A Broken Circuit Ring

Nicholas Proudfoot
Department of Mathematics, University of Texas, Austin, TX 78712

David Speyer
Department of Mathematics, University of California, Berkeley, CA 94720

Abstract. Given a matroid M represented by a linear subspace $L \subset \mathbb{C}^n$ (equivalently by an arrangement of n hyperplanes in L), we define a graded ring $R(L)$ which degenerates to the Stanley-Reisner ring of the broken circuit complex for any choice of ordering of the ground set. In particular, $R(L)$ is Cohen-Macaulay, and may be used to compute the h-vector of the broken circuit complex of M. We give a geometric interpretation of $\text{Spec } R(L)$, as well as a stratification indexed by the flats of M.

1 Introduction

Consider a vector space with basis $\mathbb{C}^n = \mathbb{C}\{e_1, \ldots, e_n\}$, and its dual $(\mathbb{C}^n)^\vee = \mathbb{C}\{x_1, \ldots, x_n\}$. Let $L \subset \mathbb{C}^n$ be a linear subspace of dimension d. We define a matroid $M(L)$ on the ground set $[n] := \{1, \ldots, n\}$ by declaring $I \subset [n]$ to be independent if and only if the composition $\mathbb{C}\{x_i \mid i \in I\} \hookrightarrow (\mathbb{C}^n)^\vee \twoheadrightarrow L^\vee$ is injective. Recall that a minimal dependent subset $C \subset [n]$ is called a circuit; in this case there exist scalars $\{a_c \mid c \in C\}$, unique up to scaling, such that $\sum_C a_c x_c$ vanishes on L. Conversely, the support of every linear form that vanishes on L contains a circuit.

The central object of study in this paper will be the ring $R(L)$ generated by the inverses of the restrictions of the linear functionals $\{x_1, \ldots, x_n\}$ to L. More formally, let

$$\mathbb{C}[x,y] := \mathbb{C}[x_1, y_1, \ldots, x_n, y_n]/\langle x_i y_i - 1 \rangle,$$

and let $\mathbb{C}[x]$ and $\mathbb{C}[y]$ denote the polynomial subrings generated by the x and y variables, respectively. Let $\mathbb{C}[L]$ denote the ring of functions on L, which is a quotient of $\mathbb{C}[x]$ by the ideal generated by the linear forms $\{ \sum_C a_c x_c \mid C \text{ a circuit} \}$. We now set

$$R(L) := \left(\mathbb{C}[L] \otimes_{\mathbb{C}[x]} \mathbb{C}[x,y] \right) \cap \mathbb{C}[y].$$

1Partially supported by the Clay Mathematics Institute Liftoff Program
Geometrically, Spec $R(L)$ is a subscheme of Spec $\mathbb{C}[y]$, which we will identify with $(\mathbb{C}^n)^\vee$. Using the isomorphism between \mathbb{C}^n and $(\mathbb{C}^n)^\vee$ provided by the dual bases, Spec $R(L)$ may be obtained by intersecting L with the torus $(\mathbb{C}^\ast)^n$, applying the involution $t \mapsto t^{-1}$ on the torus, and taking the closure inside of \mathbb{C}^n. If C is any circuit of $M(L)$ with $\sum_{c \in C} a_c x_c$ vanishing on L, then we have the relation

$$f_C := \sum_{c \in C} a_c \prod_{c' \in C \setminus \{c\}} y_{c'} = 0 \quad \text{in} \quad R(L).$$

Our main result (Theorem 4) will be that the elements $\{f_C \mid C \text{ a circuit}\}$ are a universal Gröbner basis for $R(L)$, hence this ring degenerates to the Stanley-Reisner ring of the broken circuit complex of $M(L)$ for any choice of ordering of the ground set $[n]$. It follows that $R(L)$ is a Cohen-Macaulay ring of dimension d, and that the quotient of $R(A)$ by a minimal linear system of parameters has Hilbert series equal to the h-polynomial of the broken circuit complex. In Proposition 7 we identify a natural choice of linear parameters for $R(L)$.

