On a weighted variable spaces $L_{p(x), \omega}$ for $0 < p(x) < 1$
and weighted Hardy inequality

ROVSHAN A.BANDALIEV

ABSTRACT. In this paper a weighted variable exponent Lebesgue spaces $L_{p(x), \omega}$ for $0 < p(x) < 1$ is investigated. We show that this spaces is a quasi-Banach spaces. Note that embedding theorem between weight variable Lebesgue spaces is proved. In particular, we show that $L_{p(x), \omega}(\Omega)$ for $0 < p(x) < 1$ isn’t locally convex. Also, in this paper a some two-weight estimates for Hardy operator are proved.

Keywords and phrases: Variable Lebesgue space, weights, quasi-Banach space, topology, embedding, Hardy operator.

2000 Mathematics Subject Classifications: Primary 46B50, 47B38; Secondary 26D15.

1. Introduction.

It is well known that the variable exponent Lebesgue space $L_{p(x)}$ for $p(x) \geq 1$ appeared in the literature for the first time already in [13]. Further development of this theory was connected with the theory of modular function spaces. Somewhat later, a more explicit version of these spaces, namely modular function spaces, were investigated by many mathematicians (see [12]). The next step in the investigation of variable exponent spaces was given in [16] and in [8]. But the variable exponent Lebesgue space for $0 < p(x) < 1$ very less studied. Note that the space $L_{p(x)}$ for $0 < p(x) < 1$ isn’t modular function spaces. The study of these spaces has been stimulated by problems of elasticity, fluid dynamics, calculus of variations and differential equations with non-standard growth conditions (see [14], [17],[18]). For detailed information about variable exponent Lebesgue space $L_{p(x)}$ for $p(x) \geq 1$ we refer to [7].

Let \mathbb{R}^n be the n-dimensional Euclidean space of points $x = (x_1, \ldots, x_n)$ and Ω be a Lebesgue measurable subset in \mathbb{R}^n and $|x| = \left(\sum_{i=1}^{n} x_i^2 \right)^{1/2}$. Suppose that p is a Lebesgue measurable function on Ω such that $0 < \underline{p} \leq p(x) \leq \bar{p} < 1$, $\underline{p} = ess \inf_{x \in \Omega} p(x)$, $\bar{p} = ess \sup_{x \in \Omega} p(x)$, and ω is a weight function on Ω, i.e. ω is non-negative, almost everywhere (a.e.) positive function on Ω. The Lebesgue measure of a set Ω will be denoted by $|\Omega|$. It is well known that $|B(0, 1)| = \frac{\pi^{\frac{n}{2}}}{\Gamma \left(\frac{n}{2} + 1 \right)}$, where $B(0, 1) = \{x : x \in \mathbb{R}^n; |x| < 1\}$. Further, in this paper all sets and functions are supposed Lebesgue measurable.
2. Preliminaries

Definition 1. By \(L_{p(x), \omega}(\Omega) \) we denote the set of measurable functions \(f \) on \(\Omega \) such that

\[
I_{p, \omega}(f) = \int_{\Omega} \left(|f(x)| \omega(x) \right)^{p(x)} \, dx < \infty.
\]

Note that the expression

\[
\|f\|_{L_{p(x), \omega}(\Omega)} = \|f\|_{p, \omega, \Omega} = \inf \left\{ \lambda > 0 : \frac{\int_{\Omega} \left(|f(x)| \omega(x) \right)^{p(x)} \, dx}{\lambda^p \int_{\Omega} \left(|f(x)| \omega(x) \right)^{p(x)} \, dx} \leq 1 \right\}
\]

(2.1)

defines a quasi-Banach spaces.

We note some main properties of this spaces.

1) For every \(0 < \|f\|_{p, \omega, \Omega} < \infty \), \(I_{p, \omega} \left(\frac{f}{\|f\|_{p, \omega, \Omega}} \right) = 1 \).

If \(I_{p, \omega} \left(\frac{f}{\|f\|_{p, \omega, \Omega}} \right) < 1 \), we can find \(0 < \lambda \leq \|f\|_{p, \omega, \Omega} \) such that \(I_{p, \omega} \left(\frac{f}{\lambda} \right) < 1 \). Indeed, let \(\lambda = \|f\|_{p, \omega, \Omega} I_{p, \omega}^{1/p} \left(\frac{f}{\|f\|_{p, \omega, \Omega}} \right) \). Then \(\lambda < \|f\|_{p, \omega, \Omega} \) and the inequality

\[
I_{p, \omega} \left(\frac{f}{\lambda} \right) = \int_{\Omega} \left(\frac{|f(x)| \omega(x)}{\|f\|_{p, \omega, \Omega} I_{p, \omega}^{1/p} \left(\frac{f}{\|f\|_{p, \omega, \Omega}} \right)} \right)^{p(x)} \, dx
\]

\[
\leq I_{p, \omega}^{1} \left(\frac{f}{\|f\|_{p, \omega, \Omega}} \right) \int_{\Omega} \left(\frac{|f(x)| \omega(x)}{\|f\|_{p, \omega, \Omega}} \right)^{p(x)} \, dx = 1
\]

is valid. The obtained inequality contradicts to (2.1).

Remark 1. Note that property 1) for non-weighted case was proved in [15].

2) \(\min \left\{ \|f\|^{L}_{p, \omega, \Omega}, \|f\|^{P}_{p, \omega, \Omega} \right\} \leq I_{p, \omega}(f) \leq \max \left\{ \|f\|^{L}_{p, \omega, \Omega}, \|f\|^{P}_{p, \omega, \Omega} \right\} \).

Let \(\|f\|_{p, \omega, \Omega} \leq 1 \). Using the property 1) we have

\[
I_{p, \omega}(f) = \int_{\Omega} \left(\frac{|f(x)| \omega(x)}{\|f\|_{p, \omega, \Omega}} \right)^{p(x)} \, dx \leq \|f\|^{L}_{p, \omega, \Omega} \int_{\Omega} \left(\frac{|f(x)| \omega(x)}{\|f\|_{p, \omega, \Omega}} \right)^{p(x)} \, dx = \|f\|^{L}_{p, \omega, \Omega}.
\]

Conversely, \(I_{p, \omega}(f) \geq \|f\|^{P}_{p, \omega, \Omega} \). Analogously, is consider the case \(\|f\|_{p, \omega, \Omega} \geq 1 \).

3) The space \(L_{p(x), \omega}(\Omega) \) is real linear spaces.
By using of the property 1, we have

\[
\int_{\Omega} \left(\frac{|f(x) + g(x)| \omega(x)}{2^{1/p} (\|f\|_{p,\omega,\Omega} + \|g\|_{p,\omega,\Omega})} \right)^{p(x)} \, dx
\]

\[
\leq \int_{\Omega} \left(\frac{|f(x)| \omega(x)}{2^{1/p} (\|f\|_{p,\omega,\Omega} + \|g\|_{p,\omega,\Omega})} \right)^{p(x)} \, dx + \int_{\Omega} \left(\frac{|g(x)| \omega(x)}{2^{1/p} (\|f\|_{p,\omega,\Omega} + \|g\|_{p,\omega,\Omega})} \right)^{p(x)} \, dx
\]

\[
\leq \frac{1}{2} \left(\int_{\Omega} \left(\frac{|f(x)| \omega(x)}{\|f\|_{p,\omega,\Omega}} \right)^{p(x)} \, dx + \int_{\Omega} \left(\frac{|g(x)| \omega(x)}{\|g\|_{p,\omega,\Omega}} \right)^{p(x)} \, dx \right) = 1.
\]

