Characterising Complexity Classes by Inductive Definitions in Bounded Arithmetic

Naohi Eguchi

Institute of Computer Science, University of Innsbruck, Austria
naohi.eguchi@uibk.ac.at

Abstract. Famous descriptive characterisations of P and PSPACE are restated in terms of the Cook-Nguyen style second order bounded arithmetic. We introduce an axiom of inductive definitions over second order bounded arithmetic. We show that P can be captured by the axiom of inflationary inductive definitions whereas PSPACE can be captured by the axiom of non-inflationary inductive definitions.

1 Introduction

The notion of inductive definitions is widely accepted in logic and mathematics. Although inductive definitions usually deal with infinite sets, we can also discuss finitary inductive definitions. Let S be a finite set and $\Phi : \mathcal{P}(S) \to \mathcal{P}(S)$ an operator, a mapping over the power set $\mathcal{P}(S)$ of S. For a natural m, define a subset P_Φ^m of S inductively by $P_\Phi^0 = \emptyset$ and $P_\Phi^{m+1} = \Phi(P_\Phi^m)$. If the operator Φ is inflationary, i.e., if $X \subseteq \Phi(X)$ holds for any $X \subseteq S$, then there exists a natural $k \leq |S|$ such that $P_\Phi^{k+1} = P_\Phi^k$, where $|S|$ denotes the number of elements of S, and hence the operator Φ has a fixed point. On the side of finite model theory, a famous descriptive characterisation of the class of P of polytime predicates was given by N. Immerman [6] and M. Y. Vardi [11]. It is shown that the class P can be captured by the first order predicate logic with fixed point predicates of first order definable inflationary operators. In case that the operator Φ is not inflationary, it is not in general possible to find a fixed point of Φ. One can however find two naturals $k, l \leq 2^{|S|}$ such that $l \neq 0$ and $P_\Phi^{k+l} = P_\Phi^k$. Based on this observation, it is shown that the class PSPACE of polyspace predicates can be captured by the first order predicate logic with fixed point predicates of first order definable (non-inflationary) operators, cf. [4]. On the side of bounded arithmetic, it was shown by S. Buss that P can be captured by a first order system S_2 whereas PSPACE can be captured by a second order extension U_2 of S_2, cf. [2]. An alternative way to characterise P was invented by D. Zambella [12]. As well as Buss’ characterisation by S_2, P can be captured by a certain form of comprehension axiom over a weak second order system of bounded arithmetic.

* This work started as part of [Philosophical frontiers in Reverse Mathematics] sponsored by the John Templeton Foundation.
** The author is supported by JSPS posdoctoral fellowships for young scientists.
found in the book [3] by S. Cook and P. Nguyen. More recently, A. Skelley in [8] extended this idea to a third order formulation of bounded arithmetic, capturing PSPACE as well as Buss’ characterisation by U_1^2. On the other side, as discussed by K. Tanaka [9,10] and others, cf. [7], inductive definitions over infinite sets of naturals can be axiomatised over second order arithmetic the most elegantly. All these motivate us to introduce an axiom of inductive definitions over second order formulas, but only bounded quantifiers are taken into account. We show that, over a suitable base, system the class P can be captured by the axiom of inductive definitions under Σ^B_0-definable inflationary operators (Corollary 5.2) whereas PSPACE can be captured by the axiom of inductive definitions under Σ^B_0-definable (non-inflationary) operators (Corollary 7.2). There is likely no direct connection, but this work is also partially motivated by the axiom AID of Alogtime inductive definitions introduced by T. Arai in [1].

After the preliminary section, in Section 3 we introduce a system Σ^B_0-IID of inductive definitions under Σ^B_0-definable inflationary operators and a system Σ^B_0-ID of inductive definitions under Σ^B_0-definable (non-inflationary) operators. In Section 4 we show that every polytime function can be defined in Σ^B_0-IID. In Section 5 we show that conversely the system Σ^B_0-IID can only define polytime functions by reducing Σ^B_0-IID to Zambella’s system V^1. In Section 6 we show that every polyspace function can be defined in Σ^B_0-ID. In Section 7 we show that conversely the system Σ^B_0-ID can only define polyspace functions by reducing Σ^B_0-ID to Skelley’s system W^1_1.

2 Preliminaries

The two-sorted first order vocabulary L^2_A consists of 0, 1, +, ·, $\cdot\cdot\cdot$, \bot, \bot, \bot, \bot and \in. At the risk of confusion, we also call L^2_A the second order vocabulary of bounded arithmetic. Note that $=1$ and $=2$ respectively denote the first order and the second order equality, and $t=1$ s or $U=2$ V will be simply written as $t=s$ or $U=V$. First order elements x, y, z, \ldots denote natural numbers whereas second order elements X, Y, Z, \ldots denote binary strings. The formula of the form $t \in X$ is abbreviated as $X(t)$. Under a standard interpretation, $|X|$ denotes the length of the string X, and $X(i)$ holds if and only if the ith bit of X is 1. Let \mathcal{L} be a vocabulary such that $L^2_A \subseteq \mathcal{L}$. We follow a convention that for an \mathcal{L}-term t, a string variable X and a formula φ, $(\exists X \leq t) \varphi$ stands for $\exists X(|X| \leq t \land \varphi)$ and $(\forall X \leq t) \varphi$ stands for $\forall X(|X| \leq t \rightarrow \varphi)$. Furthermore $(\exists x \leq t) \varphi$ stands for $(\exists x_1 \leq t_1) \cdot \cdots (\exists x_k \leq t_k) \varphi$ if $x=x_1, \ldots, x_k$ and $t=t_1, \ldots, t_k$. We follow similar conventions for $(\forall x \leq t) \varphi$, $(\exists X \leq t) \varphi$ and $(\forall X \leq t) \varphi$. A quantifier of the form $(Qx \leq t)$ or $(QX \leq t)$ is called a bounded quantifier. Specific classes $\Sigma^B_0(\mathcal{L})$ and $\Pi^B_0(\mathcal{L})$ (0 $\leq i$) are defined by the following clauses.

1. $\Sigma^B_0(\mathcal{L}) = \Pi^B_0(\mathcal{L})$ is the set of \mathcal{L}-formulas whose quantifiers are bounded number ones only.
2. \(\Sigma^B_{i+1}(\mathcal{L}) \) (\(\Pi^B_{i+1}(\mathcal{L}) \) resp.) is the set of formulas of the form \((\exists X \leq t)\varphi(X) \) ((\(\forall X \leq t)\varphi(X) \) resp.), where \(\varphi \) is a \(\Pi^B_{i}(\mathcal{L}) \)-formula (a \(\Sigma^B_{i}(\mathcal{L}) \)-formula resp.) and \(t \) is a sequence of \(\mathcal{L} \)-terms not involving any variables from \(X \).

Finally the class \(\Delta^B_{i}(\mathcal{L}) \) is defined in the most natural way for each \(i \geq 0 \). We simply write \(\Sigma^B_{i}(\Pi^B_{i}) \) resp.) to denote \(\Sigma^B_{i}(\mathcal{L}^2_A) \) (\(\Pi^B_{i}(\mathcal{L}^2_A) \) resp.) if no confusion likely arises. Let us recall that for each \(i \geq 0 \) the system \(V^i \) is axiomatised over \(\mathcal{L}^2_A \) by the defining axioms for numerical and string function symbols in \(\mathcal{L}^2_A \) (B1–B12, L1, L2 and SE, see [3 p. 96]) and the axiom (\(\Sigma^B_{i} \)-COMP) of comprehension for \(\Sigma^B_{i} \) formulas:

\[
\forall x(\exists Y \leq x)(\forall i < x)[Y(i) \leftrightarrow \varphi(i)],
\]

where \(\varphi \in \Sigma^B_{i} \). We will use the following fact frequently.

Proposition 2.1 (Zambella [12]). (Cf. [3, p. 98, Corollary V.1.8]) The axiom (\(\Sigma^B_{i} \)-IND) of induction for \(\Sigma^B_{i} \) formulas holds in \(V^i \).

Let \(\mathcal{L}^2_A \subset \mathcal{L} \). For a string function \(f \), a class \(\Phi \) of \(\mathcal{L} \)-formulas and a system \(T \) over \(\mathcal{L} \), we say \(f \) is \(\Phi \)-definable in \(T \) if there exists an \(\mathcal{L} \)-formula \(\varphi(X,Y) \in \Phi \) such that

- \(\varphi \) does not involve free variables other than \(X \) nor \(Y \),
- the graph \(f(X) = Y \) of \(f \) is expressed by \(\varphi(X,Y) \) under a standard interpretation as mentioned at the beginning of this section, and
- the sentence \(\forall X \exists ! Y \varphi(X,Y) \) is provable in \(T \).

Note that every function over natural numbers can be regarded as a string one by representing naturals in their binary expansion.

Proposition 2.2 (Zambella [12]). (Cf. [3, p. 135, Theorem VI.2.2]) A function is polytime computable if and only if it is \(\Sigma^B_{1} \)-definable in \(V^1 \).

3 Axiom of Inductive Definitions

In this section we introduce an axiom of inductive definitions. We work over a conservative extension of \(V^0 \). For the sake of readers’ convenience, from Cook-Nguyen [3], we recall several string functions, all of which have \(\Sigma^B_{0} \)-definable bit-graphs. Let \(\langle x, y \rangle = (x + y)(x + y + 1) + 2y \) be a standard numerical paring function. Clearly the paring function is definable in \(\mathcal{L}^2_A \).

String encoding [3 p. 114 Definition V.4.26]) The \(x \)th component \(Z^{[x]} \) of a string \(Z \) is defined by the axiom \(Z^{[x]}(i) \leftrightarrow i < |Z| \land Z(\langle x, i \rangle) \).

