A Review on Medicinal Plants Having Anticancer Properties of Northeast India and Associated Endophytic Microbes and their Future in Medicinal Science

Sanjib Kalita¹, Anindita Sarma¹, Ankur Hazarika²*, Satarupa Hazarika³, Saranga Pani Saikia⁴ and Dibyajyoti Kalita⁴

¹Department of Botany, Gauhati University, Guwahati - 781 014, Assam, India.
²Department of Zoology, Gauhati University, Guwahati - 781 014, Assam, India.
³Handique Girls’ College, Guwahati - 781 001, Assam, India.
⁴Department of Zoology, Assam Don Bosco University, Sonapur - 782 402, Assam, India.

Abstract

Human beings are affected by different diseases and suffer to different extents. Cancer is one of the major human disease and millions of people suffered from cancer and end their lives every year. Peoples are dependent on herbal medicines since prehistoric time especially from developing countries. It is very common to have different side effects of modern synthetic medicines; hence now-a-days importance of herbal medicines due to no or least side effects increases all parts of the world. But the major problems of using herbal medicines are that plants can produce very limited amount of medicinally important bioactive metabolites and they have very long growth periods. Therefore endophytes are the excellent alternative of plant derived metabolites. Endophytic microbes can synthesize exactly same type of metabolites as the plant produces. North East India is a treasure of plant resources; various types of medicinal plants are present in this region. Different types of indigenous tribes are inhabited in this region who used different plants in traditional system for treating various disease. But with increasing demand it is sometimes not sufficient to manage the demand of medicines, therefore for massive production endophytic study is crucial. In spite of having huge plant resources very limited endophytic studies are observed in this region. In this review, we studied different plants with their endophytes of NE India showing anticancer properties.

Keywords: Medicinal Plants, Anticancer Agent, Secondary Metabolites, Endophytes

*Correspondence: ankurhazarika910@gmail.com
INTRODUCTION

Cancer is one of the major challenges and is one of the leading causes of death globally. According to the International Agency for Research on Cancer, the incidence of mortality and prevalence of major forms of cancer in 184 countries across the globe revealed that there were 8.2 million people lost their lives and 14.1 million new cancer cases across the world annually, and it was estimated that there will be 26 million people newly get infected and 17 million people will die due to cancer per year by 2030.1 Again according to Cancer Research UK 9.6 million people ended up their lives out of 17 million people suffered from cancer in 2018 and they expected that by 2040 about 27.5 million new cancer patients in each year if this increasing trend will continue.2 In cancer the control of growth is lost in one or more cells which lead to either solid mass of cells called tumour or to a liquid cancer like blood or bone marrow related cancers.3 Cancer is not a single disease, it is a group of disease all showing unregulated cell growth and originated due to abnormal functions of genes. Cancer cells can invade nearby tissues or it can spread via lymphatic system or blood to distant part of the body.4,5 A typical cancer cell has the ability to invasion and angiogenesis and they overcome apoptosis.6 In the process of transformation of normal cell to malignant cell sequence of events takes place which results accumulation of genetic instabilities in a cell. Genetic instability leads to mutations, if these mutations take place in oncogenes, tumour suppressor genes, DNA repair genes, apoptotic genes lead to development of cancer.5 Surgery, chemotherapy and radiotherapy are the three main treatment strategy involved in cancer treatment.7 Chemotherapy is the most effective method of cancer treatment, it uses low molecular weight drugs to selectively destroy or reduce their proliferation rate of tumour cells. There are some disadvantages of chemotherapy are also commonly observed, bone marrow suppression, gastrointestinal tract lesions, nausea, hair loss and clinical resistance are some side effects of chemotherapy due to the toxicity to both tumour cells as well as healthy cells of the cytotoxic agents used in chemotherapy.8,9 For reducing these side effects different plants and plant products are alternative ways for cancer treatment. Plants are very rich source of various secondary metabolites, which shows different medicinal properties. It has been reported potential anticancer/antitumor properties in various plant extracts, therefore these plant species can be used as safe and effective drugs for treating cancer.9,10

North-East India is one of the biodiversity hotspots which is located between 22–30°N latitude and 89–97°E longitude. This region is very rich in plant resources due to diversified topography and climatic conditions. High rainfall, moderate temperature and high humidity and marshes are characteristics in this region, which favors diversified species and wide range of vegetation from tropical to alpine forests.11 North-East India is topographically mostly hilly and is occupied by different tribes. These ethnic tribal communities mainly depend on herbal medicines for their healthcare needs as they have no adequate knowledge on modern medicines.12,13 The most challenging part of adapting herbal medicine is that in most cases plant can produce these medicinally important bioactive secondary metabolites in very low amount, long growth periods of plants and difficulty in separating the required compound from other compounds.14 Therefore, with the increasing demand to provide required amount of compounds exploitation of natural resources frequently happen. Therefore, for balancing both aspects i.e., production of sufficient amount of pharmacologically active compounds as well as conservation of natural resources without exploitation, scientist thought alternative ways, they exploit the ability of endophytic microbes to synthesize various bioactive secondary metabolites which shows exactly similar properties with the plant derived bioactive compounds.15 Endophytes are quite common in vascular plants, and are present almost every vascular plant of this planet.16 In 1866 De Barry for the first time coined the term endophytes.17 It has great importance to study endophytic microbes present in medicinal plants from both ecological and therapeutic point of view. In this review, we have studied different plant species found in North-East India showing the globe.
Plants from North-East India as a Source of Anticancer Phytochemicals

Plants have been using as source of food, shelter and medicine since the time of starting of human civilization.19 Dioscorides, one of the historically prominent Greek physician and pharmacologist in his 5 volume book “De Materia Medica,” described 600 medicinal plants used in different ailments.20 Herbal medicines are based on various cultural and traditional knowledge, hence, it is very well established way of searching novel phytochemicals for drug development based on traditional knowledge. Plant derived products has very less toxicity and much safer as compared to synthetic chemical drugs. Therefore, they are considered as the ideal candidate for modern drug discovery process. Different types of plant derived compounds and their metabolites are present in the root, stem, bark, leaves, and flower which serve diverse pharmacological activity in human healthcare. Compounds like alkaloids, flavonoids, Phenolics, glycosides, tannins, oils and gums are responsible for different therapeutic purposes. Till now, many phytochemicals such as taxol, topotecan, vinblastine and many more have been used successfully as anticancer drugs in clinical studies.21-23 Since North-East India is a great reservoir of plant resources, various types of bioactive secondary metabolites are produced by these plants which are used in different medicinal purposes including cancer. Table describes some plant species of North-Eastern India showing anticancer properties.

