Role of Purged Air in the Synthesis of the Mesoporous NiO/C Composite and Its Application in Wastewater Treatment

R. Saravanakumar · K. Muthukumaran · C. Sivasankari · N. Sathiyapriya · K. Sakthipandi

Received: 4 October 2021 / Accepted: 26 January 2022 / Published online: 3 February 2022 © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022

Abstract In this study, two methods were used to synthesize the NiO/C composite from agricultural waste. The mesoporous composite was successfully synthesized via a novel precipitation method in the presence of dissolved gases. The morphology of the composites was differentiated by using characterization techniques such as X-ray diffraction, the point of zero charge (pH_{pzc}), field-emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy, energy-dispersive X-ray analysis (EDAX), and vibrating sample magnetometry (VSM). Then, the mechanism of synthesis was elucidated using the above experimental characterization data. Results of FESEM and EDAX analyses of Ni(OH)$_2$–carbon composite clearly showed the role of dissolved gases in the synthesis. Both the composites were subjected as the adsorbent to remove the toxic Pb(II) ions from the wastewater. Batch adsorption experiments were carried out to compare the Pb(II) ion removal capability of both the composite materials. The parameters such as the effect of pH, the dosage of the adsorbents, and initial concentration were studied. At the optimized conditions, isotherm studies for each of the adsorbent were also carried out. The isotherm results revealed that the maximum removal capacity q_e (mg/g) was 30.78 for PJNC and 43.48 for PJGNC. The VSM analysis confirmed that both the adsorbents were soft magnetic materials. Hence, they could be competently separated from salted/treated water using a magnetic field.

Keywords Role of dissolved gases · NiO/carbon · Carbon composite · Pb(II) ion removal · Heavy metal ions · Adsorption

1 Introduction

The earth is surrounded by three-fourths of water. Despite this statistical fact, there is more demand for potable water due to urbanization and industrialization (Luzardo et al., 2017). The heavy metal ions such as Pb(II), Cu(II), Hg(II), Cd(II), and Cr(IV) in aquatic streams credibly threaten the environment directly (Saranya et al., 2020; Sdiri & Higashi, 2013; Zhang et al., 2018). Research interests on the potential removal/subtraction of toxic metal ions from the
wastewater are focused on various methods such as chemical precipitation, coagulation, electrofloation, ion exchange, adsorption, photodegradation, and membrane filtration (Hua et al., 2012; Patra et al., 2020; Shaheen et al., 2018; Wan Ngah & Hanafiah, 2008). Among these, adsorption technique is more efficient, cost-effective, and eco-friendly. The economic adsorption process could be appropriately determined by the proper selection of the cheapest and the most effective adsorbent. Activated carbon is the most commonly used absorbent today as it is the most economical and efficient. This investigation focuses on the utility of the biowaste material, which is expected to perform better than the commercial activated carbon (Sud et al., 2008; Wan Ngah & Hanafiah, 2008). In this study, carbon was derived from *Prosopis juliflora* (PJ) wood, which is invasive to the environment. *P. juliflora* is usually found in abundance in the arid and semiarid continents (Chandrasekaran et al., 2020; El-Keblawy & Abdelfatah, 2014; Shackleton et al., 2015; Zachariades et al., 2011).

In the recent times, researchers have paid attention to convert nanometal oxides such as ferric oxides, aluminium oxides, manganese oxides, magnesium oxides, cerium oxides, and titanium oxides as an efficient adsorbent, as they have a large surface area and high activities with magnetic regeneration property (Bharath et al., 2021; Hua et al., 2012; Zachariades et al., 2011). Metal oxides are more effective, but they are not cost-effective. Latest studies reveal that metal oxide/carbon composites play a key role in high-power devices, electrochemical capacitors, catalysts, and adsorbents (Fu et al., 2019; Modwi et al., 2017; Wu & Hsieh, 2008) because the metal oxide/carbon composites are efficient and cost-effective. Hence, many efforts have been directed to synthesize an efficient carbon composite. The features of the composite have been determined by the method of synthesis (Hale, 1976; Zachariades et al., 2011). In this study, NiO/carbon composite was synthesized by precipitation method using sodium hydroxide and nickel nitrate. The PJ wood parts were collected from places in and around Coimbatore (11.0168° N, 76.9558° E), Tamil Nadu, India. The PJ wood was wrecked and broken into comparable similar sizes (2–3 cm) and later washed gently by using double-distilled water. The PJ wood pieces were taken in a muffle furnace and exposed to pyrolysis with a slow heating rate (5 K/min) (Estela et al., 2018). It was kept in the furnace up to 673 K to get a high yield of carbon (Selvaraju et al., 2018). The prepared carbon (named as *P. juliflora* carbon; PJC) from *P. juliflora* was washed thoroughly using double-distilled water to remove the ash and some dissolved matter. Then, it was dried and cooled to atmospheric temperature. The PJC obtained from the above process was crushed and converted into a composite with NiO by two precipitation methods.

2 Material and Methods

2.1 Materials

The analytical-grade (AR) reagents such as nickel nitrate (Ni(NO3)2), lead nitrate [Pb(NO3)2], and sodium hydroxide (NaOH) were purchased from Merck Chemicals, Mumbai, India. Carbon was derived from a biological invasive matter (*Prosopis juliflora* wood).

2.2 Synthesis of *P. juliflora* Carbon

The *P. juliflora* (PJ) wood parts were collected from places in and around Coimbatore (11.0168° N, 76.9558° E), Tamil Nadu, India. The PJ wood was wrecked and broken into comparable similar sizes (2–3 cm) and later washed gently by using double-distilled water. The PJ wood pieces were taken in a muffle furnace and exposed to pyrolysis with a slow heating rate (5 K/min) (Estela et al., 2018). It was kept in the furnace up to 673 K to get a high yield of carbon (Selvaraju et al., 2018). The prepared carbon (named as *P. juliflora* carbon; PJC) from *P. juliflora* was washed thoroughly using double-distilled water to remove the ash and some dissolved matter. Then, it was dried and cooled to atmospheric temperature. The PJC obtained from the above process was crushed and converted into a composite with NiO by two precipitation methods.

