Blockwise Self-Attention for Long Document Understanding

Jiezhong Qiu
Tsinghua University
quijz16@mails.tsinghua.edu.cn

Hao Ma, Omer Levy, Scott Wen-tau Yih, Sinong Wang
Facebook AI
{haom, omerlevy, scottyih, sinongwang}@fb.com

Jie Tang
Tsinghua University
jietang@mail.tsinghua.edu.cn

Abstract

We present BlockBERT, a lightweight and efficient BERT model that is designed to better modeling long-distance dependencies. Our model extends BERT by introducing sparse block structures into the attention matrix to reduce both memory consumption and training time, which also enables attention heads to capture either short- or long-range contextual information. We conduct experiments on several benchmark question answering datasets with various paragraph lengths. Results show that BlockBERT uses 18.7-36.1% less memory and reduces the training time by 12.0-25.1%, while having comparable and sometimes better prediction accuracy, compared to an advanced BERT-based model, RoBERTa.

1 Introduction

Recent emergence of the pre-training and fine-tuning paradigm, exemplified by methods like ELMo (Peters et al., 2018), GPT-2 (Radford et al., 2019), BERT (Devlin et al., 2019), XLNet (Yang et al., 2019) and RoBERTa (Liu et al., 2019), has drastically reshaped the landscape of the natural language processing research. These methods first pre-train a deep model with language model objectives using a large corpus and then fine-tune the model using in-domain supervised data for target applications. Despite its conceptual simplicity, this paradigm has reestablished the new state-of-the-art baselines across various tasks, such as question answering (Devlin et al., 2019), coreference resolution (Joshi et al., 2019b), relation extraction (Soares et al., 2019) and text retrieval (Lee et al., 2019; Nogueira & Cho, 2019), to name a few.

Building such models in practice, however, is an extremely resource-intensive process. For instance, the training of BERT-family models is notoriously expensive. Devlin et al. (2019) report that it takes four days for pre-training BERT-Base/BERT-Large on 4/16 Cloud TPUs, respectively. In order to reduce the pre-training time of RoBERTa to 1 day, Liu et al. (2019) use 1,024 V100 GPUs. One crucial factor that contributes to the long training time is the memory consumption of these deep models, as it directly affects the batch size. Although the fine-tuning stage is relatively inexpensive, the memory issue still restricts the scenarios in which BERT can be used. For instance, “it is currently not possible to re-produce most of the BERT-Large results on the paper using a GPU with 12GB-16GB of RAM, because the maximum batch size that can fit in memory is too small.”

Although one may think that model size is the main contributor to the large memory consumption, our analysis (Section 2.1) shows that one of the main bottlenecks is actually dot-product self-attention, operated in multiple layers of Transformers (Vaswani et al., 2017), the building block of...
BERT. As the attention operation is quadratic to the sequence length, this fundamentally limits the maximum length of the input sequence, and thus restricts the model capacity in terms of capturing long-distance dependencies. As a result, downstream tasks have to either truncate their sequences to leading tokens (Nogueira & Cho, 2019) or split their sequences with a sliding window (Joshi et al., 2019). Ad-hoc handling of long sequences is also required in the pre-training stage, such as updating the model using only short sequences in the early stage (Devlin et al., 2019).

Common strategies for reducing memory consumption, unfortunately, do not work. For instance, shrinking the model by lowering the number of layers L, attention heads A, or hidden units H leads to significant performance degradation (Vaswani et al., 2017; Devlin et al., 2019) and does not address the long sequence issue. Alternatively, general low-memory training techniques, such as microbatching (Huang et al., 2018) and gradient checkpointing (Chen et al., 2016) essentially trade off training time for memory consumption, prolongs the already lengthy training process.

In this work, we explore a different strategy, sparsifying the attention layers, intending to design a lightweight and effective BERT that can model long sequences in a memory-efficient way. Our BlockBERT extends BERT by introducing sparse block substructures into the attention matrix to reduce both memory consumption and the number of floating point operations (FLOPs), which also enables attention heads to capture either short- or long-range contextual information. Compared to the previous method that also enforces sparsity (e.g., Child et al. (2019)), our approach is much simpler mathematically and very easy to implement. More importantly, the results of experiments conducted on several benchmark question answering datasets with various paragraph lengths show that BlockBERT performs comparably or even better than the original BERT-family models, while enjoying an 18.7-36.1% reduction in memory usage and 12.0-25.1% reduction in training time.

