MetaboDiff: an R package for differential metabolomic analysis

Andreas Mock1,2,3,*, Rolf Warta1,2, Steffen Dettling1,2, Benedikt Brors2,4, Dirk Jäger2,3 and Christel Herold-Mende1,2

1Division of Experimental Neurosurgery, Heidelberg University Hospital, 69120 Heidelberg, Germany, 2German Cancer Consortium (DKTK), 69120 Heidelberg, Germany, 3Department of Medical Oncology, National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany and 4Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany

*To whom correspondence should be addressed.

Associate Editor: Alfonso Valencia

Received on November 7, 2017; revised on February 26, 2018; editorial decision on April 23, 2018; accepted on April 24, 2018

Abstract

Summary: Comparative metabolomics comes of age through commercial vendors offering metabolomics for translational researchers outside the mass spectrometry field. The MetaboDiff packages aims to provide a low-level entry to differential metabolomic analysis with R by starting off with the table of metabolite measurements. As a key functionality, MetaboDiffs offers the exploration of sample traits in a data-derived metabolic correlation network.

Availability and implementation: The MetaboDiff R package is platform-independent, available at http://github.com/andreasmock/MetaboDiff/ and released under the MIT licence. The package documentation comprises a step-by-step markdown tutorial.

Contact: andreas.mock@med.uni-heidelberg.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The comparative study of the metabolism promises more direct insights about health and disease phenotypes than obtained by genomic analyses (Johnson et al., 2016). However, metabolomic profiling requires ultra-high performance liquid chromatography/tandem mass spectrometry and gas chromatography/mass spectrometry. The acquisition and maintenance of this analytic setup is cost- and labor-intensive and requires expert-level knowledge in both the experimental and bioinformatical analysis. As a consequence, an increasing number of translational researchers are using the service of commercial vendors or core facilities for metabolomic profiling. The common result format researchers obtain from these vendors is a table of relative metabolic measurements that were identified through the process of peak picking and peak annotation. As much as the complexity and cost of running a metabolomics facility created the need for commercial vendors, there is a need for user-friendly computational solutions for R-using experimental biologist and bioinformaticians outside the mass spectrometry field. Comprehensive computational workflows for metabolomic analysis in R exists with the recent publication of ‘metaX’ leading the way including an extensive review of metabolomics tools since 2006 (Wen et al., 2017). However, we felt that available tools are still requiring too much expert-level knowledge about the details of processing metabolomic data. To this end, we developed ‘MetaboDiff’, an open source R package for differential metabolomic analysis (Fig. 1). The defining features what we believe makes MetaboDiff more user-friendly than previous tools are (i) the start of the analytic workflow from relative metabolic measurements, (ii) the storage of all metabolomic data within a single object, (iii) the usage of current gold standards for data imputation and normalization without the need to extensively study and compare methodologies and (iv) a step-by-step markdown tutorial.

2 Features and methods

2.1 Data processing

Within MetaboDiff, metabolomic measurements and all related data are stored within a so called ‘MultiAssayExperiment’ object.
enabling the coordinated representation of multiple experiments and integrated sub-setting across experiments (Ramos et al., 2017; Supplementary Material). All common metabolite identifiers in the dataset (HMDB, KEGG and ChEBI) are used to query the Small Molecule Pathway Database (SMPDB 2.0; Jewison et al., 2014). In contrast to other high-throughput technologies, missing values are common in quantitative metabolomic datasets. K-nearest neighbor imputation is employed to minimize effects on the normality and variance of the data (Armitage et al., 2015). Combined hierarchical and k-means clustering can be used to determine outliers with the option to exclude individual samples or a cluster of samples from further analysis. Lastly, variance stabilizing normalization is used to ensure that the variance remains nearly constant over the measurement spectrum (Huber et al., 2002).

2.2 Data analysis
The data analysis section of ‘MetaboDiff’ starts by exploring the metabolome-wide difference between samples in an unsupervised fashion (see Table 1 for corresponding functions). Here, principal component analysis (PCA) and t-distributed stochastic neighbor embedding (tSNE) are at hand. Differential analysis (two or more groups) for individual metabolites is performed using Student’s t-Tests or ANOVA and corrected for multiple testing. The result of the comparative analysis can be visualized by a volcano plot. As a key functionality, ‘MetaboDiff’ offers the identification and exploration of metabolic correlation modules by the ‘weighted gene co-expression network analysis’ (WGCNA; Langfelder and Horvath, 2008) methodology. WGCNA is not limited by the need to define a priori metabolite sets for evaluation, factors in the topology of interactions and offers the possibility to relate modules to sample traits (Supplementary Material).

