The cognitive and perceptual processes that affect observer performance in lung cancer detection: a scoping review

Monica-Rose Van De Luecht, BAppSc (DR) (Honours), \(^1\) & Warren Michael Reed, PhD\(^2\)

\(^1\)Discipline of Medical Imaging Science, Faculty of Medicine and Health, Sydney School of Health Sciences, The University of Sydney, Sydney, NSW, Australia
\(^2\)Medical Imaging Optimisation and Perception Group (MIOPeG), Discipline of Medical Imaging Science, Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia

Abstract

Introduction: Early detection of malignant pulmonary nodules through screening has been shown to reduce lung cancer-related mortality by 20%. However, perceptual and cognitive factors that affect nodule detection are poorly understood. This review examines the cognitive and visual processes of various observers, with a particular focus on radiologists, during lung nodule detection. Methods: Four databases (Medline, Embase, Scopus and PubMed) were searched to extract studies on eye-tracking in pulmonary nodule detection. Studies were included if they used eye-tracking to assess the search and detection of lung nodules in computed tomography or 2D radiographic imaging. Data were charted according to identified themes and synthesised using a thematic narrative approach. Results: The literature search yielded 25 articles and five themes were discovered: 1 – functional visual field and satisfaction of search, 2 – expert search patterns, 3 – error classification through dwell time, 4 – the impact of the viewing environment and 5 – the effect of prevalence expectation on search. Functional visual field reduced to 2.7° in 3D imaging compared to 5° in 2D radiographs. Although greater visual coverage improved nodule detection, incomplete search was not responsible for missed nodules. Most radiological errors during lung nodule detection were decision-making errors (30%–45%). Dwell times associated with false-positive (FP) decisions informed feedback systems to improve diagnosis. Interruptions did not influence diagnostic performance; however, it increased viewing time by 8% and produced a 23.1% search continuation accuracy. Comparative scanning was found to increase the detection of low contrast nodules. Prevalence expectation did not directly affect diagnostic accuracy; however, decision-making time increased by 2.32 seconds with high prevalence expectations. Conclusion: Visual and cognitive factors influence pulmonary nodule detection. Insights gained from eye-tracking can inform advancements in lung screening. Further exploration of eye-tracking in lung screening, particularly with low-dose computed tomography (LDCT), will benefit the future of lung cancer screening.

Introduction

Lung cancer is responsible for the highest mortality rate from cancer worldwide, accounting for 25.3% of all cancer-related deaths.\(^1\) The detection of pulmonary nodules, the early indicator of lung cancer through screening has been shown to improve survival from the disease.\(^2\)–\(^4\) A plain chest X-ray (CXR) has been the primary imaging tool for suspicion of lung cancer for decades; however, anatomical noise arising from the superimposition of tissues, particularly ribs on nodules in planar images is a major limitation of CXR.\(^5\) To
overcome this limitation of CXR, computed tomography (CT) has been introduced into the screening pathway. Although standard CT imaging has improved the early detection of lung nodules, other conditions such as inflammation, focal fibrosis, pre-invasive lesions and metastasis can also present with features akin to lung cancer.\(^6\)\(^7\) To optimise CT for lung cancer screening, the identification and follow-up of nodules ≥ 6 mm with low-dose CT (LDCT) has been recommended.\(^7\)\(^8\)\(^9\)\(^10\)

Despite a reported 24% reduction in lung cancer mortality due to early detection with LDCT\(^11\), many countries, including Australia, affirm there remains insufficient evidence to support a national LDCT lung cancer screening programme.\(^12\)

The case against LDCT screening is based on its potential high false-positive errors and lack of consensus regarding the definition of a positive test and follow-up strategies. Therefore, the causal factors for these errors and interventions to mitigate them are needed so that the benefits of lung cancer screening can be accrued whilst minimising the associated risks.

