In humans, there is an interdependent relationship between aging and immune system function, with each process affecting the outcome of the other. Aging can trigger immune system dysfunction, and alterations in the immune response can in turn affect human lifespan. Genetic experiments in model organisms such as C. elegans and Drosophila have led to the identification of numerous genes and signaling pathways that can modulate organismal lifespan and immune system function. Importantly, many of these signaling pathways exhibit conserved function in multiple species, including mammals, suggesting that the research in these simpler models could one day pave the way for the modulation of aging and immunity in humans. Here, we review the recent progress in our understanding of aging, innate immunity and the interaction between these two processes using these simple model systems. Additionally, we discuss what this may tell us about aging and the innate immune system in humans.

Aging and Immunity

In humans, the relationship between aging and the immune response is a complicated one. Aging is characterized by an overall decline in immune function termed immunosenescence, which affects both the innate and adaptive immune systems. With age, cells of the innate immune system exhibit decreased function; for example, macrophages and neutrophils exhibit a weaker phagocytic response and a weaker oxidative burst. Dendritic cells from older individuals have a decreased ability to stimulate T cells. Cells of the adaptive immune system are also affected by age. T cells in older individuals display decreased T cell memory. There is also a decrease in the naïve T cell population in the thymus and decreased B cell production present in the elderly. Although older individuals have a weaker immune response, conversely, they also display a chronic inflammatory state termed inflamm-aging, characterized by an increase in inflammatory cytokines present in the serum and an increase in the total NK cell count. Immunosenscence leads to a decreased vaccine response and an increased risk of infection; inflamm-aging could contribute to a host of inflammatory diseases such as atherosclerosis. Thus, aging can have dramatic effects on the immune response, and conversely, the immune system can affect the risk of many age-associated diseases and can therefore affect lifespan. Thus, understanding the relationship between aging and immune system function is of critical importance to human health, particularly as the average human lifespan lengthens, increasing the impact of age-related diseases.

Model Systems to the Rescue: The Genetics of Lifespan Regulation

The quest to understand aging and age-related diseases has been a long and ongoing one, with much of the research focusing on environmental damage and the organism’s response to that damage. However, recent genetic experiments in model organisms such as C. elegans, Drosophila and mice have led to something of a revolution in aging research, as conserved signaling pathways that affect lifespan have been identified. Interestingly, the pathways that modulate lifespan also regulate the response to various environmental stresses, ranging from oxidative damage to UV exposure to thermal stress. Several of these signaling pathways also regulate the immune response. The genetic tools available in these model systems allow the dissection of the interaction between aging, immunity and stress response.

Much of this revolution in aging research has originated with studies using the nematode C. elegans. C. elegans was originally developed by Sydney Brenner as a model system to study development and nervous system function, but it has emerged as a leading model system in many fields, including lifespan research. This lifespan research has been aided by the excellent genetic and genomic tools available to study C. elegans, as well as the relatively short nematode lifespan (2–3 weeks). The modern explosion of aging research in C. elegans started when mutations were identified in genes in the insulin/IGF-1 (insulin-like growth factor 1)-like signaling pathway that affect nematode lifespan. Mutation of either daf-2 (the nematode homolog of the insulin/IGF-1 receptor) or age-1 [a phosphatidylinositol 3-kinase (PI3K) that acts in the daf-2 pathway] was shown to lead to drastically increased nematode lifespan, a concomitant increase in nematode health and resistance to many environmental stresses, including oxidative stress, ultraviolet light, heavy metals and thermal stress. Mutation of either daf-2 or age-1 also increases C. elegans DNA repair capacity. Finally, mutation of either daf-2...
So far, only the insulin/IGF-1 pathway and the germline pathways have been shown to regulate both C. elegans lifespan and immunity, so we will focus on these two pathways and discuss how their roles in both processes are interrelated.

