Improving Failure Analysis Efficiency Of Handling Equipment By Using FMECA

Rachida Rouabhia Essalhi (✉ essroua@yahoo.fr)
University Constantine 1 - ISTA

El Hadi Boukrouh
University Constantine 1

Yousef Ghemari
University Constantine 1

Research Article

Keywords: FMEA, FMECA, Rolling Bridge, Maintenance, Failure analysis, Criticality.

Posted Date: January 24th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1184558/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

This work is part of an applied research study on the most commonly used methods in the industry: Failure Mode, Effects and Criticality Analysis (FMECA). In this study, the method was applied more precisely in an industrial production environment in a company responsible for producing and marketing various materials for public works and construction. During the elaboration of a preventive maintenance program for one of its equipment, (handling equipment) newly installed “the Pellegrini 10T overhead crane”, the company noticed that it is very important to understand precisely its behavior in case of failure to prevent its dysfunction or that of one of its components. This study aims to reduce the potential failures of handling equipment in the industry by using FMECA, which will help avoid potential risks and reduce downtime.

1 Introduction

In today's industrial context, the problem-solving approach is a major financial issue for companies. Indeed, the appearance of problems in the operation of installations generates losses of productivity, time, and even significant customer dissatisfaction. An industrial machine is a complex piece of equipment, subject to multiple failure modes where the causes of breakdowns and/or incidents are multiple. On the one hand, these represent one of the main plagues of the industry and, on the other hand, a source of wealth for maintenance management. Therefore, it is important that companies are very responsive to these issues and can resolve them quickly and efficiently.

The root causes of problems are generally diverse and varied, and it is difficult to identify them quickly without rigorous methods. Numerous scientific works have dealt with this type of subject, and many problem-solving methods have been proposed. Among these methods, we find the FMEA. NASA first introduced FMEA in the 1960s as a tool for reliability and safety analysis in the aerospace industry [1]. These past years, it has been widely adopted for improving system safety and reliability [2] and for continuous improvement of a product or process design [3] in a variety of fields, e.g., wind energy [4], food [5], healthcare [6,7], fabrics [8], construction [9], and mining [10]. It is a systematic bottom-up failure analysis method at all levels, from component to system or process, to identify failure modes, analyze failure causes, and map failure effects [11].

By introducing a criticality analysis, the qualitative FMEA can be extended to a quantitative analysis of failure modes, their effects, and criticality (FMECA) [12]. The FMECA is thus an analysis methodology by which all potential failure modes are found, the causes and effects of the failure modes are analyzed, the critical failure modes are selected, and methods to mitigate or remove the effects of the critical failure modes are provided [13, 14, 15, 16]. Wang et al. [17] proposed an improved FMECA (IFMECA) to overcome the drawbacks of conventional FMECA, which does not consider the opinions of different team members or the relationship between failure modes and causes when assigning criticality.

The main concept and basic procedure are the same in all FMECA specifications, but a detailed procedure must be tailored to a specific application for each industry [18]. They need to provide a reliable and safe system for material handling equipment because workers use these systems to transport parts and machinery of all categories between different workshops. Thus, they also require process control methods of design, manufacturing, and maintenance to reduce costs while ensuring reliability, as these systems are expensive and have high maintenance costs. However, little research has been conducted on the FMECA process for material handling equipment, and no specialized FMECA specification has been proposed to date to our knowledge.

Therefore, in this study, a specialized FMECA procedure for material handling equipment was proposed by analyzing several FMECA specifications used in other industries and considering the characteristics and requirements of material handling equipment. The proposed procedure has been applied on a 10T rolling bridge, which is an essential equipment for the production, in the compactor assembly workshops of an Algerian company, to establish a means of diagnosis and to bring improvements to its operation and this can be done only by controlling the weak and critical points of the rolling bridge on which it is necessary to act to optimize its availability.

First, we determined the criticality levels of the subassemblies of this rolling bridge after identifying the potential causes of failure in a second step. Then, we classified them according to their criticality to establish a plan of preventive and corrective actions that will define the maintenance policy to be undertaken to avoid the malfunction of the components of this system.
2 Literature Review

Many scientific works have dealt with this type of subject, and many problem-solving methods have been proposed. Among these methods is the FMEA, and its development and application is a subject of interest not only for academic researchers but also for industrial practitioners. Most design tools were created in industries to address specific industrial problems. Analysis of a hypothetical accident in a two-unit power plant allowed Plastiras [19] to develop and apply a new methodology for analyzing common causes of inter-systems (ICCA), which revealed problems not identified by traditional methods FMEA of inter-systems previously performed by design teams. Dale and Shaw [20] conducted a questionnaire survey on the use of FMEA in the UK automotive industry. They found that most suppliers only started using FMEA because it was a contractual requirement of their customers; however, a number are now looking to make greater use of the technique to facilitate their quality improvement process. They also noted that organizations are not satisfied with the current FMEA training courses.

