Nickel-Catalyzed Three-Component Olefin Reductive Dicarbofunctionalization to Access Highly Functionalized Alkylborates

Xiao-Xu Wang, Xi Lu, Shi-Jiang He, Yao Fu

Submitted date: 07/02/2020 • Posted date: 07/02/2020
Licence: CC BY-NC-ND 4.0

Citation information: Wang, Xiao-Xu; Lu, Xi; He, Shi-Jiang; Fu, Yao (2020): Nickel-Catalyzed Three-Component Olefin Reductive Dicarbofunctionalization to Access Highly Functionalized Alkylborates. ChemRxiv. Preprint. https://doi.org/10.26434/chemrxiv.11821341.v1

We report a three-component olefin reductive dicarbofunctionalization for constructing densely functionalized alkylborates, specifically, nickel-catalyzed reductive dialkylation and alkylarylation of vinyl boronates with a variety of alkyl bromides and aryl iodides. This reaction exhibits good coupling efficiency and excellent functional group compatibility, providing convenient access to the late-stage modification of complex natural products and drug molecules. Combined with versatile alkylborate transformations, this reaction could also find applications in the modular and convergent synthesis of complex, densely functionalized compounds.

File list (2)

- wxx-manuscript-20200122.docx (593.62 KiB) view on ChemRxiv → download file
- wxx-SI-20200122.pdf (16.28 MiB) view on ChemRxiv → download file
Nickel-Catalyzed Three-Component Olefin Reductive Dicarbofunctionalization to Access Highly Functionalized Alkylborates

Xiao-Xu Wang¹, Xi Lu¹*, Shi-Jiang He¹, Yao Fu¹*

¹ Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei 230026, China

*Corresponding Authors: Xi Lu: luxi@mail.ustc.edu.cn; Yao Fu: fuyao@ustc.edu.cn

Abstract

We report a three-component olefin reductive dicarbofunctionalization for constructing densely functionalized alkylborates, specifically, nickel-catalyzed reductive dialkylation and alkylarylation of vinyl boronates with a variety of alkyl bromides and aryl iodides. This reaction exhibits good coupling efficiency and excellent functional group compatibility, providing convenient access to the late-stage modification of complex natural products and drug molecules. Combined with versatile alkylborate transformations, this reaction could also find applications in the modular and convergent synthesis of complex, densely functionalized compounds.

Keywords

nickel catalyst, olefin dicarbofunctionalization, reductive dialkylation, reductive alkylarylation, alkylborate synthesis

Introduction

Olefins are fundamental chemicals in organic synthesis. They frequently occur in natural products, are produced in enormous quantities in the petroleum industry, and are prepared through a variety of synthetic methods in the laboratory. The reactive double bonds make
olefins attractive substrates for high-complexity synthesis. Among the well-developed olefin functionalization strategies, the newly developed reductive dicarbofunctionalization has already been proven to be a powerful and straightforward method (Scheme 1a). For example, Nevado and co-workers realized nickel-catalyzed intermolecular olefin reductive alkylation, in which one C(sp3)-C(sp3) bond and one C(sp3)-C(sp2) bond were formed. Chu and co-workers reported an example of intermolecular olefin reductive carboacylation with fluoroalkyl iodides and acyl chlorides. However, the development of important dialkylation processes is relatively limited and still relies on organometallics that are sensitive to many functional groups.

Recently, dicarbofunctionalization of commercially available vinyl boronates has been applied to the diversified synthesis of alkylborates. For example, Morken, Studer and Aggarwal independently achieved functionalization of a vinylboronate complex using an organolithium reagent and another electrophile (Scheme 1b). Most recently, the electrophile-nucleophile dicarbofunctionalization of a vinyl boronate has been achieved with appropriate radical precursor (Scheme 1c). In addition, hydroalkylation and hydroarylation of alkenyl boronic esters has also been realized. Despite these great successes, general and modular methods to access versatile alkylborates without using any organometallic reagents are still desirable. With our focus on olefin reductive coupling and alkylborate synthesis, we set out to realize the regioselective dicarbofunctionalization of vinyl boronates, taking advantage of nickel-catalyzed reductive coupling and classical Giese-type addition. Herein, we report a three-component olefin reductive dicarbofunctionalization for constructing densely functionalized alkylborates, specifically, nickel-catalyzed reductive dialkylation and alkylarylation of vinyl boronates with a variety of alkyl bromides and aryl iodides (Scheme 1d). This reaction shows good coupling efficiency,
excellent functional group compatibility, and a high degree of regioselectivity. From the point of view of versatile alkylborate transformations, this reaction might find a number of applications in modular and convergent synthesis of complex, densely functionalized compounds.

