Nondivergent deflection of light around a photon sphere of a compact object

Ryuya Kudo and Hideki Asada
Graduate School of Science and Technology, Hirosaki University, Aomori 036-8561, Japan
(Dated: March 24, 2022)

We demonstrate that the location of a stable photon sphere (PS) in a compact object is not always an edge such as the inner boundary of a black hole shadow, whereas the location of an unstable PS is known to be the shadow edge notably in the Schwarzschild black hole. If a static spherically symmetric (SSS) spacetime has the stable outermost PS, the spacetime cannot be asymptotically flat. A nondivergent deflection is caused for a photon traveling around a stable PS, though a logarithmic divergent behavior is known to appear in most of SSS compact objects with an unstable photon sphere. The reason for the nondivergence is that the closest approach of a photon is prohibited in the immediate vicinity of the stable PS when the photon is emitted from a source (or reaches a receiver) distant from a lens object. The finite gap size depends on the receiver and source distances from the lens as well as the lens parameters. The mild deflection angle of light can be approximated by an arcsine function. A class of SSS solutions in Weyl gravity exemplify the nondivergent deflection near the stable outer PS.

I. INTRODUCTION

Since the first measurement by Eddington and his collaborators [1], the gravitational deflection of light has offered us a powerful tool for tests of gravitational theories including the theory of general relativity as well as for astronomical probes of dark matter. The Event Horizon Telescope (EHT) team has recently succeeded in taking a direct image of the immediate vicinity of the central black hole candidate of M87 galaxy [2]. In addition, the same team has just reported measurements of linear polarizations around the same black hole candidate [3], which has led to an estimation of the mass accretion rate [4]. These observations have increased our renewed interest in the strong deflection of light in the strong gravity region.

The strong deflection of light by Schwarzschild black hole was pointed out by Darwin [5]. This phenomenon is closely related with a photon sphere (PS) that, with a horizon, features black holes and other compact objects [6–40]. A photon surface for a less symmetric case is a generalization of PSs [43].

Many years later, Bozza showed that the strong deflection behavior in Schwarzschild black hole can be well described as the logarithmic divergence in the deflection angle [6]. Such a strong deflection as the logarithmic divergence occurs also in other exotic objects such as wormholes. For instance, Tsukamoto conducted several extensions of Bozza method for the strong deflection of light [7, 8], in which the logarithmic behavior is shown to be a quite general feature for a static and spherically symmetric (SSS) compact object that has a PS, e.g. Ellis wormholes. The logarithmic behavior in the strong deflection for a finite-distance receiver and source has been recently confirmed [41] by solving the exact gravitational lens that stands even for an asymptotically nonflat spacetime [42–44].

There exists a single PS outside the horizon of the Schwarzschild black hole, while Ellis wormhole has a PS without horizons. For both cases, the number of PSs is one. Tsukamoto obtained the logarithmic behavior for such a SSS spacetime with a single PS, which was assumed to be unstable. In both of Schwarzschild black hole and Ellis wormhole, there exists only the unstable PS. Cunha et al. have recently proven that ultra-compact objects have an even number of PSs, one of which is stable [45]. Regarding the interesting theorem, Hod has found an exception for horizonless spacetimes that possess no stable PS [46]. What happens, if the PS is stable and a light ray is deflected around the stable PS?

The main purpose of the present paper is to study the deflection of light around a PS when the PS is stable in a SSS spacetime. This situation has not often been considered in detail e.g. [47–49], except for Hasse and Perlick (2002) [47] that provided a theorem on a connection among three properties of (1) the presence of a PS for a saddle point case and a stable case as well as an unstable one, (2) the centrifugal force reversal and (3) infinitely many images in any SSS spacetime. Hasse and Perlick (2002), however, did not calculate the deflection angle of light, because they focused on the multiple imaging [47]. We shall show that, in stead of the logarithmic type of the strong deflection, a mild deflection is caused near the stable PS.

This paper is organized as follows. In Section II, we reexamine the deflection angle of light when there exists a stable outer PS in a SSS spacetime. In Section III, we study how light is deflected in the presence of the stable outer PS. It is shown that the deflection behavior is not too strong to make the logarithmic divergence but mild enough to be approximated by an arcsine function. As an example for such a mild deflection of light, we consider a class of Weyl gravity model in Section IV. Section V concludes the present paper. Throughout this paper, we use the unit of \(G = c = 1 \).
II. DEFLECTION ANGLE INTEGRAL

A. SSS spacetime

We consider a SSS spacetime, for which the metric reads

\[ds^2 = -A(r)dt^2 + B(r)dr^2 + C(r)(d\theta^2 + \sin^2 \theta d\phi^2), \]

where \(A(r) > 0, B(r) > 0, \) and \(C(r) > 0 \) are assumed to be finite. If the SSS spacetime possesses a horizon, we focus on the outside of the horizon. We do not assume the asymptotic flatness of the spacetime. Actually, the present paper considers an asymptotically nonflat case. A lemma on this issue is given at the end of the present section.