2.3 Synthesis of NiO/C Composites

First, 4.6 g PJC was taken into a clean beaker along with 400 mL distilled water. After half an hour, that heterogeneous solution was constantly air purged at a flow rate of 2 × 10−2 m3/h. Then, 50 mL of 1 M NiNO3 was added to the above and the purging process continued about 30 min for even dispersion. To
this mixture, 50 mL of 2.0 M NaOH gradually was added at regular intervals, which resulted in a green Ni(OH)$_2$ precipitate on the surface of the carbon. That mixture was kept for a whole day for the settlement of the Ni(OH)$_2$/PJC composite (PJGNH) at the bottom. The filtrate was decanted and the residue was washed with double-distilled water to achieve the neutral pH. Then, the final product was kept in the muffle furnace and heated for half an hour up to 250 °C to get a black PJ shell consequential nanocomposite NiO/PJC (PJGNC) (Xing et al., 2004; Yuan et al., 2005). The synthesis procedure is shown in Fig. 1 and Eqs. (1) and (2). In addition, the NiO/PJC composite was prepared by the above-cited method without purging of the air. The obtained Ni(OH)$_2$/carbon was termed as PJNH and it was calcinated to convert into the NiO/carbon composite, which was termed as PJNC. This process is also shown in Fig. 1 and Eqs. (3) and (4).

Synthesis I

\[
PJC + O_2 + Ni(NO_3)_2 + 2 NaOH(aq) \rightarrow PJC - O_2 - Ni(OH)_2 \downarrow + 2NaNO_3(aq) \tag{1}
\]

\[
PJC - O_2 - Ni(OH)_2 \triangleleft NiO - PJNC + O_2 + H_2O \tag{2}
\]

Synthesis II

\[
PJC + Ni(NO_3)_2 + 2 NaOH(aq) \rightarrow PJC - Ni(OH)_2 \downarrow + 2NaNO_3(aq) \tag{3}
\]

\[
PJC - Ni(OH)_2 \triangleleft NiO - PJNC + H_2O \tag{4}
\]

2.4 Characterization

The morphology of PJGNC and PJNC was uniquely distinguished by using FESEM (SUPRA 55 VP-4132; Carl Zeiss), XRD analysis (SmartLab; Rigaku). The composition of the elements present in PJGNC and PJNC was differentiated and quantified by EDAX analysis. The variance in magnetic property of PJGNC and PJNC was studied using a 7410 series VSM (Lakeshore). The adsorption/desorption nitrogen isotherm in the P/P$_0$ range at 77.3 K (ASAP 2020 V4.02 H) was used to accurately differentiate the specific surface area and pore size of the PJGNC and PJNC.

2.5 Batch Mode Adsorption Studies

Using acceptable standards and methods, a comparison of the removal capacity of the prepared adsorbents was

![Fig. 1 Diagrammatic procedure for the synthesis of PJGNC and PJNC (4.6 g of PJC with 400 mL of distilled water, air flow rate: \(2 \times 10^{-2}\) m3/h, 1 M NiNO$_3$ and 2.0 M NaOH, calcination temperature: 250 °C)]
conducted by batch adsorption studies. In this study, 100 mL optimal concentrations of lead (II) ions solutions were taken with a specified amount of adsorbents in the reagent bottles. Subsequently, using a mechanical shaker, they were agitated at 180 rpm at 303 K to elucidate the optimal dosage of the adsorbents in the adsorption process and the optimum pH from initial concentrations of Pb(II) ions. The role of the pH in the adsorption process was investigated by equilibrating 100 mL of 10 mg/L Pb(II) ion solution with 1.0 g/L dried adsorbents at various pH values between 1.0 and 8.0. The adsorbents ranging from 0.5 to 1.0 g/L were studied with a specified Pb(II) ion solution to find their optimal dose. The probability of the adsorption process was studied. The finest pH and the composite doses were accurately determined as 6.0 and 1.0 g/L for both PJNC and PJGNC. All the batch experiments were carried out with the abovementioned parameters with an equilibration time of about 180 min. After each batch experiment, the supernatant solution was decanted and analyzed by using an atomic absorption spectrophotometer (AAS-WFX-130; Systronics). Therefore, the amount of Pb(II) ions removal (q_t) (mg/g) could be calculated by following Eq. (5) and the adsorption efficiency (R_t) could be calculated using Eq. (6) (Shahnaz et al., 2020):

$$\text{Amount of Pb(II) ions removal } (q_t) \text{(mg/g)} = \frac{(C_i - C_e)V}{W}$$

where C_i is the metal ions concentration measured before adsorption, C_e is the metal ions concentration measured after adsorption, W is the weight of the dried adsorbent, and V is the aqueous solution volume in liters.

2.6 Isotherms Analysis

The unique design of the adsorption system could be correlated by the adsorption isotherm (Hameed et al., 2008; Saravanakumar et al., 2019). It would be necessary to explain the dispersion of adsorbate on the adsorbent in the liquid phase (Yao et al., 2016). The batch adsorption results in the present study were analyzed using two major isotherm models namely Freundlich isotherm and Langmuir isotherm. The first one indicated the equilibrium distribution of Pb(II) ions between the solid and liquid phases. This isomer was valid effectively for only monolayer adsorption onto a surface with a finite quantity number of active sites. This isotherm model assumed unchanging/uniform energies of adsorption onto the surface and no drifting/transmigration of adsorbate on the surface of the adsorbent (Bouabidi et al., 2018). Langmuir isotherm could be represented by following Eq. (7):

$$Q_e = \frac{Q_0b_LC_e}{1 + b_LC_e}$$

Linear form of Langmuir Eq. (8) could be represented as:

$$\frac{C_e}{Q_e} = \frac{1}{Q_0b_L} + \frac{C_e}{Q_0}$$

where C_e is the equilibrium concentration of Pb(II) ions (mg L$^{-1}$), Q_e is the amount of Pb(II) ions adsorbed per gram of the adsorbent at equilibrium (mg/g), Q_0 is the maximum monolayer coverage capacity (mg/g), and b_L is the Langmuir isotherm constant (L/mg).

The Freundlich isotherm was used to describe the adsorption of metal ions on the heterogeneous surface. This isotherm does not necessitate limit of the adsorption when coverage is sufficient to fill a monolayer. It could be represented by following Eqs. (9) and (10) (Khozhaenko et al., 2016):

$$Q_e = k_F C_e^{1/n}$$

$$\log Q_e = \log k_F + \frac{1}{n} \log C_e$$

where n is the adsorption intensity, k_F is the Freundlich isotherm constant (mg/g), Q_e is the amount of Pb (II) ions adsorbed per unit gram of the adsorbent at equilibrium (mg/g), and C_e is the equilibrium concentration of adsorbate (mg/L).