Encoding of bounded number sequences [3 p. 115 Definition V.4.31]) The \(x \)th element \((Z)^x \) of the sequence encoded by \(Z \) is defined by the axiom

\[
(Z)^x = y \leftrightarrow [y < |Z| \land Z((x, y)) \land (\forall z < y)\neg Z((x, z))] \lor [y = |Z| \land (\forall z < y)\neg Z((x, z))].
\]
The string function \(\langle X, Y \rangle \) is defined by the axiom

\[
\langle X_0, X_1 \rangle(i) \leftrightarrow (\exists j \leq i)[(i = \langle 0, j \rangle) \land X_0(j)] \lor (i = \langle 1, j \rangle) \land X_1(j)].
\]

Correspondingly, a pair of strings can be unpaired as \(\langle Z_0, Z_1 \rangle^{[i]} = Z_i \ (i = 0, 1) \).

(String constant, string successor, string addition) The string constant \(\emptyset \) is defined by the axiom \(\emptyset(i) \leftrightarrow i < 0 \). The string successor \(S(X) \) is defined by the axiom

\[
S(X)(i) \leftrightarrow i \leq |X| \land [X(i) \land (\exists j < i) \neg X(j)] \lor [\neg X(i) \land (\forall j < i)X(j)].
\]

The string addition \(X + Y \) is defined by the axiom

\[
(X + Y)(i) \leftrightarrow (i < |X| + |Y| \land (X(i) \lor Y(i) \lor \text{Carry}(i, X, Y))),
\]

where \(\oplus \) denotes “exclusive or”, i.e., \(p \oplus q \equiv (p \land \neg q) \lor (\neg p \land q) \), and

\[
\text{Carry}(i, X, Y) \leftrightarrow (\exists k < i)[X(k) \land Y(k) \land (\forall j < i)(k < j \rightarrow X(j) \lor Y(j))].
\]

(String ordering) The string relation \(X < Y \) is defined by the axiom

\[
X < Y \leftrightarrow |X| \leq |Y| \land (\exists i \leq |Y|)[(\forall j \leq |Y|)(i < j \land X(j) \rightarrow Y(j)) \land Y(i) \land \neg X(i)].
\]

We write \(X \leq Y \) to denote \(X = Y \lor X < Y \). In addition, we write \(x \div y \) to denote the limited subtraction: \(x \div y = \max\{0, x - y\} \), and \(|x| \) to denote the division of \(x \) by 2: \(|x| = |x/2| \). We will write \(x - y = z \) if \(x \div y = z \) and \(y \leq x \). We expand the notion of “\(\Sigma \)-definable in \(T \)” (presented on page 243 to those functions involving the numerical sort in addition to the string sort in an obvious way. Then it can be shown that both \(x \div y \) and \(|x| \) are \(\Sigma_2 \)-definable in \(V^0 \), cf. 3 p. 60]. Furthermore, though much harder to show, it can be also shown that a limited form of exponential, \(\text{Exp}(x, y) = \min\{2^x, y\} \), is \(\Sigma_3 \)-definable in \(V^0 \), cf. 3 p. 64]. It is known that if \(V^0 \) is augmented by adding a collection of \(\Sigma_3 \)-defining axioms for numerical and string functions, then the resulting system is a conservative extension of \(V^0 \), cf. 3 p. 110, Corollary V.4.14. Hence we identify \(V^0 \) with the system resulting by augmenting \(V^0 \) by adding the \(\Sigma_3 \)-defining axioms for those numerical and string functions and relations defined above.

Furthermore we work over a slight extension of the vocabulary \(L^2 \). For a formula \(\varphi(i, X) \) let \(P_\varphi(i, x, X) \) denote a fresh predicate symbol, where \(\varphi \) may contain free variables other than \(i \) and \(X \). We write \(L^2 \) to denote the vocabulary expanded with the new predicate \(P_\varphi \) for each \(\varphi \).

Definition 3.1 (Extension by fixed point predicates). For a system \(T \) over a vocabulary \(L \) such that \(L^2 \subseteq L \), \(T(L^2) \) denotes the conservative extension of \(T \) obtained by augmenting \(T \) with the following defining axioms for \(P_\varphi \).

1. \((\forall i < x)[P_\varphi(i, x, \emptyset) \leftrightarrow i < 0] \).
2. $(\forall X \leq x + 1)(\forall i < x) [P_\varphi(i, x, S(X)) \leftrightarrow \varphi(i, P_\varphi X)]$, where $\varphi(i, P_\varphi X)$ denotes the result of replacing every occurrence of $Y(j)$ in $\varphi(i, Y)$ with $P_\varphi(j, x, X) \land j < x$.

Now we introduce an axiom of inductive definitions.

Definition 3.2 (Axiom of Inductive Definitions). Let Φ be a class of formulas. Then the axiom schema $(\Phi$-ID) of inductive definitions denotes (the universal closure of) the following formula, where $\varphi \in \Phi$.

$$(\exists U, V \leq x + 1)[V \neq \emptyset \land (\forall i < x)(P_\varphi(i, x, U + V) \leftrightarrow P_\varphi(i, x, U))] \quad (\Phi$-ID)$$

We write $(\Phi$-IID) for $(\Phi$-ID) if additionally the formula $\varphi \in \Phi$ is inflationary, i.e., if $(\forall Y \leq x)(\forall i < x)[Y(i) \rightarrow \varphi(i, Y)]$ holds.

For notational convention, we write $P_{\varphi,x}$ to denote $(\forall i < x)[P_{\varphi}(i, x, X) \leftrightarrow Y(i)]$. By definition, $P_{\varphi,x}$ denotes the string consisting of the first x bits of the string obtained by X-fold iteration of the operator defined by the formula φ (starting with the empty string).

Definition 3.3. Let Φ be a class of L_2^A-formulas.

1. Φ-ID := $V^0(L_2^A) + (\Phi$-ID).
2. Φ-IID := $V^0(L_2^A) + (\Phi$-IID).

By definition, the inclusion Φ-IID $\subseteq \Phi$-ID holds for any class Φ of L_2^A-formulas. It is important to note that $(\Sigma^B_\omega(L_2^A)$-COMP) is not allowed in $V^0(L_2^A)$ for any $i \geq 0$, and hence $\forall x \forall Y(\exists Y \leq x)P_{\varphi,x} = Y$ does not hold in $V^0(L_2^A)$.

The main theorem in this paper is stated as follows.

Theorem 3.1. 1. A function is polytime computable if and only if it is $\Sigma^B_1(L_2^A)$-definable in Σ^B_0-IID.
2. A function is polyspace computable if and only if it is $\Sigma^B_1(L_2^A)$-definable in Σ^B_0-ID.

4 Defining P functions by inflationary inductive definitions

Theorem 4.1. Every polytime function is $\Sigma^B_1(L_2^A)$-definable in Σ^B_0-IID.

Proof. Suppose that a function f is polytime computable. Assuming without loss of generality that f is a unary function such that $f(X)$ can be computed by a single-tape Turing machine M in a step bounded by a polynomial $p(|X|)$ in the binary length $|X|$ of an input X.

We can assume that each configuration of M on input X is encoded into a binary string whose length is exactly $q(|X|)$ for some polynomial q. The polynomial q can be found from information on the polynomial p since $|f(X)| \leq p(|X|)$ holds. Let the predicate Init$_M$ denote the initial configuration of M and Next$_M$ the next configuration of M. More precisely,
Init\(M(i, X)\) is true if and only if the \(i\)th bit of the binary string that encodes the initial configuration of \(M\) on input \(X\) is 1, and

\(\text{Next}_M(i, X, Y)\) is true if and only if \(Y\) encodes a configuration of \(M\) on input \(X\) and the \(i\)th bit of the binary string that encodes the successor configuration of \(Y\) is 1. Note that \(\text{Next}_M(i, X, Y)\) never holds if \(Y\) does not encode a configuration of \(M\), or if \(Y\) encodes the final configuration of \(M\).

Careful readers will see that both \(\text{Init}\) and \(\text{Next}\) can be expressed by \(\Sigma^B_0\)-formulas. We define \(\text{MSP}(j, Y)\), the last \(j\) bits of a string \(Y\), which is also known as the most significant part of \(Y\), by

\[
\text{MSP}(j, Y)(i) \leftrightarrow i < j \land Y(i) \geq j + i.
\]

Let \(\varphi(i, X, Y)\) denote the formula

\[
i < |Y| + q(|X|) \land |Y(i) \lor \text{Init}_M(i, X) \lor \text{Next}_M(i < |Y|, X, \text{MSP}(q(|X|), Y))].
\]

Clearly \(\varphi\) is a \(\Sigma^B_0\)-formula.

