An application of two-spinors calculus to quantum field and quantum mechanics problems

D. S. Kulyabov and A. G. Ulyanova
Peoples’ Friendship University of Russia

This paper describes the Lorentz two-spinors proposing to use them instead of Dirac four-spinors and quaternions.

I. INTRODUCTION

Spinors are used in physics quite extensively [1]. The following spinors are mainly used:

- Dirac four-spinors;
- Pauli three-spinors;
- quaternions.

If Dirac four-spinors are used, the main difficulty is γ matrices. The essence of these objects is that they serve to connect the spinor and tensor spaces and therefore have two types of indices: spinor and tensor ones. It would be logical to perform calculations in one of these spaces only.

We propose using semispinors of Dirac spinors, Lorentz two-spinors [2], as simpler objects.

II. GENERAL NOTION OF SPINORS

Let us determine a spinor using the Clifford–Dirac equation:

$$\gamma(a\gamma b) = - g_{ab} I.$$

Or omitting the spinor indices:

$$\gamma_\alpha \gamma_\beta \gamma_\tau + \gamma_\beta \gamma_\alpha \gamma_\tau = - 2 g_{\alpha\beta} \delta_\tau.$$

The dimension of the spinor space is:

$$\begin{cases} N = 2^{n/2}, & \text{even } n; \\ N = 2^{n/2-1/2}, & \text{odd } n. \end{cases}$$

III. QUATERNIONS AND TWO-SPINORS

Let us assume that

$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad i = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix},$$

$$j = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \quad k = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}.$$

A general quaternion is represented by the matrix

$$A = Ia + ib + jc + jd = \begin{pmatrix} a + id & -c + ib \\ c + ib & a - id \end{pmatrix},$$

where $a, b, c, d \in \mathbb{R}$. The sum and the product of two quaternions are obtained as the matrix sum and matrix product. The adjoint quaternion A^* is determined by the matrix operation:

$$A^* = Ia - (ib + jc + kd).$$

If matrix A is unimodular and unitary, it represents the unitary spin matrix. The following relations can be written:

$$\det A = a^2 + b^2 + c^2 + d^2 = 1,$$

$$AA^* = I(a^2 + b^2 + c^2 + d^2) = I.$$

Thus, the quaternion should have the unitary norm:

$$||A|| := \sqrt{a^2 + b^2 + c^2 + d^2} = 1.$$

Therefore, the unitary quaternion can be represented as the unitary spin matrix.

In spite of the fact that unitary spin matrices and unitary quaternions represent the same thing, in the general case, no close connection exists between quaternions and spin matrices. The fact of the matter is that quaternions are connected with positive definite quadratic forms, while spin matrices and Lorentz transforms are characterized by the Lorentz signature $(+, -, -, -)$.

IV. FROM TWO-SPINORS TO VECTORS

In final calculations, it is necessary to transform abstract indices into component form. Moreover, it is often more convenient to formulate the result in vector form.
To establish the connection between the spinor and vector bases, the Infeld–van der Waerden symbols are used:

\[g_{\alpha 0}^{AA'} := g_{\alpha 0} \varepsilon_A \varepsilon_A' \varepsilon_A' \varepsilon_A, \]
\[g_{\alpha 0}^{2AA'} := g_{\alpha 0} \varepsilon_A \varepsilon_A' \varepsilon_A' \varepsilon_A, \]

where convolution is performed over abstract indices.

To establish the connection between the spinor and vector bases, the Infeld–van der Waerden symbols are used:

\[g_{\alpha 0}^{AA'} := g_{\alpha 0} \varepsilon_A \varepsilon_A' \varepsilon_A' \varepsilon_A, \]
\[g_{\alpha 0}^{2AA'} := g_{\alpha 0} \varepsilon_A \varepsilon_A' \varepsilon_A' \varepsilon_A, \]

where convolution is performed over abstract indices only.

For the standard Minkowski tetrad and the spin reference frame, we obtain

\[g_{00}^{AB'} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = g_{00}^{AB'}, \]
\[g_{11}^{AB'} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = g_{11}^{AB'}, \]
\[g_{22}^{AB'} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} = g_{22}^{AB'}, \]
\[g_{33}^{AB'} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = g_{33}^{AB'}. \]

\[V. \text{DIRAC FOUR-SPINORS AND LORENTZ TWO-SPINORS} \]

In physical calculations, Dirac four-spinors\(^\text{[1]}\) are often used. However, operations with these objects are extremely cumbersome. One of the basic disadvantages of this formalism is the explicit application of \(\gamma \) matrices which are in essence objects serving to connect the vector and spinor spaces. It is as though our spinor objects “live” in two spaces, vector and spinor spaces. Correspondingly, the desire to transfer to a more unified formalism by rejecting either spinor or tensor indices is observed.

