Prescribing for geriatrics in Tehran; is it appropriate and rational?

Mona Kargar1, Fatemeh Atrianfar2, Arash Rashidian3, Kazem Heidari1, Maryam Noroozian4, Kheirollah Gholami1, Mohammad Reza Javadi*1

Received: 15 Mar 2018 Published: 19 Dec 2019

Abstract

Background: The world’s population is growing older. Inappropriate and irrational use of drugs in the elderly is a considerable health concern due to consequences such as increased morbidity and adverse drug events. This study aimed to evaluate the rationality of prescribing and determining the extent of inappropriate prescribing in a sample of geriatric patients in Tehran.

Methods: This cross sectional study was performed on 1512 prescriptions of patients aged ≥ 65 years from 5 pharmacies affiliated to Tehran University of Medical Sciences in 2014. Prescription of potentially inappropriate medications (PIMs) was investigated using the Beers Criteria along with WHO prescribing indices. Date were analyzed using SPSS software, and significance level was set at less than 0.05.

Results: Mean (SD) age of patients was 73.9(6.7) years. A total of 472 (31.2%) patients received at least 1 PIM. Benzodiazepines were the most frequent drug class and general practitioners (GPs) were the most frequent prescriber of PIMs. The highest and the lowest percentage of prescriptions containing brand-names were prescribed by subspecialists (62.5%) and GPs (42.2%), respectively. Antibiotics and injectable medications were prescribed for 26.8% and 28.5% of patients by GPs. Mean (SD) number of drugs per prescription was 3.57 (1.92). Prescriptions containing systemic antibiotics and PIMs had significantly higher mean number of drugs compared to those without these items (both P < 0.001).

Conclusion: There is a need for interventions to improve the quality of prescribing for elderly patients, especially by GPs. Also, there are still some problems in rational use of drugs based on prescribing indices, especially, prescribing brand-names and injectable medications.

Keywords: Aged, Beers criteria, potentially inappropriate medication list, Inappropriate prescribing, Drug prescriptions, World Health Organization prescribing indices, Antibacterial agents, Injections

Introduction

Older people often experience higher prevalence of chronic and multiple diseases that may lead to increased medication use (1). Moreover, prescribing for elderly is challenging due to altered pharmacokinetics, pharmac-
Prescribing for geriatrics in Tehran
dynamics, and age-related changes in body composition and physiology (2). In previous studies, it has been shown that medication use increases with age in developed countries. It is not surprising that elderly are the highest group of drug consumers (3). Prescribing inappropriate medications for the elderly that result in wastage of health care resources due to adverse drug reactions (ADRs) is now a considerable concern (4). These medications can cause fall, fracture, delirium, and other preventable adverse drug events (5). In fact, it has been demonstrated that inappropriate prescribing can lead to mortality and morbidity along with the need for health care utilization in the elderly (6). Generally, inappropriate medications are defined as the medications that “pose more risk than benefit”. Medications that are administered with either inappropriate dose/duration or drugs that can expose patients to considerable drug-drug or drug-disease interactions can also be included among the inappropriate medications (6). The importance of the detection of inappropriate prescribing is more pronounced considering the population aging. It is predicted that by 2020 the world will have 1 billion inhabitants older than 60 years of age, representing 22% of the global population (7). Iran is no exception (8), and it has been demonstrated that “the structure of the age pyramid has been reversed” in Iran in the last 2 decades (9).

Validated screening tools have been developed to identify potentially inappropriate medications (PIMs) in older adults. Among explicit prescribing indicators, the Beers Criteria is the most frequently cited tool to detect PIMs (4) and was first published in 1991 when used to assess medications of the residents of nursing homes (10). Then, it was expanded in 1997 to include “community-dwelling elderly” (11), revised in 2003 (12), and updated later (13). The 2012 version of the Beers Criteria divide inappropriate medications into 3 categories: (1) PIMs in older adults, (2) PIMs in older adults due to drug–disease or drug–syndrome interactions that can exacerbate the disease or syndrome, and (3) PIMs to be used with caution in older adults (13).

Another important issue in pharmacotherapy is the rational use of drugs. Based on the World Health Organization (WHO), use of drugs is considered rational when “patients receive medications appropriate to their clinical needs, in doses that meet their own individual requirements for an adequate period of time, and at the lowest cost to them and their community” (14). It was proposed that in developing countries, using WHO indicators for the evaluation of prescribing is important for promoting the rational use of drugs (14). The average number of drugs per prescription, the percentage of antibiotics, injectable drugs, drugs prescribed by generic name, and drugs prescribed from the essential drug list are among the prescribing indices developed by WHO (15). The average number of drugs per prescription was reported 1.3 to 2.2 in developed countries and 1.4 to 4.8 in developing countries in the general population (16). According to the WHO International Network of Rational Use of Drugs (INRUD), the optimal mean number of drugs per prescription is 3 or fewer. Additionally, the optimum percentage of prescriptions containing antibiotics and injectable drugs are up to 30% and 10%, respectively. Moreover, all of the drugs should be prescribed by generic name and within the essential drug list (17).

Considering the importance of assessing rational drug use and identifying the extent of inappropriate prescribing for geriatrics, which has not been widely documented in Iran, this study was conducted. In fact, having knowledge about the prevalence and quantifying the problem can help researchers to conduct interventional studies to improve medication therapy. Thus, the aim of the present study was to find the prevalence of prescribing PIMs using the Beers Criteria. Additionally, we intended to assess the rationality of prescribing using the WHO prescribing indices in a sample of geriatric prescriptions.

Methods
Study design
This retrospective cross sectional study, conducted from January to March 2014, was part of a project that evaluated different aspects of pharmacotherapy for outpatient geriatrics (18, 19). Data of 1512 insurance prescriptions of patients aged ≥ 65 years were collected from 5 pharmacies (Amini, Booali, Isar, Taleghani and Abedini) affiliated to the Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS). The study was approved by the ethic committee of TUMS.

