THE DISTRIBUTION OF RANDOM EVOLUTION IN ERLANG SEMI-MAROV MEDIA

A. POGORUI

Abstract. In this paper we study a one-dimensional random motion by having a general Erlang distribution for the sojourn times of the switching process and we obtain solution of the four order hyperbolic PDE for 2-Erlang case.

1. Introduction

In the paper [1] we studied a one-dimensional random motion with the \(m \)-Erlang distribution between consequent epochs of velocity alternations. Let \(f(t, x) \) be the probability density function (pdf) of a particle position at time \(t \), provided that it exists. We obtained the following higher order hyperbolic equations for \(f(t, x) \)

\[
\left(\frac{\partial}{\partial t} - v \frac{\partial}{\partial x} + \lambda \right)^m \left(\frac{\partial}{\partial t} + v \frac{\partial}{\partial x} + \lambda \right)^m f(t, x) - \lambda^{2m} f(t, x) = 0,
\]

where \(v > 0 \) is the velocity of the particle and \(\lambda \) is the parameter of the \(m \)-Erlang distribution. It is assumed that a particle started at \(x = 0 \) and hence, \(f(0, x) = \delta(x) \).

The pdf \(f(t, x) \) can be represented in the following form \(f(t, x) = f_c(t, x) + f_s(t, x) \), where \(f_c(t, x) \) is the absolute continuous part and \(f_s(t, x) \) is the singular part w.r.t. Lebesgue measure on the line.

Lemma 1. The singular part \(f_s(t, x) \) of the pdf \(f(t, x) \) is of the following form

\[
f_s(t, x/v) = \delta(t - x/v) e^{-\lambda t} \sum_{i=0}^{m-1} (\lambda t)^i / i!,
\]

Proof. It is evident that for \(t = x/v \) the pdf \(f(t, x) \) has the singularity given by Eq.(2). Let us show that for \(t > |x/v| \) the pdf \(f(t, x) \) has no singularity w.r.t. Lebesgue measure on \(\mathbb{R} \). Denote by \(v_k \) the random event "\(k \) velocity alternations occurred". For \(\Delta x = [x, x + \Delta], \Delta > 0 \), consider

\[
P_{\nu_k}(x(t) \in \Delta x) = \sum_{k \geq 1} P(x(t) \in \Delta x, v_k),
\]

which is the probability of the event that at least one alternation occurred and \(x(t) \in \Delta x \). Let us show that for each \(t > 0 \) there exists a constant \(C_t < \infty \) such that

\[
\sup_x \frac{P_{\nu_k}(x(t) \in \Delta x)}{\Delta x} < C_t.
\]

Date: 01/01/2009.
2000 Mathematics Subject Classification. 60K37.
Key words and phrases. Random motion, Erlang distribution, differentiable functions on commutative algebras, biwave equation.
Denote by \(\theta_k, k \geq 1 \), time between \((k-1)\)th and \(k\)th velocity alternations. Recall that \(\theta_k, k \geq 1 \) are independent \(m\)-Erlang distributed random variables. It is easily verified that

\[
P_{\nu_0}(x(t) \in \Delta x) = \sum_{k \geq 1} P \left(\sum_{i=1}^{k} (-1)^{i+1} \theta_i v + (-1)^k \left(t - \sum_{i=1}^{k} \theta_i v \right) \in \Delta x, \sum_{i=1}^{k} \theta_i < t \right)
\]

\[
= \sum_{k \geq 1} P \left(\sum_{i=1}^{k} (-1)^{i+1} \theta_i - (-1)^k \sum_{i=1}^{k} \theta_i \right) v \in \Delta x - (-1)^k vt, \sum_{i=1}^{k} \theta_i < t \right)
\]

\[
= \sum_{l \geq 0} \left(2v(\theta_1 + \theta_3 + \ldots + \theta_{2l+1}) \right) \leq \Delta x - vt, \sum_{i=1}^{2l+1} \theta_i < t \right)
\]

\[
= \sum_{l \geq 0} \left(-2v(\theta_2 + \theta_4 + \ldots + \theta_{2l+2}) \right) \leq \Delta x + vt, \sum_{i=1}^{2l+2} \theta_i < t \right)
\]

\[
\leq \sup_x \sum_{l \geq 0} \left(2v \sum_{i=1}^{l} \theta_{2i-1} \leq \Delta x, 2v \sum_{i=1}^{l} \theta_{2i} < vt - x \right)
\]

\[+ \sup_x \sum_{l \geq 0} \left(-2v \sum_{i=1}^{l} \theta_{2i} \leq \Delta x, 2v \sum_{i=1}^{l} \theta_{2i+1} < vt + x \right).
\]

Since \(|x| \leq vt\) and for every \(m \geq 1\) the pdf \(p_m(x, \lambda)\) of the \(m\)-Erlang distribution with the parameter \(\lambda\) satisfies \(p_m(x, \lambda) \leq \lambda\), we have

\[
\sum_{l \geq 1} P(2v(\theta_1 + \theta_3 + \ldots + \theta_{2l-1}) \leq \Delta x, 2v(\theta_2 + \theta_4 + \ldots + \theta_{2l}) < vt - x)
\]

\[
\leq \frac{\lambda \Delta}{2v} \sum_{l \geq 1} P(\theta_2 + \theta_4 + \ldots + \theta_{2l} < t) \quad (3)
\]

