Fractional Hermite–Hadamard inequalities for \((s, m)\)-convex or \(s\)-concave functions

Tieyan Lian\(^1\), Wei Tang\(^2\) and Rui Zhou\(^3\)

Abstract

In this article, fractional integral is considered. Some new upper bounds of the distance between the middle and left of Hermite–Hadamard type inequalities for fractional integrals are established for \((s, m)\)-convex or \(s\)-concave functions.

Keywords: Hermite–Hadamard inequality; \((s, m)\)-convex function; Riemann–Liouville fractional integrals

1 **Introduction**

Let \(\mathbb{R}\) be the set of real numbers, \(I \subset \mathbb{R}\), \(I^o\) be the interior of \(I\). The following is the definition of convex functions which is well-known knowledge in mathematical literature: \(f : I \rightarrow \mathbb{R}\) is said to be convex if the inequality

\[
f(\lambda x + (1-\lambda)y) \leq \lambda f(x) + (1-\lambda)f(y)
\]

holds for all \(x, y \in I\) and \(\lambda \in [0,1]\). We say that \(f\) is concave if \(-f\) is convex.

For a convex function, many equalities or inequalities have been established, but Hermite–Hadamard’s integral inequality is one of the most important ones, which is stated as follows [1]:

If \(f : I \rightarrow \mathbb{R}\) is a convex function on \(I\) and \(a, b \in I\) with \(a < b\), then

\[
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_a^b f(x) \, dx \leq \frac{f(a) + f(b)}{2}
\]

holds. Both the inequalities hold in the reversed direction if \(f\) is concave.

Inequality (1.2) has been a subject of extensive research since its discovery, and a number of papers have been written providing noteworthy extensions, generalizations, and refinements for some new class of convex functions.

For example, Orlicz [2] introduced the definition for \(s\)-convexity of real-valued mappings.

In [3], Hudzik and Maligranda showed the class of mappings which are \(s\)-convex in the second sense in the following way: A mapping \(f : I \subseteq \mathbb{R}^* = [0, \infty) \rightarrow \mathbb{R}\) is said to be \(s\)-convex in the second sense on \(I\) if the inequality

\[
f(tx + (1-t)y) \leq t^s f(x) + (1-t)^sf(y)
\]

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Inequality (1.3) holds in the reversed direction if \(f \) is \(s \)-concave in the second sense.

In [4], Dragomir and Fitzpatrick proved a variant of Hadamard’s inequality for functions which are \(s \)-convex in the second sense.

Theorem 1.1 ([4]) Suppose that \(f : I \subseteq \mathbb{R}^+ \to \mathbb{R} \) is \(s \)-convex in the second sense on \(I \), where \(s \in (0,1] \), and let \(a, b \in I \) with \(a < b \). If \(f \) is in \(L([a,b]) \), then the following double inequality holds:

\[
2^{s-1} f \left(\frac{a + b}{2} \right) \leq \frac{1}{b-a} \int_a^b f(x) \, dx \leq \frac{f(a) + f(b)}{s + 1}.
\] (1.4)

Both inequalities (1.4) hold in the reversed direction if \(f \) is \(s \)-concave in the second sense.

In a recent paper, Eftekhari [5] defined the class of \((s, m)\)-convex functions in the second sense as follows: A mapping \(f : I \subseteq \mathbb{R}^+ = [0, \infty) \to \mathbb{R} \) is said to be \((s, m)\)-convex in the second sense on \(I \) if the inequality

\[
f(tx + m(1-t)y) \leq tf(x) + m(1-t)f(y)
\]

holds for all \(x, y \in I \) and for some fixed \((s, m) \in (0,1]^2\).

It is easy to observe that for \(m = 1 \), the class of \((s, m)\)-convex in the second sense is merely the class of \(s \)-convex mappings in the second sense defined on \([0, \infty)\).

Our results generalize the following results which are connected with the left-hand side of (1.2).

Lemma 1.1 ([4]) Let \(f \) be defined on \(I \) and differentiable on \(I^0 \) such that \(a, b \in I \) with \(a < b \), \(f' \in L[a,b] \), then the following equality holds:

\[
f \left(\frac{a + b}{2} \right) - \frac{1}{b-a} \int_a^b f(t) \, dt = \frac{b-a}{4} \left[\int_0^1 tf' \left(\frac{a + b}{2} + (1-t)a \right) \, dt + \int_0^1 (t-1)f' \left(\frac{a + b}{2} + (1-t)b \right) \, dt \right].
\] (1.5)