Thus by Definition 1 $\|f + g\|_{p,\omega,\Omega} \leq 2^{1/p} (\|f\|_{p,\omega,\Omega} + \|g\|_{p,\omega,\Omega})$. Therefore $f + g \in L_{p(x),\omega}(\Omega)$. Let $\alpha \in R \setminus \{0\}$ and $f \in L_{p(x),\omega}(\Omega)$. Now show that $\alpha f \in L_{p(x),\omega}(\Omega)$. We get

\[
\|\alpha f\|_{p,\omega,\Omega} = \inf \left\{ \lambda > 0 : \int_{\Omega} \left(\frac{|\alpha f(x)| \omega(x)}{\lambda} \right)^{p(x)} \, dx \leq 1 \right\}
\]

\[
= \inf \left\{ \lambda > 0 : \int_{\Omega} \left(\frac{|f(x)| \omega(x)}{\lambda |\alpha|} \right)^{p(x)} \, dx \leq 1 \right\}
\]

We substitute $\lambda = |\alpha| \mu$. Then

\[
\inf \left\{ \lambda > 0 : \int_{\Omega} \left(\frac{|f(x)| \omega(x)}{\lambda |\alpha|} \right)^{p(x)} \, dx \leq 1 \right\}
\]

\[
= \inf \left\{ |\alpha| \mu > 0 : \int_{\Omega} \left(\frac{|f(x)| \omega(x)}{\mu} \right)^{p(x)} \, dx \leq 1 \right\}
\]

\[
= |\alpha| \inf \left\{ \mu > 0 : \int_{\Omega} \left(\frac{|f(x)| \omega(x)}{\mu} \right)^{p(x)} \, dx \leq 1 \right\} = |\alpha| \|f\|_{p,\omega,\Omega}.
\]

For $f = 0$ this fact is trivially. Hence implies that the variable Lebesgue space $L_{p(x),\omega}(\Omega)$ is real linear space.

4) Let $\|f\|_{p,\omega,\Omega} = 0$. Then we proved that $f = 0$ a.e. $x \in \Omega$.

3
If \(\|f\|_{p,\omega,\Omega} = 0 \), then by (2.1) for all \(\lambda > 0 \), \(I_{p,\omega}\left(\frac{f}{\lambda}\right) \leq 1 \). For any \(\mu > 0 \) and \(\varepsilon \in (0, 1) \), we have

\[
I_{p,\omega}\left(\frac{f}{\mu}\right) = \int_{\Omega} \varepsilon^{p(x)} \left(\frac{|f(x)| \omega(x)}{\varepsilon \mu}\right)^{p(x)} \, dx \leq \varepsilon^{p} I_{p,\omega}\left(\frac{f}{\varepsilon \mu}\right) \leq \varepsilon^{p}.
\]

Since \(\varepsilon \) be any number from \((0,1)\), then \(I_{p,\omega}\left(\frac{f}{\mu}\right) = 0 \) for all \(\mu > 0 \). Therefore

\[
\int_{\Omega} \left(\frac{|f(x)| \omega(x)}{\mu}\right)^{p(x)} \, dx = 0 \quad \text{and thus} \quad f = 0 \text{ a.e. } x \in \Omega.
\]

5) Let \(|f(x)| \leq |g(x)| \) for a.e. \(x \in \Omega \). Then \(\|f\|_{p,\omega,\Omega} \leq \|g\|_{p,\omega,\Omega} \).

Indeed, by virtue of property 1) we have

\[
\int_{\Omega} \left(\frac{|f(x)| \omega(x)}{\|g\|_{p,\omega,\Omega}}\right)^{p(x)} \, dx = \int_{\Omega} \left(\frac{|f(x)| \omega(x)}{|g(x)| \omega(x)}\right)^{p(x)} \, dx \leq \int_{\Omega} \left(\frac{|g(x)| \omega(x)}{\|g\|_{p,\omega,\Omega}}\right)^{p(x)} \, dx = 1.
\]

Thus by Definition 1 \(\|f\|_{p,\omega,\Omega} \leq \|g\|_{p,\omega,\Omega} \).

Lemma 1. Let \(0 < p \leq p(x) \leq \overline{p} < 1 \) and \(f, g \in L_{p(x),\omega}(\Omega) \). Then

\[
\|f\| + \|g\|_{p,\omega,\Omega} \geq \|f\|_{p,\omega,\Omega} + \|g\|_{p,\omega,\Omega}.
\]

Proof. First we show that the function \(h(t) = t^{r} \), for \(0 < r < 1 \) and \(t > 0 \) is concave.

Let \(\alpha + \beta = 1 \), where \(\alpha, \beta \geq 0 \). We proved that \((\alpha + \beta t)^{r} \geq \alpha + \beta t^{r} \). We consider the function \(F(t) = \frac{(\alpha + \beta t)^{r}}{\alpha + \beta t^{r}} \). Differentiating by \(t \) and after some calculation we have

\[
F'(t) = \frac{\alpha \beta p (\alpha + \beta t)^{r-1} (1 - t^{r-1})}{(\alpha + \beta t^{r})^{2}}.
\]

Since \(r - 1 < 0 \), then \(t = 1 \) is minimal value of the function \(F \) for all \(t > 0 \). Therefore \(F(t) \geq F(1) = 1 \). Thus \((\alpha + \beta t)^{r} \geq \alpha + \beta t^{r} \). Taking \(t = t_{2} \) in last inequality we have \((\alpha t_{1} + \beta t_{2})^{r} \geq \alpha t_{1}^{r} + \beta t_{2}^{r} \), i.e. the function \(h(t) = t^{r} \) is concave.

Now we show a requiring inequality. It is obvious that the case \(f = g = 0 \) a.e. \(x \in \Omega \) is trivial. Let \(\|f\|_{p,\omega,\Omega} > 0 \) and \(\|g\|_{p,\omega,\Omega} > 0 \). Using concavity property of power function and property 1), we get

\[
I_{p,\omega}\left(\frac{|f| + |g|}{\|f\|_{p,\omega,\Omega} + \|g\|_{p,\omega,\Omega}}\right) = \int_{\Omega} \left(\frac{|f(x)| + |g(x)|}{\|f\|_{p,\omega,\Omega} + \|g\|_{p,\omega,\Omega}}\right) \omega(x)^{p(x)} \, dx =
\]

4
Theorem 1. Let s where $a, b > 0$ then we can see $s - s' = \frac{s}{s - 1}$. Differentiating by t we have

$$G'(t) = t^{s-1} - \frac{1}{t^{s'+1}} = \frac{t^{ss'} - 1}{t^{s'+1}};$$

where $s + s' = ss' < 0$. Therefore the point $t = 1$ is maximal value of the function $G(t)$ for all $t > 0$. Thus $G(t) \leq G(1) = 1$, i.e., $\frac{t^{s}}{s} + \frac{t^{-s'}}{s'} \leq 1$. If we take $t = \frac{a^{1/s'}}{b^{1/s}}$, then

$$ab \geq \frac{a^{s}}{s} + \frac{b^{s'}}{s'},$$

where $a, b > 0$.

