Towards Multidimensional Verification: Where Functional Meets Non-Functional

Maksim Jenihhin, XinHui Lai, Tara Ghasempouri, Jaan Raik

Computer Systems, Tallinn University of Technology, Estonia, maksim@ati.ttu.ee

Abstract— Trends in advanced electronic systems’ design have a notable impact on design verification technologies. The recent paradigms of Internet-of-Things (IoT) and Cyber-Physical Systems (CPS) assume devices immersed in physical environments, significantly constrained in resources and expected to provide levels of security, privacy, reliability, performance and low power features. In recent years, numerous extra-functional aspects of electronic systems were brought to the front and imply verification of hardware design models in multidimensional space along with the functional concerns of the target system. However, different from the software domain such a holistic approach remains underdeveloped. The contributions of this paper are a taxonomy for multidimensional hardware verification aspects, a state-of-the-art survey of related research works and trends towards the multidimensional verification concept. The concept is motivated by an example for the functional and power verification dimensions.

Keywords— extra-functional verification; functional verification; survey; taxonomy; security verification; reliability verification; power verification; timing verification.

I. INTRODUCTION

Today, several prominent trends in electronic systems design can be observed. The Internet-of-Things (IoT) and Cyber-Physical Systems (CPS) devices are immersed in physical environments, significantly constrained in resources and expected to provide levels of security and privacy [1], ultra-low power feature or high performance. Very complex electronic systems, including those built from the non-certified for reliability Commercial-Off-The-Shelf (COTS) components, are used for safety- and business-critical applications. These trends along with gigascale integration at nanoscale technology nodes and multi-/many-processor based systems-on-chip architectures have ultimately brought to the front various extra-functional aspects of the electronic systems’ design at the chip design level. The latter include security, reliability, timing, power consumption etc. There exist numerous threats causing an electronic system to violate its specifications. In the hardware part, these are design errors (bugs), manufacturing defects and variations, reliability issues such as soft errors and aging faults or malicious faults, such as security attacks. Eventually, there can also be bugs in the software part.

Hardware design model verification detects design errors affecting functional and extra-functional (also interchangeably referred as non-functional) aspects of the target electronic system. Strictly, the sole task of extra-functional verification of a design model is limited to detecting deviations that cause violation of extra-functional requirements. In practice, it often intersects with the task of functional verification [2], [14], thus establishing a multidimensional space for verification. A “grey area” in distinction between functional and extra-functional requirements may appear when an extra-functional requirement is a part of design’s main functionality. E.g., security requirements for some HW design can be split into extra-functional and functional sets if the design’s purpose and specified functionality is a system’s security aspect, e.g. it is a secure cryptoprocessor.

In this paper, we present an overview for the recent trends in extra-functional and functional verification of HW designs and discuss the challenges towards the holistic multidimensional verification. The rest of this paper is organized as follows: Section II provides a taxonomy of multidimensional verification aspects, Sections III proposes a state-of-the-art survey with the key trends in verification for the main extra-functional aspects, Section IV discusses the multidimensional verification paradigm and presents a motivational example for the functional and power verification dimensions, Section V draws the conclusions.

II. TAXONOMY OF MULTIDIMENSIONAL VERIFICATION ASPECTS

In practice, relevance of each functional and extra-functional aspect strongly depends on design type, target system application and specific user requirements. Following the design paradigm shift, a number of extra-functional aspects have recently received significant academic research attention e.g., security. At the same time, there already exist established industrial practices for measuring and maintaining separate design qualities, e.g. the RAS (Reliability-Availability-Serviceability) aspect introduced by IBM [6]. While in the software engineering discipline, the taxonomy of extra-functional requirements has a comprehensive coverage by the literature [7]-[12], it cannot be directly re-used for the HW verification discipline because of significant difference in the design models.

Fig 1 introduces a taxonomy of multidimensional verification aspects derived from the performed literature review. The conventional functional concerns are safety and liveness properties, combinational and temporal dependencies along with data types, however this list can be extended for particular designs. The extra-functional aspects can be strictly categorized into three groups: system qualities, system resource constraints and timing aspects (in bold). Despite the security and reliability aspects belong to the first group and the power aspect belongs to the second group, these three aspects have a special attention in the literature and in practical applications. Several extra-functional aspects such as manufacturing defects testability, fault-tolerance and other in-field fault group aspects do not have a direct correspondence in the software engineering discipline because of the distinct nature of faults. Other aspects such as real-time constraints are very similar between the two domains.
III. TRENDS IN EXTRA-FUNCTIONAL VERIFICATION

Table I presents a survey of recent publications targeting extra-functional and multidimensional verification. Here, along with the specific extra-functional aspects details about the design model and verification approach are outlined, i.e., the design under verification type, verification engine, the level of abstraction, design representation language, compute model and the tool operated in the research. For instance, the row for paper [40] shows that the authors performed model checking to reduce the state space of a Timed Petri Net of a real-time scheduler. Looking at this row, real-time constraints is the type of timing property, a scheduler of an embedded system is the design under verification, the abstraction level is the system level and SMT model checker Promela [64], Timed Petri Net and SPIN [63] are the verification engine, the design representation language, the compute model and the tool, respectively. We pointed out such key points for all the recent up to 10-year old studies in this area.

