Role of $h \rightarrow \eta \eta$ in Intermediate-Mass Higgs Boson Searches at the Large Hadron Collider

Kingman Cheung1,2, Jeonghyeon Song3, Qi-Shu Yan1,2

1 Department of Physics, National Tsing Hua University, Hsinchu, Taiwan
2 Physics Division, National Center for Theoretical Sciences, Hsinchu, Taiwan
3 Department of Physics, Konkuk University, Seoul 143-701, Korea

(Dated: March 26, 2022)

The dominance of $h \rightarrow \eta \eta$ decay mode for the intermediate mass Higgs boson is highly motivated to solve the little hierarchy problem and to ease the tension with the precision data. However, the discovery modes for $m_h \lesssim 150$ GeV, $h \rightarrow \gamma \gamma$ and $W/Z h \rightarrow (\ell \nu/\ell \ell) (b \bar{b})$, will be substantially affected. In this Letter, we show that $h \rightarrow \eta \eta \rightarrow 4b$ is complementary and we can use this decay mode to detect the intermediate Higgs boson at the LHC, via $W h$ and $Z h$ production. Requiring at least one charged lepton and 4 B-tags in the final state, we can identify a clean Higgs boson signal for $m_h \lesssim 150$ GeV with a high significance and with a full Higgs mass reconstruction. We use the next-to-minimal supersymmetric standard model and the simplest little Higgs model for illustration.

PACS numbers: 12.60.Fr, 13.85.Rm, 14.80.Cp

Introduction. – The standard model (SM) has been successful in explaining all the data, except for a few observations. One of them is the controversy between the precision data and the direct search for the SM Higgs boson. The precision measurements from LEP and SLD collaborations strongly prefer a light Higgs boson with a mass around 100 GeV [1]. However, the direct search has put a lower bound of 114.4 GeV [2]. Such a high Higgs mass bound also induces the so-called little hierarchy problem in supersymmetric framework. It is urgent to relieve the tension arisen from the Higgs mass bound. A number of recent works in this direction [3, 4, 5, 6, 7, 8] have attempted the problem by modifying the Higgs sector.

A phenomenological approach to lower the Higgs mass bound is to reduce either the coupling g_{ZZh} or $B(h \rightarrow b \bar{b})$. One possibility is to add a singlet field to the Higgs sector such that the Higgs doublet and the singlet mix. The SM-like Higgs boson will have a smaller effective mass. More important is that there are additional decay modes for the Higgs boson. In supersymmetric framework, the most popular approach is the next-to-minimal supersymmetric standard model (NMSSM) [3]. It has been shown [10] that, in most parameter space that is natural, the SM-like Higgs boson can decay into a pair of light pseudoscalar bosons with a branching ratio larger than 0.7. The Higgs mass bound can be as low as around 100 GeV. In little Higgs framework, it has been shown [4] that in the simplest little Higgs model with the μ parameter (SLHμ) [11], the Higgs boson can dominantly decay into a pair of pseudoscalar bosons η. Together with the reduction of the g_{ZZh} coupling, the Higgs mass bound can be lowered. There are other phenomenological models by adding singlet Higgs fields to the Higgs sector [5, 4, 7, 8]. In all these models, the Higgs boson dominantly decays into lighter Higgs bosons (we shall denote the lighter Higgs boson as pseudoscalar boson η without loss of generality.) The dominance of $h \rightarrow \eta \eta$ mode for the intermediate Higgs boson has significant impacts on the Higgs search strategies. The most useful channel for intermediate Higgs boson, $h \rightarrow \gamma \gamma$, will be substantially affected because $B(h \rightarrow \gamma \gamma)$ lowers by a factor of a few. So is the $h \rightarrow b \bar{b}$ in $W h$, $Z h$ production. It is therefore utmost important to show the complementarity of the $h \rightarrow \eta \eta$ mode, and timely to establish the feasibility of the $h \rightarrow \eta \eta$ mode. To our knowledge we are the first to show that using $h \rightarrow \eta \eta \rightarrow 4b$ for $m_\eta > 2m_b$ the Higgs signal can be identified at the LHC, via $W h$, $Z h$ production. With at least one charged lepton and 4 B-tags in the final state, one can obtain a clean signal of high significance and a full Higgs mass reconstruction. This is the main result of the Letter.