Scheme 1. Dicarbofunctionalization of Vinyl Boronates to Access Alkylborates

\[\text{B}_2\text{pin}_2 = \text{bis(pinacolato)diboron. B}_2\text{neop}_2 = \text{bis(neopentyl glycolato)diboron. Tf} = \text{triflyl. Nu} = \text{nucleophile. E} = \text{electrophile.} \]

Results and Discussion

We began this study with the synthesis of alkylborate 4 through the proposed dialkylation (Table 1). We systematically screened all the reaction parameters (see the Supporting Information for more details), and desired product 4 was obtained in 88% gas chromatography (GC) yield and 83% isolated yield in the presence of NiBr\(_2\)(diglyme), a dipyrazolpyridine ligand (L), a Mn(0) reductant, and a NaI additive in DMAc (entry 1). A number of other nitrogen-containing ligands were compared: all bidentate ligands, bipyridine (L\(_1\) and L\(_2\)), pyridine-oxazoline (L\(_3\)), and bioxazoline (L\(_4\)) were inefficient; tridentate tripyridine (L\(_5\)) yielded only a small amount of the desired products; and pyridine-oxazoline ligands (L\(_6\) and L\(_7\)) produced moderate yields. In the absence of nickel catalysts or ligands, dialkylation could not proceed (entry 2). Other nickel sources, including NiCl\(_2\)(PPh\(_3\))\(_2\), Nil\(_2\), and Ni(COD)\(_2\) could also be used instead of NiBr\(_2\)(diglyme); however, they
led to different decreases in coupling efficiency (entry 3). Metal Zn$^{13c, 16}$ and diboron$^{13b, 17}$ were potential reductants for this transformation (entries 4-6),18 but our previously used nickel-silane reductive system$^{13a, 13d}$ was incompetent (entry 7). Amide solvents were critical: DMF and NMP resulted in comparable yields (entry 8) to that of DMAc (optimal conditions), but the reaction was completely inhibited in THF, 1,4-dioxane, CH$_3$CN, and DMSO (entry 9). The performance of primary alkyl iodide 5 was barely satisfactory (entry 10), and a significant amount of homocoupling product 6 was observed. Tertiary alkyl bromides were irreplaceable: the corresponding iodides and chlorides provided no dialkylation product (entry 11), even in the presence of activator reagents (entry 12). Finally, the iodide ion additive and ratio of starting material were also carefully selected (entries 13-16).

Table 1. Optimization of the Reaction Conditions

entry	deviation from standard conditions	yield (%)
1	none	88
2	w/o NiBr$_2$(diglyme) or w/o L	N.R.
3	NiCl$_2$(PPh$_3$)$_2$, NiI$_2$, or Ni(COD)$_2$ instead of NiBr$_2$(diglyme)	49-83
4	3.0 eq. Zn instead of Mn	76
5	3.0 eq. B$_2$pin$_2$ and 3.0 eq. LiOMe instead of Mn	44
6	3.0 eq. B$_2$pin$_2$ and 3.0 eq. K$_3$PO$_4$ instead of Mn	50
7	3.0 eq. DEMS and 3.0 eq. Na$_2$CO$_3$ instead of Mn	11
8	DMF, or NMP instead of DMAc	72-87
9	THF, 1,4-Dioxane, CH$_3$CN, or DMSO instead of DMAc	<2
10	5 instead of 3	54
11	tBuI or tBuCl instead of tBuBr	<2
12	tBuCl with 20% Cp$_2$TiCl$_3$ instead of tBuBr	<2
13	30% TBAI instead of 50% NaI	82
14	20% NaI instead of 50% NaI	45
15	ratio of 1 : 2 : 3 = 1 : 1 : 1 instead of 1 : 2 : 2	52
16	ratio of 1 : 2 : 3 = 1 : 1.5 : 2 instead of 1 : 2 : 2	76
With suitable conditions in hand, we set out to evaluate the scope of this olefin dialkylation reaction. As shown in Scheme 2, a variety of primary alkyl bromides delivered desired products 7-25 in moderate to good yields (60-84%). Because of mild reductive cross-