A. Security aspects

Security is difficult to quantify as today there are no commonly agreed metrics for this purpose [1]. The key targeted security services [16] are commonly represented as non-functional aspects for verification are confidentiality, integrity and availability. They are tightly linked to the type of attack and the attacker model assumed for each case, i.e. black-, grey- or white-box.

Today, for complex HW designs (e.g. IEEE1687 Reconfigurable Scan Networks or NoCs) the specific on-chip security features in the design model to be verified also tend to be very sophisticated. These include on-chip mechanisms for attack prevention (firewalls, user management, communications isolation), attack protection (traffic scrambling, encryption) and attack resilience (checkers for side-channel attacks, covert channel detection, attack recovery mechanisms).

Many of the existing works in security verification (e.g. [21], [23], [25], [28], [29]) are focusing on the integrity attribute, mostly addressing HW trojan detection. There also exist some works that additionally target (19), [20], [22], [24], [30]) or are exclusively considering ([26], [27]) the confidentiality aspect.

Several solutions in security verification are restricted to target specific architectures or types of modules such as Reconfigurable Scan Networks (RSNs) [22], [26] or macro-asynchronous micro-synchronous pipelines [29].

There is virtually no work that considers security in combination with other extra-functional aspects. Some solutions in the security verification of NoCs indirectly address reliability due to the fact that they implement hardware monitors that allow avoiding both, attacks and in-field faults [20], [21]. An approach that is designed for modeling a multitude of extra-functional aspects is the model-based engineering example of Architecture Analysis and Design Language (AADL) [19]. While, in principle, AADL allows representing several extra-functional aspects (called quality attributes in AADL), [19] only concentrates on analysis of confidentiality as a part of verifying security in a system with multiple levels of security. The authors in [70] have target a general multi-view HW modeling and verification approach taking into consideration the security view.

B. Reliability aspects

The key drivers for the reliability aspect in today’s designs are the recent industrial standards in different application domains such as IEC61508, ISO26262, IEC61511, IEC62279, IEC62061, RTCA/DO-254, IEC60601, etc. These ultimately imply extra-functional features such as safety mechanisms and redundancy to ensure levels of fault coverage, e.g. ASIL (Automotive Safety Integrity Level). Here, the key threats are transient faults in the field such as radiation-induced single event effects or soft errors [15] and intermittent to permanent faults by process or time-dependent variations, i.e. aging, e.g. induced by Bias Temperature Instability (BTI) [13]. New applications, demand the systems to be fail-safe or fail-operational, by functionally redundant design parts enabling fault-tolerance, -resilience and -robustness. A promising initiative in reliability specification and modelling is the Reliability Information Interchange Format (RIIF) [30].
TABLE I. Survey of the state-of-the-art solutions for extra-functional and multidimensional verification

