Review Article

The Nature of the Chemical Bond in Linear Three-Body Systems: From I$_3^-$ to Mixed Chalcogen/Halogen and Trichalcogen Moieties

M. Carla Aragoni, Massimiliano Arca, Francesco A. Devillanova, Alessandra Garau, Francesco Isaia, Vito Lippolis, and Annalisa Mancini

Dipartimento di Chimica Inorganica ed Analitica, Università degli Studi di Cagliari, S.S. 554 Bivio per Sestu, Monserrato, 09042 Cagliari, Italy

Received 2 August 2006; Revised 17 October 2006; Accepted 17 October 2006

Recommended by Govindasamy Mugesh

The 3 centre-4 electrons (3c-4e) and the donor/acceptor or charge-transfer models for the description of the chemical bond in linear three-body systems, such as I$_3^-$ and related electron-rich (22 shell electrons) systems, are comparatively discussed on the grounds of structural data from a search of the Cambridge Structural Database (CSD). Both models account for a total bond order of 1 in these systems, and while the former fits better symmetric systems, the latter describes better strongly asymmetric situations. The 3c-4e MO scheme shows that any linear system formed by three aligned closed-shell species (24 shell electrons overall) has reason to exist provided that two electrons are removed from it to afford a 22 shell electrons three-body system: all combinations of three closed-shell halides and/or chalcogenides are considered here. A survey of the literature shows that most of these three-body systems exist. With some exceptions, their structural features vary continuously from the symmetric situation showing two equal bonds to very asymmetric situations in which one bond approaches to the value corresponding to a single bond and the second one to the sum of the van der Waals radii of the involved atoms. This indicates that the potential energy surface of these three-body systems is fairly flat, and that the chemical surrounding of the chalcogen/halogen atoms can play an important role in freezing different structural situations; this is well documented for the I$_3^-$ anion. The existence of correlations between the two bond distances and more importantly the linearity observed for all these systems, independently on the degree of their asymmetry, support the state of hypervalency of the central atom.

Copyright © 2007 M. Carla Aragoni et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

The chemical bond in linear three-body systems, such as trihalides, has been the object of many papers appeared very recently in the literature [1–5]. Among them, the paper on trihalides and hydrogen dihalides published by Hoffmann et al. [2], the book edited by Akiba [1] “Chemistry of hypervalent compounds” appeared in 1999, and the chapter on hypervalent chalcogen compounds by Nakanishi [4] in “Handbook of chalcogen chemistry” edited by F. A. Devillanova, represent authoritative contributions to this topic. In particular, the paper by Hoffman analyzes, on the basis of theoretical calculations, the various contributions to the stabilization of trihalides, by comparing the Rundle-Pimentel [6, 7] model for electron-rich 3-centre 4-electron systems (Scheme 1) with that describing the interhalogenic bond as a donor/acceptor or charge-transfer interaction between a halide and a dihalogen molecule (Scheme 2).

The commonly accepted 3 centre-4 electron bonding model considers the central halogen to be hypervalent. According to this model, a linear system formed for example by three aligned closed-shell I$^-$ (24 shell electrons overall, I$_3^{3-}$) has no reason to exist since the three MOs generated by the combination of the three p_z orbitals, one from each interacting anion (Scheme 1), should be fully occupied by six electrons. However, the removal of two electrons from the antibonding MO causes an effective stabilization of the system and affords the well-known 22 shell electrons I$_3^-$ anion (Scheme 1). The stability of I$_3^-$ is determined by the occupancy of the lowest MO since the second filled MO is non-bonding in nature. The four electrons on the σ MOs plus the 6 electrons on the other three filled atomic orbitals equal a
The simplest way to prepare a triiodide or in general a trihalide species considers the reaction between an X^- anion with an X_2 molecule ($X^- + X_2 \rightarrow X_3^-$). In terms of chemical bond description, this corresponds to the commonly named donor/acceptor interaction (Scheme 2) since the bond is formed via a σ donation from one of the four filled atomic orbitals of X^- (np) towards the empty σ^* antibonding molecular orbital of X_2. As X^- formally approaches X_2, the three lone pairs of the approached X atom of the X_2 molecule are reoriented in order to be on the plane perpendicular to the bond direction when the symmetric three-body system X_3^- is formed. It corresponds to the rearrangement of a sp^3 carbon atom during a nucleophilic attack in an SN_2 type reaction (Scheme 4). The substantial difference between a trihalide and a penta-coordinated carbon resides in their different stabilities: while the penta-coordinated carbon represents a transition state, which finds its stabilization by removing one of the two apical groups so to allow the carbon to return to an sp^3 hybridization, X_3^- is a stable species. In such systems, the counting of the electrons around the central halogen and carbon atoms agrees very well with the notation by Arduengo et al. [5] (10-X-2 and 10-C-5, resp.). In fact, since the starting diatomic species (X_2 in the case of trihalides formation) obeys to the octet rule, every interaction with a donor (X^- in the case of trihalides formation) implies a transfer of electron density on X_3, thus formally justifying a number of electrons higher than 8 on the central atom of the resulting three-body system.

The simplified donor/acceptor first approximation MO diagram for the formation of a trihalide species (Scheme 2) becomes more complicate if the donor atomic orbital of X^- (np) is combined with both the σ^* and the σ^b MOs of X_2. The result is a second approximation MO diagram having three new energy levels for the adduct, coming from the combination of these three orbitals (Scheme 5).\(^1\)

The difference between the first and second approximation MO diagrams (Schemes 2 and 5) resides in the nature of the first two MOs of the formed three-body system. In fact, the energy mixing in the second approximation diagram

\(^1\) However, in the construction of the simplified MO diagram for the donor/acceptor interaction (first approximation; Scheme 2), the combination of the donor orbital with only the σ^* MO of X_2, leaving unchanged the σ^b level, is justified fairly well by a good match of energy between the lone pair of X^- and the σ^* MO of X_2.

(Scheme 5) has the consequence of increasing the bonding nature of the lowest MO, moving the intermediate MO to higher energies towards a nonbonding nature. Now we can compare the 3c-4e bond model (Scheme 1) with the two MO diagrams for the donor/acceptor interaction between X− and X2 (Schemes 2 and 5) to describe the chemical bond in X3− anions. Since in all the three schemes, the highest MO is always an antibonding molecular orbital featuring a nodal plane between each couple of atoms, the differences between these models are mainly determined by the different nature of the lowest two molecular orbitals. According to the 3c-4e model, the stabilisation of electron-rich (22 shell electrons) three-body systems has to be ascribed only to the filling of the lowest MO, with a consequent bond order of 0.5 for each of the two bonds formed. According to the charge-transfer model, involving only the combination of a lone pair of X− with the σ+ MO of X2, the filling up of the lowest energy level corresponds to a bond order of 1 within the X3 fragment, while the filling up of the intermediate level accounts for the bond formation between the two interacting fragments and for a lengthening of the X−–X bond in X2; a bond order of 0.5 for both bonds is reached in the symmetric situation X−–X−X−. In the second approximation charge-transfer MO diagram (Scheme 5), the lone pair of X− combines with both σb and σ+ MOs of X2, consequently the bonding nature of first molecular orbital of the resulting three-body system is increased, and that of the second energy level is decreased, thus making this MO diagram intermediate between the 3c-4e and the first approximation charge-transfer MO diagrams (Schemes 1, 2, and 5).

2. DISCUSSION

The two bonding models (3c-4e and charge-transfer models) can be successfully employed to describe the chemical bond in numerous linear three-body systems featuring 22 shell electrons, formed by three aligned main group elements. The 3c-4e model describes linear three-body systems (electron-rich linear systems) in terms of interacting aligned closed-shell fragments; the stabilization is reached by removing a couple of electrons in order to leave unfilled the highest MO (Scheme 1). Scheme 1 shows the combination of three p orbitals lying at the same level of energy; in a more general scheme with different starting closed-shell fragments, the combined p orbitals lie at different energy levels with the consequence that they will contribute differently to each molecular orbital in the resulting three-body system. In particular, if the combined p orbital of one of the two external atoms lies at an energy level quite different from that of the p orbitals of the other two atoms, its contribution to the bonding MO will be poor with a consequent unbalancing of the two bonds. This case is normally better described with the charge-transfer model, which corresponds to the interaction between a donor and a 2c-2e bond system.

Another aspect that we must consider is the total charge brought by the final three-body system; it will depend only on the charges of the starting aligned closed-shell species. A very simple example is represented by the formation of the XeF2 molecule according to a 3c-4e model: the three-closed shell species to be considered are 2 F− and Xe; by removing a couple of electrons the neutral XeF2 molecule is generated. When three equal or different X− (X− = halide) are aligned, the resulting three-body system will be a trihalide monoanion.

The situation is much more complex for the formation of three-body systems from closed-shell species of 16th group elements, since the closed-shell species which can be combined can be both charged (E2−, R−E−) and neutral (R2E and R=E, R = organic framework and E = chalcogen atom). In general, the alignment of three identical chalcogen species can afford three-body systems featuring very different charges, (a)−(d) in Scheme 6.

In principle, any combination of E2−, R−E−, R2E, and R=E species is possible, thus strongly increasing the variety of obtainable three-body systems. In addition, the central chalcogen atom of the three-body systems (a)−(d) reported in Scheme 6 can be aligned in turn to one or two other couples of closed-shell chalcogen species to form, after removal of 1 or 2 couples of electrons, systems featuring two ((e)−(g) in Scheme 6) or three orthogonal 3c-4e fragments, respectively. In this way we can explain the great variety of structural archetypes which contain a hypervalent chalcogen atom. The number of possible combinations further increases if mixed S, Se, and Te systems are also taken into account (see below).

Analogously to asymmetric trihalides, many asymmetric trichalcogen and mixed dichalcogen/halogen and chalcogen/dihalogen systems can be successfully described using the same charge-transfer model as that used for asymmetric trihalides. According to this model three-body systems arise from the interaction between a donor species (halide or chalcogen) and an acceptor species (dihalogen, 2 In the case of 17th group elements, not only X− but also R′−X (R′ represents a generic fragment featuring whichever element bonded to the halogen such as C−X, P−X, ...) closed-shell species could be considered in the formation of three-body systems; however, these cases are not considered here in order to limit the discussion.)
dichalcogen, or chalcogen-halogen). Therefore, a trichalcogen arrangement derives from the n(E)→σ*(E–E) interaction between one of the above-mentioned closed-shell chalcogen species acting as a donor and the empty σ* MO of a dichalcogen molecule acting as an acceptor. In the case of mixed halogen/chalcogen systems, depending on the starting species, different topologies of three-body systems can be obtained, such as E–X–Y, X–E–Y, E–E–X, and E–X–E (E = chalcogen, X, Y = halogen), which correspond to the well-known charge-transfer adducts between chalcogen donors and dihalogens (E–X–Y), “T-shaped” adducts of chalcogen donors (X–E–Y), dichalcogen molecules interacting with halides (E–E–X), and halogen(+) linearly coordinated by two chalcogen donor molecules (E–X–E).

3. TRIHALIDES

The Cambridge Structural Database (CSD) has been searched for discrete trihalides fragments contained in deposited crystal structures; the results of the search are collected in Table 1.

The triiodides are the most numerous and the scatter plot of the corresponding two I–I bond lengths is shown in Figure 1.

The literature related to triiodides has been omitted here and we refer to the paper by Svensson and Kloo [3]. Although several data are spread apart in the scatter plot, the majority of them are concentrated in the region corresponding to symmetric or weakly asymmetric triiodides. It is important to point out that an analogous correlation is found for Br₃⁻ anions (see Figure 2) [44–109] while for other trihalides, such as ICl₂⁻ (Figure 3) [115–152] and IBr₂⁻ (Figure 4)

3 As an exception, we will also consider the pseudo-halogens X–CN (X = halogen atom, see below in the last section).

4 Only covalent bonded linear X–Y–Z fragments (angles > 165°) have been considered in subsequent analyses.

5 A discussion on the factors responsible for the spreading of some data out of the correlation in Figure 1 is out of the aim of this work.
Table 1: Occurrence of linear isolated trihalide $X\cdots Y\cdots Z$ fragments crystallographically characterized from a search of the Cambridge Structural Database (number of crystal structures in parentheses).

$X\cdots Y\cdots Z$	$I\cdots I$	$I\cdots Br$	$I\cdots Cl$	$Br\cdots Br$	$Br\cdots Cl$	$Cl\cdots Cl$
$I\cdots I$	809 (608) *	*	*	*	*	*
$Br\cdots Br$	56 (40)	86 (71)	1 (6)			
$Cl\cdots Cl$	2 (4)	55 (46)				

*For the references of triiodides see [3]. References [8–11]. References [12–43]. References [15, 44–109]. References [10, 110, 111]. References [112–114]. References [32, 35, 43, 110, 111, 114–152]. Reference [153]. References [154–160]. These fragments are already considered in the table.

Table 2: Structural features of all the less common $X\cdots Y\cdots Z$ linear trihalides characterized by X-ray diffraction analysis.

Compound reference code	X	Z	Y	$d(X\cdots Z)$ (Å)	$d(Z\cdots Y)$ (Å)	$\angle(X\cdots Z\cdots Y(^\circ))$	References
CUPTIQ	Cl	Cl	Cl	2.182	2.394	177.7	[154, 155]
DEGLIK	Cl	Cl	Cl	2.248	2.338	177.5	[156]
PHASCL	Cl	Cl	Cl	2.227	2.306	177.4	[157]
UHUQAP	Cl	Cl	Cl	2.144	2.419	178.1	[158]
ZEHTIP	Cl	Cl	Cl	2.262	2.307	178.4	[160]
TEACBR	Cl	Br	Cl	2.379	2.401	176.8	[153]
DOBTUJ	Cl	I	Br	2.648	2.651	179.6	[112]
DOBTUJ04	Cl	I	Br	2.670	2.675	179.4	[113]
DOBTUJ07	Cl	I	Br	2.673	2.665	179.6	[114]
DOBTUJ08	Cl	I	Br	2.670	2.662	179.8	[114]
BEQXEA	I	I	Cl	2.737	3.040	172.1	[110]
LACPUB	I	I	Cl	2.765	2.739	179.3	[111]
EKIHEL	I	I	Br	2.890	2.906	178.7	[8]
EYOVAP	I	I	Br	2.857	2.950	179.3	[9]
LACQAI	I	I	Br	2.775	2.856	178.7	[10]
LACQUEM	I	I	Br	2.780	2.857	176.6	[10]
WOPGOX	I	I	Br	2.786	2.794	179.2	[11]

*The angle values are rounded off to the first decimal digit.

[12–43], the corresponding scatter plots show a much less evident correlation. The structurally characterized Cl_3^- fragments [154–160] are less than Br_3^- and I_3^- ones, and no bond length correlation diagram is presented for them. Except for the case reported by Gorge et al. [159] in which the two terminal chlorine atoms have significant contacts with two nitrogen atoms, in the other six reported structures containing the Cl_3^- anion the two bonds are differently elongated, being 2.144/2.419 Å the bond distances found in the more asymmetric case (see Table 2). The number of structurally characterized mixed trihalides featuring two different terminal halogens ($I\cdots I\cdots Br$ [8–11], $I\cdots I\cdots Cl$ [110, 111], $Cl\cdots I\cdots Br$ [112–114]) is very small, and a unique example of $Cl\cdots Br\cdots Cl^-$ is reported in the literature (Tables 1 and 2) [153]. Among the considered fragments, we wish to emphasize the structural changes occurring on changing one of the terminal halogen from Cl to Br and to I. Consider, for example, the $I\cdots Cl$ bond length in different trihalides: $d(I\cdots Cl)$ increases on passing from the symmetric Cl_2^- (mean value 2.53 Å) to $I\cdots Br^-$ (mean value 2.673 Å, Table 2) and $I\cdots Cl^-$ (mean value 2.889 Å, Table 2) indicating an increase in the ionic character of this bond when the other terminal halogen changes from Cl to Br and to I. However, in all cases, the $I\cdots Cl$ bond lengths are
The sum of the covalent radii.

56 fragments). The mean bond lengthening is 9.7% with respect to iododibromides from a search of the CSD (40 structures containing 55 fragments). The mean bond lengthening is 9.2% with respect to iododichlorides from a search of the CSD (46 structures containing one increasing towards the value of 1 (I

bond orders of the two bonds diverge from the value of 0.5, carrying most of the negative charge. As a consequence, the halogen will mainly contribute to the nonbonding MO, thus contribute more to the bonding MO; vice versa, the other energy match with the

45 2

42

4

2

3

2

1

8

7

6

5

4

3

2

1

Figure 3: Scatter plot of \(d_1 \) versus \(d_2 \) for linear (angle > 165\(^\circ\)) iododichlorides from a search of the CSD (46 structures containing 55 fragments). The mean bond lengthening is 9.2% with respect to the sum of the covalent radii.

2.39 Å) [161] but remain fairly shorter than the sum of the van der Waals radii (3.73 Å) [161]. The structural features of I–I–Cl\(^–\) and I–I–Br\(^–\) (Table 2) indicate that the bond distance of the central atom with the lighter halogen is always longer than the I–I distance, in accordance with a different ionic character of the two bonds. In terms of the 3c-4e model (Scheme 1), the \(p \) orbitals of the two terminal halogens do not contribute equally to the three molecular orbitals of the three-body systems I–I–X\(^–\) (X = Cl, Br, I). In fact, the \(p \) orbital of the terminal atom featuring the better energy match with the \(p \) orbital of the central halogen will contribute more to the bonding MO; vice versa, the other halogen will mainly contribute to the nonbonding MO, thus carrying most of the negative charge. As a consequence, the bond orders of the two bonds diverge from the value of 0.5, one increasing towards the value of 1 (I–I), and the other decreasing towards the value of 0 (I–X). In terms of the charge-transfer model (Scheme 2), asymmetric trihalides of the type X–Z···Y\(^–\) derive from the donor/acceptor interaction between the halide (Y\(^–\)) and the acceptor species (X–Z); the strength of this interaction will depend on the reciprocal energy levels of the combining orbitals (\(p \) of the halide and \(\sigma^* \) MO of the dihalogen molecule).

However, in all trihalides, independently of the different polarization of the two bonds the sum of the bond lengths \((d_{X–Z} + d_{Z–Y}) \) is always at least 9% longer than the sum of the covalent radii of the involved atoms, thus indicating a hypervalent state of the central halogen.

4. TRICHALCOGEN(IDES)

Table 3 collects the occurrence of linear E–E′–E″ (E, E′, E″ = chalcogen atom) trichalcogen organic fragments found in structurally characterized compounds, as retrieved from a search of the Cambridge Structural Database (CSD) by imposing either the presence of two covalent bonds between the chalcogen atoms or the presence of one covalent bond and a nonbonding contact shorter than \(\Sigma_{\text{VdW}} = 0.3 \) Å (E ··· E′–E″ and E–E′ ··· E′′ fragments). In both searches, the linearity of the fragment has been imposed (\(\angle \) E–E′–E″ > 165\(^\circ\)).

As one can see, some combinations of trichalcogen systems have never been reported and some others have been found only in a limited number of structures (Table 4).

The scatter plots of \(d(\text{E–E′}) \) versus \(d(\text{E′–E″}) \) for all trichalcogen fragments present in numerous crystal structures are shown in Figures 5–9.

Similar to what found for trihalides, linear trichalcogen systems can vary from symmetric to very asymmetric ones, but always feature strongly correlated \(d(\text{E–E′}) \) and \(d(\text{E′–E″}) \) bond lengths. This indicates that also in linear trichalcogen E–E′–E″ organic fragments the potential energy hole should be fairly flat, being the chemical surrounding of the chalcogen atoms and the crystal packing effects able to freeze different structural situations. As mentioned above, in the case of 16th group elements, different closed-shell chalcogen species can interact to afford different types of linear trichalcogen systems (Scheme 6). However, since the analysis of all linear trichalcogen systems would go beyond the aim of this work, we will focus our attention only on some of them. When the closed-shell species are three E\(^–\) anions, the corresponding three-body systems will be E\(^3–\). Indeed, the linear Te\(_3\)\(^4–\), together with the “T-shaped” Te\(_4\)\(^4–\), and the square-planar Te\(_4\)\(^4–\) anions are considered fundamental building units of numerous polytellurides [359]. The Te–Te bond distances in such tellurides show elongation of about 13% with respect to the sum of the covalent radii and are typical for 3c-4e bonds [359]. A symmetric (Se\(_5\))\(^4–\) ion was identified for the first time in the samarium/selenide cluster \([\text{I}_2(\text{C}_8\text{Me}_8)\text{Sm}_5\text{Se}_{11}]\) [334], and considered a species isoelectronic to I\(_3\). The Se–Se bond length in this system (2.749 Å) is much longer than the mean bond length in (Se\(_2\))\(^2–\) species (2.37 Å). This was justified by analogy with the couple I\(_3\)/I\(_5–\). Linear [E–E ··· E]\(^3–\) systems (E = S, Se) have been found in Mo and W clusters.
Table 3: Occurrence of linear trichalcogen E−E′−E′′, E···E−E′−E′′, and E−E′···E′′ fragments crystallographically characterized from a search of the Cambridge Structural Database (number of crystal structures in parentheses).

