High endothelial venules (HEVs) in immunity, inflammation and cancer

Lucas Blanchard1 · Jean-Philippe Girard1

Received: 29 March 2021 / Accepted: 19 April 2021 / Published online: 6 May 2021
© The Author(s) 2021

Abstract
High endothelial venules (HEVs) are specialized blood vessels mediating lymphocyte trafficking to lymph nodes (LNs) and other secondary lymphoid organs. By supporting high levels of lymphocyte extravasation from the blood, HEVs play an essential role in lymphocyte recirculation and immune surveillance for foreign invaders (bacterial and viral infections) and alterations in the body’s own cells (neoantigens in cancer). The HEV network expands during inflammation in immune-stimulated LNs and is profoundly remodeled in metastatic and tumor-draining LNs. HEV-like blood vessels expressing high levels of the HEV-specific sulfated MECA-79 antigens are induced in non-lymphoid tissues at sites of chronic inflammation in many human inflammatory and allergic diseases, including rheumatoid arthritis, Crohn’s disease, allergic rhinitis and asthma. Such vessels are believed to contribute to the amplification and maintenance of chronic inflammation. MECA-79+ tumor-associated HEVs (TA-HEVs) are frequently found in human tumors in CD3+ T cell-rich areas or CD20+ B-cell rich tertiary lymphoid structures (TLSs). TA-HEVs have been proposed to play important roles in lymphocyte entry into tumors, a process essential for successful antitumor immunity and lymphocyte-mediated cancer immunotherapy with immune checkpoint inhibitors, vaccines or adoptive T cell therapy. In this review, we highlight the phenotype and function of HEVs in homeostatic, inflamed and tumor-draining lymph nodes, and those of HEV-like blood vessels in chronic inflammatory diseases. Furthermore, we discuss the role and regulation of TA-HEVs in human cancer and mouse tumor models.

Keywords High endothelial venules (HEVs) · Lymphocyte trafficking · Chronic inflammatory diseases · Cancer immunology · Tumor blood vessels · Tertiary lymphoid structures

Introduction
Endothelial cells play critical roles in physiology and pathophysiology, and are involved in many important diseases, including cardiovascular diseases, chronic inflammatory diseases and cancer. Although all vascular endothelial cells share certain common functions, considerable structural and functional heterogeneity exists along the length of the vascular tree and in the microvascular beds of various organs. One of the most striking examples of organ-specific endothelial cell differentiation occurs at the level of high endothelial venules (HEVs), specialized post-capillary venules found in lymph nodes (LNs) and other secondary lymphoid organs (Fig. 1) which mediate high levels of lymphocyte extravasation from the blood [1–6].

The most obvious characteristic of HEV endothelial cells (HECs) revealed by light-microscopic examination is their morphology. HECs have a plump, almost cuboidal appearance very different from the flat appearance of endothelial cells that line other vessels. This cuboidal appearance provides the basis for the name of high endothelium. Thome first noted the plump morphology of HECs in LNs in 1898 [10]. Thome wrote that, “at first notice, one is more inclined to think of the duct of a gland rather than that of a blood vessel”. A few months later, in 1899, von Schumacher confirmed the observations of Thome and noted the presence of numerous lymphocytes within HEV walls [11]. However, the direction and physiological significance of lymphocyte migration through HEVs remained unappreciated during many decades. In two landmark studies published in 1964, Gowans et al. showed that radioactively labeled lymphocytes injected intravenously migrated rapidly into rodent LNs by
crossing HEV walls [12, 13]. Gowans concluded that HEVs are the site of a large-scale migration of lymphocytes from the blood into secondary lymphoid organs. Indeed, HEV-mediated recruitment of lymphocytes is a very efficient process. It is estimated that as many as 5×10^6 lymphocytes migrate through the HEVs of the human body every second [2].

HEVs are present in all secondary lymphoid organs with the exception of spleen, including hundreds of LNs dispersed in the body, tonsils, adenoids, Peyer’s patches in the small intestine, appendix, and small aggregates of lymphoid tissue associated with the mucosal surfaces of the respiratory, gastrointestinal and urogenital tract. HECs range from 7 to 10 μm in width and 5–7 μm in height and are much less regular in outline than the term cuboidal would suggest. They exhibit great deformability and irregularity of shape [14]. The increased height of HECs might permit them to close about lymphocytes migrating through intercellular spaces, thus allowing lymphocytes to cross the endothelium like “ships in canal locks” with minimal vascular leakage [15]. Although the most striking feature of HECs is their unusual height, ultrastructural analysis revealed additional features generally not observed in endothelial cells from other vessels. At the ultrastructural level, HECs exhibit the characteristics of metabolically active secretory-type cells, with a prominent Golgi complex, abundant mitochondria closely associated with rough endoplasmic reticulum, many ribosomes frequently found in polyribosome clusters, and a large rounded nucleus with one or two nucleoli [14, 16]. The Golgi is particularly developed in areas where lymphocyte crossing is intense and often oriented towards the transmigrating lymphocytes [17]. HEV ligands for L-selectin, the major lymphocyte homing receptor, pass through the Golgi apparatus during their biosynthesis and become reactive to L-selectin in large Trans-Golgi-Network-associated vesicles [18]. After

![Fig. 1 HEVs in secondary lymphoid organs.](image)

Fig. 1 HEVs in secondary lymphoid organs. a Lymph nodes are encapsulated lymphoid organs subdivided into three regions: the cortex, the paracortex and the medulla. Blood enters the LN through a main feeding artery that branches into arterioles and capillaries in the medulla and the paracortex, respectively. Then, blood flows from the capillary beds into the post-capillary HEVs that are located in the T cell zone of the LN. Finally, blood flows through medullary venules and leave the LN via a collecting vein. Immune cells enter the LN through HEVs or afferent lymphatic vessels and exit via the efferent lymphatic vessel in the medulla. b HEVs in human tonsils. MECA-79 staining reveals the “plump” cuboidal morphology of HEV endothelial cells (HECs) (Left). MECA-79+ HECs express high levels of the nuclear cytokine IL-33 [7] (Right). The gene encoding IL-33 was originally discovered as a gene highly expressed in MECA-79+ HECs isolated from human tonsils, and IL-33 was thus initially designated as “nuclear factor from high endothelial venules” (NF-HEV) [8, 9]
crossing the Golgi, these L-selectin ligands “en route” to the HEV lumen are present in cytoplasmic vesicles, likely to represent secretory vesicles. Another remarkable feature of HECs revealed by ultrastructural studies is the thick carbohydrate-rich glycocalyx that coats their luminal surface and represents the true interface with circulating lymphocytes [2, 16, 19]. Direct measurements showed that the thickness of the glycocalyx varied from 490 ± 12 in capillaries to 1280 ± 108 Å in HEVs [16]. This feature of the HEV glycocalyx is noteworthy in view of the evidence that sulfated carbohydrates and glycoproteins serve as essential recognition determinants for lymphocyte L-selectin [6]. In addition, the HEV glycocalyx may also facilitate the retention (immobilization) of secreted molecules on the luminal surface of HEVs [2, 14]. Indeed, immobilization of chemokines by heparan sulfate is important for HEV-mediated lymphocyte entry into LNs [20, 21].

Evidence accumulated over the past 40 years indicates that blood vessels with HEV features develop in non-lymphoid tissues in many human chronic inflammatory diseases [2, 6, 22]. During the 1980s, Freemont and Ziff visualized the presence of HEV-like blood vessels in areas of lymphocyte aggregation in the inflamed synovium of patients suffering from rheumatoid arthritis (RA) [23, 24]. Such vessels distinguished by the plump morphology of their endothelial cells, and the presence of numerous lymphocytes within their walls, were not present in normal synovium. In their pioneering studies, Freemont and Ziff observed a strong correlation between the “plumpness” of endothelial cells lining HEV-like blood vessels and the number and percentage of perivascular lymphocytes [23, 24]. Jalkanen, Butcher, and Freemont demonstrated the capacity of HEV-like blood vessels to support lymphocyte adhesion in frozen sections of the inflamed synovium in vitro and to incorporate large amounts of radioactive sulfate, a unique metabolic property shared with lymph node HEVs [25, 26]. Together, these observations suggested that lymphocytes emigrated through HEV-like blood vessels to enter the inflamed synovium during RA. Freemont extended his observations to many other human chronic inflammatory diseases [27]. He showed that HEV-like blood vessels with cuboidal endothelium, that mediated sulfate uptake and lymphocyte adhesion in vitro, were present in areas of lymphocyte infiltration (> 150 lymphocytes/mm²) in many tissues and disease states [22]. Freemont made several important observations: HEV-like blood vessels developed in sites that did not contain such vessels under normal conditions; lymphocyte infiltration always preceded the development of these vessels; plump endothelial cells did not show mitotic activity. Based on these observations, he concluded that HEV-like blood vessels develop from existing vessels following lymphocyte infiltration, and once developed, participate in a positive feedback loop increasing lymphocyte extravasation into the diseased tissues, thus contributing to the amplification and maintenance of chronic inflammation [22].

Ten years ago, we reported that blood vessels with HEV characteristics are frequently found in the stroma of many human solid tumors including melanomas, breast, ovarian, colon and lung carcinomas [28, 29]. These findings extended initial observations made by Freemont in the 1980’s [30]. In both breast tumors (n = 273) and primary melanomas (n = 225), the density of tumor-associated HEVs (TA-HEVs) was highly correlated with the density of CD3+ T cells (including CD8+ cytotoxic T cells) and CD20+ B cells, indicating that TA-HEVs may function as major portals of entry for lymphocytes into human solid tumors [28, 29]. Interestingly, a high density of TA-HEVs in the tumor microenvironment significantly correlated with longer survival of breast cancer patients [28]. Blood vessels and tumor angiogenesis promote tumor growth and are generally associated with unfavorable clinical outcome. Therefore, these studies introduced the concept that “the phenotype of tumor blood vessels is important and that some subsets of tumor blood vessels (i.e. TA-HEVs) can contribute to tumor suppression rather than tumor growth” [28]. Studies in other human tumor types and murine tumor models confirmed these initial observations in primary breast cancer and melanoma (see below). Together, the findings suggested that TA-HEVs represent attractive targets for cancer diagnosis and treatment, and that novel therapeutic strategies based on the modulation of TA-HEVs could have a major impact on antitumor immunity and clinical outcome of cancer patients.

There are comprehensive reviews about the role of HEVs in LNs and other secondary lymphoid organs, to which the reader is referred [1–6]. In our previous article, we reviewed the phenotype and function of HEVs in LNs at steady state [1]. In the present review, we highlight the role and regulation of HEVs in homeostatic, inflamed and tumor-draining LNs, and those of HEV-like blood vessels in chronically inflamed tissues, and TA-HEVs in human and mouse tumors.

High endothelial venules and lymphocyte trafficking in lymph nodes

MECA-79+ HEVs in homeostatic lymph node (LN)s

In mammals, HEVs are present not only in LNs and other secondary lymphoid organs [1–6] but also in unconventional lymphoid tissues such as nasopharyngeal-associated lymphoid tissue (NALT) [31–33], tear duct-associated lymphoid tissue (TALT) [34], intestinal isolated lymphoid follicles (ILF) [35], mediastinal fat-associated lymphoid clusters (FALC) [36], and omental milky spots [37, 38]. The precise phenotype and function of HEVs in these various lymphoid tissues go beyond the scope of this review. Butcher et al.
previously highlighted differences between HEVs in peripheral LNs, mucosal LNs and Peyer’s patches [3, 39, 40]. Since HEV biology has been mostly studied in peripheral LNs [1], we will focus our discussion in the following paragraphs on peripheral lymph node HEVs. Today, we have a good understanding of the molecular mechanisms regulating lymphocyte extravasation through HEVs, thanks to the major contributions of the groups of Rosen, Butcher, Von Andrian, Miyasaka, Fukuda, Cyster, Lowe and many others [1–6].

The first interaction between naïve lymphocytes and HEVs is initiated by lymphocyte L-selectin (also known as CD62L) that recognizes a family of sulfated mucin-like glycoproteins known as HEV sialomucins [1, 6]. Although not specific to HECs, these HEV sialomucins, which include CD34, podocalyxin, endomucin, nepmucin and glycosylation-dependent cell adhesion molecule 1 (GlyCAM-1, only present in rodents; pseudogene in humans), become effective L-selectin ligands when they are post-translationally modified by enzymes highly expressed in HECs. For instance, CD34 that is broadly expressed on endothelial cells along the vascular tree, as well as on hematopoietic progenitors, functions as an L-selectin counter-receptor only when appropriately decorated by HEC-specific sulfated, fucosylated and sialylated oligosaccharides [41, 42]. The critical carbohydrate determinant for L-selectin recognition, 6-sulfo sialyl LewisX (sialic acidα2-3Galβ1-4(Fucα1-3(sulfo-6)GlcNAcβ1-R), is abundantly produced in HEVs and is present on both N-glycans and extended core 1 and 2 O-glycans decorating HEV sialomucins [6, 43–49]. The expression of high levels of the L-selectin-binding HEV-specific glycoforms of HEV sialomucins is undoubtedly one of the most important features of the HEV endothelium. Indeed, monoclonal antibodies (mAbs) that define the best HEV markers currently available are directed against HEV-specific oligosaccharides decorating HEV sialomucins [43–46, 50]. For instance, the HEV mAb “Mouse Endothelial Cell Antigen-79” (MECA-79), generated by Butcher et al. in 1988 [50], specifically recognizes 6-sulfo sialyl LewisX structures on extended core 1 O-glycans [45]. The MECA-79 epitope is often designated peripheral lymph node addressin (PNAd) [50, 51]. However, it is important to mention that MECA-79 reacts not only with peripheral LN HEVs, but also with mucosal LN HEVs, Peyer’s patches HEVs and HEV-like blood vessels in non-lymphoid tissues. Therefore, although the term PNAd is widely used to designate MECA-79 reactive antigens in both lymphoid and non-lymphoid organs, MECA-79+ antigens and MECA-79+ blood vessels may be more appropriate designations than PNAd outside of peripheral LNs. MECA-79 is a fantastic tool for HEV studies. It is a very robust mAb for immunohistochemistry and immunofluorescence studies, which reacts specifically with HEVs in both humans and mice (no cross-reaction with other blood vessels in the body), and in both lymphoid and non-lymphoid organs [50, 51]. Importantly, this is a function-blocking mAb that inhibits interactions of lymphocytes with HEVs in vitro and in vivo [50, 52].

Crucial insights about the HEV phenotype came from genome-wide transcriptomic analyses of HECs from mouse peripheral LNs [40, 53, 54] that extended pioneering studies of isolated human and mouse MECA-79+ HECs by differential expression and subtractive hybridization strategies [55–58]. MECA-79+ HECs displayed a unique transcriptional program clearly distinct from that of all other endothelial cell subsets in the LN [40, 53, 54]. Single-cell RNA sequencing (scRNA-seq) revealed that genes encoding HEV sialomucin GlyCAM-1 (Glycam1), CC-chemokine ligand 21 (CCL21; Ccl21a), and critical HEV enzymes (sulfotransferases: Chst4, Chst2; glycosyltransferases: Fut7, Gent1, B3gent3, S3galt3) [45, 47–49, 59, 60], were among the top genes differentially and highly expressed in HECs [53]. In contrast, genes encoding other HEV sialomucins (Cd34, Emcn, …), were not differentially expressed in HECs. These transcriptomic analyses confirmed that the unique capacity of HECs to capture large numbers of lymphocytes is based on the coordinated expression of the different enzymes involved in the decoration of HEV sialomucins with high affinity 6-sulfo sialyl LewisX L-selectin ligands [40, 53]. Transcriptional analysis also confirmed high expression in HECs of several genes implicated in HEV function (Enpp2, Spns2, Spkhl) that were previously or subsequently identified through in vivo studies in mice [61–65]. Another striking feature of HECs revealed by scRNA-seq is their cellular heterogeneity in homeostatic LNs [53]. Indeed, the two most abundant HEV genes in mouse peripheral LNs, Glycam1 and Ccl21a exhibit differential expression in HECs. In a subset of HEVs, some MECA-79+ HECs expressed high levels of Glycam1 (or Ccl21a) mRNAs, although adjacent cells expressed none [53]. We also observed spatial heterogeneity of HEVs. MECA-79+ HECs in the LN paracortex had higher expression levels of GlyCAM-1 protein than MECA-79+ HECs located close to the medulla. The functional consequences of this HEC heterogeneity are currently unknown, but it reveals the highly plastic nature of the HEV phenotype. The spatial localization of HECs within the LN microenvironment might dictate accessibility to factors regulating HEV gene and protein expression and thereby contribute to the remarkable heterogeneity of HECs at steady state.

HEV-mediated entry of lymphocytes in lymph nodes

In homeostatic LNs, HEVs almost exclusively recruit naive and central memory lymphocytes [1]. Migration of naive T and B cells through HEVs, which has been precisely described thanks to the intravital microscopy technique set up by von Andrian in 1996 [52], occurs via a multistep adhesion cascade composed of rolling, firm arrest (sticking) and
transmigration (Fig. 2a) [1, 52, 66]. Lymphocytes circulating in the blood first tether and roll on HEV walls through the binding of L-selectin to 6-sulfo sialyl LeX motifs decorating HEV sialomucins (Fig. 2b). This initial tethering interaction significantly reduces the velocity of lymphocytes, allowing them to interact with chemokines immobilized and presented on the luminal surface of HEVs by heparan sulfate [20, 21]. Homeostatically expressed chemokines CCL21, CCL19, CXCL13 and to a lesser extent CXCL12, are pivotal factors during lymphocyte migration across HEVs because they mediate the activation of integrins essential for lymphocyte arrest in HEVs [67–71]. Indeed, while L-selectin is constitutively active, integrins require prior activation to recognize their ligands and subsequently mediate firm adhesion (sticking) to endothelial cells. Naive T cells express CC-chemokine receptor 7 (CCR7) and CXC-chemokine receptor 4 (CXCR4), the receptors for CCL21, CCL19 and CXCL12, whereas B cells express CXC-chemokine receptor 5 (CXCR5), the receptor for CXCL13, in addition to CXCR4 and CCR7 [72, 73]. Endothelium-presented chemokines are either produced by HEVs (such as CCL21 in mice but not in humans) or produced by neighboring stromal cells (fibroblastic reticular cells (FRCs) and follicular dendritic cells (FDCs)) and then transcytosed through HEVs [73–75].

The integrin lymphocyte function-associated antigen 1 (LFA1), which binds to intercellular adhesion molecule 1 and 2 (ICAM1 and ICAM2) expressed on endothelial cells, is the major integrin for T and B cell arrest in peripheral LN HEVs. In mesenteric LNs and other gut-associated lymphoid tissue (GALT), including Peyer’s patches, the integrin α4β7, a major ligand of mucosal addressin cell adhesion molecule 1 (MAdCAM-1), is also critical for lymphocyte recruitment.

Fig. 2 HEV-mediated recruitment of lymphocytes in peripheral lymph nodes. a Naive T and B cells circulating in the blood tether and roll on HEV walls. Subsequently, rolling lymphocytes interact with chemokines immobilized on the HEV luminal surface. Chemokine receptor-dependent signaling induces activation of lymphocyte integrins that mediate firm binding (sticking) to their counter-receptors on HEV endothelium. Then, lymphocytes crawl on the HEV surface for a few minutes before transmigrating across the HEV endothelium via “exit ramps”. Some lymphocytes also accumulate transiently in “HEV pockets”. b Naive lymphocytes roll on HEV endothelium through the binding of L-selectin to 6-sulfo sialyl Lewis X motifs decorating both O-glycans and N-glycans on HEV sialomucins (Left). Representation of a bi-antennary O-linked glycan on a HEV sialomucin (Right). Both extended core-1 and core-2 branch structures can display the 6-sulfo sialyl Lewis X motif (highlighted in yellow). The 6-sulfo sialyl Lewis X motif is a tetrasaccharide composed of N-acetylgalactosamine (GlcNAc), galactose (Gal), sialic acid (Sia) and fucose (Fuc), linked through N-acetylgalactosamine (GlcNAc) to a serine (Ser) or threonine (Thr) residue of the core HEV sialomucin protein. α and β linkages of the saccharide units are shown. The epitope of MECA-79 (highlighted in blue) is a component of the core-1 extension. The C-6 sulfation (red SO3-) of N-acetylgalactosamine, that is referred to as “6-sulfo”, is required for both L-selectin and MECA-79 recognition. Black rectangles indicate genes encoding enzymes involved in the synthesis of the 6-sulfo sialyl Lewis X motif. c Naive lymphocytes rolling on HEV walls interact with chemokines that are presented by heparan sulfate such as CCL21. Signaling through CCR7 induces conformational changes in the lymphocyte integrin LFA1, which mediate binding to ICAM1 and ICAM2 on the HEV endothelium, leading to firm arrest (sticking) of the lymphocytes. Following a rapid step of crawling, lymphocytes eventually transmigrate through HEVs to enter the lymphoid tissue.
through HEVs [6, 76]. The combination of shear forces of the blood flow and G protein-coupled chemokine receptor signaling induces conformational changes in LFA1 molecules, leading to firm adhesion of lymphocytes to ICAM1 and ICAM2 expressed on HECs (Fig. 2c) [68, 70, 77]. Following stable arrest, lymphocytes can be observed crawling along the luminal surface of HEVs, looking for appropriate transmigration sites [78]. When they finally find an exit site, lymphocytes rapidly cross the endothelial barrier via paracellular (between adjacent endothelial cells) or transcellular (through the cytoplasm of adjacent endothelial cells) migration even if the paracellular migration route seems to be largely favored [79–83]. Remarkably, lymphocytes tend to follow each other through discrete hot spots that are called “exit ramps” when transmigrating through HEVs [78]. However, crawling lymphocytes can also transiently accumulate in endothelial structures called HEV pockets before entering the LN parenchyma [83, 84]. These “waiting areas” could be instrumental in homeostatic LNs to maintain a constant steady-state cellularity while supporting extensive lymphocyte trafficking. In addition to the mechanisms described above, other adhesion molecules implicated in lymphocyte trans-endothelial migration exist. For additional information, readers are referred to “state-of-the-art” reviews on leukocyte transmigration [85, 86].