At the time of the study, there were 4 main insurance organizations that paid medical expenses of the majority of the population in Iran. Number of prescriptions from insurance organizations was determined based on the proportion of the population under their coverage. The data of prescriptions, including the specialty of the prescriber, number, dosage form, dose of each medicine, and the demographics of patients were entered into Excel (Microsoft office). Physicians were categorized based on both their specialty and their level of education. To compare different medical specialty branches, all specialists and subspecialists of the same branch were assessed together.

Investigation of PIMs
The 2012 version of the Beers Criteria was applied to identify PIMs prescribed for older adults (13). Inappropriate medications that should generally be avoided regardless of the drug–disease or drug–syndrome interactions were evaluated in this study. Selection of this category was due to the unavailability of medical records of patients in pharmacies. However, in the selected list, which included 34 medications or medication classes, there were still items that needed some modifications. The medications of the mentioned category were divided into 2 groups: the first group “the generally inappropriate medications (GIM)” consisted of the items that the criteria recommended to be avoided or the researcher could determine their appropriateness based on the criteria using the prescription data; the second group included medications whose appropriateness could be judged only based on additional data.

In fact, based on the selected list of the criteria, several drugs should be considered inappropriate if they are prescribed exceeding a certain dose (eg, doxepin > 6 mg/d
and digoxin >0.125 mg/d) or duration (eg, zolpidem > 90 days, nitrofurantoin for long-term suppression). For some medications, prescribing for special indications are deemed to be inappropriate: i.e. α1 blockers for hypertension; antipsychotics for behavioral problems of dementia unless non-pharmacological options have failed and the patient is a threat to self or others; clonidine as a first-line antihypertensive, and benzodiazepines for the treatment of insomnia, agitation, or delirium. Moreover, in some cases, medications are considered inappropriate if they are prescribed for patients with special medical conditions such as nitrofurantoin in creatinine clearance < 60 mL/min.

Among the above-mentioned cases, whenever the appropriateness could be judged based on the prescription data, the medications were categorized in the GIM group. The complete list of the modified Beers Criteria is available in Supplementary Table 1. Whenever the data that could help to clarify the appropriateness of the medications were not provided in the prescriptions, the medications were considered to be conditionally inappropriate medications (CIMs). Moreover, the total number of PIMs was calculated by summing up the number of encounters with GIM and CIM.

Prescribing indices

The core drug use indicators of the WHO were used (15): percentage of medicines prescribed by generic name, number of drugs per prescription, and percentage of encounters with injectable drugs and antibiotics.

Antibiotics were selected based on the WHO model list presented by INRUD (20). To have a more comprehensive list, several antibiotics were added from the essential drug list of the WHO. For example, since ciprofloxacin is included in the WHO model list, levofloxacin, the same class agent, was added as well. Other drugs that were added due to their similarities were nalidixic acid, ofloxacin, gemifloxacin, moxifloxacin, tetracycline, amikacin, streptomycin, tobramycin, and gentamicin. Additionally, several cephalosporins (cefuroxime, cefizoxime, and cefepime) and penicillins (benzathine salt of phenoxymethyl penicillin), along with ampicillin/sublactam, piperacillin/tazobactam and meropenem, were added to the list. Moreover, different strength of the included dosage forms of the medications were included. The ophthalmic dosage form of ofloxacin, ciprofloxacin, and erythromycin were also included in the antibiotic list since their systemic dosage forms were already in the list. The complete list of the antibiotics that was used in the present study is available in Supplementary Table 2.

To evaluate the extent of generic-name prescribing, medication names listed in Iran Drug List were considered as generic names. Others, including the name of herbal medicines and branded generics, were considered as brands.

Polypharmacy was defined as the presence of 5 or more drugs per prescription. Moreover, due to the tendency of the elderly patients to use herbal medicines, this category of drugs was reported separately.

Statistical analysis

Descriptive statistics were reported using mean (SD) for quantitative variables and frequency (percentage) for the qualitative. The mean number of inappropriate medications and the number of prescribed drugs within different prescribers’ educational levels and specialties were compared using Kruskal-Wallis test. Number of drugs prescribed as CIM, GIM, and PIM per prescription were also compared by Kruskal-Wallis test. In addition, the comparison between the number of inappropriate medications and the number of prescribed drugs was performed using the Spearman’s correlation. Data were analyzed using the SPSS software, and significance level was set at less than 0.05.

Results

A total of 1512 prescriptions containing 5450 drugs, which were obtained from 5 pharmacies affiliated to TUMS, were evaluated in this study. The mean (SD) age of the patients was 73.9(6.7) years, and 790 (52.4%) patients were male. General practitioners (GPs), by 474 (31.3%) prescriptions, were the largest group of prescribers followed by internists and cardiologists among the specialists (357 and 214 prescriptions, respectively).

PIM

At least 1 GIM and CIM was detected in 399 (26.4%) and 125 (8.3%), prescriptions respectively. From 5450 medications in the prescriptions, 481 (8.25%) and 132 (2.4%) drugs were among the GIMs and CIMs, respectively. In fact, in 472 (31.2%) prescriptions, at least 1 PIM was encountered, which consisted of 613 (11.24%) medications (Table 1).

The mean (SD) number of GIMs, CIMs, and PIMs per prescription was 0.32 (0.57), 0.09 (0.29), and 0.40 (0.67), respectively. The most frequent GIMs were chlorpheniramine (n=86, 17.9%), glibenclamide (n=66, 13.72%), alprazolam (n=55, 11.4%), chlordiazepoxide (n=29, 6%), clonazepam (n=26, 5.4%), clidinium-c (n=25, 5.2%), and prazosin (n=21, 0.43%). Among the CIMs, diphenhydramine (n=40, 30.3%) was the most frequently prescribed medication (Tables 2 and 3). Benzodiazepines (n=153) and anticholinergics (n=140) were the most frequently

Table 1. Frequency of inappropriate medications in prescriptions

Categories of Inappropriate Medications	0	1	2	3	4
N (%)	138(91.7)	118(78.8)	70(5)	0	0
N (%)	1113(73.6)	321(21.2)	74(9)	40(3)	0
N (%)	1046(68.8)	349(23.1)	107(7.1)	140(9.0)	20(1.1)

N: Number of prescriptions, CIM: Conditionally Inappropriate Medications, GIM: Generally Inappropriate Medications, PIM: Potentially Inappropriate Medications
Prescribing for geriatrics in Tehran

