Seymour’s Second Neighborhood Conjecture for Subsets

Tyler Seacrest

August 21, 2018

Abstract

Seymour conjectured that every oriented simple graph contains a vertex whose second neighborhood is at least as large as its first. In this note, we put forward a conjecture that we prove is actually equivalent: every oriented simple graph contains a subset of vertices \(S \) whose second neighborhood is at least as large as its first.

This subset perspective gives several quick results about the original conjecture: for example, a digraph on \(n \) vertices with minimum degree less than \(\sqrt{2n - \frac{1}{2}} \) is sure to satisfy the second neighborhood conjecture.

Given a vertex \(v \), let \(d^+_1(v) \) and \(d^+_2(v) \) be the size of its first and second neighborhoods respectively. A digraph is \(m \)-free if there is no directed cycle on \(m \) or fewer vertices. Let \(\lambda_m \) be the largest value such that every \(m \)-free graph contains a vertex \(v \) with \(d^+_2(v) \geq \lambda_md_1(v) \). The second neighborhood conjecture implies \(\lambda_m = 1 \) for all \(m \geq 2 \). Liang and Xu provided lower bounds for all \(\lambda_m \), and showed that \(\lambda_m \to 1 \) as \(m \to \infty \). We improve on Liang and Xu’s bound for \(m \geq 3 \), again using this subset perspective.

Keywords: Seymour’s Second Neighborhood Conjecture, \(m \)-free, digraphs

1 Introduction

Unless otherwise noted, all digraphs in this paper are oriented simple graphs, and thus do not contain loops or two-cycles. We will also assume they are strongly connected. We will use \(V(D) \) to denote the set of vertices of a digraph \(D \).

Given a digraph \(D \) and vertices \(u \) and \(v \), let \(d(u,v) \) be the length of the shortest directed path from \(u \) to \(v \). Let \(N^+_k(v) \), the set of \(k \)th out-neighbors, be all vertices \(u \) such that \(d(v,u) = k \). We will focus on \(N^+_1(v) \) and \(N^+_2(v) \), and we note that these are disjoint. We will use \(N^-_1(v) \) and \(N^-_2(v) \) to refer to the sets of first and second in-neighbors, defined analogously to out-neighbors. If not specified, the term neighbors refers to first out-neighbors. Let \(d^+_k(v) = |N^+_k(v)| \) and \(d^-_k(v) = |N^-_k(v)| \). If \(d^+_1(v) \leq d^+_2(v) \), we will call \(v \) a Seymour vertex.

Seymour made the following conjecture, which has become known as Seymour’s Second Neighborhood Conjecture.

The University of Montana Western, 710 S Atlantic St, Dillon, MT 59725, United States
Conjecture 1 (Seymour, see [3]). Every oriented simple graph contains a Seymour vertex.

We will use SNC to refer to this conjecture throughout this note.

The SNC, along with related conjectures of Caccetta and Häggvist [1] and the Hoang and Reed [6], have remained open for decades and seem to be very difficult. (See Sullivan [4] for a nice summary of results and conjectures related to the Caccetta-Häggvist conjecture.) In this note, we introduce a new, related conjecture. For a set of vertices S, let $N^+_k(S)$ be all vertices u such that $\min_{s \in S} d(s, u) = k$, and note that $S, N^+_1(S), N^+_2(S), \text{ etc. are all disjoint.}$ Define $d^+_k(S) = |N^+_k(S)|$.

Conjecture 2. Every oriented simple graph contains a set of vertices S such that $d^+_1(S) \leq d^+_2(S)$.

Note that Conjecture 2 is clearly weaker than the SNC, since if there is a Seymour vertex v, then we can simply let $S = \{v\}$ and the Conjecture 2 follows. We prove Conjecture 2 is actually equivalent to the SNC. This follow from a lemma we prove in Section 2. There may be some hope that Conjecture 2 is easier to prove than the SNC: for example, Conjecture 2 has an easy proof for regular graphs (see Proposition 7), a case that has received much attention but has yet to yield a proof for the SNC.

Since $N^+_1(S)$ is a cut set of the graph, it is possible Conjecture 2 is related to the isoperimetric method of Hamidoune. Using the isoperimetric method, Hamidoune [5] proved the SNC for vertex-transitive graphs, and later Lladó [8] proved the SNC for r-out-regular graphs of connectivity $r - 1$.

