Supernova Explosions from Accretion Disk Winds

A. I. MacFadyen

Theoretical Astrophysics, California Institute of Technology, Pasadena, CA 91125 USA

Abstract. Winds blown from accretion disks formed inside massive rotating stars may result in stellar explosions observable as Type Ibc and Type II supernovae. A key feature of the winds is their ability to produce the radioactive 56Ni necessary to power a supernova light curve. The wind strength depends on accretion disk cooling by neutrino emission and photo-disintegration of bound nuclei. These cooling processes depend on the angular momentum of the stellar progenitor via the virial temperature at the Kepler radius where the disk forms. The production of an observable supernova counterpart to a Gamma-Ray Burst (GRB) may therefore depend on the angular momentum of the stellar progenitor. Stars with low angular momentum may produce a GRB without making an observable supernova. Stars with large angular momentum may make extremely bright and energetic supernovae like SN 1998bw. Stars with an intermediate range of angular momentum may simultaneously produce a supernova and a GRB.

1 Introduction

Observational evidence continues to establish the association of long gamma-ray bursts with active star forming regions of galaxies e.g., [1]. In addition, there are indications from the optical light curves of several (long) GRB afterglows that supernova components may be directly observed as emission from the decelerating relativistic ejecta fades [2][3][4]. These observational continue to support the collapsar models for GRBs in which the core of a massive rotating star collapses to a black hole and rapidly accretes [6][7]. It is therefore of interest to try to understand under what conditions a star which makes a GRB will also make an observable supernova.

Collapsars [7][8] form dense accretion disks ($\rho \gtrsim 10^9$ gm cm$^{-3}$) which are extremely optically thick to photons ($\tau_\gamma \sim 10^{19}$). As the stellar gas spirals through the disk, photons are trapped and accrete with the gas. This is in distinction from “thin”accretion disks in which photons are assumed to escape to infinity carrying away the locally dissipated energy. Since photons are trapped, viscous dissipation of orbital energy increases the disk entropy, pressure gradients are important for the force balance and the disk is “thick.” Such non-radiating accretion flows are capable of ejecting gas away from the black hole [2]. Accretion in these disks is inefficient with significant fractions of the gas supplied at large radii being ejected from the system.
An important feature of collapsar disks, is the realization at sufficiently high accretion rates \(\dot{M} \sim 0.1 M_\odot s^{-1} \) of temperatures \(T \sim 10^{10} \) K and densities \(\rho \sim 10^9 \) gm cm\(^{-3} \) at which the loss of thermal energy to neutrino emission and photodisintegration of heavy nuclei allows for accretion with a range of efficiency.

2 WINDS

MacFadyen & Woosley \[7\] showed that collapsar disks eject comparable amounts of material in a wind as is accreted by the central black hole. The fraction of accreted gas depends on the efficiency of neutrino cooling at removing entropy from the accreting gas. The remainder is ejected from the black hole as an outflowing wind. Recent semi-analytic work \[9\] has mapped the parameter space of inefficient neutrino-cooled accretion in agreement with detailed calculations of \[7\] for limited parameters.

Of particular interest in the case of collapsars is the chemical composition of the wind. Collapsar disks are hot enough to completely photodisintegrate heavy nuclei to free nucleons (neutrons and protons). Recent simulations \[10\] and \[7\] show expulsion of free nucleon gas in the wind. This is important for two reasons: 1) energetics: free nucleons combining to iron group nuclei (e.g. Nickel-56) release 8 MeV/nucleon or \(1.5 \times 10^{52} \) erg per solar mass of recombined material. 2) observability: this ejected material provides a long term energy supply to the explosion (through radioactive decay of \(^{56}\)Ni) enabling the gas to shine on time scales of months.

3 Light Curve

Models of the light curve of the energetic and peculiar Type Ibc supernova SN1998bw require large quantities of \(^{56}\)Ni \((M(^{56}\text{Ni}) \sim 0.5 M_\odot) \) \[11\][12]. Conventional models require large explosion energies to produce sufficient nickel and fit the light curve. In addition abnormally high expansion velocities were inferred from the unusual spectrum indicating a large explosion energy \(\sim 10^{52} \) erg). Several groups have also interpreted deviations from power law decay of GRB optical transients as supernovae light curve components and have matched them with appropriately shifted 1998bw light curves \[13\].

