Critical scaling of the a.c. conductivity for a superconductor above $T_c$

Robert A. Wickham\textsuperscript{1} and Alan T. Dorsey\textsuperscript{2}

\textsuperscript{1}Department of Physics, University of Florida
\textsuperscript{2}P.O. Box 118440, Gainesville, Florida 32611-8440

\textsuperscript{1}(March 24, 2022)

I. INTRODUCTION

The discovery of high-temperature superconductors has, for the first time, made it possible to experimentally probe the critical region of the zero-field normal-superconducting transition since fluctuation effects in these materials are enhanced by the short coherence length and the high transition temperature $T_c$. It is natural then to ask: If scaling and universality exist in the critical region, to which universality class does the transition belong? From observations of the effects of critical superconducting fluctuations on thermodynamic properties, such as the penetration depth \cite{1,2}, magnetic susceptibility \cite{3,4}, specific heat \cite{5,6} and thermal expansivity \cite{7} a consensus is emerging that the zero-field normal-superconducting transition is in the static universality class of the three-dimensional, complex order-parameter (3D XY) model. In contrast, the effect of critical fluctuations on transport properties, such as the conductivity, depends on the nature of the dynamics near $T_c$ and is much less explored.

In general, conductivity measurements on high-$T_c$ superconductors show an enhanced response above $T_c$ due to the presence of superconducting fluctuations. Outside the critical region this enhancement can be explained in terms of the Aslamazov-Larkin \cite{8} theory of non-interacting, Gaussian fluctuations, and its extensions \cite{9,10}. In these theories the dynamic exponent $z$ associated with the growth of the characteristic order-parameter time-scale near $T_c$ appears in the conductivity and takes the value $z = 2$. By examining the deviation of $z$ from 2 inside the critical region through linear d.c. \cite{11,12,13}, non-linear d.c. \cite{14,15} and linear a.c. \cite{16} conductivity measurements, the dynamic universality class can, in principle, be determined. Currently, however, there is much variation in the measured values for $z$ and the dynamic universality class of the zero-field normal-superconducting transition remains uncertain. Unlike d.c. measurements, measurements of the a.c. conductivity \cite{16} can test the scaling of the conductivity, $\sigma(\omega)$, over a wide range of frequencies, $\omega$, thereby providing a stringent test of theory. In the experiments of Ref. \cite{16} the a.c. conductivity exhibits a scaling collapse which deviates slightly from the Gaussian theory. However, the Gaussian theory is known to break down in the critical region. Thus, to sharpen the comparison between experiment and theory, we go beyond the Gaussian description of fluctuations in this paper and calculate the scaling behaviour of the a.c. conductivity in the critical region of strong, interacting fluctuations.

Fisher, Fisher and Huse (FFH) \cite{17} have argued that near a second-order phase transition, if dynamic scaling holds, the a.c. fluctuation conductivity should scale as

$$\sigma(\omega) \sim \xi^{2-d+z} S(\omega \xi^z), \quad \text{(1.1)}$$

where the correlation length for fluctuations in the superconducting order-parameter at temperature $T$ is $\xi \sim |T - T_c|^{-\nu}$ with the static exponent $\nu$, $d$ is the spatial dimensionality, $z$ is the dynamic exponent and $S(y) = S'(y) + iS''(y)$ is a universal, complex function of the scaled frequency $y \sim \omega \xi^z$, with real and imaginary parts $S'$ and $S''$, respectively. Outside the critical region, and in the d.c. limit, Eq. (1.1) reduces to the Aslamazov-Larkin theory. Since the conductivity is causal, and also finite for non-zero frequencies, Eq. (1.1) leads to the power-law behaviour at $T_c$.
\[ \sigma(\omega) \sim (-i\omega)^{-(2-d+z)/z}, \]  
\hspace{2cm} (1.2)

reflecting the absence of a characteristic time-scale at criticality. At \( T_c \) the phase

\[ \phi(\omega) = \tan^{-1}\left( \frac{S'\left(\omega \xi^2\right)}{S''\left(\omega \xi^2\right)} \right) \]  
\hspace{2cm} (1.3)

of the conductivity is independent of frequency, with the value \( \frac{\pi}{2} \)

\[ \phi = \frac{\pi}{2} \left( \frac{2 - d + z}{z} \right). \]  
\hspace{2cm} (1.4)

Equations (1.2) and (1.4) allow one to determine the dynamic exponent \( z \) independently of the static exponent \( \nu \) through a measurement of the a.c. conductivity at criticality. However, to go beyond these two results and calculate the entire universal scaling function \( S(y) \) requires knowledge of the renormalization-group fixed-point that determines the universality class for the dynamics near \( T_c \).

The time-dependent Ginzburg-Landau (TDGL) model of superconductivity provides an appropriate framework in which to study dynamic critical behaviour in this system \([20,21]\). Since this is the first detailed study of the dynamics in the critical region of the superconductor, and given the uncertainty as to which dynamic universality class describes the transition, we consider here only the simplest, relaxational, dynamics for fluctuations in the superconducting order-parameter — model A in the Hohenberg and Halperin classification \([21,22]\). Previous studies of this model have implemented the Gaussian approximation, where quartic interactions among fluctuations in the Ginzburg-Landau free-energy are neglected \([3,4]\). In this approximation, the conductivity scales as Eq. (1.1) with \( \nu = \frac{1}{2} \) and \( z = 2 \), the exponents for the Gaussian fixed-point, and the scaling function \( S(\omega \xi^2) \) has been explicitly calculated.

\[ S(y) = \frac{2z^2}{(d-2+z)(d-2)} \frac{1}{y^2} \left[ 1 - \frac{d-2+z}{z} iy - (1 - iy)(d-2+z)/z \right], \]  
\hspace{2cm} (1.7)

where \( y \sim \omega \xi^2 \) and \( z \) is given by Eq. (1.5) with Eq. (1.6). This is the main result of this paper, and is the product of a much more involved analysis than that used to determine the exponent \( z \). Sections IV-VI provide the details of the calculation. The result (1.7) has the scaling behaviour stated in Eq. (1.2). Since, to \( O(\epsilon^2) \), \( z \) for the critical theory in three dimensions is only slightly different than two, the scaling function \( S(y) \) for the critical theory is very close to the Gaussian result calculated earlier (see Fig. 1). In Sec. VIII we compare the experimental a.c. conductivity data of Booth et al. \([18]\) to the critical theory, extrapolated to three dimensions, and comment in Sec. VIII on the implications of this work for such measurements.
II. FORMALISM

A. The time-dependent Ginzburg-Landau model of superconductivity

We describe the critical dynamics of a superconductor with a complex order-parameter $\psi$ using the relaxational time-dependent Ginzburg-Landau model

$$\frac{\partial \psi}{\partial t} = -\Gamma_0 \frac{\delta F}{\delta \psi^*} + \zeta$$

(2.1)

with the Ginzburg-Landau free-energy

$$F = \int d^d r \left( |\nabla \psi|^2 + r_0 |\psi|^2 + \frac{\hbar_0}{2} |\psi|^4 \right).$$

(2.2)

In Eq. (2.1), $\Gamma_0$ is the bare order-parameter relaxation rate. Both $\Gamma_0$ and the bare coefficient $u_0$, which appears in the free-energy (2.2), can be considered temperature-independent near the transition; however $r_0 \sim T - T_c$ changes sign at the mean-field transition temperature $T_{c0}$, becoming negative for temperatures below $T_{c0}$. We choose units so that $\hbar = k_B = 1$ and $m = 1/2$, where $m$ is the mass of a Cooper pair. The superconductor is assumed to be isotropic. The complex noise field $\zeta$ in Eq. (2.1) is taken to have zero mean and correlations described by

$$\langle \zeta(r,t)\zeta^*(r',t') \rangle = 2\Gamma_0 \delta(r-r')\delta(t-t'),$$

(2.3)

where the brackets $\langle \cdots \rangle$ denote an average over the noise distribution, assumed to be Gaussian. The factor $2\Gamma_0$ in Eq. (2.3) follows from the fluctuation-dissipation theorem and ensures that the system relaxes to the proper equilibrium distribution.

We will work in the symmetric phase, $T > T_c$, with zero applied magnetic field and consider order-parameter fluctuations about a mean of zero. Fluctuations of the vector potential are neglected [25]. Since we will use the Kubo formula to calculate the linear conductivity from the system in zero electric field, an electric field is not included in Eqs. (2.2-2.3). In the classification scheme of Hohenberg and Halperin [21], Eqs. (2.2-2.3) constitute model $A$ dynamics for a two-component (complex) order-parameter. Thus our model is in the dynamic universality class of the relaxational XY-model [23-24].