Visual search and cognitive processes underpinning image interpretation are inter-connected and inter-dependent. Eye-position analysis using eye-tracking can provide insight into the often complex and hidden interaction of radiologists with images and can provide information to improve diagnostic performance.\(^13\)

Therefore, understanding the cognitive, visual search, perceptual and decision-making interactions of observers associated with high diagnostic performance is crucial to inform strategies to optimise the early detection of lung cancer, therefore reducing FP diagnosis, essential for the success of lung cancer screening programmes.

Previous eye-tracking studies have explored visual search and perceptual behaviours associated with improved pulmonary nodule detection in plain CXR or Chest CT.\(^13\)\(^14\)

These studies have reported some significant differences in radiologists’ and radiographers’ behaviours when interacting with images produced by these modalities. Therefore, the visual and cognitive behaviours underpinning lung nodule detection remains unclear and needs to be explored. However, there is a paucity of reviews to provide a better understanding of reader behaviours that impact upon lung cancer detection. Importantly, the differences in visual search and cognitive behaviours of observers between CXR and CT are often poorly understood. Therefore, the purpose of this paper was to review the literature on the visual and cognitive processes associated with the detection of lung nodules in CXR and CT to investigate the similarities and differences in observer behaviour when accurately interpreting plain CXR (two-dimensional) and Chest CT (three-dimensional) radiological images.

**Methodology**

**Protocol**

The Preferred Reporting Items for Systematic Reviews and Meta-Analyses - Scoping review extension (PRISMA-ScR) checklist was used for this review.

**Eligibility criteria**

Articles were eligible for inclusion if they investigated lung nodule detection in CT or CXR, used native or simulated nodules, involved radiologists (expert viewers), radiology registrars, non-reporting observers (including radiographers and medical students) and naïve observers were blinded or non-blinded, utilised calibrated eye-tracking devices and written in the English Language. Studies conducted between 1978 and 2018 were included in this review as this was the time range of all available studies covering nodule detection during the conduction of this review. Studies that did not fulfil these criteria were excluded as they were conference papers, abstracts, opinion pieces, letters to the editor and comments.

**Information sources**

Four databases (Medline, Embase, Scopus and PubMed) were used to search for eligible articles. A Google cross-search and a hand search using reference lists of published articles were also conducted. Missing data were obtained through contact with the original researchers.

**Search strategy**

Search was conducted using a combination of the following search terms: ‘Eye movements’; ‘Eye tracking’; ‘Visual search’; ‘Computed tomography: ‘Lung Nodule’; ‘Lung Cancer’ ‘visual perception’; ‘Gaze characteristics’; lung cancer screening; search terms were combined with either ‘OR’ or ‘AND’.

**Study selection**

Studies were assessed for eligibility by applying the inclusion and exclusion criteria to eligible studies. A second reviewer independently confirmed articles for eligibility and disagreements were resolved via discussion.

**Data charting process**

A charting table was pre-drafted, and two authors charted the data together. Data charted included key characteristics and findings such as study design, study population,
modality, gaze metric measure(s), nodule size, number of nodules, nodule type and participant characteristics.

Data items
Variables within data sources included the participants, nodule type, nodule size, lung image source, eye-tracking model and eye-tracking analysis measures. Results between studies were compared with the assumption that the variance in image quality and nodule conspicuity was similar although may well have varied especially chronologically between studies due to changing imaging technology.

Study designs
Only experimental studies were reviewed and this included observer performer studies, cohort studies and randomised control trials. Any eye-tracking device (head mounted or monitor mounted) was permitted if calibrated. The source of images was considered and recorded in our analysis.

Types of participants
Studies with participants of various experience in radiology including expert viewers (radiologists), non-reporting readers (including radiographers and medical students) and naïve observers, were eligible for inclusion.

