Structural synaptic elements are differentially regulated in superior temporal cortex of schizophrenia patients

Andrea Schmitt · Fernando Leonardi-Essmann · Pascal F. Durrenberger · Sven P. Wichert · Rainer Spanagel · Thomas Arzberger · Hans Kretzschmar · Mathias Zink · Mario Herrera-Marschitz · Richard Reynolds · Moritz J. Rossner · Peter Falkai · Peter J. Gebicke-Haerter

Received: 29 December 2011 / Accepted: 1 March 2012 / Published online: 23 March 2012 © The Author(s) 2012. This article is published with open access at Springerlink.com

Abstract Inaccurate wiring and synaptic pathology appear to be major hallmarks of schizophrenia. A variety of gene products involved in synaptic neurotransmission and receptor signaling are differentially expressed in brains of schizophrenia patients. However, synaptic pathology may also develop by improper expression of intra- and extracellular structural elements weakening synaptic stability. Therefore, we have investigated transcription of these elements in the left superior temporal gyrus of 10 schizophrenia patients and 10 healthy controls by genome-wide microarrays (Illumina). Fourteen up-regulated and 22 downregulated genes encoding structural elements were chosen from the lists of differentially regulated genes for further qRT-PCR analysis. Almost all genes confirmed by this method were downregulated. Their gene products belonged to vesicle-associated proteins, that is, synaptotagmin 6 and syntaxin 12, to cytoskeletal proteins, like myosin 6, pleckstrin, or to proteins of the extracellular matrix, such as collagens, or laminin C3. Our results underline the pivotal roles of structural genes that control formation and stabilization of pre- and post-synaptic elements or influence axon guidance in schizophrenia.

Electronic supplementary material The online version of this article (doi:10.1007/s00406-012-0306-y) contains supplementary material, which is available to authorized users.
highlights the close interrelationship between neurons and glial cells in establishment and maintenance of synaptic strength and plasticity. It is hypothesized that abnormal expression of these and related genes has a major impact on the pathophysiology of schizophrenia.

Keywords Schizophrenia · Superior temporal cortex · Cytoskeleton · Synaptic plasticity · Gene expression · Microarray

Introduction

Schizophrenia is regarded as a disorder with disrupted connectivity of neuronal networks involving multiple brain regions [14, 67]. Along these lines, subtle volume and fractional anisotropy reductions of the gray and white matter of the heteromodal association cortex including the superior temporal cortex (STG) have been reported in meta-analyses [13, 70, 84]. The left STG gray matter was smaller, and the left greater than right asymmetry was reduced in schizophrenia patients [1, 18, 26, 41]. However, despite these findings based on magnetic resonance imaging studies, the underlying alterations are widely unknown. In schizophrenia, altered synaptic plasticity and connectivity during neurodevelopment and adulthood have been suggested [20, 82]. On the molecular level, several lines of research have established contributions of the GABAergic and glutamatergic systems [52], and also of myelination-related events [23] to the pathophysiology of the disease. Comparing microarray analyses of different brain regions, the STG is among the most affected regions in schizophrenia [25]. A recent oligonucleotide-microarray study of the STG revealed altered expression of genes involved in neurotransmission and synaptic function [7]. Messenger RNAs of six synaptic proteins including SNAP-25, synaptotagmin, and syntaxin were increased in schizophrenia patients compared to control subjects [72]. On the protein level, complexes are reduced in the STG [12]. Since pre- and post-synaptic structural genes control remodeling of dendritic spines or maintain stability of the synaptic cytoskeleton, our attention has been drawn to genes involved in synaptic plasticity associated with extracellular and cytoskeletal structural elements in the left STG of schizophrenia patients. The turnover time of actin in dendritic spines is approximately 44 s [74], which highlights the dynamics of cytoskeletal elements in neuronal fiber endings. Moreover, structural elements of the extracellular matrix play pivotal roles in axon guidance, synapse formation, and stabilization. Proteins like collagen or laminin are produced by glial cells closely connecting to neurons and therefore probably being involved in processing of higher brain functions like cognition and memory.

It is hypothesized that abnormal expression of genes involved in structural functions such as cytoskeleton stabilization has a major impact in the pathophysiology of schizophrenia. Therefore, expression of these genes has been studied here on the transcriptional level in the left STG.

Materials and methods

Human postmortem tissue

Frozen postmortem brain samples from inpatients with DSM-IV residual schizophrenia (n = 10) and matched control subjects (n = 10) were collected at the Central Institute of Mental Health, Mannheim, and the Department of Neuropathology, Mental Hospital Wiesloch, Germany. Table 1 summarizes the data of patients and controls included in this study. Complete clinical histories were available for all patients. Diagnoses and medical histories were assembled by experienced psychiatrists and are available for all patients in the Wiesloch hospital. Chlorpromazine equivalents (CPE) [30] were used to assess cumulative doses of medication during the last ten years of the patients’ lives. Autopsy consent was obtained from the donor or a family member for each case. All assessments and postmortem evaluations and procedures were approved by the Ethics Committee of the Faculty of Medicine, University of Heidelberg, Germany.

Neurovascular or neurodegenerative disorders, such as vascular dementia or Alzheimer’s disease, were excluded by thorough neuropathological examinations [8]. Stagings with respect to neurodegeneration according to Braak were 2 or less for all subjects. Patients and controls had no history of alcohol or drug abuse, or severe physical illness (e.g., carcinoma). Autopsy from controls was performed at the Institute of Neuropathology, University of Heidelberg. Some controls (RZ77, RZ84, and RZ99) were collected by the Neurobiobank, Ludwig-Maximilians-University, Munich. Controls had no history of psychiatric disorders. For patients and healthy controls, gray matter of the left superior temporal cortex (Brodmann area [BA] 22) was dissected by an experienced neuropathologist according to a brain atlas [50], snap-frozen in liquid nitrogen-cooled isopentane, and stored at −80 °C until use.

RNA preparation and microarray experiments

Total RNA was extracted from dissected snap-frozen tissue using the RNeasy® tissue lipid mini kit (Qiagen), according to the manufacturer’s instructions. RNA concentration and purity was assessed by spectrophotometry (NanoDrop ND1000; NanoDrop Technologies, Delaware, USA). RNA
Code	Diagnosis (2 = co)	DSM IV	Age (years)	Age at onset (years)	Gender	Duration of disease (years)	Hospitalization (years)	Duration of medication (years)	Atyp–typ CPE last dose (mg)	CPE last 10 years (kg)	
01/00	1	295.6	51	23	M	28	17	25	2	450	1.8
13/00	1	295.6	64	16	F	48	21	45	3	1.536	7.7
35/00	1	295.6	64	24	F	41	5	40	2	54.5	4.6
46/00	1	295.6	63	24	F	40	30	30	3	75	1.8
50/01	1	295.6	81	19	M	62	48	50	1	92.8	1.4
83/01	1	295.6	71	30	M	40	12	35	1	782.4	10
36/02	1	295.6	73	30	M	43	33	40	1	507.4	1.7
39/02	1	295.6	43	20	M	22	13	20	3	464	2.6
39/03	1	295.6	77	28	F	49	48	48	2	2.555	8.3
43/03	1	295.6	76	27	F	49	30	47	1	300	4.9
43/01	2	91			F						
61/01	2	66			M						
002/02	2	41			M						
51/02	2	57			M						
57/02	2	53			M						
59/02	2	63			M						
72/02	2	79			M						
RZ77	2	57			M						
RZ84	2	50			M						
RZ99	2	55			F						