Numerous components of the insulin/IGF-1 pathway have been identified in C. elegans. daf-2 is the sole insulin/IGF-1-like receptor in C. elegans although numerous insulin-like peptides are encoded in the genome. daf-2 acts by the activation of the PI3 Kinase, age-1, which in turn acts through the downstream kinases pdk-1, akt-1, akt-2 and sgk-1 (Fig. 1A). The actions of these kinases culminate in the phosphorylation and inactivation of a FOXO-family transcription factor, DAF-16, which is sequestered from the nucleus when inactive. However, when daf-2 signaling is reduced, daf-16 can undergo nuclear translocation, where in conjunction with other transcription factors, it initiates the transcription of numerous genes that affect stress and pathogen resistance. Thus, daf-16 is a critical readout of insulin signaling that regulates lifespan, stress resistance and pathogen resistance. The insulin/IGF-1 pathway is also modulated by the C. elegans PTEN homolog daf-18.

The C. elegans germline can also regulate nematode lifespan. Removal of the germline leads to increased lifespan and resistance to oxidative and thermal stress. The germline has also been found to regulate C. elegans immunity, as nematodes lacking a germline are resistant to the pathogens P. aeruginosa, S. marcescens and S. aureus. The relationship between lifespan regulation and innate immunity is not a universal one in C. elegans, however, because some mutations that increase nematode longevity (such as clk-1, a regulator of ubiquinone synthesis and eat-2, which is often used as a model for caloric restriction) do not increase nematode pathogen resistance. So far, only the insulin/IGF-1 pathway and the germline pathways have been shown to regulate both C. elegans lifespan and immunity, so we will focus on these two pathways and discuss how their roles in both processes are interrelated.

Numerous components of the insulin/IGF-1 pathway have been identified in C. elegans. daf-2 is the sole insulin/IGF-1-like receptor in C. elegans although numerous insulin-like peptides are encoded in the genome. daf-2 acts by the activation of the PI3 Kinase, age-1, which in turn acts through the downstream kinases pdk-1, akt-1, akt-2 and sgk-1 (Fig. 1A). The actions of these kinases culminate in the phosphorylation and inactivation of a FOXO-family transcription factor, DAF-16, which is sequestered from the nucleus when inactive. However, when daf-2 signaling is reduced, daf-16 can undergo nuclear translocation, where in conjunction with other transcription factors, it initiates the transcription of numerous genes that affect stress and pathogen resistance. Thus, daf-16 is a critical readout of insulin signaling that regulates lifespan, stress resistance and pathogen resistance. The insulin/IGF-1 pathway is also modulated by the C. elegans PTEN homolog daf-18.

The C. elegans germline can also regulate nematode lifespan. Removal of the germline leads to increased lifespan. The germline acts through the adaptor protein kri-1 to ultimately control DAF-16 activation. Like the effect of daf-2 on lifespan, the effect of the germline also requires the daf-16 transcription factor (Fig. 1B).

The C. elegans Innate Immune Response

C. elegans lacks an adaptive immune response and also lacks obvious migratory immune cells (the possible exception to this may be the coelomocytes, which are endocytic migratory cells in the nematode, although no immunological role for these cells has been demonstrated). Instead, the main route of host defense in C. elegans appears to be the production of a plethora of antimicrobial proteins that are expressed in tissues exposed to pathogens.

C. elegans can be infected by numerous Gram-negative and -positive bacteria and some fungi. While there are
exceptions, the majority of these pathogens infect the nematode intestine, proliferate there and ultimately kill the nematodes. The production of different subsets of these antimicrobial proteins is induced by different pathogens, with pathogen-specific signatures suggesting that there are multiple pathogen recognition receptors in the nematode.

