Supplemental file 1

Ferroptosis-associated molecular classification characterized by distinct tumor microenvironment profiles in colorectal cancer

Authors:

Wenqin Luo1,2, Weixing Dai1,2, Qingguo Li1,2, Shaobo Mo1,2, Lingyu Han1,2, Xiuying Xiao3, Ruiqi Gu1,2, Wenqiang Xiang1,2, Li Ye1,2, Renjie Wang1,2, Ye Xu1,2, Sanjun Cai1,2, Guoxiang Cai1,2*

1 Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
2 Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
3 State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.

† Wenqin Luo, Weixing Dai, Qingguo Li and Shaobo Mo contributed equally to this work.

Correspondence:

Guoxiang Cai, MD, PhD.
Department of Colorectal Surgery, Fudan University Shanghai Cancer Center
Department of Oncology, Shanghai Medical College, Fudan University
270 Dong’an Road, Shanghai, 200032, China
E-mail: gxcaifuscc@163.com
Figure S1. The entire analytical process of the study.
Figure S2. Ferroptosis-associated molecular classification in colorectal cancer, related to Figure 1

(A) Heatmap representation of NMF clustering for ferroptosis-associated genes in TCGA cohort with cluster numbers from 2 to 6. (B) Kaplan-Meier curves for overall survival of three NMF clusters in TCGA and for relapse-free survival of three clusters in meta-GEO cohort. The P value was calculated by the log-rank test. (C) Heatmap shows expression
of ferroptosis-associated genes in tumor and normal samples.

Figure S3. Clinical characteristics and biological molecular changes underlying three clusters in CRC, related to Figure 2

(A) Heatmap shows molecular characteristics of three clusters in meta-GEO cohort. (B) Quantification of gene signatures related to CMS
subtypes among three clusters of TCGA and meta-GEO cohort. The statistical difference of three clusters was compared through the Kruskal-Wallis H test. *P < 0.05; **P < 0.01; ***P < 0.001. (C) Heatmap shows correlation between ferroptosis score and gene signatures.

Figure S4. Single-cell transcriptome profiling of CRC cells based on
ferroptosis-associated molecular classification, related to Figure 3

(A) t-SNE visualization of 2,212 tumor epithelial cells from KUL single-cell cohort (top panel). Cells are colored according to clusters. Dot plot for the score of gene signatures associated with CRC cellular phenotype and responses to therapy in each cell type. Color represents the mean score in each cell cluster, and size indicates the fraction of cells expressing gene score (bottom panel). (B) Barplot shows the proportion of different molecular characteristics in CRC tumor cells. Bars are colored according to clusters. (C) t-SNE visualization of MHC-I (HLA-A, HLA-B), MHC-II (HLA-DRA) molecular expression and the score of ferroptosis-associated genes. (D) GO analysis of differential expressed genes between FAC1-like and FAC2-like CRC tumor cells. (E) Tumor purity and stromal score of three ferroptosis-associated clusters in TCGA and meta-GEO cohort. The statistical difference of three clusters was compared through the Kruskal-Wallis H test. *P < 0.05; **P < 0.01; ***P < 0.001. The difference of two clusters was compared through the wilcox test. *P < 0.05; **P < 0.01; ***P < 0.001.
Figure S5. Distinct tumor microenvironment infiltration in three tumor clusters, related to Figure 4
(A) Heatmap shows the ssGSEA score of 31 cell subtypes in three ferroptosis-associated clusters in meta-GEO cohort. (B-D) ssGSEA score of corresponding signatures among three clusters in TCGA and meta-GEO cohort. The statistical difference of three clusters was compared through the Kruskal-Wallis H test. *P < 0.05; **P < 0.01; ***P < 0.001.
Figure S6. Identifying specific ferroptosis-associated genes correlated with immune activation, related to Figure 5

(A) CNV frequency of immune-activated Fersig in CRC tumors. (B) Univariate analysis of immune-activated Fersig in CRC patients. (C) Expression of immune-activated Fersig among three clusters. The statistical difference of three clusters was compared through the Kruskal-Wallis H test. *P < 0.05; **P < 0.01; ***P < 0.001. (D) Correlation between immune-activated Fersig and different gene signatures, including stromal cells, T cells, cytotoxic CD8+ T, myofibroblasts, EMT, TGF-β, MHC-I and MHC-II.
Figure S7. Identifying specific ferroptosis-associated genes correlated with stromal activation, related to Figure 6

(A) CNV frequency of stromal-activated Fersig in CRC tumors. (B) Univariate analysis of stromal-activated Fersig in CRC patients. (C) Expression of stromal-activated Fersig among three clusters. The statistical difference of three clusters was compared through the Kruskal-Wallis H test. *P < 0.05; **P < 0.01; ***P < 0.001. (D) Correlation between stromal-activated Fersig and different gene
signatures, including stromal cells, T cells, cytotoxic CD8+ T, myofibroblasts, EMT, TGF-β, MHC-I and MHC-II.

Figure S8. Examining expression of immune-activated and stromal-activated Fersig at single-cell level, related to Figure 7

(A) t-SNE visualization of 6,470 single cells of CRC in KUL cohort. Cells are colored according to cell types. (B) t-SNE visualization of score of immune-activated Fersig and stromal-activated Fersig. (C) Violin plots shows the score of immune-activated Fersig and stromal-activated Fersig
among different cell subtypes.

Figure S9. Ferroptosis phenotype-related DEGs in colorectal cancer, related to Figure 8
(A) Venn diagram shows shared genes between DEGs among three ferroptosis-associated clusters. (B) NMF rank survey was shown. The optimal number of clusters: k=3. (C) GO analyses of genes A-B. (D-E) ssGSEA score of corresponding signatures among three gene clusters.

Figure S10. Ferroptosis phenotype-related DEGs in colorectal cancer, related to Figure 8

(A) Kaplan-Meier curves for overall survival of three gene clusters in meta-GEO cohort. The P value was calculated by the log-rank test. (B) ssGSEA score of signatures of TME cell types, EMT and TGF-β among three gene clusters in TCGA. The statistical difference of three clusters was compared through the Kruskal-Wallis H test. *P < 0.05; **P < 0.01; ***P < 0.001. The difference of two clusters was compared through the
wilcox test. *P < 0.05; **P < 0.01; ***P < 0.001. (C-D) ssGSEA score of signatures of cytotoxic CD8+ T cells, immune-activated and stromal-activated ferroptosis-associated genes among three gene clusters. The statistical difference of three clusters was compared through the Kruskal-Wallis H test. *P < 0.05; **P < 0.01; ***P < 0.001. The difference of two clusters was compared through the wilcox test. *P < 0.05; **P < 0.01; ***P < 0.001.
Figure S11. Further construction of Fersig score, related to Figure 9

(A) Kaplan-Meier curves for relapse-free survival of meta-GEO. The high and low groups were divided by the median value of the PCA score of Fersig. The P value was calculated by the log-rank test. (B) Barplots show the proportion of molecular characteristics between high and low groups of Fersig. (C) ssGSEA score of signatures of TME cell types, EMT, TGF-β and other stromal-related signatures between high and low groups in meta-GEO cohort. The difference of two clusters was compared through the wilcox test. *P < 0.05; **P < 0.01; ***P < 0.001. (D) ssGSEA score of immune-activated and stromal-activated Fersig between high and low groups in meta-GEO cohort. The difference of two clusters was compared through the wilcox test. *P < 0.05; **P < 0.01; ***P < 0.001. (E) ssGSEA score of 31 cell subtypes between high and low groups in meta-GEO cohort. The difference of two clusters was compared through the wilcox test. *P < 0.05; **P < 0.01; ***P < 0.001.
Figure S12. Expression of immune-activated and stromal-activated Fersig with significant prognosis in the Liu et al. cohort.

(A-B) Barplots show the expression of immune-activated and stromal-activated Fersig with significant prognosis in the Liu et al. cohort. The difference of two clusters was compared through the wilcoxon test. *P < 0.05; **P < 0.01; ***P < 0.001.
B. Supplementary Tables

Supplementary Table S1. The description of patients with bulk RNA expression data, including clinical characteristics and NMF clusters.

Please see separated Excel spreadsheet file.

Supplementary Table S2. The basic information for single-cell datasets.

Please see separated Excel spreadsheet file.

Supplementary Table S3. The biological information of ferroptosis-associated genes.

Please see separated Excel spreadsheet file.

Supplementary Table S4. The cell type annotation of single cells.

Please see separated Excel spreadsheet file.

Supplementary Table S5. Gene clusters in TCGA and meta-GEO cohorts, and genes A-C.

Please see separated Excel spreadsheet file.

Supplementary Table S6. The Fersig score of each database.

Please see separated Excel spreadsheet file.
samples	MSI status	Metastasis status	Stage
TCGA.3L.AA1B.01	MSS	M0	Stage I
TCGA.4N.A93T.01	MSS	M0	Stage III
TCGA.4T.AA8H.01	Indeterminate	MX	Stage II
TCGA.5M.AA1E.01	MSS	M0	Stage II
TCGA.A6.5656.01	NA	M0	Stage I
TCGA.A6.5659.01	NA	M0	Stage I
TCGA.A6.5660.01	MSS	M0	Stage III
TCGA.A6.5662.01	MSS	M1	Stage IV
TCGA.A6.5666.01	MSI-L	M0	Stage II
TCGA.A6.5667.01	MSS	MX	Stage III
TCGA.A6.6140.01	MSS	M0	Stage II
TCGA.A6.6648.01	MSS	M1a	Stage IV
TCGA.A6.6652.01	MSS	M1	Stage IV
TCGA.A6.A56B.01	MSS	M0	Stage III
TCGA.AA.3496.01	MSI-L	M0	Stage II
TCGA.AA.3509.01	MSS	M0	Stage II
TCGA.AA.3511.01	MSS	M0	Stage II
TCGA.AA.3660.01	MSS	M0	Stage II
TCGA.AA.3662.01	MSS	M1	Stage IV
TCGA.AA.3675.01	MSS	M0	Stage II
TCGA.AA.A01X.01	MSS	M0	Stage III
TCGA.AD.6888.01	MSS	M0	Stage III
TCGA.AD.6890.01	MSS	MX	NA
TCGA.AD.6965.01	MSS	M0	Stage III
TCGA.AD.A5EK.01	MSS	MX	Stage I
TCGA.AF.3911.01	MSI-L	MX	Stage III
TCGA.AF.4110.01	MSS	MX	Stage IV
TCGA.AF.6136.01	MSS	MX	Stage III
TCGA.AF.6672.01	MSS	MX	Stage IV
TCGA.AF.A56L.01	MSS	M0	Stage III
TCGA.AF.A56N.01	MSS	M0	Stage II
TCGA.AG.3732.01	MSS	M0	Stage I
TCGA.AH.6544.01	MSS	M1	NA
TCGA.AH.6549.01	MSI-L	MX	NA
TCGA.AH.6643.01	MSS	M0	Stage III
TCGA.AH.6897.01	MSI-L	M0	Stage I
TCGA.AH.6903.01	MSS	M0	Stage III
TCGA.AM.5820.01	MSS	M1	Stage IV
TCGA.AY.A54L.01	MSI-L	M0	Stage I
TCGA.AY.A69D.01	MSI-L	M0	Stage II
TCGA.AY.A71X.01	MSS	M0	Stage I
TCGA.AY.A8YK.01	MSS	M1	Stage IV
TCGA.AZ.4684.01	MSI-L	M1	Stage IV
TCGA.CA.5255.01	MSS	M0	Stage II
TCGA.CA.5256.01	MSS	M0	Stage II
TCGA.CA.5797.01	MSS	M0	Stage II
TCGA.CA.6715.01	MSS	M0	Stage III
TCGA.CA.6716.01	MSS	M0	Stage II
TCGA.CI.6619.01	MSS	M1	Stage IV
TCGA.CI.6620.01	MSS	M1	Stage IV
TCGA.CI.6622.01	MSS	M0	Stage II
TCGA.CK.5912.01	MSS	MX	Stage I
TCGA.CK.5915.01	MSS	MX	Stage I
TCGA.CL.4957.01	MSS	M0	NA
TCGA.CL.5917.01	MSS	MX	Stage III
TCGA.CL.5918.01	MSS	MX	Stage II
TCGA.EI.6513.01 MSS M0 Stage III			
TCGA.EI.6514.01 MSS M0 Stage II			
TCGA.EI.6814.01 MSS M0 Stage III			
TCGA.EI.6833.01 MSS M0 Stage II			
TCGA.EI.7002.01 MSI-L M1 Stage IV			
TCGA.F4.6463.01 MSS M0 Stage II			
TCGA.F4.6806.01 MSS M0 Stage I			
TCGA.F4.6808.01 MSS M0 Stage I			
TCGA.F4.6854.01 MSS M0 Stage II			
TCGA.F5.6571.01 MSI-L M0 Stage II			
TCGA.F5.6814.01 MSS M0 Stage II			
TCGA.F5.6861.01 MSS M0 Stage II			
TCGA.F5.6863.01 MSI-L M0 Stage III			
TCGA.F5.6864.01 MSI-L M0 Stage III			
TCGA.F5.6865.01 MSI-L M1 Stage III			
TCGA.F5.6866.01 MSI-L M1 Stage IV			
TCGA.G4.6303.01 MSI-L M1 Stage IV			
TCGA.G4.6304.01 MSI-H M0 Stage II			
TCGA.G4.6307.01 MSS M0 Stage III			
TCGA.G4.6310.01 MSS M0 Stage III			
TCGA.G4.6315.01 MSS M1 Stage IV			
TCGA.G4.6317.01 MSI-L MX Stage III			
TCGA.G5.6235.01 MSS MX Stage III			
TCGA.G5.6641.01 MSS MX Stage III			
TCGA.NH.A6GC.01 MSS MX Stage III			
TCGA.NH.A8F7.01 Indeterminate MX Stage II			
TCGA.NH.A8F8.01 MSS M1 Stage IV			
TCGA.QG.A5YV.01 MSS MX Stage III			
TCGA.QG.A5YX.01 MSI-L MX Stage II			
TCGA.QG.A5Z1.01 MSI-L MX Stage III			
TCGA.QL.A97D.01 MSS MX Stage I			
TCGA.RU.A8FL.01 MSS MX Stage III			
TCGA.SS.A7HO.01 MSS M0 Stage II			
TCGA.T9.A92H.01 MSS M0 Stage II			
OS (days)	Dead	Sample type	NMF clusters
---	---	---	---
475	0	Tumor	CC1
146	0	Tumor	CC1
385	0	Tumor	CC1
1200	0	Tumor	CC1
1001	0	Tumor	CC1
926	0	Tumor	CC1
888	0	Tumor	CC1
718	0	Tumor	CC1
995	0	Tumor	CC1
887	0	Tumor	CC1
734	0	Tumor	CC1
766	0	Tumor	CC1
751	0	Tumor	CC1
1595	1	Tumor	CC1
31	0	Tumor	CC1
1915	0	Tumor	CC1
212	0	Tumor	CC1
2375	0	Tumor	CC1
184	0	Tumor	CC1
1431	0	Tumor	CC1
791	0	Tumor	CC1
155	1	Tumor	CC1
746	0	Tumor	CC1
805	0	Tumor	CC1
500	0	Tumor	CC1
1148	0	Tumor	CC1
912	0	Tumor	CC1
741	0	Tumor	CC1
748	0	Tumor	CC1
2007	0	Tumor	CC1
360	0	Tumor	CC1
1003	0	Tumor	CC1
1173	0	Tumor	CC1
532	0	Tumor	CC1
21	1	Tumor	CC1
804	0	Tumor	CC1
592	0	Tumor	CC1
14	0	Tumor	CC1
525	0	Tumor	CC1
543	0	Tumor	CC1
588	0	Tumor	CC1
573	0	Tumor	CC1
1977	0	Tumor	CC1
376	0	Tumor	CC1
379	0	Tumor	CC1
383	0	Tumor	CC1
383	0	Tumor	CC1
371	0	Tumor	CC1
184	0	Tumor	CC1
1009	0	Tumor	CC1
1362	0	Tumor	CC1
1466	1	Tumor	CC1
0	0	Tumor	CC1
425	1	Tumor	CC1
2376	0	Tumor	CC1
218	0	Tumor	CC1
	Tumor	CC	
-----	--------	------	-----
761	0	CC1	NA
670	0	CC1	CMS4
457	0	CC1	CMS2
518	0	CC1	CMS4
457	0	CC1	CMS2
427	0	CC1	NA
883	0	CC1	CMS2
488	0	CC1	CMS4
669	0	CC1	CMS2
457	0	CC1	CMS2
335	0	CC1	CMS3
337	0	CC1	CMS2
335	0	CC1	CMS3
456	1	CC1	CMS2
1706	0	CC1	NA
1701	0	CC1	CMS2
555	0	CC1	CMS2
775	0	CC1	CMS2
521	0	CC1	CMS2
308	0	CC1	CMS4
378	0	CC1	CMS4
435	0	CC1	CMS4
275	0	CC1	CMS4
408	0	CC1	CMS4
346	0	CC1	CMS4
639	0	CC1	NA
762	0	CC1	CMS2
943	0	CC1	CMS2
365	0	CC1	CMS2
425	0	CC1	NA
1581	0	CC1	CMS2
790	0	CC1	CMS4
762	0	CC1	NA
762	0	CC1	CMS2
3974	0	CC1	CMS2
2821	1	CC1	NA
1518	1	CC1	CMS3
405	1	CC1	NA
383	1	CC1	NA
4270	0	CC1	NA
4000	0	CC1	NA
4233	0	CC1	CMS2
427	1	CC1	NA
805	1	CC1	CMS2
2475	1	CC1	NA
3648	0	CC1	NA
1094	1	CC1	CMS2
1849	1	CC1	CMS3
3561	0	CC1	NA
3846	0	CC1	CMS2
1741	1	CC1	CMS2
734	1	CC1	CMS4
992	1	CC1	NA
106	0	CC1	CMS2
127	0	CC1	CMS4
636	0	CC1	CMS3
517	0	CC1	CMS4
538	0	CC1	CMS1
	Tumor	CC	CMS
---	-------	----	-----
497	0 Tumor	CC1	CMS2
496	0 Tumor	CC1	CMS4
499	0 Tumor	CC1	CMS2
350	0 Tumor	CC1	CMS2
364	0 Tumor	CC1	CMS2
1087	0 Tumor	CC1	CMS4
1260	0 Tumor	CC1	CMS3
1024	0 Tumor	CC1	CMS2
16	0 Tumor	CC1	CMS2
1288	0 Tumor	CC1	CMS4
1131	0 Tumor	CC1	CMS1
1160	0 Tumor	CC1	CMS2
23	1 Tumor	CC1	CMS4
14	0 Tumor	CC1	CMS4
1882	1 Tumor	CC1	CMS4
1631	0 Tumor	CC1	NA
1674	0 Tumor	CC1	CMS2
1935	0 Tumor	CC1	CMS4
1883	0 Tumor	CC1	CMS2
1095	0 Tumor	CC1	CMS2
1696	0 Tumor	CC1	CMS2
804	0 Tumor	CC1	CMS3
553	0 Tumor	CC1	CMS2
182	1 Tumor	CC1	CMS1
389	0 Tumor	CC1	CMS3
543	0 Tumor	CC1	CMS2
167	1 Tumor	CC1	CMS4
1301	0 Tumor	CC1	CMS2
1003	0 Tumor	CC1	CMS3
202	1 Tumor	CC1	CMS4
666	0 Tumor	CC1	NA
1177	0 Tumor	CC1	NA
1829	0 Tumor	CC1	NA
362	0 Tumor	CC1	CMS2
samples	Stage	RFS (days)	RFS, event
-------------	-------	------------	------------
GSM358341	stage I	109.2	0
GSM358342	stage I	435.9	1
GSM358343	stage I	494.1	0
GSM358344	stage I	592.5	0
GSM358345	stage I	600.6	0
GSM358346	stage I	718.8	0
GSM358347	stage I	810.6	1
GSM358348	stage I	868.8	0
GSM358349	stage I	1313.7	0
GSM358350	stage I	1567.2	0
GSM358351	stage I	1653.9	0
GSM358352	stage I	1733.7	0
GSM358353	stage I	1785.9	0
GSM358354	stage I	1923	0
GSM358355	stage I	1931.1	0
GSM358356	stage I	1976.4	0
GSM358357	stage I	2015.7	0
GSM358358	stage I	2034.6	0
GSM358359	stage I	2055.3	0
GSM358360	stage I	2282.1	0
GSM358361	stage I	2468.7	0
GSM358362	stage I	2508	0
GSM358363	stage I	2511.9	0
GSM358364	stage I	2523.9	0
GSM358365	stage I	3276.3	0
GSM358366	stage I	3576.3	0
GSM358367	stage I	3681.6	0
GSM358368	stage I	4276.5	0
GSM358370	stage I	684	0
GSM358371	stage I	432	0
GSM358373	stage I	1632	0
GSM358374	stage I	1935	0
GSM358375	stage I	54	0
GSM358376	stage I	1260	0
GSM358377	stage I	1695	0
GSM358378	stage I	1089	0
GSM358380	stage I	1326	0
GSM358381	stage I	1563	0
GSM358382	stage I	900	0
GSM358383	stage I	1317	0
GSM358384	stage I	2424	0
GSM358385	stage II	67.8	0
GSM358386	stage II	180.3	1
GSM358387	stage II	298.8	1
GSM358388	stage II	423.9	1
GSM358389	stage II	427.8	1
GSM358390	stage II	451.5	0
GSM358391	stage II	471.3	0
GSM358392	stage II	538.5	0
GSM358393	stage II	545.4	0
GSM358394	stage II	580.8	1
GSM358395	stage II	660.6	0
GSM358396	stage II	671.4	1
GSM358397	stage II	671.4	1
GSM358398	stage II	725.7	0
GSM358399	stage II	756.3	1
Sample ID	Stage	Value	Tumor
------------	---------	--------	-------
GSM358400	stage II	757.2	0
GSM358401	stage II	768.3	0
GSM358402	stage II	795.9	0
GSM358403	stage II	799.8	0
GSM358404	stage II	804.6	0
GSM358405	stage II	814.5	0
GSM358406	stage II	829.2	1
GSM358407	stage II	858.9	0
GSM358408	stage II	865.8	0
GSM358409	stage II	876.6	0
GSM358410	stage II	931.8	0
GSM358411	stage II	996	0
GSM358412	stage II	1010.7	0
GSM358413	stage II	1077	0
GSM358414	stage II	1102.5	0
GSM358415	stage II	1119.3	1
GSM358416	stage II	1119.3	0
GSM358417	stage II	1177.5	0
GSM358418	stage II	1349.1	0
GSM358419	stage II	1401.3	0
GSM358420	stage II	1435.8	0
GSM358421	stage II	1495.2	0
GSM358422	stage II	1564.2	0
GSM358423	stage II	1575	0
GSM358424	stage II	1659.9	0
GSM358425	stage II	1677.6	0
GSM358426	stage II	1740.6	0
GSM358427	stage II	1788	0
GSM358428	stage II	1798.8	0
GSM358429	stage II	1897.5	0
GSM358430	stage II	1945.8	0
GSM358431	stage II	2119.5	0
GSM358432	stage II	2281.2	0
GSM358433	stage II	2373.9	0
GSM358434	stage II	2407.5	0
GSM358435	stage II	2558.4	0
GSM358436	stage II	2592.9	0
GSM358437	stage II	2669.7	0
GSM358438	stage II	2809.8	1
GSM358439	stage II	3208.2	0
GSM358440	stage II	3323.7	0
GSM358441	stage II	3557.4	0
GSM358442	stage II	363	0
GSM358443	stage II	888	0
GSM358444	stage II	1110	0
GSM358445	stage II	855	0
GSM358446	stage II	1689	0
GSM358447	stage II	1422	0
GSM358448	stage II	405	0
GSM358449	stage II	1704	0
GSM358450	stage II	1584	0
GSM358451	stage II	1359	0
GSM358452	stage II	1671	0
GSM358453	stage II	1200	0
GSM358454	stage II	426	1
GSM358455	stage II	123	0
GSM358456	stage II	1785	0
GSM358457	stage II	1287	0
GSM358458	stage II	978	1 Tumor
GSM358459	stage II	939	0 Tumor
GSM358460	stage II	1017	0 Tumor
GSM358461	stage II	1431	0 Tumor
GSM358462	stage II	1146	0 Tumor
GSM358463	stage II	1332	0 Tumor
GSM358464	stage II	1344	0 Tumor
GSM358465	stage II	1710	0 Tumor
GSM358466	stage II	1212	0 Tumor
GSM358467	stage II	156	0 Tumor
GSM358468	stage II	348	0 Tumor
GSM358469	stage II	1752	0 Tumor
GSM358470	stage II	1086	0 Tumor
GSM358471	stage II	1362	0 Tumor
GSM358472	stage II	1527	0 Tumor
GSM358473	stage II	1677	0 Tumor
GSM358474	stage II	429	1 Tumor
GSM358475	stage II	1014	0 Tumor
GSM358476	stage II	1140	0 Tumor
GSM358477	stage II	2226	0 Tumor
GSM358478	stage II	2547	0 Tumor
GSM358479	stage III	27.6	0 Tumor
GSM358480	stage III	47.1	1 Tumor
GSM358481	stage III	99.6	1 Tumor
GSM358482	stage III	127.2	0 Tumor
GSM358483	stage III	156.6	0 Tumor
GSM358484	stage III	160.5	1 Tumor
GSM358485	stage III	246.3	1 Tumor
GSM358486	stage III	249.3	1 Tumor
GSM358487	stage III	257.4	1 Tumor
GSM358488	stage III	286.8	1 Tumor
GSM358489	stage III	357	1 Tumor
GSM358490	stage III	441.6	1 Tumor
GSM358491	stage III	482.1	1 Tumor
GSM358492	stage III	567.9	1 Tumor
GSM358493	stage III	568.8	0 Tumor
GSM358494	stage III	599.4	0 Tumor
GSM358495	stage III	613.2	0 Tumor
GSM358496	stage III	631.2	1 Tumor
GSM358497	stage III	638.1	1 Tumor
GSM358498	stage III	667.5	0 Tumor
GSM358499	stage III	700.2	1 Tumor
GSM358500	stage III	723.9	1 Tumor
GSM358501	stage III	745.5	1 Tumor
GSM358502	stage III	787.8	0 Tumor
GSM358503	stage III	807.6	0 Tumor
GSM358504	stage III	827.4	1 Tumor
GSM358505	stage III	832.2	1 Tumor
GSM358506	stage III	881.7	1 Tumor
GSM358507	stage III	940.8	0 Tumor
GSM358508	stage III	957.6	0 Tumor
GSM358509	stage III	1025.7	1 Tumor
GSM358510	stage III	1107.6	1 Tumor
GSM358511	stage III	1107.6	0 Tumor
GSM358512	stage III	1142.1	0 Tumor
GSM358513	stage III	1161.6	0 Tumor
GSM358514	stage III	1231.8	1 Tumor
GSM358515	stage III	1340.1	0 Tumor
GSM358516	stage III	1342.2	0
GSM358517	stage III	1434	0
GSM358518	stage III	1473.3	0
GSM358519	stage III	1512.9	0
GSM358520	stage III	1517.7	0
GSM358521	stage III	1585.8	0
GSM358522	stage III	1647	0
GSM358523	stage III	1753.5	0
GSM358524	stage III	1772.1	0
GSM358525	stage III	1780.2	0
GSM358526	stage III	1929.9	0
GSM358527	stage III	1947.9	0
GSM358528	stage III	1966.5	0
GSM358529	stage III	2162.7	0
GSM358530	stage III	2230.8	0
GSM358531	stage III	2235.9	0
GSM358532	stage III	2383.8	1
GSM358533	stage III	2568.3	0
GSM358534	stage III	2575.2	1
GSM358535	stage III	2688.6	0
GSM358536	stage III	2852.1	0
GSM358537	stage III	2985.3	0
GSM358538	stage III	3155.1	0
GSM358539	stage III	3369.9	0
GSM358540	stage III	927	0
GSM358541	stage III	720	0
GSM358542	stage III	948	0
GSM358543	stage III	1488	0
GSM358544	stage III	456	1
GSM358545	stage III	726	0
GSM358546	stage III	2073	0
GSM358547	stage III	2043	0
GSM358548	stage III	309	1
GSM358549	stage III	1776	0
GSM358550	stage III	1842	0
GSM358551	stage III	450	0
GSM358552	stage III	1734	0
GSM358553	stage III	564	0
GSM358554	stage III	135	1
GSM358555	stage III	1143	1
GSM358556	stage III	1212	0
GSM358557	stage III	171	1
GSM358558	stage III	306	0
GSM358559	stage III	2541	0
GSM358560	stage III	507	0
GSM358561	stage III	285	1
GSM358562	stage III	2061	0
GSM358563	stage III	1785	0
GSM358564	stage III	561	0
GSM358565	stage III	2124	0
GSM358566	stage III	133.2	1
GSM358567	stage III	1200	1
GSM358568	stage III	2187	1
GSM358569	stage III	540	1
NMF clusters	CC2	CC3	CC1
--------------	-----	-----	-----
samples	Stage	RFS (days)	RFS.event
-----------	---------	------------	-----------
GSM971957	stage IV	0	1
GSM971958	stage IV	0	1
GSM971959	stage II	120	1
GSM971960	stage I	2220	0
GSM971961	stage IV	30	1
GSM971962	stage III	2190	0
GSM971963	stage II	510	1
GSM971964	stage III	1050	0
GSM971965	stage II	990	0
GSM971966	stage III	1890	0
GSM971968	stage II	2790	1
GSM971969	stage I	1890	0
GSM971970	stage I	2580	0
GSM971971	stage IV	1950	0
GSM971972	stage I	2250	0
GSM971973	stage II	1380	0
GSM971974	stage IV	1680	0
GSM971975	stage II	1380	0
GSM971976	stage II	1080	0
GSM971977	stage III	1470	0
GSM971978	stage I	3270	0
GSM971979	stage II	1590	0
GSM971980	stage III	1770	0
GSM971981	stage II	1440	0
GSM971982	stage III	1260	0
GSM971983	stage III	2610	0
GSM971984	stage II	150	1
GSM971985	stage 0	210	0
GSM971986	stage II	2040	0
GSM971987	stage II	2040	0
GSM971988	stage IV	450	1
GSM971989	stage I	480	1
GSM971990	stage I	360	0
GSM971991	stage II	1650	0
GSM971992	stage II	600	0
GSM971993	stage II	1680	0
GSM971994	stage II	1290	0
GSM971995	stage II	750	0
GSM971996	stage III	2280	0
GSM971997	stage III	2670	0
GSM971998	stage III	540	1
GSM971999	stage III	30	0
GSM972000	stage III	270	1
GSM972001	stage III	2190	0
GSM972002	stage III	750	1
GSM972003	stage IV	0	1
GSM972004	stage IV	2670	0
GSM972005	stage IV	0	1
GSM972006	stage IV	0	1
GSM972007	stage IV	60	0
GSM972008	stage IV	60	1
GSM972009	stage IV	0	1
GSM972010	stage IV	300	1
GSM972011	stage IV	540	1
GSM972012	stage IV	3030	0
GSM972013	stage IV	1290	0
GSM972014	stage IV	0	1 Tumor
GSM972015	stage II	2730	0 Tumor
GSM972016	stage II	420	1 Tumor
GSM972017	stage III	1290	0 Tumor
GSM972018	stage III	3510	0 Tumor
GSM972019	stage III	630	1 Tumor
GSM972020	stage III	270	1 Tumor
GSM972021	stage III	150	1 Tumor
GSM972022	stage III	2460	0 Tumor
GSM972023	stage III	180	1 Tumor
GSM972024	stage III	1110	1 Tumor
GSM972025	stage III	1590	0 Tumor
GSM972026	stage III	960	1 Tumor
GSM972027	stage III	2820	0 Tumor
GSM972028	stage III	2340	0 Tumor
GSM972029	stage III	1080	0 Tumor
GSM972030	stage III	1560	0 Tumor
GSM972031	stage II	1650	0 Tumor
GSM972032	stage II	1800	0 Tumor
GSM972033	stage II	1500	0 Tumor
GSM972034	stage II	1500	0 Tumor
GSM972035	stage II	1170	0 Tumor
GSM972036	stage II	1500	0 Tumor
GSM972037	stage II	990	0 Tumor
GSM972038	stage II	30	0 Tumor
GSM972039	stage IV	0	1 Tumor
GSM972040	stage II	1890	0 Tumor
GSM972041	stage II	1650	0 Tumor
GSM972042	stage II	1530	0 Tumor
GSM972043	stage IV	0	1 Tumor
GSM972044	stage II	1260	0 Tumor
GSM972045	stage IV	0	1 Tumor
GSM972046	stage II	630	1 Tumor
GSM972047	stage II	990	0 Tumor
GSM972048	stage IV	0	1 Tumor
GSM972049	stage II	780	0 Tumor
GSM972050	stage II	570	0 Tumor
GSM972051	stage IV	0	1 Tumor
GSM972052	stage II	450	0 Tumor
GSM972053	stage II	870	0 Tumor
GSM972054	stage II	780	0 Tumor
GSM972055	stage II	2790	0 Tumor
GSM972056	stage II	2760	0 Tumor
GSM972057	stage II	780	0 Tumor
GSM972058	stage II	1800	0 Tumor
GSM972059	stage II	1770	0 Tumor
GSM972060	stage II	2460	0 Tumor
GSM972061	stage II	1290	0 Tumor
GSM972062	stage II	0	1 Tumor
GSM972063	stage II	2100	0 Tumor
GSM972064	stage IV	0	1 Tumor
GSM972065	stage II	1380	0 Tumor
GSM972066	stage IV	0	1 Tumor
GSM972067	stage II	5490	0 Tumor
GSM972068	stage II	90	1 Tumor
GSM972069	stage II	6030	0 Tumor
GSM972070	stage II	2040	0 Tumor
GSM972071	stage II	5490	0 Tumor
Sample ID	Stage	Value	Tumor
-------------	---------	-------	-------
GSM972072	stage II	5160	0 Tumor
GSM972073	stage II	4890	0 Tumor
GSM972074	stage II	30	1 Tumor
GSM972075	stage II	1320	0 Tumor
GSM972076	stage II	4590	0 Tumor
GSM972077	stage II	780	1 Tumor
GSM972078	stage II	1620	1 Tumor
GSM972079	stage II	5040	0 Tumor
GSM972080	stage II	1590	1 Tumor
GSM972081	stage II	780	0 Tumor
GSM972082	stage II	3570	1 Tumor
GSM972083	stage II	3810	0 Tumor
GSM972084	stage II	3870	0 Tumor
GSM972085	stage II	2910	0 Tumor
GSM972086	stage II	1290	0 Tumor
GSM972087	stage II	240	1 Tumor
GSM972088	stage II	2370	0 Tumor
GSM972089	stage II	2610	0 Tumor
GSM972090	stage II	2070	0 Tumor
GSM972091	stage II	1350	1 Tumor
GSM972092	stage II	1410	0 Tumor
GSM972093	stage II	2220	0 Tumor
GSM972094	stage II	1830	0 Tumor
GSM972095	stage II	2010	0 Tumor
GSM972096	stage III	90	1 Tumor
GSM972097	stage III	360	1 Tumor
GSM972098	stage III	450	0 Tumor
GSM972099	stage III	450	0 Tumor
GSM972100	stage III	750	0 Tumor
GSM972101	stage III	630	1 Tumor
GSM972102	stage III	1380	0 Tumor
GSM972103	stage III	840	1 Tumor
GSM972104	stage III	1230	0 Tumor
GSM972105	stage III	960	0 Tumor
GSM972106	stage III	270	1 Tumor
GSM972107	stage III	1800	0 Tumor
GSM972108	stage III	3090	0 Tumor
GSM972109	stage III	1080	0 Tumor
GSM972110	stage III	120	1 Tumor
GSM972111	stage III	390	1 Tumor
GSM972112	stage III	960	0 Tumor
GSM972113	stage III	540	1 Tumor
GSM972114	stage III	1380	0 Tumor
GSM972115	stage III	330	1 Tumor
GSM972116	stage III	60	1 Tumor
GSM972117	stage III	330	1 Tumor
GSM972118	stage III	570	1 Tumor
GSM972119	stage III	750	1 Tumor
GSM972120	stage III	1080	0 Tumor
GSM972121	stage III	1050	0 Tumor
GSM972122	stage III	570	1 Tumor
GSM972123	stage II	2130	0 Tumor
GSM972124	stage II	2250	0 Tumor
GSM972125	stage II	420	1 Tumor
GSM972126	stage II	1890	0 Tumor
GSM972127	stage II	2550	0 Tumor
GSM972128	stage II	2790	0 Tumor
GSM972129	stage II	330	0 Tumor
Sample ID	Stage	Value	Tumor Type
-------------	--------	--------	------------
GSM972130	stage II	1650	0 Tumor
GSM972131	stage II	2580	0 Tumor
GSM972132	stage II	1830	0 Tumor
GSM972133	stage III	810	1 Tumor
GSM972134	stage III	210	1 Tumor
GSM972135	stage II	120	1 Tumor
GSM972136	stage III	1830	1 Tumor
GSM972137	stage II	270	1 Tumor
GSM972138	stage II	1350	1 Tumor
GSM972139	stage III	1140	1 Tumor
GSM972140	stage II	1680	1 Tumor
GSM972141	stage III	450	1 Tumor
GSM972142	stage III	60	1 Tumor
GSM972143	stage II	4620	0 Tumor
GSM972144	stage II	3630	0 Tumor
GSM972145	stage III	4050	0 Tumor
GSM972146	stage III	1980	0 Tumor
GSM972147	stage II	4200	0 Tumor
GSM972148	stage III	3810	0 Tumor
GSM972149	stage II	3960	0 Tumor
GSM972150	stage III	3270	0 Tumor
GSM972151	stage III	2310	0 Tumor
GSM972152	stage II	1680	0 Tumor
GSM972153	stage II	1980	0 Tumor
GSM972154	stage III	90	1 Tumor
GSM972155	stage III	180	1 Tumor
GSM972156	stage III	3360	0 Tumor
GSM972157	stage III	3540	0 Tumor
GSM972158	stage III	3600	0 Tumor
GSM972159	stage III	2790	0 Tumor
GSM972160	stage II	1170	1 Tumor
GSM972161	stage II	270	1 Tumor
GSM972162	stage III	2310	0 Tumor
GSM972163	stage II	1230	0 Tumor
GSM972164	stage III	90	1 Tumor
GSM972165	stage II	1080	1 Tumor
GSM972166	stage III	90	1 Tumor
GSM972167	stage II	1080	1 Tumor
GSM972168	stage III	120	1 Tumor
GSM972169	stage II	4920	0 Tumor
GSM972170	stage III	2190	0 Tumor
GSM972171	stage III	3900	0 Tumor
GSM972172	stage II	120	1 Tumor
GSM972173	stage II	450	1 Tumor
GSM972174	stage III	2910	0 Tumor
GSM972175	stage III	840	1 Tumor
GSM972176	stage III	1050	1 Tumor
GSM972177	stage II	600	1 Tumor
GSM972178	stage III	630	1 Tumor
GSM972179	stage II	510	1 Tumor
GSM972180	stage II	570	1 Tumor
GSM972181	stage III	390	1 Tumor
GSM972182	stage II	690	1 Tumor
GSM972183	stage III	330	1 Tumor
GSM972184	stage II	120	1 Tumor
GSM972185	stage III	660	1 Tumor
GSM972186	stage III	420	1 Tumor
GSM972187	stage II	270	1 Tumor
GSM972188	stage III	330	1 Tumor
GSM972189	stage III	5760	0 Tumor
GSM972190	stage II	3240	0 Tumor
GSM972191	stage III	3660	0 Tumor
GSM972192	stage II	4740	0 Tumor
GSM972193	stage III	2190	0 Tumor
GSM972194	stage III	2490	0 Tumor
GSM972195	stage II	3600	0 Tumor
GSM972196	stage II	2190	0 Tumor
GSM972197	stage II	1500	0 Tumor
GSM972198	stage III	1710	0 Tumor
GSM972199	stage III	1980	0 Tumor
GSM972200	stage II	1620	0 Tumor
GSM972201	stage III	2010	0 Tumor
GSM972202	stage III	1590	0 Tumor
GSM972203	stage III	1620	0 Tumor
GSM972204	stage II	120	1 Tumor
GSM972205	stage II	210	1 Tumor
GSM972206	stage II	0	1 Tumor
GSM972207	stage III	1020	1 Tumor
GSM972208	stage IV	0	1 Tumor
GSM972209	stage IV	0	1 Tumor
GSM972210	stage IV	0	1 Tumor
GSM972211	stage III	1710	0 Tumor
GSM972212	stage IV	0	1 Tumor
GSM972213	stage IV	0	1 Tumor
GSM972214	stage IV	0	1 Tumor
GSM972215	stage III	1410	0 Tumor
GSM972216	stage IV	0	1 Tumor
GSM972217	stage IV	0	1 Tumor
GSM972218	stage IV	0	1 Tumor
GSM972219	stage IV	0	1 Tumor
GSM972220	stage III	30	0 Tumor
GSM972221	stage II	1950	0 Tumor
GSM972222	stage II	1710	0 Tumor
GSM972223	stage II	990	0 Tumor
GSM972224	stage III	600	1 Tumor
GSM972225	stage II	1110	0 Tumor
GSM972226	stage II	600	0 Tumor
GSM972227	stage IV	600	0 Tumor
GSM972228	stage II	30	0 Tumor
GSM972229	stage II	0	0 Tumor
GSM972230	stage III	810	0 Tumor
GSM972231	stage IV	420	0 Tumor
GSM972232	stage IV	630	0 Tumor
GSM972233	stage II	450	0 Tumor
GSM972234	stage IV	300	0 Tumor
GSM972235	stage III	210	0 Tumor
GSM972236	stage IV	360	0 Tumor
GSM972237	stage I	750	0 Tumor
GSM972238	stage III	570	0 Tumor
GSM972239	stage II	420	0 Tumor
GSM972240	stage IV	420	0 Tumor
GSM972241	stage II	510	0 Tumor
GSM972242	stage I	510	0 Tumor
GSM972243	stage II	60	0 Tumor
GSM972244	stage I	420	0 Tumor
GSM972245	stage IV	0	0 Tumor
GSM972246	stage III	0	0
GSM972247	stage II	180	0
GSM972248	stage II	420	0
GSM972249	stage I	420	0
GSM972250	stage III	360	0
GSM972251	stage IV	210	0
GSM972252	stage IV	480	0
GSM972253	stage IV	480	0
GSM972254	stage IV	270	1
GSM972255	stage II	150	0
GSM972256	stage IV	390	1
GSM972257	stage II	270	1
GSM972258	stage II	0	0
GSM972259	stage II	870	0
GSM972260	stage IV	390	0
GSM972261	stage III	210	0
GSM972262	stage II	150	0
GSM972263	stage III	2280	0
GSM972264	stage II	2190	0
GSM972265	stage III	1800	0
GSM972266	stage IV	600	0
GSM972267	stage II	2010	0
GSM972268	stage III	1440	0
GSM972269	stage I	2370	0
GSM972270	stage II	1950	0
GSM972271	stage III	390	1
GSM972272	stage IV	450	0
GSM972273	stage 0	480	0
GSM972274	stage III	1710	0
GSM972275	stage II	90	1
GSM972276	stage III	1290	0
GSM972277	stage II	1530	0
GSM972278	stage I	1350	0
GSM972279	stage III	1560	0
GSM972280	stage II	1380	0
GSM972281	stage I	1680	0
GSM972282	stage I	1530	0
GSM972283	stage II	1530	0
GSM972284	stage IV	810	0
GSM972285	stage II	60	0
GSM972286	stage II	1110	0
GSM972287	stage II	1290	0
GSM972288	stage IV	1050	0
GSM972289	stage IV	510	0
GSM972290	stage I	1170	0
GSM972291	stage III	300	1
GSM972292	stage II	750	0
GSM972293	stage I	1500	0
GSM972294	stage II	750	0
GSM972295	stage III	1830	0
GSM972296	stage 0	660	0
GSM972297	stage I	1380	0
GSM972298	stage II	270	0
GSM972299	stage IV	1230	0
GSM972300	stage 0	1230	0
GSM972301	stage III	3150	0
GSM972302	stage III	810	0
GSM972303	stage I	570	0
GSM972304	stage II	900	0 Tumor
GSM972305	stage III	930	0 Tumor
GSM972306	stage II	1680	0 Tumor
GSM972307	stage II	2460	0 Tumor
GSM972308	stage III	2760	0 Tumor
GSM972309	stage II	2850	0 Tumor
GSM972310	stage III	750	0 Tumor
GSM972311	stage II	3180	0 Tumor
GSM972312	stage II	2910	0 Tumor
GSM972313	stage I	2730	0 Tumor
GSM972314	stage III	1380	0 Tumor
GSM972315	stage I	2520	0 Tumor
GSM972316	stage II	2490	0 Tumor
GSM972317	stage II	150	1 Tumor
GSM972318	stage II	1080	0 Tumor
GSM972319	stage II	2340	0 Tumor
GSM972320	stage III	300	1 Tumor
GSM972321	stage III	270	0 Tumor
GSM972322	stage II	1980	1 Tumor
GSM972323	stage III	2400	0 Tumor
GSM972324	stage II	2460	0 Tumor
GSM972325	stage III	1590	1 Tumor
GSM972326	stage II	2550	0 Tumor
GSM972327	stage II	2490	0 Tumor
GSM972328	stage III	2340	1 Tumor
GSM972329	stage II	2340	0 Tumor
GSM972330	stage II	2580	0 Tumor
GSM972331	stage II	2250	0 Tumor
GSM972332	stage II	2610	0 Tumor
GSM972333	stage II	2400	0 Tumor
GSM972334	stage III	2310	0 Tumor
GSM972335	stage I	1380	0 Tumor
GSM972336	stage III	1500	0 Tumor
GSM972337	stage III	1230	0 Tumor
GSM972338	stage II	2220	0 Tumor
GSM972339	stage III	2280	0 Tumor
GSM972340	stage II	1440	1 Tumor
GSM972341	stage III	2070	0 Tumor
GSM972342	stage I	840	0 Tumor
GSM972343	stage II	1560	0 Tumor
GSM972344	stage II	2250	0 Tumor
GSM972345	stage III	1230	1 Tumor
GSM972346	stage III	2160	0 Tumor
GSM972347	stage II	210	0 Tumor
GSM972348	stage II	1860	0 Tumor
GSM972349	stage III	150	0 Tumor
GSM972350	stage II	720	0 Tumor
GSM972351	stage III	2220	1 Tumor
GSM972352	stage III	3990	0 Tumor
GSM972353	stage I	690	1 Tumor
GSM972354	stage II	510	1 Tumor
GSM972355	stage II	1260	0 Tumor
GSM972356	stage II	2430	0 Tumor
GSM972357	stage II	360	1 Tumor
GSM972358	stage III	4230	0 Tumor
GSM972359	stage III	540	1 Tumor
GSM972360	stage III	2940	0 Tumor
GSM972361	stage III	4200	0 Tumor
Sample ID	Stage	Count	Tumor
------------	--------	-------	-------
GSM972364	III	3090	0
GSM972365	III	1410	0
GSM972366	III	420	1
GSM972367	III	2850	0
GSM972368	III	2760	0
GSM972369	III	540	1
GSM972370	III	960	1
GSM972371	III	2430	0
GSM972372	III	990	1
GSM972373	III	1110	1
GSM972374	III	2700	0
GSM972375	III	3510	0
GSM972376	III	2610	0
GSM972377	III	2460	0
GSM972378	III	2580	0
GSM972379	III	2850	0
GSM972380	III	180	1
GSM972381	II	810	1
GSM972382	II	1110	1
GSM972383	II	2760	0
GSM972384	II	3180	0
GSM972385	II	1890	0
GSM972386	II	2700	0
GSM972387	II	720	1
GSM972388	II	2490	0
GSM972389	II	2790	0
GSM972390	III	180	1
GSM972391	II	1290	1
GSM972392	II	630	1
GSM972393	II	150	1
GSM972394	III	180	1
GSM972395	III	4410	0
GSM972396	II	3210	0
GSM972397	II	3150	0
GSM972398	II	1920	0
GSM972399	III	2700	0
GSM972400	IV	240	1
GSM972401	II	0	0
GSM972402	II	0	1
GSM972403	II	1680	0
GSM972404	II	1440	0
GSM972405	II	2370	0
GSM972406	II	3180	0
GSM972407	II	3960	0
GSM972408	II	960	0
GSM972409	II	3120	0
GSM972410	II	2730	0
GSM972411	III	3750	0
GSM972412	III	150	1
GSM972413	III	480	1
GSM972414	II	1590	0
GSM972415	III	240	1
GSM972416	II	150	1
GSM972417	II	4380	0
GSM972418	II	2100	0
GSM972419	III	900	1
GSM972420	III	180	1
GSM972421	III	660	1
Sample ID	Stage	Tumor	Notes
-----------------	-------	-------	-------
GSM972422	stage II	390	1 Tumor
GSM972423	stage II	390	1 Tumor
GSM972424	stage II	3120	0 Tumor
GSM972425	stage III	1770	0 Tumor
GSM972426	stage II	2430	0 Tumor
GSM972427	stage II	1590	0 Tumor
GSM972428	stage III	1650	0 Tumor
GSM972429	stage III	1860	0 Tumor
GSM972430	stage II	1590	0 Tumor
GSM972431	stage III	1620	0 Tumor
GSM972432	stage III	570	1 Tumor
GSM972433	stage III	90	1 Tumor
GSM972434	stage II	570	1 Tumor
GSM972435	stage III	420	1 Tumor
GSM972436	stage II	60	1 Tumor
GSM972437	stage IV	0	1 Tumor
GSM972438	stage IV	0	1 Tumor
GSM972439	stage IV	0	1 Tumor
GSM972440	stage II	1560	0 Tumor
GSM972441	stage IV	0	1 Tumor
GSM972442	stage IV	0	1 Tumor
GSM972443	stage II	1440	0 Tumor
GSM972444	stage III	150	1 Tumor
GSM972445	stage II	1050	0 Tumor
GSM972447	stage II	930	0 Tumor
GSM972449	stage III	570	1 Tumor
GSM972450	stage II	570	1 Tumor
GSM972451	stage II	2910	0 Tumor
GSM972452	stage III	2970	0 Tumor
GSM972453	stage III	3000	0 Tumor
GSM972454	stage I	2250	0 Tumor
GSM972455	stage III	2220	0 Tumor
GSM972456	stage II	0	0 Tumor
GSM972457	stage III	1020	1 Tumor
GSM972458	stage II	510	0 Tumor
GSM972459	stage II	360	0 Tumor
GSM972460	stage II	2880	0 Tumor
GSM972461	stage II	2880	0 Tumor
GSM972462	stage I	2640	0 Tumor
GSM972464	stage I	2580	0 Tumor
GSM972465	stage II	2520	0 Tumor
GSM972466	stage III	2250	0 Tumor
GSM972467	stage III	2160	0 Tumor
GSM972468	stage II	720	0 Tumor
GSM972469	stage I	2580	0 Tumor
GSM972470	stage II	2550	0 Tumor
GSM972472	stage II	2400	0 Tumor
GSM972473	stage II	1350	1 Tumor
GSM972474	stage III	270	1 Tumor
GSM972475	stage II	2610	0 Tumor
GSM972476	stage III	1920	0 Tumor
GSM972477	stage II	2430	0 Tumor
GSM972478	stage II	2070	0 Tumor
GSM972479	stage III	90	0 Tumor
GSM972480	stage II	2070	0 Tumor
GSM972481	stage III	1950	0 Tumor
GSM972482	stage II	1260	0 Tumor
GSM972483	stage II	690	1 Tumor
GSM	Stage	Value	Tumor
-------	-------	-------	-------
GSM972484	stage II	2280	0 Tumor
GSM972485	stage II	2250	0 Tumor
GSM972486	stage II	990	0 Tumor
GSM972487	stage II	2010	0 Tumor
GSM972488	stage II	1470	0 Tumor
GSM972489	stage II	2220	0 Tumor
GSM972490	stage II	2220	0 Tumor
GSM972491	stage II	2100	0 Tumor
GSM972492	stage I	2040	0 Tumor
GSM972493	stage II	1770	0 Tumor
GSM972494	stage I	1710	0 Tumor
GSM972495	stage III	540	1 Tumor
GSM972496	stage I	4260	0 Tumor
GSM972497	stage III	30	0 Tumor
GSM972498	stage III	570	1 Tumor
GSM972499	stage III	2160	0 Tumor
GSM972501	stage III	3180	0 Tumor
GSM972502	stage II	3930	0 Tumor
GSM972503	stage II	4380	0 Tumor
GSM972504	stage III	720	1 Tumor
GSM972505	stage II	4320	0 Tumor
GSM972506	stage II	4230	0 Tumor
GSM972507	stage III	1260	0 Tumor
GSM972508	stage I	4020	0 Tumor
GSM972509	stage I	420	0 Tumor
GSM972510	stage II	2580	0 Tumor
GSM972511	stage III	1410	0 Tumor
GSM972512	stage III	120	1 Tumor
GSM972513	stage III	390	1 Tumor
GSM972515	stage II	3540	0 Tumor
GSM972516	stage II	1980	0 Tumor
GSM972517	stage II	960	1 Tumor
GSM972518	stage III	450	1 Tumor
GSM972519	stage II	330	1 Tumor
GSM972520	stage III	1860	0 Tumor
GSM972521	stage II	2280	0 Tumor
GSM972522	stage II	2970	0 Tumor
Subtype	NMF clusters		
-------------------------------	--------------		
CINWntUp	CC2		
CSC	CC3		
KRASm	CC2		
CINImmuneDown	CC1		
CSC	CC3		
CSC	CC3		
dMMR	CC2		
CINImmuneDown	CC2		
CINImmuneDown	CC3		
CINWntUp	CC1		
CSC	CC3		
dMMR	CC2		
KRASm	CC2		
dMMR	CC2		
CINImmuneDown	CC2		
CINWntUp	CC2		
KRASm	CC2		
CINImmuneDown	CC1		
CINWntUp	CC1		
dMMR	CC2		
KRASm	CC2		
CINWntUp	CC3		
CINnormL	CC3		
dMMR	CC2		
KRASm	CC2		
KRASm	CC2		
CINWntUp	CC1		
CINImmuneDown	CC1		
KRASm	CC2		
CINWntUp	CC1		
CINnormL	CC2		
CSC	CC3		
dMMR	CC2		
CINnormL	CC2		
CINnormL	CC2		
CINWntUp	CC1		
CINImmuneDown	CC1		
KRASm	CC2		
CINImmuneDown	CC2		
CINImmuneDown	CC1		
KRASm	CC1		
CINWntUp	CC3		
CSC	CC3		
CSC	CC3		
CINnormL	CC3		
CINWntUp	CC3		
CSC	CC3		
KRASm	CC2		
CINWntUp	CC1		
CSC CC2			
CSC CC3			
CINImmuneDown CC1			
dMMR CC2			
dMMR CC2			
CINnormL CC3			
CINWntUp CC3			
dMMR CC3			
dMMR CC3			
CINImmuneDown CC2			
dMMR CC3			
CINWntUp CC3			
CINnormL CC3			
CINImmuneDown CC2			
CINImmuneDown CC1			
CINImmuneDown CC1			
CINnormL CC3			
CSC CC3			
CINImmuneDown CC1			
KRASm CC2			
CINWntUp CC3			
CINWntUp CC1			
CINWntUp CC3			
CINWntUp CC1			
CINImmuneDown CC1			
CSC CC3			
KRASm CC2			
CINWntUp CC1			
KRASm CC2			
CINnormL CC3			
CINnormL CC3			
dMMR CC2			
CSC CC3			
CINWntUp CC3			
CINWntUp CC1			
CINnormL CC3			
CINWntUp CC1			
dMMR CC2			
KRASm CC2			
KRASm CC2			
CSC CC3			
CSC CC3			
KRASm CC2			
CINnormL CC3			
CINnormL CC3			
dMMR CC2			
CINImmuneDown CC2			
CINWntUp CC1			
CINWntUp CC2			
KRASm CC2			
CINWntUp CC1			
CINImmuneDown CC1			
CINnormL CC1			
CINnormL CC3			
CINWntUp CC3			
CINWntUp CC3			
dMMR CC2			
CINWntUp CC1			
CINImmuneDown CC1			
CINImmuneDown CC1			
CINImmuneDown CC1			
CINWntUp CC1			
CINWntUp CC1			
CINWntUp CC1			
CINImmuneDown CC1			
CINWntUp CC3			
CINWntUp CC3			
CINImmuneDown CC1			
CINImmuneDown CC1			
CINImmuneDown CC1			
KRASm CC3			
CINImmuneDown CC3			
dMMR CC2			
CSC CC3			
dMMR CC2			
dMMR CC2			
dMMR CC2			
dMMR CC1			
CINImmuneDown CC1			
KRASm CC2			
KRASm CC3			
dMMR CC2			
CINWntUp CC1			
CINImmuneDown CC1			
KRASm CC1			
dMMR CC2			
CSC CC3			
dMMR CC2			
dMMR CC2			
dMMR CC2			
CSC CC2			
dMMR CC2			
CINWntUp CC2			
dMMR CC1			
dMMR CC1			
CINWntUp CC2			
dMMR CC2			
dMMR CC2			
CINWntUp CC2			
dMMR CC2			
CINWntUp CC2			
CINWntUp CC1			
CINWntUp CC1			
CINImmuneDown CC1			
CINWntUp CC1			
CSC CC1			
dMMR CC2			
dMMR CC2			
dMMR CC2			
dMMR CC2			
KRASm CC1			
KRASm CC2			
dMMR CC3			
KRASm CC2			
dMMR CC1			
CINWntUp CC1			
CINImmuneDown CC1			
CINWntUp CC1			
CSC CC1			
dMMR CC2			
dMMR CC2			
dMMR CC2			
KRASm CC2			
KRASm CC1			
dMMR CC2			
CINWntUp CC1			
KRASm CC1			
CINnormL CC2			
CINImmuneDown CC1			
CINImmuneDown CC1			
Condition	Category		
-------------------	----------		
KRASm	CC2		
dMMR	CC2		
CINImmuneDown	CC1		
CINImmuneDown	CC1		
dMMR	CC2		
CINImmuneDown	CC1		
CINImmuneDown	CC2		
CINWntUp	CC3		
CINWntUp	CC1		
CINWntUp	CC1		
dMMR	CC2		
KRASm	CC2		
dMMR	CC2		
dMMR	CC2		
CINImmuneDown	CC1		
CINImmuneDown	CC1		
CINnormL	CC1		
CINnormL	CC1		
CINImmuneDown	CC1		
CINWntUp	CC1		
KRASm	CC2		
dMMR	CC2		
CINWntUp	CC1		
CINnormL	CC1		
dMMR	CC2		
CINWntUp	CC1		
dMMR	CC2		
CINImmuneDown	CC1		
dMMR	CC2		
CINnormL	CC1		
dMMR	CC2		
CINWntUp	CC1		
CINImmuneDown	CC1		
CINWntUp	CC1		
CSC	CC1		
dMMR	CC2		
CINWntUp	CC1		
CINImmuneDown	CC1		
CSC	CC3		
CINnormL	CC1		
CINWntUp	CC3		
dMMR	CC2		
dMMR	CC1		
CINWntUp	CC3		
CINnormL	CC3		
CINWntUp	CC1		
CINnormL	CC3		
CINWntUp	CC1		
CSC	CC3		
CINImmuneDown	CC1		
CINWntUp	CC1		
CINWntUp CC1			
CINWntUp CC1			
CINWntUp CC1			
KRASm CC2			
KRASm CC2			
KRASm CC2			
CINImmuneDown CC1			
CINWntUp CC1			
CINWntUp CC1			
CINWntUp CC1			
dMMR CC2			
CINWntUp CC1			
KRASm CC1			
CINWntUp CC1			
CINImmuneDown CC1			
dMMR CC2			
CINWntUp CC1			
KRASm CC2			
CInnormL CC3			
CINImmuneDown CC3			
CINImmuneDown CC2			
CInnormL CC3			
dMMR CC2			
CINImmuneDown CC1			
CINImmuneDown CC1			
KRASm CC1			
CINWntUp CC1			
KRASm CC2			
CINWntUp CC1			
CINImmuneDown CC1			
CINImmuneDown CC1			
CINWntUp CC1			
CInnormL CC3			
CInnormL CC3			
dMMR CC2			
CSC CC3			
dMMR CC3			
samples	Stage	RFS (days)	RFS.event
------------	---------	------------	-----------
GSM929508	stage II	438.9999999	1
GSM929511	stage III	858	1
GSM929622	stage III	78	1
GSM929546	stage II	263	1
GSM929623	stage III	350.0000001	1
GSM929539	stage II	383.0000001	1
GSM929614	stage III	561	1
GSM929496	stage III	165	1
GSM929574	stage III	645	1
GSM929590	stage III	551.0000001	1
GSM929586	stage II	750.9999999	1
GSM929585	stage II	840.9999999	1
GSM929612	stage III	993	1
GSM929609	stage III	204	1
GSM929497	stage III	209	1
GSM929593	stage III	438	1
GSM929591	stage II	519	1
GSM929551	stage II	1387	1
GSM929587	stage II	1150	1
GSM929523	stage III	300.9999999	1
GSM929519	stage III	779.0000001	1
GSM929524	stage III	591	1
GSM929525	stage III	111	1
GSM929599	stage III	1015	1
GSM929617	stage III	336.9999999	1
GSM929576	stage III	137	1
GSM929572	stage III	366	1
GSM929499	stage III	965.0000001	1
GSM929504	stage III	965.0000001	1
GSM929610	stage III	1156	1
GSM929498	stage III	1140	1
GSM929618	stage III	608.0000001	1
GSM929575	stage III	549.9999999	1
GSM929577	stage III	426	1
GSM929502	stage III	199	1
GSM929503	stage III	200	1
GSM929500	stage III	1721	1
GSM929494	stage II	1705	0
GSM929495	stage II	1211	0
GSM929501	stage III	1757	0
GSM929505	stage II	2773	0
GSM929506	stage II	1259	0
GSM929507	stage II	2600	0
GSM929509	stage II	2308	0
GSM929510	stage II	357.9999999	0
GSM929512	stage III	981.9999999	0
GSM929513	stage III	1259	0
GSM929514	stage II	2168	0
GSM929515	stage II	1941	0
GSM929516	stage II	1695	0
GSM929517	stage II	1399	0
GSM929518	stage III	461.0000001	0
GSM929520	stage III	1107	0
GSM929521	stage III	1100	0
GSM929522	stage III	1083	0
GSM929526	stage III	459	0
Sample ID	Stage	Value	Count
------------	---------	-----------	-------
GSM929527	III	774.9999999	0
GSM929528	II	1621	0
GSM929529	II	1096	0
GSM929530	II	1240	0
GSM929531	II	1355	0
GSM929532	II	1348	0
GSM929533	II	1369	0
GSM929534	II	1390	0
GSM929535	II	1326	0
GSM929536	II	1736	0
GSM929537	II	1349	0
GSM929538	II	1285	0
GSM929540	II	1948	0
GSM929541	II	1700	0
GSM929542	II	1553	0
GSM929543	II	1282	0
GSM929544	II	1006	0
GSM929545	II	1323	0
GSM929547	II	1456	0
GSM929548	II	2429	0
GSM929549	II	2654	0
GSM929550	II	2124	0
GSM929552	II	1444	0
GSM929553	II	2274	0
GSM929554	II	1878	0
GSM929555	II	2059	0
GSM929556	II	468.9999999	0
GSM929557	II	899.0000001	0
GSM929558	II	1788	0
GSM929559	II	17.00000001	0
GSM929560	II	1032	0
GSM929561	II	39	0
GSM929562	II	804	0
GSM929563	II	816	0
GSM929564	II	590.0000001	0
GSM929565	II	1693	0
GSM929566	II	1834	0
GSM929567	II	1522	0
GSM929568	II	1545	0
GSM929569	II	2101	0
GSM929570	II	1210	0
GSM929571	II	1534	0
GSM929573	III	1430	0
GSM929578	III	999	0
GSM929579	II	1685	0
GSM929580	II	1663	0
GSM929581	II	1680	0
GSM929582	II	1939	0
GSM929583	II	1771	0
GSM929584	II	1779	0
GSM929588	II	2155	0
GSM929589	III	1904	0
GSM929592	III	1432	0
GSM929594	III	1820	0
GSM929595	III	1804	0
GSM929596	III	3137.0000001	0
GSM929597	III	1787	0
GSM929598	III	1668	0
Sample Code	Stage	Count	MI
-------------	--------	--------	-----
GSM929600	III	2163	0
GSM929601	III	1853	0
GSM929602	II	1096	0
GSM929603	III	1496	0
GSM929604	III	2818	0
GSM929605	III	1407	0
GSM929606	III	1099	0
GSM929607	III	2864	0
GSM929608	III	1149	0
GSM929611	III	1327	0
GSM929613	II	1416	0
GSM929615	III	2135	0
GSM929616	II	160	0
GSM929619	II	1887	0
GSM929620	II	2624	0
GSM929621	II	2860	0
Sample type	NMF clusters		
-------------	--------------		
Tumor	CC3		
Tumor	CC2		
Tumor	CC3		
Tumor	CC1		
Tumor	CC3		
Tumor	CC3		
Tumor	CC3		
Tumor	CC1		
Tumor	CC3		
Tumor	CC1		
Tumor	CC2		
Tumor	CC2		
Tumor	CC2		
Tumor	CC3		
Tumor	CC1		
Tumor	CC1		
Tumor	CC2		
Tumor	CC2		
Tumor	CC2		
Tumor	CC3		
Tumor	CC1		
Tumor	CC1		
Tumor	CC3		
Tumor	CC2		
Tumor	CC1		
Tumor	CC3		
Tumor	CC2		
Tumor	CC2		
Tumor	CC2		
Tumor	CC3		
Tumor	CC1		
Tumor	CC1		
Tumor	CC3		
Tumor	CC2		
Tumor	CC2		
Tumor	CC2		
Tumor	CC3		
Tumor	CC1		
Tumor	CC1		
Tumor	CC2		
Tumor	CC2		
Tumor	CC3		
Tumor	CC1		
Tumor	CC1		
Tumor CC3			
Tumor CC3			
Tumor CC1			
Tumor CC1			
Tumor CC2			
Tumor CC2			
Tumor CC3			
Tumor CC1			
Tumor CC1			
Tumor CC1			
Tumor CC1			
Tumor CC1			
Tumor CC3			
Tumor CC1			
Tumor CC3			
Tumor CC3			
Tumor	Sample type	Gender	Age
---	---	---	---
SMC01-T	Colorectal cancer	F	64
SMC02-T	Colorectal cancer	M	66
SMC03-T	Colorectal cancer	F	83
SMC04-T	Colorectal cancer	M	69
SMC05-T	Colorectal cancer	F	58
SMC06-T	Colorectal cancer	M	46
SMC07-T	Colorectal cancer	F	67
SMC08-T	Colorectal cancer	M	68
SMC09-T	Colorectal cancer	M	75
SMC10-T	Colorectal cancer	F	77
SMC11-T	Colorectal cancer	F	38
SMC12-T	Colorectal cancer	M	77
SMC13-T	Colorectal cancer	M	56
SMC14-T	Colorectal cancer	M	59
SMC15-T	Colorectal cancer	M	47
SMC16-T	Colorectal cancer	F	63
SMC17-T	Colorectal cancer	F	80
SMC18-T	Colorectal cancer	F	65
SMC19-T	Colorectal cancer	M	51
SMC20-T	Colorectal cancer	M	76
SMC21-T	Colorectal cancer	M	67
SMC22-T	Colorectal cancer	F	48
SMC23-T	Colorectal cancer	F	57
Anatomic region Left/Right-sided	MSI	MSS	MSI-H
---------------------------------	-------	-------	-------
rectum left	MSI	MSS	MSI-H
hepatic flexure right	MSI-H	MSS	MSI-H
ascending right	MSS		
sigmoid left	MSS		
rectosigmoid left	MSS		
sigmoid left	MSS		
hepatic flexure right	MSS		
sigmoid left	MSS		
ascending right	MSS		
ascending right	MSS		
rectum left	MSS		
sigmoid left	MSS		
ascending right	MSS		
ascending right	MSS		
sigmoid left	MSS		
Pathological subtype	Bulk CMS subtypes		
--	-------------------		
Adenocarcinoma, well differentiated	CMS3		
Adenocarcinoma, well differentiated	CMS4		
Adenocarcinoma, poorly differentiated	CMS1		
Adenocarcinoma, moderately differentiated	CMS4		
Adenocarcinoma, well differentiated with mucin production (<10%)	CMS3		
Adenocarcinoma, well differentiated	CMS1		
Adenocarcinoma, well differentiated	CMS2		
Adenocarcinoma, moderately differentiated	CMS1		
Adenocarcinoma, well differentiated	CMS2		
Adenocarcinoma, moderately differentiated	CMS1		
Adenocarcinoma, well differentiated	CMS2		
Adenocarcinoma, moderately differentiated	CMS2		
Adenocarcinoma, moderately differentiated	CMS4		
Adenocarcinoma, moderately differentiated	CMS1		
Adenocarcinoma, moderately differentiated	CMS3		
Mucinous adenocarcinoma	CMS4		
Adenocarcinoma, moderately differentiated	CMS2		
Adenocarcinoma, moderately differentiated	CMS3		
Mucinous adenocarcinoma	CMS4		
Adenocarcinoma, moderately differentiated	CMS2		
Adenocarcinoma, moderately differentiated	CMS2		
Adenocarcinoma, moderately differentiated	CMS2		
Adenocarcinoma, well differentiated with mucin production (10%)	CMS4		
Adenocarcinoma, moderately differentiated	CMS2		
KRAS	BRAF	TP53	APC
------	-------	------	-------
Mutant	Wildtype	Mutant	Mutant
Wildtype	Wildtype	Mutant	Mutant
Wildtype	Mutant	Wildtype	Mutant
Mutant	Wildtype	Mutant	Mutant
Mutant	Wildtype	Wildtype	Mutant
Mutant	Wildtype	Mutant	Mutant
Wildtype	Wildtype	Mutant	Mutant
Wildtype	Mutant	Wildtype	Mutant
Wildtype	Wildtype	Mutant	Mutant
Mutant	Wildtype	Wildtype	Wildtype
Wildtype	Wildtype	Wildtype	Wildtype
Wildtype	Wildtype	Wildtype	Wildtype
Wildtype	Wildtype	Wildtype	Wildtype
Mutant	Wildtype	Mutant	Mutant
Wildtype	Mutant	Wildtype	Mutant
Wildtype	Mutant	Mutant	Mutant
Mutant	Mutant	Mutant	Mutant
Mutant	Mutant	Wildtype	Mutant
Wildtype	Mutant	Mutant	Mutant
Wildtype	Wildtype	Mutant	Mutant
Wildtype	Wildtype	Mutant	Mutant
Mutant	Mutant	Mutant	Mutant
Wildtype	Wildtype	Mutant	Mutant
Wildtype	Mutant	Mutant	Mutant
Mutant	Mutant	Wildtype	Mutant
Wildtype	Wildtype	Mutant	Mutant
Patient	Core	Sample type	Gender
---------	----------	----------------------	--------
KUL01	KUL01-T	Colorectal cancer	F
KUL19	KUL19-T	Colorectal cancer	F
KUL21	KUL21-T	Colorectal cancer	F
KUL28	KUL28-T	Colorectal cancer	M
KUL30	KUL30-T	Colorectal cancer	M
KUL31	KUL31-T	Colorectal cancer	M
and KUL cohorts