Mechanisms regulating the phenotype and function of HEVs in lymph nodes

Pioneering studies performed more than 30 years ago revealed that LN afferent lymphatic vessel ligation results in HEV dedifferentiation [87]. This process, which involves HEV morphology “flattening”, downregulation of MECAM-79 antigens and reduced ability to support lymphocyte adhesion, is fully reversible following interruption of ligation [88–90]. Interestingly, subsequent studies demonstrated that lymph-borne molecules such as chemokines can reach HEVs through a stromal conduit system composed of FRCs, revealing a special connection between HEVs and the lymphatic system [75, 91, 92]. Together with phenotypic analyses showing that freshly purified human HECs rapidly lose the specialized HEV phenotype when cultured ex vivo [93], these results indicated that HEVs exhibit a remarkable plasticity and are highly dependent on the lymphoid microenvironment and lymph-derived cells and/or factors.

Eventually, we discovered that CD11c+ dendritic cells (DCs) are critical for maintenance of HEV phenotype and function in homeostatic LNs [94]. Indeed, in vivo depletion of CD11c+ DCs induces a reversion to an immature HEV phenotype characterized by reduced expression of MECAM-79 antigens, downregulation of HEV-specific genes (Chst4, Fut7, Glycam1) and upregulation of the mucosal addressin CD11c+ dendritic cells (DCs) are critical for maintenance of HEV phenotype and function in homeostatic LNs [94]. Indeed, in vivo depletion of CD11c+ DCs induces a reversion to an immature HEV phenotype characterized by reduced expression of MECAM-79 antigens, downregulation of HEV-specific genes (Chst4, Fut7, Glycam1) and upregulation of the mucosal addressin MAdCAM-1, a marker of immature HEVs in neonatal peripheral LNs [95]. The functional consequence of this altered HEV phenotype is a profound defect in lymphocyte recruitment to LNs that culminates in LN hypocellularity. Additional studies confirmed the pivotal role of DCs in HEV-mediated lymphocyte homing to LNs [96, 97]. Interestingly, it has also been shown that DCs contribute to HEV growth in a vascular endothelial growth factor (VEGF)-dependent fashion, which confers additional regulating properties to DCs [96, 98].

The lymphotixin-β receptor (LTβR) and downstream non-canonical nuclear factor kB (NF-kB) signaling pathway are essential for HEV maintenance and lymphocyte homing to adult LNs [99–102]. Endothelial cell-specific deletion of LTβR and treatment with LTβR-immunoglobulin (Ig) soluble decoy receptor indicate that continuous triggering of LTβR on HECs is critical for the expression of several genes related to HEV biology (Glycam1, Fut7, Chst4, Gcnt1), demonstrating that many HEV-specific genes are LTβR-dependent genes [53, 99, 102, 103]. scRNA-seq analyses after treatment with LTβR-Ig revealed that Chst4 requires lower levels of LTβR-dependent signals for expression than the other HEV genes (Glycam1, Fut7, Gcnt1) [53]. LTβR stimulation results in activation of both canonical and non-canonical NF-kB signaling pathway whereas tumor necrosis factor receptor 1 (TNFR1) engagement mediates canonical NF-kB signaling only [104]. Neither the phenotype of HEVs nor the expression of HEV-specific genes are affected in TNFR1-deficient mice and mice treated with TNFR-Ig [99, 101]. On the contrary, LN HEVs from mice deficient in components of the non-canonical NF-kB signaling pathway have reduced expression of MECAM-79 antigens, GlyCAM-1 and GlcNAc6ST-2 (Chst4), showing that LTβR ability to induce the non-canonical NF-kB signaling pathway is essential for the regulation of HEVs [100, 101].

In fact, we demonstrated that CD11c+ DCs are a major source of LTβR ligands, lymphotixin α (LTα), lymphotixin β (LTβ) and LIGHT, and that DC-derived lymphotixin is critical for HEV-mediated lymphocyte recruitment to homeostatic LNs [94]. Because intranodal DCs are positioned close to HEVs both at steady-state and during inflammation [105–107], we proposed a model in which DCs regulate HEV phenotype and function through direct stimulation of LTβR [1]. Future studies will be required to identify the precise DC subsets involved in the process although LN-resident conventional DC 1 and 2 (cDC1 and cDC2) appear as obvious candidates because of their frequent association with HEVs [107].

HEVs in inflamed lymph nodes

LNs can be regarded as immune hubs strategically positioned in the organism to provide regional immune surveillance...
These highly specialized organs orchestrate the initiation and the maintenance of adaptive immune responses during infection and cancer. Following immune challenge, the LN draining inflamed tissues is the site of an important stromal remodeling enabling its increase in size and cellularity [109, 110]. Within the inflamed LN, the number but also the phenotype of HEVs are modified to support the ongoing immune response (Fig. 3) [53, 98, 103, 111, 112].

Soon after the initial inflammatory stimulus, the LN blood vasculature undergoes substantial enlargement and remodeling which includes expansion of the primary feed arterioles and HEV network, a process that is thought to increase influx of lymphocytes and therefore the efficiency of screening for rare antigen-specific lymphocytes [112–114]. Mechanistically, it has been shown in models of multicolor fate mapping that LN blood vascular growth relies on the clonal proliferation of some HECs that act as local progenitors to create both capillaries and HEV neovessels [112]. More recently, scRNA-seq studies of mouse LN endothelial cells identified a population of progenitor-like activated capillary endothelial cells, defined as capillary resident precursors (CRPs), that are actively mobilized for LN angiogenesis after immunization [54]. Among LN BECs, CRPs selectively express Apln and can be observed by staining for the human estrogen receptor (ER), which serves as a surrogate for Apln expression. At steady state, ER⁺ endothelial cells are present in capillaries whereas HECs do not express the receptor. However, Apln-reporter mice revealed that many HECs and capillary endothelial cells are positive for the reporter three weeks after an immune challenge, showing that Alpln-expressing CRPs can also contribute to inflammation-induced HEV neogenesis, in addition to HECs themselves [112].

DC mobilization increases during the initial phase of LN swelling [115]. DC accumulation in the inflamed LN could be the initial trigger for blood vasculature enlargement as DCs have been shown to control proliferation of endothelial cells (including HECs) in LNs [98, 116], although B and T cells may participate too [117–119]. In both instances, LTβR ligands and VEGF-A are the critical mediators of LN vasculature remodeling. At later stages, afferent lymphatic function is transiently diminished, likely causing dilution of DCs in the LN microenvironment [103]. Concurrently to this afferent lymph flow shutdown, HECs acquire an inflamed...
endothelial cell phenotype (Fig. 3) that is marked by temporary downregulation of mature HEV genes (Glycam1, Fut7, Gcnt1), maintenance of strong MECA-79 expression, and upregulation of inflammatory proteins (P-selectin, E-selectin and CXCL9) and immature HEV marker MadCAM-1 [53, 103, 120–123]. As a consequence of this phenotypic switch, novel immune cell populations such as neutrophils and activated effector/effector memory T cells are recruited through inflamed HEVs [121, 122, 124–127]. Importantly, the ability of inflamed HEVs to mediate L-selectin-dependent naive lymphocyte recruitment is not compromised despite downregulation of mature HEV genes [53, 120]. Interestingly, recent work from the Butcher’s lab revealed that non-HEV regulation of mature HEV genes [53, 120–123]. As a consequence of this phenotypic switch, novel immune cell populations such as neutrophils and activated effector/effector memory T cells are recruited through inflamed HEVs [121, 122, 124–127]. Importantly, the ability of inflamed HEVs to mediate L-selectin-dependent naive lymphocyte recruitment is not compromised despite downregulation of mature HEV genes [53, 120]. Interestingly, recent work from the Butcher’s lab revealed that non-HEV regulation of mature HEV genes [53, 120].

Interestingly, recent work from the Butcher’s lab revealed that non-HEV regulation of mature HEV genes [53, 120–123]. As a consequence of this phenotypic switch, novel immune cell populations such as neutrophils and activated effector/effector memory T cells are recruited through inflamed HEVs [121, 122, 124–127]. Importantly, the ability of inflamed HEVs to mediate L-selectin-dependent naive lymphocyte recruitment is not compromised despite downregulation of mature HEV genes [53, 120]. Interestingly, recent work from the Butcher’s lab revealed that non-HEV regulation of mature HEV genes [53, 120].

HEVs in tumor-draining lymph nodes

The tumor-draining lymph node (tdLN), which is the first regional lymph node draining established tumors, is considered as the major activation site of tumor-specific lymphocytes [128]. The TdLN is not only important for the initiation of T-cell-dependent antitumor responses, but also for response to various cancer treatments, including radiotherapy and immune checkpoint blockade [129, 130]. However, as a sentinel LN, the tdLN is also a privileged site for cancer cell metastasis, revealing its dual role in cancer [131, 132].

Because they mediate naive lymphocyte entry to tdLNs, HEVs indirectly participate to the priming of naive lymphocytes specific for cancer antigens and are consequently crucial components of T-cell-dependent antitumor responses. In fact, HEV-mediated homing of naive lymphocytes to tdLNs is even targeted by the primary tumor which reduces expression of CCL21 on HEVs, thereby reducing lymphocyte adhesion to the endothelium [133]. This process is a striking illustration of the capacity of the primary tumor to drive HEV reprogramming in the tdLN [132]. Indeed, several reports in mouse models and human patients indicate that tdLN HEVs exhibit extensive phenotypical and morphological changes during tumor progression, including vessel dilatation, thinning of HEC morphology and discontinuous expression of MECA-79 antigens [134–138]. TdLN HEV remodeling occurs before the apparition of nodal metastases, suggesting that it is part of a pre-metastatic niche establishment program induced by the primary tumor [134–136]. Nevertheless, the density of abnormal HEVs is significantly higher in patients with established metastases in their LNs, showing that HEV identity and function might be highly compromised in metastatic LNs [135]. In some instances, the level of HEV remodeling in the tdLN correlated with disease progression and clinical outcome [135, 136]. For instance, abnormal HEVs with red blood cells observed in their lumen, which is a feature of HEVs with altered vascular integrity [139], have been associated with a worse prognosis in squamous cell carcinoma [135].

The participation of the tdLN in the dissemination of cancer cells to distant organs is a widely accepted hypothesis [131]. Efferent lymphatics and subsequent passage through thoracic duct is the major dissemination route for cancer cells, but the ability of abnormal HEVs to provide extra-lymphatic route of dissemination has also been questioned [140]. Two recent studies based on intralymphatic injection of high numbers of cancer cells in afferent lymphatics concluded that LN HEVs could constitute an effective exit route for cancer cell dissemination in the blood circulation [141, 142]. However, intralymphatic injection of non-physiologic numbers of cancer cells might not accurately mimic the metastatic processes observed in human patients, thus challenging the clinical relevance of these results. Moreover, whether incriminated HEVs are bona fide HEVs or profoundly abnormal venules that have lost their HEV function remains unclear. Metastasis is more likely to occur through de-differentiated HEVs that are no longer functional for lymphocyte recruitment.

HEV-like blood vessels in chronic inflammatory diseases

MECA-79+ HEV-like blood vessels in chronically inflamed tissues

Inflammation is an evolutionary conserved process characterized by the activation of immune and non-immune cells to protect the host from foreign invaders during tissue injury, infection and cancer [143]. Acute inflammation is a temporally restricted protective response that is rapidly resolved to limit excessive tissue damage. In contrast, chronic inflammation is a persistent and non-resolving response causing tissue destruction and loss of function with progressive clinical symptoms. Immune cell-induced reprogramming of stromal cells is an important feature of chronic inflammation and is thought to exacerbate inappropriate immune responses [144]. HEV-like blood vessels phenotypically similar to lymphoid tissue HEVs appear in many human inflammatory diseases affecting different anatomic sites (Table 1), including chronic inflammatory diseases such as RA (Fig. 4a) and inflammatory bowel diseases (Crohn’s disease, ulcerative colitis), and allergic diseases such as asthma and allergic rhinitis [2, 6, 145–148]. Thus, development of HEV-like blood vessels is not disease- or organ-specific and might be a universal property of chronically inflamed tissues.
Table 1 MECA-79+ HEV-like blood vessels in human inflammation

Condition	Target organ	Associated features
Allergic diseases		
Bronchial asthma [149, 150]	Lung	Co-expression of sLex epitope HECA-452
Allergic rhinitis [151]	Nasal mucosa	Disappearance after anti-TNFα treatment; Expression of GlcNAc6ST-2 (CHST4); Co-expression of sLex epitope HECA-452; Perivascular stromal cells producing CCL21; Presence of TLSs in high-grade inflammatory lesions
Allergic contact dermatitis [51]	Skin	Disappearance during remission in ulcerative colitis; Associated with T_{CM} and T_N infiltration; Preferentially associated with T cells, particularly CD4⁺ T cells; Co-expression of sLex epitope HECA-452; Perivascular stromal cells producing CCL21; Presence of TLSs
Chronic inflammatory diseases		
Rheumatoid arthritis [51, 152–156]	Synovium	Disappearance after anti-TNFα treatment; Expression of GlcNAc6ST-2 (CHST4); Co-expression of sLex epitope HECA-452; Perivascular stromal cells producing CCL21; Presence of TLSs in high-grade inflammatory lesions
Inflammatory bowel diseases (Crohn’s disease, ulcerative colitis) [152, 155, 157–162]	Gut	Disappearance during remission in ulcerative colitis; Associated with T_{CM} and T_N infiltration; Preferentially associated with T cells, particularly CD4⁺ T cells; Co-expression of sLex epitope HECA-452; Perivascular stromal cells producing CCL21; Presence of TLSs
Autoimmune thyroiditis	Thyroid	Co-expression of sLex epitope HECA-452
(Hashimoto’s disease, Graves’ disease) [51, 157]		
Arthritis	Synovium	Disappearance after anti-IL-17A treatment (Secukinimab)
Spondyloarthritis [164]	Skeleton	Lymphoid infiltrates but not organized in TLSs; Co-expression of sLex epitope HECA-452
Inflammatory skin diseases (psoriasis, lichen planus, cutaneous lymphoid hyperplasia, cutaneous lupus erythematosus) [51, 157, 165, 166]	Skin	Lymphoid infiltrates but not organized in TLSs; Co-expression of sLex epitope HECA-452
Conjunctival inflammation [167]	Conjunctiva	Not reduced after hydrocortisone treatment
Chronic rhinosinusitis [168, 169]	Nasal and paranasal mucosa	Associated with severity of inflammation
Sjögren’s syndrome [155, 170, 171]	Salivary glands	Perivascular stromal cells producing CCL21; Presence of TLSs
Lichen planus [165]	Oral mucosa	Preferentially associated with T cells, particularly CD4⁺ T cells
Type I autoimmune pancreatitis [172]	Pancreas	Presence of TLSs
Inflammatory myopathies [173]	Muscle	Presence of TLSs
Bronchiectasis [174]	Lung	Presence of TLSs
Idiopathic pulmonary arterial hypertension [175]	Lung	Presence of TLSs
Glomerulonephritis [176]	Kidney	Presence of TLSs
Infection		
Chronic *Helicobacter pylori* gastritis [235–237]	Stomach	Associated with progression of inflammation; Disappearance after eradication of *H. pylori*
Organ transplant rejection		
Acute heart allograft rejection [177, 178]	Heart	Associated with severity of graft rejection; Co-expression of sLex epitope HECA-452; Presence of TLSs
Acute kidney allograft rejection [179, 180]	Kidney	Co-expression of sLex epitope HECA-452; Presence of TLSs
Obliterative bronchiolitis after lung transplantation [181]	Lung	
Hyperplasia and benign neoplasms		
Warthin’s tumor [182]	Salivary gland	Preferentially associated with T cells
Benign prostatic hyperplasia [183]	Prostate	Preferentially associated with T cells, particularly CD4⁺ T cells; Associated with severity of inflammation and lower urinary tract symptoms
Cutaneous pseudolymphomas	Skin	Reduced density of MECA-79+ HEV-like blood vessels is associated with idiopathic recurrent pregnancy losses
HECA-452 mAb recognizing non-sulfated sLex, *T_{CM}* central memory T cells, *T_N* naive T cells, TLSs B cell-rich tertiary lymphoid structures		

HECA-452 mAb recognizing non-sulfated sLex, T_{CM} central memory T cells, T_N naive T cells, TLSs B cell-rich tertiary lymphoid structures
The HEV-specific mAb MECA-79 recognizes HEVs from lymphoid tissues, but also HEV-like blood vessels from extra-lymphoid tissues in both mice and humans, making it a very useful tool for the identification of ectopic HEV-like blood vessels. Indeed, systematic surveys involving large numbers of independent samples revealed that HEV-like blood vessels are recognized by MECA-79 in various human chronic inflammatory diseases affecting many different organs [51, 157]. MECA-79+ HEV-like blood vessels express the post-capillary venule marker Duffy antigen receptor for chemokines (DARC) [186], similar to HEVs in lymphoid organs [56], suggesting that they likely arise from inflammation-induced reprogramming of pre-existing post-capillary venules [152]. HEV-like blood vessels also express the mucosal addressin MAdCAM-1 in GALT during inflammatory bowel diseases [187]. In many diseases, the intensity of MECA-79 staining correlated with the extent of mononuclear cell infiltration in inflamed lesions, which suggests that the level of expression of MECA-79 antigens might be a good indicator of the functional competence of HEV-like blood vessels. Interestingly, some flat-walled blood vessels are positive for MECA-79, indicating that MECA-79+ blood vessels encompass a wide range of venules with distinct degree of maturation regarding the HEV phenotype. Histological examinations of HEV-like blood vessels in human chronically inflamed tissues precludes definitive conclusions on their functionality and their ability to mediate lymphocyte recruitment. In contrast, mouse models of chronic inflammation, which recapitulate several features of human diseases including the development of HEV-like blood vessels, allow for in vivo functional investigations. A comprehensive list of mouse inflammatory conditions in which MECA-79+ HEV-like blood vessels develop is included in Table 2. AKR mice develop hyperplastic thymus containing MECA-79+ HEV-like blood vessels in close association with T and B cells, before the onset of T cell lymphoma [188]. Short-term in vivo homing assays showed that MECA-79+ HEV-like blood vessels are involved in lymphocyte trafficking to the hyperplastic thymus. Indeed, injection of blocking amounts of MECA-79 or anti-L-selectin mAb MEL-14 abolished the recruitment of adoptively transferred lymphocytes, revealing the functional significance of MECA-79 expression on HEV-like blood vessels [188]. Similar findings were obtained in the inflamed lacrimal glands of NOD mice, a model for autoimmune-mediated insulin-dependent diabetes mellitus (IDDM) in which ectopic lymphoid infiltrates containing MECA-79+ HEV-like blood vessels are observed in several tissues [189]. After seven months of life, NOD mice also develop bronchus-associated lymphoid tissue (BALT) in the lung. Interestingly, treatment with MECA-79 and MEL-14 antibodies blocked the homing of adoptively transferred lymphocytes from blood into inflamed bronchopulmonary tissues [190]. These results obtained in three distinct inflamed tissues demonstrate first, that MECA-79+ HEV-like blood vessels are functional, and second, that the L-selectin-MECA-79 antigens axis is involved in lymphocyte trafficking to various chronically inflamed tissues. In contrast to MECA-79 antigens, MAdCAM-1 is not involved in the recruitment of adoptively transferred lymphocytes to the inflamed lacrimal glands and BALT of NOD mice [189, 190].

