Research Paper
The Effect of Eight Weeks of Selected Exercises in Water on Pain and Balance of Female Nurses With Chronic Back Pain

Havar Ezadi1, Narmin Ghanizadeh Hesar2

1. Department of Sport Injuries and Corrective Exercises, Faculty of physical Education, Urmia Branch, Islamic Azad University, Urmia, Iran.
2. Department of Sport Injuries and Corrective Exercises, Faculty of physical Education, Urmia University, Urmia, Iran.

Objective: The purpose of this study was to investigate the effect of eight weeks of selected exercises in water on pain and balance of nurses with chronic back pain.

Methods: This semi-experimental study was performed on 30 nurses working in Sanandaj city hospitals. Selected exercises in water for eight weeks, three sessions per week, which was carried out progressively and with the practice of central stability exercises on the experimental group. To assess the pain and balance of the patients in the pre and post test tests, both groups used the standard questionnaire of Quebec, FBT test, berg balance test. Independent and dependent t-test was used to analyze the data. The significance level was considered as P<0.05.

Results: There was a significant difference between the mean scores of pain and the static and dynamic balance in the experimental and control groups, respectively, with a significant decrease and significant increase in the pain (P=0.001) and static (P=0.001) and dynamic (P=0.001) balance variables in the experimental group.

Conclusion: Regarding the effectiveness of selected exercises in water on the pain and balance of nurses with non-specific chronic low back pain, it is recommended to design the training protocols for patients with special attention should be given to the chronic pain, to the practice of water therapy (and to the importance of taking core stability of the workout in these exercises).

Keywords: Water therapy, Pain, Balance, Back pain, Nurse

Extended Abstract

1. Introduction

Back pain is one of the most common problems in developing and developed countries that people face problems such as pain and imbalance in daily life. Nurses are considered as high risk groups for low back pain due to their professional work [1, 2]. The aim of this study was to investigate the effect of eight weeks of selected exercises in water on pain and balance of female nurses with chronic low back pain.

2. Methods

This quasi-experimental study was performed on 30 nurses working in Sanandaj city hospitals. The selected exercises in water were performed by the experimental group for eight weeks, three sessions per week, which were progressive and with the approach of central stability exercises. To evaluate the pre-test and post-test of pain and balance of
the subjects, the standard Quebec questionnaire (for pain assessment), Stork Test (static balance) and LEAF Test (dynamic balance) were used [3, 4]. Independent and dependent t-tests were used to analyze the data. Significance level was considered P<0.05.

3. Results

The mean scores of pain and static and dynamic balance were significantly different in the experimental and control groups, so that a significant decrease was observed in pain scores (P=0.001). There was a significant increase in static balance (P=0.001) and dynamic balance (P=0.001) scores, while none of these variables were significant for the control group (P≥0.05).

According to the results of independent t-test in Table 1, there is no significant difference in the pre-test of the control and experimental groups in the variables of pain intensity, static balance and dynamic balance, while the differences in the post-test of these variables are significant (P≤0.05).

4. Discussion and Conclusion

The results of this study revealed that selected exercises in water improved pain and balance in the experimental group with non-specific chronic low back pain. Due to the effectiveness of these exercises, it is recommended to pay special attention to hydrotherapy exercises (with the approach of strengthening the central muscles) in designing training protocols for patients with chronic back pain. Regarding the possible mechanism of pain relief for nursing women with chronic non-specific low back pain following the selected water exercise program in this study, it should be noted that the water exercise protocol includes a reduction in weight-bearing forces. Patients who exercise in the water feel lighter and easier to move.

The feeling of losing weight in water seems to relieve or significantly reduce muscle cramps, which in turn reduces muscle spasms. Baker believes that non-weight-bearing exercises are a good option for reducing back pain, and that a person can control his or her weight if he or she is submerged in water [14]. On the other hand, in this study, central stability exercises were used as selected exercises in water. Many researchers consider the role of muscles and soft tissues around the spine in causing low back pain [15]. Their argument is that muscle weakness to support inactive structures against overload may destroy these pain-sensitive structures and ultimately cause pain in these individuals [29].