TNM stage	Stage	Anatomic region	Left/Right-sided	MSI
pT4aN0	IIB	caecum	right	MSI-H
pT3N1b	IIIB	rectosigmoid	left	MSS
pT4aN1aM1a	IVA	sigmoid	left	MSS
pT3N0L1	IIA	sigmoid	left	MSS
pT3N0L1	IIA	ascending	right	MSS
pT1N0	I	sigmoid	left	MSS
Pathological subtype				
Global moderately differentiated adenocarcinoma with mixed glandular, mucinous growth pattern, mod-				
Moderately differentiated adenocarcinoma NST				
Moderately differentiated adenocarcinoma				
Moderately differentiated adenocarcinoma				
Moderately differentiated adenocarcinoma				
Well differentiated adenocarcinoma NST				
Bulk CMS subtypes	TP53	APC	KRAS	BRAF
-------------------	------	-------	-------	-------
Unknown	Mutant	Wildtype	Wildtype	Mutant
CMS4	Mutant	Mutant	Wildtype	Wildtype
CMS1	Mutant	Mutant	Mutant	Wildtype
CMS2	Mutant	Mutant	Wildtype	Wildtype
CMS2	Wildtype	Mutant	Mutant	Wildtype
CMS3	Wildtype	Mutant	Mutant	Wildtype
Table S3. Biological information of ferroptosis-associated genes (human genes)

Symbol	Biological Information
RPL8	
IREB2	
ATP5MC3	
CS	
EMC2	
ACFS2	
NOX1	
CYBB	
NOX3	
NOX4	
NOX5	
DUOX1	
DUOX2	
G6PD	
PGD	
VDAC2	
TP53	
ACSL4	
LPCAT3	
NRAS	
KRAS	
HRAS	
CARS1	
KEAP1	
HMOX1	
ATG5	
ATG7	
NCOA4	
ALOX12	
ALOX12B	
ALOX15	
ALOX15B	
ALOXE3	
PHKG2	
SAT1	
EGFR	
MAPK3	
MAPK1	
ZEB1	
DPP4	
CDKN2A	
PEBP1	
SOCS1	
CDO1	
MYB	
CHAC1	
LINC00472	
PRKAA2	
PRKAA1	
ELAVL1	
BAP1	
ABCC1	
MIR6852	
ACVR1B	
TGFR1	
IFNG
ANO6
HMGB1
TNFAIP3
ATF3
ATM
YY1AP1
EGLN2
MIOX
TAZ
MTDH
IDH1
FBXW7
PANX1
DNAJB6
LONP1
PTGS2
DUSP1
NOS2
NCF2
MT3
UBC
ALB
TXNRD1
SRXN1
GPX2
BNIP3
OXSR1
SELENOS
ANGPTL7
CHAC1
SLC7A11
DDIT4
LOC284561
ASNS
TSC22D3
DDIT3
JDP2
SESN2
SLC1A4
PCK2
TXNIP
VLDLR
GPT2
PSAT1
LURAP1L
SLC7A5
HERPUD1
XBP1
ATF3
SLC3A2
CBS
ATF4
ZNF419
KLHL24
TRIB3
ZFP69B
ATP6V1G2
AKR1C3
RB1
HSPB1
HSF1
NFE2L2
SQSTM1
NQO1
HMOX1
FTH1
MUC1
MT1G
SLC40A1
CISD1
HSPA5
ATF4
TP53
HELS5
SCD
FADS2
SRC
STAT3
PML
NFS1
TP63
CDKN1A
MIR137
VDAC2
FH
CISD2
MIR9-1
MIR9-2
MIR9-3
CBS
ISCU
ACSL3
OTUB1
CD44
LINC00336
BRD4
PRDX6
MIR17
SESN2
NF2
ARNTL
HIF1A
JUN
CA9
TMBIM4
PLIN2
AIFM2
LAMP2
ZFP36
PROM2
CHMP5
CHMP6
CAV1
GCH1
Biological information of ferroptosis-associated genes (human genes)

Name
- Ribosomal protein L8
- Iron response element binding protein 2
- ATP synthase membrane subunit c locus 3
- Citrate synthase
- ER membrane protein complex subunit 2
- Acyl-CoA synthetase family member 2
- Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) 1
- Cytochrome b-245 beta chain
- Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) 3
- Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) 4
- Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) 5
- Dual oxidase 1
- Dual oxidase 2
- Glucose-6-phosphate dehydrogenase
- Phosphoglycerate dehydrogenase
- Voltage-dependent anion channels 2
- Tumor protein p53
- Acyl-CoA synthetase long chain family member 4
- Lysophosphatidylcholine acyltransferase 3
- NRAS proto-oncogene, GTPase
- KRAS proto-oncogene, GTPase
- HRas proto-oncogene, GTPase
- Cysteinyl-tRNA synthetase 1
- Kelch like ECH associated protein 1
- Heme oxygenase 1
- Autophagy related 5
- Autophagy related 7
- Nuclear receptor coactivator 4
- Arachidonate 12-lipoxygenase, 12S type
- Arachidonate 12-lipoxygenase, 12R type
- Arachidonate 15-lipoxygenase
- Arachidonate 15-lipoxygenase type B
- Arachidonate lipoxygenase 3
- Phosphorylase kinase catalytic subunit gamma 2
- Spermidine/spermine N1-acetyltransferase 1
- Epidermal growth factor receptor
- Mitogen-activated protein kinase 3
- Mitogen-activated protein kinase 1
- Zinc finger E-box binding homeobox 1
- Dipeptidyl peptidase 4
- Cyclin dependent kinase inhibitor 2A
- Phosphatidylethanolamine binding protein 1
- Suppressor of cytokine signaling 1
- Cysteine dioxygenase type 1
- MYB proto-oncogene, transcription factor
- ChaC glutathione specific gamma-glutamylcyclotransferase 1
- Long intergenic non-protein coding RNA 472
- Protein kinase AMP-activated catalytic subunit alpha 2
- Protein kinase AMP-activated catalytic subunit alpha 1
- ELAV like RNA binding protein 1
- BRCA1 associated protein 1
- ATP binding cassette subfamily C member 1
- microRNA 6852
- Activin A receptor type 1B
- Transforming growth factor beta receptor 1
Interferon gamma
Anoctamin 6
High mobility group box 1
TNF alpha induced protein 3
Activating transcription factor 3
ATM serine/threonine kinase
YY1 associated protein 1
Egl-9 family hypoxia inducible factor 2
Myo-inositol oxygenase
Tafazzin
Metadherin
Isocitrate dehydrogenase (NADP(+)) 1
F-box and WD repeat domain containing 7
Pannexin 1
DnaJ heat shock protein family (Hsp40) member B6
Lon peptidase 1, mitochondrial
Prostaglandin-endoperoxide synthase 2
Dual specificity phosphatase 1
Nitric oxide synthase 2
Neutrophil cytosolic factor 2
Metallothionein 3
Ubiquitin C
Albumin
Thioredoxin reductase 1
Sulfiredoxin 1
Glutathione peroxidase 2
BCL2 interacting protein 3
Oxidative stress responsive kinase 1
Selenoprotein S
Angiopoietin like 7
ChaC glutathione specific gamma-glutamylcyclotransferase 1
Solute carrier family 7 member 11
DNA damage inducible transcript 4
Asparagine synthetase (glutamine-hydrolyzing)
TSC22 domain family member 3
DNA damage inducible transcript 3
Jun dimerization protein 2
Sestrin 2
Solute carrier family 1 member 4
Phosphoenolpyruvate carboxykinase 2, mitochondrial
Thioredoxin interacting protein
Very low density lipoprotein receptor
Glutamic--pyruvic transaminase 2
Phosphoserine aminotransferase 1
Leucine rich adaptor protein 1 like
Solute carrier family 7 member 5
Homocysteine inducible ER protein with ubiquitin like domain 1
X-box binding protein 1
Activating transcription factor 3
Solute carrier family 3 member 2
Cystathionine beta-synthase
Activating transcription factor 4
Zinc finger protein 419
Kelch like family member 24
Tribbles pseudokinase 3
ZFP69 zinc finger protein B
ATPase H+ transporting V1 subunit G2
| Gene Name |
|-----------|
| Vascular endothelial growth factor A |
| Growth differentiation factor 15 |
| Tubulin epsilon 1 |
| Arrestin domain containing 3 |
| CCAAT enhancer binding protein gamma |
| Small nucleolar RNA, H/ACA box 16A |
| Regulator of G protein signaling 4 |
| BLOC1S5-TXNDC5 readthrough (NMD candidate) |
| _NA_ |
| Eukaryotic translation initiation factor 2 subunit 1 |
| Hydroxysteroid 17-beta dehydrogenase 11 |
| 1-acylglycerol-3-phosphate O-acyltransferase 3 |
| SET domain containing 1B, histone lysine methyltransferase |
| Heme oxygenase 1 |
| Transferrin |
| Ferritin light chain |
| Ribosomal protein L8 |
| ATP synthase membrane subunit c locus 3 |
| Transferrin receptor |
| MAF bZIP transcription factor G |
| Ferritin heavy chain 1 |
| Dopamine receptor D5 |
| Dopamine receptor D4 |
| Mitogen-activated protein kinase kinase kinase 5 |
| Mitogen-activated protein kinase 14 |
| Solute carrier family 2 member 1 |
| Solute carrier family 2 member 3 |
| Solute carrier family 2 member 6 |
| Solute carrier family 2 member 8 |
| Solute carrier family 2 member 12 |
| _NA_ |
| Solute carrier family 2 member 14 |
| Eukaryotic translation initiation factor 2 alpha kinase 4 |
| Arachidonate 5-lipoxygenase |
| Arachidonate 12-lipoxygenase, 12S type |
| Arachidonate 15-lipoxygenase |
| High mobility group box 1 |
| ELAV like RNA binding protein 1 |
| Hemoglobin subunit alpha 1 |
| Nicotinamide N-methyltransferase |
| Perilipin 4 |
| HIC ZBTB transcriptional repressor 1 |
| Stathmin 1 |
| Ribonucleotide reductase regulatory subunit M2 |
| Capping actin protein, gelsolin like |
| Hepatocyte nuclear factor 4 alpha |
| Neuroglobin |
| Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein epsilon |
| GA binding protein transcription factor subunit beta 1 |
| Aurora kinase A |
| microRNA 4715 |
| Receptor interacting serine/threonine kinase 1 |
| Peroxiredoxin 1 |
| microRNA 30b |
| Solute carrier family 7 member 11 |
| Glutathione peroxidase 4 |
| Aldo-keto reductase family 1 member C1 |
| Aldo-keto reductase family 1 member C2 |
Aldo-keto reductase family 1 member C3
RB transcriptional corepressor 1
Heat shock protein family B (small) member 1
Heat shock transcription factor 1
Nuclear factor, erythroid 2 like 2
Sequestosome 1
NAD(P)H quinone dehydrogenase 1
Heme oxygenase 1
Ferritins heavy chain 1
Mucin 1, cell surface associated
Metallothionein 1G
Solute carrier family 40 member 1
CDGSH iron sulfur domain 1
Heat shock protein family A (Hsp70) member 5
Activating transcription factor 4
Tumor protein p53
Helicase, lymphoid specific
Stearoyl-CoA desaturase
Fatty acid desaturase 2
SRC proto-oncogene, non-receptor tyrosine kinase
Signal transducer and activator of transcription 3
Promyelocytic leukemia
NFS1 cysteine desulfurase
Tumor protein p63
Cyclin dependent kinase inhibitor 1A
microRNA 137
Voltage dependent anion channel 2
Fumarate hydratase
CDGSH iron sulfur domain 2
microRNA 9-1
c microRNA 9-2
microRNA 9-3
Cystathionine beta-synthase
Iron-sulfur cluster assembly enzyme
Acyl-CoA synthetase long chain family member 3
OTU deubiquitinase, ubiquitin aldehyde binding 1
CD44 molecule (Indian blood group)
Long intergenic non-protein coding RNA 336
Bromodomain containing 4
Peroxisiredoxin 6
c microRNA 17
Sestrin 2
Neurofibromin 2
Aryl hydrocarbon receptor nuclear translocator like
Hypoxia inducible factor 1 subunit alpha
Jun proto-oncogene, AP-1 transcription factor subunit
Carbonic anhydrase 9
Transmembrane BAX inhibitor motif containing 4
Perilipin 2
Apoptosis inducing factor mitochondria associated 2
Lysosomal associated membrane protein 2
ZFP36 ring finger protein
Prominin 2
Charged multivesicular body protein 5
Charged multivesicular body protein 6
Caveolin 1
GTP cyclohydrolase 1
| HGNC_ID |
|-----------|
| HGNC:10368|
| HGNC:6115 |
| HGNC:843 |
| HGNC:2422 |
| HGNC:28963|
| HGNC:26101|
| HGNC:7889 |
| HGNC:2578 |
| HGNC:7890 |
| HGNC:7891 |
| HGNC:14874|
| HGNC:3062 |
| HGNC:13273|
| HGNC:4057 |
| HGNC:8891 |
| HGNC:12672|
| HGNC:11998|
| HGNC:3571 |
| HGNC:30244|
| HGNC:7989 |
| HGNC:6407 |
| HGNC:5173 |
| HGNC:1493 |
| HGNC:23177|
| HGNC:5013 |
| HGNC:589 |
| HGNC:16935|
| HGNC:7671 |
| HGNC:429 |
| HGNC:430 |
| HGNC:433 |
| HGNC:434 |
| HGNC:13743|
| HGNC:8931 |
| HGNC:10540|
| HGNC:3236 |
| HGNC:6877 |
| HGNC:6871 |
| HGNC:11642|
| HGNC:3009 |
| HGNC:1787 |
| HGNC:8630 |
| HGNC:19383|
| HGNC:1795 |
| HGNC:7545 |
| HGNC:28680|
| HGNC:21380|
| HGNC:9377 |
| HGNC:9376 |
| HGNC:3312 |
| HGNC:950 |
| HGNC:51 |
| HGNC:49993|
| HGNC:172 |
| HGNC:11772|
| HGNC:5438 | HGNC:25240 | HGNC:4983 | HGNC:11896 | HGNC:785 | HGNC:795 | HGNC:30935 | HGNC:14660 | HGNC:14522 | HGNC:11577 | HGNC:29608 | HGNC:5382 | HGNC:16712 | HGNC:8599 | HGNC:14888 | HGNC:9479 | HGNC:9605 | HGNC:3064 | HGNC:7873 | HGNC:7661 | HGNC:7408 | HGNC:12468 | HGNC:399 | HGNC:12437 | HGNC:16132 | HGNC:4554 | HGNC:1084 | HGNC:8508 | HGNC:30396 | HGNC:24078 | HGNC:28680 | HGNC:11059 | HGNC:24944 | HGNC:753 | HGNC:3051 | HGNC:2726 | HGNC:17546 | HGNC:20746 | HGNC:10942 | HGNC:8725 | HGNC:16952 | HGNC:12698 | HGNC:18062 | HGNC:19129 | HGNC:31452 | HGNC:11063 | HGNC:13744 | HGNC:12801 | HGNC:785 | HGNC:11026 | HGNC:1550 | HGNC:786 | HGNC:20648 | HGNC:25947 | HGNC:16228 | HGNC:28053 | HGNC:862 |
Table S3. Biological information of ferroptosis-associated genes (human genes)

Inhibition attenuated erastin-induced ferroptosis.

Promotes ferroptosis. Binds to LINC0033 and serves as a negative upstream regulator of CBS-mediated ferroptosis inhibition.

Accelerates ferroptosis. Disruption of MRP1 inhibited ferroptosis potently.

Suppresses SLC7A11-mediated cystine uptake and promotes ferroptosis. BAP1 mutants lose their abilities to repress SLC7A11 and to promote ferroptosis.

ELAVL1 siRNA led to ferroptosis resistance, whereas ELAVL1 plasmid contributed to classical ferroptotic events.

Inhibition of PRKAA/AMPKalpha diminishes ferroptosis.

Increases erastin-induced growth inhibition, whereas depletion of P53RRA decreased erastin-induced growth inhibition.

Inhibits cystine uptake and sensitizes cells to ferroptosis. Erastin induced high levels of cell death in p53+ cells.

Deletion of this gene likely suppress ferroptosis by limiting the membrane-resident pool of oxidation-sensitive fatty acids.

NRAS12V mutant protects RMS13 cells from ferroptotic cell death.

KRAS12V mutant protects RMS13 cells from ferroptotic cell death.

HRAS12V mutant protects RMS13 cells from ferroptotic cell death.

Required in erastin-induced ferroptosis.

Required in erastin-induced ferroptosis. Silencing of it conferred against erastin-induced ferroptosis.

Required in erastin-induced ferroptosis. Silencing of it conferred against erastin-induced ferroptosis.

