A search for magnetic fields on central stars in planetary nebulae

F. Leone1, R.L.M. Corradi2,3, M.J. Martínez González2,3, A. Asensio Ramos2,3, and R. Manso Sainz2,3

1 Università di Catania, Dipartimento di Fisica e Astronomia, Sezione Astrofisica, Via S. Sofia 78, I–95123 Catania, Italy
2 Instituto de Astrofísica de Canarias, 38205, La Laguna, Tenerife, Spain
3 Departamento de Astrofísica, Universidad de La Laguna, E-38205 La Laguna, Tenerife, Spain

Received To be inserted later, accepted To be inserted later

ABSTRACT

Context. One of the possible mechanisms responsible for the panoply of shapes in planetary nebulae is the presence of magnetic fields that drive the ejection of ionized material during the proto-planetary nebula phase.

Aims. Therefore, detecting magnetic fields in such objects is of key importance for understanding their dynamics. Still, magnetic fields have not been detected using polarimetry in the central stars of planetary nebulae.

Methods. Circularly polarized light spectra have been obtained with the Focal Reducer and Low Dispersion Spectrograph at the Very Large Telescope of the European Southern Observatory and the Intermediate dispersion Spectrograph and Imaging System at the William Herschel Telescope. Nineteen planetary nebulae spanning very different morphology and evolutionary stages have been selected. Most of central stars have been observed at different rotation phases to point out evidence of magnetic variability.

Results. In this paper, we present the result of two observational campaigns aimed to detect and measure the magnetic field in the central stars of planetary nebulae on the basis of low resolution spectropolarimetry. In the limit of the adopted method, we can state that large scale fields of kG order are not hosted on the central star of planetary nebulae.

Key words. planetary nebulae: general – magnetic fields – techniques: polarimetric

1. Introduction

In the last twenty years, extensive ground-based and HST imaging has revealed the extraordinary shapes of planetary nebulae (PNe). The original paradigm of PNe as spherical shells expanding uniformly around the stellar remnant, a hot white dwarf, is clearly far from describing reality. We now know that different kind of geometries, from spherical or ellipsoidal to highly collimated ones, characterize the overall shape of PNe (e.g. Corradi & Schwarz 1995). In addition, on smaller scales – embedded in the main bodies or external to them – a rich realm of additional structures is found, such as symmetrical (or not) pairs of knots, jets, ansae, etc. (Gonçalves et al. 2001).

These articulated morphologies clearly indicate that mass loss at the very end of the asymptotic giant branch (AGB) is complex and still far to be fully understood. Presently, a strong dynamical interaction between the massive/slow AGB wind (produced by surface levitation of gas due to convection, stellar pulsations and radiation pressure on dust) and the fast/tenuous post-AGB wind (driven by blanketed UV absorption lines of ions) is though to play a basic role in governing the formation and evolution of PNe, but it does not explain the deviation from the spherical geometry. In order to account for it, a number of explanations have been proposed (see e.g. Balick & Frank 2002), the most popular ones being interactions in mass-exchanging binary systems or the emergence of surface magnetic fields. Such models have one preferred symmetry axis and, hence, might account for simple bipolar flows, but in order to reproduce all multi-polar structures (like multi-lobal nebulae or multiple blobs and jets) the theoretical scenario had to be enriched with other ingredients able to break the axial symmetry (like precession of accretion disk winds or off-axis magnetic fields).

The binary scenario has been explored both theoretically (e.g. (author?) Soker & Rappaport 2001) and observationally (e.g. (author?) Miszalski 2012, (author?) Boffin et al. 2012), and while it can explain a number of structures observed in the nebulae, it is unlike that gravitational interactions alone are sufficient to explain all the various outflows that are sometimes found in the same nebula (cf. e.g. the case of Mz3 in Santander et al. (2004), where four distinct flows with increasing collimation degree have been identified).

Magnetic fields can provide the additional mechanisms needed to explain the observed structures. With this aim, a variety of magneto-hydrodynamical (MHD) simulations of the nebular shaping have appeared in the literature (e.g. Garcia-Segura et al. (author?)1999; Matt et al. (author?)2004; Frank & Blackman (author?)2004). The magnetic field may be either a fossil remnant from the progenitor on the main sequence (e.g. Ap stars), or can be generated by a dynamo at the interface between a rapidly rotating stellar core and a more slowly rotating envelope. (Blackman et al. 2001) argue that some remnant field anchored in the core will survive even without a convection zone, although the convective envelope may not be removed completely. Thomas et al. (1995) have shown that white dwarfs which do have thin surface convection zones can support a near-surface dynamo. Since the field strength in their model is higher at higher luminosities, this would particularly be true for central stars of PNe. That some central stars should contain significant magnetic fields is also indicated by the fact that some 10-30% of all white dwarfs have magnetic fields between 10^3 and 10^9 Gauss.