Aldridge et al. [21], during the application and design of FMEA at Garrett Automotive Ltd, Skelmersdale, and from an analysis of current methods of preparation and use of this technique, noted the reluctance of staff to product engineering and manufacturing engineering due to perceived lack of time or lack of understanding of process potential. Potente and Natrop [22] recommended the implementation of FMEA before the mass production of products to recognize errors that may occur during the manufacturing process, resulting in high scrap rates. The authors investigated that quality control was mainly performed by inspection of the final product. Chabane et al. [23] contributed to implementing an approach dedicated to the behavioral analysis of industrial systems from the design itself. This approach is a combination of three complementary tools. The SysML language is applied to express customer needs and requirements, such as functions and operating conditions of future systems. In addition, the FMECA method analyzes potential system malfunctions and recommends appropriate maintenance actions. Finally, the K-means method classifies the failure modes to obtain the detailed criticality of the modes instead of calculating them according to the old methods.

Similarly, combining the TOPSIS fuzzy belief method with FMEA to introduce an FMEA belief structure to describe expert knowledge by a several linguists as a grammatical phenomenon was proposed by Vahdani et al. [24]. Thivel et al. [25] analyzed the risk of a biomass combustion process using systematic methodological risk analysis and FMEA. FMEA has been used to study the reliability of many energy production systems. Arabian-Hoseynabadi et al. [26] applied it to a wind turbine system using a proprietary software reliability analysis tool. In a case study, Nazeri and Naderikia [27] proposed an approach for assessing and determining the risk of failure modes for a railway company. The authors aim to develop a risk-based method to select an appropriate maintenance strategy to have available and reliable tamping equipment in Iranian railroads. Raj Kumar and Jindal [28] applied the FMEA approach by evaluating the possible causes of failure and their effects on the sub-systems of CNC machines to improve their reliability in the industry and increase the performance of rate production through the prioritization of the failures occurring in them.

Since the risk priority number (RPN) calculation method is one of the critical subjects of failure mode and effects analysis (FMEA) research, Xiaojun and Jing [29] recently proposed a fuzzy beta-binomial RPN evaluation method by integrating fuzzy theory, Bayesian statistical inference, and the beta-binomial distribution. Early product defects have plagued many machine tool enterprises, especially small and medium-sized enterprises limited by capital. Against this background and to eliminate early defects and improve the reliability of computerized numerical control (CNC) machine tools, Zhang et al. [30] proposed a systematic early defect elimination method based on the after-sale data (customer field data) of CNC machine tools. The proposed method consists of four steps: defect data collection; a four-parameter non-homogeneous Poisson process model (NHPP); a mixed defect analysis method that is the combination of the fault tree analysis (FTA) method and the failure modes, effects, and criticality analysis (FMECA) method; and early defect elimination measures.

Other researchers have obtained useful results in improving performance in various industries and avoiding failure by combining FMEA with other improvement methods. For example, Almannai et al. [31] described an integrated approach to help management address technology, organization, and people at the earliest decision-making stages regarding manufacturing automation. The approach used the Quality Function Deployment (QFD) and the FMEA techniques. The key concepts from these two applications were merged into a decision tool; QFD identifies the most appropriate manufacturing automation alternative,
and FMEA identifies the risks associated with that option to be considered in the design and implementation phases of the manufacturing system.

On the other hand, Peeters et al. [11] proposed a method to perform failure analysis by combining the Fault Tree Analysis (FTA) method and the Failure Mode and Effects Analysis (FMEA) method. The authors reported that the main disadvantage of applying these two methods is time-consuming. As a result, the methods are often not applied thoroughly, leading to failure to identify important failure modes. Furthermore, Bertsche [32] stated that this could increase the number of failure modes found due to the different starting points of the two methods: bottom-up in FMEA versus top-down in FTA. Fault tree analysis (FTA) and fault mode and effects analysis (FMEA) approaches are widely used for fault analysis. However, they are time-consuming and expensive when fully implemented and can also lead to a loss of focus on the most critical parts of the system, which failure analysis is generally aimed at identifying.

