Oxidative stress and extracellular matrices after hepatectomy and liver transplantation in rats

Tomohide Hori, Shinji Uemoto, Feng Chen, Lindsay B Gardner, Ann-Marie T Baine, Toshiyuki Hata, Takayuki Kogure, Justin H Nguyen

AIM: To investigate oxidative stress (OS)-mediated damage and the behavior of extracellular matrices in various rat models because shear stress with portal hypertension and cold ischemia/warm reperfusion injury trigger the liver regeneration cascade after surgery. These injuries also cause fatal liver damage.

METHODS: Rats were divided into four groups according to the surgery performed: control; hepatectomy with 40% liver remnant (60% hepatectomy); orthotopic liver transplantation (OLT) with whole liver graft (100% OLT); and split OLT (SOLT) with 40% graft (40% SOLT). Survival was evaluated. Blood and liver samples were collected at 6 h after surgery. Biochemical and histopathological examinations were performed. OS-induced damage, 4-hydroxynonenal, ataxia-telangiectasia mutated kinase, histone H2AX, phosphatidylinositol 3-kinase (PI3K) and Akt were evaluated by western blotting. Behavior of extracellular matrices, matrix metalloproteinase (MMP)-9, MMP-2, tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2 were also evaluated by western blotting and zymography.

RESULTS: Although 100% OLT survived, 60% hepatectomy and 40% SOLT showed poor survival. Histopathological, immunohistological, biochemical and protein assays revealed that 60% hepatectomy, 100% OLT and 40% SOLT showed liver damage. PI3K and Akt were decreased in 60% hepatectomy and 40% SOLT. For protein expression, 40% SOLT showed differences in MMP-9, MMP-2 and TIMP-2. TIMP-1 showed differences in 60% hepatectomy and 40% SOLT. For protein activity, MMP-9 demonstrated significant differences in 60% hepatectomy, 100% OLT and 40% SOLT.

CONCLUSION: Under conditions with an insufficient liver remnant, prevention of OS-induced damage via the Akt/PI3K pathway may be key to improve the postoperative course. MMP-9 may be also a therapeutic target after surgery.
Core tip: Although shear stress with portal hypertension and cold ischemia/warm reperfusion injury trigger the liver regeneration cascade after surgery, these injuries also cause fatal liver damage. Postoperative liver damage is still a critical matter in the field of liver surgery. Oxidative stress and extracellular matrices are important for liver regeneration after surgery and these may be important keys to overcome current problems in the field of liver surgery. Here, we investigated oxidative stress-mediated damage and the behavior of extracellular matrices in various rat models with liver surgery.

Hori T, Uemoto S, Chen F, Gardner LB, Baine AMT, Hata T, Kogure T, Nguyen JH. Oxidative stress and extracellular matrices after hepatectomy and liver transplantation in rats. World J Hepatol 2014; 6(2): 72-84. Available from: URL: http://www.wjgnet.com/1948-5182/full/v6/i2/72.htm DOI: http://dx.doi.org/10.4254/wjh.v6.i2.72

INTRODUCTION

Liver resection is considered the standard treatment for primary malignant tumors and liver metastases. Advanced surgical techniques for hepatectomy, development of preoperative evaluation, and improvements in intensive postoperative care have resulted in a decline in perioperative morbidity and mortality. However, postoperative liver failure still occurs despite these developments. Extended hepatectomy has the advantage of high curability but increases morbidity and mortality[1]. Insufficient volume of the remnant liver is correlated with perioperative morbidity and mortality[2]. Prognosis of postoperative liver failure due to insufficient liver remnant is poor[1,2].

Orthotopic liver transplantation (OLT) is an accepted therapy for end-stage liver disease and currently provides long-term survival and good quality of life. However, cold ischemia/warm reperfusion (CIWR) injury is still a major cause of morbidity and mortality after OLT[3]. Currently, strategic procedures are needed to improve the liver tolerance against CIWR injury. A small-for-size graft (SFSG) is used for deceased donor liver transplantation (DDLT) and living donor liver transplantation (LDLT)[4,5]. The SFSG is defined as a ratio of graft weight against standard liver volume < 40%[6]. An inevitable insufficiency of graft size cannot be avoided in the OLT or split orthotopic liver transplantation (SOLT) for DDLT. The SFSG in LDLT or SOLT is accompanied with CIWR injury and shear stress with portal hypertension. Hence, the SFSG results in high mortality and morbidity. The choice of a left-side graft is preferred from the viewpoint of greater donor safety and expanded donor candidates in LDLT[7,8]. Guaranteed SOLT with successful outcomes resolves a donor shortage in DDLT[4,5]. Currently, the 40% SFSG is a critical matter to overcome the donor shortage in DDLT and ensure donor safety in LDLT[9].

Oxygen is required for cell survival. However, it also poses a potential hazard via reactive oxygen species (ROS) and reactive nitrogen species (RNS), with biological and functional alterations of lipids, proteins and DNA[9-11]. Control of ROS/RNS production plays physiological roles, especially in regulating cell signaling, cell proliferation, differentiation and apoptosis[12]. Oxidative stress (OS) mediated by free radicals is defined as an imbalance between the production of ROS/RNS and the antioxidant capacity of the cell[10].

The extracellular matrix has important effects on inflammation, carcinogenesis and regeneration[12-14]. There are diverse types of proteases that control remodeling of the extracellular matrix, trigger liver regeneration and drive tumor progression[12-14]. Matrix metalloproteinases (MMPs) are a family of enzymes that degrade constituents of extracellular matrices and basement membranes. Currently, a total of 28 MMPs have been identified[14]. MMPs have been intensively studied and shown to play key roles in inflammation, carcinogenesis and regeneration[12-15]. MMP-2 and MMP-9 are implicated in liver injury and remodeling. In particular, previous researchers reported that MMP-9 and MMP-2 contribute to liver failure after liver surgery[16-19]. Tissue inhibitors of metalloproteinases (TIMPs) are a family of endogenous inhibitors of MMPs. Alteration in the MMP-TIMP balance is linked to pathophysiological conditions[20-23]. Currently, four members have been identified in the TIMP family which can inhibit various MMPs[24]. In particular, many researchers have focused on TIMP-1 and TIMP-2 during liver regeneration[25-28].

Although shear stress with portal hypertension and CIWR injury trigger the liver regeneration cascade after liver surgery, these injuries also cause fatal liver damage[29-31]. Initial damage is confirmed at the early postoperative period after liver surgery[32-35]. Therapeutic strategies to reduce this damage have the advantage of improving clinical results after liver surgery and overcoming the current issue of insufficient liver volume in the field of liver surgery. In the present preliminary study, we investigated OS-mediated damage and the behavior of extracellular matrices in various rat models with shear stress and portal hypertension and/or CIWR injury.

