Clinical Characteristics and Long-Term Outcomes of Patients with Acute Decompensated Heart Failure with Mid-Range Ejection Fraction

Miyuki Ito, MD, Hiroshi Wada, MD, Kenichi Sakakura, MD, Tatsuro Ibe, MD, Yusuke Ugata, MD, Hideo Fujita, MD and Shin-ichi Momomura, MD

Summary

According to recent guidelines, a new category of patients with heart failure (HF) with mid-range left ventricular ejection fraction (LVEF) (HFmrEF) (LVEF = 40%-49%) has been defined. The purpose of this study was to investigate the clinical characteristics and long-term outcomes of patients with HFmrEF. This was a single-center, retrospective, observational study in which we examined the clinical characteristics and outcomes of 494 consecutive patients with acute decompensated heart failure who were admitted to our institution between January 2014 and December 2016. Of this population, 282 (57.1%), 75 (15.2%), and 137 (48.6%) patients had heart failure with reduced ejection fraction (HFrEF), HFmrEF, and heart failure with preserved ejection fraction (HFpEF), respectively. Ischemic heart disease was the primary etiology in HFmrEF and HFrEF. At the time of discharge, β-blockers and renin-angiotensin system inhibitors were more frequently prescribed in HFmrEF than in HFpEF. The composite outcome of cardiovascular mortality and HF readmission was significantly lower in HFmrEF than in HFrEF. Further studies are needed to determine the effectiveness of the management of coronary artery disease and cardioprotective medications for HFmrEF.

Key words: Heart failure with borderline ejection fraction, Prognosis, Etiology, Cardioprotective medication

According to recent guidelines, patients with heart failure (HF) have been categorized into heart failure with reduced ejection fraction (HFrEF) and heart failure with preserved ejection fraction (HFpEF). There are distinct differences in the demography, etiology, comorbidities, and responses to therapies between HFrEF and HFpEF. In HFrEF, most of the previous studies included patients with a left ventricular ejection fraction (LVEF) value of < 35% to < 40%. However, in HFpEF, various cutoffs of LVEF were used in previous studies (LVEF: > 40% to > 50%). Consequently, patients with an LVEF value in the range of 40%-49% were considered in the “gray area.” Recent clinical guidelines categorized patients with LVEF in the range of 40%-49% as HF with “borderline” ejection fraction or HF with “mid-range” ejection fraction (HFmrEF) in order to stimulate research on the underlying characteristics, pathophysiology, and treatment of this group of patients.

Early studies that compared the prognoses of HFpEF, HFmrEF, and HFrEF reached various conclusions. The Trial of Intensified versus standard Medical therapy in Elderly patients with Congestive Heart Failure, including 622 patients with Congestive Heart Failure, demonstrated that all-cause mortality and HF readmission were not significantly different among HFrEF, HFmrEF, and HFpEF, whereas the Chronic Heart Failure Analysis and Registry in the Tohoku District 2 (CHART-2) study, comprising 10,219 stable patients with HF, demonstrated that all-cause mortality and HF readmission were significantly higher in HFrEF followed by HFmrEF. Previous clinical trials have shown that some medications can possibly improve the prognosis of HFmrEF. The Treatment of Preserved Cardiac Function Heart Failure with an Aldosterone Antagonist trial, which enrolled patients with LVEF 45% or greater, demonstrated that the potential efficacy of spironolactone for the prognosis was greatest at the lower end of the LVEF spectrum. The Candesartan in Heart Failure-Assessment of Reduction in Mortality and Morbidity program, which enrolled patients with HF across the spectrum of EF, demonstrated that candesartan improved the outcomes in HFmrEF to a degree similar to that in HFrEF.

Although the above studies suggested that there are differences in the clinical characteristics and long-term prognoses among HFrEF, HFmrEF, and HFpEF, little is known about the clinical characteristics and long-term outcomes of HFmrEF, and the therapeutic strategy for HFmrEF has not been established yet. Further accumulation of real-world data is warranted in this territory. The purpose of this study was to investigate the clinical char-
acteristics and clinical outcomes of patients with HFmrEF who were hospitalized for acute decompensated heart failure (ADHF).

