Evidence-Based Rehabilitation for Multiple Sclerosis Made Easy: The Online APPECO Platform

Martin Heine, PhD; Heleen Beckerman, PhD; Päivi Hämaläinen, PhD; Vincent de Groot MD, PhD

From Amsterdam UMC, Vrije Universiteit Amsterdam, Rehabilitation Medicine, Amsterdam Movement Sciences, MS Center Amsterdam, Amsterdam, The Netherlands (MH, HB, VdG); Institute of Sport and Exercise Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa (MH); and Finnish Neuro Society, Masku Neurological Rehabilitation Centre, Masku, Finland (PH). Correspondence: Martin Heine, PhD, Amsterdam UMC, Vrije Universiteit Amsterdam, Rehabilitation Medicine, MS Center Amsterdam, PO Box 7057, 1007 MB Amsterdam, The Netherlands; e-mail: m.heine@amsterdamumc.nl.

Running head: APPECO: Applying Evidence with Confidence

DOI: 10.7224/1537-2073.2019-100

© 2020 Consortium of Multiple Sclerosis Centers.
Practice Points

- Health professionals need innovative tools to reduce the delay between the generation of evidence and uptake of that evidence in clinical practice.
- APPECO is an intuitive online platform that facilitates evidence-based rehabilitation in MS based on the latest evidence available.
- Currently (February 2020), APPECO includes detail for 250 studies on the management of fatigue, cognitive dysfunction, depression, pain, and mobility in patients with MS.
Abstract

With the current rate in growth of evidence in multiple sclerosis (MS) rehabilitation, systematic reviews and clinical guidelines typically lag behind the most currently published research findings. In addition, most healthcare professionals lack the time, resources, or adequate skills to identify and evaluate new evidence, and hands-on-tools to implement the latest evidence into clinical practice are often lacking or not readily available. The Applying Evidence with Confidence (APPECO) platform is a newly developed, online tool that addresses these key challenges. APPECO (at www.appeco.net) was initially set-up as a proof-of-concept for the common MS symptoms fatigue and cognitive function. Subsequently, intervention studies about depression, pain, and mobility were added. APPECO currently hosts detailed information from 250 randomized clinical trials, 293 interventions, and 1250 effect sizes on 53 patient outcomes. Only few studies with high quality (i.e. low risk of bias) are available that were specifically designed to test the benefits of MS rehabilitation on fatigue (n = 5; 2.4%), cognitive function (n = 4; 1.6%), and depression (n = 2, 0.8%). No high-quality studies were included for pain and mobility. APPECO has the potential to address key challenges in evidence-based rehabilitation medicine for MS and facilitate swift knowledge translation from evidence into clinical practice. Sustainability of APPECO depends on a continuous resource impulse (e.g. financial, time, editorial management, platform maintenance) to ensure up-to-date information across all relevant MS symptoms and activity limitations (~2-6 RCTs per month). Ways to optimize knowledge translation in the absence of high-quality evidence within APPECO need to be explored further.
With the current rate of growth in evidence for multiple sclerosis (MS) rehabilitation, systematic reviews that focus on available evidence of therapeutic interventions typically lag behind the most currently published research findings. The lag between evidence and clinical practice can be attributed to the enormous number of studies on the one hand, and complexity of work regarding thorough summary and meta-analysis of individual studies on the other hand. Thus, when systematic reviews and clinical guidelines based on available evidence are published, they are, in fact, already outdated. In addition, an update may not follow within the first 5 years or even not occur at all for a specific intervention. Subsequently, this leads to a delay in knowledge translation between the addition and evaluation of new evidence, the systematic review, and subsequent clinical guidelines.

To illustrate, Amatya and colleagues recently (2019) published an overview of Cochrane systematic reviews within the field of rehabilitation for MS. One aim was to provide a “guiding tool for evidence-based decisions on appropriate management approaches in people with MS.” Based on a search in December 2017—which in itself already illustrates part of the delay—15 systematic reviews were identified (reporting on 164 randomized clinical trials [RCTs]). The median underlying search date of these 15 Cochrane reviews, despite strong recommendations to update Cochrane reviews regularly, was 2011 (range 2003–2015). Hence, this indicates a gap of 4 to 16 years between the primary evidence on which each Cochrane review was built, and the publication of the overview of Cochrane reviews by Amatya et al. A simple PubMed search (February 2020) on indexed clinical trials with respect to MS (Mesh) and rehabilitation (Mesh) shows that during this 5-year gap, ~70 RCTs on MS rehabilitation were published (and >372 since the earliest Cochrane review from 2003). This raises the question as to how “current” this
guiding tool for evidence-based decisions on appropriate treatment approaches in people with MS is; a limitation which was rightly stressed and discussed by Amatya and colleagues. However, where does this “flaw in evidence-based medicine” leave the time-constrained allied health care professional willing to practice evidence-based medicine?