Differentiating by t we have

$$G'(t) = t^{s-1} - \frac{1}{t^{s'+1}} = \frac{t^{ss'} - 1}{t^{s'+1}},$$

where $s + s' = ss' < 0$. Therefore the point $t = 1$ is maximal value of the function $G(t)$ for all $t > 0$. Thus $G(t) \leq G(1) = 1$, i.e., $\frac{t^{s}}{s} + \frac{t^{-s'}}{s'} \leq 1$. If we take $t = \frac{a^{1/s'}}{b^{1/s}}$, then

$$ab \geq \frac{a^{s}}{s} + \frac{b^{s'}}{s'},$$

where $a, b > 0$.

Thus $\|f\|_{p,x,\Omega} \leq \|f\|_{p,x,\Omega} + \|g\|_{p,x,\Omega}$ holds for every $f \in L_{p(x),\omega}(\Omega)$.
Putting $a = \frac{|f(x)|\omega(x)}{\|f\|_{p, \omega, \Omega}}$, $b = \frac{|g(x)|\omega^{-1}(x)}{\|g\|_{p', \omega^{-1}, \Omega}}$, $s = s(x) = p(x)$, $s' = s'(x) = p'(x)$ in inequality (2.3) and using the property 1) we have

$$\int_{\Omega} \frac{|f(x)g(x)|}{\|f\|_{p, \omega, \Omega} \|g\|_{p', \omega^{-1}, \Omega}} \, dx \geq \int_{\Omega} \frac{1}{p(x)} \left(\frac{|f(x)| \omega(x)}{\|f\|_{p, \omega, \Omega}} \right)^{p(x)} \, dx + \int_{\Omega} \frac{1}{p'(x)} \left(\frac{|g(x)| \omega^{-1}(x)}{\|g\|_{p', \omega^{-1}, \Omega}} \right)^{p'(x)} \, dx$$

$$\geq \frac{1}{p} \int_{\Omega} \left(\frac{|f(x)| \omega(x)}{\|f\|_{p, \omega, \Omega}} \right)^{p(x)} \, dx + \frac{1}{p'} \int_{\Omega} \left(\frac{|g(x)| \omega^{-1}(x)}{\|g\|_{p', \omega^{-1}, \Omega}} \right)^{p'(x)} \, dx = \frac{1}{p} + \frac{1}{p'}.$$

Thus the inequality (2.2) is proved.

Remark 2. Note that in the proof of Lemma 1, the expression $\|g\|_{p', \omega^{-1}, \Omega}$ was used for negative values of the conjugate function. It should be understood as follows

$$\|g\|_{p', \omega^{-1}, \Omega} := \inf \left\{ \lambda > 0 : \int_{\Omega} \left(\frac{|g(x)| \omega^{-1}(x)}{\lambda^{-1}} \right)^{-p'(x)} \, dx \leq 1 \right\}$$

$$= \inf \left\{ \frac{1}{\mu} > 0 : \int_{\Omega} \left(\frac{|g(x)| \omega^{-1}(x)}{\mu} \right)^{-p'(x)} \, dx \leq 1 \right\} =$$

$$= \sup \left\{ \mu > 0 : \int_{\Omega} \left(\frac{|g(x)| \omega^{-1}(x)}{\mu} \right)^{p'(x)} \, dx \leq 1 \right\}.$$

Theorem 2. Let $0 < p \leq p(x) \leq q(x) \leq \bar{q} < 1$ and $r(x) = \frac{p(x)q(x)}{q(x) - p(x)}$. Suppose that ω_1 and ω_2 are weights functions defined in Ω and satisfying the condition

$$\left\| \frac{\omega_1}{\omega_2} \right\|_{r, \Omega} < \infty.$$

Then the inequality

$$\|f\|_{p, \omega_1, \Omega} \leq \left(A + B + \|\lambda \omega_2\|_{L_{\infty}(\Omega)} \right)^{1/2} \left\| \frac{\omega_1}{\omega_2} \right\|_{L_{r}(\Omega)} \|f\|_{q, \omega_2, \Omega},$$

holds for every $f \in L_{q(x)}(\Omega)$, where $\Omega_1 = \{x \in \Omega : p(x) < q(x)\}$, $\Omega_2 = \{x \in \Omega : p(x) = q(x)\}$ and $A = \sup_{x \in \Omega_1} \frac{p(x)}{q(x)}$, $B = \sup_{x \in \Omega_1} \frac{q(x) - p(x)}{q(x)}$ and

$$\left\| \frac{\omega_1}{\omega_2} \right\|_{L_{r}(\Omega_1)} = \left\| \frac{\omega_1}{\omega_2} \right\|_{L_{r}(\Omega)} + \left\| \frac{\omega_1}{\omega_2} \right\|_{L_{\infty}(\Omega_2)}.$$
Proof. We have

$$\|f\|_{p, \omega_1, \Omega_2} = \|f \, \omega_1 \omega_2 \|_{p, \omega_1, \Omega_2} \leq \|\omega_1 \|_{L_\infty(\Omega_2)} \|f \omega_2\|_{p, \Omega_2}$$

Thus

$$\frac{\omega_1}{\omega_2} \|f \chi_{\Omega_2} \|_{p, \omega_2, \Omega} \leq \frac{\omega_1}{\omega_2} \|\chi_{\Omega_2}\|_{L_\infty(\Omega)} \|f\|_{p, \omega_2, \Omega}.$$

Therefore

$$\left\| \frac{f}{\|f\|_{p, \omega_2, \Omega}} \right\|_{L_\infty(\Omega_2)} \leq \|\chi_{\Omega_2}\|_{L_\infty(\Omega)} \leq 1.$$

By virtue of property 1)

$$\int_{\Omega_2} \left(\frac{|f(x)| \omega_1(x)}{\|f\|_{L_\infty(\Omega_2)} \|f\|_{p, \omega_2, \Omega}} \right)^p(x) dx \leq \|\chi_{\Omega_2}\|_{L_\infty(\Omega)}^p = \|\chi_{\Omega_2}\|_{L_\infty(\Omega)}.$$

It is well known that the inequality (2.3) for $s > 1$ is Young’s inequality, i.e.

$$ab \leq \frac{a^s}{s} + \frac{b^{s'}}{s'},$$

where $s' = s - 1$. We take $s = s(x) = \frac{q(x)}{p(x)}$, $a = \left(\frac{|f(x)| \omega_2(x)}{\|f\|_{q, \omega_2, \Omega_1}} \right)^{p(x)}$ and $b = \left[\frac{\omega_1(x)}{\omega_2(x)} \|f\|_{q, \omega_2, \Omega_1} \right]^{p(x)}$.

Thus $s'(x) = \frac{q(x)}{q(x) - p(x)}$ and from inequality (2.5), we have

$$(\frac{|f(x)| \omega_1(x)}{\|f\|_{q, \omega_2, \Omega_1}})^{p(x)} \leq \frac{p(x)}{q(x)} \left(\frac{|f(x)| \omega_2(x)}{\|f\|_{q, \omega_2, \Omega_1}} \right)^{q(x)} + \frac{q(x) - p(x)}{q(x)} \left[\frac{\omega_1(x)}{\omega_2(x)} \|f\|_{q, \omega_2, \Omega_1} \right]^{r(x)}.$$

