Ethno Veterinary Therapeutic Practices of Medicinal Flora in Livestock Health Care by Attappadi Tribal farmers of Kerala

Nisha A (nishaaaravind25@gmail.com)
Vellore Institute of Technology: VIT University
https://orcid.org/0000-0001-9347-9038

Vimal Rajkumar N
TANUVAS: Tamil Nadu Veterinary and Animal Sciences University

Research

Keywords: Attappadi tribes, Consensus factor, Ethno Veterinary Medicinal plants, Livestock Health, Medicinal uses

Posted Date: March 4th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-258368/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background- Attappadi is the largest tribal settlement area in Kerala with three tribes viz., Irulas, Mudugas and Kurumbas who are traditionally engaged in livestock activities. The present study was undertaken to document the different plants of ethnoveterinary uses and to identify the most prevailing livestock disease category among livestock farmers of Attappadi tribal area. Hence this study was designed and conducted to understand and effectively use the knowledge, and for the proper selection of important plant species for the most prevailing illness.

Methods- This study was conducted in the period of December 2018 – April 19 using a structured interview with tribal farmers, EVM healers and key informants engaged in the livestock farming.

Results- The present study documented 55 plant species under 39 families for treatment of 15 categories of ailments with their dosages and parts used in Attappadi tribal area. There was great agreement among the informants regarding ethno veterinary uses of plants with Factor of Informants Consensus (FIC) value ranging from 0.50 to 0.97, with an average value of 0.87.

Conclusion- The study reports 55 medicinal plants with their uses and dosage along with the highlighted high FIC values indicates that the species traditionally used to treat these ailments are worth searching for bioactive compounds and this has illuminated the cultural importance of this ethno veterinary wisdom which is consonantly blended with the tribal culture of the area.

Introduction

Indian economy and its population depend greatly on agriculture and the livestock. Livestock contributes 4.11% GDP and 25.6% of total Agriculture GDP. About 20.5 million people depend upon livestock for their livelihood. Livestock provides livelihood to two-third of rural community [1, 2, 3]. Hence the diseases in livestock should be given more importance owing to their significant role in micro and macro economy of nation. Ethnic communities keep their livestock as a symbol of heritage and pride, and they follow indigenous practices to treat their animals. Knowledge on traditional and indigenous practices has been transferred orally over ethnic generations but under the semblance of civilization this knowledge is under great threat of cultural extinction [4]. About 80% of people in the developing world use natural remedies and traditional plant-based medicines for their primary healthcare [5]. Tribal communities are the torch bearers of the Ethnoveterinary knowledge. In Kerala, there are 36 tribal communities consist of a total population 4,84,839 [6]. Palakkad, one among the largest tribal concentrated districts of Kerala has 10.1 per cent of the total tribal population of the state. Attappadi is the largest tribal settlement area of
Palakkad district with three tribes viz., Irulas (84 per cent), Mudugas (10 per cent) and Kurumbas (six per cent) who are traditionally engaged in livestock activities [7, 8]. Hence this study was designed and conducted to understand and effectively use this knowledge, and the proper selection of important plant species for the most prevailing illness must be determined.

Materials And Methods

The present study was conducted purposively in Attappadi block of Palakkad district in Kerala as this is one among the largest tribal settlements with considerable livestock population. Attappadi block comprised of three panchayats, Agali, Pudur and Sholayoor (Fig. 1). A total of 40 tribal livestock farmers from each of the three panchayats, thus a total of 120 tribal livestock farmers were selected randomly as respondents for the study. Ethno veterinary medicine healers and key informants were interviewed along with the tribal farmers to gather information on EVM practises. Prior Informed Consent (PIC) was taken from the Knowledge Providers. A descriptive research design was employed. Personal interviews by pretested interview schedule and Participatory Rural Appraisal (PRA) approach was used to serve the purpose of data collection (Fig. 2). During the field study, information on uses of plants to treat different illnesses of livestock, parts used, modes of preparation, dosage and administration of medicine have been collected. Based on the information obtained from the informants in the study area, all the reported ailments have been grouped into 15 categories.

