Cancer in the tropics: geographical pathology and the formation of cancer epidemiology

Cite this article as: Lucas M. Mueller, Cancer in the tropics: geographical pathology and the formation of cancer epidemiology, BioSocieties https://doi.org/10.1057/s41292-019-00152-w

This Author Accepted Manuscript is a PDF file of an unedited peer-reviewed manuscript that has been accepted for publication but has not been copyedited or corrected. The official version of record that is published in the journal is kept up to date and so may therefore differ from this version.

Terms of use and reuse: academic research for non-commercial purposes, see here for full terms. https://www.palgrave.com/aam-terms-v1
Author Information File

Title Cancer in the Tropics: Geographical Pathology and the Formation of Cancer Epidemiology

Author Name
Lucas M. Mueller
Science History Institute, Philadelphia, PA, USA
Program in History, Anthropology, and Science, Technology, and Society, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
lmm@mit.edu

Short Biography
Lucas Mueller is a doctoral candidate in the Program in History, Anthropology, and Science, Technology, and Society at the Massachusetts Institute of Technology and a Visiting Fellow at the Science History Institute. His current research concerns the international history of carcinogens at the intersection of cancer research, nutrition science, and agricultural research since 1960 in India, Kenya, the United Kingdom, and the United States.

Word count 6513

I confirm that the manuscript is comprised of original material that is not under review elsewhere, and that the studies on which the research is based has been subject to review by the Committee on the Use of Humans as Experimental Subjects (COUHES) of the Massachusetts Institute of Technology.

The author states that there is no conflict of interest.

Acknowledgements
I would like to thank Allan Brandt, Marie Burks, Carlo Caduff, Spring Greeney, David S. Jones, Jia Hui Lee, Harriet Ritvo, and Cecilia van Hollen for their feedback on earlier versions of this text. I am grateful for the comments on this material from the participants of the Wellcome-funded Workshop on Cancer and the Global South in May 2017 in London, of the HASTS Program Seminar at MIT, and of the Harvard History of Medicine Working Group. I am also thankful for the comments from the three anonymous reviewers and the editors of BioSocieties.
Cancer in the Tropics:
Geographical Pathology and the Formation of Cancer Epidemiology

Abstract
Cancer has never been thought to be a problem exclusive to the developed world, at least not in twentieth-century epidemiology. Between the 1920s and the 1960s, researchers from 36 countries collaborated to study the patterns and causes of cancer in the tropics. The researchers were part of geographical pathology, which sought to determine etiologies by comparing disease occurrence across different environments. Examining this history, this paper shows how the geographical pathologists operationalized the concept of the environment to analyze the influences on health by natural and artificial surroundings. While the international network of geographical pathology fostered medical thinking about environmental health in the early and mid-twentieth century, the very meaning of environment, alongside the scientific methods for studying the environment, changed in this period. In the 1960s, epidemiology, previously reserved for the study of infectious diseases, displaced geographical pathology as the cohesive framework for cancer research. This signaled a shift in research focus, from one dedicated to diagnostics and the environment to one centered on population and statistical studies. This article shows how specific configurations of knowledge have shaped which cancer interventions in the developing world researchers and public health officials could conceive.
Global health advocates recently called for the expansion of cancer care and control in low- and middle-income countries, arguing that cancer, “once thought to be a problem almost exclusive to the developed world,” was now becoming a leading cause of death and disability in poor countries (Farmer et al., 2010, p. 1186). However, medical researchers have thought intensely about cancer in the developing world for a long time. In the early and mid-twentieth century, geographical pathologists hoped that their studies would not only reveal the patterns and causes of cancer in the tropics but culminate in a general theory of cancer causation. While geographical pathology ultimately fell short of this ambitious goal, the field played a pivotal role in the formation of cancer epidemiology.

This paper examines geographical pathology from the 1920s to the 1960s, the period in which the field flourished. In the 1920s, pathologists in Switzerland and Germany built an international research community that systematically studied etiologies by comparing disease occurrence and forms around the globe. This conceptual framework for the study of disease was not new; it had been articulated by physician August Hirsch in the 1850s and others before him (Hirsch, 1859). Unlike Hirsch, who relied on the existing literature, the geographical pathologists of the 1920s set out to collaboratively record disease occurrence in different places according to uniform methods of pathological diagnosis on the microscopic level of tissue structures. At conferences, the scientists compared their diagnostic classifications and observations to discern which, if any, geographical factors were decisive for the divergent distribution and frequency of a disease, thereby explaining etiology. The International Society for Geographical Pathology (ISGP), which the Swiss and German pathologists founded for this purpose, was soon comprised of more than 260 members from 36 countries. After World War II, the community, reconstituted to include physicians from specialties other than pathology, continued to develop a methodology for the etiological study of “degenerative” or non-infectious
diseases. The researchers considered their approach to be especially suitable for explaining the causes of cancer, which was becoming a major health concern in the postwar years. In the 1960s, geographical pathology began to lose its role as a cohesive framework for cancer research. Epidemiology, previously reserved for the study of infectious diseases, became the predominant term. This also signaled a shift in research focus, from one dedicated to pathological diagnosis and environmental relations to one centered on population studies and statistical analysis.

In the 1920s, geographical pathologists popularized and operationalized the concept of the environment (Umwelt) to capture the influences on health by natural and also artificial surroundings that society, industry, customs, and politics created. Previously, Hirsch and other physicians had used terms such as milieu, geography, or external factors. Putting the environment at the center of their analyses enabled the geographical pathologists to vary the scale of their study areas from cities to regions to countries and to conduct investigations across the temperate and tropical regions. Everyone in every group was always surrounded by an environment.

My analysis of geographical pathology centers on the usage and measurement of the environment in the articles and correspondence of geographical pathologists in Europe, Kenya, South Africa, and the United States between the 1920s and the 1960s. I describe the scientists’ conceptual apparatus as well as the institutions they built to study these concepts, attending to the interaction between knowledge and social and political organization (Jasanoff, 2004). I analyze how liver cancer as a disease became a structuring factor for the geographical pathological research, and which kinds of etiology became perceptible (Rosenberg & Golden, 1992; Murphy, 2006).

