REVIEW

Single-cell transcriptome sequencing: recent advances and remaining challenges [version 1; peer review: 2 approved]

Serena Liu, Cole Trapnell

Department of Genome Sciences, University of Washington, Seattle, WA, USA

Abstract

Single-cell RNA-sequencing methods are now robust and economically practical and are becoming a powerful tool for high-throughput, high-resolution transcriptomic analysis of cell states and dynamics. Single-cell approaches circumvent the averaging artifacts associated with traditional bulk population data, yielding new insights into the cellular diversity underlying superficially homogeneous populations. Thus far, single-cell RNA-sequencing has already shown great effectiveness in unraveling complex cell populations, reconstructing developmental trajectories, and modeling transcriptional dynamics. Ongoing technical improvements to single-cell RNA-sequencing throughput and sensitivity, the development of more sophisticated analytical frameworks for single-cell data, and an increasing array of complementary single-cell assays all promise to expand the usefulness and potential applications of single-cell transcriptomic profiling.

Keywords

Single-cell RNA-sequencing, single-cell transcriptomic profiling
Introduction
The advent of next-generation sequencing over a decade ago spurred the development of a host of sequencing-based technologies for probing genomic variation and dynamics. Of these methods, RNA-sequencing (RNA-seq) enabled transcriptomic profiling at unprecedented sensitivity and breadth, leading to the discovery of new RNA species and deepening our understanding of transcriptome dynamics. In recent years, low-input RNA-seq methods have been adapted to work in single cells. These single-cell RNA-seq (scRNA-seq) technologies can quantify intra-population heterogeneity and enable study of cell states and transitions at very high resolution, potentially revealing cell subtypes or gene expression dynamics that are masked in bulk, population-averaged measurements. In this review, we will discuss recent advancements and current limitations of scRNA-seq methodologies and highlight major applications of scRNA-seq in biological research.

scRNA-seq technologies: overview and recent advancements
Over the past six years, numerous scRNA-seq protocols have been developed. Currently published scRNA-seq protocols all follow the same general workflow: single cells are isolated; cells are lysed, and the RNA is captured for reverse transcription into cDNA; and the cDNA is pre-amplified and then used to prepare libraries for sequencing and downstream analysis. Kolodziejczyk et al. provide a comprehensive review of individual scRNA-seq protocols and their relative strengths and weaknesses.

Although cDNA pre-amplification is necessary because only minute amounts of RNA are captured from each cell, amplification bias arising during pre-amplification limits the quantitative accuracy of scRNA-seq. Unique molecular identifiers (UMIs) can be used to barcode individual RNA molecules during the reverse transcription step, allowing direct transcript counting, and many of the newer scRNA-seq protocols use UMIs to improve transcript quantitation. Alternatively, exogenous RNA standards such as those from the External RNA Control Consortium (ERCC) can be “spiked in” with cellular RNA to map between relative and absolute transcript counts. Stegle et al. provide a more detailed discussion of methods for scRNA-seq transcript quantitation and highlight some of the analytical challenges unique to single-cell data.

scRNA-seq methods have also been improving in terms of throughput and scalability. Whereas most earlier methods have been limited to measuring hundreds or thousands of cells at a time, recent advancements in microwell and droplet-based cell-barcoding strategies have enabled the analysis of tens of thousands of cells in a single experiment. The high-throughput capacity of these new technologies will increase the resolution of single-cell experiments, improving their ability to detect rare cell subtypes or transitional states.

Challenges and limitations of scRNA-seq
Current scRNA-seq technologies still face a number of challenges. Collectively, existing scRNA-seq methods have low capture efficiency. Because only a small fraction of each cell’s transcript complement (approximately 10% for many protocols) is represented in the final sequencing libraries, scRNA-seq has limited sensitivity and is unable to reliably detect low-abundance transcripts. The low amount of input material for scRNA-seq libraries also leads to high levels of technical noise, which complicates data analysis and can mask underlying biological variation. However, most approaches use the sample-to-sample variation in ERCC read counts to model and control for technical noise in the single-cell data and thus can be used only with experiments incorporating spike-in controls. Moreover, these approaches assume that the spike-in transcripts are treated the same as cellular RNA during library prep. However, naked spike-in RNA does not pass through cellular lysis and is not in complex with ribosomes or RNA-binding proteins. Thus, although spike-in procedures serve as useful indicators of transcript frequency and sensitivity in an experiment, there are many sources of variability that remain difficult to control in scRNA-seq.

