MINIMAL SYMPLECTICATALASES OF HERMITIAN SYMMETRIC SPACES

ROBERTO MOSSA AND GIOVANNI PLACINI

ABSTRACT. In this paper we compute the minimal number of Darboux chart needed to cover a Hermitian symmetric space of compact type M in terms of the degree of its Borel-Weil embedding in $\mathbb{C}P^N$. The proof is based on the recent work of Y. B. Rudyak and F. Schlenk [18] and on the symplectic geometry tool developed by the first author in collaboration with A. Loi and F. Zuddas [12]. As application we compute this number for a large class of Hermitian symmetric spaces of compact type.

1. Introduction and statements of the main results

Consider the open ball of radius r,

$$B^{2n}(r) = \{(x, y) \in \mathbb{R}^{2n} \mid \sum_{j=1}^{n} x_j^2 + y_j^2 < r^2\}$$

in the standard symplectic space $(\mathbb{R}^{2n}, \omega_0)$, where $\omega_0 = \sum_{j=1}^{n} dx_j \wedge dy_j$. In [18] Y. B. Rudyak and F. Schlenk introduced the invariant $S_B(M, \omega)$ for a closed symplectic manifold (M, ω) defined by:

$$S_B(M, \omega) := \min\{k \mid M = B_1 \cup \cdots \cup B_k\},$$

where B_j is the image of a Darboux chart $\varphi(B^{2n}(r_j)) \subset M$. This is the minimal number of symplectic charts needed to cover (M, ω). The problem of estimating this number is closely related to two other problems, namely computing the Gromov width $c_G(M, \omega)$ and the Lusternik-Schnirelmann category $\text{cat}(M)$ of M. While the latter can be often computed or estimated very well, computing the former is an open and delicate matter. The Gromov width of a $2n$-dimensional symplectic manifold (M, ω), introduced in [19], is defined as

$$c_G(M, \omega) = \sup \{\pi r^2 \mid \exists \varphi : (B^{2n}(r), \omega_0) \to (M, \omega)\}$$

2000 Mathematics Subject Classification. 53D05; 53C55; 53D05; 53D45.

Key words and phrases. Minimal symplectic atlases; Darboux chart; Gromov width; Hermitian symmetric spaces of compact type.

The first author was supported by Prin 2010/11 – Varietà reali e complesse: geometria, topologia e analisi armonica – Italy.
where φ is a symplectic embedding. By Darboux’s theorem $c_G(M, \omega)$ is a positive number or ∞. Computations and estimates of the Gromov width for various examples can be found in [1, 2, 3, 4, 6, 7, 9, 10, 12, 13, 14, 15, 16, 17, 19, 21].

We adopt the following notation (as in [12]):

Notation: From now on we shall use the shortening HSSCT to denote a Hermitian symmetric space of compact type. Further, throughout the paper we shall denote by $\omega_{FS}(B) \in \{-\pi, \pi\}$ when B is a generator of $H_2(M, \mathbb{Z})$, and by A the generator for which $\omega_{FS}(A) = \pi$.

The following theorem and its two corollaries are the main results of this paper.

Theorem 1. Let (M, ω_{FS}) be a $2n$-dimensional HSSCT and let $f : M \hookrightarrow \mathbb{C}P^N$ be the Borel-Weil embedding of M. Then

(i) If $\deg(f) \geq 2n$, then $S_B(M, \omega_{FS}) = \deg(f) + 1$

(ii) If $\deg(f) < 2n$, then $n + 1 \leq S_B(M, \omega_{FS}) \leq 2n + 1$,

where the Borel-Weil embedding is a full Kähler embedding of (M, ω_{FS}) in $(\mathbb{C}P^N, \omega_{FS})$ (see [5, Section 2.4]). Notice that when M is the complex Grassmannian then f is the Plücker embedding. The proof is based on the results obtained by Y. B. Rudyak and F. Schlenk in [18] about minimal atlas for compact symplectic manifolds together with the explicit computation of the Gromov width given by the first author in collaboration with A. Loi and F. Zuddas in [12] and the properties of the symplectic duality map introduced by A. J. Di Scala and A. Loi in [5] which, in particular, give us a symplectic embedding of the noncompact dual (Ω, ω_0) of (M, ω_{FS}) into (M, ω_{FS}).