3 Results and Discussion

3.1 Structural Variation in PJNC and PJGNC

The structural variance of the PJNH and PJGNH composites could be understood by the powder XRD...
pattern, which is shown in Fig. 2. The 2θ values of both PJNH and PJGNH are related to the respective Miller indices (001), (100), (101), (102), (110), (111), and (200) (Huang et al., 2007). The broadened peak of PJGNH and PJNH indicates poor crystallinity. The intensity of PJGNH is a little higher than PJNH. It shows the orientation effect of purged gases on the precipitation of nickel hydroxide. It supports high aggregation of Ni(OH)$_2$ with an outer layer of carbon particles. The reduced intensity peaks on PJNH indicate the domination of carbon on precipitation (Poinern et al., 2009). The crystalline structure of PJNC and PJGNC could be explained by the powder XRD analysis. Figure 3 shows the powder XRD analysis of PJNC and PJGNC. The 2θ values of both PJNC and PJGNC are matching to the corresponding (111), (200), (220), (311), and (222) Miller indices (Mahmoud et al., 2015; Suresh et al., 2016; Wu & Hsieh, 2008; Xiang et al., 2002). The observed values denote the presence of nano-NiO crystallites in the composite. The calcination of PJC-NiOH at 250 $^\circ$C influences the orientation effect and changes the phase of amorphous carbon (PJC) to a crystalline composite. The peak intensity of PJGNC is higher than PJNC. It also indicates the extent of crystallinity of PJGNC (Inoue & Hirasawa, 2013). The sharp peaks of PJGNC show mesopore size enlargement. It clearly supports the formation of Ni(OH)$_2$ influenced by purged air. The continued purging of air tends to disperse properly of the carbon particles in the liquid phase on precipitation of Ni(OH)$_2$. It also leads to the quantized effect (Jayaram & Prasad, 2009).

3.1.1 FTIR Spectral Analysis

The reports of the FTIR analysis of PJNC and PJGNC are shown in Fig. 4. The PJNC and PJGNC composites were derived from *P. juliflora*. Therefore, they showed peaks of the functional group present in PJC. In Table 1, the observed peaks and presented functional groups are represented along with the assignments (Khalil et al., 2010; Pallarés et al., 2018; Saravanakumar et al., 2013; Shen & Gu, 2009). The wood-derived adsorbents comprised a combination of cellulose, hemicellulose, and lignin content. Hence, the composites PJNC and PJGNC showed peaks of the primary functional group of O–H at 3781 and 3785 cm$^{-1}$ (Tang et al., 2019). The peak at 1055 cm$^{-1}$ indicate the ester (–C–O–C–) assembly. Carboxyl stretching for acetyl C–O groups in aldehyde and hemicellulose groups of lignin was characterized by the existence of the peaks at 1691 cm$^{-1}$. The observed peaks at 1741, 1678, and 1067 cm$^{-1}$ confirm the occurrence of C–O, C=O, and C–O–C,
respectively (Khalil et al., 2010). The prominent peak around 590 cm\(^{-1}\) is attributed to the presence of NiO group in the composites (Suresh et al., 2016; Tang et al., 2019).

3.1.2 Zeta potential Studies

Generally, the pH of solution affects the surface charge on the adsorbent (Priya et al., 2018; Karthik et al., 2011). The point of zero charges (pH\(_{\text{pc}}\)) of the
adsorbent is one of the important factors to predict the range of pH, which shows maximum adsorption (Kosmulski 2009; Tang et al., 2019). The pH_{pzc} can be calculated by the plot of pH vs zeta potential. According to Fig. 5, the pH_{pzc} of PJNC and PJGNC calculated are 6.0 and 5.7, respectively. It is shown that PJNC has a neutral surface charge at pH (6.0) and a positive surface charge (zeta potential +23 to 3 mV) at pH (<6.0). Then, it shows a negative surface charge (zeta potential −5 to −29 mV) at pH>6.0. The zeta potential style for PJGNC slightly fluctuates and differs compared to PJNC.

Similarly, PJGNC had positive surface charge (zeta potential +19 to +4 mV) at pH<5.7, negative surface charge (zeta potential −2 to −34 mV) at pH>5.7, and neutral surface charge at pH 5.7. The pH_{pzc} values of both PJNC and PJGNC were lower than those of pure NiO nanoparticles (pH_{pzc} = 10.8), which confirm that the surface of NiO was impacted by PJC (Acharaya et al., 2009). The high pH_{pzc} value of PJNC confirmed the decomposition of functional groups in the carbon of the composite and led to the decrease of the negative sites on the adsorbents. Meanwhile, the dissolved gases present in the PJGNH were influenced to avoid the decomposition of the functional group during calcination (Feygenson et al., 2010). It could be confirmed by the low pH_{pzc} of PJGNC. The negative (−ve) surface of PJGNC influenced the positively charged Pb(II) ions and generated the interactions among Pb(II) ions and showed higher removal efficiency than PJNC.

3.1.3 BET Analysis and Particle Size of Adsorbents

The composite synthesis method was used to study the surface properties of the material. The Brunauer–Emmett–Teller (BET) model precisely revealed how metal oxide had combined with PJ carbon. The mean pore diameter (d), total pore volume (P/_Po), and specific surface area (A_{BET}) were calculated and the values are given in Table 2. The results show that the surface area and pore volume of PJNC are lower than those of PJGNC. The dioxygen in PJGNH at calcination increased the mean pore diameter of PJGNC. The average particle sizes of PJNC and PJGNC were calculated using a particle size analyzer (SZ100; Horiba, Japan) and reported as 71 ± 5 and 89 ± 5 nm, respectively. The particle sizes of both composites were higher than those of PJC (37 nm), which confirmed the aggregation of NiO with PJC.

3.1.4 SEM-EDAX Analysis

The scanning micrographs (FE-SEM) precisely differentiated the morphology of PJNH and PJGNH. Figure 6a and b show the aggregation of Ni(OH)2 with PJC. It reveals a high accumulation of Ni(OH)2 taking place in PJGNH due to the accessibility of more available active sites, which were influenced by the dissolved oxygen. The micrograph of Fig. 6c visibly confirms the gases between Ni(OH)2 and PJC. It is intentionally caused to increase the surface

Table 1 FTIR analysis report for PJNC and PJGNC

Position of the peak (cm^{−1})	Assignments	Ref
3781	O–H stretching	Mahmoud et al., 2015
3468	O–H stretching and N–H stretching	(Modwi et al., 2017; Mousa et al., 2016)
3051	C–H stretching	(Pallarés et al., 2018; Patra et al., 2020)
2292	N–H bending	(Patra et al., 2020)
1691	C=C, C = O stretching	(Pallarés et al., 2018)
1463	Aromatic C = C stretching	
1355	C–N peptide bond	
1194	OH bending	(Poinern et al., 2009)
1068	C–O–C	(Mousa et al., 2016; Patra et al., 2020)
848	Aromatic = C–H out-of-plane	(Modwi et al., 2017)
591	NiO stretching	(Kloss et al. 2012)
area and pore diameter of the PJGNC composite throughout the calcination process (Mahmoud et al., 2015). The micrographs in Fig. 6d and f show the structures of PJNC and PJGNC, respectively. Figure 6f shows the mesoporous structure of PJGNC, which is created by purged gases. Figure 6e and g show PJNC and PJGNC after adsorption of Pb(II) ions. It reveals that the high amount of Pb (II) ions adsorbed on the surface of PJGNC is due to the influence of the high surface area, pore diameter, and more active sites on the adsorbent (Tang et al., 2019).