Implementation of food safety management systems (ISO 22000:2018), as well as the incorporation of management tools such as HAZOP, FMEA, Ishikawa, and Pareto, were found to be proactive in maintaining a positive food safety culture and preventing cross-contamination and fraud in a case study by Lee et al. [33]. The FMEA model was too applied for the risk assessment of the pastries processing [34]. Trafıalek and Kolanowski [35] used FMEA for auditing the HACCP system. The researchers showed that the designed method is ready to be used in all types of food enterprises. In addition, FMEA has been used to analyze and reduce risks (increase safety) in other areas such as industries. Papadopoulos et al. [36] automated failure modes and safety effects analysis of critical systems.

Arvanitoyannis and Savelides [37] implemented an interim FMEA approach in an industry producing filled chocolate to exclude the presence of genetically modified organisms (GMOs) in the final product. They used two structured methods (preliminary risk analysis and fault tree analysis) to analyze and predict the failure modes in the food chain system, based on the functions, characteristics, and/or interactions of the ingredients or processes on which the system depends. Aljazzar et al. [38] used FMEA and probabilistic counterexamples for the airbag system in the healthcare sector. In addition, FMEA can be used to increase patient safety in hospitals, Chiozza and Ponzetti [39] used it to reduce medical errors.

3 Methodology

FMEA was first developed to address reliability and safety issues in the aerospace industry in the late 1950s. Because FMEA focuses on proactive prevention of potential failures rather than solutions. It can help managers identify failures and causes/effects and eliminate failures by instituting corrective actions in the risk assessment process [40]. There are several types of FMEA/FMECA:

- **Design FMEA (DFMEA)**: It is used to ensure the reliability of a product by improving its design.

- **Process FMEA (PFMEA)**: It ensures the quality of a product by improving its production operations.

- **Concept FMEA (CFMEA)**: It ensures the availability and safety of production equipment by improving its maintenance.

Therefore, to perform an FMEA/FMECA, it is necessary to know the system's operation, process, or product being analyzed or, failing that, to have the means to obtain the information from those who have it. The FMEA/FMECA is a “step-by-step” procedure (a sequence of questions and answers) that involves, in the first instance, a tabulation of the system's functions or the system's equipment items, the failure mode of each item, and the effects of the failures on the system:

1. Establish the FMEA/FMECA team.
2. Describe the product/process/system you want to analyze.
3. Creating a Block Diagram of the product or process that shows the major components or process steps as blocks connected by lines that indicate how the components or steps are related.
4. List of Potential failure modes, causes of failure, and their effects on the system.
5. Assign Severity, Occurrence, and Detection rankings to each failure mode (Tables 1, 2, and 3).
6. Calculate the RPN (Risk Priority Number) using the mathematical formula (RPN= Severity X Occurrence X Detection) (Table 4). The results of an FMEA/FMECA are typically recorded in a table, such as the table shown in Figure 1.
7. Develop the action plan and Define who will do what and when.
8. Take the actions identified by your FMEA/FMECA team.
9. Calculate the resulting RPN after implementation of the actions.
10. Compare RPN before and after implementing the actions and Reassess each of the potential failures after improvements are made, and determine the impact of the improvements using the FMEA/FMECA.

Level	Value	Definition
Minor	1	Failure stops the component but not the installation that operates in degraded mode.
Way	2	Failure stops the equipment but not the production that operates in degraded mode.
Major	3	Failure stops the production from 20 min to 1 h and requires maintenance.
Important	4	Failure stops the production for more than 2 h. Important intervention on the sub-systems.
Catastrophic	5	Failure stops the production, leading to serious problems for personnel safety or the installation/environment. Heavy intervention requiring knife equipment.

Table 2
Identification of the failure cause (Occurrence, O).

Level	Value	Definition
Exceptional	1	No participant memory
Rare	2	It has happened once or twice.
Frequent	3	It has already happened several times.
Certain	4	It will happen for sure.

Table 3
Failure detection capability (D).

Level	Value	Definition
Obvious	1	Certain detection
Possible	2	Detectable by the operator
Unlikely	3	Difficult to detect
Impossible	4	Undetectable
4. Case Study

4.1 Context

The case study was carried out in an Algerian company producing and marketing various materials for public works and construction. The methodology was applied to one of its handling equipment newly installed in the assembly workshops: Pellegrini 10T overhead crane (Figure 2). It was designed to lift and move heavy parts for the assembly of compactors. Table 5 lists the characteristics of this system.

