Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Targeting the NF-κB pathway in asthma and chronic obstructive pulmonary disease

Michael R. Edwardsa,b,c,⁎, Nathan W. Bartletta,b,c, Deborah Clarkec,d, Mark Birrellc,d, Maria Belvisic,d, Sebastian L. Johnstona,b,c

a Department of Respiratory Medicine & Wright-Fleming Institute of Infection and Immunity, St Mary's Campus, National Heart Lung Institute Imperial College London, London UK
b MRC and Asthma UK Centre for Allergic Mechanisms of Asthma, London UK
c Centre for Respiratory Infections, London UK
d Respiratory Pharmacology, National Heart Lung Institute, Royal Brompton Campus, Imperial College London, London UK

Abstract

Asthma and chronic obstructive pulmonary disease are inflammatory lung disorders responsible for significant morbidity and mortality worldwide. While the importance of allergic responses in asthma is well known, respiratory viral and bacterial infections and pollutants especially cigarette smoke are important factors in the pathogenesis of both diseases. Corticosteroid treatment remains the first preference of treatment in either disease, however these therapies are not always completely effective, and are associated with side effects and steroid resistance. Due to such limitations, development of new treatments represents a major goal for both the pharmaceutical industry and academic researchers. There are now excellent reasons to promote NF-κB signalling intermediates and Rel family proteins as potential therapeutic targets for both asthma and chronic obstructive pulmonary disease. This notion is supported by the fact that much of the underlying inflammation of both diseases independent of stimuli, is mediated at least in part, by NF-κB mediated signalling events in several cell types. Also, a range of inhibitors of NF-κB signalling intermediates are now available, including DNA oligonucleotides and DNA-peptide molecules that act as NF-κB decoy sequences, small molecule inhibitors such as IKK-β inhibitors, and proteasome inhibitors affecting NF-κB signalling, that have either shown promise in animal models or have begun clinical trials in other disorders. This review will focus on the role of NF-κB in both diseases, will discuss its suitability as a target, and will highlight recent key studies that support the potential of NF-κB as a therapeutic target in these two important inflammatory lung diseases.

© 2008 Elsevier Inc. All rights reserved.
1. Introduction

Asthma and chronic obstructive pulmonary disease (COPD) are complex, multifactorial airway diseases associated with significant morbidity and mortality worldwide. Asthma may be caused by allergic responses, and COPD is highly associated with exposure to cigarette smoke (CS), however both diseases may be exacerbated by viral or bacteria infections. In fact, both asthma and COPD are among the top 10 most devastating diseases in the world caused by infectious agents, in terms of loss of life and overall morbidity (Mizgerd, 2006). Despite this importance, both diseases feature distinct clinical phenotypes which are inadequately controlled by inhaled corticosteroid (GC) based therapies, the mainstay therapy for both diseases. The identification of new therapeutic targets therefore remains a research priority for both diseases.

Intense research efforts have described many of the cells and molecules associated with either disease, and while the aetiologies of both diseases is multifactorial, both diseases have a significant inflammatory component. Strikingly, many of the pro-inflammatory chemokines, cytokines, adhesion molecules, respiratory mucins, growth and angiogenic factors are induced via the Rel/Nuclear Factor-κB (NF-κB) family of transcription factors. This review will provide a timely summary of the literature regarding the importance of NF-κB in asthma and COPD. We will reflect on the various forms of asthma and COPD, including both stable forms and exacerbations of either disease, and discuss the relative roles of NF-κB in each. We will also argue that asthma and COPD are inflammatory diseases, and that targeting the inflammatory pathways via NF-κB inhibition is a realistic and logical strategy for future therapeutic intervention. We also discuss how drugs targeting NF-κB may have distinct advantages over inhaled GCs at least for some phenotypes of asthma or COPD.

2. Asthma and chronic obstructive pulmonary disease are inflammatory airway diseases

2.1. Overview of asthma

Asthma is defined as variable airway obstruction usually accompanied by airway hyperreactivity (AHR). Defining features of asthma include bronchoconstriction due to contraction or hypertrophy of airway smooth muscle (ASM), and inflammation within the airway. These processes lead to decreased lung function, measured either as changes in peak expiratory flow (PEF) over time, or a decrease in forced expiratory volume (FEV) in 1 s following provocation with histamine.

Symptoms often include dyspnoea, wheeze and tightening of the chest. In most cases, the immediate effect on lung function can be reversed by a short acting β2 agonist. Asthma is now accepted to be a heterogeneous complex disorder (for a review see Wenzel, 2006), and normally presents as a chronic, stable disease with acute exacerbations, often following acute viral or bacterial infection of the lower airway. Exposure to allergens, and the resulting allergic cascade is also a cause of asthma, and this may work in an additive or synergistic manner with exposure to pollution (Spannhake et al., 2002; Chauhan et al., 2003), or acute respiratory infections (Green et al., 2002).

Asthma is associated with early onset in life and affects approximately 20% of the population, with an increased incidence in the developing world (Asher et al., 2006). Asthma may cause severe morbidity, and even mortality due to exacerbation. Asthma is a huge burden on healthcare costs world wide. In the UK, the cost of asthma exacerbations are 3.5 fold higher per patient compared to stable asthma (Hoskins et al., 2000). In raw terms, the annual cost of asthma in terms of GP consultations, emergency room admissions, sick leave, school absenteeism and treatment, is in the order of billions of GBP.

Much is known regarding the cells and molecules contributing to asthma. The allergic cascade has been a focal point of research interest for decades. Upon allergen exposure, mast cells within the airway sensitised with allergen specific IgE are triggered to release a number of pre-formed mediators packaged in their granules. The granules contain histamine, which act on ASM and causes the immediate bronchoconstriction of the airway, observed in asthma. Mast cells synthesise prostaglandins, leukotrienes and kinins which can contribute to bronchoconstriction, and are also a source of the Th2 cytokines IL-4 and IL-13, which serve to increase class switching to IgE in B cells, and augment the production of various Th2 chemokines from epithelial and ASM cells. IL-13 is also highly associated with airway hyperreactivity in animal models of asthma (Leigh et al., 2004; Yang et al., 2004). Mast cells also produce various chemokines attracting inflammatory neutrophils, Th1 and Th2 lymphocytes, and eosinophils into the airway. Th2 lymphocytes are a further source of Th2 cytokines, including IL-5, essential for eosinophil differentiation from bone marrow (for a review, see Renaud, 2001). Recruitment of these various cell types, especially Th2 cells are thought to contribute to the late asthmatic response, (LAR) which features further bronchoconstriction and AHR. In severe asthma, increased ASM proliferation, and fibroblast differentiation may contribute to airway remodelling, causing further long term limitations in lung function via increasing basement membrane thickness, and angiogenesis.

Respiratory viral infections notably human rhinoviruses (RV), respiratory syncytial virus (RSV), coronaviruses and influenza viruses...
COPD is associated with an onset later in life, and the incidence is increasing with an ageing population. It affects over 5% adults, is the fourth leading cause of death worldwide and is the only major cause of death that is still rising (Pauwels & Rabe, 2004). It has been predicted from the increasing prevalence that COPD will be the third leading cause of death worldwide by 2020 (Murray & Lopez, 1997).

Stable COPD is punctuated by exacerbations, 50–70% of which are associated with infection by bacteria and viruses (Ball, 1995; Seemungal et al., 2000; Papi et al., 2006). The noncapsulated bacteria Haemophilus influenzae, Streptococcus pneumoniae, and Moraxella catarrhalis are the most frequently isolated bacteria in stable COPD and during exacerbations (Monso et al., 1995). Viruses are detected in at least 40% of COPD exacerbations, and commonly include RV and RSV (Seemungal et al., 2001).

Exacerbations are the major cause of morbidity and mortality in COPD. Exacerbations result in a faster decline in lung function (Donaldson et al., 2002), the number and severity increase with worsening disease (Donaldson et al., 2003), and they are associated with a 7.4% mortality rate in hospitalised patients (Price et al., 2006).

Recently much has been learnt regarding the mechanism by which CS and pulmonary infections contribute to COPD. Stable COPD is generally associated with increased airway CD8+ T lymphocytes, macrophages and neutrophilia (Saetta et al., 1998; Saetta et al., 1999; Qi et al., 2003; Baraldo et al., 2004), and in some patients, eosinophils (Rutgers et al., 2000). COPD and CS are also highly associated with reactive oxygen, as measured by 8-isoprostane analysis (Montuschi et al., 2000), reactive oxygen is believed to be central to COPD, by inducing lung damage and hence the initiation of inflammation. During exacerbations, the cellular infiltrate may be more variable, and also demonstrate increased neutrophil chemokines such as ENA-78 and IL-8 (Qi et al., 2003). COPD exacerbations are also related to an increase in systemic inflammatory molecules, including c-reactive protein and TNF-α (Can et al., 2004). Recently, a small pilot study has demonstrated that experimental RV challenge is feasible in COPD patients, and induced changes typically experienced during exacerbations of COPD (Malizia et al., 2006).