The level of homogeneity among information provided by different informants was calculated by the Informants’ Consensus Factor, F_{IC} [9] using the following formula:

$$F_{IC} = \frac{Nur - Nt}{(Nur - 1)}$$

Where,

- Nur = number of use reports from informants for a particular plant-use category
- Nt = number of taxa or species that are used for that plant use category for all informants.

Here in this study each polyherbal remedy has been considered as single use-report. The value of F_{IC} provides a range of 0 to 1, where a higher value signifies its greater authenticity as a fixed group of plants are used frequently for that disease or disease category. On the other hand, lower value signifies disagreement among the informants. The similar studies were conducted to know the consent of relevant ethnoveterinary practices in livestock. [10, 11, 12].

Results And Discussion

In the present study the traditional EVM in treatment of different livestock ailments were recorded through the interactive discussions with the tribal farmers and traditional healers (Fig. 3). More than three – fourth of the respondents (81.67%) shared their knowledge on EVM. A minority (18.37%) felt that the sharing of information would lead to the loss of healing potential of these plants. A total of 55 plant species under 39 families in Attappadi area have been documented for treatment of 51 categories of
ailments. Factors for Informants’ consensus (FIC) have been used to identify most potentially effective medicinal plant species as well as plant-based remedies used in the culture of rural people of the study area [10]. Here in this study each polyherbal remedy has been considered as single use-report.

As Table 1.1 bespeaks, there was a medium to high level of consensus among the informants in the study area. The FIC value for different disease categories has ranged from 0.50 to 0.97 with an average value of 0.87 that has indicated the level of agreement among the informants regarding different phytotherapeutic uses of medicinal plants. Similar findings were reported from Velliangiri holy hills [13].

Sl.no	Illness Category	N_{ur}	N_{t}	FIC
1.	Gastro-Intestinal disorders	89	8	0.92
2.	Poisoning	9	3	0.75
3.	Respiratory disorders	42	4	0.92
4.	Skin diseases	48	7	0.87
5.	Dewormer	29	4	0.89
6.	Fever, Cold	46	4	0.93
7.	Mastitis	46	5	0.91
8.	Reproductive disorders	61	8	0.88
9.	Acaricides	28	2	0.96
10.	Musculo Skeletal disorders	19	3	0.88
11.	FMD	91	5	0.96
12.	Pox	76	3	0.97
13.	Anti - Inflammatory	5	3	0.50
14.	HS	4	2	0.67
15.	Snake bite	25	2	0.96

Pox showed highest FIC value, 0.97 with 76 use reports for three plant species, which was followed by FMD (0.96) with 91 use reports for five plant species, ectoparasitism (0.96) with 28 use reports for two plant species, and snake bite (0.96) with 25 use reports for two plant species. High FIC values possibly showed that these ailments were common in the study area which could be attributed to the better care of farmers since theses disease categories had direct negative influence on production of the animals. Medicinal plants supposed to be efficient in treating ailments having high FIC value [14].
This was followed by gastro-intestinal disorders, respiratory disorders, mastitis, fever and cold with values ranged from 0.93 to 0.91. The least agreement (low F_{IC} value) between informants was observed for plants used to cure inflammatory conditions (0.50) with 5 use reports for three plant species which could be due to the fact that those conditions were remained unnoticed by the farmers as they had no direct influence on animal’s production [15]. Similar results were reported among the tribal farmers of Malda district of Bengal [16].