The next challenge for the allied health professional is to determine whether newly available evidence is actually the “best” evidence (i.e. unbiased study results, applicability to context). In addition to time and resources, lack of knowledge and inadequate skills are reported as key barriers to evidence-based medicine across medical fields.

When the therapist or physician has identified the latest evidence, and deemed the evidence of sufficient quality and applicable to his specific context or patient, the subsequent third important challenge is the ability to implement that best evidence into clinical practice. Without a complete published description of interventions, clinicians and patients cannot reliably implement interventions that are shown to be useful. The introduction and use of the “template for intervention description and replication (TIDieR) checklist” has addressed this challenge. In addition, the PROGRESS-plus recommendation—an acronym used to identify characteristics (e.g. gender, socio-economic status, country) that stratify health opportunities and outcomes—may also address some of the concerns in terms of generalizability and applicability (also called external validity) of the studied intervention.

In this article, we describe the Applying Evidence with Confidence (APPECO) project, its development, and concise methodology within the field of MS rehabilitation. APPECO is an innovative freely available online platform that facilitates: i) intuitive evaluation of the latest evidence for the non-pharmacological management of impairments, activity limitations, and
participation restrictions in patients with MS, ii) easier clinical decision making informed by three relevant quality indicators, and iii) hands-on and structured tools to implement best evidence into daily clinical practice at the click of a button. APPECO will assist each MS rehabilitation professional to apply evidence with confidence: www.appeco.net

Development and Structure of APPECO Platform

In order for APPECO to address the described challenges, three specific phases are described and were developed: i) identify the latest evidence, ii) data-extraction, appraisal and synthesis, and iii) knowledge translation. In Figure S1, an overview is provided of the development process and the concise methodology behind key steps leading to the information available on www.appeco.net.

Development Process

APPECO was developed under the auspices of the Rehabilitation in MS (RIMS) European Network for Best Practice and Research as a proof-of-concept, with the vision to revolutionize evidence-based medicine in MS rehabilitation and beyond; a continuously up-to-date (i.e. living) synthesis of evidence to equip health care professionals with the tools needed to practice evidence-based medicine. A stakeholder meeting, representing RIMS members, industry and academia, was organized during the European Committee for Treatment and Research in MS (ECTRIMS) conference in Barcelona, 2015. The purpose of this meeting was to discuss a core
set of requirements and functionalities for the APPECO platform for it to be able to address the key challenges in evidence-based MS rehabilitation. A software developer, experienced in the development of medically-oriented online applications (EverywhereIM), was contracted. A multidisciplinary advisory board was composed of key experts in the field of MS rehabilitation through the RIMS special interest groups. This advisory board was engaged at strategic moments in the development process to provide valuable feedback as to the functionality, lay-out, and user-friendliness of APPECO. Through multiple conferences (e.g. RIMS special interest group meetings), the broader MS community was actively engaged in the concept and development of APPECO. The proof-of-principle version of APPECO, with 142 unique RCTs describing the effects of 162 different rehabilitation interventions on fatigue and/or cognitive function in patients with MS, was launched during the RIMS annual meeting in May 2018 in Amsterdam.

Following this launch, funding was acquired to i) extend the platform to domains of mobility, pain, and depression, ii) update the information on fatigue and cognitive function, and iii) improve functionalities of the platform for editor, reviewer, and users.

Phase 1: Identification of Latest Evidence and Allocating Resources

Identify New Evidence

Together with an expert medical librarian of the VU University Medical Center, a literature search strategy was developed (see Appendix S1 – S3) to identify studies meeting the
following criteria: i) randomized clinical trials, ii) patients with MS, and iii) at least one of the experimental interventions could be considered a rehabilitation intervention.

Rehabilitation was defined as “any intervention that has the aim to improve or maintain body function, activity and/or participation and involves the interference of an allied health care professional within the context of a medical setting (e.g. hospital, rehabilitation clinic, physiotherapy clinic). Regular email alerts were set-up for MEDLINE (PubMed), Embase, and Web of Science and sent directly to the APPECO platform. Subsequently, the platform automatically derives vital study information from each e-mail alert, including title, source of publication, authors, and abstract. Any potential duplicates with or serial publications of previously included records are earmarked for verification by the editorial team to ensure each patient sample is only included in the platform once. Studies that are identified through other sources (e.g. word of mouth, systematic reviews, reference lists) can be added manually by the editor if applicable.

Inclusion/Exclusion of Studies

The administrative back-end of the platform facilitates the management of a pool of independent reviewers. This is a multidisciplinary expert panel that is provided role-based access rights. A notification is sent out to two independent reviewers who are tasked to verify that each new study (based on title and abstract) meets the APPECO inclusion and exclusion criteria. Non-inferiority and equivalence trials are presently excluded due to the lack of contrast between the experimental arms (e.g. aerobic training versus resistance training). The editor will be notified to
make a final decision if the two reviewers disagree. When the study is included, the editor will be automatically requested to allocate the full-text of that specific study for data extraction.

