Investigation of differences in coagulation characteristics between hospitalized patients with SARS-CoV-2 Alpha, Delta, and Omicron variant infection using rotational thromboelastometry (ROTEM): A single-center, retrospective, observational study

Ayaka Matsuoka | Hiroyuki Koami | Kota Shinada | Yuichiro Sakamoto

Department of Emergency and Critical Care Medicine, Faculty of Medicine, Saga University, Saga City, Japan

Correspondence
Ayaka Matsuoka, Department of Emergency and Critical Care Medicine, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga City, Saga Prefecture 849-8501, Japan.
Email: haraherianpan@gmail.com

Abstract
Background: The severe acute respiratory syndrome coronavirus 2 Omicron variant has a low rate of serious illness, is highly contagious, and has spread rapidly since January 2022. The number of severe cases and deaths remains problematic. Here, we aimed to elucidate the coagulation pathology of Omicron-infected patients using rotational thromboelastometry.

Methods: Patients with coronavirus disease 2019, hospitalized and treated from January 2021 to April 2022, were included. The Alpha–Delta and Omicron groups were defined during admission. Blood tests, clinical course, and rotational thromboelastometry measurements were compared using a propensity score-matched cohort.

Results: Both groups had 21 patients each. Lactate dehydrogenase (Alpha–Delta group [interquartile range] vs. Omicron group [interquartile range]; 449 [368–518] U/L vs. 241 [196–398] U/L, p = 0.01) and ferritin (1428 [1145–3061] ng/dl vs. 481 [188–881] ng/dl, p = 0.0002) levels were significantly lower in the Omicron group. In rotational thromboelastometry, the thrombus hardness indexes FIBTEM A5 (29 [23–34] mm vs. 23 [18–28] mm, p = 0.034) and maximum clot firmness (34 [27–40] mm vs. 26 [21–33] mm, p = 0.021) were significantly lower in the Omicron group, whereas the fibrinolysis index FIBTEM LI60 (98 [92–100] % vs. 100 [100–100] %, p = 0.0082) was higher.

Conclusion: Severe coagulation abnormalities may be less likely in Omicron-infected patients than in those infected with the previous Alpha and Delta variants.

KEYWORDS
coagulopathy, fibrinogen, point-of-care test
1 | INTRODUCTION

Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19 rapidly spread worldwide after the outbreak in Wuhan, China, in December 2019, with an enormous impact on social activities and the economy.1

Infection with SARS-CoV-2 activates the coagulation system.2 COVID-19 coagulopathies differ from disseminated intravascular coagulation and sepsis-induced coagulopathy insofar as being extremely severe.3 Complications of coagulopathy have been reported frequently in patients with COVID-19.1,4,5 and thrombotic complications have been reported in 30% of patients with severe COVID-19.6 Conversely, hemorrhagic complications are less frequent, but may be a risk factor for death in patients with COVID-19.7 The degree of coagulation abnormalities reportedly reflects the severity of COVID-19,8,9 and the thrombotic tendency seen in patients with moderate or severe COVID-19 is not seen in those with mild disease.10 Thus, coagulation abnormalities in COVID-19 may affect prognosis and reflect disease status, emphasizing the need to elucidate the pathogenesis of coagulation disorders in COVID-19.

In addition to the standard laboratory tests (SLTs), point-of-care testing, such as rotational thromboelastometry (ROTEM®; TEM International FZC) and thromboelastography (TEG®; Haemonetics Co.), can be used clinically as tests for blood coagulation.11 SLTs, such as prothrombin time and activated partial thromboplastin time, reflect responses when thrombin production is only 4% of cases.12 They do not reflect the influence of platelets because they assess separate plasma components.12 Thus, they may not accurately appraise in vivo coagulability.13 Point-of-care testing using whole blood may detect coagulation disorders not seen through standard laboratory test (SLT).14 ROTEM has also been useful in elucidating coagulation abnormalities in COVID-19, and studies have demonstrated a hypercoagulable state in patients with COVID-19 using this technique.15–19

Omicron, a novel SARS-CoV-2 variant, is considered more infectious than other variants and is becoming more prevalent worldwide.20,21 The Omicron variant has relatively mild clinical features22 and is associated with lower hospitalization, intensive care unit admission, and mortality rates than the Alpha–Delta variants.21 However, owing to its strong infectivity, the absolute number of infected patients is high, and the number of deaths and severe cases remains a problem that should not be underestimated.23 Studies reporting coagulopathy in Omicron-infected patients have been scarce. Furthermore, there is little clinical information on coagulopathy in Omicron-infected patients with severe disease. In this study, we hypothesized that the pattern of coagulopathy in Omicron strains differs from that of previous variants. We aimed to clarify the coagulation characteristics of Omicron strains by using ROTEM.

2 | MATERIALS AND METHODS

2.1 | Study design and participants

This was a single-center, retrospective, observational study of COVID-19 patients in critical care beds at our institution. Patients with COVID-19 admitted to our hospital for multidisciplinary management from January 1, 2021, to March 31, 2022, were included. COVID-19 was diagnosed by RNA or antigen detection of SARS-CoV-2.