\[\text{Product 7-25} \]
coupling conditions, this reaction exhibited good compatibility with a wide range of synthetically useful functional groups, such as ester (4), ether (7-8), aryl fluoride (10), trifluoromethyl (11), and trifluoromethoxy (12) groups. Satisfactory chemoselectivity was observed in compounds 13-15; in these cases, aryl chlorides and bromides were proven to be less reactive than alkyl bromides. This chemoselectivity provided a profitable platform for further manipulations at the surviving aryl electrophilic sites. Both base-sensitive ketone (16) and cyano (17) groups and acid-sensitive acetal (18) groups posed no problem during this transformation. Several heterocycles such as phthalimide (19), thiophene (20), furan (21), morpholine (22), and indole (23) moieties, were well tolerated. Finally, this reaction also performed well in the presence of amide-possessing N-H bonds (24) and unprotected alcohol (25) groups.

Scheme 3. Substrate Scope of Tertiary Alkyl Bromides

The versatility of this reaction was further demonstrated in terms of the tertiary alkyl partners (Scheme 3). Both acyclic (26-30) and cyclic (31-33) tertiary alkyl bromides were successfully converted to the desired products. With respect to the acyclic substrates, dramatically different steric hindrances only resulted in a slight influence on the coupling
efficiencies. Finally, tertiary alkyl bromides containing ester (32), ether (33), acetal (34), and \(C(sp^3)\)-Cl (35) groups were indeed good substrates during the transformation and afforded the corresponding products with moderate to good isolated yields.

Scheme 4. Substrate Scope of Olefin Reductive Alkylarylation

* Conditions: as shown in Table 1, entry 1, without NaI, 0.2 mmol scale. Isolated yield.

Although the primary focus of this study was olefin reductive dialkylation, the optimized conditions could also be extended to alkylarylation (Scheme 4). Benzylic boronates were obtained conveniently with the simultaneous formation of one aryl-alkyl bond and one alkyl-alkyl bond.\(^{19}\) With respect to aryl coupling partners, both electron-donating (36) and electron-withdrawing (37-39) substituents were well tolerated in the meta- and para-positions and afforded the corresponding products in moderate (39–50%) isolated yields. In addition, this transformation is orthogonal to classical Suzuki cross-coupling procedures, as the \(C(sp^3)\)-B bond remained intact in substrate 40. Finally, different tertiary alkyl bromides were also explored (41-43), in which the desired alkylarylation products were delivered smoothly.

Scheme 5. Synthetic Applications

* Conditions: as shown in Table 1, entry 1, without NaI, 0.2 mmol scale. Isolated yield.
In a scale-up reaction, we successfully obtained reductive dialkylation product 9 with a satisfactory 84% isolated yield (Scheme 5a), which highlights the practicality of this new alkylborate synthetic method. Combined with versatile alkylborate transformations, our method provided a modular strategy for the synthesis of densely functionalized compounds (Scheme 5b). For example, structurally complicated alcohols (45-46), diaryl alkanes (47-48), and alkyl iodide (49) were created via such an assembly-line synthetic route. Finally, we used this method for the late-stage functionalization of complex natural products and drug molecules (Scheme 5c). The efficient conversion of glucose (50), indomethacin (51), and oleanic acid (52) derivatives to the desired products demonstrated a high degree of tolerance to diverse functional groups.

Scheme 6. Mechanistic Probes
To examine the reaction mechanism, we carried out competition experiments (Scheme 6a). 4-Bromobut-1-ene (53) was subjected to standard conditions, and desired product 54 was obtained in 63% isolated yield, with the terminal alkene group retained. In the competition reaction between vinyl boronate (1) and dec-1-ene (55), the vinyl boronate dialkylation product (4) was formed in 70% GC yield. However, the dialkylation product (56) of dec-1-ene was not observed, with 77% recovery of the starting material dec-1-ene (55). The competition reaction between vinyl boronate (1) and acrylamide (57) was also conducted, and both the vinyl boronate dialkylation product (9) and the acrylamide alkylation product (58) were observed. Thus, electron-deficient olefins were more reactive in this reaction, and no reaction occurred for the electron-rich olefins. In addition, tertiary alkyl bromides exhibited higher radical addition reactivity than the primary alkyl bromides (see Supporting Information for more details). The radical clock experiment was tested using...
(bromomethyl)cyclopropane (60), and we obtained only ring opening product 54 in 42% yield, which revealed the radical activation of primary alkyl bromides (Scheme 6b). Finally, the nonmetallic reductant TDAE was used instead of Mn(0) and resulted in a decent 25% GC yield. We deduced that the activation of alkyl bromides was a single-electron-transfer (SET) process, but not the in situ formation of alkylmanganese reagents (Scheme 6c).

