A remote sensing-based discrimination of high- and low-potential mineralization for porphyry copper deposits; a case study from Dehaj–Sarduiyeh copper belt, SE Iran

Mahdieh Hosseinjani Zadeh and Mehdi Honarmand
Department of Ecology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran

ABSTRACT
This work seeks to implement surface indicators of porphyry copper deposits (PCDs) at known source regions and to apply these indicators to recognize high- and low-potential mineralization through remote sensing in other areas. Thirty copper deposits in central Iranian volcano-sedimentary complex, Kerman province, Southeast of Iran, which are different in grade and size, were selected as test sites. The abundances of alteration minerals at these deposits were discriminated using a partial sub-pixel unmixing algorithm, mixture tuned matched filtering (MTMF), on Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data to find an indicator whether the abundances of alteration minerals correspond to the grade and size of each deposit. In general, comparison of sub-pixel abundances with known mineral occurrences showed a reasonable correspondence such that areas with high abundances of alterations corresponded well with important mineralized districts. It is concluded that suggested sub-pixel analysis of ASTER data leads to identifying alteration zones with high-potential mineralization in PCDs.

INTRODUCTION
One of the most important characteristics of porphyry copper deposits (PCDs) widely used in exploration projects is the distribution of alteration zones such as zones of potassic, phyllic, argillic and propylitic. These zones are defined on the basis of their characteristic minerals, and the compositional changes observed are the consequence of the involvement of differently sourced fluids and their mixture in the formation of a deposit (Berger et al., 2008). Generally, at these deposits mineralization zones are conformable to the alteration zones such that the ore bodies (with a 0.5% Cu cutoff) overlap potassic and phyllic zones. In addition, extension and intensity of alteration can suggest the intensity of mineralization (Lowell & Guilbert, 1970). Each alteration zones characterized by assemblages of hydrothermal alteration minerals that exhibit spectral absorption features in the visible near-infrared (VNIR) through the short-wave infrared (SWIR) 0.4–2.5 μm and the thermal-infrared (TIR) (8.0–14.0 μm) wavelength regions (Abrams, 2000; Asadzadeh & De Souza Filho, 2016; Carrino, Crósta, Toledo, & Silva, 2015; Clark et al., 2007; Corumluoglu, Vural, & Asri, 2015; Hosseinjani Zadeh et al., 2014a). These characteristics cause that it is possible to discriminate alteration minerals through remote sensing science. This science has shown tremendous potential in discriminating and mapping alteration minerals through different image-processing techniques including per-pixel and sub-pixel algorithms with lower cost, time and manpower (Crosta & Filho, 2003; Debba, Van Ruitenbeek, Van Der Meer, Carranza, & Stein, 2005; Givens, Walli, & Eisemann, 2013; Hosseinjani Zadeh et al., 2014b; Hosseinjani Zadeh & Tanglestani, 2013; Hubbard & Crowley, 2005; Mars & Rowan, 2010; Sabins, 1999; Shahriari, Honarmand, & Ranjbar, 2015; Van Der Meer et al., 2012; Zhang & Li, 2014). Normally in per-pixel algorithms such as band rationing, principal component analysis and spectral angle mapper (SAM) hydrothermal altered minerals are discriminated at regional scale with little attention to sub-pixel analyses. Although image pixels are often a mixture of different materials which cannot be detected by per-pixel classification algorithms, sub-pixel analysis methods can be used to calculate the quantity of target materials within each pixel of an image. In spectral sub-pixel unmixing, the measured spectrum of a mixed pixel is decomposed into a collection of constituent spectra, or end-members and set of abundances that represent the proportion of each end-member in the pixel are determined. End-members normally correspond to pure objects in the scene, such as water, soil, rock, mineral, or any...
natural or man-made material. Spectral unmixing usually requires detailed spectral profiles of each element in a mixed pixel, and this becomes the bottleneck. Unlike unmixing algorithms such as linear spectral unmixing, partial sub-pixel unmixing hybrid method known as mixture tuned matched filtering (MTMF) does not require knowledge of all the end-members in the scene. Previous studies have demonstrated the importance of MTMF as a partial sub-pixel unmixing method in identification of mineral mapping (Bishop, Liu, & Mason, 2011; Boardman, Kruse, & Green, 1995; Hosseinjani Zadeh et al., 2014b; Hosseinjani Zadeh & Tangestani, 2011; Hosseinjani Zadeh et al., 2014c; Kruse, Boardman, & Huntington, 2003).

