Electronic Supplementary Materials

An atlas on risk factors for type 2 diabetes: a wide-angled Mendelian randomisation study

Shuai Yuan¹, Susanna C. Larsson¹,²

Affiliations
¹ Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
² Department of Surgical Sciences, Uppsala University, Uppsala, Sweden

ESM Method

ESM Table 1. Published Mendelian randomisation studies of possible risk factors for type 2 diabetes
ESM Table 2. Information of the data sources for exposures included in this Mendelian randomisation study
ESM Table 3. Definitions for exposures
ESM Table 4. Power estimation
ESM Table 5. False discovery rate adjusted p values for all tested associations using DIAGRAM consortium
ESM Table 6. Associations of 97 exposures with type 2 diabetes in Mendelian randomisation analyses
ESM Table 7. Replication analyses using data from the FinnGen consortium for associations with p<0.05 in IVW analysis based on the DIAGRAM consortium

ESM Figure 1. Rationale and key assumptions for Mendelian randomization study
ESM Figure 2. Scatterplot of the alcohol-associated single nucleotide polymorphisms (SNPs) with alcohol consumption (standard deviations of log-transformed drinks/week) and type 2 diabetes (T2D)
ESM Method

The review of risk factors in observational study

Database: PubMed
Time: Until January 10, 2020
In total, 1360 papers
Search strategy: (((((((Meta-Analysis[Publication Type]) OR meta-analysis[Title/Abstract]) OR meta analysis[Title/Abstract]) OR meta-analyses[Title/Abstract]) OR meta analyses[Title/Abstract]) OR Systematic Review[Publication Type]) OR systematic review[Title/Abstract])) AND ((Risk Factors[MeSH Terms]) OR risk factor[Title/Abstract])) AND (((Diabetes Mellitus, Type 2[MeSH Terms]) OR type 2 diabetes[Title/Abstract]) OR type 2 diabetes mellitus[Title/Abstract]))

We firstly deleted all replicates with the same study materials. Since we aimed to pinpoint the possible risk factors for type 2 diabetes (not a quantitative meta-analysis), we merely screened the title and abstract of the studies. The studies with the same topic were included once regardless of used materials (study base). Results from this review are presented below:

Health status	Nutrition	Lifestyle	Internal biomarker	Socioeconomic status and other factors
Hidradenitis suppurativa	Diet quality	Coffee consumption	Aldose reductase	Education
Obstructive sleep apnea	Diet pattern	Tea consumption	Fasting glucose	Income
Polycystic ovary syndrome	Dietary energy density	Alcohol consumption	Intercellular adhesion molecule-1	Occupation (long work hours, job strain, workplace bullying and violence, shift work)
Alzheimer's disease	Fatty acid consumption	Smoking	High-mobility group A1	Exposure to air pollution
Asthma	Protein consumption	Smokeless tobacco (snus)	Transforming growth factor-β1	Exposure to environmental chemicals (organochlorine pollutants, arsenic, cadmium, mercury, phthalates and bisphenol A)
Psoriasis	Isoflavones & Flavonoids consumption	Daytime napping	Thyroid-stimulating hormone & free thyroxine	Sun exposure
Psoriatic arthritis	Cholesterol consumption	Sleep (duration & short sleep)	Triglycerides	Residential proximity to major roadways
Osteoarthritis	Fibre consumption	Circadian	High-density lipoprotein cholesterol	Adverse childhood experience
Giant cell arteritis	Polyphenols consumption	Breakfast skipping	Low-density lipoprotein cholesterol	Food insecurity
Dupuytren disease	Insulinotropic amino acids consumption	Physical activity	Total cholesterol	Cardiovascular drugs (Statin therapy)
Non-alcoholic Fatty Liver Disease	Peptides consumption	Areca-nut chewing	Serum alanine aminotransferase	Depression treatment & Antipsychotics
Medical Condition	Dietary or Nutritional Factors	Biomarkers/Factors		
--	-------------------------------	--------------------		
Atopic dermatitis	Fructose consumption	Intermittent fasting		
Chronic toxoplasmosis	Sucrose consumption			
Hypertriglyceridemia waist	Resveratrol consumption	Inflammation biomarker		
Thyroid function	Antioxidants consumption	TNF		
Bullous skin diseases	Potato consumption	IL-1β		
Inflammatory bowel disease	Yoghurt consumption	C-reactive protein		
Rheumatoid arthritis	Egg consumption	IL-6		
Systemic autoimmune disorders	Vegetable consumption (citrus and cruciferous)	IL-18		
Allergic rhinitis	Soy consumption	IL-10		
Food allergies	Diary consumption	Platelet mean volume, distribution width and count		
Microalbuminuria	Pasta consumption			
Microvascular dysfunction	Nut consumption	Sex-related factor		
Acanthosis nigricans	Fried-food consumption	Menopause		
Periodontitis	White rice consumption	Age at menarche		
Gestational diabetes	Beverages consumption	Premature ovarian insufficiency		
Depression	Branched-chain amino acids	Testosterone level		
Stress	Homocysteine	Parity		
Anxiety	Beta-carotene levels	Steroid sex hormones		
Anorexia nervosa	Folate (vitamin B9)	Sex hormone-binding globulin		
Schizophrenia	Vitamin B12	Breastfeeding		
Bipolar disorder	Vitamin C			
Insomnia	25-hydroxyvitamin D			
Bulimia nervosa	Vitamin E			
Spousal diabetes status				
Hepatitis C Virus infection				
Laparoscopic sleeve gastrectomy				
Bariatric surgery				
Chronic toxoplasmosis				
Hypertriglyceridemia waist				
Thyroid function				
Bullous skin diseases				
Inflammatory bowel disease				
Rheumatoid arthritis				
Systemic autoimmune disorders				
Allergic rhinitis				
Food allergies				
Microalbuminuria				
Microvascular dysfunction				
Acanthosis nigricans				
Periodontitis				
Gestational diabetes				
Depression				
Stress				
Anxiety				
Anorexia nervosa				
Schizophrenia				
Bipolar disorder				
Insomnia				
Bulimia nervosa				
Table

Binge eating disorder	Phylloquinone (vitamin K1)	Height
Systolic blood pressure	Vitamin K2	Hip circumference
ABO and Rh blood groups	Arsenic	Waist circumference
Preterm birth	Calcium	Waist-to-hip ratio
Cardiorespiratory fitness	Iron	Weight change
Telomere length	Magnesium	Favourable adiposity
Resting heart rate	Potassium	Childhood BMI
	Selenium	Leptin levels
	Zinc	Weight loss

Review of Mendelian randomization studies

Database: PubMed
Time: Until January 10, 2020
In total, 238 papers

Search strategy: (((((Mendelian randomization[Title/Abstract]) OR Mendelian randomisation[Title/Abstract]) OR instrumental variable causal inference[Title/Abstract]) OR causal inference using instrumental variable[Title/Abstract]) OR causal inference using genetic variants[Title/Abstract])) AND (((Diabetes Mellitus, Type 2[MeSH Terms]) OR type 2 diabetes mellitus[Title/Abstract]) OR type 2 diabetes[Title/Abstract])

There was no replicated MR study on the same topic. We screened all titles and abstracts of included studies. We then extracted data (data in ESM Table 1) by reading the whole text (all included studies at the stage of screening were studies included finally). The detailed information on included studies is shown in ESM Table 1.
ESM Table 1. Published Mendelian randomisation studies of possible risk factors for type 2 diabetes

