Musical instruments for the measurement of autism sensory disorders

E Benoit¹, S Perrin¹, S Donnadieu², C Dascalu², G Mauris¹, J Favory³, C Dautremer³

¹ Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, LISTIC, Annecy, France
² Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, 38000 Grenoble, France
³ Conservatoire Rayonnement Regional, Annecy, France

E-mail: eric.benoit@univ-smb.fr

Abstract. The analysis of sensory disorders in children with autism is a long process based on the observation of children in a specific environment. It cannot be treated frequently and monitoring the evolution of sensory disorders is either impossible or limited to a period of more than one year. The objective of our study is to define and then use dedicated musical instruments to perceive the intensity of children’s responses to different stimuli in order to measure their sensory disorders.

1. Introduction

According to the American Psychiatric Association, autism spectrum disorders (ASD) are neurodevelopmental disorders characterized by deficits in social communication and the presence of limited and repetitive behaviours. Abnormalities in the sensory treatment of ASDs are frequently reported at all ages and may involve all sensory modalities (e.g., apparent indifference to pain, avoidance of certain sounds or textures, perception of unusual odour of objects, search for visual experiences of light or movement [1]). Given the behavioural, neurophysiological and anecdotal evidence of the sensory characteristics of ASDs, the most recent edition of the Diagnostic and Statistical Manual of Mental Disorders [2] presents hyper- or hypo-reactivity to sensory inputs or special interests in the sensory aspects of the environment as a limited and repeated type of behaviour.

Some authors have taken an interest on music and its impact under people with ASD. Indeed, audio stimuli have a greater impact on them than on people without ASD [3]. The response depends of the nature audio stimuli: song [4] and music [5] have a greater influence compared to typically developing people. And conversely, language stimulation cause a less important response compared to typically developing people [4, 6]. People with ASD seemed to have better musical skills than those associated with language [7-10]. Another benefit of using music for people with ASD is that it seems beneficial to themselves [11]. Therefore, a musical environment is preferred to stimulate people with ASD, but the audio stimuli is not the only one involved in musical activities. Vision, tactile and vestibular stimuli are also involved and cause various responses depending on the specific sensory sensitivity of people.

The idea that initiated our study is to take the opportunity of the existence of the musical activities dedicated to children with ASD to analyze the specific sensory sensitivity of these children in order to
identify their sensory disorder. The basic approach of our study is based on the hypothesis that the sensitivity features related to the disorders of the children can be measured by a set of dedicated musical instruments. Such instrument will them play two roles. The main role involving the musical aspects of the instrument will be to stimulate the children by the use of multiple stimuli. According to the metrological aspects of the instruments, the second role will be to perform measurements of the sensory sensitivity.

The horizon of new possibilities related to the confirmation of this hypothesis is extremely large. First, and it’s the most important, the periodicity of the measurement will be reduced to one week instead of one year. This will allow to consider to follow the evolution of sensory disorders.

From a measurement science viewpoint, the definition of the measuring instruments needs not only to define the main quantities under the global measurement, but also the link to physical quantities able to be measured by physical instruments.

We present the context of our study in the next section. Then we give the definition of the quantity under measurement. After, we present the possible measurands for the musical instruments and finally, we tackle sensitivity in order to calibration stage to be done.

2. Context of study and methodology
One of the final goals of our study is to design an augmented musical instrument capable of measuring the sensory characteristics of ASDs. The first step in doing this is to determine what are the important characteristics of people with ASDs to use. In this particular context, the traditional measurement based on questionnaires [12] cannot be done. We chose to use visual observation as a starting point to allow an autism specialist to make a diagnosis.

The Annecy conservatory (CRR) develops from several years specific musical activities for children with ASD. During these music workshops, children have the possibility to use various kind of musical instruments under the supervision of music teachers. To assess sensory sensitivity with reference methods, six observation sessions from the music workshop were filmed. The content of the sessions included two programs of 9 and 8 sequences established by the music teacher. The first program contains the following sequences: body percussion to music, playing with a phonotonic and djembe, playing with boomwhackers, instrument cards, playing the statue with hoops, bells, “African music”, meditative music, violin. The second program contains other sequences: “melody of first names”, electronic drums, conductor’s playing, string instrument sequences. In order to best assess the sensory abilities of young people with ASD, two additional sessions were developed in collaboration with the music teacher. The proposed musical program included the following sequences: two opening songs played with sticks and boomwhackers, play with tissues under the strings (guitars and ukuleles), Xylophones with hard and soft red sticks and variations in blade colors, “The lion is dead tonight” with the boomwhackers, Ira Congo sung a capella to finish. A sensory game was also interspersed with the proposed musical sequences to evaluate visual, auditory, tactile, proprioceptive and vestibular modalities. The sensory objects used in this sensory game were chosen to test each modality: the double bass (hearing), pin balls (tactile), a jumping ball (vestibular), bright eggs (vision), sensory balls (proprioceptive).