Phase 2: Data Extraction, Appraisal, and Synthesis

Data Extraction

A third reviewer (with a similar interest as the subject of the specific study) is requested to conduct the data extraction of this specific study, while a fourth reviewer is requested to verify the data extraction of the third (i.e. four eyes principle). Item S1 shows all the study information that is extracted.6,8

Specific features have been implemented to reduce extraction error and improve reviewer convenience. For instance, the APPECO system “learns” which outcome measures have been extracted previously and will autocomplete to avoid spelling errors. Subsequently, the domain (e.g. fatigue) that a specific outcome relates to, and the conventional “direction” of the measurement instrument (e.g. higher outcome is better result) linked to that specific outcome are “remembered”. Reviewers can decline to undertake a specific task in case of conflict of interest to avoid bias (e.g. review own article).

While the APPECO platform initially has been developed as a proof-of-concept with respect to fatigue and cognitive function, during the data extraction process, all other study outcomes were also extracted. Outcomes are structured according the International Classification of Functioning (ICF) model (see Figure S2).
Quality Appraisal

The study quality is assessed (reviewer 3) and verified (reviewer 4) using the Cochrane Risk of Bias tool (see Item S1 for the seven items).\(^8\) Each item is appraised as having low, high or unclear risk of bias. A study is considered of high methodological quality if all items, except blinding of participants and personnel (considered unfeasible in rehabilitation studies), are appraised as low risk.

Phase 3: How to Use APPECO - Knowledge Translation

Health care professionals are recommended to follow a stepwise approach in using APPECO to reach an informed clinical decision based on the scientific evidence (Table 1).

Presentation and Visualizing Effects of MS Rehabilitation Interventions

Figure S3 shows how results are presented: intervention main type (e.g. cognitive training), intervention sub-type (e.g. Attention / Information processing speed training), and study level (e.g. Charvet et al.). A colour scheme is used to quickly identify a significant positive result (green), a significant negative result (red), or non-significant effect (grey). For each study, a maximum of two “effects” are plotted, the first to indicate the immediate post-intervention effect, and the second the “long-term” effect. These effects are plotted along the x-axis based on...
the duration of the therapy in weeks. Detail on the actual size of the effect can be obtained by hovering the pointer over the respective diamond at the aggregated main type of intervention level, at the intervention sub-type level, and/or at study level.

How to Find “Best-Evidence” Studies?

Each study is assigned a maximum of three stars, which can direct the healthcare professional to determine the “best-evidence.” Star 1: This star is provided to studies that have a high study quality (i.e. low risk of bias on all items except blinding of participants / personnel). Star 2: This star is provided when the primary outcome of the study matches to the user-selected patient symptom domain. For example, a star is allocated if the user selects the domain “fatigue,” and the primary outcome of the specific study was “fatigue.” Star 3: This star is provided if the patients in that specific study were included based on having a pre-defined level of severity with respect to the symptom or activity limitation. For example, a star is allocated if the user selects the domain “fatigue,” and patients in the specific study had a pre-defined level of fatigue.

Stars 2 and 3 are flexible, in a way that if the user selects a different patient symptom or activity limitation of interest, the stars allocated to the specific study will change as well. At the overarching intervention levels, an average appraisal is visualized by “filling” the star based on the percentage of underlying studies reaching that criterion.

Assisting Implementation
The APPECO platform has included numerous technical as well as hands-on-tools to assist implementation of the best evidence of MS rehabilitation into clinical practice. First, APPECO has been developed for tablet, laptop, and desktop. Second, each intervention has been extracted using the TIDieR checklist. A pdf print of this checklist can be obtained by the click of a button. Third, an APPECO summary of findings is automatically generated for each study, indicating the type of intervention studied, study quality, positive and negative effects found, outcomes for which no effect was found, and the type of study participants (i.e. external validity). A pdf print of this summary can be obtained. Fourth, additional information that has been published open access with the original publication, that assist in implementation, is made available as attachments. Fifth, the APPECO study team pro-actively reaches out to corresponding authors of studies identified as of high quality to provide hands-on-tools that may assist implementation of their treatment protocols. An email is sent from the APPECO platform, providing the author access to a specific environment that will allow the author to: i) complement the data extraction, and fill in the missing pieces, ii) notify the editor of errors in the data extraction if applicable, and iii) upload key documents and materials (.pdf, .docx, .ppt, .mp4, and others) that are valuable in the knowledge translation process. This can, for instance, be a treatment guideline used during the conduct of the study, a recorded PowerPoint presentation, instructional video material for specific exercises, infographics, amongst others. To prevent bias, the quality of the materials and the change requests of study authors will be reviewed and verified by the editor before made available.
APPECO currently hosts detailed information from 250 RCTs, 293 interventions, and 1250 effect sizes on 53 patient complaints (February 2020). A total of 152 of those 293 interventions report on fatigue (52%) in patients with MS, 111 (38%) on mobility, 106 (36%) on depression, 58 (20%) on attention and information processing speed, 38 (13%) on memory and learning, 29 (10%) on executive functions, 12 (4%) on perceived cognitive problems, and 12 (4%) on other cognitive functions. In the process of extracting data on fatigue, cognition, mobility, pain, and depression, other domains were also included on the platform, of which quality of life (n = 108 interventions), balance (n = 51) and anxiety (n = 48) were most frequent. (see Table 2).

