Dear Sirs,

Schizophrenia is a common, heterogenous and complex disorder with unknown aetiology [1]. There is established evidence for N-methyl-D-aspartate receptor (NMDAR) hypofunction [2] as a central component of the functional dysconnectivity that is the most accepted model for symptoms [3], and increasing evidence for potassium channel dysfunction [4]. Moreover, autoimmune mechanisms have been proposed, perhaps in subgroups of patients [5, 6]. In the last few years, antibodies to neuronal cell surface antigens have been identified in cases of autoimmune encephalitis that respond to immunotherapy [7, 8]. Over two-thirds of patients with NMDAR antibody encephalitis, and some with potassium channel antibody-associated limbic encephalitis, have prominent psychiatric symptoms, or may present to psychiatric services in the first instance [7, 9, 10]. The psychiatric symptoms are those seen in schizophrenia including delusions, hallucinations, and catatonic movement disorder. There is good evidence for specificity and pathogenicity of these antibodies, with absence in large numbers of healthy individuals and those with other neurological diseases [9, 11, 12]. However, there have been no cases of NMDAR or potassium channel antibodies identified in patients with purely psychiatric disorders. We hypothesized that these antibodies would be present in a proportion of patients with early schizophrenia, in the absence of overt seizures, movement disorders, or other neurological signs.

Serum was obtained prospectively from a cohort \(n = 46 \) of patients at first presentation of psychosis to an epidemiologically principled early intervention for psychosis service (http://www.cameo.nhs.uk), which provides 3 years of treatment and follow up when possible. We retrospectively measured NMDAR antibodies using a cell based assay and subjective visual scoring system [9]. We identified antibodies to components of potassium channel complexes (VGKCs) by radioimmunoassay [8]. The sera were tested blind to diagnostic status. Patients with positive results were retrospectively interviewed and extensively investigated. Full clinical details are given in the Table and supplementary information.

Patients 1 and 2 had NMDAR antibodies, [patient 1: score 2, (range 0–4, normal 0–0.5, Fig. 1); patient 2: score 1]. Patient 1 was unwell for 6 months before recovering; he was well and antibody negative at 3 years. Patient 2 has had a protracted course; antibodies remained repeatedly positive at 24–35 months follow up, but were then negative at 36 months. Patient 3 had VGKC antibodies \((1,435 \text{ pM}; \text{normal } <100) \), was unwell for 6 months before recovering, but has subsequently relapsed after 1 year and has now associated limbic encephalitis, have prominent psychiatric symptoms, or may present to psychiatric services in the first instance [7, 9, 10]. The psychiatric symptoms are those seen in schizophrenia including delusions, hallucinations, and catatonic movement disorder. There is good evidence for specificity and pathogenicity of these antibodies, with absence in large numbers of healthy individuals and those with other neurological diseases [9, 11, 12]. However, there have been no cases of NMDAR or potassium channel antibodies identified in patients with purely psychiatric disorders. We hypothesized that these antibodies would be present in a proportion of patients with early schizophrenia, in the absence of overt seizures, movement disorders, or other neurological signs.

Serum was obtained prospectively from a cohort \(n = 46 \) of patients at first presentation of psychosis to an epidemiologically principled early intervention for psychosis service (http://www.cameo.nhs.uk), which provides 3 years of treatment and follow up when possible. We retrospectively measured NMDAR antibodies using a cell based assay and subjective visual scoring system [9]. We identified antibodies to components of potassium channel complexes (VGKCs) by radioimmunoassay [8]. The sera were tested blind to diagnostic status. Patients with positive results were retrospectively interviewed and extensively investigated. Full clinical details are given in the Table and supplementary information.