Patients with COVID-19 who were admitted to our hospital during the study period were eligible for inclusion. Patients with cardiac arrest on arrival, severe illness due to bacterial sepsis, pregnant women, and patients with insufficient data, were excluded from the analysis.

Since the start of the COVID-19 pandemic, the hospital has established dedicated beds for patients with severe COVID-19 and a special team of emergency physicians, intensive care physicians, anesthesiologists, infectious disease physicians, respiratory medicine physicians, cardiologists, and nurses to provide care for patients with COVID-19. In the prefecture, the hospital serves as a referral hospital for patients with COVID-19 who require respiratory support by tracheal intubation or high-flow nasal cannula. Anticoagulation was performed in accordance with the algorithm for anticoagulation with unfractionated heparin developed and proposed by Sato et al.24 for Japanese patients. The study was approved by the Ethics Committee of our institution. In addition, all participants were given the opportunity to opt out of the study if desired.

2.2 | Cohort definition

The first patient with COVID-19 was transported to our hospital on January 18, 2021. Patients with COVID-19 were admitted until September 23, 2021, after which there were none for approximately 3 months. Patients with COVID-19 were again admitted to our hospital between January 23, 2022, and April 16, 2022.

The Alpha strain was followed by the Delta strain worldwide until December 2021, and the Omicron strain rapidly expanded after January 2022.25 Therefore, all patients admitted to our hospital before December 2021 were defined as having Alpha or Delta variant infection; from December 2021 to January 23, 2022, no patients were admitted to our hospital with COVID-19; and patients admitted on or after January 23, 2022 were assumed to have Omicron variant infection. Previous reports have shown that patients infected with the Omicron variant have milder clinical disease and are less likely to have respiratory failure.20–22 Among patients admitted after January 23, 2022, the Omicron epidemic period, we suspected that those with extensive infiltrative shadows in the lungs on computed tomography and severe clinical disease such as acute respiratory distress syndrome could be infected with the Alpha or Delta variant.
Therefore, we performed polymerase chain reaction testing of patients admitted after January 23, 2022, who were suspected to be infected with the Alpha or Delta variant to confirm the variant type.

2.3 | Data collection and definition

Patient background information, past history, lifestyle, and blood test results were extracted from the medical records. Blood test data were extracted at the time of admission. Hemorrhagic complications were assessed according to the World Health Organization grading system and diagnosed if the bleeding was Grade 2 or higher. ROTEM® Delta analysis measured EXTEM, INTEM, FIBTEM, and APTEM on admission for all patients.

2.4 | Statistical analysis

All statistical analyses were performed using the JMP Pro Version 14 software package (SAS Institute Inc.). Continuous variables were presented as the median and quartiles. Patient background, history, the severity of illness, blood test results at presentation, and ROTEM parameters were compared using Fisher’s exact and Wilcoxon rank-sum tests. For all analyses, \(p < 0.05 \) was considered significantly different. Propensity score variables were defined using a logistic regression model with two variables, namely age and body mass index (BMI). The neighborhood matching method (1:1) was applied for propensity score matching, and the caliper width of the logit-transformed propensity score was set to 0.2. The same procedure was used to compare blood test results and ROTEM measurements between the Alpha–Delta and Omicron groups.

3 | RESULTS

3.1 | Participants

From January 2021 to April 2022, 97 patients with COVID-19 were admitted to our hospital. Patients with a cardiopulmonary arrest at presentation \((N = 1) \), those with sepsis at presentation or sepsis considered the primary pathology \((N = 4) \), pregnancy \((N = 2) \), and those with missing ROTEM measurements or other data \((N = 4) \) were excluded. The Alpha–Delta group consisted of 37 patients who were admitted between January 2021 and September 23, 2021, and the Omicron group consisted of 49 patients admitted between January 23, 2022, and April 16, 2022 (Figure 1).

Patients with COVID-19 admitted between January 23, 2022, and April 16, 2022, with possible Alpha or Delta strain infections based on clinical symptoms and computed tomography lung imaging, underwent polymerase chain reaction testing for strain identification. However, no patients were included in the Alpha or Delta strain group during this period.

3.2 | Comparison of SLT and ROTEM parameters between the Alpha–Delta and Omicron groups

Standard laboratory test and ROTEM measurements of the target population are shown in Table 2.

Lactate dehydrogenase (LDH; Alpha–Delta vs. Omicron; 436 [342–518] U/L vs. 282 [220–377] U/L, \(p < 0.0001 \)) and ferritin (1339 [750–1871] ng/dl vs. 525 [217–876] ng/dl, \(p < 0.0001 \)) levels were significantly lower in the Omicron group than in the Alpha–Delta group. The background factors, severity, and outcome of each of the included groups are shown in Table 1.