Three Star Studies

There are few studies with high quality available that were specifically designed to test the benefits of MS rehabilitation on fatigue (n = 6; 2.4%),14 cognitive function (n = 4; 1.6%),15-18 and depression (n = 2, 0.8%).14,19 No high-quality studies were included for pain and mobility. An appraisal of studies with a low risk of bias (star 1) was given in studies that included fatigue (n = 23 studies, 9.2%), attention and information processing speed (n = 8 studies; 3.2%), memory and learning (n = 8 studies, 3.2%), executive functions (n = 4 studies; 1.6%), perceived cognitive problems (n = 4 studies; 1.6%), and other cognitive functions (n = 3 studies; 1.2%)

APPECO Users
The initial user statistics in the first 2.5 years of being online available (May 2017 – February 2020) indicate 2300 unique users, who visited a total of 4200 sessions for, on average, 7.56 minutes. Of the users, 55.6% originated from sites not directly related to the study team developing the platform.

Discussion

This paper describes the development, methodology and current content of a living documentation system to address key challenges in evidence-based rehabilitation for patients with MS, including i) the time gap between evidence generation and uptake in guidelines and systematic reviews, ii) limited knowledge and resources for health care providers to appraise the quality and applicability of scientific research to their setting and/or patient, and iii) lack of hands-on tools that assist the implementation of research into clinical practice.

Additional strengths of APPECO and future perspectives

Under the assumption of a fully up-to-date platform with respect to MS rehabilitation, there are a couple of additional strengths that the APPECO platform may provide. First, in contrast to systematic reviews, which most often tend to be specific in terms of intervention and patient outcome, the APPECO platform provides an overview of multiple types of interventions compared to control interventions, and for a large number of patient outcomes. This “side-by-side” information could be used by clinicians to direct the patient to the most appropriate health care provider for the treatment most likely to lead to significant benefits. Second, information
with respect to the duration and frequency of the intervention, and patient preferences, can be taken into account in making an informed evidence-based yet individualized decision with respect to the most appropriate and feasible treatment strategy. Contextualizing the evidence may increase adherence and uptake of evidence for rehabilitation.20

\textbf{Challenges and Limitations}

The actuality and sustainability of APPECO in the provision of evidence-based MS rehabilitation is dependent on the platform staying up-to-date, and inclusiveness of all domains relevant to the rehabilitation of patients with MS. These two aspects (up-to-date, comprehensiveness) pose challenges, as with many conventional guidelines. The 250 RCTs currently included represent a significant, yet incomplete portion of the RCTs conducted in this field. It is going to require a substantial resource impulse (e.g. time).

A method of assigning reviewers based on their special interest (in line with the RIMS special interest groups) has already been built in. By assigning reviewers, with a special interest to process new evidence that meets that special interest, can be considered a viable strategy to reduce the perceived burden of maintaining APPECO by the academic community. A future perspective could be that APPECO is embraced by publishers, and study authors themselves to provide detailed information at the time of publishing their study results. Obviously, this would then need to be verified by independent reviewers against the publication to ensure academic rigor. The process of filling the platform (~2-3 hours per study for data-extraction or...
verification) was conducted by a select group of researchers within the study team in order to address the sheer number of studies that needed to be included.

Until now, the study team has been conservative in the request for these materials, and only additional material for selected, high-quality studies is currently available. While knowledge translation in conventional guideline development is a deliberate process, the APPECO platform largely relies on the input from study authors. The level to which additional information is available that can really assist in implementing evidence into clinical practice remains to be evaluated and poses a second challenge for the APPECO platform. This can be further complicated by the potential multilingual nature and cross-cultural differences of implementation tools. The latter may require resources for translation of materials or limit the external validity for some of the studies. However, the online nature of the environment offers ample opportunity to integrate educational components and directives (e.g. animations, instructional videos, a how-to-use guide) within APPECO that can assist the user in getting to the right information.

What if there is no (best) evidence for a specific intervention, patient symptom or activity limitation? The methodological quality of the studies included was limited (star 1), and in the context of fatigue, cognitive function, depression, pain and mobility, interventions were rarely designed to specifically and primarily address these domains as shown by star 2 and inclusion criteria (star 3) in these studies. The lack of (quality) evidence for some interventions albeit often used in clinical practice therefore poses an important third limitation. In conventional guideline development, in the absence of evidence, one formulates consensus-based recommendations based on extensive stakeholder and expert engagement. Including expert
recommendations in the absence of evidence within APPECO is a step that needs to be carefully considered. Expert-based recommendations may be very context specific and may be biased or politically driven.