Types of outcome measures
Outcomes assessed were functional visual field, gaze volume (total volume of the image that was searched), time to first fixation, time to first pursuit of a nodule, total dwell time (total time a region was looked at), saccade count and visit counts (times an area was gazed upon). Time to first fixation is the time taken for an observer to first gaze upon a region while time to first pursuit is defined as the time taken for an observer to first maintain gaze within a region of interest for greater than 100 msec. Features of sensitivity and specificity were also recorded; false negatives (FN) are findings regarded as missed pathological regions while true negatives (TNs) are regions correctly identified as non-pathological, false positives (FPs) are regarded as regions incorrectly identified as suspicious while true positives (TPs) are regarded as regions correctly identified as suspicious.

Data synthesis
Data were synthesised through a thematic narrative approach. Studies were charted in a combined manner and critical appraisals were grounded on methodological rigour and participant experience.

Results
The database search resulted in 113 potential articles, and 22 eligible articles were identified. A hand search through the references of published articles resulted in an additional 18 articles of which three were deemed eligible for inclusion (Fig. 1).

Table 1 shows the characteristics of the 25 studies reviewed. The readers’ years of experience varied from 1 to 47 years (mean: 14 years), and 17 were based on CXR and eight on CT. For CXR studies, JAFROC and AFROC figure of merit (FoM) scores ranged from 0.40–0.82.15,16 The ROC area under the curve (AUC) scores ranged from 0.85 to 0.93.17,18 Sensitivity values ranged from 29 to 90%.19,20 For CT studies JAFROC or ROC measurements were not recorded. However, recorded CT sensitivity scores ranged from 12 to 74%.21–26

Results from Individual Sources of Evidence
The most commonly charted evidence was dwell time, which refers to the length of visual gaze on a region (typically within a 1° radius) and correlates to different levels of cognitive processing. It is generally assumed that the longer the dwell time the less confident the viewer. Dwell time and time to first fixation were only recorded in CXR studies and ranged from 0.32 to 3.80 seconds27,28 and 0.30 and 5.29 seconds, 17,18,28 respectively. The scrutiny time for CXR and CT are shown in Figure 2.

Thematic Findings
Functional visual field and the satisfaction of search
In CXR, a 5° radius was the threshold for the maximum functional field of view, and a visual field beyond 5° contributed little to the discovery of a lesion.19,20 Coverage and nodule detection were similar for human observation and random computer scanning (a computer observer that was programmed to scan the radiological image in a random manner) in the first 10 seconds of viewing after which the human observer demonstrated greater coverage but this coverage had no significant effect on nodule detection.

In CT, total field of coverage, varied widely, from 26.7% to 69%.22,23,25 When gaze was further than 50 pixels from the nodule, there was less than 1% chance of detecting the nodule.25
Figure 1. Flow diagram demonstrating sources of data.
Table 1. Characteristics of the studies included in the review.