Since \(\theta_i\) is \(m\)-Erlang distributed we have for \(2lm + 1 > t\)

\[
P(\theta_2 + \theta_4 + \ldots + \theta_{2l} < t) \leq \left(e^{\lambda t} - \sum_{i=0}^{2lm} \frac{(\lambda t)^i}{i!} \right) e^{-\lambda t} \leq \frac{(\lambda t)^{2lm+1} e^{-\lambda t}}{2lm!(2lm + 1 - \lambda t)}.
\]

Therefore, taking into account (3), there exists a constant \(A_t\) such that

\[
\sup_x \sum_{l \geq 1} P \left(2v \sum_{i=1}^{l} \theta_{2i-1} \leq \Delta x, 2v \sum_{i=1}^{l} \theta_{2i} < vt - x \right) \leq A_t \Delta.
\]

In much the same way, we can show that there exists a constant \(B_t\) such that

\[
\sup_x \sum_{l \geq 1} P \left(-2v \sum_{i=1}^{l} \theta_{2i} \leq \Delta x, 2v \sum_{i=1}^{l} \theta_{2i+1} < vt + x \right) \leq B_t \Delta.
\]

Putting \(C_t = A_t + B_t\), we conclude the proof.

Corollary 1. The absolute continuous part \(f_c(t, x)\) of the pdf \(f(t, x)\) satisfies Eq.(1) for \(t < \left| \frac{x}{\lambda} \right| \).
Now let us study the behavior of the continuous part \(f_c(t, x)\) close to lines \(t = \pm \frac{\varepsilon}{2}\).

Lemma 2. For \(m \geq 2\), we have

\[
\lim_{\varepsilon \to 0} P\{0 < t - x(t) < \varepsilon\} = \frac{\lambda^m e^{m-1} \varepsilon^{m-\lambda t}}{2(m-1)!},
\]

\[
\lim_{\varepsilon \to 0} P\{t + x(t) < \varepsilon\} = 0.
\]

Proof. It is easily verified that

\[
P\{0 < t - x(t) \leq \varepsilon\} = P\{t - \frac{\varepsilon}{2} \leq \theta_1 < t\} + \int_0^t P\{\theta_3 \geq t - u, \theta_2 \leq \frac{\varepsilon}{2}, \theta_1 \in du\} + o(\varepsilon),
\]

where \(\theta_i, i = 1, 2, 3\) are independent \(m\)-Erlang distributed random variables with the parameter \(\lambda\). Since \(\int_0^t P(\theta_3 \geq t - u, \theta_2 \leq \frac{\varepsilon}{2}, \theta_1 \in du) = o(\varepsilon)\), passing to the limit, we get

\[
\lim_{\varepsilon \to 0} P\{0 < t - x(t) < \varepsilon\} = \lim_{\varepsilon \to 0} \frac{\lambda^m e^{m-1} \varepsilon^{m-\lambda t}}{2(m-1)!} + e^{\lambda t} \left(\sum_{i=0}^{m-1} \frac{(\lambda t)^i}{i!}\right) = \frac{\lambda^m e^{m-1} \varepsilon^{m-\lambda t}}{2(m-1)!}.
\]

Similarly, \(P\{t + x(t) \leq \varepsilon\} = P\{t \geq \frac{\varepsilon}{2}, \theta_1 \leq \frac{\varepsilon}{2}\} + o(\varepsilon)\) and as it easily seen that

\[
\lim_{\varepsilon \to 0} P\{t + x(t) < \varepsilon\} = 0.
\]

The case where \(m = 1\) will be considered below as an example.

We will seek solutions of Eq.(1) among functions which continuous part \(f_c(t, x)\) satisfies the following conditions

\[
\lim_{x \to t} f_c(t, x) = \lim_{\varepsilon \to 0} P\{0 < t - x(t) < \varepsilon\}, \quad \lim_{x \to t} f_c(t, x) = \lim_{\varepsilon \to 0} P\{t + x(t) < \varepsilon\}.
\]

By applying the transformation \(f(t, x) = \varepsilon^{\lambda t} g(t, x)\) and changing the variable \(y = \frac{t}{\varepsilon}\), we reduce Eq.(1) to

\[
\left(\frac{\partial^2}{\partial t^2} - \frac{\partial^2}{\partial y^2}\right)^m g_c(t, y) - \lambda^{2m} g_c(t, y) = 0,
\]

with the singular part \(g_s(t, y) = \left(\sum_{i=0}^{m-1} \frac{(\lambda t)^i}{i!}\right) \delta(t - y)\).