The Hilbert series of $R(L)$ has already been computed by Terao [Te], using different methods. The main novelty of our paper lies in our geometric approach, and our interpretation of $R(L)$ as a deformation of another well-known ring. The ring $R(L)$ also appears as a cohomology ring in [PW], and as the homogeneous coordinate ring of a projective variety in [Lo, 3.1].

Acknowledgment. Both authors would like to thank Ed Swartz for useful discussions.

2 The broken circuit complex

Choose an ordering w of $[n]$. We define a broken circuit of $M(L)$ with respect to w to be a set of the form $C \setminus \{c\}$, where C is a circuit of $M(L)$ and c the w-minimal element of C. We define the broken circuit complex $bc_w(L)$ to the simplicial complex on the ground set $[n]$ whose faces are those subsets of $[n]$ that do not contain any broken circuit. Note that all of the singletons will be faces of $bc_w(L)$ if and only if $M(L)$ has no parallel pairs, and the empty set will be a face if and only if $M(L)$ has no loops. We will not need to assume that either of these conditions holds.

Consider the f-vector (f_0, \ldots, f_d) of $bc_w(L)$, where f_i is the number of faces of order i. Then f_i is equal to the rank of $H^i(A(L))$, where $A(L) = L \setminus \bigcup_{i=1}^{n} \{x_i = 0\}$ is the
complement of the restriction of the coordinate arrangement from \(\mathbb{C}^n \) to \(L \) (see for example [OT]). In particular, the \(f \)-vector of \(\text{bc}_w(L) \) is independent of the ordering \(w \). The \(h \)-vector \((h_0, \ldots, h_{d-1})\) of \(\text{bc}_w(L) \) is defined by the formula \(\sum h_iz^i = \sum f_iz^i(1-z)^{d-i} \).

The *Stanley-Reisner ring* \(\text{SR}(\Delta) \) of a simplicial complex \(\Delta \) on the ground set \([n]\) is defined to be the quotient of \(\mathbb{C}[e_1, \ldots, e_n] \) by the ideal generated by the monomials \(\prod_{i \in N} e_i \), where \(N \) ranges over the nonfaces of \(\Delta \). The complex \(\text{bc}_w(L) \) is shellable of dimension \(d-1 \) [Bj], which implies that \(\text{Spec } \text{SR}(\text{bc}_w(L)) \) is Cohen-Macaulay and pure of dimension \(d \). Let \(\mathbb{C}[L^\vee] \) denote the ring of functions on \(L^\vee = (\mathbb{C}^n)^\vee/L^\perp \), which we may think of as the symmetric algebra on \(L \). The inclusion of \(L \) into \(\mathbb{C}^n \) induces an inclusion of \(\mathbb{C}[L^\vee] \) into \(\mathbb{C}[e_1, \ldots, e_n] \), which makes \(\text{SR}(\text{bc}_w(L)) \) into an \(\mathbb{C}[L^\vee] \)-algebra. Let \(\text{SR}_0(\text{bc}_w(L)) = \text{SR}(\text{bc}_w(L)) \otimes_{\mathbb{C}[L^\vee]} \mathbb{C} \), where each linear function on \(L^\vee \) acts on \(\mathbb{C} \) by 0. The following proposition asserts that \(L \) constitutes a linear system of parameters (l.s.o.p.) for \(\text{SR}(\text{bc}_w(L)) \).

Proposition 1. The Stanley-Reisner ring \(\text{SR}(\text{bc}_w(L)) \) is a free \(\mathbb{C}[L^\vee] \)-module, and the ring \(\text{SR}_0(\text{bc}_w(L)) \) is zero-dimensional with Hilbert series \(\sum h_iz^i \).

Proof. By [St, 5.9], it is enough to prove that \(\text{SR}_0(\text{bc}_w(L)) \) is a zero-dimensional ring. Let \(\pi \) denote the composition \(\text{Spec } \text{SR}(\text{bc}_w(L)) \hookrightarrow (\mathbb{C}^n)^\vee \twoheadrightarrow L^\vee \). The variety \(\text{Spec } \text{SR}(\text{bc}_w(L)) \) is a union of coordinate subspaces, one for each face of \(\text{bc}_w(L) \). Let \(F \) be such a face, with vertices \((v_1, \ldots, v_{|F|})\). The broken circuit complex is a subcomplex of the matroid complex, hence \((v_1, \ldots, v_{|F|})\) is an independent set, which implies that \(\pi \) maps the corresponding coordinate subspace injectively to \(L^\vee \). Thus \(\pi^{-1}(0) = \text{Spec } \text{SR}_0(\text{bc}_w(L)) \) is supported at the origin, and we are done. \(\square \)

3 A degeneration of \(R(L) \)

In this section we show that \(R(L) \) degenerates flatly to the Stanley-Reisner ring \(\text{SR}(\text{bc}_w(L)) \) for any choice of \(w \).

