Propagation stability of a chirped soliton in birefringent fibers

Hongjun Zheng1,2*, Shanliang Liu1 Xin Li2 Chongqing Wu1

1School of Science, Beijing Jiaotong University, Beijing 100044, P. R. China.
2Institute of Optical Communication, Liaocheng University, Liaocheng Shandong, 252059, P. R. China.
zhj@lcu.edu.cn; hjzheng@yahoo.com

Abstract. The propagation stability of a chirped soliton at anomalous dispersion region in birefringent fibers is numerically studied by using the split-step Fourier-method. It is found that initial linear chirp can change obviously the threshold value \(A_{th} \) above which soliton stably propagates in birefringent fibers, the \(A_{th} \) increases with the decrease of the polarization angle \(|\alpha| \). The positive chirp makes obviously the \(A_{th} \) smaller for group velocity mismatch parameter \(\gamma > 0.5 \), the negative one makes the \(A_{th} \) larger for \(\gamma < 0.5 \). The effect of initial positive chirp on the \(A_{th} \) is greater than that of negative chirp for high birefringent fibers, is less than that of negative chirp for low birefringent fibers.

1. Introduction
The soliton propagation in birefringent fibers has been investigated extensively for its importance in science and practical applications. It is governed by a set of coupled nonlinear Schrödinger (CNLS) equations which have been receiving a great deal of attention in recent years [1-9]. The previous works on soliton propagation in birefringent fibers have been studied in the case of unchirped pulse [3-9]. However, optical pulses generally have frequency chirps which have great effects on characteristics of the pulses [10-16]. The frequency chirp can be controlled by changing the input current of laser or changing the length of input fiber, and so on. In this paper, propagation stability of chirped soliton at anomalous dispersion region in birefringent fibers is investigated numerically by using the split-step Fourier-method (SSFM), is compared with that of unchirped pulses.

2. Theoretical model of soliton propagation in birefringent fibers
The soliton propagation in birefringent fibers is described by the normalized coupled nonlinear Schrödinger equations (CNLS) [1, 2]

\[
\begin{align*}
&i\left(\frac{\partial u}{\partial \xi} + \beta \frac{\partial u}{\partial \tau} \right) + \frac{1}{2} \frac{\partial^2 u}{\partial \tau^2} + \left(|u|^2 + B |v|^2 \right) u = 0, \tag{1a} \\
&i\left(\frac{\partial v}{\partial \xi} - \beta \frac{\partial v}{\partial \tau} \right) + \frac{1}{2} \frac{\partial^2 v}{\partial \tau^2} + \left(|v|^2 + B |u|^2 \right) v = 0, \tag{1b}
\end{align*}
\]

* 1) No.3 Shang Yuan Cun, Hai Dian District, Beijing 100044, P. R. China; 2) Culture Road 34, Liaocheng City, Shandong province 252059, P. R. China
where u and v are the normalized complex amplitudes of the two orthogonal polarization components in CNLS system, ξ is the propagation distance which normalized to the soliton period, τ is the time which normalized to T_0 (half-width of the input pulse at 1/e intensity), δ is the group velocity mismatch parameter and B is the cross-phase modulation (CPM) coefficient where $0 \leq B \leq 1$. u is slow component and v is fast one for $\delta > 0$. The fiber loss is neglected because the propagation distance is short for all-optical switch application. Eqs.(1) reduce to an uncoupled NLS system for $B=0$ \cite{1}, reduce to the Manakov equations and have analytical solutions for $B=1$ \cite{1,5-9}. However, Eqs.(1) are unintegrable for $B=2/3$ in linear birefringent fibers \cite{1-4}. We numerically study the propagation characteristics of the chirped soliton by using the SSFM according to Eqs.(1) for $B=2/3$. The two orthogonal polarization components of an input soliton with initial linear chirp are, respectively,

$$u(\xi = 0, \tau) = A \cos \alpha \sec h(\tau) \exp\left(-\frac{i C \tau^2}{2}\right),$$ \hspace{1cm} (2a)

