FEED PRODUCTIVITY OF SOWED GRASSLANDS DEPENDING ON THE COMPOSITION OF GRASS MIXTURES AND FERTILIZERS

The development of animal husbandry depends on the quality of feed production. The aim of our research is to study the productivity of sown grasslands depending on the composition of grass mixtures, the formation of phytocenoses for haymaking. Field experiments were carried out in the feed production department on the experimental basis of the Institute of Agriculture of the Carpathian region of NAAS (Western Forest-Steppe).

Of particular relevance is the study of species and varietal characteristics of perennial legumes and cereals, their response to agroecological conditions of cultivation and identification of basic patterns of formation of agrophytocenoses and development of effective methods of managing their productivity based on improving the species composition of grass mixtures, doses of fertilizers, biological nitrogen fixation in agrophytocenoses with legumes and cereals.

The experiments are based on gray forestal loamy soils. The results of research on the influence of the composition of grass mixtures, the frequency of mowing and mineral fertilizers on the formation of forage productivity of sown legumes and grasses are presented.

During the growing season of 2017–2018, the productivity of legume-cereal meadow grasslands turned out to be extremely diverse. The results of research have shown that the application of nitrogen fertilizers on the background of P₆₀K₉₀ and the use of grass when it reaches economic maturity, significantly affects the yields.

The application of a set of studied factors allowed to obtain the highest yields during the growing season, phytocenoses of orchard grass, perennial fenugreek, meadow thyme with clover and hybrid clover when applying fertilizers in the norm N₄₅(30+15) – 16.0 t/ha.

In the control version (without fertilizer) we collected 5.7–6.6 (by two-phase mowing) and 6.2–7.5 t/ha of feed units (by three-phase mowing). Phosphorus-potassium fertilizers in the norm P₆₀K₉₀ provided an increase in dry weight by 116–132%, the productivity of hay grass 116–121% of feed units compared to the
control. Application of nitrogen fertilizers at the rate of N_{30} on a phosphorus-potassium background (P_{60}K_{90}) provided an increase from 125 to 135 % t/ha of feed units.

Key words: seeds, mineral fertilizers, feed unit, yield, hay

Сметана С. І., Котяш У. О., Бугрин Л. М., Пукало Д. Л.
Інститут сільського господарства Карпатського регіону НААН

Кормова продуктивність сіяння травостоїв залежно від складу травосумішок та удобрень

Розвиток тваринництва залежний від якісного виробництва кормів. Метою наших досліджень є вивчення продуктивності сіяння травостоїв залежно від складу травосумішок, формування лучних фітоценозів сільського використання. Польові досліди проводили у відділі кормовиробництва на експериментальній базі Інституту сільського господарства Карпатського регіону НААН (Лісостеп Західний).

Особливої актуальності набуває вивчення видових і сортових особливостей багаторічних бобових і злакових трав, їхньої реакції на агроекологічні умови вирощування, виявлення основних закономірностей формування агрофітоценозів й розроблення ефективних прийомів управління їхньою продуктивністю на основі удосконалення видового складу травосумішок, доз мінеральних добрив, режимів використання травостоїв та прийомів інтенсифікації біологічної азотфіксації в агрофітоценозах із бобовими і злаковими травами.

Досліди закладено на сірих лісових легкосуглинкових ґрунтах. Наведено результати досліджень з вивчення впливу складу травосумішок, кратності скошування та мінерального удобрення на формування кормової продуктивності сіяного бобово-злакового травостою.

За вегетаційний період 2017–2018 рр. продуктивність бобово-злакових лучних травостоїв виявилась надзвичайно строкатою. Результати досліджень показали, що внесення азотних добрив на фоні P_{60}K_{90} і використання травостою при досягненні ним господарської стиглості значно впливає на отримання високих урожаїв.