Production and decay. – The pseudoscalar boson decays into the heaviest fermion pair that is kinematically allowed, either $b \bar{b}$ or $\tau^+ \tau^-$. If $m_\eta > 2m_b$, the SM-like Higgs boson will decay like $h \rightarrow \eta \eta \rightarrow (4b, 2\tau \tau, 4\tau)$. Feasibility studies focusing on Higgs production at the Tevatron have been performed in extended supersymmetric models. The $gg \rightarrow h \rightarrow \eta \eta \rightarrow 4b$ signal at the Tevatron has been shown overwhelmed by large QCD background [12]. Similar conclusions can be drawn for the LHC. Another study using $(2b, 2\tau)$ mode for the associated Higgs production with a W/Z at the Tevatron was performed [13], but a full Higgs mass reconstruction is difficult. The 4τ mode was also studied at the Tevatron for $2m_\tau < m_\eta < 2m_\tau$ [14]. If $m_\eta < 2m_\tau$, on the other hand, the modes $\eta \rightarrow e^+ e^-, \gamma \gamma$ become dominant. The study of $h \rightarrow \eta \eta \rightarrow 4\gamma$ was performed in Ref. [15], but the photon pair for each pseudoscalar decay is very collimated, which reduces the detectability. One can also have the pseudoscalar boson produced directly, e.g., in the associated production with a gaugino pair [16], in the B decays [17], and in quarkonium decays [18].

arXiv:hep-ph/0703149v3 10 Jul 2007
In this Letter, we focus on W and Zh production at the LHC, followed by the leptonic decay of the W and Z, and $h \rightarrow \eta \eta \rightarrow b\bar{b}b\bar{b}$. In the final state, we require a charged lepton and 4 b-tagged jets. The advantage of having a charged lepton in the final state is to suppress the QCD background. We require 4 b-tagged jets to avoid the huge $t\bar{t}$ background. We are still left with some irreducible backgrounds from $W + nb$ and $Z + nb$ production with $n \geq 4$, $t\bar{b}b$ and $tt\bar{t}$ production ($tt\bar{t}$ is much smaller than $t\bar{b}b$ and so we ignore it in the rest of the paper.) We study the feasibility of searching for the Higgs boson using $Wb\bar{b}, Zh \rightarrow \ell \nu$ ($\ell = e, \mu$) + 4b + X at the LHC. A naive signal analysis at the Tevatron already tells us that the signal rate is too small for realistic detection. At the LHC, we found a sufficiently large signal rate with a relatively small background for $m_h \lesssim 160$ GeV. Reconstructing the invariant mass of the 4 b-tagged jets is shown to play a crucial role: The signal will peak at m_h while the serious background begins at $M_{4b} \gtrsim 160$ GeV.

Details of the Higgs sector of NMSSM and SLH$_\mu$ model are referred to Refs. [10] and [11], respectively. The dominant production for an intermediate Higgs boson at the LHC is the gluon fusion. However, as mentioned above the decay $h \rightarrow \eta \eta$ followed by $\eta \rightarrow b\bar{b}$ is overwhelmed by QCD backgrounds [12]. The next production mechanism, the WW fusion, has the final state consisting of only hadronic jets. Therefore, we consider the associated production with a W or Z boson. The cross section is proportional to the square of the coupling g_{WVh}. In the NMSSM, the deviation of g_{WVh} from the SM value depends on the nature of h_1. For the bench-mark points #2 and #3 of Ref. [21] the size of g_{WVh} is very close to the SM value, though the sign may be opposite. We consider 2 bench-mark points A and B, which are very similar to the bench-mark points #2 and #3 of Ref. [20]. In the SLH$_\mu$, g_{WVh} deviates from the SM value as

\[
g_{WVh}^{SLH} \approx g_{WVh}^{SM} + \frac{v^2}{3f^2} \left(s_\beta^2 \cos^2 \beta + c_\beta^2 s_\beta^2 \right) + O \left(\frac{v^4}{f^4} \right)
\]