In the sequel we assume, without restricting the generality, that \(\lambda = 1\). By introducing the function \(f(t, y, z) = \varepsilon^{t} g_c(t, y)\), we reduce Eq.(5) to the following equation

\[
\left(\frac{\partial^2}{\partial t^2} - \frac{\partial^2}{\partial y^2}\right)^m f(t, y, z) - \varepsilon^{2m} \frac{\partial^2}{\partial z^{2m}} f(t, y, z) = 0.
\]

We will seek solutions of this equation by using theory of differentiable functions on commutative algebras [2].
2. MAIN RESULTS

Let \(A_0 \) be an \(2m \)-dimensional commutative algebra over \(\mathbb{R} \), assume that the set \(e_0, e_1, \ldots, e_{2m-1} \) is a basis of \(A_0 \) with the Cayley table:

\[
e_i e_j = e_{i \oplus j},
\]

where \(i \oplus j = i + j \) (mod \(2m \)).

Algebra \(A_0 \) has the following matrix representation:

\[
e_k \to P_k = P_1^k,
\]

where \(P_1 = [p_{ij}]_{2m \times 2m} \), \(p_{ii+1} = 1 \) for \(0 \leq i \leq 2m - 1 \), \(p_{2m0} = 1 \) and \(p_{ij} = 0 \) for the rest of \(i, j \).

Let us put

\[
\begin{align*}
\tau^l_0 &= e_l, \quad l = 0, 1, \ldots, 2m - 1, \\
\tau^l_1 &= e_l \sin s, \quad l = 0, 1, \ldots, 2m - 1, \\
\tau^l_2 &= e_l \cos s, \quad l = 0, 1, \ldots, 2m - 1, \\
\tau^l_{2k} &= e_l \cos ks, \quad \tau^l_{2k+1} = e_l \sin (k+1)s, \quad l = 0, 1, \ldots, 2m - 1, \\
&k = 0, 1, 2, \ldots.
\end{align*}
\]

It is easily that

\[
\begin{align*}
\tau^l_{2n} \tau^l_{2n} &= \frac{1}{2} \left(\tau^l_{2(n-k)} + \tau^l_{2(n+k)} \right), \quad n \geq k, \\
\tau^l_{2n+1} \tau^l_{2n+1} &= \frac{1}{2} \left(\tau^l_{2(n-k)+1} + \tau^l_{2(n+k)+1} \right), \quad n \geq k.
\end{align*}
\]

Let us introduce the following algebra

\[
A = \left\{ \sum_{k=0}^{+\infty} \sum_{l=1}^{2m-1} \left(a_{2k}^l \tau^l_{2k} + a_{2k+1}^l \tau^l_{2k+1} \right) \mid a_j^l \in \mathbb{R} \right\},
\]

where \(\sum_{k=0}^{+\infty} \sum_{l=1}^{2m-1} \left(\left| a_{2k}^l \right|^2 + \left| a_{2k+1}^l \right|^2 \right) < +\infty. \)

It is easily verified that \(A \) is commutative.

We consider the subspace \(B = \{ a_0 \tau^l_1 + a_1 \tau^l_2 + a_2 \tau^l_0 \mid a_i \in \mathbb{R} \} \) of the algebra \(A \).

Let us introduce the function \(f : B \to A \) \((f(t, y, z) = f(e_1 (t \cos s + yi \sin s) + z)) \) as follows

\[
f(t, y, z) = \sum_{k=0}^{+\infty} \sum_{l=0}^{2m-1} \left(v^l_{2k} (t, y, z) \tau^l_{2k} + v^l_{2k+1} (t, y, z) \tau^l_{2k+1} \right).
\]

The function \(f \) is called \(B/A \) differentiable at \(\mathbf{x}_0 \in B \) if there exists \(f' (\mathbf{x}_0) \in A \) such that for any \(\mathbf{h} \in B \)

\[
f' (\mathbf{x}_0) \mathbf{h} = \lim_{\epsilon \to 0} \frac{f(\mathbf{x}_0 + \epsilon \mathbf{h}) - f(\mathbf{x}_0)}{\epsilon}
\]

In [2] proved that if \(f \) is \(B/A \) differentiable, then

\[
\frac{\partial}{\partial t} f = e_1 \cos s \frac{\partial}{\partial z} f
\]

and
\[\frac{\partial f}{\partial y} = e_1 \text{isin}s \frac{\partial f}{\partial z}. \] (8)

In this case all \(v_{2k}^l (t, y, z) \) are solutions of Eq.(6). Indeed,
\[\left(\frac{\partial^2}{\partial t^2} - \frac{\partial^2}{\partial y^2} \right)^m f - \frac{\partial^{2m}}{\partial z^{2m}} f = e_1^m \left(\cos^2 s - (\text{isin}s)^2 \right)^m - 1 = 0. \]

In the sequel we denote by \(e \) the element \(e_1 \).
We will seek a solution of Eq.(5) in the following form
\[g_{c} (e (t \cos s + y \text{isin}s)) = e^{e(t \cos s + y \text{isin}s)} \]
Since \(f (e (t \cos s + y \text{isin}s) + z) = g_{c} (e (t \cos s + y \text{isin}s)) e^z \) we have
\[v_{k}^l (t, y, z) = u_{k}^l (t, y) e^z, l = 0, 1, \ldots, 2m - 1, \quad k = 0, 1, 2, \ldots, \]
where \(g_{c} (t, y) = \sum_{k=0}^{+\infty} \sum_{l=0}^{2m-1} \left(u_{2k}^l (t, y) \tau_{2k}^l + u_{2k+1}^l (t, y) \tau_{2k+1}^l \right) \).