HEV-like blood vessels of chronically inflamed tissues can be observed close to diffuse non-organized lymphoid
Table 2 MECA-79+ HEV-like blood vessels in mouse inflamed tissues

Condition	Target organ	Associated features
Models of chronic inflammation		
Diabetes (NOD mice) [191–193]	Pancreas	Co-expression of MAdCAM-1; Expression of the HEV-restricted sulfotransferase GlcNAc6ST-2 (Chst4)
Autoimmune sialoadenitis (NOD mice) [191, 192, 194]	Salivary gland	Expression of the HEV-restricted sulfotransferase GlcNAc6ST-2 (Chst4); Reduced after LTβR-Ig treatment; Presence of TLSs
Autoimmune dacryoadenitis (NOD mice) [189, 191, 195]	Lacrimal gland	Expression of the HEV-restricted sulfotransferase GlcNAc6ST-2 (Chst4); MECA-79 and anti-CD62L block migration of adoptively transferred lymphocytes to inflamed lacrimal glands; Reduced after LTβR-Ig treatment; Presence of TLSs
BALT (NOD mice) [190]	Lung	MECA-79 and anti-CD62L block migration of adoptively transferred B and T lymphocytes to BALT; Presence of TLSs
Thymic hyperplasia (AKR mice) [188, 191, 196]	Thymus	Co-expression of MAdCAM-1; Expression of the HEV-restricted sulfotransferase GlcNAc6ST-2 (Chst4) and fucosyltransferase Fuc-T7 (Fut7); Associated with binding of L-selectin-IgM chimera; MECA-79 and anti-CD62L block migration of adoptively transferred lymphocytes to hyperplastic thymus
Neonatal thymectomy-induced autoimmune gastritis [197]	Gastric mucosa	Presence of TLSs
Diabetes (H8 mice derived-DC injection in RIP-LCMV-GP mice) [198]	Pancreas	Presence of TLSs
Collagen-induced arthritis [199]	Synovial tissue	Expression of the HEV-restricted sulfotransferase GlcNAc6ST-2 (Chst4)
Pristane-induced peritoneum inflammation [200]	Peritoneum	Presence of TLSs
Atherosclerosis (apoE−/− mice) [201]	Aorta	Associated with migration of adoptively transferred lymphocytes; Reduced after LTβR-Ig treatment; Presence of TLSs
LPS-induced iBALT [202]	Lung	Present in Rorc−/− and Id2−/− mice; Absent in LTα−/− and DKO mice, and after LTβR-Ig treatment; Presence of TLSs
Sialoadenitis (submandibular gland administration of AdV5) [203]	Salivary gland	Presence of TLSs
Bleomycin-induced lung fibrosis [36]	Lung	Presence of TLSs
Lupus nephritis (NZB/W lupus-prone mice) [204]	Kidney	Presence of TLSs
Skin inflammation (intradermal injection of newborn lymph node-derived cells) [205]	Skin	Absent with LTα−/− mice-derived cells; Presence of TLSs
Skin inflammation (subcutaneous injection of lymph node-derived stromal cell lines) [206]	Skin	Presence of TLSs
Infection		
Probiobacterium acnes-induced granulomatous liver disease [207]	Liver	Presence of TLSs
Helicobacter*-induced chronic hepatitis [208]	Liver	Co-expression of MAdCAM-1; Expression of CCL21; Presence of TLSs
Helicobacter pylori*-induced gastritis [209]	Gastric mucosa	Presence of TLSs
Influenza-induced iBALT [210, 211]	Lung	Present in CXCL13−/− mice; Reduced in plt/plt mice; Absent in LTα−/− mice; Presence of TLS
Genetically modified mice		
Hyperplastic pancreatic islets (RIP1-Tag5 mice) [212]	Pancreas	Presence of TLSs
Inflamed pancreatic islets (RIP-CCL19 mice) [213]	Pancreas	Presence of TLSs
Inflamed pancreatic islets (RIP-CCL21, RIP-CCL21a and RIP-CCL21b) [213–215]	Pancreas	Present in Ilkars−/− mice but absent in Rag1−/− mice, and reduced after LTβR-Ig treatment; Presence of TLSs
Inflamed pancreatic islets (RIP-CXCL13) [191, 216]	Pancreas	Present in TNFR1−/− mice but reduced in μM−/− and LTα−/− mice, and after LTβR-Ig treatment; Expression of the HEV-restricted sulfotransferase GlcNAc6ST-2 (Chst4); Presence of TLSs
Table 2 (continued)

Condition	Target organ	Associated features
Inflamed pancreatic islets (RIP-LT mice) [217, 218]	Pancreas	Absent in Rag2−/− and p55−/− (TNFR1) mice; Reduced infiltration of naive lymphocytes in LTβ−/− mice; Presence of TLSs
Inflamed pancreatic islets (RIP-LTαβ mice) [219]	Pancreas	MECA-79+ HEV-like blood vessels with luminal expression of MECA-79 antigens and expression of the HEV-restricted sulfotransferase GlcNAc6ST-2 (Chst4); Present in LTβ−/− mice; Presence of TLSs
Autoimmune pancreatitis (Tg(Ela1-LTα,β) mice) [220, 221]	Pancreas	Presence of TLSs; Reduced after LTβR-Ig treatment
Inflamed thyroid (TG-CCL21 mice) [222–224]	Thyroid	Present in Id2−/−; Absent in Rag1−/− mice and phenotypic rescue with adoptive transfer of CD4+ T cells; MECA-79+ HEV-like blood vessels with only abluminal expression of PNAd, flat morphology and no expression of the HEV-restricted sulfotransferase GlcNAc6ST-2 (Chst4) in LTor−/− mice; Absent after LTβR-Ig treatment; Presence of TLSs

Organ transplant rejection

Cardiac allografts [225, 226] | Heart | Reduced after LTβR-Ig treatment; Presence of TLSs; Present in TLSs and outside TLSs in lymphocyte-rich areas |

AdV5 replication-defective adenovirus 5, BALT bronchus-associated lymphoid tissue, CCL19 CC-chemokine ligand 19, DKO mice lacking the chemokines CXCL13, CCL19 and CCL21a, H8 mice transgenic mice constitutively expressing the LCMV immunodominant epitope GP33, iBALT inducible BALT, LCMV-GP lymphocytic choriomeningitis virus glycoprotein, LPS lipopolysaccharide, LT lymphotoxin α, LTαβ lymphotoxin α and β, NOD non-obese diabetic, NZB/W New Zealand black x New Zealand white F1 mice, plt/plt mice lacking CCL19 and CCL21a, RIP rat insulin promoter, TG thyroglobulin, TLSs B cell-rich tertiary lymphoid structures, μM B-cell-deficient mice

Infiltrates, but they are also frequently associated with highly organized lymphoid clusters defined as tertiary lymphoid structures (TLSs) (Table 2) [6, 147, 227]. TLSs, also known as tertiary lymphoid organs (TLOs) [228], demonstrate several features of lymphoid organs, including compartmentalization of B and T cells in discrete zones, presence of dendritic cells and formation of HEV-like blood vessels [147]. By mediating lymphocyte entry into TLSs, HEV-like blood vessels may be critical for their maintenance and their function. The development of TLSs, referred to as lymphoid neogenesis [147, 148, 227], is observed in various chronic inflammatory diseases and is generally associated with deleterious outcomes in patients [148, 228, 229]. Indeed, several lines of evidence indicate that TLSs not only recapitulate the cellular and structural organization of lymphoid tissues, but can also support immune functions. In particular, TLSs can contain active germinal centers that foster B cell responses in situ [230–232], suggesting that TLSs might be regarded as B cell-oriented structures, at least regarding functional aspects.

Mechanisms regulating the development of HEV-like blood vessels in chronic inflammation

HEV-like blood vessels are nearly always present when pronounced lymphocyte infiltration is present over the course of chronic inflammation, suggesting an important role of lymphocytes in the development of these specialized blood vessels. Interestingly, a growing body of evidence indicate that several mechanisms occurring during the development of physiological HEVs in lymphoid tissues are involved in the development of ectopic HEV-like blood vessels, with an especially strong participation of cytokines and chemokines.

As mentioned in the introduction, initial morphometric studies made by Ziff with electron microscopy revealed that HEV-like blood vessel “plumpness”, which can be regarded as a surrogate of HEV maturity, is associated with the number of perivascular lymphocytes [24]. Another feature highlighting the close relationship between HEV-like blood vessels and lymphocytes is the increased intensity of MECA-79 staining of HEV-like endothelial cells localized close to the lymphocytic infiltrates (Fig. 4a). These observations suggested that HEV-like blood vessel development could be the consequence of lymphocyte infiltration in chronically inflamed tissues. Subsequent studies further documented the intimate relationship between HEV-like blood vessels and lymphocytes [149, 157]. A striking finding is the influence of the nature of the immune infiltrate on the presence or absence of HEV-like blood vessels in diseases occurring in the same organs. For instance, MECA-79+ HEV-like blood vessels are induced in the skin and lungs during diseases associated with lymphocyte infiltration, such as psoriasis and bronchial asthma, but they are absent during diseases characterized by neutrophil infiltration, like vasculitis in the skin or adult respiratory distress syndrome in the lung [149, 157]. These observations suggest that HEV-like blood vessel induction is a hallmark of lymphocyte infiltration in
chronically inflamed tissues, and that lymphocytes might be regulating their development and maintenance.

Mouse models of chronic inflammation have been instrumental for the identification of the mechanisms regulating HEV-like blood vessel development (Table 2). A major contribution of lymphoid tissue-associated cytokines and chemokines is strongly supported by results obtained in transgenic mice in which MECA-79+ HEV-like blood vessels are induced in pancreatic islets or thyroid in response to ectopic expression of TNF/lymphotoxin cytokines, CCL21 or CXCL13 [213, 214, 216, 217, 219]. LTα and LTβ have a central role in HEV development during LN organogenesis [233], and a similar scenario may apply for the de novo induction of HEV-like blood vessels. However, the phenotype of ectopic HEVs vary depending on the nature of the stimulus. When LTα is overexpressed in pancreatic islets, MECA-79+ HEV-like blood vessels exhibit mostly abluminal expression of MECA-79 antigens due to the absence of the sulfotransferase GlcNAc6ST-2 (Chst4) responsible for MECA-79 luminal expression [191, 234], and their development is dependent on TNFR1 signaling [218, 219]. On the other hand, co-expression of LTα and LTβ and consequent LTβR signaling in the exocrine pancreas is associated with the development of MECA-79+ HEV-like blood vessels expressing GlcNAc6ST-2 and high levels of luminal MECA-79 antigens [219]. These landmark studies of Ruddle et al. indicate that TNFR1 signaling is sufficient to initiate the formation of MECA-79+ HEV-like blood vessels but that LTβR signaling is required to generate vessels with increased HEV maturity and that might have an improved ability to capture L-selectin-expressing lymphocytes (Fig. 4b). Chemokines may induce HEV neogenesis through the recruitment of lymphocytes expressing LTβR ligands. Indeed, MECA-79+ HEV-like blood vessels induction in pancreatic islets following CCL21 or CXCL13 ectopic expression is abolished or reduced in lymphocyte-deficient mice [214, 216]. Moreover, crossing these transgenic mice with LTα−/− mice or treating them with LTβR-Ig significantly reduces HEV-like blood vessel development [213, 216]. In fact, it was demonstrated that CCL21 and CXCL13 upregulate LTβR ligands on CD4+ T cells and B cells, respectively [213], showing that chemokines cooperate with TNF/lymphotoxin cytokines for the induction of HEV-like blood vessels in chronic inflammation. Interestingly, MECA-79+ HEV-like blood vessels induced in the thyroid after ectopic expression of CCL21 are lost in lymphocyte-deficient mice but can be rescued following adoptive transfer of CD4+ T cells [222, 223]. These later results confirmed that lymphocytes are critical regulators of HEV-like blood vessels, but also suggested that CD4+ T cells, that are preferentially associated with HEV-like blood vessels in several human chronically inflamed tissues [158, 159, 165, 183], are major inducers of HEV-like blood vessels in chronic inflammation.

Therapeutic targeting of HEV-like blood vessels in chronic inflammation

Accumulating evidence indicates that HEV-like blood vessels induced at sites of chronic inflammation contribute to lymphocyte trafficking in the diseased tissue in a manner similar to lymphocyte homing in LNs. These specialized blood vessels sustain chronic inflammation and subsequent pathology. Therefore, their therapeutic targeting may offer a novel way of influencing the progression of chronic inflammation and could have broad applications because MECA-79+ HEV-like blood vessels appear in many distinct human inflammatory diseases (Table 1).

The presence of MECA-79+ HEV-like blood vessels correlates with the progression of inflammation and disease severity in several human inflammatory pathologies. In Helicobacter pylori chronic gastritis, MECA-79+ HEV-like blood vessels are likely to contribute to the formation of mucosa-associated lymphoid tissue (MALT) of the gastric mucosa that fosters local tissue inflammation and increases the risk of extranodal marginal zone lymphoma of MALT type (MALT lymphoma) [235–237]. By examining more than 140 human specimens, Fukuda and coworkers demonstrated that MECA-79+ HEV-like blood vessels positively correlated with the progression of inflammation in the gastric mucosa [235]. Furthermore, they showed that eradication of H. pylori by treatment with antibiotics and a proton pump inhibitor is associated with the disappearance of HEV-like blood vessels and minimal lymphocyte infiltration, suggesting that local post-capillary venules reacquire a normal phenotype after treatment and are no longer able to sustain extensive lymphocyte recruitment. Therapeutic agents also have an impact on HEV-like blood vessels in other diseases. For instance, in RA and psoriatic arthritis, reduced inflammation in the synovium after TNFα blockade with different biological agents (adalimumab, infliximab, etanercept) was associated with reduced numbers of MECA-79+ HEV-like blood vessels [153, 238]. Inflammatory bowel diseases (IBDs) such as ulcerative colitis provide another example of inflammatory pathologies in which HEV-like blood vessels are involved and modulated during disease progression [152, 157–161]. Analysis of colonic mucosa biopsies representing both active and remission phases of ulcerative colitis revealed that MECA-79+ HEV-like blood vessels are preferentially induced in the active phase of the disease [158, 161]. Finally, similar clinical correlations were observed in other human inflammatory disorders including benign prostatic hyperplasia, chronic maxillary rhinosinusitis and acute heart allograft rejection [168, 177, 183], indicating that HEV-like blood vessels are tightly associated with persistent inflammation and active disease in humans.

Interfering with the development and/or maintenance of HEV-like blood vessels or with HEV-associated molecules
controlling lymphocyte recruitment is likely to provide therapeutic benefits in many human inflammatory diseases (Table 1). In fact, several reports mention disease amelioration following therapeutic manipulation of HEV-like blood vessels in preclinical models. In a sheep model of human asthma associated with development of MECA-79+ HEV-like blood vessels in the lung, Rosen et al. showed that intravenous administration of MECA-79 antibody prevents airway hyper-responsiveness induced by allergen challenge and inhibits the accumulation of leukocytes in bronchoalveolar lavage fluid [150]. These results provided the first evidence that direct targeting of MECA-79+ HEV-like blood vessels can have therapeutic efficacy [150]. Similar findings were obtained in the same model using an anti-L-selectin mAb instead of MECA-79 [239]. Interestingly, blockade of L-selectin function has been associated with reduced leukocyte recruitment in various inflammatory conditions [240] and can inhibit insulitis and subsequent development of diabetes in NOD mice [241]. Another relevant approach for HEV-like blood vessel inhibition is the targeting of the HEV master regulator LTβR. In NOD mice, inhibition of MECA-79+ HEV-like blood vessels after treatment with LTβR-Ig is associated with improved function of salivary and lacrimal glands [194, 195], suggesting that LTβR inhibition may ameliorate disease in human Sjögren’s syndrome. Interestingly, LTβR-Ig reduces development of MECA-79+ HEV-like blood vessels in several murine tissue sites, including inflamed pancreatic islets, heart transplant allografts, and inflamed aorta during atherosclerosis in apoE−/− mice (Table 2) [201, 216, 225]. However, a human LTβR-Ig fusion protein (Baminercept) failed to produce significant clinical efficacy in RA and Sjögren’s syndrome [242, 243]. The unique targeting of lymphocyte recruitment to inflamed tissues may thus not be sufficient to yield therapeutic benefits. The simultaneous targeting of distinct steps of the lymphocyte-dependent response with combination of different treatments will likely provide maximal therapeutic benefits in humans.

Tumor-associated HEVs (TA-HEVs) in cancer immunology and immunotherapy

MECA-79+ TA-HEVs in tumors

Although detrimental in chronic inflammatory diseases, the development of HEV-like blood vessels can be advantageous in other instances where increased lymphocyte recruitment is beneficial. The immune response against cancer is critically dependent on the activity of tumor-specific lymphocytes that are able to recognize and eliminate tumor cells. To get inside the tumor, lymphocytes first need to extravasate through tumor blood vessels. By facilitating lymphocyte trafficking to the tumor, TA-HEVs could play a key role in cancer immunity and immunotherapy.

The first descriptions of MECA-79+ HEV-like blood vessels in a human cancer setting were reported in cutaneous and gastric MALT lymphomas [51, 244, 245]. Given the known role of lymphocytes in the regulation of HEV-like blood vessels, it is not surprising that such vessels are present in extra-lymphoid tissues where malignant lymphoid cells accumulate. However, we now know that the development of MECA-79+ HEV-like blood vessels go far beyond lymphoid neoplasms, and they are in fact observed in many distinct human solid tumors [28], demonstrating that acquisition of HEV-specific attributes by tumor blood vessels is a widely conserved process in malignant tissues. Our initial observations showing the strong correlation between the density of MECA-79+ TA-HEVs and densities of tumor-infiltrating CD3+ T cells, CD8+ T cells, and CD20+ B cells in primary breast cancer and melanoma [28, 29], have been confirmed in many studies and extended to multiple human malignancies (Table 3). The density of MECA-79+ TA-HEVs is positively correlated with clinical parameters indicative of reduced tumor progression and invasion in primary melanoma [29, 246, 247] and with increased metastasis-free survival and overall survival in primary breast cancer [28]. MECA-79+ TA-HEVs are also associated with increased lymphocyte infiltration, progression free-survival and overall survival in head and neck cancer [248–250]. Moreover, combined high densities of MECA-79+ TA-HEVs and CD8+ T cells are a prognostic factor for overall survival in gastric cancer [251]. Together, these results suggest that TA-HEVs function as major gateways for lymphocyte infiltration into human tumors, thus promoting antitumor immune response and improving clinical outcome.

