Neural-Symbolic Integration: A Compositional Perspective
State of the art

Imposes restrictions on the syntax and the semantics of the logical theories:

- [5] translates acyclic or propositional theories to neural networks.
- [6] replaces logical computations by differentiable functions.
- [2,4] adopt theories with interpretations taking continuous values, e.g., fuzzy logic, probabilistic logic.

Depends on the semantics and the complexity of the specific theory.
Objectives

» Develop a compositional framework in which users can plug in *any* logical theory and *any* neural component of interest.

» Benefits:
 ▪ Control the inference cost.
 ▪ Control the expressive power of the theory (e.g., support for non-monotonic theories not supported by PLP-based neural-symbolic frameworks as [2]).
 ▪ Support for techniques coming from the learning theory community (e.g., implicit learning [9]).
Contributions

A framework supporting those properties [1].

Beyond the benefits mentioned before, compositionality allows integrating in a natural way the predictions of the neural component during the training process as opposed to prior art, e.g., [2].

Compositionality is achieved via symbolic modules offering the following interfaces:

- deduction, or forward inference; and
- abduction, through which one computes (i.e., abduces) the inputs to the symbolic module that would deduce a given output.
Integrate a symbolic module adopting a theory T and computing a function $s(\cdot)$ on top of a neural module computing a function $n(\cdot)$.

The translator respects the semantics of the theory, e.g., if T is probabilistic, then each fact is provided along with its confidence/probability.

Assumptions:
- closed-world assumption;
- the semantics of the neural outputs is known.
Setting: inference

\[n(x) = \omega \]

\[r(\omega) = A \]

\[\text{deduce}(T, A) \]
Setting: training

Goal: given training samples of the form \((x, o)\), train the \textit{neural component}.

\begin{center}
\begin{tikzpicture}

\node[rectangle, draw] (n) at (0,0) {Neural module};
\node[rectangle, draw] (r) at (3,0) {Translator};
\node[rectangle, draw] (s) at (6,0) {Symbolic module};

\draw[->] (n) -- (r) node[midway, above] {\(n\)};
\draw[->] (r) -- (s) node[midway, above] {\(r\)};
\draw[->] (s) -- (s) node[midway, above] {\(o\)};
\end{tikzpicture}
\end{center}
Example: chess

Given an image of a chessboard and the status of the black king, learn the weights of the neural component.
Training: high-level idea

- Given the target label o compute a formula representing what the neural component should output in order to get the desired output after reasoning.

- The computation of the formula is done via abduction.

- Use the computed formula to train the neural component.
Training: how do the training formulas look like?

If we want the output to be safe, the logical component should be provided with the following chessboards:

\[
\text{at}(b(k), (2,3)) \\
\text{at}(empty, (3,2)) \\
\text{at}(w(q), (1,1)) \\
\text{at}(w(b), (3,1)) \\
\text{at}(b(k), (2,3)) \land \text{at}(w(q), (1,1)) \land \text{at}(w(b), (3,1)) \land \text{at}(empty, (1,2)) \land \ldots \land \text{at}(empty, (3,2)) \\
\text{at}(w(b), (2,3)) \land \text{at}(w(r), (1,1)) \land \text{at}(w(n), (3,1)) \land \text{at}(empty, (1,2)) \land \ldots \land \text{at}(empty, (3,2)) \\
\text{at}(w(b), (2,3)) \land \text{at}(w(p), (1,1)) \land \text{at}(w(n), (2,2)) \land \text{at}(empty,(1,2)) \land \ldots \land \text{at}(empty, (3,2))
\]
Abduction

Given:
- a set of rules P
- a set of abducible predicates A— data that is given as part of the input to the theory—
- a set of integrity constraints IC
- a user query Q

find a formula Δ over of facts over A, such that

- $P \cup \Delta \models Q$
- $P \cup \Delta \models IC$
Training the neural component using formulas

- The loss function must show how close –*semantically*– are the outputs of the nets to the formula we found via abduction.

- We use *weighted model counting* [11].
Weighted model counting

Consider a propositional formula ϕ, where each variable X in ϕ is associated with a weight $w(X)$ in $[0,1]$.

A *satisfying assignment* σ of ϕ is a mapping of the variables in ϕ to \top or \bot, that makes ϕ true.

