Reconstruction Attack on Differential Private Trajectory Protection Mechanisms

ACSAC’22
Erik Buchholz, UNSW Sydney & CSCRC
Alsharif Abuadbba, CSIRO’s Data61 & CSCRC
Shuo Wang, CSIRO’s Data61 & CSCRC
Surya Nepal, CSIRO’s Data61 & CSCRC
Salil S. Kanhere, UNSW Sydney & CSCRC

*CSCRC = Cyber Security Cooperative Research Centre

The authors would like to thank UNSW, the Commonwealth of Australia, and the Cybersecurity Cooperative Research Centre Limited for their support.

Annual Computer Security Applications Conference (ACSAC)
December 5 – 9, 2022
Trajectory Publication

- 4 locations might identify 95% of humans [1]
- Redditor identified Muslim taxi drivers [2]

[1] Y.-A. de Montjoye, C. A. Hidalgo, M. Verleysen, and V. D. Blondel, “Unique in the Crowd: The privacy bounds of human mobility,” Scientific Reports, vol. 3, no. 1, pp. 1–5, Dec. 2013, doi: 10.1038/srep01376.

[2] L. Franceschi-Bicchierai, “Redditor cracks anonymous data trove to pinpoint Muslim cab drivers,” 2015. https://mashable.com/archive/redditor-muslim-cab-drivers (accessed Sep. 28, 2021).
Trajectory Protection

K-Anonymity
- + Intuitive Parametrization
- + Simple(r) to achieve
- - No theoretical guarantees
- → Vulnerable to (background attacks)

Differential Privacy
- + Strong theoretical guarantees
- + Independent of background knowledge
- - Unintuitive parameters (ε, δ)

→ De-facto privacy standard
One example: Sampling Distance and Direction (SDD) mechanism [1]

Figure 4: Original and published trajectories of 4 ships in Singapore Straits with $\varepsilon = 0.1$.

[1] K. Jiang, D. Shao, S. Bressan, T. Kister, and K.-L. Tan, “Publishing trajectories with differential privacy guarantees,” in Proceedings of the 25th International Conference on Scientific and Statistical Database Management - SSDBM, New York, New York, USA, 2013, p. 1. doi: 10.1145/2484838.2484846.
One example: Sampling Distance and Direction (SDD) mechanism [1]

Research Question:
Can an adversary (partly) reconstruct trajectories from a differential private release?

Figure 4: Original and published trajectories of 4 ships in Singapore Straits with $\epsilon = 0.1$.

[1] K. Jiang, D. Shao, S. Bressan, T. Kister, and K.-L. Tan, “Publishing trajectories with differential privacy guarantees,” in Proceedings of the 25th International Conference on Scientific and Statistical Database Management - SSDBM, New York, New York, USA, 2013, p. 1. doi: 10.1145/2484838.2484846.

Note: Still used as baseline/state-of-the-art in 2020 [9, 10]
Idea: Reconstruct trajectories from a supposedly anonymized/protected release through a deep learning model.
Model

Perturbed → Encoding → MLP → MLP → MLP → Dense → Bidirectional LSTM → Encoding → MLP → MLP → MLP → Reconstructed
Evaluation

Pre-Processing:
• Outlier Removal (SDD requires upper bound on speed)
• Splitting of trajectories based on long breaks
• Latitude and Longitude measured from central reference point

Datasets:
• T-Drive: Taxi trajectories only. Beijing area.
 • 163’006 trajectories; \(10 \leq \text{length} \leq 100; v \leq 90 \text{ km/h}\)
• GeoLife: All transportation types. Larger geographical area.
 • 90’146 trajectories; \(10 \leq \text{length} \leq 200; v \leq 100 \text{ km/h}\)

Protection Mechanisms:
• CNoise: Independent Laplace noise added to each coordinate
• SDD: Better utility through exponential mechanism

Metrics:
• Euclidean Distance: Standard trajectory similarity metric
• Hausdorff Distance: Standard trajectory similarity metric
• Jaccard Index: Representation of activity space \((\text{Intersection over Union})\)
Example Reconstruction

- Randomly chosen examples for SDD with $\varepsilon = 0.1$ from T-Drive

- Randomly chosen examples for $CNoise$ with $\varepsilon = 1.0$ from T-Drive
Results

• For $\epsilon \leq 1$ over 68% reduced distances through reconstruction

• Found security-privacy trade-off
 • \rightarrow A higher level of privacy (i.e., smaller ϵ/more perturbation) yields a higher reconstruction access
Transfer of Datasets

• Up to 67% distance reduction
• ➞ Attack represents threat for real-world adversaries and state-of-the-art protection mechanisms (vs Laplace noise)
Related Work

- One existing attack on differential private trajectory publication mechanisms: iTracker [1]
 - Only considers standard Laplace noise protection
 - No implementation available (contacted authors)

- Model Baseline: LSTM-TrajGAN [2]
 - Uses a GAN to generate synthetic trajectories
 - Provides very good utility compared to other approaches
 - But no differential privacy guarantees (yet)

[1] M. Shao, J. Li, Q. Yan, F. Chen, H. Huang, and X. Chen, “Structured Sparsity Model Based Trajectory Tracking Using Private Location Data Release,” IEEE Transactions on Dependable and Secure Computing, vol. 18, no. 6, pp. 2983–2995, 2020, doi: 10.1109/TDSC.2020.2972334.

[2] J. Rao, S. Gao, Y. Kang, and Q. Huang, "LSTM-TrajGAN: A Deep Learning Approach to Trajectory Privacy Protection," Leibniz International Proceedings in Informatics, vol. 177, no. GIScience, pp. 1–16, 2020, doi: 10.4230/LIPIcs.GIScience.2021.I.12.
Conclusion

• Current DP protection mechanisms yield *unauthentic perturbation*
• These differences can be exploited for *reconstruction attacks*
• → Results in *reduced level of privacy protection*

Improved privacy-preserving publication mechanisms have to be developed!

Artifacts: Functional

Acknowledgement

The authors would like to thank UNSW, the Commonwealth of Australia, and the Cybersecurity Cooperative Research Centre Limited for their support.
Backup: Transfer CNoise

![Graph showing distance reduction between T-Drive to GeoLife and GeoLife to T-Drive with varying epsilon values and distance types (Euclidean and Hausdorff).]
Backup: Transfer ε

ID	Mechanism	ε Train	ε Test	Euclidean	Hausdorff
27	CNoise	1.0	10.0	24.3%	46.2%
28	CNoise	10.0	1.0	72.5%	79.3%
29	SDD	0.1	1.0	68.4%	73.1%
30	SDD	1.0	0.1	68.3%	72.8%
Transfer Mechanism

ID	Train	Test	ε	Euclidean	Hausdorff
31	CNoise	SDD	1.0	27.7 %	44.9 %
32	SDD	CNoise	1.0	53.0 %	70.3 %
Backup: Runtime

• Reconstruction of one trajectory

• GeoLife, SDD $\varepsilon = 0.1$: $[51.3; 52.1] ms$ is 99% conf. interval
• T-Drive, SDD $\varepsilon = 0.1$: $[44.8; 45.6] ms$ is 99% conf. interval

• Ubuntu 20.04 LTS
 • 2x Intel Xeon Silver 4208; 128GB RAM
 • NVIDIA Tesla T4 with 16 GB RAM (4 GPUs available, only one used)
Backup: Example GeoLife

GeoLife with CNoise $\epsilon = 1.0$

GeoLife with SDD $\epsilon = 1.0$