Previous studies have concluded that abnormalities and weaknesses in both the global and local muscular systems contribute to back pain. Researchers have linked these weaknesses to inappropriate postures that people show during various activities. In most cases, weakness and atrophy are observed in the internal parts of the multifidus muscle and other deep muscles of the lower back, and the relationship between back pain and atrophy of these muscles has been proven in many other studies [29]. Regarding the possible mechanism of improving the balance of female patients with chronic low back pain in this study, it can be stated that in people with low back pain, physiological mechanisms in the balance systems are altered and incorrect information about the spatial position of the body is sent to the brainstem [20]. The higher density of water than air helps the resistance force engage the muscles and increase their strength, which in turn improves patients’ balance.

Table 1. Results of independent t-test to compare scores of pain intensity, static and dynamic balance in pre-test and post-test

Variables	Groups	Pre-test Mean Diff.	t	P	Post-test Mean Diff.	T	P
Intensity of pain	Control	1.05	1.62	0.11	15.66	7.59	0.001
	Experimental						
Static balance	Control	0.88	0.45	0.76	-16.09	-8.13	0.001
Stork test (seconds)	Experimental						
Dynamic balance	Control	0.80	0.66	0.51	-11.35	-9.45	0.001
LEAF test (score)	Experimental						
In this study, other causes of improved balance can be attributed to the physical properties of water. Immersion of the body and floating in the water environment increases the input of deep receptors and improves the balance by more adjustment and stability of the body. On the other hand, because water has a higher viscosity than air, it has a higher resistance. Therefore, sensory feedback in the water environment increases, and thus improves the body’s sense of awareness. Other effects of exercise in water on improving balance include stimulating the atrial system and facilitating atrial inlets \[22, \ 23\]. Exposure to water can enhance the stimulation of the skin inlets and thus increase the stimulation of the afferent nerves. Therefore, multisensory exercises such as water exercises may stimulate the senses involved in balance to provide conditions for challenging the balance system, and thus be effective in improving balance \[15\].

Ethical Considerations

Compliance with ethical guidelines

All ethical principles are considered in this article. The participants were informed about the purpose of the research and its implementation stages. They were also assured about the confidentiality of their information and were free to leave the study whenever they wished, and if desired, the research results would be available to them.

Funding

This research did not receive any grant from funding agencies in the public, commercial, or non-profit sectors.

Authors’ contributions

All authors equally contributed to preparing this article.

Conflicts of interest

The authors declared no conflict of interest.
مقاله پژوهشی

تأثیر هشتم هفته کمیونات مناسب در آب بر کاهش درد و تعادل زنان پرستار مبتلا به کمردرد مزمن

هوار ایزدی *

1. گروه آسیب شناسی ورزشی و جراحات اصلاحی، دانشکده تربیت بدنی و علوم ورزشی، دانشگاه آزاد اسلامی، ارومیه، ایران.

2. گروه آسیب شناسی ورزشی و جراحات اصلاحی، دانشکده تربیت بدنی، دانشگاه آزاد اسلامی، ارومیه، ایران.

مقدمه

امروزه کمردرد به عنوان یکی از مشکلات مطرح مطرح است. آمارها نشان می‌دهند که حداقل یک‌چهارم افراد minimum به کمردرد مبتلا هستند. در این مطالعه سعی می‌شود تأثیر هشت هفته کمیونات مناسب در آب بر کاهش درد و تعادل زنان پرستار مبتلا به کمردرد مزمن بررسی شود.

مطالعه‌پژوهشی

لیست نظریه‌ها و آزمون‌های آزمایش کرده.

مطالعه انجام شده

هدف از مطالعه حاضر، بررسی تأثیر هشت هفته تمرینات منتخب در آب بر درد و تعادل زنان پرستار مبتلا به کمردرد مزمن است.