The weight of a satisfying assignment σ is defined as

$$\prod_{X \in \phi | X = \top} w(X) \times \prod_{X \in \phi | X = \bot} 1 - w(X)$$

The weighted model count of ϕ is the *sum of the weights of all* satisfying assignments of ϕ.
Weighted model counting

\(\phi = X \lor \neg Y \)
\(w = \{X \mapsto 0.9, Y \mapsto 0.1\} \)

X	Y	\(\phi \)	Weight of assignment
0	0	1	\((1 - w(X)) \times (1 - w(Y)) = 0.1 \times 0.9\)
0	1	0	
1	0	1	\(w(X) \times (1 - w(Y)) = 0.9 \times 0.9\)
1	1	1	\(w(X) \times w(Y) = 0.9 \times 0.1\)

\(\phi = X \lor \neg Y \)
\(w = \{X \mapsto 0.1, Y \mapsto 0.9\} \)

X	Y	\(\phi \)	Weight of assignment
0	0	1	\((1 - w(X)) \times (1 - w(Y)) = 0.1 \times 0.1\)
0	1	0	
1	0	1	\(w(X) \times (1 - w(Y)) = 0.1 \times 0.1\)
1	1	1	\(w(X) \times w(Y) = 0.1 \times 0.9\)
Training: an example

Consider the formula \(\text{at}(b(k), (2,3)) \land \text{at}(w(q), (1,1)) \land \text{at}(w(b), (3,1)). \)

- Virtually create one network for each cell
- Associate each net output with a unique Boolean variable.
- The formula becomes \(X_1 \land Y_2 \land Z_9 \)
- Set the weight of each net output as the weight of the corresponding Boolean variable.
- The loss is the negative logarithm of the weighted model count of \(X_1 \land Y_2 \land Z_9 \).
Training: overview

Background knowledge

\[\phi = \text{abduce}(T, o) \]

Abduction

safe

\[\nabla L \]

Differentiation

\[L \]

Loss computation

\[\omega \]
Training: neural-guided abduction

- Abduction was done so far based only on the target label.

- We could consider the neural predictions to narrow down the abductive proofs.

- Benefits: improve training efficiency.
Neural-guided abduction: example

Recall that when provided with the training pair, the proofs were computed based only on the training label (i.e., safe):

However, if the neural component is confident in recognizing non-empty cells, i.e., it "sees":

then we can exclude all the abductive proofs not abiding this pattern.
To support neural-guided abduction, we need to:

- establish a communication channel between the neural and the logical components;
- extend abduction to deal with noisy or inconsistent neural predictions via proximity functions.
Empirical evaluation

- Benchmarks from [6], [2] and chess scenario.
- Competitors: DeepProbLog [2], ABL [12] and NeurASP [13].

\[
\begin{align*}
5 &+ 3 = 8 \\
2 &+ 8 = 10 \\
6 &/ 3 = 2 \\
7 &\times 1 + 4 = 11
\end{align*}
\]
DeepProbLog.
- Reduces the problem to learning the parameters of probabilistic logic programs.

NeurASP
- Reduces the problem to learning the parameters of probabilistic answer set programs.

ABL
- Computes the neural predictions for each element.
- Obscures subsets of the neural predictions.
- Abduces the obscured predictions so that the resulting predictions are consistent with the background knowledge.
- Trains the neural component using obscured and abduced neural predictions.
Empirical evaluation

	ADD2x2	OPERATOR2x2	APPLY2x2	DBA(5)	MATH(3)	MATH(5)
accur % NLOG	91.7 ± 0.7	90.8 ± 0.8	100 ± 0	95.0 ± 0.2	95.0 ± 1.2	92.2 ± 0.9
accur % DLOG	88.4 ± 2.5	86.9 ± 1.0	100 ± 0	95.6 ± 1.8	93.4 ± 1.4	timeout
accur % ABL	75.5 ± 34	timeout	88.9 ± 13.1	79 ± 12.8	69.7 ± 6.2	6.1 ± 2.8
accur % NASP	89.5 ± 1.8	timeout	76.5 ± 0.1	94.8 ± 1.8	27.5 ± 34	18.2 ± 33.5
time (s) NLOG	531 ± 12	565 ± 36	228 ± 11	307 ± 51	472 ± 15	900 ± 71
time (s) DLOG	1035 ± 71	8982 ± 69	586 ± 9	4203 ± 8	1649 ± 301	timeout
time (s) ABL	1524 ± 100	timeout	1668 ± 30	1904 ± 92	1903 ± 17	2440 ± 13
time (s) NASP	356 ± 4	timeout	454 ± 652	193 ± 2	125 ± 6	217 ± 3