Conclusion

We reported a convenient method to access highly functionalized alkylborates through nickel-catalyzed olefin reductive dialkylation and alkylarylation of vinyl boronates. A variety of alkyl bromides and aryl iodides were converted to the corresponding products with both good coupling efficiency and excellent functional group compatibility. This reaction is practical and useful in the late-stage modification of complex natural products and the modular synthesis of densely functionalized compounds. Our next challenge is the improvement of stereochemical control.20

Supporting Information

Supporting Information is available and includes detailed experimental procedures and spectral data.

Conflict of Interest

There is no conflict of interest to report.

Funding Information

This research was made possible as a result of a generous grant from the National Natural Science Foundation of China (Grants 21732006, 21702200, 51821006, and 51961135104), the National Key R&D Program of China (Grant 2017YFA0303502), and the Strategic Priority Research Program of CAS (Grant XDB20000000).
References

1. For selected reviews on olefin dicarbofunctionalization, see: (a) Dhungana, R. K.; KC, S.; Basnet, P.; Giri, R. Transition Metal-Catalyzed Dicarbofunctionalization of Unactivated Olefins. Chem. Rec. 2018, 18 (9), 1314-1340. (b) Zhang, J.-S.; Liu, L.; Chen, T.; Han, L.-B. Transition-Metal-Catalyzed Three-Component Difunctionalizations of Alkenes. Chem. Asian J. 2018, 13 (17), 2277-2291. (c) Ping, Y.; Li, Y.; Zhu, J.; Kong, W. Construction of Quaternary Stereocenters by Palladium-Catalyzed Carbopalladation-Initiated Cascade Reactions. Angew. Chem., Int. Ed. 2019, 58 (6), 1562-1573. (d) Giri, R.; Kc, S. Strategies toward Dicarbofunctionalization of Unactivated Olefins by Combined Heck Carbometalation and Cross-Coupling. J. Org. Chem. 2018, 83 (6), 3013-3022.

