Genetic Analysis of Oligo-Metastatic Breast Cancer: Correlation with Clinicopathological Features

Kuikui Jiang
Sun Yat-Sen University Cancer Prevention and Treatment Center: Sun Yat-sen University Cancer Center

Danyang Zhou
Sun Yat-Sen University Cancer Prevention and Treatment Center: Sun Yat-sen University Cancer Center

Fei Xu
Sun Yat-Sen University Cancer Prevention and Treatment Center: Sun Yat-sen University Cancer Center

Wen Xia
Sun Yat-Sen University Cancer Prevention and Treatment Center: Sun Yat-sen University Cancer Center

Qiufan Zheng
Sun Yat-Sen University Cancer Prevention and Treatment Center: Sun Yat-sen University Cancer Center

Qianyi Lu
Sun Yat-Sen University Cancer Prevention and Treatment Center: Sun Yat-sen University Cancer Center

Liye Wang
Sun Yat-Sen University Cancer Prevention and Treatment Center: Sun Yat-sen University Cancer Center

Kaping Lee
Sun Yat-Sen University Cancer Prevention and Treatment Center: Sun Yat-sen University Cancer Center

Hanjia Luo
Sun Yat-Sen University Cancer Prevention and Treatment Center: Sun Yat-sen University Cancer Center

Ping Zhang
Sun Yat-Sen University Cancer Prevention and Treatment Center: Sun Yat-sen University Cancer Center

Rongzhen Luo
Sun Yat-Sen University Cancer Prevention and Treatment Center: Sun Yat-sen University Cancer Center

Ruoxi Hong
Sun Yat-Sen University Cancer Prevention and Treatment Center: Sun Yat-sen University Cancer Center

Shusen Wang (wangshs@sysucc.org.cn)
Sun Yat-sen University Cancer Center

DOI: https://doi.org/10.21203/rs.3.rs-296859/v1

Keywords: oligo-metastatic disease, oligo-progression disease, breast cancer, genetic analysis

Research Article
Abstract

Purpose: We aimed to identify the relationship between the genomic characteristics and clinicopathological features of oligo-metastatic breast cancer.

Methods: Oligo-metastatic breast cancer diagnosed by pathology from January 2001 and August 2019 were identified and we matched the poly-metastatic patients based on the clinicopathological features of the oligo-metastatic patients included. The database of all genomic alterations was shown according to the FoundationOne CDx reports. Clinicopathological characteristics were collected and the results of next-generation sequencing were analyzed.

Results: A total of 26 breast cancer patients were enrolled in our study, including 14 patients with oligo-metastatic disease and 12 patients with poly-metastatic disease. There was no significant difference in number of gene alteration, tumor mutational burden, variants of unknown significance (VUS), and actional mutation in oligo- and poly-metastasis. PIK3CA, TP53 and ERBB2 were the most common shared alterations identified in patients included. Based on the median time of oligo-progression disease (oligo-PD), we divided the patients with oligo-metastasis into longer oligo-PD group (oligo-PD > 31.04 months) and shorter oligo-PD group (oligo-PD ≤ 31.04 months). The analysis of PIK3CA mutation sites showed that H1047R was associated with a good prognosis in patients with metastatic breast cancer. HER2 positive patients with oligo-metastasis was more likely to have a good prognosis. In addition, VUS might also be a potential prognostic biomarker in metastatic breast cancer.

Conclusion: Through the genetic analysis of oligo-metastasis, we found PIK3CA H1047R, HER2 and VUS might predict the different clinical outcomes of breast cancer patients with oligo-metastasis for the individualized treatment.

Introduction

Breast cancer is the most common malignancy in women. The incidence rate and mortality rate account for 24.2% and 15% respectively, both ranking the first in female cancers in 2018 worldwide [1]. According to the evaluation of immunohistochemistry (IHC) of hormone receptor (HR) and Ki-67, as well as the evaluation of IHC and fluorescence in situ hybridization (FISH) of human epidermal growth factor receptor 2 (HER2), breast cancer can be divided into different subtypes with different treatment strategies and survival in clinical practice. Despite improvement in early detection and treatments, approximately 30% of breast cancer patients will finally develop metastatic disease [2] and metastatic breast cancer (MBC) remains the dismal prognosis with a median overall survival (OS) of 3 years and a 5-year survival of only 25% [3, 4].

Oligo-metastatic breast cancer is a special condition of MBC. The concept of oligo-metastatic disease was first proposed by Hellman and Weichselbaum in 1995 and it is described as an intermediate state in the spectrum of metastatic disease [5]. This “intermediate stage” is estimated to be 1–10% of newly diagnosed MBC [6, 7]. In the 4th ESO-ESMO International Consensus Guidelines for Advanced Breast
Cancer (ABC4), oligo-metastatic disease is defined as low volume metastatic disease with limited number and size of metastatic lesions (up to five and not necessarily in the same organ) [8]. Notably, oligo-metastatic disease is potentially amenable for local treatment, aimed at achieving a complete remission status and a potential long-term survival [9-11]. With the further understanding of oligo-metastatic disease, the idea of oligo-progression disease (oligo-PD) has been proposed [12]. Although there is no consensus on the definition of oligo-PD, oligo-progression disease is mainly referred to a situation in which disease progression has occurred in limited anatomical sites that should be potentially amenable for local treatment, with continued response or stable disease at other sites of disease [13-16].

