Impact of chimera-less long reads on metagenomics of human gut viromes treated with multiple displacement amplification

Yuya Kiguchi1, 2, 3, Suguru Nishijima1, 2, 4, Naveen Kumar3, Masahira Hattori1, 3*, Wataru Suda3*

1Graduate School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan.
2Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology, Tokyo 169-8555, Japan.
3Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan.
4Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.

*Correspondence: wataru.suda@riken.jp; hattori@edu.k.u-tokyou.ac.jp
Abstract

Background: The ecological and biological features of the indigenous phage community (virome) in the human gut microbiome are poorly understood, possibly due to many fragmented contigs and fewer complete genomes based on conventional short-read metagenomics. Long-read sequencing technologies have attracted attention as an alternative approach to reconstruct long and accurate contigs from microbial communities. However, the impact of long-read metagenomics on human gut virome analysis has not been well evaluated.

Results: Here we present chimera-less PacBio long-read metagenomics of multiple displacement amplification (MDA)-treated human gut virome DNA. The method included the development of a novel bioinformatics tool, SACRA (Split Amplified Chimeric Read Algorithm), which efficiently detects and splits numerous chimeric reads in PacBio reads from the MDA-treated virome samples. SACRA treatment of PacBio reads from five samples markedly reduced the average chimera ratio from 72 to 1.5%, generating chimera-less PacBio reads with an average read-length of 1.8 kb. De novo assembly of the chimera-less long reads generated contigs with an average N50 length of 11.1 kb, whereas those of MiSeq short reads from the same samples were 0.7 kb, dramatically improving contig extension. Alignment of both contig sets generated 378 high-quality merged contigs (MCs) composed of the minimum scaffolds of 434 MiSeq and 637 PacBio contigs, respectively, and also identified numerous MiSeq short fragmented contigs ≤500 bp additionally aligned to MCs, which possibly originated from a small fraction of MiSeq chimeric reads. The alignment also revealed that fragmentations of the scaffolded MiSeq contigs were caused primarily by genomic complexity of the community, including local repeats, hypervariable regions, and highly conserved sequences in and
between the phage genomes. We identified 142 complete and near-complete phage genomes including 108 novel genomes, varying from 5 to 185 kb in length, the majority of which were predicted to be *Microviridae* phages including several variants with homologous but distinct genomes, which were fragmented in MiSeq contigs.

Conclusions: Long-read metagenomics coupled with SACRA provides an improved method to reconstruct accurate and extended phage genomes from MDA-treated virome samples of the human gut, and potentially from other environmental virome samples.

Keywords: virome, bacteriophage, gut, metagenomics, long-read, chimera, multiple displacement amplification

Background

Indigenous gut bacteriophages (phages) comprise the major component of the human gut microbiome [1–3]. The estimated ratio of phages to bacterial cells in the feces varies from 1:1 to 1:10, suggesting that phages exist at numbers comparable to bacterial cells [4]. Furthermore, gut phages have a primary role in functions of the gut microbiome by altering the community structure and metabolism through the infection of host bacteria [5, 6]. Several papers also reported associations between gut phages and microbiome dysbiosis, linking it to diseases such as inflammatory bowel diseases and diabetes [7–12] and implying the impact of gut phages on the human physiological state.

In analyses of the gut phage community (virome) [1–3, 13, 14], the first step is the enrichment of virus-like particles (VLPs) from vast numbers of bacterial cells in fecal samples. VLPs are then proteolytically lysed to generate viral DNA, which is further subjected to multiple displacement amplification (MDA) using DNA polymerases with strand displacement
activity to obtain the increased DNA quantity sufficient for sequencing. More importantly, MDA enables the detection of single-stranded phage genomes in the sequence data [15]. Although virome metagenomics is a powerful approach to comprehensively identify phage genomes in a community [1–3, 14], the assembly generates many fragmented and fewer completed contigs [13, 14, 16]. Contig fragmentation is problematic in virome studies, making it difficult to precisely conduct taxonomic assignments, diversity and abundance estimations, and host prediction based on the genomic data [17–19]. This fragmentation is possibly caused by the genomic complexity in the viral communities [17, 20], which is often encountered in metagenomics with short reads <300 bp [21]. To overcome such shortcomings in short-read metagenomics, several studies have reported improvements of overall contig extension in metagenomics of the microbial communities with long reads >10 kb using single-molecule sequencing technologies [22–26]. However, long-read metagenomics of the human gut virome has not been evaluated. Here, we provide a method for efficient reconstruction of accurate and extended contigs including completed phage genomes by long-read metagenomics of the MDA-treated human gut virome, for which we developed a novel bioinformatics tool, SACRA (Split Amplified Chimeric Read Algorithm). SACRA was crucial for the detection and splitting of numerous chimeric reads from the MDA-treated DNA to obtain chimera-less long reads with high efficiency.

Results

Metagenomic sequencing of MDA-treated viral DNA

We prepared viral DNA samples from virus-like particles (VLPs) enriched from the feces of five healthy Japanese adults, and the samples containing the spike-in lambda phage (λ) DNA were then subjected to MDA using EquiPhi29 polymerase [27] (Methods) to obtain sufficient amounts of DNA for sequencing (Table S1). We sequenced the MDA-treated DNA with the
PacBio and MiSeq platforms and removed reads mapped to human, fungus, and the PacBio internal control sequences (Table S2). The filter-passed PacBio reads were further treated with canu [28] to obtain error-corrected PacBio reads (ECLs) (Table S3). The ECLs and canu-untreated reads had an average sequence similarity of 96.7% and 90.6% with high-quality contigs from the filter-passed MiSeq short reads (FMSs) obtained from the same MDA-treated samples, respectively, improving the accuracy of ECLs (Suppl. Fig. 1).

Chimeric reads in metagenomic sequencing of the MDA-treated virome samples

We estimated the average chimera ratio to 72% for ECLs and 2.2% for FMSs, respectively, by aligning them to the spike-in λ genome with ≥95% identity, indicating a considerably high chimera rate in ECLs, as observed previously [29] (Fig. 1). However, normalization of the chimera ratio by read-length suggested similar chimera occurrences between them (Suppl. Fig. 2). We applied Pacasus, a bioinformatics tool for correcting PacBio chimeric reads containing palindromic sequence [29], to ECLs but observed an inefficient reduction in the average chimera ratio to only 34% for the ECLs aligned to the λ genome (Fig. 1), suggesting the presence of Pacasus-insensitive chimeric reads in the ECLs.

Structure of Pacasus-insensitive chimeric reads

From analyses of Pacasus-insensitive chimeric reads aligned to the λ genome, we found that those were intragenomic non-palindromic chimeric reads (intra-NPCRs) composed of two different lambda sequences flanked with inverted (intra-NPCRI) and tandem rearrangements (intra-NPCRT), which were further classified into two types based on the position in the chimeric reads, and intergenomic non-palindromic chimeric reads (inter-NPCRs) composed of the lambda and unrelated sequences (Suppl. Fig. 3a). The average ratio was 85.1% for intra-NPCRs, designated as the intra-chimera rate (see below), and 14.9% for inter-NPCRs based on
the λ genome. In addition, chimeric position [30,31] and frequency on the λ genome were highly similar between the technical replicates with an average Pearson’s correlation of 0.82, and the average frequency was estimated to be one per ~2.8 kb (Table S4 and Suppl. Fig. 3b).