Since the Ginzburg-Landau theory is coarse-grained, it contains an ultra-violet (UV) cutoff, $\Lambda$ (corresponding, for example, to the lattice constant) [26]. This cutoff is manifest in the definition of the Fourier transform of the order-parameter,

$$\psi(r,t) = \int_{k\omega}^{\Lambda} \psi(k,\omega) e^{i k \cdot r - i \omega t},$$

(2.4)

For convenience, we employ the short-forms

$$\int^\Lambda = \int^\Lambda d^d k / (2\pi)^d$$

(2.5)

$$\int_\omega = \int d\omega / (2\pi)$$

(2.6)

for the wavevector and frequency integrals, with the wavevector integral restricted to $|k| < \Lambda$. The existence of the cutoff will be crucial when we interpret the results of the theory.

The order-parameter correlation function and the response function are central in what follows. The order-parameter correlation function, $C(k,\omega)$, is defined as

$$C(k,\omega) \equiv \langle \psi(k,\omega)\psi^*(k,\omega) \rangle.$$ 

(2.7)

By adding a source term,

$$F_h = - \int d^d r \left( h^* \psi + h\psi^* \right),$$

(2.8)

to the free-energy (2.2) we can define the (linear) response function, $G(k,\omega)$, as

$$G(k,\omega) = \frac{\delta \langle \psi(k,\omega) \rangle}{\delta h(k,\omega)} \bigg|_{h=0}.$$ 

(2.9)

This measures the response of the order-parameter to the source $h$. Near equilibrium, the correlation and response functions are related though the fluctuation-dissipation relation [27],

$$C(k,\omega) = \frac{2}{\omega} \Im G(k,\omega).$$

(2.10)

B. The Kubo formula for the conductivity

The linear a.c. conductivity, $\sigma(\omega)$, for an isotropic material can be defined in terms of the current response, $J$ (which includes normal and supercurrent contributions), to an infinitesimal applied electric field, $E$, through

$$J(\omega) = \sigma(\omega) E(\omega).$$

(2.11)

Since the quantities in Eq. (2.11) are evaluated at zero wavevector we suppress their wavevector dependence. The conductivity is complex and has a real dissipative response, $\sigma'$, and an imaginary reactive response, $\sigma''$:

$$\sigma(\omega) = \sigma'(\omega) + i\sigma''(\omega).$$

(2.12)

In linear response, the conductivity is related to a current correlation function via the Kubo formula [28]. Near $T_c$ strong superconducting fluctuations give a singular contribution to the conductivity which dominates the non-singular contribution due to normal electrons. Thus we may use the Kubo formula to calculate the real part of the conductivity due to superconducting fluctuations.
from the supercurrent correlation function, evaluated at $E = 0$:

$$\sigma'(\omega) = \frac{1}{2d} \langle J_s(\omega) \cdot J_s(-\omega) \rangle \big|_{E=0}. \quad (2.13)$$

The supercurrent, $J_s$ is

$$J_s(r, t) = -ie_0(\psi^* \nabla \psi - \psi \nabla \psi^*), \quad (2.14)$$

where $e_0$ is the bare charge of a Cooper pair. The imaginary part of the conductivity can be obtained by applying the the Kramers-Kronig relations $^{28}$ to Eq. (2.13).

The average in Eq. (2.13) is a four-point order-parameter average since $J_s$ (2.14) is quadratic in $\psi$. Quite generally, this four-point average can be written as the sum of a “disconnected” product, $\sigma^{(2)}$, of two two-point averages, and a “connected” four point-average $\sigma^{(4)}$:

$$\sigma'(\omega) = \sigma^{(2)}(\omega) + \sigma^{(4)}(\omega) \quad (2.15)$$

with

$$\sigma^{(2)}(\omega) = \frac{2e_0^2}{d} \int_0^\Lambda k_1^2 C(k_1, \omega_1)C(k_1, \omega_1 + \omega) \quad (2.16)$$

and

$$\sigma^{(4)}(\omega) = \frac{2e_0^2}{d} \int_0^\Lambda k_1 \cdot k_2 C^{(4)}(k_1, \omega_1, k_2, \omega_2; \omega), \quad (2.17)$$

where the exact two-point order-parameter correlation function, $C(k, \omega)$, is defined in Eq. (2.7) and

$$C^{(4)}(k_1, \omega_1, k_2, \omega_2; \omega) \equiv \langle \psi(k_1, \omega_1) \psi^*(k_1, \omega_1 - \omega) \psi(k_2, \omega_2) \psi^*(k_2, \omega_2 + \omega) \rangle, \quad (2.18)$$

is the connected four-point order-parameter correlation function.

C. Iterative dynamic perturbation theory

The order-parameter averages (2.7) and (2.18) that appear in Eqs. (2.14) and (2.17) can be expanded as a perturbation series in the bare non-linear coupling $u_0$ appearing in Eq. (2.2). Dynamic perturbation theory for the time-dependent Ginzburg Landau equation (2.1) can be implemented either by using a Martin-Siggia-Rose $^{29,30}$ field-theoretical formalism, or by a direct iteration of the equation of motion (2.14). The iterative approach involves less formal machinery and will be used here.

![FIG. 2. The diagrammatic representation of the equation of motion (2.14). Wiggly lines correspond to the order-parameter $\psi$ (a starred wiggly line is $\psi^*$). The dotted line represents the Gaussian field $\psi_0$. The Gaussian response function $G_0$ (2.20) is shown as a line with an arrow. The vertex, where the response function meets three wiggly lines contains a factor $-u_0$, as well as $V$ (2.22) which conserves wavevector and frequency at the vertex. Iteration corresponds to replacing the wiggly lines on the right-hand side with either the first or second term on the right-hand side. In this way, one generates a series in $u_0$.](image)
expansion for $\psi$ in powers of the bare coupling constant $u_0$. Averages containing $\psi$ are then expressed as sums of higher-point Gaussian averages over $\psi_0$, which break up into products of $C_0$’s. To keep track of the algebra, it is helpful to use the graphical representation of Eq. (2.19) shown in Fig. 2. In the graphical context iteration corresponds to “putting branches on the tree” and averaging corresponds to joining two conjugate dashed lines ($\psi_0$) to form a correlation function $C_0$. By examining all possibilities for joining for a given average, a series of graphs is generated with the proper symmetry factors. In dynamical perturbation theory there are two propagators: the response function $G_0$, denoted by an arrow, and the correlation function $C_0$, denoted by a line with a circle on it. Wavevector and frequency are assigned to these lines on the basis of conservation of wavevector and frequency at the graph vertices, given by $V$ in Eq. (2.22). Wavevectors and frequencies flowing around loops are integrated over. More details of the graph rules can be found in [20,31].

An example of this procedure is the self-energy diagram, Fig. 3, and the corresponding algebraic expression [1.5].

D. Renormalization of the theory and the XY fixed-point

It is computationally convenient to dimensionally regularize the theory and renormalize via minimal subtraction [30,32]. This will produce a sensible $\epsilon = 4 - d$ expansion. To be more concrete, we define the renormalized “coupling constant,” $u$, in terms of the bare coupling constant, $u_0$, by

$$u \equiv Z_u u_0,$$

(2.24)

and define the dimensionless, renormalized coupling constant, $\bar{u}$ as

$$\bar{u} \equiv \frac{S_d}{2(2\pi)^d} u \kappa^{-\epsilon},$$

(2.25)

where $\kappa$ is an arbitrary wavevector scale and $S_d$ is the surface area of the unit sphere in $d$ dimensions. The renormalization constant $Z_u = 1 + O(\bar{u})$ [32]. Since only $\bar{u}^2$ will appear in the conductivity, and we neglect terms of $O(\bar{u}^3)$ and higher, we may approximate $Z_u \approx 1$.

Renormalization of the bare response function (2.9) provides the remaining renormalization constants. The bare inverse response function including self-energy corrections, $\Sigma$, may be written

$$G^{-1}(k, \omega) = G_0^{-1}(k, \omega) - \Sigma(k, \omega).$$

(2.26)

The renormalized inverse response function $G_R^{-1}(k, \omega)$ may be expressed in terms of the bare quantity (2.26) by

$$G_R^{-1}(k, \omega) \equiv Z_\psi G^{-1}(k, \omega),$$

(2.27)

where the renormalization constant $Z_\psi$ comes from “wavefunction” renormalization (a rescaling of $\psi$) and, in the minimal subtraction scheme, is given by [32,33]

$$Z_\psi = 1 - \frac{1}{\epsilon} \bar{u}^2 + O(\bar{u}^3).$$

(2.28)

The renormalized “mass” $r$ is defined as

$$r \equiv G_R^{-1}(0,0),$$

(2.29)

which, using Eqs. (2.21), (2.24) and (2.27), is related to the bare mass $r_0$ by

$$r = Z_\psi [r_0 - \Sigma(0,0)].$$

(2.30)

Near $T_c$ the physical response function at zero wavenumber and frequency behaves as $G_R(0,0) = \xi^{2-\eta \kappa^{-\eta}}$, where $\eta$ is the usual correlation function exponent and $\xi$ is the order-parameter correlation length which diverges as

$$\xi \sim |T - T_c|^{-\nu},$$

(2.31)

with the critical exponent $\nu$. Thus, from (2.29), we have

$$r = \xi^{-2+\eta \kappa \eta}.$$  

(2.32)

Since we are neglecting magnetic fluctuations and working at the “uncharged” fixed point, the renormalized charge, $e$, is simply the bare charge: $e = e_0$. Finally, the bare relaxation rate $\Gamma_0$, appearing in the dynamic response function (2.21) is related to the renormalized relaxation rate $\Gamma$ by

$$\frac{1}{\Gamma_0} = Z_\Gamma \frac{1}{\Gamma},$$

(2.33)

where, from minimal subtraction, the renormalization constant $Z_\Gamma$ for this relaxational model is [33,34]

$$Z_\Gamma = 1 - \frac{e}{\epsilon} \bar{u}^2 + O(\bar{u}^3).$$

(2.34)

The constant $c$ is given by Eq. (1.6).