Importance of Endophytes as a Source of Cancer Drugs

Endophytes are a good source of anticancer activities that could have vital impact as an anticancer drug.24 Till date, many endophytes had been already reported that can produce bioactive compounds which are effective in anticancer assays.25 The first and famous anticancer drug, Taxol, was produced from the endophytic fungus \textit{Taxomyces andreanae} isolated from \textit{Taxus brevifolia} Nutt that produce good anticancer activity against the cancer cell lines26. Figure 1 shows the recovering of fungal endophytes from plants and microscopic view of potent fungal endophyte. Several studies in recent times have been conducted where the taxol production by endophytes was boosted to maximum level via conjugation with gold nanoparticles which is then

Figure 1. A) Isolation of endophytic fungi from \textit{Cannabis sativus} and microscopic view of potent fungal endophyte \textit{Alternaria alternata}. B) Isolation of endophytic fungi from \textit{Capsicum annuum} and microscopic view of potent fungal endophyte \textit{Colletotrichum gleosporioides}
No.	Name of the Plant	Part used	Types of cancer it works	Endophytes	Metabolites	Ref.
1.	Adenanthera pavonina L.	Bark, Seed	Leukemia, lymphoma, colon cancer	No data	Quercetin	38
2.	Ageratum conyzoides (L.) L.	Root, Leaves	Gastric carcinoma (SGC-7901), human colon adenocarcinoma (HT-29), leukemic, prostate cancer, breast cancer.	Shewanella spp., Pseudomonas spp.	2-amino-3-quinoline, Oleic acid, 1,2-Benzenedicarboxylic acid, Phthalic acid	39-43
3.	Allium sativum L.	Bulb	Breast cancer, liver, colon, lung, cervix cancer, bladder carcinoma	Aspergillus terreus, Penicillium spp.	Allylmercaptocysteine, allicin	44-47
4.	Aloe vera (L.) Burm.f.	Whole plant	Liver cancer (HepG2), breast cancer (MCF-7), cervical cancer	NAF-1 strain endophytic actinobacteria	No data	48-50
5.	Alstonia scholaris (L.) R. Br.	Whole plant	Leukemia, Skin cancer Pancreatic cancer, Nasopharynx cancer	No data	No data	51,52
6.	Annona muricata L.	Leaves, Seed	Lung cancer (U937),leukaemia (HL-60, THP1), skin melanoma (B16), prostate cancer (PC-3)	Periconia spp.	Cigroisocoumarinol	53
7.	Azadirachta indica A. Juss.	Root	Breast, lung, liver, oral cavity, larynx Leukemia, Lung cancer	Fusarium tricinctum Nectria spp., Penicillium corylophilum,	3-Hydroxypropionic acid, 3-Hydroxypropionic acid	54-58
8.	Bauhinia variegata L.	Leaf	Breast cancer	Bacillus spp.	Saponins, Alkaloids	59,60
9.	Betula pendula Roth.	Leaves	Leukemia, Lung cancer	Streptomyces spp.	Borneol, Camphor	61-65
10.	Blumea balsamifera (L.) DC.	Leaves	Breast cancer, epidermal carcinoma of the mouth, myeloid leukaemia, lung cancer	Melanconium betulinum	3-Hydroxypropionic acid, 3-Hydroxypropionic acid	66-68
11.	Cajanus cajan (L.) Millsp.	Leaves	Breast cancer	Hypocrea lixii	Capsaicin	66-68
12.	Camelia sinensis (L.) Kuntze	Leaves, Buds, Branches	Colorectal cancer	Pestalotiopsis fici	Siccayne [2-(3-Methyl-3-butene-1-ynyl) Hydroquinone]	69-72
13.	Camptotheca acuminata Deane.	Whole plant	Colorectal cancer	Fusarium solani	Camptothecin	73
14.	Cannabis sativa L.	Leaves	Breast cancer, brain/spine tumour, colorectal cancer, skin cancer	Alternaria spp., Penicillium spp., Rhizopus spp.	Cannabinoid	74-77
15.	Capsicum annum L.	Whole plant	Various cancer types	Alternaria alternata	Capsaicin	78
16.	Catharanthus roseus (L.) G. Don	Leaves	Nephroblastoma, acute lymphoblastic leukemia	Curvularia verruculosa	Vinblastine	79
17.	Citrus medica L.	Root, Fruits, Leaves	Human lung carcinoma	Phyllosticta citricarpa	Taxol, Paclitaxel	80-82
18.	Colchicum autumnale L.	Leaves Flower	Hepatocellular carcinoma	No data	Colchicine	83,84
19.	Curcuma aromatica Salisb.	Rhizome	Breast cancer, leukaemia	Chaetomium globosum	Chaetoglobosin X	82,85,86
20.	Daucus carota L.	Root	Leukaemia	Aspergillus ustus	Carotenoids, ascorbic acid, polyacetylenes	80,87
No.	Name of the Plant	Part used	Types of cancer it works	Endophytes	Metabolites	Ref.
-----	------------------	-----------	---------------------------	------------	-------------	-----
21.	*Dillenia indica* Linn.	Stem, bark	Breast cancer	*Hypocrea* spp.	Betulinic acid	88,89
22.	*Emlica officinalis* Gaertn.	Bulb	Various type of cancer	*Phomopsis* spp., *Xylaria* spp.	Quercitin, Gallic acid, Ellagic acid	59, 90, 91
23.	*Enhydro Fluctuans* Lour.	Whole plant	Ehrlich's ascites carcinoma (EAC)	No data	Baicalein 7-O-glucoside, baicalein 7-O-diglucoside	92,93
24.	*Fagopyrum esculentum* (Lehm.) Mansf. ex K.Hammer	Hull seed	Breast cancer, colon cancer	*Bionacteria pityroides*, *Fusarium oxysporum*, *Altemaria* spp.	Phenolic compounds like rutin	94-96
25.	*Fragaria vesca* L.	Fruit	Hepatocellular carcinoma	No data	Borneol, Ellagic acid	59, 97
26.	*Fritillaria* sp.	Whole plant	Inhibits proliferation and colony formation of cancer cells	*Fusarium* spp.	Peimine	98
27.	*Glycyrrhiza glabra* L.	Root	Colorectal cancer, breast cancer	*Aspergillus* spp., *Chaetomium* spp., *Fusarium* solani	Glycyrrhizin, rutin, Cinnamic acid, Quercitin, Kaempferol, Taxol	80, 99
28.	*Guayana esequiba*	Whole plant	Breast cancer, lung cancer, prostate gland cancer	*Seimatoantlerium tepuense*	No data	100
29.	*Hevea brasiliensis* (Willd. Ex A.Juss.) Mull.Arg.	Whole plant	Breast cancer, lung cancer, skin cancer	*Eutypella scoparia*	Cytochalasins	101
30.	*Huperzia serrata* (Thunb.) Trevis.	Whole plant	Various types of cancer	*Ceriporia lacerate*	Ceriponols	102
31.	*Jatropha curcas* L.	Leaves, Seed, Root	Cervical cancer, colon cancer, lung cancer	*Collectotrichum truncatum*, *Nigrospora oryzae*	Gallic acid, rutin, Saponin Epicatechin, Kaempferol 3-O-β-glucoside, Kaempferol 3-O-α-rhamnoside, propanadin and rutin	94, 103, 104, 105, 106