Therefore, we obtain functions \(u_{0}^l (t, y) \) for \(t \geq |y| \) from the following equation
\[\sum_{l=0}^{2m-1} u_{0}^l (t, y) \tau_{l}^1 = \sum_{l=0}^{2m-1} u_{0}^l (t, y) e^l \]
\[= \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{e(t \cos s + y \text{isin}s)} ds = J_{0} \left(e^{i \sqrt{y^2 - t^2}} \right) = I_{0} \left(e^{\sqrt{t^2 - y^2}} \right), \]
where \(I_{k} \) (resp. \(J_{k} \)) is the modified Bessel (resp. Bessel) function of the first kind
and \(k \)th order [4].
where \(I_{k} \) (resp. \(J_{k} \)) is the modified Bessel (resp. Bessel) function of the first kind
and \(k \)th order [4].
It follows from Eqs.(7),(8) the following Cauchy-Riemann type conditions
\[\frac{\partial}{\partial t} u_{0}^l \stackrel{\oplus 1}{=} \frac{1}{2} u_{2}^l, \]
\[\frac{\partial}{\partial t} u_{1}^l \stackrel{\oplus 1}{=} \frac{1}{2} u_{3}^l, \]
\[\frac{\partial}{\partial t} u_{2}^l \stackrel{\oplus 1}{=} u_{0}^l + \frac{1}{2} u_{4}^l, \]
\[\frac{\partial}{\partial t} u_{2k-1}^l \stackrel{\oplus 1}{=} \frac{1}{2} \left(u_{2k-3}^l + u_{2k+1}^l \right), \]
\[\frac{\partial}{\partial t} u_{2k}^l \stackrel{\oplus 1}{=} \frac{1}{2} \left(u_{2(k-1)}^l + u_{2(k+1)}^l \right), \] (9)
and
\[\frac{\partial}{\partial y} u_{0}^l \stackrel{\oplus 1}{=} -\frac{1}{2} u_{1}^l, \]
\[\frac{\partial}{\partial y} u_{1}^l \stackrel{\oplus 1}{=} u_{0}^l - \frac{1}{2} u_{4}^l, \]
\[\frac{\partial}{\partial y} u_{2}^l \stackrel{\oplus 1}{=} -\frac{1}{2} u_{3}^l, \]
It is easily seen that
\[\frac{\partial u_{2k+1}}{\partial y} = \frac{1}{2} \left(u_{2k} - u_{2(k+2)} \right), \]
\[\frac{\partial u_{2k+2}}{\partial y} = \frac{1}{2} \left(u_{2k-1} - u_{2k+3} \right), \]
(10)

where the basis \(\tau^0 = 1, \tau^1 = \cos ks, \tau^2 = \epsilon^l \cos ks, \tau^3 = \epsilon^l \sin (k+1)s \),
\(l = 0, 1, 2, 3, k = 0, 1, 2, \ldots \)

Therefore, we have \(\tau^0 = 1, \tau^1 = \cos ks, \tau^2 = \epsilon^l \cos ks, \tau^3 = \epsilon^l \sin (k+1)s \),
\(l = 0, 1, 2, 3, k = 0, 1, 2, \ldots \)

Taking into account that \(g_s (e (t \cos s + y \sin s)) = e^{e (t \cos s + y \sin s)} \), we have
\[u_0^0(t, y) + e u_0^1(t, y) + e^2 u_0^2(t, y) + e^3 u_0^3(t, y) = \frac{1}{2} \int_{-\pi}^{\pi} e^{e (t \cos s + y \sin s)} ds = I_0 \left(e^{\sqrt{t^2 - y^2}} \right). \]

It is easily seen that
\[I_0 \left(e^{\sqrt{t^2 - y^2}} \right) = \frac{I_0 \left(\sqrt{t^2 - y^2} \right) + \sqrt{t^2 - y^2}}{2} + e^2 \left(\frac{I_0 \left(\sqrt{t^2 - y^2} \right) - \sqrt{t^2 - y^2}}{2} \right) \]
\[= \frac{I_0 \left(\sqrt{t^2 - y^2} \right) + J_0 \left(\sqrt{t^2 - y^2} \right)}{2} + e^2 \left(\frac{I_0 \left(\sqrt{t^2 - y^2} \right) - J_0 \left(\sqrt{t^2 - y^2} \right)}{2} \right). \]

Therefore, for \(t \geq |y| \), we have \(u_0^1(t, y) = u_0^3(t, y) = 0 \) and
\[u_0^0(t, y) = \frac{I_0 \left(\sqrt{t^2 - y^2} \right) + J_0 \left(\sqrt{t^2 - y^2} \right)}{2}, \]
\[u_0^2(t, y) = \frac{I_0 \left(\sqrt{t^2 - y^2} \right) - J_0 \left(\sqrt{t^2 - y^2} \right)}{2}. \]