Type	Use	Structure	Possible movement	Capacity/Useful strength	Motor	Order
Double girder posed	Compactors assembly area	Box spring frame	- Longitudinal translation	10T/100kN	- 4 asynchronous motors:	Wireless control radio type AIR A8
		Mechanically welded beam	- Transverse translation		- 2 gearmotors for longitudinal translation	1,1Kw
			- Lifting		- 1 gearmotor for transverse translation 1,1Kw.	
			- Longitudinal and Transverse translation at the same time		- 1 cage motor for lifting 8Kw	

4.2 Results and Discussion

After identifying all failure effects and the root-cause analysis of the failure modes in the teamwork, all corresponding RPN values were calculated (Table 6).

Table 6 Analysis of failure modes, their effects, and criticality (FMECA).
Sub-system	Component	Failure	Failure effects	Causes of failure	Detection	S	O	D	RPN
Mechanical	Beam	- Cracks	- Incorrect control	- Overload	Visual report/Verification device	5	1	3	15
system			- Load instability	- Fatigue					
			- Deformation or deterioration of the structure	- Bad facilities					
Mechanical	Bearing surfaces	- Elevation	- Elevation of the roughness	- Fatigue	Visual Report / Auditory	3	2	2	12
system	surfaces	of the		- Tearing of the top layer					
		roughness							
Mechanical	Rollers (bridges and carriages)	- Wear	- Risk of falling	- Misalignment of the rails (loosening of the screws over time)	Alignment device	3	2	3	18
system			- Noise	- Bad assembly					
Mechanical	Support rollers	- Loosening	- Increased noise	- Repetitive movement	Visual Report / Auditory	4	1	2	8
system	(unscrewing)	of the		- Overload					
		roughness		- Vibration					
Mechanical	Carriage chassis	- Deterioration of rollers,	- Difficult control of the bridge	- Repetitive movement	Visual report	3	1	2	6
system		- Deformation of the structure	- Motors overloaded	- Overload					
				- Deterioration of the bearing surface					
Mechanical	Bearings	- Blocking	- Noise	- Bad alignment	Visual Report / Auditory	3	3	2	18
system		- Wear		- Bad lubrication					
		- Jamming of the ring	- Vibrations	- Heating of the bearings					
				- Incorrect choice of lubricant					
Mechanical	Reducers gears	Tooth wear	- Reducer malfunction	- Insufficient greasing	Visual report / Measuring device	4	3	2	24
system		- Scaling		- Mechanical overload					
		- Jamming of teeth	- Heating of teeth (wear)	- Inadequate teeth heat treatment					
Sub-system	Component	Failure	Failure effects	Causes of failure	Detection	S	O	D	RPN
---------------	--------------------	------------------	--	------------------------------------	-------------------------------	---	---	---	-----
Mechanical	Drum	- Deformation,	- Blocking of the load + vibration	- Overweight	Visual report /	3	1	2	6
system		- Seizure,	- Consumption of cable and bearings	- Bad lubrication	Measuring device				
		- Deterioration	- Noise	- Bad alignment					
		of the drum/reducer coupling							
Mechanical	Pulley Block	- Seizure	- Cable breakage, blockage	- Insufficient greasing	Visual report	3	1	2	6
system			Cable / load	- Overload					
Mechanical	Limit switch	- Seizure	- Risk of shock between the load and	- Fatigue	Visual report	3	2	2	12
system			the trolley	- Fatigue					
		- Deformation		- (Atmospheric agents)					
Mechanical	Mechanical	- Faulty	- Loss of control over the load and the	- Wear of the disc lining	Visual report /	4	1	4	16
braking system	braking system		load and how far it should go	- Joint wear	Verification device				
				- Deformation					
Mechanical	Handling cable	- Cable wear	- Cable breakage	- Fatigue	Visual report	5	2	2	20
system			- Decrease in the section of the cable	- Overweight of the load to be					
				be lifted					
				- Improper handling					
Electrical	Electrical	- Power cut	- Failure of an electrical component	- Malfunction	Visual report	4	3	2	24
system	cabinet		(cable, fuse, transformer, push button,	- Stop of the bridge					
			contactor, thermal relay, etc.)						
				- High mechanical effort					
Table 7: Corrective/Preventive actions on the Pellegrini 10T overhead crane sub-systems.

