Little evidence for association of the glaucoma gene MYOC with open-angle glaucoma

Seongsoo Sohn,1 Wonhee Hur,2,3 Young Ran Choi,2 Yun Shin Chung,4 Chang-Seok Ki,5 Changwon Kee1

ABSTRACT
Background/aim To determine if overexpression of the glaucoma gene MYOC is involved in the development of open-angle glaucoma (OAG) and if its promoter variants are associated with glaucoma in the Korean population.
Methods Human trabecular meshwork cells were cultured in the presence of ophthalmic steroids such as fluorometholone, fluorometholone acetate, dexamethasone, prednisolone acetate and rimexolone. The cells were cultured at a hydrostatic pressure of 32 mm Hg above atmospheric pressure and induction of MYOC was evaluated by northern blot analysis. Genomic DNA was extracted from blood samples obtained from 74 normal controls and 168 unrelated Korean patients with OAG, including primary OAG, normal tension glaucoma and steroid-induced glaucoma. A 461 base pair (bp) DNA fragment of the MYOC promoter region was amplified using PCR and its genotype was analysed by directly sequencing the product.
Results The potencies of steroid eye drops in MYOC induction in vitro was the same regardless of their potential for elevating intraocular pressure in vivo. Hydrostatic pressure had no effect on MYOC induction. A dinucleotide repeat polymorphism and three single nucleotide polymorphisms were identified, but no obvious differences in the genotype distribution and allele frequency of the variants between the control group and any type of OAG were observed.
Conclusion Our data suggest that MYOC overexpression is not a cause or an effect of intraocular pressure (IOP) due to decreased aqueous outflow. Inducible glucocorticoid response (TIGR) is in a dose- and time-dependent manner very similar to the course of development of SIG. This led many investigators to believe that an increased MYOC level is a cause of glaucoma. However, a putative association between MYOC induction and OAG has not been firmly established.

MATERIALS AND METHODS
Cell culture
Human trabecular meshwork (HTM) cells were maintained in Dulbecco’s Modified Eagle’s medium (DMEM; Life Technologies, Grand Island, New York, USA) supplemented with 10% fetal bovine serum and antibiotics at 37°C in a humidified 5% CO2–95% air atmosphere. The cells, generously provided by Paul L. Kaufman (University of Wisconsin, Madison, Wisconsin, USA), were derived from the normal eyes of a 27-year-old female donor.

Steroid treatment
HTM cells plated in 60-mm culture dishes were grown to confluence before addition of steroids. All steroid eye drops (steroid ophthalmic suspensions) were purchased from Alcon Pharmaceuticals (Fort Worth, Texas, USA) and were prepared in phosphate buffered saline at 2.5 μM. Confluent HTM cells received doses of the diluted steroids and were cultured for up to 9 days, and the media were changed once every 3 days.

Hydrostatic pressure
Dishes with confluent HTM cells were placed at the bottom of a 2-L mass cylinder (Nalgen, Rochester, New York, USA) in which fresh media had been poured up to a height of 43 cm from the bottom. The cells were cultured for 9 days in this condition, which was equivalent to a hydrostatic pressure of 32 mm Hg above atmospheric pressure.

Northern blot analysis
At the end of culture, the HTM cells were harvested and total RNA was isolated. Approximately 5 μg of
total RNA was size-fractionated, transferred to a nylon membrane, and then hybridised at 65°C overnight with a 32P-labelled probe for human MYOC. After hybridisation, the membrane was washed twice in 2× (sodium chloride/sodium citrate)SSC—0.1% (sodium dodecyl sulfate)SDS and once in 1× SSC—0.1% SDS and was then autoradiographed at −70°C.