Required in erastin-induced ferroptosis. Silencing of it conferred against erastin-induced ferroptosis.

Required in erastin-induced ferroptosis. Silencing of it conferred against erastin-induced ferroptosis.

Required in erastin-induced ferroptosis. Silencing of it conferred against erastin-induced ferroptosis.

Knockdown of Keap1 reversed loss of p62-mediated degradation of Nrf2 in ferroptosis. Keap1 knockdc zinc protoporphyrin IX, a HO-1 inhibitor, prevented Erastin-triggered ferroptotic cancer cell death. Overexpression or deletion limited Erastin-induced ferroptosis.

Inhibition suppressed ferroptosis, and overexpression promoted ferroptosis.

Silencing ALOX genes made cells resistant to ferroptosis.

Erastin-induced cell death was rescued by silencing ALOX genes. Erastin-induced cell death was rescued by silencing U-2-OS cells became resistant to erastin upon PHKG2 silencing. Erastin-treated HT-1080 cells were less sensitive to cystine starvation. Erastin-induced activation of SAT1 contributes to ferroptotic cell death in the presence of ROS stress. Knockdown of SAT1 reversed loss of p62-mediated degradation of Nrf2 in ferroptosis. Inhibiting EGFR and MAPK signaling rescues cells from cystine withdrawal. Knockdown of ZEB1 prevents cell death induced by GPX4 inhibition. Required in erastin-induced ferroptosis.

Combination of ARF induction and ROS treatment induced ferroptotic cell death. Knockdown of endogenous ARF resulted in increased sensitivity of HK2 cells to ROS. Expression of SOCS1 sensitized cells to ferroptosis inducer. This effect of SOCS1 was efficiently blocked by ferroptosis inhibitor.

Erasin-induced ferroptosis was restrained when c-Myb was suppressed.

CHAC1 degradation of GSH might enhance cystine-starvation-induced cell death.

Increases erastin-induced growth inhibition, whereas depletion of P53RRA decreased erastin-induced growth inhibition.

Expression of SOCS1 sensitized cells to ferroptosis inducer. This effect of SOCS1 was efficiently blocked by ferroptosis inhibitor.

Required in erastin-induced ferroptosis. Silencing of it conferred against erastin-induced ferroptosis.

Inhibition of PRKAA/AMPKalpha diminishes ferroptosis.

Inhibition of PRKAA/AMPKalpha diminishes ferroptosis.

ELAVL1 siRNA led to ferroptosis resistance, whereas ELAVL1 plasmid contributed to classical ferroptotic cell death. Suppression of SLC7A11-mediated cystine uptake promotes ferroptosis. BAP1 mutants lose their ability to promote ferroptosis. Disruption of MRP1 inhibited ferroptosis potently.

Promotes ferroptosis. Binds to LINC0033 and serves as a negative upstream regulator of CBS-mediated ferroptosis. Inhibition attenuated erastin-induced ferroptosis.

Inhibition attenuated erastin-induced ferroptosis.
Interferon gamma released from CD8+ T cells downregulates the expression of SLC3A2 and SLC7A11, and as a consequence, promotes tumour cell lipid peroxidation and ferroptosis.

Essential for ferroptosis. Inhibition blocked ferroptotic cell death induced by RSL3/erastin.

Required for erastin-induced ferroptosis. Knockdown of HMGB1 decreased erastin-induced cell death. Overexpression increased ROS generation and enhanced erastin-induced ferroptosis, whereas knockdov Promotes ferroptosis induced by erastin.

Essential for ferroptosis. Genetic knockdown and chemical inhibition of ATM both suppress ferroptotic cell death. Inhibiting EGLN2 activation diminished ferroptotic tumor cell death.

Overexpression exacerbates cell death, knockdown inhibits ferroptosis.

TAZ removal confers ferroptosis resistance, whereas overexpression of TAZS89A sensitizes cells to ferropenia. Can enhance sensitivity to inducers of ferroptosis. Enhances the vulnerability of cancer cells to ferroptosis.

Deletion of the mutant IDH1 allele or pharmacological inhibition of mutant IDH1 confers resistance to erastin-induced ferroptosis. FBXW7 plasmid induces ferroptosis.

Deletion protects against ferroptotic cell death. Silenced Panx1 expression significantly attenuated ferroptosis in esophageal squamous cell carcinoma.

Inhibition of LONP1 negatively regulates erastin-induced cell death. Simply a downstream marker of ferroptosis. The most upregulated gene in BJeLR cells upon treatment with erastin.

Expression was upregulated during ferroptosis induced by erastin or RSL3.

Expression was upregulated during ferroptosis induced by erastin or RSL3.

Expression was upregulated during ferroptosis induced by erastin or RSL3.

Expression was upregulated during ferroptosis induced by erastin or RSL3.

Expression was upregulated during ferroptosis induced by erastin or RSL3.

Expression was upregulated during ferroptosis induced by erastin or RSL3.

Expression was upregulated during ferroptosis induced by erastin or RSL3.

Expression was upregulated during ferroptosis induced by erastin or RSL3.

Expression was upregulated during ferroptosis induced by erastin or RSL3.

Expression was upregulated during ferroptosis induced by erastin or RSL3.

Expression was upregulated during ferroptosis induced by erastin or RSL3.

Expression was upregulated during ferroptosis induced by erastin or RSL3.

Expression was upregulated during ferroptosis induced by erastin or RSL3.

Expression was upregulated during ferroptosis induced by erastin or RSL3.

Expression was downregulated during ferroptosis induced by erastin or RSL3.

Up-regulated in erastin-treated samples. A useful pharmacodynamic marker of system Xc- inhibition. Similar to erastin treatment, silencing of this gene inhibits glutamate release. Erastin specifically inhibits system Xc-.

Up-regulated (>= 2 fold) in erastin-treated samples.

Up-regulated (>= 2 fold) in erastin-treated samples.
Up-regulated (>= 2 fold) in erastin-treated samples.

Down-regulated (>= 2 fold) in erastin-treated samples.

Phosphorylated in erastin-treated sample.

Enriched in RSL3-resistant cells.

Down-regulated (>= 2 fold) in erastin-treated samples.

Expression of this gene is increased in response to artesunate-induced ferroptosis, indicating activation of ROS-mediated signaling pathways.

Increased at LSH overexpression. Decreased at LSH knockdown. LSH can inhibit ferroptosis.

Overexpression sensitizes cells to ferroptosis.

Associated with ferroptotic cell death. Ferroptosis activators induce HMGB1 release.

Binds to and increases the expression of the negative ferroptosis regulator LINC00336.

Upregulated in cells treated with ferroptosis inducer erastin. Stimulates ferroptosis possibly in a GSH-dependent manner.

Increased at LSH overexpression. Decreased at LSH knockdown. LSH can inhibit ferroptosis.

Overexpression sensitizes cells to ferroptosis.

 Associated with ferroptotic cell death. Ferroptosis activators induce HMGB1 release.

Binds to and increases the expression of the negative ferroptosis regulator LINC00336.

Upregulated in cells treated with ferroptosis inducer erastin. Stimulates ferroptosis possibly in a GSH-dependent manner.

Increased at LSH overexpression. Decreased at LSH knockdown. LSH can inhibit ferroptosis.

Overexpression sensitizes cells to ferroptosis.

Associated with ferroptotic cell death. Ferroptosis activators induce HMGB1 release.

Binds to and increases the expression of the negative ferroptosis regulator LINC00336.

Upregulated in cells treated with ferroptosis inducer erastin. Stimulates ferroptosis possibly in a GSH-dependent manner.

Increased at LSH overexpression. Decreased at LSH knockdown. LSH can inhibit ferroptosis.

Overexpression sensitizes cells to ferroptosis.

Associated with ferroptotic cell death. Ferroptosis activators induce HMGB1 release.

Binds to and increases the expression of the negative ferroptosis regulator LINC00336.

Upregulated in cells treated with ferroptosis inducer erastin. Stimulates ferroptosis possibly in a GSH-dependent manner.

Increased at LSH overexpression. Decreased at LSH knockdown. LSH can inhibit ferroptosis.

Overexpression sensitizes cells to ferroptosis.

Associated with ferroptotic cell death. Ferroptosis activators induce HMGB1 release.

Binds to and increases the expression of the negative ferroptosis regulator LINC00336.

Upregulated in cells treated with ferroptosis inducer erastin. Stimulates ferroptosis possibly in a GSH-dependent manner.

Increased at LSH overexpression. Decreased at LSH knockdown. LSH can inhibit ferroptosis.

Overexpression sensitizes cells to ferroptosis.

Associated with ferroptotic cell death. Ferroptosis activators induce HMGB1 release.

Binds to and increases the expression of the negative ferroptosis regulator LINC00336.

Upregulated in cells treated with ferroptosis inducer erastin. Stimulates ferroptosis possibly in a GSH-dependent manner.

Increased at LSH overexpression. Decreased at LSH knockdown. LSH can inhibit ferroptosis.

Overexpression sensitizes cells to ferroptosis.

Associated with ferroptotic cell death. Ferroptosis activators induce HMGB1 release.

Binds to and increases the expression of the negative ferroptosis regulator LINC00336.
Up-regulated in DU-145 erastin-resistant clones. Participate in the detoxification of toxic lipid metabolites. Rb knock-down cells exposed to sorafenib encounter ferroptosis. Lack of Rb sensitized HCC cells to the induction of ferroptosis, whereas heat shock pretreatment abrogated the sensitization.

Knockdown of NDRG1 enhances erastin-induced ferroptosis, whereas heat shock pretreatment blocks erastin-induced ferroptosis.

Rb is a negative regulator of ferroptosis and is required for exogenous monounsaturated fatty acids to protect cells against ferroptosis. Overexpression of Rb could partially protect cells from ferroptosis. Inhibition of Rb blocks resistance to ferroptotic cell death.

Overexpression of miR-9 suppressed GOT1, which subsequently reduced ferroptosis. Suppression of miR-9 increased the sensitivity of melanoma cells to ferroptosis inducers.

Overexpression of miR-9 conferred resistance to ferroptosis. Inhibition blocked resistance to ferroptotic cell death.

FH inactivation (FH-/-) proves synthetic lethal with inducers of ferroptosis. FH-/- sensitizes cells to multiple ferroptosis inducers.

Depletion of the SCD1 and FADS2 metabolic genes induces ferroptosis. Depletion of the SCD1 and FADS2 metabolic genes induces ferroptosis.

Src-STAT3 activation renders the cell unable to undergo ferroptosis. Src inhibition decreased cell viability.

Suppression of NFS1 cooperates with inhibition of cysteine transport to trigger ferroptosis in vitro and in vivo. Delta Np63 alpha can inhibit ferroptosis independent of p53. Overexpression protects cells from ferroptosis.

Required to suppress ferroptosis.

MUC1-C (C-terminal subunit) blocks erastin-induced ferroptosis and induces increases in GSH.

NRF2 plays a central role in protecting hepatocellular carcinoma (HCC) cells against ferroptosis. Overexpression of NRF2 inhibits ferroptosis by decreasing the intracellular levels of iron and lipid ROS.

Inhibits ferroptosis in human colorectal cancer (CRC) cells. Loss of TP53 restored erastin sensitivity. Inhibiting LSH inhibits ferroptosis.

Rb knock-down cells exposed to sorafenib encounter ferroptosis. Lack of Rb sensitized HCC cells to the induction of ferroptosis, whereas heat shock pretreatment abrogated the sensitization.
Test method
- shRNA screening, qPCR, gene silencing
- Inhibition test by diphenylene iodonium (DPI) and GKT137831.
- Retroviral-mediated insertional mutagenesis and sequencing
- Cell viability assessed by MTT assay, western blot
- siRNA screen, shRNA, western blot, cell viability
- Western blot, shRNA knockdown, cell viability
- Cell viability assay, qRT-PCR, western blot
- shRNA
- shRNA, gene transfection
- qPCR
- qPCR, siRNA
- shRNA suppressor screen, qPCR, cellular iron staining, cell viability
- qRT-PCR, siRNA, CRISPR-cas9, western blot

Table S3. Biological information of ferroptosis-associated genes (human genes)
BODIPY-C11, liperfluo staining, cell death measurement, FACS, cell proliferation and viability estimation.

Immunocytochemistry, RT-PCR, TUNEL Assay, flow Cytometry, LDH assay, gene knockout, siRNA.

Gene transfection, RNAi, cell viability assay, ELISA, LDH assay, flow cytometry, qPCR, western blot.

Lentivirus transduction, CCK-8 assay, DYE670 staining assay, ROS staining assay, RT-qPCR, western blot.

Cell viability assay, transfection, lentiviral infection, qRT-PCR, western blot.

siRNA, western blot, nuclear/cytosol fraction, cell viability, cell death, GSH assay, kinome screen.

Cell death, cell viability, lipid peroxidation, immunoblotting, CRISPR/Cas9, ChIP assay, qRT-PCR.

Cytotoxicity assays, western blot, immunoprecipitation, RNA interference, gene transfection, qRT-PCR.

MTT assay, measurement of GPX4 activity, labile iron pool assay, evaluation of cell death and cell viability.

Cell death, western blot, siRNA, qRT-PCR, microarray, immunofluorescence staining.

Cell viability, qRT-PCR, western blotting, GSH assay, GPx4 activity assay, tumor xenograft model.

Cell transfection, cell viability, GSH assay, lipid ROS assay.

Cell viability, lipid peroxidation, iron, GSH and ROS assays, western blot, RT-PCR, RNA-seq.

Cell viability, cell death, qRT-PCR, western blot, lipid peroxidation detection, shRNA.

Western blot, immunohistochemistry, lentivirus infection, colony-forming, RT-qPCR, CCK-8, transwell.

Cell viability, western blot, qRT-PCR, lipid peroxidation assay, glutathione assay.

RT-qPCR, cell viability.

RNA-seq, RT-qPCR.

RNA silencing, RT-qPCR.

RNA-seq.

RNA-seq.
RNA-seq
Western blot
Gene trap insertion
Gene trap insertion
Gene trap insertion
Western blotting
Gene expression analysis
Western blot
Immunoblotting, q-PCR
Western blot, Q-PCR
Western blot, Q-PCR
LDH assay, immunoblot, RNAi, CCK-8
LDH assay, immunoblot, RNAi, CCK-8
ChIP analysis, RT-qPCR
RT-qPCR
RT-qPCR
RT-qPCR
RT-qPCR
RT-qPCR
Western blot, real-time PCR, cell viability assay, siRNA, GSH assay kit
Western blot, mass spectrometry, cell viability assay, gene overexpression
Western blot, mass spectrometry, cell viability assay, gene overexpression
Western blot, mass spectrometry, cell viability assay, gene overexpression
ELISA, western blot, RNAi
RNA pulldown, mass spectrometry, qRT-PCR, gene overexpression, gene knockdown, western
Tandem mass tags, RNA-seq, DNase-seq, qPCR, Western blot, IHC
Tandem mass tags, RNA-seq, DNase-seq, qPCR, Western blot, IHC
Tandem mass tags, RNA-seq, DNase-seq, qPCR, Western blot, IHC
Immunohistochemistry, immunofluorescence, western blot, qPCR, metabolites examination, Cl
Tandem mass tags, RNA-seq, DNase-seq, qPCR, Western blot, IHC
Tandem mass tags, RNA-seq, DNase-seq, qPCR, Western blot, IHC
Tandem mass tags, RNA-seq, DNase-seq, qPCR, Western blot, IHC
Immunohistochemistry, immunofluorescence, western blot, qPCR, metabolites examination, Cl
Cell death, cell viability, lipid peroxidation assay, RT-qPCR
Mass spectrometry, siRNA, western blot
RT-qPCR, western blot, siRNA, cell viability, lipid peroxidation assay
qRT-PCR, western blot, lentiviral infection, CellTiter-Glo luminescence assay
qRT-PCR, western blot, lentiviral infection, CellTiter-Glo luminescence assay
Cell viability, western blot, RNA-seq, GSH assay, qRT-PCR, immunofluorescence imaging
Western blot, siRNA, flow cytometry, cell viability, RT-PCR
GSH assay, MDA measurement, western blot, immunohistochemistry, microarray, RT-qPCR, Ial
RT-qPCR, siRNA, gene transfection, cell viability
Affinity-based chemoproteomics, western blotting, and RNAi
RNA-seq, glutamate release assay, cell growth, flow cytometry
RNA-seq, glutamate release assay, cell growth, flow cytometry
RNA-seq, glutamate release assay, cell growth, flow cytometry
RNA interference, cell viability assay, oxidative stress measurement
RNAi, RT-qPCR, western blot, cell viability
RNAi, RT-qPCR, western blot, cell viability
Cell Viability Analysis, western blot, RNAi, qRT-PCR
Immunoprecipitation assay, shRNA knockdown, iron assay, lipid peroxidation assay, glutathione
qRT-PCR, RNA interference
qRT-PCR, RNA interaction
qRT-PCR, RNA interference
shRNA, GSH level measurement, cell death test
RNA interference, cell viability assay, colony formation assay, western blot, qRT-PCR, glutathiono Western blot, densitometry quantification, siRNA, gene transfection, cell death test
Cytotoxicity assays, western blot, p-PCR, RNAi
Cell viability assay, western blot, shRNA, gene transfection
CCK8 cell viability assay, clonogenic cell survival assay, western blot, q-PCR, RNAi
RNAi, live-cell imaging, cell viability, qPCR, western blot
Plate-colony formation assay; measurement of total ROS, Lipid ROS, and intracellular iron shRNA, RT-qPCR, MTT assay, total iron detection, lipid ROS detection
shRNA, RT-qPCR, MTT assay, total iron detection, lipid ROS detection
Immunoblotting, RNAi, qPCR, western blot, cell viability
Immunoblotting, RNAi, qPCR, western blot, cell viability
Cell death assessment
RNAi, cell viability assay, flow cytometry
siRNA, cell death quantification
CRISPR, shRNA, immunoblotting, cell-cycle profile, cell death quantification
Immunoblotting, luciferase reporter assay, qRT-PCR, cell viability assay, colony formation assay Western blot, cell viability assay
CRISPR/Cas9, sgRNA, cell viability assay, immunoblotting, qPCR,
Cell viability and death assay, GSH and ROS levels and lipid peroxidation assays, RNAi, gene transfection
Immunoblotting, luciferase reporter assay, qPCR, cell viability assay, MDA assay, iron assay, glutathione
Immunoblotting, luciferase reporter assay, qPCR, cell viability assay, MDA assay, iron assay, glutathione
Cell viability, western blotting, LC/ESI-MS/MS, flow cytometry, xenograft mice
Cell viability, cell cycle, ROS determination, western blot, immunofluorescence, ectopic expression
Dead cell count, gene knockout, confocal imaging, thin-layer chromatography, BODIPY 493/5
CRISPR/Cas9, RNAi, cell death, western blot, qRT-PCR
Western blot, siRNA, cell death
qRT-PCR, MTT assay, colony-formation assay, lipid ROS assays, iron assay, immunoblotting
Cell proliferation assay, migration and invasion assays, RT-PCR, western blot, immunohistochemistry
Western blot, flow cytometry, SRB assay, gene transfection, shRNA, LOOH quantification
Lentivirus transduction, CCK-8 assay, DYE670 staining assay, ROS staining assay, RT-qPCR, we MTT assay, RT-PCR, luciferase assay, immunoblot, siRNA, Lipid peroxidation assay, GSH measurement
Cell death, cell viability, lipid peroxidation, immunoblotting, CRISPR/Cas9, ChIP assay, qRT-PCR Cytotoxicity assays, western blot, immunoprecipitation, RNA interference, gene transfection, q DNA microarray, western blot, immunoprecipitation, RNA interference, gene transfection, q
Immunofluorescence, western blotting, immunohistochemistry, cell viability, colony formation, qRT-PCR, western blot, cell viability assay, siRNA, ROS detection
Cell viability and clonogenic survival assay, immunofluorescence, western blot, RNAi, gene transfection
Cell proliferation and clonogenic assay, cell survival analysis, xenografts tumor, RNA-seq, RT-qPCR
Expression cloning, cell death, cell viability, LDH assay, western blot, LC-MS, NADH consumption
Cell viability, western blot, ROS induction, glutathione assay, lipid peroxidation assay
Cell viability, lipid peroxidation, iron, GSH and ROS assays, western blot, RT-PCR, RNA-seq
RNA-seq, western blot, qPCR, siRNA, cell count, cell death, iron assay
RNAi, western blot, iron, malondialdehyde and cytotoxicity assays
RNAi, western blot, iron, malondialdehyde and cytotoxicity assays
Immunofluorescence, western blot, ROS detection
CRISPR activation screening, qRT-PCR, cell viability, cell counts, western blot
Table S3. Biological information of ferroptosis-associated genes (human genes)
Test setting
NRAS mutant HT-1080 fibrosarcoma cells; KRAS mutant Calu-1 non small cell lung cancer cell
NRAS mutant HT-1080 fibrosarcoma cells; KRAS mutant Calu-1 non small cell lung cancer cell
NRAS mutant HT-1080 fibrosarcoma cells; KRAS mutant Calu-1 non small cell lung cancer cell
KRAS mutant Calu-1 non small cell lung cancer cell
KRAS mutant Calu-1 non small cell lung cancer cell
KRAS mutant Calu-1 non small cell lung cancer cell
KRAS mutant Calu-1 non small cell lung cancer cell
KRAS mutant Calu-1 non small cell lung cancer cell
KRAS mutant Calu-1 non small cell lung cancer cell
KRAS mutant Calu-1 non small cell lung cancer cell
KRAS mutant Calu-1 non small cell lung cancer cell
KRAS mutant Calu-1 non small cell lung cancer cell
KRAS mutant Calu-1 non small cell lung cancer cell
KRAS mutant Calu-1 non small cell lung cancer cell
KRAS mutant Calu-1 non small cell lung cancer cell
KRAS mutant Calu-1 non small cell lung cancer cell
KRAS mutant Calu-1 non small cell lung cancer cell
KRAS mutant Calu-1 non small cell lung cancer cell
KRAS mutant Calu-1 non small cell lung cancer cell
KRAS mutant Calu-1 non small cell lung cancer cell
H1299, U2OS and MCF7 cells, mouse embryonic fibroblasts
Chronic myeloid leukemia cell line KBM7
Chronic myeloid leukemia cell line KBM7
RMS13 cells
RMS13 cells
RMS13 cells
HT-1080 fibrosarcoma cells, BJeLR fibroblast cells, Panc1 cells, A673 (Ewing’s sarcoma) and 143B (osteosarcoma)
HepG2, Hepa1-6, Hep3B, and SNU-182 cells
HT-1080 fibrosarcoma cells, mice lung fibroblastic cells
Mouse embryonic fibroblasts, human pancreatic cancer cell lines (PANC1 and PANC2.03), and the human pancreatic carcinoma cells
Human mammary epithelial cells
Human mammary epithelial cells
Human mammary epithelial cells
KP4 pancreatic cancer cells
TP53-/- HCT116 cells, athymic nude mice
H1299, SaoS2, U2OS cells, mouse embryonic fibroblasts
HK2, HAEC and HT22 cells
U2OS or IMR90 cells
Gastric cancer cells AGS, BGC823, athymic nude mice
Gastric cancer cells AGS, BGC823, MKN45, SGC7901, and MGC803
MDA-MB-231, Hs 578T, and HCC 1937 cells
Lung cancer A549, SPCA1, and H522 cells
HCT116 and CX-1 cells
HCT116 and CX-1 cells
Human liver specimens and hepatic stellate cell; C57BL/6 mice; mouse hepatocyte and hepatic stellate cell
HEK-293T, Caki1, 786-O, 769-P, ACHN and NCI-H226 cell lines; RCC4, UMRC2, SLR20, and UMRC6 cell
HAP1, H1299, U-2 OS cells
A549 and SPC-A-1 cells
HK-2 cells
HK-2 cells
HT-1080, A375, B16-F0, ID8 cells, female NSG and C57BL/6 mice
A549, Cal27, HT29 and MG-63 cells, Cx3cr1-Cre mice
HL-60 cell, male NOD/SCID mice
HUVEC cells
HT1080 cells, retinal pigment epithelial cells
MDA-MB-231, RCC4, 293T, and HT-1080 cell lines
Mouse embryonic fibroblasts, NF639 cells, human epithelial tumour cells, human mesothelioma cells, xer
Calu-1, THP1, HT1080, and HL-60 cells, athymic nude mice
HK-2 cells, C57BL/6J mice
RCC4, 786O cells, JAX NOD.CB17-PrkdcSCID-J mice
Cell lines A549, H1975, DMS53, DMS273, KLE, AN3CA, RL95, Hec1A, Ishikawa, MDA-MB-231, MCF-7, Hc
HEK293T, HT-1080 and KYSE-170 cells
Hepatic stellate cells, C57BL/6 mice
HK-2 cells, C57BL/6 mice
Cell lines TE-1, Eca9706, Eca109, KYSE150, and KYSE450, BALB/c athymic nude mice
PANC1, BxPC3 cells
BJeLR cells
HT-1080 and Calu-1 cells
HT-1080 cells
Chronic myeloid leukemia cell line KBM7
Chronic myeloid leukemia cell line KBM7
Chronic myeloid leukemia cell line KBM7
Pancreatic adenocarcinoma cell line Panc-1 cells
Patient PDAC tissues
HepG2, Hepa1-6, Hep3B, and SNU-182 cells
HT1080 cells
PANC1 cells
PANC1 cells
A549 cells
A549 cells
H358, A549 cells
MDA-MB-231, Hs 578T, and HCC 1937 cells
HEK293 cells
HEK293 cells
HEK293 cells
HT1080 and PANC1 cells, mouse embryonic fibroblasts
H358, PC9, SPC-A-1, and A549 cells
HepG2, Bel-7402 cells
SH-SY5Y cells
HEK293T cells
HepG2, Huh7, and Hep3B cells
OE33, STKM2, MKN45 cells
OE33, STKM2, MKN45 cells
Patient-derived fibroblasts
Primary corneal endothelial cells, B4G12 and HT1080 cells
Trophoblasts, preeclampsia model, HTR-8/SVneo and TEV-1 cells
HT-1080 cells
HRAS mutant BJelR-engineered tumor cells, HT-1080 cells, xenograft mouse model (athymic nude mice
DU-145 prostate cancer cells
DU-145 prostate cancer cells
DU-145 prostate cancer cells
HCC cell lines Huh7 and PLC/PRF5; Balb/c nude mice received tumour xenografts derived from HCC cell:
HeLa and U2OS cells, human xenograft mouse tumor derived from HeLa (#CCL-2) cells.
HeLa and U2OS cells, human xenograft mouse tumor derived from HeLa (#CCL-2) cells.
HepG2, Hepa1-6, Hep3B, and SNU-182 cells, C57BL/6 mice
HepG2, Hepa1-6, Hep3B, and SNU-182 cells
HepG2, Hepa1-6, Hep3B, and SNU-182 cells
HepG2, Hepa1-6, Hep3B, and SNU-182 cells
MDA-MB-468, BT-20 cells
HCC cells (HepaG2, Hep3B, and Huh7 cells), nude mice.
MDA MB 231 and SKBr3 cells
HepG2 and Hep3B cells
Pancreatic ductal adenocarcinoma cell lines (PANC1, CFPAC1, MiaPaCa2), nude mice, B6 mice
Pancreatic ductal adenocarcinoma cells (e.g., PANC1, CFPAC1, MiaPaCa2, and Panc2.03)
HCT116, athymic nude mice
Lung cancer H358 and PC9 cells, SCID Mice
A549 cancer cells
A549 cancer cells
MCF-10A and SUM-159 cells
MCF-10A and SUM-159 cells
IMR90 cells
MDA-MB-231 cells, NOD.CB17 Scid/J mice
ME-180 cells
HT-1080 cells
Melanoma cell lines A375 and G-361, C57BL/6 mice
HT1080 cells
UOK262, HT1080, HK2, A498 cells
Head and neck cancer cells
A375 and G-361 cells
A375 and G-361 cells
A375 and G-361 cells
HepG2 cells, female ICR mice
HL60, KG1, THP-1 cells
HEK293, HT-1080 cells
H1299, SK-N-BE(2)C, T24, UM-UC-.3, SW780 cells, nude mice
H1299 cells
A549 and SPC-A-1 cells
MDA-MB-231, Hs578T, H1299, A549 and MCF-10A cells, female athymic BALB/c nude mice
H1299 cells
HUVEC cells
HepG2 and AML-12 cell lines, mouse embryonic fibroblasts cells, ICR mice
Mouse embryonic fibroblasts, NF639 cells, human epithelial tumour cells, human mesothelioma cells, xer
Calu-1, THP1, HT1080, and HL-60 cells, athymic nude mice
Calu-1, THP1, HT1080, and HL-60 cells, athymic nude mice
Bel-7402, SMMC-7721 cells, athymic nude mice
Mesothelioma cell lines ACC-Meso-1, NCI-H2373 and NCI-H2052, mesothelial cell line MeT-5A
Hep G2, Huh-7, SMMC-7721 and PLC/PRF/5 cells, nude mice
SGC7901 and MGC803 cells, nude mice
MCF-7, HT1080, Pfa1 cells
ARPE-19, hfrPE cells
Hepatic stellate cells, C57BL/6 mice
MCF10A, Hs578t and MDA-MB-231 cells
PANC1 and HepG2 cells, athymic nude or B6 mice
PANC1 and HepG2 cells, athymic nude or B6 mice
LO2 cells, mice model
HT-1080,786-O, A-498, Caki-1, AU565, DU4475, MCF-7 cells
Pathway	Confidence		
RPL8	+: Ferroptosis Validated		
IREB2	+: Ferroptosis Validated		
ATP5MC3	+: Ferroptosis Validated		
CS	+: Ferroptosis Validated		
EMC2	+: Ferroptosis Validated		
ACSF2	+: Ferroptosis Validated		
NOX1	+: Ferroptosis Deduced		
CYBB	+: Ferroptosis Deduced		
NOX3	+: Ferroptosis Deduced		
NOX4	+: Ferroptosis Deduced		
NOX5	+: Ferroptosis Deduced		
DUOX1	+: Ferroptosis Deduced		
DUOX2	+: Ferroptosis Deduced		
G6PD	+: Ferroptosis Validated		
PGD	+: Ferroptosis Validated		
VDAC2	+: Ferroptosis Validated		
TP53	-:: SLC7A11, SLC7A11 ::+ Cystine, Validated		
ACSL4	+: Ferroptosis Predicted		
LPCAT3	+: Ferroptosis Predicted		
NRAS	+: Ferroptosis Deduced		
KRAS	+: Ferroptosis Deduced		
HRAS	+: Ferroptosis Deduced		
CARPS	-:: Transsulfuration pathway, Tr:: Validated		
KEAP1	-:: NFE2L2, NFE2L2 ::+ Ferroptosis Validated		
HMOX1	+: Lipid ROS, Lipid ROS ::+ Fe Validated		
ATG5	+: Ferroptosis Validated		
ATG7	+: Ferroptosis Validated		
NCOA4	-:: FTH1, FTH1 -:: Ferroptosis Validated		
ALOX12	+: PUFAs peroxidation, PUFAs Validated		
ALOX12B	+: PUFAs peroxidation, PUFAs Validated		
ALOX15	+: PUFAs peroxidation, PUFAs Validated		
ALOX15B	+: PUFAs peroxidation, PUFAs Validated		
ALOX3	+: PUFAs peroxidation, PUFAs Validated		
PHKG2	+: PUFAs peroxidation, PUFAs Validated		
SAT1	+: ALOX15, ALOX15 ::+ Lipid RO:: Validated		
EGFR	-:: MAPK, MAPK -:: Ferroptosis Validated		
MAPK	-:: GPX4, GPX4 ::- Lipid ROS, MA Validated		
ZEB1	+: Lipid ROS, Lipid ROS ::+ Ferro:: Validated		
DPP4	+: Lipid ROS, Lipid ROS ::+ Ferro:: Validated		
CDKN2A	-:: NFE2L2, NFE2L2 ::+ SLC7A:: Validated		
(PEBP1/15LO)	+: Ferroptosis Validated		
SOCS1	+: p53, p53 ::- SLC7A11, SLC7A Validated		
CDO1	-:: GPX4, GPX4 ::- Ferroptosis Validated		
MYB	+: CDO1, CDO1 -:: GPX4, GPX4 ::- Validated		
CHAC1	-:: GSH, GSH -:: Ferroptosis Validated		
LINC00472	+: p53, p53 ::- Ferroptosis Validated		
PRKAA2	+: (BECN1/SLC7A11), (BECN1/Validated		
PRKAA1	+: (BECN1/SLC7A11), (BECN1/ Validated		
ELAVL1	+: Ferroptosis Validated		
BAP1	-:: SLC7A11, SLC7A11 -:: Lipid RC Validated		
ABCCC1	-:: GSH, GSH -:: Ferroptosis Validated		
MIR6852	-:: CBS, CBS -:: Ferroptosis Validated		
ACVR1B	-:: NFE2L2, NFE2L2 -:: Ferropt:: Validated		
TGFBR1	-:: NFE2L2, NFE2L2 -:: Ferropt:: Validated		
Gene	Function and Validation Details		
--------------	---		
IFNG	SLC3A2, SLC7A11, SLC	Ferroptosis	Validated
ANO6	+: Ferroptosis		
HMGB1	+: Ferroptosis		
TNFAIP3	+: ACSL4, ACSL4, Lipid ROS,	Ferroptosis,	Validated
ATF3	-: SLC7A11, SLC7A11	System	Validated
ATM	-: MTF1, MTF1, FTL, MTF1, FTH1, FTL, FTH1	Ferroptosis	Validated
YAP	+: ACSL4, ACSL4	Ferroptosis, Y	Validated
EGLN2	+: HIF1A, HIF1A, Lipid ROS,	Ferroptosis,	Validated
MIOX	+: GPX4, GPX4	Ferroptosis, M	Validated
TAZ	+: EMP1, EMP1	NOX4, NOX4	Validated
MTDH	+: Cysteine, Cystein, Ferroptosis,	Validated	
IDH1	+: GPX4, GPX4	Lipid ROS, Lipid	Validated
YAP	+: ACSL4	Ferroptosis, Y	Validated
EGLN2	+: HIF1A, HIF1A	Lipid ROS,	Validated
MIOX	+: GPX4, GPX4	Ferroptosis, M	Validated
TAZ	+: EMP1, EMP1	NOX4, NOX4	Validated
MTDH	+: Cysteine, Cystein, Ferroptosis,	Validated	
IDH1	+: GPX4, GPX4	Lipid ROS, Lipid	Validated
FBXW7	+: Ferroptosis		
PANX1	+: HMOX1, HMOX1, Ferropt	Validated	
DNAJB6	+: GPX4, GPX4	Ferroptosis, Predicted	
LONP1	+: Nrf2/Keap1 pathway, Nrf2/K	Validated	

Inferred as ferroptotic marker because of change (|delta ct| > 2) in gene expression.
Further study needed to confirm connection to ferroptosis.

Validated

An error may exist in the original article, where the authors wrote "ferritin light chain 1 (FTH1)". According to HGNC, FTH1 is the official symbol for "ferritin heavy chain 1".

Not essential but may play a role in ferroptosis initiation.

SLC7A11 :+ Cystine, Cystine :-: Ferroptosis Validated
GPX4 :: Lipid ROS, Lipid ROS :+: Ferroptosis Validated
AKR1C1 ::: Ferroptosis Validated
AKR1C2 ::: Ferroptosis Validated
AKR1C3 :: Ferroptosis Validated
RB1 :: Ferroptosis Validated
HSPB1 :: Ferroptosis Validated
HSF1 :: Ferroptosis Validated
NFE2L2 :: (NQO1/HMOX1/FTH1), (NQO1/HMOX1/FTH1) :: Ferroptosis Validated
SQSTM1 :: KEAP1, KEAP1 :: NFE2L2, NFE2L2 :: Ferroptosis Validated
NQO1 :: Ferroptosis Validated
HMOX1 :: Ferroptosis Validated
FTH1 :: Ferroptosis Validated
MUC1 :: System Xc-, System Xc- :: G Validated
MT1G :: Ferroptosis Validated
SLC40A1 :: Lipid ROS, Lipid ROS :: Fe Validated
CISD1 :: Mitochondrial lipid ROS, Mito Validated
HSPA5 :: GPX4, GPX4 :: Lipid ROS, Liq Validated
ATF4 :: HSPA5, HSPA5 :: GPX4, GPX4 Validated
TP53 :: Nucleus DPP4, Nucleus DPP4 :: Ferroptosis Validated
HELS :: GLUT1, HELLS :: SCD, HELLS Validated
SCD :: Ferroptosis Validated
FADS2 :: Ferroptosis Validated
SRC :: STAT3, STAT3 :: ACSL4, ACSL4 Validated
STAT3 :: ACSL4, ACSL4 :: Ferroptosis Validated
PML :: Ferroptosis Validated
NFS1 :: TFRC, TFRC :: Ferroptosis Validated
TP63 :: Ferroptosis Validated
CDKN1A :: GSH, GSH :: Lipid ROS, Liq Validated
MIR137 :: SLC1A5, SLC1A5 :: Glutami Validated
VDAC2 :: Ferroptosis Validated
FH :: GPX4, GPX4 :: Ferroptosis Validated
CISD2 :: Lipid ROS, Lipid ROS :: Ferro Validated
MIR9 :: GOT1, GOT1 :: alpha KG, alp Validated
MIR9 :: GOT1, GOT1 :: alpha KG, alp Validated
MIR9 :: GOT1, GOT1 :: alpha KG, alp Validated
CBS :: Ferroptosis Validated
ISCU :: GSH, GSH :: Ferroptosis Validated
ACSL3 :: Ferroptosis Validated
OTUB1 :: SLC7A11, SLC7A11 :: Ferroq Validated
CD44 :: SLC7A11, SLC7A11 :: Ferropt Validated
(LINCO0336/ELAVL1) :: Ferroptosis Validated
BRD4 :: Ferritinophagy, Ferritinophagy Validated
PRDX6 :: Lipid ROS, Lipid ROS :: Ferro Validated
MIR17 :: A20, A20 :: ACSL4, ACSL4 :: Ferro Validated
SES2N2 :: Lipid ROS, Lipid ROS :: Ferro Validated
NF2 :: YAP, YAP :: Ferroptosis Validated
ARNTL :: EGLN2, EGLN2 :: HIF1A, HIF Validated
HIF1A :: Lipid ROS, Lipid ROS :: Ferro Validated
JUN :: GSH, GSH :: Ferroptosis, JUN :: Deduced
CA9 :: Ferroptosis Validated
S1R :: Ferroptosis Validated
PLIN2 :: Ferroptosis Screened
FPS1 :: CoQ10, CoQ10 :: Lipid ROS, L Validated
LAMP2 :: Cysteine, Cysteine :: GSH, C Validated
ZFP36 :: ATG16L1, ATG16L1 :: Ferropt Validated
Prominin2 :: Ferritin-containing MVB, Validated
CHMP5 :: Ferroptosis Validated
CHMP6 :: Ferroptosis Validated
CAV-1 :: xCT, xCT :: GPX4, GPX4 :: F Validated
GCH1 :: Phospholipid, Phospholipid :: Validated
The presented inhibition study is not sufficient to confirm its role in ferroptosis.

The presented inhibition study is not sufficient to confirm its role in ferroptosis.

The presented inhibition study is not sufficient to confirm its role in ferroptosis.

The presented inhibition study is not sufficient to confirm its role in ferroptosis.

The acetylation-defective mutant (p53[3KR]) also retains the ability to induce ferroptosis upon reactive oxygen species (ROS)-induced stress.

Author prediction based on gene function.

Inferred as a promoter because RAS mutant is resistant to ferroptosis.

Inferred as a promoter because RAS mutant is resistant to ferroptosis.

Inferred as a promoter because RAS mutant is resistant to ferroptosis.

Other articles (PMID 26403645, 28515173) suggest it a suppressor.

Activated by p53.

Also triggers apoptosis.
Prostaglandin G/H synthase 2
Dual specificity protein phosphatase 1
Nitric oxide synthase
Neutrophil cytosol factor 2
Metallothionein-3
Polyubiquitin-C
Serum albumin
Thioredoxin reductase 1
Sulfiredoxin-1
Glutathione peroxidase 2
BCL2/adenovirus E1B 19 kDa protein-interacting protein 3
Serine/threonine-protein kinase OSR1
Selenoprotein S
Angiopoietin-related protein 7
Glutathione-specific gamma-glutamylcyclotransferase 1
Cystine/glutamate transporter
DNA damage-inducible transcript 4 protein
Asparagine synthetase [glutamine-hydrolyzing]
TSC22 domain family protein 3
DDIT3 upstream open reading frame protein
Jun dimerization protein 2
Sestrin-2
Neutral amino acid transporter A
Phosphoenolpyruvate carboxykinase [GTP]
Thioredoxin-interacting protein
Very low-density lipoprotein receptor
Alanine aminotransferase 2
Phosphoserine aminotransferase
Leucine rich adaptor protein 1-like
Large neutral amino acids transporter small subunit 1
Homocysteine-responsive endoplasmic reticulum-resident ubiquitin-like domain member 1 protein
X-box-binding protein 1
Cyclic AMP-dependent transcription factor ATF-3
4F2 cell-surface antigen heavy chain
Cystathionine beta-synthase
Cyclic AMP-dependent transcription factor ATF-4
Zinc finger protein 419
Kelch-like protein 24
Tribbles homolog 3
Zinc finger protein 69 homolog B
V-type proton ATPase subunit G 2
Vascular endothelial growth factor A
Growth/differentiation factor 15
Tubulin epsilon chain
Arrestin domain-containing protein 3
CCAAT/enhancer-binding protein gamma
NA
Regulator of G-protein signaling 4
NA
NA
Eukaryotic translation initiation factor 2 subunit 1
Estradiol 17-beta-dehydrogenase 11
1-acyl-sn-glycerol-3-phosphate acyltransferase gamma
Histone-lysine N-methyltransferase SETD1B
Heme oxygenase 1
Serotransferrin
Ferritin light chain
60S ribosomal protein L8
ATP synthase F(0) complex subunit C3
Transferrin receptor protein 1
Transcription factor MafG
Ferritin heavy chain
D(1B) dopamine receptor
D(4) dopamine receptor
Mitogen-activated protein kinase kinase kinase 5
Mitogen-activated protein kinase 14
Solute carrier family 2
NA
Solute carrier family 2
eIF-2-alpha kinase GCN2
Arachidonate 5-lipoxygenase
Arachidonate 12-lipoxygenase
Arachidonate 15-lipoxygenase
High mobility group protein B1
ELAV-like protein 1
Hemoglobin subunit alpha
Nicotinamide N-methyltransferase
Perilipin-4
Hypermethylated in cancer 1 protein
Stathmin
Ribonucleoside-diphosphate reductase subunit M2
Macrophage-capping protein
Hepatocyte nuclear factor 4-alpha
Neuroglobin
14-3-3 protein epsilon
GA-binding protein subunit beta-1
Aurora kinase A
NA
Receptor-interacting serine/threonine-protein kinase 1
Peroxisidoxin-1
NA
NA
NA
NA
NA
Article (PMID 26405158) suggests it a driver.