Development of SACRA to correct PacBio chimeric reads

We developed SACRA (Split Amplified Chimeric Read Algorithm) for correcting both NPCRs and Pacasus-sensitive chimeric reads. To detect the chimeric reads, we first obtained aligned read clusters (ARCs) by the pairwise local alignment of all ECLs in each sample. The generated ARCs included those with both CARs (continuously aligned reads spanning the chimeric position) and PARs (partially aligned reads with ≥50-bp unaligned sequences from the chimeric position), those with only PARs, and those with only CARs, accounting for 83.6%, 7.3%, and 0.4% of all ECLs on average, respectively (Table S5). ARCs with both CARs and PARs could be further divided into chimeric ARCs composed of the true chimeric CARs and non-chimeric PARs, and non-chimeric ARCs composed of non-chimeric CARs and the true chimeric PARs (Fig. 2a). From ARCs on the λ genome, the average ratio of chimeric and non-chimeric ARCs was estimated to be ~15% and ~85%, respectively (Suppl. Fig. 4a), suggesting the requirement for a way to distinguish these two ARCs without references such as the λ genome for the actual samples; otherwise, non-chimeric ARCs might be excessively split by SACRA.

To this end, we considered the ratio of PARs/CARs (PC ratio) as a parameter to distinguish the two ARCs, because PC ratios tended to be higher for chimeric ARCs than non-chimeric ARCs on the λ genome (Suppl. Fig. 4b). We examined the relationship between the PC ratio and the efficiency of the correct assignment of chimeric (sensitivity) and non-chimeric ARCs (specificity) and determined the optimized minimum PC (mPC) ratio that maximized the sensitivity and specificity to 0.08, 0.08, 0.05, 0.05, and 0.11 for each sample, with which
both specificity and sensitivity were >95% on the λ genome (Fig. 2b). Accordingly, ARCs with greater than the optimized mPC ratio and ARCs with only PARs were subjected to SACRA to split them as chimeric ARCs, whereas ARCs with less than the optimized mPC ratio and ARCs with only CARs were not (Fig. 3).

Efficiency of SACRA for correcting PacBio chimeric reads

SACRA treatment with the optimized mPC ratio dramatically reduced the average chimera ratio from ~72% to ~1.5%, similar to that of FMSs, on the λ genome in the five samples, including corrections of >99% of the Pacasus-sensitive reads (Fig. 1, Suppl. Figs. 5a and b). A comparison of ECLs, Pacasus-treated ECLs (PALs), and SACRA-treated ECLs (SALs) with similar sequence quantities (Table S3) revealed that the average read-length was 5.5 kb for ECLs, 3.1 kb for PALs, and 1.8 kb for SALs, and the overall read-length distribution of PALs and SALs shifted to shorter than that of ECLs, due to the generation of shorter reads than ECLs by splitting chimeric reads with Pacasus and SACRA (Suppl. Fig. 5c). The total bases of PALs and SALs (≥1 kb) were similar to those of ECLs (≥1 kb) with ratios (PALs/ECLs and SALs/ECLs) of >0.91 (Suppl. Fig. 5d), indicating no substantial reduction in the total bases with Pacasus and SACRA treatments.

De novo assembly of FMSs, PALs, and SALs

We performed de novo assembly of FMSs, PALs, and SALs (Methods, Table S6), generating a total of 80,716 contigs for FMSs, 8,593 for PALs, and 1,707 for SALs (Table S7). The average N50 was 0.7 kb for FMS contigs, 7.2 kb for PAL contigs, and 11.1 kb for SAL contigs, and >99% of the FMS contigs had a length <5 kb, whereas ~27% of the SAL contigs had a length ≥5 kb (Figs. 4a and 4b).
The single complete contigs of the λ genome were reconstructed from all samples in the SAL assembly, only from one sample in the FMS assembly, and not from all samples in the PAL assembly (Suppl. Fig. 6), which might be partly due to a higher chimera ratio in PALs and shorter reads in FMSs than SALs. In addition, no complete λ genome was recovered from the four samples in the assembly of SALs from SACRA treatment with a PC ratio ≥0, probably due to excessive splitting of non-chimeric ARCs (Suppl. Fig. 6).

Alignment of FMS and SAL contigs

The alignment of FMS and SAL contigs with ≥95% identity generated a total of 701 MCs with a minimum scaffold of 1,338 FMS and 1,410 SAL contigs, accounting for 1.9 FMS and 2.0 SAL contigs per MC on average, respectively (Fig. 5a and Table S8). In addition to the scaffolded FMS contigs, we also found 40,455 short FMS contigs (mostly ≤500 bp) aligned to the MCs (Fig. 5a), most of which disappeared in the assembly of FMSs excluding chimeric reads for the spike-in λ genome with subtle changes in assembly outcomes (Tables S8 and S9, Discussion). The remaining 26,788 FMS and 297 SAL contigs unaligned between them were specific to each. Quantification of the average abundance of MCs and FMS- and SAL-specific contigs by mapping FMSs revealed 104 FMSs/kb for FMS-specific contigs, 8,423 for MCs, and 0.9 for SAL-specific contigs (Table S10), suggesting that the generated MCs included relatively highly abundant genomes. We then removed all SAL-specific contigs and 323 MCs with low read-depth from further analysis because of the low sequence accuracy. The average length of 378 high read-depth MCs increased to 20.1 kb, fairly longer than that of all FMS (591 bp) and all SAL contigs (5.9 kb) (Fig. 5b). We finally obtained 324 non-redundant MCs by clustering the 378 MCs with ≥99% identity and coverage.

We found four types of contig fragmentations in alignments of the scaffolded FMS and SAL contigs (Table S11 and Suppl. Fig. 7). Type 1 fragmentations were observed for FMS
contigs at the local repeat region in SAL contigs. Type 2 fragmentations were observed for FMS contigs aligned to multiple SAL contigs homologous but distinct, and included contigs with mosaic sequences consisting of the highly similar sequences between the homologous SAL contigs. Type 3 fragmentations of FMS contigs occurred mostly near the hypervariable loci containing many single nucleotide polymorphic sites [20] in SAL contigs. Type 4 fragmentations were observed only in SAL contigs, mostly at the relatively low read-depth region in FMS contigs. Among the FMS fragmentations, type 2 fragmented contigs were most frequent (Fig. 5c and Table S11).

Identification of complete and near-complete contigs

From the 324 non-redundant MCs, we identified 159 MCs including 17 FMS-specific contigs as complete contigs generating circular contigs (CCs), a hallmark of the full-length genome [22]. For determination of the near-complete linear contigs (ncLCs), we developed and used two parameters to assess the completeness of contigs (Discussion). One was the intra-chimera rate of SAL contigs, which was significantly reduced from ~85% to ~50% as the contig length was shortened to 80%, 50%, and 20% of the complete λ genome (100%) (Suppl. Fig. 8). We set the cut-off value of the intra-chimera rate to 80% to screen the LCs/MCs (≥10 kb) and obtained 95 LCs with an intra-chimera rate ≥80%. Of them, 13 were identified as ncLCs with the second parameter that the total length of either shorter SAL or FMS contigs aligned to the MC was ≥97% of that of the MC, which was consistently observed for all complete CCs composed of both SAL and FMS contigs. Overall, we identified a total of 172 complete and near-complete contigs in the five samples (Tables S12 and S13).

