Some coset actions in $G_2(q)$ and distance-transitive graphs

Jianxiang Chen

Abstract

This paper studies whether there are distance-transitive graphs arising from the coset actions of $G_2(q)$ on the subfield subgroup $G_2(\sqrt{q})$ or $G_2(q)$ on the Ree subgroup $^2G_2(q)$. It is found that there are no such graphs, even if the groups are extended by outer automorphisms of $G_2(q)$.

1 Introduction

In this paper, a graph means a finite connected undirected graph without loops or multiple edges. A graph Γ is called distance-transitive if for every two pairs (w, x) and (y, z) of the graph such that the distance from w to x is the same as the distance from y to z, there is an automorphism of the graph that carries w to y and x to z.

By a result of D.H. Smith\[1\], distance-transitive graphs can be classified into either primitive or non-primitive, and non-primitive distance-transitive graphs can be derived from primitive distance-transitive graphs, so the classification of primitive distance-transitive graphs serves as a step to classify all distance-transitive graphs.

Praeger, Saxl and Yokoyama\[2\] showed that a primitive distance-transitive graph is either a Hamming graph, has an automorphism group of affine type, or has an almost-simple automorphism group (a group G is almost simple if there is a nonabelian simple group H such that $H \triangleleft G \triangleleft \text{Aut}(H)$; here H is the socle of G). The primitive distance-transitive graphs having automorphism groups of affine type are classified by John van Bon\[3\].

The vertex stabilizer in a primitive distance-transitive graph Γ is a maximal subgroup of $\text{Aut}\Gamma$. Thanks to the classification of all finite simple groups and their maximal subgroups, the classification of primitive distance-transitive graphs with almost-simple automorphism groups can be dealt with on a case-by-case basis. A lot of work has already been done; for example, the graphs Γ where $\text{Aut}\Gamma$ have alternating, sporadic or linear socle are completely determined in [4], [5] and [6] respectively.

There is a combinatorial generalization of distance-transitive graphs called distance-regular graphs: a distance-regular graph is a regular graph such that for any two vertices x and y, the number of vertices at distance i from x and at distance j from y is independent from x and y, and only dependent upon i, j and the distance between x and y. It is evident from the definition that every distance-transitive graph is distance-regular, because every ordered pair (x, y) of vertices with the same distance between x and y are equivalent. Distance-regular graphs are usually characterized by intersection arrays.

In this paper we investigate two open cases where $\text{Aut}\Gamma$ has socle $G_2(q)$: they correspond to the vertex stabilizer having type $G_2(\sqrt{q})$ and $^2G_2(q)$. More formally, we assume that $\text{Aut}\Gamma = G_2(q):X$ where X is a subgroup of the outer automorphism group of $G_2(q)$. The vertex stabilizer of Γ is $G_2(\sqrt{q}):X$ and...
$G_2(q):X$, respectively. So the vertices of Γ can be identified with the cosets $(G_2(q):X)/(G_2(\sqrt{q}):X)$ and $(G_2(q):X)/(2G_2(q):X)$, respectively.

2 $G_2(q)$ on $G_2(\sqrt{q})$

Let G be the finite simple group $G_2(q)$, where $q = p^{2n}$, and H the subgroup of G isomorphic to the subfield subgroup $G_2(\sqrt{q})$; all such subgroups are pairwise conjugate in G. Let $r = \sqrt{q}$. Let σ be the Frobenius isomorphism $\sigma : x \to x^r$.

The first thing to note is that q is a power of 3. If Γ is distance-transitive, the permutation character of $\text{Aut}\Gamma$ acting on the vertices of Γ is multiplicity-free. The multiplicity-free actions of $(G:X)/(H:X)$ are determined in [9]: The action is multiplicity-free iff q is a power of 3 and X contains the graph automorphism of $G_2(q)$. So q is a power of 3.

Ross Lawther has computed the suborbit lengths of G acting on G/H when q is a power of 3, shown in Table 1, where z is the $G_2(\overline{F}_q)$-class representative of $x^{-1}\sigma(x)$ in $G_2(q)$ listed in [11].

