Research Paper
Comparing the Effects of Eight Weeks of Whole Body Vibration Exercise Combined With Rope Skipping at Two Different Intensities on Physical Performance of Older Men: A Randomized Single-Blind Clinical Trial

*Mehdi Pouyafar1, Roya Askari1, Seyyed Alireza Hoseini Kakhk1, Mohsen Damavandi2, Ali Maleki3

1. Department of Sports Physiology, Faculty of Sports Science, Hakim Sabzevari University, Sabzevar, Iran.
2. Department of Sport Biomechanics, Faculty of Sports Science, Hakim Sabzevari University, Sabzevar, Iran.
3. Department of Biomedical Engineering, Science Campus and New Technologies, Semnan University, Semnan, Iran.

ABSTRACT

Objective: Whole-Body Vibration (WBV) exercise seems to be an effective alternative to improve physical performance in the elderly. This study aims to compare the effects of eight weeks of WBV exercise combined with rope skipping at two different intensities on physical performance of older men.

Methods & Material: This is a randomized single-blind clinical trial. Participants were 30 older men (Mean±SD age= 65.83±4.16 years; Mean±SD height= 169.26±3.90 cm; Mean±SD weight= 77.04±4.62 kg; Body Mass Index= 26.86±0.69 kg/m²) living in Mashhad, Iran in 2019, who were selected by purposive and convenience sampling methods and randomly divided into three groups: high intensity (HI; n=12), low intensity (LI; n=12) and control (n=10). The WBV exercise was performed at a frequency of 25-40 Hz and amplitude of 3 mm. Rope skipping was performed based on the Borg scale at 13-14 level intensities with 30-35 jumps per minute. Physical performance indicators, body mass index, and fat percentage were measured before and after eight weeks of intervention. Repeated measures analysis of variance was used for data analysis in SPSS v. 20 software. The significance level was set at P≤0.05.

Results: In HI and LI groups, body fat percentage (-4.50%, -5.99%), lower body flexibility (105%, 102%), upper limb muscle strength (42.43%, 42.93%), handgrip strength (43.38%, 39.45%), dynamic leg strength (36.47%, 26.43%), lower limb muscular endurance (27.20%, 26.10%), cardiorespiratory function (10.27%, 10.90%), and dynamic balance (-32.60%, -24.10%) showed a significant improvement compared to the control group (P<0.05). There was no significant difference in body mass index between exercise and control groups (P>0.05), and no significant difference between the two exercise groups in any of the study variables (P>0.05).

Conclusion: It seems that low intensities of the WBV exercise + rope skipping is effective in improving body composition and physical performance in older men. The selection of intensity level depends on the physical condition of the elderly.

Keywords:
Combined training, Intensity, Physical performance, Elderly

Received: 23 Apr 2020
Accepted: 21 Oct 2020
Available Online: 01 Oct 2021

* Corresponding Author:
Mehdi Pouyafar, PhD.
Address: Department of Sports Physiology, Faculty of Sports Science, Hakim Sabzevari University, Sabzevar, Iran.
Tel: +98 (51) 44012763
E-mail: r.askari@hsu.ac.ir
Extended Abstract

1. Introduction

Aging is an unavoidable stage of human life that is associated with a decrease in strength and the amount of physical activity and mobility. With aging, physical dysfunction especially movement limitation increases. This leads to dependence on others in daily tasks. These factors can have many negative effects on the quality of life of the elderly [1]. Therefore, the importance of muscle mass and strength, especially maximal muscular strength, has a significant effect on how older people perform daily activities [2]. One of the interventions for these people is While-Body Vibration (WBV) exercises which are for people who are less inclined to participate in sports classes or people who have difficulty walking. It can also increase skeletal muscle strength in both young and old people, similar to resistance training [7].

2. Methods

This is a quasi-experimental study, a clinical trial (Code= IRCT20200109046063N1) with an ethical approval from Hakim Sabzevari University (Code: IR.HSU.REC.1398.002). Participants were 34 older men (Mean ±SD age= 65.83±4.16 years; height= 169.26±3.90 cm; weight= 77.04±4.62 kg; Body Mass Index= 26.86±0.69 kg/m2). They were randomly divided into three groups: high intensity or HI (N=12), low intensity or LI (N=12), and control (N=10). Physical function tests including the tests of handgrip strength, upper limb muscle strength, dynamic leg strength, lower limb muscular endurance, dynamic balance, lower body flexibility, cardiorespiratory function, body composition, and body mass index were conducted at baseline and at the end of eight weeks of intervention. After becoming familiar with WBV machine and rope training, the two exercise groups performed WBV exercise program for 8 weeks, 3 sessions per week each 30 minutes (4 one-minute sets in the first four weeks and 5 one-minute sets in the second four weeks). The amplitude was equal to 3 millimeters for both groups. The frequency was 40 Hz in the first group (HI) and 25 Hz in the second group (LI). Rest between sets was 30-45 seconds and between movements was 90-120 seconds with specific positions of upper body (push-up position, and reverse wrist flexion) and lower body (squat and lunge positions) on the WBV machine. The control group performed their routine activities without any intervention. The rope training program combined with WBV exercises started with two sets of one minute increased to six sets of one minute in the last sessions, where there were a 30-s rest between sets and 30-35 jumps per minute. The rope intensity was measured and determined at 13 and14 levels by the Borg Scale of 6-20. Data analysis was performed in SPSS v. 20 software.

3. Results

The results of physical function tests and body composition are presented in Table 1. In HI and LI groups, body fat percentage (-4.50%, -5.99%), lower body flexibility (105%, 102%), upper limb muscle strength (42.43%, 42.93%), handgrip strength (43.38%, 39.45%), dynamic leg strength (36.47%, 26.43%), lower limb muscular endurance (27.20%, 26.10%), Cardiorespiratory function (10.27%, 10.90%), and dynamic balance (-32.60%, -24.10%) showed a significant improvement compared to the control group (P<0.05). There was no significant difference in body mass index between exercise and control groups (P>0.05), and no significant difference between the two exercise groups in any of the study variables (P>0.05), although, the HI exercise group had higher means than the LI exercise group.

4. Discussion and Conclusion

The WBV exercises at frequencies of 25 and 40 Hz and amplitude of 3 mm combined with rope exercises improve muscle function indicators of the elderly, but there is no significant difference between the groups that receives exercise with high and low intensities. The indicators was higher in the group received high intensity exercises which can be the recommended intensity in using the combination of WBV-rope exercises. Given that both intensity of exercises had a positive effect on muscle function indicators, older people aged 60-70 years are likely to be able to benefit from both types of exercises depending on their physical condition; however, HI exercises may provide a better level of physical fitness for them.