Lemma 2. The spaces \(\text{Spec } R(L) \) and \(\text{Spec } \text{SR}(\text{bc}_w(L)) \) are both pure \(d \)-dimensional homogeneous varieties of degree \(t_{M(L)}(1,0) \), where \(t_M(w,z) \) is the Tutte polynomial of \(M \).

Proof. The broken circuit complex is pure of dimension \(d-1 \), hence \(\text{Spec } \text{SR}(\text{bc}_w(L)) \) is union of \(d \)-dimensional coordinate subspaces of \((\mathbb{C}^n)^\vee \). Its degree is the number of facets of \(\text{bc}_w(L) \), which is equal to \(\sum h_i = t_{M(L)}(1,0) \) [Bj].
The variety $\text{Spec } R(L)$ is equal to the closure inside of $(\mathbb{C}^n)^\vee \cong \mathbb{C}^n$ of $L \cap (\mathbb{C}^*)^n$, and is therefore d dimensional. We will now show that $\deg \text{Spec } R(L)$ obeys the same recurrence as $t_{M(L)}(1,0)$. First, suppose that $i \in [n]$ is a loop of $M(L)$. Then L lies in a coordinate subspace of \mathbb{C}^n, $L \cap (\mathbb{C}^*)^n$ is empty, and $\text{Spec } R(L)$ is thus empty and has degree 0. In this case, we also have $t_{M(L)}(1,0) = 0$. Next, suppose that i is a coloop of $M(L)$. Then L is invariant under translation by e_i, and $\text{Spec } R(L)$ is similarly invariant under translation by x_i. Write L/i for the quotient of L by this translation, so that $\text{Spec } R(L) = \text{Spec } R(L/i) \times \mathbb{C}$ and $\deg \text{Spec } R(L) = \deg \text{Spec } R(L/i)$. It is clear that $M(L/i) = M(L)/i$, and indeed $t_{M}(1,0) = t_{M/i}(1,0)$ when i is a coloop.

Now consider the case where i is neither a loop nor a coloop, hence we have

$$t_{M(L)}(1,0) = t_{M(L)/i}(1,0) + t_{M(L) \setminus i}(1,0).$$

In this case, we may apply the following theorem.

Theorem 3. [KMY, 2.2] Let X be a homogeneous irreducible subvariety of $\mathbb{C}^n = H \oplus \ell$, with H a hyperplane and ℓ a line such that X is not invariant under translation in the ℓ direction. Let X_1 be the closure of the projection along ℓ of X to H, and let X_2 be the flat limit in $H \times \mathbb{P}^1$ of $X \cap (H \times \{t\})$ as $t \to \infty$. Then X has a flat degeneration to a scheme supported on $(X_1 \times \{0\}) \cup (X_2 \times \ell)$. In particular, $\deg X \geq \deg X_1 + \deg X_2$, with equality if the projection $X \to X_1$ is generically one to one.

Let $X = \text{Spec } R(L)$, $\ell = \mathbb{C} x_i$, and $H = \mathbb{C}\{x_j | j \neq i\}$. Then in the notation of Theorem 3, we have $X_1 = \text{Spec } R(L \setminus i)$, where $L \setminus i$ is the projection of L onto H, and $X_2 = \text{Spec } R(L/i)$. The projection of $\text{Spec } R(L)$ onto H is one to one because the corresponding projection of L in the x_i direction is one to one. Thus the degree of $\text{Spec } R(L)$ is additive.

We are now ready to prove our main theorem, which asserts that $R(L)$ degenerates flatly to $\text{SR}(\text{bc}_w(L))$ for any choice of w.

