A REMARK ON A TRACE PALEY–WIENER THEOREM

GORAN MUIĆ

Abstract. In this paper we prove a version of a trace Paley–Wiener theorem for tempered representations of a reductive p–adic group. This is applied to complete certain investigation of Shahidi on the proof that a Plancherel measure is invariant of a L–packet of discrete series.

1. Introduction

Let G be a reductive p–adic group. Let $Rep(G)$ be the category of smooth admissible complex representations of G of finite length, and let $R(G)$ be the corresponding Grothendieck group. We write $Ψ(G)$ (resp., $Ψ^u(G)$) for the group of (resp., unitary) unramified characters of G. $Ψ(G)$ has a structure of algebraic variety (a complex tours), and algebra of regular functions $C[Ψ(G)]$ is generated by evaluations with elements of G. The subgroup $Ψ^u(G)$ is Zariski dense in $Ψ(G)$. We say that a complex function is regular on $Ψ^u(G)$ if it is a restriction of a regular function on $Ψ(G)$. We observe that the restriction map from $C[Ψ(G)]$ into functions on $Ψ^u(G)$ is injective since $Ψ^u(G)$ is Zariski dense in $Ψ(G)$.

We fix a minimal parabolic subgroup P_0, its Levi decomposition $P_0 = M_0U_0$, and, as usual related to these choices, we fix a set of standard parabolic subgroups $P = MU$, where $M_0 ⊂ M$, $P = MP_0$. Since the standard parabolic subgroup is determined by the choice of Levi subgroup, the normalized parabolic induction $Ind_M^G(σ)$, where $σ$ is a smooth representation of M, we write as usual $i_{GM}(σ)$.

In [3], Bernstein, Deligne, and Kazhdan proved a trace Paley–Wiener theorem for category $Rep(G)$. We consider a full subcategory $Rep_t(G)$ of $Rep(G)$ consisting of representations having all irreducible subquotients tempered. Let $R_t(G)$ be the corresponding Grothendieck group. We write $R_t^i(G)$ for the subgroup generated by $i_{GM}(σ)$, where M ranges over standard Levi subgroups of G (including G), and $σ$ ranges over a set of square–integrable irreducible representations of M. We warn the reader that this notion is not an analogue of the notion of structly induced modules from (3, 3.1).

2010 Mathematics Subject Classification. 11E70, 22E50.

Key words and phrases. Paley–Wiener theorem, admissible representations, reductive p–adic groups.

The author acknowledges Croatian Science Foundation grant no. 9364.
We prove the following version of a trace Paley–Wiener theorem:

Theorem 1.1. Let \(f : R_\ell(G) \to \mathbb{C} \) be the \(\mathbb{Z} \)-linear form such that there exists an open compact subgroup \(K \subset G \) which dominates \(f \) (i.e., \(f \) is non-zero only on those irreducible tempered representations which have a non-trivial space of \(K \)-invariant vectors), and, for each standard maximal Levi subgroup \(M \) and a square-integrable modulo center representation \(\sigma \) of \(M \), the function \(\psi \mapsto f(i_{GM}(\psi \sigma)) \) is regular on \(\Psi_u(M) \), and for any other proper standard Levi subgroup \(N \) we have \(f(i_{GM}(\psi \sigma)) = 0 \) for all \(\psi \in \Psi_u(N) \). Then, there exists \(F \in C_c^\infty(G) \) such that \(f(\pi) = \text{tr}(\pi(F)) \), for all \(\pi \in R_i^\ell(G) \).

An effective version of this theorem is given by Proposition 3-1. This constructs correct function needed in the proof of ([9], Proposition 9.3 2)) in the case when \(M \) (see notation there is a Levi of a maximal parabolic subgroup. We remark that since Plancherel factors are multiplicative, it is enough to prove ([9], Proposition 9.3 2)) for maximal Levi subgroup.

I would like to than Gordan Savin for turning my attention to this question. A draft of the paper was written while the author visited the Hong Kong University of Science and Technology in January of 2018. The author would like to thank A. Moy and the Hong Kong University of Science and Technology for their hospitality.