Застосування комплексу досліджуваних факторів дало змогу одержати найвищу врожайність за вегетаційний період фітоценозів грастиці збірної, пажитниці багаторічної, тимофіївки лучної з конюшниою лучною та конюшниою гібридною при внесенні добрив у нормі N_{45(30+15)} – 16,0 т/га.

У контрольному варіанті (без удобрения) зібрано від 5,7 до 6,6 (при двохукісному) і від 6,2 до 7,5 т/га кормових одиниць (при трьохукісному використанні). Фосфорно-калійні добрива в нормі P_{60}K_{90} забезпечили приріст сухої маси на 116–132%, продуктивність сінокосного травостою – від 116 до 121% кормових одиниць порівняно з контролем. Внесення азотних добрив у нормі N_{30} на фосфорно-калійному фоні (P_{60}K_{90}) забезпечило приріст від 125 до 135% т/га кормових одиниць.

Ключові слова: насіння, мінеральні добрива, кормова одиниця, врожайність, сінокіс.
Introduction. The development of animal husbandry depends on the quality of feed production. In the structure of natural forage lands of Ukraine there are hayfields (agricultural lands that are systematically used for haymaking) and pastures (agricultural lands that are systematically used for grazing animals, as well as other land plots suitable for cattle grazing). They are unevenly distributed throughout the country in terms of area and conditions of their habitat, methods of use and production potential [1, 2, 5, 6, 13, 15].

Researches conducted in various countries around the world has shown that increasing the yield of crops by 2–3 times leads to an increase in energy consumption per unit of production by 10–50 times. In addition, the intensification of agriculture has caused processes that cause the loss of humus. Constantly increasing chemical load on the environment leads to ecological imbalance in agricultural landscapes, which in turn can have a negative impact on the deterioration of soil, water and crop products, and consequently, livestock products [8, 11, 12, 20, 21, 22].

Ukraine has a great variety of soil and climatic conditions. All this requires an appropriate set of perennial herbs.

In the Forest-Steppe of Ukraine meadow clover, hybrid clover, alfalfa, birdsfoot trefoil, sainfoin, orchard grass, bromus inermis, phalaris arundinacea, meadow fescue, perennial fenugreek, common couch grow well.

A very responsible link in the creation of highly productive legume-cereal grass mixtures is the right choice of herbs [7, 9, 14, 16, 18, 19].

It has been proven that properly selected legume-cereal grass mixtures will provide stable yields of highly nutritious fodder for many years and will be less dependent on adverse weather conditions. Herbaceous perennial legumes should be highly nutritious, productive for many years, contain all the necessary nutrients, vitamins, micro- and micronutrients in the optimal ratio. It is necessary to take into account the biological features of grasses, their yield, nutritional value, growth rate, durability, drought and winter hardiness, soil and climatic conditions of the region [10, 20, 23, 24, 29].

To create sown leguminous-cereal grass mixtures in the Polissia and Forest-Steppe zone, it is expedient to choose the following intensive species: from cereals – meadow and tall fescue, orchard grass, perennial fenugreek, high ryegrass, black bent, tall foxtail, meadow timothy, common couch, and from legumes – meadow clover, pink clover, birdsfoot trefoil, meadow vetchling, sainfoin, alfalfa [25, 26, 28, 30].
Rational use of fertilizers of biological and chemical origin promotes the transformation of nutrients in the soil, activation of growth processes in plants, increase the biological activity of soil microflora, and most importantly – increases the productivity of crops [22].

Sown meadow grasses with optimal fertilization and use can remain highly productive not only for 3–5 years, but 10 or more. After all, the biological potential of grasses and the ability to self-recover from spare buds of aboveground and underground shoots is still insufficiently studied.

However, to date, insufficient research has been conducted to increase the productivity of meadow agrophytocenoses, taking into account the soil and climatic characteristics of the regions. Reproduction of meadow lands has a multifunctional significance: landscape-forming, ecological: soil protection, water protection. The development of the fodder base of agricultural production is relevant in the Western Forest-Steppe, where natural and climatic conditions are most favorable for growing perennial grasses.