E =	E−E′	Te−Se	Te−S	Se−Se	Se−S	S−S
S	3 (2)(a)	4 (3)(b)	207 (141)(c)	12 (7)(d)	16 (9)(e)	100 (64)(f)
Se	2 (2)(g)	41 (24)(h)	*	64 (43)(i)	*	—
Te	39 (27)(j)	*	*	—	—	—

(a)References [162, 163]. (b)Reference [164]. (c)References [164–250]. (d)References [251–256]. (e)References [251, 256–264]. (f)References [265–314]. (g)References [315, 316]. (h)References [162, 165, 174, 181, 183, 209, 216, 223, 228, 238, 317–323]. (i)References [201, 324–342]. (j)References [343–356]. ∗∗These fragments are already considered in the table.

Table 4: Structural features of less common E−E′−E′′, E···E−E′−E′′, or E−E′···E′′ trichalcogenides characterized by X-ray diffraction analysis.

Compound reference code	E	E′	E′′	d(E−E′) (Å)	d(E′−E′′) (Å)	∠E−E′−E′′(°)(b)	References
BUWZUO	S	Se	S	2.266 (a)	3.001 (a)	172.2 (a)	[259]
CEQKUE	S	Se	S	2.549	2.549	180.0	[260]
CUNWAIJ	S	Se	S	2.534 (a)	2.534 (a)	180.0 (a)	[261]
DUBKUG	S	Se	S	2.846 (a)	2.295 (a)	173.7 (a)	[262]
FIKYUT	S	Se	S	2.467	2.371	170.0	[251]
KARZIM	S	Se	S	2.896 (a)	2.282 (a)	172.0 (a)	[263]
SETIOE	S	Se	S	2.446	2.446	169.7	[264]
WAXMAJ	S	Se	S	3.302 (a)	2.229 (a)	169.2 (a)	[256]
ZZZELOW01	S	Se	S	3.341	2.210	169.6	[257]
SOSNIX	S	Se	Se	3.002 (a)	2.308 (a)	167.3 (a)	[253]
SOSNOD	S	Se	Se	2.977 (a)	2.312 (a)	167.3 (a)	[253]
NPHSET	S	Se	Se	2.244	3.492	165.4	[254]
WADVOM	S	Se	Se	2.223	2.985	168.6	[255]
WAXMAJ	S	Se	Se	2.189	3.404	165.9	[256]
FIKYON	S	Se	Se	2.508	2.472	171.3	[251]
ZENJEH	S	Se	Se	2.498	2.466	173.6	[252]
FEZHIB	S	Te	Se	3.163	2.536	167.9	[162]
FEZHUN	S	Te	Se	2.592	2.872	175.3	[162]
FEZJEC	S	Te	Se	3.002 (a)	2.609 (a)	173.4 (a)	[164]
JOXYIE	S	Te	Te	3.508 (a)	2.734 (a)	170.4 (a)	[162]
SISQUG	S	Te	Te	2.473	3.347	169.2	[163]
SEURBR(c)	Se	Se	Se	2.712	2.624	173.9	[337]
SEURSL(c)	Se	Se	Se	2.664	2.634	168.3	[339]
SECLU(c)	Se	Se	Se	2.717	2.597	173.8	[337]
BAFUA	Se	Te	Te	2.561	3.611	176.1	[315]
YOMRIIB	Se	Te	Te	2.468	3.559	173.3	[316]
ZONWOO	O	Se	Se	2.427 (d)	2.39	165.0	[357, 358]

(a) Mean values. (b) The angle values are rounded off to the first decimal digit.
(c) Triselenoureia dications with different counterions. (d) d(O···Se).
[257, 335] containing two \[M_1(\mu_3-E)(\mu-E_2)_2(dtc)_4]^+\] cores \((M = Mo, E = S, Se; M = W, E = Se)\) linked via an \(E^2^-\) anion; these arrangements have been described as \(\mu-E_2^-\) dichalcogenides interacting with \(E^2^-\) at significantly short distances. In the case of selenium clusters [335], the two \(Se^-\) bonds are 2.355 Å and 2.816 Å for the Mo cluster and 2.38 Å and 2.93 Å (mean values) for the W one, the short distances being only slightly elongated with respect to the \(Se^-\) bond length in diselenides (2.34 Å). As found for strongly asymmetric trihalides, which are better described as an \(X^-\) anion interacting with an \(X_2\) molecule \((X^- \cdots \cdots X_2)\), the trichalcogen systems in which the two bonds assume very different bond orders should be better described as a chalcogen donor (in the present case \(E^2^-\)) interacting with the \(\sigma^+\) antibonding molecular orbital of a dichalcogen species \([n(E)\rightarrow \sigma^+(E-E)]\) in the present case \(E_2^{2-}\). In other words, the interaction should occur between a chalcogen donor and a 2c-2e dichalcogen bond system. In general, depending on the starting chalcogen donor and dichalcogen acceptor species, these trichalcogen systems can carry a variable charge, from negative values as in the above cases, up to 2+ when the donor species is a neutral molecule and the acceptor a dichalcogen dication.

Several monoanionic structures of the type \((R-E)_3^-\), arising from three aligned \(R-E^-\) anions, for example, \((Ph-Te)_3^-\) [343, 356], or \([((CN)Se-Se(Ph)-Se(CN)]^-\) [209], have been reported. Numerous are the hypervalent chalcogen compounds deriving from a neutral species interacting with two negatively charged monochalcogenides such as the case of 2,5-bis(morpholinio-N)-4a-phenyl-1,3a,6,6a-tetrahydro-1,6,6a-triselenalena-4aH4-phospha-3,4-diazapentalene [332], or from a chalcogenide(2−) interacting with neutral molecules to form 1 or more 3c-4e systems, as in the case of the tetrakis(N-methylbenzo thiazole-2(3H)-selone)selenium(2+) dication reported by us in which two orthogonal 3c-4e fragments are present [342]. Particularly interesting are the two organic compounds FIKYON [251] and ZENJEH [252] (Table 4) containing the linear \(Se^-\)-\(Se^-\) arrangement. In fact, in both cases, the \(Se^-\) bond is shorter than the \(Se^-\) one due to the poor energy match between the orbital of the central Se atom and that of the peripheral S atom. When the closed-shell...
species are S-, Se-, or Te-containing neutral molecules, dicationic species will be generated having the central atom in a hypervalent state. Among these systems, those having three S–S–S aligned sulphur atoms [265–314] have been found only in the class of the pincer-type molecules, with the central sulphur able to bind or to move apart the terminal ones by oxidation/reduction processes. It is noteworthy to observe that most of the molecules belonging to the E–E′–E pincer-type arrangements and many other trichalcogen systems are fairly symmetric, even if examples of strongly asymmetric situations are also numerous.

Although our discussion is limited to the structural features of linear trichalcogen fragments (various combinations of S, Se, and Te), we have also included in Table 4 the only known example of an organic dichalcogen dication system having a strong contact with an oxygen atom [357, 358]. X-ray analysis of this dication confirmed the linear geometry of the O–Se–Se moiety (165°) and an Se–Se bond (2.39 Å) which, similarly to what found in the above-described Mo and W clusters [257, 335], is only slightly elongated with respect to an Se–Se bond in diselenides (2.34 Å). This compound represents a good example of a hypervalent selenium compound having the two bonds strongly unbalanced (bond orders very far from the value of 0.5 expected for a balanced 3c-4e bond system). For this reason it resembles many other similar systems, such as the adduct of N,N-dimethylimidazole-2-selone with the pseudo-halogen ICN recently reported by us (see below in the last section); in both cases, one of the bonds tends to be a single bond, while the other bond is very elongated and tends to assume a purely ionic character.

5. DICHALCOGEN-HALIDES

Two chalcogen and one halogen atoms as closed-shell species can be aligned in only two possible ways: the halogen in the terminal (E–E′–X) or in the central (E–X–E′) position. Both arrangements are known and they will be discussed separately.

5.1. E–E′–X fragments

Table 5 shows the number of linear E–E′–X fragments crystallographically characterized from a search of the Cambridge Structural Database, by imposing the linearity of the system (angle > 165°) and either the presence of two covalent E–E′ and E′–X bonds or the presence of one E–E′ covalent bond and one E′···X nonbonding contact shorter than rVdW = 0.3 Å.

It is interesting to note that in the case of the S–S–X fragment (X = Cl, Br, I) the number of structures characterized by the presence of a linear S–S···X moiety is considerably higher than that featuring the S–S–X one (17 versus 4). Fragments having fairly covalent bonds have been found exclusively as part of some molybdenum clusters [390, 391, 399, 401, 445–447]. These clusters are very similar to those previously described in the discussion of trichalcogenides species, with the difference that the halide takes the place of the bridging E= anion. On the basis of their insolubility in water and their solubility in the common organic solvents, the authors concluded that the S–X bonds should be prevalently covalent in character. In fact, their structural features seem to be consistent with the presence of an [S–S–X]– anion, deriving from the removal of a couple of electrons from the aligned S=S, S=, and X= closed-shell species. The sum of the S=S and S–X bond lengths in these fragments is about 23% longer than the sum of the covalent radii and about 31% shorter than the sum of the van der Waals radii, in agreement with a 3c-4e bond model. The scatter plots of d(S=S) versus

Figure 8: Scatter plot of d1 versus d2 for linear (angle > 165°) Se–Te–Se fragments from a search of the CSD. The symbol (♦) refers to the 39 Se–Te–Se fragments (22 structures) featuring bond distances ranging from Σ to Σ/3 (Σ = 0.6); the symbol (◦) refers to the 2 Se⎯Te–Se fragments (2 structures) featuring Se disturbances shorter than Σ/3. The mean bond lengthening within Se–Te–Se fragments is 11.5% (16.1% on Se ⬇ Te–Se fragments) with respect to the sum of the covalent radii.

Figure 9: Scatter plot of d1 versus d2 for linear (angle > 165°) S–Te–S fragments from a search of the CSD. The symbol (♦) refers to the 187 S–Te–S fragments (127 structures) featuring bond distances ranging from Σ to Σ/3 (Σ = 0.6); the symbol (◦) refers to the 20 S⋯Te–S fragments (14 structures) featuring S⋯Te contact distances shorter than Σ/3. The mean bond lengthening within S–Te–S fragments is 12.6% (21.0% on S⋯Te–S fragments) with respect to the sum of the covalent radii.
Table 5: Occurrence of linear E−E′−X and E−E′···X fragments crystallographically characterized from a search of the Cambridge Structural Database (number of crystal structures in parentheses).^(a)

E−E′	Te−Te	Se−Te	S−Te	Se−Se	S−Se	S−S
X = Cl	6 (3)^(b)	5 (5)^(c)	53 (39)^(d)	11 (8)^(e)	7 (6)^(f)	49 (21)^(g)
X = Br	—	17 (11)^(h)	35 (26)⁽ⁱ⁾	23 (11)^(j)	4 (2)^(k)	47 (17)^(l)
X = I	19 (7)^(m)	4 (4)⁽ⁿ⁾	20 (19)^(o)	5 (3)^(p)	3 (1)^(q)	32 (19)^(r)

^(a) Most of the structures have been found by imposing the presence of at least a contact between the E−E′ and X fragments (E−E′···X) shorter than (ΣrVdW = 0.6).^(b) References [360–362]. ^(c) References [317, 318, 363–365].^(d) References [173, 174, 188–190, 194, 200, 204, 205, 212, 213, 235, 244, 317, 363, 366–381].^(e) References [38, 360, 382–385].^(f) References [260, 386–389].^(g) References [390–410].^(h) References [317, 363, 364, 370, 411, 412].⁽ⁱ⁾ References [182, 196, 207, 212, 213, 232, 235, 317, 363, 365, 372, 373, 377, 379, 413–418].^(j) References [38, 398, 419–425].^(k) Reference [386].^(l) References [390, 405, 426–433].^(m) References [434–438].⁽ⁿ⁾ References [214, 364, 439, 440].^(o) References [200, 213, 214, 235, 317, 372, 373, 378, 440–443].^(p) References [38, 444].^(q) Reference [383].^(r) References [399, 445–458].

Numerous crystal structures have been reported in the literature that feature linear S−Te−X (X = Cl, Br, I) systems (references are collected in Table 5). Contrary to what found on searching the CSD for S−X fragments, for these linear arrangements, almost all the fragments feature covalent S−Te and Te−X bonds (S−Te−X systems). Only one structure containing an S−Te···Cl [244] moiety has been found by searching for S−Te···X systems [ΣrVdW = 0.6 < d(T···X) < (ΣrVdW = 0.3)]. As shown in Figures 13, 14, and 15, for these three series of compounds the two bonds are strictly correlated in wide ranges of variability.

The sum of S−Te and Te−X bond distances within these three-body systems is 10.8%, 11.6%, and 7.3% longer than the sum of the covalent radii for X = Cl, Br, and I, respectively, in good agreement with the hypervalent nature of the central tellurium atom. The other mixed dichalcogen fragments bonded to a halide, characterized by X-ray diffraction, are very few and they are collected in Table 6.
Table 6: Structural features of the less common $E-E'-X$ and $E-E'\cdots X$ ($E, E' = S, Se, X = \text{halogen}$) linear three-body systems and of some selected $E-E'-X$ ($E = S, Se, E' = Te, X = \text{halogen}$) fragments.

Compound reference code	E	E'	X	$d(E-E')$ (Å)	$d(E'-X)$ (Å)	$\angle E-E'-X^\circ$	References
BOYXAO10	S	S	Cl	2.040*	2.915*	169.6*	[390]
FAVDUB	S	S	Cl	2.053*	2.863*	166.9*	[391]
KOJHOG	S	S	Cl	2.047*	2.933*	170.4*	[399]
PIGWIL	S	S	Cl	2.087	2.825	165.1	[401]
KOUJUM	S	S	Br	2.056*	3.028*	171.5*	[399]
CIKIHUN	S	S	I	2.057*	3.168*	171.2*	[445]
JAKWAT	S	S	I	2.057*	3.150*	171.3*	[446]
KOJIEY	S	S	I	2.066*	3.175*	172.6*	[399]
PEHHOZ	S	S	I	2.051	3.180	172.8	[447]
QADHOS	S	Se	I	2.218*	3.149*	168.3*	[383]
MURXOM	S	Se	Br	2.285*	3.007*	175.0*	[386]
MURYAZ	S	Se	Br	2.258*	3.094*	174.3*	[386]
MURXIG	S	Se	Cl	2.273*	2.920*	174.8*	[386]
MURXUS	S	Se	Cl	2.252	2.976	172.8	[386]
CEQKOY	S	Se	Cl	2.215	3.276	178.5	[260]
KAXWEL	S	Se	Cl	2.293	3.237	168.8	[387]
NEDRAZ	S	Se	Cl	2.136	3.212	171.9	[389]
TAVXET	Se	Se	Cl	2.440	2.778	172.1	[38]
TAVXIX	Se	Se	Br	2.424	2.830	166.7	[38]
PEBPUH	Se	Se	Br	2.403	3.036	174.2	[419]
WODHUS	Se	Se	Br	2.529*	2.689*	174.4*	[420]
EZOYIB	Se	Te	I	2.906	2.889	177.7	[439]
FOBCEE	Se	Te	I	2.618	3.251	173.5	[364]
ISEUTE	Se	Te	I	2.679	3.095	177.3	[440]
ROMXEW	Se	Te	I	2.721	2.967	177.5	[214]
BSEUTE	Se	Te	Br	2.616	3.054	175.6	[370]
DEVHAN	Se	Te	Br	2.769	2.761	175.2	[363]
FOBBIH	Se	Te	Br	2.678	2.898	173.9	[317]
FOBBIHO1	Se	Te	Br	2.673*	2.907*	173.7*	[317]
FOBCAA	Se	Te	Br	2.572*	3.096*	172.9*	[364]
FOBCAAO1	Se	Te	Br	2.582	3.086	174.0	[364]
FOBXAB	Se	Te	Br	2.648	2.854	174.8	[364]
KIKPID	Se	Te	Br	2.496*	3.244*	168.6*	[411]
NAHWIC	Se	Te	Br	2.704*	2.810*	175.0*	[412]
NAWOI	Se	Te	Br	2.763	2.744	177.0	[412]
FOWMAF	Se	Te	Br	2.540	3.289	174.3	[318]
DEVGUG	Se	Te	Cl	2.783	2.600	174.7	[363]
FOBBD	Se	Te	Cl	2.678	2.752	172.8	[317]
FOBWUT	Se	Te	Cl	2.664	2.701	175.6	[364]
GANHIM	Se	Te	Cl	2.592	2.972	171.6	[365]
BETDAG	Te	Te	I	3.283	2.814	166.7	[434]
HOJJEVE01	Te	Te	I	3.158	2.817	175.6	[436]
HOSCAT	Te	Te	I	2.669*	3.369*	169.0*	[437]
HOSCEX	Te	Te	I	2.644*	3.329*	167.8*	[437]

§The angle values are rounded off to the first decimal. *Mean values.
Differently from S–S–X, the S–Se–X fragments have been found in some dimeric structures with bridging halides [383, 386]. Also in these cases the sum of the S–Se and Se–X bond lengths shows elongation (~19%) with respect to the sum of the covalent radii, and shortening (~30%) with respect to the sum of the van der Waals radii. A certain number of structures characterized by the linear Se–Te–X system have also been found. It is noteworthy that the S–Te and Se–Te bonds get shortened as the Te–X bond becomes more ionic (on changing X from I to Br and to Cl, see the examples reported in Table 7), their bond orders approaching the value of 1.

In the case of the chloroderivatives E–Te · · · Cl (E = S, Se, Table 7), the S–Te and Se–Te bonds are only 0.077 Å and 0.080 Å longer than the sum of the covalent radii, making the structural features of these compounds similar to those of the fragments Se–Se · · · O [358] and NC–Se · · · I (see below in the last section). Finally, five structures containing the linear Te–Te–I arrangement have been reported in the literature; two of them [437] are inserted in molybdenum clusters in a fashion similar to that found for the S–S–X and Se–Se–X groups, two are arranged to form (Ph–Te–I)₄

Figure 12: Scatter plot of $d(S–S)$ versus $d(S–I)$ for linear (angle $> 165^\circ$) S–S–I fragments from a search of the CSD. The symbol (♦) refers to the 7 S–S–I fragments (4 structures) featuring bond distances ranging from Σ_{cov} to $(\Sigma_{\text{vdw}} = 0.6)$; the symbol (◦) refers to the 25 S–S···I fragments (11 structures) featuring S···I contact distances shorter than $(\Sigma_{\text{vdw}} = 0.3)$. The mean bond lengthening within S–S···I fragments is 15.2% (21.5% on S–S···I fragments) with respect to the sum of the covalent radii.

Figure 13: Scatter plot of $d(S–Te)$ versus $d(\text{Te–Cl})$ for linear (angle $> 165^\circ$) S–Te–Cl fragments from a search of the CSD. The symbol (♦) refers to the 52 S–Te–Cl fragments (38 structures) featuring bond distances ranging from Σ_{cov} to $(\Sigma_{\text{vdw}} = 0.6)$; the symbol (◦) refers to the 1 S–Te···Cl fragment (1 structure) featuring Te···Cl contact distances shorter than $(\Sigma_{\text{vdw}} = 0.3)$. The mean bond lengthening within S–Te···Cl fragments is 10.8% (24.5% on S–Te···Cl fragment) with respect to the sum of the covalent radii.

Figure 14: Scatter plot of $d(S–Te)$ versus $d(\text{Te–Br})$ for the 52 linear (angle $> 165^\circ$) S–Te–Br fragments (38 structures) featuring bond distances ranging from Σ_{cov} to $(\Sigma_{\text{vdw}} = 0.6)$ from a search of the CSD. The mean bond lengthening within S–Te–Br fragments is 11.6% with respect to the sum of the covalent radii.

Figure 15: Scatter plot of $d(S–Te)$ versus $d(\text{Te–I})$ for the 20 linear (angle $> 165^\circ$) S–Te–Br fragments (38 structures) featuring bond distances ranging from Σ_{cov} to $(\Sigma_{\text{vdw}} = 0.6)$ from a search of the CSD. The mean bond lengthening within S–Te–Br fragments is 7.3% with respect to the sum of the covalent radii.
tetramers [435, 436] and only one, (Mes)₄Te–Te(Mes)–I [434], can be considered as derived from the three aligned closed-shell Mes₃Te, MesTe⁺, and I⁻ species, by the removal of a couple of electrons. The analysis of the structural features of all these fragments is consistent with their description as three-body systems, the central Te atom being hypervalent.

5.2. E−X−E’ fragments

Table 8 collects the structural features of all the linear E−X−E’ (E,E’ = chalcogen atom; X = halogen) fragments found by searching the Cambridge Structural Database.

