Research Article
On Mixed Quermassintegral for Log-Concave Functions

Fangwei Chen, Jianbo Fang, Miao Luo, and Congli Yang

1School of Mathematics and Statistics, Guizhou University of Finance and Economics, Guiyang, Guizhou 550025, China
2School of Mathematical Sciences, Guizhou Normal University, Guiyang, Guizhou 550025, China

Correspondence should be addressed to Fangwei Chen; cfw-yy@126.com

Received 23 September 2020; Revised 23 October 2020; Accepted 30 October 2020; Published 17 November 2020

Copyright © 2020 Fangwei Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, the functional Quermassintegral of log-concave functions in \mathbb{R}^n is discussed. We obtain the integral expression of the ith functional mixed Quermassintegral, which is similar to the integral expression of the ith mixed Quermassintegral of convex bodies.

1. Introduction

Let \mathcal{K}^n be the set of convex bodies (compact convex subsets with nonempty interiors) in \mathbb{R}^n, the fundamental Brunn-Minkowski inequality for convex bodies states that for $K, L \in \mathcal{K}^n$, the volume of the bodies and of their Minkowski sum $K + L = \{x + y : x \in K, y \in L\}$ is given by

$$V(K + L)^{1/n} \geq V(K)^{1/n} + V(L)^{1/n},$$

with equality if and only if K and L are homothetic; namely, they agree up to a translation and a dilation. Another geometric quantity related to the convex bodies K and L is the mixed volume. The most important result concerning the mixed volume is Minkowski’s first inequality:

$$V_1(K, L) = \lim_{t \to 0^+} \frac{V(K + tL) - V(K)}{t} \geq V(K)^{(n-1)/n} V(L)^{1/n},$$

for $K, L \in \mathcal{K}^n$. In particular, when choosing L to be a unit ball, up to a factor, $V_1(K, L)$ is exactly the perimeter of K, and inequality (2) turns out to be the isoperimetric inequality in the class of convex bodies. The mixed volume $V_1(K, L)$ admits a simple integral representation (see [1, 2]):

$$V_1(K, L) = \frac{1}{n} \int_{S^{n-1}} h_L \, dS_K,$$

where h_L is the support function of L and S_K is the area measure of K.

The Quermassintegrals $W_i(K) (i = 0, 1, \ldots, n)$ of K, which are defined by letting $W_0(K) = V_n(K)$, the volume of K; $W_n(K) = \omega_n$, the volume of the unit ball B^*_n in \mathbb{R}^n and for general $i = 1, 2, \ldots, n - 1$,

$$W_{n-i}(K) = \frac{\omega_n}{\omega_i} \int_{S_{i,n}} \text{vol}_i(K|_{\xi}) \, d\mu(\xi),$$

where $S_{i,n}$ is the Grassmannian manifold of i-dimensional linear subspaces of \mathbb{R}^n, $d\mu(\xi)$ is the normalized Haar measure on $S_{i,n}$, $K|_{\xi}$ denotes the orthogonal projection of K onto the i-dimensional subspaces ξ, and vol_i is the i-dimensional volume on space ξ.

In the 1930s, Aleksandrov and Fenchel and Jessen (see [3, 4]) proved that for a convex body K in \mathbb{R}^n, there exists a regular Borel measure $S_{n-1-i}(K) (i = 0, 1, \ldots, n-1)$ on S^{n-1}, the unit sphere in \mathbb{R}^n, for $K, L \in \mathcal{K}^n$, the following representation holds

$$W_i(K, L) = \frac{1}{n} \lim_{t \to 0^+} \frac{W_i(K + tL) - W_i(K)}{t}$$

$$= \frac{1}{n} \int_{S^{n-1}} h_L(u) dS_{n-1-i}(K, u).$$
The quantity $W_i(K,L)$ is called the ith mixed Quermassintegral of K and L.

In the 1960s, the Minkowski addition was extended to the L^p ($p \geq 1$) Minkowski sum $h^p_{K+L} = h^p_K + th^p_L$. The extension of the mixed Quermassintegral to the L^p mixed Quermassintegral due to Lutwak [1], the L^p mixed Quermassintegral inequalities, and the L^p Minkowski problem are established. (See [2, 5–13] for more about the L^p Minkowski theory.)

The L^p mixed Quermassintegrals are defined by

$$W_p,i(K,L) = \frac{1}{n} \lim_{t \to 0} \frac{W_i(K+\frac{t}{n} \cdot L) - W_i(L)}{t},$$

for $i = 0, 1, \ldots, n-1$. In particular, for $p = 1$ in (6), it is $W_i(K,L)$, and $W_{p,0}(K,L)$ is denoted by $V_p(K,L)$, which is called the L_p mixed volume of K and L. Similarly, the L^p mixed Quermassintegral has the following integral representation (see [1]):

$$W_p,i(K,L) = \frac{1}{n} \int_{S^n} h^p_K(u) dS_p(K,u).$$

The measure $S_p,i(K,\cdot)$ is absolutely continuous with respect to $S(K,\cdot)$ and has Radon-Nikodym derivative $dS_p,i(K,\cdot)/dS(K,\cdot) = h^p_K(\cdot)^{-1}$. In particular, $p = 1$ in (7) yields the representation (5).

Most recently, the interest in the log-concave functions has been considerably increasing, motivated by the analogy properties between the log-concave functions and the volume convex bodies in \mathbb{R}^n. The classical Prékopa-Leindler inequality (see [14–18]) firstly shows the connections of the volume of convex bodies and log-concave functions. The Blaschke-Santaló inequality for even log-concave functions is established in [19, 20] by Ball (for the general case, see [21–24]). The mean width for log-concave function is introduced by Klartag and Milman and Rotem [25–27]. The affine isoperimetric inequality for log-concave functions is proved by Avidan et al. [28]. The John ellipsoid for log-concave functions has been established by Alonso-Gutiérrez et al. [29]; the LYZ ellipsoid for log-concave functions is established by Fang and Zhou [30]. (See [31–37] for more about the pertinent results.)