Theorem 4. The set $\{f_C \mid C$ a circuit of $M(L)\}$ is a universal Gröbner basis for $R(L)$. Given any ordering w of $[n]$, with the induced term order on $\mathbb{C}[y]$, we have $\text{In}_w R(L) = \text{SR}(\text{bc}_w(L))$.

Proof. Suppose given an ordering w of $[n]$ and a circuit C of $M(L)$. Let c_0 denote the w minimal element of C, so that $\prod_{c' \in C \setminus \{c_0\}} y_{c'}$ is the leading term of f_C with respect to w. Every monomial of this form vanishes in $\text{In}_w R(L)$, hence we deduce that $\text{Spec } \text{In}_w(R(L))$ is
a subscheme of \(\text{Spec} \, SR(bc_w(L)) \). However, Lemma 2 tells us that these two schemes have the same dimension and degree, and \(\text{Spec} \, SR(bc_w(L)) \) is reduced. Thus they are equal.

Let \(R \) be the quotient ring of \(\mathbb{C}[y] \) generated by the polynomials \(\{f_C\} \). It is clear that \(\text{In}_w \text{Spec} \, R(L) \subseteq \text{In}_w \text{Spec} \, R \subseteq \text{Spec} \, SR(bc_w(L)) \). Since the two ends of this chain are equal, we have \(\text{In}_w R = \text{In}_w R(L) \), and thus \(R \) and \(R(L) \) have the same Hilbert series. As \(R(L) \) is a quotient ring of \(R, R = R(L) \).

\[\square \]

4 A stratification of \(\text{Spec} \, R(L) \)

Let \(I \) be a subset of \([n] \). The rank of \(I \) is defined to be the cardinality of the largest independent subset of \(I \). If any strict superset of \(I \) has strictly greater rank, then \(I \) is called a flat of \(M(L) \). If \(I \) is a flat, let \(L_I \subset \mathbb{C}^I \) be the projection of \(L \) onto the coordinate subspace \(\mathbb{C}^I \subset \mathbb{C}^n \), and let \(L^I \subset \mathbb{C}^{I^c} \) be the intersection of \(L \) with the complimentary coordinate subspace \(\mathbb{C}^{I^c} \). The matroid \(M(L_I) \) is called the localization of \(M(L) \) at \(I \), while \(M(L^I) \) is called the deletion of \(I \) from \(M(L) \).

For any \(I \subset [n] \), let \(U_I = \{ y \in (\mathbb{C}^n)^\vee \mid y_i = 0 \iff i \notin I \} \), and let \(A_I = \text{Spec} \, R(L) \cap U_I \).

Proposition 5. The variety \(A_I \) is nonempty if and only if \(I \) is a flat of \(M(L) \). If nonempty, \(A_I \) is isomorphic to \(A(L_I) = L_I \setminus \bigcup_{i \in I} \{ y_i = 0 \} \).

Proof. First suppose that \(I \) is not a flat of \(M(L) \). Then there exists some circuit \(C \) of \(M(L) \) and element \(c_0 \in C \) such that \(C \cap I = C \setminus \{c_0\} \). On one hand, the polynomial \(f_C = \sum_{c \in C} a_c \prod_{c' \in C \setminus \{c\}} y_{c'} \) vanishes on \(A_I \). On the other hand, \(f_C \) has a unique nonzero term \(\prod_{c \in C \setminus \{c_0\}} y_{c'} \) on \(U_I \), and therefore cannot vanish on this set. Hence \(A_I \) must be empty.

Now suppose that \(I \) is a flat. If \(I = [n] \), then we are simply repeating the observation that \(\text{Spec} \, R(L) \cap (\mathbb{C}^*)^n \cong L \cap (\mathbb{C}^*)^n = A(L) \). In the general case, Theorem 4 tells us that \(\text{Spec} \, R(L) \) is cut out of \((\mathbb{C}^n)^\vee \) by the polynomials \(f_C \), so we need to understand the restrictions of these polynomials to the set \(U_I \). If \(C \) is not contained in \(I \), then \(C \setminus I \) has size at least 2, and therefore \(f_C \) vanishes on \(U_I \). Thus we may restrict our attention to those circuits that are contained in \(I \). Proposition 5 then follows from the fact that the circuits of \(M(L_I) \) are precisely the circuits of \(M(L) \) that are supported on \(I \).

\[\square \]

Remark 6. The stratification of \(\text{Spec} \, R(L) \) given by Proposition 5 is analogous to the standard stratification of \(L \) into pieces isomorphic to \(A(L^I) \), again ranging over all flats of \(M(L) \).

