Distinct roles of endothelial and adipocyte caveolin-1 in macrophage infiltration and adipose tissue metabolic activity.

Submitted by Soazig Le Lay on Tue, 01/27/2015 - 09:29

Titre: Distinct roles of endothelial and adipocyte caveolin-1 in macrophage infiltration and adipose tissue metabolic activity.

Type de publication: Article de revue

Auteur: Briand, Nolwenn [1], Le Lay, Soazig [2], Sessa, William C [3], Ferré, Pascal [4], Dugail, Isabelle [5]

Editeur: American Diabetes Association

Type: Article scientifique dans une revue à comité de lecture

Année: 2011

Langue: Anglais

Date: 2011 Feb

Numéro: 2

Pagination: 448-53

Volume: 60

Titre de la revue: Diabetes

ISSN: 1939-327X

Mots-clés: Adipocytes [6], Adipose tissue [7], Analysis of Variance [8], Animals [9], Blotting, Western [10], Caveolin 1 [11], Endothelial Cells [12], Immunohistochemistry [13], Macrophages [14], Mice [15], Mice, Knockout [16], Phenotype [17], Reverse Transcriptase Polymerase Chain Reaction [18]
OBJECTIVE: Defective caveolin-1 expression is now recognized as a cause of lipoatrophic diabetes in patients, due to primary caveolin gene mutations or secondary caveolin deficiency caused by PTRF/cavin gene defects. The goal of this study was to establish the relative contribution of endothelial cells and adipocytes, both highly expressing caveolin-1 to the lipoatrophic phenotype of mice with global caveolin-1 gene invalidation (Cav1-KO).

RESEARCH DESIGN AND METHODS: We compared adipose tissue development and metabolic phenotype of wild-type (WT), lipoatrophic Cav1-KO, and a murine model with specific rescue of caveolin-1 expression in endothelial cells (caveolin-1-reconstituted [Cav1-RC]).

RESULTS: Defective adipose tissue development, reduced adipocyte size, and global alteration in adipose tissue gene expression that characterize lipoatrophic caveolin-1 null mice were still observed in Cav1-RC, indicating a prominent role of adipocyte-derived caveolin in lipoatrophy. We also observed that Cav1-KO adipose tissue contained an increased proportion of infiltrated macrophages compared with control mice, mostly with an alternate activation M2 phenotype. In contrast with defective lipid storage and lipoatrophy, macrophage infiltration was normalized in Cav1-RC mice, pointing to caveolin-1-dependent endothelium permeability as the causing factor for adipose tissue macrophage infiltration in this model.

CONCLUSIONS: This is the first report of a specific role for adipocyte caveolin expression in lipid storage. Our study also shows that endothelium caveolin critically participates in the control of macrophage extravasation from the blood into adipose tissue, therefore establishing distinct roles depending on topology of caveolin expression in different cell types of adipose tissue.

URL de la notice
http://okina.univ-angers.fr/publications/ua7110 [19]

DOI
10.2337/db10-0856 [20]

Lien vers le document
http://dx.doi.org/10.2337/db10-0856 [20]

Autre titre
Diabetes

Identifiant (ID) PubMed
21270257 [21]
Publié sur Okina (http://okina.univ-angers.fr)