Antibiotic Susceptibility Patterns of Bacteria Isolated from Sachet-packaged Water Sold in Uyo Metropolis, Akwa Ibom State, Nigeria

Uduak S. Umoessien¹, Ukponobong E. Antia*, Mary Christopher¹ and Etanguno E. Owowo¹

¹Department of Microbiology, Akwa Ibom State University, Nigeria.

Authors' contributions

This work was carried out in collaboration among all authors. Author UEA designed the study, performed the statistical analysis, wrote the protocol. Author USU managed the analyses of the study and wrote the first draft of the manuscript. Authors MC and EEO managed the literature searches and final draft of the manuscript. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/IJPR/2019/v3i130085
Editor(s):
(1) Dr. Khadiga Ahmed Ismail Eltris, Professor, Ain Shams Faculty of Medicine, Ain Shams University, Cairo, Egypt.
Reviewers:
(1) Aliyu Yakubu, Federal Polytechnic, Nigeria.
(2) Victor B. Oti, Nasarawa State University, Nigeria.
(3) Leong Sui Sien, Universiti Putra Malaysia, Malaysia.
Complete Peer review History: http://www.sdiarticle3.com/review-history/50958

Received 19 June 2019
Accepted 29 August 2019
Published 07 September 2019

Original Research Article

ABSTRACT

Aims: This study was aimed at determining the antibiotic susceptibility patterns of bacteria isolated from sachet water sold in Uyo metropolis, Akwa Ibom State, Nigeria.
Study Design: Sachet water was randomly sampled in Uyo Metropolis.
Place and Duration of Study: Department of Microbiology, Akwa Ibom State University, Nigeria, between June and November 2018.
Methodology: Six different brands of sachets water sold and consumed in Uyo metropolis were studied for their physical and microbiological qualities. Thirty (30) sachets water from the six (6) different brands respectively, were serially diluted and cultured on Nutrient agar, Eosin Methylene Blue agar, MacConkey agar and Salmonella-Shigella agar, while Muller Hinton agar was used for sensitivity test. Suspensions of purified isolates were standardized with 0.5 McFarland turbidity standard and were subjected to antibiotics susceptibility testing using Agar Diffusion method.
Results: The bacterial counts obtained ranged from 2.0 x 10¹ cfu/ml to 1.34 x 10² cfu/ml. Species

*Corresponding author: Email: ukponobongantia@aksu.edu.ng*
isolated from the samples analysed included: Klebsiella sp., Escherichia sp., Staphylococcus sp., Salmonella sp., Pseudomonas sp., Citrobacter sp., Bacillus sp. Bacillus sp. Was susceptible to all the antibiotics tested against it except streptomycin while Staphylococcus sp was resistant to gentamicine and ampiclox but susceptible to other antibiotics. All the gram negative isolates were susceptible to tarivia and peflacion but completely resistant to nalidixic acid. Klebsiella sp. was most resistant (70%) of all the isolates, these was closely followed bt Escherichia sp. and Salmonella sp. at 60% resistance. Some of the sachet water brands from bacteriological standpoints did not meet the World Health Organization Standard for portable water.

Conclusion: This study indicted sub-standard packaged waters as a vehicle for the spread of antibiotic resistant bacterial pathogens, and this poses a high risk to public health. Hence, routine monitoring of producers of sachet water should been enforced.

Keywords: Sachet water; antibiotics resistance; Uyo metropolis; water standards.