Since supernovae are invoked to interpret these observations it is important to note that a stellar explosion (e.g., jets piercing a star) is not necessarily a supernova. Supernovae, as an observable phenomenon, require a persistent source of energy input to power a light curve for long times (weeks to months). It is necessary to make \(^{56}\)Ni in the explosion so that radioactive decay (to Cobalt to Iron) injects energy into the gas so that it can shine. Lacking a persistent source of energy input, a stellar explosion would be unobservable via electromagnetic radiation. Explosion energy released in the
optically thick star would simply be converted to expansion kinetic energy with little or no light emitted.

In conventional core collapse supernovae some nickel is thought to be produced via explosive nuclear burning behind the explosion shock. However, current models for these “delayed” supernova explosions have trouble producing the 10^{51} erg for a normal supernova (in fact, some current models fail to get any explosion at all!) and are unlikely to be capable of producing the higher energies required for 1998bw.

4 Angular Momentum

As we have seen, neutrino cooling and photodisintegration of heavy nuclei are crucial for allowing gas to accrete efficiently. The neutrino cooling depends sensitively on temperature (e.g., $Q_\nu \propto T^6$ for neutrino losses due to pair capture on free nucleons) and therefore on the radius where the disk forms. This radius is, in turn, dependent on the angular momentum of the accreting gas with the disk first forming at the Kepler radius $R_{\text{kep}} \equiv j^2 / GM = 2.5 \times 10^7 j_{17}^2 M_3^{-1}$ cm, where j_{17} is the specific angular momentum of the accreting gas in units of 10^{17} cm2 s$^{-1}$ and M_3 is the mass of the central black hole in units of three solar masses. The virial temperature for gas falling to its Kepler radius $T_{\text{vir}} = GMm_p/3k_B R_{\text{kep}} = 3.3 \times 10^{10} M_3^2 j_{17}^{-2}$ K, where m_p is the proton mass and k_B is the Boltzmann constant. In terms of gravitational radii, $R_G \equiv GM/c^2$, this temperature is $T_{\text{vir}} = m_p c^2 / 3k_B r = 1.8 \times 10^{12} r^{-1}$ K (assuming a Newtonian potential), where $r \equiv R/R_G$. We see that gas with $j_{17} \approx 1$ is heated to above 10^{10} K so that it is fully photodisintegrated to free neutrons and protons from its original composition of Silicon, Oxygen and Helium. This means that capture of electron-positron pairs onto the free neutrons and protons serves as an efficient neutrino emission process which cools the gas and helps it to accrete efficiently. Gas with $j_{17} \gtrsim 2.6$, however, heats to less then 5×10^9 K. At these lower temperatures the heavy nuclei fail to photodisintegrate and pair capture neutrino cooling is suppressed. This gas is therefore poorly cooled and subject to being driven from the disk.

It is worth noting that gas with $1 \lesssim j_{17} \lesssim 2.6$ is partially photodisintegrated. Photodisintegration acts as a loss for thermal energy for the gas and thus is effectively a cooling process, robbing about 10^{19} erg of thermal energy from every gram of photodisintegrated nuclei. This process helps the gas to accrete and provides free nucleons which enhance the neutrino cooling.

The above discussion assumed $M_3 = 1$ though the scaling with M_3 is apparent.

5 The Afterburner

Interestingly, energy lost to photodisintegration becomes available again if the gas is ejected from the disk and begins to reassemble.
"Nickel Wind"

Fig. 1. Cross section of a collapsar accretion disk feeding a stellar mass black hole (center). The disk is embedded in a collapsing star that is falling onto the disk at rates above $0.1 \, M_\odot \, s^{-1}$. A wind (the striped region in the upper right) is blown from the collapsar disk at speeds of up to $\sim 40,000 \, km \, s^{-1}$. The wind is composed of free neutrons and protons which can recombine to iron group elements injecting $1.5 \times 10^{51} \, erg \, per \, 0.1 \, M_\odot$ of reassembled nucleons. ^{56}Ni in the wind can power a long term “supernova” light curve via radioactive decay of nickel and cobalt. The black solid arrows indicate the velocity of the gas flow while the thick dashed lines represent neutrino emission. The wind is shown only in the upper right quadrant for clarity but is in reality present in all four quadrants.
Effectively, gravitational energy is temporarily stored in the freeing of nucleons from the heavy nuclei. These nucleons are volatile in the sense that they have a huge nuclear energy source if they manage to escape the energetic photons trapped in the (optically thick) accretion disk. Accretion physics may provide the nucleons with opportunity to escape the disk’s nuclei-disintegrating photon bath. Once free they can quickly recover nuclear binding energy by reassembling into iron group elements. This process can be explosive since the nuclei may recombine in seconds compared to millions of years it took them to assemble (burn) the first time around during the slower pre-explosion nuclear burning stages. In fact the reassembly, plus the kinetic luminosity of the disk wind, may power extremely energetic explosions. SN1998bw may be an example.