Different EVM practices have been identified and discussed under the following subheads

1. Gastrointestinal disorders - diarrhoea, constipation, indigestion, bloat and stomach pain
2. Respiratory ailments, fever and cold
3. General poisoning and snake venomation conditions
4. Skin diseases - Lacerated wounds, Umbilical wounds, warts, traumatic myasis,
5. Deworming and ectoparasiticides
6. Reproductive disorders - Infertility, anoestrum, retention of foetal membranes, uterine prolapsed, uterine infection, uterine involution and dystocia.
7. Musculoskeletal disorders - arthritis / joint pain, fracture and sprain.
8. Mastitis
9. Foot and Mouth Disease
10. Pox
11. Inflammatory conditions
12. Haemorrhagic septicaemia
Table 1.2
Ethnoveterinary Medicinal Plants Utilized by Tribal Farmers of Attappadi to manage Livestock Gastro Intestinal Diseases

Sl.no	Vernacular name/ Scientific name (Family)	Parts used	Conditions	Route of administration	Dosage
1.	Adaykka Areca catechu (Arecaaceae)	Fruit	Worm infestation	Orally as pulverized or bolus form	50 g
2.	Ajowan Trachyspermum ammi (Apiaceae)	Leaf, seed	Indigestion	Orally mixed with boiling water	300 ml
3.	Betel Piper betle (Piperaceae)	Seed	Indigestion	Oral mix	30 g
4.	Bitter gourd Momordica charantia (Cucurbitaceae)	Leaf	Worm infestation	Pulp as oral dose	500 g
5.	Coconut Cocos nucifera (Areacaceae)	Flower, tender water	Diarrhoea	Oral dose	3–5 l
6.	Curry leaves Murraya koenigii (Rutaceae)	Leaf	Stomach pain	Ground and orally given	100 g
7.	Fenugreek Trigonella foenum-graecum (Leguminosae)	Seed, leaf	Worm infestation	Orally as paste	50–80 g
8.	Garlic Allium sativum L. (Amaryllidaceae)	Clove	Diarrhoea, Indigestion	Orally as paste	50 g
Ailment/Disease: Gastro Intestinal Diseases					

9. Ginger * Zingiber officinale Rosc. * (Zingiberaceae) * Rhizome	Constipation, Indigestion	Orally with other ingredients	100 g		
10. Guava * Psidium guajava * (Myrtaceae) * Leaf	Bloat	Orally as paste	150 g		
11. Jeerakam * Cuminum cyminum * (Umbelliferae) * Fruit	Constipation	Orally	25 g		
12. Kaayam * Asafoetida * Ferula asaefida L. * (Apiaceae) * Resin	Indigestion	Orally mixed with boiling water	25 g		
13. Lemon * Citrus limon * (Rutaceae) * Leaf, fruit	Worm infestation	Orally	250 g		
14. Mukkutti * Biophytum nervifolium * (Oxalidaceae) * Stem	Diarrhoea	Orally	500 g		
15. Neem * Azadirachta indica * (Meliaceae) * Juice of the plant, leaf	Worm infestation	Orally as liquid drench	300–500 ml		
16. Papaya * Carica papaya * (Caricaceae) * Fruit, seed, leaf	Indigestion, Worm infestation	Orally as paste	300 g		
17. Pepper * Piper nigrum L. * (Piperaceae) * Seed, leaf	Indigestion	Oral	100 g		
Ailment/Disease: Gastro Intestinal Diseases					
--					
18. Red chilly	Fruit, stem	Constipation	Orally	15 no / 30 g	
Capsicum annum L. (Solanaceae)					
19. Red onion	Bulb	Diarrhoea, Indigestion	Orally as paste	200 g	
Allium sepa L. (Liliaceae)					
20. Shathavari	Extracts from dried root	Worm infestation	Orally	100–150 ml	
Asparagus racemosus Wild (Liliaceae)					
21. Spinach	Leaf,	Worm infestation	Orally as paste	200 g	
Spinacia oleracea (Amaranthaceae)					
22. Tamarind	Leaf, fruit	Diarrhoea	Orally as paste	100 g	
Tamarindus indica (Fabaceae)					
23. Touch me not	Leaf, root, stem	Diarrhoea	Paste is given orally	100 g	
Mimosa pudica (Fabaceae)					
24. Turmeric	Rhizome	Constipation	Orally mixed with boiling water	100 g	
Curcuma domestica vallars (Zingiberaceae)					
25. Ungu	Root, stem, bark	Indigestion	Orally mixed with boiling water	100 g	
Millettia (Fabaceae)					