Materials and methods. Field experiments were conducted in the feed production department on the experimental basis of the Institute of Agriculture of the Carpathian region (Western Forest-Steppe). The experiments were performed on gray forest loamy soils with the following agrochemical parameters in the horizon 0–20 cm: pH – 5.1, humus content – 2.1% and low nitrogen content – 99.7, average content of mobile phosphorus 68.0. Three herbal mixtures were studied in the experiments: 1 – orchard grass, perennial fenugreek, meadow timothy, meadow clover, hybrid clover; 2 – orchard grass, perennial fenugreek, meadow timothy, meadow clover, birdsfoot trefoil; 3 – orchard grass, perennial fenugreek, meadow timothy, clover, hybrid clover, birdsfoot trefoil.

The research is carried out according to the method of the Institute of Forage UAAS [27]. The harvest accounting was carried out separately. Yield data were processed by the method of analysis of variance [17, 28]. Phenological observations were carried out in experiments on hayfields, indicating the phases of development of the main components of grass mixtures (DSTU 6017: 2008). The studies determined the yield of feed units and digestible protein in the feed.

The necessity of selection of perennial leguminous grasses and leguminous-cereal grass mixtures for elimination of protein deficiency, which has developed in fodder production systems, is substantiated [11, 22, 25, 30].

Results and discussion. Sowing of perennial legume-cereal mixtures was carried out on May 6, 2016. Restoration of vegetation of
perennial grasses of the current 2018 was noted at the end of the second decade of March. However, spring frosts and a sharp drop in temperature after short-term warming negatively affected the growth and development of perennial grasses. In particular, it should be noted double damage to the vegetative mass of clover and birdsfoot trefoil (burns) under the action of a sharp decrease in night temperature to \(-4–7^\circ C\). Frequent fluctuations in temperature during the spring vegetation period of grasses negatively affected the interphase periods of development of both legumes and cereals components of phytocenoses, which led to their oblique ripeness only on June 7–10 (earing of fenugreek and budding-beginning of flowering legumes), almost on 12–15 days later than the data of long-term observations in the conditions of the Western Forest-Steppe.

On average, during the vegetation period of 2017–2018, the productivity of legume-grass meadow grasses turned out to be extremely diverse. As can be seen from table 1, on average during the growing season in the control without fertilizers by dual mowing, the yield of dry matter came in the smallest amount (11.8–11.2 t/ha), and with the introduction of phosphorus-potassium – increased by 1.4–2.4 t/ha. The application of mineral fertilizers in the dose of N\(_{30}\)P\(_{60}\)K\(_{90}\) made it possible to obtain a slightly higher collection of dry matter in the first mowe (6.9–7.3 t/ha). As a rule, in the second mowe the productivity of grassland was lower than in the first, which is explained by insufficient rainfall and slightly higher than normal air temperature.

With an increase in the dose of nitrogen fertilizer in the norm of N\(_{45(30+15)}\), the highest yields during the growing season were provided by phytocenoses of comfrey, fenugreek, meadow timothy with clover and hybrid clover (16.0 t/ha).

The results of research have shown that the applied nitrogen fertilizers on the background of P\(_{60}\)K\(_{90}\) and the use of grass, when it reaches economic maturity, significantly affects the yields.

Despite the intensity of grass fertilization, the results show that in all cases, the highest percentage of feed came in the first mowing. Thus, with the three-phase use of meadow grass in the first mowe received 6.2–8.5 t/ha, and in subsequent mowes 4.0–4.5 and 2.9–3.2 t/ha, respectively.
1. Yield of dry mass of meadow phytocenoses (average for 2017–2018)