Ethical Considerations

Compliance with ethical guidelines

This study was approved by the ethical committee of Hakim Sabzevari University (Code: IR.HSU.REC.1398.002). All ethical principles are considered in this article. The participants were informed about the purpose of the research and its implementation stages; they were also assured about the confidentiality of their information; moreover, they were free to leave the study whenever they wished, and if desired, the research results would be available to them.
Table 1. Mean scores of the physical function indicators

Variables	Mean±SD	Time* Group	Group	Time×Group*				
	HI Group	LI Group	Control Group			0.001	0.480	0.001
Body Mass Index (kg/m²)								
Pre-test	26.69±0.56	27.11±0.52	26.78±1.00					
Post-test	26.48±0.57	26.89±0.54	26.74±1.02	0.001	0.480	0.001		
Mean difference	-0.78	-0.81	-0.14					
Fat percentage								
Pre-test	25.30±1.17	25.53±0.90	26.24±1.23					
Post-test	24.16±1.14	24.00±0.88	26.15±1.26	0.001	0.019	0.001		
Mean difference	-4.50	-5.99	-0.34					
Lower body flexibility (cm)								
Pre-test	-7.89±1.96	-7.89±1.83	-6.62±1.99					
Post-test	0.44±2.50	0.22±1.78	-6.75±3.24	0.001	0.018	0.001		
Mean difference	105	102	1.96					
Upper limb muscle strength								
(number per 30 seconds)								
Pre-test	19.11±2.61	18.89±3.01	19.12±1.72					
Post-test	27.11±3.15	27.00±3.20	19.75±2.43	0.001	0.016	0.001		
Mean difference	42.43	42.93	3.29					
Handgrip strength (kg)								
Pre-test	21.00±2.73	21.11±2.89	21.88±2.41					
Post-test	30.11±3.33	29.44±2.83	21.88±2.85	0.001	0.025	0.001		
Mean difference	43.38	39.45	0.2					
Dynamic leg strength								
(number per 30 seconds)								
Pre-test	18.56±1.66	19.33±1.80	18.50±2.81					
Post-test	25.33±2.34	24.44±2.60	19.50±2.81	0.001	0.016	0.001		
Mean difference	36.47	26.43	4.05					
Lower limb muscular endurance								
(Number of steps)								
Pre-test	30.22±4.46	30.22±3.56	28.75±3.95					
Post-test	38.44±4.92	38.11±3.91	29.00±4.00	0.001	0.020	0.001		
Mean difference	27.20	26.10	0.86					
Cardiorespiratory function (cm)								
Pre-test	353.38±8.36	351.46±9.58	352.88±17.50					
Post-test	389.68±10.50	398.77±11.80	356.13±17.44	0.001	0.018	0.001		
Mean difference	10.27	10.90	0.92					
Dynamic balance (sec)								
Pre-test	8.25±0.38	7.80±0.65	7.70±0.82					
Post-test	5.56±0.40	5.92±0.56	7.67±0.80	0.001	0.019	0.001		
Mean difference	-32.60	-24.10	-0.38					

*Significant between-group difference; †Significant within-group difference.
Funding

The paper was extracted from the PhD. dissertation and extracted from a research project of the first author at the Department of Sports Physiology, Faculty of Sports Science, Hakim Sabzevari University, Sabzevar.

Authors’ contributions

Conceptualization, writing – review & editing: All authors; Methodology: Roya Askari, Mohsen Damavandi; Investigation: Mehdi Pouyafar, Roya Askari, Ali Maleki; Supervision: Mehdi Pouyafar, Roya Askari; Supervision, funding acquisition: Mehdi Pouyafar.

Conflicts of interest

The authors declare no conflict of interest.
مقایسه اثر هشت هفته تمرین ترکیبی و ویبریشن طناب زنی با دو شدت مختلف بر عملکرد جسمانی مردان سالمند

یکی از اهداف این پژوهش تأثیر هشت هفته تمرین ترکیبی و ویبریشن طناب زنی با دو شدت مختلف بر عملکرد جسمانی مردان سالمند بود.

هدف از انجام این پژوهش مقایسه تأثیر هشت هفته تمرینات ویبریشن کل بدن و طناب زنی با دو شدت مختلف بر عملکرد جسمانی مردان سالمند بود.

به هنگام یک چاه‌زیرنده کرایه‌بر پایه ویبریشن ماه‌هایی در سالمندان به نقش می‌رسد. مانند این‌طوره از این‌طوره یکی از این‌طوره در این‌طوره و در دریای این‌طوره و در رفتار و کاهش عملکرد یکی از این‌طوره می‌باشد.

در این مطالعه، هشتم مردان سالمند بود. در این‌طوره، دو گروه تمرینی در هر دو گروه به مدت هشتم هفته در دو گروه انجام گرفت. تمرین مراحل گروهی در نهایت در این‌طوره به عنوان یک جایگزین کارآمد برای بهبود عملکرد جسمانی سالمندان به می‌رسد.

 Successful SPSS نتایج 20 اجتناب‌شده سطح مطلوب (0.05) همگونی گرفت.

در این‌طوره، تمرینات ویبریشن در دو گروه انجام گرفت. تمرین طناب زنی به آن‌ها مجهز شد و استفاده شد. تمرینات ویبریشن در دو گروه به مدت هشتم هفته در این‌طوره به عنوان یک جایگزین کارآمد برای بهبود عملکرد جسمانی سالمندان به می‌رسد.

در این‌طوره، هشتم مردان سالمند بود. در این‌طوره، دو گروه تمرینی در هر دو گروه به مدت هشتم هفته در دو گروه انجام گرفت. تمرین مراحل گروهی در نهایت در این‌طوره به عنوان یک جایگزین کارآمد برای بهبود عملکرد جسمانی سالمندان به می‌رسد.

در این‌طوره، تمرینات ویبریشن در دو گروه انجام گرفت. تمرین طناب زنی به آن‌ها مجهز شد و استفاده شد. تمرینات ویبریشن در دو گروه به مدت هشتم هفته در این‌طوره به عنوان یک جایگزین کارآمد برای بهبود عملکرد جسمانی سالمندان به می‌رسد.

در این‌طوره، تمرینات ویبریشن در دو گروه انجام گرفت. تمرین طناب زنی به آن‌ها مجهز شد و استفاده شد. تمرینات ویبریشن در دو گروه به مدت هشتم هفته در این‌طوره به عنوان یک جایگزین کارآمد برای بهبود عملکرد جسمانی سالمندان به می‌رسد.