Paper	Year	Extra-functional aspect	Security	Reliability	Timing	Power	Other system quality	Other constraints resource	Design under verification	Verification engine	Abstract level	Design representation language	Compute model	Tool	
[19]	2009	confidentiality, integrity	•	-	-	-	-	-	HW/SW system	formal, correct-by-construction	AADL	-	OSATE		
[20]	2016	integrity, confidentiality	o	•	-	-	-	-	NoC	simulation, HW monitors	RTL	VHDL/Verilog	-		
[21]	2014	integrity, confidentiality	o	•	-	-	-	-	NoC	formal	GL	VHDL/Verilog	-	SurfNoC	
[22]	2017	integrity, confidentiality	-	-	-	-	-	-	RSN	model check	RTL	ICL	-	CIP solver	
[23]	2015	integrity, confidentiality	-	-	-	-	-	-	NoC	simulation	RTL	VHDL/Verilog	-	-	
[24]	2016	integrity, confidentiality	-	-	-	-	-	-	ALU	equivalence check	GL	-	-	QBF-SAT	
[25]	2017	integrity, confidentiality	-	-	-	-	-	-	SoC	model check	RTL	VHDL/Verilog	-	-	
[26]	2016	confidentiality	-	-	-	-	-	-	RSN	model check	RTL	ICL	-	CIP Interpolation	
[27]	2017	confidentiality	-	-	-	-	-	-	industrial control systems	formal	SL	AADL	-	-	
[28]	2015	confidentiality	-	-	-	-	-	-	RTL	model check	RTL	VHDL	-	mini-SAT	
[29]	2015	integrity, confidentiality	-	-	-	-	-	-	ISA, pipeline	model check	RTL	CTL, LT1	-	MiniX-S MV	
[30]	2013	integrity, confidentiality	-	-	-	-	-	-	IPs and SoCs	simulation	RTL, GL	Verilog	-	JasperSoft SPV	
[31]	2017	-	•	-	-	-	-	-	CPS	model check	SL	AADL	-	Timed Automata	
[32]	2015	-	SER	-	-	-	-	-	IP cores	formal	GL	UPPAAL	Coq		
[33]	2015	-	-	-	-	-	-	-	processor	fault inject.	GL	Verilog	-	IBM in-house	
[36]	2016	-	-	-	-	-	-	-	SoC	fault inject.	RTL	-	-	-	
[37]	2018	-	latency	o	-	-	-	-	NoC	fault inject.	RTL	VHDL	-	-	
[40]	2010	-	RT	-	-	-	-	-	Scheduler of a RT emb. system	model check	-	Promela	-	SPIN	
[41]	2010	-	latency	-	-	-	-	-	RT emb. system	model check	SL	AADL	Coq		
[42]	2017	-	performance	o	-	-	-	-	NoC, HW/SW architectures	simulation	SL	Uppaal	-	-	
[43][44]	2016	-	o (LTR)	-	-	-	-	-	Smart Systems	simulation	SL	IP-XACT, SystemC-AMS	-	-	
[46]	2012	-	•	-	-	-	-	-	IPS	simulation	SL	SystemC	-	-	
[47]	2016	-	-	-	-	-	-	-	DSP cores	simulation	SL, GL, RTL	SystemC	-	Powersim	
[50]	2017	-	performance	o	-	-	-	-	automotive CPS	model check	SL	C, EAST-ADL	-	-	
[51]	2016	-	-	-	-	-	-	-	IPS	simulation	RTL	VHDL/Verilog	SystemC	-	UPPAAL Adv
[52]	2012	-	-	-	-	-	-	-	distributed emb. system	simulation	SL	SystemC	-	-	
[53]	2016	-	performance	o	-	-	-	-	HW/SW platform	simulation, formal (analytical)	RTL, TLM, SL	UML, C++, SystemC-AMS, VHDL	HIF	HIFSuite	
[54]	2014	-	-	-	-	-	-	-	connectivity	SoC	symbolic model checking	-	Incisive Formal Verifier	-	
[55]	2008	-	-	-	o (latencies)	-	-	-	connectivity	SoC	property checking	RTL	-	JasperSoft CV	
[56]	2016	-	-	-	-	-	-	-	memory consistency	processor	simulation	ISA	-	McVerSi	
[60]	2011	-	-	-	-	-	-	-	thermal	SoC	simulation	SL, GL, RTL	SystemC	-	PowerKit
[61]	2015	-	-	-	-	-	-	-	-	-	SystemC	STL	-	Power Kernel Tool	
[62]	2011	-	-	-	-	-	-	-	-	-	Socs	simulation	SL	-	Powersim
[67]	2018	-	•	-	-	-	-	-	CPS	formal and simulation, HW monitors	RTL	VHDL/Verilog	multiple	multiple	
[69]	2010	-	SER	-	-	-	-	-	IPS	SAT solver	RTL	VHDL	-	-	
[70]	2018	-	•	-	-	-	-	-	IPS, processor	simulation	RTL	VHDL/Verilog	-	-	

1 only conference, journal and industrial white papers published in the last 10 years were selected for this survey

2 This aspect is the main focus in the paper

3 LTR – lifetime reliability; SER – soft-error reliability

4 RT – real-time constraints

5 SL – system level; ISA – instruction set architecture level; TLM – transaction level model

Similar to other aspects, reliability in large complex electronic systems, e.g. safety-critical CPSs is tackled starting at high level of abstraction. System’s fault tolerance is formally checked using UPPAAL and timed automata models generated from AADL specifications [33]. HW design models and tools at such a level also enable verification of interference of extra-functional design aspects [70].

There are research works relying on design soft-error reliability verification by fault-injection campaigns e.g. [69] or formal analysis [68]. This analysis is targeted at extra-
functional structures for error protection, e.g. error-correction code (ECC) based mechanisms against single-bit errors in memory elements [68]. [34] proposes a general approach to verify gate-level design transformations for reliability against single-event transients by soft errors that combines formal reasoning on execution traces. [35] and [36] focus on the RAS (reliability, availability and serviceability) group of extra-functional aspects outlined by IBM for complex processor designs where embedded error protection mechanisms and designs intrinsic immunity (due to various masking) to errors is evaluated by fault injection.