Let us consider the transition to the purely spinor formalism based on Lorentz two-spinors. First, we will construct a four-spinor object based on two-spinors. Then we will demonstrate the capabilities of this formalism with two examples will be considered: the derivation of invariant spinor relations and the calculation of matrix elements.

A. Construction of Four-Spinor Formalism

Let us construct the implementation of the four-spinor formalism based on Lorentz two-spinors.\(^\text{[2]}\)

We denote by small Greek letters four-spinor indices; by capital Latin letters, two-spinor indices (as usual); and by small Latin letters, tensor indices.

Let us write the Dirac four-spinor as

\[\psi^\alpha = \begin{pmatrix} \varphi^A \\ \pi^{A'} \end{pmatrix}, \]

where \(\varphi^A \) and \(\pi^{A'} \) are Lorentz two-spinors.

The adjoint spinor has the form

\[\bar{\psi}^\alpha = \bar{\psi}_\alpha = (\bar{\pi}_A, \bar{\varphi}^{A'}). \]

Let us determine the reflection operator:

\[\hat{P} = \begin{pmatrix} \varphi^A \\ \pi^{A'} \end{pmatrix} \rightarrow \begin{pmatrix} \pi^{A'} \\ \varphi^A \end{pmatrix}, \]

We use \(\gamma \) matrices in the chiral representation. Then the explicit form of the \(\gamma \) matrix is

\[\gamma_{\alpha \rho} = \sqrt{2} \begin{pmatrix} 0 & \varepsilon_A R^E \varepsilon^{A'} S^S \\ \varepsilon_{A'} R^E \varepsilon^{A} S^S & 0 \end{pmatrix}, \]

We introduce the following notation: \(\gamma_5 := \imath \). Using the structure of Dirac four-spinors determined by us, it is possible to construct invariant relations. We will operate with the pair spinor–adjoint four-spinor (\(\psi \) and \(\bar{\psi} \)), and correspondingly, four two-spinors (\(\varphi^A, \varphi^{A'}, \pi^{A'}, \pi_A \)).

B. Scalars

The convolutions \(\bar{\pi}_A \varphi^A \) and \(\bar{\varphi}^{A'} \pi^{A'} \) have the meaning of scalars. Their sum behaves as a scalar, and the difference, as a pseudoscalar:

\[s = \bar{\pi}_A \varphi^A + \bar{\varphi}^{A'} \pi^{A'} = \bar{\psi}_\alpha \psi^\alpha, \]
\[p = i(\bar{\pi}_A \varphi^A - \bar{\varphi}^{A'} \pi^{A'}) = i\bar{\psi}_\alpha \gamma_5 \gamma^\beta \psi^\beta. \]

C. Vectors

The combinations \(\bar{\pi}_A \pi^{A'} \) and \(\varphi^A \varphi^{A'} \) have the meaning of vectors. Their sum behaves as a vector, and the difference, as a pseudovector:

\[j^a = \sqrt{2}(\bar{\pi}_A \varphi^A + \bar{\varphi}^{A'} \varphi^{A'}) = \bar{\psi}_\alpha \gamma^\alpha \psi^\beta, \]
\[\bar{j}^a = \sqrt{2}(\bar{\pi}_A \pi^{A'} - \bar{\varphi}^{A'} \varphi^A) = \bar{\psi}_\alpha \gamma_5 \gamma^\alpha \gamma^\beta \psi^\beta. \]

D. Tensors

The real antisymmetric tensor can be built in a following way:

\[a_{ab} = i(\bar{\varphi}^{A'} \pi_B - \bar{\varphi}^{A'} \pi_B) \varepsilon^{AB} = \bar{\psi}_\alpha \gamma^\alpha \psi^\beta. \]

We think, this is more simple than with four-spinors.
VI. MATRIX ELEMENTS

Usually, the “Feynman trick” is used for calculating matrix elements in quantum theory; this trick consists in the transformation of the product of spinors into the spur; as a result, the squared matrix element is obtained. Correspondingly, the complexity of calculations increases and the number of calculated elements is proportional to \(n^2 \). Moreover, if the complete matrix element is calculated as the sum of many diagrams, or the information on the phase is important, this method is inapplicable.

The proposed alternative is to calculate the matrix element. Let us look at two ways: the application of two-spinors (rejection of tensor indices) and the application of the vector formalism (rejection of spinor indices).

To eliminate the basic obstacle, complex relations for \(\gamma \) matrices, we propose using the two-spinor formalism.