Methods

Study design and participants: This was a single-center, retrospective, observational study. 871 consecutive patients with ADHF who were admitted to our institution between January 2014 and December 2016 were screened. Patients who did not have available echocardiographic data examined by a sonographer within 30 days before and after the admission date were excluded. Patients who were not available of precise LVEF by modified Simpson’s method because of poor image were excluded. Then, the later admissions of duplicate patients who were admitted more than once during the study period were excluded. Finally, only patients who had precise echocardiographic data of LVEF were included in this study, and they were divided into three groups according to their LVEF: HFrEF (LVEF < 40%), HFmrEF (LVEF = 40%-49%), and HFpEF (LVEF ≥ 50%). Clinical events were traced via the patients’ medical records. The primary endpoint of this study was the composite of cardiovascular death and HF readmission. Event-free time was calculated from the date of index admission until the endpoint or the last follow-up day. This study was approved by the institutional review board. Written informed consent was waived because of the retrospective study design.

LVEF measurement: Echocardiographic images were obtained by three experienced sonographers. The echocardiographic equipment used was Epic 7G (Philips Electronics Industries, Amsterdam, the Netherlands) or Aplio 500 (Toshiba Medical Systems, Tochigi, Japan). LV images in each systolic and diastolic phase were acquired and recorded as four-chamber and two-chamber images from the transapical view. LVEF was calculated according to the modified Simpson method, with semiautomatic tracing of the inner border of the LV myocardium with online analysis (n = 144). If data of LVEF was recorded only using the Teichholz method and not the modified Simpson method, or if the semiautomatic tracing of the inner border of the LV myocardium with online analysis was not precise because of obesity or pulmonary emphysema (poor image from the transapical view), an experienced cardiologist (M.I.) recalculated the LVEF according to the modified Simpson method with offline analysis using offline software (CardioAgent™ Pro; Toshiba Medical Systems) (n = 350).

Definition of characteristics: We compared the clinical characteristics among these three groups from each different clinical aspect of HF, such as demographics, primary etiology of HF, medical history, laboratory data, treatment (including medications), and echocardiographic parameters. The diagnosis of ADHF was based on the criteria of the Framingham definitions and the guideline for acute HF of the Japanese Circulation Society. LVEF, left ventricular end-systolic volume, and left ventricular end-diastolic volume were measured according to the modified Simpson method by echocardiography. The left atrial diameter, interventricular septal thickness (IVST), posterior wall thickness (PWT), left ventricular end-diastolic dimension (LVDd), and left ventricular end-systolic dimension were measured by M-mode. The left ventricular mass (LVM) was estimated by LV cavity dimension and wall thickness at end diastole: LVM = 0.8 × 1.04 × ([LVDd + IVST + PWT] − LVDd) + 0.6. LVM was indexed to body surface area, and left ventricular hypertrophy was defined as the value of the LVM index (LVMI) (males: LVMI > 115 g/m²; females: LVMI > 95 g/m²). The relative wall thickness (RWT) was calculated as RWT = 2 × PWT/LVDd (normal: RWT ≤ 0.42; elevated: RWT > 0.42). LV geometries were classified into four patterns: normal (LVM and RWT normal), concentric remodeling (LVM normal but RWT elevated), concentric hypertrophy (LVM and RWT elevated), and eccentric hypertrophy (LVM elevated but RWT normal).

Statistical analysis: Continuous variables were expressed as the mean ± standard deviation, and categorical variables were expressed as frequency. Continuous variables were tested for normal distribution using the Shapiro-Wilk test and were compared among groups using one-way analysis of variance or the Kruskal-Wallis test, as appropriate. Categorical variables were compared using the chi-squared test. The survival curves of the three groups were drawn using the Kaplan-Meier method, and the log-rank test was used to calculate statistical differences. P < 0.05 was considered statistically significant. All statistical analyses were performed with SPSS software version 18.0.

