Synthesis and *in vitro* Leishmania promastigote growth inhibition efficacy of novel 4(3\(H\))-quinazolinone derivatives

Greg L. Ralph,\(^a\) Nonkululeko H. Zuma,\(^a\) Janine Aucamp,\(^b\) and David D. N’Da\(^a\)\(^*\)

\(^a\) Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa

\(^b\) Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa

Email: david.nda@nwu.ac.za

Abstract

Molecular hybridization is an increasingly important strategy in rational drug design and development. A series of novel quinazolinone-triazole hybrids have been synthesized and their antileishmanial activity investigated. Derivatives \((E)-3\)-{(prop-2-yn-1-yl)-2-styrylquinazolin-4(3\(H\))-one, and \((E)-3\)-{[1-(4-bromobenzyl)-1H-1,2,3-triazol-4-yl]methyl}-2-styrylquinazolin-4(3\(H\))-one were observed to moderately inhibit the growth of promastigotes. An overall lack of significant antileishmanial activity may be attributable to the poor aqueous solubility of the derivatives. Future research endeavors will focus on potential remediation by investigating the anchoring of hydrophilic moieties to the quinazolinone scaffold.

Keywords: Leishmaniasis, promastigote, molecular hybridization, quinazolinones, 1,2,3-triazoles

DOI: https://doi.org/10.24820/ark.5550190.p011.312
Introduction

Leishmaniasis is a parasitic disease characterized by infection with an obligate intracellular parasite of the genus *Leishmania*.\(^1\) The disease is primarily transmitted by the bite of an infected female phlebotomine sandfly.\(^2\) Leishmaniasis is one of several infectious diseases of the tropics and sub-tropics that constitute a steadily increasing public health burden. This is the result of a variety of factors, including, *inter alia*, the co-infection with human immunodeficiency virus (HIV)\(^3\), and the migration of immigrants and refugees from areas of known endemicity.\(^4\) Leishmaniasis is classified as a neglected tropical disease (NTD) due its low visibility amongst the public of high-income countries, and a paucity of research investment on the part of the pharmaceutical sector and policy makers.\(^5\)

Leishmaniasis is endemic to ninety-eight countries and territories, where an estimated one billion people are at risk of contracting this disease.\(^6\) There are over twenty *Leishmania* species,\(^7\) of which only three are predominantly responsible for the three clinical forms of the disease in humans.\(^8\) These include: (i) *L. major*, which causes the most common form of the disease, i.e., cutaneous leishmaniasis (CL), which is seen to cause the development of ulcers and skin lesions across exposed areas of the body;\(^9\) (ii) *L. donovani*, responsible for visceral leishmaniasis (VL), the most lethal form of the disease with a 95% fatality rate if left untreated, and which is typified by symptoms such as fever, weight loss, fatigue, and an enlarged spleen and liver;\(^10\,11\) and (iii) *L. braziliensis*, which causes mucocutaneous leishmaniasis (MCL), and is characterized by a partial or complete loss of the mucous membranes in the mouth, nose and throat.\(^12\,13\) In 2019 alone, around 600,000 - 1 million new cases of cutaneous leishmaniasis, and some 50,000 - 90,000 new cases of the visceral form of the disease, were reported to have occurred worldwide.\(^14\)

The treatment of human leishmaniasis is limited to the chemotherapeutic use of only a handful of drugs, which include the pentavalent (Sb\(^V\)) antimonials (sodium stibogluconate and meglumine antimoniate), amphotericin B, miltefosine, pentamidine, and paromomycin (Figure 1). The use of these drugs, however, is negatively associated with treatment failure, the emergence of drug-resistant pathogenic strains in both experimental and clinical settings, as well as the occurrence of toxicity and adverse events.\(^15\) Altogether, these shortcomings serve to stress the need for new and effective leishmanicidal agents.

The development of novel chemical entities with entirely new mechanism(s) of action is expensive, time consuming and fraught with risk.\(^16\) It is, therefore, desirable, instead, to make use of drug development strategies that exploit structures with known biological activities. One such a strategy is molecular hybridization, a strategy in rational drug design and development wherein two or more pharmacophoric subunits, derived from structures with known biological activity, are joined into one single structure.\(^17\) The resulting hybrid is expected to have greater potency, efficacy and affinity compared to the respective parent molecules. The strategy has been utilized with great success to generate promising chemotherapeutic agents to prevent or treat tropical parasitic diseases, such as malaria,\(^18\) trypanosomiasis and leishmaniasis.\(^19\)

Quinazolinones are a class of heterocycles comprised of fused nitrogen-containing rings that occur naturally in the form of some 200 alkaloids in plants,\(^20\) as well as metabolites derived from microorganisms, such as *Bacillus cereus*.\(^21\) Synthetic, as well as semi-synthetic, quinazolinones are also extant in the scientific literature.\(^22\) This class of compounds has attracted considerable attention in medicinal chemistry owing to the ease of its synthesis, and the fact that it elicits a range of biological activities, including, *inter alia*, antimalarial,\(^23\) antimycobacterial\(^24\) and antileishmanial\(^25\) activity.

1,2,3-Triazoles hold a significant importance in drug discovery for their ability to evoke a myriad of biological activities, chief among these being their antipROTOzoal activities against the pathogens of diseases such as malaria,\(^26\) leishmaniasis\(^27\) and trypanosomiasis.\(^28\) They are readily synthesized by Huisgen
cycloaddition23 or copper-catalyzed alkyn-azole cycloaddition (CuAAC) reactions24 between terminal alkynes and azides.

![Chemical structures](image)

Figure 1. Clinical antileishmanial drugs.

In this study, a series of novel quinazolinone-triazole hybrids were synthesized, using a variety of synthetic routes, and their cytotoxicity profiles, as well as their ability to inhibit the growth of *Leishmania* promastigotes, were assessed *in vitro*. We, herein, report the syntheses and biological properties of these hybrids.

Results and Discussion

Chemistry

A series of fourteen quinazolinone derivatives were synthesized using a variety of synthetic methods. The compounds were divided into three distinct sub-series, namely 2-(4-substituted-styryl)-4(3\textit{H})-quinazolinones (\textit{1a,b}), 3-propyl-2-(4-substituted-styryl)-4(3\textit{H})-quinazolinones (\textit{2a,b}), and 1\textit{H}-1,2,3-triazole-4(3\textit{H})-quinazolinones (\textit{4a-j}), as shown in Table 1. The entirety of the synthetic process is illustrated in Scheme 1.

First, the 2-(4-substituted-styryl)-4(3\textit{H})-quinazolinones (\textit{1a,b}) were synthesized in a two-step, tandem one-pot process using an established method.25 Commercially-available isatoic anhydride was subjected to ring-opening by ammonium acetate (\textit{NH}_4\textit{Ac}) to produce anthranilamide, following the loss of carbon dioxide. The *in-situ* cyclization with triethyl orthoacetate (\textit{CH}_3\textit{C(OEt)}\textsubscript{3}) at 120 °C for 6-8 h generated the 2-methyl-4(3\textit{H})-quinazolinone intermediate. Condensation of this intermediate with a substituted benzaldehyde, again at 120 °C for 6-8 h, yielded \textit{1a} (60%) and \textit{b} (50%) after purification by precipitation in \textit{H}_2\textit{O}.
Scheme 1. Multi-step synthesis of quinazolinone-triazole hybrids. Reagents and conditions: i) NH₄OAc (3.78 g, 1 eq.), CH₃C(OEt)₃ (1 eq.), 120 °C, 6-8 h then ii) benzaldehyde/p-methoxy benzaldehyde (1 eq.), 120 °C, 6-8 h (ref. 25); iii) 1a,b (1 eq.), K₂CO₃ (12 eq.), DMF, PB (1.2 eq.), r.t, 15 min - 48 h (ref. 26); iv) NaN₃ (1.1 eq.), DMSO, r.t, 10-12 h (ref. 27); v) 2a,b (1 eq.), DMSO-H₂O (4:1), β-CD (0.07 eq.), Na L-ascorbate (0.3 eq.), CuSO₄ 5H₂O (0.1 eq.), r.t, 48-72 h (ref. 27).

Second, the 3-propyl-2-(4-substituted styryl)-4(3H)-quinazolinones (2a,b) were prepared by employing a literature method.²⁶ This involved N-alkylation of the quinazolinone through a nucleophilic substitution (SN₂) reaction between 1a,b and propargyl bromide at the N-3 position of the quinazolinone moiety. The procedure was carried out at room temperature for a duration of 15 min (2b) to 48 h (2a) in the presence of potassium carbonate, to produce the target compounds in moderate yields, 2a (44%) and 2b (40%), after purification by recrystallization in EtOH or acetone.

Third, the quinazolinone-triazole hybrids (4a-j) were produced using methods outlined in the literature.²⁷ Benzyl azides (3a-e) were synthesized through nucleophilic substitution reactions (SN₂) between commercial benzyl bromides and sodium azide (NaN₃). The benzyl azides obtained were oil-like liquids that were deemed suitable for use in subsequent reactions without further purification. These organic azides were then subjected to click chemistry with propargyl quinazolinones (2a,b) in the presence of sodium L-ascorbate and β-cyclodextrin (CD), acting as reducing agent and phase-transfer catalyst, respectively, for 48-72 h to yield 4a-j in low to excellent yields (30 - 89%) after purification by trituration with both EtOH and distilled H₂O.