Obviously, $1 \leq A + B \leq 2$. Integrating by Ω_1, using the property 1), we get

$$\int_{\Omega_1} \left(\frac{|f(x)| \omega_1(x)}{\|f\|_{q, \omega_2, \Omega_1}} \right)^{p(x)} dx$$

$$\leq A \int_{\Omega_1} \left(\frac{|f(x)| \omega_2(x)}{\|f\|_{q, \omega_2, \Omega_1}} \right)^{q(x)} dx + B \int_{\Omega_1} \left[\frac{\omega_1(x)}{\omega_2(x)} \|f\|_{q, \omega_2, \Omega_1} \right]^{r(x)} dx \leq A + B. \quad (2.6)$$
From (2.4) and (2.6) implies that

\[
\int_{\Omega} \left(\frac{|f(x)| \omega_1(x)}{L_{r(\omega_2)}^{1/p}(\Omega) \| f \|_{q, \omega_2, \Omega}} \right)^{p(x)} \, dx = \int_{\Omega_1} \left(\frac{|f(x)| \omega_1(x)}{L_{r(\omega_2)}^{1/p}(\Omega) \| f \|_{q, \omega_2, \Omega}} \right)^{p(x)} \, dx
\]

\[
+ \int_{\Omega_2} \left(\frac{|f(x)| \omega_1(x)}{L_{r(\omega_2)}^{1/p}(\Omega) \| f \|_{q, \omega_2, \Omega}} \right)^{p(x)} \, dx \leq \int_{\Omega_1} \left(\frac{|f(x)| \omega_1(x)}{L_{r(\omega_2)}^{1/p}(\Omega_1) \| f \|_{q, \omega_2, \Omega_1}} \right)^{p(x)} \, dx
\]

From last inequality we have

\[
1 \geq \int_{\Omega} \left(\frac{|f(x)| \omega_1(x)}{\left(A + B + \| \chi_{\Omega_2} \|_{L_{\infty}(\Omega)} \right)^{1/p(x)} \| \omega_1 \|_{L_{r(\omega_2)}(\Omega_1) \| f \|_{q, \omega_2, \Omega}}} \right)^{p(x)} \, dx
\]

\[
\geq \int_{\Omega} \left(\frac{|f(x)| \omega_1(x)}{\left(A + B + \| \chi_{\Omega_2} \|_{L_{\infty}(\Omega)} \right)^{1/p(x)} \| \omega_1 \|_{L_{r(\omega_2)}(\Omega_1) \| f \|_{q, \omega_2, \Omega}}} \right)^{p(x)} \, dx.
\]

Thus

\[
\| f \|_{p, \omega_1, \Omega} \leq \left(A + B + \| \chi_{\Omega_2} \|_{L_{\infty}(\Omega)} \right)^{1/p} \| \omega_1 \|_{L_{r(\omega_2)}(\Omega_1) \| f \|_{q, \omega_2, \Omega}}.
\]

The theorem is proved.

Remark 3. Note that Theorem 2 in the case \(\omega_1 = \omega_2 = 1 \) and \(|\Omega| < \infty \) was proved in [15]. In the case \(1 \leq p \leq p(x) \leq q(x) \leq \bar{q} < \infty \) for general measures Theorem 2 was proved in [4].

The following theorems are known.

Theorem 3. [1] Let \(1 \leq p \leq p(x) \leq q(y) \leq \bar{q} < \infty \) for all \(x \in \Omega_1 \subset \mathbb{R}^n \) and \(y \in \Omega_2 \subset \mathbb{R}^m \). If \(p(x) \in C(\Omega_1) \), then the inequality

\[
\left\| \| f \|_{L_p(\Omega_1)} \right\|_{L_q(\Omega_2)} \leq C_{p,q} \left\| \| f \|_{L_p(\Omega_2)} \right\|_{L_p(\Omega_1)}
\]
is valid, where \(C_{p,q} = \left(\| \chi_{\Delta_1} \|_\infty + \| \chi_{\Delta_2} \|_\infty + \frac{p}{q} - \frac{p}{q} \right) \left(\| \chi_{\Delta_1} \|_\infty + \| \chi_{\Delta_2} \|_\infty \right), q = \text{ess inf}_{\Omega_2} q(x), \quad \mathcal{F} = \text{ess sup}_{\Omega_2} q(x), \quad \Delta_1 = \{ (x, y) \in \Omega_1 \times \Omega_2 : p(x) = q(y) \}, \quad \Delta_2 = \Omega_1 \times \Omega_2 \setminus \Delta_1 \) and \(C(\Omega_1) \) is the space of continuous functions in \(\Omega_1 \) and \(f : \Omega_1 \times \Omega_2 \to \mathbb{R} \) is any measurable function such that

\[
\| f \|_{q, \Omega_2} = \inf \left\{ \mu > 0 : \int_{\Omega_1} \left(\frac{\| f(x, \cdot) \|_{q(\cdot), \Omega_2}}{\mu} \right)^{p(x)} \, dx \leq 1 \right\} < \infty.
\]

The following lemmas are known.

Lemma 2. [6] Let \(0 < s < 1, -\infty < a < b \leq \infty \) and \(f \) is non-negative and decreasing function defined on \((a, b)\). Then

\[
\left(\int_a^b f(x) \, dx \right)^s \leq s \int_a^b f^s(x) (x - a)^{s-1} \, dx.
\]

Lemma 3. [6] Let \(0 < s < 1, -\infty \leq a < b < \infty \) and \(f \) is non-negative and increasing function defined on \((a, b)\). Then

\[
\left(\int_a^b f(x) \, dx \right)^s \leq s \int_a^b f^s(x) (b - x)^{s-1} \, dx.
\]

3. **On a topology of the spaces** \(L_{p(x), \omega} \) **for** \(0 < p(x) < 1 \)

Now we formulate some definitions which be characterized of the topology in general vector spaces.

Definition 2. A subset \(G \) of a vector space \(X \) is called convex if, for any \(x_1, x_2, \ldots, x_m \in G, \sum_{i=1}^m \alpha_i x_i \in G \), where \(\sum_{i=1}^m \alpha_i = 1 \) and \(\alpha_i \geq 0, i = 1, 2, \ldots, m \). In particular, the subset contains the average \(\frac{1}{m} \sum_{i=1}^m x_i \).

Definition 3. A topological vector space \(X \) is called locally convex if the convex open sets are a base for the topology, i.e., any open set \(U \subset X \) around a point, there is a convex open set \(C \) containing that point such \(C \subset X \).
We show that the weighted variable Lebesgue spaces $L_{p(x),\omega}(\Omega)$ isn’t locally convex.

Lemma 4. Let $0 < p \leq p(x) \leq q(x) \leq q < 1$ and ω be a weight function defined on Ω and $0 < \omega(x) < \infty$ a.e. $x \in \Omega$. Then weighted variable Lebesgue spaces $L_{p(x),\omega}(\Omega)$ isn’t locally convex.

Proof. It is obvious that $\rho(f, g) = \int_\Omega [[f(x) - g(x)]^\omega(x)]^{p(x)} \, dx$ is defined a metric on $L_{p(x),\omega}(\Omega)$. We consider any open ball neighborhoods 0:

$$U_R(0) = \{ f \in L_{p(x),\omega}(\Omega) : \rho(f, 0) = I_{p(x),\omega}(f) < R \}.$$

We will show that, for any $\varepsilon > 0$, the ε-ball neighborhoods zero contains functions whose average lies outside the ball of radius R.