Both inhaled long acting B2 agonists (LABAs) and short acting B2 agonists are used in the symptomatic treatment of COPD. Anticholinergics are also administered, and both B2 agonist and anticholinergic therapy act mainly by inducing bronchodilation, thereby reducing dyspnoea and may also reduce exacerbation frequency. The use of inhaled GCS in COPD remains controversial, with inhaled GC use recommended for moderate/severe COPD rather than mild COPD. Recently, a large clinical trial has shown improvements in lung function, and exacerbation frequency in individuals receiving combined inhaled GC and LABA treatment versus placebo (Calverley et al., 2007). Oral GC therapy is also recommended for the treatment of COPD exacerbations. An update on current treatment regimes for COPD is provided by the Global Strategy for the Diagnosis Management and Prevention of COPD (Rabe et al., 2007).

3. Nuclear factor-κB signalling and the Rel protein family

NF-κB is a transcription factor expressed in numerous cell types, which plays a key role in the expression of many pro-inflammatory genes, leading to the synthesis of cytokines, adhesion molecules, chemokines, growth factors and enzymes (reviewed in Baldwin, 2001). NF-κB or Rel family members are believed to play a central role in a variety of acute and chronic inflammatory diseases. For this reason the NF-κB signalling pathway has been the focus of extensive research over the last 20 years. NF-κB is activated in response to a number of stimuli, including physical and chemical stress, LPS, dsRNA, ssRNA, T and B cell mitogens and pro-inflammatory cytokines (Rothwarf & Karin, 1999; Karin & Lin, 2002; Li & Verma, 2002; Karin et al., 2004). NF-κB induced gene expression is controlled by a complex series of enzymatic signalling events, at multiple levels. An overview of the NF-κB activation cascade is depicted in Fig. 1.

2.2. Overview of chronic obstructive pulmonary disease

COPD is defined as a disease state characterized by chronic airflow limitation that is not fully reversible (ERS/ATS COPD Guidelines 2005). The airflow limitation is usually progressive and is associated with an abnormal inflammatory response following a range of different stimuli including CS, pollution, and pulmonary viral or bacterial infection. The clinical characteristics of cough, shortness of breath and sputum production reflect the underlying pathological changes. Mucus hypersecretion and ciliary dysfunction lead to collapse of damaged small airways producing airflow limitation, gas trapping and the characteristic obstructive picture on spirometry. While the aetiology of COPD is certainly associated with smoking, the phenotype observed in COPD is variable and complex, and is likely the result of both various genetic and environmental factors.
Rel family members share an N-terminal Rel homology domain (RHD) which mediates dimerisation, nuclear translocation, and the binding of specific \(\kappa B \) sites within promoters of affected genes. The consensus \(\kappa B \) site is the decameric sequence 5’-GGGAATTTCC-3’, however extensive variations exist. In mammals there are five known members of the Rel family: p50 (NF-\(\kappa B \)1, precursor of which is p105), p65 (Rel A, NF-\(\kappa B \)3), p52 (NF-\(\kappa B \)2, precursor of which is p100), c-Rel and Rel B. The p50 and p65 subunits are ubiquitously expressed, whereas the other three are generally restricted to specific differentiated cell types (reviewed in Siebenlist et al., 1994). In resting cells, the majority of NF-\(\kappa B \) is bound to I\(\kappa B \) inhibitory protein which masks the nuclear localisation sequence (NLS) and holds the complex in the cytoplasm. There are a number of different I\(\kappa B \) proteins such as I\(\kappa B \)\(\alpha \), I\(\kappa B \)\(\beta \), I\(\kappa B \)\(\gamma \), I\(\kappa B \)\(\epsilon \) and Bcl-3. It is generally believed that the different isoforms are associated with particular Rel protein dimers, bound via their RHD. For example I\(\kappa B \)\(\alpha \) and I\(\kappa B \)\(\beta \) associate with p65:p50 and p50:c-Rel, whereas I\(\kappa B \)\(\epsilon \) only binds to p65 and c-Rel hetero and homodimers. Upon appropriate stimulation, the I\(\kappa B \) protein is phosphorylated and ubiquinated, and subsequent 26S proteasome-mediated degradation. I\(\kappa B \) isoprophosphorylation is stimulus specific, for example I\(\kappa B \)\(\beta \) is only phosphorylated by certain stimuli including LPS and IL-1\(\beta \), whereas I\(\kappa B \)\(\alpha \) phosphorylation is triggered by most NF-\(\kappa B \) activators. This level of control is thought to impact on the cell type specificity and kinetics of the response, which in turn can influence the duration of transcription.

I\(\kappa B \) phosphorylation and activation of Rel proteins can occur via the classical (canonical) or alternative pathway. In the classical pathway, a critical phosphorylation of the I\(\kappa B \) protein is performed by the I\(\kappa B \) kinase (IKK) complex, which consists of at least three subunits, two catalytic subunits IKK-\(\beta \) and IKK-\(\alpha \) and a regulatory subunit IKK-\(\gamma \). In the classical pathway, it has been shown that IKK-\(\beta \), and not IKK-\(\alpha \), is important in NF-\(\kappa B \) activation, and the two kinases have distinct rather than overlapping functions (Hu et al., 1999; Li et al., 1999a, 1999b; Takeda et al., 1999). The classical pathway includes signalling from TLR/IL-1R family members, intracellular pattern recognition receptors including the RNA helicases and PKR which activate IKK-\(\beta \), the TCR activation pathway, leading to IKK-\(\beta \), and the alternative pathway induced by CD40–CD40L activation, lymphotoxin-\(\beta \) or RANKL leading to activation of NIK and IKK-\(\alpha \).

Fig. 1. Signalling pathways leading to NF-\(\kappa B \) activation. The canonical pathways include TLR/IL-1 receptors, leading to IRAK activation and IKK-\(\beta \) phosphorylation, intracellular viral receptors including the RNA helicases and PKR which activate IKK-\(\beta \), the TRC activation pathway, leading to IKK-\(\alpha \) IKK-\(\beta \) activation, TNFR activation which signals via TRADD to activate IKK-\(\beta \), and the alternative pathway induced by CD40–CD40L activation, lymphotoxin-\(\beta \) or RANKL leading to activation of NIK and IKK-\(\alpha \).
other components of the transcriptional machinery, and altering their kinetics in and out of the nucleus. The phosphorylation status of NF-κB can influence activation, for example phosphorylation of p65 may enhance transcriptional activation, however phosphorylation of p105 can reduce its processing into p50 (Naumann & Scheide ereit, 1994). NF-κB can also associate with other transcriptional proteins such as histone acetyltransferase (HAT) and histone deacetylase (HDAC) (reviewed in Ito et al., 2007). Similarly acetylation of the Rel proteins can increase the time it is located in the nucleus (Chen et al., 2002). Furthermore recent data would suggest that these two modification steps occur in a stepwise manner, phosphorylation of RelA is required prior to and enhances acetylation of Rel A, and improved transcriptional activity (Chen et al., 2005). Hence the NF-κB pathway represents a well studied signal transduction pathway, relevant to many human diseases. The next part of this article will focus on how this knowledge has been applied to generating new therapies for asthma and COPD.

4. Nuclear factor-κB in asthma and chronic obstructive pulmonary disease: evidence from expression levels in diseased tissue, models using gene deficient mice, and in vitro assays

4.1. Asthma

Several lines of evidence indicate enhanced NF-κB pathway activation in asthmatic tissues. Peripheral blood mononuclear cells (PBMCs) of adult uncontrolled, severe and moderate asthmatics have higher levels of NF-κB p65 protein expression, IκB phosphorylation and IKK-α/β protein levels than normal individuals (Gagliardo et al., 2003). Also in children, NF-κB p65 protein abundance and IκB phosphorylation are also higher in moderate asthmatic PBMCs when compared to normal individuals (La Grotta et al., 2003). Furthermore, when compared to non-asthmatic individuals, nuclear extracts from bronchial biopsies, sputum cells (Hart et al., 1998), and cultured bronchial epithelial cells (Zhao et al., 2001) from stable, untreated asthmatics have greater levels of NF-κB p65 and p50 activation, as measured by gel shift assays and immunofluorescence of nuclear NF-κB p65 protein.