Successful syntheses of all compounds were confirmed by routine molecular characterization techniques, including infrared (IR), nuclear magnetic resonance (NMR) and high-resolution mass spectroscopy (HRMS). The ¹H and ¹³C NMR spectra were inspected in order to identify peaks that are characteristic of quinazolinone, styryl and triazole moieties. The IR spectra were similarly investigated for the presence of characteristic absorptions that would allow for the identification of functional groups and substituents.
The 1H spectra of compounds 1a,b bore a characteristic singlet peak around δ 12.00 ppm, indicative of proton H-3 of the amide of quinazolinone ring. The disappearance of this peak in the spectra of compounds 2a,b was confirmative of successful propargylation, further corroborated by the appearance of peaks that were indicative of propargyl protons. These included the doublet (d) of methylene CH$_2$, H-1'' (ca. 5.20 ppm) and the triplet (t) of alkyne proton H-3'' (ca. δ 3.24 ppm), respectively. Long-range coupling, 4J 2.3-2.4 Hz, typical between alkyne protons was seen to occur between H-3'' and H-1'' in the spectra of 2a,b. The formation of the propargyl moiety was also indicated by the appearance of three additional peaks in the 13C spectra of 2a,b. These peaks were representative of the propargyl carbons C-1'' (ca. δ 31.7 ppm), C-2'' (ca. δ 79.0 ppm) and C-3'' (ca. δ 75.0 ppm).

The appearance of two doublets (d) in the 1H spectra of all quinazolinones provided evidence of the vinylic protons H-2' (δ 8.00-7.85 ppm) and H-1' (δ 7.63-6.86 ppm) of the styryl moiety.

The literature reports 3J$_{H-H} 12-18$ Hz values for vinylic hydrogens in trans-configuration, while those of the cis-configuration have 3J$_{H-H}$ in the 0-12 Hz range. The 3J$_{H-1',H-2'}$ values of the vinylic protons in the styryl moiety were found in the 15 - 16 Hz range, which suggested that the styryl moiety had occurred as the trans-isomer in all the quinazolinones synthesized. The J values of the proton H-5 (in the vicinity of the carbonyl) indicated o-coupling with proton H-6 (3J$_{H-5,H-6}$ 6.7-7.9 Hz) and m-coupling with proton H-7 (4J$_{H-5,H-7}$ 0.8-1.3 Hz).

The spectra of intermediates 3a-e commonly had the singlets assigned to the resonance of methylene (CH$_2$) protons in the δ 4.50-4.30 ppm region, and associated carbon in δ 54.9-53.5 ppm of the benzyl moiety. Additionally, the peaks resulting from the resonance of the aromatic protons were present in the spectra as doublets (d) or triplet (t) with an o-coupling (3J$_{H-3,H-4}$ 7.4-8.5 Hz) among them. For 3c, however, due to the fluoro-coupling, the signals of the protons adjacent to the fluorine resulted in a doublet of doublet (dd) with J 8.5, 5.3 Hz (o-coupling 3J$_{H-H}$ 8.5 and F-coupling 3J$_{H-F}$ 5.3 Hz).

The successful formation of the 1,2,3-triazole moiety was confirmed with the disappearance of the aforementioned propargyl peaks and the appearance of singlets representative of the triazolyl proton (H-5'') (δ 8.28 - 8.05 ppm) and carbon (C-5'') (δ 124.2-123.1 ppm) in the spectra of 4a-j. Another signal in the 13C spectra of 4a-j that occurred in the region of δ 134.81 - 132.37 ppm, was indicative of the triazolyl carbon C-4''. This ring was also flanked on either side by methylene bridges bearing protons H-6''/H-7'' and carbons C-6''/C-7''. The peaks associated with these tethers occurred in the regions of δ 5.73-5.57 ppm (H-7''), δ 5.63-5.48 ppm (H-6''), δ 55.32-51.84 ppm (C-7'') and δ 38.16 - 37.87 ppm (C-6'').

Further confirmation of the structures of compounds 1b, 2b and 4f-j was indicated by the presence of the singlets representative of the methoxy (OMe) protons (ca. δ 3.80 ppm) and carbon in the δ 55.0-51.6 ppm in their 1H and 13C spectra. Additional evidence of the structure of hybrid 4j was provided by the presence of the singlets attributed to the methyl (Me) protons, and the associated carbon at δ 2.22 and 20.6 ppm, in their respective NMR spectra. These peaks were also seen in the spectra of 4e at δ 2.25 for the methyl protons and at δ 20.1 ppm for the carbon atom.

Characteristic absorptions for carbonyl functional groups (C=O) (1672-1654 cm$^{-1}$, C=O stretching) and N-H portion of the amide (3186-3182 cm$^{-1}$, N-H stretching) were seen in the IR spectra of 1a,b. Additionally, absorptions were observed for the propargyl (3235-3209 cm$^{-1}$, \equivC-H stretching and 2115-2115 cm$^{-1}$, C=C stretching) functional group in the IR spectra of 2a,b. Other absorptions, specifically those pertaining to the C=N (1642-1631 cm$^{-1}$, C=N stretching) functionality, could be seen in the spectra of most quinazolinones. The absorption resulting from N=N=N stretching of the azido (N$_3$) functional group was present in the spectra of the intermediates 3a-e as a strong band in the 2100-2090 cm$^{-1}$ region. The disappearance of this band from the spectra of hybrids 4a-j is another telltale sign of the successful click chemistry.
The C=N stretching absorptions of compounds 4a, 4h and 4i, however, were not visible due to the overlapping with those of their respective carbonyl (C=O) functional groups. The C-H bending absorptions of the methylene bridges in compounds 2a,b and 4a-j occurred between 1473-1469 cm⁻¹. Nitro (NO₂) and alkyl aryl ether functional groups were observed to absorb ca. 1519 cm⁻¹ (N-O stretching), and 1256-1245 cm⁻¹ (C-O stretching), respectively. Absorptions specific to the 1,2,3-triazole moiety were also observed; these included alkene =C-H stretching in the region of 3140-3108 cm⁻¹ and C-N stretching in the 1348-1331 cm⁻¹ range.

Physicochemical properties

The drug-likeness of the compounds was determined using Lipinski’s rule of five, an index that is often adopted to predict whether a compound may be orally active in humans.²⁹ Due consideration was given to oral activity as miltefosine is currently the only antileishmanial drug that is administered orally, and its use is threatened by toxicity and pathogenic resistance. This makes research into potentially orally active agents an imperative necessity. Thus, physicochemical properties, such as lipophilicity and aqueous solubility of the quinazolinone-triazole hybrids and their intermediates, were elaborated on and discussed as impactors of Lipinski’s index (Table 1).

Table 1. Physicochemical properties and Lipinski’s Rule of Five results of all synthesized quinazolinone derivatives as predicted by the SwissADME web tool, http://www.swissadme.ch

Compd.	MW (g/mol)	cLogP	LogS_a	HBD	HBA	Lipinski’s violation	Drug-like /orally active^b
1a	248.28	3.16	-3.92	1	2	0	Yes
1b	278.31	3.13	-3.97	1	3	0	Yes
2a	286.33	3.44	-3.89	0	2	0	Yes
2b	316.35	3.43	-3.95	0	3	0	Yes
4a	464.48	3.29	-5.15	0	6	0	Yes
4b	498.37	4.53	-6.00	0	4	0	Yes
4c	437.47	4.24	-5.25	0	5	0	Yes
4d	419.48	3.89	-5.09	0	4	0	Yes
4e	433.50	4.28	-5.40	0	4	0	Yes
4f	494.50	3.23	-5.22	0	7	0	Yes
4g	528.40	4.63	-6.07	0	5	1	Yes
4h	467.49	4.31	-5.32	0	6	0	Yes
4i	449.50	3.91	-5.16	0	5	0	Yes
4j	463.53	4.35	-5.46	0	5	0	Yes

^a Calculated logP (consensus logP). ^b Predicted aqueous solubility, where log S is the logarithm of the amount of compound (in moles) able to dissolve in a liter of water. ^c ESOL = estimated aqueous solubility, calculated using a topological method with log S scale: insoluble < -10 < poorly < -6 < moderately < -4 < soluble < -2 very soluble < 0 or more - highly soluble. ^d Calculated using a topological method. ^e Number of hydrogen bond donors (NH and OH groups). ^f Number of hydrogen bond acceptors (nitrogen and oxygen atoms). ^g Determined with reference to Lipinski’s rule of five (MW ≤ 500 g/mol; cLogP ≤ 5; HBD ≤ 5; HBA ≤ 10; no more than one violation allowed).²⁹ All values in this table were calculated using the SwissADME web tool, http://www.swissadme.ch²³²
As can be seen in Table 1, the synthesized compounds had the physicochemical properties well within the target ranges as set by Lipinski et al.29 With the exception of 4g, none of the compounds violate Lipinski's rules, predicting these quinazolinones to be drug-like in nature, suitable for oral administration, and well absorbed in the gastrointestinal tract through passive diffusion.

