DeepCSO: a deep-learning network approach to predicting Cysteine S-sulphenylation sites

Xiaru Lyu¹, Ningning He¹, Zhen Chen²,³, Yang Zou¹,* and Lei Li¹,4,*

¹School of Basic Medicine, Qingdao University, Qingdao 266021, China
²Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450046, China
³Key Laboratory of Rice Biology in Henan Province, Henan Agricultural University, Zhengzhou 450046, China
⁴School of Data Science and Software Engineering, Qingdao University, Qingdao 266021, China

* Correspondence:
Corresponding Authors
yangzou306@gmail.com; leili@qdu.edu.cn

Keywords: Post-translational modification; Cysteine S-sulphenylation; deep learning; modification site prediction; machine learning.
Abstract

Cysteine S-sulphenylation (CSO), as a novel post-translational modification (PTM), has emerged as a potential mechanism to regulate protein functions and affect signal networks. Because of its functional significance, several prediction approaches have been developed. Nevertheless, they are based on a limited dataset from Homo sapiens and there is a lack of prediction tools for the CSO sites of other species. Recently, this modification has been investigated at the proteomics scale for a few species and the number of identified CSO sites has significantly increased. Thus, it is essential to explore the characteristics of this modification across different species and construct prediction models with better performances based on the enlarged dataset. In this study, we constructed a few classifiers and found that the long short-term memory model with the word-embedding encoding approach, dubbed LSTM_{WE}, performs favorably to the traditional machine-learning models and other deep-learning models across different species, in terms of cross-validation and independent test. The area under the ROC curve values for LSTM_{WE} ranged from 0.82 to 0.85 for different organisms, which is superior to the reposted CSO predictors. Moreover, we developed the general model based on the integrated data from different species and it showed great universality and effectiveness. We provided the on-line prediction service called DeepCSO that included both species-specific and general models, which is accessible through http://www.bioinfogo.org/DeepCSO.
1. Introduction

Protein Cysteine S-sulphenylation (CSO) is the reversible oxidation of protein cysteinyl thiols to suphenic acids. S-sulphenylation functions as an intermediate on the path towards other redox modifications, such as disulfide formation, S-glutathionylation, and overoxidation to sulfinic and sulfonic acids [1, 2]. This modification has been reported to influence protein functions, regulate signal transduction and affect cell cycle across various species [1, 3-8]. So far, thousands of CSO sites have been identified in different species including the mammal Homo sapiens and the plant organism Arabidopsis thaliana using the chemoproteomics approach [9-13](Summarized in Table S1). Nevertheless, highly efficient detection of the CSO sites remains a major methodological issue, due to the low abundance and dynamic level of CSO-containing proteins in vivo. In contrast to the time-consuming and expensive experimental approaches, computational methods for predicting CSO sites have attracted considerable attention because of their convenience and efficiency.

Species	Cell lines	Number of CSO sites	PMID
Homo sapiens	HeLa	1098	30177848
Homo sapiens	A549	1173	30177848
Homo sapiens	RKO	1105	25175731
Homo sapiens	RKO	1283	28355876
Homo sapiens	THP-1	268	27690452
Arabidopsis thaliana		1537	31578252

Several computational methods have been developed for the prediction of CSO sites, mainly based on a single human dataset containing 1105 identified CSO sites [10]. They include MDD-SOH[14], iSulf-Cys[15], SOHSite[16], PRESS[17], Sulf_FSVM[18], S-SulfPred[19] Fu-SulfPred[20],
SulCysSite[21], SOHPRED[22], and PredCSO[23]. They are all based on Support Vector Machine (SVM), decision tree or random forest (RF) algorithms with a variety of sequence encoding schemes. Although these algorithms have made contribution to the prediction of CSO sites, most of them are currently inaccessible. Moreover, there is a lack of prediction tools for the CSO sites of other species. With the growing number of CSO sites verified, it is essential to develop species-specific prediction models with high accuracy or even a general model.

Compared to traditional machine-learning (ML) algorithms (e.g., SVM and RF) used in the prediction approaches described above, the deep-learning (DL) architecture is a promising ML algorithm. In the DL algorithm, a suitable representation of the input data can be transformed into highly abstract features through propagating the whole model. Superposition of hidden layers in neural network can increase the ability of feature extraction, resulting in more accurate interpretation of latent data pattern. Because of its excellence, DL has been recently applied in the field of Bioinformatics, such as the predictions of RNA-binding sites [24], protein structure [25], RNA modification sites[26] and various PTM sites [27-29]. In view of this, the introduction of DL algorithm into the prediction of CSO sites would be a promising move to provide reliable candidates for further experimental consideration.