Systems of this type have been found with the three halogens (Cl, Br, and I), and all the fragments have the same chalcogen (E = E’) atom at the two sides of the halogen; no mixed species (E ≠ E’) have been reported until now. Moreover, from the data in Table 8 it is interesting to note that with the exception of RIWDUW [473] which is polymeric and shows three different couples of fairly asymmetric Te–Cl bonds, all the other compounds feature the two chalcogen atoms bound to the central halogen in symmetric or only slightly asymmetric fashion, and most of the angles are very close to 180°. In all cases, the lengthening of the E−X bond with respect to the sum of the covalent radii (the mean S−I bond length calculated from the structural data of all six compounds characterized by the S−I−S group is elongated of about 17%), the shortening with respect to the van der Waals radii (the mean S−I bond length is shortened by ~30%) and the linearity of the systems are consistent with the hypervalency of the central atom.

6. CHALCOGEN-DIHALIDES

Analogously to dichalcogen-halides, there are only two possibilities to build chalcogen-dihalides moieties: the chalcogen can be in the terminal (E−X−Y) or in the central (X−E−Y) position. These two arrangements correspond to the well-known CT and “T-shaped” adducts between chalcogen donors and dihalogens, respectively, and will be discussed separately.

6.1. E−X−Y fragments

For a more detailed discussion on this class of compounds the reader is referred to the review by Lippolis and Isaia [474]. The number of linear E−X−Y CT fragments crystallographically characterized from a search on the Cambridge Structural Database is reported in Table 9.

As one can see most of the adducts are obtained between sulphur donors (D) and diiodine, on the contrary, no compounds of this type are known with Te donors (the only reported structures featuring a Te−I−I arrangement are characterized by long I···I contacts). The nσ(D)−σ*(XY) charge-transfer model accounts very well for the chemical bond in these E−X−Y systems. Scheme 2 can be easily adapted to any type of donor/acceptor couple [with the substitutions of np with nσ(D) and σ+(X₂) with σ*(XY)], bearing in mind that each couple will have a proper match of energy between the interacting orbitals. We will focus our attention on the adducts between sulfur donors and I₂ since for them it is possible to fine tune the lone pair energy of the donor atom by changing its chemical surrounding; therefore any type of adduct from very weak to extremely strong can be obtained. In the case of very weak interactions, each fragment holds its identity with a small reciprocal perturbation; the effect of such perturbation on the halogen molecule consists in the lowering to some extent of its bond order. In terms of the simplified MO diagram reported in Scheme 2, weak adducts correspond to a poor energy match between the interacting nσ(D) and σ⁺(I₂) MO orbitals. Most of adducts between sulfur compounds and I₂ belong to the class of weak adducts. Since the stabilization of the adduct only depends on the in-phase combination of the interacting orbitals, which is bonding between the donor atom and the central iodine, and antibonding between the two iodine atoms, the bond lengths are strictly correlated and a shortening in the D···I bond distance is accompanied by a lengthening in the I−I one. Without doubt, such types of adducts must be considered two-coordinate hypervalent compounds of iodine, like I₃⁻. However, there is a substantial difference between an I₃⁻ and a D−I−I system; while in the case of I₃⁻ the introduction of an asymmetry, by increasing removal of one terminal iodine as I⁻, generates in the limit case a strongly asymmetric I−···I₂ system, in the case of the charge-transfer adducts, two different asymmetric systems can be generated depending on which bond, D···I or I···I, is the weakest one. They correspond to two different charge-transfer adducts: nσ(D)−σ⁺(I₂) and nσ(1−)−σ*(1−D₂). It is possible to pass almost continuously from a balanced situation with the two bonds having a bond order value of about 0.5 [10-I-2 “hypervalent system” for analogy to I₃⁻], to the two different limit cases in which one bond assumes an increasingly ionic character. Consequently, also these limit cases featuring a strong asymmetry between the two bonds must be included among the 10-I-2 hypervalent compounds D−I⁺···I− and D···I−I.
Table 8: Structural features of all the dichalcogen-halogen (E=X=E′) fragments determined by X-ray diffraction analysis (the E−X⋯E′ fragments have not been reported).

Compound reference code	E	X	E′	d(E−X) (Å)	d(X−E′) (Å)	∠ E−X−E′(°)	References
HAKJAE	S	I	S	2.601	2.634	175.0	[459]
IBOCUX	S	I	S	2.644	2.685	171.9	[460]
JOENCO	S	I	S	2.610	2.610	173.0	[461]
ISUREA10	S	I	S	2.629	2.629	180.0	[462]
LOPQAI	S	I	S	2.638*	2.618*	179.0*	[463]
XORVRAB	S	I	S	2.654	2.654	180.0	[464]
GIGBED	S	I	S	2.406	3.211	175.6	[465]
DIJYUQ	Se	I	Se	2.767	2.737	170.3	[466]
EZOXUM	Se	I	Se	2.765	2.765	180.0	[467]
HAKHUW	Se	I	Se	2.800	2.719	178.0	[459]
CEMFAB10	Te	I	Te	3.124	3.100	189.0	[468]
LAQZEP	Se	Cl	Se	2.537	2.805	175.8	[469]
GANGIL**	Se	Br	Se	2.608	2.606	175.9	[470]
VIYRIE**	Se	Br	Se	2.615	2.573	176.1	[471]
MUHGUR	Se	Br	Se	3.089*	3.083*	178.8*	[472]
RIFNUP	Te	Cl	Te	2.755	2.755	180.0	[142]
ZUNJAT	Te	Cl	Te	2.857	2.829	171.4	[362]
RIWDUW®	Te	Cl	Te	2.664*	2.988*	172.3*	[473]

5 The angle values are rounded off to the first decimal. * Mean values. ** The Se−Br−Se arrangement is part of the Br14Se42− anion.
6 Polymeric structure. § The Se−Cl−Se arrangement is part of the SeCl5− anion.

The scatter plot of d(S−I) versus d(I−I) relative to all the reported adducts between sulphur donors and diiodine is reported in Figure 16.

Apart for some dispersion of the data, which was also found for the other examined three-body systems, it clearly appears that the two bond lengths are strictly correlated in a wide range of values.6 Similar correlations have been found in the case of adducts of selenium donors with diiodine (Figure 17) and sulfur donors with IBr (Figure 18), well represented in the literature. Due to the paucity of experimental data, no correlation is evident in the analogous scatter plots for the linear adducts of chalcogen donors with the other dihalogen/interhalogens molecules, including the case of d(Te−I) versus d(I···I). The structural features of less common linear adducts between chalcogen donors and dihalogen/interhalogens molecules are collected in Table 10.

6.2. X−E−Y fragments

This arrangement corresponds to the well-known “T-shaped” adducts between chalcogen-donors and dihalogens. The numbers of linear X−E−Y fragments crystallographically characterized and found by searching the Cambridge Structural Database are reported in Table 11.

5 The angle values are rounded off to the first decimal. * Mean values. ** The Se−Br−Se arrangement is part of the Br14Se42− anion.
6 Polymeric structure. § The Se−Cl−Se arrangement is part of the SeCl5− anion.
7 A peculiar case is represented by a byproduct of the reaction between the neutral dithiolene [Pd(Et2timdt)2] (Et2timdt = formally monoreduced diethylimidazolidine-2,4,5-trithione) and an excess of bromine, [(Et2timdt)Br]2(Br2)2, containing two [L−S−Br]+ thionebromosulfany1 cations [475]. We described this compound as ionic couples formed by the organic framework bearing a double positive charge and the two terminal S−Br bonds, and the two Br− ions which are positioned next to the sulfur atoms to afford two very asymmetric linear Br−S···Br moieties. The strong asymmetry is determined by several contacts between the Br− and Br2 molecules. Thus, each Br− lies in a pseudo-octahedral environment determined by four Br2 molecules and two S−Br groups all acting as acceptors of the Br− electron density. It is interesting to note that the Br2 molecules are so firmly held in the crystal that after one year at room temperature and at air the crystals were unchanged without loss of bromine. The great stability of the Br2 molecules within the crystal lattice can be explained in terms of donor/acceptor interaction between Br− and the six σ bonding molecular orbitals of four Br2 molecules and two S−Br terminal groups. This type of linear interaction np(Br−) → σ*(Br2) is different from that observed in the solid Br2 or I2 where the halogen molecules interact each other at 90° through a π*(X2) → σ*(X2) donation (X = Br, I).
Database (number of crystal structures in parentheses).

X−Y	E	Te	Se	S
I	I	9 (9)(a)	32 (24)(b)	120 (85)(c)
I	Br	—	5 (5)(d)	13 (11)(e)
I	Cl	—	3 (3)(f)	4 (4)(g)
Br	Br	3 (3)(h)	8 (6)(i)	9 (9)(j)
Br	Cl	—	—	—
Cl	Cl	3 (3)(k)	—	—

(a) Only contacts. References [476–483].
(b) References [42, 444, 466, 484–498].
(c) References [47, 69, 108, 464, 496, 497, 499–549].
(d) References [30, 42, 148].
(e) References [510, 553–555].
(f) Only contacts. References [476–483].
(g) References [50, 559–561].
(h) Only two structures are of the CT type. References [45, 63, 475, 532, 562–564].
(i) Only contacts. References [360, 483, 565].

are given as scatter plots of the two X−E and E−Y bond lengths (Figures 19, 20, 21, 22, and 23).

As one can see, there is a high dispersion of points in the scatter plots; however, in all the analyzed three-body systems the two bond lengths can be considered correlated and both strongly asymmetric and symmetric fragments can be found.

Figure 17: Scatter plot of $d(Se−I)$ versus $d(I−I)$ for linear (angle $>165^\circ$) Se−I−I fragments from a search of the CSD. The symbol (*) refers to the 16 Se−I−I fragments (12 structures) featuring bond distances ranging from Σ_{cov} to ($\Sigma_{VdW}−0.6$); the symbol (◦) refers to the 10 Se−Se−I−I fragments (5 structures) featuring Se−Se−I−I contact distances shorter than ($\Sigma_{VdW}−0.3$); the symbol (•) refers to the 6 Se−Se−I−I fragments (6 structures) featuring I−I contact distances shorter than ($\Sigma_{VdW}−0.3$). The mean bond lengthening within Se−I−I fragments is 10.5% (12.4% on Se−Se−I−I, and 14.4% on Se−I−I−I fragments, resp.) with respect to the sum of the covalent radii.

Figure 18: Scatter plot of $d(I−Br)$ versus $d(S−I)$ for the 13 linear (angle $>165^\circ$) S−I−Br fragments (11 structures) featuring bond distances ranging from Σ_{cov} to ($\Sigma_{VdW}−0.6$) from a search of the CSD. The mean bond lengthening within S−I−Br fragments is 10.5% with respect to the sum of the covalent radii.

In Table 12, the structural features of less common X−E−Y fragments are reported; there are six examples of hypervalent chalcogen atoms bonded to two different halogen atoms, and, as already said, none of them features a central sulphur atom. It is interesting to note that in such systems the bond between the chalcogen and the lighter halogen is much more elongated with respect to the sum of the covalent radii (more ionic bond) than that involving the heavier halogen. In SUSHMIC and in IDAZUI, Se−Cl and Se−Br are even longer than Se−Br and Se−I, respectively.
Table 10: Structural features of less common E−X−Y linear chalcogendihalides of the CT type, characterized by X-ray diffraction analysis.

Compound reference code	E	X	Y	E−X (Å)	X−Y (Å)	θ \(E−X−Y(−)\)	References
HAMCI	S	I	Cl	2.534	2.761	176.4	[510]
LIFXIX	S	I	Cl	2.556	2.604	179.9	[555]
NAHQIX	S	I	Cl	2.575	2.558	176.1	[553]
SIBJOC	S	I	Cl	2.641	2.586	174.9	[554]
RORNIV<sup>(b)<sub>(b)<sup>	S	Br	Br	2.299	2.717	175.0	[562]
RORNIV01<sup>(b)<sub>(b)<sup>	S	Br	Br	2.328	2.705	176.0	[63]
IRABEI<sup>(c)<sub>	Se	Br	Br	2.645	2.358	174.2	[559]
LIGFIQ	Se	I	Cl	2.625	2.690	178.9	[555]
LIGFIQ01	Se	I	Cl	2.618	2.690	178.7	[148]
OXSEIC	Se	I	Cl	2.630	2.731	175.8	[556]
NOWLOA	Se	I	Br	2.808	2.641	177.3	[30]
NOWLUG	Se	I	Br	2.664	2.797	175.8	[30]
WIPPMAM	Se	I	Br	2.636	2.813	177.1	[148]
YEYFIR	Se	I	Br	2.689	2.908	176.9	[42]

^(a) The angle values are rounded off to the first decimal. ^(b) Polymorphs. ^(c) This is the unique example of CT type adduct between a selenium donor with bromine: the formation of a Br−Se−Br group determines very favorable electronic and steric effects to prevent the formation of the same arrangement on the second selenium atom and to promote the CT type adduct. It must be noted that the Se···Br interaction is enough weak to determine a lengthening of the Br−Br bond of only 0.078 Å.

Table 11: Occurrence of linear X−E−Y fragments crystallographically characterized from a search of the Cambridge Structural Database.

X	Y	E	Te	Se	S
Cl	Cl	194^(a)	53^(b)	4^(c)	
Cl	Br	2^(d)	2^(e)	—	
Cl	I	1^(f)	—	—	
Br	Br	84^(g)	63^(h)	3⁽ⁱ⁾	
Br	I	1^(j)	1^(k)	—	
I	I	71^(l)	4^(m)	—	

^(a) References [142, 169, 173, 180, 181, 184, 188−190, 203, 206, 217, 219, 233, 240, 360−362, 368, 373, 374, 376, 381, 473, 480, 481, 565−699]. ^(b) References [260, 325, 381, 469, 495, 561, 700−729].^(c) References [730−732]. ^(d) Reference [733]. ^(e) Reference [723]. ^(f) Reference [580]. ^(g) References [61, 183, 217, 220, 232, 233, 240, 318, 373, 411, 417, 480, 481, 558, 569, 574, 607, 615, 625, 627, 635, 651, 669, 675, 688, 691, 734−777].^(h) References [50, 76, 96, 419, 421, 470, 471, 495, 559−561, 700, 718, 723, 724, 727, 752, 778−799].⁽ⁱ⁾ References [47, 788, 800].^(j) Reference [801].^(k) Reference [802].^(l) References [183, 207, 220, 233, 240, 317, 373, 435, 442, 468, 476−483, 593, 635, 672, 680, 753, 770, 801, 803−829].

7. CHALCOGEN · XCN (X = HALOGEN) ADDUCTS

As reported before, we wish also to consider in this discussion “T-shaped” adducts obtained from the reaction between chalcogen donors and pseudo-halogens X−CN (X = Cl, Br and I). Some compounds characterized by X-ray diffraction analysis and featuring X−E−CN moieties (X = halogen, E = chalcogen) are collected in Table 13.

The compound CYMIMB, reported by Arduengo and Burgess [800], has been included in the table for its strict similarity with EZUZII, reported by us [832]. Both compounds have a “T-shaped” arrangement around the chalcogen atom and are characterized by very different E−X and E−CN bond lengths; the chalcogen-carbon bond is only slightly elongated with respect to the sum of covalent radii (bond order close to 1) and the chalcogen-halogen bond is close to be a completely ionic bond. These compounds closely resemble many asymmetric systems above described and in particular the pincer-type molecule bearing the O···Se−Se group (Table 4). The closeness of the chalcogen−CN and the Se−Se bond distances to the corresponding single bonds, respectively, and the long chalcogen-halogen and selenium-oxygen distances, strongly support the analogy between these two classes of compounds. According to the 3c-4e model, the different energy levels of the three combined p orbitals (there is a good overlap between the orbitals from E and C due to a good match of their energies) produce a bonding MO having a small contribution of the p orbital of the halogen, which vice versa mainly contributes to the nonbonding orbital, thus carrying most of the negative charge. In terms of the charge-transfer model, all the compounds of this type can be properly described as originated by a very weak donation from one halide orbital to the E−CN antibonding orbital (e.g., nσ(E−CN) → σ*(E−CN)); the weak interaction has the consequence of a small lengthening in the E−CN bond distance, exactly as verified in numerous adducts between weak S donors and diiodine.
Table 12: Structural features of the less common X−E−Y linear chalcogendihalides characterized by X-ray diffraction analysis.

Compound reference code	X	E	Y	\(d(\text{X}−\text{E})\) (Å)	\(d(\text{E}−\text{Y})\) (Å)	\(\angle \text{X}−\text{E}−\text{Y}\)\(^{(a)}\)	References
CFMBXT	Cl	S	Cl	2.126	2.552	167.6	[730]
CLPHSC10	Cl	S	Cl	2.256	2.322	174.9	[731]
TOSXII	Cl	S	Cl	2.341	2.384	166.3	[732]
TOSXOO	Cl	S	Cl	2.295	2.365	175.9	[732]
BIMAL	Br	S	Br	2.437	2.495	171.6	[47]
MIMZDB	Br	S	Br	2.451	2.538	176.9	[800]
OBUQEH	Br	S	Br	2.493	2.493	179.4	[788]
SUSMIC	Cl	Se	Br	2.802\(^{(b)}\)	2.412\(^{(b)}\)	173.3\(^{(b)}\)	[723]
SUSNAV	Cl	Se	Br	2.466	2.571	176.2	[793]
IDAZUI\(^{(c)}\)	Br	Se	I	2.831\(^{(b)}\)	2.618\(^{(b)}\)	174.6\(^{(b)}\)	[802]
GEPPUM	I	Se	I	2.756	2.850	176.3	[486]
HELDUX	I	Se	I	2.768	2.854	175.4	[830]
ZOBDID	I	Se	I	2.738	2.886	178.6	[498]
ZOBDUP	I	Se	I	2.743	2.900	177.5	[498]
XAGVIK	Br	Te	Br	2.659	2.577	169.9	[733]
CEFREX	Br	Te	I	2.868	2.903	177.9	[580]

\(^{(a)}\) The angle values are rounded off to the first decimal. \(^{(b)}\) Mean values. \(^{(c)}\) This compound is the unique example of Se-hypervalent compound with IBr. Note that the mean value of the Se−I bond length is shorter than the Se−Br one.

Table 13: Structural features of all the T-shaped compounds containing the X···E−CN fragment (E = chalcogen; X = halogen) from a search of the Cambridge Structural Database.

Compound reference code	X	E	X···E	E−CN (Å)	\(\angle \text{X}···\text{E}−\text{Y}\) \(^{(a)}\)	References
BOJPUL	Cl	Te	2.924	2.140	167.9	[831]
BOJRAT	Br	Te	3.100	2.131	167.6	[831]
BOJRX	I	Te	3.299	2.143	170.9	[831]
CYMIMB\(^{(a)}\)	Br	S	3.588\(^{(a)}\)	1.757	159.8	[800]
EZUZII	I	Se	3.300	1.885	174.8	[832]

\(^{(a)}\) This compound has not been found searching the Cambridge Structural Database, but has been included in the table for the strict similarity with EZUZII. In CYMIMB, the shorter S···Br distance (3.270 Å) is that of the bromide in trans position with respect to the pentaatomic ring of the donor and not to the CN group.

Figure 19: Scatter plot of \(d_1\) versus \(d_2\) of the 113 linear (angle > 165°) I−Te−I fragments (71 structures) featuring bond distances ranging from \(\Sigma r_{\text{covalent}}\) to \(\Sigma r_{\text{VDW}} = 0.6\) from a search of the CSD. The mean bond lengthening within I−Te−I fragments is 9.3% with respect to the sum of the covalent radii.

Figure 20: Scatter plot of \(d_1\) versus \(d_2\) of the 170 linear (angle > 165°) Br−Te−Br fragments (84 structures) featuring bond distances ranging from \(\Sigma r_{\text{covalent}}\) to \(\Sigma r_{\text{VDW}} = 0.6\) from a search of the CSD. The mean bond lengthening within Br−Te−Br fragments is 8.1% with respect to the sum of the covalent radii.
with respect to the sum of the covalent radii. Σ
distances ranging from −
The mean bond lengthening within Cl fragments is 8.0% with respect to the sum of the covalent radii. The following conclusions can be drawn.

8. CONCLUSION

On the basis of this overview on the structural features of linear three-body systems, involving 16th and 17th group elements, the following conclusions can be drawn.

(i) The Rundle-Pimentel model for electron-rich 3-centre 4-electron systems and the charge-transfer model represent two different approaches able to account for the structural features of these linear three-body systems.

(ii) The Rundle-Pimentel model can be adapted to any set of three aligned atoms, positioning the combining orbitals at the appropriate levels of energy.

(iii) Since three aligned closed-shell atoms can find stabilization only if two electrons are removed from the system, ideally any type of sequence of atoms could be obtained.