Let us introduce the auxiliary notation based on the sign in the projector \(1 \pm \gamma_5 \):

\[
\psi = \begin{pmatrix} \psi_+ \\ \psi_- \end{pmatrix}.
\]

Correspondingly, the \(\gamma \) matrices are written in the form (see (2)):

\[
\gamma_a = \begin{pmatrix} 0 & \gamma_a^+ \\ \gamma_a^- & 0 \end{pmatrix}, \quad \tilde{\rho} = \begin{pmatrix} \tilde{\rho}_+ & 0 \\ 0 & \tilde{\rho}_- \end{pmatrix},
\]

where \(\tilde{\rho} := p^a \gamma_a \).

The application of two-spinors is especially justified in the case of the presence of projectors \(1 \pm \gamma_5 \). Therefore, let us consider the simplification of calculations in the case of terms of the form

\[
\psi \gamma^{a_1} \tilde{\rho}(a) \gamma^{a_2} \tilde{\rho}(b) \cdots \gamma^{a_n} \left[\frac{1}{2} (1 \pm \gamma_5) \right] \psi_i.
\]

Two cases can be singled out: the even and odd numbers of \(\gamma \) matrices:

\[
\begin{aligned}
\psi \gamma^{a_1} \tilde{\rho}(a) \gamma^{a_2} \tilde{\rho}(b) \cdots \gamma^{a_n} \psi_i, & \\
\psi \gamma^{a_1} \tilde{\rho}(a) \gamma^{a_2} \tilde{\rho}(b) \cdots \gamma^{a_n} \psi_i, & \text{odd number of \(\gamma \) matrix;}
\end{aligned}
\]

\[
\begin{aligned}
\psi \gamma^{a_1} \tilde{\rho}(a) \gamma^{a_2} \tilde{\rho}(b) \cdots \gamma^{a_n} \psi_i, & \\
\psi \gamma^{a_1} \tilde{\rho}(a) \gamma^{a_2} \tilde{\rho}(b) \cdots \gamma^{a_n} \psi_i, & \text{even number of \(\gamma \) matrix.}
\end{aligned}
\]

Using the two-spinor representation of \(\gamma \) matrices, we obtain the following relations:

\[
\begin{aligned}
\gamma_{\alpha a \beta} + \gamma_{\alpha \beta} &= 2 \delta_{\alpha \beta} \delta_\gamma, \\
\gamma_{\alpha a \beta} - \gamma_{\alpha \beta} &= 2 \left(\delta_{\beta} \delta_{\gamma} - \delta_{\alpha} \delta_{\gamma} \right).
\end{aligned}
\]

(4a)

For example, let us prove (1a):

\[
\varepsilon_{CG^D} = \varepsilon_{GC} \varepsilon_{CG} \varepsilon_{CG} = 2 \varepsilon_{A' A} \varepsilon_{D' D} \varepsilon_{G B},
\]

Taking into account the following correspondences:

\[
\alpha \leftrightarrow A', \quad \beta \leftrightarrow B, \quad \gamma \leftrightarrow G, \quad \delta \leftrightarrow D',
\]

we obtain the initial expression.

Thus, sequentially using (4) and (3), we eliminate \(\gamma \) matrices and perform calculations using two-spinors.

After calculations, terms of the following type are obtained:

\[
u_f \pm \tilde{P}(a) \mp \tilde{P}(b) \pm \ldots \tilde{e}^+ \mp \ldots \tilde{e}^i, \quad \epsilon = \text{polarization},
\]

where \(\epsilon \) is polarization.

To obtain a particular result, it is necessary to choose the spinor representation. For example, the standard solution obtained by the decomposition into plane waves can be used. Then in the case of longitudinal polarization, we obtain

\[
u_\pm = \left(\sqrt{E + \epsilon m} \pm \epsilon \sqrt{E - \epsilon m} \right) \left(e^{i \varphi / 2 \sqrt{1 + s \cos \theta}} \right),
\]

where \(s \) is the helicity and \(\epsilon \) is the energy sign.

A. Example of Calculation of a Matrix Element

Let us calculate the cross section of the reaction

\[
u + n \rightarrow p + e^-,
\]

The matrix element of this reaction in the standard (V–A) theory has the form

\[
M = \frac{G_F}{\sqrt{2}} \left(\bar{\psi}_e \gamma_\alpha (1 + \gamma_5) \gamma_\alpha \left(\bar{\psi}_p \gamma^\alpha (g_V + g_A \gamma_5) \psi_n \right) \right).
\]