Exposure	Outcome GWAS	PMID	Year	SNPs	Cases	Controls	OR	95% CI	Unit	Largest T2DM GWAS
Health status										
Systolic blood pressure	Morris AP et al, 2012	27702834	2017	28	37293	125686	1.02	1.01-1.03	1 mmHg	NO
Telomere length	Morris AP et al, 2012	28241208	2017	11	10415	53655	1	0.84-1.20	SD	NO
Resting heart rate	Mahajan A et al, 2018	31648709	2019	Genetic score	74124	824006	1.12	1.11-1.12	10 beats/min	YES
Nutritional factor										
α-Linolenic acid	Mahajan A et al, 2018	31690987	2019	1	74124	824006	0.93	0.90-0.96	SD	YES
Eicosapentaenoic acid	Mahajan A et al, 2018	31690987	2019	2	74124	824006	1.08	1.03-1.12	SD	YES
Docosapentaenoic acid	Mahajan A et al, 2018	31690987	2019	2	74124	824006	1.04	1.02-1.07	SD	YES
Docosahexaenoic acid	Mahajan A et al, 2018	31690987	2019	1	74124	824006	1.04	0.94-1.15	SD	YES
Linoleic acid	Mahajan A et al, 2018	31690987	2019	3	74124	824006	0.96	0.94-0.98	SD	YES
Arachidonic acid	Mahajan A et al, 2018	31690987	2019	2	74124	824006	1.03	1.02-1.05	SD	YES
Palmitoleic acid	Mahajan A et al, 2018	31690987	2019	4	74124	824006	0.86	0.81-0.91	SD	YES
Oleic acid	Mahajan A et al, 2018	31690987	2019	1	74124	824006	0.87	0.81-0.93	SD	YES
Palmitic acid	Mahajan A et al, 2018	31690987	2019	1	74124	824006	0.98	0.87-1.09	SD	YES
Stearic acid	Mahajan A et al, 2018	31690987	2019	3	74124	824006	1.09	1.09-1.15	SD	YES
Dairy product intake	Vissers LET et al, 2019 (EPIC-InterAct)	30728219	2019	1	9686	12134	0.99	0.93-1.05	15 g/day	NO
Isoleucine	Lotta LA et al, 2016 (Morris AP et al, 2013+EPIC-InterAct+UK Biobank)	27898682	2016	4	47877	267694	1.44	1.26-1.65	SD	NO
Leucine	Morris AP et al, 2013+EPIC-InterAct+UK Biobank	27898682	2016	1	47877	267694	1.85	1.41-2.42	SD	NO
Valine	Huang T et al, 2013 (17 studies)	24320691	2013	1	4011	4303	1.29	1.09-1.51	5 µmol/L	NO
Homocysteine	Morris AP et al, 2012	26664883	2015	Genetic score	34840	114981	1.09	0.92-1.30	SD	NO
Homocysteine	Zeggini E et al, 2008	19662379	2009	1	4549	5579	0.98	0.91-1.04	0.27 SD	NO
25-hydroxyvitamin D	Mahajan A et al, 2018	31548248	2019	7	74124	824006	0.94	0.88-0.99	SD	YES
Beta-carotene levels	Mahajan A et al, 2018	31548248	2019	7	74124	824006	0.94	0.88-0.99	SD	YES
Vitamin B12	Zeggini E et al, 2008	19662379	2009	1	4549	5579	0.98	0.91-1.04	0.27 SD	NO
Phylloquinone (vitamin K1)	Morris AP et al, 2012+UK Biobank	30352877	2019	4	69647	551336	0.93	0.89-0.97	1 ln(mmol/L)	NO
Alpha-tocopherol	Mahajan A et al, 2018	31548248	2019	6	74124	824006	1.05	0.85-1.28	SD	YES
Magnesium	Yarmolinsky J et al, 2018 (Morris AP et al, 2013+EPIC-InterAct+UK Biobank)	30759836	2019	10	62892	596424	0.89	0.81-0.98	per-unit	NO
Selenium	Yarmolinsky J et al, 2018 (Morris AP et al, 2013+EPIC-InterAct+UK Biobank)	29788239	2018	4	49266	249906	1.18	0.97-1.43	114 µg/L	NO
Zinc	Xue A et al, 2018	30759836	2019	2	62892	596424	1.01	0.92-1.12	per-unit	NO
Lifestyle factor										
Coffee consumption a	Morris AP et al, 2012	27845333	2016	9	34840	114981	1.02	0.76-1.36	cups of regular-type coffee/day	NO
Smoking initiation	Mahajan A et al, 2018	31852999	2019	377	74124	824006	1.28	1.20-1.37	NA	YES
Sleep duration	Scott RA et al, 2017	30508554	2019	68	26676	132532	0.85	0.64-1.13	NA	NO
Grip strength	Mahajan A et al, 2018	30798333	2019	130	74124	824006	0.72	0.51-1.01	SD	YES
---------------	----------------------	----------	------	-----	-------	--------	------	-----------	----	-----
Inflammatory factor										
IL-1 receptor antagonist	Voight BF et al, 2010+Morris AP et al, 2012+EPIC-InterAct	25726324	2015	2	18715	61691	0.99	0.97-1.10	0.22SD	NO
IL-6 receptor	IL6 MR consortium (40 studies)	22421340	2012	1	12895	86807	0.97	0.94-1.00	15 mg/mL	NO
C-reactive protein	Morris AP et al, 2012 (stage 1)	29753585	2018	15	12171	56862	1.15	0.93-1.42	1 ln(mg/L)	NO
C-reactive protein	Morris AP et al, 2012 (stage 1)	30619477	2018	4	12171	56862	1.11	1.06-1.17	NA	NO
IL-18	Morris AP et al, 2012	31024619	2019	8 (correlated)	26488	83964	1.14	1.03-1.26	SD	NO
Internal biomarker										
Waist										
Birthweight										
Visceral fat mass (women)										
Obesity										
Sex hormone binding globulin										
Age at menarche	Scott RA et al, 2017	31614369	2020	118	26676	132532	0.83	0.78-0.88	1 year	NO
Testosterone	UK Biobank	medRxiv	2019	81	11079	146152	1.07	0.80-1.43	0.1 nmol/L	NO
Sex hormone binding globulin	DIAGRAM Consortium, et al, 2014	26050255	2015	11	41439	103870	0.83	0.76-0.91	SD	NO
Hormone-related factor										
Obesity-related factor										
Lean body mass (men)	Mahajan A et al, 2018	30798333	2019	313	37358	428483	0.94	0.88-1.01	SD	YES
Lean body mass (women)	Mahajan A et al, 2018	30798333	2019	311	36766	395523	0.91	0.84-0.99	SD	YES
Visceral fat mass (men)	UK Biobank	31501611	2011	44	10002	150830	2.50	1.98-3.14	1 kg increase	NO
Visceral fat mass (women)	UK Biobank	31501611	2011	44	4670	154511	7.34	4.48-12.0	1 kg increase	NO
Birthweight	Morris AP et al, 2012	31539074	2011	7	34840	114918	2.79	1.90-4.20	SD	NO
BMI	UK Biobank	31821322	2019	57	13982	273412	1.31	1.11-1.53	1 kg/m²	NO
Serum adiponectin	Voight BF et al, 2010	23833345	2013	4	15960	64731	1.06	0.84-1.33	SD	NO
Waist-to-hip ratio adj for BMI	Morris AP et al, 2012	28196256	2017	48	40530	221277	1.77	1.57-2.00	SD	NO
IGFBP-3	Morris AP et al, 2012	31235487	2019	6	12171	56862	1.26	1.11-1.43	SD	NO
Childhood BMI	Morris AP et al, 2012	29483184	2018	15	34840	114981	1.83	1.46-2.30	SD	NO

a Effect estimation was based on instrumental variables excluding body mass index-related SNPs. OR of type 2 diabetes was 1.20 (95% CI, 1.00, 1.42) based on all genome-wide significant SNPs for coffee consumption. *b* Only one SNP was associated with IGFBP-3 at the genome-wide significance level. The link of medRxiv is: https://www.medrxiv.org/content/10.1101/19005132v1.
ESM Table 2. Information of the data sources for exposures included in this Mendelian randomisation study