In attempt to make progress on the SNC, Chen, Shen, and Yuster [2] asked the question: What is the largest λ such that one could prove the existence of a vertex v such that

$$d^+_2(v) \geq \lambda d^+_1(v). \quad (1)$$

They proved this approximate form of the conjecture for λ the real root of the equation $2x^3 + x^2 - 1 = 0$, with $\lambda \approx 0.6573\ldots$. They also claimed that $\lambda \approx 0.67815\ldots$ was achievable with similar methods.

A digraph is m-free if it has no directed cycles with length at most m. One can then ask the Chen, Shen, and Yuster question in regards to this restricted set of digraphs. Let λ_m be the largest value such that every m-free digraph has a vertex v where $d^+_2(v) \geq \lambda_m d^+_1(v)$. The second neighborhood conjecture implies $\lambda_m = 1$ for all $m \geq 2$. Zhang and Zhou [9] showed $\lambda_3 \geq 0.6751$. Liang and Xu [7] improved this and extended the result for all m, showing that λ_m is greater than the only real root in the interval $(0, 1)$ of the polynomial

$$2x^3 - (m - 3)x^2 + (2m - 4)x - (m - 1).$$

This implies $\lambda_3 \geq 0.6823\ldots$ which improved the Zhang and Zhou result for λ_3. The value of λ_4 was $0.7007\ldots$, and in general, $\lambda_m \rightarrow 1$ as $m \rightarrow \infty$. Using this subset approach, we improve the Liang and Zu result for all $m \geq 3$.

Theorem 3. An m-free digraph contains a vertex v with $d^+_2(v) \geq \lambda_m d^+_1(v)$, where λ_m is the unique positive real root of

$$x^m + x^{m-1} = 1$$
For 2-free digraphs, we get the golden ratio of $\lambda_2 \geq .6180\ldots$, which is not as good as the Chen, Shen, and Yuster result. However, our $\lambda_3 \geq .7548\ldots$, which is the best known result, and $\lambda_4 \geq 0.8191\ldots$, which is the best known result. Note that this goes to 1 faster than the Liang and Xu result: the Liang and Xu result grows like $1 - \sqrt{2} \frac{1}{\sqrt{m}} + o\left(\frac{1}{\sqrt{m}}\right)$, while our result grows like $1 - \ln(2) \frac{1}{m} + o\left(\frac{1}{m}\right)$.

2 Main Lemma

We say D is a λ counterexample (to the SNC) if $d^+_2(v) < \lambda d^+_1(v)$ for all vertices D. We say D is an edge-minimal λ counterexample if one cannot remove edges to create a smaller λ counterexample. Given two subsets of vertices S and T in a digraph D, let $NO^D_S(T)$ be all the neighbors of T outside of $S \cup T$.

Lemma 4. Let D be an edge-minimal λ counterexample to the SNC, and let S be any proper subset of the vertices of D. Then $d^+_2(S) < \lambda d^+_1(S)$. In other words, $|NO^D_S(N^+_1(S))| \leq \lambda|N^+_1(S)|$.

Proof. Choose a subset of vertices $T \subset N^+_1(S)$ to be maximal such that $\lambda |T| \geq |NO^D_S(T)|$, or $T = \emptyset$ if no such T exists. If $T = N^+_1(S)$, then $\lambda |T| = \lambda |N^+_1(S)| \geq |NO^D_S(T)| = |NO^D_S(N^+_1(S))|$ and we are done. So assume $T \not\subset N^+_1(S)$. Set $T' = N^+_1(S) - T$. Let S' be $S \cup T \cup NO_S(T)$.

Now create a new graph D' equal to D but with all arcs from S to T' removed. I claim that D' is an λ counterexample to the SNC, contradicting the minimality of D. Suppose D' is not an λ counterexample, and that it has v such that $d^+_2(v) \geq \lambda d^+_1(v)$. Since we only removed outgoing arcs from vertices in S, v must be in S.

