Some Examples of m-Isometries

Teresa Bermúdez, Antonio Martinón and Hajer Zaway

Abstract. We obtain the admissible sets on the unit circle to be the spectrum of a strict m-isometry on an n-finite dimensional Hilbert space. This property gives a better picture of the spectrum of an m-isometry. We determine that the only m-isometries on \mathbb{R}^2 are 3-isometries and isometries giving by $I + Q$, where Q is a nilpotent operator. Moreover, on real Hilbert space, we obtain that m-isometries preserve volumes. Also, we present a way to construct a strict $(m+1)$-isometry with a given m-isometry, using ideas of Aleman and Suciu (Integr Equ Oper Theory 85:259–287, 2016, Proposition 5.2) on infinite dimensional Hilbert space.

Mathematics Subject Classification. 47A05.

Keywords. m-isometry, Strict m-isometry, Weighted shift operator, Isometric n-Jordan operator, Sub-isometric n-Jordan operator, Finite dimensional space, k-volume.

1. Introduction

Let H be a Hilbert space. Denote by $L(H)$ the algebra of bounded linear operators on H. For $T \in L(H)$ we consider the adjoint operator $T^* \in L(H)$, which is the unique map that satisfies

$$\langle x, Ty \rangle = \langle T^* x, y \rangle,$$

for every $x, y \in H$. Given $T \in L(H)$, denote by $Ker(T)$ and $R(T)$, the kernel and range of T, respectively. For a positive integer m, an m-isometry is an operator $T \in L(H)$ which satisfies the condition

$$(yx - 1)^m(T) := \sum_{k=0}^{m} (-1)^{m-k} \binom{m}{k} T^k T^* T^k = 0; \quad (1.1)$$

equivalently

$$\sum_{k=0}^{m} (-1)^{m-k} \binom{m}{k} \|T^k x\|^2 = 0, \quad (1.2)$$
for every \(x \in H \). A strict \(m \)-isometry, with \(m > 1 \), is an \(m \)-isometry which is not an \((m - 1)\)-isometry. This class of operators was introduced by Agler in [2] and was studied by Agler and Stankus in [4–6].

Let \(n \) be a positive integer. Recall that \(Q \in L(H) \) is an \(n \)-nilpotent if \(Q^n = 0 \) and \(Q^{n-1} \neq 0 \).

A notion related with \(m \)-isometries is the following: An operator \(T \in L(H) \) is an isometric \(n \)-Jordan if there exist an isometry \(A \in L(H) \) and an \(n \)-nilpotent \(Q \in L(H) \) such that \(T = A + Q \) with \(AQ = QA \).

Theorem 1.1 [13, Theorem 2.2]. Any isometric \(n \)-Jordan operator is a strict \((2n - 1)\)-isometry.

Actually, a much stronger result is true. Indeed in [15, Theorem 3], it is obtained a generalization of Theorem 1.1 for \(m \)-isometries: if \(T \) is an \(m \)-isometry, \(Q \) is an \(n \)-nilpotent operator and they commute, then \(T + Q \) is a \((2n + m - 2)\)-isometry. See also [25,28]. Moreover, in [15], it was proved that this property, in general, is false in Banach space context.

Another generalization of isometry was obtained in [13, Proposition 2.6] for sub-isometry \(n \)-Jordan operator. Recall that \(T \) is a sub-isometry \(n \)-Jordan operator if \(T \) is the restriction of an isometry \(n \)-Jordan operator \(J \) to an invariant subspace of \(J \).

Notice that Theorem 1.1 gives an easy way to construct examples of \(m \)-isometries, for an odd \(m \). It is sufficient to choose the identity operator as the isometry and any \(n \)-nilpotent operator with \(n = \frac{m+1}{2} \).

At a first glance, we could think that all the \(m \)-isometries come from isometric \(n \)-Jordan operators. However, this is not true, since there are strict \(m \)-isometries for even \(m \), see [8, Proposition 9]. What can we say about \(m \)-isometries with odd \(m \)? Recently, Yarmahmoodi and Hedayatian have proven that the only isometric \(n \)-Jordan weighted shift operators on \(\ell^2(\mathbb{N}) \) are isometries [30, Theorem 1]. However, there are \(m \)-isometries that are not isometric \(n \)-Jordan, since Athavale in [8] gave examples of strict \(m \)-isometries with the weighted shift operator for all integers \(m \).