Risk factor	PMID	Year	Cases	Controls	Population	SNP*	SNPs excluded due to LD	Unit
Somatic health status								
Asthma	29273806	2018	19,954	107,715	European	16	1	Events
Atopic dermatitis	26482879	2015	18,900	84,166	European	21	0	Events
Dupuytren disease	28866342	2017	4041	8251	European	25	0	Events
Giant cell arteritis	28041642	2017	2134	9125	European	3	0	Events
Hyperthyroidism	30367059	2018	3340	49,983	European	8	0	Events
Hypothyroidism	30367059	2018	1840	49,983	European	8	0	Events
Microalbuminuria	30220432	2018	382,500	NA	European	33	0	SD
Microvascular dysfunction	26343387	2015	60,801	123,504	Mix	44	1	Events
Osteoarthritis	29559693	2018	30,727	297,191	European	8	0	Events
Periodontitis	29346566	2017	1030	9,471	European	2	0	Events
Polycystic ovary syndrome	30566500	2018	10,074	103,164	European	14	0	Events
Rheumatoid arthritis	24390342	2014	18,136	49,724	European	8	0	Events
Systolic blood pressure	30224653	2018	>1 million	NA	Mix	229	11	mmHg
Telomere length	28241208	2017	9,190	NA	European	16	6	SD
Mental health status								
Anorexia nervosa	31308545	2019	16,992	55,525	European	8	0	Events
Lifetime anxiety disorder	BioRxiv	2019	25,453	58,113	European	5	0	Events
Post-traumatic stress disorder	31594949	2019	23,212	151,447	European	2	0	Events
Schizophrenia	29483656	2018	11,260	24,542	European	143	17	Events
Nutritional factor & Internal biomarker								
Homocysteine	23824729	2013	44,147	NA	European	18	4	SD
Isoleucine	27898682	2016	16,596	NA	European	5	0	SD
Leucine	27898682	2016	16,597	NA	European	1	0	SD
Valine	27898682	2016	16,598	NA	European	1	0	SD
β-carotene (precursor to vitamin A)	19185284	2009	3941	NA	European	1	0	0.27 SD
Retinol (vitamin A)	21878437	2011	5006	NA	European	2	0	ln(ug/L)
Vitamin B6	19303062	2009	18,640	NA	European	1	0	SD
Folate (vitamin B9)	23754956	2013	37,341	NA	Mix	3	1	SD
Vitamin B12	23754956	2013	45,576	NA	Mix	15	1	SD
Vitamin C	20519558	2010	15,087	NA	European	1	0	SD
Vitamin E	21729881	2011	5006	NA	European	3	0	ln(ng/mL)
Copper	23720494	2013	2603	NA	European	2	0	NA
Iron	25352340	2014	48,972	NA	European	5	0	SD
Magnesium	20700443	2010	15,366	NA	European	6	0	SD
Potassium (urinary)	31409800	2019	446,238	NA	European	13	0	mmol/L
Sodium (urinary)	31409800	2019	446,237	NA	European	50	3	mmol/L
	Year	Value 1	Value 2	Value 3	Value 4	Value 5	Unit	
--------------------------------	------	----------	----------	----------	----------	----------	-------	
Selenium	2019	9639	NA	European	4	2	NA	
Zinc	2013	2603	NA	European	3	0	NA	
Thyroid-stimulating hormone	2018	72 167	NA	European	61	14	SD	
Free thyroxine	2018	72 167	NA	European	31	7	SD	
High-density lipoprotein cholesterol	2013	188 577	NA	Mix	71	0	SD	
Low-density lipoprotein cholesterol	2013	188 577	NA	Mix	58	0	SD	
Total cholesterol	2013	188 577	NA	Mix	74	0	SD	
Total triglyceride	2013	188 577	NA	Mix	40	0	SD	
Alanine aminotransferase	2011	61 089	NA	Mix	4	0	per 100% change	
Alkaline phosphatase	2011	61 091	NA	Mix	14	0	per 100% change	
γ-glutamyl transferase	2011	61 092	NA	Mix	26	0	per 100% change	
Serum uric acid	2019	288 649	NA	European	123	26	1 mg/mL	
Serum ferritin	2014	48 972	NA	European	8	0	SD	
Fetuin-A levels	2015	2734	NA	European	1	0	SD	
Lipoprotein(a)	2009	15 937	NA	European	2	0	SD	
Bilirubin levels	2019	39 261	NA	European	10	0	1 mg/dL	
Alanine	2016	22 569	NA	European	1	0	SD	
Phenyllalanine	2016	22 660	NA	European	2	0	SD	
Tyrosine	2016	24 918	NA	European	1	0	SD	
Haemoglobin	2012	135 367	NA	Mix	27	1	1 g/dl	
Inflammatory factor								
TNF	2016	30 912	NA	European	4	1	ln(mg/L)	
C-reactive protein	2018	204 402	NA	European	58	0	ln(mg/L)	
IgE	2012	6819	NA	European	3	0	ln(mg/L)	
IL-1 receptor antagonist	2014	2160	NA	European	2	0	0.22 SD	
IL-2 receptor subunit α	2017	8293	NA	European	1	0	SD	
IL-6 receptor subunit α	2018	3301	NA	European	1	0	NA	
IL-16	2017	3483	NA	European	1	0	SD	
IL-17	2017	7760	NA	European	1	0	SD	
IL-18	2017	3636	NA	European	3	0	SD	
Mean platelet volume	2016	164 454	NA	European	294	75	SD	
Platelet count	2016	166 066	NA	European	287	80	SD	
Platelet distribution width	2016	164 433	NA	European	206	66	SD	
Plateletcrit	2016	164 339	NA	European	272	85	SD	
Lifestyle and sleep-related factor								
Alcohol consumption	2019	941 280	NA	European	99	16	Drinks/week	
Coffee consumption	2019	375 833	NA	European	14	2	50% increase	
Caffeine intake	2011	47 341	NA	European	2	0	Cubic-root transformed mg/d	
Breakfast skipping	2019	193 860	NA	European	6	0	NA	
Lifetime smoking	2019	462 690	NA	European	126	0	SD	
Daytime napping	2019	452 071	NA	European	37	1	Daytime sleepiness	
Measure	Study ID	Year	Value 1	Value 2	Value 3	Ethnicity	Events	Notes
--	----------	------	-----------	-----------	-----------	-------------	--------	-------
Sleep duration	30846698	2019	446 118	NA	78	European	5	Hours/day
Short sleep (<7 hours)	30846698	2019	106 192	305 742	European	27	2	Events
Long sleep (>9 hours)	30846698	2019	34 184	305 742	European	8	0	Events
Apnoea-hypopnea index	31786426	2019	1786	NA	Mix	2	0	Events/hour
Insomnia	30804565	2019	397 972	933 038	European	248	40	Events
Morningness	30696823	2019	372 765	278 530	European	351	32	Events
Restless leg syndrome	29029846	2017	15 126	95 725	European	20	0	Events
Moderate to vigorous physical activity	29899525	2018	377 234	NA	European	9	0	SD
Vigorous physical activity	29899525	2018	98 060	162 995	European	5	0	≥3 vs 0 days/week
Strenuous sports or other exercises	29899525	2018	124 842	225 650	European	6	0	≥2–3 vs 0 days/week
Accelerometry	29899525	2018	91084	NA	European	2	0	
Sex-hormone related factor & sex hormone								
Age at menarche	28436984	2017	370 000	NA	Mix	389	0	1 year
Age at menopause	26414677	2015	70 000	NA	European	42	0	1 year
Testosterone levels	32042192	2018	425 097	NA	European	239	0	SD
Sex hormone binding globulin	32042192	2020	425 097	NA	European	659	0	SD
Oestradiol levels	29325096	2018	11 097	NA	European	2	0	1 pg/mL
Obesity-related factor & education								1 milli-gravities
Birthweight	23202124	2013	69 308	NA	European	7	0	0.1kg
Childhood BMI	26604143	2016	35 668	NA	Mix	15	0	SD
Adulthood BMI	30124842	2018	700 000	NA	European	941	280	SD
Adulthood height	30124842	2018	700 000	NA	European	3290	1574	SD
Body fat percentage	30305743	2018	500 000	NA	European	370	0	SD
Visceral fat mass	31501611	2019	400 000	NA	European	44	7	1 kilogram
Adiponectin levels	22479202	2012	45 891	NA	Mix	17	4	µg/mL
Leptin levels	26833098	2016	52 140	NA	European	5	0	ln(µg/mL)
Education	30038396	2018	1 131 881	NA	European	1271	475	SD