MTMF combines the strength of the matched filter (MF) method with physical constraints imposed by mixing theory in which the signature at any given pixel is a linear combination of the individual components contained in that pixel. Results of this algorithm are two sets of gray images for each end-member including the MF image score and the infeasibility image. The MF images help to estimate relative degree of match to the reference spectrum and the approximate sub-pixel abundance with values from zero to one. Pixels with a high infeasibility are likely to be MF false positives. MTMF maximizes the response of the end-member of interest and the composite unknown background to match the known signature (Chen & Reed, 1987; Research, & Systems.Inc, 2003).

Among remote sensing data, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) has been effectively used for identification of various surface features and mineralogical classification especially hydrothermal minerals (Amer, Kusky, & El Mezayen, 2012; Dalm, Buxton, Van Ruitenbeek, & Jack, 2014; Gabr, Ghulam, & Kusky, 2010; Hosseinjani Zadeh et al., 2014c; Mars & Rowan, 2010; Mondino, Lessio, & Gomarasca, 2016; Ranjbar, Masoumi, & Carranza, 2011; Zhang, Pazner, & Duke, 2007). In most of remote sensing studies, hydrothermal alteration minerals have been discriminated without attention to size, grade and potential of mineralization. Although mineral abundances which can be derived through sub-pixel analyses may be used as a clue to discriminate hydrothermal alteration zones of high-potential mineralization from those with low potentials, rare publications are available for distinguishing high-potential mineralization through sub-pixel analysis such as MTMF algorithm. Although Hosseinjani Zadeh et al., (2014c) showed that MTMF can be used to discriminate alteration minerals and their apparent abundances on a sub-pixel basis, many efforts remain to be done in other mineralized areas for verifying accurate determination of mineral abundances and to prove its ability for determination of high-potential mineralization.

Since extension and intensity of alteration can suggest the intensity of mineralization, it could be possible to use mineral abundances, which can be derived through sub-pixel analyses, as a clue to discriminate hydrothermal alteration zones of high-potential mineralization from those with low potentials. The main objective of this research was to implement surface indicators of PCDs through sub-pixel analysis of ASTER data at known source regions for recognition of high-potential mineralization and to establish markers of potential in other areas. In order to reach these aims, 30 copper occurrences with a variety of economic potential in Dehaj–Sarduiyeh copper belt were investigated. The study area is a potential zone for exploration of PCDs in which most of the important PCDs of Iran are situated. These deposits were assessed with the aim of mapping alteration minerals through sub-pixel processing of ASTER data. Discriminated areas were investigated in order to determine whether the abundances of alteration minerals correspond to the grade and size of each deposit.

Geology and mineralization

The study area is situated at the southern part of the central Iranian Urumieh–Dokhtar magmatic arc, Kerman province, Iran (Figure 1a)). This magmatic belt, known as Dehaj–Sarduiyeh copper belt in Kerman province, has considerable economic potential for porphyry copper mineralization. The largest porphyry copper mine of Iran, Sarcheshmeh, and 30 other deposits, such as Meiduk, Darrehzar, Nowchon, Sara and Iju are located at this area (Figure 1b).

The study area is concentrated on three established porphyry copper regions including: (a) some parts of merged geological maps of the Pariz and Chahar Gonbad, (b) geological map of the Sarduiyeh and (c) some parts of merged geological maps of the Anar, Shahr-e Babak, Dehaj and Robat (Figure 1c–e)). The scales of these maps are 1:100,000 (Geological Survey of Iran (Cartographer), 1971a, 1971b, 1972a, 1972b, 1973a, 1973b, 1995).

This region is characterized by the presence of several copper mineral deposits and many occurrences. Two types of mineralization including porphyry and vein types have been identified in these areas. Porphyry types are more important and are located mainly in the post Eocene intrusive bodies in the Eocene volcanic–sedimentary complex. The vein-type mineralization has been found both in the intrusive and in the volcanic rocks and has been controlled by faults of different trends (Dimitrijevic,
The occurrences and deposits located in the study area are indicated in Figure 1.

Hydrothermal alterations are intensive, widespread all over the study area and developed both in the intrusive and volcanic rocks. The following types of hydrothermal alterations such as chloritization, biotization, sericitization, argillization, silicification, sulphatization, epidotization, pyritization and carbonatization were identified. The intensity of alterations is not of the same type in all locations. Sericitization which is mainly developed around the copper mineralization like Darrehzar, Jju and many other occurrences is the most intensive and most common alteration in this area. This alteration is usually associated with silicification, argillization and bleaching of the surrounding rocks. Argillization is also very common although not intensive as sericitization.

Silicification, nearly always present, most intensively occurred near copper mineralization and is developed into different degrees in all types of rocks. Chloritization and epidotization are usually absent from the most intensively altered zones where sericite, quartz and clay minerals are present but have usually occurred in the propylitized zones (Dimitrijevic, 1973).