3 Usage scenario and benchmarking
The usability of ‘MetaboDiff’ is showcased in a case study of three datasets from a study by Priolo et al. (2014) and presented in the Supplementary Results. Here, a special emphasis is placed on the application and interpretation of the metabolic correlation network methodology.

4 Discussion
We present ‘MetaboDiff’, an R package for low-entry level differential metabolomic analysis. The functionality of the MultiAssayExperiment class opens up the possibility to incorporate other high-throughput data (e.g. expression data) from the same patient set (Ramos et al., 2017). ‘MetaboDiff’ will be continuously updated as new evidence about metabolic analysis arises.

Funding
This work was supported by the Anni Hofmann Stiftung (CHM).

Conflict of Interest: none declared.

References
Armitage,E.G. et al. (2015) Missing value imputation strategies for metabolomics data. Electrophoresis, 36, 3050–3060.
Huber,W. et al. (2002) Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics, 18, S96–104.
Jewison,T. et al. (2014) SMPDB 2.0: big improvements to the small molecule pathway database. Nucleic Acids Res, 42(Database issue), D478–D484.
Johnson,C.H. et al. (2016) Metabolomics: beyond biomarkers and towards mechanisms. Nat. Rev. Mol. Cell Biol., 17, 451–459.
Langfelder,P. and Horvath,S. (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics, 9, 559.
Priolo,C. et al. (2014) AKT1 and MYC induce distinctive metabolic fingerprints in human prostate cancer. Cancer Res., 74, 7198–7204.
Ramos,M. et al. (2017) Software for the integration of multi-omics experiments in bioc conductor. Cancer Res., 77, e39–e42.
Wen,B. et al. (2017) metaX: a flexible and comprehensive software for processing metabolomics data. BMC Bioinformatics, 18, 1–14.

3.2 Data analysis
The data analysis section of ‘MetaboDiff’ starts by exploring the metabolome-wide difference between samples in an unsupervised fashion (see Table 1 for corresponding functions). Here, principal component analysis (PCA) and t-distributed stochastic neighbor embedding (tSNE) are at hand. Differential analysis (two or more groups) for individual metabolites is performed using Student’s t-Tests or ANOVA and corrected for multiple testing. The result of the comparative analysis can be visualized by a volcano plot. As a key functionality, ‘MetaboDiff’ offers the identification and exploration of metabolic correlation modules by the ‘weighted gene co-expression network analysis’ (WGCNA; Langfelder and Horvath, 2008) methodology. WGCNA is not limited by the need to define a priori metabolite sets for evaluation, factors in the topology of interactions and offers the possibility to relate modules to sample traits (Supplementary Material).

Table 1. Biological questions that can be answered by MetaboDiff

Question	Function
Missing measurements in dataset?	na_heatmap
Outliers in dataset?	outlier_heatmap
Metabolome-wide changes between samples?	pca_plot, tsne_plot
Differential metabolite abundance between groups?	diff_test
Differential sub-pathways between groups?	MS_plot
How do metabolites relate to each other in sub-pathway?	MOI_plot

3 Usage scenario and benchmarking
The usability of ‘MetaboDiff’ is showcased in a case study of three datasets from a study by Priolo et al. (2014) and presented in the Supplementary Results. Here, a special emphasis is placed on the application and interpretation of the metabolic correlation network methodology.

4 Discussion
We present ‘MetaboDiff’, an R package for low-entry level differential metabolomic analysis. The functionality of the MultiAssayExperiment class opens up the possibility to incorporate other high-throughput data (e.g. expression data) from the same patient set (Ramos et al., 2017). ‘MetaboDiff’ will be continuously updated as new evidence about metabolic analysis arises.

Funding
This work was supported by the Anni Hofmann Stiftung (CHM).

Conflict of Interest: none declared.

References
Armitage,E.G. et al. (2015) Missing value imputation strategies for metabolomics data. Electrophoresis, 36, 3050–3060.
Huber,W. et al. (2002) Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics, 18, S96–104.
Jewison,T. et al. (2014) SMPDB 2.0: big improvements to the small molecule pathway database. Nucleic Acids Res, 42(Database issue), D478–D484.
Johnson,C.H. et al. (2016) Metabolomics: beyond biomarkers and towards mechanisms. Nat. Rev. Mol. Cell Biol., 17, 451–459.
Langfelder,P. and Horvath,S. (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics, 9, 559.
Priolo,C. et al. (2014) AKT1 and MYC induce distinctive metabolic fingerprints in human prostate cancer. Cancer Res., 74, 7198–7204.
Ramos,M. et al. (2017) Software for the integration of multi-omics experiments in bioc conductor. Cancer Res., 77, e39–e42.
Wen,B. et al. (2017) metaX: a flexible and comprehensive software for processing metabolomics data. BMC Bioinformatics, 18, 1–14.