| Author(s)                   | Study design | Eye-tracker type | Threshold visual angle | Fixation Threshold | Gaze metric         | Theme                        | Number of Readers | Experience (years) | Nodule sizes | Sensitivity |
|-----------------------------|--------------|------------------|------------------------|--------------------|---------------------|-----------------------------|-------------------|--------------------|--------------|-------------|
| X-ray studies               |              |                  |                        |                    |                     |                             |                   |                    |              |             |
| Kundel et al., 1978         | OPS          | Narco Biosystems |                        |                    |                     | Fixation                    | 2                 | 10                 | 1 cm         | 0.85        |
| Carmody et al., 1981        | OPS          | Narco Biosystems | 1 degree               |                    |                     | Dwell Times                 | 7                 | NA                 | 1.3 cm       | 0.95        |
| Nodine & Kundel, 1987       | Cohort       | Eye track model  | 1 degree               | 100 ms             |                     | Pattern of Fixations        | 2                 | NA                 | 1 cm         | 0.70-0.90   |
| Kundel et al., 1987         | Cohort       | Eye track Model  | 1 degree               |                    |                     | Patterns of Fixation, FOV   | 2                 | NA                 | 1 cm         | 0.75-0.90   |
| Kundel et al., 1989         | Cohort       | Limbus reflection| 1 degree               | 100 ms             |                     | Visual dwell                | 26                | NA                 |              |             |
| Kundel et al., 1990         | OPS          | Limbus reflection|                        |                    |                     | Dwell times                 | 3                 | NA                 |              | 0.55        |
| Kundel et al., 1991         | OPS          | Eye track model  | 1 degree               | 100 ms             |                     | Time to first Fixation      | 2                 | 10                 | 1 cm         | 0.40-0.77   |
| Berbaum et al., 1998        | Cohort       | 4100H            | 3 degree               |                    |                     | Dwell Times                 | 20                | NA                 |              | 0.29-0.50   |
| Krupinski et al., 2003      | Cohort       | ASL 4000SU       | 2.5 degree             | 100 ms             |                     | Dwell times, Fixation       | 3                 | >10 years          | 6 mm–20 mm   | NA          |
| Manning et al., 2004        | OPS          | ASL 504          | 1 degree               | 100 ms             |                     | Patterns of Fixation         | 4                 | NA                 | 5 mm–20 mm   | 0.49-0.62   |
| Manning et al., 2006        | OPS          | ASL 504          | 1 degree               | 100 ms             |                     | Patterns of Fixation, FOV   | 8                 | NA                 | 5 mm–20 mm   | NA          |
| Manning et al., 2006        | OPS          | EYENAL           | 1 degree               | 100 ms             |                     | Dwell, Fixation              | 8                 | NA                 | 5-20 mm      | 0.63-0.82   |
| W. M. Reed et al., 2011     | OPS          | Tobii x50        | 1 degree               | 100 ms             |                     | Fixation                    | 22                | 23                 |              | NA          |
| van Geel et al., 2017       | RCT          | SMI RED          | 100 ms                 |                    |                     | Fixation                    |                   |                    |              | 0.68        |
| Littlefair et al., 2017     | Cohort       | Tobii x50        | 2 degrees              | 200 ms             |                     | Dwell Times                 | 17                | 11 to 27           | 8-26 mm      | 0.75-1.0    |
| Donovan & Litchfield, 2013  | OPS          | Tobii X50        | 2 degrees              | 100 ms             |                     | Time to first hit            | 10                | NA                 | 5-30 mm      | 0.48-0.60   |
| Reed et al., 2014           | OPS          | TobiiX50         |                        |                    |                     | Dwell Times                 | 22                | 6 to 42            |              | 0.41-0.72   |
| CT studies                  | RCT          | SR research 1000 |                        |                    |                     | Dwell Times                 | 9                 | NA                 |              | 0.85-0.93   |

(Continued)
Systematic viewing (viewing in a structured and ordered manner opposed to randomly) in X-ray did not improve sensitivity ($P = 0.30$) or specificity ($P = 0.73$) compared to non-systematic methods.\textsuperscript{29} Systematic training instructs readers to view images in a sequential manner, while non-systematic training instructs readers to identify suspicious regions while randomly scanning images. Although systematic viewing increased coverage, it also resulted in decreased specificity, \(44.7\%\) in systematic training vs. \(60.3\%\) in non-systematic training.\textsuperscript{29} Systematic viewing methods performed similar to random scanning in respects to image coverage and nodule detection in the first 10 seconds of viewing when approximately \(80\%\) of nodules are detected.\textsuperscript{19} After 10 seconds, nodule detection plateaued indicating similar performance between random and systematic viewing methods.\textsuperscript{19} Additionally, FN findings with zero dwell were rare, suggesting incomplete satisfaction of search was not responsible for missed lesions.\textsuperscript{30}

Search volume (defined as the volume of lung parenchyma within \(2^\circ - 2.5^\circ\) of all recorded gaze points) was associated with increased nodule detection, increasing sensitivity from \(55\%\) to \(91\%).\textsuperscript{25} Experienced radiologists covered \(17\%\) more of the lung field and made \(12\%\) more TP decisions compared to inexperienced readers\textsuperscript{22}. These experienced radiologists viewed on average 25 more CT scans a week than their inexperienced counterparts\textsuperscript{22}. Experts were less susceptible to inattentional blindness; a phenomena whereby obvious abnormalities are missed because viewer attention was concentrated elsewhere (i.e. in identifying a nodule).\textsuperscript{22,23}