Table 2. Frequency of prescribed conditionally inappropriate medications (drugs/drug class)

CIM drugs or drug class	n	
1	Antipsychotics	45
2	Anticholinergics	100
3	Sulfonylurea, Antidiabetics	66
4	Antispasmodics	43
5	Alpha Blockers	25
6	Tricyclic Antidepressants	21
7	Muscle Relaxants	16
8	Antithrombotics	12
9	Indomethacin	12
10	Non-Steroidal Anti-Inflammatory Drugs	9
11	Ketorolac	7
12	Antiparkinsonian Drugs	5
13	Dizogxin	3
14	Thioridazine	3
15	Barbitalates	2
16	Nifedipine	2
17	Estrogen	1
18	Non-Benzodiazepine Hypnotics	1

CIM: Conditionally Inappropriate Medications

Table 3. Frequency of prescribed generally inappropriate medications (drugs/drug class)

GIM drugs or drug class	n	
1	Benzodiazepines	153
2	Anticholinergics	100
3	Sulfonylurea, Antidiabetics	66
4	Antispasmodics	43
5	Alpha Blockers	25
6	Tricyclic Antidepressants	21
7	Muscle Relaxants	16
8	Antithrombotics	12
9	Indomethacin	12
10	Non-Steroidal Anti-Inflammatory Drugs	9
11	Ketorolac	7
12	Antiparkinsonian Drugs	5
13	Dizogxin	3
14	Thioridazine	3
15	Barbitalates	2
16	Nifedipine	2
17	Estrogen	1
18	Non-Benzodiazepine Hypnotics	1

GIM: Generally Inappropriate Medications

Prescribing indices

The mean (SD) number of drugs per prescription was 3.57 (1.92) and ranged from 1 to 10. Prevalence of polypharmacy in the prescriptions by GPs, internists, and cardiologists was 14.5%, 19.3%, and 29.9%, respectively. Totally, polypharmacy was detected in 29.9% of prescriptions. Moreover, the mean number of medicines per prescription was higher in women’s prescriptions (3.7) vs men’s (3.4) (p<0.001).

Among the total medications, 1266 (23.2%) prescribed items were brand-name drugs. The highest and lowest percentage of prescriptions with at least 1 brand-name drug was prescribed by subspecialists (62.5%) and GPs (42.2%), respectively. Cardiologists (76.6%), neurologists (70.1%), and orthopedists (62.7%) had the higher percentages of prescriptions with at least 1 of brand-name medication among the specialists, respectively.

This study showed that 352 (23.3%) prescriptions included at least 1 injectable drug. Orthopedists (54.9%), GPs (28.5%), and internists (24.6%) were the first 3 groups with higher percentage of injectable drugs in the prescriptions, respectively.

Overall, 271 (18.0%) prescriptions included at least 1 antibiotic. The mean (SD) number of antibiotics was 0.22 (0.52) per prescription and consisted of 0.21 (0.50) systemic, and 0.01 (0.11) topical agents. GPs (26.8%), ophthalmologists (15.4%), and internists (14%) had higher percentages of antibiotics in their prescriptions. It was also found that 52.6% of local antibiotics were prescribed by ophthalmologists. Prescriptions with at least 1 systemic antibiotic had significantly higher mean number of drugs per prescription compared to prescriptions without these medications (3.9 vs 3.1 respectively, p<0.001).

Herbal drugs were prescribed for 73 (4.8%) patients. Orthopedists were the most frequent prescribers of herbal medicines (11.8% of their prescriptions). The most frequent injectable drugs, herbal medicines, local and systemic antibiotics, and brand-name drugs are summarized in Table 5.

Prescribing indices in the prescriptions by GPs

The mean (SD) number of drugs in prescriptions was 3.63 (1.8), and the mean (SD) number of brand-name drugs in these prescriptions was 0.56 (0.8) which consisted of 267 items (15.49%). In the prescriptions of GPs, 127 prescribed medication classes considered inappropriate in this survey.

GPs were responsible for the highest proportion of potentially inappropriate prescribing compared to other prescribers’ groups. We found at least 1 PIM in 228 prescriptions by GPs (48.1%). Among specialists with > 50 prescriptions, PIMs were more frequently prescribed by neurologists (26 prescriptions, 38.8%). Cardiologists (54 prescriptions, 25.2%) and internists (90 prescriptions, 25.2%) were the following groups of specialists with similarly high frequency of prescribing inappropriate medications. Additionally, it was found that the differences between the mean numbers of inappropriate medications per prescription were statistically significant among prescribers with various educational levels (Table 4). This significant difference was also found in multiple comparisons.

The results of this study showed that the mean number of drugs in prescriptions with at least 1 CIM, GIM, and PIM were significantly higher than the prescriptions that did not contain them (4.4 vs 3.5, 4.5 vs 3.2, and 4.4 vs 3.1 for prescriptions with and without CIM, GIM, and PIM, respectively p<0.001 in all cases).

Table 4. Mean number of potentially inappropriate medications in the prescriptions of prescribers with different level of education

Specialty	Mean number of CIM (SD)	Mean number of GIM (SD)	Mean number of PIM (SD)
General practitioner	0.1(0.32)	0.54(0.69)	0.64(0.77)
Resident	0.09(0.32)	0.13(0.42)	0.22(0.57)
Specialist (n=620)	0.09(0.30)	0.25(0.51)	0.34(0.64)
Subspecialist (n=296)†	0.04(0.21)	0.19(0.39)	0.23(0.46)

P value †

† Mean numbers are reported per prescription
† The remaining 7 prescriptions were written by dentists
‡ Kruskal Wallis Test