Small animal models of allergic asthma using gene deficient mice highlight the importance of NF-κB in disease pathogenesis. While a wealth of small animal studies have demonstrated the role of NF-κB in inflammation following respiratory viral or bacterial infections (Haeberle et al., 2002; Haeberle et al., 2004; Sadikot et al., 2006; Quinton et al., 2007), NF-κB also appears to be important in the allergic response. In the ovalbumin (OVA) sensitisation and challenge model, total lung extracts from Brown-Norway rats exhibit enhanced NF-κB activity (Lin et al., 2000). In a murine model, bronchial epithelium exhibits robust and rapid NF-κB p65 nuclear translocation and IKK-α/β activity, compared to controls (Poynter et al., 2002). Mice that lack NF-κB p50 have reduced eosinophilic responses to aerolised allergen. This effect was shown to be due to a lack of T cell production of Th2 cytokines, IL-13, IL-4 and the eosinophil growth factor IL-5 (Das et al., 2001), and also the chemokine eotaxin (Yang et al., 1998). Upon OVA sensitisation and challenge, airway eosinophils, mucus, peribronchiolar fibrosis, eotaxin and the Th2 T cell chemokine TARC were reduced compared to littermate controls with functional IKK-β. This work demonstrated the importance of NF-κB signalling in both allergic inflammation and mucus production that are relevant to asthma.

There is also an extensive literature concerning NF-κB inhibition in lung cells in vitro, using a range of pharmacological inhibitors, dominant negative kinase mutants (Nasuhara et al., 1999; Li et al., 2003; Catley et al., 2005) and constitutively expressed IκB proteins that sequester NF-κB in the cytoplasm (Thomas et al., 1998; Ciesielski et al., 2002). These studies not only further underscore the importance of NF-κB signalling in the generation of pro-inflammatory cytokines, chemokines and adhesion molecules (Nasuhara et al., 1999; Catley et al., 2004; Birrell et al., 2005a; Catley et al., 2005; Li et al., 2006; Dajani et al., 2007; Newton et al., 2007), and also as outcomes of both viral (Zhu et al., 1996; Zhu et al., 1997; Kim et al., 2000; Edwards et al., 2006b; Edwards et al., 2007) and bacterial infection (Krull et al., 2006), but provide a highly useful testing ground for research and development into improved therapeutics.

4.2. Chronic obstructive pulmonary disease

As with asthma, much of the research effort in developing treatments has focused on inhibiting the inflammation associated with COPD. Increased markers of NF-κB pathway activity have been demonstrated in the airways of, or samples from, COPD patients, including sputum macrophages (Caramori et al., 2003) during exacerbations of COPD, and also in bronchial biopsies of stable COPD patients (Di Stefano et al., 2002). In rodent models of COPD involving CS exposure (Marwick et al., 2004) and over-expression of the Th2 cytokine IL-13 (Chapoval et al., 2007), NF-κB activation has been implicated in disease pathogenesis.

It has been shown that over expression of IKK-β in mouse airway epithelial cells results in an increase in inflammatory mediators and neutrophilic inflammation that is reminiscent of the COPD airflow following bacterial challenge (Sadikot et al., 2006). In addition, inhibition of IKK-β in vivo and in vitro reduced TNF-α induced MUC5AC production, one of the major components of respiratory mucus (Lora et al., 2005). Production of another important respiratory mucin, MUC5B has also been shown to be IKK-β dependent, following RV infection in vitro (N. Bartlett, unpublished observations). Hence growing evidence supports a role of NF-κB signalling in COPD pathogenesis.

In vitro systems have also been used to highlight a critical role for IKK-β in the activation of NF-κB (Conron et al., 2002). Transfection of alveolar macrophages with adenovirus constructs expressing defecive IKK-β but not NIK proteins inhibited macrophage activation of NF-κB, and expression of TNF-α, IL-8/CXCL8 and IL-6. Monocyte derived macrophages infected in vitro with RV produce TNF-α in a NF-κB dependent manner, which is sensitive to treatment with the IKK-β inhibitor AS206828 (Laza-Stanca et al., 2006).

One possible caveat to NF-κB inhibition in asthma or COPD is the suppression of beneficial host responses. This is most likely in asthma or COPD exacerbations, which have a viral or bacterial aetiology. In asthma, recent data highlight the importance of type I IFN-γ and type III IFN-λs as crucial to the host defence against viral infections (Wark et al., 2005; Contoli et al., 2006). As IFN-γ and IFN-λ are induced by viruses in an NF-κB dependent manner (Thanos & Maniatis, 1995; Wathelet et al., 1998; Chu et al., 1999; Osterlund et al., 2005), targeting NF-κB in asthma and COPD may not only reduce harmful pro-inflammatory and allergen induced responses, but may also reduce beneficial anti-viral responses. This issue requires clarification in appropriate animal models before targeting NF-κB in viral induced asthma exacerbations can be applied in human studies. A list of cytokines, chemokines and other molecules regulated in an NF-κB dependent manner associated with asthma or COPD is provided in Table 1.

5. Available inhibitors for in vivo inhibition of nuclear factor-κB

5.1. Corticosteroid based treatments

Inhaled or oral GCs remain the most effective treatment for asthma and COPD. The glucocorticoid receptor (GR) is a cytoplasmic steroid hormone receptor that undergoes a conformational change and dimerisation upon ligation with GC, and rapid nuclear translocation.
Chemokines
IL-8/CXCL8 Neutrophil chemokine (Zhu et al., 1997)
ENA-78/CXCL5 Neutrophil chemokine (Sachse et al., 2006)
NAP-2/CXCL4 Neutrophil chemokine (Catley et al., 2006)
GRO-α/CXCL1 Neutrophil chemokine (Issa et al., 2006)
GRO-γ/CXCL3 Neutrophil chemokine (Rezzeri et al., in press)
TARC/CCL17 Th2 cell chemokine (Berin et al., 2001)
MIP-3α/CCL20 T cell and immature DC chemokine (Matsukura et al., 2006)
Eotaxin/CCL11 Eosinophil chemokine (Yang et al., 1998)
Rantes/CCL5 Th1 cell chemokine (Thomas et al., 1998)
IP-10/CXCL10 Th1 cell chemokine (Spurrell et al., 2005)
MCP-1 Monocyte chemokine (Catley et al., 2006)

Mucins
MUC5AC Respiratory mucin (Kraft et al., 2008)
MUC5B Respiratory mucin (Inoue et al., 2006)
MUC7 Respiratory mucin (Li & Bobek, 2006)

Receptors
ICAM-1 Leukocyte adhesion (Papi & Johnston, 1999b)
VCAM-1 Leukocyte adhesion (Papi & Johnston, 1999a)
CD23 Low affinity receptor for IgE (Debnath et al., 2007)
CD21 CD23 co-receptor (Debnath et al., 2007)
IgE Allergen binding on mast cells and basophils (Domizio et al., 2006)

Enzymes
COX-2 Coverts arachidonic acid to prostaglandins (Steer et al., 2003)
INOS Produces nitric oxide (Li et al., 2002)
MMP9 Protease associated with remodelling of the extracellular matrix and cell migration (Rhee et al., 2007)

Table 1
A comprehensive list of known downstream targets of the transcription factor NF-κB relevant to asthma and/or COPD

Protein/Gene	Function	Reference
TNF-α	Inflammatory cytokine	(Laza-Stanca et al., 2006)
IL-1β	Inflammatory cytokine	(Haddad, 2002)
IL-6	Lymphocyte and macrophage maturation	(Zhu et al., 1996)
GM-CSF	Neutrophil generation from bone marrow	(Funkhouser et al., 2004)
IL-5	Th2 cytokine	(Mori et al., 1997)
IL-4	Th2 cytokine	(Das et al., 2001)
IL-13	Th2 cytokine	(Das et al., 2001)

In vitro studies show that GR acts via a range of different mechanisms, including prevention of NF-κB interacting with its cis-acting site, with other transcription factors, or structural proteins required for transcription through the process broadly known as trans-repression (Tuckermann et al., 1999; Tao et al., 2001). GR activation can lead to expression of phosphatases that prevent inflammatory kinases from signalling (Issa et al., 2007), or via recruiting HDACs that prevent histone acetylation, disassociation of chromatin, and therefore NF-κB binding at a given promoter (Ito et al., 2000; Ito et al., 2001). How GCs impact on NF-κB signalling, is shown in Fig. 2.

GCs are often used in conjunction with other therapies, such as LABAs or leukotriene receptor antagonists. GC based therapies are most effective in the treatment of stable or allergic asthma, are less effective in COPD, and even less so for exacerbations of either disease (Pauwels et al., 1997; Calverley et al., 2003). Despite the continued reliance on GC based therapies in asthma and COPD, a major research objective is to find better treatments for exacerbations of asthma and COPD.