The SEM-EDAX elemental dot maps of PJNH and PJGNH are shown in Fig. 7a. The light green, violet, and brown dots in the figure indicate the concentrations of O, C, and Ni, respectively. The presence of a higher luminous intensity of dots indicates a significant concentration of the element. In this mapping, the light green dots indicate that the quantity of oxygen distribution is highly abundant in PJGNH compared to PJNH. The EDAX analysis in Fig. 7b and c also confirmed the presence of a high quantity of dioxygen in PJGNH.

3.1.5 VSM Analysis

Generally, the potential removal of powder adsorbent from the effluent after treatment is very difficult. It could be made easy by using a magnetic adsorbent. The magnetic properties of nanocomposites were characterized using a VSM graph (Ahilandeswari et al., 2020; Gupta et al., 2011). From Fig. 8, the hysteresis loop of both the adsorbents reveals an antiferromagnetic character (Tang et al., 2018). This type of small hysteresis loops are meant to be the soft type magnets and complete magnetization enhances their low squareness shape. The magnetization values of PJGNC (87 × 10⁻³ emu/g) and PJNC (14 × 10⁻² emu/g) were found to be decreased compared to pure NiO (65 emu/g) due to the presence of nonmagnetic carbon. It confirmed

![Fig. 5 pH vs zeta potential (pH_{zpc} of PJNC is 6.0 and pH_{zpc} of PJGNC 5.7)]

![Table 2 BET Analysis of PJNC and PJGNC](...)

Table 2 BET Analysis of PJNC and PJGNC

Adsorbent	PJNC	PJGNC
Specific surface area (ABET)	35 m²/g	58 m²/g
Total pore volume (P/P₀)	0.0182 cm³/g	0.029 cm³/g
Mean pore diameter (d)	1.96 nm	2.05 nm
Particle size	85 nm	94 nm
the successful composition of nonmagnetic carbon along with NiO. The value of coercivity in the composite PJGNHC was 125.65 and for PJNC, it was 113.95 G. These low coercivity values of both the adsorbents confirmed soft magnetic nature (Cai et al., 2015; Feygenson et al., 2010; Fu et al., 2019). The very low value of retentivity also signposted/indicated easier demagnetization of the prepared
composite (Ghaemi et al. 2017; Indhu & Muthukumarana, 2018). Hence, both could act as good adsorbents in the effluent remediation field.

3.1.6 Reverberation of Synthesis Process

Generally, the composite properties are influenced by the synthesis method. In this study, NiO/C composite was synthesized in two ways. Initially, carbon and NiNO₃ solution were purged with air. The dioxygen present in the air was dissolved in this solution and combined on the surfaces and micropores of the carbon in the liquid phase. It was influenced to combine the Ni²⁺ ions with PJ carbon. After adding NaOH solution, the Ni²⁺ precipitated along with dioxygen entrapped between Ni(OH)₂ and carbon.

Fig. 7 a EDAX elemental dot maps of PJNH and PJGNH. b EDAX analysis of PJNH and PJGNH
The entrapped oxygen is clearly shown in the FESEM micrographs (Fig. 6c). The EDAX analysis also supported the presence of high dioxygen content in PJGNH compared to PJNH by showing high luminous intensity and weight percentage of O₂. At calcination, the entrapped gases would leave in the form of CO, CO₂, and O₂. The released gases enlarged the micropores of the composite to mesopores. It was confirmed by the BET analysis. At the same time, it avoided the decomposition of the active functional group present in the PJ carbon. The functional group present in PJGNC enhanced the negative surface charge on the composite, which was also confirmed by the zeta potential study.

3.2 Performance of Pb (II) Removal

3.2.1 Effect of pH

The adsorption efficiency of an adsorbent usually depends on the pH of the solution (Gupta et al., 2011). The impact of pH on the adsorption efficiency was examined in a range of pH values, from 2 to 9. Figure 9 clearly shows that the removal efficiency of both adsorbents has decreased after pH 7 due to precipitation of Pb(II) ions (Tang et al., 2018). Below pH 2, PJNC and PJGNC did not perceive the significant amount of Pb(II) ions. It specifies the Pb(II) ion adsorption on adsorbent active sites entered by the hydrogen (H⁺) ions (Gerçel & Gerçel, 2007; Ghaemi et al., 2017). On increasing the pH, the adsorption efficiency of both the adsorbents increased due to decrease in the hydrogen ion concentration. On increasing the pH from 2 to 6, the removal percentage of PJNC and PJGNC adsorbents increased from 34 to 83% and from 36 to 93%, respectively. The adsorption capacity of PJNC and PJGNC attained a maximum at pH 6 due to the availability of the negative surface charge on the adsorbents. However, the efficiency of PJGNC was found to be significantly higher than PJNC due to the presence of more dynamically active sites on PJGNC.

3.2.2 Effect of Adsorbent Dosage

The impact of adsorbent dosage on the removal of Pb (II) ions is shown in Fig. 10. It denotes that the removal efficiency of both the adsorbents had increased abruptly with the increase in the adsorbent dosage. It was found that on increasing the adsorbent dose, the number of availability of active
sites also increased. Therefore, it favorably helped to increase the adsorption efficiency (Acharya et al., 2009). While increasing the weight of adsorbents from 0.5 to 10.0 g/L, the removal efficiency of PJNC increased from 76.69 to 95.68%. Similarly, the removal efficiency of PJNC improved from 73.59 to 93.58%, 63.81 to 83.48%, and 54.86 to 79.06% for 20, 30, and 40 mg/L Pb(II) ion concentration, respectively, at constant temperature (303 K) and at pH 6. Comparatively, adsorption capacity of Pb(II) on PJGNC increased from 88.12 to 98.54%, 86.34 to 97.42%, 84.43 to 95.22%, and 81.22 to 95.12% for 10, 20, 30, and 40 mg/L Pb(II) concentration ions, respectively, with the increase in the adsorbent doses from 0.5 to 10.0 g/L at constant temperature (303 K) and at pH 6.0. Figure 10 shows that PJGNC has a higher adsorption efficiency due to the influence of the high surface area, pore diameter, and pore volume of PJGNC (Jaiswal et al., 2015).