№	Fertilizer	First mowe	Second mowe	Third mowe	During the growing season			
		t/ha	%	t/ha	%	t/ha	%	
1	control	6	50.6	5.8	49.4	–	–	11.8
	P<sub>60K<sub>90	6.5	49.1	6.7	50.9	–	–	13.2
	N<sub>30P<sub>60K<sub>90	6.9	47.4	7.6	52.6	–	–	14.5
	N<sub>45P<sub>60K<sub>90 (N<sub>30 + N<sub>15)	7.6	47.7	8.4	52.3	–	–	16.0
2	control	6	53.3	5.2	46.7	–	–	11.2
	P<sub>60K<sub>90	7.0	51.6	6.6	48.4	–	–	13.6
	N<sub>30P<sub>60K<sub>90	7.3	48.2	7.8	51.8	–	–	15.1
	N<sub>45P<sub>60K<sub>90 (N<sub>30 + N<sub>15)	8.1	50.3	8.1	49.7	–	–	16.2
3	control	5.1	50.2	5.1	49.8	–	–	10.2
	P<sub>60K<sub>90	6.8	54.2	5.8	45.8	–	–	12.6
	N<sub>30P<sub>60K<sub>90	7.6	56.5	5.9	43.5	–	–	13.5
	N<sub>45P<sub>60K<sub>90 (N<sub>30 + N<sub>15)	8.1	54.5	6.7	45.5	–	–	14.8
1	control	6.2	44.7	6.0	43.6	1.6	11.7	13.8
	P<sub>60K<sub>90	6.6	42.9	6.8	44.1	2.1	13.0	15.5
	N<sub>30P<sub>60K<sub>90	7.4	46.2	6.7	41.8	1.9	12.0	16
	N<sub>45P<sub>60K<sub>90 (N<sub>30 + N<sub>15)	6.8	41.0	7.3	43.4	2.6	15.6	16.7
2	control	5.6	44.3	5.0	39.2	2.1	5	12.7
	P<sub>60K<sub>90	7.1	44.3	6.7	42.4	2.1	3	15.9
	N<sub>30P<sub>60K<sub>90	7.4	46.6	6.3	39.4	2.3	14.0	16
	N<sub>45P<sub>60K<sub>90 (N<sub>30 + N<sub>15)	7.8	46.3	6.8	40.1	2.3	13.6	16.9
3	control	5.2	46.4	4.05	36.2	1.95	17.4	11.2
	P<sub>60K<sub>90	7.2	49.8	5.1	34.7	2.2	15.5	14.55
	N<sub>30P<sub>60K<sub>90	7.6	49.3	5.1	32.9	2.8	8	15.5
	N<sub>45P<sub>60K<sub>90 (N<sub>30 + N<sub>15)	8.1	48.8	6.0	35.9	2.6	15.3	16.7
According to Table 2, the highest dry matter yield (11.1–11.4 t/ha) was provided by the first and second grass mixtures with N₄₅P₆₀K₉₀ fertilizer, which amounted to 8.8 and 9.4 t/ha of fodder units, respectively.

2. Productivity of legume-cereal phytocenoses, average for 2017 – 2018

№	Fertilizers	Yield of 1 ha, t	Increase to control, %		
		dry weight	feed units	dry weight	feed units
	control	7.9	6.6	–	–
1	P₆₀K₉₀	9.2	7.7	116	116
	N₃₀P₆₀K₉₀	9.8	8.2	124	125
	N₄₅P₆₀K₉₀	11.1	8.8	140	133
	control	7.9	6.4	–	–
2	P₆₀K₉₀	9.6	7.9	121	123
	N₃₀P₆₀K₉₀	10.5	8.7	133	135
	N₄₅P₆₀K₉₀	11.4	9.4	144	146
	control	6.9	5.7	–	–
3	P₆₀K₉₀	9.1	7.6	132	133
	N₃₀P₆₀K₉₀	9.7	8.5	140	149
	N₄₅P₆₀K₉₀	10.7	8.8	155	154

In the control version (without fertilizer) collected 5.7–6.6 (by two-mow use) and 6.2–7.5 t/ha (by three-mow use) of feed units. Phosphorus-potassium fertilizers in the norm P₆₀K₉₀ provided an increase in dry weight by 116–132%, the yield of hay grass from 116 to 121% of feed units compared to the control. Application of nitrogen fertilizers at the rate of N₃₀
on a phosphorus-potassium background (P₆₀K₉₀) provided an increase in yield from 125 to 135% t/ha of feed units.