[43] and [44] propose extensions to system descriptions in the IP-EXACT format to enable multi-layer representation and simulation of several mutually influencing extra-functional aspects of smart system designs such as lifetime reliability (aging), power and temperature. A complex approach to verification of multiple reliability concerns (soft errors, BTI, etc.) across layers in industrial CPS designs is proposed in [67] as a collaborative research result in the IMMORAL project.

C. Timing aspects

Functional temporal properties are essential part of sequential designs’ specification that are often modelled for functional verification by computational tree logic (CTL), applied for formal approaches, and linear temporal logic (LTL) temporal assertions expressed arbitrarily in PSL (Property Specification Language), SVA (System Verilog Assertions) or systematically in UVM (Universal Verification Methodology). In the extra-functional domain, these can be extended to specific requirements about performance (in particular as a trade-off to the power aspects), quality of service parameters such as latency, throughput etc. For formal classification, particular timing aspects may stay in the “limbo” between functional and extra-functional dimensions when timing properties are indivisible with the functionality for the real-time systems (e.g. demanding a worst-case execution time) [32] or time-constrained communication implementations as in the Network-on-Chip (NoC) structures [37], [38].

Several works have been widely studying system’s timing properties. Some researchers are mainly focused on generating timing properties such as Real Time (RT), latency, execution time, throughput, communication time, performance and etc., to reduce the verification process, state space and cost [40], [42], [53]. Other works instead use the timing properties to assess whether the system under verification is correctly functioning or not [41], [50], [52]. In [42] a framework has been developed to analyze performance of a system design. The framework is based on stochastic modeling and simulation and it is applied on a set of NoC topologies. The methodology uses the selective abstraction concept to reduce complexity. [53] introduces a tool called CONTREX to complement current activities in the area of predictable computing platforms and segregation mechanisms with techniques to compute RT properties. CONTREX enables energy efficient and cost aware design through analysis and optimization of properties such as RT. In [41], an analysis tool is developed to work with the AADL [65] developing environment to analyze the latency of the AADL model to assure the correctness of a scheduling model that binds the relation of different components in a model. The authors in [50] modified EASTADL [66] to include energy constraints and transformed energy-aware real-time (ERT) behaviors modeled in EAST-ADL/Stateflow into UPPAAL models amenable to formal verification. And finally, in [52] a platform has been developed to generate a virtual platform in SystemC to express the accuracy of real-time embedded system.

A few works also take into account dependencies between several extra-functional aspects. For instance, the work in [50], [53] and [42] present the effect of optimizing timing properties (performance and latency) on power consumption or the study in [52] performs the effect of decreasing execution time on power consumption. Such analysis is mostly limited to two extra functional aspects or neglected at all [39], [40], [41], [55], while design timing constraints can strongly influence not only power consumption but reliability, security, availability, etc. as well as functional properties.

D. Power consumption

This extra-functional aspect has a tight relation to the implementation technology assumed for the synthesis of the design model under verification. With planar bulk MOSFET technology known for exponential growth of the static leakage power for smaller device geometries and employment of FinFET and Tri-Gate-Transistors in the advanced technology nodes, the CMOS device parameters are essential for this analysis [45].

In commercial flows, this verification dimension can be addressed relatively independently from the functional verification dimension. The power intent and detailed power modelling can be done starting at TLM or RTL with minimal interference with the HDL functional description, e.g. using the Accellera introduced Unified Power Format (UPF) employed for power-aware design verification automation by commercial tools especially with the latest UFP3.0 [48] or Cadence/Si2 Common Power Format CPF [49]. For the advanced device implementation technologies, power specification implies multi-voltage design with up to tens of power domains and may consider dynamic and adaptive voltage scaling.

In the recent research works, design verification against the power aspect is performed at different abstraction levels with a trade-off between speed and accuracy. Some works such as [46], [47], [61], [62] perform power analysis at system level targeting high simulation speed and low power optimization flexibility similar to the accuracy achievable at lower levels. In [46], the authors applied their approach to SRAM and AES encryption IPs and obtained a significant simulation speed-up in comparison to gate-level simulation with a high fidelity of the system-level power simulation. A promising software tool for power simulation in SystemC designs is the Powersim framework [47], [62]. In [47], a methodology to estimate the dissipation of energy in hardware at any level of abstraction is proposed. In [62], the authors propose a SystemC class library aimed at calculation of energy consumption of hardware described at system level. The work in [60] introduces a series of tools which can be tightly linked and enable the power analysis from layout, gate-level, RT-level, IP-level to system level. The power aspect verification could benefit from a holistic multi-level modelling, such as e.g. [17] available for functional verification. [42], [43], [44], [50], [52], [53], are aimed at methodologies suitable for specific applications (such as cyber-physical system [50]) that assume verification of extra-functional aspects such as power, timing, thermal at the system level.
IV. THE CHALLENGE OF MULTIDIMENSIONAL VERIFICATION

The performed analysis of the state of the art has outlined a gap in methodologies and tools for holistic multidimensional verification of hardware design models.