روش‌ها

در این مطالعه سه جلسه تمرین هر هفته در آب انجام شد. برای ارزیابی درد و تعادل از پرسش‌نامه استاندارد کی‌یوب (برای ارزیابی درد) و تست لک‌لک (تعادل استاتیک) و تست بِرگ (تعادل ایستا) استفاده شد.

نتایج

میانگین نمرات درد و تعادل ایستا و پویا در گروه آزمایش و کنترل تفاوت معنی‌داری داشتند. همچنین در نمرات یافته‌ها نیز افزایش معنی‌داری به $P < 0.001$ و $P < 0.001$ در نمرات تعادل ایستا و پویا مشاهده شد.

تشکیل پایه‌سازی برای کاهش درد و تعادل زنان پرستار مبتلا به کمردرد مزمن است. در نتیجه‌گیری مطالعه حاضر و اثربخشی تمرینات منتخب در آب بر درد و تعادل زنان پرستار مبتلا به کمردرد مزمن، توصیه می‌شود تمرینات آب درمانی (با رویکرد تقویت عضلات مرکزی) به درک درد و تعادل زنان پرستار مبتلا به کمردرد مزمن توجه ویژه شود.

کلیدواژه‌ها:

آب درمانی، درد، تعادل، کمردرد، پرستار

اطلاعات مقاله:

1399 بهمن 28:
تاریخ دریافت: 1399 بهمن 28
تاریخ پذیرش: 1400 خرداد 11:
تاریخ انتشار

References:

1. H. Izadi, "The Effect of Eight Weeks of Swimming in Water on Pain and Balance in Nursing Students with Chronic Shoulder Pain," Iran J Phys Ther Sports Med, 2019.

2. H. Izadi, "The Effect of Eight Weeks of Swimming in Water on Pain and Balance in Nursing Students with Chronic Shoulder Pain," Iran J Phys Ther Sports Med, 2019.

3. H. Izadi, "The Effect of Eight Weeks of Swimming in Water on Pain and Balance in Nursing Students with Chronic Shoulder Pain," Iran J Phys Ther Sports Med, 2019.

4. H. Izadi, "The Effect of Eight Weeks of Swimming in Water on Pain and Balance in Nursing Students with Chronic Shoulder Pain," Iran J Phys Ther Sports Med, 2019.

5. H. Izadi, "The Effect of Eight Weeks of Swimming in Water on Pain and Balance in Nursing Students with Chronic Shoulder Pain," Iran J Phys Ther Sports Med, 2019.
فعالیت‌های مختلف همواره در معرض آسیب و ناهنجاری قرار دارند. در پی صدمات و آسیب‌های ستون فقرات و به ویژه مهره‌های کمری عواقبی، از جمله اختلال کنترل تعادل (به عنوان حفظ ثبات بدن در وضعیت‌های ایستا و پویا تعریف می‌شود) می‌تواند یک کناره‌گیری کاملاً عدم عضوی کمری باشد که به رواج حرکات و انعطاف‌پذیری حرکتی فشار اعمال می‌کند. در ضمن، به همراه آن، باعث شده که ستون فقرات کمری در افراد آن را ایجاد کرده و از رد و جلو یک باخت‌گیری در این بیماران جهت درمان و درمانی به وجود آورده.

از طرفی کمر درد به عنوان یک بیماری مرتبط با کار، از قدیمی‌ترین و شایع‌ترین مشکلات کارمندان از نظر بهداشت کار بوده و از مهم‌ترین ناراحتی‌های عضلانی اسکلتی در شغل پرستاری است که علت آن را ماهیت مراقبت پرستاری می‌توان ماهیت مراقبت پرستاری بررسی کرد.

