Acarologia is proudly non-profit, with no page charges and free open access

Please help us maintain this system by encouraging your institutes to subscribe to the print version of the journal and by sending us your high quality research on the Acari.

Subscriptions: Year 2022 (Volume 62): 450 €
http://www1.montpellier.inra.fr/CBGP/acarologia/subscribe.php
Previous volumes (2010-2020): 250 € / year (4 issues)
Acarologia, CBGP, CS 30016, 34988 MONTFERRIER-sur-LEZ Cedex, France
ISSN 0044-586X (print), ISSN 2107-7207 (electronic)

The digitalization of Acarologia papers prior to 2000 was supported by Agropolis Fondation under the reference ID 1500-024 through the « Investissements d’avenir » programme (Labex Agro: ANR-10-LABX-0001-01)

Acarologia is under free license and distributed under the terms of the Creative Commons-BY
Steneotarsonemus ananas (Acari: Tarsonemidae): a complementary
description from Australian pineapples and a new pest on Neoregelia spp.
(Bromeliaceae) in Costa Rica

Hugo Aguilar-Piedra,1,2, Ana María Solano-Guevara,1,2, Owen D. Seeman3,4, Ronald Ochoa5

1Laboratorio de Acarología, Centro de Investigación en Protección de Cultivos (CIPROC), Escuela de
Agronomía, Facultad de Ciencias Agroalimentarias, Universidad de Costa Rica, PO Box 2060, San José,
Costa Rica.
2Queensland Museum, PO Box 3300, South Brisbane 4101, Australia.
3SEL, ARS, USDA, BARC-W, 10300 Baltimore Ave, Bldg 005, Room 137, Beltsville, Maryland 20705,
USA.

Original research

ABSTRACT

The pineapple tarsonemid mite Steneotarsonemus ananas (Tryon, 1898) is associated
with pineapple around the world, including Costa Rica. Here, we report its association
with Neoregelia sp. (Bromeliaceae) for the first time. These mites damaged the plantlets
considerably, affecting the esthetic quality of the product and thus causing economic losses
to the local growers. This discovery prompted us to redescribe the adult females and
males from the type host and locality (pineapple in Queensland, Australia) and compare
it with the original description, subsequent descriptions, and material collected from the
USA, Costa Rica, and Colombia on pineapple, Neoregelia, and an unidentified bromeliad.
Further specimens from pineapple in Guatemala were identified as the same species and
represent the first record for this country. We concur with previous observations that
the original description by Tryon is not the same species in subsequent descriptions. We
tentatively consider all specimens examined the same as those described as S. ananas in
succeeding descriptions, i.e., Steneotarsonemus ananas Tryon sensu Beer.

Keywords Steneotarsonemus ananas; Tarsonemidae; mites; Neoregelia; Aechmea; Bromeliaceae;
Australia; Colombia; Costa Rica; Guatemala; USA (California; Hawaii)

Introduction

Several phytophagous mite species are associated with pineapple (Ananas comosus [L.] Merr.,
1917) including two significant pest species, the red-pineapple mite Dolichotetranychus
floridanus (Banks, 1900) (Tenuipalpidae) and the pineapple blister mite Phyllocoptruta
sakimurae Keifer, 1966 (Eriophyidae). Additionally, six species of Tarsonemidae are reported:
three species of Tarsonemus (T. bilobatus Suski, 1965, T. buchelerei Smiley, 1967, and T. merus
Lin & Zhang, 2002) and three species of Steneotarsonemus (S. ananas (Tryon, 1898), S. perezi
Cromroy, 1958, and S. comosus Ochoa, 1991 (Ochoa et al., 1991a, 1991b, 1994; Lin and
Zhang 2002). Of these species, the best known species of Steneotarsonemus is the pineapple
tarsonemid mite, or leathery pocket mite, S. ananas.

Steneotarsonemus ananas was described by Tryon (1898) associated with pineapple
fruit in Australia. Since then, it has been collected from Brazil, Costa Rica, Cote d’Ivoire,
Ecuador, India, Netherlands, Peru, Philippines, Poland, South Africa, and USA (Hawaii) (e.g., Illingworth 1931; Beer 1954; Jeppson et al., 1975; Mourichon et al., 1987; Mourichon and Sarah 1993; Rohrbach and Johnson 2003; Corpuz-Raros 2005; Petty et al., 2006; De Moraes and Flechtmann 2007, 2008; Pijnakker and Ramakers 2009; Aguilar and Murillo 2012; Joy et al., 2016; Kolicka et al., 2016; Bazan 2018). The species is often linked with leathery pocket disease in pineapple (e.g., Petty 1989; Mourichon 1997). Furthermore, Pijnakker and Ramakers (2009) recorded this species from ornamental bromeliads, and Kolicka et al. (2016) found it associated with the bromeliaceous genera Tillandsia sp. and Aechmea sp. Thus, these mites are associated with several genera in the family Bromeliaceae.

Costa Rica exports a great number of ornamental plants of commercial interest to different markets around the world, including bromeliads in the genera Bromelia and Neoregelia. Although mites often associate with Bromeliaceae (e.g., Nesbitt 1985; Guerra et al., 2012), including S. ananas from pineapples in Costa Rica (Ochoa et al., 1991), no mite species were reported as pests of Bromelia and Neoregelia in Costa Rica. Here, we provide the first record of S. ananas found associated with the ornamental bromeliad Neoregelia spp. Its discovery raised questions about the identity of the species on both pineapple and the new host plant, leading us to redescribe S. ananas from pineapple so that it could be reliably compared to other material. We also describe the symptoms induced by this tarsonemid mite on Neoregelia.