Some authors have given examples of \(m \)-isometries, for example with the unilateral or bilateral weighted shift [1,12,14,18] and with the composition operator [14,16,23]. Other ways to construct examples of \(m \)-isometries is developing different tools like tensor product [19], functional calculus [24], on Hilbert-Schmidt class [17] and with \(C_0 \)-semigroups [10,21,29].

The purpose of this paper is to make a clear picture of \(m \)-isometries on finite dimensional Hilbert spaces. In Sect. 2, we begin with the study of \(m \)-isometries on \(\mathbb{R}^2 \) and on \(\mathbb{R}^n \), with \(n \geq 3 \). We give all the 3-isometries on \(\mathbb{R}^2 \). Also, we obtain the expression of \(m \)-isometries and study how this class of operators change volumes on \(\mathbb{R}^n \). Moreover, we study the case of complex Hilbert space, where we show the admissible sets on the unit circle to be the spectrum of an \(m \)-isometry. In Sect. 3, we reproduce similar ideas of Aleman and Suciu [7, Proposition 5.2] to define a 3-isometry using a given 2-isometry. In fact, we obtain a way to construct a strict \((m + 1)\)-isometry using a weaker condition than strict \(m \)-isometry.

In particular, we will answer the following problems:
Problem 1.2. Let $T \in L(H)$ with finite dimensional Hilbert space H and m be an odd integer. Are all strict m-isometries of the form $\lambda I + Q$, where Q is a nilpotent operator and λ is a complex number with modulus 1?

Problem 1.3. Let $T \in L(\mathbb{R}^n)$. How does an m-isometry T change volumes?

Problem 1.4. Let H be any finite dimensional Hilbert space and let T be an m-isometry with odd m. What can we say about the spectrum?

2. m-Isometries on Finite Dimensional Hilbert Space

Recall some important properties of the spectrum of an m-isometry.

Denote \overline{D} and ∂D the closed unit disk and the unit circle, respectively.

Lemma 2.1. Let m be a positive integer, H be a Hilbert space and $T \in L(H)$ be an m-isometry. Then

1. [4, Lemma 1.21] $\sigma(T) = \overline{D}$ or $\sigma(T) \subseteq \partial D$.
2. [3, Lemma 19] The eigenvectors of T corresponding to distinct eigenvalues are orthogonal.

Remark 2.2. (1) Notice that any m-isometry on a finite dimensional space is bijective.
(2) It is well known that if Q is k-nilpotent on an n-dimensional vector space, then $k \leq n$.

Denote $I_m(H) := \{ T \in L(H) : T \text{ is an } m\text{-isometry} \}$.

The following theorem gives a nice picture of m-isometries on finite dimensional Hilbert space.

Theorem 2.3. ([13, Theorem 2.7], [3, page 134]) Let H be an n-finite dimensional Hilbert space and $T \in L(H)$. Then

1. T is a strict m-isometry if and only if T is an isometric k-Jordan operator, where $m = 2k - 1$ with $k \leq n$.
2. $I_1(H) = I_2(H) \subsetneq I_3(H) = I_4(H) \subsetneq \cdots \subsetneq I_{2n-1}(H) = I_j(H)$ for all $j \geq 2n - 1$.

Proof. We include the proofs for completeness.

(1) Assume that T is a strict m-isometry on H. Then the spectrum of T, $\sigma(T) = \{ \lambda_1, \lambda_2, \ldots, \lambda_s \}$, where λ_i are eigenvalues of modulus 1, since the spectrum of T must be in the unit circle and m is odd [4, Lemma 1.21 & Proposition 1.23]. By part (2) of Lemma 2.1, the spectral subspaces of T, $H_i := \text{Ker}(T - \lambda_i)^{n_i}$ are mutually orthogonal and

$$T \cong T_{|H_1} \oplus \cdots \oplus T_{|H_s},$$

where n_1, \ldots, n_s are positive integers such that $\text{Ker}(T - \lambda_i)^{n_i} = \text{Ker}(T - \lambda_i)^N$ for all $N \geq n_i$. Moreover, for all $j \in \{1, \ldots, s\}$, we have that $\sigma(T_{|H_j}) = \{ \lambda_j \}$ and $T_{|H_j}$ is of the form $\lambda_j + Q_j$ for some nilpotent operator Q_j. So,
\(T = A + Q \) for some isometry, in fact unitary diagonal operator \(A \) and some nilpotent operator \(Q \) such that \(AQ = QA \).

The converse is consequence of Theorem 1.1.