Age was significantly higher (Alpha–Delta vs. Omicron; 58 [48–70] years vs. 76 [68–84] years, \(p < 0.0001 \)), and BMI was lower (25.3 [22.3–28.3] kg/m\(^2\) vs. 21.3 [17.5–24.5] kg/m\(^2\), \(p = 0.0004 \)) in the Omicron group than that for the Alpha–Delta group. History of heart failure and dementia were also significantly more prevalent. Significantly more patients in the Alpha–Delta group were on regular anticoagulants. Although there was no significant difference in the respiratory rate at presentation, the partial pressure of oxygen/fraction of inspired oxygen ratio (P/F) was significantly higher in the Omicron group (180 [139–200] vs. 300 [145–450], \(p < 0.0001 \)). However, the rate of high-flow nasal cannula use during hospitalization (25 [67.6%] vs. 12 [24.5%], \(p < 0.0001 \)) and tracheal intubation (17 [46%] vs. 2 [4.1%], \(p < 0.0001 \)) during hospitalization was significantly lower.
Table 1: Characteristics comparison between the Alpha–Delta and Omicron groups

Characteristic	Alpha–Delta group (N = 37)	Omicron group (N = 49)	p-Value
Background			
Age, median (IQR), years	58 (48–70)	76 (68–84)	<0.0001
Sex, male (%)	25 (67.6)	32 (65.3)	1
BMI, median (IQR), kg/m²	25.3 (22.3–28.3)	21.3 (17.5–24.5)	0.0004
Occasional drinker (%)	12 (32.4)	13 (27)	0.6366
Smoker (%)	8 (21.6)	10 (20.8)	1
Past history			
Hypertension (%)	15 (40.5)	18 (36.7)	0.8236
Myocardial infarction (%)	1 (2.7)	4 (8.2)	0.3853
Congestive heart failure (%)	1 (2.7)	9 (18.4)	0.0384
Peripheral vascular disease (%)	0 (0)	1 (2.0)	1
Cerebrovascular disease or TIA (%)	1 (2.7)	6 (12.2)	0.2308
Dementia (%)	1 (2.7)	13 (26.5)	0.0028
COPD (%)	2 (5.4)	6 (12.2)	0.457
Connective tissue disease (%)	2 (5.4)	7 (14.3)	0.289
Peptic ulcer disease (%)	3 (8.1)	1 (2.0)	0.3102
Mild liver disease (%)	5 (13.4)	1 (2.0)	0.0801
Diabetes mellitus (%)	10 (27.0)	11 (22.5)	0.8004
Hemiplegia (%)	0 (0)	0 (0)	—
Chronic kidney disease (%)	2 (5.4)	4 (8.2)	0.6955
Solid tumor (%)	3 (8.1)	6 (12.2)	0.7261
Leukemia (%)	0 (0)	0 (0)	—
Lymphoma (%)	0 (0)	2 (4.1)	0.504
Severe liver disease (%)	0 (0)	0 (0)	—
Metastasis (%)	1 (2.7)	0 (0)	0.4302
AIDS (%)	0 (0)	0 (0)	—
Charlson comorbidity index, median (IQR)	1 (0–1)	1 (0–3)	0.0613
Medication			
Aspirin (%)	0 (0)	4 (8.2)	0.1309
Warfarin (%)	0 (0)	2 (4.1)	0.504
Unfractionated heparin (%)	15 (40.5)	8 (16.3)	0.015
Severity			
P/F, median (IQR)	180 (139–200)	300 (145–450)	<0.0001
Respiratory rate, median (IQR)	25 (20–30)	21 (20–27)	0.2027
JAAM DIC score, median (IQR)	0 (0–1)	1 (0–2)	0.078
SOFA score on admission, median (IQR)	4 (3–5.5)	3 (1.5–5)	0.081
APACHE II score, median (IQR)	9 (6–17)	11 (8–17)	0.1989
Clinical course			
High-flow nasal canula (%)	25 (67.6)	12 (24.5)	<0.0001
Intubation (%)	17 (46)	2 (4.1)	<0.0001
ECMO (%)	3 (8.1)	0 (0)	0.076
CRRT (%)	1 (2.7)	1 (2.0)	1
Complications on admission			
Bacterial pneumonia (%)	9 (24.3)	14 (28.6)	0.8065
Thrombotic complications (%)	1 (2.7)	1 (2.0)	1
TABLE 1 (Continued)

	Alpha–Delta group (N = 37)	Omicron group (N = 49)	p-Value
Bleeding complications (%)	9 (24.3)	5 (10.2)	0.1382
Outcome			
Death in ICU(%)	8 (21.6)	3 (6.1)	0.0494

Abbreviations: AIDS, acquired immune deficiency syndrome; APACHE, Acute Physiology and Chronic Health Evaluation; BMI, body mass index; COPD, chronic obstructive pulmonary disease; CRRT, continuous renal replacement therapy; ECMO, extracorporeal membrane oxygenation; ICU, intensive care unit; IQR, interquartile range; JAAM DIC, Japanese Association for Acute Medicine Disseminated Intravascular Coagulation; P/F, partial pressure of oxygen/fraction of inspired oxygen ratio; SOFA, Sequential Organ Failure Assessment; TIA, transient ischemic attack.