MECA-79+ TA-HEVs express pan-endothelial cell markers such as CD31 or von Willebrand factor (vWF) but also the marker DARC, indicating that they likely derive from post-capillary venules similar to HEV-like blood vessels in chronic inflammation [28, 29]. Endothelial cells lining human MECA-79+ TA-HEVs exhibit a cuboidal appearance reminiscent of the plump morphology of LN HECs (Fig. 5), but they can also display a flat morphology, frequently associated with a dilated vessel lumen [138, 246, 249]. As observed in chronic inflammatory diseases, MECA-79+ TA-HEVs might encompass a wide spectrum of HEV-like blood vessels with different degrees of maturation. Besides human studies, a main part of our knowledge on TA-HEVs come from studies performed in mouse models. Table 4 lists the different mouse tumors exhibiting MECA-79+ TA-HEVs. MECA-79+ TA-HEVs were first observed in mice following various treatments such as adoptive transfer of CD8+ T cells, administration of tumor-targeted LTα or genetic depletion of Foxp3+ regulatory T cells (Tregs) [282–285]. However, Engelhard et al. demonstrated that, in some tumor
Table 3 MECA-79+ TA-HEVs in human cancer

Cancer type	Associated features	Clinical impact
Primary tumors		
Breast cancer [28, 252–255]	Progressive loss during ductal carcinoma progression from in situ to invasive; Associated with DC-LAMP⁺ DCs, T cell and B cell infiltrations; Associated with Tₙ and T_CM infiltration; Detected in > 74% of tumors \(n = 127 \); Presence of TLSs in some tumors	Associated with increased DFS, MFS and OS; associated with pCR in triple-negative breast cancer patients treated with neoadjuvant chemotherapy
Melanoma [28, 29, 246, 247, 256, 257]	Progressive loss during tumor progression; Associated with DC-LAMP⁺ DCs, T cell and B cell infiltrations; Detected in > 66% of tumors \(n = 225 \); Present in TLSs and outside TLSs in lymphocyte-rich areas	Correlate with tumor regression; No prognostic value for 5-year survival
Colorectal cancer [28, 258–261]	Associated with MSI^{high} colon cancer; Associated with T cell infiltration; Presence of TLSs	No prognostic value for 5-year survival
Lung cancer [28, 262–266]	Colocalized with CD62L⁺ lymphocytes; Present in TLSs and outside TLSs in lymphocyte-rich areas	
Testicular seminoma [267]	Preferentially associated with T cells; Co-expression of ICAM-1 but not VCAM-1 and MAdCAM-1; Co-expression of sLex epitope HECA-452; Associated with binding of E-selectin-IgM chimera	
Papillary thyroid carcinoma [268]	Preferentially associated with T cells, particularly CD⁸⁺ T cells; Co-expression of ICAM-1 but not VCAM-1 and MAdCAM-1; Co-expression of sLex epitope HECA-452; Associated with binding of E-selectin-IgM chimera	
Prostate [252, 269]	Present at different stages of cancer and in samples from patients with spontaneous remission; Presence of TLSs	
Urothelial bladder cancer [270]	Presence of TLSs in high-grade tumors	
Gastric cancer [251, 252, 271, 272]	Presence of TLSs	Combined high CD⁸⁺ T cell and MECA-79⁺ HEV-like blood vessel densities are associated with increased OS
Pancreatic cancer [252, 273–275]	Presence of TLSs	
Clear cell renal cell carcinoma [276]	Presence of TLSs	
Soft-tissue sarcomas [277]	Presence of TLSs	
Ovarian cancer [28, 252, 278]	Presence of TLSs	
Head and neck cancer [138, 248–250, 279]	Progressive loss during progression from T1 to T4 stages; Associated with T cell and B cell infiltrations; Presence of TLSs	Associated with increased DSS
Hepatocellular carcinoma [290]	Presence of TLSs	Associated with increased PFS and OS
Metastases		
Skin metastasis (melanoma) [246, 256]	Presence of TLSs	
Lung metastasis (colorectal cancer) [280]	Presence of TLSs	
Lung metastasis (renal cell carcinoma) [280]	Presence of TLSs	
Lung metastasis (breast cancer) [252]	Presence of TLSs	
Lymphomas		
Cutaneous lymphomas [51, 245]		
Primary prostatic lymphomas [281]		
models, MECA-79+ TA-HEVs can spontaneously develop in the tumor microenvironment in the absence of any treatment [286]. Importantly, TA-HEVs are induced in different types of tumors, including subcutaneous transplanted tumors, orthotopically transplanted tumors and genetically engineered tumor models [252, 266, 286, 287]. In contrast to their human counterparts, endothelial cells lining mouse MECA-79+ TA-HEVs generally do not exhibit the HEV-specific cuboidal shape and they are characterized by a flat morphology associated with reduced expression of MECA-79 in comparison with LN HEVs [282, 286]. Nevertheless, they are surrounded by high numbers of lymphocytes akin to human TA-HEVs, providing an early clue to their functional significance [286]. Based on short-term in vivo homing assays, it was shown that MECA-79+ TA-HEVs are associated with the recruitment of naive lymphocytes into tumors [286], suggesting that LN HEV functional properties are conserved to some degree by TA-HEVs, and that HEV-mediated homing of lymphocytes in LN might be recapitulated in tumors. This later possibility is also supported by human studies in which high densities of MECA-79+ TA-HEVs correlated with increased infiltration of naive and central memory T cells [28].

The recruitment of naive T cells into tumors is of particular interest since their priming and subsequent conversion into effectors can be realized directly within the tumor [301, 302]. Bypassing activation of naive T cells in LNs is proposed to accelerate and foster antitumor response and is likely to occur in tumor TLSs [303, 304]. TA-HEVs are present in B-cell rich TLSs that develop in some human tumors (Fig. 6a) [277, 303, 305] and might contribute to their function in a similar way to HEV-like blood vessels in TLSs from chronic inflammatory diseases [306–310]. However, TA-HEVs and tumor-associated TLSs are two distinct elements. Indeed, TA-HEVs are more frequent than TLSs in human tumors. For instance, we detected MECA-79+ TA-HEVs in > 74% of primary breast tumors (n = 127) [28], whereas TLSs were found in only 37% of tumors in a cohort of 248 breast cancer patients [311]. In primary melanoma, we found TA-HEVs in > 66% of tumors (n = 225) [29], whereas TLSs are rarely detected in primary melanoma lesions [256]. Indeed, MECA-79+ TA-HEVs are often found in T-cell rich areas containing DCs but no B cell follicles (Fig. 6b) [29, 247, 253, 256, 262]. These structures enriched in T cells and DCs, that are highly similar to the T-cell zones of lymphoid tissues, may provide a supportive niche for CD8+ T cells in human tumors [312]. Jansen et al. also reported the presence of TLSs in their tumor samples [312], but these TLSs were located in distinct areas and were mainly composed of B cells, suggesting that CD8+ T cell- and B cell-dependent responses may occur in distinct structures in human tumors. Whether TA-HEVs are an integral part of the T-cell oriented structures remains to be
confirmed, but the known association of TA-HEVs with both T cells and DCs in human tumors is in agreement with this hypothesis [28, 29, 253].

Importantly, although TLSs containing MECA-79+ TA-HEVs are associated with a favorable clinical outcome in most cancer types [303], they may be detrimental in some instances. Hepatocellular carcinoma (HCC) is an inflammation-driven cancer characterized by abundant TLSs that were associated with increased risk of recurrence [290]. In fact, Finkin et al. demonstrated that TLSs could serve as niches for malignant hepatocyte progenitors in an HCC mouse model, suggesting that TLSs could support tumor progression in inflammation-dependent tumors. In addition, TLSs have been reported to be privileged sites for Treg accumulation in some mouse tumor models [289, 292]. Therefore, TLSs are generally associated with antitumor functions but could also shelter cells promoting tumor growth, showing that the impact of TLSs on prognosis is dependent on cancer types.

Mechanisms regulating the development of TA-HEVs in cancer

Induction of TA-HEVs in solid tumors highlights the remarkable capacity of immune cells to modify their target tissue to maximize the immune response, even in highly hostile microenvironments. Despite similarities with HEV-like blood vessels of chronic inflammatory diseases, the mechanisms regulating TA-HEV development also have distinctive features related to the particular nature of solid tumors. Determining the cellular actors and molecular signals triggering the HEV differentiation program in tumor blood vessels is essential to better define their role in antitumor immunity, and to provide important insights for the design of novel therapeutic approaches based on TA-HEV induction.

Because DCs control HEV phenotype and function in lymph nodes [94] and since they are frequently associated with TA-HEVs in human melanoma and breast cancer [29, 253], lymphotxin-expressing DCs were initially proposed as critical regulators of TA-HEVs in humans [313].
Table 4 MECA-79+ TA-HEVs in mouse tumor tissues

Tumor type	Condition	Associated features
Spontaneous induction		
B16F1 subcutaneous tumors [286]		
Orthotopic 4T1 mammary carcinoma [252]		
Orthotopic LLC lung carcinoma [266]		
Orthotopic PyMT mammary carcinoma [287]		Increased with anti-VEGFR-2 + anti-PD-L1 or anti-VEGFR-2 + anti-PD-L1 + agonistic anti-LTβR treatment; LTβR-Ig treatment abolishes increase of MECA-79+ TA-HEVs after anti-VEGFR-2 + anti-PD-L1 treatment
Colorectal cancer [259]	AOM/DSS induction	Presence of TLSs
Orthotopic panc02 pancreatic tumors [252]		
Genetically modified mice and cell lines		
Melanoma [286]	BRAF^{V600E}PTEN−/− mice	
Melanoma [288]	Myct1−/− mice	
Lung adenocarcinoma [289]	KP mice (Kras^{G12D}, Trp53−/−)	Associated with TLSs and local proliferation of CD8+ T cells after depletion of Tregs
Hepatocellular carcinoma [290]	IKKβ(EE)Hep mice	Present in TLSs containing malignant hepatocyte progenitor cells
MCA-induced fibrosarcomas [282, 291]	Depletion of FoxP3+ Tregs in Foxp3^{DTR} mice	Present in CD11c.DOG mice and after LTβR-Ig treatment; Absent after CD8+ T cell depletion and reduced after TNFR2-Ig, anti-TNFα or anti-LTα treatment
LLC-OVA subcutaneous and intraperitoneal tumors [286]	Ovalbumin-expressing lung carcinoma cells	
B16F1-AAD subcutaneous and intraperitoneal tumors [286]	Tyrosinase-expressing melanoma cells	
B16F1-OVA subcutaneous and intraperitoneal tumors [286]	Ovalbumin-expressing melanoma cells	Absent in Rag1 and Rag2−/− mice, and phenotypic rescue with adoptive transfer of WT, IFNγ−/− and TNFα−/− CD8+ T cells but not LTα−/− CD8+ T cells; Absent in TNFR1/2−/− mice; Present in IFNγ−/− and TNFα−/− mice, and after LTβR-Ig treatment; Presence of TLSs in i.p. tumors but not in s.c. tumors
B16F10-CCL21 subcutaneous tumors [292]	CCL21-expressing melanoma cells	Associated with CCL21-induced immune tolerance
J558L-LTα subcutaneous tumors [293]	LTα-expressing plasmacytoma cells	Present in NUDE and SCID mice
Therapeutic induction		
B16-GD2 subcutaneous tumors [283, 284]	GD2-expressing melanoma cells; Ch14.18-LTα (GD2-targeted lymphotoxin α)	Present in LTα−/− mice
Pancreatic tumors (RIP1-Tag5 mice) [285, 294]	LIGHT-CGKRK (tumor blood vessels-targeted LIGHT)	Presence of TLSs
LLC subcutaneous tumors [294, 295]	LIGHT-CGKRK; PARP inhibitor (BMN673)	
B16F10 lung metastases [296]	LIGHT-CGKRK	Increased when LIGHT-CGKRK is combined with anti-PD-1 treatment; Presence of TLSs
However, results obtained in mouse models point towards a more dominant role for lymphocytes. As observed for HEV-like blood vessels in models of chronic inflammation, MECA-79⁺ TA-HEVs are lost in tumors grown in lymphocyte-deficient Rag2⁻/⁻ mice [286]. Moreover, adoptive transfer of CD8⁺ T cells is sufficient to induce development of MECA-79⁺ TA-HEVs in Rag2⁻/⁻ mice, indicating that CD8⁺ T cells could be major inducers of TA-HEVs in tumors. In contrast, Tregs, which are known as major immunosuppressive cells in the tumor microenvironment, seem to limit TA-HEV development in tumors as revealed by the induction of MECA-79⁺ TA-HEVs following depletion of Foxp3-expressing cells in Foxp3DTR mice [282, 291]. Whether Tregs inhibit HEV neogenesis via direct action on tumor blood vessels or indirectly via inhibition of lymphocyte subsets critical for TA-HEV development is currently unknown. Interestingly, depletion of CD8⁺ T cells was shown to abrogate MECA-79⁺ TA-HEV induction consecutive to Treg depletion [291], confirming the important role of CD8⁺ T cells in the regulation of TA-HEVs. The increased MECA-79 staining of TA-HEV endothelial cells in close proximity with CD3⁺ T cells in human primary melanoma (Fig. 5) further highlights the importance of lymphocytes in TA-HEV regulation. Together, these results indicate that lymphocytes are able to induce specialized blood vessels facilitating their trafficking into tumors, revealing an important immune-vascular crosstalk in favor of antitumor immunity.

MECA-79⁺ TA-HEVs observed in mouse tumor models express low amounts of MECA-79 antigens at their surface. In line with this immature phenotype, their development is critically dependent on TNFR1/2 signaling and not LTβR pathway. Indeed, TNFR1/2⁻/⁻ mice do not develop TA-HEVs while treatment with LTβR-Ig has no impact on the development of MECA-79⁺ TA-HEVs in wild type mice [286]. Similar findings were obtained for TA-HEVs induced following Treg depletion as their development is blocked by TNFR-Ig fusion protein but not LTβR-Ig [291]. Because TA-HEVs are not affected in TNFα⁻/⁻ mice and because LTα⁻/⁻ CD8⁺ T cells induce significantly less MECA-79⁺ TA-HEVs in lymphocyte-deficient mice than wild type CD8⁺ T cells, LTα, a TNFR1 ligand, was proposed as a key mediator for the development of TA-HEVs [286]. Consistent with this, tumors of mice treated with tumor-targeted LTα or bearing cancer cells genetically engineered to secrete LTα develop MECA-79⁺ TA-HEVs whereas control tumors are devoid of such vessels [283, 284, 293]. Although LTβR signaling is not required for the development of most TA-HEVs observed in mouse tumors, several reports indicate that stimulation of this receptor leads to the development of MECA-79⁺ TA-HEVs. Indeed, treatment with the LTβR ligand LIGHT or LTβR agonistic antibodies is sufficient to induce TA-HEVs in mouse tumors [287, 294, 296, 297].

Table 4 (continued)

Tumor type	Condition	Associated features
Orthotopic NeuP glioblastoma [287, 297]	LIGHT-CGKRK; Anti-VEGFR-2 + anti-CD141	Infiltration of F-actin-expressing dendritic cells
Orthotopic KPC1199 pancreatic ductal adenocarcinoma [298]	Tumor-targeted liposome carrying plasmids encoding LIGHT	Presence of TLSs
Pancreatic neuroendocrine tumors (RT2-PNET mice) [287]	Anti-VEGFR-2 + anti-CD141	Presence of TLSs
B16F10 subcutaneous tumors [299]	STING agonist (ADU-S-100)	Reduced MECA-79 staining
MC38 subcutaneous tumors [300]	Intratumoral injection of T-bet-expressing dendritic cells	Reduced MECA-79 staining

AOM: azoxymethane, DSS: dextran sodium sulphate, MCA: 3-methylcholanthrene, LT: lymphotoxin, RIP: rat insulin promoter, RT2: RIP1-Tag2, TLS: B cell-rich tertiary lymphoid structures, VEGFR: vascular endothelial growth factor receptor.
Therefore, LTβR signaling is dispensable for the development of mouse TA-HEVs, which probably explains their relative immaturity in comparison to LN HEVs, but therapeutic targeting of this receptor induces TA-HEVs. The two-step differentiation model of HEV-like blood vessels in chronic inflammation could also be true for TA-HEVs (Fig. 4). However, additional studies are required to determine if LTβR stimulation is actually able to increase the degree of maturation of mouse TA-HEVs. Signaling through LTβR may be critical for induction of fully mature TA-HEVs in tumors.

The association of histological examinations of TA-HEVs with clinical parameters indicate that TA-HEV density is dependent on the tumor stage in humans. Breslow tumor thickness is used as a prognostic biomarker for staging primary cutaneous melanomas and it was shown that densities of MECA-79+ TA-HEVs are inversely correlated with Breslow thickness, indicating that TA-HEVs are more abundant during the initial stages of melanoma [29]. Analysis of head and neck cancer with the tumor-node-metastasis (TNM) staging system revealed that T1 tumors exhibit higher densities of TA-HEVs as compared to tumors of later stages [248, 249]. Interestingly, the progression from in situ to invasive ductal carcinoma is associated with a progressive loss of TA-HEVs in breast cancer [253]. These correlations suggest that induction of TA-HEVs is maximal during the initial stages of tumor development when the immune response is likely to be the highest. In fact, results obtained in transgenic mice expressing the oncoprotein Tag (simian virus 40 large T antigen) under control of the rat insulin gene regulatory region (RIP1-Tag5 mice) corroborate the observations obtained in human tumors. In RIP1-Tag5 mice, Tag expression in the insulin-producing cells of the pancreatic islets induces multistage carcinogenesis of pancreatic islets starting with benign hyperplasia and ending with the development of solid tumors and premature death [314]. In striking contrast to the highly infiltrated hyperplastic islets that contain MECA-79+ TA-HEVs, tumors are poorly infiltrated by lymphocytes and do not develop TA-HEVs although they are highly vascularized [212]. These observations confirmed that tumor progression influences the presence of TA-HEVs and suggested that tumor immunogenicity may control induction and/or maintenance of TA-HEVs. In agreement with this later possibility, mice with B16F1 tumors contain far less MECA-79+ TA-HEVs than mice with B16F1 tumors expressing ovalbumin that are known to elicit robust lymphocyte-dependent antitumor response because of the high level of antigenicity of ovalbumin [286]. Therefore, the presence of TA-HEVs in tumors might be a good proxy to evaluate the intensity.
of the ongoing antitumor immune response. The loss of TA-HEVs during tumor progression may be due to the loss of strong neoantigens by cancer immunoediting [315, 316]. However, the impact of cancer immunoediting on TA-HEVs is currently unknown.

Therapeutic induction of TA-HEVs in cancer

Trafficking of lymphocytes to tumors is critical for antitumor immunity and cancer immunotherapy with immune checkpoint inhibitors (ICIs), vaccines or adoptive T cell therapy (ACT) [317–321]. Tumor-infiltrating lymphocytes (TILs) are associated with improved clinical outcome in many cancers, and the presence of high numbers of CD8+ T cells in human tumors is predictive of therapeutic response to cancer treatments, especially to ICIs [322–325]. However, the mechanisms governing the magnitude of the CD8+ T cell response remain incompletely defined. Why some tumors have high CD8+ T cell infiltration while others have poor infiltration is not entirely clear. Increasing the density and maturation of MECA-79 TA-HEVs in the tumor microenvironment may enhance lymphocyte trafficking to tumors and improve the efficacy of various cancer treatments (Fig. 7), including immunotherapies with ICIs, ACT or vaccines, but also potentially targeted therapies and conventional cancer therapies (radiotherapy, chemotherapy).

Checkpoint blockade therapy with anti-PD-1 and anti-CTLA-4 antibodies provides remarkable and durable responses for many patients across different types of cancer [317, 318, 320]. However, ICIs do not benefit all patients and novel therapeutic strategies are required for increasing their efficacy. Recent studies indicate that a subset of tumor-reactive CD8+ T cells may be critical for antitumor immunity at baseline and also for response to cancer immunotherapies with ICIs [312, 326–328]. This particular T cell subset encompasses less differentiated and less dysfunctional (exhausted) CD8+ T cells designated stem-like CD8+ T cells because of their capacity to self-renew while being able to generate more differentiated effector CD8+ T cells. Interestingly, analyses of T cells in patients treated with ICIs revealed that continuous recruitment of fresh and less exhausted T cells from the periphery into the tumor may be important for clinical response [329, 330]. Together, these findings suggest that strategies aiming to ameliorate the migration of peripheral stem-like CD8+ T cells into tumors could result in increased numbers of patients responding to ICIs. As specialized blood vessels for lymphocyte trafficking, TA-HEVs may be major gateways for entry of stem-like CD8+ T cells into tumors, and their therapeutic modulation could enhance the infiltration of these critical cells, thus increasing the efficacy of ICIs. Infiltration of naïve and central memory CD8+ T cells, CD4+ T cells and B cells through TA-HEVs may also play important roles in the response to ICIs [277, 305] and other forms of cancer therapies (Fig. 7).

As expected, LTβR agonists are potent inducers of TA-HEVs in tumors. Targeting LIGHT directly to tumor blood

Fig. 7 Therapeutic induction of TA-HEVs for cancer therapy. Induction of MECA-79 TA-HEVs in the tumor microenvironment may increase infiltration of various subsets of CD8+ and CD4+ T cells, as well as CD20+ B cells, and may improve antitumor immunity and efficacy of various cancer treatments, including immunotherapies with immune checkpoint inhibitors, adoptive T cell therapy or vaccines, but also potentially targeted therapies and conventional cancer therapies (radiotherapy, chemotherapy).
vessels via fusion to vascular targeting peptides (VTP) induces MECA-79\(^{+}\) TA-HEVs in various mouse tumor models [294, 296, 297]. Similar results were obtained with a tumor-targeted nanoparticle co-loaded with an anti-fibrotic molecule and a plasmid encoding LIGHT [298]. LIGHT-induced development of TA-HEVs is associated with increased lymphocyte infiltration and response to ICIs [294]. Notably, LIGHT-associated therapies were also shown to overcome resistance to anti-PD-1 or anti-PD-L1 mono-therapies and to sensitize refractory lung metastases to anti-PD-1 immunotherapy [296, 298, 331]. LT\(\beta\)R agonistic antibodies (anti-LT\(\beta\)R) were also reported to induce MECA-79\(^{+}\) TA-HEV and to enhance lymphocyte infiltration in distinct mouse tumor models, and treatment with anti-LT\(\beta\)R enabled response to anti-VEGFR2 and anti-PD-L1 combination therapy in a recalcitrant glioblastoma model [287]. Different cell types express LT\(\beta\)R in the tumor microenvironment. Therapeutic stimulation of LT\(\beta\)R with LIGHT or LT\(\beta\)R agonistic antibodies may thus reprogram intratumoral stromal cells and dendritic cells, in addition to blood vessel endothelial cells [332]. Along with LT\(\beta\)R stimulation, TNFR1 stimulation may also provide an effective way to induce TA-HEVs. Indeed, previous studies with a tumor-targeted antibody-LT\(x\) fusion protein showed that stimulating TNFR1 in the tumor microenvironment was able to induce MECA-79\(^{+}\) TA-HEV and to eradicate established tumors [283, 284]. Whether these MECA-79\(^{+}\) tumor blood vessels are identical to MECA-79\(^{+}\) TA-HEVs induced through LT\(\beta\)R stimulation warrants further studies, but in both instances, neogenesis of TA-HEVs correlated with a robust lymphocyte-mediated antitumor response. Intriguingly, other agents targeting signaling pathways not related to HEV biology induce TA-HEVs. For instance, intratumoral injection of STING agonists (ADU-S100) or treatment with a PARP inhibitor (BMN 673) both induce MECA-79\(^{+}\) TA-HEVs in mouse tumor models [295, 299]. Together these studies in mice provide a proof-of-concept that induction of TA-HEVs within tumors can unleash lymphocyte-dependent immunity and improve therapeutic outcomes.

