Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Enveloped viruses acquire their membrane from the host cell and accordingly need to separate their envelope from cellular membranes via membrane fission. Although some of the enveloped viruses recruit the endosomal sorting complex required for transport (ESCRT) to catalyze the final fission reaction, many enveloped viruses seem to bud in an ESCRT-independent manner. Here we describe the principles that govern membrane fission reactions in general and review progress in the understanding of ESCRT-mediated membrane fission. We relate ESCRT function to budding of single stranded RNA viruses and discuss alternative ways to mediate membrane fission that may govern ESCRT-independent budding.

Addresses
1 Unit of Virus Host Cell Interactions (UVHCI), UMI 3265, Université Joseph Fourier-EMBL-CNRS, 6 rue Jules Horowitz, 38042 Grenoble Cedex 9, France
2 Institut Curie, Centre de Recherche, CNRS UMR 168, Physico-Chimie Curie, Université Pierre et Marie Curie, 75248 Paris, France

Corresponding author: Weissenhorn, Winfried (weissenhorn@embl.fr)

Introduction
Enveloped viruses assemble at cellular membranes, which provide the newly formed virus envelope. Viral proteins bend membranes into vesicular structures during assembly and use either their own or cellular host proteins to catalyze membrane fission, an important energetic barrier associated with virion release. The host cell may provide the blueprint for fission, since many membrane trafficking processes require a membrane fission step. Schematically, cellular vesicles have an extracellular, luminal or cytoplasmic content and come in two flavors. First, protein-coated vesicles, such as clathrin-coated endocytotic vesicles [1], COPI-coated or COPII-coated vesicles that bud off Golgi and ER membranes, respectively [2,3] or retromer-coated vesicles in the retrograde pathway [4]. Second, non-coated vesicles such as those retrieving for instance GPI-linked or glycolipid receptors from the plasma membrane [5] or vesicles that bud into the lumen of endosomes producing multivesicular bodies [6]. Clathrin-coated vesicles recruit helical dynamin polymers at the membrane neck connecting the vesicle and the donor membrane [7**,8**]. GTP hydrolysis then leads to polymer twisting and neck constriction [9], which sets the stage for membrane fission occurring at the frontier between the narrow dynamin coated membrane and the coexisting bare membrane with a larger diameter. Additionally, fission kinetics is affected by the mechanical properties of the membrane (tension and bending rigidity) [10**]. Dynamin has been also implicated in the budding of caveolae [11] and dynamin-like molecules catalyze mitochondrial fission [12]. An alternative model for vesicle fission stipulates that proteins containing amphipathic helices can induce fission by hydrophobic insertion; in the case of N-BAR domain proteins, this effect is modulated, by an antagonistic relationship between these helices and BAR-domain scaffolds [13**,14]. In contrast, vesicle budding into the lumen of endosomes is organized by endosomal sorting complexes for transport (ESCRT) [6,15]. Because endosomal vesicle budding is topologically similar to enveloped virus budding, some of the enveloped viruses hijack part of the ESCRT machinery to escape from host cells [16–18]. Here we review membrane fission release of enveloped ssRNA viruses catalyzed by the ESCRT machinery or by ESCRT-independent pathways. In order to place virus release and membrane fission into the context of membrane biophysics, we first summarize general physical principles of membranes favoring fission and relate these principles to ESCRT-dependent and ESCRT-independent budding processes.

Physical properties of membranes influencing fission: phase separation and line tension

In vitro experiments and theoretical approaches have shown that lipid domains in membranes can induce membrane bending and fission from quasi-flat membranes due to the constractive line tension at the edge of the domains [19*,20]. Lateral tension in membranes limits this pinching-off effect, as it favors flat membranes [19*]. In the case of tubular geometries reminiscent of the neck of a budding virion, fission also occurs at the edge of domains and can be accelerated by membrane tension [21]. Proteins are in principle not required for this process and the membrane domains can be made of lipids only [22]. However, proteins including actin may contribute to induce phase separation in membranes [23,24] leading to membrane fission [25*] and forces generated by actin...
polymerization pushing on the membrane can help fission [22]. Although this line-tension fission mechanism has been documented in vitro and in some cases in vivo, it is not clear to what extent it contributes to in vivo membrane fission reactions such as for example ESCRT-driven membrane fission.

Physical modeling of virus budding
Mechanisms for the entry and exit of enveloped virus from cells have been proposed by physicists, in the framework of colloid–membrane interactions. The virus is modeled as a solid particle with a spherical or elongated shape that can be wrapped by the interacting membrane. Theoretical models have been calculated describing the conditions under which particles can spontaneously bud off independently of fission proteins as a function of adhesion energy, particle size and shape or membrane tension. Membrane destabilization leading to fission is expected to occur when wrapping is total. An optimal particle size for budding depending on particle concentration and on the relative densities of interacting molecules on the particle has been derived from these models [26–28]. However, to date numerical simulations are limited to the effect of a single particle to and membranes of small size [29,30].