32.	*Litchi sinensis* Sonner	Leaves, Pericarp	Breast cancer, leukaemia, colorectal cancer	No data		
33.	*Maytenus hookeri* Loes.	Root nodules	Colon carcinoma	*Micromonospora lupine*	Lupinacardin	107
34.	*Mentha pulegium* L.	Aerial parts	Gingival cancer, colon cancer, uterus cancer	*Stemphylium globuliferum*	Altersolanol	108, 109
35.	*Mimosa pudica* L.	Whole plant	Leukaemia, lung cancer	No data	Flavonoids, mimosine	110, 80
36.	*Mirabilis jalapa* L.	Bark, Leaves, Root	Breast cancer, cervical cancer	*Aspergillus clavatonicus*	Ribosome-inactivating protein (RIP)	34, 111
37.	*Monarda citriodora* Cerv. Ex Lag.	Whole plant	Prostate cancer	*Fusarium oxysporum*	Paclitaxel	112, 113
38.	*Nicotiana tabacum* L.	Leaves	Breast cancer	*Fusarium sambucinum*	Flavonoids like nicotelline, nicotianine, nicotine, Anatabine, Cotinine	114, 80, 115
No.	Name of the Plant	Part used	Types of cancer it works	Endophytes	Metabolites	Ref.
-----	------------------	-----------	--------------------------	------------	-------------	-----
39.	Ocimum sanctum L.	Leaves	Cervical cancer, Fibrosarcoma, Laryngeal epithelial sarcoma	Macrophomina phaseolina	Eugenol, carvacrol, methyl eugenol, carphyllene, flavonoids	71, 116
40	Panax ginseng C.A.Mey	Whole plant	Breast cancer	Paecilomyces spp.	Ginsenosides-Rg3, Rh2	117
41	Piper nigrum L.	Leaves, Fruit	Colorectal cancer, Lung cancer	Colletotrichum gloeosporioides	Piperine	118
42	Pleurothallis immerse	Whole plant	Acute lymphoblastic leukemia	Fusarium spp., Plactosphaerella spp., Stemphyllum spp., Septora spp., Cladosporum spp.	Sitostenone, Tyrosol, L- asparaginase	119, 120
43	Podophyllum hexandrum Royle	Rhizome	Testicular gland cancer, Leukemia and solid tumors	Fusarium spp.	Podophyllotoxin	121-124
44	Potentilla fulgens var. macrophylla Cardot	Root	Leukemia, Lung cancer, Liver cancer	Curvularia clavata, Curvularia lunata, Fusarium oxysporum	Kaempferol (KMP), Ellagic acid (ELA)	39, 125, 126
45	Salacia oblonga Wall.	Whole plant	Disruption of microtubulin equilibrium	Alternaria spp., Fusarium solani	Taxol	127
46	Silybum marianum (L.) Gaertn.	Whole plant	Lymphoblastic Leukaemia, Breast cancer	Aspergillus izukae	Flavonolignans, Silibin A, Silibin B	128
47	Sinopodophyllum hexandrum (Royle) T.S.Ying	Whole plant	Hepatoma, Lung cancer, Neuroblastoma, Testicular cancer,	Pestalotiopsis adusta	Pestalustaine B	129
48	Smilax china L.	Rhizome	Colon cancer, Leukaemia, Prostate cancer	Mycosphaerella nawae	Isoflavone genistein, Quercitin, Baicalin, Kaempferol	130, 131
49	Solanum nigrum L.	Tuber	Breast cancer	SNFSt, SNFL and SNF	Salamargine	132, 133
50	Tarax baccata L.	Whole plant	Prostate gland cancer	Acremonium spp.	Leucinostatin A	134-136
51	Tarax wallichiana Zucc.	Inner bark	Breast cancer, Lung cancer, Prostate gland cancer	Seimatoantlerium nepalense	Taxol	137
52	Terminalia arjuna (Roxb. Ex. DC.) Wight & Am.	Stem, Bark	Colon cancer, Liver cancer, Prostate cancer, Ovarian cancer,	Chaetomella raphigera	Arjunic acid, Arjungenin, Arjunetin, Arjunoglucone	138-140
53	Tinospora cordifolia (Wild.) Miers	Leaves	Colon cancer, Cervical cancer, Oral squamous cancer, Ovary cancer	Cladosporium uredinica	39, 141, 142	
mediated by γ-irradiation27. Similar studies on enhancement of anticancer activity by gamma irradiation using extracts of \textit{Aspergillus sydowii} isolated from the bark of \textit{Ricinus communis} are also observed.28 The endophytic fungi \textit{Leptosphaerulina australis}, \textit{Xylariaceae sp.}, and \textit{Stemphylium solanith} that were isolated from \textit{Morinda citrifolia} Linn. (Noni) inhibits the growth of human carcinoma cell lines MCF-7 (breast), LU-1 (lung), and PC-3 (prostate).29 \textit{Colletotrichum gloeosporioides} isolated from \textit{Barringtonia acutangula} was reported by Lakshmi et al. to shows anticancer activity against the Human Colon Cancer HT29 cell lines.30 The bioactive compound Eremofortin F isolated from the endophyte \textit{Diaporthe pseudomangiferae} showed cytotoxic activity on MRC5 cells and KB cells.31 The endophytic fungus \textit{Pestalotiopsis fici} showed strong cytotoxic activity against the mouse lymphoma cell line L5178Y.32 The endophytic fungi \textit{Alternaria} sp. isolated from \textit{Eremophila longifolia} showed cytotoxic activity against a lung cancer cell line and human broblast cell line.33 Cytotoxic activity was also shown by the endophytic fungi \textit{Penicillium} sp. isolated from \textit{Centella asiatica} against HeLa, A431, and human breast cancer (MCF7).34 All these studies reported by various researchers proved that endophytes are a very good source of anticancer drugs which can be used in various pharmaceutical industries. \textit{Penicillium oxalicum}, the endophytic fungi isolated from \textit{Amoora rohituka} was found to have anticancer activity. The breast cancer and T lymphoma cells was found to be inhibited by the ethyl acetate extract of \textit{P. oxalicum}.35 Several reports are also there where the cytotoxic and anticancer activities are observed by the endophytic bacteria. Species of \textit{Bacillus} as well as \textit{Micromonospora} isolated from \textit{Ibervillea sonorae} was found to have antitumor activities against L5178Y-R lymphoma cells.36 In addition to the plants, endophytes from liverworts also are reported to have anticancer properties. The endophytic extract from \textit{Marchantia polymorpha} was tested for anticancer activity and was found to be effective against a panel of cancer cell lines (FaDu, HeLa etc.).37
CONCLUSION