1. INTRODUCTION

The safety and quality of drinking water have become a public health concern all over world. In Nigeria, high demand for safe drinking water cannot be overemphasized considering the inability of the government to provide adequate pipeborne water to the general public. Water is known to be the dwelling place for many bacterial species and other microorganisms which cause a variety of waterborne infections [1]. World Health Organization (WHO) estimated that 1.1 billion of the world’s population does not have access to safe water. In addition to this, 80% of diseases and one-third of deaths in developing countries are due to consumption of contaminated water [2]. The associated health risks from the consumption of unsafe drinking water vary throughout the world depending on the chemical or microbiological contaminants present in the environment [3]. Many of the bacteria isolated in water distribution systems are opportunistic pathogens. The presence of high numbers of opportunistic pathogens in drinking water is of concern because these microorganisms can cause infection in certain segments of the population (newborn babies, the sick, and the elderly) [4]. According to the guideline set by the World Health Organisation, quality drinking water must not contain Escherichia coli or thermotolerant coliform bacteria, Giardia, eggs of worms, viruses, Cryptosporidium spp, Legionella pneumonia, Entamoeba histolytica and other opportunistic pathogens such as Clostridium species, Klebsiella species and Pseudomonas [2]. The guideline further stated that the water should be tested against the presence of highly virulent pathogens such as Salmonella typhi, Shigella dysenteriae and Vibrio cholerae that are responsible for typhoid fever, bacillary dysentery and cholera diseases respectively. All the aforementioned bacterial species must not exist in water that is meant for drinking, hence, sources of water for packaged water are usually subjected to laboratory test by public analysts. It is expected that bacteria must not be found or detected in any 100 mL water sample. “Sachet water is not sterile” according to Linda [3]. Although, sachet water is assumed to be free from certain pathogens during treatment processes, presence of certain organisms are used to confirm the sterility of the water such as coliforms which act as indicator organisms used to assess the safety of water and thus give an idea of the degree of contamination associated with intake of such sachet water [4,5]. Antibiotics have revolutionized human medicine diversely, saving many lives because it has a major impact on the rate of survival of pathogens from infection. But with this great and remarkable benefit, it is sad that it is also the bedrock of many other diseases due to their resistance strains. Recently, major bacterial pathogens are becoming resistant to antibiotics, and these changing patterns caused a demand for new antibacterial agents. Antimicrobial resistance occurs when bacteria adjust or adapt in ways that permit them to stay alive in the presence of antibiotics designed to kill them. Bacteria evolve resistance to these drugs, typically by acquiring chromosomal mutations and multidrug resistant plasmids which has become a public health concern [6,7,8]. Antibiotics were formally defined to distinguish them as biochemicals produced by microorganism from the organic chemicals synthesized in the laboratory. But due to recent development, the distinction between both is no longer meaningful due to the fact that the biochemical structures of many naturally occurring antibiotics are now being synthesized by organic chemists and currently, many antibiotics used in medicine are in the chemically modified forms of the microbial biosynthetic forms [9].
Antibiotic resistance occurs when the sensitivity of an organism decreases against an antibiotic when compared to officially available breakpoints, usually measured as a decrease in “inhibition zone diameter”. The increased use of antibiotics is often associated with increased resistance of bacteria to these chemicals, especially in the hospital setting [10]. A lot of transmissible diseases are waterborne. Many harmful microbial contaminants have been confirmed to be associated with potable water sources. Many people have resorted to patronizing sachet water with the belief that it is ‘pure’ - hence, fondly called ‘pure water’. It is possible that this so called pure water is not pure after all; hence it may harbour harmful microorganisms as producers of such water may not pay adequate attention to microbiological quality. Identification of the major harmful microbial contaminants (Escherichia coli, Salmonella, Shigella, etc.) present in the sachet water is important in assessing its safety. Free from contamination with faecal matter is the most important parameter for determining water quality because human faecal matter is generally considered to be a greater risk to human health as it is more likely to contain enteric pathogens [11]. There is need to constantly assess the quality of water sources available to members of any community at intervals. This will help monitor and prevent the sudden outbreak of waterborne infections. It is also important to know the antibiotics susceptibility pattern of microorganism common in an environment in case of any outbreak. This research was borne as a result of the widespread use of sachet water in Nigeria especially in Akwa Ibom State, conflicting results on the safety conducted at different locations in the country and lack of data on safety of sachet water locally available. This research was aimed at determining the antibiotic resistant pattern of bacterial isolates obtained from sachet water by testing them against some of the commonly used antibiotics.

2. MATERIALS AND METHODS

2.1 Study Area

Three major areas in Uyo metropolis, Akwa Ibom State where strategically selected for this study. The areas comprised of towns where sachet-packaged drinking water is sold by hawkers. They included: Abak road, Aka road and Oron road.