The rest of the paper is organized as follows. Section 2 gives a brief introduction of the BERT model, along with an in-depth analysis of its memory usage during training time. We describe our proposed model in Section 3 and contrast it with existing methods that aim for creating a lighter model. Section 4 presents the experimental results and ablation studies, followed by a short survey of other related work in Section 5 and the conclusion in Section 6.

2 BACKGROUND: MEMORY BOTTLENECK IN TRAINING BERT

We briefly review BERT and introduce its memory profiling in this section. Following the paradigm of language model pre-training and downstream task fine-tuning, BERT (Devlin et al., 2019) consists of multiple layers of bidirectional Transformers (Vaswani et al., 2017), where each Transformer encoder has a multi-head self-attention layer and a position-wise feed-forward layer. Using the same notation as in (Devlin et al., 2019), we denote the number of Transformer layers by L, the number of hidden units by H, the number of attention heads by A, the sequence length by N and the batch size by B. We also assume the feed-forward hidden unit size to be $4H$.

2.1 MEMORY PROFILING

Training BERT is a memory-intensive process. In order to identify the bottleneck, we follow the memory model proposed by Sohoni et al. (2019), where the memory usage throughout neural network training is categorized into three main types: (1) Model Memory is used to store model parameters; (2) Optimizer Memory is the additional memory used by the specific learning algorithm during the process; (3) Activation Memory consists of the outputs of each layer, which are cached for reuse in backpropagation to compute gradients.

Take BERT-Base training as an example. The model has 110M parameters, so the model memory uses 0.2 GB if stored in half-precision floating-point format (FP16). For Adam (Kingma & Ba, 2014), the optimizer needs additional memory to store the gradients, first moments, and second moments of model parameters. If stored using the same precision, the optimizer memory should be three times of model memory.\footnote{The default parameter settings for BERT-Base and BERT-Large can be found in Table 5 in Appendix A.1.} To calculate the exact size of activation memory is not trivial because

\begin{itemize}
 \item [2] The default parameter settings for BERT-Base and BERT-Large can be found in Table 5 in Appendix A.1.
 \item [3] In the current PyTorch Adam implementation, the first and second moments are stored in single precision. Consequently, BERT’s optimizer memory (1 GB) is five times of model memory (0.2 GB).
\end{itemize}
it depends heavily on the implementation of the toolkit. Instead, we measure it empirically by training BERT-Base using Adam with a memory profiler (more details are provided in Appendix A.2).

We use 32 NVIDIA V100 GPUs for training. Each single GPU thus consumes a mini-batch of size \(b = B/32 = 8 \). Figure 1a shows the profiling result for a single GPU, where the model/optimizer/activation memory consumes 0.21/1.03/8.49 GB, resp. We can see that activation memory accounts for the vast majority of the total GPU memory (87.6%) and is clearly the bottleneck. Notice that although our analysis is done on BERT-Base, it can be easily generalized to BERT-Large and other models such as RoBERTa (Liu et al., 2019) and XLNet (Yang et al., 2019).

![Figure 1: Memory Profiling for BERT](image)

2.2 A Regression Analysis on Activation Memory

For BERT, or more specifically, Transformer, the activation memory corresponds to intermediate results of different layers. It grows linearly in all the model hyper-parameters, except the sequence length \(N \), due to the attention layers. To quantify more clearly the \(O(N) \) and \(O(N^2) \) components in the activation memory, we conduct a regression analysis as follows. Assume that the activation memory (in each GPU) is a polynomial \(a_2bN^2 + a_1bN + a_0 \), where \(b \) is the batch size in each GPU. If we fix the total number of tokens in a GPU, i.e., \(b \times N \), to be constant (in our case, 4096), we should have a linear function w.r.t. \(N \), i.e., \(4096a_2N + 4096a_1 + a_0 \). We enumerate \(N \) from \{128, 256, 512, 1024\} in our experiments, and plot the corresponding profiled activation memory in Figure 1b. Using ordinary least squares (OLS), with \(b \times N = 4096 \), the estimated linear function for activation memory is \(0.00715N + 4.83 \), where the first term is responsible for the \(O(N^2) \) component. When \(N = 512 \), we can see that for BERT-Base, the \(O(N^2) \) component accounts for 3.66 GB and \(O(N) \) accounts for 4.83 GB. When the sequence length \(N \) increases to 1024, however, the \(O(N^2) \) component increases to 7.32 GB, while \(O(N) \) is unchanged.

2.3 General Techniques for Reducing Memory Usage in Model Training

Observing that activation memory is the bottleneck, we discuss the effectiveness of common memory reduction techniques for BERT training below.