Sub-system	Component	Failure	Failure effects	Causes of failure	Detection	S	O	D	RPN
Electrical	Electric motors	- Copper melting of the motor winding	Increased vibration	- Gradual increase in energy consumption	Visual Report	4	3	4	48
		- Deteriorated bearings	- Noisy engine	- Electrical overload	Measuring / Verification device				
		- Not coaxial with the reducer shaft	- Engine heating	- Mechanical overload					
		- Unbalance	- Engine malfunction	- Cooling system failure					
		- Breaking of the fixation motor + deterioration of the gear unit	- Engine stopping	- Locking of the braking system					
				- Loosening					
Electronic	Load limiter	- Deprogramming	Formatting	- Malfunction	Visual report / Verification device	5	1	4	20
		- Operation stop	- Bad programming	- Breakage cable					
			- Short circuit	- Overload on the lifting motor					
			- Atmospheric agents	- Falling load					
				- Danger of death for workers					

*aBased on the results obtained in the FMECA table, we were able to identify the critical organs, monitor them and propose preventive operations to avoid the failure occurrence.

The criticality hierarchy can be formalized as a histogram (Figure 3). The criticality threshold is set at 10 by the working group’s proposals. This threshold is the limit beyond which preventive actions must be taken. It is also possible to draw up a list of critical points or a table of Corrective/Preventive actions that must be taken on the elements of the Pellegrini10T overhead crane (Table 7), having risks of critical failures. A reduction in criticality can be achieved by acting on one or more factors of the product, as follows:

$$RPN = S \times O \times D.$$

To propose preventive actions to the anomalies detected by the FMECA study, we based ourselves on the history of failures of overhead cranes similar to our system and existing in the company and on the manufacturer’s manual.

bTable 7 Corrective/Preventive actions on the Pellegrini 10T overhead crane sub-systems.
Criticality level	Sub-systems	Criticality	Preventive / corrective actions
Criticality between 1 ≤ C <12 Negligible criticality	Carriage chassis 6	- No modification design	
	Drum 6	- Corrective maintenance	
	Pulley Block 6		
	Support rollers 8		
Criticality between 12 ≤ C <16 Medium criticality	Limit switch 12	- Improved element performance	
	Bearing surfaces 12	- Systematic preventive maintenance	
Criticality between 16 ≤ C <20 High criticality	Beam 15	- Review of subassembly design and selection of elements for specific monitoring	
	Mechanical braking system 16		
	Rollers (bridges and carriage) 18		
	Bearings 18		
Criticality between 20 ≤ C <80 Criticality prohibited	Handling cable 20	- Complete rethinking of the design	
	Load limiter 20		
	Reducers gears 24		
	Electrical cabinet 24		
	Electric motors 48		

Components with a criticality of less than 12 are considered negligible and do not require design changes but only corrective maintenance. Components with criticality greater than or equal to 12 and less than 16 are considered medium criticality and require an improvement in the performance of the element. In the case of high criticality, which ranges from 15 to 20, the components require a design review and special monitoring. From 20 to 48 the very high criticality considered as forbidden which requires the complete redesign of the component.