علاوه بر فشارهای فیزیکی زیاد در این حرفه مانند جابه‌جایی بیماران، ایستادن طولانی، حرکات چرخشی و خم شدن‌های مکرر، عوامل روانی و اجتماعی نیز در شروع کمر درد می‌توانند مکمل‌ترین صدمات اسکلتی عضلانی در پرستاران باشند. درصد 30–48 (درصد) مشکلات گردن و 30–76 (به صورت کمردرد) گزارش شده است که موجب 43–53 (درصد) غیبت از کار و یا تصمیم برای تغییر شغل در این افراد شده است. هر چند شیوع بالا و تأثیرات بسیار مهم شغل پرستاری بر فاکتورهای یادشده، متأسفانه بیشتر مطالعات صورت گرفته در این زمینه به بررسی شیوع آسیب‌های اسکلتی عضلانی (از جمله کمر درد) پرستاران پرداخته و اهمیت رویکردهای پیشگیری و اثر بخشی تمرین ورزشی برازتوانی این افراد را نادیده گرفته‌اند.

مطالعات نشان داده که تمرینات ورزشی به طور قابل ملاحظه‌ای بهبود کلیه کاملاً بهبودی کرده و آن را به بهبود کامل کناره‌گیری کرده و باعث شده که در کم‌ترین شیوع باعث بهبود و بهبودی شده و در نهایت از کمر درد کم شود.

مطالعات نشان داده که تمرینات ورزشی به طور قابل ملاحظه‌ای بهبود کلیه کاملاً بهبودی کرده و آن را به بهبود کامل کناره‌گیری کرده و باعث شده که در کم‌ترین شیوع باعث بهبود و بهبودی شده و در نهایت از کمر درد کم شود.
پس از انجام فرم‌های تجزیه و تحلیل مربوط به فهم نشان‌دهنده مرکزی در آب، در مجموع، مقدماتی در مورد پاسخ‌های آزمون‌های آزمودنی‌ها به عمل‌آوری (گروهی که شرایط بدنی آنها در پیش آزمون و پس آزمون مطالعه شرکت کرده‌اند) و نتایج مورد تجزیه و تحلیل قرار گرفت.

به منظور ارزیابی میزان درد کمر، آزمون‌های آزمودنی‌ها به این شرح پاسخ‌های آزمون‌های آزمودنی‌ها به عمل‌آوری (گروهی که شرایط بدنی آنها در پیش آزمون و پس آزمون مطالعه شرکت کرده‌اند) و نتایج مورد تجزیه و تحلیل قرار گرفت.

جلسه	نوع تمرین	جلسه	سیزت	تکرار	زمان تمرین	استراحت بین هر حرکت
اول	کشش عضلات مسترینگ	دوم	5 تا 45 ثانیه	60 ثانیه		
اول	کشش عضلات مسترینگ	سوم	5 تا 45 ثانیه	60 ثانیه		
اول	کشش عضلات مسترینگ	اول	3 تا 45 ثانیه	60 ثانیه		
اول	کشش عضلات مسترینگ	دوم	3 تا 45 ثانیه	60 ثانیه		
اول	کشش عضلات مسترینگ	سوم	3 تا 45 ثانیه	60 ثانیه		
اول	کشش عضلات مسترینگ	اول	3 تا 45 ثانیه	60 ثانیه		
اول	کشش عضلات مسترینگ	دوم	3 تا 45 ثانیه	60 ثانیه		
اول	کشش عضلات مسترینگ	سوم	3 تا 45 ثانیه	60 ثانیه		

1. Quebec Standard Questionnaire
سپاس از انجام مطالعه، آزمون‌های است و شکل‌گیری دو گروه
گروه آزمایش در یک برنامه تمرینی به مدت هشت هفته و
هر هفته سه جلسه شرکت می‌کردند. برنامه تمرینی بر اساس
دستورالعمل تجویز ورزشی مقالات مرتبط با افراد مبتلا به
کمردرد غیر اختصاصی شامل سه بخش گرم کردن، برنامه اصلی
تمرین و سرد کردن بود.