MATERIALS AND METHODS

Animals

Lewis rats (RT-1') were purchased from Harlan Laboratories (Indianapolis, IN, United States). Male rats were 8-12 wk old and weighed 250 g. The experimental protocols were approved by the Ethical Committee of our institution (Mayo Clinic, Institutional Animal Care and Use Committee, No. A19609). Rats were cared for in accordance with the Institutional Guidelines for Animal Welfare based on The National Institutes of Health Guide for the Care and Use of Laboratory Animals.

Surgical procedures and postoperative care

Comprehensive details of the surgical procedures for rat
and postoperative care in our institution have been previously described.[32-34] In the hepatectomy model, 40% of liver remnant consisted of the left median and lateral segments.[32,33] In the transplantation model, the syngeneic graft had a cold ischemic time of 3-4 h at 4 °C in normal Ringer’s solution[33]. The 40% SFSG was also formed by the left median and lateral segments at the back table.[34] To avoid any irrelevant signaling, the hepatic artery was reconstructed by ultramicrosurgery[33]. Each rat was kept separately after surgery and body temperature was maintained by a heating pad. Postoperative observation was performed every 30 min until 6 h after surgery and 1.0 mL of warm lactate Ringer’s solution was routinely maintained by a heating pad. Postoperative observation was performed every 30 min until 6 h after surgery and 1.0 mL of warm lactate Ringer’s solution was routinely administered every 1 h until 6 h after surgery. In the transplantation model, we previously demonstrated the importance of a shortened anhepatic phase and exclusion of unreliable samples based on autopsy findings.[33,34] In this study, the anhepatic phase was kept within 20 min in the transplantation model. No surgical complications were observed in each case at sampling autopsy.

**Study design**

Rats were divided into four groups according to the surgery performed: (1) laparotomy only (control); (2) hepatectomy with 40% liver remnant (60% hepatectomy); (3) OLT with whole liver graft (100% OLT); and (4) SOLT with 40% SFSG (40% SOLT) (Table 1). The survival study was performed on 10 rats in each group. Cell signaling involved in proliferation, differentiation and apoptosis was confirmed at the early postoperative period after liver surgery and subsequently progressive necrosis was observed, as described previously.[33,34] Serum and plasma were collected at 6 h after surgery (n = 5, in each group). Liver samples were also collected at 6 h after surgery for histopathological/immunohistological assessments, western blotting and gelatin zymography (n = 5, in each group).

**Biochemical assays and coagulation profile**

Aspartate aminotransferase (AST), alanine aminotransferase (ALT), total bilirubin (T-Bil), the international normalized ratio of prothrombin time (PT-INR) and hyaluronic acid (HA) were measured. Serum AST, ALT and T-Bil were assessed by commercial kits (SGOT, SGPT, total bilirubin reagent, respectively; Biotron, Hemet, CA, United States). The PT-INR in the plasma was measured by the i-STAT System (Abbott, Princeton, NJ, United States). Serum HA was measured using a commercial kit (Quantikine Hyaluronan ELISA Kit; R and D Systems, Minneapolis, MN, United States).

**Histopathological and immunohistological assessments**

Liver tissue was fixed in 10% neutral-buffered formalin, embedded in paraffin, and sliced into 4-μm sections. The morphological characteristics and graft injury scores were assessed after hematoxylin-eosin (HE) staining. The graft damage score has been described previously.[33] Scores were counted in 10 fields (×100 magnification) in each slide and these scores were averaged in each HE slide.

Induction of apoptosis was assessed by immunostaining of terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) (Apotag Peroxidase In Situ Apoptosis Detection Kit, S7100; Chemicon International, Billerica, MA, United States) and cysteine aspartic acid protease (caspase) 3 [Cleaved Caspase-3 (Asp175) Antibody, 9661S; Cell Signaling Technology, Danvers, MA, United States]. A TUNEL-positive nucleus was stained brown and a negative nucleus was counterstained light blue. A caspase-3-positive nucleus was stained brown and a negative nucleus was counterstained blue. Slides were scanned with an automated high-throughput scanning system (Scanscope XT, Aperio Technologies, Vista, CA, United States). To quantify the immunohistological findings, positive-stained nuclei were counted by Aperio Imagescope software (Aperio Technologies). All nuclei were classified into four color intensity levels and the higher two levels were considered as positive. The ratio of positive-stained nuclei to all nuclei was calculated and the mean ratio/mm² was determined.

**Western blotting and gelatin zymography**

The primary antibodies for malondialdehyde (MDA) (Anti-Malondialdehyde antibody, ab6463; Abcam, Cambridge, MA, United States); 4-hydroxynonenal (4-HNE) (4 Hydroxynonenal antibody, ab46545; Abcam); ataxia telangiectasia mutated kinase (ATM) (Phospho-ATM/ ATR Substrate Rabbit mAb, 2009; Cell Signaling Technology); phosphorylated histone H2AX (γH2AX) (Phospho-Histone H2AX Antibody, 2577; Cell Signaling Technology); phosphatidylinositol 3-kinase (PI3K) (Phospho-PI3K p85/p55 Antibody, 4228; Cell Signaling Technology); Akt (Phospho-Akt Rabbit mAb, 4058; Cell Signaling Technology); superoxide dismutase (SOD) (Cu/Zn Superoxide Dismutase Antibody, LS-B2907; LifeSpan BioSciences, Seattle, WA, United States); catalase (Catalase, LS-B2554; LifeSpan BioSciences); MMP-9 (Anti-MMP-9, Catalytic domain, AB19016; Millipore, Temecula, CA, United States). Hori T et al., Hepatic damage after liver surgery

| Table 1  Study design |
|------------------------|
| **Group**              | **Hepatic remnant volume** | **Cold ischemia warm reperfusion** | **Shear stress portal hypertension** |
| Control                | 100%, native liver         | -                                      | -                                    |
| 60%-hepatectomy        | 40%, native liver          | -                                      | +                                    |
| 100%-OLT              | 100%, syngeneic graft      | +                                      | -                                    |
| 40%-SOLT              | 40%, syngeneic graft       | +                                      | +                                    |

OLT: Orthotopic liver transplantation; SOLT: Split orthotopic liver transplantation.
In comparison with the controls (42.5 ± 8.6 U/L), AST levels showed significant differences in 60% hepatectomy (202.4 ± 41.9 U/L, P < 0.0001), 100% OLT (290.5 ± 31.9 U/L, P < 0.0001) and 40% SOLT (387.4 ± 36.8 U/L, P < 0.0001) (Figure 3A). In comparison with the controls (59.8 ± 9.6 U/L), ALT levels showed significant differences in 60% hepatectomy (213.8 ± 57.0 U/L, P < 0.0001), 100% OLT (309.4 ± 38.3 U/L, P < 0.0001) and 40% SOLT (392.2 ± 76.7 U/L, P < 0.0001) (Figure 3B). In comparison with the controls (0.41 ± 0.13 mg/dL), there were no significant differences in T-Bil levels in 60% hepatectomy (0.50 ± 0.26 mg/dL, P = 0.4798) and 100% OLT (0.58 ± 0.15 mg/dL, P = 0.0801), but there was in 40% SOLT (1.37 ± 0.29 mg/dL, P = 0.0001) (Figure 3C).