It follows from the first two equations of (10) that
\[u_1^1 = -2 \frac{\partial}{\partial y} u_0^0 = - \frac{\partial}{\partial y} \left[I_0 \left(\sqrt{t^2 - y^2} \right) - J_0 \left(\sqrt{t^2 - y^2} \right) \right] = \frac{y}{\sqrt{t^2 - y^2}} \left(I_1 \left(\sqrt{t^2 - y^2} \right) + J_1 \left(\sqrt{t^2 - y^2} \right) \right), \]

\[u_3^1 = -2 \frac{\partial}{\partial y} u_0^0 = - \frac{\partial}{\partial y} \left[I_0 \left(\sqrt{t^2 - y^2} \right) + J_0 \left(\sqrt{t^2 - y^2} \right) \right] = \frac{y}{\sqrt{t^2 - y^2}} \left(I_1 \left(\sqrt{t^2 - y^2} \right) - J_1 \left(\sqrt{t^2 - y^2} \right) \right), \]

\[u_0^0 = -2 \frac{\partial}{\partial y} u_0^0 = 0, \]

\[u_2^0 = -2 \frac{\partial}{\partial y} u_3^0 = 0. \]

Then it follows from the Cauchy-Riemann type conditions (9) that

\[u_2^0 (t, y) = 2 \frac{\partial u_0^1 (t, y)}{\partial t} = 0; \]

\[u_2^1 (t, y) = 2 \frac{\partial u_3^0 (t, y)}{\partial t} = \frac{\partial}{\partial t} \left[I_0 \left(\sqrt{t^2 - y^2} \right) - J_0 \left(\sqrt{t^2 - y^2} \right) \right] = \frac{t}{\sqrt{t^2 - y^2}} \left(I_1 \left(\sqrt{t^2 - y^2} \right) + J_1 \left(\sqrt{t^2 - y^2} \right) \right); \]

\[u_2^2 (t, y) = 2 \frac{\partial u_0^3 (t, y)}{\partial y} = 0; \]

\[u_2^3 (t, y) = 2 \frac{\partial u_0^3 (t, y)}{\partial t} = \frac{\partial}{\partial t} \left[I_0 \left(\sqrt{t^2 - y^2} \right) + J_0 \left(\sqrt{t^2 - y^2} \right) \right] = \frac{t}{\sqrt{t^2 - y^2}} \left(I_1 \left(\sqrt{t^2 - y^2} \right) - J_1 \left(\sqrt{t^2 - y^2} \right) \right). \]

Similarly, for \(u_3^0 \) we have

\[u_3^0 = 2 \frac{\partial}{\partial t} u_1^0 = 2 \frac{\partial}{\partial t} \left[\frac{y}{\sqrt{t^2 - y^2}} \left(I_1 \left(\sqrt{t^2 - y^2} \right) + J_1 \left(\sqrt{t^2 - y^2} \right) \right) \right] = - \frac{2ty}{(t^2 - y^2)^{3/2}} \left(I_1 \left(\sqrt{t^2 - y^2} \right) + J_1 \left(\sqrt{t^2 - y^2} \right) \right) \]

\[+ \frac{ty}{t^2 - y^2} \left(I_0 \left(\sqrt{t^2 - y^2} \right) + I_2 \left(\sqrt{t^2 - y^2} \right) + J_0 \left(\sqrt{t^2 - y^2} \right) - J_2 \left(\sqrt{t^2 - y^2} \right) \right); \]
Next, it follows from (9) that

\[u_3^2 = 2 \frac{\partial}{\partial t} u_1^3 = 2 \frac{\partial}{\partial t} \left[\frac{y}{\sqrt{t^2 - y^2}} \left(I_1 \left(\sqrt{t^2 - y^2} \right) - J_1 \left(\sqrt{t^2 - y^2} \right) \right) \right] \]

\[= - \frac{2ty}{\sqrt{(t^2 - y^2)^3}} \left(I_1 \left(\sqrt{t^2 - y^2} \right) - J_1 \left(\sqrt{t^2 - y^2} \right) \right) \]

\[+ \frac{2ty}{t^2 - y^2} \left(I_0 \left(\sqrt{t^2 - y^2} \right) + I_2 \left(\sqrt{t^2 - y^2} \right) - J_0 \left(\sqrt{t^2 - y^2} \right) + J_2 \left(\sqrt{t^2 - y^2} \right) \right) \]

It is easily seen that \(u_1^3 = u_3^2 = 0 \).

