Renin-Angiotensin System overactivation in polycystic ovary syndrome, a risk for SARS-CoV-2 infection?

Abu Saleh Md Moin a, Thozhukat Sathyapalan b, Stephen L. Atkin c, Alexandra E. Butler a, *[a]

a Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
b Academic Endocrinology, Diabetes and Metabolism, Hull York Medical School, Hull, UK
c Royal College of Surgeons in Ireland Bahrain, Adliya, Bahrain

Abstract

Background: The SARS-CoV-2 coronavirus gains entry to target cells via the angiotensin-converting enzyme 2 (ACE2) receptor present on cells in blood vessels, lungs, heart, intestines, and kidneys. Renin-Angiotensin System (RAS) overactivity has also been described in metabolic syndrome, type 2 diabetes (T2D) and obesity, conditions shared by women with polycystic ovary syndrome (PCOS). We hypothesized that RAS overactivity may be present in PCOS.

Methods: We determined plasma levels of RAS-related proteins in a cohort of age matched control women (n = 97) and women with PCOS (n = 146). Plasma levels of RAS-related proteins (ACE2, Renin and Angiotensinogen (AGT)) were determined by Slow Off-rate Modified Aptamer (SOMA)-scan plasma protein measurement.

Results: PCOS women had a higher BMI (p < 0.001), systolic (p < 0.0001) and diastolic (p < 0.05) blood pressure, waist circumference (p < 0.0001), testosterone (p < 0.0001), free androgen index (p < 0.0001) and CRP (p < 0.0001). Renin was elevated in PCOS (p < 0.05) and angiotensinogen was lower in PCOS (p < 0.05), indicating overactivity of the RAS system in PCOS. ACE2 levels were lower in PCOS (p < 0.05), suggesting that PCOS women are at risk for development of hypertension.

Conclusion: RAS proteins levels differed between PCOS and control women, suggesting that the insulin resistance inherent in PCOS may predispose these women to more severe COVID-19 infection.

© 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Background

The SARS-CoV-2 coronavirus gains entry to target cells via the angiotensin-converting enzyme 2 (ACE2) receptor present on cells in blood vessels, lungs, heart, intestines, and kidneys.

The Renin-Angiotensin System (RAS) system plays a major role in blood pressure regulation, via regulation of sodium and water balance, and RAS overactivation is an established risk factor for development of renal [1] and cardiovascular disease [2]. RAS overactivity has also been described in metabolic syndrome [3], type 2 diabetes (T2D) and obesity [4], all high risk conditions for COVID-19 infection and severe disease.

In vitro studies have found that hyperglycemia stimulates the RAS system at the tissue level [5–10] and tissue RAS activity may be a central facet in metabolic disorders [11].

ACE2 is one of the arms of the RAS, located on the X chromosome [12,13]. ACE2 is a monokarboxypeptidase that cleaves various substrates [12,14,15] including an octapeptide angiotensin II (Ang-II) to generate Ang-(1–7), a biologically active metabolite of the RAS which acts on the membrane bound MasR (Mas receptor) [16]. This ‘ACE2/Ang-(1–7)/Mas’ axis serves as a protective arm of RAS by providing the physiological antagonism of its well-established classical ACE/AngII/AT1R system [16,17].

ACE2 has been shown to play a beneficial role in the pathophysiology of diabetes [18,19] and its related complications [20–23]. The emerging evidence suggests that the modulation of
the ACE2/Ang-(1–7)/Mas receptor axis is a very attractive target in the therapy of the metabolic syndrome and diabetes-associated diseases affecting the heart and the kidney. For example, activators of endogenous ACE2 such as xanthone and diminazene aceturate have been identified as compounds capable of increasing ACE2 activity to counteract the overactive RAS [24]. ACE2 activators appear to be beneficial in attenuating hyperglycemia as well as diabetic complications such as hypertension and endothelial dysfunction in diabetic subjects [21,24,25]. Several meta-analyses have underscored the positive effects of ARBs (angiotensin receptor blockers) and ACE inhibitors on insulin sensitivity and the progression to Type 2 diabetes [26,27]. Since the ACE2/Ang-(1–7)/Mas receptor axis naturally counterbalances the effects of classical RAS components, it is reasonable to believe that part of the positive effects of ARBs and ACE inhibitors on metabolic diseases could be mediated by overactivation of the Ang-(1–7) pathway. Indeed, a recent study has suggested that the beneficial effects of olmesartan, an ARB, on vascular remodelling are mediated via activation of the ACE2/Ang-(1–7)/Mas receptor axis [28]. Thus, ACE2 activators provide a novel avenue to control T2DM and related complications.

