TaNAC2, a NAC-type wheat transcription factor conferring enhanced multiple abiotic stress tolerances in Arabidopsis

Xinguo Mao, Hongying Zhang, Xueya Qian, Ang Li, Guangyao Zhao and Ruilian Jing*

The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China

* To whom correspondence should be addressed. E-mail: jingrl@caas.net.cn

Received 11 October 2011; Revised 22 December 2011; Accepted 23 December 2011

Abstract

Environmental stresses such as drought, salinity, and cold are major factors that significantly limit agricultural productivity. NAC transcription factors play essential roles in response to various abiotic stresses. However, the paucity of wheat NAC members functionally characterized to date does not match the importance of this plant as a world staple crop. Here, the function of TaNAC2 was characterized in Arabidopsis thaliana. A fragment of TaNAC2 was obtained from suppression subtractive cDNA libraries of wheat treated with polyethylene glycol, and its full-length cDNA was obtained by searching a full-length wheat cDNA library. Gene expression profiles indicated that TaNAC2 was involved in response to drought, salt, cold, and abscisic acid treatment. To test its function, transgenic Arabidopsis lines overexpressing TaNAC2–GFP controlled by the cauliflower mosaic virus 35S promoter were generated. Overexpression of TaNAC2 resulted in enhanced tolerances to drought, salt, and freezing stresses in Arabidopsis, which were simultaneously demonstrated by enhanced expression of abiotic stress-response genes and several physiological indices. Therefore, TaNAC2 has potential for utilization in transgenic breeding to improve abiotic stress tolerances in crops.

Key words: Phenotype, physiological trait, stress response, transcription factor.

Introduction

Environmental stresses such as drought, salinity, and extreme temperature impose osmotic stress on plants and significantly affect both biomass and grain yields of crops worldwide. To protect cellular activities and maintain whole plant integrity, plants have developed various mechanisms to cope with abiotic stresses. Many stress-induced genes have been identified, including those encoding key enzymes for abscisic acid (ABA) biosynthesis (Nambara and Marion-Poll, 2005), proteins involved in osmotic adaptation and tolerance to cellular dehydration (Yao et al., 2011), cellular protective enzymes (Puckette et al., 2007), numerous signalling proteins such as protein kinases/protein phosphatases (Zhu, 2002), and transcription factors (Mochida et al., 2009).

Transcription factors have been grouped into diverse families on the basis of conserved structural domains involved in DNA binding to cis-elements in the promoters of target genes, or other functional modular structures. Increasing evidence is demonstrating that numerous transcription factors, such as DREB, CBF, bZIP, zinc-finger, MYB, and NAC, are directly or indirectly involved in the regulation of plant defence and stress responses (Thomashow, 1999; Zhu, 2002; Seki et al., 2003; Shinozaki et al., 2003; Fujita et al., 2004; Mukhopadhyay et al., 2004; Chen et al., 2006).

The NAC (NAM, ATAF, and CUC) superfamily is one of the largest transcription factor families found only in plants. Proteins of this family are characterized by a highly conserved DNA-binding domain, known as the NAC domain, in the N-terminal region. The C-terminal region of NAC proteins, which usually contains a transcriptional activation domain, is highly diversified both in length and sequence (Ooka et al., 2003). More than 100 members of this family have been identified in both Arabidopsis and rice...
NACs play important roles in diverse aspects of plant development, including pattern formation in embryos and flowers, formation of secondary walls, leaf senescence (Guo and Gan, 2006; Zhong et al., 2006, 2007; Mitsuda and Ohme-Takagi, 2008), and lateral root development (Xie et al., 2000; He et al., 2005). Overwhelming data demonstrate that NACs are involved in responses to various biotic and abiotic stresses, including responses to a range of pathogens, drought, salt, cold, and low-oxygen stress. In Arabidopsis, three NAC members, ANAC019, ANAC055, and ANAC072, bind to the ERD1 promoter region to produce enhanced tolerance to drought stress (Tran et al., 2004). ANAC2 is involved in response to plant hormones, such as ABA, 1-aminocyclopropane-1-carboxylic acid, and α-naphthaleneacetic acid, salt stress, and lateral root development (He et al., 2005). ATAF1 and ATAF2, along with a barley counterpart known as HvNAC6, play negative roles in response to drought stress (Delessert et al., 2005; Lu et al., 2007) and enhance pathogen resistance (Jensen et al., 2007). In addition, AtNAC102 is involved in regulating seed germination under low-oxygen conditions (Christianson et al., 2009). Many NACs have been characterized in rice. Snac1 is involved in response to drought stress in guard cells and its overexpression results in significant enhanced drought tolerance at anthesis under field conditions (Hu et al., 2006). Overexpression of the root-specific NAC transcription factor OsNAC10 improves drought tolerance and grain yield in rice under field conditions (Jeong et al., 2010). Overexpression of Snac2/OsNAC6, OsNAC045, and OsNAC063 enhances tolerance to multiple abiotic stresses (Nakashima et al., 2007; Hu et al., 2008; Yokotani et al., 2009; Zheng et al., 2009). Snac1 and Snac1 and Snac1 and Snac1 are involved in salt response in tomato (Yang et al., 2010). Diverse expression patterns of nine NACs under various biotic and abiotic stresses were characterized in Brassica napus (Hegedus et al., 2003). For wheat, it is well documented that Grac1 and Grac2 are involved in inhibition of DNA replication of a wheat dwarf geminivirus in cultured cells (Xie et al., 1999); whereas TaNAM-B1 participates in the promotion of leaf senescence and can improve grain protein, zinc, and iron contents (Uaux et al., 2006). Recent research showed that TaNAC4 and TaNAC8 are involved in both biotic and abiotic stress responses in wheat (Xia et al., 2010a, b). Collectively, many reports indicate that numerous characterized NAC members are involved in response to environmental stimuli and that different NAC members play various roles in response to abiotic stress. However, the paucity of wheat NAC members functionally characterized to date does not match the importance of this plant as a world staple crop.

In this study, TaNAC2, a NAC transcription factor member from common wheat, was cloned and its expression patterns in response to water deficiency, high salinity, low temperature, and ABA were identified. Transgenic experiments indicated that TaNAC2 increases tolerance to drought, salt, and freezing stresses in Arabidopsis. Morphological assays revealed no obvious negative effects caused by TaNAC2 overexpression, suggesting a potential for utilizing the gene in improving tolerance to abiotic stresses in crop plants.

