Hepatocellular adenoma in the paediatric population: Molecular classification and clinical associations

Elan Hahn, Juan Putra

ORCID number: Elan Hahn (0000-0003-0685-7614); Juan Putra (0000-0002-3487-4641).

Author contributions: Hahn E reviewed the literature and drafted the manuscript; Putra J reviewed the literature, acquired the histological images, and edited the final version of the manuscript; all authors approved the final version to be published.

Conflict-of-interest statement: The authors declare that they have no conflict of interest.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Manuscript source: Invited Manuscript

Received: December 30, 2019
Peer-review started: December 30, 2019
First decision: February 19, 2020
Revised: March 29, 2020
Accepted: May 1, 2020
Article in press: May 1, 2020
Published online: May 21, 2020

Abstract

Hepatocellular adenomas (HCAs) represent rare, benign liver tumours occurring predominantly in females taking oral contraceptives. In children, HCAs comprise less than 5% of hepatic tumours and demonstrate association with various conditions. The contemporary classification of HCAs, based on their distinctive genotypes and clinical phenotypes, includes hepatocyte nuclear factor 1 homeobox alpha-inactivated HCAs, beta-catenin-mutated HCAs, inflammatory HCAs, combined beta-catenin-mutated and inflammatory HCAs, sonic hedgehog-activated HCAs, and unclassified HCAs. In children, there is a lack of literature on the characteristics and distribution of HCA subtypes. In this review, we summarized different HCA subtypes and the clinicopathologic spectrum of HCAs in the paediatric population.

Key words: Paediatric; Hepatocellular adenoma; Malignant transformation; Beta-catenin; HNF1A; Glycogen storage disorders

©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Hepatocellular adenomas (HCAs) are uncommon liver tumours with 2 major complications: bleeding and malignant transformation; these lesions are classified based on their distinctive genotypes and clinical phenotypes. HCAs in children may be identified in the setting of conditions such as glycogen storage disorder and familial adenomatous polyposis. However, the molecular subtypes do not always correlate with predisposing risk factors and syndromes. Herein, we will discuss the different subtypes of HCA and the clinicopathological characteristics in children.

Citation: Hahn E, Putra J. Hepatocellular adenoma in the paediatric population: Molecular classification and clinical associations. World J Gastroenterol 2020; 26(19): 2294-2304
INTRODUCTION

Hepatocellular adenomas (HCAs) are rare benign neoplasms arising from hepatocytes, occurring at a rate of 3-4 per 100,000\(^\text{1}\). There is a female predominance with a strong association with oral contraceptive pill (OCP) use\(^{3,4}\). Other risk factors for the development of HCAs include androgen hormone imbalance, obesity, alcohol intake, liver vascular disease, chronic viral hepatitis, cirrhosis, previous malignancy, and germline genetic susceptibility\(^{5,6}\). Although HCAs are considered benign, these lesions have 2 major complications: severe bleeding and malignant transformation\(^{7}\).

The current HCA classification provides considerable benefits in terms of management and prognostication. The literature of HCAs in the paediatric population is still limited. In children, HCAs have been associated with glycogen storage diseases (GSDs), galactosemia, Hurler syndrome (mucopolysaccharidosis type 1), familial adenomatous polyposis syndrome, and Fanconi anemia (FA), among others\(^{7-10}\).

In this review, we will discuss the current molecular classification of HCAs, followed by select clinical associations in children.

MOLECULAR SUBTYPES OF HEPATOCELLULAR ADENOMA

HCAs were initially categorized into 4 subtypes based on the genotypes and clinical phenotypes: hepatocyte nuclear factor 1 homeobox alpha (HNF1A)-inactivated HCAs (HHCAs), inflammatory HCAs (IHCAs), beta-catenin-mutated HCAs (bHCAs), and unclassified HCAs (UHCAs)\(^{10}\). Further evaluation using gene expression profiling, RNA sequencing, whole-exome and -genome sequencing, resulted in an expanded classification which includes bHCAs involving exon 3 (b\(\text{ex}3\)HCAs) and exon 7 or 8 (b\(\text{ex}7,8\)HCAs), ICHAs with beta-catenin mutations (b\(\text{ex}3\)IHCAs and b\(\text{ex}7,8\)IHCAs), and a newly defined entity of sonic hedgehog HCAs (shHCAs)\(^{4}\). The clinical and pathological characteristics of these subtypes are summarized in Table 1.

HHCA

\(\text{HNF1A}\) is a gene located on chromosome 12 (12q24.31) that encodes the protein hepatocyte nuclear factor 1 (HNF1) which acts as a transcription factor, developmentally regulating gene expression through interactions with the promoters of genes expressed in the liver\(^{12}\). Zucman-Rossi et al\(^{11}\) demonstrated that bi-allelic inactivating mutations of \(\text{HNF1A}\) constituted a homogenous, morphologically distinct subgroup of adenomas (HHCAs). These mutations are exclusive of mutations in other subtypes of HCA (\(\text{CTNNB1}\), \(\text{IL6ST}\), \(\text{JAK1}\), \(\text{GNAS}\) and \(\text{STAT3}\))\(^{13}\).

HHCAs most commonly affect female patients with an average age of 37 years at diagnosis in one series, with 8% of patients demonstrating germline \(\text{HNF1A}\) mutations\(^{4}\). Risk factors for the development of HHCAs include oral contraceptive use, which is especially potent due to the decreased estradiol detoxification in these tumours, and \(\text{HNF1A}\) germline mutations\(^{14,14}\). The familial form of hepatic adenomatosis (multiple HHCAs) secondary to germline mutations of \(\text{HNF1A}\) has been identified in patients with maturity-onset diabetes of the young type 3\(^{15-19}\). Additionally, \(\text{HNF1A}\) contains a poly-cytosine C8-microsatellite, making it susceptible to microsatellite instability; this phenomenon has been observed to result in HHCA development in 3 unrelated children with bi-allelic mutations of \(\text{MLH1}\) and \(\text{PMS2}\)\(^{20}\).

Histologically, HHCAs are characterized by intralesional steatosis, along with a lack of inflammation and cytologic atypia\(^{15}\). This phenomenon (intratumoral steatosis) is due to increased lipogenesis secondary to \(\text{HNF1A}\) inactivating mutations, occurring via down-regulation of liver fatty acid binding protein (LFABP)\(^{20}\). It is important to note that the degree of steatosis in each lesion varies, and steatosis is not exclusively seen in this subtype of HCA. The diagnosis of HHCA can be confirmed by decreased or absent LFABP immunostaining in the lesional cells\(^{21}\). Although rare, malignant transformation has been associated with this subtype of HCA\(^{19,23,24}\).