NA, not available; PMID, PubMed ID; SD indicates standard deviation; SNP, single-nucleotide polymorphism
All biomarkers were measured in serum or blood levels, except for sodium and potassium in urinary levels.
Source for Lifetime anxiety disorder: https://www.biorxiv.org/content/10.1101/203844v2.full
*Not all these SNPs were included in the MR analyses because some were not associated with the exposure at the genome-wide significance level (p<5×10⁻⁸), were in linkage disequilibrium, or not available in the type 2 diabetes dataset.
Exposure	PubMed ID	Definition
Somatic health status		
Asthma	29273806	The definition of asthma was based on physicians’ diagnoses and/or standardized questionnaires.
Atopic dermatitis	26482879	Clinical diagnosis
Dupuytren disease	28886342	The affected case subjects were individuals who had undergone surgical treatment for their disease. The diagnosis of GCA was established according to the 1990 American College of Rheumatology classification criteria for this disease. In addition, the diagnosis was subsequently confirmed by either a biopsy of the temporal artery (89.83%) or arterial imaging (10.17%) consistent with GCA.
Giant cell arteritis	28041642	The diagnosis of GCA was established according to the 1990 American College of Rheumatology classification criteria for this disease. In addition, the diagnosis was subsequently confirmed by either a biopsy of the temporal artery (89.83%) or arterial imaging (10.17%) consistent with GCA.
Hypothyroidism	30367059	Hypothyroidism cases with TSH below the reference range
Hyperthyroidism	30367059	Hypothyroidism cases with TSH levels above the cohort-specific reference range
Microalbuminuria	30220432	The mean SBP and DBP values from two automated or two manual blood pressure measurements
Polycystic ovary syndrome	30566500	Cases were diagnosed with PCOS based on NIH or Rotterdam Criteria or by self-report.
Rheumatoid arthritis	24390342	All RA cases fulfilled the 1987 criteria of the American College of Rheumatology for RA diagnosis or were diagnosed with RA by a professional rheumatologist.
Systolic blood pressure	30224653	The mean SBP and DBP values from two automated or two manual blood pressure measurements
Telomere length	28241208	LTL measurement was performed by Southern blot analysis of the terminal restriction fragments, generated by the restriction enzymes *Hinf*I and *Rsa*I after verification of DNA integrity.
Mental health status		
Anorexia nervosa	31308545	Case definitions established a lifetime diagnosis of anorexia nervosa via hospital or register records, structured clinical interviews, or online questionnaires based on standardized criteria (Diagnostic and Statistical Manual of Mental Disorders (DSM) III-R, DSM-IV, International Classification of Diseases (ICD) 8, ICD-9 or ICD-10), whereas in the UK Biobank, cases self-reported a diagnosis of anorexia nervosa. Cases met one of two definitions. First was self-reporting a lifetime professional diagnosis of one of the core five anxiety disorders, (generalised anxiety disorder, social phobia, panic disorder, agoraphobia or specific phobia; n=21 108). Further case was defined as meeting criteria for a likely lifetime diagnosis of DSM-IV generalised anxiety disorder based on anxiety questions from the Composite International Diagnostic Interview (CIDI) Short-form questionnaire. PTSD assessment was based either on lifetime (where possible) or current PTSD (i.e. including participants with a potential lifetime PTSD diagnosis as controls), and PTSD diagnosis was established using various instruments and different versions of the DSM (DSM-III-R, DSM-IV, DSM-5).
Lifetime anxiety disorder	BioRxiv	Case definitions established a lifetime diagnosis of anorexia nervosa via hospital or register records, structured clinical interviews, or online questionnaires based on standardized criteria (Diagnostic and Statistical Manual of Mental Disorders (DSM) III-R, DSM-IV, International Classification of Diseases (ICD) 8, ICD-9 or ICD-10), whereas in the UK Biobank, cases self-reported a diagnosis of anorexia nervosa. Cases met one of two definitions. First was self-reporting a lifetime professional diagnosis of one of the core five anxiety disorders, (generalised anxiety disorder, social phobia, panic disorder, agoraphobia or specific phobia; n=21 108). Further case was defined as meeting criteria for a likely lifetime diagnosis of DSM-IV generalised anxiety disorder based on anxiety questions from the Composite International Diagnostic Interview (CIDI) Short-form questionnaire. PTSD assessment was based either on lifetime (where possible) or current PTSD (i.e. including participants with a potential lifetime PTSD diagnosis as controls), and PTSD diagnosis was established using various instruments and different versions of the DSM (DSM-III-R, DSM-IV, DSM-5).
Post-traumatic stress disorder	31594949	Case definitions established a lifetime diagnosis of anorexia nervosa via hospital or register records, structured clinical interviews, or online questionnaires based on standardized criteria (Diagnostic and Statistical Manual of Mental Disorders (DSM) III-R, DSM-IV, International Classification of Diseases (ICD) 8, ICD-9 or ICD-10), whereas in the UK Biobank, cases self-reported a diagnosis of anorexia nervosa. Cases met one of two definitions. First was self-reporting a lifetime professional diagnosis of one of the core five anxiety disorders, (generalised anxiety disorder, social phobia, panic disorder, agoraphobia or specific phobia; n=21 108). Further case was defined as meeting criteria for a likely lifetime diagnosis of DSM-IV generalised anxiety disorder based on anxiety questions from the Composite International Diagnostic Interview (CIDI) Short-form questionnaire. PTSD assessment was based either on lifetime (where possible) or current PTSD (i.e. including participants with a potential lifetime PTSD diagnosis as controls), and PTSD diagnosis was established using various instruments and different versions of the DSM (DSM-III-R, DSM-IV, DSM-5).
Schizophrenia	29483656	Unknown
Nutritional factor & Internal biomarker	Code	
---	------------	
Homocysteine	23824729	
Isoleucine	27898682	
Leucine	27898682	
Valine	27898682	
β-carotenoit	19185284	
Retinol (vitamin A)	21878437	
Vitamin B6	19303062	
Folate (vitamin B9)	23754956	
Vitamin B12	23754956	
Vitamin C	20519558	
Vitamin E	21729881	
Copper	23720494	
Iron	25352340	
Magnesium	20700443	
Potassium (urinary)	31409800	
Sodium (urinary)	31409800	
Selenium	30972295	
Zinc	23720494	
Thyroid-stimulating hormone	30367059	
Free thyroxine	30367059	
High-density lipoprotein cholesterol	24097068	
Low-density lipoprotein cholesterol	24097068	
Total cholesterol	24097068	
Total triglyceride	24097068	
Alanine aminotransferase	22001757	
Alkaline phosphatase	22001757	
γ-glutamyl transferase	22001757	
Serum uric acid	31578528	
Serum ferritin	25352340	

Homocysteine was measured in each cohort by using one of the following methods: isotope-dilution liquid chromatography–tandem mass spectrometry, gas chromatography–coupled mass spectrometry, HPLC, or enzymatic, immune, or chemiluminescence.