Materials and methods

Plant materials and abiotic stress experiments

Wheat (Triticum aestivum L.) genotype ‘Hanxuan 10’ with a prominent drought-tolerant phenotype was utilized in this study. The growing conditions and stress treatment assays for wheat seedlings have been described previously (Mao et al., 2010). To investigate the genomic origin of the target gene, 16 accessions of various wheat species – four A genome accessions (two Triticum urartu and two Triticum monococcum), three S genome accessions (Aegilops speltoides, the putative B genome donor), three diploid D genome accessions (Aegilops tauschii), three AB genome accessions (T. dicoccoides), and three hexaploid wheat accessions – were selected for PCR. To further identify the genomic location of the target gene, 38 nulli-tetrasomic (NT) lines of Chinese Spring were used for chromosome location.

Arabidopsis thaliana (ecotype Columbia), chosen for transgenic studies, was grown in a controlled environment chamber at 22 °C, with a 12/12 photoperiod, light intensity of 120 mmol m−2 s−1, and 70% relative humidity. Four T3 homozygous transgenic lines were randomly selected for functional analysis and all seeds used to perform phenotypic assays, including wild-type (WT) and green fluorescent protein (GFP) controls, were same-batch-harvested. To identify the expression pattern of drought stress response genes in Arabidopsis, transgenic lines and WT planted on MS medium were treated with −0.5 MPa polyethylene glycol (PEG) solution for 3 h.

Construction and screening of a full-length cDNA library database

Tissues from wheat seedlings at various growth stages and from mature plants were collected to extract total RNA with TRIZOL reagent (Invitrogen); mRNA was isolated with oligo(dT) cellulose (Qiagen). Several full-length cDNA libraries of wheat in Lambda Zap II (Stratagene) were constructed by the optimized Cap-trapper method (Mao et al., 2005). A full-length wheat cDNA library was generated with the 3’ and 5’ sequencing data of full-length cDNA clones. A 349-bp cDNA fragment encoding a NAC-like C-terminal domain was obtained by sequencing from suppression subtractive cDNA libraries of wheat treated with PEG (Pang et al., 2007) and used as a query probe to screen the full-length wheat cDNA library. Four candidate clones were obtained by blastn and the full-length cDNA of the target gene was also identified by blastn.

Database searches of the nucleotide and deduced amino acid sequences were performed through NCBI/GenBank/Blast. Alignment and similarity analysis of sequences from different species were performed by the MegAlign program in DNAStar. Signal sequence and transmembrane regions were predicted with SignalP (http://www.cbs.dtu.dk/services/SignalP) and TMpred (http://www.ch.embnet.org/software/TMPRED_form.html). The secondary structure was predicted with PREDATOR (http://bioweb.pasteur.fr/seqanal/protein/intro-uk.html), and the functional region was identified using PROSITE (http://www.expasy.org/docs/swiss-prot_guideline.html).

Construction of a phylogenetic tree of TaNAC2

Phylogenetic analysis was performed to understand the relationship between TaNAC2 and NAC members from wheat and other plant species. A maximum likelihood tree based on putative amino acid sequences was constructed with the proml program in the PHYLIP software package (version 3.69). The bootstrap parameter was set at 100.
Genetic characterization of TaNAC2
To analyse the structure of TaNAC2, three pairs of primers flanking the open reading frame were designed and one pair of primers specifically amplifying the A genome allele of TaNAC2 was obtained (forward, 5'-TGCAGAGTCCACGATAGGCGC-3'; reverse, 5'-CTACCCGACCCACGAAGG-3'). The primers were further used to amplify the TaNAC2 genomic sequence for gene structure analysis and chromosome identification.

Subcellular localization of TaNAC2 protein
The full-length open reading frame of TaNAC2 was fused upstream of the GFP gene and put under the control of the constitutive cauliflower mosaic virus 35S promoter in the pJJ163–GFP expression vector to construct a 35S::TaNAC2–GFP fusion protein. Restriction sites were added to the 5' and 3' ends of the coding region by PCR; the oligonucleotides for fusion GFP subcloning were: forward, 5'-CTCTAAGCTTTCATCGGCAGGAGCGATT-3' (HindIII site in bold); reverse, 5'-CTCTGATTCGCGGACACGGGGGA-3' (BamHI site in bold). The PCR product obtained was digested with the relevant restriction endonucleases, ligated with the pJJ163–GFP plasmid, and cut with the corresponding enzyme to create a recombinant plasmid for expressing the fusion protein. Positive plasmids were confirmed by restriction analysis and sequenced. Recombinant constructs were transformed into living onion epidermal cells by biolistic bombardment with a GeneGun (Biorad Helios) according to the instruction manual (helium pressure, 150–300 psi). The subcellular location of TaNAC2 was detected by monitoring the transient expression of GFP in onion epidermal cells as described.

Quantitative real-time PCR
After treatment with deoxyribonuclease I, RNA samples were used as templates for cDNA synthesis by the Superscript First-Strand Synthesis System kit (Invitrogen). Quantitative real-time PCR (qRT-PCR) was performed in triplicate with an ABI Prism 7900 system using the SYBR Green PCR Master Mix kit (Applied Biosystems), according to the manufacturer’s instructions. Tubulin transcript was used to quantify relative transcript levels. The qRT-PCR primers were: forward, 5'-ATCCGGACAGGAGCGATT-3'; reverse, 5'-AGGGTCGAAGCCTAGAGGGGA-3'. Relative gene expression levels were measured using the 2–ΔΔCT method (Livak and Schmittgen; 2001), using the following formula:

\[ΔΔCT = (C_{T,\text{Target}} - C_{T,\text{Tubulin}})_{\text{Time_x}} - (C_{T,\text{Target}} - C_{T,\text{Tubulin}})_{\text{Time_0}} \]

The CT (cycle threshold) values for both target and internal control genes were means of triplicate independent PCRs. Time 0 is any treated time point (1, 3, 6, 12, 24, 48, or 72 h) and Time X represents the untreated time (0 h).

Actin transcript was used to quantify the expression levels of TaNAC2 and abiotic stress-response genes in transgenic Arabidopsis plants. Two transgenic lines, with the lowest and highest TaNAC2 expression levels, were selected to measure expression levels of the abiotic stress response genes. The oligonucleotides for abiotic stress-response genes have been described elsewhere (Ding et al., 2009).