TABLE 2 Comparison between SLT and ROTEM data between the Alpha–Delta and Omicron groups

	Alpha–Delta group (N = 37)	Omicron group (N = 49)	p-Value
SLT			
White blood cell, median (IQR), ×10³	6.4 (4.6–7.9)	7.2 (4.1–9.3)	0.4458
Hemoglobin level, median (IQR), g/dl	13.9 (12.9–14.5)	12.7 (11.3–13.9)	0.0085
Platelets, median (IQR), 10⁴/μl	20.7 (16–26.3)	17.5 (14.6–21.9)	0.0956
PT-INR, median (IQR)	1.07 (1.03–1.15)	1.14 (1.04–1.3)	0.1339
APTT, median (IQR), seconds	35.6 (32.1–41)	35.4 (32.8–43.5)	0.7262
Fibrinogen, median (IQR), mg/dl	564 (405–683)	489 (399–638)	0.1941
FDP, median (IQR), μg/ml	5 (3.6–8.8)	5.2 (4.1–11.2)	0.4261
D-dimer, median (IQR), μg/ml	1.27 (1.08–2.68)	1.65 (1.09–4.26)	0.4301
Creatine, median (IQR), mg/dl	0.73 (0.58–0.91)	0.86 (0.61–1.19)	0.2437
LDH, median (IQR), U/L	436 (342–518)	282 (220–377)	<0.0001
Lactate level, median (IQR), mmol/L	1.7 (1.3–2.1)	1.7 (1.3–2.4)	0.6411
CRP, median (IQR), mg/dl	6.6 (2.4–11.2)	7.2 (2.1–15.9)	0.3948
Ferritin, median (IQR), ng/dl	1339 (750–1871)	525 (217–876)	<0.0001

ROTEM*

	Alpha–Delta group (N = 37)	Omicron group (N = 49)	p-Value
EXTEM CT (N: 38–79), median (IQR), seconds	79 (69–94)	65 (61–76)	0.0009
EXTEM A5 (N: –), median (IQR), mm	52 (46–55)	49 (46–53)	0.2728
EXTEM CFT (N: 34–159), median (IQR), seconds	71 (59–83)	71 (63–81)	0.6721
EXTEM MCF (N: 50–72), median (IQR), mm	68 (64–70)	65 (62–69)	0.1327
EXTEM LI60, median (IQR), %	91 (88–94)	92 (89–94)	0.6966
INTEM CT (N: 100–240), median (IQR), seconds	226 (203–262)	240 (205–310)	0.5102
INTEM A5 (N: –), median (IQR), mm	49 (44–55)	49 (43–53)	0.3637
INTEM CFT (N: 30–110), median (IQR), seconds	67 (56–83)	68 (59–90)	0.5017
INTEM MCF (N: 50–71), median (IQR), mm	65 (61–68)	64 (59–66)	0.2688
INTEM LI60, median (IQR), %	90 (87–94)	90 (88–93)	0.9093
FIBTEM CT (N: –), median (IQR), seconds	75 (61–83)	61 (55–71)	0.0057
FIBTEM A5 (N: –), median (IQR), mm	29 (23–34)	23 (17–28)	0.0003
FIBTEM CFT, median (IQR), seconds	89 (70–138)	112 (79–269)	0.0841
FIBTEM MCF (N: 9–25), median (IQR), mm	33 (28–39)	27 (21–32)	0.0003
FIBTEM LI60, median (IQR), %	96 (92–100)	100 (100–100)	<0.0001

Abbreviations: APTT, activated partial thromboplastin clotting time; CRP, C-reactive protein; EXTEM, CT, CFT, MCF, INTEM, FIBTEM; FDP, fibrin/fibrinogen degradation products; IQR, interquartile range; LDH, lactate dehydrogenase; PT-INR, prothrombin time-international normalized ratio; ROTEM, rotational thromboelastometry; SLT, standard laboratory test.

*Normal ranges (N:) are shown for each ROTEM parameter.

the two groups, with FIBTEM A5 [29 [23–34] mm vs. 23 [17–28] mm, p = 0.0003] and FIBTEM maximum clot firmness (MCF) [33 [28–39] mm vs. 27 [21–32] mm, p = 0.0003] being significantly lower in the Omicron group. However, FIBTEM LI60 was significantly higher in the Omicron group [96 [92–100] % vs. 100 [100–100] %, p < 0.0001].
3.3 | Comparison between SLT and ROTEM parameters in the matched cohort

After propensity score matching for age and BMI, univariate analysis showed no significant differences in the prevalence of heart failure or dementia between the Alpha–Delta and Omicron groups. The number of patients taking anticoagulants was also comparable between the two groups. However, P/F was significantly higher in the Omicron group in the matched cohort (180 [87–223] vs. 245 [135–450], \(p = 0.0011 \)), while tracheal intubation rates were significantly lower in the Omicron group (12 [57.1%] vs. 1 [4.8%], \(p = 0.0005 \)). Hemorrhagic complications occurred only in the Delta group, at a rate of 23.8% (Table 3).