IHCAs are one of the most common subtypes (30%-50% of HCAs) which are...
Table 1 Clinicopathologic characteristics of different hepatocellular adenoma subtypes

HCA subtype	Risk factors	Specific clinical features	Histologic features	IHCs
HHCA	HNF1A germline mutations, MODY type 3, microsatellite instability	Hepatic adenomatosis	Intralesional steatosis	LFABP (absent/decreased)
IHCA	Obesity, alcohol, glycogenosis	Inflammatory syndrome	Sinusoidal dilatation, inflammatory infiltrate	CRP; SAA
bHCA	Male, liver vascular disease, androgen therapy	Frequent malignant transformation	Pseudoacinar formation, mild nuclear atypia	Beta-catenin (nuclear staining), GS (diffuse and strong)
shHCA	No specific risk factors	No specific clinical features	No specific features	GS (weak, heterogeneous)
UHCA	Obesity	Symptomatic bleeding	Intralesional hemorrhage	Prostaglandin D2 synthase

HCA: Hepatocellular adenoma; IHCs: Immunohistochemical stains; HNF1A: hepatocyte nuclear factor 1 homeobox alpha; HHCA: HNF1A-inactivated hepatocellular adenoma; IHCA: Inflammatory hepatocellular adenoma; bHCA: Beta-catenin-mutated hepatocellular adenoma (exon 3); bHCA: Beta-catenin-mutated hepatocellular adenoma (exon 7/8); shHCA: Sonic hedgehog-activated hepatocellular adenoma; UHCA: Unclassified hepatocellular adenoma; MODY: Maturity-onset diabetes of the young; LFABP: Liver fatty acid binding protein; CRP: C-reactive protein; SAA: Serum amyloid A; GS: Glutamine synthetase.

characterized by IL6ST mutations\(^{[23]}\). The gene is located on chromosome 5 (5q11.2) and encodes glycoprotein 130 (gp130), a signal transducer for the JAK/STAT pathway\(^{[23]}\). Mutations in gp130 lead to sustained activation of the pathway, resulting in hepatocellular proliferation and HCA development\(^{[23]}\). GNAS also plays a role in activating this pathway, with somatic mutations leading to the development of HCA and HCC\(^{[23]}\).

IHCAs demonstrate a female predominance, with an average age of diagnosis of 40 years\(^{[4]}\). Clinically, IHCAs may present with fever, leukocytosis, and elevated C-reactive protein (CRP), gamma-glutamyl transferase, alkaline phosphatase, and amyloid-associated proteins\(^{[4]}\). In general, this subtype has been associated with high body mass index, alcohol consumption, GSD type I, and primary sclerosing cholangitis\(^{[21]}\). IHCAs can carry an increased risk of bleeding due to their highly vascularized morphology\(^{[21]}\).

Microscopically, IHCAs are characterized by display inflammatory infiltrates (predominantly lymphocytes and histiocytes, admixed with plasma cells and neutrophils), sinusoidal dilatation, dystrophic arteries, and variable ductular reaction in the periphery of the lesions\(^{[21]}\). By immunohistochemistry, the tumours are positive for CRP and serum amyloid A\(^{[4]}\). Malignant transformation occurs in 5-10% of IHCAs, with coexisting beta-catenin mutations implicated in the pathogenesis\(^{[23]}\).

bHCA
CTNNB1 (catenin, beta-1) is a gene located on chromosome 3 (3p22.1) that encodes the protein beta-catenin, an adherens junction protein\(^{[24]}\). This protein anchors the actin cytoskeleton between epithelial cells, communicating a contact inhibition signal, regulating normal cell growth and behaviour\(^{[23]}\). The Wnt/beta-catenin pathway regulates hepatocellular development, growth, and regeneration\(^{[4]}\). Mutations in CTNNB1 may result in uncontrolled hepatocyte proliferation. These mutations can occur in exon 3, 7, or 8, giving rise to HCAs and HCC\(^{[4]}\). bHCA has the highest malignant transformation potential\(^{[4]}\). In one series, approximately half of all bHCAs co-demonstrated inflammatory phenotypes with mutations affecting genes implicated in HCAs (6% of all HCAs being classified as biHCAs and 4% as biHCAs)\(^{[4]}\).

bHCAs occur in younger patients than the other subtypes, with an average age of 27.5-28.5 years at diagnosis, and a female predominance, although a higher proportion of males are affected than in other subtypes\(^{[4]}\). An association with androgen therapy is well-described.

The characteristic morphological features include mild cytologic atypia and pseudoacinar formation in addition to typical HCA findings. In bHCAs, the lesional cells demonstrate diffuse and strong immunohistochemical expression of glutamine synthetase (GS) and aberrant, nuclear positivity for beta-catenin\(^{[4]}\). Meanwhile, biHCAs are characterized by perivenular and heterogeneous staining of GS without nuclear beta-catenin expression.