In this study, we constructed a few in silico approaches for the prediction of the CSO sites for *H. Sapiens* and *A. thaliana*. These approaches included the RF algorithms, Convolutional Neural Network (CNN) and long short-term memory (LSTM) network. The LSTM model with word embedding, called LSTM_{WE}, compared favorable to the rest approaches with AUC as 0.85 and 0.82
in human and Arabidopsis in terms of cross-validation. Moreover, LSTM\text{WE} trained using the data from one species achieved outstanding performance in predicting CSO sites of other species (e.g. AUC=0.80 for the prediction of Arabidopsis CSO sites using the human model), suggesting that CSO is highly conserved. Therefore, we constructed a general CSO prediction model. These models will facilitate the discovery of new CSO sites and thus will contribute to the understanding of roles and functions of CSO in diverse cellular processes.

2 Materials and methods

2.1 Data collection and preprocessing

The experimentally identified CSO sites were derived from two different organisms including \textit{H. Sapiens} and \textit{A. thaliana} [9-13]. The data of the species were pre-processed and the related procedure was exemplified using the \textit{A. thaliana} data, as listed below (Figure 1A).
We mapped 1537 Arabidopsis CSO sites [13] to the UniprotKB database[30] and 1535 sites from 1,130 proteins were retained as positive sites. The rest 8819 Cysteine residues in the same proteins were defined as negative sites. Moreover, we truncated these protein sequences into 35-residue segments with the Cysteine located at the center and the positive/negative sites correspond to positive/negative segments, respectively. It should be noted that if the central Cysteine was located around the N-terminus or C-terminus of a protein sequence, the gap symbol ‘-’ was added to the corresponding positions to ensure that the segment had the same window size. The window size was
optimized as a hyper-parameter in the Bayesian optimization method (Table S2) and finally determined as 33. Furthermore, to reduce the potential influence of the segments with high similarity on the performance of the models to be constructed, we set the identity of any two sequences with less than 40%, referring to previous studies [14, 15, 22]. When the identity was >40% between two positive segments or two negative segments, one was randomly removed. When the identity was >40% between a positive and a negative segments, the positive was retained and the negative was discarded. As a result, 1380 positives and 7421 negatives were retained. Finally, we randomly separated the positive and negative segments into 11 groups of which ten were used for ten-fold cross-validation (1254 positives and 6746 negatives) and the rest for independent test (126 positives and 675 negatives) (Figure 1A). Similarly, the cross-validation dataset for H. sapiens contained 16249 samples (2507 positives and 13742 negatives) and the independent test set comprised 1625 samples (251 positives and 1374 negatives) (Figure 1B). These datasets are available at http://www.bioinfogo.org/DeepCSO/download.php.

2.2 Feature encoding schemes

Numerical representation for amino acids (NUM).

The NUM encoding approach maps each type of amino acid residues to an integer [31]. Specifically, in the alphabet "AVLIFWMGSTCNQHKRDE-", each letter from ‘A’ to ‘-’ is converted to the integers from 0 to 20 in turn. For example, the sequence "VAMR" is encoded as "1,0,6,17".

Enhanced Amino Acid Composition (EAAC)

The EAAC encoding [26, 32-34] introduces a fixed-length sliding window based on the encoding of
Amino Acid Composition (AAC), which calculates the frequency of each type of amino acids in a protein or peptide sequence [35]. EAAC is calculated by continuously sliding a fixed-length sequence window (using the default value as 5) from the N-terminus to the C-terminus of each peptide. The related formula is listed below:

\[f(t, \text{win}) = \frac{N(t, \text{win})}{N(\text{win})}, \ t \in \{A, C, D, \ldots, Y\}, \text{win} \in \{\text{window}1, \text{window}2, \ldots, \text{window}35\} \] (1)

where \(N(t, \text{win}) \) is the number of amino acid \(t \) in the sliding window \(\text{win} \), and \(N(\text{win}) \) is the size of the sliding window \(\text{win} \).

Binary encoding

In the binary encoding, each amino acid is represented by a 21-dimensional binary vector [36]. The 21 dimensions are represented 20 amino acids and a complement "-" separately. The corresponding position is set as 1 and the rest position is set as 0. For example, the amino acid "A" is represented by "100000000000000000000", "V" is represented by "010000000000000000000", and the symbol "-" is represented by "000000000000000000001", according to the alphabet "AVLIFWMPGSCYNQHKRDE-".

2.3 Optimization method for hyper-parameters

The hyper-parameters of a ML classifier affect the prediction performance. However, there are no formal rules to find the optimal hyper-parameters. Therefore, a lot of combinations of hyper-parameters need to be tested, which is time-consuming and tedious. We developed a simple method to automatically adjust and evaluate hyper-parameters (Figure 2A). This method contained two search approaches: grid search and Bayesian Optimization (BO).
Figure 2. Hyper-parameter optimization for machine-learning classifiers (A) and the LSTM\textsubscript{WE} architecture (B).