Suppose $\varepsilon > 0$ and $m \geq 1$. We select m disjoint intervals A_1, A_2, \ldots, A_m in Ω, which need not cover of all Ω. We put $f_k = \left(\frac{\varepsilon}{\omega(A_k)} \right)^{1/p(x)} \chi_{A_k}$, where $\omega(A_k) = \int_{A_k} [\omega(x)]^{p(x)} \, dx$ and $k = 1, 2, \ldots, m$. Then $I_{p,\omega}(f_k) = \frac{\varepsilon}{\omega(A_k)} \int_{A_k} [\omega(x)]^{p(x)} \, dx = \varepsilon$, and so every f_k is at distance ε from 0. But, since the functions f_k are supported on disjoint sets, their average $g_m = \frac{1}{m} \sum_{i=1}^{m} f_i$ satisfies

$$I_{p,\omega}(g_m) = \int_\Omega g_m^{p(x)}(x) \, dx = \int_\Omega \frac{1}{mp(x)} \left(\sum_{i=1}^{m} f_i \right)^{p(x)} \, dx$$

$$\geq \frac{1}{mp(x)} \sum_{i=1}^{m} \int_\Omega (f_i(x) \omega(x))^{p(x)} \, dx = \frac{\varepsilon}{mp} \sum_{i=1}^{m} 1 = m^{1-p} \varepsilon.$$

Then $I_{p,\omega}(g_m) \to \infty$, for $m \to \infty$ (depending on ε). Therefore $\rho(g_m, 0) \to \infty$, for $m \to \infty$. Thus the distance between g_n and 0 can be made as large as desired.

The Lemma 4 is proved.

Theorem 4. Let $0 < p \leq p(x) \leq q(x) \leq q < 1$ and ω be a weight function defined on Ω and $0 < \omega(x) < \infty$ a.e. $x \in \Omega$. Then $[L_{p(x),\omega}(\Omega)]^* = \{0\}$, where \ast - be denoted dual space of $L_{p(x),\omega}(\Omega)$, i.e., is the space of continuous linear functionals from $L_{p(x),\omega}(\Omega)$ to R.

Proof. We argue by contradiction. Let $\varphi \neq 0$ and $\varphi \in [L_{p(x),\omega}(\Omega)]^*$. Let $\tilde{B}(0, t) = \Omega \cap B(0, t)$, where $0 < t < \infty$.
Suppose that \(\varphi \) is linear continuous functional defined in \(L_{p(x), \omega}(\Omega) \). Then we can find an \(f \in L_{p(x), \omega}(\Omega) \) such that \(\varphi(f) = 1 \). Now, the map \(t \mapsto f\chi_{\hat{B}(0,t)} \) is continuous, since \(|f|^{p(x)} \omega(x) \) is integrable:

\[
\int_{\hat{B}(0,t_2)} |f(x)|^{p(x)} \omega(x) \, dx - \int_{\hat{B}(0,t_1)} |f(x)|^{p(x)} \omega(x) \, dx = \int_{\Omega \cap B_{t_1,t_2}} |f(x)|^{p(x)} \omega(x) \, dx, \quad \text{for } t_1 < t_2,
\]

where \(B_{t_1,t_2} = \{ x : t_1 \leq |y| < t_2 \} \). Thus we may choose \(t \in (t_1, \infty) \) such that \(\varphi(f\chi_{\hat{B}(0,t)}) = \varphi(f\chi_{\Omega \setminus \hat{B}(0,t)}) = \frac{1}{2} \). Next, notice that \(g = f\chi_{\hat{B}(0,t)} \) and \(h = f\chi_{\Omega \setminus \hat{B}(0,t)} \) satisfy

\[
\int_{\Omega} |f(x)|^{p(x)} \omega(x) \, dx = \int_{\hat{B}(0,t)} |f(x)|^{p(x)} \omega(x) \, dx + \int_{\Omega \setminus \hat{B}(0,t)} |f(x)|^{p(x)} \omega(x) \, dx = I_{p, \omega}(g) + I_{p, \omega}(h).
\]

Thus, at least one of \(I_{p, \omega}(g) \) or \(I_{p, \omega}(h) \) is less than \(\frac{1}{2} I_{p, \omega}(f) \). Let’s say that \(I_{p, \omega}(g) \leq \frac{1}{2} I_{p, \omega}(f) \). Then, \(f_1 = 2g \) satisfies

\[
\varphi(f_1) = 1 \quad \text{and} \quad I_{p, \omega}(f_1) \leq 2^{p} I_{p, \omega}(g) \leq 2^{p-1} I_{p, \omega}(f).
\]

By induction, we can find a sequence \(\{f_n\}_{n \geq 1} \) in \(L_{p(x), \omega}(\Omega) \) with

\[
\varphi(f_n) = 1 \quad \text{and} \quad I_{p, \omega}(f_n) \leq 2^{p-1} I_{p, \omega}(f).
\]

It is obvious that \(\overline{p} - 1 < 0 \) and \(f_n \to 0 \) in \(L_{p(x), \omega}(\Omega) \) while \(T(f_n) = 1 \). Thus, \(T = 0 \) is the only continuous linear functional.

Theorem 5. Let \(0 < p \leq p(x) \leq q(x) \leq \overline{p} < 1 \) and \(\omega \) be a weight function defined on \(\Omega \) and \(0 < \omega(x) < \infty \) a.e. \(x \in \Omega \). Then the spaces \(L_{p(x), \omega}(\Omega) \) is complete.

Proof. Let \(\{f_n\}, n \in N \) be a sequence in \(L_{p(x), \omega}(\Omega) \) such that

\[
\|f_n - f_m\|_{p, \omega, \Omega} \to 0, \quad \text{for } n, m \to \infty.
\]

From properties 1) implies that

\[
\int_{\Omega} (|f_n - f_m| \omega(x))^{p(x)} \, dx \to 0, \quad \text{for } n, m \to \infty.
\]

We choose the subsequence \(\{n_k\} \) such that

\[
A = \sum_{k=1}^{\infty} \int_{\Omega} (|f_{n_{k+1}} - f_{n_k}| \omega(x))^{p(x)} \, dx < \infty.
\]
Then for any $\ell \in \mathbb{N}$

$$\int_{\Omega} \left[\sum_{k=1}^{\ell} \left(|f_{n_{k+1}} - f_{n_k}| \omega(x) \right) \right]^{p(x)} dx \leq \sum_{k=1}^{\ell} \int_{\Omega} \left(|f_{n_{k+1}} - f_{n_k}| \omega(x) \right)^{p(x)} dx \leq A.$$

If $\ell \to \infty$, then by monotone convergence theorem

$$\int_{\Omega} \left[\sum_{k=1}^{\infty} \left(|f_{n_{k+1}} - f_{n_k}| \omega(x) \right) \right]^{p(x)} dx \leq A.$$

Therefore,

$$\sum_{k=1}^{\infty} |f_{n_{k+1}} - f_{n_k}| \omega(x) < \infty, \text{ a.e. } x \in \Omega.$$

Hence, by completeness of \mathbb{R}, f_{n_k} converges a.e. $x \in \Omega$. We define a measurable function f by

$$f(x) = \begin{cases} \lim_{k \to \infty} f_{n_k}, & \text{for a.e. } x \in \Omega \\ 0, & \text{otherwise.} \end{cases}$$

Since $\int_{\Omega} (|f_n - f_m| \omega(x))^{p(x)} dx \to 0$, for $n, m \to \infty$, then $|f_n - f_m|^{p(x)} \to 0$, $n, m \to \infty$. Given $\varepsilon > 0$ we can find N_ε so that $n \geq N_\varepsilon$ implies

$$\left| \left\{ x : |f_n(x) - f_m(x)|^{p(x)} \right\} \right| = \int_{\left\{ x : |f_n(x) - f_m(x)|^{p(x)} \right\}} dx \leq \varepsilon, \text{ for } m \geq n.$$

In particular, $\left| \left\{ x : |f_n(x) - f_{n_k}(x)|^{p(x)} \right\} \right| \leq \varepsilon$, for $k \to \infty$. Hence, by Fatou’s lemma for $n \geq N_\varepsilon$, we have

$$\left| \left\{ x : |f_n(x) - f(x)|^{p(x)} \right\} \right| \leq \lim_{k \to \infty} \inf \left\{ x : |f_n(x) - f_{n_k}(x)|^{p(x)} \right\} \leq \varepsilon.$$

Hence $f \in L_{p(x), \omega}(\Omega)$ and $\int_{\Omega} |(f_n - f) \omega(x)|^{p(x)} dx \to 0$, for $n \to \infty$.