As Table 1.2. depicts butter milk with garlic paste, a combination of red onion, little tree plant, jaggery and coconut flower is ground in equal proportion and ground curry leaves were used by 66.32 per cent of the respondents to treat diarrhoea. This clearly indicated that the above practise were highly effective in treating diarrhoea. Leaves of touch me not mixed with water was recommended for diarrhoea by 8.16 per cent of the respondents and tamarind by 6.12 per cent of the respondents. Under the condition constipation, the documented practises were use of honey in warm water by 10.20 per cent of the
respondents, and a mixture of 10 g turmeric, 25 g cumin, 100 g jaggery, 100 g ginger and 15 red chillies by 26.53 per cent of the respondents.

There were four practises documented for the indigestion condition in animals. They were use of raw papaya (3.06%), ground mixture of ginger, garlic, pepper, asafoetida, and betel (16.33%), a combination of ajowan and red onion (18.37%), stem bark of milletia is boiled in water which was dried to one – third and was given to animal by 4.08 per cent of the respondents. Bloat was treated with ground guava leaves (36.73%) and stomach pain was treated with ground curry leaves orally (45.91%).

To deworm the animals, powdered arecanut, mixture of papaya seeds and sugar was given for 5 days in calf by 6.12 per cent of the respondents. Ground neem leaves (33.67 %), spinach leaves, lemon in sesame oil, fenugreek, neem oil for three days (42.86 %), pulp of ground bitter gourd leaves, thumba plant, papaya and asparagus were given to deworm the animals by 29.60 per cent of the respondents. Widely used ectoparasiticides were neem oil, calcium hydroxide, cassia and ceylon leaves by majority of the respondents (54.08%).
Sl.no	Vernacular name/Scientific name	Parts used	Conditions	Route of administration	Dosage
1.	Aloe vera *Aloe barbadensis* Mill. (Asphodelaceae)	Leaf, extract and latex of plant skin	Infertility, Mastitis	Orally	4 hands
2.	Bamboo *Bambusa arundinacea* (Retz.) Wild. (Poaceae)	Young stem, leaves	Retention of foetal membranes	Orally	250 g
3.	Banana *Musa paradisiaca* L. (Musaceae)	Plant juice, Fruit, leaf	Anoestrum	Orally	300 g
4.	Chaff flower *Achyranthes aspera* L. (Amaranthaceae)	Herb, leaves, seeds, root *flower (whole plant)*	Dystocia	Externally	200 g
5.	Greater yam *Dioscorea alata* (Dioscoreaceae)	Tuber, Leaf	Retention of foetal membranes	Orally	500 g
6.	Malabar kino *Pterocarpus marsupium* (Fabaceae)	Bark, leaf	Uterine infection	Orally	300 g
7.	Mango *Mangifera indica* Linn. (Anacardiaceae)	Leaf	Retention of foetal membranes	Orally	500 g
Ailment/Disease: Reproductive Health

No.	Plant Name	Part Used	Ailment/Disease	Administration	Dosage
8.	Muringa	Leaf, root, juice of the stem	Infertility, dystocia	Orally & Externally	300 g – 500 g
	Moringa oleifera Lamk.				
	(Moringaceae)				
9.	Njerinjil	Seed	Uterine prolapse	Orally	250 g
	Tribulus terrestris (Zygophyllaceae)				
10.	Pineapple	Fruit	Retention of foetal membranes	Orally	3 no / 1500 g
	Ananas comosus (Bromeliaceae)				
11.	Piranda	Stem, leaf	Infertility	Orally	500 g
	Cissus quadrangularis (Vitaceae)				

A perusal of Table 1.3 indicates that the infertility conditions were treated with boiled egg in sesame oil and equi proportion of *aloe vera* (4 hands), drumstick leaves, curry leaves and bone setter plant by 13.27 per cent of the respondents. Banana leaves were used to treat anoestrum (9.18 %). Retention of foetal membranes was treated with unripened pineapple, mango leaves, stem of bamboo and greater yams’ leaves by 83.67 per cent of the respondents which indicated that the practises were highly effective to treat retention of foetal membranes.