Grid search is a brute-force method to find the optimal hyper-parameters by training models using each possible combination of hyper-parameters and retaining the hyper-parameters corresponding to the model with the best performance. The grid search method is applicable to limited number of hyper-parameters due to the exponential increase in time spent with the number of hyper-parameters. In this study, Grid search was used for the RF-based models and the setting of hyper-parameter space
was shown in Table S2. On the contrary, Bayesian Optimization (BO) provides a principled technique based on Bayes Theorem to direct a search of a global optimization problem that is efficient and effective. It is often used in deep learning to tune the hyper-parameters. The BO-related hyper-parameter space was listed in Table S2.

Table S2. Hyper-parameters optimization scheme

Grid search space
param_test = {
'n_estimators': range(100, 1001, 20),
'max_depth': range(6, 15, 2),
'min_samples_split': range(2, 9, 1)
}

Note: the above range was divided into three sections according to the last test results.

gsearch = GridSearchCV(|
| estimator = RandomForestClassifier(oob_score=True, random_state=10), |
| param_grid = param_test, |
| n_jobs = -1, |
| scoring = 'roc_auc', |
| iid = False, |
| cv = 3, |
| verbose = 2, |
| refit = True |
|) |

Bayesian optimization space
space = {
'window': hp.choice('window', [35, 33, 31, 29, 27, 25, 23]),
'emb': hp.choice('emb', [3, 4, 5, 6, 7]),
'lstm': hp.choice('lstm', [8, 16, 32, 64]),
'filters': hp.choice('filters', [18, 20, 22, 24]),
'kernel_size': hp.choice('kernel_size', [8, 9, 10, 11, 12]),
'units': hp.choice('units', [8, 16, 32, 64]),
'batch_size': hp.choice('batch_size', [16, 32, 64, 128]),
'lr_decay': hp.loguniform('lr_decay', np.log(0.000001), np.log(0.001)),
'dropout_rate': hp.uniform('dropout_rate', 0.0, 0.5),
'epochs': hp.choice('epochs', [50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150]),
}
2.4 Architecture of the machine-learning models

2.4.1 The LSTM model with the word embedding encoding approach (\(\text{LSTM}_{\text{WE}}\))

\(\text{LSTM}_{\text{WE}}\) contained five layers as follows (Figure 2B).

1. Input layer. Each peptide segment is converted into an integer vector with the NUM encoding.
2. Word Embedding layer. Each integer of the vector from the input layer is encoded into a four-dimension word vector.
3. LSTM layer. Each of the word vector is input sequentially into the LSTM cell that contained 32 hidden neuron units.
4. Dense layer. It contains a single dense sublayer that has 32 neurons with the ReLU activation function.
5. Output layer. This layer has only one neuron activated by sigmoid function, outputting the probability of the CSO modification.

2.4.2 The CNN model with the word embedding layer (\(\text{CNN}_{\text{WE}}\))

\(\text{CNN}_{\text{WE}}\) (Figure S1), contains five layers, where the first two layers and last one layer are as same as \(\text{LSTM}_{\text{WE}}\). The third layer is 1D convolution layer with 20 filters and kernel size as nine and the fourth layer has a single dense sublayer with 16 neurons. The optimal hyper-parameter values are obtained using Bayesian optimization algorithm.
2.4.3 The RF algorithms with different features

The RF algorithm integrates multiple decision trees and chooses the classification with the most votes from the trees. Each tree depends on the values of a random vector sampled independently with the same distribution for all trees in the forest. In this study, we constructed the RF models with three different features, including binary encoding, EAAC encoding and word embedding. The number of decision trees was selected as 580 via the grid search method. These classifiers were developed based on the Python module “sklearn”.

2.5 Performance assessment of the predictors

To evaluate the performance of our proposed method, four measures including accuracy (ACC), specificity (SP), sensitivity (SN) and the Matthew’s correlation coefficient (MCC) were used. They are defined as follows:

\[
ACC = \frac{TP + TN}{TP + FP + TN + FN}
\]
Where TP, TN, FP and FN represent the true positives, true negatives, false positives and false negatives respectively. Additionally, due to the number of positive and negative samples used in the experiment was unbalanced, and the above indexes were calculated based on the threshold value. In order to evaluate our model more objectively, an index independent of the threshold value and not affected by the sample ratio was needed. Therefore, the receiver operating characteristic (ROC) curves, together with the AUC are employed to comprehensively evaluate classification performance. Specifically, due to low false positive rate of a predictor is significant in practical application, the area under ROC curve with <10% false positive rate (AUC01) was considered.

2.6 Statistical methods

The paired student’s t-test was used to test the significant difference between the mean values of the two paired populations. The adjusted P value with the Benjamini-Hochberg (BH) method was adopted for multiple comparisons.

3 Results and discussion

Several computational approaches has been developed for the prediction of human CSO sites [37, 38]. Recently, this modification has been investigated across different species and the number of reported sites has been significantly increased. These raised our interest to develop novel prediction
algorithms and explore the characteristics of this modification. The major procedure of our analysis contained three steps (Figure 3): data collection and preprocessing, in which the sample data were separated into the cross-validation dataset and the independent test dataset for model construction and evaluation; classifier construction, which involves data decoding, model training and hyper-parameter adjustments for resulting in a robust predictive model; the development of the final model as an online prediction tool.