We filmed the music workshop for several children. Then, we annotated the videos using ELAN software to characterize the symptomatic attitude of ASDs. These observations are being analysed to check their consistency with the conventional diagnosis. These results related to Psychology sciences are not presented in this paper that is concerned by the Measurement science; we focus on the ability of ASD to be measured by sensors. In the long term, these sensors will be integrated into musical instruments made available during the workshops. The next step in this process is to design such a musical instrument that can measure the sensory profile of children with ASD. To do this, it is necessary to associate, to each symptomatic sensory attitude to be measured, the sensors that allow it. This article focuses on the proposal of this association to establish the sensory profile by measuring ASDs from sensors that will be placed in an object, particularly in a musical instrument made sensitive in this way.
3. Definition of the quantity under measurement

Sensitivity studies in children with ASDs indicate that sensory characterization is achieved by identifying the intensity of hypersensitivity and hyperreactivity to stimulation related to hyposensitivity and hypersensitivity respectively.

Actually, responsiveness is never considered as a one-dimensional quantity because a child’s sensitivity can be both hypo and hyper. This appears especially on the result given by an analysis based on Dunn’s sensory profile [13]. Bogdashina, who considers not only the sensory disorders but also any sensory experiences, proposed to split the global sensory sensitivity on 7 modalities that are: vision, hearing, taste, smell, tactile, proprioception, vestibular [14]. Even if the hyposensitivity and hypersensitivity can be detected simultaneously for a given modality, this situation occurs rarely. The sensitivity is then defined by its threshold. A low threshold indicates a hypersensitivity and a high threshold indicates a hyposensitivity.

In the field of Psychology, the measurement approach is based on the clinical observation of the behavior’s manifestations of the hypo/hyper sensory sensitivity. For example, approaching a noisy object to the ear is a manifestation of a hyposensitivity on the hearing modality. This approach conforms with the basic principles of measurement. The involved process performs observations of the manifestations of a quantity. Indeed, this quantity is the sensory sensitivity threshold, and each manifestation observation contributes to the production of an observation statement that defines an intersubjective evaluation as defined by Mari [15].

Bogdashina proposed to evaluate separately the sensitivity for the 7 modalities with a questionnaire made of 232 questions. Each question is related to the occurrence of a behavior that expresses an hypo or hyper sensitivity. For each modality, aggregation is performed by counting the number of observations of hypersensitivity-related behaviours and the number of non-observations of hyposensitivity-related behaviours. The final measurement result is obtained by a normalisation with the number of questions for the given modality.

The measurand, i.e. the quantity under observation that we will name the multimodal sensitivity, is defined by a set of 7 measurands: formally the sensory sensitivity thresholds for each of the 7 modalities. The measurement of measurands related to each modality is then performed with an ordinal scale, i.e. a scale that preserves the ordinal relations.

In order to create references for a future calibration of the augmented musical instruments, our study was first focused on the analysis of the sensitivity of 4 children with ASD by the way of psychological approaches. The chosen approach is an analysis based on the Bogdashina questionnaire limited to the 5 modalities: vision, hearing, tactile, proprioception and vestibular.

Figure 1 presents a synthesis of the analyse of the sensory sensitivity of the 4 children with the Bogdashina’s questionnaire. For confidentiality reasons, the children names had been changed.

4. Definition of the possible measurands for the musical instruments

As the Conservatory organizes musical activities, musical instruments will be augmented to allow them to perceive their environment, and more specifically to perceive the interaction that children have with them. They may also be able to stimulate children through the production of sounds, lights or movements. As augmented musical instruments can only detect or act on physical quantities, they cannot directly measure children’s multimodal sensitivity. If we consider each modality (measuring the taste sensitivity and the smell sensitivity is a quite complex process and these two modalities are not included in our study) the multimodal sensitivity is restricted in our study to 5 modalities: vision, hearing, tactile, proprioception, vestibular.
Figure 1. Bogdashina synthesized result for 5 sensory modalities. On the scale, 0 leads to a sever hyposensitivity and 0.6 leads to an important hypersensitivity, and 1 to a sever hypersensitivity.

In our approach, each augmented musical instrument (AMI) is formally a set of sensors and actuators, and is able to communicate with the other instruments. Actually, an AMI holds all the properties of an actor of the Internet of Things (IoT). Furthermore a group of AMIs is defined as a measuring experiment around the children, each measuring experiment being defined relatively to the observation of a children behavior and each behavior being a manifestation of a hypo/hypersensitivity of a given sensory modality. The goal is to let the AMIs observe and identify the hypo/hypersensitivity manifestations.

