SketchOpt: Sketch-based Parametric Model Retrieval for Generative Design

Mohammad Keshavarzi
University of California, Berkeley
CA, United States
mkeshavarzi@berkeley.edu

Clayton Hutson
Autodesk Research
San Francisco, CA, United States
clayton.hutson@autodesk.com

Chin-Yi Cheng
Autodesk Research
San Francisco, CA, United States
chin-yi.cheng@autodesk.com

Mehdi Nourbakhsh
Autodesk Research
San Francisco, CA, United States
mehdi.nourbakhsh@autodesk.com

Michael Bergin
Autodesk Research
San Francisco, CA, United States
michael.bergin@autodesk.com

Mohammad Rahmani Asl
Autodesk Inc.
San Francisco, CA, United States
mohammad.asl@autodesk.com

ABSTRACT

Developing fully parametric building models for performance-based generative design tasks often requires proficiency in many advanced 3D modeling and visual programming, limiting its use for many building designers. Moreover, iterations of such models can be time-consuming tasks and sometimes limiting, as major changes in the layout design may result in remodeling the entire parametric definition. To address these challenges, we introduce a novel automated generative design system, which takes a basic floor plan sketch as an input and provides a parametric model prepared for multi-objective building optimization as output. Furthermore, the user-designer can assign various design variables for its desired building elements by using simple annotations in the drawing. The system would recognize the corresponding element and define variable constraints to prepare for a multi-objective optimization problem.

CCS CONCEPTS

• Human-centered computing → Interaction design process and methods; Interaction techniques; Visualization techniques;
• Computing methodologies → Modeling and simulation; Artificial intelligence.

KEYWORDS

Sketch Retrieval, Generative Design, Multi-objective Optimization

ACM Reference Format:
Mohammad Keshavarzi, Clayton Hutson, Chin-Yi Cheng, Mehdi Nourbakhsh, Michael Bergin, and Mohammad Rahmani Asl. 2020. SketchOpt: Sketch-based Parametric Model Retrieval for Generative Design. In Autodesk Research, A, 5 pages. https://doi.org/10.1145/mmmmm.nnnnnn

1 INTRODUCTION

In recent years, performance-based generative design systems (PGDS) have been widely adopted in the building design process, altering iterative trial-and-error cycles, to efficient optimization-based workflows. Using such systems, the user first programmatically defines the design parameters and constraints and then establishes desired building performance goals. This would allow the system to search for a solution that best matches the target performance criteria in the generated solution space. PDGS have been widely deployed in visual programming tools, such as Grasshopper3D [22] and Autodesk Dynamo, where they can efficiently integrate with building performance simulation software and optimization algorithms. However, this process often requires a spectrum of technical expertise in the modeling and parametrization stages, excluding many designers.
from taking advantage of such an approach. Furthermore, modi-
fying the parametric logic and constraints of generative models
 can be time-consuming tasks, limiting the ideal iterative process
between the designer and the system.
To address this challenge, we introduce SketchOpt, an interactive
sketch-based generative design system for early-stage building per-
formance optimization tasks. Unlike conventional PGDS workflows
where design definitions, constraints, and objective functions are
developed in a programmatic fashion, SketchOpt takes hand-drawn
floorplans and annotations as input and outputs fully parametric
models prepared to integrate with building performance simula-
tion software and multi-objective optimization algorithms. Our
approach takes advantage of machine learning and procedural mod-
eling methodologies to seamlessly merge interactive sketching to
a performance-based generative design process. This would en-
able designers to take advantage of the intuitiveness, freedom, and
flexibility of sketching while leveraging the search and optimization
potentials offered in a parametric model. The user does not
need to program tedious parametric definitions; instead, they are
recognized from the sketch and annotations in a real-time fash-
ion, enabling untrained users to quickly create complex parametric
models.