In comparison with the controls (0.99 ± 0.04), PT-INR values revealed significant differences in 60% hepatectomy (1.16 ± 0.09, P = 0.0052), 100% OLT (1.12 ± 0.04, P = 0.0008) and 40% SOLT (1.22 ± 0.06, P < 0.0001) (Figure 3D).

In comparison with the controls (76.6 ± 14.9 mg/mL), HA levels demonstrated significant differences in 60% hepatectomy (264.0 ± 58.8 mg/dL, P < 0.0001), 100% OLT (188.0 ± 29.0 mg/dL, P < 0.0001) and 40% SOLT (350.2 ± 136.6 mg/dL, P = 0.0021) (Figure 3E).

**Oxidative stress**

The western blotting intensities of MDA in each group are shown in Figure 4A. In comparison with the controls (1.00 ± 0.10), normalized MDA showed significant differences in 60% hepatectomy (1.64 ± 0.39, P = 0.0074), 100% OLT (2.12 ± 0.78, P = 0.0133) and 40% SOLT (2.30 ± 0.26, P < 0.0001) (Figure 4B).

**Lipid peroxidation**

In comparison with the controls (1.00 ± 0.09), normalized 4-HNE showed significant differences in 60% hepatectomy (1.30 ± 0.20, P = 0.0152), 100% OLT (1.41 ± 0.20, P = 0.0028) and 40% SOLT (1.40 ± 0.19, P = 0.0032) (Figure 4C).

**Responses and repairs to DNA damage**

In comparison with the controls (1.00 ± 0.09), normalized ATM showed significant differences in 60% hepatectomy (1.15 ± 0.09, P = 0.0336), 100% OLT (1.28 ± 0.10, P = 0.0015) and 40% SOLT (1.21 ± 0.09, P = 0.0053) (Figure 4D). In comparison with the controls (1.00 ± 0.17), normalized γH2AX showed significant differences

---

**Statistical analysis**

The results were presented as mean ± SD. Student’s t-test was used for the comparison of unpaired continuous variables between groups. Survival curves were constructed by the Kaplan-Meier method (Log-rank test). Statistical calculations were performed using SPSS version 16.0 (SPSS Inc., Chicago, IL, United States). P < 0.05 was considered statistically significant.

**RESULTS**

**Survival curves**

Survival curves for each group are shown in Figure 1. All rats that underwent a laparotomy or 100% OLT survived. The 60% hepatectomy and 40% SOLT groups clearly showed poorer survival than the controls (P < 0.0001). Insufficient liver remnant resulted in poor survivals after 60% hepatectomy. Especially, 40% SOLT showed very poor survivals.

**Liver parenchymal damage**

In comparison with the controls (0.1 ± 0.1 points), there were significant differences in the graft damage score for 60% hepatectomy (3.7 ± 0.7 points, P < 0.0001), 100% OLT (4.0 ± 0.6 points, P < 0.0001) and 40% SOLT (5.8 ± 1.1 points, P < 0.0001) (Figure 2A).

**Immunohistological assessment of apoptosis induction**

In comparison with the controls (0.003 ± 0.004), the rates of TUNEL-positive nuclei showed significant differences in 60% hepatectomy (0.017 ± 0.009, P = 0.0278), 100% OLT (0.107 ± 0.012, P = 0.0001) and 40% SOLT (0.166 ± 0.052, P < 0.0001) (Figure 2B). In comparison with the controls (0.002 ± 0.002), the rates of caspase-3-positive nuclei revealed significant differences in 60% hepatectomy (0.044 ± 0.023, P = 0.0033), 100% OLT (0.063 ± 0.014, P < 0.0001) and 40% SOLT (0.115 ± 0.019, P < 0.0001) (Figure 2C).

**Conventional liver function tests, coagulation profile and endothelial damage**

In comparison with the controls (2.30 ± 0.26, P = 0.0801), but there was in 40% SOLT (1.37 ± 0.29 mg/dL, P = 0.0001) (Figure 3C).

In comparison with the controls (0.99 ± 0.04), PT-INR values revealed significant differences in 60% hepatectomy (1.16 ± 0.09, P = 0.0052), 100% OLT (1.12 ± 0.04, P = 0.0008) and 40% SOLT (1.22 ± 0.06, P < 0.0001) (Figure 3D).

In comparison with the controls (76.6 ± 14.9 ng/mL), HA levels demonstrated significant differences in 60% hepatectomy (264.0 ± 58.8 mg/dL, P < 0.0001), 100% OLT (188.0 ± 29.0 mg/dL, P < 0.0001) and 40% SOLT (350.2 ± 136.6 mg/dL, P = 0.0021) (Figure 3E).

---

**REFERENCES**

Hori T et al. Hepatic damage after liver surgery.
in 60% hepatectomy (1.39 ± 0.29, \( P = 0.0071 \)), 100% OLT (1.67 ± 0.38, \( P = 0.0303 \)) and 40% SOLT (2.59 ± 0.66, \( P = 0.0008 \)) (Figure 4E).

**Promotion of cell survival**

The western blotting intensities of PI3K and Akt in each group are shown in Figure 4F.

In comparison with the controls (1.00 ± 0.08), there was no significant difference in normalized PI3K in 100% OLT (0.92 ± 0.09, \( P = 0.1726 \)), but there were significant differences in 60% hepatectomy (0.36 ± 0.11, \( P < 0.0001 \)) and 40% SOLT (0.42 ± 0.19, \( P = 0.0002 \)) (Figure 4G). In comparison with the controls (1.00 ± 0.12), there was no significant difference in normalized Akt in 100% OLT (0.92 ± 0.37, \( P = 0.6486 \)), but there were significant differences in 60% hepatectomy (0.37 ± 0.23, \( P = 0.0007 \)) and 40% SOLT (0.34 ± 0.24, \( P = 0.0006 \)) (Figure 4H).