(2) Let us prove that \(I_{2\ell-1}(H) = I_{2\ell}(H) \) for all \(\ell \in \mathbb{N} \). Recall that if \(T \) is \((2\ell)\)-isometry, then \(T \) is bijective and so \(T \) is \((2\ell - 1)\)-isometry \([4, \text{Proposition 1.23}]\). Moreover, the highest degree of nilpotent operator on \(n \)-dimensional Hilbert space is \(n \). The result is a consequence of Theorem 1.1. \(\Box \)

2.1. \(m \)-Isometries on Real Hilbert Spaces

Next, we study the \(m \)-isometries on \(\mathbb{R}^n \).

Based on the above results, we obtain all \(m \)-isometries on \(\mathbb{R}^2 \).

Theorem 2.4. If \(T \in L(\mathbb{R}^2) \) is a strict \(m \)-isometry, then \(m = 1 \) or \(m = 3 \) and \(T = A + Q \), where \(A \) is an isometry and \(Q \) is a nilpotent operator of order 2 that commutes.

Recall that the isometries on \(\mathbb{R}^2 \) are given by

\[
R_\theta := \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \quad \text{and} \quad S_\theta := \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix},
\]

where

1. \(R_\theta \) is a rotation (about 0) and its determinant \(\det(R_\theta) \) is 1 and
2. \(S_\theta \) is a symmetry with respect to the straight line of equation \(x_2 = \tan(\theta/2)x_1 \) and \(\det(S_\theta) = -1 \).

And the non-zero nilpotent operators on \(\mathbb{R}^2 \) are \(\lambda M, \lambda N \) and \(\lambda Q_k \) where

\[
M := \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad N := \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \quad Q_k := \begin{pmatrix} 1 & k \\ 0 & -1 \end{pmatrix},
\]

(2.1)

with \(k \neq 0 \) and \(\lambda \in \mathbb{C}\setminus\{0\} \).

We are interested in studying isometries that commute with nilpotent operators on \(\mathbb{R}^2 \).

Lemma 2.5. The unique isometries in \(L(\mathbb{R}^2) \) that commute with a non-zero nilpotent operator are the trivial cases, that is, \(\pm I \).

Proof. Simple calculations prove that

\[
R_\theta M = MR_\theta \iff R_\theta N = NR_\theta \iff R_\theta Q_k = Q_k R_\theta \iff \sin \theta = 0 \iff \theta = 0 \text{ or } \theta = \pi.
\]

That is, the unique isometries of type \(R_\theta \) which commute with some non-zero nilpotent (hence with all nilpotent operator) are \(R_0 = I \) and \(R_\pi = -I \).

Analogously, we have that

\[
S_\theta M = MS_\theta \iff S_\theta N = NS_\theta \iff S_\theta Q_k = Q_k S_\theta \iff \sin \theta = \cos \theta = 0,
\]

which it is impossible. Hence there are not isometries \(S_\theta \) which commute with some non-zero nilpotent operator. \(\Box \)

Taking into account Theorem 2.3 we give the unique strict 3-isometries on \(\mathbb{R}^2 \). Indeed, we answer Problem 1.2 for \(n = 2 \) in the following result:
Theorem 2.6. The strict 3-isometries on \mathbb{R}^2 are of the form $\pm I + Q$, where Q is a non-zero nilpotent operator given in (2.1).

Proof. It is immediate by Theorem 2.4 and Lemma 2.5. \hfill \Box

Let $T \in L(\mathbb{R}^n)$ with $n \geq 3$ and let us consider the following n conditions:

(M_k) \hspace{1cm} $S_k(Tx_1, Tx_2, \ldots, Tx_k) = S_k(x_1, x_2, \ldots, x_k)$

for all $x_1, x_2, \ldots, x_k \in \mathbb{R}^n$ and $k = 1, 2, \ldots, n$, where $S_k(x_1, x_2, \ldots, x_k)$ denotes the k-dimensional measure of the set

$$\left\{ \lambda_1 x_1 + \lambda_2 x_2 + \cdots + \lambda_k x_k \ : \ 0 \leq \lambda_i \leq 1, \ \text{for} \ i = 1, 2, \ldots, k \right\}.$$

Lemma 2.7. Let $T \in L(\mathbb{R}^n)$. Then

(1) [26, Teorema II] T satisfies the conditions (M_1), (M_2), \ldots, (M_{n-1}) if and only if T is an isometry.

(2) [20] The condition (M_n) is equivalent to $\det(T) = \pm 1$.

An easy application of Theorem 1.1 gives that, for example in \mathbb{R}^3, we have strict 3-isometries giving by $\pm I + Q$, where Q is a 2-nilpotent operator, and strict 5-isometries giving by $\pm I + Q$, where Q is a 3-nilpotent operator.