2.2 Sample Collections

A total of thirty (30) sachet water of six different brands was collected randomly from various parts of Uyo metropolis in Akwa Ibom state and taken to the laboratory (Department of Microbiology, Akwa Ibom State University) for analysis. The samples were coded as; BC, GO, FD, RS, ML, and CV to reflect the respective brands. They were collected and transported in clean ice-parked containers and stored at 4.0°C for 30-60 minutes to maintain the properties of the samples before commencement of analysis. Hygienic and aseptic techniques were applied during sampling of the sachet water.

2.3 Determination of Bacterial Loads of the Water Samples

2.3.1 Preparation of the samples

Using aseptic method, six (6) different beakers were labelled according to the 6 different brands of waters. Five sachets were mixed from each brand to obtain 100 ml homogenous sample in the beaker.

2.3.2 Pour plating method

One milliliter of appropriate dilutions (10⁻¹ to 10⁻³) was aseptically pipetted into sterile, labelled petri dishes in duplicates. Appropriate medium (Nutrient agar, Eosin Methylene Blue, MacConkey agar, Salmonella-Shigella Agar) at 45°C were poured aseptically into the inoculated petri dishes and swirled gently to mix. They were inversely incubated at 37°C for 24-48hours. At the end of the incubation period, colonies were counted and the counts for each plate expressed as colony forming units per millilitre (cfu/mL) of the sample inoculated.

Nutrient agar (NA) was used to determine the total viable bacterial Count, Eosin Methylene Blue agar (EMB) to enumerate Escherichia coli, MacConkey agar (MAC) for coliform count and Salmonella-Shigella agar (SSA) for the determination of Salmonella and Shigella counts. Culture media were prepared according to the respective Manufacturers specification and sterilized in an autoclave at 121°C at 15 psi for 15 minutes.

2.3.3 Purification of colonies

Using a fresh nutrient agar medium, 24 hours colonies were picked using a sterile wire loop and streaked on its surface and incubated for 24 hours.
hours at 37°C to obtain pure colonies. After incubation, discrete growths were observed on the lines of streak. Distinct colony was picked aseptically and cultured on a fresh nutrient agar slant and incubated for 24 hours at 37°C and stored in a refrigerator at 4°C. The routine laboratory method of Cruickshank et al. [12] was used to characterize different isolates. The isolates were identified using their macroscopic, cultural, physiological and biochemical characteristics.

2.4 Morphological Characterization (Gram’s reaction)

Gram staining was carried out as described by Olutiola et al. [13]. Pure colonies of each bacterial isolate were observed for morphological features using Bergey’s Manual of Determinative Bacteriology as a standard for comparison. Cell shape was determined under X100 objective of the light microscope after Gram staining procedure. Bacterial smear was prepared on the slide using an inoculation loop. This was done by introducing a drop of distilled water on grease-free labelled slide followed by the sample and then smeared, air dried and heat fixed. The slide was flooded with crystal violet staining reagent for about 60 seconds, then washed using a gentle indirect stream of tap water for about 2 seconds. The slide was flooded with a mordant (Lugol’s iodine) for 15-30 seconds. The slide was decolorized using 70% ethanol for 10 seconds and washed off. Lastly, the slide was flooded with 0.5% counter stain (safranin) for 30 seconds, and then washed using indirect stream of tap water and air dried. A drop of immersion oil was dropped on the stained sample and observed under the microscope.

2.5 Biochemical Characterization and Identification of Isolates

Pure cultures of bacterial isolates were subjected to various biochemical tests according to standard techniques described by Olutiola et al. [13] Biochemical tests carried out include; Catalase test, Coagulase test, Indole test, Oxidase test, Citrate test, Fermentation of glucose, lactose, sucrose, maltose and mannitol [14]. Bacterial isolates were identified according to Bergey’s Manual of Determinative Bacteriology [15].