Results

Study flowchart and distribution of LVEF: The number of patients who were finally included in this study was 494 (Figure 1). 282 patients (57.1%) had HFrEF, 75 patients (15.2%) had HFmrEF, and 137 patients (27.7%) had HFpEF. The mean LVEF of all patients, HFrEF, HFmrEF, and HFpEF were 39.6 ± 16.3%, 27.7 ± 7.4%, 44.6 ± 2.7%, and 61.6 ± 7.6%, respectively. The distribution of LVEF in this study is shown in Figure 2.

Clinical characteristics: The comparison of the clinical characteristics among these three groups is shown in Table I. The mean age of patients with HFrEF, HFmrEF, and HFpEF was 67.4 ± 14.0, 74.0 ± 11.3, and 75.8 ± 9.0 years, respectively. The prevalence of female sex in patients with HFrEF, HFmrEF, and HFrEF was 34.1%, 42.7%, and 51.8%, respectively. Patients with HFmrEF and HFrEF were more likely to have ischemic heart disease as an etiology compared to those with HFpEF (HFrEF: 43.3%; HFmrEF: 46.7%; HFpEF: 29.9%; P < 0.001). The prevalence of atrial fibrillation (HFrEF: 39.9%; HFmrEF: 42.7%; HFpEF: 65.0%; P < 0.001), the hemoglobin level (HFrEF: 12.9 ± 2.3 g/dL; HFmrEF: 12.4 ± 2.2 g/dL; HFpEF: 11.5 ± 2.4 g/dL; P < 0.001), and the serum brain natriuretic peptide (BNP) level of HFmrEF (HFrEF: 1,452 ± 1,295 pg/mL; HFmrEF: 1,044 ± 892 pg/mL; HFpEF: 707 ± 452 pg/mL; P < 0.001) were intermediate between HFrEF and HFpEF.

Medications: Medications at discharge are shown in Table I. At the time of admission, the prescription rates of cardioprotective medications, including β-blockers, renin-
angiotensin system inhibitors (RASIs), mineralocorticoid receptor antagonists (MRAs), and statins, were not significantly different among these three groups. At the time of discharge, β-blockers (HFrEF: 93.1%; HFmrEF: 82.2%; HFpEF: 71.9%; \(P < 0.001 \)) and RASIs (HFrEF: 84.7%; HFmrEF: 79.5%; HFpEF: 62.7%; \(P < 0.001 \)) were most frequently prescribed in HFrEF, followed by HFmrEF, and least frequently prescribed in HFpEF. Statins were most frequently prescribed in HFmrEF (HFrEF: 56.0%; HFmrEF: 57.5%; HFpEF: 40.7%; \(P = 0.009 \)), followed by HFrEF, and least frequently prescribed in HFpEF. **Echocardiography:** The echocardiographic data are

Figure 1. Flowchart of the inclusion and exclusion of the patients. ADHF indicates acute decompensated heart failure; TTE, transthoracic echocardiography; and LVEF, left ventricular ejection fraction.

Figure 2. Distribution of LVEF of the study population. LVEF indicates left ventricular ejection fraction.
Table I. Clinical Characteristics of Patients with HF Stratified by the Ejection Fraction