B. Photon orbits

Without loss of generality, we can consider a photon orbit on the equatorial plane \((\theta = \pi/2)\) because of the spherical symmetry of the spacetime. On the equatorial plane in the SSS spacetime, a light ray has two constants of motion. One is the specific energy \(E \equiv A(r)\dot{t} \) and the other is the specific angular momentum \(L \equiv C(r)\dot{\phi} \), where the overdot denotes the derivative with respect to the affine parameter \(\lambda \) along the light ray.

By using the two constants \(E \) and \(L \), the impact parameter of light becomes \(b = L/E \). Without loss of generality, we assume \(b > 0 \).

In terms of \(b \), the null condition \(ds^2 = 0 \) is rearranged as the orbit equation

\[\dot{r}^2 + V(r) = 0, \]

where \(V(r) \) is defined as

\[V(r) \equiv -\frac{L^2F(r)}{B(r)C(r)}. \]

Here,

\[F(r) \equiv \frac{C(r)}{A(r)b^2} - 1. \]

The closest approach of a light ray is denoted as \(r_0 \), which satisfies \(V(r_0) = 0 \) from the definition of \(r_0 \). Henceforth, evaluation at \(r = r_0 \) is indicated by the subscript \(0 \). For instance, \(V(r_0) = 0 \) is equivalent to \(F_0 = 0 \), where \(F_0 \equiv F(r_0) \). By combining \(F_0 = 0 \) and Eq. \(4 \), we obtain

\[b = \sqrt{\frac{C_0}{A_0}}. \]

This offers a relation between \(b \) and \(r_0 \).

Following Hasse and Perlick [47], we use a particular form of the potential \(\tilde{V}(r) \) that is defined as

\[\tilde{V}(r) \equiv \frac{A(r)}{C(r)}, \]

which is conformally invariant. Thereby Eq. \(2 \) is rewritten as

\[A(r)B(r)i^2 + L^2\tilde{V}(r) - E^2 = 0. \]

This simplifies the analysis of the photon sphere and its linear perturbation, because \(\tilde{V}(r) \) depends on \(b \) as well as \(r \), whereas \(\tilde{V}(r) \) does not include \(b \). The potential \(\tilde{V}(r) \) plays the central role in the proof of a theorem that clarifies a connection among three properties of the presence of a PS, the centrifugal force reversal and infinitely many images in any SSS spacetime [47].

For the later convenience, we write down the first and second derivatives of \(\tilde{V}(r) \),

\[\tilde{V}^\prime(r) = -\frac{A(r)D(r)}{C(r)}, \]

\[\tilde{V}^{\prime\prime}(r) = -\frac{A(r)}{C(r)}\left[D^\prime(r) - D(r)^2\right], \]

where the prime denotes the differentiation with respect to \(r \), and the functions \(D \) is defined as

\[D(r) \equiv \frac{C^\prime(r)}{C(r)} - \frac{A^\prime(r)/A(r)}{C(r)}. \]

From Eq. \(7 \), we obtain

\[[A(r)B(r)]^2i^2 + 2A(r)B(r)i + L^2\tilde{V}^\prime(r) = 0. \]

Eqs. \(7 \) and \(11 \) tell that a photon orbit is a circle if and only if \(r = r_m \) satisfies \(\tilde{V}(r_m) = (b_m)^{-2} \) and \(\tilde{V}^\prime(r_m) = 0 \), where \(r_m \) denotes the radius of the PS and the subscript \(m \) denotes the value at \(r = r_m \). From \(\tilde{V}(r_m) = (b_m)^{-2} \), the impact parameter for the PS is obtained as

\[b_m = \sqrt{\frac{C_m}{A_m}}. \]

where Eq. \(6 \) is used.

C. Classification of PS stability

We consider a small displacement \(\delta r \) around the PS orbit, \(r = r_m + \delta r \). At the linear order in \(\delta r \), Eq. \(11 \) gives

\[\frac{d^2}{dr^2}(\delta r) = -\frac{L^2\tilde{V}^{\prime\prime}(r_m)}{2A_mB_m}\delta r = \frac{L^2D_m}{2B_mC_m}\delta r, \]

where Eq. \(8 \) and \(D(r_m) = 0 \) from \(\tilde{V}^\prime(r_m) = 0 \) are used.

The linear stability of the perturbed orbit is determined only by the sign of \(D_m \), because \(A(r) > 0, B(r) > 0, C(r) > 0 \) and \(L \neq 0 \). A PS is stable if \(D_m < 0 \), whereas it is unstable for \(D_m > 0 \).
From Eq. (10), we obtain
\[D'(r) = \frac{C''(r)}{C(r)} - \frac{A''(r)}{A(r)} - D(r) \left(\frac{C'(r)}{C(r)} + \frac{A'(r)}{A(r)} \right). \]

(14)

On the PS, this is reduced to
\[D'_m = \frac{C''_m}{C_m} - \frac{A''_m}{A_m}. \]

(15)

Bozza and Tsukamoto assumed \(D'_m > 0 \), which means an unstable PS \([6, 7]\). Henceforth, we focus on a stable case \(D'_m < 0 \). Such an unusual case is realized in a class of Weyl gravity model as shown in Section VI.