Conclusions. The application of a set of studied factors allowed to obtain the highest yields during the growing season, phytocenoses of orchard grass, perennial fenugreek, meadow thyme with clover and hybrid clover when applying fertilizers N₄₅(30+15) – 16.0 t/ha.

In the control version (without fertilizer) collected 5.7–6.6 (by two-mow use) and 6.2–7.5 t/ha (by three-mow use) of feed units. Phosphorus-potassium fertilizers in the norm P₆₀K₉₀ provided an increase in dry weight by 116–132%, the yield of hay grass from 116 to 121% of feed units compared to the control. Application of nitrogen fertilizers at the rate of N₃₀ on a phosphorus-potassium background (P₆₀K₉₀) provided an increase in yield from 125 to 135% t/ha of feed units.

References

1. Agroecobiological bases of creation and use of meadow phytocenoses / M. T. Yarmoliuk et al. Lviv, 2013. 304 p.
2. Babych A. O. World’s resources of feed and protein. Kyiv, 1995. 298 p.
3. Babych A. O. The problem of feed protein and ways to solve it in the regions. Peredhirne ta hirske zemlerobstvo i tvarynnystvo. 2001. Issue 43 (I). P. 11–15.
4. Behey S. S. Effect of fertilizer and use regimes on the productivity of grasslands in Precarpathians. Peredhirne ta hirske zemlerobstvo i tvarynnystvo. 2013. Issue 55 (II). P. 8–14.
5. Bobylev V. S. Factors influencing the selection of components of a mixture of perennial grasses. Vestnik Kurskoj gos. sel'skohozjajstvennoj akademii. 2012. No. 9. P. 41–42.
6. Bohovin A. V. Requirements for the selection of types of herbs and grass mixtures for the creation of sown meadows for various economic uses. Zb. nauk. pr. NNTs «Institut zemlerobstva UAN». 2009. Issue 3. P. 112–120.
8. Боговін А. В., Слюсар І. Т., Царенко В. К. Трав'янисті біогеоценози, їх поліпшення та раціональне використання. Київ: Аграрна навука, 2005. 360 с.

9. Борщенко В. В. Управління випасом та економічна ефективність використання природних пасовищ на Північному Поліссі України. Наук.-техн. бюлетень / Ін-т тваринництва. 2013. № 109, частина 2. С. 20–33.

10. Ботанічний склад травостою залежно від обробітків ґрунту та удобрення / Я. І. Мащак та ін. Передгірне та гірське землеробство і тваринництво. 2010. Вип. 52 (І). С. 70–79.

11. Векленко Ю. А., Підпалий І. Ф. Сучасний стан та перспективи розвитку виробництва кормів в Україні. Сільське господарство та лісівництво. 2015. № 2. С. 45–52.

12. Вплив удобрення на продуктивність бобово-злакової травосуміші / В. О. Оліфірович та ін. Вісник аграрної науки. 2018. № 11. С. 48–53.

13. Гаврилюк М. М., Кургак В. Г. Сучасні напрями досліджень у луківництві. Вісник аграрної науки. 2010. № 8. С. 14–18.

14. Гетман Н. Я., Квітко Г. П. Агрохімічне обґрунтування ресурсоохоронних технологій вирощування фітоценозів багаторічних та однорічних кормових культур у польовому кормовиробництві. Вісник аграрної науки. 2013. Спец. вип. С. 44–48.

15. Демидась Г. І., Демцюра Ю. В. Кормова продуктивність бобово-злакових травосумішок залежно від видового складу та способу створення травостою. Зб. наук. пр. ВНАНУ. 2011. № 9 (49). С. 95–101.