2. **Proof of Theorem**

This theorem is proved by reduction to the main result of [3]. Let \(M \) be a standard Levi subgroup then we write \(\Psi(M)^r \) the group of all unramified characters \(\psi \) such that \(\psi(G) \subset \mathbb{R}_{>0} \).

For a standard Levi subgroup \(M \), a tempered representation \(\pi \) of \(M \), and a “positive character”, with respect to \(P \), \(\psi \in \Psi(M)^r \), the module \(i_{GM}(\psi \pi) \) is called a standard module; it has a unique (Langlands quotient) \(L(i_{GM}(\psi \pi)) \). The condition of positivity is empty if \(M = G \). By the Langlands classification, every irreducible representation can be expressed in the form \(L(i_{GM}(\psi \pi)) \) for unique such datum \((M, \pi, \psi) \). The following standard result will be used in the proof:

Lemma 2-1. The standard modules of \(G \) form a \(\mathbb{Z} \)-basis of \(R(G) \).

Proof. As in ([8], Proposition 1).

In analogy with ([3], 2.1), we make the following definitions.

Let \(\sigma \in \text{Irr}(M) \) where \(M \) is a standard Levi subgroup of \(G \). We define the usual affine variety attached to \(\sigma \)

\[\text{Irr}(M) \supset D(\sigma) = \Psi(M)\sigma = \Psi(M)/\text{Stab}_{\Psi(M)}(\sigma), \]

\[\text{Irr}(M) \supset D(\sigma) = \Psi(M)\sigma = \Psi(M)/\text{Stab}_{\Psi(M)}(\sigma), \]
where $\text{Stab}_{\Psi(M)}(\sigma)$ is a finite group consisting of all $\psi \in \Psi(M)$ such that $\psi \sigma \simeq \sigma$.

If A is a maximal split torus in the centre of M, then the restriction map $\Psi(M) \to \Psi(A)$ is surjective, and the kernel is a finite group. Therefore, by considering the restriction to A we find that

$$\text{Stab}_{\Psi^u(M)}(\sigma) = \text{Stab}_{\Psi(M)}(\sigma).$$

So, we may consider

$$D^u(\sigma) \overset{\text{def}}{=} \Psi^u(M)/\text{Stab}_{\Psi^u(M)}(\sigma) \subset D(\sigma).$$

It is easy to see that $D^u(\sigma)$ is Zariski dense in $D(\sigma)$.

The action of the Weyl group

$$W(M) = N_G(M)/M$$
on $\Psi(M)$ is algebraic. Moreover, $w \in W(M)$ transforms $\text{Stab}_{\Psi(M)}(\sigma)$ onto $\text{Stab}_{\Psi(M)}(w(\sigma))$. So that it maps $D(\sigma)$ (resp., $D^u(\sigma)$) onto $D(w(\sigma))$ (resp., $D^u(w(\sigma))$).

Put $D = D(\sigma)$ and $D^u = D^u(\sigma)$. As usual, we consider the group $W(D)$ of all $w \in W(M)$ such that $w(D) = D$. Explicitly, $W(D)$ consists of all $w \in W(M)$ such that there exists $\psi_w \in \Psi(G)$ such that

$$(2-2) \quad w(\sigma) \simeq \psi_w \sigma.$$

The character ψ_w is determined uniquely modulo $\text{Stab}_{\Psi(M)}(\sigma)$.

The resulting orbit space

$$D/W(D)$$
is affine variety with algebra of regular functions given by

$$\mathbb{C}[D]^{W(D)}.$$ Explicitly, this variety is isomorphic to the orbit space of

$$\Psi(G)/\text{Stab}_{\Psi(M)}(\sigma)$$
under the action of $W(D)$ given by (see (2-2))

$$(2-3) \quad w.\psi \text{Stab}_{\Psi(M)}(\sigma) = \psi_w w(\psi) \text{Stab}_{\Psi(M)}(\sigma).$$

This explicit realization will be important in the next section where we perform explicit constructions.