Breast cancer is a heterogeneous disease [17, 18]. Although the overall prognosis of patients with oligo-metastasis is better than that of patients with poly-metastasis, there are still some patients with poor prognosis. Aberrant mutations are commonly identified in patients with breast cancer, especially MBC. Screening for genomic mutations and alterations may identify patients with different disease progression and prognosis. High-throughput sequencing, commonly known as next-generation sequencing (NGS) is now readily available for clinical use [19, 20] due to the improvement of reliability and affordability of NGS after the success of The Cancer Genome Atlas (TCGA) Project. For breast cancer patients with oligo-metastatic disease, it is necessary to describe the genomic characteristics in order to identify patients in different level of risk and individualize clinical prognosis and treatment decisions. Based on the above, we performed the genetic analysis of oligo-metastatic and poly-metastatic patients, aiming to identify the relationship between the genomic characteristics and clinicopathological features of oligo-metastatic breast cancer and provide suggestions to the management of oligo-metastatic breast cancer.

Methods

Patients population

Patients with breast cancer at our institution between January 2001 and August 2019 were retrospectively reviewed after Institutional Review Board approval. Only patients meeting all of the following criteria were included: (1) breast cancer patients with histologically confirmed diagnosis, (2) patients with oligo-metastatic disease, (3) patients with sufficient pathological tissue to perform NGS (FoundationOne CDx). Patients with any malignancies besides breast cancer were excluded. Then, we matched the patients with poly-metastases in the same period according to the clinicopathological features of the patients with oligo-metastases included. For each patient, clinicopathological data (age, gender, pathology, TNM stage, metastatic sites and treatment strategies) were collected and the results of NGS (genomic findings, microsatellite status (MS), tumor mutational burden (TMB) and variants of unknown significance (VUS)) were analyzed. Oligo-progression disease was defined as a situation in which disease progression occurred in less than 5 anatomical sites and other anatomic areas still suppressed by the ongoing therapy, or last follow-up (censored). All patients included were followed-up until death or study data cutoff (March 2020).

Tumor tissue analysis
Pathological specimens were reviewed by the experienced pathologist. Specimens were stained for estrogen receptor (ER) and progesterone receptor (PR) by IHC and HER2 by IHC and FISH according to current guideline (available at www.nccn.org/). Specimens then underwent FoundationOne CDx. In brief, DNA was extracted from formalin-fixed, paraffin-embedded (FFPE) tumor samples, 50-1000 ng of which underwent whole-genome shotgun library construction, and detection of alterations in a total of 324 genes was included. Assay specifications were determined for typical median exon coverage of approximately 500X. Sequence data were analyzed through a computational analysis pipeline to accurately detect all classes of genomic alterations, including substitutions, indels/deletions, copy number amplifications and selected genomic rearrangements.

Statistical analysis

Clinicopathological variables and characteristics of NGS of patients were summarized using descriptive statistics, the latter was from a database of all genomic alterations based on the FoundationOne CDx reports. Differences between categorical variables were determined using the Chi-square test. Survival analyses were calculated by the Kaplan–Meier method. Statistical analysis was performed using SPSS version 21.0. All *P* values were two-sided, and *P* values < 0.05 were considered significant for all statistical analyses.

Results

Characteristics of patients

A total of 26 MBC patients were included in our study between January 2001 and August 2019. Among them, 14 breast cancer patients were oligo-metastatic and 12 patients were poly-metastatic. Clinicopathologic and genomic characteristics of patients were presented in Table 1. All patients included were female and there was no significant bias in clinical factors such as age, subtype and TNM stage between oligo- and poly-metastasis groups. No significant difference was showed in number of gene alteration, TMB and VUS, actional mutation in two groups. The MS of all patients was stable. Further analysis was performed in patients with oligo-metastatic disease and showed that the median time of oligo-PD of patients included was 31.04 months (range: 7.1-84.2 months, Table 2).

Genomic analyses of patients

The overall genomic distribution of patients was showed in Figure 1. The sum of gene alteration in oligo-metastasis and poly-metastasis was 64 and 69 respectively, and the median values of gene alteration was 4.5 and 5 respectively. The most common shared alterations identified were PIK3CA, TP53 and ERBB2 observed in Figure 2: PIK3CA mutations (n = 22, oligo-metastasis vs poly-metastasis = 14 vs 8), TP53 mutations (n = 21, oligo-metastasis vs poly-metastasis = 11 vs 10) and ERBB2 mutation or amplification (n = 8, oligo-metastasis vs poly-metastasis = 5 vs 3). According to the class of genomic alterations, gene alteration between oligo- and poly-metastasis was analyzed in Figure 3. The number of substitution, insertion/deletion, copy number alteration and gene fusion/rearrangement were 30 vs 29, 10
vs 8, 23 vs 32 and 1 vs 0 in oligo- and poly-metastasis, respectively. The number of gene alteration classified by cell signaling pathways such as RAS/MAPK, RTK/GFs, cell cycling, PI3K/mTOR, and p53 was shown in Figure 4.