The proposed tables 1 to 4 list the behaviors under observation for each modality. These lists, defined by a psychologist, are similar to the Bogdashina’s questionnaire but are dedicated to the observation by sensors. The column 2 of each table associates with each behavior one or more quantities that must be measured by the AMIs in order to identify the occurrence of the given behavior. The column Devices gives the pertinent sensors, actuators and processes the AMIs must hold to participate to the measuring experiment (detailed in table 5).

According to a group’ ability to perform multiple experiments to detect the occurrence of the listed behaviours, the link between the intensity of the behaviour and the sensitivity remains to be established. Two main options are available: apply existing methods based on knowledge of the relationship of each behaviour with hyposensitivity/hypersensitivity, or establish this relationship through a learning method. Especially, the Rash method, already successfully used in the field [16], is under study.
Table 1. Hearing sensitivity.

Behavior	Quantity under observation	Devices
Draws near an AMI producing noise	distance (child/AMI)	\(s_1 \ s_2 \ s_3\)
Fends off an AMI producing noise	AMI motion	\(s_4 \ p_1\)
Expresses interest for an AMI producing noise	touch frequency	\(s_5 \ s_6\)
Turns his head to his talking peers	AMI motion if used as a pointer	\(s_4 \ p_2\)
Turns his head to a noise	AMI motion if used as a pointer	\(s_4 \ p_2\)
Reacts to a speaking voice	AMI motion if used as a pointer	\(s_4 \ p_2 \ p_3\)
Sings spontaneously	sound (singing character of song)	\(s_7 \ p_1\)
Reproduces a short melodic sequence	distance between sequences	\(a_1 \ s_7\)
Requests a louder sound	pressure, frequency (on a button)	\(a_1 \ s_8\)
Requests a tone change	pressure, frequency (on a button)	\(a_1 \ s_8\)
Requests a tempo change	pressure, frequency (on a button)	\(a_1 \ s_8\)
Requests a timbre change	pressure, frequency (on a button)	\(a_1 \ s_8\)

Table 2. Vision sensitivity.

Behavior	Quantity under observation	Devices
Looks the AMI	head orientation	\(s_1 \ s_2 \ s_3\)
Get closer to the AMI when flashing	distance (head/AMI)	\(s_4 \ p_1\)
Caresses the AMI when flashing	vibration, acceleration, frequency	\(s_5 \ s_6\)
Exchange of glances towards the same direction	eye direction	\(s_3 \ s_9\)
Eye-to-eye contact with peers	eye direction	\(s_3 \ s_9\)
Eye-to-eye contact with the teacher	eye direction	\(s_3 \ s_9\)
Is oriented towards the teacher	AMI motion and location	\(s_3 \ s_4\)
Requests a hue change	pressure, frequency (on a button)	\(s_8 \ a_3\)
Requests a brightness change	pressure, frequency (on a button)	\(s_8 \ a_3\)
Requests a saturation change	pressure, frequency (on a button)	\(s_8 \ a_3\)

Table 3. Tactile sensitivity.

Behavior	Quantity under observation	Devices
Manipulates the AMI	AMI motion	\(s_4\)
Touches the AMI	distance (fingers/AMI), frequency	\(s_5 \ s_6 \ s_8\)
Caresses the AMI	vibration, acceleration, frequency	\(s_5 \ s_6 \ p_1\)
Fends off an AMI with a given texture	AMI motion	\(s_3 \ s_4 \ s_5 \ s_6 \ a_4\)
Requests a texture change	pressure, frequency (on a button)	\(s_5 \ s_6 \ s_8 \ a_4\)
Uses AMIs with similar textures	frequency, duration	\(s_8 \ a_4\)
Hits on the AMI	AMI motion	\(s_4 \ s_5 \ s_6 \ s_8\)
Moves away from the AMI	distance (user/AMI)	\(s_1 \ s_2\)
Manipulates or touches the AMI when it vibrates	AMI motion, distance (fingers/AMI)	\(s_4 \ a_5\)
Table 4. Vestibular and proprioception sensitivity.