Theorem 1.2 ([5]) Let \(f \) be defined on \(I \) and differentiable on \(I^0 \) such that \(a, b \in I \) with \(a < b \), \(f' \in L[a,b] \). If \(|f'| \) is \((s, m)\)-convex in the second sense on \([a,b]\) for \((s, m) \in (0,1]^2\), then the following inequality holds:

\[
\left| f \left(\frac{a + b}{2} \right) - \frac{1}{b-a} \int_a^b f(t) \, dt \right| \leq \frac{b-a}{4(s+2)} \left[2 \left| f' \left(\frac{a + b}{2} \right) \right| + \frac{m}{s+1} \left(\left| f' \left(\frac{a}{m} \right) \right| + \left| f' \left(\frac{b}{m} \right) \right| \right) \right].
\] (1.6)

In [6], in terms of \((s, m)\)-convex functions in the second sense, Sarikaya et al. established Hermite–Hadamard’s inequalities for Riemann–Liouville fractional integral. Furthermore, some results connected with the right-hand side of (1.2) were obtained for Riemann–Liouville fractional integral.
Different from [6], our aim of this work is to establish some upper bounds to the left-hand side of (1.2) for Riemann–Liouville fractional integral. When we take appropriate parameters, we can get (1.5) and (1.6).

To get our main results, we will give some necessary definitions and mathematical preliminaries of fractional calculus theory which are used further in this paper. For more details, one can consult [7–9].

Definition 1.1 ([7]) Let \(f \in L_1[a,b] \). The Riemann–Liouville integrals \(f^\alpha_a, f \) and \(f^\alpha_b, f \) of order \(\alpha > 0 \) with \(\alpha \geq 0 \) are defined by

\[
f^\alpha_a, f(x) = \frac{1}{\Gamma(\alpha)} \int_x^a (x-t)^{\alpha-1} f(t) \, dt, \quad x > a,
\]

\[
f^\alpha_b, f(x) = \frac{1}{\Gamma(\alpha)} \int_b^x (t-x)^{\alpha-1} f(t) \, dt, \quad x < b,
\]

respectively. Here, \(\Gamma(\alpha) \) is the gamma function and \(f^0_a, f(x) = f^0_b, f(x) = f(x) \).

2 Main results

For establishing some new fractional integral inequalities of Hermite–Hadamard type for \(m \)-convex or \((s,m) \)-convex functions, we need the fractional integral identity below.

Lemma 2.1 Let \(f \) be defined on \(I \) and differentiable on \(I^0 \) such that \(a, b \in I \) with \(a < b \), \(f' \in L[a,b] \), then the following equality holds:

\[
f\left(\frac{a+b}{2}\right) + \frac{\Gamma(\alpha+1)}{b-a} \left[\left(\frac{2}{a-b}\right)^{\alpha-1} f(a) - \left(\frac{2}{b-a}\right)^{\alpha-1} f(b) \right] = \frac{b-a}{4} \left[\int_0^1 t \left(\frac{a+b}{2} + (1-t)a\right) \, dt - \int_0^1 t \left(\frac{a+b}{2} + (1-t)b\right) \, dt \right]. \tag{2.1}
\]

Proof First of all, let

\[
\frac{b-a}{4} \left[\int_0^1 t \left(\frac{a+b}{2} + (1-t)a\right) \, dt - \int_0^1 t \left(\frac{a+b}{2} + (1-t)b\right) \, dt \right] = \frac{b-a}{4} \left(I_1 - I_2 \right). \tag{2.2}
\]

By integration by parts and making use of the substitution \(u = t \frac{a+b}{2} + (1-t)a \), we have

\[
I_1 = \int_0^1 t \left(\frac{a+b}{2} + (1-t)a\right) \, dt = \frac{2}{b-a} \left[\left(\frac{a+b}{2}\right)^{\alpha+1} - \int_a^{\frac{a+b}{2}} (u-a)^{\alpha-1} f'(u) \, du \right]
\]

\[
= \left(\frac{2}{b-a}\right)^{\alpha+1} \int_a^{\frac{a+b}{2}} (u-a)^{\alpha-1} f'(u) \, du
\]

\[
= \left(\frac{2}{b-a}\right)^{\alpha+1} \left[\left(\frac{b-a}{2}\right)^{\alpha} f\left(\frac{a+b}{2}\right) - \alpha \int_a^{\frac{a+b}{2}} (u-a)^{\alpha-1} f(u) \, du \right]
\]

\[
= \frac{2}{b-a} f\left(\frac{a+b}{2}\right) + \alpha \left(\frac{2}{a-b}\right)^{\alpha+1} \int_a^{\frac{a+b}{2}} (u-a)^{\alpha-1} f(u) \, du
\]

\[
= \frac{2}{b-a} f\left(\frac{a+b}{2}\right) + \Gamma(\alpha+1) \left(\frac{2}{a-b}\right)^{\alpha+1} f^\alpha_a, f(a). \tag{2.3}
\]
Analogously, by using the partial integral method and variable substitution, the following equality holds:

\[
I_2 = \int_0^1 t^a f' \left(t \frac{a + b}{2} + (1 - t)b \right) dt
\]

\[
= -\frac{2}{b-a} f \left(\frac{a + b}{2} \right) + \Gamma(\alpha + 1) \left(\frac{2}{b-a} \right)^{\alpha+1} f^\alpha a_{\frac{a+b}{2}} (b).
\]

Thus, using (2.3) and (2.4) in (2.2), we get the required inequality (2.1).