PIK3CA and prognosis

Due to the commonness of PIK3CA gene alterations and mutations involving PIK3CA mainly concentrated in H1047R and E545K, further analysis of PIK3CA was carried out. Clinicopathologic and genomic characteristics of patients were presented in Figure 5. The analysis of H1047R and E545K suggested that PIK3CA H1047R was the main mutation in oligo-metastasis, accounting for 50% (7/14) in PIK3CA mutation, compared to poly-metastasis (37.5%, 3/8). The number of PIK3CA E545K in oligo-metastasis and poly-metastasis was not significantly different, 21.4% (3/14) and 25.0% (2/8), respectively (Figure 6). Based on the median value of oligo-PD, we divided the patients with oligo-metastasis into longer oligo-PD group (oligo-PD > 31.04 months) and shorter oligo-PD group (oligo-PD ≤ 31.04 months). The sum of gene alteration in longer oligo-PD group and shorter oligo-PD group was 33 and 31, respectively. Similarly, PIK3CA gene alteration is also more common in patients with longer oligo-PD (9/33) than that in patients with shorter oligo-PD (5/31). PIK3CA H1047R is more common in patients with longer oligo-PD (5/9) than that in patients with shorter oligo-PD (2/5). The number of PIK3CA E545K in shorter oligo-PD (2/5) was more than that in longer oligo-PD (1/9, Figure 7).

ERBB2/HER2 and prognosis of oligo-metastasis

ERBB2 alterations were found in 3 patients in longer oligo-PD group and 2 in shorter oligo-PD group. There were 4 HER2 positive patients and 2 patients in longer and shorter oligo-PD group, respectively. One patient with HER2 positive breast cancer in longer oligo-PD group was performed FoundationOne CDx using the specimen taken from metastasis site, and no ERBB2 mutation was found. HER2 positive seemed to be more common in longer oligo-PD group. HER2 status determined by NGS showed 97% accuracy relative to the HER2 status measured by FISH [21]. Based on this, we expanded the size of sample to explore the relationship between HER2 and the prognosis of patients with oligo-metastasis. The expanded data came from our previous study on liver oligo-metastasis in breast cancer [22] and we extracted HER2 positive (25 cases) and HER2 negative case (40 cases) based on the primary site by using IHC and FISH for subsequent analysis. Among patients with HER2 positive breast cancer, 80% of patients treated with anti-HER2 therapy. Kaplan-Meier analysis suggested that HER2 positive patients had a longer oligo-PD, compared to the HER2 negative disease (P=0.022, Figure 8).

Variants of unknown significance and prognosis

As the clinical significance of VUS needs to be further explored, we analyzed the distribution of VUS in patients included. The sum of VUS in longer oligo-PD group, shorter oligo-PD group and poly-metastasis was 69, 76 and 121 respectively. All of the 7 VUSs related to ARID1A were detected in poly-metastasis. Similarly, 3 VUSs involving WT1 were all found in poly-metastasis, not oligo-metastasis. VUSs on MTOR and IGF1R were only correlated with patients with longer oligo-PD. VUSs located in GNAS, PIK3C2G and
PRDM1 were detected in patients with shorter oligo-PD and poly-metastasis, and that was more common in poly-metastasis than oligo-metastasis.

Discussion

While there have been extensive studies into the molecular characteristics of MBC, little is known regarding genomic alterations of oligo-metastatic disease and their relation to clinical outcomes. At present, the investigations on oligo-metastasis genes are mainly focused on liver oligo-metastatic colorectal cancer (CRC). There is a trend towards a higher risk of local failure for lesions with TP53 mutation and KRAS mutation for CRC patients who received metastasis-directed stereotactic body radiation therapy [23]. In addition, for CRC patients treated with liver ablation, a well-established local therapy modality routinely utilized in the oligo-metastatic disease setting, RAS mutation is also a prognosticator of shorter local tumor progression free survival [24]. Unfortunately, there is a lack of clear and uniform gene marker for oligo-metastatic disease of other tumors, including breast cancer, based on the present evidence. Indeed, there was no significant difference in number of gene alteration, TMB, VUS and actional mutation in patients with oligo- and poly-metastasis in our study.

According to TCGA, PIK3CA (coding mutations in 40.1% of the samples) dominated the mutation landscape of breast cancer [20]. PIK3CA gene, which is located on chromosome 3 (3q26.32), encode the α isoform of catalytic subunit phosphatidylinositol-4, 5-bisphosphate 3-kinase (PI3K). Preclinical data have demonstrated that mutations in helical and kinase domains lead to increased PI3K activity and the activity of PI3K has downstream effects on the AKT and mTOR pathways that control cell cycle and metabolism in cancer progression [25]. Despite the pre-clinical evidence that PIK3CA is an oncogene, results on the relation between the PIK3CA mutation and outcomes are inconsistent in clinical studies, demonstrating worse outcomes in breast cancer patients with PIK3CA mutations, no differences in outcomes by mutation status and better outcomes for HR positive breast cancer with PIK3CA mutations recently [26-28]. In our study, PIK3CA mutation was more in oligo-metastasis than in poly-metastasis and was also more in oligo-metastasis with longer oligo-PD than in shorter oligo-PD, suggesting PIK3CA mutation may be related to good prognosis in oligo-metastatic disease. There is one possible reason that alterations in different exons of PIK3CA have varying impacts on tumor development and progression and differ in prognostic value [29-31]. Within PIK3CA, H1047R (the kinase domain) and E545K (the helical domain) are most common hotspot mutations. Compared with E545K, which relies on Ras-GTP rather than p85, H1047R is highly dependent on p85 for its oncogenic capacity but independent of Ras-GTP [32]. Arman et al. found that E545K markedly promoted proliferation, survival, cytoskeletal reorganization, migration, and spheroid formation, whereas H1047R only enhanced the first three [33]. PIK3CA E545K mutations, but not PIK3CA H1047R mutations, preferentially activate AKT1 signal [34]. In addition, previous clinical analysis also suggests that PIK3CA E545K is independently associated with early recurrence and death, whereas PIK3CA H1047R is associated with optimal prognosis in infiltrating lobular carcinomas [35]. PIK3CA H1047R mutants are strongly associated with lymph-node negativity [30], which contributes to good prognosis in some degree. That corresponds to our results. In our research, the distribution of PIK3CA H1047R mutation suggested this mutation might be related to good prognosis in
oligo-metastatic disease, whether in oligo-metastasis and poly-metastasis groups, or in oligo-metastasis with longer oligo-PD and oligo-metastasis with shorter oligo-PD. Notably, although chemotherapy before sample collection may have an impact on PIK3CA mutations, the PIK3CA mutations detected were more evenly distributed in primary lesions vs metastatic lesions and pre-treatment vs post-treatment, suggested that treatments have little effect on analysis of PIK3CA mutation in our study.