Characterization of complete and near-complete contigs
The 172 contigs were characterized by phage classification assessments such as VirSorter [32], gene annotation by pVOG [33], and a similarity search with the publicly available databases. The results showed that 142 contigs (129 CCs and 13 ncLCs) were classified as phage with the VirSorter category 1, 2, or 3 and with at least one pVOG (Table S12). Other questionable contigs negative for the VirSorter assessment or with no pVOG, including nine matched with known plasmids, were excluded from further analysis (Table S13).

Of the 142 phage contigs, 108 (101 CCs and seven ncLCs) were likely novel phage genomes because of a lack of similarity with the known genomes, whereas 34 (28 CCs and six ncLCs) had high sequence similarities of ≥88.9% and almost identical lengths with the known full-length phage genomes. Of the 34 contigs, seven had similarity with phages of the family Microviridae and 11 had similarity with those of the crAss-like phages, but the known phages matched with other 16 contigs lacked taxonomic information (Table S12). The pVOG-based family-level taxonomy prediction of the novel and taxon-unknown phage contigs revealed that 77 contigs were possibly assigned to Microviridae, 27 to Siphoviridae, 12 to Myoviridae, six to Podoviridae, one to Inoviridae, and one unassigned (Table S14). In total, we identified six families including 84 Microviridae, 27 Siphoviridae, 12 Myoviridae, 11 crAss-like, six Podoviridae, and one Inoviridae in the samples (Suppl. Fig. 9).

We identified a total of 4,675 open reading frames (ORFs) as putative genes in the 142 phage contigs including 1,077 ORFs matched with pVOGs (Table S12). The average number of ORFs on contigs was 32.9 per phage contig, 8.8 per SAL contig, and 1.5 per FMS contig, respectively. The median ORF length in the 142 phage contigs was 150 amino acids (aa), which was longer than 76 aa in FMS contigs, 110 aa in SAL contigs, and 132 aa in the reference phage genomes (Fig. 6).

Discussion
The present data revealed numerous chimeric reads in PacBio reads from the MDA-treated human gut virome samples (Fig. 1). The high chimera rate was also observed in PacBio reads from MDA-treated DNA of non-metagenomic samples, in which Pacasus improved the mapping rate by reducing the chimeric reads [29]. Nevertheless, Pacasus inefficiently reduced the chimeric ratio from ~72% to only ~34% in our PacBio reads, which substantially hampered reconstruction of the complete spike-in \(\lambda \) genome (Fig. 1 and Suppl. Fig. 6). We found that Pacasus-insensitive NPCRs were composed of two different sequences, differing from the Pacasus-sensitive reads with palindromic sequences (Suppl. Fig. 3a). The mechanism for NPCR formation by MDA might involve the template switching of DNA extension by polymerases to annealable sequences spatially close but sequentially distant [30]. Because the MDA-mediated chimera formation was highly reproducible in terms of the position and frequency in the genomes (Suppl. Fig. 3b), it might not be largely influenced by other coexisting genomic DNA under the present MDA conditions, which might also be supported by the higher rate of intra-NPCRs than inter-NPCRs (Suppl. Fig. 8). As the estimated chimera frequency was similar between the samples (Suppl. Fig. 2, Table S4), the higher chimera ratio in PacBio than FMS reads is explained by its longer read-length than that of FMSs.

SACRA was developed to correct both Pacasus-sensitive and NPCRs with high efficiency. SACRA included simple computational steps, pairwise local alignment of PacBio reads to construct ARCs, PC ratio calculation, PC ratio-based selection, and splitting of chimeric ARCs (Fig. 3), in which the PC ratio was most crucial. In fact, SACRA treatment with the optimized mPC ratio, which maximized the sensitivity and specificity for distinguishing the two ARCs (Fig. 2), dramatically reduced the average chimera ratio to ~1.5% (Fig. 1 and Table S3), recovering the complete \(\lambda \) genome in all the samples, whereas no complete \(\lambda \) genome was recovered from SALs with an mPC ratio \(\geq 0 \) in four samples (Suppl. Fig. 6). Of note, the overall SAL assembly was improved by SACRA treatment with the
optimized mPC ratio in each sample (Fig. 4), suggesting that the optimized mPC ratio
determined from reads aligned to the spike-in λ genome is effective for reads from other phage
genomes in the samples as well.

De novo assembly of chimera-less SALs markedly increased the N50 and contigs with
a length >5 kb, whereas the contig number was much less than that of FMSs (Fig. 4 and Table
S7), largely due to differences in read numbers between them, where were ~7-fold higher in
FMSs than SALs in this study (Table S6). For the alignment of FMS and SAL contigs, we
found numerous short FMS contigs (mostly ≤500 bp) aligned to the MCs, in addition to the
minimum scaffolded FMS contigs (Table S8). Assembly of the FMSs excluding chimeric
reads on the λ genome effectively suppressed the generation of these short contigs (Table S9),
suggesting that the short contigs originated from a small fraction of FMS chimeric reads, which
could not be efficiently removed prior to assembly in the actual samples without the reference
genomes.

Typical FMS contig fragmentations were caused by local repeats (type 1) and
hypervariable regions (type 3) [20] in individual phage genomes and by the highly conserved
regions between multiple homologous phage genomes in the community (type 2) (Suppl. Fig.
7 and Table S11), suggesting that FMS contig fragmentation largely depended on the
community’s genomic complexity, and the most frequent type 2 fragmentation for FMS contigs
was difficult to identify without SAL contigs. However, SAL contig fragmentations (type 4)
occurred mostly at the low read-depth regions in FMS contigs, which might be caused by the
biased MDA [34]. Although type 4 fragmentation was more frequent than other types (Table
S11), this was probably specific and limited to this study due to much fewer SALs than FMSs,
as described, as well as undetected SAL contigs corresponding to the relatively low abundance
of FMS-specific contigs (Table S6). In other words, SAL contig fragmentations will be
decreased by increasing the SALs per sample, whereas FMS contig fragmentations could be marginally improved even when the reads increase.

It is challenging to identify complete LCs without TDRs because they have no characteristic structural feature of the full-length genome, unlike the linear genomes with TDRs [22]. In this study, we therefore defined ncLCs without TDRs as those containing SAL contigs with a \(\geq 80\% \) intra-chimera rate (Suppl. Fig. 8) and with a \(\geq 97\% \) length coverage of either shorter SAL or FMS contigs in the MC. Using these two parameters, we conservatively identified 13 ncLCs/MCs, of which, six were aligned to the known full-length phage genomes with high similarity (Table S12). Because all of the six ncLCs aligned to the known phage genomes were captured by the intra-chimera rate parameter, the intra-chimera rate of SAL contigs could be used to assess the completeness of non-TDR linear genomes in MDA-treated virome samples.