Material and methods

Like many bromeliad genera, Neoregelia is native to the South American rainforests, specifically from southeastern Brazil (Royal Botanic Garden, Kew Science, n.d.), as are pineapples (Coppen d’Eeckenbrugge and Leal 2003), but the first Neoregelia cuttings were brought to Costa Rica from Europe more than 20 years ago and now mother plants are all produced in Pococi, Limón, Costa Rica. Some of the cuttings are developed to the seedling stage on another farm located in the province of Alajuela (810 masl). When they are ready for production, they are transported to the province of Limón to continue their growth. Mother plants are also produced on the farm in Limón, consequently materials from both places are mixed and grown together. Farm workers are responsible for the selection of mature plants and packing them in boxes for shipment to the different markets around the world.

A commercial plantation in Costa Rica, comprising many different bromeliad plant species, was visited on February 2018 because numerous plants were attacked by a small mite, causing visible symptoms. The damage was negatively affecting the quality of the product for export, particularly bromeliads in the genus Neoregelia. Plants for export should lack any injury and foliage must be free of spots, deformations, or any other visible damage.

The plantation, which utilized a black shade cloth (Saran) system, is located in the canton of Pococi, province of Limón, at 467 m above sea level. This zone is known for having high temperatures (24 to 30 °C throughout the year) and humidity (90-100% during the year), as well as considerable annual precipitation mostly through the rainy season. Eighteen samples, consisting of whole plants, were collected in plastic bags and placed into a cooler. The samples were transported to the Laboratory of Acarology at the University of Costa Rica and processed according to the laboratory protocols.

The samples were observed under a stereoscope-microscope, individual leaves were detached manually; then, the symptoms and mite behavior were recorded. The mites were collected in a Syracuse dish with 70% ethanol and mounted on slides in Hoyer’s medium (Krantz and Walter 2009). The slides were processed in an oven at 50°C for three days or until the mites were completely clarified.

Once the mites were ready, the slides were sealed with glossy polyurethane varnish and examined with the help of Olympus BX 51 and Zeiss Axio Imager D1 microscopes, both with phase contrast and DIC (Differential interference contrast), as well as an Axio Imager D1 with DIC.
For the material from Costa Rica, five slides were deposited in the mite collection of the Laboratory of Acarology (CIPROC), University of Costa Rica and two slides with male and female specimens, as well as two larvae, at the Smithsonian (NMNH), National Insect and Mite Collection, Washington DC. Additionally, three larvae, two females and one male from Costa Rica were later prepared and deposited in the Queensland Museum (QM). The Australian material of Steneotarsonemus ananas was found as an unidentified tarsonemid mite species in the Queensland Agriculture collection housed at the Queensland Museum (QM). This material, from pineapple in southeast Queensland (the type locality), was examined with phase contrast (Leica DMLB) and DIC (Leica DM2500). Other material examined is housed in the NMNH. A photograph of the first record in the USA of Steneotarsonemus ananas on Aechmea (Figure 1) is provided. Morphological terminology follows Lindquist (1986).

![Figure 1 First record of Steneotarsonemus ananas (Tryon) 1898 (Tarsonemidae) on Aechmea fasciata (Lindl.) Baker 1879 (Bromeliaceae).](image_url)

Results

Steneotarsonemus Beer

Steneotarsonemus Beer, 1954: 1229. Type-species Steneotarsonemus hyaleos Beer, 1954, by original designation.

Parasteneotarsonemus Beer & Nucifora, 1965: 40, Lindquist, 1986: 274.

Neosteneotarsonemus Tseng & Lo, 1980: 127; Lindquist, 1986: 274.

Steneotarsonemus are characterized for having: females with stigmata close to setae v1, body elongate-slender, sejugal and poststernal apodemes reduced; males often with round lobes on femorogenu IV; both genders with small pharynx and subcircular to subquadrate gnathosoma (Beer 1954; Lindquist 1986). A full description is provided by Lindquist (1986).

Steneotarsonemus (Steneotarsonemus) ananas (Tryon, 1898)

Tarsonemus ananas Tryon, 1898: 458.

Steneotarsonemus ananas (Tryon), Beer, 1954: 1276.

Diagnosis

All life stages: femur II with three setae; tarsi II-III elongate, longer than wide, setae tc’ on tarsus I distinctly proximal to tc”. Female (Figure 2). Posterior margin of prodorsal plate medially concave and crenate; seta vI positioned at anterolateral corner of prodorsal plate, anterior of stigmata; bothridial seta scI capitate, its head obovate; seta c2 positioned far anterior of seta cI; pore ia positioned far anterior of seta d; setae c1, d, e, f slender to slightly thickened, stiff; seta h thickened; c2 about twice as long as cI and filiform; setae e and h with minute barbs. Paired remnants of sejugal apodeme each highly curved, boomerang-like;
apodemes 3 reaching level of seta 3a; apodemes 4 well developed, almost reaching mid-line; seta 2a positioned on or slightly behind apodeme 2; seta 3a short, not reaching trochanters III; leg IV moderately long, extending to or just beyond idiosomal margin; femur I seta d lanceolate, l’ and l” thickened; femur II seta l’ thick; genu II seta l’ thick; seta G v’ IV not reaching base of seta Ti v’ IV. Male (Figure 3). Prodorsum with four pairs of setae; seta sc1 at least three times as long as seta sc2; seta c2 not reaching base of c1; seta c1 not reaching base of seta d; coxisternal plates smooth; apodeme 5 well-developed, forked; femur, genu, tibia II–III without sexually-dimorphic spine-like setae l’, v’; leg IV with small abaxial femorogenu flange and large, semi-circular adaxial flange; seta v’ Ti 30–54 long, thick. Larva. Setae vI short, tips not overlapping; setae hI long, about twice length of h2.