2.6 Antimicrobial Sensitivity Testing

Commercially available antibiotic impregnated 8mm sensitivity discs (Abtek Biological Ltd, UK) were used to determine the drug sensitivity profile of the isolates. Seventeen different antibiotic discs comprising of Tarivid (OFX), Nalidixic acid (NA), Peflacin (PEF), Gentamycin (CN), Augmentin (AU), Ciproflox (CPX), Septrin (SXT), Ceporek (CEP), Streptomycin (S), Ampicillin (PN) for Gram negative and Levoxin (Lev), Amoxicillin (Amx), Norfloxacin (NB), Chloramphenicol (CH), Erythromycin (E), Ampiclox (APX), Rifampin (RD), Streptomycin (S), Ciproflox (CPX), Gentamycin (CN) for Gram positive organisms. The antimicrobial sensitivity test of each isolate was carried out as described by the Kirby –Bauer disc diffusion method as recommended by the National Committee for Clinical Laboratory Standards [16].

**Procedures:** The turbidity of the bacterial suspensions was compared with 0.5 Macfarland’s standard by inoculating the organism into 10ml peptone water and incubate. The standardized bacterial suspension was then inoculated on to Muller Hinton Agar and left to dry for 10 minutes, before placing the antimicrobial sensitivity discs. After incubation, the diameter of the zone of inhibition were measured and compared with zone diameter of interpretative chart [17,18] to determine the sensitivity of the isolates to antibiotics.

3. RESULTS

All the water samples collected and analyzed were National Agency for Food and Drug Administration and Control (NAFDAC) approved and had factory addresses on them (Table 1). They were all odourless, colourless and clear in appearance; had no batch number, also none had production and expiration dates meaning that the duration between production and consumption cannot be determined. Only FD contained little particles in it. All were the same net volume of 50 cl.

Table 2 shows the Total viable count (TVC) after 48 hours of water samples on different media. All the water samples were contaminated with bacteria. A higher value of TVC on Nutrient agar (NA) was 1.34X10⁵ cfu/ml from sample FD, Eosin Methylene Blue agar (EMB) plate was 3.10X10⁴ cfu/ml from sample ML, MacConkey agar (MAC) plate was 2.50X10⁴ cfu/ml and on Salmonella Shigella agar (SSA) plate it was 0.5x10⁴ cfu/ml from sample FD. The highest number of organisms (on all the media) was 1.34X10⁵ cfu/ml in FD sachet water and the lowest was 2.5X10³ cfu/ml in CV sachet water.
Out of 29 bacterial isolates, seven (7) distinct isolates were obtained while others were replicates of the seven. *Klebsiella* sp. had the highest frequency showing seven (7) out of 29 representing 24.14%, followed by both *Staphylococcus* sp. and *Psuedomonas* sp. with the frequency of five (5) out of 29 isolates representing 17.24%. Other bacteria isolated included; *Escherichia* sp. with the frequency of four (4) out of 29 representing 13.79%, *Salmonella* sp. and *Citrobacter* sp. with frequency of three (3) out of 29 representing 10.34% and *Bacillus* sp. with the least frequency two (2) out 29 representing 6.90% as shown in Fig. 1.

Six brands of sachet water were analyzed and a total of seven bacterial isolates were identified from the sachet water samples. The isolates were initially differentiated on the basis of the cultural and morphological characteristics after which they were subjected to various biochemical tests. These tests revealed their probable identity as *Klebsiella* sp., *Escherichia* sp., *Staphylococcus* sp., *Pseudomonas* sp., *Salmonella* sp., *Citrobacter* sp., *Bacillus* sp.

### Table 1. Physical examination of the sampled sachet water brands sold in Uyo metropolis for compliance. Table pattern according to dada, 2009

| Sample code | Nafdac | Production/best fore date | Producers' name & address | Colour | Appearance | Odour | Floating particles | Batch no. | Net volume |
|-------------|--------|--------------------------|--------------------------|--------|------------|-------|-------------------|----------|------------|
| BC          | +      | -                        | +                        | -      | -          | -     | None              | -        | 50CL       |
| FD          | +      | -                        | +                        | -      | -          | -     | Few               | -        | 50CL       |
| RS          | +      | -                        | +                        | -      | -          | -     | None              | -        | 50CL       |
| CV          | +      | -                        | +                        | -      | -          | -     | None              | -        | 50CL       |
| ML          | +      | -                        | +                        | -      | -          | -     | None              | -        | 50CL       |
| GO          | +      | -                        | +                        | -      | -          | -     | None              | -        | 50CL       |