D. Total angle integral

From Eq. (2), we obtain
\[\frac{dr}{d\phi} = \pm \sqrt{\frac{C(r) F(r)}{B(r)}}, \]

(16)

for which we choose the plus sign without loss of generality. Integrating this from a source (denoted as S) to a receiver (denoted as R) leads to the total change in the longitudinal angle.

\[I_F(r_S, r_R, r_0) = \sum_{i=S, R} \int_{r_0}^{r_i} \frac{dr}{\sqrt{\frac{C(r) F(r)}{B(r)}}}. \]

(17)

Note that a conventional method discusses the total integral \(I \) for the asymptotic receiver and source \((r_R \to \infty \text{ and } r_S \to \infty)\) e.g. \([48–51]\), for which \(I - \pi \) gives the deflection angle of light. On the other hand, the present paper considers finite distance between the receiver and source. In order to clarify this difference, we use \(I_F \) in stead of \(I \). Rigorously speaking, \(I_F - \pi \) is not the deflection angle but \(I_F \) is the dominant component of the deflection angle. This issue is beyond the scope of this paper. See e.g. References \([48–51]\) on how to define geometrically the deflection angle for the finite-distance receiver and source.

Following Bozza and Tsukamoto \([6, 7]\), we introduce a variable as
\[z = 1 - \frac{r_0}{r}, \]

(18)

to rewrite Eq. (17) as
\[I_F(z_S, z_R, r_0) = \sum_{i=S, R} \int_{z_0}^{z_i} f(z, r_0) dz, \]

(19)

where we define \(z_i = 1 - r_0/r_i \) \((i = R, S)\),
\[H(z, r_0) = \frac{CF}{B}(1 - z)^4, \]

(20)

and
\[f(z, r_0) = \frac{r_0}{\sqrt{H(z, r_0)}}. \]

(21)

In the next subsection, we shall examine the integrand in Eq. (19).

E. Analysis in the vicinity of PS

By noting \(F_0 = 0 \), the function \(H \) is expanded around \(r = r_0 \) \((z = 0)\) as
\[H(z, r_0) = \sum_{n=1}^{\infty} c_n(r_0) z^n, \]

(22)

where
\[c_1(r_0) = \frac{C_0 D_0 r_0}{B_0}, \]

(23)
\[c_2(r_0) = \frac{C_0}{B_0} \left[D_0 r_0 \left(\frac{C_0'}{C_0} - \frac{B_0'}{B_0} - 3 \right) + \frac{r_0^2}{2} (D_0' + D_0) \right], \]

(24)
\[c_3(r_0) = \frac{C_0}{B_0} \left[D_0 r_0 \left(\frac{3B_0' r_0}{B_0} - \frac{3C_0' r_0}{C_0} - \frac{B_0 C_0'' r_0^2}{C_0 B_0} - 3 \right) \right. \]
\[+ \left. \frac{r_0^2}{2} (D_0' + D_0) \left(\frac{C_0 r_0}{C_0} - \frac{B_0 r_0}{B_0} - 2 \right) \right) \]
\[+ \frac{r_0^3}{6} (D_0' + 3D_0 D_0 + D_0''). \]

(25)

When the closest approach is located near the PS \((r_0 = r_m)\), Eqs. (23) - (25) become
\[c_1(r_m) = 0, \]

(26)
\[c_2(r_m) = \frac{r_m^2 C_m D_m}{2B_m}, \]

(27)
\[c_3(r_m) = \frac{r_m^2 C_m}{2B_m} \left[D_m' \left(\frac{C_m r_m}{C_m} - \frac{B_m' r_m}{B_m} - 2 \right) + \frac{r_m D_m''}{3} \right]. \]

(28)

From Eqs. (26) - (28), we find
\[H(z, r_m) = c_2(r_m) z^2 + O(z^3). \]

(29)

If the PS is unstable (stable), namely \(D_m' > 0 \) \((D_m' < 0)\), then, \(c_2(r_m) > 0 \(< 0)\). As pointed by Tsukamoto \([7]\), the angle integral \(I_F \) by Eq. (17) is divergent logarithmically. On the other hand, the stable PS case \((c_2(r_m) < 0)\) is investigated below in detail.

Before closing this section, we mention a relation of the emergence of the stable outermost PS (SOPS) and the spacetime asymptotic flatness.