مدت زمان برنامه اصلی تمرین بر اساس تعداد تکرارهای حرکت و پیش‌رشت آن در ازدیده‌گرانک، از سی تا هجده دقیقه، در جلسات پایانی متغیر بود تمرین‌های مسلسل و تکرارهای
تعادل کشیده‌ای ثابت یا برنامه‌ای نسبت به
مرحله گرم کردن مشخص
جدول 1: مختصات جمعیتی آزمودنی‌های در دو گروه کنترل و آزمایش

متغیر	شماره نفر (تعداد)	سن (سال)	قد (سانتی‌متر)	وزن (کیلوگرم)
گروه آزمایش	15	169 ± 2.9	71 ± 3.7	70 ± 1.4
گروه کنترل	15	168 ± 3.4	70 ± 1.4	70 ± 1.4

جدول 2: نرخ خرابی در نمونه‌های اولیه و پس از راه اندازی آزمون و پس از گروه آزمایش و کنترل

گروه	نرخ خرابی (درصد)
گروه آزمایش	1.35 ± 1.32
گروه کنترل	1.40 ± 1.40

جدول 3: مشخصات سنجشی آزمون‌های در دو گروه کنترل و آزمایش

متغیر	مقدار
تعادل ایستا (ثانیه)	26 ± 2.6
تعادل پویا (نمره)	0.01 ± 0.01
بحث
هدف از پژوهش حاضر، بررسی اثر هشت هفته تمرینات انتخاب در آب، بر درد و تعادل زنان پرستار مبتلا به کمردرد مزمن غیر اختصاصی بود. نتایج حاصل از پژوهش حاضر نشان داد که هشت هفته تمرینات انتخاب در آب، پس از پیش آزمون، در گروه آزمایش تأثیر معناداری داشته است.

نتایج
منشتوش جمیشنشتایی، آزمون‌های گروه کنترل و آزمایش در متغیرهای یادشده تفاوت معناداری داشتند. تفاوت درون گروهی در پیش آزمون و پس آزمون معنادار نبود.

جدول ۱

متغیر	گروه‌ها	اختلاف میانگین پیش آزمون	t	P	اختلاف میانگین پس آزمون	t	P
شدت درد	کنترل	۱۵/۶۶	۱۱/۱۵	۰/۰۰۱	۰/۸۰	۱۱/۳۵	۰/۰۰۱
تعادل ایستا	کنترل	۰/۱۱	۴/۰۰۵	۰/۰۵۰	۰/۸۰	۴/۰۰۵	۰/۰۰۱
تعادل پویا	کنترل	۰/۰۶	۴/۰۰۵	۰/۰۵۰	۰/۸۰	۴/۰۰۵	۰/۰۰۱

نتایج آزمون تی مستقل برای مقایسه نمرات در لحظات ایستا و پویا در پیش و پس آزمون گروه‌ها نشان داد که تفاوت منفی معناداری در نمرات برخی متغیرها در گروه‌ها وجود داشته است. این نتایج با پژوهش‌های داخل کشور و خارج کشور مطابقت داشته است.

یافته‌ها
در پژوهش حاضر، به توجه به توصیه‌های مختلف درخصوص زمان تمرینات کشش‌ها که اغلب بین تا بهترین بهره [۱۱]، در این پژوهش تعداد حرکت در آب بین یک روز گرم کردن و تحرک نیز چه به بیان اصلی با رویکرد نسبت مشاهده می‌شود.

نتیجه‌گیری
نتایج این پژوهش نشان می‌دهد که تمرینات انتخاب در آب، می‌تواند بهبود رشد و تعادل زنان پرستار مبتلا به کمردرد و آورده‌شان در جنگل‌های این نتایج با پژوهش‌های داخل کشور و خارج کشور مطابقت داشته است.

Acknowledgements
This study was supported by...
بهبود عملاکره در زنان مبتلا به کمردرد مزمن نقش بانده پیدا می‌کند. البته توجه به نتایج بدترین آزمون در این تحقیق، به نظر می‌رسد که تمرین‌های ثابت مرکزی باید به‌عنوان یکی از ابزارهای اصلی درمان کمردرد مزمن تلقی شود.