Different from functional verification, approaches for extra-functional hardware design aspects’ verification remain underdeveloped even when tackled in isolation. Here, one of the key issues is a lack of established metrics for verification confidence. For a particular functional verification plan, the functional dimension usually includes conventional structural (code) coverage metrics, functional coverage [3] in form of asserted and assumed properties and design parameters along with stimuli quality assessment by model mutations [18]. The metrics for confidence in extra-functional dimension verification results may be challenging as in practice the requirements are subjective and can be specified as a mixture of quantitative and qualitative constraints. Accurate hardware verification in a particular dimension requires both sufficient extra-functional design modeling and the extra-functional aspect target modeling [70]. There is a limited number of dedicated commercial tools and common standards for extra-functional verification flows. In particular, for the security dimension the JasperGold SPV [71] is one of the few such tools that stand out from the academic research frameworks. Finally, the issue of eliciting the extra-functional requirements [4], [5] is a challenging task as ambiguity and (sometimes conflicting) interdependency of the extra-functional aspects in the specifications increases complexity and may leave gaps in the multidimensional verification plans.

Unfortunately, there is no established hardware design methodology supporting multidimensional verification plans for mutually influencing functional and extra-functional aspects. There is a very limited number of research works going beyond analysis of one extra-functional verification aspect under constraints of another as the complexity of the problem grows extremely fast with the number of dimensions (interdependent constraints) and the electronic system size. The first works in this direction are, for example, [44] and [70].

The objective for the research community is to manage multidimensional verification campaigns as illustrated in Fig. 2. Fig. 2a is an illustration of six independent verification campaigns in a three-dimensional verification space. Here, a verification campaign can achieve a level of confidence in one, two or all dimensions - (Functionality, (Power) and (Security). Radar-charts are an instrument for summarizing multidimensional verification results for unlimited number of dimensions, see Fig. 2b (where the dimensions can be ordered to emphasize correlation or interdependencies between adjacent dimensions).

A. Motivational Example

Single-dimension verification campaigns ignoring interdependencies between the dimensions may lead to gaps in the overall system quality. As an example, let us consider an actual verification campaign of an open-source NoC framework Bonfire [57], [58].

The design under verification is in RTL VHDL and implements a 2x2 NoC infrastructure (processing elements excluded). The verification plan considered 2-dimensional verification campaign targeting functionality and power consumption requirements. For the former, assertion-based functional verification by simulation was employed targeting statement, branch, condition and toggle coverage metrics and satisfaction of a set of temporal simple-subset PSL assertions. For the latter, a set of power targets were extracted for the targeted silicon implementation assuming a predetermined switching activity.

Among documented design errors, the bug f1, as shown in Fig. 3, is an example of a functional misbehavior due to improper usage of write and read pointers in the FIFO. The bug p1 as shown in Fig. 4, causes violations of specified power consumption targets because of unnecessary excessive use of a fault-tolerance structure related counter. Interestingly, functionality of both the router core and the complete system is not interfered in case of p1.

Table II summarizes power consumption for the three cases. Here, the Total Power is composed of the dynamic power, i.e. the Switching Power in the interconnects and the Internal Power in the logic cells, and the insignificant (for the target technology) static leakage power Leak Power. The case p1 results in double power consumption compared to the correct implementation and violates the power targets in the specification, whereas the power consumption for the f1 case remains within the specification. Design verification in a single dimension may lead to a faulty design.
In the recent years, numerous extra-functional aspects of electronic systems were brought to the front and imply verification of hardware design models in multidimensional space along with the functional concerns of the target system. In this paper, we have presented a taxonomy for multidimensional hardware verification aspects, a state-of-the-art survey of related research works and trends towards the multidimensional verification concept. The performed analysis of the state of the art has outlined a gap in methodologies and tools for holistic multidimensional verification of hardware design models. The concept was also motivated by a case study for the functional and power verification dimensions.

ACKNOWLEDGMENTS

We would like to acknowledge Apneet Kaur and Behrad Niazmand for their help with the case study analysis. This research was supported in part by projects H2020 MSCA ITN Niazmand for their help with the case study analysis. This research was supported in part by projects H2020 MSCA ITN Niazmand for their help with the case study analysis.