\[
g_{ZZzh}^{SLH} \approx g_{ZZzh}^{SM} + \frac{v^2}{3f^2} \left(s_\beta^4 \cos \beta + c_\beta^4 s_\beta^2 \right) - \frac{v^2}{4f^2} (1 - t_W^2)^2 + O \left(\frac{v^4}{f^4} \right)
\]

where t_W is tangent of the Weinberg angle, f is the symmetry breaking scale at TeV, $c_\beta = \cos \beta$, $s_\beta = \sin \beta$, and $\tan \beta$ is the ratio of the VEV of the two pseudo-Nambu-Goldstone multiplets of the SLH$_\mu$ model [4, 11].

We use MADGRAPH [22] to generate the signal cross sections. We employ full helicity decays of the gauge bosons, $W \rightarrow \ell \nu$ or $Z \rightarrow \ell \ell$, and the phase decays of the Higgs boson and the pseudoscalar in $h \rightarrow \eta \eta \rightarrow b\bar{b}b\bar{b}$. The detection requirements on the charged lepton and b jets in the final state are

\[
|\eta(\ell)| < 2.5,
\]

\[
|\eta(b)| < 2.5, \quad \Delta R(bb, b\bar{b}) > 0.4,
\]

where $p_T(\ell)$ denotes the transverse momentum, η denotes the pseudorapidity, and $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$ denotes the angular separation of the b-jets and the lepton. The smearing for the b jets is $\frac{E}{p} = \frac{25}{15} \pm 0.03$, where E is in GeV. In order to minimize the reducible backgrounds, we require to see at least one charged lepton and 4 b-tagged jets in the final state. We employ a B-tagging efficiency of 70% for each B tag, and a probability of 5% for a light-quark jet faking a B tag [23].

Backgrounds. It is possible for the photon in $\gamma + nj$ background to fake an electron in the EM calorimeter. However, we will ignore this since the charged lepton from the W or Z decay is quite energetic and produces a track in the central tracking device, in contrast to that from a photon. The backgrounds from $W + nj$ and $Z + nj$ contribute at a very low level and are reducible as we require 4 b-tagged jets in the final state. The background from $WZ \rightarrow t\ell b\bar{b}$ is also reducible by the 4 b-tagging requirement. So is QCD production of tt pair with one of the top decay hadronically and the other semi-leptonically. Jets from the W decay may fake a B-tag. This background is under control after applying our selective cuts. While most of the backgrounds are reducible, there are a few channels that are irreducible. They are (i) $tt\bar{b}b$ production, and (ii) $W/Z + 4b$ production. So we explicitly calculate them and apply the cuts using MADGRAPH [22].

Results. As mentioned in the Introduction, we use two popular models for new physics: (i) NMSSM and (ii) SLH$_\mu$. In NMSSM, we scan the code NMHDECAY [21] and choose two bench-mark points, A and B, both of which have $B(h \rightarrow a_1a_1) \approx 1$ and $B(a_1 \rightarrow b\bar{b}) \approx 0.9$. In a large portion of the parameter space of NMSSM, the mass of h_1 is around 100 GeV and $B(h_1 \rightarrow a_1a_1) \gtrsim 0.7$ [11]. The bench-mark points that we employ are quite common in the NMSSM. In the SLH$_\mu$ model, we employ two points in the parameter space such that the mass of the Higgs boson is $O(100)$ GeV and $B(h \rightarrow \eta \eta) \gtrsim 0.7$ [4].

We show the signal cross sections of Wh and Zh for the NMSSM and for SLH$_\mu$ in Table I and various backgrounds in Table II, respectively. The cross sections are under the cuts listed in Eq. (4). We have imposed a B-tagging efficiency of 0.7 for each b jet and a mis-tag ef-

1 Points #2 and #3 of Ref. [20] are now excluded by the updated NMHDECAY [21]. We scan the NMHDECAY to find points A and B.

