Association of MDR1 Gene SNPs and Haplotypes with the Tacrolimus Dose Requirements in Han Chinese Liver Transplant Recipients

Xiaobo Yu¹, Haiyang Xie¹, Bajin Wei¹, Min Zhang², Weilin Wang², Jian Wu², Sheng Yan², Shusen Zheng¹,²*, Lin Zhou¹*

1 Key Lab of Combined Multi-Organ Transplantation, The First Affiliated Hospital, School of Medicine, Zhejiang University, Ministry of Public Health, Hangzhou, Zhejiang, China, 2 Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China

Abstract

Background: This work seeks to evaluate the association between the C/D ratios (plasma concentration of tacrolimus divided by daily dose of tacrolimus per body weight) of tacrolimus and the haplotypes of MDR1 gene combined by C1236T (rs1128503), G2677A/T (rs2032582) and C3435T (rs1045642), and to further determine the functional significance of haplotypes in the clinical pharmacokinetics of oral tacrolimus in Han Chinese liver transplant recipients.

Methodology/Principal Findings: The tacrolimus blood concentrations were continuously recorded for one month after initial administration, and the peripheral blood DNA from a total of 62 liver transplant recipients was extracted. Genotyping of C1236T, G2677A/T and C3435T was performed, and SNP frequency, Hardy-Weinberg equilibrium, linkage disequilibrium, haplotypes analysis and multiple testing were achieved by software PLINK. C/D ratios of different SNP groups or haplotype groups were compared, with a \(p \) value<0.05 considered statistically significant. Linkage studies revealed that C1236T, G2677A/T and C3435T are genetically associated with each other. Patients carrying T-T haplotype combined by C1236T and G2677A/T, and an additional T/T homozygote at either position would require higher dose of tacrolimus. Tacrolimus C/D ratios of liver transplant recipients varied significantly among different haplotype groups of MDR1 gene.

Conclusions: Our studies suggest that the genetic polymorphism could be used as a valuable molecular marker for the prediction of tacrolimus C/D ratios of liver transplant recipients.

Introduction

To lower the risk of rejection after allogenic organ transplantation, immunosuppressive drugs are widely used to reduce the immune system activity. Tacrolimus, also named FK506, is a kind of immunosuppressive drugs, and able to inhibit the multiplication of T-cells [1]. Postoperative patients have to take tacrolimus all their lives to make a better graft survival, which results in heavy financial costs [1]. The optimal use of tacrolimus could not only lower the financial cost but also reduce the side effects caused by tacrolimus, which makes it a valuable therapy for liver transplant recipients. However, pharmacokinetic characteristics of tacrolimus vary dramatically among individuals. Pharmacokinetic characteristics could be influenced in many ways, one of which may be the genetic factors including single nucleotide polymorphism (SNP), haplotype and DNA methylation [2,3,4,5,6].

Human multidrug resistance (MDR1) gene, also named P-glycoprotein, is a member of the ATP-binding cassette superfamily. MDR1 protein anchors in cell membrane, and acts as an efflux transporter of various substrates for cell protection [4,6]. It has been reported in the literature that tacrolimus is one substrate of MDR1 [5,7,8]. MDR1 is polymorphic, and at least 50 SNPs have been found so far [4,9,10,11,12,13]. The functional consequences of reported SNPs are not completely understood and still controversial to date. SNPs occur as a result of single-nucleotide substitutions in coding region and non-coding region, which might influence mRNA expression [14] and protein translation and folding [6,8], and finally affect drug pharmacokinetic characteristics. Moreover, the allelic frequency of MDR1 SNPs varies widely among ethnic groups [4,5,6]. Haplotype is a set of genetically associated SNPs [15,16,17], and can be mathematically calculated by software including PLINK and Haploview [18,19]. Linkage studies showed that there is strong linkage disequilibrium among the highly frequent polymorphisms C1236T (rs1128503), G2677A/T (rs2032582) and C3435T (rs1045642) [6,20,21]. Furthermore, the effects of haplotype on drug response and
disease outcome have been reported [20,21,22,23]. Other studies on specific mechanism have demonstrated that haplotypes may alter mRNA stability [24], protein conformation and inhibitor efficiency [6].