Another potential source of bias stems from procedures to isolate and capture individual cells. Although micromanipulation or laser dissection techniques can isolate single cells from known locations within a cell population or tissue, these methods are labor-intensive or require specialized equipment. Most scRNA-seq protocols—and all of the existing high-throughput methods—first dissociate tissues to form a single-cell suspension before capturing individual cells. This cell dissociation step is often non-trivial, and enzymatic treatments used to break down tissues may impact cell viability, potentially affecting cells’ transcriptional profiles. To avoid biases stemming from such enzymatic treatments, Grindberg et al. have developed techniques for performing RNA-seq directly on single nuclei, which can be isolated without using harsh protease treatments.

For most single-cell isolation procedures, information about cells’ original spatial context and cellular environment is lost. Recently, computational methods have been developed to infer a cell’s original position in three-dimensional space from its transcriptional profile by using a reference gene expression map built from existing in situ data. However, these methods rely on the existence of spatial expression data for a panel of reference genes in the tissue of interest. Alternatively, emerging in situ sequencing strategies are able to capture and amplify RNA within the original tissue context, although current methods can measure up to only a few dozen genes per cell. These methods sequence RNA directly inside unlysed cells; cDNA amplicons are generated and circularized, amplified via rolling circle amplification, and then sequenced by ligation in situ by using the SOLiD platform. Such in situ sequencing approaches are distinct from fluorescence in situ hybridization (FISH) strategies (discussed further below), which detect transcripts through the binding of fluorescently labeled probes. However, although in situ sequencing methods preserve spatial information and can measure RNA expression patterns at subcellular resolution, these approaches are currently limited in throughput and require specialized tools which may not be widely accessible.

Finally, the bulk of scRNA-seq literature has focused solely on polyadenylated mRNAs; almost all published scRNA-seq protocols isolate cellular RNA by using poly-T priming, which captures only polyadenylated transcripts. Consequently, current methods are ill suited
to investigate non-polyadenylated transcript classes, such as regulatory non-coding RNA (e.g. microRNAs, IncRNAs, or circular RNAs) or bacterial RNA. Random hexamer priming has been suggested as a strategy to simultaneously capture both polyadenylated and non-polyadenylated transcripts in single cells, and computationally selected “not-so-random” primers could potentially be used to capture poly(A)+ and poly(A)− species while depleting for ribosomal RNA. Incorporating these alternative priming strategies into existing scRNA-seq technologies would enable the exploration of a wider spectrum of transcript types, broadening the scope and applicability of scRNA-seq.

Complementary single-cell technologies

Although scRNA-seq alone is a powerful tool for dissecting cell populations and processes, combining scRNA-seq with other single-cell technologies supplements transcriptomic data with complementary information that helps to paint a more complete picture of each cell. RNA FISH, in which individual transcripts are labeled with fluorescent probes and then detected via high-resolution microscopy, provides an orthogonal method of quantifying transcript levels and is often used to independently validate results from scRNA-seq data. Unlike scRNA-seq, single-cell FISH preserves the spatial context of assayed transcripts and can localize molecules down to subcellular resolution. RNA localization and trafficking dynamics often play a crucial role in regulating protein translation and cellular function; used in conjunction with scRNA-seq, single-cell FISH could supplement the global transcriptomic snapshots of scRNA-seq with information on the spatial dynamics of selected transcripts. Whereas spectral overlap between fluorophores still limits the number of transcripts that can be simultaneously assayed, new approaches using super-resolution microscopy and combinatorial labeling schemes can measure up to thousands of transcripts in each cell.

Single-cell genome sequencing has been developing alongside scRNA-seq and has been used successfully to map genetic variation at single-cell resolution and to infer cell lineages. Moreover, in the past year, methods have been developed to sequence both the genome and the transcriptome of the same cell, enabling direct comparison of genetic and gene expression variation within a single cell. This integrated, parallel-sequencing approach shows great promise for uncovering genotype-phenotype relationships and has already been used to demonstrate strong correlations between gene copy number and gene expression levels.

Over the past few years, methods have also been developed to assay the epigenetic landscape of single cells: both bisulfite sequencing (measuring DNA methylation) and assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) (measuring chromatin accessibility) have been adapted to work with single cells. These methods offer insight into the epigenetic heterogeneity within cell populations, and paired epigenomic and transcriptomic data could deepen our understanding of the mechanisms underlying gene expression regulation. Although direct comparison of a cell’s epigenomic and transcriptomic profiles is not currently possible, combining single-cell bisulfite sequencing or single-cell ATAC-seq with scRNA-seq from the same cell could enable such analyses in the future. Similarly, integrating scRNA-seq with single-cell proteomic methods would provide insight into post-transcriptional gene regulation and the degree to which mRNA expression is reflected at the protein level.