The elements of the form $x_{na+nb}(1)$ are unipotent elements of the algebraic group $G_2(\overline{F}_q)$, so they have order 3. Note that $x_{2a+b}(1)$ and $x_{3a+2b}(1)$ commute, so $x_{2a+b}(1)x_{3a+2b}(1)$ also has order 3.

Let T be a Cartan subgroup of the algebraic group $G_2(\overline{F}_q)$. The Dynkin diagram with respect to T is of type G_2. Denote its short simple root as a and long simple root as b under a choice of simple roots. Then $z_1 = a + b$, $z_2 = a$, $z_3 = 2a - b$ are three short roots of the root diagram. The elements $h(x_1, x_2, x_3 | x_1, x_2, x_3 \in \overline{F}_q^*)$ are elements in T, mapping z_i to x_i, $i = 1, 2, 3$.

The letters $\sigma, \tau, \theta, \eta$ and γ in Table 1 represents certain elements of the multiplicative group \overline{F}_q^*. Let κ be a generator of the multiplicative group \overline{F}_q^*, and

\[
\sigma = \kappa^{(r+1)(r^3-1)}, \quad \tau = \kappa^{(r-1)(r^3+1)}, \quad \theta = \kappa^{q^2+q+1},
\eta = \theta^{r-1}, \quad \gamma = \theta^{r+1}.
\]

The shorthand $h_*(x_1, x_2, x_3)$ represents $h(*^{x_1}, *^{x_2}, *^{x_3})$ where $*$ is any letter.
Table 1: The suborbits of the coset action G/H when q is a power of 3.

z	Size of suborbits	Number of classes
$x_{3a+2b}(1)$	1	1
$x_{2a+b}(1)$	$(r^6 - 1)$	1
$x_{2a+b}(1)x_{3a+2b}(1)$	$(r^6 - 1)(r^2 - 1)$	1
$x_{a+b}(1)x_{3a+b}(1)$	$r^2(r^6 - 1)(r^2 - 1)/2$	1
$x_a(1)x_b(1)$	$r^4(r^6 - 1)(r^2 - 1)/2$	1
$h(-1,-1,1)$	$r^4(r^4 + r^2 + 1)$	1
$h(-1,-1,1)x_b(1)$	$r^4(r^6 - 1)$	1
$h(-1,-1,1)x_{2a+b}(1)$	$r^4(r^6 - 1)$	1
$h(-1,-1,1)x_b(1)x_{2a+b}(1)$	$r^4(r^6 - 1)(r^2 - 1)/2$	1
$h_x(i,-2t,i)$	$r^5(r^3 - 1)(r^2 - r + 1)$	$(r - 3)/2$
$h_x(i,-2t,i)x_{3a+2b}(1)$	$r^5(r^6 - 1)(r - 1)$	$(r - 3)/2$
$h_x(i,-i,0)$	$r^5(r^3 - 1)(r^2 - r + 1)$	$(r - 3)/2$
$h_x(i,-i,0)x_{2a+b}(1)$	$r^5(r^6 - 1)(r - 1)$	$(r - 3)/2$
$h_x(i,j,-i-j)$	$r^6(r^3 - 1)(r^2 - r + 1)(r - 1)$	$(r^2 - 8r + 15)/12$
$h_y(i,-2t,i)$	$r^5(r^3 + 1)(r^2 + r + 1)$	$(r - 1)/2$
$h_y(i,-2t,i)x_{3a+2b}(1)$	$r^5(r^6 - 1)(r + 1)$	$(r - 1)/2$
$h_y(i,-i,0)$	$r^5(r^3 + 1)(r^2 + r + 1)$	$(r - 1)/2$
$h_y(i,-i,0)x_{2a+b}(1)$	$r^5(r^6 - 1)(r + 1)$	$(r - 1)/2$
$h_y(i,j,-i-j)$	$r^6(r^3 + 1)(r^2 + r + 1)(r + 1)$	$(r^2 - 4r + 3)/12$
$h_y(i,(r-1)i,-ri)$	$r^6(r^6 - 1)$	$(r - 1)^2/4$
$h_y(i,ri,-(r+1)i)$	$r^6(r^6 - 1)$	$(r - 1)^2/4$
$h_y(i,ri,r^2i)$	$r^6(r^3 - 1)(r^2 - 1)(r + 1)$	$r(r + 1)/6$
$h_y(i,-ri,r^2i)$	$r^6(r^3 + 1)(r^2 - 1)(r - 1)$	$r(r - 1)/6$