CIM: Conditionally Inappropriate Medications, GIM: Generally Inappropriate Medications, PIM: Potentially Inappropriate Medications

http://mjiri.iums.ac.ir
Med J Islam Repub Iran. 2019 (19 Dec); 33:143.
hospital, it was assumed that the researchers could have
22.3%. Due to the availability of patients’ charts in the
patients (25). They reported the frequency of PIMs to be
the study by Talebi-Taher et al on hospitalized geriatric
performed with the 2012 version of the criteria in Iran was
the best of the authors’ knowledge, the only study that was
either the 2003 or 1997 version of the criteria (21-24). To
Beers Criteria. However, the studies were conducted using
Iran that reported the frequency of 20%-30% based on the
PIMs in this study was similar to the previous studies in
26.4% of the prescriptions, respectively. The frequency of

\[
\text{Table 5. The most frequently prescribed injectable drugs, herbal drugs, antibiotics, and brand-name drugs in 1512 prescriptions}
\]

Injectable drugs	Herbal drugs	Brand-name drugs	Systemic antibiotics
Drug	n (%)	Drug	n (%)
Amp Vitamin D3	58	Tab Cax	15 (18.7)
Amp Betamethasone 4 mg	30 (5.7)	Syr Thymex	10 (12.5)
Amp Dexamethasone 8 mg	30 (5.7)	Syr Prosyp	7 (8.7)
Amp Vitamin B complex	28 (5.4)	Drop C.M	5 (6.6)
Amp Vitamin B12	23 (4.4)	Cap Piasclidin	5 (6.6)
Vial Insulin NPH	22 (4.2)	Oint Rosemary	4 (5.0)
Pen Insulin Novonix®	15 (2.9)	Oint Rahamin	3 (3.7)
Amp Enoxaparin40 mg	15 (2.9)	Cream Depil	3 (3.7)
Vial Insulin Regular	14 (2.7)	Tab Ginkgo	3 (3.7)
Amp Piroxicam20 mg	13 (2.5)	Drop Prescription	3 (3.7)

In the present study, the prescribing indicators and in-
appropriate medications were investigated in a sample of
geriatric prescriptions. We found that 31.2% of the
patients were exposed to at least 1 PIM. This consisted of
both CIMs and GIMs, which were observed in 8.3% and
26.4% of the prescriptions, respectively. The frequency of
PIMs in this study was similar to the previous studies in
Iran that reported the frequency of 20%-30% based on the
Beers Criteria. However, the studies were conducted using
either the 2003 or 1997 version of the criteria (21-24). To
the best of the authors’ knowledge, the only study that was
performed with the 2012 version of the criteria in Iran was
the study by Talebi-Taher el al on hospitalized geriatric
patients (25). They reported the frequency of PIMs to be
22.3%. Due to the availability of patients’ charts in the
hospital, it was assumed that the researchers could have
detected drug-disease interactions. However, the study
method was vague and data were not presented clearly.

Benzodiazepines were the most frequently prescribed
inappropriate class of medications in this study, which is
consistent with several other reports that showed benzodi-
azepines among the top frequently prescribed inappropriate
drug classes (22, 23, 25). Studies from Turkey, Lebanon
(21), Ireland (26) and Japan (27) reported the
prevalence of PIMs to be 9.8%, 22%, 25%, and 43.6%
according to the previous versions of the Beers Criteria,
respectively. PIM prescribing based on the 2012 updated
criteria was documented in some studies in different coun-
tries and ranged from 16% among Indian inpatients (28) to
59.2% in Brazilian aged population (29). Similar studies
in Nigeria (30), India (31), and New Zealand (32) reported
the frequency of PIMs to be 25.5%, 21.8%, and 42.7%,
respectively. The diversity in the prevalence of PIMs
reported in various studies can be to some extent attributed
to the difference in the availability of inappropriate
medications in the countries, differences in patients (31),
and the accessibility of medical charts in the study

http://mjiri.iums.ac.ir
Med J Islam Repub Iran. 2019 (19 Dec); 33.143.
settings. In addition, whether the practitioners included only GPs or the specialists, could also make a difference. Moreover, evaluating a single prescription or all the medications used by patients may lead to different results. For example, in a study by Baldoni et al, not only the current medications of the patient but also the medication used within the preceding month were evaluated (29). In one study in Japan, all the prescriptions of patients during the study period were evaluated and only those patients with at least 2 pharmacy claims during the study period were included (27). The considerable point is that both studies reported a high prevalence of PIM.

The most common GIMs prescribed in the present study were chlorpheniramine, glibenclamide, alprazolam, and chlordiazepoxide. Similarly, antihistamines in Nigeria (30) and both chlorpheniramine and alprazolam in India (31) were among the prevalent prescribed PIMs. The recently reported prevalence of PIMs in a large American survey was 30.9% using the qualified definition of the 2012 Beers Criteria (33). With an acceptable agreement with the method of the present study, the study by Davido↵ff et al generated 2 definitions for PIMs using the Beers 2012 Criteria based on the specific restrictions related to dose, route, duration, and medical conditions. The “broad definition” in which special route and dose of drugs were considered inappropriate in the elderly was almost comparable to the GIMs in the present study. In the same way, the “qualified definition” in their study was similar to the CIMs in this study, considering more restrictions such as duration and medical conditions. The main difference between the 2 studies was the unavailability of patients’ diagnosis, coexisting diseases, and medical conditions in the present study. Among the 5 most frequently prescribed categories of PIMs, benzodiazepines, first generation antihistamines, and sulfonylureas were similar inappropriate medications in the present study as well as in the study by Davido↵ff et al (33).

The evaluation of rational prescribing based on the WHO prescribing indices has been previously performed in several studies (16, 34-37). WHO indicators were not primarily developed for the elderly; rather, they are assessment tools for GPs’ prescribing practice, irrespective of patients’ age.

The average number of drugs per prescription in this study was 3.57, which is higher than 3.07 reported by Karimi et al in a study on the prescriptions of GPs as well as the specialists in all age groups (35). In 2 studies that evaluated the prescriptions of health centers, the average number of drugs per prescription was 3.03 (16) and 3.4 (37).

It seems that the higher need for medications by geriatrics may be presented with a higher mean number of drugs per prescription. However, in this study, this number was lower compared to 3.8 (30) and 3.9 (38) reported from studies on elderly outpatients of 2 Nigerian hospitals and 4.27 in prescriptions of elderly outpatients of a tertiary hospital clinic in India (39). However, the health care system is important in the interpretation of the results. For example, Eze et al. noted that high mean number of medications per prescription was also reported in previous studies in Nigeria (38).