Applications of scRNA-seq

Recent studies have demonstrated high cell-to-cell transcriptomic variation, even within genetically homogenous cell populations. Consequently, bulk measurements can mask important cellular heterogeneity and lead to averaging artifacts. One major advantage of scRNA-seq is its ability to detect such cell-to-cell heterogeneity and capitalize upon it to uncover population structure and cell dynamics hidden at the group level.

scRNA-seq has been used to dissect heterogeneous cell populations and complex tissues, such as intestine, spleen, lung, or brain. Clustering methods or dimensionality reduction techniques can be used directly on single-cell expression data to group cells by transcriptomic similarity and to detect the underlying population structure in an unsupervised manner. Cell subgroups identified from such analyses can often be matched to known cell types via previously established marker genes. However, structural analysis of single-cell data has also led to the discovery of novel cell subtypes as well as the identification of new marker genes for known cell types. In the context of cancer, scRNA-seq analyses have been used to characterize intra-tumoral heterogeneity and to classify tumor subpopulations. scRNA-seq profiling can also detect variation among cell states within a seemingly homogenous population, such as differences in cell cycle stage or differential signaling responses to an outside stimulus.

scRNA-seq is also commonly used to study cellular transitions between different states and to map cell trajectories through processes like differentiation. Several analytical frameworks have been proposed for inferring such trajectories: Monocle introduced the concept of “pseudotime” as a quantitative measure of “progress through a biological process” and uses techniques from computational geometry to order cells in pseudotime on the basis of their transcriptomic profiles. Wanderlust uses an entirely different algorithm based on local topological clustering to place cells along a developmental trajectory by using single-cell proteomic measurements. More recently, Shin et al. and Moignard et al. have outlined additional strategies for reconstructing cell trajectories. Once cells have been ordered along a trajectory, gene expression patterns over the course of the established developmental trajectory can be analyzed to identify key regulators and genes with “switch-like” behavior. Sensitivity for identifying intermediate differentiation states can also be improved by using latent variable models to account for potential confounding factors (such as cell cycle) in the expression data prior to applying trajectory analysis techniques.

Growing evidence suggests that genes are not transcribed continuously but rather undergo short bursts of transcription interspersed with silent intervals. Transitions between “on” and “off” states are governed by several stochastic processes, and this phenomenon of “transcriptional bursting” is a major source of gene expression heterogeneity between cells. scRNA-seq can be used to explore transcriptional mechanics and to model the kinetics of
stochastic gene transcription98,99 (Figure 1C). Recent studies have also reported instances of cells preferentially expressing a single allele32 or a single splice isoform75; however, the low mRNA capture efficiency of scRNA-seq makes it difficult to draw definitive conclusions about allele-specific or isoform-specific expression at the single-cell level.

The inherent gene expression variability between cells in scRNA-seq data can be used to infer gene regulatory networks (GRNs)100–102. Most commonly, genes are grouped into co-regulated “modules” on the basis of expression profile similarity16,52,75,86,87,103 (Figure 1D). Network inference from scRNA-seq data poses several challenges. Owing to low capture efficiency and stochastic gene expression, gene dropout (where gene expression is zero in a given cell) is quite common, leading to zero-inflated expression data104. Although zero-inflated distributions can be used to accommodate expected dropout104–106, such models also have a greater number of parameters and can be more difficult to fit than a simpler model, particularly when sample size is limited. As previously mentioned, scRNA-seq data are very noisy, and separating biological variation from technical noise remains a non-trivial problem5,34. Additionally, the number of model parameters to be estimated (genes and gene interactions) usually greatly exceeds the number of sample observations (cells measured), and this disparity poses challenges for parameter estimation107,108. Simplifying the model on the basis of prior knowledge or focusing on only a small subnetwork of key players may be necessary to make parameter estimation feasible107–110. Finally, experimentally validating inferred GRNs can be very difficult; whereas knocking out a single gene is relatively straightforward, disrupting interactions between two proteins or between a protein and its target sequence can be much harder, and very few hypothesized models have been rigorously tested thus far.