Several genes and pathways have been identified that affect production of these antimicrobials in response to pathogen and therefore, ultimately affect the survival of the infected nematode. These include but are not limited to a p38 MAP kinase signaling pathway, a TGFβ signaling pathway, and the daf-2 insulin/IGF-1 signaling pathway (see Ewbank 2006 and Irazoqui and Ausubel 2010, for more extensive reviews of these and other C. elegans immune signaling pathways). The p38 MAPK pathway (Fig. 2A) acts autonomously in the epidermis and intestine to regulate antimicrobial gene expression. In contrast, the dbl-1/TGFβ and daf-2/insulin pathways act in the epidermis and intestine, respectively, but are regulated by non-autonomous signals from neurons (Fig. 2B and C). For example, the daf-2 receptor is expressed and functions in the intestine; it is regulated by secretion of the insulin-like ligand from neurons. The p38 MAPK and daf-2 pathways act in parallel to control overlapping but different sets of genes to fight infection. In general, daf-2 regulates general stress response genes, while the effect of p38 MAPK is more specific to infection. In addition to controlling the nematode innate immune response, these pathways are themselves potential targets for pathogens to inhibit the immune response, as P. aeruginosa can activate daf-2 signaling, thereby inhibiting production of some antimicrobials.

daf-2 mutant nematodes live long and are resistant to numerous environmental stresses. All these effects are dependent on the daf-16 transcription factor, as evidenced by experiments using daf-2; daf-16 double mutant nematodes. This relationship extends to the regulation of pathogen resistance as well (Fig. 3A), with the daf-16 mutation suppressing the enhanced pathogen resistance of the daf-2 mutant. However, mutations in certain other kinases that act downstream of daf-2 are able to separate the effects of insulin signaling on lifespan and innate immunity. While nematodes harboring mutations in either pdk-1 or sgk-1 are long-lived, they are not resistant to pathogen. In contrast, mutation of either akt-1 or akt-2 has a minimal effect on C. elegans lifespan but does induce strong pathogen resistance. This ability to separate the effects of insulin signaling on lifespan and innate immunity suggests that other stresses besides pathogen infection are critical to overall lifespan regulation, at least in this context.

Germline proliferation also controls both lifespan and innate immunity in C. elegans, as sterile nematodes are resistant to both Gram-negative and Gram-positive bacteria. The long lifespan of sterile nematodes is completely dependent on daf-16. However, the effect of daf-16 in relation to germline proliferation and innate immunity varies depending on the growth conditions of the pathogen. Under certain conditions, the pathogen resistance of sterile nematodes is completely dependent on daf-16 (Fig. 3B) while under other conditions, it is completely independent. Again, there is no absolute correlation between long life and pathogen resistance. The germline also acts in part or in whole in parallel to the p38 MAPK pathway to control pathogen resistance (Fig. 3B). While there is a general correlation between lifespan and pathogen resistance in C. elegans and related species, the complicated genetic interactions suggest that there is no simple causal interaction between the two.

Evolutionary Conservation

At first glance, it might be tempting to dismiss the genetic experiments in C. elegans as having no real bearing on human aging. However, experiments in other organisms, including Drosophila, mice and even humans, suggest the pathways that affect C. elegans lifespan also affect lifespan and stress resistance in other organisms, including mammals and thus they theoretically offer the potential as therapeutic targets to delay aging and aging-related diseases.

![Figure 2](image-url)
and longevity. Thus, there is strong evidence in multiple species in insulin/IGF-1 signaling components that are associated with individual differences in lifespan regulation in humans; studies of long-lived flies carrying mutations in the insulin receptor in flies increases lifespan. Flies carrying mutations in the insulin-like ligand chico are also long-lived, resistant to oxidative stress and pathogen resistance in Drosophila. Mutation of the insulin receptor, the Igf1 receptor and IRS1 (Insulin receptor substrate 1), all affect lifespan; mutation of some of these pathways in lifespan regulation in mammals. These studies have demonstrated that several components in these pathways, including the insulin receptor, the Igf1 receptor and IRS1 (Insulin receptor substrate 1), all affect lifespan; mutation of some of these signaling components also increases resistance to oxidative stress in mice. There is evidence suggesting a role of insulin signaling in lifespan regulation in humans; studies of long-lived individuals have led to the identification of DNA polymorphisms in insulin/IGF-1 signaling components that are associated with longevity. Thus, there is strong evidence in multiple species that the role of the insulin/IGF-1 pathway in lifespan regulation and stress resistance is evolutionarily conserved.

