Towards the Small Quasi-Kernel Conjecture

Alexandr V. Kostochka ∗
Department of Mathematics
University of Illinois at Urbana-Champaign
Urbana, IL 61801, U.S.A.
kostochk@math.uiuc.edu

Ruth Luo †
Department of Mathematics
University of South Carolina
Columbia, SC 29208, U.S.A.
ruthluo@sc.edu

Songling Shan ‡
Department of Mathematics
Illinois State University
Normal, IL 61790, U.S.A.
sshan12@ilstu.edu

Submitted: Feb 10, 2022; Accepted: Jul 28, 2022; Published: Sep 9, 2022
© The authors. Released under the CC BY license (International 4.0).

Abstract

Let \(D = (V, A) \) be a digraph. A vertex set \(K \subseteq V \) is a quasi-kernel of \(D \) if \(K \) is an independent set in \(D \) and for every vertex \(v \in V \setminus K \), \(v \) is at most distance 2 from \(K \). In 1974, Chvátal and Lovász proved that every digraph has a quasi-kernel. P. L. Erdős and L. A. Székely in 1976 conjectured that if every vertex of \(D \) has a positive indegree, then \(D \) has a quasi-kernel of size at most \(|V|/2 \). This conjecture is only confirmed for narrow classes of digraphs, such as semicomplete multipartite, quasi-transitive, or locally semicomplete digraphs. In this note, we state a similar conjecture for all digraphs, show that the two conjectures are equivalent, and prove that both conjectures hold for a class of digraphs containing all orientations of 4-colorable graphs (in particular, of all planar graphs).

Mathematics Subject Classifications: 05C20, 05C35, 05C69

1 Introduction and notation

The digraphs in this note may have antiparallel arcs, but do not have loops. Let \(D \) be a digraph. We denote by \(V(D) \) and \(A(D) \) the vertex set and the arc set of \(D \), respectively.

∗Supported by NSF grants DMS1600592 and DMS-2153507, and by Arnold O. Beckman Campus Research Board Award RB20003 of the University of Illinois at Urbana-Champaign.
†Supported by NSF grant DMS1902808.
‡Supported by NSF grant DMS2153938.
We say \(D \) is weakly connected if the underlying graph of \(D \) is connected. Let \(x \in V(D) \). The open (closed) outneighborhood and inneighborhood of \(x \) in \(D \), denoted \(N^+_D(x) \) (\(N^-_D(x) \)) and \(N^-_D(x) \) (\(N^+_D[x] \)) are defined as follows.

\[
N^+_D(x) = \{ y \in V(D) \mid xy \in A(D) \}, \quad N^+_D[x] = N^+_D(x) \cup \{x\}, \\
N^-_D(x) = \{ y \in V(D) \mid yx \in A(D) \}, \quad N^-_D[x] = N^-_D(x) \cup \{x\}.
\]

The outdegree of \(x \) in \(D \) is \(d^+_D(x) = |N^+_D(x)| \), and the indegree of \(x \) in \(D \) is \(d^-_D(x) = |N^-_D(x)| \). Vertices of indegree zero in \(D \) are called sources of \(D \) and vertices of outdegree zero in \(D \) are called sinks of \(D \). By \(\delta^+(D) \) (respectively, \(\delta^-(D) \)) we denote the minimum outdegree (respectively, indegree) in \(D \) among all vertices of \(D \). For each \(X \subseteq V(D) \), we let

\[
N^+_D(X) = \bigcup_{x \in X} N^+_D(x) \setminus X, \quad N^+_D[X] = N^+_D(X) \cup X, \\
N^-_D(X) = \bigcup_{x \in X} N^-_D(x) \setminus X, \quad N^-_D[X] = N^-_D(X) \cup X.
\]