Using (3), (4), we reduce (1) to the following form:

\[
M = \frac{2 G_F}{\sqrt{2}} \left(u^{i+}_e + \alpha \beta \gamma^\alpha u^{i+}_e \right) \times
\]

\[
\times \left[(g_A - g_V) \left(u^{i+}_p \gamma^\alpha \gamma^\delta \gamma^{\alpha \delta} + u^{i+}_p \gamma^\delta \gamma^{\alpha \delta} \gamma^{\beta \gamma} \right) +
\right.
\]

\[
\left. + 2 g_A \left(u^{i+}_p \gamma^\delta \gamma^{\alpha \delta} \gamma^{\beta \gamma} \right) \right] =
\]

\[
= \frac{2 G_F}{\sqrt{2}} \left[(g_V - g_A) \left(u^{i+}_e \alpha \beta \gamma^\alpha \gamma^\delta \gamma^{\alpha \delta} u^{i+}_e \right) +
\right.
\]

\[
\left. + (g_V + g_A) \left(u^{i+}_e \alpha \beta \gamma^\alpha \gamma^\delta \gamma^{\alpha \delta} \gamma^{\beta \gamma} \right) \right] =
\]

\[
= \frac{4 G_F}{\sqrt{2}} \left[(g_V - g_A) \left(u^{i+}_e \gamma^\alpha \gamma^\delta \gamma^{\alpha \delta} u^{i+}_e \right) +
\right.
\]

\[
\left. + (g_V + g_A) \left(u^{i+}_e \gamma^\alpha \gamma^\delta \gamma^{\alpha \delta} \gamma^{\beta \gamma} \right) \right]
\]

(5)

(6)

(7)
We introduce the spinors
\[|s_0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad |s_1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \]
\[|s_2\rangle = \begin{pmatrix} \cos \theta_p/2 \\ \sin \theta_p/2 \end{pmatrix}, \quad |s_3\rangle = \begin{pmatrix} -\sin \theta_e/2 \\ \cos \theta_e/2 \end{pmatrix}. \]

Then we can write (see \((5)\))
\[u = \frac{1}{\sqrt{2}} \left(\sqrt{E_r + m_e} \pm s_p \sqrt{E_r - m_p} \right) |s_0\rangle, \]
\[u_n = \frac{1}{\sqrt{2}} \left(\sqrt{E_n + m_n} \pm s_n \sqrt{E_n - m_n} \right) |s_1\rangle, \]
\[u_p = \frac{1}{\sqrt{2}} \left(\sqrt{E_p + m_p} \pm s_p \sqrt{E_p - m_p} \right) |s_2\rangle, \]
\[u_e = \frac{1}{\sqrt{2}} \left(\sqrt{E_e + m_e} \pm s_e \sqrt{E_e - m_e} \right) |s_3\rangle. \]

We obtain from \((7)\)
\[M = \frac{G_F}{\sqrt{2}} \left(\sqrt{E_e + m_e} + s_e \sqrt{E_e - m_e} \right) \times \]
\[\left(\sqrt{E_r + m_r} + s_r \sqrt{E_r - m_r} \right) \times \]
\[\left((g_V - g_A) \left(\sqrt{E_n + m_n} - s_n \sqrt{E_n - m_n} \right) \times \right) \]
\[\left(\sqrt{E_p + m_p} - s_p \sqrt{E_p - m_p} \right) (s_3 |s_1\rangle |s_2|s_0\rangle + \right) \]
\[\left((g_V + g_A) \left(\sqrt{E_n + m_n} + s_n \sqrt{E_n - m_n} \right) \times \right) \]
\[\left(\sqrt{E_p + m_p} + s_p \sqrt{E_p - m_p} \right) \times \]
\[\times \left((s_3 |s_0\rangle |s_2|s_1\rangle - (s_3 |s_1\rangle |s_2|s_0\rangle) \right) \]
\[= \frac{G_F}{\sqrt{2}} \left(\sqrt{E_e + m_e} + s_e \sqrt{E_e - m_e} \right) \times \]
\[\left(\sqrt{E_r + m_r} + s_r \sqrt{E_r - m_r} \right) \times \]
\[\left((g_V - g_A) \left(\sqrt{E_n + m_n} - s_n \sqrt{E_n - m_n} \right) \times \right) \]
\[\left(\sqrt{E_p + m_p} - s_p \sqrt{E_p - m_p} \right) \times \left((s_3 |s_0\rangle |s_2|s_1\rangle - (s_3 |s_1\rangle |s_2|s_0\rangle) \right) \]
\[\times \left((s_3 |s_0\rangle |s_2|s_1\rangle - (s_3 |s_1\rangle |s_2|s_0\rangle) \right) \]
\[\times \left((g_V + g_A) \left(\sqrt{E_n + m_n} + s_n \sqrt{E_n - m_n} \right) \times \right) \]
\[\left(\sqrt{E_p + m_p} + s_p \sqrt{E_p - m_p} \right) \times \]
\[\times \left((s_3 |s_0\rangle |s_2|s_1\rangle - (s_3 |s_1\rangle |s_2|s_0\rangle) \right) \]

Thus, the number of calculated terms is decreased considerably (the order \(n\) instead of \(n^2\)); moreover, they have a rather simple form.