Now reason in \(\Sigma^B_0\)-IID. It is not difficult to see that \(\varphi(i, X, Y)\) is inflationary with respect to \(Y\). Hence, by the axiom (\(\Sigma^B_0\)-IID) of \(\Sigma^B_0\) inflationary inductive definitions, we can find two strings \(U\) and \(V\) such that \(|U|, |V| \leq q(|X|) \cdot (p(|X|) + 1)\), \(V \neq 0\) and \(P^{U + V}_{\varphi,q(|X|) \cdot (p(|X|) + 1)} = P^{V}_{\varphi,q(|X|) \cdot (p(|X|) + 1)}\). Hence the following \(\Sigma^B_1(\mathcal{L}^2_{\text{ID}})\) formula \(\psi_f(X, Y)\) holds:

\[
(\exists U, V \leq q(|X|) \cdot (p(|X|) + 1)) [V \neq 0 \land P^{U + V}_{\varphi,q(|X|) \cdot (p(|X|) + 1)} = P^{U}_{\varphi,q(|X|) \cdot (p(|X|) + 1)} \land Y = \text{Value}(\text{MSP}(q(|X|), P^{U}_{\varphi,q(|X|) \cdot (p(|X|) + 1)})),
\]

where \(\text{Value}(Z)\) denotes the function \(\Sigma^B_0\)-definable in \(V^0\) (depending on the underlying encoding) which extracts the value of the output from \(Z\) if \(Z\) encodes the final configuration of \(M\). By the definition of \(\varphi\), \(\text{MSP}(q(|X|), P^{U}_{\varphi,q(|X|) \cdot (p(|X|) + 1)})\) encodes the final configuration of \(M\), since in any terminating computation the same configuration does not occur more than once. Hence \(\psi_f(X, Y)\) defines the graph \(f(X) = Y\) of \(f\). It is easy to see that \(\forall X \exists Y \psi_f(X, Y)\) also holds. The uniqueness of \(Y\) such that \(\psi_f(X, Y)\) can be shown accordingly, allowing us to conclude.

\[
\Box
\]

5 Reducing inflationary inductive definitions to \(V^1\)

In this section we show that every function \(\Sigma^B_1(\mathcal{L}^2_{\text{ID}})\)-definable in the system \(\Sigma^B_0\)-IID of \(\Sigma^B_0\) inflationary inductive definitions is polytime computable by reducing \(\Sigma^B_0\)-IID to the system \(V^1\).
Definition 5.1. A function val(x, X), which denotes the numerical value of the string consisting of the last \(b \) bits of a string \(X \), is defined by

\[
\text{val}(x, \emptyset) = 0, \quad \text{or otherwise,}
\]
\[
\text{val}(0, X) = 0,
\]
\[
\text{val}(x + 1, X) = \begin{cases}
\text{val}(x, X) & \text{if } |X| \leq x, \\
2 \cdot \text{val}(x, X) & \text{if } x < |X| \& \neg X((|X| - 1) \div x), \\
2 \cdot \text{val}(x, X) + 1 & \text{if } x < |X| \& X((|X| - 1) \div x).
\end{cases}
\]

Lemma 5.1. The function \((x, X) \mapsto \text{val}(x, X)\) is \(\Delta_1^B \)-definable in \(V^1 \) if \(x \leq |y| \) for some \(y \). More precisely, the relation \(\text{val}(x, X) = z \) can be expressed by a \(\Delta^B_1 \) formula \(\psi_{\text{val}}(x, y, z, X) \) if \(x \leq |y| \), and the sentence \(\forall y(\forall x \leq |y|)\forall X \exists! z \psi_{\text{val}}(x, y, z, X) \) is provable in \(V^1 \).

Proof. Let \(\psi(x, z, X, Y) \) denote the formula expressing that \(z = 0 \) if \(|X| = 0 \), or otherwise \((Y)^b = 0, (Y)^b = z \), and for all \(j < x \),

\[
\begin{align*}
- |X| \leq j & \rightarrow (Y)^{j+1} = (Y)^j, \\
- j < |X| & \land \neg X((|X| - 1) \div j - 1) \rightarrow (Y)^{j+1} = 2(Y)^j, \text{ and} \\
- j < |X| & \land X((|X| - 1) \div j - 1) \rightarrow (Y)^{j+1} = 2(Y)^j + 1.
\end{align*}
\]

Define \(\psi_{\text{val}}(x, y, z, X, Y) \) to be \((\exists Y \leq (x, 2y+1) + 1)\psi(x, z, X, Y)\). Clearly \(\psi_{\text{val}} \) is a \(\Sigma^B_1 \) formula expressing the relation \(\text{val}(x, X) = z \) in case \(x \leq |y| \). Note that \(2^{|y|} \leq 2y+1 \) for all \(y \). Hence if \(x \leq |y| \), then \(\text{val}(x, X) \leq 2x \leq 2y+1 \). Reason in \(V^1 \).

One can show that if \(x \leq |y| \), then \((\exists z \leq 2y+1)(\exists Y \leq (x, 2y+1) + 1)\psi(x, z, X, Y)\) holds by induction on \(x \). Accordingly the uniqueness of those \(z \) and \(Y \) above can be also shown. From the uniqueness of \(z \) and \(Y \), \(\text{val}(x, X) = z \) is equivalent to a \(\Pi^B_1 \) formula \((\forall u \leq 2y+1)(\exists Y \leq (x, 2y+1) + 1)((\psi(x, y, u, X, Y) \rightarrow u = z)) \).

Hence \(\psi_{\text{val}} \) is a \(\Delta^B_1 \) formula. \(\square \)

Lemma 5.2. Let \(\varphi(x, X) \) be a \(\Sigma^B_0 \) formula. Then the relation \((x, X, Y) \mapsto P^X_{\varphi,z} = Y\) can be expressed by a \(\Delta^B_1 \) formula \(\psi_{P_{\varphi}}(x, y, X, Y) \) if \(|X| \leq |y| \). More precisely, corresponding to Definition 5.11 and 5.12, \(\psi_{P_{\varphi}} \) enjoys the following.

1. \(\psi_{P_{\varphi}}(x, y, \emptyset, \emptyset) \).
2. \((\forall X \leq x + 1)(|X| \leq |y|) \rightarrow \forall Y, Z[\psi_{P_{\varphi}}(x, y, X, Y) \land \psi_{P_{\varphi}}(x, y, S(X), Z) \rightarrow (\forall i < x)(Z(i) \leftrightarrow \varphi(i, Y))]) \).

Furthermore, the sentence \(\forall x, y(\forall X \leq |y|)(\exists! Y \leq x)\psi_{P_{\varphi}}(x, y, X, Y) \) is provable in \(V^1 \).

Proof. Let \(\psi(x, X, Y, Z) \) denote a formula which expresses that

\[
\begin{align*}
- (\forall j \leq \text{val}(|y|, X))(|Z|^j| \leq x, \\
- Z[0] = \emptyset, Z[\text{val}(|y|, X)] = Y, \text{ and} \\
- (\forall j < \text{val}(|y|, X))(\forall i < x)[Z[i+1](i) \leftrightarrow \varphi(i, Z[i])].
\end{align*}
\]
Define $\psi_{P_x}(x, y, X, Y)$ to be $(\exists Z \leq \text{val}([y], X), x + 1)\psi(x, X, Y, Z)$. Then, since φ is a Σ^B_0 formula, ψ_{P_x} is a Σ^B_1 formula expressing the relation $P^X_x = Y$ if $|X| \leq |y|$. Reason in V^1. One can show $|X| \leq |y| \rightarrow (\exists Y \leq x)\psi_{P_x}(x, y, X, Y, Z)$ by induction on $\text{val}([y], X)$. The uniqueness of such strings Y and Z can be also shown. Hence, as in the previous proof, thanks to the uniqueness of Y and Z, ψ_{P_x} is a Δ^B_1 formula.

Definition 5.2. 1. A string function $\text{Ones}(y)$, which denotes the string consisting of 1 of length y, is defined by the axiom $\text{Ones}(y)(i) \iff i < y$.
2. The string predecessor $P(X)$ is by the axiom

$$P(X)(i) \iff i < |X| \land [(X(i) \land (\exists j < i)X(j)) \lor (\neg X(i) \land (\forall j < i)\neg X(j))]$$.

Lemma 5.3. 1. In V^0, if $0 < |X|$, then $S(P(X)) = X$ holds.
2. In V^1, if $x < |y|$, then the following holds.

$$\text{val}([y], S(\text{Ones}(x))) = \text{val}([y], \text{Ones}(x)) + 1.$$ \hspace{1cm} (1)

3. In V^1, if $0 < |X| \leq |y|$, then $\text{val}([y], P(X)) + 1 = \text{val}([y], X)$ holds.

Proof. 1. We reason in V^1. Suppose $0 < |X|$. Then $X(i)$ holds for some $i < |X|$. Since the axiom $(\Sigma^B_0\text{-MIN})$ of minimisation for Σ^B_1 formulas holds in V^1, cf. [3] p. 98, Corollary V.1.8, there exists an element $i_0 < |X|$ such that $X(i_0)$ and $(\forall j < i_0)\neg X(j)$ hold. Define a string Y with use of $(\Sigma^B_1\text{-COMP})$ by

$$|Y| \leq |X| \land (\forall i < |X|)[Y(i) \iff (i_0 < i \land X(i) \lor i < i_0)].$$ \hspace{1cm} (2)

We show (i) $S(Y) = X$ and (ii) $P(X) = Y$. It is not difficult to see $|S(Y)| = |X|$ and $|P(X)| = |Y|$. For (i) suppose $i < |S(X)|$ and $S(X)(i)$. If $Y(i)$ and $(\exists j < i)\neg Y(j)$ hold, then $i_0 < i$ and $X(i)$ hold by the definition of Y. If $\neg Y(i)$ and $(\forall j < i)Y(j)$ hold, then $i = i_0$ holds. By the choice of i_0, $X(i_0)$ and $X(j)$ holds. The converse inclusion can be shown in the same way. For (ii) suppose $i < |P(X)|$ and $P(X)(i)$. If $X(i)$ and $(\exists j < i)X(j)$ hold, then $X(i)$ and $i_0 < i$ by the choice of i_0, and hence $Y(i)$. If $\neg X(i)$ and $(\forall j < i)\neg X(j)$ hold, then $i < i_0$, and hence $Y(i)$ holds. The converse inclusion can be shown in the same way.

2. By Lemma 5.1 both $\text{val}([y], S(\text{Ones}(x)))$ and $\text{val}([y], \text{Ones}(x))$ can be defined in V^1. We reason in V^1. Suppose $x \leq |y|$. Then $\text{val}([x, \text{Ones}(z)]) + 1 \leq \text{val}([x, S(\text{Ones}(z))]) \leq x + 1 \leq |y|$. We show that (1) holds by induction on x. In case $x = 0$, $\text{Ones}(x) = \emptyset$, and hence $\text{val}([y], S(\text{Ones}(x))) = \text{val}([y], S(\emptyset)) = 1 = \text{val}([y], \emptyset) + 1$. For the induction step, assume by IH (Induction Hypothesis) that (1) holds. Then $\text{val}([y], S(\text{Ones}(x + 1))) = 2 \cdot \text{val}([y], S(\text{Ones}(x))) = 2\text{val}([y], \text{Ones}(x)) + 1 = 2\text{val}([y], \text{Ones}(x)) + 1 + 1 = \text{val}([y], S(\text{Ones}(x + 1))) + 1$.