Generation of transgenic plants
The coding region of TaNAC2 cDNA was amplified by reverse-transcription PCR using primers 5'-CTCTAAGCTTTCATCGGCAGGAGCGATT-3' (HindIII site in bold) and 5'-CTCTGATTCGCGGACACGGGGGA-3' (BamHI site in bold) and cloned into the pZIP211 vector as a GFP-fused segment driven by the CaMV 35S promoter (Hadjukiewicz et al., 1994). The transformation vectors harbouring a 35S::GFP or 35S::TaNAC2–GFP, were introduced into Agrobacterium and transferred into WT Arabidopsis plants by the floral dip transformation method (Bent, 2006). Positive transgenic lines were screened on kanamycin plates and then identified by reverse-transcription PCR and fluorescence detection.

Morphological characterization of transgenic plants
Transgenic plants were characterized for morphological changes under short days (12/12 light/dark cycle) in a growth chamber with a constant temperature of 22 °C. Root morphologies were examined on plants grown on MS medium solidified with 1.0% agar. Briefly, T3 homozygous transgenic and WT seeds were germinated on MS medium and grown vertically for 8 d before measurement of primary root lengths. For biomass measurement, transgenic plants and the two controls were planted in identical pots filled with vermiculite/humus (1:1) and cultured under well-watered conditions.

Water loss rate determination
Water loss rates were measured using 10 plants each of WT and transgenic plants (including GFP transgenic plants). Four-week-old plants were detached from roots and weighed immediately (fresh weight, FW), the plants were then left on the laboratory bench (humidity, 45–50%, 20–22 °C) and weighed at designated time intervals (desiccated weights). The proportions of fresh weight loss were calculated relative to the initial weights. Plants were finally oven-dried for 24 h at 80 °C to a constant dry weight (DW). Water contents (WC) were measured according to the formula: WC (%) = (desiccated weight − DW)/(FW − DW) × 100.

Cell membrane stability measurement
Plant cell membrane stabilities (CMS) were determined with a conductivity meter (DDS-1, YSI). CMS (%) = (I − initial electrical conductivity/electrical conductivity after boiling) × 100. Seven-day-old seedlings (grown on 1 × MS medium, 0.8% agar) were transferred to a horizontal screen; seedling roots were completely submerged in PEG-6000 (25.4%, −1.4 MPa) or NaCl (250 mM). When signs of stress began to appear on WT plants, seedlings were removed and immediately thoroughly rinsed with double distilled water (ddH2O) prior to immersion in 20 ml ddH2O at room temperature. After 2 h the initial conductivities of the solutions were recorded. Samples were then boiled for 30 min, cooled to room temperature and the final conductivities were measured.

Determination of osmotic potential
Osmotic potential (OP) was measured with a Micro-Osmometer (model 210, Fiske Associates). Measurements were taken in the freezing point mode at room temperature. Five plants of each line were pooled as a sample, which was finely ground using a mortar and pestle before being transferred to a microcentrifuge tube. The supernatant tissue sap was obtained after centrifuging at 12 000 rpm for 5 min at room temperature. Three replications were made for each line and the osmotic potential for each sample was measured three times. Free proline was extracted and quantified from fresh tissues of well-watered seedlings (0.5 g) as described by Hu et al. (1992).

Chlorophyll fluorescence assays
Chlorophyll fluorescence was measured with a portable chlorophyll fluorescence meter (OS 30P, Opti-sciences) after applying stress treatment of 350 mM NaCl for 24 h. Fully expanded leaves of stressed plants were selected to determine the chlorophyll fluorescence parameters; three measurements were made for each plant and 20 plants were used for WT and transgenic samples. The maximum efficiency of photosystem II photochemistry, \(F_{m}/F_{m}'\)
= (F_m - F_0)/F_m was determined to assess changes in the primary photochemical reactions determining photosynthetic potential at an early stage of salinity stress.

Abiotic stress tolerance assays

Drought tolerance assays were performed on seedlings. Both WT and transgenic seeds were grown on MS medium. Seven-day-old seedlings were planted in sieve-like rectangular plates (3 cm deep) filled with soil mixture and well watered. Seedlings were cultured in a greenhouse (22 °C, 70% relative humidity, 120 μmol m⁻² s⁻¹, 12/12 light/dark cycle) without watering.

For salt tolerance assays, seedlings were planted in sieve-like plates and well watered as described for the drought tolerance treatment. Water was withheld for 2 weeks before irrigation with NaCl solution (250 mM) from the bottoms of the plates. When the soil was completely saturated with salt water, the NaCl solution was removed and the plants were cultured normally.

For cold tolerance assays, four seedlings were planted in identical pots and cultured as described above. Seedlings at 4 weeks were stressed in a −10 °C freezer for 1.5 h and then cultured at 15 °C for 24 h to facilitate recovery before culturing under normal growing conditions.

Results

Molecular characterization of TaNAC2

A full-length cDNA of the target gene was obtained by screening full-length wheat cDNA libraries. Blast results showed it was highly homologous to SNAC1 and almost identical to TaNAC2 (AAU08786) in the 5′ and 3′ untranslated regions and the open reading frame (Xue, 2005). It was therefore considered to be TaNAC2 and named accordingly. The TaNAC2 cDNA is 1559 bp in length and consists of 203 bp of 5′ untranslated region, 990 bp of open reading frame, and 366 bp of the 3′ untranslated region. The open reading frame encodes a polypeptide of 329 amino acid residues with a predicted molecular mass of 36.75 kD and pI value of 6.55. The deduced amino acid sequence shows relatively high homologies with counterpart monocot NAC family members, viz. those of Oryza sativa and Zea mays, and lower homologies with other NAC family members from dicot species, such as Glycine max and A. thaliana. TaNAC2 has 74.8% identity to OsNAC1 (ABD52007), 74.7% to ZmNAC1 (NP_001123932), 60.1% to OsNAC3 (NP_001059213), 57.1% to TaGRAB1 (CAA09371), and very low identity with NACs from dicot species, including ANAC102 and ATAF2.

Scansite analysis indicated that TaNAC2 has characteristic N-terminal and C-terminal regions. The N-terminal region contains a NAC domain (19–172 amino acid residues), which is highly conserved across both monocots and dicots, and functions as a DNA-binding domain (Fig. 1A). The C-terminal transcription activation region is extraordinarily divergent and is thought to be involved in regulation of downstream gene expression under different environmental stimuli. Secondary structure prediction revealed that the TaNAC2 sequence forms seven α-helices and four β-pleated sheets.