Methods

Three principal sources of information including ASTER images, existing geological/exploration maps and geological exploration data have been used in this research. The study areas cover three frames of ASTER-level 1B data which were acquired on 13 March 2002, 1 September 2003 and 9 August 2004.
Since the data were acquired in different time, the processing of the data was implemented on each frame separately. The procedure of preprocessing and processing was similar to Hosseinjani Zadeh et al., (2014c). The preprocessing such as crosstalk correction and Internal Average Relative Reflection calibration were implemented on the data in order to remove noise and acquire surface reflectance. Spectra of diagnostic alteration minerals including sericite–illite, pyrophyllite–alunite, kaolinite–dickite, chlorite–calcite–epidote and the jarosite were extracted from the preprocessing imagery using Environment for Visualizing Images (ENVI) software, n-dimensional visualizer tool, and a-priori knowledge of the geology. The extracted spectra, in minimum noise fraction (MNF) space, were used to identify alteration minerals and to generate abundance thematic mineral maps through partial sub-pixel unmixing algorithm known as MTMF (Hosseinjani Zadeh and Tangestani, 2011, Hosseinjani Zadeh et al., 2014b, 2014c). These processes were implemented for three frames of ASTER separately. In order to determine and investigate whether the grade and size of each deposit correspond to the results obtained from processing of ASTER data, the discriminated areas for each spectrum and abundances were converted to vector and saved as shape files. The accuracies of the discriminated areas were verified by field surveys and laboratory analyses such as X ray diffraction (XRD), microscopy and spectroscopic studies. Important analogic information from previous studies such as geological/exploration maps and geological exploration data (grade and size of each deposit) was also available at different scales ranging from detailed to regional. These maps were georeferenced and digitized and were introduced along with the rest of the ancillary georeferenced information and discriminated abundances of altered minerals into the ArcGIS v. 10.3 database. Then, the discriminated areas were investigated and compared in the case of extension, abundance, size and grade of each deposit. The flowchart of the study procedure is shown in Figure 2.

Results and discussion

The question of which discriminated areas contain high-potential mineralization is important for locating deposits. Identifying the areas of high economic potential for copper mineralization using ASTER data in the Urumieh–Dokhtar was applied to three ASTER scenes covering the Meiduk, Sarcheshmeh and Daralu mining districts. Regarding previous analysis by authors (Hosseinjani Zadeh et al., 2014c) on VNIR + SWIR wavelengths to identify iron oxide/hydroxide and clay minerals in some parts of the study sites, the present study focuses to implement surface indicators of PCDs at known source regions and to apply these tools to recognize high-potential mineralization through remote sensing in other areas. Surface indicators of PCDs include mineral spectral signatures as well as spectral abundances mapped through ASTER imagery. Spectral abundances mapped were generated from a partial sub-pixel unmixing algorithm on ASTER data. The abundant maps for some of important deposits are displayed in Figure 3. Hereafter, the discriminated areas were investigated and compared in the case of extension, abundance, size and grade of each deposit (Table 1).
Table 1 shows location, grade and size of 30 known PCDs which were compared with the abundances and extensions of discriminated minerals extracted from processing of ASTER data. Investigation and comparison of the size and grade of each deposit with the abundances of discriminated minerals revealed an excellent correlation with coefficient between 0.533 and 0.646 for each mineral (Table 2). So that it is possible to find relationship between extension and intensity of alteration with the intensity of mineralization through remote sensing studies.

The alteration minerals including hydrated aluminum silicates (clay alteration minerals) and gossan mineral (jarosite) were successfully mapped with ASTER data using MTMF algorithm. The zoned alteration pattern suggests a change from phyllic (e.g. sericite) to argillic (e.g. kaolinite) to propylitic alteration (e.g. epidote) from the center to outwards. High abundances (0.75–1) of five diagnostic alteration minerals including sericite, kaolinite, alunite, jarosite and chlorite were found at giant deposit like Sarcheshmeh. The discriminated minerals at this mine illustrated elliptical shapes with sericite and argillic zones surrounded by propylitized rocks and have abundances from high to low (0.35–1). Big deposits such as Meiduk revealed high abundances of four minerals including sericite, kaolinite, alunite and jarosite. Distributions of altered minerals are high with elliptical shape and have abundances from high to low. Medium deposits such as Darrehzar, Iju and Nowchon show high abundance of one mineral at
Table 1. Location, grade and size of porphyry copper deposits in the study area (extracted from Dimitrijevic, 1973; Shafiei & Shahabpour, 2008).