and

$$v(\xi = 0, \tau) = A \sin \alpha \sec h(\tau) \exp\left(-\frac{i C \tau^2}{2}\right),$$ \hspace{1cm} (2b)

where A is the amplitude, C is the linear chirp parameter, α determines the relative strengths of input soliton in each of the two polarizations. The dispersion and the nonlinearity effects can be taken into account respectively in propagating form ξ to $\xi + h$ (small distance h) according to the SSFM algorithm. It becomes simple to deal with the pulse propagation by using the SSFM. To deal with the edge effects we enlarge the computational region to $\tau = (-80, 80)$, set the number of sampling 2^{13} and use the edge damping method in the Ref.\cite{4}. The initial amplitudes of input soliton in each polarizations are equal ($= /4$) in the section 3, are unequal ($\neq /4$) in section 4.

3. Effects of initial chirp on soliton propagation for equal amplitudes

3.1 Variation of the interval of the two components with propagation distance

The interval of the two polarization components is defined as

$$\Delta \tau(\xi) = \tau_{\text{max}}^u(\xi) - \tau_{\text{max}}^v(\xi),$$ \hspace{1cm} (3)

where $\tau_{\text{max}}^u(\xi)$ and $\tau_{\text{max}}^v(\xi)$ are the positions above which $|u(\xi, \tau)|$ and $|v(\xi, \tau)|$ reach maximum value, respectively. We can obtain $\tau_{\text{max}}^u(\xi) = -\tau_{\text{max}}^v(\xi)$ from Eqs.(1) and (2). The slow component is before the fast one when $\Delta \tau(\xi) < 0$. The two components will separate when $\Delta \tau(\xi)$ always increases with the increase of propagation distance. If $\Delta \tau(\xi)$ varies slower and slower with propagation distance and becomes finally unchanged at $A=A_{\text{th}}$, A_{th} is called the threshold value above which soliton stably propagates in birefringent fibers. The two polarization components can be mutually bound together for $A > A_{\text{th}}$, separate each other for $A < A_{\text{th}}$. The threshold value A_{th} can be determined by variation of the interval with propagation distance. We firstly assume $\delta = 0.5$. Fig.1 shows that the intervals of two polarization components vary with propagation distance for $\delta = 0.5$. The dashed curve is for $A=0.845$ and $C=0.5$, solid curve is for $A=0.996$ and $C=0$, dot-dashed curve is for $A=1.02$ and $C=-0.5$. It is found from Fig.1 that the intervals of two components for different cases are almost unchanged when $\xi > 16$. Therefore, $A_{\text{th}}=0.996$ which is more accurate than that in the Ref.\cite{4} for $C=0$, $A_{\text{th}}=0.845$ for $C=0.5$ and $A_{\text{th}}=1.02$ for $C=-0.5$. It shows that initial chirp changes the threshold value A_{th} of soliton bound state in birefringent fibers. The positive chirp enhances the nonlinear effect and makes the threshold value A_{th} smaller, the negative one makes the threshold value A_{th} larger. It is important to the applications in optical communication and its device.
Fig. 2 shows that the intervals vary with propagation distance for $A=1.1$ and $\delta = 0.5$. The curves (1-5) are for $C=-0.7$, -0.5, 0, 0.5 and 0.7, respectively. It is found that the intervals oscillate with the increase of propagation distance for $A>A_t$. It shows that the two polarization components are mutually bound together and stably propagates as a single unit. For a given magnitude of A, the larger C (positive chirp) is, the earlier two components are bound; the larger $|C|$ (negative chirp) is, the later two components are bound.

![Figure 1](image1.png)
Figure 1. Variation of the intervals with propagation distance for $\delta = 0.5$. The dashed curve is for $A=0.845$ and $C=0.5$, solid curve is for $A=0.996$ and $C=0$, dot-dashed curve is for $A=1.02$ and $C=-0.5$.

![Figure 2](image2.png)
Figure 2. Variation of the intervals with propagation distance for $A=1.1$ and $\delta = 0.5$. The curves (1-5) are for $C=-0.7$, -0.5, 0, 0.5 and 0.7, respectively.