shHCA
A subset of HCAs demonstrates small deletions of INHBE (inhibin, beta-E) which lead to INHBE–GLI1 fusions\(^{[4]}\). INHBE is a gene located on chromosome 12 (12q13.3) that...
encodes a protein which plays a role in pancreatic exocrine growth and proliferation[33]. \textit{GLI1} is a gene located on chromosome 12 (12q13.3) as well; it is involved in signal transduction in the sonic hedgehog signaling pathway, and activates transcription of target genes[33]. In the liver, the sonic hedgehog pathway leads to growth of progenitor hepatocyte populations, thereby promoting regeneration, with accompanying compensatory reparative changes, including inflammation, fibrosis and vascular remodeling[33]. These changes are classically associated with cirrhosis but can play a role in the pathogenesis of shHCAs, HCC, and cholangiocarcinoma[33]. GLI1 fusions have been observed in other benign neoplasms, as have other mutations affecting the sonic hedgehog pathway[37-39,43]. In one series, shHCAs accounted for 4\% of previously unclassified HCAs[39]. shHCAs have a strong female predominance, with an average age of diagnosis of 43 years[39]. This subtype shows intratumoural hemorrhage on microscopic examination[40]. By immunohistochemistry, the lesional cells are positive for prostaglandin D2 synthase, while argininosuccinate synthetase 1, albeit molecularly enhanced in shHCAs, shows non-specific staining in this subtype as well as others[32-35]. Currently, the malignant potential of shHCAs is unknown[4]. \textbf{UHCA} UHHCAs accounted for approximately 7\% of HCAs in one large series[40]. These lesions occur with a female predominance at an average age of 38 years[4]. The microscopic and immunohistochemical analysis is non-specific, aside from showing typical morphologic features of HCA[41]. \section*{HEPATOCELLULAR ADENOMAS IN CHILDREN} HCAs represent < 5\% of all paediatric hepatic tumours[35]. In addition to sex hormone disturbances as seen in adults, HCAs in children may arise in the background of FA, GSDs type I, III, and IV, galactosemia, immunodeficiency, congenital portosystemic shunts (CPSS), cardiac hepatopathy status-post Fontan procedure, Hurler syndrome, familial adenomatous polyposis, germline \textit{HNF1A} mutations and maturity-onset diabetes of the young type 3, among others[8-42]. HCAs may also occur spontaneously in the paediatric setting. In one series, up to 30\% of HCAs developed without risk factors[3]. \textbf{Table 2} highlights different conditions which have been associated with HCAs in the paediatric population. The average age of HCA presentation in children is 14 years, although HCAs may be detected as early as prenatally[20,43,44]. The lesions most commonly present in the right lobe of female patients[20]. Clinically, patients present with HCAs found incidentally on imaging or with abdominal pain, which can be related to bleeding and rupture which occur in 27.2\% and 17.5\% of patients, respectively[20]. Similar to adults, HCAs predominantly manifest as solitary lesions, while multiple lesions are more frequently observed in children with predisposition, such as GSD and Hurler syndrome[38,43]. Currently, there are no published recommendations about screening protocols for HCA in patients with predisposing factors except for children with GSD[43]. In children with GSD type I, liver imaging is routinely performed every 12-24 mo[43]. Computed tomography or magnetic resonance imaging with contrast should be considered in older children to look for evidence of increasing lesion size, poorly defined margins, or hemorrhage[43]. Histologic evaluation of the tumor should be considered in sporadic cases with no known predisposing factor for diagnostic confirmation and evaluation of the background liver[43]. The molecular classification is currently the same as in adults. The main differential diagnoses of HCAs in the paediatric population include focal nodular hyperplasia, hemangiomas, fibrolamellar carcinoma, and HCCs; the detailed clinicopathological features of these entities are beyond the scope of this review. Selected entities associated with paediatric HCAs are discussed below. \textbf{Sex hormone dysregulation} Sex hormone dysregulation is a shared pathway for development of HCAs, across all subtypes and age groups. Besides OCP, sex hormone dysregulation in the paediatric population can occur with obesity, polycystic ovarian syndrome (PCOS), Klinefelter’s syndrome, sex hormone producing tumours, such as Sertoli-Leydig cell tumours, and in the treatment of other diseases, such as hormone therapy for Turner’s syndrome, steroid therapy for FA and Glanzmann’s thrombasthenia, and oxcarbazepine therapy for seizures[16,44-51]. Oxcarbazepine and other sodium ion channel modulating antiepileptic drugs have been found to cause reproductive endocrine dysfunction, and this is the proposed pathogenesis of HCAs in these cases[51]. The molecular subtype of these tumours is not well-described. There is one report
Table 2 Various clinical associations of pediatric hepatocellular adenomas

Clinical Associations
Sex hormone dysregulation
Oral contraceptive use
Obesity
Klinefelter’s syndrome
Polycystic ovary syndrome
Sex hormone producing tumors (e.g., ertoli-Leydig cell tumours)
Androgen therapy (Turner’s syndrome, Fanconi anemia, Glanzmann’s thrombasthenia)
Antiepileptic therapies with sodium ion channel modulation
Metabolic disorders
Glycogen storage diseases type I, III, and IV
Galactosemia
Hurler syndrome (mucopolysaccharidosis type I)
Fanconi Anemia (with or without androgen therapy)
Diabetes mellitus type II
Immunodeficiency
Congenital portosystemic shunts
Cardiac hepatopathy (status-post Fontan procedure)
Other syndromes
Alagille syndrome
Familial adenomatous polyposis syndrome
Maturity-onset diabetes of the young type 3
McCune-Albright syndrome
Noonan syndrome with multiple lentigines
Prader Willi syndrome
Wolf-Hirschhorn syndrome

of a 13 year old girl, with obesity, PCOS, and diabetes mellitus type II who had a HCA that demonstrated a variant of unknown significance in HNF1A with accompanying characteristic prominent lesional steatosis, along with acinar growth and conspicuous nucleoli. Conversely, there are reports of bHCAs (including coexisting inflammatory phenotype) arising in obese adolescents, a large UHCA (GS positive, beta-catenin negative) in an 8-year-old girl without predisposing risk factors, and an IHCA in a 30-year-old woman with Turner’s syndrome.

FA

FA is a rare autosomal recessive disorder (1 in 90000), which is characterized by pancytopenia and dysmorphic features, and treated with anabolic steroids. Patients affected by FA have increased development of liver tumours, including HCAs and HCC. In a study that reviewed 32 patients with FA and associated hepatic lesions, 32% of neoplasms were determined to be HCAs. Additionally, androgen therapy and iron overload increase the risk of HCA development in these patients. HCC in FA patients may develop as a malignant transformation of HCA.

Glycogen storage diseases

There is a strong link between GSDs and HCAs, occurring in GSD types I, III, and IV. Additionally, Roscher et al. reported a likely hepatic adenoma detected on ultrasound in a patient with GSD type VI. HCAs are seen in approximately 16%-75% of patients with GSD type I, and are usually detectable by age 15. GSD-associated HCAs are frequently multiple, and, in contrast to the hormone-related etiologies, these occur without female predominance and with metabolic control leading to regression of lesional size and burden.

In a large series of GSD-related HCAs, the majority (52%) were classified as IHCAAs, harbouring IL6ST or GNAS mutations, with the remainder classified as bHCAs (28%, with 57% bex3,HCA and 43% bex7,8,HCA) or UHCAs (20%). At the Hospital of Sick Children, we encountered an adolescent with GSD type IA who developed a HHCA (Figure 1) despite no previous reports of this subtype in GSD patients.