Behavior	Quantity under observation	Devices
Moves the AMI in rhythm	AMI motion	s4 p1
Sways with the AMI	AMI motion	s4 p1
Swings with the AMI when it makes noise	AMI motion	s4 p1 a2
Turns with the AMI	AMI motion	s4 p1
Manipulates the AMI abruptly	AMI motion	s4 p1
Coordinates his movements to play the AMI	distance (fingers/AMI)	s5 s6 s8
Appropriately touches the AMI to produce a sound, a rhythm	distance (fingers/AMI)	s5 s6 s8
Contact with his own body:	skeleton motion	s10 s11 p4
he touches his mouth, his hands		

Table 5. Sensors, actuators and processes involved.

s1 : telemeter	s2 : proximity sensor	s3 : geolocation device
s4 : 9Dof gyro/compass/accelerometer	s5 : capacitive sensor	s6 : inductive sensor
s7 : microphone	s8 : push button	s9 : eye-tracker
s10 : camera	s11 : depth camera	
a1 : music synthesizer	a2 : voice synthesizer	a3 : LED
a4 : adaptable texture	a5 : vibration motor	
p1 : signal processing	p2 : acoustic localization	p3 sound recognition
p4 : gesture recognition		

5. Conclusion and perspectives

The ultimate objective of our work is to automate the production of the sensory profile of children with sensory autism disorders (ASD). We take the opportunity of music workshops to convert musical instruments into augmented musical instruments by making them sensitive to the children who manipulate them. This paper presents the early phase of this work. Its shows the possibility to link the most recent approaches in psychology related to the identification of the sensory sensitivity with the measurement science. As a reference, we produced sensory profiles using the Dunn/Bogdashina observation grid. We proposed an alternative observation grip dedicated to the observations performed by the augmented musical instruments.

The next steps in this work is the finalization of the firsts augmented musical instruments able to follow the proposed observation grid and with respect to the safety of the children. After the firsts observation statements given by the instruments, a calibration phase based on the use of the reference sensory profiles is planned for the next year. Finally, a toolbox including a set of connected augmented musical instrument will be proposed. The automation of the measurement of sensory profiles is a great interdisciplinary challenge. It needed to interpret a psychological analysis with the concepts of measurement science in order to maximise the common data sources between the 2 approaches. The results are very important for children with ASD. Compared to manual analysis, the automation allows to drastically reduce the analysis period and to reduce the bias introduced by the subjectivity of the observers. It opens up new possibilities not only in monitoring sensory disorders but also in their early detection. Even if using musical instrument came from an opportunity, they have the merit of reducing the impact of the bias due to children’s fatigue in relation to a simple object or toy.

Acknowledgement

The authors acknowledge the Fondation Savoie Mont Blanc for the important financial support to this study.
References

[1] Thye M D, Bednarz H M, Herringshaw A J, Sartin E B and Kana R K 2018 *Dev. Cogn. Neuros-Neth.* 29 151–167 ISSN 1878-9293

[2] American Psychiatric Association and American Psychiatric Association DSM-5 Task Force 2013 *Diagnostic and Statistical Manual of Mental Disorders* DSM-5. (American Psychiatric Association) ISBN 0890425558

[3] Thaut M H 1987 *J. Autism Dev. Disord.* 17 425–432 ISSN 01623257

[4] Lai G, Pantazatos S P, Schneider H and Hirsch J 2012 *Brain* 135 961–75 ISSN 14602156

[5] Blackstock E G 1978 *J. Autism Child. Schiz.* 8 339–53 ISSN 00219185

[6] Boddaert N, Belin P, Chabane N, Poline J B, Barthélemy C, Mouren-Simeoni M C, Brunelle F, Samson Y and Zilbovicius M 2003 *American Journal of Psychiatry* 160 2057–2060 ISSN 002953X

[7] Bonnel A, McAdams S, Smith B, Berthiaume C, Bertone A, Ciocca V, Burack J A and Mottron L 2010 *Neuropsychologia* 48 2465–2475 ISSN 00283932

[8] Heaton P 2009 *Philos. T. R. Soc. B* 364 1443–17 ISSN 14712970

[9] Bouvet L, Simard-Meilleur A A, Adeline P, Mottron L and Donnadieu S 2014 *Cognition* 131 367–372

[10] Bouvet L, Mottron L, Valdois S and Donnadieu S 2016 *J. Autism Dev. Disord.* 46 1553–1561 ISSN 15733432

[11] Simpson K and Keen D 2011 *J. Autism Dev. Disord.* 41 1507–1514 ISSN 01623257

[12] Baranek G T, David F J, Poe M D, Stone W L and Watson L R 2006 *J. Child Psychol. Psyc.* 47 591–601 ISSN 00219630

[13] Dunn W 2007 *Infants & Young Child.* 20 84–101 ISSN 0896-3746

[14] Bogdashina O 2003 *Sensory Perceptual Issues in Autism and Asperger Syndrome: Different Sensory Experiences- Different Perceptual Worlds* (Jessica Kingley Publishers) ISBN 1843101661

[15] Mari L 2003 *Measurement* 34 17–30

[16] Lundqvist L O and Lindner H 2017 *J. Autism Dev. Disord.* 47 2080–2091 ISSN 15733432