There is also some evidence suggesting that the germline can regulate lifespan in organisms besides C. elegans, although this evidence is so far not as compelling as the evidence for the insulin/IGF-1 pathway. The germline, at least under some conditions, can modulate lifespan in Drosophila. Similarly, the germline may affect lifespan and stress resistance in mammals. Transplantation of young ovarian tissue into older mice leads to an increase in mouse lifespan, and postponement of menopause in mice can delay some age-related health complications. Obviously there is limited evidence that the germline can affect lifespan in humans. The extension of lifespan in nematodes without a germline is dependent on the somatic gonad, indicating that the somatic gonad plays a protective role in lifespan regulation in C. elegans. Interestingly, while removal of ovaries in post-menopausal women has a positive survival effect on those at risk of ovarian and breast cancer, this surgery has an overall net negative effect on long-term health, with increased risk of most other diseases, such as cardiovascular disease and other cancers.

This raises the possibility that somatic gonadal tissue in humans may also serve a protective function.

As in C. elegans, the insulin/IGF-1 pathway controls lifespan, stress resistance and pathogen resistance in Drosophila. Mutation of the insulin receptor in flies increases lifespan. Flies carrying mutations in the insulin-like ligand chico are also long-lived, resistant to some but not all stresses (such as starvation but not thermal stress) and are resistant to the bacterial pathogens P. aeruginosa and E. faecalis. There is also evidence for the role of the insulin and IGF-1 signaling pathways in lifespan regulation in mammals. While completely knocking out the insulin-signaling pathway has profoundly detrimental consequences, partially turning down the pathway using heterozygous animals or knockouts in particular tissues has allowed investigators to test the function of these pathways in lifespan regulation in mice. These studies have demonstrated that several components in these pathways, including the insulin receptor, the Igf1 receptor and IRS1 (Insulin receptor substrate 1), all affect lifespan; mutation of some of these signaling components also increases resistance to oxidative stress in mice. There is even evidence suggesting a role of insulin signaling in lifespan regulation in humans; studies of long-lived individuals have led to the identification of DNA polymorphisms in insulin/IGF-1 signaling components that are associated with longevity. Thus, there is strong evidence in multiple species that the role of the insulin/IGF-1 pathway in lifespan regulation and stress resistance is evolutionarily conserved.

There is also some evidence suggesting that the germline can regulate lifespan in organisms besides C. elegans, although this evidence is so far not as compelling as the evidence for the insulin/IGF-1 pathway. The germline, at least under some conditions, can modulate lifespan in Drosophila. Similarly, the germline may affect lifespan and stress resistance in mammals. Transplantation of young ovarian tissue into older mice leads to an increase in mouse lifespan, and postponement of menopause in mice can delay some age-related health complications. Obviously there is limited evidence that the germline can affect lifespan in humans. The extension of lifespan in nematodes without a germline is dependent on the somatic gonad, indicating that the somatic gonad plays a protective role in lifespan regulation in C. elegans. Interestingly, while removal of ovaries in post-menopausal women has a positive survival effect on those at risk of ovarian and breast cancer, this surgery has an overall net negative effect on long-term health, with increased risk of most other diseases, such as cardiovascular disease and other cancers. This raises the possibility that somatic gonadal tissue in humans may also serve a protective function.