Chromosomal aberrations affecting chromosome 6 (gain of 6p and loss of 6q) have been observed in 60% of GSD I-related HCAs. The high frequency of bHCAs,
Hepatocellular adenoma in a child with glycogen storage disease type 1A. A: a well-differentiated hepatocellular lesion with scattered macrovesicular steatosis and unpaired arterioles (arrow), while complete portal tracts are not identified (hematoxylin and eosin, 4 ×); B: the lesional hepatocytes are negative for liver fatty acid binding protein immunohistochemical stain (4 ×); inset shows normal hepatocytes with immunohistochemical expression of liver fatty acid binding protein (10 ×); C: Moreover, the lesion demonstrates absence of nuclear beta catenin immunostaining (membranous staining is identified; 10 ×). The overall pathologic findings are in keeping with an hepatocyte nuclear factor 1 homeobox alpha-inactivated hepatocellular adenoma.

particular bcHCAs, in this population, as well as shared abnormalities of chromosome 6 with HCC, correlates with our understanding of the behaviour of these neoplasms and the increased frequency of malignant transformation of GSD I-related HCAs, which occurs through the adenoma-carcinoma sequence\cite{66,67}.

HCAs are seen in 4%-25% of patients with GSD type III\cite{68,69}. Compared to GSD I-related HCAs, malignant transformation is less frequently observed in GSD type III, and almost exclusively in the setting of cirrhosis\cite{68}. GSD type IV has documented association with HCAs and HCC development, however the pathologic progression is also not well understood\cite{69}.

Alagille syndrome

Alagille syndrome is an autosomal dominant condition caused by mutations in JAG1 (94% of cases) and NOTCH2 (1.5% of cases)\cite{71}. Alagille syndrome is pathologically characterized by a paucity of intrahepatic bile ducts, with other syndromic sequelae, including cardiac malformations, vascular malformations, vertebral abnormalities, and abnormal facies\cite{72}. The association with HCA development is tenuous. In one series of 20 patients with AS who received imaging, 6 were found to have nodular hepatic masses, and of the 5 that underwent pathological evaluation, none met the criteria for diagnosis as HCAs\cite{73}. However, there is a reported case of a 9 year old boy with AS, with a proven mutation in NOTCH2, who was incidentally found to have a HCA on abdominal ultrasound for portal hypertension, which was consistent with a HHCA upon histologic evaluation\cite{74}.

Congenital portosystemic shunts

Congenital portosystemic shunts (CPSS) are rare vascular malformations, affecting approximately 1 in 30000 children\cite{75}. These shunts can be evident on prenatal ultrasounds, and are classified as intrahepatic or extrahepatic. Patients with CPSS are at risk for the development of HCAs and HCCs, in addition to other complications, such as cholestasis, hepatopulmonary syndrome, and encephalopathy\cite{75,76}. The CPSS-related hepatic lesions generally respond well to shunt correction\cite{76}. CPSS-associated HCAs can occur in the presence of other hereditary syndromes, such as Noonan syndrome with multiple lentigines (LEOPARD syndrome) and other undiagnosed multisystem syndromes\cite{76}. The patients included in one series displayed a variety of dysmorphic features in addition to CPSS-related HCAs, which may indicate that multiple genetic signaling pathways are involved in HCA development in these patients, in addition to hepatic and systemic blood flow abnormalities\cite{76}.

Other syndromes

Terracciano et al\cite{77} reported a child with a family history of Carney complex who underwent enucleation of a HCA at the age of 9. She re-presented at the age of 14 with fibrolamellar carcinoma, which has not been well-documented to develop from HCAs\cite{77}. An association between IFHCAs and McCune-Albright syndrome has been described in adults, both driven by GNAS mutations\cite{75,79}. Additionally, HCAs have been described in Wolf-Hirschhorn syndrome, a rare contiguous gene deletion syndrome involving the short arm of chromosome 4\cite{79}.
MALIGNANT TRANSFORMATION OF HEPATOCELLULAR ADENOMA IN CHILDREN

In a large meta-analysis, 4.2% of HCAs were found to undergo malignant transformation, with 4.5% of resected HCAs containing focal malignancy[80]. The highest risk of malignant transformation is seen in β-catenin HCAs, although the phenomenon has been identified in other subtypes as well[4,81]. In β-catenin HCAs, the initial CTNNB1 mutation is sufficient for development of benign HCAs, with accompanying telomerase reverse transcriptase (TERT) mutations required for malignant transformation[82-84]. Other risk factors for malignant transformation include large size (> 5 cm), male sex, high alcohol intake, diabetes mellitus type II (DMII), fibrosis of the background liver, and acquired TP53 mutations[4,85]. Malignant transformation of HCAs is a rare phenomenon in the paediatric population; it has been described in association with GSD type I, FA, CPSS, and Wolff-Hirschhorn syndrome[49,67,76,79].

Rare cases of malignant transformation from HCA into hepatoblastoma have also been reported. Louie et al[86] reported hepatoblastoma arising in a pigmented bHCA of a 4-year-old male patient, while Gupta et al[87] reported 3 children with familial adenomatous polyposis syndrome who developed hepatoblastoma in the background of hepatic adenomatosis[86,87].

Determining malignant transformation is often challenging pathologically, as the distinction between HCA and well-differentiated HCC is not always straightforward. Current pathological features that are helpful in this distinction include assessment for architectural distortion, HCC with a rim of residual HCA, cytologic atypia, loss of reticulin staining, and increased immunohistochemical staining for CD34[85,88]. Even after workup this distinction may still be difficult, prompting the suggestion of a separate diagnostic category of atypical hepatocellular neoplasm or hepatocellular neoplasm of uncertain malignant potential[89,90]. Some have recommended chromosomal analysis of adenomas with atypical features for abnormalities shared by HCC, namely those affecting chromosomes 1, 8, and 6, in an attempt to elucidate their potential behaviour[91,92].

The assessment of malignant transformation in children should be based on the histopathology and its molecular subtyping, similar to the diagnostic approach in adults.

CONCLUSION

The current molecular classification of HCAs demonstrates a reliable correlation to risk factors and prognosis. When it comes to the paediatric population, the molecular subtypes are identifiable, however, often do not correlate with predisposing risk factors and syndromes. Our understanding of the molecular pathways involved in liver tumourigenesis, paediatric HCC, and neoplasia in general, will play a large role in our approach to patients with liver lesions, predisposing risk factors, and seemingly unrelated syndromes with molecular aberrations in associated genes. Better documentation of HCA subtypes in this age group and further study of these lesions, patients, and tumours will continue to illuminate pathogenesis. HCAs remain an area of future study and a clinical entity best managed with a multidisciplinary approach.

ACKNOWLEDGEMENTS

We would like to thank Dr. Iram Siddiqui (the Hospital for Sick Children) for providing us with the case included in this manuscript.