Let $f = e^{-w}$, $g = e^{-v}$ be log-concave functions, $\alpha, \beta > 0$, the “sum” and “scalar multiplication” of log-concave functions are defined as

$$\alpha \cdot f \oplus \beta \cdot g = e^{-w} - e^{-v}, \quad w^* = \alpha u^* + \beta v^*,$$

where w^* denotes as usual the Fenchel conjugate of the convex function w. The total mass integral $I(f,g)$ of f is defined by $I(f) = \int_{\mathbb{R}^n} f(x) dx$. In paper [38] of Colesanti and Fragnà, the quantity $\delta I(f,g)$ is called as the first variation of f at g, $\delta I(f,g) = \lim_{t \to 0} (I(f \oplus t \cdot g) - I(f))/t$, is discussed. It has been shown that $\delta I(f,g)$ is finite and has the following integral expression:

$$\delta I(f,g) = \int_{\mathbb{R}^n} v^* d\mu(f),$$

where $\mu(f)$ is the measure of f on \mathbb{R}^n.

Inspired by the paper [38] of Colesanti and Fragnà, in this paper, we define the ith functional Quermassintegrals $W_i(f)$ as the i-dimensional average total mass of f:

$$W_i(f) = \frac{\omega_{n-i}}{\omega_{n-1}} \int_{g_{n-i}} I_{n-i}(f) d\mu(\xi_{n-i}), \quad i = 0, 1, \ldots, n-1,$$

where $I_{n-i}(f)$ denotes the i-dimensional total mass of f defined in Section 4, g_{n-1} is the Grassmannian manifold of \mathbb{R}^n, and $d\mu(\xi_{n-i})$ is the normalized measure on g_{n-i}. Moreover, we define the first variation of $W_i(f)$ at along g, which is

$$W_i(f,g) = \lim_{t \to 0} \frac{W_i(f \oplus t \cdot g) - W_i(f)}{t}.$$

It is a natural extension of the Quermassintegral of convex bodies in \mathbb{R}^n; we call it the ith functional mixed Quermassintegral. In fact, if one takes $f = h_K$, and dom $(f) = K \subset \mathbb{R}^n$, then $W_i(f)$ turns out to be $W_i(K)$, and $W_i(h_K, X_L)$ equals to $W_i(K,L)$. The main result in this paper is to show that the ith functional mixed Quermassintegral has the following integral expressions:

Theorem 1. Let $f, g \in \mathcal{S}$, be integrable functions, $\mu(f)$ be the i-dimensional measure of f, and $W_i(f,g)$ be the ith functional mixed Quermassintegral of f and g. Then,

$$W_i(f,g) = \frac{1}{n-i} \int_{\mathbb{R}^n} h_{g_{n-i}} d\mu_{n-i}(f), \quad i = 0, 1, \ldots, n-1,$$

where $h_{g_{n-i}}$ is the support function of $g|_{g_{n-i}}$.

The paper is organized as follows: In Section 2, we introduce some notations about the log-concave functions. In Section 3, the projection of a log-concave function onto subspace is discussed. In Section 4, we focus on how we can represent the ith functional mixed Quermassintegral $W_i(f,g)$ similar as $W_i(K,L)$. Owing to the Blaschke-Petkantschin formula and the similar definition of the support function of f, we obtain the integral representation of the ith functional mixed Quermassintegral $W_i(f,g)$.

2. Preliminaries

Let $u : \Omega \to (-\infty, +\infty]$ be a convex function; that is, $u((1-t)x + ty) \leq (1-t)u(x) + tu(y)$ for $t \in (0, 1)$, where $\Omega = \{x \in \mathbb{R}^n : u(x) \in \mathbb{R}\}$ is the domain of u. By the convexity of u, Ω is a convex set in \mathbb{R}^n. We say that u is proper if $\Omega \neq \emptyset$, and u is of class C^2 if it is twice differentiable on $\mathrm{int}(\Omega)$, with a positive definite Hessian matrix. In the following, we define the subclass of u:
\[\mathcal{L} = \left\{ u : \Omega \to (-\infty, +\infty) \mid u \text{ is convex, low semicontinuous, } \lim_{t \to -\infty} u(x) = +\infty \right\}. \]

(13)

Recall that the Fenchel conjugate of \(u \) is the convex function defined by

\[u^*(y) = \sup_{x \in \mathbb{R}^n} \{ \langle x, y \rangle - u(x) \}. \]

(14)

It is obvious that \(u(x) + u^*(y) \geq \langle x, y \rangle \) for all \(x, y \in \Omega \), and there is an equality if and only if \(x \in \partial \Omega \) and \(y \) is in the subdifferential of \(u \) at \(x \), which means

\[u^*(\nabla u(x)) + u(x) = \langle x, \nabla u(x) \rangle. \]

(15)

Moreover, if \(u \) is a lower semicontinuous convex function, then also \(u^* \) is a lower semicontinuous convex function, and \(u^{**} = u \).

The infimal convolution of \(u \) and \(v \) from \(\Omega \) to \((-\infty, +\infty] \) is defined by

\[u \boxdot v(x) = \inf_{y \in \Omega} \{ u(x - y) + v(y) \}. \]

(16)

The right scalar multiplication by a nonnegative real number \(\alpha \) is

\[(u \alpha)(x) = \begin{cases} au(x) & \text{if } \alpha > 0, \\ 0 & \text{if } \alpha = 0. \end{cases} \]

(17)

The following proposition below gathers some elementary properties of the Fenchel conjugate and the infimal convolution of \(u \) and \(v \), which can be found in [38, 39].