This completes the proof of the lemma. \(\Box\)

Remark 1 If in Lemma 2.1 we let \(\alpha = 1\), it is clear that \(f^\alpha a_{\frac{a+b}{2}} (a) = \int f^\alpha a_{\frac{a+b}{2}} (t) dt\) and \(f^\alpha a_{\frac{a+b}{2}} (b) = \int f^\alpha a_{\frac{a+b}{2}} (t) dt\) hold. So in this case, we can see that equality (2.1) is a generalization of equality (1.5) of Lemma 1.1.

It is worth noting that Lemma 2.1 plays a key role in proving our main results.

Theorem 2.1 Let \(f\) be defined on \(I\) and differentiable on \(I_0\) such that a \(b \in I\) with \(a < b\), \(f' \in L[a,b]\). If \(|f'|\) is \((s,m)\)-convex in the second sense on \([a,b]\) for \((s,m) \in (0,1]^2\), then the following inequality holds:

\[
\left| f \left(\frac{a + b}{2} \right) + \frac{\Gamma(\alpha + 1)}{b-a} \left[\left(\frac{2}{a-b} \right)^{\alpha-1} f^\alpha a_{\frac{a+b}{2}} (a) - \left(\frac{2}{b-a} \right)^{\alpha-1} f^\alpha a_{\frac{a+b}{2}} (b) \right] \right| \\
\leq \frac{b-a}{4} \left[\frac{2}{s+\alpha+1} \left| f' \left(\frac{a + b}{2} \right) \right| + mB(\alpha + 1, s + 1) \left| \frac{f' \left(\frac{a}{m} \right)}{f \left(\frac{b}{m} \right)} \right| \right],
\]

where \(B(x,y)\) is the classical beta function, which may be defined for \(\Re(x) > 0 \) and \(\Re(y) > 0\) by

\[
B(x,y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt.
\]

Proof By equality (2.1), it follows that

\[
\left| f \left(\frac{a + b}{2} \right) + \frac{\Gamma(\alpha + 1)}{b-a} \left[\left(\frac{2}{a-b} \right)^{\alpha-1} f^\alpha a_{\frac{a+b}{2}} (a) - \left(\frac{2}{b-a} \right)^{\alpha-1} f^\alpha a_{\frac{a+b}{2}} (b) \right] \right| \\
\leq \frac{b-a}{4} \int_0^1 t^a \left| f' \left(t \frac{a + b}{2} + (1-t)a \right) \right| dt \\
+ \int_0^1 t^a \left| f' \left(t \frac{a + b}{2} + (1-t)b \right) \right| dt.
\]

Since \(|f'|\) is \((s,m)\)-convex in the second sense on \([a,b]\), for any \(t \in [0,1]\), we obtain

\[
|f' \left(t \frac{a + b}{2} + (1-t)a \right)| \leq t^a |f' \left(\frac{a + b}{2} \right)| + m(1-t)|f' \left(\frac{a}{m} \right)|, \tag{2.7}
\]

\[
|f' \left(t \frac{a + b}{2} + (1-t)b \right)| \leq t^a |f' \left(\frac{a + b}{2} \right)| + m(1-t)|f' \left(\frac{b}{m} \right)|. \tag{2.8}
\]
Using (2.6), (2.7), and (2.8), we have

\[
\left| f\left(\frac{a + b}{2}\right) + \frac{\Gamma(a + 1)}{b - a}\left[\left(\frac{2}{a - b}\right)^{-1} J_{\alpha+\theta}^{\alpha, \beta} f(a) - \left(\frac{2}{b - a}\right)^{-1} J_{\alpha+\theta}^{\alpha, \beta} f(b)\right]\right|
\]

\[
\leq \frac{b - a}{4}\left[\int_0^1 2t^\alpha f\left(\frac{a + b}{2}\right) |dt| + \int_0^1 2t^\alpha f\left(\frac{a + b}{2}\right) (1 - t)^\alpha \left| f\left(\frac{a}{m}\right) + f\left(\frac{b}{m}\right)\right| dt\right]
\]

\[
= \frac{b - a}{4}\left[\frac{2}{s + \alpha + 1} \left| f\left(\frac{a + b}{2}\right)\right| + mB(\alpha + 1, s + 1) \left| f\left(\frac{a}{m}\right) + f\left(\frac{b}{m}\right)\right|\right].
\]

\[\square\]

Remark 2 If we take \(\alpha = 1\) in Theorem 2.1, we get inequality (1.6) of Theorem 1.1 which was proved in [5].

