M. tuberculosis Gene Expression during Transition to the “Non-Culturable” State

E.G. Salina¹, H.J. Mollenkopf²*, S.H.E. Kaufmann³, A.S. Kaprelyants¹
¹ A.N. Bach Institute of Biochemistry, RAS
² Max Planck Institute for Infection Biology
*E-mail: mollenkopf@mpiib-berlin.mpg.de

ABSTRACT We analyzed the gene expression profile under specific conditions during reversible transition of *M. tuberculosis* cells to the “non-culturable” (NC) state in a prolonged stationary phase. More than 500 genes were differentially regulated, while 238 genes were upregulated over all time points during NC cell formation. Approximately a quarter of these upregulated genes belong to insertion and phage sequences indicating a possible high intensity of genome modification processes taking place under transition to the NC state. The high proportion of hypothetical/conserved hypothetical genes in the cohort of upregulated genes, there was a significant number of genes belonging to intermediary metabolism, respiration, information pathways, cell wall and cell processes, and genes encoding regulatory proteins. We conclude that NC cell formation is an active process involved in the regulation of many genes of different pathways. A more detailed analysis of the experimental data will help to understand the precise molecular mechanisms of dormancy/latency/persistence of *M. tuberculosis* in the future. The list of upregulated genes obtained in this study includes many genes found to be upregulated in other models of *M. tuberculosis* persistence. Thirteen upregulated genes, which are common for different models, can be considered as potential targets for the development of new anti-tuberculosis drugs directed mainly against latent tuberculosis.

Keywords: *M. tuberculosis*, latent tuberculosis, “non-culturable” cells, global gene expression profile

INTRODUCTION

Mycobacterium tuberculosis – the causative agent of tuberculosis – can persist in the human host for decades after infection. Such a latent *M. tuberculosis* state is traditionally connected with its transition to the dormant state, accompanied by loss of culturability [1]. This makes it practically impossible to reveal latent infection by traditional biochemical and microbiological means and attempt to cure it by antibiotic therapy. To study latent infection in live organisms, several modifications of the experimental model of dormancy during hypoxia in vitro are used [2, 3]. However, none of them imitates such an important state of bacteria as their “non-culturability” in the dormant state. We have established an experimental model where dormant *M. tuberculosis* cells are “non-culturable” (NC) and can reactivate under special conditions [4].

To reveal the biochemical processes accompanying the transition of bacteria to the NC state and to understand the mechanisms of this phenomenon, we analyzed *M. tuberculosis* gene expression profile during the formation of NC cells.

METHODS

M. tuberculosis total RNA samples were extracted from cells in the late logarithmic phase (5 days of cultivation) and during the transition of cells to the NC state under incubation in the stationary phase at different time points (21, 30, 41 and 62 days of cultivation) as described previously [5]. cDNA was generated from 1µg RNA using random hexamers and reverse transcriptase (Superscript III, Invitrogen, Karlsruhe, Germany) according to the manufacturer’s instructions. Reverse transcribed samples were purified with the QIAquick PCR purification kit (Qiagen, Hilden, Germany) and labeled with Cy3- and Cy5-ULS according the suppliers’ recommendations (Kreatech Diagnostics, Amsterdam, The Netherlands). Finally, labeled samples were purified with KREApure spin columns. Microarray experiments were performed as dual-color hybridizations. In order to compensate for the specific effects of the dyes and to ensure statistically relevant data, a color-swap dye-reversal analysis was performed. Cy3-labeled cDNA (250ng) corresponding to cells from different time points in the stationary phase was competitively hybridized with the same amount of Cy5-labeled cDNA of the control sample as color-swap technical replicates onto self-printed microarrays comprising a collection of 4,325 *M. tuberculosis*-specific “Array-Ready” 70mer DNA oligonucleotide capture probes and 25 control sequences (Operon Biotechnologies, Koeln, Germany) at 42°C for 20 h. Arrays were washed 3 times using a SSC wash protocol followed by scanning at 10 µm (Microarray Scanner BA, Agilent, Technologies, Waldbronn, Germany). Image analysis was carried out with Agilent’s feature extraction software version (Agilent, Technologies, Waldbronn, Germany). The extracted MAGE-ML files were further analyzed with the Rosetta Resolver Biosoftware, Build 7.1 (Rosetta Biosoftware, Seattle, USA). Ratio profiles comprising color-swap hybridizations were combined in an error-weighted fashion to create ratio experiments. Anticorrelation of dye-reversals was determined by the compare function of Resolver. Next we applied a Student’s t-test. Finally, by combining a 1.5-fold change cutoff to ratio experiments and the anticorrelation criterion together with the signatures from the Student’s t-test, all valid data points had a P-value < 0.01, rendering the analysis highly robust and reproducible.
RESULTS AND DISCUSSION