The 142 complete and near-complete phage contigs identified in this study were characterized by the majority (71 novel and 13 known phages) of relatively small genomes (from 4.8 to 7 kb in length) belonging to the Microviridae family with ssDNA genomes [35] (Suppl. Fig. 9 and Table S12). Of the 84 complete Microviridae genomes, 18 (13 novel) were recovered as type 2 fragmented contigs including mosaic sequences in the FMS assembly (Table S11 and Suppl. Fig. 7), suggesting the existence of some Microviridae phages with homologous but distinct genomes in the human gut, which might be hardly reconstructed from the conventional short reads. However, the abundance of these small circular ssDNA phages in the gut cannot be precisely evaluated from data of the MDA-treated samples because they were preferentially amplified by MDA as described previously [15]. Only 13 CCs, all of which were novel Microviridae phages, were shared with multiple samples in this study (Table S12), suggesting the high inter-individual variability in the gut phages, except for some phages prevalent in the human gut.
Of the 129 complete CCs, some might have linear genomes with TDRs like crAssphages, because the conversion of linear to circular DNA might also occur in MDA with a mechanism similar to template switching in PCR-extension between the two unconnected TDRs [22]. Metagenomic sequencing of non-MDA virome DNA samples will allow to determine whether the contigs have circular or linear genomes with TDRs and to quantify the abundance of phage genomes including ssDNA in the human gut [15,22]. The increased number and length of ORFs in SAL contigs was remarkably (Fig. 6), providing more information on gene organization and gene products in the phage genome than the conventional short-read metagenomics, which will facilitate the accurate prediction of phage taxonomy based on genomic signatures [36–38].

Conclusion

We present the chimera-less long-read metagenomics of MDA-treated human gut virome DNA including the development of a novel bioinformatics tool, SACRA, to correct chimeric reads in the PacBio reads. De novo assembly of the chimera-less long reads generated extended and accurate contigs, facilitating identification of the complete phage genomes and the scaffolding of fragmented contigs in the short-read metagenomics. Thus, the long-read metagenomics coupled with SACRA is of great use to reconstruct high-quality complete phage genomes from MDA-treated virome samples, and potentially from other environmental virome samples.

Methods

Subjects and fecal sample collection

Five unrelated healthy Japanese volunteers were recruited at RIKEN. None of the subjects were treated with antibiotics during the collection of fecal samples. Freshly collected fecal samples were transported at 4 °C to the laboratory in a plastic bag containing disposable oxygen-
absorbing and carbon dioxide-generating agents. In the laboratory, the fecal samples were immediately frozen using liquid nitrogen and stored at −80 °C until use [39].

Preparation of VLPs and viral DNA

Viral DNA was prepared from feces according to the literature with some modifications [14]. Frozen feces (1.0 g) was suspended in 7 mL SM buffer (with 0.01% gelatin) by vortexing. The suspension was filtrated with 100-μm pore membrane filters (Merck Millipore) and the filtrate was centrifuged at 5,000 × g for 10 min at 4 °C to pellet the debris. The supernatant was further filtrated with 5.0-μm and 0.45-μm PVDF pore membrane filters (Merck Millipore, Steriflip). An equal volume of polyethylene glycol solution (20% PEG-6000-2.5M NaCl) was added to the filtrate and the well-mixed solution was stored overnight at 4°C. The solution was centrifuged at 20,000 × g for 45 min at 4 °C to collect VLP pellets. Lysozyme (10. mg/sample, SIGMA ALDRICH) was added in the pellet suspended in 1 ml SM buffer, and the solution was incubated for 60 min at 37 °C with gentle shaking. The lysate was incubated with 10 U DNase (NIPPON GENE), 10 U TURBO DNase (Thermo Fisher Scientific), 20 U Baseline-ZERO DNase (Epicentre), and 500 U Benzonase (SIGMA ALDRICH) in DNase buffer (TURBO DNase, 1× concentration) for 2 h at 37 °C with gentle shaking. EDTA (final conc. 20 mM) was added, and the sample was heated for 15 min at 70 °C to inactivate DNases. VLPs were then lysed with Proteinase K (SIGMA ALDRICH; 0.5 mg/reaction) in the presence of SDS (final conc. 0.1%) at 55 °C for 30 min with gentle shaking. The lysate was mixed with an equal volume of phenol/chloroform/isoamyl alcohol (Life Technologies Japan, Ltd) and centrifuged at 9,000 × g for 10 min at room temperature. DNA was precipitated by adding sodium acetate (final conc. 0.3M) and an equal volume of isopropanol to the aqueous phase and pelleted by centrifugation at 12,000 × g for 15 min at 4 °C. The pellet was rinsed with 75% ethanol and dissolved in TE10 buffer (10 mM tris-HCl 10 mM EDTA). RNase (NIPPON
GENE; 37.5 µg/sample) was added to the solution and incubated for 30 min at 37 °C. An equal volume of the polyethylene glycol solution (20% PEG6000-2.5 M NaCl) was added and the solution was kept on ice for at least 20 min. RNA-free DNA was pelleted by centrifugation at 12,000 × g for 10 min at 4 °C and rinsed with 75% ethanol twice. The DNA was dried and dissolved in TE buffer (10 mM tris-HCl 1 mM EDTA). The DNA concentration was measured with the Qubit HS DNA Assay Kit in a Qubit 2.0 fluorometer (Thermo Fisher Scientific).

Multiple displacement amplification and sequencing

Lambda phage genomic DNA, supplied by PacBio (Part number 001-119-535), was added to viral DNA as spike-in DNA (1/20 of viral DNA amount). MDA was performed for 2.2–10.4 ng of viral DNA for 3 h at 45 °C using EquiPhi29 (Thermo Fisher Scientific) [27]. The amplified DNA was purified using a 0.65× volume ratio of AMPure XP (Beckman Coulter).

For MiSeq shotgun metagenomic sequencing, Illumina libraries were constructed from 10 ng of MDA-treated DNA using KAPA HyperPrep Kits (KAPA Biosystems) with 13 cycles of amplification. The concentration and size distribution of the libraries was determined with a Qubit 2.0 and Bioanalyzer, respectively. KAPA HyperPrep libraries were subjected to 300-bp paired-end sequencing with the MiSeq platform. After trimming terminal 50-bp sequences, any 5’ and 3’ low quality bases (<20 QV) bases were also trimmed. Reads with a mean QV <20 or those with <100 bp were removed. The quality filtering of reads was performed using prinseq-lite.pl [40]. Filter-passed MiSeq reads were mapped to the human genome (hg19), RefSeq fungi (release 92), the phiX genome to remove them using Bowtie2 (version 2.3.2) [41].