*Key: +: displayed on sample sachet; -: not displayed on sample sachet*

![Fig. 1. Percentage frequency of bacteria isolates obtained from sachet water sold in Uyo metropolis](image.png)
Table 2. Total viable count (TVC) after 48 hours of culturing sachet water samples on different media

| Sample/ Media | Total viable count (cfu/mL) | EMB (cfu/mL) | Total coliform count (cfu/mL) | SSA (cfu/mL) |
|---------------|----------------------------|-------------|-------------------------------|--------------|
| BC            | $1.10 \times 10^2$         | $3.0 \times 10^1$ | $1.5 \times 10^1$            | 0            |
| FD            | $1.34 \times 10^2$         | $2.9 \times 10^1$ | $0.9 \times 10^1$            | $0.5 \times 10^1$ |
| RS            | $7.0 \times 10^1$          | $0.8 \times 10^1$ | $1.4 \times 10^1$            | 0            |
| CV            | $2.5 \times 10^1$          | $3.1 \times 10^1$ | $2.0 \times 10^1$            | 0            |
| ML            | $2.0 \times 10^1$          | $4.5 \times 10^1$ | $2.5 \times 10^1$            | $0.2 \times 10^1$ |
| GO            | $1.18 \times 10^2$         | $1.8 \times 10^1$ | $1.2 \times 10^1$            | $0.1 \times 10^1$ |

key: NA: Nutrient Agar; EMB: Eosin Methylene blue agar; MAC: MacConkey agar; SSA: Salmonella Shigella Agar
Klebsiella sp. was most resistant to NA, CN, AU, CPX, S, PN, CEP (70%), followed by Escherichia sp and Salmonella sp. Escherichia sp was resistant to 6 (NA, CN, AU, SXT, S, PN and CEP) out of the 10 antibiotics tested against it. Same number of antibiotic resistance was recorded for Salmonella sp. (NA, CN, AU, S, PN and CEP). The least resistant gram negative isolate was Citrobacter sp. (NA, CPX, S, and PN) and Pseudomonas sp. All the Gram negative isolates were resistant to PN and NA. The Gram positive organisms were less resistant to all the antibiotics they were exposed to. Bacillus sp. was resistant to only ciproflox while Staphylococcus sp. was resistant to amoxicillin and Gentamycin

Table 3.

4. DISCUSSION

This study was carried out to determine the bacteriological quality and the antibiotics susceptibility pattern of the bacterial isolates from sachet water sold in Uyo with the view of creating public health awareness concerning drinking such water. In Nigeria, sachet water is largely taken and they are obtained either from surface or underground sources, and are subjected to various treatment to make it fit for human consumption, but unfortunately, most of them still fall below the WHO standard from the physical and microbiological analysis [19]. From this analysis, one (1) out of six water samples had particles in it. Meanwhile, all the samples collected were odourless, colourless, and registered with NAFDAC. Bacterial occurrence was recorded in all the sachet-water samples and the TVC for some were higher than what is acceptable for drinking water (1.0 x 10³ cfu/ml) [20].