Several studies have examined the efficacy of GC based therapies in reducing NF-κB activity from ex vivo material, with mixed results. In patients with stable asthma undergoing treatment with budesonide, budesonide increased GR–DNA binding in bronchial biopsies and reduced NF-κB–DNA binding (Hancox et al., 1999). In support, Wilson et al. have demonstrated a reduction in activated NF-κB staining after treatment with budesonide or the LABA formoterol (Wilson et al., 2001). Bronchial biopsies from budesonide treated individuals also had significantly less IL-8, TNF-α and GM-CSF, however no difference was observed for formoterol treated samples. In contrast, Hart et al., studying NF-κB–DNA binding in stable asthmatic bronchial biopsies and alveolar macrophages after treatment with fluticasone propionate, showed no decrease in NF-κB activity compared to a placebo administered control group. Fluticasone was effective however at reducing BAL eosinophils and improved lung function (Hart et al., 2000). Together, the data suggest that in lung tissue, GCs are not completely effective in blocking NF-κB activity and that the anti-inflammatory activity of GCs may act via other mechanisms.

The effectiveness of GCs in controlling NF-κB mediated allergic responses from lymphocytes has also been examined. T cell clones from stable asthmatics synthesised IL-5 upon stimulation with anti-TCR antibodies or IL-2 treatment (Mori et al., 1997). Dexamethasone effectively reduced IL-5 synthesis in both models. The authors also demonstrated that the targets for GC action were likely to be NF-κB and AP-1. Fluticasone and salmeterol also caused decreased phospho-IκB levels in asthmatic T cells (Pace et al., 2004), suggesting that IκB may also be a target for GC action.

There are currently very few studies examining the effects of GC based therapies on NF-κB expression following asthma or COPD exacerbations. While clearly less effective than in stable disease, the lack of efficacy in exacerbations remains poorly understood. One theory is that as most exacerbations have viral and bacterial aetiologies, this may involve distinct mechanisms, involving different cells or molecules than in stable forms of either disease. In vitro, normal tissue, GC based therapies reduce inflammatory mediators induced by viral and non-viral stimuli (IL-1β) with about the same efficacy (Edwards et al., 2006a; Edwards et al., 2007), arguing against the above. This is also supported by the fact that much of the underlying inflammation in both stable, non-viral and viral or bacterial induced exacerbations involves NF-κB. More research, particularly in asthmatic and COPD tissue, and the testing of known NF-κB inhibitors in models of asthma or COPD exacerbation are required to carefully scrutinise these mechanisms.

5.2. Decoy oligonucleotides

As the cis-acting sites within various promoters have a conserved motif, NF-κB decoy oligonucleotides which bind activated Rel proteins and prevent them from binding to their nuclear targets represent potential therapeutic agents. These oligonucleotides, or their DNA-peptide orthologs, have shown proof of concept in vitro (Tomita et al., 1998; Mischiati et al., 1999; Romanelli et al., 2001) and have been studied in various animal models including sepsis (Matsuda et al., 2004) and asthma (Desmet et al., 2004). Furthermore, decoy oligonucleotides to the cell cycle regulator E2F have been trialled ex vivo in clinical trials for the treatment of vein graft rejection (Mann et al., 1999; Alexander et al., 2005).

Using the OVA challenged and sensitised mouse model of asthma, Desmet et al. assessed the efficacy of NF-κB decoy oligonucleotides during ovalbumin induced allergic airway inflammation (Desmet et al., 2004). Initial experiments demonstrated that the target cell population within the lung consisted of DCs, T cells, macrophages and granulocytes, located with the bronchial and perivascular areas of the lung. Interestingly, structural cells, including bronchial epithelial cells were not transfected in this study. At 24 h post treatment, mice treated with NF-κB decoy oligonucleotides exhibited lower BAL eosinophils, neutrophils, lymphocytes and macrophages compared to untreated, ovalbumin challenged mice or mice treated with a scrambled, non-specific oligonucleotide. Differences were also observed in BAL cytokines, with IL-13, IL-5, IFN-γ, and eotaxin being lower in mice challenged with ovalbumin and treated with the NF-κB decoy oligonucleotide. Treated animals also exhibited less AHR than control groups, strongly suggesting that inhibiting NF-κB can directly affect lung function in this model. Finally PAS staining of lung sections revealed lower levels of mucin protein in OVA challenged NF-κB decoy...
oligonucleotide treated animals compared to control animals. IL-4, and IgE levels were not affected, suggesting that not all components of the allergic cascade can be affected using this strategy.

5.3. Small molecule inhibitors of IκB kinase-β

As described above, there is now substantial data to suggest that inhibition of IKK-β could have beneficial disease modifying properties. Targeting IKK-β represents a growing area of interest for academic researchers and industry alike, as a plethora of small molecule inhibitors have recently become available. As yet, there has been no clinical trials using IKK-β inhibitors in asthma or COPD, however several inhibitors have been used in phase I and II clinical trials in other disorders, notably cancer (reviewed in Karin et al., 2004). These compounds are widely used in research, particularly in small animal models. Currently there are at least eight small molecule inhibitors of IKK-β available, with efficacies in cell based in vitro assays in the low micromolar range. A list of these inhibitors is presented in Table 2.

IKK-β inhibitors have been rigorously tested in cell based assay systems and show reliable anti-inflammatory activity using a range of stimuli (Birrell et al., 2005a; Ziegelbauer et al., 2005; Catley et al., 2006; Issa et al., 2006; Newton et al., 2007). It would appear that IKK-β inhibitors may possess a more comprehensive anti-inflammatory profile to that of GCs, for instance IL-1β induced G-CSF release from primary ASM is virtually steroid resistant, whereas it is completely blocked by two structurally different IKK-β inhibitors (Birrell et al., 2005a). This is potentially very exciting, because the inflammation in COPD patients, and a sub-population of asthmatics are reportedly resistant to GC treatment. Peroxynitrite, and nitration of HDACs, caused by reactive oxygen produced by CS, have been implicated in

Compound	IC50, assay	Reference
IPCA-1	0.17–0.32 μM, pro-inflammatory cytokine expression in monocytes	(Podolin et al., 2005)
2′-[(Aminocarbonyl)amino]-5′-[4-fluorophenyl]-3-thiophenecarboxamide PS-1145	Data not provided	(Hideshima et al., 2002)
N-(6-chloro-9H-beta-carbolin-8-ly) nicotinamide ML120B	3.3 μM TNFα expression in PBMCs	(Wen et al., 2006)
N-(6-chloro-7-methoxy-9H-beta-carbolin-8-yl)-2-methyl-nicotinamide SC-514	8–20 μM pro-inflammatory cytokine expression in synovial fibroblasts	(Kishore et al., 2003)
5-(Thien-3-yl)-3-aminothiophene-2-carboxamide IMD-0354	Data not provided	(Onai et al., 2004)
N-[3,5-bis-trifluoromethyl-phenyl]-5-chloro-2-hydroxy-benzamide BMS-345541	4 μM IκB phosphorylation in THP-1 cells	(Burke et al., 2003)
4′-[2-aminoethyl]amino-1,8-dimethylimidazo[1,2-aquinoxaline) BAY 11-7085	10 μM, adhesion molecule expression in HuVEC cells	(Pierce et al., 1997)
3-[4-ter-butyphenyl]-sulfonyl]-2-propenenitrile AS602868	1–2 μM, NFκB activation in Jurkat T cells	(Frelin et al., 2003)
5.4 Proteasome inhibitors

The ubiquitin–proteasome system (UPS) regulates protein turnover in eukaryotic cells and is central to the regulation of NF-κB activity. Protein degradation through the UPS involves ubiquitin conjugation to proteins destined for destruction and is mediated by the enzymes E1, E2 and E3. Polyubiquitinated proteins are recognised by the proteasome which de-ubiquinates, unfolds and destroys the target protein (reviewed in Nalepa et al., 2006). The 20S proteasome is an ATP-dependent proteolytic complex consisting of a proteolytic core particle, the 20S proteasome, capped on each end by two regulatory complexes. The 20S proteasome contains 3 pairs of active sites with distinct specificities termed chymotrypsin-like, trypsin-like and caspase-like (reviewed in Gilmore and Herscovitch, 2006). There are several classes of reversible and irreversible proteasome inhibitors all of which target the 20S proteasome, some of which have been utilised in asthma or COPD research. Several studies have reported modulation of eosinophil function by blocking NF-κB signalling using proteasome inhibitors. Eosinophils secrete a variety of potentially damaging mediators in response to pro-inflammatory and microbial stimuli in an NF-κB dependent manner (Rankin et al., 2000). The activity of the lactocystin-derivative proteasome inhibitor PS-519 was examined in a rat model of OVA induced pulmonary eosinophilia. Intratracheal dosing of PS-519 before and after allergen exposure significantly reduced the number of eosinophils in sensitised lungs. Furthermore, a low dose of PS-519 was similarly effective at decreasing eosinophilic inflammation in the airways when used in combination with the GC budesonide, demonstrating the potential for combination treatment regimens with GCs (Elliott et al., 1999).