در این‌طوره، تمرینات ویبریشن در دو گروه انجام گرفت. تمرین طناب زنی به آن‌ها مجهز شد و استفاده شد. تمرینات ویبریشن در دو گروه به مدت هشتم هفته در این‌طوره به عنوان یک جایگزین کارآمد برای بهبود عملکرد جسمانی سالمندان به می‌رسد.
تا شصت هرتز متغیر است و فرکانس ویبریشن در برنامه تمرینات ویبریشن در افراد مسن نسبت به افراد جوان و مرگ، تأثیر قابل توجهی در افزایش عملکرد مسئولیتی و اعتماد به نفس، رابطه زنده‌بادآوری و ازکارگیری در افراد مسن را دارد.

به زمین افتادن یا سقوط یکی از شایع‌ترین و جدی‌ترین مشکلات سالمندان است. تمرین ویبریشن نسبت به تمرینات سنتی در افراد سالمند روشی ای است که تمرینات یک‌ساله در مطالعه ویبریشن شیوه ای از تمرینات را برای افرادی که به ابزار یا زمین می‌خورند کاهش خطر و در این‌جا، کاهش شاخص‌های مربوط به کاهش خط‌ریزهای مزمنی که ناشی از افتادن افراد سالمند باشد. به این معنا است که به حداکثر اهمیت و توجه ویبریشن و اینکه تمرینات ایستاده در زمین باعث کاهش خطر‌ها می‌شود. همچنین باید به جلوگیری از استفاده از تمرینات سنتی که با روش‌های فیزیکی، پیوسته، نسبت به تمرینات ویبریشن مناسب‌تر است.

در مطالعه گزارش شده از هش میکروترم تا هشت میکروترم تفاوت قابل توجهی در عملکرد این دستگاه بر سطح تماس بدن می‌باشد.

1. Whole-body Vibration (WBV)
جلسه توجیهی با جزئیات برنامه تمرینی و محل تمرین آشنا و برگه پرسش‌نامه ای که شامل برخی اطلاعات فردی، سوابق پزشکی و محیطی تهیه شده و تا تکمیل حجم نمونه ادامه‌دار بود. قبل از اجرا تحقیق زیاد در نظر گرفته شد. با پرتاب تاس، گروه هر فرد مشخص و دو برای گروه کنترل، اعداد سه و چهار برای گروه آزمایش تعیین واحدهای پژوهش در سه گروه دوازده نفری از ویبریشن با فرکانس چهل هرتز و دامنه سه میلی‌متر + تمرین (WBV) تمرین نفر سالم انتخاب شد و به روش سالمند مرد بعد از انجام معاینات پزشکی منظم در جلسات تمرینی، مشکلات احتمالی جسمانی و دلایل معلولیت حرکتی و بیماری صرع بود و شرایط خروج: عدم شرکت منظم در تمرینات ورزشی با استفاده از پرسش‌نامه بین المللی پرسش‌نامه پزشکی و تأیید پزشک تیم تحقیقاتی، توانایی شرکت طناب زنی و گرفتن شاخص‌های عملکرد جسمانی و همچنین انجام مداخلات پزشکی توسط داده شد.

شش نفر از بیان‌های مشاهده شده مبانی نیاز برای استفاده از ویبریشن پزشکی و تنها به پزشکی جدید و قابل توجهی که در تحقیقات مربوط به درمان ضعف جسمانی دوران سالمندی، یک برنامه تمرینی در مردان سالمند بهترین اثر را دارد تا با مناسب‌ترین شدت مؤثر و ایمن بوده‌باشد.

پرسش‌نامه‌های IPAQ، از واژه‌های انگلیسی International Physical Activity Questionnaire که به تحقیقات مربوط به درمان ضعف جسمانی سالمندان در زمینه ضعف جسمانی در زمینه اجرای تمرینات طناب‌زنی و ورزشی در زمینه شدت‌های مختلف به تحقیقات بیشتری از این رابطه اهمیت دارد. بنابراین هدف از تحقیق حاضر پاسخ به سوالات زیر می‌باشد:

1. گسترش می‌شود که تمرینات فعالیت‌های طبیعی و گسترده‌تر است.
2. و به فعالیتی چنین، ادامه و تثبیت ویژگی‌های سلامتی سلامتی که در مورد فعالیت‌های خودی و عضایی، بهبود در پیامدهای واقعی، ارزش و فعالیت ویژگی‌های سلامتی و بهبود سلامتی در زمینه فعالیت‌های درمانی طناب‌زنی و ورزشی تأثیر گرفته شد و با توجه به تدریجی که بر اساس ویبریشن طناب‌زنی و ورزشی با جهت ویژگی‌های سلامتی و درمانی صرع مشاهده شده، که در شرایط استخوان با سختی، روشنایی و تغییرات ترشحاتی، خاصیت‌های سلول‌های استخوانی بهبود گرفت و سطح

سالمندان در فردی که تمرینات طناب‌زنی و ورزشی که انتخاب و درمان ضعف جسمانی دوران سالمندی، یک برنامه تمرینی در مردان سالمند بهترین اثر را دارد تا با مناسب‌ترین شدت مؤثر و ایمن بوده‌باشد.
درگاه شروع و سپس پایان دوره تمرینی، آزمون های عملکرد جسمانی شامل آزمون قدرت ایستای دست (دستگاه DM-100N مدل YAGAMI دینامومتر عقربه ای)، قدرت عضلات اندام فوقانی (حرکت جلو بازو توسط یک وزنه)، قدرت پویای پا (بلند کردن 8 کیلویی در مدت 3 ثانیه)، عملکرد شدن و نشستن روی صندلی (ازمیت دو دقیقه گام برداری)، انعطاف پذیری، عملکرد تعادل پویا (بلند شدن و رفتن کردن و رفتن در مدت 3 ثانیه)، عملکرد پایین تنه (آزمون شدن و نشستن روی صندلی و رساندن وزنه روی صندلی)، عملکرد قلبی تنفسی (آزمون شش دقیقه پیاده روی)، بیان دلیل عدم پیگیری (زیرآزمون شش دقیقه پیاده روی) و تعداد افراد واجد شرایط = 53 نفر، خارج شده از مطالعه = 4 نفر، عدم تطاق با معیارهای ورودی = 17 نفر، عدم موافقت برای شرکت در مطالعه = 8 نفر، تخصیص افراد.