For PacBio Sequel shotgun metagenomic sequencing, SMRTbell libraries were constructed from 1 µg of MDA-treated DNA according to the manufacturer’s protocol (Procedure & Checklist – Preparing SMRTbell Libraries using PacBio Barcoded Adapters for
Multiplex SMRT Sequencing, PN 101-069-200-02). In brief, MDA-treated DNA was sheared by g-TUBE to ~10-kb fragments, which were then concentrated using a 0.45× volume ratio of AMPure PB (Pacific Biosciences). Sheared DNA was treated as follows: 1) Exo VII digestion, 2) DNA damage repairing, 3) end repairing, 4) ligation of SMRTbell barcoded adaptor, 5) pooling libraries, 6) Exo III and VII digestion, and 7) polymerase binding using Sequel binding Kit 3.0. SMRTbell libraries were sequenced on the SMRT cell 1M v3 using diffusion loading and a 600-min movie time. PacBio Sequel subreads were mapped to the human genome (hg19) and a sequel internal control sequence using minimap2 (map-pb option)[42] with ≥80% identity and ≥80% alignment coverage to remove them.

Error correction of PacBio reads

PacBio raw reads were subjected to error-correction by canu (v1.8) using -correct genomeSize=10m minReadLength=500 minOverlapLength=250 corOutCoverage=10000 corMinCoverage=0 corMhapSensitivity=high -fast parameters [28]. For quantification of the sequence accuracy, PacBio raw and error-corrected reads were aligned to the short-read contigs generated from the assembly of MiSeq short reads by MEGAHIT using LAST (v 963) [43] with ≥80% identity and ≥80% length coverage using -a 0 -A 10 -b 15 -B 7 and -a 8 -A 16 -b 12 -B 5 parameters, respectively, and sequence similarity of the alignments was calculated. To determine optimal parameters for LAST alignment, PacBio raw and error-corrected reads were aligned to the lambda phage (λ) genome using minimap2 (map-pb option) with ≥80% identity and length coverage, respectively. Then, the existence and extension costs of gaps and insertions were determined with LAST-TRAIN [44] from PacBio reads aligned to the λ genome. The reference index was made using lastdb with -uNEAR and -R01 options. The alignment with the highest similarity was selected as the top-hit alignment for the PacBio reads aligned to multiple regions. The error-corrected PacBio reads were subjected to Pacasus
to correct chimeric reads containing palindromic sequences with default parameters.

Detection and quantification of PacBio and MiSeq chimeric reads on the spike-in lambda phage genome

Filter-passed MiSeq short reads (FMSs) were aligned to the λ genome using BLASTN (BLAST+ 2.6.0) with -e value 1.0e-5 -task blastn-short options. After removing alignments with <95% identity and <50-bp length, chimeric reads were detected in alignments with <90% length coverage of query reads and were removed prior to the assembly of FMSs without them.

Error-corrected PacBio reads (ECLs), Pacasus-treated ECLs (PALs), and SACRA-treated ECLs (SALs) ≥500 bp were aligned to the λ genome with LAST using -a 8 -A 16 -b 12 -B 5 parameters with ≥95% identity and ≥50-bp length. Mapped reads with sequences partially aligned to different regions of the λ genome were assigned as intragenomic chimeric reads, and those with one sequence aligned to the λ genome and another to λ-unrelated genomes were assigned as intergenomic chimeric reads.

Calculation of PARs/CARs (PC ratio) of aligned read clusters (ARCs) mapped to the lambda phage genome

All ECLs were aligned to each other with LAST using -a 0 -A 10 -b 15 -B 7 parameters with ≥75% identity and ≥100-bp alignment length to obtain ARCs in each sample. The reference index of LAST was made using lastdb with -uNEAR and -R01 options. For the ARCs mapped to the λ genome, the PC ratio was calculated by counting the number of PARs and CARs in ARCs.
Relationship between the PC ratio and the specificity and sensitivity of chimera detection based on the spike-in lambda phage genome

The relationship between PC ratios and the sensitivity and specificity of the assignments of chimeric and non-chimeric ARCs mapped to the λ genome was examined. The sensitivity was defined as $100 \times \frac{TP}{TP + FN}$, where TP and FN indicate the number of ARCs assigned as chimeric ARCs and those unassigned as chimeric ACRs among the chimeric ARCs, respectively. The specificity was defined by $100 \times \frac{TN}{FP + TN}$, where TN and FP indicate the number of non-chimeric ARCs assigned as non-chimeric ARCs and those unassigned as non-chimeric ARCs among the non-chimeric ARCs, respectively.

Determination of chimeric position

The chimeric junctions containing possible chimeric positions were mostly <25 bp in length in our samples and contained alignments of multiple PARs and CARs with a few base mismatches as described previously [30,31]. The chimeric position shared by multiple PARs was determined as the chimeric position. When several PARs with subtly different chimeric positions were present, the chimeric position of PARs with the highest read depth was selected.

Whole process of SACRA treatment of PacBio reads

First, ECLs were aligned to each other using LAST to generate ARCs. Second, the PC ratio was calculated to divide ARCs with both PARs and CARs into those with greater than the optimized mPC ratio and less than the optimized mPC ratio. Third, ARCs with greater than the optimized mPC ratio and those with only PARs were subjected to SACRA to split them at the chimeric position. Finally, SACRA-split reads, unsplit reads from ARCs with less than the optimized mPC ratio and with only CARs, and singletons were combined and assembled (Figure 3).
De novo assembly of PacBio and MiSeq reads

PALs and SALs were assembled using canu (v1.8) [28] with -trim-assemble minReadLength=1000 minOverlapLength=1000 options. All generated contigs were polished by filter-passed MiSeq reads with Pilon [45]. Filter-passed MiSeq reads were assembled by MEGAHIT (v1.1.4) [46] with default parameters. Assembly statistics were obtained from all assembled contigs using seqkit [47].

Dot-plot of lambda phage genome contigs from the assembly of FMSs, PALs, and SALs

Contigs generated from the assembly of FMSs, PALs, and SALs were aligned to the λ genome with minimap2 using the asm20 parameter. The dot-plot of the minimap2 alignment was visualized with D-GENIES [48].

Alignment of FMS and SAL contigs and identification of complete and near-complete contigs

FMS and SAL contigs were aligned using NUCmer (v4.0.0) with ≥95% identity in each sample to obtain redundant merged contigs (MCs) with the minimum scaffolded contigs. MCs with a low read-depth of <100 mapped FMSs/kb were removed because of the low sequence accuracy. FMS short contigs (≤500 bp) additionally aligned to the MCs were also removed from the analysis. Remaining high read-depth MCs were further clustered with ≥99% identity and length coverage to obtain non-redundant MCs. The alignment results were visualized using AliTV with the nogapped option of lastz [49]. Merged and FMS-specific contigs generating circular contigs (CCs) were identified as complete contigs by the BLAST detection of terminal direct repeats (TDRs) with ≥95% identity and ≥50-bp alignment length.
Chimeric paired reads generated from Pacasus-insensitive chimeric reads (NPCRs) split by SACRA were mapped to contigs using minimap2 with the map-pb option and ≥80% identity and coverage. The paired reads mapped to the same contig were assigned as intra-NPCRs, and those mapped to different contigs were assigned as inter-NPCRs. The intra-chimera rate of a contig was obtained by dividing the number of intra-NPCRs by the total number of NPCRs in the contig. The fragmented λ contigs were generated by randomly dividing the complete λ sequence into 10 subsequences with 20%, 50%, and 80% coverage of the complete length.