As in C. elegans, the insulin/IGF-1 pathway controls lifespan, stress resistance and pathogen resistance in Drosophila. Mutation of the insulin receptor in flies increases lifespan. Flies carrying mutations in the insulin-like ligand chico are also long-lived, resistant to some but not all stresses (such as starvation but not thermal stress) and are resistant to the bacterial pathogens P. aeruginosa and E. faecalis. There is also evidence for the role of the insulin and IGF-1 signaling pathways in lifespan regulation in mammals. While completely knocking out the insulin-signaling pathway has profoundly detrimental consequences, partially turning down the pathway using heterozygous animals or knockouts in particular tissues has allowed investigators to test the function of these pathways in lifespan regulation in mice. These studies have demonstrated that several components in these pathways, including the insulin receptor, the Igf1 receptor and IRS1 (Insulin receptor substrate 1), all affect lifespan; mutation of some of these signaling components also increases resistance to oxidative stress in mice. There is even evidence suggesting a role of insulin signaling in lifespan regulation in humans; studies of long-lived individuals have led to the identification of DNA polymorphisms in insulin/IGF-1 signaling components that are associated with longevity. Thus, there is strong evidence in multiple species that the role of the insulin/IGF-1 pathway in lifespan regulation and stress resistance is evolutionarily conserved.

There is also some evidence suggesting that the germline can regulate lifespan in organisms besides C. elegans, although this evidence is so far not as compelling as the evidence for the insulin/IGF-1 pathway. The germline, at least under some conditions, can modulate lifespan in Drosophila. Similarly, the germline may affect lifespan and stress resistance in mammals. Transplantation of young ovarian tissue into older mice leads to an increase in mouse lifespan, and postponement of menopause in mice can delay some age-related health complications. Obviously there is limited evidence that the germline can affect lifespan in humans. The extension of lifespan in nematodes without a germline is dependent on the somatic gonad, indicating that the somatic gonad plays a protective role in lifespan regulation in C. elegans. Interestingly, while removal of ovaries in post-menopausal women has a positive survival effect on those at risk of ovarian and breast cancer, this surgery has an overall net negative effect on long-term health, with increased risk of most other diseases, such as cardiovascular disease and other cancers. This raises the possibility that somatic gonadal tissue in humans may also serve a protective function.
are some exceptions, and mutant combinations or treatments have been identified that uncouple lifespan regulation from resistance to one or multiple stresses, arguing against a simple model in which any single stress is the key factor in aging. This is illustrated by experiments dealing with the role of oxidative damage in aging. For example, the mev-4 mutation renders Caenorhabditis elegans long-lived and resistant to oxidative damage; however the mev-4; daf-16 double mutant is no longer long-lived but is still resistant to oxidative damage.\(^7\) If oxidative damage were the sole factor in lifespan regulation, then the double mutant would be expected to live long. An even more striking effect is observed with the germline. Nematodes lacking a germline that also lack daf-16 activity no longer live long but are still resistant to oxidative stress.\(^8\) What is interesting about sterilized daf-16 mutant nematodes is that they are also still resistant to thermal stress. So sterilized Caenorhabditis elegans nematodes is that they are also still resistant to thermal stress and all aspects of aging; yet these animals still do not live long! There may be an additional critical stress that affects longevity in these animals, but no single stress is an obvious candidate. Further muddying the role of oxidative stress in lifespan regulation are experiments in Caenorhabditis elegans and mice in which the SOD genes are either mutated or overexpressed.\(^9\) While there are some caveats to these experiments, the correlation between lifespan and SOD activity in nematodes and mice is contradicted if not completely disproven in these experiments. It is formally possible that oxidative stress could be a key determinant of aging in wild-type animals or in some mutants but not in others. These possibilities will keep investigators busy researching and debating for quite some time. What is clear is that stress, immunity and aging are inter-related; altering one process often perturbs the others, and some of the same signaling pathways and components are shared. A simple global theory that explains how and why is lacking. Undoubtedly, experimentation in model organisms will continue to reap rewards in addressing these issues.

Acknowledgements

I thank Danielle Garsin, Quelrim Ch’ng and Jennifer Kemp for critical reading of this manuscript.