The second thing to note is that the subgroup $G_2(\sqrt{q})$ is the fixed subgroup of the Frobenius isomorphism $\sigma: x \rightarrow x^q$. If $\sigma \in X$, then the subgroup $H:X$ is an involution centralizer in $G:X$, and the action of $G:X$ on cosets $(G:X)/(H:X)$ can be identified with the action of $G:X$ on the conjugacy class of σ by conjugation. Then it would be possible to apply the methodology of [12], summarized in the following theorem:

Theorem 2.1 Let Γ be a distance-transitive graph with distance-transitive group G. Suppose that the vertex set $V\Gamma$ of Γ is a conjugacy class of involutions in G, that G acts on Γ by conjugation and that there are elements in $V\Gamma$ which commute in G. Take $x, y \in \Gamma$ with x adjacent to y. Then at least one of the following statements holds.

- Γ is a polygon or an antipodal 2-cover of a complete graph.
- G is a 2-group.
- The order of xy is an odd prime, if $a, b \in \Gamma$ with ab of order 2, then a and b have maximal distance in Γ, and if $a, b \in \Gamma$ the order of ab is not 4.
The elements x and y commute, and if $z \in O_2(x)$ then xz has order 2, 4 or an odd prime. Moreover either $O_2(C_G(x)) = \langle x \rangle$ or $C_G(x)$ contains a normal subgroup generated by p-transpositions.

By the following lemma of [12], we can assume $\sigma \in X$:

Lemma 2.1 Let Γ be a graph on which G acts primitively distance-transitively, and denote by H the stabilizer in G of a vertex of Γ. Suppose σ is an automorphism of G.

- If σ centralizes H and $\text{diam} \, \Gamma \geq 3$, then $\sigma \in \text{Aut}(\Gamma)$;
- If σ normalizes H and $\text{diam} \, \Gamma \geq 5$, then the same conclusion holds.

The suborbit lengths shown in Table 1 indicates that a distance-transitive Γ cannot have diameter 2 (because there are at least 3 different nontrivial suborbit lengths in G acting on G/H, and the outer automorphism group can only fuse together suborbits of the same length). So we may assume Γ has diameter ≥ 3 and thus $\sigma \in X$.

In the rest of this section, we will denote the elements of $G:X$ in external semidirect product notation; that is, an element of $G:X$ is written as (x,y), where $x \in G$ and $y \in X$, and the multiplication rule is $(w,x)(y,z) = (wz(y),xz)$. Thus, the conjugation of $(1,\sigma)$ by $(g,1)$ is $(g^{-1},1)(1,\sigma)(g,1) = (g^{-1},\sigma)(g,1) = (g^{-1}\sigma(g),\sigma)$. Also $(g^{-1}\sigma(g),\sigma)(1,\sigma) = (g^{-1}\sigma(g),1)$. If $(1,\sigma)$ commutes with $(g^{-1}\sigma(g),\sigma)$, we have $g^{-1}\sigma(g) = \sigma(g^{-1}\sigma(g))$. And that means $(g^{-1}\sigma(g))^2 = g^{-1}\sigma(g)g^{-1}\sigma(g) = g^{-1}\sigma(g)\sigma(g^{-1}\sigma(g)) = 1$. The reverse implication also holds, in the sense that $(g^{-1}\sigma(g))^2 = 1$ implies $(1,\sigma)$ commutes with $(g^{-1}\sigma(g),\sigma)$.

There exists elements $g \in G$ such that $g^{-1}\sigma(g)$ is conjugate to $h(-1,-1,1)$. In this case, $g^{-1}\sigma(g)$ has order 2, so $(1,\sigma)$ commutes with $(g^{-1}\sigma(g),\sigma)$. Thus the assumptions of Theorem 2.1 holds.