**Activities of antioxidant enzymes**

In comparison with the controls (1.00 ± 0.09), normalized SOD did not show significant differences in 60% hepatectomy (0.97 ± 0.09, \( P = 0.6503 \)), 100% OLT (0.96 ± 0.11, \( P = 0.5461 \)) and 40% SOLT (0.87 ± 0.09, \( P = 0.0595 \)) (Figure 4I). In comparison with the controls (1.00 ± 0.17), normalized catalase also revealed no significant differences in 60% hepatectomy (0.91 ± 0.11, \( P = 0.3665 \)), 100% OLT (0.90 ± 0.15, \( P = 0.3365 \)) and 40% SOLT (0.95 ± 0.14, \( P = 0.6454 \)) (Figure 4J).

**Behavior of MMP-9, MMP-2, TIMP-1 and TIMP-2**

Protein expression and activity of MMP-9 are shown in Figure 5A. Protein expression was evaluated by western blot densitometry (Figure 5B-D). In comparison with the controls (1.00 ± 0.34), there were no significant differences in normalized MMP-9 in 60% hepatectomy (1.14 ± 0.43, \( P = 0.5811 \)) and 100% OLT (1.18 ± 0.35, \( P = 0.4254 \)), but there was a significant difference in 40% SOLT (2.16 ± 0.26, \( P = 0.0003 \)) (Figure 5B). In comparison with the controls (1.00 ± 0.16), there were no significant differences in normalized MMP-2 in 60% hepatectomy (0.78 ± 0.17, \( P = 0.0716 \)) and 100% OLT (0.80 ± 0.23, \( P = 0.1437 \)), but there was a significant difference in 40% SOLT (0.78 ± 0.12, \( P = 0.0385 \)) (Figure 5C).
In comparison with the controls (1.00 ± 0.30), there was no significant difference in normalized TIMP-1 in 100% OLT (0.82 ± 0.43, \( P = 0.4654 \)), but there were significant differences in 60% hepatectomy (1.41 ± 0.26, \( P = 0.0491 \)) and 40% SOLT (1.46 ± 0.32, \( P = 0.0486 \)) (Figure 5D). In comparison with the controls (1.00 ± 0.24), there were no significant differences in normalized TIMP-2 in 60% hepatectomy (1.23 ± 0.24, \( P = 0.1605 \)) and 100% OLT (0.95 ± 0.17, \( P = 0.6846 \)), but there was a significant difference in 40% SOLT (1.28 ± 0.12, \( P = 0.0471 \)) (Figure 5E).

Protein activities were evaluated by intensity in zy-
Hori T et al. Hepatic damage after liver surgery

A

Control  60%-hepatectomy  100%-OLT  40%-SOLT

MDA

B

\[ \text{MDA/GAPDH} \]

C

\[ \text{4-HNE/GAPDH} \]

D

\[ \text{ATM/GAPDH} \]

E

\[ \text{\gamma-H2AX/GAPDH} \]

F

Western blotting

Control  60%-hepatectomy  100%-OLT  40%-SOLT

PI3K

Akt

G

\[ \text{PI3K/GAPDH} \]

H

\[ \text{Akt/GAPDH} \]
mography (Figure 5F-I). In comparison with the controls (1.00 ± 0.15), relative MMP-9 clearly demonstrated significant differences in 60% hepatectomy (1.37 ± 0.23,  \( P = 0.0156 \)), 100% OLT (1.47 ± 0.33,  \( P = 0.0211 \)) and 40% SOLT (2.10 ± 0.75,  \( P = 0.0125 \)) (Figure 5F).

In comparison with the controls (1.00 ± 0.17), relative MMP-2 did not reveal significant differences in 60% hepatectomy (1.03 ± 0.12,  \( P = 0.7444 \)), 100% OLT (0.98 ± 0.15,  \( P = 0.8821 \)) and 40% SOLT (1.04 ± 0.13,  \( P = 0.6847 \)) (Figure 5G). In comparison with the controls (1.00 ± 0.15), relative TIMP-1 did not reveal significant differences in 60% hepatectomy (0.96 ± 0.29,  \( P = 0.7926 \)), 100% OLT (0.98 ± 0.09,  \( P = 0.8217 \)) and 40% SOLT (0.91 ± 0.26,  \( P = 0.5347 \)) (Figure 5H). In comparison with the controls (1.00 ± 0.12), relative TIMP-2 did not show significant differences in 60% hepatectomy (1.04 ± 0.09,  \( P = 0.5974 \)), 100% OLT (1.03 ± 0.11,  \( P = 0.6845 \)) and 40% SOLT (1.03 ± 0.16,  \( P = 0.7495 \)) (Figure 5I).

**Statistical differences between groups**

As described above, the data in comparisons with the controls are shown. Statistical differences between groups are summarized in Table 2.

**DISCUSSION**

In survival and histopathological studies, 40% SOLT involved dual damage (*i.e.*, shear stress with portal hypertension and CIWR injury) and showed the poorest survival and most severe liver damage. Although 100% OLT showed good survival, CIWR injury was observed by histopathological and biochemical findings. Here, we used plasma PT-INR and serum HA levels as markers of sinusoidal endothelial damage and all groups showed significant differences. Survival in the 60% hepatectomy and 40% SOLT groups seemed to be higher than in the 100% OLT group and this may reflect the damage induced by shear stress and portal hypertension. Our histopathological, immunohistological and biochemical findings revealed that liver damage and apoptotic induction were observed in the early postoperative period after liver surgery, as in previous studies[38,39,40,41]. Paradoxically, the early postoperative period may have a therapeutic potential for a subsequent course after liver surgery.

OS causes DNA damage and subsequent apoptosis and is an imbalance between production of free radicals and antioxidant defenses[9-11]. From the viewpoint of production of free radicals, ROS/RNS can attack and damage a variety of critical biological molecules, including lipids, essential cellular proteins and DNA[9-11]. Products of lipid peroxidation can be easily detected in biological fluids and tissues and can reliably and rapidly reflect the sensitive and specific signals of lipid peroxidation that occur in vivo[35,36]. The compound 4-HNE is an end product of lipoperoxidation with antiproliferative and proapoptotic properties[35,36]. Our results with MDA and 4-HNE confirmed that OS occurred even in the early postoperative period.