Theorem 2.2 Let \(f\) be defined on \(I\) and differentiable on \(I^o\) such that \(a, b \in I\) with \(a < b\), \(f' \in L[a, b]\). If \(|f'|\) is \(m\)-convex in the second sense on \([a, b]\) for \(m \in (0, 1]\), then the following inequality holds:

\[
\left| f\left(\frac{a + b}{2}\right) + \frac{\Gamma(a + 1)}{b - a}\left[\left(\frac{2}{a - b}\right)^{-1} J_{\alpha+\theta}^{\alpha, \beta} f(a) - \left(\frac{2}{b - a}\right)^{-1} J_{\alpha+\theta}^{\alpha, \beta} f(b)\right]\right|
\]

\[
\leq \frac{b - a}{4}\left[\frac{1}{2(\alpha + 2)} \left(|f'(a)| + |f'(b)| \right)\right]
\]

\[
+ \frac{m(\alpha + 3)}{2(\alpha + 1)(\alpha + 2)} \left| f\left(\frac{a}{m}\right) + f\left(\frac{b}{m}\right)\right|\right].
\]

\[\text{(2.9)}\]

Proof By equality (2.1), it follows that

\[
\left| f\left(\frac{a + b}{2}\right) + \frac{\Gamma(a + 1)}{b - a}\left[\left(\frac{2}{a - b}\right)^{-1} J_{\alpha+\theta}^{\alpha, \beta} f(a) - \left(\frac{2}{b - a}\right)^{-1} J_{\alpha+\theta}^{\alpha, \beta} f(b)\right]\right|
\]

\[
\leq \frac{b - a}{4}\left[\int_0^1 t^\alpha |f'(\frac{a + b}{2} + (1 - t)a)| dt + \int_0^1 t^\alpha |f'(\frac{a + b}{2} + (1 - t)b)| dt\right]
\]

\[
= \frac{b - a}{4}\left[\int_0^1 t^\alpha |f'(\frac{t}{2}a + (1 - \frac{t}{2})a)| dt + \int_0^1 t^\alpha |f'(\frac{t}{2}b + (1 - \frac{t}{2})b)| dt\right].
\]

\[\text{(2.10)}\]

Since \(|f'\) is \(m\)-convex in the second sense on \([a, b]\), for any \(t \in [0, 1]\), we obtain

\[
|f'(\frac{t}{2}a + (1 - \frac{t}{2})a)| \leq \frac{t}{2} |f'(b)| + m\left(1 - \frac{t}{2}\right) |f'(\frac{a}{m})|,
\]

\[\text{(2.11)}\]

\[
|f'(\frac{t}{2}b + (1 - \frac{t}{2})b)| \leq \frac{t}{2} |f'(a)| + m\left(1 - \frac{t}{2}\right) |f'(\frac{b}{m})|.
\]

\[\text{(2.12)}\]

Using (2.10), (2.11), and (2.12), we have

\[
\left| f\left(\frac{a + b}{2}\right) + \frac{\Gamma(a + 1)}{b - a}\left[\left(\frac{2}{a - b}\right)^{-1} J_{\alpha+\theta}^{\alpha, \beta} f(a) - \left(\frac{2}{b - a}\right)^{-1} J_{\alpha+\theta}^{\alpha, \beta} f(b)\right]\right|
\]

\[
\leq \frac{b - a}{4}\left[\int_0^1 t^{\alpha+1} |f'(a)| + |f'(b)| dt\right]
\]
Theorem 2.3
Let \(f \) be defined on \(I \) and differentiable on \(I_0 \) such that \(\alpha \) \(q \):

\[
L \in [a, b) \text{ for } (s, m) \in (0,1]^2 \quad \text{and if } \quad q > 1, q \geq r \geq 0,
\]

then the following inequality holds:

\[
\left| f \left(\frac{a+b}{2} \right) - \frac{1}{b-a} \int_a^b f(t) \, dt \right| \leq \frac{b-a}{4} \left[\frac{1}{6} (|f'(a)| + |f'(b)|) + \frac{m(\alpha + 3)}{2(\alpha + 1)(\alpha + 2)} \left(|f \left(\frac{a}{m} \right)| + |f \left(\frac{b}{m} \right)| \right) \right].
\]

(2.9)

This completes the proof. \(\square \)

Corollary 2.1
Suppose that all the assumptions of Theorem 2.2 are satisfied, and if \(\alpha = 1 \), then we have the following inequality:

\[
\left| f \left(\frac{a+b}{2} \right) - \frac{1}{b-a} \int_a^b f(t) \, dt \right| \leq \frac{b-a}{8} \left[|f'(a)| + |f'(b)| \right].
\]