The ESCRT machinery and budding
The ESCRT machinery is composed of five different complexes, ESCRT-0, ESCRT-I, ESCRT-II, ESCRT-III and VPS4, which assemble sequentially on the endosomal membrane to concentrate cargo, sort it into vesicles, pinch off the vesicles and recycle ESCRTs [6,15,31,32]. Because ESCRT-III constitutes the membrane fission machinery [33*,34**], together with VPS4 [6,35**] they are also recruited to topologically similar processes such enveloped virus budding [36] and cytokinesis [37,38].

ESCRT-III and membrane fission
Higher eukaryotes express 12 ESCRT-III proteins named CHMP (CHarged Multivesicular body Protein) and IST1 (Increased Sodium Tolerance I gene product) [39–42]. CHMP6 (Vps20), CHMP4 (A, B or C) (snf7), CHMP3 (Vps24) and CHMP2 (A or B) (Vps2) are recruited in this order and may form a core complex in yeast [31], while the remaining ESCRT-III (CHMP1A, B, CHMP5, CHMP7 and IST1) exerts regulatory functions. All ESCRT-III proteins are required for MVB biogenesis [6] and during cell division [43]. In contrast, HIV-1 release requires only one CHMP4 and one CHMP2 family member that act sequentially and may thus constitute the minimal fission machinery [44**] together with VPS4 [35,45**]. However, CHMP3 exerts a significant synergistic effect on CHMP2A [46] and CHMP1B is recruited last [45**,47*].

ESCRT-III proteins are small helical assemblies [48–50] and their autoinhibited conformation is controlled by the C-terminal region [49,51–53]. Displacement or artificial removal of the C-terminus leads to polymerization in vitro and on cellular membranes. Direct ESCRT-III-driven membrane deformation in vivo has been only observed twice. Expression of truncated CHMP4 together with dominant negative VPS4 produced membrane tubes that contained helical arrays of presumably CHMP4 [54] and expression of CHMP2B wild type led to the formation of long membrane tubes emanating from the plasma membrane. CHMP2B tube formation required CHMP4 at the base, depended on VPS4 and produced a tight helical layer of CHMP2B filaments spaced by 30 Å [55] similar to the CHMP2A-CHMP3 helical tubes [46] (Figure 1). In

Figure 1

![Figure 1](https://example.com/image)

Gallery of ESCRT-III polymers observed in vitro and in vivo. (a) CHMP2A negative stain. (b) CHMP4 cryo-EM. (c) CHMP1B negative stain. (d) IST1 negative stain. (e) CHMP2A-3 cryo-EM. (f) CHMP2B (with membrane) negative stain. (g) CHMP2B (with membrane) cryo-EM. Scale bars are all 50 nm. Images shown in c and d are reproduced with permission from Bajorek et al. [49].
vitro, CHMP4B forms loose ~30 Å thick helical arrays or ring-like structures [56,57] (Figure 1) and CHMP2A polymerizes into circular ~30 Å thick coils [46] (Figure 1). In addition, IST1 and CHMP1B, tubes have large diameters and yeast Snf7-induced Vps24-Vps2 (CHMP3–CHMP2) polymers resemble their human counterparts [46,49,58**,59*] (Figure 1). However, it should be noted that yeast Vps24 (CHMP3) assembles into two stranded filaments [57] and the spiral ESCRT-III structures imaged at the midbody are much thicker [60] than those shown in Figure 1. In vivo, ESCRT-III and VPS4 have short transient residency times at budding sites [35,45**,61].

Although circular and tubular structures of ESCRT-III polymers observed in vitro and in vico can assemble inside a bud neck, their large diameters varying from 50 to >200 nm impede spontaneous membrane fission. This led to the proposal of two main models. One model suggests that VPS4 induces constriction by filament sliding leading to fission [59*], while the second model proposes that ESCRT-III polymers forming a dome-like structure permit neck constriction and membrane fission [18,58**,62]. Albeit none of the models have been proven experimentally, the dome model is appealing, because all potential polymers implicated in the final cut (CHMP2A-CHMP3 or CHMP2A or CHMP2B) can form dome-like end-caps in vitro or in vico [46,55,58**] (Figure 2). The model predicts that CHMP4 polymers, which may induce a first narrowing of the neck, recruit CHMP2A-CHMP3 or CHMP2A or CHMP2B to build-up a dome-like polymer. The successive narrowing of the helical filament and its affinity for membrane will ‘mold’ the membrane [63] and induce neck constriction. This could theoretically constrict the neck up to a diameter of 6 nm, which would be energetically favorable for spontaneous fast fission [64*] (Figure 3). It is yet unclear how such ESCRT-III assemblies may influence lipid redistribution and fission. Even though ESCRT-III-catalyzed membrane fission in vitro was observed without VPS4 ATPase activity [33*,34**], it is likely that VPS4 plays an active role beyond recycling ESCRT-III [35,45**,65–67].

A modification of the dome-model proposes the symmetric ring-like arrangement of ESCRT-I-ESCRT-II complexes in the bud neck of intraluminal endosomal vesicles that provide the platform for ESCRT-III filaments projecting into the pore in a whorl-like arrangement that themselves serve as docking site for a dome-like polymer or evolve into a dome-like polymer that executes fission [68,69].