Deposit	Location (Zone 40R)	Reserve and grade	Size	Abundance of discriminated altered minerals	Extension of discrimination areas
Sarcheshmeh	392,000E, 3,313,529N	1200 Mt, 0.7% Cu and 0.03 Mo	Giant	H: Au, Jrs, MsC, Chl and Kln	2.5 × 3.7 km² large oval
Darrehzar	393,800 E, 3,306,089N	49 Mt, 0.64% Cu and 0.04 Mo	Medium	High: Au, Jrs, MsC, Chl and Kln	1.8 × 1.3 km² large oval
Nowchon	389,315E, 3,310,754N	80 Mt, 0.32% Cu	Medium	H: Chl	1.9 × 1.3 km Chl large
Sereidun	394,370E, 3,315,134N	0.1–0.3% Cu	Small	L: Jsc	1.8 × 1.1 km oval
Kuhpanj	409,850E, 3,305,174N	0.1–0.3% Cu	Small	M: MsC, Kln	2 × 0.8 km² disseminated patches
Baghkhoshk	402,500E, 3,300,464N	24 Mt and 0.27% Cu	Small	M: Chl	Disseminated patches
Sarbagh	407,045E, 3,317,294N	0.1–0.3% Cu	Small	M: Chl, Kln	Disseminated patches
Dehsiahan	403,175 E, 3,318,404N	Porphyry 20–200 ppm	Small	M: Kln, Jsc	Disseminated patches
Iju	303,508E, 338,085N	Vein 300,000 t, 1.5%	Medium	H: MsC, Jsc, Chl	0.78 × 0.78 oval medium
Gode Kolvari	307,603E, 3,386,835N	According to eight hole, Cu is less than 0.1%	Small	M: Alu, Jsc, Chl, Kln	Disseminated patches
Serenu	306,658E, 3,374,565N	Low Cu average 0.14%, Mo 10–50 ppm	Small	M: Msc (S)	Low 0.3 × 0.6 disseminated patches
Sara (Parkam)	321,613E, 3,369,855N	Low 0.16% (0.01–2.01) Cu, 12 ppm (0.5–489)	Small	H: Alu (S), MsC (M)	1.1 × 1.1 km² oval shape
Meiduk (Lachah)	324,373E, 3,367,560N	150 Mt and 1.1% Cu	Big	M: Kln, Chl	Large 2 × 2 km, oval shape km²
Chah Mesi	323,473E, 3,365,280N	Vein 1,554,585 t, 1.27% Cu, gold up to 7 ppm 359,151 t, 0.49% Cu	Small	L: MsC	–
Bondare Baghu	401,525E, 3,316,664N	Vein type 100,000 t, 1.85% Cu	Small	–	–
Bande Bagh	404,195E, 3,308,249N	Vein lead zinc	Small	H: MsC, Jsc	–
Daralu	510,241E, 3,254,044N	25 Mt, 0.46% Cu, 65 ppm Mo 50–80 Mt, 0.4 Cu	Small	M: Kln, Alu	2.5 × 0.6 elongated oval
Sarmeshk	513,704E, 3,252,101N	Low 0.25 Cu, 26, ppm Mo	Small	M: Alu (seven pixels), Jsc, Kln, MsC	0.8 × 0.5 km² oval
Bondare Hanza	520,229E, 3,244,526N	Low 0.1–0.4% up to 0.6% Cu, 2–870 ppm Mo	Small	H: MsC (three pixels)	Disseminated patches
Hanza	520,529E, 3,249,881N	–	Small	M: Jsc	Disseminated patches
Guru	529,304E, 3,248,186N	Low 0.1% Cu, 2–134 ppm Mo	Small	M: Jsc, Kln, MsC	Disseminated patches

(Continued)
Deposit	Location (Zone 40R)	Reserve and grade*	Size	Abundance of discriminated altered minerals	Extension of discrimination areas
Godar Siah	542,534E, 3,260,231N	Low 0.1–0.5% Cu, up to 30 ppm Mo	Small	M: Msc, Kin	Disseminated patches
Surakhe Mar1	542,639E, 3,243,641N	0.32% Cu	Small	H: Jsc	0.8 × 0.7 higher temperature than surakh 2
Surakhe Mar 2	5,466,74E, 3,240,146N	0.1–0.4% Cu, 19–93 ppm Mo	Small	L: Alu, Chl, Kin, M: Jsc, Msc	Disseminated patches
Damaneh	519,644E, 3,230,756N	–	Small	L: Jsc, Msc	Disseminated patches
Sin Abad	526,619E, 3,230,786N	–	Small	M: Alu, Jsc, Kin	1.1 × 0.8 km²
Zamin Hossein	530,144E, 3,214,376N	Soil sample up to 3000 ppm Cu	Small	M: Msc, Kin, Jsc, L: Alu, Chl	Disseminated patches
Baghrai	523,739E, 3,213,776N	–	Small	–	–
Sargard	531,644E, 3,218,606N	–	Small	–	–
Babnam	533,519 E, 3,221,126N	Soil sample 200–850 ppm Cu	Small	M: Msc, Kin, Jsc, L: Chl	Disseminated patches
Janga	545,249 E, 3,219,701N	0.38–0.7% Cu	Small	M: Kin, Msc, L: Alu, Chl	Disseminated patches