Low Precision (Miccickevicius et al. 2017): Low precision is to use half-precision or mixed-precision for training neural networks. This technique has been widely used in Transformer training (Ott et al., 2019; Liu et al., 2019). In this work, we already assume to use mixed-precision training by default, as indicated in the aforementioned analysis.

Microbatching (Huang et al. 2018): Microbatching is to split a batch into small micro-batches (which can be fit into memory), and then run forward and backward passes on them separately with gradients for each micro-batch accumulated. Because it runs forward/backward pass multiple times for a single batch, it trades off time for memory.

Gradient Checkpointing (Chen et al. 2016): Gradient checkpointing saves memory by only caching activations of a subset of layers. The un-cached activations will be recomputed during backpropagation from the latest checkpoint. This strategy trades off time for memory by repeating computations that require large memory and will obviously extend the model training time.
Knowledge Distillation \cite{Hinton2015}: Knowledge distillation aims to compress and transfer knowledge from a teacher model to a simpler student model. However, knowledge distillation relies on a teacher model (which is still expensive in training time) and usually suffers from a certain degree of performance degradation.

As common techniques are limited in reducing both the training time and memory usage, we investigate how to optimize the dot-product attention layers and introduce our approach next.

3 MODEL: BlockBERT

Following \cite{Vaswani2017}, the dot-product attention in Transformer is defined as:

\[
\text{Attention}(Q, K, V) = \text{softmax}\left(\frac{QK^\top}{\sqrt{d}} \right) V.
\]

where \(Q, K, V \in \mathbb{R}^{N \times d} \) with \(N \) to be the sequence length and \(d \) to be a hidden dimension. As we can see, the inner product between \(Q \) and \(K \) consumes \(O(N^2) \) memory. One simple way to reduce memory consumption of attention is to sparsify the attention matrix. Suppose we have a masking matrix \(M \in \{0, 1\}^{N \times N} \). We define a masked version of attention as follows:

\[
\text{Attention}(Q, K, V, M) = \text{softmax}\left(\frac{QK^\top}{\sqrt{d}} \odot M \right) V,
\]

with operator \(\odot \) defined by

\[
(A \odot M)_{ij} = \begin{cases} A_{ij} & \text{if } M_{ij} = 1 \\ -\infty & \text{if } M_{ij} = 0 \end{cases}.
\]

In this work, we design \(M \) to be a sparse block matrix, which not only reduces memory and the number of floating point operations (FLOPs) but also benefits from efficient dense matrix support from deep learning frameworks, such as PyTorch and Tensorflow. More formally, we split the length-\(N \) input sequence into \(n \) partitions, with each partition of length \(\frac{N}{n} \). The \(N \times N \) attention matrix is then partitioned into \(n \times n \) blocks, where each block matrix is of size \(\frac{N}{n} \times \frac{N}{n} \). A sparse block matrix \(M \) can be defined by a permutation \(\pi \) of \(\{1, 2, \cdots, n\} \):

\[
M_{ij} = \begin{cases} 1 & \text{if } \pi \left(\frac{(i-1)n + 1}{N} \right) = \frac{(j-1)n + 1}{N} \\ 0 & \text{otherwise.} \end{cases}
\]

By writing \(Q, K, V \) as block matrices, such that \(Q = [q^n_1, \ldots, q^n_n]^\top \), \(K = [k^n_1, \ldots, k^n_n]^\top \), and \(V = [v^n_1, \ldots, v^n_n]^\top \) and plugging them into Equation \(1 \) we can formally define Blockwise Attention as follows:

\[
\text{Blockwise-Attention}(Q, K, V, M) = \left[\begin{array}{c} \text{softmax}\left(\frac{Q_1K_{\pi(1)}^\top}{\sqrt{d}} \right) V_{\pi(1)} \\ \vdots \\ \text{softmax}\left(\frac{Q_nK_{\pi(n)}^\top}{\sqrt{d}} \right) V_{\pi(n)} \end{array} \right].
\]

As a result, it only needs to compute and store \(Q_iK_{\pi(i)}^\top \) \((i = 1, \cdots, n)\), each of which has size \(\frac{N}{n} \times \frac{N}{n} \). In other words, BlockBERT reduces the corresponding \(O(N^2) \) memory consumption and FLOPs by a factor of \(n \), since \(\frac{N}{n} \times \frac{N}{n} \times n = \frac{N \times N}{n} \).