3. We reason in V^1. Suppose $0 < |X| \leq |y|$. Choose an element $i_0 < X$ as above and define a string Y in the same way as (2). Then $Y = P(X)$ as we showed above. By the choice of i_0, for any $j < |X|$, if $i_0 < j$, then $X(j) \leftrightarrow Y(j)$ holds. Hence it suffices to show that $\text{val}([y], \text{Ones}(i_0)) + 1 = \text{val}([y], S(\text{Ones}(i_0)))$ holds, but this follows from Lemma 5.3. \hspace{1cm} \square
Theorem 5.1. Let $\varphi \in \Sigma^B_0$. In V^1, if φ is inflationary, then there exists a string U such that $U \leq \text{Ones}(|x|)$ and the following holds.

$$\forall Y, Z[\psi_{\varphi_x}(x, 2x, S(U), Y) \land \psi_{\varphi_x}(x, 2x, U, Z) \rightarrow (\forall i < x)(Y(i) \leftrightarrow Z(i))]. \quad (3)$$

Proof. Let us recall a numerical function $\text{numones}(x, X)$ which denotes the number of elements of X, or equivalently the number of 1 occurring in the string X, not exceeding x (See [3, p. 149]). It can be shown that numones is Σ^B_1-definable in V^1 (See [3, p. 149]). As we observed in the proof of Lemma 5.1 or Lemma 5.2, numones is even Δ^B_1-definable in V^1.

Let $\varphi \in \Sigma^B_0$. Reason in V^1. Suppose that φ is inflationary, i.e., $(\forall Y \leq X)(\forall j < x)(Y(i) \rightarrow \varphi(i, Y))$ holds. By contradiction we show the existence of a string U such that $U \leq \text{Ones}(|x|)$ and the condition (3) holds. Since $|S(\text{Ones}(|x|))| = |x| + 1 = |2x|$, by Lemma 5.2 (3) holds. Assume that such a string U does not exist. Then for any $X \leq \text{Ones}(|x|)$ there exists $i < x$ such that $P^X_{\varphi_x}(i)$. This means that $\text{numones}(x, P^X_{\varphi_x}) < \text{numones}(x, P^X_{\varphi_x})$ holds for any $X \leq \text{Ones}(|x|)$.

Claim. If $X \leq S(\text{Ones}(|x|))$, then $\text{val}(|x| + 1, X) \leq \text{numones}(x, P^X_{\varphi_x})$ holds.

We show the claim by induction on $\text{val}(|x| + 1, X)$. The base case that $\text{val}(|x| + 1, X) = 0$ is clear. For the induction step, consider the case $\text{val}(|x| + 1, X) > 0$. In this case, $0 < |X|$, and hence by Lemma 5.3 $\text{val}(|x| + 1, P(X)) + 1 = \text{val}(|x| + 1, X)$ holds. Hence by IH $\text{val}(|x| + 1, P(X)) \leq \text{numones}(x, P^X_{\varphi_x})$ holds. By Lemma 5.1 $S(P(X)) = X$ holds. This together with IH yields $\text{val}(|x| + 1, X) = \text{val}(|x| + 1, P(X)) + 1 \leq \text{numones}(x, P^X_{\varphi_x})$ since $\text{numones}(x, P^X_{\varphi_x}) < \text{numones}(x, P^X_{\varphi_x})$.

By the claim $\text{val}(|x| + 1, S(\text{Ones}(|x|))) \leq \text{numones}(x, P^X_{\varphi_x})$ holds. On the other hand $x < \text{val}(|x| + 1, S(\text{Ones}(|x|)))$ since $|x| < |x| + 1$. Therefore $x < \text{numones}(x, P^X_{\varphi_x})$ holds, but this contradicts the definition of numones.

Theorem 5.2. Suppose 1 ≤ i. If $\Sigma^B_0(L^1_{\Pi^B_0})$ formula ψ is provable in Σ^B_0-IID, then there exists a Σ^B_1 formula ψ' provable in V^1 and provably equivalent to ψ' in $V^1(L^1_{\Pi^B_0})$.

Proof. The theorem can be shown by an induction argument on the length of a formal Σ^B_0-IID-proof resulting in ψ. We only discuss the axiom (Σ^B_0-IID) of Σ^B_0 inflationary inductive definitions and kindly refer details to readers. Let φ a Σ^B_0 formula. We reason in V^1. Fix a natural x arbitrarily. Then, since $S(X) = X + S(\emptyset)$, Theorem 5.1 yields two strings U and V such that $|U|, |V| \leq |x| \leq x + 1$, $V = \emptyset$, and the following hold.

$$\forall Y, Z[\psi_{\varphi_x}(x, 2x, U + V, Y) \land \psi_{\varphi_x}(x, 2x, U, Z) \rightarrow (\forall i < x)(Y(i) \leftrightarrow Z(i))]. \quad (4)$$
Since \(|U|, |U + V| \leq |2x|\), Lemma 5.2 yields unique two strings \(Y_0\) and \(Z_0\) such that \(|Y_0|, |Z_0| \leq x + 1\), implying that \(\psi_{P_{\varphi}}(x, 2x, U + V, Y_0)\) and \(\psi_{P_{\varphi}}(x, 2x, U, Z_0)\) hold. Hence, by Lemma 5.2, \(Z_0(i) \iff \varphi(i, Y_0)\) holds for any \(i < x\). This together with Lemma 5.2 allows us to conclude that the statement \((i < x) (Z_0(i) \iff \varphi(i, Y_0))\) is provably equivalent to \((i < x) (P_{\varphi}(i, x, U + V) \iff P_{\varphi}(i, x, U))\) in \(V^1(\mathcal{L}_{ID}^2)\).

Corollary 5.1. Every function \(\Sigma^B_{0}(\mathcal{L}_{ID}^2)\)-definable in \(\Sigma^B_{0} - IID\) is polytime computable.

Proof. Suppose that a sentence \(\Sigma^B_{0}(\mathcal{L}_{ID}^2)\) definable in \(\Sigma^B_{0} - IID\). Then by Theorem 5.2, we can find a \(\Sigma^B_{0}\) sentence \(\psi'\) provable in \(V^1(\mathcal{L}_{ID}^2)\) and provably equivalent to \(\psi\) in \(V^1(\mathcal{L}_{ID}^2)\). In particular \(\psi\) and \(\psi'\) are equivalent under the standard interpretation. Hence every function \(\Sigma^B_{0}(\mathcal{L}_{ID}^2)\)-definable in \(\Sigma^B_{0} - IID\) is \(\Sigma^B_{1}\)-definable in \(V^1\). Now employing Proposition 5.2 enables us to conclude. □

Corollary 5.2. A predicate belongs to \(P\) if and only if it is \(\Delta^B_{1}(\mathcal{L}_{ID}^2)\)-definable in \(\Sigma^B_{0} - IID\).

6 Defining PSPACE functions by non-inflationary inductive definitions

Theorem 6.1. Every polyspace computable function is \(\Sigma^B_{1}(\mathcal{L}_{ID}^2)\)-definable in \(\Sigma^B_{0} - IID\).

Proof. The theorem can be shown in a similar manner as Theorem 4.1. Suppose that a function \(f\) is polyspace computable. As in the proof of Theorem 4.1, we can assume that \(f\) is a unary function such that \(f(X)\) can be computed by a single-tape Turing machine \(M\) using a number of cells bounded by a polynomial \(r(|X|)\) in \(|X|\). Assuming a standard encoding of configurations of \(M\) into binary strings, the binary length of every configuration is exactly \(q(|X|)\) for some polynomial \(q\). Let \(\text{Init}_M\) denote the predicate defined on page 6. A new predicate \(\text{Next}_M'(i, X, Y)\) denotes the successor configuration of \(Y\), but in contrast to \(\text{Next}_M\), \(\text{Next}_M'(i, X, Y)\) does not change if \(Y\) encodes the final configuration. More precisely, if \(Y\) encodes the final configuration, then \((\forall i < q(|X|))(\text{Next}_M'(i, X, Y) \iff Y(i))\) holds. In contrast to the definition of \(\varphi\) on page 6, let \(\varphi(i, X, Y)\) denote the formula

\[
i < q(|X|) \land [\text{Init}_M(i, X) \lor \text{Next}_M'(i, X, Y)].
\]

It is not difficult to convince ourselves that \(\varphi\) is a \(\Sigma^B_{1}\) formula. Hence, reasoning in \(\Sigma^B_{0} - IID\), by the axiom (\(\Sigma^B_{0}\) - IID) of \(\Sigma^B_{0}\) inductive definitions, we can find two strings \(U\) and \(V\) such that \(|U|, |V| \leq q(|X|) + 1\), \(V \neq \emptyset\) and \(P^U + V_{\varphi, q(|X|) + 1} = P^U_{\varphi, q(|X|) + 1}\) hold. Hence the following \(\Sigma^B_{1}(\mathcal{L}_{ID}^2)\) formula \(\psi_f(X, Y)\) holds.

\[
(\exists U, V \leq q(|X|) + 1) [V \neq \emptyset \land P^U_{\varphi, q(|X|) + 1} = P^U_{\varphi, q(|X|) + 1} \land Y = \text{Value}(P^U_{\varphi, q(|X|) + 1})].
\]
where $\text{Value}(Z)$ denotes the extraction function Σ^B_0-definable in \mathcal{V}^0 as in the proof of Theorem 4.1. As we observed, $P^U_{\varphi,\delta}(|X|)+1$ encodes the final configuration of M. Hence $\psi_f(X,Y)$ defines the graph $f(X) = Y$ of f. Now it is clear that $\forall X \exists Y \psi_f(X,Y)$ holds. The uniqueness of Y follows accordingly, allowing us to conclude.