*a http://www.nicico.com/DesktopModules/Articles/ArticlesView.aspx?TabID=1&Site=DouranPortal&Lang=fa-IR&ItemID=539&mid=14767.

Msc: muscovite; Kin: kaolinite; Chl: chlorite; Jrs: jarosite; Alu: alunite; H: high abundance; M: moderate abundance; L: low abundance.
least. Darrehzar revealed high abundances with large extension of the five diagnostic alteration minerals. Iju showed high abundances with medium extension of muscovite and chlorite, while Nowchon showed high abundances with large extension of chlorite. The discriminated areas around Darrehzar, which is known as medium deposits (Shafei & Shahabpour, 2008), are similar to giant and big deposits (Sarcheshmeh and Meiduk). Therefore, it requires supplementary investigation and should consider more. In fact, according to the latest study at the area, the tonnage of Darrehzar is higher than (96 Mt with 0.42%) \(^1\) what reported previously (49 Mt with 0.64%).

Small and low-grade deposits such as Sereidun, Kuhpanj, Baghkhoshk, Sarbagh, Serenu, Sarmeshk, Hanza, Guru, Surakhe Mar2, Damaneh, Zamin Hossein, Babnam and Janga are associated with moderate to low abundances of minerals (0.75–0.35). However, small deposits such as Daralu, Surakhe Mar1, Bondare Hanza and Sara show high abundance of one and two minerals with low extension of discrimination areas. The exception is for Daralu which are known as small deposits and show high abundances of three minerals including muscovite, kaolinite and jarosite with moderate extension of altered minerals. Therefore, this deposit needs extra investigation and should consider more. According to the latest work on this deposit, the tonnage of Daralu is also higher than (133 Mt with 0.4% Cu)\(^2\) what reported previously (25 Mt, 0.46% Cu). Based on discriminated areas, there is no evidence of alteration minerals around vein-type deposits such as Bondare Baghu, Bande Bagh, Sargoad and Chah Mesi. It may be due to the fact that the alteration is weak and small around these vein deposits.

Jarosite which is associated with gossan of PCDS and muscovite is important for exploration of PCDS. According to the discriminated minerals, high abundance of jarosite and clay minerals especially muscovite is associated with giant, big and medium deposits such as Sarcheshmeh, Darrehzar, Meiduk (Lachah) and Daralu. However, Surakhe Mar1 which is a small deposit indicates high abundances of jarosite with moderate to low abundances of other clay minerals. Medium abundances of jarosite are associated with Iju, Gode Kolvari, Serenu, Sara (Parkam), Sarmeshk, Bondare Hanza, Hanza, Guru, Surakhe Mar2, Sin Abad, Zamin Hossein and Babnam. Low abundance of jarosite is observed at Nowchon, Sereidun, Kuhpanj, Sarbagh, Dehsiahan, Godar Siah and Damaneh. In general, it can be extracted from the discriminated areas that have high abundance of jarosite associated with high abundance of clay minerals in important deposits like Sarcheshmeh, Darrehzar, Meiduk and Daralu. Many exploration works revealed the economic importance of these deposits. The exception is for Nowchon which is considered as medium deposit but contains low abundance of jarosite. This may be due to the absence of supergene zone and the existence of only a few meters thick of weathered zone at Nowchon. In addition, copper mineralization is associated with potassic alteration in Hypogene zone, and the copper concentration is accomplished by the higher molybdenum as well (Dimitrijevic, 1973).