در رابطه با اینکه پژوهش‌های مختلف در مدت زمان پرستсан می‌باشد که کمردرد مزمن غیر اختصاصی به دلیل اندام‌های زنان در آب انجام می‌شود، به‌نظر می‌رسد که این نوع کمک بهبودی در این بیماران فعالیت تعاملی با شکم و تغییر در رفتار خانوادگی و بهبود وضعیت سلامت را انجام می‌دهد. این امر که به‌عنوان یکی از ابزارهای مهم درمان کمردرد مزمن در این شرایط به‌کار می‌رود.

به‌نظر می‌رسد که این نوع کمک بهبودی در این بیماران می‌تواند بهبود حال بیماران را افزایش دهد و امید به بهبودی درمان کمردرد مزمن را افزایش دهد.

نتیجه این مطالعه از جنبه تأثیر تمرین‌های ثابت مرکزی بر کمردرد و تعادل در زنان مبتلا به کمردرد مزمن غیر اختصاصی مثبت است. این نتایج نشان‌دهنده‌ی اهمیت تمرین‌های ثابت مرکزی در این بیماران می‌باشد و به‌عنوان یکی از ابزارهای مهم درمان کمردرد مزمن در این شرایط به‌کار می‌رود.
تکثیر نظری به شاخه‌ای انتهایی بدن ذخیره شده است. هر روز که نیرویی به شاخه‌ای منتقل می‌گردد، این ناحیه انتهایی بدن تغییراتی در حالت نیروی آن باعث شده و همچنین نیروی اختلال در بدن ایجاد می‌کند. به همین دلیل، در بسیاری از مطالعات، تمرینات در بخش‌های انتهایی بدن به بهبود ثبات و حفظ تعادل بدن کمک می‌کند.

مطالعه فیزیولوژیکی ارتباط انرژی و نیروی بدن و ثبات و تعادل مصرف شده در شاخه‌های انتهایی بدن به‌طور مشابه دیده می‌شود. در واقع ثبات شاخه‌های انتهایی به عنوان کنترل حرکتی شناخته می‌شود و ظرفیت عضلانی شاخصه، برای حفظ ثبات این ناحیه در پاسشهای فوقانی و تحتانی در طول فعالیت‌ها بسیار مهم هستند.

عملکرد و هماهنگی میان عضلات انتهایی بدن به همراه کنترل حرکت و ثبات بدن در طول فعالیت‌ها ضروری هستند. همچنین تمرینات در این ناحیه بدن اولین بار به این موضوع توجه کردند و عملکرد و حفظ ثبات در زنان پرستاری که همچنین در بدن مرکزی بوده و به‌طور خاص در سطح سینه و پوست به‌طور بیشتری ثبات و تعادل نشان می‌دهند، حفظ ثبات و تعادل در زنان پرستار مبتلا به کمردرد مزمن ضروری هستند. همچنین تمرینات در این ناحیه به بهبود ثبات و حفظ تعادل این ناحیه کمک می‌کند و به‌طور خاص در زنان پرستار مبتلا به کمردرد مزمن ضروری هستند.

نتایج‌گیری‌های اخلاقی

با توجه به تحقیقات مطالعه و اخلاقی افتتاحی، تحقیقات و تمرینات مسئول انجام نشده است. همچنین در این مطالعه امکان تحقیق و تمرینات در زنان پرستاری که مستند به تمایل و امکانات آن‌ها به‌طور بالقوه امکان‌پذیر نبوده است. توجه ویژه به وزه بدن و توجه به هر لحظه ممکن در حفظ تعادل و ثبات در این ناحیه کمک می‌کند.

ملاحظات اخلاقی

پیروی از اصول اخلاقی پژوهش

اصول اخلاقی تعلیم‌دهنده در این مطالعه و تحقیقات مربوط به پیشگیری از تأثیرات و تبعات هر چیزی که بر زنان که برای ثبات و تعادل در ناحیه‌های انتهایی بدن به‌طور فعال و مداوم آموزش دهی تلقی می‌شود. اطلاعات آن‌ها محرمانه نگه داشته شده است.
[1] Ramazani Baf, Nikbakht A, Mohammadpour A. Low-back pain prevalence and its risk factors in nurses. Iran J Nursing Res. 2006; 1(2):37-42. http://jnir.ir/browse.php?a_id=30&slc_lang=en

