Multi-omics characterization and therapeutic liability of ferroptosis in melanoma

Signal Transduction and Targeted Therapy (2022)7:268

Dear Editor,

Ferroptosis, an iron-dependent form of programmed cell death driven by excessive lipid peroxidation, has emerged as a promising and effective strategy for triggering cancer cell death. Insufficient understanding of the role of ferroptosis in melanoma progression and the tumor microenvironment (TME) has limited the development of ferroptosis-targeted therapy and combinations with other therapeutic strategies.

Here, we constructed a ferroptosis score (FPS) model to quantify the ferroptosis status of melanoma patients based on 32 ferroptosis-related genes (FRGs) screened from the FerrDB database that were associated with patient outcomes and could accurately differentiate patient status (Supplementary Figs. 1, 2; see Methods). The univariate Cox hazard analysis demonstrated that FPS was the most significant OS protective factor compared with 50 cancer hallmark gene sets (Fig. 1a), and patients with high FPS had better overall survival (Supplementary Fig. 2g). Multivariate Cox regression analysis demonstrated that FPS is an independent predictor by considering the confounding factors (e.g., age, gender, and tumor stage; Supplementary Fig. 2h). The reliability of the FPS as a prognostic factor was validated in four independent melanoma cohorts with 416 patients (Supplementary Fig. 3).

To identify the molecular features related to ferroptosis in melanoma, we applied a propensity score matching (PSM) algorithm to appropriately control clinical confounders (e.g., tumor purity, stage) and calculated the molecular difference between high-FPS and low-FPS groups (Fig. 1b, Supplementary Fig. 1e; see Methods). We identified ferroptosis-associated features in four molecular levels, including 1338 mRNAs, 205 significant miRNAs, 193 methylation sites, and 49 proteins (Fig. 1c; Supplementary Table 5), suggesting that ferroptosis in melanoma may affect multiple molecular levels. Then we performed GSEA analysis between high and low FPS group in mRNA and methylation levels, respectively. The results showed immune-related pathways (e.g., inflammatory response, interferon gamma response) were enriched in patients with high-FPS, while those related to oxidation phosphorylation and MYC targets v2 were enriched in patients with low-FPS (Fig. 1d, bottom panel; Supplementary Table 6). Ferroptosis associated methylation features showed opposite direction of function enrichment comparing to ferroptosis associated mRNA features (Fig. 1d, up panel; Supplementary Table 6), suggesting ferroptosis-associated mRNA expression patterns were partially due to alterations in DNA methylation level. Next, we observed that a high FPS was strongly correlated with ROS inducers (PD-DT; Piperlongumine; Supplementary Fig. 5) and ferroptosis inducers (Erastin; RSL: ML162; ML210; Supplementary Fig. 5), suggesting the robustness of the FPS model for defining ferroptosis status. Furthermore, we found multiple ferroptosis associated clinically actionable genes targeted by Food and Drug Administration (FDA)-approved drugs were altered at the mRNA level (Fig. 1e). For example, PDCD1LG2 (PD1 ligand) was highly expressed in patients with high-FPS (Fig. 1e), suggesting that PD1 inhibitors, such as nivolumab and pembrolizumab, could have better efficacy in high-FPS tumors.

Ferroptosis was found to be associated with the tumor immune response according to multi-omics analysis (Fig. 1d, Supplementary Fig. 4). We further explored ferroptosis status alterations at a single-cell resolution to better characterize intra-tumor heterogeneity. Employing graph-based principal component clustering combined with marker-based annotations, we classified cells from GSE115978 into 10 clusters (Fig. 1f; Supplementary Fig. 6a). We found that the FPS was generally lower in malignant cells, followed by fibroblasts, and the highest FPS was observed in immune cells (Fig. 1g,h) and confirmed this in another independent melanoma scRNA-seq dataset (GSE72056; Supplementary Fig. 6b–e). To investigate the regulation of ferroptosis in the TME at two-dimensional spatial level, we classified a spatial transcriptome melanoma dataset from a previous study into macrophage, stromal, melanoma, and T/B cell enrichment regions (Fig. 1i; Supplementary Fig. 7) and found the heterogeneity of the FPS in these four regions. The FPS was higher in the border region with high infiltration of macrophages than in the tumor center and the FPS was higher in the region with T/B cell enrichment than in the stromal regions (Fig. 1j,k). These suggest the heterogeneity of ferroptosis status among different cell populations at single-cell and spatial levels. In particular, there was a predominant difference in the FPS between malignant cells and immune cells, thus inducing ferroptosis in tumor cells may be a potential treatment strategy.