Code	Cause of death	PMI (h)	R.I.N. value	Brain Weight (g)	CSF pH	Last medication	Last medication	Cigarettes	Alcohol	ECT
01/00	Heart infarction	12	6.8	1380	6.7	Clozapine 500 mg	Haloperidol 40 mg, Ciatyl 40 mg	30/day	No	No
13/00	Pulmonary insufficiency	11	6.9	1180	7	Clozapine 500 mg	Haloperidol 40 mg	0	No	Yes
35/00	Heart infarction	23	7.6	1250	6.6	Zotepine 150 mg	Olanzapine 10 mg, Pipamperone 40 mg	20/day	No	Yes
46/00	Heart infarction	31	6.1	1240	6.3	Olanzpine 15 mg	Haloperidol 40 mg	30/day	No	Yes
50/01	Cor pulmonale, heart insufficiency	4	6	1390	6.8	Haloperidol 4 mg	Prothipendyl 80 mg	20/day	No	No
83/01	Heart infarction	28	5.9	1480	6.5	Haloperidol 32 mg	Promethazine 150 mg	40/day	No	No
36/02	Heart infarction	20	7.1	1330	6.9	Perphenazine 32 mg	Valproate 1,200 mg, Tiapride 300 mg	30/day	No	No
39/02	Heart infarction	18	7.8	1520	6.4	Zuclopethixol 40 mg	Benperidol 25 mg, Chlorprothixen 150 mg	0	No	Yes
39/03	Lung emboly	32	4.9	1160	6.8	Clozapine 400 mg	Benperidol 25 mg	0	No	Yes
43/03	Cardio-pulmonary insufficiency	17	6.1	1200	7.1	Perazine 300 mg	Benperidol 25 mg	0	No	Yes
43/01	Cardio-pulmonary insufficiency	16	6.1	1120	6.8			No		
61/01	Heart infarction	16	5.7	1200	6.5			No		
002/02	Heart infarction	7	4.7	1360	7.2			No		
51/02	Heart infarction	24	5.5	1420	6.5			No		
57/02	Heart infarction	18	5.5	1520	7.1			No		
59/02	Heart infarction	13	6.6	1360	6.9			No		
72/02	Heart infarction	24	7.8	1170	6.4			No		
RZ77	Electric shock	24	7.6	1380	N.d.			N.d.		
RZ84	Cardiac arrest	50	6.8	1530	N.d.			Yes		
RZ99	Cardiac infarction	14	8	N.d.	N.d.			N.d.		

There were no statistically significant differences between age at time of death, postmortem interval (PMI), and brain pH. Schizophrenia patients were characterized by duration of disease, duration of medication, and medication (last dose) in chlorpromazine equivalents (CPE), as well as cumulative dose over the last ten years in CPE.

SD standard deviation
integrity was further assessed using an Agilent 2100 Bioanalyzer and its lab-on-a-chip platform technology (Agilent Technologies UK Ltd, West Lothian, UK). Sample concentrations, 28S/18S ribosomal RNA ratios, and RNA Integrity Numbers (RIN) were automatically calculated with the provided system software [68]. All samples showed RIN values superior to 7.0. Gene expression analysis was performed with the Illumina whole-genome HumanRef8 v2 BeadChip (Illumina, London, UK), covering 24,526 genes with additional splice variants from the RefSeq database. RNA samples were prepared for array analysis using the Illumina TotalPrep™-96 RNA Amplification Kit following the manufacturer’s instructions (Ambion/Applied Biosystems, Warrington, UK). First and second strand cDNA was synthesized from 0.5 μg of total RNA. After dsDNA purification, biotin-labeled cRNA was synthesized. Next, the whole-genome gene expression direct hybridization assay system from Illumina was applied. Samples were loaded on the arrays and assembled into the BeadChip Hyb Chamber. Hybridization was carried out at 58 °C overnight. Subsequently, chips were washed and signals were developed with streptavidin-Cy3. Finally, the BeadChips were scanned using the Illumina BeadArray Reader.

Data analysis

The data were extracted using BeadStudio 3.2 software (Illumina). Data normalization and gene differential analysis were performed using the Rosetta error model available in the Rosetta Resolver® system (Rosetta Biosoftware) [83]. Fold changes (FC) and P values were generated based on an intensity ratio between control and disease using a conversion pipeline provided by Rosetta. The principal component analysis detected no low quality arrays, and no outliers were detected when conducting a cluster analysis on deregulated genes (p < 0.01) using a hierarchical algorithm (agglomerative). A list containing statistically significant, differentially regulated genes with p value <0.05 in group-wise t-tests was generated. Further cuts were applied based on fold change. These measures resulted in two lists of up-regulated (n = 869) and down-regulated (n = 896) genes. They were then subjected to an intensity score filtering with a cut-off of 20 fluorescence units (Supplementary Tables S1 [upregulated, 418] and S2 [downregulated, 364]).

Real-time PCR (qRT-PCR)

For cDNA synthesis, 1 μg of total RNA was reverse transcribed according to the manufacturer’s instructions using the high Cap-Kit from AppliedBiosystems (ABI), Darmstadt, Germany. cDNA was diluted 1:100 before being used as a template. Five microliters of the template was mixed with 5 μl TaqMan GenEx master mix and added to a 384-well plate prespotted with TaqMan probes (spotted in duplicate) for 37 structural genes (for their selection, see Results), including 20 “housekeeping” genes [11] (Supplementary Table S3). The dC_T between duplicates was determined, and when dC_T > 0.5, the sample was excluded from further analysis. When dC_T < 0.5 between duplicates, these values were collapsed as an average for further analysis. The geNorm 3.5 visual basic application (VBA) applet for Microsoft Excel was used to determine the most stable housekeeping genes (http://medgen.ugent.be/~jvdesomp/genorm/) as previously developed and validated by Vandesompele et al. [80]. geNorm determines an expression stability score (M) of a housekeeping gene as the average pairwise variation V for that gene from all the others. All the housekeeping genes are ranked according to their expression stability score using a stepwise exclusion strategy where the housekeeping gene with the worst score is eliminated at each calculation (Supplementary Table S4). The geometric means of the two most stable housekeeping genes (HMBS and RPL27) were used as to normalize expression levels of candidate genes (ddC_T method). Data were imported into Statistica 6.1 (StatSoft, Inc., Tulsa, Oklahoma, USA). Differences in transcript abundance between patients and control groups were analyzed using a two-tailed t-test for independent samples and were considered statistically significant at p < 0.05. Additionally, one-tailed t-tests and group-wise tests were performed. The average relative expression level for each group was calculated to determine the FC between groups for each target gene. For further statistical analyses, data were imported in SPSS 17. One way analyses of variance (ANOVA) were performed to evaluate gender effects on gene expressions. Next, for each normalized gene expression, an analysis of covariance (ANCOVA) with factor diagnosis was performed. Covariates age, postmortem interval, and gender were only added to the model, if they had a significant effect in the initial analyses. Pearson’s product moment correlations were calculated to analyze whether normalized gene expressions correlate with age, postmortem interval, duration of disease or hospitalization, age at onset, and medication.