3.2.3 Effect of Initial Concentration

The removal efficiency of the adsorbent varied depending on the concentrations of the adsorbate (Jaiswal et al., 2015). The effect of concentration on modification was assessed in the concentration ranges from 4 to 40 mg/L. The outcomes in Fig. 11a and b demonstrate that change in the concentration of adsorbate exerted a significant influence on the adsorption. The Pb(II) ion removal efficiencies (mg/g) of PJNC and PJGNC were improved on increasing the metal ion concentration, at the optimized pH and 1.0 g/L dosage.

While using the initial concentration from 4 to 40 mg/L, the adsorption capacities (mg/g) of PJNC and PJGNC were increased from 3.65 to 25.18 mg/g and 3.86 to 33.58 mg/g, respectively. The increasing trend of both the adsorbents confirmed that the absorption of Pb(II) ions on adsorbent was simply physical adsorption. At the same time, the removal percentage of Pb(II) ions decreased with the increase in concentration (Fig. 11a). Thus, it showed the presence of the specific/precise limit of adsorption sites on the surface of adsorbent (Ahrouch et al., 2019;
Goel et al., 2005; Khandanlou et al., 2015). The presence of a higher number of significant active sites and large pore diameter had significantly influenced the removal capacity of PJGNC than PJNC.

3.2.4 Isotherm Pattern

The efficiency of adsorption is usually determined by affinity and surface properties of the adsorbents toward the adsorbate. The nature of the surface of the adsorbent in the adsorption process could be effectively determined by isotherm patterns (Goel et al., 2005; Mousa et al., 2016). In this study, Langmuir and Freundlich isotherms were applied to show the nature of adsorption with the schematic mechanism of Pb(II) ions on the PJNC and PJGNC adsorbents. The isotherm marks can be derived from Fig. 12a and b and Fig. 13a and b. These are also illustrated in Table 3. It clearly exhibits that the removal of Pb(II) ions followed the Freundlich model more reasonably (Shi et al., 2019; Su et al., 2009). The maximum removal efficiency values of PJNC and PJGNC at 303 K were 30.78 and 43.48 mg/g, respectively.

The correlation coefficient (R2) of both the isotherms existed between 0.97 and 0.99. However, the Freundlich isotherm was more fitted over the entire temperature (Yang et al., 2018). The hexagonal Pb(II) ions on adsorbents in the SEM micrograph (Fig. 6g) also supported the multilayer formation. Thus, the following were demonstrated from the Freundlich isotherm:

- The multilayer exposure coverage was outward between the adsorbate and adsorbent at a persistent constant temperature (Li et al., 2018)
- \(1/n \) value was below one (\(1/n < 1 \)), which showed reversible physisorption (Dada et al., 2012), and
- The superior adsorption capacity of PJGNC was confirmed by a higher \(K_f \) value (Shahnaz et al., 2021).

The nature of the reactions was specified by using the \(R_L \) value, which was obtained from Langmuir isotherm. It also specified the shape of the isotherm to be irreversible (\(R_L = 0 \)) or unfavorable (\(R_L > 1 \)) or favorable (\(0 < R_L < 1 \)) and linear (\(R_L = 1 \)). In this study, \(R_L \) values were placed between \(0 < R_L < 1 \), which also confirmed that the adsorption was a favorable process (Habtegebrel & Khan, 2018). Comparing the isotherms models, this collegial adsorption process involved both monolayer and multilayer adsorption with a fraction of active
Fig. 11 a Effect of Pb(II) ion concentration (temperature: 303 K, adsorbent dose: 1 g/L, contact time: 3 h, pH: 6 for both PJNC and PJGNC). b Effect of Pb(II) ion concentration (temperature: 303 K, adsorbent dose: 1 g/L, contact time: 3 h, pH: 6 for both PJNC and PJGNC).
sites (Yang et al., 2018). These results concluded that PJGNC was a more favorable adsorbent than PNC in the removal of Pb(II) ions from the aqueous solutions.

4 Conclusions

The surface enhancement of PJNC and PJGNC composite was evidently investigated in this study.
Pb(II) ion removal efficiency of adsorbents synthesized using two processes was investigated. The novel preparation of the composite gave a higher pore diameter, pore volume, and surface area. In addition, carbon derived from agricultural invasive...
Table 3 The PJNC and PJGNC isotherm results
(temperature: 303 K, 313 K, and 323 K; adsorbent dose: 1 g/L contact time: 3 h, pH: 6)

	PJNC	PJGNC					
	303 K	313 K	323 K	303 K	313 K	323 K	
Langmuir isotherm	b_L (L/mg)	0.285	0.289	0.306	0.491	0.554	0.382
	q_m (mg/g)	30.769	27.712	24.631	43.478	46.083	40.984
	R^2	0.9835	0.9906	0.9892	0.9777	0.9379	0.9914
	C_e (mg/L)	R_L	R_L	R_L	R_L	R_L	R_L
10	0.2598	0.2570	0.2463	0.169	0.153	0.208	
20	0.1493	0.1475	0.1405	0.092	0.083	0.116	
30	0.1048	0.1034	0.0982	0.064	0.057	0.080	
40	0.0807	0.0796	0.0755	0.048	0.043	0.061	
Freundlich isotherm	$1/n$	1.890	1.978	2.092	0.5913	0.586	0.5993
	K_F (mg/g)	6.663	6.183	5.829	12.272	14.018	9.954
	R^2	0.992	0.990	0.980	0.9929	0.9955	0.9885

PJ wood was converted into a cost-effective nanocomposite. The XRD peak intensity revealed the extent of crystallinity and porous nature of PJGNC. At calcination of PJGNH, surface decomposition of the functional group was avoided by the presence of purged dissolved oxygen. It was visibly observed in the EDAX analysis. The anionic active –NH, C≡C, –OH, C–O sites, and phenolic and aromatic groups of both adsorbents were confirmed by the FTIR analysis. The FESEM micrographs of PJGNH confirmed the existence of gas molecules in between Ni(OH)$_2$ and carbon. The mesoporous nano-PJGNC was evidently identified by FESEM micrographs. The FESEM micrographs also specified the addition of the excessive amount of Pb(II) ions onto the PJGNC compared to PJNC. The mechanism of synthesis was found to prove the surface enhancement of the PJGNC. The VSM analysis also confirmed the highly soft magnetic character of PJGNC. The Langmuir and Freundlich isotherms were studied to investigate the surface nature of the adsorbents. The isotherm results revealed that the maximum removal q_e capacity was 30.78 mg/g for PJNC and 43.48 mg/g for PJGNC. The Langmuir and Freundlich isotherm equations were studied and it was found that they jointly supported the multilayer physical adsorption existing between Pb(II) ions and the adsorbent. PJGNC gave high removal capacity compared to PJNC due to the high surface area, pore diameter, and pore volume. This study revealed that PJGNC could be used to treat the wastewater for efficient removal of Pb(II) ions.