4.3 Recommended maintenance plan for the Pellegrini 10T overhead crane

Table 8 Maintenance plan for the Pellegrini 10T overhead crane sub-systems.
Sub-systems	Criticality	Comments and Actions	Periodicity
Limit switch	12	Interpretations: This safety element automatically stops the crane if it exceeds the desired distance, thus avoiding the risk of impact between the load and the trolley. Actions: - It is strongly recommended to inspect it regularly (required by the manufacturer).	Daily
Bearing surfaces	12	Interpretations: Worn, abraded, or oxidized surfaces can represent a progressive degradation accelerator of the various components of the equipment (system). Actions: - Knowledge of the type of materials used for this component is strongly recommended. - Control by vibrometer or accelerometer is recommended.	Annual
Beam	15	Interpretations: The potential risks of improper beam assembly and the risks associated with machines such as cracks propagating through vibration and overload are considerable. Actions: - It is strongly recommended to inspect them regularly even if the frequency of occurrence of its problems is rare because the consequences are serious on equipment and the personnel. - Visual inspection with appropriate light is sufficient.	Annual
Mechanical braking system	16	Interpretations: This hydrodynamic system, even if it is not frequent to break down, but its effects are catastrophic, which justifies its criticality value, so a daily vacuum control is mandatory knowing that it only takes two minutes. Actions: - No-load functional check - Control of brake pad wear	Each 6 months
Rollers (bridges and carriage)	18	Interpretations: These components represent the mobility organ of the bridge, so to avoid its immobility, it is necessary to check them often. Actions: - Checking the alignment of the rails - Compliance with the rules for mounting the rollers + checking it - Vibration control - Adequate lubrication	Daily
Bearings	18	Interpretations: Many system vibration comes from misplaced or worn bearings. This is due to friction between the moving and stationary surfaces and the increased temperature between them. Actions: - Conditional control by accelerometer - Respect the frequency of bearing replacement - Lubrication recommended	Each 6 months
Sub-systems	Criticality	Comments and Actions	Periodicity
-----------------	-------------	--	---------------------------------
Handling cable	20	Interpretations: Handling cable degradation is evident but needs to be slowed.	Recommended by the manufacturer
		Actions:	
		- Proper and regular lubrication	
		- Periodic control with a magnifying glass after cleaning	
		- Periodic cable replacement (from the cable and block manual)	
		- Check the general condition daily (recommended by the manufacturer)	
Load limiter	20	Interpretations: The load limiter is a very sensitive element, so it is highly	Each 6 months
		recommended that working on this type of device requires special knowledge in	
		programming and electronics.	
		Actions:	
		- The maintenance person must be qualified and well trained, perform the overload	
		test according to the manual on-site, and not remove it and operate the bridge	
		without it.	
Reducers gears	24	Interpretations: The perfect transmission of the movement requires a more	Each 6 months
		sophisticated control because the problem of the reducers is frequent. Therefore,	
		we must have the necessary tools to control in the best conditions while saving the	
		time factor.	
		Actions:	
		- Conditional control by accelerometer,	
		- Regular lubricant change respecting each mechanism's life and types of lubricant.	
Electrical	24	Interpretations: This organ is a parallelepiped container fixed to a beam. It	Each 6 months
cabinet		gathers and protects the electrical components of the system. The failure of one of	
		its components affects the operation of the machine.	
		Actions:	
		- Verification of the tightness of the connections of the electrical devices and	
		their operation (change of the defective elements)	
		- Cleaning of ventilation filters	
		- Ensure a perfect seal	
		- Control electrical components (contactor contacts, schematic sequences,	
		adjustment of time relays, protection relays, etc.)	
Electric motors	48	Interpretations: The main problem with motors is usually electrical overload which	Each 6 months
		causes temperature rise and mechanical overloads, so it is recommended to place	
		overload protection devices.	
		Actions:	
		- Conditional control by an accelerometer	
		- Monitoring by an infrared device	
		- Periodic verification by torque wrench	
		- Creating easy access for quick intervention.	

The implementation of such a preventive maintenance plan makes it possible to prevent and reduce the interruption of production operations, to maintain the equipment in such a condition that it can operate efficiently and to ensure the quality of the service to be provided or that of the finished product.
5 Conclusions

The objective of this study was to determine how to achieve maximum equipment efficiency and high industrial performance. A cost-effective maintenance strategy applicable to strategic equipment was applied to the machinery park of an Algerian company on the Pellegrini 10T rolling crane, operating in the compactor assembly workshops. This maintenance strategy optimized the maintenance team's costs, time, and effort.

Studies have shown the feasibility of implementing a maintenance optimization method as the influence of maintenance activities becomes more and more important in the management of companies. The method used in this study is the FMECA. It is one of the tools for continuous improvement. In addition, it allows quality to be achieved through preventive rather than curative action.

The FMECA was carried out in four stages:

• Preparation
• Functional decomposition
• Analysis phase
• Establishment and monitoring of action plans

The results obtained allow us to prioritize the potential causes of the failures identified, target the most critical, and propose a maintenance plan-based on preventive/corrective operations to improve and optimize the machine's performance and ensure its availability.

Statements & Declarations

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

The authors have no relevant financial or non-financial interests to disclose.

All authors contributed to the study's conception and design. Material preparation, data collection, and analysis were performed by [Rachida ROUABHIA- ESSALHI], [El Hadi BOUKROUH], and [Youcef GHEMARI]. The first draft of the manuscript was written by [Rachida ROUABHIA- ESSALHI] and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

The authors did not receive support from any organization for the submitted work.

No funding was received to assist with the preparation of this manuscript.

No funding was received for conducting this study.

No funds, grants, or other support were received.

The authors have no competing interests to declare relevant to this article's content.

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial or non-financial interest in the subject matter or materials discussed in this manuscript.

The authors have no financial or proprietary interests in any material discussed in this article.

The authors are responsible for the correctness of the statements provided in the manuscript.

Acknowledgments
The authors would like to express their gratitude to all the staff of the Algerian company in charge of the production and marketing of various materials for public works and construction who carried out this research study, headed by the maintenance department staff.