Lactate dehydrogenase (Alpha–Delta group vs. Omicron group; 449 [368–518] U/L vs. 241 [196–398] U/L, \(p = 0.001 \)) and ferritin levels (1428 [1145–3061] ng/dl vs. 481 [188–881] ng/dl, \(p = 0.0002 \)) were significantly lower in the Omicron group than in the Alpha–Delta group. In ROTEM, FIBTEM A5 (29 [23–34] mm vs. 23 [18–28] mm, \(p = 0.034 \)) and FIBTEM MCF (34 [27–40] mm vs. 26 [21–33] mm, \(p = 0.0211 \)) were lower in the Omicron group. However, FIBTEM LI60 was significantly higher (98 [92–100] % vs. 100 [100–100] %, \(p = 0.0082 \)) (Table 4).

4 | DISCUSSION

With regard to the target population of this study, there was a significant difference in age between the two groups. Because of the strong infectivity of Omicron, it may be more prevalent among younger patients than the Alpha or Delta variants; however, cases are relatively milder as one of the factors contributing to the severity of COVID-19 include older age. Nonetheless, during the Alpha–Delta infection period, many young patients in our institution also had severe cases, which may have contributed to the low average age of the Alpha–Delta group in our study.

When compared to the groups before propensity score matching, BMI was significantly higher in the Alpha–Delta group; Campello et al. reported an association between a high BMI and hypercoagulability in a study using ROTEM. The difference in the ROTEM profile between the Alpha–Delta and Omicron groups, in the pre-matching cohort, may have been partially related to differences in BMI between patients in the two groups.

Prior to propensity score matching, the percentage of patients administered unfractionated heparin prior to transport to our hospital was significantly higher in the Alpha–Delta group. This suggests that more patients in the Alpha–Delta group had hypercoagulability on blood tests.

The P/F on admission was significantly lower in the Alpha–Delta group, even after propensity score matching, and the proportion requiring oxygen via a high-flow nasal canula was also lower in the Alpha–Delta group. Patients infected with the Omicron variant have been reported to develop milder disease than those infected with the Alpha and Delta variants, and our results are consistent with these reports. Despite respiratory failure being significantly milder in the Omicron group, the SOFA and APACHE II scores tended to be lower in the Omicron group after propensity score matching, although the difference was not statistically significant. This suggests that in patients with severe Omicron variant infection, the disease may be more severe in conditions other than respiratory failure.

Furthermore, bleeding complications were significantly more common in the Alpha–Delta group compared with the propensity score-matched group. Hemorrhagic complications are known to be associated with COVID-19 severity and death. In this study, the incidence of hemorrhagic complications was lower in the Omicron group, which may also indicate differences in coagulation characteristics between the Alpha–Delta and Omicron groups.

Our hospital aggregates severely ill patients from all over the Prefecture, and there was no difference in the Acute Physiology and Chronic Health Evaluation II and Sequential Organ Failure Assessment scores, which assess the severity of illness and organ function of the Alpha–Delta and Omicron groups. However, the Omicron group had a significantly higher P/F and was considered to have a milder degree of hypoxemia. The proportion of patients requiring ventilators was also significantly lower, and the mortality rate was also lower, consistent with the reported epidemiology of Omicron-infected patients.

Lactate dehydrogenase and ferritin levels, previously reported as factors of COVID-19 severity, were significantly lower in the Omicron group in the propensity score-matched cohort as well. It is difficult to determine whether this is because hypoxemia was less severe in the Omicron group, or due to differences in the strains themselves. Furthermore, LDH and ferritin levels may not be applicable in predicting the severity of illness in Omicron-infected patients, and there may be other markers of severity for Omicron strains.

The coagulopathy that occurs in COVID-19 differs from that of disseminated intravascular coagulation, which can be caused by other severe diseases in terms of both its clinical and biochemical features. Several studies on coagulation disorders characteristic of COVID-19 that assessed patients using ROTEM parameters have also reported signs of hypercoagulability. The coagulation disorders of COVID-19 are characterized by high fibrinogen levels, and elevated fibrinogen levels are an indicator of severe disease. Although there were no significant differences in fibrinogen values between the Alpha–Delta and Omicron groups, significant differences in A5 and MCF, indicators of thrombus hardness, were noted in the FIBTEM parameters of ROTEM. These parameters were increased beyond the normal range in the Alpha–Delta group, indicating higher thrombus hardness and a hypercoagulable state.