3.2 Effect of linear chirp on the relationship between A_t and δ

Fig. 3 shows the effect of linear chirp on the relationship between A_t and δ. The solid curve is for $C=0$, dashed curve is for $C=0.5$, dotted curve is for $C=-0.5$. It is found from Fig. 3 that the initial chirp changes the threshold value A_n which increases with the increase of δ. For example, the A_n is 1.608 at $\delta = 0.8$ for negative chirp, is 1.58 for unchirp case, is 1.34 for positive chirp; the A_n is 0.88 at $\delta = 0.3$ for negative chirp, is 0.76 for unchirp case, is 0.743 for positive chirp. The threshold value A_n of positive chirp is less than that of unchirped case for $\delta \cdot 0.3$, is almost consistent with that of unchirped case for $0.15 \cdot \delta < 0.3$; the difference of A_n between positive chirp and unchirped case increases with increase of δ for $0.3 \cdot \delta < 0.6$, remains about 0.24 for $0.6 \cdot \delta \cdot 1$. The A_n of negative chirp is slightly larger than that of unchirped case for $\delta \cdot 0.5$, is much larger than that of unchirped case for $\delta < 0.5$; the difference of A_n between negative chirp and unchirped case decreases with the increase of δ for $0.3 < \delta < 0.5$, remains about 0.13 for $0.15 \cdot \delta \cdot 0.3$.

It shows the effect of initial positive chirp on the threshold value A_n is greater than that of negative chirp for high birefringent fiber (about $\delta > 0.5$), is less than that of negative chirp for low birefringent fiber (about $\delta < 0.5$). One should consider the effect of initial chirp on the threshold value A_n changing in the practical applications.
Figure 3. Effect of linear chirp on the relationship between A_{th} and δ. The solid curve is for $C=0$, dashed curve is for $C=0.5$, dotted curve is for $C=-0.5$.

Figure 4. Variation of amplitude threshold value A_{th} with the angle α for $\gamma=0.5$. The solid curve is for $C=0$, dashed curve is for $C=0.5$, dotted curve is for $C=0.5$, dotted curve is for $C=-0.5$.

4 Effects of initial chirp on soliton propagation for unequal amplitudes

4.1 Variation of the threshold value A_{th} with the polarization angle

It is found from numerical results that the amplitude threshold value A_{th} increases with the decrease of the polarization angle $|\Delta_{p}|$. Fig.4 shows that the A_{th} varies with the angle γ ($0< \gamma < \pi/2$) in the case of $\gamma=0.5$. The solid curve is for $C=0$, dashed curve is for $C=0.5$, dotted curve is for $C=-0.5$. The threshold value A_{th} increases obviously with the decrease of the angle $|\Delta_{p}|$ and C, the maximum threshold value A_{th} is at $\gamma=\pi/4$ (0.7854). The difference of A_{th} between positive chirp and unchirped case is larger than that between negative chirp and unchirped case. It shows that effect of positive chirp on variation of A_{th} with angle $|\Delta_{p}|$ is greater than that of negative chirp.

4.2 Variation of the threshold value A_{th} with parameter

We assume $\gamma=\pi/6$ (0.5236). Fig.5 shows that the amplitude threshold value A_{th} varies with group velocity mismatch parameter δ in the case of $\gamma=\pi/6$. The solid curve is for $C=0$, dashed curve is for $C=0.5$, dotted curve is for $C=-0.5$. It is found from Fig.5 that the initial chirp changes the threshold value A_{th} which increases with the increase of δ. The A_{th} of positive chirp is larger than that of unchirped case for $0.15<\delta<0.4$; is much less than that of unchirped case for $0.4<\delta<1$. The A_{th} of negative chirp is larger than that of unchirped case for $0.15<\delta<0.75$, is slightly less than that of unchirped case for $0.75<\delta<1$: the difference of A_{th} between negative chirp and unchirped case decreases with the increase of δ for $0.15<\delta<0.75$, remains about 0.05 for $0.75<\delta<1$. For a given magnitude of δ and C, the threshold value for $\gamma=\pi/6$ is less than that for $\gamma=\pi/4$. Comparing the difference of A_{th} between positive chirp and unchirped case with that between negative chirp and unchirped case, it shows that effect of initial positive chirp on the threshold value A_{th} is still greater than that of negative chirp for high birefringent fiber (about $\delta>0.5$), is still less than that of negative chirp for low birefringent fiber (about $\delta<0.5$).
5 Conclusion