REFERENCES

[1] I. Verbauwhede, “Security Adds an Extra Dimension to IC Design: Future IC Design Must Focus on Security in Addition to Low Power and Energy,” in IEEE Solid-State Circuits Magazine, vol. 9, no. 4, pp. 41-45, Fall 2017.
[2] W. Chen, S. Ray, J. Bhadra, M. Abadir and L. C. Wang, “Challenges and Trends in Modern SoC Design Verification,” in IEEE Design & Test, vol. 34, no. 5, pp. 7-22, Oct. 2017.
[3] A. Piziali, Functional verification coverage measurement and analysis, Springer, 2008
[4] S. Ullah, M. Iqbal and A. M. Khan, “A survey on issues in non-functional requirements elicitation,” Int. Conf. on Computer Networks and Information Technology, Abbottabad, 2011, pp. 333-340
[5] Cyxneiros L.M., Yu E. (2004) Non-Functional Requirements Elicitation. In: do Prado Leite J.C.S., Doorn J.H. (eds) Perspectives on Software Requirements. The Springer International Series in Engineering and Computer Science, vol 753. Springer, Boston, MA.
[6] M. L. Fair et al., "Reliability, availability, and serviceability (RAS) of the IBM eServer z990," in IBM Journal of Research and Development, vol. 48, no. 3-4, pp. 519-534, May 2004.
[7] L. Chung, B. Nixon, E. Yu, and J. Mylopoulos, "Non-Functional Requirements," in Software Engineering: A Life Cycle Perspective (3rd ed.), Kluwer Academic Publishers, 2000.
[8] P. Singh, and A. K. Tripathi, "Exploring Problems and Solutions in estimating Testing Effort for Non Functional Requirement," International Journal of Computers & Technology, vol. 3, no 2b, pp. 284-290, 2012.
[9] E. R. Poort, N. Martens, I. Van de Weerd, and H. Van Vliet, “How architects see non-functional requirements: beware of modifiability,” in Requirements Engineering Conference for Software Quality, pp. 37-51. Springer Berlin Heidelberg, 2012.
[10] D. Ameller, C. Ayala, J. Cabot, and X. Franch, “How do software architects consider non-functional requirements? An exploratory study,” Requirements Engineering Conference (RE), pp. 41-50, 2012.
[11] M. Glinz, “On non-functional requirements,” in Requirements Engineering Conference, 2007. RE ’07. IEEE, 2007.
[12] Motus, L. “Analytical Study of Quantitative Timing Properties of Software” 5th EUROMICRO Workshop on Real-Time Systems, 1993.
[13] M. Jemini, G. Squillero, T. S. Copetti, V. Tihomirov, S. Kostin, M. Szyperski, F. S. Goncalves, D. Pereira, E. Tovar and L. Bolzani Polchies, R. Ubar, G.C. Medeiros, Identification and Rejuvenation of NBTI-Critical Logic Paths in Nanoscale Circuits. JETTA, 32(3),273–289, June 2016.
[14] J. Bhadra, M. S. Abadir, L. C. Wang and S. Ray, “A Survey of Hybrid Techniques for Functional Verification,” in IEEE Design & Test of Computers, vol. 24, no. 2, pp. 112-122, 2007.
[15] S. Mukherjee, Architecture Design for Soft Errors, Morgan Kauf. 2008.
[16] J. Bhadra, M. S. Abadir, L. C. Wang and S. Ray, “A Survey of Hybrid Techniques for Functional Verification,” in IEEE Design & Test of Computers, vol. 24, no. 2, pp. 112-122, 2007.
[17] M. Glinz, “On non-functional requirements,” in Requirements Engineering Conference, 2007. RE ’07. IEEE, 2007.
[18] V. Guarnieri et al., “Mutation analysis for SystemC designs at TLM,” 2011 12th Latin American Test Workshop (LATW), Porto de Galinhas, 2011, pp. 1-6.
[19] J. Hansson, B. Lewis, J. Hugues, L. Wringe, P. Feiler and J. Morley, “Model-Based Verification and Certification in Automotive Non-Functional Behaviour using AADL,” in IEEE Security & Privacy, 2009, pp. 1-19.
[20] T. Boraten, D. DiTomaso and A. K. Kodi, “Secure model checkers for Network-on-Chip (NoC) Architectures,” in IEEE/ACM Great Lakes Symposium on VLSI (GLSVLSI), Boston, MA, 2016, pp. 45-50.
[21] H. M. G. Wassell et al., “Networks on Chip with Provable Security Properties,” in IEEE Micro, vol. 34, no. 3, pp. 57-68, May-June 2014.
[22] M. A. Kochte, M. Sauer, L. R. Gomez, P. Raiola, B. Becker and H. J. Wunderlich, “Specification and verification of security in reconfigurable scan networks,” 2017 22nd IEEE European Test Symposium (ETS), Limassol, 2017, pp. 1-6.
[23] L. W. Kim and J. D. Villasenor, “Dynamic Function Verification for System on Chip Security Against Hardware-Based Attacks,” in IEEE Transactions on Reliability, vol. 64, no. 4, pp. 1229-1242, Dec. 2015.
[24] Wei Hu et al., “Imprecise security: Quality and complexity tradeoffs for hardware information flow tracking,” IEEE/ACM Int. Conference on Computer-Aided Design (ICCAD), Austin, TX, 2016, pp. 1-8.
[25] A. Nailhym, M. Sadri, R. Vittal, G. Contreras, D. Forgeron, M. Tehrani, M. Motus, L. “Analytical Study of Quantitative Timing Properties of Hardware Trojan Detection through Information Flow Security Verification,” 2017 IEEE International Test Conference (ITC), Fort Worth, TX, 2017, pp. 1-8.
[26] M. A. Kochte, R. Baranowski, M. Sauer, B. Becker and H. J. Wunderlich, “Formal verification of secure reconfigurable scan network infrastructure,” 2016 21st IEEE European Test Symposium (ETS), Amsterdam, 2016, pp. 1-6.
[27] M. Rocchette, N. O. Tippenhauer, “Towards formal security analysis of industrial control systems,” ACMA via Conf. Comput. Commun., 2017.
[28] M. Yoshimura, T. Bouyashiki and T. Hosokawa, “A Hardware Trojan Circuit Detection Method Using Activation Sequence Generations,” 2017 IEEE 22nd Pacific Rim International Symposium on Dependable Computing (PRDC), Christchurch, 2017, pp. 221-222.
[29] F. K. Lodhi, S. R. Hasan, O. Hasan and F. Awdad, “Formal analysis of a macro-synchronous micro asynchronous pipeline for hardware Trojan detection,” NORCAS 2015, Oslo, pp. 1-4.
[30] Z. Hanna, “Verifying Security Aspects of SoC Designs with Jasper App” (white paper), Jasper Design Automation (Cadence), 2013.
[31] A. Savino, S. Di Carlo, A. Vallaero, G. Politano, D. Gioncaudolus and A. Evans, “RII-2: Toward the next generation reliability information interchange format,” IEEE IOLTS, 2016, pp. 173-178.
[32] C. Liu and J. Layland. Scheduling Algorithms for Multi programming in a Hard Real Time Environment, J. of ACM, 20, pp. 46-61, 1973.
[33] F. S. Goncalves, D. Pereira, E. Tovar and L. B. Becker, “Formal Verification of AADL Models Using UPPAAL,” 2017 VII Brazilian Symposium on Computing Systems Engineering (SBESC), Curitiba, 2017, pp. 117-124.
[34] D. Bulyaev and P. Frade, “Formal verification of automatic circuit transformations for fault-tolerance of AADL-C based systems,” in Formal Methods in Computer-Aided Design (FMCAD), Austin, TX, 2015, pp. 41-48.
[35] B. W. Thompto and B. Hoppe, “Verification for fault tolerance of the IBM system z microprocessor,” Design Automation Conference, Anaheim, CA, 2010, pp. 525-530.