Phylogenetic analysis

A phylogenetic tree was constructed with the putative amino acid sequences of TaNAC2 and some NAC family members from other species. TaNAC2 clustered in the same clade as OsNAC1/SNAC1 and ZmNAC1 (Fig. 1B); SNAC1 had earlier been shown to enhance tolerance to drought and salt stress in transgenic rice (Hu et al., 2006).

Genetic characterization of TaNAC2

The genomic sequence of TaNAC2 was amplified with genome-specific primer pairs as described in materials and methods. The genomic sequence of TaNAC2 was about 1.4 kb, consisting of two exons and one intron, with all splicing sites complying with the GT-AG rule. To investigate the genomic origin of TaNAC2, 16 accessions of various wheat species were subjected to PCR. As shown in Fig. 2A, the target fragment was amplified by all accessions carrying the A genome, indicating that TaNAC2 originated from the A genome. This result was confirmed by PCR results for 38 nulli-tetrasomic Chinese Spring wheat lines (Fig. 2B). TaNAC2 was amplified in all lines except NT5A5B and NT5A5D, indicating that TaNAC2 was located on chromosome 5A.

Early response of TaNAC2 to hyperosmotic stresses

Diverse expression levels of TaNAC2 were characterized by qRT-PCR of seedling leaves. Different expression patterns were observed under water deficiency, salt, low temperature (LT), and ABA treatment (Fig. 3). TaNAC2 was significantly activated by salt, LT, and water-deficit stresses, but relatively weakly by ABA. Among the four stresses, TaNAC2 was extremely sensitive to NaCl and LT stresses at the early stage of treatment. The expression patterns and maximum expression levels differed for each stress. The expression levels peaked at 3 h for NaCl, 12 h for ABA, 24 h for PEG, and 72 h for cold, with the corresponding maxima being 116, 9, 29, and 160 greater, respectively, than the control.

Subcellular localization of TaNAC2

Transcription factors are typically localized in cell nuclei where they perform DNA binding and transcriptional activation roles. However, the TaNAC2 polypeptide sequence had no signal peptide and transmembrane region, suggesting that it might not interact with the cell membrane. To identify the cellular localization of TaNAC2, the expression and distribution of TaNAC2 were examined in both transgenic Arabidopsis roots and onion epidermal cells by expression of the fusion protein with GFP using fluorescence microscopy. As Fig. 4A shows, TaNAC2–GFP was highly expressed in transgenic Arabidopsis roots, especially in young root tips, and the well-organized distribution pattern suggested that TaNAC2 might localize in the nucleus. To further identify the subcellular localization, TaNAC2–GFP was transiently expressed in onion epidermis, and microscopy showed that TaNAC2 was localized in nuclei (Fig. 4B).
Fig. 1. Sequence alignment of TaNAC2 and NACs in various plant species. (A) Amino acid alignment of TaNAC2 and other NAC family members from selected plant species. Gaps (dashed lines) were introduced for optimal alignment. The numbers on the left indicate amino acid positions. Identical amino acid residues are shaded black. The region underlined indicates the conserved NAC-domain. Alignments were performed using MegAlign of DNASTar. (B) Phylogenetic tree of TaNAC2 and NAC members from other plant species.
Morphological characteristics of TaNAC2-overexpressing Arabidopsis plants

The phenotypes of transgenic Arabidopsis plants with TaNAC2 were assessed at different developmental stages. The expression levels of TaNAC2 in four T3 homozygous lines were measured prior to phenotypic assays (Supplementary Fig. S1, available at JXB online). Primary roots of TaNAC2 transgenic lines were longer than the WT and GFP controls, and in three of the four lines the differences were significant (F-test, *P < 0.05; Fig. 5). There was no difference between the transgenic lines and WT control for germination rate, lateral root number, and seedling size. For seedlings (4 weeks old) grown in soil, there was no obvious difference between transgenic and WT plants under well-watered conditions, except that the flowering date of TaNAC2 transgenic lines was 3–5 days earlier than WT (data not shown). The final biomass per plant of TaNAC2 transgenic lines was higher than the WT control, but the differences were not significant (Supplementary Fig. S2).

TaNAC2 transgenic lines have improved physiological traits for abiotic stress

To assess water retention ability of transgenic Arabidopsis plants, the four transgenic lines, along with WT and GFP controls were subjected to a detached-rosette rate of water loss assay. Fresh weights were recorded seven times over a 5.5 h period. The four transgenic lines showed lower rates of water loss at each time point (Fig. 6A). The final relative water contents of TaNAC2 rosettes were significantly higher than those of the WT and GFP controls (F-test, **P < 0.01; Fig. 6B).

The four transgenic lines grown under well-watered conditions were tested for osmotic potential (OP). The OP of three of the transgenic lines were significantly lower than those of WT and GFP (F-test, *P < 0.05, **P < 0.01); the difference between WT and GFP transgenic lines was not significant. Thus overexpression of TaNAC2, but not GFP alone, appeared to reduce OP (Fig. 7A). To probe the reason for OP reduction in transgenic plants, free proline contents were determined. In this series of experiments there was no difference between TaNAC2 transgenic lines and controls in terms of free proline content (data not shown).

Chlorophyll fluorescence is an effective parameter for revealing early signs of stress and is a suitable way to screen for stress tolerance in plants (Chaerle et al., 2007). To further evaluate photosynthetic potential, the four transgenic lines were subjected to a chlorophyll fluorescence assay. Under normal conditions, Fv/Fm ratios for the transgenic lines were similar to the controls (data not shown). Under severe salt stress conditions, Fv/Fm ratios for all TaNAC2 transgenic lines were significantly higher than the controls (F-test, **P < 0.01; Fig. 7B).

To examine the response of TaNAC2 transgenic lines against hyperosmotic stress, the lines were subjected to physiological assays of drought and salt stresses. After germination on MS medium, 7-day-old seedlings were treated separately with 25.4% (~1.4 MPa) PEG-6000 and NaCl (250 mM). Twenty hours later, when signs of PEG stress began to appear on WT and GFP plants, samples were collected for CMS measurements. The CMS of transgenic lines were significantly higher than the controls (F-test, *P < 0.05; Fig. 7C), indicating that PEG stress damage on WT plants was more severe than on TaNAC2 plants. For salt stress, symptoms appeared on control plants 4 h after NaCl treatment, but no symptoms were identified on TaNAC2 transgenic lines. CMS determinations revealed that the CMS for most TaNAC2 plants was higher than that of WT and GFP, and the CMS of three transgenic lines reached significant levels (F-test, *P < 0.05, **P < 0.01; Fig. 7C).