Differential diagnosis

Seeman et al. (2016) brought together the two existing subgeneric classifications of Steneotarsonemus, recognizing six subgenera. Steneotarsonemus ananas is best placed in nominate subgenus Steneotarsonemus. However, it does not match this subgenus perfectly as the small abaxial flange on the male femorogenu IV is present in S. ananas and Parasteneotarsonemus. However, this feature is easily missed, and may be present elsewhere in Steneotarsonemus.

Many descriptions of Steneotarsonemus are rudimentary and sometimes lack even basic illustrations of females (e.g., Cromroy 1958) which are essential for classification. Thus, our proposed diagnostic features are tentative. Nevertheless, Steneotarsonemus ananas is unique in Steneotarsonemus by having females with a crenate posterior margin of the prodorsal plate. However, the crenate prodorsal margin does occur in some females of Tarsonemus such as T. stammeri Scharschmidt, 1959, as well as on Deleonia aestivali Godarazena & Ochoa, 2002 (Goldarazena et al., 2002).

The two other species of Steneotarsonemus found on pineapple are S. comosus and S. perezi. Steneotarsonemus ananas is differentiated from S. comosus by having females with setae c2 about twice the length of c1 (c1 and c2 subequal in S. comosus) and coxal setae 3a and 3b subequal (3a about twice as long as 3b in S. comosus); and a male with leg IV with a large rounded flange (versus a narrower rectangular flange in S. comosus). Steneotarsonemus perezi is distinguished from S. ananas and S. comosus by having males with setae vI much longer than v2 (versus vI shorter than v2).

Description

Female (Figures 4–7). Measurements are given in Table 1. Idiosoma elongate. Gnathosoma rounded. Dorsal gnathosomal setae ch finely pilose, longer than ventral setae su. Palpi approximate, small, directed anteriorly. Cheliceral stylets short, strongly curved, with basal levers conspicuous. Pharynx short, with muscular, thinly sclerotized walls.

Dorsum. Prodorsal plate truncated anteriorly, not projected beyond basal part of gnathosoma, posterior edge concave, crenated with 7 to 8 fine lobes (Figure 6A). Stigmata on anterior margin of prodorsal plate, situated closely posterolateral of setae vI; main tracheal trunks with small, fine sclerotized atria, each atrium divided into two elongate halves. Setae vI filiform, finely pilose; setae sc2 long, filiform, about twice the length of vI. Bases of sc2 posterolateral setae sc1. Bothridial setae sc1, capitulate, finely pilose. Setae c1, filiform, shorter than setae c2, also filiform. Bases of c2 located anterolateral c1. Cupules ia anterolateral setae d. Setae d, e and f simple, finely barbed, similar in length, setae e slightly thicker than setae d and f. Tergite EF with base of setae e located anterolateral setae f. Cupules im anteromedial of setae e. Setae h stout, barbed, slightly longer than vI.

Venter. Apodemes I short, united with prosternal apodeme; apodemes II conspicuous and curved, not united with prosternal apodeme. Prosternal apodeme not extending posteriadr of apodemes II, with a bifurcated ending. Sejugal apodeme reduced to two lateral highly-curved, boomerang-like fragments. Apodemes III slender, conspicuous, curving posteromedially near setae 3a. Apodemes IV slender (Figure 6B), extending anteriorly about ¼ distance to 3a.
Figure 2 *Steneotarsonemus ananas* (Tryon). Female, dorsal view.
Figure 3 *Steneotarsonemus ananas* (Tryon). Male, dorsal view.
Figure 4 *Steneotarsonemus ananas* (Tryon). Female, ventral view. Idiosoma and legs III and IV.
Figure 5 *Steneotarsonemus ananas* (Tryon). Female, ventral view. A – phase contrast; B – differential interference contrast.

Poststernal apodeme absent. Setae 1a, 2a, 3a, 3b slender, similar in length, 3a, 3b longest. Tegula 3-4 times longer than wide, truncated apically. Pseudanal setae slender, slightly longer than v1.

Legs (Figure 7). Leg III longer than legs I, II and IV. Leg IV cylindrical; terminal seta tc” filiform, about three times longer than subterminal seta v’Ti; subterminal setae stout, finely pilose; femorogenu with genual seta v’G slightly shorter than seta v’F.

Setal counts for legs I–III (femur to tarsus): leg I (Fe-Ta) 4-4-6(+2φ)+8(+ω), 3-3-4-6(+ω), 1+3-4-5. Setae smooth, slender, unless otherwise mentioned. Leg I: femur I, d lanceolate, barbed, 7–8, l’ thickened, weakly barbed, 6–7, l” narrowly lanceolate, weakly barbed, 7–8, v” 10–12; genu I, l’’ shortest, 5, l”” longest, 10–12; tibiotarsus I, d longest, 23–28, φ/ 5, φ 3–4, k 5, p’ 10–11, p” 12–14, tc” 15–16, tc”” 16–18, s with weakly bifid tip, 3, ω 6–7. Leg II: femur II, d thickened, 4–5, l” narrowly lanceolate, barbed, 6–8, v” 5–8; genu II, l’ narrowly lanceolate, 6–7, l” weakly barbed, v’ 4–5; tibia II l’ shortest, 8–9, d, v’, v” 18–23; tarsus II, seta pl” thick, thorn-like, 4, tc”” longest, 20–26, u’ with weakly bifid tip, 3, ω 4–5. Leg III: femorogenu III Fv’, Gv’, Gv” short, 3–5, Fl’ longer, 11–14; tibia III, d shortest, 4–6, v’, v” longest, 15–21; tarsus III, tc”” longest, 26–32, u’ with weakly bifid tip, 3–4. Leg IV with seta Ti v’’ barbed, thick (measurements in Table 1).