Proposition 2. Let \(u, v : \Omega \to (-\infty, +\infty] \) be convex functions. Then,

\[(u \boxdot v)^* = u^* + v^* \]

(18)

(1) \((u \alpha)^* = au^*, \alpha > 0\)

(2) \(\text{dom}(u \boxdot v) = \text{dom}(u) + \text{dom}(v)\)

(3) it holds \(u^*(0) = -\inf u\); in particular, if \(u \) is proper, then \(u^*(y) > -\infty; \inf u > -\infty \) implies \(u^* \) is proper

The following proposition about the Fenchel and Legendre conjugates is obtained in [39].

Proposition 3 (see [39]). Let \(u : \Omega \to (-\infty, +\infty] \) be a closed convex function, and set \(\mathcal{C} = \text{int}(\Omega) \), \(\mathcal{C}^* = \text{int}(\text{dom}(u^*)) \).

Then, \((\mathcal{C}, u)\) is a convex function of Legendre type if and only if \(\mathcal{C}^*, u^*\) is. In this case, \((\mathcal{C}^*, u^*)\) is the Legendre conjugate of \((\mathcal{C}, u)\) (and conversely). Moreover, \(\nu u := \mathcal{C} \to \mathcal{C}^*\) is a continuous bijection, and the inverse map of \(\nabla u \) is precisely \(\nabla u^*\).

A function \(f : \mathbb{R}^n \to (-\infty, +\infty] \) is called log-concave if for all \(x, y \in \mathbb{R}^n \) and \(0 < t < 1 \), we have \(f((1-t)x + ty) \geq f^{1-t}(x)f^t(y) \). If \(f \) is a strictly positive log-concave function on \(\mathbb{R}^n \), then there exists a convex function \(u : \Omega \to (-\infty, +\infty] \) such that \(f = e^u \). The log-concave function is closely related to the convex geometry of \(\mathbb{R}^n \). An example of a log-concave function is the characteristic function \(\chi_K \) of a convex body \(K \) in \(\mathbb{R}^n \), which is defined by

\[\chi_K(x) = e^{-I_K(x)} = \begin{cases} 1, & \text{if } x \in K, \\ 0, & \text{if } x \notin K, \end{cases} \]

(19)

where \(I_K \) is a lower semicontinuous convex function, and the indicator function of \(K \) is

\[I_K(x) = \begin{cases} 0, & \text{if } x \in K, \\ +\infty, & \text{if } x \notin K. \end{cases} \]

(20)

In the later sections, we also use \(f \) to denote \(f \) being extended to \(\mathbb{R}^n \):

\[\tilde{f} = \begin{cases} f, & x \in \Omega, \\ 0, & x \notin \Omega. \end{cases} \]

(21)

Let \(\mathcal{A} = \{ f : \mathbb{R}^n \to (0, +\infty) : f = e^u, u \in \mathcal{L} \} \) be the subclass of \(f \) in \(\mathbb{R}^n \). The addition and multiplication by nonnegative scalars in \(\mathcal{A} \) are defined by the following (see [38]).

Definition 4. Let \(f = e^u \), \(g = e^v \in \mathcal{A} \), and \(\alpha, \beta \geq 0 \). The sum and multiplication of \(f \) and \(g \) are defined as

\[\alpha \cdot f \odot \beta \cdot g = e^{-(\alpha|u|)(v + |v|\beta)} \]

(22)

That means,

\[(\alpha \cdot f \odot \beta \cdot g)(x) = \sup_{y \in \mathbb{R}^n} \{ f^\alpha(x/y)g^\beta(y) \}. \]

(23)

In particular, when \(\alpha = 0 \) and \(\beta > 0 \), we have \((\alpha \cdot f \odot \beta \cdot g)(x) = g(x/\beta)^\beta \); when \(\alpha > 0 \) and \(\beta = 0 \), then \((\alpha \cdot f \odot \beta \cdot g)(x) = f(x/\alpha)^\alpha \); finally, when \(\alpha = \beta = 0 \), we have \((\alpha \cdot f \odot \beta \cdot g) = I[0] \).

The following lemma is obtained in [38].

Lemma 5 (see [38]). Let \(u \in \mathcal{L} \), then there exist constants \(a \) and \(b \), with \(a > 0 \), such that, for \(x \in \Omega \),

\[u(x) \geq a|x| + b. \]

(24)

Moreover, \(u^* \) is proper and satisfies \(u^*(y) > -\infty, \forall y \in \Omega \).

Lemma 5 grants that \(\mathcal{L} \) is closed under the operations of infimal convolution and right scalar multiplication defined in (16) and (17) which are closed.
Lemma 9. Let \(\mathcal{L} \) and \(\mathcal{L}' \) be two classes of functions, and \(\alpha, \beta \geq 0 \). Then, \(u \in \mathcal{L} \) if and only if \(u_\alpha \in \mathcal{L}' \) for some \(\alpha \). Similarly, \(\mathcal{L}' \) is a proper generalization of \(\mathcal{L} \).

Proposition 6 (see [38]). Let \(u \) and \(\nu \) belong both to the same class \(\mathcal{L} \), and \(\alpha, \beta \geq 0 \). Then, \(u \in \mathcal{L} \) if and only if \(\nu \in \mathcal{L} \).

