Phonon-induced dephasing of singlet-triplet superpositions in double quantum dots without spin-orbit coupling

K. Roszak and P. Machnikowski
Institute of Physics, Wroclaw University of Technology, 50-370 Wroclaw, Poland

We show that singlet-triplet superpositions of two-electron spin states in a double quantum dot undergo a phonon-induced pure dephasing which relies only on the tunnel coupling between the dots and on the Pauli exclusion principle. As such, this dephasing process is independent of spin-orbit coupling or hyperfine interactions. The physical mechanism behind the dephasing is elastic phonon scattering, which persists to much lower temperatures than real phonon-induced transitions. Quantitative calculations performed for a lateral GaAs/AlGaAs gate-defined double quantum dot yield micro-second dephasing times at sub-Kelvin temperatures, which is consistent with experimental observations.

PACS numbers: 73.21.La, 03.65.Yz, 72.10.Di, 03.67.Lx

The idea of encoding quantum information in spin states of electrons confined in quantum dots (QDs) is considered to be one of the most promising approaches to solid-state quantum computing. The original proposal of using single spin as quantum bits [1] was followed by more sophisticated concepts in which a logical qubit was to be coded in a system of a few spins [2, 3]. A class of proposed implementations uses two-spin states in double quantum dots (DQDs), assigning the quantum logical values to singlet and triplet spin configurations [4, 5]. State-of-the-art experimental techniques allow one to manipulate spin states of two electrons in a lateral, gate-defined DQD on time scales of hundreds of nanoseconds [7, 8], which has led to a renewed interest in factors that limit spin coherence. In theoretical investigations, the hyperfine interaction [9, 10, 11, 12] and phonon related phenomena mediated by the spin-orbit coupling [13, 14, 15, 16, 17, 18] are considered to be the major dephasing channels. This yields good agreement with experimental results for single electron spins, showing relaxation times of the order of milliseconds [19, 20, 21]. In a DQD system, the experimental lower limit for coherence times lies in the microsecond range [5, 8]. This increased dephasing cannot be accounted for by the spin-related interactions mentioned above.

In this Letter, we show that an efficient pure dephasing channel is always present in systems of two electron spins localized in coupled semiconductor QDs. This channel results solely from the charge-phonon interaction in the presence of inter-dot tunnel coupling, and is essentially due to the distinguishability of singlet and triplet states via Pauli-blocking of certain transitions in the triplet case. The key feature of this decoherence process is that it does not require any spin-environment interaction and relies only on the mechanisms (tunnel coupling and the Pauli principle) that are essential for the implementation of quantum gates. In particular, it appears also in materials with negligible spin-orbit and hyperfine couplings.

Qualitatively, in the lowest energy state of the two-electron system, each dot is occupied by a single electron. The spin configuration of the system may then be either singlet or triplet. In the former case, the orbital (spatial) wave function is symmetric and a transition to a higher-energy doubly occupied state is possible. This is forbidden by Pauli exclusion in the triplet configuration with an anti-symmetric orbital part. Although such transitions are completely inefficient at sub-Kelvin temperatures because of negligible occupation of the required phonon states, a two-phonon process is still possible, in which absorption of a phonon is followed by re-emission of another one [22, 23]. In such a process, the doubly occupied state is involved only “virtually” and energy conservation requires only that the two phonons have the same energy (that is, the scattering is elastic) but this energy can be arbitrary. Therefore, even at low temperatures, phonons scatter on a DQD in the singlet state, while a DQD in the triplet state is transparent to phonons. This distinguishability leads to pure dephasing of any singlet–triplet superposition, in some sense analogous to the “collisional decoherence” of the orbital degrees of freedom [24, 25]. Although the intensity of this process drops down at low temperatures because of decreasing two-phonon spectral density at low frequencies, the temperature dependence is only polynomial (as opposed to exponential suppression of real transitions). As we will show, at sub-Kelvin temperatures, at which spin coherent control experiments on DQDs are performed, the two-phonon process can still lead to pure dephasing times as low as tens or hundreds of microseconds.