References

Acharya, J., Sahu, J. N., Mohanty, C. R., & Meikap, B. C. (2009). Removal of lead(II) from wastewater by activated carbon developed from Tamarind wood by zinc chloride activation. *Chemical Engineering Journal, 149*(1–3), 249–262. https://doi.org/10.1016/j.cej.2008.10.029

Ahilandeswari, E., Kanna, R. R., & Saktihapandi, K. (2020). Synthesis of neodymium-doped barium nanoferrite: Analysis of structural, optical, morphological, and magnetic properties. *Physica B: Condensed Matter, 599*, 412425. https://doi.org/10.1016/j.physb.2020.412425

Ahrouch, M., Gatica, J. M., Draoui, K., Bellido, D., & Vidal, H. (2019). Lead removal from aqueous solution by means of integral natural clays honeycomb monoliths. *Journal of Hazardous Materials, 365*, 519–530. https://doi.org/10.1016/j.jhazmat.2018.11.037

Bharath, G., Abdul Hai, K., Rambabu, T. P., Hasan, S. W., & Banat, F. (2021). Designed assembly of Ni/MAX (Ti3AlC2) and porous graphene-based asymmetric electrodes for capacitive deionization of multivalent ions. *Chemosphere, 266*, 129048. https://doi.org/10.1016/j.chemosphere.2020.129048

Bouabidi, Z. B., El-Naas, M. H., Cortes, D., & McKay, G. (2018). Steel-Making dust as a potential adsorbent for the removal of lead (II) from an aqueous solution. *Chemical Engineering Journal, 334*(II), 837–844. https://doi.org/10.1016/j.cej.2017.10.073

Cai, Y., Zheng, L., & Fang, Z. (2015). Selective adsorption of Cu(II) from an aqueous solution by ion imprinted magnetic chitosan microspheres prepared from steel pickling waste liquor. *RSC Advances, 5*(118), 97435–97445. https://doi.org/10.1039/c5ra16547d

Chandrasekaran, A., Patra, C., Narayanasamy, S., & Subbiah, S. (2020). Adsorptive removal of Ciprofloxacin and Amoxicillin from single and binary aqueous systems using acid-activated carbon from Prosopis juliflora. *Environmental Research, 188*, 109825. https://doi.org/10.1016/j.envres.2020.109825
Dada AO, Olalekan AP, Olatunya AM, Dada O (2012) Langmuir, Freundlich, Temkin and Dubinin – Radushkevich isotherms studies of equilibrium sorption of Zn 2+ unto phosphoric acid modified rice husk. 3(1), 38–45.

El-Keblawy, A., & Abdelfatah, M. A. (2014). Impacts of native and invasive exotic prosopis congers on soil properties and associated flora in the arid united arab emirates. Journal of Arid Environments, 100–101, 1–8. https://doi.org/10.1016/j.jaridenv.2013.10.001

Estela MCCB, Juliana S, Matos TTS, Mayara RF (2018) Effect of surface and porosity of biochar on water holding capacity aiming indirectly at preservation of the Amazon biome, (November 2017), 1–9. https://doi.org/10.1038/s41598-018-28794-z

Feygenson, M., Kou, A., Kreno, L. E., Tiano, A. L., Patete, J. M., Zhang, F., & Aronson, M. C. (2010). Properties of highly crystalline NiO and Ni nanoparticles prepared by high-temperature oxidation and reduction. PHYSICAL REVIEW B, 81(014420), 1–9. https://doi.org/10.1103/PhysRevB.81.014420

Fu, W., Wang, X., & Huang, Z. (2019). Science of the Total Environment Remarkable reusability of magnetic Fe 3 O 4 -encapsulated C 3 N 3 S 3 polymer / reduced graphene oxide composite: A highly effective adsorbent for Pb and Hg ions. Science of the Total Environment, 659, 895–904. https://doi.org/10.1016/j.scitotenv.2018.12.303

Gerçel, Ö., & Gerçel, H. F. (2007). Adsorption of lead(II) ions from aqueous solutions by activated carbon prepared from biomass plant material of Euphorbia rigida. Chemical Engineering Journal, 132(1–3), 289–297. https://doi.org/10.1016/j.cej.2007.01.010

Ghaemi, N., Zereshti, S., & Heidari, S. (2017). Removal of lead ions from water using PES-based nanocomposite membrane incorporated with polyaniline modified GO nanoparticles: Performance optimization by central composite design. Process Safety and Environmental Protection, 111, 475–490. https://doi.org/10.1016/j.psepi.2017.08.011

Goel, J., Kadirvelu, K., Rajagopal, C., & Garg, V. K. (2005). Removal of lead(II) by adsorption using treated granular activated carbon: Batch and column studies. Journal of Hazardous Materials, 125(1–3), 211–220. https://doi.org/10.1016/j.jhazmat.2005.05.032

Gupta, V. K., Agarwal, S., & Saleh, T. A. (2011). Synthesis and characterization of alumina-coated carbon nanotubes and their application for lead removal. Journal of Hazardous Materials, 185(1), 17–23. https://doi.org/10.1016/j.jhazmat.2010.08.053

Habtegebrel, M. M., & Khan, M. A. (2018). Removal of Zn (II) and Cu (II) ions from aqueous solution by dried Prosopis juliflora. 6(1), 6–14. https://doi.org/10.11648/j.mec.20180601.12

Hale, D. K. (1976). Review The physical properties of composite materials. Journal of Materials Science, 11, 2105–2141.