MG-132 is a member of the peptide aldehyde class of proteasome inhibitors and blocks the chymotrypsin-like activity of the proteasome complex (Palombella et al., 1994). Several studies have demonstrated that MG-132 mediated NF-κB inhibition modulates eosinophil activity and reduces allergic inflammation. TNF-α induced IL-8 by purified human eosinophils was blocked by pre-treatment with MG-132. Additionally, inhibition of NF-κB signalling by MG-132 enabled TNF-α to induce eosinophil apoptosis rather than induce IL-8 production (Fujihara et al., 2002). The expression of cell adhesion molecules such as the β2 integrin CD18 are critical to eosinophil homing to sites of inflammation, and can be induced by TNF-α or co-culture with bronchial epithelial cells (Teixeira et al., 1994). TNF-α also initiates ICAM-1 expression on bronchial epithelial cells via NF-κB activation (Chen et al., 2001). MG-132 treatment reduced expression of CD18 on eosinophils and ICAM-1 on BEAS-2B cells following co-culture, irrespective of the presence of TNF-α, highlighting a role for bronchial epithelial cells in NF-κB mediated upregulation of cell adhesion molecules on eosinophils (Wong et al., 2006).

The potential to modulate airway chemotactic activity and reduce T cell recruitment via inhibition of the proteasome has also been investigated. Bronchial biopsies from atopic asthmatics treated with the proteosomal inhibitor CBz-Ile-Glu(OTBu)-Ala-leucinal exhibited both reduced T cell chemotactic activity and production of IL-16 (Hidi et al., 2000). TLR agonists are potent activators of the classical NF-κB pathway. Inhibition of the proteasome by MG-132 has also revealed a role for NF-κB and TLR3/4 stimulation in tracheal contraction. One study demonstrated that the expression of TLR2, TLR3 and TLR4 in the smooth muscle layer of mouse trachea increased contractile response to bradykinin following stimulation with TLR agonists LPS and polyIC. This response was associated with nuclear translocation of p65 and up-regulation of kinin B1 and B2 receptor mRNA and could be inhibited by MG-132 (Bachar et al., 2004).

While the role of TLR signalling and NF-κB activation in asthma has been well studied, much less is known about CS induced, TLR mediated inflammation in COPD. Stimulation of macrophages via TLR4 leads to NF-κB activation and production of IL-8 (Brightbill et al., 1999). To assess the role of CS and induction of NF-κB regulated pro-inflammatory gene expression, human monocye-derived macrophages were treated with CS in vitro and increased IL-8 production was observed. This response was dependent on TLR4 activation and was associated with phosphorylation of IRAK and activation of NF-κB. MG-132 mediated proteasomal inhibition prevented CS induced IkBα degradation (Karimi et al., 2006). The peptide boronic acids, also known as dipeptidyl boronates, originally used as inhibitors of serine proteases, comprise another class of protease inhibitors blocking the chymotrypsin-like site in the 20S subunit core. While these have shown efficacy against several tumours, there is little data describing their use in treating airway inflammation (reviewed in Gilmore & Herscovitch, 2006). Large clinical trials using proteasome inhibitors also highlight potential side effects associated with proteasome inhibitor use. A clinical trial utilising Bortezomib, a boronic acid dipeptide, induced several side effects including thrombocytopenia, fatigue, peripheral neuropathy and neutropenia (Richardson et al., 2004).
2003). It is thought that the side effects could be the result of the expression of many genes and cellular processes influenced by proteasome inhibition, and this concept requires consideration before being applied to studies in asthma and COPD.

5.5. Antisense and small interfering ribonucleic acid

While decoy oligonucleotides competitively bind free NF-κB dimers thus preventing their interaction with cis-acting sites within promoter regions, antisense and small interfering RNA (siRNA) are nucleic acid based agents that target a specific mRNA such as NF-κB and reduce the abundance of the corresponding protein. Antisense technology uses stabilised phosphothionate oligonucleotides to bind to complementary mRNA, thus blocking translation. OVA sensitised mice injected intravenously twice with a p65 antisense oligonucleotide show a significant reduction in the level of p65 protein and NF-κB activation in the lung. The reduction of p65 protein was associated with reduced airway inflammation cell recruitment, AHR, and both pro-inflammatory and Th2 cytokine production in BAL and OVA specific IgE in serum (Choi et al., 2004).

The mRNA of a target protein can also be reduced using siRNA technology, via the process of RNA interference (for a review see Shrivastava & Srivastava, 2008). Once delivered, siRNA transiently binds to the target mRNA, thus blocking its translation to produce protein. For example, injection of a p65 siRNA expanded the lifespan of mice injected intravenously twice with a p65 antisense oligonucleotide, demonstrating the general usefulness of delivering siRNA to the airway in vivo.

Primary epithelial cells transfected with p65-targeting siRNA produced less IL-8 and IL-8 in response to TNF-α, however this depended on the cells being undifferentiated at the time of transfection (Platz et al., 2005). An alternative to using transfection to deliver siRNA to the lungs, is to use a viral delivery system. Another study has employed a recombinant adenovirus expressing a p65-targeting siRNA. Using a similar cellular model to the previous study, expression of siRNA against p65 suppressed secretion of IL-8 by TNF-α-stimulated BEAS-2B cells (Pinkenburg et al., 2004). While the application of this technology in vitro or in vivo is relatively recent, there is growing interest in this field, and as the methodology associated with both the design and delivery of siRNA expands, this approach is certain to broaden the range of therapeutic options available for asthma and COPD.

6. Summary and concluding remarks

The NF-κB pathway is central to the pathogenesis of both asthma and COPD. A large body of evidence has convincingly demonstrated a clear role for NF-κB transcription factors and their signalling kinases in both the stable and exacerbation forms of either disease. These data are the sum of several lines of evidence, and are apparent in investigations using diseased tissue, animal models of disease, and in vitro culture cell systems. While the role of the NF-κB pathway is clear, and methodologies to inhibit NF-κB are encouraging in animal models, which molecules to specifically target and appropriate methods of their inhibition in human studies are less so. There is good evidence for small molecule inhibition methodologies, and also for the use of oligonucleotide based methodologies, including decoy oligonucleotides and siRNA. Further, carefully controlled studies in reliable animal models must be performed to address this complex issue before any form of inhibition can be tested in human studies. Which NF-κB signalling molecule represents the best therapeutic target is again a perplexing question. While knowledge of each NF-κB signalling molecule is expanding, researchers need to respect many variables, including cell type specificity, and which aspect of pathogenesis to inhibit (allergic versus non allergic inflammation, secreted cytokine/chemokine or non-secreted enzyme, adhesion molecule). Another important point worth considering is which end points are most important, especially in animal models. While inhibiting NF-κB clearly affects a range of different end points, including allergic and non-allergic inflammation, and AHR, there does exist some heterogeneity between different models. This is a truly salient point, differential targeting of the NF-κB pathway in different cell types may alter various end points and disease outcome in these animal models. It is likely that each outcome may be model dependent; hence the results of different models need to be interpreted with caution. The above points need to be thoroughly considered in future studies if NF-κB is going to be a serious contender for therapeutic intervention in human disease.

The wealth of literature focusing on NF-κB in asthma and COPD has also teased out several controversies regarding the suitability and role of NF-κB in asthma and COPD. Firstly, there is the consideration of the role of NF-κB to beneficial host responses to infectious agents. Secondly, there is the conundrum of why known NF-κB inhibitors such as GCs work poorly in controlling exacerbations of asthma and COPD. While the answers are clearly complex, a better understanding, and better defining of each disease in human systems will be important in future studies. Also, particularly for COPD, and exacerbations of both diseases, the design of useful animal models with clinically useful end points is also required. The potential of targeting the NF-κB pathway in asthma and COPD is therefore an excellent example in the study of clinical pharmacology. As the technology and therapeutic agents become increasingly available, so does the opportunity to trial new treatments, and learn more about the mechanisms behind these important diseases.

Acknowledgments

MR Edwards is supported by a Fellowship from Asthma UK and grants from the British Lung Foundation. We thank Annie Sykes for critical reading of the manuscript.