Similar to the present study, a Swedish study found a higher number of drugs being prescribed for the elderly women compared to men. However, Craftman et al documented all medications used by the elderly in their study and not a single prescription (40). Considering the prescriptions by GPs, the mean number of drugs per patient in this study was 3.63, which was lower compared to the study by Ghadimi et al, in which they reported 4.4 items per prescription in the GPs’ prescriptions for the elderly (21). However, as it was expected, both numbers are higher than the reported mean number of items by Safacian et al (3.3) in a study that included the prescriptions of all age groups (41).

The results showed that the percentage of drugs prescribed by generic names was 76.77% and 84.51% among the prescription of all prescribers and GPs, respectively. The mentioned percentages were lower compared to previous Iranian studies that reported more than 95% of drug encounters were by generic names (16, 21). The difference with other Iranian studies can be attributed to the method of assessment. In fact, one of the advantages of the present study, compared to the previous studies in Iran (21, 35), was documenting the entire prescription items, not only evaluating the insurance claims data. Using the insurance data has several limitations: the uncovered items by the insurance organizations cannot be included in the data. Thus, supplements and herbal medications are underreported. Moreover, only items that were purchased by the patient (not all of the prescribed items by the physicians) can be reported. Therefore, the number of drugs per prescription was more accurate in the data of this study. Moreover, most of the times, the branded-generic names are entered in the insurance claims by their generic name in Iran. Therefore, the data by the insurance organizations generally underreport the brand-name prescribing.

The brand-name prescribing in this study was less than half of the reports from the studies in other countries like Nigeria (30, 38) and was nearly comparable to the reports from Brazil (42). To the best of the authors’ knowledge, the previous studies in Iran have not evaluated the brand-name prescribing among different specialties or educational levels of prescribers. Antibiotics were prescribed by GPs in 26.8% of their prescriptions, which was much lower than the figures for both the elderly (39%) (21) and the general population (51%) of the country (35, 41). Also, the frequency of antibiotic prescription in this study was within the standard range recommended by the WHO (not higher than 30%) (35). Similarly, the percentage of the injectable drugs in the GPs’ prescriptions (28.5%) was lower compared to other studies (21, 41). However, vitamins and corticosteroids were among the top injectable medications in this study, which deserve consideration.

Comparable to the previous studies (35, 36), the average number of medicines per patient differed based on the physicians’ specialty. In other studies, similar to the results of this study, ophthalmologists were among the prescribers with the least number of medications in their prescriptions (35, 36).

Among the prescribers, GPs and ophthalmologists pre-
scribed higher percentage of antibiotics in prescriptions in the present study, while antibiotics were mostly prescribed by GPs, ENT specialists (35, 36), and general surgeons (36) in other studies. Orthopedists and GPs were the first and the second highly prescribers of injections both in the present study and the study by Sadeghian et al (36).

Limitations
The main limitation of the present study was the unavailability of medical records of patients, including diagnosis and comorbidities at pharmacies. Therefore, identifying inappropriate medications in certain diseases was not possible. Moreover, the precise evaluation of appropriateness of medications that required data about specific conditions (eg, renal function, indication, and duration of treatment) was not possible. The mentioned limitation also led to the unavailability of the outcomes of the PIM administrations. In the present study, all the prescriptions for geriatrics were included with no limitation regarding the prescribers, which resulted in the limited number of prescriptions written by certain specialists, including dermatologists and gynecologists that could not be compared with other specialists.

Conclusion
Interventions are needed to improve the prescribing habits of GPs for the elderly, especially with respect to prescribing PIMs. Also, some problems still exist in rational use of drugs as evaluated by the WHO prescribing indices, especially, the prescription of the brand-name medications and injectable medications.

Acknowledgments
This research has been supported by Tehran University of Medical Sciences & health services (Grant No. 92-02-156-23585).

Conflict of Interests
The authors declare that they have no competing interests.