Although HER2 positive breast cancer is associated with aggressive progression, it is now increasingly apparent that HER2 positive breast cancer is clinically and biologically heterogeneous [36-39]. Great variability of patient’s response and survival outcomes following anti-HER2 therapy [40, 41] and high biological variability [42] are common. Clinical HER2 positive breast cancer is divided into different intrinsic subtype based on molecular data derived from DNA, RNA and protein. Although clinical HER2 positivity measured by IHC and FISH is mainly determined as the HER2-enriched subtype, all of the intrinsic subtypes can be identified within clinical HER2 positive breast cancer [20, 37, 38]. In addition, intratumoral heterogeneity of HER2 gene amplification can contribute to inaccurate assessment of HER2 status and increase the inconsistency of clinical response [43, 44]. On the other hand, the prognostic landscape for HER2 positive BC patients has considerably improved due to the advent of anti-HER2 therapies. HER2 antibodies and their derivatives such as trastuzumab [45, 46], pertuzumab [47] and trastuzumab-emtansine (T-DM1) [48], as well as the tyrosine kinase inhibitors (TKIs) such as lapatinib [49, 50] and pyrotinib [51], have become the standard treatments for metastatic HER2 positive breast cancer. In this study, most patients received anti-HER2 therapy and a few patients used more than one anti-HER2 drugs, which prolonged the progression of disease to some extent.

That may partly explain why HER2 positive patients with oligo-metastasis was more likely to have a good prognosis. Previous reports showed that 27% of patients with HER2 positive, locally advanced or metastatic breast cancer who commenced first line trastuzumab-containing therapy may be long-term responders (beyond 2 years) [52], and nearly half of the patients remained in remission for more than 5 years in patients who had non-progressive disease for at least 2 years on trastuzumab [52, 53].

Significant numbers of variants labeled only as VUSs are detected in cancer patients [54, 55]. There is not enough information to classify the VUSs as definitively pathogenic or benign due to the rarity of the finding and the insufficient epidemiological evidence at the time of the test [56]. This ambiguity lead to the significant diversity in management for patients with VUSs [57]. In order to explore the clinical values, we tried to analyze the relationship between VUS and prognosis of patients with oligo-metastasis, and found that there was a trend between VUSs related to some genes and specific prognosis of oligo-metastatic disease. Although it would be inappropriate to accept these recurrent variants as pathogenic or benign, they may warrant higher priority than other observed VUS’s.

Our study is limited by small size of sample and retrospective approach. In addition, some samples measured by the FoundationOne CDx were taken from primary sites when the disease did not develop metastasis. Notably, we matched the breast cancer patients with oligo-metastasis and poly-metastasis and compared the differences in the genomic characteristics in the present study. Further, we also
analyzed the genomic characteristics of oligo-metastatic patients with different prognosis. On the other hand, the oligo-progression disease of the oligo-metastasis patients we included is relatively long, suggesting the patients included is a relatively strict oligo-metastatic status rather than a pre stage of poly-metastasis.

Conclusion

Increasing attention has been paid to oligo-metastatic breast cancer due to the potential curability and the unclear mechanism. The development of high-throughput sequencing technology also enables us to perform genetic analysis on oligo-metastatic disease quickly and accurately. Through the genetic analysis of samples from oligo-metastasis, we found the prognostic values of PIK3CA H1047R, HER2 and VUS in oligo-metastasis, as well as common shared alterations in oligo- and poly-metastasis. In order to further verify and clarify the biological basis, more mechanism studies and large-scale translational researches are needed.

Declarations

Funding

National Natural Science Foundation of China U1601224.

National Natural Science Foundation of China 81272896.

National Natural Science Foundation of China 81602313.

Conflicts of interest

The authors declare no potential conflicts of interest.

Availability of data and material

The data presented in this study are available on request from the corresponding author.

Code availability

Not applicable.

Authors’ contributions

Kuikui Jiang: Conceptualization, formal analysis, data curation, data interpretation, manuscript drafting, and manuscript editing.

Danyang Zhou: Conceptualization, formal analysis, data curation, data interpretation, manuscript drafting, and manuscript editing.
Fei Xu: Formal analysis, data curation, data interpretation, and manuscript editing.

Wen Xia: Formal analysis, data curation, data interpretation, and manuscript editing.

Qiufan Zheng: Formal analysis, data curation, data interpretation, and manuscript editing.