This article shows how the very meaning of environment, alongside the scientific methods for studying the environment, changed in this period, making a case for the historicization of the concept. The hitherto untold history of geographical pathology adds a crucial element to our understanding of
environmental health science and epidemiology in the twentieth century. Medics had ruminated on influences of “airs, waters, and places” on health since antiquity, but the rise of germ theory in the late nineteenth century, historians of medicine in the United States have argued, decentered such ruminations until their reemergence within occupational health in the late twentieth century (Sellers, 1997; Nash, 2006; Rosenberg, 2012). This article argues that thinking about environmental health continued in international networks, such as the one of geographical pathology, in the early and mid-twentieth century. This network also formed a nucleus of the epidemiology of non-infectious diseases. While the epidemiology of infection had been studied in the Epidemiological Society of London and other institutions since the nineteenth century, geographical pathology provided a framework for an epidemiology of non-infectious diseases (Mendelsohn, 1998). Finally, geographical pathologists linked environmental influences to specific changes in tissue structures, making the environment observable within the body. In the 2000s, epigenetics posed the question of “how environments come into the body and modulate the genome” (Landecker & Panofsky, 2013, p. 349). In the postgenomic moment, epigenetics measures the environment on the molecular level of modifications of the deoxyribonucleic acid (DNA). The subfield exposomics, which “seeks to assess ‘the whole environment we have inside our bodies,’” appears as the latest manifestation of a scientific research tradition that geographical pathology shaped (Shostak & Moinester, 2015, p. 195). Historicizing the concept of the environment may reveal what influences have been attributed to an external world.

Geographical pathological research depended on the global comparison of cancers and environments. For example, geographical pathologists studied liver cancer in the 1950s and 1960s by comparing the occurrence between Europe and Africa, where doctors had observed high disease rates since the 1920s (Higginson, 1963). Cancer has never been thought to be a problem exclusive to the developed world, at least not in twentieth-century cancer epidemiology. Specific configurations of knowledge – not the lack of knowledge – have shaped which interventions researchers and public health
officials could conceive. While geographical pathology made cancer in the tropics visible to biomedical scientists, the methods and framework legitimized deferring cancer treatment programs to an ever-distant future. Most geographical pathologists were removed from the daily needs of cancer care, focusing on the collection and analysis of tissue samples. The European and North American sponsors of international cancer programs did not support treatment because these countries were building their own national cancer programs at that time. The global disparities of cancer care have been thus been rooted not in a lack of knowledge but broader political and social inequities (Rouse, 2009; Wailoo, 2014). This conjuncture of international relations and epistemic limitations forestalled cancer programs that might have prevented the emergent cancer epidemic in Africa (Livingston, 2012).

Tropical Medicine for the World: Geographical Pathology and the Global Environment

When Max Askanazy moved from Königsberg at the shores of the Baltic Sea to become a professor of pathology at the University of Geneva in 1905, he was struck by the different diseases he observed in his new practice. Askanazy envisaged a collaborative endeavor to systematically uncover unknown etiologies through the comparison of these different disease “panorama.” Together with Freiburg-based pathologist Ludwig Aschoff, Askanazy proposed founding the ISGP at the annual meeting of the German Pathological Society in 1927 (Schmorl, 1927). The new society was established and quickly grew in membership to include more than 260 researchers from 36 countries.¹ The field was grounded in a theory of a global environment, diagnosis with pathological methods, and an international network of researchers.

Geographical pathologists operationalized the concept of *Umwelt* (environment) in the study of disease etiology. “The internal and external disease factors have to be considered, not only racial or constitutional pathology, to which questions of heredity and endocrine interactions belong,” Askanazy
expounded, “but also all influences of the environment: from climate, altitude [...], light, nutrition, mechanical insults, special parasitisms, influence of poisons and effects of industrial harms whose consequences can hardly be assessed today” (Askanazy, 1928, p. 59). Umwelt, added to the German lexicon around 1800, had recently become imbued with an ecology meaning (Harrington, 1996).

Geographical pathology was the theory of “the influence of the environment on the spread and nature of the diseases through the comparative study of the spread and the nature of disease under consideration of racial and constitutional anomalies (Eigentümlichkeiten) of the populations in different countries” (Adelheim, 1929, p. 217). Askanazy’s colleague Roman Adelheim distinguished between two types of environment: the natural environment “that surrounds us” and the artificial environment that “we create ourselves.” Both types were already studied by separate medical specialties. “In the most extreme and perceptible form, we see [the influences of the environment on the human organism] in tropical medicine, which requires its own study in specific institutes,” Adelheim wrote, while social hygiene, a hybrid of medicine and social policy, dealt with the artificial environment (Adelheim, 1929, p. 218).

Geographical pathology straddled this separation. For Askanazy, tropical medicine had retained forms of geographical medicine but was limited to fulfilling the practical tasks of colonization. He sought to expand the thorough study of environmental health influences beyond tropical to temperate climates. He argued for abolishing what historian David Arnold has called tropicality. “The tropics existed only in mental juxtaposition to something else – the perceived normality of the temperate lands. Tropicality was the experience of northern whites moving into an alien world – alien in climate, vegetation, people, and disease” (1996, p. 143). For Askanazy, there was no essential difference in the impacts of tropical and temperate environments on health; the environment exerted its influence around the globe. Ironically, questions of environmental influence were receding from tropical medicine at that time. Since the late nineteenth century, bacteriology with its focus on germs as causative agents
of disease, had gained traction across medicine and public health. Tropical medicine concentrated on developing sanitary programs to change people’s unhygienic, germ-spreading behaviors (Anderson, 2006). In Germany, bacteriology displaced pathology from its central role in medicine for the inability of pathology to determine disease causes (Prüll, 1998). However, bacteriology was not without critics – Askanzy and the geographical pathologists among them – who argued that the pathogen alone was not a sufficient cause for disease, and the study of other influences remained necessary. There was a number of different subfields – and researchers moving between them – that focused on environmental effects on health and on the role of race and Volk (peoples). These factors were poles in a spectrum of explanation of disease patterns. Adelheim wrote “it is obvious that the biology of races and people [Völker] plays a great role here, but we are only beginning to understand gradually that the natural environment in its manifold forms and effects plays an unexpectedly large role” (Adelheim, 1929, p. 218).

Social and racial hygienists, eugenicists, and other groups in Germany were dedicated to maintaining a healthy body politic through programs for racial purity and protection from noxious industrial and civilizational influences (Prüll, 1998; Proctor, 1999; Weindling, 2000). These groups, the geographical pathologists included, had no single, stable definition of race or Volk. Askanazy did not dismiss racial factors but noted the difficulty of studying these factors, because there were hardly any “pure races.” Moreover, the focus on race would often obscure more complex environmental, nutritional, and hormonal etiologies of cancer and other diseases.