In order to quantitatively estimate the effect of this dephasing we consider two electrons in laterally coupled quantum dots interacting with a phonon reservoir. The dots are considered identical and the model is restricted to the ground state in each dot. The Hamiltonian of the system is then

\[H = H_{\text{DQD}} + H_{\text{ph}} + H_{\text{int}}. \]
The first term describes the electrons and has the form
\[
H_{\text{DQD}} = -t_1 \sum_{s} \left(a_{ls}^\dagger a_{Rs} + \text{h.c.} \right) + \frac{i}{2} \sum_{s,s',i,j,k,l} V_{ijkl} a_{is}^\dagger a_{js}^\dagger a_{ks} a_{ls}, \tag{1}
\]
where \(a_{is}^\dagger\) are the electron annihilation and creation operators with \(i = \text{L,R}\) denoting the left and right dot, respectively, and \(s = \uparrow, \downarrow\) labeling the spin orientation. The first term in Eq. (1) accounts for single-particle inter-dot tunneling. The second term describes the Coulomb interaction, with \(V_{ijkl} = V_{jilk} = V_{ikjl} = V_{klij}\) (the wave functions may be chosen such that the matrix elements are real). For identical QDs the Coulomb matrix elements are also invariant under the interchange of the dots, \(L-R\). Among the Coulomb terms, \(V_{\text{LLRR}} = V_{\text{RLRL}} \equiv U_1\) and \(V_{\text{LLLL}} = V_{\text{RRRR}} \equiv U_2\) are the energies of the singly- and doubly-charged configurations, while \(V_{\text{LLRR}} = V_{\text{RLRL}} \equiv E_X\) are exchange energies, \(V_{\text{LLRR}} = V_{\text{RLRL}} \equiv t_{C2}\) is the coupling between the doubly-charged configurations, while \(V_{\text{LLL}}\) and equivalent terms account for the coupling between the singly- and doubly-charged configurations and will be denoted by \(t_{C}\).

The Hamiltonian of the phonon reservoir is given by
\[
H_{\text{ph}} = \sum_{k,\lambda} \hbar \omega_{\lambda k} b_{\lambda k}^\dagger b_{\lambda k}, \tag{2}
\]
where \(b_{\lambda k}^\dagger\) and \(b_{\lambda k}\) are phonon annihilation and creation operators for a phonon from a branch \(\lambda\) with a wave vector \(k\) and \(\hbar \omega_{\lambda k}\) are the corresponding energies. The electron-phonon interaction is described by
\[
H_{\text{int}} = \sum_{s,i} \sum_{k,\lambda} F^{(\lambda)}_{i,k} (k) a_{is}^\dagger a_{is} (b_{\lambda k} + b_{-\lambda k}^\dagger), \tag{3}
\]
where \(F^{(\lambda)}_{i,k} (k) = F^{(\lambda)}_{i,k} (k) \exp(\pm ikzD/2)\) are coupling constants and \(D\) is the inter-dot distance. We include the deformation potential and piezoelectric couplings. The coupling constants for the longitudinal and transverse acoustic phonon branches are, respectively \([26, 27]\),
\[
F^{(1)}_{i,k} (k) = \sqrt{\frac{\hbar}{2 \rho_e v \omega_{k,1}}} \left[\sigma_k - \frac{de}{\varepsilon_0 \varepsilon_s} M_1 (k) \right] F(k),
\]
and
\[
F^{(1,1,2)}_{i,k} (k) = -i \sqrt{\frac{\hbar}{2 \rho_e v \omega_{k,1}}} \frac{de}{\varepsilon_0 \varepsilon_s} M_{1,1,2} (k) F(k),
\]
where \(\lambda = 1,1,2\) refer to the longitudinal and two transverse acoustic phonon branches. Here \(e\) denotes the electron charge, \(\rho_e\) is the crystal density, \(v\) is the normalization volume for the phonon modes, \(d\) is the piezoelectric constant, \(\varepsilon_0\) is the vacuum permittivity, \(\varepsilon_s\) is the static relative dielectric constant and \(\sigma\) is the deformation potential constant. The functions \(M_\lambda\) depend on the orientation of the phonon wave vector \([26, 27]\). For the zinc-blende structure they are given by
\[
M_\lambda (k) = 2 \left[\hat{k}_x \hat{k}_y \left(\hat{\varepsilon}_{\lambda,k} \right)_z + \hat{k}_y \hat{k}_z \left(\hat{\varepsilon}_{\lambda,k} \right)_x + \hat{k}_z \hat{k}_x \left(\hat{\varepsilon}_{\lambda,k} \right)_y \right],
\]
where \(\hat{k} = k/k\) and \(\hat{\varepsilon}_{\lambda,k}\) are unit polarization vectors. The form factors \(F(k)\) depend on the wave function geometry and are given by \(F(k) = \int d^3r \psi^\dagger (r) e^{i k \cdot r} \psi (r)\), where \(\psi(r)\) is the envelope wave function of an electron centered at \(r = 0\).