Conclusions

The APPECO platform aims to substantially improve the way knowledge is translated into clinical practice and enable health care professionals to apply evidence with confidence in MS rehabilitation. Its potential depends on the ability of keeping APPECO up-to-date, and the availability of practical materials that assist implementation of effective treatments.

Acknowledgments: The authors would like to acknowledge the multidisciplinary advisory board that provided invaluable input throughout the course of the APPECO development.

Financial Disclosures: The authors report no conflict of interest.

Funding/Support: The development of APPECO has been financially supported by Sanofi Genzyme (phase 1; through RIMS). The Dutch MS Research Foundation (PP 18-001) and Roche financially supported the maintenance of the platform and data-extraction of MS rehabilitation studies related to depression, pain and mobility.
References

1. Amatya B, Khan F, Galea M. Rehabilitation for people with multiple sclerosis: an overview of Cochrane Reviews. *Cochrane Database of Systematic Reviews*. Epub ahead of print 2019. DOI: 10.1002/14651858.CD012732.pub2.

2. Garner P, Hopewell S, Chandler J, et al. When and how to update systematic reviews: consensus and checklist. *BMJ*. 2016;354:i3507.

3. Steultjens EE, Dekker JJ, Bouter LM, et al. Occupational therapy for multiple sclerosis. *Cochrane Database of Systematic Reviews*. Epub ahead of print 2003. DOI: 10.1002/14651858.CD003608.

4. Heine M, Port I van de, Rietberg MB, et al. Exercise therapy for fatigue in multiple sclerosis. *Cochrane Database of Systematic Reviews*. Epub ahead of print 2015. DOI: 10.1002/14651858.CD009956.pub2.

5. Sadeghi-Bazargani H, Tabrizi JS, Azami-Aghdash S. Barriers to evidence-based medicine: a systematic review. *J Eval Clin Pract*. 2014;20:793-802.

6. Hoffmann TC, Glasziou PP, Boutron I, et al. Better reporting of interventions: template for intervention description and replication (TIDieR) checklist and guide. *BMJ*. 2014;348:g1687.

7. O’Neill J, Tabish H, Welch V, et al. Applying an equity lens to interventions: using PROGRESS ensures consideration of socially stratifying factors to illuminate inequities in health. *J Clin Epidemiol*. 2014;67:56-64.
8. Higgins J, Green S. *Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 [updated March 2011]*. The Cochrane Collaboration, http://handbook.cochrane.org (2011).

9. Heine M, Verschuren O, Hoogervorst EL, et al. Does aerobic training alleviate fatigue and improve societal participation in patients with multiple sclerosis? A randomized controlled trial. *Mult Scler.* 2017;23:1517-1526.

10. van den Akker LE, Beckerman H, Collette EH, et al. Cognitive behavioral therapy positively affects fatigue in patients with multiple sclerosis: Results of a randomized controlled trial. *Mult Scler.* 2017;23:1542-1553.

11. Blikman LJ, van Meeteren J, Twisk JW, et al. Effectiveness of energy conservation management on fatigue and participation in multiple sclerosis: A randomized controlled trial. *Mult Scler.* 2017;23:1527-1541.

12. Pöttgen J, Moss-Morris R, Wendebourg J-M, et al. Randomised controlled trial of a self-guided online fatigue intervention in multiple sclerosis. *J Neurol Neurosurg Psychiatry.* 2018;89:970-976.

13. Thomas S, Thomas PW, Kersten P, et al. A pragmatic parallel arm multi-centre randomised controlled trial to assess the effectiveness and cost-effectiveness of a group-based fatigue management programme (FACETS) for people with multiple sclerosis. *J Neurol Neurosurg Psychiatry.* 2013;84:1092-1099.

14. Grossman P, Kappos L, Gensicke H, et al. MS quality of life, depression, and fatigue improve after mindfulness training: a randomized trial. *Neurology.* 2010;75:1141-1149.
15. Mäntynen A, Rosti-Otajärvi E, Koivisto K, et al. Neuropsychological rehabilitation does not improve cognitive performance but reduces perceived cognitive deficits in patients with multiple sclerosis: a randomised, controlled, multi-centre trial. *Mult Scler.* 2014;20:99-107.

16. Campbell J, Langdon D, Cercignani M, et al. A Randomised Controlled Trial of Efficacy of Cognitive Rehabilitation in Multiple Sclerosis: A Cognitive, Behavioural, and MRI Study. *Neural Plast.* 2016;2016:4292585.

17. Carr SE, das Nair R, Schwartz AF, et al. Group memory rehabilitation for people with multiple sclerosis: a feasibility randomized controlled trial. *Clin Rehabil.* 2014;28:552-561.

18. Chiaravalloti ND, Moore NB, Nikelshpur OM, et al. An RCT to treat learning impairment in multiple sclerosis: The MEMREHAB trial. *Neurology.* 2013;81:2066-2072.