With regard to DNA damage responses, the protein kinase ATM can be initiated through rapid intermolecular autophosphorylation induced by DNA damage, phosphorylate various proteins and subsequently amplify the responses to DNA damage[10,11]. This DNA damage-inducible kinase activates H2AX[38]. H2AX is required for cell cycle arrest and DNA repair following double-stranded DNA breaks[10,11]. DNA damage results in the rapid phosphorylation of H2AX by ATM[38,49]. Within minutes of DNA damage, H2AX is phosphorylated at the sites of the DNA damage[49]. This early event in the DNA-damage response is required for the recruitment of many DNA-damage response proteins. Therefore, histone H2AX is activated by ATM after DNA dam-

---

**Figure 4** Protein expression of malondialdehyde, 4-hydroxynonenal, ataxia-telangiectasia mutated kinas/H2AX, phosphatidylinositol 3-kinase/Akt and antioxidant enzymes. A: Actual intensities of malondialdehyde (MDA) in western blotting; B: Normalized MDA; C: Normalized 4-hydroxynonenal (4-HNE); D: Normalized superoxide dismutase (SOD); E: Normalized catalase. **Statistical differences between groups**

As described above, the data in comparisons with the controls are shown. Statistical differences between groups are summarized in Table 2.
Hori T et al. Hepatic damage after liver surgery

A

MMP-9
Western blotting
Zymography

B

MMP-9
Control 60%-hepatectomy 100%-OLT 40%-SOLT

C

MMP-2
Control 60%-hepatectomy 100%-OLT 40%-SOLT

D

TIMP-1
Control 60%-hepatectomy 100%-OLT 40%-SOLT

E

TIMP-2
Control 60%-hepatectomy 100%-OLT 40%-SOLT

F

Relative MMP-9
Control 60%-hepatectomy 100%-OLT 40%-SOLT

G

Relative MMP-2
Control 60%-hepatectomy 100%-OLT 40%-SOLT

H

Relative TIMP-1
Control 60%-hepatectomy 100%-OLT 40%-SOLT
Thus, the ATM/H2AX signaling pathway is important in the response to and repair of DNA damage induced by OS. Our results with ATM and H2AX clearly showed that OS after liver surgery caused DNA damage signaling and triggered subsequent DNA repair. In this study, groups with only CIWR injury (i.e., 100% OLT) caused OS-induced damage and subsequent apoptotic process. However, this group showed differences not in PI3K/Akt, but in ATM/H2AX. These results suggested that CIWR injury induce apoptosis due to OS via the ATM/H2AX pathway.

Akt also plays a critical role in controlling apoptosis.

**Figure 5** Protein expression and activities of matrix metalloproteinases and tissue inhibitor of metalloproteinases. A: Actual protein expression and activities of matrix metalloproteinase (MMP)-9; B: Normalized MMP-9; C: Normalized MMP-2; D: Normalized tissue inhibitor of metalloproteinase (TIMP)-1; E: Normalized TIMP-2; F: Relative MMP-9; G: Relative MMP-2; H: Relative TIMP-1; I: Relative TIMP-2. *P < 0.05 vs control. NS: Not significant (*P ≥ 0.05); OLT: Orthotopic liver transplantation; SOLT: Split orthotopic liver transplantation.

**Table 2** Statistical differences between groups

|                      | Control vs 60%-hepatectomy | Control vs 100%-OLT | Control vs 40%-SOLT | 60%-hepatectomy vs 100%-OLT | 60%-hepatectomy vs 40%-SOLT | 100%-OLT vs 40%-SOLT |
|----------------------|-----------------------------|---------------------|---------------------|----------------------------|----------------------------|----------------------|
| Survival rate        | *P < 0.05                   | NS                  | *P < 0.05           | *P < 0.05                  | *P < 0.05                  | *P < 0.05            |
| Liver damage score   | *P < 0.05                   | NS                  | *P < 0.05           | NS                         | *P < 0.05                  | *P < 0.05            |
| TUNEL positive ratio | *P < 0.05                   | *P < 0.05           | *P < 0.05           | *P < 0.05                  | *P < 0.05                  | *P < 0.05            |
| Caspase-3 positive ratio | *P < 0.05               | *P < 0.05           | *P < 0.05           | *P < 0.05                  | *P < 0.05                  | *P < 0.05            |
| AST                  | *P < 0.05                   | *P < 0.05           | *P < 0.05           | *P < 0.05                  | *P < 0.05                  | *P < 0.05            |
| ALT                  | *P < 0.05                   | *P < 0.05           | *P < 0.05           | *P < 0.05                  | *P < 0.05                  | *P < 0.05            |
| T-Bil                | NS                          | NS                  | NS                  | NS                         | NS                         | NS                   |
| PT-INR               | *P < 0.05                   | *P < 0.05           | *P < 0.05           | *P < 0.05                  | *P < 0.05                  | *P < 0.05            |
| HA                   | *P < 0.05                   | *P < 0.05           | *P < 0.05           | *P < 0.05                  | *P < 0.05                  | *P < 0.05            |
| Western blotting     |                             |                     |                     |                            |                            |                      |
| MDA                  | *P < 0.05                   | *P < 0.05           | *P < 0.05           | NS                         | NS                         | NS                   |
| 4-HNE                | *P < 0.05                   | *P < 0.05           | *P < 0.05           | NS                         | NS                         | NS                   |
| ATM                  | *P < 0.05                   | *P < 0.05           | *P < 0.05           | NS                         | NS                         | NS                   |
| γH2AX                | *P < 0.05                   | *P < 0.05           | *P < 0.05           | NS                         | *P < 0.05                  | *P < 0.05            |
| P3K                  | *P < 0.05                   | *P < 0.05           | *P < 0.05           | *P < 0.05                  | NS                         | NS                   |
| Akt                  | *P < 0.05                   | *P < 0.05           | *P < 0.05           | *P < 0.05                  | NS                         | NS                   |
| SOD                  | NS                          | NS                  | NS                  | NS                         | NS                         | NS                   |
| Catalase             | NS                          | NS                  | NS                  | NS                         | NS                         | NS                   |
| MMP-9                | NS                          | NS                  | *P < 0.05           | NS                         | *P < 0.05                  | *P < 0.05            |
| MMP-2                | NS                          | NS                  | *P < 0.05           | NS                         | NS                         | NS                   |
| TIMP-1               | *P < 0.05                   | *P < 0.05           | *P < 0.05           | NS                         | NS                         | NS                   |
| TIMP-2               | NS                          | NS                  | *P < 0.05           | NS                         | NS                         | NS                   |
| Zymography           |                             |                     |                     |                            |                            |                      |
| MMP-9                | *P < 0.05                   | *P < 0.05           | *P < 0.05           | NS                         | *P < 0.05                  | *P < 0.05            |
| MMP-2                | NS                          | NS                  | NS                  | NS                         | NS                         | NS                   |
| TIMP-1               | NS                          | NS                  | NS                  | NS                         | NS                         | NS                   |
| TIMP-2               | NS                          | NS                  | NS                  | NS                         | NS                         | NS                   |

OLT: Orthotopic liver transplantation; SOLT: Split orthotopic liver transplantation; AST: Aspartate aminotransferase; ALT: Alanine aminotransferase; T-Bil: Total bilirubin; PT-INR: International normalized ratio of prothrombin time; HA: Hyaluronic acid; MDA: Malondialdehyde; 4-HNE: 4-hydroxynonenal; ATM: Ataxia-telangiectasia mutated kinase; P3K: Phosphatidylinositol 3-kinase; SOD: Superoxide dismutase; MMP: Matrix metalloproteinase; TIMP: Tissue inhibitor of metalloproteinase.
and promotes cell survival to prohibit apoptosis\cite{42-44}. Apoptotic machinery is inhibited by the activation of Akt\cite{22,23}. Akt is an integral component of the antiapoptotic process related to the activation of PI3K\cite{42-44}. Our results clearly showed that groups with accompanying shear stress and portal hypertension (i.e., 60% hepatectomy and 40% SOLT) had decreased PI3K and Akt. This suggested that a subsequent apoptotic process was triggered in these groups. Shear stress and portal hypertension due to insufficient liver volume induce apoptosis due to OS via the Akt/PI3K pathway.