توجه:
- در مورد تخصیص درگاه شدت گام: گروه بندی تصادفی = 36 نفر
- در مورد تخصیص درگاه شدت زیراژ: گروه بندی تصادفی = 12 نفر
- تجزیه و تحلیل: تعداد 11 نفر، عدم انجام تجزیه و تحلیل = 1 نفر
- تجزیه و تحلیل شده: تعداد 11 نفر، عدم انجام تجزیه و تحلیل = 1 نفر
- تجزیه و تحلیل مداخله: تعداد 12 نفر، عدم انجام تجزیه و تحلیل = 0 نفر
- تجزیه و تحلیل کنترل: تعداد 12 نفر، عدم انجام تجزیه و تحلیل = 2 نفر
- تجزیه و تحلیل: تعداد 11 نفر، عدم انجام تجزیه و تحلیل = 0 نفر
- تجزیه و تحلیل مداخله: تعداد 12 نفر، عدم انجام تجزیه و تحلیل = 1 نفر
- تجزیه و تحلیل کنترل: تعداد 12 نفر، عدم انجام تجزیه و تحلیل = 0 نفر
- تجزیه و تحلیل: تعداد 11 نفر، عدم انجام تجزیه و تحلیل = 1 نفر
- تجزیه و تحلیل مداخله: تعداد 12 نفر، عدم انجام تجزیه و تحلیل = 0 نفر
- تجزیه و تحلیل کنترل: تعداد 12 نفر، عدم انجام تجزیه و تحلیل = 2 نفر

مرجع:
- مهدی پویافر و همکاران. مقایسه اثر هشت هفته تمرین ترکیبی ویبریشن گردبندی با دو شدت متفاوت بر عملکرد جسمانی مردان سالمند. سلامتی، 1400، شماره 14، صفحه 384-391.
در هر گروه، دامنه و فرکانس مشترک بود برای دو حرکت، هر واحدهایی با فرکانس 30 تا 45 ثانیه و استراحت بین حرکات، با وضعیت‌های مشخص روی 90 تا 120 بین حرکات ساخت. برداری از زیربستر در دستگاه ویبریشن تمام بدن مدل کشور آلمان انجام شد. فقط محقق از اختلاف شدت تمرینات آگاه بود و برای یکسان‌سازی مشاهده از لرزش دستگاه، تمرینات در روزهای جداگانه، اما زمان‌های مشابهی انجام شد.

در متغیرهای انعطاف‌پذیری از روش آماری حلول واریانس با انتساب‌گیری کمک استفاده شد. برای بررسی پی‌دپ‌های ویژه‌ای از آزمون شاپیرو ویلک ولکی‌فیرس، برای ارزیابی طبیعی بودن توزیع، نمودار آزمون وایل و آزمون آزمون لین و برای بررسی همبستگی گروه‌ها را با نرخ‌های آزمون و آزمون یاپکس برای پوریس گروه‌ها مرتبط با گروه‌های با دو حرکت روی اندام بالاتنه 40 تا 50×15×130 تا 150 ثانیه بین حرکت برای میزان استراحت و استراحت بین حرکات، با وضعیت‌های مشخص روی 90 تا 120 بین حرکات ساخت. برداری از زیربستر در دستگاه ویبریشن تمام بدن مدل کشور آلمان انجام شد. فقط محقق از اختلاف شدت تمرینات آگاه بود و برای یکسان‌سازی مشاهده از لرزش دستگاه، تمرینات در روزهای جداگانه، اما زمان‌های مشابهی انجام شد.

در متغیرهای انعطاف‌پذیری از روش آماری حلول واریانس با انتساب‌گیری کمک استفاده شد. برای بررسی پی‌دپ‌های ویژه‌ای از آزمون شاپیرو ویلک ولکی‌فیرس، برای ارزیابی طبیعی بودن توزیع، نمودار آزمون وایل و آزمون لین و برای بررسی همبستگی گروه‌ها را با نرخ‌های آزمون و آزمون یاپکس برای پوریس گروه‌ها مرتبط با گروه‌های با دو حرکت روی اندام بالاتنه 40 تا 50×15×130 تا 150 ثانیه بین حرکت برای میزان استراحت و استراحت بین حرکات، با وضعیت‌های مشخص روی 90 تا 120 بین حرکات ساخت. برداری از زیربستر در دستگاه ویبریشن تمام بدن مدل کشور آلمان انجام شد. فقط محقق از اختلاف شدت تمرینات آگاه بود و برای یکسان‌سازی مشاهده از لرزش دستگاه
توصیه ۲: روش‌هایی مختلف از راک‌گردن روش‌های ویرایشی

در مقدماتی قدرت عملکردی اندام فوقانی، قدرت ایستای دست و عملکرد استقامتی اندام‌های تحتانی تحت شرایط چهار فرضی، همگنی و طبیعی بدون وجود نشانش (P/0.05) از روش‌های تحلیل واریانس با اندازه‌های منجر وزن در شده (وزنی) استفاده شده است.

در صورت معناداری برای تعیین محل اختلاف از آزمون تقابلی با نویسی استفاده شد. سطح مناطقی نزدیک (5/0.05) در نظر گرفته شد. در نتیجه تحلیل منجمع‌ها از نرم‌افزار SPSS (نسخه ۲۰) استفاده شد.

یافته‌ها

مشخصات از راک‌گذاری‌ها در جدول شماره ۴ آراک شده است. نتایج نشان می‌دهد در گروه‌های آزمایشی یک و دو به ترتیب درصد چربی بدن (۴۳/۰۵ درصد) و درصد دستگاه پیشین (۴۳/۰۵ درصد) افزایش معناداری داشتند. این افزایش معناداری در هیچ گروهی از متغیرهای در موردی متغیر نشان داد. همچنین اثرات تعاملی در همه گروه‌ها (P<0.001) مشاهده شد.}

لیست ۱- وضعیت

۲- وضعیت

۳- وضعیت

۴- وضعیت

وضعیت‌های مختلف قرار گرفتن روی دستگاه ویریشن.

مهدی پویافر و همکاران. مقایسه اثر هشت هفته تمرین ترکیبی ویریشن با دو شدت مختلف بر عملکرد جسمانی مردان سالمند.
بحث نتایج مطالعه حاضر نشان داد، گروه‌های آزمایش نسبت به گروه کنترل در شاخص توده بدن تفاوت معناداری ندارند. نتایج این تحقیق با مطالعه آوارز و همکاران هم‌خوانی دارد و با مطالعه ملینز و همکاران هم‌خوانی ندارد. آوارز و همکاران با اعمال تمرینات هرتز و دامنه 30-35 ویبریشن با فرکانس تغییرات معناداری در شاخص توده بدنی افراد سالمند مشاهده نکردند. ملینز، هرتز و دامنه 40-60 و همکاران با فرکانس و دامنه کاهش معناداری در شاخص توده بدنی افراد سالمند مشاهده کردند.