\textbf{Figure 1.} Common applications of single-cell RNA sequencing. (a) Deconvolving heterogeneous cell populations. Clustering by single-cell transcriptomic profiles can reveal population substructure and enable the identification of cell subtypes and rare cell species (e.g. red cells above). Clusters may be tight and well defined (purple, red) or diffuse (blue). (b) Trajectory analysis of cell state transitions. Single-cell RNA sequencing time-series data can be used to map cell developmental trajectories over the course of dynamic processes such as differentiation or signaling responses to an external stimulus. Some computational suites (e.g. Monocle6) can also accommodate branching trajectories, enabling identification of lineage-specific gene expression and key genes that drive branching events. (c) Dissecting transcription mechanics. Genes’ expression profiles across many cells can be compared to study transcriptional bursting and to model the kinetics of stochastic gene expression. (d) Network inference. Genes can be clustered by expression profile to identify modules of putatively co-regulated genes, and gene-gene covariation relationships can be used to infer gene regulatory networks or subnetworks.
Conclusions

scRNA-seq technologies have advanced significantly since their inception, improving in terms of both transcript quantitation and experimental throughput. Whereas low capture efficiency and high levels of technical noise limit the sensitivity and accuracy of scRNA-seq, more sophisticated analytical frameworks are emerging to facilitate the interpretation of scRNA-seq data15,21. Pairing single-cell transcriptomic data with spatial information41,42,51 or orthogonal single-cell genomic assays62,63,68 also promises to provide new insights into transcriptional dynamics and the mechanisms underlying gene regulation.

scRNA-seq has been very effective at dissecting complex, heterogeneous cell populations, enabling unsupervised learning of population structure and the discovery of novel subtypes and rare cell species59,64. In the context of dynamic processes, cell trajectories reconstructed from single-cell transcriptomic data have provided insight into transient intermediate cell states and have helped to identify key regulator genes34. Finally, scRNA-seq also shows great potential for elucidating stochastic transcriptional kinetics and inferring gene regulatory networks. However, network inference from scRNA-seq data is computationally challenging and difficult to validate; inferred network models should thus be critically evaluated and experimentally tested where possible.

Competing interests

The authors declare that they have no competing interests.

Grant information

CT is supported by an NIH DP2 HD088158 grant, an Alfred P. Sloan Fellowship, and a Dale F. Frey Award for Breakthrough Scientists from the Damon Runyon Cancer Research Foundation. SL is supported by an NSF IGERT grant DGE-1258485.

References

1. Soon WW, Heihraran M, Snyder MP: High-throughput sequencing for biology and medicine. Mol Syst Biol. 2013; 9: 640. PubMed Abstract | Publisher Full Text | Free Full Text

2. Wang Z, Gerstein M, Snyder M: RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009; 10(1): 57–63. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

3. Oszolak F, Milos PM: RNA sequencing: advances, challenges and opportunities. Nat Rev Genet. 2011; 12(2): 87–98. PubMed Abstract | Publisher Full Text | Free Full Text

4. Wills OF, Livak KJ, Tipping AJ, et al.: Single-cell gene expression analysis reveals genetic associations masked in whole-tissue experiments. Nat Biotechnol. 2013; 31(8): 748–52. PubMed Abstract | Publisher Full Text | F1000 Recommendation

5. Trapnell C, Cacchiarelli D, Grimsby J, et al.: The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol. 2014; 32(4): 381–8. PubMed Abstract | Publisher Full Text | Free Full Text

6. Islam S, Kjærgaard U, Moliner A, et al.: Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq. Genome Res. 2011; 21(7): 1160–7. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

7. Islam S, Kjærgaard U, Moliner A, et al.: Highly multiplexed and strand-specific single-cell RNA 5' end sequencing. Nat Protoc. 2012; 7(9): 813–28. PubMed Abstract | Publisher Full Text

8. Islam S, Zeselj A, Jocot S, et al.: Quantitative single-cell RNA-seq with unique molecular identifiers. Nat Methods. 2014; 11(2): 163–6. PubMed Abstract | Publisher Full Text

9. Hashimshony T, Wagner F, Sher N, et al.: CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification. Cell Rep. 2012; 2(3): 666–73. PubMed Abstract | Publisher Full Text

10. Ramsköld D, Luo S, Wang YC, et al.: Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. Nat Biotechnol. 2012; 30(6): 777–82. PubMed Abstract | Publisher Full Text | Free Full Text

11. Picelli S, Björklund ÅK, Faridani OR, et al.: Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat Methods. 2013; 10(11): 1096–8. PubMed Abstract | Publisher Full Text

12. Bhangoo V, Ko P, Willems E, et al.: Quantitative transcriptomics using designed primer-based amplification. Sci Rep. 2013; 3: 1740. PubMed Abstract | Publisher Full Text | Free Full Text