Biological activity

A single-point screening of all synthesized compounds, in 100 μM concentration experiments, was performed to assess the antileishmanial activity against three strains of Leishmania promastigotes, with amphotericin B (AMB) serving as the reference drug. These strains were \textit{L. donovani} strains (1S and 9515) and \textit{L. major} strain IR-173. The \textit{Leishmania} spp. were selected in order to determine the specificity of the synthesized compounds against \textit{L. major} parasites that cause CL, and \textit{L. donovani} parasites that communicate the more serious and debilitating VL.33

In this study, the quinazolinone derivatives were screened against the \textit{L.} promastigotes in a two-stage process, involving the determination of the parasite growth inhibition percentage at the single (100 μM) concentration, followed by the activity assessment through minimum inhibitory concentration (IC\textsubscript{50}) determination, for those compounds that fulfilled the growth inhibition criteria to be screened further for anti-promastigote activity. The cytotoxicity profiles of the quinazolinones were evaluated, using Vero cells with emetine (EM), known for its high toxicity, as a positive control. The biological results are presented in Table 2.

Table 2. \textit{In vitro} anti-promastigote growth inhibition efficacy and cytotoxicity of quinazolinone derivatives at 100 μM concentration

Compd.	Growth inhibition (%)a	Cytotoxicity, IC\textsubscript{50} ± SD (μM)b		
	\textit{L. donovani 1S}	\textit{L. donovani 9515}	\textit{L. major} IR-173	Veroc
1a	28	2	13	>100
1b	0	21	14	>100
2a	58	44	24	>100
2b	0	0	0	>100
4a	0	0	9	>100
4b	22	34	48	>100
4c	0	0	1	>100
4d	0	13	0	>100
4e	0	15	26	>100
4f	0	0	2	>100
4g	0	0	3	>100
4h	0	0	0	>100
4i	0	0	20	>100
4j	0	0	8	>100
AMB	100	100	100	57.8 ± 3.2
EM	-	-	-	0.05 ± 0.004

Expressed as a mean percentage from duplicate biological experiments. b represented as the mean ± the standard deviation (SD) from the triplicate biological experiments. c African green monkey kidney epithelial cells. AMB: Amphotericin B deoxycholate; EM: Emetine dihydrochloride hydrate.
Only three compounds, 1a, 2a and 4b, were observed to possess activity against the *L. donovani* 1S strain. Substitution of a propargyl moiety at N-3 position of 1a (27%) effectively doubled the antileishmanial activity against the 1S strain, as evidenced by the activity of 2a (58%). The antileishmanial activity of 4b (22%) against *L. donovani* 1S was structure specific, as no other hybrid had activity against this strain. None of the compounds with a methoxy (CH$_2$O) substituent had activity against this strain.

The replacement of H (R$_1$) in 1a (2%) with the electron-donating CH$_2$O group was seen to have the effect of improving its activity against the *L. donovani* 9515 strain, as demonstrated by the markedly increased parasite growth-inhibitory activity of compound 1b (21%). Conversely, unsubstituted counterparts, i.e., 2a, 4b, 4d and 4e, were active against *L. donovani* 9515 promastigotes. The activities of 4b, 4d and 4e appeared to be structure specific, as no observable structure-activity relationship could be discerned between the net electronic effect (electron-withdrawing (EW) or electron-donating, (ED)] of their R$_2$ substituents and the ability to inhibit the growth of *L. donovani* 9515 promastigotes.

Amongst compounds 4a-j, the greatest inhibition of *L. donovani* 9515 promastigote growth was seen to be elicited by 4b (34%) that had no R$_1$ substituent and possessed a bromine as R$_2$ substituent. Overall, compound 2a (43%) was observed to be the most active quinazolinone against *L. donovani* 9515. *L. major* promastigotes appeared to be more susceptible to the synthesized compounds than were the *L. donovani* parasites. Most of the compounds were observed to exhibit some degree of growth inhibitory activity against *L. major* IR-173 strain promastigotes, with the exception of 2b, 4d and 4h. Overall, the greatest inhibitor of *L. major* IR-173 promastigote growth was observed to be hybrid 4b (47%).

The literature suggested a 70% parasite growth inhibition threshold at 10 μM for antileishmanial IC$_{50}$ determinations. We were compelled to use 100 μM in order to identify qualifying compounds as 10 μM screening produced nearly no inhibition. As no synthesized compounds had reached the 70% inhibition threshold, we subsequently also lowered, and arbitrarily set, a new threshold at 25% to allow for more quinazolinones qualifying for IC$_{50}$ determinations. Thus, the intermediate compounds 1b and 2a, and the hybrids 4b and 4e, all with parasite growth inhibition higher than 25% regardless of the strain, were selected for IC$_{50}$ determinations. They were also non-cytotoxic to Vero cells (IC$_{50}$ > 100 μM). They were also found to be inactive against all three *Leishmania* promastigotes strains with IC$_{50}$ >100 μM.

All synthesized compounds were screened as suspensions in aqueous growth medium. The poor aqueous solubility may have, in part, contributed to the lack of antileishmanial activity and cytotoxicity.

Conclusions

A small library of quinazolinone derivatives were synthesized in low to good yields (30 - 89%) using a variety of synthetic methods, including cyclization, condensation, nucleophilic (SN2) substitution and copper-catalyzed alkyne-azole cycloaddition (CuAAC) reactions. The in vitro antileishmanial activity and cytotoxicity of the compounds were determined against three strains of *Leishmania* promastigotes and Vero cells, respectively.

The compounds were nontoxic to the mammalian cells, but also had only moderate-to-no antileishmanial activities despite meeting predicted drug-like criteria. The complete lack of cytotoxicity and the inability to adequately inhibit promastigote growth may be attributed to the poor aqueous solubility of the compounds. Two derivatives stood out, however, as they were observed to possess moderate antileishmanial activity. These were 2a featuring styryl and propargyl moieties with 43 - 58% growth inhibition of *L. donovani*, and hybrid 4b containing 4-methoxystyryl and propargyl moieties with 48% growth inhibition of *L. major* promastigotes. No conclusive structure-activity relationship could be deduced from this study. Future studies...
may include the investigation of more water-soluble derivatives in order to address the antileishmanial inactivity issue encountered in the study.

Experimental Section

General. All reagents were purchased from Sigma-Aldrich (Johannesburg, South Africa). Ammonium acetate and N,N-dimethylformamide (DMF) were purchased from Merck (Johannesburg, South Africa). All other solvents, and magnesium sulphate, were purchased from Associated Chemical Enterprises Acetone (Johannesburg, South Africa). All chemicals and reagents were reagent/analytical grade and were used without further purification.

The 1H and 13C NMR spectra of all 14 compounds were recorded on a Bruker Avance III 600 spectrometer at frequencies of 600 MHz (1H NMR) and 150.913 (13C NMR), respectively, in deuterated dimethyl sulfoxide (DMSO-d_6) at room temperature (~25 °C) or, alternatively, 80 °C, where indicated. Chemical shifts in spectra obtained were expressed and reported in parts per million δ (ppm), with the residual protons of the deuterated solvents serving as the reference. J (coupling constant) values were expressed in Hertz (Hz). Abbreviations used to indicate splitting patterns were as follows: singlet (s), doublet (d), doublet of doublets (dd), triplet (t), triplet of doublets (td), and multiplet (m).

HRMS spectra were recorded on a micrOTOF-Q II mass spectrometer, using an APCI source type heated at 200 °C. The software used to record the mass spectra was the Bruker Compass DataAnalysis 4.0 software package. Scans were performed from 50-1600 m/z at a capillary voltage of 4500 volts (V), an end-plate-offset voltage of -500 V, with the nebulizer set at 1.6 Bar, and a collision cell radio frequency (RF) voltage of 100 volts peak to peak (Vpp).

High-performance liquid chromatography (HPLC) was carried out on all compounds to determine their purity. Full description of the process can be found in the Supplementary Material file.

Infrared (IR) spectra were recorded on a Bruker Alpha-P FTIR instrument system.

Thin-layer chromatography (TLC) was performed using aluminium-backed silica gel plates from Merck (Johannesburg, South Africa) with a mean pore size of 60 Å with added fluorescent indicator (F254). TLC plates were visualized at 254 nm.

Melting points of all compounds were performed on a Büchi melting point B-545 apparatus and are uncorrected.

Synthesis of 2-(4-substituted styryl)-4(3H)-quinazolinones 1a,b

Compounds 1a,b were synthesized through a known method reported by Kumar et al.25 and illustrated in Scheme 1 (i - ii). The method was carried out as follows: To a mixture of isatoic anhydride (8.16 g, 0.05 mol) and ammonium acetate (3.85 g, 0.05 mol), in a flask outfitted with a magnetic stirrer, was added an equimolar amount of triethyl orthoacetate (8.11 g, 0.05 mol). The mixture was refluxed for 6 - 8 h. Afterwards, the appropriate para-substituted benzaldehyde (0.05 mol) was added and refluxing was continued for another 6 - 8 h until TLC monitoring showed completion of the reaction. The content of the flask was then suspended in a suitable amount of EtOH (25 mL), boiled and filtered. The crude residue was further purified by precipitation. It was heated ca. 150 °C in DMF (100 mL) with stirring, and solubilized until a clear solution was obtained. The solution was then slowly poured into H$_2$O (100 mL) with stirring at room temperature. This resulted in the precipitation of compounds 1a,b which were filtered off in a sintered glass funnel, washed with H$_2$O (3 x 150 mL) and dried in oven at 90 °C.
(E)-2-Styrylquinazolin-4(3H)-one (1a). The reaction involving benzaldehyde (5.31 g, 0.05 mol) resulted in 1a as a white powder (7.3 g, 0.03 mol, 60%). m.p. 254.5-254.9 °C (precipitation in H₂O) (Lit., 35 251-253 °C).