The identification of \(e_i \) with \(y_i \) makes \(R(L) \) into an algebra over \(\mathbb{C}[L^\vee] \). We conclude by showing that, as in Proposition 1, \(L \) provides a natural linear system of parameters for \(R(L) \).
Proposition 7. The ring $R(L)$ is a free module over $\mathbb{C}[L^\vee]$. The zero dimensional quotient $R_0(L) := R(L) \otimes_{\mathbb{C}[L^\vee]} \mathbb{C}$ has Hilbert series $\sum h_i z^i$.

Proof. The fact that $R(L)$ is Cohen-Macaulay follows from Theorem 4, which asserts that it is a deformation of the Cohen-Macaulay ring $SR(bc_w(L))$. Furthermore, Theorem 4 tells us that any quotient of $R(L)$ by d generic parameters has the same Hilbert series of $SR_0(bc_w(L))$. Therefore, as in Proposition 1, we let π denote the composition $\text{Spec } R(L) \rightarrow (\mathbb{C}^n)^\vee \rightarrow L^\vee$, and observe that it is enough to show that $\pi^{-1}(0)$ is supported at the origin.

Let $I \subset [n]$ and suppose that $y = (y_1, \ldots, y_n) \in A_I = \text{Spec } R(L) \cap U_I$. By Proposition 5, A_I is obtained from $A(L_I)$ by applying the inversion involution of $(\mathbb{C}^*)^I$, hence there exists $x_I \in A(L_I) \subset L_I$ such that $x_i = y_i^{-1}$ for all $i \in I$. Extend x_I to an element $x \in L$. Then $\langle x, y \rangle = \sum x_i y_i = |I|$, hence if y projects trivially onto L^\vee, we must have $I = \emptyset$. \qed

Remark 8. It is natural to ask the question of whether $R_0(L)$ has a g-element; that is an element $g \in R(L)$ in degree 1 such that the multiplication map $g^{r-2i} : R_0(L)_i \rightarrow R_0(L)_{r-i}$ is injective for all $i < r/2$, where r is the top nonzero degree of $R_0(L)$. This property is known to fail for the ring $SR_0(bc_w(L))$ [Sw, §5], but the inequalities that it would imply for the h-numbers are not known to be either true or false. In fact, the ring $R_0(L)$ fares no better than its degeneration; Swartz’s counterexample to the g-theorem for $SR_0(bc_w(L))$ is also a counterexample for $R_0(L)$.

Remark 9. All of the constructions and results in this paper generalize to arbitrary fields with the exception of Proposition 7, which uses in an essential manner the fact that \mathbb{C} has characteristic zero.

References

[Bj] A. Björner. The homology and shellability of matroids and geometric lattices. *Matroid applications*, 226–283, Encyclopedia Math. Appl., 40, Cambridge Univ. Press, Cambridge, 1992.

[KMY] A. Knutson, E. Miller, and A. Yong. Gröbner geometry of vertex decompositions and of flagged tableaux. e-print math.AG/0502144.

[Lo] E. Looijenga. Compactifications defined by arrangements I: the ball quotient case. *Duke Math. J.* 118 (2004), no. 1, 151–187.

[OT] P. Orlik and H. Terao. *Arrangements of Hyperplanes*. Grundlehren der mathematischen Wissenschaften 300, newblock Springer-Verlag, 1992.
[PW] N. Proudfoot and B. Webster. Arithmetic and topology of hypertoric varieties. e-print math.AG/0411350.

[St] R. Stanley. The number of faces of a simplicial convex polytope. *Adv. in Math.* 35 (1980), no. 3, 236–238.

[Sw] E. Swartz. g-elements of matroid complexes. *J. Combin. Theory* Ser. B 88 (2003), no. 2, 369–375.

[Te] H. Terao. Algebras generated by reciprocals of linear forms. *J. Algebra* 250 (2002), no. 2, 549–558.