Demographics	All (n = 494)	HFrEF (n = 282)	HFmrEF (n = 75)	HFrEF (n = 137)	P-value
Age (years)	70.7 ± 13.0	67.4 ± 14.0	74.0 ± 11.3	75.8 ± 9.0	< 0.001
Female sex (%)	35.0	23.4	48.0	51.8	< 0.001
Primary etiology					< 0.001
Ischemic (%)	40.1	43.3	46.7	29.9	
Hypertensive (%)	24.9	23.0	21.3	30.7	
DCM (%)	10.7	17.7	4.0	0.0	
Valvular (%)	12.8	8.9	17.3	18.2	
Others (%)	11.5	7.1	10.7	21.2	
Medical history					
HF admission (%)	29.8	35.1	24.0	21.9	0.011
Hypertension (%)	68.6	65.2	76.0	71.5	0.140
Diabetes mellitus (%)	44.1	44.7	52.0	38.7	0.168
Dyslipidemia (%)	70.6	74.5	69.3	63.5	0.067
Hyperuricemia (%)	61.3	70.9	42.7	51.8	< 0.001
Atrial fibrillation (%)	47.3	39.9	42.7	65.0	< 0.001
COPD (%)	7.9	5.0	10.7	12.4	0.019
Stroke (%)	12.8	14.2	10.8	10.9	0.557
Smoking (%)	62.7	69.9	52.7	53.3	0.001
Data at admission					
NYHA I (%)	0.4	0.7	0.0	0.0	
NYHA II (%)	5.5	5.0	5.3	6.6	
NYHA III (%)	43.1	45.0	38.7	24.1	
NYHA IV (%)	51.0	49.3	56.0	51.1	
BMI (kg/m²)	23.6 ± 4.6	23.8 ± 4.8	23.5 ± 4.5	23.5 ± 4.2	0.949
Laboratory data					
Albumin (g/dL)	3.6 ± 0.5	3.7 ± 0.5	3.6 ± 0.5	3.6 ± 0.6	0.917
Uric acid (mg/dL)	7.1 ± 2.4	7.5 ± 2.6	6.4 ± 1.9	6.4 ± 2.1	< 0.001
eGFR (mL/minute/1.73 m²)	50.1 ± 25.3	49.2 ± 25.0	50.1 ± 23.0	52.1 ± 27.0	0.665
Sodium (mEq/L)	138.5 ± 4.5	138.2 ± 4.4	138.4 ± 5.4	139.2 ± 3.8	0.186
Hemoglobin (g/dL)	12.4 ± 2.4	12.9 ± 2.3	12.4 ± 2.2	11.5 ± 2.4	< 0.001
BNP (pg/mL)	1182 ± 1166	1452 ± 1295	1044 ± 892	707 ± 452	< 0.001

Continuous variables are expressed as the mean ± standard deviation, and categorical variables are expressed as %. HFrEF indicates heart failure with reduced ejection fraction; HFmrEF, heart failure with mid-range ejection fraction; HFrEF, heart failure with preserved ejection fraction; DCM, dilated cardiomyopathy; HF, heart failure; COPD, chronic obstructive pulmonary disease; NYHA, New York Heart Association; BMI, body mass index; eGFR, estimated glomerular filtration rate; and BNP, brain natriuretic peptide.

Table II. Medications at Discharge

β-blocker (%)	All (n = 494)	HFrEF (n = 282)	HFmrEF (n = 75)	HFrEF (n = 137)	P-value
RASI (%)	77.8	84.7	79.5	62.7	< 0.001
MRA (%)	49.6	54.0	47.9	41.5	0.056
Loop diuretic (%)	82.0	84.4	89.0	73.3	0.006
Tolvaptan (%)	9.3	11.3	5.5	7.4	0.212
Thiazide (%)	4.8	5.5	2.7	4.4	0.613
Antiplatelet drug (%)	49.9	50.2	58.9	44.4	0.136
Anticoagulant (%)	54.2	52.7	42.5	63.7	0.010
CCB (%)	24.0	16.7	34.2	33.3	< 0.001
Antihyperuricemic drug (%)	42.0	48.0	27.4	37.8	0.003
Statin (%)	52.0	56.0	57.5	40.7	0.009
Antidiabetic drug (%)	25.7	25.5	32.9	22.2	0.243
Insulin (%)	8.7	8.0	11.0	8.9	0.730

Variables are expressed as %. RASI indicates renin-angiotensin system inhibitor; MRA, mineralocorticoid receptor antagonist; and CCB, calcium channel blocker.

shown in Table III. The left ventricular cavity dimensions, left ventricular cavity volume, and LVMI increased from HFrEF to HFmrEF, and HFmrEF had intermediate values. Regarding the classification of LV geometry patterns,
HFmrEF was likely to have eccentric hypertrophy, whereas HFrEF was likely to have concentric hypertrophy.