The next result gives answer to Problems 1.2 and 1.3, for $n \geq 3$, where n is the dimension of the Hilbert space.

Theorem 2.8. Let $n \geq 3$. Then the following properties follow:

(1) There are non-trivial strict m-isometries on $L(\mathbb{R}^n)$ for any odd m less than $2n - 1$, that is, there exists an isometry different from $\pm I$ such that commutes with a non-zero k-nilpotent operator with $k \in \{1, 2, \ldots, n-1\}$.

(2) The m-isometries preserve volumes.

Proof. (1) Define

$$A(x_1, x_2, \ldots, x_n) := (-x_1, x_2, \ldots, x_n)$$

$$Q_j(x_1, x_2, \ldots, x_n) := (0, x_3, x_4, \ldots, x_{j+1}, 0, \ldots, 0).$$

Then A is an isometry and Q_j is a j-nilpotent operator such that

$$AQ_j(x_1, x_2, \ldots, x_n) = Q_j A(x_1, x_2, \ldots, x_n) = (0, x_3, x_4, \ldots, x_{j+1}, 0, \ldots, 0),$$

for all $(x_1, x_2, \ldots, x_n) \in \mathbb{R}^n$. By Theorem 1.1, we get that $A + Q_j$ is a non-trivial strict $(2j - 1)$-isometry for $j = 1, \ldots, n - 1$.

(2) By Lemma 2.7, it will be enough to prove that $\det(A + Q) = \pm 1$ for all isometries A that commute with a nilpotent operator Q. Since $AQ = QA$, then $\sigma(A + Q) = \sigma(A)$ by [31, Proposition 1.1]. According to the spectrum of an isometry on a finite dimensional space, we have that the spectrum of A is a closed subset of the unit circle. By [9, page 150], the determinant of T is the product of the eigenvalues of T, counting multiplicity. Hence $\det(T) = \pm 1$. \hfill \Box

The converse of part (2) of Theorem 2.8 is not true, as proves the following example:
Example 2.9. Let \(T := \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 1 \end{pmatrix} \). Then \(\det(T) = 1 \) and \(T \) is not a 3-isometry, since

\[
\| T^3 x \|^2 - 3 \| T^2 x \|^2 + 3 \| T x \|^2 - \| x \|^2 \neq 0,
\]

for \(x := (1, 1, 0) \).

2.2. \(m \)-Isometries on Complex Hilbert Spaces

We recall the following results about the spectrum of \(m \)-isometries:

Lemma 2.10 [13, Theorem 4.4]. Let \(H \) be an infinite dimensional Hilbert space.

1. If \(K \) is any compact subset of \(\partial \mathbb{D} \), then there exists a strict \(m \)-isometry for any odd number \(m \) such that \(\sigma(T) = K \).
2. If \(K \) is the closed unit disk, then there exists a strict \(m \)-isometry for any integer number \(m \) such that \(\sigma(T) = K \).

The main aim of this section is to solve Problem 1.4.

Let \(T \in L(\mathbb{C}^n) \) be an \(m \)-isometry. It is clear that \(\sigma(T) \subseteq \partial \mathbb{D} \) by part (1) of Lemma 2.1 and \(\sigma(T) \) has at most \(n \) different eigenvalues. Indeed if \(K := \{ \lambda_1, \ldots, \lambda_n \} \) with \(\lambda_i \) different complex numbers on the unit circle, then it is possible to define an isometry \(T \) such that \(\sigma(T) = K \). In particular, the following operator:

\[
T(x_1, \ldots, x_n) := (\lambda_1 x_1, \ldots, \lambda_n x_n)
\]

is an isometry on \(\mathbb{C}^n \) with \(\sigma(T) = \{ \lambda_1, \ldots, \lambda_n \} \).

In the following theorem we prove that any \(m \)-isometry with \(m \geq 3 \) on \(\mathbb{C}^n \) cannot have \(n \) different eigenvalues.

Theorem 2.11. Any strict \((2k - 1)\)-isometry on \(\mathbb{C}^n \) with \(2 \leq k \leq n \) has at most \(n - 1 \) distinct eigenvalues.