Next, it follows from (9) that

\[u_4^0 - 2 \frac{\partial u_3^2}{\partial t} - 2u_0^0 = 2 \frac{\partial}{\partial t} \frac{t}{\sqrt{t^2 - y^2}} \left(I_1 \left(\sqrt{t^2 - y^2} \right) + J_1 \left(\sqrt{t^2 - y^2} \right) \right) - 2u_0^0 \]

\[= \frac{-2y^2}{\sqrt{(t^2 - y^2)^3}} \left(I_1 \left(\sqrt{t^2 - y^2} \right) + J_1 \left(\sqrt{t^2 - y^2} \right) \right) \]

\[+ \frac{t^2}{t^2 - y^2} \left(I_0 \left(\sqrt{t^2 - y^2} \right) + I_2 \left(\sqrt{t^2 - y^2} \right) + J_0 \left(\sqrt{t^2 - y^2} \right) - J_2 \left(\sqrt{t^2 - y^2} \right) \right) \]

\[- I_0 \left(\sqrt{t^2 - y^2} \right) - J_0 \left(\sqrt{t^2 - y^2} \right) ; \]

Also it is easily verified that \(u_1^3 = u_3^2 = 0 \).

By using well-known integrals for Bessel functions [3-5], we have

\[\int_{-t}^{t} u_0^0 dy = \sinh t + \sin t , \int_{-t}^{t} u_2^0 dy = \sinh t - \sin t , \int_{-t}^{t} u_1^1 dy = \int_{-t}^{t} u_1^3 dy = 0, \]

\[\int_{-t}^{t} u_2^2 dy = 2 \int_{-t}^{t} \frac{\partial u_3^2}{\partial t} dy = 2 \left(\frac{\partial}{\partial t} \int_{-t}^{t} \left(u_0^0(t) - u_0^0(t,-t) \right) dt \right) \]

\[= 2 \cosh t - 2 \cos t , \]

\[\int_{-t}^{t} u_3^3 dy = 2 \int_{-t}^{t} \frac{\partial u_3^2}{\partial t} dy = 2 \left(\frac{\partial}{\partial t} \int_{-t}^{t} u_0^0(t) - u_0^0(t,-t) dt \right) \]

\[= 2 \cosh t + 2 \cos t - 4. \]

As an example, we obtain the pdf for the case, where \(m = 1 \). For this case \(e_1 = 1 \) and hence, we can consider functions \(\sum_{l=0}^{4} u_k^l(t,y) \), \(k = 0,1,2,\ldots \) as solutions of Eq.(5) for \(m = 1 \).
For $t \leq |y|$ consider the function $g_c(t, y) = g_\epsilon(t, y) + g_s(t, y)$ of the following form:

\[
g_c(t, y) = \frac{1}{2} (u_0^0(t, y) + u_0^2(t, y)) + \frac{1}{4} (u_1^0(t, y) + u_1^2(t, y) + u_2^0(t, y) + u_2^2(t, y))
\]

\[
= I_0 \left(\frac{\sqrt{t^2 - y^2}}{2} \right) + \frac{t + y}{2\sqrt{t^2 - y^2}} t_1 \left(\sqrt{t^2 - y^2} \right)
\]

and $g_s(t, y) = \delta(t - y)$.

It is easily seen that function $g_c(t, y)$ is a solution of the equation for $t < y$

\[
\left(\frac{\partial^2}{\partial t^2} - \frac{\partial^2}{\partial y^2} \right) g(t, y) - g(t, y) = 0,
\]

(11)

In addition, we have $\lim_{y \uparrow t} g_c(t, y) = \frac{1}{2} (1 + t)$ and $\lim_{y \downarrow t} g_c(t, y) = \frac{1}{2}$.

To avoid cumbersome calculations we put $v = 1$.

Therefore, $f(t, x) = e^{-t} g(t, x)$ is a solution of the equation:

\[
\left(\frac{\partial}{\partial t} - \frac{\partial}{\partial x} + 1 \right) \left(\frac{\partial}{\partial t} + \frac{\partial}{\partial x} + 1 \right) f_c(t, x) - f_c(t, x) = 0,
\]

(12)

\[
f_s(t, x) = \delta(t - x) e^{-t}.
\]

In addition, $f_c(t, x)$ satisfies the following conditions:

\[
\lim_{x \uparrow t} f_c(t, x) = \frac{1}{2} \left(e^{-t} + te^{-t} \right), \quad \lim_{x \downarrow t} f_c(t, x) = \frac{1}{2} e^{-t},
\]

and for all $t > 0$ we have $\int_{-t}^t f(t, x) dx = 1$.

For a small $\varepsilon > 0$ consider the probability $P \{0 < t - x(t) < \varepsilon \}$.

Let us verify that $\lim_{\varepsilon \downarrow 0} P \{0 < t - x(t) < \varepsilon \}$, i.e.,

\[
\lim_{\varepsilon \downarrow 0} \frac{P \{0 < t - x(t) < \varepsilon \}}{\varepsilon} = \left(\frac{e^{-t} + te^{-t}}{2} \right).
\]

Indeed, it is easily seen that

\[
P \{0 < t - x(t) \leq \varepsilon \} = P \left\{ t - \frac{\varepsilon}{2} \leq \theta_1 < t \right\} + \int_0^t P \left\{ \theta_3 \geq t - u, \theta_2 \leq \frac{\varepsilon}{2}, \theta_1 \in du \right\}
\]

+ $o(\varepsilon)$,

where θ_i, $i = 1, 2, 3$ are independent exponentially distributed random variables.

The random variable θ_1 is time of the first velocity alternation, θ_2 is time between the first and the second velocity alternations and θ_3 is time between the second and the third velocity alternations.