ESCRT-III-induced lipid phase separation may play an additional role [70] thus contributing to constrictive line tension at the edge of membrane domains and permitting spontaneous fission [21]. It is thus possible that the ESCRT-III-dome may function as a scaffold that induces local lipid redistribution and phase separation. As a final touch VPS4 ATP hydrolysis may couple mechanical stress imposed on the membrane with physical properties of
lipid bilayers. Thus the main principles of ESCRT-III-driven membrane fission may be similar to dynamin-catalyzed fission.

Viruses budding with ESCRTs

Hallmarks of ESCRT-dependency of enveloped virus budding are the presence of functional late domains in structural proteins as well as the inhibition of virion release by either dominant negative VPS4, ESCRT-III or Alix [16,17,71,72]. Accordingly, a large number of enveloped RNA viruses employ ESCRTs for their release including all retroviruses [17,36,73,74]. Furthermore most members of the negative strand non-segmented ssRNA viruses recruit ESCRTs for budding from the plasma membrane. This includes Rhabdoviruses [75], Filoviruses [76–78] and most Paramyxoviruses, although some (Nipah, Measles and HRSV) may bud in an ESCRT-independent way [79]. However, no evidence for ESCRTs has yet been reported for Bornaviridae budding. In addition, Arenaviruses, negative strand segmented ssRNA viruses bud ESCRT-dependent [80,81] (Table 1).

Viruses budding without ESCRTs

Orthomyxoviruses (influenza virus), negative-sense segmented ssRNA viruses, bud independently of the ESCRT machinery from the plasma membrane (Table 1) [82]. Influenza virus budding is especially interesting because fission is induced by the viral transmembrane protein M2, which functions otherwise as an ion channel. M2 localizes to the neck of the bud and contains a highly conserved amphipathic helix within its cytoplasmic tail that affects membrane curvature in a cholesterol-dependent way. In fact, the short amphipathic helix sufficed to induce budding from GUVs [83**]. The M2 peptide may destabilize the membrane thereby providing the force for changes in membrane curvature [84]. Thus the function of M2 resembles aspects of fission reactions catalyzed by hydrophobic insertion [13**], although M2-driven fission is controlled by the local cholesterol concentration and no protein scaffolds seem to be required.

Although Coronaviridae, positive-strand ssRNA viruses also bud independent of ESCRTs (Table 1), no definite viral or cellular fission factor has yet been described. Coronaviruses obtain their viral envelope containing the glycoprotein S, the major membrane glycoprotein M and a minor membrane protein E by budding through membranes of the ER-Golgi intermediate compartment (ERGIC) [85]. The E protein contains one or two transmembrane regions and was suggested to play a role in membrane bending during assembly and fission [86,87]. However, E may not be essential for MHV (mouse hepatitis virus) and SARS-CoV virion production [88,89]. On the other hand, E-depleted TGEV (transmissible gastroenteritis coronavirus) produces non-infectious immature virions that are stuck in the secretory pathway [90], indicating that the final mechanism still needs to be determined.

Furthermore a number of ssRNA viruses, togaviridae, bunyaviridae and flaviviridae distinguish themselves from other ssRNA viruses by having their glycoproteins organized into protein coats that cover the viral membrane [91,92]. Such coats may drive budding and may contribute to the final membrane fission process by aiding bud neck constriction. Budding may follow physically based budding principles described above, which stipulate that membrane destabilization leading to scission...
may occur when the whole viral particle is wrapped by proteins.

Togaviridae, genus alphaviruses (Semliki Forest virus (SFV), Chikungunya, Ross River, and Venezuelan Encephalitis virus) and rubivirus (Rubella virus) are plus sense ssRNA viruses. Rubella virus and alphaviruses anchor their RNA synthesis in membranes of a cell organelle known as the cytopathic vacuole (CPV) that derives from modified endosomes and lysosomes [93,94]. Budding is then organized from the plasma membrane and driven by nucleocapsid-E2 glycoprotein interactions [95], which together with E1 forms a protein shell covering the viral membrane [96,97]. Notably, SFV budding is not affected by dominant negative VPS4 indicating its independence of the ESCRT machinery [98] (Table 1).

Table 1

Species	Late domain	Virus protein	Cell protein	dn ESCRT	
(+) ESCRT^a					
Rhabdoviruses	VSV^b	PYY (PSAP)	Matrix M	Nedd4	VPS4
Filoviruses	Rabies virus	PPEY	Matrix M	Nedd4	?
	Ebola virus	PTAP	Matrix VP40	Tsg101	VPS4
	Marburg virus	PPEY	Matrix VP40	Nedd4	VPS4
Paramyxoviruses	PIV-5^c	FPIV	Matrix M	n.d.	VPS4
	Mumps virus	FPIV	Matrix M	n.d.	VPS4, CHMP4B
	Nipah virus	YMYL	Matrix M	n.d.	?, VPS4 independent
	Sendai virus	YLDL	Matrix M	Alix	VPS4
	Measles virus	?	?	?	VPS4 independent
	RSV^d	?	?	?	VPS4 independent
Borna viruses	Borna virus	?	?	?	?
Arenaviruses	LCMV^e	PTAP	Matrix Z	Tsg101	?
	Lassa virus	PTAP	Matrix Z	Tsg101	VPS4
	LCMV	PPPY	Matrix Z	?	
	Mopeia virus	?	Matrix Z (NP?)	Alix	?