Since time immemorial human beings are dependent on plant resources for fulfilling their various needs, medicines are one of the most essential parts of daily needs. Medicinal plants are a very rich source of various types of bioactive compounds, due to which they can show medicinal properties and can be used for remediation of different ailments. In developing countries, about 80% of the population especially from rural areas depends on herbal medicines for their health care needs (WHO report 2001). Different types of diseases cause suffering to different extent in human health. Cancer is one of the most serious health issues across the world, which takes millions of lives every year. The first time written record of human cancer was seen in ancient Egyptian manuscript. Though, cancer has afflicted human population since prehistoric time, but in recent few decades due to presence of increased amount of carcinogens in environment and in consumable products, prevalence of cancer is increasing day by day. In North-Eastern part of India also cancer has become a very common disease. Therefore, there is a very urgent need to search for potent plant bioactive metabolites for the effective treatment of cancer.

North East India is a biodiversity hotspot and inhabited by many tribal communities. These indigenous tribes use different medicinal plants for treating various diseases including cancer. Figure 2 shows structures of some of the major anticancerous compounds. But with the increasing population rapid commercialization demand for these plant derived products increases tremendously, which leads to biodiversity loss. Many plants have undergone destruction and are on the threat status. Therefore an alternative way of obtaining necessary bioactive compounds to combat with disease is very crucial. It is very fortunate that endophytic microbes have the capability to produce these metabolites. Therefore, they can be used as alternative source
for bioactive metabolites. In North-Eastern India till now very few endophytic studies are carried out, it is a very bright research approach for exploring the potentiality of endophytic microbes in synthesizing various metabolites. Therefore, we conclude that by extensive endophytic study we can save millions of people from deadly cancer without destroying biodiversity. In North-East India extensive endophytic study can open new doors for pharmaceutical companies which can make better human health.

ACKNOWLEDGMENTS
The authors would like to thank Gauhati University and Assam Don Bosco University for providing the necessary library facilities to study the relevant literatures in doing all review process.

CONFLICT OF INTEREST
The authors declare that there is no conflict of interest.

AUTHORS’ CONTRIBUTION
SK and AS conceptualised the idea, reviewed and prepared the draft manuscript. AH, SH, SPS and DK helped in reviewing, formatting and editing the manuscript. All authors read and approved the final manuscript for publication.

FUNDING
None.

DATA AVAILABILITY
All datasets generated or analyzed during this study are included in the manuscript.

ETHICS STATEMENT
Not applicable.

REFERENCES
1. Thun MJ, De Lancey JO, Center MM, Jamal A, Ward EM. The global burden of cancer: priorities for prevention. Carcinogenesis. 2010;31(1):100-110. doi: 10.1093/carcin/bgp263
2. Ashraf MA. Phytochemicals as potential anticancer drugs: time to ponder nature’s bounty. BioMed Res Int. 2020;2020:8602879. doi: 10.1155/2020/8602879
3. Nussbaumer S, Bonnabry P, Veuthey JL, Fleury-Souverain SF. Analysis of anticancer drugs: a review. Talanta. 2011;85(5):2265-2289. doi: 10.1016/j.talanta.2011.08.034
4. Stratton M, Rahman N. The emerging landscape of breast cancer susceptibility. Nat Genet. 2008;40(1):17-22. doi: 10.1038/ng.2007.53
5. Zachariou V, Carr F. Nociception and pain: lessons from optogenetics. Front Behav Neurosci. 2014;8:69. doi: 10.3389/fnbeh.2014.00069
6. Sharma B, Singh S, Kanwar SS. L-methionase: a therapeutic enzyme to treat malignancies. Bio Med Res Int. 2014;2014:506287. doi: 10.1155/2014/506287
7. Shewach DS, Kuchta RD. Introduction to cancer chemotherapeutics. Chemical Reviews. 2009;109(7):2859-2861. doi: 10.1021/cr900208x
8. Black DJ, Livingston RB. Antineoplastic drugs. A review (Part II). Drugs. 1990;39(5):652-673. doi: 10.2165/00003495-199039050-00003
9. Gopalkrishnan R, Rao PS. Anticancer compounds from tissue cultures of medicinal plants. J Herbs, SpicesMed Plants. 2000;7(2):71-102. doi: 10.1300/J044v07n02_08
10. Sharma N, Trika P, Athisar M, Raisuddin S. Inhibitory effect of Emblica officinalis on the in vivo clastogenicity of benz[a]pyrene and cyclophosphamide in mice. Human Exp Toxicol. 2000;19(6):377-384. doi: 10.1191/%2F096032700678815945
11. Chaudhuri T, Sur P, Gomes A, Das SK, Ganguly DK. Effect of tea root extract (TRE) on solid tumors induced by 3-methylcholanthrene in mice. Phyto Res. 1998;12(1):62-64. doi: 10.1002/SICCI.10998020112:1%3C62::AID-PTR184%3E3.0.CO;2-4
12. Lal M, Parasar NR, Singh AK, Akhtar MS. Potentiality of anticancer plant-derived compounds of North-East India. Anticancer Plants: Properties and Application. 2018;77-89. doi: 10.1007/978-981-10-8548-2_4
13. Siyem D, Kharbui B, Das B, Nongkhaw DG, Thamar I, Marnar G, Buam DRM. Medicinal plants and herbal medicine: A case study in Meghalaya. Biodiversity, North-East India Perspectives. 1999:1-8
14. Rosangkima G, Rongpi T, Prasad SB. Ethno-medicinal value of some anticancer medicinal plants from north-east India. Sci Vis. 2010;10:123-132
15. Staniek A, Bouwmeester H, Fraser PD, et al. Natural products-learning chemistry from plants. Biotechnol J. 2014;9(3):326-336. doi: 10.1002/biot.201300059
16. Zhao J, Shan T, Mou Y, Zhou L. Plant-derived bioactive compounds produced by endophytic fungi. Mini Rev Med Chem. 2011;11(2):159-168. doi: 10.2174/138955711794519492
17. Rodriguez RJ, White Jr JF, Arnold AE, Redman RS. Fungal endophytes: diversity and functional roles. New Phytol. 2009;182(2):314-330. doi: 10.1111/j.1469-8137.2009.02773.x
18. Patil RH, Patil MP, Maheshwari VL. Bioactive secondary metabolites from endophytic fungi: A review of biotechnological production and their potential applications. Stud Nat Prod Chem. 2016;49:189-205. doi: 10.1016/S879-0-444-63601-0.00005-3
19. Fridlender M, Kapulnik Y, Koltai H. Plant derived substances with anti-cancer activity; from folklore to practice. Front Plant Sci. 2015;6:799. doi: 10.3389/fpls.2015.00799
20. Thorwald J. Power and knowledge of ancient...
physicians. Zagreb: August Cesarec. 1991:10-255. https://scholar.google.com/scholar_lookup?title=Power+and+knowledge+of+ancient+physicians&author=J+Thorwald&publication_year=1991&