To investigate the power of the FPS to predict ICB therapy efficacy, we collected our in-house cohort of 62 melanoma patients with anti-PD-1 treatment, including 33 responders and 29 non-responders (Supplementary Table 8; see Methods). Consistently, anti-FRGs tended to be highly expressed in non-responders, while pro-FRGs were more likely to be highly expressed in responders (Fig. 1l), and the responders showed significantly higher FPS that non-responders (Wilcoxon test, P = 0.004; Fig. 1m). Among these 62 patients, 22 out of 31 patients (71%) with high FPS were responders to anti-PD-1 treatment, which is significantly higher than the percentage of patients with low FPS (22/31 versus 11/31; chi-square test: P = 0.01; Fig. 1n). In addition, patients with a higher FPS had longer progression free survival (FPS) (log-rank test, P = 0.016; Fig. 1o). We validated FPS associated with immunotherapy benefit in four independent melanoma bulk RNA-seq cohorts, including TCGA-SKCM, PRJEB23709, phs000452.v3, and GSE91061 (Supplementary Fig. 8). Further, in the scRNA-seq melanoma cohort (GSE120575) treated with anti-PD-1 therapy, we found patients with a higher FPS in both pre-treatment and post-treatment benefited from immunotherapy (Supplementary Fig. 9). In addition, we found FPS associated with immune response in protein level. The protein levels of anti-FRGs were altered in tumors with high FPS (Fig. 1e). For example, PDCD1LG2 (PD1 ligand) was highly expressed in patients with high-FPS (Fig. 1e), suggesting that PD1 inhibitors, such as nivolumab and pembrolizumab, could have better efficacy in high-FPS tumors.

Received: 26 March 2022 Revised: 6 May 2022 Accepted: 19 June 2022
Published online: 10 August 2022
and pro-FRGs showed distinguishing expression patterns in responders and non-responders in anti-PD-1 treated cohort with proteomics (Supplementary Fig. 10a, b). Multi-Cox analysis revealed that protein-based FPS can be independent prediction model to predict the immunotherapy efficacy (Supplementary Fig. 10c) and associated with benefit of anti-PD-1 therapy (Fig. 1p–r). Taken together, these findings suggest the robustness of the FPS model as a potential biomarker to predict immunotherapy response based on bulk, single-cell transcriptome, and proteomic-level data.
To explore the potential mechanism of ferroptosis in immunotherapy, we performed an association analysis between the FPS and the immune response-related biomarkers. We observed a significantly positive correlation between the FPS and the T cell-inflamed gene expression profile (GEP; Fig. 1w; Supplementary Figs. 10d, 11a) and cytolytic activity (CYT; Fig. 1w; Supplementary Fig. 11b) in 17 independent melanoma cohorts. In addition, B cell receptor (BCR) richness (Fig. 1s), T cell receptor (TCR) richness (Fig. 1t), the tumor-infiltrating lymphocyte (TIL) regional fraction (Fig. 1u), and the PDL1 protein level (Fig. 1v), were significantly higher in the high-FPS group than those in the low-FPS group. These results highlight that ferroptosis may be associated with immunogenicity and that patients with a high FPS may tend to bear “hot tumors”, accompanied by a higher TCR/BCR clone richness, higher CYT score, GEP level, and immune infiltration level and thus an activated immune system; these features may explain, at least in part, the survival advantage and the greater benefit of ICB treatment in the high FPS group.

Our study provides a comprehensive multi-omics understanding of the effects of ferroptosis on prognosis, the TME, and multiple therapies, especially immunotherapy of melanoma, based on bulk, single-cell, spatial transcriptome, and proteomics analyses (Fig. 1). These findings highlight the potential for cancer therapy that induce ferroptosis as single agents or in combination with other targeted therapies and immunotherapies.

DATA AVAILABILITY

The bulk/single cell RNA sequencing, proteomics data, spatial transcriptome data and clinical information of melanoma patients, or patients treated with immune checkpoint blockade were described in method section “Data collection and processing”. The resources, tools used in our analyses were described in each method section in the methods. We developed a R package to allow users to calculate ferroptosis score, identify multidimensional ferroptosis-associated molecular features, and conduct function enrichment analysis for their own data. The R package and codes have deposited on the Github (https://github.com/Yelab2020/FPSOmics).

ACKNOWLEDGEMENTS

This study was supported by the National Key Research and Development Program of China (2019YFE0102080, 2019YFA0111600), the Natural Science Foundation of China for outstanding Young Scholars (82022060), the National Natural Science Foundation of China (81874242, 31800979, 82073145), the Natural Science Foundation of Hunan Province for outstanding Young Scholars (2019JJ30040), the National Natural Science Foundation of China (62010245), China Postdoctoral Science Foundation (2020M682587). We are very grateful to Gene-Expression Omnibus (GEO) and the Cancer Genome Atlas (TCGA) database for providing the transcriptome and clinical information.

REFERENCES

1. Dixon, S. J. et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. *Cell* **149**, 1060–1072 (2012).
2. Lei, G., Mao, C., Yan, Y., Zhuang, L. & Gan, B. Ferroptosis, radiotherapy, and combination therapeutic strategies. *Protein Cell* **20**, 1049–1059 (2019).
3. Ma, S., Henson, E. S., Chen, Y. & Gibson, S. B. Ferroptosis is induced following siramesine and lapatinib treatment of breast cancer cells. *Cell Death Dis.* **7**, e2307 (2016).
4. Zhou, N. S. & Bao, J. Ferrobt: a manually curated resource for HPO and markers of ferroptosis and ferroptosis-disease associations. *Database* **2020**, (2020).
5. Thane, K., Eriksson, H., Maaskola, J., Hansson, J. & Lundberg, J. Spatially resolved transcriptomics enables dissection of genetic heterogeneity in stage III cutaneous malignant melanoma. *Cancer Res.* **78**, 5970–5979 (2018).