![Figure 3. The flowchart of the prediction model construction.](image)

3.1 \(\text{LSTM}_{\text{WE}} \) classifier performed favorably to other ML classifiers

Many computational approaches for predicting PTM sites are generally based on traditional ML algorithms combined with various features encoded from peptide sequences. The RF model is widely applied due to its robustness to data imbalance[39]. Accordingly, we constructed RF-based predictors with different encoding schemes for the CSO prediction. The encoding schemes include binary and
EAAC and the corresponding classifiers were dubbed $\text{RF}_{\text{BINARY}}$ and RF_{EAAC}. Moreover, deep learning (DL) algorithms have recently been applied to the field of the modification prediction and demonstrated their superior performances [33, 40]. Accordingly, we developed two different DL classifiers based on word embedding [41], named as CNN$_{\text{WE}}$ and LSTM$_{\text{WE}}$.

We first took the *Arabidopsis* data to construct and compare different models [13]. The *Arabidopsis* cross-validation dataset contained 8000 samples (1254 positives and 6746 negatives) and the independent test set covered 801 samples (126 positives and 675 negatives) (See methods for details; Figure 1). We compared the performances of these algorithms in terms of Acc, Sn, MCC, AUC and AUC01 values for both the ten-fold cross validation and the independent test (Table 1). In our previous studies DL models showed superior performance than traditional ML models [33, 42]. It is still true for the CSO prediction. LSTM$_{\text{WE}}$ had the best performance among these constructed models in terms of Acc, Sn, MCC and AUC values for both ten-fold cross validation and independent test. For instance, its AUC value is 0.852 for the cross-validation and its values of Acc, Sn, Sp and MCC were 0.786, 0.717, 0.799 and 0.417, respectively (Table 1, Figure 4A&C). As prediction performance at a low false positive rate is highly useful in practice, we estimated these predictors using AUC01, where the specificity was determined to be >90%. LSTM$_{\text{WE}}$ again showed the largest AUC01 values for both ten-fold cross-validation and the independent test (Figure 4B&D). As the encoding approach has great impact to the traditional ML models [33, 42, 43] and the WE approach integrated with LSTM had the best performance in this study, we attempted to investigate whether the integration of WE and RF had a good performance. Accordingly, we extracted embedding layer vector as feature encoding from LSTM$_{\text{WE}}$ and trained the RF model, dubbed RF$_{\text{WE}}$. Interestingly, RF$_{\text{WE}}$ did not show good performance compared to RF$_{\text{EAAC}}$, CNN$_{\text{WE}}$ or LSTM$_{\text{WE}}$. It suggests that the WE encoding approach may be improper for the construction of traditional ML algorithms.

We further constructed the models for the human organism. The Human cross-validation dataset contained 16249 samples (2507 positives and 13742 negatives) and the independent test set covered 1625 samples (251 positives and 1374 negatives) (Figure 1B). Similarly, LSTM$_{\text{WE}}$ had the best performance (Table 1, Figure S2). For instance, its values of AUC, Acc, Sn, Sp, MCC and AUC01 for the cross-validation were 0.822, 0.777, 0.651, 0.800, 0.367 and 0.024, respectively. We evaluated
the robustness of LSTM_{WE} by comparing their performances between the cross-validation and independent tests for individual organisms. As their performances between these two tests had no statistically different for each species (P=0.18/0.085 for the arabidopsis/humans, respectively), we concluded that our constructed models were robust and neither over-fitting nor under-fitting (Table 1).

Figure 4. Performance comparison of different CSO predictors on *Arabidopsis thaliana*. The performances of CSO predictors were compared in terms of AUC (A) and AUC01 (B), respectively, for ten-fold cross-validation. AUC (C) and AUC01 (D) curves were generated using the independent test.
Figure S2. Performance comparison of different CSO predictors on *Homo sapiens*. The performances of CSO predictors were compared in terms of AUC (A) and AUC01 (B), respectively, for ten-fold cross-validation. AUC (C) and AUC01 (D) curves were generated using the independent test.