Let \(u, v \in V(D) \) and \(K \subseteq V(D) \). The distance from \(u \) to \(v \) in \(D \), denoted \(\text{dist}_D(u, v) \), is the length of a shortest directed path from \(u \) to \(v \). The distance from \(K \) to \(v \) in \(D \), is \(\text{dist}_D(K, v) = \min \{ \text{dist}_D(x, v) \mid x \in K \} \). We say \(K \) is a kernel of \(D \) if \(K \) is independent in \(D \) and for every \(v \in V(D) \setminus K \), \(\text{dist}_D(K, v) = 1 \). We say \(K \) is a quasi-kernel of \(D \) if \(K \) is independent in \(D \) and for every \(v \in V(D) \setminus K \), \(\text{dist}_D(K, v) \leq 2 \).\(^1\)

A digraph \(D \) is kernel-perfect if every induced subdigraph of it has a kernel. Richardson proved the following result.

Theorem 1 (Richardson [10]). *Every digraph without directed odd cycles is kernel-perfect.*

The proof gives rise to an algorithm to find one. On the other hand, Chvátal [4] showed that in general it is NP-complete to decide whether a digraph has a kernel, and by a result of Fraenkel [6] it is NP-complete even in the class of planar digraphs of degree at most 3. While not every digraph has a kernel, Chvátal and Lovász [5] proved that every digraph has a quasi-kernel. In 1976, P.L. Erdős and S. A. Székely made the following conjecture on the size of a quasi-kernel in a digraph.

Conjecture 2 (Erdős–Székely [1]). *Every \(n \)-vertex digraph \(D \) with \(\delta^+(D) \geq 1 \) has a quasi-kernel of size at most \(\frac{n}{2} \).*

If \(D \) is an \(n \)-vertex digraph consisting of the disjoint union of directed 2- and 4-cycles, then every kernel or quasi-kernel of \(D \) has size exactly \(\frac{n}{2} \). Thus, Conjecture 2 is sharp.

In 1996, Jacob and Meyniel [9] showed that a digraph without a kernel contains at least three distinct quasi-kernels. Gutin et al. [7] characterized digraphs with exactly one and two quasi-kernels, thus provided necessary and sufficient conditions for a digraph to have

\(^1\)Our definition of a kernel is the digraph dual of what was originally defined in [6], and it is “consistent” with the definition of a quasi-kernel.
at least three quasi-kernels. However, these results do not discuss the sizes of the quasi-kernels. Heard and Huang [8] in 2008 showed that each digraph \(D \) with \(\delta^+(D) \geq 1 \) has two disjoint quasi-kernels if \(D \) is semicomplete multipartite (including tournaments), quasi-transitive (including transitive digraphs), or locally semicomplete. As a consequence, Conjecture 2 is true for these three classes of digraphs.

We propose a conjecture which formally implies Conjecture 2. It suggests a bound for digraphs that may have sources. Note that each quasi-kernel of a digraph contains all of its source vertices and hence contains no outneighbors of the source vertices.

Conjecture 3. Let \(D \) be an \(n \)-vertex digraph, and let \(S \) be the set of sources of \(D \). Then \(D \) has a quasi-kernel \(K \) such that

\[
|K| \leq \frac{n + |S| - |N_D^+(S)|}{2}.
\]

To show that the upper bound above is best possible, consider the following examples.

- Let \(S \) be a nonempty set of isolated vertices, and let \(D \) be a digraph obtained from a directed triangle by adding an arc from every vertex in \(S \) to the same vertex in the triangle. Then every quasi-kernel of \(D \) has size \(|S| + 1 = \frac{(|S|+3)+|S|-1}{2} \).

- Let \(D \) be an orientation of a connected bipartite graph with parts \(S \) and \(T \) where each arc goes from \(S \) to \(T \). Then \(S \) forms a quasi-kernel of \(D \) of size \(|S| = \frac{(|S|+|T|)+|S|-|T|}{2} \).

In this paper, we support Conjectures 2 and 3 by showing the following results.