Promotes ferroptosis via a transcription-dependent mechanism in non-CRC cells.
Protein encoded
60S ribosomal protein L8
Iron-responsive element-binding protein 2
ATP synthase F(0) complex subunit C3
Citrate synthase
ER membrane protein complex subunit 2
Medium-chain acyl-CoA ligase ACSF2
NADPH oxidase 1
Cytochrome b-245 heavy chain
NADPH oxidase 3
NADPH oxidase 4
NADPH oxidase 5
Dual oxidase 1
Dual oxidase 2
Glucose-6-phosphate 1-dehydrogenase
6-phosphogluconate dehydrogenase
Voltage-dependent anion-selective channel protein 2
Cellular tumor antigen p53
Long-chain-fatty-acid--CoA ligase 4
Lysophospholipid acyltransferase 5
GTPase NRas
GTPase KRas
GTPase HRas
Kelch-like ECH-associated protein 1
Heme oxygenase 1
Autophagy protein 5
Ubiquitin-like modifier-activating enzyme ATG7
Nuclear receptor coactivator 4
Arachidonate 12-lipoxygenase
Arachidonate 12-lipoxygenase
Arachidonate 15-lipoxygenase
Arachidonate 15-lipoxygenase B
Hydroperoxide isomerase ALOXE3
Phosphorylase b kinase gamma catalytic chain
Diamine acetyltransferase 1
Epidermal growth factor receptor
Mitogen-activated protein kinase 3
Mitogen-activated protein kinase 1
Zinc finger E-box-binding homeobox 1
Dipeptidyl peptidase 4
Cyclin-dependent kinase inhibitor 2A
Phosphatidylethanolamine-binding protein 1
Suppressor of cytokine signaling 1
Cysteine dioxygenase type 1
Transcriptional activator Myb
Glutathione-specific gamma-glutamylcycotransferase 1
Putative uncharacterized protein encoded by LINC00472
5’-AMP-activated protein kinase catalytic subunit alpha-2
5’-AMP-activated protein kinase catalytic subunit alpha-1
ELAV-like protein 1
Ubiquitin carboxyl-terminal hydrolase BAP1
Multidrug resistance-associated protein 1
NA
Activin receptor type-1B
TGF-beta receptor type-1
Interferon gamma
Anoctamin-6
High mobility group protein B1
Tumor necrosis factor alpha-induced protein 3
Cyclic AMP-dependent transcription factor ATF-3
Serine-protein kinase ATM
YY1-associated protein 1
Egl nine homolog 2
Inositol oxygenase
Tafazzin
Protein LYRIC
Isocitrate dehydrogenase [NADP] cytoplasmic
F-box/WD repeat-containing protein 7
Pannexin-1
DnaJ homolog subfamily B member 6
Lon protease homolog, mitochondrial
P35354 (PGH2_HUMAN)
P28562 (DUS1_HUMAN)
P35228 (NOS2_HUMAN)
P19878 (NCF2_HUMAN)
P25713 (MT3_HUMAN)
P0CG48 (UBC_HUMAN)
P02768 (ALBU_HUMAN)
Q16881 (TRXR1_HUMAN)
Q9BYN0 (SRXN1_HUMAN)
P18283 (GPX2_HUMAN)
Q12983 (BNIP3_HUMAN)
Q95747 (OXSR1_HUMAN)
Q9BQE4 (SELS_HUMAN)
Q43827 (ANGL7_HUMAN)
Q98UX1 (CHAC1_HUMAN)
Q9UPY5 (XCT_HUMAN)
Q9NX09 (DDIT4_HUMAN)
NA
P08243 (ASNS_HUMAN)
Q99576 (T22D3_HUMAN)
P0DPQ6 (DT3UO_HUMAN)
Q8WYK2 (JDP2_HUMAN)
P58004 (SESN2_HUMAN)
P43007 (SATT_HUMAN)
Q16822 (PCKGM_HUMAN)
Q9H3M7 (TXNIP_HUMAN)
P98155 (VLDLR_HUMAN)
Q8TD30 (ALAT2_HUMAN)
Q9Y617 (SERC_HUMAN)
Q8IV03 (LUR1L_HUMAN)
Q01650 (LAT1_HUMAN)
Q15011 (HERP1_HUMAN)
P17861 (XBP1_HUMAN)
P18847 (ATF3_HUMAN)
P08195 (4F2_HUMAN)
P35520 (CBS_HUMAN)
P18848 (ATF4_HUMAN)
Q96HQ0 (ZN419_HUMAN)
Q6TFL4 (KLH24_HUMAN)
Q96RU7 (TRIB3_HUMAN)
Q9UIJ9 (ZF69B_HUMAN)
O95670 (VATG2_HUMAN)
Gene ID

P15692
Q99988
Q9UTJ0
Q96867
P53567
NA
P49798
NA
NA
P05198
Q8NBQ5
Q9NRZ7
Q9UP56
P09601
P02787
P02792
P62917
P48201
P02786
O15525
P02794
P21918
P21917
Q99683
Q16539
P11166
P11169
Q9UGQ3
Q9NY64
Q8TD20
NA
Q8TDB8
Q9P2K8
P09917
P18054
P16050
P09429
Q15717
P69905
P40261
Q96Q06
Q14526
P16949
P31350
P40121
P41235
Q9NPG2
P62258
Q06547
Q14965
NA
Q13546
Q06830
NA

Cystine/glutamate transporter
Phospholipid hydroperoxide glutathione peroxidase
Aldo-keto reductase family 1 member C1
Aldo-keto reductase family 1 member C2
Aldo-keto reductase family 1 member C3
Retinoblastoma-associated protein
Heat shock protein beta-1
Heat shock factor protein 1
Nuclear factor erythroid 2-related factor 2
Sequestosome-1
NAD(P)H dehydrogenase [quinone] 1
Heme oxygenase 1
Ferritin heavy chain
Mucin-1
Metallothionein-1G
Solute carrier family 40 member 1
CDGSH iron-sulfur domain-containing protein 1
Endoplasmic reticulum chaperone BiP
Cyclic AMP-dependent transcription factor ATF-4
Cellular tumor antigen p53
Lymphoid-specific helicase
Acyl-CoA desaturase
Acyl-CoA 6-desaturase
Proto-oncogene tyrosine-protein kinase Src
Signal transducer and activator of transcription 3
Protein PML
Cysteine desulfurase
Tumor protein 63
Cyclin-dependent kinase inhibitor 1
Voltage-dependent anion-selective channel protein 2
Fumarate hydratase
CDGSH iron-sulfur domain-containing protein 2
Iron-sulfur cluster assembly enzyme ISCU
Long-chain-fatty-acid--CoA ligase 3
Ubiquitin thioesterase OTUB1
CD44 antigen
Putative uncharacterized protein encoded by LINC00336
Peroxisiredoxin-6
Sestrin-2
Merlin
Aryl hydrocarbon receptor nuclear translocator-like protein 1
Hypoxia-inducible factor 1-alpha
Transcription factor AP-1
Carbonic anhydrase 9
Protein lifeguard 4
Perilipin-2
Apoptosis-inducing factor 2
Lysosome-associated membrane glycoprotein 2
mRNA decay activator protein ZFP36
Prominin-2
Charged multivesicular body protein 5
Charged multivesicular body protein 6
Caveolin-1
GTP cyclohydrolase 1
UniProtKB	PMID	Remark
P62917 (RL8_HUMAN)	22632970	_NA_
P48200 (IREB2_HUMAN)	22632970	_NA_
P48201 (AT5G3_HUMAN)	22632970	ATP5G3 in article
O75390 (CISY_HUMAN)	22632970	_NA_
Q15006 (EMG2_HUMAN)	22632970	TTC35 in article
Q96CM8 (ACSF2_HUMAN)	22632970	_NA_
Q9Y558 (NOX1_HUMAN)	22632970	_NA_
P04839 (CY24B_HUMAN)	22632970	NOX2 in article
Q9HBY0 (NOX3_HUMAN)	22632970	_NA_
Q9NP5H5 (NOX4_HUMAN)	22632970	_NA_
Q96PH1 (NOX5_HUMAN)	22632970	_NA_
P01111 (RASN_HUMAN)	26157704	_NA_
P01116 (RASK_HUMAN)	26157704	_NA_
P01112 (RASH_HUMAN)	26157704	_NA_
P49589 (SYCC_HUMAN)	26184909	CARS in article
Q14145 (KEAP1_HUMAN)	26403645	_NA_
P09601 (HMOX1_HUMAN)	26405158	HO-1 in article
Q9H1Y0 (ATG5_HUMAN)	27245739	_NA_
Q95352 (ATG7_HUMAN)	27245739	_NA_
Q13772 (NCOA4_HUMAN)	27245739	_NA_
P18054 (LOX12_HUMAN)	27506793	_NA_
O75342 (LX12B_HUMAN)	27506793	_NA_
P16050 (LOX15_HUMAN)	27506793	_NA_
O15296 (LX15B_HUMAN)	27506793	_NA_
Q9BYJ1 (LOXE3_HUMAN)	27506793	_NA_
P15735 (PHKG2_HUMAN)	27506793	_NA_
P21673 (SAT1_HUMAN)	27698118	_NA_
P00533 (EGFR_HUMAN)	28297659	_NA_
P27361 (MK03_HUMAN)	28297659	ERK1 in article
P28482 (MK01_HUMAN)	28297659	ERK2 in article
P37275 (ZEB1_HUMAN)	28678785	_NA_
P27487 (DPP4_HUMAN)	28813679	_NA_
P42771 (CDN2A_HUMAN)	28985506	ARF in article
P30086 (PEBP1_HUMAN)	29053969	_NA_
Q15524 (SOC51_HUMAN)	29081404	_NA_
Q16878 (CDO1_HUMAN)	29144989	_NA_
P10242 (MYB_HUMAN)	29144989	_NA_
Q98UX1 (CHAC1_HUMAN)	29383104	_NA_
Q9H8W2 (CF155_HUMAN)	2958351	P53RRA in article
P54646 (AAPK2_HUMAN)	30057310	PRKAA in article
Q13131 (AAPK1_HUMAN)	30057310	AMPK alpha in article
Q15717 (ELAV1_HUMAN)	30081711	_NA_
Q92560 (BAP1_HUMAN)	30202049	_NA_
P33527 (MRP1_HUMAN)	30726737	MRP1 in article
P36896 (ACV1B_HUMAN)	30804470	ALK4 in article
P36897 (TGFR1_HUMAN)	30804470	ALK5 in article
Gene ID	HGNC ID	Description
-------------	---------	--
P01579	31043744	IFNgamma in article
Q4KMQ2	31060306	_NA_
P09429	31105999	_NA_
P21580	31160087	Zinc lipoprotein A20 in article
P18847	31273299	_NA_
Q13315	31320750	_NA_
Q9H869	31341276	YAP in article
Q96KS0	31355331	_NA_
Q9UGB7	31437128	_NA_
Q16635	31484063	_NA_
Q86UE4	31527591	_NA_
O75874	31591388	_NA_
Q969H0	31679460	_NA_
Q96RD7	31694915	_NA_
O75190	31701262	_NA_
P36776	31822343	_NA_

24439385 May promote ferroptosis. marker
24439385 SELS in article. May promote marker
24439385 May promote ferroptosis. marker
24844246 _NA_ marker
24844246 May inhibit ferroptosis. marker
24844246 May promote ferroptosis. marker
24844246 Not found in HGNC. May prc marker
24844246 May promote ferroptosis. marker
24844246 C9ORF150 in article. May prom marker
24844246 May promote ferroptosis. marker
24844246 ZNF643 in article. May prom marker
24844246 May promote ferroptosis. marker
May promote ferroptosis.
May inhibit ferroptosis.
MUTED-TXNDC5 in article. May inhibit ferroptosis.
Not found in HGNC. May inhibit ferroptosis.
eIF2alpha in article. May promote ferroptosis.
HO-1 in article. May promote ferroptosis.
ATP5G3 in article. May promote ferroptosis.
GLUT1 in article. May inhibit ferroptosis.
GLUT3 in article. May inhibit ferroptosis.
GLUT6 in article. May inhibit ferroptosis.
GLUT8 in article. May inhibit ferroptosis.
GLUT12 in article. May inhibit ferroptosis.
Not found in HGNC. May inhibit ferroptosis.
GLUT14 in article. May inhibit ferroptosis.
GCN2 in article. May promote ferroptosis.
5-LOX in article
p12-LOX in article
15-LOX-1 in article
Q9UPY5 (XCT_HUMAN)
P36969 (GPX4_HUMAN)
Q04828 (AK1C1_HUMAN)
P52895 (AK1C2_HUMAN)
Protein ID	Accession	Description
P42330	(AK1C3_HUMAN)	24844246
P06400	(RB_HUMAN)	25444922
P04792	(HSPB1_HUMAN)	25728673
Q00613	(HSF1_HUMAN)	25728673
Q16236	(NF2L2_HUMAN)	26043645 NRF2 in article
Q13501	(SQSTM_HUMAN)	26043645 p62 in article.
P15559	(NQO1_HUMAN)	26043645
P09601	(HMOX1_HUMAN)	26043645
P02794	(FRIH_HUMAN)	26930718
P15941	(MUC1_HUMAN)	26930718
P13640	(MT1G_HUMAN)	27015352 MT-1G in article
Q9NP59	(S40A1_HUMAN)	27441659 Ferroportin-1 (FPN) in article
Q9NZ45	(CISD1_HUMAN)	27510639
P11021	(BIP_HUMAN)	28130223
P18848	(ATF4_HUMAN)	28130223
P04637	(P53_HUMAN)	28813679
Q9NRZ9	(HELLS_HUMAN)	28900510 LSH in article
O00767	(ACOD_HUMAN)	28900510 SCD1 in article
O95864	(FADS2_HUMAN)	28900510
P12931	(SRC_HUMAN)	28972104
P40763	(STAT3_HUMAN)	28972104
P29590	(PML_HUMAN)	29081404
Q9Y697	(NFS1_HUMAN)	29168506
Q9H3D4	(P63_HUMAN)	29212036 Delta Np63 alpha in article
P38936	(CDN1A_HUMAN)	29346757 Encoding p21
NA		29348676
P45880	(VDAC2_HUMAN)	29569437
P07954	(FUMH_HUMAN)	29917289
Q8N5K1	(CISD2_HUMAN)	29928961
NA		_NA_
P35520	(CBS_HUMAN)	30035324 miR-9 in article
Q9H1K1	(ISCU_HUMAN)	30035324 miR-9 in article
O95573	(ACSL3_HUMAN)	30035324 miR-9 in article
Q96FW1	(OTUB1_HUMAN)	30035324 miR-9 in article
P16070	(CD44_HUMAN)	30308739
Q6ZUF6	(NC336_HUMAN)	30988278
O60885	(BRD4_HUMAN)	31038677
P30041	(PRDX6_HUMAN)	31160087 miR-17-92 in article
NA		31323261 Sesn2 in article
P58004	(SESN2_HUMAN)	31341276 Also known as merlin
P35240	(MERL_HUMAN)	31355331
O00327	(BMAL1_HUMAN)	31355331
Q16665	(HIF1A_HUMAN)	31394193 c-Jun in article
P05412	(JUN_HUMAN)	31442913
Q16790	(CAV1_HUMAN)	31507082 S1R in article
Q9HC24	(LFG4_HUMAN)	31520166 Also known as ADRP
Q99541	(PLIN2_HUMAN)	31634899 FSP1 in article
Q9BRQ8	(AIFM2_HUMAN)	31672277
P13473	(LAMP2_HUMAN)	31679460
P26651	(TPP_HUMAN)	31735663 Promin1 in article
Q8N271	(PRM2_HUMAN)	31761326
Q9NZZ3	(CHMP5_HUMAN)	31761326
Q96FZ7	(CHMP6_HUMAN)	31877357 Cav-1 in article
Q03135	(CAV1_HUMAN)	31989025
P30793	(GCH1_HUMAN)	31989025

Gene Reference	Accession	Description
24844246	_NA_	
25444922	_NA_	
25728673	_NA_	
25728673	_NA_	
26043645	NRF2 in article	
26043645	p62 in article.	
26043645	_NA_	
26043645	_NA_	
26930718	_NA_	
27015352	MT-1G in article	
27441659	Ferroportin-1 (FPN) in article	
27510639	_NA_	
28130223	_NA_	
28130223	_NA_	
28813679	_NA_	
28900510	LSH in article	
28900510	SCD1 in article	
28900510	_NA_	
28972104	_NA_	
28972104	_NA_	
29081404	_NA_	
29168506	_NA_	
29212036	Delta Np63 alpha in article	
29346757	Encoding p21	
29348676	_NA_	
29569437	_NA_	
29917289	_NA_	
29928961	_NA_	
30035324	miR-9 in article	
30035324	miR-9 in article	
30308739	_NA_	
30988278	_NA_	
31038677	_NA_	
31160087	miR-17-92 in article	
31323261	Sesn2 in article	
31341276	Also known as merlin	
31355331	_NA_	
31355331	_NA_	
31394193	c-Jun in article	
31442913	_NA_	
31507082	S1R in article	
31520166	Also known as ADRP	
31634899	FSP1 in article	
31672277	_NA_	
31679460	_NA_	
31735663	Promin1 in article	
31761326	_NA_	
31761326	_NA_	
31877357	Cav-1 in article	
31989025	_NA_	
Table S3. Biological information of ferroptosis-associated genes (human genes)