Mapping of MiSeq and PacBio reads to contigs

FMSs were used for quantification of the relative abundance of contigs by mapping them to contigs using Bowtie2 with ≥95% identity in each sample, and the relative abundance was calculated by dividing the number of mapped reads by the contig size. Mapping SALs to contigs was individually conducted using minimap2 with the map-pb option [42] and ≥95% identity and ≥85% length coverage. Of the alignments containing PacBio reads that aligned to multiple contigs, the alignment with the highest identity was selected as the top hit alignment. The mapping results were visualized with IGV (v2.7.2) [44].

Analysis of complete and near-complete contigs

Virsorter (v1.0.3) with virome db and virome decontamination options in the CyVerse environment [32] was used for phage assessment. Open reading frames (ORFs) were predicted by prodigal with ≥20 amino acids [51], and a similarity search was conducted against pVOG [33] using Diamond BLASTP [52] with an e-value <1e-5 threshold and --sensitive option. A. similarity search of the contigs against the virus and plasmid database was conducted using NUCmer with ≥85% identity and length coverage. In this study, we integrated and used
publicly available phage sequences from RefSeq phage genomes (release 85), complete and high-quality draft viral genomes in IMG/VR v2.0 [16], crAss-like phage genomes [53], *Microviridae* genomes [35], and the full-length phage genomes reconstructed from human fecal samples [22]. The gene lengths of reference phage genomes were obtained from the RefSeq phage genomes. The plasmid sequences were also obtained from RefSeq plasmid (February 2020), PLSDB (version 2020_03_04) [54] and those from human fecal samples [22].

Taxonomic assignments of novel complete and near-complete phage contigs were performed by a similarity search of pVOGs against those in the known phage genomes with the voting system [38], in which the taxon with the highest number of matched pVOGs was assigned as that of the contig. When the contig had the same number of pVOGs that hit multiple different taxa, the taxon with the highest similarity was assigned as that of the contig.

Declarations

Ethics approval and consent to participate

This study was approved by the research ethics committee of RIKEN and Waseda University, and written consent was obtained from all subjects.

Consent for publication

Written informed consent for publication was obtained from all subjects.

Availability of data and materials

The sequencing data of MiSeq and PacBio Sequel and circular and near-complete linear contigs are available from the DNA Data Bank of Japan (DDBJ; Accession No: DRA009211). SACRA used in this study is available at https://github.com/hattori-lab/SACRA.
Competing interests
The authors declare that they have no competing interests.

Funding
This study was supported in part by the scholarships for young doctoral students from Waseda University to Y.K., the Leading Advanced Projects for Medical Innovation (LEAP) and Advanced Research and Development Programs (CREST) from AMED to M.H., and RIKEN Integrated Symbiology (to W.S.).

Authors’ contributions
Y.K. designed the study. W.S and M.H supervised the study. Y.K. performed biological experiments including virome DNA sample preparation. Y.K. and W.S. performed Illumina and PacBio sequencing. Y.K., N.K., S.N., and W.S. performed computational analysis. Y.K., M.H., and W.S. wrote the manuscript, which was approved by all authors.

Acknowledgements
We thank M. Tanokura, K. Kaida, C. Shindo, K. Honda, K. Komiya, and Y. Hattori for technical supports for DNA preparation, sequencing, and computational analysis.

References
1. Reyes A, Haynes M, Hanson N, Angly FE, Heath AC, Rohwer F, et al. Viruses in the faecal microbiota of monozygotic twins and their mothers. Nature. 2010;466:334–8.
2. Breitbart M, Hewson I, Felts B, Mahaffy JM, Nulton J, Salamon P, et al. Metagenomic Analyses of an Uncultured Viral Community from Human Feces. J Bacteriol. 2003;185:6220–6223.
3. Shkoporov AN, Clooney AG, Sutton TDS, Ryan FJ, Daly KM, Nolan JA, et al. The Human Gut Virome Is Highly Diverse, Stable, and Individual Specific. Cell Host Microbe. 2019;26:527–41.

4. Reyes A, Semenkovich NP, Whiteson K, Rohwer F, Gordon JI. Going viral: next-generation sequencing applied to phage populations in the human gut. Nat Rev Microbiol. 2012;10:607–17.

5. Reyes A, Wu M, McNulty NP, Rohwer FL, Gordon JI. Gnotobiotic mouse model of phage-bacterial host dynamics in the human gut. Proc Natl Acad Sci USA. 2013;110:20236–20241.

6. Hsu BB, Gibson TE, Yeliseyev V, Liu Q, Lyon L, Bry L, et al. Dynamic Modulation of the Gut Microbiota and Metabolome by Bacteriophages in a Mouse Model. Cell Host Microbe. 2019;25:803–14.

7. Norman JM, Handley SA, Baldridge MT, Droit L, Liu CY, Keller BC, et al. Disease-specific alterations in the enteric virome in inflammatory bowel disease. Cell. 2015;160:447–60.

8. Nakatsu G, Zhou H, Wu WKK, Wong SH, Coker OO, Dai Z, et al. Alterations in Enteric Virome Are Associated With Colorectal Cancer and Survival Outcomes. Gastroenterology. 2018;155:529–41.

9. Zhao G, Vatanen T, Droit L, Park A, Kostic AD, Poon TW, et al. Intestinal virome changes precede autoimmunity in type I diabetes-susceptible children. Proc Natl Acad Sci USA. 2017;114:E6166–E6175.

10. Ma Y, You X, Mai G, Tokuyasu T, Liu C. A human gut phage catalog correlates the gut phageome with type 2 diabetes. Microbiome. 2018;6:24.

11. Zuo T, Lu XJ, Zhang Y, Cheung CP, Lam S, Zhang F, et al. Gut mucosal virome alterations in ulcerative colitis. Gut. 2019;68:1169–79.
12. Clooney AG, Sutton TDS, Shkoporov AN, Plevy SE, Ross RP, Hill C, et al. Whole-Virome Analysis Sheds Light on Viral Dark Matter in Inflammatory Bowel Disease. Cell Host Microbe. 2019;20:2083–8.

13. Manrique P, Bolduc B, Walk ST, van der Oost J, de Vos WM, Young MJ. Healthy human gut phageome. Proc Natl Acad Sci USA. 2016;113:10400–10405.

14. Shkoporov AN, Ryan FJ, Draper LA, Forde A, Stockdale SR, Daly KM, et al. Reproducible protocols for metagenomic analysis of human faecal phageomes. Microbiome. 2018;6:68.

15. Roux S, Solonenko NE, Dang VT, Poulos BT, Schwenck SM, Goldsmith DB, et al. Towards quantitative viromics for both double-stranded and single-stranded DNA viruses. PeerJ. 2016;4:e2777.

16. Paez-Espino D, Roux S, Chen I-MA, Palaniappan K, Ratner A, Chu K, et al. IMG/VR v.2.0: an integrated data management and analysis system for cultivated and environmental viral genomes. Nucleic Acids Res. 2018;47:D678–D686.

17. Roux S, Emerson JB, Eloé-Fadrosh EA, Sullivan MB. Benchmarking viromics: An in silico evaluation of metagenome-enabled estimates of viral community composition and diversity. PeerJ. 2017;5:e3817.