[36] S. Kani, M. Lamm, T. Porter, J. Dworak, "A Case Study: Pre-Silicon SoC RAS Validation for NoC Server Processor", MTN 2016, pp. 19-24.

[37] S. Avramenko, S. P. Azad, S. Esposito, B. Niazmand, M. Violante, J. Raik, M. Jenihi, "QoSInNoC: Analysis of QoS-Aware NoC Architecture for Mixed-Criticality Applications", in 21st IEEE Int. Symp. DDECS 2018, pp 1-6.

[38] S. Avramenko et al., "Upgrading QoSInNoC: Efficient Routing for Mixed-Criticality Applications and Power Analysis", in IEEE VLSI-SoC 2018, Verona, pp 1-6.

[39] S. Rubini, F. Sinigaglia and J. Hugues, "Modeling and Verification of Memory Architectures with AADL and REAL, " 2011 16th IEEE International Conference on Engineering of Complex Computer Systems, Las Vegas, NV, 2011, pp. 338-343.

[40] H. Wang, X. Zhou, Y. Dong and L. Tang, "A Hierarchical Verification Procedure of Timed Petri-Net Model for Real-Time Embedded Systems," 2010 2nd International Conference on Information Engineering and Computer Science, Wuhan, 2010, pp. 1-4.

[41] H. Wang, X. Zhou, Y. Dong, L. Tang, "Timing Properties Analysis of Real-Time Embedded Systems with AADL Model Using Model Check", IEEE Int. Conf. on Progress in Informatics and Computing (PIC), pp 1019–1023, 2010.

[42] A. Rafiev, F. Xia, A. Iliasov, A. Romanovsky and A. Yakovlev, "Selective Abstraction for Estimating Extra-Functional Properties in Networks-on-Chips Using ArchOn Framework," 2017 17th International Conference on Application of Concurrency to System Design (ACSDF), Zaragoza, 2017, pp. 80-85.

[43] S. Vinco, M. Lora, E. Macii and M. Poncino, "IP-XACT for smart systems design: extensions for the integration of functional and extra-functional models." 2016 Forum on Specification and Design Languages (FDL), Bremen, 2016, pp. 1-8.