| Subtypes | driver |
cell name	annotation
SMC01.T.AAACCTGCATACGCCG	CC1
SMC01.T.AAACCTGTCGATAT	CC1
SMC01.T.AAACCTGTCCCTTGCA	CC1
SMC01.T.AAACCGGAGGGAAAACA	CC1
SMC01.T.AAACCGGATATGGAAATCC	CC2
SMC01.T.AAACATGTCAGGGGTA	CC1
SMC01.T.AAACAGGTCGAGGCTGA	CC1
SMC01.T.AAACATGTCGAGGCTGA	CC1
Table S4. The annotation of single cells	
SMC03.T.CATGACACATCGATGT CC2	
SMC03.T.CATGCCTAGTGCTGCC CC2	
SMC03.T.CATGCCTTCCCTGTG CC2	
SMC03.T.CATGCCTTCTGCTTG CC2	
SMC03.T.CATGGCGCATCACGTA CC2	
SMC03.T.CATGGCGGTAGGAGTC CC2	
SMC03.T.CATGGCGGTTATCACG CC2	
SMC03.T.CATGGCGTCAAGCCTA CC2	
SMC03.T.CATTATCAGTGGTAGC CC2	
SMC03.T.CATTATCCATAGACTC CC2	
SMC03.T.CATTTCGCAGAATTCCC CC2	
SMC03.T.CATTTCGCGTCCGACGT CC2	
SMC03.T.CCACCTATCGCCTGAG CC2	
SMC03.T.CCACGGACATCTATGG CC2	
SMC03.T.CCACTACAGTTGGCGC CC2	
SMC03.T.CCACTACGTTTGGCGC CC2	
SMC03.T.CCCAGCGAAGTTGTCGT CC2	
SMC03.T.CCATTCGCAGGTCTCG CC2	
SMC03.T.CCCAATCAGTACATGA CC1	
SMC03.T.CCCAATCTCACCATAG CC2	
SMC03.T.CCCAGTTTCATCTACGA CC2	
SMC03.T.CCCAGTTGTCTCTCGT CC2	
SMC03.T.CCCATACCATCCTTGC CC2	
SMC03.T.CCCTCCTAGAGGGCTT CC2	
SMC03.T.CCCTCCTTCCGGCACA CC2	
SMC03.T.CCATCGAAGGGAACGG CC2	
SMC03.T.CCGGTAGGTACTTAGC CC1	
SMC03.T.CCGTACTAGCACAGGT CC2	
SMC03.T.CCGTGGAAGCCACTAT CC1	
SMC03.T.CCGTGGAAGTTACTGAC CC2	
SMC03.T.CCGTTCAAGAAATGG CC1	
SMC03.T.CCGTTCAAGATGAGAG CC2	
SMC03.T.CCGTTCAAGTATGACA CC2	
SMC03.T.CCTAAAGAGTACGACG CC2	
SMC03.T.CCTAAAGCACAGCGTC CC2	
SMC03.T.CCTAAAGTCCGCATCT CC2	
SMC03.T.CCTACACCATACTACG CC1	
SMC03.T.CCTACCACATGCCTTC CC1	
SMC03.T.CCTAGCTGTGGAAAGA CC2	
SMC03.T.CCTATTACAGGCTGAA CC2	
SMC03.T.CCTCAGTAGTCGATAA CC2	
SMC03.T.CCTCTGAAGCTGATAA CC2	
SMC03.T.CCTCTGAGTGTTGGGA CC2	
SMC03.T.CCTCTGATCTAGAGTC CC2	
SMC03.T.CCTTCCCCAGTAGAGC CC2	
SMC03.T.CCTTCGATCTCGTATT CC2	
SMC03.T.CCTTTCTAGAAACCGC CC2	
SMC03.T.CCTTTCTAGAAGAAGC CC2	
SMC03.T.CGGAATGTAGCTAGTCT CC1	
SMC03.T.CGGAATGTCAGCCAGTC CC2	
SMC03.T.CGACCTCAGCCAGAA CC2	
SMC03.T.CGACCTCAGTCCTTC CC2	
SMC03.T.CGACTTCAGACAATAC CC2	
SMC03.T.CGACTTCAGATCCGAG CC2	
SMC03.T.CGACTTCGTTCCATGA CC2	
SMC03.T.CGACTTCTCTCCCTGA CC2	
SMC03.T.CGAGAAGCAATGGTCT CC2	
SMC03.T.CGAGAAGCACATGACT CC2	
SMC03.T.CGAGAAGTCTTTACGT CC2	
SMC03.T.CGAGCACAGGAGGCT CC2	
SMC03.T.CGAGCACTCAAGGTTCA CC2	
SMC03.T.CGATCGGTCACTGATC CC2	
SMC03.T.CGATGTACATAGTAAG CC2	
SMC03.T.CGATGTACATCGGACC CC2	
SMC03.T.CGATGTATCTTTAGGG CC2	
SMC03.T.CGATTGAGTCTTGATG CC2	
SMC03.T.CGATTGATCCTCATTA CC2	
SMC03.T.CGCGAAGATGATCGATA CC2	
SMC03.T.CGCCAAGAGATCGATA CC2	
SMC03.T.CGCGGTAAGATTACCC CC2	
SMC03.T.CGCGGTAAGTGTTTGC CC2	
SMC03.T.CGCGTTTAGGCTAGCA CC2	
SMC03.T.CGCTATCTCACCAGGC CC2	
SMC03.T.CGCTATCTCTGGTTCC CC2	
SMC03.T.CGCTTCAGTAGCGTAG CC2	
SMC03.T.CGCTTCAGTGGCGAAT CC2	
SMC03.T.CGCTTCATCCAAGTAC CC2	
SMC03.T.CGAGACACGTAAGAGAG CC2	
SMC03.T.CGAGACGTGTATTCGTG CC2	
SMC03.T.CGAGACGTGTTCGTCTC CC2	
SMC03.T.CGAGACGTTCCGTAGGC CC2	
SMC03.T.CGAGACTGCATTCTCAT CC2	
SMC03.T.CGAGACTGGTACTCGCG CC2	
SMC03.T.CGAGAGCTTCGTACCGG CC2	
SMC03.T.CGAGAGTCGTGACGGTA CC2	
SMC03.T.CGAGAGTCTCACTTACT CC2	
SMC03.T.CGAGGTACGTAAGGTTCA CC2	
SMC03.T.CGAGTACGTAACACAC CC2	
SMC03.T.CGAGAATCCCAACGG CC1	
SMC03.T.CGTCAGGCAGTAGAGC CC2	
SMC03.T.CGTCCATCACATTTCT CC2	
SMC03.T.CGTGAGCAAGACTAAGT CC2	
SMC03.T.CGTGAGCCACTGTCGG CC2	
SMC03.T.CGGAATGACAGGGT CC2	
SMC03.T.CGTTAATCACAACAC CC2	
SMC03.T.CGTAACGTTAGCTGTA CC1	
SMC03.T.GTCGTAAGTTCGTGAT CC1	
SMC03.T.GTCGTAATCCATGACTG CC2	
SMC03.T.GTCTCGTAGCTTTTG CC2	
SMC03.T.GTCTCGTGTTAAGATG CC2	
SMC03.T.GTCTCGTTCAAGGCTT CC2	
SMC03.T.GTCTCGTTCCGGGTGT CC2	
SMC03.T.GTCTTCGCACGGTAGA CC2	
SMC03.T.GTGAAGGTCACAACGT CC2	
SMC03.T.GTGCAGCAGGGATCTG CC2	
SMC03.T.GTGCAGCCAGACGTAG CC2	
SMC03.T.GTGCAGCCATTAGGCT CC2	
SMC03.T.GTGCATACAGTTCCCT CC2	
SMC03.T.GTGCGGTAGCACACAG CC2	
SMC03.T.GTGCGGTCAGTAGAGC CC1	
SMC03.T.GTGCTTCCAGAGCCAA CC2	
SMC03.T.GTGCTTCCAGCTGTAT CC2	
SMC03.T.GTTAAGCGTAGGCATG CC2	
SMC03.T.GTTCATTAGAAACGAG CC2	
SMC03.T.GTTCGGGAGATATACG CC2	
SMC03.T.GTTCTCGCAGCTCGAC CC1	
SMC03.T.GTTCTCGGTAGCTGCC CC2	
SMC03.T.GTTTCTAAGAAACGCC CC2	
SMC03.T.TAACCCGCAAAGAGC CC2	
SMC03.T.TAACCCGTCGGTGTTA CC2	
SMC03.T.TAAGAGACACTACAGT CC2	
SMC03.T.TAAGCGTAGCTAGTGG CC2	
SMC03.T.TAAGTGCCAATCTACG CC2	
SMC03.T.TAAGTGCTCACTATTC CC2	
SMC03.T.TACACGACAACAGATT CC2	
SMC03.T.TACAGTAGAAACAATC CC2	
SMC03.T.TACAGTAGCAACAGCC CC2	
SMC03.T.TACTTATAGAGTAATC CC2	
SMC03.T.TACGGATAGTGCCATC CC2	
SMC03.T.TACGGGGCATCCTGACT CC2	
SMC03.T.TACGGGTATCCCTGACT CC2	
SMC03.T.TAGACCATCATATCGG CC2	
SMC03.T.TAGAGCTCAATGGAAT CC2	
SMC03.T.TAGCCGGAGGAATCGC CC2	
SMC03.T.TAGTTGGAGCGACGTA CC2	
SMC03.T.TAGTTGGCATGCTAGT CC2	
SMC03.T.TAGTTGGTCAAAGTAG CC1	
SMC03.T.TAGTTGGTCACCGTAA CC2	
SMC03.T.TATCAGGGTGTAATGA CC2	
SMC04.T.TCAGCTCCAGTATCTGC	
SMC04.T.TCGAGGCTCATCGATGC	
SMC04.T.TGCGAGGCGCTTGGTGC	
SMC04.T.TCGCGAGTCGCCCTTG	
SMC04.T.TCGCGAGGTTTGGCGTC	
SMC04.T.TCGGTGTACCAGC	
SMC04.T.TCGTACCAGGACGAAA	
SMC04.T.TCGTACCCATCACGTA	
SMC04.T.TCGTAGATCCACGAAT	
SMC04.T.TCTCATACAGAGCCAA	
SMC04.T.TCTCATAGTGGTCCGT	
SMC04.T.TCTTCGGAGAGCTATA	
SMC04.T.TCTTCGGCATCCGCGA	
SMC04.T.TGAGCATAGACCACGA	
SMC04.T.TGATTTCTCCTC	
SMC04.T.TGCCAAAAGGCGATAC	
SMC04.T.TGCCAAATCCGAACGC	
SMC04.T.TGCCCATTCGTCGTTC	
SMC04.T.TGCGCAGTCGCTTGTC	
SMC04.T.TGCGGGTCATCGATTG	
SMC04.T.TGCTACCGTGTGACGA	
SMC04.T.TGCTGCTCATCATCCC	
SMC04.T.TGGCCAGTCCTTTACA	
SMC04.T.TGGCTGGCAGCTGTTA	
SMC04.T.TGGGAAGAGGACAGCT	
SMC04.T.TGTTCCGAGCTAGTTC	
SMC04.T.TGTTCCGAGTAAGTAC	
SMC05.T.CCACTACCATTGTGCA	
SMC05.T.CCGTACTAGTATGACA	
SMC07.T.TAGCCGGTCTGGGCCA CC1	
SMC07.T.TATCTCAGTGAGGCTA CC1	
SMC07.T.TATCTCATCATCTGT CC1	
SMC07.T.TCAACAGTTGGCCTCT CC1	
SMC07.T.TCAACAGAACCAGCCA CC1	
SMC07.T.TCACAGAAGAACACAGA CC1	
SMC07.T.TCAAGCTCCAGGGATTG CC1	
SMC07.T.TCAAGCTCGTTCCAAATG CC1	
SMC07.T.TCAAGCTCTCATGCATG CC1	
SMC07.T.TCAAGGATAGAATTGTG CC1	
SMC07.T.TCAAGGATGTTCAGACT CC1	
SMC07.T.TCAAGGTAAGCACAGGT CC1	
SMC07.T.TCAAGGTAGTGTCGCTG CC1	
SMC07.T.TCCACACAGAATCTCC CC1	
SMC07.T.TCCACACGTATGGTTCC CC1	
SMC07.T.TCCCGAGTATGCTAGGCT CC1	
SMC07.T.TCCCGATCAACGCACC CC1	
SMC07.T.TCCCGATCGACGAGC CC1	
SMC07.T.TCCCGGTCCGAGATG CC1	
SMC07.T.TCCCGGTGCGGGTAA CC1	
SMC07.T.TCCCGGTCTGGCCAA CC1	
SMC07.T.TCCCTAAGCTAGCCC CC2	
SMC07.T.TCCCTAGTAAATACG CC1	
SMC07.T.TCCCTAGTCGTTGTA CC1	
SMC07.T.TCCCTAGTCTCTTTA CC1	
SMC07.T.TCCCTAGTCTTGATG CC1	
SMC07.T.TGCGCAGCAGGCAGTA CC1	
SMC07.T.TGCGCCGTCACAAGG CC1	
SMC07.T.TGCGGGTGTCGCATAT CC1	
SMC07.T.TGCGTGGCACTCTGTC CC1	
SMC07.T.TGCGTGGTCTCATTCA CC1	
SMC07.T.TGAGCCGGTCACAAGG CC1	
SMC07.T.TGCCCATCATGGGACA CC1	
SMC07.T.TGCCCTAAGCTAGCCC CC1	
SMC07.T.TGCCCTAGTAAATACG CC2	
SMC07.T.TGCCCTAGTCGTTGTA CC1	
SMC07.T.TGCCCTAGTCTCTTTA CC1	
SMC07.T.TGCCCTAGTCTTGATG CC1	
SMC07.T.TGACCGCAAGGGGTAA CC1	
SMC07.T.TGACGGCAGATATGGT CC1	
SMC07.T.TGACGGCCAACGCCCAC CC1	
SMC07.T.TGACTACGTCAAGGAG CC1	
SMC07.T.TGACTTTAGGGTATCG CC2	
SMC07.T.TGACTTTGATTAGTG CC1	
SMC07.T.TGAGCCGGTCTGGCCCA CC1	
SMC07.T.TGACGTGGCTCACCACAG CC1	
SMC07.T.TGACGTGGGCTCCTCAG CC1	
SMC07.T.TGACGTGGTCTCTCAG CC1	
SMC07.T.TGACGTGGTCTCTGTC CC2	
SMC08.T.GTTCTCGCAGCCTATA CC1	
SMC08.T.GTTCTCGCAGTCAGCC CC1	
SMC08.T.GTTTCTAAGACCTTTG CC1	
SMC08.T.TAAGAGATCGGTGTCG CC1	
SMC08.T.TACCGGACAGAGGCTT CC1	
SMC08.T.TAACGGCCACCCAGTG CC1	
SMC08.T.TACTCATTCTCTGCTG CC1	
SMC08.T.TACTTACTCCAAGTAC CC1	
SMC08.T.TAGAGCTGTTGATTGC CC1	
SMC08.T.TAGGCATAGATGCGAC CC1	
SMC08.T.TAGGCATGTTTGTG CC1	
SMC08.T.TAGTGGTCTCATGCT CC1	
SMC08.T.TATTACCTCAACACCA CC1	
SMC08.T.TCAGGAGCACCCAGTG CC1	
SMC08.T.TTACGTCACTGGCTCA CC1	
SMC08.T.TTATTCCGATCCAGGAG CC1	
SMC08.T.TACTCATTCTCTGCTG CC1	
SMC08.T.TCAGGACAGAGGCTT CC1	
SMC08.T.TCGCGAGCACCTCGTT CC1	
SMC08.T.TCTATTGCAATCCGAT CC1	
SMC08.T.TCAGGACAGAGGCTT CC1	
SMC08.T.TCTTTCCGTACCGCTG CC1	
SMC08.T.TGGACGCCAAGTTCTG CC1	
SMC08.T.TTACGTCACTGGCTCA CC1	
SMC08.T.TTTCGGTTTACTCCCA CC1	
SMC08.T.TGAGCCACAGGGCATGT CC1	
SMC08.T.TGGCGCAAGGGCATGT CC1	
SMC08.T.TGACTTTAGACTGTAA CC1	
SMC08.T.TTCTTCCGCTTCCCATC CC1	
SMC08.T.TCTTATTGCTAGTGACT CC1	
SMC08.T.TGCAGGAACTTGCTCA CC1	
SMC08.T.TTATTCAGCTCCAG CC1	
SMC08.T.TGAGGAATCACCTCGC CC1	
SMC08.T.TGACGGCTGCTGCTG CC1	
SMC08.T.TTGCGCAAGGGCATGT CC1	
SMC08.T.TGGCCAGAGGCACCAC CC1	
SMC08.T.TGGCGTGGTCTGGTATG CC1	
SMC08.T.TGCTACCCACTCTGTC CC1	
SMC08.T.TGCGTGGTCCTGCAGG CC1	
SMC08.T.TGCTACCTCGCTAGCG CC1	
SMC08.T.TGGACGCCAAGTTCTG CC1	
SMC08.T.TGGGAAGGACGCCGT CC1	
SMC08.T.TGGGAAGTCTCAACTT CC1	
SMC08.T.TGGTTAGCATGCTCCT CC1	
SMC09.T.ATAAGAGGTCCGAACC CC1	
SMC09.T.ATAGACCTCCGAACGC CC1	
SMC09.T.ATAGACCTCTTGTTTG CC1	
SMC09.T.ATCACGAAGTACGCCC CC1	
SMC09.T.ATCACGACAGGAATGC CC1	
SMC09.T.ATCACGAGTCGGGTCT CC2	
SMC09.T.ATCATCTAGAAGAAGC CC1	
SMC09.T.ATCATCTCAAACTGTC CC1	
SMC09.T.ATCATCTCATATGGTC CC1	
SMC09.T.ATCATCTCATCTCCCA CC1	
SMC09.T.ATCATCTCATGTCCTC CC1	
SMC09.T.ATCATCTGTTTGGGCC CC1	
SMC09.T.ATCATCTTCCACTGGG CC1	
SMC09.T.ATCATGGAAGGCTCC CC2	
SMC09.T.ATCCACCCAAGACGTG CC2	
SMC09.T.ATCCACCCAGCTGTAT CC1	
SMC09.T.ATCCACCGTCAACATC CC1	
SMC09.T.ATCCACCGTGGTCCGT CC2	
SMC09.T.ATCCACCTCCACGCAG CC1	
SMC09.T.ATCCACCTCGATGAGG CC1	
SMC09.T.ATCCGAACACTCGACG CC2	
SMC09.T.ATCCGAATCACCCTCA CC1	
SMC09.T.ATCCGAATCCAGGGCT CC1	
SMC09.T.ATCGAGTCAGTACACT CC1	
SMC09.T.ATCGAGTGTGAGGGAG CC1	
SMC09.T.ATCGAGTGTGTGAATA CC1	
SMC09.T.ATCTACTCAAGAGGCT CC1	
SMC09.T.ATCTACTGTGGTCTCG CC1	
SMC09.T.ATCTGCCAGAGTACCG CC1	
SMC09.T.ATCTGCCGTACATGTC CC2	
SMC09.T.ATGAGGGAGAGTAAGG CC1	
SMC09.T.ATGAGGGAGTACGTAA CC1	
SMC09.T.ATGAGGGAGTGCGATG CC1	
SMC09.T.ATGAGGGCAGCAGTTT CC1	
SMC09.T.ATGAGGGTCCAAGCCG CC1	
SMC09.T.ATGGGAGAGACTTGAA CC1	
SMC09.T.ATGGGAGGTCTCTCGT CC1	
SMC09.T.ATGGGAGGTGGCGAAT CC1	
SMC09.T.ATGGGAGTCATATCGG CC1	
SMC09.T.ATGTGTGAGCAATATG CC1	
SMC09.T.ATGTGTGTCCACGAAT CC1	
SMC09.T.ATTACTCCAGTGAGTG CC1	
SMC09.T.ATTACTCCATTTCACT CC1	
SMC09.T.ATTATCCAGAGCTGCA CC1	
SMC09.T.ATTATCCAGAGCTTCT CC2	
SMC09.T.ATTATCCAGGCAGGTT CC2	
SMC09.T.ATTATCCAGTGCGATG CC1	
SMC09.T.ATTATCCCAGGACCCT CC1	
SMC09.T.ATTATCCTCTGCCCTA CC1	
SMC09.T.GATTCAGCAATGGAAT	CC1
SMC09.T.GATTCAGGCTCTCAACA	CC1
SMC09.T.GATTCAGTTAAGGGCC	CC1
SMC09.T.GCAACTGTATTAGCC	CC1
SMC09.T.GAATCAAGGGCTTCCA	CC1
SMC09.T.GAATCAATACAGCT	CC2
SMC09.T.GAATCACATTGCTT	CC1
SMC09.T.GATCAGGTCTCAACA	CC1
SMC09.T.GATTCAGGTTAAGGGC	CC1
SMC09.T.GCAAACTGTATTAGCC	CC1
SMC09.T.GCAATCAAGCGCTCCA	CC1
SMC09.T.GCAATCACAATACGCT	CC1
SMC09.T.GCAATCACATTTGCTT	CC1
SMC09.T.GCACATAGTCTTTCAT	CC1
SMC09.T.GCACATAGTGCTGCA	CC1
SMC09.T.GCACATAGTCTTTCAT	CC1
SMC09.T.GCACATAGTGCCTGCA	CC1
SMC09.T.GCACTCTAGATGCCTT	CC1
SMC09.T.GCATACACAACTGCT	CC2
SMC09.T.GCATACACACTTTCCTT	CC1
SMC09.T.GCATACCATCTGACTCTTT	CC1
SMC09.T.GCATACCATCAGCTTCCA	CC1
SMC09.T.GCATACCATCCAACGA	CC1
SMC09.T.GCATGTAAGAGTAATC	CC1
SMC09.T.GCATGTAAGGCACATG	CC1
SMC09.T.GCATGTAAGAGGTATG	CC1
SMC09.T.GCATGTAAGGAGTAGA	CC1
SMC09.T.GCATGTAAGAGGAAGT	CC1
SMC09.T.GCATGTAAGGCAGTACG	CC1
SMC09.T.GCATGTAAGGTCATGC	CC1
SMC09.T.GCCAAATGTGAAAGAG	CC1
SMC09.T.GCCAAATGCTCTATG	CC1
SMC09.T.GCCAAATGCTATGATC	CC1
SMC09.T.GCCAAATGCTGCTTCC	CC1
SMC09.T.GCCAAATGCTGCTGCA	CC1
SMC09.T.GCCAAATGTGACTCAG	CC1
SMC09.T.GCCAAATGTGCAAGTC	CC1
SMC09.T.GCCAAATGTGCGGCG	CC1
SMC09.T.GCCAAATGTGCTGTCC	CC1
SMC09.T.GCCAAATGTGCTACAG	CC1
SMC09.T.GCCAAATGTGCTTCGC	CC1
SMC09.T.GCCAAATGTGCTTGTC	CC1
SMC09.T.GCCAAATGTGCTGTA	CC1
SMC09.T.GCCAAATGTGCTTTG	CC1
SMC09.T.GCCAAATGTGCTGGA	CC1
SMC09.T.GCCAAATGTGCTGCG	CC1
SMC09.T.GCCAAATGTGCTGTC	CC1
SMC09.T.GCCAAATGTGCTGCT	CC1
SMC09.T.GCCAAATGTGCTGGA	CC1
SMC09.T.GCCAAATGTGCTGCG	CC1
SMC09.T.GCCAAATGTGCTGTC	CC1
SMC09.T.GCCAAATGTGCTGCT	CC1
SMC09.T.GCCAAATGTGCTGGA	CC1
SMC09.T.GCCAAATGTGCTGCG	CC1
SMC09.T.GCCAAATGTGCTGTC	CC1
SMC09.T.GCCAAATGTGCTGCT	CC1
SMC09.T.GCCAAATGTGCTGGA	CC1
SMC09.T.GCCAAATGTGCTGCG	CC1
SMC09.T.GCCAAATGTGCTGTC	CC1
SMC09.T.GCCAAATGTGCTGCT	CC1
SMC09.T.GCCAAATGTGCTGGA	CC1
SMC09.T.GCCAAATGTGCTGCG	CC1
SMC09.T.GCCAAATGTGCTGTC	CC1
SMC09.T.GCCAAATGTGCTGCT	CC1
SMC10.T.AGACGTTGTCTCATCC CC2	
SMC10.T.AGAGCGACACATTCGA CC2	
SMC10.T.AGAGCGACAGTGACAG CC2	
SMC10.T.AGAGGATGCTAGAAG CC2	
SMC10.T.AGAGTGGCACACATGT CC2	
SMC10.T.AGAGTGGGTATGAAAC CC2	
SMC10.T.AGAGTGGGTCTAACGT CC2	
SMC10.T.AGAGTGGTCTCGGACG CC2	
SMC10.T.AGATTGCAGCTCAACT CC2	
SMC10.T.AGCAGCCGTAATCGTC CC2	
SMC10.T.AGCATACTCAAGGCTT CC2	
SMC10.T.AGCGTCGAGCTCCTTC CC1	
SMC10.T.AGCTCCTGTTGCGTTA CC2	
SMC10.T.AGCTCTGCTACGCTA CC2	
SMC10.T.AGCTTGAAGATGTTAG CC2	
SMC10.T.AGCTTGAGTGGTTTCA CC2	
SMC10.T.AGGGATGCATCATCCC CC2	
SMC10.T.AGGGATGGTCCAGTAT CC2	
SMC10.T.AGGTCATGTAAGTGGC CC2	
SMC10.T.AGTAGTCTCACAGGCC CC2	
SMC10.T.AGTAGTCTCGTAGATC CC2	
SMC10.T.AGTCTTTAGATATGCA CC2	
SMC10.T.AGTCTTTCATGTTCCC CC1	
SMC10.T.AGTGAGGTCTCAACTT CC2	
SMC10.T.AGTGGGATCACAGGCC CC1	
SMC10.T.AGTGTCAAGTCCATAC CC2	
SMC10.T.ATAACGCGTATCGCAT CC2	
SMC10.T.ATAAGAGCAGAGCCAA CC1	
SMC10.T.ATAAGGAGTGCAGGACA CC1	
SMC10.T.ATCCACCGTAGCGTCC CC1	
SMC10.T.ATCCGAAAGTTCCACA CC2	
SMC10.T.ATCCGAATCCCTTGTG CC2	
SMC10.T.ATCTACTAGGACACCA CC2	
SMC10.T.ATCTACTCATCATGACT CC2	
SMC10.T.ATCTGCCAGGGATCTG CC1	
SMC10.T.ATGAGGGGTGTCCTCT CC1	
SMC10.T.ATGCGATCAGGATTGG CC2	
SMC10.T.ATGGGAGCATGTAAGA CC1	
SMC10.T.ATGTGTGCAAGGCTCC CC2	
SMC10.T.ATTACTCAGGGTTCCC CC2	
SMC10.T.ATTAGGACAGTTACCA CC2	
SMC10.T.ATTGGACTCTCTGTCG CC2	
SMC10.T.ATTCTGGTCGGCACT CC2	
SMC10.T.CAACCTCCATCGATGT CC1	
SMC10.T.CAAGAAAAGTTTCCTT CC2	
SMC10.T.CAAGATCTCATGTGGT CC2	
SMC10.T.CACAAACTCCGTTGCC CC2	
SMC10.T.CACACTCCAAGCGATG CC2	
SMC10.T.CACAGGCGTCGCTTTC CC2	
SMC10.T.CACAAGCTCCGCTTTC CC2	
SMC10.T.CACACTCAAGCGATG CC2	
SMC10.T.CACACTCCAAGCGATG CC2	
SMC10.T.CACAGGCGTCGCTTTC CC2	
SMC10.T.CACCAGAGAGTGAGA CC2	
SMC11.T.TACACGAAGCTCCTCT CC1	
SMC11.T.TACAGTCATAAGACAC CC1	
SMC11.T.TACCTATACGTCAACGC CC1	
SMC11.T.TACCTATGTCGCTTCT CC1	
SMC11.T.TACGGGCAGCCTATGT CC1	
SMC11.T.TACGGCCAAATCCGT CC1	
SMC11.T.TACTTACCATCGATTG CC1	
SMC11.T.TAGAGCTAGTAGATGT CC1	
SMC11.T.TAGAGCTAGTGGTAAT CC1	
SMC11.T.TAGCC GGAGTCAAGCG CC1	
SMC11.T.TAGCCGGTCTCCCTGA CC1	
SMC11.T.TACTTACCATCGATTG CC1	
SMC11.T.TACACGAAGCAAGACC CC1	
SMC11.T.TACGGGCAGCCTATGT CC1	
SMC11.T.TACGGCCAAATCCGT CC1	
SMC11.T.TACTTACCATCGATTG CC1	
SMC16.T.AAAGCAACACATTTCT CC1	
SMC16.T.AAAGCAAGTCTTGCAGG CC2	
SMC16.T.AAAGCAAGTGCTCCA CC2	
SMC16.T.AAAGCAAGTTTACTCT CC2	
SMC16.T.AAAGCAATCCACGTTCC CC1	
SMC16.T.AAAGCAATCCGCGGTT CC2	
SMC16.T.AAAGTACCAAGCCCC CC2	
SMC16.T.AAAGTAGTACCTACGAG CC2	
SMC16.T.AAAGTAGGGTACCTACA CC2	
SMC16.T.AAAGTAGTCTCGTAA CC2	
SMC16.T.AAATGCCACCAACTCT CC2	
SMC16.T.AAATGCCCTCGCTGATA CC2	
SMC16.T.AAATGCCCTTTAACCT CC1	
SMC16.T.AAACAGGAGATGCGATAC CC2	
SMC16.T.AAACAGGAGGTGCTTT CC2	
SMC16.T.AAACAGGAGTACGCCC CC2	
SMC16.T.AAACATGCAGGCGGTT CC1	
SMC16.T.AAACATGCAGCTTCGG CC2	
SMC16.T.AAACATGCTCTTCATGTT CC2	
SMC16.T.AAACCATGCACGGTTTA CC2	
SMC16.T.AAACCATGCAGCTTCGG CC2	
SMC16.T.AAACCATGGTCTCGTTC CC1	
SMC16.T.AAACCATGGTCTTCTCG CC2	
SMC16.T.AAACCATGGTTGTGGAG CC1	
SMC16.T.AAACCATGTCGCTGATA CC2	
SMC16.T.AAACCATGTCTGCTGCT CC1	
SMC16.T.AACCGCGAGAAACGAG CC2	
SMC16.T.AACCGCGAGACTCGGA CC2	
SMC16.T.AACCGCGGTACAGTGG CC2	
SMC16.T.AACGTTGAGCATCATC CC2	
SMC16.T.AACGTTGAGCCGTCGT CC2	
SMC16.T.AACGTTGCAAGGTTCT CC1	
SMC16.T.AACGTTGCACTATCTT CC2	
SMC16.T.AACGTTGGTCTCGTCC CC2	
SMC16.T.AACTCCAGAGAGACGAA CC1	
SMC16.T.AACTCCAGAGCATCATC CC2	
SMC16.T.AACTCCAGCACCGCTAG CC1	
SMC16.T.AACTCCAGCATTCGACA CC1	
SMC16.T.AACTCCAGCATACACAC CC2	
SMC16.T.AACTCCAGTACCGGCC CC2	
SMC16.T.AACTCCAGTTCTGTCGTA CC2	
SMC16.T.AACTCCAGTTGCAAGGTTCT CC1	
SMC16.T.AACTCCAGTTGCAGCTAT CC2	
SMC16.T.AACTCCAGTTGCATTCC CC2	
Gene	Sequence
----------	----------------------------------
SMC16.T	ACCAGTAAAGTGCAGTAA
	ACCAGTAAATCTGCA
	ACCAGTACAGACTGCG
	ACCAGTAGTAGAATCGTG
	ACCAGTACAGACGAGATCC
	ACCAGTAGCTTGACGACC
	ACCAGTAGTTCATTTCCCT
	ACCAGTAGAACATGGAT
	ACCAGTAGTCATGAGT
	ACCAGTGGGATAGGCTG
	ACCAGTGAAGATGCTAAG
	ACCAGTAGATCCAAAGCTG
	ACCAGTAAAGTGCAGTAA
	ACCAGTAAATCTGCA
	ACCAGTACAGACTGCG
	ACCAGTAGTAGAATCGTG
	ACCAGTACAGACGAGATCC
	ACCAGTAGCTTGACGACC
	ACCAGTAGTTCATTTCCCT
	ACCAGTAGAACATGGAT
	ACCAGTAGTCATGAGT
	ACCAGTGGGATAGGCTG
	ACCAGTGAAGATGCTAAG
	ACCAGTAGATCCAAAGCTG
	ACCAGTAAAGTGCAGTAA
	ACCAGTAAATCTGCA
	ACCAGTACAGACTGCG
	ACCAGTAGTAGAATCGTG
	ACCAGTACAGACGAGATCC
	ACCAGTAGCTTGACGACC
	ACCAGTAGTTCATTTCCCT
	ACCAGTAGAACATGGAT
	ACCAGTAGTCATGAGT
	ACCAGTGGGATAGGCTG
	ACCAGTGAAGATGCTAAG
	ACCAGTAGATCCAAAGCTG
	ACCAGTAAAGTGCAGTAA
	ACCAGTAAATCTGCA
	ACCAGTACAGACTGCG
	ACCAGTAGTAGAATCGTG
	ACCAGTACAGACGAGATCC
	ACCAGTAGCTTGACGACC
	ACCAGTAGTTCATTTCCCT
	ACCAGTAGAACATGGAT
	ACCAGTAGTCATGAGT
	ACCAGTGGGATAGGCTG
	ACCAGTGAAGATGCTAAG
	ACCAGTAGATCCAAAGCTG
	ACCAGTAAAGTGCAGTAA
	ACCAGTAAATCTGCA
	ACCAGTACAGACTGCG
	ACCAGTAGTAGAATCGTG
	ACCAGTACAGACGAGATCC
	ACCAGTAGCTTGACGACC
SMC16.T.ACGCCAGCACTACAGT CC2	
SMC16.T.ACGCCAGCATACTCCGAT CC1	
SMC16.T.ACGCCAGTTCTTGCTCC CC2	
SMC16.T.ACGCCAGTTCTGCTTT CC2	
SMC16.T.ACGCCAGTCCATGCTC CC2	
SMC16.T.ACGCCGAGAGACTAAGT CC2	
SMC16.T.ACGCCGAGAGATGTAAC CC1	
SMC16.T.ACGCCGAGAGCCTCGTG CC1	
SMC16.T.ACGCCGAGAGTCTCCTC CC1	
SMC16.T.ACGCCGACATGAACCT CC1	
SMC16.T.ACGCCGAGTCGAGTTT CC1	
SMC16.T.ACGCCGATCCACTCCA CC2	
SMC16.T.ACGCCGATCTGAGTGT CC2	
SMC16.T.ACGGAGACACACATGT CC1	
SMC16.T.ACGGAGACAGCTGGCT CC2	
SMC16.T.ACGGAGACATGGGAAC CC2	
SMC16.T.ACGGAGAGTAAAGGAG CC2	
SMC16.T.ACGGAGAGTTGCGTTA CC1	
SMC16.T.ACGGAGATCACTTACT CC1	
SMC16.T.ACGGAGATCTACTTAC CC1	
SMC16.T.ACGGCCAAGGCGACAT CC1	
SMC16.T.ACGGCCAAGTGCTGCC CC1	
SMC16.T.ACGGCCACACTCTGTC CC1	
SMC16.T.ACGGCCACAGACGCCT CC2	
SMC16.T.ACGGCCAGTAAACACA CC1	
SMC16.T.ACGGCCATCAACGAAA CC1	
SMC16.T.ACGGCTAGAGCTGGTT CC2	
SMC16.T.ACGGCTAGTGAACGC CC1	
SMC16.T.ACGGCTCACATCCAA CC2	
SMC16.T.ACGGCTCAGCCTTTC CC1	
SMC16.T.ACGGCTCAGCGTCCA CC2	
SMC16.T.ACGGCTCAGGTCCAC CC1	
SMC16.T.ACGGCTCATGAGCGA CC2	
SMC16.T.ACGGCTGTTCGTGAT CC2	
SMC16.T.ACGGCTTCACCTTAT CC1	
SMC16.T.ACGGCTTCGCGCCAA CC2	
SMC16.T.ACGGCTTCGTCTAT CC1	
SMC16.T.ACGGGCTCTTATTGCTCC CC2	
SMC16.T.ACGGGCTCTTCTTGCAGGT CC2	
SMC16.T.ACGGGCTCAAGAAGGTTT CC2	
SMC16.T.ACGGGCTCAATGAGGT CC1	
SMC16.T.ACGGGCTCAATGAGGT CC1	
SMC16.T.ACGGGCTCAATGAGGT CC1	
SMC16.T.ACGGGCTCAATGAGGT CC1	
SMC16.T.ACGGGCTCAATGAGGT CC1	
SMC16.T.ACGGGTCAAGAAGGTTT CC2	
SMC16.T.ACGGGTCAAGAAGGTTT CC2	
SMC16.T.ACGGGTCAGATATGGT CC1	
SMC16.T.ACGGTGAAGAAGGTTT CC2	
SMC16.T.CGGAGTCAGAGGTTAT CC2	
SMC16.T.CGGAGTCAGTAGGTGC CC2	
SMC16.T.CGGAGTCAGGAAGGC CC1	
SMC16.T.CGGAGTCCTCGCAGGA CC2	
SMC16.T.CGGAGTCGTGCCTTGG CC2	
SMC16.T.CGGAGTCGTTGAGTC CC2	
SMC16.T.CGGAGTCCTCAACTCT CC2	
SMC16.T.CGGAGTCGGATTTGCT CC1	
SMC16.T.CGGAGTCTCCGCGGTA CC2	
SMC16.T.CGGAGTCTCGATGAGG CC2	
SMC16.T.CGGAGTCTCTGCTAAG CC2	
SMC16.T.CGGCTAGAGTTCGCAT CC1	
SMC16.T.CGGCTAGCAAGCGATG CC1	
SMC16.T.CGGCTAGCAATCTGCA CC1	
SMC16.T.CGGCTAGGTCATACTG CC1	
SMC16.T.CGGCTAGGTCATCTGGG CC1	
SMC16.T.CGGCTAGTCCTCCTAG CC2	
SMC16.T.CGGGTCAAGTGCTGCC CC2	
SMC16.T.CGGGTCAAGTGGGCTA CC1	
SMC16.T.CGGGTCAAGTGTACGG CC2	
SMC16.T.CGGGTCAGTCTAAAGA CC2	
SMC16.T.CGGGTCATCTAGAGTC CC1	
SMC16.T.CGGGTCATCTTATCTG CC2	
SMC16.T.CGGTTAAAGAGACTTA CC1	
SMC16.T.CGGTTAAAGCTGCAAG CC2	
SMC16.T.CGGTTAAAGGTAAACT CC2	
SMC16.T.CGGTTAACAGTATAAG CC1	
SMC16.T.CGGTTAACATAAAGGT CC2	
SMC16.T.CGGTTAAGTCGACTGC CC2	
SMC16.T.CGGTTAAGTTGTGGAG CC1	
SMC16.T.CGTAGCGAGAGGTTGC CC1	
SMC16.T.CGTAGCGCAGGAATCG CC1	
SMC16.T.CGTAGCGGTAACGCGA CC2	
SMC16.T.CGTAGCGGTACTTAGC CC1	
SMC16.T.CGTAGCGGTCACCTAA CC2	
SMC16.T.CGTAGGCAGCAGATCG CC1	
SMC16.T.CGTAGGCAGGCTATCT CC1	
SMC16.T.CGTAGGCCATGCAATC CC1	
SMC16.T.CGTAGGCCATCGCTTC CC1	
SMC16.T.CGTAGGCCGTACCGTTA CC2	
SMC16.T.CGTAGGCCGTCTGCTCG CC2	
SMC16.T.CGTAGGCCGTACGGCTA CC2	
SMC16.T.CGTAGGCTCAAGCCTA CC2	
SMC16.T.CGTAGGCTCACTGCTC CC2	
SMC16.T.CGTCACTCAGCGAACA CC1	
SMC16.T.CGTCACTTCATGTCCC CC1	
SMC16.T.CGTCACTTCTATCGCC CC2	
SMC16.T.CGTCAGGAGACTTGAA CC2	
SMC16.T.CGTCAGGAGCGATTCT CC2	
SMC16.T.CGTCAGGTCAAGCCTA CC1	
SMC16.T.CGTCAGTCCTGCCAT CC1	
SMC16.T.CGTCCATAGCTACCGC CC1	
SMC16.T.CGTCCATAGGAGCGAG CC1	
SMC16.T.CGTCCATAGTCCATAC CC2	
SMC16.T.CGTCCATACAGCGCTG CC2	
SMC16.T.CGTCCATACCTATCAC CC2	
SMC16.T.CGTCCATTCAACACTG CC2	
SMC16.T.CGTCCATTCCACGACG CC2	
SMC16.T.CGTCTACAGAGGTGCA CC1	
SMC16.T.CGTCTACAGCTGCTG CC2	
SMC16.T.CGTGAGCCAATGGATA CC2	
SMC16.T.GCTTCCAAGGCATGTG CC1	
SMC16.T.GCTTCCACACGCTGAGA CC2	
SMC16.T.GCTTCCAGCTCGAC CC2	
SMC16.T.GCTTCACTATCGG CC1	
SMC16.T.GCTTGAAGAAACGCC CC1	
SMC16.T.GCTTGAACATCGACGC CC2	
SMC16.T.GCTTGAAGTAGCAAAT CC1	
SMC16.T.GCTTGAAGTGACGCCT CC2	
SMC16.T.GGAAAGCGTGCGCTTG CC1	
SMC16.T.GGAAAGCGTTTACTCT CC2	
SMC16.T.GGAAAGCTCTGCAAGT CC1	
SMC16.T.GGAACTTAGTTCGCGC CC2	
SMC16.T.GGAACTTCAAAGCAAT CC1	
SMC16.T.GGACAAGAGCGATAGC CC1	
SMC16.T.GGACAAGCATGCCTAA CC2	
SMC16.T.GGACAGAAGTGTTGAA CC1	
SMC16.T.GGACAGACAAGGTGTG CC2	
SMC16.T.GGACAGAGTCTCTCTG CC2	
SMC16.T.GGACATTAGGGTCTCC CC2	
SMC16.T.GGACATTAGTCCGGTC CC2	
SMC16.T.GGACATTAGTGAAGTT CC1	
SMC16.T.GGACATTCACTAAGTC CC2	
SMC16.T.GGACATTGCAGGACCT CC2	
SMC16.T.GGACAGACAAAGTGTG CC2	
SMC16.T.GGACAGATCTCTCTG CC2	
SMC16.T.GGACAGTGGCCCTTG CC2	
SMC16.T.GGACGTCTCATCGCTC CC1	
SMC16.T.GGACGTCTCTGGGCA CC2	
SMC16.T.GGAGCAACAGGACCCT CC2	
SMC16.T.GGAGCAAGTCTGGTA CC2	
SMC16.T.GGAGCAATCAACACCA CC2	
SMC16.T.GGAGCAATCCAGCCG CC1	
SMC16.T.GGAGCAATCCCGACTT CC1	
SMC16.T.GGAGCAATCTTTAGTC CC1	
SMC16.T.GGATGTTAGAGTCTGG CC2	
SMC16.T.GGATGTTAGCTCCTCC CC2	
SMC16.T.GGATGTTCAATGAATG CC2	
SMC16.T.GGATGTTCACAACTGT CC2	
SMC16.T.GGATGTTCATGTTCC CC1	
SMC16.T.GGATGTTGTCTGGAGA CC2	
SMC16.T.GGATGTTGTGGTTCC CC2	
SMC16.T.GGTGCGTGTCCGACT CC2	
SMC16.T.GGTGCGTGTCCGCTCT CC1	
SMC16.T.GGTGTTAAGACTACAA CC1	
SMC16.T.GGTGTTAAGCAGCCCC CC2	
SMC16.T.GGTGTTACAAGGCTCTC CC2	
SMC16.T.GGTGTTACACCACGAG CC2	
SMC16.T.GGTGTTACACCACACG CC2	
SMC16.T.GGTGTTACACCACCTG CC2	
SMC16.T.GTAAACTGCAGATCCAT CC2	
SMC16.T.GTAACTGCAGATCCACT CC2	
SMC16.T.GTAACTGCAGATCCACTG CC2	
SMC16.T.GTAACTGCAGATCAGAG CC2	
SMC16.T.GTAACTGCAGATCCGCG CC2	
SMC16.T.GTAACTGCAGATCCGCA CC2	
SMC16.T.GTAACTGCAGATCCGCGG CC2	
SMC16.T.GTAACTGCAGATCCGCGT CC2	
SMC16.T.GTAACTGCAGATCCTGCT CC2	
SMC16.T.GTAACTGCAGATCCTTAT CC2	
SMC16.T.GTAACTGCAGATCCTTATG CC2	
SMC16.T.GTAACTGCAGATCCTTATG CC2	
Sequence	Type
----------	------
SMC16.T.TACCTATTTCATGTCTT	CC1
SMC16.T.TACCTATTCGTCACGG	CC1
SMC16.T.TACCTACACAACGT	CC1
SMC16.T.TACCTTACTTCCGCTC	CC1
SMC16.T.TACCTTAGTAGAGCTG	CC2
SMC16.T.TACCTTAGTAGAGTGC	CC2
SMC16.T.TACGGATAGGATGCGT	CC2
SMC16.T.TACGGATAGTCCCACG	CC1
SMC16.T.TACGGATTCAGCTCGG	CC2
SMC16.T.TACGGATTCAGTTGAC	CC1
SMC16.T.TACGGATTCGAGCCCA	CC2
SMC16.T.TACGGATTCGGTGTCG	CC2
SMC16.T.TACGGGCAGACCGGAT	CC2
SMC16.T.TACGGGCAGTGTTTGC	CC2
SMC16.T.TACGGGCCAAGCGCTC	CC2
SMC16.T.TACGGGCCACATCTTT	CC2
SMC16.T.TACGGGCCAGGAACGT	CC2
SMC16.T.TACGGGCTCATGCATG	CC2
SMC16.T.TACGGGCTCTAACCGA	CC2
SMC16.T.TACGGGCTCTATGTT	CC1
SMC16.T.TACGGGCTCTCTTTC	CC1
SMC16.T.TACGGGCAGACCGGAT	CC2
SMC16.T.TACGGGCTCACATTTC	CC1
SMC16.T.TACGGTACACATTCGA	CC2
SMC16.T.TACGGTAGTAGAAAGG	CC1
SMC16.T.TACGGTATCACTGGGC	CC2
SMC16.T.TACGGTATCTATCT	CC2
SMC16.T.TACGGTATCTCGTTC	CC2
SMC16.T.TACTCATAGAAACGAG	CC2
SMC16.T.TACTCATCAATCTACG	CC2
SMC16.T.TACTCATCACGGCTAC	CC2
SMC16.T.TACTCATGTGAGGGAG	CC2
SMC16.T.TACTCATGTGATAAAC	CC1
SMC16.T.TACTCATGTTGCTCCT	CC2
SMC16.T.TACTCGCAGTGGGATC	CC2
SMC16.T.TACTCGCCAATGAACC	CC2
SMC16.T.TACTCGGTTGGCTTA	CC2
SMC16.T.TACTTACAGGCCTCT	CC1
SMC16.T.TACTTACAGGCTCTTA	CC1
SMC16.T.TACTTACAGGAGGTAA	CC2
SMC16.T.TACTTACAGGAGGAGG	CC2
SMC16.T.TACTTACAGGAGGAGG	CC2
SMC16.T.TACTTACTACCTAT	CC1
SMC16.T.TACTTACTACTAACC	CC1
SMC16.T.TACTTGCAAGTTAAG	CC2
SMC16.T.TACTTGTCACATCTT	CC2
SMC16.T.TACTTGTCAGATCTGT	CC1
SMC16.T.TACTTGTCAGTGAGCC	CC2
SMC16.T.TACTTGTCGGTACA	CC1
SMC16.T.TACTTTCCGTTATCTC	CC1
SMC16.T.TAGACCAACACTGCCC	CC2
SMC16.T.TAGACCATGCCCCGA	CC2
SMC16.T.TAGACCAGTACCTGGA	CC1
SMC16.T.TAGAGCTAGACATAAC	CC2
SMC16.T.TAGAGCTAGGTGGTGA	CC1
SMC16.T.TAGAGCTTTGTTATC	CC1
SMC16.T.TCGAGGCCTTGGAGGTCC1	
SMC16.T.TCGCGAGAGCGGCTTCCC2	
SMC16.T.TCGCGAGGTAGAAAGGCC2	
SMC16.T.TCGCGAGGTCACCCAGCC1	
SMC16.T.TCGCGAGGTCCATCCTCC1	
SMC16.T.TCGCGAGGTCTAACGTCC1	
SMC16.T.TCGCGAGGTGGAAAGACC1	
SMC16.T.TCGCGTTCAATAACGACC1	
SMC16.T.TCGGGACAGGAATGGACC1	
SMC16.T.TCGGGACCAAACTGTCCC2	
SMC16.T.TCGGGACCATAGAAACC1	
SMC16.T.TCGGGACGTTGCGCACCC1	
SMC16.T.TCGGGACTCAGAGCTTCC1	
SMC16.T.TCGGGACTCAGAGGTGCC1	
SMC16.T.TCGGGACTCTGTACGC2	
SMC16.T.TCGGTAAAGTAGTGCC1	
SMC16.T.TCGGTAAAGTTAGC GCC1	
SMC16.T.TCGTAACATAGACTCC2	
SMC16.T.TCGTACCAGACTAAGTCC1	
SMC16.T.TCGTACCAGAGAACAGCC2	
SMC16.T.TCGTACCAGGCCCTTGCC1	
SMC16.T.TCGTACCCAAGAAAGGCC1	
SMC16.T.TCGTACCCACATAACCCC1	
SMC16.T.TCGTACCTCGGCGCATCC1	
SMC16.T.TCGTACCTCGTTAGGCC2	
SMC16.T.TCGTAGAAGAACTGTC2	
SMC16.T.TCGTAGAAGTCATCCGCC2	
SMC16.T.TCGTAGACATGCATGTC2	
SMC16.T.TCGTAGAGTTCAACCC1	
SMC16.T.TCGTAGAGTTTGCGC2	
SMC16.T.TCGTAGATCACCCGAGCC2	
SMC16.T.TCGTAGATCAGCGATTCC1	
SMC16.T.TCGTAGATCTTGAGGCTC2	
SMC16.T.TCTATTGCACCAACCGCC1	
SMC16.T.TCTATTGCACTGTCGGCC2	
SMC16.T.TCTATTGGTAAGGGACC2	
SMC16.T.TCTATTGTCTTAACCTCC1	
SMC16.T.TCTCATAAGTCATCCACCC1	
SMC16.T.TCTCATACACCCAGTGCC1	
SMC16.T.TCTCATACACTGAAGGCC1	
SMC16.T.TCTCATACGTACGTAGACC1	
SMC16.T.TCTCATATCTACTATCC2	
SMC16.T.TCTCTAAAGACTAGATCC2	
SMC16.T.TCTCTAACACAGTCGCC2	
SMC16.T.TCTCTAACATGGAATACC2	
SMC16.T.TCTCTAAGTTTGTGTGCC2	
SMC16.T.TCTCTATGCCTAAGGACC2	
SMC16.T.TCTCATAGTGAGCCAGTCC2	
SMC16.T.TCTCATAGTGGGAGGCC2	
SMC16.T.TCTCATAGTTCGAGGCC2	
SMC16.T.TCTGAGACAATCGGTTCC2	
SMC16.T.TCTGAGACAATGGAGCCC2	
SMC16.T.TCTGAGACACAGCCCACC1	
SMC16.T.TCTGAGACAGTTAACCCC1	
SMC16.T.TCTGAGACATGCTGGGCC1	
SMC16.T.TCTGAGATCCGCGCACC1	
SMC16.T.TCTGAGATCTTGAGACC1	
SMC16.T.TCTGGAACATATACCGCC2	
SMC16.T.TCTGGAACATCCGTGACC1	
SMC19.T.CTCACACGGTTGCGC CC2	
SMC19.T.CTCAGAATGGAAAGA CC1	
SMC19.T.CTCATTATCTCAACTT CC1	
SMC19.T.CTCCTAGTCTGGTCTG CC2	
SMC19.T.CCTTAGTCTCAAGGT CC1	
SMC19.T.CTCGAAACACTTAAGC CC2	
SMC19.T.CTCGAAATCTTTTGCGCC CC1	
SMC19.T.CTCGAAACACTTAAGC CC2	
SMC19.T.CTCGAGGAGGGTTTCT CC2	
SMC19.T.CTCGGAGCAAGCCGTC CC1	
SMC19.T.CTCGGAGCAAGCCGTC CC2	
SMC19.T.GAAACTCAGGCAAAGA CC1	
SMC19.T.GAAACTCAGGCAAAGA CC1	
SMC19.T.GAAACTCAGGCAAAGA CC1	
SMC19.T.GAAACTCAGGCAAAGA CC1	
SMC19.T.GAAACTCAGGCAAAGA CC1	
SMC19.T.GAAACTCAGGCAAAGA CC1	
SMC19.T.GACAGAGGTTCACGGC CC1	
SMC19.T.GACCAATGTAGAAAGG CC1	
SMC19.T.GACCTGGCACGGCCAT CC2	
SMC19.T.GACCTGGCAGGAACGT CC1	
SMC19.T.GACGGCTCAATGGATA CC1	
SMC19.T.GACGGCTCAGCCAGAA CC2	
SMC19.T.GACGGCTCAGCTCGCA CC2	
SMC19.T.GACGGCTTCCGCGCAA CC2	
SMC19.T.GACGTGCAGTTCGCGC CC1	
SMC19.T.GACGTGCGTCGCGTGT CC1	
SMC19.T.GACGTTAGTAAATACG CC2	
SMC19.T.GACGTTAGTTATGCGT CC2	
SMC19.T.GACTAACAGGACTGGT CC2	
SMC19.T.GAGGTGAAGCTAGTTC CC2	
SMC19.T.GAGGTGAGTGACGGTA CC1	
SMC19.T.TCGGGACAGCCACCTG CC1	
SMC19.T.TCGGTATCCCTTTGCA CC1	
SMC19.T.TCTACGTCACCTACA CC2	
SMC19.T.TCTATTGCACTCAGGC CC1	
SMC19.T.TCTATTGTCGGTTAAC CC2	
SMC19.T.TCTCATACACAGACAG CC1	
SMC19.T.TCTCATTGTGTTTGG CC1	
SMC19.T.TCTCCTAGTTCCCTTGCA CC1	
SMC19.T.TCTGACGCTCTGAGGGA CC2	
SMC19.T.TCTGGAATCTGGTGTA CC1	
SMC19.T.TGAAAGAGTTGAGGTG CC2	
SMC19.T.TGACAGTGTATCTCTCT CC2	
SMC19.T.TGAGCCTGAAGGCTA CC1	
SMC19.T.TGGTCMCTGGAC CC1	
SMC19.T.TGGTTCACAGCCCA CC1	
SMC19.T.TGATTCTGCAACAGCC CC1	
SMC19.T.TGTGTATACATGTA CC1	
SMC19.T.TTAGGACAGGGAACGG CC2	
SMC19.T.TTAGGCATCGCTAGCG CC2	
SMC19.T.TTCGAAGCAAGTAATG CC2	
SMC19.T.TTCGAACAGCCCA CC1	
SMC19.T.TTCGGTACCATGTCATTTG CC1	
SMC19.T.TTCGCTCCGAGTCAACC CC1	
SMC19.T.TTCTACACATCGGTTA CC1	
SMC19.T.TTCTTAGCACGTAAGG CC1	
SMC19.T.TTGCCGTAGTTATCGC CC1	
SMC19.T.TTGGAACCAGCTATTG CC1	
SMC19.T.TTGGCAATCATGTAGC CC1	
SMC19.T.TTTGCGCCAAGACACG CC2	
SMC19.T.TTTGCGCTCTGCCAGG CC2	
SMC19.T.TTTGTCAGTTGATTGC CC1	
SMC20.T.AAACGGGGTAGCACGA CC2	
SMC20.T.AAAGATGGTAGACTG CC2	
SMC21.T.AGTGAGGAGGATGCGT	
SMC21.T.AGTGAGGACATGGAGCT	
SMC21.T.AGTGGGAGTCGGCATC	
SMC21.T.AGTGGGATCAACGCTA	
SMC21.T.AGTGGGATCGCGTTTC	
SMC21.T.AGTGGGATCTTGACGA	
SMC21.T.AGTGTCACAACTGGCC	
SMC21.T.AGTGTCACAGCTGTTA	
SMC21.T.AGTGTCAGTGGCAAAC	
SMC21.T.AGTGTCATCAAGATCC	
SMC21.T.AGTGTCATCACCATAG	
SMC21.T.AGTGTCATCACCTTAT	
SMC21.T.AGTTGGTAGGCTAGCA	
SMC21.T.AGTTGGTGTCGAACAG	
SMC21.T.AGTTGGTTCGAGGTAG	
SMC21.T.ATAACGCAGATATGGT	
SMC21.T.ATAACGCAGCTAGGCA	
SMC21.T.ATAACGCCAAGCCATT	
SMC21.T.ATAACGCGTAATCACC	
SMC21.T.ATAAGAGAGAGCCTAG	
SMC21.T.ATAAGAGAGCCCTAAT	
SMC21.T.ATAAGAGCATGTCTCC	
SMC21.T.ATAAGAGTCAAACCGT	
SMC21.T.ATAGACCAGGCTCATT	
SMC21.T.ATAGACCCATGCCTAA	
SMC21.T.ATAGACCTCGGTGTTA	
SMC21.T.ATAGACCTCTGTCTCTG	
SMC21.T.ATCACGACACTAAGTC	
SMC21.T.ATCACGACAGTCGATT	
SMC21.T.ATCACGAGTGCAGTAG	
SMC21.T.ATCACGAGTTCTGTTT	
SMC21.T.ATCATCTAGTCATCCA	
SMC21.T.ATCATCTGTCGTGGCT	
SMC21.T.ATCATCTGTTGCCTCT	
SMC21.T.ATCATCTGTTGTACAC	
SMC21.T.ATCATCTTCGATCCCT	
SMC21.T.ATCATGGAGTACCGGA	
SMC21.T.ATCATGGAGTGCGATG	
SMC21.T.ATCATGGCAGACAGGT	
SMC21.T.ATCATGGCAGTCAGCC	
SMC21.T.ATCATGGTCCACGTGG	
SMC21.T.ATCCACCAGACAAGCC	
SMC21.T.ATCCACCAGAGCTGCA	
SMC21.T.ATCCACCCACGGCGTT	
SMC21.T.ATCCACCCATTCACTT	
SMC21.T.ATCCACCTCCCTTGTG	
SMC21.T.ATCCACCTCCGCGGTA	
SMC21.T.ATCCACCTCTAGAACC	
SMC21.T.ATCCGAAAGATATGCA	
SMC21.T.ATCCGAACAGCCAGAA	
SMC21.T.ATCCGAAGTCTAGTGT	
SMC21.T.ATCGAGTAGACGCAAC	
SMC21.T.ATCGAGTAGATCGATA	
SMC21.T.ATCGAGTAGTGACGATA	
SMC21.T.ATCGAGTATGACGCG	
SMC21.T.ATCGAGTCACTGCAACCT	
SMC21.T.ATCGAGTGATGTTCCGAC	
SMC21.T.CCAGCGATCCATGAACCC1	
SMC21.T.CCATGTCAGACCTTTGCC1	
SMC21.T.CCATGTCAGGTGCTTTGCC1	
SMC21.T.CCATGTCGTGAGCGATCC1	
SMC21.T.CCATTCGAGCTCCCAGCC1	
SMC21.T.CCATTCGAGTTCGCATCC1	
SMC21.T.CCATTCGCAATGCCATCC1	
SMC21.T.CCATTCGCACAGCGTCC1	
SMC21.T.CCATTCGCAGTAACG GCC1	
SMC21.T.CCATTCGCATCCAACCC1	
SMC21.T.CCATTCGGTCTTCTCGCC1	
SMC21.T.CCCAATCCACATCTTTCC1	
SMC21.T.CCCAATCTCTGGTGTC1	
SMC21.T.CCCAGTTAGCTGCGAACC1	
SMC21.T.CCCAGTTAGGGCACTACC1	
SMC21.T.CCCAGTTAGTGTGGCAC1	
SMC21.T.CCCAGTTCACCATGTACC1	
SMC21.T.CCCAGTTGTTGCTCCTC1	
SMC21.T.CCCAGTTTCCCTCAGTC1	
SMC21.T.CCCATACAGACTCGGACC1	
SMC21.T.CCCATACAGTCCGGTACC1	
SMC21.T.CCCATACGTACCGTTACC1	
SMC21.T.CCCATACTCTCGCTTGC1	
SMC21.T.CCCTCCTAGACAGAGACC1	
SMC21.T.CCCTCCTGTCGATTGTC1	
SMC21.T.CCCTCCTGTGATAAGTC1	
SMC21.T.CCCTCCTTCAACGCTACC1	
SMC21.T.CCGGGATAGAGAACAGCC1	
SMC21.T.CCGGGATAGGCTCATTCC1	
SMC21.T.CCGGGATCACCTATCCG1	
SMC21.T.CCGGGATGTCATACTGACC1	
SMC21.T.CCGGGATGTGTGCCTGCC1	
SMC21.T.CCGGTAGAGCTGCAAGCC1	
SMC21.T.CCGGTAGCAACACCTACC1	
SMC21.T.CCGGTAGCATGGGACACC1	
SMC21.T.CCGTGGAAGACAAGGCC1	
SMC21.T.CCGTGGAAGTATCGAACC1	
SMC21.T.CCGTGGACAAGGCTCCC1	
SMC21.T.CCGTGGACATGAAGTACC1	
SMC21.T.CCGTTCAAGTGGCACACC1	
SMC21.T.CCGTTCACACGGACACC1	
SMC21.T.CCGTTCACATCCGTCACC1	
SMC21.T.CCGTTCAGTTCACCCGACC1	
SMC21.T.CCTAAAGAGGTCGGATTACC1	
SMC21.T.CCTAAAGGTGCGGTAAACC1	
SMC21.T.CCTAAAGTCGTACCGGCACC1	
SMC21.T.CCTACACGTTCTGAACC1	
SMC21.T.CCTACACTCACCTCGACC1	
SMC21.T.CCTACCACATCCCATCACC1	
SMC21.T.CCTACGCTGAGATGGATACC1	
SMC21.T.CCTAGCTAGGATGGAAACC1	
SMC21.T.CCTAGCTCATTCTCTACC1	
SMC22.T.AGGTCCGAGTGAAGAG CC1	
SMC22.T.AGGTCCGCAAGTAGTA CC1	
SMC22.T.AGGTCCGTGAAATCA CC1	
SMC22.T.AGGTCCGTGGGTATG CC1	
SMC22.T.AGGTCCGTCGCAAACT CC1	
SMC22.T.AGTAGTCAGCAGGCTA CC1	
SMC22.T.AGTAGTCAGGAGTTTA CC2	
SMC22.T.AGTAGTCAGTATTGGA CC2	
SMC22.T.AGTAGTCGTTGAACTC CC2	
SMC22.T.AGTAGTCTCAGCTGGC CC1	
SMC22.T.AGTAGTCTCGTCCGTT CC2	
SMC22.T.AGTCTTTGTCGAGATG CC1	
SMC22.T.AGTCTTTTCCGAAAACG CC2	
SMC22.T.AGTGAGGCTCCTCCCA CC1	
SMC22.T.AGTGAGGTATACAGTC CC1	
SMC22.T.AGTGAGGTTCGAGATG CC1	
SMC22.T.AGTGAGGTTCGAGATG CC1	
SMC22.T.AGTGAGGGTATCAGTC CC1	
SMC22.T.AGTGAGGGTTCCATGA CC2	
SMC22.T.AGTGAGGTCGGTTCGG CC2	
SMC22.T.AGTGGGAAGTAGATGT CC1	
SMC22.T.AGTGGGAGTCAGAATA CC1	
SMC22.T.AGTGTCAAGCAGGCTA CC1	
SMC22.T.AGTGTCAAGGAGTTTA CC2	
SMC22.T.AGTGTCAAGTATTGGA CC2	
SMC22.T.AGTGTCAAGTATTGGA CC2	
SMC22.T.AGTGTCAAGTTAACGA CC1	
SMC22.T.AGTGTCACAAACGTGG CC1	
SMC22.T.AGTGTCACACCGATAT CC1	
SMC22.T.AGTGTCACAGGTGGAT CC1	
SMC22.T.AGTGTCACAGTTAACC CC1	
SMC22.T.AGTTGGTAGACTGTAA CC2	
SMC22.T.AGTTGGTAGGGCTTGA CC1	
SMC22.T.AGTTGGTTCAGCTCGG CC1	
SMC22.T.AGTTGGTTCGACCAGC CC2	
SMC22.T.ATAACGCAGGCCCGTT CC2	
SMC22.T.ATAACGCAGTATCGAA CC1	
SMC22.T.ATAACGCGTCAGAAGC CC2	
SMC22.T.ATAAGAGCAGTCTTCC CC2	
SMC22.T.ATAAGAGGTTACCTCTT CC1	
SMC22.T.ATAAGAGGTAAACCTC CC1	
SMC22.T.ATAAGAGGTCTCACCT CC2	
SMC22.T.ATAAGAGGCTCCTACCT CC2	
SMC22.T.ATAAGACTGTTACCA CC1	
SMC22.T.ATAAGACTTTCAGTG CC1	
SMC22.T.ATCCACCTCCTTGGTC CC1	
SMC22.T.ATCCACCTCTAGCACA CC1	
SMC22.T.ATCCACCTCTGTCTCG CC2	
SMC22.T.ATCCGAACATGTTCCC CC2	
SMC22.T.ATCCGAAGTGATAAAC CC1	
SMC22.T.ATCGAGTAGCGTGTCC CC1	
SMC22.T.ATCGAGTAGGCATGGT CC1	
SMC22.T.ATCGAGTCACTTAACG CC1	
SMC22.T.ATCGAGTCAGGGTTAG CC2	
SMC22.T.ATCGAGTCATGCCTAA CC1	
SMC22.T.CTAATGGCATCCCATC CC1	
SMC22.T.CTAATGGGTAAGGAG CC1	
SMC22.T.CTAATGGCTCTGGTTTA CC1	
SMC22.T.TCACACAGATCTCC CC1	
SMC22.T.TCACACAGGTAAGTGC CC2	
SMC22.T.TACACAGGCTCATT CC1	
SMC22.T.TACACCCAGACGCTG CC2	
SMC22.T.TACACCGGTTAAAGGAG CC1	
SMC22.T.TACACCGTTTGGGCC CC2	
SMC22.T.TACACCGTCTCGTTTA CC1	
SMC22.T.TACACCGTGATGTCT CC1	
SMC22.T.TACACCGTTTGGGCC CC2	
SMC22.T.TACACCGTCTCGTTTA CC1	
SMC22.T.TACACCGTCTCGTTTA CC1	
SMC22.T.TACACCGTGATGTCT CC1	
SMC22.T.TACACCGTTTGGGCC CC2	
SMC22.T.TACACCGTGATGTCT CC1	
SMC22.T.TACACCGTGATGTCT CC1	
SMC22.T.TACACCGTTTGGGCC CC2	
SMC22.T.TACACCGTGATGTCT CC1	
SMC22.T.TACACCGTGATGTCT CC1	
SMC22.T.TACACCGTTTGGGCC CC2	
SMC22.T.TAGAGCTTCCAGGGCTCC2	
SMC22.T.TAGCCGGAGCTAAGATCC1	
SMC22.T.TAGCCGGCAGCCACCACC1	
SMC22.T.TAGCCGGTCTCAACACC1	
SMC22.T.TAGCCGGTGTTGCTGATCC1	
SMC22.T.TAGCCGGTCAGAAGGCC1	
SMC22.T.TAGGCATAGGTAGCTGCC1	
SMC22.T.TAGGCATAGTGCGTGACC1	
SMC22.T.TAGGCATTCGGCTTGCC2	
SMC22.T.TAGGCATTCTGCTGCC1	
SMC22.T.TAGTGGTAGGTAAGCTGCC1	
SMC22.T.TAGTGGTGACTCAACCC1	
SMC22.T.TAGTGGTGTTGTTGCC1	
SMC22.T.TAGTGGTTCAGTTGACCC1	
SMC22.T.TAGTTGGAGGATATACCC1	
SMC22.T.TAGTTGGCACAGTCGCC1	
SMC22.T.TAGTTGGTCGAATGCTCC1	
SMC22.T.TATCAGGAGCCACGTCCC1	
SMC22.T.TATCAGGAGCTAGTTCCC1	
SMC22.T.TATCAGGAGGTAGCTGCC2	
SMC22.T.TATCAGGCAGGATTGGCC1	
SMC22.T.TATCAGGGTAAGGGCTCC1	
SMC22.T.TATCAGGTCGAGAGCACC1	
SMC22.T.TATCTCACAAGTTGTCGCC1	
SMC22.T.TATCTCATCAAAAGACC1	
SMC22.T.TATCTCATCAACCAAACC2	
SMC22.T.TATCTCATCCGATATGCC1	
SMC22.T.TATGCCCAGTTGCAGGCC1	
SMC22.T.TATGCCCTCCGATAAACCC1	
SMC22.T.TATTACCCAGCTCGTACC1	
SMC22.T.TATTACGCTCGGAAAACCC1	
SMC22.T.TATTACCTCGGACAAGCC1	
SMC22.T.TCAACGAAGACTCGGACC1	
SMC22.T.TCAACGACAATAGAGTTCC1	
SMC22.T.TCAACGACAGCGTAAGCC1	
SMC22.T.TCAAGATGAGACAAGCCC1	
SMC22.T.TCAAGATGCATTGGGCCC1	
SMC22.T.TCAAGATGGTAGCAAATCC1	
SMC22.T.TCAAGATGGTTGCTCTCC1	
SMC22.T.TCAAGATGTCTCAAGTGC2	
SMC22.T.TCAACAAAGTATCTCGCC1	
SMC22.T.TCAACAAATGTCGATCC1	
SMC22.T.TCAGCAAGTGGGGTATG CC1	
SMC22.T.TCAGCTCAGCTGTCTA CC1	
SMC22.T.TCAGCTCACCCTCGTT CC1	
SMC22.T.TCAGCTCAGCACTT CC1	
SMC22.T.TCAGCTCATACGCAGCC1	
SMC22.T.TCAGCTCCTTTTCAT CC1	
SMC22.T.TCAGCTCGTGCCCGAC CC1	
SMC22.T.TCAGCTCGTGCTTTCCAT CC1	
SMC22.T.TCAGGATAGTCAAGAC CC2	
SMC22.T.TCAGGATAGTCCGTAT CC1	
SMC22.T.TCAGGATAGTCTTGCA CC1	
SMC22.T.TCAGGATCACCAGGCT CC1	
SMC22.T.TCAGGATGTTAGTGGG CC1	
SMC22.T.TCAGGATGTTTCCACC CC1	
SMC22.T.TCAGGTACAGGATTGG CC1	
SMC22.T.TCAGGTACAGTTTACG CC1	
SMC22.T.TCAGGTATCGGATGGA CC2	
SMC22.T.TCATTTGAGGGCTTGA CC2	
SMC22.T.TCATTTGCAAGCTGAG CC2	
SMC22.T.TCATTTGGTCCTGCTT CC1	
SMC22.T.TCATTTGGTGTTCTTT CC1	
SMC22.T.TCCACACAGAAGATTC CC1	
SMC22.T.TCCACACAGCACCGTC CC1	
SMC22.T.TCCACACAGTGCGATG CC1	
SMC22.T.TCCACACCAAAGCGGT CC1	
SMC22.T.TCCACACGTATAGGTA CC2	
SMC22.T.TCCCGATAGATATGCA CC1	
SMC22.T.TCCCGATAGCAAATCA CC2	
SMC22.T.TCCCGATCAAGGTTTC CC1	
SMC22.T.TCCCGATGTATCGCAT CC1	
SMC22.T.TCCCGATGTATGAATG CC1	
SMC22.T.TCCCGATGTCTCACCT CC1	
SMC22.T.TCCCGATGTGCACGAA CC1	
SMC22.T.TCCCGATGTGGCAAAC CC1	
SMC22.T.TCCCGATTCACCACCT CC1	
SMC22.T.TCCCGATTCCAGTAGT CC1	
SMC22.T.TCCCGATTCTGCAAGT CC1	
SMC22.T.TCGAGGCAGGCTATCT CC1	
SMC22.T.TCGAGGCAGTCAAGCG CC1	
SMC22.T.TCGAGGCTCAGCAACT CC2	
SMC22.T.TCGCGAGAGAAGGCCT CC1	
SMC22.T.TCGCGAGAGTCCCACG CC2	
SMC22.T.TCGCGAGCAATAGCGG CC1	
SMC22.T.TCGCGAGCATAGACTC CC2	
SMC22.T.TCGCGAGTCATCATTC CC1	
SMC22.T.TCGCGAGTCCGTACAA CC1	
SMC22.T.TCGCGTTAGGAACTGC CC1	
SMC22.T.TCGCGTTGTTCGAATC CC1	
SMC22.T.TCGCGTTTCCCAAGAT CC1	
SMC22.T.TCGCGTTTCCGCATAA CC1	
SMC22.T.TCGCGTTTCCCTAAATCC1	
SMC22.T.TCGGGACAGACTCGGA CC1	
SMC22.T.TCGGGACAGCAGACTG CC1	
SMC23.T.GGGACCTCAATCGGTT CC1	
SMC23.T.GGGACCTCATACGCTA CC1	
SMC23.T.GGGAGATCAATGGAAT CC1	
SMC23.T.GGGTCTGTCTGGGCCA CC1	
SMC23.T.GGGTTGCGTTGGTAAA CC1	
SMC23.T.GGTATTGAGTACGACG CC1	
SMC23.T.GGTGAAGCATATCTCTT CC1	
SMC23.T.GGTGAAGCATCACCCT CC1	
SMC23.T.GGTGAAGGACGAAA CC1	
SMC23.T.GGTGAAGGATTGGGA CC1	
SMC23.T.GGTGCGTTCCCAACCG CC1	
SMC23.T.GGTGTTAGTGGCAAAC CC1	
SMC23.T.GTAACGTAGGGTGTTG CC2	
SMC23.T.GTAACGTCAAGCGAGT CC1	
SMC23.T.GTAACGTCACAGGCT CC1	
SMC23.T.GTAACGTCAGGGTGAT CC1	
SMC23.T.GTACTCCCATCCCATC CC1	
SMC23.T.GTACTCCCATTAGGCT CC1	
SMC23.T.GTACTTCTCACAAGCTG CC1	
SMC23.T.GTACTTCTCAGC CC1	
SMC23.T.GTCACAAGTCACCTATCC CC1	
SMC23.T.GTCACAAGTCTCGGTTAAA CC1	
SMC23.T.GTCACAACAGACACTTT CC1	
SMC23.T.GTCACCGGAGCTCTAG CC2	
SMC23.T.GTCACGGTACGAGAAGG CC1	
SMC23.T.GTCCTCAAGGGCATTGG CC1	
SMC23.T.GTCCTCAGTGAGACGCT CC1	
SMC23.T.GTCGGGTCATTACCTT CC1	
SMC23.T.GTCGTTACGC CC1	
SMC23.T.GTCCTACTCCCTGAC CC1	
SMC23.T.GTCCTCAGGCT CC1	
SMC23.T.GTCCAAGTGCTGGCT CC1	
SMC23.T.GTGCCAGGAGGATTGA CC1	
SMC23.T.GTGCCACAGATGTAAC CC2	
SMC23.T.GTGCAAGCCACCTCGTT CC1	
SMC23.T.GTGCAATAACAGAAGCTC CC1	
SMC23.T.GTGCACTACCATCCGG CC1	
SMC23.T.GTGCGTAGAGATGAGG CC1	
SMC23.T.GTGCTTCCAGTAACGG CC1	
SMC23.T.GTGCTTCCATTGCAGA CC1	
SMC23.T.GTGCTTCTCACAAGCG CC1	
SMC23.T.GTGCTTCTCCAAACAC CC2	
SMC23.T.GTGCTGAGTACCTC CC1	
SMC23.T.GTTAAAGGCACCGAAGGATA CC1	
SMC23.T.GTTACAGTCCGTCATC CC1	
SMC23.T.GTTACATTGCCAGAGTC CC1	
SMC23.T.GTTCTCAGGACACATG CC1	
SMC23.T.GTTCTATCGAGGTTG CC1	
SMC23.T.TAAACCGGTACCTAAA CC1	
SMC23.T.TAAGAGAAGCCCAAC CC1	
SMC23.T.TAAGAGACAGATGAGC CC1	
SMC23.T.TAAGAGACATTCTGC CC1	
SMC23.T.TAAGTGCAGAGGACA CC1	
SMC23.T.TAAGTGCAGCTCAACT CC2	
SMC23.T.TACACGAGTACACCT CC1	
SMC23.T.TACACGAGTTAGGGTG CC1	
SMC23.T.TACACGATCTTGACGA CC1	
SMC23.T.TACAGTAGCGTGAGT CC1	
SMC23.T.TACAGTCATCCAAC CC1	
SMC23.T.TACCTATCATCACAAC CC1	
SMC23.T.TACGGGCGTGTTGGGA CC1	
SMC23.T.TACGGTAAGGGTATCG CC1	
SMC23.T.TACGGTAGTCCCGACA CC1	
SMC23.T.TACGGTAGTGCGATAG CC1	
SMC23.T.TACTCATCAGTCACTA CC1	
SMC23.T.TACTCATGTACTTCTT CC1	
SMC23.T.TACTTACTCATCAACC CC1	
SMC23.T.TAGAGTCAGTTAACC CC1	
SMC23.T.TAGCCGAGACTCGGA CC1	
SMC23.T.TAGGCATAGATGCAGA CC1	
SMC23.T.TAGGCATAGATGTGTA CC1	
SMC23.T.TAGTGGTCAATGTAAG CC1	
SMC23.T.TAGTGGTGCCTCTTTG CC1	
SMC23.T.TAGTTGCGAGATGGAGC CC1	
SMC23.T.TAGTTGCTCTCTACG CC1	
SMC23.T.TATCAGGAGAAGGTTT CC1	
SMC23.T.TATCAGGCAGGGTACA CC1	
SMC23.T.TATCTCATCCAGTATG CC1	
SMC23.T.TATCTCATCCCATTAT CC1	
SMC23.T.TATGCCCGTCGTTGTA CC1	
SMC23.T.TATGCCCTCCTCAATT CC1	
SMC23.T.TATTACCATATCTCG CC1	
SMC23.T.TCAACGAAGACGACTG CC1	
SMC23.T.TCAACGATCGGTTCGG CC1	
SMC23.T.TCAATCTCAGATCGGA CC1	
SMC23.T.TCACAGTAGATTTCGGA CC1	
SMC23.T.TCAGATGGTGTGACGA CC1	
SMC23.T.TCAGGATTCGAACTGT CC1	
SMC23.T.TCATTACACGGTTTA CC1	
SMC23.T.TCATTTGGTCCGAACC CC1	
SMC23.T.TCATTTGTCAAGGCTT CC1	
SMC23.T.TCCACACGTCTCCACT CC1	
SMC23.T.TCCCGATGTTTGACAC CC1	
SMC23.T.TCAGCTCAGCTGCCCA CC1	
SMC23.T.TCAGGATGTCGAACAG CC1	
SMC23.T.TCAAGTAGCAGACTGT CC1	
SMC23.T.TCTATTGGTGGTCCGT CC2	
SMC23.T.TCTATTGGTTCACGGC CC1	
SMC23.T.TCTATTGTCATCATTC CC1	
SMC23.T.TCTCATAAGATATGGT CC1	
SMC24.T.CGGACTGTCTTTAGTC CC2	
SMC24.T.CGTTAACACCCAGTG CC2	
SMC24.T.CGTTAATCCGAACGC CC2	
SMC24.T.CGTCAGTCCGCTGTGT CC2	
SMC24.T.CGTCAGGCCATCCAG CC2	
SMC24.T.CGTGAAAGCCGCTTTAT CC2	
SMC24.T.CTAGTGAACACCCAGC CC2	
SMC24.T.CTAGTGAAGCGCTTAT CC2	
SMC24.T.CCTAACTCAATAGCAGG CC2	
SMC24.T.CCTCAACAGTCCAGAAGC CC2	
SMC24.T.CCTCGGAGTCAGCTGCC CC2	
SMC24.T.CCTACAGTTGGTAC CC2	
SMC24.T.CCTAGCTCAGTGTGTT CC2	
SMC24.T.CCTTAGCTGCTGCTGTT CC2	
SMC24.T.CCTTAACTCAATAGCAGG CC2	
SMC24.T.CCTTAACTCAATAGCAGG CC2	
SMC24.T.CCTTAACTCAATAGCAGG CC2	
SMC24.T.CCTTAACTCAATAGCAGG CC2	
SMC24.T.CCTTAACTCAATAGCAGG CC2	
SMC24.T.CCTTAACTCAATAGCAGG CC2	
Sequence	CC1
---	---
SMC25.T.GACTGCGAGACGCTTT	
SMC25.T.GACTGCGCAGGGATAG	
SMC25.T.GACTGCGACGCTCCA	
SMC25.T.GAGCAGAGTCTTCGTCC	
SMC25.T.GAGGTGATCTGGCGTG	
SMC25.T.GATCAGTCATGGTCAT	
SMC25.T.GATCAGTGTTACGACT	
SMC25.T.GATCTAGCAGTATGCT	
SMC25.T.GATGAAACATGTCCTC	
SMC25.T.GATGAAATCTGTCTCG	
SMC25.T.GATGAGGAGCCGGTAA	
SMC25.T.GATGAGGTCTGGTTCC	
SMC25.T.GATTCAGGTCGGCACT	
SMC25.T.GATTCAGTTCCATGA	
SMC25.T.GCAAACTCAGGGTGTC	
SMC25.T.GCAATCAAGAGTACCG	
SMC25.T.GCACTCTCAGGGTGTC	
SMC25.T.GCATACATCAATACCG	
SMC25.T.GCATGATAGGAATTAC	
SMC25.T.GCATGATGTCTGGAGA	
SMC25.T.GCATGATGTGTCGCTG	
SMC25.T.GCATGTAGTAGCTTGT	
SMC25.T.GCATGTATCACTTCAT	
SMC25.T.GCATGTATCTTCGAGA	
SMC25.T.GCCAAATCATTTGCCC	
SMC25.T.GCGAGAATCTGGAGGCC	
SMC25.T.GCGCAACAGCTCCCGG	
SMC25.T.GCGCAACAGTTCCACA	
SMC25.T.GGAGCAAAGGCTAGCA	
SMC25.T.GGAGCAAGTTAAGGGC	
SMC25.T.GGATGTTAGCAATATG	
SMC25.T.GGATTACAGTGTACTC	
SMC25.T.GGCAATTCACGCATCG	
SMC25.T.GGCGACTGTGAGCGAT	
SMC25.T.GGCGACTGTTGTGGAG	
SMC25.T.GGCGTGTTCTGAGTGT	
SMC25.T.GGAGCAAGTTAAGGGC	
SMC25.T.GGACAAGTCTCAGGCA	
SMC25.T.GGCAGTTACATGCATG	
SMC25.T.GGATGTTAGCAATATG	
SMC25.T.GGATTACAGTGTACTC	
SMC25.T.GGCCAATTCACGCATCG	
SMC25.T.GGCAGCTGTTGGAG	
SMC25.T.GGCGTGTCTGAGCTG	
----------	------------------
SMC25.T	TTCTACATCTTAGAGC
SMC25.T	TTCTCAAAGGTTCTTA
SMC25.T	TTCTCAACATAGACTC
SMC25.T	TTCTCTGTGTAGATGA
SMC25.T	TTGAACGAGGCGACAT
SMC25.T	TTGAACGGTATGCTTG
SMC25.T	TTGGACGTCAACTGT
SMC25.T	TTGGAGGTCATATGC
SMC25.T	TTTGCGCAGACACGAC
SMC25.T	TTTGCGCCATGGAATA
SMC25.T	TTTGGTGTAGGTAC
SMC25.T	TTTGTCAAGAGGGATA
cell name	annotation
------------------------------	------------
KUL01.T_AAACCTGGGTCTTTCAT	CC2
KUL01.T_AAACGGGTCGGTTAAC	CC2
KUL01.T_AAGAAGTGAGTTAGGAGG	CC1
KUL01.T_AAAGATGCTGGCCCTA	CC2
KUL01.T_AAAGCAAGTAAACACCA	CC2
KUL01.T_AAAGCAATCATCCATCA	CC2
KUL01.T_AAAGTAGTCGTCATC	CC2
KUL01.T_AAATGCAAGTCCGTGTTT	CC2
KUL01.T_AAATGCACTGACTCT	CC2
KUL01.T_AAATGCCCACTCACCAC	CC2
KUL01.T_AAATGGTCAACACCAG	CC2
KUL01.T_AAATGCCCTCCCTCAGT	CC2
KUL01.T_AAACACGTACGTCTCT	CC2
KUL01.T_AAACACGTCACGTCTCT	CC2
KUL01.T_AAACCGGTGTCAGTAGT	CC2
KUL01.T_AACCCGTCAGAGAGCT	CC2
KUL01.T_AACCATGGTCATGCTCAT	CC1
KUL01.T_AACCATCAGTTAAATACG	CC2
KUL01.T_AACCGCGCAATGAATG	CC2
KUL01.T_AACGTTGGTCAAAGAT	CC2
KUL01.T_AACTCAGAGCTACTGC	CC2
KUL01.T_AACTCTTCCCCAATAAC	CC2
KUL01.T_AACTGTCTAGTGAGCAG	CC2
KUL01.T_AACCTTTCCAACGTCCA	CC2
KUL01.T_AACTCGCTTCCATACAT	CC2
KUL01.T_AACTTGCTTCGTTGAAAT	CC2
KUL01.T_AAGACCTAGAGGAGATA	CC2
KUL01.T_AAGACCTAGGGAGTGTT	CC2
KUL01.T_AAGACCTAGTCCATCCA	CC1
KUL01.T_AAGACCTATCCAGGAT	CC2
KUL01.T_AAGGCAGAGCTATCC	CC2
KUL01.T_AAGGCAGTCATCACCAC	CC2
KUL01.T_AAGGCATCTGAGGAGA	CC2
KUL01.T_AAGGTCTAGGGAGTAAGT	CC1
KUL01.T_AAGTCTGCAGCTTTGAGGAT	CC2
KUL01.T_AATCCAGATGCGTGTCC	CC2
KUL01.T_AATCCAGGTGTTTCTCATT	CC2
KUL01.T_AATCCGTTCACCACTC	CC1
KUL01.T_AACACAAAGAAGAAGA	CC2
KUL01.T_AACACGCTACATCATTAT	CC2
KUL01.T_AACACTGAGTAACTCACC	CC2
KUL01.T_AACAGGCCGACCAACCAG	CC2
KUL01.T_AACAGCCGACTCCCGA	CC1
KUL01.T_AACAGCCGCTACCTGC	CC1
KUL01.T_AACAGCTAAAGGAGTGA	CC2
KUL01.T_AACAGCTAGTTGTTTCTTT	CC2
KUL01.T_ACATACGAAGAGCCCT	CC2
KUL01.T_ACATACGAGTCCACCAG	CC2
KUL01.T_ACATACGACTGTTTA	CC2
KUL01.T_ACATACGCTCAGTTC	CC1
KUL01.T_ACATACGTCCTATTCA	CC2
KUL01.T_ACATGCGTCCGGATC	CC1
KUL01.T_ACCTCTGAGATATCCAG	CC2
KUL01.T_ACGTTGGCTCGGATC	CC2
KUL01.T	ACCGTAAGTTACTGAC
----------	------------------
KUL01.T	ACCCTTACACTACAGT
KUL01.T	ACGAGGACACGGATAG
KUL01.T	ACAGATGTAGTCCAGGA
KUL01.T	ACAGATGTGTCTAGTGT
KUL01.T	AGCGACAGGTGTATTA
KUL01.T	ACCTTACAGGTTTCCA
KUL01.T	ACCTTTACACTACAGT
KUL01.T	ACGAGGACACGGATAG
KUL01.T	ACGATGTAGTCCAGGA
KUL01.T	ACGGCTCGTATAGAAA
KUL01.T	AGCCTAAAGCGAGAAA
KUL01.T	ACTATCTCATACACAAC
KUL01.T	ACTATCTTCTTTCTGAC
KUL01.T	ACTGAACAGGCTACGA
KUL01.T	ACTGAACGTGACTACT
KUL01.T	ACTGAGTAAAGTGACG
KUL01.T	ACTGGGCAGTACCCAG
KUL01.T	ACTGAGGCTGACAAA
KUL01.T	ACTGACTGACTGACTG
KUL01.T	AGACTTACCTACCCAG
KUL01.T	AGAGCGACAGGAGAG
KUL01.T	AGATCTGCAATGGAGC
KUL01.T	AGATTGCCACGAAACG
KUL01.T	AGATTGCTGAGAAAACG
KUL01.T	ACGAGCAGGATCGA
KUL01.T	ACGGCTGACTCCTG
KUL01.T_AGCGTCGAGAAGCTGTA CC2	
KUL01.T_AGCTCTCAGACTGGGT CC2	
KUL01.T_AGCTCTCCACACGCTG CC1	
KUL01.T_AGCTCTGTCCGATCC CC1	
KUL01.T_AGCTCTCTGCGTTTC CC2	
KUL01.T_AGCTTGACATTTCAT CC2	
KUL01.T_AGCTTTGATCTCACATT CC2	
KUL01.T_AGGCCACTCAGAGGTG CC2	
KUL01.T_AGGCCACTCCACCCA CC2	
KUL01.T_AGGGAGTCTGGGCTGCA CC2	
KUL01.T_AGGGATGGTGGCTCCA CC2	
KUL01.T_AGGGATGTCTACCAT CC2	
KUL01.T_AGGGTGATCTCACATT CC2	
KUL01.T_AGGTCCGAGACTTTCG CC1	
KUL01.T_AGGTCCGAGTACTTCG CC1	
KUL01.T_AGGTCCGTCGGAGCAA CC2	
KUL01.T_AGGCCACTCAGAGGTG CC2	
KUL01.T_AGGCCACTCCACCCA CC2	
KUL01.T_AGGGAGTCTGGGCTGCA CC2	
KUL01.T_AGGGATGGTGGCTCCA CC2	
KUL01.T_AGGGATGTCTACCAT CC2	
KUL01.T_AGGGTGATCTCACATT CC2	
KUL01.T_AGGTCCGAGACTTTCG CC2	
KUL01.T_AGGTCCGAGTACTTCG CC2	
KUL01.T_AGGTCGAGACTTCGA CC1	
KUL01.T_AGGTCGGAGGCTACA CC2	
KUL01.T_AGTTGGTCAGGGATTG CC2	
KUL01.T_AGTTGGTGTTACGTCA CC2	
KUL01.T_ATAACGCCAGAGTGTG CC2	
KUL01.T_ATAAGAGGTACGCTGC CC2	
KUL01.T_ATAAGAGGTTATCCGA CC1	
KUL01.T_ATAAGAGGTTTGTTGG CC2	
KUL01.T_ATAAGAGTCAAACCGT CC2	
KUL01.T_ATAAGAGTCTCCAACC CC2	
KUL01.T_ATCACGACATTTGCTT CC2	
KUL01.T_ATCACGATCAGTTCGA CC1	
KUL01.T_ATCATCTTCGTGGACAT CC2	
KUL01.T_ATCATGGCACGTGCAC CC2	
KUL01.T_ATCATGGGTACAGTGC CC2	
KUL01.T_ATCATGTCCTCTAGTGA CC1	
KUL01.T_ATCATGGTCCTGCCTT CC2	
KUL01.T_ATCCACCCTATCTCCT CC1	
KUL01.T_ATCCCGATACATACC CC2	
KUL01.T_ATCCGAATCACACTAC CC2	
KUL01.T_ATCCGATTCAAAGACA CC2	
KUL01.T_ATCTACTAGCTCCCAG CC2	
KUL01.T_ATCTACTCAAAACCTAC CC2	
KUL01.T_ATGCGATAGGTACTC CC1	
KUL01.T_ATGCGATTCTCCGATG CC2	
KUL01.T_ATGGGAGTACCTCGGT CC1	
KUL01.T_ATGGGAGTCTACTTAC CC2	
KUL01.T_ATGTGAGGACAGAAG CC2	
KUL01.T_ATTACTCAGTGGATAA CC2	
KUL01.T_ATTATCCACCACCTAG CC2	
KUL01.T_ATTATCCCGGGCCCTA CC2	
KUL01.T_ATTCTACAGCAGCGAA CC2	
KUL01.T_ATTCTACCACCTTGTC CC2	
KUL19.T_ACTTGTTAGTAAGTAC CC1	
KUL19.T_ACTTGTTTCATATGAGA CC1	
KUL19.T_ACTTTTCATCCTACAGA CC1	
KUL19.T_AGAATACAGAGTCTGTC CC1	
KUL19.T_AGACGTTAGCCACTAT CC1	
KUL19.T_AGAGCGAAGGCTATCT CC1	
KUL19.T_AGAGTGCGCAGCTATA CC1	
KUL19.T_AGACTACGTCATGCAT CC1	
KUL19.T_AGCACCGTACTCGGAG CC1	
KUL19.T_AGCACCGTACTGACAT CC1	
KUL19.T_AGCGGTCGTACTGAC CC1	
KUL19.T_AGCGGTCGTCACTTCC CC1	
KUL19.T_AGCGGTCGTTAAAGTG CC1	
KUL19.T_AGCGGTCTCCTTTCTC CC1	
KUL19.T_AGCGTATAGGCTAGCA CC1	
KUL19.T_AGCGTATTCCGTTGCT CC1	
KUL19.T_AGCGTCGTCGAGGTAG CC1	
KUL19.T_AGCGTCGTCTGATACG CC1	
KUL19.T_AGCTTGACACCTGGTG CC1	
KUL19.T_AGGCCACAGGAGTTTA CC1	
KUL19.T_AGGCCACCAGCCTATA CC1	
KUL19.T_AGGCCGTCACATTAGC CC1	
KUL19.T_AGGGATGAGGAATGGA CC1	
KUL19.T_AGGGATGCAGATGGCA CC1	
KUL19.T_AGGGTGATCAGTTGAC CC1	
KUL19.T_AGGTCATAGAGCTGCA CC1	
KUL19.T_AGGTCATCAAGTAGTA CC1	
KUL19.T_AGGTCATTCATCTGCC CC1	
KUL19.T_AGGTCCGGTTGTCGCG CC1	
KUL19.T_AGTAGTCCATCGGTTA CC1	
KUL19.T_AGTCTTTAGTCCGTAT CC1	
KUL19.T_AGTGGGACACCATCCT CC1	
KUL19.T_AGTGTACAGTAAGTCC CC1	
KUL19.T_AGTTGGTAGAATCTCC CC1	
KUL19.T_AGTTGGTCTCCTATGTT CC1	
KUL19.T_ATAACGCAGGCTTGA CC1	
KUL19.T_ATAACGCTCAAGCCTA CC1	
KUL19.T_ATAACGCTCGACCAGC CC1	
KUL19.T_ATAACGGTCACATTAGC CC1	
KUL19.T_ATAGACGAGGAATGGA CC1	
KUL19.T_ATAGACCAGAACCATC CC1	
KUL19.T_ATAGACCACCATCCT CC1	
KUL19.T_ATACAGAGTCTTGTC CC1	
KUL19.T_ATCACGATCACCATAG CC1	
KUL19.T_ATCATCTCATGGGAAC CC1	
KUL19.T_ATCATCTGTACCGGCT CC1	
KUL19.T_ATCCGAACACGGTAAG CC1	
KUL19.T_ATCAGAAGAGTTACGT CC1	
KUL19.T_ATAGACCAAAACCAG CC1	
KUL19.T_ATAGACCATCCTTGC CC1	
KUL19.T_ATACAGAGTCTTGTC CC1	
KUL19.T_ATCACGATCACCATAG CC1	
KUL19.T_ATCATCTCATGGGAAC CC1	
KUL19.T_ATCATCTGTACCGGCT CC1	
KUL19.T_ATCCGAACACGGTAAG CC1	
KUL19.T_ATCTGGCAGAAGATCC CC1	
KUL19.T_ATCTGGCAACTGGGCC CC1	
KUL19.T_ATCTGCTCTGAGGCC CC1	
KUL19.T_ATGAGGAGCACTTCTT CC1	
KUL19.T_ATGAGGAGGAATGGA CC1	
KUL19.T_ATGTGCTGTTAAAGTG CC1	
KUL19.T_ATGTGCTGTTAAAGTG CC1	
KUL31.T_TATCAGGCACGAAAGC	CC1
---	---
KUL31.T_TCGAGCTCTTTACA	CC1
KUL31.T_TCTTTCCCCAGGCTCG	CC1
KUL31.T_TGACAAGTCCTTTTA	CC1
KUL31.T_TGCTGCTATCCAAA	CC2
KUL31.T_TGTTCCGATGCTAGT	CC1
KUL31.T_TTCTTAGCATTTTAC	CC1
KUL31.T_TGGAACGTCGGGAGTA	CC1
KUL31.T_TGACTTGAAACACA	CC1
KUL31.T_TGACTTGATTACAG	CC1
samples	NMF clusters
----------------------	--------------
TCGA.A6.5656.01	CC1
TCGA.A6.5659.01	CC1
TCGA.A6.5662.01	CC1
TCGA.A6.5667.01	CC1
TCGA.A6.A56B.01	CC1
TCGA.AA.A01X.01	CC1
TCGA.AF.3911.01	CC1
TCGA.AF.4110.01	CC1
TCGA.AH.6643.01	CC1
TCGA.AM.5820.01	CC1
TCGA.CA.5797.01	CC1
TCGA.CA.6716.01	CC1
TCGA.CM.4747.01	CC1
TCGA.CM.5344.01	CC1
TCGA.CM.6164.01	CC1
TCGA.CM.6165.01	CC1
TCGA.CM.6678.01	CC1
TCGA.D5.6922.01	CC1
TCGA.D5.6924.01	CC1
TCGA.D5.6926.01	CC1
TCGA.DC.6681.01	CC1
TCGA.DC.6683.01	CC1
TCGA.DY.A1DD.01	CC1
TCGA.DY.A1DF.01	CC1
TCGA.El.6514.01	CC1
TCGA.El.6883.01	CC1
TCGA.El.7002.01	CC1
TCGA.F4.6463.01	CC1
TCGA.F4.6854.01	CC1
TCGA.F5.6571.01	CC1
TCGA.F5.6814.01	CC1
TCGA.F5.6861.01	CC1
TCGA.F5.6863.01	CC1
TCGA.F5.6864.01	CC1
TCGA.G4.6303.01	CC1
TCGA.G4.6310.01	CC1
TCGA.NH.A8F8.01	CC1
TCGA.QG.A5Z1.01	CC1
TCGA.A6.6649.01	CC2
TCGA.AD.5900.01	CC2
TCGA.A6.2684.01	CC3
TCGA.A6.2685.01	CC3
TCGA.A6.5657.01	CC3
TCGA.A6.5664.01	CC3
TCGA.A6.6651.01	CC3
TCGA.AF.2687.01	CC3
TCGA.AF.2690.01	CC3
TCGA.AG.4022.01	CC3
TCGA.AH.6644.01	CC3
TCGA.CA.6717.01	CC3
TCGA.CA.6719.01	CC3
TCGA.CK.6748.01	CC3
TCGA.CM.5348.01	CC3
TCGA.CM.5349.01	CC3
TCGA.CM.6167.01	CC3
TCGA.Identification	Group
----------------------	-------
TCGA.AZ.4315.01	CC2
TCGA.AZ.4615.01	CC2
TCGA.BM.6198.01	CC2
TCGA.CA.5254.01	CC2
TCGA.CA.6718.01	CC2
TCGA.CK.4948.01	CC2
TCGA.CK.4951.01	CC2
TCGA.CK.4953.01	CC2
TCGA.CK.4954.01	CC2
TCGA.CK.4957.01	CC2
TCGA.CK.5913.01	CC2
TCGA.CK.6751.01	CC2
TCGA.CM.4743.01	CC2
TCGA.CM.4751.01	CC2
TCGA.CM.5860.01	CC2
TCGA.CM.5861.01	CC2
TCGA.CM.5863.01	CC2
TCGA.CM.6162.01	CC2
TCGA.CM.6169.01	CC2
TCGA.CM.6171.01	CC2
TCGA.CM.6674.01	CC2
TCGA.CM.6675.01	CC2
TCGA.CM.6680.01	CC2
TCGA.D5.5538.01	CC2
TCGA.D5.5539.01	CC2
TCGA.D5.6529.01	CC2
TCGA.D5.6530.01	CC2
TCGA.D5.6531.01	CC2
TCGA.D5.6532.01	CC2
TCGA.D5.6536.01	CC2
TCGA.D5.6540.01	CC2
TCGA.D5.6541.01	CC2
TCGA.D5.6928.01	CC2
TCGA.D5.6930.01	CC2
TCGA.D5.6931.01	CC2
TCGA.D5.7000.01	CC2
TCGA.DC.6158.01	CC2
TCGA.DM.A1HB.01	CC2
TCGA.DM.A280.01	CC2
TCGA.DM.A28K.01	CC2
TCGA.El.6511.01	CC2
TCGA.El.6917.01	CC2
TCGA.F4.6570.01	CC2
TCGA.F5.6811.01	CC2
TCGA.G4.6297.01	CC2
TCGA.G4.6299.01	CC2
TCGA.G4.6311.01	CC2
TCGA.G4.6585.01	CC2
TCGA.G4.6588.01	CC2
TCGA.G4.6628.01	CC2
TCGA.NH.A50V.01	CC2
TCGA.NH.A5IV.01	CC2
TCGA.A6.2675.01	CC3
TCGA.A6.6142.01	CC3
TCGA.A6.6654.01	CC3
TCGA.A6.6781.01	CC3
TCGA.A6.6782.01	CC3
TCGA.A6.A5ZU.01	CC3
TCGA.AA.3489.01	CC3
TCGA.AD.6899.01	CC3
Sample ID	Cluster
-------------------	---------
TCGA.CM.6676.01	CC1
TCGA.D5.5537.01	CC1
TCGA.D5.5540.01	CC1
TCGA.D5.6532.01	CC1
TCGA.D5.6533.01	CC1
TCGA.D5.6538.01	CC1
TCGA.D5.6923.01	CC1
TCGA.DC.4745.01	CC1
TCGA.DC.4749.01	CC1
TCGA.DC.5869.01	CC1
TCGA.DC.6155.01	CC1
TCGA.DC.6157.01	CC1
TCGA.DC.6682.01	CC1
TCGA.DM.A1D0.01	CC1
TCGA.DM.A1D4.01	CC1
TCGA.DM.A1D6.01	CC1
TCGA.DM.A1D7.01	CC1
TCGA.DM.A1D8.01	CC1
TCGA.DM.A1D9.01	CC1
TCGA.DM.A282.01	CC1
TCGA.DM.A288.01	CC1
TCGA.DM.A28C.01	CC1
TCGA.DM.A28E.01	CC1
TCGA.DM.A28F.01	CC1
TCGA.DM.A28G.01	CC1
TCGA.DM.A28H.01	CC1
TCGA.DY.A0XA.01	CC1
TCGA.DY.A1H8.01	CC1
TCGA.EF.5830.01	CC1
TCGA.EF.5831.01	CC1
TCGA.EI.6508.01	CC1
TCGA.EI.6512.01	CC1
TCGA.EI.6513.01	CC1
TCGA.EI.6881.01	CC1
TCGA.F4.6806.01	CC1
TCGA.F4.6808.01	CC1
TCGA.G4.6307.01	CC1
TCGA.G4.6315.01	CC1
TCGA.G4.6317.01	CC1
TCGA.G5.6235.01	CC1
TCGA.G5.6641.01	CC1
TCGA.NH.A50T.01	CC1
TCGA.NH.A8F7.01	CC1
TCGA.QG.A5YV.01	CC1
TCGA.QG.A5YX.01	CC1
TCGA.QL.A97D.01	CC1
TCGA.RU.A8FL.01	CC1
TCGA.SS.A7HO.01	CC1
TCGA.T9.A92H.01	CC1
TCGA.A6.6137.01	CC2
TCGA.A6.6141.01	CC2
TCGA.A6.6650.01	CC2
TCGA.AA.3495.01	CC2
TCGA.AA.3502.01	CC2
TCGA.AA.3526.01	CC2
TCGA.AA.3655.01	CC2
TCGA.AA.3685.01	CC2
TCGA.AA.3697.01	CC2
Table S5. meta-GEO gene clusters