The etiology of cancer was controversial in the nineteenth and early twentieth centuries. Some scientists assumed that cancer was a disease of civilization that did not occur among black people in Africa or the United States (Wailoo, 2011). British and German authorities asked their medical officers to investigate the occurrence of tumors among people in the African colonies. The German officers’ reports
indicated that most cancers found in Europe also existed in Africa, and researchers argued over possible cultural, racial, civilizational, and age-related explanations for divergent rates. For example, Walther Fischer, professor of pathology in Rostock, pondered if the observation of higher cancer rates among black Africans, who had been in contact with the “white civilization,” was merely an artifact of better and more rigorous examinations by trained physicians. Fischer and his colleagues found it impossible to answer these questions conclusively, because comprehensive studies were lacking (Fischer, 1927). In Europe in the 1920s, the League of Nations initiated cancer studies that did not identify clear racial and hereditary factors (Borowy, 2009; Gaudillière & Löwy, 2016). In 1922, Harvey Pirie at the South African Institute for Medical Research was “struck by the comparatively large number of [liver cancer] cases met with amongst African natives, either in the course of performing autopsies, or, more often, in the examination of specimens sent for report to the South African Institute for Medical Research” (1922). Liver cancer was found to be exceedingly rare in Europe. Pirie speculated that these larger numbers in Africa might be associated with schistosomiasis and cirrhosis, while others attributed these numbers to syphilis or nutrition.

Explaining etiologies as complex as cancer required a collaborative effort that the ISGP sought to facilitate. The ISGP with members from more than thirty countries must have been a remarkable success for the German Pathological Society. German scientists had been banned from international scientific societies after World War I and were only slowly readmitted in the mid-1920s (Fox, 2016). Askanazy kick-started the program by posing four questions to the chairs of the national committees of the ISGP (Askanazy, 1928, pp. 57–59): do any diseases occur more frequently in your region? Do diseases occur rarely or not at all? Does the disease have a natural history specific to your region? Can you already describe specific conditions (causes) that explain the local specificities? These questions were to be answered through a collaborative research program that depended on pathological anatomy for the diagnosis “by working with the microscope, culture, and animal experiment and by determining the
initial stages of the disease,” (Askanazy, 1930b, p. 380). Moreover, Askanzy believed that statistics “with its use of probability calculus will have the greatest importance for the development of Völkerpathologie” (Askanazy, 1930a, p. 1102). A. Bradford Hill, whose later collaborator Richard Doll would become a central figure in postwar cancer epidemiology and geographical pathology, developed such medical statistics in the United Kingdom at this time (Brandt, 2007, Chapter 5).

The first meeting of the ISGP in October 1931 in Geneva focused on liver cirrhosis, which had been of interest to pathologists for a while. Eighty participants from nineteen countries attended the conference. Rodolphe de Josselin de Jong, professor of pathology at Utrecht University, analyzed the 69 documents that he had received from 20 European countries and elsewhere (de Josselin de Jong, 1931). Geographic areas ranged from the city of Mannheim to the whole country of Japan, and the classifications of cirrhosis types differed. Comparing frequency, subtypes, and demographics, the pathologists discussed the relation of specific forms of liver cirrhosis to nutrition and exposures to noxious substances. The environment became inscribed in the physical structure of the liver. The researchers also considered the relation between liver cirrhosis and cancer. While a few percent of cirrhotic patients developed liver cancer in Europe, 21 percent of these patients suffered from liver cancer in the Dutch East Indies. On the nearby Malayan archipelago, cancer of the liver had the highest rate among all organ cancers. The reason for these divergences was completely unclear to the researchers. After the conference, Henry E. Sigerist, a member of the ISGP and one of the founding figures of the history of medicine in the United States, published a note in the first issue of the Bulletin for the History of Medicine. He argued for the relevance of the history of medicine to geographical pathology, considering that “cultural conditions have definite repercussion on the diseases of the time” (Sigerist, 1933). However, his call remained unanswered. The ISGP met again in 1934 to discuss the etiology of arteriosclerosis and in 1937 to discuss anemia. The next meeting in 1940 in Rome was cancelled because of the war.
Salvage Epidemiology: Cancer, Environment, and Development

After the war, the community of geographical pathologists reconstituted itself and expanded beyond the ISGP. Max Askanazy and Roman Adelheim died and de Josselin de Jong retired. Others continued, such as the Swiss pathologist Frédéric Roulet, and new researchers joined the field, including Danish pathologist Johannes Clemmesen, British physiologist Richard Doll, and US pathologist Harold L. Stewart. Newly founded international organizations, including UNESCO and the World Health Organization (WHO), as well as the International Union Against Cancer (UICC, Union Internationale Contre Cancer) supported the field. The US National Cancer Institute (NCI) established a Unit on Geographic Pathology of Cancer led by Stewart. Cancer became a pressing concern in North America and Europe in the postwar decade, and geographical pathology promised answers to urgent questions about cancer causation and prevention.

The geographical pathologists met at a series of conferences, sponsored by these organizations, to develop a methodology for the study of cancer and other non-infectious disease in the 1950s. An eight-day long “Symposium on Geographical Pathology and Demography of Cancer” was held in Oxford in 1950, the ISGP dedicated its fifth conference in 1954 to cancer, and a conference on “Methods in Geographical Pathology” was convened in Paris in 1957. Further, meetings on specific forms of cancer were organized, such as a “Symposium on Cancer of the Liver among African Negroes” in Kampala in 1956.

The geographical pathologists considered the term epidemiology not suitable to describe the mode of occurrence of cancer, and the existing epidemiological methods inapt for the study of non-infectious diseases (Clemmesen, 1951, p. 7). While physicians began noting an increase in non-infectious diseases in the interwar year, it had been hard to determine the tiny differences in low incidence rates
in different parts of the world, where these diseases were endemic. Geographical pathology, “defined as the comparative study of the incidence of disease and the distribution of physiological traits in peoples belonging to different communities throughout the world and the correlation of these data with features of the social and geographical environments,” sought to reveal and explain these almost indiscernible disease patterns (Doll, 1959, p. 11).

To some, geographical pathology held the key to understanding a “vast experiment of nature [which] by-passes the unquestionable moral blocks to human experimentation” (Stewart, 1951, p. 148). This experiment, which had created unique disease patterns in different communities was, however, in jeopardy. “Changes in the physical and cultural structure of society are taking place at a faster rate than ever before, and industrialization and the ease of communication are establishing a common pattern of life in areas which, until recently, provided a striking contrast in living conditions and ways of life,” Doll warned. “Many of the contrasts which might throw light on the etiology of diseases are disappearing and any delay in initiating research may result in the loss of valuable opportunities” (1959, p. 54). Geographical pathological studies were needed to exploit the unique disease distribution, and these studies were needed now.