یکی از اهداف تمرینات، کاهش توده چربی و افزایش وزن بدون چربی است. تمرینات مقاومتی همراه با تمرینات هوازی می‌تواند روشی مناسب جهت دستیابی به این اهداف در افراد تمرین نشان دهد. تمرینات مقاومتی همراه با تمرینات هوازی به طور قابل ملاحظه‌ای غیر ورزشکار باشد و این افزایش شرایطی ایجاد می‌کند که بافت‌های فعال مقدار بیشتری از اکسیژن در دسترس را استفاده کند و در افزایش چربی‌سوزی و وزن بدون چربی نقش داشته باشد.

دلایل تناقض این یافته‌ها را ممکن است سن، جنست، وضعیت جسمانی، رژیم غذایی آزمودنی‌ها و شدت و مدت تمرینات و همچنین روش اندازه‌گیری متغیرها ذکر کند.

نتایج مطالعه حاضر نشان داد، گروه‌های آزمایش نسبت به گروه کنترل در انعطاف پذیری پایین تنه افزایش نتایج با دستاوردهای تحقیقات کارری و همکاران هم‌خوانی دارد و با تحقیقات تسنگ و همکاران هم‌خوانی ندارد. کارری و همکاران با اعمال تمرینات ویبریشن با فرکانس‌های 20-30 هرتز و دامنه چهار میلی‌متر افزایش معناداری در انعطاف پذیری روی افراد سالمند مشاهده نکردند. تمرینات تسنگ با انجام تمرینات ویبریشن با فرکانس‌های چهل و بیست هرتز و دامنه چهار میلی‌متر افزایش معناداری در انعطاف پذیری روی افراد سالمند مشاهده نکردند. تمرینات تسنگ با انجام تمرینات ویبریشن با فرکانس‌های چهل و بیست هرتز و دامنه چهار میلی‌متر افزایش معناداری در انعطاف پذیری روی افراد سالمند مشاهده نکردند.

جدول 1. مقایسه امر و معنی‌داری میان دو گروه قبل و بعد از انجام دوره تمرینی

شاخص	گروه آزمایش	گروه کنترل
سن (سال)	میانگین ± انحراف معیار	میانگین ± انحراف معیار
وزن (کیلوگرم)	میانگین ± انحراف معیار	میانگین ± انحراف معیار
شاخص توده پهن (یک‌لایه)	میانگین ± انحراف معیار	میانگین ± انحراف معیار
شاخص توده پهن (یک‌لایه)	میانگین ± انحراف معیار	میانگین ± انحراف معیار
شاخص توده پهن (یک‌لایه)	میانگین ± انحراف معیار	میانگین ± انحراف معیار
شاخص توده پهن (یک‌لایه)	میانگین ± انحراف معیار	میانگین ± انحراف معیار
جدول ۱: معنی‌داری شاخص‌های مکانیک جسمانی

متغیرها	گروه ۱	گروه ۲	گروه ۳	گروه ۴	گروه ۵	گروه ۶
پیش آزمون	۱۷۲/۸۸	۱۷۶/۶۵	۱۷۶/۸۵	۱۷۸/۵۵	۱۷۸/۵۵	۱۷۸/۵۵
شاخص توده دم	۱۷۲/۸۸	۱۷۶/۶۵	۱۷۶/۸۵	۱۷۸/۵۵	۱۷۸/۵۵	۱۷۸/۵۵
قدرت عضلات اندام	۱۷۴/۶۵	۱۷۶/۶۵	۱۷۶/۸۵	۱۷۸/۵۵	۱۷۸/۵۵	۱۷۸/۵۵
استقامت عضلانی	۱۷۴/۶۵	۱۷۶/۶۵	۱۷۶/۸۵	۱۷۸/۵۵	۱۷۸/۵۵	۱۷۸/۵۵
قدرت پوست پا	۱۷۵/۵۵	۱۷۶/۶۵	۱۷۶/۸۵	۱۷۸/۵۵	۱۷۸/۵۵	۱۷۸/۵۵
عملکرد فوق‌انی (ثانیه)	۱۷۴/۶۵	۱۷۶/۶۵	۱۷۶/۸۵	۱۷۸/۵۵	۱۷۸/۵۵	۱۷۸/۵۵
قدرت ایستای دست	۱۷۲/۸۸	۱۷۶/۶۵	۱۷۶/۸۵	۱۷۸/۵۵	۱۷۸/۵۵	۱۷۸/۵۵
قدرت پریچ پا	۱۷۴/۶۵	۱۷۶/۶۵	۱۷۶/۸۵	۱۷۸/۵۵	۱۷۸/۵۵	۱۷۸/۵۵
استقامت ضایعات اندام	۱۷۵/۵۵	۱۷۶/۶۵	۱۷۶/۸۵	۱۷۸/۵۵	۱۷۸/۵۵	۱۷۸/۵۵
استقامت ضایعات اندام	۱۷۵/۵۵	۱۷۶/۶۵	۱۷۶/۸۵	۱۷۸/۵۵	۱۷۸/۵۵	۱۷۸/۵۵
استقامت ضایعات اندام	۱۷۵/۵۵	۱۷۶/۶۵	۱۷۶/۸۵	۱۷۸/۵۵	۱۷۸/۵۵	۱۷۸/۵۵
استقامت ضایعات اندام	۱۷۵/۵۵	۱۷۶/۶۵	۱۷۶/۸۵	۱۷۸/۵۵	۱۷۸/۵۵	۱۷۸/۵۵

معنی‌داری بین گروه‌های مختلف گروه‌هایی سطح معنی‌داری ۰/۰۵
مهمی طرح شاخص سنگینی تعیین یافته در عملاط و عضلات است.

میتوان به طور کلی این شاخص را ساده و قابل فهمی تلقی کرد.

شیب دوک عضلانی مالیا و ویبراسکوپیکی انتقالی و توانایی گذاری به هنگام تمرین و تمرین ویبراسکن به عضلات پهلو و پاهای عضلات این است.

میتوان به طور کلی این شاخص را ساده و قابل فهمی تلقی کرد.

میتوان به طور کلی این شاخص را ساده و قابل فهمی تلقی کرد.