2 The mis-tag probability for a u-jet is 1% while that for a charm-jet is $12 - 14\%$ when the B-tag efficiency is about 60%. Taking into account the fact that a jet coming from W decay is much less frequently a charm-jet, a 5% mis-tag probability is justified.
stand the relative importance in various channels. The values in Table I. With these values one can easily understand the relative importance in various channels. The quantity C_{4b}^2 defined by

$$C_{4b}^2 = \left(\frac{g_{Vh}}{g_{Vh}^{SM}} \right)^2 B(h \rightarrow \eta \eta) B^2(\eta \rightarrow b \bar{b})$$

shows very clearly the importance of the channel $h \rightarrow \eta \eta \rightarrow b \bar{b}b \bar{b}$ that we are considering. For example, the two NMSSM bench-mark points have $C_{4b}^2 > 0.8$ while those for SLHμ only have $C_{4b}^2 \simeq 0.1$. This explains why the significance of the SLHμ signals is much smaller than that of the NMSSM signals, shown in Table III. The LEP Coll. has made model-independent searches for the Higgs bosons in extended models. They put limits on the quantity C_{4b}^2 using the channel $e^+e^- \rightarrow Zh \rightarrow Z\eta \eta \rightarrow Z + 4b$. The bench-mark points listed in the Tables are consistent with the existing limits.

A comment on the background rates in Table III is in order here. In general, one defines the background as in the SM. However, here we define the background for our search in $Wh, Zh \rightarrow \ell + 4b$ as those arising from the new physics under consideration. The background in the NMSSM (including NMSSM interactions) is the same as in the SM. In the SLHμ model, however, especially the $t\bar{t}b\bar{b}$ from $t\bar{t}\eta \rightarrow t\bar{t}b\bar{b}$ increases the background substantially. Suppose that the SLHμ is the actual model describing our world. If we are searching for the Higgs decaying into pseudoscalar bosons, we have to fight against the $t\bar{t}\eta \rightarrow t\bar{t}b\bar{b}$ background in the SLHμ model itself. Nevertheless, if we look at combination of signal channels, this $t\bar{t}b\bar{b}$ would be an interesting one for the η boson.

Since we require all 4 b-tagged jets, we can reconstruct the invariant mass M_{4b} of the signal and the background. We show the invariant mass spectrum for the NMSSM point B in Fig. I. The spectrum for other bench-mark points are similar. For $m_h \lesssim 160$ GeV the signal peak will stand out of the continuum, provided that the $B(h \rightarrow \eta \eta)$ is large enough. The decay $t\bar{t}\eta \rightarrow t\bar{t}b\bar{b}$ is not a major issue in the SLHμ model but the $h \rightarrow \eta \eta$ mass is usually not too far away from the h mass.

Table I: Signal cross sections for Wh and Zh production for bench-mark points NMSSM (A) and NMSSM (B), and for SLHμ (A) and SLHμ (B) at the LHC.

Channels	NMSSM (A)	NMSSM (B)	SLHμ (A)	SLHμ (B)
$\lambda = 0.18, \kappa = -0.43$	$\lambda = 0.26, \kappa = 0.51$	$f = 4$ TeV	$f = 2$ TeV	
$\tan \beta = 29$	$\tan \beta = 23$	$\mu = 20$ GeV	$\mu = 20$ GeV	
$A_{\lambda} = -437$ GeV	$A_{\lambda} = -222$ GeV	$x_{\lambda} = 5.86$	$x_{\lambda} = 10$	
$A_{\kappa} = -4$ GeV	$A_{\kappa} = -13$ GeV	$\tan \beta = 17$	$\tan \beta = 9.47$	
$\mu_{\text{eff}} = -143$ GeV	$\mu_{\text{eff}} = 144$ GeV			