Lemma

If a SSS spacetime has the SOPS, the spacetime cannot be asymptotically flat, for which \(V'(r) = [A(r)/C(r)]' \) is positive everywhere outside the SOPS.
III. MILD DEFLECTION NEAR THE STABLE OUTER PS

A. Stability classification of the outer PS

In the neighborhood of the closest approach \(z \sim 0 \), higher order terms of \(H(z, r_m) \) in Eq. (22) are negligible compared with \(z \) and \(z^2 \) terms. The dominant part of \(f(z, r_0) \) for \(r_0 \sim r_m \) thus becomes

\[
I_{FD}(z, r_0) = \sum_{i=S, R} \int_{0}^{z_i} f_D(z, r_0) dz.
\]

Before starting calculations of the angle integral, first we investigate a photon orbit in the stable PS case. If \(c_1(r_0) < 0 \), \(h(z) \) is always negative for \(z > 0 \). This is in contradiction with the nonnegativity of \(h(z) \). Hence, the case of \(c_1(r_0) < 0 \) is discarded. If \(c_1(r_0) = 0 \), then, \(h(z) = c_2(r_0)z^2 \). The nonnegativity of \(h(z) \) together with \(c_2(r_0) < 0 \) admits only \(z = 0 \). This orbit is a circle. We do not discuss this special case any more. For the last case \(c_1(r_0) > 0 \), the nonnegativity of \(h(z) \) provides a nontrivial situation; the allowed region for \(z \) is

\[
0 \leq z \leq -\frac{c_1(r_0)}{c_2(r_0)}.
\]

This means that only bound orbits are allowed, whereas the scattering orbits are prohibited. Note that \(h(z) = 0 \) does not make the integral in Eq. (33) divergent. Indeed, \(h(z) \sim c_1(r_0)z \) near a point \(z = 0 \) and \(h(z) \sim -c_1(r_0)[z + c_1(r_0)/c_2(r_0)] \) near a point \(z \sim -c_1(r_0)/c_2(r_0) \). At the two points, therefore, the integral of \(h(z) \) is not divergent as \(\sim \int z^{-1/2} dz \sim 2\sqrt{z} \). The two points \(z = 0 \) and \(z \sim -c_1(r_0)/c_2(r_0) \) are the periastron and apastron, respectively.

B. Angle integral for the stable outer PS

Henceforth, we focus on the case of \(c_1(r_0) > 0 \), for which the receiver and source positions satisfy

\[
0 < z_i \leq -\frac{c_1(r_0)}{c_2(r_0)}.
\]
Eq. (33) is integrated as

\[I_{FD}(z_R, z_S, r_0) = \frac{r_0}{\sqrt{-c^2(r_0)}} \times \left[\pi - \sum_{i=S,R} \arcsin \left(1 + \frac{2c^2(r_0)}{c_1(r_0)} z_i \right) \right]. \]

(36)

It follows that the arcsine term in Eq. (36) is well defined for the allowed region by Eq. (35), because

\[-1 < 1 + \frac{2c^2(r_0)}{c_1(r_0)} z_i < 1. \]

(37)

C. \(I_F \) in terms of \(b \)

In most of lens studies including References [6, 7], it is convenient to express the deflection angle in terms of the impact parameter in stead to \(r_0 \), mainly because \(b \sim D_L \theta \) for the lens distance \(D_L \) and the image angle direction \(\theta \).

Therefore, we look for an approximate expression of \(b \). Near the PS, \(c_1(r_0) \) and \(b(r_0) \) are Taylor-expanded as

\[c_1(r_0) = \frac{C_m r_m D'_m}{B_m} (r_0 - r_m) + O((r_0 - r_m)^2), \]

(38)

\[b(r_0) = b_m + \frac{b_m D'_m}{4} (r_0 - r_m)^2 + O((r_0 - r_m)^3). \]

(39)

From Eq. (38), we find

\[r_0 < r_m, \]

(40)

where \(c_1(r_0) > 0 \) and \(D'_m < 0 \) are used. This inequality means that the light ray passes by the slight inside of the PS. This is because the PS is stable. This unusual behavior of the photon orbit implies also

\[b < b_m, \]

(41)

from Eq. (39). See Figure 1 for the photon orbit behavior near the PS.

By combining Eqs. (38) and (39), we obtain, near the PS, an approximate relation between \(c_1(r_0) \) and \(b \) as

\[c_1(r_0) \approx \frac{2r_m C_m \sqrt{-D'_m}}{B_m} \left(1 - \frac{b}{b_m} \right)^{\frac{1}{2}}. \]

(42)

By substituting this into Eq. (36), we obtain

\[I_{FD}(z_R, z_S, b) \approx \frac{r_m}{\sqrt{-c^2(r_m)}} \times \left[\pi - \sum_{i=S,R} \arcsin \left(1 - \frac{r_m \sqrt{-D'_m}}{2} \left(1 - \frac{b}{b_m} \right)^{\frac{1}{2}} z_i \right) \right]. \]

(43)

By direct calculations for a photon traveling near the PS, Eq. (35) is rearranged as

\[0 < z_i \leq \frac{4}{r_m \sqrt{-D'_m}} \left(1 - \frac{b}{b_m} \right)^{1/2}, \]

(44)

for which the arcsine function in Eq. (43) is well defined.