Therapeutic induction of TA-HEVs in tumors might enhance trafficking of endogenous lymphocytes but also of adoptively transferred lymphocytes. If cell-based immunotherapies with chimeric antigen receptor (CAR) T cells are showing great promises in the treatment of hematological malignancies (e.g. CD19-targeted CAR T cells for B-cell acute lymphocytic leukemia), they are usually ineffective for treatment of solid tumors [333]. Pre-conditioning the tumor vasculature for maximal lymphocyte trafficking through induction of TA-HEVs could thus provide therapeutic benefits in ACT immunotherapy of solid tumors, including with CAR T cells. Interestingly, the success of ACT using ex vivo-expanded autologous TILs is dependent on the presence of stem-like CD8\(^{+}\) T cells within transferred cells, demonstrating the crucial role of these particular CD8\(^{+}\) T cells in cell-based immunotherapies in human cancer [334]. In addition, several studies demonstrated that transferring less-differentiated CD8\(^{+}\) T cells (e.g. central memory T cells) elicit better antitumor responses during therapeutic ACT in mouse tumor models [335–337]. Therefore, the unique ability of TA-HEVs to capture naive and naive-like lymphocytes might be particularly valuable for ACT immunotherapy, especially when using early differentiated cells that express L-selectin and CCR7.

Conclusion

Blood vessels that are structurally and phenotypically similar to HEVs from lymphoid organs appear in non-lymphoid tissues during chronic inflammation and cancer. HEV-like blood vessels in chronically inflamed tissues and TA-HEVs in tumors are associated with lymphocyte infiltration similar to lymphoid tissue HEVs, indicating that induction of specialized blood vessels for lymphocyte trafficking is a universal property of tissues exposed to intense lymphocyte activity. In chronic inflammatory diseases, HEV-like blood vessels facilitate influx of pathological lymphocytes, leading to amplification and maintenance of chronic inflammation. In contrast, TA-HEVs are generally beneficial in cancer, showing that the clinical significance of ectopic HEV-like blood vessels is highly dependent on the pathological context.

In the past 30 years, there has been considerable progress in our understanding of the mechanisms regulating the phenotype and function of HEVs in LNs, both at steady state and following immune challenge. However, several questions remain regarding the phenotype and functionality of HEV-like blood vessels and TA-HEVs. For instance, the use of intravital microscopy, which is the only experimental approach enabling visualization of lymphocyte recruitment through blood vessels in vivo [52], will be crucial to demonstrate the functional competence of these vessels. In particular, determining the relative contribution of MECA-79\(^{+}\) blood vessels versus MECA-79\(^{-}\) blood vessels will be important to confirm the increased capacity of HEV-like blood vessels and TA-HEVs to mediate lymphocyte recruitment into tissues. Recent transcriptomic analyses of mouse MECA-79\(^{+}\) HECs delineate the HEV phenotype in homeostatic and inflamed LNs [40, 53, 54]. Investigating the transcriptomes of endothelial cells lining HEV-like blood vessels and TA-HEVs and comparing them with those of LN HECs and non-HEV endothelial cells in mouse and human tissues could provide great insights about potential pathways for modulation of these vessels in chronic inflammation and cancer.
Great promises stem from the potential of TA-HEVs to increase lymphocyte trafficking into tumors, especially for cancer immunotherapy, which has to face unmet clinical needs. Because of their unique ability to mediate the recruitment of L-selectin-expressing lymphocytes, therapeutic induction of MECA-79+ TA-HEVs could not only increase lymphocyte trafficking quantitatively, but also qualitatively by enabling the entry of specific lymphocyte subsets that may be critical for antitumor immunity. These may include naive, central memory and stem-like CD8+ T cells, but also CD4+ T cells and B cells [277, 305, 338]. However, we have to learn lessons from the clinical failure of therapeutic agents targeting HEV-like blood vessels in chronic inflammatory diseases. Solely inducing TA-HEVs will be probably insufficient to obtain significant clinical responses, but therapeutic combinations with ICIs, ACT or other forms of cancer therapy are likely to provide important therapeutic benefits for cancer patients.

In chronic inflammation, MECA-79+ HEV-like blood vessels accurately accompany lymphocyte-dependent activity and disease progression. Similar findings in solid tumors mean that MECA-79+ TA-HEVs go along with antitumor immune response and may represent a biomarker to identify highly immunogenic tumors that are more likely to respond to cancer immunotherapies. Indeed, it is important to identify biomarkers predicting response to ICIs because they are widely used for metastatic patients who are frequently non-responsive and develop severe immune-related adverse events [318, 339]. Since MECA-79+ TA-HEVs are present in metastatic lesions, there is an urgent need to investigate their capacity to predict response to ICIs in cancer patients.

In this article, we presented a comprehensive review on HEVs and HEV-like blood vessels in immunity, inflammation and cancer. HEVs in lymphoid organs have fascinated many researchers over the past century. We are convinced that HEVs and HEV-like blood vessels will continue to attract the interest of scientists and clinicians in the next decades, particularly those working in the areas of vascular biology (angiogenesis), immunology, inflammation, cancer biology (tumor micro-environment) and cancer immunotherapy. Although many aspects of HEV-like blood vessels are still to be discovered, their therapeutic modulation already offers promising avenues, especially for cancer treatment.

Acknowledgements We thank all our colleagues in different parts of the world for their great contributions to the field. We regret that we could not always quote all the original publications. We thank actual and past members of our team for their essential contributions to the discoveries we have made on the HEV topic in the past 25 years. We are also grateful to all our collaborators in the clinics. Work in the Girard laboratory is supported by the Fondation ARC pour la Recherche sur le Cancer (SL220110603471, PGA 120150202411, PGA1 RF20180206911), Institut National du Cancer (INCa_2013-098, INCa_2017-155), Agence Nationale de la Recherche (ANR-12-BSV1-0006-01), IDEX UNITI (ATS 2014), Laboratoire d’Excellence Toulouse Cancer (LABEX TOUCAN) and the Fondation pour la Recherche Médicale (FRM ECO20180606827, FRM ECO20200611469).

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Girard JP, Mousson C, Forster R (2012) HEVs, lymphatics and homeostatic immune cell trafficking in lymph nodes. Nat Rev Immunol 12(11):762–773
2. Girard JP, Springer TA (1995) High endothelial venules (HEVs): specialized endothelium for lymphocyte migration. Immunol Today 16(9):449–457
3. Butcher EC, Picker LJ (1996) Lymphocyte homing and homoeostasis. Science 272(5258):60–66
4. von Andrian UH, Mempel TR (2003) Homing and cellular traffic in lymph nodes. Nat Rev Immunol 3(11):867–878
5. Miyasaka M, Tanaka T (2004) Lymphocyte trafficking across high endothelial venules: dogmas and enigmas. Nat Rev Immunol 4(5):360–370
6. Rosen SD (2004) Ligands for L-selectin: homing, inflammation, and beyond. Annu Rev Immunol 22:129–156
7. Cayrol C, Girard JP (2018) Interleukin-33 (IL-33): a nuclear cytokine from the IL-1 family. Immunity Rev 281(1):154–168
8. Baekkevold ES, Roussigné M, Yamanaka T, Johansen FE, Janssen FL, Amalric F, Brandtzæg P, Erard M, Haraldsen G, Girard JP (2003) Molecular characterization of NF-HEV, a nuclear factor preferentially expressed in human high endothelial venules. Am J Pathol 163(1):69–79
9. Carriere V, Roussel L, Ortega N, Lacorre DA, Americh L, Aguilar L, Bouche G, Girard JP (2007) IL-33, the IL-1-like cytokine ligand for ST2 receptor, is a chromatin-associated nuclear factor in vivo. Proc Natl Acad Sci USA 104(1):282–287
10. Thome R (1898) Endothelien als Phagocyten. Arch Mikros Anat 52:820–842
11. von Schumacher S (1899) Ueber Phagocytose und die Abfuhrwege de Leucocyten in den Lymphdrusen. Arch Mikros Anat 54:311–328
12. Gowans JL, Knight EJ (1964) The route of recirculation of lymphocytes in the rat. Proc R Soc Lond B 159:257–282
13. Marchesi VT, Gowans JL (1964) The migration of lymphocytes through the endothelium of venules in lymph nodes: an electron microscopic study. Proc R Soc Lond B 159:283–290
14. Wenk EJ, Orlic D, Reith EJ, Rhodin JA (1974) The ultrastructure of mouse lymph node venules and the passage of lymphocytes across their walls. J Ultrasound Res 4(2):214–241
15. Anderson AO, Anderson ND (1976) Lymphocyte emigration from high endothelial venules in rat lymph nodes. Immunology 31(5):731–748
16. Anderson AO, Anderson ND (1975) Studies on the structure and permeability of the microvasculature in normal rat lymph nodes. Am J Pathol 80(3):387–418
17. van Deurs B, Ropke C (1975) The postnatal development of high-endothelial venules in lymph nodes of mice. Anat Rec 181(3):659–677
18. Kikuta A, Rosen SD (1994) Localization of ligands for L-selectin in mouse peripheral lymph node high endothelial cells by colloidal gold conjugates. Blood 84(11):3766–3775
19. Anderson AO, Shaw S (1993) T cell adhesion to endothelium: the FRC conduit system and other anatomic and molecular features which facilitate the adhesion cascade in lymph node. Semin Immunol 5(4):271–282
20. Bao X, Moseman EA, Saito H, Petryniak B, Thiart O, Hatakeyama S, Ito Y, Kawashima H, Yamaguchi Y, Lowe JB, von Andrian UH, Fukuda M (2010) Endothelial heparan sulfate controls chemokine presentation in recruitment of lymphocytes and dendritic cells to lymph nodes. Immunity 33(5):817–829
21. Tsuibo K, Hirakawa J, Seki E, Imai Y, Yamaguchi Y, Fukuda M, Kawashima H (2013) Role of high endothelium venule-expressed heparan sulfate in chemokine presentation and lymphocyte homing. J Immunol 191(1):448–455
22. Freemont AJ (1988) Functional and biosynthetic changes in endothelial cells of vessels in chronically inflamed tissues: evidence for endothelial control of lymphocyte entry into diseased tissues. J Pathol 155(3):225–230
23. Freemont AJ, Jones CJ, Bromley M, Andrews P (1983) Changes in vascular endothelium related to lymphocyte collections in diseased synovia. Arthritis Rheum 26(12):1427–1433
24. Iguchi T, Ziff M (1986) Electron microscopic study of rheumatoid synovial vasculature. Intimate relationship between tall endothelium and lymphoid aggregation. J Clin Invest 77(2):355–361
25. Jalkanen S, Steere AC, Fox RI, Butcher EC (1986) A distinct endothelial cell recognition system that controls lymphocyte traffic into inflamed synovium. Science 233(4763):556–558
26. Freemont AJ (1987) Molecules controlling lymphocyte-endothelial interactions in lymph node vessels are produced in vessels of inflamed synovium. Ann Rheum Dis 46(12):924–928
27. Freemont AJ (1983) A possible route for lymphocyte migration into diseased tissues. J Clin Pathol 36(2):161–166
28. Martinet L, Garrido I, Filleron T, Le Guellc S, Bellard E, Fournie JJ, Rochaix P, Girard JP (2011) Human solid tumors contain high endothelial venules: association with T- and B-lymphocyte infiltration and favorable prognosis in breast cancer. Cancer Res 71(17):5678–5687
29. Martinet L, Le Guellc S, Filleron T, Lamant L, Mayer N, Rochaix P, Garrido I, Girard JP (2012) High endothelial venules (HEVs) in human melanoma lesions: major gateways for tumor-infiltrating lymphocytes. OncoImmunology 1(6):829–839
30. Freemont AJ (1982) The small blood vessels in areas of lymphocytic infiltration around malignant neoplasms. Br J Cancer 46(2):283–288
31. Fukuyama S, Hiroi T, Yokota Y, Rennert PD, Yanagita M, Kinoshita N, Terawaki S, Shikina T, Yamamoto M, Kurono Y, Kiyono H (2002) Initiation of NALT organogenesis is independent of the IL-7R, LTbetaR, and NIK signaling pathways but requires the Idd2 gene and CD3(-)CD4(+)CD45(+) cells. Immunity 17(1):31–40
32. Ohmichi Y, Hirakawa J, Imai Y, Fukuda M, Kawashima H (2011) Essential role of peripheral node addressin in lymphocyte homing to nasal-associated lymphoid tissues and allergic immune responses. J Exp Med 208(5):1015–1025
33. Ying X, Chan K, Shenoy P, Hill M, Ruddle NH (2005) Lymphtoxin plays a crucial role in the development and function of nasal-associated lymphoid tissue through regulation of chemokines and peripheral node addressin. Am J Pathol 166(1):135–146
34. Nagatake T, Fukuyama S, Kim DY, Goda K, Igarashi O, Sato S, Nochi T, Sagara H, Yokota Y, Jetten AM, Kaisho T, Akira S, Mimuro H, Sasakawa C, Fukui Y, Fujihashi K, Akiyama T, Inoue J, Penninger JM, Kuniwasa J, Kiyono H (2009) Idd2-, RORgammat-, and LTbetaR-independent initiation of lymphoid organogenesis in ocular immunity. J Exp Med 206(11):2351–2364
35. Fenton TM, Jorgensen PB, Niss K, Rubin SJS, Morbe UM, Riis LB, Da Silva C, Plumb A, Vandamme J, Jakobsen HL, Brunak S, Habtezion A, Nielsen OH, Johansson-Lindbom B, Agace WW (2020) Immune profiling of human gut-associated lymphoid tissue identifies a role for isolated lymphoid follicles in priming of region-specific immunity. immunity 52(3):557–570 e556
36. Elewa YHA, Ichii O, Takada K, Nakamura T, Masum MA, Kon Y (2018) Histopathological correlations between mediastinal fat-associated lymphoid clusters and the development of lung inflammation and fibrosis following bleomycin administration in mice. Front Immunol 9:271
37. Rangel-Moreno J, Moyron-Quiroz JE, Carragher DM, Kusser K, Hartsen L, Moquin A, Randall TD (2009) Omental milky spots develop in the absence of lymphoid tissue-inducer cells and support B and T cell responses to peritoneal antigens. Immunity 30(5):731–743
38. Buscher K, Wang H, Zhang X, Streiowski P, Wirth B, Saggau G, Lutke-Enking S, Mayadas TN, Ley K, Sorokin L, Song J (2016) Protection from septic peritonitis by rapid neutrophil recruitment through omental high endothelial venules. Nat Commun 7:10828
39. Streeter PR, Berg EL, Rouse BT, Bargatz RF, Butcher EC (1988) A tissue-specific endothelial cell molecule involved in lymphocyte homing. Nature 331(6151):41–46
40. Lee M, Kiefl H, Lafevie MD, Macauley MS, O’Hara E, Pan J, Paulson JC, Butcher EC (2014) Transcriptional programs of lymphoid tissue capillary and high endothelium reveal control mechanisms for lymphocyte homing. Nat Immunol 15:982–995
41. Baumhueter S, Singer MS, Henzel W, Hemmerich S, Renz M, Rosen SD, Lasky LA (1993) Binding of L-selectin to the vascular sialomucin CD34. Science 262(5132):436–438
42. Baumhueter S, Dybdal N, Kyle C, Lasky LA (1994) Global vascular expression of murine CD34, a sialomucin-like endothelial ligand for L-selectin. Blood 84(8):2554–2565
43. Arata-Kawai H, Singer MS, Bistrop A, Zante A, Wang YQ, Ito Y, Bao X, Hemmerich S, Fukuda M, Rosen SD (2011) Functional contributions of N- and O-glycans to L-selectin ligands in murine and human lymphoid organs. Am J Pathol 178(1):423–433
44. Hirakawa J, Tsuibo K, Sato K, Kobayashi M, Watanabe S, Takakura A, Imai Y, Ito Y, Fukuda M, Kawashima H (2010) Novel anti-carbohydrate antibodies reveal the cooperative function of sulfated N- and O-glycans in lymphocyte homing. J Biol Chem 285(52):40864–40878
45. Yeh JC, Hiraoka N, Petryniak B, Nakayama J, Ellies LG, Rabuka D, Hindsdaul O, Marth JD, Lowe JB, Fukuda M (2001) Novel sulfated lymphocyte homing receptors and their control by a Core1 extension beta 1,3-N-acetylgalactosaminyltransferase. Cell 105(7):957–969
46. Mitsuoka C, Sawada-Kasugai M, Ando-Furui K, Izawa M, Nakaniishi H, Nakamura S, Ishida H, Kiso M, Kanagi R (1998) Identification of a major carbohydrate capping group of the L-selectin ligand on high endothelial venules in human lymph nodes as 6-sulfo sialyl Lewis X. J Biol Chem 273(18):11225–11233
47. Mitoma I, Bao X, Petryniak B, Schaepli P, Gaugut JM, Yu SY, Kawashima H, Saito H, Ohtsubo K, Marth JD, Kho KH, von Andrian UH, Lowe JB, Fukuda M (2007) Critical functions of N-glycans in L-selectin-mediated lymphocyte homing and recruitment. Nat Immunol 8(4):409–418
48. Uchimura K, Gauguet JM, Singer MS, Tsay D, Kannagi R, Muramatsu T, von Andrian UH, Rosen SD (2005) A major class of L-selectin ligands is eliminated in mice deficient in two sulfotransferases expressed in high endothelial venules. Nat Immunol 6(11):1105–1113

49. Kawashima H, Petryniak B, Hiraoka N, Mitoma J, Huckaby V, Nakayama J, Uchimura K, Kadomatsu K, Muramatsu T, Lowe JB, Fukuda M (2005) N-acetylglucosamine–6-O-sulfotransferases 1 and 2 cooperatively control lymphocyte homing through L-selectin ligand biosynthesis in high endothelial venules. Nat Immunol 6(11):1096–1104

50. Streeter PR, Rouse BT, Butcher EC (1988) Immunohistologic and functional characterization of a vascular addressin involved in lymphocyte homing into peripheral lymph nodes. J Cell Biol 107(5):1853–1862

51. Michie SA, Streeter PR, Bolt PA, Butcher EC, Picker LJ (1993) The human peripheral lymph node vascular addressin. An inducible endothelial antigen involved in lymphocyte homing. Am J Pathol 143(6):1688–1698

52. von Andrian UH (1996) Intravital microscopy of the peripheral lymph node microcirculation in mice. Microcirculation 3(3):287–300

53. Veereman K, Tardiveau C, Martins F, Coudert J, Girard JP (2019) Single-cell analysis reveals heterogeneity of high endothelial venules and different regulation of genes controlling lymphocyte entry to lymph nodes. Cell Rep 26(11):3116–3131 e3115

54. Brulois K, Rajaraman A, Szade A, Nordling S, Bogoslowski AD, Girard JP, Springer TA (1995) Cloning from purified high endothelial venules and functional characterization of murine L-selectin ligands, and of L-selectin ligand biosynthesis in high endothelial venules. Nat Immunol 6(11):1096–1104

55. Simmons S, Nakanishi N, Umemoto E, Uchida Y, Fukuhara S, Kitazawa Y, Okudaira M, Inoue A, Tohya K, Aoki K, Aoki J, Mohchizuki N, Matsuno K, Takeda K, Miyasaka M, Mishii M (2019) High-endothelial cell-derived S1P regulates dendritic cell localization and vascular integrity in the lymph node. Elife 8:e41239

56. Warnock RA, Askari S, Butcher EC, von Andrian UH (1998) Molecular mechanisms of lymphocyte homing to peripheral lymph nodes. J Exp Med 187(2):205–216

57. Scimone ML, Fehlinger TW, Mazo IB, Stein JV, von Andrian UH, Wengner W (2004) CXCL12 mediates CCR7-independent homing of central memory cells, but not naive T cells, in peripheral lymph nodes. J Exp Med 199(8):1113–1120