Qianyi Lu: Formal analysis, data curation, data interpretation, and manuscript editing.

Liye Wang: Data curation, data interpretation, and manuscript editing.

Kaping Lee: Data curation, data interpretation, and manuscript editing.

Hanjia Luo: Data curation, data interpretation, and manuscript editing.

Ping Zhang: Data curation, data interpretation, and manuscript editing.

Rongzhen Luo: Conceptualization, formal analysis, data curation, data interpretation, and manuscript editing.

Ruoxi Hong: Conceptualization, formal analysis, data curation, data interpretation, and manuscript editing.

Shusen Wang: Conceptualization, formal analysis, data curation, data interpretation, and manuscript editing.

Ethics approval

The study was approved by the Ethics Committee of Sun Yat-sen University Cancer Center (protocol code B2020-145-01 and date of approval June 22 2020).

Consent to participate

Informed consent was obtained from all subjects involved in the study.

Consent for publication

Not applicable.

References

1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Cancer J Clin 68:394–424. https://doi.org/10.3322/caac.21492

2. Huober J, Thürlimann B (2009) The Role of Combination Chemotherapy in the Treatment of Patients with Metastatic Breast Cancer. Breast Care (Basel) 4:367–372. https://doi.org/10.1159/000262808
3. Cardoso F, Spence D, Mertz S, Corneliussen-James D, Sabelko K, Gralow J et al (2018) Global analysis of advanced/metastatic breast cancer: Decade report (2005–2015). Breast 39:131–138. https://doi.org/10.1016/j.breast.2018.03.002

4. Howlader N, Noone AM, Krapcho M et al (eds). SEER Cancer Statistics Review, 1975–2013. Bethesda, MD: National Cancer Institute. http://seer.cancer.gov/csr/1975_2013/, based on November 2015 SEER data submission, posted to the SEER web site, April 2016

5. Hellman S, Weichselbaum RR (1995) Oligometastases. Journal of clinical oncology:. official journal of the American Society of Clinical Oncology 13:8–10. https://doi.org/10.1200/jco.1995.13.1.8

6. Pagani O, Senkus E, Wood W, Colleoni M, Cufer T, Kyriakides S et al (2010) International guidelines for management of metastatic breast cancer: can metastatic breast cancer be cured? J Natl Cancer Inst 102:456–463. https://doi.org/10.1093/jnci/djq029

7. Hanrahan EO, Broglio KR, Buzdar AU, Theriault RL, Valero V, Cristofanilli M et al (2005) Combined-modality treatment for isolated recurrences of breast carcinoma: update on 30 years of experience at the University of Texas M.D. Anderson Cancer Center and assessment of prognostic factors. Cancer 104:1158–1171. https://doi.org/10.1002/cncr.21305

8. Cardoso F, Senkus E, Costa A, Papadopoulos E, Aapro M, André F et al (2018) 4th ESO-ESMO International Consensus Guidelines for Advanced Breast Cancer (ABC 4). Annals of oncology: official journal of the European Society for Medical Oncology 29:1634–1657. https://doi.org/10.1093/annonc/mdy192

9. Hortobagyi GN, Smith TL, Legha SS, Swenerton KD, Gehan EA, Yap HY et al (1983) Multivariate analysis of prognostic factors in metastatic breast cancer. Journal of clinical oncology: official journal of the American Society of Clinical Oncology 1:776–786. https://doi.org/10.1200/jco.1983.1.12.776

10. Nguyen DH, Truong PT, Walter CV, Hayashi E, Christie JL, Alexander C (2012) Limited M1 disease: a significant prognostic factor for stage IV breast cancer. Ann Surg Oncol 19:3028–3034. https://doi.org/10.1245/s10434-012-2333-3

11. Kobayashi T, Ichiba T, Sakuyama T, Arakawa Y, Nagasaki E, Aiba K et al (2012) Possible clinical cure of metastatic breast cancer: lessons from our 30-year experience with oligometastatic breast cancer patients and literature review. Breast cancer (Tokyo Japan) 19:218–237. https://doi.org/10.1007/s12282-012-0347-0

12. Weickhardt AJ, Scheier B, Burke JM, Gan G, Lu X, Bunn PA Jr et al (2012) Local ablative therapy of oligoprogressive disease prolongs disease control by tyrosine kinase inhibitors in oncogene-addicted non-small-cell lung cancer. Journal of thoracic oncology: official publication of the International Association for the Study of Lung Cancer 7:1807–1814. https://doi.org/10.1097/JTO.0b013e3182745948

13. Kashiwabara K, Fuji S, Tsumura S, Sakamoto K, Semba H (2020) Additional bevacizumab in EGFR-mutant lung adenocarcinoma patients who had oligo-progression after the failure of EGFR-TKI: A
single-institute retrospective study. Cancer treatment research communications 22:100163. https://doi.org/10.1016/j.ctarc.2019.100163

14. Campo M, Al-Halabi H, Khandekar M, Shaw AT, Sequist LV, Willers H (2016) Integration of Stereotactic Body Radiation Therapy With Tyrosine Kinase Inhibitors in Stage IV Oncogene-Driven Lung Cancer. Oncologist 21:964–973. https://doi.org/10.1634/theoncologist.2015-0508

