Kentucky, 4 Christiana Care Healthcare System, Hockessin, Delaware; 5 West Virginia University School of Medicine, Morgantown, West Virginia; 5 Maine Medical Center Research Institute, Scarborough, Maine; 6 Nemours Children’s Health System & University of Delaware, Wilmington, Delaware; 7 University of Mississippi Medical Center, Jackson, Mississippi

Session: P-21 COVID-19 Research

Background. A major challenge to identifying effective treatments for COVID-19 has been the conflicting results offered by small, often underpowered clinical trials. The WHO Trial Registration Database (WHO-TRD) [1] has been used to measure clinical improvement among clinical trial participants and has the benefit of measuring effect across the spectrum of clinical illness. We modified the WHO OS to enable assessment of COVID-19 patient outcomes using electronic health record (EHR) data.

Methods. Employing the National COVID Cohort Collaborative [2] database of EHR data from 50 sites in the United States, we assessed patient outcomes, April 1, 2020 to March 31, 2021, among those with a SARS-CoV-2 diagnosis, using the following modification of the WHO OS: 1=Outpatient, 3=Hospitalized, 5=Required Oxygen (any), 7=Mechanical Ventilation, 9=Organ Support (pressors; ECMO). 11-Death. OS is defined over 4 weeks beginning at first diagnosis and recalculated each week using the patient’s maximum OS value in the corresponding 7-day period. Modified OS distributions were compared across time using a Pearson Chi-squared test.

Results. The study sample included 1,446,831 patients, 54.7% women, 14.7% Black, 14.6% Hispanic/Latinx. Pearson Chi-Sq P < 0.0001 was obtained comparing the distribution of 2nd Quarter 2020 OS with the distribution of later time points for Week 4.

Table 1. OS at week 1 by quartar

Week 1	Week 4							
1 Outcome	30.2%	28.3%	30.0%	28.1%	30.0%	28.1%	30.0%	28.1%
3 Hospitalized	3.87%	3.67%	3.92%	3.71%	3.95%	3.74%	3.97%	3.76%
5 Oxygen	2.80%	2.58%	2.86%	2.64%	2.90%	2.68%	2.93%	2.70%
7 Mechanical Ventilation	0.29%	0.25%	0.31%	0.27%	0.33%	0.29%	0.35%	0.31%
9 Support	1.31%	1.21%	1.33%	1.23%	1.35%	1.25%	1.37%	1.27%
11 Death	0.53%	0.49%	0.55%	0.51%	0.59%	0.54%	0.63%	0.58%

Disclosures. All authors: No reported disclosures

449. Performance of the Brighton Case Definition for Multisystem Inflammatory Syndrome in Children (MIS-C) Among a Large Single Center Cohort

Background. Multisystem Inflammatory Syndrome in Children (MIS-C) is a rare, life-threatening, hyperinflammatory condition presumed to follow SARS-CoV-2 infection. Whether MIS-C can also follow SARS-CoV-2 vaccination is not clear, making MIS-C an adverse event of special interest following immunization. Monitoring for post-vaccine MIS-C is complicated by the clinical overlap of MIS-C with numerous other inflammatory conditions including Kawasaki Disease, toxic shock syndrome, and viral myocarditis. A case definition for MIS-C was recently created with the Brighton Collaboration (BC) to determine the performance of the BC MIS-C case definition among a large, single-center MIS-C cohort.

Methods. Retrospective review was performed for the first 100 MIS-C cases at our institution (May 2020–February 2021). All cases met the Centers for Disease Control Prevention (CDC) definition of MIS-C. Laboratory results and cardiac studies were collected and used to determine cases that fulfilled the BC case definition for MIS-C (see figure).

Case Definition: Definite Case

Results. Of 100 children (age < 21 years) diagnosed with MIS-C using the CDC case definition, 93 patients also fulfilled the BC case definition. All 100 patients had elevated laboratory markers of inflammation and positive SARS-CoV-2 antibodies. However, 1 patient was excluded for significant respiratory symptoms (pulmonary hemorrhage), 5 were excluded due to only 1 clinical feature, and an additional patient was excluded for having none of the measures of disease activity. Among the 93 patients fulfilling the revised case definition, 88 (95%) met criteria for a definite case. Five of the 93 patients (5%) were considered probable cases, 1 reported only 1 day of fever and had only 1 measure of disease activity.