\section{Reducing non-inflationary inductive definitions to W^1_1}

In this section we show that every function $\Sigma^B_1(\mathcal{L}^2_{\text{ID}})$-definable in the system $\Sigma^B_0\text{-ID}$ of Σ^B_0 inductive definitions is polyspace computable by reducing $\Sigma^B_0\text{-ID}$ to a third order system W^1_1 of bounded arithmetic which was introduced by A. Skelley in \cite{8}. The third order vocabulary \mathcal{L}^3_A is defined augmenting the second order vocabulary \mathcal{L}^2_A with the third order membership relation \in^3. As in the case of the second order membership, the formula of the form $Y \in^3 X$ is abbreviated as $X(Y)$. Third order elements X, Y, Z, \ldots would denote hyperstrings, i.e., $X(Y)$ holds if and only if the Yth bit of X is 1. Classes Σ^B_i, Π^B_i and Δ^B_i ($0 \leq i$) are defined in the same manner as Σ^B_i, Π^B_i and Δ^B_i but third order quantifiers are taken into account instead of second order ones. For instance, $\Sigma^B_1 = \bigcup_{0 \leq i} \Sigma^B_i(\mathcal{L}^3_A)$, and a Σ^B_1 formula is of the form $\exists \forall \chi \psi(\chi)$, where no third order quantifier appears in ψ. For a class Φ of \mathcal{L}^3_A-formulas, the axiom of ($\Phi\text{-3COMP}$) is defined by

$$\forall x \exists Z(\forall Y \leq x)[Z(Y) \leftrightarrow \varphi(Y)],$$

where $\varphi \in \Phi$. The system W^1_1 consists of the basic axioms of second order bounded arithmetic (B1–B12, L1, L2 and SE, \cite[p. 96]{3}), $\Sigma^B_1\text{-IND}$, $\Sigma^B_0\text{-COMP}$ and $\Sigma^B_0\text{-3COMP}$.

\textbf{Proposition 7.1 (Skelley \cite{8}).} A function is polyspace computable if and only if it is Σ^B_1-definable in W^1_1.

\textbf{Remark 7.1.} In the original definition of W^1_1 presented in \cite{8}, the axiom (IND) of induction is allowed only for a class $\forall^2 \Sigma^B_1$ of formulas, which is slightly more restrictive than Σ^B_1. However it can be shown that every Σ^B_1 formula is provably equivalent to a $\forall^2 \Sigma^B_1$ formula in W^1_1 (See \cite[Theorem 2 and Corollary 3]{8}).

We show that a stronger form of Σ^B_0-inductive definitions holds in W^1_1.

\textbf{Definition 7.1 (Axiom of Relativised Inductive Definitions).} We assume a new predicate symbol $P_\varphi(i,x,X,Y)$ instead of $P_\varphi(i,x,X)$ for each φ. We replace Definition 3.1.1 and 3.1.2 respectively with the following defining axioms.

1. $(\forall i < x)[P_\varphi(i,x,\emptyset,Y) \leftrightarrow Y(i)].$
2. $(\forall X \leq x+1)(\forall i < x) [P_\varphi(i,x,S(X),Y) \leftrightarrow \varphi(i,P_{\varphi,X}[Y])], \text{ where } \varphi(i,P_{\varphi,X}[Y])$ denotes the result of replacing every occurrence of $X(j)$ in $\varphi(i,X)$ with $P_\varphi(j,x,X,Y) \land j < x.$
Then a relativised form of the axiom of inductive definitions denotes the following statement, where \(\varphi \in \Phi \).

\[
(\forall Y \leq x)(\exists U, V \leq x + 1) [V \neq 0 \land (\forall i < x) (P_\varphi(i, x, U + V, Y) \leftrightarrow P_\varphi(i, x, U, Y))]
\]

As in the case of the predicate \(P_\varphi(i, x, X) \), we write \(P^X_\varphi[X] = Y \) instead of \((\forall i < x)(P_C(i, x, X, Y) \leftrightarrow Z(i)) \). Apparently the axiom of relativised inductive definitions implies the original axiom of inductive definitions.

Definition 7.2. 1. The complementary string \(Y^C_x \) of a string \(Y \) of length \(x \) is defined by the axiom \(Y^C_x(i) \leftrightarrow i < x \land \neg Y(i) \).

2. The string subtraction \(X \downarrow Y \) is defined by the axiom

\[
(X \downarrow Y)(i) \leftrightarrow (X \leq Y \land i < 0) \lor (Y < X \land i < |X| \land (X + S(Y^C_x))(i)).
\]

It can be shown that in \(V^0 \), if \(|Y| \leq x \), then \(Y + Y^C_x = \text{Ones}(x) \), and hence \(Y + S(Y^C_x) = S(\text{Ones}(x)) \) holds. Thus one can show that \(|(X + Y) \downarrow Y| = |X|\)

and, for any \(i < |X| \), \([(X + Y) \downarrow Y](i) \leftrightarrow [X + S(\text{Ones}(|X + Y|)](i) \leftrightarrow X(i) \), concluding \((X + Y) \downarrow Y = X \).

Lemma 7.1. Let \(\psi(x, X) \) be a \(\Sigma^B_0 \) formula. Then the relation \((x, y, X, Y, Z) \rightarrow P^X_\psi[x][Y] = Z \) can be expressed by a \(\Delta^B_1 \) formula \(\psi_{P_\psi}(x, y, X, Y, Z) \) if \(|X|, |Y| \leq y \) in the same sense as in Lemma 5.3. Furthermore the sentence \(\forall x, y(\forall x, y \leq y)(\forall y \leq x)(\Pi Z \leq x)(\exists \Pi \psi_{\Pi}(x, y, X, Y, Z)) \) is provable in \(W_1^1 \).

Notation. We define a string function \((Z)^X \), which denotes the \(X \)th component of a hyper string \(Z \), by the axiom \((Z)^X = Y \leftrightarrow Z((X, Y)) \). For a hyper string \(Z \) we write \(\exists!Z \leq x \) to refer to the uniqueness up to elements of length not exceeding \(x \), i.e., \((\exists! Z \leq x)\psi(Z) \) denotes \(\exists!Z \psi(Z) \) and additionally,

\[
\forall Z_0, Z_1[\psi(Z_0) \land \psi(Z_1) \rightarrow (\forall y \leq x)(Z_0(Y) \leftrightarrow Z_1(Y))].
\]

Proof. Let \(\psi(x, y, X, Y, Z, \overline{Z}) \) denote the \(\Sigma^B_0 \) formula expressing

\[
- (\forall U \leq y)(U \leq X \rightarrow (\overline{Z})^U \leq x),
- (\overline{Z})^y = Y, (\overline{Z})^X = Z, \text{ and }
- (\forall U \leq y)(U \leq X \rightarrow (\forall i < x)[(\overline{Z})^{S(U)}(i) \leftrightarrow \varphi(i, (Z)^U)]).
\]

By the definition of \(\psi \), the relation \(P^X_\varphi[x][Y] = Z \) is expressed by the \(\Sigma^B_1 \) formula \(\exists Z \psi(x, y, X, Y, Z, Z) \) if \(|X| \leq y \). It suffices to show that \((\forall y \leq x)(\exists! Z \leq x)(\exists!Z \leq (\overline{Z})) \psi(x, y, X, Y, Z, Z) \) holds in \(W_1^1 \).

Reason in \(W_1^1 \). We only show the existence of such a string \(Z \) and a hyper string \(\overline{Z} \). The uniqueness in the sense of \([4] \) can be shown accordingly. By induction on \(|X|\) we derive the \(\Sigma^B_1 \) formula \((\forall y \leq x)(\exists! Z \leq x)(\exists!Z \leq (\overline{Z})) \psi(x, y, X, Y, Z, Z) \). The argument is based on a standard “divide-and-conquer method”. In the base case, \(|X| = 0 \), i.e., \(X = \emptyset \), and hence the assertion is clear. The case that \(|X| = 1 \), i.e., \(X = S(\emptyset) \), is also clear. Suppose that \(|X| > 1 \). Then we can find two strings \(X_0 \) and \(X_1 \) such that \(|X_0| = |X_1| = |X| - 1 \) and \(X = X_0 + X_1 \). Fix a string \(Y \) so that \(|Y| \leq x \). Then by IH we can find a string \(Z_0 \) and a hyper string \(\overline{Z}_0 \) such
that \(|Z_0| \leq x\) and \(\psi(x, X_0, Y, Z_0, Z_0)\) hold. Since \(|Z_0| \leq x\), another application of IH yields \(Z_1\) and \(Z_1\) such that \(|Z_0| \leq x\) and \(\psi(x, X_1, Z_0, Z_1, Z_1)\) hold. Define a hyper string \(Z\) with use of \((\Sigma_3^B\text{-3COMP})\) by

\[
(\forall U \leq \langle |X|, x \rangle) [Z(U) \leftrightarrow (U^{[0]} \leq X_0 \land (Z_0)^{U^{[0]}} = U^{[1]}) \lor (X_0 < U^{[0]} \land (Z_0)^{U^{[0]}} : x_0 = U^{[1]})].
\] (5)

Intuitively \(Z\) denotes the concatenation \(Z_0 \cdot Z_1\), the hyper string \(Z_0\) followed by \(Z_1\). Then by definition \(\psi(x, X, Y, Z_1, Z)\) holds. Due to the uniqueness of the string \(Z\) and the hyper string \(Z\), the \(\Sigma_3^B\) formula \(\exists Z \psi(x, y, X, Y, Z, Z)\) is equivalent to the \(\Pi_1^B\) formula \((\forall V \leq x)((\forall Z \leq \langle |X|, x \rangle)(\psi(x, X, Y, V, Z) \rightarrow V = Z)\), and hence is also a \(\Delta_1^B\) formula.

Lemma 7.2. The following holds in \(W_1\).

\(\forall x, y (\forall X \leq y)(\forall Y \leq y)(\forall Z \leq x)(|Y + X| \leq y \rightarrow P^X_\varphi, x[P^Y_\varphi, x[Z]] = P^X_\varphi, x[P^Y_\varphi, x[Z]])\).