In order to obtain Eq. (44) as an approximate estimation of \(I_F \) in terms of \(b \), we have used the Taylor series expansion as Eq. (39), which is valid if \(b_m > b_m |D'_m|(r_0 - r_m)^3/4 \). This requires that the closest approach of light and the PS are close enough to satisfy

\[|r_0 - r_m| < \frac{2}{\sqrt{|D_m|}}. \]

(45)

Yet, a lower bound on \(|r_0 - r_m| \) exists in the neighborhood of the PS as shown below.

D. Discontinuity between the closest approach and the stable PS

Eq. (44) suggests a proposition on the existence of a gap between the allowed closest approach and the stable PS.
Proposition
In a SSS spacetime which possess a stable outer photon sphere, the closest approach of a photon from a source (or to a receiver) located at finite distance from the lens object is not allowed in the infinitesimal neighborhood of the stable PS.

Proof
This proposition can be proven by contradiction as follows. We consider a receiver (or a source) at finite distance from the lens, namely $r_i > r_0$, which leads to $z_i > 0$. We assume the closest approach of a photon orbit were in the infinitesimal neighborhood of the stable PS.

On the stable PS, $F_m = F' = 0$, while $F'' < 0$. The last inequality comes from the unstable condition $D_m < 0$. The function F near the PS is thus Taylor-expanded as

$$F_0 = \frac{1}{2}F''(r_0 - r_m)^2 + O((r_0 - r_m)^3). \quad (46)$$

From Eq. (20), H for $r_0 \approx r_m$ is expanded as

$$H = \frac{C_m}{2D_m}(1 - z)^4(r_0 - r_m)^2 + O((r_0 - r_m)^3), \quad (47)$$

where Eq. (46) is used.

By using $B_m > 0$, $C_m > 0$ and $F'' < 0$ for Eq. (47), we find $H < 0$ if $r_0 - r_m$ is sufficiently small. $H < 0$ contradicts with the existence of the photon orbit. Our proof is finished.

The above proposition prohibits the closest approach in the infinitesimal neighborhood of the stable PS. However, it does not tell about a size of the gap between the allowed closest approach and the stable PS. In order to discuss the gap size, we use Eq. (44), which is rewritten as

$$\frac{b}{b_m} \leq 1 - \frac{r^2_{m} z_i^2 (-D'_m)}{16}. \quad (48)$$

Note that Eq. (44) is based on a quadratic approximation up to z^2.

For finite z_i and $D'_m < 0$, Eq. (48) demonstrates that b is not allowed in the infinitesimal neighborhood of b_m. From Eq. (48), the upper bound on b is

$$b_{max} = \frac{b_m r^2_m z_i^2 (-D'_m)}{16}. \quad (49)$$

The gap size $\Delta b \equiv b_m - b_{max}$ is thus given by

$$\Delta b = \frac{b_m r^2_m z_i^2 (-D'_m)}{16}, \quad (50)$$

where z_i is the larger one of z_R and z_S, namely the value of z for the more distant one of the receiver and source.

A separate treatment is needed for the marginal PSs ($D'_m = 0$) e.g. [8] [55].

E. The dominant part and the remainder
Before closing this section, we shall confirm that $I_{FR} \equiv I_F - I_{FD}$ is really the remainder. It is written simply as

$$I_{FR}(z_R, z_S, r_0) \equiv \sum_{i=R,S} \int_{0}^{z_i} f_R(z, r_0)dz, \quad (51)$$

where $f_R(z, r_0) \equiv f(z, r_0) - f_d(z, r_0)$.

From Eq. (51), we obtain, for $z_i < 1$,

$$I_{FR}(z_R, z_S, r_0) = \sum_{i=R,S} \left[f_R(z_i, r_0) z_i + O(z_i^2) \right]. \quad (52)$$

For $r_0 \sim r_m$, $f(z, r_m) \sim f_D(z, r_m)$ when $z < 1$. Hence, by using the Taylor-expansion method, one may think that $f_R(z, r_m) = f(z, r_m) - f_D(z, r_m) = O(z)$. However, let us more carefully examine an asymptotic expansion of $f_R(z, r_0)$ for $z < 1$ [52]. By straightforward calculations, the asymptotic expansion of $f(z, r_0)$ for small z is obtained as

$$f(z, r_0) \approx \frac{r_0}{\sqrt{z c_1(r_0)}} - \frac{r_0 c_2(r_0)}{2 c_1(r_0)^{3/2}} \sqrt{z} + O(z^{3/2}). \quad (53)$$

Similarly, the asymptotic expansion of $f_D(z, r_0)$ is

$$f_D(z, r_0) \approx \frac{r_0}{\sqrt{z c_1(r_0)}} - \frac{r_0 c_2(r_0)}{2 c_1(r_0)^{3/2}} \sqrt{z} + O(z^{3/2}). \quad (54)$$

By bringing together Eqs. (53) and (54), we find

$$f_R(z, r_0) = O(z^{3/2}). \quad (55)$$

By using this for Eq. (52), we find

$$I_{FR}(z_R, z_S, r_0) = O(\frac{z_R^{5/2}}{r_S^{5/2}}). \quad (56)$$

On the other hand, Eq. (36) is expanded, for small z_R and z_S as

$$I_{FD}(z_R, z_S, r_0) = \frac{2r_0}{\sqrt{c_1(r_0)}}(\sqrt{z_R} + \sqrt{z_S}) + O(z_R, z_S), \quad (57)$$

where $\arcsin(1 - \varepsilon) = \pi/2 - \sqrt{2\varepsilon} + O(\varepsilon)$ is used.