Accuracy assessment

In order to verify the accuracy of the discriminated areas, a field reconnaissance was carried out at the altered areas and 200 samples were collected. These samples were taken from different altered areas through a stratified random sampling of fresh and surface-weathered sides of representative hydrothermally altered rocks. The samples were used for laboratory analyses such as XRD, microscopic and spectroscopic studies, and the veracities of identified minerals via ASTER were checked by comparing with the results obtained by these analyses (Figure 4 and Table 3). In addition, the predicted and actual class labels for a set of specific sites were compared statistically. In order to reach this purpose, while the result of ASTER data was similar to filed data, the value of 1 was adopted and if the results were different, the value of 0 was taken. The value 1 and 0 mean the areas were mapped correctly and incorrectly, respectively, which suggest that the result of ASTER data was similar or dissimilar to filed data value. In order to determine the numbers which the result of ASTER data was similar to filed data, the frequency was applied. The percentage of correctly classified areas for muscovite, kaolinite, jarosite–muscovite, alunite and chlorite are 70%, 73%, 88%, 86% and 74%, respectively. For example, the 70% of muscovite indicates the percentage of times that identified as muscovite in both ASTER and filed data for a

\(^{1}\)http://nicico.com/DesktopModules/Articles/ArticlesView.aspx?TabID=1&Site=douranPortal&Lang=fa-IR&ItemID=542&mid=14767.

\(^{2}\)http://www.nicico.com/DesktopModules/Articles/ArticlesView.aspx?TabID=1&Site=douranportal&Lang=falR&ItemID =563&mid =14767.

Table 2. Correlation coefficient between size and grade of each deposit with the abundances of discriminated minerals.

Kaolinite	Muscovite	Jarosite	Alunite–pyrophyllite	Chlorite	
Grade	0.533	0.604	0.604	0.575	0.582
Size	0.622	0.537	0.537	0.537	0.636
set of specific sites. These percentages showed that alteration minerals were identified with a relative accepted level of accuracy.

Summary and conclusions

In this paper, it is shown that how discriminated minerals through remote sensing data can be used to determine the potential of mineralization. It further demonstrates that remote sensing imagery and sub-pixel processing play an important role in mineral potential analysis, specially, on the spatial distribution of hydrothermal alteration zones. Investigation of 30 known deposits showed that mineral abundances which derived through sub-pixel analyses of ASTER data are a reasonable surface indicator to discriminate hydrothermal alteration zones of high-potential mineralization. The investigation revealed that high abundances of sericite, kaolinite, jarosite and chlorite were discriminated at giant, big and medium ore deposits such as Sarcheshmeh, Darrehzar, Meiduk and Nowchon, while small and low-grade deposits such as Sereidun, Kuhpanj, Bagkhoshk and Sarbagh are associated with moderate to low abundances. Low abundances of altered minerals are discriminated at deposits with no economic importance for porphyry copper such as Dehsiahan and Damaneh. The alteration minerals were not discriminated around small vein deposits such as Bondare Baghu, Bande Bagh, Sargoad and Chahmesi. In general, comparison of sub-pixel abundances with known mineral occurrences showed a reasonable correspondence such that areas with high abundances of alterations corresponded well with important mineralized districts. It is concluded that suggested sub-pixel analysis of ASTER data leads to identifying alteration zones with high-potential mineralization in PCDs. This should lead to further refinements in the use of remote sensing data for evaluating potential mineralization. Since sub-pixel analysis of ASTER data leads to identifying alteration zones with high-potential mineralization, it seems that applying appropriate thresholds on the results of other spectral processing techniques such as SAM, and etc. may be also useful in determination of high-potential mineralization.

Acknowledgment

Authors would like to acknowledge the Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran, for their financial support during this study under contract number 94.5286.

Disclosure statement

No potential conflict of interest was reported by the authors.
Funding

This study was supported by the Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran [94,5286].

References

Abrams, M. (2000). The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER): Data products for the high spatial resolution imager on NASA’s Terra platform. International Journal of Remote Sensing, 21(5), 847–859. doi:10.1080/014311600210326

Amer, R., Kusky, T., & El Mezayen, A. (2012). Remote sensing detection of gold related alteration zones in Um Rus area, Central Eastern Desert of Egypt. Advances in Space Research, 49(1), 121–134. doi:10.1016/j.asr.2011.09.024

Asadzadeh, S., & De Souza Filho, C.R. (2016). A review on spectral processing methods for geological remote sensing. International Journal of Applied Earth Observation and Geoinformation, 47, 69–90. doi:10.1016/j.ijag.2015.12.004

Berger, B.R., Ayuso, R.A., Wynn, J.C., & Seal, R.R. (2008). Preliminary model of porphyry copper deposits: United States Geological Survey Open-File Report 2008–1321, 55 P.

Bishop, C.A., Liu, J.G., & Mason, P.J. (2011). Hyperspectral remote sensing for mineral exploration in Pululah, Yunnan Province, China. International Journal of Remote Sensing, 32(9), 2409–2426. doi:10.1080/014311603698336

Boardman, J.W., Kruse, F.A., & Green, R.O. (1995). Mapping target signatures via partial unmixing of AVIRIS data. In Fifth JPL Airborne Earth Science Workshop, Vol. 95, 23–26.