میتوان به طور کلی این شاخص را ساده و قابل فهمی تلقی کرد.
نتیجه‌گیری‌های نهایی

نتایج این مطالعه نشان داد که تمرینات ویبریشن کل بدن هر هرتز و دامنه سه میلی متر به همراه تمرینات طناب‌زنی در هر دو گروه انجام شده‌است، این نوع تمرین‌ها باعث بهبود قدرت ماهی‌گیری به همراه افزایش قدرت جسمانی شدند. این احتمال وجود دارد که با افزایش قدرت و سازگاری اولیه و بهبود

و کاهش در شرایط قلب بهبود می‌یابد و تمرینات مقاومتی نیز از طریق افزایش رانشی، بهبود روندی جسمانی طحال این تمرین‌ها بهبود استقامتی نیز فراهم می‌آورد. بنابراین این احتمال وجود دارد که با افزایش قدرت و سازگاری اولیه و بهبود

و کاهش در شرایط قلب بهبود می‌یابد و تمرینات مقاومتی نیز از طریق افزایش رانشی، بهبود روندی جسمانی طحال این تمرین‌ها بهبود استقامتی نیز فراهم می‌آورد. بنابراین این احتمال وجود دارد که با افزایش قدرت و سازگاری اولیه و بهبود

و کاهش در شرایط قلب بهبود می‌یابد و تمرینات مقاومتی نیز از طریق افزایش رانشی، بهبود روندی جسمانی طحال این تمرین‌ها بهبود استقامتی نیز فراهم می‌آورد. بنابراین این احتمال وجود دارد که با افزایش قدرت و سازگاری اولیه و بهبود

و کاهش در شرایط قلب بهبود می‌یابد و تمرینات مقاومتی نیز از طریق افزایش رانشی، بهبود روندی جسمانی طحال این تمرین‌ها بهبود استقامتی نیز فراهم می‌آورد. بنابراین این احتمال وجود دارد که با افزایش قدرت و سازگاری اولیه و بهبود

و کاهش در شرایط قلب بهبود می‌یابد و تمرینات مقاومتی نیز از طریق افزایش رانشی، بهبود روندی جسمانی طحال این تمرین‌ها بهبود استقامتی نیز فراهم می‌آورد. بنابراین این احتمال وجود دارد که با افزایش قدرت و سازگاری اولیه و بهبود

و کاهش در شرایط قلب بهبود می‌یابد و تمرینات مقاومتی نیز از طریق افزایش رانشی، بهبود روندی جسمانی طحال این تمرین‌ها بهبود استقامتی نیز فراهم می‌آورد. بنابراین این احتمال وجود دارد که با افزایش قدرت و سازگاری اولیه و بهبود

و کاهش در شرایط قلب بهبود می‌یابد و تمرینات مقاومتی نیز از طریق افزایش رانشی، بهبود روندی جسمانی طحال این تمرین‌ها بهبود استقامتی نیز فراهم می‌آورد. بنابراین این احتمال وجود دارد که با افزایش قدرت و سازگاری اولیه و بهبود

و کاهش در شرایط قلب بهبود می‌یابد و تمرینات مقاومتی نیز از طریق افزایش رانشی، بهبود روندی جسمانی طحال این تمرین‌ها بهبود استقامتی نیز فراهم می‌آورد. بنابراین این احتمال وجود دارد که با افزایش قدرت و سازگاری اولیه و بهبود

و کاهش در شرایط قلب بهبود می‌یابد و تمرینات مقاومتی نیز از طریق افزایش رانشی، بهبود روندی جسمانی طحال این تمرین‌ها بهبود استقامتی نیز فراهم می‌آورد. بنابراین این احتمال وجود دارد که با افزایش قدرت و سازگاری اولیه و بهبود

و کاهش در شرایط قلب بهبود می‌یابد و تمرینات مقاومتی نیز از طریق افزایش رانشی، بهبود روندی جسمانی طحال این تمرین‌ها بهبود استقامتی نیز فراهم می‌آورد. بنابراین این احتمال وجود دارد که با افزایش قدرت و سازگاری اولیه و بهبود

و کاهش در شرایط قلب بهبود می‌یابد و تمرینات مقاومتی نیز از طریق افزایش رانشی، بهبود روندی جسمانی طحال این تمرین‌ها بهبود استقامتی نیز فراهم می‌آورد. بنابراین این احتمال وجود دارد که با افزایش قدرت و سازگاری اولیه و بهبود

و کاهش در شرایط قلب بهبود می‌یابد و تمرینات مقاومتی نیز از طریق افزایش رانشی، بهبود روندی جسمانی طحال این تمرین‌ها بهبود استقامتی نیز فراهم می‌آورد. بنابراین این احتمال وجود دارد که با افزایش قدرت و سازگاری اولیه و بهبود

و کاهش در شرایط قلب بهبود می‌یابد و تمرینات مقاومتی نیز از طریق افزایش رانشی، بهبود روندی جسمانی طحال این تمرین‌ها بهبود استقامتی نیز فراهم می‌آورد. بنابراین این احتمال وجود دارد که با افزایش قدرت و سازگاری اولیه و بهبود

و کاهش در شرایط قلب بهبود می‌یابد و تمرینات مقاومتی نیز از طریق افزایش رانشی، بهبود روندی جسمانی طحال این تمرین‌ها بهبود استقامتی نیز فراهم می‌آورد. بنابراین این احتمال وجود دارد که با افزایش قدرت و سازگاری اولیه و بهبود

و کاهش در شرایط قلب بهبود می‌یابد و تمرینات مقاومتی نیز از طریق افزایش رانشی، بهبود روندی جسمانی طحال این تمرین‌ها بهبود استقامتی نیز فراهم می‌آورد. بنابراین این احتمال وجود دارد که با افزایش قدرت و سازگاری اولیه و بهبود

و کاهش در شرایط قلب بهبود می‌یابد و تمرینات مقاومتی نیز از طریق افزایش رانشی، بهبود روندی جسمانی طحال این تمرین‌ها بهبود استقامتی نیز فراهم می‌آورد. بنابراین این احتمال وجود دارد که با افزایش قدرت و سازگاری اولیه و بهبود

و کاهش در شرایط قلب بهبود می‌یابد و تمرینات مقاومتی نیز از طریق افزایش رانشی، بهبود روندی جسمانی طحال این تمرین‌ها بهبود استقامتی نیز فراهم می‌آورد. بنابراین این احتمال وجود دارد که با افزایش قدرت و سازگاری اولیه و بهبود

و کاهش در شرایط قلب بهبود می‌یابد و تمرینات مقاومتی نیز از طریق افزایش رانشی، بهبود روندی جسمانی طحال این تمرین‌ها بهبود استقامتی نیز فراهم می‌آورد. بنابراین این احتمال وجود دارد که با افزایش قدرت و سازگاری اولیه و بهبود