![Chemical Structure of 1a]

(E)-2-(4-Methoxystyryl)quinazolin-4(3H)-one (1b). The reaction involving 4-anisaldehyde (6.81 g, 0.05 mol) provided 1b as light-yellow powder (6.8 g, 0.03 mol, 50%). m.p. 285.0-285.5 °C (precipitation in H₂O) (Lit., 35 276-278 °C). There are significant differences between our data and that provided in the literature.

IR ν max (cm⁻¹): 3182 (N-H) (w), 1671 (C=O) (s), 1642 (C=N) (m). ¹H NMR (600 MHz, DMSO-d₆, 80 °C) δ (ppm): 11.98 (s, 1H, H-3), 8.12 (dd, J 7.5, 1.3 Hz, 1H, H-5), 7.91 (d, J 16.1 Hz, 1H, H-2'), 7.78 (td, J 8.3, 1.3 Hz, 1H, H-7), 7.65 (d, J 8.3 Hz, 1H, H-8), 7.61 (d, J 8.7 Hz, 2H, H-3'), 7.45 (t, J 7.5 Hz, 1H, H-6), 7.03 (d, J 8.7 Hz, 2H, H-4'), 6.86 (d, J 16.1 Hz, 1H, H-1'), 3.84 (s, 3H, H-6'). ¹³C NMR (151 MHz, DMSO-d₆, 80 °C) δ (ppm): 161.3 (C-4), 160.3 (C-5'), 151.4 (C-2), 148.7 (C-8a), 137.6 (C-2'), 133.8 (C-7), 128.7 (C-3'), 127.5 (C-2a'), 126.5 (C-6), 125.4 (C-8), 125.3 (C-5), 120.7 (C-4a), 118.48 (C-1'), 114.2 (C-4'), 55.0 (C-6'). HRMS-APCI m/z [M+H]+ calcd for C₁₁H₁₄N₂O₂⁺ 279.1134, found 279.1117. Purity: 96%.

![Chemical Structure of 1b]

Synthesis of 3-propynyl-2-(4-substituted styryl)-4(3H)-quinazolinones 2a,b
Compounds 2a-b were synthesized using a literature method²⁶ as illustrated in Scheme 1 (iii). The synthesis is described as follows: Propargyl bromide (2.86 g, 0.024 mol) was added to a suspension of the appropriate intermediate 2-(4-substituted styryl)-4(3H)-quinazolinone, 1a,b (0.02 mol) and potassium carbonate (33.17 g, 0.24 mol) in DMF (50 mL). The reaction mixture was allowed to stir at room temperature until TLC monitoring indicated complete disappearance of the intermediate (15 min - 48 h). The content of the flask was then poured into distilled water at room temperature and stirred until complete dissolution of the potassium carbonate. This results in the formation of precipitate that was filtered off, washed with distilled water (3 x 50 mL), thoroughly dried, and recrystallized from acetone or EtOH to afford the target compound.

(E)-3-(Prop-2-yn-1-yl)-2-styrylquinazolin-4(3H)-one (2a). The reaction involving (E)-2-Styrylquinazolin-4(3H)-one ³⁷, 1a (4.97 g, 0.02 mol) afforded 2a as light-yellow needle-shaped crystals (3.1 g, 0.01 mol, 44%). m.p. 181.3-82.3 °C (from acetone). IR ν max (cm⁻¹): 3209 (≡C-H) (s), 2115 (C=C) (w), 1665 (C=O) (s), 1633 (C=N) (m), 1470 (CH₂, C-H) (m). ¹H NMR (600 MHz, DMSO-d₆, 80 °C) δ (ppm): 8.17 (dd, J 7.9, 0.8 Hz, 1H, H-5), 8.00 (d, J 15.3 Hz, 1H, H-2'), 7.84 (td, J 8.3, 0.8 Hz, 1H, H-7), 7.79 (d, J 7.4 Hz, 2H, H-3'), 7.72 (d, J 8.3 Hz, 1H, H-8), 7.52 (t, J 7.9 Hz, 1H, H-6), 7.50 – 7.43 (m, 4H, H-1', H-4', H-5'), 5.20 (d, J 2.4 Hz, 2H, H-1''), 3.24 (t, J 2.4 Hz, 1H, H-3''). ¹³C NMR (151 MHz, DMSO-d₆, 80 °C) δ (ppm): 160.1 (C-4), 151.0 (C-2), 146.7 (C-8a), 139.98 (C-2'), 134.9 (C-2a'), 134.2 (C-7), 129.3 (C-5'), 128.52 (C-4'), 127.5 (C-3'), 126.7 (C-6), 126.1 (C-8), 126.0 (C-5), 119.47 (C-4a), 118.48 (C-1'), 114.2 (C-4'), 55.0 (C-6'). HRMS-APCI m/z [M+H]+ calcd for C₁₅H₁₃N₂O₂⁺ 279.1117, found 279.1117. Purity: 96%.
119.2 (C-11), 78.6 (C-22), 74.4 (C-33), 31.7 (C-11). HRMS-APCI m/z [M+H]+ calcd for C\textsubscript{19}H\textsubscript{14}N\textsubscript{2}O\textsubscript{5} 287.1184, found 287.1175. Purity: 98%.

(E)-2-(4-Methoxystyryl)-3-(prop-2-yn-1-yl)-quinazolin-4(3H)-one (2b). The reaction involving (E)-2-(4-methoxystyryl)-quinazolin-4(3H)-one 1b (5.57 g, 0.02 mol) provided 2b as yellow needle-shaped crystals (2.6 g, 0.008 mol, 40%). m.p. 190.6-191.2 °C (from EtOH). IR ν_{max} (cm$^{-1}$): 3235 (≡C-H) (s), 2114 (≡C-C) (w), 1659 (C=O) (s), 1630 (C=N) (m), 1468 (CH\textsubscript{2}, C-H) (m), 1245 (O-CH\textsubscript{3}) (s). 1H NMR (600 MHz, DMSO-d_6, 80 °C) δ (ppm): 8.15 (d, J 7.8 Hz, 1H, H-5), 7.98 (d, J 15.2 Hz, 1H, H-2'), 7.82 (t, J 8.0 Hz, 1H, H-7), 7.74 (d, J 8.6 Hz, 2H, H-3'), 7.69 (d, J 8.0 Hz, 1H, H-8), 7.50 (t, J 7.8 Hz, 1H, H-6), 7.30 (d, J 15.2 Hz, 1H, H-1'), 7.05 (d, J 8.6 Hz, 2H, H-4'), 5.18 (d, J 2.3 Hz, 2H, H-1''), 3.85 (s, 3H, H-6'), 3.22 (t, J 2.3 Hz, 1H, H-3''). 13C NMR (151 MHz, DMSO-d_6, 80 °C) δ (ppm): 160.5 (C-4), 160.1 (C-5'), 151.3 (C-2), 146.8 (C-8a), 139.8 (C-2'), 134.1 (C-7), 129.2 (C-3'), 127.7 (C-2a'), 126.6 (C-6), 126.0 (C-8), 125.8 (C-5), 119.3 (C-4a), 116.6 (C-1'), 114.2 (C-4'), 78.6 (C-2''), 74.3 (C-3''), 55.0 (C-6'), 31.7 (C-1''). HRMS-APCI m/z [M+H]+ calcd for C\textsubscript{20}H\textsubscript{16}N\textsubscript{2}O\textsubscript{5} 317.1290, found 317.1267. Purity (HPLC): 98%.

Synthesis of para-substituted benzyl azides 3a-e

Intermediates 3a-e were synthesized by employing a literature method27 as illustrated in Scheme 1 (iv). The appropriate para-substituted benzyl bromide (0.01 mol) was dissolved in DMSO (20 mL) in a flask outfitted with a magnetic stirrer. Sodium azide (0.71 g, 0.011 mol) was slowly added to the flask and the reaction mixture was stirred for 10 - 12 h at room temperature. Afterwards, the reaction was quenched with H\textsubscript{2}O (50 mL). The aqueous mixture was extracted with EtOAc (3 x 50 mL). The organic phase was then washed with brine (3 x 50 mL), dried overnight with MgSO\textsubscript{4}, and filtered off. The filtrate was evaporated under vacuum evaporator to produce 3a-e as oils which were used in subsequent syntheses without further purification.

1-(Azidomethyl)-4-nitrobenzene (3a). The reaction involving 1-(bromomethyl)-4-nitrobenzene (2.16 g, 0.01 mol) provided 3a as reddish-orange oil (1.9 g, 0.01 mol, 100%). IR ν_{max} (cm$^{-1}$): 2102 (N=N=N) (s). 1H NMR (600 MHz, CDCl\textsubscript{3}) δ (ppm): 8.24 (d, J 8.5 Hz, 2H, H-4), 7.50 (d, J 8.5 Hz, 2H, H-3), 4.50 (s, 2H, H-1). 13C NMR (151 MHz, CDCl\textsubscript{3}) δ (ppm): 153.8 (C-5), 142.8 (C-2), 128.7 (C-3), 124.2 (C-4), 53.8 (C-1).

1-(Azidomethyl)-4-bromobenzene (3b). The reaction of 1-(bromomethyl)-4-bromobenzene (2.5 g, 0.01 mol) resulted in 3b as a clear oil (2.2 g, 0.01 mol, 100%). IR ν_{max} (cm$^{-1}$): 2093 (N=N=N) (s). 1H NMR (600 MHz, CDCl\textsubscript{3})
δ (ppm): 7.51 (d, J 8.4 Hz, 2H, H-4), 7.19 (d, J 8.4 Hz, 2H, H-3), 4.30 (s, 2H, H-1). 13C NMR (151 MHz, CDCl₃) δ (ppm): 134.5 (C-2), 132.1 (C-3), 129.9 (C-4), 122.5 (C-5), 53.5 (C-1).