Proof. Assume that \(T \in L(\mathbb{C}^n) \) is a strict \((2k - 1)\)-isometry with \(\sigma(T) = \{ \lambda_1, \ldots, \lambda_n \} \) where \(\lambda_1, \ldots, \lambda_n \) are different eigenvalues of \(T \). Then \(T \) could be written as \(T = PSP^{-1} \), for some \(P \in L(\mathbb{C}^n) \) where

\[
S := \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \lambda_n \end{pmatrix}
\]

and \(|\lambda_i| = 1 \) for \(i \in \{1, \ldots, n\} \), by part (1) of Lemma 2.1. Since \(T \) is a strict \((2k - 1)\)-isometry, by part (2) of Lemma 2.1, the operator \(P \) is a unitary operator. This means that \(T \) is unitarily equivalent to \(S \); therefore, \(T \) is a unitary operator, which is a contradiction. \(\square \)

Theorem 2.12. The strict \((2k - 1)\)-isometries on \(\mathbb{C}^n \), with \(2 \leq k \leq n \) are of the form \((\lambda_1 I_{n_1} \oplus \cdots \oplus \lambda_\ell I_{n_\ell}) + Q\), with \(\ell \in \{1, \ldots, n - k + 1\} \), where \(Q \) is a \(k \)-nilpotent, \(|\lambda_j| = 1 \) for all \(j \in \{1, \ldots, \ell\} \) and \(n_1 + \cdots + n_\ell = n \).
Proof. Suppose that T is a strict $(2k - 1)$-isometry. By Theorem 2.3, we have that $T = U + Q$, where U is a unitary operator and Q is a k-nilpotent operator such that $UQ = QU$.

Assume, by contradiction, that T has at least $n - k + 2$ distinct eigenvalues. That means

$$\sigma(T) = \{\lambda_1, \ldots, \lambda_r\}, \text{ with } r \geq n - k + 2.$$

Then $\mathbb{C}^n = H_{\lambda_1} \oplus \cdots \oplus H_{\lambda_r}$, where $H_{\lambda_i} := Ker(T - \lambda_i I)^{n_i}$ and n_i is the order of multiplicity of the eigenvalue λ_i. Denote $T_{|H_i}$ the restriction operator of T to H_i, for $1 \leq i \leq r$. Then $T_{|H_i} = \lambda_i I_{n_i} + Q_i$, where Q_i is a h_i-nilpotent with $1 \leq h_i \leq n_i$. By part (2) of Lemma 2.1, we conclude that T could be written as

$$T = (\lambda_1 I_{n_1} \oplus \cdots \oplus \lambda_r I_{n_r}) + (Q_1 \oplus \cdots \oplus Q_r),$$

where $Q_1 \oplus \cdots \oplus Q_r$ is a k_{0}-nilpotent, with $k_{0} := \max_{i=1,\ldots,r}\{h_i\}$ and $k_{0} < k$. Then we get a contradiction. □

Corollary 2.13. If $T \in L(\mathbb{C}^n)$ is a strict $(2k - 1)$-isometry, with $2 \leq k \leq n$, then $\sigma(T) \subseteq \{\lambda_1, \ldots, \lambda_{n-k+1}\} \subseteq \partial \mathbb{D}$.

Corollary 2.14. Any $(2n - 1)$-isometry on \mathbb{C}^n is of the form $\lambda I + Q$, where Q is an n-nilpotent operator and $\lambda \in \partial \mathbb{D}$. In particular the spectrum is a single point on the unit circle.

3. Construction of an $(m + 1)$-Isometry from an m-Isometry

In this section we present a method to construct a Hilbert space H_k and an $(m + 1)$-isometry on H_k from an m-isometry T^k on a Hilbert space H for some integer k. Our result is based on the construction given by Aleman and Suciu in [7, Proposition 5.2] for $m = 2$ and $k = 1$.

Henceforth H will denote an infinite dimensional Hilbert space.

Given $S \in L(H)$, $x \in H$ and an integer $\ell \geq 1$, it is defined as follows:

$$\beta_\ell(S, x) := \frac{1}{\ell!} \sum_{j=0}^{\ell} (-1)^{\ell-j} \binom{\ell}{j} \|S^j x\|^2.$$

Note that S is an m-isometry if and only if $\beta_m(S, x) = 0$ for all vector $x \in H$.