Carrino, T.A., Cróstia, A.P., Toledo, C.L.B., & Silva, A.M. (2015). Unveiling the hydrothermal mineralogy of the Chapi Chiara gold prospect, Peru, through reflectance spectroscopy, geochemical and petrographic data. Ore Geology Reviews, 64, 299–315. doi:10.1016/j.oregeorev.2014.07.012

Chen, J.Y., & Reed, I.S. (1987). A detection algorithm for optical targets in clutter. I. EEE Transactions on Aerospace and Electronic Systems, 23(1), 46–59. doi:10.1109/TAES.1987.31335

Clark, R.N., Swayze, G.A., Wise, R., Livo, E., Hoeven, T.K. R., & Sutley, S.J. (2007). USGS digital spectral library splib06a: U.S. Geological Survey, Digital Data Series 231. Retrieved from http://speclab.cr.usgs.gov/spectral.lib06/ds231/index.html

Corumluoglu, O., Vural, A., & Asri, I. (2015). Determination of Kula basalts (geosite) in Turkey using remote sensing techniques. Arabian Journal of Geosciences, 8, 10105–10117. doi:10.1007/s12517-015-1914-4

Crostia, A.P., & Filho, C.R. (2003). Targeting key alteration minerals in epithermal deposits in Patagonia, Argentina, using ASTER imagery and principal component analysis. International Journal of Remote Sensing, 24(21), 4233–4240. doi:10.1080/0143116031000152291

Dalm, M., Buxton, M.W.N., Van Ruitenbeek, F.J.A.V., & Voncken J.H.L. (2014). Application of near-infrared spectroscopy to sensor based sorting of a porphyry copper ore. Minerals Engineering, 58, 7–16. doi:10.1016/j.mineng.2013.12.016

Debba, P., Van Ruitenbeek, F.J.A., Van Der Meer, F.D., Carranza, E.J.M., & Stein, A. (2005). Optimal field sampling for targeting minerals using hyperspectral data. Remote Sensing of Environment, 99(4), 373–386. doi:10.1016/j.rse.2005.05.005

Dimitrijevic, M. (1973). Geology of Kerman region, Institute for Geological and Mining Exploration and Investigation Beograd Yugoslavia. Geological Survey of Iran, Tehran, Iran. Rep. No. 52.

Gabr, S., Ghulam, A., & Kusky, T. (2010). Detecting areas of high-potential gold mineralization using ASTER data. Ore Geology Reviews, 38(1–2), 59–69. doi:10.1016/j.oregeorev.2010.05.007

Geological survey of Iran (Cartographer). (1972b). Geological map of Sarduiyeh 1:100000 SHEET 7447. Geological Survey of Iran, Tehran, Iran.

Geological survey of Iran (Cartographer). (1971a). Geological map of Robat, 1:100000 SHEET 6950. Geological Survey of Iran, Tehran, Iran.

Geological Survey of Iran (Cartographer). (1971b). Geological map of Shahre Babak, 1:10000 SHEET 7050. Geological Survey of Iran, Tehran, Iran.

Geological Survey of Iran (Cartographer). (1972a). Geological map of Anar, 1:100000 SHEET 7051. Geological Survey of Iran, Tehran, Iran.

Geological Survey of Iran (Cartographer). (1973a). Geological map of Dehaj, 1:10000 SHEET 6951. Geological Survey of Iran, Tehran, Iran.

Geological Survey of Iran (Cartographer). (1973b). Geological map of Pariuz, 1:100000 SHEET 7149. Geological Survey of Iran, Tehran, Iran.

Geological Survey of Iran (Cartographer). (1995). Geological map of Chahargonbad, 1:100000 SHEET 7249. Geological Survey of Iran, Tehran, Iran.

Givens, R.N., Walli, K.C., & Eismann, M.T. (2013). A method to generate sub-pixel classification maps for use in DIRSIG three-dimensional models. Proc. SPIE 8743, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XIX, 87430Q. doi:10.1117/12.2015397

Hosseini-Zadeh, M., Tangestani, M., Roldan, F.V., & Yusta, I. (2014b). Sub-pixel mineral mapping of a porphyry copper belt using EO-1 Hyperion data. Advances in Space Research, 53(3), 440–451. doi:10.1016/j.asr.2013.11.029