1-(Azidomethyl)-4-fluorobenzene (3c). The reaction of 1-(bromomethyl)-4-fluorobenzene (1.89 g, 0.01 mol) afforded 3c as a yellow oil (1.1 g, 0.007 mol, 70%). IR νmax (cm⁻¹): 2093 (N=N=N) (s). 1H NMR (600 MHz, CDCl₃) δ (ppm): 7.30 (dd, J 8.5, 5.3 Hz, 2H, H-4), 7.08 (t, J 8.5 Hz, 2H, H-3), 4.32 (s, 2H, H-1). 13C NMR (151 MHz, CDCl₃) δ (ppm): 134.5 (C-2), 132.1 (C-3), 129.9 (C-4), 122.5 (C-5), 53.5 (C-1).

(Azidomethyl)benzene (3d). The reaction involving benzyl bromide (1.71 g, 0.01 mol) provided 3d as a yellow oil (1.2 g, 0.009 mol, 90%). IR νmax (cm⁻¹): 2090 (N=N=N) (s). 1H NMR (600 MHz, CDCl₃) δ (ppm): 7.40 (t, J 7.4 Hz, 2H, H-4), 7.35 (t, J 6.9 Hz, 1H, H-5), 7.33 (d, J 7.4 Hz, 2H, H-3), 4.35 (s, 2H, H-1). 13C NMR (151 MHz, CDCl₃) δ (ppm): 135.5 (C-2), 129.0 (C-4), 128.4 (C-5), 128.3 (C-3), 54.9 (C-1).

1-(Azidomethyl)-4-methylbenzene (3e). The reaction of 1-(bromomethyl)-4-methylbenzene (1.85 g, 0.01 mol) afforded 3e as a pale yellow oil (1.4 g, 0.0095 mol, 95%). IR νmax (cm⁻¹): 2094 (N=N=N) (s). 1H NMR (600 MHz, CDCl₃) δ (ppm): 7.22 (d, J 8.3 Hz, 2H, H-3), 7.20 (d, J 8.3 Hz, 2H, H-4), 4.30 (s, 2H, H-1), 2.37 (s, 3H, H-6). 13C NMR (151 MHz, CDCl₃) δ (ppm): 138.3 (C-2), 132.4 (C-5), 129.6 (C-4), 128.4 (C-3), 54.8 (C-1), 21.3 (C-6).

Synthesis of quinazolinone-triazole hybrids 4a-j
The compounds were synthesized according to a literature method,²⁷ depicted in Scheme 1 (v) and outlined as follows: To a round-bottomed flask containing DMSO-H₂O (4:1, v/v, 10 mL), was added the appropriate 3-propyl-2-(4-substituted styryl)-4(3H)-quinazolinone 2a-b (0.7 mmol), the appropriate benzyl azide 3a-e (0.77 mmol), β-cyclodextrin (0.06 g, 0.049 mmol), sodium L-ascorbate (0.01 g, 0.21 mmol) and copper sulfate pentahydrate (0.02 g, 0.07 mmol). The mixture was stirred at room temperature for 48-72 h until TLC monitoring revealed complete consumption of 2a-b. Afterwards, the reaction mixture was precipitated in H₂O. The precipitate was filtered off, and thoroughly rinsed with H₂O (3 x 20 mL) and EtOH (3 x 20 mL) and then dried in an oven at 70 °C for 2-3 h to yield compounds 4a-j.
(E)-3-[(1-[4-Nitrobenzyl]-1H,1,2,3-triazol-4-yl)methyl]-2-styrylquinazolin-4(3H)-one (4a). The reaction of 2a (0.2 g, 0.7 mmol) with 3a (0.14 g, 0.77 mmol) afforded 4a as a pale yellow powder (0.17 g, 0.36 mmol, 52%). m.p. 248.9-251.6 °C (precipitation in H₂O). IR ν max (cm⁻¹): 3137 (=C-H) (w), 1661 (C=O) (s), 1519 (NO₂) (s), 1342 (C-N) (s). ¹H NMR (600 MHz, DMSO-d₆) δ (ppm): 8.28 (s, 1H, H-5''), 8.15 (d, J 7.8 Hz, 1H, H-5), 8.06 (d, J 8.6 Hz, 2H, H-9''), 7.88 (d, J 15.3 Hz, 1H, H-2''), 7.83 (t, J 7.6 Hz, 1H, H-7'), 7.71 (d, J 7.1 Hz, 2H, H-3''), 7.71 (d, J 7.6 Hz, 1H, H-8), 7.62 (d, J 15.3 Hz, 1H, H-1''), 7.51 (t, J 7.8 Hz, 1H, H-6), 7.44 – 7.38 (m, 5H, H-4', H-5', H-8''), 5.73 (s, 2H, H-7''), 5.63 (s, 2H, H-6''). ¹³C NMR (151 MHz, DMSO-d₆) δ (ppm): 161.1 (C-4), 151.9 (C-2), 147.1 (C-8a), 147.0 (C-10''), 143.3 (C-7a''), 143.2 (C-2''), 139.8 (C-2a''), 135.1 (C-7), 134.6 (C-4''), 129.7 (C-5''), 128.9 (C-8''), 128.8 (C-4''), 127.9 (C-3''), 127.0 (C-6), 126.5 (C-8), 126.4 (C-5), 124.2 (C-5''), 123.7 (C-9''), 120.0 (C-4a), 119.9 (C-1''), 51.8 (C-7''), 38.0 (C-6''). HRMS-APCI m/z [M+H]⁺ calcd for C₂₆H₂₀N₆O₃⁺ 465.1675, found 465.1641. Purity (HPLC): 100%.

![Diagram of 4a](image-url)

(Φ)-3-[(1-[4-Bromobenzyl]-1H,1,2,3-triazol-4-yl)methyl]-2-styrylquinazolin-4(3H)-one (4b). The reaction of 2a (0.2 g, 0.7 mmol) with 3b (0.16 g, 0.77 mmol) afforded 4b as a light yellow-orange powder (0.14 g, 0.27 mmol, 38%). m.p. 269.0-272.5 °C (precipitation in H₂O). IR ν max (cm⁻¹): 3136 (=C-H) (w), 1665 (C=O) (s), 1634 (C=N) (w), 1330 (C-N) (s). ¹H NMR (600 MHz, DMSO-d₆, 80 °C) δ (ppm): 8.17 (dd, J 7.9, 1.1 Hz, 1H, H-5), 8.12 (s, 1H, H-5''), 7.89 (d, J 15.3 Hz, 1H, H-2''), 7.83 (td, J 8.3, 1.1 Hz, 1H, H-7), 7.71 (d, J 8.3 Hz, 1H, H-8), 7.69 (d, J 7.5 Hz, 2H, H-3''), 7.58 (d, J 15.3 Hz, 1H, H-1''), 7.51 (t, J 7.9 Hz, 1H, H-6), 7.47 – 7.41 (m, 5H, H-4', H-5', H-9''), 7.19 (d, J 8.3 Hz, 2H, H-8''), 5.59 (s, 2H, H-7''), 5.53 (s, 2H, H-6''). ¹³C NMR (151 MHz, DMSO-d₆, 80 °C) δ (ppm): 160.7 (C-4), 151.6 (C-2), 146.8 (C-8a), 142.8 (C-2''), 139.5 (C-2a''), 139.5 (C-7a''), 135.0 (C-7), 134.8 (C-4''), 134.0 (C-5''), 131.1 (C-9''), 129.5 (C-8''), 129.2 (C-6), 128.4 (C-4''), 127.4 (C-3''), 126.7 (C-8), 125.9 (C-5), 123.3 (C-5''), 120.9 (C-4a), 119.9 (C-10''), 119.6 (C-1''), 51.8 (C-7''), 37.9 (C-6''). HRMS-APCI m/z [M+H]⁺ calcd for C₂₆H₂₀BrN₆O⁺ 498.0929, found 498.0889. Purity (HPLC): 100%.