With regard to antioxidant defense, scavenging enzymes of free radicals, such as SOD and catalase, also play an important role in reducing DNA damage and subsequent apoptosis\cite{10,11}. Cells are normally able to defend themselves against OS-induced damage through this scavenging system\cite{25-28}. Our results revealed that this scavenging system did not appear to be triggered, although these scavenging enzymes can cope with large amounts of ROS\cite{47}. Shear stress with portal hypertension and/or CIWR injury after liver surgeries in this study caused considerable liver damage. A possible explanation is that this scavenging system failed to stimulate some reactive molecules because of considerable damage after liver surgery.

MMPs have been intensively studied and shown to play key roles in inflammation, carcinogenesis and regeneration and many researchers have already focused on MMP-2 and MMP-9 after liver surgery\cite{22,23,49-52}. In the present study, 40% SOLT increased protein expression of MMP-2 in western blotting, although zymography did not show any differences. Contrary to MMP-2, postoperative MMP-9 clearly showed differences in protein expression and function. Additionally, MMP-9 showed high reproducibility in our previous studies\cite{25,47}. The present results for MMP-9 suggested that MMP-9 clearly increased even in the early postoperative period after liver surgery and MMP-9 is a major therapeutic target after liver surgery.

TIMPs are also important after liver surgery. Many researchers have focused on TIMP-1 and TIMP-2 during liver regeneration\cite{22,23,49-52}. Some researchers have focused on postoperative behavior of TIMP-1\cite{22}. In particular, TIMP-1 has extrahepatic effects during liver failure\cite{22,49-52} and therefore we initially expected that TIMP-1 would show differences in the liver samples. However, zymography for TIMP-1 did not show any differences, although groups with shear stress and portal hypertension (i.e., 60% hepatectomy and 40% SOLT) showed increased protein expression of TIMP-1 in western blotting. TIMP-1 is an endogenous inhibitor of MMP-9 and a balance of MMP-9/TIMP-1 is linked\cite{22,49-52}. However, the behavior of TIMP-1 in the postoperative liver is still unclear and further studies are required.

Liver damage and apoptotic induction are confirmed even in the early postoperative period after liver surgery but liver injury triggers the liver regeneration cascade after surgery. Once hepatic failure occurs after liver surgery, this damage is usually intractable and fatal. Therefore, the early postoperative period may be a suitable time for treatment to achieve a good postoperative course after liver surgery and our lab focused on OS-mediated damage and the behavior of extracellular matrices after liver surgery\cite{20,48,51,53-56}. The inhibition of apoptotic induction due to OS via the ATM/H2AX pathway may be important for a strategy against CIWR injury, even in the condition of sufficient liver volume. Under conditions with insufficient liver remnant, the prevention of apoptotic induction due to OS via the Akt/PI3K pathway may be key to improving postoperative course. Also, MMP-9 may be a reliable therapeutic target, especially in the condition of CIWR injury with insufficient liver volume. We hope that our results will be informative for researchers in the hepatology field.

ACKNOWLEDGMENTS

We are grateful to Dennis W Dickson, Monica Castanedes-Casey, Virginia R Phillips, Linda G Rousseau and Melissa E Murray (Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States) for their technical support with the histopathological evaluation. We are also grateful to Kagemasa Kuribayashi, Takuma Kato, Kanako Saito, Linan Wang, Mic Torii (Department of Cellular and Molecular Immunology, Mie University Graduate School of Medicine, Tsu, Mie, Japan) and Xiangdong Zhao (Innovation Center for Immunoregulation Technology, Mie University Graduate School of Medicine, Kyoto, Japan) for their support with the protein assays and surgical techniques.

REFERENCES

1 Bachellier P, Rosso E, Pessaux P, Oussoultzoglou E, Nobili C, Panaro F, Jaec D. Risk factors for liver failure and mortality after hepatectomy associated with portal vein resection.
Hori T et al. Hepatic damage after liver surgery

Ann Surg 2011; 253: 173-179 [PMID: 21233614 DOI: 10.1097/SLA.0b013e3181f193ba]

Fan ST, Mau Lo C, Poon KT, Yeung C, Leung Liu C, Yuen WK, Ming Lam C, Ng KK, Ching, Chan S. Continuous improvement of survival outcomes of resection of hepatocellular carcinoma: a 20-year experience. Ann Surg 2011; 253: 745-758 [PMID: 21475015 DOI: 10.1097/SLA.0b013e3182111195]

Lenasters J, Bunzendahl H, Thurman R. Preservation of the liver. In: Maddrey W, Sorrell M. Transplantation of the liver. 7th ed. East Norwalk: Appleton & Lange, 1995: 297-321

Hori T, Uemoto S, Gardner LB, Sibulesky L, Ogura Y, Nguyen JH. Left-sided grafts for living-donor liver transplantation and split grafts for deceased-donor liver transplantation: their impact on long-term survival. Clin Res Hepatol Gastroenterol 2012; 36: 47-52 [PMID: 21955515 DOI: 10.1016/j.clinre.2011.08.008]

Busuttil RW, Goss JA. Split liver transplantation. Ann Surg 1999; 229: 313-321 [PMID: 10077042]

Wang F, Pan KT, Chu SY, Chan KM, Chou HS, Wu TJ, Lee WC. Preoperative estimation of the liver graft weight in adult right lobe living donor liver transplantation using maximal portal vein diameters. Liver Transplant 2011; 17: 373-380 [PMID: 21445920 DOI: 10.1002/lt.22274]

Ogura Y, Hori T, El Moghazy WM, Yoshizawa A, Oike F, Mori A, Kaido T, Takada Y, Uemoto S. Portal pressure & ltv; 15 mm Hg is a key for successful adult living donor liver transplantation utilizing smaller grafts than before. Liver Transplant 2010; 16: 718-728 [PMID: 20517905 DOI: 10.1002/lt.22059]