Blood samples
Peripheral blood samples were collected from 168 unrelated Korean glaucoma patients who visited the Department of Ophthalmology at Samsung Medical Center, Seoul, South Korea. For inclusion of POAG, the patients had to meet the following criteria. (1) An untreated mean IOP ⩾ 21 mm Hg by Goldmann applanation tonometry. (2) The anterior chamber angles on gonioscopy were wide open. (3) The best corrected visual acuity was 20/30 or better. (4) A typical glaucomatous optic nerve appearance including focal or generalised narrowing or disappearance of the retrolaminar rim, asymmetry in the cup to disc ratio >0.2, disc haemorrhage or retinal nerve fibre layer defects. (5) A glaucoma hemifield defect corresponding to the glaucomatous optic nerve damage detected in two consecutive fields, at intervals of at least 2 months apart. Normal tension glaucoma (NTG) was defined as for POAG, except for untreated mean IOP being ⩽ 21 mm Hg by Goldmann applanation tonometry. SIG was defined as OAG associated with a high IOP from administration of steroid eye drops for more than 2 weeks. Blood samples from a control group of 74 normal healthy Korean volunteers, unmatched for age or sex, were also obtained.

Genotyping
A 461 base pair (bp) DNA fragment of the 5′-flanking region of MYOC, containing sequences from 396 bp upstream of the transcriptional initiation site to 65 bp of the untranslated region, was amplified from the genomic DNA by PCR with primers designed based on available sequence data (GenBank accession no. Z97171). The genotype distribution of polymorphisms was determined by direct sequencing of the PCR product with the terminator cycle-sequencing method using fluorescent dideoxy-nucleotides and an automatic DNA sequencer (Applied Biosystems, Foster City, California, USA). Statistical analysis was performed using the Pearson χ2 test.

RESULTS
Effect of steroids and hydrostatic pressure on MYOC induction
Northern blot hybridisation revealed that the treatment of confluent HTM cells with DEX led to an apparent induction of MYOC gene expression (figure 1B). This result demonstrates that the HTM cells used in the present study were authentic because steroid-induced MYOC induction has been observed only in cultured TM cells or in TM tissues from perfused organ cultures.6 7

The exposure of HTM cells to steroid eye drops also led to MYOC induction (figure 2). Treatment of cells with eye drops containing increasing concentrations of fluorometholone (Flucon), fluorometholone acetate (Flarex), DEX (Maxidex), prednisolone acetate (Pred forte) and nimesulide (Vexol) all induced MYOC expression in a dose-dependent manner. However, no differences were observed in the potency of these drugs in terms of MYOC induction. Time-course studies of MYOC induction also gave the same results of no differences in the steady-state levels of MYOC expression at any time points in cells treated with different steroids (data not shown).

A hydrostatic pressure equivalent to 32 mm Hg above atmospheric pressure appeared to affect the morphology of the HTM cells (figure 1A). In addition to an increase in cell and nuclear size, it was evident that the original partially elongated shape changed to a rounder form. However, this morphological change was not accompanied by any prominent induction of MYOC (figure 1B).

Association of MYOC with glaucoma
Six alleles, ranging from 12 to 17 repeats of (G-T)n dinucleotides, were found in the microsatellite that had previously been described as being located 314 bp upstream from the translation start site of MYOC.2 Each allele was designated as (G-T)12 to (G-T)17 according to the number of repeats. The genotype distribution and allele frequencies of the (G-T)n microsatellite marker

Figure 1 Effect of hydrostatic pressure on morphology and induction of MYOC expression in cultured human trabecular meshwork (HTM) cells. (A) Phase-contrast images were photographed from cells cultured for 9 days in the absence (upper panel) or presence of a hydrostatic pressure of 32 mm Hg above atmospheric pressure (lower panel). (B) RNA was extracted from cells cultured in the absence (lane 1) or presence of hydrostatic pressure (lane 3), hybridised with 32P-labelled MYOC cDNA, and subjected to autoradiography (upper panel). The same RNA was visualised by ethidium bromide staining (lower panel). Cells treated with 100 nM dexamethasone (DEX) (lane 2) served as a positive control.

Figure 2 Effect of ophthalmic steroids on the induction of MYOC expression in cultured human trabecular meshwork (HTM) cells. Confluent HTM cells were cultured for 9 days in the presence of each steroid eye drop at the indicated concentrations. All of the RNA was extracted from each cell, hybridised with 32P-labelled MYOC cDNA, and subjected to autoradiography (upper panel). RNA was also stained with ethidium bromide as a loading control (lower panel).
in normal control populations and patient populations are summarised in table 1. Three alleles, (G-T)12, (G-T)16 and (G-
T)17, occurred so rarely that they were excluded from the analysis. The frequencies observed did not deviate significantly from
those predicted by the Hardy–Weinberg equilibrium. However, there was no evidence of any differences in the genotype
distributions and allele frequencies between the glaucoma
groups and the control group.