6 GRB with Supernova

The collapsar model relies on rapid accretion into the central black hole to power relativistic jets which pierce the star and make a GRB and afterglow via internal and external shocks. It is notable that for an interesting range of angular momentum the accretion of the star simultaneously feeds the black hole rapidly and powers a wind [7].

There are several interesting regimes determined by the angular momentum present in the collapsing star:

The following values of angular momentum correspond to important transition radii in the accretion flow:

- j_{isco} angular momentum of the innermost stable circular orbit. This is the minimum angular momentum needed to form a disk around a black hole.
- j_ν angular momentum of gas that falls deep enough in the gravitational potential to photodisintegrate the heavy nuclei to free nucleons activating pair capture neutrino emission as an efficient coolant.
- j_γ angular momentum of gas that falls deep enough to cool partially. Some gas accretes and some is expelled in a wind. The relative amount depends on the exact value of j.

1. $j_{isco} < j < j_\nu$ - efficient neutrino cooling allows rapid accretion into black hole with plenty of power potentially going into jets with little or no outflows expected. This kind of star would not be expected to produce a bright supernova since little or no ^{56}Ni is expected to be present in the exploding star. A possible caveat is that there is some nickel production via explosion burning in the lateral jet shock but the temperature is low in this region and not much mass is involved.

2. $j_\nu < j < j_\gamma$ - some gas accretes and some is ejected in a wind rates can be comparable depending on j. This can make both a GRB and a “supernova”

3. $j > j_\gamma$ Gas doesn’t cool efficiently so doesn’t feed the hole rapidly. Not good for making an accretion powered GRB. Outflows may results with some recombination nickel possible if some gas is heated above 5×10^9 K
by a combination of virialization and viscous dissipation. Of interest here is explosive burning of centrifugally supported oxygen.

A less interesting regime is $j < j_{iso}$ for which the gas falls directly to the innermost stable circular orbit without forming an accretion disk.

Note that electromagnetic extraction of black hole spin energy is a possible source of jet energy even for “slowly” accreting black holes. Convective motions may even be favorable for building up large magnetic fields needed to extract the hole spin energy.

7 Photodisintegration

As stellar gas collapses onto the collapsar accretion disk, adiabatic compression and shocks can raise the temperature sufficiently to photodisintegrate the gas to alpha particles and free nucleons. The destruction of the heavy nuclei is an energy sink for the gas which is helpful in allowing accretion to occur. Photodisintegration of heavy nuclei (e.g., Silicon, Oxygen in the collapsing core) costs ηc^2 per unit mass where $\eta \approx 0.007$ (or 8 MeV/nucleon) for complete disintegration to free nucleons. Gas falling in a gravitational potential can dissipate its accretion energy by swapping nuclear binding energy for gravitational binding energy. A measure of where this occurs is where the gravitational binding energy equals the nuclear binding energy $\delta \phi = GM/r = \eta c^2$. If gas near the equator falls to it’s Keplerian radius the other half goes into the kinetic energy of Keplerian rotation so $\delta \phi = 1/2GM/r$.

Measuring radius in gravitational radii $r \equiv \tilde{r} r_g$ where $r_g \equiv GM/c^2$ we can define a photodisintegration radius $\tilde{r}_{pd} \equiv 1/2\eta$. We thus expect photodisintegration to “cool” accreting gas when falls to a radius of $\sim 70 r_g$.

8 Viscosity

The above scenario assumes significant viscosity in the disk gas corresponding to a Shakura-Sunyaev alpha viscosity parameter ~ 0.1. The temperature and density of the disk wind and hence the nucleosynthesis depend on the disk viscosity. Observations of the supernova powered by a collapsar wind may therefore help to constrain the viscosity of the collapsar accretion disk.