To find an element with the form $(g^{-1}\sigma(g),\sigma)$ that is connected to $(1,\sigma)$, the following theorem^[3] is applied:

Theorem 2.2 Let G be a primitive distance-transitive group of automorphisms of Γ (having diameter d) and $x \in \eta \Gamma$. Then among the nontrivial G_x-orbit lengths, $|\Gamma_1(x)|$ ($\Gamma_1(x)$ means the vertices of Γ having distance i to x) is among the two smallest. Moreover, if $|\Gamma_1(x)|$ is not the smallest, then $|\Gamma_d(x)|$ is.

Since outer automorphisms can only fuse suborbits with the same length, the smallest suborbits must be one labeled by $x_{3a+2b}(1)$, $x_{2a+b}(1)$ or $x_{2a+b}(1)x_{3a+2b}(1)$. In either case, the element $g^{-1}\sigma(g)$ has order 3, so $(1,\sigma)$ and $(g^{-1}\sigma(g),\sigma)$ does not commute. So the last case of Theorem 2.1 does not hold. As $G:X$ is not a 2-group and Γ has degree and diameter at least 3, the first and second case does not hold. It can be concluded that if Γ is distance-transitive, then the third case of Theorem 2.1 holds. Specifically, there are no $g \in G:X$ such that $g^{-1}\sigma(g)$ has order 4.

There exists $g \in G$ such that $g^{-1}\sigma(g)$ is conjugate to $h_\gamma(i,-2i,i)$ when $r \geq 9$, and there exists $g \in G$ such that $g^{-1}\sigma(g)$ is conjugate to $h_\eta(i,-2i,i)$. The elements γ and η has order $r-1$ and $r+1$, respectively. As one of $r-1$ and $r+1$ is divisible by 4, it is possible to choose i such that one of γ^i and η^i has order 4 in the multiplicative group \mathbb{F}_q^*. But this means that $g^{-1}\sigma(g)$ has order 4.

So there is no primitive distance-transitive graph with automorphism group $G_2(q):X$ and vertex stabilizer $G_2(\sqrt{q}):X$.

4
3 $G_2(q)$ on $^2G_2(q)$

Let G be the finite simple group $G_2(q)$, where $q = 3^{2n+1}$ ($n \geq 0$), and H the subgroup of G isomorphic to the Ree group $^2G_2(q)$; all such subgroups are pairwise conjugate in G\cite{7}. Let X be a subgroup of the outer automorphism group of G.

Ross Lawther has computed the suborbit lengths of G acting on G/H\cite{10}:

Size of suborbits	Number of classes
1	1
$(q^3+1)(q-1)$	1
$q(q^3+1)(q-1)/2$	1
$q^2(q^3+1)(q-1)/2$	1
$q^3(q^3+1)(q-1)$	1
$q^2(q^2-q+1)$	$(q-3)/2$
$q^2(q^3+1)(q-1)$	$(q-3)/6$
$q^3(q^2-1)(q-3m+1)$	$(q-3m)/6$
$q^3(q^2-1)(q+3m+1)$	$(q+3m)/6$

Table 2: The suborbits of the coset action G/H. Note: $q = 3m^2$

Note that three rows of this table would be absent if $q = 3$; but in this case, the graph would have $|G|/|H| = 4245696/1512 = 2808$ vertices and diameter at least 6 (because the outer automorphism group can only fuse together suborbits of the same length). A graph of this size would be covered in Chapter 14. of [13], but [13] does not contain any intersection arrays of a distance-regular graph with 2808 vertices and diameter at least 6. So we will assume $q \geq 27$ in the rest of this section.

An inequality from [14] states that a distance-regular graph of diameter d and v vertices satisfies $d < 8/3 \log_2(v)$. If there were a distance-regular graph arising from the group action, it would have $q^3(q^3-1)(q+1)$ vertices and diameter at least $(q+6)/|X| = (q+6)/2(2n+1)$, because the outer automorphism group of G is a direct product of the graph automorphism (of order 2) and the field automorphism (of order $2n+1$), and it can never fuse more than $|X|$ suborbits into a suborbit. This inequality is only satisfied when $n \leq 3$.