Near $T_c$, as one probes the long-wavelength physics, the coupling $\bar{u}$ flows towards the fixed point value $\bar{u}^*$ determined by the IR-stable zeros of the renormalization-group beta function $\beta(\bar{u}^*) = 0$ [32]. This mechanism is responsible for universality. To leading order in the $\epsilon$-expansion, $\bar{u}^*$ is [32,33]

$$\bar{u}^* = \frac{\epsilon}{10} + O(\epsilon^2).$$

(2.35)

This is the Wilson-Fisher [23] fixed-point for the XY-model. The correlation function exponent $\eta$ is related to $Z_\psi$, (2.28) and has the following expansion in $\bar{u}^*$:

$$\eta = 2 (\bar{u}^*)^2 + O((\bar{u}^*)^3).$$

(2.36)
The result $\nu \approx 2/3$ quoted in the Introduction, which also appears in (2.31), is an extrapolation of the $\epsilon$-expansion result to three dimensions. Finally, the dynamic exponent $z$ is related to $Z_T$ (2.34) for the relaxation dynamics, and given by $z = 2 + c\eta$ with $c = 6\ln 4/3 - 1$ and $\eta$ given by Eq. (2.30). Thus, by reorganizing the theory as an expansion in $\epsilon$ and using the fixed point value $u^*$ for the coupling, the IR divergences near criticality can be sensibly treated and lead to corrections to the Gaussian exponents.

Even after we renormalize the conductivity as described above, some poles in $\epsilon$ will remain. These poles are due to UV-divergences in the theory for the conductivity that appear even at the Gaussian level and have nothing to do with the critical behaviour. These poles must be eliminated by adding a constant to the conductivity, as will be discussed in Sec. VI.

III. THE CONDUCTIVITY IN THE GAUSSIAN APPROXIMATION

We now review earlier work on the a.c. conductivity involving non-interacting, Gaussian fluctuations [9,10], and set $u_0 = 0$ in Eq. (2.2). In the Gaussian approximation the connected piece of the conductivity, Eq. (2.16), is zero. Thus, from Eqs. (2.13) and (2.14) one has

$$\sigma'(\omega) = \frac{2e^2}{d} \left( \int_{k_1 \omega_1}^{\Lambda} k_1^2 C_0(k_1, \omega_1) C_0(k_1, \omega_1 + \omega) \right),$$

(3.1)

where $C_0$ is given by (2.23). The calculation of the integral in Eq. (3.1) involves a contour integration over the frequency variable, and then a straightforward evaluation of the remaining wavevector integral, with the cutoff $\Lambda$ set to infinity. The complex conductivity takes the form [9,10]:

$$\sigma(\omega) = \frac{e^2}{2\Gamma(\nu)} \frac{\xi_0^{d-4}}{4-d} S_G(y_0),$$

(3.2)

where

$$\bar{\sigma} = \frac{S_0}{(2\pi)^d} \Gamma(d/2) \Gamma(3-d/2)$$

(3.3)

and the scaled frequency $y_0$ is

$$y_0 = \frac{\omega C_0^2}{2\Gamma_0}.$$  

(3.4)

The Gaussian order-parameter correlation length $\xi_0$ is defined as

$$\xi_0 \equiv \xi_0^{1/2},$$

(3.5)

thus $\xi_0 \sim |T - T_0|^{-1/2}$ and $\nu = 1/2$ in the Gaussian theory. The real part of the scaling form $S_G$ is computed from Eq. (3.1) to be

$$S_G(y_0) = \frac{8}{d(d-2)} \frac{1}{y_0^2} \left[ 1 - (1 + y_0^2)^{d/4} \cos \left( \frac{d}{2} \tan^{-1} y_0 \right) \right].$$

(3.6)

The imaginary part of the conductivity is obtained from Eq. (3.6) using the Kramers-Kronig relations. The result for the complex scaling form is then

$$S_G(y_0) = \frac{8}{d(d-2)} \frac{1}{y_0^2} \left[ 1 - \frac{d}{2} iy_0 - (1 - iy_0)^{d/2} \right].$$

(3.7)

The Gaussian result, Eq. (3.2) with the definition (1.4), satisfies the FFH hypothesis (1.1) with $z = 2$.

We note two properties of these results that will be important later. The first is that Eq. (3.2) has a factor of $\epsilon = 4 - d$ in the denominator. This is a consequence of setting the cutoff $\Lambda$ to infinity, and indicates that even the Gaussian theory is sensitive to the cutoff in four dimensions. The second property is that $S_G'$ (3.6) has the $\epsilon$-expansion

$$S_G'(y_0) = 1 + \sum_{i=1}^{\infty} \epsilon_i S_i(y_0).$$

(3.8)

The coefficient of $\epsilon$ in Eq. (3.8),

$$S_1(y_0) = \frac{3}{4} + \frac{1}{4y_0} \ln(1 + y_0^2) - 4y_0 \tan^{-1} y_0,$$

(3.9)

is interesting because it appears later in both the disconnected and the connected pieces of the conductivity.

IV. DISCONNECTED PIECE OF THE CONDUCTIVITY

To go beyond the Gaussian theory requires the calculation of both the full two-point correlation function (2.7), including self-energy corrections, and the four-point average (2.18) which appear in the conductivity through Eqs. (2.16) and (2.17). The calculations must be performed to $O(u^2)$, where the first corrections to the Gaussian result $z = 2$ occur. In this section we examine the disconnected piece of the conductivity (2.14). The next section tackles the connected piece.

We first dimensionally regularize and renormalize the theory as outlined in Sec. II D. From Eq. (2.10), the disconnected contribution to the conductivity is then

$$\sigma^{(2)}(\omega) = \frac{2e^2}{d} \int_{k_1 \omega_1} \frac{1}{k_1^2} C(k_1, \omega_1) C(k_1, \omega_1 + \omega),$$

(4.1)

where $C$ is the full correlation function (2.7), including self-energy corrections. We will calculate the response function $G$ (2.9) to $O(u^2)$ and use the fluctuation-dissipation relation (2.10) to get $C$. With the definition
The correlation function $G^{-1}(k, \omega) = G_0^{-1}(k, \omega) - [\Sigma(k, \omega) - \Sigma(0,0)], \quad (4.2)$ where now
\[
\begin{align*}
  r_0 &\rightarrow r/Z_T \\
  \Gamma_0 &\rightarrow \Gamma/Z_T
\end{align*}
\]
in $G_0$ (2.21) and $C_0$ (2.23). To $O(u^2)$ only the “Saturn” diagram $\Sigma_s(k, \omega)$ shown in Fig. 3 contributes to Eq. (4.1) since, to this order, it is the only piece of the self-energy that is wavevector- and frequency-dependent. Applying the rules outlined in Sec. II C to Fig. 3 gives
\[
\Sigma_s(k, \omega) = 6u^2 \int_{k2\omega_2k3\omega_3} C_0(k_2, \omega_2)C_0(k_3, \omega_3)
\]
\[
\times G_0(k - k_2 - k_3, \omega - \omega_2 - w_3).
\]
\[
\text{(4.5)}
\]

**FIG. 3.** The Saturn diagram, $\Sigma_s$, for the self-energy consists of two loops formed by two correlation functions $C_0$ (lines with circles) and one response function $G_0$ (line with an arrow). Wavevector and frequency flow through the diagram in accordance with the discussion in Sec. II C.

The correlation function $C$ is then obtained from (2.10) and (4.3):
\[
C(k, \omega) = C_0(k, \omega) + \frac{2}{\omega} \text{Im}\{G_0^2(k, \omega)\Sigma_s(k, \omega) - \Sigma_s(0,0)\} + O(u^3). \quad \text{(4.6)}
\]
Thus the disconnected piece of the conductivity (4.1) can be expressed in terms of the integrals
\[
I_1(\omega) = \frac{2\pi^2}{d} \int_{k1\omega_1} k_1^2 C_0(k_1, \omega_1)C_0(k_1, \omega_1 + \omega) \quad \text{(4.7)}
\]
and
\[
I_2(\omega) = \frac{4\pi^2}{d} \text{Im} \int_{k1\omega_1} k_1^2 C_0(k_1, \omega_1) G_0^2(k_1, \omega_1 + \omega)
\]
\[
\times [\Sigma_s(k_1, \omega_1 + \omega) - \Sigma_s(0,0)], \quad \text{(4.8)}
\]
by writing
\[
\sigma^{(2)}(\omega) = I_1(\omega) + 2I_2(\omega) + O(u^3). \quad \text{(4.9)}
\]
Each integral is dealt with separately below.