TaNAC2 transgenic lines have pronounced tolerance to multi-abiotic stresses

To characterize the performance of TaNAC2 transgenic lines under drought stress in soil, the four lines were tested at the seedling stage. After a 30-day water-withholding period, the rosette leaves of WT and GFP plants became dark, whereas the TaNAC2 transgenic lines remained green. On the 35th day, all WT and GFP plants displayed severe wilting (all rosette leaves were severely curled and some were dead), whereas only some of the TaNAC2 transgenic lines showed signs of severe water stress and the rosette leaves of some transgenic plants were still green and fully expanded. Three days after rewatering, all WT and GFP plants were dead, whereas 30–60% of TaNAC2 transgenic lines survived the stress (Fig. 8A, D).

To determine whether TaNAC2 overexpression enhances tolerance to salt stress, Arabidopsis seedlings grown in soil were exposed to 250 mM NaCl solution. About 20 h later, the leaf tips of control plants began to crimple, but no signs of salt stress were observed on the transgenic lines. Three days later, the rosette leaves of WT began to bleach, and again there were no signs of salt stress on the transgenic lines. Seven days later, it was evident that most transgenic plants were much greener than the control plants. Fifteen days after rewatering, all WT and GFP plants were dead, whereas 37–53% of TaNAC2 transgenic lines survived the stress (Fig. 8A, D).

To examine response to cold stress, plants of the same lines were put into a freezer and subjected to freezing stress. Only 18–22% WT and GFP rosette leaves survived the severe cold stress, whereas the survival rates of rosette leaves on TaNAC2 transgenic lines reached 32–71%, and the survival rates of transgenic plants (79–85%) were also much higher than WT (56%) and GFP (67%; Fig. 8C, D).

At, Arabidopsis thaliana; Bn, Brassica napus; Ec, Eleusine coracana; Eg, Elaeis guineensis; Gh, Gossypium hirsutum; Gm, Glycine max; Hv, Hordeum vulgare; Os, Oryza sativa; Ph, Petunia hybrida; Sl, Solanum lycopersicum; Ta, Triticum aestivum; Zm, Zea mays. The tree was constructed with the PHYLIP 3.69 package. Bootstrap values are in percentages.
Enhanced expression of abiotic stress-response genes in TaNAC2 plants

Morphological assays indicated that TaNAC2 transgenic lines had enhanced tolerance to drought, salt, and cold stresses. To reveal the underlying molecular mechanisms, transgenic lines L2 and L3, with the lowest and highest TaNAC2 expression, were selected for expression pattern assays under normal and water-deficit stress conditions with 10 abiotic stress-response genes – DREB1A, DREB2A, CBF1, CBF2, RD29A, RD29B, RD22, COR15, COR47, and Rab18 – and four ABA synthesis or response genes – ABA1, ABI1, ABI2, and ABI5. Transcripts of four genes (DREB2A, RD22, ABI2, and ABI5) were consistently and significantly higher under both stressed and non-stressed conditions, whereas expression levels of four genes (RD29B, RD29A, Rab18, and ABI1) were significantly higher in PEG stressed plants (Fig. 9). Transcript levels of the other six genes (DREB1A, CBF1, CBF2, COR15, COR47, and ABA1) were not significantly changed (data not shown).

Discussion

TaNAC2 overexpression has no adverse effects in Arabidopsis

To investigate the in vivo role of TaNAC2 in plant abiotic stress resistance, a fused TaNAC2-GFP was transformed into Arabidopsis. Before undertaking functional analyses, overexpression of TaNAC2 was confirmed by reverse-transcription PCR and microscopy (data not shown). Growth retardation is a common phenomenon in transgenic plants, restricting the utilization of target genes for plant breeding. To evaluate the applicability of TaNAC2 for transgenic breeding, morphological features of transgenic TaNAC2 plants were closely monitored, but no adverse effects were identified. Root length determinations indicated that most TaNAC2 transformed plants had longer primary roots than WT and GFP controls (Fig. 5A). A longer root system should facilitate water absorption from deeper soils, and thus strengthen drought tolerance and increase biomass under water-deficit conditions. The biomass of transgenic lines was higher than that of WT control (Supplementary Fig. S2). Overexpression of TaNAC2 resulted in earlier flowering (data not shown), perhaps suggesting that NAC transcription factors are involved in floral development (Souer et al., 1996). Future research should address this issue and a better understanding of...
its molecular mechanism might be beneficial in fine-tuning early maturity in crops.

Physiological changes in transgenic TaNAC2 plants under various conditions

Environmental stresses often cause physiological changes in plants. Physiological indices, including CMS, OP, chlorophyll fluorescence, and rate of water loss, are typical physiological parameters for evaluating abiotic stress tolerance and resistance in crop plants. Plants with higher CMS and photosynthetic capacity and lower rates of water loss and OP often have enhanced tolerance or resistance to environmental stresses.

Detached-leaf water loss rate is an important parameter of plants under water-deficit conditions and has been proposed as an indicator of water status (Clarke et al., 1989; Dhanda and Sethi, 1998). In the present work, the detached-leaf water loss rate of TaNAC2 transgenic lines was lower than the WT and GFP controls, and the final water contents for transformed seedlings were significantly higher than those of the controls (Fig. 6B), strongly indicating that the transgenic lines had higher water retention capacity.

Plant survival depends on maintenance of positive turgor pressure, which is important for cell expansion and stomatal opening. Osmotic adjustment is a fundamental cell tolerance response to osmotic stress, and can be realized by the accumulation of osmoprotectants. Generally, a higher ability for osmotic adjustment means stronger adaptation and more

Fig. 4. Subcellular localizations of TaNAC2 in transgenic Arabidopsis root and onion epidermal cells. (A) A construct harbouring 35S::TaNAC2–GFP was introduced into Agrobacterium and transferred into Arabidopsis by floral infiltration. Positive transgenic lines were screened with kanamycin and then examined with a confocal microscope. Images are dark field for green fluorescence (1), bright field (2), and combined (3). (B) Cells were bombarded with constructs carrying GFP or TaNAC2–GFP. GFP and TaNAC2–GFP fusion proteins were transiently expressed under the control of the cauliflower mosaic virus 35S promoter in onion epidermal cells and observed with a laser scanning confocal microscope. Images are dark field (1, 4), bright field (2, 5), and combined (3, 6).