References

Adcock, I. M., Lane, S. J., Brown, C. R., Lee, T. H., & Barnes, P. J. (1995). Abnormal glucocorticoid receptor-activator protein 1 interaction in steroid-resistant asthma. J Exp Med 182, 1951–1958.
Adcock, I. M., Lane, S. J., Brown, C. R., Peters, M. J., Lee, T. H., & Barnes, P. J. (1995). Differences in binding of glucocorticoid receptor to DNA in steroid-resistant asthma. J Immunol 154, 3500–3505.
Alexander, J. H., Hafley, G., Harrington, R. A., Petersson, E. D., Ferguson, T. B., Jr., Lorence, T. J., & et al. (2005). Efficacy and safety of edifoligide, an E2F transcription factor decoy, for prevention of vein graft failure following coronary artery bypass graft surgery: PREVENT IV: a randomized controlled trial. JAMA 294, 2446–2454.
Asher, M. I., Montefort, S., Bjorksten, B., Lai, C. K., Strachan, D. P., Weiland, S. K., et al. (2006). Worldwide time trends in the prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and eczema in childhood: ISAAC Phases One and Three repeat multicountry cross-sectional surveys. Lancet 368, 733–743.
Barclay, O., Adser, M., Uddman, R., & Cardell, L. O. (2004). Toll-like receptor stimulation induces airway hyper-responsiveness to bradykinin, an effect mediated by JNK and NF-kappa B signalling pathways. Eur J Immunol 34, 1196–1207.
Baldwin, A. S., Jr. (2001). Series introduction: the transcription factor NF-kappaB and human disease. J Clin Invest 107, 3–6.
Ball, P. (1995). Epidemiology and treatment of chronic bronchitis and its exacerbations. Chest 108, 435–525.
Baraldo, S., Turato, G., Badin, C., Bazzan, E., Bjerkiesten, B., Lai, C. K., Strachan, D. P., Weiland, S. K., et al. (2006). Worldwide time trends in the prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and eczema in childhood: ISAAC Phases One and Three repeat multicountry cross-sectional surveys. Lancet 368, 733–743.
Barclay, O., Adser, M., Uddman, R., & Cardell, L. O. (2004). Toll-like receptor stimulation induces airway hyper-responsiveness to bradykinin, an effect mediated by JNK and NF-kappa B signalling pathways. Eur J Immunol 34, 1196–1207.
Baldwin, A. S., Jr. (2001). Series introduction: the transcription factor NF-kappaB and human disease. J Clin Invest 107, 3–6.
Ball, P. (1995). Epidemiology and treatment of chronic bronchitis and its exacerbations. Chest 108, 435–525.
Baraldo, S., Turato, G., Badin, C., Bazzan, E., Bjerkiesten, B., Lai, C. K., Strachan, D. P., Weiland, S. K., et al. (2006). Worldwide time trends in the prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and eczema in childhood: ISAAC Phases One and Three repeat multicountry cross-sectional surveys. Lancet 368, 733–743.
Barclay, O., Adser, M., Uddman, R., & Cardell, L. O. (2004). Toll-like receptor stimulation induces airway hyper-responsiveness to bradykinin, an effect mediated by JNK and NF-kappa B signalling pathways. Eur J Immunol 34, 1196–1207.
Baldwin, A. S., Jr. (2001). Series introduction: the transcription factor NF-kappaB and human disease. J Clin Invest 107, 3–6.
Bezerril, V. Borgatti, M. Nicolli, E. Lampron, I. Decehcheci, M. C. Mancini, I. et al. (in press). Transcription factor oligodeoxynucleotides to NF-κB inhibits in bronchial cells. Am J Respir Cell Mol Biol. 2004.

Birrell, M. A. Harder, E. Wong, S. McCluskie, K. Catley, M. De Alba, J. et al. (2005). IkappaB kinase-beta inhibitor blocks inflammation in human airway smooth muscle and a rat model of asthma. Am J Respir Crit Care Med 172, 962–971.

Birrell, M. A. Wong, S. Catley, M. E. McCluskie, K. Collins, M. et al. (2006). IkappaB kinase-2 and dependent inflammation in airway disease models: relevance of IKK-2 inhibition to the clinic. Mol Pharmacol 69, 1791–1800.

Birrell, M. A., Wong, S. Heij, D. J. McCluskie, K. Hardarker, E. & Belvisi, M. G. (2005). Stereotyped restorative inflammation in a rat model of chronic (obstructive) pulmonary disease is associated with a lack of nuclear factor-kappaB pathway activation. Am J Respir Crit Care Med 172, 74–84.

Birko, V. Msuyenikou, A. Shalyuyav, O. & Barik, S. (2005). Inhibition of respiratory syncytial virus-induced proteinases by phosphorothioate oligonucleotide to the p65 subunit of NF-kappaB inhibits IKK-2 inhibitors by comparison with adenoviral-mediated delivery of dominant-negative IkappaB alpha. J Immunol 179, 2337–2345.

Borish, L. C., Nelson, H. S., Lanz, M. J., Claussen, L., Whitmore, J. B., Agosti, J. M., et al. (2005). Inhibition of respiratory syncytial virus by nasally administered siRNA. J Clin Invest 115, 1817–1828.

Borish, L. C., Nelson, H. S., Lanz, M. J., Claussen, L., Whitmore, J. B., Agosti, J. M., et al. (2005). Inhibition of respiratory syncytial virus by nasally administered siRNA. J Clin Invest 115, 1817–1828.

Birrell, L. C., Nelson, H. S., Lanz, M. J., Clausen, L., Whitmore, J. B., Agosti, J. M., et al. (1999). Interleukin-4 receptor in moderate atopic asthma. A phase II/III randomised, placebo-controlled trial. Am J Respir Crit Care Med 160, 1816–1823.

Bousquet, J., Wenzel, S., Holgate, S., Lumry, W., Freeman, P. & Fox, H. (2004). Predicting response to omalizumab, an IgE antibody, in patients with allergic asthma. Chest 125, 1378–1386.

Brightling, E. C., Libarhy, D. H., Kruitzik, S. R., Yang, R. B., Belisle, J. T., Bleharski, J. R., et al. (1999). Host defense mechanisms triggered by microbial lipopolysaccharides through Toll-like receptor 4. Science 284, 927–936.

Brode, D. H., Lawrence, T., Doherty, T., Cho, J. Y., Miller, M. & McElwan, K. et al. (2005). Allergen-induced peribronchial fibrosis and mucus production mediated by IkappaB kinase beta-dependent genes in airway epithelium. Proc Natl Acad Sci U S A 102, 1772–1777.

Burke, J. R., Pattoli, M. A., Gregor, K. R., Brassil, P. J., MacMaster, J. F., McIntyre, K. W., et al. (2001). Efficacy of soluble IL-4 receptor for the treatment of adults with asthma. J Allergy Clin Immunol 107, 963–970.

Burke, J. R., Pattoli, M. A., Gregor, K. R., Brassil, P. J., MacMaster, J. F., McIntyre, K. W., et al. (2001). Efficacy of soluble IL-4 receptor for the treatment of adults with asthma. J Allergy Clin Immunol 107, 963–970.

Bour, L. C., Nelson, H. S., Lanz, M. J., Clausen, L., Whitmore, J. B., Agosti, J. M., et al. (1999). Interleukin-4 receptor in moderate atopic asthma. A phase II/III randomised, placebo-controlled trial. Am J Respir Crit Care Med 160, 1816–1823.

Bousquet, J., Wenzel, S., Holgate, S., Lumry, W., Freeman, P. & Fox, H. (2004). Predicting response to omalizumab, an IgE antibody, in patients with allergic asthma. Chest 125, 1378–1386.

Brightling, E. C., Libarhy, D. H., Kruitzik, S. R., Yang, R. B., Belisle, J. T., Bleharski, J. R., et al. (1999). Host defense mechanisms triggered by microbial lipopolysaccharides through Toll-like receptor 4. Science 284, 927–936.

Brode, D. H., Lawrence, T., Doherty, T., Cho, J. Y., Miller, M. & McElwan, K. et al. (2005). Allergen-induced peribronchial fibrosis and mucus production mediated by IkappaB kinase beta-dependent genes in airway epithelium. Proc Natl Acad Sci U S A 102, 1772–1777.

Burke, J. R., Pattoli, M. A., Gregor, K. R., Brassil, P. J., MacMaster, J. F., McIntyre, K. W., et al. (2001). Efficacy of soluble IL-4 receptor for the treatment of adults with asthma. J Allergy Clin Immunol 107, 963–970.

Burke, J. R., Pattoli, M. A., Gregor, K. R., Brassil, P. J., MacMaster, J. F., McIntyre, K. W., et al. (2001). Efficacy of soluble IL-4 receptor for the treatment of adults with asthma. J Allergy Clin Immunol 107, 963–970.

Burke, J. R., Pattoli, M. A., Gregor, K. R., Brassil, P. J., MacMaster, J. F., McIntyre, K. W., et al. (2001). Efficacy of soluble IL-4 receptor for the treatment of adults with asthma. J Allergy Clin Immunol 107, 963–970.

Bour, L. C., Nelson, H. S., Lanz, M. J., Clausen, L., Whitmore, J. B., Agosti, J. M., et al. (1999). Interleukin-4 receptor in moderate atopic asthma. A phase II/III randomised, placebo-controlled trial. Am J Respir Crit Care Med 160, 1816–1823.

Bousquet, J., Wenzel, S., Holgate, S., Lumry, W., Freeman, P. & Fox, H. (2004). Predicting response to omalizumab, an IgE antibody, in patients with allergic asthma. Chest 125, 1378–1386.