Theorem 4. Let \(D \) be an \(n \)-vertex digraph and \(S \) be the set of sources of \(D \). Suppose that \(V(D) \setminus N_D^+(S) \) has a partition \(V_1 \cup V_2 \) such that \(D[V_i] \) is kernel-perfect for each \(i = 1, 2 \). Then \(D \) has a quasi-kernel of size at most \(\frac{n + |S| - |N_D^+(S)|}{2} \).

Since by Theorem 1, every digraph without directed odd cycles is kernel-perfect, Theorem 4 immediately yields:

Corollary 5. Conjectures 2 and 3 hold for every orientation of each graph with chromatic number at most 4.

By the Four Color Theorem [2, 3], Corollary 5 yields that Conjectures 2 and 3 hold for every digraph whose underlying graph is planar.

Theorem 6. If Conjecture 3 fails and \(D \) is a counterexample to it with the minimum number of vertices, then \(D \) has no source.

Since Conjecture 3 implies Conjecture 2, Theorem 6 implies that the two conjectures are equivalent.

In the next section we prove Theorem 4 and in Section 3 prove Theorem 6.
2 Proof of Theorem 4

Let $D' = D - N_D^+[S]$ be the digraph obtained by removing the source vertices and their outneighbors, and $V_1 \cup V_2 = V(D')$ be a partition of $V(D')$ such that $D[V_1]$ is kernel-perfect for each $i = 1, 2$. In addition, we choose such a partition so that $|V_2|$ is as small as possible. Observe that adding a source vertex v to a kernel-perfect digraph H results in a new kernel-perfect digraph: let H' be the resulting digraph, and let F be a subdigraph of H' that contains v. Then $K \cup \{v\}$ is a kernel of F where K is any kernel of $F - N_H^+[v]$ in H.

If there exists some $v \in V_2$ with no inneighbors in V_1, then we may move v from V_2 to V_1, and obtain a new partition of $V(D')$ into kernel-perfect subgraphs with a smaller V_2 by Theorem 1. Thus, by the choice of V_2,

$$N_{D'}(v) \cap V_1 \neq \emptyset \quad \text{for every } v \in V_2. \quad (1)$$

For a digraph F and an independent set $R \subseteq V(F)$, we say $R_0 \subseteq R$ is a concise set of R in F if $N_F^+(R_0) = N_F^+(R)$ and $|R_0| \leq |N_F^+(R)|$. Indeed, every independent set has a concise set—iteratively add vertices v from R to R_0 if and only if $|N_F^+(R_0 \cup \{v\})| > |N_F^+(R_0)|$.

Since $D[V_1]$ is kernel-perfect, it has a kernel K. Let R_0 be a concise set of R in D'. Let $D'' = D' - (R_0 \cup N_{D'}^+(R_0)) = D' - N_{D'}^+[R_0]$. We partition $R \setminus R_0$ into sets S'' and T of sources and non-sources in D'' respectively. Note that since each $v \in S''$ was not a source in the original digraph D, v must have an inneighbor in $V(D) - V(D'')$.

Set $K = S \cup R_0 \cup T$. We will show that K is a quasi-kernel of D. We first show that it is independent. Indeed, $K \cap R$ is independent, since R was a kernel of $D[V_1]$. There are no arcs from $K \cap R$ to $K \setminus R = S$ because each vertex in S is a source in D. Similarly, there are no arcs from S to $K \setminus S$. Finally, there are no arcs from S to $K \setminus S$ because $K \setminus S \subseteq V(D') = V(D) - N_D^+[S]$.

Now we check that each vertex is at distance at most 2 from K. For any $v \in N_D^+[K]$, we have $\text{dist}_D(K, v) \leq 1$. Consider $v \in V_1 \setminus N_D^+[K]$. Recall that R is a kernel of $D[V_1]$, so $V_1 \subseteq N_D^+(R)$. It follows that since R_0 is a concise set of R, the vertex v must be contained in $K \cap R = S''$. Therefore v has an inneighbor in $N_D^+[S] \cup N_{D'}^+[R_0] \subseteq N_D^+[K]$, hence $\text{dist}_D(K, v) \leq 2$.