### A. The integral $I_1$

The only differences between $I_1$ (4.7) and the starting point (3.1) of the Gaussian calculation are the substitutions: Eqs. (4.3), (4.4) and $e_0 \rightarrow e$. Transcribing the real part of the Gaussian result (3.3) gives
\[
I_1(\omega) = \frac{e^2}{2T} \sigma \kappa \kappa^{-1} \omega^{-2/3} \bar{Z} \psi' \sigma' \psi'(\bar{y}), \quad \text{(4.10)}
\]
with $S'_G$ given in Eq. (3.6) and
\[
\bar{y} = \frac{\omega Z_{\psi} Z_{\Gamma}}{2\Gamma_T}. \quad \text{(4.11)}
\]
The dimensionless measure of the nearness to the transition is
\[
x = \sqrt{\frac{\pi}{\kappa}}, \quad \text{(4.12)}
\]
where the arbitrary wavevector scale $\kappa$ was introduced earlier in Eq. (2.23). From the expression (2.32) for $r$ we have
\[
x = (\xi\kappa)^{-1+\eta/2}. \quad \text{(4.13)}
\]
The function $S'_G(\bar{y})$ can be expressed in terms of the scaled frequency $y$,
\[
y = \frac{\omega Z_{\psi} Z_{\Gamma}}{2\Gamma_T}, \quad \text{(4.14)}
\]
with $z$ given by Eq. (1.5), by the expansion
\[
S'_G(\bar{y}) = S'_G(y) + \partial_y S'_G(y) (\bar{y} - y) + \frac{1}{2} \partial_y^2 S'_G(y) (\bar{y} - y)^2
\]
\[
+ \frac{1}{2} \partial_y^2 S'_G(y) (\bar{y} - y)^2 + \cdots, \quad \text{(4.15)}
\]
where $\partial_y$ indicates a derivative with respect to $y$. The results (2.28) for $Z_{\psi}$, (2.32) for $r$ and (2.34) for $Z_{\Gamma}$ are used to obtain the following relation between $\bar{y}$ and $y$:
\[
\bar{y} - y = y(c + 1) \left( \eta \ln x - \frac{1}{e} u^2 \right) + O(u^3), \quad \text{(4.16)}
\]
where $c$ is given by Eq. (1.6). Using equation (4.16), the expansion (3.3) of $S'_G$ and the fact that $\eta (2.33)$ is $O(\epsilon^2)$, we write (4.15) as
\[
S'_G(\bar{y}) = 1 + c S_1(y) + e^2 S_2(y) + e^3 S_3(y)
\]
\[
+ c(c + 1) \left( \eta \ln x - \frac{1}{e} u^2 \right) [y \partial_\psi S_1(y) + e y \partial_\psi S_2(y)]
\]
\[
+ O(\bar{u}^2 e^2, \epsilon^4). \quad \text{(4.17)}
\]
We now use the expansions (2.28) of $Z_{\psi}$ and (2.34) of $Z_{\Gamma}$ together with Eq. (4.17) to write $I_1$ (4.10) as a series in $u$, with coefficients expanded in powers of $\epsilon$. Terms of $O(\bar{u}^2 \epsilon, \epsilon^3)$ and higher are neglected (since the fixed-point value $\bar{u}^*$ (2.33) is $O(\epsilon)$ we are effectively working to $O(\epsilon^2)$). The result, written in a form that will be convenient for later analysis, is
\[ I_1(\omega) = \frac{e^2}{2\Gamma^2 \kappa^\epsilon} \left( 1 - \frac{1}{2\epsilon^2} \right) \left\{ -\frac{c}{e^2} \bar{u}^2 + \frac{1}{\epsilon} \bar{u}^2 \ln x - \frac{c}{\epsilon} \bar{u}^2 S_1(y) - \frac{c + 1}{\epsilon} \bar{u}^2 y \partial_y S_1(y) - \ln x + \frac{\epsilon - \bar{c} \bar{u}^2}{2} (\ln x)^2 \right. \\
- \frac{\epsilon^2}{6} (\ln x)^3 + \left. \left[ 1 - (\epsilon - \bar{c} \bar{u}^2) \ln x + \frac{\epsilon^2}{2} (\ln x)^2 \right] S_1(y) + (\epsilon - \bar{c} \bar{u}^2)(1 - \epsilon \ln x) S_2(y) + \epsilon^2 S_3(y) \right\} \right. \\
+ (c + 1)(\eta + \bar{u}^2) y \partial_y S_1(y) \ln x - (\epsilon + 1)\bar{u}^2 y \partial_y S_2(y) + O(\bar{u}^2 \epsilon^4). \tag{4.18} \]

**B. The integral \( I_2 \)**

The calculation of \( I_2 \), Eq. \( \text{(4.8)} \), is involved so we only outline it here. The first step is to re-scale the internal wavevectors and frequencies in Eq. \( \text{(4.8)} \) by

\[ k_i \to \sqrt{\Gamma} k_i, \]

\[ \omega_i \to \Gamma^* \omega_i, \tag{4.19} \]

where \( i = 1, 2, 3 \) (remember that \( \Sigma \) contains an integral over \( k_2 \omega_2 k_3 \omega_3 \)), and write

\[ I_2(\omega) = \frac{12e^2}{\pi} \kappa^\epsilon \left( \frac{\epsilon}{\kappa^\epsilon} \right)^2 x^{-3} \tilde{I}_2(y). \tag{4.21} \]

The dimensionless integral in Eq. \( \text{(4.21)} \),

\[
\tilde{I}_2(y) = 16 \text{ Im} \int_{k_1 \omega_1 k_2 \omega_2 k_3 \omega_3} k_1^2 \tilde{C}_0(k_1, \omega_1) \frac{1}{\omega_1 + 2y} \tilde{G}_0^2(k_1, \omega_1 + 2y) \tilde{C}_0(k_2, \omega_2) \tilde{C}_0(k_3, \omega_3) \\
\times \tilde{G}_0(k_1 - k_2 - k_3, 2y + \omega_1 - \omega_2 - \omega_3) - \tilde{G}_0(-k_2 - k_3, -\omega_2 - \omega_3), \tag{4.22} \]

is written in terms of the dimensionless functions

\[ \tilde{C}_0(k, \omega) = \frac{1}{-i\omega + 1 + k^2} \tag{4.23} \]

and

\[ \tilde{G}_0(k, \omega) = \frac{1}{\omega^2 + (1 + k^2)^2}. \tag{4.24} \]

Since \( I_2 \) is already \( O(\bar{u}^2) \) we have simply replaced all bare coefficients in Eq. \( \text{(4.21)} \) by renormalized ones, and used the scaled frequency \( y \) from Eq. \( \text{(4.14)} \).

The second step is to evaluate the three frequency integrals in Eq. \( \text{(4.22)} \) by contour integration. The calculation is straightforward and yields

\[ \tilde{I}_2(y) = \text{ Re} \left[ \tilde{I}_2^a(y) + \tilde{I}_2^b(y) + \tilde{I}_2^c(y) \right], \tag{4.25} \]

with

\[ \tilde{I}_2^a(y) = \int_0^1 dv (1 - v) \int_{k_1 k_2 k_3} k_1^2 \left[ \frac{2}{a_1^2} - \frac{1}{(a_1 + iv)^3} \right] \frac{1}{a_2 a_3 (a_2 + a_3 + a_4) (a_5 + 2iy)}, \tag{4.26} \]

\[ \tilde{I}_2^b(y) = 3 \int_0^1 dv (1 - v) \int_{k_1 k_2 k_3} k_1^2 \frac{1}{(a_1 + iv)^3 a_2 a_3} \left[ \frac{1}{a_2 + a_3 + a_4} - \frac{1}{a_2 + a_3 + a_4} \right], \tag{4.27} \]

\[ \tilde{I}_2^c(y) = -3iy \int_0^1 dv (1 - v) \int_{k_1 k_2 k_3} k_1^2 \frac{1}{(a_1 + iv)^4 a_2 a_3 (a_2 + a_3 + a_4) (a_5 + 2iy)}, \tag{4.28} \]

where, for convenience, we define

\[ a_i \equiv 1 + k_i^2, \quad i = 1, 2, 3, \]

\[ a_4 \equiv 1 + (k_1 + k_2 + k_3)^2, \]

\[ a_4 \equiv 1 + (k_2 + k_3)^2, \]

\[ a_4 \equiv 1 + (k_2 + k_3)^2, \]

\[ a_5 \equiv a_1 + a_2 + a_3 + a_4. \tag{4.29} \]
Note that we have used the Feynman formula

\[
\frac{1}{c_1^{\alpha_1}c_2^{\alpha_2}} = \frac{\Gamma(\alpha_1 + \alpha_2)}{\Gamma(\alpha_1)\Gamma(\alpha_2)} \int_0^1 dv (1 - v)^{\alpha_1 - 1}v^{\alpha_2 - 1} \frac{1}{[(1 - v)c_1 + vc_2]^{\alpha_1 + \alpha_2}}
\]  

(4.33)

with the Feynman parameter \( v \) to group and simplify terms in Eqs. (4.26-4.28).