3.1 Blockwise Multi-Head Attention

Analogous to Multi-head Attention \cite{Vaswani2017}, we allow queries, keys, and values to be projected multiple times and perform blockwise attentions in parallel. Moreover, different blockwise attention heads can use different masking matrices. The outputs of multiple heads are then

\[\text{We assume } N \text{ can be divided by } n. \text{ If not, we pad the input sequence to make } N \text{ divisible.}\]
concatenated and aggregated with another linear projection. Let \(A \) be the number of attention heads and \(H \) the number of hidden units. Blockwise multi-head attention is formally defined by:

\[
\text{Blockwise-Multi-head-Attention}(Q, K, V) = \text{Concat}(\text{head}_1, \cdots, \text{head}_A)W^O
\]

where head\(_i\) = Blockwise-Attention\((QW_i^Q, KW_i^K, VW_i^V, M_i)\),

with \(d = \frac{H}{A} W_i^Q, W_i^K, W_i^V \in \mathbb{R}^{H \times d} \) and the projection matrix \(W^O \in \mathbb{R}^{H \times H} \). Each masking matrix \(M_i \) is determined by permutation \(\pi_i \) according to Equation 2. In particular, we choose \(\pi \) from permutations generated by shifting one position: \(\sigma = (2, 3, \cdots, n, 1) \), i.e., we select \(\pi \in \{\sigma, \sigma^2, \cdots, \sigma^n\} \). For example, with 12 attention heads \((A = 12) \) and 2 blocks \((n = 2) \), one configuration can be assigning 10 heads to permutation \((1, 2)\) and the other 2 heads to permutation \((2, 1)\). Figure 2 illustrates the blockwise multi-head attention with the block numbers \(n \in \{2, 3\} \). Blockwise sparsity captures both local and long-distance dependencies in a memory-efficiency way, which is crucial for long-document understanding tasks. For instance, the identity permutation, i.e., \((1, 2, \cdots, n)\), enables each token to attend its nearby tokens in self-attention. Tokens within the same local group attend a long-distance group of tokens together in other permutations. Our proposed BlockBERT essentially replaces the multi-head attention layers in Transformer/BERT with blockwise multi-head attention.

3.2 Analysis of Memory Usage Reduction

To validate our claim that BlockBERT with \(n \times n \) blocks can reduce the \(O(N^2) \) memory use by a factor of \(n \), we perform the same memory profiling as described in sections 2.1 and 2.2. Again, We fix the number of tokens in each GPU \((b \times N = 4096)\) and choose \(N \) from \(\{128, 256, 512, 1024, 2048\} \). As we can see from Figure 3 and Table 4, the empirical results align well with the theoretical values. When we set block size to be 2 and 3 for BlockBERT, their estimated \(O(N^2) \) activation memory decreases to 1/2 and 1/3 of BERT’s \(O(N^2) \) activation memory, resp. As shown in Table 2 for the sequence length \(N = 512 \), BlockBERT with 2 / 3 blocks saves 18.7% / 23.8% overall memory, resp. The saving is more significant for longer sequences. When \(N = 1024 \), the overall memory reduction of BlockBERT with 2 / 3 blocks is 27.3% / 36.1%, resp.

4 Experiments

We evaluate the pre-training and fine-tuning performance of BlockBERT. In particular, when \(n = 2 \), we denote 10:2 to be the configuration which distributes 10 heads to permutation \((1, 2)\) and 2 to permutation \((2, 1)\); when \(n = 3 \), we denote 8:2:2 to be the configuration which assigns 8, 2, 2 heads to permutation \((1, 2, 3), (2, 3, 1), \) and \((3, 1, 2) \), resp. We compare BlockBERT with the following baselines:

Google BERT The pre-trained base model from [Devlin et al. (2019)]

\(^3 \) We use GPUs of 16 GB memory for profiling. BERT with \(N = 2048 \) fails due to an out-of-memory error.
Figure 3: Regression analysis on activation memory for BERT and BlockBERT.

Table 1: Estimated $O(N^2)$ and $O(N)$ activation memory for BERT and BlockBERT.

N	Model	$O(N)$	$O(N^2)$
512	BERT	4.83	3.66
	BlockBERT n=2	4.84	1.83
	BlockBERT n=3	4.87	1.22
1024	BERT	4.83	7.32
	BlockBERT n=2	4.84	3.66
	BlockBERT n=3	4.87	2.44

Table 2: Pre-training Performance Analysis.