Puncture vine boiled water is given in uterine prolapsed condition (12.24 %), ground *Malabar kino*’s sap is taken to prepare starch gruel was given to ail uterine infection (23.47 %). Uterine involution was hastened by papaya fruit (29.60 %). To avoid dystocia, *muringa* leaves’ extract was pasted over the vulva, and chaff flower was given by 37.76 per cent of the respondents.
Sl.no	Vernacular name/Scientific name (Family)	Parts used	Conditions	Route of administration	Dosage
1.	Cashew *Anacardium occidentale* (Anacardiaceae)	Extract of the seed	FMD	Externally in wounds	100 g
2.	*Erukku* *Calotropis procera* (L.) (Apocynaceae)	Juice of the plant	HS	250 g	
3.	Henna *Lawsonia inermis* (Lythraceae)	Leaf	FMD	Externally in wounds	3 hand full
4.	Nutmeg *Myristica fragrans* (Myristicaceae)	Seed	FMD	Externally in wounds	150 g
5.	Tassel flower *Ruppia maritime* (Asteraceae)	Leaf, seed	Mastitis	Externally	150 g
6.	Thazhudama *Boerhavia diffusa* (Nyctaginaceae)	Leaf, root	Mastitis	100 g	
7.	Thulasi *Ocimum tenuiflorum* L. (Lamiaceae)	Leaf	FMD	Externally in wounds	100 g
8.	Umam Datura *Datura metel* Linn. (Solanaceae)	Ripen fruit, leaf, root	Mastitis	Externally	100 g
It could be observed from Table 1.4 that majority of the respondents (73.47 %) encountered mastitis with mixture paste of aloe vera (250g), turmeric (50g), calcium hydroxide (10g) as external application. Similarly, tarvine leaves, uncoated seeds of datura in fenugreek water were boiled in milk and was applied externally as paste. Tassel flower was used for rosy milk mastitis (11.22 %).

Touch me not leaves was ground and the paste was given orally for three days by 12.24 per cent of the respondents.

FMD was treated with paste made from cumin (10g), fenugreek (10g), turmeric (10g), pepper (10g), garlic (4 no.), jaggery (100g) with one coconut was given orally thrice a day by the 54.08 per cent of the respondents. Lard of wild boar in banana (89.80%), veldt grape, curd (0.75 l), with turmeric, neem leaves and red onion was given orally to counter FMD by 57.14 per cent of the respondents.

The wound lesions were externally applied with thulasi leaves, henna leaves, neem leaves, turmeric, and garlic in coconut oil by 16.31 per cent of the respondents. Similarly, nutmeg oil, cashew oil was rubbed with hen feather in wound lesions (12.24 %). Turmeric powder with coconut oil and luke - warm water was applied to the lesion and was tied by 18.37 per cent of the respondents. Pox lesions in fowl and small ruminants were treated with neem leaves, turmeric in coconut oil by majority of the respondents (59.18%).

Puncture vine and calotropis were used to treat inflammatory conditions. Edema lesions of HS were treated with paste of drumstick roots (31.63%), lard of wild boar (22.44%), calotropis and puncture vine leaves.
Table 1.5
Ethnoveterinary Medicinal Plants Utilized by Tribal Farmers of Attappadi to manage Livestock Respiratory conditions

Sl.no	Vernacular name/ Scientific name (Family)	Parts used	Conditions	Route of administration	Dosage
1.	Ginger *Zingiber officinale* Rosc. (Zingiberaceae)	Rhizome	Respiratory distress, Cough	Orally	50 g – 100 g
2.	Jeerakam *Cuminum cyminum* (Umbelliferae)	Fruit	Cough	Orally	50 g – 100 g
3.	Malabar nut *Justicia adhatoda* (Acanthaceae)	Leaf	Respiratory distress, Cough	Orally	100 g
4.	Neem *Azadirachta indica* (Meliaceae)	Juice of the plant, leaf	Respiratory distress	Inhalant	250 g
5.	Pepper *Piper nigrum* L. (Piperaceae)	Seed, leaf	Cough	Orally	50 g – 100 g
6.	Red onion *Allium sepa* L. (Liliaceae)	Bulb	Cough	Orally	250 g
7.	Thulasi *Ocimum tenuiflorum* L. (Lamiaceae)	Leaf	Respiratory distress	Inhalant	250 g