\section{VII. Conclusions}

1. Semispinors are simpler objects than spinors.

2. We propose using Lorentz two-spinors instead of Dirac four-spinors.

3. In relativistic calculations, two-spinors seem more adequate than quaternions.

\bibliography{references}

[1] É. Cartan. \textit{The Theory of Spinors}. Dover Books on Mathematics. Dover Publications, 2012. ISBN 9780486137322. URL \url{http://books.google.ru/books?id=AEZih7Gq3cuC}.

[2] R. Penrose and W. Rindler. \textit{Spinors and Space-Time: Volume 1, Two-}Spinor Calculus and Relativistic Fields. Cambridge Monographs on Mathematical Physics. Cambridge University Press, 1987. ISBN 9780521337076. URL \url{http://books.google.ru/books?id=CzhhKrf1xJUC}.

Применение 2-спинорного исчисления в квантовомеханических и полевых расчётах

Д. С. Кулябов and А. Г. Ульянова
Российский университет дружбы народов

В статье описываются лоренцовые 2-спиноры и предлагается применять их в вычислениях, использующих дирахковские 4-спиноры.

I. ВВЕДЕНИЕ

В физике достаточно интенсивно используются спиноры [1]. В основном применяются следующие спиноры:
• дирахковские 4-спиноры;
• паулевские 3-спиноры;
• кватернионы.

При использовании дирахковских 4-спиноров основную трудность вызывают \(\gamma \)-матрицы. По своей сути это объекты, служащие для связи спинорного и тензорного пространств и несущие, соответственно, два типа индексов: спинорные и тензорные. Логично было бы проводить вычисления лишь в одном из этих пространств.

Предлагается использовать полуспиноры дирахковских спиноров — лоренцовые 2-спиноры [2] как более простые объекты.

II. ОБЩЕЕ ПОНЯТИЕ СПИНОРА

Определим спинор посредством уравнения Клиффорда-Дирака:
\[
\gamma(a \gamma_b) = -g_{ab}I.
\]
Или, опуская спинорные индексы:
\[
\gamma_a \gamma_b + \gamma_b \gamma_a = -2g_{ab}I.
\]
Размерность спинорного пространства следующая:
\[
N = \begin{cases}
2^{n/2}, & \text{чётное } n; \\
2^{n/2-1/2}, & \text{нечётное } n.
\end{cases}
\]

III. СВЯЗЬ 2-СПИНОРОВ С КВАТЕРНИОНАМИ

Положим
\[
I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix},
\quad i = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix},
\quad j = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix},
\quad k = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}.
\]
Общий кватернион будет представлен матрицей
\[
A = Ia + ib + jc + jd = \begin{pmatrix} a + id & -c + ib \\ c + ib & a - id \end{pmatrix},
\]
где \(a, b, c, d \in \mathbb{R}\). Сумма и произведение двух кватернионов получаются просто как матричная сумма и матричное произведение. Сопряжённый кватернион \(A^*\) определяется соответствующей матричной операцией:
\[
A^* = Ia - (ib + jc + kd).
\]
Если матрица \(A\) унимодулярна и унитарна, то она будет представлять собой унитарную спин-матрицу. Можно записать соотношения:
\[
\det A = a^2 + b^2 + c^2 + d^2 = 1,
\quad AA^* = I(a^2 + b^2 + c^2 + d^2) = I.
\]
Таким образом, кватернион должен иметь единичную норму:
\[
\|A\| := a^2 + b^2 + c^2 + d^2 = 1.
\]
Следовательно, единичный кватернион может быть представлен унитарной спин-матрицей.

IV. СВЯЗЬ 2-СПИНОРОВ И ВЕКТОРОВ

При окончательных вычислениях возникает необходимость перевода абстрактных индексов в компонентную запись. Кроме того, зачастую результат
удобнее формулировать в векторной форме. Для уста-
новления взаимосвязи между спинорным и вектор-
ным базисами служат символы Инфельда–ван дер
Вердена:
\[g^{AA'} := g^{-\alpha\delta_A \epsilon_{A} A'}, \]
\[g_{AA'} := g_{\alpha\delta_A \epsilon_{A} A'}, \]
где свёртка производится только по абстрактным ин-
дексам.
Для стандартной тетрады Минковского и спиновой
системы отсчёта получим:
\[g_{AB} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \]
\[g_{AB'} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \]
\[g_{A'B'} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix}, \]
\[g_{A'B'} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}. \]