(iv) The variability of starting molecules is reflected in the great variety of obtainable structural archetypes. Since a starting molecule can be also a species containing a hypervalent atom, its alignment with other closed-shell species produces molecules in which two or three orthogonal 3c-4e systems are simultaneous present. This is for example the case of anions such as Ph−SeBr$_2^−$ or SeBr$_6^{2−}$.

(v) The Rundle-Pimentel model very well accounts for the 0.5 bond order in symmetric three-body systems since only the lowest MO contributes to the bond formation. In addition, the Rundle-Pimentel model elegantly explains why the two terminal atoms carry more negative charge (or less positive charge for positively charged systems) even in the cases of three identical atoms [such as I$_3^−$ or E(R$_2$)$−$E(R$_3$)$−$E(R$_4$)$^{2+}$ dications].

(vi) In these three-body systems, the energy match between the p orbital of the central atom and those of the terminal ones influences the polarization of the formed bonds. This is very important for systems having different terminal atoms: each p orbital will contribute differently to the three molecular orbitals with the consequence of an increased unbalance of the two bonds as the electronegativity difference between the involved elements increases. In such cases, the bond orders of the two bonds diverge from the value of 0.5, one approaching the value of 1 and the other that of 0.

(vii) The strict analogy among all these systems, including the strongly asymmetric ones as the “T-shaped” adduct between the N,N’-dimethylimidazolium-2-selone and ICN, supports the hypervalent nature of the selenium atom in this compound in spite of the fact that the bond orders of the two bonds are very different.
(viii) The charge-transfer model explains very well all the very asymmetric systems since this model corresponds to the interaction of two stable fragments (as a dihalogen molecule with a halide, or as chalcogen donor with a dichalcogen dication).

(ix) The energy match between the interacting orbitals of the two fragments (such as a hybrid orbital of the donor and the σ^* antibonding molecular orbital of the acceptor) determines the entity of the interaction.

(x) In the CT model, the bond order of 0.5 for the two bonds is reached when the interacting orbitals are at the same level of energy. This corresponds to the introduction of 1 electron on the σ^* MO of the acceptor, with the consequent reduction of the bond order from 1 to 0.5.

(xi) An aspect to be emphasized is the fact that in all the structures of these families of compounds, including the very asymmetric systems, the three-body system is always linear, with angles generally larger than 170°. The directionality of the bond is maintained also in presence of strongly unbalanced bonds indicating a valuable contribution of covalence, due to the $n_{\text{donor}} \rightarrow \sigma^*_{\text{acceptor}}$ charge-transfer interaction and supporting the hypervalent character of the central chalcogen atom, independently on the entity of the asymmetry.

(xii) Finally, it is interesting to observe that with only few exception, the systems having different terminal atoms (see, e.g., trihalides $X-Z-Y$ with $X \neq Y$ or trichalcogenides $E-E'-E''$ with $E \neq E''$) are less common than the symmetric ones.

REFERENCES

[1] K.-Y. Akiba, Ed., *Chemistry of Hypervalent Compounds*, Wiley-VCH, New York, NY, USA, 1999.

[2] G. A. Landrum, N. Goldberg, and R. Hoffmann, “Bonding in the trihalides (X^3), mixed trihalides (X_2Y) and hydrobromine bihalides (XH). The connection between hypervalent, electron-rich three-center, donor-acceptor and strong hydrogen bonding,” *Journal of the Chemical Society, Dalton Transactions*, no. 19, pp. 3605–3613, 1997.

[3] P. H. Svensson and L. Kloo, “Synthesis, structure, and bonding in polyiodide and metal iodide-iodine systems,” *Chemical Reviews*, vol. 103, no. 5, pp. 1649–1684, 2003.

[4] W. Nakanishi, “Hypervalent chalcogen compounds,” in *Handbook of Chalcogen Chemistry, New Perspectives in Sulfur, Selenium and Tellurium*, F. A. Devillanova, Ed., chapter 10.3, Royal Society of Chemistry, London, UK, 2006.

[5] C. W. Perkins, J. C. Martin, A. J. Arduengo, W. Law, A. Alregar, and J. K. Kocki, “An electrically neutral σ-sulfuryl radical from the homolysis of a perester with neighboring sulfenyl sulfur: 9-S-3–5 species,” *Journal of the American Chemical Society*, vol. 102, no. 26, pp. 7753–7759, 1980.

[6] R. J. Hackand and R. E. Rundle, “The structure of tetramethylammonium pentaiodide,” *Journal of the American Chemical Society*, vol. 73, no. 9, pp. 4321–4324, 1951.

[7] G. C. Fimtenel, “The bonding of trihalide and bifluoride ions by the molecular orbital method,” *The Journal of Chemical Physics*, vol. 19, no. 4, pp. 446–448, 1951.
20 Bioinorganic Chemistry and Applications

[23] R. G. Raptis, H. H. Murray, R. J. Staples, L. C. Porter, and J. P. Fackler Jr., "Structural isomers of [Au(CH2)2PPh2]Br4 and [Au(CH2)2PPh2]Br4", Acta Crystallographica, Section C, vol. 46, no. 2, pp. 224–228, 1990.

[24] F. Bigoli, F. Demartin, P. Deplano, et al., "Synthesis, characterization, and crystal structures of new dications bearing the -Se-Se- bridge, Inorganic Chemistry, vol. 35, no. 11, pp. 3194–3201, 1996.

[25] U. Müller, Zeitschrift für Naturforschung, Section B, vol. 34, p. 1064, 1979.

[26] J. Janczak and R. Kubiak, "Sandwich-type niobium(V) diphthalocyaninato complexes 'stapled' by two inter-ligand C−C σ-bonds. Synthesis and structural investigations of two new phthalocyaninato complexes: [NbPC6]([IBr]3) and [NbPC6]([IBr]2) · I−", Polyhedron, vol. 22, no. 2, pp. 313–322, 2003.

[27] V. E. Korotkov and R. P. Shibaeva, Crystallography Reports, vol. 36, p. 1139, 1991.

[28] F. Cristiani, F. Demartin, F. A. Devillanova, F. Isaia, V. Lippolis, and G. Verani, "Charge-transfer complexes of N-Methylthiazolidine-2(3H)-selone (1) and N-Methylbenzothiazole-2(3H)-selone (2) with 1 and IBr: crystal structures of 11−, 1Br−, 2: 12, and 2: 2IBr", Inorganic Chemistry, vol. 33, no. 26, pp. 6315–6324, 1994.

[29] A. Tateno, T. Udagawa, T. Naito, H. Kobayashi, A. Kobayashi, and T. Nogami, "Crystal structures and electrical properties of the radical salts of the unsymmetrical donor EOTT [4,5-ethylenedithio-4',5'-dimethylphenazine] tetrathiafulvalene," Journal of Materials Chemistry, vol. 4, pp. 1559–1569, 1994.

[30] B. F. Hoskins, R. Robson, and G. A. Williams, "Composites of binucleating ligands. VIII. The preparation, structure and properties of some mixed valence cobalt(II)−cobalt(III) complexes of a macrocyclic binucleating ligand," Inorganica Chimica Acta, vol. 16, pp. 121–133, 1976.

[31] G. Wolmershauser, C. Kruger, and Y.-H. Tsay, Chemische Berichte, vol. 115, p. 1126, 1982.

[32] M. P. Bogaard and A. D. Rae, Crystal Structure Communications, vol. 11, p. 175, 1982.

[33] N. Bricklebank, P. J. Skabara, D. E. Hibbs, M. B. Hursthouse, and K. M. A. Malik, "Reaction of thiones with -Se-Se- bridge, Inorganic Chemistry, vol. 35, no. 11, pp. 5676–5681, 1996.

[34] N. Burford, T. Chivers, M. N. S. Rao, and J. F. Richardson, "Synthesis, characterization, and crystal structures of new dications bearing the -Se-Se- bridge, Inorganic Chemistry, vol. 35, no. 11, pp. 3194–3201, 1996.

[35] U. Müller, Zeitschrift für Naturforschung, Section B, vol. 34, p. 1064, 1979.

[36] J. Janczak and R. Kubiak, "Sandwich-type niobium(V) diphthalocyaninato complexes 'stapled' by two inter-ligand C−C σ-bonds. Synthesis and structural investigations of two new phthalocyaninato complexes: [NbPC6]([IBr]3) and [NbPC6]([IBr]2) · I−", Polyhedron, vol. 22, no. 2, pp. 313–322, 2003.

[37] V. E. Korotkov and R. P. Shibaeva, Crystallography Reports, vol. 36, p. 1139, 1991.
[52] R. A. Abramovitch, G. H. C. Ooi, H.-L. Sun, M. Pierrot, A. Baldy, and J. Estienne, Chemical Communications, p. 1583, 1984.

[53] J. Estienne, "Structure d’un dérivé de la saccharine: le tribromure de bis(diéthylamino)-1,3 diméthyl-2,4 (trioxo-1,1,3,2H-benzothiazol-1,3-y1)-2 cyclobuténiurn. La géométrie de l’ion tribromure," Acta Crystallographica, Section C, vol. 42, no. 11, pp. 1614–1618, 1986.

[54] K. Wieghardt, G. Backes-Dahmann, W. Herrmann, and J. Weiss, "A Binuclear, mixed-valence MoIVVII-complex; the crystal structure of [(C\textsubscript{6}H\textsubscript{5}H\textsubscript{3}N\textsubscript{3})\textsubscript{2}MoIVVII]O\textsubscript{3}[(Br\textsubscript{3})2]-, Ange- wandte Chemie International Edition, vol. 23, no. 11, p. 899–900, 1984.

[55] B. L. Allwood, P. I. Moysak, H. S. Rzepe, and D. J. Williams, Chemical Communications, p. 1127, 1985.

[56] H. Slebocka-Tilk, R. G. Ball, and R. S. Brown, "The question of reversible formation of bromine ions during the course of electrophilic bromination of olefins. 2. The crystal and molecular structure of the bromonium ion of adamantylideneamadamantane," Journal of the American Chemical Society, vol. 107, no. 15, pp. 4504–4508, 1985.

[57] M. I. Bruce, M. G. Humphrey, G. A. Koutsantonis, and B. K. Nicholson, "Reactions of transition metal acetylide complexes IV. Synthesis and X-ray structure of a bromovinylidene complex, [Ru(C=C=Br(\text{C\textsubscript{6}H\textsubscript{4}Br-4}))\{\text{PPPh\textsubscript{3}}\}(\text{q=}-\text{C\textsubscript{6}H\textsubscript{3}})][\text{Br\textsubscript{3}}] \cdot \text{CHCl\textsubscript{3}}," Journal of Organometallic Chemistry, vol. 296, no. 3, pp. C47–C50, 1985.

[58] F. A. Cotton, G. E. Lewis, and W. Schotzweit, "Preparation and properties of the tribromide of trans-dibromotetrakis(acetonitrile)vanadium(III), [\text{Br\textsubscript{3}}L\textsubscript{3}](\text{CH\textsubscript{3}CN})\text{Br}, A symmetric tribromide ion," Inorganic Chemistry, vol. 25, no. 19, pp. 3528–3529, 1986.

[59] H. Endres, Zeitschrift für Naturforschung, Section B, vol. 41, p. 1437, 1986.

[60] J. C. A. Boeyens, L. Denner, A. S. Howard, and J. P. Michael, South African Journal of Chemistry, vol. 39, p. 1437, 1986.

[61] M. R. Detty and H. R. Luss, "Tellurapyrylium dyes. 3. Oxidative halogen addition and tellurium-halogen exchange, " Journal of Chemical Crystallography, vol. 107, no. 15, pp. 4504–4508, 1985.

[62] A. S. Muir, "A high resolution powder X-ray di-

[63] J. Nolte, P. Neubauer, H. Vogt, and M. Meisel, "Syntheses and crystal structures of tris(di-n-propylylamino)-p-bromo-

[64] H. Slebocka-Tilk, R. G. Ball, and R. S. Brown, "The question of reversible formation of bromine ions during the course of electrophilic bromination of olefins. 2. The crystal and molecular structure of the bromonium ion of adamantylideneamadamantane," Journal of the American Chemical Society, vol. 107, no. 15, pp. 4504–4508, 1985.

[65] A. S. Muir, "A high resolution powder X-ray di-

[66] H. Endres, Zeitschrift für Naturforschung, Section B, vol. 41, p. 1437, 1986.

[67] J. Nolte, P. Neubauer, H. Vogt, and M. Meisel, "Syntheses and crystal structures of tris(di-n-propylylamino)-p-bromo-

[68] H. Endres, Zeitschrift für Naturforschung, Section B, vol. 41, p. 1437, 1986.

[69] J. R. Ruiz, V. Riera, M. Vivanco, M. R. Grau, and M. C. Ménard, "Base-induced dismutation of POCl\textsubscript{3} and POBr\textsubscript{3}: synthesis and structure of ligand-stabilized dioxophosphonium cations," Inorganic Chemistry, vol. 43, no. 7, pp. 2435–2442, 2004.

[70] J. Pickardt, H. Schumann, and R. Mohtachami, "Structure of decamethylferrocenium tribromide," Acta Crystallographica, Section C, vol. 46, no. 1, pp. 39–41, 1990.

[71] A. W. Coleman, C. M. Means, S. G. Bott, and J. L. Atwood, "Air-stable liquid clathrates. 1. Crystal structure of [NBu\textsubscript{4}] [Br\textsubscript{3}], and reactivity of the [NBu\textsubscript{4}][Br\textsubscript{3}] \cdot 5C\textsubscript{6}H\textsubscript{5} liquid clathrate," Journal of Chemical Crystallography, vol. 20, no. 2, pp. 199–201, 1990.

[72] J.-C. Liu, T. Ishizuka, A. Osaka, and H. Furuta, "Modulation of axial coordination in N-confused porphyrin-antimony(\textit{v}) dibromide complex by proton stimulus," Chemical Communications, vol. 9, no. 15, pp. 1908–1909, 2003.

[73] A. Bekoq, P. Lemoine, B. Viosat, M. Jouan, P. Gmeiner, and J. D. Brion, "Synthesis, crystal structure, IR and Raman properties of 1,2-diacetamidocyclohexane and its complexes with ZnBr\textsubscript{2} and HBr\textsubscript{2}," Journal of Molecular Structure, vol. 738, no. 1–3, pp. 39–44, 2005.

[74] J. L. Atwood, P. C. Junk, M. T. May, and K. D. Robinson, "Synthesis and X-ray structure of [H\textsubscript{3}O+ \cdot \cdot \cdot 18 -crowen-6]-[Br\textsubscript{3}-Br\textsubscript{3}]; a compound containing both H\textsubscript{3}O+ and a linear and symmetrical Br\textsubscript{3} ion crystallized from aromatic solution," Journal of Chemical Crystallography, vol. 24, no. 4, pp. 243–245, 1994.

[75] V. Janicki, "Syntheses and crystal structures of phenyltrime-thylammonium salts of a mixed Hexabromoselenate/tellurate-

[76] H. Endres, Zeitschrift für Naturforschung, Section B, vol. 41, p. 1437, 1986.

[77] A. Bekoq, P. Lemoine, B. Viosat, M. Jouan, P. Gmeiner, and J. D. Brion, "Synthesis, crystal structure, IR and Raman properties of 1,2-diacetamidocyclohexane and its complexes with ZnBr\textsubscript{2} and HBr\textsubscript{2}," Journal of Molecular Structure, vol. 738, no. 1–3, pp. 39–44, 2005.

[78] J. L. Atwood, P. C. Junk, M. T. May, and K. D. Robinson, "Synthesis and X-ray structure of [H\textsubscript{3}O+ \cdot \cdot \cdot 18 -crowen-6]-[Br\textsubscript{3}-Br\textsubscript{3}]; a compound containing both H\textsubscript{3}O+ and a linear and symmetrical Br\textsubscript{3} ion crystallized from aromatic solution," Journal of Chemical Crystallography, vol. 24, no. 4, pp. 243–245, 1994.

[79] S. L. Lawton, D. M. Hoh, R. C. Johnson, and A. S. Knisely, "Charge-transfer bonding in metal-arene coordination, " Coordination Chemistry Reviews, vol. 200–202, pp. 831–873, 2000.

[80] S. L. Lawton, D. M. Hoh, R. C. Johnson, and A. S. Knisely, "Crystal structure of 4-methylpyrrolidone-N-methylpyrrolidine-2-onium chloride, (4-C\textsubscript{6}H\textsubscript{7}NH)\textsubscript{2}\text{SbVBr\textsubscript{9}}," Inorganic Chemistry, vol. 12, no. 2, pp. 277–283, 1973.
Bioinorganic Chemistry and Applications

[80] J. Spandl, C. Daniel, I. Brüdgam, and H. Hartl, “Synthesis and structural characterization of redox-active dodecamethoxoheptaoxohexavanadium clusters,” Angewandte Chemie International Edition, vol. 42, no. 10, pp. 1163–1166, 2003.

[81] B. Le Gall, F. Conan, N. Cosquer, et al., “Unexpected behavior of copper(I) towards a tridentate Schiff base: synthesis, structure and properties of new Cu(I)-Cu(II) and Cu(II) complexes,” Inorganica Chimica Acta, vol. 324, no. 1–2, pp. 300–308, 2001.

[82] H. Vogt, V. Quaschning, B. Zieme, and M. Meisel, “Synthesis and crystal structures of tris(diethylamino) benzylphosphonium bromides: [(C₆H₅)(CH₃)₂N][PCH₂C₆H₄Br] · CH₂CN and [(C₆H₅)₂N][PCH₂C₆H₄Br₃],” Zeitschrift für Naturforschung, Section B, vol. 52, no. 10, pp. 1175–1180, 1997.

[83] B. B. Hughes, R. C. Haltiwanger, C. G. Pierpont, M. Hampson, and G. L. Blackmer, “Synthesis and structure of a 12-crown-4 sandwich complex of manganese(II), bis(1,4,7,10-tetraoxacyclododecane)manganese(II) tribromide,” Inorganica Chimica Acta, vol. 46, no. 2, pp. 135–160, 1999.

[84] M. Calleri and G. Ferguson, Crystal Structure Communications, vol. 1, p. 331, 1972.

[85] S. L. Lawton and R. A. Jacobson, “The crystal structure of a-Picolinium Nonabromoammoniate(V), (C₆H₅NH)₂SbBr₄,” Inorganic Chemistry, vol. 7, no. 10, pp. 2124–2134, 1968.

[86] J. V. Brencic, A. N. Chernega, and R. Rotar, “Structural identification of rans-[MoIIIBr₅]Br₅(p=pyridine,C₆H₅N),” Acta Chimica Slovenica, vol. 52, no. 10, pp. 1175–1180, 1997.

[87] G. L. Breneman, private communication, 2000.

[88] S. L. Lawton, E. R. McAfee, J. E. Benson, and R. A. Jacobson, “Crystal structure of quinolinium hexabromoantimonate(V), (C₆H₇NH)₂SbBr₈,” Crystallography Reports, vol. 12, no. 12, pp. 2939–2944, 1973.

[89] K. N. Robertson, P. K. Bakshi, T. S. Cameron, and O. Knop, “Polyhalide anions in crystals. 3. The Br₈⁻ anion in diquinolinium hexabromoantimonate(V), (C₆H₇NH)₂SbBr₈,” Acta Crystallographica, Section B, vol. 51, no. 10, pp. 1443–1448, 1996.

[90] A. Bekaert, O. Barberan, E. B. Kaloun, et al., Zeitschrift für Kristallographie: New Crystal Structures, vol. 217, p. 507, 2002.

[91] L. N. Markovskii, V. E. Pashinink, V. I. Tovstenko et al., Russian Journal of Organic Chemistry, vol. 27, p. 1936, 1991.

[92] S. Zürcher, J. Petrig, V. Gramlich, et al., “Charge-transfer salts of octamethylferrocenyl thioethers with organic acceptors (TCNQ and TCNQF)₃ and trihalides (Br₅₋ and I₅₋).” Synthesis, structure, and physical properties., Organometallics, vol. 18, no. 18, pp. 3679–3689, 1999.

[93] A. Bekaert, O. Barberan, E. B. Kaloun, et al., “Crystal structure of hexakis(N,N-dimethylformamide-O)aluminium(III) tris(tribromide), Al[CH₃N(CH₂O)]₆(Br₃)₃,” Zeitschrift für Kristallographie: New Crystal Structures, vol. 217, p. 128–130, 2002.

[94] F. J. Arnáiz, M. J. Miranda, R. Aguado, J. Maháia, and M. A. Maestro, “Uranyl polyhalides. Molecular structure of [UO₂(OAsPh₃)₁]₂[Br₃]₂ and [UO₂(OOPPh₃)₁]₂(I₃)₂,” Polyhedron, vol. 21, no. 27-28, pp. 2755–2760, 2002.

[95] N. Kuhn, H. Bohnen, and G. Henkel, Zeitschrift für Naturforschung, Section B, vol. 49, p. 1473, 1994.