Proposition 7 (see [30]). Let \(f \in \mathcal{L} \) and \(A \in GL(n) \) and \(x \in \mathbb{R}^n \). Then,

\[
h_{f \cdot A}(x) = h_f(A^T x).
\]

Lemma 8 (see [38]). Let \(f = e^{-u} \), \(g = e^{-u} \) be \(\mathcal{L} \). For \(t > 0 \), set \(u_t = u \in \mathcal{L}(t > 0) \), and \(f_t = e^{-u_t} \). Assume that \(\nu(0) = 0 \), then for every fixed \(x \in \mathbb{R}^n \), \(u_t(x) \) and \(f_t(x) \) are, respectively, pointwise decreasing and increasing with respect to \(t \); in particular, it holds

\[
u_t(x) \leq u_t(x) \leq u(x), \quad f_t(x) \leq f(x) \leq f_1(x) \quad \forall x \in \mathbb{R}^n, \forall t \in [0, 1].
\]

Lemma 9 (see [38]). Let \(u \) and \(v \) belong both to the same class \(\mathcal{L} \) and, for any \(t > 0 \), set \(u_t := u \in \mathcal{L}(t > 0) \). Assume that \(\nu(0) = 0 \), then

(1) \(\forall x \in \Omega, \lim_{t \to 0^-} u_t(x) = u(x) \)

(2) \(\forall E \subset \Omega, \lim_{t \to 0^-} \nabla u_t(x) = \nabla u \) uniformly on \(E \)

Lemma 10 (see [38]). Let \(u \) and \(v \) belong both to the same class \(\mathcal{L} \) and for any \(t > 0 \), let \(u_t := u \in \mathcal{L}(t > 0) \). Then, \(\forall x \in \text{int}(\Omega_t) \), and \(\forall t > 0 \),

\[
\frac{d}{dt} (u_t(x)) = -\psi(\nabla u_t(x)),
\]

where \(\psi = \nu^* \).

3. Projection of Functions onto Linear Subspace

Let \(\mathcal{G}_{i,n}(0 \leq i \leq n) \) be the Grassmannian manifold of \(i \)-dimensional linear subspace of \(\mathbb{R}^n \). The elements of \(\mathcal{G}_{i,n} \) will usually be denoted by \(\xi_i \), and \(\xi_i^\perp \) stands for the orthogonal complement of \(\xi_i \) which is a \((n-i) \)-dimensional subspace of \(\mathbb{R}^n \). Let \(\xi_i \in \mathcal{G}_{i,n} \) and \(f : \mathbb{R}^n \to \mathbb{R} \). The projection of \(f \) onto \(\xi_i \) is defined by (see [25, 41])

\[
f\big|_{\xi_i}(x) := \max \{ f(y) : y \in x + \xi_i^\perp \}, \quad \forall x \in \Omega|_{\xi_i},
\]

where \(\xi_i^\perp \) is the orthogonal complement of \(\xi_i \) in \(\mathbb{R}^n \) and \(\Omega|_{\xi_i} \) is the projection of \(\Omega \) onto \(\xi_i \). By the definition of the log-concave function \(f = e^{-u} \), for every \(x \in \Omega|_{\xi_i} \), one can rewrite (29) as

\[
f\big|_{\xi_i}(x) = \exp \left\{ \max \{ -u(y) : y \in x + \xi_i^\perp \} \right\} = e^{-u\xi_i}(x).
\]

Regarding the “sum” and “multiplication” of \(f \), we say that the projection keeps the structure on \(\mathbb{R}^n \). In other words, we have the following proposition.

Proposition 11. Let \(f, g \in \mathcal{L} \), \(\xi_i \in \mathcal{G}_{i,n} \) and \(\alpha, \beta > 0 \). Then,

\[
(\alpha \cdot f \oplus \beta \cdot g)|_{\xi_i} = (\alpha \cdot f)|_{\xi_i} \oplus (\beta \cdot g)|_{\xi_i}.
\]

Proof. Let \(f, g \in \mathcal{L} \), let \(x_1, x_2, x \in \xi_i \) such that \(x = \alpha x_1 + \beta x_2 \), then we have

\[
(\alpha \cdot f \oplus \beta \cdot g)|_{\xi_i}(x) \geq (\alpha \cdot f \oplus \beta \cdot g)(\alpha x_1 + \beta x_2 + \xi_i^\perp) \quad \geq f(x_1 + \xi_i^\perp) \delta^\perp(x_2 + \xi_i^\perp) \beta.
\]

Taking the supremum of the second right-hand inequality over all \(\xi_i^\perp \), we obtain \((\alpha \cdot f \oplus \beta \cdot g)|_{\xi_i} \geq \alpha \cdot (f)|_{\xi} \oplus (\beta \cdot g)|_{\xi_i} \). On the other hand, for \(x \in \xi_i, x_1, x_2 \in \xi_i \) such that \(x_1 + x_2 = x \), then

\[
(\alpha \cdot f \oplus \beta \cdot g)|_{\xi_i}(x) = \sup_{s_1, s_2} \left\{ \max \left\{ f_0 \left(\frac{s_1}{\alpha} + \xi_i^\perp \right) \right\} \delta^\perp \right\} \sup_{s_1, s_2} \left\{ g_0 \left(\frac{s_2}{\beta} + \xi_i^\perp \right) \right\} \geq \sup_{s_1, s_2} \left\{ \max \left\{ f_0 \left(\frac{s_1}{\alpha} + \xi_i^\perp \right) \right\} \sup_{s_1, s_2} \left\{ g_0 \left(\frac{s_2}{\beta} + \xi_i^\perp \right) \right\} \right\} = (\alpha \cdot f \oplus \beta \cdot g)|_{\xi_i}(x).
\]
Since \(f, g \geq 0 \), the inequality max \(\{ f \cdot g \} \leq \max \{ f \cdot \max \{ g \} \) holds. So, we complete the proof.