Table 1. Performances of the different classifiers for *Arabidopsis thaliana* and *Homo sapiens*

Classifier\(^1 \)	Acc\(^2 \)	Sn\(^2 \)	Sp\(^2 \)	MCC\(^2 \)	AUC\(^3 \)	AUC01\(^4 \)
Ten-fold						
cross-validation						
RF\(_{BINARY}\)	0.743±0.006	0.449±0.040	0.798±0.001	0.210±0.032	0.696±0.021	0.014±0.002
RF\(_{EAAC}\)	0.773±0.007	0.628±0.043	0.799±0.001	0.351±0.033	0.803±0.019	0.024±0.004
RF\(_{WE}\)	0.748±0.007	0.474±0.048	0.799±0.001	0.230±0.038	0.728±0.020	0.014±0.002
CNN\(_{WE}\)	0.783±0.006	0.696±0.041	0.799±0.001	0.401±0.030	0.838±0.019	0.029±0.005
LSTM\(_{WE}\)	0.786±0.007	0.717±0.044	0.799±0.001	0.417±0.032	0.852±0.018	0.030±0.006
Independent						
test						
RF\(_{BINARY}\)	0.753±0.005	0.498±0.031	0.800±0.000	0.251±0.024	0.739±0.010	0.014±0.002
RF\(_{EAAC}\)	0.780±0.004	0.672±0.022	0.800±0.000	0.385±0.017	0.819±0.004	0.027±0.002
RF\(_{WE}\)	0.752±0.007	0.493±0.043	0.800±0.000	0.247±0.034	0.705±0.157	0.017±0.002
Homo sapiens

Classifier	Acc	Sn	Sp	MCC	AUC	AUC01
Ten-fold cross-validation						
RF\textsubscript{BINARY}	0.749±0.004	0.466±0.027	0.800±0.000	0.225±0.021	0.720±0.013	0.016±0.002
RF\textsubscript{EAAC}	0.766±0.006	0.578±0.039	0.800±0.000	0.312±0.030	0.790±0.018	0.020±0.002
RF\textsubscript{WE}	0.751±0.004	0.480±0.024	0.800±0.000	0.236±0.019	0.732±0.015	0.018±0.001
CNN\textsubscript{WE}	0.778±0.006	0.659±0.036	0.800±0.000	0.373±0.027	0.819±0.012	0.024±0.003
LSTM\textsubscript{WE}	**0.777±0.006**	**0.651±0.038**	**0.800±0.000**	**0.367±0.028**	**0.822±0.011**	**0.024±0.003**
Independent test						
RF\textsubscript{BINARY}	0.750±0.002	0.477±0.015	0.800±0.001	0.233±0.012	0.729±0.003	0.016±0.001
RF\textsubscript{EAAC}	0.773±0.003	0.626±0.016	0.800±0.000	0.348±0.012	0.807±0.001	0.024±0.001
RF\textsubscript{WE}	0.746±0.003	0.454±0.018	0.800±0.000	0.215±0.014	0.724±0.002	0.016±0.001
CNN\textsubscript{WE}	0.783±0.002	0.693±0.012	0.800±0.000	0.398±0.009	0.830±0.005	0.026±0.002
LSTM\textsubscript{WE}	**0.783±0.003**	**0.693±0.021**	**0.800±0.000**	**0.399±0.015**	**0.831±0.003**	**0.027±0.001**

Note:
1. The RF classifiers with the different features were named as RF\textsubscript{BINARY}, RF\textsubscript{WE} and RF\textsubscript{EAAC}. The CNN and LSTM classifiers with word embedding approach were named as CNN\textsubscript{WE} and LSTM\textsubscript{WE}, respectively.
2. Acc, Sn, Sp, MCC, AUC and AUC01 were described in the Materials and Methods. In the ten-fold cross validation, ten models were constructed and evaluated using the ten different validation datasets and the same independent dataset. Finally, the average performance and standard deviation of the ten models were calculated for both the cross-validation dataset and the independent dataset.

3.3 Human-specific LSTM\textsubscript{WE} performed better than reported classifiers

Several computational methods have been reported for the prediction of human CSO sites (See Introduction for details). We compared these methods with LSTM\textsubscript{WE} using the cross-validation results derived from the original studies, which were developed based on the CSO sites identified using the chemoproteomics approach (Table 2). LSTM\textsubscript{WE} also showed the best performance in terms of ACC, MCC and AUC (Table 2). As iSulf-Cys[15] is the only accessible model to date, we compared it and LSTM\textsubscript{WE} using the human independent dataset of this study. The AUC value (0.839) of LSTM\textsubscript{WE} is significantly larger than that (0.666) of iSulf-Cys (Figure S3). In summary, LSTM\textsubscript{WE} performed better than the reported classifiers.
Figure S3. Performance comparison between LSTM\textsubscript{WE} and iSulf-Cys in terms of the human independent dataset.