REFERENCES

1. Roeks JB, Ory HW, Ishak KG, Strauss LT, Greenspan JR, Hill AP, Tyler CW. Epidemiology of hepatocellular adenoma. The role of oral contraceptive use. JAMA 1979; 242: 644-648 [PMID: 221698]
2. Edmondson HA, Henderson B, Benton B. Liver-cell adenomas associated with use of oral contraceptives. N Engl J Med 1976; 294: 470-472 [PMID: 173998 DOI: 10.1056/NEJM197602262940904]
3. Svrcek M, Jeannot E, Arrivé L, Poupon R, Fromont G, Fléjou JF, Zucman-Rossi J, Bouchard P, Wendum D. Regressive liver adenomatosis following androgenic progestin therapy withdrawal: a case report with a 10-year follow-up and a molecular analysis. Eur J Endocrinol 2007; 156: 617-621 [PMID: 17553860 DOI: 10.1530/EJE-07-0020]
4. Naught JC, Couchy G, Balabaud C, Morcrette G, Caruso S, Blanc JF, Bacq Y, Calderaro J, Paradis V, Ramos J, Scoazec JY, Gnemmi V, Sturm N, Guettier C, Fabre M, Saver E, Chiche L, Labrune P, Selves J,
Wendum D, Pilati C, Laurent A, De Muret A, Le Bail B, Reboissous S, Imbeaud S; GENTHEP Investigators, Bioulac-Sage P, Letouze E, Zucman-Rossi J. Molecular Classification of Hepatocellular Adenoma Associates With Risk Factors, Bleeding, and Malignant Transformation. Gastroenterology 2017; 152: 880-894.e8. [PMID: 27939973 DOI: 10.1016/j.gastro.2016.11.032]

Seo JM, Lee SJ, Kim SH, Park CK, Ha SY. Hepatocellular carcinoma arising from hepatocellular adenoma in a hepatitis B virus-associated cirrhotic liver. Clin Radiol 2012; 67: 329-333 [PMID: 22079485 DOI: 10.1016/j.crad.2011.09.003]

Tonorezos ES, Barnea D, Abou-Alfa GK, Bromberg J, D’Angelica M, Sklar CA, Shia J, Oeffinger KC. Hepatocellular adenoma among adult survivors of childhood and young adult cancer. Pediatr Blood Cancer 2017; 64 [PMID: 27781382 DOI: 10.1002/pbc.26294]

Wheeler DA, Edmondson HA, Reynolds TB. Spontaneous liver cell adenoma in children. Am J Clin Pathol 1986; 85: 6-12 [PMID: 3000165 DOI: 10.1093/ajcp/85.1.6]

Resnick MB, Kozakiewicz HP, Perez-Atayde AR. Hepatic adenomas in the pediatric age group. Clinicopathological observations and assessment of cell sensitivity. Am J Surg Pathol 1995; 19: 1181-1190 [PMID: 7573676 DOI: 10.1016/0891-4137(95)90010-6]

Vaithianathan R, Philipchandran, Selvambigai G, Jayaganesh P. Spontaneous hepatocellular adenoma in paediatric age group - case report. J Clin Diagn Res 2013; 7: 2962-2963 [PMID: 24531691 DOI: 10.7860/JCDR/2013/3773.3706]

Franchi-Abella S, Branchereau S. Benign hepatocellular tumors in children: focal nodular hyperplasia and hepatocellular adenoma. Int J Hepatol 2013; 2013: 215064 [PMID: 23555058 DOI: 10.1155/2013/215064]

Zucman-Rossi J, Jeannot E, Nhieu JT, Scoazec JY, Guettier C, Reboissous S, Bacq Y, Leteurtre E, Paradis V, Michalak S, Wendum D, Chiche L, Fabre M, Mellotte L, Laurent C, Parretsens, Caestiag D, Zafraini ES, Laurent-Puig P, Balabaud C, Bioulac-Sage P. Genotype-phenotype correlation in hepatocellular adenoma: new classification and relationship with HCC. Hepatology 2006; 43: 515-524 [PMID: 16496320 DOI: 10.1002/hep.21068]

Courtois M, Morgan JD, Campbell LA, Foulou G, Crabtree GR. Interaction of a liver-specific nuclear factor with the fibrinogen and alpha 1-antitrypsin promoters. Science 1987; 238: 688-692 [PMID: 3499668 DOI: 10.1126/science.3499668]

Vieze AL, Sutter O, Ziol M, Nault JC. Molecular classification of hepatocellular adenomas: impact on clinical practice. Hepat Oncol 2018; 5:HEP04 [PMID: 30302193 DOI: 10.2217/hep-2017-0023]

Jeannot E, Poussin K, Chiche L, Bacq Y, Sturm N, Scoazec JY, Buffet C, Van Nhieu JT, Bellanne-Chantelot C, De Tona C, Laurent-Puig P, Bioulac-Sage P, Zucman-Rossi J. Association of CYP1B1 germ line mutations with hepatocyte nuclear factor 1alpha-mutated hepatocellular adenoma. Cancer Res 2007; 67: 2611-2616 [PMID: 1736580 DOI: 10.1181/0008-5472-CN.2006-3947]

Yamagata K, Oda N, Kaisaki PJ, Menzel S, Furuta H, Vaxillaire M, Southam L, Cox RD, Lathrop GM, Bortraj VV, Chen X, Cox NJ, Oda Y, Yano H, Le beau MM, Yamada S, Nishigori H, Takada J, Fajans SS, Hattersley AT, Iwaisaki N, Hansen T, Pederson O, Polonsky KS, Bell GI. Mutations in the hepatocyte nuclear factor 1alpha gene in maturity-onset diabetes of the young (MODY3). Nature 1996; 384: 455-458 [PMID: 8945470 DOI: 10.1038/384455a0]

Bacq Y, Jacquemin E, Balabaud C, Jeannot E, Scozettto C, Laurent C, Bourlil P, Pariente D, de Muret A, Fabre M, Bioulac-Sage P, Zucman-Rossi J. Familial liver adenomas associated with hepatocyte nuclear factor 1alpha inactivation. Gastroenterology 2003; 125: 1470-1475 [PMID: 14598298 DOI: 10.1016/S0016-5085(03)00212-6]

Reznik Y, Dao T, Coutant R, Chiche L, Jeannot E, Claunis S, Rousselot P, Fabre M, Oberti F, Fatone A, Zucman-Rossi J, Bellanne-Chantelot C. Hepatocyte nuclear factor-1alpha gene inactivation: co-segregation between liver adenomatosis and diabetes phenotypes in two maturity-onset diabetes of the young (MODY3) families. J Clin Endocrinol Metab 2004; 89: 1476-1480 [PMID: 15001650 DOI: 10.1210/jc.2003-031552]