Most of the available studies have shown that diabetes mellitus (DM) as a distinctive comorbidity is associated with more severe COVID-19 disease, acute respiratory distress syndrome and increased mortality [29–31]. Hyperglycemia and a diagnosis of T2DM were also independent predictors of mortality and morbidity in patients with SARS [32]. In addition, critically ill patients with COVID-19 have been reported to be in an extreme hypermetabolic state [33].

Women with polycystic ovary syndrome share features of metabolic syndrome, including insulin resistance [34] and obesity [35], with a high proportion going on to develop type 2 diabetes [36]. Therefore, the cardio-metabolic diseases commonly seen in women with PCOS overlap with risk factors predisposing to severe COVID-19 disease [37]. Further, case reports of pregnant women with polycystic ovary syndrome (PCOS) infected by SARS-CoV-2 [38] suggest PCOS as a high-risk factor for COVID-19.

2. Objective

We hypothesized that RAS overactivity may also be present in conditions of insulin resistance, such as PCOS; we therefore determined levels of RAS-related proteins in a cohort of age matched women with and without PCOS.

3. Methods

146 PCOS and 97 control women who presented sequentially to the Department of Endocrinology, Hull and East Yorkshire Hospitals NHS Trust were recruited to the local PCOS biobank (ISRCTN70196169). The Newcastle & North Tyneside Ethics committee approved this study; all patients gave written informed consent. PCOS diagnosis was based on all three Rotterdam consensus diagnostic criteria; all fulfilled NIH criteria. None were taking hormone replacement therapy.

Following plasma collection, circulating levels of RAS-related proteins (ACE2, Renin and Angiotensinogen (AGT)) were determined by Slow Off-rate Modified Aptamer (SOMA)-scan plasma protein measurement [39]. Statistics were performed using Graphpad Prism 8.0.

4. Results

While the cohorts were matched for age, PCOS women had a higher BMI (p < 0.001), systolic (p < 0.0001) and diastolic (p < 0.05) blood pressure, waist circumference (p < 0.0001), testosterone (p < 0.0001), free androgen index (p < 0.0001) and CRP (p < 0.0001). Circulatory renin was elevated in PCOS (665 ± 22 vs 600 ± 23 RFU, PCOS vs control, p < 0.05) and angiotensinogen was low in PCOS (5368 ± 213 vs 6394 ± 383 RFU, PCOS vs control, p < 0.05), indicating overactivity of the RAS system in PCOS (Fig. 1). ACE2 levels were lower in PCOS (1090 ± 37 vs 1253 ± 95 RFU, PCOS vs control, p < 0.05) (Fig. 1), suggesting that PCOS women are at risk for development of hypertension. No relationship was found with BMI, systolic or diastolic blood pressure and any RAS-related proteins measured here.

5. Discussion

This study showing elevated plasma renin, together with suppressed angiotensinogen and reduced levels of ACE2 protein suggests RAS overactivation in PCOS occurs in an obesity-independent manner.

Renin induces conversion of angiotensinogen to angiotensin I (ANGI); ANGI is then converted to ANGII by ACE. In contrast, ACE2 converts ANGII to ANG-1–7, a normotension-maintenance peptide. Reduced ACE2 levels may predispose to increased severity of COVID-19 infection. Pulmonary ACE2 has been shown to protect against lung injury and the loss of ACE2 in acute lung injury results in leakage from pulmonary blood vessels mediated by angiotensin I.
Further, disruption of the RAS system is associated with pulmonary hypertension and fibrosis [40]. Angiotensin II upregulates the expression of profibrotic cytokines leading to pulmonary fibrosis and severe inflammation with increased vascular permeability, a scenario that may be attenuated by angiotensinogen converting enzyme (ACE) inhibitors and angiotensin receptor blocker (ARB) therapies [40]. In addition, PCOS women might also be vulnerable to COVID-19 because of their high androgen levels, as reported here. Binding of androgen to androgen receptor elements (AREs) regulates transcription of transmembrane serine protease 2 (TMPRSS2) [41] that activates the SARS-CoV-2 spike protein, facilitating viral entry. The combination of an overactive RAS system (androgen-independent) together with increased androgens places women with PCOS at increased risk for serious COVID-19 infection.

The possible mechanism of overactivated RAS in severe outcome of COVID-19 in women with PCOS has been outlined in Fig. 2.