2 RELATED WORK
One of the main components of our system is the ability to con-
vert a sketch-based rasterized input to a vectorized parametrized
model. A common methodology that has been widely explored
in previous studies is to use various matching strategies to com-
pare the similarity of input sketches to an existing database of
2D or 3D models [10, 11, 13, 23]. However, these systems only
allow retrieval of existing 3D models and provide no means to cre-
ate new 3D models. More recently, sketch-based shape retrieval
has been demonstrated through convolutional neural networks
(CNNs). CNNs are able to learn hierarchical image representations
optimized for image processing performance. [17]. Su et al. [25]
performed sketch-based shape retrieval by adopting a CNN archi-
tecture pre-trained on images, then fine-tuning it on a dataset of
sketches collected by human volunteers [9]. Wang et al. [27] used
a Siamese CNN architecture to learn a similarity metric to compare
human and computer-generated line drawings. Abbasi-Asl et al.
take advantage of Brain-Computer Interface systems for sketch-
based model retrieval in virtual environments [2]. Nishida et al.
[21] introduced a CNN-based urban procedural model generation
from sketches. However, instead of solving directly for the final
shape, their method suggests potentially incomplete parts that re-
quire further user input to produce the final shape. In contrast,
our approach is end-to-end, requiring users to provide only an
approximate sketch of the floorplan layout.
In the field of performance-based generative design, previous
research can be initially categorized based on the performance crite-
rion itself. Works of Asadi and Geem [3] and Attia et al. [1] provides
a technical review of relevant research applying simulation-based
optimization methods to sustainable building design. In terms of
architectural design strategies, Turrin et al. [26] discuss the ben-
efits derived from combining parametric modeling and Genetic
Algorithms (GAs) to achieve a performance-oriented process in
design, with specific focus on architectural design, with a focus on
the key role played by geometry in architecture. Huang and Niu
[14] analyze the history, current status, and potential of optimal
building design based on the simulation performance.
Basbagil et al. [4] propose a multi-objective feedback approach
for determining life-cycle environmental impact and cost perfor-
mance of buildings at the conceptual design stage, exploring the con-
cept of multidisciplinary design optimization. Brown and Mueller
[6] also present a multidisciplinary optimization model for struc-
tural and energy performance at early stage design phases. In that
work, the structural optimization objective was to minimize the
amount of steel required, and the energy optimization objective
was to reduce the annual energy of the building in terms of lighting,
heating, and cooling. The Non-Dominated Sorting Genetic Algo-
rithm II (NSGA-II) [8] was used to iteratively approach the Pareto
front over several generations of design alternatives of three types
of long steel span structures. Keshavarzi et al. [16] take advantage
PGDS workflows to find alternative indoor furniture arrangements
for spatial computing telepresence systems. Lin and Gerber [18]
focus on early-stage design decisions, proposing a framework for
concept design based on multiple design objectives, using a cus-
tom GA for design and performance optimization. Finally, there
is a large body of research focused on how to explore generative
design solutions, and to provide the user with appropriate work-
flows to modify and interact with the generated solution space
[12, 15, 19, 20, 24].

3 METHODOLOGY

The SketchOpt system consists of four main components: i) the vec-
torizer module, where hand-drawn rasterized floorplan sketches are
converted to vectorized data structures. ii) the parametrized mod-
ule, where various building elements are joined and constrained
in relation to each other according to their vectorized geometric
properties. iii) parsing user-defined optimization constraints and
variables, where annotations in the drawing are detected and ap-
plied to the parametric model. iv) and finally, integration with the
NSGA-II optimization module for customized performance-based
optimization tasks.

3.1 Vectorizer

The vectorizer module integrates a special form of asymmetric con-
volution to detect linear features present at just a few hundredths of
a percent of overall luminosity and run at 5 independent resolutions
simultaneously. For each node (pixel) found to contain linearity,
the resolutions participate in a weighted optimization to compute
the resulting output orientation and gain. The core algorithm is
parallelized to run on multi-GPU environments as well as AVX
CPU instructions and can vectorize a 3k by 3k scene at several
resolutions in a few hundred milliseconds. The vectorizer module
is an investigation and prototype of computer vision techniques
that support extraction of vector and linear information from raster
sources, including photos of plans or hand-drawn sketches. The
applied use-case in this project is for architects to create or import
conceptual designs in a fast manner with a minimum of errors.