18. Galiez C, Siebert M, Enault F, Vincent J, Söding J. WlsH: who is the host? Predicting prokaryotic hosts from metagenomic phage contigs. Bioinformatics. 2017;33:3113–4.

19. Ahlgren NA, Ren J, Lu YY, Fuhrman JA, Sun F. Alignment-free d2* oligonucleotide frequency dissimilarity measure improves prediction of hosts from metagenomically-derived viral sequences. Nucleic Acids Res. 2017;45:3953.

20. Minot S, Grunberg S, Wu GD, Lewis JD, Bushman FD. Hypervariable loci in the human gut virome. Proc Natl Acad Sci USA. 2012;109:3962–6.

21. Olson ND, Treangen TJ, Hill CM, Cepeda-Espinoza V, Ghurye J, Koren S, et al.
Metagenomic assembly through the lens of validation: recent advances in assessing and improving the quality of genomes assembled from metagenomes. Brief Bioinform. 2017;20:1140–1150.

22. Suzuki Y, Nishijima S, Furuta Y, Yoshimura J, Suda W, Oshima K, et al. Long-read metagenomic exploration of extrachromosomal mobile genetic elements in the human gut. Microbiome. 2019;7:119.

23. Warwick-Dugdale J, Solonenko N, Moore K, Chittick L, Gregory AC, Allen MJ, et al. Long-read viral metagenomics enables capture of abundant and microdiverse viral populations and their niche-defining genomic islands. PeerJ. 2019;7:e6800.

24. Beaulaurier J, Zhu S, Deikus G, Mogno I, Zhang X-S, Davis-Richardson A, et al. Metagenomic binning and association of plasmids with bacterial host genomes using DNA methylation. Nat Biotechnol. 2017;36:61–69.

25. Bertrand D, Shaw J, Kalathiappan M, Ng AHQ, Muthiah S, Li C, et al. Hybrid metagenomic assembly enables high-resolution analysis of resistance determinants and mobile elements in human microbiomes. Nat Biotechnol. 2019;37:937–944.

26. Moss EL, Maghini DG, Bhatt AS. Complete, closed bacterial genomes from microbiomes using nanopore sequencing. Nat Biotechnol. 2020;

27. Stepanauskas R, Fergusson EA, Brown J, Poulton NJ, Tupper B, Labonté JM, et al. Improved genome recovery and integrated cell-size analyses of individual uncultured microbial cells and viral particles. Nat Commun. 2017;8:84.

28. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2016;27:722–736.

29. Warris S, Schijlen E, van de Geest H, Vegesna R, Hesselink T, Te Lintel Hekkert B, et al. Correcting palindromes in long reads after whole-genome amplification. BMC Genomics.
30. Lasken RS, Stockwell TB. Mechanism of chimera formation during the Multiple Displacement Amplification reaction. BMC Biotechnol. 2007;7:19.

31. Tu J, Guo J, Li J, Gao S, Yao B, Lu Z. Systematic characteristic exploration of the chimeras generated in multiple displacement amplification through next generation sequencing data reanalysis. PLoS One. 2015;10:e0139857.

32. Roux S, Enault F, Hurwitz BL, Sullivan MB. VirSorter: mining viral signal from microbial genomic data. PeerJ. 2015;3:e985.

33. Grazziotin AL, Koonin E V., Kristensen DM. Prokaryotic Virus Orthologous Groups (pVOGs): A resource for comparative genomics and protein family annotation. Nucleic Acids Res. 2017;45:D491–8.

34. Parras-moltó M, Rodríguez-galet A, Suárez-rodriguez P, López-bueno A. Evaluation of bias induced by viral enrichment and random amplification protocols in metagenomic surveys of saliva DNA viruses. Microbiome. 2018;6:119.

35. Roux S, Krupovic M, Poulet A, Debroas D, Enault F. Evolution and diversity of the microviridae viral family through a collection of 81 new complete genomes assembled from virome reads. PLoS One. 2012;7:e40418.

36. Rohwer F, Edwards R. The phage proteomic tree: A genome-based taxonomy for phage. J Bacteriol. 2002;184:4529–35.

37. Jang H Bin, Bolduc B, Zablocki O, Kuhn JH, Roux S, Adriaenssens EM, et al. Taxonomic assignment of uncultivated prokaryotic virus genomes is enabled by gene-sharing networks. Nat Biotechnol. 2019;37:632–639.

38. Minot S, Bryson A, Chehoud C, Wu GD, Lewis JD, Bushman FD. Rapid evolution of the human gut virome. Proc Natl Acad Sci U S A. 2013;110:12450–5.

39. Nishijima S, Suda W, Oshima K, Kim S-W, Hirose Y, Morita H, et al. The gut
microbiome of healthy Japanese and its microbial and functional uniqueness. DNA Res. 2016;23:125–133.

40. Schmieder R, Edwards R. Quality control and preprocessing of metagenomic datasets. Bioinformatics. 2011;27:863–4.

41. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.

42. Li H. Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34:3094–100.

43. Wan R, Sato K, Kielbasa SM, Frith MC, Horton P. Adaptive seeds tame genomic sequence comparison. Genome Res. 2011;21:487–93.

44. Hamada M, Ono Y, Asai K, Frith MC, Hancock J. Training alignment parameters for arbitrary sequencers with LAST-TRAIN. Bioinformatics. 2017;33:926–8.

45. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, et al. Pilon: An integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One. 2014;9.

46. Li D, Liu CM, Luo R, Sadakane K, Lam TW. MEGAHIT: An ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics. 2015;31:1674–6.

47. Shen W, Le S, Li Y, Hu F. SeqKit: A cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLoS One. 2016;11:1–10.

48. Cabanettes F, Klopp C. D-GENIES: dot plot large genomes in an interactive, efficient and simple way. PeerJ. 2018;6:e4958.

49. Ankenbrand MJ, Hohlfeld S, Hackl T, Förster F. AliTV-interactive visualization of whole genome comparisons. PeerJ Comput Sci. 2017;3:e116.

50. Robinson JT, Thorvaldsdóttir H, Winckler W, Guttmann M, Lander ES, Getz G, et al.
Integrative genomics viewer. Nat Biotechnol. 2011;29:24–6.

51. Hyatt D, Chen GL, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: Prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics. 2010;11:119.

52. Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2014;12:59–60.

53. Guerin E, Shkoporov A, Stockdale S, Clooney AG, Ryan FJ, Draper LA, et al. Biology and taxonomy of crAss-like bacteriophages, the most abundant virus in the human gut. Cell Host Microbe. 2018;24:653–64.

54. Galata V, Fehlmann T, Backes C, Keller A. PLSDB: A resource of complete bacterial plasmids. Nucleic Acids Res. 2019;47:D195–202.
Figure legends

Figure 1 | The average chimera ratio based on the spike-in lambda phage genome.

The average chimera ratio of PacBio and MiSeq reads in metagenomic sequencing of the multiple displacement amplification (MDA)-treated human gut virome DNA is shown. FMSs, ECLs, PALs, and SALs indicate filter-passed MiSeq short reads, error-corrected PacBio long reads, Pacasus-treated ECLs, and SACRA-treated ECLs, respectively. Error bars represent the standard deviation (SD).

