Over the past several decades, hemophilia treatment in Korea has progressed dramatically. It has become possible to prevent hemophilia complications by maintenance treatment as well as on-demand treatment with the help of the National Health Insurance program. Treatment and prevention of hemorrhage, prevention of joint complications, treatment and prevention of infectious complications have greatly improved the quality of life and life expectancy of hemophilia patients. However, the development of inhibitor is the most serious and challenging complication of clotting factor replacement therapy, although immune tolerance regimens and bypassing agents have shown some efficacy in countering this complication. The development of novel methods of therapy, including the use of extended half-life factors and gene therapy, will further improve the outcome of hemophilia patients. Administering the right drug to the right patients with the right dose at the right time will be necessary for treating the patient. Achievement of optimal therapeutic goals will require continued cooperation between patients and medical staff.

Key Words: Factor VIII, Hemophilia A, Recombinant factor VIII, Inhibitor

Introduction

Hemophilia A is a congenital bleeding disorder resulting from a deficiency of blood coagulation factor VIII. In hemophilia patients, repeated bleeding into the joints leads to synovial inflammation and, in turn, chronic joint problems. Once the cartilage is damaged, arthritis is in progress even though there is no bleeding. In addition, excessive bleeding is also observed after tooth extraction, circumcision, or muscular trauma. Other bleeding symptoms include central nervous system hemorrhage, hematuria, and nosebleeds.

The risk of such bleeding is divided into severe (less than 1% of normal coagulation factor VIII), moderate (1-5%), and mild (>5-40%), depending on the extent to which bleeding occurs voluntarily without special damage. In severe cases, which account for about 70% of all patients in Korea, spontaneous bleeding can occur.

According to the data of Korea Hemophilia Foundation, among the 2,354 hemophilic diseases associated with bleeding, 1,839 people were diagnosed with hemophilia A by the end of 2016 [1]. Among them, 72% was severe type, 17% moderate and 11% mild. Compared to the 1,142 regis-
tered by June 1999, the total number of new registrations is about 700 until the end of 2016, which means 30-50 new registration per year [2].

In the past, treatment for hemophilia was an on-demand treatment for hemorrhage, but it resulted in bleeding complications, thus reducing the quality of life and life expectancy. In the 1960s, Dr. Nielsen of Sweden already initiated preventive therapy and this method was effective, but this therapy was only recognized in the United States in 2007 and was recognized globally in 2014 [3-5]. It has indeed gone through a long journey.

Thus, prophylactic replacement therapy is now being used to prevent bleeding in advance by regularly supplementing insufficient coagulation factors. The price of a coagulation factor FVIII for use in hemophilia A is very expensive for lifetime use. For example, if a child weighing 20 kg is administered three times a week, 20 × 25 = 500 units (IU) are required per injection, about $25 per unit if the unit price is 500 won. It will be 3,000,000 won in four weeks. Fortunately, the cost of the treatment is covered by national medical insurance if it meets medical insurance standards. In Korea, the multi-disciplinary treatment became possible from the establishment of the Korea Hemophilia Foundation in 1991, and patients were systematically assisted [6,7].

Early 1970s

Prior to the 1970s, there was no effective treatment for hemophilia A in Korea, but FVIII-enriched lyophilized plasma, known as the ‘antihemophilic factors (AHF, Green Cross)’, began to be used since 1974 [8,9]. However, this agent was not enough to cover hemophiliacs and at most was only used for catastrophic bleeding or emergency surgery. The mortality rate of hemophiliacs was very high, and the average life span was under 30 years of age, which was short compared with that of the general population [10,11]. In the meantime, innovative regular therapy by Nilsson and Ahlberg has been a good direction to prevent bleeding from being treated [12]. However, these plasma products were limited in their output, and were at risk of spreading a variety of virus diseases including hepatitis B and C.