Table 2. The k-fold cross-validation results of existed tools

Tools	k-fold	Acc	Sn	Sp	MCC	AUC
DeepCSO	10	0.777 ± 0.006	0.651 ± 0.038	0.800 ± 0.000	0.367 ± 0.028	0.822 ± 0.011
MDD – SOH	5	0.68	0.7	0.7	0.27	
SOHSite	5	0.71	0.72	0.72	0.3	
SOHPRED	5	0.727 ± 0.005	0.742 ± 0.001	0.336 ± 0.004	0.801 ± 0.001	
iSulf-Cys	10	0.656 ± 0.007	0.673 ± 0.007	0.639 ± 0.001	0.312 ± 0.014	0.716 ± 0.009
SulCysSite	10	0.745 ± 0.006	0.744 ± 0.002	0.343 ± 0.005	0.806 ± 0.002	
Sulf_FSVM	10	0.711 ± 0.002	0.733 ± 0.004	0.708 ± 0.002	0.297 ± 0.004	0.788 ± 0.002
3.4 Conservation of the CSO modification and the development of general LSTM\(_{WE}\) models

Cysteine S-sulphenylation has been identified across various organisms, ranging from yeasts to worms and from plants to humans [7, 8]. To understand its conservation, we compared the characteristics of CSO-containing peptides in human and arabidopsis species, respectively, using the two-sample-logo approach [44]. Figure 5 showed that both species shared the enriched basic amino acids R and K and the depleted polar neutral amino acid acid C. Nevertheless, the amino acid H is enriched for \(A.\) \textit{thaliana} whereas the hydrophobic amino acid L was depleted for \(H.\) \textit{sapiens}. As the characteristics of CSO-containing peptides are similar between both species, we hypothesized the generalization ability of our developed models. To test this hypothesis, we used the human LSTM\(_{WE}\) model to predict the arabidopsis independent test dataset and employed the Arabidopsis LSTM\(_{WE}\) model to predict the human independent test dataset. The AUC values were 0.799 and 0.766, respectively, significantly larger than the random prediction (ie. AUC=0.5; Table 3). Nevertheless, the cross-species prediction had relative low performance compared to the self-species prediction (AUC=0.876/0.839 for arabidopsis/human, respectively). As the CSO sites have been systematically analyzed in a few species, it is necessary to develop a general CSO prediction model according to its conservation to boost the investigation for other species. Accordingly, we mixed the training datasets of \(H.\) \textit{Sapiens} and \(A.\) \textit{thaliana} and constructed the general LSTM\(_{WE}\) model and validated it using the independent datasets from both organisms. The performance of the general LSTM\(_{WE}\) model is slightly lower than that of the self-species prediction, which may be caused by the interference of the CSO characteristics of other species (Table 3). Overall, the conservation of the CSO modification leads to the effective prediction of the general LSTM\(_{WE}\) classifier.
To further understand the performance of the general LSTM$_{WE}$ classifier, we visualized the sample distributions, based on the human independent dataset, from the outputs of the input layer, embedding layer, LSTM layer and dense layer of the general model using t-SNE algorithm[45] (Figure 6). After the input layer (Figure 6A), the positive and negative samples were mixed together, as the training goes on (Figure 6B&C), positive and negative samples were gradually separated. After the LSTM layer, they were clearly separated (Figure 6D). This comparison indicates that the LSTM layer is a powerful method to detect the distinctive features of the positives and negatives.

The similar observation is made for the arabidopsis independent test dataset (Figure S4).

Figure 5. Sequence pattern surrounding the CSO sites, including the significantly enriched and depleted residues based on CSO-containing peptides and non-modification peptides for *H. sapiens* (A) and *A. thaliana* (B) (P<0.05, t-test with Bonferroni correction). The pattern was generated using the two-sample-logo method ([44]).

Table 3. Evaluation of species-specific and general LSTM$_{WE}$ models using the independent test sets from different species.

Independent test	LSTM$_{WE}$ model (AUC value)
3.4 Construction of the on-line CSO predictor

We developed an easy-to-use online tool for the prediction of the CSO sites, dubbed DeepCSO. DeepCSO contains three LSTM\(_{WE}\) models: the general model and two species-specific models (ie. *H. sapiens* and *A. thaliana*). The users could select the general model or species-specific model at the input interface and input the query protein sequences directly or upload the sequence file. After the job submission, the prediction will start and the prediction process may take several minutes. Finally, the prediction results are output in tabular form with five columns: sequence header, position,
sequence, prediction score, and prediction results at the specificity levels of 80%, 85% and 90%, respectively.

4 Conclusions

The currently CSO predicted tools are based on traditional machine learning method that requires experts to pre-define informative features, and there was no prediction tool have been developed for other than human species. We developed three LSTM-based prediction models, where two are organism-specific and one is general, and they compared favorably to the reported models. Despite lacking pre-defined features, the deep learning classifier demonstrated a superior performance compared to the traditional machine learning methods. This may be due to the self-learning ability of deep learning. The outstanding performance of our general model suggests that the Cysteine S-sulphenylation is well conserved and the LSTM-based model has an advantage in long-term memory to capture the key features of the entire sequences.

5 References

1. Paulsen, C.E. and K.S. Carroll, Cysteine-mediated redox signaling: chemistry, biology, and tools for discovery. Chem Rev, 2013. 113(7): p. 4633-79.