Hameed, B. H., Tan, I. A. W., & Ahmad, A. L. (2008). Adsorption isotherm, kinetic modeling and mechanism of 2,4,6-trichlorophenol on coconut husk-based activated carbon. Chemical Engineering Journal, 144(2), 235–244. https://doi.org/10.1016/j.cej.2008.01.028

Hua, M., Zhang, S., Pan, B., Zhang, W., Lv, L., & Zhang, Q. (2012). Heavy metal removal from water/wastewater by nanosized metal oxides: A review. Journal of Hazardous Materials, 211–212, 317–331. https://doi.org/10.1016/j.jhazmat.2011.10.016

Huang, X. H., Tu, J. P., Zhang, C. Q., Chen, X. T., Yuan, Y. F., & Wu, H. M. (2007). Spherical NiO-C Composite for Anode Material of Lithium Ion Batteries, 52, 4177–4181. https://doi.org/10.1016/j.electacta.2006.11.034

Indhu, S., & Muthukumaran, K. (2018). Removal and recovery of reactive yellow 84 dye from wastewater and regeneration of functionalised Borassus flabellifer activated carbon. Journal of Environmental Chemical Engineering, 6(2), 3111–3121. https://doi.org/10.1016/j.jece.2018.04.027

Inoue, M., & Hirasawa, I. (2013). The relationship between crystal morphology and XRD peak intensity. Journal of Crystal Growth, 380, 169–175. https://doi.org/10.1016/j.jcrysgro.2013.06.017

Jaiswal, A., Mani, R., Banerjee, S., Gautam, R. K., & Chattopadhyaya, M. C. (2015). Synthesis of novel nano-layered double hydroxide by ureda hydrolysis method and their application in removal of chromium(VI) from aqueous solution: Kinetic, thermodynamic and equilibrium studies. Journal of Molecular Liquids, 202, 52–61. https://doi.org/10.1016/j.molliq.2014.12.004

Jayaram, K., & Prasad, M. N. V. (2009). Removal of Pb(II) from aqueous solution by seed powder of Prosopis juliflora DC. Journal of Hazardous Materials, 169(1–3), 991–997. https://doi.org/10.1016/j.jhazmat.2009.04.048

Khalil HPSA, Yusra AFI, Bhat AH, Jawaid M (2010) Cell wall ultrastructure, anatomy, lignin distribution, and chemical composition of Malaysian cultivated kenaf fiber. 31, 113–121. https://doi.org/10.1016/j.indcrop.2009.09.008

Khandanlou, R., Ahmad, M. B., Masouni, H. R. F., Shameli, K., Basiri, M., & Kalantari, K. (2015). Rapid adsorption of copper(II) and lead(II) by rice straw/Fe3O4nanocomposite: Optimization, equilibrium isotherms, and adsorption kinetics study. PLoS ONE, 10(3), 1–19. https://doi.org/10.1371/journal.pone.0120264

Khozhaenko, E., Kovalev, V., Podkorytova, E., & Khotimchenko, M. (2016). Science of the total environment removal of the metal ions from aqueous solutions by nanoscaled low molecular pectin isolated from seagrass Phyllospadix iwatensis. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2016.01.108

Kloss, S., Zehetner, F., Dellantonio, A., Hamid, R., Ottner, F., Liedtke, V., … Soja, G. (2012). Characterization of slow pyrolysis biochars: Effects of Feedstocks and Pyrolysis Temperature on Biochar Properties. https://doi.org/10.2134/jeq2011.0070

Kosmulski, M. (2009). pH-dependent surface charging and points of zero charge. IV. Update and new approach. Journal of Colloid and Interface Science, 337, 439–448. https://doi.org/10.1016/j.jcis.2009.04.072

Li, Y., Li, W., Liu, Q., Meng, H., Lu, Y., & Li, C. (2018). Alkynyl carbon materials as novel and efficient sorbents for the adsorption of mercury(II) from wastewater. Journal of Environmental Sciences (china), 68(Chunxi Li), 169–176. https://doi.org/10.1016/j.jes.2016.12.016
Luzardo, F. H. M., Velasco, F. G., Correa, I. K. S., Silva, P. M. S., & Salay, L. C. (2017). Removal of lead ions from water using a resin of mimosa tannin and carbon nanotubes. *Environmental Technology and Innovation*, 7, 219–228. https://doi.org/10.1016/j.eti.2017.03.002

Mahmoud, A. M., Ibrahim, F. A., Shaban, S. A., & Youssef, N. A. (2015). Adsorption of heavy metal ion from aqueous solution by nickel oxide nano catalyst prepared by different methods. *Egyptian Journal of Petroleum*, 24(1), 27–35. https://doi.org/10.1016/j.ejpe.2015.02.003

Modwi, A., Khezami, L., Taha, K., Al-Duaij, O. K., & Houas, A. (2017). Fast and high efficiency adsorption of Pb(II) ions by Cu/ZnO composite. *Materials Letters*, 195(II), 41–44. https://doi.org/10.1016/j.matlet.2017.02.089

Mousa, S. M., Ammar, N. S., & Ibrahim, H. A. (2016). Removal of lead ions using hydroxyapatite nano-material prepared from phosphogypsum waste. *Journal of Saudi Chemical Society*, 20(3), 357–365. https://doi.org/10.1016/j.jscs.2014.12.006

Pallarés, J., González-cencerrado, A., & Arauzo, I. (2018). Biomass and bioenergy production and characterization of activated carbon from barley straw by physical activation with carbon dioxide and steam. *Biomass and Bioenergy*, 115(January), 64–73. https://doi.org/10.1016/j.biortech.2018.04.015

Patra, C., Shahnaz, T., Subbiah, S., & Narayanasamy, S. (2020). Comparative assessment of raw and acid-activated preparations of novel Pongamia pinnata shells for adsorption of hexavalent chromium from simulated wastewater. *Environmental Science and Pollution Research*, 27(13), 14836–14851. https://doi.org/10.1007/s11356-020-07979-y

Poinern, G. E., Brundavanam, R. K., Mondinos, N., & Jiang, Z. T. (2009). Synthesis and characterisation of nanohydroxyapatite using an ultrasound assisted method. *Ultrasonics Sonochimistry*, 16(4), 469–474. https://doi.org/10.1016/j.ultsonch.2009.01.007

Priya, N. S., Kamala, S. S. P., Anbarasu, V., Azhagan, S. A., & Saravanakumar, R. (2018). Characterization of CdS thin films and nanoparticles by a simple chemical bath technique. *Materials Letters*, 220, 161–164. https://doi.org/10.1016/j.matlet.2018.03.009

Saranya, N., Suganya, E., Narayanasamy, S., Sivaprakasam, S., Sivasubramanian, V., Pandian, S., & Selvaraj, R. (2020). 3-level Box-Behnken optimization of hexavalent chromium reduction by chromate resistant Trichoderma asperellum cells from simulated and industrial effluent. *Environmental Technology and Innovation*, 19, 101024. https://doi.org/10.1016/j.eti.2020.101024

Saravanakumar, R., Muthukumaran, K., & Selvvaraju, N. (2019). Enhanced Pb (II) ions removal by using magnetic NiO / biochar composite enhanced Pb (II) ions removal by using magnetic NiO / biochar composite. *Matr Res Express*, 6, 105504.