16. Доспехов Б. А. Методика полевого опиту (с основами статистичної обробки результатов pr. NNTs «Instytut zemlerobstva NAAN». 2014. Issue 4, P. 123–130.

8. Bohovin A. V., Sliusar I. T., Tsarenko V. K. Herbaceous biogeocenoses, their improvement and rational use. Kyiv: Ahrarna nauka, 2005. 360 р.

9. Borschchenko V. V. Grazing management and economic efficiency of natural pastures use in the Northern Polissia of Ukraine. Naukovo-tekhnichni bulletin / Instytut tvarynnystva. 2013. No. 109, part 2. P. 20–33.

10. Botanical composition of grassland depending from soil cultivation and fertilizing / Ya. I. Mashchak et al. Peredhirne ta hirske zemlerobstvo i tvarynnystvo. 2010. Issue 52 (I). P. 70–79.

11. Veklenko Yu. A., Pidpalyi I. F. Current state and prospects of feed production development in Ukraine. Silske hospodarstvo ta lisivnytstvo. 2015. No. 2. P. 45–52.

12. The effect of fertilizer on the productivity of legumes and cereals / V. O. Olifirovych et al. Visnyk ahrarnoi nauky. 2018. No. 11. P. 48–53.

13. Havryliuk M. M., Kurhak V. H. Modern directions of research in meadow farming. Visnyk ahrarnoi nauky. 2010. No. 8. P. 14–18.

14. Hetman N. Ya., Kvitko H. P. Agrobiological substantiation of resource-saving technologies for growing of perennial and annual fodder crops phytocenoses in field fodder production. Visnyk ahrarnoi nauky. 2013. Special issue. P. 44–48.

15. Demydas H. I., Demtsiura Yu. V. Forage productivity of leguminous-cereal grass mixtures depending on the species composition and method of grass production. Zbirnyk naukovoykh prats VNAU. 2011. No. 9 (49). P. 95–101.

16. Dospehov B. A. Methodology of field experiment (with basics of statistical processing of research results). 5th ed. Moscow, 1985. 351 p.
исследований). Изд. 5-е, доп. и перераб. Москва, 1985. 351 с.

17. Квітко Г. П., Ткачук О. П., Гетман Н. Я. Багаторічні бобові трави – основа природної інтенсифікації кормовиробництва та поліпшення родючості ґрунту в Лісостепу України. *Корми і кормовиробництво*. 2012. Вип. 73. С. 113–117.

18. Козяр О. М. Підбір одновидових і змішаних посівів багаторічних трав для створення високопродуктивних сіножатей в умовах Правобережного Лісостепу України. *Науковий вісник Національного аграрного університету*. 2002. № 48. С. 216.

19. Крамаренко М. В. Вплив динаміки содерджання бобових трав в урожайній масі на продуктивність многолетніх бобово-злакових травосмісей для довготривалого використання. *Ізвестия ОГАУ*. 2015. № 3 (53). С. 61–62.

20. Луківництво / П. С. Макаренко, Г. І. Демидсь, О. М. Козяр. Київ : Нора-прінт, 2002. 394 с.

21. Методика полового досліду (зрошуване землеробство) : навч. посіб. / В. О. Ушкаренко та ін. Херсон : Грин Д. С., 2018. 448 с.

22. Методика проведення дослідів по кормовиробництву / УААН, Інститут кормів УААН ; під ред. А. О. Бабича. Вінниця, 1994. 88 с.

23. Моїсіенко В. В. Наукове обґрунтування шляхів підвищення кормової продуктивності та довголіття багаторічних травостоїв. *Вісник ЖНАЕУ*. 2011. № 1. Т. 1. С. 35–57.

24. Наукові та технологічні основи органічного луківництва / В. Г. Кургак та ін. *Вісник аграрної науки*. 2019. № 11. С. 28–33.