The final step is to evaluate the wavevector integrals in Eqs. (4.26-4.28) using (4.33) and \( \epsilon \)-expand the resulting integrals over Feynman parameters to \( O(\epsilon^0) \). An example of this procedure appears in Appendix A. The results for Eqs. (4.26-4.28) are

\[
\tilde{I}_2(y) = A_d \left[ \frac{1}{6\epsilon^2} \ln\frac{4}{3} + \frac{1}{2\epsilon} f_1(y) \ln\frac{4}{3} + \frac{0.003}{\epsilon} + F_2^a(y) + O(\epsilon) \right]
\]  

(4.34)

\[
\tilde{I}_2^b(y) = A_d \left[ -\frac{1}{12\epsilon^2} + \frac{1}{4\epsilon} f_1(y) - \frac{0.104}{\epsilon} + F_2^b(y) + O(\epsilon) \right]
\]  

(4.35)

\[
\tilde{I}_2^c(y) = A_d \left[ -\frac{1}{2\epsilon} f_2(y) \ln\frac{4}{3} + F_2^c(y) + O(\epsilon) \right],
\]  

(4.36)

where \( F_2^a, F_2^b \) and \( F_2^c \) are \( O(\epsilon^0) \) functions of \( y \) which we do not need to determine,

\[
A_d = \left( \frac{S_d}{2(2\pi)^d} \right)^3 \left[ \frac{1}{2} \frac{\Gamma(2 - \epsilon/2)}{\Gamma(2 - \epsilon)} \frac{(3 - \epsilon/2)}{(3 - \epsilon/2)} \Gamma(1 + 3\epsilon/2) \right]
\]  

(4.37)

and

\[
f_1(y) = \int_0^1 dv (1 - v) \ln(1 + iyv)
\]  

(4.38)

\[
f_2(y) = iy \int_0^1 dv \frac{1 - v}{1 + iyv}.
\]  

(4.39)

It is straightforward to show that

\[
\text{Re } f_1(y) = -S_1(y)
\]  

(4.40)

\[
\text{Re } f_2(y) = -2S_1(y) - y\partial_y S_1(y),
\]  

(4.41)

where \( S_1 \) was defined in (3.9). We use this result, along with Eqs. (4.25) and (4.34-4.36) to write \( I_2 \) (4.21) as a product of \( \hat{u}^2 \) and a series in \( \epsilon \). In particular, we have

\[
2I_2(\omega) = \frac{\epsilon^2}{2\Gamma}\bar{\sigma} \kappa^{-\epsilon} \hat{u}^2 \left[ \frac{c - 2}{3\epsilon^2} - \frac{c - 2}{\epsilon} S_1(y) + \frac{(c + 1)}{\epsilon} y\partial_y S_1(y) - \frac{0.787}{\epsilon} + 2.36 \ln x + \frac{3(c - 2)}{2} \ln x \right]
\]  

(4.42)

\[
-3(c - 2)S_1(y) \ln x - 3(c + 1) y\partial_y S_1(y) \ln x + D(y) + O(\epsilon),
\]  

where \( c \) is given in Eq. (4.6) and

\[
D(y) = 0.233 - (c - 2)S_1(y) - (c + 1)y\partial_y S_1(y) + 12 \text{ Re } [F_2^a(y) + F_2^b(y) + F_2^c(y)],
\]  

(4.43)

\[\text{V. CONNECTED PIECE OF THE CONDUCTIVITY}\]

The topologically distinct diagrams resulting from the expansion of the connected four-point order-parameter average (2.18) to \( O(u^2) \) are shown in Fig. 4. Self-energy corrections are included in these diagrams since we have renormalized the theory, following dimensional regularization. The algebraic expressions for each allowed permutation of wavevector and frequency in these diagrams is inserted in \( \sigma^{(4)} \) (2.17), thereby giving a contribution to the conductivity. The \( O(u) \) diagram in Fig. 4a does not contribute to the conductivity since in this case the integral (2.17) separates into a product of odd integrals over \( k_1 \) and \( k_2 \). The remaining diagrams in Fig. 4 are \( O(u^2) \), and produce
\[
\sigma^{(4)}(\omega) = -\frac{128e^2}{d\Omega} \kappa^{-\epsilon} (u\kappa^{-\epsilon})^2 x^{-3\epsilon} \text{Re} \left[ 4\tilde{I}_b(y) + \tilde{I}_c^{(1)}(y) + \tilde{I}_c^{(2)}(y) \right]
\] (5.1)

when inserted into Eq. (2.17). The diagram in Fig. 4b is responsible for the contribution
\[
\tilde{I}_b(y) = \int_{k_1\omega_1,k_2\omega_2,k_3\omega_3} k_1 \cdot k_2 \tilde{G}_0(k_1,\omega_1)\tilde{C}_0(k_1,\omega_1 - 2y)\tilde{C}_0(k_2,\omega_2)\tilde{C}_0(k_2,\omega_2 + 2y)\tilde{G}_0(k_3,\omega_3)\tilde{C}_0(k_1 + k_2 + k_3,\omega_1 + \omega_2 - \omega_3)
\] (5.2)
in (5.1) with \( y \) defined in (4.14) and \( \tilde{G}_0 \) and \( \tilde{C}_0 \) given by (4.23) and (4.24), respectively. The diagram in Fig. 4c produces the other two integrals,
\[
\tilde{I}_c^{(1)}(y) = \int_{k_1\omega_1,k_2\omega_2,k_3\omega_3} k_1 \cdot k_2 \tilde{G}_0(k_1,\omega_1)\tilde{G}_0(k_1,2y - \omega_1)\tilde{C}_0(k_2,\omega_2)\tilde{C}_0(k_2,\omega_2 + 2y)\tilde{C}_0(k_3,\omega_3)\tilde{C}_0(k_1 + k_2 + k_3,\omega_1 + \omega_2 + \omega_3)
\] (5.3)
and
\[
\tilde{I}_c^{(2)}(y) = \int_{k_1\omega_1,k_2\omega_2,k_3\omega_3} k_1 \cdot k_2 \tilde{G}_0(k_1,\omega_1)\tilde{C}_0(k_1,\omega_1 - 2y)\tilde{G}_0(k_2,\omega_2)\tilde{G}_0(k_2,-2y - \omega_2)\tilde{C}_0(k_3,\omega_3)\tilde{C}_0(k_1 + k_2 + k_3,\omega_1 + \omega_2 + \omega_3),
\] (5.4)
in (5.1).

**FIG. 4.** The topologically distinct diagrams in the expansion of the four-point order parameter average (2.18) to \( O(u^2) \). The diagrammatic symbols are the same ones used in Fig. 3. Each diagram corresponds to several possible wavevector and frequency assignments, which are not shown.

As with the integral \( \tilde{I}_2(y) \) (4.22) for the disconnected piece, we evaluate the frequency integrals in Eqs. (5.2)-(5.4) with contour integration and use the Feynman formula (4.33) to perform the wavevector integrals. Upon \( \epsilon \)-expanding the results we have
\[
\tilde{I}_b(y) = -\frac{A_d}{96} \left[ \left( \frac{1}{4} - \frac{1}{2} \ln \frac{4}{3} \right) \frac{1}{\epsilon^2} - \left( \frac{3}{4} - \frac{3}{2} \ln \frac{4}{3} \right) \frac{1}{\epsilon} \text{Re} \left[ f_1(y) \right] + \frac{0.057}{\epsilon} + \mathcal{F}_b(y) + O(\epsilon) \right],
\] (5.5)
\[
\tilde{I}_c^{(1)}(y) = -\frac{A_d}{96} \left[ \frac{2}{\epsilon^2} \ln \frac{4}{3} - \frac{6}{\epsilon} \ln \frac{4}{3} \text{Re} \left[ f_1(y) \right] + \frac{0.279}{\epsilon} + \mathcal{F}_c^{(1)}(y) + O(\epsilon) \right],
\] (5.6)
\[
\tilde{I}_c^{(2)}(y) = -\frac{A_d}{96} \left[ \frac{0.618}{\epsilon} + \mathcal{F}_c^{(2)}(y) + O(\epsilon) \right],
\] (5.7)
where \( A_d \) and \( f_1 \) were defined in (1.37) and (4.38) respectively. As before, \( \mathcal{F}_b, \mathcal{F}_c^{(1)} \) and \( \mathcal{F}_c^{(2)} \) are \( O(\epsilon^0) \) functions of \( y \) that do not need to be determined. Equations (5.2)-(5.4) are substituted into Eq. (5.1) and the result, expressed in terms of a product of \( u^2 \) and a series in \( \epsilon \), is
\[ \sigma^{(4)}(\omega) = \frac{e^2}{2T} \bar{\sigma} \kappa^{-\bar{\epsilon}} \bar{u}^2 \left[ \frac{2}{3\epsilon^2} - \frac{2}{\epsilon} \ln x + \frac{2}{\epsilon} S_1(y) + \frac{0.086}{\epsilon} - 0.258 \ln x + 3(\ln x)^2 - 6S_1(y) \ln x + C(y) + O(\epsilon) \right], \] (5.8)

where

\[ C(y) = 0.787 - 2S_1(y) + \frac{2}{3} \Re [4\mathcal{F}_0(y) + \mathcal{F}_c^{(1)}(y) + \mathcal{F}_c^{(2)}(y)]. \] (5.9)

In Eq. (5.8) we have used the relation (4.44) between \( f_1 \) and \( S_1 \), Eq. (3.3).