Dose-adjusted trough concentration (concentration/dose \(\text{C/D}\), plasma concentration of drug divided by daily dose of drug per body weight) was used as the criteria for comparison among different SNP or haplotype groups in most of the previous studies [25,26,27,28,29]. We have already observed lower tacrolimus \(\text{C/D}\) ratios in liver transplant recipients of \(\text{MDR1} C3435T \ C/C\) homozygotes previously [28]. Our new findings not only supported the previous observation, but also provided the evidence that \(\text{MDR1}\) haplotype could affect tacrolimus \(\text{C/D}\) ratios.

Methods

Patients

The population in this study was Han Chinese, including 5 female and 57 male, aged from 21 to 64 years old (46.6 ± 9.3), and weighed from 50 to 85 kg (66.4 ± 8.4). For all the patients,

Table 1. Demographic characteristics of liver transplant patients.

SNP	Genotype	\(N\)	Gender(M/F)	Age (mean ± S.D.)	Weight, kg (mean ± S.D.)
C1236T	C/C	9 (14.5\%)	9/0	47.9 ± 9.5	69.3 ± 8.4
	C/T	25 (40.3\%)	24/1	44.8 ± 9.4	68.7 ± 8.5
	T/T	28 (45.1\%)	24/4	47.9 ± 9.1	63.4 ± 7.5
G2677A/T	A/A	2 (3.2\%)	2/0	43.0 ± 11.3	65.5 ± 9.2
	A/G	8 (12.9\%)	8/0	49.6 ± 6.5	71.1 ± 7.7
	A/T	6 (9.7\%)	5/1	40.0 ± 12.5	69.2 ± 9.6
	G/G	16 (25.8\%)	15/1	48.4 ± 6.4	63.1 ± 8.7
	G/T	22 (35.4\%)	20/2	46.8 ± 10.8	67.0 ± 7.9
	T/T	8 (12.9\%)	7/1	45.4 ± 8.8	62.1 ± 7.0
C3435T	C/C	7 (11.3\%)	6/1	46.6 ± 8.8	60.7 ± 6.2
	C/T	24 (38.7\%)	24/1	44.8 ± 10.8	66.3 ± 8.0
	T/T	31 (50\%)	28/3	48.0 ± 8.0	67.7 ± 8.7

Table 2. SNPs frequencies in liver transplant patients.

SNP position	Allele N	Genotype Frequency	Hardy-Weinberg equilibrium	Comparison of C/D ratios
C1236T	C 43 (34.7%)	C/C 9 (14.5%)	0.4032	143.50 ± 37.99 0.6772
	T 81 (65.3%)	C/T 25 (40.3%)	0.453	142.73 ± 39.23 0.4166
G2677A/T	A 18 (14.5%)	A/A 2 (3.2%)	0.2258	146.20 ± 35.66 0.4166
	K 106 (85.5%)	A/K 14 (22.6%)	0.2482	139.01 ± 44.86 0.4166
C3435T	C 38 (30.6%)	C/C 7 (11.3%)	0.3871	117.54 ± 23.16 0.4166

\(O(HET)^d\) is short for observed heterozygosity. \(E(HET)^e\) is short for expected heterozygosity. doi:10.1371/journal.pone.0025933.t001
Genotype Frequency of patients

The oral administration of tacrolimus and steroid was included in our previous study [28].

Ethics statement

The research protocol was approved by the Institutional Review Board, Key Lab of Combined Multi-organ Transplantation, Ministry of Public Health. Informed written consent was obtained according to the Declaration of Helsinki.

Data Collection and Therapeutic Drug Monitoring

After the initial administration of tacrolimus, all patients received clinical evaluations and laboratory tests in the first month. The daily dose (mg) of tacrolimus was recorded, and the weight-adjusted dosage (mg/kg/d) was calculated. Drug blood levels were measured by immunoassay on the IMx analyzer (Abbott Diagnostics Laboratories, Abbott-Park, IL). Dose-adjusted trough concentrations were calculated by dividing tacrolimus trough concentrations by the corresponding dose on an mg/kg basis (concentration/dose [C/D] ratio).