The Table 1.5 denoted that Malabar nut with 50g ginger, 200g jaggery was given for 6 days in treatment for respiratory distress by 21.43 per cent of the respondents. Other followed practises included camphor vapour, neem leaves’ vapour, ginger and thulasi leaves. Cough was given with mixture of 500g ginger,
200g jaggery (20.41%) and Malabar nut for 6 days (14.29%), and cuminum, pepper, red onion, zingiberis were given for fever by 20.41 per cent of the respondents.
Table 1.6
Ethnoveterinary Medicinal Plants Utilized by Tribal Farmers of Attappadi to manage Livestock Skin & Bone conditions

Sl.no	Vernacular name/Scientific name (Family)	Parts used	Conditions	Route of administration	Dosage
1.	Aatha (Magnoliales)	Leaf, fruit	Wounds, myasis	External application	100 g
	Sweetsop (Annona squamosa)				
2.	Cassia (Fabaceae)	Seed	External parasites	External application	100 g
	Cassia fistula Linn.				
3.	Ficus (Moraceae)	Leaf, root	Myasis	External application	100 g
	Ficus benghalensis Linn				
4.	Garlic (Amaryllidaceae)	Clove	warts, myasis	External application	10 no.
	Allium sativum L.				
5.	Henna (Lythraceae)	Leaf	Myasis	External application	3 hand full
	Lawsonia inermis				
6.	Jeerakam (Umbelliferae)	Fruit	warts, fracture	External application	25 g
	Cuminum cyminum				
7.	Kanjiram (Loganiaceae)	Root	Wounds	External application	100 g
	Strychnine (Strychnos nux-vomica)				
Ailment/Disease:					
-----------------	-----------------	-----------------	-----------------	-----------------	
Skin & Bone conditions					
8. Mukkutti	Stem wounds	External application	150 g		
Biophytum nervifolium (Oxalidaceae)					
9. Neem	Juice of the plant, leaf wounds, myasis, external parasites, Pox	External application	150 g		
Azadirachta indica (Meliaceae)					
10. Piranda	Stem, leaf fracture	As immobilizer	250 g		
Cissus quadrangularis (Vitaceae)					
11. Thulasi	Leaf warts	External application	100 g		
Ocimum tenuiflorum L. (Lamiaceae)					
12. Thumba	Leaf, stem External parasites	External application	500 g		
Leucas zeylanica (Lamiaceae)					
13. Tobacco	Leaf, extract from leaf Wounds	External application	500 g		
Nicotiana tabacum (Solanaceae)					
14. Touch me not	Leaf, root, stem wounds, sprain	External application	250 g		
Mimosa pudica (Fabaceae)					
15. Turmeric	Rhizome warts, myasis, Pox	External application	100 g		
Curcuma domestica vallars (Zingiberaceae)					
16. Vatha kodi	Leaf Fracture	External application	500 g		
Nervalia zeylanica (Rununculaceae)					

Table 1.6 indicates that Lacerated wounds were treated with touch me not plant leaves by 6.12 per cent of the respondents, sweetsop (8.16%), strychnine roots in human urine by 6.12 per cent of the
respondents and leaves of little tree plant with coconut oil (12.24%). Umbilical wounds were treated with tobacco leaves and neem oil by 13.26 per cent of the respondents. Treatment of warts with mixture of garlic (10 no.), turmeric (10g), cumin (25g), thulasi leaves and butter was followed by 21.42 per cent of the respondents.