Now suppose $v \in V_2 \setminus N_D^+[K]$. By (1), v has an inneighbor $u \in V_1$. If $u \in N_D^+[K]$, then $\text{dist}_D(K, v) \leq 2$. So we may assume $u \in V_1 \setminus N_D^+[K] = S''$. Since $S'' \subseteq R$, $v \in N_{D'}^+[R]$. But R_0 is a concise set of R, so $v \in N_{D'}^+[R_0] \subseteq N_D^+[K]$. We get $\text{dist}_D(K, v) \leq 1$.

Therefore, K is a quasi-kernel of D. If $|T| \leq |V(D'') \setminus T|$ (so $2|T| \leq |V(D'') \cup T| = |V(D'')|$), then using the fact that R_0 is a concise set,

$$|K| = |S| + |R_0| + |T| \leq |S| + \frac{1}{2}|R_0 \cup N_{D'}^+(R)| + \frac{1}{2}|V(D'')| \leq |S| + \frac{1}{2}|V(D) \setminus N_D^+[S]| \leq \frac{1}{2}(n + |S| - |N_D^+(S)|),$$

and the theorem holds. Thus, assume that $|T| > |V(D'') \setminus T|$ (so $|V(D'') \setminus T| < |V(D'')|/2$). Note that $V(D'') \setminus T = (V_2 \setminus N_{D'}^+(R)) \cup S''$. Since $D[V_2]$ is kernel-perfect and adding source
vertices preserves kernel-perfectness, the digraph $D'' - T$ is also kernel-perfect. Let W be a kernel of $D'' - T$ and set $K' = (S \cup R_0 \cup W) \setminus N_D^+(W)$.

Similarly to K, the set K' is independent in D. Since $|T| > |V(D'') \setminus T|$, \[|K'| \leq |S| + |R_0| + |W| \leq |S| + \frac{1}{2} |R_0 \cup N_D^+(R)| + \frac{1}{2} |V(D'')| \leq \frac{n + |S| - |N_D^+(S)|}{2}. \]

We now show that dist$_D(K', v) \leq 2$ for every $v \in V(D) \setminus K'$.

Observe that $S'' \subseteq W$ since the vertices in S'' are sources in $D'' - T$. Clearly, we have that each vertex $v \in V(D'' - T)$ has dist$_D(K', v) \leq 1$. Now suppose $v \in T$. Since v is not a source in D'', it has an inneighbor in $V(D'')$, and this neighbor cannot be in T because $T \subseteq R$ is independent. Hence dist$_D(K', v) \leq 2$.

We have dist$_D(K', v) \leq 1$ for all $v \in N_D^+(S)$. It remains to consider $v \in V(D') \setminus V(D'') = N_D^+(R_0)$. If $v \in R_0$, then either $v \in K'$ or $v \in N_D^+(W)$. Hence dist$_D(K', v) \leq 1$. It follows that dist$_D(K', v) \leq 2$ for all $v \in N_D^+(R_0)$. Therefore K' is a quasi-kernel of D.

\hfill \square

3 Proof of Theorem 6

Assume Conjecture 3 fails and D is a counterexample to it with the fewest vertices. Let $n = |V(D)|$. We assume $n \geq 4$ as the cases $n \leq 3$ are verifiable by hand. By the minimality of n, D is weakly connected. Let S be the set of sources of D. We show that $S = \emptyset$. Assume instead that $S \neq \emptyset$.

Case 1: $|N_D^+[S]| \geq 3$. Let D_1 be obtained from D by deleting all vertices in $N_D^+[S]$, adding two new vertices x and y, adding an arc from y to every vertex of $D - N_D^+[S]$ that is an outneighbor of some vertex of $N_D^+(S)$ in D, and adding an arc from x to y. Then x is the only source vertex of D_1, and $N_{D_1}^+(x) = \{y\}$. Since $|V(D_1)| = |V(D)| - |N_D^+[S]| + 2 \leq |V(D)| - 1$, the minimality of n implies that D_1 has a quasi-kernel K_1 of size at most $\frac{n - |N_D^+[S]| + 2 + 1 - 1}{2}$. Then $K = (K_1 \setminus \{x\}) \cup S$ is a quasi-kernel of G that has size at most \[\frac{n - |N_D^+[S]| + 2 + 1 - 1}{2} - 1 + |S| = \frac{n + |S| - |N_D^+(S)|}{2}, \]

as desired.