Consider $\mathbb{C}[z]$ the space of all complex polynomials. Given $p \in \mathbb{C}[z]$, we write

$$p(z) = \sum_{n \geq 0} p_n z^n$$

and define $Lp \in \mathbb{C}[z]$ in the following way:

$$Lp(z) := \sum_{n \geq 1} p_n z^{n-1} = \frac{p(z) - p(0)}{z}.$$

We have that $\mathbb{C}[z]$ is an inner product space with the norm $\|\cdot\|_2$ given by

$$\|p\|^2_2 := \sum_{n \geq 0} |p_n|^2.$$
Also if we consider a new norm on $\mathbb{C}[z]$ defined by
\[\|p\|_k^2 := \|p\|_2^2 + \sum_{n \geq 0} \|(L^{nk}p)(T)x_0\|^2 , \]
it is obtained that $\mathbb{C}[z]$ is an inner product space with $\| \cdot \|_k$. Denote H_k its completion with the new norm.

The following combinatorial result will be useful:

Lemma 3.1 [22, Eq. 0.151 (4)]. If m is any positive integer, then
\[\sum_{k=0}^{m} (-1)^k \binom{n}{k} = (-1)^m \binom{n-1}{m} , \]
for any integer $n \geq m + 1$.

Recall that the class of m-isometries is stable under powers. However, the converse is not true. See [11,27].

Theorem 3.2. Let $T \in L(H)$ such that T^k is a strict m-isometry on $R(T^k)$, for some k, and $x_0 \in H \setminus \{0\}$ such that $\beta_{m-1}(T^k, T^k x_0) \neq 0$.

(1) For every $p \in \mathbb{C}[z]$ and $j \in \mathbb{N}$,
\[\| M^{kj}_z p \|_k^2 = \|p\|_k^2 + \sum_{i=1}^{j} \| T^{ki} p(T)x_0 \|^2 , \]
where M_z denotes the multiplication operator defined by $M_z p := z p$.

(2) For every $p \in \mathbb{C}[z]$ and $\ell \geq 1$,
\[\beta_{\ell+1}(M_z^k, p) = \frac{\ell!}{(\ell + 1)!} \beta_{\ell}(T^k, T^k p(T)x_0) . \] (3.1)

(3) The extension of M_z^k to H_k is an $(m + 1)$-isometry.

Proof. (1) Let p be any polynomial in $\mathbb{C}[z]$ and $j \in \mathbb{N}$. Then we will prove that
\[\| M^{kj}_z p \|_k^2 = \|p\|_k^2 + \sum_{i=1}^{j} \| T^{ki} p(T)x_0 \|^2 , \] (3.2)
by induction. For $j = 1$ we need to prove that
\[\| M_z^k p \|_k^2 = \|p\|_k^2 + \| T^k p(T)x_0 \|^2 , \] (3.3)
for any polynomial p.

Let $p(z) := \sum_{n \geq 0} p_n z^n$. Then
\[\| M_z^k p \|_k^2 = \|z^k p\|_k^2 = \|z^k p\|_2^2 + \sum_{n \geq 0} \|(L^{nk}z^k p)(T)x_0\|^2 \]
\[= \|p\|_2^2 + \|(z^k p)(T)x_0\|^2 + \sum_{n \geq 1} \|(L^{nk}z^k p)(T)x_0\|^2 \]
\[= \|p\|_2^2 + \| T^k p(T)x_0 \|^2 + \sum_{n \geq 0} \|(L^{nk}p)(T)x_0\|^2 \]
\[= \|p\|_k^2 + \| T^k p(T)x_0 \|^2 . \]
Then (3.3) holds.

Suppose that (3.2) is true for \(j \). Let us prove it for \(j + 1 \). Then

\[
||M_z^{(j+1)}p||_k^2 = ||M_z^j(M_z^k p)||_k^2 = ||M_z^k p||_k^2 + \sum_{i=1}^{j} ||T^{ki}(M_z^k p)(T)x_0||^2
\]

\[
= ||z^k p||_k^2 + \sum_{i=1}^{j} ||T^{ki}T^k p(T)x_0||^2
\]

\[
= ||p||_2^2 + \sum_{n \geq 0} ||(L^{nk} z^k p)(T)x_0||^2 + \sum_{i=1}^{j} ||T^{ki+1}(p(T)x_0)||^2
\]

\[
= ||p||_2^2 + ||T^k p(T)x_0||^2 + \sum_{n \geq 0} ||(L^{nk} p)(T)x_0||^2 + \sum_{i=2}^{j+1} ||T^{ki} p(T)x_0||^2
\]

\[
= ||p||_2^2 + \sum_{i=1}^{j+1} ||T^{ki} p(T)x_0||^2.
\]

So we prove (3.2).