15. Kim C, Hoang CD, Kesarwala AH, Schrump DS, Guha U, Rajan A (2017) Role of Local Ablative Therapy in Patients with Oligometastatic and Oligoprogressive Non-Small Cell Lung Cancer. Journal of thoracic oncology: official publication of the International Association for the Study of Lung Cancer 12:179–193. https://doi.org/10.1016/j.jtho.2016.10.012

16. Niibe Y, Hayakawa K (2010) Oligometastases and oligo-recurrence: the new era of cancer therapy. Jpn J Clin Oncol 40:107–111. https://doi.org/10.1093/jjco/hyp167

17. Croker AK, Allan AL (2008) Cancer stem cells: implications for the progression and treatment of metastatic disease. J Cell Mol Med 12:374–390. https://doi.org/10.1111/j.1582-4934.2007.00211.x

18. Nakshatri H, Srouf EF, Badve S (2009) Breast cancer stem cells and intrinsic subtypes: controversies rage on. Curr Stem Cell Res Therap 4:50–60. https://doi.org/10.2174/157488809787169110

19. Wen W, Marcinkowski E, Luyimbazi D, Luu T, Xing Q, Yan J et al Eribulin Synergistically Increases Anti-Tumor Activity of an mTOR Inhibitor by Inhibiting pAKT/pS6K/pS6 in Triple Negative Breast Cancer. Cells. 8. https://doi.org/10.3390/cells8091010

20. Cancer Genome Atlas Network (2012) Comprehensive molecular portraits of human breast tumours. Nature 490:61–70. https://doi.org/10.1038/nature11412

21. Lipson D, He J, Yelensky R et al (2012) Next-generation sequencing of FFPE breast cancers demonstrates high concordance with FISH in calling HER2 amplifications and commonly detects clinically relevant genomic alterations (poster abstract). Cancer Res 72(suppl 3). https://doi.org/10.1158/0008-5472

22. Jiang KK, Xia W, Hong RX, Xu F, Zheng QF, Lu QY, Lee KP, Li Y, Zhai QL, Shi YX, Yuan ZY, Wang SS (2020) Local treatment for liver oligometastases in breast cancer patients: identification of prognostic factors and exploration of appropriate treatment strategy. Transl Cancer Res 9:1225–1234. https://doi.org/10.21037/tcr.2019.12.93

23. Jethwa KR, Jang S, Mullikin TC, Harmsen WS, Petersen MM, Olivier KR et al (2020) Association of tumor genomic factors and efficacy for metastasis-directed stereotactic body radiotherapy for oligometastatic colorectal cancer. Radiotherapy oncology: journal of the European Society for Therapeutic Radiology Oncology 146:29–36. https://doi.org/10.1016/j.radonc.2020.02.008

24. Calandri M, Odisio BC (2019) Tailoring ablation strategies for colorectal liver metastases based upon rat sarcoma viral oncogene mutation status. Chinese clinical oncology 8:51. https://doi.org/10.21037/cco.2019.08.05

25. Fruman DA, Rommel C (2014) PI3K and cancer: lessons, challenges and opportunities. Nature reviews Drug discovery 13:140–156. https://doi.org/10.1038/nrd420
26. Samuels Y, Waldman T (2010) Oncogenic mutations of PIK3CA in human cancers. Curr Top Microbiol Immunol 347:21–41. https://doi.org/10.1007/82_2010_68

27. Zardavas D, Te Marvelde L, Milne RL, Fumagalli D, Fountzilas G, Kotoula V et al (2018) Tumor PIK3CA Genotype and Prognosis in Early-Stage Breast Cancer: A Pooled Analysis of Individual Patient Data. Journal of clinical oncology: official journal of the American Society of Clinical Oncology 36:981–990. https://doi.org/10.1200/jco.2017.74.8301

28. Stearns V, Park BH (2018) PIK3CA Mutations in Hormone Receptor-Positive Breast Cancers: PIKing Biomarkers to Inform Adjuvant Endocrine Therapy Decisions. JAMA oncology 4:1330–1332. https://doi.org/10.1001/jamaoncol.2018.1766

29. Barbareschi M, Buttitta F, Felicioni L, Cotrupi S, Barassi F, Del Grammastro M et al (2007) Different prognostic roles of mutations in the helical and kinase domains of the PIK3CA gene in breast carcinomas. Clinical cancer research: an official journal of the American Association for Cancer Research 13:6064–6069. https://doi.org/10.1158/1078-0432.Ccr-07-0266

30. Kalinsky K, Jacks LM, Heguy A, Patil S, Drobnjak M, Bhanot UK et al (2009) PIK3CA mutation associates with improved outcome in breast cancer. Clinical cancer research: an official journal of the American Association for Cancer Research 15:5049–5059. https://doi.org/10.1158/1078-0432.Ccr-09-0632

31. Lai YL, Mau BL, Cheng WH, Chen HM, Chiu HH, Tzen CY (2008) PIK3CA exon 20 mutation is independently associated with a poor prognosis in breast cancer patients. Ann Surg Oncol 15:1064–1069. https://doi.org/10.1245/s10434-007-9751-7

32. Zhao L, Vogt PK (2008) Helical domain and kinase domain mutations in p110alpha of phosphatidylinositol 3-kinase induce gain of function by different mechanisms. Proc Natl Acad Sci USA 105:2652–2657. https://doi.org/10.1073/pnas.0712169105

33. Ghodsinia AA, Lego JMT, Garcia RL (2020) Mutation-Associated Phenotypic Heterogeneity in Novel and Canonical PIK3CA Helical and Kinase Domain Mutants. Cells 9. https://doi.org/10.3390/cells9051116