N	Model	Training Time (day)	Memory (per GPU, GB)	Heads Config.	Valid. ppl
512	RoBERTa-1seq	6.62	9.73	-	3.58
	BlockBERT n=2	5.83 (-12.0%)	7.91 (-18.7%)	10:2	3.56
	BlockBERT n=3	5.80 (-12.5%)	7.32 (-23.8%)	8:2:2	3.71
1024	RoBERTa-1seq	9.66	13.39	-	3.60
	BlockBERT n=2	7.51 (-22.3%)	9.73 (-27.3%)	9:3	3.57
	BlockBERT n=3	7.23 (-25.1%)	8.55 (-36.1%)	8:2:2	3.63
mostly short paragraphs (shorter than 512), while paragraphs in SearchQA (average length 1,004) and TriviaQA (average length 934) have around 1,000 tokens. This means that for SearchQA and TriviaQA, a BERT model with sequence length $N = 512$ can only capture half of the context. The detailed paragraph length distributions can be found in Figure 6.

For all the pre-trained models, we adopt the same fine-tuning QA setup from Devlin et al. (2019). The tokenized paragraph (p_1, \ldots, p_s) and question (q_1, \ldots, q_t) are concatenated to be a sequence $[CLS] q_1 \cdots q_t [SEP] p_1 \cdots p_s [SEP]$. The sequence is then fed into the pre-trained model with two extra linear layers for predicting the start and end positions of the answer spans. The detailed fine-tuning setting is listed in Appendix A.4. Table 3 and Table 4 report the experimental results.

N	Model	SQuAD 1.1	SQuAD 2.0
512	Human Perf.	82.30	91.20
	Google BERT	81.19	88.45
	XLNet	-	78.46
	RoBERTa-2seq	82.91	89.78
	RoBERTa-1seq	84.43	91.48
	SparseBERT	80.49	88.09
	BlockBERT n=2, 10:2	84.08	90.77
	BlockBERT n=3, 8:2:2	82.37	89.64
1024	RoBERTa-1seq	84.58	91.14
	SparseBERT	81.02	88.37
	BlockBERT n=2, 9:3	83.65	90.05
	BlockBERT n=3, 8:2:2	82.74	89.05

Table 3: Dev set results on SQuAD 1.1/2.0. The result of XLNet(-Base) is from Yang et al. (2019).

BlockBERT (n=2) v.s. RoBERTa-1seq Comparing BlockBERT ($n = 2$) with RoBERTa-1seq on pre-trained model with $N = 512$, we observe an absolute F1 difference from 0.04 (in NaturalQA) to 1.18 (in NewsQA), with average difference to be 0.55. For $N = 1024$, BlockBERT achieves more comparable or even better performance (in SearchQA, NewsQA, and HotpotQA) to RoBERTa-1seq. The average difference on F1 reduces to 0.27.

BlockBERT v.s. SparseBERT For $N = 512$, it is interesting that BlockBERT with 3 blocks (density 33.33%) performs better than SparseBERT (density 44.20%) in both SQuAD and MrQA tasks. Similar patterns can be observed for $N = 1024$. These results show that off-diagonal masking matrices, e.g., the masking matrix defined by permutation $(2, 1)$, play crucial roles in BlockBERT.

Effect of Long Sequence Pre-training Our observations are twofold. (1) Long sequence pre-training benefits long sequence fine-tuning. In TriviaQA and SearchQA, of which paragraph lengths are around 1024, pre-training models with $N = 1024$ achieve significantly better performance. (2) The heterogeneity of pre-training and fine-tuning sequence length may hurt performance. For example, in SQuAD, we do not see significant performance gain by using pre-trained models with $N = 1024$; in HotpotQA and NewsQA, longer sequence pre-training even hurts performance.

Effect of #Blocks It is not surprising that BlockBERT with 2 blocks ($n = 2$) performs better than that with 3 blocks ($n = 3$), because it keeps more attention matrix entries. The biggest difference is in SQuAD 2.0 and NewsQA with $N = 1024$, where we observe an absolute loss of 1.6 F1 by increasing block number from 2 to 3.

In summary, not only BlockBERT saves training time and memory, but it also has competitive and sometimes better performance, especially for tasks with longer sequences. This demonstrates the effectiveness of our blockwise multi-head attention approach.