Prognosis: The median (first quartile to third quartile) follow-up period was 268 (65-566) days. There was no significant difference in the follow-up period among these three groups ($P = 0.723$). During the follow-up period, there were 48 cardiac deaths, 27 noncardiac deaths, and 139 HF readmissions. The Kaplan-Meier curves for the primary endpoint of these three groups are shown in Figure 3. The primary endpoint was most frequently observed in HFrEF, followed by HFmrEF, and least frequently observed in HFpEF ($P = 0.012$). There was no significant difference between HFpEF and HFmrEF ($P = 0.562$). The incidences of all-cause death ($P = 0.852$), cardiovascular death ($P = 0.119$), and HF readmission ($P = 0.060$) were not different among these three groups.

Discussion

In the present study, we showed the clinical characteristics and prognoses of patients with HFmrEF who were admitted with symptomatic HF. Ischemic heart disease was the primary etiology in HFmrEF and HFrEF. At the time of discharge, β-blockers and RASIs were more frequently prescribed in HFmrEF than in HFrEF. The composite outcome of cardiovascular mortality and HF readmission was significantly lower in HFmrEF than in HFrEF.

Distribution of LVEF: The peak distribution of LVEF was unimodal and in the range of 20%-40%, indicating that patients with HFmrEF comprised a substantial proportion of this study population, with a relatively small proportion of patients with HFpEF. The prevalence of HFmrEF was comparable with some previous registries. However, a higher prevalence of patients with HFpEF was demonstrated in the CHART-2 study, in which 61.9% of the study population had HFpEF. These inconsistent results might be caused by the different populations. In the CHART-2 study, most of the study population had asymptomatic HF (stage B of AHA/ACC classification) or coronary heart disease without HF (53.7%), and the mean BNP level was 145.4 ± 249.3 pg/mL. On the other hand, the present study included hospitalized patients, many of whom had an advanced stage of HF (the mean BNP level was 1,182 ± 1,166 pg/mL at admission, stage C or stage D of AHA/ACC classification), so the proportion of patients with HFrEF might be higher than that in the CHART-2 study.

Clinical characteristics: In the present study, ischemic heart disease was the primary etiology in HFmrEF. Patients with HFpEF tend to be older, more often females, and to have a higher prevalence of atrial fibrillation and anemia compared with those with HFrEF, according to prior studies. LVM was an established risk factor for the cardiovascular events and prognosis in a patient with HF. A higher LVM might be related to the poor prognosis of HFrEF in the present study. In the classification of LV remodeling patterns in the present study, HFrEF was likely to have eccentric hypertrophy (concentric hypertrophy: 6.4%; eccentric hypertrophy: 77.7%), whereas HFpEF was likely to have concentric hypertrophy (concentric hypertrophy: 35.8%; eccentric hypertrophy: 25.5%), and HFmrEF had an intermediate proportion (concentric hypertrophy: 33.3%; eccentric hypertrophy: 49.3%).

Treatment and prognosis: In patients with HFmrEF, pharmacological and device therapies have been shown to improve their prognoses. However, in patients with HFpEF, there are few treatments that reduce their morbidity and mortality. In patients with HFpEF, the use of diuretics and the treatment of comorbidities are recommended in order to alleviate the symptoms and signs of HF. In patients with HFmrEF, prognostic and therapeutic evidence is still limited.