Male (Figures 8–10) (n = 5 from *Neoregelia*; n = 2 from Queensland pineapple). Measurements are given in Table 2. Idiosoma broadest near level of c2, body length variable in Costa Rican population (ca. 20% length variation versus 2.5% width variation). Gnathosoma oval rounded. Dorsal gnathosomal setae finely barbed basally, ventral gnathosomal setae smooth. Cheliceral stylets moderately short, straight. Pharynx small, same as female, with muscular, thinly sclerotized walls.

Aguilar-Piedra H. et al. (2021), *Acarologia* 61(4): 802-823. https://doi.org/10.24349/7u12-OKqx
Steneotarsonemus ananas (Tryon). Female. A – Propodosoma, dorsal view (crenulation); B – Leg IV, and apodemes III and IV.

Dorsal plates unornamented (Figure 10A). Prodorsal plate weakly sclerotized, subtriangular. Vertical setae v1, slender, slightly barbed, shorter than v2. Scapular setae sc1 simple, slightly pilose, longer and thicker than sc2. Base of sc2 aligned with v2-sc1.

Plate CD with setae e2, filiform, two times longer than e1. Setae e1 and d stout, barbed. Plate EF with setae f, stout, pilose. Setal lengths vary between populations: Australian specimens with much shorter setae compared with Costa Rican and Colombian populations, USA intermediate (Table 2). Genital capsule as long as wide, with accessory copulatory structures ps1 spine-like, pointed apically.

Venter. Apodemes I short, united with prosternal apodemes; apodemes II conspicuous and distally curved, weakly united with prosternal apodemes. Prosternal apodemes not reaching posterior podosomal margin. Sejugal apodemes absent. Apodemes III, IV, poststernal apodeme united; apodemes V separate, joining poststernal apodeme.

Legs. Legs I-II, IV subequal in length; leg III longer than leg IV. Leg IV with large adaxial rounded flange and narrow distal abaxial flange (Figure 10B).

Leg setation for legs I-III same as female except for addition of small ft" on tarsus I. Setal form similar except for: femur I, all setae smooth, slender or only slightly thickened, d 5–7, l' 4–5, l" 6–7, v" 7–8; genu I setae 8–14, l' not obviously shorter than other setae; femur II setae smooth, slender or only slightly thickened; genu II setae smooth, slender; femur III setae v', l' similar length, 13–17; tibia III seta d long, 16–22. Measurements from Australian specimens; males from Costa Rica with longer setae (Table 2).

Larva (from Neoregelia spp. material) (Figures 11-13). Idiosoma length 170–270, width 95–115. Gnathosoma rounded, length 32–33, width 32–33; setae ch 13–14, su 7–8.

Prodorsal plate with setae v1 4–8, sc1 6–8, sc2 22–26; opisthosoma with setae c1 5–9, c2 8–10, setae c2 usually longer than c1; d 6–9; e 11–13, f 10–12; caudal setae h1 22–25, about
twice as long as \(h_2 \) 11-13, setae \(ps1 \) and \(ps2 \) 4–5. All idiosomal setae slightly thickened and minutely pilose, setae \(sc2, cl, d, e, f \) thicker than other setae, their tips blunt; setae \(ps1-2 \) fine, smooth.

Ventral apodemes \(ap1, ap2 \) and \(appr \) distinct, \(ap2 \) not reaching \(appr \); sejugal apodeme not apparent; \(ap \) 3 indistinct. Setae \(1a, 2a \) small, slender, length 3; setae \(3a, 3b \) longer, length 4–6.

Legs. Leg setation for legs I–II similar to female except lacking \(\phi_2 \) on tibia I, proral setae on tarsus I and \(pv' \) on tarsi II–III. Form of setae similar to female except for: femur I seta \(d \) only slightly thickened, peg-like, 2–3, other setae slender, smooth; genu II seta \(l' \) not shorter than other setae; femur II, genu II setae slender, smooth; tibia III with short, thick thorn-like seta \(l' \), 3.

Material examined. 56 females, 35 males, 2 pharate males, 6 larvae as follows. **Australia**: 6 females, 2 males, 1 pharate male, Cooroy, Queensland, 4 Apr. 1968, C. Dodson, ex pineapple (mount by J.J. Davis, in Hoyers), deposited in QM. **Colombia**: 12 females, 9 males, 1 pharate male, Fusagasuga, Cundinamarca, 13 Dec. 1997, D. Navia, ex Bromeliaceae (cup), deposited in NMNH, Smithsonian, USA. **Costa Rica**: 17 females, 11 males, 5 larvae, Pococi Limón, 28 Feb. 2018, H. Aguilar, ex Neoegelia spp. (8 females, 3 males, 2 larvae, deposited in NMNH; 9 females, 8 males, deposited in the Laboratory of Acarology, Univ. of Costa Rica; 2 females, 1 male, 3 larvae deposited in QM); 10 females, 3 males, 1 larva, Venecia, San Carlos, Alajuela, 25 Feb. 2009, A. Obando, pineapple, deposited in the Acarology Lab., Univ. of Costa Rica; 1 female, 1 male, interception, Philadelphia, PA, from Costa Rica 28 Nov. 1994, F. Salantri, ex Ananas comosus, deposited in NMNH; 2 females, 1 male, interception Philadelphia CBP,
Figure 8 *Steneotarsonemus ananas* (Tryon). Male. Ventral view. Idiosoma.
PA, from Costa Rica 14 Mar. 2016, G. Evans, ex Ananas comosus, deposited in NMNH.
Guatemala: 2 females, 2 males (poor condition), interception Wilmington CBP, DE, from Guatemala, 2 Aug. 2016, E. McDonald, ex. Ananas comosus, deposited in NMNH. United States: 4 females, 5 males, Brea, CA, 18 Mar. 1966, R. Smiley, ex Aechmea fasciata, deposited in NMNH.