(-) ESCRT

Orthomyxoviruses

Coronaviruses

SARS-CoV

Budding with a protein coat

Flaviviruses				
	YFV^f	NS3	Alix	?
	JEV^g	NS3	Tsg101	?
	Dengue virus	?	?	?
Hepaciviruses				
	Hepatitis C			
Pestiviruses				
	Swine fever virus	?	?	?
Bunyaviruses^h				
	Hanta virus	?	?	?
Alphavirusesⁱ				
	SFV	?	?	?
Rubivirus	Rubella virus	?	?	?

^a ESCRT-dependent; ^b ESCRT-independent binding; ^c NACRE-dependent; ^d Nedd4; ^e dominant negative effect of ESCRT expression.

^a The description of late domains and ESCRT dependency of budding has been reviewed previously [75,76,78,79,81,114].

^b Vesicular Stomatitis virus.

^c Parainfluenza virus.

^d Human Respiratory Syncytium virus.

^e Lymphocytic Choriomeningitis virus.

^f Mouse hepatitis virus.

^g Yellow fever virus.

^h Japanese encephalitis virus.

ⁱ Bunyaviruses are split into five genera, Hantavirus, Nairovirus, Orthobunyavirus, Phlebovirus, Tospovirus.

^j Semliki Forest virus.

Bunyaviridae (5 genera Hantavirus, Nairovirus, Orthobunyavirus, Phlebovirus, Tospovirus) have segmented, negative-sense ssRNA genomes. The virions bud into the lumen of the Golgi and are released via vesicular transport from the plasma membrane [99] (Table 1). The large cytoplasmic domain of the Gn glycoprotein may act as a surrogate matrix protein of hantaviruses [100,101], while the extracellular glycoproteins assemble into coats composed of tetrameric patches (Hanta virus) [102] or icosahedral lattices (Phlebovirus) [103–105]. Although little is known about virion release, the formation of
the glycoprotein coat may drive budding and release [102].

Flaviviridae, with its genera flavivirus (Dengue virus, yellow fever, west Nile virus, Japanese encephalitis virus), Hepacivirus (Hepatitis C virus (HCV), Hepatitis G virus) and pestivirus (swine fever) contain a positive sense ssRNA genome. HCV buds form endosomal membranes and despite the fact that most non-structural proteins of Flaviviridae have been implicated in virus morphogenesis none of them has an assigned role in membrane fission [106,107]. Immature virions are transported in vesicles from the ER to the Golgi where furin cleavage of prM induces the formation of mature virions, which are released from the plasma membrane via vesicular transport [107]. This latter process depends on ESCRTs [108,109] and dominant-negative VPS4 or ESCRT-III components as well as siRNA knockdowns (Tsg101, Alix, CHMP4B, VPS4) inhibited HCV production (Table 1) [110,111] albeit without affecting the accumulation of intracellular infectious particles [112]. Thus ESCRT-dependency may be required for HCV release via the exosomal secretion pathway [113] restricting the role of ESCRTs to post-budding transport and release steps rather than membrane fission at ER membranes.

Conclusions
Much progress has been made over the last decade to understand how enveloped viruses pinch off from their host cells. In fact much insight into ESCRT function has come from studying enveloped virus budding. Today we know some of the principles that govern ESCRT-III function, but a detailed picture of how it catalyzes fission in conjunction with the ATPase VPS4 is still lacking. The effect of ESCRT-III polymers on lipids and the generation or maintenance of membrane domains is yet unexplored. It is tempting to speculate that some aspects of ESCRT-III-driven fission will resemble those of dynamin-catalyzed fission; these include the role of the helical protein scaffold, although one is assembled on the outside of a membrane neck (dynamin) and the other one on the inside of a membrane neck (ESCRT-III), thus requiring completely different modes of inducing neck narrowing. However, the final constriction may be achieved by using mechanical forces generated either by GTPase (dynamin) or ATPase (VPS4) activities. Furthermore membrane tension and rigidity, which affect the kinetics of dynamin-catalyzed fission, may also play a role during ESCRT-driven fission reactions.

It is yet unclear why some of the enveloped viruses bud independently of ESCRTs. Obviously their genomes would be flexible enough to include short late domain sequences to recruit ESCRTs. In the absence of ESCRTs, one or several factors, viral or yet unknown cellular factors, may set the stage for membrane fission. In case of influenza virus, the mechanism of hydrophobic insertion by parts of M2 plays a crucial role to deform the membrane neck leading to fission. In a potential third class of viruses such as for example flaviviridae, the formation of a glycoprotein coat may be an important contributor to fission. The glycoprotein network could generate bending forces on the membrane that may lead to bud neck narrowing and eventually fission, which, however, might involve additional cellular or viral factors.

Acknowledgements
Work in the laboratory of the authors is supported by the ANR (Agence Nationale de la Recherche) (W.W.), the FNOVI Foundation (W.W.), the LabEx GRAL (W.W.) and the Institut Curie (P.B.). G.E. is supported by a post doctoral fellowship from the ANRS (Agence Nationale de Recherche sur le Sida et les hépatites virales).