References

1. Gomes CR, Nomellini V, Faunce DE, Kovacs EJ. Image: Immunity and aging. Exp Gerontol 2008; 43:18-28.
2. Weiskopf D, Weinberger B, Gruber Liebbenstein B. The aging of the immune system. Transplant Rev 2009; 20:41-50.
3. Franceschi C, Ronfani M, Valentini S, Oliveri F, De Luca M, Ottaviani E, De Amodio L, Luchetti S, Cozzi B. A long-lived mutant that lives twice as long as wild type. Nature 1993; 366:461-4.
4. Wood WB. The Nematode Caenorhabditis elegans. New York: Cold Spring Harbor Laboratory Press 1988.
5. Kenyon CJ. The genetics of ageing. Nature 2010; 464:504-12.
6. Friedman DB, Johnson TE. A mutation in the age-1 gene in Caenorhabditis elegans lengthens life and reduces hermaphroditism fertility. Genetics 1988; 118:75-86.
7. Kenyon C, Chang J, Gems E, Rudner A, Tabung B, Ruvkun G. A C. elegans mutant that lives twice as long as wild type. Nature 1993; 366:461-4.
8. Klass MR. A method for the isolation of longevity mutants in the nematode Caenorhabditis elegans and initial results. Mech Aging Dev 1983; 22:279-86.
9. Basnyte D, Lovejoy DA, Lithgow GJ. Longevity and heavy metal resistance in daf-2 and age-1 long-lived mutants of Caenorhabditis elegans. FASEB J 2001; 15:627-34.
10. Gems D, Sutton AJ, Sundermeyer ML, Albert PS, King KV, Edgley ML, et al. Two pleiotropic classes of daf-2 mutation affect larval arrest, adult behavior, reproduction and longevity in Caenorhabditis elegans. Genetics 1998; 150:129-55.
11. Giannakou MEPL. Role of insulin-like signalling in Drosophila lifespan. Trends Biochem 2007; 32:110-8.
12. Honda Y, Honda S. Oxidative stress and life span determination in the nematode Caenorhabditis elegans. Ann N Y Acad Sci 2002; 959:466-74.
13. Huyan M, Lee J, Lee K, May A, Bohr VA, Ahn B. Longevity and resistance to stress correlate with DNA repair capacity in Caenorhabditis elegans. Nucleic Acids Res 2008; 36:1380-9.
14. Larsen PL. Aging and resistance to oxidative damage in Caenorhabditis elegans. Proc Natl Acad Sci USA 1993; 90:8905-9.
15. Lithgow GJ, White TM, Melov S, Johnson TE. Thermotolerance and extended life-span conferred by single-gene mutations and induced by thermal stress. Proc Natl Acad Sci USA 1995; 92:2750-4.
16. Mutarski S, Johnson TE. A genetic pathway conferring life extension and resistance to UV stress in Caenorhabditis elegans. Genetics 1996; 142:207-18.
17. Vanfleteren JR. Oxidative stress and ageing in Caenorhabditis elegans. Biochem J 1993; 292:605-8.
18. Garsin DA, Villanueva JM, Begun J, Kim DH, Sifri CD, Cadwallad SB, et al. Long-lived C. elegans daf-2 mutant are resistant to bacterial pathogens. Science 2003; 300:1921.
19. Arantes-Oliveira N, Apfeld J, Dillin A, Kenyon C. Regulation of life-span by germ-line stem cells in Caenorhabditis elegans. Science 2002; 295:502-5.
20. Hsin HKC. Signals from the reproductive system regulate the lifespan of C. elegans. Nature 1999; 399:362-6.
21. Alper S, McElwee E, Apfeld J, Lackford P, Freedman J, Schwartz D. The Caenorhabditis elegans germline regulates lifespan and defects in life span regulation and longevity. Aging Cell 2008; 7:879-93.
22. Miyata S, Begun J, Tisselam ER, Aarsheil FM. DAF-16-dependent suppression of immunity during reproduction in Caenorhabditis elegans. Genetics 2008; 178:903-18.