(2.13)

Corollary 2.2
Suppose that all the assumptions of Theorem 2.2 are satisfied, and if \(\alpha = 1 \), \(m = 1 \), then inequality \((2.9) \) becomes the following inequality which was obtained in [10]:

\[
\left| f \left(\frac{a+b}{2} \right) - \frac{1}{b-a} \int_a^b f(t) \, dt \right| \leq \frac{b-a}{8} \left[|f'(a)| + |f'(b)| \right].
\]

Theorem 2.3
Let \(f \) be defined on \(I \) and differentiable on \(I^o \) such that \(a, b \in I \) with \(a < b \), \(f' \in L[a, b] \). If \(|f'|^q \) is \((s, m) \)-convex in the second sense on \([a, b]\) for \((s, m) \in (0,1]^2 \) and if \(q > 1, q \geq r \geq 0, \) then the following inequality holds:

\[
\left| f \left(\frac{a+b}{2} \right) + \frac{\Gamma(\alpha + 1)}{b-a} \left[\left(\frac{2}{a-b} \right)^{a-1} f_{a+b}^a f(a) - \left(\frac{2}{b-a} \right)^{a-1} f_{a-b}^b f(b) \right] \right|
\leq \frac{b-a}{4} \left[\frac{q-1}{\alpha(q-r) + q - 1} \right]^{1/\alpha} \left[\left(\frac{1}{2} \left(s + \alpha r + 1 \right)^{1/\alpha} \right)^{\alpha} \left| f \left(\frac{a+b}{2} \right) \right| \right]
\]

\[
+ m^{1/\alpha} B(\alpha r + 1, s + 1) \left[\left| f \left(\frac{a}{m} \right) \right| + \left| f \left(\frac{b}{m} \right) \right| \right].
\]

(2.14)

where \(B(x, y) \) is the classical beta function.

Proof
Since \(|f'|^q \) is \((s, m) \)-convex in the second sense on \([a, b]\) for \((s, m) \in (0,1]^2 \), one can get the following inequalities:

\[
\int_0^1 \left| f \left(t \frac{a+b}{2} + (1-t)a \right) \right| \, dt
\]

\[
\leq \left(\int_0^1 \left(t \frac{a+b}{2} + (1-t)a \right) \, dt \right)^{1/\alpha} \left(\int_0^1 \left| f \left(t \frac{a+b}{2} + (1-t)a \right) \right|^q \, dt \right)^{1/q}
\]

\[
\leq \left(\int_0^1 \left(t \frac{a+b}{2} \right) \, dt \right)^{1/\alpha} \left[\int_0^1 \left| f \left(t \frac{a+b}{2} \right) \right|^q \, dt + \int_0^1 \left| f \left(\frac{a}{m} \right) \right|^q \, dt \right]^{1/\alpha}
\]

\[
= \left[\frac{q-1}{\alpha(q-r) + q - 1} \right]^{1/\alpha} \left[\left(\frac{1}{2} \left(s + \alpha r + 1 \right)^{1/\alpha} \right)^{\alpha} \left| f \left(\frac{a+b}{2} \right) \right|^q \right]
\]

\[
+ mB(\alpha r + 1, s + 1) \left| f \left(\frac{a}{m} \right) \right|^{\alpha} \left| f \left(\frac{b}{m} \right) \right|^{\alpha},
\]

(2.15)
\[
\int_0^1 t^\alpha \left| f \left(t \frac{a+b}{2} + (1-t)b \right) \right| dt \\
\leq \left[\frac{q-1}{\alpha(q-r) + q-1} \right]^{1-\frac{\alpha}{q}} \left[\frac{1}{s+\alpha r + 1} \left| f \left(\frac{a+b}{2} \right) \right|^{q} \right. \\
+ mB(\alpha r + 1, s+1) \left[\frac{b}{m} \right]^{q} \left. \right]^{\frac{1}{q}}.
\tag{2.16}
\]

Therefore, inequalities (2.6), (2.15), (2.16) and the following relation imply (2.14)

\[
\sum_{i=1}^n (a_i + b_i)^l \leq \sum_{i=1}^n a_i^l + \sum_{i=1}^n b_i^l
\]
for \(0 < l < 1, a_1, a_2, \ldots, a_n \geq 0, b_1, b_2, \ldots, b_n \geq 0. \)