[44] S. Vinco, Y. Chen, F. Fummi, E. Macii and M. Poncino, "A Layered Methodology for the Simulation of Extra-Functional Properties in Smart Systems," in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 36, no. 10, pp. 1702-1715, 2017.

[45] P. Khondkar, "Low-Power Design and Power-Aware Verification", Springer 2018.

[46] D. Lorenz et al., “Non-invasive Power Simulation at System-Level with SystemC”, PATMOS 2012, LNCS (7606), Springer 2012.

[47] S. Orcioni, et al., "Energy estimation in SystemC with Powersim", Integration, the VLSI Journal, (55), 2016, 118-128.

[48] "ANSI/IEEE 1801-2015 - IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems", March 2016.

[49] Si2 “Common Power Format”, v2.1, 2014 [Online]

[50] E. Y. Kang, D. Mu, L. Huang and Q. Lan, "Verification and Validation of a Cyber-Physical System in the Automotive Domain," 2017 IEEE Industrial Embedded Systems (SIES’12), Karlsruhe, 2012, pp. 201-210.

[51] J. Zimmermann, S. Stattelmann, A. Viehl, O. Bringmann and W. Rosenstiel, "Model-driven virtual prototyping for real-time simulation of distributed embedded systems," 7th IEEE Int. Symposium on Industrial Embedded Systems (SIES’12), Karlsruhe, 2012, pp. 201-210.

[52] R. Görgen et al., "CONTREX: Design of Embedded Mixed-Criticality CONTRol Systems under Consideration of EXtra-Functional Properties," 2016 Euromicro Conference on Digital System Design (DSD), Limassol, 2016, pp. 286-293.

[53] JasperGold Connectivity Verification App, Cadence, http://www.cadence.com [Online]

[54] S. K. Roy, Top Level SOC Interconnectivity Verification Using Formal Techniques. The 8th Int. Workshop on Microprocessor Test and Verification, Austin, TX, USA, 2008, pp. 63–70.

[55] M. Elver and V. Nagarajan, “McVerSi: A test generation framework for fast memory consistency verification in simulation,” 2016 IEEE International Symposium on High Performance Computer Architecture (HPCA), Barcelona, 2016, pp. 618-630.

[56] Bonfire project website: https://github.com/Project-Bonfire/ [Online]

[57] S. P. Azad et al., "From online fault detection to fault management in Network-on-Chips: A ground-up approach," 2017 IEEE 20th International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS), Dresden, 2017, pp. 48-53.

[58] J. Flich and J. Duato, "Logic-based distributed routing for noc," IEEE Computer Architecture Letters, vol. 7, no. 1, pp. 13–16, Jan 2008.

[59] S. -C. Fang, C.-C. Weng, C.-K. Tseng, C.-W. Hsu, J.-L. Liao, S.-Y. Huang, C.-L. Lung, D.-M. Kwai, SoC power analysis framework and its application to power-thermal co-simulation, in: 2011 Int. Symp. on VLSI Design, Automation and Test, April 2011, pp. 1–4.

[60] G. Vecce, M. Conti, S. Orcioni, Transaction-level power analysis of VLSI digital systems, Integr. VLSIJ. 50 (2015) 116–126

[61] M. Giammarrini, M. Conti, S. Orcioni, System-level energy estimation with Powersim, in: 2011 18th IEEE Int. Conf. on Electronics, Circuits and Systems (ICECS), December 2011, pp. 723–726.

[62] Spin tool website. http://spinroot.com/ [Online].

[63] Smt-comp tool website. http://www.smtcomp.org/ [Online].

[64] The architecture analysis and design language AADL. http://www.aadl.info/aadlcurrentsite/ [Online].

[65] EAST-ADL Consortium, “East-adl domain model specification v2.1.5,” Maened European Project, Tech. Rep., 2011.

[66] G. Aleksandrovicz et al. (2018) Designing Reliable Cyber-Physical Systems. In: Fummi F., Wille R. (eds) Languages, Design Methods, and Tools for Electronic System Design. Lecture Notes in Electrical Engineering, vol 454. Springer, Cham.

[67] Eli Arbel, Shlomit Koyfman, Prabhakar Kudva, and Shiri Moran. Automated detection and verification of parity-protected memory elements. In Proc. IEEE/ACM ICCAD, 2014, 1-6.

[68] M. Maniatikos, Y. Makris, “Workload-driven selective hardening of control state elements in modern microprocessors”. In VTS, 2010, 159–164.

[69] J. Vain, A. Kaur, L. Tsipoulos, J. Raik and M. Jenihiin, “Multi-view modeling for MPSoC design aspects”, IEEE EEC October 8-10, 2018

[70] JasperGold Security Path Verification App, Cadence, http://www.cadence.com [Online]