13. Sasagawa Y, Nikaide I, Hayashi T, et al.: Quartz-Seq: a highly reproducible and sensitive single-cell RNA sequencing method, reveals non-genetic gene-expression heterogeneity. Genome Biol. 2013; 14(4): R31. PubMed Abstract | Publisher Full Text | Free Full Text

14. Casbon JA, Osborne RJ, Brenner S, et al.: A method for counting PCR template molecules with application to next-generation sequencing. Nucleic Acids Res. 2011; 39(12): e81. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

15. Nakamura T, Yabuta Y, Okamoto I, et al.: SC3-seq: a method for highly parallel and quantitative measurement of single-cell gene expression. Nucleic Acids Res. 2015; 43(9): e60. PubMed Abstract | Publisher Full Text | Free Full Text

16. Jaitin DA, Kenigsberg E, Keren-Shaul H, et al.: Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science. 2014; 343(6172): 776–9. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

17. Fan HC, Fu GK, Fodor SP: Expression profiling. Combinatorial labeling of single cells for gene expression cytometry. Science. 2015; 347(6222): 1258367. PubMed Abstract | Publisher Full Text | F1000 Recommendation

18. Macosko EZ, Basu A, Satija R, et al.: Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets. Cell. 2015; 161(5): 1202–14. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

19. Klein AM, Mazutis L, Akbari A, et al.: Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell. 2015; 161(5): 1187–201. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

20. Fan X, Zhang X, Wu X, et al.: Single-cell RNA-seq transcriptome analysis of linear and circular RNAs in mouse preimplantation embryos. Genome Biol. 2015; 16(1): 148. PubMed Abstract | Publisher Full Text | Free Full Text

21. Kang Y, Norris MH, Zarzycki-Siek J, et al.: Transcript amplification from single bacterium for transcriptome analysis. Genome Res. 2011; 21(6): 925–35. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

22. Kolodziejczyk AA, Kim JK, Svensson V, et al.: The technology and biology of single-cell RNA sequencing. Mol Cell. 2015; 58(4): 610–20. PubMed Abstract | Publisher Full Text

23. Wang Y, Navin NE: Advances and applications of single-cell sequencing technologies. Mol Cell. 2015; 58(4): 598–609. PubMed Abstract | Publisher Full Text | Free Full Text

24. Hug H, Schuler R: Measurement of the number of molecules of a single mRNA species in a complex mRNA preparation. J Theor Biol. 2003; 221(4): 615–24. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

25. Hug H, Schuler R: Measurement of the number of molecules of a single mRNA species in a complex mRNA preparation. J Theor Biol. 2003; 221(4): 615–24. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

26. Kivoja T, Vähädrauto A, Karlsson K, et al.: Counting absolute numbers of molecules using unique molecular identifiers. Nat Methods. 2012; 9(1): 72–4. PubMed Abstract | Publisher Full Text | F1000 Recommendation

F1000Research 2016, 5(F1000 Faculty Rev):182 Last updated: 29 MAR 2022
Pacific and analytical challenges in single-cell transcriptomics. Nat Rev Genet. 2015; 16(3):133–45. PubMed Abstract | Publisher Full Text | F1000 Recommendation

32. Deng Q, Ramskold D, Reinius B, et al.: Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells. Science. 2014; 343(6167):193–6. PubMed Abstract | Publisher Full Text | F1000 Recommendation

33. Saliba AE, Westermann AJ, Gorski SA, et al.: Circular RNAs: stochastic attachment of diverse labels. Genome Proteomics Bioinformatics. 2014; 7(6):2867–70. PubMed Abstract | Publisher Full Text | F1000 Recommendation

34. Ding B, Zheng L, Zhu Y, et al.: Detecting and characterizing circular RNAs. Nucleic Acids Res. 2013; 41(6):2867–70. PubMed Abstract | Publisher Full Text | F1000 Recommendation

35. Bremecce P, Anders S, Kim JK, et al.: Accounting for technical noise in single-cell RNA-Seq experiments. Nat Methods. 2013; 10(11):1093–5. PubMed Abstract | Publisher Full Text | F1000 Recommendation

36. Grindberg RV, Yee-Greenbaum JL, McConnell MJ, et al.: Single-cell, locus-specific bisulfite sequencing for assessing epigenetic heterogeneity. Nat Biotechnol. 2015; 33(5):503–9. PubMed Abstract | Publisher Full Text | F1000 Recommendation

37. Lubeck E, Cai L: Single-cell systems biology by super-resolution imaging and combinatorial labeling. Nat Methods. 2012; 9(7):743–8. PubMed Abstract | Publisher Full Text | F1000 Recommendation