Conclusion. The original case definitions for MIS-C were created rapidly following the first emerging reports of this hyperinflammatory state. Knowledge of the varied clinical presentations of this disorder has grown substantially. Modification of the case definition to include features typical of MIS-C may more precisely define the MIS-C case diagnosis in the face of conditions which mimic MIS-C, and for accurate and reliable monitoring for adverse events following immunization.

Disclosures. Flor M. Munoz, MD, Biocryst (Scientific Research Study Investigator); Gilead (Scientific Research Study Investigator or Co-Investigator); Meixa Other Financial or Material Support, DSMB/Moderna (Scientific Research Study Investigator or Co-Investigator); Pfizer (Scientific Research Study Investigator, Other Financial or Material Support, DSMB/Virorexin (Other Financial or Material Support, DSMB)

450. Type I Interferon Autoantibodies Are Detected in Those with Critical COVID-19, Including a Young Female Patient

Debra Ye, B.S.1; Marana Tso, B.S.1; Elana Shaw, B.S.2; Lindsey B. Rosen, Ph.D.2; Emily Samuels, B.S.1; Paul Bastard, Ph.D.2; Jean-Laurent Casanova, M.D., Ph.D.1; Steven M. Holland, M.D.3; Helen C. Su, M.D., Ph.D.2; Stephanie A. Richard, Ph.D.4; Katrin Mende, Ph.D.2; Tahaniyat Lalani, MBBS5; David A. Lindholm, MD5; Mark P. Simons, Ph.D., MSPH6; David Trubble, M.D., DrPh7; Allison Malloy, M.D.8; Eric Laing, Ph.D.9; Brian Agan, MD9; Simon Polliet, MBBS10; Timothy Burgess, M.D., MPH11; Andrew L. Snow, Ph.D.12; Kristine S. Kuijper, M.D.13; Janet E. McWhirter, M.D.14; Ivan Reiner, M.D.15; Joseph W. Roberts, M.D.16; University of California, San Francisco, Department of Medicine; Dr. A. Tae Song, M.D., Ph.D., Ph.D.17; University of California, San Francisco, Department of Medicine; Dr. Nadeem Durrani, M.D., Ph.D.18; University of California, San Francisco, Department of Medicine; Dr. Robert W. Groopman, M.D.19; University of California, San Francisco, Department of Medicine; Dr. William G. Kaelin, Jr., M.D., Ph.D.20; University of California, San Francisco, Department of Medicine; Dr. Mark A. Link, M.D., Ph.D.21; University of California, San Francisco, Department of Medicine; Dr. Amy E. O’Leary, M.D.22; University of California, San Francisco, Department of Medicine; Dr.新冠 (COVID-19) pandemic. Immunocompromised patients with COVID-19 may represent a subset of patients in which in-house hospitalization must be carefully considered, even with mild oxygen requirements. Health systems should consider ACHP as a substitution for hospitalization for COVID-19 patients with mild symptoms.

Disclosures. All authors: No reported disclosures

Abstracts • OFID 2021:8 (Suppl 1) • 3523
Background. Approximately 10-20% of patients with COVID-19 harbor neutralizing autoantibodies (auto-Abs) that target type I interferons (IFN), a family of cytokines that induce critical innate immune defense mechanisms upon viral infection. Studies to date indicate that these auto-Abs are mostly detected in men over age 65.

Methods. We screened for type I IFN serum auto-Abs in sera collected < 21 days post-symptom onset in a subset of 103 COVID-19 inpatients and 24 outpatients drawn from a large prospective cohort study of SARS-CoV-2 infected patients enrolled across U.S. Military Treatment Facilities. The mean age of this n = 127 subset of study participants was 55.2 years (SD = 15.2 years, range 7.7 – 86.2 years), and 86/127 (67.7%) were male.