23. Baumeister R, Schaffitzel E, Herrweck M. Endocrine signaling in Caenorhabditis elegans controls stress response and longevity. J Endocrinol 2006; 190:191-202.
24. Panowski SH, Dillin A. Signals of youth: endocrine regulation of aging in Caenorhabditis elegans. Trends Endocrinol Metab 2009; 20:259-64.
25. Russell SJJK. Endocrine regulation of aging. Nat Rev Mol Cell Biol 2007; 8:681-91.
26. WolfS, Dillin A. The trifecta of aging in Caenorhabditis elegans. Exp Gerontol 2006; 41:894-903.
27. Kimura KD, Tissenbaum HA, Liu Y, Ruvkun G, da2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 1997; 277:942-6.
28. Li W, Kennedy SG, Ruvkun G. daf-28 encodes a C. elegans insulin superfamily member that is regulated by environmental cues and acts in the DAF-2 signaling pathway. Genes Dev 2003; 17:844-58.
29. Pierce SB, Costa M, Wisotzkey R, Devadhar S, Homburger SA, Buchman AR, et al. Regulation of DAF-2 receptor signaling by human insulin and insulin-related proteins in a member of the unusually large and diverse C. elegans insulin gene family. Genes Dev 2001; 15:672-86.
30. Morris JZ, Tissenbaum HA, Ruvkun G. A phosphatidylinositol-3-OH kinase family member regulating longevity and diapause in Caenorhabditis elegans. Nature 1996; 382:56-9.
31. Herweck D,食品B, Baumeister R, C. elegans SGK-1 of the critical component in the Akt/PKB kinase complex to control stress response and life span. Dev Cell 2004; 8:57-78.
32. Paradis S, Alston M, Tober A, Thomas JH, Ruvkun G. A PDK1 homolog is necessary and sufficient to transduce AGE-1 PI3 kinase signals that regulate diapause in Caenorhabditis elegans. Genes Dev 1999; 13:1438-52.
33. Paradis S, Ruvkun G. Caenorhabditis elegans Ake1/PKB transduces insulin receptor-like signals from AGE-1 PI3 kinase to the DAF-16 transcription factor. Genes Dev 1998; 12:2488-98.
34. Lee RY, Hench J, Ruvkun G. Regulation of C. elegans DAF-16 and its human ortholog FKHR1 by the daf-2 insulin-like signaling pathway. Curr Biol 2001; 11:950-7.
35. Lin K, Dorman JB, Rodan A, Kenyon C. daf-16: An HNF-3 forkhead family member that can function to double the life-span of C. elegans. Science 1997; 278:1319-22.
36. Lin KHH, Libina N, Kenyon C. Regulation of the Caenorhabditis elegans longevity protein DAF-16 by insulin/TGF-1 and germ-line signaling. Nat Genet 2001; 28:139-45.
37. Ogg S, Paradis S, Gottlieb S, Patterson GJ, Lee L, Tissenbaum HA, et al. The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature 1997; 389:994-9.
38. McElwee J, Bubb K, Thomas JH. Transcriptional outputs of the Caenorhabditis elegans forkhead protein DAF-16. Aging Cell 2003; 2:111-21.
39. Murphy CT, McCarroll SA, Bargmann CI, Fraser A, Karas G, Altshuler J, et al. Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 2003; 424:277-83.
40. Ogg S, Ruvkun G. The C. elegans PTEN homolog, DAF-18, acts in the insulin receptor-like metabolic signaling pathway. Mol Cell 1998; 2:887-93.
42. Berman JRKC. Germ-cell loss extends C. elegans life span through regulation of DAF-16 by kri-1 and lipophilic-hormone signaling. Cell 2006; 124:1055-68.
43. Fares H, Greenwald I. Genetic analysis of endocytosis in Caenorhabditis elegans: coloelomyte uptake defective mutants. Genetics 1987; 117:159-45.