$m_{h_1} = 110$ GeV	$m_{h_1} = 109$ GeV	$m_h = 146.2$ GeV	$m_h = 135.2$ GeV
$m_{a_1} = 30$ GeV	$m_{a_1} = 39$ GeV	$m_\eta = 68.6$ GeV	$m_\eta = 47.9$ GeV
$B(h \rightarrow a_1a_1) = 0.92$	$B(h \rightarrow a_1a_1) = 0.99$	$B(h \rightarrow \eta \eta) = 0.65$	$B(h \rightarrow \eta \eta) = 0.75$
$B(a_1 \rightarrow b\bar{b}) = 0.93$	$B(a_1 \rightarrow b\bar{b}) = 0.92$	$B(\eta \rightarrow b\bar{b}) = 0.85$	$B(\eta \rightarrow b\bar{b}) = 0.86$
$g_{Vh}/g_{Vh}^{SM} = 0.99$	$g_{Vh}/g_{Vh}^{SM} = -0.99$	$g_{Vh}/g_{Vh}^{SM} = 0.57$	$g_{Vh}/g_{Vh}^{SM} = 0.44$
$g_{th}/g_{th}^{SM} = 0.99$	$g_{th}/g_{th}^{SM} = -0.99$	$g_{th}/g_{th}^{SM} = 0.79$	$g_{th}/g_{th}^{SM} = 0.93$
$g_{ta_1}/g_{ta_1}^{SM} = -2.4 \times 10^{-3}$	$g_{ta_1}/g_{ta_1}^{SM} = -1.2 \times 10^{-2}$	$g_{ta_1}/g_{ta_1}^{SM} = -0.89$	$g_{ta_1}/g_{ta_1}^{SM} = -1.38$
$C_{4b}^2 = 0.80$	$C_{4b}^2 = 0.83$	$C_{4b}^2 = 0.16$	$C_{4b}^2 = 0.11$

W^+h signal: 3.13 fb 9.54 fb 1.27 fb 0.63 fb

W^+h signal: 2.35 fb 6.55 fb 0.87 fb 0.44 fb

Zb signal: 1.05 fb 2.76 fb 0.36 fb 0.18 fb

![Figure 1](https://example.com/figure1.png)

FIG. 1: Invariant mass spectrum M_{4b} of the signal and various backgrounds for the bench-mark point B of the NMSSM. The spectrum for other points are similar. The combination of the signal peak comes $W^\pm /Z + h \rightarrow W^\pm /Z + 4b$ production.
\(m_h - 15 \text{ GeV} < M_{4b} < m_h + 15 \text{ GeV}, \) \(4\)

which is a conservative choice for the signal peak resolution. We show the total signal and background cross sections after applying the cuts in Eq. (2) and the invariant mass cut of \(\sqrt{S} \) is for a luminosity of 30 fb\(^{-1}\).

Channels	Cross sections (fb)
\(t\bar{t} \)	172 (NMSSM & SLH\(\mu \))
\(t\bar{t}b\bar{b} \)	236 (NMSSM), 284 (SLH\(\mu \) A), 429 (SLH\(\mu \) B)
\(W + 4b \)	3.80 (NMSSM), 4.16 (SLH\(\mu \) A), 4.63 (SLH\(\mu \) B)
\(Z + 4b \)	3.85 (NMSSM & SLH\(\mu \))

TABLE II: Various background cross sections under the same cuts and efficiencies as in Table I.

TABLE III: Total signal and background cross sections after applying the cuts in Eq. (2) and the invariant mass cut of \(m_h - 15 \text{ GeV} < M_{4b} < m_h + 15 \text{ GeV}. \) The significance \(S/\sqrt{B} \) is for a luminosity of 30 fb\(^{-1}\).

Channels	Cross sections (fb)
NMSSM (A)	6.53 fb
NMSSM (B)	18.85 fb
SLH\(\mu \) (A)	2.50 fb
SLH\(\mu \) (B)	1.25 fb
bkgd	4.83 fb
4.77 fb	13.83 fb
22.45 fb	3.7
1.4	

Channels	Cross sections (fb)
NMSSM (A)	6.53 fb
NMSSM (B)	18.85 fb
SLH\(\mu \) (A)	2.50 fb
SLH\(\mu \) (B)	1.25 fb
bkgd	4.83 fb
4.77 fb	13.83 fb
22.45 fb	3.7
1.4	