Corollary 2.3 Suppose that all the assumptions of Theorem 2.3 are satisfied, and if \(r = 0, \) then the following inequality for fractional integrals holds:

\[
\left| f \left(\frac{a+b}{2} \right) + \frac{\Gamma(\alpha + 1)}{b-a} \left[\left(\frac{2}{a-b} \right)^{\alpha-1} \int_{(a+b) \frac{1}{2}}^{(a+b) \frac{1}{2}} f(t) \right. \right. \\
\left. \left. - \left(\frac{2}{b-a} \right)^{\alpha-1} \int_{(a+b) \frac{1}{2}}^{(a+b) \frac{1}{2}} f(t) \right) \right] \\
\leq \left[\frac{b-a}{4} \left(\frac{q-1}{\alpha q + q-1} \right) \right]^{\frac{\alpha-1}{q}} \left[\frac{1}{s+1} \right]^{\frac{1}{q}} \\
\times \left[2 \left| f \left(\frac{a+b}{2} \right) \right| + m^\frac{s}{1} \left(\left| f \left(\frac{a}{m} \right) \right| + \left| f \left(\frac{b}{m} \right) \right| \right) \right].
\tag{2.17}
\]

Corollary 2.4 Suppose that all the assumptions of Theorem 2.3 are satisfied, and if \(r = 0, \alpha = 1, \) then we have the following inequality which was obtained in [5]:

\[
\left| f \left(\frac{a+b}{2} \right) - \frac{1}{b-a} \int_a^b f(t) dt \right| \\
\leq \left[\frac{b-a}{4} \left(\frac{q-1}{\alpha q + q-1} \right) \right]^{\frac{\alpha-1}{q}} \left[\frac{1}{s+1} \right]^{\frac{1}{q}} \\
\times \left[2 \left| f \left(\frac{a+b}{2} \right) \right| + m^\frac{s}{1} \left(\left| f \left(\frac{a}{m} \right) \right| + \left| f \left(\frac{b}{m} \right) \right| \right) \right].
\tag{2.18}
\]

Corollary 2.5 Suppose that all the assumptions of Theorem 2.3 are satisfied, and if we let \(r = 1, \) then the following inequality for fractional integrals holds:

\[
\left| f \left(\frac{a+b}{2} \right) + \frac{\Gamma(\alpha + 1)}{b-a} \left[\left(\frac{2}{a-b} \right)^{\alpha-1} \int_{(a+b) \frac{1}{2}}^{(a+b) \frac{1}{2}} f(t) \right. \right. \\
\left. \left. - \left(\frac{2}{b-a} \right)^{\alpha-1} \int_{(a+b) \frac{1}{2}}^{(a+b) \frac{1}{2}} f(t) \right) \right] \\
\leq \left[\frac{b-a}{4} \left(\frac{1}{\alpha+1} \right) \right]^{\frac{\alpha-1}{q}} \left[\frac{1}{\alpha+1} \right]^{\frac{1}{q}} \left| f \left(\frac{a+b}{2} \right) \right| \\
+ m^\frac{1}{1} B(\alpha + 1, s+1) \left(\left| f \left(\frac{a}{m} \right) \right| + \left| f \left(\frac{b}{m} \right) \right| \right).
\tag{2.19}
\]
Corollary 2.6 Suppose that all the assumptions of Theorem 2.3 are satisfied, and if \(r = 1, \alpha = 1 \), then we have the following inequality which is the result in [5]:

\[
\left| f \left(\frac{a + b}{2} \right) + \frac{\Gamma(\alpha + 1)}{b - a} \left[(\frac{2}{a - b})^{\alpha - 1} f^{\alpha} (a) - (\frac{2}{b - a})^{\alpha - 1} f^{\alpha} (b) \right] \right| \\
\leq \frac{b - a}{8} \left(\frac{2}{s + 2} \right)^{\frac{1}{2}} \left[\left| f^{\prime} \left(\frac{a + b}{2} \right) \right| + m^{\frac{1}{2}} \left(\frac{1}{s + 1} \right)^{\frac{1}{2}} \left(\left| f^{\prime} \left(\frac{a}{m} \right) \right| + \left| f^{\prime} \left(\frac{b}{m} \right) \right| \right) \right]. \quad (2.20)
\]

Theorem 2.4 Let \(f \) be defined on \(I \) and differentiable on \(I_0 \) such that \(a \in \mathbb{R} \) and \(f' \in L[a, b] \). If \(|f'|^q \) is s-concave in the second sense on \([a, b]\) for some fixed \(q > 1 \) and \(s \in (0, 1] \), then the following inequality holds:

\[
\left| f \left(\frac{a + b}{2} \right) + \frac{\Gamma(\alpha + 1)}{b - a} \left[(\frac{2}{a - b})^{\alpha - 1} f^{\alpha} (a) - (\frac{2}{b - a})^{\alpha - 1} f^{\alpha} (b) \right] \right| \\
\leq \frac{b - a}{4} \left[\left(\frac{q - 1}{\alpha q + q - 1} \right)^{\frac{1}{2}} \left(\left| f' \left(\frac{3a + b}{4} \right) \right| + \left| f' \left(\frac{a + 3b}{4} \right) \right| \right) \right]. \quad (2.21)
\]

where \(\frac{1}{p} + \frac{1}{q} = 1 \).