Fig. 5. Comparison of primary root lengths of TaNAC2 plants. Seeds of four TaNAC2 transgenic Arabidopsis lines and wild-type (WT) and green fluorescent protein (GFP) controls were planted on MS agar and cultured under short day conditions. Five seeds of each line were planted in triplicate and root lengths were measured after 8 days. (A) Three typical lines with significantly longer primary root lengths. (B) Comparison of measurements, calculated from three independent assays, *, Significantly different from wild type ($P = 0.05$).
tolerance to osmotic stress. Osmotic potential is a direct reflection of osmotic adjustment capability at the physiological level and has been used as an effective index to assess crop genotypes for osmotic stress tolerance. This work indicated that the OP of all transgenic lines were lower than the WT and GFP controls under well-watered conditions (Fig. 7A), indicating that the reduction of OP in transgenic plants was due to overexpression of \(\text{TaNAC2} \). Decreased OP is primarily attributed to accumulation of osmoprotectants, including amino acids, quaternary amines, and various sugars. Numerous studies have shown that free proline is the most widely distributed multifunctional osmolyte in many organisms and plays important roles in enhancing osmotic stress tolerance (Bartels and Sunkar, 2005). However, increased free proline levels were not detected in transgenic plants (results not shown), suggesting that proline was not the cause of OP reduction and that \(\text{TaNAC2} \) was probably not involved in proline metabolism. Lower OP commonly predicts higher water retention capacity and a lower rate of water loss, as well as higher water use efficiency. The results of OP analyses were consistent with the above detached-leaf water loss rate and water content results (Fig. 6B) and partially explained the enhanced tolerances to drought, salt, and cold stresses.

Chlorophyll fluorescence from intact leaves, especially fluorescence induction patterns, is a reliable, non-invasive method to evaluate the physiological status of plants (Strasser et al., 2002). The ratio of variable to maximal
fluorescence is an important parameter used to assess the physiological status of the photosynthetic apparatus. Environmental stresses that affect photosystem II efficiency are known to provoke decreases in F_v/F_m ratio (Krause and Weis, 1991). In this research, lower F_v/F_m ratios were evident in WT and GFP plants (Fig. 7B), suggesting that TaNAC2 plants had more robust photosynthetic capabilities than the controls at the early stages of severe salt stress.

Cell membranes are among the first targets of adverse stresses and the maintenance of membrane integrity and stability under abiotic stress conditions is a major component of environmental stress tolerance in plants (Levitt, 1980). CMS was used for assessing tolerance to frost, heat, and desiccation (Farooq and Azam, 2006). In most of these studies, CMS exhibits a positive correlation with several physiological and biochemical parameters conditioning plant responses to environmental conditions such as water use efficiency (Franca et al., 2000), OP and leaf rolling index, K^+ concentration, and osmotic adjustment (Munns, 2002). In this study, the CMS of TaNAC2 transformants under both osmotic and salinity stress conditions were higher than the WT and GFP controls, demonstrating that CMS enhancement was caused by overexpression of TaNAC2. Because CMS has a positive relationship with several physiological and biochemical parameters, it was predicted that TaNAC2 transformants might have strong capacities to tolerate environmental stresses, as verified by the current functional assays in Arabidopsis (Fig. 8).

Overexpression of TaNAC2 enhanced multi-environmental stress responses in Arabidopsis

Numerous studies show that the plant NAC family plays critical roles in responses to hyperosmotic stress. ANAC019,
ANAC055, and ANAC072 confer enhanced tolerance to drought stress (Tran et al., 2004). SNAC1 and OsNAC10 confer significant enhancement of drought tolerance (Hu et al., 2006; Jeong et al., 2010). Overexpression of SNAC2/OsNAC6, OsNAC045, and OsNAC063 results in enhanced tolerance to multiple abiotic stresses (Nakashima et al., 2007; Hu et al., 2008; Yokotani et al., 2009; Zheng et al., 2009). In this study, the dynamic expressions of TaNAC2 under different abiotic stresses were assessed, and/or overexpression led to enhanced tolerance to drought, salinity, and freezing. Both morphological and physiological evidence strongly demonstrated that the transgenic lines were more tolerant to drought, salinity, and freezing stresses than WT plants. Interestingly, there seemed to be a positive correlation between the expression levels of TaNAC2 and improved abiotic stress tolerances in transgenic lines. Among the four selected transgenic lines, the transcripts of line 3 was significantly higher than those of the other three lines, and the tolerances of line 3 to drought, salt, and freezing stresses were better than the others (Supplementary Fig. S2, Fig. 8). It is speculated that the enhanced tolerances to abiotic stresses are mainly attributable to consistently and significantly increased expression of abiotic stress-response genes, including DREB2A, ABI2, ABI5, and RD22. DREB2A is a crucial regulatory element involved in drought response (Liu et al., 1998). Its consistent upregulation undoubtedly increases the expression level of downstream drought stress-response genes and enhances tolerance to drought and/or other abiotic stresses due to ‘cross talk’ between various environmental stresses (Seki et al., 2002; Xiong et al., 1999). ABI2 encodes a type-2C protein phosphatase, involved in ABA signalling (Finkelstein and Somerville, 1990); and ABI5 encodes a basic leucine zipper transcription factor involved in altering expression of ABA-regulated genes (Finkelstein and Lynch, 2000). Their consistent high expression levels probably lead to upregulation of genes controlled by ABI2 and ABI5 in an ABA-dependent pathway and possibly enhance integrative tolerance to multiple abiotic stresses. Additionally, significant increases in expression of RD29A, RD29B, and Rab18 were observed. These genes encode low-molecular-weight hydrophilic proteins (Lang and Palva, 1992; Yama-guchi-Shinozaki and Shinozaki, 1993) and their significantly enhanced transcription undoubtedly leads to increases of solute in tissue sap, resulting in decreased OP of cells and reduced rates of water loss under stress conditions.

This study concerned the morphological and physiological features of TaNAC2 overexpression in Arabidopsis under normal and adverse conditions, as well as potential molecular mechanisms for dynamic expression patterns of abiotic stress-response genes. The results were helpful to understanding the mechanisms of environmental stress on plants. Further ongoing research on transgenic wheat will enable the validation the functions of TaNAC2 in enhancing tolerance to abiotic stress in crops.

Supplementary material

Supplementary data are available at JXB online.

Supplementary Fig. S1. Expression levels of TaNAC2 in transgenic Arabidopsis lines.

Supplementary Fig. S2. Comparison of biomass for TaNAC2 transgenic lines and controls.