It has to be mentioned that this is an explorative study intending to find differences in the gene expression between schizophrenic patients and control subjects. An adjustment of the error probability would decrease the test power extremely so that the power of detecting existing mean differences would be very low. Therefore, the present results are presented without error probability correction.

Functional annotation

Gene symbols of up- and down-regulated genes were linked to GO classifiers using the utilities/ID converter
Fig. 1 Functional annotation based on Gene Ontology (GO) classification. a, b Pie charts depicting numbers of up-regulated (A) and down-regulated (B) regulated genes in corresponding Gene Ontology Biological Process layer 2 categories as indicated (see “Methods” for details). c Differences between GO layer 2 categories between up-regulated and down-regulated gene sets. Note that the number of genes was higher in the down-regulated set (DOWN) in all categories. Plotted is the relative fold-increase in DOWN to indicate the most prominent changes in the respective processes. Immune-related genes are expressed >tenfold higher in DOWN, cell proliferation >sevenfold and multi-organism processes >fivefold in the down-regulated set.

Options of babelomics platform (http://babelomics3.bioinfo.cipf.es/). These lists were uploaded into a locally implemented blast2go annotation software package (http://www.blast2go.com/b2ghome) to analyze GO category distributions at all levels. Biological Process Layer 2 level categories were filtered for minimal 5 members and chosen for visualization (Fig. 1).

Results

From the lists of 418 up-regulated and 364 down-regulated genes (Tables S1 and S2), which remained after intensity score filtering, 20 up-regulated and 34 down-regulated genes encoding structural gene products (Table S5) (ratio, 0.59) were selected by an experienced investigator. From
those, 36 were chosen for qRT-PCR [14 up-regulated and 22 down-regulated (Table 2) (ratio, 0.64)].

QRT-PCR confirmed 7 of them at the confidence interval of 95 % using the group-wise tests. In the pair-wise tests, 5 genes were significant. Two of them (DCTN6 and TPM3) were not significant in the group-wise tests (Table 3). After lowering the confidence interval to 90 %, 7 more genes were confirmed in the group-wise tests and 5 in the pair-wise tests. It is noticeable that all significant genes resultant from the qRT-PCR were downregulated. In the “trend” group, only one was upregulated in the group-wise tests (MGC16703), but three drop out (COL15A1 and CNTNAP4), and two additional ones appear in the non-significant part of the pair-wise test (KIFC2 and TUBA8). Hence, there are two tubulin genes surfacing in the pair-wise test. The significance levels of the last four genes in the pair-wise test are below 90 % confidence interval and are only shown for comparative purpose with the group-wise tests.

Potential confounds

Patients did not differ from controls regarding age, post-mortem interval (PMI), pH of CSF, and RIN values. Controls consisted of 8 men and 2 women, and schizophrenia patients were 5 men and 5 women. Therefore, the influence of gender on the results was calculated. The 36 genes included in qRT-PCR were subjected to stepwise regression and ANCOVA as described above. No influence on the expression of the nine significant structural genes was found by (i) gender, (ii) age of onset, (iii) medication in chlorpromazine equivalents (CPE) last dose and cumulative dose during the last 10 years, (iv) duration of medication, and (v) disease duration. An immunohistochemistry study also become non-significant in the pair-wise test (LAMC3, COL4A1, and MYL6), two drop out (COL15A1 and CNTNAP4), and two additional ones appear in the non-significant part of the pair-wise test (KIFC2 and TUBA8). Hence, there are two tubulin genes surfacing in the pair-wise test. The significance levels of the last four genes in the pair-wise test are below 90 % confidence interval and are only shown for comparative purpose with the group-wise tests.

Table 2 Structural genes chosen for qRT-PCR from differentially regulated genes revealed by microarrays

Struct. Gene Down	Gene ID	p value	FC	Struct. Gene Up	Gene ID	p value	FC
SV2C	NM_014979.1	0.00371605	-1.70080582	MYO15A	NM_016239.2	0.00379802	1.75784335
CDFH15	NM_004933.2	0.00390321	-1.40871141	STX16	NM_003763.3	0.00531162	1.18908491
MYL6	NM_021019.2	0.00812492	-1.28310198	TUBA8	NM_018943.1	0.01092875	1.59036875
COL4A1	NM_001845.3	0.01033501	-1.80485482	SPTBN4	NM_025213.1	0.01339469	1.21306121
KIFIR3	NM_175068.2	0.01825624	-1.40542537	ANKRD19	NM_001010925.1	0.02098038	1.42870811
CTNAP4	NM_033401.2	0.02201032	-1.78975203	MAP6	NM_033063.1	0.02190119	1.23325058
SYT6	NM_205848.1	0.02211902	-1.28653209	PLEKHA6	NM_014935.2	0.02306862	1.35253236
TNNC1	NM_003280.1	0.02385658	-1.65164908	FLRT2	NM_013231.4	0.02631036	1.35458749
STX11	NM_003764.2	0.02390039	-2.13799226	COL16A1	NM_001856.2	0.02729109	1.34794675
TPM3	NM_153649.2	0.02617573	-1.18259359	TRPV1	NM_080705.2	0.02887878	1.2567791
FLJ12056	NM_024933.2	0.02716962	-1.31591072	KIFC2	NM_145754.2	0.03033599	1.24184565
DCTN6	NM_006571.2	0.02982324	-1.18869974	PLXDC1	NM_020405.3	0.04142866	1.23724641
STX12	NM_177424.1	0.03003602	-1.13874539	MGC16703	NM_145042.2	0.04660599	1.45117471
MFAP4	NM_002404.1	0.03194134	-1.50124258	PLXNA3	NM_017514.2	0.04965694	1.23893469
PLEKHA8	NM_032639.2	0.03339197	-1.69703813				
COL15A1	NM_001855.2	0.03424211	-1.53517389				
PHLD1A	NM_007350.2	0.03702036	-1.38648581				
FLJ39155	NM_152403.2	0.03760172	-1.48267611				
PLEK	NM_002664.1	0.03928154	-1.75702778				
MYO1F	NM_012335.2	0.04072494	-2.57924603				
MTRR2	NM_201281.1	0.04809132	-1.12265023				
LAMC3	NM_006059.2	0.02377526	-1.38905428				

See also Tables S1 and S2
did not find changes in various synapse-associated proteins in rat brain under treatments with perphenazine, chlorpromazine, trifluoperazine, or haloperidol [62].

Discussion

General remarks

Presynaptic terminals are highly specialized and hierarchized structures composed of cytoskeletal and membrane elements elaborated to organize fine-tuned exo- and endocytosis of synaptic vesicles. Neurotransmitter release closely relies on the local transport of vesicles by microfilaments and attachment of vesicles to actin filaments by synapsins [4, 31]. Recently, 410 proteins have been reported to be associated with synaptic vesicles and presynaptic membranes [77]. Synaptic components are transported along the length of axons on microtubules loaded on motor proteins of the kinesin-3 family [54]. Nearly, all aspects of synapse structure and function are in a constant state of flux resulting in synapse stabilization or elimination [47, 49, 74, 79] (Fig. 2).