2. For selected examples on olefin dicarbofunctionalization, see: (a) Urkalan, K. B.; Sigman, M. S. Palladium-Catalyzed Oxidative Intermolecular Difunctionalization of Terminal Alkenes with Organostannanes and Molecular Oxygen. Angew. Chem., Int. Ed. 2009, 48 (17), 3146-3149. (b) Trejos, A.; Fardost, A.; Yahiaoui, S.; Larhed, M. Palladium(II)-catalyzed coupling reactions with a chelating vinyl ether and arylboronic acids: a new Heck/Suzuki domino diarylation reaction. Chem. Commun. 2009, (48), 7587-7589. (c) McCammant, M. S.; Liao, L.; Sigman, M. S. Palladium-Catalyzed 1,4-Difunctionalization of Butadiene To Form Skipped Polymenes. J. Am. Chem. Soc. 2013, 135 (11), 4167-4170. (d) Liu, Z.; Zeng, T.; Yang, K. S.; Engle, K. M. β,γ-Vicinal Dicarbofunctionalization of Alkenyl Carbonyl Compounds via Directed Nucleopalladation. J. Am. Chem. Soc. 2016, 138 (46), 15122-15125. (e) Shrestha, B.; Basnet, P.; Dhungana, R. K.; Kc, S.; Thapa, S.; Sears, J. M.; Giri, R. Ni-Catalyzed Regioselective 1,2-Dicarbofunctionalization of Olefins by Intercepting Heck Intermediates as Imine-Stabilized Transient Metallacycles. J. Am. Chem. Soc. 2017, 139 (31), 10653-10656. (f) Li, W.; Boon, J. K.; Zhao, Y. Nickel-catalyzed difunctionalization of allyl moieties using organoboronic acids and halides with divergent regioselectivities. Chem. Sci. 2018, 9 (3), 600-607. (g) Derosa, J.; Tran, V. T.; Boulous, M. N.; Chen, J. S.; Engle, K. M. Nickel-Catalyzed β,γ-Dicarbofunctionalization of Alkenyl Carbonyl Compounds via Conjunctive Cross-Coupling. J. Am. Chem. Soc. 2017, 139 (31), 10657-10660. (h) Basnet, P.; Dhungana, R. K.; Thapa, S.; Shrestha, B.; Kc, S.; Sears, J. M.; Giri, R. Ni-Catalyzed Regioselective β,δ-Diarylation of Unactivated Olefins in Ketimines via Ligand-Enabled Contraction of Transient Nickellacycles: Rapid Access to Remotely Diarylated Ketones. J. Am. Chem. Soc. 2018, 140 (25), 7782-7786. (i) Cong, H.; Fu, G. C. Catalytic Enantioselective Cyclization/Cross-Coupling with Alkyl Electrophiles. J. Am. Chem. Soc. 2014, 136 (10), 3788-3791. (j) You, W.; Brown, M. K. Catalytic Enantioselective Diarylation of Alkenes. J. Am. Chem. Soc. 2015, 137 (46), 14578-14581. (k) Walker, J. A.; Vickerman, K. L.; Humke, J. N.; Stanley, L. M. Ni-Catalyzed Alkene Carboacylation via Amide C–N Bond Activation. J. Am. Chem. Soc. 2017, 139 (30), 10228-10231. (l) Qin, T.; Cornella, J.; Li, C.; Malins, L. R.; Edwards, J. T.; Kawamura, S.; Maxwell, B. D.; Eastgate, M. D.; Baran, P. S. A general alkyl-alkyl cross-coupling enabled by redox-active esters and alkylzinc reagents. Science 2016, 352 (6287), 801-805. (m) Gu, J.-W.; Min, Q.-Q.; Yu, L.-C.; Zhang, X. Tandem Difluoroalkylation-Arylation of Enamides Catalyzed by Nickel. Angew. Chem., Int. Ed. 2016, 55 (40), 12270-12274. (n) Wu, L.; Wang, F.; Wan, X.; Wang, D.; Chen, P.; Liu, G. Asymmetric Cu-Catalyzed Intermolecular Trifluoromethylarylation of Styrenes: Enantioselective Arylation of Benzyllic Radicals. J. Am. Chem. Soc. 2017, 139 (8), 2904-2907. (o) Wang, F.; Wang, D.; Wan, X.; Wu, L.; Chen, P.; Liu, G. Enantioselective Copper-Catalyzed Intermolecular Cyanotrifluoromethylation of Alkenes via Radical Process. J. Am. Chem. Soc. 2016, 138 (48), 15547-15550. (p) Watson, M. P.; Jacobsen, E. N. Asymmetric Intramolecular Arylcyanation of Unactivated Olefins via C–CN Bond Activation. J. Am. Chem. Soc. 2008, 130 (38), 12594-12595. (q) You, W.; Brown, M. K. Diarylation of Alkenes by a Cu-Catalyzed Migratory Insertion/Cross-Coupling Cascade. J. Am. Chem. Soc. 2014, 136 (42), 14730-14733. (r) Zhou, L.;
Li, S.; Xu, B.; Ji, D.; Wu, L.; Liu, Y.; Zhang, Z.-M.; Zhang, J. Enantioselective Diffuunctionalization of Alkenes by a Palladium-Catalyzed Heck/Sonogashira Sequence. Angew. Chem., Int. Ed., 10.1002/anie.201913367. (s) Huang, D.; Olivieri, D.; Sun, Y.; Zhang, P.; Newhouse, T. R. Nickel-Catalyzed Diffuunctionalization of Unactivated Alkenes Initiated by Unstabilized Enolates. J. Am. Chem. Soc. 2019, 141 (41), 16249-16254. (t) Zhang, Z.-M.; Xu, B.; Wu, L.; Wu, Y.; Qian, Y.; Zhou, L.; Liu, Y.; Zhang, J. Enantioselective Dicarbofunctionalization of Unactivated Alkenes by Palladium-Catalyzed Tandem Heck/Suzuki Coupling Reaction. Angew. Chem., Int. Ed. 2019, 58 (41), 14653-14659. (u) Koy, M.; Bellotti, P.; Katzenburg, F.; Daniliuc, C. G.; Glorius, F. Synthesis of All-Carbon Quaternary Centers by Palladium-Catalyzed Olefin Difluorocatalysis. Angew. Chem., Int. Ed., DOI: 10.1002/anie.201911012.