In conclusion, the dominance of \(h \rightarrow \eta \eta \) decay mode is highly motivated because it can relieve the little hierarchy problem and the tension with the precision data. However, the dominance of \(h \rightarrow \eta \eta \) in the intermediate mass region worsens significantly the discovery channels of \(gg \rightarrow h \rightarrow \gamma \gamma \) and \(Wh \rightarrow W\nu b\bar{b} \). In this Letter, we have shown for the first time that \(h \rightarrow \eta \eta \rightarrow 4b \) is complementary to make up for the loss of efficiencies in \(h \rightarrow \gamma \gamma \) and \(h \rightarrow b\bar{b} \) modes. It is made possible by considering the \(Wh \) and \(Zh \) production with at least one charged lepton and 4 \(B \)-tags in the final state and we can identify a clean Higgs signal with a full reconstruction of the Higgs boson mass. Our work therefore urges the experimenters to fully establish the feasibility of this mode.

Acknowledgments. K.C. thanks K.S. Cheng and the Center of Theoretical and Computational Physics at the University of Hong Kong for hospitality. The work of K.C. and Q.Y. research was supported in part by the NSC of Taiwan (NSC 95-2112-M-007-001). The work of JS is supported by the Korea Research Foundation Grant (KRF-2005-070-C00030).

[1] ALEPH, DELPHI, L3, OPAL, and SLD Collaborations, Phys. Rept. 427, 257 (2006).
[2] R. Barate et al. [LEP Working Group for Higgs boson searches], Phys. Lett. B 565, 61 (2003).
[3] R. Dermisek and J. F. Gunion, Phys. Rev. Lett. 95, 041801 (2005).
[4] K. Cheung and J. Song, arXiv:hep-ph/0611294
[5] W. F. Chang, J. N. Ng and J. M. S. Wu, Phys. Rev. D 74, 095005 (2006); arXiv:hep-ph/0701254.
[6] D. O’Connell, M. J. Ramsey-Musolf and M. B. Wise, arXiv:hep-ph/0611014.
[7] O. Bahat-Treidel, Y. Grossman and Y. Rozen, arXiv:hep-ph/0611162.
[8] M. Bowen, Y. Cui and J. Wells, arXiv:hep-ph/0701035.
[9] J. R. Ellis et al., Phys. Rev. D 39, 844 (1989).
[10] R. Dermisek, J. F. Gunion and B. McElrath, arXiv:hep-ph/0612031; R. Dermisek and J. F. Gunion, arXiv:hep-ph/0611142.
[11] M. Schmaltz, JHEP 0408, 056 (2004).
[12] T. Stelzer, S. Wiesenfeldt and S. Willenbrock, arXiv:hep-ph/0612172.
[13] P. W. Graham, A. Pierce and J. G. Wacker, arXiv:hep-ph/0605162.
[14] B. A. Dobrescu, G. Landsberg and K. T. Matchev, Phys. Rev. D 63, 075003 (2001); S. Chang, P. J. Fox and N. Weiner, Phys. Rev. Lett. 98, 111802 (2007).
[15] A. Arhrib, K. Cheung, T. J. Hou and K. W. Song, JHEP 0703, 073 (2007).
[16] G. Hiller, Phys. Rev. D 70, 034018 (2004).
[17] B. McElrath, Phys. Rev. D 72, 103508 (2005); M. A. Sanchis-Lozano, Int. J. Mod. Phys. A 19, 2183 (2004).
[18] D. J. Miller, R. Nevzorov and P. M. Zerwas, Nucl. Phys. B 681, 3 (2004).
[19] U. Ellwanger, J. F. Gunion and C. Hugonie, JHEP 0507, 041 (2005).
[20] U. Ellwanger and C. Hugonie, Comput. Phys. Commun. 175, 290 (2006). U. Ellwanger, J. F. Gunion and C. Hugonie, JHEP 0502, 066 (2005).
[21] F. Maltoni and T. Stelzer, JHEP 0302, 027 (2003).
[22] W. Adam et al. [CMS Trigger and Data Acquisition Group], Eur. Phys. J. C 46, 605 (2006); ATLAS Technical Design Report, CERN/LHCC 99-14.
[23] S. Schael et al. [ALEPH, DELPHI, L3, and OPAL Collaboration], Eur. Phys. J. C 47, 547 (2006); J. Abdallah
et al. [DELPHI Collaboration], Eur. Phys. J. C 38, 1 (2004).