Using the explicit computation of the volume of a classical domain (Ω, ω_0) given by L. K. Hua in [3], we are able to prove the following corollary, which extends the computation of S_B for the Grassmannians given in [18] to any classical irreducible HSSCT.

Corollary 2. Let (M, ω_{FS}) be an irreducible HSSCT of dimension $2n$. If M is of type I, II or III with rank$(M) \geq 2$ and n is sufficiently large, then

$$S_B(M, \omega_{FS}) = \deg(f) + 1$$

where $f : M \hookrightarrow \mathbb{C}P^N$ is the Borel-Weil embedding of M. Otherwise, we have

$$n + 1 \leq S_B(M, \omega_{FS}) \leq 2n + 1.$$
In the rank one case (i.e. $M = \mathbb{C}P^n$), the degree of the associated Borel-Weil embedding is $\deg(f) = 1$ and [18, Corollary 5.8] says us that $S_B(\mathbb{C}P^n, \omega_{FS}) = n + 1$.

The next corollary, which represent the last result of the paper, is a straightforward consequence of Theorem 1.

Corollary 3. Let $(M_1 \times M_2, \omega_{FS})$ be a product of HSSCT of dimension $2n$. If $M_1 \times M_2$ is different from $\mathbb{C}P^1 \times \mathbb{C}P^n$ and $\mathbb{C}P^2 \times \mathbb{C}P^2$, then

$$S_B(M_1 \times M_2, \omega_{FS}) = \deg(f) + 1,$$

where $f : M_1 \times M_2 \hookrightarrow \mathbb{C}P^N$ is the Borel-Weil embedding. Otherwise, we have

$$n + 1 \leq S_B(M, \omega_{FS}) \leq 2n + 1.$$

Acknowledgments. The authors would like to thank Professor Andrea Loi for his help and various stimulating discussions and Professor Felix Schlenk for his interest in our work and numerous comments.

2. The proofs of Theorem 1, Corollary 2 and Corollary 3

Consider the following lower bound for $S_B(M, \omega)$ given by

$$\Gamma(M, \omega) := \left\lfloor \frac{Vol(M, \omega)n!}{c_G(M, \omega)^n} \right\rfloor + 1,$$

where $\lfloor x \rfloor$ denote the maximal integer smaller than or equal to x. The following theorem summarizes the results about minimal atlases obtained in [18] that we need in the proof of Theorem 1.

Theorem A (Rudyak–Schlenk [18]). Let (M, ω) be a compact connected $2n$-dimensional symplectic manifold.

i) If $\Gamma(M, \omega) \geq 2n + 1$, then $S_B(M, \omega) = \Gamma(M, \omega)$.

ii) If $\Gamma(M, \omega) < 2n + 1$ then $n + 1 \leq S_B(M, \omega) \leq 2n + 1$.

2.1. Proof of Theorem 1

The proof follows from Theorem A once one observes that the volume of any n-dimensional projective variety X, with holomorphic embedding $f : X \hookrightarrow \mathbb{C}P^N$, is given by

$$Vol(X, \omega_{FS}) = \deg(f)Vol(\mathbb{C}P^n, \omega_{FS}),$$

(1)

$Vol(\mathbb{C}P^n) = \frac{\pi^n}{n!}$ and that the Gromov width of any HSSNCT (see [12]) is given by $c_G(M, \omega_{FS}) = \pi$.

2.2. **Proof of Corollary 2** Consider \((\Omega, \omega_0)\), the noncompact dual of \((M, \omega_{FS})\). In [5, Theorem 1.1] it is proved the existence of a global symplectomorphism
\[
\Phi : (\Omega, \omega_0) \rightarrow (M \setminus \text{Cut}_p(M), \omega_{FS})
\]
where \(\text{Cut}_p(M)\) is the cut locus of \((M, \omega_{FS})\) with respect to a fixed point \(p \in M\) (see also [11]). Thus \(\text{Vol}(M, \omega_{FS}) = \text{Vol}(\Omega, \omega_0)\). On the other hand the explicit expression of the volume \(\text{Vol}(\Omega, \omega_0)\) can be found in L. K. Hua [8] and by (1) we are able to write the expression of \(\text{deg}(f)\) associated to any classical HSSCT, as follows.