Genotyping

Genomic DNA of patients was extracted from peripheral blood using QIAamp DNA Blood mini kit (QIAGEN, Hilden, Germany) following the manufacturer’s instruction. RFLP (restriction fragment length polymorphism) PCR method was used to genotype the position C1236T, G2677A/T and C3435T. Primer pairs 5’ TTCACTTCAGTTACCCATC 3’ and 5’ CATA-GAGCTCTCTGGATCA 3’ and restriction enzyme BsaRI were used to distinguish T allele from C allele of C1236T, with primer pairs 5’ AGAGCTATGAGTACGGGAATA 3’ and 5’ GCAGATCTGGGAGCCGGATA 3’ and restriction enzyme RsaI for distinguishing A allele from G or T allele of G2677A/T, primer pairs 5’ AGTAAGAAAGAACTAGAACGT 3’ and 5’ GCAAATCTTGGGACAGGAATA 3’ and restriction enzyme MboI for distinguishing T allele from C or A allele of G2677A/T, primer pairs 5’ TGAAGAGACTCATTACATTAGGC 3’ and restriction enzyme MboI for distinguishing T allele from C or A allele of C3435T. PCR and products digestion by restriction enzyme were performed as reported [30].

Statistical Analysis

Nonparametric tests, including Mann-Whitney test and Kruskal-Wallis tests, were applied to assess significance test for comparisons of all group pairs, with a further confirmation by multiple test, max(T) permutation by 10000 times. Nonparametric tests were performed by Graphpad Prism 5.03 (Graphpad Software, San Diego, CA, USA). Hardy-Weinberg equilibrium, linkage disequilibrium, haplotype frequency analyses and max(T) permutation were performed by PLINK v1.06 (http://pngu.mgh.harvard.edu/purcell/plink/). The expectation-maximization (E-M) algorithm was used to estimate haplotype frequencies by PLINK. A p value < 0.05 was considered statistically significant.

Results

Genotype Frequency of patients

All single SNP genotypes were recorded, and frequencies were calculated. No statistical significance was found among genotype groups related to gender, age and weight (Table 1). Results of Kruskal-Wallis tests were not shown. As mentioned in method, PLINK was used to analyze Hardy-Weinberg equilibrium, linkage disequilibrium and haplotype frequencies. G2677A/T has 3 alleles, however, according to the user manual, PLINK is unable to analyze SNPs with more than 2 alleles. Therefore, when one allele was compared with other two alleles, there had to be a new character to represent the two alleles. In accordance to the IUPAC (Union of Pure and Applied Chemistry) coding standards, ‘K’ was used as the abbreviation for T and G alleles, with ‘R’ for A and G alleles together and ‘W’ for A and T alleles together. So G2677A/T was also named as G2677A/T(A-K), G2677A/T(T-R) or G2677A/T(G-W). All three SNPs frequencies were in accordance with Hardy-Weinberg equilibrium, and the p value were > 0.05 (Table 2).

Effect of SNPs on Tacrolimus Dose Requirement

Data of oral tacrolimus dose was collected, and the relationship between MDR1 SNP genotypes and C/D ratio was investigated. No statistically significant association was observed in position C1236T and G2677A/T, except C3435T (Table 2). Similar to the results of our previous study [28], we found that recipients with C/C genotype at C3435T would require a little higher dose of tacrolimus compared to those with C/T and T/T genotypes (Table 2).

Table 3. Haplotype analysis of different pairs of the three SNPs.

Combined SNPs	Haplotypes	N	LD*
C1236T vs G2677A/T(A-K)	C-A	17 (13.5%)	D* = 0.897
C1236T vs G2677A/T(T-R)	T-A	1 (1%)	
C1236T vs G2677A/T(G-W)	C-W	21 (17.3%)	D* = 0.000
C1236T vs C3435T	C-C	1 (1%)	D* = 0.895
G2677A/T(A-K) vs C3435T	A-C	0 (0%)	D* = 1.000
G2677A/T(T-R) vs C3435T	T-C	42 (33.6%)	
G2677A/T(G-W) vs C3435T	W-C	34 (27.5%)	D* = 0.796
G2677A/T(A-K) vs C3435T	A-T	18 (14.5%)	
G2677A/T(T-R) vs C3435T	T-C	35 (28%)	D* = 0.868
G2677A/T(G-W) vs C3435T	W-T	28 (22.5%)	
C1236T vs G2677A/T(A-K)	C-A	17 (13.5%)	
G2677A/T(T-R) vs C3435T	T-C	42 (33.6%)	
G2677A/T(G-W) vs C3435T	W-C	34 (27.5%)	