(2) For \(\ell \in \mathbb{N} \), we have

\[
\beta_{\ell+1}(M_z^k, p) = \frac{1}{(\ell+1)!} \sum_{j=0}^{\ell+1} (-1)^{\ell+1-j} \binom{\ell+1}{j} ||M_z^j p||_k^2
\]

\[
= \frac{1}{(\ell+1)!} \left((-1)^{\ell+1} ||p||_k^2 + \sum_{j=1}^{\ell+1} (-1)^{\ell+1-j} \binom{\ell+1}{j} ||M_z^j p||_k^2 \right)
\]

\[
= \frac{1}{(\ell+1)!} \left((-1)^{\ell+1} ||p||_k^2 + \sum_{j=1}^{\ell+1} (-1)^{\ell+1-j} \binom{\ell+1}{j} \left(||p||_k^2 + \sum_{i=1}^{j} ||T^{ki} p(T)x_0||^2 \right) \right)
\]

\[
= \frac{1}{(\ell+1)!} \sum_{j=1}^{\ell+1} (-1)^{\ell+1-j} \binom{\ell+1}{j} \sum_{i=1}^{j} ||T^{ki} p(T)x_0||^2
\]

\[
= \frac{1}{(\ell+1)!} \sum_{j=1}^{\ell+1} ||T^{k+1} p(T)x_0||^2 \sum_{i=j}^{\ell+1} (-1)^{\ell+1-i} \binom{\ell+1}{i},
\]

where \(p \) is any polynomial in \(\mathbb{C}[z] \).

Using Lemma 3.1, in the last sum, we have that

\[
\sum_{i=j}^{\ell+1} (-1)^{\ell+1-i} \binom{\ell+1}{i} = -\sum_{i=0}^{j-1} (-1)^{\ell+1-j} \binom{\ell+1}{j} = (-1)^{\ell+j-1} \binom{\ell}{j-1}.
\]

So,

\[
\beta_{\ell+1}(M_z^k, p) = \frac{1}{(\ell+1)!} \sum_{j=1}^{\ell+1} ||T^{k+1} p(T)x_0||^2 (-1)^{\ell+j-1} \binom{\ell}{j-1}
\]

\[
= \frac{1}{(\ell+1)!} \sum_{j=0}^{\ell} (-1)^{\ell-j} \binom{\ell}{j} ||T^{k+1} p(T)T^k x_0||^2
\]

\[
= \frac{\ell!}{(\ell+1)!} \beta_\ell(T^k, T^k p(T)x_0).
\]

So, (3.1) is proved.
It is enough to prove that $\beta_{m+1}(M^k_z, p) = 0$ for all $p \in \mathbb{C}[z]$. This is a consequence of (3.1), since T^k is an m-isometry on $R(T^k)$. □

Corollary 3.3 [7, Proposition 5.2]. Let T be a 2-isometry on a Hilbert space H. Fix $x_0 \in H\setminus\{0\}$ and let H_1 be the completion of the space of analytic polynomials with respect to the norm

$$\|p\|^2_1 := \|p\|^2_2 + \sum_{n \geq 0} \|(L^n p)(T)x_0\|^2.$$

Then the multiplication operator by the independent variable $M_z p := zp$ extends to a 3-isometry on H_1.

Acknowledgements

T. Bermúdez is partially supported by grant of Ministerio de Ciencia e Innovación, Spain, project no. MTM2016-75963-P. H. Zaway was supported in part by Departamento de Análisis Matemático of Universidad de La Laguna and Le Laboratoire de Recherche Mathmatiques et Applications LR17ES11.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

[1] Abdullah, B., Le, T.: The structure of m-isometric weighted shift operators. Oper. Matrices 10(2), 319–334 (2016)
[2] Agler, J.: A disconjugacy theorem for Toeplitz operators. Am. J. Math. 112, 1–14 (1990)
[3] Agler, J., Helton, W., Stankus, M.: Classification of hereditary matrices. Linear Algebra Appl. 274, 125–160 (1998)
[4] Agler, J., Stankus, M.: m-isometric transformations of Hilbert space. I. Integr. Equ. Oper. Theory 21(4), 383–429 (1995)
[5] Agler, J., Stankus, M.: m-isometric transformations of Hilbert space. II. Integr. Equ. Oper. Theory 23(1), 1–48 (1995)
[6] Agler, J., Stankus, M.: m-isometric transformations of Hilbert space. III. Integr. Equ. Oper. Theory 24(4), 379–421 (1996)
[7] Aleman, A., Suciu, L.: On ergodic operator means in Banach spaces. Integr. Equ. Oper. Theory 85, 259–287 (2016)
[8] Athavale, A.: Some operator theoretic calculus for positive definite kernels. Proc. Am. Math. Soc. 112(3), 701–708 (1991)
[9] Axler, S.: Down with determinants!. Am. Math. Mon. 102(2), 139–154 (1995)
[10] Bermúdez, T., Bonilla, A., Zaway, H.: C_0-semigroups of m-isometries on Hilbert spaces. J. Math. Anal. Appl. 472(2), 879–893 (2019)
[11] Bermúdez, T., Mendoza, C Díaz, Martinón, A.: Powers of m-isometries. Stud. Math. 208(3), 249–255 (2012)
[12] Bermúdez, T., Martinón, A., Negrín, E.: Weighted shift operators which are m-isometries. Integr. Equ. Oper. Theory 68(3), 301–312 (2010)
[13] Bermúdez, T., Martinón, A., Noda, J.: An isometry plus a nilpotent operator is an m-isometry. Applications. J. Math. Anal. Appl. 407(2), 505–512 (2013)