VI. ADDITIVE RENORMALIZATION OF THE CONDUCTIVITY

The real part of the conductivity (2.13) is sum of the disconnected contributions, Eqs. (4.18) and (4.42), and the connected piece, Eq. (5.8):

\[ \sigma'(\omega) = \frac{e^2}{2T} \bar{\sigma} \kappa^{-\bar{\epsilon}}(1 - 2.6u^2) \left\{ \frac{1}{\epsilon} - \frac{2}{3\epsilon^2} c\bar{u}^2 + \frac{1.4}{\epsilon} \bar{u}^2 - \ln x + \frac{\epsilon + 2c\bar{u}^2}{2} (\ln x)^2 - \frac{\epsilon^2}{6} (\ln x)^3 \right\} + \left[ 1 - (\epsilon + 2c\bar{u}^2) \ln x + \frac{\epsilon^2}{2} (\ln x)^2 \right] S_1(y) + (\epsilon + 2c\bar{u}^2)(1 - \epsilon \ln x) S_2(y) + (c + 1)(\eta - 2\bar{u}^2) y \partial_y S_1(y) \ln x + \bar{u}^2 F(y) + O(\bar{u}^2, \epsilon^3) \right\}, \] (6.1)

where

\[ F(y) = 2.1S_1(y) - 3c S_2(y) + \frac{e^2}{\bar{u}^2} S_3(y) + \mathcal{D}(y) + C(y) - (c + 1)y \partial_y S_2(y) \] (6.2)

is an \( O(\epsilon^3) \) function of \( y \). Even after renormalizing the bare quantities in the theory some poles in \( \epsilon \) remain in Eq. (6.1). In fact, this problem arises even in the Gaussian theory [the 1/\( \epsilon \) term in (2.13)] and indicates that we must be more careful when we set the cutoff \( \Lambda \) to infinity. We should write the conductivity for \( d < 4 \) as

\[ \sigma'(\omega; d, \Lambda) = \sigma'(\omega; d, \infty) - A(\omega; d, \Lambda), \] (6.3)

with

\[ A(\omega; d, \Lambda) = \sigma'(\omega; d, \infty) - \sigma'(\omega; d, \Lambda). \] (6.4)

The \( \sigma'(\omega; d, \infty) \) term in Eq. (6.3) is just Eq. (2.1). By subtracting \( A(\omega; d, \Lambda) \) from \( \sigma'(\omega; d, \infty) \) we render the conductivity finite in four dimensions, since we recover the theory with finite \( \Lambda \). At low frequencies, near \( T_c \), we expect to be able to approximate \( A \) by its value at \( T_c \) and \( \omega = 0 \); near criticality, the IR singularities, which appear in \( \sigma'(\omega; d, \infty) \), are absent in \( A \) since only UV physics contributes to the difference in (6.3). In the minimal subtraction scheme the poles of \( \sigma'(\omega = 0; \epsilon) \) which contain no singular temperature dependence are simply subtracted from Eq. (6.1). This situation is reminiscent of the additive renormalization of the specific heat in the static theory [22].

Inspection of Eq. (6.1) gives

\[ A = \frac{e^2}{2T} \bar{\sigma} \kappa^{-\bar{\epsilon}}(1 - 2.6u^2) \left\{ \frac{1}{\epsilon} - \frac{2}{3\epsilon^2} c\bar{u}^2 + \frac{1.4}{\epsilon} \bar{u}^2 + O(\bar{u}^3) \right\}, \] (6.5)

and thus we write the fully renormalized conductivity \( \sigma'_R(\omega) = \sigma'(\omega) - A \) as

\[ \sigma'_R(\omega) = \frac{e^2}{2T} \bar{\sigma} \kappa^{-\bar{\epsilon}}(1 - 2.6u^2) \left\{ - \ln x + \frac{\epsilon + 2c\bar{u}^2}{2} (\ln x)^2 - \frac{\epsilon^2}{6} (\ln x)^3 \right\} + \left[ 1 - (\epsilon + 2c\bar{u}^2) \ln x + \frac{\epsilon^2}{2} (\ln x)^2 \right] S_1(y) + (\epsilon + 2c\bar{u}^2)(1 - \epsilon \ln x) S_2(y) + (c + 1)(\eta - 2\bar{u}^2) y \partial_y S_1(y) \ln x + \bar{u}^2 F(y) + O(\bar{u}^2, \epsilon^3) \right\}. \] (6.6)

Now we have a theory that is UV convergent as \( \epsilon \to 0 \), but has IR divergences as \( T \to T_c \) and \( x \to 0 \). Near four dimensions, the coupling constant \( \bar{u} \) flows in the IR to its XY-model fixed-point value \( \bar{u}^* \) (2.33), with \( \eta = 2(\bar{u}^*)^2 \) (2.36) and, after re-summing, the series in \( \epsilon \) takes the form
\[\sigma'_R(\omega) = \frac{e^2}{2\Gamma} \tilde{\sigma} \kappa^{-\epsilon} \left[ \frac{x^{-p} - 1}{p} + x^{-p} S_1(y) + px^{-p} S_2(y) + p^2 \mathcal{F}(y) + O(p^3) \right], \quad (6.7)\]

where \(p\) is \(O(\epsilon)\) and is defined as
\[
p = \epsilon + c\eta
= 2 - d + z + O(\epsilon^3)
= \frac{2}{z}(2 - d + z) + O(\epsilon^3).
\]

The \((1 - 2.6\tilde{\sigma}^2)\) factor in Eq. (6.7) has been absorbed by changing the normalization of \(\sigma'_R(\omega = 0)\). As \(T \to T_c\) and \(z \to 0\) terms proportional \(x^{-p}\) in Eq. (6.7) dominate the conductivity \[34\]. From Eq. (4.13) we have
\[
x^{-p} = (\xi \kappa)^p [1 + O(\epsilon^3)], \quad (6.8)
\]
and as \(T \to T_c\) we write
\[
\sigma'_R(\omega) = \frac{e^2}{2\Gamma} \tilde{\sigma} \kappa^{-\epsilon} \left( \frac{\xi \kappa}{p} \right)^p [1 + p S_1(y) + p^2 S_2(y) + O(p^3)]. \quad (6.9)
\]

In Eq. (6.9), the series in \(p\) coincides, to \(O(p^2)\), with the \(\epsilon\)-expansion for the Gaussian scaling form \(\sigma'_G\), Eq. (6.8). Thus, by re-summing the series in Eq. (6.9) we obtain, correct to \(O(\epsilon^2)\), the Gaussian scaling form \(\sigma'_G\), Eq. (6.6), now as a function of the critical scaled frequency \(y\) (4.14) and with occurrences of \(\epsilon\) replaced by \(p\).

The final result for complex a.c. conductivity in the critical regime is then (dropping the \(R\) suffix)
\[
\sigma(\omega) = \frac{e^2}{2\Gamma} \tilde{\sigma} \kappa^{-\epsilon} \left( \frac{\xi \kappa}{2 - d + z} \right)^2 [S(y) + O(\epsilon^3)], \quad (6.10)
\]
with the scaled frequency \(y\) given by Eq. (4.14) and the universal complex scaling function \(S(y)\) given by Eq. (6.7).

VII. COMPARISON WITH EXPERIMENT

It is instructive to compare the universal function \(S(y)\), Eq. (1.7), for the critical theory (extrapolated to \(d = 3\)), with both the prediction of the Gaussian theory, Eq. (6.7), and the experimental results of Ref. [18]. Strictly speaking, it is inconsistent to compare scaled data from different theories and experiments if the axes have been scaled using different exponents. However, for the sake of comparison, we take the viewpoint that the theory and experiment each determine a particular universal functional dependence \(S(y)\) and ignore exactly how \(S(y)\) and \(y\) are achieved.