58. Scimone ML, Fehlinger TW, Mazo IB, Stein JV, von Andrian UH, Wengner W (2004) The CC chemokine thymus-derived chemotactic agent 4 (TCA-4, secondary lymphoid tissue chemokine, 6Ckine, eotaxin-2) triggers lymphocyte function-associated antigen 1-mediated arrest of rolling T lymphocytes in peripheral lymph node high endothelial venules, J Exp Med 191(1):61–76

59. Scimone ML, Fehlinger TW, Mazo IB, Stein JV, von Andrian UH, Wengner W (2004) The CC chemokine thymus-derived chemotactic agent 4 (TCA-4, secondary lymphoid tissue chemokine, 6Ckine, eotaxin-2) triggers lymphocyte function-associated antigen 1-mediated arrest of rolling T lymphocytes in peripheral lymph node high endothelial venules, J Exp Med 191(1):61–76

60. Stein JV, Rot A, Luo Y, Narasimhaswamy M, Nakano H, Gunn MD, Matsuzawa A, Quackenbush EJ, Dorf ME, von Andrian UH (2000) The CC chemokine thymus-derived chemotactic agent 4 (TCA-4, secondary lymphoid tissue chemokine, 6Ckine, eotaxin-2) triggers lymphocyte function-associated antigen 1-mediated arrest of rolling T lymphocytes in peripheral lymph node high endothelial venules, J Exp Med 191(1):61–76

61. Stein JV, Nombela-Arrieta C (2005) Chemokine control of lymphocyte trafficking: a general overview. Immunology 116(1):1–12

62. Carlsten H, Haraldsen G, Brandtzæg P, Baekkevold ES (2005) Disparate lymphoid chemokine expression in mice and men: no evidence of CCL21 synthesis by human high endothelial venules. Blood 106(2):444–446

63. Baekkevold ES, Yamanaka T, Palframan RT, Carlsten HS, Reinhold FP, von Andrian UH, Brandtzæg P, Haraldsen G (2001) The CCR7 ligand eLC (CCL19) is transcytosed in high endothelial venules and mediates T cell recruitment. J Exp Med 193(9):1105–1112

64. Berlin C, Berg EL, Briskin MJ, Andrew DP, Kilshaw PJ, Holzmann B, Weissman IL, Hamann A, Butcher EC (1993) Alpha 4 beta 7 integrin mediates lymphocyte binding to the mucosal vascular addressin MadCAM-1. Cell 74(1):185–185

65. Shamri R, Grabovsky V, Gauguet JM, Feigelson S, Manevich E, Kolanus W, Robinson MK, Staunton DE, von Andrian UH, Alon R (2005) Lymphocyte arrest requires instantaneous induction
of an extended LFA-1 conformation mediated by endothelium-bound chemokines. Nat Immunol 6(5):497–506

78. Bajenoff M, Egen JG, Koo LY, Lauzier JP, Brau F, Glaichenhaus N, Germain RN (2006) Stromal cell networks regulate lymphocyte entry, migration, and territoriality in lymph nodes. Immunity 25(6):989–1001

79. Schoeff GI (1972) The migration of lymphocytes across the vascular endothelium in lymphoid tissue. A reexamination. J Exp Med 136(5):568–588

80. Park EJ, Peixoto A, Imai Y, Goodarzi A, Cheng G, Carman CV, von Andrian UH, Shimoka M (2010) Distinct roles for LFA-1 affinity regulation during T-cell adhesion, diapedesis, and interstitial migration in lymph nodes. Blood 115(8):1572–1581

81. Park C, Hwang IY, Kamenyeva O, Davis MD, Kehrl JH (2012) Lymph node B lymphocyte trafficking is constrained by anatomy and highly dependent upon chemoattractant desensitization. Blood 119(4):978–989

82. Boscacci RT, Pfeiffer F, Gollmer K, Sevilla AI, Martin AM, Soriano SF, Natale D, Henrickson S, von Andrian UH, Fukui Y, Mellado M, Deutsch U, Engelhardt B, Stein JV (2010) Comprehensive analysis of lymph node stroma-expressed Ig superfamily members reveals redundant and nonredundant roles for ICAM-1, ICAM-2, and VCAM-1 in lymphocyte homing. Blood 116(6):915–925

83. Yan SLS, Hwang IY, Kamenyeva O, Kehrl JH (2019) In vivo F-actin filament organization during lymphocyte transendothelial and interstitial migration revealed by intravital microscopy. iScience 16:283–297

84. Mionnet C, Sanos SL, Mondor I, Jongrucha A, Lauzier JP, Germain RN, Bajenoff M (2011) High endothelial venules as traffic stops for lymphocytes. Blood 117(16):4190–4198

85. Westerbro D (2015) How leukocytes cross the vascular endothelium. Nat Rev Immunol 15(11):692–704

86. Muller WA (2011) Mechanisms of leukocyte transendothelial migration. Annu Rev Pathol 6:323–344

87. Hendriks HR, Eestermans IL (1983) Disappearance and reappearance of high endothelial venules and immigrating lymphocytes in lymph nodes deprived ofafferent lymphatic vessels: a possible regulatory role of macrophages in lymphocyte migration. Eur J Immunol 13(8):663–669

88. Hendriks HR, Duijvestijn AM, Kraal G (1987) Rapid decrease in lymphocyte adherence to high endothelial venules in lymph nodes deprived of afferent lymphatic vessels. Eur J Immunol 17(12):1691–1695

89. Mebius RE, Streeter PR, Breve J, Duijvestijn AM, Kraal G (1991) The influence of afferent lymphatic vessel interruption on vascular addressin expression. J Cell Biol 115(1):85–95

90. Mebius RE, Dowbenko D, Williams A, Fennie C, Lasky LA, Watson SR (1993) Expression of GlyCAM-1, an endothelial ligand for L-selectin, is affected by afferent lymphatic flow. J Immunol 151(12):6769–6776

91. Gretz JE, Norbury CC, Anderson AO, Proudfoot AE, Shaw S (2000) Lymph-borne chemokines and other low molecular weight molecules reach high endothelial venules via specialized conduits while a functional barrier limits access to the lymphocyte microenvironments in lymph node cortex. J Exp Med 192(10):1425–1440

92. Palframan RT, Jung S, Cheng G, Weninger W, Luo Y, Dorf M, Littman DR, Rolls BI, Zweerink H, Rot A, von Andrian UH (2001) Inflammatory chemokine transport and presentation in HEV: a remote control mechanism for monocyte recruitment to lymph nodes in inflamed tissues. J Exp Med 194(9):1361–1373

93. Lacorre DA, Baekkevold ES, Garrido I, Brandtzaeg P, Haraldsen G, Amlaric F, Girard JP (2004) Plasticity of endothelial cells: rapid dedifferentiation of freshly isolated high endothelial venule endothelial cells outside the lymphoid tissue microenvironment. Blood 103(11):4164–4172

94. Mousson C, Girard JP (2011) Dendritic cells control lymphocyte entry to lymph nodes through high endothelial venules. Nature 479:542–546

95. Mebius RE, Streeter PR, Michie S, Butcher EC, Weissman IL (1996) A developmental switch in lymphocyte homing receptor and endothelial vascular addressin expression regulates lymphocyte homing and permits CD4+ CD3- cells to colonize lymph nodes. Proc Natl Acad Sci USA 93(20):11019–11024

96. Wendland M, Willenson S, Kocks J, Davalos-Missilltz AC, Hammerschmidt SI, Schumann K, Kremmer E, Sisti M, Hoffmeyer A, Pabst O, Forster R (2011) Lymph node T cell homeostasis relies on steady state homing of dendritic cells. Immunity 35(6):945–957

97. Zhang Z, Li J, Zheng W, Zhao G, Zhang H, Wang X, Guo Y, Qin C, Shiyi Y (2016) Peripheral lymphoid volume expansion and maintenance are controlled by gut microbiota via RALDH+ dendritic cells. Immunity 44(2):330–342

98. Webster B, Ekland EH, Agle LM, Chyou S, Ruggieri R, Lu TT (2006) Regulation of lymph node vascular growth by dendritic cells. J Exp Med 203(8):1903–1913

99. Browning JL, Allaire N, Ngam-Ek A, Notidis E, Hunt J, Perrin S, Fava RA (2005) Lymphotytoxin-beta receptor signaling is required for the homeostatic control of HEV differentiation and function. Immunity 23(5):539–550

100. Carragher D, Johal R, Button A, White A, Elopoulos A, Jenkinson E, Anderson G, Caamano J (2004) A stroma-derived defect in NF-kappaB2–/– mice causes impaired lymph node development and lymphocyte recruitment. J Immunol 173(4):2271–2279

101. Drayton DL, Bonizzi G, Ying X, Liao S, Karin M, Ruddle NH (2004) I kappa B kinase complex alpha kinase activity controls chemokine and high endothelial venule gene expression in lymph nodes and nasal-associated lymphoid tissue. J Immunol 173(10):6161–6168

102. Onder L, Danuser R, Scandella E, Firner S, Chai Q, Hehlgans T, Stein JV, Ludewig B (2013) Endothelial cell-specific lymphotytoxin-beta receptor signaling is critical for lymph node and high endothelial venule formation. J Exp Med 210(3):465–473

103. Liao S, Ruddle NH (2006) Synchrony of high endothelial venules and lymphatic vessels revealed by immunization. J Immunol 177(5):3369–3379

104. Sun SC (2017) The non-canonical NF-kappaB pathway in immunity and inflammation. Nat Rev Immunol 17(9):545–558

105. Bajenoff M, Granjeaud S, Guerder S (2003) The strategy of T cell antigen-presenting cell encounter in antigen-draining lymph nodes revealed by imaging of initial T cell activation. J Exp Med 198(5):715–724

106. Mempel TR, Henrickson SE, Von Andrian UH (2004) T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases. Nature 427(6970):154–159

107. Stoltzfus CR, Filipic J, Gern BH, Olin BE, Leal JM, Wu Y, Lyons-Cohen MR, Huang JY, Paz-Stoltzfus CL, Pfumle CR, Poschinger T, Urdahl KB, Perro M, Gerner MY (2020) CytoMAP: a spatial analysis toolbox reveals features of myeloid cell organization in lymphoid tissues. Cell Rep 31(3):107523

108. Juni T, Scandella E, Ludewig B (2008) Form follows function: cytoMAP: a spatial analysis toolbox reveals features of myeloid cell organization in lymphoid tissues. Cell Rep 31(3):107523

109. Krishnamurty AT, Turley SJ (2020) Lymph node stromal cells: cartographers of the immune system. Nat Immunol 21(4):369–380

110. Thierry GR, Gentek R, Bajenoff M (2019) Remodeling of reactive lymph nodes: dynamics of stromal cells and underlying chemokine signaling. Immuno Rev 289(1):42–61
111. Kumar V, Chyou S, Stein JV, Lu TT (2012) Optical projection tomography reveals dynamics of HEV growth after immunization with protein plus CFA and features shared with HEVs in acute autoimmune lymphadenopathy. Front Immunol 3:282
112. Mondor I, Jorquera A, Sene C, Adriouch S, Adams RH, Zhou M, Brient W, Wienert S, Klausschen F, Bajenoff M (2016) Chronic proliferation and stochastic pruning orchestrate lymph node vasculature remodeling. Immunity 45(4):877–888
113. Soderberg KA, Payne GW, Sato A, Medzhitov R, Segal SS, Iwasaki A (2005) Innate control of adaptive immunity via remodeling of lymph node feed arteriole. Proc Natl Acad Sci USA 102(45):16315–16320
114. Sawada J, Perrot CY, Chen L, Fournier-Goss AE, Oyer J, Copik A, Komatsu M (2021) High endothelial venules accelerate naive T cell recruitment by tumor necrosis factor-mediated R-Ras upregulation. Am J Pathol 191(2):396–414
115. Angeli V, Ginhoux F, Llodra J, Quemeneur L, Frenette PS, Skobe M, Jessberger R, Merad M, Randolph GJ (2006) B cell-driven lymphangiogenesis in inflamed lymph nodes enhances dendritic cell mobilization. Immunity 24(2):203–215
116. Tzeng TC, Chyou S, Tian S, Webster B, Carpenter AC, Angeli V, Ginhoux F, Llodra J, Quemeneur L, Frenette PS, Skobe M, Jessberger R, Merad M, Randolph GJ (2006) B cell-driven lymphangiogenesis in inflamed lymph nodes enhances dendritic cell mobilization. Immunity 24(2):203–215
117. Kumar V, Scandella E, Danuser R, Nitschke M, Fukui Y, Halin C, Ludewig B, Stein JV (2010) Global lymphoid tissue remodeling during a viral infection is orchestrated by a B cell-lymphoctyin-dependent pathway. Blood 115(23):4725–4733
118. Chyou S, Benahmed F, Chen J, Kumar V, Tian S, Lipp M, Lu TT (2010) Coordinated regulation of lymph node vascular-stromal growth first by CD11c+ cells and then by T and B cells. J Immunol 184(9):4819–4826
119. Shrestha B, Hashiguchi T, Ito T, Miura N, Takenouchi K, Oyama Chyou S, Benahmed F, Chen J, Kumar V, Scandella E, Danuser R, Onder L, Nitschke M, Fukui Tzeng TC, Chyou S, Tian S, Webster B, Carpenter AC, Angeli V, Ginhoux F, Llodra J, Quemeneur L, Frenette PS, Skobe M, Jessberger R, Merad M, Randolph GJ (2006) B cell-driven lymphangiogenesis in inflamed lymph nodes enhances dendritic cell mobilization. Immunity 24(2):203–215
120. Boegh A, Butcher EC, Kubes P (2018) Neutrophils recruited through high endothelial venules of the lymph nodes via PNA(d) intercet disseminating Staphylococcus aureus. Proc Natl Acad Sci USA 115(10):2449–2454
121. Guarda G, Hons M, Soriano SF, Huang AY, Polley R, Martin-Fontecha A, Stein JV, Germain RN, Lanzavecchia A, Sallusto F (2007) L-selectin-negative CCR7+ effector and memory CD8+ T cells enter reactive lymph nodes and kill dendritic cells. Nat Immunol 8(7):743–752
122. Kameneva O, Boularan C, Kabat J, Cheung CY, Cicala C, Yeh AJ, Chan JL, Periasamy S, Otto M, Kehrli JH (2015) Neutrophil recruitment to lymph nodes limits local humoral response to Staphylococcus aureus. PLoS Pathog 11(4):e1004827
123. Chen DS, Mellman I (2013) Oncology meets immunology: the cancer-immunity cycle. Immunity 39(1):1–10
124. Buchwald ZS, Nasti TH, Lee J, Eberhardt CS, Wieland A, Im SJ, Lawson D, Curran W, Ahmed R, Khan MK (2020) Tumor-draining lymph node is important for a robust abscopal effect stimulated by radiotherapy. J Immunother Cancer 8(2):e000867
125. Fransen MF, Schoonderwoerd M, Knopf P, Camps MG, Hawkins J, Kneilling M, van Hall T, Ossendorp F (2018) Tumor-draining lymph nodes are pivotal in PD-1/PD-L1 checkpoint therapy. JCI Insight 3(23):e124507
126. Nathanson SD (2003) Insights into the mechanisms of lymph node metastasis. Cancer 98(2):413–423
127. Milutinovic S, Abe J, Godkin A, Stein JV, Gallimore A (2021) The dual role of high endothelial venules in cancer progression versus immunity. Trends Cancer 7(3):214–225
128. Carriere V, Colisson R, Jiguet-Jiglaire C, Bellard E, Bouche G, Al Saati T, Amalric F, Girard JP, M'Rini C (2005) Cancer cells regulate lymphocyte recruitment and leukocyte-endothelium interactions in the tumor-draining lymph node. Cancer Res 65(24):11639–11648
129. Qian CN, Berghuis B, Tsarfaty G, Bruch M, Kort EJ, Ditlev AJ, Resau JH, Teh BT (2006) Preparing the “soil”: the primary tumor induces vasculature reorganization in the sentinel lymph node before the arrival of metastatic cancer cells. Cancer Res 66(21):10365–10376
130. Lee SY, Chao-Nan Q, Seng OA, Peiyi C, Bernice HW, Swe MS, Chii WJ, Jacqueline HS, Chee SK (2012) Changes in specialized blood vessels in lymph nodes and their role in cancer metastasis. J Transl Med 10:206
131. Bekskus T, Martikainen T, Olofsson A, Franzen Boger M, Vasilis Bacovia D, Warnberg F, Ultvar F, Chen H, Kahn ML, Xia L (2013) Tumor-modifying of the lymph node high endothelial venules reflects tumor invasiveness in breast cancer and is associated with dysregulation of perivascular stromal cells. Cancers (Basel) 13(2):211
132. Chung MK, Do IG, Jung E, Son YI, Jeong HS, Baek CH (2012) Lymphatic vessels and high endothelial venules are increased in the sentinel lymph nodes of patients with oral squamous cell carcinoma before the arrival of tumor cells. Ann Surg Oncol 19(5):1595–1601
133. Shen H, Wang X, Shao Z, Liu K, Xia XY, Zhang HZ, Song K, Song Y, Shang ZJ (2014) Alterations of high endothelial venules in primary and metastatic cancers are correlated with lymph node metastasis of oral and pharyngeal carcinoma. Cancer Biol Ther 15(3):342–349
134. Herzog BH, Fu J, Wilson SJ, Hess PR, Sen A, McDaniel JM, Pan Y, Sheng M, Yago T, Silasi-Mansat R, McGee S, May F, Nieswandt B, Morris AJ, Lupu F, Coughlin SR, McEver RP, Chen H, Kahn ML, Xia L (2013) Podoplanin maintains high endothelial venule integrity by interacting with platelet CLEC-2. Nature 502(7469):105–109
135. Qian CN, Resau JH, Teh BT (2007) Prospects for vasculature reorganization in sentinel lymph nodes. Cell Cycle 6(5):514–517
Angiogenesis (2021) 24:719–753

141. Brown M, Assen FP, Leithner A, Abe J, Schachner H, Asfou G, Bago-Horvath Z, Stein JV, Uhrin P, Sixt M, Kerjaschki D (2018) Lymph node blood vessels provide exit routes for metastatic tumor cell dissemination in mice. Science 359(6382):1408–1411

142. Pereira ER, Kedrin D, Seano G, Gautier O, Meijer EJJ, Jones D, Chin SM, Kitahara S, Botta EM, Chang J, Beech E, Jeong HS, Carroll MC, Taghian AG, Padera TP (2018) Lymph node metastases can invade local blood vessels, exit the node, and colonize distant organs in mice. Science 359(6382):1403–1407

143. Medzhitov R (2008) Origin and physiological roles of inflammation. Nature 454(7203):428–435

144. Buckley CD, Barone F, Nayar S, Benezech C, Caamano J (2015) Stromal cells in chronic inflammation and tertiary lymphoid organ formation. Annu Rev Immunol 33:715–745

145. Girard JP (2007) High-endothelial venule-like vessels in human chronic inflammatory diseases. In: Aird W (ed) Endothelial biomedicine. Cambridge University Press, Cambridge, pp 1419–1430

146. Sakai Y, Kobayashi M (2015) Lymphocyte “homing” and chronic inflammation. Pathol Int 65(7):344–354

147. Drayton DL, Liao S, Mounzer RH, Ruddle NH (2006) Lymphoid organization in rheumatoid synovitis. Eur J Immunol 36(1):6

148. Aloisi F, Pujol-Borrell R (2006) Lymphoid neogenesis in chronic inflammatory diseases. Nat Immunol 7(4):344–353

149. Toppila S, Paavonen T, Laitinen A, Laitinen LA, Renkonen R (2000) Endothelial sulfated sialyl Lewis x glycans, putative L-selectin ligands, are preferentially expressed in bronchial asthma but not in other chronic inflammatory lung diseases. Am J Respir Cell Mol Biol 23(4):492–498

150. Rosen SD, Tsay D, Singer MS, Hemmerich S, Abraham WM (2005) Therapeutic targeting of endothelial ligands for L-selectin (PNAd) in a sheep model of asthma. Am J Pathol 166(3):935–944

151. Jahnens FL, Lund-Johansen F, Dunne JF, Fukuda M, Haye R, Brandtzaeg P (2000) Experimentally induced recruitment of plasmacytoid dendritic cells in human nasal sinus mucosa with eosinophilic chronic rhinosinusitis. Pathology 32(3):260–268

152. Canete JD, Celis R, Moll C, Izquierdo E, Marsal S, Sanmarti R, Halic R, Moll C, Santamari A, Alvarado L, Aguilar L, Amalaric F, Girard JP (2005) A comparative study of endothelial cell markers expressed in chronically inflamed human tissues: MECA-79, Duffy antigen receptor for chemokines, von Willebrand factor, CD31, CD34, CD105 and CD146. J Pathol 206(3):260–268