\section{ДИРАКОВСКИЕ 4-СПИНОРЫ И
ЛОРЕНЦОВЫ 2-СПИНОРЫ}

В физических расчётах часто пользуются дирако-
вскими 4-спинорами\cite{1}. Однако, операции с данны-
ми объектами крайне громоздки. Одним из главных
недостатков этого формализма является явное ис-
полнение гамильтоновских уравнений движения
спиноров, которые по сути своей являются объектами, служащими для связи векторного и спинорного пространств. Наши спинорные объекты
«живут» как бы в двух пространствах: векторном и
спинорном. Соответственно наблюдается стремление
перейти к более единообразному формализму посред-
ством отказа либо от спинорных, либо от тензорных
индексов.
Рассмотрим пример переход к чисто спинорному формализму на основе лоренцовых 2-спиноров. Вначале скон-
струируем 4-спинорный объект на основе 2-спиноров. Далее продемонстрируем возможности данного формализма. Рассмотрим два примера: вывод инвариантных
спинорных соотношений и вычисление матричных
элементов.

\section{А. Построение 4-спинорного формализма}

Построим реализацию 4-спинорного формализма на основе лоренцовых 2-спиноров\cite{1}. Будем обозначать строчными греческими буквами
4-спинорные индексы. Так же, как всегда, прописны-
ми латинскими буквами обозначим 2-спинорные ин-
дексы, а строчными латинскими — тензорные.

Запишем дираковский 4-спинор как
\[\psi^\alpha = \left(\begin{array}{c} \varphi^A \\ \pi^A \end{array} \right), \]
где \(\varphi^A \) и \(\pi^A \) — лоренцовые 2-спиноры.
Сопряжённый спинор будет иметь вид:
\[\bar{\psi}^\alpha = \bar{\varphi}^A = (\bar{\pi}^A, \varphi^A). \]
Определим оператор отражения:
\[\bar{P} = \left(\begin{array}{c} \varphi^A \\ \pi^A \end{array} \right) \mapsto \left(\begin{array}{c} \pi^A \\ \varphi^A \end{array} \right). \]
Будем использовать \(\gamma \)-матрицы в киральном пред-
ставлении. Тогда запишем явный вид \(\gamma \)-матриц:
\[\gamma_{\alpha\beta} = \sqrt{2} \begin{pmatrix} 0 & (\epsilon_{AB} A^R \epsilon_{A} A^S) \\ -i \epsilon_{R} A^S & 0 \end{pmatrix}, \]
кроме того
\[\gamma_{\alpha\rho} = \left(\begin{array}{cc} \epsilon_{A^R B^S} & \epsilon_{A^R B^S} \\ \epsilon_{A^R B^S} & 0 \end{array} \right). \]
Введём так же обозначение \(\gamma_5 := i\gamma. \)
С помощью определённой нами структуры дира-
ковских спиноров можно построить инвариантные
соотношения. Мы будем оперировать парой спинор–
спинорных 4-спиноров можно построить инвариантные
спинорных соотношений и вычисление матричных
элементов.

\section{Б. Скаляры}

Свёртки \(\bar{\varphi}_A \varphi^A \) и \(\bar{\varphi}_A \varphi^A \) имеют смысл скаляров. Их
сумма будет вести себя как скаляр, а разность как
псевдоскаляр:
\[s = \bar{\pi}^A \varphi^A + \bar{\varphi}^A \pi^A = \bar{\psi}_\alpha \psi^\alpha, \]
\[p = i(\bar{\pi}^A \varphi^A - \bar{\varphi}^A \pi^A) = i\bar{\psi}_\alpha \gamma_5^\alpha \psi^\beta. \]

\section{В. Векторы}

Комбинации \(\bar{\varphi}_A \varphi^A \) и \(\bar{\varphi}_A \varphi^A \) имеют смысл вектора. Их
сумма ведёт себя как вектор, разность как псевдове-
кектор:
\[j_\alpha = \sqrt{2} (\bar{\varphi}_A \varphi^A + \bar{\varphi}_A \varphi^A) = \bar{\psi}_\alpha \gamma_5^\alpha \psi^\beta, \]
\[j_\alpha = \sqrt{2} (\bar{\varphi}_A \varphi^A - \bar{\varphi}_A \varphi^A) = \bar{\psi}_\alpha \gamma_5^\alpha \gamma_5^\beta \psi^\delta. \]
D. Тензоры

Действительный кососимметричный тензор можно построить следующим образом:

\[a_{ab} = i(\varphi(A_B)\varepsilon_{A'B'} - \varphi(A'_B)\varepsilon_{AB}) = \bar{\psi}_a \sigma^{ab} \gamma^b \psi. \]

Эти соотношения нам представляются более прямствыми, нежели исходные.