Doll’s call to action reflected another reconceptualization of the environment in the mid-twentieth century. Grounded in the vision of development, some researchers considered that Africa, its people, and environment would soon undergo modernization and industrialization, eradicating any differences in environmental health influences (Cooper, 2005; Packard, 1997). This vision re-emphasized a distinction between the tropics and temperate regions; a distinction grounded in a framework of temporal difference. In this view, Africa was a “living laboratory” for research on the universal causes of non-infectious disease. The environment was temporally distinctive to discern the factors producing unique disease patterns. Other researchers working on the ground in Africa found these homogenizing
visions of Africa hard to reconcile with their heterogeneous observations (Tilley, 2011). For many cancer researchers, however, it was a present with a future but without a past (Wolf, 1982).

Liver, cervix, and lung cancer were considered especially suitable for the geographical pathological investigation, because the rates of these cancers differed significantly across populations (Kennaway, 1951). While lung and cervix cancers could be studied in Europe, liver cancer became the paradigmatic case for geographical pathologists’ studies in the 1950s because of its heterogeneous distribution between Europe and Africa. Charles Berman of the Consolidated Main Reef Mine Hospital in South Africa confirmed Pirie’s earlier conjecture that liver cancer was among the most common forms of cancers of “African natives,” occurring at much higher frequency than in Europeans or Americans (Berman, 1951). Berman and his South African colleagues relied on broad racial classifications that defined their study populations as black Africans (Oettlé, 1956; Oettlé & Higginson, 1956). Together with researchers from the United States, the South Africans argued that environmental factors played a vital role in the etiology of liver cancer because high rates had been found in “the indigenous races of the Orient” and black Africans but not in black people in the United States, who were thought to be closely related to black people in Africa (Berman, 1955; Kennaway, 1944). Their comparison was based on studies that their US collaborator Paul E. Steiner had conducted at the Los Angeles County Hospital in the 1940s (Steiner, 1954). Historian Keith Wailoo has argued that “Steiner’s choice of racial categories thus reflected a paradox, for while he rejected the older notion of black cancer immunity, he embraced other outdated practices of racial classification.” (2011, p. 98). These outdated categories travelled well, enabling scientific collaboration across the United States, apartheid South Africa, and the late British Empire.

These environmental factors were described in terms of climate and geography and also increasingly in terms of molecules. Molecularization – the perspective of the body and, in this case, the
environment on the molecular scale – encompassed much of the life sciences and biomedicine in the twentieth century (Chadarevian & Kamminga, 1998; Rose, 2007). However, molecularization was not a disruptive shift in paradigm but a slow process in which studies on different scales often complemented each other. For example, chemical carcinogenesis arguably molecularized in the 1920s, when laboratory studies identified specific molecules in coal tar that caused cancer in mice (Armon, 2012). Geographical pathologists described the geography and agriculture of their study regions while also considering molecular substances. A study in the 1950s stated that “as far as the South African native is concerned, we suspect that the high incidence of liver disease, disturbance in the metabolism at least of the bile, vitamin A, and the sterol hormones and to a lesser extent of the thyroid are most deeply implicated in the production of carcinoma of the liver,” while climate might affect the utilization of food (Gillman, Gillman, & Gilbert, 1950). Some researchers speculated that “if some specific carcinogen is involved in Africans, it appears to be one that is fairly specific to the liver cells. Such a postulated carcinogen must be one that arises or can be encountered in African life and which can explain the curious geographic distribution of carcinoma of the liver” (Davies, 1955, p. 1643).

Cancer treatment, the researchers contended, was not a concern, because the disease played no larger role in Africa’s current health problems: Africans were generally younger than the ages at which cancer was frequent. The researchers warned that people would get older with improving health conditions in the future, and, thus, cancer prevention was still warranted (Clemmesen, 1956). Health programs of colonial rulers, international organizations, and, postcolonial African governments focused on primary care, malnutrition, and infectious diseases. However, this neglect of cancer treatment did not go unchallenged. Jack Davies, a pathologist in Uganda, objected that “cancer of the liver in Uganda, as elsewhere in Africa, is a common and important human disease causing much suffering and misery” and care should not be postponed into the indefinite future (1955, p. 1637).
Molecularized Environments: Practices of Studying Liver Cancer in Kenya

In contrast to the neglect of cancer care in Africa, European and North American states created national programs for the development of cancer treatments in the 1940s and 1950s (Keating & Cambrosio, 2012). When French intellectuals urged France’s President Charles de Gaulle to propose the foundation of an international organization for cancer research, funded by 0.5 per cent of the defense budgets of the developed countries in 1963, the negotiations produced the much more modestly funded International Agency for Research on Cancer (IARC), which focused on geographical pathology and cancer epidemiology. WHO, France, Germany, Italy, the United Kingdom, and the United States were soon joined by the Soviet Union in funding the IARC (Wild & Saracci, 2015). The British and other initial critics were swayed by limiting the IARC’s scientific program to geographical pathology, which was considered to be already an international endeavor. The new international agency would thus not encroach on the nation states and their newly established national cancer treatment programs. The scientific advisors to the IARC recommended that the IARC become the hub for liver cancer research around the globe. John Higginson, who had been an active member of the geographical pathology community, was appointed to be the first director of the IARC.

The geographical pathologists wondered since the mid-1950s about the existence of specific liver carcinogen in the environment of populations with high rates of liver cancer. In 1960, such a substance, aflatoxin, was discovered in a place far away from southern Africa, when hundreds of thousands of turkeys died unexpectedly on British farms. Researchers identified a mold-produced molecule that caused liver cancer in rats and other animals. Aflatoxin presented a possible answer to the riddle of liver cancer. The IARC accorded the highest priority to investigating the link between liver cancer and aflatoxin, establishing a Regional Research Center in Nairobi, Kenya, in 1967.
In many parts of Africa, medical research had been part of the colonial states’ practices of ruling and managing colonized populations (Comaroff & Comaroff, 1997; Vaughan, 1991). Africans were, however, not just docile subjects but creatively subverted and adopted medical practices and interventions, challenging the “nervous” colonial state (Hunt, 2016). With decolonization in the 1960s, postcolonial African states continued funding medical research, mostly on infectious diseases (Ombongi, 2011). Many of these research efforts dwindled, when international lenders imposed structural adjustment programs on Africa states in the 1980s and 1990s. International and non-governmental organizations provided research funding that lent them the appearance and functions of states but with none of the responsibilities. The research center that the IARC established in Nairobi was a forerunner of such “para-state” organizations that built on the edifice of the state, while beholden only to international donors (Geissler, 2015).