34. Bhat-Nakshatri P, Goswami CP, Badve S, Magnani L, Lupien M, Nakshatri H (2016) Molecular Insights of Pathways Resulting from Two Common PIK3CA Mutations in Breast Cancer. Cancer research 76:3989–4001. https://doi.org/10.1158/0008-5472.Can-15-3174

35. Barbareschi M, Buttitta F, Felicioni L, Cotrupi S, Barassi F, Del Grammastro M et al (2007) Different prognostic roles of mutations in the helical and kinase domains of the PIK3CA gene in breast carcinomas. Clinical cancer research: an official journal of the American Association for Cancer Research 13:6064–6069. https://doi.org/10.1158/1078-0432.Ccr-07-0266

36. Prat A, Baselga J (2013) Dual human epidermal growth factor receptor 2 (HER2) blockade and hormonal therapy for the treatment of primary HER2-positive breast cancer: one more step toward chemotherapy-free therapy. Journal of clinical oncology: official journal of the American Society of Clinical Oncology 31:1703–1706. https://doi.org/10.1200/jco.2012.48.4998
37. Parker JS, Mullins M, Cheang MC, Leung S, Voduc D, Vickery T et al (2009) Supervised risk predictor of breast cancer based on intrinsic subtypes. Journal of clinical oncology: official journal of the American Society of Clinical Oncology 27:1160–1167. https://doi.org/10.1200/jco.2008.18.1370

38. Prat A, Perou CM (2011) Deconstructing the molecular portraits of breast cancer. Molecular oncology 5:5–23. https://doi.org/10.1016/j.molonc.2010.11.003

39. Montemurro F, Di Cosimo S, Arpino G (2013) Human epidermal growth factor receptor 2 (HER2)-positive and hormone receptor-positive breast cancer: new insights into molecular interactions and clinical implications. Annals of oncology: official journal of the European Society for Medical Oncology 24:2715–2724. https://doi.org/10.1093/annonc/mdt287

40. Mounsey LA, Deal AM, Keith KC, Benbow JM, Shachar SS, Zagar T et al (2018) Changing Natural History of HER2-Positive Breast Cancer Metastatic to the Brain in the Era of New Targeted Therapies. Clin Breast Cancer 18:29–37. https://doi.org/10.1016/j.clbc.2017.07.017

41. Prat A, Pineda E, Adamo B, Galván P, Fernández A, Gaba L et al (2015) Clinical implications of the intrinsic molecular subtypes of breast cancer. Breast (Edinburgh, Scotland) 24 Suppl 2:S26-35. https://doi.org/10.1016/j.breast.2015.07.008

42. Prat A, Carey LA, Adamo B, Vidal M, Tabernero J, Cortés J et al (2014) Molecular features and survival outcomes of the intrinsic subtypes within HER2-positive breast cancer. J Natl Cancer Inst 106. https://doi.org/10.1093/jnci/dju152

43. Moeder CB, Giltnane JM, Harigopal M, Molinaro A, Robinson A, Gelmon K et al (2007) Quantitative justification of the change from 10–30% for human epidermal growth factor receptor 2 scoring in the American Society of Clinical Oncology/College of American Pathologists guidelines: tumor heterogeneity in breast cancer and its implications for tissue microarray based assessment of outcome. Journal of clinical oncology: official journal of the American Society of Clinical Oncology 25:5418–5425. https://doi.org/10.1200/jco.2007.12.8033

44. Ahn S, Woo JW, Lee K, Park SY (2020) HER2 status in breast cancer: changes in guidelines and complicating factors for interpretation. Journal of pathology translational medicine 54:34–44. https://doi.org/10.4132/jptm.2019.11.03

45. Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A et al (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344:783–792. https://doi.org/10.1056/nejm200103153441101

46. Marty M, Cognetti F, Maraninchi D, Snyder R, Mauriac L, Tubiana-Hulin M et al (2005) Randomized phase II trial of the efficacy and safety of trastuzumab combined with docetaxel in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer administered as first-line treatment: the M77001 study group. Journal of clinical oncology: official journal of the American Society of Clinical Oncology 23:4265–4274. https://doi.org/10.1200/jco.2005.04.173

47. Swain SM, Baselga J, Kim SB, Ro J, Semiglazov V, Campone M et al (2015) Pertuzumab, trastuzumab, and docetaxel in HER2-positive metastatic breast cancer. N Engl J Med 372:724–734. https://doi.org/10.1056/NEJMoa1413513
48. Verma S, Miles D, Gianni L, Krop IE, Welslau M, Baselga J et al (2012) Trastuzumab emtansine for HER2-positive advanced breast cancer. N Engl J Med 367:1783–1791. https://doi.org/10.1056/NEJMoa1209124

49. Cameron D, Casey M, Press M, Lindquist D, Pienkowski T, Romieu CG et al (2008) A phase III randomized comparison of lapatinib plus capecitabine versus capecitabine alone in women with advanced breast cancer that has progressed on trastuzumab: updated efficacy and biomarker analyses. Breast cancer research treatment 112:533–543. https://doi.org/10.1007/s10549-007-9885-0

50. Blackwell KL, Burstein HJ, Storniolo AM, Rugo H, Sledge G, Koehler M et al (2010) Randomized study of Lapatinib alone or in combination with trastuzumab in women with ErbB2-positive, trastuzumab-refractory metastatic breast cancer. Journal of clinical oncology: official journal of the American Society of Clinical Oncology 28:1124–1130. https://doi.org/10.1200/jco.2008.21.4437