3. For selected examples on olefin reductive dicarbofunctionalization, see: (a) Anthony, D.; Lin, Q.; Baudet, J.; Diao, T. Nickel-Catalyzed Asymmetric Reductive Diarylation of Vinylarenes. Angew. Chem., Int. Ed. 2019, 58 (10), 3198-3202. (b) Li, J.; Luo, Y.; Cheo, H. W.; Lan, Y.; Wu, J. Photoredox-Catalysis-Modulated, Nickel-Catalyzed Divergent Difunctionalization of Ethylene. Chem 2019, 5 (1), 192-203. (c) Wang, K.; Ding, Z.; Zhou, Z.; Kong, W. Ni-Catalyzed Enantioselective Reductive Diarylation of Activated Alkenes by Domino Cyclization/Cross-Coupling. J. Am. Chem. Soc. 2018, 140 (39), 12364-12368. (d) Yan, C.-S.; Peng, Y.; Xu, X.-B.; Wang, Y.-W. Nickel-Mediated Inter- and Intramolecular Reductive Cross-Coupling of Unactivated Alkyl Bromides and Aryl Iodides at Room Temperature. Chem. Eur. J. 2012, 18 (19), 6039-6048. (e) Jín, Y.; Wang, C. Nickel-Catalyzed Asymmetric Reductive Arylalkylation of Unactivated Alkenes. Angew. Chem., Int. Ed. 2019, 58 (20), 6722-6726. (f) Tian, Z.-X.; Qiao, J.-B.; Xu, G.-L.; Pang, X.; Qi, L.; Ma, W.-Y.; Zhao, Z.-Z.; Duan, J.; Du, Y.-F.; Su, P.; Liu, X.-Y.; Shu, X.-Z. Highly Enantioselective Cross-Electrophile Aryl-Alkenylation of Unactivated Alkenes. J. Am. Chem. Soc. 2019, 141 (18), 7637-7643.

4. (a) Shu, W.; García-Domínguez, A.; Quirós, M. T.; Mondal, R.; Cárdenas, D. J.; Nevado, C. Ni-Catalyzed Reductive Dicarbofunctionalization of Nonactivated Alkenes: Scope and Mechanistic Insights. J. Am. Chem. Soc. 2019, 141 (35), 13812-13821. (b) García-Domínguez, A.; Li, Z.; Nevado, C. Nickel-Catalyzed Reductive Dicarbofunctionalization of Alkenes. J. Am. Chem. Soc. 2017, 139 (20), 6835-6838.

5. Zhao, X.; Tu, H.-Y.; Guo, L.; Zhu, S.; Qing, F.-L.; Chu, L. Intermolecular selective carboacylation of alkenes via nickel-catalyzed reductive radical relay. Nat. Commun. 2018, 9, 3488.

6. Choi, J.; Fu, G. C. Transition metal-catalyzed alkyl-alkyl bond formation: Another dimension in cross-coupling chemistry. Science 2017, 356 (6334), eaaf7230.

7. For selected examples of olefin dialkylation using organometallics, see: (a) Kischkewitz, M.; Okamoto, K.; Mück-Lichtenfeld, C.; Studer, A. Radical-polar crossover reactions of vinylboron ate complexes. Science 2017, 355 (6328), 936-938. (b) Chierchia, M.; Xu, P.; Lovinger, G. J.; Morken, J. P. Enantioselective Radical Addition/Cross-Coupling of Organozinc Reagents, Alkyl Iodides, and Alkenyl Boron Reagents. Angew. Chem., Int. Ed. 2019, 58 (40), 14245-14249. (c) Terao, J.; Saito, K.; Nii, S.; Kambe, N.; Sonoda, N. Regioselective Double Alkylation of Styrenes with Alkyl Halides Using a Titanocene Catalyst. J. Am. Chem. Soc. 1998, 120 (45), 11822-11823. (d) Wakabayashi, K.; Yorimitsu, H.; Oshima, K. Cobalt-Catalyzed Tandem Radical Cyclization and Cross-Coupling Reaction: Its Application to Benzyl-Substituted Heterocycles. J. Am. Chem. Soc. 2001, 123 (22), 5374-5375. (e) Derosa, J.; van der Puy, V. A.; Tran, V. T.; Liu, M.; Engle, K. M. Directed nickel-catalyzed 1,2-dialkylation of alkenyl carbonyl compounds. Chem. Sci. 2018, 9 (23), 5278-5283. (f) Xu, C.; Yang, Z.-F.; An, L.; Zhang, X. Nickel-Catalyzed Difluoroalkylation-Alkylation of Enamides. ACS Catal. 2019, 9 (9), 8224-8229.