38. Levsky J, Irvine KE, Wettstein JD, et al.: Digital transcriptome profiling using highly multiplexed RNA profiling in single cells. Science. 2013; 340(6135):632–7. PubMed Abstract | Publisher Full Text | F1000 Recommendation

39. charcoal R, Escamilla J, et al.: A brief review on the mechanisms of miRNA regulation. Genomics Proteomics Bioinformatics. 2009; 7(4):147–54. PubMed Abstract | Publisher Full Text | F1000 Recommendation

40. Yang L, Duft MO, Gravely BR, et al.: Circumventing the spike-in problem using single-molecule barcodes. Proc Natl Acad Sci U S A. 2011; 108(23):9509–14. PubMed Abstract | Publisher Full Text | F1000 Recommendation

41. Yang L, Duft MO, Graveley BR, et al.: Digital RNA sequencing minimizes sequence-dependent bias and amplification noise with optimized single-molecule barcode chemistry. Proc Natl Acad Sci U S A. 2012; 109(14):5654–9. PubMed Abstract | Publisher Full Text | F1000 Recommendation

42. Yang L, Duft MO, Graveley BR, et al.: Counting individual DNA molecules by the stochastic attachment of diverse labels. Proc Natl Acad Sci U S A. 2011; 108(23):9502–3. PubMed Abstract | Publisher Full Text | F1000 Recommendation

43. Fu G, Wu B, Litzenburger UM, et al.: Single-cell chromatin profiling of chromatin accessibility by combinatorial cellular indexing. Science. 2013; 348(6237):910–4. PubMed Abstract | Publisher Full Text | F1000 Recommendation

44. Galanis D, Aghazadeh R, et al.: Single-cell DNA methylation sequencing and bioinformatic inference of epigenomic cell-state dynamics. Cell Rep. 2015; 10(8):1386–97. PubMed Abstract | Publisher Full Text | F1000 Recommendation

45. Shalek AK, Satija R, Shuga J, et al.: Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature. 2014; 510(7505):363–9. PubMed Abstract | Publisher Full Text | F1000 Recommendation

46. Ball B, Sun P, Zhu Z, et al.: Cell death reveals single-cell RNA-seq analysis of L1 retroposon position and somatic mutation in the human brain. Cell. 2012; 151(3):483–96. PubMed Abstract | Publisher Full Text | F1000 Recommendation

47. Cementz S, Jens M, Elefsinioti A, et al.: Circular RNAs are a large class of animal RNAs with a big role in gene regulation. Nat Rev Genet. 2004; 5(7):522–31. PubMed Abstract | Publisher Full Text | F1000 Recommendation

48. Cai Y, Xu X, Hu S, et al.: Single-cell, locus-specific bisulfite sequencing (SLBSS) for direct detection of epimutations in DNA methylation patterns. Nucleic Acids Res. 2015; 43(14):e93. PubMed Abstract | Publisher Full Text | F1000 Recommendation

49. Casanova DN, Daza RA, Adey A, et al.: Epigenetics. Multiplex single-cell profiling of chromatin accessibility by combinatorial cellular indexing. Science. 2013; 348(6237):910–4. PubMed Abstract | Publisher Full Text | F1000 Recommendation

50. Buenrostro JD, Wu B, Litzenburger UM, et al.: Single-cell chromatin accessibility reveals principles of regulatory variation. Nature. 2015; 523(7561):488–93. PubMed Abstract | Publisher Full Text | F1000 Recommendation

51. Han L, Qiu P, Zeng Z, et al.: Single-cell mass cytometry reveals intracellular survival/proliferative signaling in FLTA-ITD-mutated AML stem/progenitor cells. Cell Stem Cell. 2015; 17(2):134–46. PubMed Abstract | Publisher Full Text | F1000 Recommendation

52. Amir et-AL, Davis KL, Madron MD, et al.: vSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nat Biotechnol. 2013; 31(6):522–7. PubMed Abstract | Publisher Full Text | F1000 Recommendation

53. Tang F, Barbacino C, Bao S, et al.: Tracing the derivation of embryonic stem cells from the inner cell mass by single-cell RNA-Seq analysis. Cell Stem Cell. 2015; 16(3):468–78. PubMed Abstract | Publisher Full Text | F1000 Recommendation

54. Buganim Y, Faddah DA, Cheng AW, et al.: Single-cell expression analyses

Page 7 of 9
during cellular reprogramming reveal an early stochastic and a late hierarchical phase. Cell. 2012; 149(6):1209–22. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