We will use the basis composed of the three triplet states
\[
| (1,1) T \rangle = a_{L,\uparrow}^\dagger a_{R,\downarrow}^\dagger | 0 \rangle, \quad s = \uparrow, \downarrow,
\]
and the three singlet states
\[
| (\pm) S \rangle = \frac{|(0,0) S\rangle \pm |(0,2) S\rangle}{\sqrt{2}} = \frac{a_{L,\uparrow}^\dagger a_{R,\downarrow}^\dagger + a_{R,\uparrow}^\dagger a_{L,\downarrow}^\dagger}{\sqrt{2}} | 0 \rangle
\]
and
\[
| (1,1) S \rangle = \frac{a_{L,\uparrow}^\dagger a_{R,\downarrow}^\dagger + a_{R,\uparrow}^\dagger a_{L,\downarrow}^\dagger}{\sqrt{2}} | 0 \rangle.
\]

The triplet states and the \(|(1,1) S\rangle\) singlet involve electrons occupying separate QDs and, therefore, have lower energies than the other two singlet states. The eigenstates of the Hamiltonian \(H_{\text{DQD}}\) are the three triplets with the energy \(U_1 - E_X\), the singlet \(|(--) S\rangle\) with the energy \(E_{(--) S} = U_2 - t_{C2}\), and the two states
\[
| S_+ \rangle = \frac{1}{\sqrt{1 + \xi^2}} [(|(+\rangle S) + \xi |(1,1) S\rangle)],
\]
\[
| S_- \rangle = \frac{1}{\sqrt{1 + \xi^2}} [(|(+\rangle S) - \xi |(1,1) S\rangle)],
\]
where \(\xi = 2\sqrt{2t/(U + \sqrt{U^2 + 8t^2})}\), with the eigenenergies \(E_{\pm} = E \pm \sqrt{U^2 + 8t^2}/2\). Here \(E = (U_2 + t_{C2} + U_1 + E_X)/2\), \(U = U_2 + t_{C2} - U_1 - E_X\), and \(t = \sqrt{2(t_{C} - t_{1})}\). In the weak tunneling regime, \(t \ll U\), one has \(\xi \ll 1\) and \(|S_+ \rangle \approx |(+) S\rangle, |S_- \rangle \approx |(1,1) S\rangle\). The degenerate triplet states and the singlet state \(|S_- \rangle\) are the lowest energy states. In the following, phase decoherence of a superposition of the \(|S_- \rangle\) singlet state and one of the triplet states is investigated.

Since the electron-phonon interaction conserves spin, the singlet state \(|S_- \rangle\) is not coupled by phonon-assisted transitions to the triplet states. Calculation shows that \(|S_- \rangle\) is also decoupled from \(|S_+ \rangle\), so the only nonzero off-diagonal matrix element of \(H_{\text{int}}\) involving \(|S_- \rangle\) is
\[
\langle S_- | H_{\text{int}} | (--) S \rangle = -\frac{2i\xi}{1 + \xi^2} \sum_{k,\lambda} F^{(\lambda)} (k) \sin \left(\frac{k_x D}{2} \right) (b_{\lambda k} + b_{-\lambda k}^\dagger).\]
For this coupling, the spectral density of the phonon reservoir (as defined, e.g., in [17]) takes the form

\[R(\omega) = \frac{1}{\hbar^2} \frac{4\xi^2}{1 + \xi^2} \sum_{k, \lambda} |F^{(3)}(k)|^2 \sin^2 \left(\frac{k_B D}{2} \right) \]

\[\times \left[(n_{k, \lambda} + 1)\delta(\omega - \omega_{k, \lambda}) + n_k \delta(\omega + \omega_{k, \lambda}) \right], \]

where \(n_{k, \lambda} \) is the Bose distribution.