![Diagram of 4b](image-url)

(Φ)-3-[(1-[4-Fluorobenzyl]-1H,1,2,3-triazol-4-yl)methyl]-2-styrylquinazolin-4(3H)-one (4c). The reaction of 2a (0.20 g, 0.7 mmol) with 3c (0.12 g, 0.77 mmol) afforded 4c as a light-yellow powder (0.20 g, 0.46 mmol, 65%). m.p. 236.5-238.6 °C (precipitation in H₂O). IR ν max (cm⁻¹): 3135 (=C-H) (w), 1657 (C=O) (s), 1632 (C=N) (w), 1344 (C-N) (s). ¹H NMR (600 MHz, DMSO-d₆) δ (ppm): 8.20 (s, 1H, H-5''), 8.15 (d, J 7.8 Hz, 1H, H-5), 7.89 (d, J 15.3 Hz, 1H, H-2''), 7.83 (t, J 8.4 Hz, 1H, H-7), 7.72 (d, J 7.3 Hz, 2H, H-3''), 7.71 (d, J 8.4 Hz, 1H, H-8), 7.63 (d, J 15.3 Hz, 1H, H-1''), 7.51 (t, J 7.8 Hz, 1H, H-6), 7.45 (t, J 7.2 Hz, 2H, H-4''), 7.42 (t, J 7.2 Hz, 1H, H-5''), 7.30 (dd, J
8.4, 5.6 Hz, 2H, H-8"o"), 7.07 (t, J 8.8 Hz, 2H, H-9"o"), 5.59 (s, 2H, H-7"o"), 5.53 (s, 2H, H-6"o"). \(^{13}\)C NMR (151 MHz, DMSO-\textit{d}_6) \(\delta\) (ppm): 162.5 (C-4), 161.0 (C-10"o"), 160.9 (C-10"u"), 151.9 (C-2), 147.1 (C-8a), 143.1 (C-2\textprime), 139.88 (C-2a\textprime), 135.2 (C-7), 134.6 (C-4\textprime), 132.1 (C-7a\textprime), 130.1 (C-8\textprime), 129.7 (C-5\textprime), 128.9 (C-4\textprime), 127.9 (C-3\textprime), 127.0 (C-6), 126.5 (C-8), 126.4 (C-5), 123.7 (C-5\textprime), 120.0 (C-4a), 119.9 (C-1\prime), 115.5 (C-9\textprime), 115.3 (C-9\textprime), 51.9 (C-7\prime), 38.1 (C-6\prime). HRMS-APCI \textit{m/z} [M+H]+ calcld for \textit{C}_{26}H_{22}FN_{3}O+ 438.1730, found 438.1712. Purity (HPLC): 100%.

\begin{figure}
\centering
\includegraphics[width=0.3\textwidth]{structure1.png}
\caption{(E)-3-[[1-Benzyl-1H-1,2,3-triazol-4-yl]methyl]-2-styrylquinazolin-4(3H)-one (4d). The reaction of 2a (0.20 g, 0.7 mmol) with 3d (0.10 g, 0.77 mmol) provided 4d as a light grey powder (0.26 g, 0.62 mmol, 89%). m.p. 259.2-260.8 °C. IR \textit{v}_{max}: \(\text{cm}^{-1}\): 3135 (=C-H) (w), 1666 (C=O) (s), 1635 (C=N) (w), 1332 (C-N) (s). \(^1\)H NMR (600 MHz, DMSO-\textit{d}_6, 80 °C) \(\delta\) (ppm): 8.16 (dd, J 7.9, 1.2 Hz, 1H, H-5), 8.09 (s, 1H, H-5\textprime), 7.89 (d, J 15.3 Hz, 1H, H-2\textprime), 7.82 (td, J 7.6, 1.2 Hz, 1H, H-7), 7.70 (dd, J 7.6, 4.0 Hz, 3H, H-8, H-3\textprime), 7.59 (d, J 15.3 Hz, 1H, H-1\textprime), 7.50 (t, J 7.9 Hz, 1H, H-6), 7.45 (t, J 7.2 Hz, 2H, H-4\prime), 7.41 (t, J 7.2 Hz, 1H, H-5\prime), 7.29 - 7.26 (m, 3H, H-9\textprime, H-10\textprime), 7.23 (dd, J 6.6, 2.9 Hz, 2H, H-8\prime), 5.58 (s, 2H, H-7\prime), 5.54 (s, 2H, H-6\prime). \(^{13}\)C NMR (151 MHz, DMSO-\textit{d}_6, 80 °C) \(\delta\) (ppm): 160.7 (C-4), 151.6 (C-2), 146.8 (C-8a), 142.7 (C-2\prime), 139.5 (C-2a\prime), 135.4 (C-7a\prime), 135.0 (C-7), 134.0 (C-4\prime), 129.2 (C-5\prime), 128.4 (C-4\prime), 128.1 (C-9\prime), 127.6 (C-6), 127.4 (C-3\prime), 127.3 (C-8\prime), 126.7 (C-10\textprime), C-F), 125.9 (C-8), 125.9 (C-5), 123.2 (C-5\prime), 119.9 (C-4a), 119.6 (C-1\prime), 52.5 (C-7\prime), 38.0 (C-6\prime). HRMS-APCI \textit{m/z} [M+H]+ calcld for \textit{C}_{26}H_{22}FN_{3}O+ 420.1824, found 420.1796. Purity (HPLC): 100%.

\begin{figure}
\centering
\includegraphics[width=0.3\textwidth]{structure2.png}
\caption{(E)-3-[[1-[4-Methylbenzyl]-1H-1,2,3-triazol-4-yl]methyl]-2-styrylquinazolin-4(3H)-one (4e). The reaction of 2a (0.20 g, 0.7 mmol) with 3e (0.11 g, 0.77 mmol) afforded 4e as a light yellow powder (0.20 g, 0.47 mmol, 67%). m.p. 238.5-240.7 °C (precipitation in H\textsubscript{2}O). IR \textit{v}_{max}: \(\text{cm}^{-1}\): 3133 (=C-H) (w), 1664 (C=O) (s), 1633 (C=N) (w), 1346 (C-N) (s). \(^1\)H NMR (600 MHz, DMSO-\textit{d}_6, 80 °C) \(\delta\) (ppm): 8.16 (dd, J 7.9, 1.1 Hz, 1H, H-5), 8.05 (s, 1H, H-5\prime), 7.89 (d, J 15.3 Hz, 1H, H-2\textprime), 7.82 (td, J 8.4, 1.1 Hz, 1H, H-7), 7.70 (d, J 7.82 Hz, 1H, H-8), 7.69 (d, J 6.7 Hz, 2H, H-3\textprime), 7.58 (d, J 15.3 Hz, 1H, H-1\textprime), 7.50 (t, J 7.9 Hz, 1H, H-6), 7.45 (t, J 7.2 Hz, 2H, H-4\prime), 7.41 (t, J 7.2 Hz, 1H, H-5\prime), 7.13 (d, J 8.0 Hz, 2H, H-8\prime), 7.07 (d, J 7.9 Hz, 2H, H-9\prime), 5.57 (s, 2H, H-7\prime), 5.48 (s, 2H, H-6\prime), 2.25 (s, 3H, H-11\prime). \(^{13}\)C NMR (151 MHz, DMSO-\textit{d}_6, 80 °C) \(\delta\) (ppm): 160.7 (C-4), 151.6 (C-2), 146.8 (C-8a), 142.7 (C-2\prime), 139.5 (C-10\textprime), 137.0 (C-2a\prime), 135.0 (C-7), 134.0 (C-7a\prime), 132.3 (C-4\prime), 129.1 (C-5\prime), 128.7 (C-9\textprime), 128.4 (C-4\prime), 127.4 (C-3\prime), 127.4 (C-8\prime), 126.6 (C-6), 125.9 (C-8), 124.9 (C-5), 123.1 (C-5\textprime), 119.9 (C-4a), 119.6 (C-1\prime), 52.4 (C-7\prime), 38.0 (C-6\prime), 20.1 (C-11\prime). HRMS-APCI \textit{m/z} [M+H]+ calcld for \textit{C}_{27}H_{24}N_{3}O+ 434.1981, found 434.1942. Purity (HPLC): 100%.
(E)-2-(4-Methoxy-styril)-3-[(1-(4-nitrobenzyl)-1H-1,2,3-triazol-4-ylmethyl)-quinazolin-4(3H)-one (4f). The reaction of 2b (0.22 g, 0.7 mmol) with 3a (0.12 g, 0.77 mmol) afforded 4f as a pale orange powder (0.19 g, 0.38 mmol, 54%). m.p. 343.5-343.6 °C (precipitation in H2O). IR νmax: (cm⁻¹): 3125 (=C-H) (w), 1666 (C=O) (s), 1635 (C=N) (w), 1519 (NO₂) (s), 1347 (C=N) (s), 1252 (O-CH₃) (s). ¹H NMR (600 MHz, DMSO-d₆, 80 °C) δ (ppm): 8.17 (s, 1H, H-5’’), 8.15 (d, J 7.9 Hz, 1H, H-5), 8.07 (d, J 8.6 Hz, 2H, H-9’’), 7.85 (d, J 15.2 Hz, 1H, H-2’’), 7.81 (t, J 8.1 Hz, 1H, H-7), 7.67 (d, J 8.1 Hz, 1H, H-8), 7.63 (d, J 8.6 Hz, 2H, H-3’), 7.48 (t, J 7.9 Hz, 1H, H-6), 7.44 (d, J 8.6 Hz, 2H, H-8’’), 7.40 (d, J 15.3 Hz, 1H, H-1’), 6.99 (d, J 8.6 Hz, 2H, H-4’), 5.71 (s, 2H, H-7’’), 5.60 (s, 2H, H-6’’), 3.83 (s, 3H, H-6’’). ¹³C NMR (151 MHz, DMSO-d₆, 80 °C) δ (ppm): 160.8 (C-6), 146.9 (C-10’’), 143.0 (C-7a’’), 142.7 (C-2’’), 139.3 (C-7), 134.0 (C-4’’), 129.0 (C-3’), 128.4 (C-8’’), 127.6 (C-2a’), 126.5 (C-6), 125.9 (C-8), 125.7 (C-5), 123.6 (C-5’’), 123.2 (C-9’’), 119.5 (C-4a), 117.2 (C-1’), 114.1 (C-4’), 54.9 (C-7’’), 51.6 (C-6’), 37.8 (C-6’’). HRMS-APCI m/z [M+H]⁺ calcd for C₂₇H₂₃N₂O₄⁺ 495.1771, found 495.1768. Purity (HPLC): 100%.