In spite of these facts, and that the MHD simulations are quite successful in reproducing several of the observed nebular structures, to date very little observational evidence has been
obtained of the existence of such magnetic fields. Still, magnetic fields have not been detected using in the central stars of planetary nebulae. First positive detections at a kiloGauss level were claimed by Jordan et al. (2005) in two PNe, but Leone et al. (2011) first, and then Bagnulo et al. (2012) and Jordan et al. (2012) could not confirm these results.

Jordan et al. (2012) have measured the magnetic field in the central stars of eleven planetary nebulae concluding that to date there is still no evidence for the existence of magnetic fields in PN central stars. In this paper, we continue our search for magnetic fields in PN central stars via spectropolarimetry, as done in Leone et al. Leone et al. (2011). The survey is not focussed on specific morphological classes, but should be considered as a panoramic view with the main goal of highlighting the overall properties of magnetic fields (if any) in the central stars of PNe in general. Detecting magnetic fields in one or the other of the observed morphologies would demonstrate that magnetic fields are indeed at work, and would start revealing which kind of shaping processes they are relevant for. With the aim to improve the variety and for an homogeneous reduction and analysis, spectropolarimetric data for seven central stars with the FOcal Reducer and low dispersion Spectrograph (FORS) have been obtained from the archive of the European Southern Observatory.

2. Observations, data reduction and magnetic field measurements

Measuring stellar magnetic fields is one of the most demanding techniques because of the need to reach very high signal to noise ratios. In the weak-field approximation for stellar atmospheres (Landstreet (author?) 1982; Mathys (author?) 1989), the disk-integrated Stokes-V parameter (the difference between the opposite circular polarized intensities) across spectral line profiles is proportional to the longitudinal component of the magnetic field integrated over the stellar disk, the so called effective magnetic field. High-resolution circular spectropolarimetry gives the possibility to distinguish photospheric regions with positive and negative magnetic fields (Leone & Catanzaro (author?) 2004; R=115,000). Circular spectropolarimetry is also useful at moderate resolution (Leone & Catanzaro (author?) 2001; R = 15,000) to detect magnetic fields, but it is still prohibitive for faint stars. As to white dwarfs, Angel & Landstreet (1970) introduced a method based on narrowband (~30 Â) circular photopolarimetry on the wings of the H, Balmer line. Bagnulo et al. (2002) have shown how to co-add the Stokes-V signal from spectral lines, as observed at low resolution, and measure the effective field of spectra lines on very faint stars.

With the aim to measure the effective magnetic field of the central stars of planetary nebulae, we have adopted the procedures and methods presented in Leone et al. (2011). Because of the necessary huge signal to noise ratio (S/N ~5000 was achieved for an upper limit of 300 G in the case of PNe NGC1360), we have selected PNe among the brightest ones, with the additional criterion of covering a range of morphologies as large as possible. Another important aspect to detect magnetic fields with the adopted technique is to select targets for which the nebular Balmer emission is negligible long the line of sight of the central star.

Spectropolarimetric data have been collected 1) at the William Herschel Telescope (WHT) at the Observatorio del Roque de los Muchachos at La Palma, Spain, using the ISIS spectrograph and 2) at the Unit 1 of the Very Large Telescope at ESO, Chile, using FORS2. With ISIS, data were obtained in the 3785 - 4480 Å range at resolution R = 5000 with the procedures described in Leone (2007). As to FORS2, data were obtained in the 3800 - 5200 Å range at resolution R = 2700 with the procedures described in Leone et al. (2011).

Information about the basic properties of each target PN, a log-book of the observations and obtained results are listed in Table 1.

In order to increase the signal to noise level of the polarized spectra, we averaged the observations of the same object that are not separated more than half the period of rotation of the object. Each averaged observation has been labeled with a number from 1 to 10. The reduction and the demodulation procedure are the same for all objects (see Leone et al. (author?) 2011). Figure 1 shows the Stokes I spectra as observed with FORS2 and WHT. Last column of Table 1 shows the results of our spectropolarimetric analysis. No magnetic field has been detected on the central stars of the selected planetary nebulae. It is worthy to note that for nine targets no analysis could be done either because the nebular contamination was too high: NGC246, PN G243-37.1, NGC 3242, He2-138, Hen 2-194, ESO588-14, NGC 6629, IC 4776 and NGC 7009, lower panels of Fig. 1.