Proof. By the previous lemma the relation \(P^X_\varphi, x[P^Y_\varphi, x[Z]] = P^Y_\varphi, x[Z]\) can be expressed by a \(\Delta_1^B\) formula if \(|X|, |Y| \leq y\). Reason in \(W_1\). We show that

\(|X| \leq y \rightarrow (\forall Y \leq y)(\forall Z \leq x)(|Y + X| \leq y \rightarrow P^X_\varphi, x[P^Y_\varphi, x[Z]] = P^Y_\varphi, x[Z])\)

holds by induction on \(|X|\). The base case that \(|X| = 0\) or \(|X| = 1\) is clear. Suppose \(|X| > 0\). Then we can find two strings \(X_0\) and \(X_1\) such that \(|X_0| = |X_1| = |X| - 1\) and \(X_0 + X_1 = X\). Fix a string \(Z\) so that \(|Z| \leq x\). Since \(|X_1| = |X_0| < |X| \leq y\) and \(|X_0 + X_1| = |X| \leq y\), IH yields \(P^{X_0}_\varphi, x[P^{X_1}_\varphi, x[Z]] = P^{X_0}_\varphi, x[P^{X_1}_\varphi, x[Z]]\). Hence

\(P^Y_\varphi, x[P^X_\varphi, x[Z]] = P^Y_\varphi, x[P^{X_0}_\varphi, x[P^{X_1}_\varphi, x[Z]]]\).

\(\) (6)

On the other hand, since \(|X_0| \leq y\), \(|Y + X_0| \leq |Y + X| \leq y\) and \(|P^{X_0}_\varphi, x[Z]| \leq x\), another application of IH yields

\(P^Y_\varphi, x[P^{X_0}_\varphi, x[P^{X_1}_\varphi, x[Z]]] = P^{Y + X_0}_\varphi, x[P^{X_1}_\varphi, x[Z]]\).

\(\) (7)

Farther, since \(|Y + X_0| \leq y\) and \(|X_1| \leq |X| \leq x\), the final application of IH yields

\(P^{Y + X_0}_\varphi, x[P^{X_1}_\varphi, x[Z]] = P^{Y + X_0 + X_1}_\varphi, x[Z] = P^{Y + X}_\varphi, x[Z]\).

\(\) (8)

Combining equation \((6), (7)\) and \((8)\) allows us to conclude.

Definition 7.3. A string function \(\text{numones}^3[Y](X, \mathcal{X}),\) which counts the number of elements of \(\mathcal{X}\) (starting with \(Y\)) such that \(|X|\), is defined by

\[
\text{numones}^3[Y](\emptyset, \mathcal{X}) = Y,
\]

\[
\text{numones}^3[Y](S(X), \mathcal{X}) = \begin{cases} S(\text{numones}^3[Y](X, \mathcal{X})) & \text{if } \mathcal{X}(X) \text{ holds,} \\ \text{numones}^3[Y](X, \mathcal{X}) & \text{if } \neg \mathcal{X}(X) \text{ holds.} \end{cases}
\]

Lemma 7.3. The function \(\text{numones}^3\) is \(\Delta_1^B\)-definable in \(W_1\).

13
Proof. Let \(\psi_{\text{numones}^3}(X, Y, Z, \mathcal{X}, \mathcal{Y}) \) denote the \(\Sigma^B_3 \) formula expressing

- \(Z \leq Y + X \),
- \((\forall Y)(\exists Z \leq Y) = Y \),
- \((\forall Y)X = Z \),
- \((\forall Y)(\exists Z \leq Y) = S((\forall Y)U) \), and
- \((\forall Y)(\exists Z \leq Y) = (\forall Y)(\exists Z \leq Y) \).

Then by definition the \(\Sigma^B_3 \) formula \(\exists Z \psi_{\text{numones}^3}(X, Y, Z, \mathcal{X}, \mathcal{Y}) \) defines the graph \(\text{numones}^3 \mathcal{Y}(X, \mathcal{X}) = Z \) of \(\text{numones}^3 \). We show that if \(|X| \leq x \), then

\[
(\forall Y \leq x)[|Y + X| \leq x \rightarrow (\exists! Z \leq y)(\exists! Y \leq (|X|, x))\psi_{\text{numones}^3}(X, Y, Z, \mathcal{X}, \mathcal{Y})]
\]

holds in \(W_1 \). Reason in \(W_1 \). Given \(x \), we only show the existence of such a string \(Z \) and a hyper string \(\mathcal{Y} \) by induction on \(|X| \). The uniqueness can be shown in a similar manner. Fix \(x \) and \(Y \) so that \(|Y| \leq x \) and \(|Y + X| \leq x \). In case that \(|X| = 0 \), i.e., \(X = \emptyset \), define \(\mathcal{Y} \) by

\[(\forall U \leq (0, x))|\mathcal{Y}(U) \leftrightarrow (U = (\emptyset, Y))].
\]

Then \(|X| \leq x \), \(Y \leq Y + \emptyset \) and \(\psi_{\text{numones}^3}(\emptyset, Y, \mathcal{X}, \mathcal{Y}) \) hold. In case that \(|X| = 1 \), i.e., \(X = S(\emptyset) \), define \(\mathcal{Y} \) by

\[(\forall U \leq (1, x))|\mathcal{Y}(U) \leftrightarrow U = (\emptyset, Z) \lor (\mathcal{X}(\emptyset) \land U = S(\emptyset), S(Y)) \land (-\mathcal{X}(\emptyset) \land U = (S(\emptyset), Y))].
\]

Clearly \(|(\forall Y)(\exists Z \leq Y)| = |S(Y)| = |Y + S(\emptyset)| \), \((\forall Y)(\exists Z \leq Y) \leq S(Y) = Y + S(\emptyset) \) and

\(\psi_{\text{numones}^3}(S(\emptyset), (\forall Y)(\exists Z \leq Y), \mathcal{X}, \mathcal{Y}) \) hold. For the induction step, suppose \(|X| > 1 \). Then there exist strings \(X_0 \) and \(X_1 \) such that \(|X_0| = |X_1| = |X| - 1 \) and \(X_0 + X_1 = X \). By assumption \(|Y + X_0| \leq |Y + X| \leq x \). Hence IH yields a string \(Z_0 \) and a hyper string \(\mathcal{Y}_0 \) such that \(|Z_0| \leq x \) and \(\psi_{\text{numones}^3}(X_0, Y_0, Z_0, X, \mathcal{Y}_0) \) hold. In particular \(Z_0 \leq Y + X_0 \). This implies \(|Z_0 + X_1| \leq |Y + X_0 + X_1| = |Y + X| \leq x \). Thus another application of IH yields \(Z_1 \) and \(\mathcal{Y}_1 \) such that \(|Z_1| \leq x \) and \(\psi_{\text{numones}^3}(X_1, Z_0, Z_1, X, \mathcal{Y}_1) \) hold. Define \(\mathcal{Y} \) in the same way as \(\mathcal{Y}_1 \) in the proof of Lemma 7.4 i.e., \(\mathcal{Y} = \mathcal{Y}_1 \cup \mathcal{Y}_1 \). It is not difficult to see that \(\psi_{\text{numones}^3}(X, Y, Z_1, \mathcal{X}, \mathcal{Y}) \) holds. Thanks to the uniqueness of \(Z \) and \(\mathcal{Y} \), one can see that \(\exists Z \psi_{\text{numones}^3}(X, Y, Z, \mathcal{X}, \mathcal{Y}) \) is a \(\Delta^B_3 \) formula. \(\square \)

Lemma 7.4. The axiom \((\Sigma^B_3 - \text{COMP}) \) of third order comprehension for \(\Sigma^B_3 \) formulas holds in \(W_1 \).

Readers might recall that the \(V^1 \) can be axiomatised by \((\Sigma^B_0 - \text{COMP}) \) and \((\Sigma^B_1 - \text{IND}) \) instead of \((\Sigma^B_3 - \text{COMP}) \), cf. [3] p. 149, Lemma VI.4.8. Lemma 7.4 can be shown with the same idea as the proof of this fact. For the sake of completeness, we give a proof in the appendix.

Theorem 7.1. The axiom \((\Sigma^B_3 - \text{IND}) \) of \(\Sigma^B_3 \) inductive definitions holds in \(W_1 \) in the same sense as in Theorem 5.2.
Proof. Instead of showing that the axiom \((\Sigma^B_{0} \text{-ID})\) holds in \(W_1\), we show that even the axiom of relativised \(\Sigma^B_{0}\) inductive definitions holds in \(W_1\). Let \(\varphi \in \Sigma^B_{0}\). We reason in \(W_1\). Fix \(x\) arbitrarily. Given \(X\) and \(Y\), we define a hyper string \(P^X[Y]\) with use of \((\Sigma^B_{0} \text{-3COMP})\) by

\[
(\forall Z \leq x)[P^X[Y](Z) \leftrightarrow (\exists U \leq |X|)[U < X \land P^U_{\varphi,x}[Y] = Z]].
\]

Claim. For a string \(W\), if \(x < |W|\), then the following holds.

\[
(\forall Y \leq x)[\text{numones}^3(W, P^X[Y]) \leq X \rightarrow (\exists U, V \leq |X|)[U < V \leq X \land P^U_{\varphi,x}[Y] = P^V_{\varphi,x}[Y]]].
\] (9)

Assume the claim. Since \(\text{numones}^3(S(\text{Ones}(x)), P^{S(\text{Ones}(x))}[Y]) \leq S(\text{Ones}(x))\) by the definition of \(\text{numones}^3\) and \(x < x + 1 = |S(\text{Ones}(x))|\), \(\Box\) then implies the instance of \((\Sigma^B_{0} \text{-ID})\) in case of \(\varphi\).