19. Bombardier CH, Ehde DM, Gibbons LE, et al. Telephone-based physical activity counseling for major depression in people with multiple sclerosis. *J Consult Clin Psychol.* 2013;81:89-99.

20. Kayes NM, Martin RA, Bright FA, et al. Optimising the real-world impact of rehabilitation reviews: increasing the relevance and usability of systematic reviews in rehabilitation. *Eur J Phys Rehabil Med.* Epub ahead of print 15 April 2019. DOI: 10.23736/S1973-9087.19.05793-9.
Table 1. Recommended stepwise approach for using APPECO to apply evidence with confidence

Step	Description
1	Select or search for the symptom or activity limitation of interest
2	Identify a specific group of interventions or studies that have shown significant benefits for this specific symptom or activity limitation.
3	Consider the three stars with respect to study quality (star 1), and applicability to your symptom or activity limitation based on star 2 (primary outcome), and star 3 (patients had the “problem”).
4	Determine if you are the professional(s) who is best equipped to deliver that specific intervention and refer to a colleague who is better equipped if applicable.
5	Use the TIDieR checklist and additional study information available to inform yourself with the specific requirements for that intervention to be used in clinical practice.
6	Acknowledge the patient preference and context to determine feasible and sustainable uptake of the intervention of choice.
7	Use the additional resources and features provided to effectively implement that intervention into clinical practice with confidence.
This in-press manuscript has been peer reviewed and accepted for publication by the International Journal of MS Care and appears here in a pre-edited form, with obvious typographical errors corrected but before full editing and final author approval. Additional corrections and changes will appear in the article when it is published in a future print issue. Once published in an issue, it will be removed from the Online First section and appear in that issue’s table of contents. Meanwhile, the manuscript is citable using the DOI, which appears on the first page.

Table 2. Included number of interventions (if >20) per domain

Domain	N interventions
Fatigue	152
Mobility	111
Quality of life	108
Depression	106
Attention and information processing speed	**58**
Balance activity	51
Anxiety	48
Memory and learning	**43**
Mood	37
Gait patterns	36
Pain	**32**
Body function & structures, unclassified	30
Muscle strength	30
Executive functions	**29**
Physical disease impact	29
Psychological disease impact	27
Cardiorespiratory fitness	26
Self-efficacy	25
Disease severity	24
Spasticity	22
Personal factors, unclassified	22

Note: Domains in bold indicate that these domains were specifically searched for as part of the APPECO development.
Figure S1. APPECO flowchart
Flowchart through which newly published articles are identified, selected for inclusion, data is extracted, verified, synthesized, appraised, and additional materials are obtained to assist knowledge transfer. Items in blue reflect active involvement from the “editor”-role.
This in-press manuscript has been peer reviewed and accepted for publication by the International Journal of MS Care and appears here in a pre-edited form, with obvious typographical errors corrected but before full editing and final author approval. Additional corrections and changes will appear in the article when it is published in a future print issue. Once published in an issue, it will be removed from the Online First section and appear in that issue’s table of contents. Meanwhile, the manuscript is citable using the DOI, which appears on the first page.

Figure S2. APPECO outcomes

All outcomes that are extracted and categorized according to the International Classification of Functioning model. Outcomes related to fatigue and cognitive function (bold) were extracted as part of the initial proof of concept APPECO platform.
This in-press manuscript has been peer reviewed and accepted for publication by the International Journal of MS Care and appears here in a pre-edited form, with obvious typographical errors corrected but before full editing and final author approval. Additional corrections and changes will appear in the article when it is published in a future print issue. Once published in an issue, it will be removed from the Online First section and appear in that issue’s table of contents. Meanwhile, the manuscript is citable using the DOI, which appears on the first page.

Intervention	N_{studies} or N_{patients}	N/A	N/A	N/A	N/A	Effect size
Multimodal neuropsychological interventions	5					
Cognitive training	4					
Attention / Information processing speed training	4					
Charvet LE, Computer-based, Adaptive Cognitive Remediation (ACR) program	135					Effect size: 0.42 (0.08 to 0.77)
Pérez-Martín MY, A computer-assisted neuropsychological training program	62					
Campbell J, Computerised cognitive rehabilitation using RehaCom software	38					
Amato MP, Specific training (ST) / Attention Processing Training program (APT)	102					No data available
Cognitive behavioural therapy	1					No data available

Figure S3. Screenshot of APPECO

From left to right, the intervention (e.g., cognitive training), sub-type (e.g., attention / information processing speed training), study (e.g., Charvet et al.), the number of participants (or studies, depending on the layer), the three star system, a main effect, and follow-up effect (if available) positioned at the (average) duration of the intervention (x-axis), and (average) duration of follow-up.