Now v may have lost some neighbors $A \subseteq T'$ that did not become second neighbors. Also, v may have lost some neighbors $B \subseteq T'$ that did become second neighbors. Set $C = NO^D_S(A \cup B)$, and note that every vertex in C is a second neighbor that v lost. (v may have also lost other second neighbors, but we are only concerned with those in $NO^D_S(A \cup B)$). See Figure 1 for a diagram of some of these sets. We know that v went from $d^+_2(v) < \lambda d^+_1(v)$ to $d^+_2(v) \geq \lambda d^+_1(v)$, we have that $\lambda(|A| + |B|) > |C| - |B|$. That is, λ times the number of neighbors lost must be at least the number of second neighbors lost.

Consider the effect of adding A and B to T to create T_2. Since B consists of second neighbors of v in D', but we removed all arcs from S to B, it must be the case that the vertices of B are second neighbors of v through T. In other words, the vertices of B lie inside $NO^D_S(T)$. Consider the difference in the two sets.

![Figure 1: A diagram of some of the sets used in the proof of Lemma 4.](image-url)
$NO^D_S(T_2)$ and $NO^D_S(T_2)$. By adding A and B to T, we gain C as new neighbors in $NO^D_S(T_2)$ and no others, and we lose elements of B as elements of $NO^D_S(T)$ (and perhaps some others). Hence, $|NO^D_S(T_2)| \leq |NO^D_S(T)| + |C| - |B|$. By assumption, $|NO^D_S(T)| \leq \lambda |T|$, and we also have $|C| - |B| < \lambda (|A| + |B|)$. Hence
\[
|NO^D_S(T_2)| \leq |NO^D_S(T)| + |C| - |B| < \lambda (|T| + \lambda (|A| + |B|)) = \lambda |T_2|
\]
But this contradicts the maximality of T.

\section{Quick Consequences of the Lemma}

Lemma \ref{lem:maximality} leads to two quick corollaries regarding the SNC itself, both of which use the lemma with $\lambda = 1$.

Corollary 5. Given a graph G with girth g, if $g > \delta(G)$, then G satisfies the SNC.

Proof. Let D be a minimum counterexample to the SNC such that $g > \delta(G)$. By removing edges, the girth can only increase and the minimum degree can only decrease, so we will still have $g > \delta(G)$ for any proper spanning subgraph of D. That means D is a minimum counterexample to the SNC, which means Lemma \ref{lem:maximality} applies.

Let v be a vertex of minimum degree. Applying Lemma \ref{lem:maximality} with $\lambda = 1$ and $S = \bigcup_{k=1}^{g-1} N^+_1(v)$, we have that $d^+_k(v) > d^+_k(v)$ for $k = 1, 2, 3, \ldots$. Since $d^+_1(v) = \delta(G)$, and each neighborhood is smaller than the last, there are only $\delta(G)$ non-empty neighborhoods of v. One of these neighborhoods must contain v, and hence there is a cycle of length at least $\delta(G)$, a contradiction.

Corollary 6. Given a graph G such that $\delta^+(D) < \sqrt{2n} - \frac{1}{2}$, G satisfies the SNC.

Proof. Let D be a minimum counterexample to the SNC such that $\delta^+(D) < \sqrt{2n} - 1/2$. Note that this implies $(\delta^+(D)+1) < n$. By removing edges, the minimum degree can only decrease, so we will still have $(\delta^+(D)+1) < n$ for any proper spanning subgraph of D. That means D is a minimum counterexample to the SNC, which means Lemma \ref{lem:maximality} applies.

Let v be a vertex of minimum degree. Similar to the previous corollary, we have that $d^+_k(v) > d^+_k(v)$ for $k = 1, 2, 3, \ldots$. Since $d^+_1(v) = \delta(G)$, and each neighborhood is smaller than the last, there are at most
\[
\delta^+(D) + (\delta^+(D) - 1) + (\delta^+(D) - 2) + \cdots + 1 = \binom{\delta^+(D) + 1}{2} < n
\]
vertices in the graph, a contradiction.

An in-regular graph is a graph such that $|N^-_1(v)|$ is the same for all v. Here we show that Conjecture \ref{conj:in-regular} is true in case of in-regular graphs. Note that this proof unfortunately does not translate to the SNC since in-regular graphs are not closed under removal of edges, and therefore Lemma \ref{lem:maximality} does not help.