Recent calculations of the neutron abundance in one-dimensional accretion disk models relevant to GRBs [14] indicate that the inner parts of collapsar accretion disks may be too neutron rich to produce significant quantities of Nickel-56 [15][16]. Outflows from these inner regions may instead be of interest for rare nucleosynthesis like the r-process. However, much of the mass loss from GRB accretion disks (collapsars and otherwise) may come from the outer regions of the disks where electron capture has not significantly neutronized the material composing the outflow.

Collapsar disks may have more than one active wind blowing region: 1. the outer disk where low densities imply non-degenerate electrons and little
neutron excess \((Y_e \sim 0.5) \). Radioactive Nickel-56 may result from nucleosynthesis taking place in as this wind expands. 2. The innermost disk where the disk becomes optically thick to neutrino emission and is again poorly cooled. This innermost disk wind is significantly neutronized and will not produce Nickel-56. However, it is an interesting site for the r-process because of the large neutron fraction and large entropies attained from viscous dissipation.

In between these two disk regions, the disk is (partially) neutrino-cooled and most (but not necessarily all) of the gas can accrete. This region of the disk transports the fraction of gas received from the outer, i.e. the gas not ejected in the wind, plus gas falling onto the neutrino-cooled region of the disk.

References

1. Fruchter, A. 2002, American Physical Society, April Meeting, Jointly Sponsored with the High Energy Astrophysics Division (HEAD) of the American Astronomical Society April 20 - 23, 2002 Albuquerque Convention Center Albuquerque, New Mexico Meeting ID: APR02, abstract #Y2.004, 2004
2. Hawley, J. F., Balbus, S. A., and Stone, J. M., ApJ, 554, L49–L52 (2001).
3. Bloom, J. S., Kulkarni, S. R., Djorgovski, S. G., Eichlerberger, A. C., Cote, P., Blakeslee, J. P., Odewahn, S. C., Harrison, F. A., et al. 1999, Nature, 401, 453–456
4. Reichart, D. 1999, ApJL, 521, 111
5. Bloom, J. S., Kulkarni, S. R., Price, P. A., Reichart, D., Galama, T. J., Schmidt, B. P., Frail, D. A., Berger, E. 2002, ApJ, in press, astro-ph/0203391
6. Woosley, S. E. 1993, ApJ, 405, 273
7. MacFadyen, A. I., and Woosley, S. E., ApJ, 524, 262–289 (1999).
8. MacFadyen, A. I., Woosley, S. E., and Heger, A., ApJ, 550, 410–425 (2001).
9. Narayan, R., Piran, T., and Kumar, P., ApJ, 557, 949–957 (2001).
10. MacFadyen, A. I., and Woosley, S. E., ApJ, in preparation (2002).
11. Iwamoto, K., Mazzali, P. A., Nomoto, K., Umeda, H., Nakamura, T., Patat, F., Danziger, I. J., Young, T. R., Suzuki, T., Shigeyama, T., Augusteijn, T., Doublier, V., Gonzalez, J.-F., Boehnhardt, H., Brewer, J., Hainaut, O. R., Lidman, C., Leibundgut, B., Cappellaro, E., Turatto, M., Galama, T. J., Vreeswijk, P. M., Kouveliotou, C., van Paradijs, J., Pian, E., Palazzi, E., and Frontera, F., Nature, 395, 672–674 (1998).
12. Woosley, S. E., Eastman, R. G., and Schmidt, B. P., ApJ, 516, 788–796 (1999).
13. Bloom, J. S., Kulkarni, S. R., Djorgovski, S. G., Eichlerberger, A. C., Cote, P., Blakeslee, J. P., Odewahn, S. C., Harrison, F. A., Frail, D. A., Filippenko, A. V., Leonard, D. C., Riess, A. G., Spinrad, H., Stern, D., Bunker, A., Dey, A., Grossan, B., Perlmutter, S., Knop, R. A., Hook, I. M., and Feroci, M., Nature, 401, 453–456 (1999).
14. Popham, R., Woosley, S. E., & Fryer, C. 1999, ApJ, 518, 356.
15. J. Pruett, S. E. Woosley and R. D. Hoffman, astro-ph/0209412.
16. A. M. Beloborodov, astro-ph/0210522.