p LD, linkage disequilibrium. doi:10.1371/journal.pone.0025933.t003
It was reported that linkage disequilibrium existed in C1236T, G2677A/T and C3435T, and association among the three SNPs, also called haplotype, might influence drug pharmacokinetics. So we tested the linkage disequilibrium of all pairs of these three SNPs at the beginning. When C1236T combined with G3435T, linkage disequilibrium was found (Table 3). C1236T also had linkage disequilibrium with G2677A/T combined with C3435T, linkage disequilibrium was also called haplotype, might influence drug pharmacokinetics. So we tested the linkage disequilibrium of all pairs of these three SNPs and effects on substrates efflux in cell models [5,8].

Table 4. Tacrolimus concentration/dose (C/D) ratios of different haplotype groups.

Combined SNPs	Haplotypes	N	C/D	Combined SNPs	Haplotypes	N	C/D
C1236T - G2677A/T(A-K)	C-A/C-A	1 (1.6%)	188.07±0.00	C1236T - G2677A/T(A-K) - C3435T	A-T/A-T	2 (1.2%)	156.40±43.84
C-A/T-K	9 (14.5%)	147.86±44.63	A-T/K-C	4 (6.5%)	149.08±29.46		
C-K/C-A	5 (8.1%)	128.09±40.17	K-T/A-T	10 (16.1%)	142.79±35.38		
C-K/C-K	3 (4.8%)	116.71±40.46	K-T/K-T	19 (30.6%)	137.01±41.89		
T-A/C-A	1 (1.6%)	177.61±0.00	K-T/K-C	20 (32.3%)	145.33±49.36		
T-K/C-K	15 (24.2%)	145.89±47.77	K-C/K-C	7 (11.3%)	126.42±38.70		
T-K/T-K	28 (45.2%)	137.47±39.28					
C1236T - G2677AT-(T-R)	C-R/C-R	8 (12.9%)	135.65±41.19	C1236T - G2677AT-(T-R) - C3435T	R-T/R-T	23 (37.1%)	139.23±36.19
C-R/T-T	12 (19.4%)	146.65±41.54	R-T/T-R	3 (4.8%)	192.31±46.51		
T-R/C-R	11 (17.7%)	141.91±44.64	T-T/T-T	1 (1.6%)	97.17±0.00		
T-R/T-R	7 (11.3%)	142.06±30.32	T-C/R-T	21 (33.9%)	139.10±42.89		
T-R/T-T	15 (24.2%)	135.15±38.28	T-C/T-C	7 (11.3%)	126.42±38.70		
T-T/T-C	2 (3.2%)	188.07±62.59					
T-T/T-T	6 (9.7%)	138.83±53.93					
C1236T - C3435T	C-T/C-T	9 (14.5%)	130.97±42.39	G2677A/T(G-W) - C3435T	G-T/G-T	13 (21.0%)	138.18±37.49
C-T/T-C	10 (16.1%)	147.61±44.29	G-T/G-C	3 (4.8%)	192.31±46.51		
T-T/C-T	14 (22.6%)	148.35±49.13	G-T/W-T	13 (21.0%)	138.66±40.31		
T-T/T-T	8 (12.9%)	137.06±36.82	W-T/W-T	5 (8.1%)	149.00±49.54		
T-T/T-C	14 (22.6%)	137.15±36.54	W-T/W-C	4 (6.5%)	149.08±29.46		
T-C/C-C	1 (1.6%)	143.82±0.00	W-C/G-T	17 (27.4%)	137.04±44.43		
T-C/T-C	6 (9.7%)	138.83±43.93	W-C/W-C	7 (11.3%)	126.42±38.70		

It has been reported that there are more than 50 SNPs in human MDR1 gene [9,10,11,12,13,31]. SNPs spread from the 5' end to the 3' untranslated region in MDR1 transcript, resulting in both synonymous and non-synonymous mutations [4,5,6]. Three SNPs, C1236T, G2677A/T and C3435T, all locate in exons. Mutation of G2677A/T causes coding sequence missense, while the others are synonymous [5]. Missense substitutions in amino acid may result in abnormal protein folding, moreover, there has been a hypothesis that the presence of rare codons, marked by synonymous polymorphisms, may affect the insertion of MDR1 into the membrane and alter the structure of substrate interaction sites [8]. These SNPs have become research focus, which include effects of SNPs and haplotypes in different ethnic groups [7,13,32,33,34,35,36,37,38] on MDR1 mRNA stabilization [24,39,40,41] or protein expression and folding [5,10] in patients, and effects on substrates efflux in cell models [5,8].