Proposition 12. Let \(\xi_i \in \mathcal{G}_{int} \), \(f \) and \(g \) are functions on \(\mathbb{R}^n \), such that \(f(x) \leq g(x) \) holds. Then,

\[
 f|_{\xi_i} \leq g|_{\xi_i} \tag{34}
\]

holds for any \(x \in \xi_i \).

Proof. For \(y \in x + \xi_i^+ \), since \(f(y) \leq g(y) \), then \(f(y) \leq \max \{ g(y) : \ y \in x + \xi_i^+ \} \). So, \(\max \{ f(y) : \ y \in \xi_i \} \leq \max \{ g(y) : \ y \in x + \xi_i^+ \} \). By the definition of the projection, we complete the proof.

For the convergence of \(f \), we have the following.

Proposition 13. Let \(\{ f_n \} \) be functions such that \(\lim_{n \to \infty} f_n = f \), \(\xi_i \in \mathcal{G}_{int} \), then \(\lim_{n \to \infty} (f_n|_{\xi_i}) = f|_{\xi_i} \).

Proof. Since \(\lim_{n \to \infty} f_n = f \), it means that \(\forall \epsilon > 0 \), there exist \(N_0 \), \(\forall n > N_0 \), such that \(f_0 - \epsilon \leq f_n \leq f_0 + \epsilon \). By the monotonicity of the projection, we have \(f_0|_{\xi_i} - \epsilon \leq f_n|_{\xi_i} \leq f_0|_{\xi_i} + \epsilon \). Hence, each \(\{ f_n|_{\xi_i} \} \) has a convergent subsequence; we denote it also by \(\{ f_n|_{\xi_i} \} \), converging to some \(f'_0|_{\xi_i} \). Then, for \(x \in \xi_i \), we have

\[
 f'_0|_{\xi_i}(x) - \epsilon \leq f'_0|_{\xi_i}(x) = \lim_{n \to \infty} \left(f_n|_{\xi_i} \right)(x) \leq f'_0|_{\xi_i}(x) + \epsilon. \tag{35}
\]

By the arbitrary of \(\epsilon \), we have \(f'_0|_{\xi_i} = f|_{\xi_i} \), so we complete the proof.

Combining with Proposition 13 and Lemma 9, it is easy to obtain the following proposition.

Proposition 14. Let \(u \) and \(v \) belong both to the same class \(\mathcal{L} \) and \(\Omega \in \mathbb{R}^n \) be the domain of \(u \), for any \(t > 0 \), set \(u_t = u(t|\Omega|) \). Assume that \(v(0) = 0 \) and \(\xi_i \in \mathcal{G}_{int} \), then

\[
 (1) \quad \forall x \in \Omega|_{\xi_i}, \lim_{t \to 0^+} u_t|_{\xi_i}(x) = u|_{\xi_i}(x) \tag{36}
\]

\[
 \forall x \in \Omega \setminus \Omega|_{\xi_i}, \lim_{t \to 0^+} \nabla u_t|_{\xi_i} = \nabla u|_{\xi_i} \tag{37}
\]

Now, let us introduce some facts about the functions \(u_t = u(t|\Omega|) \) with respect to the parameter \(t \).

Lemma 15. Let \(\xi_i \in \mathcal{G}_{int} \), \(u \) and \(v \) belong both to the same class \(\mathcal{L} \), \(u_t = u(t|\Omega|) \), and \(\Omega \) be the domain of \(u_t \) (\(t > 0 \)). Then, for \(x \in \Omega|_{\xi_i} \),

\[
 u_t|_{\xi_i}(x) = \nabla u|_{\xi_i}(x) dx,
\]

where \(f(t|\Omega|) \) is the projection of \(f \) onto \(\xi_i \), defined by (29) and \(dx \) is the \(i \)-dimensional volume element in \(\xi_i \).
Remark 17.

(1) The definition of $J_i(f)$ follows the i-dimensional volume of the projection a convex body. If $i = 0$, we defined $J_0(f) = \omega_n$, the volume of the unit ball in \mathbb{R}^n, for the completeness.

(2) When taking $f = \chi_K$, the characteristic function of a convex body K, one has $J_i(f) = V_i(K)$, the i-dimensional volume in ξ_i.

Definition 18. Let $f \in \mathcal{A}^t$. Set $\xi_i \in \mathcal{G}_{i,n}$ be a linear subspace and for $x \in \Omega_{\xi_i}$, the ith functional Quermassintegrals of f (or the i-dimensional mean projection mass of f) are defined as

$$W_{i-1}(f) = \frac{\omega_n}{\omega_i} \int_{\mathcal{G}_{i,n}} J_i(f) d\mu(\xi_i), \quad i = 1, 2, \ldots, n, \quad (42)$$

where $J_i(f)$ is the ith total mass of f defined by (41) and $d\mu(\xi_i)$ is the normalized Haar measure on $\mathcal{G}_{i,n}$.

Remark 19.

(1) The definition of $W_i(f)$ follows the definition of the ith Quermassintegrals $W_i(K)$, that is, the ith mean total mass of f on $\mathcal{G}_{i,n}$. Also, in a recent paper [42], the authors give the same definition of the Quermassintegrals of the support set for the quasiconcave functions.

(2) When i equals to n in (42), we have $W_0(f) = \int_{\mathbb{R}^n} f(x) dx = J(f)$, the total mass function of f defined by Colesanti and Fragalá [38]. Then, we can say that our definition of $W_i(f)$ is a natural extension of the total mass function of f.