This completes the proof of Theorem 5.

Remark 4. Note that from property 5) and Theorem 5 implies that the spaces $L_{p(x), \omega}(\Omega)$ is ideal.
4. Main results.

We consider the classical Hardy operator and its dual operator defined as

\[H f(x) = \frac{1}{x} \int_{0}^{x} f(t) \, dt, \quad H^* f(x) = \frac{1}{x} \int_{x}^{\infty} f(t) \, dt \]

where \(f \) is nonnegative function on \((0, \infty)\).

Lemma 5. Let \(0 < p \leq p_n \leq \bar{p} \leq 1, \ p_n \geq p_{n+1} \) and \(\{x_n\}_{n \geq 1} \) be any non-negative sequence of real numbers such that \(x_n^{p_n} \geq x_{n+1}^{p_{n+1}} \) for any \(n \in \mathbb{N} \).

Then

\[
\left(\sum_{n=1}^{\infty} \frac{x_n}{x_n^{p_n}} \right)^{\frac{p}{p_n}} \leq \sum_{n=1}^{\infty} x_n^{p_n} [n^{p_n} - (n-1)^{p_n}] \leq \sum_{n=1}^{\infty} x_n^{p_n}. \quad (4.1)
\]

Proof. First we proved that

\[
\left(\sum_{n=1}^{m} \frac{x_n}{x_n^{p_n}} \right)^{\frac{p_n}{p_n}} \leq \sum_{n=1}^{m} x_n^{p_n} [n^{p_n} - (n-1)^{p_n}] \quad (4.2)
\]

We consider the function \(h(t) = \frac{(1 + t)^q - 1}{t^q} \), where \(t \geq 0 \) and \(0 < q < 1 \). It is obvious that

\[
h'(t) = \frac{q [1 - (1 + t)^{q-1}]}{t^{q+1}} \geq 0 \text{ for all } t \geq 0.
\]

In particular, the function \(h(t) \) is monotone increasing in the segment \([0, B]\). Therefore \(h(t) \leq h(B) \), i.e.,

\[
(1 + t)^q \leq 1 + t^q \left(B^{-1} + 1 \right)^q - B^{-q} \text{ for any } 0 \leq t \leq B. \quad (4.3)
\]

Since \(x_1^{p_1} \geq x_2^{p_2} \), then \(x_2 \leq x_1^{p_1} \). Therefore taking \(t = \frac{x_2^{p_2}}{x_1^{p_1}}, \ B = 1 \) and \(q = p_2 \) in (4.3), we have

\[
\left(\frac{x_1^{p_1}}{x_1^{p_1}} + x_2 \right)^{p_2} \leq x_1^{p_1} + x_2^{p_2} (2^{p_2} - 1). \quad (4.4)
\]

It is obvious that the inequality (4.4) be inequality (4.2) for \(m = 2 \). By the condition of Lemma 2 \(p_2 \geq p_3 \) and so \(2^{p_3} \leq 2^{p_2} \). Since \(x_3 \leq \frac{x_1^{p_1} + x_2^{p_2}}{2} \) from (4.3) and (4.4) for \(t = \frac{x_3}{x_1^{p_1} + x_2^{p_2}}, \ B = \frac{1}{2} \) and \(q = p_3 \), we get

\[
\left(\frac{x_1^{p_1} + x_2^{p_2}}{x_1^{p_1} + x_2^{p_2} + x_3} \right)^{p_3} \leq \left(\frac{x_1^{p_1} + x_2^{p_2}}{x_1^{p_1} + x_2^{p_2}} \right)^{p_3} + x_3^{p_3} (3^{p_3} - 2^{p_3})
\]

\[
\leq x_1^{p_1} + x_2^{p_2} (2^{p_2} - 1) + x_3^{p_3} (3^{p_3} - 2^{p_3}) \leq x_1^{p_1} + x_2^{p_2} (2^{p_2} - 1) + x_3^{p_3} (3^{p_3} - 2^{p_3}).
\]
The last inequality is (4.1) for \(m = 3 \). Clearly \(x_1^{m+1} + x_2^{m+1} + \ldots + x_m^{m+1} + x_{m+1} \geq (m + 1)x_{m+1} \). Hence \(x_{m+1} \leq \frac{x_1^{m+1} + x_2^{m+1} + \ldots + x_m^{m+1}}{m} \). Therefore taking

\[
t = \frac{x_{m+1}}{\frac{a_1}{x_{m+1}^{m+1}} + \frac{a_2}{x_{m+1}^{m+1}} + \ldots + \frac{a_m}{x_{m+1}^{m+1}}}, \quad B = \frac{1}{m}
\]

in (4.3), we have

\[
\left(\sum_{n=1}^{m+1} \frac{p_n}{x_n^{m+1}} \right)^{p_{m+1}} = \left(\sum_{n=1}^{m} \frac{p_n}{x_n^{m+1}} + x_{m+1} \right)^{p_{m+1}} \leq \left(\sum_{n=1}^{m} \frac{p_n}{x_n^{m+1}} \right)^{p_{m+1}} + x_{m+1}^p (m+1)^{p_{m+1} - m_{m+1}} \leq \sum_{n=1}^{m} x_n^{p_n} [n^{p_n} - (n-1)^{p_n}] + x_{m+1}^p [(m+1)^{p_{m+1}} - m_{m+1}]
\]

By the induction principle the inequality (4.2) is proved for any \(m \in \mathbb{N} \).

Since the sequence \(\{p_n\}_{n \geq 1} \) is decreasing, then \(\lim_{n \to \infty} p_n = \overline{p} \). Therefore passing to the limit at \(m \to \infty \) in (4.2) we have the left part of inequality (4.1). By using the inequality \(n^{p_n} \leq (n-1)^{p_n} + 1 \), we have the right part of inequality (4.1).

The Lemma 2 is proved.

Example 4.1. Let \(x_n = \begin{cases} n^{-\frac{p}{2}}, & \text{for } n = k^2 \\ 0, & \text{for } n \neq k^2 \end{cases} \), and \(\overline{p} < \frac{p + 1}{2} \).

It is obvious that the sequence \(\{x_n^{p_n}\}_{n \geq 1} \) isn’t monotone and \(\sum_{n=1}^{\infty} x_n^{p_n} = \sum_{k=1}^{\infty} \frac{1}{k} = +\infty \).

On the other hand \(n^{p_n} - (n-1)^{p_n} \sim \overline{p}_n n^{p_n-1} \sim n^{p_n-1} \) for \(n \to \infty \). Therefore

\[
\sum_{n=1}^{\infty} x_n^{p_n} [n^{p_n} - (n-1)^{p_n}] \sim \sum_{n=1}^{\infty} x_n^{p_n} n^{p_n-1} = \sum_{k=1}^{\infty} k^{-\frac{p}{p+2}} k_{p-2} \leq \sum_{k=1}^{\infty} k^{2\overline{p}-\overline{p}-2}.
\]

It is well known that the series \(\sum_{k=1}^{\infty} k^{2\overline{p}-\overline{p}-2} \) is converges if and only if \(\overline{p} < \frac{p + 1}{2} \). Thus for \(\overline{p} < \frac{p + 1}{2} \) the inequality (3.1) isn’t holds.