For traumatic myasis, out of the six practises documented, ceylon leaves in slaked lime was followed by 16.33 per cent of the respondents, sweetsop leaves (8.16%) and a mixture of neem leaves, turmeric (20g), garlic, thulasi leaves and henna leaves (18.37%) were applied for myasis. Saps of ficus in wick was sundried and were tied in maggot wounds by 8.16 per cent of the respondents. Young leaves of custard apple were impregnated to maggot wounds (21.43 %).

Ground mango leaves in goats’ urine was given orally for 2–3 days for arthritis / joint pain (8.16%). Majority of the farmers (48.97%) used stem of veldt grape (3–4 no.) with cumin (a pinch) was made to a paste and was tied over the fracture site in animals and the lesion was externally fixed with stem of umbrella tree for four weeks. Sap of Vatha kodi with castor and chaff flower was used in fractures (33.67%). Touch me not leaves were ground and paste was used in sprain conditions (58.16).
Sl.no	Vernacular name/Scientific name	Parts used	Conditions	Route of administration	Dosage
1.	Betel	Seed	Poisoning, Immunity	Orally	10 no
	Piper betle (Piperaceae)				
2.	Capsicum	Fruit	Immunity	Orally	50 g
	Capsicum annuum (Solanaceae)				
3.	Coconut	Flower, tender water	Immunity	Orally	2–3 lr
	Cocos nucifera (Arecaceae)				
4.	Corinader		Immunity	Orally	20 g
	Coriandrum sativum (Apiaceae)				
5.	Curry leaves	Leaf	Immunity	Orally	500 g
	Murraya koenigii (Rutaceae)				
6.	Jeerakam	Fruit	Immunity	Orally	10 g
	Cuminum cyminum (Umbelliferae)				
7.	Neem	Juice of the plant, leaf	Poisoning	Orally	500 g
	Azadirachta indica (Meliaceae)				
8.	Pepper	Seed, leaf	Poisoning, Snake venomation, Immunity	Orally	150 g
	Piper nigrum L. (Piperaceae)				
Ailment/Disease:

General Health & Poisoning conditions

	Plant Name	Part Used	Condition	Administration	Quantity
9.	Sweetflag	Leaf, fruit	Snake venomation	Orally	100 g
	Acorus calamus				
	(Acoraceae)				
10.	Thulasi	Leaf	Immunity	Orally	200 g
	Ocimum tenuiflorum				
	L. (Lamiaceae)				
11.	Kaayam	Resin	Snake venomation	Orally	250 g
	Asafoetida				
	Ferula asafoetida L. (Apiaceae)				

As the Table 1.7 depicts, in order to improve milk production, boiled papaya, spinach leaves, *muringa* leaves and asparagus were given orally by 57.14 per cent of the respondents. Immunity was promoted using the combination of pepper (10g), cumin (10g), coriander (20g), aloe vera (100g), garlic (50g), coconut, curry leaves, betel leaves, ginger (50g), capsicum (50g), thulasi leaves, jaggery (100g) and rock salt.

Lard of wild boar (2.04%), ground neem leaves (8.16%) and a mixture of 10g rock salt, 10 no. betel, 10 no. pepper was ground, and the paste was given orally for general poisoning conditions (12.24%). Asafoetida, garlic, pepper and sweet flag was given orally for snake venomation by 16.33 per cent of the respondents.

Conclusion

The present work is one of the initial efforts to quantify the ethno medicinal information used in livestock health care in Attappadi that facilitates better option for the selection of widely used medicinal plants for searching and identifying bioactive compounds to treat ailments. The study reported 55 medicinal plants with their uses from the Attappadi area. The highlighted high F_{IC} values in the present study have indicated that the species traditionally used to treat these ailments are worth searching for bioactive compounds and this has illuminated the cultural importance of this ethno veterinary wisdom which is consonantly blended with the tribal culture of the area. There is an urgent need to formulate suitable conservation strategies for naturally growing ethno medicinal plants to overcome their depletion from natural resources and to make these practices more eco-friendly.

Ethics approval and consent to participate

Not applicable
Consent for publication

Prior and informed consent of local people's pictures had been obtained for publication.