The two electron system is described by the reduced density matrix \(\rho_{\text{DQD}} = \text{Tr}_R \rho \), where \(\text{Tr}_R \) denotes the partial trace over the reservoir degrees of freedom and \(\rho \) is the density matrix of the complete system. Its evolution can be described using the time-convolutionless (TCL) projection operator method [28]. For factorized initial conditions (pure initial state), the TCL master equation takes the form \(d[\rho(t)]/dt = K(t)\rho(t) \), where the projection operator \(P \) is defined by \(\rho(t) = \text{Tr}_R \rho(t) \otimes \rho_R \), \(K(t) \) is the TCL generator, and \(\rho_R \) is the density matrix of the phonon reservoir at the thermal equilibrium. Expanding the TCL generator up to the fourth order yields [28]

\[K(t) = \sum_{n=1}^4 K_n(t), \]

with \(K_3(t) = 0 \) and

\[K_2(t) = \int_0^t dt_1 \mathcal{P} \mathcal{L}(t)\mathcal{L}(t_1)\mathcal{P}, \]

\[K_4(t) = \int_0^t dt_1 \int_0^{t_1} dt_2 \int_0^{t_2} dt_3 \left[\mathcal{P} \mathcal{L}(t)\mathcal{L}(t_1)\mathcal{L}(t_2)\mathcal{L}(t_3)\mathcal{P} \right. \]

\[\left. - \mathcal{P} \mathcal{L}(t)\mathcal{L}(t_1)\mathcal{P} \mathcal{L}(t_2)\mathcal{L}(t_3) + \mathcal{L}(t_2)\mathcal{P} \mathcal{L}(t_1)\mathcal{L}(t_3) \right. \]

\[\left. + \mathcal{L}(t_3)\mathcal{P} \mathcal{L}(t_1)\mathcal{L}(t_2) \right], \]

where \(\mathcal{L}(t) \) is the Liouville operator, \(\mathcal{L}(t)\rho(t') = -(i/\hbar)[H_{\text{int}}(t), \rho(t')] \).

The coherence between the low-energy singlet and any of the triplet states is stored in the off-diagonal elements of the DQD density matrix, \(r_i = \langle S_-|\rho_{\text{DQD}}|(1, 1)T_i \rangle, \quad i = 1, \downarrow \). Upon explicitly evaluating the generators in Eqs. (3a-b), the evolution equation for any of these singlet-triplet off-diagonal elements can be written in the form \(dr_i/dt = K(t)r_i \). Here, we are interested in the loss of coherence, that is, in the evolution of the modulus of \(r_i \). This is given by

\[\frac{d|r_i|}{dt} = \text{Re} K(t)|r_i|. \]

The function \(K(t) \) varies with time only for \(t \lesssim \hbar/(k_B T) \) (reservoir memory time), which is of the order of picoseconds. Since the time scales relevant for the present discussion are many orders of magnitude longer, we can safely use its long-time (Markovian) limit \(K \equiv K(t = +\infty) \). Then, \(K \) may be separated into two parts \(K = K^{(1)} + K^{(2)} \), the first term is

\[\text{Re} K^{(1)} = -\pi(1 - \epsilon)R(-\omega_0 - \Delta E), \]

where \(\hbar \omega_0 = E_{(-)S} - E_- \) is the energy difference between the two relevant singlet states,

\[\epsilon = \int_{-\infty}^{\infty} d\omega \left[\frac{R(\omega_0 + \omega)}{2\omega^2} - \frac{R(\omega_0 - \omega)}{2\omega^2} \right. \]

\[- \left. \frac{R(\omega_0 + \omega) + R(-\omega_0 + \omega)}{4\omega\omega_0} \right. \]