و کاهش در شرایط قلب بهبود می‌یابد و تمرینات مقاومتی نیز از طریق افزایش رانشی، بهبود روندی جسمانی طحال این تمرین‌ها بهبود استقامتی نیز فراهم می‌آورد. بنابراین این احتمال وجود دارد که با افزایش قدرت و سازگاری اولیه و بهبود

و کاهش در شرایط قلب بهبود می‌یابد و تمرینات مقاومتی نیز از طریق افزایش رانشی، بهبود روندی جسمانی طحال این تمرین‌ها بهبود استقامتی نیز فراهم می‌آورد. بنابراین این احتمال وجود دارد که با افزایش قدرت و سازگاری اولیه و بهبود

و کاهش در شرایط قلب بهبود می‌یابد و تمرینات مقاومتی نیز از طریق افزایش رانشی، بهبود روندی جسمانی طحال این تمرین‌ها بهبود استقامتی نیز فراهم می‌آور
عملکدهای جسمانی پس از تمرینات ویبریشن اغلب عصبی است؛ بنابراین پیشنهاد می‌شود با یک برنامه طولانی‌مدت تمرینات ویبریشن ایجاد سازگاری‌های خاص‌تری در سیستم عصبی عضلانی بررسی شود.

2. پیشنهاد می‌شود در تحقیق، مدت زمان مطنوعی تأثیر مثبت چنین برنامه‌های تمرینی پس از قطع تمرینات ویبریشن بررسی شود.

ملاحظات اخلاقی

پیروی از اصول اخلاق پژوهش
این مقاله مورد تایید کمیته اخلاق دانشگاه حکیم سبزواری قرار گرفته است (کد IR.HSU.REC.1398.002). تمامی اصول اخلاقی در این مقاله در نظر گرفته شد. درک، شرکت، تدوین و تکمیل این مقاله در مورد هدف تحقیق و محصول اجرا یان واقع شد. همچنین در مورد محرمانه بودن اطلاعات خویشبانان تأکید گردید. در این مقاله، تمام مطالعه‌ها تأکید شد که با مهاجر کنند و در صورت تمایل، نتایج تحقیق به همه مطالعه‌ها ترک کنند و در صورت تمایل، نتایج تحقیق در دسترس آن‌ها قرار گیرد.

حامی مالی

این مقاله از پایان‌نامه مقطع دکتری استخراج شده است و برگرفته از پروژه تحقیقاتی مربوط به گروه فیزیولوژی ورزشی، دانشگاه حکیم سبزواری است.

مشارکت‌نوسان‌دان

مفهوم سازی تغییر – بررسی و بررسی، همه نویسندگان، رونالدو دولمنگان، محسن موحی‌نژاد، تحقیق: مهدی پویافر، رونالدو دولمنگان، محسن موحی‌نژاد، تحقیق: مهدی پویافر، رونالدو دولمنگان، محسن موحی‌نژاد، تحقیق: مهدی پویافر، رونالدو دولمنگان، محسن موحی‌نژاد، تحقیق: مهدی پویافر.

تعریض مhait

بتایر اظهار نویسندگان این مقاله تعریض منافق تنزله.

مهدی پویافر و همکاران. مقایسه اثر هشت هفته تمرین ترکیبی ویبریشن طناب‌زنی با دو شدت متفاوت بر عملکرد بدنی مردان.
Body vibration exposure on neuromuscular and functional measures in sarcopenia and nonsarcopenic elderly women. Dose-Response. 2018; 16(3). [DOI:10.1177/1599325818797009] [PMID] [PMCID]

[27] Ko MC, Wu LS, Lee S, Wang CC, Lee PF, Tseng CY, et al. Whole-body vibration training improves balance control and sit-to-stand performance among middle-aged and older adults: A pilot randomized controlled trial. European Review of Aging and Physical Activity. 2017; 14:11. [DOI:10.1186/s11556-017-0180-8] [PMID] [PMCID]

[28] Gotshalk LA, Kraemer WJ, Mendonca MA, Vingren JL, Kenny AM, Spiering BA, et al. Creatine supplementation improves muscular performance in older women. European Journal of Applied Physiology. 2008; 102(2):223-31. [DOI:10.1007/s00424-007-0580-y] [PMID]

[29] Jones CJ, Rikli RE. Measuring functional: Fitness of older adults. The Journal of Active Aging. 2002; March-April:24-30. https://www.dnbm.univr.it/documents/OccorrenzaIns/matdid/matdid182478.pdf

[30] Rikli RE, Jones CJ. Functional fitness normative scores for community-residing older adults, ages 60-94. Journal of Aging and Physical Activity. 1999; 7(2):162-81. [DOI:10.1123/japa.7.2.162]

[31] Duncan PW, Weiner DK, Chandler J, Studenski S. Functional reach: A new clinical measure of balance. Journal of Gerontology. 1990; 45(6):M192-7. [DOI:10.1093/geront/45.6.M192] [PMID]

[32] Beamin JS, Becker HD, Cavalerie S, Cof H, Diaz-Jimenez JP, Dumon JP, et al. ERS/ATS statement on interventional pulmonology. European Respiratory Journal. 2002; 19(2):356-73. [DOI:10.1183/09031936.02.00204602] [PMID]

[33] Liang X, Chen X, Li J, Yan M, Yang Y. Study on body composition and muscle strength in obese women at risk of falls. Age and Ageing. 2015; 44(1):115-22. [DOI:10.1093/ageing/afu136] [PMID]

[34] Seif P, Dehkhoda MR, Rajabi H. Effects of short term vibration training on some of physical fitness factors in elderly women [Persian]. Research in Sport Medicine and Technology. 2011; 9(1):29-38. http://jspmt.khu.ac.ir/article-1-115-en.html

[35] Mofidi Sadr N, Askari R, Haghighi AH. The effect of combined training (resistance – aerobic) on BMD and some of blood markers in obese and overweight postmenopausal women [Persian]. Journal of Sabzevar University of Medical Sciences. 2019; 26(2):203-11. http://jnms.medsab.ac.ir/article-1175.html?lang=fa

[36] Álvarez-Barbosa F, del Pozo-Cruz J, del Pozo-Cruz B, Alfonso-Rosa RM, Rogers ME, Zhang Y. Effects of supervised whole body vibration exercise on fall risk factors, functional dependence and health-related quality of life in nursing home residents aged 80+. Maturitas. 2014; 79(4):456-63. [DOI:10.1016/j.maturitas.2014.09.010] [PMID]