Wilson JS, Godwin TD, Wiggins GA, Guilford PJ, McCall JL. Primary hepatocellular neoplasms in a MODY3 family with a novel HNF1A germline mutation. J Hepatol 2013; 59: 904-907 [PMID: 23707370 DOI: 10.1016/j.jhep.2013.05.024]

Stueck AE, Qu Z, Huang MA, Camprécos G, Ferrell LD, Thung SN. Hepatocellular Carcinoma Arising in an HNF-1a-Mutated Adenoma in a 23-Year-Old Woman with Maturity-Onset Diabetes of the Young: A Case Report. Semin Liver Dis 2015; 35: 444-449 [PMID: 26676820 DOI: 10.1055/s-0035-1567827]

Holter S, Polllet A, Zagogopoulus G, Kim H, Schwenter F, Asai K, Gallinger S, Clemenmee M, Steinbach G, Jacobson A, Boycott KM. Hepatic adenomas caused by somatic HNF1A mutations. Gut 2017; 66: 2611-2616 [PMID: 28280802 DOI: 10.1136/gutjnl-2016-314598]

Hahn E, Millet MP, Balabaud C, Nhieu JT, Paradis V, Nault JC, Izard T, Bioulac-Sage P,
Hahn E et al. HCA in the paediatric population

Couchy G, Poussin K, Zucman-Rossi J. Somatic mutations activating STAT3 in human inflammatory hepato-cellular adenomas. J Exp Med 2011; 208: 1339-1366 [PMID: 2160233 DOI: 10.1084/jem.20110283]

Dokmak S, Paradis V, Vilgrain V, Sauvanet A, Fargos O, Valla D, Bedossa P, Belghiti J. A single-center surgical experience of 122 patients with single and multiple hepato-cellular adenomas. Gastroenterology 2009; 137: 1698-1705 [PMID: 19664269 DOI: 10.1053/j.gastro.2009.07.061]

Peifer M. Cancer, catenins, and cuticle pattern: a complex connection. Science 1993; 262: 1667-1668 [PMID: 8259311 DOI: 10.1126/science.8259311]

Thompson MD, Monga SP. WNT/beta-catenin signaling in liver health and disease. Hepatology 2007; 45: 1298-1305 [PMID: 17464972 DOI: 10.1002/hep.21651]

Hashimoto O, Ushiro Y, Sekiyama K, Yamaguchi O, Yoshioka K, Mutoki H, Hasegawa Y. Impaired growth of pancreatic exocrine cells in transgenic mice expressing human activin beta subunit. Biochem Biophys Res Commun 2006; 341: 416-424 [PMID: 16426570 DOI: 10.1016/j.bbrc.2005.12.205]

Motoyama J, Liu J, Mo R, Ding Q, Post M, Hui CC. Essential function of Gl2 and Gl3 in the formation of lung, trachea and oesophagus. Nat Genet 1998; 20: 54-57 [PMID: 9731531 DOI: 10.1038/17111]

Omenetti A, Choi S, Michelotti G, Diehl AM. Hedgehog signaling in the liver. J Hepatol 2011; 54: 366-373 [PMID: 21093090 DOI: 10.1016/j.jhep.2010.10.003]

Dahlen A, Fletcher CD, Mertens F, Fletcher JA, Perez-Atayde AR, Hicks MJ, Debice-Rychter M, Sciot R, Wejde J, Wedin R, Mandahl N, Panagopoulos J. Activation of the GLI oncogene through fusion with the beta-actin gene (ACTB) in a group of distinctive pericentric neoplasms: pericytoma with (7;12). Am J Pathol 2004; 164: 1655-1653 [PMID: 1511131 DOI: 10.1016/s0002-7832(10)63723-6]

Spans F, Fletcher CD, Antonescu CR, Rouquette A, Coindre JM, Sciot R, Debice-Rychter M. Recurrent MALAT1-GLI oncogenic fusion and GLI1 up-regulation define a subset of pleomorphic fibrolymphyoma. J Pathol 2016; 239: 355-343 [PMID: 27101025 DOI: 10.1002/path.4730]

Amakye D, Jagani Z, Dorsch M. Unraveling the therapeutic potential of the Hedgehog pathway in cancer. Nat Med 2013; 19: 1410-1422 [PMID: 24202394 DOI: 10.1038/nm.3070]

Nault JC, Couchy G, Caruso S, Meunier L, Caruana L, Letouze E, Rebooussou S, Paradis V, Calderaro J, Zucman-Rossi J. Argininosuccinate synthase 1 and periporal gene expression in sonic hedgehog hepato-cellular adenomas. Hepatology 2018; 68: 96-97 [PMID: 29572896 DOI: 10.1002/hep.29884]

Babaglo K, Binnetoglu FK, Aydogan A, Altun G, Gurbuz Y, Inan N, Carapcioglu F. Hepatic adenomatosi in a 7-year-old child treated earlier with a Fontan procedure. Pediatr Cardioiol 2010; 31: 861-864 [PMID: 20204345 DOI: 10.1177/0164997409357755]

Gold JH, Guzman J, Rosai J. Benign tumors of the liver. Pathologic examination of 45 cases. Am J Clin Pathol 1978; 70: 6-17 [PMID: 211842 DOI: 10.1093/ajcp/70.1.6]

Applegate KE, Ghezi M, Perez-Atayde AR. Prenatal detection of a solitary liver adenoma. Pediatr Radiol 1999; 29: 92-94 [PMID: 9933326 DOI: 10.1007/s002470950548]

van Aalten SM, de Man RA, Uzermans IN, Terkikyan T. Systematic review of haemorrhage and rupture of hepatic adenomas. J Surg 2012; 99: 911-916 [PMID: 22619025 DOI: 10.1002/jvs.8762]

Chiorean L, Cui XW, Tannapfel A, Franke D, Stenzel M, Kossiak W, Schreiber-Dietrich D, Jungert J, Chang JM, Dietrich CF. Benign liver tumors in pediatric patients - Review with emphasis on imaging features. World J Gastroenterol 2015; 21: 8541-8561 [PMID: 26223997 DOI: 10.3748/wjg.v21.i28.8541]

Kishnani PS, Austin SL, Abdenur JE, Arn P, Bali DS, Boney A, Chung WK, Dagli AI, Dale D, Koeberl D, Lombard JA, Sklar C, Blumgart LH. Hepatic adenoma associated with recombinant human activin beta subunit. Hepatology 1991; 13: 214-216 [PMID: 15119538 DOI: 10.1002/hep.180130503]