8. For selected examples of two-component olefin reductive dialkylation, see: (a) Lin, Q.; Diao, T. Mechanism of Ni-Catalyzed Reductive 1,2-Dicarbofunctionalization of Alkenes. J. Am. Chem.
Soc. 2019, 141 (44), 17937-17948. (b) Kuang, Y.; Wang, X.; Anthony, D.; Diao, T. Ni-catalyzed two-component reductive dicarbofunctionalization of alkenes via radical cyclization. Chem. Commun. 2018, 54 (20), 2558-2561. (c) Phapale, V. B.; Buñuel, E.; García-Iglesias, M.; Cárdenas, D. J. Ni-Catalyzed Cascade Formation of C(sp3)-C(sp3) Bonds by Cyclization and Cross-Coupling Reactions of Iodoalkanes with Alkyl Zinc Halides. Angew. Chem., Int. Ed. 2007, 46 (46), 8790-8795.

9. (a) Noble, A.; Mega, R. S.; Pflästerer, D.; Myers, E. L.; Aggarwal, V. K. Visible-Light-Mediated Decarboxylative Radical Additions to Vinyl Boronic Esters: Rapid Access to γ-Amino Boronic Esters. Angew. Chem., Int. Ed. 2018, 57 (8), 2155-2159. (b) Zhao, B.; Li, Z.; Wu, Y.; Wang, Y.; Qian, J.; Yuan, Y.; Shi, Z. An Olefinic 1,2-Boryl-Migration Enabled by Radical Addition: Construction of gem-Bis(boryl)alkanes. Angew. Chem., Int. Ed. 2019, 58 (28), 9448-9452.

10. (a) Zhang, L.; Lovinger, G. J.; Edelstein, E. K.; Szymaniak, A. A.; Chierchia, M. P.; Morken, J. P. Catalytic conjunctive cross-coupling enabled by metal-induced metallate rearrangement. Science 2016, 351 (6268), 70-74. (b) Silvi, M.; Sandford, C.; Aggarwal, V. K. Merging Photoredox with 1,2-Metallate Rearrangements: The Photochemical Alkylation of Vinyl Boronate Complexes. J. Am. Chem. Soc. 2017, 139 (16), 5736-5739.

11. (a) Campbell, M. W.; Compton, J. S.; Kelly, C. B.; Molander, G. A. Three-Component Olefin Dicarbofunctionalization Enabled by Nickel/Photoredox Dual Catalysis. J. Am. Chem. Soc. 2019, 141 (51), 20069-20078. (b) Mega, R. S.; Duong, V. K.; Noble, A.; Aggarwal, V. K. Decarboxylative Conjunctive Cross-coupling of Vinyl Boronic Esters using Metallaphotoredox Catalysis. Angew. Chem., Int. Ed., 10.1002/anie.201916340.

12. (a) Zhang, Y.; Han, B.; Zhu, S. Rapid Access to Highly Functionalized Alkyl Boronates by NiH-Catalyzed Remote Hydroarylation of Boron-Containing Alkenes. Angew. Chem., Int. Ed. 2019, 58 (39), 13860-13864. (b) Bera, S.; Hu, X. Nickel-Catalyzed Regioselective Hydroalkylation and Hydroarylation of Alkenyl Boronic Esters. Angew. Chem., Int. Ed. 2019, 58 (39), 13854-13859.