Results. Among those hospitalized 49/103 (47.6%) had severe COVID-19 (required at least high flow oxygen), and nine subjects died. We detected neutralizing auto-Abs against IFN-α, IFN-ω, or both, in four inpatients (3.9%, 8.2% of severe cases), with no auto-Abs detected in outpatients. Three of these patients were white males over the age of 62, all with multiple comorbidities; two of whom died and the third requiring high flow oxygen therapy. The fourth patient was a 36-year-old Hispanic female with a history of obesity who required mechanical ventilation during her admission for COVID-19.

Conclusion. These findings support the association between type I IFN auto-antibody production and life-threatening COVID-19. With further validation, reliable high-throughput screening for type I IFN auto-Abs may inform diagnosis, pathogenesis and treatment strategies for COVID-19, particularly in older males. Our finding of type I IFN auto-Ab production in a younger female prompts further study of this autoimmune phenotype in a broader population.

Disclosures. David A. Lindholm, MD, American Board of Internal Medicine (Individual(s) Involved: Self): Member of Auxiliary R&D Infectious Disease Item-Writer Task Force. No financial support received. No exam questions will be disclosed.

Other Financial or Material Support. David Tribble, M.D., DrPH, Astra Zeneca (Other Financial or Material Support, HJF, in support of USU IDCRP, funded under a CRADA to augment the conduct of an unrelated Phase III COVID-19 vaccine trial sponsored by AstraZeneca as part of USG response (unrelated work)) Simon Pollett, MBBS, Astra Zeneca (Other Financial or Material Support, HJF, in support of USU IDCRP, funded under a CRADA to augment the conduct of an unrelated Phase III COVID-19 vaccine trial sponsored by AstraZeneca as part of USG response (unrelated work)).

452. Correlation of Charleston Comorbidity Index Score as the COVID-19 Pandemic Surged Throughout HCA Healthcare Facilities and Patient Outcomes
Irene Riestra Guinane, MD; Ernesto Robalino Gonzaga, MD; Isabel Riestra, n/a; Steven Char, MD; Minh Q. Ho, DO; UCF/HCA GME Consortium, Kissimmee, Florida; UC/UCF Healthcare GME, Tampa, Florida.

Session: P-21. COVID-19 Research

Background. As the COVID-19 pandemic raged throughout the United States, the healthcare system was strained due to a sudden increase in demand. Testing was initially limited, and the perception was that patients with high comorbidity burden were at higher risk for poor outcomes. The Charleston Comorbidity Index (CCI) is widely used as a predictor of prognosis and one-year mortality for a wide range of pathologies. This study aims to assess whether a correlation exists between CCI score, COVID-19 incidence throughout the pandemic and patient outcomes.

Charleston Comorbidity Index Score

Charleston Comorbidity Index (CCI)	Condition	Score
	Myocardial infarction	1
	Congestive Heart Failure	1
	Peripheral Vascular Disease (including aortic aneurysm >6cm)	1
	TIA or Cerebrovascular disease with mild of no residua	1
	Dementia	1
	Chronic pulmonary disease	1
	Connective tissue disease	1
	Peptic ulcer disease	1
	Mild liver disease without portal HTN	1
	Diabetes without end-organ damage	1
	Hemiplegia	2
	Moderate or severe renal disease	2
	Diabetes with end-organ damage	2
	Tumor without metastases (diagnosed <5years ago)	2
	Leukemia	2
	Lymphoma	2
	Moderate or severe liver disease	3
	Metastatic solid tumor	6
	AIDS	6

Scoring system for Charleston Comorbidity Index (CCI). Plus 1 point for every decade age 50 years and over, maximum 4 points. Higher scores indicate a more severe condition and consequently, a worse prognosis.

Methods. Multicenter, retrospective review of patients diagnosed with COVID-19 from January 2020 to September 2020 throughout the HCA Healthcare system. The percent of total encounters that were COVID-19 positive by state was calculated along