References
1. Lavan AH, Gallagher P. Predicting risk of adverse drug reactions in older adults. Ther Adv Drug Saf. 2016;7(1):11-22.
2. Ryan C, O’Mahony D, Kennedy J, Weedle P, Barry P, Gallagher P, et al. Appropriate prescribing in the elderly: an investigation of two screening tools, Beers Criteria considering diagnosis and independent of diagnosis and improved prescribing in the elderly tool to identify inappropriate use of medicines in the elderly in primary care in Iceland. J Clin Pharm Ther. 2009;34(4):369-76.
3. Guaraldo L, Cano FG, Damasceno GS, Rozenfeld S. Inappropriate medication use among the elderly: a systematic review of administrative databases. BMC Geriatr. 2011;11(1):79.
4. O’Mahony D, Gallagher PF. Inappropriate prescribing in the older population: need for new criteria. Age Ageing. 2008;37(2):138-41.
5. Motter FR, Fritzzen JS, Hilmer SN, Paniz EV, Paniz VMV. Potentially inappropriate medication in the elderly: a systematic review of validated explicit criteria. Eur J Clin Pharmacol. 2018;1:22.
6. Hamilton HJ, Gallagher PF, O’Mahony D. Inappropriate prescribing and adverse drug events in older people. BMC Geriatr. 2009;9(1):1.
7. Bloom DE, Canning D, Fink G. Implications of population ageing for economic growth. Oxford Rev Econ Pol. 2010;26(4):583-612.
8. Tajvar M, Arab M, Montazeri A. Determinants of health-related quality of life in elderly in Tehran, Iran. BMC public health. 2008;8(1):1.
9. Niroozian M. The elderly population in iran: an ever growing concern in the health system. Iran J Psychiatry Behav Sci. 2012;6(2):1-6.
10. Beers MH, Ouslander JG, Rollinger I, Reuben DB, Brooks J, Beck JC. Explicit criteria for determining inappropriate medication use in nursing home residents. Arch Intern Med. 1991;151(9):1825-32.
11. Fialová D, Topinka É, Gambassi G, Finne-Soveri H, Jönsson PV, Carpenter I, et al. Potentially inappropriate medication use among elderly home care patients in Europe. JAMA. 2005;293(11):1348-58.
12. Waller JL, Maclean JR. Updating the Beers Criteria for potentially inappropriate medication use in older adults. Arch Intern Med. 2003;163:2716-24.
13. Campanelli CM. American Geriatrics Society updated Beers Criteria for potentially inappropriate medication use in older adults: the American Geriatrics Society 2012 Beers Criteria Update Expert Panel. J Am Geriatr Soc. 2012;60:615-26.
14. Desalegn AA. Assessment of drug use pattern using WHO prescribing indicators at Hawassa University teaching and referral hospital, south Ethiopia: a cross-sectional study. BMC Health Serv Res. 2013;13(1).
15. Anker M, Jakobovitz B, Frede S, Drozdzil H. How to investigate drug use in health facilities. WHO/DAP. 1993.
16. Mosleh A, Khoshnevis Ansari S, Sorush M, Eghbalpor A, Babaei S. Evaluation of the drug prescription status based on the WHO indices in pharmacies of health care centers affiliated to Tehran University of Medical Sciences. MJIRI. 2011;25(4):222-5.
17. El Mahalli A. WHO/INRUD drug prescribing indicators at primary health care centres in Eastern province, Saudi Arabia. East Mediterr Health J. 2012;18(11):1091.
18. Zarifeganeh M, Kargar M, Rashidian A, Jafarzadeh Koheloo A, Gholami Kh. Out of pocket payment and affordability of medication for geriatric patients in Tehran, Iran. Iran J Public Health. 2019 Jun (48); 6:1124-32.
19. Attiajfar F, Rezaei F, Heidari K, Kargar M, Javadi MR, Gholami Kh. Drug-drug interactions and potentially inappropriate medications among elderly outpatients, Braz J Pharm Sci. In press. 2020.
20. Organization WH. WHO model list of essential medicines: 18th list, April 2013. 2013.
21. Ghadimi H, Esmaeily HM, Wahlistrom R. General practitioners’ prescribing patterns for the elderly in a province of Iran. Pharmacoepidemiol Drug Saf. 2011;20(5):482-7.
22. Vali L, Pourreza A, Forooshani AR, Sari AA, Honarmand H. An investigation on Inappropriate Medication Applied among Elderly Patients. World Appl Sci J. 2012;16(2):819-25.
23. Azoulay L, Zargarzadeh A, Salalshouzi Z, Oraichi D, Bérard A. Inappropriate medication use among elderly Japanese patients. Am J Pharmacoepidemiol Drug Saf. 2011;20(5):482-7.
24. Gallagher P, O’Mahony D. STOPP (Screening Tool of Older Persons’ potentially inappropriate Prescriptions): application to acutely ill elderly patients and comparison with Beers’ criteria. Age Ageing. 2008;37(6):673-9.
25. Talebi-Taher M, Javad-Moosavi S, Taherian S, Barati M. Surveying the inappropriate drug administration using Beers Criteria in elderly patients at the internal medicine ward of Rasoul-e-Akram Hospital of Tehran in 2012. Arak Medical University Journal. 2014;17(2):33-9.
26. Gallagher P, O’Mahony D. STOPP (Screening Tool of Older Persons’ potentially inappropriate Prescriptions): application to acutely ill elderly patients and comparison with Beers’ criteria. Age Ageing. 2008;37(6):673-9.
27. Akazawa M, Imai H, Igarashi A, Tsutani K. Potentially inappropriate medication use in elderly Japanese patients. Am J Geriatr Pharmacother. 2010;8(2):146-60.
28. Undela K, Bansal D, D’Cruz S, Sachdev A, Tiwari P. Prevalence and determinants of use of potentially inappropriate medications in elderly inpatients: a prospective study in a tertiary healthcare setting. Geriatr Gerontol Int. 2014;14(2):251-8.
29. de Oliveira Baldoni A, Ayres LR, Martinez EZ, Dewulf Nde L, Santos V, Pereira LR. Factors associated with potentially inappropriate medications use by the elderly: a study according to Beers Criteria 2003 and 2012. Int J Clin Pharm. 2014;36(2):316-24.
30. Fadare JO, Abooba SM, Opeke OA, Alabi RA. Prescription pattern and prevalence of potentially inappropriate medications among elderly patients in a Nigerian rural tertiary hospital. Ther Clin Risk Manag. 2013;6:115.

http://mjiri.iums.ac.ir
Med J Islam Repub Iran. 2019 (19 Dec); 33.143.
Prescribing for geriatrics in Tehran

31. Pradhan S, Panda A, Mohanty M, Behera J, Ramani Y, Pradhan P. A study of the prevalence of potentially inappropriate medication in elderly in a tertiary care teaching hospital in the state of Odisha. Int J Med Public Health. 2015;5(4).

32. Nishtala PS, Bagge ML, Campbell AJ, Tordoff JM. Potentially inappropriate medicines in a cohort of community-dwelling older people in New Zealand. Geriatr Gerontol Int. 2014;14(1):89-93.

33. Davidoff AJ, Miller GE, Sarpong EM, Yang E, Brandt N, Fick DM. Prevalence of potentially inappropriate medication use in older adults using the 2012 Beers Criteria. J Am Geriatr Soc. 2015;63(3):486-500.

34. Soleymani F, Valadkhani M, Dinarvand R. Challenges and achievements of promoting rational use of drugs in Iran. Iran J Public Health. 2009;38(Suppl1):166-8.

35. Karimi A, Haerizadeh M, Soleymani F, Haerizadeh M, Taheri F. Evaluation of medicine prescription pattern using World Health Organization prescribing indicators in Iran: A cross-sectional study. J Res Pharm Pract. 2014;3(2):39.

36. Sadeghian G-H, Safaeian L, Mahdanian AR, Salami S, Kebriaee-Zadeh J. Prescribing quality in medical specialists in isfahan, iran. Iran J Pharm Res. 2013;12(1):235-41.

37. Cheraghi A, Nikfar S, Behmanesh Y, Rahimi V, Habibipour F, Tirdad R, et al. Evaluation of availability, accessibility and prescribing pattern of medicines in the Islamic Republic of Iran. East Mediterr Health J. 2004.

38. Eze UI, Olowu AO. Prescribing patterns and inappropriate use of medications in elderly outpatients in a tertiary hospital in Nigeria. Trop J Pharm Res. 2011;10(1).