One can construct a regular function $D/W(D)$ in the following way:

Lemma 2-4. Let $f \in C^\infty_c(G)$. Then $\psi \mapsto tr(i_{GM}(\psi \sigma))$ belongs to $\mathbb{C}[D]^{W(D)}$.
Proof. It is standard that this function is regular on D. We show that it is $W(D)$–invariant. Let $w \in W(D)$. By (3, Lemma 5.3 (iii)), we have

$$tr(i_{GM}(\psi \sigma)) = tr(i_{GM}(w(\psi \sigma)))$$

which completes the proof. \hfill \square

The above explicit description shows that analogously defined group $W(D_u)$ is a subgroup of $W(D)$. In fact, those groups are equal if σ has unitary central character. In this case $D_u/W(D)$ is a subset of $D/W(D)$. It is Zariski dense in $D/W(D)$.

Now, we begin the preparation for the proof of the theorem. The following lemma is a fundamental result of Harish–Chandra:

Lemma 2-5. Assume that M and N are standard Levi subgroups of G, and σ and τ are square–integrable modulo center representations of M and N, respectively. Then, $i_{GM}(\sigma)$ and $i_{GN}(\tau)$ have a common irreducible sub-representation if and only if there exists $w \in G$ such that $N = wMw^{-1}$ and $\tau \simeq w(\sigma)$, where $w(\sigma)$ is defined by $w(\sigma)(n) = \sigma(w^{-1}nw)$, $n \in N$. Moreover, if there exists $w \in G$ such that $N = wMw^{-1}$, then $i_{GM}(\sigma)$ and $i_{GM}(w(\sigma))$ are isomorphic, and in particular equal in $R_t(G)$.

Proof. [10]. \hfill \square

For irreducible $\pi \in R_t(G)$, there exists a standard Levi subgroup M and a square–integrable modulo center σ of M such that $\pi \hookrightarrow i_{GM}(\sigma)$, the pair is (M,σ) is unique up to a conjugation by Lemma 2-5. We call the equivalence class $[M,\sigma]$ under conjugation of the pair (M,σ) the t–infinitesimal character of π. The set of equivalence of such pairs we denote by $\Theta_t(G)$.

For a pair (M,σ), we define a natural map $\Psi^u(M) \longrightarrow \Theta_t(G)$ given by

$$\psi \longmapsto [M,\psi \sigma].$$

The image is called a connected component of $\Theta_t(G)$. We denote it by $\Theta_t(M,\sigma)$. This map induces a bijection which enable us to identify

$$\Theta_t(M,\sigma) = D^u(\sigma)/W(D(\sigma))$$

which gives an embedding

$$\Theta_t(M,\sigma) \subset D(\sigma)/W(D(\sigma))$$

realizing $\Theta_t(M,\sigma)$ as a Zariski dense subset of affine variety $D(\sigma)/W(D(\sigma))$.

As in (3, 2.1), we can decompose

$$R_t(G) = \bigoplus_\theta R_t(G)(\theta),$$

where θ ranges over connected components of $\Theta_t(G)$. Here

$$R_t(G)(\theta)$$
is generated with all tempered representations which \(t \)-infinitesimal characters belonging to \(\theta \).

In analogy with [3], we make the following definition. We say that a \(\mathbb{Z} \)-linear form \(f : \mathbb{R}_t(G) \to \mathbb{C} \) is \textit{good} if there exists an open compact subgroup \(K \subset G \) which dominates \(f \) (i.e., \(f \) is non-zero only on those irreducible tempered representations which have a non-trivial space of \(K \)-invariant vectors), and, for each standard Levi subgroup \(M \) and a square-integrable modulo center representation \(\sigma \) of \(M \), the function \(\psi \mapsto f(i_{GM}(\psi \sigma)) \) is regular on \(\Psi^u(M, \sigma) \) (consequently, using ([3], Lemma 5.3 (iii)), as in the proof of Lemma 2.4 it is regular function on \(\Theta_t(M, \sigma) \)).

The support of a \(\mathbb{Z} \)-linear form \(f : \mathbb{R}_t(G) \to \mathbb{C} \) is the set of all connected components \(\theta \) of \(\Theta_t(G) \) such that \(f \neq 0 \) on \(\mathbb{R}_t(G)(\theta) \).

Lemma 2.6. Every good functional is supported only on finitely many connected components.

Proof. Obvious. \(\square \)

Lemma 2.6 reduces the proof of the theorem to the case where \(f \) is supported on only one orbit. We consider this case and even more in the next section.