We found earlier that *M. tuberculosis* cultivation in the modified Sauton medium without K⁺ supplemented by dextrose, BSA, and sodium chloride led to a decrease in colony forming units (CFU) on the solid medium in the stationary phase [4]. After 60 days of cultivation, the CFU count dropped to 10⁵ per ml (Fig. 1), which meant a transition of 99.9% of cells to the NC state. During further cultivation of cells, spontaneous recovery of NC cells was observed. It is important that the NC state was reversible, and that cells with a minimum CFU count could be reactivated after regrowing them in fresh medium.

Comparison of the gene expression profile at different time points from the stationary to the logarithmic phase (5-day cultivation) revealed a different expression (at least 1.5-fold) for a significant number of genes (566), which corresponds to 14% of the *M. tuberculosis* genome. Some 238 genes are upregulated and 237 downregulated over all time points during the entire culture period. Table 1 shows the functional category of differentially regulated genes during the transition of cells to the NC state.

Besides the significant amount of conserved hypothetical/unknown genes, many genes involved in the intermediary metabolism and respiration, virulence, detoxification and adaptation, lipid metabolism, information pathways, cell wall and cell processes were downregulated.

A considerable amount of genes coding hypothetical proteins were also found to be upregulated in the NC state: remarkably, genes encoding insertion sequences and phages represented about a quarter of the genes upregulated in the NC state, whereas their proportion in the genome was smaller – only 3.7%. This fact is a possible illustration of the high intensity of genome modification processes during the transition of cells to the NC state.

A significant proportion of upregulated genes belonged to the intermediary metabolism and respiration category, in particular, *gcvB* and *ald*, coding, respectively, glycine dehydrogenase and L-alanine dehydrogenase, proteases *pepR* and *clpC2*. *icl1* – one of the genes coding isocitrate lyase, anaplerotic enzyme, existing in the *M. tuberculosis* cells in two isoforms *icl1* and *icl2* – was found upregulated. Isocitrate lyase is the key enzyme of the glyoxylate cycle – a metabolic pathway, which is an alternative for the tricarboxylic acid cycle and allows the synthesis of carbohydrates from simple precursors. In particular, it plays an important role in seed germination, where fatty acids are used as the main storage of carbon and energy. The induction of some genes involved in lipid degradation, such as *fadD9, fadE24, fadE26*, and fatty acid degradation, *scoA*, is indicative of the active role of the glyoxylate cycle in NC cells already found for the Wayne persistence model [2].

Table 1. Functional categories of M. tuberculosis genes with changed expression level during transition to the NC state