Table 5. Statistical analysis of tacrolimus concentration/dose (C/D) ratios at 1 month after drug initiation between haplotype groups.

SNP position	Haplotypes	C/D	p
C1236T - G2677A/T(A-K)	T-T/T-T/T-C/T-C/T-T/T-R	128.65±43.60	0.0156
T-R/T-R/T-R/T-N/T-C/T-C/T-C/R/C-R	148.14±40.40	0.043#	
G2677A/T(R)-C3435T	T-C/T-C/T-C/R-T	132.45±37.16	0.049
R-T/R-T/R-T/R-C/R-T/T-T	151.85±39.23	0.098#	

indicated the p value given by max(T) permutation.

Discussion

It has been reported that there are more than 50 SNPs in human MDR1 gene [9,10,11,12,13,31]. SNPs spread from the 5’ to the 3’ end, and they have been a hypothesis that the presence of rare codons, marked by synonymous polymorphisms, may affect the insertion of MDR1 into the membrane and alter the structure of substrate interaction sites [8]. These SNPs have become research focus, which include effects of SNPs and haplotypes in different ethnic groups [7,13,32,33,34,35,36,37,38] on MDR1 mRNA stabilization [24,39,40,41] or protein expression and folding [5,10] in patients, and effects on substrates efflux in cell models [5,8].
According to the literature mentioned above, both G2677A/T and C3435T have significant association with tacrolimus or cyclosporine pharmacokinetics, and their clinical behaviors exhibit significantly different requirements of drug dose among different SNP groups. Recipients with C/C homozygote of MDR1 in position C3435T showed significantly lower dose-adjusted tacrolimus concentrations compared with the other groups [28,37,42]. Since the ethnic population was Han Chinese, the same population in our previous study [28], similar phenomenon was observed. Some other research groups also identified SNPs related to cyclosporine pharmacokinetics, still there are controversies. In some cases, recipients with C/C homozygote in position C3435T required higher dose of cyclosporine [43,44], while others did not [45,46,47]. One of the explanations is that SNPs frequencies may vary quite differently depending on specific ethnic groups, for instance, homozygosity for T allele in position C1236T is 37.5% in Japanese [48], while 13.3% in Caucasians [11]. Different ethnic populations have different SNP frequencies at the same position, which may cause the controversial results.

Genetic association of SNPs, named haplotypes [15,16], was also found to influence drug pharmacokinetics on MDR1 genotype-phenotype correlation in further studies [6,20,49]. Haplotype analysis in this work provided the evidence that genetic association existed between each other among C1236T, G2677A/T and C3435T, and haplotypes of MDR1 influenced tacrolimus concentration/dose (C/D) ratios in liver transplant recipients. Our findings showed that recipients who carried T-T haplotype and an additional T/T homozygote at either SNPs required higher doses, when C1236T and G2677A/T were combined. The association between haplotypes for G2677A/T and C3435T and tacrolimus C/D ratio was weak after max(T) permutation adjustment.

Patients who have received a new liver, with a different genetic background, will metabolize drugs in different ways. Dose requirements of tacrolimus would be predicted much more precisely, if genetic polymorphism of MDR1 is investigated both in donors and recipients. And several research groups have obtained some helpful results [25,28,30].