The Age of AIDS Infection and Development of Viral Inactivation Methods (1980s)

Acquired immunodeficiency syndrome (AIDS) was reported in two people with hemophilia in 1982, which was known to be caused by human immunodeficiency virus (HIV) infection [13-15]. Fatal AIDS occurred in hemophiliacs who had received HIV-contaminated plasma. The number of people with HIV infections in the United States was estimated at 6,000 to 10,000 people, with about 2,000 in Canada and about 4,000 in France. In Italy, about 1,300 people including 150 children died after using HIV-infected plasma. Iran, which used blood imports from France, reported approximately 300 infections. Iraq had been reported about 200 HIV infections, who had lived under enormous oppression and persecution under the Hussein control. In Japan, in the 1980s, HIV infection was found in 1,800 people, or 40% of hemophiliacs, and more than 600 people died of AIDS.

In Korea, 20 out of 122 hemophilia patients receiving human plasma were found to be infected with HIV. By comparing the genes of HIV, 2 HIV-infected persons sold blood and their plasma was delivered to the hemophiliacs [16]. Even though it was unfortunate, it was very small compared to USA, Europe and Japan. Rather, HIV infection was more common in patients with hemophilia B who imported foreign products. The use of plasma from Koreans, who had fewer HIV infections at that time than in USA and Europe, was the main reason for the reduction of HIV infection.

Disaster caused by human plasma products for patients with hemophilia has led to the search for ways to inactivate HIV [17]. As a result of improvement in the antiviral treatment, hepatitis and HIV infections were no longer present, and HIV infection was controlled with antiviral drugs. Non-A non-B hepatitis was identified as hepatitis C virus in 1989 and 13.5% of Korean hemophiliacs showed hepatitis C prevalence in the 1990s, but decreased to 1.8% in 2015 [7]. This means that the viral contamination is eliminated in the factor VIII drug, and interferon and ribavirin
treatment are effective for hepatitis C patients. Although there was concern that a new variant of Creutzfeldt-Jakob disease could be transmitted from plasma as found in the UK, a method of inactivating the hepatitis C and AIDS virus has been introduced since the late 1980s, and the contamination of blood products in hemophilia patients has become virtually unproblematic [18].

In 1987, a virus inactivating process called terminal dry heating was introduced in the AHF production process. Since 1989, with virus inactivation by solvent/detergent (S/D) method, Octa-B (currently Green Eight, Green Cross), an eighth coagulation factor concentrate has been produced and used domestically [2]. However, since the S/D method is known to have no inactivating effect on hepatitis A virus or Parvovirus B19, which does not have a lipid membrane, a high purity eighth coagulation factor (Green Mono, Green Cross) has been manufactured with the use of monoclonal antibody, and is still in use [19]. Another plasma agent is monoclate-P (CSL Behring) in Korea.

Plasma preparations according to recent manufacturing methods are widely used worldwide because they are safe from hepatitis B and C, or HIV infection. However, concerns about the emergence of future possible organisms capable of infecting blood, the risk of transmission of Creutzfeldt-Jakob disease or prion variants, are not completely eroded [20].

Gene Recombinant Products Era after 1990s

In an effort to overcome the limitations of the supply shortage of plasma products, with efforts to dissipate any form of infection, the hemophilia A treatment has developed into a recombinant drug. In 1989, a recombinant factor VIII (rFVIII) was produced and demonstrated to be effective for the first time in two patients [21]. The recombinant therapeutic agents are classified into three stages depending on the stage of using the animal/human protein. The 1st generation is a product made by using animal/human protein in all the processes of 1) cell culture, 2) purification process, and 3) final stabilization. The second generation is a product made by using animal/human protein in the processes of 1) and 2). The third generation is a product made without using animal/human proteins in all processes of 1)-3). The third generation recombinant agent, unlike previous generations, reduces the risk of virus and prion infections by minimizing contact with animal/human proteins [22].