Functional categories	Genes induced during transition to the NC state	Genes repressed during transition to the NC state	Percent (%) in the genome				
	Number of genes	%	Number of genes	%			
Virulence, detoxification, adaptation	5	2.1	7	2.9	2.6		
Lipid metabolism	6	2.5	20	8.4	5.9		
Information pathways	13	5.5	23	9.7	5.8		
Cell wall and cell processes	24	10.1	59	24.8	18.8		
Insertion sequences and phages	58	24.4	1	0.4	3.7		
PE/PPE	7	2.9	11	4.6	4.2		
Intermediary metabolism and respiration	42	17.7	50	21.1	22.4		
Regulatory proteins	16	6.7	4	1.7	4.8		
Unknown/hypothetical	67	28.1	63	26.5	31.9		
Total number of genes	238	–	237	–	3924/100		
ORF	Gene	Gene product	Change of gene expression level				
------	----------------	-------------------------------	---------------------------------				
			5 days	21 days	30 days	41 days	62 days
v0186	bglS	Beta-glucosidase	1	4.20459	8.33866	6.51867	5.24295
v0840c	pip	Proline iminopeptidase	1	6.33559	11.0004	4.5886	3.86572
v0841c	transmembrane protein		1	31.11093	52.56174	13.79488	11.85425
v0989c	gpc2	Polyphosphatase synthase	1	7.60797	6.29748	7.58723	3.94283
v0990c	hypothetical protein		1	7.12899	6.69015	6.652	3.57343
v0991c	hypothetical protein		1	3.31598	3.87521	5.44297	3.70462
v1369c	hypothetical protein		1	3.17178	3.9213	4.22925	3.86883
v1394c	cyp132	Cytochrome P450 132	1	8.89047	7.50161	3.72981	3.12534
v1395	hypothetical protein		1	3.22394	11.65875	7.03908	4.27327
v1397c	hypothetical protein		1	6.95276	11.79184	5.97336	5.77752
v1460	hypothetical protein		1	3.87617	5.50637	6.90405	3.78332
v1575	phiR1 phage protein		1	17.29509	37.08693	51.7473	20.53329
v1576c	phiR1 phage protein		1	28.17817	33.97652	10.11378	12.38182
v1577c	phiR1 phage protein		1	26.27261	39.87495	19.41512	11.49041
v1584c	phiR1 phage protein		1	3.27674	5.68352	3.3055	3.02866
v1831	hypothetical protein		1	3.1468	5.74692	5.14019	4.04747
v1991c	hypothetical protein		1	4.04696	4.12618	4.06786	4.65579
v1992c	ctpG	Metal cation transporter ATPase	1	5.2883	7.31348	7.4442	4.22008
v2106	hypothetical protein		1	3.91418	5.61324	4.77882	5.09923
v2254c	integral membrane protein		1	7.95034	6.53956	3.33899	4.63883
v2278	hypothetical protein		1	3.28663	6.78129	6.28036	4.13102
v2354	hypothetical protein		1	3.1594	6.15299	5.21096	3.13151
v2497c	hypothetical protein		1	3.73133	4.52197	5.04976	4.00306
v2642	hypothetical protein		1	3.76985	5.16757	4.39006	3.93426
v2644c	hypothetical protein		1	3.36059	7.53921	5.36796	3.51823
v2645	hypothetical protein		1	3.45066	8.21393	6.70101	3.25709
v2646	hypothetical protein		1	5.04391	12.16533	7.82435	9.96087
v2647	hypothetical protein		1	5.32983	13.40623	9.43796	7.2163
v2649	hypothetical protein		1	3.2565	5.3557	5.59089	3.74714
v2650c	phiR2 phage protein		1	21.46669	29.74372	16.65359	20.66349
v2651c	phiR2 phage protein		1	20.04866	34.29153	20.61728	13.41666
v2660c	hypothetical protein		1	13.43717	41.25793	67.29882	19.6609
v2661c	hypothetical protein		1	9.23174	28.30861	52.34967	11.04351
v2662	hypothetical protein		1	20.62942	18.83647	14.70569	12.88896
v2663	hypothetical protein		1	7.61461	9.43216	8.19525	7.3034
v2664	hypothetical protein		1	6.24636	8.49102	7.1091	5.60291
v2666c	truncated transposase IS1081		1	6.91867	13.89339	7.89331	5.86579
v2667c	clpC2	ATP-dependent protease	1	9.48415	17.89662	9.64508	6.64169
v2707	hypothetical protein		1	3.35002	5.09024	14.83903	4.53239
v2711	ideR	hypothetical protein	1	3.48877	4.30099	6.05795	3.83058
v2715c	sba	Soluble pyridine nucleotide transhydrogenase	1	4.45327	6.35516	6.68033	3.83632
v2780c	ald	Secreted L-aminodehydrogenase ALD	1	5.2891	4.65988	4.52694	4.92656
v2814c	hypothetical protein		1	3.3279	5.52338	4.86873	4.60102
v2815c	hypothetical protein		1	3.13667	6.24306	5.87423	4.84337
v3185	hypothetical protein		1	3.58899	6.43621	5.67335	5.82686
v3186	hypothetical protein		1	3.29603	6.21375	6.14822	5.77427
v3290c	hypothetical protein		1	4.32023	5.06387	3.54801	3.97904
v3474	hypothetical protein		1	3.04947	6.19754	6.19669	3.22266
v3475	hypothetical protein		1	3.73066	5.79892	5.63617	6.23463
v3508c	hypothetical protein		1	3.87797	6.67899	3.14124	3.40652
v3582c	hypothetical protein		1	3.50012	4.07861	3.78626	3.51221
During transition to the NC state, some genes used as markers of stress conditions were induced: the heat-shock protein \textit{hsp}, the chaperones \textit{Rv0440} and \textit{Rv3417c}, as well as sigma-factors: \textit{sigG} – regulating genes which are necessary for survival inside the macrophages and \textit{sigB}, which can control stationary phase regulons and general resistance to stress. Induction of \textit{cysA}, whose product takes part in the cytochrome biosynthesis at the step of heme attachment, and \textit{cypp12}, coding one of the cytochrome’s P450 oxidizing different xenobiotics, could evidently reflect accumulation of toxic components in cultures during transition. Enzymes of the non-mevalonate pathway of isoprenoid biosynthesis \textit{ispF} and \textit{ispD} were also induced in the NC cells. There are data indicating that some of the metabolites of this pathway can affect the immune response of the host [6]. A number of induced genes are involved in the information pathways and those encoding regulatory proteins; in particular, the transcriptional regulator \textit{furA}, which acts as a global negative control element, employing Fe2+ as a cofactor to bind the operator of the repressed genes. It seems to regulate the transcription of \textit{katG}, which is induced in the NC state. \textit{katG} encodes a multifunctional enzyme, exhibiting both catalase, a broad-spectrum peroxidase and peroxynitritase activities and is believed to play a role in the intracellular survival of mycobacteria within macrophages, protecting them against the aggressive components produced by phagocytic cells. Some genes taking part in the cell wall and cell processes, in particular the transporters \textit{ctpG} and \textit{ctpC} encoding ATPases–transporting metal cations and the transporter \textit{Rv2688c} involved in antibiotic resistance and export of antibiotics across the membrane, are activated.