153. Renkonen J, Tynninen O, Hayry P, Paavonen T, Renkonen R (2002) Perfect induction of peripheral lymph node addressin on high endothelial venule-like vessels in the active phase of ulcerative colitis. Am J Gastroenterol 102(7):1499–1509

154. Salmi M, Granfor K, MacDermott R, Jalkanen S (1997) Homing of mucosal leukocytes to joints: Distinct endothelial ligands in synovium mediate leukocyte-subtype specific adhesion. J Clin Invest 99(9):2165–2172

155. Kaae MH, Felder B, van Mens LJJ, van de Sande MGH, Bae ten DLP, Tas SW (2020) Anti-IL-17A treatment reduces serum inflammatory, angiogenic and tissue remodeling biomarkers accompanied by less synovial high endothelial venules in peripheral spondyloarthritis. Sci Rep 10(1):21094

156. Yoshida H, Imamura Y, Yoshimura H, Kobayashi M (2020) Induction of high endothelial venule-like vessels in oral and cutaneous lichen planus: a comparative study. J Histochem Cytochem 68(5):343–350

157. Farkas L, Beiske K, Lund-Johansen F, Brandtzaeg P, Jahnens FL (2001) Plasmacytoid dendritic cells (natural interferon-alpha/beta-producing cells) accumulate in cutaneous lupus erythematosus lesions. Am J Pathol 159(1):237–243

158. Kirveskari J, Helinto M, Moilanen JA, Paavonen T, Tervo TM, Renkonen R (2002) Hydrocortisone reduced in vivo, inflammation-induced slow rolling of leukocytes and their extravasation into human conjunctiva. Blood 100(6):2203–2207

159. Toppila-Salmi SK, Myller JP, Torkkeli TV, Muhonen JV, Toppila-Salmi SK, Myller JP, Torkkeli TV, Muhonen JV, Renkonen J (2017) Induction of peripheral lymph node addressin in inflamed joints. Annu Rev Immunol 33:715–745

160. Canete JD, Celis R, Moll C, Izquierdo E, Marsal S, Sanmarti R, Halic R, Moll C, Santamari A, Alvarado L, Aguilar L, Amalaric F, Girard JP (2005) A comparative study of endothelial cell markers expressed in chronically inflamed human tissues: MECA-79, Duffy antigen receptor for chemokines, von Willebrand factor, CD31, CD34, CD105 and CD146. J Pathol 206(3):260–268

161. Canete JD, Celis R, Moll C, Izquierdo E, Marsal S, Sanmarti R, Halic R, Moll C, Santamari A, Alvarado L, Aguilar L, Amalaric F, Girard JP (2005) A comparative study of endothelial cell markers expressed in chronically inflamed human tissues: MECA-79, Duffy antigen receptor for chemokines, von Willebrand factor, CD31, CD34, CD105 and CD146. J Pathol 206(3):260–268

162. Manzo A, Bugatti S, Caporali R, Prevo R, Jackson DG, Uguc cioni M, Buckley CD, Montecucco C, Pitzalis C (2007) CCL21 expression pattern of human secondary lymphoid organ stroma correlates with inflammation in the salivary gland, and its role in lymphoid neogenesis. Eur J Immunol 35(5):1347–1359
overexpression in the saliva, of patients with primary Sjögren’s syndrome. Autoimmunity 53(6):333–343

172. Maruyama M, Kobayashi M, Sakai Y, Hiraoka N, Ohy A, Kagayama S, Tanaka E, Nakayama J, Morohoshi T (2013) Periductal induction of high endothelial venule-like vessels in type 1 autoimmune pancreatitis. Pancreas 42(1):53–59

173. De Bleecker JL, Engel AG, Butcher EC (1996) Peripheral lymphoid tissue-like adhesion molecule expression in nodular infiltrates in inflammatory myopathies. Neuromuscul Disord 6(4):255–260

174. Collett C, Munro JM (1999) Selective induction of endothelial L-selectin ligand in human lung inflammation. Histoch J 31(4):213–219

175. Perros F, Dorfmuller P, Montani D, Hammad H, Waelput W, Hiraoka N, Petryniak B, Nakayama J, Tsuboi S, Suzuki M, Fava RA, Kennedy SM, Wood SG, Bolstad AI, Bienkowska J, Fava RA, Gatumu MK, Skarstein K, Papandile A, Browning JL, Faveeuw C, Gagnerault MC, Lepault F (1994) Expression of L-selectin and alpha 4 beta 7 integrin homing receptor pathways mediates venular from non-venular endothelial cells in murine tissues. BMC Biol 15(3):311–321

176. Takaeda M, Yokoyama H, Segawa-Takaeda C, Wada T, Kobayashi K (2002) High endothelial venule-like vessels in the interstitial lesions of human glomerulonephritis. Am J Nephrol 22(1):48–57

177. Toppila S, Paavonen T, Nieminen MS, Hayry P, Renkonen R (1999) Endothelial L-selectin ligands are likely to recruit lymphocytes into rejecting human heart transplants. Am J Pathol 155(4):1303–1310

178. Di Carlo E, D’Antuono T, Contento S, Di Nicola M, Ballone E, Hiraoka N, Petryniak B, Nakayama J, Tsuboi S, Suzuki M, Fava RA, Kennedy SM, Wood SG, Bolstad AI, Bistrup A, Tsay D, Shenoy P, Singer MS, Bangia N, Luther SA, Fava RA, Gatumu MK, Skarstein K, Papandile A, Browning JL, Faveeuw C, Gagnerault MC, Lepault F (1994) Expression of L-selectin and alpha 4 beta 7 integrin homing receptor pathways mediates venular from non-venular endothelial cells in murine tissues. BMC Biol 15(3):311–321

179. Kirveskari J, Paavonen T, Hayry P, Renkonen R (2000) De novo induction of endothelial L-selectin ligands during kidney allograft rejection. J Am Soc Nephrol 11(12):2358–2367

180. Thaunat O, Patey N, Caligiuri G, Gautreau C, Mamani-Matsuda Meinhardt G, Dietrich B, Dekan S, Fiala C, Knofler M, Saleh M, Mekki Y, Dieu-Nosjean MC, Eberl G, Ecochard R, Michel JB, Graff-Dubois S, Nicoletti A (2010) Chronic rejection triggers induction of high endothelial venule-like vessels in benign prostatic hyperplasia. Am J Pathol 151(1):717–728

181. A, von Andrian UH (2017) Differential DARC/ACKR1 expression distinguishes venular from non-venular endothelial cells in murine tissues. BMC Biol 15(1):45

182. Briskin M, Winsor-Hines D, Shyjan A, Cochran N, Bloom S, Wilson J, McEvoy LM, Butcher EC, Kassam N, Mackay CR, Newman W, Ringler DJ (1997) Human mucosal addressin cell adhesion molecule-1 is preferentially expressed in intestinal tract and associated lymphoid tissue. Am J Pathol 151(1):97–110

183. Michia SA, Streeter PR, Butcher EC, Rouse RV (1995) L-selectin and alpha 4 beta 7 integrin homing receptor pathways mediate peripheral lymphocyte traffic to AKR mouse hyperplastic thymus. Am J Pathol 147(2):412–421

184. Mikulowska-Mennis A, Xu B, Berberian JM, Michia SA (2001) Lymphocyte migration to inflamed lacrimal glands is mediated by vascular cell adhesion molecule-1/alpha(4)beta(1) integrin, peripheral node addressin l-selectin, and lymphocyte function-associated antigen-1 adhesion pathways. Am J Pathol 159(2):671–681

185. Xu B, Wagner N, Pham LN, Magno V, Shan Z, Butcher EC, Michia SA (2003) Lymphocyte homing to bronchus-associated lymphoid tissue (BALT) is mediated by L-selectin/PNA(d), alpha 4beta1 integrin/VCAM-1, and LFA-1 adhesion pathways. J Exp Med 197(10):1255–1267

186. Bstrup A, Tsay D, Shenoy P, Singer MS, Bangia N, Luther SA, Cyster JG, Ruddle NH, Rosen SD (2004) Detection of a sulfotransferase (HEC-GlcNAc6ST) in high endothelial venules of lymph nodes and in high endothelial venule-like vessels within ectopic lymphoid aggregates: relationship to the MECA-79 epitope. Am J Pathol 164(5):1635–1644

187. Faveeuw C, Gagnerault MC, Lepault F (1994) Expression of homing and adhesion molecules in infiltrated islets of Langerhans and salivary glands of nonobese diabetic mice. J Immunol 152(12):5969–5978

188. Hanninen A, Taylor C, Streeter PR, Stark LS, Sarte JM, Shizuru JA, Simell O, Michia SA (1993) Vascular addressins are induced on islet vessels during insulitis in nonobese diabetic mice and are involved in lymphoid cell binding to islet endothelium. J Clin Invest 92(5):2509–2515

189. Gatamu MK, Skarstein K, Papandile A, Browning JL, Fava RA, Bolstad AI (2009) Blockade of lymphotxin-beta receptor signaling reduces aspects of Sjögren’s syndrome in salivary glands of non-obese diabetic mice. Arthritis Res Ther 11(1):R24

190. Fava RA, Kennedy SM, Wood SG, Bolstad AI, Biekowska J, Papandile A, Kelly JA, Mavragani CP, Gatamu M, Skarstein K, Browning JL (2011) Lymphotxin-beta receptor blockade reduces CXCL13 in lacrimal glands and improves corneal integrity in the NOD model of Sjögren’s syndrome. Arthritis Res Ther 13(6):R182

191. Hiraoka N, Petryniak B, Nakayama J, Tsuboi S, Suzuki M, Yeh JC, Izawa D, Tanaka T, Miyasaka M, Lowe JB, Fukuda M (1999) A novel, high endothelial venule-specific sulfotransferase expresses 6-sulfo sialyl Lewis(x), an L-selectin ligand displayed by CD34. Immunity 11(1):79–89

192. Katakai T, Hara T, Sugai M, Gonda H, Shimizu A (2003) Th1 biased tertiary lymphoid tissue supported by CXC chemokine ligand 13-producing stromal network in chronic lesions of autoimmune gastritis. J Immunol 171(8):4359–4368

193. Ludewig B, Odermatt B, Landmann S, Hengartner H, Zinkernagel RM (1998) Dendritic cells induce autoimmune diabetes and maintain disease via de novo formation of local lymphoid tissue. J Exp Med 188(8):1493–1501

194. Yang J, Rosen SD, Bendele P, Hemmerich S (2006) Induction of CXCL13-CXCR5 pathway with recurrent immune pancreatitis. Pancreas 42(1):53–59

195. Girerd B, Raymond N, Mercier O, Mussot S, Cohen-Kaminsky S, Humbert M, Lambrecht BN (2012) Pulmonary lymphoid neogenesis in idiopathic pulmonary arterial hypertension. Am J Respir Crit Care Med 185(3):311–321

196. Hiraoka N, Petryniak B, Nakayama J, Tsuboi S, Suzuki M, Fava RA, Kennedy SM, Wood SG, Bolstad AI, Biekowska J, Papandile A, Kelly JA, Mavragani CP, Gatamu M, Skarstein K, Browning JL (2011) Lymphotxin-beta receptor blockade reduces CXCL13 in lacrimal glands and improves corneal integrity in the NOD model of Sjögren’s syndrome. Arthritis Res Ther 13(6):R182
214. Fan L, Reilly CR, Luo Y, Dorf ME, Lo D (2000) Ectopic expression of the chemokine TCA4/SLC is sufficient to trigger lymphoid neogenesis. J Immunol 164:3955–3959

215. Chen SC, Vassileva G, Kinsley D, Holzmann S, Manfra D, Wiekowski MT, Romani N, Lira SA (2002) Ectopic expression of the murine chemokines CCL21a and CCL21b induces the formation of lymph node-like structures in pancreas, but not skin, of transgenic mice. J Immunol 168(3):1001–1008

216. Luther SA, Lopez T, Bai W, Hanahan D, Cyster JG (2000) BLC expression in pancreatic islets causes B cell recruitment and lympho-hematopoietic-dependent lymphoid neogenesis. Immunity 12:471–481

217. Kratz A, Campos-Neto A, Hanson MS, Ruddle NH (1996) Chronic inflammation caused by lymphoxygenin is lymphoid neo-genesis. J Exp Med 183:1461–1472

218. Sacca R, Cuff CA, Lesslauer W, Ruddle NH (1998) Differential activities of secreted lymphoxygenin-alpha3 and membrane lymphoxygenin-alpha/beta2 in lymphoxygenin-induced inflammation: critical role of TNF receptor 1 signaling. J Immunol 160(1):485–491

219. Drayton DL, Ying X, Lee J, Lesslauer W, Ruddle NH (2003) Ectopic LT alpha beta directs lymphoid organ neogenesis with concomitant expression of peripheral node addressin and a HEV-restricted sulphotransferase. J Exp Med 197(9):1153–1163

220. Seleznik GM, Reding T, Romrig F, Saito Y, Mildner A, Segerer S, Sun LK, Regenass S, Lech M, Anders HS, McHugh D, Kumagi T, Hiasa Y, Lackner C, Haybaeck J, Angst E, Perren A, Balmer ML, Slack E, MacPherson A, Manz MG, Weber A, Browning JL, Arkan MC, Rulicke T, Aguzzi A, Prinz M, Graf R, Heinen-
221. walter W, Chen BK, Genden E, Skobe M, Lira SA (2007) Lymphotoxin signaling promotes development of autoimmune pancreatitis. Gastroenterology 143(5):1361–1374

222. Wanner-Seleznik GM, Reding T, Chen R, Gupta AK, Lenggen-hager D, Browning J, Segerer S, Heinenwalder M, Graf R (2007) Amelioration of murine autoimmune pancreatitis by targeted LTbetaR inhibition and anti-CD20 treatment. Immuno horizons 4(11):688–700

223. Marinkovic T, Garin A, Yokota Y, Fu YX, Ruddle NH, Furtado GC, Lira SA (2006) Interaction of mature CD3+CD4+ T cells with dendritic cells triggers the development of tertiary lymphoid structures in the thyroid. J Clin Invest 116(10):2622–2632

224. Martin AP, Coronel EC, Sano G, Chen SC, Vassileva G, Canasto-Chibague C, Sedgwick JD, Frenette PS, Lipp M, Furtado GC, Lira SA (2004) A novel model for lymphoctic infiltration of the thyroid gland generated by transgenic expression of the CC chemokine CCL21. J Immunol 173(8):4791–4798

225. Furtado GC, Marinkovic T, Martin AP, Garin A, Hoh B, Hubner W, Chen BK, Genden E, Skobe M, Lira SA (2007) Lymphoxygenin beta receptor signaling is required for inflammatory lymphangiogenesis in the thyroid. Proc Natl Acad Sci USA 104(12):5026–5031

226. Motallebzadeh R, Rehakova S, Conlon TM, Win TS, Callaghan CJ, Goddard M, Bolton EM, Ruddle NH, Bradley JA, Pettigrew GJ (2011) Blocking lymphoxygenin signaling abrogates the development of ectopic lymphoid tissue within cardiac allografts and inhibits effector antibody responses. Faseb J 26(1):51–62

227. Baddoura FK, Nasr IW, Wrobel B, Li Q, Ruddle NH, Lakkis FG (2005) Lymphoid neogenesis in murine cardiac allografts undergoing chronic rejection. Am J Transplant 5(3):510–516

228. Ruddle NH (1999) Lymphoid neo-organogenesis: lymphoxygenin’s role in inflammation and development. Immunol Res 19(2–3):119–125

229. Neyk T, Perros F, GeurtvansKessel CH, Hammad H, Lambrecht BN (2012) Tertiary lymphoid organs in infection and autoimmunity. Trends Immunol 33(6):297–305
in colorectal cancers but accumulate in extra-tumoral areas with disease progression. Oncol Immunol 4(3):e974374

259. Di Caro G, Bergomas F, Grizzi F, Doni A, Bianchi P, Malesci A, Laghi L, Allavena P, Mantovani A, Marchesi F (2014) Occurrence of tertiary lymphoid tissue is associated with T-cell infiltration and predicts better prognosis in early-stage colorectal cancers. Clin Cancer Res 20(8):2147–2158

260. Pfitzner PL, Ballhausen A, Seidler F, Stark HJ, Grabe N, Frayling IM, Ager A, von Knebel DM, Kloor M, Ahadova A (2019) High endothelial venules are associated with microsatellite instability, hereditary background and immune evasion in colorectal cancer. Br J Cancer 121(5):395–404

261. Weinstein AM, Giraldo NA, Petitprez F, Julie C, Lacroix LO, Peschaud F, Emile IF, Marisa L, Fridman WH, Storkus WJ, Sautes-Fridman C (2019) Association of IL-36 gamma with tertiary lymphoid structures and inflammatory immune infiltrates in human colorectal cancer. Cancer Immunol Immunother 68(1):109–120

262. Silina K, Soltermann A, Attar FM, Casanova R, Uckezy ZM, Thut H, Wandres M, Iaisjes S, Cheng P, Curioni Fontecedro A, Foukas P, Levesque MP, Moch H, Line A, van den Broek M (2018) Germinal centers determine the prognostic relevance of tertiary lymphoid structures and are impaired by corticosteroids in lung squamous cell carcinoma. Cancer Res 78(5):1308–1320

263. de Chaisemartin L, Goc J, Damotte D, Valdrie P, Magdeleinat P, Alifano M, Cremer I, Fridman WH, Sautes-Fridman C, Dieu-Noesjan MC (2011) Characterization of chemokines and adhesion molecules associated with T cell presence in tertiary lymphoid structures in human lung cancer. Cancer Res 71(20):6391–6399

264. Goc J, Germain C, Vo-Bourgui TK, Lupo A, Klein C, Knockaert D, Kast WM, Kloor M, Valdrie P, Remark R, Hammond SA, Cremer I, Damotte D, Fridman WH, Sautes-Fridman C, Dieu-Noesjan MC (2014) Dendritic cells in tumor-associated tertiary lymphoid structures signal a Th1 cytokine immune contexture and license the positive prognostic value of infiltrating CD8+ T cells. Cancer Res 74(3):705–715

265. Remark R, Lupo A, Alifano M, Biton J, Ouakrim H, Stefanis F, Cremer I, Goc J, Regnard JF, Dieu-Noesjan MC, Damotte D (2016) Immune contexture and histological response after neo-adjuvant chemotherapy predict clinical outcome of lung cancer patients. Oncol Immunology 5(2):1255394

266. Goveia J, Rohlivena K, Taverna F, Treps L, Conradi L-C, Pincher A, Geldhof V, de Rooij LPMH, Kalucka J, Sokol L, Garcia-Caballero M, Zheng Y, Qian J, Dejwein L-A, Schiess B, Wohrta-Evers A, Boennerbom H, Emmert A, Panovska D, De Smet F, Staal FJT, Mclaughlin RJ, Impens F, Lagani V, Vinek S, Mazzone M, Schoonjans L, Dewerchin M, Eelen G, Karakach TK, Yang H, Wang J, Bolund L, Lin L, Thiembot B, Li X, Liemachts D, Luo Y, Carmeliet P (2020) An integrated gene expression landscape profiling approach to identify lung tumor endothelial cell heterogeneity and angiogenic candidates. Cancer Cell 37(1):21–36.e13

267. Sakai Y, Hoshino H, Kitazawa R, Kobayashi M (2014) High endothelial venule-like vessels and lymphocyte recruitment in testicular seminoma. Andrology 2(2):282–289

268. Low S, Sakai Y, Hoshino H, Hirokawa M, Kawashima H, Higuchi K, Imamura Y, Kobayashi M (2016) High endothelial venule-like vessels and lymphocyte recruitment in diffuse sclerosing variant of papillary thyroid carcinoma. Pathology 48(7):666–674

269. Garcia-Hernandez ML, Urbie-Urbe NO, Espinosa-Gonzalez R, Kast WM, Khdar SA, Rangel-Moreno J (2017) A unique cellular and molecular microenvironment is present in tertiary lymphoid organs of patients with spontaneous prostate cancer regression. Front Immunol 8:563

270. Koti M, Xu AS, Ren KYM, Visram K, Ren R, Berman DM, Siemens DR (2017) Tertiary lymphoid structures associate with tumour stage in urothelial bladder cancer. Bladder Cancer 3(4):259–267

271. Hennequin A, Derangere V, Boidot R, Apetoh L, Vincent J, Orry D, Fraise J, Causseret S, Martin F, Arnould L, Belfjns F, Ghiringeri F, Ladoire S (2016) Tumor infiltration by Tbet+ effector T cells and CD20+ B cells is associated with survival in gastric cancer patients. Oncoimmunology 5(2):e1054598