Blood samples were measured via high-performance liquid chromatography.

Serum alpha-tocopherol levels were measured by high-performance liquid chromatography, with a coefficient of variation (CV) of 2.2%. Gamma-tocopherol was not measured at study baseline.

Sodium and potassium concentrations in stored urine samples were measured by the ion selective electrode method (potentiometric method) using Beckman Coulter AU5400, UK Ltd.

Blood lipid levels were typically measured after >8 h of fasting. Individuals known to be on lipid-lowering medication were excluded when possible. LDL cholesterol levels were directly measured in ten studies (24% of total study individuals) and were estimated using the Friedewald formula41 in the remaining studies.

NMR spectroscopy on serum samples from 2,269 LOLIPOP and 4,247 NFBC1966 participants with genome-wide data to investigate the relationships of the identified loci with lipoprotein and intermediary metabolism.

The laboratory methods were used to measure serum urate.

Clinically and readily measurable
Table 1: Biobank Biomarkers	Measurement Method and Units
Fetuin-A levels	Plasma concentrations were measured by enzyme-linked immunosorbent assays (Human Fetuin-A ELISA; BioVendor) in the laboratory of Professor Pischon, Molecular Epidemiology Group, Max Delbrück Center for Molecular Medicine (MDC), Berlin-Buch, Germany.
Lipoprotein(a)	Lp(a) lipoprotein was measured by means of one latex-enhanced immunoturbidimetric assay (Immuno) in samples from case subjects that had been obtained in study clinics. In addition, Lp(a) lipoprotein was measured in a random subgroup of case subjects and control subjects with the use of a second latex-enhanced immunoturbidimetric assay (Randox Laboratories) on an ADVIA 1800 autoanalyzer (Siemens).
Bilirubin levels	Serum total bilirubin levels (both direct and indirect bilirubin) were measured through automated biochemical profiling, and the unit of bilirubin concentration was milligram per deciliter.
Alanine	The quantitative high-throughput NMR metabolomics platform, used to quantify human blood metabolites, was applied.
Phenylalanine	The quantitative high-throughput NMR metabolomics platform, used to quantify human blood metabolites, was applied.
Tyrosine	The quantitative high-throughput NMR metabolomics platform, used to quantify human blood metabolites, was applied.
Hemoglobin	The quantitative high-throughput NMR metabolomics platform, used to quantify human blood metabolites, was applied.
Inflammatory factor	Each study typically collected venous blood samples from their participants frozen as either serum or plasma and stored below -80°C until the time of measurement. Serum or plasma levels of TNF-α were measured using various types of immunoassays and expressed as pg/ml. Serum CRP in mg/L by was measured using standard laboratory techniques and transformed the values by natural log.
TNF	Total IgE concentrations were measured with the FEIA CAP system (Pharmacia, Freiburg, Germany).
C-reactive protein	IL-1 receptor antagonist serum concentrations were measured using the Quantikine ELISA Kit (R&D Systems, Wiesbaden, Germany).
IgE	A total of 48 cytokines were measured by using Bio-Rad’s premixed Bio-Plex Pro Human Cytokine 27-plex Assay and 21-plex Assay, and Bio-Plex 200 reader with Bio-Plex 6.0 software. A multiplexed, aptamer-based approach (SOMAscan assay) was used to measure the relative concentrations of 3,622 plasma proteins or protein complexes assayed using 4,034 modified aptamers.
IL-1 receptor antagonist	A total of 48 cytokines were measured by using Bio-Rad’s premixed Bio-Plex Pro Human Cytokine 27-plex Assay and 21-plex Assay, and Bio-Plex 200 reader with Bio-Plex 6.0 software.
IL-2 receptor subunit α	Full blood counts were measured in UK Biobank and INTERVAL study participants using clinical hematology analyzers at the centralized processing laboratory of UK Biocenter (Stockport, UK).
IL-6 receptor subunit α	Full blood counts were measured in UK Biobank and INTERVAL study participants using clinical hematology analyzers at the centralized processing laboratory of UK Biocenter (Stockport, UK).
IL-16	Full blood counts were measured in UK Biobank and INTERVAL study participants using clinical hematology analyzers at the centralized processing laboratory of UK Biocenter (Stockport, UK).
IL-17	Full blood counts were measured in UK Biobank and INTERVAL study participants using clinical hematology analyzers at the centralized processing laboratory of UK Biocenter (Stockport, UK).
IL-18	Full blood counts were measured in UK Biobank and INTERVAL study participants using clinical hematology analyzers at the centralized processing laboratory of UK Biocenter (Stockport, UK).
Mean platelet volume	Questionnaire survey, drinks per week
Platelet count	Coffee intake was collected using a 24-hour recall questionnaire (Oxford WebQ) in a subset of UK Biobank participants. Researchers used the mean intake from participants who completed at least two dietary recalls. Intake was assessed using a validated semi-quantitative food frequency questionnaire (FFQ). For each item, participants were asked how often, on average, they had consumed a specified amount of each beverage or food over the past year. The participants could choose from nine frequency categories (never, 1–3 per month, 1 per week, 2–4 per week, 5–6 per week, 1 per day, 2–3 per day, 4–5 per day and 6 or more per day). Intakes of nutrients
Platelet distribution width	Caffeine intake was collected using a 24-hour recall questionnaire (Oxford WebQ) in a subset of UK Biobank participants. Researchers used the mean intake from participants who completed at least two dietary recalls. Intake was assessed using a validated semi-quantitative food frequency questionnaire (FFQ). For each item, participants were asked how often, on average, they had consumed a specified amount of each beverage or food over the past year. The participants could choose from nine frequency categories (never, 1–3 per month, 1 per week, 2–4 per week, 5–6 per week, 1 per day, 2–3 per day, 4–5 per day and 6 or more per day). Intakes of nutrients
Plateletcrit	Caffeine intake was collected using a 24-hour recall questionnaire (Oxford WebQ) in a subset of UK Biobank participants. Researchers used the mean intake from participants who completed at least two dietary recalls. Intake was assessed using a validated semi-quantitative food frequency questionnaire (FFQ). For each item, participants were asked how often, on average, they had consumed a specified amount of each beverage or food over the past year. The participants could choose from nine frequency categories (never, 1–3 per month, 1 per week, 2–4 per week, 5–6 per week, 1 per day, 2–3 per day, 4–5 per day and 6 or more per day). Intakes of nutrients
and caffeine were calculated using US Department of Agriculture food composition sources. In these calculations, researchers assumed that the content of caffeine was 137 mg per cup of coffee, 47 mg per cup of tea, 46 mg per can or bottle of cola or other caffeinated carbonated beverage, and 7 mg per 1 oz serving of chocolate candy. Researchers assessed the total intake of caffeine by summing the caffeine content for the specified amount of each food multiplied by a weight proportional to the frequency of its use.

The breakfast cereal–skipping data from 24-h recalls from the UK Biobank

Smoking measures available in the UK Biobank were self-reported and collected at initial assessment. They included: smoking status, age at initiation in years, age at cessation in years and number of cigarettes smoked per day. The lifetime smoking index was constructed based on the method outlined by Leffondrè, Abrahamowicz, Xiao, and Siemiatyck (2006).