In this spirit, the magnitude of \(S(y)\) as a function of \(y\) is plotted on a log-log scale in Fig. 1 for the critical and Gaussian theories. Since \(z \gtrsim 2\) in the critical theory, the power-law behaviour at large \(y\) [a consequence of (1.2)] for the critical theory lies only slightly below the Gaussian theory.

![Fig. 5. Comparison between the scaled a.c. conductivity data from Booth et al., Ref. [18], on YBCO and the relaxational 3D XY critical theory. (a) The scaling function \(S(y)\), Eq. (1.7), using the relaxational 3D XY value \(z = 2.015\) (dashed curve) and using the experimental value \(z = 2.65\) (dotted curve) are compared with the experimental results (solid curves). The magnitude of \(S(y)\) is plotted against \(y\) on a log – log scale. The theory is fit to the experiment using horizontal and vertical offsets (the horizontal offset depends on the value of \(z\) used). (b) The normalized phase, \(2\phi(y)/\pi\), of the conductivity is plotted against \(\log_{10} y\) for the relaxational 3D XY critical theory with \(z = 2.015\) (dashed curve), the theory using the experimental value \(z = 2.65\) (dotted curve) and experiment (solid curves). The horizontal offsets are the same as in (a).](image-url)
the value \( \nu = 1.0 \pm 0.2 \) for the static exponent. In Fig. 5a the magnitude of \( S(y) \) is again plotted as a function of \( y \) on a log-log scale. The Gaussian theory is not plotted since it lies so close to the critical theory. Since \( \Gamma, \kappa \) and the prefactor of \( \xi \), which appear in both the scaled frequency \( y \) (4.14) and the prefactor to the conductivity (6.10), are parameters in the TDGL theory, there is freedom to choose the horizontal and vertical positioning of the theory so as to give the best fit to the data. As with the Gaussian theory, the critical theory fits the experimental scaling curve well over almost four decades in scaled frequency \( y \), but deviates from the experimental data taken nearest to \( T_c \).

The dynamic exponent for the relaxational 3D XY-model is known to have the value \( z \approx 2.015 \). Nevertheless, it is instructive to consider the \( z \) appearing in \( S(y) \), Eq. (1.7), as an adjustable parameter. By choosing the experimental value \( z = 2.65 \) and adjusting the horizontal offset of the theory in Fig. 5, a better fit to the experimental data closest to \( T_c \) is achieved—at the expense of worse agreement with the rest of the data. This comparison emphasizes that the experimental value \( z = 2.65 \) seems to originate in the data set taken closest to \( T_c \).

The phase \( \phi(y) \), Eq. (1.3), of the conductivity is plotted against \( \log_{10} y \) in Fig. 5b for the critical theory \( (z = 2.015) \), “pseudo”-theory \( (z = 2.65) \) and the experiment [18]. As with the Gaussian theory, the critical theory predicts a smaller phase near \( T_c \) than seen experimentally. The “pseudo”-theory is in better agreement with experiment near \( T_c \) than the critical theory, but again does a poorer job fitting the rest of the curve.

**VIII. CONCLUSIONS**

We have examined a theory for the a.c. conductivity of a superconductor that includes the strong, interacting order-parameter fluctuations expected near criticality. The FFH scaling hypothesis, Eq. (1.7), is shown to hold at \( O(\epsilon^2) \) in the \( \epsilon \)-expansion for relaxational 3D XY-model critical dynamics. The universal scaling function \( S(y) \) appearing in Eq. (1.1) is explicitly calculated to \( O(\epsilon^2) \) for this dynamics, with the result given in Eq. (1.7). The frequency and phase behaviour expected at \( T_c \), Eqs. (1.2) and (1.4), respectively, is demonstrated. The critical scaling function \( S(y) \) generalizes the Gaussian result, Eq. (1.7), and reduces to it when \( z = 2 \). These results are quite general and hold, in the critical regime, for any bulk superconductor described by a complex order-parameter with relaxational dynamics.

Since \( z \approx 2 \) for this dynamics, the scaling curve \( S(y) \) is, for practical purposes, indistinguishable from the prediction of the Gaussian theory (see Fig. 1). Therefore, in a measurement of the a.c. conductivity, the only indication of a crossover from the Gaussian to critical fluctuation regime would be a crossover in the static exponent \( \nu \). This may explain why the Gaussian theory fits the experimental data of Booth et al., Ref. [18], so well over much of the curve in Fig. 5, even though the experiment is supposedly accessing the critical regime.

The inclusion of critical order-parameter fluctuations in the framework of relaxational dynamics does not seem sufficient to explain the deviation between the Gaussian scaling form and experiment [18] observed near \( T_c \) (see Fig. 5). As highlighted by the fit of the “pseudo”-theory in Fig. 5, this deviation is connected to the large value \( z = 2.65 \) obtained in the experiment, which cannot explained within any present theory [15]. It is possible that this discrepancy may be due to the strong influence that uncertainties in the experimental determination of \( T_c \) have on the scaling of the data closest to \( T_c \). More a.c. conductivity measurements with higher temperature resolution near \( T_c \) may resolve this issue, allow a more accurate determination of \( z \), and provide a check on the scaling collapse for large \( y \). It is also possible that the films studied contain strong disorder, which could affect the scaling near \( T_c \).

In this paper we have identified and dealt with the technical challenges involved in the organization and renormalization of the theory for the a.c. conductivity in the critical region. This work serves as a basis for examining more complicated models, such as model F of Hohenberg and Halperin [27] involving reversible couplings to a conserved energy-mass density field, as in superfluid \( ^4\text{He} \). In three dimensions \( z = 3/2 \) for model F [30,38] which, although not observed in the a.c. conductivity data [18], is seen in some d.c. conductivity experiments [12,14] and simulations [35]. Another extension of the present theory is to consider a non-zero magnetic field, with the aim of examining the crossover from the zero-field critical scaling of the 3D XY-model to the lowest-Landau-level scaling which obtains in high fields [16,8].

**ACKNOWLEDGMENTS**

The authors would like to thank Gene Mazenko and Andrei Varlamov for useful comments, and Steve Anlage for providing his experimental data. This work was supported by NSERC of Canada and NSF grant DMR 96-28926.
APPENDIX A:

To illustrate the calculation of wavevector integrals, we use this appendix to provide the details of the \( \epsilon \)-expansion of \( \tilde{I}_2(y) \), Eq. (4.26), which is reproduced, in the notation of Sec. IV B, as

\[
\tilde{I}_2(y) = \int_0^1 dv \int_{k_1, k_2} k_1^2 \left[ \frac{2}{a_1} - \frac{1}{(a_1 + i y v)^2} \right] \frac{1}{a_2 a_3 (a_2 + a_3 + a_4) (a_5 + 2 y)}.
\]  

(A1)

We parameterize the wavevector factors in the denominator of Eq. (A1) in pairs using the Feynman parameterization \( \{1,3,3\} \), beginning with factors on the right containing \( k_3 \). The denominator of the \( k_3 \) integral is thereby transformed into a quadratic form in \( k_3 \) and the integral is solved. The process is repeated for the remaining two wavevector integrals, producing

\[
\tilde{I}_2(y) = \frac{A_d}{3 \epsilon} \int_0^1 dv \int_{k_1, k_2} k_1^2 \left[ 2 J(v = 0, y) - J(v, y) \right]
\]  

(A2)

with

\[
J(v, y) = \int_0^1 du_1 du_2 du_3 du_4 \left( 1 + u_2 \right)^{\epsilon - 1} u_3^{\epsilon/2} (1 - u_4)^{\epsilon - 1} \frac{g_0}{g_2^{(1 + \epsilon/2)}}
\]  

(A3)

where we have defined

\[
\begin{align*}
\tilde{g}_0 &= (1 - u_4)(1 + i y v) + u_4 g_0, \\
g_1 &= 1 + u_4(g_1 - 1), \\
g_0 &= 1 - u_3 + u_3 (1 + u_2) \{1 + u_2 [2 + u_1 (1 + 2 i y)]\}, \\
g_1 &= \frac{u_2 u_3}{g_2} \{g_2 [1 + u_1 (1 + u_2)] - u_2 u_3\}, \\
g_2 &= 1 - u_3 + u_2 u_3 (2 + u_2).
\end{align*}
\]

(A4-A8)

In the \( \epsilon \)-expansion \( J \) in Eq. (A3) is \( O(\epsilon^{-1}) \) at leading order. The singularity in \( \epsilon \) is isolated by writing \( J \) as

\[
J(v, y) = J_a(v, y) + J_b(v, y)
\]  

(A9)

where

\[
\begin{align*}
J_a(v, y) &= (1 + i y v)^{-3 \epsilon/2} \int_0^1 du_2 du_3 du_4 \left( 1 + u_2 \right)^{-1} \frac{u_3^{\epsilon/2}}{g_2^{\epsilon/2}} u_4^{\epsilon - 1}, \\
J_b(v, y) &= \int_0^1 du_1 du_2 du_3 du_4 \left( 1 + u_2 \right)^{\epsilon - 1} \frac{u_3^{\epsilon/2}}{g_2^{\epsilon/2}} u_4^{\epsilon - 1} \left[ (1 - u_4) \frac{\tilde{g}_0}{g_1^{3 - \epsilon/2}} - (1 + i y v)^{-\epsilon/2} \right].
\end{align*}
\]