Discussion

Tryon (1898) described S. ananas from mites collected on pineapples showing severe symptoms of fruitlet core rot, which is caused by Fusarium fungi and linked to the feeding of S. ananas by Tryon (1898) and later by several studies (e.g., Petty et al., 2006). Unfortunately, Tryon (1898) did not mention the specimens on which the species is based:

Morphological character	Australia	Costa Rica	Colombia	USA
Idiosoma length	210–235	230–270	240–278	230–232
Idiosoma width	107–130	99–121	110–132	100–102
Gnathosoma length	33–37	33–35	36–40	27–29
Gnathosoma width	34–39	35–39	34–39	31–32
Gnath. dorsal seta	16–17	16–18	15–18	15–16
Gnath. ventral seta	8–10	8–10	8–10	7–9
Tracheal atrium length	5–6	6–7	6	Not measured
Tracheal atrium width	2–3	2–3	2–3	Not measured
Seta v1 length	7–9	9–11	9–11	8–10
Setae sc1 length	12–14	12–14	12–14	12–14
Setae sc2 length	16–19	15–18	16–23	17–19
Seta c1 length	8–10	10–12	10–11	9–10
Seta c2 length	16–19	16–21	17–22	16–18
Setae d, e, f lengths	8–9	8–9	7–10	7–9
Seta h length	11–13	13–15	12–15	13–14
Setae 1a, 2a, 3a lengths	4–5	3.5–5	4–6	4–5
Seta 3b length	7–10	6–8	7–9	6–8
Tegula length	28–30	29–33	28–30	26–27
Tegula width	6–9	7–8	7–9	6–7
Seta ps length	9–11	14–17	11–14	9–10
Leg I length	63–65	62–73	65–74	64–66
Leg II length	64–69	62–72	68–71	65–71
Leg III length	104–105	104–109	107–110	108–109
Leg IV length	47–50	45–50	48–56	47–49
Leg IV seta tc”Ta length	100–110	110–130	90–110	93–95
Leg IV seta v’Ti length	28–38	38–42	31–38	34–35
Leg IV seta v’G length	8–11	12–14	8–10	9–10
Leg IV seta v’F length	13–14	15–16	12–15	12

Aguilar-Piedra H. et al. (2021), Acarologia 61(4): 802-823. https://doi.org/10.24349/7u12-OKqx
they are merely an undisclosed number of mites from pineapples in southern Queensland. Ewing (1939) did not examine type specimens, instead relying on Tryon’s manuscript and female and larval material from Hawaii. Beer (1954) considered the whereabouts of Tryon’s material “unknown”, again relying upon Ewing’s material from Hawaii. In the past decade or so, several unsuccessful efforts were made to locate these type specimens at the Queensland Department of Agriculture collection, the Queensland Museum, and the Australian National Insect Collection.

Tryon’s drawings and descriptions are, not surprisingly for their time, rudimentary, however, we doubt that the species described by Tryon (1898) is the same species later called *S. ananas* by subsequent authors. Tryon (1898) provided ventral views of each sex. The male shows a few significant differences from later descriptions (Beer 1954; Jeppson et al., 1975). First, the flange on leg IV is absent in Tryon (1898), but with a low-powered microscope, it is unlikely but possible that the flange was misinterpreted as a spine-like process. Second, in his original description the male is widest just anterior to seta *c1*, whereas in subsequent descriptions of the male, it is widest just anterior to seta *c2*. Third, Tryon (1898) also shows an undivided apodeme 5, but male *S. ananas* have a posteriorly forked apodeme 5. The female presents further significant differences that are incongruous not only with *S. ananas* in subsequent descriptions (Ewing 1939; Beer 1954; Jeppson et al., 1975) but also with *Steneotarsonemus*. Instead of an elongate body as in *Steneotarsonemus*, it is ovate; rather than short setae *h*, they are long; contrary to separate apodemes 3, they are joined; instead of lacking a post-sternal apodeme, it is present; rather than separate apodemes 4, they join the post-sternal apodeme. Therefore, the mite described by Tryon is not *S. ananas* as currently defined. It is not *Steneotarsonemus*. A similar conclusion is reached in Količka et al. (2016), who doubted that *S. ananas* (Tryon, 1898) was the same species described by later authors as *S. ananas*.
What is *S. ananas* (Tryon, 1898)? We are unaware of any species of tarsenomid that matches his original description. The only tarsenomid mites described from Bromeliaceae are the six species known from pineapple and records of *S. ananas* from other bromeliad hosts (Lin and Zhang 2002; Kolicka *et al.*, 2016). Thus, as *Tarsonemus* is the only other tarsenomid genus known from Bromeliaceae, perhaps Tryon (1898) described a species of *Tarsonemus* rather than *Steneotarsonemus*. This genus at least has females with an ovate body and more complete apodemes. Unfortunately, the three species of *Tarsonemus* recorded on pineapples (*T. bilobatus*, *T. buchelerei*, and *T. merus* (Suski 1965; Smiley 1967; Flechtmann 1971; Lin & Zhang 2002)) bear no great similarity with *S. ananas* sensu Tryon (1898). Until material matching Tryon’s description is found, the true identity of *S. ananas* will remain a mystery.