meta-GEO samples	Gene clusters
GSM358341	C
GSM358342	C
GSM358343	B
GSM358344	C
GSM358345	C
GSM358346	A
GSM358347	C
GSM358348	C
GSM358349	C
GSM358350	C
GSM358351	C
GSM358352	C
GSM358353	B
GSM358354	B
GSM358355	B
GSM358356	C
GSM358357	C
GSM358358	B
GSM358359	A
GSM358360	B
GSM358361	B
GSM358362	B
GSM358363	C
GSM358364	B
GSM358365	C
GSM358366	B
GSM358367	B
GSM358368	C
GSM358370	C
GSM358371	C
GSM358373	B
GSM358374	B
GSM358375	B
GSM358376	C
GSM358377	B
GSM358378	C
GSM358380	C
GSM358381	C
GSM358382	A
GSM358383	C
GSM358384	A
GSM358385	A
GSM358386	A
GSM358387	B
GSM358388	B
GSM358389	A
GSM358390	A
GSM358391	B
GSM358392	A
GSM358393	A
GSM358394	B
GSM358395	B
GSM358396	C
GSM358397	A
GSM358398	B
GSM929532	C
GSM929533	C
GSM929534	C
GSM929535	C
GSM929536	C
GSM929537	C
GSM929538	B
GSM929540	A
GSM929541	B
GSM929542	B
GSM929543	B
GSM929544	B
GSM929545	A
GSM929547	C
GSM929548	A
GSM929549	A
GSM929550	C
GSM929552	A
GSM929553	A
GSM929554	C
GSM929555	A
GSM929556	A
GSM929557	C
GSM929558	B
GSM929559	B
GSM929560	B
GSM929561	B
GSM929562	A
GSM929563	B
GSM929564	C
GSM929565	C
GSM929566	B
GSM929567	B
GSM929568	B
GSM929569	B
GSM929570	C
GSM929571	C
GSM929573	C
GSM929578	B
GSM929579	C
GSM929580	B
GSM929581	C
GSM929582	A
GSM929583	C
GSM929584	C
GSM929588	A
GSM929589	C
GSM929592	B
GSM929594	A
GSM929595	C
GSM929596	C
GSM929597	C
GSM929598	C
GSM929600	A
GSM929601	C
GSM929602	B
GSM929603	B
GSM929604	B
GSM929605	B
GSM929606	A
GSM929607	C
GSM929608	A
GSM929611	A
GSM929613	C
GSM929615	B
GSM929616	C
GSM929619	A
GSM929620	A
GSM929621	B
GSM971957	A
GSM971958	A
GSM971959	B
GSM971960	C
GSM971961	C
GSM971962	A
GSM971963	A
GSM971964	B
GSM971965	A
GSM971966	C
GSM971968	A
GSM971969	B
GSM971970	B
GSM971971	B
GSM971972	C
GSM971973	B
GSM971974	B
GSM971975	B
GSM971976	C
GSM971977	A
GSM971978	B
GSM971979	B
GSM971980	B
GSM971981	B
GSM971982	B
GSM971983	B
GSM971984	B
GSM971985	C
GSM971986	B
GSM971987	A
GSM971988	B
GSM971989	B
GSM971990	B
GSM971991	C
GSM971992	B
GSM971993	B
GSM971994	A
GSM971995	B
GSM971996	A
GSM971997	B
GSM971998	C
GSM971999	A
GSM972000	A
GSM972001	C
GSM972002	B
GSM972003	B
GSM972004	C
GSM972005 B	
GSM972006 C	
GSM972007 A	
GSM972008 A	
GSM972009 B	
GSM972010 A	
GSM972011 A	
GSM972012 B	
GSM972013 A	
GSM972014 C	
GSM972015 B	
GSM972016 B	
GSM972017 A	
GSM972018 A	
GSM972019 A	
GSM972020 C	
GSM972021 C	
GSM972022 A	
GSM972023 A	
GSM972024 A	
GSM972025 C	
GSM972026 A	
GSM972027 A	
GSM972028 C	
GSM972029 A	
GSM972030 A	
GSM972031 C	
GSM972032 A	
GSM972033 C	
GSM972034 C	
GSM972035 C	
GSM972036 C	
GSM972037 B	
GSM972038 B	
GSM972039 A	
GSM972040 A	
GSM972041 A	
GSM972042 B	
GSM972043 C	
GSM972044 B	
GSM972045 B	
GSM972046 B	
GSM972047 B	
GSM972048 B	
GSM972049 B	
GSM972050 C	
GSM972051 A	
GSM972052 A	
GSM972053 C	
GSM972054 A	
GSM972055 B	
GSM972056 B	
GSM972057 A	
GSM972058 B	
GSM972059 A	
GSM972060 A	
GSM972061 B	
GSM972062 A	
GSM972063 A	
GSM972064 B	
GSM972065 C	
GSM972066 B	
GSM972067 A	
GSM972068 B	
GSM972069 A	
GSM972070 C	
GSM972071 C	
GSM972072 B	
GSM972073 A	
GSM972074 C	
GSM972075 C	
GSM972076 A	
GSM972077 B	
GSM972078 B	
GSM972079 B	
GSM972080 B	
GSM972081 B	
GSM972082 A	
GSM972083 C	
GSM972084 A	
GSM972085 C	
GSM972086 A	
GSM972087 C	
GSM972088 A	
GSM972089 A	
GSM972090 C	
GSM972091 C	
GSM972092 A	
GSM972093 A	
GSM972094 C	
GSM972095 A	
GSM972096 B	
GSM972097 B	
GSM972098 C	
GSM972099 C	
GSM972100 B	
GSM972101 C	
GSM972102 C	
GSM972103 B	
GSM972104 A	
GSM972105 A	
GSM972106 C	
GSM972107 C	
GSM972108 C	
GSM972109 B	
GSM972110 C	
GSM972111 C	
GSM972112 B	
GSM972113 A	
GSM972114 B	
GSM972115 C	
GSM972116 A	
GSM972117 B	
GSM972118 B	
GSM972119 A	
GSM972120 C	
GSM972121	B
GSM972122	C
GSM972123	C
GSM972124	C
GSM972125	A
GSM972126	C
GSM972127	A
GSM972128	B
GSM972129	C
GSM972130	C
GSM972131	A
GSM972132	A
GSM972133	A
GSM972134	A
GSM972135	C
GSM972136	C
GSM972137	C
GSM972138	C
GSM972139	C
GSM972140	A
GSM972141	C
GSM972142	C
GSM972143	A
GSM972144	C
GSM972145	C
GSM972146	A
GSM972147	A
GSM972148	A
GSM972149	C
GSM972150	C
GSM972151	C
GSM972152	C
GSM972153	C
GSM972154	B
GSM972155	B
GSM972156	C
GSM972157	A
GSM972158	C
GSM972159	B
GSM972160	C
GSM972161	C
GSM972162	A
GSM972163	C
GSM972164	C
GSM972165	B
GSM972166	A
GSM972167	C
GSM972168	B
GSM972169	C
GSM972170	A
GSM972171	A
GSM972172	B
GSM972173	C
GSM972174	C
GSM972175	B
GSM972176	A
GSM972177	C
GSM972178	C
GSM972354	A
GSM972355	C
GSM972357	A
GSM972358	C
GSM972359	A
GSM972360	C
GSM972361	B
GSM972362	C
GSM972363	C
GSM972364	C
GSM972365	B
GSM972366	C
GSM972367	A
GSM972368	B
GSM972369	C
GSM972370	C
GSM972371	A
GSM972372	A
GSM972373	A
GSM972374	C
GSM972375	A
GSM972376	A
GSM972377	A
GSM972378	B
GSM972379	C
GSM972380	A
GSM972381	C
GSM972382	A
GSM972383	C
GSM972384	A
GSM972385	A
GSM972386	C
GSM972387	C
GSM972388	C
GSM972389	B
GSM972390	B
GSM972391	B
GSM972392	C
GSM972393	B
GSM972394	A
GSM972395	C
GSM972396	B
GSM972397	B
GSM972398	C
GSM972399	A
GSM972400	C
GSM972401	B
GSM972402	B
GSM972403	B
GSM972404	A
GSM972405	C
GSM972406	A
GSM972407	A
GSM972408	B
GSM972409	C
GSM972410	A
GSM972411	C
GSM972412	B
Table S5. TCGA gene clusters and genes /

DEGs overlapped	Genes A-C	
TET1	genes A	
VLDLR	genes A	
DIRAS2	genes A	
MUM1L1	genes A	
RASL1B	genes A	
TRAM1L1	genes A	
DTNA	genes A	
CC2D2A	genes A	
TNFAIP8L3	genes A	
GHR	genes A	
ST6GAL2	genes A	
CLSTN2	genes A	
SNORD116-28	genes A	
IPW	genes A	
PAR-SN	genes A	
ZNF415	genes A	
ZNF134	genes A	
ZNF471	genes A	
ZSCAN18	genes A	
FGF13	genes A	
KL	genes A	
TXLNB	genes A	
DAB2	genes A	
TGFBR2	genes A	
KLF7	genes A	
KIAA0355	genes A	
MBD5	genes A	
KIDINS220	genes A	
BMPR2	genes A	
RNF146	genes A	
TSPYL4	genes A	
NIPSNAP3B	genes A	
RCBTB2	genes A	
ODZ2	genes A	
CGNL1	genes A	
GPRASP2	genes A	
NFASC	genes A	
RAI2	genes A	
ZNF167	genes A	
ZNF569	genes A	
ZNF287	genes A	
GBGT1	genes A	
MAGEE1	genes A	
ZNF853	genes A	
SMO	genes A	
ZNF423	genes A	
HDGFRP3	genes A	
LOC285548	genes A	
RAB9B	genes A	
C11orf63	genes A	
SEMA4C	genes A	
CRY2	genes A	
ZFHX3	genes A	
SMTN	genes A	
ZNF362	genes A	
Genes A	Genes A	Genes A
---------	---------	---------
AKAP6		5-Sep
RBM20		
BRSK1		
PCDHGC3		
CILP2		
KIF7		
TSPYL2		
MECP2		
PCP4L1		
HRNBP3		
C6orf168		
CCDC136		
LOC100128239		
NCRNA00085		
TF		
SLC7A10		
FNDC5		
TERF2IP		
CDH8		7-Sep
TMEM43		
NXPH3		
NPTXR		
SPEG		
AGTR1		
GPRASP1		
LIMS2		
TCF7L1		
MAP6		
PDZD4		
MPPED2		
HSPB6		
OGN		
CDON		
PCYT1B		
DCHS2		
C1orf95		
ADCY5		
ATP1A2		
CASQ2		
SYNM		
MYH11		
LMO3		
HSPB7		
CARTPT		
ASB5		
HAND1		
CHRM2		
NRSN1		
KIF1A		
FMN2		
PGM5P2		
PGM5		
DDIT4L		
DYNC1I1		
WASF3		
SORBS3		

7-Sep Genes A

Genes A	Genes A
TMEM43	
NXPH3	
NPTXR	
SPEG	
AGTR1	
GPRASP1	
LIMS2	
TCF7L1	
MAP6	
PDZD4	
MPPED2	
HSPB6	
OGN	
CDON	
PCYT1B	
DCHS2	
C1orf95	
ADCY5	
ATP1A2	
CASQ2	
SYNM	
MYH11	
LMO3	
HSPB7	
CARTPT	
ASB5	
HAND1	
CHRM2	
NRSN1	
KIF1A	
FMN2	
PGM5P2	
PGM5	
DDIT4L	
DYNC1I1	
WASF3	
SORBS3	

