Evaluation of midland maize (Zea mays l.) varieties in selected districts of southern Ethiopia

Tariku Simion¹*, Selamawit Markos² and Tamirat Samuel³

Abstract: This study was aimed at selecting maize varieties that perform better in midland maize production areas. Seven improved midland maize varieties were tested in Basketo Special district (Motikesa and Sasa Kebeles) and Darashe district, southern Ethiopia. The experiment was done using a randomized complete block design with three replications. Seeds were sown on a plot size of 15 m² (3 m × 5 m) having four rows with a spacing of 75 cm between rows and 25 cm between plants. Combined analysis of variance was conducted after testing the uniformity of error variance. There were significant differences (p < 0.05) between varieties for grain yield and other studied traits over locations. Mean separation for grain yield over locations indicated that varieties BH 547 (6851 kg/ha) and BH-546 (6638 kg/ha) gave better grain yield as compared to others. These two varieties gave 41.6% and 39.7% yield advantages over the national (4000 kg/ha) maize average productivity, respectively. Generally, the result revealed that the existence of variation for the characters studied in midland maize varieties, and so, testing of the varieties has paramount importance before large-scale production.

1. Introduction

Maize (Zea mays L.) is one of the most important cereal crops in Ethiopia. It is an important field crop in terms of area coverage, production and utilization. It ranks second in area coverage and first in total production (Central Statistical Agency [CSA], 2018). It is grown for its food and feed values and one of the most important staples and cash crops and the main sources of calories (Wedajo et al., 2015).
In southern Ethiopia, maize is the first crop both in productivity and in production (CSA, 2018). It is the most extensively cultivated food crops and the main source of calories in western, southern and eastern parts of Ethiopia (Mosisa, Wonde, Berhanu, Legesse, & Alpha, 2001). Gamo, Gofa and Segen area people zones are among major maize producers in southern Ethiopia. The productivity of existing varieties is below potential. The low yield in this area is mainly not only lack of improved varieties but also attributed to improper use of technology packages. Testing of different released varieties in Ethiopia for their environmental reaction is crucial to avoid risks of various environmental factors (biological, physical and chemical). Hence, it is important to test maize varieties for their adaptation that were released for midland areas of Ethiopia to enhance production and productivity. Therefore, this study was initiated with the objective of selecting better performing maize variety/ies for yield in midland areas of southern Ethiopia.

2. Materials and methods
An experiment was conducted during 2018 cropping season comprising seven midland maize varieties in four testing locations of southern Ethiopia. The experiment was laid down in a randomized complete block design with three replications. The plot size of 222.5 m2 (4.5 m × 5 m) having six rows with inter-row spacing of 75-cm and 25-cm spacing between plant was used. Fertilizers (NPS 100 kg/ha at planting and 100 kg/ha urea (1/3 kg/ha at planting and 2/3 kg/ha at knee stage)) were applied after weeding. Data were collected for plant height (taken at maturity) and ear height on the basis of five sample plants randomly taken from four central rows, and grain yield was taken from four central plot bases. Data were subjected to Genstat software for analysis of variance (ANOVA) for individual and combined locations. Mean separation was conducted by using the least significant difference.

3. Results and discussion
Combined ANOVA for locations, varieties and varieties by location interaction revealed significant difference ($p < 0.05$) for the parameters studied (Table 1). This indicated that the presence of significant variations among varieties and the varieties had inconsistent performance over the tested locations. Workie, Habbitamu, and Yigzaw (2013) in maize and Yayis, Agdew, and Yasin (2014) in field pea and Simion et al. (2018) in cowpea also reported the significant effect of locations, varieties, and locations by varieties on yield and some other yield-related traits.

Mean performance of varieties for grain yield for each location is presented in Table 3, 4, 5 and 6. The varieties had over locations mean grain yield of 6271 kg/ha (Table 2). The highest over locations mean grain yield obtained were BH547 (6851kg/ha) and BH546 (6638kg/ha). These varieties had an yield advantage of 41.6% and 39.7% for BH 547 and BH 546, respectively, over the national maize average productivity (4000 kg/ha$^{-1}$). Moreover, performances of varieties were not consistent across locations. Inconsistent performances of varieties for studied traits across locations were due to physical, chemical and biological factors (Tariku et al., 2018)