Proof From Lemma 2.1 and by using Hölder’s inequality for \(q > 1 \) and \(p = \frac{q}{q - 1} \), it follows that

\[
\left| f \left(\frac{a + b}{2} \right) + \frac{\Gamma(\alpha + 1)}{b - a} \left[(\frac{2}{a - b})^{\alpha - 1} f^{\alpha} (a) - (\frac{2}{b - a})^{\alpha - 1} f^{\alpha} (b) \right] \right| \\
\leq \frac{b - a}{4} \left[\int_0^1 t^s \left| f' \left(\frac{a + b}{2} + (1 - t)a \right) \right| \, dt + \int_0^1 t^s \left| f' \left(\frac{a + b}{2} + (1 - t)b \right) \right| \, dt \right] \\
\leq \frac{b - a}{4} \left[\left(\int_0^1 t^\frac{\alpha - 1}{q} \, dt \right)^{\frac{1}{q}} \left(\int_0^1 \left| f' \left(\frac{a + b}{2} + (1 - t)a \right) \right|^q \, dt \right)^{\frac{1}{q}} \right] \\
+ \left(\int_0^1 \left| f' \left(\frac{a + b}{2} + (1 - t)b \right) \right|^q \, dt \right)^{\frac{1}{q}}. \quad (2.22)
\]

Since \(|f'|^q \) is s-concave on \([a, b]\), so by using inequality (1.4), we obtain

\[
\int_0^1 \left| f' \left(\frac{a + b}{2} + (1 - t)a \right) \right|^q \, dt \leq 2^{\frac{1}{q - 1}} \left| f' \left(\frac{3a + b}{4} \right) \right|^q.
\]

Analogously,

\[
\int_0^1 \left| f' \left(\frac{a + b}{2} + (1 - t)b \right) \right|^q \, dt \leq 2^{\frac{1}{q - 1}} \left| f' \left(\frac{a + 3b}{4} \right) \right|^q.
\]

Using the last two inequalities in (2.22), we get (2.21). This completes the proof of the theorem. □
Corollary 2.7 Suppose all the assumptions of Theorem 2.4 are satisfied, and assume that $|f'|$ is a linear map, then we get the following inequality:

$$
|f\left(\frac{a+b}{2}\right) + \frac{\Gamma (\alpha + 1)}{b-a} \left[\left(\frac{2}{a-b} \right)^{a-1} f'(a) - \left(\frac{2}{b-a} \right)^{a-1} f'(b) \right] | \\
\le \frac{b-a}{4} \left| \frac{q-1}{aq+q-1} \right|^{\frac{1}{2}} \frac{1}{2} f'(a+b) .
$$

(2.23)

Theorem 2.5 Let f be defined on I and differentiable on I^o such that $a, b \in I$ with $a < b$, $f' \in L[a, b]$. If $|f'|^q$ is concave in the second sense on $[a, b]$ for some fixed $q \geq 1$ and $s \in (0, 1]$, then the following inequality holds:

$$
|f\left(\frac{a+b}{2}\right) + \frac{\Gamma (\alpha + 1)}{b-a} \left[\left(\frac{2}{a-b} \right)^{a-1} f'(a) - \left(\frac{2}{b-a} \right)^{a-1} f'(b) \right] | \\
\le \frac{b-a}{4(\alpha + 1)} \left[f' \left(\frac{(\alpha + 3)a + (\alpha + 1)b}{2(\alpha + 2)} \right) \right] + \left| f' \left(\frac{(\alpha + 1)a + (\alpha + 3)b}{2(\alpha + 2)} \right) \right| .
$$

(2.24)

Proof By the concavity of $|f'|^q$ on $[a, b]$ and the power-mean inequality, we have that $|f'|$ is also concave on $[a, b]$. Accordingly, using Jensen’s integral inequality, we obtain

$$
\int_0^1 t^\alpha \left| f' \left(t \frac{a+b}{2} + (1-t)a \right) \right| dt \\
\le \left(\int_0^1 t^\alpha dt \right) \left| f' \left(\frac{\int_0^1 t^\alpha (t \frac{a+b}{2} + (1-t)a) dt}{\int_0^1 t^\alpha dt} \right) \right| \\
= \frac{1}{\alpha + 1} \left| f' \left(\frac{(\alpha + 3)a + (\alpha + 1)b}{2(\alpha + 2)} \right) \right| .
$$

(2.25)

Analogously,

$$
\int_0^1 t^\alpha \left| f' \left(t \frac{a+b}{2} + (1-t)b \right) \right| dt \\
\le \left(\int_0^1 t^\alpha dt \right) \left| f' \left(\frac{\int_0^1 t^\alpha (t \frac{a+b}{2} + (1-t)b) dt}{\int_0^1 t^\alpha dt} \right) \right| \\
= \frac{1}{\alpha + 1} \left| f' \left(\frac{(\alpha + 1)a + (\alpha + 3)b}{2(\alpha + 2)} \right) \right| .
$$

(2.26)

Using inequalities (2.25) and (2.26) in (2.6), we get (2.24). This completes the proof of the theorem.