References

1. Huang J, Li ZJ, Liu HC (2017) New approach for failure mode and effect analysis using linguistic distribution assessments and TODIM method. Reliab Eng Syst Saf 167:302–309
2. Wang W, Liu X, Qin Y, Fu Y (2018) A risk evaluation and prioritization method for FMEA with prospect theory and Choquet integral. Saf Sci 110:152–163
3. Kumru M, Kumru PY (2013) Fuzzy FMEA application to improve purchasing process in a public hospital. Appl Soft Comput 13(1):721–733 in English
4. Tazi N, Chatellet E, Bouzidi Y (2017) Using a hybrid cost- FMEA analysis for wind turbine reliability analysis. Energies 10(3):276
5. Selim H, Yunusoglu MG, Yilmaz Balaman SA (2016) Dynamic maintenance planning framework based on fuzzy TOPSIS and FMEA: application in an international food company. Qual Reliab Eng Int 32(3):795–804
6. Rahimi SA, Jamshidi A, Ait-Kadi D, Ruiz A (2015) Using fuzzy cost-based FMEA, GRA and profitability theory for minimizing failures at a healthcare diagnosis service. Qual Reliab Eng Int 31(4):601–615
7. Liu HC (2019) Improved FMEA Methods for Proactive Healthcare Risk Analysis. Springer, Singapore, pp 15–45
8. Nguyen TL, Shu MH, Hsu BM (2016) Extended FMEA for sustainable manufacturing: an empirical study in the nonwoven fabrics industry. Sustainability, vol. 8, no. 9, p. 939
9. Brun A, Savino MM (2018) Assessing risk through composite FMEA with pairwise matrix and Markov chains. International Journal of Quality & Reliability Management 35(9):1709–1733
10. Bakhhtavar E, Yousefi S (2018) Assessment of workplace accident risks in underground collieries by integrating a multigoal cause-and-effect analysis method with MCDM sensitivity analysis. 32:3317–3332 Stochastic Environmental Research and Risk Assessment
11. Peeters JFW, Basten RJI, Tinga T (2018) Improving failure analysis efficiency by combining FTA and FMEA in a recursive manner. Reliab Eng Syst Saf 172:36–44. DOI:10.1016/j.ress.2017.11.02
12. Wang ZC, Ran Y, Chen YF, Yang X, Zhang GB (2022) Group risk assessment in failure mode and effects analysis using a hybrid probabilistic hesitant fuzzy linguistic MCDM method. Expert Systems with Applications ·February 2022. DOI:10.1016/j.eswa.2021.116013
13. IEC (2001a) Analysis Techniques for System Reliability- Procedure for Failure Mode and Effects Analysis (FMEA). IEC Standard. IEC-60812. Int. Electrotechnical Commission
14. MIL (1980) Procedures for Performing a Failure Mode, Effects and Criticality Analysis. Military Standard. MIL-1629a. US Department of Defense
15. SAE (2000) Potential Failure Mode and Effects Analysis in Design (Design FMEA). Potential Failure Mode and Effects Analysis in Manufacturing and Assembly Processes (Process FMEA). SAE Standard. SAE-J1739. SAE
16. SAE (2001) Failure Modes, Effects, and Criticality Analysis Procedures. SAE Standard. SAE-ARP5580. SAE
17. Wang X, Zhang Y, Shen G (2016) An improved FMECA for feed system of CNC machining center based on ICR and DEMATEL method. Int J Adv Manuf Technol 83:43–54. https://doi.org/10.1007/s00170-015-7551-y
18. Kim JH, Jeong HY, Park JS (2009) Development of the FMECA process and analysis methodology for railroad systems. Int J Automot Technol 10:753. https://doi.org/10.1007/s12239-009-0088-z
19. Plastiras JK (1986) Intersystem Common Cause. Analysis of a Diesel Generator Failure, Risk Analysis, Volume 6, Issue 4, pp. 463 - 476
20. Dale BG, Shaw (1990) Failure mode and effects analysis in the U.K. motor industry: A state-of- the-art study. Quality and Reliability Engineering International, Volume 6, Issue 3, pp. 179 - 188.
21. Aldridge JR, Taylor J, Dale BG (1991) The Application of Failure Mode and Effects Analysis at an Automotive Components Manufacturer. International Journal of Quality & Reliability Management 8(3):111–126
22. Potente H, Natrop J (1991) Quality assurance of computer controlled hot-tool welding for mass production. Polym Eng Sci 31(7):519–525