Self-reported daytime sleepiness was ascertained in the UK Biobank using the question “How likely are you to dose off or fall asleep during the daytime when you don’t mean to? (e.g. when working, reading or driving)” with the response options of “Never/rarely”, “sometimes”, “often”, “all of the time”, “do not know”, and “prefer not to answer”. Participants reporting “do not know” and “prefer not to answer” were set to missing. Other responses were coded continuously as 1 to 4 corresponding to the severity of daytime sleepiness.

Participants were asked: About how many hours sleep do you get in every 24 h? (please include naps), with responses in hour increments. Sleep duration was treated as a continuous variable and also categorized as either short (6 h or less), normal (7 or 8 h), or long (9 h or more) sleep duration. Extreme responses of less than 3 h or more than 18 h were excluded and Do not know or Prefer not to answer responses were set to missing. Participants who self-reported any sleep medication (see Supplementary Method 1) were excluded.

The AHI was defined as the total number of apneas and hypopneas per hour of sleep. The delta-AHI is the increase/decrease of AHI across eight years as shown in the formula below: delta-AHI = AHI follow-up – AHI baseline OSA was defined according to AHI. Researchers elected to define OSA as AHI ≥ 15 events/hour, a cutoff point that presents more solid evidence of associated outcomes. Individuals with incident OSA were those with an AHI < 15/h at baseline, which presented an AHI ≥ 15h at follow-up. Individuals that did not develop OSA (controls) were those with an AHI ≤ 15h at both baseline and follow-up studies.

Insomnia complaints were measured using questionnaire data; an independent sample (the Netherlands Sleep Register)12, which gives access to similar question data, as well as clinical interviews assessing insomnia disorder, was used to validate the specific questions so that they were good proxies of insomnia disorder. Responses to two identical questions (“Are you naturally a night person or a morning person?”) were used to define the dichotomous morning person phenotype in the 23andMe cohort, with one question having a wider selection of neutral options. For the first instance, the possible answers were “Night owl”, “Early bird” and “Neither”, and for the second “Night person”, “Morning person”, “Neither”, “It depends” and “I’m not sure”. Individuals with discordant or neutral responses to both were excluded. For those with one neutral and one non-neutral response, their non-neutral response was used to define their phenotype. Morning people were coded as 1 (cases; N = 120,478) and evening people were coded as 0 (controls; N = 127,622). The UK Biobank collected a single self-reported measure of Chronotype (“Morning/evening person (chronotype)”; data-field 1180). Participants were prompted to answer the question “Do you consider yourself to be?” with one of six possible answers: “Definitely a ‘morning’ person”, “More a ‘morning’ than ‘evening’ person”, “More an ‘evening’ than a ‘morning’ person”, “Definitely an ‘evening’ person”, “Do not know” or “Prefer not to answer”, which we coded as 2, 1, −1, −2, 0 and missing, respectively.
Restless leg syndrome	29029846
People with restless legs syndrome were recruited in specialist outpatient clinics for movement disorders and in sleep units. Restless legs syndrome was diagnosed in face-to-face interviews by an expert neurologist, based on the International Restless Legs Syndrome Study Group diagnostic criteria.	

Moderate to vigorous physical activity	29899525
Moderate-to-vigorous PA (MVPA) was calculated by taking the sum of total minutes/week of MPA multiplied by four and the total number of VPA minutes/week multiplied by eight, corresponding to their metabolic equivalents. In the last 4 weeks did you spend any time doing the following?" and follow-up questions assessing the frequency and typical duration of “strenuous sports” and of “other exercises”. The possible responses to the initial question were: ‘walking for pleasure’, ‘other exercises’, ‘strenuous sports’, ‘light DIY’, ‘heavy DIY’, ‘none of the above’, and ‘prefer not to answer’. Researchers identified individuals spending 2–3 days/week or more doing strenuous sports or other exercises (SSOE), for a duration of 15–30 min or greater. For vigorous PA (VPA), participants were asked: “In a typical WEEK, how many days did you do 10 min or more of vigorous physical activity? (These are activities that make you sweat or breathe hard such as fast cycling, aerobics, heavy lifting)”. For each of these questions, those who indicated 1 or more such days were then asked “How many minutes did you usually spend doing moderate/vigorous activities on a typical DAY”. Participants were asked to include activities performed for work, leisure, travel and around the house. We excluded individuals who selected “prefer not to answer” or “do not know” on the above questions, those reporting not being able to walk, and individuals reporting more than 16 h of either MPA or VPA per day. Those reporting >3 h/day of VPA or MPA were recorded to 3 h, as recommended.	

Strenuous sports or other exercises	29899525

Vigorous physical activity	29899525

Sex-related factor
Age at menarche
Age at menopause
Testosterone levels
Sex hormone binding globulin
Estradiol levels

Obesity-related factor & education
Birthweight
Childhood BMI
Adulthood BMI
Adulthood height
Body fat percentage

Body composition estimation by impedance measurement.
Two UKBB subcohorts were constructed: one training dataset with VAT mass measured by DXA (instance 2; $n = 5,109$), to which the prediction models were calibrated; and one application dataset (instances 0 and 1; $n = 502,638$), in which VAT mass was predicted using the calibrated prediction models.

Visceral fat mass	31501611	Adiponectin levels were measured using ELISA or RIA methods.
Adiponectin levels	22479202	Circulating levels of leptin
Leptin levels	26833098	
ESM Table 4. Power estimation

Effect size (odds ratio)	0.001	0.005	0.01	0.02	0.05	0.10	0.15	0.2
0.1	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
0.3	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
0.5	0.99	1.00	1.00	1.00	1.00	1.00	1.00	1.00
0.7	0.72	1.00	1.00	1.00	1.00	1.00	1.00	1.00
0.8	0.39	0.96	1.00	1.00	1.00	1.00	1.00	1.00
0.9	0.13	0.46	0.75	0.96	1.00	1.00	1.00	1.00
1.1	0.13	0.45	0.73	0.96	1.00	1.00	1.00	1.00
1.2	0.39	0.95	1.00	1.00	1.00	1.00	1.00	1.00
1.3	0.68	1.00	1.00	1.00	1.00	1.00	1.00	1.00
1.5	0.98	1.00	1.00	1.00	1.00	1.00	1.00	1.00
1.7	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
1.9	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
2.0	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
3.0	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

The power estimation was based on 74124 type 2 diabetes cases and 824006 controls and we assumed type 1 error rate as 0.05. The webtool power calculator: https://shiny.cnsgenomics.com/mRnd/.
ESM Table 5. False discovery rate adjusted p values for all tested associations using DIAGRAM consortium

