New Type of Laser-Plasma Experiments to Simulate an Extreme and Global Impact of Giant Coronal Mass Ejections onto Earth’ Magnetosphere

Yu P Zakharov, V M Antonov, E L Boyarintsev, A V Melekhov, V G Posukh, I F Shaikhislamov, K V Vchivkov, H Nakashima and A G Ponomarenko

1 Institute of Laser Physics (ILP), Russian Academy of Sciences (RAS), Novosibirsk, 630090, Russia
2 Department of Advanced Energy Engineering Science, Kyushu University (KU), 816-8580, Japan

E-mail: zakharov@plasma.nsk.ru

Abstract. The goals, technical approach and first results of a new-type Laser-Plasma experiment AMEX for the simulation of over-compression effect of the Earth’ magnetosphere by Giant Coronal Mass Ejections are described. Parameters of large-scale KI-1 facility of ILP with kJ-laser provide such values of dimensionless criteria which are in the range of very rare and enormous Solar flares that could cause a shift of magnetopause from the usual distance of 10\(R_E\) down to \((2-3)R_E\). These extreme “Artificial Magnetosphere” states with highly compressed dipole field could result in world-wide damage phenomena in various networks and its physics could be explored in laboratory only by using of compact dipoles with a large moment. In a series of experiments with a variable magnetic moment and plasma blobs of effective energy up to 500 J an important role of plasma instabilities at magnetopause was revealed. The data on the magnetopause shape and stand-off size show a good correspondence both to general magnetospheric models and to expected scaling of “Artificial Magnetosphere”.

1. The problems of formation and simulation of “Artificial Magnetosphere”
More than 3-fold compression of the Earth’ magnetosphere caused by giant Coronal Mass Ejections (CME), driven by recently discovered Mega Solar Flares with the total released energy \(\geq 10^{34}\) ergs, is potentially so hazardous in after-affects, that requires an advanced and detailed investigation, by means of new laboratory simulations as well [1]. A physical conditions of such rare and enormous phenomenon could be understood on the base of our concept [2,3] of a non-stationary “Artificial Magnetosphere” (AM) which forms when an exploding plasma flows aroud of magnetic dipole.

According to the MHD-model [1-3], the stand-off distance \(R_m^*\) of AM magnetopause is determined by a main energetic parameter of the problem \(\vec{\alpha} = 3E_0R_0^3/\mu^2\) (for effective plasma energy \(E_0\) and distance \(R_0\) between dipole center and energy release point). For the case \(\vec{\alpha} \gg 1\) it could be expressed approximately as \(R_m^* \approx 0.75R_0^{\vec{\alpha}/3}\). This scaling was confirmed for the fist time in the Laser-Plasma (LP) experiment of ILP [3] at KI-1 target-chamber \(\Omega 120\) cm and recently in our PIC-simulations [1,5] by 3D/Hybrid-code of KU [6]. Our first experiment was characterized by unmagnetized ions in a sense...
that their Larmor radius $R_L(\propto V_0)$ at magnetopause was larger than R_m^*, i.e. criterion $\varepsilon_m=R_L/R_m^*\sim3 (>1)$, like in the pioneer work of W.H. Bostick [7]. To correctly simulate AM-formation around the Earth in details we carried out AMEX experiment in the required MHD range of dimensionless criteria $\varepsilon_l >> 1$ and $\varepsilon_m < 1$. So far the problem was explored in this range only in 2D [8] and 3D [6] PIC- simulations, but only for stationary overflowing, while for the non-stationary and CME related phenomena, a 3D/MHD-code [9] appears recently. To analyze our laboratory results and apply them to extreme geophysical phenomena we used a PIC hybrid code of KU, which was verified in turn by AMEX data.

2. AMEX simulative experiment at KI-1 laser facility

All simulative experiments were done on the base of the same set up (see figure 1a), but with different parameters of explored regimes, main part of which (# 1-6) are listed in the table 1.