Ewing (1939) provided the first description of *S. ananas* after Tryon (1898). While he copied the description of the male from Tryon, his description of the female was new. However, the specimens examined, two females and a larva ("nymph"), were poorly and incompletely described making the description unsuitable for identification purposes or comparison with Tryon (1898). Thus, the first complete description is that of Beer (1954), who also provided the first description of the male, and we thus consider the species *Steneotarsonemus ananas* (Tryon, 1898) sensu Beer. Unfortunately, the specimens of Ewing (1939) have not been located, and Beer’s (1954) material in the University of Kansas is not available.

The specimens from Australia, described here, are from the type locality and host for *S. ananas*, but are clearly not the same species described by Tryon (1898) and instead match *S. ananas* sensu Beer. Comparisons between females from Queensland pineapple, Costa Rican *Neoregelia* and pineapple, Colombian bromeliad and Californian (USA) ornamental bromeliad demonstrated not only concordance with diagnostic features but also measurements (Table 1). However, males were less similar (Table 2). While they all agree in general diagnostic features, some setal lengths differ considerably in size with males from Queensland pineapple having...
Figure 11 Steneotarsonemus ananas (Tryon). Larva. Dorsal view.
Figure 12 *Steneotarsonemus ananas* (Tryon). Larva. Ventral view.
Figure 13 *Steneotarsonemus ananas* (Tryon). Larva. A – Dorsal view; B – Idiosoma; C – Prosoma; D – Hysterosoma.
much shorter setae than those found on Costa Rican *Neoregelia* and Colombian bromeliads. As intraspecific variation in males is known in Tarsonemidae (e.g., *Tarsonemus waitei* Banks, Lindquist (1978)) and other collections from USA pineapples were intermediate in size, we tentatively consider these differences as intraspecific. Thus, they are all *S. ananas* sensu Beer (1954), pending further studies into the identity of *Steneotarsonemus* species on pineapple throughout the world.

Description of symptoms on *Neoregelia* spp. (Bromeliaceae)

Mites were observed grouped in the interior of the plant, especially hidden on the underside of the leaves, near the axils of the younger foliage. The leaves also form rosettes, which compose microreservoirs in the axils, beneath the main phytotelmata of the plant. This provides a good habitat for many organisms, including tarsonemid species, which require warm temperatures, high humidity and low light intensity to develop (Jeppson et al., 1975). The feeding damage shows a light brown color, mostly in the middle of the young leaf surface (Figures 14A and 14B), while the apex remains green and the base of the leaf white in color, which serves as a depository camouflaging a high concentration of wandering mites and eggs.

When the leaves develop and become more coriaceous, red spots of different diameters appear along the leaves upper side. These spots are the remnants of the earlier feeding damage by *S. ananas*. The dimensions of the brownish discolorations could be associated with the population density at the time of feeding (Figure 14C).

It is at this point in the plant’s development, when the mites are no longer present, that these symptoms are most likely to be noticed by farm personnel in charge of monitoring the plants. Plants exhibiting such damage are not commercially acceptable for export.

Morphological character	Australia	Costa Rica	Colombia	USA
Idiosoma length	180–190	169–243	196–205	192–194
Idiosoma width	102–113	103–113	94–109	89–92
Gnathosoma length	30–33	28–36	34–37	30–32
Gnathosoma width	34–35	29–36	34–39	32–34
Seta v1 length	9–11	12–16	10–20	9–10
Seta v2 length	13–15	23–27	17–29	22–24
Setae sc1 length	49–61	70–99	63–93	69–72
Setae sc2 length	14–16	18–25	16–27	16–17
Seta c1 length	12–14	27–35	30–33	18–20
Seta c2 length	32	60–76	60–69	47–53
Seta d length	13–15	20–25	26–28	18–19
Seta f length	13	14–17	16–20	12–13
Genital capsule length	30–37	31	26–28	27–28
Leg IV large flange length	28–33	31–36	30–36	27–29
Leg IV seta v’Ti length	30–34	37–47	39–54	32–39
Leg IV solenidion φ length	8–9	8–9	9–10	9–10
Leg IV seta v’G length	11	9–11	14–18	13–16
Leg IV seta l”G length	13–14	16–17	14–17	13–15
Leg IV seta v’F length	6–7	10–12	10–12	7–10

Table 2 Morphometric data (presented as ranges, in μm) for males of *Steneotarsonemus ananas* collected from Australia (ex pineapple), Costa Rica (ex *Neoregelia*), Colombia (ex unidentified bromeliad), and USA (ex *Aechmea fasciata*).

Aguilar-Piedra H. et al. (2021), *Acarologia* 61(4): 802-823. https://doi.org/10.24349/7u12-OKqx
The damage caused by *S. ananas* on pineapple occurs on growing plants during the development of the inflorescence, fruit and crown (Jeppson et al., 1975; Py et al., 1987; Rohrbach and Johnson 2003), which is similar to the symptoms caused by this organism on *Neoregelia*. As noted, the pineapple tarsenemid mite has also been associated with *Fusarium* and also in the pathogenesis of *Penicillium funiculosum* Thom, (1910) (Rohrbach et al., 1981). Another important factor is the presence of an entomopathogenic fungus, *Hirsutella* spp. (Umaña et al., 1990; Zoebisch et al., 1992; Quesada-Sojo and Rivera-Mendez 2016), associated with soil and bromeliads in Costa Rica; species of this fungus genus could be used for the control of phytophagous mites like *S. ananas* that live in concealed places on their host plants. Further studies on the biology of the mite are required for effective monitoring, focused on the plant phenology, as well as control measures, both chemical and biological.