Hosseini-Zadeh, M., Tangestani, M., Velasco Roldan, F., & Yusta, I. (2014a). Spectral characteristics of minerals in alteration zones associated with porphyry copper deposits in the middle part of Kerman copper belt, SE Iran. Ore Geology Reviews, 62, 191–198. doi:10.1016/j.oregeorev.2014.03.013

Hosseini-Zadeh, M., & Tangestani, M.H. (2011). Mapping alteration minerals using sub-pixel unmixing of ASTER data in the Sarduiyeh area, SE Kerman, Iran. International Journal of Digital Earth, 4(6), 487–504. doi:10.1080/17538947.2010.530937

Hosseini-Zadeh, M., & Tangestani, M.H. (2013). Comparison of ASTER thermal data sets in lithological mapping at a volcano-sedimentary basin: A case study from southeastern Iran. International Journal of Remote Sensing, 34(23), 8393–8407. doi:10.1080/01431161.2013.838709

Hosseini-Zadeh, M., Tangestani, M.H., Velasco Roldan, F., & Yusta, I. (2014c). Mineral exploration and alteration zone mapping using mixture tuned matched
filtering approach on ASTER data at the central part of Dehaj-Sarduiyeh Copper Belt, SE Iran. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(1), 284–289. doi:10.1109/jstares.2013.2261800

Hubbard, B.E., & Crowley, J.K. (2005). Mineral mapping on the Chilean–Bolivian Altiplano using co-orbital ALI, ASTER and Hyperion imagery: Data dimensionality issues and solutions. Remote Sensing of Environment, 99, 173–186. doi:10.1016/j.rse.2005.04.027

Kruse, F.A., Boardman, J.W., & Huntington, J.F. (2003). Comparison of airborne hyperspectral data and EO-1 Hyperion for mineral mapping. IEEE Transactions on Geoscience and Remote Sensing 41(6), 1388 - 1400.

Lowell, J.D., & Guilbert, J.M. (1970). Lateral and vertical alteration-mineralization zoning in porphyry ore deposits. Economic Geology, 65, 373–408. doi:10.2113/gsecongeo.65.4.373

Mars, J.C., & Rowan, L.C. (2010). Spectral assessment of new ASTER SWIR surface reflectance data products for spectroscopic mapping of rocks and minerals. Remote Sensing of Environment, 114(9), 2011–2025. doi:10.1016/j.rse.2010.04.008

Mondino, E.B., Lessio, A., & Gomarasca, M.A. (2016). A fast operative method for NDVI uncertainty estimation and its role in vegetation analysis. European Journal of Remote Sensing, 49, 137–156. doi:10.5721/EuJRS20164908

Ranjbar, H., Masoumi, F., & Carranza, E.J.M. (2011). Evaluation of geophysics and spaceborne multispectral data for alteration mapping in the Sar Cheshmeh mining area, Iran. International Journal of Remote Sensing, 32 (12), 3309–3327. doi:10.1080/01431161003745665

Research, & Systems, Inc. (2003). ENVI Tutorial, ENVI Software Package Version 4.0. Research Systems, Inc., United States.

Sabins, F.F. (1999). Remote sensing for mineral exploration. Ore Geology Reviews, 14, 157–183. doi:10.1016/S0169-1368(99)00007-4

Shafiei, R., & Shahabpour, J. (2008). Gold distribution in porphyry copper deposits of Kerman region, Southeastern Iran. Journal of Science Islamic Republic of Iran, 19(3), 247–260.

Shahriari, H., Honarmand, M., & Ranjbar, H. (2015). Comparison of multi-temporal ASTER images for hydrothermal alteration mapping using a fractal-aided SAM method. International Journal of Remote Sensing, 36(5), 1271–1289. doi:10.1080/01431161.2015.1011352

Van Der Meer, F.D., Van Der Werff, H.M.A., Van Ruitenbeek, F.J.A., Heckert, C.A., Bakker, W.H., Noomen, M.F., Van der Meijde, M., Carranza, E.J.M., de Smeth, J. B., & Woldai, T. (2012). Multi- and hyperspectral geologic remote sensing: A review. International Journal of Applied Earth Observation and Geoinformation, 14(1), 112–128. doi:10.1016/j.jag.2011.08.002

Zhang, X., & Li, P. (2014). Lithological mapping from hyperspectral data by improved use of spectral angle mapper. International Journal of Applied Earth Observation and Geoinformation, 31, 95–109. doi:10.1016/j.jag.2014.03.007

Zhang, X., Pazner, M., & Duke, N. (2007). Lithologic and mineral information extraction for gold exploration using ASTER data in the south Chocolate Mountains (California). ISPRS Journal of Photogrammetry & Remote Sensing, 62, 271–282. doi:10.1016/j.isprsjprs.2007.04.004