Acknowledgements

The authors thank Robert A McIntosh (Plant Breeding Institute, University of Sydney, NSW, Australia) for critical reading and comments on the manuscript. This study was supported by the National Science Foundation of China (31040089), National Key Technologies R and D Program (2009ZX08002-012B), and Key Project of Chinese National Programs for Fundamental Research and Development (2010CB951501).

References

Bartels D, Sunkar R. 2005. Drought and salt tolerance in plants. *Critical Reviews in Plant Sciences* 24, 23–58.

Bent A. 2006. *Arabidopsis thaliana* floral dip transformation method. *Methods in Molecular Biology* 343, 87–103.
Chae, L., Leinonen, I., Jones, H.G., Van Der Straeten, D. 2007. Monitoring and screening plant populations with combined thermal and chlorophyll fluorescence imaging. Journal of Experimental Botany 58, 773–784.

Chen, Y., Yang, X., He, K., et al. 2006. The MYB transcription factor superfamily of Arabidopsis: expression analysis and phylogenetic comparison with the rice MYB family. Plant Molecular Biology 60, 107–124.

Christianson, J.A., Wilson, I.W., Llewellyn, D.J., Dennis, E.S. 2009. The low-oxygen-induced NAC domain transcription factor ANAC102 affects viability of low-oxygen-induced NAC domain transcription factor ANAC102. Plant Physiology 149, 1724–1738.

Clarke, J., Romagosa, M., Jana, I., Srivastava, J.P., McCall, T.N. 1989. Relationship of excised-leaf water loss rate and yield of durum wheat in diverse environments. Canadian Journal of Plant Science 69, 1075–1081.

Delessert, C., Kazan, K., Wilson, I.W., Van Der Straaten, D., Manners, J., Dennis, E.S., Dolferus, R. 2005. The transcription factor ABAF2 represses the expression of pathogenesis-related genes in Arabidopsis. The Plant Journal 43, 745–757.

Dhanda, S.S., Sethi, G.S. 1998. Inheritance of excised-leaf water loss and relative water content in bread wheat (Triticum aestivum). Euphytica 104, 39–47.

Ding, Z., Li, S., An, X., Liu, X., Qin, H., Wang, D. 2009. Transgenic expression of MYB15 confers enhanced sensitivity to abscisic acid and improved drought tolerance in Arabidopsis thaliana. Journal of Genetics and Genomics 36, 17–29.

Fang, Y., You, J., Xie, K., Xie, W., Xiong, L. 2008. Systematic sequence analysis and identification of tissue-specific or stress-responsive genes of NAC transcription factor family in rice. Molecular Genetics and Genomics 280, 547–563.

Farooq, S., Azam, F. 2006. The use of cell membrane stability (CMS) technique to screen for salt tolerant wheat varieties. Journal of Plant Physiology 163, 629–637.

Finkelstein, R.R., Lynch, T.J. 2000. The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. The Plant Cell 12, 599–609.

Finkelstein, R.R., Somerville, C.R. 1990. Three classes of abscisic acid (ABA)-insensitive mutations of Arabidopsis define genes that control overlapping subsets of ABA responses. Plant Physiology 94, 1172–1179.

Franca, M.G.C., Thi, A.T.P., Pimentel, C., Rossiel, R.O.P., Zully, F.Y., Laffay, D. 2000. Differences in growth and water relations among Phaseolus vulgaris cultivars in response to induced drought stress. Environmental and Experimental Botany 43, 227–237.

Fujita, M., Fujita, Y., Maruyama, K., Seki, M., Hiratsu, K., Ohme-Takagi, M., Tran, L., Yamaguchi-Shinozaki, K., Shinozaki, K. 2004. A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. The Plant Journal 39, 863–876.

Guo, Y., Gan, S. 2006. AtNAP, a NAC family transcription factor, has an important role in leaf senescence. The Plant Journal 46, 601–612.

Hajdukiewicz, P., Svab, Z., Maliga, P. 1994. The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Molecular Biology 25, 989–994.

He, X., Mu, R., Cao, W., Zhang, Z., Zhang, J., Chen, S. 2005. AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. The Plant Journal 44, 903–916.

Hege, D., Yu, M., Baldwin, D., Gruber, M., Sharpe, A., Parkin, I., Whitwill, S., Lydiate, D. 2003. Molecular characterization of Brassica napus NAC domain transcriptional activators induced in response to biotic and abiotic stress. Plant Molecular Biology 53, 383–397.

Hu, C., Delauney, A.J., Verma, D.P. 1992. A bifunctional enzyme (delta 1-pyrroline-5-carboxylate synthetase) catalyses the first two steps in proline biosynthesis in plants. Proceedings of the National Academy of Sciences, USA 89, 9354–9358.

Hu, H., Dai, M., Yao, J., Xiao, B., Li, X., Zhang, Q., Xiong, L. 2006. Overexpressing a NAM, ATA, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proceedings of the National Academy of Sciences, USA 103, 12987–12992.

Hu, H., You, J., Fang, Y., Zhu, X., Qi, Z., Xiong, L. 2008. Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. Plant Molecular Biology 67, 169–181.

Jensen, M.K., Rung, J.H., Gregerson, P.L., Gjetting, T., Fuglsang, A.T., Hansen, M., Joehnk, N., Lyngkaer, M.F., Collinge, D.B. 2007. The HvNAC6 transcription factor: a positive regulator of penetration resistance in barley and Arabidopsis. Plant Molecular Biology 65, 137–150.

Jeong, J.S., Kim, Y.S., Baek, K.H., Jung, H., Ha, S.H., Do, C.H., Y., Kim, M., Reuzeau, C., Kim, J.K. 2010. Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions. Plant Physiology 153, 185–197.

Krause, G.H., Weis, E. 1991. Chlorophyll fluorescence and photosynthesis: the basics. Annual Review of Plant Physiology and Plant Molecular Biology 42, 313–349.

Lang, V., Palva, E.T. 1992. The expression of a rab-related gene, rab18, is induced by abscisic acid during the cold acclimation process of Arabidopsis thaliana (L.) Heynh. Plant Molecular Biology 20, 951–962.

Levitt, J. 1980. Responses of Plants to Environmental Stresses: water, radiation, salt and other stresses, vol. II. New York: Academic Press, pp 3–211.

Liu, Q., Kasuga, M., Sakuma, Y., Abe, H., Miura, S., Yamaguchi-Shinozaki, K., Shinozaki, K. 1998. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. The Plant Cell 10, 1391–1406.

Livak, K.J., Schmittgen, T.D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25, 402–408.