(3) From the definition of the Quermassintegrals $W_i(f)$, the following properties are obtained (see also [42]):

- Positivity: $0 \leq W_i(f) \leq +\infty \quad (43)$
- Monotonicity: $W_i(f) \leq W_i(g)$, if $f \leq g$
- Generally speaking, $W_i(f)$ has no homogeneity under dilations. That is, $W_i(\lambda \cdot f(x)) = \lambda^{n-i} W_i(f(x))$, where $\lambda \cdot f(x) = \lambda f(x/\lambda), \lambda > 0$.

Definition 20. Let $f, g \in \mathcal{A}^t$, \oplus, and \cdot denote the operations of “sum” and “multiplication” in \mathcal{A}^t. $W_i(f)$ and $W_i(g)$ are, respectively, the ith Quermassintegrals of f and g. Whenever the following limit exists,

$$W_i(f, g) = \frac{1}{(n - i)} \lim_{t \to 0} \frac{W_i(f \oplus t \cdot g) - W_i(f)}{t} \quad (44)$$

we denote it by $W_i(f, g)$ and call it as the first variation of W_i at f along g, or the ith functional mixed Quermassintegrals of f and g.

Remark 21. Let $f = \chi_K$ and $g = \chi_L$, with $K, L \in \mathcal{K}^n$. In this case, $W_i(f \oplus t \cdot g) = W_i(K + tL)$, then $W_i(f, g) = W_i(K, L)$. In general, $W_i(f, g)$ has no analog properties of $W_i(K, L)$; for example, $W_i(f, g)$ is not always nonnegative and finite.

The following is devoted to proving that $W_i(f, g)$ exists under the fairly weak hypothesis. First, we prove that the first i-dimensional total mass of f is translation-invariant.

Lemma 22. Let $\xi_i \in \mathcal{G}_{i,n}$, $f = e^{-u}$, $g = e^{-v}$ in \mathcal{A}^t. Let $c = \inf u(0) = u(0)$, $d = \inf v(0)$, and set $\tilde{u}_i(x) = u(0)$, $\tilde{v}_i(x) = v(0)$, and $\tilde{y}_i(x) = \tilde{u}_i(x) - c$, $\tilde{v}_i(x) = v(0) - d$, $\tilde{y}_i(x) = \tilde{u}_i(x) - c$. Then, in $lim_{t \to 0}$ (f_i, f_i) is the characteristic function of a \mathcal{A}^t, we have $\tilde{u}_i(0) = 0$, $\tilde{v}_i(0) = 0$, and $\tilde{y}_i \geq 0, \tilde{v}_i \geq 0, \tilde{y}_i \geq 0$. Further, $\tilde{y}_i(y) = y_i(y) + d$, and $\tilde{y}_i = e^{\tilde{y}_i}$. So,

$$\lim_{t \to 0} \frac{J_i(f_i) - J_i(\tilde{f}_i)}{\tilde{f}_i} = \int_{\xi_i} \frac{\psi_i d\mu(\xi_i)}{\tilde{f}_i} \quad (45)$$

On the other hand, since $f_i \oplus t \cdot \tilde{g}_i = e^{(c+d)t\tilde{x}}(\tilde{f}_i \oplus t \cdot \tilde{g}_i)$, we have, $J_i(f_i \oplus t \cdot g) = e^{(c+d)t\tilde{x}}J_i(f_i \oplus t \cdot \tilde{g}_i)$. By derivation of both sides of the above formula, we obtain

$$\lim_{t \to 0} \frac{J_i(f_i \oplus t \cdot g) - J_i(f_i)}{t} = -de^{-\lim_{t \to 0} J_i(f_i \oplus t \cdot \tilde{g}_i)} dx + e^{-\tilde{f}_i} \int_{\xi_i} \frac{J_i(f_i) - J_i(\tilde{f}_i)}{\tilde{f}_i} \frac{d\mu(\xi_i)}{t}$$

$$= \int_{\xi_i} \psi_i d\mu(\xi_i). \quad (46)$$

So, we complete the proof.

Theorem 23. Let $f, g \in \mathcal{A}^t$, with $-\infty \leq \inf (\log g) \leq +\infty$ and $W_i(f) > 0$. Then, $W_i(f, g)$ is differentiable at f along g, and it holds

$$W_i(f, g) \in [-k, +\infty], \quad (47)$$

where $k = \max \{d, 0\} W_i(f)$.

Proof. Let \(\xi \in \mathcal{G}_{\xi_0} \), since \(u|_{\xi} = -\log f \) and \(v|_{\xi} = -\log g \). By the definition of \(f' \) and Proposition 11, we obtain \(f|_{\xi} = (f \circ t \cdot g)|_{\xi} = f|_{\xi} \circ t \cdot g|_{\xi} \). Notice that \(v|_{\xi}(0) = v(0) \), set \(d = v(0) \), then \(v|_{\xi}(x) = v|_{\xi}(x) - d \), \(g|_{\xi}(x) = e^{-v|_{\xi}(x)} \), and \(f|_{\xi} = f|_{\xi} \circ t \cdot g|_{\xi} \). Up to a translation of coordinates, we may assume \(v = v(0) \). Lemma 8 says that for every \(x \in \xi \),

\[
f|_{\xi} \leq f|_{\xi} \leq f|_{\xi}, \quad \forall x \in \mathbb{R}^n, \forall t \in [0,1]. \tag{48}
\]