For $z_R, z_S \ll 1$, Eqs. (56) and (57) lead to $I_{FR}(z_R, z_S, r_0) \ll I_{FD}(z_R, z_S, r_0)$. Therefore, we can safely say that I_{FD} is the dominant part and I_{FR} is the remainder.

IV. Example: A Class of Weyl Gravity Model

In the Weyl gravity model, Mannheim and Kazanas found a class of SSS solutions [57]. The metric reads

$$ds^2 = -g(r) dt^2 + g(r)^{-1} dr^2 + r^2 (d\theta^2 + \sin^2 \theta d\phi^2), \quad (58)$$
In this section, we focus on this parameter region. The solid blue (in color) curve corresponds to $\gamma = -0.5$ and $\kappa = -0.05$ in the unit of $\beta = 1$, which leads to the SOPS at $r_m = 7$. From $(b_m)^{-2} = \tilde{V}(r_m) = 0.0193878$, $b_m = 7.18184$ is obtained. $\tilde{V}(r)$ does not vanish for large r, because the spacetime is not asymptotically flat.

where

$$g(r) = 1 - 3\beta\gamma - \frac{\beta(2 - 3\beta\gamma)}{r} + \gamma r - \kappa r^2,$$ \hspace{1cm} (59)

and we consider $g(r) > 0$, namely the outside of the horizon.

The allowed region for the existence of the stable outer PS is $[59]$

$$\beta > 0, \hspace{1cm} (60)$$

$$\gamma < 0, \hspace{1cm} (61)$$

$$\kappa < 0. \hspace{1cm} (62)$$

In this section, we focus on this parameter region.

We solve $D(r) = 0$ to find two roots as $r = 3\beta$ and $r = 3\beta - 2/\gamma$. They are corresponding to PSs. One is a stable PS and the other is an unstable one.

In the present case of $\gamma < 0$, the stable outer PS is located at

$$r_m = 3\beta - \frac{2}{\gamma}, \hspace{1cm} (63)$$

because

$$D'_m = -\frac{2}{r_m^2 g(r_m)}$$

$$= -\frac{2b_m^2}{r_m^4}$$

$$< 0. \hspace{1cm} (64)$$

The other root $r = 3\beta$ is the radius of the unstable inner PS.

Note that r_m is larger than 3β because of $\gamma < 0$. See Figure 2 for the effective potential $\tilde{V}(r)$ in the Weyl gravity model with the stable outer PS.

There is a constraint on κ as $[65]$

$$\kappa < \frac{\gamma^2(1 - \beta\gamma)}{(2 - 3\beta\gamma)^2}. \hspace{1cm} (65)$$

Here, b_m denotes the critical impact parameter corresponding to the stable PS. It is obtained as

$$b_m = \frac{2 - 3\beta\gamma}{\sqrt{-\kappa(2 - 3\beta\gamma)^2 - \gamma^2(1 - \beta\gamma)}}, \hspace{1cm} (66)$$

where the inside of the square root is always positive when κ satisfies Eq. (65).
From Eqs. (43) and (56), we obtain

\[I_{FD}(z_S, z_R, b) \approx \pi - \sum_{i=S,R} \arcsin \left(1 - \frac{b_m}{\sqrt{2}r_m} \left(\frac{1 - b}{b_m} \right)^{-1/2} z_i \right) \],

(67)

\[I_{FR}(z_S, z_R, b) \approx -\beta \gamma \left(\frac{b_m}{2\sqrt{2}r_m} \right)^{3/2} \left(1 - \frac{b}{b_m} \right)^{-3/4} \sum_{i=S,R} z_i^{5/2} \],

(68)

where straightforward calculations at \(O(z^{5/2})\) are done in Eq. (56).

When \(z_T \equiv z_R = z_S \ll (1 - b/b_m)^{1/2}\), Eq. (67) provides an approximate expression of the deflection angle as

\[\Delta \phi \approx I_F \]

\[= 2 \sqrt{\frac{2b_m}{r_m}} \left(1 - \frac{b}{b_m} \right)^{-1/2} z_T \]

\[+ O \left(\frac{b_m}{r_m} \left(1 - \frac{b}{b_m} \right)^{-1/2} z_T \right) \].

(69)

where we use \(\arcsin(1 - \varepsilon) = \pi/2 - \sqrt{2\varepsilon} + O(\varepsilon)\) for \(\varepsilon < 1\).