Hori T, Ogura Y, Ogawa K, Kaido T, Segawa H, Okajima H, Kogure T, Uemoto S. How transplant surgeons can overcome the inevitable insufficiency of allograft size during adult living-donor liver transplantation: strategy for donor safety with a smaller-size graft and excellent recipient results. Clin Transplant 2012; 26: E324-E334 [PMID: 22686957 DOI: 10.1111/j.1399-0012.2012.01664.x]

Acuña Castroviejo D, López LC, Escames G, López A, García JA, Reiter RJ. Melatonin-mitochondria interplay in health and disease. Curr Top Med Chem 2011; 11: 221-240 [PMID: 21244359]

Ghosh N, Ghosh R, Mandal SC. Antioxidant protection: A promising therapeutic intervention in neurodegenerative disease. Free Radic Res 2011; 45: 888-905 [PMID: 21615270 DOI: 10.3109/10715762.2011.574290]

Turan B. Role of antioxidants in redox regulation of diabetic cardiovascular complications. Curr Pharm Biochem 2010; 11: 819-836 [PMID: 20874678]

Defamie V, Laurens M, Patrono D, Devel L, Brault A, Saint-Pierre J. Metalloproteinase inhibition protects rat livers from prolonged cold ischemia-warm reperfusion injury. J Clin Invest 2011; 121: 2767-2774 [PMID: 22719184 DOI: 10.1172/JCI38289]

Chiroco R, Liu XW, Jung KK, Kim HR. Novel functions of MMP-9 after the cold ischemia-reperfusion injury and/or shear stress with portal hypertension: an overview. Surg Today 2014; 44: 201-203 [PMID: 2525637]

Ten Hove WR, Korkmaz KS, on the dries S, de Rooij BJ, van Hoek B, Porte RJ, van der Reijden JJ, Coenaard MJ, Dubbeld J, Hommes DW, Verspaget HW. Matrix metalloproteinase 2 geno-type is associated with nonanatomastic biliary strictures after orthotopic liver transplantation. Liver Int 2011; 31: 1110-1117 [PMID: 21475270 DOI: 10.1111/j.1478-3231.2011.02459.x]

Chiroco R, Liu XW, Jung KK, Kim HR. Novel functions of TIMPs in cell signalling. Cancer Metastasis Rev 2006; 25: 99-113 [PMID: 16680576]

Yamamoto S, Nguyen JH. TIMP-1/MMP-9 imbalance in brain edema in rats with fulminant hepatic failure. J Surg Res 2006; 134: 367-314 [PMID: 16488444]

Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2002; 2: 161-174 [PMID: 11908835]

Ikebuchi Y, Ishida C, Okamoto K, Murawaki Y. Association of TIMP-1 and TIMP-2 gene polymorphisms with progression of liver fibrosis in patients with type C chronic liver disease. Biochem Genet 2013; 51: 564-574 [PMID: 23563628 DOI: 10.1007/s10528-013-9887-8]

Rath T, Menendez KM, Kögler M, Hage L, Wenzel C, Schulz R, Graf J, Nährlich L, Roeb E, Roderfeld M. TIMP-1/-2 and their inhibitors TIMP-1 and TIMP-2 gene polymorphisms with progression of liver fibrosis in patients with type C chronic liver disease. Biochem Genet 2013; 51: 564-574 [PMID: 23563628 DOI: 10.1007/s10528-013-9887-8]

Kuyvenhoven JP, Molenaar IQ, Verspaget HW, Veldman MG, Palareti G, Legnani C, Moolenburgh SE, Terpstra OT, Lamers CB, van Hoek B, Porte RJ, Plasma MMP-2 and MMP-9 and their inhibitors TIMP-1 and TIMP-2 during human orthotopic liver transplantation. The effect of aprotinin and the relation to ischemia/reperfusion injury. Thromb Haemost 2004; 91: 506-513 [PMID: 14983226]

Mohammed FF, Pennington CJ, Kassiri Z, Rubin JS, Soloway PD, Ruther U, Edwards DR, Khokha R. Metalloproteinase inhibitor TIMP-1 affects hepatocyte cell cycle via HGF activation in murine liver regeneration. Hepatology 2005; 41: 857-867 [PMID: 15726641]

He S, Atkinson C, Qiao F, Cianflone K, Chen X, Tom luminson S. A complement-dependent balance between hepatic ischemia/reperfusion injury and liver regeneration in mice. J Clin Invest 2009; 119: 2304-2316 [PMID: 19620784 DOI: 10.1172/JCI38289]

Jin X, Zhang Z, Beer-Stolz D, Zimmers TA, Koniaris LG. Interleukin-6 inhibits oxidative injury and necrosis after extreme liver resection. Hepatology 2007; 46: 802-812 [PMID: 17668886]

Panis Y, McMullan DM, Enond JC. Progressive necrosis after hepatectomy and the pathophysiology of liver failure after massive resection. Surgery 1997; 121: 142-149 [PMID: 9037225]

Hori T, Uemoto S, Nguyen JH. Simple and reproducible hepatectomy in the mice using the clip technique. World J Gastroenterol 2012; 18: 2767-2774 [PMID: 22719184 DOI: 10.3748/wjg.v18.i22.2767]

Hori T, Nguyen JH, Zhao X, Ogura Y, Hata T, Yagi S, Chen F, Baine AM, Uhashi N, Eckman CB, Herdt AR, Egawa H, Takada Y, Oike F, Sakamoto S, Kasahara A, Ogawa K, Hata

WJH | www.wjgnet.com

February 27, 2014 | Volume 6 | Issue 2 |
Hori T et al. Hepatic damage after liver surgery

K, lida T, Yonekawa Y, Sibulesky L, Kuribayashi K, Kato T, Saito K, Wang L, Torii M, Sahara N, Kamo N, Sahara T, Yasutomi M, Uemoto S. Comprehensive and innovative techniques for liver transplantation in rats: a surgical guide. World J Gastroenterol 2010; 16: 3120-3132 [PMID: 20993497]

Hori T, Uemoto S, Zhao X, Chen F, Baine AMT, Gardner LB, Ohashi N, Conkle F, Castanedes-Casey M, Phillips VR, Rousseau LG, Murray ME, Kamo N, Nguyen JH. Surgical guide including innovative techniques for orthotopic liver transplantation in the rat: Key techniques and pitfalls in whole and split liver grafts. Ann Gastroenterol 2010; 23: 270-295

Awasthi YC, Sharma R, Sharma A, Yadav S, Singhal SS, Chaudhary P, Awashi S. Self-regulatory role of 4-hydroxynonenal in signaling for stress-induced programmed cell death. Free Radic Biol Med 2008; 45: 111-118 [PMID: 18456001 DOI: 10.1016/j.freeradbmed.2008.04.007]