Boscolo et al. reported that COVID-19 patients requiring ICU care show more severe hypercoagulability than patients with mild disease. In the present study, both the Alpha–Delta and Omicron groups required ICU management due to respiratory failure or other severe medical conditions. The Alpha–Delta group showed EXTEM...
TABLE 3 Comparison of characteristics in the matched cohort of the Alpha–Delta and Omicron groups

	Alpha–Delta group (N = 21)	Omicron group (N = 21)	p-Value
Background			
Age, median (IQR), years	64 (56–72)	70 (62–75)	0.3449
Sex, male (%)	6 (28.6)	4 (19.1)	0.7186
BMI, median (IQR), kg/m²	22.9 (21.1–26.1)	24.2 (19.3–28.8)	0.9499
Occasional drinker (%)	8 (38.1)	10 (47.6)	0.7557
Smoker (%)	5 (23.8)	8 (38.1)	0.5055
Past history			
Hypertension (%)	10 (47.6)	8 (38.1)	0.7557
Myocardial infarction (%)	1 (4.8)	1 (4.8)	1
Congestive heart failure (%)	1 (4.8)	4 (19.1)	0.3433
Peripheral vascular disease (%)	0 (0)	1 (4.8)	1
Cerebrovascular disease or TIA (%)	0 (0)	2 (9.5)	0.4878
Dementia (%)	1 (4.8)	1 (4.8)	1
COPD (%)	2 (9.5)	3 (14.3)	1
Connective tissue disease (%)	0 (0)	2 (9.5)	0.4878
Peptic ulcer disease (%)	2 (9.52)	0 (0)	0.4878
Mild liver disease (%)	3 (14.3)	0 (0)	0.2317
Diabetes mellitus (%)	6 (28.6)	5 (23.8)	1
Hemiplegia (%)	0 (0)	0 (0)	—
Chronic kidney disease (%)	2 (9.5)	2 (9.5)	1
Solid tumor (%)	2 (9.5)	1 (4.8)	1
Leukemia (%)	0 (0)	0 (0)	—
Lymphoma (%)	0 (0)	2 (9.5)	0.4878
Severe liver disease (%)	0 (0)	0 (0)	—
Metastasis (%)	1 (4.8)	0 (0)	1
AIDS (%)	0 (0)	0 (0)	—
Charlson comorbidity index, median (IQR)	1 (0–1)	1 (0–2.5)	0.599
Medication			
Aspirin (%)	0 (0)	2 (9.5)	0.4878
Warfarin (%)	0 (0)	2 (9.5)	0.4878
Unfractionated heparin (%)	7 (33.3)	4 (19.1)	0.4841
Severity			
P/F, median (IQR)	180 (87–223)	245 (135–450)	0.0011
Respiratory rate, median (IQR)	27 (18–35)	20 (20–25)	0.3486
JAAM DIC score, median (IQR)	1 (0–1.5)	1 (0–2)	0.7013
SOFA score on admission, median (IQR)	4 (3–6.5)	3 (1–4.5)	0.058
APACHE II score, median (IQR)	10 (7.5–17)	9 (6–12)	0.0981
Clinical course			
High-flow nasal canula (%)	11 (52.4)	8 (38.1)	0.5359
Intubation (%)	12 (57.1)	1 (4.8)	0.0005
ECMO (%)	2 (9.5)	0 (0)	0.4878
CRRT (%)	1 (4.8)	0 (0)	1
Complications at the time of admission			
Bacterial pneumonia (%)	7 (33.3)	5 (23.8)	0.7337
Thrombotic complications (%)	1 (4.8)	1 (4.8)	1
CT prolongation and FIBTEM MCF elevation, consistent with the findings of Boscolo et al. However, in the cohort of patients infected with the Omicron variant, abnormal ROTEM values were rare, even in patients with severe disease. This may be due to differences in the severity of respiratory...
failure between the Alpha–Delta and Omicron groups. However, it may also be because coagulation abnormalities are less likely to occur in patients infected with the Omicron variant.

This study had several limitations. First, the study was conducted at a single institution, and the number of cases was small. In addition, the data did not entirely show the characteristics of the Omicron strains, since data were aggregated from patients that were determined to be severely ill. Second, we did not distinguish between vaccinated and unvaccinated patients. It is likely that vaccinated coverage was higher in patients in the Omicron group than in the Alpha–Delta group, because vaccination coverage improved with time. Although thrombosis has been reported to be associated with COVID-19 vaccination, another study found no increased risk for hypercoagulability associated with COVID-19 vaccination. In this study, we were unable to assess whether there is an association between vaccination and coagulopathy. Third, in this study, there was a significant difference in P/F between the Alpha–Delta and Omicron groups. It is unclear whether the results of this study also apply to the patients with Omicron infection who have poor respiratory status. In other words, the results may differ from the results of this study in patients with Omicron infection who have respiratory failure comparable with that of the Alpha–Delta group. Further data are necessary to resolve this question.

However, this is the first ROTEM study to evaluate coagulability in severely Omicron-infected patients. Further studies may lead to better elucidation of the coagulation characteristics of Omicron-infected patients and the optimization of anticoagulation therapy.