21. Slichenmyer WI, Von Hoff DD. Taxol: a new and effective anti-cancer drug. Anti-Cancer Drugs. 1991;2(6):519-530. doi: 10.1097/00001813-199112000-00002

22. Caputi L, Franke J, Farrow SC, et al. Missing enzymes in the biosynthesis of the anticancer drug vinblastine in Madagascar periwinkle. Science. 2018;360(6394):1233-1239. doi: 10.1126/science.aat4100

23. Brahmer JR, Ettinger DS. The role of topotecan in the treatment of small cell lung cancer. The Oncologist. 1998;3(1):11-14. doi: 10.1634/theoncologist.3-1-11

24. Newman DJ, Cragg GM. Natural products as sources of new drugs over the last 25 years. J Nat Prod. 2007;70(3):461-477. doi: 10.1021/np068054v

25. Sterile AA, Sterile DB. Bioactive secondary metabolites produced by the fungal endophytes of conifers. Nat Prod Commun. 2015;10(10):1671-1682. doi: 10.1177%2F1934578X1501001012

26. Omeje EO, Ahomafor JE, Onyekaba TU, et al. Endophytic fungi as alternative and reliable sources for potent anticancer agents. Natural Products and Cancer Drug Discovery. 2017;7:141-157. doi: 10.5772/67797

27. Abdel-Fatah SS, El-Sherbiny GM, Baz AFE, El-Mahmoud SR, Khattab AA. Bioprospecting endophytic fungi for bioactive metabolites and use of irradiation to improve their bioactivities. AMB Expr. 2022;12(1):46. doi: 10.1186/s13568-02-01386-x

28. Abdul-Fatah SS, El-Sherbiny GM, Baz AFE, El-Sayed AS, El-Bat AI. Boosting the Anticancer Activity of Aspergillus flavus “endophyte of Jojoba” Taxol via Conjugation with Gold Nanoparticles Mediated by γ-Irradiation. Appl Biochem Biotechnol. 2022;194(8):3558-3581. doi: 10.1007/s12010-022-03906-8

29. El-Sayed ESR, Hazaa MA, Shebl MM, Amer MM, Mahmoud SR, Khattab AA. Bioprospecting endophytic fungi for bioactive metabolites and use of irradiation to improve their bioactivities. AMB Expr. 2022;12(1):46. doi: 10.1186/s13568-02-01386-x

29. El-Sayed ESR, Hazaa MA, Shebl MM, Amer MM, Mahmoud SR, Khattab AA. Bioprospecting endophytic fungi for bioactive metabolites and use of irradiation to improve their bioactivities. AMB Expr. 2022;12(1):46. doi: 10.1186/s13568-02-01386-x

30. Wu Y, Girmay S, da Silva VM, Perry B, Hu X, Tan, GT. The Role of Endophytic Fungi in the Anticancer Activity of Morinda citrifolia Linn. (Noni). Evidence-Based Complementary and Alternative Medicine. 2015;2015:393960. doi: 10.1155/2015/393960

31. Lakshmi P, Selvi KV. Anticancer potentials of secondary metabolites from endophytes of Barringonia acutangula and its molecular characterization. Int J Curr Microbiol Appl Sci. 2013;2:44-55.

32. Mandavid H, Rodrigues AM, Espindola LS, Eparvier V, Stien D. Secondary metabolites isolated from the amazonian endophytic fungus Diaporthe sp. SNB-GSS10. J Nat Prod. 2015;78(7):1735-1739. doi: 10.1021/np501029s

33. Hemphill CPF, Daletas G, Liu H, Lin WH, Proksch P. Polyketides from the mangrove-derived fungal endophyte Pestalotiopsis clavispora. Tetrahedron Letters. 2016;57(19):2078-2083. doi: 10.1016/j.tetlet.2016.03.101

34. Zaferanloo B, Pepper SA, Coulthard SA, Redfern CPF, Palombo EA. Metabolites of endophytic fungi from Australian native plants as potential anticancer agents. FEMS Microbiol Lett. 2018;365(9):fny078. doi: 10.1093/femsle/fny078

35. Devi NN, Prabakaran JJ. Bioactive metabolites from an endophytic fungus Penicillium sp. isolated from Centella asiatica.Curr Res Environ Appl. 2014;4(1):34-43. doi: 10.5943/cream/4/1/3