(A10-A11)

In the \( \epsilon \)-expansion, Eq. (A10) becomes

\[
\begin{align*}
J_a(v, y) &= \frac{1}{\epsilon} \int_0^1 du_2 du_3 \frac{u_2}{g_2^2 (1 + u_2)} - \frac{3}{2} \ln(1 + i y v) \int_0^1 du_2 du_3 \frac{u_2}{g_2^2 (1 + u_2)} \\
&\quad + \int_0^1 du_2 du_3 \frac{u_2}{g_2^2 (1 + u_2)} \left[ \ln(1 + u_2) + \frac{1}{2} \ln u_3 + \frac{1}{2} \ln g_2 \right] + \epsilon F_a(v, y) + O(\epsilon^2),
\end{align*}
\]

(A12)

where \( F_a(v, y) \) is a function of \( v \) and \( y \). The integrals in Eq. (A12) are evaluated to produce

\[
J_a(v, y) = \frac{1}{\epsilon} \ln \frac{4}{3} - \frac{3}{2} \ln \frac{4}{3} \times \ln(1 + i y v) - 0.087 + \epsilon F_a(v, y) + O(\epsilon^2).
\]

(A13)

The non-singular integral \( J_b \), Eq. (A11), has the expansion

\[
J_b(v, y) = \int_0^1 du_1 du_2 du_3 du_4 \frac{u_2}{g_2^2 (1 + u_2)} \frac{1}{u_4} \left[ (1 - u_4)^2 - 1 \right] + \epsilon F_b(v, y) + O(\epsilon^2)
\]

\[
= 0.103 + \epsilon F_b(v, y) + O(\epsilon^2),
\]

(A14)
where $\mathcal{F}_a(v, y)$ is a function of $v$ and $y$. By combining the Eqs. (A13) and (A14) in Eq. (A8) we may use this result for $J$ in $I^2$, Eq. (A2), to obtain the result quoted in Eq. (4.34), with

$$F_2^2(y) = \frac{1}{3} \int_0^1 dv (1-v) \{ 2[\mathcal{F}_a(0, y) + \mathcal{F}_b(0, y)] - [\mathcal{F}_a(v, y) + \mathcal{F}_b(y, y)] \}. \quad (A15)$$

---

(1) Electronic address: wickham@phys.ufl.edu
(2) Electronic address: dorsey@phys.ufl.edu
(3) A. T. Dorsey, Phys. Rev. B 43, 1845 (1994).
(4) S. M. Anlage et al., Phys. Rev. Lett. 53, 2792 (1996).
(5) B. Salamon, J. Shi, N. Overend and M. A. Howson, Phys. Rev. B 76, 835 (1996).
(6) N. Overend, M. A. Howson and I. D. Lawrie, Phys. Rev. Lett. 72, 3238 (1994).
(7) V. Pasler et al., Phys. Rev. Lett. 81, 1094 (1998).
(8) L. G. Aslamazov and A. I. Larkin, Phys. Lett. 26A, 238 (1968).
(9) H. Schmidt, Z. Phys. 216, 336 (1968); 232, 443 (1970).
(10) A. T. Dorsey, Phys. Rev. B 43, 7575 (1991).
(11) M. A. Howson, N. Overend, I. D. Lawrie and M. B. Salamon, Phys. Rev. B 51, 11 984 (1995).
(12) W. Holm, Yu. Eltsev and Ö Rapp, Phys. Rev. B 51, 11 992 (1995).
(13) K. Moloni et al., Phys. Rev. Lett. 78, 3173 (1997).
(14) J.-T. Kim, N. Goldenfeld, J. Giapintzakis and D. M. Ginsberg, Phys. Rev. B 56, 118 (1997).
(15) C. Dekker, R. H. Koch, B. Oh and A. Gupta, Physica C 185-189, 1799 (1991).
(16) J. M. Roberts et al., Phys. Rev. B 51, 15 281 (1995).
(17) K. Moloni et al., Phys. Rev. B 56, 14 784 (1997).
(18) J. C. Booth et al., Phys. Rev. Lett. 77, 4438 (1996).
(19) D. S. Fisher, M. P. A. Fisher and D. A. Huse, Phys. Rev. B 43, 130 (1991).
(20) S.-K. Ma, Modern Theory of Critical Phenomena (Addison-Wesley, New York, 1976).
(21) P. C. Hohenberg and B. I. Halperin, Rev. Mod. Phys. 49, 435 (1977).
(22) Another dynamical model proposed to describe the superconducting transition is model F in the Hohenberg and Halperin classification [21], where the order parameter is coupled to a reversible, conserved energy-mass density field, as in a superfluid. However, the second-order model produced by this coupling is expected to be gapped in the presence of the Coulomb interaction, suggesting that the critical dynamics of the superconductor may be appropriately described using the purely relaxation model A [16].
(23) K. G. Wilson and M. E. Fisher, Phys. Rev. Lett. 28, 240 (1972); K. G. Wilson, Phys. Rev. Lett. 28, 548 (1972).
(24) B. I. Halperin, P. C. Hohenberg and S.-K. Ma, Phys. Rev. Lett. 29, 1548 (1972).
(25) B. I. Halperin, T. C. Lubensky and S.-K. Ma, Phys. Rev. Lett. 32, 292 (1974) first considered the possibility that, very near $T_c$, vector-potential fluctuations may cause the superconducting transition to be weakly first-order. Subsequent calculations and simulations suggest that in type-II superconductors the transition remains second-order, being either in the static universality class of the inverted 3D XY-model [see C. Dasgupta and B. I. Halperin, Phys. Rev. Lett. 47, 1556 (1981); and P. Olsson and S. Teitel, Phys. Rev. Lett. 80, 1964 (1998)] or in a completely new static universality class [see for example, L. Radzihovsky, Europhys. Lett. 29, 227 (1995)]. However, even in high-$T_c$ materials the temperature range over which vector-potential fluctuations are expected to be important is estimated to be so narrow as to be beyond present experimental resolution. Thus, for present purposes, ignoring these fluctuations is justified.
(26) Microscopic mechanisms such as the Maki-Thompson terms are not considered in the TDGL model. However, these terms are expected to be less singular than the divergences considered here. For a review, see A. A. Varlamov, G. Balestrino, E. Milani, and D. V. Livanov, cond-mat/9710175.
(27) D. Forster, Hydrodynamic Fluctuations, Broken Symmetry, and Correlation Functions (Addison-Wesley, New York, 1975).
(28) R. Kubo, M. Toda and N. Hashitsume, Statistical Physics II: Nonequilibrium Statistical Mechanics (Springer-Verlag, New York, 1985).
(29) P. C. Martin, E. D. Siggia and H. A. Rose, Phys. Rev. A 8, 423 (1973).
(30) C. De Dominicis and L. Peliti, Phys. Rev. B 18, 353 (1978).
(31) G. F. Mazenko, in Correlation Functions and Quasiparticle Interactions in Condensed Matter, edited by J. Woods Hailey, NATO ASI, Ser. B, Vol. 35 (Plenum, New York, 1978).
(32) D. Amit, Field Theory, the Renormalization Group, and Critical Phenomena (World Scientific, Singapore, 1984).
(33) Our expressions for the renormalization constants differ slightly from those in [21,22] since the coupling $u$ defined in Eq. (2.23) involves different numerical factors than the definition in [21,22].
(34) In Eq. (1.4) it is possible that terms of the form $p^2 x_p F(y)$ also contribute to the conductivity near $T_c$. To check this would, however, require a calculation correct to $O(p^4)$.
(35) It is interesting to note that Monte Carlo simulations of vortex-loop dynamics by J. Lidmar et al., Phys. Rev. B 58, 2827 (1998) give $z = 2.7$ when vector-potential fluctuations are included. At present, the theory for the critical dynamics of the superconducting transition including
vector-potential fluctuations is *terra incognita* [see however C.-Y. Mou, Phys. Rev. B 55, R3378 (1997)]. It seems unlikely, though, that the experiment of Ref. [18] is accessing the regime of vector-potential fluctuations (see the discussion in Ref. [23]).

[36] B. I. Halperin, P. C. Hohenberg and E. D. Siggia, Phys. Rev. B 13, 1299 (1976).

[37] Monte Carlo simulations of vortex-loop dynamics by H. Weber and H. J. Jensen, Phys. Rev. Lett. 78, 2620 (1997), and Lidmar et al. in Ref. [35] find $z = 1.5$ for the uncharged superconducting transition. It is not clear, however whether a connection exists between Monte Carlo vortex-loop dynamics and model F dynamics.

[38] S. Ullah and A. T. Dorsey, Phys. Rev. B 44, 262 (1991); I. D. Lawrie, Phys. Rev. Lett. 79, 131 (1997).