Then, there exists \(\tilde{f}|_{\xi}(x) = \lim_{t \to 0^+} f|_{\xi}(x) \). Moreover, it holds \(\tilde{f}|_{\xi}(x) \geq f|_{\xi}(x) \) and \(\tilde{f}|_{\xi} \) is pointwise decreasing as \(t \to 0^+ \). Lemma 5 and Proposition 6 show that \(f|_{\xi} \circ t \cdot g|_{\xi} \in \mathcal{G}^f \), \(\forall t \in [0,1] \). Then, \(J_i(f) \leq J_i(f) \leq J_i(f) \), \(-\infty \leq J_i(f) \), \(J_i(f) < \infty \). Hence, by monotonicity and convergence, we have \(\lim_{t \to 0^+} W_i(f|_{\xi}) = W_i(f) \). In fact, by definition, we have

\[
\tilde{f}|_{\xi}(x) = e^{-\inf \{ u|_{\xi}(x-y) + tv|_{\xi}(y/t) \} < -\inf \ f|_{\xi}(x-y) - t - \inf \ v|_{\xi} \left((x-y)/t \right). \tag{49}
\]

Note that \(-\infty \leq \inf \{ v|_{\xi} \} \leq +\infty \), then \(-\inf \ u|_{\xi}(x-y) - t \inf \ v|_{\xi} \(y/t \) \) is a continuous function of variable \(t \), then

\[
\tilde{f}|_{\xi}(x) = \lim_{t \to 0^+} \tilde{f}|_{\xi}(x) = f|_{\xi}. \tag{50}
\]

Moreover, \(\tilde{f}|_{\xi}(x) \) is a continuous function of \((t \in [0,1]) \); then, \(\lim_{t \to 0^+} W_i(f|_{\xi}) = W_i(f) \). Since \(f|_{\xi}e^{-dt} \tilde{f}|_{\xi}(x) \), we have

\[
\frac{W_i(f) - W_i(f)}{t} = \frac{W_i(f)}{t} e^{-dt} - 1 + e^{-dt} \frac{W_i(f)}{t} \tag{51}
\]

Notice that \(\tilde{f}|_{\xi} \geq f|_{\xi} \), we have the following two cases, that is, \(\exists \tau_0 > 0 : W_i(f|_{\xi}) = W_i(f) \) or \(W_i(f|_{\xi}) = W_i(f) \), \(\forall t > 0 \).

For the first case, since \(W_i(f|_{\xi}) \) is a monotone increasing function of \(t \), it must hold \(W_i(f|_{\xi}) = W_i(f) \) for every \(t \in [0, t_0] \). Hence, we have \(\lim_{t \to 0^+} (W_i(f|_{\xi}) - W_i(f))/t = -dW_i(f) \); the statement of the theorem holds true.

In the latter case, since \(f|_{\xi} \) is an increasing nonnegative function, it means that \(\log (W_i(f|_{\xi})) \) is an increasing concave function of \(t \). Then, \(\exists \log (W_i(f|_{\xi})) - \log (W_i(f)) \in [0, +\infty] \). On the other hand, since

\[
\log W_i(f|_{\xi}) - \log W_i(f) = \lim_{t \to 0^+} \log W_i(f|_{\xi}) - \log W_i(f) = \frac{1}{W_i(f)} \tag{52}
\]

Then, \(\lim_{t \to 0^+} \frac{W_i(f|_{\xi}) - W_i(f)}{t} = W_i(f) > 0 \). \tag{53}

From above, we infer that \(\exists \lim_{t \to 0^+} (W_i(f|_{\xi}) - W_i(f))/t \in [0, +\infty] \). Combining the above formulas, we obtain

\[
\lim_{t \to 0^+} \frac{W_i(f|_{\xi}) - W_i(f)}{t} \in [-\max \{ d, 0 \} W_i(f), +\infty]. \tag{54}
\]

So, we complete the proof.

In view of the example of the mixed QuermassinTEGRAL, it is natural to ask whether, in general, \(W_i(f, g) \) has some kind of integral representation.

Definition 24. Let \(\xi \in \mathcal{G}_{\xi_0} \) and \(f = e^{-u} \in \mathcal{G}^f \). Consider the gradient map \(\nabla u : \mathbb{R}^n \to \mathbb{R}^n \), the Borel measure \(\mu_i(f) \) on \(\xi_i \) is defined by

\[
\mu_i(f) := \frac{\left(\nabla u|_{\xi} \right)}{|\nabla u|^{n-1}} \# \left(f|_{\xi} \right). \tag{55}
\]

Recall that the following Blaschke-Petkantschin formula is useful.

Proposition 25 (see [43]). Let \(\xi_i \in \mathcal{G}_{\xi_0}(i = 1, 2, \ldots, n) \) be linear subspace of \(\mathbb{R}^n \) and \(f \) be a nonnegative bounded Borel function on \(\mathbb{R}^n \), then

\[
\int_{\mathbb{R}^n} f(x) dx = \frac{\omega_n}{\omega_1} \int_{\mathcal{G}_{\xi_0}} \int_{\xi} f(x) |x|^{n-1} dx d\mu_i(\xi_i). \tag{56}
\]

Now, we give a proof of Theorem 1.