The rest of the proof is devoted to prove the claim. Let us observe that \(\Box\) is a \(\Sigma^B_{0}\) statement. We show the case by induction on \(|X|\). In the base case, \(X = \emptyset\) and hence \(\Box\) trivially holds. The case that \(X = S(\emptyset)\) is also trivial. For the induction step, suppose \(|X| > 1\). Then there exist strings \(X_0\) and \(X_1\) such that \(|X_0| = |X_1| = |X| - 1\) and \(X_0 + X_1 = X\). Fix a string \(Y\) so that \(|Y| \leq x\) and suppose \(\text{numones}^3(W, P^X[Y]) \leq X\). By the definition of the hyper string \(P^X[Y]\) and Lemma 7.2 for any \(Z\), if \(|Z| \leq x\), then \(P^X[Y](Z) \leftrightarrow P^{X_0}[Y](Z) \lor P^{X_1}[P^{X_0}[Y]](Z)\) holds, i.e., \(P^X[Y] = P^{X_0}[Y] \lor P^{X_1}[P^{X_0}[Y]]\). On the other hand we can assume that \((\forall U < X_0)(\forall V < X_1)P^{U}_{\varphi,x}[Y] \neq P^{V}_{\varphi,x}[P^{X_0}[Y]]\) holds, i.e., \(P^{X_0}[Y] \lor P^{X_1}[P^{X_0}[Y]] = \emptyset\). This yields

\[
\text{numones}^3(W, P^X[Y]) = \text{numones}^3(W, P^{X_0}[Y]) + \text{numones}^3(W, P^{X_1}[P^{X_0}[Y]]). \tag{10}
\]

Case. \(\text{numones}^3(W, P^{X_0}[Y]) \leq X_0\): In this case IV yields two strings \(U_0\) and \(V_0\) such that \(|U_0|, |V_0| \leq |X_0|\), \(U_0 < V_0 \leq X_0\) and \(P^{U_0}_{\varphi,x}[Z] = P^{V_0}_{\varphi,x}[Z]\). Since \(|X_0| \leq |X|\) and \(|X_0| \leq X_0 \leq X\), we can define \(U\) and \(V\) by \(U = U_0\) and \(V = V_0\).

Case. \(X_0 < \text{numones}^3(W, P^{X_0}[Y])\): In this case, \(\text{numones}^3(W, P^{X_1}[P^{X_0}[Y]]) \leq X_1\) by the equality (10). Since \(|P^{X_0}[Y]| \leq x\) by definition, another application of IV yields two strings \(U_1\) and \(V_1\) such that \(|U_1|, |V_1| \leq |X_1|\), \(U_1 < V_1 \leq X_1\) and \(P^{U_1}_{\varphi,x}[P^{X_0}[Y]] = P^{V_1}_{\varphi,x}[P^{X_0}[Y]]\) hold. Define strings \(U\) and \(V\) by \(U = X_0 + U_1\) and \(V = X_0 + V_1\). Since \(P^{U_{\varphi,x}}[Y] = P^{V_{\varphi,x}}[P^{X_0}[Y]]\) and \(P^{U_{\varphi,x}}[Y] = P^{V_{\varphi,x}}[P^{X_0}[Y]]\) by Lemma 7.2 now it is easy to check that the assertion (9) holds.

Corollary 7.1. Every function \(\Sigma^B_{0}(\mathcal{L}^B_{ID})\)-definable in \(\Sigma^B_{0} \text{-ID}\) is polytime computable.

Proof. Suppose that a \(\Sigma^B_{1}(\mathcal{L}^B_{ID})\) formula \(\psi\) is provable in \(\Sigma^B_{0} \text{-ID}\). Then, as in the proof of Theorem 7.2 from Lemma 7.1 and Theorem 7.1 one can find a \(\Sigma^B_{1}\) formula \(\psi'\) provable in \(W_1\) and provably equivalent to \(\psi\) in \(W_1(\mathcal{L}^B_{ID})\). In particular \(\psi\) and \(\psi'\) are equivalent under the underlying interpretation. Hence every string function \(\Sigma^B_{1}(\mathcal{L}^B_{ID})\)-definable in \(\Sigma^B_{0} \text{-ID}\) is \(\Sigma^B_{1}\)-definable in \(W_1\). Thus employing Proposition 7.1 enables us to conclude. □

15
Corollary 7.2. A predicate belongs to PSPACE if and only if it is $\Delta^B_1(L_{ID}^2)$-definable in Σ^B_0-ID.

8 Conclusion

In this paper we introduced a novel axiom of finitary inductive definitions over the Cook-Nguyen style second order bounded arithmetic. We have shown that over a conservative extension $V^0(L_{ID}^2)$ of V^0 by fixed point predicates, P can be captured by the axiom of inductive definitions under Σ^B_0-definable inflationary operators whereas PSPACE can be captured by the axiom of inductive definitions under (non-inflationary) Σ^B_0-definable operators. It seems also possible for each $i \geq 0$ to capture the ith level of the polynomial hierarchy by the axiom of inductive definitions under Σ^B_i-definable inflationary operator, e.g., a predicate belongs to NP if and only if it is $\Delta^B_2(L_{ID}^2)$-definable in Σ^B_0-IID. As shown by Y. Gurevich and S. Shelah in [5], over finite structures the fixed point of a first order definable inflationary operator can be reduced the least fixed point of a first order definable monotone operator. In accordance with this fact, it is natural to ask whether the axiom Σ^B_0-IID of inflationary inductive definitions for Σ^B_0-definable operators can be reduced a suitable axiom of monotone inductive definitions for Σ^B_0-definable operators.

Acknowledgment

The author thanks Shohei Izawa for the initial discussions about this subject with him. He also acknowledges valuable discussions with Toshiyasu Arai during his visit at Chiba University. He pointed out that the numerical function val and the string one $P^X_{\varphi,x}$ ($|X| \leq |y|$) are not only Σ^B_1-definable but even Δ^B_1-definable in V^1 (Lemmas 5.1, 5.2) and $P^X_{\varphi,x}$ and numones^3 are even Δ^B_1-definable in W^1_1 as well (Lemmas 7.1, 7.3). This observation made later arguments easier. Finally, he would like to thank Arnold Beckmann for his comments about this subject. The current formulation of inductive definitions stems from his suggestion.

References

1. T. Arai. A Bounded Arithmetic AID for Frege Systems. Annals of Pure Applied Logic, 103(1-3):155–199, 2000.
2. S. Buss. Bounded Arithmetic. Bibliopolis, 1986.
3. S. Cook and P. Nguyen. Logical Foundations of Complexity. Cambridge University Press, 2010.
4. H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Second edition. Perspectives in Mathematical Logic. Springer, 1999.
5. Y. Gurevich and S. Shelah. Fixed-point Extensions of First-order Logic. Annals of Pure and Applied Logic, 32(3):265–280, 1986.

\footnote{The previous formulation can be found at \texttt{http://arxiv.org/abs/1306.5559v3}}
A Proving $(\Sigma^B_1\text{-}3\text{COMP})$ in W^1_1

In the appendix we show Lemma 7 which states that the axiom $(\Sigma^B_1\text{-}3\text{COMP})$ of third order comprehension for Σ^B_1 formulas (presented on page 11) holds in W^1_1. We start with showing a couple of auxiliary lemmas.

Lemma A.1. In W^1_1 for any number x, string X and hyper string Z, if $|X| \leq x$ and $\emptyset < \text{numones}^3(X, Z)$, then the following holds.

$$(\exists Y \leq x)(Y < X \land S(\text{numones}^3(Y, Z)) = \text{numones}^3(X, Z)).$$

Proof. Reason in W^1_1. Fix x and Z. We show the following stronger assertion holds by induction on $|X| \leq x$.

$$(\forall U \leq x)[U + X] \leq x \land \text{numones}^3(U, Z) < \text{numones}^3(U + X, Z) \rightarrow$$

$$(\exists Y \leq x)(Y < X \land S(\text{numones}^3(U + Y, Z)) = \text{numones}^3(U + X, Z)).$$

If $|X| = 0$, i.e., $X = \emptyset$, then $\text{numones}^3(U, Z) = \text{numones}^3(U + X, Z)$, and hence the assertion trivially holds. In the case $|X| = 1$, i.e., $X = S(\emptyset)$, if $\text{numones}^3(U, Z) < \text{numones}^3(U + S(\emptyset), Z)$, then the assertion is witnessed by $Y = \emptyset$. For the induction step, suppose $|X| > 1$. Then there exist two strings X_0 and X_1 such that $|X_0| = |X_1| = |X| - 1$ and $X_0 + X_1 = X$. Fix a string U so that $|U| \leq x$ and suppose that $|U + X| \leq x$ and $\text{numones}^3(U, Z) < \text{numones}^3(U + X, Z)$ hold. Then $|U + X_0| \leq x$.

Case. $\text{numones}^3(U, Z) = \text{numones}^3(U + X_0, Z)$: By IH there exists a string $Y < X_1 < X$ such that $|Y| \leq x$ and $S(\text{numones}^3(U + Y, Z)) = \text{numones}^3(U + X_1, Z) = \text{numones}^3(U + X_0 + X_1, Z) = \text{numones}^3(U + X, Z)$.