An actual value for the effect size can be obtained by hoovering the pointer over the diamonds (as shown for Charvet et al.). Colour coding is used to mark significant positive effect (green), non-significant effect (grey), or significant negative effect (red). Info buttons in the header (i) are used to provide additional information.
Item S1. Overview of data items extracted for each study

Study information
Authors*
Publication data (e.g., journal)*
Abstract*
Corresponding author email*
Link to publication*

Intervention type(s)
Intervention duration (e.g., 12 weeks)
Follow-up duration (if applicable)

Control group
Control intervention duration
Follow-up duration (if applicable)

Defining Primary and secondary outcomes
Name of the outcome measure(s)
Domain (e.g., fatigue)
Patients included based on outcome (yes/no)
Outcome direction (e.g., lower score is better outcome)?
Number needed to treat calculated (yes/no)

Patient Characteristics
Inclusion criteria
Exclusion criteria

TIDieR checklist per study arm*
Brief name
Why
What
Who provided
How
Where
When and how much
Tailoring
Modifications
How well

Risk of bias of study (Cochrane tool)
Random sequence generation
Allocation concealment
Blinding of participants and personnel
Blinding of outcome assessment
Incomplete outcome data
Selective reporting
Other sources of bias

Outcome data (see Figure S2)
Number of participants (N)
Covariates (e.g., Gender, MS disease severity)
N, Mean score (difference), Standard Deviation for each outcome post-intervention per study arm
N, Mean (difference), Standard Deviation follow-up furthest in time per study arm

*extracted from email alert
Appendix S1. PubMed/MEDLINE search strategy

1. Rehabilitation
"Rehabilitation"[Mesh] OR "rehabilitation"[Subheading] OR "Rehabilitation Nursing"[Mesh] OR "Physical Therapy Modalities"[Mesh] OR "Physical Therapy Department, Hospital"[Mesh] OR "Exercise"[Mesh] OR "Exercise Movement Techniques"[Mesh] OR "Exercise Therapy"[Mesh] OR "Physical Therapy (Specialty)"[MeSH] OR "Psychotherapy"[Mesh] OR "Complementary Therapies"[Mesh] OR "Nutrition Therapy"[Mesh] OR "Health Education"[Mesh] OR "Self-Help Devices"[Mesh] OR "Orthopedic Equipment"[Mesh] OR rehabilitati*[tiab] OR physiotherap*[tiab] OR (physical[tiab] AND (therapy[tiab] OR therapies[tiab] OR activities[tiab]))) OR exercis*[tiab] OR training*[tiab] OR (occupational[tiab] AND (therapy[tiab] OR therapies[tiab]))) OR "ms-nursing"[tiab] OR speech therap*[tiab] OR language therap*[tiab] OR language training*[tiab] OR psychotherap*[tiab] OR logotherap*[tiab] OR art therap*[tiab] OR behavior therap*[tiab] OR behaviour therap*[tiab] OR behavioral therap*[tiab] OR behavioural therap*[tiab] OR biofeedback*[tiab] OR feedback*[tiab] OR myofeedback*[tiab] OR yoga*[tiab] OR (complementary[tiab] OR acupuncture*[tiab] OR electroacupuncture*[tiab] OR kinesio*[tiab] OR chiroprap*[tiab] OR osteopath*[tiab] OR dance therap*[tiab] OR music therap*[tiab] OR cognitive therap*[tiab] OR cbt*[tiab] OR cognition therap*[tiab] OR relaxation*[tiab] OR meditation*[tiab] OR chronotherap*[tiab] OR diet*[tiab] OR dietary*[tiab] OR caloric restrict*[tiab] OR nutrition*[tiab] OR health education*[tiab] OR patient education*[tiab] OR patients education*[tiab] OR health litera*[tiab] OR health information*[tiab] OR energy conservation*[tiab] OR energy management*[tiab] OR fatigue management*[tiab] OR wheelchair*[tiab] OR wheelchair*[tiab] OR orthos*[tiab] OR orthot*[tiab] OR brace*[tiab] OR braces*[tiab] OR cane*[tiab] OR canes*[tiab] OR crutch*[tiab] OR walker*[tiab] OR walkers*[tiab] OR mindfulness*[tiab]

2. Multiple Sclerosis
"Multiple Sclerosis"[mh] OR "Encephalomyelitis"[mh] OR "Myelitis"[mh] OR multiple sclerosis*[tiab] OR optic neurit*[tiab] OR acute disseminated encephalomyelitis*[tiab] OR myelopoeitic neuropath*[tiab] OR myeloptico neuropath*[tiab] OR myelit*[tiab] OR neuromyelitis optica*[tiab] OR encephalomyelitis*[tiab] OR clinically isolated syndrome*[tiab] OR transverse myelit*[tiab] OR devic disease*[tiab] OR devics*[tiab] OR demyelinating disease*[tiab] OR demyelinating disorder*[tiab] OR adem*[tiab]