WASF3 Genes A

Genes A

SORBS3 Genes A

Genes A
RBMS1 genes A
NRXN2 genes A
LG4 genes A
PPP1R14A genes A
HRC genes A
SLC35F1 genes A
RGS5 genes A
FLJ22536 genes A
RPRM genes A
TMEM35 genes A
ISLR2 genes A
ABCB4 genes A
ORAI2 genes A
MAPK8IP1 genes A
BCAM genes A
RND2 genes A
WFIKKN2 genes A
LEFTY2 genes A
PTPRT genes A
HLF genes A
LOC643763 genes A
ABL2 genes A
STAT5B genes A
NNAT genes A
NRIP2 genes A
AASS genes A
KCTD7 genes A
ZNF333 genes B
IGFL2 genes B
KLF2 genes B
ACTB genes B
PLOD1 genes B
TREML3 genes B
DCBLD1 genes B
ANXA5 genes B
GUCA1A genes B
IKBIP genes B
TMEM45A genes B
COL6A6 genes B
ALOX15B genes B
ADAM8 genes B
VMO1 genes B
NFATC1 genes B
TGFBI genes B
HAPLN3 genes B
SPHK1 genes B
AMZ1 genes B
CLEC4E genes B
CCL18 genes B
C19orf59 genes B
KCNJ15 genes B
BCL2A1 genes B
TREM1 genes B
AQP9 genes B
CAMK1G genes B
CHST11 genes B
FCGR2B genes B
FCGR2C genes B
Gene

CD14
FCGR2A
PILRA
C5AR1
LILRA6
LILRB3
HK3
NCF2
ITGAM
FGR
ITGAX
ALOX5AP
SIGLEC5
LILRA2
FPR1
CSF3R
MCHR1
MMP9
SPP1
MARCO
SLC11A1
CLEC5A
RGS16
SOCS3
OSM
CHSY1
STC1
SLC2A3
EMP3
LGALS1
NNMT
TSPAN4
PLEKHO1
GYPC
A4GALT
PTGIR
ALPK2
BCAT1
ADAM12
TNFAIP6
LOX
PRRX1
KCND2
MDGA1
HS3ST3A1
PDPN
PRR16
WISP1
GPR176
XIRP1
PLAU
NID2
ADAMTS2
ZNF469
COL5A3
ADAMTS4
SLC2A6
ZNF467
Gene Name

FAM167B
ESAM
SH2D3C
STARID8
CD93
CLEC1A
PECAM1
SCARF1
SEMA6B
ENG
DEGS1
TFPI
AIF1L
HOXC4
HOXC9
ANXA8L2
UNC5A
IRF1
NFIL3
FGFBP2
HRASLS5
VIT
PDE4DIP
FGF11
VAMP2
SMG6
WDR81
ABHD4
KLHL22
ADRB2
ARHGDIB
RNASE6
PDE6B
MAL
LTA
LTB
NAPSB
AMICA1
CLEC10A
RAB33A
ITM2A
CIC2
GIMAP1
GIMAP5
GIMAP7
ARHGAP15
GGT1A
SLC9A9
BIN2
SIGLEC8
GZMK
PLA2G2D
TNFSF14
SPOCK2
ZNF831
GVIN1
KIAA0748
PPP1R16B
Gene

PRKCB
IL16
LY9
P2RY8
ABCD2
LOC100233209
TRAF3IP3
ARHGAP9
RASAL3
IL21R
CCR5
WDFY4
SELL
CR1
HLA-DQA1
FGD2
EVI2B
CD180
FYB
APBB1IP
DOCK10
ARHGAP25
KLHL6
RCSD1
C17orf87
STX11
IL10RA
NCKAP1L
SLA
PIK3R5
CD53
BTK
LILRB1
SIGLEC10
FAM78A
MYO1G
CYTH4
FMNL1
MYO1F
LCP1
WAS
HCLS1
ARHGAP30
DOCK2
ITGAL
SASH3
PTPRC
IKZF1
NCF1
LSP1
CD37
RHOH
TAGAP
TNFSF8
NCF1C
NCF1B
KLRG1
LOC254559
Gene

PTCRA
C17orf60
LILRA4
HLA-DQA2
HLA-DQB2
HLA-DPB2
CD52
CD48
GNGT2
HCST
GMFG
TNFAIP8L2
LST1
AIF1
PSTPIP1
LIMD2
FCRL6
LOC400759
IL18BP
ATP6V0D2
LIPA
SLC2A5
GM2A
HS3ST2
TREM2
APOE
APOC1
OSCAR
SLC1A3
OLR1
MSR1
GPNMB
CTS1L
C1orf162
FCGR1C
FCGR3A
FCGR1B
FCGR1A
PLD3
PSAP
KCNE1
CD68
CTSB
MRO
CPVL
TNNI2
BAI2
PLEKHF1
FLT3LG
NAGK
PPM1M
CACNA1A
MX2
RSAD2
DDX58
DRAM1
PPM1K
HOXB2
ERMN genes B
RNFI22 genes B
PDE10A genes B
CD109 genes B
FBLN7 genes B
CALHM2 genes B
LOC400043 genes B
PDGFRL genes B
DZIP1L genes B
ARHGAP24 genes B
ARHGAP20 genes B
PLXDC2 genes B
PALLD genes B
FYN genes B
PLXND1 genes B
CHST15 genes B
PEAR1 genes B
C6orf204 genes B
DOCK8 genes B
TLR6 genes B
FZD2 genes B
ARHGAP22 genes B
MOBKL2A genes B
S1PR2 genes B
RIMBP3 genes B
MAMLD1 genes B
EID3 genes B
NCRNA00181 genes B
NTRK1 genes B
CCDC88A genes B
OPRL1 genes B
HSD17B14 genes B
HVCN1 genes B
LYL1 genes B
SPATC1 genes B
PLCB2 genes B
STAT2 genes B
NLRP1 genes B
C9orf139 genes B
HSPA7 genes B
CORO1A genes B
SYTL3 genes B
CD72 genes B
GPSM3 genes B
MFNG genes B
DOK3 genes B
PIK3CD genes B
POU2F2 genes B
FERMT3 genes B
GPR132 genes B
SUCNR1 genes B
PLA2G7 genes B
CLEC4A genes B
EVII2A genes B
SRGN genes B
SAMSN1 genes B
PDCD1LG2 genes B
MNDA genes B
LCP2
genes B
PLEK
genes B
GPR65
genes B
C1orf128
genes B
KCNK13
genes B
GPR34
genes B
MS4A6A
genes B
MS4A4A
genes B
MS4A7
genes B
TLR8
genes B
CYBB
genes B
CD84
genes B
TFEC
genes B
CLEC7A
genes B
IGSF6
genes B
TLR1
genes B
PLXNC1
genes B
TLR7
genes B
MPEG1
genes B
CMKLR1
genes B
CD4
genes B
CSF1R
genes B
GPR141
genes B

1-Mar genes B
EMILIN2
genes B
PTAFR
genes B
CD300C
genes B
NLRP3
genes B
CASS4
genes B
FCN1
genes B
RASGRP4
genes B
HRH2
genes B
C1orf38
genes B
EMR2
genes B
MS4A14
genes B
SDS
genes B
CD300LB
genes B
DPEP2
genes B
LY86
genes B
PIK3R6
genes B
PRAM1
genes B
PARVG
genes B
EVL
genes B
ESR1
genes B
CECR1
genes B
SLC37A2
genes B
ZNF804A
genes B
SLC31A2
genes B
PDE6G
genes B
CLEC12A
genes B
KMO
genes B
RAB42
genes B
ADORA3
genes B
P2RX7
genes B
FAM20A
genes B
PLEKHO2
genes B
MRC1
genes B
VSIG4
genes B
Gene	Type
CD33	genes B
CCR1	genes B
SIRPB2	genes B
LILRB2	genes B
SIGLEC9	genes B
LRR2C25	genes B
SIGLEC7	genes B
CD163	genes B
C3AR1	genes B
FPR3	genes B
SIGLEC1	genes B
NLRC4	genes B
TNFSF13B	genes B
HLA-DPB1	genes B
HLA-DOA	genes B
SLC15A3	genes B
NFAM1	genes B
ADAP2	genes B
CD300A	genes B
CD300LF	genes B
HCK	genes B
SLAMF8	genes B
LAPT5M5	genes B
ITGB2	genes B
SPI1	genes B
LAIR1	genes B
TYRO8B	genes B
FCER1G	genes B
LILRB4	genes B
CD86	genes B
HAVCR2	genes B
TRPV2	genes B
ABI3	genes B
DOK2	genes B
C1QA	genes B
C1QB	genes B
C1QC	genes B
MATK	genes B
ACP5	genes B
DNAJC5B	genes B
STEAP4	genes B
LOC339524	genes B
CD36	genes B
SSTR2	genes B
CYTL1	genes B
NLRP12	genes B
STAC	genes B
CCL8	genes B
CCL7	genes B
DSE	genes B
RNASE2	genes B
GLIPR2	genes B
VAMP5	genes B
C1orf54	genes B
CLEC2B	genes B
LY96	genes B
NCRNA00189	genes B
IL4I1	genes B
ICAM1 genes B	
JAK3 genes B	
TNFRSF4 genes B	
ADORA2A genes B	
TNFRSF8 genes B	
SIRPB1 genes B	
P2RY6 genes B	
LILRA5 genes B	
GPR84 genes B	
ZNF385A genes B	
RGS19 genes B	
MCTP1 genes B	
LAT2 genes B	
KIAA1949 genes B	
ARL4C genes B	
RASGRF2 genes B	
SPON1 genes B	
ANXA1 genes B	
RGS2 genes B	
PNMA1 genes B	
ATP8B3 genes B	
ADCY7 genes B	
PMP22 genes B	
C10orf10 genes B	
LOXL1 genes B	
PRKCDBP genes B	
ABLIIM3 genes B	
MAPK11 genes B	
KIFC3 genes B	
GNAI2 genes B	
MAP7D1 genes B	
ANKRD34A genes B	
BCL6 genes B	
SLC43A3 genes B	
ITPR1PL2 genes B	
TOX2 genes B	
NFIC genes B	
C14orf49 genes B	
CCL23 genes B	
MFSD7 genes B	
MCOLN1 genes B	
ACP2 genes B	
C10orf54 genes B	
MGAT1 genes B	
KLF9 genes B	
AGPAT4 genes B	
GLIS3 genes B	
MFSD1 genes B	
RNFI44B genes B	
GPR137B genes B	
TCL1A genes B	
CLEC17A genes B	
FAIM3 genes B	
TNFRSF13B genes B	
FCRL3 genes B	
CD22 genes B	
FCRLA genes B	
BLK genes B	
Gene	Type
--------	------
CXCR5	genes B
MS4A1	genes B
CD79B	genes B
TLR10	genes B
AFF2	genes B
TREML1	genes B
PER1	genes B
NR4A3	genes B
ITPRIP	genes B
SERPINE1	genes B
EGR3	genes B
SGK1	genes B
TNFAIP3	genes B
DUSP1	genes B
GPR183	genes B
RGS1	genes B
B4GALT1	genes B
KCTD11	genes B
EMP1	genes B
SEMA7A	genes B
PLEKHG1	genes B
KCTD12	genes B
PDE5A	genes B
ARSB	genes B
SLC16A7	genes B
TRAM2	genes B
ST5	genes B
AHNAK	genes B
AHDC1	genes B
GSN	genes B
C17orf107	genes B
SIDT2	genes B
ASAP3	genes B
RNF24	genes B
PPFIBP1	genes B
HTR1B	genes B
IFNAR2	genes B
TCN2	genes B
SLCO2B1	genes B
IL1RL1	genes B
CTSG	genes B
SIGLEC6	genes B
SIGLEC3P	genes B
HDC	genes B
TPSAB1	genes B
TPSB2	genes B
CPA3	genes B
MS4A2	genes B
C1orf150	genes B
C1orf186	genes B
BEND4	genes B
CAMK4	genes B
CLEC9A	genes B
FLT3	genes B
KCND3	genes B
CCDC69	genes B
FAM65B	genes B
FAM55C	genes B
Genes B	

PIP4K2A	
CCR7	
CCL22	
TNFRSF9	
FOXP3	
CCR8	
SPN	
CD28	
CCR4	
PRKAR2B	
S100B	
CCDC141	
EPB41L3	
SASH1	
TIAM1	
ROR1	
STK10	
TMEM140	
RUNDC2A	
LYST	
KIAA0247	
CYLD	
GIT2	
LOC257358	
EMR4P	
EMR1	
CEBPE	
CEACAM4	
CFP	
CLEC4G	
CCL13	
LILRB5	
FOLR2	
PDE4B	
IL10	
SLC24A4	
CXCR4	
SELPLG	
RASSF5	
CHI3L2	
PLCG2	
C16orf54	
LRMP	
STOM	
ITGA1	
AVPR1A	
TRPC6	
CAV1	
STK32B	
COL6A1	
ITGA5	
IRAK3	
HHEX	
CITED2	
LHFPFL2	
TCP11L1	
SWAP70	
RAB88B	
Gene	Expression
--------	------------
SNRK	genes B
CHST2	genes B
KCNN3	genes B
ZNF366	genes B
SFMBT2	genes B
STAB1	genes B
P2RY13	genes B
RGS18	genes B
ST8SIA4	genes B
ITGA4	genes B
CYSLTR1	genes B
CSF2RB	genes B
PIK3CG	genes B
ATP8B4	genes B
GAB3	genes B
Cxorf21	genes B
CCR2	genes B
FGL2	genes B
CYSLTR2	genes B
GJD3	genes B
TMEM26	genes B
DOCK4	genes B
RASGRP3	genes B
NR3C1	genes B
GNG2	genes B
VCAM1	genes B
FAM49A	genes B
GIMAP4	genes B
GIMAP6	genes B
FLI1	genes B
GIMAP8	genes B
RASSF2	genes B
ARHGEF6	genes B
MYO5A	genes B
WIPF1	genes B
GPR77	genes B
CLEC4D	genes B
FCAR	genes B
CD300E	genes B
GPR97	genes B
GLT1D1	genes B
EMR3	genes B
LILRA1	genes B
FAM196B	genes B
PAPPA	genes B
APBA2	genes B
C3	genes B
BASP1	genes B
GPR68	genes B
MSC	genes B
SDK1	genes B
ETS1	genes B
ARHGAP31	genes B
SLFN11	genes B
HSD11B1	genes B
CCL2	genes B
CSF1	genes B
NRP1	genes B
DPYD genes B	
LRRC8C genes B	
MSN genes B	
IL1R1 genes B	
ATP8B2 genes B	
ASAM genes B	
OSMR genes B	
COLEC12 genes B	
VIM genes B	
RAB31 genes B	
CFH genes B	
GNB4 genes B	
ZEB2 genes B	
MAFB genes B	
MAF genes B	
FUT11 genes B	
LIMS1 genes B	
SH2B3 genes B	
PLBD2 genes B	
MTIF2 genes C	
OLA1 genes C	
HSPE1 genes C	
CCDC58 genes C	
GPR35 genes C	
DUS1L genes C	
TBRG4 genes C	
LY6G6D genes C	
EBPL genes C	
KIF11 genes C	
HNRNPF genes C	
P8K genes C	
RRM2 genes C	
H2AFZ genes C	
CENPM genes C	
ORC1L genes C	
CDC20 genes C	
PPA2 genes C	
NDUFA9 genes C	
PSMA5 genes C	
PGAM5 genes C	
SORD genes C	
CCNO genes C	
TMC5 genes C	
CASP5 genes C	
F2RL1 genes C	
samples	TCGA PC1 of genes A
-----------------------	---------------------
TCGA.3L.AA1B.01	6.106741023
TCGA.4N.A93T.01	-4.003593467
TCGA.4T.AA8H.01	-5.088839373
TCGA.5M.AATE.01	-0.88023619
TCGA.6/56.01	2.252418895
TCGA.6/56.01	4.681027345
TCGA.6/56.01	-0.921547602
TCGA.6/56.01	5.032663199
TCGA.6/56.01	-4.445944747
TCGA.6/56.01	7.104003138
TCGA.6/61.01	-2.860856999
TCGA.6/66.01	-3.39725703
TCGA.6/66.01	0.0194015
TCGA.6/66.01	3.554120817
TCGA.6/34.01	0.213615277
TCGA.6/35.01	-0.973032235
TCGA.6/35.01	0.114176832
TCGA.6/36.01	-0.443400259
TCGA.6/36.01	0.666778463
TCGA.6/36.01	-3.948033571
TCGA.6/36.01	7.271196211
TCGA.6/68.01	-3.763744025
TCGA.6/68.01	-1.792776229
TCGA.6/69.01	-1.069447019
TCGA.6/56.01	0.611075789
TCGA.6/39.01	2.906885555
TCGA.6/41.01	4.758278296
TCGA.6/61.01	-2.00597497
TCGA.6/66.01	-0.166197322
TCGA.6/56.01	1.318026665
TCGA.6/34.01	0.589778126
TCGA.6/37.01	2.683045617
TCGA.6/65.01	-4.574266663
TCGA.6/65.01	0.40364921
TCGA.6/66.01	2.276623768
TCGA.6/68.01	-6.719275678
TCGA.6/69.01	-0.251306905
TCGA.6/58.01	4.247883091
TCGA.6/67.01	-4.877384839
TCGA.6/56.01	-2.370839207
TCGA.6/71.01	-4.74452655
TCGA.6/68.01	-1.002426935
TCGA.2/46.01	-2.39119509
TCGA.6/52.01	-3.62841184
TCGA.6/52.01	-5.06904353
TCGA.6/57.01	3.161237437
TCGA.6/67.01	-0.301610154
TCGA.6/67.01	5.73933306
TCGA.6/61.01	0.859732824
TCGA.6/62.01	0.171798414
TCGA.6/62.01	-3.3873679451
TCGA.6/59.01	-0.463601179
TCGA.6/59.01	-4.436511113
TCGA.6/49.01	-2.035585154
TCGA.6/59.01	2.796565609
TCGA.CL.5918.01	-4.081078176
TCGA.CM.4747.01	2.954262705
TCGA.CM.5344.01	3.04988584
TCGA.CM.5864.01	-2.722207575
TCGA.CM.5868.01	0.892339004
TCGA.CM.6161.01	0.214456657
TCGA.CM.6163.01	0.067228065
TCGA.CM.6164.01	5.276615509
TCGA.CM.6165.01	3.684613692
TCGA.CM.6166.01	2.980372817
TCGA.CM.6170.01	-0.248324353
TCGA.CM.6172.01	0.032855894
TCGA.CM.6676.01	4.663828882
TCGA.CM.6678.01	2.911152199
TCGA.D5.5537.01	-0.362006647
TCGA.D5.5540.01	-5.826025153
TCGA.D5.5541.01	-2.362055155
TCGA.D5.6532.01	-2.08129148
TCGA.D5.6533.01	0.363412518
TCGA.D5.6538.01	5.235267931
TCGA.D5.6539.01	5.042093148
TCGA.D5.6540.01	0.48752229
TCGA.D5.6541.01	1.535238798
TCGA.DC.4745.01	-0.606299397
TCGA.DC.4749.01	-3.69424284
TCGA.DC.5869.01	-2.834777495
TCGA.DC.6154.01	0.798217709
TCGA.DC.6155.01	-4.440453025
TCGA.DC.6157.01	0.431743062
TCGA.DC.6681.01	9.099296742
TCGA.DC.6682.01	0.188388727
TCGA.DC.6683.01	-5.865095382
TCGA.DM.A1D0.01	1.969410331
TCGA.DM.A1D4.01	-6.458430046
TCGA.DM.A1D6.01	-5.485881254
TCGA.DM.A1D7.01	-2.432946468
TCGA.DM.A1D8.01	-1.757671388
TCGA.DM.A1D9.01	-2.89365544
TCGA.DM.A1HA.01	-2.972324905
TCGA.DM.A282.01	0.2206868
TCGA.DM.A288.01	-6.322859464
TCGA.DM.A28A.01	-0.38901767
TCGA.DM.A28C.01	-2.352105986
TCGA.DM.A28E.01	-6.043655429
TCGA.DM.A28F.01	-4.391994742
TCGA.DM.A28G.01	0.220658788
TCGA.DM.A28H.01	-4.61375594
TCGA.DY.A0XA.01	-1.00008412
TCGA.DY.A1DD.01	10.56051893
TCGA.DY.A1DF.01	8.627181408
TCGA.DY.A1H8.01	-2.06709282
TCGA.EF.5830.01	-2.155012108
TCGA.EF.5831.01	-1.212166209
TCGA.EI.6508.01	-0.320985231
TCGA.EI.6509.01	1.737121259
TCGA.A6.6654.01	7.274137046
----------------	-------------
TCGA.A6.6781.01	4.232819474
TCGA.A6.6782.01	4.859953505
TCGA.AA.3489.01	0.989490391
TCGA.AD.6899.01	4.39500818
TCGA.AD.6901.01	5.990541715
TCGA.AD.6964.01	2.113843236
TCGA.AF.2687.01	10.93908263
TCGA.AF.2690.01	10.79885501
TCGA.AG.3731.01	3.259988309
TCGA.AG.4021.01	2.754047275
TCGA.AG.4022.01	5.211213917
TCGA.AH.6547.01	2.471349543
TCGA.AH.6644.01	4.748890978
TCGA.CA.6717.01	8.807642289
TCGA.CA.6719.01	8.27359786
TCGA.CA.6722.01	6.03298263
TCGA.CA.6723.01	9.250311696
TCGA.CM.5348.01	6.425604149
TCGA.CM.5349.01	15.98868497
TCGA.CM.5350.01	7.573552903
TCGA.CM.5351.01	6.447407071
TCGA.CM.5352.01	7.401545214
TCGA.CM.5353.01	6.231590763
TCGA.CM.5354.01	3.811238228
TCGA.CM.5355.01	10.75346714
TCGA.DC.6156.01	3.87184254
TCGA.EI.6507.01	-0.848757043
TCGA.EI.6885.01	6.747309155
TCGA.EI.7004.01	8.577877432
TCGA.F4.6459.01	11.67105574
TCGA.F4.6460.01	12.36288397
TCGA.F4.6461.01	5.318422465
TCGA.F4.6462.01	5.846503035
TCGA.F4.6703.01	5.305187627
TCGA.F4.6704.01	10.36056256
TCGA.F4.6805.01	7.688367011
TCGA.F4.6807.01	8.538313206
TCGA.F4.6809.01	11.57035791
TCGA.F4.6855.01	2.301461094
TCGA.F5.6464.01	11.83021194
TCGA.F5.6465.01	5.256024367
TCGA.F5.6702.01	8.740060788
TCGA.F5.6812.01	12.58596618
TCGA.F5.6813.01	6.506760519
TCGA.G4.6302.01	18.51110043
TCGA.G4.6314.01	10.25675486
TCGA.G4.6625.01	2.736153601
TCGA.G4.6627.01	8.535697381
TCGA.WS.AB45.01	5.183020692
TCGA Fersig score	

6.640115729	
-9.885858702	
-16.13290109	
-7.09762733	
-1.839581126	
1.049765335	
-1.975264142	
5.054545441	
-11.69034551	
5.303636536	
-9.319891155	
-11.34378486	
-3.929246802	
3.644394857	
4.474649156	
-2.425327288	
-0.862854633	
-1.042229434	
4.157957507	
-6.716576345	
7.317830202	
-10.47895319	
-2.720940407	
-2.927533391	
-4.021967479	
2.536944482	
8.327073488	
-8.317259646	
-3.776656752	
1.078541678	
-0.774898167	
1.999574973	
-13.69408562	
-0.404940147	
3.630332308	
-17.17510456	
-8.849618715	
2.708308757	
-14.90998733	
-6.968031241	
-10.63520312	
-6.071475795	
-0.977914491	
-6.223101705	
-9.992762734	
1.542960615	
-6.880067219	
2.006984034	
2.700901951	
-2.195467128	
-10.00001972	
-6.775206823	
-15.31172898	
-6.625802875	
-0.225681047	
-10.45831502	
2.466282858	
4.686085467	
-7.546976181	
1.619455238	
-0.547245843	
0.195807694	
4.401291967	
3.447290543	
-2.629605957	
-0.282651755	
-2.686394885	
2.514808508	
0.36553851	
-1.019578549	
-11.43880526	
5.362500384	
-11.3748548	
-5.480245482	
-5.413301341	
9.773831213	
2.454389299	
9.341158809	
9.493648432	
3.40465728	
3.570560011	
-4.470770779	
-10.65899795	
-6.560410433	
0.865250443	
-3.943982422	
-3.928253707	
8.06538603	
-5.66759419	
-1.001996109	
-10.40010481	
-13.77056011	
-14.61624916	
-7.033127558	
-7.704396942	
-8.099668419	
-3.705761525	
-5.35423854	
-10.2018592	
0.340621651	
-11.13951999	
-17.99178758	
-10.02010002	
-5.289019985	
-10.01251705	
-5.637309996	
10.20020212	
10.32802646	
-7.257520286	
-6.934558384	
-2.25653178	
-5.17262641	
3.068751346	
Value 1	Value 2
---------	---------
-5.379184062	-16.81110489
3.410191113	-7.010922439
-7.953644303	-5.890546521
-11.356999665	0.860521608
-8.396962647	-5.604922952
-3.205509014	2.264237671
3.588508762	-12.2370278
-9.513491172	-15.53952825
0.979682345	-12.4077511
-3.311457923	-13.05315329
0.30358994	-9.953743947
-4.024930657	1.568765171
3.058908808	-11.58788763
-11.02238919	-6.833449962
5.793244224	-11.1836519
0.335168052	-3.842157334
13.17615653	8.761342504
4.135168483	-5.683439194
5.291934103	6.090412518
6.084130039	
18.75830431
16.30774811
10.8208599
5.634569568
16.59183501
10.78250553
14.77852094
11.77754748
19.91898297
21.96158742
8.46566524
8.016976084
7.3324323
8.45894861
6.568627594
15.63151407
12.45865245
10.14637049
19.5544868
11.26458934
25.99322702
14.51110113
10.05466368
21.48330363
8.282164731
13.22215385
20.69071169
6.751484534
7.744030641
11.19834791
19.03105629
16.1221841
15.19764775
10.89435555
15.00262952
20.29921059
17.00283917
13.89138048
14.26692764
18.49552141
7.857916125
22.21828172
9.203399369
16.30341515
17.82507614
9.352523096
29.57636476
14.03917013
7.191512078
13.68859729
18.31110855
Table S6. Fersig score of different databases