Saravanakumar, S. S., Kumaravel, A., Nagarajan, T., Sudhakar, P., & Baskaran, R. (2013). Characterization of a novel natural cellulose fiber from Prosopis juliflora bark. *Carbohydrate Polymers*, 92(2), 1928–1933. https://doi.org/10.1016/j.carbpol.2012.11.064

Sdiri, A., & Higashi, T. (2013). Simultaneous removal of heavy metals from aqueous solution by natural limestones. *Applied Water Science*, 3(1), 29–39. https://doi.org/10.1007/s13201-012-0054-1

Selvaraju, G., Kartini, N., & Bakar, A. (2018). Eco-friendly activated carbon from artocarpus integer bio-waste by. *Journal of the Taiwan Institute of Chemical Engineers*, 1–13. https://doi.org/10.1016/j.jtice.2018.08.011

Shackleton, R. T., Le Maitre, D. C., Van Wilgen, B. W., & Richardson, D. M. (2015). The impact of invasive alien Prosopis species (mesquite) on native plants in different environments in South Africa. *South African Journal of Botany*, 97, 25–31. https://doi.org/10.1016/j.sajb.2014.12.008

Shahnaz, P., Subbiah, S., & Narayanasamy, S. (2020). Comparative assessment of raw and acid-activated preparations of novel Pongamia pinnata shells for adsorption of hexavalent chromium from simulated wastewater. *Environmental Science and Pollution Research*, 27(13), 14836–14851. https://doi.org/10.1007/s11356-020-07979-y

Shahnaz, T., Vishnu Priyan, V., Pandian, S., & Narayanasamy, S. (2021). Use of nanocellulose extracted from grass for adsorption abatement of Ciprofloxacin and Diclofenac removal with phyto, and fish toxicity studies. *Environmental Pollution*, 268, 115494. https://doi.org/10.1016/j.envpol.2020.115494

Shahene, S. M., Niazi, N. K., Hassan, N. E. E., Bibi, I., Wang, H., Tsang, D. C. W., & Rinklebe, J. (2018). Wood-based biochar for the removal of potentially toxic elements in water and wastewater: A critical review. *International Materials Reviews*, 1–32. https://doi.org/10.1080/0950608.2018.1473096

Shen, D. K., & Gu, S. (2009). Bioresource Technology The mechanism for thermal decomposition of cellulose and its main products. *Bioresource Technology*, 100(24), 6496–6504. https://doi.org/10.1016/j.biortech.2009.06.095

Shi, Q., Terracciano, A., Zhao, Y., Wei, C., Christodoulatos, C., & Meng, X. (2019). Evaluation of metal oxides and activated carbon for lead removal: Kinetics, isotherms, column tests, and the role of co-existing ions. *Science of the Total Environment*, 648, 176–183. https://doi.org/10.1016/j.scitotenv.2018.08.013

Su, Q., Pan, B., Pan, B., Zhang, Q., Zhang, W., Lv, L., & Wang, X. (2009). Fabrication of polymer-supported nanosized hydrous manganese dioxide (HMO) for enhanced lead removal from waters. *Science of the Total Environment*, 407, 5471–5477. https://doi.org/10.1016/j.scitotenv.2009.06.045

Sud, D., Mahajan, G., & Kaur, M. P. (2008). Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions - A review. *Bioresource Technology*, 99(14), 6017–6027. https://doi.org/10.1016/j.biortech.2007.11.064

Suresh, S., Jayamoorthy, K., & Karthikeyan, S. (2016). Fluorescence sensing of potential NLO material by bunsenite NiO nanoflakes: Room temperature magnetic studies. *Sensors & Actuators: B. Chemical*. https://doi.org/10.1016/j.snb.2016.03.149

Tang, N., Niu, C., Li, X., Liang, C., Guo, H., Lin, L., & Zeng, G. (2018). Efficient removal of Cd2+ and Pb2+ from aqueous solution with amino- and thiol-functionalized activated carbon: Isotherm and kinetics modeling. *Science*
of the Total Environment, 635, 1331–1344. https://doi.org/10.1016/j.scitotenv.2018.04.236

Tang, Q., Shi, C., Shi, W., Huang, X., Ye, Y., Jiang, W., & Li, D. (2019). Preferable phosphate removal by nano-La(III) hydroxides modified mesoporous rice husk biochars: Role of the host pore structure and point of zero charge. Science of the Total Environment, 662, 511–520. https://doi.org/10.1016/j.scitotenv.2019.01.159

Wan Ngah, W. S., & Hanafiah, M. A. K. M. (2008). Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: A review. Bioresource Technology, 99(10), 3935–3948. https://doi.org/10.1016/j.biortech.2007.06.011

Wu, M. S., & Hsieh, H. H. (2008). Nickel oxide/hydroxide nanoplatelets synthesized by chemical precipitation for electrochemical capacitors. Electrochimica Acta, 53(8), 3427–3435. https://doi.org/10.1016/j.electacta.2007.12.005

Xiang, L., Deng, X. Y., & Jin, Y. (2002). Experimental study on synthesis of NiO nano-particles. Scripta Materialia, 47(4), 219–224. https://doi.org/10.1016/S1359-6462(02)00108-2

Xing, W., Li, F., Yan, Z. F., & Lu, G. Q. (2004). Synthesis and electrochemical properties of mesoporous nickel oxide. Journal of Power Sources, 134(2), 324–330. https://doi.org/10.1016/j.jpowsour.2004.03.038

Yang, X., Yi, H., Tang, X., Zhao, S., Yang, Z., Ma, Y., & Cui, X. (2018). Behaviors and kinetics of toluene adsorption-desorption on activated carbons with varying pore structure. Journal of Environmental Sciences (china), 67, 104–114. https://doi.org/10.1016/j.jes.2017.06.032

Yao, S., Sun, S., Wang, S., & Shi, Z. (2016). Adsorptive removal of lead ion from aqueous solution by activated carbon/iron oxide magnetic composite. Indian Journal of Chemical Technology, 23(2), 146–152.

Yuan, G. H., Jiang, Z. H., Aramata, A., & Gao, Y. Z. (2005). Electrochemical behavior of activated-carbon capacitor material loaded with nickel oxide. Carbon, 43(14), 2913–2917. https://doi.org/10.1016/j.carbon.2005.06.027

Zachariades, C., Hoffmann, J. H., & Roberts, A. P. (2011). Biological control of mesquite (Prosopis Species) (Fabaceae) in South Africa. African Entomology, 19(2), 402–415. https://doi.org/10.4001/003.019.0230

Zhang, X., Lin, Q., Luo, S., Ruan, K., & Peng, K. (2018). Preparation of novel oxidized mesoporous carbon with excellent adsorption performance for removal of malachite green and lead ion. Applied Surface Science, 442, 322–331. https://doi.org/10.1016/j.apsusc.2018.02.148

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.