Proposition 7. Given an in-regular digraph D without loops or multiple edges, there exists a subset of vertices S such that $d^+_1(S) \leq d^+_2(S)$.
Proof. Consider a counterexample D to this proposition. D would also be a counterexample to the SNC, and hence for every vertex v, we have $d_1^{-}(v) > d_2^{-}(v)$. Since $\sum_{v \in V(D)} d_1^{-}(v) = \sum_{v \in V(D)} d_1^{+}(v)$ and $\sum_{v \in V(D)} d_2^{+}(v) = \sum_{v \in V(D)} d_2^{-}(v)$, we know there exists at least one vertex v such that $d_1^{-}(v) > d_2^{-}(v)$. Let \mathcal{V} be the set of all vertices such that $d_1^{-}(v) > d_2^{-}(v)$.

For any $v \in \mathcal{V}$, set $S_v = V(D) \setminus (N_1^{-}(v) \cup N_2^{-}(v))$. Since D is a counterexample, we know that $d_1^{-}(S_v) > d_2^{-}(S_v)$. Since $N_1^{+}(S_v) \subseteq N_2^{-}(v)$, there is no way $N_1^{+}(S_v) \cup N_2^{+}(S_v)$ covers all the vertices in $N_1^{-}(v) \cup N_2^{-}(v)$. Therefore, there must be some vertex u in $N_1^{-}(v)$ such that $N_1^{-}(u) \cup N_2^{-}(u) \subseteq N_1^{-}(v) \cup N_2^{-}(v)$.

If $u \in \mathcal{V}$, then we can apply the same argument and get a u' such that u' first and second in-neighborhoods are contained in u's first and second in-neighborhoods. By repeating this argument, eventually we find a u^* whose first and second in-neighborhoods are contained in the first and second in-neighborhoods of v, but $u^* \notin \mathcal{V}$. So $N_1^{-}(u^*) \cup N_2^{-}(u^*) \subseteq N_1^{-}(v) \cup N_2^{-}(v)$. However, since D is in-regular, we have $|N_1^{-}(u^*)| = |N_1^{-}(v)|$, and $N_2^{-}(u^*) \supseteq N_2^{-}(v)$, and so this containment is a contradiction. \qed

4 Approximate Second Neighborhood for m-free digraphs

Let $d(u,v)$ be the length of the shortest directed path from u to v. For purposes of this section $d(v,v)$ is not zero but instead the length of the shortest cycle from v to itself. For a vertex v, let eccentricity $e(v)$ is the distance to the farthest vertex:

$$e(v) = \max_{u \in V(D)} d(v,u).$$

The radius $\text{rad}(D)$ of a digraph D is the minimum eccentricity:

$$\text{rad}(D) = \min_{v \in V(D)} e(v).$$

The reverse radius $\overleftarrow{\text{rad}}(D)$ is the radius of the reverse of D, and may be completely different from $\text{rad}(D)$. However, note that an m-free digraph has radius reverse radius at least $m + 1$, since at the very least every vertex is a distance of $m + 1$ from itself.

Theorem 8. Any digraph of reverse radius $r \geq 3$ has a vertex v such that $d_2^{+}(v) \geq \lambda d_1^{+}(v)$ for λ a real number between 0 and 1 satisfying

$$\lambda^{r+1} + \lambda^{r-2} = 1.$$

Proof. Let D be a minimum counterexample with $d_2^{+}(v) < \lambda d_1^{+}(v)$ for all vertices v. Then by Lemma 7, we know that it is the case that for every subset of vertices S, $d_2^{+}(S) < \lambda d_1^{+}(S)$. This, as we have seen, implies that $d_{i+1}^{+}(v) < \lambda d_i^{+}(v)$, provided $d_i^{+}(v)$ is nonzero. One can then show that this implies that $d_{i-1}^{+}(v) < \lambda^{-i+1} d_i^{+}(v)$, and hence $d_i^{+}(v) > \frac{1}{\lambda^{-i+1}} d_{i-1}^{+}(v)$.