We have that $P \{ t - \frac{\varepsilon}{2} \leq \theta_1 < t \} = e^{-t + \frac{\varepsilon}{2}} - e^{-t}$ and as it easy to calculate

\[
\int_0^t P \left\{ \theta_3 \geq t - u, \theta_2 \leq \frac{\varepsilon}{2}, \theta_1 \in du \right\} = (1 - e^{-\frac{\varepsilon}{2}}) \int_0^t e^{-t + u} e^{-u} du = (1 - e^{-\frac{\varepsilon}{2}}) t e^{-t}.
\]

Whence, it is easily verified that $\lim_{\varepsilon \downarrow 0} \frac{P \{0 < t - x(t) \leq \varepsilon \}}{\varepsilon} = \left(\frac{e^{-t} + te^{-t}}{2} \right)$.

THE DISTRIBUTION OF RANDOM EVOLUTION... 9
Similarly, \(P \{ t + x (t) \leq \varepsilon \} = P \{ \theta_2 \geq t - \frac{\varepsilon}{2}, \theta_1 \leq \frac{\varepsilon}{2} \} + o (\varepsilon) \). This implies that
\[
\lim_{\varepsilon \downarrow 0} \frac{P \{ t + x (t) < \varepsilon \}}{\varepsilon} = \frac{1}{2} e^{-t} = \lim_{x \downarrow t} f_c (t, x) .
\]

Therefore, \(f_c (t, x) \) is a solution of the Goursat problem for the linear second order hyperbolic equation that ensures the uniqueness of the solution of Eq.(12) with conditions (4). It means that \(f (t, x) \) is the pdf of the particle’s position for \(m = 1 \).

It is relevant to remark that function \(f (t, x) \) coincides with the result obtained in [5].

Now, we turn to the case \(m = 2 \) and continue to calculate integrals of \(u_k \).

It follows from \(u_4^0 = 2 \frac{\partial u_0^3}{\partial t} - 2u_0^3 \) that
\[
\int_{-t}^{t} u_4^0 dy = 2 \left(\frac{\partial}{\partial t} \int_{-t}^{t} u_2^3 dy - u_2^1 (t, t) - u_2^1 (t, -t) \right) - 2\sinh t - 2\sin t = 4 (\sinh t + \sin t - t) - 2\sinh t - 2\sin t = 2\sinh t + 2\sin t - 4t .
\]

Next, it follows from \(u_3^2 = 2 \frac{\partial u_0^3}{\partial t} - 2u_0^3 \) that
\[
\int_{-t}^{t} u_3^2 dy = 2 \left(\frac{\partial}{\partial t} \int_{-t}^{t} u_2^3 dy - u_2^3 (t, t) - u_2^3 (t, -t) \right) - 2\sinh t + 2\sin t = 4\sinh t - 4\sin t - 2\sinh t + 2\sin t = 2\sinh t - 2\sin t .
\]

For \(t \leq |y| \) we introduce the function \(g_c (t, y) = g_c (t, y) + g_s (t, y) \), where
\[
g_c (t, y) = \frac{1}{2} u_0^2 (t, y) + \frac{1}{4} \left(u_1^1 (t, y) + u_1^1 (t, y) + u_2^1 (t, y) + u_2^1 (t, y) + u_3^1 (t, y) + u_3^1 (t, y) \right) ,
\]
\[
g_s (t, y) = \delta (t - y) + t\delta (t - y) .
\]

By construction, the function \(g_c (t, y) \) is a solution of the following equation
\[
\left(\frac{\partial^2}{\partial t^2} - \frac{\partial^2}{\partial y^2} \right) g (t, y) - g (t, y) = 0 .
\]

Therefore, the function \(f_c (t, x) = e^{-t} g_c (t, x) \) is a solution of Eq.(1) for \(m = 2 \) \((\lambda = v = 1)\).

We put \(f (t, x) = f_c (t, x) + e^{-t} g_s (t, x) \). Taking into account the values of integrals of functions, which are involved in the expression for \(g_c (t, y) \), we have that \(f_{-t} f (t, x) dx = 1 \), for all \(t \geq 0 \).

Let us prove that \(\lim_{x \uparrow t} f_c (t, x) = \lim_{x \downarrow 0} \frac{P \{ 0 < t - x (t) < \varepsilon \}}{\varepsilon} \) and \(\lim_{x \downarrow -t} f_c (t, x) = \lim_{x \downarrow 0} \frac{P \{ t + x (t) < \varepsilon \}}{\varepsilon} \).