### Expertise patterns of search

Expert search patterns were determined based on observer performance and the correlation with viewing patterns. An expert was then defined according to their viewing style. In CXR, experts viewed images in long sweeps with greater average fixation distance.\textsuperscript{16} This was similar in CT viewing where experts demonstrated fewer analysis patterns and fixation clusters.\textsuperscript{21,31} In CT, experts exhibited driller (observers that focus on one region of the lung at a time while scrolling through image stacks) characteristics while novice readers were typically scanners (scanning across one slice of a CT before moving on to the next slice).\textsuperscript{22} Drillers had on average more experience in CT chest viewing of around \(45\) cases per week compared to scanners who averaged \(20\) cases per week.\textsuperscript{22} Experts' had greater distance between fixations and made \(5\%\) fewer search errors.\textsuperscript{22,27} In addition, experts had faster viewing times, larger sweeps of visual search\textsuperscript{16} and focused on the lung apices\textsuperscript{31} while naive and non-expert

### Table 1. Continued.

| Author(s)                     | Study design | Eye-tracker type | Threshold visual angle | Fixation Threshold | Theme                     | Gaze metric | Fixation Threshold | Fixation Threshold | Study design | Time to first Fixation | Field of view | Fixation Threshold | Experience (years) | Nodule sizes | Sensitivity | Threshold visual angle |
|-------------------------------|--------------|------------------|------------------------|--------------------|--------------------------|-------------|--------------------|--------------------|--------------|-----------------------|----------------|-----------------------|-------------------|--------------|------------|-----------------------|
| Rubin et al., 2015\textsuperscript{24} | Cohort       | SMI/ViewX RED   | 2 degrees             |                   | Satisfaction of search   | FOV         |                   |                   |              |                       |                |                      | 6                  |              |            |                       |
| Diaz et al., 2015\textsuperscript{20} | Cohort       | Eye link 100    |                       |                   | Pattern of Fixations    | Expertise   |                  |                  | 3            |                       |                |                      | 7                  |              |            |                       |
| Wen et al., 2016\textsuperscript{16} | Cohort       | Eye link 1000   |                       |                   | Pattern of Fixations    | Expertise   |                  |                  | 24           |                       |                |                      | 1                   |              |            |                       |
| Drew et al., 2016\textsuperscript{13,14} | Cohort       | SMI/View X RED |                       |                   | Pattern of Fixations    | Expertise   |                  |                  | 25           |                       |                |                      | 6                  |              |            |                       |
| Etter et al., 2017\textsuperscript{3} | Cohort       | SMI/View X RED  |                       |                   | Satisfaction of search   | FOV         |                   |                  | 2            |                       |                |                      | 6                  |              |            |                       |
| Williams & Drew, 2017\textsuperscript{25} | Cohort       | Tobii 4C        |                       |                   | Time to first Fixation   | Fixation    |                  |                  | 3            |                       |                |                      | 4                  |              |            |                       |
| Machado et al., 2018\textsuperscript{30} | Cohort       | SMI/ViewX RED   |                       |                   | Viewing Environment     | Expertise   |                  |                  | 23           |                       |                |                      |                    |              |            |                       |

OPS: observer performance study; RCT: randomised control trial; FOV: field of view; CT: computed tomography; NA: Not applicable.

© 2020 The Authors. Journal of Medical Radiation Sciences published by John Wiley & Sons Australia, Ltd on behalf of Australian Society of Medical Imaging and Radiation Therapy and New Zealand Institute of Medical Radiation Technology
viewers searched regions of the lungs with low probability of containing a lung nodule.27 Although the viewing style demonstrated by experts is beneficial to the efficient detection of a nodule it does not aid in satisfaction of search and the identification of other comorbidities that could be present in CXRs.