5
Let \(A_v = \bigcup_{i=1}^{r-2} N_i^+(v) \). We see

\[
|A_v| = \sum_{i=1}^{r-2} d_i^+(v) > \sum_{i=1}^{r-2} \frac{1}{\lambda^{r-1-i}} d_{r-1}^+(v) = \frac{1 - \lambda^{r-2}}{\lambda^{r-2}(1 - \lambda)} d_{r-1}^+(v)
\]

If we set \(\gamma = \frac{\lambda^{r-2}(1 - \lambda)}{1 - \lambda^{r-2}} \), then we see for every vertex \(v \), \(d_{r-1}^+(v) < \gamma |A_v| \).

Define \(B_v = \bigcup_{i=1}^{r-2} N_i^-(v) \). Since \(\sum_{v \in V} d_i^+(v) = \sum_{v \in V} d_i^-(v) \), we see that on average \(B_v \) is the same size as \(A_v \), and \(d_{r-1}^-(v) \) is on average the same size as \(d_{r-1}^+(v) \). Therefore, there must exist a particular vertex \(v \) such that \(d_{r-1}^-(v) < \gamma |B_v| \).

Since \(r \) is the reverse radius of \(D \), \(N_r^-(v) \) is non-empty. Setting \(S^* = N_r^-(v) \), we see \(N_1^+(S^*) \subseteq N_{r-1}^-(v) \), and therefore \(|N_1^+(S^*)| \leq \gamma |B_v| \). By repeated use of \(|N_k^+(S)| < \lambda |N_k^+(S)| \) for appropriate \(S \), we see that \(|N_2^+(S^*)| < \lambda |B_v|, |N_3^+(S^*)| < \lambda^2 |B_v|, \) etc., and in general \(|N_k^+(S^*)| < \lambda^{k-1} |B| \).

Eventually, these \(N_k^+(S^*) \) must cover \(B_v \). Therefore,

\[
\bigcup_{i=2}^{\infty} |N_i^+(S^*)| \geq |B_v| \\
\sum_{i=1}^{\infty} \lambda^i |B_v| > |B_v| \\
\sum_{i=1}^{\infty} \lambda^i \gamma > 1 \\
\frac{\lambda}{1 - \lambda} \gamma > 1 \\
\frac{\lambda}{1 - \lambda}, \frac{\lambda^{r-2}(1 - \lambda)}{1 - \lambda^{r-2}} > 1 \\
\lambda^{r-1} > 1 - \lambda^{-2}
\]

This gives the result. \(\Box \)

Applying Theorem 8 to \(m \)-free digraphs gives Theorem 3.

References

[1] Louis Caccetta and R. Häggkvist. On minimal digraphs with given girth. In Proceedings of the Ninth Southeastern Conference on Combinatorics, Graph Theory, and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1978), Congress. Numer., XXI, pages 181–187. Utilitas Math., Winnipeg, Man., 1978.

[2] Guantao Chen, Jian Shen, and Raphael Yuster. Second neighborhood via first neighborhood in digraphs. Ann. Comb., 7(1):15–20, 2003.

[3] Nathaniel Dean and Brenda J. Latka. Squaring the tournament—an open problem. In Proceedings of the Twenty-sixth Southeastern International Conference
on Combinatorics, Graph Theory and Computing (Boca Raton, FL, 1995), volume 109, pages 73–80, 1995.

[4] B. Dowling Sullivan. A Summary of Problems and Results related to the Caccetta-Haggkvist Conjecture. ArXiv Mathematics e-prints, May 2006.

[5] Yahya Ould Hamidoune. On iterated image size for point-symmetric relations. Combinatorics, Probability and Computing, 17(1):6166, 2008.

[6] C. T. Hoàng and B. Reed. A note on short cycles in digraphs. Discrete Math., 66(1-2):103–107, 1987.

[7] Hao Liang and Jun-Ming Xu. On seymours second neighborhood conjecture of m-free digraphs. Discrete Mathematics, 340(8):1944 – 1949, 2017.

[8] Anna Lladó. On the second neighborhood conjecture of seymour for regular digraphs with almost optimal connectivity. European Journal of Combinatorics, 34(8):1406 – 1410, 2013. Special Issue in memory of Yahya Ould Hamidoune.

[9] Taoye Zhang and Ju Zhou. The second neighborhood of triangle-free digraphs. Graph Theory Notes N. Y., 58:48–50, 2010.