Risk factor	Original p value	Critical Value	Benjamini-Hochberg adjusted p value	Significant using an FDR of 0.05?	
Adulthood BMI	1.40E-44	5.21E-04	1.34E-42	Yes	
Alanine	6.50E-25	0.001	3.12E-23	Yes	
Body fat percentage	3.40E-23	0.002	1.09E-21	Yes	
Visceral fat mass	2.20E-20	0.002	5.28E-19	Yes	
Sex hormone binding globulin	9.39E-14	0.003	1.80E-12	Yes	
Age at menarche	1.30E-12	0.003	2.08E-11	Yes	
Systolic blood pressure	2.10E-10	0.004	2.88E-09	Yes	
Insomnia	1.00E-09	0.004	1.20E-08	Yes	
Lifetime smoking	4.00E-08	0.005	4.27E-07	Yes	
Isoleucine	8.73E-08	0.005	8.38E-07	Yes	
Childhood body mass index	3.40E-06	0.006	2.97E-05	Yes	
Caffeine intake	1.00E-05	0.006	8.00E-05	Yes	
Adulthood height	4.00E-04	0.007	0.003	Yes	
Leucine	0.001	0.007	0.007	Yes	
Valine	0.001	0.008	0.006	Yes	
Testosterone levels	0.002	0.008	0.012	Yes	
High-density lipoprotein cholesterol	0.002	0.009	0.011	Yes	
Birthweight	0.004	0.009	0.021	Yes	
Total cholesterol	0.005	0.010	0.025	Yes	
Alanine aminotransferase	0.009	0.010	0.043	Yes	
Phenylalanine	0.015	0.011	0.069	No	
Coffee consumption	0.017	0.011	0.074	No	
Tyrosine	0.019	0.012	0.079	No	
IL-6 receptor subunit α	0.021	0.013	0.084	No	
Sodium (urinary)	0.024	0.013	0.092	No	
Selenium	0.025	0.014	0.092	No	
IL-1 receptor antagonist	0.034	0.014	0.121	No	
Folate (vitamin B9)	0.038	0.015	0.130	No	
Low-density lipoprotein cholesterol	0.044	0.015	0.146	No	
Giant cell arteritis	0.048	0.016	0.154	No	
Fetuin-A levels	0.049	0.016	0.152	No	
Periodontitis	0.054	0.017	0.162	No	
IL-16	0.056	0.017	0.163	No	
Iron	0.074	0.018	0.209	No	
Apnoea-hypopnea index	0.081	0.018	0.222	No	
Free thyroxine	0.099	0.019	0.264	No	
Anorexia nervosa	0.100	0.019	0.259	No	
Condition	Value1	Value2	Value3	Status	
------------------------------------	---------	---------	---------	---------	
Lipoprotein(a)	0.110	0.020	0.278	No	
Breakfast skipping	0.129	0.020	0.318	No	
Circulating adiponectin	0.144	0.021	0.346	No	
Polycystic ovary syndrome	0.145	0.021	0.340	No	
Atopic dermatitis	0.145	0.022	0.331	No	
Vigorous physical activity	0.156	0.022	0.348	No	
Tumour necrosis factor	0.164	0.023	0.358	No	
IgE	0.198	0.023	0.422	No	
IL-2 receptor subunit α	0.203	0.024	0.424	No	
Daytime napping	0.205	0.024	0.419	No	
Oestradiol levels	0.210	0.025	0.420	No	
Homocysteine	0.225	0.026	0.441	No	
Sleep duration	0.234	0.026	0.449	No	
Copper	0.238	0.027	0.448	No	
Microalbuminuria	0.241	0.027	0.445	No	
Short sleep (<7 h)	0.247	0.028	0.447	No	
Plateletcrit	0.273	0.028	0.485	No	
Vitamin B6	0.295	0.029	0.515	No	
Strenuous sports or other exercises	0.306	0.029	0.525	No	
Age at menopause	0.312	0.030	0.525	No	
Mean platelet volume	0.317	0.030	0.525	No	
Magnesium	0.347	0.031	0.565	No	
Dupuytren disease	0.352	0.031	0.563	No	
Osteoarthritis	0.357	0.032	0.562	No	
Post-traumatic stress disorder	0.360	0.032	0.557	No	
Retinol (vitamin A)	0.364	0.033	0.555	No	
β-carotenoid (precursor to vitamin A)	0.382	0.033	0.573	No	
Lifetime anxiety disorder	0.388	0.034	0.573	No	
Long sleep (>9 h)	0.389	0.034	0.566	No	
Thyroid-stimulating hormone	0.396	0.035	0.567	No	
Accelerometery	0.408	0.035	5.79E-01	No	
Microvascular dysfunction	0.414	0.035	0.584	No	
IL-17	0.415	0.036	0.577	No	
Potassium (urinary)	0.415	0.036	0.569	No	
Vitamin E	0.419	0.037	0.567	No	
Bilirubin levels	0.423	0.038	0.564	No	
Restless leg syndrome	0.430	0.038	0.565	No	
Alkaline phosphatase	0.469	0.039	0.608	No	
Platelet count	0.470	0.039	0.602	No	
Rheumatoid arthritis	0.481	0.040	0.608	No	
Telomere length	0.495	0.040	0.617	No	
Measure	Estimate	Std. Error	Lower CI	Upper CI	Adjusted for Multiple Testing
-------------------------------------	----------	------------	----------	----------	------------------------------
Moderate to vigorous physical activity	0.525	0.041	0.646	No	
Platelet distribution width	0.613	0.041	0.745	No	
Alcohol consumption	0.631	0.042	0.757	No	
Serum ferritin	0.634	0.042	0.751	No	
Asthma	0.647	0.043	0.757	No	
Total triglyceride	0.756	0.043	0.874	No	
Vitamin B12	0.762	0.044	0.871	No	
Haemoglobin	0.801	0.044	0.905	No	
Hyperthyroidism	0.820	0.045	0.915	No	
Hypothyroidism	0.821	0.045	0.906	No	
C-reactive protein	0.833	0.046	0.909	No	
Serum uric acid	0.876	0.046	0.945	No	
Leptin levels	0.877	0.047	0.935	No	
γ-glutamyl transferase	0.897	0.047	0.946	No	
Morningness	0.910	0.048	0.950	No	
Zinc	0.923	0.048	0.953	No	
Schizophrenia	0.944	0.049	0.964	No	
Vitamin C	0.973	0.049	0.983	No	
IL-18	0.974	0.050	0.974	No	