39. Zaveri H, Mansuri S, Patel V. Use of potentially inappropriate medicines in elderly: A prospective study in medicine out-patient department of a tertiary care teaching hospital. Indian J Pharmacol. 2010;42(2):95.

40. Craftman ÅG, Johnell K, Fastbom J, Westerbottn M, von Strauss E. Time trends in 20 years of medication use in older adults: findings from three elderly cohorts in Stockholm, Sweden. Arch Gerontol Geriatr. 2016;63:28-35.

41. Safaeian L, Mahdanian A-R, Hashemi-Fesharaki M, Salami S, Kebriaee-Zadeh J, Sadeghian G-H. General physicians and prescribing pattern in Isfahan, Iran. Oman Med J. 2011;26(3):205-6.

42. Vooss AT, Dieffenthaler HS. Evaluation of prescription indicators established by the WHO in Getúlio Vargas-RS. Brazil J Pharm Sci. 2011;47(2):385-90.
| Organ System or Therapeutic Category or Drug to Be Avoided | Beers Criteria Descriptions | Modifications |
|---|----------------------------|---------------|
| **Anticholinergics (Excludes TCAs)** | | |
| First-generation antihistamines (as single agent or as part of combination products) | Use of diphenhydramine in special situations such as acute treatment of severe allergic reaction may be appropriate | Cold preparations containing "chlorpheniramine" (such as Biolenol cold®), Adult cold, Cold gel®, Expectorant, Antihistamine Decongestant and all other antihistamines listed: GIM |
| Brompheniramine | | |
| Carboxamine | | |
| Chlorpheniramine | | |
| Clemastine | | |
| Cyproheptadine | | |
| Dextromethorphan | | |
| Dextrochlorpheniramine | | |
| Diphenhydramine (oral) | | |
| Doxylamine | | |
| Hydroxyzine | | |
| Propyphenazone | | |
| Triprolidine | | |
| Trihexyphenidyl | | |
| Belladonna alkaloids | | |
| Clidinium-chlordiazepoxide | | |
| Dicyclomine | | |
| Hyoscyamine | | |
| Propantheline | | |
| Scopolamine | | |
| **Antithrombotics** | | |
| Dipryidamole, oral short acting (does not apply to extended release combination with aspirin) | - | GIM |
| Ticlopidine | | GIM |
| **Anti-infective** | | |
| Nitrofurantoin | | |
| (Avoid for long-term suppression; avoid in patients with CrCl < 60 mL/min) | GIM: if prescribed for > 2 weeks (prescription with > 56 tablets if daily dosing was not mentioned in the prescription) | If the number of tablet was lower: CIM |
| **Cardiovascular** | | |
| Alpha blockers | | |
| Doxazosin | | |
| Prazosin | | |
| Terazosin | | |
| Alpha agonists, central | | |
| Clonidine | | |
| Guanabenz | | |
| Guanfacine | | |
| Methyldopa | | |
| Reserpine (> 0.1 mg/d) | | |
| Antiarrhythmic drugs (Class Ia, Ic, III) | | |
| Amiodarone | | |
| Dofetilide | | |
| Dronedarone | | |
| Flecaïnide | | |
| Ibutilide | | |
| Procainamide | | |
| Propafenone | | |
| Quinidine | | |
| Sotalol | | |
| Disopyramide | | |
| Dronedarone | | |
| Digoxin > 0.125 mg/d | | GIM: If the daily dose was mentioned in the prescription and was > 0.125 mg/d Without daily does: CIM |
| Nifedipine, immediate release | | GIM |
Spironolactone > 25 mg/d

In heart failure, the risk of hyperkalemia is higher in older adults especially if taking > 25 mg/d or taking concomitant NSAID, angiotensin converting-enzyme inhibitor, angiotensin receptor blocker, or potassium supplement.

Avoid in patients with heart failure or with a CrCl < 30 mL/min.

Central nervous system

Tertiary TCAs, alone or in combination:	-	Doxepin was considered GIM: If the daily dose was mentioned in the prescription and was > 6 mg/d. Doxepin without daily dose: CIM. Other TCAs as listed: GIM
Amitriptyline	-	
Chlordiazepoxide-amitriptyline	-	
Clomipramine	-	
Doxepin > 6 mg/d	-	
Imipramine	-	
Perphenazine-amitriptyline	-	
Trimipramine	-	
Antipsychotics, first (conventional)	-	Avoid use for behavioral problems of dementia unless non pharmacological options have failed and patient is threat to self or others.
and second (atypical) generation	-	
Thoridazine	-	GIM
Mesoridazine	-	GIM
Barbiturates	-	GIM
Amobarbital	-	GIM
Butabarbital	-	GIM
Butalbital	-	GIM
Mebarbital	-	GIM
Pentobarbital	-	GIM
Phenobarbital	-	GIM
Scobarbital	-	GIM
Benzodiazepines	-	May be appropriate for seizure disorders, rapid eye movement sleep disorders, benzodiazepine withdrawal, ethanol withdrawal, severe generalized anxiety disorder, peri-procedural anesthesia, end-of-life care.
Alprazolam	-	GIM
Estazolam	-	GIM
Lorazepam	-	GIM
Oxazepam	-	GIM
Temazepam	-	GIM
Triazolam	-	GIM
Long acting:	-	Avoid benzodiazepines (any type) for treatment of insomnia, agitation, or delirium.
Clorazepate	-	GIM
Chlordiazepoxide	-	GIM
Chlordiazepoxide-amitriptyline	-	GIM
Clidinium-chlordiazepoxide	-	GIM
Clonazepam	-	GIM
Diazepam	-	GIM
Flurazepam	-	GIM
Quazepam	-	GIM
Chloral hydrate	-	GIM
Meprobamate	-	GIM
Nonbenzodiazepine hypnotics	-	GIM in prescription with > 90 tablets. Otherwise: CIM.
Eszopiclone	-	GIM
Zolpidem	-	GIM
Zaleplon	-	GIM
Ergot mesylates	-	GIM
Isoxsuprine	-	GIM
Endocrine	-	GIM