23. Chabane A, Adjerid, Meddour I (2021) Dependability analysis in systems engineering approach using the FMECA extracted from the SysML and failure modes classification by K-means. Int J Dynam Control. https://doi-org.libproxy.viko.lt/10.1007/s40435-021-00855-8
24. Vahdani B, Salimi M, Charkhchian M (2015) A new FMEA method by integrating fuzzy belief structure and TOPSIS to improve risk evaluation process. Int J Adv Manuf Technol 77:357–368. https://doi.org/10.1007/s00170-014-6466-3
25. Thivel PX, Bultel Y, Delpech F (2008) Risk analysis of a biomass combustion process using MOSAR and FMEA methods. J Hazard Mater 151(1):221–231
26. Arabian-Hoseynabadi H, Oraee H, Tavner PJ (2010) Failure modes and effects analysis (FMEA) for wind turbines. Int J Electr Power Energy Syst 32(7):817–824
27. Nazeri A, Naderikia R (2017) A new fuzzy approach to identify the critical risk factors in maintenance management. Int J Adv Manuf Technol 92:3749–3783. https://doi.org/10.1007/s00170-017-0222-4
28. Salvi RK, Jindal Dr S (2017) FMEA to enhance quality and efficiency of machines: A case study in valve manufacturing industry. Industrial engineering journal. Vol. X & Issue No. 5 May – 2017, pp13-19
29. Xiaojun J (2021) Wu The Risk Priority Number Evaluation of FMEA Analysis Based on Random Uncertainty and Fuzzy Uncertainty. Complexity, vol. 2021, Article ID 8817667, 15 pages. https://doi.org/10.1155/2021/8817667
30. Zhang X, Li Y, Zhang G et al (2020) An early fault elimination method of computerized numerical control machine tools. Int J Adv Manuf Technol 106:5049–5059. https://doi.org/10.1007/s00170-020-04956-0
31. Almennai B, Greenough R, Kay J (2008) A decision support tool based on QFD and FMEA for the selection of manufacturing automation technologies. Robot Comput Integr Manuf 24(4):501–507
32. Bertsche B (2008) Reliability in Automotive and Mechanical Engineering: Determination of Component and System 860 Reliability. Springer Berlin Heidelberg, 2008. doi:10. 1007/978-3-540-34282-3
33. Lee JC, Daraba A, Vidorou C, Rozos G, Enshasy HAE, Varzakas T (2021) Implementation of Food Safety Management Systems along with Other Management Tools (HAZOP, FMEA, Ishikawa, Pareto). The Case Study of Listeria monocytogenes and Correlation with Microbiological Criteria. Foods 10:2169. https://doi.org/10.3390/ foods10092169
34. Varzakas TH (2011) Application of ISO 22000, Failure Mode and Effect Analysis (FMEA) Cause and Effect Diagrams and Pareto in conjunction with HACCP and risk assessment for processing of pastry products. Crit Rev Food Sci Nutr 51:762–782
35. Trafialek J, Kolanowski W (2014) Application of failure mode and effect analysis (FMEA) for audit of HACCP system. Food Control 44:35–44
36. Papadopoulos Y, Parker D, Gran C (2004) Automating the failure modes and effects analysis of safety critical systems. In High Assurance Systems Engineering, 2004. Proceedings. Eighth IEEE International Symposium on (pp. 310–311). IEEE
37. Arvanitoyannis IS, Savelides SC (2007) Application of failure mode and effect analysis and cause and effect analysis and Pareto diagram in conjunction with HACCP to a chocolate-producing industry: a case study of tentative GMO detection at pilot plant scale. International Journal of Food Science and Technology 42(11):1265–1289
38. Aljazzar H, Fischer M, Grunske L, Kuntz M, Leitner-Fischer F, Leue S (2009) Safety analysis of an airbag system using probabilistic FMEA and probabilistic counterexamples. In Quantitative Evaluation of Systems, 2009. QEST’09. Sixth International Conference on the (pp. 299–308). IEEE
39. Chiozza ML, Ponzetti C (2009) FMEA: a model for reducing medical errors. Clin Chim Acta 404(1):75–78
40. Kim KO, Zuo MJ (2018) General model for the risk priority number in failure mode and effects analysis. Reliab Eng Syst Saf 169:321–329
Figures

Figure 1

FMEA/FMECA spreadsheet.

Figure 2

Pellegrini 10T rolling bridge.
Figure 3

Hierarchical histogram of the Pellegrini 10T overhead crane sub-systems criticality.