEE Trans. Nucl. Sci. 41 (1994) 835;
M.Mijajima et al., Proc. RIS-96, 1996, to be published.
[33] H.T. Davis et. al., J. Chem. Phys. 37 (1962) 947.
[34] W.A. Nierenberg et al., Phys. Rev. 112 (1958) 186.