5 | CONCLUSIONS

Patients infected with the Omicron variant have lower values of lactate dehydrogenase and ferritin than those infected with Alpha or Delta variants. FIBTEM A5 and MCF were significantly higher, and FIBTEM Li60 was lower, in patients infected with the Omicron variant than in those infected with the Alpha or Delta variants. These results suggest that patients have different blood test and coagulation characteristics according to the infecting variant type and that coagulation abnormalities are less severe in patients infected with the Omicron variant, than in those infected with the Alpha or Delta variants.

AUTHOR CONTRIBUTIONS

AM, HK, and YS conceptualized and designed the study and drafted the article. AM, KS, and acquired the data. AM and HK analyzed the data. AM and YS interpreted the data. HK and YS supervised the study. All authors approved the final version of the article.

ACKNOWLEDGMENTS

We would like to thank Editage (www.editage.com) for English language editing. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

CONFLICT OF INTEREST

The authors declare that there are no conflicts of interest.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available from the corresponding author upon reasonable request.

PATIENT CONSENT

All participants were provided the opportunity to opt out of the study, if desired.

ORCID

Ayaka Matsuoka https://orcid.org/0000-0003-4383-9132

REFERENCES

1. Al-Samkari H, Karp Leaf RS, Dzik WH, et al. COVID-19 and coagulation: bleeding and thrombotic manifestations of SARS-CoV-2 infection. Blood. 2020;136:489-500. doi:10.1182/blood.2020006520
2. Long X, Zhang Z, Zou W, et al. Coagulopathy of patients with COVID-19 is associated with infectious and inflammatory markers. Risk Manag Healthc Policy. 2020;13:1965-1975. doi:10.2147/RMHP.S268238
3. Boss K, Kribben A, Tyczynski B. Pathological findings in rotation thromboelastometry associated with thromboembolic events in COVID-19 patients. Thromb J. 2021;19:10. doi:10.1186/s12959-021-00263-0
4. Kruse JM, Magomedov A, Kurreck A, et al. Thromboembolic complications in critically ill COVID-19 patients are associated with impaired fibrinolysis. Crit Care. 2020;241:676. doi:10.1186/s13054-020-03401-8
5. Wool GD, Miller JL. The impact of COVID-19 disease on platelets and coagulation. Pathobiology. 2021;88:15-27. doi:10.1159/000512007
6. Klok FA, Kruip MJHA, van der Meer NJM, et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res. 2020;191:145-147. doi:10.1016/j.thromres.2020.04.013
7. Altschul DJ, Unda SR, de La Garza RR, et al. Hemorrhagic presentations of COVID-19: risk factors for mortality. Clin Neurol Neurosurg. 2020;198:106112. doi:10.1016/j.clineuro.2020.106112
8. Lippi G, Plebani M, Henry BM. Thrombocytopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: a meta-analysis. Clin Chim Acta. 2020;506:145-148. doi:10.1016/j.cca.2020.03.022
9. Mitrovic M, Sablijc N, Cvetkovic Z, et al. Rotational thromboelastometry (ROTEM) profiling of COVID-19 patients. Platelets. 2021;32:690-696. doi:10.1080/09537104.2021.1881949
10. Vincent JL, Levi M, Hunt BJ. Prevention and management of thrombosis in hospitalised patients with COVID-19 pneumonia. Lancet Respir Med. 2022;10:214-220. doi:10.1016/S2213-2600(21)00455-0
11. Whiting D, DiNardo JA. TEG and ROTEM: technology and clinical applications. Am J Hematol. 2014;89:228-232. doi:10.1002/ajh.23599
12. Mann KG, Butenss S, Brummel K. The dynamics of thrombin formation. Arterioscler Thromb Vasc Biol. 2003;23:17-25. doi:10.1161/01.atv.0000046238.23903.fc
13. Kashuk JL, Moore EE, Sabel A, et al. Rapid thrombelastography (r-TEG) identifies hypercoagulability and predicts thromboembolic events in surgical patients. Surgery. 2009;146:764-772; discussion 772-774. doi:10.1016/j.surg.2009.06.054
14. Müller MC, Meijers JCM, Vroom MB, Juffermans NP. Utility of thromboelastography and/or thromboelastometry in adults with sepsis: a systematic review. Crit Care. 2014;18:R30. doi:10.1186/cc13721

15. Bareille M, Hardy M, Douxfils J, et al. Viscoelastometric testing to assess hemostasis of COVID-19: a systematic review. J Clin Med. 2021;10:1740. doi:10.3390/jcm10081740

16. Görlinger K, Almutawah H, Almutawaa F, et al. The role of rotational thromboelastometry during the COVID-19 pandemic: a narrative review. Korean J Anesthesiol. 2021;74:91-102. doi:10.4097/kja.b21006

17. Iwasaki Y, Shiga T, Konno D, et al. Screening of COVID-19-associated hypercoagulopathy using rotational thromboelastometry. J Clin Anesth. 2020;67:109976. doi:10.1016/j.jclinane.2020.109976