Androgens	-	Avoid unless indicated for moderate to severe hypogonadism.
Methyltestosterone	-	GIM
Testosterone	-	GIM
Desiccated thyroid	-	GIM
Estrogens with or without progestins	Evidence that vaginal estrogens for treatment of vaginal dryness is safe and effective in women with breast cancer, especially at dosages of estradiol < 25 μg twice weekly
	Avoid oral and topical patch.
	Topical vaginal cream: acceptable to use low-dose intravaginal estrogen for the management of dyspareunia, lower urinary tract infections, and other vaginal symptoms
Growth hormone	GIM: if administered as oral and topical patch. Otherwise: CIM
Insulin, sliding scale	Avoid, except as hormone replacement after pituitary gland removal
Megestrol	GIM
Sulfonylureas, long duration	GIM
Chlorpropamide	GIM
Glyburide	GIM
Gastrointestinal	GIM: if prescribed for >30 days In prescriptions in which daily dosing was not mentioned, GIM was determined if the number of tablet/capsules exceeded the max acceptable daily dose for 30 days
Metoclopramide	Avoid, unless for gastroparesis
Trimeethylsalicylate	GIM
Pain	GIM
Meperidine	Avoid chronic use unless other alternatives are not effective and patient can take a gastroprotection agent (proton pump inhibitor or misoprostol)
Non-COX-selective NSAIDs, oral	GIM: if prescribed for >30 days In prescriptions in which daily dosing was not mentioned, GIM was determined if the number of tablet/capsules exceeded the max acceptable daily dose for 30 days
Aspirin > 325 mg/d	GIM
Diclofenac	GIM
Diflunisal	GIM
Etodolac	GIM
Fenoprofen	GIM
Ibuprofen	GIM
Ketoprofen	GIM
Meclofenamate	GIM
Mefenamic acid	GIM
Meloxicam	GIM
Nabumetone	GIM
Naproxen	GIM
Oxaproxin	GIM
Piroxicam	GIM
Sulindac	GIM
Tolmetin	GIM
Indomethacin	GIM
Ketorolac, includes parenteral	GIM
Pentazocine	GIM
Skeletal muscle relaxants	GIM
Carisoprodol	GIM
Chlorzoxazone	GIM
Cyclobenzaprine	GIM
Metaxalone	GIM
Methocarbamol	GIM
Orphenadrine	GIM
Supplementary Table 2. The modified list of systemic and local antibiotic medications

Systemic Antibiotics	Dosage Forms
Amoxicillin	Capule: 250 mg, 500 mg
Amoxicillin +Clavulanic Acid	Powder, For Suspension: 125 mg/5ml, 250 mg/5ml
Ampicillin	Capsule: 250 mg, 500 mg
Ampicillin+Sulbactam	Injection Powder: 500 mg, 1 g
Penicillin 6-3-3	Injection Powder: 1.5 g, 3 g
Penicillin G Benzathine	Injection Powder, Extended Release: 1200000 U
Penicillin G Procaine	Injection Powder: 400000 U, 800000 U
Penicillin V	Tablet: 500 mg
Cloxacillin	Capule: 250 mg, 500 mg
Piperacillin+Tazobactam	Injection Powder: 1.125 g, 2.5 g, 3.75 g, 4.5 g
Cefalexin	Capsule: 250 mg, 500 mg
Cefazolin	Injection Powder: 500 mg, 1 g
Ceftriaxone	Tablet: 125 mg, 250 mg, 500 mg
Cefuroxim	Capsule: 750 mg, 1.5 g
Cefotaxime	Injection Powder: 500 mg, 1 g, 2 g
Ceftazidime	Injection Powder: 500 mg, 1 g, 2 G
Ceftizoxim	Injection Powder: 500 mg, 1 g, 2 G
Meropenem	Injection Powder: 75 mg/5ml, 150 mg/5ml
Azithromycin	Capsule: 250 mg, 500 mg
Erythromycin	Injection Powder: 1 g
Clarithromycin	Capsule: 250 mg, 500 mg
Chloramphenicol	Injection Powder: 250 mg
Ciprofloxacin	Injection, Solution: 200 mg/100 ml
Nalidixic Acid	Capsule: 500 mg, 1000 mg
Ofloxacin	Injection, Solution: 200 mg/100 ml
Gemifloxacin	Tablet: 100 mg, 200 mg
Levofloxacin	Capsule: 250 mg, 500 mg
Moxifloxacin	Capsule: 500 mg, 1000 mg
Tetracycline	Injection Powder: 500 mg, 1000 mg
Doxycycline	Capsule: 100 mg
Gentamicin	Injection: 20 mg/2ml, 40 mg/1ml, 80 mg/2ml
Amikacin	Injection: 100 mg/2 ml, 200 mg/2 ml
Streptomycin	Injection Powder: 1 g
Spectinomycin	Injection Powder: 2 g
Tobramycin	Injection: 10 mg/ml, 40 mg/ml
Metronidazole	Injection Solution: 500 mg/100 ml
Nitrofurantoin	Suspension: 125 mg/5 ml, 250 mg/5 ml
Sulfamethoxazole +Trimethoprim	Injection Solution: 400+80 mg/5 ml
Trimethoprim	Tablet: 100 mg/20 mg, 400+80 mg, 800+160 mg
Sulfonamides	Oral Liquid: 50 mg/5 ml
Sulfamerazine	Tablet: 100 mg, 200 mg, 400 mg

http://mjiri.iums.ac.ir

Med J Islam Repub Iran. 2019 (19 Dec); 33:143.
Local Antibiotics	Dosage forms
Mupirocin	Ointment: 2%
Potassium Permanganate	Aqueous solution: 1:10 000
Silver Sulfadiazine	Cream: 1%
Acyclovir	Ointment: 3%
Gentamicin	Eye Drops: 0.3%
Tetracycline	Eye Ointment: 1%
Ofloxacin	Eye Drop: 0.3 %
Ciprofloxacin	Eye Ointment: 0.3 %
Erythromycin	Eye Ointment: 0.5%

Some of the medications or dosage form that was listed in the WHO model list was not available in Iran at the study time. However, we did not remove them from the table.