[96] H. Vogt, C. Frauendorf, A. Fischer, and P. G. Jones, Zeitschrift für Naturforschung, Section B, vol. 50, p. 223, 1995.

[97] Y.-Q. Wang, Z.-M. Wang, C.-S. Liao, and C.-H. Yan, “Bis(1,10-phenanthroline-1-ium) chlorodiiodide(1-) dichlorodiiodide(1-),” Acta Crystallographica, Section C, vol. 55, no. 9, pp. 1503–1506, 1999.

[98] G. V. Shilov, O. N. Kazheva, O. A. D’yachenko et al., “The synthesis, structure, and stability of N-cetylpyridinium interhalides: an experimental and quantum-chemical study,” Zhurnal Fizicheskoi Khimii, vol. 76, no. 8, pp. 1436–1444, 2002.

[99] H. Kobayashi, R. Kato, A. Kobayashi, et al., “The crystal structure of β-(BEDT-TTF)₂I₃,” Chemistry Letters, vol. 15, no. 1, pp. 89–92, 1986.
J. H. E. Bailey, J. E. Drake, A. B. Sarkar, and M. L. Y. Wong, "Preparation and characterization of diphenylbis(N,N-dialkylthiocarbamato)tellurium (IV) and chlorodiphenyl(N, N-dialkylthiocarbamato)tellurium (IV)." Crystal structures of PH₂Te[₃CNMe₂]₂, PH₂TeCl[₃CNMe₂], and PH₂TeCl[₃CN(i-Pr)]₂," Canadian Journal of Chemistry, vol. 67, no. 11, pp. 1735–1743, 1989.

S. Husebye, K. Maartmann-Moe, and O. Mikalsen, Acta Chimica Scandinavica, vol. 44, p. 464, 1990.

J. H. E. Bailey, J. E. Drake, and M. L. Y. Wong, "Preparation and characterization of a series of bromodiphenyl(N,N-dialkylthiocarbamato)tellurium (IV) compounds where R=Me, Et, i-Pr, Bu, and of chlorodiphenyl(N,N-dibutylthiocarbamato)tellurium (IV) and diphenylbis(N,N-dibutylthiocarbamato)tellurium (IV)." Crystal structure of PH₂TeBr₂[₃CNBu₂]₂ and PH₂Te₂[₃CNBu₂]₂, Canadian Journal of Chemistry, vol. 69, no. 12, pp. 1948–1956, 1991.

N. W. Alcock, J. Culver, and S. M. Roe, "Secondary bonding. Part 15. Influence of lone pairs on co-ordination: comparison of diphenyl-tin(IV) and -tellurium(IV) carboxylates and dithiocarbamates," Journal of the Chemical Society, Dalton Transactions, no. 9, pp. 1477–1484, 1992.

J. O. Bogason, D. Dakternieks, S. Husebye, K. Maartmann-Moe, and H. Zhu, Phosphorus, Sulfur, and Silicon and the Related Elements, vol. 71, p. 13, 1992.

S. Husebye, K. Maartmann-Moe, and O. Mikalsen, Acta Chimica Scandinavica, vol. 44, p. 802, 1990.

J. E. Drake, J. E. Drake, A. Silvestru, and I. Haiduc, "A unique supramolecular structure of catena-poly[bis(μ- dphenyldiphenylpolithio)ditellurate(1) (Te-T e)], [Te₂(S₂ PPh₂)₂]₄, containing Te-Te...Te-Te...chains," Inorganic Chemistry, vol. 32, no. 18, pp. 3795–3796, 1993.

J. E. Drake, L. N. Khasrou, A. G. Mislankar, and R. Ratnani, Canadian Journal of Chemistry, vol. 72, p. 1328, 1994.

D. J. Williams, V. L. H. Bevilacqua, P. A. Morson, W. T. Pennington, G. L. Schimek, and N. T. Kawai, "Main group metal halide complexes with sterically hindered thioureas. Part XVII. The crystal and molecular structures of two new tellurium chloride complexes with 1,3-dimethyl-2(3H)-imidazolothionine," Inorganic Chemica Acta, vol. 308, no. 1-2, pp. 901–907, 1999.

W. Bubenheim, G. Frenzen, and U. Müller, "Syntheses and Crystal Structures of (O,O-2,3-dimethylbutylene and O,O-2-dimethylpropylene dithiophosphato)diphenyltellurium (IV) compounds. Crystal structures of Me₂Te[(SPPh₂)₂N], Me₂TeCl[(SPPh₂)₂N], Me₂Te[(SPPh₂)₂N], and Me₂Te[(OPPh₂)₂(SPPh₂)₂N]," Canadian Journal of Chemistry, vol. 77, no. 3, pp. 356–366, 1999.

S.-P. Huang, S. Dingha, and M. G. Kanatzidis, "Synthesis and properties of the homo- and heteropolycalchogonide A[Q₂]₂₋³ family (A=Te, Q=S; Se; A=Se, Q=S, Se). Crystal structures of (Ph₅P₉)₂[Te(S₅)₂] and β – (Ph₅P₉)₂[Te(S₅)₂]," Polyhedron, vol. 11, no. 15, pp. 1869–1875, 1992.

W. Rubenhein, G. Frenzen, and U. Müller, "Synthese und Kristallstrukturen von (PPh₅)₂[Te(S₅)₂]·2CH₃CN und (PPh₅)₂[Te(S₅)₂]·2CH₃CN," Zeitschrift für anorganische und allgemeine Chemie, vol. 620, no. 6, pp. 1046–1050, 1994.

H. Fleischer and D. Schollmeyer, "Trans-bis(1H-benzenimidazole-1-thione--S-tetraformyltellurium methanol disolvate," Acta Crystallographica, Section E, vol. 58, no. 8, pp. 901–903, 2002.

J. E. Drake, R. Ratnani, and J. Yang, "Tellurocyanochalcoenoimidodiphenophosphinato derivatives of dimethyltellurium(IV) compounds. Crystal structures of Me₂Te[(SPPh₂)₂N], Me₂TeCl[(SPPh₂)₂N], Me₂Te[(SPPh₂)₂N], and Me₂Te[(OPPh₂)₂(SPPh₂)₂N]," Journal of Organometallic Chemistry, vol. 620, no. 1-2, pp. 124–130, 2001.

S. Husebye, K. W. Törnroos, and H. Zhu, "Cis-trans isomerism in square planar TeCl₂(stu) complexes with bulky substituted thiourea (stu) ligands syntheses and structures of four new tellurium(II) complexes," Zeitschrift für anorganische und allgemeine Chemie, vol. 627, no. 8, pp. 1921–1927, 2001.

G. Canseco-Melchor, V. Garcia-Montalvo, R. A. Toscano, and R. Cea-Olivares, "Synthesis and spectroscopic characterisation of new mixed ligand organotellurium(IV) compounds employing dithiocarbamates and imidotetraphenylthiodiphosphinates. Crystal structure of [C₇H₇Te(S₂ CNMe₂)][(SPPh₂)₂N], [C₇H₇Te(S₂ CNMe₂)H₂][SPH₂N]⁺, and [C₇H₇Te(S₂ CNMe₂)H₂][SPH₂N]⁺, " Journal of Organometallic Chemistry, vol. 631, no. 1-2, pp. 99–104, 2001.

S. Bjørnevag, S. Husebye, and K. Maartmann-Moe, Acta Chimica Scandinavica, Series A, vol. 36, p. 195, 1982.

D. Dakternieks, R. di Giacomo, R. W. Gable, and B. F. Hoskins, "Synthesis, NMR spectroscopic investigation, and crystal structures of 1,3-dihydro-2H-1,3-benzotellurin-2,2-diy bis(dithyldithiocarbamate), C₇H₇Te[₃CNMe₂]₂, S, S'-1, 3-dihydro-2H-1,3-benzotellurin-2,2-diy d (O, O', O' - tetraethyl bis(dithiophosphate), C₇H₇Te[₃CNMe₂]₂, S, S'-1 and 1, 3-dihydro-2H-1,3-benzotellurin-2,2-diy bis (0-ethyl xanthate), C₇H₇Te[₃CNMe₂]₂, S, S'-1," Journal of the American Chemical Society, vol. 110, no. 20, pp. 6753–6761, 1988.

J. H. E. Bailey, J. E. Drake, A. B. Sarkar, and M. L. Y. Wong, "Preparation and characterization of diphenylbis(N,N-dialkylthiocarbamato)tellurium (IV) and chlorodiphenyl(N, N-dialkylthiocarbamato)tellurium (IV)." Crystal structures of PH₂Te[₃CNMe₂]₂, PH₂TeCl[₃CNMe₂], and PH₂TeCl[₃CN(i-Pr)]₂," Canadian Journal of Chemistry, vol. 67, no. 11, pp. 1735–1743, 1989.
[207] S. Husebye, D. Mughannam, and K. W. Törnroos, “Cis-trans isomerism in square planar [TeX_2(stu)_2] complexes (X=Br, I) with bulky substituted thiourea (stu) ligands. Syntheses and structures of four new tellurium(II) complexes,” Phosphorus, Sulfur, and Silicon and the Related Elements, vol. 178, no. 8, pp. 1825–1837, 2003.

[208] O. Foss and K. Maroy, Acta Chemica Scandinavica, vol. 20, p. 123, 1966.

[209] S. Hauge and O. Vikane, Acta Chemica Scandinavica, Series A, vol. 29, p. 755, 1975.

[210] O. Foss, S. Husebye, K. W. Törnroos, and P. E. Fanwick, “Synthesis and X-ray crystal structures of six [TeXI] MF6 salts, where L is ethylene- or trimethylene-thiourea, and M is Si, Ge or Sn. Five Te(II) complexes with a novel type of structure linked together by unusual N—H—F hydrogen bonds,” Polyhedron, vol. 23, no. 18, pp. 3021–3032, 2004.

[211] J. E. Drake, L. N. Khasrou, A. G. Mislankar, and R. Ratnani, “Dimetalltellurium(IV) derivatives with mixed 1,1-dithio ligands. Crystal structures of Me2Te(S2CNMe2)2[S2COEt] and Me2Te[S2CNMe2][S2COEt],” Canadian Journal of Chemistry, vol. 77, no. 7, pp. 1262–1273, 1999.

[212] J. E. Drake, R. J. Drake, L. N. Khasrou, A. G. Mislankar, R. Ratnani, and J. Yang, “Synthesis, spectroscopic and structural studies of O-methyl and O-isopropyl monothiocarbonate (monoxanthate) derivatives of dimethyl- and diphenyltellurium(IV). Crystal structures of Me2Te[S2CO2(1-Pr)]2, Ph2Te[S2CO2(1-Pr)]2, Me2TeCl[S2CO2Me], and Me2TeBr[S2CO2(i–Pr)]2,” Canadian Journal of Chemistry, vol. 74, no. 11, pp. 1968–1982, 1996.

[213] J. E. Drake and J. Yang, “Synthesis and spectroscopic characterization of pyrrolidyl and piperidyl dithioformate derivatives of dimetalltellurium(IV) compounds. Crystal structures of Me2Te[S2CN(CH2)2CH2]2, Me2Te[S2CN(CH2)4CH2]2, Me2Te[S2CN(CH2)4CH2][S2CN(CH2)4CH2]], Me2TeCl[S2CN(CH2)2CH2], Me2TeBr[S2CN(CH2)4CH2], Me2TeCl[S2CN(CH2)2CH2], and Me2TeCl[S2CN(CH2)4CH2],” Inorganic Chemistry, vol. 36, no. 9, pp. 1890–1903, 1997.

[214] V. Garcia-Montalvo, M. K. Zamora-Rosete, D. Gorostienda, R. Cea-Olivares, R. A. Toscano, and S. Hernández-Ortega, “Organotellurium(IV) derivatives of tetraphenylethylene-dithioleimido- and dithioimidophosphinophosphonates - the crystal and molecular structure of [C2H4Te(Ph2Se)PSe(Ph2)]2, [C2H4Te(Ph2S)PSe(Ph2)]2, and [C2H4Te(Ph2S)PNP(S)Ph2]2,” European Journal of Inorganic Chemistry, vol. 2001, no. 9, pp. 2279–2285, 2001.

[215] J. H. E. Bailey and J. E. Drake, “Synthesis and characterization of dimethyl- and dimethyloxophenyl(N,N-dialkylidithiocarbamato)tellurium(IV) and chlorodimethyl- and chlorodimethoxy(N,N-dialkylidithiocarbamato)tellurium(IV). Crystal structures of Me2Te[S2CNMe2]2 and (p–MeOC6H4)2Te[S2CNMe2]2,” Canadian Journal of Chemistry, vol. 71, no. 1, pp. 42–50, 1993.

[216] J. Novosad, S. V. Lindeman, J. Marek, J. D. Woollins, and S. Husebye, “Synthesis and structural characterization of [Te(SePPh2)2]2 and [4-MeOPhTe(S2PPh2)2]2,” Heteroatom Chemistry, vol. 9, no. 7, pp. 615–621, 1998.

[217] S. Husebye and J. W. George, “Crystal and molecular structures of trans-tetrabromo- and trans-tetrachlorobis(trans-amethylthioione)tellurium(IV),” Inorganic Chemistry, vol. 8, no. 2, pp. 313–319, 1969.

[218] K. Ase and I. Roti, Acta Chemica Scandinavica, Series A, vol. 28, p. 104, 1974.

[219] S. Esperas, J. W. George, S. Husebye, and O. Mikalsen, Acta Chemica Scandinavica, Series A, vol. 29, p. 141, 1975.

[220] O. Foss, H. M. Kjøge, and K. Maroy, Acta Chemica Scandinavica, vol. 19, p. 2349, 1965.

[221] K. Ase, K. Maartmann-Moe, and J. O. Solheim, Acta Chemica Scandinavica, vol. 25, p. 2467, 1971.

[222] O. Foss, K. Maroy, and S. Husebye, Acta Chemica Scandinavica, vol. 19, p. 2361, 1965.

[223] K. Ase, K. Boyum, O. Foss, and K. Maroy, Acta Chemica Scandinavica, vol. 25, p. 2457, 1971.

[224] O. Foss, N. Lyssandtrae, K. Maartmann-Moe, and M. Tysseland, Acta Chemica Scandinavica, vol. 27, p. 218, 1973.

[225] K. Fosheim, O. Foss, A. Scheie, and S. Solheim, Acta Chemica Scandinavica, vol. 19, p. 2336, 1965.

[226] O. Foss and K. Maartmann-Moe, Acta Chemica Scandinavica, Series A, vol. 41, p. 310, 1987.

[227] O. P. Anderson, Acta Chemica Scandinavica, vol. 25, p. 3593, 1971.

[228] K. Ase, O. Foss, and I. Roti, Acta Chemica Scandinavica, vol. 25, p. 3808, 1971.

[229] A. S. Foust, “Structures of bis(μ-thiourea-S)-bis(thiourea-Stellurium(II)) cations,” Inorganic Chemistry, vol. 19, no. 4, pp. 1050–1055, 1980.

[230] O. Foss and S. Hauge, Acta Chemica Scandinavica, vol. 19, p. 2395, 1965.

[231] M. A. Beno, R. Sundell, and J. M. Williams, Croatica Chimica Acta, vol. 57, p. 695, 1984.

[232] V. Kumar, G. Aravamudan, and M. Seshasayee, “Interaction of heterocyclic thioamides with tellurium(II) and tellurium(IV). Syntheses and crystal structures of bis[2-(2-thioxo-1,3-thiazolidin-3-yl)-4,5-dihydro-1,3-thiazolium]- and 1,3-thioxidonium(II) bromide,” Polyhedron, vol. 9, no. 4, pp. 2879–2885, 1990.

[233] M. Asahara, M. Tanaka, T. Erabi, and M. Wada, “Bis(2,6-dimethoxyphenyl)tellurium dialdehydes (Cl, Br or I) and dithiocarbamate: crystal structure and temperature-dependent NMR spectra,” Journal of the Chemical Society, Dalton Transactions, no. 20, pp. 3493–3499, 2000.

[234] U. Drutkowski and P. Strauch, “Bis(1,2-dithiosquarato)tellurate(II) a new chalcogenochelocaganate,” Inorganic Chemistry Communications, vol. 4, no. 7, pp. 342–345, 2001.

[235] J. E. Drake, L. N. Khasrou, A. G. Mislankar, and R. Ratnani, “Synthesis and characterization of N,N-diethyl, pyrrolidyl, and piperidyl monothiocarbamate derivatives of dimethyltellurium(IV). Crystal structures of Me2Te[S2CO2Et]2, Me2TeCl[S2CO2Et]2, Me2TeBr[S2CO2Et]2, and Me2Te[S2CO2Et]2,” Inorganic Chemistry, vol. 33, no. 26, pp. 6154–6162, 1994.

[236] J. H. E. Bailey, J. E. Drake, L. N. Khasrou, and J. Yang, “Synthesis and spectroscopic characterization of O-alkyl dithiocarbamate (Xanthate) derivatives of dimethyl- and diphenyltellurium(IV). Crystal structures of Me2Te[S2CO2Et]2, Me2TeCl[S2CO2Et]2, and Me2TeBr[S2CO2Et]2,” Inorganic Chemistry, vol. 34, no. 1, pp. 124–133, 1995.

[237] A. Silvestru, I. Haiduc, H. J. Breunig, and K. H. Ebert, “Diphenyltellurium(IV) bis(diorganophosphinodithioates). X-ray crystal structure of Ph2Te[S2PPh2]2 · 0.5HClO4 and a multinuclear NMR study of the decomposition process of Ph2Te[S2PPh2]2,” Polyhedron, vol. 14, no. 9, pp. 1175–1183, 1995.
null
[270] A. Hordvik and L. J. Saethre, Acta Chemica Scandinavica, vol. 26, p. 3114, 1972.
[271] A. Hordvik, Acta Chemica Scandinavica, vol. 25, p. 1583, 1971.
[272] B. Birknes, A. Hordvik, and L. J. Saethre, Acta Chemica Scandinavica, Series A, vol. 36, p. 683, 1982.
[273] B. Birknes, A. Hordvik, and L. J. Saethre, Acta Chemica Scandinavica, Series A, vol. 29, p. 195, 1975.
[274] P. L. Johnson, E. C. Llaguno, and I. C. Paul, “A symmetrically substituted thiathiophthen with unequal sulphur-sulphur bond lengths: crystal and molecular structure of 3,4-diphenyl-6a-thiathiophthen 3,4-diphenyl[1,2]dithiole[1,5-b][1,2]dithiole-7-SIV,” Journal of the Chemical Society, Perkin Transactions 2, no. 2, pp. 234–238, 1976.
[275] M. D. Meienberger, K. Hegetschweiler, H. Rüegger, et al., “The reactivity of complexes containing the [Mo3(μ3-S)(μ2-S)]4+ core. Ligand substitution, sulfur elimination and sulfide binding,” Inorganic Chemistry, vol. 213, no. 1-2, pp. 157–169, 1993.
[276] B. Stelander, H. G. Viehe, M. van Meerssche, G. Germain, and J. P. Declercq, Bulletin des Societé Chimique Belges, vol. 86, p. 291, 1977.
[277] Yu. Wang, M. J. Chen, and C. H. Wu, “Deformation density study of 2,4-diphenyl-6a-thiathiophthen,” Acta Crystallographica, Section B, vol. 44, no. 2, pp. 179–182, 1988.
[278] A. Hordvik, E. Sletten, and J. Sletten, Acta Chemica Scandinavica, vol. 23, p. 1852, 1969.
[279] Yu. Wang, S. K. Yeh, S. Y. Wu, C. T. Pai, C. R. Lee, and K. J. Lin, “Deformation-density studies of thiathiophthenes. II. 2,4-diphenyl-6a-thiathiophhen,” Acta Crystallographica, Section B, vol. 47, no. 2, pp. 298–303, 1991.
[280] A. Hordvik and K. Julshamn, Acta Chemica Scandinavica, vol. 25, p. 1835, 1971.
[281] L. I. Saethre and A. Hordvik, Acta Chemica Scandinavica, Series A, vol. 29, p. 136, 1975.
[282] Yu. Wang, S. Y. Wu, and A. C. Cheng, “Deformation-density studies of thiathiophthenes. I. 2,5-dimethyl-6a-thiathiophhen,” Acta Crystallographica, Section B, vol. 46, no. 6, pp. 830–854, 1990.
[283] J. Sletten, Acta Chemica Scandinavica, Series A, vol. 28, p. 499, 1974.
[284] A. Hordvik and L. M. Milje, Acta Chemica Scandinavica, vol. 27, p. 510, 1973.
[285] V. Busetti, G. Valle, and A. M. Piazzesi, Crystal Structure Communications, vol. 7, p. 481, 1978.
[286] H. Graubaut, F. Tittelbach, G. Lutze, et al., “Novel crown ethers with a trithiadiazapentalene-trithiotriuret redox system,” Angewandte Chemie International Edition, vol. 36, no. 15, pp. 1648–1650, 1997.
[287] L. K. Hansen and A. Hordvik, Acta Chemica Scandinavica, vol. 27, p. 411, 1973.
[288] F. Iwasaki, N. Manabe, H. Nishiyama, et al., “Crystal and molecular structures of hypervalent thia/selena-pentalenes,” Bulletin of the Chemical Society of Japan, vol. 70, no. 6, pp. 1267–1275, 1997.
[289] A. Hordvik, Acta Chemica Scandinavica, vol. 25, p. 1822, 1971.
[290] S. M. Johnson, M. G. Newton, and I. C. Paul, “Crystal and molecular structure of an unsymmetrical 6a-thiathiophthen: single-crystal X-ray analysis of 3-benzoyl-5-p-bromophenyl-2-methylthio-6a-thiathiophthen,” Journal of the Chemical Society B, pp. 986–993, 1969.
[291] K. Gloe, H. Graubaut, M. Wüst, T. Rambusch, and W. Seichter, "Macroyclic and open-chain ligands with the redox switchable trithiadiazapentalene unit: synthesis, structures and complexation phenomena," Coordination Chemistry Reviews, vol. 222, no. 1, pp. 103–126, 2001.
[306] S. Lu, Y. Ke, J. Li, and Y. Zhang, “Synthesis, structure and properties of polymeric thiomolybdates with complex metal cations,” Chemistry of Materials, vol. 10, no. 7, pp. 2013–2015, 1998.