The ultimate goal of human genetics and genomics studies is to understand the mechanism of gene interaction networks, which would finally explain how gene-drug interactions work [51]. Based on these efforts, pharmacologists and physicians hope that the individualized drug therapy would become reality one day. It is not difficult to identify genes contributing to some phenotype, such as drug pharmacokinetics. However, the phenotype is seldom monogenic. Lots of genes, including downstream molecules, are implicated in biological regulation. To facilitate the identification of these genes, new genome-wide research techniques have been developed. The Affymetrix or Illumina SNP chips are the newest human GWAS (genomic wide association study) methods, which produce high throughput SNP data from big ethnic populations with high costs. For instance, by analyzing Affymetrix SNP chips data of a population suffering SLE (systemic lupus erythematosus), several susceptibility genes participating in network of immune response and signal regulation pathway were identified, including immune complex processing and immune signal transduction in lymphocytes [32]. However, only large research groups with enough budgets could afford it. For most research groups, it would be quite sensible to pick up some candidates from databases, and investigate in replicate populations followed by mechanism studies. For those SNPs, which have been proved clinically effective, genotyping with a cost of less than 1 US dollar for each site could significantly promote the development of individualized drug treatment.

In conclusion, our results provided new evidence of the association of MDR1- and tacrolimus dose requirements, which could be a great help to the individualized tacrolimus treatment of liver transplant recipients.

Author Contributions
Conceived and designed the experiments: SZ. Performed the experiments: XY HX WW JW SY. Analyzed the data: XY MZ BW. Wrote the paper: XY LZ.