In the present study, the composite outcome of car-

Table III. Data of Echocardiography

Variable	All (n = 494)	HFrEF (n = 282)	HFmrEF (n = 75)	HFpEF (n = 137)	P-value
LVEF (%)	39.6 ± 16.3	27.7 ± 7.4	44.6 ± 2.7	61.6 ± 7.6	<0.001
LVEDV index (mL/m²)	86.1 ± 41.2	107.5 ± 38.3	72.8 ± 22.5	49.1 ± 20.5	<0.001
LVESV index (mL/m²)	56.9 ± 37.7	79.4 ± 33.8	40.4 ± 13.0	19.4 ± 9.6	<0.001
LVDD (mm)	57.9 ± 10.9	63.4 ± 9.7	53.9 ± 7.1	48.7 ± 7.1	<0.001
LVDs (mm)	45.4 ± 12.9	53.2 ± 10.3	40.3 ± 7.4	32.1 ± 5.8	<0.001
LV mass index (g/m²)	144.3 ± 44.4	153.4 ± 43.8	141.5 ± 36.4	127.1 ± 44.2	<0.001
LVH (%)	77.5	84.0	82.7	61.3	<0.001
LVH classification					<0.001
Normal (%)	16.0	14.5	17.3	18.2	0.588
Concentric remodeling (%)	6.5	1.4	0.0	20.4	<0.001
Concentric hypertrophy (%)	18.6	6.4	33.3	35.8	<0.001
Eccentric hypertrophy (%)	58.9	77.7	49.3	25.5	<0.001

Continuous variables are expressed as the mean ± standard deviation, and categorical variables are expressed as %. EF indicates ejection fraction; LVEDV, left ventricular end-diastolic volume; LVESV, left ventricular end-systolic volume; LVDD, left ventricular end-diastolic dimension; LVDs, left ventricular end-systolic dimension; and LVH, left ventricular hypertrophy.
diovascular mortality and HF readmission was significantly better in HFmrEF compared to HFrEF. There was no significant difference in the all-cause mortality among these three groups.

In prior studies where the mortality and morbidity were compared, various conclusions were reported. The uncertainty of the results might be caused by the clinical settings (in-hospital or out-hospital) and the severity of HF. Furthermore, the proportion of patients with recovered LVEF in HFpEF or HFmrEF might influence the prognosis, because those patients had a lower mortality rate and fewer recurrent HF admissions.

The management of coronary artery disease also possibly influences the prognosis of HFmrEF. In the CHART-2 study, it was reported that the ischemic etiology is associated with the decrease of LVEF at one-year in HFmrEF and that the decrease of LVEF is related to increased mortality. The management of coronary artery disease may hold the key to improve the prognosis of HFmrEF, because ischemic heart disease was found to be the primary cause of HF in HFmrEF in the present study.

In the present study, the prescription rates of β-blockers and RASIs, and MRAs were significantly higher in HFmrEF compared to HFpEF at discharge. Although some studies reported the efficacy of cardioprotective medications for the prognosis of HFmrEF, further studies are needed to identify effective therapeutic strategies for HFmrEF.

Limitations: There are several limitations in the present study. First, as the present study was a single-center, retrospective, observational study, there is a risk of selection bias. Second, since the sample size was relatively small, there is a possibility of beta error. Third, we could not reach a conclusion regarding what the best approach is for ischemic heart disease because we did not evaluate the association between the treatments and prognosis of ischemic heart disease by a multivariable analysis in this study. Fourth, we did not analyze the proportion of patients with recovered LVEF in this study, those who might influence the prognosis.
Conclusion

The prevalence of ischemic etiology in HFmrEF is higher than in HFrEF. The cardiovascular prognosis of HFmrEF is better compared with HFrEF. Further studies are needed to determine the effectiveness of the management of coronary artery disease and cardioprotective medications for HFmrEF.

Disclosure

Conflicts of interest: The authors declare that there is no conflict of interest.