A CO₂-laser LUI-2M with 500 J, 100 ns output pulse was focused into a spot ~ 1 or 3 cm² at a plastic target made in a plane (# 1-3) or convex (# 4-6) forms, accordingly. Generated plasma consisted mainly of H⁺ and C⁺ iv ions with $<m/z> = 2.5$ a. e. m. expanding with front velocity V_0 (of maximum dynamic pressure). In the case of convex target and larger focusing spot the velocity was smaller, while the density profile had two maximums also. The effective energy E_0 of the first such
blob, defined as $E_0 = (dE_0/d\Omega) * 4\pi$ with maximal $dE_0/d\Omega$ taken into direction of dipole, is listed in table 1. At figures 1 c,d the second and freely expanding maximum (marked as LP_2) is seen in front of magnetopause already formed by the first maximum. The front and lateral sizes of magnetopause are marked as R_X and R_Y. These photos of quasi-stationary MP, taken at times $t \approx 3.5-4.5\mu s$ after the laser pulse by Gated Optical Imager (GOI) with 100 ns exposition, reveal substantial spatial modulation of luminosity along to MP-boundary, probably produced [7] by its flute-like instability (see figure 1d).

Table 1. Main parameters and dimensionless criteria of simulative experiments in various regimes.

Parameters	Regimes	R_0, cm	E_0, J	V_0, km/s	μ_0	$G^*\text{cm}^3$	$\alpha = 3E_0R_0^3/\mu^2$	R_m^*, cm	R_X, cm	$\epsilon_m = R_t/R_m^*$
N (natural)	1.5*10^{13}	$\geq 10^{27}$	≥ 2000	$8*10^{25}$	$2*10^{22} \gg 1$	$2*10^9$?	0.001<<1		
M (modeling)	85	5600	250	$1.1*10^7$	~ 700	21.3	21	0.24 (<1)		
1	75	500	220	$1.1*10^6$	5000	13.5	18	0.9		
2	75	500	220	$2*10^6$	1600	16.5	19^a	0.7		
3	75	500	220	$1.1*10^7$	~ 50	28.5	32^a	0.4		
4 and 5	65 and 61.5	200	180	$2*10^6$	400-350 $\gg 1$	18-17.5	20.5	0.7-0.6 < 1		
6	61.5	200	180	$1.1*10^7$	~ 10	28^b	29	0.35 (<1)		

^a Determined by GOI on maximal plasma luminosity near magnetopause
^b Determined more precisely (at $\alpha \leq 50$) by MHD-model [2]

3. Structure and shapes of laboratory magnetopause at various values of energetic criterion α

In figure 2 a typical profile of the main (B_z) magnetic field' changes $\Delta B(x)$ along the central axis of interaction is shown. It corresponds to one of the most important regimes #5 and is measured at the moment $t = 3\mu s$ when magnetic field compression inside of MP is at its most. At times 3-4 μs the magnetopause remains quasi-stationary and has the shape and size rather close to the picture 1d. The actual position of MP boundary was determined as a curve where $B_z=0$, for which data of a whole set of magnetic probes positioned in the X-Y plane was used. The main dimensions of MP curve were measured to be $R_X \approx 20.5$ cm and $R_Y \approx 50$ cm as was shown in Figure 1c.

To calculate analytically magnetic fields inside of magnetopause we use a well-known method [10] of “Image Dipole”. Its moment μ_i and position a_i could be derived from the measured R_X and R_Y. According to [11], the MP surface could be described by a sphere of radius ρ with a center at distance Δ from dipole center (see figure 1c). All values are determined by expressions (1) via parameter $j = [(R_Y/R_X)^{j+1}]/[(R_Y/R_X)^{j-1}-1]$, which are given in this case for regimes #4-5, as the following:

$$j \approx 1.4, \quad \rho = a_i/(j^2-1) \approx 72 \text{ cm} \quad \text{and} \quad \Delta = \rho/j \approx 51 \text{ cm} \quad \text{for} \quad a_i = R_X(j+1) \approx 49 \text{ cm} \quad (1)$$

The moment of “Image Dipole” is expressed as $\mu_i = j^2 \mu(2f-1)$ for the geometric factor f, depending upon the shape of “super-conductive” MP-surface. Since this factor varies from $f = 1$ for simplest geometry of infinite plane MP (with corresponding $j = 1$ of our case #6 at $\alpha \sim 10$) up to $f = 1.5$ for the exactly spherical one (with $j \to \infty$ and additional uniform field $2\mu/R_X^3$ inside of MP with $\rho = R_X$), we choose intermediate partially convex case with $f = 1.2$. This yields $\mu_i = 7.7*10^6 \text{ G}\text{cm}^3$, and the field of this imaginary dipole $B_i = \mu_i/(a_i-X)$, shown in figure 2 by dashed line B_i, is in a rather good agreement with experimental data. Since this model reproduces well enough almost all magnetic measurements in equatorial X-Y plane, including region of small $X \leq 10$ cm (at $Y>0$), we could use it to study an important dependence of the maximum field compression ΔB^* near the dipole surface upon the energy E_0 of the exploding Laser Plasma, which simulates CME in AMEX experiment.
Figure 2. ΔB-disturbances near and inside of magnetopause: 1 – with additional uniform field 100 G (at Y=0); 2 – the same (for Y ≤ 13 cm); 3 – without additional field for Y≠0.