4.3 ABLATION STUDY

We discuss how the assignment of attention heads affects pre-training performance. We grid search attention head assignments and plot their best validation performance in 1.2M training steps. Our observations are threefold: (1) Identity permutation is important. As shown in Figure 2, all opti-
mal solutions assign considerable attention heads to block diagonal matrices, since those matrices enable each token to attend its nearby tokens; (2) Non-identity permutations follow the rule of "vital few and trivial many." Although diagonal matrices are important, assigning all attention heads to them (corresponding to 12:0 and 12:0:0 in Figure [4]) significantly hurts performance; (3) Pre-training performance and fine-tuning performance are correlated but not always consistent. When $n = 3$, pre-training performance suggests 10:1:1 to be the best head assignment, but we observe that the configuration of 8:2:2 achieves better performance in fine-tuning tasks.

Table 4: MrQA test results (Tasks are sorted decreasingly by average paragraph length).

N	Model	SearchQA EM	SearchQA F1	TriviaQA EM	TriviaQA F1	NewsQA EM	NewsQA F1	NaturalQA EM	NaturalQA F1	HotpotQA EM	HotpotQA F1
512	Google BERT	74.94	80.37	70.18	75.35	51.27	66.25	66.13	78.29	60.50	77.08
512	RoBERTa-1seq	76.12	81.74	71.92	76.79	52.45	66.73	66.98	78.63	61.52	77.81
512	RoBERTa-2seq	77.09	82.62	73.65	78.22	56.13	70.64	67.14	79.07	62.77	79.28
	SparseBERT	73.36	79.01	68.71	73.15	51.18	65.47	65.53	77.46	58.54	74.85
1024	BlockBERT n=2, 10:2	76.68	82.33	72.36	77.53	54.66	69.46	66.94	79.03	62.13	79.15
1024	BlockBERT n=3, 8:2:2	75.54	81.07	72.05	76.74	53.82	68.39	66.14	78.47	60.64	74.76
1024	RoBERTa-1seq	77.47	83.12	75.29	80.20	55.00	69.46	68.28	80.35	61.89	78.71
1024	SparseBERT	74.83	80.54	70.56	75.34	51.67	67.16	65.07	77.31	59.65	76.02
1024	BlockBERT n=2, 9:3	77.95	83.51	75.06	79.41	55.44	70.08	67.31	79.39	62.13	78.94
1024	BlockBERT n=3, 8:2:2	76.98	82.76	74.78	79.28	53.48	68.50	65.91	78.20	61.89	78.18

Figure 4: Ablation over blockwise attention heads assignment.

5 RELATED WORK

In this section, we review the related work of memory optimization for neural network training and recent efforts to simplify Transformer and BERT. In recent years, there is an increasing interest in training neural networks with low-memory [Sohoni et al., 2019]. Mainstream techniques include low-precision training [Micikevicius et al., 2017], microbatching [Huang et al., 2018], gradient checkpointing [Chen et al., 2016]. Another line of researches studies this problem from a theoretical perspective, including the recently proposed lottery ticket hypothesis [Frankle & Carbin, 2018]. Since the invention of Transformer [Vaswani et al., 2017; Dai et al., 2019] and its successful application on language model pre-training [Devlin et al., 2019; Radford et al., 2019; Yang et al., 2019; Liu et al., 2019], there have been several studies attempted to simplify it from different perspectives. Most of them focus on the sparsification of attention matrix, such as Star Transformer [Guo et al., 2019], Sparse Transformer [Child et al., 2019], Adaptive Sparse Transformer [Correia et al., 2019; Sukhbaatar et al., 2019], Log-Sparse Transformer [Li et al., 2019], etc. However, due to limited support for sparse tensor from current deep learning platforms, most of studies have to represent a sparse matrix using a dense matrix with a binary mask or rely on customized CUDA kernels [Gray et al., 2017]. Another line of research focuses on knowledge distillation, including DistilBERT which distills BERT using a smaller BERT and [Yang et al., 2019] which distills BERT with BiLSTM [Hochreiter & Schmidhuber, 1997].

https://github.com/huggingface/pytorch-transformers/tree/master/examples/distillation
6 Conclusion

In this work, we study lightweight BERT model with the goal of achieving both efficiency and effectiveness. We profile and analyze the memory bottlenecks of BERT, and focus on optimize dot-product self-attention, which consumes quadratic memory with respect to the sequence length. To reduce both training time and memory consumption, we present BlockBERT, which sparsifies the attention matrices to be sparse block matrices. The proposed model achieves time and memory saving without significant loss of performance. In the future, we would like to explore more applications of BlockBERT on NLP tasks involving long sequences such as coreference resolution (Joshi et al., 2019b) and document-level machine translation (Miculich et al., 2018), and also non-NLP tasks such as protein sequence modeling (Rives et al., 2019).