A new finding reveals that synapse elimination involves molecular cascades traditionally known from the innate immune system [63]. In a recent microarray study of the left STG of the same patients as investigated in this study, we found decreased expression of immune-related genes in schizophrenia, discussing their impact on synaptic function [66]. In the present microarray study, we also found downregulation of brain-derived neurotrophic factor (BDNF). This neurotrophin regulates synaptic plasticity, and a lack of BDNF results in alterations of excitatory and inhibitory synapses [15]. Moreover, its Val66Met gene polymorphism has been suggested to be involved in the pathophysiology of schizophrenia, with particular emphasis on dysfunctions of the hippocampus [21].

Altered synapse-specific components

Synaptotagmin 6 (SYT6) (down)

SYTs are known to operate by binding to calcium ions, anionic lipids, and to syntaxin (STX). Three distinct kinetic groups of SYTs have been described: SYT1–3, a fast group; SYT5, 6, 9, 10, a medium group, and SYT7, the group showing the slowest kinetics. The medium group is believed to function as calcium sensors for asynchronous release [19]. In our study, SYT6 was found to be downregulated in the left STG of schizophrenia patients. As a calcium sensor [44], it triggers exocytosis of presynaptic vesicles. Because it is a component of the asynchronous or delayed release, the duration of its action persists for longer times (10–100 ms after collapse of calcium domains).

Table 3 QRT-PCR results showing significantly regulated structural genes (bold) and genes that did not quite reach significance level

Gene symbol	Gene name	p value (2)	Gene symbol	p value (1)	Gene symbol	p value (pw)
MTMR2	Myotubularin-related protein 2	0.007121447	COL15A1	0.007070113	STX12	0.000514191
LAMC3	Laminin gamma 3	0.007877202	STX12	0.013457459	MTMR2	0.017657646
SYT6	Synaptotagmin 6	0.010554885	MTMR2	0.014776572	SYT6	0.018046627
COL15A1	Collagen XV, alpha 1	0.010614934	SYT6	0.018015277	DCTN6	0.040844042
STX12	Syntaxin 12	0.011662093	LAMC3	0.023460519	TPM3	0.042311935
COL4A1	Collagen IV, alpha 1	0.041537481	COL4A1	0.039728237	LAMC3	0.062943756
MYL6	Myosin, light chain 6	0.050687473	MYL6	0.04887248	MFAP4	0.068474312
PLEK	Pleckstrin	0.076886961	PLEK	0.07730228	KIFC2 up	0.085389609
CNTNAP4	Contactin-associated protein 4	0.089501846	MFAP4	0.083516435	TUBA8 up	0.104649699
MFAP4	Microfibril-associated protein 4	0.0901955	CNTNAP4	0.094026743	FLJ12056	0.104863175
DCTN6	Dynactin 6	0.092758551	DCTN6	0.105156826	MGC16703 up	0.113629090
FLJ12056	Ankyrin repeat domain 53	0.102586666	MGC16703 up	0.105301982	COL4A1	0.156740231
TPM3	Tropomyosin 3, variant 2	0.108070257	TPM3	0.106877524	PLEK	0.174848002
MGC16703 up	Tubulin alpha, pseudo	0.108094601	FLJ12056	0.217773003	MYL6	0.190495998

Three tests have been performed: two-tailed (2), one-tailed (1) group-wise, and pair-wise (pw) t-tests. Note that downregulated genes are overrepresented compared to genes from Table 2 and that some genes not significant in group-wise tests are significant in pair-wise tests.
Influenced by the calcium-synaptotagmin complex, synaptobrevin and syntaxin form a type of ion channel that opens to form the fusion pore [24]. Reduced expression of SYT6, hence, attenuates calcium-triggered neurotransmitter release. The deficits here observed in schizophrenia patients could compromise phasic release.

Syntaxin 12 (STX12) (down)

Presynaptic vesicle proteins like synaptosome-associated protein 25 (SNAP-25) and syntaxin form the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex. In the anterior frontal cortex, syntaxin 1 has been reported to be decreased in schizophrenia [27]. Other members of the syntaxin group have not been investigated so far in this context. The major function of syntaxins appears to be their direct involvement in transpairing between synaptobrevin and syntaxin, which physically forces the synaptic vesicle membrane and the presynaptic membrane into contact, a final step of synaptic vesicle exocytosis.

Syntaxin 12 shows a strong localization with the endosome [78]. It modifies the affinity of the glutamate receptor GLUR2 and of the glutamate receptor interacting protein 1 (GRIP1) [75] with the endosomal protein neuron-enriched endosomal protein of 21kDa (NEEP21) and consequently GLUR2 recycling. Along these lines, SYT12/13 has been shown to be involved in recycling of various other receptors and also in neurite outgrowth [58]. Therefore, downregulation of STX12 in the STG of schizophrenia patients implies a subtle impairment of synaptogenesis.

Cytoskeletal components

Myosin light chain 6 (MYL6) (down)

Actin–myosin interactions are known to regulate dendritic spine shape. Myosins induce the formation of short, mushroom-shaped spines by enhancing actomyosin contractility or lead to spine stabilization through gelsolin capping activity [34]. Myosins can also interact with NR1 and NR2 subunits of NMDA receptors [53]. The recently discovered coiled-coil protein associated with myosin 2 and DISC1 (CAMDI) interacts with disrupted-in-schizophrenia-1 (DISC1) and influences radial migration [16]. Therefore, myosins are possibly involved in the pathophysiology of schizophrenia. Specifically, the myosin 2, 5, and 6 isoforms were found in dendritic spines, and their downregulation may alter spine shape and synaptic plasticity in schizophrenia.

Pleckstrin (PLEK) (down)

The reorganization of the actin cytoskeleton with subsequent changes of cellular morphology and cell spreading is highly dependent on phosphorylated pleckstrin [28, 39]. Pleckstrin has been associated with schizophrenia (linked to a catechol-o-methyltransferase Val108/158 Met functional polymorphism), and Sei et al. [69] have recently reported that neuregulin1-Erb signaling is PI3K/Akt/Pleckstrin dependent and impaired in patients with schizophrenia.
Tropomyosin 3, variant 2 (TPM3) (down)

Tropomyosin (Tm) isoforms, integral components of actin microfilaments, form coiled-coil head-to-tail dimers that bind actin polymers [55]. In vitro studies have implicated Tms in the stabilization of the actin cytoskeleton by protecting actin filaments from the severing action of gelsolin [29] and the depolymerising action of ADF/cofilin [3]. Decreased expression of the high-molecular-weight tropomyosin isoform Tm3 (zTMSlow, = tropomyosin 3/TPM3) in schizophrenia may result in an initial inhibition of neurite outgrowth followed by a significant decrease in the number and length of dendrites [64]. In a proteomic study of the left STG in the same cohort of schizophrenia patients and controls, Martins-de-Souza et al. [42] found down-regulation of tropomyosin alpha 3 chain, confirming our results on gene expression.

Tubulin alpha pseudogene (MGC16703) and tubulin alpha (up)

Microtubules are composed of alpha-tubulin and beta-tubulin heterodimers and are known to play a vital role in numerous cellular processes including intracellular trafficking, migration, and mitosis [33]. In adulthood, Tubala is expressed in neurons of the olfactory bulb, the rostral migratory stream, and the dentate gyrus [10]. Its role in hippocampal neurogenesis has been proposed recently [32]. To date, its specific role in the pathophysiology of schizophrenia is unknown. Our results are confirmed by a recent proteomic investigation of the same region in the same cohort of schizophrenia patients showing down-regulation of tubulin beta-5 chain, tubulin alpha-1 chain, and tubulin alpha-ubiquitous chain, whereas tubulin beta-3 chain was upregulated [42]. The upregulation of tubulin alpha as shown in our study may be a compensatory reaction to altered protein expression.