References
1. Bowman LJ, Brennan DC (2008) The role of tacrolimus in renal transplantation. Expert Opin Pharmacother 9: 635–643.
2. Theret E, Anglicheau D, Legendre C, Beaume P (2000) Role of pharmacogenetics of immunosuppressive drugs in organ transplantation. Ther Drug Monit 30: 143–150.
3. Iwasaki K (2007) Metabolism of tacrolimus (FK506) and recent topics in clinical pharmacokinetics. Drug Metab Pharmacokinet 22: 326–335.
4. Ambudkar SV, Kimchi-Sarfaty C, Sauna ZE, Gottesman MM (2003) P-glycoprotein: from genomics to mechanism. Oncogene 22: 7466–7485.
5. Zhou SF (2006) Structure, function and regulation of P-glycoprotein and its activity in vivo. Proc Natl Acad Sci U S A 97: 3473–3478.
6. Fung KL, Gottesman MM (2009) A synonymous polymorphism in a common MDR1 (ABCBI) haplotype shapes protein function. Biochim Biophys Acta 1794: 869–871.
7. Dirks NL, Huth B, Yates CR, Meibohm B (2004) Pharmacokinetics of cyclosporine in vivo: a perspective on ethnic differences. Int J Clin Pharmacol Ther 42: 701–710.
8. Kimchi-Sarfaty C, Oh JM, Kim BW, Sauna ZE, Calcagno AM, et al. (2007) A “silent” polymorphism in the MDR1 gene changes substrate specificity. Science 315: 525–528.
9. Cavaco I, Gil JP, Gil-Berglund E, Ribeiro V (2003) CYP3A4 and MDR1 alleles in a Portuguese population. Clin Chim Lab Med 41: 1345–1350.
10. Chinn LW, Kroetz DL (2007) ABCBI pharmacogenetics: progress, pitfalls, and perspective. Clin Pharmacol Ther 91: 265–269.
11. Hoffmayer S, Burk O, von Richter O, Arnold HP, Brockmöller J, et al. (2000) Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc Natl Acad Sci U S A 97: 3473–3478.
12. Kaya P, Gunduz U, Arpaci F, Ural AU, Guran S (2005) Identification of polymorphisms on the MDR1 gene among Turkish population and their effects on multidrug resistance in acute leukemia patients. Am J Hematol 80: 26–34.
13. Pechandova K, Buzikova H, Slanor O, Perlik F (2006) Polymorphisms of the MDR1 gene in the Czech population. Folia Biol (Prague) 52: 184–189.
14. Wang D, Sadee W (2006) Searching for polymorphisms that affect gene expression and mRNA processing: example ABCB1 (MDR1). AAPS J 8: E515–520.
15. Clark AG (2004) The role of haplotypes in candidate gene studies. Genet Epidemiol 27: 321–333.
16. Shan DO (2004) Tag SNP selection for association studies. Genet Epidemiol 27: 365–374.
17. Lee JE, Choi JH, Lee JH, Lee MG (2005) Gene SNPs and mutations in clinical genetic testing: haplotype-based testing and analysis. Mutat Res 573: 195–204.
18. Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21: 263–265.
19. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, et al. (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81: 559–575.
20. Wang J, Zeevi A, McCurry K, Schuetz E, Zheng H, et al. (2006) Impact of ABCB1 (MDR1) haplotypes on tacrolimus dosing in adult lung transplant patients who are CYP3A5 *3/*3 non-expressors. Transpl Immunol 15: 235–240.
21. Bandur S, Petrasek J, Hribova P, Novotna E, Brabcova I, et al. (2008) Haplotype structure of ABCB1/MDR1 gene modifies the risk of the acute allograft rejection in renal transplant recipients. Transplantation 86: 1206–1213.
22. Chowbay B, Chunaraarawson S, Cherung YB, Zhou Q, Lee EJ (2005) Genetic polymorphisms in MDR1 and CYP3A4 genes in Asians and the influence of MDR1 haplotypes on cyclosporin disposition in heart transplant recipients. Pharmacogenomics 13: 89–95.
23. Chen B, Zhang W, Fang J, Jin Z, Li J, et al. (2009) Influence of the MDR1 haplotype and CYPIA5 genotypes on cyclosporine blood level in Chinese renal transplant recipients. Xenobiotica 39: 951–958.
24. Hosokata K, Masuda S, Yonezawa A, Katsuura T, Oike F, et al. (2009) MDR1 haplotypes conferring an increased expression of intestinal CYP3A4 rather than MDR1 in female living-donor liver transplant patients. Pharm Res 26: 1590–1595.
25. Goto M, Masuda S, Kuchi T, Ograya Y, Oike F, et al. (2004) CYPIIA3*1-carrying graft liver reduces the concentration/oral dose ratio of tacrolimus in recipients of living-donor liver transplantation. Pharmacogenetics 14: 471–478.
26. Anglicheau D, Le Corre D, Lechaton S, Laurent-Puig P, Kreis H, et al. (2005) Consequences of genetic polymorphisms for sirolimus requirements after renal transplant in patients on primary sirolimus therapy. Am J Transplant 5: 595–603.
27. Masuda S, Goto M, Okuda M, Ograya Y, Oike F, et al. (2005) Initial dosage adjustment for oral administration of tacrolimus using the intestinal MDR1 level in living-donor liver transplant recipients. Transplant Proc 37: 1728–1729.
28. Wei-lin W, Jing J, Shu-sen Z, Li-hua W, Ting-bo L, et al. (2006) Tacrolimus dose requirement in relation to donor and recipient ABCB1 and CYP3A5 gene polymorphisms in Chinese liver transplant patients. Liver Transpl 12: 773–780.