Declarations

Ethics approval and consent to participate

Not applicable

Consent for publication

Prior and informed consent of local people's pictures had been obtained for publication.

Availability of data and materials

All data generated or analysed during this study are included in this published article

Conflict of Interest

None declared.

Author Contributions

All authors equally contributed.

Funding

No funding from any agencies.

Acknowledgement

The authors are grateful to the tribal livestock farmers of Attappadi tribal belt for willingness to share their valuable indigenous knowledge despite their hectic timings and thankful to Tamil Nadu Veterinary and Animal Sciences University for approving to conduct the study.

References

1. Dash S. Contribution of Livestock Sector to Indian Economy. Indian Journal of Research. 2017; 6(1).
2. Reddy V. Socio-Economic Status of Livestock Farmers of Ibrahimpur Village, North Goa District: A Benchmark Analysis, Economic Affairs. 2017; 62(2): 1-6.
3. Priyanka S & Binita K. Importance of livestock sector in doubling farmers Income by 2022. Indian Journal of Economics and Development. 2017; 13(2a): 136-140.
4. Bruchac, M. Indigenous Knowledge and Traditional Knowledge. In Smith, C. (Ed.), Encyclopedia of Global Archaeology. 2014:3814-3824. New York: Springer.

5. WHO monographs on selected medicinal plants. 2009. Available at: https://www.who.int/medicines/areas/traditional/SelectMonoVol4.pdf

6. Census of India. Provisional population Total. Ministry of Home Affairs, Office of The Registrar and Census Commissioner, New Delhi, India. 2011.

7. Government of Kerala. Census Scheduled Tribes Development Department. 2001. Retrieved from https://kerala.gov.in/ scheduled-tribe-development.

8. Government of Kerala. Scheduled Tribes of Kerala at a glance. Retrieved from https://kirtads.kerala.gov.in/.

9. Trotter R T & Logan M H, Informant census: A new approach for identifying potentially effective medicinal plants. In: Etkin, L.N. (Ed.), Plants in indigenous medicine and diet. (Redgrave, Bedford Hill, New York) 1986: 91-112.

10. Aziz, M.A., Khan, A.H., Adnan, M. et al. Traditional uses of medicinal plants used by Indigenous communities for veterinary practices at Bajaur Agency, Pakistan. J Ethnobiology Ethnomedicine. 2018: 14(11).

11. Ragupathy, S., Newmaster, S.G. Valorizing the 'Irulas' traditional knowledge of medicinal plants in the Kodiakkarai Reserve Forest, India. J Ethnobiology Ethnomedicine. 2009; 5(10).

12. Lulekal, E., Asfaw, Z., Kelbessa, E. et al. Ethnoveterinary plants of Ankober District, North Shewa Zone, Amhara Region, Ethiopia. J Ethnobiology Ethnomedicine. 2014; 10(21).

13. Ragupathy S, Steven N G, Maruthakkutti M, Velusamy B & Muneer M et al, Consensus of the 'Malasars' traditional aboriginal knowledge of medicinal plants in the Velliangiri holy hills, India Journal of Ethnobiology and Ethnomedicine. 2008; 4(8).

14. Belayneh, A., Bussa, N.F. Ethnomedicinal plants used to treat human ailments in the prehistoric place of Harla and Dengego valleys, eastern Ethiopia. J Ethnobiology Ethnomedicine. 2014; 10(18).

15. Xiong, Y., Long, C. An ethnoveterinary study on medicinal plants used by the Buyi people in Southwest Guizhou, China. J Ethnobiology Ethnomedicine. 2020; 16(46).

16. Saha M R, Sarker D D & Sen A., Ethnoveterinary practices among the tribal community of Malda district of West Bengal, India, Indian Journal of Traditional Knowledge. 2014; 13(2): 359-367.

Figures
Figure 1

MAP SHOWING THE STUDY AREA
Figure 2

FIELD SURVEY AND PRIMARY DATA COLLECTION
Figure 3

ETHNOVETERINARY MEDICINES USED BY THE ATTAPPADI TRIBAL FARMERS