[14] Bermúdez, T., Martinón, A., Noda, J.: Weighted shift and composition operators on ℓ_p which are (m, q)-isometries. Linear Algebra Appl. 505, 152–173 (2016)

[15] Bermúdez, T., Martinón, A., Müller, V., Noda, J.: Perturbation of m-isometries by nilpotent operators. Abstr. Appl. Anal. 745479, 1–6 (2014)

[16] Botelho, F.: On the existence of n-isometries on ℓ_p spaces. Acta Sci. Math. (Szeged) 76, 183–192 (2010)

[17] Botelho, F., Jamison, J.E., Zheng, B.: Strict isometries of arbitrary orders. Linear Algebra Appl. 436(9), 3303–3314 (2012)

[18] Chô, M., Öta, S., Tanahashi, K.: Invertible weighted shift operators which are m-isometries. Proc. Am. Math. Soc 141(12), 4241–4247 (2013)

[19] Duggal, B.P.: Tensor product of n-isometries II. (English summary). Funct. Approx. Comput 4(1), 27–32 (2012)

[20] Fleming, W.H.: Undergraduate Texts in Mathematics. Functions of several variables, 2nd edn. Springer, New York (1977)

[21] Gallardo-Gutiérrez, E.A., Partington, J.R.: C_0-semigroups of 2-isometries and Dirichlet spaces. Rev. Mate. Iberoam. 34(3), 1415–1425 (2018)

[22] Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products. Academic Press, New York (1980)

[23] Gu, C.: High order isometric composition operators on ℓ_p spaces and infinite graphs with polynomial growth (2019) (preprint)

[24] Gu, C.: Functional calculus for m-isometries and related operators on Hilbert spaces and Banach spaces. Acta Sci. Math. (Szeged) 81(3–4), 605–641 (2015)

[25] Gu, C., Stankus, M.: Some results on higher order isometries and symmetries: products and sums with a nilpotent operator. Linear Algebra Appl. 469, 500–509 (2015)

[26] Guivernau, A.: Transformaciones que conservan el área. Gaceta Mate. 5–6, 63–67 (1980)

[27] Jablonski, Z.J.: Complete hyperexpansivity, subnormality and inverted boundedness conditions. Integr. Equ. Oper. Theory 44(3), 316–336 (2002)

[28] Le, T.: Algebraic properties of operator roots of polynomials. J. Math. Anal. Appl. 421(2), 1238–1246 (2015)

[29] Rydhe, E.: An Agler-type model theorem for C_0-semigroups of Hilbert space contractions. J. Lond. Math. Soc. 93(2), 420–438 (2016)

[30] Yarmahmoodi, S., Hedayatian, K.: Isometric N-Jordan weighted shift operators. Turk. J. Math. https://doi.org/10.3906/mat-1507-54

[31] Yarmahmoodi, S., Hedayatian, K., Yousefi, B.: Supercyclicity and hypercyclicity of an isometry plus a nilpotent (English summary). Abstr. Appl. Anal. 686832, 1–11 (2011)
Teresa Bermúdez, Antonio Martinón and Hajer Zaway
Departamento de Análisis Matemático
Universidad de La Laguna
38271 La Laguna Tenerife
Spain
e-mail: tbermude@ull.es

Antonio Martinón
e-mail: anmarce@ull.es

Hajer Zaway
Department of Mathematics, Faculty of Sciences
University of Gabès
6072 Gabès
Tunisia
e-mail: hajer_zaway@live.fr

Received: February 27, 2019.
Revised: September 6, 2019.
Accepted: February 12, 2020.