Cancer research itself was not new to East Africa. Uganda had become a center for cancer research and treatment in the 1950s (Mika, 2017). Denis Burkitt studied the eponymous lymphoma and other cancers through what he called “cancer safaris.” Reminiscent of the lonely colonial medical officer, he moved between medical stations to record cancer incidence and create cancer maps (B. Clarke, 2014). In Kenya, British researchers formed the Kenyan Cancer Council in the late 1950s in response to their Ugandan colleagues’ inquiries. Charles Allan Linsell, a pathologist of the colonial Medical Research Laboratory in Nairobi, established a cancer registry to obtain the much needed systematic observations of cancer patterns (Linsell & Martyn, 1962). After Kenya’s independence in 1963, Linsell remained in Kenya as a staff member of the WHO, which had run nutrition surveys for several years. The WHO approached the Kenyan government to set up the IARC Regional Centre in Nairobi. The Kenyan government agreed to the proposal and Linsell became the director of the new center in the fall 1966.
The geographical pathological study of liver cancer and aflatoxin was conducted in Murang’a County, where the agrarian Kikuyu people lived. The Kikuyu had been subjects of a series of British and WHO nutrition studies since the 1920s. Linsell and his colleague F. G. Peers hired two local research assistants, Samuel Mwangi and Peter Mbugwa, one of whom was an ex-schoolmaster. They were based in Fort Hall (now Murang’a) with a Land Rover and collected food samples directly from the plates of local people in the county. Market sampling was considered unrepresentative, because the researchers observed that women, who usually prepared the food, removed visibly moldy ingredients. The collectors depended on the hierarchies of the Kikuyu and on state infrastructure to obtain their samples. They relied on local chiefs to help them approach randomly selected tax-payers to be the center of a sampling cluster. They explained the purpose of the study and bought a sample of the daily main meal from the cluster center and seven close-by houses that cooked the meals separately (Peers & Linsell, 1973). These samples were shipped in coolers to Nairobi and analyzed at the IARC laboratory for aflatoxin. Moreover, Linsell established a cancer registry in Murang’a county. The cancer incidences were compared to the national cancer registry in Nairobi (International Agency for the Research on Cancer, 1968; Linsell, 1967). Linsell and Peers divided Murang’a county by altitude into three different areas and determined the distribution of liver cancer and aflatoxin exposure in each area. Comparing the three areas, they found a weak correlation. The population in an area with increased liver cancer rates was also subject to increased aflatoxin exposure. This correlation was, however, so weak that a few unrecorded cases would have rendered the result statistically not significant.

Linsell and Peers assumed that the high rates of liver cancer were the result of the lives that the Kikuyu had been living for a long time and of the food that they consumed locally. However, hundreds of thousands Kikuyu had been subject to brutal resettlement in detention camps and to confinement in villages by the British in response to the Mau Mau rebellion – the Emergency – in the 1950s (Elkins,
The case of the Kikuyu in Murang’a county was so stark that even the IARC researchers could not escape the recent history:

As regards food sampling in the pilot area of Murang’a, this is possible but might prove more expensive than I thought, as many of the more remote areas of the district are now occupied by Africans previously accommodated in the consolidated villages. Following the Emergency and land consolidation, Africans in this area were accommodated in villages specially constructed by Government with services such as water supply and medical care. There has been, since Independence, a return to the more traditional way of life and they have left these villages for their own farms. Although this may make our work more difficult I think the isolation of individual farms may ensure a more meaningful study.\(^5\)

For these reasons, Linsell viewed the Kikuyu’s lives as “sufficiently static” to be studied. The annual reports of the colonial medical department repeatedly discussed how the life and dietary conditions in the camps impacted the health of the Kikuyu population (Kenya Medical Department, 1956). This way of measuring the environment assumed a stable relation of the people and their environment, making visible seasonal changes but no short-term or long-term changes of diet and agricultural practices. When the British colonial rulers appropriated land for the cultivation of tea, coffee, and other cash crops in the first half of the twentieth century, they promoted corn, because this crop could nourish a larger population on the smaller plots of land (MacKenzie, 1999). Corn was highly susceptible to aflatoxin and other pests. The cancer researchers casted the Kikuyu as a people bound in their traditional lives that made observations over time unnecessary. This flattening of the temporality was one of the problems of geographical pathology that would soon emerge.
The Kikuyu had their own knowledge systems about health and agricultural practices. A number of anthropologists studied the community, among them Louis Leakey, who would later become a famous paleontologist, in the 1930s. Leakey described that the Kikuyu refer to some diseases as *kũrũara ini*, which he translates as “to be ill as to the liver.” The Kikuyu considered this set of diseases as often incurable and eventually causing death (Leakey, 1977, pp. 928–929). It is impossible to know whether a contemporary biomedical doctor would have diagnosed *kũrũara ini* as liver cancer or anything related to the biomedical conception of the liver.

Epilogue: Biomarkers, Viruses, and the Emergence of “Placeless” Cancer Epidemiology

The Murang’a study became a key reference point for geographical pathology inquiries into cancer. Peers and Linsell followed up with a similar study in Swaziland, also finding a correlation between aflatoxin ingestion and liver cancer (Peers, Gilman, & Linsell, 1976). Other studies in Uganda and Thailand in the early 1970s corroborated this correlation as well (Alpert, Hutt, Wogan, & Davidson, 1971; Shank, Gordon, Wogan, Nondasuta, & Subhamani, 1972). Yet, these studies also signaled a shift away from the framework that geographical pathology had provided. Scientists begun to employ a blood test for alpha-fetoprotein to diagnose liver cancer. Alpha-fetoprotein was what came to be called a biomarker, an indicator of disease on the molecular level. Biomarkers came to replace pathological tissue analyses.

Aflatoxin, however, did not remain the only answer to the question of liver cancer causation. In the early 1970s, scientists hypothesized that the recently discovered hepatitis B virus could cause liver cancer (Koshiol, Liu, O’Brien, & Hildesheim, 2018). A series of Sino-US collaborative epidemiological studies sought to confirm this hypothesis (Jiang, 2018). The researchers conducted a so-called cohort study that monitored the biomarkers for hepatitis virus infection and liver cancer over time. By
bracketing the question of temporal development, geographical pathology had foreclosed such questions. This limitation pushed researchers to develop biomarkers for aflatoxin exposure in the late 1980s and 1990s. Subsequent studies found that aflatoxin and hepatitis virus infections synergistically caused liver cancer (Kensler, Roebuck, Wogan, & Groopman, 2011). The virus research programs, which the US government heavily supported, exerted thus an influence on the study of chemical carcinogenesis, pushing the field toward specific modes of molecularization (Gaudillière, 1998; Scheffler, 2014). These biomarker studies allowed researchers to overcome what had already been seen as limit of geographical pathology in 1959, namely that the “final proof of cause and effect is not obtained from this type of study considered alone.”