29. Koh PT, Lou HK, Zhao Y, Chin YM, Yathasala A (2008) Significant impact of gene polymorphisms on tacrolimus but not ciclosporine dosing in Asian renal transplant recipients. Transplant Proc 40: 1690–1695.
30. Wu L, Xu X, Shen J, Xie H, Yu S, et al. (2007) MDR1 gene polymorphisms and risk of recurrence in patients with hepatocellular carcinoma after liver transplantation. J Surg Oncol 96: 62–68.
31. Kuonsa T, Kobayashi T, Moriyama N, Nagasaka T, Yokoyama I, et al. (2003) Amlodipine, but not MDR1 polymorphisms, alters the pharmacokinetics of cyclosporine A in Japanese kidney transplant recipients. Transplantation 76: 865–868.
32. Zheng H, Webber S, Zeevi A, Schuetz E, Zhang J, et al. (2003) Tacrolimus dosing in pediatric heart transplant patients is related to CYPIIA3 and MDR1 gene polymorphisms. Am J Transplant 3: 477–483.
33. Anglicheau D, Thervet E, Etienne I, Hurault De Ligny E, Le Meur Y, et al. (2004) CYP3A5 and MDR1 genetic polymorphisms and ciclosporine pharmacokinetics after renal transplantation. Clin Pharmacol Ther 75: 422–433.
34. Drozdzik M, Myśliwiec K, Lewinska-Chelchowska M, Banach J, Drozdzik A, et al. (2004) P-glycoprotein drug transporter MDR1 gene polymorphism in renal transplant patients with and without gingival overgrowth. J Clin Periostodol 31: 750–763.
35. Kotrych K, Domanski L, Goruk W, Drozdzik M (2005) MDR1 gene polymorphism in allogeneic kidney transplant patients with tремор. Pharmacol Rep 57: 241–245.
36. Wang W, Zhang XD, Guan DL, Lu YP, Ma LL, et al. (2005) Relationship between MDR1 polymorphism and blood concentration of ciclosporine A. Chin Med J (Engl) 118: 2097–2100.
37. Akbas SH, Bilgen T, Keser I, Tuncer M, Vucetin L, et al. (2006) The effect of MDR1 (ABCB1) polymorphism on the pharmacokinetic of tacrolimus in Turkish renal transplant recipients. Transplant Proc 38: 1290–1292.
38. Kotrych K, Sulikowski T, Domanski L, Bialoeczka M, Drozdzik M (2007) Polymorphism in the P-glycoprotein drug transporter MDR1 gene in renal transplant patients treated with cyclosporin A in a Polish population. Pharmacol Rep 59: 199–205.
39. Wang D, Johnson AD, Papp AC, Kroetz DL, Sadee W (2005). Multidrug resistance polypeptide 1 (MDR1, ABCB1) variant 3435C>T affects mRNA expression level of multidrug resistance 1 (ABCB1) in blood cells and required level of tacrolimus in pediatric living-donor liver transplantation. J Pharmcol Exp Ther 323: 610–616.
40. Li D, Gui R, Li J, Huang Z, Nie X (2006) Tacrolimus dosing in Chinese renal transplant patients is related to MDR1 gene C3435T polymorphism. Transplant Proc 38: 2850–2852.
41. Benthomme-Faivre L, Devicelle A, Saliba F, Chafel R, Macario J, et al. (2004) MDR-1 C3435T polymorphism influences ciclosporine A dose requirement in liver-transplant recipients. Transplantation 78: 21–25.
42. Hu YF, Qiu W, Liu ZQ, Zhu LJ, Tu JH, et al. (2006) Effects of genetic polymorphisms of CYP3A4, CYP3A5 and MDR1 on ciclosporine pharmacokinetics after renal transplantation. Clin Exp Pharmacol Physiol 33: 1093–1098.
43. Balram G, Shagam A, Sivathanu C, Lee EJ (2003) Frequency of C3435T single nucleotide MDR1 gene polymorphism in an Asian population: phenotypic-genotypic correlates. Br J Clin Pharmacol 56: 78–83.
44. Yates CR, Zhang W, Song P, Li S, Gaber AO, et al. (2003) The effect of CYPIIA3 and MDR1 polymorphic expression on ciclosporine oral disposition in renal transplant patients. J Clin Pharmacol 43: 553–564.
45. Forte CJ, Greer W, Kibler B, Fraser A, Lawen J, et al. (2007) Polymorphisms of multidrug resistance gene (MDR1) and ciclosporine absorption in de novo renal transplant patients. Transplantation 83: 683–689.
46. Ito S, Inari I, Tanabe M, Suzuki A, Higuchi S, et al. (2001) Polymorphism of the ABC transporter genes, MDR1, MRPI and MRP2/CMOAT, in healthy Japanese subjects. Pharmacogenetics 11: 173–184.
47. Anglicheau D, Veyssteyn C, Laurent-Puig P, Bercquemont L, Schlager M, et al. (2005) Association of the multidrug resistance-1 gene single-nucleotide polymorphisms with the tacrolimus dose requirements in renal transplant recipients. J Am Soc Nephrol 16: 1899–1906.
48. Fukudo M, Yanai Y, Yoshimura A, Masuda S, Uesugi M, et al. (2008) Impact of MDR1 and CYPIIA3 on the oral clearance of tacrolimus and tacrolimus-related renal dysfunction in adult living-donor liver transplant patients. Pharmacogenomics 11: 415–423.
49. Sebert DW, Zhang G, Vesell ES (2008) From human genetics and genomics to pharmacogenetics and pharmacogenomics: past lessons, future directions. Drug Metab Rev 40: 177–224.
50. Han JW, Zheng HF, Cai Y, Sun LD, Ye DQ, et al. (2009) Genome-wide association study in a Chinese Han population identifies nine new susceptibility loci for systemic lupus erythematosus. Nat Genet 41: 1234–1237.