3. Proof of the Theorem; main part

In this section we fix a standard maximal Levi subgroup \(M \), a square-integrable representation \(\sigma \in \text{Irr}(M) \), and a regular function \(a \in \mathbb{C}[\Psi(M)] \) which is invariant under right-translations under \(Stab_{\Psi(M)}(\sigma) \) and \(W(D) \)-invariant under the action given by (2.3) where \(D = \Psi(M) \sigma \). This notation is explained in the previous section. We prove the following proposition:

Proposition 3.1. Under above assumptions, there exists \(F \in C_c^\infty(G) \) such that

\[
tr(\pi(F)) = \begin{cases}
a(\psi) & \text{for } \pi = i_{GM}(\psi \sigma), \ \psi \in \Psi(M), \\0 & \text{for } \pi = i_{GN}(\psi \tau), \ \psi \in \Psi(N),\end{cases}
\]

for any standard proper Levi subgroup \(N \) and a square-integrable representation \(\tau \) such that \(\Theta_t(N, \tau) \neq \Theta_t(M, \sigma) \).

The proof of Proposition 3.1 is a generalization of ([8], 4.2, Proposition 1) where the proof of existence of pseudo-coefficients for semisimple \(G \) is given based also on [3].

We remark that \(\Psi^u(G) \) acts on \(\Psi^u(M) \) in a usual way:

\[
\psi \mapsto \chi|_M \psi, \ \chi \in \Psi^u(G), \ \psi \in \Psi^u(M).
\]
For $\psi \in \Psi^u(M)$, the stabilizer

$$\text{Stab}_{\Psi^u(G)}(i_{GM}(\psi\sigma))$$

is the group of all $\chi \in \Psi^u(G)$ such that

$$\chi i_{GM}(\psi\sigma) \simeq i_{GM}(\psi\sigma).$$

We remind the reader that for all $\chi \in \Psi^u(G)$ we have

$$\chi i_{GM}(\psi\sigma) \simeq i_{GM}(\chi|_M\psi\sigma).$$

Lemma 3-2. Assume that $\chi \in \Psi^u(G)$ and $\psi \in \Psi^u(M)$. Then, for each irreducible constituent π of $i_{GM}(\psi\sigma)$, the multiplicity of $\chi\pi$ in $\chi i_{GM}(\psi\sigma)$ is same as that of π in $i_{GM}(\psi\sigma)$.

Proof. Obvious. \square

Lemma 3-3. Assume that for $\chi \in \Psi^u(G)$ and $\psi \in \Psi^u(M)$ there exists an irreducible constituent π of $i_{GM}(\psi\sigma)$ such that $\chi\pi$ is an irreducible constituent of $i_{GM}(\psi\sigma)$. Then, $\chi \in \text{Stab}_{\Psi^u(G)}(i_{GM}(\psi\sigma))$.

Proof. First, $\chi\pi$ is a common constituent of $i_{GM}(\psi\sigma)$ and $i_{GM}(\chi|_M\psi\sigma)$. So, by Lemma [2-5] there exists $w \in W(M)$ such that

$$\chi|_M\psi\sigma = w(\psi\sigma).$$

Then, again by Lemma [2-5] we obtain

$$\chi i_{GM}(\psi\sigma) \simeq i_{GM}(\psi\sigma).$$

\square

Lemma 3-4. Let $\psi \in \Psi^u(M)$. Then, we have the following:

(i) If $\chi \in \text{Stab}_{\Psi^u(G)}(i_{GM}(\psi\sigma))$, then $a(\chi|_M\psi) = a(\psi)$.
(ii) For each $\eta \in \Psi(G)$ and $\chi \in \text{Stab}_{\Psi^u(G)}(i_{GM}(\psi\sigma))$, we have

$$a(\chi|_M\eta|_M\psi) = a(\eta|_M\psi).$$

Proof. We prove (i). Since $\chi \in \text{Stab}_{\Psi^u(G)}(i_{GM}(\psi\sigma))$, we obtain

$$i_{GM}(\chi|_M\psi\sigma) \simeq \chi i_{GM}(\psi\sigma) \simeq i_{GM}(\psi\sigma).$$

So, by Lemma [2-5] there exists $w \in W(M)$ such that

$$\chi|_M\psi\sigma = w(\psi\sigma).$$

This implies

$$w \in W(D),$$

and

$$\chi|_M\psi\sigma = \psi_w w(\psi)\sigma.$$
Consequently (see (2-3))

\[\chi|_M \psi Stab_{\Psi(M)}(\sigma) = \psi_w w(\psi) Stab_{\Psi(M)}(\sigma) = w. \psi Stab_{\Psi(M)}(\sigma). \]

This implies \(a(\chi|_M \psi) = a(\psi) \). This proves (i).