25. Петриченко В. Ф., Гетман Н. Я. Фактори підвищення ефективності агрофітоценозів багаторічних бобових трав в умовах Лісостепу Правобережного. *Корми і кормовиробництво*. 2017. Вип. 84. С. 3–10.

17. Kvitko H. P., Tkachuk O. P., Hetman N. Ya. Perennial legumes as the basis of natural intensification of feed production and improvement of soil fertility in the Forest-Steppe of Ukraine. *Kormy i kormovyrobnystvo*. 2012. Issue 73. P. 113–117.

18. Koziar O. M. Selection of single-species and mixed crops of perennial grasses to create highly productive hayfields in the conditions of the Right-Bank Forest-Steppe of Ukraine. *Naukovyi visnyk Natsionalnoho ahrarnoho universytetu*. 2002. No. 48. P. 216.

19. Kramarenko M. V. Influence of the dynamics of the content of leguminous grasses in the yield mass on the productivity of perennial legume-cereal grass mixtures of long-term use. *Izvestija OGAU*. 2015. No. 3 (53). P. 61–62.

20. Meadow cultivation / P. S. Makarenko, H. I. Demydas, O. M. Koziar. Kyiv : Nora-print, 2002. 394 p.

21. Methods of field experiment (irrigated agriculture) : navch. posib. / V. O. Ushkarenko et al. Kherson : Hrin D. S., 2018. 448 p.

22. Methods of conducting experiments on feed production / UAAN, Instytut kormiv UAAN ; pid red. A. O. Babycha. Vinnytsia, 1994. 88 p.

23. Moisienko V. V. Scientific substantiation of ways to increase fodder productivity and longevity of perennial grasses. *Visnyk ZhNAEU*. 2011. No. 1. Vol. 1. P. 35–57.

24. Scientific and technological bases of organic meadow farming / V. H. Kurhak et al. *Visnyk ahrarnoi nauky*. 2019. No. 11. P. 28–33.

25. Petrychenko V. F., Hetman N. Ya. Factors for increasing the efficiency of agrophytocenoses of perennial legumes in the Right-bank Forest-Steppe. *Kormy i kormovyrobnystvo*. 2017. Issue 84. P. 3–10.
26. Петриченко В. Ф., Корнійчук О. В., Векленко Ю. А. Сталий розвиток лукопасовищного кормовиробництва в умовах змін клімату. Вісник аграрної науки. 2018. № 6. С. 25–32.

27. Роль бобових культур в совершенствовании полевого травосеяния / Ю. К. Новоселов и др. Кормопроизводство. 2010. № 7. С. 19–22.

28. Стан і перспективи розвитку молочного скотарства України / М. І. Бащенко та ін. Розведення і генетика тварин. 2017. Вип. 54. С. 6–14.

29. Теорія і практика луківництва / Я. І. Мащак та ін. Дрогобич, 2011. 372 с.

30. Цимбал С. Я., Кущук М. А. Роль багаторічних бобових трав у поліпшенні кормових угідь. Зб. наук. пр. ННЦ «Інститут землеробства НААН». 2018. Вип. 1. С. 131–139.

26. Petrychenko V. F., Korniychuk O. V., Veklenko Yu. A. Sustainable development of pasture fodder production in the conditions of climate change. Visnyk ahrarnoi nauky. 2018. No. 6. P. 25–32.

27. The role of legumes in improving field grass cultivation / Yu. K. Novoselov et al. Kormoproizvodstvo. 2010. No. 7. P. 19–22.

28. The state and prospects for the development of dairy farming in Ukraine / M. I. Bashchenko et al. Rozvedennya i genetika tvaryn. 2017. Issue 54. P. 6–14.

29. Theory and practice of meadow farming / Ya. I. Mashchak et al. Drohobych, 2011. 372 p.

30. Tsymbal S. Ya., Kushhuk M. A. The role of perennial legumes in the improvement of forage lands. Zbirnyk naukovyh prats NNTs «Instytut zemlerobstva NAAN». 2018. Issue 1. P. 131–139.

Received 25.03.2021