References and recommended reading
Papers of particular interest, published within the period of review, have been highlighted as:
- of special interest
- - of outstanding interest

1. McMahon HT, Boucrot E: Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol 2011, 12:517-533.
2. Popoff V, Adolf F, Brugger B, Wieland F: COPII budding within the Golgi stack. Cold Spring Harb Perspect Biol 2011, 3:a005231.
3. Zanetti G, Pahuja KB, Studer S, Shim S, Schekman R: COPII and the regulation of protein sorting in mammals. Nat Cell Biol 2011, 14:20-28.
4. Johannes L, Wunder C: Retrograde transport: two (or more) roads diverged in an endosomal tree? Traffic 2011, 12:956-962.
5. Lundmark R, Carlsson SR: Driving membrane curvature in clathrin-dependent and clathrin-independent endocytosis. Semin Cell Dev Biol 2010, 21:363-370.
6. Henne WM, Buchkovich NJ, Emr SD: The ESCRT pathway. Dev Cell 2011, 21:77-91.
7. Ferguson SM, De Camilli P: Dynamin, a membrane-remodelling GTPase. Nat Rev Mol Cell Biol 2012, 13:75-88.
This review provides a detailed molecular description of dynamin-catalyzed fission.
8. Schmid SL, Frolov VA: Dynamin: functional design of a membrane fission catalyst. Annu Rev Cell Dev Biol 2011, 27:79-105.
This review provides a detailed molecular description of dynamin-catalyzed fission.
9. Roux A, Uyhazi K, Frost A, De Camilli P: GTP-dependent twisting of dynamin implicates constriction and tension in membrane fission. Nature 2006, 441:526-531.
10. Morlot S, Galli V, Klein M, Chiaruttini N, Manzi J, Humbert F, Dinis L, Lenz M, Cappello G, Roux A: Membrane shape at the edge of the dynamin helix sets location and duration of the fission reaction. Cell 2012, 151:619-629.
This paper provides further important mechanistic insights into dynamin-catalyzed fission.
11. Oh P, McIntosh DP, Schnitzer JE: Dynamin at the neck of caveolae mediates their budding to form transport vesicles by GTP-driven fission from the plasma membrane of endothelium. J Cell Biol 1998, 141:101-114.
12. Chan DC: Fusion and fission: interlinked processes critical for mitochondrial health. Annu Rev Genet 2012, 46:265-287.
13. Boucrot E, Pick A, Camdere G, Liska N, Evergren E, McMahon HT, Kozlov MM: Membrane fission is promoted by insertion of
amphipathic helices and is restricted by crescent BAR domains. Cell 2012, 149:124-136.

This paper describes how amphipathic helices can sculpt membranes and induce fission.

14. Campelo F, Malhotra V: Membrane fission: the biogenesis of transport carriers. Annu Rev Biochem 2012, 81:407-427.

15. Hurley JH, Hanson PI: Membrane budding and scission by the ESCRT machinery: it's all in the neck. Nat Rev Mol Cell Biol 2010, 11:556-566.

16. Sundquist W, Krausslich HG: HIV-1 assembly, budding, and maturation. Cold Spring Harb Perspect Med 2012, 2:a006924.

17. Martin-Serrano J, Neil SJ: Host factors involved in retroviral budding and release. Nat Rev Microbiol 2011, 9:519-531.

18. Peel S, Macheboef P, Martinelli N, Weissenhorn W: Divergent pathways lead to ESCRT-III catalyzed membrane fission. Trends Biochem Sci 2011, 36:199-210.

19. Julicher F, Lipowsky R: Domain-induced budding of vesicles. *Phys Rev Lett* 1993, 70:2964-2967.

This paper provides the theoretical basis for the role of membrane domains in fission.

20. Baumgart T, Hess ST, Webb WW: Imaging coexisting fluid domains in biomembrane models: coupling curvature and line tension. Nature 2004, 425:821-824.

21. Allain JM, Storm C, Roux A, Ben Amar M, Joanny JF: Fission of a multiphase membrane tube. *Phys Rev Lett* 2004, 93:158104.

22. Liu J, Kaksonen M, Drubin DG, Oster G: Endocytic vesicle scission by lipid phase boundary forces. *Proc Natl Acad Sci U S A* 2006, 103:10277-10282.

23. Lingwood D, Ries J, Schwille P, Simons K: Plasma membranes are poised for activation of raft phase coalescence at physiological temperature. *Proc Natl Acad Sci U S A* 2008, 105:10005-10010.

24. Liu AP, Fletcher DA: Actin polymerization serves as a membrane domain switch in model lipid bilayers. *Biophys J* 2006, 91:4064-4070.

25. Romer W, Pontani LL, Sorre B, Rentero C, Berland L, Chambon V, Lamaze G, Bassereau P, Sykes C, Gaus K et al.: Actin dynamics drive membrane reorganization and scission in clathrin-independent endocytosis. *Cell* 2010, 140:540-553.

This paper describes the important role of actin in fission reactions.

26. Zhang S, Li J, Lykotrafitis G, Bao G, Suresh S: Size-dependent endocytosis of nanoparticles. *Adv Mater* 2009, 21:419-424.