Classification of errors through dwell time

The total dwell of TPs, TNs, FPs and FNs in CXR are shown in Figure 3. Time to first hit is defined as the time taken for an observer to first gaze at a region. The time to first hit of FNs was 0.12 seconds longer than for TPs32, and 50%-80% of TN decisions (fixations on a lesion-free area that does not yield a report) are made within the first second of fixation but 80% of all positives occurred with longer visual scrutiny (>3 seconds).33,34 In 65% of cases, FNs were fixated on for longer than one second and all missed nodules fixated on had an average dwell time of 3.10 seconds.33 In one study, all decisions not to report a nodule made after three seconds were incorrect; however, it must be noted that data from a single study cannot be generalised to radiological practice.34 Overall performance improved by 16% when a second opportunity to read the image was aided by visual feedback according to dwell times.15,35 Like TPs, FPs are characterised by dense fixation clusters over the region.16,38 In CT, scanners were more likely to commit search errors (60%) compared to drillers (30%).22,36

Viewing environment and comparative scanning

In CT, disruptions to search increased search time by 8% and significantly increased refixation rates ($P = 0.029$).26 Overall, interruption impaired accurate search resumption.26 In CXR, comparative scanning (making visual comparisons between image regions with suspicious perturbations and normal image features in order to discern whether the suspicious region contains an abnormality) increased the total number of low-confidence TP decisions.37

Prevalence expectations

The effect of prevalence expectation on visual search was assessed in CXR and the gaze measures are shown in Figure 4. Time to first fixation was longer at high (0.48–5.29 seconds) than low (0.33–3.42 seconds) expectation.

Figure 2. Recorded gaze measures for Computed tomography and Chest X-ray. STCXR: scrutiny time in chest X-ray; STCT: scrutiny time computed tomography.

Figure 3. Dwell time for different diagnostic decisions.
Prevalence expectation did not impact diagnostic performance. Dwell time was significantly longer for TPs (1.75 seconds) than FNs (0.31 seconds)\(^{17,18,37}\) at high expectation and FNs at unknown prevalence expectation (0.48 seconds, \(P = 0.008\))\(^{28}\).

**Discussion**

Reader interaction with radiological images is a broad concept which cannot be defined in a single measure. We identified five main themes related to the pursuit of lung nodules in CXR and CT using eye-tracking: functional visual field, expertise related patterns of search, classification of errors through dwell time, the viewing environment’s effect on search and the effect of prevalence expectations on visual search. Our findings on functional visual field in CXR and CT varied between these modalities. The 5° useful field of view in CXR was reduced to 2.7° in CT. This difference may be due to the complexity of viewing dynamic CT scans.\(^{24}\) For example, in contrast to superimposed image features in 2D images, CT features are only transiently available (‘pop-out phenomenon’).\(^{24}\) This phenomenon mimics motion, stimulating physiologically distinct retinal detection mechanisms and distorts the effects of image contrast and anatomical noise.\(^{24}\) A better understanding of this physiological challenge in CT viewing may provide informed strategies for tailoring radiologist training or alternative display paradigms such as incorporating eye-tracking feedback responsive to the typical signs of error to enhance search.

We observed a strong association between coverage and true positive decisions, suggesting that incorporating search strategies that increase coverage into observers practice may improve diagnostic performance by increasing the number of nodules that fall within the visual field. However, no association was found between systematic viewing and sensitivity or specificity.\(^{29,30}\) These findings suggest that, for the sole purpose of pulmonary nodule detection, it may be more important to tailor radiology training around abnormality recognition, with emphasis on coverage of image locations where malignant nodules are more likely to develop rather than systematically searching the whole image. Such a strategy is increasingly important to reduce viewing time, particularly with increasing radiologist workload. However, to avoid satisfaction of search and for the detection of other non-nodule abnormalities, a more thorough search may be more suited. There were wide variations in image coverage, which may be linked to premature termination of search due to a reader’s confidence that the most pressing abnormality had been identified. The differences in eye-tracker technologies (see Table 1) may have contributed to these discrepancies. For example, the maximum extent of useful visual field in X-ray image interpretation has been shown to be 5°;\(^{19,20}\) however, there were variations in the calibration of eye-tracker models from 1° (in newer models) to 3° (in older models) of human gaze (Table 1). This may underestimate peripheral vision and its contribution to global search. While this human limitation in visual search can be mitigated, it is important that the calibration of eye-tracking devices can be standardised to provide better observer feedback aids to overcome human search limitations and premature search termination.