Figure 2 | Development of SACRA correction for PacBio chimeric reads.

a, Illustration of chimeric and non-chimeric alignment read clusters (ARCs). The aligned and unaligned sequences to chimeric and non-chimeric ARCs are shown by solid and dashed lines, respectively. Reads composed of red and blue lines are chimeric, and those only with red or blue lines are non-chimeric. Continuously aligned reads (CARs) spanning the chimeric positions and partially aligned reads (PARs) are shown. Vertical dashed lines indicate the candidate chimeric positions based on PARs. **b**, Relationship between the specificity and sensitivity for detection of non-chimeric and chimeric ARCs and the minimum PC ratio in each sample.

Figure 3 | Whole process of SACRA treatment of PacBio reads.

STEP1. Construction of aligned read clusters (ARCs) from error-corrected PacBio reads by pairwise local alignment with the LAST aligner. The generated ARCs include ARCs-1 with both CARs and PARs, ARCs-2 only with PARs, and ARCs-3 only with CARs, and singleton reads (singletons) unaligned with any other read. **STEP2.** The PC ratio (PARs/CARs) of all ARCs-1 is calculated to determine the optimized minimum PC (mPC) ratio, with which ARCs-
1 are divided into those ≥mPC and <mPC ratio. **STEP3.** ARCs-1 ≥mPC ratio and ARCs-2 are split by SACRA. Finally, all the split and unsplit reads are combined for assembly.

Figure 4| Statistics of de novo assembly of FMSs, PALs, and SALs.

a, N50 contig length in assembly of FMSs, PALs, and SALs. FMSs, PALs, and SALs indicate filter-passed MiSeq short reads, Pacasus-treated ECLs, and SACRA-treated ECLs, respectively. Boxes represent the inter-quartile range (IQR) and lines inside the box indicate the median. × represents the average. Whiskers show the 1.5× IQR. Points represent outliers. b, Ratio of contig-length distribution in assembly of FMSs, PALs, and SALs in the five samples.

Figure 5 | Comparison of FMS, SAL, and merged contigs (MCs).

a, The average number of the minimum scaffolded FMS and SAL contigs, and short fragmented FMS contigs aligned to the MCs in the five samples. FMSs and SALs indicate filter-passed MiSeq short reads and SACRA-treated ECLs, respectively. b, The average contig length of FMS, SAL, and MC. Error bars represent the SD. c, Proportion of fragmentation types of FMS contigs.

Figure 6 | Statistics of ORFs in FMS, SAL, and 142 complete and near-complete phage contigs.

a, Distribution of the number of open reading frames (ORFs; ≥20 aa) per SAL, FMS, and merged contig in the five samples. FMSs and SALs indicate filter-passed MiSeq short reads and SACRA-treated ECLs, respectively. b, Comparison of ORF length (aa) in complete and near-complete contigs (CCs & ncLCs) in the five samples and the reference complete phage genomes (left two data), as well as between FMS and SAL contigs in each sample. Boxes represent the inter-quartile range (IQR). Lines inside the box indicate the median. Whiskers
show the 1.5× IQR. For visualization, outliers are not shown.

Supplementary Figure 1 | Sequence similarity of the filter-passed and error-corrected PacBio reads with corresponding Miseq contigs.

a, Boxes represent the inter-quartile range (IQR) and lines inside the box indicate the median.

× represents the average. Whiskers show the 1.5× IQR. Points represent outliers.

Supplementary Figure 2 | Normalized chimera ratio by read-length.

a, Average chimera ratio normalized by read-length in the spike-in lambda phage genome.

Error bars represent the SD.

Supplementary Figure 3 | Characterization of Pacasus-insensitive chimeric reads (NPCRs).

a, Structure of non-palindromic intragenomic (intra-NPCRs) and intergenomic chimeric reads (inter-NPCRs) on the spike-in lambda phage genome. b, An example comparison of the position (x-axis) and frequency (y-axis) of chimeric positions every 20 bp on the lambda phage genome between technical replicate 1 and 2 of sample S1.

Supplementary Figure 4 | Characteristics of chimeric and non-chimeric ARCs and ARC PC ratio on spike-in lambda phage genome.

a, Ratio of chimeric and non-chimeric ARCs in each sample. b, PC ratio of ARCs in each sample. Boxes represent the inter-quartile range (IQR) and lines inside the box indicate the median. Whiskers show the 1.5× IQR. Points represent outliers.

Supplementary Figure 5 | Statistics of FMSs, ECLs, PALs, and SALs.
a, Chimera ratio (%) of FMSs, ECLs, PALs, and SALs on the spike-in lambda phage genome in each sample. b, The ratio (%) of the corrected Pacusus-sensitive chimeric reads based on SACRA in each sample. c, An example of the read-length distribution of ECLs, PALs, and SALs in sample S3. d, Average ratio of the total bases of PALs and SALs (≥1 kb) to that of ECLs (≥1 kb). Error bars represent SD.

Supplementary Figure 6 | Comparison of the spike-in lambda phage genomes reconstructed from FMSs, PALs, and SALs.

Dot-plots indicate the similarity at ≥95% identity between the reconstructed lambda phage genomes. The x-axis indicates the consensus sequence of lambda phage genomes reconstructed from SALs in the five samples, almost identical to the reference, and the y-axis indicates the sequences reconstructed from FMSs, PALs, and two SALs with an optimized mPC ratio and mPC ratio of zero, respectively. Horizontal lines in dot-plots show the gaps in the reconstructed contigs, and the total contig number (#contigs) is shown on the top-left of each dot-plot.

Supplementary Figure 7 | Examples for FMS and SAL contig fragmentations.

Four types of contig fragmentations are exemplified. Upper red and blue bars show the forward and reverse sequences of SALs and FMSs mapped to the contigs, respectively. a, Type 1 fragmentation in FMS contigs. Dot-plot shows self-alignment of the MC, and a local repeat region is boxed. b, Type 2 fragmentation in the FMS contig. Five different fragmented FMS contigs including mosaic sequences caused by two homologous genomes are shown. The degree of similarity in lastz alignments is shown on the right. c, Type 3 fragmentation in FMS contigs. The middle vertical lines in grey indicate changes in the read-depth of FMSs across the MC, in which base variations are colored. d, Type 4 fragmentation in SAL contigs. The middle vertical lines in grey indicate changes in the read-depth of FMSs across the MC, in
which a region with the extreme low read-depth is marked.

Supplementary Figure 8 | Comparison of the intra-chimera rate of lambda contigs.

a, The intra-chimera (intra-NPCRs) rate of fragmented lambda contigs with completeness from 20% to 100% of the full-length genome. Boxes represent the inter-quartile range (IQR) and lines inside the box indicate the median. Whiskers show the 1.5× IQR. Points represent outliers.

*p-value <0.01 NS, no significance; Wilcoxon rank sum test with Bonferroni correction.

Supplementary Figure 9 | Family-level taxonomic assignment of 142 complete and near-complete phage contigs.