51. Ma F, Ouyang Q, Li W, Jiang Z, Tong Z, Liu Y et al (2019) Pyrotinib or Lapatinib Combined With Capecitabine in HER2-Positive Metastatic Breast Cancer With Prior Taxanes, Anthracyclines, and/or Trastuzumab: A Randomized, Phase II Study. Journal of clinical oncology: official journal of the American Society of Clinical Oncology 37:2610–2619. https://doi.org/10.1200/jco.19.00108

52. Yeo B, Kotsori K, Mohammed K, Walsh G, Smith IE (2015) Long-term outcome of HER2 positive metastatic breast cancer patients treated with first-line trastuzumab. Breast 24:751–757. https://doi.org/10.1016/j.breast.2015.09.008

53. Witzel I, Müller V, Abenhardt W, Kaufmann M, Schoenegg W, Schneeweis A et al (2014) Long-term tumor remission under trastuzumab treatment for HER2 positive metastatic breast cancer - results from the HER-OS patient registry. BMC Cancer 14:806. https://doi.org/10.1186/1471-2407-14-806

54. van Marcke C, Collard A, Vikkula M, Duhoux FP (2018) Prevalence of pathogenic variants and variants of unknown significance in patients at high risk of breast cancer: A systematic review and meta-analysis of gene-panel data. Crit Rev Oncol Hematol 132:138–144. https://doi.org/10.1016/j.critrevonc.2018.09.009

55. Koyama T, Rhrissorrakrai K, Parida L (2019) Analysis on GENIE reveals novel recurrent variants that affect molecular diagnosis of sizable number of cancer patients. BMC Cancer 19:114. https://doi.org/10.1186/s12885-019-5313-1

56. Lindor NM, Goldgar DE, Tavtigian SV, Plon SE, Couch FJ (2013) BRCA1/2 sequence variants of uncertain significance: a primer for providers to assist in discussions and in medical management. Oncologist 18:518–524. https://doi.org/10.1634/theoncologist.2012-0452

57. Chern JY, Lee SS, Frey MK, Lee J, Blank SV (2019) The influence of BRCA variants of unknown significance on cancer risk management decision-making. Journal of gynecologic oncology 30:e60. https://doi.org/10.3802/jgo.2019.30.e60

Tables

Table 1 Clinicopathological and genomic characteristics of patients
Factor	Total N=26	Oligo-metastasis N=14	Poly-metastasis N=12	P	
Age	Median (Range)	42 (31-67)	40 (31-65)	46 (36-67)	*
Subtype	HR+HER2-	15	7	8	0.310
	HER2+	8	6	2	
	TNBC	3	1	2	
T	≤2	15	8	7	1.000
	>2	11	6	5	
N	≤1	13	7	6	1.000
	>1	13	7	6	
Specimen site	Primary tumor	16	8	8	0.701
	Metastatic sites	10	6	4	
Gene alterations	Median (Range)	4.5 (2-13)	4.5 (2-7)	5 (2-13)	*
TMB	Low	20	11	9	1.000
	Intermediate	6	3	3	
VUS	Median (Range)	9.5 (4-20)	11 (4-15)	9 (6-20)	*
Actionable mutation	Yes	22	13	9	0.306
	No	4	1	3	

Abbreviation: HR, hormone receptor; HER2, human epidermal growth factor receptor 2; TNBC, Triple negative breast cancer; T, Tumor; N, Node; TMB, Tumor mutational burden; VUS, Variants of unknown significance.

* means Chi-square test was not carried out.

Table 2 Characteristics of patients with oligo-metastatic disease
Factor Oligo-metastasis

Metastatic sites	Lung	10
	Liver	3
	Chest wall	1
Oligo-progression disease	Median (Range)	31.04 (7.1-84.2)
Therapy given	CT+TT	2
	CT+ LT	9
	CT+TT+LT	3

Abbreviation: CT, Conventional therapy (including conventional chemotherapy and endocrine therapy); TT, Targeted therapy; LT, Local treatment (including surgical resection, radiotherapy and interventional treatment).

Figures

Figure 1

Oncoprint of somatic gene alterations in biopsies of 26 breast cancers. Shown are the distribution of gene alteration identified by NGS in the 26 lesions from breast cancer patients. Alterations include point mutations and copy number alterations as shown in the key below.
Figure 2

Number of gene alteration based on gene type classified by disease status

Figure 3

Number of gene alteration based on the class of genomic alterations classified by disease status
Figure 4

Number of gene alterations based on gene type classified by cell signaling pathways: RAS/MAPK, RTK/GFs, cell cycling, PI3K/mTOR, and P53. Abbreviations: MAPK, mitogen-activated protein kinase; RTK, receptor tyrosine kinase; GF, growth factor; PI3K, phosphatidylinositol 3-kinase; mTOR, mammalian target of rapamycin; P53, tumor protein p53.
Figure 5
Clinicopathologic and genomic characteristics of patients associated with PIK3CA mutation

Figure 6
The distribution of PIK3CA mutations in oligo- and poly-metastasis
Figure 7

The distribution of PIK3CA mutations in longer oligo-PD group and shorter oligo-PD group

Figure 8

Kaplan–Meier curve for oligo-PD of breast cancer patients stratified by HER2

P=0.022