Among varieties, SBRH, BH660, BH547 and BH546 had better grain yield at Walayite location with a yield advantage of 50.1%, 50.0% and 48.6% and 47% over the national maize average productivity (4000 kg/ha, CSA 2018) (Table 3) in the given order.

| Table 1. Combined analysis of variance for yield and agronomic traits over four locations |
|------------------------------|--------|--------|--------|--------|
Source of variation	DF	PH	EH	CL	
Replications	8	263.0	42.5	2.452	
Locations	3	5206.6**	3924.4**	466.193**	9,636,804**
Varieties	6	2285.1**	2034.5**	32.941**	1,533,045**
Locations × varieties	18	220.8*	147.9**	5.818*	105,149**
Pooled error	48	450.3	444.3	13.587	752,542

DF = degree of freedom, PH = plant height, EH = ear height, GY = grain yield and CL = cob length.
Among tested varieties at Motikesa, BH543, BH546, BH547 and BH661 yielded better in the given order with a yield advantage of 52.6%, 49.9% and 48.8% over the national (4000 kg/ha, Central Statistical Agency (CSA), 2018) maize average productivity (Table 4).

Table 2. Combined mean values for yield and agronomic traits over four locations

Varieties	PH (cm)	EH (cm)	CL (cm)	GY (kg/ha)
BH543	213.9a	130.4b	27.87ab	5967c
BH546	215.7a	125.0bc	27.62bc	6638ab
BH547	239.7b	126.9bc	29.63a	6851a
BH660	247.4b	145.4a	28.38ab	6006c
BH661	220.3c	154.0a	28.58ab	6379b
SPRH	218.5c	120.3c	25.75cd	5994c
SBRH	212.4c	120.1c	25.90d	6062c
Grand mean	224.0	131.7	27.5	6271
LSD (0.05)	12.16	9.95	1.97	265.41

PH = plant height, EH = ear height, GY = grain yield and CL = cob length.

Table 3. Mean values of yield and agronomic traits of midland maize varieties at Walayite, Darashe district, 2018

Varieties	PH (cm)	EH (cm)	GY (kg/ha)
BH543	202.7b	114.7b	6342b
BH546	211.6ab	106.1bc	7776a
BH547	202.7b	116.5b	7560a
BH660	225.9a	130.4a	8024a
BH661	223.9ab	130.3a	6549b
SPRH	202.7b	101.7c	6678b
SBRH	208.3ab	110.0bc	8012a
Grand mean	211.1	115.7	7277.3
LSD (0.05)	22.0	115.7	752.9

PH = plant height, EH = ear height and GY = grain yield.

Table 4. Mean values of yield and agronomic traits of midland maize varieties at Motikessa, Basketo Special district, 2018

Varieties	PH (cm)	EH (cm)	CL (cm)	GY (kg/ha)
BH543	222.6b	133.6bc	31.40bc	8444a
BH546	228.0b	123.5c	35.07ab	8448a
BH547	212.6b	128.0c	36.87a	7956ab
BH660	269.1a	174.7a	36.47a	6356d
BH661	260.5a	153.0ab	32.87abc	7822ab
SPRH	218.5b	114.3c	31.33bc	7289bc
SBRH	223.7b	121.7c	30.67c	6444cd
Grand mean	233.6	135.5	33.52	7650.8
LSD (0.05)	28.86	10.30	1.97	857.97

PH = plant height, EH = ear height, GY = grain yield and CL = cob length.
Among varieties tested at Sasa, BH661 had better grain yield with a yield advantage of 38.9% over the national maize average productivity (4000 kg/ha, Central Statistical Agency (CSA), 2018) (Table 5). Average yield performances of varieties were low mainly due to low moisture stress and incidence of fall armyworms during the experimental season.

Among varieties tested at Belta, all except BH660 showed better performance for yield with a yield advantage of up to 30.7% over the national maize average productivity (Central Statistical Agency (CSA), 2018). Average yield performances of varieties in this study area were low mainly due to low moisture stress and incidence of fall armyworms during the experimental season.

4. Conclusion and recommendation

Maize is an important field crop in terms of area coverage, production and utilization in the study area. The combined analysis of variance revealed a significant difference \((p < 0.05)\) for location, variety and variety by location interaction. The present study indicated the existence of variability among varieties studied in terms of their reaction with locations to yield and yield-related traits. The mean separation for grain yield over locations indicated that varieties BH 547 (6851 kg/ha) and BH-546 (6638 kg/ha) were superior varieties compared to others. Based on the average national maize productivity, these superior varieties had 41.6% and 39.7% yield advantages over the national maize average productivity. Therefore, to increase maize production in the study area, these two varieties are recommended and need to be demonstrated with their improved production packages in many farming fields with a larger plot size.