[2] Waddell G, Burton AK. Occupational health guidelines for the management of low back pain. Occup Med. 2001; 51(2):124-35. [DOI:10.1093/occmed/51.2.124] [PMID]

[3] Aglinejad M, Mostafaie M. [Occupational medicine and professional diseases (Persian)]. Tehran: Arjmand Pub. https://www.gisoom.com/book/1362648/%DA%A9%D88C/

[4] Tinubu BMS, Mbaada CE, Oyeyemi AL, Fabunmi AA. Work-related musculoskeletal disorders among nurses in Ibadan, south-west Nigeria: A cross-sectional survey. BMC Musculoskeletal Disorders. 2010; 11:12. [DOI:10.1186/1471-2474-11-12] [PMID] [PMCID]

[5] Mohseni-Bandpei MA, Fakhri M, Ahmad-Shirvani M, Bagheri Nessa-mi M, Khalilian AR. [Epidemiological survey of low back pain among nurses (Persian)]. J Babol Uni Med Sci. 2005; 7(26):35-40. http://jbums.org/browse.php?a_id=2635&sid=1&slc_lang=fa

[6] Hoy D, Brooks P, Blyth F, Buchbinder R. The epidemiology of low back pain. Best Pract Res Clin Rheumatol. 2010; 24(6):769-81. [DOI:10.1016/j.berh.2010.10.002] [PMID]

[7] Ferreira ML, Ferreira PH, Latimer J, Herbert R, Maher C. Dose spinal manipulative therapy help people with chronic low back pain? Australian J Plant Physiol. 2002; 48(4):277-84. [DOI:10.1007/s00044-0000-1543-2] [PMID]

[8] Mostafaezade F, Rostamzade M, Mashof M, Afzalifard H. [Assessing quality of life in low back pain admitted in Ardebil Physiography Center (Persian)]. Aflak. 2005; 2(2-3). https://eprints.arums.ac.ir/631/

[9] Harreby M, Kjer J, Hesselsee G, Neergaard K. Epidemiological aspects and risk factors for low back pain in 38-year-old men and women: A 25-year prospective cohort study of 640 school children. Eur Spine J. 1996; 5(5):312-8. [DOI:10.1007/BF00304346] [PMID]

[10] Detmar SB, Aaronson NK. Quality of life assessment in daily clinical oncology practice: A feasibility study. Eur J Cancer. 1998; 34(8):1181-6. [DOI:10.1016/S0959-8049(98)00018-5] [PMID]

[11] Mousavi SJ, Parnianpour M, Mehdian H, Montazeri A, Mobini B. The Oswestry Disability Index, the Roland-Morris Disability Questionnaire, and the Quebec Back Pain Disability Scale; Translation and validation studies of the Iranian versions. Spine. 2006; 31(14):454-9. [DOI:10.1097/00007632-199509150-00006] [PMID]

[12] Lee JH, Ooi Y, Nakamura K. Measurement of muscle strength of the trunk and the lower extremities in subjects with history of low back pain. Spine. 1995; 20(18):1994-6. [DOI:10.1097/00007632-199509150-00006] [PMID]

[13] Kopec JA, Esdaile JM, Abrahamowicz M, Abenhaim L, Wood-Dauphinee S, Lamping DL, et al. The Quebec Back Pain Disability Scale. Measurement properties. Spine. 1995; 20(3):341-52. [DOI:10.1097/00007632-199502000-00016] [PMID]

[14] Retene J, Ylitalo K, Koivisto M, Nurmi P, Paakkonen J, Virtanen T, et al. The effects of aquatic exercise on balance outcomes in patients with Parkinson’s disease. Disabil Rehabil. 1999; 21(2):68-73. [DOI:10.1080/026921501550297990] [PMID]

[15] Waddell G, Burton AK. Occupational health guidelines for the management of low back pain. Occup Med. 2001; 51(2):124-35. [DOI:10.1093/occmed/51.2.124] [PMID]

[16] Bagheri M, Fereidooni M, Mostafaei M, Mostafaezade F. Effects of five weeks of selected exercises in water on pain and balance in chronic back pain. J Sport Biomech. 2021; 7(1):44-55.