In conclusion, we consider *Steneotarsonemus ananas* sensu Beer (1954) to be the species found on pineapple and several other bromeliaceous plants world-wide, where it causes damage through both its feeding and association with pathogenic fungi. Its taxonomy remains difficult,
in part due to the lack of types, and that at least two species are involved: the species originally described by Tryon (1898) and that described by Beer (1954), Jeppson et al. (1975), and also probably by Ewing (1939). However, the presence of other species of Steneotarsonemus on pineapple, and the intraspecific variation in males noted here, suggest the problem requires a much larger revision involving fresh samples from numerous hosts and countries, combining both morphology and molecular methods.

Acknowledgements

To Debra Creel, Michele Touchet and Andrew Ulsamer (SEL-USDA), Peter Touhey, Mary Joyce and Eric McDonald (APHIS-USDA), Sara Cascante-Gamboa (Biblioteca de Ciencias Agroalimentarias, UCR), for their assistance with references, collection material and helpful suggestions. We are also grateful for the careful work reviewing the manuscript of José Marcos Rezende (Escola Estadual Tiradentes, Iturama; Sistema COC - Colégio FAMA-MG, Brazil), and Wojciech Magowski (Faculty of Biology, University of Poznań-Poland). Dr. Magowski generously shared information on Australian S. ananas, as well. Similarly, to Drs Jurgen Otto and Ross Rickard (DAWE) for helping us navigate the idiosyncrasies of importing museum specimens into Australia. Special thanks to Jenny Beard (Queensland Museum, South Brisbane, Australia) and Denise Navia (previously on EMBRAPA-Brazil; today on INRAE, UMR, GBGP, Montpellier, France) for the help with information on Australian pineapple tarsonemid specimens and bromeliad tarsonemid specimens from Colombia; and also, to Bruce Halliday (ANIC, Canberra, Australia) for valuable advice and literature. To Adriana Matamoros (San José, Costa Rica) for her labor on design, and other details related to the artworks. To the Smithsonian National Museum of Natural History (NMNH), National Agricultural Library (NAL), Systematic Entomology Laboratory (SEL-USDA), Centro de Investigación en Protección de Cultivos (CIPROC), Escuela de Agronomía, Facultad de Ciencias Agroalimentarias, Universidad de Costa Rica (UCR) for their support with materials, references and equipment. The mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the USDA, CIPROC and UCR; USDA is an equal opportunity provider and employer.

References

Aguilar H., Murillo P. 2012. Nuevos hospederos y registros de ácaros fitófagos para Costa Rica: periodo 2008-2012. Agronom. Costarric., 36(2): 11-28.
Bazan B. E. Y. 2018. Comportamiento agronómico de la piña, (Ananas comosus L.) variedad perolera, en cuatro distancias de siembra, en el centro de producción y prácticas, Río Verde, de la Upse, en el Cantón Santa Elena [Agric. Eng. Thesis]. Península De Santa Elena State University. pp. 97. Available from: https://repositorio.upse.edu.ec/xmlui/bitstream/handle/46000/4307/UPSE-TIA-2018-0005.pdf?sequence=1&isAllowed=y
Beer R. E. 1954. A revision of the Tarsonemidae of the Western Hemisphere (Order Acarina). Univ. Kans. Sci. Bull., 36: 1091-1387. Available from: https://www.biodiversitylibrary.org/item/22654#page/459/mode/1up
Coppens d’Eeckenbrugge G., Leal F. 2003. Morphology, Anatomy and Taxonomy. In: Bartholomew D. P., Paull R. E., Rohrbach K. G. (Eds). The Pineapple Botany, Production and uses. Wallingford, Oxon: CAB International. p. 13-32. https://doi.org/10.1079/9780851995038.0000
Corpuz-Raros L. A. 2005. Six new species records of plant inhabiting mites (Acarina: Actinedida) from the Philippines. Asia Life Sci., 14(2): 147-161.
Cromroy H. L. 1958. A preliminary survey of the plant mites of Puerto Rico. J. Agric. Univ. P. R., 42(2): 39-144. https://doi.org/10.46429/jaupr.v42i2.12600
De Moraes G. J., Flechtmann C. H. W. 2007. Phytophagous mites of Tropical crops in Eastern South America. In: Morales-Malacara J. D., Behan-Pelletier V. M., Ueckermann E., Pérez T. M., Estrada-Venegas, E. G., Badii M. (Eds). Acarology XI; México: ICA. p. 279-288. De Moraes G. J., Flechtmann C. H. W. 2008. Manual de Acarologia. Acarología Básica e Ácaros de Plantas Cultivadas no Brasil. Riberão Preto: Holos, Editora. pp. 288.
Ewing H.E. 1939. A revision of the mites in the subfamily Tarsoneminae of North America, the West Indies, and the Hawaiian Islands. Bull. U.S. Dep. Agric. No. 653. pp. 65.
Flechtmann C.H.W. 1971. Alguns Trombidiformes do Brasil e do Paraguai (Acarina) [Thesis]. Piracicaba, Est. São Paulo. pp. 63, 16 pl.