	PATH(4)	PATH(6)	MEMBER(3)	MEMBER(5)	CHESS-BSV(3)	CHESS-ISK(3)	CHESS-NGA(3)
accur % NLOG	97.4 ± 1.4	97.2 ± 1.1	96.9 ± 0.4	95.4 ± 1.2	94.1 ± 0.8	93.9 ± 1.0	92.7 ± 1.6
accur % DLOG	timeout	timeout	96.3 ± 0.3	timeout	n/a	n/a	n/a
accur % ABL	timeout	timeout	55.3 ± 3.9	timeout	0.3 ± 0.2	44.3 ± 7.1	n/a
accur % NASP	timeout	timeout	94.8 ± 1.3	timeout	timeout	19.7 ± 6.3	n/a
time (s) NLOG	958 ± 89	2576 ± 14	333 ± 23	408 ± 18	3576 ± 28	964 ± 15	2189 ± 86
time (s) DLOG	timeout	timeout	2218 ± 211	timeout	n/a	n/a	n/a
time (s) ABL	timeout	timeout	1392 ± 8	1862 ± 28	9436 ± 169	7527 ± 322	n/a
time (s) NASP	timeout	timeout	325 ± 3	timeout	timeout	787 ± 307	n/a

Results using 3000 training samples and 3 epochs.
NeuroLog: efficient caching mechanism

Efficient caching:
- Compute an circuit for each abductive formula.
- Use the compute circuit to compute the loss.
- The number of different circuits equals the number of different labels.
NeuroLog vs DeepProbLog and NeurASP

Results using 3000 training samples and 3 epochs.
NeuroLog vs ABL

Results using 3000 training samples and 3 epochs.
Summary

- Compositional: users can plug in nets and logic theories of interest, e.g., non-monotonic, probabilistic, action.
- Natural integration of neural predictions during the training process.
- Outperforms state of the art in terms of training time and efficiency.
References

[1] Tsamoura, E. et al. 2021. Neural-Symbolic Integration: A Compositional Perspective. In AAAI, to appear.
[2] Manhaeve, R. et al. 2018. DeepProbLog: Neural Probabilistic Logic Programming. In NeurIPS, 3749–3759.
[3] Van Krieken, E. et al. 2019. Semi-Supervised learning using differentiable reasoning. Journal of Applied Logics, Vol. 6 No. 4.
[4] Donadello, I. et al. 2017. Logic tensor networks for semantic image interpretation. In IJCAI, 1596–1602.
[5] d’Avila Garcez, A. S. et al. 2002. Neural-symbolic learning systems: foundations and applications. Perspectives in neural computing.
[6] Gaunt, A. L. et al. 2017. Differentiable Programs with Neural Libraries. In ICML, 1213–1222.
[7] Zhu, Y. et al. 2014. Reasoning about Object Affordances in a Knowledge Base Representation. In ECCV, 408–424.
[8] Valiant, L. G. 2000. Robust logics. Artificial Intelligence, Vol. 117, 231–253.
[9] Juba, B. 2013. Implicit Learning of Common Sense for Reasoning. In IJCAI, 939–946.
[10] Kakas, A. C. 2017. Abduction. Encyclopedia of Machine Learning and Data Mining, 1–8. Boston, MA: Springer US.
[11] Chavira, M. et al. 2008. On probabilistic inference by weighted model counting. Artificial Intelligence, Vol. 172, No. 6, 772–799.
[12] Dai, W.-Z. et al. 2019. Bridging Machine Learning and Logical Reasoning by Abductive Learning. In NeurIPS, 2815–2826.
[13] Yang, Z. et al. 2020. NeurASP: Embracing Neural Networks into Answer Set Programming. In IJCAI, 1755–1762.