Case. $\text{numones}^3(U, Z) < \text{numones}^3(U + X_0, Z)$: In this case by IH there exists a string $Y_0 < X_0$ such that $|Y_0| \leq x$ and $S(\text{numones}^3(U + Y_0, Z)) = \text{numones}^3(U + $

6. N. Immerman. Relational Queries Computable in Polynomial Time (Extended Abstract). In *Proceedings of the 14th Annual ACM Symposium on Theory of Computing*, pages 147–152, 1982.
7. W. Pohlers. Subsystems of Set Theory and Second Order Number Theory. In S. R. Buss, editor, *Handbook of Proof Theory*, pages 210–335. North Holland, 1998.
8. A. Skelley. A Third-order Bounded Arithmetic Theory for PSPACE. In *Proceedings of the 18th EACSL Annual Conference on Computer Science Logic (CSL 2004)*, Lecture Notes in Computer Science, volume 3210, pages 340–354, 2004.
9. K. Tanaka. The Galvin-Prikry Theorem and Set Existence Axioms. *Annals of Pure Applied Logic*, 42(1):81–104, 1989.
10. K. Tanaka. Weak Axioms of Determinacy and Subsystems of Analysis II (Σ^0_2 Games). *Annals of Pure Applied Logic*, 52(1-2):181–193, 1991.
11. M. Y. Vardi. The Complexity of Relational Query Languages (Extended Abstract). In *Proceedings of the 14th Annual ACM Symposium on Theory of Computing*, pages 137–146, 1982.
12. D. Zambella. Notes on Polynomially Bounded Arithmetic. *Journal of Symbolic Logic*, 61(3):942–966, 1996.
X_0, Z) holds. If \text{numones}^3(U + X_0, Z) = \text{numones}^3(U + X, Z), then the witnessing string Y can be defined to be Y_0. Consider the case \text{numones}^3(U + X_0, Z) < \text{numones}^3(U + X, Z). Then another application of IH yields a string Y_1 < X_1 such that |Y_1| \leq x and S(\text{numones}^3(U + X_0 + Y_1, Z)) = \text{numones}^3(U + X_0 + X_1, Z) hold. Define a string Y by X_0 + Y_1. Then |Y| = |X| = x, Y = X_0 + Y_1 < X_0 + X_1 = X and S(\text{numones}^3(U + Y, Z)) = \text{numones}^3(U + X, Z) hold. □

Lemma A.2. In W_1, for any number x, strings X, Z and hyper string \text{Y}, if |X| \leq x and 0 < Z \leq \text{numones}^3(X, Z), then the following holds.

\((\exists Y \leq x)(Y < X \land \text{numones}^3(Y, Z) + Z = \text{numones}^3(X, Z))\).

Proof. Reason in W_1. Fix x and Z. We show the following stronger assertion holds by induction on |Z|.

\[(\forall X \leq x)(\forall U \leq x)
\begin{align*}
&\{|U + Z| \leq x \land 0 < Z \leq \text{numones}^3(X, Z) \rightarrow
\end{align*}
\[(\exists Y \leq x)(Y < X \land \text{numones}^3(Y, Z) + U + Z = \text{numones}^3(X, Z) + U)\}.
\]

If |Z| = 0, i.e., Z = 0, then the assertion trivially holds. In the case |Z| = 1, i.e., Z = S(\emptyset), since \text{numones}^3(Y, Z) + U + S(\emptyset) = S(\text{numones}^3(Y, Z)) + U, the assertion follows from Lemma A.1. For the induction step, suppose |Z| > 1. Then, as in the previous proof, there exist strings Z_0 and Z_1 such that |Z_0| = |Z_1| = |Z| - 1 and Z_0 + Z_1 = Z. Fix two strings X and U so that |X|, |U| \leq x and |U + Z| \leq x and suppose that 0 < Z \leq \text{numones}^3(X, Z). Then, since |U + Z_0| \leq |U + Z| \leq x and 0 < Z_0 < Z \leq \text{numones}^3(X, Z), IH yields a string Y_0 \leq X such that |Y_0| \leq x and \text{numones}^3(Y_0, Z) + U + Z_0 = \text{numones}^3(X, Z) + U hold. Since |Y_0| \leq |X| \leq x and |U + Z_0| \leq |U + Z| \leq x, another application of IH yields a string Y_1 \leq Y_0 < X such that |Y_1| \leq x and \text{numones}^3(Y_1, Z) + U + Z_0 + Z_1 = \text{numones}^3(Y_1, Z) + U + Z_0 = \text{numones}^3(X, Z) + U holds. Thus the witnessing string Y can be defined to be Y_0.

□

Notation. In contrast to the empty string \emptyset, we write \emptyset^3 to denote the empty hyper string defined by the axiom \emptyset^3(X) ↔ |X| < 0.

Proof (of Lemma 7.4). Suppose a \Sigma^B formula \varphi(Z). We have to show the existence of a hyper string \text{Y} such that (\forall Z \leq x)(\text{Y}(Z) ↔ \varphi(Z)) holds. Let \psi(x, U, X, \text{Y}) denote the following formula.

\((\forall Z \leq x)(\text{Y}(Z) \rightarrow \varphi(Z)) \land X = U + \text{numones}^3(S(\text{Ones}(x)), \text{Y}))\).

By Lemma 7.3 \psi is a \Sigma^B formula, and hence so is \exists \psi(x, U, X, \text{Y}). Reason in W_1. The argument splits into two (main) cases.

Case. (\exists X \leq x + 1)[X < S(\text{Ones}(x)) \land \exists \psi(x, \emptyset, X, \text{Y}) \land (\forall Y \leq x + 1)(Y \leq S(\text{Ones}(x)) \land X < Y → \neg \exists \psi(x, \emptyset, Y, \text{Y})] Suppose that a string X_0 witnesses this case. Let \psi(x, \emptyset, X_0, \text{Y}). Then clearly (\forall Z \leq x)(\text{Y}(Z) → \varphi(Z)) holds. We show the converse inclusion by contradiction. Assume that there exists a string Z_0 such that |Z_0| \leq x, \varphi(Z_0) but \neg \text{Y}(Z_0). Define a hyper string \text{Y}' by

\[(\forall Z \leq x)(\text{Y}'(Z) ↔ (Z = Z_0 \lor \text{Y}(Z)))\].
Then \((\forall Z \leq x)(\exists Y(Z) \to \varphi(Z))\) by definition, and also \(\text{numones}^3(S(\text{Ones}(x)), \mathcal{Y}) = X_0 < S(X_0) = \text{numones}^3(S(\text{Ones}(x)), \mathcal{Y}^0) \leq S(\text{Ones}(x))\). But this contradicts the assumption of this case.

CASE. The previous case fails: Namely, \((\forall X \leq x + 1)[X < S(\text{Ones}(x)) \land \exists Y \psi(x, \emptyset, X, \mathcal{Y}) \to (\exists Y \leq x + 1)(Y < S(\text{Ones}(x)) \land X < Y \land \exists Y \psi(x, \emptyset, Y, \mathcal{Y}))]\) holds. We derive the following \(\Sigma^1_t\) formula by induction on \(|X|\).

\[
(\forall U \leq x + 1)[U + X \leq S(\text{Ones}(x)) \to (\exists Y \leq x + 1)(\exists Y \psi(x, U, \mathcal{Y}) \land U + X \leq Y < S(\text{Ones}(x)))] \tag{11}
\]

Assume the formula \((11)\) holds. Let \(U = \emptyset\) and \(X = S(\text{Ones}(x))\). Then by \((11)\) we can find a string \(Y\) and a hyper string \(\mathcal{Y}\) such that \(|Y| \leq x + 1\) and \(\text{numones}^3(S(\text{Ones}(x)), \mathcal{Y}) = Y = S(\text{Ones}(x))\). This means that \((\forall Z \leq x)\psi(Z)\) holds, and hence in particular \((\forall Z \leq x)\psi(Z)\) holds.

In the base case, if \(|X| = 0\), i.e., \(X = \emptyset\), then \(\psi(x, U, \emptyset, \emptyset^3)\) holds. This implies \(\psi(x, \emptyset, \emptyset, \emptyset^3)\).

Hence by the assumption of this case, we can find a string \(Y\) and a hyper string \(\mathcal{Y}\) such that \(|Y| \leq x + 1\), \(Y \leq S(\text{Ones}(x))\), \(\emptyset < Y\) and \(\psi(x, \emptyset, Y, \mathcal{Y})\).

These imply the case \(|X| = 1\), i.e., \(\psi(x, U, U + Y, \mathcal{Y})\) and \(U + S(\emptyset) \leq U + Y\).\n
For the induction step, suppose \(|X| > 1\). Then there exist two strings \(X_0\) and \(X_1\) such that \(|X_0| = |X_1| = |X| - 1\) and \(X_0 + X_1 = X\). Fix a string \(U\) so that \(|U + X| \leq x + 1\). Then by IH we can find a string \(Y_0\) and a hyper string \(\mathcal{Y}_0\) such that \(|Y_0| \leq x + 1\), \(\psi(x, U, Y_0, \mathcal{Y}_0)\) and \(U + X_0 \leq Y_0\).

SUBCASE. \(U + X_0 = Y_0\): In this subcase, another application of IH yields a string \(Y_1\) and a hyper string \(\mathcal{Y}_1\) such that \(|Y_1| \leq x + 1\), \(\psi(x, Y_0, Y_1, \mathcal{Y}_1)\) and \(Y_0 + X_1 \leq Y_1\). Since \(U + X = U + X = Y_0 + X_1 \leq Y_1\), it can be observed that \(\psi(x, U, Y_1, \mathcal{Y}_0)\).

SUBCASE. \(U + X_0 < Y_0\): In this subcase we can assume that \(Y_0 < U + X\) holds. Hence by Lemma \(\text{Ones}\) we can find a string \(V < S(\text{Ones}(x))\) such that \(\text{numones}^3(V, \mathcal{Y}_0) = U + X_0\) holds. Define a hyper string \(\mathcal{Y}_0 \upharpoonright V\) by

\[
(\forall Z \leq x)[(\mathcal{Y}_0 \upharpoonright V)(Z) \leftrightarrow Z < V \land \mathcal{Y}_0(Z)] .
\]

Then \(\text{numones}^3(S(\text{Ones}(x)), \mathcal{Y}_0 \upharpoonright V) = U + X_0\) holds by definition. Now we can proceed in the same way as the previous subcase but we define the witnessing hyper string \(\mathcal{Y}\) by \(\mathcal{Y} = (\mathcal{Y}_0 \upharpoonright V) \cdot \mathcal{Y}_1\). This completes the proof of Lemma \(\text{Ones}\) \(\Box\)