samples	GEO PC1 of genes A	GEO PC1 of genes B
GSM929508	8.85130345	-7.295086787
GSM929511	-0.957958463	-6.285103184
GSM929622	10.79007285	-1.560711018
GSM929546	-1.634714291	3.770913664
GSM929623	-0.308297316	1.974421849
GSM929539	15.07758073	-10.21946797
GSM929614	0.13553872	-20.61409952
GSM929496	10.79007285	-1.560711018
GSM929590	-0.465568017	-15.3144753
GSM929586	-2.279737211	7.414028219
GSM929585	0.119065243	-1.957691103
GSM929612	1.046043718	-0.936528876
GSM929609	4.049664033	-7.109561602
GSM929497	-3.605444797	4.789586521
GSM929593	-0.690672322	-6.818756241
GSM929591	0.881532088	-1.341325536
GSM929551	-4.343781449	8.574747245
GSM929587	-0.010980216	3.374354188
GSM929523	-1.096703117	1.680318164
GSM929519	0.602493063	3.718900479
GSM929524	-0.145079439	7.953714309
GSM929525	2.092532149	7.487982467
GSM929599	-0.717271071	-2.739983058
GSM929617	-2.023578634	-8.832199327
GSM929576	-0.468334373	-1.55749297
GSM929572	6.632231507	-14.13124325
GSM929499	-0.263725886	-9.613940855
GSM929504	5.880390964	-2.939265854
GSM929610	0.646231871	8.190159859
GSM929498	-3.387332469	3.142304935
GSM929618	-0.189039517	4.249693533
GSM929575	6.185546865	-14.65495758
GSM929577	0.217391682	-4.561913489
GSM929502	-2.433816523	-2.589629328
GSM929503	6.987976528	-10.139663
GSM929500	-2.233183827	-0.72654717
GSM929494	-3.066915645	10.29784978
GSM929495	-2.12587946	2.851842114
GSM929501	4.684325081	-26.5918471
GSM929505	0.941750354	-5.649258666
GSM929506	-3.180355649	7.856422242
GSM929507	3.48367521	-4.347272376
GSM929509	-0.548123706	-1.63648108
GSM929510	-2.08308992	-3.080411563
GSM929512	7.827081356	-3.574889977
GSM929513	3.814492775	-8.812499148
GSM929514	-0.621095737	4.84105847
GSM929515	-2.103501584	11.31165439
GSM929516	0.287983609	7.553912493
GSM929517	-3.408969027	8.681052039
GSM929518	0.557235929	6.001798516
GSM929520	-2.764880197	0.328417291
GSM929521	-2.333239466	-5.330863401
GSM929522	0.60682118	-0.147320797
GSM929526	1.088307856	5.487813498
GSM929527	0.594974391	-0.153321128
GSM929528	-2.872936738	3.931701468
GSM929529	-1.021551492	5.716432848
GSM929530	3.713636299	0.192631114
GSM929531	2.256210924	-4.615771516
GSM929532	3.713636299	0.192631114
GSM929533	-2.557510596	6.709718173
GSM929534	-1.933118248	0.34496292
GSM929535	-2.40272238	9.48165198
GSM929536	-2.624729133	7.386441445
GSM929537	-3.940637677	5.30448838
GSM929538	-3.840573269	6.572572589
GSM929539	-1.892740771	6.65356679
GSM929540	0.048518208	3.709091052
GSM929541	-4.51719246	5.673147088
GSM929542	-3.990497493	9.49229002
GSM929543	-1.012032938	2.827367047
GSM929544	-0.918020748	6.183016758
GSM929545	-2.847864821	13.5468785
GSM929546	8.569583154	-5.547372256
GSM929547	16.43717585	-10.106919
GSM929548	-2.25325729	10.5293145
GSM929549	-0.530772207	-5.076095788
GSM929550	1.51314483	-1.411151268
GSM929552	-2.37556405	-3.566792585
GSM929553	-0.134319485	-0.366571018
GSM929554	-2.222630419	4.845770461
GSM929555	-2.135306143	10.5387546
GSM929556	-4.318599743	6.106825201
GSM929557	-1.452800014	-26.47739241
GSM929558	-0.624732059	2.678821717
GSM929559	-0.797272194	5.467208493
GSM929560	5.359104978	-8.901188824
GSM929561	-2.135306143	10.5387546
GSM929562	-0.624732059	2.678821717
GSM929563	-0.797272194	5.467208493
GSM929564	5.359104978	-8.901188824
GSM929565	-2.074385803	5.9357603
GSM929566	-1.012032938	2.827367047
GSM929567	-3.310830651	6.070836103
GSM929568	-0.23391024	8.78108443
GSM929569	2.516358908	5.47553824
GSM929570	1.352202646	3.08927372
GSM929571	-2.415784027	9.976747791
GSM929572	0.695648048	3.7148838
GSM929573	3.938911183	-13.78708769
GSM929574	0.143440473	-16.77963814
GSM929575	0.119055068	4.13239794
GSM929576	-5.438165058	7.823482296
GSM929577	-2.695937803	7.473257862
GSM929578	7.412088945	-10.64694254
GSM929579	-2.196166805	4.178467382
GSM929580	-1.443753838	3.092562668
GSM929581	2.513776398	1.088218977
GSM929582	-3.117654609	3.57693313
GSM929583	-0.422904783	-12.53845409
GSM929584	5.703049665	-11.14981727
GSM929585	1.984123114	3.522845328
GSM929586	2.045162751	4.680220254
GSM929587	-0.147320797	5.487813498
GSM929588	-0.153321128	5.716432848
GSM929589	0.192631114	6.65356679
GSM929590	-4.615771516	5.30448838
GSM929591	6.572572589	10.5293145
GSM929592	-5.076095788	8.901188824
GSM929593	5.80949504	5.9357603
GSM929594	-13.78708769	3.7148838
GSM929595	-16.77963814	4.13239794
GSM929596	7.823482296	7.473257862
GSM929597	-10.64694254	4.178467382
GSM929598	3.092562668	3.57693313
GSM929599	-12.53845409	-11.14981727
GSM930000	3.522845328	4.680220254
GSM358384	9.699112702	-5.628306983
GSM358385	-2.257306396	-6.918073291
GSM358386	6.182953975	2.448142631
GSM358387	2.276276176	-1.503627427
GSM358388	-0.861395445	-4.049296132
GSM358389	5.895097293	-2.023365933
GSM358390	2.889727994	0.141571593
GSM358391	-1.912981352	-6.875239063
GSM358392	2.460873834	3.193944255
GSM358393	-0.593757317	-1.929760069
GSM358394	0.013422346	0.427410628
GSM358395	2.492507569	2.309790211
GSM358396	0.18490116	-3.498673838
GSM358397	-0.979498684	4.549616394
GSM358398	-1.138422844	7.499121007
GSM358399	0.909689809	0.937671549
GSM358400	-1.553051207	-6.569287049
GSM358401	-0.12011304	-1.929760069
GSM358402	5.108850094	2.640277337
GSM358403	-1.249568566	2.497671724
GSM358404	7.351621542	-9.37960611
GSM358405	-2.210363035	-0.117373537
GSM358406	1.595945365	-6.153553513
GSM358407	-1.686840724	-1.424123052
GSM358408	-2.632268068	-8.920923217
GSM358409	-2.520760582	3.670047288
GSM358410	-1.812455255	-6.49773988
GSM358411	0.392115739	0.735273221
GSM358412	3.08739705	-8.851722836
GSM358413	-3.029980928	5.497529523
GSM358414	1.958115627	-5.754610196
GSM358415	-0.115423663	3.342535762
GSM358416	5.433476978	-0.037887754
GSM358417	-6.18305433	3.61227778
GSM358418	-1.93385442	0.980501951
GSM358419	-0.62047284	-6.00811397
GSM358420	3.452654899	-7.622480592
GSM358421	2.619566245	-4.683492954
GSM358422	-1.567728611	-3.938560427
GSM358423	4.916865614	-3.365933117
GSM358424	-1.239578577	1.933226947
GSM358425	-1.591357158	4.368937284
GSM358426	3.046229454	3.742784064
GSM358427	-1.278393275	2.428473589
GSM358428	-3.387187018	2.979675079
GSM358429	-1.350576618	7.033696787
GSM358430	4.374590814	-0.490015631
GSM358431	4.0978544	-5.884934455
GSM358432	-0.800015228	6.805094468
GSM358433	0.558282542	-8.105092703
GSM358434	-0.749779561	6.198372661
GSM358435	2.892669922	0.425454484
GSM358436	-0.290136454	-0.205049343
GSM358442	1.902963073	0.417517326
GSM358443	5.325539906	-0.179804952
GSM358444	-1.090178314	4.719029527
GSM358445	-5.176879915	10.7489861
GSM358446	1.551800180	-6.674022460
GSM358447	-3.230840112	-13.115192470
GSM358448	2.839877590	7.557427747
GSM358449	0.613512536	7.236317776
GSM358450	0.521155552	-1.197260059
GSM358451	-3.124485790	6.163718838
GSM358452	-1.102526003	0.738331395
GSM358453	-4.971468265	2.703469320
GSM358454	-2.590159516	3.017239549
GSM358455	-2.197918493	11.807867210
GSM358456	-2.531940482	6.207029283
GSM358457	-6.289454656	2.695635513
GSM358458	-3.594717333	-3.059023286
GSM358459	-6.570956032	7.898088796
GSM358460	-1.686035968	10.248225020
GSM358461	-3.336013565	9.059800652
GSM358462	10.401065690	-11.784046740
GSM358463	-0.946785691	-0.962003859
GSM358464	2.963563596	2.611269573
GSM358465	-2.841393440	1.088215112
GSM358466	4.985133811	-1.656916326
GSM358467	5.882202584	-5.442046783
GSM358468	7.037259143	0.139336544
GSM358469	0.019691543	4.320224014
GSM358470	0.011033689	-5.333937684
GSM358471	-0.783014941	1.131259782
GSM358472	9.896502306	-3.197982326
GSM358473	-0.561582055	4.250143202
GSM358474	0.620774202	4.820100995
GSM358475	13.573448440	-2.295072992
GSM358476	0.392395964	2.129153476
GSM358477	-2.649816180	-16.4779029
GSM358478	10.614728660	-4.579097704
GSM358479	-1.880791328	-0.973081428
GSM358480	-1.223675881	2.325004952
GSM358481	-2.256381199	-0.981146432
GSM358482	-1.193275160	4.285808875
GSM358483	2.114218288	8.18421782
GSM358484	-2.828733370	-0.521474766
GSM358485	-3.129410999	2.419662407
GSM358486	1.542187268	-1.977001879
GSM358487	-1.583414150	-3.509463821
GSM358488	0.324791685	0.260848578
GSM358489	-0.168495064	-2.311762219
GSM358490	-0.434021871	2.717601923
GSM358491	-0.637334878	-7.507961644
GSM358492	3.107829328	-8.626670325
GSM358493	3.772185434	-18.83758042
GSM358494	2.142647737	-9.12116231
GSM358495	-2.123416095	7.026120917
GSM358496	2.573905182	-2.152902386
GSM358497	-1.796599855	-3.008587411
GSM358498	-5.876104876	1.966300335
GSM358499	0.625906297	-4.904084116
GSM358500	-4.38716387	-9.779928337
GSM358501	7.025366156	-8.50842463
GSM358502	-3.200282681	-3.157733639
GSM358503	-3.906355988	-3.016058799
GSM358504	-0.683879644	-4.267269563
GSM358505	0.787617392	1.253002006
GSM358506	0.372645622	3.442499683
GSM358507	1.912907032	-9.263180606
GSM358508	0.249632804	2.654597575
GSM358509	-0.943361501	-9.114249319
GSM358510	-0.037581317	-14.87982117
GSM358511	-2.874821964	10.45702925
GSM358512	0.61760737	-1.778985111
GSM358513	4.291528172	-7.816081207
GSM358514	-3.362491464	-3.71941087
GSM358515	2.786062951	-8.640919292
GSM358516	-0.442883671	-0.642879182
GSM358517	-1.197078531	-0.798475688
GSM358518	0.860640362	2.782418147
GSM358519	-0.766412892	4.185043349
GSM358520	-3.126612486	-10.10822743
GSM358521	-1.824862812	6.296714774
GSM358522	-0.415269243	7.070992914
GSM358523	-2.54144055	6.459856541
GSM358524	-0.479321858	-0.53278447
GSM358525	-1.210960008	-11.10176847
GSM358526	-3.105230419	1.892009155
GSM358527	-3.357624954	-1.964317789
GSM358528	-4.081532849	2.964118759
GSM358529	-1.358256677	-2.451995683
GSM358530	1.521474968	-2.35794512
GSM358531	-0.805571277	5.623755304
GSM358532	-1.340158645	-9.86691897
GSM358533	1.663946242	0.663957255
GSM358534	-0.481945623	-2.886654276
GSM358535	0.306553892	-6.192759891
GSM358536	-0.445977636	-4.10401288
GSM358537	2.162645881	4.472660634
GSM358538	0.34111549	-7.485541457
GSM358539	1.591533891	5.365995836
GSM358540	1.80703245	7.39199844
GSM358541	12.3179798	-17.23082522
GSM358542	2.844311913	2.977044762
GSM358543	-0.899892659	6.578598237
GSM358544	4.145275368	5.44772501
GSM358545	-2.283061934	5.496713808
GSM358546	-4.589099265	0.658226787
GSM358547	0.506267523	0.267992948
GSM358548	0.60260036	3.349618577
GSM358549	-0.231803326	3.770489515
GSM358550	-3.208817252	11.67385282
GSM358551	-3.202457981	-3.876167713
GSM358552	-1.622491069	4.25128525
GSM358553	3.130988056	-5.735572002
GSM358554	-5.8049936	-4.066054088
GSM358555	-0.704534427	2.082218777
GSM358556	-4.226099087	10.84187646
GSM358557	-0.218520717	3.88415527
GSM358558	4.470424863	-4.894558674
GSM358559	-2.77503434	5.139565893
GSM358560	0.86541943	8.999209466
GSM358561	-1.902773765	3.156893449
GSM358562	-1.902773765	3.156893449
GSM358563	-3.922202854	-4.49929164
GSM358564	1.689210221	4.08493204
GSM358565	3.709462225	5.53239597
GSM358566	-2.894958847	6.048858519
GSM358567	0.359194938	-2.150756119
GSM358568	11.91597054	-6.530905701
GSM358569	-1.153548746	3.165586262
GSM358570	-1.484508334	4.22676824
GSM358571	-0.787818869	-19.08679045
GSM358572	5.926134363	-10.46171763
GSM358573	-2.10453109	-16.83170873
GSM358574	-3.212480033	2.251966546
GSM358575	0.506004669	0.240252605
GSM358576	-1.621631278	-0.076328255
GSM358577	-0.787141645	-11.31262727
GSM358578	-2.570642086	-6.18413531
GSM358579	-4.52631332	4.419458831
GSM358580	-2.768993035	-3.11853235
GSM358581	-1.621817237	-0.688055575
GSM358582	-3.020822036	1.771833876
GSM358583	-0.646459842	0.13753843
GSM358584	-1.692027996	1.179875344
GSM358585	-2.063497469	6.66106218
GSM358586	-2.354327617	-7.878640353
GSM358587	-4.507626905	-1.400620661
GSM358588	-3.729040694	-6.05226234
GSM358589	-3.615128548	-4.96272379
GSM358590	-3.682473796	-9.509518238
GSM358591	-3.079500216	-10.21443005
GSM358592	-3.072595545	-9.275710235
GSM358593	-4.053127119	-5.869605245
GSM358594	-3.215762181	9.92014912
GSM358595	2.980451194	-7.575504304
GSM358596	1.671582951	-5.983392125
GSM358597	-1.826391476	1.955221657
GSM358598	-3.818382184	6.688753769
GSM358599	-4.612778581	-0.613417651
GSM358600	-0.591752483	-1.245160609
GSM358601	-2.072719124	4.362160427
GSM358602	-1.387513937	-4.770169596
GSM358603	-3.154374731	3.933007053
GSM358604	-1.92821742	-1.224913444
GSM358605	2.590042911	-16.06823626
GSM358606	-2.342729525	-9.572882859
GSM358607	-2.201540184	-0.86085936
GSM358608	-1.271915961	-5.242871279
GSM358609	1.682719916	0.298889729
GSM358610	-3.312893716	3.240876259
GSM358611	-3.996211465	3.024793867
GSM358612	0.098988542	3.917984416
GSM972004	-1.559095585	0.810154034
GSM972005	-2.338479578	9.737905701
GSM972006	-1.667924	-1.794188863
GSM972007	6.142564957	-9.747251698
GSM972008	-0.297172775	-15.2941879
GSM972009	-0.139005731	-3.79069325
GSM972010	1.673309271	-2.112046842
GSM972011	3.44893794	9.737905701
GSM972012	-2.108523205	4.363054364
GSM972013	-0.568775504	5.182416264
GSM972014	-3.411727618	6.796129784
GSM972015	-3.989102244	0.563953215
GSM972016	-3.027399828	-4.373311982
GSM972017	4.132902587	-2.219107422
GSM972018	2.201485972	-5.120410846
GSM972019	4.141994902	-9.014456561
GSM972020	-0.467893838	-0.171437873
GSM972021	-0.776999545	1.190131155
GSM972022	1.210240574	-0.219671191
GSM972023	1.067214572	-0.557196538
GSM972024	-0.627602108	5.332387779
GSM972025	-1.344947383	2.412070832
GSM972026	9.57500341	-11.70467319
GSM972027	5.363052893	2.234313466
GSM972028	3.873357823	-5.991687076
GSM972029	9.338773388	-5.10107454
GSM972030	8.315733783	-10.18186878
GSM972031	-1.162704525	5.013361186
GSM972032	-3.734187894	7.134418186
GSM972033	0.109087027	9.663440431
GSM972034	2.681401231	6.394404035
GSM972035	-1.711183532	11.19873596
GSM972036	1.167827372	4.125562204
GSM972037	-0.229408422	3.888973438
GSM972038	-0.139966932	6.371568925
GSM972039	16.66187859	-13.0309033
GSM972040	-1.794246662	7.564667887
GSM972041	0.53988553	4.260174272
GSM972042	-4.139379891	6.887551088
GSM972043	-3.693468734	8.138299901
GSM972044	-3.822516497	10.98649641
GSM972045	-3.002180005	7.805433155
GSM972046	1.929590944	-9.565682895
GSM972047	-1.00263579	3.973511159
GSM972048	-0.371501067	4.551827786
GSM972049	-1.784632822	6.720766785
GSM972050	-1.590294982	6.620728101
GSM972051	15.33170811	-7.823624788
GSM972052	-2.038704933	5.993006116
GSM972053	-2.036605572	11.6990945
GSM972054	6.462483725	-7.685747977
GSM972055	0.309903597	-6.08690832
GSM972056	-1.175059028	-1.158345714
GSM972057	3.460316993	-0.63538951
GSM972058	-2.65994709	-12.09311698
GSM972059	5.790483262	-21.1239496
GSM972060	-0.105437953	-1.939522558
GSM972061	3.906702874	-4.278418202
GSM972062	0.51720295	-1.759983293
GSM972063	-1.504285743	-3.078267347
GSM972064	0.897816868	-13.56546663
GSM972065	-0.338604527	-2.397921764
GSM972066	0.299351912	-1.480551467
GSM972067	0.636438289	-6.44280152
GSM972068	0.515121057	-20.32077186
GSM972069	-1.410514764	1.868890633
GSM972070	-0.895144794	-1.324584502
GSM972071	-1.486849843	1.803285399
GSM972072	-3.662833734	-8.457321145
GSM972073	-0.43242762	-9.502884287
GSM972074	1.171239754	-2.526639067
GSM972075	-2.365117357	-2.274812723
GSM972076	-0.168829681	-5.960540144
GSM972077	4.804778721	-18.14001781
GSM972078	-0.157559704	-4.243058174
GSM972079	5.346366709	-19.57531038
GSM972080	-2.708036844	-3.114564388
GSM972081	0.304564617	1.001670902
GSM972082	3.528851003	-11.30136496
GSM972083	1.577092557	-3.790873892
GSM972084	7.255102486	-6.57358766
GSM972085	-0.434854464	-3.950442922
GSM972086	-0.485394647	7.464701428
GSM972087	-1.278205832	5.011996653
GSM972088	10.23854593	-4.874158638
GSM972089	18.35582199	-9.474181654
GSM972090	-2.179792715	11.32445852
GSM972091	-3.723293519	9.66468854
GSM972092	-0.127007641	-3.564660938
GSM972093	1.871993706	-0.364155249
GSM972094	-1.846107866	-2.766470652
GSM972095	0.090084691	0.82581327
GSM972096	2.763906732	8.686092087
GSM972097	7.32553365	-13.36876817
GSM972098	0.659679477	7.100879942
GSM972099	1.154091552	7.105245394
GSM972100	0.915407252	0.96366639
GSM972101	1.970242534	-2.240698576
GSM972102	4.476740594	-13.4228302
GSM972103	-0.519605165	-5.6419045
GSM972104	5.195519446	-8.744508418
GSM972105	8.303160515	-2.034182288
GSM972106	-0.601013454	2.672682542
GSM972107	1.419553927	-5.923550363
GSM972108	-1.58758468	5.38753157
GSM972109	-2.563640686	1.071124455
GSM972110	-0.649611219	-0.464957198
GSM972111	0.463166544	-3.14134658
GSM972112	0.094703456	-15.8003225
GSM972113	6.782982322	-14.34314428
GSM972114	-2.086447886	0.983641197
GSM972115	0.423553746	2.392607061
GSM972116	12.00362389	-0.667951463
GSM972117	-2.437558693	-8.283426696
GSM972118	-0.159063572	5.9084813
GSM972119	0.3859443	5.24344962
GSM972120	-2.57734353	-5.064035495
GSM972121	0.142338945	1.047242088
GSM972122	-0.083687447	9.746989636
GSM972123	-0.725727515	6.099875855
GSM972124	0.044288155	-1.328504867
GSM972125	11.0734715	-7.245447327
GSM972126	-2.128936867	12.55108394
GSM972127	4.276846606	-3.770976131
GSM972128	-0.918138189	3.616463246
GSM972129	-0.257501914	3.507186182
GSM972130	0.628555943	8.962904837
GSM972131	1.288719802	-1.328504867
GSM972132	4.467623428	-9.002099903
GSM972133	1.860332544	-2.723533126
GSM972134	6.142578553	0.04405463
GSM972135	1.58594812	5.069875855
GSM972136	-0.257501914	3.616463246
GSM972137	1.047242088	8.962904837
GSM972138	0.142338945	1.047242088
GSM972139	1.83671213	3.905238451
GSM972140	3.295672993	-11.08725713
GSM972141	-0.793178274	-4.620769436
GSM972142	-0.010931536	4.987463747
GSM972143	1.394457372	-9.002099903
GSM972144	-1.138684915	6.124578553
GSM972145	2.69451532	-5.064035495
GSM972146	0.373072167	6.099875855
GSM972147	2.59004838	-2.623992178
GSM972148	-1.346285014	3.408131198
GSM972149	2.976240624	0.854580005
GSM972150	5.94303258	-3.421400645
GSM972151	1.168568746	-1.648886662
GSM972152	0.419969732	3.25292786
GSM972153	-0.657331333	5.068544465
GSM972154	-0.097584753	-0.167609962
GSM972155	0.231995558	2.472388892
GSM972156	0.457789542	4.312472006
GSM972157	0.52258119	-0.303901432
GSM972158	3.710616791	0.698502327
GSM972159	0.79175063	-1.167645609
GSM972160	0.416882037	-0.209258865
GSM972161	3.204636664	-1.852291922
GSM972162	2.328534062	0.043638647
GSM972163	3.356288508	-6.206654915
GSM972164	1.757625875	-1.757191694
GSM972165	0.355248198	-2.355223706
GSM972166	0.59856798	-3.216476583
GSM972167	0.094318623	0.096407951
GSM972168	0.126981686	-0.945631462
GSM972169	1.179184403	-7.873066751
GSM972170	0.749868734	1.85555129
GSM972171	2.18678802	-4.035453795
GSM972172	1.776816755	-14.20095211
GSM972173	5.840512299	-2.22516333
GSM972174	2.776970891	-3.537170065
GSM972175	3.382852683	-2.093309009
GSM972176	4.140101434	-2.436386542
GSM972177	3.64369315	-11.60733813
GSM972178	4.949740061	-6.40242993
GSM972178	0.895989544	-2.689544735
GSM972179	6.035671798	-16.13666115
GSM972180	-0.094269488	-8.630673408
GSM972181	6.83382358	-21.45081103
GSM972182	3.231597476	-3.023338781
GSM972183	3.917297732	1.972128752
GSM972184	3.530092445	-12.56403347
GSM972185	6.497571776	-2.82537831
GSM972186	12.91383881	-18.41057614
GSM972187	1.7474049	-10.17723726
GSM972188	0.196433193	-3.109632803
GSM972189	0.120501212	-0.360974777
GSM972190	2.310267627	-0.47280342
GSM972191	1.172624805	2.115840723
GSM972192	1.974082344	-8.56798543
GSM972193	2.391036726	-0.47280342
GSM972194	3.138942306	4.142873257
GSM972195	-0.6916955	-5.571138202
GSM972196	4.01148519	-0.386331593
GSM972197	1.172624805	2.115840723
GSM972198	1.974082344	-8.56798543
GSM972199	2.391036726	-0.47280342
GSM972200	3.138942306	4.142873257
GSM972201	3.01929904	-10.67703129
GSM972202	0.196433193	-3.109632803
GSM972203	0.120501212	-0.360974777
GSM972204	1.172624805	2.115840723
GSM972205	1.974082344	-8.56798543
GSM972206	2.391036726	-0.47280342
GSM972207	3.138942306	4.142873257
GSM972208	3.01929904	-10.67703129
GSM972209	0.196433193	-3.109632803
GSM972210	0.120501212	-0.360974777
GSM972211	1.172624805	2.115840723
GSM972212	1.974082344	-8.56798543
GSM972213	2.391036726	-0.47280342
GSM972214	3.138942306	4.142873257
GSM972215	3.01929904	-10.67703129
GSM972216	0.196433193	-3.109632803
GSM972217	0.120501212	-0.360974777
GSM972218	1.172624805	2.115840723
GSM972219	1.974082344	-8.56798543
GSM972220	2.391036726	-0.47280342
GSM972221	3.138942306	4.142873257
GSM972222	3.01929904	-10.67703129
GSM972223	0.196433193	-3.109632803
GSM972224	0.120501212	-0.360974777
GSM972225	1.172624805	2.115840723
GSM972226	1.974082344	-8.56798543
GSM972227	2.391036726	-0.47280342
GSM972228	3.138942306	4.142873257
GSM972229	3.01929904	-10.67703129
GSM972230	0.196433193	-3.109632803
GSM972231	0.120501212	-0.360974777
GSM972232	1.172624805	2.115840723
GSM972233	1.974082344	-8.56798543
GSM972234	2.391036726	-0.47280342
GSM972235	3.138942306	4.142873257
GSM972236	-0.606079189	7.523997357
GSM972237	-1.801680467	8.54586211
GSM972238	-2.546473535	5.986549414
GSM972239	-1.517624793	3.608949899
GSM972240	-0.982178363	-1.961594899
GSM972241	-1.112164625	6.175689087
GSM972242	-0.629969858	0.685246036
GSM972243	-1.801680467	8.54586211
GSM972244	-2.546473535	5.986549414
GSM972245	-1.517624793	3.608949899
GSM972246	-0.982178363	-1.961594899
GSM972247	-1.112164625	6.175689087
GSM972248	-0.629969858	0.685246036
GSM972249	-1.801680467	8.54586211
GSM972250	-2.546473535	5.986549414
GSM972251	-1.517624793	3.608949899
GSM972252	-0.982178363	-1.961594899
GSM972253	-1.112164625	6.175689087
GSM972254	-0.629969858	0.685246036
GSM972255	-1.801680467	8.54586211
GSM972256	-2.546473535	5.986549414
GSM972257	-1.517624793	3.608949899
GSM972258	-0.982178363	-1.961594899
GSM972259	-1.112164625	6.175689087
GSM972260	-0.629969858	0.685246036
GSM972261	-1.801680467	8.54586211
GSM972262	-2.546473535	5.986549414
GSM972263	-1.517624793	3.608949899
GSM972264	-0.982178363	-1.961594899
GSM972265	-1.112164625	6.175689087
GSM972266	-0.629969858	0.685246036
GSM972267	-1.801680467	8.54586211
GSM972268	-2.546473535	5.986549414
GSM972269	-1.517624793	3.608949899
GSM972270	-0.982178363	-1.961594899
GSM972271	-1.112164625	6.175689087
GSM972272	-0.629969858	0.685246036
GSM972273	-1.801680467	8.54586211
GSM972274	-2.546473535	5.986549414
GSM972275	-1.517624793	3.608949899
GSM972276	-0.982178363	-1.961594899
GSM972277	-1.112164625	6.175689087
GSM972278	-0.629969858	0.685246036
GSM972279	-1.801680467	8.54586211
GSM972280	-2.546473535	5.986549414
GSM972281	-1.517624793	3.608949899
GSM972282	-0.982178363	-1.961594899
GSM972283	-1.112164625	6.175689087
GSM972284	-0.629969858	0.685246036
GSM972285	-1.801680467	8.54586211
GSM972286	-2.546473535	5.986549414
GSM972287	-1.517624793	3.608949899
GSM972288	-0.982178363	-1.961594899
GSM972289	-1.112164625	6.175689087
GSM972290	-0.629969858	0.685246036
GSM972291	-1.801680467	8.54586211
GSM972292	-2.546473535	5.986549414
GSM972293	-1.517624793	3.608949899
GSM972294	-2.577817469	-3.914368909
GSM972295	2.324154969	6.81182479
GSM972296	-3.292736544	8.018303814
GSM972297	-0.620467265	-2.629906317
GSM972298	-2.851634418	5.165029271
GSM972299	0.492937535	4.897693113
GSM972300	-1.542346021	6.061667134
GSM972301	-0.538256544	-3.024216238
GSM972302	-3.292736544	8.018303814
GSM972303	-0.620467265	-2.629906317
GSM972304	-2.851634418	5.165029271
GSM972305	0.492937535	4.897693113
GSM972306	-1.542346021	6.061667134
GSM972353	-2.203289385	-0.53855489
GSM972354	-2.130189978	4.227272043
GSM972355	1.161076512	-0.936462688
GSM972357	4.508571454	0.64267834
GSM972358	-1.843036517	1.504954282
GSM972359	16.98009792	-9.685989061
GSM972360	-1.640200768	-0.12336099
GSM972361	1.369430741	-20.55404688
GSM972362	-1.662485276	4.216266879
GSM972363	-3.370117298	-1.98799717
GSM972364	-3.196622284	4.5073015
GSM972365	0.084526922	-12.27430012
GSM972366	-0.005649517	-6.194129506
GSM972367	6.585718069	-11.23679967
GSM972368	-2.302768735	7.258996581
GSM972369	-0.10485655	-15.53663642
GSM972370	1.172227873	0.018820554
GSM972371	1.50452359	4.119553247
GSM972372	-0.065263872	-2.182307136
GSM972373	0.896744965	9.098224147
GSM972374	-1.782752457	-0.767912063
GSM972375	3.724414094	-1.949812198
GSM972376	1.516585812	0.141745087
GSM972377	2.561222819	-6.030710999
GSM972378	0.453889188	-0.536797824
GSM972379	-1.589356947	3.594800929
GSM972380	5.402430434	-7.002991206
GSM972381	0.757406934	-0.974383111
GSM972382	0.040693825	4.396750536
GSM972383	-1.179245436	3.656026884
GSM972384	3.761003034	2.204496597
GSM972385	8.783465584	-15.05086862
GSM972386	-1.984300321	5.466956681
GSM972387	-2.227604313	7.94595112
GSM972388	-2.376970332	8.48754707
GSM972389	-6.02877895	9.115550948
GSM972390	5.137100108	-6.713773831
GSM972391	2.319883379	-8.709658369
GSM972392	1.145325608	-4.099279867
GSM972393	2.882692675	-4.728344918
GSM972394	3.781245793	-8.942008789
GSM972395	0.926261187	-0.524742781
GSM972396	1.187957662	8.913470285
GSM972397	1.935227286	-0.099761834
GSM972398	2.413699095	0.038775236
GSM972399	2.315374576	0.472838535
GSM972400	-2.735579008	-2.690334166
GSM972401	-0.841047461	-25.13782597
GSM972402	-0.199407571	-5.832705465
GSM972403	-0.950591403	-5.437885337
GSM972404	0.524275897	0.733220969
GSM972405	-1.474665377	-4.656703462
GSM972406	-1.315656622	-9.901446896
GSM972407	2.122038613	-1.543160384
GSM972408	-0.687957478	-3.853661237
GSM972409	-0.768671921	22.95283813
GSM972410	3.444498344	-12.96255929
GSM972411	-1.276413587	4.260873745
GSM972412	3.612327789	-3.095262104
GSM972413	2.006137132	-15.2446519
GSM972414	0.324502536	1.492001808
GSM972415	0.74485616	4.909675506
GSM972416	2.178053961	-5.26387169
GSM972417	6.431759485	-5.506704715
GSM972418	2.794936193	-9.68818195
GSM972419	3.307613827	-6.602272923
GSM972420	9.957813598	-9.287443299
GSM972421	4.823275358	-22.53445799
GSM972422	1.451248146	-4.492288766
GSM972423	3.123073841	-0.777196688
GSM972424	1.159144409	-10.0759351
GSM972425	7.426052572	-12.56478875
GSM972426	2.528897034	-3.125144392
GSM972427	7.020900495	-12.33973448
GSM972428	2.603536848	-6.749848941
GSM972429	0.10452757	-8.695537157
GSM972430	1.468210017	-6.85384653
GSM972431	2.71979665	-5.545696614
GSM972432	7.855496426	-15.2341135
GSM972433	-0.685708946	3.645892127
GSM972434	2.97933022	-0.505567493
GSM972435	1.41225417	-4.336925453
GSM972436	3.024874429	-7.340060605
GSM972437	2.126497652	-15.27019145
GSM972438	9.071545503	0.88214784
GSM972439	-0.4979263	-10.19305846
GSM972440	6.33958359	-13.13357266
GSM972441	0.624464043	-8.09189108
GSM972442	-2.593250873	6.315262272
GSM972443	-3.18837447	-6.184387947
GSM972444	-2.98569968	3.087749644
GSM972445	-0.473074774	-0.608640604
GSM972446	-1.364739647	2.768051914
GSM972447	-1.882630842	8.34785056
GSM972448	-3.462560073	12.49143265
GSM972449	-3.99726339	-7.12857941
GSM972450	-3.755015896	8.805680307
GSM972451	-2.910030209	6.76227354
GSM972452	-3.668917128	-8.827858292
GSM972453	-1.758423686	7.514592798
GSM972454	-3.879508547	9.339033589
GSM972455	-4.379975231	-2.449513973
GSM972456	-3.99285593	8.98817413
GSM972457	-3.871192122	6.96584478
GSM972458	-4.380810823	11.92840963
GSM972459	-3.013955897	8.855187992
GSM972460	2.002979929	2.435932456
GSM972461	5.041407163	7.601835195
GSM972462	-5.21368032	10.54184118
GSM972463	13.46567833	-4.06622179
GSM972464	-1.390137569	6.625966473
GSM972465	-2.406667266	6.346084772
GSM972466	-4.44010975	-13.72546805
GSM972467	4.536866838	6.010257557
GSM972468	-5.459357213	5.984594653
GSM972474	-3.223991275	5.385549758
GSM972475	-3.548173634	8.173692660
GSM972476	4.821975096	-5.061898825
GSM972477	-3.004551783	10.04752892
GSM972478	-3.570769749	7.739461146
GSM972479	-1.55126582	-13.49282283
GSM972480	-4.496229368	9.948228534
GSM972481	-2.08735878	2.395875864
GSM972482	-0.029669407	4.900494035
GSM972483	-0.744131712	9.588527229
GSM972484	-3.490515863	5.182663856
GSM972485	-2.663504202	5.52869862
GSM972486	-2.526983225	6.98275775
GSM972487	-4.608306802	7.973098294
GSM972488	-5.37573149	7.4652073
GSM972489	-3.618532011	7.39560376
GSM972490	-2.990933649	11.1406136
GSM972491	-2.398455792	8.693895918
GSM972492	-3.969436787	8.370392805
GSM972493	0.888706648	6.91043744
GSM972494	-2.930076861	3.387501295
GSM972495	-0.094259103	5.327628742
GSM972496	-1.228826718	1.08169889
GSM972497	-1.265430642	5.12515788
GSM972498	-1.830728803	7.71267248
GSM972499	-5.641601973	3.17447934
GSM972500	0.769464155	-2.470140739
GSM972501	-1.306329178	8.15609866
GSM972502	5.361271879	-5.86470765
GSM972503	-0.444453291	-4.06330915
GSM972504	1.589750275	-1.93181664
GSM972505	2.475044142	-2.85230441
GSM972506	-4.674563375	5.16588328
GSM972507	-3.140444809	7.71103625
GSM972508	-1.289720631	11.567267
GSM972509	-3.21591044	11.7811255
GSM972510	-4.496681115	10.0185735
GSM972511	-3.471098693	7.63156876
GSM972512	-1.736138727	8.81780476
GSM972513	-4.47878399	12.6082625
GSM972514	-3.176623982	13.5776984
GSM972515	-4.432041916	7.84905153
GSM972516	1.577396734	-9.17121223
GSM972517	3.705244391	-6.98206707
GSM972518	-2.675088972	-1.64193270
GSM972519	3.062941312	-5.03065794
GSM972520	2.09143885	-12.0261040
GEO Fersig score

Score 1	Score 2	Score 3	Score 4	Score 5	Score 6	Score 7	Score 8	Score 9	Score 10																																																
16.14639024	5.327144722	12.35078387	-5.405627956	-2.282719165	25.2970487	20.74963824	-2.887624072	4.797183316	14.84890728																																																
-9.69376543	2.076756346	1.982572594	11.15922564	-8.395031318	6.12803919	2.222657624	-2.91852869	-3.385334404	-2.77702128																																																
-3.116407415	-8.098793748	-5.395450318	2.022711986	6.808620693	1.089164923	20.76347476	9.350214968	8.819656818	-7.543927988																																																
-6.529673404	-4.43873305	20.84050444	4.779305171	0.155812805	17.12194283	-1.506636657	-13.38476542	-4.977721574	31.27580979																																																
6.59100904	-11.03681789	7.830947586	1.088357375	0.997321643	11.40197033	12.62699192	-5.462154207	-13.41300454	-7.265928884																																																
-12.09002107	-5.444562587	-3.093297488	2.997623935																																																						
1.485445747	5.505344857	-5.809207842	-15.92586602	8.22582264	9.884352359	-4.717550157	-6.62280524	1.718415612	-9.288204628	-1.840857398	-7.674937585	-5.607399065	-14.00578571	-8.738969765	-8.985090168	-0.535694047	-14.46904483	-11.93426099	-12.39581422	22.18511243	0.015218168	0.352294023	-3.929608552	6.642050137	11.32424937	6.897922599	-4.300532471	5.344971372	-1.904274723	13.09448463	-4.811725257	-4.199326793	15.86852143	-1.736757512	13.82842128	15.19382637	-0.9077099	-3.548680833	-1.275234767	-5.485136391	-6.069999531	-2.307263571	-5.549073406	3.519189147	1.92604967	0.063943106	2.143267155	-3.151623795	6.870626767	11.73449965	22.60976585	11.26381005	-9.149537012	4.726807567	1.211987556	-7.842405212	5.529990413
-2.369249619																																																									
-12.07638528																																																									
0.126264863																																																									
15.88981665																																																									
14.99701512																																																									
3.651687519																																																									
3.785356114																																																									
12.60311594																																																									
-6.471577569																																																									
-5.751191768																																																									
-10.2078574																																																									
-4.553055459																																																									
1.345912155																																																									
6.35201001																																																									
7.321896818																																																									
13.15645146																																																									
-0.296455965																																																									
-1.9668307																																																									
1.429911765																																																									
1.62441111																																																									
-5.9599989887																																																									
-3.757018215																																																									
21.28017353																																																									
3.128739428																																																									
9.865044899																																																									
14.43984084																																																									
18.49760257																																																									
-6.176065711																																																									
-10.86866976																																																									
-9.554353403																																																									
-3.713039704																																																									
-12.90991949																																																									
-2.957734831																																																									
-4.118381859																																																									
-6.511535858																																																									
29.69196892																																																									
-9.358914549																																																									
-3.720188742																																																									
-11.02693098																																																									
-11.83176863																																																									
-14.80901291																																																									
-10.80761316																																																									
11.49527384																																																									
-4.976146948																																																									
-4.923328854																																																									
-8.505399607																																																									
-8.211023084																																																									
23.1553329																																																									
-8.031711049																																																									
-13.73551503																																																									
14.1483587																																																									
6.392594429																																																									
-0.016713314																																																									
4.075675944																																																									
9.433175272																																																									
26.91443286																																																									
1.834084604																																																									
8.185121076																																																									
2.277186243																																																									
1.573981605																																																									
14.4632835																																																									
2.059317237																																																									
1.779903379																																																									
7.079239809																																																									
20.83589292																																																									
-3.279405397																																																									
0.429439708																																																									
-3.290135243																																																									
4.794487411																																																									
9.070456666																																																									
3.697878821																																																									
-0.090304634																																																									
5.791710464																																																									
22.94479653																																																									
4.085498847																																																									
24.92167709																																																									
0.406527545																																																									
-0.697106285																																																									
14.83021597																																																									
5.367966445																																																									
13.82869015																																																									
3.515588463																																																									
-7.950096075																																																									
-6.290202485																																																									
15.11270457																																																									
27.83000364																																																									
-13.50425124																																																									
-13.38798206																																																									
3.437653297																																																									
2.236148955																																																									
0.920362787																																																									
-0.735726579																																																									
-5.922185354																																																									
20.69430154																																																									
-6.441200465																																																									
-5.951153841																																																									
-0.050959139																																																									
4.21094111																																																									
17.89902362																																																									
5.122299335																																																									
13.94002786																																																									
10.3373428																																																									
-3.273695996																																																									
7.403104291																																																									
-6.975117837																																																									
-3.634765141																																																									
-0.184654021																																																									
3.604301203																																																									
15.8947357																																																									
21.1261266																																																									
-3.070089083																																																									
-1.969053315																																																									
12.68057535																																																									
5.845866003																																																									
-6.067544872																																																									
-4.85750532																																																									
1.33655144																																																									
-4.487669821																																																									
-11.31104036																																																									
2.009439052																																																									
-8.016663689																																																									
-4.404755578																																																									
-7.604013155																																																									
2.485959694																																																									
-15.29565785																																																									
-15.17257674																																																									
2.485959694																																																									
-15.6985864																																																									
1.460142791																																																									
-14.12224869																																																									
-10.90138663																																																									
-8.09181495																																																									
-17.76315957																																																									
-12.46461942																																																									
-2.061255792																																																									
-13.42262221																																																									
-15.90707644																																																									
-4.221042179																																																									
-13.10376417																																																									
-9.527910545																																																									
-9.021728511																																																									
-10.45144488																																																									
-13.37759852																																																									
-8.941395626																																																									
-9.938241247																																																									
-5.730684097																																																									
-14.0655539																																																									
-12.4877879																																																									
-7.85121979																																																									
-13.25671483																																																									
-1.434592387																																																									
-8.967933771																																																									
-8.480782021																																																									
-5.780367678																																																									
-10.77246015																																																									
-8.472767066																																																									
-13.20762798																																																									
0.910458517																																																									
-10.80276516																																																									
-12.99282233																																																									
-0.068046485																																																									
-11.40583123																																																									
-13.23281495																																																									
-10.20068736																																																									
-10.07933339																																																									
-9.406967691																																																									
-11.36369419																																																									
-11.86509826																																																									
1.869910261																																																									
-12.66670601																																																									
-14.75908674																																																									
-15.33381836																																																									
9.39442185																																																									
-4.461759324																																																									
4.39698208																																																									
Number																																																									

-1.664734495																																																									
-6.357462021																																																									
2.0975392																																																									
3.865893115																																																									
-3.347990799																																																									
26.66608699																																																									
-1.516839778																																																									
21.92347762																																																									
-5.878752155																																																									
-1.388317581																																																									
-7.703923784																																																									
12.35882705																																																									
6.18847999																																																									
17.82251774																																																									
-9.561765316																																																									
15.43615077																																																									
1.153407319																																																									
-2.615029657																																																									
2.117043264																																																									
-8.201479182																																																									
-1.014840394																																																									
5.674226292																																																									
1.374840725																																																									
8.591933818																																																									
0.990687012																																																									
-5.184157876																																																									
12.40542164																																																									
1.731790045																																																									
-4.356056711																																																									
-4.83527232																																																									
1.556506437																																																									
19.29153421																																																									
-7.451257002																																																									
-10.17355543																																																									
-10.8645174																																																									
-15.14432984																																																									
11.85087394																																																									
11.02864175																																																									
5.244605475																																																									
7.611037593																																																									
12.72325458																																																									
1.451003968																																																									
-7.725512623																																																									
2.03498912																																																									
2.374923859																																																									
1.842536041																																																									
-0.045244842																																																									
24.29677851																																																									
5.633297894																																																									
4.487293934																																																									
-0.208945072																																																									
3.182038086																																																									
8.585790274																																																									
3.665198997																																																									
3.16570376																																																									
22.18416621																																																									
16.40705763																																																									
-5.537287333																																																									
Value																																																									

6.707589893																																																									
17.25078903																																																									
-1.167499272																																																									
-4.164819346																																																									
7.44144113																																																									
11.9384642																																																									
3.763754389																																																									
9.90988675																																																									
22.76266828																																																									
19.2452569																																																									
27.35773334																																																									
5.943536912																																																									
3.900270709																																																									
11.23507951																																																									
19.99084132																																																									
5.654041426																																																									
19.35892497																																																									
9.353385789																																																									
8.800064727																																																									
8.322056547																																																									
8.265493264																																																									
23.08960993																																																									
-4.331601073																																																									
3.484900514																																																									
5.749179623																																																									
10.36493503																																																									
17.3966891																																																									
8.189397663																																																									
9.695132162																																																									
19.46753102																																																									
8.71465315																																																									
-8.907613145																																																									
2.996013477																																																									
-6.073449325																																																									
0.13556583																																																									
-4.132791561																																																									
-10.2304814																																																									
-15.95399272																																																									
3.128853073																																																									
-12.5606962																																																									
-9.672303748																																																									
5.158941164																																																									
-9.273016484																																																									
-13.21854214																																																									
-1.930461258																																																									
-12.38745972																																																									
-10.8370369																																																									
-16.30922046																																																									
-11.86914389																																																									
-0.432952527																																																									
-12.64324236																																																									
-15.75520921																																																									
17.53190012																																																									
-8.016104043																																																									
-8.752752038																																																									
9.285358303																																																									
-10.54712439																																																									
-11.44395187																																																									
samples	Liu PC1 of genes A	Liu PC1 of genes B	Liu Fersig score																																																						
---------------	--------------------	--------------------	-----------------																																																						
Patient107	-23.80745186	21.47483195	-2.332619905																																																						
Patient163	4.603320171	0.428653169	4.174667002																																																						
Patient96	0.933685419	0.667551842	0.246133577																																																						
Patient83	0.41275053	-2.641835437	3.054585966																																																						
Patient121	2.792776258	2.81556443	-0.022789185																																																						
Patient48	-2.645320039	2.653624975	0.008304935																																																						
Patient94	1.60283282	1.136807624	0.466025196																																																						
Patient117	3.074452009	3.835144862	-0.760692854																																																						
Patient146	1.053291252	1.406463501	-0.353172249																																																						
Patient99	0.303442657	3.587045674	-3.283603017																																																						
Patient185	1.382480485	1.755067352	-0.372586867																																																						
Patient78	1.789925535	3.474724229	-1.684798694																																																						
Patient201	1.943360436	-0.442985813	2.386346249																																																						
Patient112	1.783808945	2.267832144	-0.484023199																																																						
Patient24	1.61770294	1.247336656	0.370366284																																																						
Patient187	1.071112201	0.894927489	0.176184712																																																						
Patient79	3.041668211	3.066675126	-0.025006915																																																						
Patient181	2.196966207	1.849659937	0.34730627																																																						
Patient8	0.444599999	-0.256362493	0.700964933																																																						
Patient40	-0.971389054	-1.580215117	0.608826063																																																						
Patient11	-0.2528136	0.531041628	-0.783855228																																																						
Patient34	5.062675306	-0.261274943	5.323950249																																																						
Patient72	1.913935463	0.732770315	1.181165148																																																						
Patient27	0.406591344	0.100316383	0.306274961																																																						
Patient38	-0.038110319	-0.426205025	0.388094706																																																						
Patient167	2.758938477	2.851642142	-0.092730365																																																						
Patient67	-1.450615964	-3.245409576	1.749739612																																																						
Patient193	2.553249606	2.247023189	0.306226427																																																						
Patient170	0.829382499	0.964034115	-0.134651616																																																						
Patient140	-0.98296165	-0.696718896	-0.286242753																																																						
Patient191	-0.097097601	2.372174314	-2.469271914																																																						
Patient98	1.794997348	1.93847633	-0.143478982																																																						
Patient42	-0.603488467	0.1744312	-0.777919667																																																						
Patient183	-2.47838733	-4.088553122	1.610165793																																																						
Patient205	0.391474326	2.760480186	-2.369005861																																																						
Patient82	0.132335029	-2.231214101	2.363549133																																																						
Patient45	0.071840621	3.097589103	-3.025748481																																																						
Patient116	3.655870399	0.925544728	2.730325671																																																						
Patient206	3.864585585	2.971417947	0.893167368																																																						
Patient35	1.674020015	1.328567067	0.345429984																																																						
Patient7	1.216125365	0.566764125	0.64936124																																																						
Patient144	-1.65378019	-3.528023601	1.87424341																																																						
Patient100	1.19096903	4.351230409	-3.160261379																																																						
Patient141	-2.418873163	-1.805382651	-0.613490512																																																						
Patient47	1.845747249	-1.054179787	2.899927037																																																						
Patient105	-3.977244541	-3.614320486	-0.362924056																																																						
Patient162	-1.140134543	-0.298694532	-0.84140011																																																						
Patient33	1.806144436	2.685720564	-0.879576128																																																						
Patient62	1.454475477	3.238365037	-1.78388956																																																						
Patient155	0.266507263	0.646653726	-0.380146464																																																						
Patient165	-0.163396392	0.591365087	-0.754761479																																																						
Patient56	3.15697418	2.538536897	0.618438021																																																						
Patient126	1.032414905	1.928625853	-0.896210949																																																						
Patient37	0.885131038	2.06995457	-1.184823532																																																						
Patient63	0.074084714	-1.782649768	1.856734481																																																						
Patient142 -1.996396708 -0.285794148 -1.71060256																																																									
Patient169 0.116358406 0.573725974 -0.457367568																																																									
Patient18 0.809596044 -0.463951832 1.273547876																																																									
Patient61 0.989425751 -6.157680499 7.14710625																																																									
Patient58 -2.373672222 -1.769546122 -0.604126101																																																									
Patient4 0.244497144 0.423024919 0.098664995																																																									
Patient189 2.303382586 1.249142973 1.054239613																																																									
Patient196 1.062229884 0.424820022 0.637409862																																																									
Patient31 1.315893821 0.412302491 0.903591329																																																									
Patient10 1.341338084 -0.155986767 1.497324851																																																									
Patient197 0.751217163 0.123655566 1.685922322																																																									
Patient20 -1.366353705 2.659680346 -4.026034051																																																									
Patient166 -0.705025849 -0.603426611 -0.101599238																																																									
Patient149 0.535824092 4.064162713 -3.52833862																																																									
Patient200 4.26668939 2.580767068 1.685922322																																																									
Patient23 1.87754961 0.542128147 1.335421463																																																									
Patient87 0.016382122 0.607271898 -0.590845067																																																									
Patient44 -3.84433739 -1.036468702 -2.808365036																																																									
Patient145 0.9245577 1.69285488 -0.58629711																																																									
Patient135 -1.847963631 0.104534324 -1.952500684																																																									
Patient132 0.764876713 2.667547886 -1.902591274																																																									
Patient204 2.772685234 1.61381357 1.158903877																																																									
Patient134 0.877819315 0.94226027 -0.071406713																																																									
Patient77 0.314650879 2.010746607 -1.696095728																																																									
Patient184 -0.774963192 0.522513402 -1.29746594																																																									
Patient32 -0.34642393 -0.616998341 0.27054411																																																									
Patient108 -13.8330556 -14.28659754 0.90329588																																																									
Patient137 -2.162367978 2.298234442 -4.45520242																																																									
Patient51 -6.820141305 -2.217801681 -4.60339624																																																									
Patient133 -1.939638529 0.509636183 -2.449274712																																																									
Patient143 -3.273298265 -32.64521923 -0.087763423																																																									
Patient159 1.721914672 1.682767075 0.039147597																																																									
Patient195 1.296482828 1.30847624 -0.012364797																																																									
Patient25 3.20899635 1.82323897 1.38567538																																																									
Patient131 -4.473734865 -2.282169814 -2.191565051																																																									
Patient15 1.339210945 -0.397970588 1.737181532																																																									
Patient154 4.644832971 0.51381743 4.131015541																																																									
Patient106 0.061858344 0.047281109 -0.985422766																																																									
Patient17 0.065701761 1.958406443 -1.30130468																																																									
Patient130 1.591998421 1.47439849 0.117999343																																																									
Patient156 2.239646316 1.957140312 0.282506005																																																									
Patient172 2.542570493 2.519602529 0.022987969																																																									
Patient150 0.530360057 0.285899604 0.244466453																																																									
Patient173 1.835108623 1.937728116 -0.102619493																																																									
Patient203 2.652659229 1.99624396 0.656415269																																																									
Patient21 -0.45584902 0.190779717 -0.646687373																																																									
Patient125 -2.2709535 0.972462635 -3.243416135																																																									
Patient6 0.449403283 0.770109375 -0.275706093																																																									
Patient158 1.748657638 1.10975492 0.638682146																																																									
Patient188 1.563543324 -0.620622648 2.184165792																																																									
Patient147 -1.358950435 -1.159199734 -0.199750701																																																									
Patient36 0.869128135 -0.93591417 1.805042552																																																									
Patient1 -0.307812025 -1.991628532 1.68381328																																																									
Patient102 1.751691564 1.893929239 -0.142237676																																																									
Patient75 -2.681846211 2.572965989 -5.254812199																																																									
Patient168 -0.183834071 0.54772504 -0.731591111																																																									
Patient30 -1.190000963 0.015312335 -1.205321938																																																									
Patient148 0.732437992 0.435434977 0.297003014																																																									
Patient	Value1	Value2	Value3																																																						
----------	----------	----------	----------																																																						
Patient14	2.179404815	1.953417323	0.225987492																																																						
Patient9	1.762107117	-0.15093356	1.913040677																																																						
Patient73	1.551758102	0.21521774	1.336540362																																																						
Patient86	0.059454268	0.968457244	-0.909002977																																																						
Patient127	3.005069489	1.434361698	1.570707791																																																						
Patient13	2.629219031	0.808248371	1.820970659																																																						
Patient179	-6.80245096	-7.997613106	1.195162146																																																						
Patient22	0.601541363	-0.422716544	1.024257906																																																						
OS	Dead	BRgroup																																																							
------	------	---------																																																							
47	0 CR/PR																																																								
173	1 PD/SD																																																								
913	0 CR/PR																																																								
71	1 PD/SD																																																								
1306	0 CR/PR																																																								
53	1 PD/SD																																																								
40	1 PD/SD																																																								
295	1 PD/SD																																																								
612	0 CR/PR																																																								
921	0 CR/PR																																																								
203	0 PD/SD																																																								
356	1 PD/SD																																																								
167	1 PD/SD																																																								
521	1 PD/SD																																																								
137	1 PD/SD																																																								
617	0 CR/PR																																																								
849	0 PD/SD																																																								
476	0 CR/PR																																																								
1005	1 PD/SD																																																								
468	1 PD/SD																																																								
160	1 PD/SD																																																								
1691	0 CR/PR																																																								
395	0 PD/SD																																																								
431	0 PD/SD																																																								
343	1 PD/SD																																																								
282	1 PD/SD																																																								
136	1 PD/SD																																																								
659	0 PD/SD																																																								
347	0 PD/SD																																																								
351	1 PD/SD																																																								
658	0 CR/PR																																																								
683	1 PD/SD																																																								
1027	0 CR/PR																																																								
572	1 PD/SD																																																								
392	1 PD/SD																																																								
131	1 PD/SD																																																								
1666	0 CR/PR																																																								
118	1 PD/SD																																																								
90	1 PD/SD																																																								
968	1 PD/SD																																																								
269	1 PD/SD																																																								
662	0 CR/PR																																																								
938	1 CR/PR																																																								
875	0 CR/PR																																																								
937	0 PD/SD																																																								
521	1 CR/PR																																																								
201	1 PD/SD																																																								
1679	0 CR/PR																																																								
1001	0 CR/PR																																																								
475	0 PD/SD																																																								
75	0 PD/SD																																																								
122	1 PD/SD																																																								
992	0 CR/PR																																																								
275	1 PD/SD																																																								
178	1 PD/SD																																																								
	PD/SD	CR/PR																																																							
---	-------	-------																																																							
996	0	1																																																							
543	0	1																																																							
130	1	0																																																							
987	0	1																																																							
303	1	0																																																							
600	1	0																																																							
718	0	1																																																							
81	1	0																																																							
426	1	0																																																							
1139	1	0																																																							
960	0	0																																																							
242	1	0																																																							
205	1	0																																																							
497	1	0																																																							
512	1	0																																																							
975	0	0																																																							
1263	0	0																																																							
922	0	0																																																							
833	0	0																																																							
628	0	0																																																							
739	0	0																																																							
819	0	0																																																							
590	1	0																																																							
444	1	0																																																							
513	0	0																																																							
53	1	0																																																							
165	1	0																																																							
772	0	0																																																							
1547	0	0																																																							
370	1	0																																																							
630	0	0																																																							
288	0	0																																																							
895	0	0																																																							
1096	0	0																																																							
833	0	0																																																							
149	1	0																																																							
635	0	0																																																							
780	0	0																																																							
686	1	0																																																							
192	1	0																																																							
87	1	0																																																							
272	0	0																																																							
685	0	0																																																							
42	1	0																																																							
626	1	0																																																							
906	0	0																																																							
978	0	0																																																							
687	1	0																																																							
194	0	0																																																							
74	1	0																																																							
960	0	0																																																							
451	1	0																																																							
283	1	0																																																							
785	0	0																																																							
891	0	0																																																							
623	0	0																																																							
213	1	0																																																							
792	0	0																																																							
Number	Description																																																								
--------	--------------																																																								
186	1 PD/SD																																																								
963	0 PD/SD																																																								
846	1 PD/SD																																																								
1327	0 PD/SD																																																								
866	0 CR/PR																																																								
58	1 PD/SD																																																								
653	0 CR/PR																																																								
253	1 PD/SD																																																								
Table S6. Fersig score of different databases

samples	Vanallen PC1 of genes A	Vanallen PC1 of genes B		
Pt1.baseline	-0.361057658	-0.99009198		
Pt2.baseline	-0.070806538	-0.703963262		
Pt4.baseline	0.941912746	1.025178075		
Pt5.baseline	2.832124426	-4.772701248		
Pt6.baseline	-1.043321579	0.62301097		
Pt7.baseline	-1.333143924	2.390269156		
Pt8.baseline	-1.416292151	1.088585952		
Pt9.baseline	0.635362935	-0.290027741		
Pt10.baseline	0.468505343	2.149579516		
Pt12.baseline	-1.921825859	1.979360996		
Pt13.baseline	0.612200365	0.286403325		
Pt14.baseline	-0.35186344	1.67918879		
Pt15.baseline	-1.869728786	0.632739384		
Pt19.baseline	-1.334422477	-0.053248537		
Pt20.baseline	-3.756047795	2.026191197		
Pt22.baseline	0.915378015	-0.654642908		
Pt23.baseline	-3.136455353	2.979018214		
Pt25.baseline	-3.591950585	3.947589642		
Pt28.baseline	-2.571244128	4.599635325		
Pt29.baseline	-1.754614963	2.899474904		
Pt31.baseline	1.653638057	-3.608233836		
Pt32.baseline	3.293402175	-0.264777681		
Pt35.baseline	3.45491312	-4.540842878		
Pt37.baseline	2.299128939	-3.606734371		
Pt38.baseline	2.483781707	-3.876667891		
Vanallen Fersig score	Overall.Survival	Dead	BRgroup	
-----------------------	------------------	------	---------	
-0.629034323	607	1 PD		
-0.633156723	927	0 CR/PR		
0.083265329	948	0 CR/PR		
-7.604825674	439	0 CR/PR		
1.666332548	882	0 CR/PR		
3.72341308	662	1 PD		
2.504878103 NA	1054	0 CR/PR		
-0.925390676	387	0 PD		
1.681074173	327	1 PD		
-0.32579704	917	0 CR/PR		
2.03105223	54	0 PD		
2.50246817	980	1 CR/PR		
1.28117394	1060	0 CR/PR		
5.782238992	337	1 PD		
-1.570020923	182	1 PD		
6.115473567	103	1 PD		
7.53940227	262	1 PD		
7.170879452	439	1 CR/PR		
4.654069867	269	1 PD		
-5.261871893	704	0 PD		
-5.558179856	171	1 PD		
-7.995755998	427	0 CR/PR		
-5.90586331	364	0 CR/PR		
-6.360449598	448	0 CR/PR		