Lu, P., Chen, N., An, R., Su, Z., Qi, B., Ren, F., Chen, J., Wang, X. 2007. A novel drought-inducible gene, ATAF1, encodes a NAC family protein that negatively regulates the expression of stress-responsive genes in Arabidopsis. Plant Molecular Biology 63, 289–305.

Mao, X., Kong, X., Zhao, G., Jia, J. 2005. Construction of a full-length cDNA library of Aegilops speltoides Tausch with optimized cap-trapper method. Acta Genetica Sinica 32, 811–817.
TaNAC2 confers multiple abiotic stress tolerances

Mao X, Zhang H, Tian S, Chang X, Jing R. 2010. TaSnRK2.4, an SNF1-type serine-threonine protein kinase of wheat (Triticum aestivum L.) confers enhanced multi-stress tolerance in Arabidopsis. Journal of Experimental Botany 61, 683–696.

Mitsuda N, Ohme-Takagi M. 2008. NAC transcription factors NST1 and NST3 regulate pod shattering in a partially redundant manner by promoting secondary wall formation after the establishment of tissue identity. The Plant Journal 56, 768–778.

Mochida K, Yoshida T, Sakurai T, Yamaguchi-Shinozaki K, Shinozaki K, Tran LS. 2009. In silico analysis of transcription factor repertoire and prediction of stress responsive transcription factors in soybean. DNA Research 16, 353–369.

Mukhopadhyay A, Vij S, Tyagi AK. 2005. Abscisic acid biosynthesis and catabolism. Annual Review of Plant Biology 56, 165–185.

Nambara E, Marion-Poll A. 2003. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Research 10, 239–247.

Pang X, Mao X, Jing R, Shi J, Gao T, Cang X, Li Y. 2007. Analysis of gene expression profile responded to water stress in wheat (Triticum aestivum L.) seedling. Acta Agronomica Sinica 32, 333–336.

Puckette MC, Weng H, Mahalingam R. 2007. Physiological and biochemical responses to acute ozone-induced oxidative stress in Medicago truncatula. Plant Physiology and Biochemistry 45, 70–79.

Qu L, Zhu Y. 2006. Transcription factor families in Arabidopsis: major progress and outstanding issues for future research. Current Opinion in Plant Biology 9, 544–549.

Seki M, Ishida J, Narusaka M, et al. 2002. Monitoring the expression pattern of around 7,000 Arabidopsis genes under ABA treatments using a full-length cDNA microarray. Functional and Integrative Genomics 2, 282–291.

Seki M, Kamei A, Yamaguchi-Shinozaki K, Shinozaki K. 2003. Molecular responses to drought, salinity and frost: common and different paths for plant protection. Current Opinion in Biotechnology 14, 194–199.

Shinozaki K, Yamaguchi-Shinozaki K, Seki M. 2003. Regulatory network of gene expression in the drought and cold stress responses. Current Opinion in Plant Biology 6, 410–417.

Strasser RJ, Sivastava A, Tsimilli-Michae M. 2002. The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: P Mohanty, U Yunus, M Pathre, eds, Probing Photosynthesis: mechanism, regulation and adaptation. London: Taylor and Francis, pp 443–480.

Thomasow MF. 1999. Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annual Review of Plant Physiology and Plant Molecular Biology 50, 571–599.

Tran LS, Nakashima K, Sakuma Y, Simpson SD, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. 2004. Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. The Plant Cell 16, 2481–2498.

Uauy C, Distelfeld A, Fahima T, Blecha A, Dubcovsky J. 2006. A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314, 1298–1301.

Xia N, Zhang G, Liu X, Deng L, Cai G, Zhang Y, Wang X, Zhao J, Huang L, Kang Z. 2010a. Characterization of a novel wheat NAC transcription factor gene involved in defense response against stripe rust pathogen infection and abiotic stresses. Molecular Biology Reports 37, 3703–3712.

Xia N, Zhang G, Sun Y, et al. 2010b. TaNAC8, a novel NAC transcription factor gene in wheat, responds to stripe rust pathogen infection and abiotic stresses. Physiological and Molecular Plant Pathology. 74, 394–402.

Xie Q, Frigaard N, Colgan D, Chua NH. 2000. Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development. Genes and Development 14, 3024–3036.

Xie Q, Sanz-Burgos AP, Guo H, García JA, Gutiérrez C. 1999. GRAB proteins, novel members of the NAC domain family, isolated by their interaction with a geminivirus protein. Plant Molecular Biology 39, 647–656.

Xiong L, Ishitani M, Zhu JK. 1999. Interaction of osmotic stress, temperature, and abscisic acid in the regulation of gene expression in Arabidopsis. Plant Physiology 119, 205–212.

Xue G. 2005. A CELD-fusion method for rapid determination of the DNA-binding sequence specificity of novel plant DNA-binding proteins. The Plant Journal 41, 638–649.

Yamaguchi-Shinozaki K, Shinozaki K. 1993. Characterization of the expression of a desiccation-responsive rd29 gene of Arabidopsis thaliana and analysis of its promoter in transgenic plants. Molecular and General Genetics 236, 331–340.

Yang R, Deng C, Ouyang B, Ye Z. 2010. Molecular analysis of two salt-responsive NAC-family genes and their expression analysis in tomato. Molecular Biology Reports 38, 857–863.

Yao D, Zhang X, Zhao X, et al. 2011. Transcriptome analysis reveals salt-stress-regulated biological processes and key pathways in roots of cotton (Gossypium hirsutum L.). Genomics 98, 47–55.

Yokotani N, Ichikawa T, Konouchi Y, Matsui M, Hirochika H, Iwabuchi M, Oda K. 2009. Tolerance to various environmental stresses conferred by the salt-responsive rice gene ONAC063 in transgenic Arabidopsis. Planta 229, 1065–1075.

Zheng X, Chen B, Lu G, Han B. 2009. Overexpression of a NAC transcription factor enhances rice drought and salt tolerance.
Zhong R, Demura T, Ye ZH. 2006. SND1, a NAC domain transcription factor, is a key regulator of secondary wall synthesis in fibres of Arabidopsis. The Plant Cell 18, 3158–3170.

Zhong R, Richardson EA, Ye ZH. 2007. Two NAC domain transcription factors, SND1 and NST1, function redundantly in regulation of secondary wall synthesis in fibres of Arabidopsis. Planta 225, 1603–1611.

Zhu J. 2002. Salt and drought stress signal transduction in plants. Annual Review of Plant Biology 53, 247–273.