Table 1 summarizes the therapeutic agents for recombinant hemophilia used so far. It is evolving into 2nd generations, and then into 3rd generations that do not use animal/human proteins. It is known that there is little difference in vivo recovery and half-life between the first-generation recombinant agent (Recombinate, Baxter, now

Table 1. Drugs based on the recombinant factor VIII products according to generation

Product generation	Brand names	Manufacturer	Producer cell line	Heterologous genes	Proteins in the culture medium	Stabilizing agent	Viral inactivation/ removal
First	Recombinate	Baxter	CHO	FVIII, vWF	BSA, aprotinin	HSA	No
	Kogenate	Bayer Healthcare	BHK	FVIII	HPP	HSA	No
	Helixate	Bayer Healthcare	BHK	FVIII	HPP	HSA	No
	Bioclate	Baxter	CHO	FVIII, vWF	BSA, aprotinin	HSA	No
Second	ReFacto	Pfizer	CHO	FVIII BDD SQ	BSA	Sucrose	SD
	Kogenate FS	Bayer Healthcare	BHK	FVIII	HPP	Sucrose	SD
	Helixate FS	Bayer Healthcare	BHK	FVIII	HPP	Sucrose	SD
Third	Advate	Baxter	CHO	FVIII, vWF	No	Mannitol, trehalose	SD
	Xyntha	Pfizer	CHO	FVIII BDD SQ	No	Sucrose	SD, NF (35 nm)
	ReFacto AF	Pfizer	CHO	FVIII BDD SQ	No	Sucrose	SD, NF (35 nm)
	GreenGene F	Green Cross	CHO	FVIIIIBDD,vWF	No	Amino acid	SD, NF (20 nm)

CHO, Chinese hamster ovary; HPP, human plasma protein; HSA, human serum albumin; BHK, baby hamster kidney; BSA, bovine serum albumin; BDD, B-domain deleted; SD, treatment with a solvent and a detergent; NF, nanofiltration.
Shire) and the third-generation recombinant agent (Advate, Shire) [23].

The first generation includes octocog alfa (Recombinate, Shire), octocog alfa (Kogenate, Bayer), and octocog alfa (Helixate, CSL Behring). Second generations include moroctocog alfa (ReFacto, Pfizer), octocog alfa (Kogenate-FS, Bayer), and berococag alfa (GreenGene, Green Cross). The third generation includes octocog alfa (Advate, Shire), moroctocog alfa (Xyntha, Pfizer), and berococag alfa (GreenGeneF, Green Cross). It is known that there is almost no difference between in vivo recovery and half-life between the first-generation recombinant Recombinate and the third-generation recombinant Advate. Although the first generation is good in terms of efficacy and safety, it has evolved into a second generation and a third generation in which animal/human proteins are not used as much as possible when more manufacturing methods are employed.

The first product, full-length recombinant FVIII, was made almost simultaneously by Genetics Institute and Genetech, and "octocog alfa" was called an international common name. The rFVIII, made in CHO cells, is a so-called first-generation gene recombinant produced by Recombinate and Kogenate from BHK cells. The production of full-length recombinant FVIII involves a purification step of affinity chromatography using ion exchange chromatography and monoclonal antibodies followed by a step of virus inactivation step including solvent/detergent treatment [24,25].

B-domain Deleted (BDD) Recombinant FVIII

FVIII, which spontaneously circulates in the blood, has several types of abbreviated B domains, which are formed by protein degradation of two-chain molecules. The nature of the procoagulant of these FVIII strains was not clinically different, so a recombinant preparation with the B domain removed was made [26]. These are manufactured with the deletion of the region encoding amino acids 760-1639 (almost all B domains). The FVIII form (LA-VIII variants) thus made was similar to native FVIII from a biochemical point of view.

The recombinant coagulation factor VIII (FVIII SQ) variant with the B domain is designed to reconstitute the two-chain FVIII strain present in the blood, FVIII BDD SQ strain and albumin-free lyophilisate were obtained, and its lyophilized form was proven to be effective and safe. FVIII BDD SQ was named "morcocag alfa".

The first product to use FVIII BDD SQ was ReFacto and replaced with a safer phase using monoclonal antibodies, namely Xyntha and ReFacto AF [27]. The efficacy and safety of FVIII BDD SQ agents has been confirmed by clinical trials and has been used clinically [28].