2. Huang, J.J., et al., Pathways crossing mammalian and plant sulfenomic landscapes. Free Radical Biology and Medicine, 2018. 122: p. 193-201.
3. Choudhury, F.K., et al., *Reactive oxygen species, abiotic stress and stress combination.* Plant Journal, 2017. **90**(5): p. 856-867.

4. Mhamdi, A. and F. Van Breusegem, *Reactive oxygen species in plant development.* Development, 2018. **145**(15).

5. Van Breusegem, F. and J.F. Dat, *Reactive oxygen species in plant cell death.* Plant Physiology, 2006. **141**(2): p. 384-390.

6. Guadagno, C.R., B.E. Ewers, and C. Weinig, *Circadian Rhythms and Redox State in Plants: Till Stress Do Us Part.* Frontiers in Plant Science, 2018. **9**.

7. Men, L. and Y. Wang, *The oxidation of yeast alcohol dehydrogenase-1 by hydrogen peroxide in vitro.* J Proteome Res, 2007. **6**(1): p. 216-25.

8. Hourihan, J.M., et al., *Cysteine Sulfinylation Directs IRE-1 to Activate the SKN-1/Nrf2 Antioxidant Response.* Mol Cell, 2016. **63**(4): p. 553-566.

9. Akter, S., et al., *Chemical proteomics reveals new targets of cysteine sulfinic acid reductase.* Nat Chem Biol, 2018. **14**(11): p. 995-1004.

10. Yang, J., et al., *Site-specific mapping and quantification of protein S-sulphenylation in cells.* Nat Commun, 2014. **5**: p. 4776.

11. Gupta, V., et al., *Diverse Redoxome Reactivity Profiles of Carbon Nucleophiles.* J Am Chem Soc, 2017. **139**(15): p. 5588-5595.

12. Li, R., et al., *Quantitative Protein Sulfenic Acid Analysis Identifies Platelet Releasate-Induced Activation of Integrin beta2 on Monocytes*
via NADPH Oxidase. J Proteome Res, 2016. **15**(12): p. 4221-4233.

13. Huang, J., et al., Mining for protein S-sulfenylation in Arabidopsis uncovers redox-sensitive sites. Proc Natl Acad Sci U S A, 2019. **116**(42): p. 21256-21261.

14. Bui, V.M., et al., MDD-SOH: exploiting maximal dependence decomposition to identify S-sulfenylation sites with substrate motifs. Bioinformatics, 2016. **32**(2): p. 165-72.

15. Xu, Y., J. Ding, and L.Y. Wu, iSulf-Cys: Prediction of S-sulfenylation Sites in Proteins with Physicochemical Properties of Amino Acids. PLoS One, 2016. **11**(4): p. e0154237.

16. Bui, V.M., et al., SOHSite: incorporating evolutionary information and physicochemical properties to identify protein S-sulfenylation sites. BMC Genomics, 2016. **17** Suppl 1: p. 9.

17. Sakka, M., et al., PRESS: PRotEin S-Sulfenylation server. Bioinformatics, 2016. **32**(17): p. 2710-2.

18. Ju, Z. and S.Y. Wang, Prediction of S-sulfenylation sites using mRMR feature selection and fuzzy support vector machine algorithm. Journal of Theoretical Biology, 2018. **457**: p. 6-13.

19. Jia, C. and Y. Zuo, S-SulfPred: A sensitive predictor to capture S-sulfenylation sites based on a resampling one-sided selection undersampling-synthetic minority oversampling technique. J Theor Biol, 2017. **422**: p. 84-89.
20. Wang, L., R. Zhang, and Y. Mu, *Fu-SulfPred: Identification of Protein S-sulphenylation Sites by Fusing Forests via Chou's General PseAAC*. J Theor Biol, 2019. **461**: p. 51-58.

21. Hasan, M.M., D.J. Guo, and H. Kurata, *Computational identification of protein S-sulphenylation sites by incorporating the multiple sequence features information*. Molecular Biosystems, 2017. **13**(12): p. 2545-2550.

22. Wang, X., et al., *SOHPRED: a new bioinformatics tool for the characterization and prediction of human S-sulphenylation sites*. Mol Biosyst, 2016. **12**(9): p. 2849-58.

23. Deng, L., X. Xu, and H. Liu, *PredCSO: an ensemble method for the prediction of S-sulphenylation sites in proteins*. Mol Omics, 2018. **14**(4): p. 257-265.

24. Zhang, S., et al., *A deep learning framework for modeling structural features of RNA-binding protein targets*. Nucleic Acids Res, 2016. **44**(4): p. e32.

25. Di Lena, P., K. Nagata, and P. Baldi, *Deep architectures for protein contact map prediction*. Bioinformatics, 2012. **28**(19): p. 2449-57.

26. Huang, Y., et al., *BERMP: a cross-species classifier for predicting m(6)A sites by integrating a deep learning algorithm and a random forest approach*. Int J Biol Sci, 2018. **14**(12): p. 1669-1677.