To identify the genes that were significantly upregulated during transition to the NC state, we used stringent criteria: the expression level during the whole time course in the stationary phase was upregulated at least 3-fold in comparison to the expression in the logarithmic phase. Fifty-one genes met this criterion (Table 2).

Among the genes with a substantially high level of expression, genes encoding insertion sequences and phases – 20 genes out of the 51 – are prime candidates, while 13 genes encode hypothetical proteins with unknown function. It is remarkable that the significantly upregulated genes belonged to intermediary metabolism and the respiration category. Moreover, these genes mainly encode proteins involved in degradation processes; namely \textit{bgIS} – beta-glycosidase (hydrolyzes the terminal, non-reducing beta-D-glucose residue); \textit{pip} – proline iminopeptidase (specifically catalyzes the removal of N-terminal proline residues from small peptides); \textit{clpC2} ATP-dependent protease; and \textit{ald} – L-alanine dehydrogenase (catalyzes alanine hydrolyze – an important constituent of the peptidoglycan layer). In addition, the \textit{pdhA} coding the alpha subunit of pyruvate dehydrogenase and taking part in the energetic metabolism and catalyzing the conversion of pyruvate to acetyl-CoA was highly expressed. Significant upregulation of \textit{sthA}, a soluble pyridine nucleotide transhydrogenase that catalyses the conversion of NADPH generated by catabolic pathways to NADH, which is oxidized by the respiratory chain for energy generation, is a sign of the prevalence of catabolic reactions in cell metabolism in the NC state.

Analysis of the global gene expression profile has been published for several \textit{M. tuberculosis} persistence models, in particular the Wayne model of the non-replicating state during hypoxia [5,7,8], the gradual depletion of the carbon source under decreased oxygen tension [9], the adaptation of \textit{M. tuberculosis} within macrophages [10], and \textit{in vivo} within artificial granulomas in mice [11]. Considering the results of these studies, the gene expression profile in our model of “non-culturability” in the stationary phase has, evidently, some overlaps with the above-mentioned models of persistence (Table 3).

Little in common was found between the genes induced in our model of “non-culturability” and the Wayne dormancy model during hypoxia (Table 3). The Wayne model is characterized by the induction of genes of the dormancy survival regulon (Dos-regulon), a group of 49 genes under the control of \textit{devR} which codes the regulatory part of the two-component system. Upregulation of the Dos-regulon was found not only for dormant cells under hypoxia \textit{in vitro}, but also for \textit{M. tuberculosis} cells within macrophages [10], and in the artificial granulomas in mice [11]. In our model of \textit{M. tuberculosis} transition to the NC state in the stationary phase, only two genes from Dos-regulon – \textit{Rv0571c} and \textit{Rv2631} – were found upregulated. Dos-regulon induction was not found in the persisting cells during starvation [12], and only two genes of Dos-regulon were activated during persistence at gradual depletion of the carbon source [9].

A recently published paper [13] demonstrated that the role of Dos-regulon is apparently overestimated not only as a universal regulator of the dormant state of mycobacteria, but also as a general response on hypoxia. Genes of the Dos-regulon were shown to be activated only 2 hours after hypoxia.