Myotubularin-related protein 2 (MTMR2) (down)

Myotubularin-related protein 2 belongs to the families of phosphotyrosine phosphatase/dual specificity phosphatase (PTP/DSP), and its likely physiological substrate is phosphatidylinositol (3,5) bisphosphate, a key regulator of vesicle transport [51]. Mutations in MTMR2 cause the autosomal recessive Charcot–Marie–Tooth (CMT)-type 4B1 demyelinating neuropathy [36], which is characterized by reduced nerve conduction velocity and focally folded myelin sheets in peripheral nerves [59]. The substrate specificity of active MTMRs suggests a function in endocytosis, sorting, and degradation of proteins in early or late phases of endocytosis. Loss of function produces abnormalities in cell adhesion and cell polarity [6]. Along these lines, it has been found to interact with the membrane-associated guanylate kinase-like (MAGUK) protein complex, which is typically localized in postsynaptic densities of central neurons [5]. Interestingly, it has been shown that MTMR2 requires a Pleckstrin homology-GRAM domain for membrane association [2], and both MTMR2 and PLEK have been found here to be downregulated in the STG of schizophrenia patients.

Dynactin 6 (DCTN6) (down)

Dynactin plays a role in regulating or coordinating the functions of dynein, which is responsible for a variety of microtubule-based movements of vesicles and organelles [40]. The final process of terminal branching, synaptogenesis, and stabilization of sensory axons requires the dynein–dynactin complex [48]. In the pathophysiology of schizophrenia, aberrant synaptic trafficking of endosomal vesicles has been suggested [61]. In this context, the dynactin complex has been reported to interact with dysbindin and disrupted-in-schizophrenia-1 (DISC1), both of them being confirmed as risk genes of schizophrenia [43].

Components of the extracellular matrix

Laminin gamma 3 (LAMC3) (down)

Formation and maintenance of synapses in the mammalian nervous system is critically dependent on extracellular matrix (ECM) molecules. Laminin has been implicated in the morphogenesis of the nervous system due to its increased expression along CNS developing pathways [46] and its ability to promote cell migration, differentiation, and axonal guidance. Laminins are produced mainly in glia cells [57], but also in neurons [22]. The specific function of the gamma3 chain in synapse formation is unknown. We are here the first to report decreased expression of laminin in the STG in schizophrenia. In the parieto-occipital cortex, increased laminin protein has been reported along with no alterations on the mRNA level [35].

Collagens XV alpha 1 and IV alpha 1 (COL15A1, COL4A1) (down)

Developmental expression of different isoforms of collagen ensures the precise maturation and proper function of a synapse throughout different phases of a neuron. Therefore, it comes of no surprise that disturbances of collagen expression is related to severe disorders, such as HANAC (Hereditary Angiopathy, Nephropathy, Aneurysms, and Cramps) syndrome, a COL4A1-related disorder that presents with retinal tortuosity and muscle cramps and with variable combinations of small vessel brain disease [56], or...
the “COL4A1 stroke syndrome” [81]. Furthermore, COL4A1 malfunction has been associated with cerebral microangiopathy, the Axenfeld-Rieger anomaly, and leukoencephalopathy and stroke [71]. Collagen XV is pivotal to peripheral nerve maturation. Lack of collagen XV and laminin z4 leads to severely impaired radial sorting and myelination, compromising the maturation of peripheral nerves [60]. Furthermore, several other forms of collagen accumulate at the synaptic cleft. In a recent study, it was reported that col19a1, the gene encoding non-fibrillar collagen XIX, is expressed by subsets of hippocampal neurons. These subsets of synaptotagmin 2 (Syt2)-containing hippocampal interneurons (neuropeptide Y (NPY), somatostatin (Som)-, and calbindin (Calb)-immunoreactive interneurons) with inhibitory synapses appear malformed in the absence of collagen XIX [76]. Therefore, downregulation of collagens is in line with a dysfunction of GABAergic interneurons in schizophrenia [9, 17].

Microfibril-associated protein 4 (MFAP4) (down)

Microfibril-associated protein 4 is a collagen-binding protein that resides in the extracellular matrix in association with elastic fibers and binds to the collagen-like domain of surfactant protein A (SP-A). Moreover, it binds in a calcium-dependent manner to gelatine and the collagen-like domain of SP-D [37]. The Marfan-syndrome, a disease of microfibril dysfunction, has been associated with schizophrenia in multiple case reports [38]. To date, we are the first to report downregulation of MFAP4 in schizophrenia.

Axon-associated component: relevance for schizophrenia

Contactin-associated protein-like 4 (CNTNAP4) (down)

Contactin-associated protein is uniquely expressed in the nervous system and found together with contactin at the paranodal junctions between axons and the terminal loops of oligodendrocytes. It is a transmembrane protein, displaying high structural similarity with neurexins. [45]. Its downregulation is in line with the hypothesis of dysfunction of connectivity based on dysfunctional oligodendrocyte-neuronal interactions in schizophrenia [65, 67].

Limitations

One limitation of the study is the false discovery rate contained in the microarray data, likely to be carried over to qRT-PCR evaluations. This implies that the risk of false positive findings cannot be neglected, especially in the microarray analysis, where a large number of genes (>24,000) was analyzed, which raises problems for multiple testing. However, when taking into consideration that a mental disorder like schizophrenia is caused by multiple genes and the contribution of each single gene is small, increasing the statistical stringency automatically entails a loss of biological information. It is possible that the statistically most significant genes are not the most important ones on a functional level considering an interplay of genes in complex pathways. Admittedly, the study should be confirmed in an independent sample.

Conclusions

Our results of several differentially expressed genes in the left STG confirm that schizophrenia is a multifactorial disorder leading to alterations in several disease-related pathways (Fig. 2). All genes confirmed by qRT-PCR to be significantly regulated were downregulated. This strongly supports the notion of a general weakening of synaptic strength, disturbances of connectivity, and subsequent axon retraction in schizophrenia. It is well in accordance with the morphological findings of volume loss in the STG. The results, however, do not reveal whether or not the downregulation of structural elements prefers certain types of neurons, for example, glutamatergic or allow predictions about the course of events, that is, primary destabilization of ECM elements followed by depolymerization of actin and degradation of myosin and tubulin. Moreover, the results do not provide evidence of the driving forces of these down-regulations, which could be changes in transcription factor activities but also epigenetic changes on DNA promoter or intron sequences. To obtain some idea of these mechanisms, it is necessary to investigate younger populations of schizophrenia patients and animal models of risk factors of schizophrenia during brain development [73].

Acknowledgments This study was supported by the European Commission under the Sixth Framework Programme (BrainNet Europe II, LSHM-CT-2004-503039). The paper reflects only the authors’ views, and the Community is not liable for any use that may be made of it. The authors would like to thank Manfred Bauer for brain preparation and Udo Rueb for Braak staging. MHH would like to acknowledge the support by FONDECYT-Chile (#108-0447; #109-5021), and DAAD/CONICYT International collaboration grants. The valuable suggestions for the statistics by T. Schneider-Axmann and the expert technical assistance by E. Roebel are greatly acknowledged. All authors confirm that there are no conflicts of interests.