27. He, F., et al., *A Multimodal Deep Architecture for Large-Scale Protein
28. Wang, D.L., et al., *MusiteDeep: a deep-learning framework for general and kinase-specific phosphorylation site prediction*. Bioinformatics, 2017. 33(24): p. 3909-3916.

29. Xie, Y.B., et al., *DeepNitro: Prediction of Protein Nitration and Nitrosylation Sites by Deep Learning*. Genomics Proteomics & Bioinformatics, 2018. 16(4): p. 294-306.

30. UniProt, C., *Ongoing and future developments at the Universal Protein Resource*. Nucleic Acids Res, 2011. 39(Database issue): p. D214-9.

31. Zhang, Y., et al., *Computational analysis and prediction of lysine malonylation sites by exploiting informative features in an integrative machine-learning framework*. Brief Bioinform, 2019. 20(6): p. 2185-2199.

32. Chen, Z., et al., *iFeature: a Python package and web server for features extraction and selection from protein and peptide sequences*. Bioinformatics, 2018. 34(14): p. 2499-2502.

33. Chen, Z., et al., *Integration of A Deep Learning Classifier with A Random Forest Approach for Predicting Malonylation Sites*. Genomics Proteomics Bioinformatics, 2018. 16(6): p. 451-459.

34. Chen, Z., et al., *iLearn: an integrated platform and meta-learner for feature engineering, machine-learning analysis and modeling of DNA,*
RNA and protein sequence data. Brief Bioinform, 2019.

35. Bhasin, M. and G.P. Raghava, *Classification of nuclear receptors based on amino acid composition and dipeptide composition*. J Biol Chem, 2004. **279**(22): p. 23262-6.

36. Chen, Z., et al., *iFeature: a Python package and web server for features extraction and selection from protein and peptide sequences*. Bioinformatics, 2018. **34**(14): p. 2499-2502.

37. Ju, Z. and S.-Y. Wang, *iLys-Khib: Identify lysine 2-Hydroxyisobutyrylation sites using mRMR feature selection and fuzzy SVM algorithm*. Chemometrics and Intelligent Laboratory Systems, 2019. **191**: p. 96-102.

38. Wang. YG, et al., *Accurate prediction of species-specific 2-hydroxyisobutyrylation sites based on machine learning frameworks*. Analytical biochemistry, 2020. **602**: p. 113793.

39. He, W., L. Wei, and Q. Zou, *Research progress in protein posttranslational modification site prediction*. Brief Funct Genomics, 2018. **18**(4): p. 220-229.

40. Wang, D., et al., *MusiteDeep: a deep-learning framework for general and kinase-specific phosphorylation site prediction*. Bioinformatics, 2017. **33**(24): p. 3909-3916.

41. Shuang, K., et al., *Convolution-deconvolution word embedding: An end-to-end multi-prototype fusion embedding method for natural
language processing. Information Fusion, 2020. **53**: p. 112-122.

42. Zhao, Y.M., et al., *Identification of Protein Lysine Crotonylation Sites by a Deep Learning Framework With Convolutional Neural Networks*. IEEE Access, 2020. **8**: p. 14244-14252.

43. Huang, Y., et al., *BERMP: a cross-species classifier for predicting m(6)A sites by integrating a deep learning algorithm and a random forest approach*. International Journal of Biological Sciences, 2018. **14**(12): p. 1669-1677.

44. Vacic, V., L.M. Iakoucheva, and P. Radivojac, *Two Sample Logo: a graphical representation of the differences between two sets of sequence alignments*. Bioinformatics, 2006. **22**(12): p. 1536-7.

45. van der Maaten, L. and G. Hinton, *Visualizing Data using t-SNE*. Journal of Machine Learning Research, 2008. **9**: p. 2579-2605.
A

- Set hyper-parameters set
- (Re) select hyper-parameters
- Construct a model using the training data
- Evaluate predictive performance
- Is it better than the existing model?
- No
 - Is the iteration limit reached?
 - Yes
 - Update potential optimal hyper-parameters
 - No
- Initialize optimal hyper-parameters
- Output optimal hyper-parameters

Note: The procedure shown by the dotted line executes only once at the beginning.

B

Input layer
- P, V, I, A, ..., L, W, S, D

Embedding layer
- Word vector
- Word vector
- Word vector
- Word vector
- ... (repeated)
- Word vector
- Word vector
- Word vector
- Word vector

LSTM layer
- LSTM cell
- LSTM cell
- LSTM cell
- LSTM cell
- ... (repeated)
- LSTM cell
- LSTM cell
- LSTM cell
- LSTM cell

Dense layer

Output layer
A

Arabidopsis thaliana [11]

Number of positive samples

Number of negative samples

1380

7421

1254

126

6746

675

1254

6746

126

675

Ten-fold cross-validation

Independent test

B

Homo sapiens [7-10]

2758

15116

2507

251

13742

1374

2507

13742

251

1374

Ten-fold cross-validation

Independent test