3. Discussion

Despite we have no positive detections of a magnetic field in any of the observed PNe, this is significant result as targets span a large range of nebular and stellar parameters (Table 1). In particular, a variety of morphological structures seen at different inclination angles are included: from the marked bipolar shape of HD 44179 (the Red Rectangle), the mild bipolar morphology of NGC 4361, the ring/disc like inner nebula of NGC 7293 with outer multipolar lobes, the elongated geometry of e.g. NGC 1360, to the almost perfectly spherical shape of nebulae like Tc 1. In addition, highly collimated structures which might be related to magnetic shaping are also present, such as the highly inclined jets of NGC 1360 and the pole-on ones of NGC 2392, or the symmetric pair of low-ionization knots of NGC 6826. The only morphological class which is not well represented (except for the case of the pre-PN HD 44179) is that of classical “butterfly” nebulae, with a narrow waist from which high velocity bipolar lobes depart (see e.g. Corradi & Schwarz 1995). While their extreme collimation put them among the most promising targets where to look for magnetic fields (Sabin et al. 2007), they are beyond the reach of the method adopted in this paper. One reason is that their central stars are often intrinsically faint, because they are relatively massive and therefore have a fast post-AGB evolution toward low luminosities (Corradi & Schwarz 1995). In addition, they have dense equatorial torii of gas/dust whose emission/absorption often prevents the observations of the central stars.

Some binary central stars, which can naturally provide additional mechanism to produce magnetic fields (such as an angular momentum transfer to one of the two stellar components) are also included. NGC 6026 is a close binary with a period of 0.53 day (Hillwig (author?) 2010), composed of two degenerate compact objects which experienced a common-envelope phase before ejecting the observed nebula and jets. The period of NGC 1514 is not known, but the presence of a A-type star at its centre, too cool to produce the ionization of the nebula, indicates that it is also a binary system with likely a much longer period as no large radial velocity shifts has been detected so far (De Marco et al. 2004). As the A-type companion star dominates the spectrum in the visual range, our study effectively looks for a magnetic field in the companion rather than in the star that...
Leone et al.: A search for magnetic fields on central stars in planetary nebulae

Fig. 1. Observed central stars of planetary nebulae listed in Table 1. Left panel shows the stars observed with FORS2@UT2. Right panels show the stars observed with ISIS@WHT. Low panels show the logarithmic relative intensity for those stars dominated by emission lines. An ad hoc shift has been assumed to avoid the overlapping of spectra.

Thus, in spite that our search for magnetic fields has addressed a variety of morphological structures and central stars parameters/duplicity, which have often been related to magnetic fields, we have still no evidence for magnetic fields of the order of a kG or somewhat less in PN central stars. Following Kolenbergen & Bagnulo (2009), if the central stars of the PNe here reported are all characterised by the same dipolar strength, with magnetic axis randomly oriented with respect to the line of sight, then there is the 95% probability that their dipolar strength is < 800 G, while using Jordan et al. (2012) results the upper limit is 1100 G. A forthcoming paper where a rigorous statistical analysis of PNe observed so far from different groups will

...
be presented (Asensio Ramos et al. 2014). Future efforts will be directed to detect these fields in the nebular gas and dust, which will allow us to explore different types of targets and nebular parameters.

Acknowledgements. AAR, MJMG and RMS acknowledge financial support by the Spanish Ministry of Economy and Competitiveness (MINECO) through project AYA2010-18029, and RLMC through project AYA2012-35330. AAR and RMS acknowledge financial support by the MINECO through the project Consolider-Ingenio 2010 CSD2009-00038. This paper is based on observations made with the WHT operated on the island of La Palma by the ING in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias. It is also based on observations made with ESO Telescopes at the La Silla Paranal Observatory under programme ID 089.D-0429(A). We thanks the referee, Dr. Stefano Bagnulo, for suggestions and comments.

References
Angel, J.R.P., & Landstreet, J. D. 1970, ApJ, 160, L147
Bagulno, S., Szeifert, T., Wade, G. A., Landstreet, J.D. & Mathys, G. 2002, A&A, 389, 191
Bagulno, S., Landstreet, J.D., Fossati, L. & Kochukhov, O. 2012, A&A, 538, 129
Balick, B. & Frank, A. 2002, ARA&A, 40, 439
Blackman, E.G., Frank, A., Markiel, J.A., Thomas, J.H. & Van Horn, H.M. 2001, Nature, 409, 485
Boffin, H., Miszalski, B., Rauch, T., Jones, D., Corradi, R.L.M., Napiwotzki, R., Day-Jones, A.C. & Köppen, J. 2012, Science 337, 773
Corradi, R.L.M., Livio, M., Balick, B., Munari, U. & Schwarz, H.E. 2001, ApJ, 553, 211
Corradi, R.L.M. & Schwarz, H.E.,1995, A&A 293, 871

Table 1. Main properties of the target PNe. The B_{maj} of the central star is reported. With the present method, the magnetic field could not be measured in stars with a nebular emission overimposed to Balmer lines.