36. Verma A, Gupta P, Rai N, et al. Assessment of biological activities of fungal endophytes derived bioactive compounds isolated from Amoora rohitukta. J Fungi. 2022;8(3):285. doi: 10.3390/jof8030285

37. Romero-Arguelles R, Romo-Saenz CI, Moran-Santibanez K, et al. In Vitro Antitumor Activity of Endophytic and Rhizosphere Gram-Positive Bacteria from Iberibevia sonarae (S. Watson) Greene against L5178Y-R Lymphoma Cells. Int J Environ Res Public Health. 2022;19(2):894. doi: 10.3390/ijerph19020894

38. Stelmasiewicz M, Swiatek L, Ludwiczuk A. Phytochemical Profile and Anticancer Potential of Endophytic Microorganisms from Liverwort Species, Marchantia polymorpha L. Molecules. 2022;27(1):153. doi: 10.3390/molecules27010153

39. Kuruppu AI, Paranagama P, Goonasekara CL. Medicinal plants commonly used against cancer in traditional medicine formulae in Sri Lanka. Saudi Pharm J. 2019;27(4):565-573. doi: 10.1016/j.sjps.2019.02.004

40. Adebayo AH, Tan NH, Akidahussni AA, Zeng GZ, Zhang YM. Anticancer and antiradical scavenging activity of Agaratum conyzoides L (Asteraceae). Pharmacogn Mag. 2010;6(21):62-66. doi: 10.4103/0973-1296.59968

41. Heeb SMP, Fletcher SR, Chhabra SP, Diggle P, Camara WM. Quinolines: from antibiotics to autoinducers. FEMS Microbiol Rev. 2011;35(2):247-274. doi: 10.1111/j.1576-6976.2010.00247.x

42. Win DT. Oleic Acid: The Anti-Breast Cancer Component in Olive Oil. AJU Journal of Technology. 2005;9(2):75-78.

43. Srikeshavan SS, Selvan MM. Actinomycetes from marine sediment: screening for cytotoxicity, identification and analysis of bioactive constituents by Gas Chromatography - Mass Spectrometry. International Conference on Bioscience, Biotechnology and Healthcare Sciences. 2012; 68-71.

44. Fitriani A, Ihsan F, Yanti Hamidyati M. Antibacterial Activity of Shewanella and Pseudomonas as Endophytic Bacteria from the Root of Ageratum conyzoides L. Asian Journal of Applied Sciences. 2015;3(3):415-420.

45. Belman S. Onion and garlic oils inhibit tumor promotion. Carcinogenesis. 1983;4(8):1063-1065. doi: 10.1093/carcin/4.8.1063

46. Bayan L, Koulivand PH, Gorji A. Garlic: a review of potential therapeutic effects. Avicenna J Phytomed. 2014;4(1):1

47. Abdalmyanova LI, Fayzieva FK, Rozieva DM, Rasulova GA, Sattarova RS, Gulyamova TG. Bioactivity of Fungal Endophytes associating with Allium Plants growing in Uzbekistan. Int J Current Microbial Appl Sci. 2016;5(9):769-778. doi: 10.20546/ijcmas.2016.5.09.088

48. Hussain A, Sharma C, Khan S, Shah K, Haque S. Aloe vera inhibits proliferation of human breast and cervical cancer cells and acts synergistically with cisplatin.
Asian Pac J Cancer Prev. 2015;16(7):2939-2946. doi: 10.7314/APJCP.2015.16.7.2939

Noorolahi SM, Sadeghi S, Mohammadi M, et al. Metabolomic profiling of cancer cells to Aloe vera extract by 1H NMR spectroscopy. J Metabol. 2016;2(1-7. doi: 10.7243/2059-0008-2-1

Nafis A, Kasrati A, Azmani A, Ouhdouch Y, Hassani L. Endophytic actinobacteria of medicinal plant Aloe vera: Isolation, antimicrobial, antioxidant, cytotoxicity assays and taxonomic study. Asian Pac J Trop Biomed. 2018;8(10):513-518. doi: 10.4103/2221-1691.244160

Jagetia GC, Bal gia MS. Effect of Alstonia scholaris in Ehrlich ascites carcinoma-bearing mice. J Med Food. 2004;7(2):235-244. doi: 10.1089/1096620041224094

Patil A, Vadera K, Patil D, Phatak A, Juvekar A, Chandra P. Some important anticancer herbs: a review.

Sunkar S, Akshaya A, Aarthi B, Nachiyar VC, Prakash M. Anticancer activities and mechanisms of Blumea balsamifera extract in hepatocellular carcinoma cells. Am J Chin Med. 2008;36(02):411-424. doi: 10.1142/S0192415X08005862

Li J, Zhao GJ, Chen HH, et al. Antitumour and antimicrobial activities of endophyte streptomyces from pharmaceutical plants in rainforest. Lett Appl Microbiol. 2008;47(6):574-580. doi: 10.1111/j.1472-765X.2008.02470.x

Pang Y, Wang D, Fan Z, et al. Blumea balsamifera-A phytochemical and pharmacological review. Molecules. 2014;19(7):9453-9477. doi: 10.3390/molecules19079453

Yuan-gang Z, Xiao-lei L, Yu-jie F, Nan W, Yu K, Michael W. Chemical composition of the SFE-CO2 extracts from Cajanus cajan (L.) Huth and their antimicrobial activity in vitro and in vivo. Phytochem. 2010;71(14):1095-1101. doi: 10.1016/j.phytochem.2010.04.005

Luo M, Liu X, Zu Y, et al. Cajanol, a novel anticancer agent from Pigeon pea [Cajanus cajan (L.) Millisp.] roots, induces apoptosis in human breast cancer cells through a ROS-mediated mitochondrial pathway. Chem Biol Interact. 2010;188(1):151-160. doi: 10.1016/j.chembioint.2010.07.009

Zhao J, Li C, Wang W, et al. Hypocrea lixii, novel endophytic fungi producing anticancer agent cajanol, isolated from pigeon pea (Cajanus cajan [L.] Millisp.). J Appl Microbiol. 2013;115(1):102-113. doi: 10.1111/jam.12195

Dreosti IE. Bioactive ingredients: antioxidants and polyphenols in tea. Nutr rev. 1996;54:51-58. doi: 10.1111/j.1753-4887.1996.tb03819.x

Kim M, Hagwara N, Smith SJ, Yamamoto T, Yamane T, Takahashi T. Preventive effect of green tea polyphenols on colon carcinogenesis. Washington, dc: American Chemical Society. 1994:51-55. doi: 10.1021/bk-1994-0547.ch004