Varieties	PH (cm)	GY (kg/ha)
BH543	197.7a	3335c
BH546	193.0a	3556c
BH547	237.7b	5111b
BH660	237.7b	3333c
BH661	206.3ab	6556a
SPRH	210.3ab	3778c
SBRH	199.3ab	3778c
Mean	211.7	4206.3
LSD (0.05)	43.03	978.40

PH = plant height, GY = grain yield.

Varieties	PH (cm)	EH (cm)	CL (cm)	GY (kg/ha)
BH543	227.4b	143.1bc	25.93ab	5200a
BH546	242.0b	135.7bc	25.73ab	4956a
BH547	229.1b	145.1b	30.20 a	5778a
BH660	264.2a	182.2a	27.53ab	3778b
BH661	268.9a	175.7a	28.93a	5356a
SPRH	231.9b	129.9bc	22.73bc	5400a
SBRH	224.6b	124.3bc	19.07c	4889ab
Mean	241.2	148.0	25.73	5050.79
CV (%)	4.3	7.4	11.3	14.5
LSD (0.05)	18.51	19.46	5.166	1303.35

PH = plant height, EH = ear height, GY = grain yield and CL = cob length.
Acknowledgements
The authors would like to thank South Agricultural Research Institute, Arba Minch Agricultural Research Center for financing and providing working facilities and all staff members for their commitment during this study.

Funding
The authors received no direct funding for this research.

Competing Interests
The authors declare no competing interests.

Author details
Tariku Simion
E-mail: trk2011smn@gmail.com
ORCID ID: http://orcid.org/0000-0001-5502-8834
Selamawit Markos
E-mail: selammark2011@gmail.com
Tamirat Samuel
E-mail: tamiratsame@gmail.com
1 Arbaminch Agricultural Research Center, Arba Minch.
2 Arbaminch Agricultural Research Center, Arba Minch.
3 Arbaminch Agricultural Research Center, Arba Minch.

Citation information
Cite this article as: Evaluation of midland maize (Zea mays L.) varieties in selected districts of southern Ethiopia, Tariku Simion, Selamawit Markos & Tamirat Samuel, Cogent Food & Agriculture (2019), 5: 1704136.

References
CSA (Central Statistical Authority). (2018). Agricultural Sample Survey. Area and production of crops. Central Statistical Authority, Statistical Bulletin 532,1 4–63. Addis Ababa.
Genstat Release 16th Edition (PC/Windows 7) Copyright. (2014). In C. A. Fatokun, S. A. Tarawali, B. B. Singh, P. M. Kormawa, & M. Tamo (Eds.). VSN International Ltd. germplasm.
Mosisa, W., Wonde, A., Berhanu, T., Legesse, W., & Alpha, D. (2001). Performance of CIMMYT maize germplasm under low nitrogen soil conditions in the mid altitude sub humid agro ecology of Ethiopia. Afr. J. Sci. Conf. Proc, 18, 15–18.
Tariku, S., Wassu, M., & Berhanu, A. (2018). Genotype by environment interaction and stability analysis of cowpea [Vigna unguiculata (L.)Walp] genotypes for yield in Ethiopia. Journal of Plant Breeding and Crop Science, 10(9), 249–257. doi:10.5897/JPBCS2013.0406
Wedaño, G., & Hussein, M. (2015, July). Study on adaptability and stability of drought tolerant maize varieties in drought prone areas of South Omo Zone, SNNPRS. International Journal of Research in Agriculture and Forestry, 2(17).
Workie, A., Habtam, Z., & Yigzaw, D. (2013). Genotype × environment interaction of maize (Zea mays L.) across North Western Ethiopia. Journal of Plant Breeding and Crop Science, 5(9), 171–181. doi:10.5897/JPBCS2013.0406
Yayis, R., Agdew, B., & Yasin, G. (2014). GGE and AMMI biplot analysis for field pea yield stability in SNNPR State, Ethiopia. International Journal of Sustainable Agricultural Research, 1(1), 28–38.