The presence of pathogenic bacteria was recorded which is above the WHO standard for potable water [4]. High occurrence of Klebsiella sp. was recorded, followed by Staphylococcus sp. Others included Pseudomonas sp, Escherichia sp., Salmonella sp, Citrobacter sp. and the least frequent was Bacillus sp. Total Viable Count on EMB and MAC for coliform bacteria and the various values obtained for each water sample signified possible faecal contamination. This indicates that the sachet-water samples were contaminated especially with faecal materials, and are therefore not safe for drinking. Presence of coliforms (Escherichia sp. and Klebsiella sp. and Citrobacter sp.) maybe that some of the water were prepared from shallow and contaminated boreholes. Most of these bacteria are indigenous to aquatic environments [20]. The occurrence of Salmonella in the water samples could be as a result is also as a result of contaminated water and improper treatment; Pseudomonas sp. were also found in the water samples analyzed and are considered opportunistic pathogens and Staphylococcus sp. isolated from the water samples may have entered the water during packaging or handling since the organism is a normal flora of the human skin [21]. The ingestion of these bacteria with contaminated water constitutes public health risks to the immunocompromised members of the population, especially newborn babies, elderly and sick [22]. The presence of relatively heavy load of bacteria in water packaged for drinking purposes has been previously documented in literature [23,24,25,26]. The result of the antibiotics susceptibility testing showed various percentages of antibiotic resistance among the bacterial isolates from packaged water samples. Escherichia sp. was highly resistant to six (6) antibiotics and sensitive to only four antibiotics which were; Tarivia (OFX), Gentamycin (CN), Peflacine (PEF) and Ciproflox (CPX). Klebsiella sp. was resistant to seven (7) antibiotics and sensitive to Tarivia (OFX), Peflacin (PEF) and Septrin (SXT). Bacillus sp. was sensitive to all antibiotics tested and resistant to only Streptomycin (S). Staphylococcus sp. was also highly sensitive to all the antibiotics except Amoxicillin (AMX) and Gentamycin (CN). Pseudomonas sp. was also sensitive to most antibiotics except Nalidixic acid (NA), Augumentin (AU), Ampicillin (PN) and Ceporek (CEP). Citrobacter sp. was sensitive to the antibiotics and resistant to only four antibiotics, namely: Nalidixic acid (NA), Septrin (SXT), Streptomycin (S), Ampicillin (PN). Salmonella sp. was highly resistant to all the antibiotics except four; Tarivid (OFX), Peflacin(PDF), Ciproflox (CPX) and Septrin (SXT). Generally most of the isolates were resistant to Amoxil, Ceporex, Augmentin, Ampicillin, Nalidixic acid and Streptomycin. The resistance exhibited by Pseudomonas aeruginosa and E. coli to some of the antibiotics corroborates earlier report from South Eastern Nigeria [27]. The presence of the same type of enteric bacteria in almost all brands shows common source of contamination. It is documented that bacteria harbour series of antibiotic resistant genes which can be transferred to others horizontally [28].

Therefore, from observation made from this study, a lot of sachet water producers and sellers...
Table 3. Antibiotics susceptibility pattern of bacterial isolate from sachet water sold in uyo metropolis

| S/N | Isolate          | Gram Positive Isolates | Gram Negative Isolates |
|-----|------------------|------------------------|------------------------|
|     |                  | AMX | S  | NB | CPX | CH | LEV | CN | APX | RD | OFX | NA | PEF | CN | AU | CPX | SXT | S | PN | CEP | % Resistance |
| 1   | Escherichia sp.  | S   | R  | S  | S  | R  | S  | R  | R  | R  | R   | S  | R   | S  | S  | S   | S   | S | S  | S   | 60             |
| 2   | Klebsiella sp    | S   | R  | S  | R  | R  | S  | R  | R  | S  | R   | S  | R   | S  | R  | S   | S   | S | S  | S   | 70             |
| 3   | Bacillus sp.     | S   | R  | S  | S  | S  | S  | S  | S  | S  | S   | S  | R   | S  | S  | S   | S   | S | S  | S   | 10             |
| 4   | S. aureus        | R   | S  | S  | S  | S  | S  | S  | R  | S  | S   | S  | R   | S  | S  | S   | S   | S | S  | S   | 20             |
| 5   | Pseudomonas sp.  | S   | R  | S  | S  | R  | S  | S  | S  | S  | S   | S  | R   | S  | R  | R   | S   | S | S  | S   | 40             |
| 6   | Citrobacter sp.  | S   | R  | S  | S  | S  | S  | S  | R  | R  | R   | S  | R   | S  | R  | S   | S   | S | S  | S   | 40             |
| 7   | Salmonella sp.   | S   | R  | S  | S  | R  | S  | S  | R  | R  | R   | S  | R   | S  | R  | S   | S   | S | S  | S   | 60             |

Key: Tarivid (OFX), Nalidixic acid (NA), Peflacine (PEF), Gentamycin (CN), Augumentin (AU), Ciproflox (CPX), Septrin (SXT), Ceporek (CEP), Streptomycin(S), Ampicillin(PN) for Gram negative and Levoxin (Lev), Amoxicillin (Amx), Nofloxacin (NB), Chlloramphenicol (CH), Erythromycine (E), Ampiclox (APX), Rifampin (RD), Streptomycin (S), Ciproflox (CPX), Gentamycin (CN)
have emerged making it their major source of income. With this, appropriate health authorities should ensure that producers comply with the government regulations since some of these packaged water may have been produced under unhygienic conditions. Water can be seen as one of the most important, as well as one of the most abundant of those compounds and it is particularly, vital to living organisms [29]. Also, water is like the life wire of the body and as the basis of life; it is a critical part of human diet. Water constitutes about 90% by weight of the human body [30]. So, water should be treated and the necessary biochemical and microbiological test should be carried out to protect the general public from water-borne disease outbreak.