In addition to the polymorphic microsatellites, we found three single nucleotide polymorphisms (SNP), G-83A, T-224C
and G-306T, all of which have already been reported. The
genotype distribution and allele frequencies of the SNPs in the
normal control group and patient groups are summarised in
table 2. SNP analyses also showed no evidence of association
between MYOC and glaucoma; none of the three SNP sites
showed an association with POAG, NTG or SIG.

DISCUSSION
Clinically, dexamethasone and prednisolone increase IOP more
frequently than fluorometholone, hydrocortisone or rimex-
olone. Fluorometholone in particular is less likely to increase
IOP. Rimexolone, which was recently introduced, also has a low
IOP-elevating potential that is comparable to that of
fluorometholone in adults. Nevertheless, eye drops with a low
IOP-elevating potential induced MYOC to the same extent as
eye drops with a high IOP-elevating potential. If MYOC
induction causes IOP elevation, the potency of MYOC induction
by an eye drop should correlate with the IOP elevation caused by
that drug. Therefore, our results suggest that MYOC induction
is not a cause of IOP elevation in SIG.

Clinically, fluorometholone and dexamethasone are used at
a concentration of 0.1%, whereas prednisolone and rimexolone
are used at a concentration of 1%. Taking this into account, the
extent of MYOC induction by fluorometholone or dexametha-
sone is 10 times less than that shown in figure 2. This further
suggests that MYOC induction is not primarily responsible for
steroid-induced IOP elevation.

MYOC induction in glaucomatous eyes might be the result,
rather than the cause, of IOP elevation. Initially, a clear induc-
tion of MYOC expression was seen in perfused human anterior
segments at high IOP. However, no evidence of MYOC induc-
tion was obtained in combined tissues of rat iridocorneal angles,
despite IOP elevation. In the present study, we cultured HTM
cells at a hydrostatic pressure of 32 mm Hg above atmospheric
pressure, which mimics an IOP >32 mm Hg in glaucoma
patients. This condition stressed the cells, as demonstrated by
apparent changes of cellular morphology, but did not lead to
MYOC expression, suggesting that it is not a secondary response
to IOP elevation. Previous studies have shown that there are no
prominent differences in the signal intensities for MYOC
expression between glaucomatous and non-glaucomatous eyes.
Furthermore, no significant increase in MYOC expression was
observed in the TM of rats in a steroid-induced ocular hyper-
tension model, despite IOP elevation. Together, these studies
support our results, arguing against the hypothesis that MYOC
induction could perhaps be considered part of a protective
response mechanism, rather than a homeostatic one.

In the 5’-flanking region of the MYOC, we found three bi-allelic
variants along with one dinucleotide repeat polymorphism, but
no association between the markers with any subtype of OAG.
This result was somewhat unexpected, because MYOC had been
considered to be a susceptibility gene for POAG. Genetic studies
showed that alterations in the coding region of MYOC are asso-
ciated probably with a gain of pathogenic function rather than
a haplo-insufficiency in the pathogenesis of glaucoma. This
fact can support the lack of association between POAG and
variants in the promoter region of the MYOC. It is also uncertain
whether the size of this study was large enough to detect any
association between the markers and POAG.

A possible association might be mediated either by a marker
itself or by other polymorphisms in linkage disequilibrium with
alleles of the marker. The lack of association between our
markers and OAG therefore implies no evidence that the
markers themselves are causative polymorphisms of OAG or
under linkage disequilibrium with other authentic poly-
morphisms or mutations in other regions of MYOC. No
published results have definitively described MYOC promoter
mutations as a cause of glaucoma. The T-153A poly-

Table 1	Genotype distributions and allele frequencies of (GT)n repeat markers in the 5’-flanking region of MYOC in glaucoma patients and normal controls									
Genotype distribution	Allele frequency									
n	13/13	13/14	13/15	14/14	14/15	15/15	13	14	15	
Control	74	20	15	32	2	5	0	0.588	0.115	0.297
POAG	60	24	9	18	3	5	1	0.625	0.117	0.258
NTG	47	25	3	14	0	4	1	0.713	0.053	0.234
SIG	61	29	1	24	2	5	0	0.680	0.025	0.296

POAG, primary open-angle glaucoma; NTG, normal tension glaucoma; SIG, steroid-induced glaucoma.