Let \(I_{k,s}\) be a HSSCT of type I, namely the Grassmannian of \(k\)-planes in \(\mathbb{C}^s\). Notice that the dimension is \(2n = 2(s-k)k\) and that \(\text{rank}(I_{k,s}) = k\). We have that
\[
\text{deg}(f_{k,s}) = \frac{\text{Vol}(I_{k,s}, \omega_{FS})}{\text{Vol}(\mathbb{C}P^{(s-k)k}, \omega_{FS})} = \frac{1! 2! \ldots (s-k-1)! 2! \ldots (k-1)! ((s-k)k)!}{1! 2! \ldots (s-1)!}.
\]
In order to apply Theorem 1 we study when \(\text{deg}(f_{k,s}) \geq 2(s-k)k\), or equivalently when
\[
\frac{\text{deg}(f_{k,s})}{(s-k)k} \geq 2.
\]
One can see that the previous inequality is satisfied for \((k, s) = (2, 7)\) and for \((k, s) = (k, 2k)\) when \(k \geq 3\).

Therefore Corollary 2 is proved, when \(M = I_{k,s}\), once observed that for \(k \geq 2\) we have
\[
\frac{\text{deg}(f_{k,s+1})}{(s+1-k)k} \geq \frac{\text{deg}(f_{k,s})}{(s-k)k}.
\]

When \(M\) is of the second or third type the proof follows the same arguments. The degree of the Borel-Weil embedding \(f_{II}\) and \(f_{III}\) associated to an irreducible HSSCT of the second and the third type are given by:

- Let \(II_s\) be an irreducible HSSCT of the second type. The dimension and the rank are given by \(n = \frac{(s-1)s}{2}\) and \(\text{rank}(II_s) = \left\lceil \frac{s}{2} \right\rceil\), \(s \geq 5\). We have,
\[
\text{deg}(f_{II}) = \frac{s(s+1)}{2} \frac{2! \ldots (2s-2)!}{s! (s+1)! (s+2)! \ldots (2s-1)!}.
\]

- Let \(III_s\) be an irreducible HSSCT of the third type. The dimension and the rank are given by \(n = \frac{(s+1)s}{2}\) and \(\text{rank}(III_s) = s\), \(s \geq 2\). We have,
\[
\text{deg}(f_{III}) = \frac{s(s-1)}{2} \frac{2! \ldots (2s-4)!}{(s-1)! s! \ldots (2s-3)!}.
\]

Finally, since the degree of the Borel-Weil embedding of an irreducible HSSCT of the fourth type (namely the quadric) is always 2 and \(n \geq 3\), the conclusion of the proof of Corollary 2 follows by (ii) of Theorem 1.
2.3. Proof of Corollary 3. Let ω^1_{FS} and ω^2_{FS} be the Fubini-Study forms associated to M_1 and M_2. Since the associated volume form satisfies (with abuse of notation) $v_{\omega_{FS}} = v_{\omega^1_{FS}} \wedge v_{\omega^2_{FS}}$, we have $\text{Vol}(M_1 \times M_2) = \text{Vol}(M_1)\text{Vol}(M_2)$. By (1) we get:

$$\text{deg}(f) = \frac{(n_1 + n_2)!}{n_1!n_2!} \text{deg}(f_1)\text{deg}(f_2),$$

where n_j is the dimension of M_j, $j = 1, 2$ and f_1 and f_2 are the Borel-Weil embedding of $M_1 \times M_2$, M_1 and M_2. In order to apply (i) of Theorem 1, we have to check when

$$\text{deg}(f_1)\text{deg}(f_2) \left(\frac{(n_1 + n_2 - 1)!}{n_1!n_2!}\right) \geq 2. \tag{2}$$

First notice that when $\text{deg}(f_1) \geq 2$ or $\text{deg}(f_2) \geq 2$, since $\frac{(n_1 + n_2 - 1)!}{n_1!n_2!} \geq 1$, the inequality (2) is satisfied. Finally, when $\text{deg}(f_1) = \text{deg}(f_2) = 1$ is easy to see that (2) is satisfies if and only if $n_1 \geq 3$ and $n_2 \geq 2$ or $n_1 \geq 2$ and $n_2 \geq 3$. The proof is complete.