The main theorem to deal with the cases when $n \leq 3$ is the following theorem from [12]:

Theorem 3.1 Let Γ be a graph of diameter d on which the group G acts distance-transitively as a group of automorphisms. For a vertex $x \in \Gamma$, denote by G_x^i the kernel of the action of the stabilizer of x in G on $\Gamma_i(x)$. If, for some $i \geq 1$, we have $G_x^i \neq 1$, then $G_x^i \subsetneq G_x^{i-1} \subsetneq \ldots \subsetneq G_x^1$ or $G_x^i \subsetneq G_x^{i+1} \subsetneq \ldots \subsetneq G_x^1$.

Since all the suborbit lengths are proper divisors of $|H| = q^3(q^3+1)(q-1)$, the kernel of H acting on any of the suborbits is nontrivial, and so does the extension $H:X$.

The last two rows of Table 2 contain two suborbits. The respective kernel size (the size of G_x^i) of one row is divisible by 19 when $n = 1$, 31 when $n = 2$, 43 when $n = 3$, and the other divisible by 37.
when $n = 1$, 271 when $n = 2$, 2269 when $n = 3$. By Theorem 2.2, the suborbit corresponding to $\Gamma_1(x)$ has length $(q^3+1)(q-1)$ or $q^2(q^2 - q + 1)$. Thus G_1^1 is not divisible by any of the two kernel sizes, and it is impossible to have $G_1^x \subseteq G_2^x$ for any of the two suborbits. So $G_2^x \nsubseteq G_3^x$ for both suborbits, and G_2^x would have order divisible by the primes 19×37 when $n = 1$, 31×271 when $n = 2$, and 43×2269 when $n = 3$. But no suborbit has such a kernel, even if X is nontrivial (outer automorphisms can only multiply the order of the kernels by some number containing the prime factors 2, 3, 5 and 7.).

So there is no primitive distance-transitive graph with automorphism group $G_2(q):X$ and vertex stabilizer $^2G_2(q):X$.

References

1. Smith, Derek H. "Primitive and imprimitive graphs." The Quarterly Journal of Mathematics 22.4 (1971): 551-557.
2. Praeger, Cheryl E., Jan Saxl, and Kazuhiro Yokoyama. "Distance transitive graphs and finite simple groups." Proceedings of the London Mathematical Society 3.1 (1987): 1-21.
3. van Bon, John. "Finite primitive distance-transitive graphs." European Journal of Combinatorics 28.2 (2007): 517-532.
4. Liebeck, Martin W., Cheryl E. Praeger, and Jan Saxl. "Distance transitive graphs with symmetric or alternating automorphism group." Bulletin of the Australian Mathematical Society 35.1 (1987): 1-25.
5. Ivanov, A. A., et al. "Distance-transitive representations of the sporadic groups." Communications in Algebra 23.9 (1995): 3379-3427.
6. van Bon, John, and Arjeh M. Cohen. "Linear groups and distance-transitive graphs." European Journal of Combinatorics 10.5 (1989): 399-411.
7. Kleidman, Peter B. "The maximal subgroups of the Chevalley groups $G_2(q)$ with q odd, the Ree groups $^2G_2(q)$, and their automorphism groups." Journal of Algebra 117.1 (1988): 30-71.
8. Cooperstein, Bruce N. "Maximal subgroups of $G_2(2^n)$." Journal of Algebra 70.1 (1981): 23-36.
9. Lawther, R. "Some (almost) multiplicity-free coset actions." Groups, Combinatorics and Geometries, in: LMS Lecture Note Series 165 (1992).
10. Lawther, R. "Some coset actions in $G_2(q)$." Proceedings of the London Mathematical Society 3.1 (1990): 1-17.
11. Enomoto, Hikoe. "The conjugacy classes of Chevalley groups of type G_2 over finite fields of characteristic 2 or 3." Journal of the Faculty of Science, University of Tokyo. Sect. 1, Mathematics, astronomy, physics, chemistry 16.3 (1970): 497-512.
12. van Bon, John. "On distance-transitive graphs and involutions." Graphs and Combinatorics 7.4 (1991): 377-394.
13. A. E. Brouwer, A. M. Cohen, and A. Neumaier, Distance-regular graphs, Ergebnisse der Mathematik 3.18, Springer-Verlag, Heidelberg, (1989).
14. Bang, Sejeong, Akira Hiraki, and Jacobus H. Koolen. "Improving diameter bounds for distance-regular graphs." European Journal of Combinatorics 27.1 (2006): 79-89.