5. CONCLUSION

This study revealed that bacteriological quality of the sachet water brands sold failed to meet the standards for drinking water, even though the bacterial load did not exceed the allowable limits of microbial load. However, the bulk of sachet water brands were contaminated by coliform bacteria. It is therefore necessary for sachet water brands to be properly treated and handled to meet the WHO standard for drinking water. To minimise the problem of poor quality of sachet water, government agencies like the NAFDAC and the Environmental Protection Agency should ensure that packaged water manufacturers comply with good manufacturing practices. It is a serious threat to the people of the area if proper measurements are not taken by the concerned authorities. The water sources were contaminated with Klebsiella sp., Escherichia sp., Staphylococcus sp., Salmonella sp., Pseudomonas sp., Citrobacter sp., and Bacillus sp. thus posing a very serious threats to the society. Antibiotic resistance is considered a major problem because many disease causing bacteria are becoming more resistant to the commonly used antibiotics. Klebsiella sp., Escherichia sp., Citrobacter sp. isolated from the samples, showed greater antibiotic resistances. The overuse and misuse of antibiotics can create the conditions for the development of antibiotic resistant bacteria.

6. RECOMMENDATION

There is need for NAFDAC to intensify efforts in the routine monitoring of activities in the packaged drinking water industries ensuring the safety of sachet drinking water through comprehensive regulatory programs at both the federal and state levels. Also, sample collection and testing of market samples will be a good way of detecting if the water is truly ‘pure’ as claimed by these producing companies. High emphasis should also be placed on enforcing compliance with Good Manufacturing Practice (GMP) with emphasis on management of raw water source to the consumer product point. Hence, routine monitoring of producers of sachet water should be enforced to ensure adherence to drinking water standards.

ACKNOWLEDGEMENTS

The authors thank Mr. Sifon Japhet, the laboratory technologist at the Microbiology Laboratory Akwa Ibom State University, Nigeria for his assistance towards the successful completion of this research work.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Spellman FR, Drinan J. The drinking water Handbook. Lancaster, Pennsylvania, USA: Technomic Publishing Company Incorporated. 2000;260.

2. World Health Organization. Drinking water quality guideline 4th Edition. World Health Organization (WHO), Geneva, Switzerland. 2011;1-28.

3. Linda OA, Uchenna CO, Moses NI, Chinelo KU, Charles, OE. Microbial evaluation and antibiotic susceptibility profile of isolates of popular sachet water brands sold in Anambra State. British Microbiology Research Journal. 2016; 12(4);1-9.

4. Bitton G. Wastewater microbiology. 3rd Edition. Wiley series in ecological and Applied Microbiology; 2005.

5. Barrell R, Hunter PG. Microbiological standards for water and their relationship to health risk. Communicable Diseases and Public Health. 2000;3(1);8-13.

6. Finch RG, Greenwood D, Norrby SR, Whitley RJ. Antibiotic and chemotherapy: Anti-infective agents and their use in therapy. 8th Ed. Edinburgh: Churchill Livingstone. 2003;964.