3.2 Parametrizer

The Parametrizer algorithm is responsible to apply geometric gram-
mars and topological relationships between the vectorized geomet-
rical data. This is achieved by considering contextual and mutual
attributes of each of the vectorized segments and converting the
data to a graph system. Building elements such as walls, columns,
etc. are automatically generated using predefined architectural as-
sumptions and clustered based on type, position, and continuity.
Moreover, all groups are constrained by their neighboring group
resulting in joint variable parameters for the generated elements.
As each member element is defined by a corresponding node and
path, effective translations applied to one element group would also apply to the connected member of the neighboring groups.
Such attribute would allow geometric translations of each group to
apply in a parametric fashion, with modifications happening in a
constrained range while maintaining the overall geometric layout.
Transformation is assigned to the nodes of the parametric graphs,
which each represent an of the corner coordinates of the target wall
elements. This would modify all lines connected to the transformed
node. However, to avoid distortion of the orthogonal nature of the
plans, we merge colinear paths which connect to each other
with a mutual node and share the same direction vector. Next, we
identify the array of nodes that are located on the collinear lines.
After applying transformations to the connected line node array,
we construct new polylines from each node array. This would result
in a fully automated parametric model that takes transformation
vectors and connected line indexes as an input and outputs a new
floorplan layout without producing undesired gaps and floorplan
voids.

Various parametric functions are also accessible using the corre-
sponding components in the Parametrizer plugin-in for Dynamo,
giving the user the ability to customize the parametrization process
3.3 Design constraint integration

While the floorplan elements of the parametric model generated in the previous steps are constrained only by its geometric properties, the designer can additionally identify specific optimization variables to narrow the solution search to certain geometric modifications. In this regard, we allow the user to specify the variable elements and their corresponding translation constraints by drawing I shaped annotations. The position and orientation of these annotations would allow the system to identify the specific parametric group and allocate a certain translation range based on the length of the annotation.

Moreover, the user can manually access the target variables with implementing specific components of Parametrizer plugin in, to modify or visualize the elements using the native Dynamo number slider. This would allow additional design control over the generated parametric model by the user, offering a parallel manual workflow to the automatic procedure.

3.4 Generation and Optimization

We integrate our system with Project Refinery, a NSGA-II optimization tool in Dynamo, to execute building performance optimization tasks. By defining SketchOpt components as input parameters, and assigning custom design goals, such as topological outcomes or performance simulations for the solver. The system can search and evaluate the fitness of each generated model. The parametric constraints specified by sketch-based annotation are also automatically integrated into the workflow. Figure 5 shows examples of the solution space which can also be explored using Project Refinery’s visualization tools.

4 CASE STUDY

We illustrate the use case of our proposed system for a structural optimization case study. Given a building floorplan sketch, the goal of the study is to find the optimized position of the annotated target walls to minimize the total stress and torsion of a simulated structural system. We integrate our system with Autodesk Robot, a structural analysis tool. For simplicity, we define each analytical column by extruding the intersection points of the floorplan walls and construct the beams on the top and bottom edge of the wall. Figure 3 3 multiple stages of the sketching process drawn in a sketching tool (in our case Adobe Photoshop), and its automatic conversion to a parametric model. Due to the fast processing time of performance metric, we can also observe real-time updates in our structural analysis model.
Furthermore, the user defines three wall axes to explore how the translation of these walls can achieve the structural objective function. This process is achieved by adding simple I shaped annotations to the floorplan sketch, adjacent to the wall axes (Figure 4). The system will identify all the corresponding intersection nodes included in the target wall axes. The length of annotation also defines the parametric constraints the walls contain in their solution spaces. Finally, by using Project Refinery’s interface different optimization settings can be assigned to allow the user to control the optimization accuracy and its calculation time. This would result in the customized visualization of the optimization results in Project Refinery with the ability to explore the design solutions in real-time (Figure 5). By hovering on each solution point, the parametric model in Dynamo and structural analysis model in Robot would update allowing the user-designer to investigate different properties of the generated results.