However, the focus on biomarkers pushed epidemiologists away from studying the relations of populations and environments. One of the crucial studies on hepatitis virus infections and liver cancer in Taiwan in 1981 made no effort “to study aflatoxins because there is no way to measure previous aflatoxin exposure; and because the Chinese diet is so complex, food sampling for aflatoxins is a formidable task” (Beasley, Hwang, Lin, & Chien, 1981, p. 1132). Instead, epidemiologists focused on populations and the indicators that were measurable within the body. Sociologist Sara Shostak argues that the trend went even further to individualize exposure and prevention in the United States, undermining environmental epidemiology’s “traditional orientation to informing population-based interventions to protect public health” (Shostak, 2013, p. 135). The IARC also disbanded its Nairobi Center in the early 1970s, after dismissing proposals for establishing a permanent program to screen for environmental carcinogens.

It was not only the introduction of biomarkers that signaled the demise of geographical pathology. The concept itself had already started to lose its cohesiveness and power to corral researchers into working under a framework in the early 1960s. At an early IARC meeting, it was
discussed that “geographical pathology [...] should not be regarded as a discipline per se, but rather as approach to problems of pathogenesis which emphasize the collection and comparison of biological parameters in populations under differing environments in order to permit identification of etiological mechanisms.” In the copy of this document in the WHO Archives, the reader parenthesized “geographical pathology” and wrote epidemiology next to it. Molecular epidemiology with its body-centric biomarkers rendered epidemiology “placeless.”

Today, historians and sociologists once again see an opening for critical social science in the burgeoning field of epigenetics to study “how social inequality and other factors contribute to health and illness and can help focus social policy to achieve societal improvements” (Müller et al., 2017, p. 1681). Yet, it remains to be seen if social scientists today are more successful than Henry Sigerist in convincing biomedical researchers of the relevance of their contributions. At the same time, geography and other fields have continued to study the relation between health, social forces, and place throughout the late twentieth century (Valencius, 2000; Guthman & Mansfield, 2013). The question may thus be not only about finding new epistemic openings but also about pushing international politics to take questions of environmental health seriously.
Conflict of Interest Statement

The author states that there is no conflict of interest.

Acknowledgements

xxxx

Archives Consulted

Archives of the International Agency for Research on Cancer, Lyon
Archives of the World Health Organization, Geneva

References

Adelheim, R. (1929). Über geographische Pathologie. Latvijas Arstī Zurnals, 1(1–2), 217–223.
Alpert, M. E., Hutt, M. S. R., Wogan, G. N., & Davidson, C. S. (1971). Association between aflatoxin content of food and hepatoma frequency in Uganda. Cancer, 28(1), 253–260.
Anderson, W. (2006). Colonial pathologies: American tropical medicine, race, and hygiene in the Philippines. Durham, NC: Duke University Press.
Armon, R. (2012). From Pathology to Chemistry and Back: James W. Cook and Early Chemical Carcinogenesis Research. Ambix, 59(2), 152–169.
Arnold, D. (1996). The problem of nature: environment, culture and European expansion.
Oxford: Blackwell.
Askanazy, M. (1928). Die internationale Gesellschaft für geographische Pathologie. Centralblatt Für Allgemeine Pathologie Und Pathologische Anatomie, 55–60.

Askanazy, M. (1930a). Die Probleme der vergleichenden Völkerpathologie. Schweizerische Medizinische Wochenschrift, 60(47), 1097–1104.

Askanazy, M. (1930b). Probleme der vergleichenden Völkerpathologie. Forschungen und Fortschritte. Nachrichtenblatt der Deutschen Wissenschaft und Technik, 6(29), 379–381.

Beasley, R. P., Hwang, L.-Y., Lin, C.-C., & Chien, C.-S. (1981). Hepatocellular Carcinoma and Hepatitis B Virus: A Prospective Study of 22 707 Men in Taiwan. The Lancet, 318(8256), 1129–1133.

Berman, C. (1951). Primary Carcinoma of the Liver. A Study on Incidence, Clinical Manifestations, Pathology and Aetiology. London: Lewis.

Berman, C. (1955). The aetiology of primary carcinoma of the liver, with special reference to the Bantu races of Southern Africa. South African Medical Journal, 29(51), 1195–1198.

Borowy, I. (2009). Coming to terms with world health: the League of Nations Health Organisation, 1921-1946. Frankfurt: Peter Lang.

Brandt, A. M. (2007). The cigarette century: the rise, fall, and deadly persistence of the product that defined America. New York: Basic Books.

Chadarevian, S. de, & Kamminga, H. (1998). Introduction. In S. Chadarevian & H. Kamminga (Eds.), Molecularizing biology and medicine: new practices and alliances, 1910s-1970s (p. 313). Amsterdam: Harwood.

Clarke, B. (2014). Mapping the methodologies of Burkitt lymphoma. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 48, Part B, 210–217.
Clemmesen, J. (Ed.). (1951). Endemology of Cancer. In *Symposium on Geographical Pathology and Demography of Cancer*.

Clemmesen, J. (Ed.). (1956). Symposium on Cancer of the Liver among African Negroes (Vol. 13). Presented at the Symposium on Cancer of the Liver among African Negroes, Kampala, Uganda: Acta - Unio Internationalis Contra Cancrum.

Comaroff, J., & Comaroff, J. L. (1997). *Of revelation and revolution* (Vol. 1). Chicago: University of Chicago Press.

Cooper, F. (2005). *Colonialism in question: theory, knowledge, history*. Berkeley: University of California Press.

Davies, J. N. P. (1955). Human Implications. Primary Carcinoma of the Liver in Africans. *Journal of the National Cancer Institute, 15*(Supplement 5), 1637–1644.

de Josselin de Jong. (1931). Leberzirrhose. In *Comptes rendus de la première conférence internationale de pathologie géographique, Genève*. Geneva: Kundig.

Doll, R. (Ed.). (1959). *Methods of Geographical Pathology. Report of the Study Group convened by the Council for International Organizations of Medical Sciences. Established under the joint auspices of UNESCO and WHO*. Oxford: Blackwell.

Elkins, C. (2005). *Imperial reckoning: the untold story of Britain’s Gulag in Kenya*. New York: Henry Holt and Co.

Farmer, P., Frenk, J., Kaul, F. M., Shulman, L. N., Alleyne, G., Armstrong, L., … Seffrin, J. R. (2010). Expansion of cancer care and control in countries of low and middle income: a call to action. *The Lancet, 376*(9747), 1186–1193.
Fischer, W. (1927). Über bösartige Geschwülste bei farbigen Rassen. In Arbeiten über Tropenkrankheiten und deren Grenzgebiete. Bernhard Nocht zu seinem 70. Geburtstag gewidmet von Freunden und Schülern (Vol. 26, pp. 103–114). Hamburg: Friedrichsen.