VI. ВЫЧИСЛЕНИЕ МАТРИЧНЫХ ЭЛЕМЕНТОВ

Для расчета матричных элементов в квантовой теории обычно применяют «фейнмановский тракт», заключающийся в преобразовании произведения спиноров в след; в результате получают квадрат матричного элемента. Соответственно возрастает сложность вычислений — количество вычисляемых членов пропорционально \(n^2 \). Кроме того, если полный матричный элемент вычисляется как сумма многих диаграмм, или важна информация о фазе, данный метод не применим.

Как альтернатива предлагается вычислять сам матричный элемент. Рассмотрим два пути: применение 2-спиноров (отказ от тензорных индексов) и применение векторного формализма (отказ от спинорных индексов).

Для ликвидации основного препятствия — сложных соотношений для \(\gamma \)-матриц — предлагается использовать 2-спинорный формализм.

Введем вспомогательную нотацию, базирующуюся на знаке в проекторе 1 ± \(\gamma_5 \):

\[\psi = \begin{pmatrix} \psi_+ \\ \psi_- \end{pmatrix}. \]

Соответственно \(\gamma \)-матрицы записываются в виде (см. 2):

\[\gamma_a = \begin{pmatrix} 0 & \gamma_a^+ \\ \gamma_a^- & 0 \end{pmatrix}, \quad \hat{p} = \begin{pmatrix} 0 & \hat{p}^+ \\ \hat{p}^- & 0 \end{pmatrix}, \]

где \(\hat{p} := p^\alpha \gamma_\alpha \).

Применение 2-спиноров особенно оправдано в случае наличия проекторов (1 ± \(\gamma_5 \)). Поэтому рассмотрим упрощение вычислений в случае членов вида

\[\bar{\psi}_f \gamma^a_1 \tilde{p}(o) \gamma^a_2 \tilde{p}(b) \cdots \gamma^a_n \left[\frac{1}{2} (1 \pm \gamma_5) \right] \psi_i. \]

Можно выделить два случая — чётное и нечётное количество \(\gamma \)-матриц:

1. Чётное число \(\gamma \)-матриц:

\[\left\{ \begin{array}{l} \bar{\psi}_f \gamma^a_1 \tilde{p}(o) \gamma^a_2 \tilde{p}(b) \cdots \gamma^a_n \psi_i, \\
\text{нечётное число } \gamma \text{-матриц;}
\end{array} \right. \]

2. Нечётное число \(\gamma \)-матриц:

\[\left\{ \begin{array}{l} \bar{\psi}_f \gamma^a_1 \tilde{p}(o) \gamma^a_2 \tilde{p}(b) \cdots \gamma^a_n \psi_i, \\
\text{чётное число } \gamma \text{-матриц.}
\end{array} \right. \]

Используя 2-спинорное представление \(\gamma \)-матриц, получаем следующие соотношения:

\[\gamma_{ao} + \gamma_{\gamma} = 2 \delta_\alpha^\delta \gamma_\beta^\gamma, \quad (4a) \]

\[\gamma_{ao} - \gamma_{\gamma} = 2 \left(\delta_\alpha^\beta \gamma_\beta^\gamma - \delta_\alpha^\delta \gamma_\gamma^\delta \right). \]

Для примера докажем 4(3):

\[\varepsilon_{C' A' B'} \varepsilon_{C G} \varepsilon_{C' D'} = 2 \varepsilon_{A' D'} \varepsilon_{G B}, \]

Учитывая соответствие

\[\alpha \leftrightarrow A', \quad \beta \leftrightarrow B, \quad \gamma \leftrightarrow G, \quad \delta \leftrightarrow D', \]

получаем исходное выражение.

Таким образом, применим последовательно 3 и 4, мы освобождаемся от \(\gamma \)-матриц и производим вычисления с 2-спинорами.

После вычислений получаются члены типа

\[u_{i \pm} = \left(\sqrt{E + \varepsilon m} \pm \varepsilon \sqrt{E - \varepsilon m} \right) \left(e^{-i\varphi/2} \frac{1}{\sqrt{1 + s \cos \theta}} \right) \]

где \(s \) — спиральность, \(\varepsilon \) — знак энергии.

A. Пример вычисления матричного элемента

Вычислим сечение реакции

\[\nu + n \rightarrow p + e^{-}. \]

Матричный элемент которой в стандартной (V–A) теории имеет вид

\[M = \frac{G_F}{\sqrt{2}} \left(\bar{\psi}_e \gamma_\alpha (1 + \gamma_5) \psi_n \right) \left(\bar{\psi}_p \gamma^\alpha (g \nu + g \alpha \gamma_5 \psi_n) \right). \]