To prove (ii), we may assume that \(\eta \) is unitary. Then, we obviously have

\[Stab_{\Psi^u(G)}(i_{GM}(\eta|_M \psi \sigma)) = Stab_{\Psi^u(G)}(i_{GM}(\psi \sigma)). \]

Now, the claim follows from (i).

□

Now, we define a \(\mathbb{Z} \)-linear form \(f : R(G) \rightarrow \mathbb{C} \) in several steps.

1. For each \(\Psi^u(G) \)-orbit \(\mathcal{O} \) in \(\Psi^u(M) \), we fix a representative \(\psi_\mathcal{O} \in \mathcal{O} \) and an irreducible constituent \(\pi_\mathcal{O} \) in \(i_{GM}(\psi_\mathcal{O} \sigma) \). By Lemma 3-2 we have

\[(3-5) \quad Stab_{\Psi^u(G)}(\pi_\mathcal{O}) \subset Stab_{\Psi^u(G)}(i_{GM}(\psi_\mathcal{O} \sigma)). \]

The quotient is finite and if \(\chi \) ranges over representatives of the quotient, then \(\chi \pi_\mathcal{O} \) ranges over the set of all mutually non-equivalent irreducible sub-representations in \(i_{GM}(\psi_\mathcal{O} \sigma) \) which are \(\Psi^u(G) \)-equivalent to \(\pi_\mathcal{O} \). Any of those representations, have the same multiplicity in \(i_{GM}(\psi_\mathcal{O} \sigma) \). Let \(m_\mathcal{O} \) be the sum of their multiplicities. We define:

\[f(\chi \pi_\mathcal{O}) = \frac{a(\psi_\mathcal{O})}{m_\mathcal{O}}, \quad \chi \in Stab_{\Psi^u(G)}(i_{GM}(\psi_\mathcal{O} \sigma)). \]

Lemma 3-4 shows that this is well-defined.

2. For each \(\chi \in \Psi^u(G) \), we obviously have

\[Stab_{\Psi^u(G)}(\chi \pi_\mathcal{O}) = Stab_{\Psi^u(G)}(\pi_\mathcal{O}) \]

and

\[Stab_{\Psi^u(G)}(i_{GM}(\chi|_M \psi_\mathcal{O} \sigma)) = Stab_{\Psi^u(G)}(i_{GM}(\psi_\mathcal{O} \sigma)). \]

By, Lemma 3-2 and these remarks, the sum of multiplicities of \(\Psi^u(G) \)-equivalent representations of \(\pi_\mathcal{O} \) which belong to \(i_{GM}(\chi|_M \psi_\mathcal{O} \sigma) \) is again \(m_\mathcal{O} \). We let

\[f(\chi \pi_\mathcal{O}) = \frac{a(\chi|_M \psi_\mathcal{O})}{m_\mathcal{O}}, \quad \chi \in \Psi^u(G). \]

3. For any other tempered irreducible representation \(\pi \) of \(G \) we let

\[f(\pi) = 0. \]

4. For any quasi-tempered irreducible representation \(\pi \) of \(G \), we write \(\pi = \chi \pi^u \), where \(\chi \) is real unramified character of \(G \) and \(\pi^u \) is tempered. We let

\[f(\pi) = 0. \]
if π^u is not in $\Psi^u(G)\piO$ for any orbit O. But if $\pi^u \in \Psi^u(G)\piO$ for some O, then we can write $\pi^u = \psi\piO$, for some $\psi \in \Psi^u(G)$ uniquely determined modulo $\text{Stab}_{\Psi^u(G)}(\piO)$. We let

$$f(\pi) = \frac{a(\chi|_{M}\psi|M\psiO)}{mO}.$$

Using (3-5) and Lemma 3-4 we see that this is well-defined.