Conflict of interest P. J. Gebicke-Haerter, M. Herrera-Marschitz, R. Spanagel, T. Reynolds, P. F. Durrenberger, T. Arzberger, F. Leonardt-Essmann, and H. Kretzschmar report no conflicts of interest. A. Schmitt was honorary speaker for TAD Pharma. M. Zink received unrestricted scientific grants of Pfizer Pharma GmbH and Bristol-Myers Squibb Pharmaceuticals; further speaker and travel grants were provided from AstraZeneca, Lilly, Pfizer Pharma GmbH, Bristol-Myers Squibb Pharmaceuticals, and Janssen Cilag. P. Falkai was...
References

1. Antonova E, Kumari V, Morris R, Halari R, Anilkumar A, Mehrotra R, Sharma T (2005) The relationship of structural alterations to cognitive deficits in schizophrenia: a voxel-based morphometry study. Biol Psychiatry 58(6):457–467
2. Burger P, Schaftitzel C, Berger I, Ban N, Suter U (2003) Membrane association of myotubulin-related protein 2 is mediated by a pleckstrin homology-GRAM domain and a coiled-coil dimerization module. Proc Natl Acad Sci USA 100(21):12177–12182
3. Bernstein BW, Bamburg JR (1982) Tropomyosin binding to F-actin protects the F-actin from disassembly by brain actin-depolymerizing factor (ADF). Cell Motil 2(1):1–8
4. Bloom O, Evergren E, Timonin K, Järlulf L, Löw P, Brodin L, Pieribone VA, Greengard P, Shupliakov O (2003) Colocalization of synapsin and actin during synaptic vesicle recycling. J Cell Biol 161(4):737–747
5. Bolino A, Bolis A, Previtali SC, Dina G, Bussini S, Dati G, Amadio S, del Carro U, Mnuk DD, Feltri ML, Cheng CY, Quattrini A, Wrabetz L (2004) Disruption of Mtrm2 produces CMT4B1-like neuropathy with myelin outfiloding and impaired spermatogenesis. J Cell Biol 167(4):711–721
6. Bolis A, Croviello S, Bussini S, Dina G, Pardini C, Previtali SC, Malaguti M, Morana P, del Carro U, Feltri ML, Quattrini A, Wrabetz L, Bolino A (2005) Loss of Mtrm2 phosphatase in Schwann cells but not in motor neurons causes Charcot-Marie-Tooth type 4B1 neuropathy with myelin outfoldings. J Neurosci 25(37):8567–8577
7. Bowden NA, Scott RJ, Tooney PA (2008) Altered gene expression in the superior temporal gyrus in schizophrenia. BMC Genomics 9:199
8. Braak H, Alafuzoff I, Arzberger T, Kretzschmar H, Del Tredici K (2006) Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol 108:128–137
9. Caceda R, Kinkead B, Nemeroer CB (2007) Involvement of neuropetide systems in schizophrenia: human studies. Int Rev Neurobiol 78:327–376
10. Cocksaygan T, Magnus T, Cai J, Mughal M, Lepore A, Xue H, Fischer I, Rao MS (2006) Neurogenesis in Talpa-1 tubulin transgenic mice during development and after injury. Exp Neurol 197(2):475–485
11. de Jonge HJ, Fehrmann RS, de Bont ES, Hofstra RM, Gerbens F, Kamps WA, de Vries EG, van der Zee AG, te Meeran GJ, te Etst A (2007) Evidence based selection of housekeeping genes. PLoS ONE 2(9):e898
12. Eastwood SL, Harrison PJ (2005) Decreased expression of vesicular glutamate transporter 1 and complexin II mRNAs in schizophrenia: further evidence for a synaptic pathology affecting glutamate neurons. Schizophr Res 73(2–3):159–172
13. Ellison-Wright I, Bullmore E (2009) Meta-analysis of diffusion tensor imaging studies in schizophrenia. Schizophr Res 108(1–3):3–10
14. Falkai P, Schmitt A, Cannon TD (2011) Pathophysiology of schizophrenia. In: Gaebel W (ed) Schizophrenia: current science and clinical practice. Wiley-Blackwell, New York, pp 31–65
15. Favalli G, Li J, Belmonte-de-Abreu P, Wong AH, Daskalakis ZJ (2012) The role of BDNF in the pathophysiology and treatment of schizophrenia. J Psychiatr Res 46(1):1–11
16. Fukuda T, Sugita S, Inatome R, Yanagi S (2010) CAMDI, a novel disrupted in schizophrenia 1 (DISC1)-binding protein, is required for radial migration. J Biol Chem 285(52):40554–40461
17. Fung SJ, Webster MJ, Sivaganasundaram S, Duncan C, Elashoff M, Weickert CS (2010) Expression of interneuron markers in the dorsolateral prefrontal cortex in the developing human and in schizophrenia. Am J Psychiatry 167(12):1479–1488
18. García-Martí G, Aguilar EJ, Lull JJ, Martí-Bonmatí L, Escartí MJ, Manjón JV, Morata D, Robles M, Sanjuán J (2008) Schizophrenia with auditory hallucinations: a voxel-based morphometry study. Prog Neuropsychopharmacol Biol Psychiatry 32(1):72–80
19. Geppert M, Goda Y, Hammer RE, Li C, Rosahl TW, Stevens CF, Südhof TC (1994) Synaptotagmin I: a major Ca2+: sensor for transmitter release at a central synapse. Cell 79(4):717–727
20. Glantz LA, Lewis DA (2000) Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch Gen Psychiatry 57:65–73
21. Gruber O, Hasan A, Scherk H, Wobrock T, Schneider-Axmann T, Schmitt A, Backens M, Reith W, Meyer J, Falkai P (2012) Association of the brain-derived neurotrophic factor (BDNF) val66met polymorphism with magnetic resonance spectroscopic markers in the human hippocampus: in vivo evidence for effects on the glutamate system. Eur Arch Psychiatry Clin Neurosci 21 [Epub ahead of print]
22. Hagg T, Portera-Cailliau C, Jucker M, Engvall E (1997) Laminins of the adult mammalian CNS; laminin-alpha2 (merosin-M) chain immunoreactivity is associated with neuronal processes. Brain Res 764(1–2):17–27
23. Hakay K, Walker JR, Li C, Wong WH, Davis KL, Buxbaum JD, Haroutunian V, Fienberg AA (2001) Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. Proc Natl Acad Sci USA 98:4746–4751
24. Han X, Wang CT, Bai J, Chapman ER, Jackson MB (2004) CAMDI, a novel synaptic vesicle recycling molecule. Proc Natl Acad Sci USA 101(3):653–657
25. Haroutunian V, Katsel P, Dracheva S, Stewart DG, Davis KL (2007) Variations in oligodendrocyte-related gene expression across multiple cortical regions: implications for the pathophysiology of schizophrenia. Int J Neurouropharmacol 10(4):565–573
26. Hazlett EA, Buchsbaum MS, Haznedar MM, Newmark R, Goldstein KE, Zelmanova Y, Glanton CF, Torresan Y, New AS, Lo JN, Mitropoulou V, Siever LJ (2008) Cortical gray and white matter volume in unmedicated schizotypal and schizophrenia patients. Schizophr Res 101(1–3):111–123
27. Honer WG, Falkai P, Bayer TA, Xie J, Hu L, Li HY, Arango V, Mann JJ, Dwork AJ, Trimble WS (2002) Abnormalities of SNARE mechanism proteins in anterior frontal cortex in severe mental illness. Cereb Cortex 12(4):349–356
28. Imai K, Nonoyama S, Miki H, Morio T, Fukami K, Zhu Q, Aruffo A, Ochs HD, Yata J, Takenawa T (1999) The pleckstrin homology domain of the Wiskott-Aldrich syndrome protein is involved in the organization of actin cytoskeleton. Clin Immunol 92(2):128–137
29. Ishikawa R, Yamashiro S, Matsumura F (1989) Differential modulation of actin-severing activity of gelsolin by multiple isoforms of cultured rat cell tropomyosin. Potentiation of protective ability of tropomyosins by 83-kDa nonmuscle caldesmon. J Biol Chem 264(13):7490–7497
30. Jahn T, Mussgay L (1989) Die statistische Kontrolle möglicher Medikamenteneinflüsse in experimentalpsychologischen Schizophreniestudien: ein Vorschlag zur Berechnung von Chlorpromazinäquivalenten. Z Klin Psychol 18:257–267