References

1. Yancy CW, Lopatin M, Stevenson LW, De Marco T, Fonarow GC, ADHERE Scientific Advisory Committee and Investigators. Clinical presentation, management, and in-hospital outcomes of patients admitted with acute decompensated heart failure with preserved systolic function: a report from the Acute Decompensated Heart Failure National Registry (ADHERE) Database. J Am Coll Cardiol 2006; 47: 76-84.
2. Tsuchihashi-Makaya M, Hamaguchi S, Kinugawa S, et al. Characteristics and outcomes of hospitalized patients with heart failure and reduced vs preserved ejection fraction. Report from the Japanese Cardiac Registry of Heart Failure in Cardiology (JCARE-CARD). Circ J 2009; 73: 1893-900.
3. Kajimoto K, Sato N, Takano T, investigators of the Acute Decompensated Heart Failure Syndromes (ATTEND) registry. Relation of left ventricular ejection fraction and clinical features or comorbidities to outcomes among patients hospitalized for acute heart failure syndromes. Am J Cardiol 2015; 115: 334-40.
4. Fonarow GC, Stough WG, Abraham WT, et al. Characteristics, treatments, and outcomes of patients with preserved systolic function hospitalized for heart failure: a report from the OPTIMIZE-HF Registry. J Am Coll Cardiol 2007; 50: 768-77.
5. Pitt B, Zannad F, Remme WJ, et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure, Randomized Aldactone Evaluation Study Investigators. N Engl J Med 1999; 341: 709-17.
6. Pitt B, Segal R, Martinez FA, et al. Randomised trial of losartan versus captopril in patients over 65 with heart failure (Evaluation of losartan in the Elderly Study, Elite). Lancet 1997; 349: 747-52.
7. Kober L, Torp-Pedersen C, Carlsen JE, et al. A clinical trial of the angiotensin-converting-enzyme inhibitor trandolapril in patients with left ventricular dysfunction after myocardial infarction. Trandolapril Cardiac Evaluation (TRACE) Study Group. N Engl J Med 1995; 333: 1670-6.
8. Yusuf S, Pfeffer MA, Swedberg K, et al. Effects of candesartan in patients with chronic heart failure and preserved left ventricular ejection fraction: the Charm-Preserved Trial. Lancet 2003; 362: 777-81.
9. Pitt B, Pfeffer MA, Assmann SF, et al. Spironolactone for heart failure with preserved ejection fraction. N Engl J Med 2014; 370: 1383-92.
10. Nagai T, Yoshikawa T, Saito Y, et al. Clinical characteristics, management, and outcomes of Japanese patients hospitalized for heart failure with preserved ejection fraction- A report from the Japanese heart failure syndrome with preserved ejection fraction (jasper) registry. Circ J 2018; 82: 1534-45.
11. Cleland JG, Tendera M, Adams J, et al. The perindopril in elderly people with chronic heart failure (PEP-CHF) study. Eur Heart J 2006; 27: 2338-45.
12. Carson P, Massie BM, McKelvie R, et al. The irbesartan in heart failure with preserved systolic function (I-PRESERVE) trial: rationale and design. J Card Fail 2005; 11: 576-85.
13. Yancy CW, Jessup M, Bozkurt B, et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 2013; 62: e147-239.
14. Ponikowski P, Voors AA, Anker SD, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail 2016; 18: 891-975.
15. Rickenbacher P, Kaufmann BA, Maeder MT, et al. Heart failure with mid-range ejection fraction: a distinct clinical entity? Insights from the Trial of Intensified versus standard Medical therapy in Elderly patients with congestive heart failure (Time-CHF). Eur J Heart Fail 2017; 19: 1586-96.
16. Tsuji K, Sakata Y, Nochioka K, et al. Characterization of heart failure patients with mid-range left ventricular ejection fraction- a report from the CHART-2 Study. Eur J Heart Fail 2017; 19: 1258-69.
17. Solomon SD, Clagbett B, Lewis EF, et al. Influence of ejection fraction on outcomes and efficacy of spironolactone in patients with heart failure with preserved ejection fraction. Eur Heart J 2016; 37: 455-62.