[307] J. Ellermeier and W. Bensch, “Solvothermal syntheses, crystal structures and properties of thiomylobdate complexes,” Zeitschrift für Kristallographie: New Crystal Structures, vol. 212, no. 3, pp. 253–254, 1997.

[308] S. Lu, Y. Ke, J. Li, and Y. Zhang, “Synthesis, structure and characterization of a molybdenum sulfide complex with organic ligands,” Zeitschrift für Kristallographie: New Crystal Structures, vol. 212, no. 3, pp. 253–254, 1997.

[309] J. Ellermeier and W. Bensch, “Solvothermal syntheses, crystal structures and properties of thiomylobdate complexes,” Zeitschrift für Kristallographie: New Crystal Structures, vol. 212, no. 3, pp. 253–254, 1997.

[310] T. Akasaka, M. Nakano, H. Tamura, and G. E. Matsuhashi, “Preparation and properties of thio complexes with complex metal cations,” Bulletin of the Chemical Society of Japan, vol. 75, no. 12, pp. 2621–2628, 2002.

[311] H.-P. Zhu, C.-N. Chen, Q.-T. Liu, and J.-T. Chen, “A new triangular V3S2+ ion,” Journal of the American Chemical Society, vol. 112, no. 9, pp. 3706–3707, 1990.

[312] T. Nakahodo, O. Takahashi, E. Horn, and N. Furukawa, “Reaction of [M3(SeCl2)4] with dialkylcyanoamides: X-ray crystal structures of the phosphorus-containing tri-selenenapentalenes [Me3N(C5H5)Se=NSe5H] and [O(CH2)2CH2Se(N=CSe)=NSe5H],” Angewandte Chemie International Edition, vol. 39, no. 11, pp. 1973–1975, 2000.

[313] N. M. Dereu, R. A. Zingaro, and E. A. Meyers, Crystal Structure Communications, vol. 10, p. 1345, 1981.

[314] J. Ellermeier and W. Bensch, “Solvothermal synthesis, crystal structure and properties of Mn2(tren)3[Mo3S7(S2P(ipro)2)3]·CH3CN,” Inorganica Chimica Acta, vol. 208, no. 1, pp. 85–89, 1993.

[315] J. Ellermeier and W. Bensch, “Solvothermal syntheses, crystal structures and properties of thio complexes with complex metal cations,” Zeitschrift für Kristallographie: New Crystal Structures, vol. 212, no. 3, pp. 253–254, 1997.

[316] H.-U. Hummel, E. Fischer, T. Fischer, D. Gruss, A. Franke, and W. Dietzsch, “Chloroaluminate anions in the dicationic salt of 1,11-(methanoselenomethano)-5H,7H-1,5,9,13-tetraselenacyclohexadecane dication,” Journal of the American Chemical Society, vol. 112, no. 9, pp. 3706–3707, 1990.

[317] P. Bhattacharyya, A. M. Z. Slawin, and J. D. Woolfins, “Reaction of [(PhP)(μ-Cl)]4 with dialkylcyanoamides: X-ray crystal structures of the phosphorus-containing tri-selenenapentalenes [Me3N(C5H5)Se=NSe5H] and [O(CH2)2CH2Se(N=CSe)=NSe5H],” Angewandte Chemie International Edition, vol. 39, no. 11, pp. 1973–1975, 2000.

[318] T. Nakahodo, O. Takahashi, E. Horn, and N. Furukawa, “First molecular and electronic structure determination of the dicationic salt of 1,11-(methanoselenomethano)-5H,7H-dibenzo[b,g] [1.5] selenenocyno-bis[x-ray crystallographic analysis and ab initio calculation,” Chemical Communications, no. 18, pp. 1767–1768, 1997.

[319] W. J. Evans, G. W. Rabe, M. A. Ansari, and J. W. Ziller, “Polynuclear lanthanide complexes: formation of a selenium-centered Sm5 complex,” Angewandte Chemie International Edition, vol. 33, no. 20, pp. 2110–2111, 1994.

[320] M. J. Almond, M. G. B. Drew, H. Redman, and D. A. Rice, “A new simple synthetic route to M2Se (M = Mo or W),” Polyhedron, vol. 19, no. 20–21, pp. 2127–2133, 2000.
[336] A. Y. Kornienko, T. J. Emge, and J. G. Brennman, “Chalcogen-rich lanthanide clusters: cluster reactivity and the influence of ancillary ligands on structure,” Journal of the American Chemical Society, vol. 123, no. 48, pp. 11933–11939, 2001.

[337] S. Hauge, D. Opdal, and J. Arskog, Acta Chemica Scandinavica, Series A, vol. 29, p. 225, 1975.

[338] A. Hordvik and K. Julshamn, Acta Chemica Scandinavica, vol. 25, p. 2507, 1971.

[339] S. Hauge, J. Beck, A. Hormel, and M. Koch, “1,2-Dichalcogenolylium ions: synthesis and structural characterization of the [CuSubTe2]3− anion,” Journal of the American Chemical Society, vol. 116, no. 8, pp. 3651–3652, 1994.

[341] S. Hauge, O. Vikane, and K. W. Klinkhammer, Zeitschrift für Naturforschung, Section B, vol. 41, p. 1293, 1991.

[344] C. J. Warren, R. C. Haushalter, and A. B. Bocarsly, “Electrochemical synthesis of tetrafluoroborate: an uncommon dication containing the mixed-valence Se5+ framework,” Chemical Communications, no. 7, pp. 873–874, 1996.

[347] W. S. Sheldrick, “Polyhalogenides,” in Handbook of Chalcogen Chemistry, F. A. Devillanova, Ed., chapter 9.2, pp. 553–584, Royal Society of Chemistry, Cambridge, UK, 2006.

[348] J. Beck, A. Hormel, and M. Koch, “1,2-Dichalcogenolymion ions (C1ClE3)− from equilibria involving dichalcogen dichlorides E2ClE (E=S, Se, Te),” European Journal of Inorganic Chemistry, no. 9, pp. 2271–2275, 2002.

[349] W.-F. Liaw, C.-H. Lai, S.-J. Chiou, et al., “Synthesis and characterization of polymeric Ag(I)-tellurolte and Cu(I)-diorganyl ditelluride complexes: crystal structures of [Ag(MeTTe(CH2)3TeMe)]2+[BF4]2,” Inorganic Chemistry, vol. 35, no. 17, pp. 3755–3759, 1995.

[350] J. M. McConnnachie, M. A. Ansari, J. C. Bollinger, R. J. Salm, and J. A. Ibers, “Synthesis and structural characterization of the telluroargentate [PPh3][NET3][AgTeTe] and telluromercurate [PPh3][HgTe] compounds containing the unprecedented \(^{3}p−^{1}p \) polyltelluride anion,” Inorganic Chemistry, vol. 32, no. 15, pp. 3201–3202, 1993.

[351] M. A. Ansari, J. C. Bollinger, and J. A. Ibers, “Synthesis and structural characterization of the [AuTe4]3− anion: a planar species with an unprecedented coordination mode,” Journal of the American Chemical Society, vol. 115, no. 9, pp. 3838–3839, 1993.
K. Eriksen, S. Hauge, and K. Marøy, “Syntheses and crystal structures of di-μ-chloro-bis [dithiocyanatoselenenate(II)] and di-μ-bromo-bis [dithiocyanatoselenenate(II)] salts,” Phosphorus, Sulfur and Silicon and Related Elements, vol. 174, pp. 209–221, 2001.

A. Apblett, T. Chivers, and J. F. Fait, “A simple synthesis of [NS](AlCl4) and the insertion reaction with alkylselenium halides: X-ray structure of [NS2SeCl2](AlCl4)”, Chemical Communications, no. 21, pp. 1596–1598, 1989.

A. Apblett, T. Chivers, and J. F. Fait, “Preparation of thiazyl tetrachloroaluminate and trifluoroethanesulfonate and reactions of the thiazyl cation with thiadiazoles and organoselenenium halides: X-ray crystal structure of [N2S2SeCl]4(AlCl4)”, Inorganic Chemistry, vol. 29, no. 9, pp. 1643–1648, 1990.

T. M. Barclay, A. W. Cordes, J. D. Goddard, et al., “Benzo-bridged bis(1,2,3-dithiazoles) and their selenium analogues. Preparation, molecular and electronic structures, and redox chemistry,” Journal of the American Chemical Society, vol. 119, no. 50, pp. 12136–12141, 1997.

M.-Y. Shang, J.-L. Huang, and J.-X. Lu, “The structure of μ3-thio-μ3-tris(disulfido)-chloroto-cyclo-tris(μ(dithio dioxido-dithiophosphato-S,S')molybdenum)](3Mo – Mo), C2H10ClMo3O9P9S13, Acta Crystallographica, Section C, vol. 40, no. 5, pp. 759–761, 1984.

W. Dingming, H. Jianqian, L. Yuhui, and H. Jinling, Acta Physico-Chimica Sinica, vol. 2, p. 533, 1986.

P. Klingelhofer, U. Müller, C. Friebl, and J. Pebler, “Thiochloroanionen von Molybdän(IV). Die Kristallstruktur von (NET4)3(Mo3(μ - S - S)3Cl6)Cl · CHCl3: Chlor-Kristallstruktur, EPR-Spektrum und magnetische Eigenschaften von (NET4)3(Mo3(μ - S - S)3(μ - Cl)Cl6), Zeitschrift für anorganische und allgemeine Chemie, vol. 543, no. 12, pp. 22–34, 1986.

A. Zalkin, T. E. Hopkins, and D. H. Templeton, “The crystal structure of chlorothiodiazyl chloride, S2N2Cl2,” Inorganic Chemistry, vol. 5, no. 10, pp. 1767–1770, 1966.

S. Rabe and U. Müller, “Crystal structure of 4,5-dichloro-1,2,3-dithiazolium chloride, [C2NS2Cl2]Cl,” Zeitschrift für Kristallographie: New Crystal Structures, vol. 214, no. 1, p. 68, 1999.

C. W. Rees, S. Sivadasan, A. J. P. White, and D. J. Williams, “Conversion of tetrazoles into hydrazonoyl chlorides. Novel donor-dithiazolium interactions,” Journal of the Chemical Society, Perkin Transactions 1, no. 13, pp. 1535–1542, 2002.

J. F. Britten, A. W. Cordes, R. C. Haddon, et al., “A 1,2,3,5-dithiadiazolyl dimeric radical cation. Preparation and solid state characterization of 1,3-{(S2N2C)C6H4(CN2S2)}2[Cl]3,” CrystEngComm, vol. 4, pp. 205–207, 2002.

V. P. Fedin, M. N. Sokolov, K. G. Myakishhev, O. A. Geras’ko, V. E. Fedorov, and J. Macicek, “Mechanochemical synthesis of soluble complexes containing Mn, S2 and M3Se2 fragments from polymeric Mn3Y7Br4(Mn, W; Y = Mo, W; Q = Br, Mo, W; Y = S, Se). The crystal structure of (PPN)2W2S2Cl6,” Polyhedron, vol. 10, no. 12, pp. 1311–1317, 1991.

M. N. Sokolov, A. L. Gushchin, D. Yu. Naumov, O. A. Gerasko, and V. P. Fedin, “Cluster oxalate complexes [M3(μ3-Q)(μ3-Q)](C6O2)3]2− and [M3(μ3-Q)2(μ3-Q)](C6O2)3(H2O)3]2− (M = Mn, Mo, W; Q = S, Se): echinodermal synthesis and crystal structure,” Inorganic Chemistry, vol. 44, no. 7, pp. 2431–2436, 2005.

G. Borgs, H. Keck, W. Kuchen, D. Mootz, R. Wiskemann, and H. Wunderlich, Zeitschrift für Naturforschung, Section B, vol. 46, p. 1525, 1991.

F. Grundtvig and A. Hordvik, Acta Chemica Scandinavica, vol. 25, p. 1567, 1971.
[401] H.-P. Zhu, Q.-T. Liu, C.-N. Chen, and Y.-H. Deng, “Synthesis and structure of a [Mo5S7]5− complex [Mo5(μ−−S)3(μ−−S2)(Et4dtc)Cl]2Cl,” J. Chem. Soc. Dalton Trans., vol. 17, no. 2, pp. 142−146, 1998.

[402] T. M. Barclay, L. Beer, A. W. Cordes, et al., “Sterically protected 1,2,3-dithiazolyl radicals: preparation and structural characterization of 4-chloro-5-pentafluorophenyl-1,2,3-dithiazolyl,” Chemical Communications, no. 6, pp. 531−532, 1999.

[403] L. Xian-Ti, L. Jia-Xi, H. Jin-Ling, and H. Jian-Quan, “Synthesis and structure of a new selenium-bridged tungsten cluster,” J. Chem. Soc. Dalton Trans., vol. 37, no. 4, pp. 666−673, 1996.

[404] O. A. Virovets, M. Laege, B. Krebs, et al., “Nonvalent interactions in the crystal structures of (Et4N)2[Mo5S7Br6] and (Et4N)[Mo5S7Cl6],” J. Chem. Soc. Dalton Trans., vol. 41, no. 4, pp. 713−716, 2000.

[405] O. V. Volkov, Yu. L. Slovokhotov, Yu. T. Struchkov, et al., “Synthesis and structure of a new selenium-bridged tungsten cluster,” J. Chem. Soc. Dalton Trans., vol. 33, no. 1, pp. 123−129, 1996.

[406] D. Sellmann, M. Hannakam, F. Knoch, and M. Moll, “Transition metal complexes with sulfur ligands—part XCVIII. Synthesis, structure and reactivity of [Mo6V3(μ−S)2(S2CNMe2)3]2[B(C6H5)4O]2,” Inorg. Chim. Acta, vol. 205, no. 1, pp. 105−112, 1993.

[407] L. Beer, A. W. Cordes, R. C. Haddon, et al., “A π-stacked 1,2,3-dithiazolyl radical. Preparation and solid state characterization of (C6H5C:NS)(C6H5C:NS),” Chemical Communications, vol. 8, no. 17, pp. 1872−1873, 2002.

[408] H. M. K. K. Pathirana, J. H. Reibenspies, E. A. Meyers, and R. A. Zingaro, “Structure of N1,N4,N1,N4-tetramethyl-a1-al-disenobisformamidinium bromide,” Acta Crystallogr., Section C, vol. 47, no. 4, pp. 903−904, 1991.

[409] V. Béreau and J. A. Ibers, “Synthesis and characterization by diffraction and 31P- and 77Se-NMR spectroscopy of [Mo5(μ−Se)2(μ−Se2)]2[SeP(OCH2CH2)3]2]Br and [Mo5(μ−Se)2(μ−Se2)]2[SeP(OCH2CH2)3]2]Br,” Comptes Rendus de l’Academie des Sciences, Series IIC, vol. 3, no. 2, pp. 123−129, 2000.

[410] S. E. Hobert, B. C. Noll, and M. R. DuBois, “Synthesis of a rhenum(V) polysulfide complex and a study of its reactivity with hydrogen,” Organometallics, vol. 20, no. 7, pp. 1370−1375, 2001.

[411] V. P. Fedin, A. Müller, K. Filipek, et al., “Extraction of molecular clusters from solid-state materials: synthesis by application of γ-irradiation. Molecular and crystal structure of (H5O4)(Et4N)[Mo5S7Br6],” Inorg. Chim. Acta, vol. 223, no. 1−2, pp. 5−7, 1994.

[412] V. Béreau, C. G. Pernin, and J. A. Ibers, “Reactivity of the [Mo5(μ−S)3(μ−S2)(μ−S2)]2+ anion toward the imido-diphosphinochalcogenido ligands [N(QPPh2)2]2[Q=S, Se]: synthesis and characterization of [Mo5(μ−S)3(μ−S2)]2[Q=P(OCH2CH2)3]2]Br,” Inorg. Chem., vol. 39, no. 4, pp. 854−856, 2000.

[413] W. Schnabel, K. von Deuten, and G. Klar, Crystal Structure Communications, vol. 10, p. 1405, 1981.

[414] P. Herland, M. Lundeland, and K. Maroy, Acta Chemica Scandinavica, Series A, vol. 30, p. 719, 1976.

[415] S. Husebye, Acta Chemica Scandinavica, Series A, vol. 33, p. 485, 1979.

[416] O. Vikane, Acta Chemica Scandinavica, Series A, vol. 29, p. 738, 1975.
E. S. Lang, R. M. Fernandes Jr., E. T. Silveira, U. Abram, G. N. Ledesma, E. S. Lang, E. M. Vázquez-López, and U. M. N. Sokolov, O. A. Geras’ko, S. F. Solodovnikov, and V. García-Montalvo, A. Marcelo-Polo, R. Montoya, R. A. X. Lin, H.-Y. Chen, L.-S. Chi, and H.-H. Zhuang, “Synthesis and characterization of the first aryl-tellurium(IV) halide complex stabilized by a Te–Te bond from a tellurium ether,” Inorganic Chemistry Communications, vol. 7, no. 4, pp. 478–480, 2004.

E. S. Lang, R. M. Fernandes Jr., E. T. Silveira, U. Abram, and E. M. Vázquez-López, “Structures of iodophenyltellurium(II) and diiododi(β-naphthyl)tellurium(IV),” Zeitschrift für anorganische und allgemeine Chemie, vol. 625, no. 8, pp. 1401–1404, 1999.

P. D. Boyle, W. I. Cross, S. M. Godfrey, et al., “Synthesis and characterization of Ph₄TeI₄, containing a Te₄ square, and Ph₂Pt(Ph)₂,” Angewandte Chemie International Edition, vol. 39, no. 10, pp. 1796–1798, 2000.

X. Lin, H.-Y. Chen, L.-S. Chi, and H.-H. Zhuang, “Synthesis and crystal structures of two new trinuclear molybdenum cluster compounds containing a [Mo₃Te₇]⁴⁺ fragment,” Polyhedron, vol. 18, no. 1-2, pp. 217–225, 1998.

H. Chen, X. Lin, L. Chi, C. Lu, H. Huang, and J. Huang, “Synthesis and crystal structures of new triangle tungsten tel-luride compounds containing a [W₃(μ₄-Te)(μ₂-Te₂)]⁴⁺ cluster core: [W₃Te₂(RO)(PS₃)]₂[1(R = Et, Pr(i))],” Inorganic Chemistry Communications, vol. 3, no. 6, pp. 331–336, 2000.

P. G. Jones and J. Leske, private communication, 2004.

O. Vikane, Acta Chimica Scandinavica, A Series, vol. 29, p. 787, 1975.

D. Dzantievs, R. di Giacomo, R. W. Gable, and B. F. Hoskins, “Investigation of organotelluryllium(IV) halide (ditiolate) complex, crystal structure of di(2-iodo-2-λ¹-benzotelluro-2-yl) diethylidithiocarbamate), [C₆H₄Te(I) (S₂P(OC₂H₅))₂]₂, Journal of Organometallic Chemistry, vol. 353, no. 1, pp. 35–43, 1988.

V. Garcia-Montalvo, A. Marcelo-Polo, R. Montoya, R. A. Toscano, S. Hernández-Ortega, and R. Cea-Olivares, “Synthesis, spectroscopic characterization and structural studies of dialkyl dithiophosphinate and N,N-dialkyl dithio-and monothio-carbamate derivatives of 1-iodo-1,2,3,4,5-hexahydrotellurophene,” Journal of Organometallic Chemistry, vol. 623, no. 1-2, pp. 74–80, 2001.