Lemma 3-6. f is supported on $\Theta_t(M, \sigma)$. Moreover, we have the following:

$$f(\pi) = \begin{cases} a(\psi) & \text{for } \pi = i_{GM}(\psi\sigma), \; \psi \in \Psi^u(M), \\ 0 & \text{for } \pi = i_{GN}(\psi\tau), \; \psi \in \Psi^u(N), \end{cases}$$

for any standard Levi N and a square–integrable representation τ such that $\Theta_t(N, \tau) \neq \Theta_t(M, \sigma)$.

6. Finally, we define f on non–tempered Langlands quotients (see Lemma 2-1). let f to be equal to zero on all standard modules (induced from proper parabolic subgroups) except at those of the form

$$i_{GM}(\chi\psi\sigma),$$

where $\psi \in \Psi^u(M)$, $\chi \in \Psi(M)^r$ “positive character”, with respect to P, where P is standard parabolic subgroup with Levi M. In this case we let

$$f(i_{GM}(\chi\psi\sigma)) = a(\chi\psi).$$

It is also possible that $\chi \in \Psi(M)^r$ “positive character”, with respect to P. Then, there exists standard maximal parabolic subgroup Q with standard Levi and $w \in G$ such that $N = wMw^{-1}$. Now, in $R(G)$, we have

$$i_{GM}(\chi\psi\sigma) = i_{GN}(w(\chi)w(\psi)w(\sigma)),$$

and $w(\chi)$ “positive character”, with respect to P. On the standard module $i_{GN}(w(\chi)w(\psi)w(\sigma))$ we let

$$f(i_{GN}(w(\chi)w(\psi)w(\sigma))) = a(\chi\psi).$$

The third case that $\chi \in \Psi(M)^r$ is in neither chamber. Then it is in $\Psi(G)^r$, and

$$i_{GM}(\chi\psi\sigma) = \chi i_{GM}(\psi\sigma)$$

One can check the assumptions of (Theorem 1.2, [3]) as in [8]. This completes the proof of Proposition 3-1. Having completed the proof of Proposition 3-1, Theorem 1-1 is proved.
References

[1] J. Bernstein, rédigé par P. Deligne, Le ‘centre’ de Bernstein, Répresentations des groupes réductif sur un corps local, Herman, Paris, 1984.

[2] J. Bernstein, Draft of: Representations of p-adic groups (lectures at Harvard University, 1992, written by Karl E. Rumelhart)

[3] J. N. Bernstein, P. Deligne, D. Kazhdan, Trace Paley-Wiener theorem for reductive p-adic groups, J. Analyse Math. 47 (1986), 180-192.

[4] J. Bernstein, A. V. Zelevinsky, Representations of the group $GL(n, F)$, where F is a local non-Archimedean field (Russian), Uspehi Mat. Nauk 31 (1976), no. 3(189), 5–70.

[5] I. N. Bernstein, A. V. Zelevinsky, Induced representations of reductive p-adic groups I, Ann. Sci. École Norm Sup., 10 (1977), 441-472.

[6] P. Cartier, Representations of p-adic groups: a survey. Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part I, Proc. Sympos. Pure Math., XXXIII Amer. Math. Soc., Providence, R.I (1979), 111–155.

[7] W. Casselman, Introduction to the theory of admissible representations of p-adic reductive groups, preprint.

[8] L. Clozel, On limit multiplicities of discrete series representations in spaces of automorphic forms, Invent. Math. 85 (1986), 265–284.

[9] F. Shahidi, A proof of Langlands conjecture on Plancherel measures; complementary series for p-adic groups, Annals of Math. 132 (1990), 273-330.

[10] J. L. Waldspurger, La formule de Plancherel pour les groupes p-adiques, d’après Harish-Chandra, Journal of the Inst. of Math. Jussieu 2(2), 235-333, 2003.

Department of Mathematics, Faculty of Science, University of Zagreb, Bijenička 30, 10000 Zagreb, Croatia
E-mail address: gmuic@math.hr