The False discovery rate estimation is based on the Benjamini-Hochberg method to identify which values remain significant at an FDR of choosing, when adjusting for multiple testing (https://tools.carbocation.com/FDR).
Risk factor	Used SNPs	F	I²a	IVW model 95% CI	Weighted median model 95% CI	MR-Egger 95% CI	p value for pleiotropy		
Somatic health status				OR	p value	OR	p value		
Anorexia nervosa	8	53.8	66	0.92	0.84, 1.02	0.100	0.493, 1.05, 0.97	0.074, 0.71, 0.02	0.352, 0.76, 0.002
Lifetime anxiety disorder	5	42.6	83	1.05	0.94, 1.18	0.388	0.002, 1.03, 1.12	0.493, 0.71, 0.02	0.352, 0.76, 0.002
Post-traumatic stress disorder	2	34.4	-	0.96	0.87, 1.05	0.360	-	-	-
Schizophrenia	111	51.3	71	1.00	0.97, 1.04	0.944	0.241, 0.97, 1.01	0.493, 0.71, 0.02	0.352, 0.76, 0.002
Mental health status				OR	p value	OR	p value		
Nutritional factor & internal biomarker				OR	p value	OR	p value		
β-carotene (precursor to vitamin A)	1	98.6	-	-	0.96, 1.05	0.382	-	-	-
Retinol (vitamin A)	2	56.9	-	1.15	0.85, 1.56	0.364	-	-	-
Vitamin B6	1	26.8	-	1.00	0.99, 1.00	0.295	-	-	-
Folate (vitamin B9)	2	83.7	-	0.88	0.78, 0.99	0.038	-	-	-
Vitamin B12	12	746.2	1	0.99	0.95, 1.04	0.762	0.100, 0.95, 1.06	0.918, 0.98, 0.89	0.055, 0.654
Vitamin C	1	27.1	-	1.00	0.99, 1.01	0.973	-	-	-
Vitamin E	3	11.4	63	1.21	0.76, 1.93	0.419	1.30, 0.80, 2.12	0.294, 1.01, 0.78	0.076, 0.101
Copper	2	62.7	-	1.03	0.98, 1.07	0.238	-	-	-
Iron	5	331.4	51	1.06	0.99, 1.13	0.074	1.06, 1.00, 1.13	0.040, 1.14, 1.02	0.015, 0.116
Magnesium	6	58.8	75	1.08	0.92, 1.26	0.347	1.09, 0.96, 1.24	0.165, 1.51, 1.00	0.048, 0.088
Potassium (urinary)	13	44.1	71	0.71	0.32, 1.61	0.415	0.75, 0.36, 1.54	0.429, 0.10, 0.00	0.374, 0.442
Sodium (urinary)	47	48.1	94	2.69	1.14, 6.34	0.024	3.33, 2.11, 5.27	1.5E-7, 0.26, 0.01	0.446, 0.170
Selenium	2	81.1	-	1.05	1.01, 1.10	0.025	-	-	-
Zinc	2	59.7	-	1.00	0.96, 1.04	0.923	-	-	-
Test	Median (range)	Median (range)							
-----------------------------	----------------	----------------							
Thyroid-stimulating hormone	46 (28, 68)	90 (58, 115)							
Free thyroxine	23 (17, 31)	65 (29, 101)							
High-density lipoprotein cholesterol	69 (59, 84)	157 (145, 168)							
Low-density lipoprotein cholesterol	58 (51, 64)	162 (116, 208)							
Total cholesterol	74 (58, 99)	139 (112, 189)							
Total triglyceride	40 (15, 33)	159 (112, 199)							
Lipoprotein(a)	2 (1, 3)	575 (253, 1000)							
Alanine aminotransferase	4 (2, 5)	104 (47, 185)							
Alkaline phosphatase	14 (6, 20)	71 (28, 167)							
γ-glutamyl transferase	26 (12, 42)	188 (91, 337)							
Serum uric acid	97 (38, 168)	154 (47, 247)							
Serum ferritin	8 (1, 16)	69 (13, 125)							
Fetal-A levels	1 (0.5, 2)	1331.8 (714.9, 2322)							
Bilirubin levels	10 (5, 15)	190 (67, 323)							
Homocysteine	13 (6, 23)	89 (50, 159)							
Isoleucine	4 (2, 5)	36.4 (1.2, 7.4)							
Leucine	1 (0.5, 2)	37.7 (1.2, 1.8)							
Valine	1 (0.5, 2)	54.3 (1.2, 1.8)							
Alanine	1 (0.5, 2)	100.0 (51.6, 58.2)							
Phenylalanine	2 (1, 3)	72.7 (1.1, 3.1)							
Tyrosine	1 (0.5, 2)	100.0 (0.8, 0.9)							
Haemoglobin	19 (14, 25)	50.8 (8.7, 9.8)							
Inflammatory factor									
Tumour necrosis factor	3 (1, 5)	33.8 (61, 76)							
C-reactive protein	57 (33, 83)	165.8 (96, 120)							
IgE	3 (2, 4)	80.6 (10, 110)							
IL-1 receptor antagonist	2 (1, 4)	78.9 (3.1, 1.2)							
IL-2 receptor subunit α	1 (0, 3)	164.2 (0.9, 4.1)							
IL-6 receptor subunit α	1 (0, 3)	5040.4 (0.9, 100)							
IL-16	1 (0, 3)	133.1 (0.9, 1.0)							
IL-17	1 (0, 3)	40.4 (1.0, 1.5)							
IL-18	3 (1, 5)	80.3 (0, 1.0)							
Mean platelet volume	284 (193, 374)	234.7 (60, 542)							
Platelet count	193 (134, 150)	133.4 (82, 95)							
Platelet distribution width	134 (100, 165)	150.5 (45, 450)							
Plateleterit	173 (120, 200)	120.6 (84, 96)							
Lifestyle and sleep-related factor									
Alcohol consumption	83 (67, 100)	78.7 (48, 100)							
Coffee consumption
	12	159.5	94	1.59	1.09	2.32	0.017	1.29	1.15	1.46	1.8E-5
Caffeine intake	2	69.4	-	1.17	1.09	1.25	1.0E-5	-	-	-	-
Breakfast skipping	6	39.0	81	1.72	0.85	3.46	0.129	2.34	1.41	3.89	0.001
Lifetime smoking	126	48.8	76	1.61	1.36	1.91	4.0E-8	1.52	1.30	1.78	6.0E-8
Daytime napping	35	42.6	87	1.77	0.73	4.24	0.205	2.23	1.22	4.09	0.009
Sleep duration	73	39.9	88	0.83	0.62	1.12	0.234	0.97	0.80	1.17	0.741
Sleep vari	125	48.8	76	1.61	1.36	1.91	4.0E-8	1.52	1.30	1.78	6.0E-8
Short sleep (<7 h)	25	25.8	85	1.14	0.92	1.41	0.247	1.10	0.95	1.28	0.216
Long sleep (>9 h)	8	28.6	97	0.79	0.47	1.34	0.389	0.98	0.86	1.11	0.711

CI indicates confidence interval; IVW, inverse-variance weighted; OR, odds ratio;

* a \(I^2 \) indicates the heterogeneity among used SNPs for each exposure.

* b For traits with \(\geq 3 \) SNPs, the results were based on IVW model with random effects, and for traits with <3 SNPs, the results were based on IVW model with fixed effects.

* c Estimates were not available for traits with less than 3 SNPs.

* d \(P \) for the intercept in the MR-Egger regression.
ESM Table 7. Replication analyses using data from the FinnGen consortium for associations with $p<0.05$ in IVW analysis based on the DIAGRAM consortium

Risk factor	I^2	OR	95% CI	p value
Adulthood				
BMI	51	1.46	1.35, 1.58	3.30E-20
Visceral fat mass	58	2.18	1.67, 2.85	1.21E-8
Alanine	-	0.62	0.45, 0.87	0.006
Body fat percentage	61	1.71	1.46, 2.02	9.61E-11
Age at menarche	31	0.88	0.83, 0.95	3.00E-4
Insomnia	32	1.17	1.10, 1.25	2.90E-6
Systolic blood pressure	32	1.26	1.11, 1.43	4.80E-4
Lifetime smoking	15	1.19	0.93, 1.51	0.162
Isoleucine	45	1.23	0.91, 1.65	0.176
Childhood BMI	79	1.78	1.26, 2.51	0.001
Caffeine intake	-	1.10	0.92, 1.32	0.283
Birthweight	-	0.72	0.59, 0.88	1.58E-3
Testosterone	-	0.79	0.62, 1.00	0.048
SHBG adjusted for BMI	-	0.61	0.51, 0.72	1.18E-8
Valine	-	1.27	0.92, 1.77	0.148
Leucine	-	1.34	0.90, 1.99	0.148
HDL cholesterol	72	0.77	0.65, 0.91	0.002
Total cholesterol	54	0.94	0.83, 1.07	0.351
Adulthood height	23	0.97	0.94, 1.00	0.039
Alanine aminotransferase	0	1.01	0.99, 1.03	0.315
Coffee consumption	33	1.50	1.13, 1.98	0.005
Phenylalanine	-	1.43	0.95, 2.15	0.083
Tyrosine	-	0.73	0.53, 1.02	0.066
Sodium (urinary)	66	2.75	1.07, 7.09	0.036
IL-6 receptor subunit α	-	0.98	0.95, 1.01	0.148
IL-1 receptor antagonist	-	1.10	0.82, 1.49	0.522
LDL cholesterol	57	0.99	0.88, 1.13	0.957
Giant cell arteritis	0	1.07	1.01, 1.13	0.015
Fetuin-A levels	-	0.97	0.92, 1.03	0.276

CI indicates confidence interval; IVW, inverse-variance weighted; SHBG, sex hormone binding globulin; SNP, single nucleotide polymorphism.
ESM Fig 1. Rationale and key assumptions for Mendelian randomization study
ESM Fig 2. Scatterplot of the alcohol-associated single nucleotide polymorphisms (SNPs) with alcohol consumption (standard deviations of log-transformed drinks/week) and type 2 diabetes (T2D)

The solid line and shaded area represent the MR-Egger causal estimate with its 95% confidence interval, respectively.