5 CONCLUSION

In this study, we introduce a sketch-based generative design system for building performance optimization tasks. Targeted for amateur users, SketchOpt can be applied in the early stages of the design process, to facilitate architects and designers with limited programming experience in performance-based decision making. The system can assist in form-finding and layout planning in a fast and iterative process. Our next steps for further developing this system is generating optimized multi-level floorplans and 3D building volumes using conceptual sketches of the building. Semantic recognition of furniture layout sketches can also be considered possible ways of improvement. Moreover, our system can be improved with integrating with robust deep learning architecture for faster processing and solution generation procedures.

ACKNOWLEDGMENTS

This study was funded and supported by Autodesk, Inc. We would like to thank our colleagues at Autodesk Research and also Autodesk’s Architecture, Construction and Engineering (AEC) Generative Design team for their technical support and feedback. Part of this work is currently patent pending under the U.S Patent Application 16/681,591 [5].

REFERENCES

[1] Shady Aattia, Mohamed Hamdy, William O’Brien, and Salvatore Carlucci. 2013. Assessing gaps and needs for integrating building performance optimization tools in net zero energy buildings design. Energy and Buildings 60 (2013), 110–124.

[2] Reza Abbas-Asli, Mohammad Keshavarzi, and Dorian Yao Chan. 2019. Brain-Computer Interface in Virtual Reality. In 2019 9th International IEEE-EMBS Conference on Neural Engineering (NER). IEEE, 1220–1224.

[3] Somayeh Asadi and Zong Woo Geem. 2015. Sustainable building design: a review on recent metaheuristic methods. In Recent Advances in Swarm Intelligence and Evolutionary Computation. Springer, 203–223.

[4] John P Basbagill, Patrick Min, Michael Kazhdan, Joyce Chen, Alex Halderman, David Dobkin, and David Jacobs. 2003. A search engine for 3D models. ACM Transactions on Graphics (TOG) 22, 1 (2003), 83–105.

[5] Michael Herdy. 1996. Evolution strategies with subjective selection. In Parallel Problem Solving from Nature — PPSN IV, Hans-Michael Voigt, Werner Ebeling, Ingo Rechenberg, and Hans-Paul Schwefel (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 22–31.

[6] Mohammad Keshavarzi, Ardavan Bidgoli, and Hans Kellner. 2020. V-Dream: Immersive Exploration of Generative Design Solution Space. arXiv preprint arXiv:2006.11044 (2020).

[7] Michael Keshavarzi, Allen Y Yang, Woonji Ko, and Luisa Caldas. 2020. Optimization and Manipulation of Contextual Mutual Spaces for Multi-User Virtual and Augmented Reality Interaction. In 2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). IEEE, 353–362.

[8] Alex Krizhevsky and Ilya Sutskever. [n.d.]. ImageNet classification with Deep Convolutional Neural Networks. In Neural Information Processing Systems, Vol. 25. 3965–3986.

[9] Shih-Hsin Eve Lin and David Jason Gerber. 2014. Design-in performance: A framework for evolutionary energy performance feedback in early stage design. Automation in Construction 38 (2014), 59–73.

[10] Mathias Eitz, Ronald Richter, Tamy Boubekeur, Kristian Hildebrand, and Marc Alexa. 2012. Sketch-based shape retrieval. ACM Trans. Graph. 31, 4 (2012), 31–1.

[11] Michael Maier, Hans-Jörg Eberl, and Christian Brecher. 2015. Sketch-based shape retrieval. In Proceedings of the 11th annual conference on Computer graphics and interactive techniques. 459–472.

[12] Gregory J Ward. 1994. The RADIANCE lighting simulation and rendering system. In Proceedings of the 21st annual conference on Computer graphics and interactive techniques. 459–472.