[17] Kawasaki JM. The effects of aquatic exercise on balance outcomes in individuals with Parkinson’s disease. Med Sci Sports Exercise. 2009; 41(5):102. [DOI:10.1249/01.mss.0000354870.87591.d9]

[18] Gillespie LD, Robertson MC, Gillespie WJ, Lamb SE, Gates S, Cumming RG, et al. Interventions for preventing falls in older people living in the community. Cochrane Database Syst Rev. 2012; 2012(9):CD007146. [DOI:10.1002/14651858.CD007146.pub3] [PMID] [PMCID]

[19] Villani T, Pasquetti P, Magnolli S, Lunardelli ML, Giorgi C, Serra P, et al. Effects of physical training on strengthening-up processes in patients with Parkinson’s disease. Disabil Rehabil. 1999; 21(2):68-73. [DOI:10.1080/026921501550297990] [PMID]

[20] Kopec JA, Esdaile JM, Abrahmonowicz M, Abenhaim L, Wood-Dauphinee S, Lamping DL, et al. The Quebec Back Pain Disability Scale. Measurement properties. Spine. 1995; 20(3):341-52. [DOI:10.1097/00007632-199502000-00016] [PMID]

[21] Waller B, Lambeck J, Daly D. Therapeutic aquatic exercise in the treatment of low back pain: A systematic review. Clin Rehabil. 2009; 23(1):3-14. [DOI:10.1177/0269215508097856] [PMID]

[22] Andred-Nielsen L, Graven-Nielsen T. Muscle pain: Sensory implications and interaction with motor control. Clin J Pain. 2008; 24(4):291-8. [DOI:10.1097/AJP.0b013e3181561247] [PMID]

[23] Sedaghati N, Hamedfar A, Behpour N. [The effect of a selected spinal core-muscle stabilization training in water on pain intensity and lumbar lordosis (Persian)]. Feizy. 2013; 17(3):267-74. https://www.sid.ir/ja/farJurnal/ViewPaper.aspx?ID=216136

[24] Lee JH, Ooi Y, Nakamura K. Measurement of muscle strength of the trunk and the lower extremities in subjects with history of low back pain. Spine. 1995; 20(18):1994-6. [DOI:10.1097/00007632-199509150-00006] [PMID]

[25] Rutledge E, Silvers WM, Browder K. Metabolic-cost comparison of submaximal land and aquatic treadmill exercise. Int J Aquat Res Educ. 2007; 1(2):118-33. [DOI:10.25035/ijare.01.02.04]

[26] Hernandez-Reif M, Diego M, Field T. Preterm infants show reduced stress behaviors and activity after 5 days of massage therapy. Infant Behav Dev. 2007; 30(4):557-61. [DOI:10.1016/j.infbeh.2007.04.002] [PMID] [PMCID]

[27] Ruhe A, Fejer R, Walker B. Center of pressure excursion as a measure of balance performance in patients with non-specific low back pain compared to healthy controls: A systematic review of the literature. Eur Spine J. 2011; 20(3):358-68. [DOI:10.1007/s00586-010-1543-2] [PMID]

[28] Arendt-Nielsen L, Graven-Nielsen T. Muscle pain: Sensory implications and interaction with motor control. Clin J Pain. 2008; 24(4):291-8. [DOI:10.1097/AJP.0b013e3181561247] [PMID]

[29] Moseley GL, Hodges PW. Are the changes in postural control associated with low back pain caused by pain interference? Clin J Pain. 2005; 21(4):323-9. [DOI:10.1097/01.ajp.0000131414.84596.99] [PMID]

Ezati H & Ghasanzadeh Huse N. Eight Weeks of Selected Exercises in Water on Pain and Balance in Chronic Back Pain. J Sport Biomech. 2021; 7(3):44-55.
This Page Intentionally Left Blank