V. Garcia-Montalvo, A. Marcelo-Polo, R. A. Toscano, A. Badillo-Delgado, and R. Cea-Olivares, “Synthesis, characterization and crystal structure of 1,3-dihydro-2λ¹-benzotelluro-2,2-diy bis (N-piperidine-dithiocarbamate), [1,2 – C₆H₄(CH₂)₂Te (S₂NCSCH₂CH₃)₂] (1), 1,3 dihydro-2λ¹-benzotelluro-2-iodo-2-yl diethylidithiocarbamate, Polyhedron, vol. 20, no. 3-4, pp. 203–208, 2001.

F. Demartin, F. A. Devillanova, F. Isaià, V. Lippolis, and G. Verani, “Reaction of N,N’-dimethylimidazolidine-2-2-seleno (L) with L₁, Crystal structure of the mixed-valence (L₁ . L₂)(L₃)²⁺, 2I⁻ compound,” Inorganica Chimica Acta, vol. 255, no. 1, pp. 203–205, 1997.

S. Maoyu, H. Jinling, and L. Jiaxi, Science in China, Series B, p. 8, 1985.
[492] S. M. Godfrey, S. L. Jackson, C. A. McAuliffe, and R. G. Pritchard, “Reaction of \(R_2PSe\) with \(I_2\); crystal structures of \(PH_2PSel_2\), \((Me_2N)_2PSel_2\) and \((Et_2N)_2PSel_2\), the first crystallographically characterised charge-transfer complexes of tertiary phosphine selenides with diiodine,” *Journal of the Chemical Society, Dalton Transactions*, no. 23, pp. 4499–4502, 1997.

[493] M. B. Hursthouse, D. E. Hibbs, and N. Bricklebank, private communication, 2003.

[494] M. D. Rudd, S. V. Lindeman, and S. Husebye, “Three-centre, four-electron bonding and structural characteristics of two-coordinate iodine(I) complexes with halogen and chalcogen ligands. Synthesis, spectroscopic characterization and X-ray structural studies of (trioiodo)[tris(dimethylamino)phosphineselenide]iodine(I) and bis[(trioiodo)[tri(N-morpholyl)phosphaneselenide] – iodine(I)]/diiodine molecular complex,” *Acta Chimica Scandinavica*, vol. 51, no. 6–7, pp. 689–708, 1997.

[495] S. M. Godfrey, C. A. McAuliffe, R. G. Pritchard, and S. Sarwar, *The Journal of the Chemical Society, Dalton Transactions*, 1997.

[496] M. Arca, F. Cristiani, F. A. Devillanova, et al., “Reactivity of 1,3,5-trithiaacyclohexane and 1,3,5-triselenacyclohexane towards molecular diiodine. Crystal structures of the diiodine adducts,” *Polyhedron*, vol. 16, no. 12, pp. 1983–1991, 1997.

[497] H. Hope and J. D. McCullough, “The crystal structure of the molecular complex of iodine with tetrahydroxolenephenolphosphaneselenide, \(C_6H_4SeI_2\),” *Acta Crystallographica*, vol. 17, no. 6, pp. 712–718, 1964.

[498] F. Bigoli, P. Deplano, F. A. Devillanova, et al., “Reaction of imidazole-2-selene derivatives with diiodine: synthesis, structural and spectroscopic characterization of the adduct 1,1'-bis(3-methyl-4-iodazolino-2-selene)methane bis(diodine) and of the 1st examples of 1-Se-I hyper-valent selenium compounds: 1,3-dimethyl-4-iodazolino-2-ylium diiodo selanide and 1,2-bis(3-methyl-4-iodazolino-2-ylium diiodo selanide)-ethane bis(dichloromethane),” *Gazzetta Chimica Italiana*, vol. 124, no. 11, pp. 445–454, 1994.

[499] M. Arca, F. Demartin, F. A. Devillanova, et al., “A new assembly of diiodine molecules at the triphenylphosphine sulfide template,” *Journal of the Chemical Society, Dalton Transactions*, no. 17, pp. 3069–3073, 1999.

[500] C. Rømming, “The crystal structure of the 1:1 addition compound formed by benzyli sulphone and iodine,” *Acta Chimica Scandinavica*, vol. 14, pp. 2145–2151, 1960.

[501] F. H. Herbstein and W. Schwotzer, “Crystal structures of polyiodide salts and molecular complexes. 7. Interaction of thiones with molecular diiodine. The crystal structures of dithiazine-diiodine, ethynethiolouetrie-bis(diodine), bis(ethynethiolouetrie-a-tris(diiodine), bis(dithiozone)-heptakis (diiodine), and 1-(1-imidazolin-2-ylium diiodo selanide)-(triiodo)

[502] F. Bigoli, P. Deplano, A. Ienco, et al., “Structure and bonding of diiodine adducts of the sulfur-rich donors 1,3-dithiaacyclohexane-2-thione (ptc) and 4,5-ethylenedithio-1,3-dithiole-2-thione (ttb),” *Inorganic Chemistry*, vol. 38, no. 21, pp. 4626–4636, 1999.

[503] G. Y. Chao and J. D. McCullough, “The refinement of the structure of the complex of iodine with 1,4 dithiane, \(C_4H_4S_2\),” *Acta Crystallographica*, vol. 13, no. 9, pp. 727–732, 1960.

[504] F. H. Herbstein, P. Ashkenazi, M. Kaftory, M. Kapon, G. M. Reisner, and D. Ginsburg, “Propellanes LXXIX. Comparison of the geometries of dithia[n,3.3]propellanes \(n = 1, 2, 3\) and dithia(oxathia)[4.3.3]propellanes. Study of the influence of complexation with \(HgCl_2\), \(I_2\), \(CdCl_2\), and \(PdCl_2\) and of formation of sulfoxides on some of these compounds. Demonstration of the ‘klammer’ effect. Structures of eighteen crystals,” *Acta Crystallographica, Section B*, vol. 42, no. 6, pp. 575–601, 1986.

[505] N. Bricklebank, S. J. Coles, S. D. Forder, M. B. Hursthouse, A. Poulton, and P. J. Skabara, “Diiodine complex of diberrocenyl(phenyl)phosphine sulfi de: the structural and electrochemical behaviour of \(Fc_2(Ph)PS \cdot I_2\),” *Journal of Organometallic Chemistry*, vol. 690, no. 2, pp. 328–332, 2005.

[506] F. Freeman, J. W. Ziller, H. N. Po, and M. C. Keindl, “Reactions of imidazole-2-thiones with molecular iodine and the structures of two crystalline modifications of the 1:1,3-dimethylimidazole-2-thione-diiodine charge-transfer complex \((C_6H_4I_2N_2S)_4\),” *The Journal of the American Chemical Society*, vol. 110, no. 8, pp. 2586–2591, 1988.

[507] M. Arca, F. Demartin, F. A. Devillanova, et al., “Synthesis, X-ray crystal structure and spectroscopic characterization of the new dithiolen \([Pd(Et_2timdt)]_2\) and of its adduct with molecular diiodine \([Pd(Et_2timdt)]_2 \cdot I_2 \cdot CHCl_3\) (\(Et_2timdt=\)monoanion of 1,3-diethylimidazolidine-2,4,5-trithione),” *Journal of the Chemical Society, Dalton Transactions*, no. 22, pp. 3731–3736, 1998.

[508] D. Atzei, P. Deplano, E. F. Trogu, F. Bigoli, M. A. Pellinghelli, and A. Vacca, “Interaction of diiodine with some tetra-substituted dithiooxamides. Crystal and molecular structure of bis(morpholinothioisocarbonyl)bis(diiodine),” *Canadian Journal of Chemistry*, vol. 66, no. 6, pp. 1483–1489, 1988.

[509] C. D. Antoniadi, G. J. Corban, S. K. Hadjikakou, et al., “Synthesis and characterization of \((PTU)I_2(PTU=6-n-propyl-2-thiouracil)\) (CMBZT)\(I_2\) (CMBZT = 5-chloro-2-mercaptothiazole) and possible implications for the mechanism of action of anti-thyroid drug,” *European Journal of Inorganic Chemistry*, vol. 2003, no. 8, pp. 1635–1640, 2003.

[510] L. Lee, D. J. Crouch, S. P. Wright, et al., “Supramolecular polymers of 4,5-bis(bromomethyl)-1,3-dithiole-2-thione—dihalogen adducts,” *CrystEngComm*, vol. 6, pp. 612–617, 2004.

[511] J. Allshouse, R. C. Haltiwanger, V. Allured, and M. R. DuBois, “Molecular and polymeric compounds resulting from Lewis acid interactions with \([CPMo(\mu - S)N-t-Bu]_2\),” *Inorganic Chemistry*, vol. 33, no. 12, pp. 2505–2506, 1994.

[512] E. J. Lyon, G. Musie, J. H. Reibenspies, and M. Y. Darenbourg, “Sulfur site iodine adduct of a nickel thiolate complex,” *Inorganic Chemistry*, vol. 37, no. 26, pp. 6942–6946, 1998.

[513] G. Kiel, Zeitschrift für Naturforschung, Section B, vol. 36, p. 55, 1981.

[514] M. Mois d’Enghien-Petue, J. Meunier-Piret, and M van Meerssche, *Journal de Chimie Physique et de Physico-Chimie Biologique*, vol. 65, p. 1221, 1968.

[515] N. V. Khotirich, I. I. Seifullina, and Z. A. Starkova, *Russian Journal of Inorganic Chemistry*, vol. 47, p. 85, 2002.
[635] J. Beckmann, D. Dakteriens, A. Duthie, C. Mitchell, and M. Schürmann, "Observation of Te···π and X···X bonding in para-substituted diphenyltellurium dihalides, (p-Me₂NC₆H₄)(p-BrC₆H₄)TeX₂ (X = Cl, Br, I,Y=H, EtO, Me₂N)," Australian Journal of Chemistry, vol. 58, no. 2, pp. 119–127, 2005.

[636] J. Munzenberg, M. Noltemeyer, and H. W. Roesky, Chemische Berichte, vol. 122, p. 1915, 1989.

[637] A. du Bois and W. Abriel, Zeitschrift für Naturforschung, Section B, vol. 45, p. 573, 1990.

[638] H. W. Roesky, A. Mazzah, D. Hesse, and M. Noltemeyer, Chemische Berichte, vol. 124, p. 519, 1991.

[639] M. Abe, M. R. Detty, O. O. Gerlits, and D. K. Sukumar, "21-telluraporphyrins. 3. Synthesis, structure, and spectral properties of a 21,21-dihalo-21-telluraporphyrin," Organometallics, vol. 23, no. 19, pp. 4513–4518, 2004.

[640] J. Munzenberg, H. W. Roesky, M. Noltemeyer, S. Besser, and R. Herbst-Irmer, Zeitschrift für Naturforschung, Section B, vol. 48, p. 199, 1993.

[641] P. P. Kushch, S. V. Konovalikhin, G. V. Shilov, L. O. Atovmyan, T. Chivers, C. Fedorchuk, G. Schatte, and J. K. Brask, "Synthesis and characterization of novel chiral ortho-tellurated complexes of lithium, phosphorus, and tellurium," Canadian Journal of Chemistry, vol. 80, no. 7, pp. 821–831, 2002.

[642] J. Zukerman-Schpector, I. Haiduc, R. L. Camillo, J. V. Comasseto, R. L. O. R. Cunha, and A. J. Barton, "Supramolecular self-assembly through telluriumhalogen secondary bonds: a hexagonal grid of TeCl₂ and TeCl₅ rings in the solid state structure of 1,1,3-trichloro-2,4,5,6-tetrahydro-1H-1A³benzo[b]tellurophene," Canadian Journal of Chemistry, vol. 80, no. 11, pp. 1530–1537, 2002.

[643] J. Zukerman-Schpector, R. L. Camillo, J. V. Comasseto, R. L. O. R. Cunha, and I. Caracelli, "Benzyliithylliummonium 2,2,2,4-tetrachloro-2,5-dihydro-1,2A³-oxatellurole," Acta Crystallographica, Section C, vol. 56, no. 7, pp. 897–898, 2000.

[644] U. Russo, G. Valle, and S. Calogero, "Crystal and molecular structure of bis(3N,N′-dimethylformamidinato) disulphide hexachlorotellururate," Acta Crystallographica, Section B, vol. 38, no. 8, pp. 617–619, 1982.

[645] H. B. Singh, N. Sudha, and R. T. Butcher, "Synthesis and characterization of novel chiral ortho-tellurated complexes derived from [(S)-1-(dimethylamino)ethyl]benzene: crystal and molecular structure of 2-[(S)-1-(dimethylamino)ethyl] phenyltellurium trichloride," Inorganic Chemistry, vol. 31, no. 8, pp. 1431–1435, 1992.

[646] P. H. Collins and M. Weber, "Crystal and molecular structure of tetraphenylarseniamidatoaquotetrachlorohydroxotellurate(IV)," Journal of the Chemical Society, Dalton Transactions, no. 15, pp. 1545–1549, 1974.

[647] B. Krebs and V. Paulat, "Darstellung und Eigenschaften der 3,3,3',3'-trichloro-4,4'-di-terfuryl-benzylidene-chlorotellurate(IV)," Zeitschrift für Naturforschung, Section B, vol. 34, no. 9, pp. 900, 1979.

[648] J. Zukerman-Schpector, E. E. Castellano, J. V. Comasseto, and R. A. Santos, "Crystal and molecular structure of phenoxatellurin 10,10-dichloride," Inorganic Chemistry, vol. 19, no. 9, pp. 2556–2560, 1980.

[649] A. Waśkowska, J. Janczak, and Z. Czapla, "Crystal structure of diguanidine hexachloride tellurate(IV)," Journal of Alloys and Compounds, vol. 196, no. 1-2, pp. 255–257, 1993.
(664) M. R. Sundberg, R. Uggla, T. Laitalainen, and J. Bergman, “Influence of secondary bonding on the intradimer distance of trichloro(ethane-1,2-diolato-O, O') tellurate(IV),” Journal of the Chemical Society, Dalton Transactions, no. 22, pp. 3279–3283, 1994.

(665) M. J. Daboub, A. Justino, P. G. Guerrero Jr., and J. Zukerman-Schpector, “Unexpected reaction of 1-butyltelluro-4-phenyl-1-buten-3-ynec under Rupe reaction conditions,” Organometallics, vol. 17, no. 9, pp. 1901–1903, 1998.

(666) P. Khodada, B. Viossat, P. Toftoli, and N. Rodier, Acta Crystallographica, Section B, vol. 35, p. 2896, 1979.

(667) L. Baldè, R. Julien, J.-P. Silvestre, and M. Jouan, “Crystal structure of cadaverine (1,5-pentanediamine)/hexachlorotelluriliane (IV), [C₆H₅NH(CH₃)₂][TeCl₆],” Zeitschrift für Kristallographie: New Crystal Structures, vol. 216, no. 1, pp. 59–60, 2001.

(668) J. Zukerman-Schpector, I. Haiduc, R. L. Camillo, J. V. Comasseto, R. L. O. R. Cunha, and I. Caracelli, “Acetonyledichloro[(Z)-2-chloro-2-phenylvinyl]tellurium(IV), helical chains of metal complexes,” Acta Crystallographica, Section C, vol. 57, no. 6, pp. 749–750, 2001.

(669) G. R. Willey, D. R. Aris, W. Aemaeg, and W. Errington, “Ligand oxidation of small-ring aza- and thia-macrocycles involving C=O—H activation: crystal structures of [Me₅C₅NMe₂]₂[TeCl₆], MeCN (Me=Te, X=Cl, Br; M=Sn, X=Br and [C₆H₁₃N₅]₂[TeBr₆]·MeCN],” Inorganica Chimica Acta, vol. 317, no. 1-2, pp. 304–313, 2005.

(670) Y. Takaguchi, E. Horn, and N. Furukawa, “Preparation and X-ray structure analysis of 1,1,5,5,9,9-hexachloro-1,5,9-tritelluracyclocododecane (Cl₆[(12)aneTe₃]) and its redox behavior,” Organometallics, vol. 15, no. 24, pp. 5112–5115, 1996.

(671) R. E. Marsh, “Space group P1: an update,” Acta Crystallographica, Section B, vol. 61, no. 3, p. 359, 2005.

(672) J. M. Ryan and Z. Xu, “[C₆H₅NH(CH₃)₂]₂TeI₆: secondary I—I bonds build up a 3D network,” Inorganic Chemistry, vol. 43, no. 14, pp. 4106–4108, 2004.

(673) H. Ishida and S. Kashino, “Bis(dimethylammonium) hexaamino)phenyl]tellurium,” Journal of Organometallic Chemistry, vol. 762, no. 2, pp. 215–218, 2003.

(674) J. Zukerman-Schpector, E. E. Castellano, J. V. Comasseto, and A. Haas and M. Pryka, “T tellurium-halogen secondary phases, ” Zeitschrift für anorganische und allgemeine Chemie, vol. 622, no. 2, pp. 979–983, 2003.

(675) H. Fleischer, B. Mathiasch, and D. Schollmeyer, “Adducts of tellurium tetrachloride with allyl alcohol and allyl acetate: 1,2- vs 1,3-addition and structure and dynamics of Te—O interactions in different phases,” Organometallics, vol. 21, no. 3, pp. 526–533, 2002.

(676) J. Pietikainen, R. S. Laitinen, and J. Valkonen, “Preparation and crystal structure of [(Me₅Si)₂N]₂TeCl₆,” Acta Chemica Scandinavica, vol. 53, no. 11, pp. 963–967, 1999.

(677) H. W. Roesky, J. Münzenberg, R. Bohra, and M. Noltemeyer, “Syntheses and crystal structures of compounds containing short Te—N bonds,” Journal of Organometallic Chemistry, vol. 418, no. 3, pp. 339–348, 1991.

(678) R. Tamura, H. Shimizu, N. Ono, N. Azuma, and H. Suzuki, “New carbon-carbon bond formation reactions using bis(acetylacetonato)- and bis(alkoxycarbonylmethyl)tellurium dichlorides,” Organometallics, vol. 11, no. 2, pp. 954–958, 1992.

(679) H. Ishida and S. Kashino, “Structure of tert-butylammonium hexachlorottelluriliane(IV),” Acta Crystallographica, Section C, vol. 48, no. 9, pp. 1673–1675, 1992.

(680) J. Zukerman-Schpector, E. E. Castellano, J. V. Comasseto, and H. A. Stefani, “Structure of dichloro(p-methoxyphenyl)(2-oxocyclohexyl)tellurium(IV),” Acta Crystallographica, Section C, vol. 44, no. 12, pp. 2182–2184, 1988.

(681) H.-J. Koch, H. W. Roesky, S. Besser, and R. Herbst-Irmer, “Synthese und Struktur des ersten Tellur-haltigen Borazin-Derivats und einer Tellur-haltigen Bor—Stickstoff-Spiron-Verbindung,” Chemische Berichte, vol. 126, no. 3, pp. 571–574, 1993.

(682) D. Dakternieks, J. O’Connell, and E. R. T. Tiekink, “Syntheses and crystal structures of the monomeric organotellurium (IV) trihalides: trans-2-ethoxy-cyclohexyl-tellurium(IV) trichloride, trichloro(2-chlorobicyclo[2.2.1]hept-7-yl)-1,4-tellurane, and mesityltellurium(IV) tribromide,” Journal of Organometallic Chemistry, vol. 598, no. 1, pp. 49–54, 2000.

(683) E. S. Lang, R. M. Fernandes Jr., C. Peppe, R. A. Burren, and E. M. Vázquez-López, “Tellurium-halogen secondary bonding in the crystal structures of [{PrTeCl₆}, (Q=Co(NH₃)₄Cl₂), (Q-C₆H₄CH₃, 2-Br-C₆H₄CH₃, 2-Br-C₆H₄CH₃)]”, Zeitschrift für anorganische und allgemeine Chemie, vol. 629, no. 2, pp. 215–218, 2003.

(684) H. Fleischer and D. Schollmeyer, “Spectroscopic investigation of the system TeCl₆·[NEt₄]PF₆ in solution and the crystal structure of [NEt₄]₂[TeCl₆]·2H₂O,” Zeitschrift für Naturforschung, Section B, vol. 59, no. 11-12, pp. 1209–1213, 2004.

(685) D. Naumann, L. Ehmans, K.-F. Tebbe, and W. Crump, “Kri stallstruktur-Untersuchungen von Bis(pentafluorophenyl)tellurdihalogeniden (CF₃)₂TeHal₂ (Hal = Cl, Br),” Zeitschrift für anorganische und allgemeine Chemie, vol. 619, no. 7, pp. 1269–1276, 1993.

(686) T. Chivers, D. D. Doexee, X. Gao, and M. Parvez, “Preparations and X-ray structures of compounds containing the four-membered ring,” Inorganic Chemistry, vol. 33, no. 25, pp. 5678–5681, 1994.

(687) A. Haas and M. Pryka, Chemische Berichte, vol. 128, p. 11, 1995.
A. K. S. Chauhan, A. Kumar, R. C. Srivastava, and R. S. Hauge, V. Janickis, and K. Marøy, “Reaction of TeBr$_4$ with...selenolate(I) anion,” Zeitschrift für anorganische und allgemeine Chemie, vol. 629, no. 4, pp. 641–646, 2003.