Corollary 2.8 Suppose that all the assumptions of Theorem 2.5 are satisfied, and assume that $|f'|$ is a linear map, then we get the following inequality:

$$
|f\left(\frac{a+b}{2}\right) + \frac{\Gamma (\alpha + 1)}{b-a} \left[\left(\frac{2}{a-b} \right)^{a-1} f'(a) - \left(\frac{2}{b-a} \right)^{a-1} f'(b) \right] | \\
\le \frac{b-a}{4(\alpha + 1)} \left| f'(a+b) \right| .
$$

(2.27)
Proof It is a direct consequence of Theorem 2.5 and using the linearity of \(|f'|\). □

Remark 3 When \(|f'|^q\) is concave in the second sense on \([a, b]\) for some fixed \(q \geq 1\) and \(|f'|\) is a linear map, the error bound in (2.27) is easier to calculate as compared to calculating it in (2.24).

Corollary 2.9 Suppose that all the assumptions of Theorem 2.5 are satisfied, and if \(\alpha = 1\), then

\[
\left| f\left(\frac{a+b}{2}\right) - \frac{1}{b-a} \int_a^b f(t) \, dt \right| \\
\leq \left(\frac{b-a}{8} \right) \left[|f'(\frac{2a+b}{3})| + |f'(\frac{a+2b}{3})| \right].
\] (2.28)

Corollary 2.10 Suppose that all the assumptions of Theorem 2.5 are satisfied, and assume that \(|f'|\) is a linear map, and if \(\alpha = 1\), then we get the following inequality:

\[
\left| f\left(\frac{a+b}{2}\right) - \frac{1}{b-a} \int_a^b f(t) \, dt \right| \\
\leq \left(\frac{b-a}{8} \right) |f'(a+b)|. \] (2.29)

Proof It is from Corollary 2.8. □

Remark 4 The error bound in (2.29) is easier to calculate as compared to calculating it in (2.28), when \(|f'|^q\) is concave in the second sense on \([a, b]\) for some fixed \(q \geq 1\) and \(|f'|\) is a linear map.

3 Conclusion
In this paper, we have obtained a new fractional integral identity, which played a key role in proving our main inequalities. Several Hermite–Hadamard type fractional integral inequalities presented here, being very general, are pointed out to be specialized to yield some known results.

Acknowledgements
The authors are grateful to the responsible editor and the anonymous referees for their valuable comments and suggestions, which have greatly improved the earlier version of this paper.

Funding
This work is supported by the Key Scientific and Technological Innovation Team Project in Shaanxi province (2014KCT-15) and the Foundations of Shaanxi Educational Committee (No. 18JK0152).

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
The three authors contributed equally to this work. They all read and approved the final version of the manuscript.

Author details
1College of Light Industry Science and Engineering, Shaanxi University of Science and Technology, Xi’an, China. 2College of Electrical and Information Engineering, Shaanxi University of Science and Technology, Xi’an, China. 3College of Arts and Sciences, Shaanxi University of Science and Technology, Xi’an, China.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 12 April 2018 Accepted: 28 August 2018 Published online: 12 September 2018

References
1. Pečarić, J.E., Proschan, F., Tong, Y.L.: Convex Functions, Partial Ordering and Statistical Applications. Academic Press, New York (1991)
2. Orlicz, W.: A note on modular space I. Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys. 9, 157–162 (1961)
3. Hudzik, H., Maligranda, L.: Some remark on s-convex functions. Aequ. Math. 48, 100–111 (1994)
4. Dragomir, S.S., Fitzpatrick, S.: The Hadamard’s inequality for s-convex functions in the second sense. Demonstr. Math. 32, 687–696 (1999)
5. Eftekhari, N.: Some remarks on (s, m)-convexity in the second sense. J. Math. Inequal. 8, 489–495 (2014)
6. Sarikaya, M.Z., Set, E., Yaldiz, H., Basak, N.: Hermite-Hadamard’s inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. 57, 2403–2407 (2013)
7. Gorenflo, R., Mainardi, F.: Fractional calculus: integral and differential equations of fractional order. In: Fractals and Fractional Calculus in Continuum Mechanics, pp. 223–276. Springer, Wien (1997)
8. Miller, S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)
9. Podlubni, I.: Fractional Differential Equations. Academic Press, San Diego (1999)
10. Kirmaci, U.S.: Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula. Appl. Math. Comput. 147, 137–146 (2004)