74. Kumar RM, Cahan P, Amir el-AD et al.: Deconstructing transcriptional heterogeneity in pluripotent stem cells. Nature. 2014; 516(7529): 56–61. PubMed Abstract | Publisher Full Text | Free Full Text

75. Shalek AK, Satija R, Adoricon X et al.: Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells. Nature. 2013; 498(7453): 236–40. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

76. de Vargas Roditi L, Claassen M: Computational and experimental single cell biology techniques for the definition of cell type heterogeneity, interplay and intracellular dynamics. Curr Opin Biotechnol. 2015; 34: 9–15. PubMed Abstract | Publisher Full Text

77. Guin D, Lyubimova A, Kester L et al.: Single-cell messenger RNA sequencing reveals rare intestinal cell types. Nature. 2015; 525(7568): 251–5. PubMed Abstract | Publisher Full Text

78. Treutlein B, Brownfield DG, Wu AR et al.: Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq. Nature. 2014; 509(7507): 371–7. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

79. Luo Y, Coskun V, Liang A et al.: Single-cell transcriptome analyses reveal signals to activate dormant neural stem cells. Cell. 2015; 161(5): 1175–86. PubMed Abstract | Publisher Full Text | F1000 Recommendation

80. Llorens-Bobadilla E, Zhao S, Baser A et al.: Single-Cell Transcriptomics Reveals a Population of Dormant Neural Stem Cells that Become Activated upon Brain Injury. Cell Stem Cell. 2015; 17(3): 329–40. PubMed Abstract | Publisher Full Text | F1000 Recommendation

81. Pollen AA, Nowakowski TJ, Shuga J et al.: Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex. Nat Biotechnol. 2014; 32(10): 1053–6. PubMed Abstract | Publisher Full Text | Free Full Text

82. Usoinik D, Furlan A, Islam S et al.: Unbiased classification of sensory neuron function in large-scale single-cell RNA sequencing. Nat Neurosci. 2015; 18(1): 145–53. PubMed Abstract | Publisher Full Text | F1000 Recommendation

83. Avraham R, Lin K, Shalek AK et al.: Single-cell RNA sequencing reveals functional target validation of brown adipocytes show their complex roles in metabolic homeostasis. FASEB J. 2016; 30(1): 81–92. PubMed Abstract | Publisher Full Text

84. Patel AP, Timahn T, Trombetta JJ et al.: Single-cell transcriptomics and functional target validation of brown adipocytes show their complex roles in metabolic homeostasis. FASEB J. 2016; 30(1): 81–92. PubMed Abstract | Publisher Full Text

85. Nairn AR, Aiden EL, Grigoriadis D et al.: Oscilloscopes to reveal alternative splicing programs in mammalian genes. Nature. 2016; 530(7592): 482–5. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

86. Niswander LA, De Robertis EB et al.: The Notch signaling pathway controls segment polarity and timing of neural progenitor divisions during Drosophila embryogenesis. Cell. 1999; 99(2): 237–47. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

87. Niu B, Jiang K, Zhou H et al.: Endothelial cell heterogeneity and function in the lung. J Thorac Dis. 2017; 9(5): 2257–66. PubMed Abstract | Publisher Full Text | Free Full Text

88. Wang K, Liu W, Zeng Y et al.: Single-cell RNA-seq reveals intratumoral heterogeneity in primary glioblastoma. Science. 2014; 344(6190): 1396–401. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

89. Shi Y, Leng X, Liu Y et al.: The role of RNA-seq in non-invasive prenatal diagnosis. PLoS One. 2015; 10(8): e0135817. PubMed Abstract | Publisher Full Text | Free Full Text

90. Jiang H, Zhang X, Jiang Y et al.: Single-cell RNA sequencing reveals intercellular heterogeneity of the mouse developing cerebral cortex. Cell. 2015; 162(6): 1309–21. PubMed Abstract | Publisher Full Text | Free Full Text

91. Bendi Pelletier JC, Davis KL, Amir el-AD et al.: Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development. Cell. 2016; 167(2): 289–304. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

92. Shin J, Berg DA, Zhu Y et al.: Single-Cell RNA-Seq with Waterfall Reveals Molecular Cascades underlying Adult Neurogenesis. Cell Stem Cell. 2015; 17(3): 360–72. PubMed Abstract | Publisher Full Text | F1000 Recommendation

93. Moignard V, Woodward S, Haghihrd V et al.: Decoding the regulatory network of early blood development from single-cell gene expression measurements. Nat Biotechnol. 2015; 33(3): 269–76. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