Proof of Theorem 1. By the definition of the \(i \)th QuermassinTEGRAL of \(f \), we have

\[
\frac{W_i(f)}{t} - \frac{W_i(f)}{t} = \frac{\omega_n}{\omega_{n-i}} \int_{\mathcal{G}_{\xi_{n-i}}} \int_{\xi_{n-i}} f(x) dx d\mu_i(\xi_{n-i}). \tag{57}
\]

Let \(t > 0 \) be fixed, take \(\mathcal{C} \subset \Omega|_{\xi_{n-i}} \), and by reduction \(0 \in \text{int}(\Omega)|_{\xi_{n-i}} \), we have \(\mathcal{C} \subset \Omega|_{\xi_{n-i}} \), by Lemma 15, we obtain
\[
\lim_{h \to 0} \frac{I_{\xi_n} (f_{t+h}) (x) - I_{\xi_n} (f_t) (x)}{h} = \int_{\xi_n} \psi (\nabla u_t |_{\xi_n} (x)) f_{t} \bigg|_{\xi_n} (x) dx,
\]

(58)

where \(\psi = h^{-1} |x|^n \). Then, we have

\[
\lim_{h \to 0} \frac{W_i (f_{t+h}) - W_i (f_t)}{h} = \frac{d}{dt} W_i (f_t) \bigg|_{t=0} = \lim_{s \to 0} \frac{d}{dt} W_i (f_t) \bigg|_{t=s} = \int_{\mathbb{R}^n} \psi d\mu_{n-i} (f_t).
\]

(59)

So, we have \(W_i (f_{t+h}) - W_i (f_t) = \int_{\mathbb{R}^n} \psi d\mu_{n-i} (f_t) ds \). The continuity of \(\psi \) implies \(\lim_{s \to 0} \int_{\mathbb{R}^n} \psi d\mu_{n-i} (f_s) ds = \int_{\mathbb{R}^n} \psi d\mu_{n-i} (f) \). Therefore,

\[
\lim_{t \to 0} \frac{W_i (f_t) - W_i (f)}{t} = \frac{d}{dt} W_i (f_t) \bigg|_{t=0} = \lim_{s \to 0} \frac{d}{dt} W_i (f_t) \bigg|_{t=s} = \int_{\mathbb{R}^n} \psi d\mu_{n-i} (f). \]

(60)

Since \(\psi = h^{-1} |x|^n \), we have

\[
W_i (f, g) = \frac{1}{n-i} \lim_{t \to 0} \frac{W_i (f_t) - W_i (f)}{t} = \frac{1}{n-i} \int_{\mathbb{R}^n} h^{-1} |x|^n d\mu_{n-i} (f).
\]

(61)

So, we complete the proof.

Remark 26. From the integral representation (12), the \(i \)th functional mixed Quermassintegral is linear in its second argument, with the sum in \(\mathcal{A}' \), for \(f, g, h \in \mathcal{A}' \), then we have \(W_i (f, g + h) = W_i (f, g) + W_i (f, h) \).

Data Availability

No data were used to support this study.

Disclosure

This paper is presented as Arxiv in the following link: https://arxiv.org/abs/2003.11367.

Conflicts of Interest

The authors declare no conflict of interest.

Authors’ Contributions

All authors contributed equally to this work. All authors have read and agreed to the published version of this manuscript.

Acknowledgments

The work is supported in part by the CNSF (Grant Nos. 11561012 and 11861024), Guizhou Foundation for Science and Technology (Grant Nos. [2019] 1055 and [2019]1228), and Science and technology top talent support program of Department of Education of Guizhou Province (Grant No. [2017]069).

References

[1] E. Lutwak, “The Brunn-Minkowski-Firey theory I: mixed volumes and the Minkowski problem,” Journal of Differential Geometry, vol. 38, no. 1, pp. 131–150, 1993.

[2] E. Lutwak, “The Brunn-Minkowski-Firey theory II: affine and geominimal surface area,” Advances in Mathematics, vol. 118, pp. 224–294, 1996.

[3] A. Aleksandrov, “On the theory of mixed volumes. I: extensions of certain concepts in the theory of convex bodies,” Matematicheskii Sbornik, vol. 2, pp. 947–972, 1937.

[4] W. Fenchel and B. Jessen, "Mengenfunktionen und konvexe Körper," Danske Videnskabernes Selskab Mathematisk-fysiske Meddelelser, vol. 16, pp. 1–31, 1938.

[5] C. Haberl and F. E. Schuster, "Asymmetric affine Lp Sobolev inequalities," Journal of Functional Analysis, vol. 257, no. 3, pp. 641–658, 2009.

[6] E. Lutwak, D. Yang, and G. Zhang, “Lp affine isoperimetric inequalities,” Journal of Differential Geometry, vol. 56, no. 1, pp. 111–132, 2000.

[7] E. Lutwak, D. Yang, and G. Zhang, “Sharp affine Lp Sobolev inequalities,” Journal of Differential Geometry, vol. 62, no. 1, pp. 17–38, 2002.

[8] E. Lutwak, D. Yang, and G. Zhang, “On the Lp-Minkowski problem,” Transactions of the American Mathematical Society, vol. 356, no. 11, pp. 4359–4370, 2004.

[9] E. Lutwak, D. Yang, and G. Zhang, ”Volume inequalities for subspaces of Lp,” Journal of Differential Geometry, vol. 68, no. 1, pp. 159–184, 2004.

[10] E. Lutwak, D. Yang, and G. Zhang, “Optimal Sobolev norms and the Lp Minkowski problem,” International Mathematics Research Notices, vol. 2006, article 62987, pp. 1–21, 2006.

[11] E. Werner, “On Lp affine surface areas,” Indiana University Mathematics Journal, vol. 56, no. 5, pp. 2305–2324, 2007.

[12] E. Werner and D. Ye, “New Lp affine isoperimetric inequalities,” Advances in Mathematics, vol. 218, no. 3, pp. 762–780, 2008.

[13] E. Werner and D. Ye, “Inequalities for mixed p-affine surface area,” Mathematische Annalen, vol. 347, no. 3, pp. 703–737, 2010.

[14] H. J. Brascamp and E. H. Lieb, “On extensions of the Brunn-Minkowski and Prekopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation,” Journal of Functional Analysis, vol. 22, no. 4, pp. 366–389, 1976.