18. Pavoni V, Gianesello L, Pazzi M, Stera C, Meconi T, Frigieri FC. Evaluation of coagulation function by rotation thromboelastometry in critically ill patients with severe COVID-19 pneumonia. J Thromb Thrombolysis. 2020;50:281-286. doi:10.1007/s11239-020-02130-7

19. Spiezia L, Boscolo A, Poletto F, et al. COVID-19-related severe hypercoagulability in patients admitted to intensive care unit for acute respiratory failure. Thromb Haemost. 2020;120:998-1000. doi:10.15585/tph.00400-170018

20. He X, Hong W, Pan X, Lu G, Wei X. SARS-CoV-2 omicron variant: characteristics and prevention. MedComm. 2020;2021(2):838-845. doi:10.1002/mco2.110

21. Wolter N, Jassat W, Walaza S, et al. Early assessment of the clinical severity of the SARS-CoV-2 omicron variant in South Africa: a data linkage study. Lancet. 2022;399:437-446. doi:10.1016/S0140-6736(22)0017-4

22. Meo SA, Meo AS, Al-Jassir FF, Klonoff DC. Omicron SARS-CoV-2 new variant: global prevalence and biological and clinical characteristics. Eur Rev Med Pharmacol Sci. 2021;25:8012-8018. doi:10.26355/eurrev_202112_27652

23. Iuliano AD, Brunkard JM, Boehmer TK, et al. Trends in disease severity and health care utilization during the early omicron variant period compared with previous SARS-CoV-2 high transmission periods – United States, December 2020-January 2022. MMWR Morb Mortal Wkly Rep. 2022;71:146-152. doi:10.15585/mmwr.mm7104e4

24. Sato R, Ishikane M, Kinoshita N, et al. A new challenge of unfractionated heparin anticoagulation treatment for moderate to severe COVID-19 in Japan. Glob Health Med. 2020;2:190-192. doi:10.35772/ghm.2020.01044

25. Suzuki R, Yamasoba D, Kimura I, et al. Attenuated fusogenicity and pathogenicity of SARS-CoV-2 omicron variant. Nature. 2022;603:700-705. doi:10.1038/s41586-022-04462-1

26. Gao YD, Ding M, Dong X, et al. Risk factors for severe and critically ill COVID-19 patients: a review. Allergy. 2021;76:428-455. doi:10.1111/all.14657

27. Campello E, Spiezia L, Zaboeo E, Maggiolo S, Vettor R, Simioni P. Hypercoagulability detected by whole blood thromboelastometry (ROTEM®️) and impedance aggregometry (MULTIPLATE®️) in obese patients. Thromb Res. 2015;135:548-553. doi:10.1016/j.thromres.2015.01.003

28. Hussein AM, Taha ZB, Gailan Malek A, et al. D-dimer and serum ferritin as an independent risk factor for severity in COVID-19 patients. Mater Today Proc. 2021. doi:10.1016/j.matpr.2021.04.009

29. Iczovich A, Ragusa MA, Tortosa F, et al. Prognostic factors for severity and mortality in patients infected with COVID-19: a systematic review. PLoS One. 2020;15:e0241955. doi:10.1371/journal.pone.0241955

30. Busch MH, Timmermans SAMEG, Nagy M, et al. Neutrophils and contact activation of coagulation as potential drivers of COVID-19. Circulation. 2020;142:1787-1790. doi:10.1161/CIRCULATIONAHA.120.050665

31. van de Berg TW, Hulshof AMM, Nagy M, et al. Dutch Covid-19 and thrombosis coalition (DCTC). Suggestions for global coagulation assays for the assessment of COVID-19 associated hypercoagulability. Thromb Res. 2021;201:84-89. doi:10.1016/j.thromres.2020.06.026

32. Bi X, Su Z, Yan H, et al. Prediction of severe illness due to COVID-19 based on an analysis of initial fibrinogen to albumin ratio and platelet count. Platelets. 2020;31:674-679. doi:10.1080/09537104.2020.1760230

33. Gao Y, Li T, Han M, et al. Diagnostic utility of clinical laboratory data determinations for patients with the severe COVID-19. J Med Virol. 2020;92:791-796. doi:10.1002/jmv.25770

34. Boscolo A, Spiezia L, Correale C, et al. Different hypercoagulable profiles in patients with COVID-19 admitted to the internal medicine ward and the intensive care unit. Thromb Haemost. 2020;120:1474-1477. doi:10.15585/tph.00400-1714350

35. Kantarciglu B, Iqbal O, Walenga JM, et al. An update on the pathogenesis of COVID-19 and the reportedly rare thrombotic events following vaccination. Clin Appl Thromb Hemost. 2021;27:10760296211021498. doi:10.1177/10760296211021498

36. Campello E, Simion C, Bulato C, et al. Absence of hypercoagulability after nCoV-19 vaccination: an observational pilot study. Thromb Res. 2021;205:24-28. doi:10.1016/j.thromres.2021.06.016