Limitations of this study include (1) measurement of plasma proteins that may not be reflective of tissue levels and (2) measurement of renin concentrations rather than activity.

In conclusion, RAS protein levels differed between PCOS and control women, suggesting that the insulin resistance inherent in PCOS may predispose these women to more severe COVID-19 infection.

Ethics approval and consent to participate

The Newcastle & North Tyneside Ethics committee approved this study. All patients gave written informed consent.

Consent for publication

All authors gave their consent for publication.

Availability of data and materials

All the data for this study will be made available upon reasonable request to the corresponding author.

Funding

No funding was received to perform this study.

Author contributions

ASMM and AEB analyzed the data and wrote the manuscript. TS supervised clinical studies and edited the manuscript. SLA contributed to study design, data interpretation and the writing of the manuscript. All authors reviewed and approved the final
version of the manuscript. Alexandra E Butler is the guarantor of this work.

CRediT authorship contribution statement

Abu Saleh Md Moin: data analysis, Writing - original draft, Writing - review & editing, All authors reviewed and approved the final version of the manuscript. **Thozhukat Sathyapalan:** Supervision, clinical studies, Writing - review & editing, All authors reviewed and approved the final version of the manuscript. **Stephen L Atkin:** Conceptualization, Writing - review & editing. Data interpretation. All authors reviewed and approved the final version of the manuscript. **Alexandra E. Butler:** data analysis, Writing - original draft, Writing - review & editing, guarantor of this work. All authors reviewed and approved the final version of the manuscript.

Declaration of competing interest

No authors have any conflict of interest or competing interests to declare.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.metob.2020.100052.

References

[1] Vejakama P, et al. Reno-protective effects of renin-angiotensin system blockade in type 2 diabetic patients: a systematic review and network meta-analysis. Diabetologia 2012;55(3):566–78.

[2] Unger T. The role of the renin-angiotensin system in the development of cardiovascular disease. Am J Cardiol 2002;89(2A):3A–9A. discussion 10A.

[3] Putnam K, et al. The renin-angiotensin system: a target of and contributor to dyslipidemia, altered glucose homeostasis, and hypertension of the metabolic syndrome. Am J Physiol Heart Circ Physiol 2012;302(6):H1219–30.

[4] Goossens GH, Blaak EE, van Baak MA. Possible involvement of the adipose tissue renin-angiotensin system in the pathophysiology of obesity and obesity-related disorders. Obes Rev 2003;4(1):43–55.

[5] Singh R, et al. Mechanism of increased angiotensin II levels in glomerular mesangial cells cultured in high glucose. J Am Soc Nephrol 2003;14(4):873–80.

[6] Singh VP, et al. High-glucose-induced regulation of intracellular ANG II synthesis and nuclear redistribution in cardiac myocytes. Am J Physiol Heart Circ Physiol 2007;293(2):H939–48.

[7] Singh VP, et al. Intracellular angiotensin II production in diabetic rats is correlated with cardiomyocyte apoptosis, oxidative stress, and cardiac fibrosis. Diabetes 2008;57(12):3297–306.

[8] Mima A, et al. Protective effects of GLP-1 on glomerular endothelium and its inhibition by PKCbeta activation in diabetes. Diabetes 2012;61(11):2967–79.

[9] Zhang SL, et al. High levels of glucose stimulate angiotensinogen gene expression via the P38 mitogen-activated protein kinase pathway in rat kidney proximal tubular cells. Endocrinology 2000;141(2):4637–46.

[10] Zhang SL, et al. Molecular mechanisms of glucose action on angiotensinogen gene expression in rat proximal tubular cells. Kidney Int 1999;55(2):454–64.

[11] Skov J, et al. Tissue Renin-Angiotensin systems: a unifying hypothesis of metabolic disease. Front Endocrinol 2014;5:23.

[12] Tipnis SR, et al. A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. J Biol Chem 2000;275(43):33238–43.

[13] Komatsu T, et al. Molecular cloning, mRNA expression and chromosomal localization of mouse angiotensin-converting enzyme-related carboxypeptidase (mACE 2). DNA Seq 2002;13(4):217–20.

[14] Donoghue M, et al. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1–9. Circ Res 2000;87(5):E1–9.

[15] Vickers C, et al. Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase. J Biol Chem 2002;277(17):14383–43.

[16] Santos RA, et al. Angiotensin-(1-7) is an endogenous ligand for the G protein-coupled receptor Mas. Proc Natl Acad Sci U S A 2003;100(14):8258–63.