References

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear memory cost. arXiv preprint arXiv:1604.06174, 2016.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse transformers. arXiv preprint arXiv:1904.10509, 2019.

Gonçalo M Correia, Vlad Niculae, and André FT Martins. Adaptively sparse transformers. arXiv preprint arXiv:1909.00015, 2019.

Zihang Dai, Zhilin Yang, Yiming Yang, William W Cohen, Jaime Carbonell, Quoc V Le, and Ruslan Salakhutdinov. Transformer-xl: Attentive language models beyond a fixed-length context. arXiv preprint arXiv:1901.02860, 2019.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding. In NAACL-HLT’ 2019, pp. 4171–4186, 2019.

Matthew Dunn, Levent Sagun, Mike Higgins, V Ugur Guneý, Volkan Cirik, and Kyunghyun Cho. Searchqa: A new q&a dataset augmented with context from a search engine. arXiv preprint arXiv:1704.05179, 2017.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural networks. arXiv preprint arXiv:1803.03635, 2018.

Scott Gray, Alec Radford, and Diederik P Kingma. Gpu kernels for block-sparse weights. arXiv preprint arXiv:1711.09224, 2017.

Qipeng Guo, Xipeng Qiu, Pengfei Liu, Yunfan Shao, Xiangyang Xue, and Zheng Zhang. Star-transformer. In NAACL-HLT’ 2019, pp. 1315–1325, 2019.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531, 2015.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8): 1735–1780, 1997.

Yanping Huang, Yonglong Cheng, Dehao Chen, Hyouk Joong Lee, Jiquan Ngiam, Quoc V Le, and Zhifeng Chen. Gpipe: Efficient training of giant neural networks using pipeline parallelism. arXiv preprint arXiv:1811.06965, 2018.

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke Zettlemoyer. Triviaqa: A large scale distantly supervised challenge dataset for reading comprehension. In ACL’ 17, pp. 1601–1611, 2017.

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S Weld, Luke Zettlemoyer, and Omer Levy. Spanbert: Improving pre-training by representing and predicting spans. arXiv preprint arXiv:1907.10529, 2019a.

Mandar Joshi, Omer Levy, Daniel S Weld, and Luke Zettlemoyer. Bert for coreference resolution: Baselines and analysis. arXiv preprint arXiv:1908.09091, 2019b.
Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint arXiv:1412.6980*, 2014.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, et al. Natural questions: a benchmark for question answering research. *Transactions of the Association for Computational Linguistics*, 7:453–466, 2019.

Kenton Lee, Ming-Wei Chang, and Kristina Toutanova. Latent retrieval for weakly supervised open domain question answering. *arXiv preprint arXiv:1906.00300*, 2019.

Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhu Chen, Yu-Xiang Wang, and Xifeng Yan. Enhancing the locality and breaking the memory bottleneck of transformer on time series forecasting. *arXiv preprint arXiv:1907.00235*, 2019.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Yvain Saint-Amand. Roberta: A robustly optimized bert pretraining approach. *arXiv preprint arXiv:1907.11692*, 2019.

Paulis Micikevicius, Sharan Narang, Jonathon Alben, Gregory Diamos, Erich Elsen, David Garcia, Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, et al. Mixed precision training. *arXiv preprint arXiv:1710.03740*, 2017.

Lesly Miculicich, Dhananjay Ram, Nikolaos Pappas, and James Henderson. Document-level neural machine translation with hierarchical attention networks. In *EMNLP’18*, pp. 2947–2954, 2018.

Rodrigo Nogueira and Kyunghyun Cho. Passage re-ranking with bert. *arXiv preprint arXiv:1901.04085*, 2019.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, and Michael Auli. fairseq: A fast, extensible toolkit for sequence modeling. *arXiv preprint arXiv:1904.01038*, 2019.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke Zettlemoyer. Deep contextualized word representations. In *Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)*, pp. 2227–2237, 2018.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language models are unsupervised multitask learners. 2019.

Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know: Unanswerable questions for squad. *arXiv preprint arXiv:1806.03822*, 2018.

Alexander Rives, Siddharth Goyal, Joshua Meier, Demi Guo, Myle Ott, C Lawrence Zitnick, Jerry Ma, and Rob Fergus. Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences. *bioRxiv*, pp. 622803, 2019.

Livio Baldini Soares, Nicholas FitzGerald, Jeffrey Ling, and Tom Kwiatkowski. Matching the blanks: Distributional similarity for relation learning. *arXiv preprint arXiv:1906.03158*, 2019.