GreenGene, developed from Green Cross, is a recombinant blood clotting factor with a molecular weight of about 170 kDa and a 1,425 amino acid structure in which the B domain is removed. The modified GreenGene F is the third generation recombinant FVIII [28-30].

The Appearance of Inhibitors

An immune response can occur when external FVIII is supplied to supplement deficient coagulation factors. These inhibitors are antibodies that block the clotting activity against FVIII, which is the most serious complication [31]. The safety of hemophilia treatment agents is largely determined by the frequency of inhibitor development and the risk of infection. Antibody production of plasma-derived FVIII and recombinant FVIII products is a very serious problem. The production of antibodies inhibits the success rate of hemostatic treatment and greatly increases the cost of hemostatic treatment [32,33]. Antibody development usually occurs at 10-14 exposure days and has been reported to occur in 25-30% of patients with severe hemophilia A who were previously untreated patients (PUP) [34,35].

According to Franchini et al., the antibody positivity was 29% and 33% in the first generation Recombinate and Kogenate, respectively, and 12% and 30% in the second generation Kogenate FS and ReFacto, respectively, which was statistically different from 21% of plasma-derived FVIII [36]. In PUP children with severe haemophilia, antibody incidence was similar in the plasma and recombinant product groups [33,34]. However, there were reports that recombinant FVIII had a higher incidence of inhibitors than plasma preparations, and this need to be clarified in the future [37-39].
Muscular dystrophy, cystic fibrosis, thalassemia, and sickle cell disease are also single gene disorders, but they are not treated as effectively as hemophilia. The treatment of hemophilia has made tremendous progress over the decades. Effective treatments have not only reduced morbidity, but death rates have also improved significantly, and according to statistics from 1991 to 2012, the median life expectancy has increased by 65 years in Korea [40,41].

In addition, a variety of new drugs with long half-lives and easy to use are under development and will soon be available in the domestic market. Products such as rFVIII-Fc, BAX855, BAY94-9027, N8-GP, rFVIII-SC and rFVIII-huCL are in preparation [42]. Among them, already Eloctate (Elocta, UCB) and BAX855 (Adynovate, Shire) have passed the Ministry of Food and Drug Safety in Korea and will be used after price adjustment. This should be discussed in more detail at the next opportunity.

Treatment with gene delivery is a method of fundamentally treating hemophilia [43]. Patients have great hopes and hopes, and are expected to be achieved soon in the 1990s, but have not yet been commercialized and still have work to solve, FVIII levels are temporary and insufficient, and on the one hand there are side effects of host immune responses to viral vectors [43]. Gene therapy is within reach and will deliver a cure in the near future for hemophilia A and B, and the possibility of commercialization is not far away.

Conclusions

Management of hemophilia has been dramatically improved over the last several decades. Although the use of hemophilia concentrates has pose a risk of infection, these problems have largely been overcome as a result of global efforts. Since the 1990s, hemophilia management has been systematized as a national project. As a result of the development of the coagulation factor preparation against hemophilia and the ongoing management of patients, the quality of life and survival rate of hemophilia have improved overall. However, the problem of sequelae of hemarthropathy, the development of neutralizing antibodies, and the reduction in the compliance of coagulants are still a challenge. Treating the right drug to the right patients with the right dosing to the right timing would be a necessary treatment for the patient. In order to achieve optimal goals through treatment, it will involve working with patients and medical staff in cooperation.