Patients 1 and 2 had NMDAR antibodies, [patient 1: score 2, (range 0–4, normal 0–0.5, Fig. 1); patient 2: score 1]. Patient 1 was unwell for 6 months before recovering; he was well and antibody negative at 3 years. Patient 2 has had a protracted course; antibodies remained repeatedly positive at 24–35 months follow up, but were then negative at 36 months. Patient 3 had VGKC antibodies \((1,435 \text{ pM}; \text{normal } <100) \), was unwell for 6 months before recovering, but has subsequently relapsed after 1 year and has now
been lost to follow up. There were no clinical features to
differentiate these cases from other cases of psychosis in
Cameo (Table 1), even in retrospect, and the autoantibody
positive cases fulfilled criteria for DSM-IV schizophrenia.
No patient had physical neurological symptoms or signs.

A further patient, patient 4, with first episode psychosis
identified after the prospective cohort, had NMDAR anti-
bodies (score 1.5). He was unwell for 4 months, partially
responsive and then relapsing despite treatment with anti-
psychotics. To reduce the levels of NMDAR antibodies he
received plasmapheresis and made a significant clinical
improvement 3 weeks later, improving further with pred-
nisolone. He remains clinically and functionally improved
at 7 month follow up, on no antipsychotic medication. This
is the first case description, to our knowledge, of a patient
with NMDAR antibodies and a purely psychiatric presen-
tation responding to immunotherapy.

These preliminary data show that some patients with
schizophrenia have potentially pathogenic autoantibodies
to relevant membrane proteins. Three of the patients had
NMDAR antibodies, which have been shown to reduce
NMDAR clusters in vivo [12], which mirrors that seen in
models of schizophrenia [13]. All of our antibody positive
cases (6.5% of 46) fulfilled DSMIV criteria for schizo-
phrenia and the patients were tested early in the course of
their illness. None of the chronic schizophrenia controls in
our large case series had NMDAR antibodies [9], but this
could be because NMDAR and VGKC antibodies sponta-
neously drop with time ([14]; SRI, AV unpublished data); this
suggests a critical early period of illness for detection
and treatment. We did not measure antibody in CSF, and
future prospective systematic studies of antibody in paired
serum and CSF will be informative.

The 46 patients in the Cameo cohort were given DSM-
IV diagnoses a year after intake to the service. Of these,

Table 1 Demographic and clinical data for antibody positive cases

Patient	Antibody,	Time to recovery, Total follow up (months)	Cognitive deficits	Positive psychotic symptoms	Illness duration at intake/assay (days)
1	NMDAR	36	Chronic	Grandiose and paranoid delusions	21
2	NMDAR	12	Chronic	Auditory hallucinations.	28
3	VGKC	7	Chronic	Paranoid delusions, thought disorder	14
4	NMDAR	7	Chronic	Paranoid delusions, thought disorder	19
	NMDAR	7	Chronic	Paranoid delusions, thought disorder	19

Note: Table includes demographic data and clinical features for patients with antibodies. The table compares the time to recovery, total follow up, cognitive deficits, positive psychotic symptoms, and illness duration at intake/assay for different patients.
63% had a diagnosis of schizophrenia. Other psychotic diagnoses were psychosis not otherwise specified (15%), bipolar affective disorder (13%), schizoaffective disorder (4%), major depression with psychosis (2%) and delusional disorder (2%). It is therefore possible that the proportion of cases with diagnoses of schizophrenia that have specific antibodies is higher than the proportion described here. However, there is significant diagnostic instability in patients with early psychosis, due to the threshold of chronicity required for a diagnosis of schizophrenia. There is also increasing evidence of shared heritability between the psychotic disorders and consequently a move away from the use of categorical diagnoses in those with psychotic disorders.

There is a need for a systematic screen of available neuronal surface antigens in first episode psychosis and schizophrenia to characterise the true prevalence of these antibodies among different population groups, with implications for diagnosis, prognosis and treatment.