18. Lund LH, Claggett B, Liu J, et al. Heart failure with mid-range ejection fraction in CHARM: characteristics, outcomes and effect of candesartan across the entire ejection fraction spectrum. Eur J Heart Fail 2018; 20: 1230-9.
19. McKee PA, Castelli WP, McNamara PM, Kannel WB. The natural history of congestive heart failure: the Framingham study. N Engl J Med 1971; 285: 1441-6.
20. JCS Joint Working Group. Guidelines for treatment of acute heart failure (JCS 2011). Circ J 2013; 77: 2157-201.
21. Lang RM, Badano LP, Mor-Avi V, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging 2015; 16: 233-70.
22. Kapoor JR, Kapoor R, Ju C, et al. Precipitating clinical factors, heart failure characterisation, and outcomes in patients hospitalised with heart failure with reduced, borderline, and preserved ejection fraction. JACC Heart Fail 2016; 4: 464-72.
23. Cheng RK, Cox M, Neely ML, et al. Outcomes in patients with heart failure with preserved, borderline, and reduced ejection fraction in the Medicare population. Am Heart J 2014; 168: 721-30.
24. Chioncel O, Lainescu M, Seferovic PM, et al. Epidemiology and one-year outcomes in patients with chronic heart failure and preserved, mid-range and reduced ejection fraction: an analysis of the ESC Heart Failure Long-Term Registry. Eur J Heart Fail 2017; 19: 1574-85.
25. Gómez-Otero I, Ferrero-Gregori A, Varela Román A, et al. Mid-range ejection fraction does not permit risk stratification among patients hospitalized for heart failure. Rev Esp Cardiol Engl Ed 2017; 70: 338-46.
26. Pascual-Figal DA, Ferrero-Gregori A, Gomez-Otero I, et al. Mid-range left ventricular ejection fraction: clinical profile and cause of death in ambulatory patients with chronic heart failure. Int J Cardiol 2017; 240: 265-70.
27. Farré N, Lupon J, Roig E, et al. Clinical characteristics, one-year change in ejection fraction and long-term outcomes in patients with heart failure with mid-range ejection fraction: a multicentre prospective observational study in Catalonia (Spain). BMJ Open 2017; 7: e018719.
28. Guisado-Espartero ME, Salamanca-Bautista P, Aramburu-Bodas Ó, et al. Heart failure with mid-range ejection fraction in patients admitted to internal medicine departments: findings from...
the RICA Registry. Int J Cardiol 2018; 255: 124-8.
29. Verma A, Meris A, Skali H, et al. Prognostic implications of left ventricular mass and geometry following myocardial infarction: the VALIANT (valsartan in acute myocardial infarction) Echo-cardiographic Study. JACC Cardiovasc Imaging 2008; 1: 582-91.
30. Yokota T, Fukushima A, Kinugawa S, Okumura T, Murohara T, Tsutsui H. Randomized trial of effect of urate-lowering agent febuxostat in chronic heart failure patients with hyperuricemia (LEAF-CHF). Int Heart J 2018; 59: 976-82.
31. Kinugawa K, Sato N, Inomata T. Effects of tolvaptan on volume overload in patients with heart failure. Int Heart J 2018; 59: 1368-77.
32. Shah KS, Xu H, Matsouaka RA, et al. Heart failure with preserved, borderline, and reduced ejection fraction: 5-year outcomes. J Am Coll Cardiol 2017; 70: 2476-86.
33. Kalogeropoulos AP, Fonarow GC, Georgiopoulou V, et al. Characteristics and outcomes of adult outpatients with heart failure and improved or recovered ejection fraction. JAMA Cardiol 2016; 1: 510-8.
34. Lupón J, Díez-López C, de Antonio M, et al. Recovered heart failure with reduced ejection fraction and outcomes: a prospective study. Eur J Heart Fail 2017; 19: 1615-23.
35. Kotecha D, Flather MD, Altman DG, et al. Heart rate and rhythm and the benefit of beta-blockers in patients with heart failure. J Am Coll Cardiol 2017; 69: 2885-96.
36. Cleland JGF, Bunting KV, Flather MD, et al. Beta-blockers for heart failure with reduced, mid-range, and preserved ejection fraction: an individual patient-level analysis of double-blind randomized trials. Eur Heart J 2018; 39: 26-35.