\[- \left. \frac{R(\omega_0 - \omega) + R(-\omega_0 - \omega)}{4\omega\omega_0} \right], \]

and the spectral density of the phonon reservoir \(R(\omega) \) is given by Eq. (2). This term describes the Fermi golden rule rate of real single-phonon transitions between the \(|S_-\rangle \) and \(|(-)S\rangle \) states with fourth order corrections due to phonon-induced energy shifts and coupling renormalizations. The second contribution is

\[\text{Re} K^{(2)} = \pi \int_{-\infty}^{\infty} d\omega \left[\frac{2R(\omega_0)R(-\omega_0)}{\omega^2} \right. \]

\[- \frac{R(\omega_0 - \omega)R(-\omega_0 + \omega) + R(\omega_0 + \omega)R(-\omega_0 - \omega)}{\omega_0^2} \]

\[- \frac{R(\omega_0 - \omega)R(-\omega_0 + \omega) - R(\omega_0 + \omega)R(-\omega_0 - \omega)}{\omega_0^2} \]

and accounts for the two-phonon elastic scattering process.

In the calculations, DQD geometry and material parameters are taken which correspond to lateral, gate-defined QDs made in the two-dimensional electron gas (2DEG) of a doped GaAs/AlGaAs interface heterostructure [7, 27]. Two-dimensional Gaussian single electron wave functions are used with 170 nm full width at half maximum of the probability density. We set \(D = 200 \) nm, and \(U = 0.8 \) meV and use the material parameters \(c_i = 5100 \text{ m/s}, c_s = 2800 \text{ m/s}, \epsilon_s = 13.2, d = 0.16 \text{ C/m}^2, \sigma = -0.8 \text{ eV}, \) and \(\rho_e = 5300 \text{ kg/m}^3 \). For simplicity, we use GaAs bulk phonon modes.

The pure dephasing rates resulting from the two-phonon (scattering) process are shown in Fig. (1a) as a function of temperature. Dephasing rates due to the single-phonon assisted transition for \(t = 0.3 \) meV are shown in the same figure for comparison. At low temperatures, at which experiments on DQD ensembles are performed, the single-phonon transition is suppressed. At these temperatures, the dominating decoherence mechanism is the elastic scattering. This two-phonon process is much less influenced by decreasing the temperature since it involves only a virtual transition to a higher energy (doubly charged) singlet state. The resulting pure dephasing rates at sub-Kelvin temperatures are relatively high, compared to experimentally achievable gate operation times [7].
However, for non-zero coupling, the dephasing rate grows rapidly with t. Obviously, the dephasing vanishes for uncoupled dots. However, for non-zero coupling, the dephasing rate grows rapidly with t.

In conclusion, we have shown that inter-dot tunneling and the Pauli principle, which are necessary for two-spin quantum gate operation, lead to singlet-triplet spin dephasing in two-electron DQDs. This dephasing process does not depend on any interactions between spins and their environment and is therefore qualitatively different from the dephasing mechanisms discussed so far. Unlike single-phonon-assisted real transitions between singlet states, which are suppressed at low temperatures, the two-phonon elastic process remains non-negligible in the sub-Kelvin range relevant for spin coherent control experiments on DQDs. For a gate-defined GaAs/InGaAs DQD system, this process leads to dephasing rate of the order of $10\, \mu s$ at $T = 0.5\, \text{K}$. This is consistent with the relatively short dephasing times found in experiments \cite{27,28}.

Fig. 1(b) shows the pure dephasing rates as a function of the coupling parameter t. This parameter, which is also crucial for unitary operations on the two-qubit system, affects the dephasing rate via the energy difference between the singlet states, $\hbar \omega_0$, and via the mixing parameter ξ, which enters the spectral density in Eq. (2). Obviously, the dephasing vanishes for uncoupled dots.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure1}
\caption{Two-phonon induced pure dephasing rates: (a) As a function of temperature for different tunneling parameters. (b) As a function of the tunneling parameter for different temperatures. Gray line in (a) shows the dephasing rates from single-phonon transitions for $t = 0.3\, \text{meV}$.}
\end{figure}