27. van Effenterre R, Roux D: Adhesion of colloids on a cell surface in competition for mobile receptors. *Europhys Lett* 2003, 64:543-549.

28. Yuan H, Li J, Bao G, Zhang S: Variable nanoparticle-cell adhesion strength regulates cellular uptake. *Phys Rev Lett* 2010, 105:138101.

29. Noguchi H, Takasu M: Adhesion of nanoparticles to vesicles: a Brownian dynamics simulation. *Biophys J* 2002, 83:299-308.

30. Cooke IR, Deserno M: Coupling between lipid shape and membrane curvature. *Biophys J* 2006, 91:487-495.

31. Teis D, Saksenha S, Emr SD: Ordered assembly of the ESCRT-III complex on endosomes is required to sequester cargo during MVB formation. Dev Cell 2008, 15:573-589.

32. Saksenha S, Wahlman J, Teis D, Johnson AE, Emr SD: Functional reconstitution of ESCRT-III assembly and disassembly. *Cell* 2009, 136:97-109.

33. Wollert T, Wunder C, Lippincott-Schwartz J, Hurley JH: Membrane scission by the ESCRT-III complex. *Nature* 2009, 458:172-177.

This paper shows the first time that ESCRT-III can induce fission in vitro.

34. Wollert T, Hurley JH: Molecular mechanism of multisecular body biogenesis by ESCRT complexes. *Nature* 2010, 464:864-869.

35. Baumgartel V, Ivanchenko S, Dupont A, Sergerie M, Wiseman PW, Krausslich HG, Brautich C, Muller B, Lamb DC: Live-cell visualization of dynamics of HIV budding site interactions with an ESCRT component. *Nat Cell Biol* 2011, 13:469-474.

This paper highlights the dynamics of VPS4 at the HIV-1 budding site and suggests a role for VPS4 in fission.

36. Morita E, Sundquist W: Retrovirus budding. *Annu Rev Cell Dev Biol* 2004, 20:395-425.

37. Caballe A, Martin-Serrano J: ESCRT machinery and cytokinesis: the road to daughter cell separation. *Traffic* 2011, 12:1318-1326.

38. Guizetti J, Gerlich DW: ESCRT-III polymers in membrane neck constriction. *Trends Cell Biol* 2012, 22:133-140.

39. Bajorek M, Morita E, Skalicky JJ, Morham SG, Babst M, Sundquist W: Biochemical analyses of human IST1 and its function in cytokinesis. *Mol Biol Cell* 2009, 20:1360-1373.

40. Agromayor M, Carlton JG, Phelan JP, Matthews DR, Carlin LM, Ameer-Beg S, Bowers K, Martin-Serrano J: Essential role of HIST1 in cytokinesis. *Mol Biol Cell* 2009, 20:1374-1387.

41. Dimaano C, Jones CB, Hanono A, Curtiss M, Babst M: Ist1 regulates vps4 localization and assembly. *Mol Biol Cell* 2008, 19:465-474.

42. Rue SM, Mattei S, Saksena S, Emr SD: Novel Ist1-Did2 complex functions at a late step in multisecular body sorting. *Mol Biol Cell* 2008, 19:475-484.

43. Morita E, Colf LA, Karren MA, Sandrin V, Rodesch CK, Sundquist W: Human ESCRT-III and VPS4 proteins are required for centrosome and spindle maintenance. *Proc Natl Acad Sci U S A* 2010, 107:12889-12894.

44. Morita E, Sandrin V, McCullough J, Katsuyama A, Baci Hamilton I, Sundquist W: ESCRT-III protein requirements for HIV-1 budding. *Cell Host Microbe* 2011, 9:235-242.

This paper describes the minimal ESCRT-III fission machinery required for HIV-1 budding.

45. Jouvenet N, Zhadina M, Bieniasz PD, Simon SM: Dynamics of ESCRT protein recruitment during retroviral assembly. *Nat Cell Biol* 2011, 13:394-401.

This paper describes the sequence of ESCRT recruitment at the HIV-1 budding site.

46. Effantin G, Dordor A, Sandrin V, Martinelli N, Sundquist W, Schoenh N, Weissenhorn W: ESCRT-III CHMP2A and CHMP3 form variable helical polymers in vitro and act synergistically during HIV-1 budding. *Cell Microbiol* 2012, 15:213-226.

47. Carlsson L-A, Hurley JH: In vitro reconstitution of the ordered assembly of the endosomal sorting complex required for transport at membrane-bound HIV-1 Gag clusters. *Proc Natl Acad Sci U S A* 2012, 109:16928-16933.

This paper describes the sequence of HIV-1 Gag induced ESCRT recruitment onto model membranes in vitro.

48. Muziol T, Pineda-Molina E, Ravelli RB, Zamborlini A, Usami Y, Gottlinger H, Weissenhorn W: Structural basis for budding by the ESCRT-III factor CHMP3. *Dev Cell* 2006, 10:821-830.

49. Bajorek M, Schubert HL, McCullough J, Langelier C, Eckert DM, Stubblefield WM, Uter NT, Myszak DG, Hill CP, Sundquist W: Structural basis for ESCRT-III protein autoinhibition. *Nat Struct Mol Biol* 2006, 13:754-762.