13. (a) Lu, X.; Xiao, B.; Zhang, Z.; Gong, T.; Su, W.; Yi, J.; Fu, Y.; Liu, L. Practical carbon–carbon bond formation from olefins through nickel-catalyzed reductive olefin hydrocarbonation. Nat. Commun. 2016, 7, 11129. (b) Lu, X.; Wang, Y.; Zhang, B.; Pi, J.-J.; Wang, X.-X.; Gong, T.-J.; Xiao, B.; Fu, Y. Nickel-Catalyzed Defluorinative Reductive Cross-Coupling of gem-Difluoroalkanes with Unactivated Secondary and Tertiary Alkyl Halides. J. Am. Chem. Soc. 2017, 139 (36), 12632-12637. (c) Lu, X.; Wang, X.-X.; Gong, T.-J.; Pi, J.-J.; He, S.-J.; Fu, Y. Nickel-catalyzed allylic defluorinative alkylation of trifluoromethyl alkenes with reductive decarboxylation of redox-active esters. Chem. Sci. 2019, 10 (3), 809-814. (d) He, S.-J.; Wang, J.-W.; Li, Y.; Xu, Z.-Y.; Wang, X.-X.; Lu, X.; Fu, Y. Nickel-Catalyzed Enantiocconvergent Reductive Hydroalkylation of Olefins with α-Heteroatom Phosphorus or Sulfur Alkyl Electrophiles. J. Am. Chem. Soc. 2020, 142 (1), 214-221.

14. (a) Su, W.; Gong, T.-J.; Lu, X.; Xu, M.-Y.; Yu, C.-G.; Xu, Z.-Y.; Yu, H.-Z.; Xiao, B.; Fu, Y. Ligand-Controlled Regiodivergent Copper-Catalyzed Alkylboration of Alkenes. Angew. Chem., Int. Ed. 2015, 54 (44), 12957-12961. (b) Li, L.; Gong, T.; Lu, X.; Xiao, B.; Fu, Y. Nickel-catalyzed synthesis of 1,1-diborylalkanes from terminal alkenes. Nat. Commun. 2017, 8, 345. (c) Lu, X.; Zhang, Z.-Q.; Yu, L.; Zhang, B.; Wang, B.; Gong, T.-J.; Tian, C.-L.; Xiao, B.; Fu, Y. Free Radical Pathway Cleavage of C—O Bonds for the Synthesis of Alkylboron Compounds. Chin. J. Chem. 2019, 37 (1), 11-18.

15. (a) Collins, B. S. L.; Wilson, C. M.; Myers, E. L.; Aggarwal, V. K. Asymmetric Synthesis of Secondary and Tertiary Boronic Esters. Angew. Chem., Int. Ed. 2017, 56 (39), 11700-11733. (b) Schmidt, J.; Choi, J.; Liu, A. T.; Slusarczyk, M.; Fu, G. C. A general, modular method for the catalytic asymmetric synthesis of alkylboronate esters. Science 2016, 354 (6317), 1265-1269. (c) Sandford, C.; Aggarwal, V. K. Stereospecific functionalizations and transformations of secondary and tertiary boronic esters. Chem. Commun. 2017, 53 (40), 5481-5494.
16. (a) Ackerman, L. K. G.; Lovell, M. M.; Weix, D. J. Multimetallic catalysed cross-coupling of aryl bromides with aryl triflates. *Nature* **2015**, *524* (7566), 454-457. (b) Everson, D. A.; Jones, B. A.; Weix, D. J. Replacing Conventional Carbon Nucleophiles with Electrophiles: Nickel-Catalyzed Reductive Alkylation of Aryl Bromides and Chlorides. *J. Am. Chem. Soc.* **2012**, *134* (14), 6146-6159.

17. Xu, H.; Zhao, C.; Qian, Q.; Deng, W.; Gong, H. Nickel-catalyzed cross-coupling of unactivated alkyl halides using bis(pinacolato)diboron as reductant. *Chem. Sci.* **2013**, *4* (10), 4022-4029.

18. (a) Gu, J.; Wang, X.; Xue, W.; Gong, H. Nickel-catalyzed reductive coupling of alkyl halides with other electrophiles: concept and mechanistic considerations. *Org. Chem. Front.* **2015**, *2* (10), 1411-1421. (b) Knappke, C. E. I.; Grupe, S.; Gärtner, D.; Corpet, M.; Gosmini, C.; Jacobi von Wangelin, A. Reductive Cross-Coupling Reactions between Two Electrophiles. *Chem. Eur. J.* **2014**, *20* (23), 6828-6842.

19. Martin reported an efficient alkylation of vinyl boronates via dual catalysis, see: Sun, S.-Z.; Duan, Y.; Mega, R. S.; Somerville, R. J.; Martin, R. Site-Selective 1,2-Dicarbofunctionalization of Vinyl Boronates via Dual Catalysis. *Angew. Chem., Int. Ed.*, 10.1002/anie.201916279.

20. A moderate 40% enantiomeric excess was obtained using a pyridine-oxazoline ligand.

Table of Contents Graphic