(E)-3-[(1-(4-Bromobenzyl)-1H-1,2,3-triazol-4-yl)methyl]-2-(4-methoxy styryl)-quinazolin-4(3H)-one (4g). The reaction of 2b (0.22 g, 0.7 mmol) with 3b (0.16 g, 0.77 mmol) afforded 4g as a light green powder (0.30 g, 0.57 mmol, 82%). m.p. 246.4-250.7 °C (precipitation in H₂O). IR νmax: (cm⁻¹): 3140 (=C-H) (w), 1661 (C=O) (s), 1632 (C=N) (w), 1335 (C-N) (s), 1252 (O-CH₃) (s). ¹H NMR (600 MHz, DMSO-d₆) δ (ppm): 8.19 (s, 1H, H-5’’), 8.14 (d, J 7.5 Hz, 1H, H-5), 7.87 (d, J 15.2 Hz, 1H, H-2’), 7.82 (t, J 7.6 Hz, 1H, H-7), 7.68 (d, J 8.4 Hz, 3H, H-8, H-3’), 7.49 (t, J 7.5 Hz, 1H, H-6), 7.46 – 7.41 (m, 3H, H-1’, H-9’’), 7.15 (d, J 8.1 Hz, 2H, H-8’’), 7.01 (d, J 8.5 Hz, 2H, H-4’), 5.59 (s, 2H, H-7’’), 5.53 (s, 2H, H-6’’), 3.82 (s, 3H, H-6’’). ¹³C NMR (151 MHz, DMSO-d₆) δ (ppm): 160.77 (C-4), 160.4 (C-5’), 151.9 (C-2), 146.9 (C-8a), 142.8 (C-2’), 139.3 (C-7a’’), 134.8 (C-7), 133.9 (C-4’’), 131.1 (C-9’’), 129.5 (C-8’’), 129.0 (C-3’), 127.7 (C-2a’), 126.5 (C-6), 125.9 (C-8), 125.6 (C-5), 123.3 (C-5’’), 120.8 (C-4a), 119.5 (C-10’’), 117.2 (C-1’), 114.1 (C-4’), 55.0 (C-7’’), 51.8 (C-6’), 37.9 (C-6’’). HRMS-APCI m/z [M+H]⁺ calcd for C₂₇H₂₃BrN₂O₄⁺ 528.1035, found 528.1022. Purity (HPLC): 100%.
(E)-3-[(1-(4-Fluorobenzyl)-1H-1,2,3-triazol-4-yl)methyl]-2-(4-methoxystyrlyl)-quinazolin-4(3H)-one (4h). The reaction of 2b (0.22 g, 0.7 mmol) with 3c (0.12 g, 0.77 mmol) resulted in 4h as a light green powder (0.25 g, 0.53 mmol, 75%). m.p. 229.3-230.7 °C (precipitation in H2O). IR v max (cm⁻¹): 3111 (≡C-H), 1657 (C=O), 1524 (C-N), 1249 (O-CH3). ¹H NMR (600 MHz, DMSO-d₆) δ (ppm): 8.18 (s, 1H, H-5’’), 8.13 (d, J 7.8 Hz, 1H, H-5), 7.87 (d, J 15.2 Hz, 1H, H-2’), 7.82 (t, J 8.4 Hz, 1H, H-7), 7.68 (d, J 8.4 Hz, 3H, H-8, H-3’), 7.48 (t, J 7.8 Hz, 1H, H-6), 7.46 (d, J 15.2 Hz, 1H, H-1’), 7.35 (dd, J 8.3, 5.6 Hz, 2H, H-8’’), 7.08 (t, J 8.8 Hz, 2H, H-9’’), 7.01 (d, J 8.6 Hz, 2H, H-4’), 5.57 (s, 2H, H-7’’), 5.53 (s, 2H, H-6’’), 3.82 (s, 3H, H-6’). ¹³C NMR (151 MHz, DMSO-d₆) δ (ppm): 162.3 (C-4), 160.7 (C-10’’), 160.6 (C-10’’), 160.4 (C-5’), 151.9 (C-2), 146.9 (C-8a), 142.8 (C-2’), 139.3 (C-7), 133.9 (C-4’’), 131.6 (C-7a’’), 131.5 (C-7a’’), 129.6 (C-8’’), 129.6 (C-8’), 129.0 (C-3’), 127.7 (C-2a’), 126.5 (C-6), 125.9 (C-8), 125.6 (C-5), 123.1 (C-5’), 119.5 (C-4a), 111.7 (C-1’), 115.0 (C-9’’), 114.8 (C-9’), 114.1 (C-4’), 54.9 (C-7’’), 51.7 (C-6’), 37.9 (C-6’’). HRMS-APCI m/z [M+H]+ calcd for C27H23FN5O2 468.1836, found 468.1819. Purity (HPLC): 100%

(E)-3-[(1-Benzyl-1H-1,2,3-triazol-4-yl)methyl]-2-(4-methoxystyrlyl)quinazolin-4(3H)-one (4i). The reaction of 2b (0.22 g, 0.7 mmol) with 3d (0.10 g, 0.77 mmol) provided 4i as a yellow powder (0.12 g, 0.26 mmol, 37%). m.p. 224.7-226.9 °C (precipitation in H2O). IR v max (cm⁻¹): 3107 (≡C-H), 1654 (C=O), 1346 (C-N), 1254 (O-CH3). ¹H NMR (600 MHz, DMSO-d₆) δ (ppm): 8.14 (dd, J 7.9, 1.2 Hz, 1H, H-5’’), 8.08 (s, 1H, H-5’), 7.87 (d, J 15.3 Hz, 1H, H-2’), 7.80 (td, J 8.1, 1.2 Hz, 1H, H-7), 7.67 (d, J 8.1 Hz, 1H, H-8), 7.64 (d, J 8.7 Hz, 2H, H-3’), 7.47 (t, J 7.9 Hz, 1H, H-6), 7.45 (d, J 15.3 Hz, 1H, H-1’), 7.43 (m, J 15.3 Hz, 1H, H-1’), 7.37 – 7.28 (m, J 3.9 Hz, 1H, H-10’’), 7.24 (m, J 3.9 Hz, 1H, H-10’’), 7.01 (d, J 8.7 Hz, 2H, H-4’), 5.15 (s, 2H, H-7’’), 5.54 (s, 2H, H-6’’), 3.84 (s, 3H, H-6’). ¹³C NMR (151 MHz, DMSO-d₆) δ (ppm): 161.0 (C-4), 160.5 (C-5’), 152.1 (C-2), 147.15 (C-8a), 143.0 (C-2’), 139.6 (C-7a’’), 135.7 (C-7), 134.3 (C-4’’), 129.4 (C-3’), 128.4 (C-9’’), 127.8 (C-2a’), 127.8 (C-6), 127.6 (C-8’’), 126.8 (C-8), 126.2 (C-5), 126.0 (C-10’’), 123.6 (C-5’’), 119.6 (C-4a), 117.3 (C-1’), 114.3 (C-4’), 55.2 (C-7’’), 52.7 (C-6’), 38.0 (C-6’’). HRMS-APCI m/z [M+H]+ calcd for C27H24N5O2 450.1930, found 450.1910. Purity (HPLC): 100%.
(E)-2-(4-Methoxystyryl)-3-[[1-(4-methylbenzyl)-1H-1,2,3-triazol-4-yl]-methyl]-quinazolin-4(3H)-one (4j). The reaction of 2b (0.22 g, 0.7 mmol) with 3e (0.11 g, 0.77 mmol) afforded 4j as a light-green powder (0.18 g, 0.39 mmol, 56%). m.p. 217.5-221.1 °C (precipitation in H₂O). IR v_max: (cm⁻¹): 3125 (=C-H) (w), 1668 (C=O) (s), 1631 (C=N) (w), 1339 (C-N) (s), 1254 (O-CH₃) (s). ¹H NMR (600 MHz, DMSO-d₆) δ (ppm): 8.13 (s, 1H, H-5’’), 8.13 (d, J 7.6 Hz, 1H, H-2’), 7.87 (t, J 15.2 Hz, 1H, H-7), 7.67 (d, J 8.1 Hz, 3H, H-8, H-3’), 7.48 (t, J 7.6 Hz, 1H, H-6), 7.45 (d, J 15.1 Hz, 1H, H-1’), 7.11 (d, J 7.9 Hz, 2H, H-8’’), 7.05 (d, J 7.8 Hz, 2H, H-9’’), 7.01 (d, J 8.6 Hz, 2H, H-4’), 5.57 (s, 2H, H-7’’), 5.48 (s, 2H, H-6’’), 3.82 (s, 3H, H-6’), 2.22 (s, 3H, H-11’’). ¹³C NMR (151 MHz, DMSO-d₆) δ (ppm): 161.1 (C-4), 160.66 (C-5’), 152.2 (C-2), 147.2 (C-8a), 143.1 (C-2’), 139.7 (C-10’’), 137.35 (C-7), 134.5 (C-7a’’), 132.8 (C-4’’), 129.6 (C-3’), 129.1 (C-9’’), 127.9 (C-2a’), 127.8 (C-8’’), 126.9 (C-6), 126.4 (C-8), 126.1 (C-5), 123.6 (C-5’’), 119.7 (C-4a), 117.3 (C-1’), 114.4 (C-4’), 55.3 (C-7’’), 52.5 (C-6’), 38.1 (C-6’’), 20.6 (C-11’’). HRMS-APCI m/z [M+H]⁺ calcd for C₂₈H₂₆N₅O₂⁺ 464.2088, found 464.2077. Purity (HPLC): 100%.