It is natural that \(I_{FR}\) is much smaller than \(I_{FD}\), as discussed in Section III. Eq. (67) shows the mild deflection in terms of the arcsine function. See Figure 4 for a comparison of Eq. (67) and numerical calculations for \(I_{FD}\). As shown in Figure 3, \(f\) are dependent on rather strongly on \(\gamma\). The difference between the numerical \(f\) and approximate one becomes significant as \(z\) is larger.

On the other hand, the closest approach and its vicinity make a dominant contribution to the total angle integral \(I_F\). In Figure 4, therefore, \(I_F\) shows much weaker dependence on \(\gamma\) and \(z\).

Finally, we discuss the gap size. By using Eq. (64) for Eq. (50), we obtain

\[\Delta b = \frac{\beta m^3 L^2}{8 r_m^2}. \]

(70)

For \(b_m \sim r_m\), furthermore, it becomes simply

\[\Delta b \approx \frac{1}{8} b_m^2 z_L^2. \]

(71)

In a SSS spacetime, the photon sphere was thought to be always an edge such as the inner boundary of a black hole shadow. However, Eqs. (70) and (71) provide a counterexample, when the PS is stable.

V. CONCLUSION

We demonstrated that the location of a stable PS in a compact object is not always an edge such as the inner boundary of a black hole shadow. We showed also that a SSS spacetime cannot be asymptotically flat, when the SOPS exists in the spacetime.

We proved a proposition that the closest approach of a photon is prohibited in the immediate vicinity of the stable PS when the photon is emitted from a source (or reaches a receiver) distant from a lens object. We discussed the gap size. Because of the existence of the gap, the mild deflection is caused for a photon traveling around the stable PS which exists in a class of SSS spacetimes.

Finally, we used a class of SSS solutions in Weyl gravity in order to exemplify the mild deflection near the stable outer PS. It would be interesting to examine whether
a light ray is mildly deflected around a stable photon
surface in a less symmetric or dynamical spacetime. It is
left for future.

ACKNOWLEDGMENTS

We would like to thank Mareki Honma for the conver-
sations on the EHT method and technology. We wish
to thank Keita Takizawa, Naoki Tsukamoto, Chul-Moon
Yoo, Kenichi Nakao, Tomohiro Harada and Masaya Amo
for the useful discussions. We thank Yuiiti Sendouda,
Ryuichi Takahashi, Masumi Kasai, Kaisei Takahashi, and
Yudai Tazawa for the useful conversations. This work
was supported in part by Japan Society for the Pro-
motion of Science (JSPS) Grant-in-Aid for Scientific Re-
search, No. 20K03963 (H.A.), in part by Ministry of Edu-
cation, Culture, Sports, Science, and Technology, No.
17H06359 (H.A.).