3. RCTs
((random*[tiab] AND (controlled[tiab] OR control[tiab] OR placebo[tiab] OR versus[tiab] OR vs[tiab] OR group[tiab] OR groups[tiab] OR comparison[tiab] OR compared[tiab] OR arm[tiab] OR arms[tiab] OR crossover[tiab] OR cross-over[tiab]) AND (trial[tiab] OR study[tiab]))) OR ((single[tiab] OR double[tiab] OR triple[tiab]) AND (masked[tiab] OR blind*[tiab]))

4. Humans
NOT (animals[mh] NOT humans[mh])
Appendix S2. Embase search strategy

1. Rehabilitation

'rehabilitation'/exp OR 'rehabilitation nursing'/exp OR 'physiotherapy'/exp OR 'exercise'/exp OR 'kinesiotherapy'/exp OR 'psychotherapy'/exp OR 'alternative medicine'/exp OR 'diet therapy'/exp OR 'health education'/exp OR 'rehabilitation equipment'/exp OR (rehabilitati* OR physiotherap* OR (physical NEAR/3 (therapy OR therapies OR activity OR activities)) OR exercis* OR training* OR (occupational NEAR/3 (therapy OR therapies)) OR "ms-nursing" OR ‘speech therap’* OR ‘language therap’* OR ‘language training’* OR psychotherap* OR logotherap* OR ‘art therap’* OR ‘behavior therap’* OR ‘behaviour therap’* OR ‘behavioural therap’* OR ‘biological therap’* OR biofeedback* OR feedback* OR myofeedback* OR yoga* OR complementar* OR acupunctur* OR electroacupunctur* OR kinesio* OR chiroprapr* OR osteopath* OR ‘dance therap’* OR ‘music therap’* OR ‘cognitive therap’* OR cbt OR ‘cognition therap’* OR relaxation* OR meditati* OR chronotherap* OR diet OR diets OR dietary OR ‘caloric restrict’* OR nutrition* OR ‘health educati’* OR ‘patient educati’* OR ‘patients educati’* OR ‘health litera’* OR ‘health informati’* OR ‘energy conserv’* OR ‘energy management’* OR ‘fatigue management’* OR ‘wheel chair’* OR wheelchair* OR orthos* OR orthot* OR brace OR braces OR cane OR canes OR crutch* OR walker OR walkers OR mindfulness*:ab,ti

2. Multiple Sclerosis

'multiple sclerosis'/exp OR 'myelitis'/exp OR ('multiple scleros*' OR 'optic neurit*' OR ‘acute disseminated encephalomyelit’* OR 'myeloptic neuropath’* OR ‘myelo optic neuropath’* OR myelit* OR ‘neuromyelitis optica’ OR encephalomyelit* OR ‘clinically isolated syndrome’* OR ‘transverse myelit’* OR ‘devic disease’* OR devics OR ‘demyelinating disease’* OR ‘demyelinating disorder’* OR adem):ab,ti

3. RCTs

random* OR factorial* OR crossover* OR (cross NEXT/1 over*) OR placebo* OR (double* AND blind*) OR (singl* AND blind*) OR assign* OR allocat* OR volunteer* OR ‘crossover procedure’/exp OR ‘double blind procedure’/exp OR ‘randomized controlled trial’/exp OR ‘single blind procedure’/exp
Appendix S3. ISI/Web of Science search strategy

1. Rehabilitation
rehabilitati* OR physiotherap* OR (physical NEAR/3 (therapy OR therapies OR activity OR activities)) OR exercis* OR training* OR (occupational NEAR/3 (therapy OR therapies)) OR "ms-nursing" OR "speech therap*" OR "language therap*" OR "language training*" OR psychotherap* OR logotherap* OR "art therap*" OR "behavior therap*" OR "behaviour therap*" OR "behavioral therap*" OR "behavioural therap*" OR biofeedback* OR feedback* OR myofeedback* OR yoga* OR complementar* OR acupunctur* OR electroacupunctur* OR kinesio* OR chiropra* OR osteopath* OR "dance therap*" OR "music therap*" OR "cognitive therap*" OR cbt OR "cognition therap*" OR relaxation* OR meditati* OR chronotherap* OR diet OR diets OR dietary OR “caloric restrict*” OR nutrition* OR “health educati*” OR “patient educati*” OR “patients educati*” OR “health litera*” OR “health informati*” OR “energy conserv*” OR “energy management*” OR “fatigue management*” OR “wheel chair*” OR wheelchair* OR orthos* OR orthot* OR brace OR braces OR cane OR canes OR crutch* OR walker OR walkers OR mindfulness*

2. Multiple Sclerosis
"multiple scleros*” OR “optic neurit*” OR “acute disseminated encephalomyelit*” OR “myelooptic neuropath*” OR “myelo optico neuropath*” OR myelit* OR “neuromyelitis optica” OR encephalomyelit* OR “clinically isolated syndrome*” OR “transverse myelit*” OR “devic disease*” OR devics OR “demyelinating disease*” OR “demyelinating disorder*” OR adem

3. RCTs
TOPIC:(random* or control* or study or trial or compar* or group or groups or therapy or treatment or intervention)