Target	RA (2000)	DEC	B_{maj}	Nebular morphology / Comments	Tel	JD-2450000	$\sigma \times 10^{-3}$	Field [G]
NGC 246 = HII 3678	00 47 03.3	−11 52 18.9	10.2	elliptical - emission lines	WHT	3718.349	non measurable	
PHL 932 = HII 4668	00 59 56.7	+15 44 13.8	12.0	asymmetrical - not PN (see text)	WHT	4011.503	1.8	310 ± 1150
NGC 1360 = CPD-26 389	03 33 14.6	−23 52 18.0	11.0	prolate ellipsoid + shell (i=60°)	WHT	4011.647	1.0	356 ± 1000
NGC 1514 = HD 281679	04 09 16.7	+30 46 28.6	10.0	distorted ellipsoid + shell (i=59°), binary?	VLT	4012.625	0.9	−105 ± 1045
PN 0243-371	05 03 01.73	−39 45 45.5	11.4	irregular + shell - emission lines	VLT	5553.558	0.1	155 ± 115
HD 441-79 = Red Rectangle	06 19 58.2	−10 38 14.7	9.3	bipolar (reflection) (edge-on) proto-PN, binary P=322 days	VLT	6174.835	non measurable	
NGC 2392 = Eskimo nebula	07 29 10.8	+20 54 42.5	10.3	distorted elliptical rim + shell + knotty disk + caps + jets (pole-on)	WHT	3718.562/3719.636	0.5	360 ± 500
LSS 1904 = TYC 3295-2325-1	09 52 44.5	−46 16 51.1	12.5	elliptical, amorphous, evolved PN	VLT	5553.832	0.5	−335 ± 285
NGC 3242 = HD 90255	10 24 46.1	−18 38 32.6	10.3	elliptical rim + shell + ansae + halo - emission lines	WHT	3718.731	non measurable	
NGC 4361 = HD 101969	12 24 30.8	−18 47 06.4	12.8	mildly bipolar	VLT	3526.577	3.9	655 ± 395
Abell 36 = HII 667-12	13 40 41.4	−19 52 54.9	11.3	large elliptical with ISM interaction; evolved PN	VLT	3525.496	7.1	−50 ± 290
LSE 125 = PN G335.5+12.4	15 43 05.4	−39 18 14.6	12	round	VLT	3526.472	5.8	−240 ± 270
Hen 2-138 = HD 141969	15 56 01.7	−66 09 09.2	10.9	elliptical with ‘wiggles’ - young emission lines	VLT	6176.549	non measurable	
NGC 6026 = PN G344.1+13.7	16 01 21.1	−34 32 35.8	13.2	amorphous + double-degenerate P=0.53 days (i=80°)	VLT	3525.825	non measurable	
Hen 2-194 = PN G303.0+04.4	17 04 36.3	−33 59 18.8	13	round rim + shell + bubble - Hβ emission lines	VLT	3525.825	non measurable	
RC 357 = HD 146072	17 05 10.5	−43 50 07.8	9	round rim + shell + structures; Possible visual binary	VLT	3527.394	10	420 ± 335
ESOS58.14 = PN G608.2+06.8	17 38 57.1	−18 17 35	11	bipolar, likely young - emission lines	VLT	6173.564	non measurable	
ESO 17 = HD 141044	17 45 35.3	−46 05 23.7	11.3	round with halo	VLT	3525.889	11	−55 ± 330
NGC 6627 = HD 169480	18 25 42.4	−23 12 10.3	11.9	elliptical, shell, ISM distorted halo - emission lines	VLT	6173.676/6174.626/6175.682	non measurable	
RC 576 = HD 173258	18 45 50.6	−33 18 10.2	10.6	bipolar + knots - emission lines	VLT	6173.596/6176.637	non measurable	
NGC 6626 = HII 45741.4	19 44 48.2	+50 31 30.3	10.2	elliptical, low ionization structures + shell + halo	WHT	4011.383	1.6	−660 ± 390
NGC 7009 = HD 205161	20 04 10.9	−11 21 48.3	12.5	elliptical, shell + jets, ansae + halo - emission lines	VLT	4012.375	11.2	1325 ± 1575
NGC 7293 = Helix nebula	22 29 38.6	−20 50 13.6	13.2	pole-on inner disc; cometary knots; multiple bipolar outflows	VLT	3527.886	6.5	1730 ± 3150

*ESO Archive data
†AlsoJordan et al. (2012).