[1] F. W. Dyson, A. S. Eddington, and C. Davidson, Phil.
Trans. R. Soc. A 220, 291 (1920).
[2] K. Akiyama et al. (Event Horizon Telescope Collabora-
tion), Astrophys. J. 875, L1 (2019); Astrophys. J. 875,
L2 (2019); Astrophys. J. 875, L3 (2019); Astrophys. J.
875, L4 (2019); Astrophys. J. 875, L5 (2019); Astrophys.
J. 875, L6 (2019).
[3] K. Akiyama et al. (Event Horizon Telescope Collabora-
tion), Astrophys. J. 910, L12 (2021).
[4] K. Akiyama et al. (Event Horizon Telescope Collabora-
tion), Astrophys. J. 910, L13 (2021).
[5] C. Darwin, Proc. Roy. Soc. Lond. A 249, 180 (1959).
[6] V. Bozza, Phys. Rev. D 66, 103001 (2002).
[7] N. Tsukamoto, Phys. Rev. D 95, 064035 (2017).
[8] N. Tsukamoto, Phys. Rev. D 102, 104029 (2020).
[9] N. Tsukamoto, Phys. Rev. D 104, 064022 (2021).
[10] N. Tsukamoto, Phys. Rev. D. 104, 124016 (2021).
[11] V. Perlick, Living Rev. Relativity 7, 9 (2004).
[12] N. G. Sanchez, Phys. Rev. D 18, 1030 (1978).
[13] C. M. Claudel, K. S. Virbhadra, and G. F. R. Ellis, J.
Math. Phys. 42, 818 (2001).
[14] S. Hod, Phys. Lett. B 727, 345 (2013).
[15] Y. Decanini, A. Folacci, and B. Raffaelli, Phys. Rev. D
81, 104039 (2010).
[16] S. W. Wei, Y. X. Liu, and H. Guo, Phys. Rev. D 84,
041501(R) (2011).
[17] I. Z. Stefanov, S. S. Yazadjiev, and G. G. Gyulchev, Phys.
Rev. Lett. 104, 251103 (2010).
[18] M. Cvetic, G. W. Gibbons, and C. N. Pope, Phys. Rev.
D 94, 106005 (2016).
[19] G. W. Gibbons, and C. M. Warnick, Phys. Lett. B 763,
169 (2016).
[20] T. Ohgami, and N. Sakai, Phys. Rev. D 91, 124020
(2015).
[21] Y. Koga and T. Harada, Phys. Rev. D 94, 044053 (2016).
[22] Y. Koga and T. Harada, Phys. Rev. D 98, 024018 (2018).
[23] Y. Koga, Phys. Rev. D 99, 064034 (2019).
[24] Y. Koga, Phys. Rev. D 101, 104022 (2020).
[25] Y. Koga, T. Igata, and K. Nakashi, Phys. Rev. D 103,
044003 (2021).
[26] T. Shiromizu, Y. Tomikawa, K. Izumi, and H. Yoshino,
Prog. Theor. Exp. Phys. 2017, 033E01 (2017).
[27] H. Yoshino, K. Izumi, T. Shiromizu, and Y. Tomikawa,
Prog. Theor. Exp. Phys. 2017, 063E01 (2017).
[28] H. Yoshino, K. Izumi, T. Shiromizu, and Y. Tomikawa,
Prog. Theor. Exp. Phys. 2020, 023E02 (2020).
[29] H. Yoshino, K. Izumi, T. Shiromizu, and Y. Tomikawa,
Prog. Theor. Exp. Phys. 2020, 053E01 (2020).
[30] R. Yang, and H. Lu, Eur. Phys. J. C 80, 949 (2020).
[31] K. Izumi, Y. Tomikawa, T. Shiromizu, and H. Yoshino,
Prog. Theor. Exp. Phys. 2021, 083E02 (2021).
[32] C. Cederbaum, and G. J. Galloway, Class. Quantum
Grav. 33, 075006 (2016).
[33] A. K. Mishra, S. Chakraborty, and S. Sarkar, Phys. Rev.
D 99, 104080 (2019).
[34] C. Cederbaum, and G. J. Galloway, J. Math. Phys. 62,
032504 (2021).
[35] M. Guo, and S. Gao, Phys. Rev. D 103, 104031 (2021).
[36] R. A. Konoplya, and A. Zhidenko, Phys. Rev. D 103,
104033 (2021).
[37] Q. Gan, P. Wang, H. Wu, and H. Yang, Phys. Rev. D
104, 024003 (2021).
[38] R. Ghosh, and S. Sarkar, Phys. Rev. D 104, 044019
(2021).
[39] M. Siino, Class. Quantum Grav. 38, 025005 (2021).
[40] M. Siino, [arXiv:2107.06551]
[41] K. Takizawa, and H. Asada, Phys. Rev. D 103, 104039
(2021).
[42] V. Bozza, Phys. Rev. D 78, 103005 (2008).
[43] K. Takizawa, T. Ono, and H. Asada, Phys. Rev. D
101, 104032 (2020).
[44] K. Takizawa, T. Ono, and H. Asada, Phys. Rev. D
102, 064060 (2020).
[45] P. V. P. Cunha, E. Berti and C. A. R. Herdeiro, Phys.
Rev. Lett. 119, 251102 (2017).
[46] S. Hod, Phys. Lett. B 776, 1 (2018).
[47] W. Hasse and V. Perlick, Gen. Rel. Grav. 34, 415, (2002).
[48] A. Ishihara, Y. Suzuki, T. Ono, T. Kitamura and H.
Asada, Phys. Rev. D 94, 084015 (2016).
[49] A. Ishihara, Y. Suzuki, T. Ono and H. Asada, Phys. Rev.
D 95, 044017 (2017).
[50] T. Ono, A. Ishihara, and H. Asada, Phys. Rev. D
96, 104037 (2017).
[51] T. Ono, and H. Asada, Universe, 5(11), 218 (2019).
[52] V. Cardoso, L. C. B. Crisponi, C. F. B. Macedo, H.
Okawa, and P. Pani, Phys. Rev. D 90, 044069 (2014).
[53] J. Keir, Class. Quantum Grav. 33, 135009 (2016).
[54] A. Addazi, A. Marciano, and N. Yunes, Eur. Phys. J. C
80, 36 (2020).
[55] T. Chiba, and M. Kimura, Prog. Theor. Exp. Phys. 4,
043E01 (2017).
[56] There is a prohibited region around the stable PS as
shown in Section IID. Because the existence of this gap
region, the functions H and f are not differentiable at
$r = r_m$. As a result, H and f cannot be Taylor-expanded
around r_m. In stead of Taylor expansions, therefore,
we look for asymptotic expansions of I_F, I_{FD} and I_{FR}
through f, f_D and f_R.
[57] P. D. Mannheim, and D. Kazanas, Astrophys. J. 342, 635 (1989).

[58] Turner and Horne realized that a bound orbit of a photon is possible in this parameter region for the SSS solution in Weyl gravity [59].

[59] G. E. Turner, and K. Horne, Class. Quantum Grav. 37, 095012 (2020).