The example show that the condition of monotonicity of sequence \(\{x_n^{p_n}\}_{n \geq 1} \) is essential.
Remark 5. Note that Lemma 5 in the case \(p_1 = p_2 = \ldots = p_n = \ldots = p = \text{const} \) was proved in [5].

Theorem 6. Let \(x \in (0, \infty), \ 0 < p \leq p(x) \leq q(x) \leq \bar{q} < 1, \ r(x) = \frac{pp(x)}{p(x) - p} \) and \(f(x) \) are non-negative and decreasing function defined on \((0, \infty) \). Suppose \(\omega_1 \) and \(\omega_2 \) are weight functions defined on \((0, \infty) \).

Then for any \(f \in L_{p(x), \omega_1}(0, \infty) \) the inequality
\[
\| Hf \|_{L_{p(\cdot), \omega_2}(0, \infty)} \leq p^\frac{1}{p} c_{p,q} d_p \left\| \frac{t^{1/p'}}{\omega_2(t^{1/p})} \left\| \frac{\omega_1}{L_{q(t^{1/p})}} \right\|_{L_{\nu}(0, \infty)} \right\| \| f \|_{L_{p(\cdot), \omega_1}(0, \infty)},
\]
where \(c_{p,q} = \left(\| \chi_{\Delta_1} \|_{L_{\nu}(0, \infty)} + \| \chi_{\Delta_2} \|_{L_{\nu}(0, \infty)} + p \left(\frac{1}{q} - \frac{1}{\bar{q}} \right) \right) \left(\| \chi s_1 \|_{L_{\nu}(0, \infty)} + \| \chi s_2 \|_{L_{\nu}(0, \infty)} \right), S_1 = \{ x \in (0, \infty) : p(x) = p \}, S_2 = (0, \infty) \setminus S_1, \) and \(d_p = \left(1 + \frac{p - p}{p} + \| \chi s_1 \|_{L_{\nu}(0, \infty)} \right)^{1/p} \)

Proof. Taking \(a = 0, b = x \) and \(s = p \) and apply Lemma 2 and property 5), we have
\[
\| Hf \|_{L_{p(\cdot), \omega_2}(0, \infty)} = \| \omega_2 Hf \|_{L_{q(\cdot)}(0, \infty)} = \left\| \frac{\omega_2}{x} \int_0^x f(t) dt \right\|_{L_{q(\cdot)}(0, \infty)}
\]
\[
\leq p^\frac{1}{p} \left\| \frac{\omega_2(x)}{x} \left(\int_0^x ft^{p-1} dt \right) \right\|_{L_{q(\cdot)}(0, \infty)}^{1/p}
\]
Now applied Theorem 3, we get
\[
\left\| \frac{\omega_2(x)}{x} \left(\int_0^x ft^{p-1} dt \right) \right\|_{L_{q(\cdot)}(0, \infty)}^{1/p}
\]
\[
= \left\| \int_0^\infty f^{\nu}(t) \chi_{(0, x)}(t) \left[\frac{\omega_2(x)}{x} \right]^\frac{p}{2} t^{p-1} dt \right\|_{L_{q(\cdot)}(0, \infty)}^{1/p}
\]
\[
= \left\| \int_0^\infty f^{\nu}(t) \chi_{(0, x)}(t) \left[\frac{\omega_2(x)}{x} \right]^\frac{p}{2} t^{p-1} dt \right\|_{L_{q\nu(\cdot)}(0, \infty)}^{1/p}
\]
Finally, apply Theorem 2, we get

\[
\leq c_{p,q} \left(\int_0^\infty \left\| f(t) \, \chi_{(0,x)}(t) \, \left[\frac{\omega_2(x)}{x} \right]^{p} \right\|_{L_{q}\,(0,\infty)} \, dt \right)^{1/p}
\]

\[
= c_{p,q} \left(\int_0^\infty f(t) \, t^{p-1} \left\| \chi_{(0,x)}(t) \, \left[\frac{\omega_2(x)}{x} \right]^{p} \right\|_{L_{q}\,(0,\infty)} \, dt \right)^{1/p}
\]

\[
= c_{p,q} \left(\int_0^\infty f(t) \, t^{p-1} \left\| t \, \frac{\omega_2(x)}{x} \right\|_{L_{q}\,(t,\infty)} \, dt \right)^{1/p} = c_{p,q} \left\| f \, t^{1/p'} \left\| t \, \frac{\omega_2(x)}{x} \right\|_{L_{q}\,(t,\infty)} \right\|_{L_{q}\,(0,\infty)}.
\]

Thus

\[
\| Hf \|_{L_{q}\,(q(x),\infty)} \leq \frac{1}{p} c_{p,q} \left\| f \, t^{1/p'} \left\| t \, \frac{\omega_2(x)}{x} \right\|_{L_{q}\,(t,\infty)} \right\|_{L_{q}\,(0,\infty)} \| f \|_{L_{p}(\omega_1(0,\infty))}.
\]

Theorem 6 is proved.

Theorem 7. Let \(0 < p \leq p(x) \leq q(x) \leq q < 1\), \(r(x) = \frac{p \, p(x)}{p(x) - p}\) and \(f(x)\) are non-negative and increasing function defined on \((0, \infty)\). Suppose \(\omega_1\) and \(\omega_2\) are weight functions defined on \((0, \infty)\).

Then for any \(f \in L_{p}(\omega_1(0, \infty))\) the inequality

\[
\| Hf \|_{L_{q}\,(\omega_2(0,\infty))} \leq \frac{1}{p} \left\| f \, t^{1/p'} \left\| t \, \frac{\omega_2(x)}{x} \right\|_{L_{q}\,(t,\infty)} \right\|_{L_{q}\,(0,\infty)} \| f \|_{L_{p}(\omega_1(0,\infty))},
\]

where \(c_{p,q}\) and \(d_p\) the constants in Theorem 6.

Proof. Taking \(a = 0\), \(b = x\) and \(s = p\) and apply Lemma 3 and property 5), we have

\[
\| Hf \|_{L_{q}\,(\omega_2(0,\infty))} = \| \omega_2 Hf \|_{L_{q}\,(0,\infty)} = \left\| \frac{\omega_2}{x} \int_0^x f(t) \, dt \right\|_{L_{q}\,(0,\infty)}.
\]
Now applied Theorem 3, we get

\[\leq \left(p \right)^{1/p} \left\| \frac{\omega_2(x)}{x} \left(\int_0^x f(t) \left(x-t \right)^{\frac{1}{p'}} dt \right) \right\|_{L_q(\cdot, \infty)}^{1/p}. \]

Finally, apply Theorem 2, we get

\[\leq \left(p \right)^{1/p} \left\| \frac{\omega_2(x)}{x} \left(\int_0^x f(t) \left(x-t \right)^{\frac{1}{p'}} dt \right) \right\|_{L_q(\cdot, \infty)}^{1/p}. \]
Thus
\[\|Hf\|_{L_q(\cdot, \omega_2(0, \infty))} \leq \frac{1}{p^2} c_{p,q} d_p \left\| \left\| \frac{(x-t)^{\frac{1}{p'}} \omega_2}{x} \right\|_{L_q(t, \infty)} \frac{1}{\omega_1} \right\|_{L_{r'}(0, \infty)} \|f\|_{L_p(\cdot, \omega_1(0, \infty))}. \]

The Theorem 7 is proved.