Case 2: $|N_D^+[S]| \leq 2$. Since D is weakly connected, and $|S| \geq 1$, we get $|S| = 1$ and $|N_D^+(S)| = 1$. Let $D_1 = D - N_D^+[S]$. If D_1 has no sources, then by the minimality of D, digraph D_1 has a quasi-kernel K_1 with $|K_1| \leq \frac{n - 2}{2}$. Then $K = K_1 \cup S$ is a desired quasi-kernel of D. Therefore, we assume that D_1 has a source. Let \[S_1 = \{v \in V(D_1) \mid d_{D_1}(v) = 0\}. \]

If $|N_D^+(S_1)| \leq |S_1|$, we let $D_2 = D_1 - S_1$. By the minimality of D, D_2 has a quasi-kernel K_1 of size at most $\frac{n - 2 - |S| + |N_D^+(S_1)|}{2} \leq \frac{n - 2}{2}$. Then $K = K_1 \cup S$ is a desired quasi-kernel of D. Thus, we assume that $|N_D^+(S_1)| > |S_1|$. Let D_2 be obtained from D_1 by deleting all
vertices in $N^+_{D_1}[S_1]$, adding two new vertices x and y, adding an arc from y to every vertex of $D_1 - N^+_{D_1}[S_1]$ that is an outneighbor of some vertex of $N^+_{D_1}(S_1)$ in D_1, and adding an arc from x to y. Note that x is the only source of D_2, and $N^+_{D_2}(x) = \{y\}$. Again, by the minimality of D, D_2 has a quasi-kernel K_1 of size at most $\frac{n - 2 - |N^+_{D_1}[S_1]| + 2 + 1 - 1}{2}$. Then $K = (K_1 \setminus \{x\}) \cup S \cup S_1$ is a quasi-kernel of D that has size at most $\frac{n - 1}{2}$, as desired.

Acknowledgments

We thank Peter L. Erdős for helpful discussions and thank the reviewer for careful reading and valuable comments.

References

[1] Small quasi-kernels in directed graphs. http://lemon.cs.elte.hu/egres/open/Small_quasi-kernels_in_directed_graphs.

[2] K. Appel and W. Haken. Every planar map is four colorable. Part I: Discharging. Illinois J. Math., 21(3):429–490, 1977.

[3] K. Appel, W. Haken, and J. Koch. Every planar map is four colorable. Part II: Reducibility. Illinois J. Math., 21(3):491–567, 1977.

[4] V. Chvátal. On the computational complexity of finding a kernel. Report No. CRM-300, Centre de Recherches Mathématiques, Université de Montréal, 1973.

[5] V. Chvátal and L. Lovász. Every directed graph has a semi-kernel. pages 175. Lecture Notes in Math., Vol. 411, 1974.

[6] A. S. Fraenkel. Planar kernel and Grundy with $d \leq 3$, $d_{out} \leq 2$, $d_{in} \leq 2$ are NP-complete. Discrete Appl. Math., 3(4):257–262, 1981.

[7] G. Gutin, K. M. Koh, E. G. Tay, and A. Yeo. On the number of quasi-kernels in digraphs. J. Graph Theory, 46(1):48–56, 2004.

[8] S. Heard and J. Huang. Disjoint quasi-kernels in digraphs. J. Graph Theory, 58(3):251–260, 2008.

[9] H. Jacob and H. Meyniel. About quasi-kernels in a digraph. Discrete Math., 154(1-3):279–280, 1996.

[10] M. Richardson. On weakly ordered systems. Bull. Amer. Math. Soc., 52:113–116, 1946.