Although visual search is inherently different between CXR and CT viewing, this review found that expert search was similar between the two modalities: experts focused on regions likely to contain a nodule, analysed large amounts of information with less exhaustive search patterns demonstrating greater distance between fixation points, made fewer saccades and committed at least 5% fewer search errors.\(^{16,22,27,28}\) Thus, the ability to select relevant information for further processing distinguishes experienced (qualified radiologists) from inexperienced (radiology residents and non-reporting radiographers)
observers, suggesting the need for interventions that improve the understanding of pathological features and the tailoring of training around abnormality recognition with focus on the areas that are more likely to contain malignancy.

There was variation in time to first fixation between CXR studies. This variation could arise from differences in task difficulty and the expertise of the readers. For example, some studies used naïve viewers without training and qualification in interpreting and diagnosing radiographic images of the chest (e.g. civilians) while others utilised radiologists with 11–23 years of experience post-certification (Table 1). In addition, simulated nodules appeared more obvious and recorded shorter dwell times. We found that time to first fixation for FNs was significantly longer than that reported for TPs, suggesting that missed nodules fail to attract the same level of visual attention as TPs. However, the total dwell time of FNs and TPs were similar (Fig. 3). It is not clear why, despite these similar dwell times, some lesions are rejected. However, since fixation duration is an indicator of cognitive processing, the reason for FN must lie in the often hidden intricate decision-making process. It was observed that prompted reconsideration of uncertain areas that attracted prolonged dwell in CXR resulted in more accurate diagnosis, and supports the need for feedback mechanisms to prompt the readers to reconsider suspicious areas in X-ray images and could be attempted in CT viewing. Collaborative computer-aided diagnostics utilising both eye-gaze metrics and computerised tumour recognition software have been successfully demonstrated in imaging and should be explored in lung cancer screening to reduce FN errors.

We found that FP decisions received the longest dwell times (Fig. 3). While nodule features contribute to its detectability, no relationship was found between nodule characteristics and reader characteristics make it difficult to compare studies. Finally, search was restricted to eye-tracking studies but qualitative and think-aloud studies might have also been useful in supplementing insight into cognitive processes associated with lung nodule detection.

In summary, there are differences in functional visual field and decision-making errors between CXR and CT images when searching for lung nodules. In both modalities, greater visual coverage is associated with higher nodule detection and experts view images in long sweeps with greater average fixation distance. No direct relationship has been shown between factors such as incomplete search, interruptions and prevalence expectation and diagnostic performance. Comparative scanning is associated with increased nodule detection and poor decision-making accounts for most of the diagnostic errors. Insights gained from this review should inform the development of educational interventions and feedback models to reduce future image interpretation errors in lung cancer detection.
References