Table 2	Genotype distributions and allele frequencies of polymorphic variants in the 5’-flanking region of MYOC in glaucoma patients and normal controls															
	G-38A	T-224C	G-306T													
	Genotype distribution	Allele frequency	Genotype distribution	Allele frequency	Genotype distribution	Allele frequency										
n	GG	GA	AA	G	A	TT	TC	CC	T	C	GG	GT	TT	T	C	
Control	74	63	11	0	0.926	0.074	16	38	20	0.473	0.527	60	13	1	0.899	0.101
POAG	60	51	9	0	0.925	0.075	11	24	0.253	0.383	0.617	52	7	1	0.925	0.075
NTG	47	45	1	1	0.968	0.032	7	22	18	0.383	0.617	40	7	0	0.926	0.074
SIG	61	56	3	2	0.943	0.057	7	34	20	0.393	0.607	47	13	1	0.877	0.123

POAG, primary open-angle glaucoma; NTG, normal tension glaucoma; SIG, steroid-induced glaucoma.
develop elevated IOP or glaucoma, suggesting that increased MYOC expression alone is not sufficient to cause glaucoma. If the level of MYOC is not important in determining the glaucoma phenotype, it is likely that any promoter sequence variant is not directly involved in the development of OAG. This could be an explanation for the lack of association between our markers and OAG. Several genes were mapped to GLC1A but excluded as candidates for OAG by genetic linkage analysis. Therefore, we do not believe that our SNPs are under linkage disequilibrium with other genes that may be responsible for the development of glaucoma.

In summary, we investigated whether MYOC induction can lead to IOP elevation or vice versa and if any MYOC promoter variant is associated with OAG. We showed that MYOC expression in vitro was neither correlated with elevated IOP in vivo nor induced by hydrostatic pressure mimicking elevated IOP. We also showed that the MYOC gene itself is not associated with OAG, including POAG, NTG and SIG. Therefore, our results do not support the hypothesis that MYOC induction might be linked to IOP variation and that promoter variants of MYOC could be a risk factor for the pathogenesis of OAG.

Funding This work was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD, Basic Research Promotion Fund) (KRF-2004-041-E00216), by a grant from the Korea Science and Engineering Foundation Science Research Center (SRC) project endowed to the Molecular Therapeutic Research Center (MTRC) and by Samsung Biomedical Research institute grant #SBNR C-A7-402-1.

Competing interests None.

Patient consent Obtained.

Provenance and peer review Not commissioned; externally peer reviewed.

REFERENCES

1. Stone EM, Fingert JH, Alward WL, et al. Identification of a gene that causes primary open angle glaucoma. Science 1997;275:688–70.

2. Nguyen TD, Chen P, Huang WD, et al. Gene structure and properties of TIGR, an olfactory-medial-related glycoprotein cloned from glucocorticoid-induced trabecular meshwork cells. J Biol Chem 1998;273:6341–50.

3. Francois J. Cortisone et tension oculaire. Ann Ocul (Paris) 1954;187:905–16.

4. Lutjen-Drecoll E, Muy CA, Polansky JR, et al. Localization of the stress proteins alpha B-crystallin and trabecular meshwork inducible glucocorticoid response protein in normal and glucocorticoid trabecular meshwork. Invest Ophthalmol Vis Sci 1998;39:517–25.

5. Fautsch MP, Sahler OK, Jewison DJ, et al. Recombinant TIGR/MYOC increases outflow resistance in the human anterior segment. Invest Ophthalmol Vis Sci 2000;41:1638–8.

6. Wang X, Johnson DH. mRNA in situ hybridization of TIGR/MYOC in human trabecular meshwork. Invest Ophthalmol Vis Sci 2000;41:1724–9.