[17] Mercuri C, et al. Angiotensin-(1-7) blunts hypertensive cardiac remodeling by a direct effect on the heart. Circ Res 2008;103(11):1319–26.

[18] Bindom SM, et al. Angiotensin I-converting enzyme type 2 (ACE2) gene therapy improves glycemic control in diabetic mice. Diabetes 2010;59(10):2540–46.

[19] Chhabra KH, Chodavarapu H, Lazartigues E. Angiotensin converting enzyme 2: a new important player in the regulation of glycaemia. IUBMB Life 2013;65(9):731–8.

[20] Chodavarapu H, et al. Rosiglitazone treatment of type 2 diabetic db/db mice attenuates urinary albumin and angiotensin converting enzyme 2 excretion. PloS One 2013(8(4):e62833.

[21] Murcia TM, et al. Oral administration of an angiotensin-converting enzyme 2 activator ameliorates diabetes-induced cardiac dysfunction. Regul Pep 2012;177(1–3):107–15.

[22] Zhao YJ, et al. ACE2 overexpression ameliorates left ventricular remodeling and dysfunction in a rat model of myocardial infarction. Hum Gene Ther 2010;21(11):1545–54.

[23] Oudit GY, et al. Human recombinant ACE2 reduces the progression of diabetic nephropathy. Diabetes 2010;59(2):529–38.

[24] Mecca AP, et al. Cerebroprotection by angiotensin-(1-7) in endothelin-1-induced ischemia stroke. Exp Physiol 2011;96(10):1084–96.

[25] Jaraiau YP, et al. Activation of the ACE2/angiotensin-(1-7)/Mas receptor axis enhances the reparative function of dysfunctional diabetic endothelial progenitor cells. Diabetes 2013;62(4):1258–69.

[26] Abuissa H, et al. Angiotensin-converting enzyme inhibitors or angiotensin receptor blockers for prevention of type 2 diabetes: a meta-analysis of randomized clinical trials. J Am Coll Cardiol 2005;46(3):821–6.

[27] Padwal R, Laupacis A. Antihypertensive therapy and incidence of type 2 diabetes: a systematic review. Diabetes Care 2004;27(1):247–55.

[28] Iwai M, et al. Possible involvement of angiotensin-converting enzyme 2 and Mas activation in inhibitory effects of angiotensin II Type 1 receptor blockade on vascular remodeling. Hypertension 2012;60(1):137–44.

[29] Guan WJ, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020;382:1708–20. https://doi.org/10.1056/NEJMoa200232.

[30] Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72314 cases from the Chinese center for disease control and prevention. JAMA 2020;323(12):1329–42. https://doi.org/10.1001/jama.2020.2648.

[31] Yang X, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med 2020;8(5):P745–81. https://doi.org/10.1016/S2213-2600(20)30079-5.

[32] Yang JK, et al. Plasma glucose levels and diabetes are independent predictors for mortality and morbidity in patients with SARS. Diabet Med 2006;23(6):623–8.

[33] Yu PJ, et al. Hypermetabolism in critically ill patients with COVID-19 and the effects of hypothermia: a case series. Metabolism Open, 2020.

[34] Dunaf A. Insulin resistance and the polycystic ovary syndrome: mechanism and implications for pathogenesis. Endocr Rev 1997;18(6):774–800.

[35] Gambineri A, et al. Obesity and the polycystic ovary syndrome. Int J Obes Relat Metab Disord 2002;26(7):883–96.

[36] Gambineri A, et al. Polycystic ovary syndrome is a risk factor for type 2 diabetes: results from a long-term prospective study. Diabetes 2012;61(9):2369–74.

[37] Kyrou I, et al. Polycystic ovary syndrome (PCOS) and COVID-19: an overlooked female patient population at potentially higher risk during the COVID-19 pandemic. BMC Med 2020;18(1):220.

[38] Jusela A, Nazir M, Gánovský M. Two cases of coronavirus 2019-related cardiomyopathy in pregnancy. Am J Obstet Gynecol MFM 2020;2(2):100113.

[39] Kahal H, et al. Effect of induced hypoglycemia on inflammation and oxidative stress in type 2 diabetes and control subjects. Sci Rep 2020;10(1):4750.

[40] Kuba K, Imai Y, Penninger JM. Angiotensin-converting enzyme 2 in lung diseases. Curr Opin Pharmacol 2006;6(3):271–6.

[41] Clinkemal I, et al. Androgen regulation of the TMPRSS2 gene and the effect of a SNP in an androgen response element. Mol Endocrinol 2013;27(12):2026–40.