Prakash O, Kumar A, Kumar P. Anticancer Potential of Plants and Natural Products: A Review. Am J Pharmacol Sci. 2013;1(6):104-115. doi: 10.12691/ajps-1-6-1

Liu S, Guo L, Che Y, Liu L. Pestaloficiols Q-S from the plant endophytic fungus Pestalotiopsis fici. Fitoterapia. 2013;85:114-118. doi: 10.1016/j.fitote.2013.01.010

Ran X, Zhang G, Li S, Wang J. Characterization and antitumor activity of camptothecin from endophytic fungus Fusarium solani isolated from Camptotheca acuminata. Afr Health Sci. 2017;17(2):566-574. doi: 10.3111/j.1753-4134.afrs.2017.17.2.566-574.34

Casanovala M, Blazquez C, Martinez-Palacio J, et al. Inhibition of skin tumor growth and angiogenesis in vivo by activation of cannabinoid receptors. J Clin Invest. 2003;111(1):43-50. doi: 10.1172/JCI16116

Massi P, Vaccari C, Cerutti S, Colomba A, Abracchio MP, Parolari D. Antitumor effects of cannabidiol, a nonpsychoactive cannabinoid, on human glioma cell lines. J Pharma Exp Therap. 2004;308(3):838-845. doi: 10.1124/jpet.103.061002

Appendino G, Chianese G, Tagliatela-Scafati O. Cannabinoids: occurrence and medicinal chemistry. Curr Med Chem. 2011;18(7):1085-1099. doi: 10.2174/092986711794904888

Journal of Pure and Applied Microbiology
1618 www.microbiologyjournal.org
Antifungal Activity. *PLoS ONE*. 2013;8(2):e56202. doi: 10.1371/journal.pone.0056202

105. Katagi A, Sui L, Kamitori K, et al. High anticancer properties of defatted jatropha curcas seed residue and its active compound, isoamericanol A. *Natural Product Communications*. 2017;12(12):1934578X1701201217. doi: 10.1177/1934578X1701201217

106. Zhao M, Yang B, Wang J, Li B, Jiang Y. Identification of the major flavonoids from pericarp tissues of lychee fruit in relation to their antioxidant activities. *Food Chem.* 2006;98(3):539-544. doi: 10.1016/j.foodchem.2005.06.028

107. Igarashi Y, Yanase S, Sugimoto K, et al. Lupinacidin C. an endophytic fungus *lupini.* *J Nat Prod.* 2005;68(3):361-368. doi: 10.1021/jp049157t

108. Kasaei A, Mobini-Dehkordi M, Mahjoubi F, Saffar B. Anticancer effects of altersolanol A, a metabolite produced by the endophytic fungus *Stemphylium globuliferum,* mediated by its pro-apoptotic and anti-inflammatory potential via the inhibition of NF-κB activity. *Biorg Med Chem.* 2013;21(13):3850-3858. doi: 10.1016/j.bmc.2013.04.024

109. Jose J, Dhanya AT, Haridas KR, et al. Structural characterization of a novel derivative of myricetin from *Mirabillaursata* as an anti-proliferative agent for the treatment of breast cancer. *Biomed Pharmacother.* 2016;84:1067-1077. doi: 10.1016/j.biopha.2016.10.020

110. Mishra VK, Passari AK, Chandra P, et al. Determination and production of antimicrobial compounds by *Aspergillus clavatus* strain MJ/31, an endophytic fungus from *Mirabillaursata.* *PLoS ONE.* 2017;12(10):e0186234. doi: 10.1371/journal.pone.0186234

111. Zhao J, Zhou L, Wang J, et al. Endophytic fungi for producing bioactive compounds originally from *Sennabulatonicus.* *PLoS ONE.* 2013;8(8):e72099. doi: 10.1371/journal.pone.0072099

112. Zhang Q, Kang X, Zhao W. Antiangiogenic effect of low-dose cyclophosphamide combined with ginsenoside Rg3 on Lewis lung carcinoma. *Biochem Biophys Res Commun.* 2006;342(3):824-828. doi: 10.1016/j.bbrc.2006.02.044

113. Chithra S, Jasim B, Sachidanandpan P, Jyothis M, Radhakrishnan E. Piperine production by endophytic fungus *Colletotrichum gloeosporioides* isolated from *Piper nigrum.* *Phytomedicine.* 2014;21(4):534-540. doi: 10.1016/j.phymed.2013.10.020

114. Kusumawardani B, Febi QN, Rosidah M, Azis DA, Puspitasari E, Nugraha AS. Cytotoxic Potential of *Papulaspora immersa* from *Smallanthus sonchifolius* (Asteraceae), and their cytotoxic activity. *Chem Biodivers.* 2010;7(12):2941-2950. doi: 10.1002/cbdv.201000011

115. Caruso G, Abdelhamid MT, Kalisz A, Sekara M. Linking endophytic fungi to medicinal plants therapeutic activity. A case study on Asteraceae. *Agriculture.* 2020;10(7):286. doi: 10.3390/1007286

116. Ardaiani H, Avan A, Ghayour-Mobarhan M. Podophyllotoxin: a novel potential natural anticancer agent. *Avicenna J Phytomed.* 2017;7(4):285.

117. Gupta RS, Bromke A, Bryant DW, Gupta R, Singh B, McCalla DR. Etoposide (VP16) and teniposide (VM26): novel anticancer drugs, strongly mutagenic in mammalian but not prokaryotic test systems. *Mutagenesis.* 1987;2(3):179-186. doi: 10.1039/mutage/2.3.179

118. Li J, Sun H, Jin L, et al. Alleviation of podophyllotoxin toxicity using coexisting flavonoids from *Dysosma versipellis.* *PLoS ONE.* 2013;8(8):e72099. doi: 10.1371/journal.pone.0072099

119. Tan XM, Zhou YQ, Zhou XL, et al. Diversity and bioactive potential of culturable fungal endophytes of *Dysosma versipellis,* a rare medicinal plant endemic to China. *Sci Rep.* 2018;8(1):12694. doi: 10.1038/s41598-018-31009-0

120. Radhika M, Ghoshal N, Chatterjee A. Comparison of effectiveness in antitumor activity between flavonoids and polyphenols of the methanolic extract of roots of *Potentilla fulgens* in breast cancer cells. *J Complement Integr Med.* 2012;9(1). doi: 10.1515/1553-3840.1644