7. Nichol K, Zhanel GG, Hoban DJ. Molecular epidemiology of penicillin resistant and ciprofloxacin resistant Streptococcus
pneumoniae in Canada. Antimicrobial Agents and Chemotherapy. 2003;47:804-808.
8. Kummerer K. Resistance in the environment. Journal of Antimicrobial Chemotherapy. 2004;54:311–320.
9. Sharma BC, Rai B. Incidence of multi-drug resistance in Escherichia coli strains isolated from three lakes of tourist attraction (Mirk Lake, Jorepokhari Lake and Nakhapani Lake) of Darjeeling Hills, India. Indian Journal of Fundamental and Applied Life Sciences. 2012;2(2):108-114.
10. Swartz MN. Use of antimicrobial agents and drug resistance. The New England Journal. 1997:45-68.
11. Scott ME, Melton-Celsa AR, O’Brien AD. Mutations in hns reduce the adherence of Shiga toxin-producing E. coli 091:H21 strain B2F1 to human colonic epithelial cells and increase the production of hemolysin. Microbial Pathogenesis. 2003;34:155–159.
12. Cruickshank R, Duguid JP, Marmion BP, Swain, RHA. Medical microbiology, volume II, 12th Edition. Churchill Livingstone, Edinburgh, London and New York; 1975.
13. Olutola PO, Famurewa O, Sonntag HG. An Introduction to general microbiology: A practical approach: Heidelberger Verlagsansalt und Druckerei GmbH. Heidelberg. 1991:267.
14. Harrigan WF, McCance EM. Laboratory Methods in Food and Dairy Microbiology. Academic Press, London, New York, San Francisco. 1976:452.
15. Buchanan RE, Gibbon NE. Bergey’s Manual of determinative bacteriology. 9th Edition, Williams and Wilkins Co., Baltimore; 1974.
16. National Committee for Clinical Laboratory Standards. Performance standards for antimicrobial disk susceptibility tests. Approved standard M2-A4. Wayne, Pa: National Committee for Clinical Laboratory Standards; 1990.
17. CLSI. Performance standards for antimicrobial susceptibility testing: 19th informational supplement M100–S19. Clinical and Laboratory Standards Institute, Wayne, PANational Committee for Clinical Laboratory Standards. Performance standards for antimicrobial disk susceptibility tests. Approved standard; 2009.
18. NCCLS document M2-A5. Wayne, Pa: National Committee for Clinical Laboratory Standards; 1993.
19. WHO; 2003.
20. Berger PS, Oshiro RK. Source water protection: Microbiology of source water. In: Encyclopedia of environmental microbiology. Bitton G, Editor-in-chief, Wiley Inter Science, New York. 2002;2967-2978.
21. Ollos PJ, Huck PM, Slawson, RM. Factors affecting bio film accumulation in model distribution systems. Journal of American Water Works Association. 2003;95:87–97.
22. LeChevallier MW, Seidler RJ, Evans TM. Enumeration and characterization of standard plate count bacteria in chlorinated and raw water supplies. Applied Environmental Microbiology. 1980;40:922–930.
23. Onifade AK, Ibori RM. Microbiological analysis of sachet water vended in Ondo State, Nigeria. Environmental Research Journal. 2008;2:107-110.
24. Oladipo IC, Onyenika IC, Adebiyi AO. Microbial analysis of some vended sachet water in Ogbomoso, Nigeria. African Journal of Food Science. 2009;3(12):406-412.
25. Oyedeji O, Olutola PO, Moninuola MA. Microbiological quality of packaged drinking water brands marketed in Ibadan metropolis and Ile-Ife city in South Western Nigeria. African Journal of Microbiology. 2010;4:96-102.
26. Onilude AA, Adesina FC, Oluboyede OA, Adeyemi BI. Microbiological quality of sachet packaged water vended in three local governments of Oyo State, Nigeria. African Journal of Environmental Microbiology. 2013;4(9):195-200.
27. Nwachukwu E, Emeruem CM. Presence of antibiotic resistant bacteria in sachet water produced and sold in the eastern Nigeria. Research Journal of Microbiology. 2007;2(10):782-786.
28. Piddock L.J. Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria. Clinical Microbiology Review. 2006;19:382–402.
29. Tortora JG, Funke RB, Case LC. Microbiology An introduction. Media update of 7 edition including bibliography
and index publisher. Daryl Fox. 2002;258-260.

30. William C, Sonzogoni P, Standridge J, Bussen M. Madison preservation and survival of *Escherichia coli* in well water sample. Wisconsin State Laboratory of Hygiene, University of Wisconsin. 2002;4-10.

© 2019 Umoessien et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
http://www.sdiarticle3.com/review-history/50958