For the dual operator H^* a theorem below is proved analogously.

Theorem 8. Let $x \in (0, \infty)$, $0 < p \leq p(x) \leq q(x) \leq \overline{q} < 1$, $r(x) = \frac{pp(x)}{p(x) - p}$ and $f(x)$ are non-negative and decreasing function defined on $(0, \infty)$. Suppose ω_1 and ω_2 are weight functions defined on $(0, \infty)$.

Then for any $f \in L_{p(x), \omega_1}(0, \infty)$ the inequality
\[\|H^* f\|_{L_q(\cdot, \omega_2(0, \infty))} \leq \frac{1}{p^2} c_{p,q} d_p \left\| \left\| \frac{(t-x)^{\frac{1}{p'}} \omega_2}{x} \right\|_{L_q(x, \infty)} \frac{1}{\omega_1} \right\|_{L_{r'}(0, \infty)} \|f\|_{L_{p}(\cdot, \omega_1(0, \infty))}, \]

where $c_{p,q}$ and d_p the constants in Theorem 6.

Remark 6. Note that Theorem 6, Theorem 7 and Theorem 8 in the case $p(x) = q(x) = p = \text{const}$ and $\omega_1(x) = \omega_2(x) = x^\alpha$ was proved in [6] (see also [5]). In the case $1 \leq p(x) \leq q(x) \leq \overline{q} < \infty$ Hardy inequality is very much studied (see [2], [3] and etc.). In the constant exponent case $1 \leq p \leq q \leq \overline{q} \leq \infty$ for detailed information we refer to [10]. Note that similar problem for Hardy maximal function was investigated in [9] and [11].

Example 4.2. Let $x \in (0, \infty)$, $0 < p(x) = p = \text{const} < 1$, $q(x) = \begin{cases} \frac{1}{4}, & \text{for } 0 < x < 1 \\ \frac{1}{2}, & \text{for } x \geq 1, \end{cases}$ $0 < p \leq q(x)$ and $p' = \frac{p}{p - 1}$. Suppose $\omega_1(x) = x^\alpha$, $\omega_2(x) = x^{\beta+1}$, $\beta < -2$, $\beta \neq -4$ and $\beta + 2 + \frac{1}{p'} < \alpha < \min \left\{ \frac{1}{p'}, \beta + 4 + \frac{1}{p'} \right\}$, where $r(x) = \infty$.

Then the pair (ω_1, ω_2) satisfies the condition of Theorem 6.

Example 4.3. Let $x \in (0, \infty)$, $0 < p \leq p(x) \leq q(x) \leq \overline{q} < 1$ and $p' = \frac{p}{p - 1}$. Suppose $\omega_1(x) = x^{1/p'} \left\| \frac{\omega_2}{x} \right\|_{L_q(x, \infty)}$. Then condition $\|1\|_{L_{r'}(0, \infty)} < \infty$ is guaranteed the satisfy of condition of Theorem 6. Note that by Definition 1 the condition $\|1\|_{L_{r'}(0, \infty)} < \infty$ is equivalent to
\[\int_0^\infty \delta^{\frac{p(p(x)}{p-1}} dx < \infty, \]
where \(\delta \in (0, 1) \). Then the pair \((\omega_1, \omega_2)\) satisfies the condition of Theorem 6.

Acknowledgement. This work was supported by the Science Development Foundation under the President of the Republic of Azerbaijan EIF-2010-1(1)-40/06-1.

References

[1] R.A.Bandaliev, On an inequality in Lebesgue space with mixed norm and with variable summability exponent, Mat. Zametki, 3 (84)(2008), 323-333.(In Russian). English translation: Math. Notes, 3(84)(2008), 303-313 (2008).

[2] R.A.Bandaliev, The boundedness of certain sublinear operator in the weighted variable Lebesgue spaces, Czechoslovak Math. J. 60(2), 327-337 (2010).

[3] R.A.Bandaliev, The boundedness of multidimensional Hardy operator in the weighted variable Lebesgue spaces, Lithuanian Math. J. 50(2010), no.3, 249-259.

[4] R.A.Bandaliev, Z.V.Safarov, Criteria of two-weighted inequalities for multidimensional Hardy type operators in weighted Musielak-Orlicz spaces and some applications, Mathematische Nachrichten, 2012 (accepted).

[5] R.A.Bandaliev, Embedding between variable exponent Lebesgue spaces with measures, Azerbaijan Journal of Math., 2(1)(2012), 111-117.

[6] R.A.Bandaliev and K. K. Omarova, Two-weight norm inequalities for certain singular integrals, Taiwanese Journal of Math., 2 (2012), 113-132.

[7] J.Bergh, V.I.Burenkov, L.-E. Persson, On some sharp reversed Hölder and Hardy-type inequalities, Math. Nachr., 169 (1994), 19-29.

[8] V.I. Burenkov, On the exact constant in the Hardy inequality with \(0 < p < 1 \) for monotone functions, Trudy Matem. Inst. Steklov. 194 (1992), 58-62 (in Russian). English transl. in Proc. Steklov Inst. Math., 194, no. 4 (1993), 59-63.

[9] L.Diening, P.Harjulehto, P.Hästö, and M. Růžička, Lebesgue and Sobolev spaces with variable exponents, Springer Lecture Notes, v.2017, Springer-Verlag, Berlin, 2011.

[10] O.Kováčik, J. Rákosnk, On spaces \(L^{p(x)} \) and \(W^{k,p(x)} \), Czechoslovak Math. J. (41)116 (1991) 592-618.

[11] A.K.Lerner, On some questions related to the maximal operator on variable \(L^p \) spaces, Trans. Amer. Math. Soc., 362(2010), no. 8, 4229-4242.

[12] V.G.Maz’ya, Sobolev spaces, (Springer-Verlag, Berlin, 1985).

[13] B.Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc., 166(1972).

[14] J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Math.1034. Springer-Verlag, Berlin-Heidelberg-New York, 1983.
[15] W. Orlicz, Über konjugierte exponentenfolgen, Studia Math. 3 (1931) 200-212.

[16] K.R. Rajagopal, M. Růžička, Mathematical modeling of electrorheological materials, Cont. Mech. and Termodyn., 13 (2001) 59-78.

[17] S.G. Samko. "Differentiation and integration of variable order and the spaces $L^{p(x)}$" Proc. Inter. Conf. "Operator theory for complex and hypercomplex analysis" Mexico, 1994, Contemp. Math., 212 (1998), 203-219.

[18] I.I. Sharapudinov, On a topology of the space $L^{p(t)}([0,1])$, Matem. Zametki, 26, 613-632 (1979) (in Russian): English translation: Math. Notes, 26, 796-806 (1979).

[19] Q.H. Zhang, Existence and asymptotic behavior of positive solutions for variable exponent elliptic systems, Nonlinear Analysis TMA, (1) 70 (2009) 305-316.

[20] V.V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Izv. Akad. Nauk SSSR. 50 (1986) 675-710. (In Russian). English transl.: Math. USSR, Izv., 29 (1987) 33-66.

DEPARTMENT OF MATHEMATICAL ANALYSIS, INSTITUTE OF MATHEMATICS AND MECHANICS OF NATIONAL ACADEMY OF SCIENCES OF AZERBAIJAN, Baku, Az 1141, B.Vahabzade str., 9

E-mail address: bandaliyev.rovshan@math.ab.az