It is found that initial chirp can change obviously the threshold value A_{th} which increases with the decrease of the polarization angle $|\theta/4-\theta|$. The positive chirp obviously makes the A_{th} smaller for >0.5, the negative one makes the A_{th} larger for <0.5. The effect of initial positive chirp on the threshold value A_{th} is greater than that of negative chirp for high birefringent fiber, is less than that of negative chirp for low birefringent fiber. The threshold value A_{th} increases with the decrease of the angle $|\theta/4-\theta|$ and C. The effect of positive chirp on variation of A_{th} with angle $|\theta/4-\theta|$ is greater than that of negative chirp.

Acknowledgement

Project is supported in part by the National Natural Science Foundation of China (Grant No. 60778017 and 60877057), the Research Foundation of Education Department of Shandong Province, China(Grant No J05C09) and the Research Foundation of Liaocheng University.

References

[1] Agrawal G P 2001 *Nonlinear Fiber Optics 3E*, (New York: Academic press) pp 203-253
[2] Menyuk C R 1987 Nonlinear Pulse Propagation in Birefringent Optical Fibers *IEEE Journal of Quantum Electronics* 23 174
[3] Curtis R Menyuk 1987 Stability of solitons in birefringent optical fibers. I: Equal propagation amplitudes *Opt. Lett.* 12 614
[4] Curtis R Menyuk 1988 Stability of solitons in birefringent optical fibers. II. Arbitrary amplitudes *J. Opt. Soc. Am. B* 5 392
[5] Manakov S V 1974 On the theory of two-dimensional stationary self-focusing of electromagnetic waves *Sov. Phys. JETP* 38 248
[6] Smyth N F and Kath W L 2001 Radiative losses due to pulse interactions in birefringent nonlinear optical fibers *Phys. Rev. E* 63 036614-1
[7] Kanna T and Lakshmanan M 2003 Exact soliton solutions of coupled nonlinear Schrödinger equations: Shape-changing collisions, logic gates, and partially coherent solitons *Phys. Rev. E* 67 046617-1
[8] Solja i M, Steiglitz K, Sears S M, Segev M, Jakubowski M H and Squier R 2003 Collisions of Two Solitons in an Arbitrary Number of Coupled Nonlinear Schrödinger Equations *Phys.
[9] Horikis T P and Elgin J N 2004 Nonlinear optics in a birefringent optical fiber Phys. Rev. E 69 016603-1
[10] Desaix M, Helczynski L, Anderson D and Lisak M 2002 Propagation properties of chirped soliton pulses in optical nonlinear Kerr media Phys. Rev. E 65 056602-1
[11] Li Z H, Li L, Tian H P, Zhou G S and Spatschek K H 2002 Chirped Femtosecond Solitonlike Laser Pulse Form with Self-Frequency Shift Physical Review Letters 89 263901-1
[12] Liu S L, Zheng H J 2006 Experimental research on the characteristic measurement of the short pulses before and after propagating in dispersion flattened fiber Chin. J. Lasers 33: 199 (in Chinese)
[13] Zheng H J, Liu S L, Tian Z, Li X 2008 Effects of Raman Amplification on Propagation Characteristics of the Soliton Chin. J. Lasers 35 861 (in Chinese)
[14] Liu S L, Zheng H J 2008 Measurement of nonlinear coefficient of optical fiber based on small chirped soliton transmission Chin. Opt. Lett. 6 533
[15] Zheng H J, Liu S L, Li X, Tian Z 2007 Temporal characteristics of an optical soliton with distributed Raman amplification J. Appl. Phys. 102 103106-1
[16] Zheng H J and Liu S L 2006 Effects of initial frequency chirp on the linear propagation characteristics of the exponential optical pulse Chinese Phys. 15 1831