Table 3. Comparison of genes upregulated during transition to the NC state in the stationary phase (at least 1.5-fold) to the genes activated in other models of persistence

Models of \textit{M. tuberculosis} persistence	Overlapping to 238 genes activated in the stationary phase during transition to the NC state
Wayne non-replicating state (Voskull et al., 2004)	Number of genes: 23, %: 9.7
Persistence at gradual depletion of carbon source at 36% oxygen tension (Hampshire et al., 2004)	Number of genes: 82, %: 34.5
Persistence within macrophages (Schnappinger et al., 2003)	Number of genes: 77, %: 32.4
Artificial granuloma in mice (Karalious et al., 2004)	Number of genes: 32, %: 13.4
Enduring hypoxia response (Rustad et al., 2008)	Number of genes: 40, %: 16.8
Thereafter expression of at least half of these returned to the baseline [13]. The authors observed a significant induction of another 230 genes after further cultivation during hypoxia, and hereafter their expression level was stable. Thus, the authors refer to this group of genes as enduring hypoxia response (EHR) genes. Considering the gene expression profile for our model of transition to the NC state, we found significant overlap with this group of genes (Table 3), which was rather unexpected because the conditions for NC cell formation developed in our laboratory did not imply any oxygen limitation. Some overlap with EHR [13] was found for the persistence model of gradual depletion of the carbon source [9] and the transcriptional response to multiple stresses [14]. Therefore, it is possible to conclude that EHR genes may not only play a role as hypoxia markers, but may also be a general regulon of the dormant state of *M. tuberculosis*, independent of its induction.

Thus, the data presented here indicate that cell transition to dormant state is an active process and that numerous genes are involved in it. The future task is to investigate this process in detail in order to understand the molecular mechanisms in the cells during the transition to the dormant state. Based on the results of the transcriptome analysis of the NC cells obtained in our model and those obtained in several models of persistence, it is possible to pinpoint some shared genes that are upregulated in these models (Table 4). The genes presented in Table 4 and their products are believed to be important for further study, because some of them could represent new targets for anti-tuberculosis drug candidates directed mainly against latent tuberculosis.

This work was supported by the Program of the Presidium of the RAS “Molecular and Cellular Biology”

REFERENCES

1. Gangadharam P. R. J. Tuberc. Lung Dis., 1995, 76, 477-479.
2. Wayne L. G. and Lin K.-Y Infect. Immun., 1982, 37, 1042-1049.
3. Wayne L. G. and Hayes L. G. Infect. Immun., 1996, 64, 2062-2069.
4. Mukamolova G. V., Salina E. G., Kaproyants A. C. in National Institute of Allergy and Infectious Diseases, NIH (Gottlieb, V., ed) Humana Press, USA, 2008, 4, 81-90.
5. Voskuil M. I., Visconti K. C., Schoolnik G. K. *Tuberculosis* (Edinh.), 2004, 84, 218-227.
6. Shao L., Zhang W., Zhang S., Chen CY., Jiang W., Xu Y., Meng C., Weng X., Chen Z.W. *AIDS*, 2008, 22(17), 2241-508.
7. Muttucumaru D. G., Roberts G., Hinds J., Stabler R. A., Parish, T. *Tuberculosis* (Edinh.), 2004, 84, 228-246.
8. Bacon J., James B. W., Wernisch L., Williams A., Morley K. A., Hatch G.J., Mangan J.A.,
9. Hampshire T., Soneji S., Bacon J., James B. W., Hinds J., Laing K., Stabler R. A., Marsh P. D., and Butcher P. D. *Tuberculosis* (Edinh).2004, 84, 223-238.
10. Schnappinger D., Ehrt S., Voskuil M. I., Liu Y., Mangan J.A., Monahan I. M., Dolganov G., Eron B., Butcher P. D., Nathan C., Schoolnik G. K. *J. Exp. Med., 2003, 198(5), 693-704.
11. Karakousis P. C., Yoshimatsu T., Lamichhane G., Woolwine S. C.; Nuernberger E.L., Grosser J., Bihai, W. B. *J. Exp. Med., 2004, 200, 647-657.
12. Betts J. C., Lukey P. T., Robb L. C., MeAdam R. A., and Duncan K. *Mol. Microbiol., 2002, 43, 717-731.
13. Rustad T. R., Harrell M. I., Luo R., Sherman D. R. *PLoS ONE, 2008, 3(1), 1562.
14. Boshoff H. J., Myers T. G., Cogg R. R., McNeil M. R., Wilson M. A., and Barry C. E., 3rd *J. Biol. Chem., 2004, 279, 40174-40184.
15. Hampshire T., Soneji S., Bacon J., James B. W., Hinds J., Laing K., Stabler R. A., Marsh P. D., and Butcher P. D. *Tuberculosis* (Edinh).2004, 84, 205-217.
16. Hampshire T., Soneji S., Bacon J., James B. W., Hinds J., Laing K., Stabler R. A., Marsh P. D., and Butcher P. D. *Tuberculosis* (Edinh).2004, 84, 223-238.