44. Alper S, McBride SJ, Lackford B, Freedman JH, Schwartz DA. Specificity and complexity of the C. elegans innate immune response. Mol Cell Biol 2007; 27:3544-53.
45. Couillault C, Pujol N, Rebold J, Sabatier L, Guichou JF, Kohara Y, et al. TLR-independent control of innate immunity in Caenorhabditis elegans by the TIR domain adaptor protein TIR-1, an ortholog of human SARM. Nat Immunol 2004; 5:488-94.
46. Liberati NT, Fitzgerald KA, Kim DH, Feinbaum R, Golshock DT, Ausubel FM. Requirement for a conserved Toll/interleukin-1 resistance domain protein in the Caenorhabditis elegans immune response. Proc Natl Acad USA 2004; 101:6593-8.
47. Mallo GV, Kurz CL, Couillault C, Pujol N, Granjeaud S, Kohara Y, et al. Inducible antimicrobial defense system in C. elegans. Curr Biol 2002; 12:1209-14.
48. O’Rourke DB, Bahan D, Demidova M, Mert R, Hodgkin J. Genomic clusters, putative pathogen recognition molecules and antimicrobial genes are induced by infection of C. elegans with M. nematophilum. Genes Dev 2005; 19:1005-16.
49. Shapira M, Hamlin BJ, Rong J, Chen K, Ronen M, Tan MW. A conserved role for a GATA transcription factor in regulating epithelial innate immune response. Proc Natl Acad Sci USA 2006; 103:14886-91.
50. Trogric-R, Chau DW, Reinke V, Lee SS, Ausubel FM, Kim DH, et al. P38 MAPK regulates expression of immune response genes and contributes to longevity in C. elegans. PLoS Genet 2006; 2:183.
51. Darby C. Interactions with microbial pathogens. Wormbook 2005. http://www.wormbook.org.
52. Kim DH, Feinbaum R, Allong C, Etienne JE, Garison DA, Inoue H, et al. A conserved p38 MAPK kinase pathway in Caenorhabditis elegans innate immunity. Science 2002; 297:623-6.
53. Zuga, O, Ewhank JN. Neuroimmune regulation of antimicrobial peptide expression by a noncanonical TGbeta signaling pathway in Caenorhabditis elegans epidermis. Nat Immunol 2009; 10:249-56.
54. Ewhank JN. Signaling in the immune response. Wormbook 2006. http://www.wormbook.org.
55. Izarou J, Ausubel F. 90th Dahlem Conference on infection, inflammation and chronic inflammatory disorders. Caenorhabditis elegans as a model to study tissues involved in host immunity and microbial pathogenesis. Clinical and Experimental Immunology 2010; 160:48-57.
56. Bole DEJ, Tenor JL, Aballay A. A conserved PMK-1/PLK mapk is required in the Caenorhabditis elegans tissue-specific immune response to Y. pestis infection. J Biol Chem 2010; 285:10832-40.
57. Pujol N, Link EM, Liu LX, Kurz CL, Allong G, Tan MW, et al. A reverse genetic analysis of components of the Toll signaling pathway in Caenorhabditis elegans. Curr Biol 2001; 11:809-21.
58. Kawli T, Tan MW. Neuroendocrine signals modulate the innate immunity of Caenorhabditis elegans through insulin signaling. Nat Immunol 2008; 9:1415-24.
59. Evans EA, Kawli T, Tan MW. Pseudomonas aeruginosa suppresses host immunity by activating the DAF-2 insulin-like signaling pathway in Caenorhabditis elegans. PLoS Pathog 2008; 4:1000175.
60. Amiri FR, Boenisch CM, May RC. Phenotypic covariance of longevity, immunity and stress resistance in Caenorhabditis elegans nematodes. PLoS One 5:9978.
61. van den Berg MC, Woelfer JZ, Ma H, May RC. Sex-dependent resistance to the pathogenic fungus Cryptococcus neoformans. Genetics 2006; 173:677-83.