Remark 4. When $M = \mathbb{C}P^1 \times \mathbb{C}P^n, \mathbb{C}P^2 \times \mathbb{C}P^2$ we are not able to compute $S_B(M, \omega_{FS})$. Even for the simple case of $\mathbb{C}P^1 \times \mathbb{C}P^1$ we know (private communication with F. Schlenk) that one can construct a covering of 4 symplectic balls but we still do not know if this number can be reduced to 3.

References

[1] P. Biran, *Symplectic packing in dimension 4*, Geom. Funct. Anal. 7 (1997), 420-437.
[2] P. Biran, *A stability property of symplectic packing*, Invent. Math. 136 (1999) 123-155.
[3] P. Biran, *From symplectic packing to algebraic geometry and back*, European Congress of Mathematics, Vol. II (Barcelona, 2000) Progr. Math. 202, Birkhauser, Basel (2001) 507-524.
[4] A. C. Castro, *Upper bound for the Gromov width of coadjoint orbits of type A*, arXiv:1301.0158v1
[5] A. J. Di Scala, A. Loi, *Symplectic duality of symmetric spaces*, Advances in Mathematics 217 (2008), 2336-2352.
[6] M. Gromov, *Pseudoholomorphic curves in symplectic manifolds*, Invent. Math. 82 (1985), no. 2, 307-347, Springer–Verlag (1986).
[7] M.-Y. Jiang, *Symplectic embeddings from \mathbb{R}^{2n} into some manifolds*, Proc. Roy. Soc. Edinburgh Sect. A 130 (2000), 53-61.
[8] L. K. Hua, *Harmonic analysis of functions of several complex variables in the classical domains*, American Mathematical Society, Providence, R.I., 1963.
[9] Y. Karshon, S. Tolman, *The Gromov width of complex Grassmannians*, Algebr. Geom. Topol. 5 (2005), 911-922.
[10] J. Latschev, D. McDuff and F. Schlenk, *The Gromov width of 4-dimensional tori*, Geom. Topol. 17 (2013) 2813-2853.
[11] A. Loi, R. Mossa, *The diastatic exponential of a symmetric space*, Math. Z. 268 (2011), no. 3-4, 1057-1068.
[12] A. Loi, R. Mossa, F. Zuddas *Symplectic capacities of Hermitian symmetric spaces of compact and non compact type*, to appear in J. Sympl. Geom.
A. Loi, R. Mossa, F. Zuddas, *Some remarks on the Gromov width of homogeneous Hodge manifolds*, Int. J. Geom. Methods Mod. Phys. 11 (2014), no. 9.

G. Lu, *Gromov-Witten invariants and pseudo symplectic capacities*, Israel J. Math. 156 (2006), 1-63.

G. Lu, H. Ding, Q. Zhang, *Symplectic capacities of classical domains*, Int. Math. Forum 2 (2007), no. 25-28, 13111317.

D. McDuff, *Blowups and symplectic embeddings in dimension 4*, Topology 30 (1991), 409-421.

D. McDuff and L. Polterovich, *Symplectic packings and algebraic geometry*, Invent. math. 115 (1994), 405-429.

Y. B. Rudyak, F. Schlenk, *Minimal atlases of closed symplectic manifolds*, Commun. Contemp. Math. 9 (2007), no. 6, 811-855.

F. Schlenk, *Embedding problems in symplectic geometry*, de Gruyter Expositions in Mathematics 40. Walter de Gruyter Verlag, Berlin, 2005.

M. Takeuchi, *Homogeneous Kähler Submanifolds in Complex Projective Space*, Japan J. Math. vol. 4 (1978), 171-219.

M. Zoghi, *The Gromov Width of Coadjoint Orbits of Compact Lie Groups*, Thesis (Ph.D.)University of Toronto (Canada) 2010.

(R. Mossa) DIAPARTIMENTO DI MATEMATICA E INFORMATICA, UNIVERSITÀ DEGLI STUDI DI CAGLIARI (ITALY)

E-mail address: roberto.mossa@gmail.com

(G. Placini) DIAPARTIMENTO DI MATEMATICA, UNIVERSITÀ DI PISA (ITALY)

E-mail address: giovanniplacini@tiscali.it