Efrati S, Kogerman P, Shiri E, Keshet I. Essential function of Gli2 and Gli3 in the formation of liver, lung, trachea and oesophagus. J Pathol 2013; 239: 297-306 [PMID: 23806655 DOI: 10.1002/path.4730]

Dahlén A, Ojha A, Furu K, Sjöblom T, Alden T, Nygren P, Wiklund F, Lahesmaa P, Cohr N, Fosså SD, et al. Klinefelter's syndrome and liver adenoma. J Hepatol 2014; 61: 1115-1121 [PMID: 25356975 DOI: 10.1016/j.jhep.2014.12.022]

Deshpande V, Sato Y, Zucman-Rossi J. Somatic mutations activating STAT3 in human inflammatory hepato-cellular adenomas. J Mol Endocrinol 2010; 44: 605-612 [PMID: 20052272 DOI: 10.1530/jme.1.00138]

Mintel A, Majumdar S, Mozaffarieh M, Wagner A, Eveson JW, Wistuba II, et al. Somatic alterations of the hedgehog signaling pathway in human lung adenomas. Am J Pathol 2003; 163: 1011-1019 [PMID: 14595525 DOI: 10.1016/s0002-9440(10)60002-9]
treated with oxymetholone. *J Pediatr* 1975; 87: 122-124 [PMID: 168333 DOI: 10.1016/0022-3476(75)80087-4]

58 Tournaye RL, Bertrand Y, Foray P, Gilly J, Philippe N. Hepatic tumours during androgen therapy in Fanconi anemia. *Eur J Pediatr* 1993; 152: 691-693 [PMID: 8404970 DOI: 10.1007/BF01952520]

59 Ozenne V, Paradis V, Vullierme MP, Vilgrain V, Leblanc T, Belghiti J, Imbert A, Valla DC, Degos F. Liver tumours in patients with Fanconi anemia: a report of three cases. *Eur J Gastroenterol Hepatol* 2008; 20: 1036-1039 [PMID: 18787475 DOI: 10.1097/MEG.0b013e328282fe46]

60 Colle I, Laureys G, Raevens S, Libbrandt L, Leroy JG, Reynijs K, Geerts A, Rogiers X, Troisi RL, Hoehn H, Schindler D, Hansenberg H, De Wilde V, Van Vlierberghe H. Liver transplantation in an adult patient with hepatocellular adenoma and carcinoma 13 years after bone marrow transplantation for Fanconi anemia: A case report. *Hepatol Res* 2013; 43: 991-998 [PMID: 23675868 DOI: 10.1111/hepr.12043]

61 Schady DA, Roy, A, Finegold MJ. Liver tumors in children with metabolic disorders. *Transl Pediatr* 2015; 4: 290-303 [PMID: 26835391 DOI: 10.3978/j.issn.2224-4336.2015.10.08]

62 Roscher A, Patel J, Henson LV, Nagy L, Feigenbaum A, Kronick J, Raimain J, Schulze A, Siritawarden K, Mercimek-Mahmutoglu S. The natural history of glycogen storage disease types VI and IX: Long-term outcome from the largest metabolic center in Canada. *Mol Genet Metab* 2014; 113: 171-176 [PMID: 25266922 DOI: 10.1016/j.ymgme.2013.09.005]

63 rake JP, Visser G, Labrune P, Leonard JV, Ulrich K, Smit GP. Glycogen storage disease type I: diagnosis, management, clinical course and outcome. Results of the European Study on Glycogen Storage Disease Type I (ESGSD I). *Eur J Pediatr* 2002; 161 Suppl 1: S20-S34 [PMID: 12375367 DOI: 10.1007/s00431-002-0999-4]

64 Khanna R, Verma SK. Pediatric hepatocellular carcinoma. *World J Gastroenterol* 2018; 24: 3980-3999 [PMID: 30254403 DOI: 10.3748/wjg.v24.i35.3980]

65 Calderaro J, Labrune P, Moretto G, Rebuffo S, Franco D, Prévot S, Quaglia A, Bedossa P, Libbrecht L, Terracciano L, Smit GP, Bioulac-Sage P, Zucman-Rossi J. Molecular characterization of hepatocellular adenomas developed in patients with glycogen storage disease type I. J Hepatol 2013; 58: 350-357 [PMID: 23066672 DOI: 10.1016/j.jhep.2012.09.030]

66 kishnani PS, Chan TP, Bali D, Koebert D, Austin S, Weinstein DA, Murphy E, Chen YT, Boyette K, Liu CH, Chen YT, Li H. Chromosomal and genetic alterations in human hepatocellular adenomas associated with type Ia glycogen storage disease. *Hum Mol Genet* 2009; 18: 4781-4790 [PMID: 19762333 DOI: 10.1093/hmg/ddp441]

67 Bianchi L. Glycogen storage disease I and hepatocellular tumours. *Eur J Pediatr* 1993; 152 Suppl 1: S63-S70 [PMID: 8391447 DOI: 10.1007/bf02072092]

68 Demo E, Frusin D, Gottfried M, Koeck J, Boney A, Bali D, Chen YT, Kishnani PS. Glycogen storage disease type III-hepatocellular carcinoma a long-term complication? *J Hepatol* 2007; 46: 492-498 [PMID: 17196294 DOI: 10.1016/j.jhep.2006.09.022]

69 Labrune P, Ticoche P, Duvalt P, Chevalier P, Odièvre M. Hepatocellular adenomas in glycogen storage disease type I and III: a series of patients and review of the literature. *J Pediatr Gastroenterol Nutr* 1997; 24: 276-279 [PMID: 9131872 DOI: 10.1097/00005156-199705000-00008]

70 Aishak NS, Coenin J, Podesta L, van de Velde R, Makowska L, Rosenthal P, Geller SA. Hepatocellular adenomas in glycogen storage disease type IV. *Arch Pathol Lab Med* 1994; 118: 88-91 [PMID: 828830]

71 Leonard LD, Chao G, Baker A, Loones K, Spinner NB. Clinical utility gene card for: Alagille Syndrome (ALGS). *Eur J Hum Genet* 2014; 22 [PMID: 23881058 DOI: 10.1038/ejhg.2013.140]

72 Alagille D, Odièvre M, Gautier M, Dommergues JP. Hepatic ductular hypoplasia associated with characteristic facies, vertebral malformations, retarded physical, mental, and sexual development, and cardiac murmur. *J Pediatr* 1975; 86: 63-71 [PMID: 803322 DOI: 10.1016/s0022-3476(75)80706-2]

73 Rapp JB, Bellah RD, Maya C, Pawel BR, Anupindi SA. Giant hepatic regenerative nodules in Alagille syndrome. *J Pediatr* 2015; 166: 290-303 [PMID: 26835868 DOI: 10.1016/j.jpeds.2014.10.089]

74 Terracciano LM, Tornillo L, Avoledo P, Von Schweinitz D, Kühne T, Bruder E. Fibrolamellar hepatocellular carcinoma occurring 5 years after hepatocellular adenoma in a 14-year-old girl: a case report with comparative genomic hybridization analysis. *Arch Pathol Lab Med* 2004; 128: 222-226 [PMID: 14736278 DOI: 10.1043/1543-2165(2004)128(222:FCOYEA-a.2-C0.2).]