J. R. Eveland and K. H. Whitmire, “Synthesis and characterization of the carbide cubane cluster [Fe$_5$(Co)$_2$Te$_3$(μ$_3$-C)$\text{C}e$Br$_3$] with an unusual tetrahedral CTe$_4$ unit,” Angewandte Chemie International Edition, vol. 36, no. 11, pp. 1193–1194, 1997.

S. C. Menon, H. B. Singh, R. P. Patel, K. Das, and R. J. Butcher, “Synthesis and reactivity of chiral tellurium azomethines: pseudopolymorphism of [o-(((1S,2R)-2-hydroxy-2-phenyl-1-methylthio)amino)-methylthio]phenyl tellurium(Iv) bromide,” Organometallics, vol. 16, no. 4, pp. 563–571, 1997.

J. Zukerman-Schpector, H. A. Stefani, D. D. O. Silva, et al., “Dibromo[(Z)-2-bromo-2-(hydroxymethyl)-vinyl](n-butyllium)tellurium(IV),” Acta Crystallographica, Section C, vol. 54, no. 12, pp. 2007–2009, 1998.

R. K. Chadha and T. Nguyen, “Structure of dibromo(2-methoxy cyclohexyl)phenyltellurium,” Acta Crystallographica, Section C, vol. 46, no. 2, pp. 251–253, 1990.

C. Knobler and J. D. McCullough, “Crystal and molecular structure of 1-thia-4-telluracyclohexane 4,4-dibromide,” Inorganica Chimica Acta, vol. 11, no. 12, pp. 3026–3029, 1972.

F. Dahan and O. Lefebvre-Soubeyran, “Acta Crystallographica, Section B, vol. 32, p. 2863, 1976.

T. M. Klapotke, B. Krumm, P. Mayer, H. Piotrowski, and O. P. Ruscitti, “Chlorination and bromination of dialkyl tellurides,” Zeitschrift für anorganische und allgemeine Chemie, vol. 628, no. 1, pp. 229–234, 2002.

O. Reich, S. Hasche, K. Büscher, I. Beckmann, and B. Krebs, “Neue Oxoium-bromochalcogenate(IV)-Darstellung, Struktur und Eigenschaften von [H$_2$O][TeBr$_3$ · 3CH$_3$H$_2$O und [H$_2$O]$_2$[SeBr$_3$]],” Zeitschrift für anorganische und allgemeine Chemie, vol. 622, no. 6, pp. 1011–1018, 1996.

R. W. Berg and K. Nielsen, Acta Chemica Scandinavica, Series B, vol. 33, p. 157, 1979.

A. K. S. Chauhan, A. Kumar, R. C. Srivastava, and R. J. Butcher, “Synthesis and characterization of monomeric diorganotellurium dihalides: crystal and molecular structures of diphenacyltellurium dibromide and -diiodide,” Journal of Organometallic Chemistry, vol. 658, no. 1-2, pp. 169–175, 2002.

S. Hauge, V. Janickis, and K. Marøy, “Reaction of TeBr$_4$ with SbBr$_5$ in the presence of [C$_6$H$_5$(CH$_3$)$_3$N]Br: crystal structures of [C$_6$H$_5$(CH$_3$)$_3$N]$_2$[Te$_3$Br$_9$] and [C$_6$H$_5$(CH$_3$)$_3$N]$_2$[SbTeOB$_3$]],” Acta Chemica Scandinavica, vol. 53, no. 11, pp. 992–996, 1999.

P. K. Bakshi, T. S. Cameron, M. E. S. Ali, M. A. Malik, and B. C. Smith, “Reactions of trans-[trans-alkoxy-1-cycloalkyltellurium(IV)] trihalides with N-substituted anilines: the x-ray crystal structure of p-N-ethylamino[trans-2-ethoxy-1-cyclohexyl]tellurium(IV) dibromide,” Inorganica Chimica Acta, vol. 204, no. 1, pp. 27–33, 1993.

D. Dakternieks, J. O’Connell, and E. R. T. Tieckink, “Crystal structure of dibromo((1,1-dibromo-1-mesityl-14-telluranyl)methyl]-mesityl-14-tellurane, [MesTeBr$_2_3$]_2$,” Zeitschrift für Kristallographie: New Crystal Structures, vol. 215, no. 1, pp. 87–88, 2000.

W.-M. Lu, Y.-P. Wang, X. J. Huang, and J. I. A. Sun, “Molecular structures of dibromomono-(E)-2-bromo-2-phenylvinyl]-phenyltellurium(IV) and dibromo [(Z)-2-bromo-2-phenyl-vinyl] (p-tulyl)tellurium(IV) hydrate methanolate,” Chinese Journal of Chemistry, vol. 19, no. 5, pp. 457–461, 2001.

V. Janickis, J. Songstad, and K. W. Torroos, “Syntheses and crystal structure of bis (phenyltrimethyl ammonium) hexabromotellurate(IV)bisis(dibromodiselenide(1)), [C$_6$H$_5$(CH$_3$)$_3$N]$_2$[TeBr$_6$(Se$_2$Br$_2$)$_2$],” Chemija, vol. 12, no. 2, pp. 93–98, 2001.

T. M. Klapotke, B. Krumm, P. Mayer, D. Naumann, and I. Schwab, “Fluorinated tellurium(IV) azides and their precursors,” Journal of Fluorine Chemistry, vol. 125, no. 6, pp. 997–1005, 2004.

L.-J. Baker, C. E. F. Rickard, and M. J. Taylor, “Crystal structure determination and vibrational spectra of (t-BuNH)$_3$[TeBr$_3$] and comparisons with other solids containing [TeCl$_6$]$^{3-}$ or [TeF$_6$]$^{3-}$ ions,” Polyhedron, vol. 14, no. 3, pp. 401–405, 1995.

F. A. Devillanova, P. Deplano, F. Isia, et al., “Crystal structure and vibrational characterization of the reaction products of N-methylthiazolidine-2(3H)-selone (1) and N-methylbenzothiazole-2(3H)-selone (2) with Br$_2$, Polyhedron,” vol. 17, no. 2-3, pp. 305–312, 1998.

B. Krebs, A. Schaffer, and S. Pohl, Zeitschrift für Naturforschung, Section B, vol. 39, p. 1633, 1984.

H. Takada, P. Metzner, and C. Philouze, “First chiral selenium ylides used for asymmetric conversion of aldehydes into epoxides,” Chemical Communications, no. 22, pp. 2350–2351, 2001.

P. Berges, W. Hinrichs, and G. Klar, Journal of Chemical Research, vol. 362, p. 3121, 1986.

W. Abriel, Zeitschrift für Naturforschung, Section B, vol. 42, p. 415, 1987.

S. M. Godfrey, S. L. Jackson, C. A. McAuliffe, and R. G. Pritchard, “Reaction of tertiary phosphine selenides, R$_3$PSe with R$_3$PSe (R = Me$_2$N, Et$_2$N oder C$_6$H$_4$H$_2$), with dibromine. The first reported examples of 1 : 1 addition,” Journal of the Chemical Society, Dalton Transactions, no. 24, pp. 4201–4204, 1998.

A. Hammerschmidt, I. Beckmann, M. Läge, and B. Krebs, “A novel halogenochalcogeno(IV)acid: [H$_3$O(Dibromodiselenate(I))]$_2$,” Zeitschrift für anorganische und allgemeine Chemie, vol. 28, no. 2, pp. 187–189, 1976.

S. Hauge, K. Marøy, and T. Odegard, Acta Chemica Scandinavica, Series A, vol. 42, p. 56, 1988.

B. Krebs, E. Luhrs, and F.-P. Ahlers, “Bromoselenenolate(I,IV), a novel type of mixed valence compounds,” Angewandte Chemie International Edition, vol. 28, no. 2, pp. 187–189, 1989.

S. Hauge, V. Janickis, and K. Marøy, “Syntheses and crystal structures of salts of hexabromotetraselenenolate(I) and hexabromoselenolate(IV)bis(dibromoselenolate(I))”, Acta Chemica Scandinavica, vol. 52, no. 9, pp. 1104–1109, 1998.

M. C. Aragoni, M. Arca, F. Demartin, et al., “Mechanistic aspects of the reaction between Br$_2$ and chalcogenide donors (LE = S, Se): competitive formation of 10-E-3, T-shaped 1 : 1 molecular adducts, charge-transfer adducts, and ([LE])2 dications,” Chemistry - European Journal, vol. 7, no. 14, pp. 3122–3133, 2001.
[789] Y. Takanohashi, N. Tabata, T. Tanase, and S. Akabori, "Bis(2-bromoethyl) selenium dibromide as the selenium-introducing reagent: one-pot preparation of 2,3-bis(alkoxymethyl)tetrahydroxelenselenophenes by the cyclization of 1,5-hexadiene," Journal of Organometallic Chemistry, vol. 450, no. 1-2, pp. 103–108, 1993.

[790] J. D. McCullough and G. Hamburger, "The crystal structure of diphenylselenium dibromide," Journal of the American Chemical Society, vol. 63, no. 3, pp. 803–807, 1941.

[791] D. J. Williams, D. Vanderveer, B. R. Crouse, et al., "Main Group Chemistry, vol. 2, pp. 619, 1997.

[792] A. Jung and G. Wolmershäuser, "Bromination of poly(1,4-diselenobenzene)," Zeitschrift für Naturforschung, Section B, vol. 52, no. 3, pp. 345–350, 1997.

[793] S. Hauge, V. Janickis, and K. Marøy, "Crystal structures of phenyltrimethylammonium salts of tetrabromoselenolate(II) bromide, [C6H5(CH2)3N][SeBr4] · [C6H5(CH2)3N]Br and a mixed tetra(bromo/chloro)selenate(II)," Acta Chemica Scandinavica, vol. 52, no. 4, pp. 441–444, 1998.

[794] L. Battelle, C. Knobler, and J. D. McCullough, "Crystal and molecular structure of 1-thia-4-selenacyclohexane-4,4-dibromide, C6H5S2SeBr2," Inorganic Chemistry, vol. 6, no. 5, pp. 958–962, 1967.

[795] Y. Tanohashi, N. Tabata, T. Tanase, and S. Akabori, "Selenium transfer reagent: one-step alkoxyselenation of cyclohexene with bis(2-bromoethyl)selenium dibromide," Journal of the Chemical Society, Perkin Transactions 1, pp. 813–817, 1993.

[796] W. Nakanishi and S. Hayashi, "Inter-element linkage in 1,2- and 1,4-bis(aryl selenyl)benzenes with halogens," Journal of Organometallic Chemistry, vol. 611, no. 1-2, pp. 178–189, 2000.

[797] U. Geiser, H. Hau Wang, J. A. Schluter, et al., "Synthesis, structure, and properties of the organic conductor (BEDT-TTF)2Br2SeCN," Inorganic Chemistry, vol. 33, no. 22, pp. 5101–5107, 1994.

[798] M. Miura, Y. Takanohashi, Y. Habata, and S. Akabori, "Activities of bis(2-bromoethyl)selenium dibromide and its related compounds: formation of hypervalent T-shaped coordinated selenium compounds by reaction with pyridine and its derivatives," Tetrahedron Letters, vol. 35, no. 44, pp. 8213–8216, 1994.

[799] M. Miura, Y. Takanohashi, Y. Habata, and S. Akabori, "New synthesis of hypervalent T-shaped coordination compounds of selenium by the reaction of bis(2-bromoethyl)selenium dibromide with pyridine and its derivatives," Journal of the Chemical Society, Perkin Transactions 1, pp. 1719–1724, 1995.

[800] A. J. Arduengo and E. M. Burgess, "Tricoordinate hypervalent sulfur compounds," Journal of the American Chemical Society, vol. 99, no. 7, pp. 2376–2378, 1977.

[801] S. Hauge and O. Vikane, Acta Chemica Scandinavica, Series A, vol. 37, p. 723, 1983.

[802] M. C. Aragoni, M. Arca, A. J. Blake, et al., "1,2-Bis(3-methylimidazolin-2-yl)iodobromoselenadine(ethane): oxidative addition of IBr at the Se atom of a > C = Se group," Angewandte Chemie International Edition, vol. 40, no. 22, pp. 4229–4232, 2001.

[803] G. N. Ledesma, E. S. Lang, and U. Abram, "2,4,6-Triphenyltellurium(IV) triiodide - supramolecular self-assembling in organotellurium triiodides," Journal of Organometallic Chemistry, vol. 689, no. 12, pp. 2092–2095, 2004.

[804] J. D. McCullough, "Crystal and molecular structure of dibenzotellurophene diiodide C18H16Te2," Inorganic Chemistry, vol. 14, no. 5, pp. 1142–1146, 1975.

[805] H. B. Singh, W. R. McWhinnie, T. A. Hamor, and R. H. Jones, "Synthesis and chemistry of 1,3-dihydrotellurolo[3,4-b]quinoxaline and derivatives: crystal and molecular structure of 1,3-dihydro-2,2-di-iodo-2λ1-tellurolo[3,4-b]quinoxaline-2,3-bis(iodomethyl)quinoxaline (1 : 1)," Journal of the Chemical Society, Dalton Transactions, no. 1, pp. 23–28, 1984.

[806] N. W. Alcock and W. D. Harrison, "Secondary bonding. Part 12. Arytellurium iodides: crystal and molecular structures of cis- and trans-phenyltellurium(IV) tri-iodide and two modifications of diphenyltellurium(IV) di-iodide," Journal of the Chemical Society, Dalton Transactions, no. 5, pp. 869–875, 1984.

[807] G. Y. Chao and J. D. McCullough, "The crystal structure of di-p-chlorodiphenytellurium diiodide," Acta Crystallographica, vol. 15, no. 9, pp. 887–893, 1962.

[808] J. D. McCullough, C. Knobler, and R. F. Ziolo, "Crystal and molecular structure of the β modification of 1,1-diodo-3,4-benzo-1-telluracyclopentane, β -C6H5TeI2. Comparative study of secondary bonding systems and colors in organotellurium iodides," Inorganic Chemistry, vol. 24, no. 12, pp. 1814–1818, 1985.

[809] C. Knobler and R. F. Ziolo, "Organotellurium diiodides. The molecular structure of α-Diodo-3,4-benzo-1-telluracyclopentane, α -C6H5TeI2," Journal of Organometallic Chemistry, vol. 178, no. 2, pp. 423–431, 1979.

[810] L. Y. Y. Chan and F. W. B. Einstein, Journal of the Chemical Society, Dalton Transactions, vol. 316, 1972.

[811] P. L’Haridon, H. Jedrzejczak, and S. Szwalb, Acta Crystallographica, Section B, vol. 35, p. 1843, 1979.

[812] H. Pitzkow, "Crystal and molecular structure of dimethyltellurium tetraiodide, (CH3)2TeI4," Inorganic Chemistry, vol. 18, no. 2, pp. 311–313, 1979.

[813] P. C. Srivastava, S. Bajpai, S. Bajpai, et al., "Telluranes: potential synthons for charge-transfer complexes (involving hypervalent Te-I bonds) and serendipitous synthesis of the first triphenyl methyl phosphonium salts containing [C6H5TeI]4+ and [TeI6]4− anions," Journal of Organometallic Chemistry, vol. 689, no. 1, pp. 194–202, 2004.

[814] M. J. Hesford, N. J. Hill, W. Levason, and G. Reid, "Synthesis and properties of the ditelluroethers m - and p-C6H4(CH2TeI2Me)2 and their Te(IV) derivatives: crystal structures of PhTeI1(CH2)3TeI1Ph, m-C6H4(CH2TeI2Me)2 and p-C6H4(CH2TeI2Me)2," Journal of Organometallic Chemistry, vol. 689, no. 6, pp. 1006–1013, 2004.

[815] P. G. Jones and J. Jeske, private communication, 2004.

[816] R. R. Kumar, G. Aravamudan, K. Sivakumar, and H.-K. Fun, "Tetraethylammonium (N,N-diethylthithio-carbamato-S, S) tetraiodotellurate(IV)," Acta Crystallographica, Section C, vol. 55, no. 7, pp. 1121–1123, 1999.

[817] N.-H. Hu, Z.-S. Jin, and Z.-S. Li, "Structure of hexamethyltetrettetalurafulvalene diiodide," Acta Crystallographica, Section C, vol. 47, no. 9, pp. 1858–1860, 1991.

[818] F. Einstein, J. Trotter, and C. S. Williston, "The crystal structure of β-dimethyltellurium di-iodide," Journal of the Chemical Society - A, pp. 2018–2023, 1967.

[819] J. Farran, A. Alvarez-Larena, M. V. Capparelli, J. F. Piniella, G. Germain, and L. Torres-Castellanos, "Two polymorphs of
bis(4-methoxyphenyl)-tellurium(IV) diiodide," \textit{Acta Crystallographica, Section C}, vol. 54, no. 7, pp. 995–1000, 1998.

[820] M. J. Hesford, W. Levason, M. L. Matthews, S. D. Orchard, and G. Reid, \textit{Dalton Transactions}, p. 2434, 2003.

[821] H. Hope, C. Knobler, and J. D. McCullough, “Crystal and molecular structure of 1-oxa-4-telluracyclohexane 4,4-diiodide, C\textsubscript{12}H\textsubscript{8}OTeI\textsubscript{2},” \textit{Inorganic Chemistry}, vol. 12, no. 11, pp. 2665–2669, 1973.

[822] J. D. McCullough, “Crystal and molecular structure of phenoxatellurin 10,10-diiodide, C\textsubscript{12}H\textsubscript{8}OTeI\textsubscript{2},” \textit{Inorganic Chemistry}, vol. 12, no. 11, pp. 2669–2673, 1973.

[823] P. C. Srivastava, S. Bajpai, R. Lath, and R. J. Butcher, “Secondary bonds induced supramolecular assemblies in the crystals of 1,1,2,3,4,5-hexahydro-1,1-diodotellurophene; 1,1,2,3,4,5,6-heptahydro-1,1-diodotellurane and 1,3-dihydro-21λ4-benzotellurole-2,2-diyl diiodide,” \textit{Journal of Organometallic Chemistry}, vol. 608, no. 1-2, pp. 96–105, 2000.

[824] C. Knobler, J. D. McCullough, and H. Hope, “Crystal and molecular structure of 1-thia-4-telluracyclohexane 4,4-diiodide, C\textsubscript{12}H\textsubscript{8}STeI\textsubscript{2},” \textit{Inorganic Chemistry}, vol. 9, no. 4, pp. 797–804, 1970.

[825] A. Z. Al-Rubaie, S. Uemura, and H. Masuda, “New cyclic tellurides. Synthesis, reaction and ligand properties of 2,2,6,6-tetramethyl-1-oxa-4-tellura-2,6-disilacyclohexane (C\textsubscript{6}H\textsubscript{16}OSi\textsubscript{2}Te), X-Ray structure determination of C\textsubscript{6}H\textsubscript{16}OSi\textsubscript{2}TeI\textsubscript{2},” \textit{Journal of Organometallic Chemistry}, vol. 410, no. 3, pp. 309–320, 1991.

[826] W.-W. du Mont, H.-U. Meyer, S. Kubiniok, S. Pohl, and W. Saak, \textit{Chemische Berichte}, vol. 125, p. 761, 1992.

[827] P. C. Srivastava, H.-G. Schmidt, and H. W. Roesky, \textit{Zeitschrift für Naturforschung, Section B}, vol. 50, p. 695, 1995.

[828] N. Kuhn, T. Kratz, and G. Henkel, “(1,3-Diethyl-1,3-dihydro-4,5-dimethyl-2H-imidazol-2-yliden)-diodtellur(I) [1],” \textit{Zeitschrift für Naturforschung, Section B}, vol. 51, no. 2, pp. 295–297, 1996.

[829] R. K. Kumar, G. Aravamudan, M. R. Udupa, M. Seshasayee, P. Selvam, and K. Yvon, “A novel mixed ligand Te(IV) complex comprising three halides and a dithiocarbamate; synthesis and crystal structure of triiododiethylthiocarbamatotel- lurium(IV), Te\{(C\textsubscript{2}H\textsubscript{3})\textsubscript{2}NCS\textsubscript{2}\}I\textsubscript{3},” \textit{Polyhedron}, vol. 15, no. 9, pp. 1453–1458, 1996.

[830] N. Kuhn, T. Kratz, and G. Henkel, \textit{Chemische Berichte}, vol. 127, p. 849, 1994.

[831] K. Maartmann-Moe and J. Songstad, \textit{Acta Chemica Scandinavica, Series A}, vol. 36, p. 829, 1982.

[832] M. C. Aragoni, M. Arca, F. Demartin, et al., “First ICN adduct with a selenium donor (R = Se): is it an ionic [RSeCN]+I− or a “T-shaped” R(1)SeCN hypervalent compound?” \textit{European Journal of Inorganic Chemistry}, vol. 2004, no. 11, pp. 2363–2368, 2004.