It follows from Lemma 2 that for \(m = 2 \) we have
\[
\lim_{x \downarrow 0} \frac{P \{ t - x (t) < \varepsilon \}}{\varepsilon} = \frac{1}{2} t e^{-t} .
\]

and
\[
\lim_{x \downarrow 0} \frac{P \{ t + x (t) < \varepsilon \}}{\varepsilon} = 0.
\]

It easily verified that \(\lim_{y \uparrow t} u_4^0 (t, y) = 0 \), \(\lim_{y \downarrow t} u_3^0 (t, y) = 0 \) and consequently

10 A. POGORUI
It is easily seen that each solution of Eq.(11) is a solution of Eq.(14). By changing the solution f of Eq.(11)

$$
\lim_{y \to t} g_c(t, y) = \lim_{y \to t} \frac{t + y}{2 \sqrt{t^2 - y^2}} I_1 \left(\sqrt{t^2 - y^2} \right) = \frac{t}{2},
$$

$$
\lim_{y \to -t} g_c(t, y) = \lim_{y \to -t} \frac{t + y}{2 \sqrt{t^2 - y^2}} I_1 \left(\sqrt{t^2 - y^2} \right) = 0. \quad (15)
$$

Thus,

$$
\lim_{x \to t} f_c(t, x) = \frac{1}{2} t e^{-t} = \lim_{\varepsilon \downarrow 0} \frac{P \{ t - x (t) < \varepsilon \} - P \{ t - x (t) > \varepsilon \}}{\varepsilon},
$$

$$
\lim_{x \to -t} f_c(t, x) = 0 = \lim_{\varepsilon \downarrow 0} \frac{P \{ t + x (t) < \varepsilon \} - P \{ t + x (t) > \varepsilon \}}{\varepsilon}. \quad (16)
$$

Let us show that conditions (15) with the condition $\int_{-t}^{t} g(t, y) e^{-t} dx = 1$ insure the uniqueness of the solution $g_c(t, y)$ for Eq.(14) and consequently, the uniqueness of the solution $f_c(t, x)$ of Eq.(12).

It is easily seen that each solution of Eq.(11) is a solution of Eq.(14). By changing the variables $s = t + y, \, p = t - y$, we reduce Eq.(14) to

$$
\frac{\partial^4}{\partial s^2 \partial p^2} G(s, p) - G(s, p) = 0. \quad (17)
$$

Passing to the Fourier transform $\hat{G}(s, \alpha) = \int_{0}^{\infty} G(s, p) e^{i \alpha p} dp$ in Eq.(17), we get the ordinary differential equation of order 4. Taking into account that $\lim_{y \to t} g_c(t, y) = 0$, we have

$$
\hat{G}(0, \alpha) = 0. \quad (18)
$$

Hence, at most four independent solutions of the ordinary differential equation satisfy the initial condition (18) for each α. Passing to the inverse Fourier transform, we have four independent solutions of Eq.(14) with the condition $\lim_{x \to t} f_c(t, x) = 0$ and just two of them satisfy Eq.(14) but not Eq.(11). By construction, one of these solutions $g_c(t, y)$ is given by Eq.(13). As another solution we can take

$$
g_2(t, y) = u_0^2(t, y) + u_4^0(t, y).
$$

It is easily verified that no linear combination $c(t, y)$ of functions $g_c(t, y)$ and $g_2(t, x)$ satisfies conditions (16) and $\int_{-t}^{t} (c(t, x) + g_c(t, y)) e^{-t} dx = 1$ for all $t > 0$, but solution $g_c(t, y)$.

Therefore, the function $f(t, x)$ is the pdf of the particle position at time t for $m = 2, \, v = \lambda = 1$ and has the following form

$$
f(t, x) = -J_0 \left(\frac{\sqrt{t^2 - x^2}}{2} \right) e^{-t} + \frac{(t + x) e^{-t}}{2 \sqrt{t^2 - x^2}} I_1 \left(\sqrt{t^2 - x^2} \right) \left(\frac{x^2 e^{-t}}{2 \sqrt{(t^2 - x^2)^3}} \right) \left(I_1 \left(\sqrt{t^2 - x^2} \right) + J_1 \left(\sqrt{t^2 - x^2} \right) \right) + \frac{t^2 e^{-t}}{4 (t^2 - x^2)} \left(I_0 \left(\sqrt{t^2 - x^2} \right) + I_2 \left(\sqrt{t^2 - x^2} \right) + J_0 \left(\sqrt{t^2 - x^2} \right) - J_2 \left(\sqrt{t^2 - x^2} \right) \right) + \delta(t - x) e^{-t} + t \delta(t - x) e^{-t}.
$$
In much the same way as the pdf $f(t,x)$ of the particle position for $m = 2$ was obtained we can also get solutions of Eq.(1) with conditions (2) and (4) for each $m > 2$.
THE DISTRIBUTION OF RANDOM EVOLUTION...

References

[1] A.A. Pogorui, Monogenic functions on commutative algebras. Complex Variables and Elliptic Equations. 52 (2007) no. 12, 1155–1159.

[2] Watson J., A Treatise on the Theory of Bessel Functions, Second Edition, Cambridge University Press, 1995.

[3] Bateman Manuscript Project, Tables of Integral Transforms, 1, ed. A. Erdelyi, McGraw Hill, New York, 1954.

[4] M.A. Pinsky, Lectures on Random Evolution, World Scientific Publishing, 1991.

Shelushkova 10, 222, Zhitomir, Ukraine
Current address: Shelushkova 10, 222, Zhitomir, Ukraine
E-mail address: pogor@zu.edu.ua