In vitro biological evaluation

Antileishmanial activity assay. The antipromastigote activities of the synthesized compounds were evaluated, using the resazurin assay method in Horn et al.,³⁷ against L. donovani (strains 1S (MHOM/SD/62/1S) and 9515 (MHOM/IN/95/9515)) and L. major (strain IR-173 (MHOM/IR/-173)). A concentration of 100 μM was used for activity screening. An incubation period of 2 h (1S promastigotes) to 4 h (9515 and IR-173 promastigotes) was used after the addition of resazurin solution.

Cytotoxicity assay. The cytotoxicities of the synthesized compounds were evaluated in Vero cells (Cellonex, South Africa), using the resazurin assay method in Janse van Rensburg et al.³⁷

Acknowledgements

This work was based upon research financially supported by the National Research Foundation (NRF) (UID 98937 and IFRR 115349) and the North-West University. The authors extend their thanks to Dr. D. Otto for NMR analysis, Dr. J.H.L. Jordaan for NMR and HRMS analysis, Prof F van der Kooy for HPLC analysis.

The following reagents were obtained through BEI Resources, NIAID, NIH:
Leishmania donovani, Strain 1S (MHOM/SD/62/1S), NR-48821
Leishmania donovani, Strain 9515 (MHOM/IN/95/9515), NR-48822
Leishmania major, Strain IR173 (MHOM/IR/173), NR-48816

Supplementary Material

Supplementary data (\(^1\)H, \(^{13}\)C, IR and HRMS spectra of all quinazolinones), and the HPLC purity determination procedure associated with this article, are available in the online version.

References

1. Akhoundi, M.; Kuhls, K.; Cannet, A.; Votýpka, J.; Marty, P.; Delaunay, P.; Sereno, D. *PLoS Negl Trop Dis.* 2016, 10, e0004349. https://doi.org/10.1371/journal.pntd.0004349
2. Bañuls, A. L.; Hide, M.; Prugnolle, F. *Adv Parasitol.* 2007, 64, 1-109. https://doi.org/10.1016/S0065-308X(06)64001-3
3. Lindoso, J. A. L.; Cunha, M. A.; Queiroz, I. T.; Moreira, C. H. V. *HIV/AIDS (Auckland, N.Z.)*. 2016, 8, 147-156. https://doi.org/10.2147/HIV.S93789
4. Castelli, F.; Sulis, G. *Clin Microbiol Infect.* 2017, 23, 283-289. https://doi.org/10.1016/j.cmi.2017.03.012
5. Feasey, N.; Wansbrough-Jones, M.; Mabey, D. C.; Solomon, A. W. *Br Med Bull.* 2010, 93, 179-200. https://doi.org/10.1093/bmb/ldp046
6. WHO, Global Health Observatory (GHO) data: Leishmaniasis; https://www.who.int/gho/neglected_diseases/leishmaniasis/en/. [Date of access: 4 June 2020] 2020.
7. WHO, Leishmaniasis: The disease; https://www.who.int/leishmaniasis/disease/en/. [Date of access: 9 Feb. 2020]. 2019a.
8. WHO, Leishmaniasis: Epidemiology; https://www.who.int/leishmaniasis/burden/en/. [Date of access: 9 February 2020]. 2019b.
9. Ponte-Sucre, A.; Gamarro, F.; Dujardin, J.-C.; Barrett, M. P.; López-Vélez, R.; García-Hernández, R.; Pountain, A. W.; Mwenechanya, R.; Papadopoulou, B. *PLoS Negl Trop Dis.* 2017, 11, e0006052-e0006052. https://doi.org/10.1371/journal.pntd.0006052
10. Pankevich, D. E.; Altevogt, B. M.; Dunlop, J.; Gage, F. H.; Hyman, S. E. *Neuron.* 2014, 84, 546-553. https://doi.org/10.1016/j.neuron.2014.10.007
11. Viegas-Junior, C.; Danuello, A.; da Silva Bolzani, V.; Barreiro, E. J.; Fraga, C. A. *Curr Med Chem.* 2007, 14, 1829-1852. https://doi.org/10.2174/092986707781058805
12. Muregi, F. W.; Ishih, A. *Drug Dev Res.* 2010, 71, 20-32. https://doi.org/10.1002/ddr.20345
13. Cardona, G. W.; Yepes, A. F.; Herrera, R. A. *Curr Med Chem.* 2018, 25, 3637-3679. https://doi.org/10.2174/0929867325666180309111428
14. Kshirsagar, U. A. *Org Biomol Chem.* 2015, 13, 9336-9352. https://doi.org/10.1039/C5OB01379H
15. Xu, Z.; Zhang, Y.; Fu, H.; Zhong, H.; Hong, K.; Zhu, W. Bioorg Med Chem Lett. 2011, 21, 4005-4007. https://doi.org/10.1016/j.bmcl.2011.05.002

16. Hameed, A.; Al-Rashida, M.; Uroos, M.; Ali, S. A.; Arshia; Ishtiaq, M.; Khan, K. M. Expert Opin Ther Pat. 2018, 28, 281-297. https://doi.org/10.1080/13543776.2018.1432596

17. Birhan, Y. S.; Bekhit, A. A.; Hymete, A. BMC Res Notes. 2015, 8, 589. https://doi.org/10.1186/s13104-015-1578-x

18. Couturier, C.; Lair, C.; Pellet, A.; Upton, A.; Kaneko, T.; Perron, C.; Cogo, E.; Menegotto, J.; Bauer, A.; Scheiper, B.; Lagrange, S.; Bacqué, E. Bioorg Med Chem Lett. 2016, 26, 5290-5299. https://doi.org/10.1016/j.bmcl.2016.09.043

19. Birhan, Y. S.; Bekhit, A. A.; Hymete, A. Org Med Chem Lett. 2014, 4, 10. https://doi.org/10.1186/s13588-014-0010-1

20. Kaushik, C. P.; Pahwa, A. Med Chem Res. 2018, 27, 458-469. https://doi.org/10.1007/s00044-017-2072-x

21. Maji, K.; Abbasi, M.; Podder, D.; Datta, R.; Haldar, D. ChemistrySelect 2018, 3, 10220-10225. https://doi.org/10.1002/slct.201800447

22. Tarawneh, A. H.; Al-Momani, L. A. A.; León, F.; Jain, S. K.; Gadetskaya, A. V.; Abu-Orabi, S. T.; Tekwani, B. L.; Cutler, S. J. Med Chem Res. 2018, 27, 1269-1275. https://doi.org/10.1007/s00044-018-2146-4

23. Huisgen, R. Angew Chem Int Ed Engl. 1963, 2, 565-598. https://doi.org/10.1002/anie.196305651

24. Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew Chem Int Ed Engl. 2002, 41, 2596-2599. https://doi.org/10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4

25. Kumar, D.; Jadhavar, P. S.; Nautiyal, M.; Sharma, H.; Meena, P. K.; Adane, L.; Pancholia, S.; Chakraborti, A. K. RSC Advances 2015, 5, 30819-30825. https://doi.org/10.1039/C5RA03888J

26. Usifoh, C. O.; Scriba, G. K. E. Arch Pharm. 2000, 333, 261-266. https://doi.org/10.1002/1521-4184(20008)333:8<261::AID-ARDP261>3.0.CO;2-O

27. Cilliers, P.; Seldon, R.; Smit, F. J.; Aucamp, J.; Jordaan, A.; Warner, D. F.; N'Da, D. D. Chem Biol Drug Des. 2019, 94, 1518-1536. https://doi.org/10.1111/cbddd.13534

28. Fleming, I.; Williams, D. In Spectroscopic Methods in Organic Chemistry; Fleming, I.; Williams, D., Eds.; Springer International Publishing: Switzerland AG, 2019; pp 123-276.

29. Delaney, J. S. J Chem Inf Comput Sci. 2004, 44, 1000-1005. https://doi.org/10.1021/ci034243x

30. Ali, J.; Camilleri, P.; Brown, M. B.; Hutt, A. J.; Kirton, S. B. J Chem Inf Model. 2012, 52, 420-428. https://doi.org/10.1021/ci200387c

31. Daina, A.; Michielin, O.; Zoete, V. Sci Rep. 2017, 7, 42717. https://doi.org/10.1038/srep42717

32. Siqueira-Neto, J. L.; Song, O.-R.; Oh, H.; Sohn, J.-H.; Yang, G.; Nam, J.; Jang, J.; Cecchetto, J.; Lee, C. B.; Moon, S.; Genovesio, A.; Chatelain, E.; Christophe, T.; Freitas-Junior, L. H. PLoS Negl Trop Dis. 2010, 4, e675-e675.
34. Adewusi, E. A.; Steenkamp, P.; Fouche, G.; Steenkamp, V. *Nat Prod Commun.* **2013**, *8*, 1213-1216.

35. Dabiri, M.; Baghbanzadeh, M.; Delbari, A. S. *J Comb Chem* **2008**, *10*, 700-703.

36. Horn, C.-M.; Aucamp, J.; Smit, F. J.; Seldon, R.; Jordaan, A.; Warner, D. F.; N'Da, D. D. *Med Chem Res.* **2020**, *29*, 1387–1399.

37. Janse van Rensburg, H. D.; Legoabe, L. J.; Terre'Blanche, G.; Aucamp, J. *Bioorg Chem.* **2020**, *94*, 103459.

This paper is an open access article distributed under the terms of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)