Используя 3 и 4 приведём 5 к виду:

\[M = \frac{2G_F}{\sqrt{2}} \left(u_{e+}^{a+} \gamma_\alpha \beta^\alpha \gamma_{u_{e+}}^\beta \right) \times \]

\[\left(gA - gV \right) \left(u_{p+}^{a+} \gamma_\alpha \beta^\alpha \gamma_{u_{p+}}^\beta + u_{p+}^{\gamma+} \gamma_\beta \gamma_{u_{p+}}^\gamma \right) + \]

\[+ 2gA u_{p+}^{a+} \gamma_\alpha \beta^\alpha \gamma_{u_{p+}}^\beta \]

\[= 2G_F \left(gV - gA \right) u_{e+}^{a+} \gamma_\alpha \beta^\alpha \gamma_{u_{e+}}^{a+} + u_{p+}^{\gamma+} \gamma_\beta \gamma_{u_{p+}}^\gamma \right) + \]

\[\times \left(gA - gV \right) \left(u_{p+}^{a+} \gamma_\alpha \beta^\alpha \gamma_{u_{p+}}^\beta + u_{p+}^{\gamma+} \gamma_\beta \gamma_{u_{p+}}^\gamma \right) + \]

\[+ 2gA u_{p+}^{a+} \gamma_\alpha \beta^\alpha \gamma_{u_{p+}}^\beta \right]. \]
Выберем направляющие углы следующим образом: \(\varphi_\nu = \varphi_n = \varphi_P = \varphi_e = 0, \theta_\nu = \theta_n = \pi/2, \theta_e \) и \(\theta_p = -\).

Введём спиноры:

\[
|s_0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad |s_1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \\
|s_2\rangle = \begin{pmatrix} \cos \theta_p/2 \\ \sin \theta_p/2 \end{pmatrix}, \quad |s_3\rangle = \begin{pmatrix} -\sin \theta_e/2 \\ \cos \theta_e/2 \end{pmatrix}.
\]

Тогда можно записать (см. [3]):

\[
\begin{align*}
u_\nu & = \frac{1}{\sqrt{2}} \left(\sqrt{E_\nu + m_\nu} \pm s_\nu \sqrt{E_\nu - m_\nu} \right) |s_0\rangle, \\
n_\nu & = \frac{1}{\sqrt{2}} \left(\sqrt{E_n + m_n} \pm s_n \sqrt{E_n - m_n} \right) |s_1\rangle, \\
p_\nu & = \frac{1}{\sqrt{2}} \left(\sqrt{E_P + m_p} \pm s_P \sqrt{E_P - m_p} \right) |s_2\rangle, \\
e_\nu & = \frac{1}{\sqrt{2}} \left(\sqrt{E_e + m_e} \pm s_e \sqrt{E_e - m_e} \right) |s_3\rangle.
\end{align*}
\]

Из (7) получаем

\[
M = \frac{G_F}{\sqrt{2}} \left(\sqrt{E_e + m_e} + s_e \sqrt{E_e - m_e} \right) \times \\
\times \left(\sqrt{E_\nu + m_\nu} + s_\nu \sqrt{E_\nu - m_\nu} \right) \times \\
\times \left[(g_\nu - g_A) \left(\sqrt{E_n + m_n} - s_n \sqrt{E_n - m_n} \right) \times \\
\times \left(\sqrt{E_P + m_p} - s_P \sqrt{E_P - m_p} \right) (s_3|s_0\rangle - (s_3|s_0\rangle) \right) = \\
= \frac{G_F}{\sqrt{2}} \left(\sqrt{E_e + m_e} + s_e \sqrt{E_e - m_e} \right) \times \\
\times \left(\sqrt{E_\nu + m_\nu} + s_\nu \sqrt{E_\nu - m_\nu} \right) \times \\
\times \left[(g_\nu - g_A) \left(\sqrt{E_n + m_n} - s_n \sqrt{E_n - m_n} \right) \times \\
\times \left(\sqrt{E_P + m_p - s_P \sqrt{E_P - m_p} \right) (s_3|s_0\rangle - (s_3|s_0\rangle) \right) \right].
\]

Таким образом мы получили существенное (порядка: в вместо \(n^2 \)) сокращение количества вычисляемых членов, кроме того, все они имеют достаточно простой вид.

VII. ЗАКЛЮЧЕНИЕ

1. Полуспиноры более простые объекты, чем спиноры.

2. Предлагается использовать лоренцовы 2-спиноры вместо дираковских 4-спиноров.

3. При релятивистских расчётах аппарат 2-спиноров представляется более адекватным, чем аппарат кватернионов.

[1] Картан Э. Теория спиноров. — Государственное издательство иностранной литературы, 1947.— URL: http://books.google.ru/books?id=zSwiOgAAACAAJ

[2] Пенроуз Р., Риндлер В. Спиноры и пространство-время: Два-спинорное исчисление и релятивистские поля. Том 1: Пер. с англ.— Мир, 1987.