7. Goold DB, Micel-Libby L, Savinova OV, et al. Genetically increasing Myoc expression supports a necessary pathologic role of abnormal proteins in glaucoma. Mol Cell Biol 2004;24:9019–25.

8. Zillig M, Wurm A, Gehrm FJ, et al. Overexpression and properties of wild-type and Tyr37His mutated myocilin in the eyes of transgenic mice. Invest Ophthalmol Vis Sci 2006;47:223–34.

9. Fan BJ, Leung YF, Pang DP, et al. Polymorphisms in the myocilin promoter unrelated to the risk and severity of primary open-angle glaucoma. J Glaucoma 2004;13:377–84.

10. Mindel JS, Tawhlin HO, Smith HJ, et al. Comparative ocular pressure elevation by medroxy, fluorometholone, and deoxamaronephosphate. Arch Ophthalmol 1980;198:1577–8.

11. Leibowitz MM, Bartlett JD, Rich R, et al. Intracocular pressure-raising potential of 1% rimexolone in patients responding to corticosteroids. Arch Ophthalmol 1996;114:933–7.

12. Borras T, Rouvette LL, Tamm ER, et al. Effects of elevated intracocular pressure on outflow facility and TIGR/MYOC expression in perfused human anterior segments. Invest Ophthalmol Vis Sci 2002;43:33–40.

13. Ahmed F, Torrado M, Johnson E, et al. Changes in mRNA levels of the Myoc/Tigr gene in the rat eye after experimental elevation of intracocular pressure or optic nerve transection. Invest Ophthalmol Vis Sci 2001;42:3165–72.

14. Sawaguchi K, Nakamura Y, Saka H, et al. Myocilin gene expression in the trabecular meshwork of rats in a steroid-induced ocular hypertension model. Ophthalmic Res 2005;37:235–42.

15. Kim BS, Savinova OV, Reedy MV, et al. Targeted disruption of the Myocilin gene (Myoc) suggests that human glaucoma-causing mutations are gain of function. Mol Cell Biol 2001;21:707–13.

16. Wiggs JL, Volhardt D. Molecular and clinical evaluation of a patient hemizygous for TIGR/MYOC. Arch Ophthalmol 2001;119:1674–8.

17. Fingert JH, Clark AF, Craig JE, et al. Evaluation of the myocilin (MYOC) glaucoma gene in monkey and human steroid-induced ocular hypertension. Invest Ophthalmol Vis Sci 2002;43:145–52.

18. Sjostrand A, Tomic L, Larsson I, et al. No evidence of association between GT/CA-repeat polymorphism in the GLC1A gene promoter and primary open-angle or exfoliation glaucoma. Acta Ophthalmol Scand 2002;80:368–6.

19. Sauras M, Cabana M, Ayuso C, et al. Mutations including the promoter region of myocilin/TIGR gene. Eur J Hum Genet 2003;11:384–7.

20. Lopez-Martinez F, Lopez-Garrido MP, Sanchez-Sanchez F, et al. Role of MYOC and OPN sequence variations in Spanish patients with primary open-angle glaucoma. Mol Vis 2007;13:982–72.

21. Suzuki R, Hattori Y, Okano K. Promoter mutations of myocilin gene in Japanese patients with open angle glaucoma including normal tension glaucoma. Br J Ophthalmol 2005;89:1038.

22. Colomb E, Nguyen TD, Bechetoile A, et al. Association of a single nucleotide polymorphism in the TIGR/MYOCILIN gene promoter with the severity of primary open-angle glaucoma. Clin Genet 2001;60:220–5.

23. Polansky JR, Juster RP, Spawth GL, Association of the myocilin int.1 promoter variant with the worsening of glaucomatous disease over time. Clin Genet 2003;64:18–27.

24. Alward WL, Kwon YH, Khanna CL, et al. Variations in the myocilin gene in patients with open-angle glaucoma. Arch Ophthalmol 2002;120:1189–97.

25. Ozgul RK, Bozkurt B, Dican S, et al. Myocilin int.1 promoter polymorphism in Turkish patients with primary open angle glaucoma. Mol Vis 2005;11:916–21.