1. Noone AM, Howlader N, Krapcho M, et al. (eds). (2018). SEER Cancer Statistics Review, 1975-2015. National Cancer Institute, Bethesda, MD. (Accessed on 12 August 2018).
2. Chiles C. Lung cancer screening with low-dose computed tomography. Radiol Clin North Am 2014; 52: 27–46.
3. Chudgar NP, Bucciarelli PR, Jeffries EM, et al. Results of the national lung cancer screening trial: Where are we now? Thorac Surg Clin 2015; 25: 145–53.
4. Wang X, Liu H, Shen Y, Li W, Chen Y, Wang H. Low-dose computed tomography (LDCT) versus other cancer screenings in early diagnosis of lung cancer: A meta-analysis. Medicine (Baltimore) 2018; 97: e11233.
5. Del Ciello A, Franchi P, Conteigiacomo A, Cicchetti G, Bonomo L, Larici AR. Missed lung cancer: When, where, and why? Diagn Interv Radiol 2017; 23: 118–26.
6. Gao J-W, Rizzo S, Ma L-H, et al. Pulmonary ground-glass opacity: Computed tomography features, histopathology and molecular pathology. Transl Lung Cancer Res 2017; 6: 68–75.
7. Lim HJ, Ahn S, Lee KS, et al. Persistent pure ground-glass opacity lung nodules ≥ 10 mm in diameter at CT scan: Histopathologic comparisons and prognostic implications. Chest 2013; 144: 1291–99.
8. Aoki T. Growth of pure-ground-glass lung nodule detected at computed tomography. J Thorac Dis 2015; 7: E326–8.
9. Kakinuma R, Muramatsu Y, Kusumoto M, et al. Solitary pure ground-glass nodules 5 mm or smaller: Frequency of growth. Radiology 2015; 276: 873–82.
10. Kobayashi Y, Fukui T, Ito S, et al. How long should small lung lesions of ground-glass opacity be followed? J Thorac Oncol 2013; 8: 309–14.
11. de Koning HJ, van der Aalst CM, de Jong PA, et al. Reduced lung-cancer mortality with volumetric CT screening in a randomised trial. N Engl J Med 2020; 382: 503–13.
12. Standing Committee on Screening. Position Statement: Lung Cancer Screening using Low-Dose Computed Tomography. Standing Committee on Screening, Canberra, Australia, 2015; 1–6.
13. Kundel HL, Nodine CF, Carmody D. Visual scanning, pattern recognition and decision-making in pulmonary nodule detection. Invest Radiol 1978; 13: 175–81.
14. van der Gijp A, Ravesloot CJ, Jarodzka H, et al. How visual search relates to visual diagnostic performance: A narrative systematic review of eye-tracking research in radiology. Adv Health Sci Educ Theory Pract 2017; 22: 765–87.
15. Kundel HL, Nodine CF, Krupinski EA. Computer-displayed eye position as a visual aid to pulmonary nodule interpretation. Invest Radiol 1990; 25: 890–96.
16. Manning D, Ethell S, Donovan T, Crawford T. How do radiologists do it? The influence of experience and training on searching for chest nodules. Radiography 2006; 12: 134–42.
32. Krupinski EA, Berger WG, Dallas WJ, Roehrig H. Searching for nodules: What features attract attention and influence detection. *Acad Radiol* 2003; 10: 861–8.
33. Manning DJ, Ethell SC, Donovan T. Detection or decision errors? Missed lung cancer from the posteroanterior chest radiograph. *Br J Radiol* 2004; 77: 231–5.
34. Manning D, Barker-Mill SC, Donovan T, Crawford T. Time-dependent observer errors in pulmonary nodule detection. *Br J Radiol* 2006; 79: 342–6.
35. Nodine CF, Kundel HL. Using eye movements to study visual search and to improve tumour detection. *Radiographics* 1987; 7: 1241–50.
36. Wen G, Aizenman A, Drew T, Wolfe JM, Haygood TM, Markey MK. Computational assessment of visual search strategies in volumetric medical images. *J Med Imaging (Bellingham)* 2016; 3: 15501.
37. Carmody DP, Nodine CF, Kundel HL. Finding lung nodules with and without comparative visual scanning. *Percept Psychophys* 1981; 29: 594–8.
38. Kundel HL, Nodine CF, Krupinski EA. Searching for lung nodules. Visual dwell indicates locations of false-positive and false-negative decisions. *Invest Radiol* 1989; 24: 472–8.
39. Krupinski EA, Nodine CF, Kundel HL. Enhancing recognition of lesions in radiographic images using perceptual feedback. *Opt Eng* 1998; 37(3): 813–818.