31. Jockusch BM, Rothkegel M, Schwarz G (2004) Linking the synapse to the cytoskeleton: a breathing-taking role for microfilaments. NeuroReport 15(10):1535–1538

32. Keays DA, Cleak J, Huang GJ, Edwards A, Braun A, Treiber CD, Pidsley R, Flint J (2010) The role of Tuba1a1 in adult hippocampal neurogenesis and the formation of the dentate gyrus. Dev Neurosci 32(4):268–277

33. Khodiyar VK, Malaisi LJ, Ruff BC, Sneddon KM, Smith JR, Shimoyama M, Cabral F, Dumontet C, Dutcher SK, Harvey RJ, Lafanechère L, Murray JM, Nogales E, Piquemal D, Stanchi F, Povey S, Lovering RC (2007) A revised nomenclature for the human and rodent alpha-tubulin gene family. Genomics 90(2):285–289

34. Korobova F, Svitkina T (2010) Molecular architecture of synaptic actin cytoskeleton in hippocampal neurons reveals a mechanism of dendritic spine morphogenesis. Mol Biol Cell 21(1):165–176

35. Laienfeld D, Karry R, Klein E, Ben-Shachar D (2005) Alterations in cell adhesion molecule L1 and functionally related genes in major depression: a post-mortem study. Biol Psychiatry 57:716–726

36. Laporte J, Bedez F, Bolino A, Mandel JL (2003) Myotubularins, a large disease-associated family of cooperating catalytically active and inactive phosphoinositides phosphatases. Hum Mol Genet 12 Spec No 2:R285–R92

37. Lausen M, Lynch N, Schlosser A, Toraee I, Saekmose SG, Teisner B, Willis AC, Crouch E, Schwaebel W, Holmkov U (1999) Microfilibril-associated protein 4 is present in lung washings and binds to the collagen region of lung surfactant protein D. J Biol Chem 274(45):32234–32240

38. Lemberg M, Thompson AW (2010) Marfan syndrome and schizophrenia: a case report and literature review. Gen Hosp Psychiatry 32(2):228.e9–228.e10

39. Ma AD, Abrams CS (1999) Pleckstrin induces cytoskeletal reorganization via a Rac-dependent pathway. J Biol Chem 274(40):28730–28735

40. Mallik R, Gross SP (2004) Molecular motors: strategies to get along. Curr Biol 14(22):R971–R982

41. Martí-Bonmatí L, Lull JJ, García-Martí G, Aguilar EJ, Moratal-XV impairs peripheral nerve maturation and, when combined with laminin-411 deficiency, leads to basement membrane abnormalities and sensorimotor dysfunction. J Neurosci30(43):14490–14501

42. Martins-de-Souza D, Gattaz WF, Schmitt A, Novello JC, Mastrandone M, Avila RL, Kirschner D, Muona A, Tolonen U, Tanila H, Huhtala P, Soininen R, Pihlajaniemi T (2010) Lack of collagen XIX impairs peripheral nerve maturation and, when combined with laminin-411 deficiency, leads to basement membrane abnormalities and sensorimotor dysfunction. J Neurosci30(43):14490–14501

43. Martin-de-Souza D, Gattaz WF, Schmitt A, Novello JC, Mastrandone M, Avila RL, Kirschner D, Muona A, Tolonen U, Tanila H, Huhtala P, Soininen R, Pihlajaniemi T (2010) Lack of collagen XIX impairs peripheral nerve maturation and, when combined with laminin-411 deficiency, leads to basement membrane abnormalities and sensorimotor dysfunction. J Neurosci30(43):14490–14501

44. Millet O, Bernado P, Garcia J, Rizo J, Pons M (2002) NMR the synaptotagmin I C2A domain. FEBS Lett 516(1–3):93–96

45. Missler M, Sándorfi TC (1998) Neurexophins form a conserved family of neuropeptide-like glycoproteins. J Neurosci 18(10):3630–3638

46. Morissette N, Carbonetto S (1995) Laminin alpha 2 chain (M chain) is found within the pathway of avian and murine retinal projections. J Neurosci 15(12):8067–8082

47. Moskowitz HS, Yokoyama CT, Ryan TA (2005) Highly cooperative control of endocytosis by clathrin. Mol Biol Cell 16(4):1769–1776

48. Murphy RK, Caruccio PC, Getzinger M, Westgate PJ, Phillips RW (1999) Dynemin-dynactin function and sensory axon growth during Drosophila metamorphosis: a role for retrograde motors. Dev Biol 209(1):86–97

49. Neher E, Sakaba T (2001) Estimating transmitter release rates from postsynaptic current fluctuations. J Neurosci 21(24):9638–9654

50. Nieuwenhuys R, Voogd J, van Huijzen C (2007) The human central nervous system. Springer

51. Odorizzi G, Babst M, Emr SD (1998) Fab1p PtdIns(3)P 5-kinase function essential for protein sorting in the multivesicular body. Cell 95(6):847–858

52. Olney JW, Farber NB (1995) Glutamate receptor dysfunction and schizophrenia. Arch Gen Psychiatry 52(12):998–1007

53. Osterweil E, Wells DG, Mooseker MS (2005) A role for myosin VI in postsynaptic structure and glutamate receptor endocytosis. J Cell Biol 168(2):329–338

54. Pack-Chung E, Fawcett JW, Geller HM (1997) Proteoglycans provide內の環境での制御をat an astrocyte boundary. Mol Cell Neurosci 10(1–2):27–42

55. Pack-Chung E, Fawcett JW, Geller HM (1997) Proteoglycans provide to an astrocyte boundary. Mol Cell Neurosci 10(1–2):27–42

56. Pack-Chung E, Fawcett JW, Geller HM (1997) Proteoglycans provide to an astrocyte boundary. Mol Cell Neurosci 10(1–2):27–42

57. Powell EM, Fawcett JW, Geller HM (1997) Proteoglycans provide to an astrocyte boundary. Mol Cell Neurosci 10(1–2):27–42