References

1. Korea Hemophilia Foundation. 2015 Annual report Korea Hemophilia Foundation. Seoul, Korea: Korea Hemophilia Foundation, 2016. (Accessed March 1, 2018, at http://www.kohem.org/_data/board_list_file/8/2016/1608121506441.pdf)
2. Kim EJ, Lee H. Current status and comprehensive care of Korean hemophiliacs. Korean J Hematol 2000;35:222-32.
3. Nilsson IM, Hedner U, Ahlberg A, Haemophilia prophylaxis in Sweden. Acta Paediatr Scand 1976;65:129-35.
4. Manco-Johnson MJ, Abshire TC, Shapiro AD, et al. Prophylaxis versus episodic treatment to prevent joint disease in boys with severe hemophilia, N Engl J Med 2007;357:535-44.
5. Blanchette VS, Key NS, Ijiang LR, et al. Definitions in hemophilia: communication from the SSC of the ISTH, J Thromb Haemost 2014;12:1955-9.
6. Choi EJ. Management of hemophilia in Korea: the past, present, and future, Blood Res 2014;49:144-5.
7. Kim DH, Kim SK, Park SK, Yoo KY, Hwang TJ, Choi YM. Korea Hemophilia Foundation registry trends 1991-2012: patient registry, demographics, health services utilization, Haemophilia 2015;21:e179-80.
8. Mannucci PM. Modern treatment of hemophilia: from the shadows towards the light, Thromb Haemost 1993;70:17-23.
9. Mannucci PM. Back to the future: a recent history of haemophilia treatment, Haemophilia 2008;14 Suppl 3:10-8.
10. Ramgren O. A clinical and medico-social study of haemophilia in Sweden, Acta Med Scand Suppl 1962:379:111-90.
11. Rizza CR, Spooner RJ. Treatment of haemophilia and related disorders in Britain and Northern Ireland during 1976-80: report on behalf of the directors of haemophilia centres in the United Kingdom, Br Med J (Clin Res Ed) 1983;285:929-33.
12. Nilsson IM, Hedner U, Ahlberg A. Haemophilia prophylaxis in Sweden, Acta Paediatr Scand 1976;65:129-35.
13. Centers for Disease Control (CDC). Pneumocystis carinii pneumonia among persons with hemophilia A, MMWR Morb Mortal Wkly Rep 1982;31:365-7.
14. Barré-Sinoussi F, Chermann JC, Rey F, et al. Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS), Science 1983;220:868-71.
15. Gallo RC, Salahuddin SZ, Popovic M, et al. Frequent detection and isolation of cytopathic retroviruses (HTLV-III) from patients with AIDS and at risk for AIDS. Science 1984;224:500-3.

16. Cho YK, Jung YS, Foley BT. Phylogenetic analysis of full-length pol gene from Korean hemophiliacs and plasma donors infected with Korean subtype B of HIV type I. AIDS Res Hum Retroviruses 2011;27:613-21.

17. Mannucci PM. The choice of plasma-derived clotting factor concentrates. Baillieres Clin Haematol 1996;9:273-90.

18. Will RG, Ironside JW, Zeidler M, et al. A new variant of Creutzfeldt-Jakob disease in the UK. Lancet 1996;347:921-5.

19. Yoon HJ, Lee SY, Hwang TJ, Sonh YT. A prospective study on the pharmacokinetics of monoclonal-antibody-purified factor VIII concentrate (GreenMono(R)) in previously treated subjects with hemophilia A, Korean J Hematol 2001;36:148-53.

20. Stenland CJ, Lee DC, Brown P, Petteway SR Jr, Rubenstein R. Partitioning of human and sheep forms of the pathogenic prion protein during the purification of therapeutic proteins from human plasma, Transfusion 2002;42:1-977-500.

21. White GC 2nd, McMillan CW, Kingdon HS, Shoemaker CB. Use of recombinant antihemophilic factor in the treatment of two patients with classic hemophilia, N Engl J Med 1989;320:166-70.

22. Josephson CD, Alshire T. The new albumin-free recombinant factor VIII concentrates for treatment of hemophilia: do they represent an actual incremental improvement? Clin Adv Hematol Oncol 2004;2:441-6.

23. Bjørkman S, Blanchette VS, Fischer K, et al. Comparative pharmacokinetics of plasma- and albumin-free recombinant factor VIII in children and adults: the influence of blood sampling schedule on observed age-related differences and implications for dose tailoring. J Thromb Haemost 2010;8:730-6.

24. Lee DC, Miller JL, Petteway SR Jr. Pathogen safety of manufacturing process of recombinant factor VIII, recombinate. Transfus Med Rev 1992;6:247-51.

25. Gallo RC, Salahuddin SZ, Popovic M, et al. Frequent detection and isolation of cytopathic retroviruses (HTLV-III) from patients with AIDS and at risk for AIDS. Science 1984;224:500-3.