In the usual case of quasi-stationary changes in dynamic pressure \(P_d = n m V^2 \) of solar wind, the registered levels of a Sudden Commencement (SC) are described by the so called Chapman-Ferraro Scaling (CFS) as \(\Delta B^+_{\text{CFS}} \propto P_d^{1/2} \) [12], based on the same “Image Dipole” model and traditional scale \(R_m = (\mu^2/4\pi P_d)^{1/6} \). In our case of explosive-nature changes we should use its modified MHD relation \(R_m^* \approx 0.75 R_0^{1/6} \), which agrees with the experimentally measured \(R_X \) at small values of \(\epsilon_m \) parameter, according to set of data in a table 1. Calculation of \(\Delta B^+ \) by the same approach as in the CFS model gives a new scaling for a super SC as \(\Delta B^+ \approx 2 (E_0/R_0^3)^{1/2} \). This new scaling gives estimation up to 400 nT for the Earth (case #N with \(j \approx 2.6 \)) and \(\Delta B^+ \approx 100 \) G for the AMEX case #5 with smaller \(j \approx 1.4 \) in accordance with dependence \(\Delta B^+ \propto (j^{1/2}+j)^3 \). In laboratory this new scaling was verified by the data (figure 3) of magnetic probe fixed in a front of dipole at a distance \(X=13 \) cm, with taking into account of which, a corrected value \(\Delta B^+ \approx 200 \) G could achieve a registered maximum level at this point.

Thus, we can affirm that the novel approach for simulation of various magnetospheric phenomena that was developed in recent laser experiments [1,13], really opens new opportunities in this field.

* This work was supported in part by CRDF-CGP Award RUP2-2683-NO-05 for Project 14864, Travel Grant RFBR 07-02-08800 and by ILP-Project for Program of Basic Research RAS in 2007-09.

References
[1] Ponomarenko A G, Zakharov Yu P, Antonov V M, Boyarintsev E L, Melekhov A V, Posukh V G, Shaikhislamov I F and Vchivkov K V 2007 IEEE Trans. on Plasma Sci. 35 813
[2] Nikitin S A and Ponomarenko A G, 1996 J. Appl. Mech. & Techn. Phys 36 483
[3] Zakharov Yu P, Nikitin S A and Ponomarenko A G 1996 Comput. Technol. 1 36 - In Russian
[4] Ponomarenko A G, Zakharov Yu P, Nakashima H, Antonov V M, Melekhov A V, Posukh V G, Shaikhislamov I F, Muranaka T and Nikitin S A 2001 Adv. Space Res. 28 1175
[5] Ponomarenko A G, Zakharov Yu P, Antonov V M, Boyarintsev E L, Melekhov A V, Posukh V G, Shaikhislamov I F and Vchivkov K V 2007 Proc. Int. Symp. 233 of Int. Astronom. Union (Cairo) vol 2 (Cambridge Univ. Press) p 223
[6] Kajimura Y, Shinohara D, Noda K and Nakashima H 2006 J. Plasma Phys. 72 977
[7] Bostick B H, Byfield H and Jemarkin A 1966 Phys. Fl. 9 2287
[8] Omidi N Blanco-Cano X, Russell C T and Karimabadi H 2004 Adv. Space Res. 33 1996
[9] Ridley A J, DeZeeuw D L, Manchester W B and Hansen K C 2006 Adv. Space Res. 38 263
[10] Hones E W, Jr 1963 J. Geophys. Res. 68 1209
[11] Shabansky V P 1968 Space Sci. Rev. 8 366
[12] Burton R K, McPherron R L and Russel C T 1975 J. Geophys. Res. 80 4204
[13] Horton W et al. 2007 Adv. Space Res. 39 358