Fox, R. (2016). Science without Frontiers. Corvallis, Or: Oregon State University Press.

Gaudillière, J.-P. (1998). The Molecularization of Cancer Etiology in the Postwar United States: Instruments, Politics and Management. In S. Chadarevian & H. Kamminga (Eds.), Molecularizing biology and medicine: new practices and alliances, 1910s-1970s (p. 313). Amsterdam: Harwood.

Gaudillière, J.-P., & Löwy, I. (2016). The Hereditary Transmission of Human Pathologies between 1900 and 1940: The Good Reason Not to Become “Mendelian.” In S. Müller-Wille & C. Brandt (Eds.), Heredity Explored. Between Public Domain and Experimental Science, 1850-1930. (pp. 311–336). Cambridge, MA: MIT Press.

Geissler, P. W. (2015). Introduction: A Life Science in Its African Para-State. In P. W. Geissler (Ed.), Para-States and Medical Science (pp. 1–44). Duke University Press.

Gillman, J., Gillman, T., & Gilbert, C. (1950). Observations on the etiology of cancer of the liver. In J. Clemmesen (Ed.). Presented at the Symposium on Geographical Pathology and Demography of Cancer, Oxford.

Guthman, J., & Mansfield, B. (2013). The implications of environmental epigenetics: A new direction for geographic inquiry on health, space, and nature-society relations. Progress in Human Geography, 37(4), 486–504.

Harrington, A. (1996). Reenchanted science: holism in German culture from Wilhelm II to Hitler. Princeton, N.J.: Princeton University Press.
Higginson, J. (1963). The Geographical Pathology of Primary Liver Cancer. *Cancer Research, 23*(10 Part 1), 1624–1633.

Hirsch, A. (1859). *Handbuch der historisch-geographischen Pathologie*. Erlangen, Germany: Ferdinand Enke.

Hunt, N. R. (2016). *A Nervous State: Violence, Remedies, and Reverie in Colonial Congo*. Durham, NC: Duke University Press.

International Agency for the Research on Cancer. (1968). *IARC Working Conference: Studies on the Role of Aflatoxin in Human Disease* (IARC Internal Technical Report No. 68/002). Lyon.

Jasanoff, S. (2004). Ordering knowledge, ordering society. In S. Jasanoff (Ed.), *States of knowledge: the co-production of science and social order* (pp. 13–45). London: Routledge.

Jiang, L. (2018). Global Epidemiology, Local Message: Sino-American Cooperation on Cancer Research, 1969–1990. In P. Manning & M. Saveli (Eds.), *Global Transformations in the Life Sciences, 1945-1980*. Pittsburgh, PA: University of Pittsburgh Press.

Keating, P., & Cambrosio, A. (2012). *Cancer on trial: oncology as a new style of practice*. Chicago: University of Chicago Press.

Kennaway, E. L. (1944). Cancer of the Liver in the Negro in Africa and in America. *Cancer Research, 4*(9), 571–577.

Kennaway, E. L. (1951). Forms of Cancer in Man Suitable for Investigation. In J. Clemmesen (Ed.), *Symposium on Geographical Pathology and Demography of Cancer* (pp. 147–150).
Kensler, T. W., Roebuck, B. D., Wogan, G. N., & Groopman, J. D. (2011). Aflatoxin: A 50-Year Odyssey of Mechanistic and Translational Toxicology. *Toxicological Sciences, 120*(Suppl 1), S28–S48.

Kenya Medical Department. (1956). *Medical Department. Annual Report.* Nairobi, Kenya.

Koshiol, J., Liu, Z., O’Brien, T. R., & Hildesheim, A. (2018). Beasley’s 1981 paper: The power of a well-designed cohort study to drive liver cancer research and prevention. *Cancer Epidemiology, 53*, 195–199.

Landecker, H., & Panofsky, A. (2013). From Social Structure to Gene Regulation, and Back: A Critical Introduction to Environmental Epigenetics for Sociology. *Annual Review of Sociology, 39*(1), 333–357.

Leakey, L. S. B. (1977). *The southern Kikuyu before 1903* (Vols. 1–3). London: Academic Press.

Linsell, C. A. (1967). Cancer incidence in Kenya 1957–63. *British Journal of Cancer, 21*(3), 465–473.

Linsell, C. A., & Martyn, R. (1962). The Kenya Cancer Registry. *East African Medical Journal, 39*, 642–648.

Livingston, J. (2012). *Improvising medicine: an African oncology ward in an emerging cancer epidemic.* Durham, NC: Duke University Press.

MacKenzie, A. F. D. (1999). Betterment and the Gendered Politics of Maize Production, Murang’a District, Central Province, Kenya, 1880-1952. *Canadian Journal of African Studies, 33*(1), 64–97.

Mendelsohn, J. A. (1996). *Cultures of Bacteriology: Formation and Transformation of a Science in France and Germany, 1870–1914* (Ph.D. Dissertation). Princeton University, Princeton, NJ.
Mendelsohn, J. A. (1998). From Eradication to Equilibrium: How Epidemics Became Complex after World War I. In C. Lawrence & G. Weisz (Eds.), *Greater than the parts: holism in biomedicine, 1920-1950* (pp. 303–334). New York: Oxford University Press.

Mika, M. (2017). Fifty years of creativity, crisis, and cancer in Uganda. *Canadian Journal of African Studies, 50*(3), 395–413.

Müller, R., Hanson, C., Hanson, M., Penkler, M., Samaras, G., Chiapperino, L., ... & Villa, P. (2017). The biosocial genome? *EMBO Reports, 18*(10), 1677–1682.

Murphy, M. (2006). *Sick building syndrome and the problem of uncertainty: environmental politics, technoscience, and women workers*. Durham, NC: Duke University Press.

Nash, L. (2006). *Inescapable ecologies: a history of environment, disease, and knowledge*. Berkeley: University of California Press.

Oettlé, A. G. (1956). The Incidence of Primary Carcinoma of the Liver in the Southern Bantu. I. Critical Review of the Literature. *Journal of the National Cancer Institute, 17*(3), 249–280.

Oettlé, A. G., & Higginson, J. (1956). The Incidence of Primary Carcinoma of the Liver in the Southern Bantu. II. Preliminary Report on Incidence in Johannesburg. *Journal of the National Cancer Institute, 17*(3), 281–287.

Ombongi, K. S. (2011). The Historical Interfaces between the State and Medical Science in Africa: Kenya’s Case. In P. W. Geissler & C. Molyneux (Eds.), *Evidence, ethos and experiment: the anthropology and history of medical research in Africa*. New York: Berghahn Books.