121. Raviraja NS. Fungal endophytes in five medicinal plant species from Kudremukh Range, Western Ghats of India. *J Basic Microbiol.* 2005;54(3):230-235. doi: 10.1002/jobm.200410514

122. Roopa G, Madhusudhan MC, Sunil KCR, et al. Identification of Taxol-producing endophytic fungi isolated from *Salacia oblonga* through genomic mining approach. *Journal of Genetic Engineering and Biotechnology.* 2015;13(2):119-127. doi: 10.1016/j.jgeb.2015.09.002

123. El-Elimat T, Raja HA, Graf TN, Faeth SH, Cech NB, Oberlies NH. Flavonolignans from *Aspergillus iizukae,* a fungal endophyte of milk thistle (*Silybum marianum*). *J Nat Prod.* 2014;77(2):193-199. doi: 10.1021/np400955q

124. Xiao J, Lin LB, Hu JY, et al. Pestalustaines A and potential of *Ocimum sanctum* in prevention and treatment of cancer and exposure to radiation: An overview. *International Journal of Pharmaceutical Sciences and Drug Research.* 2012;4(2):97-104.
131. Li YL, Gan GP, Zhang HZ, et al. A flavonoid glycoside isolated from Smilax china L. rhizome in vitro. J Ethnopharmacol. 2007;113(1):115-124. doi: 10.1016/j.jep.2007.05.016

132. Atanu F, Ebiloma U, Ajayi E. A review of the pharmacological aspects of *Solanum nigrum* Linn. Microbiol Mol Biol Rev. 2011;6(1):1-7. doi: 10.5897/MBR2011.0001

133. El-Hawary S, Mohammed R, AbouZid S, et al. Solamargine production by a fungal endophyte of *Solanum nigrum*. J Appl Microbiol. 2014;11(1):61-68. doi: 10.1016/j.japm.2013.10.004

134. Chan EWC, Wong SK, Chan HT. Casticin from *Taxus wallachiana*. Mycologia. 2006:112-121.

135. Kawada M, Inoue H, Ohba SI, Masuda T, Momose I, Ikeda D. Leucinostatin A inhibits prostate cancer growth through reduction of insulin-like growth factor-I expression in prostate stromal cells. Int J Cancer. 2010;126(4):810-818. doi: 10.1002/ijc.24915

136. Strobel GA, Hess W. Glucosylation of the peptide leucinostatin A, produced by an endophytic fungus of European yew, may protect the host from leucino statin toxicity. Chem Biol. 1997;4(7):529-536. doi: 10.1016/S1074-5521(97)90325-2

137. Bashyal B, Li YJ, Strobel G, et al. Seimatoantlerium nepalense, an endophytic taxol-producing coelomycete from Himalayan yew (*Taxus wallachiana*). Mycotaxon. 1999;72:33-42.

138. Ahmad MS, Ahmad S, Gautam B, Arshad M, Afzal M. Terminalia arjuna, a herbal remedy against environmental carcinogenicity: an in vitro and in vivo study. *Egyptian Journal of Medical Human Genetics*. 2014;11(15):61-68. doi: 10.1016/j.ejmhm.2013.10.004

139. Saxena M, Faridi U, Mishra R, Gupta MM, Darokar MP, Srivastava SK, Khanuja SPS. Cytotoxic agents from *Terminalia arjuna*. Planta Medica. 2007;73(14):1486-1490. doi: 10.1055/s-2007-990258

140. Gangadewi V, Muthumary J. A novel endophytic taxol-producing fungus *Chaetomella raphigera* isolated from a medicinal plant, *Terminalia arjuna*. Appl Biochem Biotechnol. 2009;158(3):675-684. doi: 10.1007/s12010-009-8532-0

141. Bala M, Pratap K, Verma PK, Singh B, Padwad Y. Validation of ethnomedicinal potential of *Tinospora cordifolia* for anticancer and immunomodulatory activities and quantification of bioactive molecules by HPTLC. J Ethnopharmacol. 2015;175:131-137. doi: 10.1016/j.jep.2015.08.001

142. Mishra A, Gond SK, Kumar A, et al. Season and tissue type affect fungal endophyte communities of the Indian medicinal plant *Tinospora cordifolia* more strongly than geographic location. Microb Ecol. 2012;64(2):388-398. doi: 10.1007/s00248-012-0029-7

143. Chan EWC, Wong SK, Chan HT. Casticin from *Vitex* species: a short review on its anticancer and anti-inflammatory properties. *J Integr Med*. 2018;16(3):147-152. doi: 10.1016/j.jim.2018.03.001

144. Yadav B, Bajaj A, Saxena M, Saxena AK. *In vitro* anticancer activity of the root, stem and leaves of *Withania somnifera* against various human cancer cell lines. *Indian J Pharm Sci*. 2010;72(5):659-663. doi: 10.4103/0250-474X.78543

145. Atri N, Rai N, Singh AK, et al. Screening for endophytic fungi with antibacterial efficiency from *Moringa oleifera* and *Withania somnifera*. *J Sci Res*. 2020;64(1):127-133. doi: 10.37398/JSR.2020.640118

146. Ramirez-Erosa I, Huang Y, Hickie RA, Sutherland RG, Barl B. Xanthatin and xanthinosin from the burs of *Xanthium strumarium* L. as potential anticancer agents. *Can J Physiol Pharmacol*. 2007;85(11):1160-1172. doi: 10.1139/Y07-104

147. Kokate CK, Purohit AP, Gokhale SB. Text book of pharmacognosy, 34th ed., nirali prakashan, pune. 2006:112-121.

148. Kim JS, Lee SJ, Park HW, et al. K. Cytotoxic components from the dried rhizomes of *Zingiber officinale* Roscoe. *Arch Pharm Res*. 2008;31(4):415-418. doi: 10.1007/s12272-001-1172-y

149. Ligresti A, Moriello AS, Starowicz K, et al. Antitumor activity of plant cannabinoids with emphasis on the effect of cannabidiol on human breast carcinoma. *J Pharma Exp Therap*. 2006;318(2):1375-1387. doi: 10.1124/jpet.106.105247

150. Faguet GB. A brief history of cancer: age-old milestones underlying our current knowledge database. *Int J Cancer*. 2015;136(9):2022-2036. doi: 10.1002/ijc.29134