50. Xiao J, Chen XW, Davies BA, Sattel AR, Katzmann DJ, Xu Z: Structural basis of Ist1 function and Ist1-Did2 interaction in the multisecular body pathway and cytokinesis. *Mol Biol Cell* 2009, 20:3514-3524.

51. Zamborlini A, Usami Y, Radoshitzky SR, Popova E, Palu G, Gottlinger H: Release of autoinhibition converts ESCRT-III components into potent inhibitors of HIV-1 budding. *Proc Natl Acad Sci U S A* 2006, 103:19140-19145.

52. Shim S, Kimpfer LA, Hanson PI: Structure/function analysis of four core ESCRT-III proteins reveals common regulatory role for extreme C-terminal domain. *Traffic* 2007, 8:1068-1079.
166 Virus structure and function

53. Kota S, Raees M, Solomons J, Jamin M, Gottlinger HG, Svergun DJ, Weissenhorn W: Structural basis for autoinhibition of ESCRT-III CHMP3. J Mol Biol 2008, 387:818-827.

54. Hansen PI, Roth R, Lin Y, Heuser JE: Plasma membrane deformation by circular arrays of ESCRT-III protein filaments. J Cell Biol 2008, 180:389-402.

55. Bodon G, Chassefeyre P, Perret-Gallay K, Martinelli N, Eflantin G, Lutj Hulsik D, Belly A, Goldberg Y, Chatellard-Causee C, Blo T et al.: Charged multivesicular body protein 2B (CHMP2B) of the endosomal sorting complex required for transport (ESCRT-III) polymerizes into helical structures deforming the plasma membrane. J Biol Chem 2011, 286:40276-40286.

56. Pires R, Hartlieb B, Signor L, Schoenh G, Lata S, Roessle M, Moriscott P, Popov S, Hin A, Jamin M et al.: A crescent-shaped ALIX dimer targets ESCRT-III CHMP4 filaments. Structure 2009, 17:843-856.

57. Ghazi-Tabatabai S, Saksema S, Short JM, Pobbati AV, Veprtsnev DB, Crowther RA, Emr SD, Egelman EH, Williams RL: Structure and disassembly of filaments formed by the ESCRT-III subunit Vps24. Structure 2008, 16:1345-1356.

58. Lata S, Schoenh G, Jain A, Pires R, Pielker J, Gottlinger HG, Weissenhorn W: Helical structures of ESCRT-III are disassembled by VPS4. Science 2008, 321:1354-1357. This paper reveals the helical tubular architecture ESCRT-III and suggests how such polymer may induce membrane filament upon assembly within the bud neck of a vesicle or virion.

59. Henne WM, Buchkovich NJ, Zhao Y, Emr SD: The endosomal sorting complex ESCRT-II mediates the assembly and architecture of ESCRT-III helices. Cell 2012, 151:356-371. This paper shows that yeast ESCRT-III has a similar helical architecture as mammalian ESCRT-III.

60. Guizetti J, Schermelih L, Mantlier J, Maar S, Posek I, Leonhardt H, Muller-Reichert T, Gerlich DW: Cortical constriction during abscission involves helices of ESCRT-III-dependent filaments. Science 2011, 331:1616-1620.

61. Jouvenet N: Dynamics of ESCRT proteins. Cell Mol Life Sci 2012, 69:4121-4133.

62. Lata S, Schoenh G, Solomons J, Pires R, Gottlinger HG, Weissenhorn W: Structure and function of ESCRT-III. Biochem Soc Trans 2009, 37:156-160.

63. Lenz M, Crow DJG, Joanny F-F: Membrane buckling induced by curved filaments. Phys Rev Lett 2009, 103:038101.

64. Fabrikant G, Lata S, Riches JD, Briggs JA, Weissenhorn W, Kozlov MM: Computational model of membrane fission catalyzed by ESCRT-III. PLoS Comput Biol 2009, 5:e1000575. This paper describes the theoretical background how ESCRT-III dome-like structures can induce spontaneous fission.

65. Babst M, Davies BA, Katzmann DJ: Regulation of Vps4 by MVB sorting and cytokinesis. Traffic 2011, 12:1298-1305.

66. Elia N, Sougrat R, Spurlin TA, Hurley JH, Lippincott-Schwartz J: Dynamics of endosomal sorting complex required for transport (ESCRT) machinery during cytokinesis and its role in abscission. Proc Natl Acad Sci U S A 2011, 108:4846-4851.

67. Elia N, Fabrikant G, Kozlov MM, Lippincott-Schwartz J: Computational model of cytokinesis abscission driven by ESCRT-III polymerization and remodeling. Biophys J 2012, 102:2300-2309.

68. Boura E, Rozycki B, Chung HS, Herrick DZ, Canagarajah B, Califio DS, Eaton WA, Hummer G, Hurley JH: Solution structure of the ESCRT-I and -II supercomplex: implications for membrane budding and scission. Structure 2012, 20:874-886.

69. Rozycki B, Boura E, Hurley JH, Hummer G: Membrane-elasticity model of coatless vesicle budding induced by ESCRT complexes. PLoS Comput Biol 2012, 8:e1002736.