75 Gaujoux S, Salioue S, Ronot M, Rangheard AS, Croz J, Belghiti J, Sauvagnan A, Ruszniewski P, Chanson P. Hepatobiliary and Pancreatic neoplasms in patients with McCune-Albright syndrome. *J Clin Endocrinol Metab* 2014; 99: E97-101 [PMID: 24170100 DOI: 10.1210/jc.2013-1823]

76 Battaglia C, Calhoun ARUL, Lortz A, Carey JC. Risk of hepatic neoplasms in Wolf-Hirschhorn syndrome (4p-) patients: Four new cases and review of the literature. *Am J Med Genet A* 2018; 176: 2389-2394 [PMID: 30289612 DOI: 10.1002/ajmg.a.40469]

77 STOOT JH, Coelen RJ, De Jong MC, Dejong CH. Malignant transformation of hepatocellular adenomas into hepatocellular carcinomas: a systematic review including more than 1600 adenoma cases. *HPB (Oxford)* 2010; 12: 509-522 [PMID: 20857218 DOI: 10.1111/j.1477-2558.2010.00328.x]

78 Michelli ST, Vivekanandan P, Botinott JK, Pawlik TM, Choi MA, Torbenson M. Malignant transformation of hepatocellular adenomas. *Mod Pathol* 2008; 21: 491-497 [PMID: 18246041 DOI: 10.1038/modpathol.2008.8]

79 Palić A, Letouzé E, Nault JC, Imbeaud S, Boulai A, Calderaro J, Poussin K, Francioni A, Coughy G, Moretto G, Mallet M, Taouji S, Balbadif C, Terris B, Canal F, Paradis V, Scaccozzi JY, de Muret A, Guettier C, Bioulac-Sage P, Chevet E, Calvo F, Zucman-Rossi J. Genomic profiling of hepatocellular adenomas reveals recurrent FRK-activating mutations and the mechanisms of malignant transformation. *Cancer Cell* 2014; 25: 428-441 [PMID: 24735022 DOI: 10.1016/j.ccr.2014.03.005]

80 Nault JC, Mallet M, Palić A, Calderaro J, Bioulac-Sage P, Laurent C, Laurent A, Chequie D, Balbadif C, Zucman-Rossi J. High frequency of telomerase reverse-transcriptase promoter somatic mutations in
hepatocellular carcinoma and preneoplastic lesions. Nat Commun 2013; 4: 2218 [PMID: 23887712 DOI: 10.1038/ncomms3218]

84 Nault JC, Calderaro J, Di Tommaso L, Balabaud C, Zafrani ES, Bisuulac-Sage P, Roncalli M, Zacman-Rossi I. Telomerase reverse transcriptase promoter mutation is an early somatic genetic alteration in the transformation of premalignant nodules in hepatocellular carcinoma on cirrhosis. Hepatology 2014; 60: 1983-1992 [PMID: 25123086 DOI: 10.1002/hep.23732]

85 Farges O, Ferreira N, Dokmak S, Belghiti J, Bedossa P, Paradis V. Changing trends in malignant transformation of hepatocellular adenoma. Gut 2011; 60: 85-89 [PMID: 21148586 DOI: 10.1136/gut.2010.222192]

86 Louie CY, Concepcion W, Park JK, Rangaswami A, Finegold MJ, Hazard FK. Hepatoblastoma Arising in a Pigmented β-catenin-activated Hepatocellular Adenoma: Case Report and Review of the Literature. Am J Surg Pathol 2016; 40: 998-1003 [PMID: 27096257 DOI: 10.1097/PAS.0b013e31828aeb18]

87 Gupta A, Sheridan RM, Towbin A, Geller JI, Tiao G, Bove KE. Multifocal hepatic neoplasia in 3 children with APC gene mutation. Am J Surg Pathol 2013; 37: 1058-1066 [PMID: 23715166 DOI: 10.1097/PAS.0b013e31828aeb18]

88 Sempoux C, Balabaud C, Bisuulac-Sage P. Malignant transformation of hepatocellular adenoma. Hepat Oncol 2014; 1: 421-431 [PMID: 30190977 DOI: 10.2217/hep.14.14]

89 Evason KJ, Grenert JP, Ferrell LD, Kakar S. Atypical hepatocellular adenoma-like neoplasms with β-catenin activation show cytogenetic alterations similar to well-differentiated hepatocellular carcinomas. Hum Pathol 2013; 44: 750-758 [PMID: 23084586 DOI: 10.1016/j.humpath.2012.07.019]

90 Bedossa P, Burt AD, Brunet EM, Callea F, Clouston AD, Dienes HP, Goodman ZD, Gouw AS, Hubsher SG, Roberts EA, Roskams T, Terracciano L, Tinikas DG, Torbenson MS, Wanless IR. Well-differentiated hepatocellular neoplasm of uncertain malignant potential: proposal for a new diagnostic category. Hum Pathol 2013; 45: 658-660 [PMID: 24529331 DOI: 10.1016/j.humpath.2013.09.020]

91 Kakar S, Chen X, Ho C, Burgart LJ, Adeyi O, Jain D, Sahai V, Ferrell LD. Chromosomal abnormalities determined by comparative genomic hybridization are helpful in the diagnosis of atypical hepatocellular neoplasms. Histopathology 2009; 55: 197-205 [PMID: 19694827 DOI: 10.1111/j.1365-2559.2009.03343.x]

92 Kakar S, Grenert JP, Paradis V, Pote N, Jakate S, Ferrell LD. Hepatocellular carcinoma arising in adenoma: similar immunohistochemical and cytogenetic features in adenoma and hepatocellular carcinoma portions of the tumor. Mod Pathol 2014; 27: 1499-1509 [PMID: 24743216 DOI: 10.1038/modpathol.2014.50]