Voulgaridou GP, Anastopoulos I, Franco R, Panayiotidis MI, Pappa A. DNA damage induced by endogenous aldehydes: current state of knowledge. Mutat Res 2011; 711: 13-27 [PMID: 21419140 DOI: 10.1016/j.mrfmmm.2011.03.006]

Irrazabal CE, Liu JC, Burg MB, Ferraris JD. A DNA damage-inducible kinase, contributes to activation by high NaCl of the transcription factor TonEBP/OREBP. Proc Natl Acad Sci USA 2004; 101: 8809-8814 [PMID: 15173573]

Andäng M, Hjerling-Leffler J, Moliner A, Lundgren TK, Castelo-Branco G, Nanou E, Pozas E, Bighta J, Halliez S, Andäng M, Ernfors P. Cell cycle restriction by histone H2AX damage-inducible kinase, contributes to activation by high NaCl of the transcription factor TonEBP/OREBP. Proc Natl Acad Sci USA 2004; 101: 8809-8814 [PMID: 15173573]

Yuan J, Adamski R, Chen J. Focus on histone variant H2AX: to be or not to be. FEBS Lett 2010; 584: 3717-3724 [PMID: 20493860 DOI: 10.1016/j.febslet.2010.05.021]

Fernando RN, Eleuteri B, Abdelhady S, Nussenzevig A, Andäng M, Ernfors P. Cell cycle restriction by histone H2AX limits proliferation of adult neural stem cells. Proc Natl Acad Sci USA 2011; 108: 5837-5842 [PMID: 21436033 DOI: 10.1073/pnas.1014993108]

Fernando RN, Eleuteri B, Abdelhady S, Nussenzevig A, Andäng M, Ernfors P. Cell cycle restriction by histone H2AX limits proliferation of adult neural stem cells. Proc Natl Acad Sci USA 2011; 108: 5837-5842 [PMID: 21436033 DOI: 10.1073/pnas.1014993108]

Burgering BM, Coffer PJ. Protein kinase B (c-Akt) in phosphatidylinositol-3-0H kinase signal transduction. Nature 1995; 376: 599-602 [PMID: 7637810]

Franke TF, Yang SJ, Chan TO, Datta K, Kazlauskas A, Morris DN, Kaplan DR, Tschiln HS. The protein kinase encoded by the Akt proto-oncogene is a target of the PDGF-activated phosphatidylinositol 3-kinase. Cell 1995; 81: 727-736 [PMID: 7774014]

Haga S, Ozaki M, Inoue H, Okamoto Y, Ogawa W, Takeda K, Akira S, Todo S. The survival pathways phosphatidylinositol-3 kinase (PI3-K)/phosphoinositide-dependent protein kinase 1 (PKD1)/Akt modulate liver regeneration through hepatocyte size rather than proliferation. Hepatology 2009; 49: 204-214 [PMID: 19065678 DOI: 10.1002/hep.22583]

Khalil A, Morgan RN, Adams BR, Golding SE, Dever SM, Rosenberg E, Povirk LF, Valerie K. ATM-dependent ERK signaling via AKT in response to DNA double-strand breaks. Cell Cycle 2011; 10: 481-491 [PMID: 21263216]

Maulik N, Das DK. Emerging potential of thioreredox and thioreredox interacting proteins in various disease conditions. Biochim Biophys Acta 2008; 1780: 1368-1382 [PMID: 18206121 DOI: 10.1016/j.bbagen.2007.12.088]

Nguyen JH, Yamamoto S, Steers J, Seveller D, Lin W, Shimoji N, Castanedes-Casey M, Genco P, Golde T, Richardson E, Dickson D, McKinney M, Eckman CB. Matrix metalloproteinase-9 contributes to brain extravasation and edema in fulminant hepatic failure mice. J Hepatol 2006; 44: 1105-1114 [PMID: 16458990]

Ohashi N, Hori T, Chen F, Jermanus S, Eckman CB, Nakao A, Uemoto S, Nguyen JH. Matrix metalloproteinase-9 contributes to parenchymal hemorrhage and necrosis in the remnant liver after extended hepatectomy in mice. World J Gastroenterol 2012; 18: 2320-2333 [PMID: 22654423 DOI: 10.3748/wjg.v18.i23.2320]

Chen F, Radisky ES, Das P, Batra J, Hata T, Hori T, Baine AM, Gardner L, Yue MY, Bu G, del Zoppo G, Patel TC, Nguyen JH. TIMP-1 attenuates blood-brain barrier permeability in mice with acute liver failure. J Cereb Blood Flow Metab 2013; 33: 1041-1049 [PMID: 23532868 DOI: 10.1038/jcbfm.2013.45]

Nguyen JH. Blood-brain barrier in acute liver failure. Neurochem Int 2012; 60: 676-683 [PMID: 22100566 DOI: 10.1016/j.neuint.2011.10.012]

Chen F, Hori T, Ohashi N, Baine AM, Eckman CB, Nguyen JH. Occludin is regulated by epidermal growth factor receptor activation in brain endothelial cells and brains of mice with acute liver failure. Hepatology 2011; 53: 1294-1305 [PMID: 21480352 DOI: 10.1002/hep.24161]

Nguyen JH. Subtle BBB alterations in brain edema associated with acute liver failure. Neurochem Int 2010; 56: 203-204; author reply 205-207 [PMID: 20201130]

Hori T, Gardner LB, Chen F, Baine AM, Hata T, Uemoto S, Nguyen JH. Liver graft pretreated in vivo or ex vivo by γ-aminobutyric acid receptor activation. J Surg Res 2013; 182: 166-175 [PMID: 23010512 DOI: 10.1016/j.jss.2012.08.055]

Hori T, Gardner LB, Hata T, Chen F, Baine AM, Uemoto S, Nguyen JH. Pretreatment of liver grafts in vivo by γ-aminobutyric acid receptor activation reduces cold ischemia/warm reperfusion injury in rat. Ann Transplant 2013; 18: 299-313 [PMID: 23792534 DOI: 10.12695/JAT.83955]

Ohashi N, Hori T, Chen F, Jermanus S, Nakao A, Uemoto S, Nguyen JH. Matrix metalloproteinase-9 in the initial injury after hepatectomy in mice. World J Gastroenterol 2013; 19: 3027-3042 [PMID: 23516982 DOI: 10.3748/wjg.v19.i12.3027]

Gardner LB, Hori T, Chen F, Baine AM, Hata T, Uemoto S. Effect of specific activation of γ-aminobutyric acid receptor in vivo on oxidative stress-induced damage after extended hepatectomy. Hepatol Res 2012; 42: 1131-1140 [PMID: 22583816 DOI: 10.1111/j.1872-034X.2012.01030.x]