Brightling, E. C., Libarhy, D. H., Kruitzik, S. R., Yang, R. B., Belisle, J. T., Bleharski, J. R., et al. (1999). Host defense mechanisms triggered by microbial lipopolysaccharides through Toll-like receptor 4. Science 284, 927–936.

Brode, D. H., Lawrence, T., Doherty, T., Cho, J. Y., Miller, M. & McElwan, K. et al. (2005). Allergen-induced peribronchial fibrosis and mucus production mediated by IkappaB kinase beta-dependent genes in airway epithelium. Proc Natl Acad Sci U S A 102, 1772–1777.

Burke, J. R., Pattoli, M. A., Gregor, K. R., Brassil, P. J., MacMaster, J. F., McIntyre, K. W., et al. (2001). Efficacy of soluble IL-4 receptor for the treatment of adults with asthma. J Allergy Clin Immunol 107, 963–970.
Hart, L. A., Krishnan, V. L., Adcock, I. M., Barnes, P. J., & Chung, K. F. (1998). Activation and induction of mucin secretion from human bronchial mucosa in asthma. Am J Respir Cell Mol Biol 18, 1585–1592.

Hancox, R. J., Stevens, D. A., Adcock, I. M., Barnes, P. J., & Taylor, D. R. (1999). Effects of inhaled beta agonist and corticosteroid treatment on nuclear transcription factors in bronchial epithelial cells. Am J Respir Crit Care Med 161, 1062.

Haddad, J. J. (2002). Nuclear factor (NF)-kappa B blockade attenuates but does not abrogate LPS-mediated interleukin (IL)-1 beta biosynthesis in alveolar epithelial cells. Biochem Biophys Res Commun 293, 252–257.

Haeder, H. A., Casola, A., Gatalica, Z., Petronella, S., Dietrich, H. J., Ernest, P. B., et al. (2004). IkappaB alpha: a critical regulator of NF-kappaB-dependent lung inflammation in respiratory syncytial virus infection. J Virol 78, 2222–2241.

Hedeman, S., Takizawa, R., Casola, A., Brasier, A. R., Dietrich, H. J., Van Rooijen, N., et al. (2002). Respiratory syncytial virus-induced activation of nuclear factor-kappaB in the lung involves alveolar macrophages and toll-like receptor 4-dependent pathways. J Infect Dis 186, 1199–1206.

Hancox, R. J., Stevens, D. A., Adcock, I. M., Barnes, P. J., & Taylor, D. R. (1999). Effects of inhaled beta agonist and corticosteroid treatment on nuclear transcription factors in bronchial epithelial cells. Am J Respir Crit Care Med 161, 224–231.

Hart, L., Lim, S., Adcock, I., Barnes, P. J., & Chung, K. F. (2000). Effects of inhaled corticosteroid therapy on expression and DNA-binding activity of nuclear factor kappaB in asthma. Am J Respir Crit Care Med 161, 1663–1669.

He, S. H., Zheng, J., & Duan, M. K. (2004). Induction of mucin secretion from human bronchial airway and alveolar cells by rhinovirus and lipopolysaccharide. Acta Pharmacol Sin 25, 1176–1181.

Hideshima, T., Chauhan, D., Richardson, P., Mitsiades, C., Mitsiades, N., Hayashi, T., et al. (2003). I kappaB alpha as a therapeutic target in multiple myeloma. J Biol Chem 278, 16307–16314.

Holgate, S. T., Chuchalin, A. G., Hebert, J., Lotvall, J., Persson, G. B., Chung, K. F., et al. (1999). Clinical and biological heterogeneity in children with moderate asthma. Am J Respir Crit Care Med 160, 1967–1977.

Haddad, J. J. (2002). Nuclear factor (NF)-kappa B blockade attenuates but does not abrogate LPS-mediated interleukin (IL)-1 beta biosynthesis in alveolar epithelial cells. Biochem Biophys Res Commun 293, 252–257.

Hancock, R. J., Stevens, D. A., Adcock, I. M., Barnes, P. J., & Taylor, D. R. (1999). Effects of inhaled beta agonist and corticosteroid treatment on nuclear transcription factors in bronchial epithelial cells. Am J Respir Crit Care Med 161, 224–231.

Hart, L., Lim, S., Adcock, I., Barnes, P. J., & Chung, K. F. (2000). Effects of inhaled corticosteroid therapy on expression and DNA-binding activity of nuclear factor kappaB in asthma. Am J Respir Crit Care Med 161, 1663–1669.

He, S. H., Zheng, J., & Duan, M. K. (2004). Induction of mucin secretion from human bronchial airway and alveolar cells by rhinovirus and lipopolysaccharide. Acta Pharmacol Sin 25, 1176–1181.

Hideshima, T., Chauhan, D., Richardson, P., Mitsiades, C., Mitsiades, N., Hayashi, T., et al. (2003). I kappaB alpha as a therapeutic target in multiple myeloma. J Biol Chem 278, 16307–16314.

Holgate, S. T., Chuchalin, A. G., Hebert, J., Lotvall, J., Persson, G. B., Chung, K. F., et al. (1999). Clinical and biological heterogeneity in children with moderate asthma. Am J Respir Crit Care Med 160, 1967–1977.

Haddad, J. J. (2002). Nuclear factor (NF)-kappa B blockade attenuates but does not abrogate LPS-mediated interleukin (IL)-1 beta biosynthesis in alveolar epithelial cells. Biochem Biophys Res Commun 293, 252–257.

Hancock, R. J., Stevens, D. A., Adcock, I. M., Barnes, P. J., & Taylor, D. R. (1999). Effects of inhaled beta agonist and corticosteroid treatment on nuclear transcription factors in bronchial epithelial cells. Am J Respir Crit Care Med 161, 224–231.

Hart, L., Lim, S., Adcock, I., Barnes, P. J., & Chung, K. F. (2000). Effects of inhaled corticosteroid therapy on expression and DNA-binding activity of nuclear factor kappaB in asthma. Am J Respir Crit Care Med 161, 1663–1669.

He, S. H., Zheng, J., & Duan, M. K. (2004). Induction of mucin secretion from human bronchial airway and alveolar cells by rhinovirus and lipopolysaccharide. Acta Pharmacol Sin 25, 1176–1181.

Hideshima, T., Chauhan, D., Richardson, P., Mitsiades, C., Mitsiades, N., Hayashi, T., et al. (2003). I kappaB alpha as a therapeutic target in multiple myeloma. J Biol Chem 278, 16307–16314.

Holgate, S. T., Chuchalin, A. G., Hebert, J., Lotvall, J., Persson, G. B., Chung, K. F., et al. (1999). Clinical and biological heterogeneity in children with moderate asthma. Am J Respir Crit Care Med 160, 1967–1977.

Haddad, J. J. (2002). Nuclear factor (NF)-kappa B blockade attenuates but does not abrogate LPS-mediated interleukin (IL)-1 beta biosynthesis in alveolar epithelial cells. Biochem Biophys Res Commun 293, 252–257.

Hancock, R. J., Stevens, D. A., Adcock, I. M., Barnes, P. J., & Taylor, D. R. (1999). Effects of inhaled beta agonist and corticosteroid treatment on nuclear transcription factors in bronchial epithelial cells. Am J Respir Crit Care Med 161, 224–231.

Hart, L., Lim, S., Adcock, I., Barnes, P. J., & Chung, K. F. (2000). Effects of inhaled corticosteroid therapy on expression and DNA-binding activity of nuclear factor kappaB in asthma. Am J Respir Crit Care Med 161, 1663–1669.

He, S. H., Zheng, J., & Duan, M. K. (2004). Induction of mucin secretion from human bronchial airway and alveolar cells by rhinovirus and lipopolysaccharide. Acta Pharmacol Sin 25, 1176–1181.

Hideshima, T., Chauhan, D., Richardson, P., Mitsiades, C., Mitsiades, N., Hayashi, T., et al. (2003). I kappaB alpha as a therapeutic target in multiple myeloma. J Biol Chem 278, 16307–16314.

Holgate, S. T., Chuchalin, A. G., Hebert, J., Lotvall, J., Persson, G. B., Chung, K. F., et al. (1999). Clinical and biological heterogeneity in children with moderate asthma. Am J Respir Crit Care Med 160, 1967–1977.

Haddad, J. J. (2002). Nuclear factor (NF)-kappa B blockade attenuates but does not abrogate LPS-mediated interleukin (IL)-1 beta biosynthesis in alveolar epithelial cells. Biochem Biophys Res Commun 293, 252–257.

Hancock, R. J., Stevens, D. A., Adcock, I. M., Barnes, P. J., & Taylor, D. R. (1999). Effects of inhaled beta agonist and corticosteroid treatment on nuclear transcription factors in bronchial epithelial cells. Am J Respir Crit Care Med 161, 224–231.