26. Too le JJ, Pittman DD, O’rr EC, Murtha P, Wasley LC, Kaufman RJ. A large region (approximately equal to 95 kDa) of human factor VIII is dispensable for in vitro procoagulant activity. Proc Natl Acad Sci U S A 1986;83:5399-42.

27. Kelley BD, Tannatt M, Magnusson R, Hagelberg S, Booth J. Development and validation of an affinity chromatography step using a peptide ligand for cGMP production of factor VIII, Biotechnol Bioeng 2004;87:400-12.

28. Han H, Shin KH, Paik SH, et al. Pharmacokinetics and tolerability evaluation of human coagulation recombinant factor VIII (GreenGene(TM)) in hemophilia A patients, J Korean Soc Clin Pharmacol Ther 2011;19:144-51.

29. Paik SH, Kim YJ, Han SK, Kim JM, Huh JW, Park YI. Mixture of three amino acids as stabilizers replacing albumin in lyophilization of new third generation recombinant factor VIII GreenGene F, Biotecnol Prog 2012;28:1517-25.

30. Kim SK, Yoo KY, Lee KS, et al. Safety and efficacy of b-domain deleted third generation recombinant factor VIII (GreenGene FTM) in Korean patients with hemophilia A: data from a post-marketing surveillance study, J Korean Med Sci 2018;33:853-868.

31. Gouw SC, van der Bom JG, Marijke van den Berg H, Treatment-related risk factors of inhibitor development in previously untreated patients with hemophilia A: the CANAL cohort study, Blood 2007;109:4648-54.

32. Martinowitz U, Bjerve J, Brand B, et al. Bioequivalence between two serum-free recombinant factor VIII preparations (N8 and ADVATE®) - an open-label, sequential dosing pharmacokinetic study in patients with severe haemophilia A, Haemophilia 2011;17:854-9.

33. Franchini M, Tagliaferri A, Mengoli C, Cruciani M. Cumulative inhibitor incidence in previously untreated patients with severe hemophilia A treated with plasma-derived versus recombinant factor VIII concentrates: a critical systematic review, Crit Rev Oncol Hematol 2012;81:82-93.

34. Gouw SC, van der Bom JG, Jung R, et al. Factor VIII products and inhibitor development in severe hemophilia A, N Engl J Med 2013;368:231-9.

35. Gringeri A, Mantovani LG, Scalone I, Mannucci PM: COCIS Study Group. Cost of care and quality of life for patients with hemophilia complicated by inhibitors: the COCIS Study Group, Blood 2003;102:2558-63.

36. Iorio A, Puccetti P, Makris M. Clotting factor concentrate switching and inhibitor development in hemophilia A, Blood 2012;120:720-7.

37. Franchini M, Lippi G, Von Willebrand factor-containing factor VIII concentrates and inhibitors in hemophilia A, A critical literature review, Thromb Haemost 2010;104:531-40.

38. Navarrete AM, Dasgupta S, Teyssandier M, et al. Endocytic receptor for pro-coagulant factor VIII: relevance to inhibitor formation, Thromb Haemost 2010;104:1093-8.

39. Peyvandi F, Mannucci PM, Garaglola I, et al. A randomized trial of factor VIII and neutralizing antibodies in hemophilia A, N Engl J Med 2016;374:2054-64.

40. Yoo KY, Choi YM, Hwang TJ, Choi EJ. The efficacy of prophylaxis for children with severe hemophilia in Korea - an experience of single institute, Clin Pediatr Hematol Oncol 2012;19:79-85.

41. Yoo KY, Kim SK, Kwon SS, et al. Life expectancy of Korean haemophiliacs, 1991-2012, Haemophilia 2014;20:e356-8.

42. Oldenburg J, Albert T. Novel products for haemostasis - current status, Haemophilia 2014;20 Suppl 4:23-8.

43. Nathwani AC, Davidoff AM, Tuddenham EGD. Gene therapy for hemophilia, Hematol Oncol Clin North Am 2017;31:853-68.