94. Buettner F, Natarajan KN, Casale FP et al.: Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells. Nat Biotechnol. 2015; 33(2): 156–60. PubMed Abstract | Publisher Full Text | F1000 Recommendation

95. Suter DM, Molina N, Gafetl D et al.: Mammalian genes are transcribed with widely differing bursting kinetics. Science. 2011; 332(6028): 472–4. PubMed Abstract | Publisher Full Text | Free Full Text

96. Kim JK, Marioni JC: Inferring the kinetics of stochastic gene expression from single-cell RNA-sequencing data. Genome Biol. 2013; 14(1): R7. PubMed Abstract | Publisher Full Text | Free Full Text

97. Raj A, van Oudenaarden A: Nature, nurture, or chance: stochastic gene expression and its consequences. Cell. 2008; 135(2): 216–26. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

98. Hey KL, Momiji H, Leatherstone K et al.: A stochastic transcriptional switch model for single cell imaging data. Biostatistics. 2015; 16(4): 655–69. PubMed Abstract | Publisher Full Text | Free Full Text

99. Daigle BJ Jr, Soltan M, Petzold LR et al.: Inferring single-cell gene expression mechanisms using stochastic simulation. Bioinformatics. 2015; 31(9): 1428–35. PubMed Abstract | Publisher Full Text | Free Full Text

100. Padovan-Merhar O, Raj A: Using variability in gene expression as a tool for studying gene regulation. Wiley Interdiscip Rev Syst Biol Med. 2013; 5(6): 751–9. PubMed Abstract | Publisher Full Text | Free Full Text

101. Hurley D, Anaki H, Yamada Y et al.: Gene network inference and visualization tools for biologists: application to new human transcriptome datasets. Nucleic Acids Res. 2012; 40(6): 2377–98. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

102. Bansal M, Belcastro V, Ambesi-Impiombato A et al.: How to infer gene networks from expression profiles. Mol Syst Biol. 2007; 3:78. PubMed Abstract | Publisher Full Text | Free Full Text

103. Xue Z, Huang K, Cai C et al.: Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing. Nature. 2013; 500(7463): 593–7. PubMed Abstract | Publisher Full Text

104. Kharchenko PV, Silberstein L, Scadden DT et al.: Unbiased classification of sensory neuron function in large-scale single-cell RNA sequencing. Nat Neurosci. 2013; 16(1): 81–92. PubMed Abstract | Publisher Full Text

105. Shin J, Berg DA, Zhu Y et al.: Single-Cell RNA-Seq with Waterfall Reveals Molecular Cascades underlying Adult Neurogenesis. Cell Stem Cell. 2015; 17(3): 360–72. PubMed Abstract | Publisher Full Text | F1000 Recommendation

106. Pierson E, Yau C: Bayesian approach to single-cell differential expression analysis. Nat Methods. 2014; 11(7): 743–2. PubMed Abstract | Publisher Full Text | Free Full Text

107. Wrownyk N, Soltan M, Petzold LR et al.: Inferring single-cell gene expression mechanisms using stochastic simulation. Bioinformatics. 2015; 31(9): 1428–35. PubMed Abstract | Publisher Full Text | Free Full Text

108. Pang C, Liang Y, Cai C et al.: Single-cell RNA-sequencing data. Nat Biotechnol. 2015; 33(2): 156–60. PubMed Abstract | Publisher Full Text | F1000 Recommendation

109. Xue Z, Huang K, Cai C et al.: Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing. Nature. 2013; 500(7463): 593–7. PubMed Abstract | Publisher Full Text

110. Angelini C, Costa V: Understanding gene regulatory mechanisms by integrating ChIP-seq and RNA-seq data: statistical solutions to biological problems. Front Cell Dev Biol. 2014; 2: 51. PubMed Abstract | Publisher Full Text | Free Full Text

Page 8 of 9
Open Peer Review

Current Peer Review Status: ✔ ✔

Editorial Note on the Review Process

Faculty Reviews are review articles written by the prestigious Members of Faculty Opinions. The articles are commissioned and peer reviewed before publication to ensure that the final, published version is comprehensive and accessible. The reviewers who approved the final version are listed with their names and affiliations.

The reviewers who approved this article are:

1. Roger S Lasken
 J. Craig Venter Institute, La Jolla, CA, 92121, USA
 Sara B Linker
 Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
 Competing Interests: No competing interests were disclosed.

2. Sten Linnarsson
 Unit of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
 Competing Interests: No competing interests were disclosed.

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com