70. Boura E, Ivanov V, Carlson LA, Mizuuchi K, Hurley JH: Endosomal sorting complex required for transport (ESCRT) complexes induce phase-separated microdomains in supported lipid bilayers. J Biol Chem 2012, 287:28144-28151.
94. Kujala P, Ikaheimo A, Ehsani N, Vihinen H, Auvinen P, Kaariainen I: Biogenesis of the Semliki Forest virus RNA replication complex. J Virol 2001, 75:3873-3884.

95. Jose J, Snyder JE, Kuhn RJ: A structural and functional perspective of alphavirus replication and assembly. Future Microbiol 2009, 4:837-856.

96. Lescar J, Roussel A, Wien MW, Navaza J, Fuller SD, Wengler G, Rey FA: The fusion glycoprotein shell of Semliki Forest virus: an icosahedral assembly primed for fusogenic activation at endosomal pH. Cell 2001, 105:137-148.

97. Voss JE, Vaney MC, Duquerroy S, Vornhein C, Girard-Blanc C, Crublet E, Thompson A, Bricogne G, Rey FA: Glycoprotein organization of Chikungunya virus particles revealed by X-ray crystallography. Nature 2010, 468:709-712.

98. Taylor GM, Hanson PI, Kielian M: Ubiquitin depletion and dominant-negative VPS4 inhibit rhabdovirus budding without affecting alphavirus budding. J Virol 2007, 81:13631-13639.

99. Fontana J, Lopez-Montero N, Elliott RM, Fernandez JJ, Risco C: The unique architecture of Bunyamwera virus factories around the Golgi complex. Cell Microbiol 2008, 10:2012-2028.

100. Hepojoki J, Strandin T, Wang H, Vapalanti O, Vaheiri A, Lankinen H: Cytoplasmic tails of hantavirus glycoproteins interact with the nucleocapsid protein. J Gen Virol 2010, 91:2341-2350.

101. Strandin T, Hepojoki J, Wang H, Vaheiri A, Lankinen H: The cytoplasmic tail of hantavirus Gn glycoprotein interacts with RNA. Virology 2011, 418:12-20.

102. Huiskonen JT, Hepojoki J, Laurinmaki P, Vaheiri A, Lankinen H, Butcher SJ, Grunewald K: Electron cryotomography of Tula hantavirus suggests a unique assembly paradigm for enveloped viruses. J Virol 2010, 84:4889-4897.

103. Overby AK, Pettersson RF, Grunewald K, Huiskonen JT: Insights into bunyavirus architecture from electron cryotomography of Uukuniemi virus. Proc Natl Acad Sci U S A 2008, 105:2375-2379.

104. Freiberg AN, Sherman MB, Morais MC, Holtbrook MR, Watowich SJ: Three-dimensional organization of Rift Valley fever virus revealed by cryoelectron tomography. J Virol 2008, 82:10341-10348.

105. Huiskonen JT, Overby AK, Weber F, Grunewald K: Electron cryo-microscopy and single-particle averaging of Rift Valley fever virus: evidence for GN–GC glycoprotein heterodimers. J Virol 2009, 83:3762-3769.

106. Bartenschlager R, Penin F, Lohmann V, Andre P: Assembly of infectious hepatitis C virus particles. Trends Microbiol 2011, 19:95-103.

107. Murray CL, Jones CT, Rice CM: Architects of assembly: roles of Flaviviridae non-structural proteins in virion morphogenesis. Nat Rev Microbiol 2008, 6:699-708.

108. Carpp LN, Galler R, Bonaldo MC: Interaction between the yellow fever virus nonstructural protein NS3 and the host protein Alix contributes to the release of infectious particles. Microbes Infect 2011, 13:85-95.

109. Chiou CT, Hu CC, Chen PH, Liao CL, Lin YL, Wang JJ: Association of Japanese encephalitis virus NS3 protein with microtubules and tumour susceptibility gene 101 (TSG101) protein. J Gen Virol 2003, 84:2795-2805.

110. Ariumi Y, Kuroki M, Maki M, Ikeda M, Dansako H, Wakita T, Kato N: The ESCRT system is required for hepatitis C virus production. PLoS ONE 2011, 6:e14517.

111. Kamada K, Shoji I, Deng L, Aoki C, Ratnoglik SL, Wakita T, Hotta H: Generation of a recombinant reporter hepatitis C virus useful for the analyses of virus entry, intra-cellular replication and virion production. Microbes Infect 2012, 14:69-78.

112. Corless LM, Crump CM, Griffin SD, Harris M: Vps4 and the ESCRT-III complex are required for the release of infectious hepatitis C virus particles. J Gen Virol 2010, 91:362-372.

113. Tamai K, Shiina M, Tanaka N, Nakano T, Yamamoto A, Kondo Y, Kakazu E, Inoue J, Fukushima K, Sano K et al.: Regulation of hepatitis C virus secretion by the Hrs-dependent exosomal pathway. Virolology 2012, 422:377-385.

114. Chen BJ, Lamb RA: Mechanisms for enveloped virus budding: can some viruses do without an ESCRT? Virolology 2008, 372:221-232.