Nimit Sharad Sohoni, Christopher Richard Aberger, Megan Leszcynski, Jian Zhang, and Christopher Ré. Low-memory neural network training: A technical report. *arXiv preprint arXiv:1904.10631*, 2019.

Sainbayar Sukhbaatar, Edouard Grave, Piotr Bojanowski, and Armand Joulin. Adaptive attention span in transformers. *arXiv preprint arXiv:1905.07799*, 2019.

Raphael Tang, Yao Lu, Linqing Liu, Lili Mou, Olga Vechtomova, and Jimmy Lin. Distilling task-specific knowledge from bert into simple neural networks. *arXiv preprint arXiv:1903.12136*, 2019.

Adam Trischler, Tong Wang, Xingdi Yuan, Justin Harris, Alessandro Sordoni, Philip Bachman, and Kaheer Suleman. Newsqa: A machine comprehension dataset. In *Proceedings of the 2nd Workshop on Representation Learning for NLP*, pp. 191–200, 2017.
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information processing systems, pp. 5998–6008, 2017.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W. Cohen, Ruslan Salakhutdinov, and Christopher D. Manning. HotpotQA: A dataset for diverse, explainable multi-hop question answering. In EMNLP’18, 2018.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, and Quoc V Le. Xlnet: Generalized autoregressive pretraining for language understanding. arXiv preprint arXiv:1906.08237, 2019.

A Appendix

A.1 Notations and pre-training hyper-parameters

The notations and pre-training hyper-parameters are listed in Table 5 and Table 6.

Description	Base	Large
B Batch size	256	256
A # Self-attention heads	12	16
L # Layers	12	24
H # Hidden units	768	1024
AH # Feed-forward hidden units	3072	4096
N Sequence length	512	512

Table 5: BERT notations.

Hyper-parameter	Value
Dropout	0.1
Attention dropout	0.1
Warmup steps	10K
Weight decay	0.01
Max steps	2.4M
Initial learning rate	0.00025
Learning rate decay	Linear
Adam ϵ	1e-8
Adam β_1	0.9
Adam β_2	0.999
Gradient Clipping	1.0

Table 6: Pre-training hyper-parameters.

A.2 Profiler Implementation

Among the three types of training memory, model memory and optimizer memory is relatively easy to profile (can be computed by enumerate each tenor and summing up `tensor.numel() * tensor.element_size()`). To calculate activation memory, Sohoni et al. (2019) traverse PyTorch’s autograd graph and sum up necessary storage space. They find that the summation of model memory, optimizer memory and activation memory matches PyTorch memory profiling tool `torch.cuda.max_memory_allocated`. Based on their observation, we use

\[
\text{torch.cu}	ext{d}a\cdot\text{m}	ext{ax}_\text{memory}\text{a}	ext{llo}cated - \text{model memory} - \text{optimizer memory}
\]

(4)

as an estimate to activation memory. When profiling BERT, we first pre-train it for 1000 steps, and then compute its model and optimizer memory. Finally, we estimate its activation memory according to Equation 4.

A.3 SparseBert

The sparse masking matrices we use for Sparse Transformer (Child et al., 2019) are shown in Figure 5. We adopt the implementation from Fairseq.\(^8\)

\(^8\)https://github.com/pytorch/fairseq/blob/master/fairseq/modules/sparse_multihead_attention.py.
Figure 5: The sparse masking matrices we use in Sparse Transformer (fixed mode) encoder. White color indicates attention values to be masked. (a) \(N = 512, \ell = 128, c = 32, \) density 44.20%; (b) \(N = 1024, \ell = 128, c = 32, \) density 34.97%.

Figure 6: Paragraph length (after tokenization) distribution. The distribution of SQuAD 2.0 is very similar to SQuAD 1.1, so we only plot SQuAD 1.1 here.

A.4 Fine-tuning Settings

Our fine-tuning is implemented based on code base from HuggingFace\footnote{https://github.com/huggingface/pytorch-transformers} and SpanBERT \cite{Joshi2019}. We use \(\text{max}_\text{sequence}_\text{length}=N \), i.e., we allow fine-tuning task to input sequences as long as the pre-training model. If the input sequence is too long to fit the \(\text{max}_\text{sequence}_\text{length}=N \) constraints, we use a sliding window of stride 128 to split it. We grid search learning rate from \{5e-6, 1e-5, 2e-5, 3e-5, 5e-5\} and batch size from \{16, 32\}. The fine-tuning is performed for 4 epoches.