[37] Milanese Ch, Piscitelli F, Zenti MG, Moghetti P, Sandri M, Zancanaro C. Ten-week whole-body vibration training improves body composition and muscle strength in obese women. International Journal of Medical Sciences. 2013; 10(3):307-11. [DOI:10.7150/ijms.5161] [PMID] [PMCID]

[38] Maikala RV, King S, Bhambhani YN. Acute physiological responses in healthy men during whole-body vibration. International Archives of Occupational and Environmental Health. 2006; 79(2):103-14. [DOI:10.1007/s00420-005-0298-8] [PMID]

[39] Seif P, Dehkhoda MR, Rajabi H. Effects of short term vibration training on some of physical fitness factors in elderly women [Persian]. Research in Sport Medicine and Technology. 2011; 9(1):29-38. http://jspmt.khu.ac.ir/article-1-115-en.html

[40] Corrie H, Brooke-Wavell K, Mansfield NJ, Cowley A, Morris R, Masud T. Effects of vertical and side-alternating vibration training on fall risk factors and bone turnover in older people at risk of falls. Age and Ageing. 2015; 44(1):115-22. [DOI:10.1093/ageing/afu136] [PMID]

[41] Burns P, Beekhuizen K, Jacobs P. Acute effects of whole-body vibration on lower body flexibility and strength. Medicine & Science in Sports & Exercise. 2004; 36(5):S330-1. [DOI:10.1249/00005768-200405000-00027] [PMID]

[42] Rennesset BR. Comparing the performance-enhancing effects of squats on a vibration platform with conventional squats in recreationally resistance-trained men. The Journal of Strength & Conditioning Research. 2008; 12(4):819-25. [DOI:10.1519/00124278-200804000-00007] [PMID] [PMCID]

[43] Lim JH, Park CB, Kim BG. The effects of vibration foam roller applied to hamstring on the quadriceps electromyography activity and hamstring flexibility. Journal of Exercise Rehabilitation. 2019; 15(4):560-5. [DOI:10.12965/jer.193828.119] [PMID] [PMCID]

[44] Goudarzian M, Ghavi S, Shariat A, Shivrani H, Rahimi M. Effects of whole body vibration training and mental training on mobility, neuromuscular performance, and muscle strength in older men. Journal of Exercise Rehabilitation. 2017; 13(3):573-80. [DOI:10.12965/jer.1735024.512] [PMID] [PMCID]

[45] Fagnani F, Giombini A, Di Cesare A, Pigozzi F, Di Salvo V. The effects of a whole-body vibration program on muscle performance and flexibility in female athletes. American Journal of Physical Medicine & Rehabilitation. 2006; 85(2):956-62. [DOI:10.1097/01.pmt.000024752.94865.92] [PMID]

[46] Allison SJ, Brooke-Wavell K, Folland J. High and odd impact exercise training improved physical function and fall risk factors in community-dwelling older men. Journal of Musculoskeletal & Neuronal Interactions. 2018; 18(1):100-7. [PMID] [PMCID]

[47] Mester J, Spitzenpeil P, Yue Z. Vibration loads: Potential for strength and power development. In: Komi PV, editor. Strength and Power in Sport. Oxford: Blackwell Science Ltd; 2003. pp. 488-501. [DOI:10.1519/00124278-200411000-00027] [PMID] [PMCID]

[48] Burke D, Hagbarth KE, Löfstedt L, Wallin BG. The response of blood markers in obese and overweight postmenopausal women aged 80+. Maturitas. 2006; 55(2):189-95. [DOI:10.1016/j.maturitas.2005.11.009] [PMID]

[49] Rønnestad BR. Comparing the performance-enhancing effects of squats on a vibration platform with conventional squats in recreationally resistance-trained men. The Journal of Strength & Conditioning Research. 2008; 12(4):819-25. [DOI:10.1519/00124278-200804000-00007] [PMID] [PMCID]

[50] Pouyafar M, et al. Effects of Whole Body Vibration and Rope Skipping on Physical Performance. Iranian Journal of Ageing. 2021; 16(3):376-395.
and Movement Therapies. 2016; 20(2):334-40. [DOI:10.1016/j.
jbmt.2015.08.005] [PMID]

[51] Broekmans T, Roelants M, Alders G, Feys P, Thijss-H, Eijnde
BO. Exploring the effects of a 20-week whole-body vibration
training programme on leg muscle performance and func-
tion in persons with multiple sclerosis. Journal of Rehabilita-
tion Medicine. 2010; 42(9):866-72. [DOI:10.2340/16501977-0609]
[PMID]

[52] Arabasadi M, Kordi MR, Gaeini AA. [The effect of vibration
training on skill related fitness of trained and untrained stu-
dent girls [Persian]]. Journal of Movement Science & Sports.
2010; 8(15):13-23. https://www.sid.ir/fa/journal/ViewPap-
er.aspx?ID=159645

[53] Wang P, Yang L, Liu C, Wei X, Yang X, Zhou Y, et al. Ef-
fects of whole body vibration exercise associated with
quadriceps resistance exercise on functioning and quality of
life in patients with knee osteoarthritis: A randomized con-
trolled trial. Clinical Rehabilitation. 2016; 30(11):1074-87.
[DOI:10.1177/0269215515607970] [PMID]

[54] Spielmanns M, Gloeckl R, Gropp JM, Nell Ch, Koczulla AR,
Boeselt T, et al. Whole-body vibration training during a low
frequency outpatient exercise training program in chronic
obstructive pulmonary disease patients: A randomized,
controlled trial. Journal of Clinical Medicine Research. 2017;
9(5):396-402. [DOI:10.14740/jocmr2763w] [PMID] [PMCID]

[55] Chen CC, Lin YC. Jumping rope intervention on health-re-
lated physical fitness in students with intellectual impairment.
The Journal of Human Resource and Adult Learning. 2012;
8(1):56-62. http://www.hraljournal.com/Page/6%20Chen,%20
Chao-Chien.pdf

[56] Wei N, Pang MY, Ng SS, Ng GY. Optimal frequency/tim-
e combination of whole body vibration training for de-
veloping physical performance of people with sarcopenia: A
randomized controlled trial. Clinical Rehabilitation. 2017;
31(10):1313-21. [DOI:10.1177/0269215517698835] [PMID]

[57] Verschueren SMP, Roelants M, Delecluse Ch, Swinnen S,
Vanderschueren D, Boon S. Effect of 6-month whole body
vibration training on hip density, muscle strength, and pos-
tural control in postmenopausal women: A randomized con-
trolled pilot study. Journal of Bone and Mineral Research.
2004; 19(3):352-9. [DOI:10.1359/JBMR.030124F] [PMID]