Hart, L., Lim, S., Adcock, I., Barnes, P. J., & Chung, K. F. (2000). Effects of inhaled corticosteroid therapy on expression and DNA-binding activity of nuclear factor kappaB in asthma. Am J Respir Crit Care Med 161, 1663–1669.

He, S. H., Zheng, J., & Duan, M. K. (2004). Induction of mucin secretion from human bronchial airway and alveolar cells by rhinovirus and lipopolysaccharide. Acta Pharmacol Sin 25, 1176–1181.

Hideshima, T., Chauhan, D., Richardson, P., Mitsiades, C., Mitsiades, N., Hayashi, T., et al. (2003). I kappaB alpha as a therapeutic target in multiple myeloma. J Biol Chem 278, 16307–16314.

Holgate, S. T., Chuchalin, A. G., Hebert, J., Lotvall, J., Persson, G. B., Chung, K. F., et al. (1999). Clinical and biological heterogeneity in children with moderate asthma. Am J Respir Crit Care Med 160, 1967–1977.
M.R. Edwards et al. / Pharmacology & Therapeutics 121 (2009) 1–13

Mischiati, C., Bogertti, M., Bianchi, N., Ruttigliano, C., Tomassetti, M., Feriotti, G., et al. (1999). Interaction of the human NF-kappaB p52 transcription factor with DNA-PNA hybrids mimicking NF-kappaB virus. J Virol Methods 74, 155–162.

Pizzi, M. M., Pizzianni, E., Ethemiddi, A., Chauhan, A. J., Johnston, S. L., Hussack, P., et al. (1998). Asthma and natural colds. Inflammatory indices in induced sputum: a feasibility study. Am J Respir Crit Care Med 158, 1178–1184.

Pitot, H. C., O'Malley, B. J., Vlahcevic, C., Pochner, D., Daniel, T., & Bals, R. (2005). Application of small interfering RNA (siRNA) for modulation of airway epithelial gene expression. Mol Genet Metab 85, 132–138.

Podolin, P. L., Callahan, J. F., Bolognese, B. J., Li, Y., Carlson, K., Davis, T. G., et al. (2005). Attenuation of murine colitis by recombinant adenovirus-mediated expression of interleukin-10. J Virol 79, 1175–1182.

Perez, J. W., Schoenleber, R., Jesmok, G., Best, J. Moore, S. A., Collins, T., et al. (1997). Novel inhibitors of cytokine-induced IkappaBalpha phosphorylation and endothelial cell adhesion molecule expression show anti-inflammatory effects in vivo. J Biol Chem 272, 21096–21103.
Spurrell, J. C., Wiehler, S., Zaheer, R. S., Sanders, S. P., & Proud, D. (2005). Human airway epithelial cells produce Jp–10 (Cxcl10) in vitro and in vivo upon rhinovirus infection. Am J Physiol Lung Cell Mol Physiol 289, 85–95.

Steer, S. A., Moran, J. M., Maggi, L. B., Jr., Bulter, R. M., Perlmutter, H., & Corbett, J. A. (2003). Regulation of cyclooxygenase-2 expression by macrophages in response to double-stranded RNA and viral infection. J Immunol 170, 1070–1076.

Takeda, K., Takeuchi, O., Tsujimura, T., Itami, S., Adachi, O., Kawai, T., et al. (1999). Limb and skin abnormalities in mice lacking IKKalpha. Science 284, 313–316.

Tao, Y., Williams-Skipp, C., & Scheinman, R. I. (2001). Mapping of glucocorticoid receptor DNA binding domain surfaces contributing to transrepression of NF-kappa B and induction of apoptosis. J Biol Chem 276, 2329–2332.

Teixeira, M. M., Reynia, S., Robinson, M., Shock, A., Williams, T. J., Williams, F. M., et al. (2003). Role of viruses and atypical bacteria in exacerbations of asthma in hospitalized children: a prospective study in the Nord-Pas de Calais region (France). Pediatr Pulmonol 35, 75–82.

Tomita, N., Morishita, R., Tomita, S., Yamamoto, K., Aoki, M., Matsushita, H., et al. (1998). Transcription factor decoy for nuclear factor-kappaB inhibits tumor necrosis factor-alpha-induced expression of interleukin-6 and intracellular adhesion molecule-1 in endothelial cells. J Hyperterm 16, 993–1000.

Tuckermann, J. P., Reichardt, H. M., Arribas, R., Richter, K. H., Schutz, G., & Angel, P. (1999). The DNA binding-independent function of the glucocorticoid receptor mediates repression of AP-1-dependent genes in skin. J Cell Biol 147, 1365–1370.

Tudhope, J. S., Catley, M. C., Fenwick, P. S., Russell, R. E., Runsey, W. L., Newton, R., et al. (2007). The role of ikappaB kinase 2, but not activation of NF-kappaB, in the release of CXCR3 ligands from IFN-gamma-stimulated human bronchial epithelial cells. J Immunol 179, 6237–6245.

Veckman, V., Osterlund, P., Fagerlund, M., Melen, K., Matikainen, S., & Julkunen, I. (2005). TNF-alpha and IFN-alpha enhance influenza-A-virus-induced chemokine gene expression in human A549 lung epithelial cells. Virology 345, 96–104.

Volonaki, E., Psarras, S., Xepapadaki, D., Pismali, D.,ourgiotis, D., & Papadopoulos, N. G. (2006). Synergistic effects of fluticasone propionate and salmeterol on inhibiting rhinovirus-induced epithelial production of remodelling-associated growth factors. Clin Exp Allergy 36, 1268–1273.

Wark, P. A., Johnston, S. L., Bucchieri, F., Powell, R., Puddicombe, S., Laza-Stanca, V., et al. (2005). Asthmatic bronchial epithelial cells have a deficient innate immune response to infection with rhino virus. J Exp Med 201, 937–947.

Wathelet, M. G., Lin, C. H., Parekh, B. S., Ronco, L. V., Howley, P. M., & Maniatis, T. (1998). Virus infection induces the assembly of coordinately activated transcription factors on the IFN-beta enhancer in vivo. Mol Cell Biol 1, 507–518.

Wen, D., Nong, Y., Morgan, J. G., Ganguddes, P., Bielecki, A., Dasilva, J., et al. (2006). A selective small molecule IkappaB kinase beta inhibitor blocks nuclear factor kappaB-mediated inflammatory responses in human fibroblast-like synoviocytes, chondrocytes, and mast cells. J Pharmacol Exp Ther 317, 989–1001.

Wenzel, S. E. (2006). Asthma: defining of the persistent adult phenotypes. Lancet 368, 504–513.

Wilson, S. J., Wallis, A., Della-Coppa, G., Sandstrom, T., & Holgate, S. T. (2001). Effects of budesonide and formoterol on NF-kappaB, adhesion molecules, and cytokines in asthma. Am J Respir Crit Care Med 164, 1047–1052.

Wong, C. K., Wang, C. B., Li, M. L., Ip, W. K., Tian, Y. P., & Lam, C. W. (2006). Induction of adhesion molecules upon the interaction between eosinophils and bronchial epithelial cells: involvement of p38 MAPK and NF-kappaB. Int Immunopharmacol 6, 1859–1871.

Yang, G., Volk, A., Perley, T., Emmell, E., Giles-Konar, J., Shang, X., et al. (2004). Anti-IL-13 monoclonal antibody inhibits airway hyperresponsiveness, inflammation and airway remodeling. Cytokine 28, 224–232.

Yang, L., Cohn, L., Zhang, D. H., Horner, R., Ray, A., & Ray, P. (1998). Essential role of nuclear factor kappaB in the induction of eosinophilia in allergic airway inflammation. J Exp Med 188, 1739–1750.

Zhao, S., Qi, Y., Liu, X., Jiang, Q., Liu, S., Jiang, Y., et al. (2001). Activation of NF-kappaB in bronchial epithelial cells from children with asthma. Chin Med J (Engl) 114, 909–911.

Zhu, Z., Tang, W., Cwalney, J. M., Jr., Wu, Y., & Elias, J. A. (1997). Rhinovirus stimulation of interleukin-8 in vivo and in vitro: role of NF-kappaB. Am J Physiol 273, L184–L204.

Zhu, Z., Tang, W., Ray, A., Wu, Y., Einarsson, O., Landry, M. L., et al. (1996). Rhinovirus stimulation of interleukin-6 in vivo and in vitro. Evidence for nuclear factor kappaB-dependent transcriptional activation. J Clin Invest 97, 421–430.

Ziegelbauer, K., Gantner, F., Lukacs, N. W., Berlin, A., Fuchikami, K., Niki, T., et al. (2005). A selective novel low-molecular-weight inhibitor of IkappaB kinase-beta (IKK-beta) prevents pulmonary inflammation and shows broad anti-inflammatory activity. Br J Pharmacol 145, 178–192.