Goldarazena A., Ochoa R., Childers C.C. 2002. Systematic revision of the genus Deleonia (Acarina: Tarsonemidae). Int. J. Acarol., 28(3): 221-240. https://doi.org/10.1080/01647950208684297

Guerra T.J., Romero G.Q., Costa J.C., Lofego A.C., Benson W.W. 2012. Phoretic dispersal on bumblebees by bromeliad flower mites (Mesostigmata, Melicharidae). Insectes Sociaux 59:11-16. https://doi.org/10.1007/s00040-010-0091-4

Illingworth J.F. 1931. Tarsonemus ananas Tryon, a mite that is becoming a serious pest of pineapples in Hawaii. Proc. Hawaii. Entomol. Soc., 7(3): 409-410. Available from: http://hdl.handle.net/10125/15799

Jeppson L.R., Keifer H.H., Baker E.W. 1975. Mites injurious to economic plants. Berkeley: University of California Press. pp. 648. Available from: https://books.google.co.cr/books/about/Mites_Injurious_to_Economic_Plants.html?id=RIEL_pBbtAC&redir_esc=y https://doi.org/10.1525/9780520335431

Joy P.P., Anjana R., Soumya K.K. 2016. Insect pests of pineapple and their management Chapter 25. In: Jeppson L.R., Keifer H.H., Baker E.W. 1975. Mites injurious to economic plants. Berkeley: University of California Press. pp. 471-492.

Krantz G.W., Walter D.E. 2009. A manual of acarology. Texas: Texas Tech University Press Lubbock. pp. 807.

Kolicka M., Gwiazdowicz D.J., Hupalo K., Jabłońska A., Kotwicki L., Kornobis F., Lamentowicz M., Magowski W., Marciz K., Pronin M., Rezcuga M.K., Olszanoski Z., Zawierucha K. 2016. Hidden invertebrate diversity - phytotelmata in Bromeliaceae from palm houses and florist wholesalers (Poland). Biologia, 71(2): 194-203. https://doi.org/10.1515/biolog-2016-0026

Lin J.Z., Zhang Z.Q. 2002. Tarsonemidae of the world (Acarina: Prostigmata): key to genera, geographical distribution, systematic catalogue and annotated bibliography. Systematic & Applied Acarology Society, London. pp. 440.

Lindquist E.E. 1978. On the synonymy of Tarsonemus waitei Banks, T. settier Ewing, and T. bakeri Ewing, with redescription of species (Acar: Tarsonemidae). Can. Entomol. 110 (10): 1023-1048. https://doi.org/10.4039/Ent1101023-10

Lindquist E.E. 1986. The world genera of Tarsonemidae (Acar: Heterostigmata): a morphological, phylogenetic, and systematic revision, with a reclassification of family group taxa in the Heterostigmata. Mem. Entomol. Soc. Can. 118(S136): 1-517. https://doi.org/10.4039/entm118136h

Mourichon X. 1993. Parasites et ravageurs de l’ananas: rapport de mission au Pérou 28 mars-6 avril. Montpellier: CIRAD-FLHOR. p. 23 [in French].

Nebhitt H.J. 1985. A new mite from bromeliad leaf-axils from Costa Rica (Acar: Tarsonemidae). Int. J. Acarol., 11(3): 209-214. https://doi.org/10.1080/01647958580883416

Ochoa R., Aguilar H., Vargas C. 1991a. Acaros fitófagos de América Central, CATIE. Turrialba, Costa Rica. pp. 251.

Ochoa R., Smiley R.L., Saunders J.L. 1991b. The family Tarsonemidae in Costa Rica (Acar: Heterostigmata). Int. J. Acarol., 17:41-86. https://doi.org/10.1080/01647959108683885

Ochoa R., Aguilar H., Vargas C. 1991c. Phytophagous mites of Central America. Turrialba, Costa Rica, CATIE. pp. 234.

Petty G.J. 1989. Effect of endosulfan on leathery pocket disease in pineapples, and evidence for the association of the mite, Steneotarsonemus ananas (Acarina: Tarsonemidae) with leathery pocket. Acta Hortic., 245: 501-508. https://doi.org/10.17660/ActaHortic.1997.245.58

Petty G.J., Tustin H.A., Dicks H.M. 2006. Control of black spot disease/fruitlet core rot in Queen pineapple with Integrated Mealybug, Pineapple Fruit Mite and Fungus Control Programmes. In: Pandey A.K., Mall P. (Eds). Insect Pests Management of Fruit Crops. New Delhi: Biotech Books. p. 471-492.

Rohrbach K.G., Namba R., Taniguchi G. 1981. Endosulfan for control of pineapple interfruitlet corking leathery pocket and fruitlet core rot. In: Flechtmann C.H.W. 1971. Alguns Trombidiformes do Brasil e do Paraguai (Acarina: Tarsonemidae) from kikuyu grass, Pennisetum clandestinum (Poaceae), in Australia. Syst. Appl. Acarol., 21(7): 889-906. https://doi.org/10.11158/saa.21.7-4

Smiley R.L. 1967. Further studies on the Tarsonemidae (Acarina). Proc. Entomol. Soc. Wash., 69(2): 127-146.
Suski Z.W. 1965. Tarsonemid mites on apple trees in Poland. II. *Tarsonemus bilobatus* n. sp. (Acarina Tarsonemidae). Bull. Acad. Pol. Sci. Biol., 13(9): 539-544.

Tryon H. 1898. Vegetable pathology. Fruitlet core-rot of pineapple. Queensland Agric. J., 3: 458-467.

Umaña G., Ochoa R., Vargas E., Salas L.A. 1990. Control biológico de ácaros: Potencial de control biológico de ácaros en Costa Rica por medio del hongo *Hirsutella* sp. Manejo Integrado de Plagas (Costa Rica) Bol. Informativo, 15:5-6.

Zoebisch T.G., Ochoa R., Vargas C., Gamboa A. 1992. Identificación y potencial del hongo *Hirsutella thompsonii* Fisher para el control de ácaros de importancia económica en América Central. Manejo Integrado de Plagas (Costa Rica), 23:9-12.