272. Sakimura C, Tanaka H, Okuno T, Hiramatsu S, Muguruma K, Hirakawa K, Wainbuchi H, Ohira M (2017) B cells in tertiary lymphoid structures are associated with favorable prognosis in gastric cancer. J Surg Res 215:74–82

273. Hiraoka N, Ino Y, Yamazaki-Itoh R, Kanai Y, Kosuge T, Shimada K (2015) Intratumoral tertiary lymphoid organ is a favourable prognostic factor in patients with pancreatic cancer. Br J Cancer 112(11):1782–1790

274. Bahmani B, Uehara M, Ordikhani F, Li X, Jiang L, Banouni N, Ichiumi T, Kasinath V, Esoandari SK, Annabi N, Bromberg JS, Shultz LD, Greiner DL, Abdi R (2018) Ectopic high endothelial venules in pancreatic ductal adenocarcinoma: a unique site for targeted delivery. EBioMedicine 38:79–88

275. Castino GF, Cortese N, Capretti G, Serio S, Di Caro G, Minieri R, Magrini E, Grizzi F, Cappello P, Novelli F, Spaggiari P, Koncalli M, Ridolfi C, Gavazzi F, Zerbi A, Allavena P, Marchesi F (2016) Spatial distribution of B cells predicts prognosis in human pancreatic adenocarcinoma. Oncoimmunology 5(4):e1085147

276. Giraldo NA, Becht E, Pages F, Skliris G, Verkkee V, Vano Y, Mejean A, Saint-Aubert N, Lacroix L, Naitari L, Bopilu A, Alifano M, Damotte D, Cazes A, Triebl F, Freeman GJ, Dieu-Noesjan MC, Oudard S, Fridman WH, Sautes-Fridman C (2015) Orchestration and prognostic significance of immune checkpoints in the microenvironment of primary and metastatic renal cell cancer. Clin Cancer Res 21(13):3031–3040

277. Petitprez F, de Reynies A, Keung EZ, Chen TW, Sun CM, Calderaro J, Jeng YM, Hsiiao LP, Lacroix L, Bougouin A, Moreira M, Lacroix G, Naitari I, Adam J, Lucchesi C, Laizet YH, Toumouline M, Burgess MA, Bolejact V, Reineke D, Wani KM, Wang WL, Lazar AJ, Roland CL, Wargo JA, Italiano A, Sautes-Fridman C, Tawbi HA, Fridman WH (2020) B cells are associated with survival and immunity response in sarcoma. Nature 577(7791):556–560

278. Kroeger DR, Milne K, Nelson BH (2016) Tumor-infiltrating plasma cells are associated with tertiary lymphoid structures, cytolytic T-cell responses, and superior prognosis in ovarian cancer. Clin Cancer Res 22(12):3005–3015

279. Li Q, Liu X, Wang D, Wang Y, Lu H, Wen S, Fang J, Cheng B, Wang Z (2020) Prognostic value of tertiary lymphoid structure and tumour infiltrating lymphocytes in oral squamous cell carcinoma. Int J Oral Sci 12(1):24

280. Remark R, Alifano M, Cremer I, Lupo A, Dieu-Noesjan MC, Riquet M, Crozet L, Ouakrim H, Goc J, Cazes A, Flesjou JF, Ghibault L, Verkkee V, Regnard JF, Pages ON, Oudard S, Milecnik B, Sautes-Fridman C, Fridman WH, Damotte D (2013) Characteristics and clinical impacts of the immune environments in colorectal and renal cell carcinoma lung metastases: influence of tumor origin. Clin Cancer Res 19(15):4079–4091

281. Pericart S, Sryrykh C, Amara N, Franchet C, Malavau F, Gaultard P, Girard JP, Ysebaert L, Laurent C, Broussset P (2020) Exclusive B-cell phenotype of primary prostatic lymphomas: a potential role of chronic prostatitis. Histopathology 76(5):767–773

282. Hindley JP, Jones E, Smart K, Bridgeman H, Launder SN, Ondondo B, Cutting S, Ladel K, Wynn KK, Withers D, Price DA, Ager A, Godkin AJ, Gallimore AM (2012) T-cell trafficking facilitated by high endothelial venules is required for
284. Schrama D (2008) Immunological tumor destruction in a murine melanoma model by targeted LTalpha independent of secondary lymphoid tissue. Cancer Immunol Immunother 57(1):85–95

285. Ganss R, Hanahan D (1998) Tumor microenvironment can restrict the effectiveness of activated antitumor lymphocytes. Cancer Res 58(20):4673–4681

286. Peske JD, Thompson ED, Gemta L, Baylis RA, Fu YX, Engelhardt VH (2015) Effector lymphocyte-induced lymph node-like vasculature enables naive T-cell entry into tumours and enhanced anti-tumour immunity. Nat Commun 6:7114

287. Allen E, Jabouille A, Rivera LB, Lodewijckx I, Missiaen R, Steri V, Feyen K, Tawney J, Hanahan D, Michael IP, Bergers G (2017) Combined angiogenic and anti-PD-L1 therapy stimulates tumor immunity through HEV formation. Sci Transl Med 9(385):eaak9679

288. Kabir AU, Subramanian M, Lee DH, Wang X, Kehma K, Wu J, Naismith T, Halabi CM, Kim JY, Pulous FE, Petrich BG, Kim S, Park HC, Hanson PI, Pan H, Wickline SA, Fremont DH, Park C, Choi K (2021) Dual role of endothelial Myel1 in tumor angiogenesis and tumor immunity. Sci Transl Med 13(583):eaab6731

289. Joshi NS, Akama-Garren EH, Lu Y, Lee DY, Chang GP, Li A, DuPage M, Tammela T, Kerper NR, Farago AF, Robbins R, Crowley DM,Bronson RT, Jacks T (2015) Regulatory T cells in tumor-associated tertiary lymphoid structures suppress anti-T cell T cell responses. Immunity 43(3):579–590

290. Finkin S, Yuan D, Stein I, Taniguchi K, Weber A, Unger K, Joshi NS, Akama-Garren EH, Lu Y, Lee DY, Chang GP, Li A, DuPage M, Tammela T, Kerper NR, Farago AF, Robbins R, Crowley DM, Bronson RT, Jacks T (2015) Regulatory T cells in tumor-associated tertiary lymphoid structures suppress anti-T cell T cell responses. Immunity 43(3):579–590

291. Colbeck EJ, Jones E, Hindley JP, Smart K, Schulz R, Browne M, Cutting S, Williams A, Parry L, Godkin A, Ware CF, Ager A, Gallimore A (2017) Treg depletion licenses T cell-driven HEV neogenesis and promotes tumor destruction. Cancer Immunol Res 5(11):1005–1015

292. Shields JD, Kourtis IC, Tosei AA, Roberts JM, Swartz MA (2010) Induction of lymphoidlike stroma and immune escape by tumors that express the chemokine CCL21. Science 328(5979):749–752

293. Kim HJ, Kamamoto T, Janke M, Schmetzer O, Qin Z, Berek JD, Slighluff CL, Jr (2018) Immune cell infiltration and tertiary lymphoid structures as determinants of antitumor immunity. J Immunol 200(2):432–442

294. Johansson-Percival A, Steri V, Johansson-Percival A, Michael IP, Kotamraju VR, Junckerstorff R, Nowak AK, Hamzah J, Lee G, Bergers G, Ganss R (2018) Vascular targeting of LIGHT normalizes blood vessels in primary brain cancer and induces intratumoral high endothelial venules. J Pathol 245(2):209–221

295. Huang Y, Chen Y, Zhou S, Chen L, Wang J, Pei Y, Xu M, Feng J, Jiang T, Liang K, Liu S, Song Q, Jiang G, Xu G, Zhang Q, Gao X, Chen J (2020) Dual-mechanism based CTLs infiltration enhancement initiated by Nano-sapper potentiates immunotherapy against immune-excluded tumors. Nat Commun 11(1):622

296. He B, Johansson-Percival A, Backhouse J, Li J, Lee GYF, Hamzah J, Ganss R (2020) Remodeling of metastatic vascularization reduces lung colonization and sensitizes overt metastases to immunotherapy. Cell Rep 30(3):714-724 e715

297. He B, Jabouille A, Steri V, Johansson-Percival A, Michael IP, Kotamraju VR, Junckerstorff R, Nowak AK, Hamzah J, Lee G, Bergers G, Ganss R (2018) Vascular targeting of LIGHT normalizes blood vessels in primary brain cancer and induces intratumoral high endothelial venules. J Pathol 245(2):209–221

298. Schrama D, Voigt H, Egbert AO, Xiang R, Zhou H, Schumacher TN, Andersen MH, thor Straten P, Reisfeld RA, Becker JC (2008) Immunological tumor destruction in a murine melanoma model by targeted LTalpha independent of secondary lymphoid tissue. Cancer Immunol Immunother 57(1):85–95

299. He B, Jabouille A, Steri V, Johansson-Percival A, Michael IP, Kotamraju VR, Junckerstorff R, Nowak AK, Hamzah J, Lee G, Bergers G, Ganss R (2018) Vascular targeting of LIGHT normalizes blood vessels in primary brain cancer and induces intratumoral high endothelial venules. J Pathol 245(2):209–221

300. Weinstein AM, Chen L, Brzana EA, Patil PR, Taylor JL, Fabian KL, Wallace CT, Jones SD, Watkins SC, Lu B, Stroncek DF, Denning TL, Fu YX, Cohen PA, Storkus WJ (2017) Tbet and IL-36gamma cooperate in therapeutic DC-mediated promotion of ectopic lymphoid organogenesis in the tumor microenvironment. OncoImmunology 6(6):e1322238

301. Yu P, Lee Y, Liu W, Chin RK, Wang J, Wang Y, Schietinger A, Philip M, Schreiber H, Fu YX (2004) Priming of naive T cells inside tumors leads to eradication of established tumors. Nat Immunol 5(2):141–149

302. Thompson ED, Enriquez HL, Fu YX, Engelhard VH (2010) Tumor masses support naive T cell infiltration, activation, and differentiation into effectors. J Exp Med 207(8):1791–1804

303. Sautes-Fridman C, Petitprez F, Calderaro J, Fridman WH (2019) Tertiary lymphoid structures in the era of cancer immunotherapy. Nat Rev Cancer 19(6):307–325

304. Dieu-Nosjean MC, Goc J, Giraldo NA, Sautes-Fridman C, Fridman WH (2014) Tertiary lymphoid structures in cancer and beyond. Trends Immunol 35(11):571–580

305. Helmin BA, Reddy SM, Gao J, Zhang S, Basar R, Thakur R, Yizhak K, Sade-Feldman M, Blando J, Han G, Gopalakrishnan V, Xi Y, Zhao H, Amaria RN, Tawbi HA, Cogdill AP, Liu W, LeBluVS, Kugersfati GS, Patel S, Davies MA, Huw P, Lee JE, GershwinlJE, Lucci A, Arora R, Woodman S, Keung EZ, Gaudreau PO, Reuben A, Spencer CN, Burton EM, Hayda LE, Lazar AJ, Zappasodi R, Hudgens CW, Ledesma DA, Ong S, Bailey M, Warren S, Rao D, Krisgmaan OA, Rozeman EA, Peeper D, Blank CU, Schumacher TN, Batterfield LH, Zelazowska MA, McBride KM, Kalluri R, Allison J, Petitprez F, Fridman WH, Sautes-Fridman C, Haochen N, Rezvani K, Sharma P, Tetzlafl MT, Wang L, Wargo JA (2020) B cells and tertiary lymphoid structures promote immunotherapy response. Nature 577(7791):549–555

306. Ager A (2017) High endothelial venules and other blood vessels: critical regulators of lymphoid organ development and function. Front Immunol 8:45

307. Ager A, May MJ (2015) Understanding high endothelial venules: lessons for cancer immunology. OncoImmunology 4(6):e100891

308. Colbeck EJ, Ager A, Gallimore A, Jones GW (2017) Tertiary lymphoid structures in cancer: drivers of antitumor immunity, immunosuppression, or bystander sentinels in disease? Front Immunol 8:45

309. Engelhard VH, Rodriguez AB, Mauldin IS, Woods AN, Peske JD, Colbeck EJ, Jones GW (2017) Tertiary lymphoid structures as determinants of antitumor immunity. OncoImmunology 6(6):e1322238

310. Engelhard VH, Rodriguez AB, Mauldin IS, Woods AN, Peske JD, Thompson ED, Ganss R (2018) Vascular targeting of LIGHT normalizes blood vessels in primary brain cancer and induces intratumoral high endothelial venules. J Pathol 245(2):209–221

311. Hamzah J, Larma I, Ganss R, Storkus WJ (2017) Tert and IL-36gamma cooperate in therapeutic DC-mediated promotion of ectopic lymphoid organogenesis in the tumor microenvironment. OncoImmunology 6(6):e1322238

312. Sautes-Fridman C, Petitprez F, Calderaro J, Fridman WH (2019) Tertiary lymphoid structures in the era of cancer immunotherapy. Nat Rev Cancer 19(6):307–325

313. Dieu-Nosjean MC, Goc J, Giraldo NA, Sautes-Fridman C, Fridman WH (2014) Tertiary lymphoid structures in cancer and beyond. Trends Immunol 35(11):571–580
310. Rodriguez AB, Engelhard VH (2020) Insights into tumor-associated tertiary lymphoid structures: novel targets for antitumor immunity and cancer immunotherapy. Cancer Immunol Res 8(11):1338–1345

311. Liu X, Tsang JYS, Hlaing T, Hu J, Ni YB, Chan SK, Cheung SY, Tse GM (2017) Distinct tertiary lymphoid structure associations and their prognostic relevance in HER2 positive and negative breast cancers. Oncologist 22(11):1316–1324

312. Jansen CS, Prokhnoveska N, Master VA, Sanda MG, Carlisle JW, Bilen MA, Cardenas M, Wilkinson S, Lake R, Sowalsky AG, Valanparambil RM, Hudson WH, McGuire D, Melnik K, Khan AI, Kim K, Chang YM, Kim A, Filson CP, Alemozaffar M, Osunkoya AO, Mullane P, Ellis C, Akondy R, Im SJ, Kamphorst AO, Reyes A, Liu Y, Kissick H (2019) An intra-tumoral niche maintains and differentiates stem-like CD8 T cells. Nature 576(7787):465–470

313. Martinet L, Girard JP (2013) Regulation of tumor-associated high-endothelial venules by dendritic cells: a new opportunity to promote lymphocyte infiltration into breast cancer? OncoImmunology 2(11):e26470

314. Adams TE, Alpert S, Hanahan D (1987) Non-tolerance and autoantibodies to a transgenic self antigen expressed in pancreatic beta cells. Nature 325(6101):223–228

315. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD (2002) Cancer immunoeediting: from immunosurveillance to tumor escape. Nat Immunol 3(11):991–998

316. Dunn GP, Old LJ, Schreiber RD (2004) The three Es of cancer immunoeediting. Annu Rev Immunol 22:329–360

317. Chen DS, Mellman I (2017) Elements of cancer immunity and the cancer-immune set point. Nature 541(7637):321–330

318. Ribas A, Wolchok JD (2018) Cancer immunotherapy using checkpoint blockade. Science 359(6382):1350–1355

319. Rosenberg SA, Restifo NP (2015) Adoptive cell transfer as personalized immunotherapy for human cancer. Science 348(6230):62–68

320. Sharma P, Allison JP (2015) The future of immune checkpoint therapy. Science 348(6230):56–61

321. Schumacher TN, Schreiber RD (2015) Neoadtigens in cancer immunotherapy. Science 348(6230):69–74

322. Fridman WH, Pages F, Sautes-Fridman C, Galon J (2012) The immune contexture in human tumors: impact on clinical outcome. Nat Rev Cancer 12(4):298–306

323. Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Bindea G, Czerwinski D, Rust A, Sautes-Fridman C, Miermeister I,umbscheidt T, Bruder S, Henseleit K, Berthelot P, Venes C, Ricciardelli P, Bruckner T, Neidhart S, Kirilovsky J, Wehmann J, Mlecnik B, Hellmann T,将迎来淋巴细胞 327. Siddiqui I, Schaeuble K, Chennupati V, Fuertes Marraco SA, Calderon-Copete S, Paus Ferreira D, Carmona S, Scarpellino L, Dell’Olio S, Pradernov S, Luther SA, Speiser DE, Held W (2019) Intratumoral Tcf1(+)PD-1(+)CD8(+) T cells with stemlike properties promote tumor control in response to vaccination and checkpoint blockade immunotherapy. Immunity 50(1):195–211 e110

328. Wu TD, Madireddi S, de Almeida PE, Banchereau R, Chen YJ, Chitre AS, Jiang EY, Ifitikhar H, O’Gorman WE, Au-Yeung A, Takahashi C, Goldstein LD, Poon C, Keirthivasan S, de Almeida Nagata DE, Du X, Lee HM, Banta KL, Marthanasan S, Das Thakur M, Husena MA, Ballinger M, Estay I, Caplazi P, Modrusan Z, Delamarre L, Mellman I, Bourgon R, Grogan JL (2020) Peripheral T cell expansion predicts tumour infiltration and clinical response. Nature 579(7798):274–278

329. Yost KE, Saipathy AT, Wells DK, Qi Y, Wang C, Kageyama R, McNamara KL, Granja JM, Sarin KY, Brown RA, Gupta RK, Curtis C, Bucktrout SL, Davis MM, Chang ALS, Chang HY (2019) Clonal replacement of tumor-specific T cells following PD-1 blockade. Nat Med 25(8):1251–1259

330. Tang H, Wang Y, Chlewicki LK, Zhang Y, Guo J, Liang W, Wang J, Wang X, Fu YX (2016) Facilitating T cell infiltration in tumor microenvironment overcomes resistance to PD-L1 blockade. Cancer Cell 29(3):285–296

331. Yu P, Fu YX (2008) Targeting tumors with LIGHT to generate metastasis-clearing immunity. Cytokine Growth Factor Rev 19(3–4):285–294

332. Newick K, O’Brien S, Moon E, Albelda SM (2017) CAR T cell therapy for solid tumors. Annu Rev Med 68:139–152

333. Krishna S, Lowery FJ, Copeland AR, Mukherjee R, Jia L, Anibol JT, Sachs A, Adeola SO, Gurusamy D, Yu Z, Hill V, Gardner JH, Li YF, Parkhurst M, Paria B, Kivisist P, Kelly MC, Goff SL, Altan-Bonnet G, Robbins PF, Rosenberg SA (2020) Stem-like CD8 T cells mediate response of adoptive cell immunotherapy against human cancer. Science 370(6522):1328–1334

334. Gattinoni L, Zhong XS, Palmer DC, Ji Y, Hinrichs CS, Yu Z, Wrzesinski C, Boni A, Cassard L, Garvin LM, Paulos CM, Muranski P, Restifo NP (2009) Wnt signaling arrests effector T cell differentiation and generates CD8+ memory stem cells. Nat Med 15(7):808–813

335. Hinrichs CS, Spolski R, Paulos CM, Gattinoni L, Kerstann KW, Palmer DC, Klebanoff CA, Rosenberg SA, Leonard WJ, Restifo NP (2008) IL-2 and IL-21 confer opposing differentiation programs to CD8+ T cells for adoptive immunotherapy. Nature 453:389–393

336. Klebanoff CA, Gattinoni L, Torabi-Pariizi P, Kerstann K, Cardones AR, Finkelstein SE, Palmer DC, Antony PA, Hwang ST, Rosenberg SA, Waldmann TA, Restifo NP (2008) Central memory self/tumor-reactive CD8+ T cells confer superior antitumor immunity compared with effector memory T cells. Proc Natl Acad Sci USA 102(27):9571–9576

337. Cabrita R, Lauss M, Sanna A, Donia M, Skaarup Larsen M, Mitra S, Johansson I, Phung B, Harbst K, Vallon-Christersson J, van Schooai A, Lovgren K, Warren S, Jirstrom K, Olsson H, Tse GM (2017) Distinct tertiary lymphoid structure associations and their prognostic relevance in HER2 positive and negative breast cancers. Oncologist 22(11):1316–1324
Pietras K, Ingvar C, Isaksson K, Schadendorf D, Schmidt H, Bastholt L, Carneiro A, Wargo JA, Svane IM, Jonsson G (2020) Tertiary lymphoid structures improve immunotherapy and survival in melanoma. Nature 577(7791):561–565

339. Michot JM, Bigenwald C, Champiat S, Collins M, Carbonnel F, Postel-Vinay S, Berdelou A, Varga A, Bahlada R, Hollebecque A, Massard C, Fuere A, Ribrag V, Gazzah A, Armand JP, Amellal N, Angevin E, Noel N, Boutros C, Mateus C, Robert C, Soria JC, Marabelle A, Lambotte O (2016) Immune-related adverse events with immune checkpoint blockade: a comprehensive review. Eur J Cancer 54:139–148

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.