58. Prekeris R, Foletti DL, Scheller RH (1999) Dynamics of tubulin filaments. J Biol Chem 274(17):10813–10818

59. Quattrone A, Gambardella A, Bono F, Aguglia U, Bolino A, Bruni AC, Montesi MP, Oliveri RL, Sabatelli M, Tamburrini O, Valentino P, Van Broeckhoven C, Zampi M (1996) Autosomal recessive hereditary motor and sensory neuropathy with focally folded myelin sheaths: clinical, electrophysiologic, and genetic aspects of a large family. Neurology 46(5):1318–1324

60. Rasi K, Hurskainen M, Kallio M, Stavén S, Sormunen R, Heape AM, Avila RL, Kirschner D, Muona A, Tolonen U, Tanila H, Huhtala P, Soininen R, Pihlajaniemi T (2010) Lack of collagen XIX impairs peripheral nerve maturation and, when combined with laminin-411 deficiency, leads to basement membrane abnormalities and sensorimotor dysfunction. J Neurosci 30(43):14490–14501

61. Ryder PV, Faundez V (2009) Schizophrenia: the “BLOC” may be in the endosomes. Sci Signal 2(93):pe66

62. Sawada K, Young CE, Barr AM, Longworth K, Takahashi S, Arango V, Mann JJ, Dwork AJ, Falkai P, Phillips AG, Honer WG (2002) Altered immunoreactivity of complexin protein in prefrontal cortex in severe mental illness. Mol Psychiatry 7(5):484–492

63. Schaefer DP, Stevens B (2010) Synapse elimination during development and disease: immune molecules take centre stage. Biochem Soc Trans 38(2):476–481

64. Schevzov G, Bryce NS, Almog-Baldonaro R, Joya J, Lin JJ, Hardeman E, Weinberger R, Gunning P (2005) Specific features of neuronal size and shape are regulated by postsynaptic isoforms. Mol Biol Cell 16(7):3425–3437

65. Schmitt A, Steyskal C, Bernstein HG, Parlapani E, Schaeffer EL, Gattaz WF, Bogerts B, Schmitz C, Falkai P, Piovella E, Schaeffer EL, Gattaz WF, Bogerts B, Schmitz C, Falkai P (2009) Stereologic investigation of the posterior part of the hippocampus in schizophrenia. Acta Neuropathol 117(4):395–407

66. Schmitt A, Leonard-Diessmann C, Durrenberger PF, Parlapani E, Schneider-Axmann T, Spanghel R, Arzberger T, Kretzschmar H, Herrera-Marschitz M, Gruber O, Reynolds R, Falkai P, Gebicke-Haerter PJ (2011) Regulation of immune-modulatory genes in left superior temporal cortex of Schizophrenia patients: a genome-wide microarray study. World J Biol Psychiatry 12:201–215
67. Schmitt A, Hasan A, Gruber O, Falkai P (2011) Schizophrenia as a disorder of disconnectivity. Eur Arch Psychiatry Clin Neurosci 261(Suppl 2):S150–S154
68. Schroeder A, Mueller O, Stocker S, Salowsky R, Leiber M, Gassmann M, Lightfoot S, Menzel W, Granzow M, Ragg T (2006) The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Mol Biol 31(7):3
69. Sei Y, Li Z, Song J, Ren-Patterson R, Tunbridge EM, Lizuka Y, Inoue M, Alfonso BT, Beltafia S, Nakai Y, Kolachana BS, Chen J, Weinberger DR (2010) Epistatic and functional interactions of catechol-o-methyltransferase (COMT) and AKT1 on neuregulin1-ErbB signaling in cell models. PLoS ONE 5(5):e10789
70. Shenton ME, Dickey CC, Frumin M et al (2001) A review of MRI findings in schizophrenia. Schizophr Res 49:1–52
71. Sibon I, Coupry I, Menegon P, Bouchet JP, Gorry P, Buriglin I, Calvas P, Origonc I, Dousset V, Lacombe D, Orgogozo JM, Arveiler B, Goizet C (2007) COL4A1 mutation in Axenfeld-Rieger anomaly with leukoencephalopathy and stroke. Ann Neurol 62(2):177–184
72. Sokolov BP, Tcherepanov AA, Haroutunian V, Davis KL (2000) Levels of mRNAs encoding synaptic vesicle and synaptic plasma membrane proteins in the temporal cortex of elderly schizophrenic patients. Biol Psychiatry 48(3):184–196
73. Sommer U, Schmitt A, Heck M, Schaeffer EL, Fendt M, Zink M, Petroianu G, Nieselt K, Symons S, Lex A, Herrera-Marschitz M, Spanagel R, Falkai P, Gebicke-Haerter P (2010) Differential expression of glutamate- and GABA-related presynaptic genes in a rat model of postnatal hypoxia: relevance to schizophrenia. Eur Arch Psychiatry Clin Neurosci 260(Suppl 2):S81–S89
74. Star EN, Kwiatkowski DJ, Murthy VN (2002) Rapid turnover of actin in dendritic spines and its regulation by activity. Nat Neurosci 5:239–246
75. Steiner P, Alberi S, Kulangara K, Yersin A, Sarria JC, Regulier E, Kasas S, Dietler G, Muller D, Catsicas S, Hirling H (2005) Interactions between NEEP21, GRIP1 and GluR2 regulate sorting and recycling of the glutamate receptor subunit GluR2. EMBO J 24(16):2873–2884
76. Su J, Gorse K, Ramirez F, Fox MA (2010) Collagen XIX is expressed by interneurons and contributes to the formation of hippocampal synapses. J Comp Neurol 518(2):229–253
77. Takamori S, Holt M, Stenius K, Lernke EA, Gronnborg M, Riedel D, Urlaub H, Schenck S, Brügger B, Ringler P, Müller SA, Rammner B, Gräter F, Hub JS, De Groot BL, Mieskes G, Moriyama Y, Klingauf J, Grubmüller H, Heuser J, Wieland F, Jahn R (2006) Molecular anatomy of a trafficking organelle. Cell 127(4):831–846
78. Tang BL, Tan AE, Lim K, Lee SS, Low DY, Hong W (1998) Syntaxin 12, a member of the syntaxin family localized to the endosome. J Biol Chem 273(12):6944–6950
79. Tsuriel S, Geva R, Zamorano P, Dresbach T, Boeckers T, Gundelfinger ED, Garner CC, Ziv NE (2006) Local sharing as a predominant determinant of synaptic matrix molecular dynamics. PLoS Biol 4(9):e271
80. Vandesompele J, de Preter K, Pattyn F, Poppe B, van Roy N, de Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3(7):RESEARCH0034
81. Volonghi I, Pezzini A, del Zotto E, Giossi A, Costa P, Ferrari D, Padovani A (2010) Role of COL4A1 in basement-membrane integrity and cerebral small-vessel disease. The COL4A1 stroke syndrome. Curr Med Chem 17(13):1317–1324
82. Weinberger DR (1996) On the plausibility of “the neurodevelopmental hypothesis” of schizophrenia. Neuropsychopharmacology 14:1S–11S
83. Weng L, Dai H, Zhan Y, He Y, Stephanian SB, Bassett DE (2006) Rosetta error model for gene expression analysis. Bioinformatics 22(9):1111–1121
84. Wright IC, Rabe-Hesketh S, Woodruff PW et al (2000) Meta-analysis of regional brain volumes in schizophrenia. Am J Psychiatry 157(1):16–25