Acknowledgments This work was supported by the National Institute for Health Research (NIHR) CLAHRC for Cambridgeshire and Peterborough, CIBERSAM, Spain and the Oxford Biomedical Research Centre. MSZ holds an Eastern Region Neurosciences Training Fellowship. We also wish to acknowledge Professor F. Anne Stephenson, at the School of Pharmacy, University of London for her help in developing the NMDAR assay. We would like to thank Prof D Beeson and Ms S Maxwell for their assistance with the cloning and expression of NMDAR subunits, Dr F Winton as clinical referrer and Dr J Stochl for help with the Cameo demographic data.

Conflict of interest MZ and PW report no disclosures. SRI, PBJ and BLe receive support from the NIH. AJC reports receiving consulting fees, lecture fees, and grant support from Genzyme. PMcK is supported by CIBERSAM, Spain. AV receives royalties from Athena Diagnostics, and the department of Clinical Neurology in Oxford receives royalties and payments for antibody assays.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

References

1. Harrison PJ, Weinberger DR (2005) Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol Psychiatry 10:40–68
2. Javitt DC (2007) Glutamate and schizophrenia: phencyclidine, N-methyl-D-aspartate receptors, and dopamine-glutamate interactions. Int Rev Neurobiol 78:69–108
3. Stephan KE, Friston KJ, Frith CD (2009) Dysconnection in schizophrenia: from abnormal synaptic plasticity to failures of self-monitoring. Schizophr Bull 35:509–527
4. Huffaker SJ, Chen J, Nicodemus KK, Sambataro F, Yang F, Mattay V et al (2009) A primate-specific, brain isoform of KCNH2 affects cortical physiology, cognition, neuronal repolarization and risk of schizophrenia. Nat Med 15:509–518
5. Jones AL, Mowry BJ, Pender MP, Greer JM (2005) Immune dysregulation and self-reactivity in schizophrenia: do some cases of schizophrenia have an autoimmune basis? Immunol Cell Biol 83:9–17
6. Stefansson H, Ophoff RA, Steinberg S, Andreassen OA, Cichon S, Rajescu D et al (2009) Common variants conferring risk of schizophrenia. Nature 460:744–747
7. Dalmau J, Gleichman AJ, Hughes EG, Rossi JE, Peng X, Lai M et al (2008) Anti-NMDA-receptor encephalitis: case series and analysis of the effects of antibodies. Lancet Neurol 7:1091–1098
8. Vincent A, Buckley C, Schott JM, Baker I, Dewar BK, Detet N et al (2004) Potassium channel antibody-associated encephalopathy: a potentially immunotherapy-responsive form of limbic encephalitis. Brain 127:701–712
9. Irani SR, Bera K, Waters P, Zuliani L, Maxwell S, Zandi MS et al (2010) N-methyl-D-aspartate antibody encephalitis: temporal progression of clinical and paraclinical observations in a predominantly non-paraneoplastic disorder of both sexes. Brain 133:1655–1667
10. Parthasarathi UD, Harrower T, Tempest M, Hodges JR, Walsh C, McKenna PJ et al (2006) Psychiatric presentation of voltage-gated potassium channel antibody-associated encephalopathy. Case report. Br J Psychiatry 189:182–183
11. Dalmau J, Tuzun E, Wu HY, Masjuan J, Rossi JE, Voloschin A et al (2007) Paraneoplastic anti-N-methyl-D-aspartate receptor encephalitis associated with ovarian teratoma. Ann Neurol 61:25–36
12. Hughes EG, Peng X, Gleichman AJ, Lai M, Zhou L, Tsou R et al (2010) Cellular and synaptic mechanisms of anti-NMDA receptor encephalitis. J Neurosci 30:5866–5875
13. Belforte JE, Zsiros V, Sklar ER, Jiang Z, Yu G, Li Y et al (2010) Postnatal NMDA receptor ablation in corticollimbic interneurons confers schizophrenia-like phenotypes. Nat Neurosci 13:76–83
14. Buckley C, Oger J, Clover L, Tuzun E, Carpenter K, Jackson M et al (2001) Potassium channel antibodies in two patients with reversible limbic encephalitis. Ann Neurol 50:73–78