Packard, R. M. (1997). Visions of Postwar Health and Development and Their Impact on Public Health Interventions in the Developing World. In F. Cooper & R. M. Packard (Eds.),
International development and the social sciences: essays on the history and politics of knowledge. Berkeley: University of California Press.

Peers, F. G., Gilman, G. A., & Linsell, C. A. (1976). Dietary aflatoxins and human liver cancer. A study in Swaziland. International Journal of Cancer. Journal International Du Cancer, 17(2), 167–176.

Peers, F. G., & Linsell, C. A. (1973). Dietary aflatoxins and liver cancer - a population based study in Kenya. British Journal of Cancer, 27(6), 473–484.

Pirie, J. H. H. (1922). Hepatic Carcinoma in Natives and its Frequent Association with Schistosomiasis. South African Medical Record, 20(1), 2–8.

Pitt, J. I., & Miller, J. D. (2017). A Concise History of Mycotoxin Research. Journal of Agricultural and Food Chemistry, 65, 7021–7033.

Proctor, R. (1999). The Nazi war on cancer. Princeton, NJ: Princeton University Press.

Prüll, C.-R. (1998). Holism and German Pathology (1918 - 1933). In C. Lawrence & G. Weisz (Eds.), Greater than the parts: holism in biomedicine, 1920-1950 (pp. 46–67). New York: Oxford University Press.

Rose, N. S. (2007). Politics of life itself: biomedicine, power, and subjectivity in the twenty-first century. Princeton, NJ: Princeton University Press.

Rosenberg, C. E. (2012). Epilogue: Airs, Waters, Places. A Status Report. Bulletin of the History of Medicine, 86(4), 661–670.

Rosenberg, C. E., & Golden, J. (Eds.). (1992). Framing disease: studies in cultural history. New Brunswick, NJ: Rutgers University Press.

Rouse, C. M. (2009). Uncertain suffering: racial health care disparities and sickle cell disease. Berkeley: University of California Press.
Scheffler, R. W. (2014). Following cancer viruses through the laboratory, clinic, and society. *Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences*, 48, 185–188.

Schmorl, G. (Ed.). (1927). Verhandlungen der Deutschen Pathologischen Gesellschaft. In *Verhandlungen der Deutschen Pathologischen Gesellschaft* (Vol. 22). Danzig (Gdansk): Gustav Fischer Verlag.

Sellers, C. (1997). *Hazards of the job: from industrial disease to environmental health science*. Chapel Hill: University of North Carolina Press.

Shank, R. C., Gordon, J. E., Wogan, G. N., Nondasuta, A., & Subhamani, B. (1972). Dietary aflatoxins and human liver cancer. III. Field survey of rural Thai families for ingested aflatoxins. *Food and Cosmetics Toxicology, 10*(1), 71–84.

Shostak, S. (2013). *Exposed science: genes, the environment, and the politics of population health*. Berkeley: University of California Press.

Shostak, S., & Moinester, M. (2015). The Missing Piece of the Puzzle? Measuring the Environment in the Postgenomic Moment. In S. S. Richardson & H. Stevens (Eds.), *Postgenomics: perspectives on biology after the genome*. Durham, NC: Duke University Press.

Sigerist, H. E. (1933). Problems of historical-geographical pathology. *Bulletin of the History of Medicine, 1*, 10.

Steiner, P. E. (1954). *Cancer: Race and Geography. Some Etiological, Environmental, Ethnological, Epidemiological, and Statistical Aspects of Caucasoids, Mongoloids, Negroids, and Mexicans*. Baltimore: Williams & Wilkins.
Stewart, H. L. (1951). The administrative aspect of organizing a unit devoted to the study of the geographical pathology of cancer. In J. Clemmesen (Ed.), *Symposium on Geographical Pathology and Demography of Cancer* (pp. 147–150).

Tilley, H. (2011). *Africa as a living laboratory: empire, development, and the problem of scientific knowledge, 1870-1950.* Chicago: University of Chicago Press.

Valenčius, C. B. (2000). Histories of Medical Geography. In N. A. Rupke (Ed.), *Medical geography in historical perspective.* London: Wellcome.

Vaughan, M. (1991). *Curing their Ills. Colonial Power and African Illness.* Cambridge: Polity Press.

Wailoo, K. (2011). *How cancer crossed the color line.* Oxford: Oxford University Press.

Wailoo, K. (2014). *Pain: a political history.* Baltimore: Johns Hopkins University Press.

Weindling, P. (2000). *Epidemics and genocide in eastern Europe, 1890-1945.* Oxford: Oxford University Press.

Weisz, G. (2014). *Chronic disease in the twentieth century: a history.* Baltimore: Johns Hopkins Press.

Wild, C. P., & Saracci, R. (2015). *International Agency for Research on Cancer. The First 50 Years, 1965-2015.* Lyon: International Agency for Research on Cancer.

Wolf, E. R. (1982). *Europe and the people without history.* Berkeley: University of California Press.

1. These countries included Germany, the United States, Cuba, Colombia, Argentina, England, Austria, Belgium, Canada, Chile, Denmark, Spain, Estonia, France, Greece, the Netherlands, the
Dutch Indies, Hungary, Italy, Japan, Latvia, Lithuania, Mexico, Norway, Poland, Portugal, Romania, Russia, Sweden, Switzerland, Czechoslovakia, Turkey, Yugoslavia, South Africa, Brazil, and Finland.

2. Bacteriology itself was not a uniform field, and some bacteriologists responded to this criticism by studying the environmental effects on bacterial virulence (Mendelsohn, 1996).

3 George Weisz provides an account of the history of the related but different category of chronic diseases that emerged in the United States in the 1930s (2014).

4. For a review-style overview of the history of aflatoxin and other mycotoxins, see Pitt & Miller, 2017. The history of aflatoxin is also the topic of a forthcoming dissertation of the author.

5. C. A. Linsell to G. T. O’Conor, 21 June 1967, Research Centre – Nairobi, R 4/2 Nair, First Generation of Files, 1967 – 1984, Archives of the International Agency for Research on Cancer, Lyon.

6. Kreberg, L., et al. “Working Paper on a Proposed International Cancer Research Programme for WHO,” 1 March 1959, WHO Library, Geneva: MHO/AD/19.159, p. 15.

7. The role of aflatoxin in molecular epidemiological and laboratory cancer studies will be discussed elsewhere in depth.

8. “General Comments on the Future Developments of Epidemiological and Environmental Biology with Special Reference to a Multi-Disciplinary Approach,” IARC Scientific Council, 4-5 April 1966, SC/1/5, p. 1, WHO Archives, Geneva: N70/370/2.