Small Interfering RNA against Transcription Factor STAT6 Leads to Increased Cholesterol Synthesis in Lung Cancer Cell Lines

Richa Dubey*, Ravindresh Chhabra*, Neeru Saini*

Functional Genomics Unit, Institute of Genomics and Integrative Biology (CSIR), Delhi, India

Abstract

STAT6 transcription factor has become a potential molecule for therapeutic intervention because it regulates broad range of cellular processes in a large variety of cell types. Although some target genes and interacting partners of STAT6 have been identified, its exact mechanism of action needs to be elucidated. In this study, we sought to further characterize the molecular interactions, networks, and functions of STAT6 by profiling the mRNA expression of STAT6 silenced human lung cells (NCI-H460) using microarrays. Our analysis revealed 273 differentially expressed genes after STAT6 silencing. Analysis of the gene expression data with Ingenuity Pathway Analysis (IPA) software revealed Gene expression, Cell death, Lipid metabolism as the functions associated with highest rated network. Cholesterol biosynthesis was among the most enriched pathways in IPA as well as in PANTHER analysis. These results have been validated by real-time PCR and cholesterol assay using scrambled siRNA as a negative control. Similar findings were also observed with human type II pulmonary alveolar epithelial cells, A549. In the present study we have, for the first time, shown the inverse relationship of STAT6 with the cholesterol biosynthesis in lung cancer cells. The present findings are potentially significant to advance the understanding and design of therapeutics for the pathological conditions where both STAT6 and cholesterol biosynthesis are implicated viz. asthma, atherosclerosis etc.

Citation: Dubey R, Chhabra R, Saini N (2011) Small Interfering RNA against Transcription Factor STAT6 Leads to Increased Cholesterol Synthesis in Lung Cancer Cell Lines. PLoS ONE 6(12): e28509. doi:10.1371/journal.pone.0028509

Editor: Sunil K. Ahuja, South Texas Veterans Health Care System, United States of America

Received June 9, 2011; Accepted November 9, 2011; Published December 5, 2011

Copyright: © 2011 Dubey et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The authors acknowledge the Department of Biotechnology (DBT) for funding the project titled ‘Study of STAT6 transcription factor in apoptosis regulation using RNAi Technology’ (GAP0047). RD was financially supported by DBT project GAP0047. RC was supported with CSIR-Senior Research Fellowship (Council of Scientific and Industrial Research). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: nsaini@igib.in

† These authors contributed equally to this work.

Introduction

STAT6 is one of the seven members of the family of transcription factors that participate in the regulation of gene expression when cells encounter various extracellular polypeptides like cytokines, growth factors and hormones and regulate a broad range of cellular processes including proliferation, differentiation, and apoptosis [1,2,3,4]. In general, unphosphorylated STAT proteins exist as latent forms in the cytoplasm. The cytokine exposure leads to STAT phosphorylation by Janus kinases and once phosphorylated the dimerization of individual STAT proteins occur via their SH2 domains followed by migration of functional STAT dimer to the nucleus where it can bind DNA and directly activate transcription of cytokine responsive genes [5,6]. Just like the other members of the STAT family, STAT6 plays a dual role of signal transducer and activator of transcription by either directly regulating gene expression or by interacting with a wide variety of other transcription factors [7].

IL-4 and IL-13 induced STAT6 signaling has been shown to play an important role in the differentiation of Th2 cells, B cell induced expression of IgG and IgE and the cell surface display of MHC class II and CD23 [8,9,10,11]. Though STAT6 is primarily known to be associated with allergic inflammation and asthma, STAT6 deregulation has also been implicated in various other diseases. STAT6 plays a key role in T cell hepatitis via enhancing expression of cotaxins in hepatocytes and endothelial cells, and induces IL-5 expression, infiltration of eosinophils and neutrophils into the liver and leading to hepatitis [12]. There are also evidences that IL-4-induced activation of STAT6 is associated with reduced hepatic expression of TNFα as well as attenuation of liver neutrophil recruitment and may protect against hepatic ischemia/reperfusion injury [13]. STAT6 has also been demonstrated to be involved in ciliary mechanosensation in kidney epithelial cell [14]. Recently, IL-4 and STAT6 gene polymorphisms have also been found associated with systemic lupus erythematosus development in Chinese patients [15]. Shum et al in 2006 provided a link between allergic inflammation and fatty acid metabolism where they have shown that an IL-4/STAT6 regulated gene aP2, which plays an important role in lipid metabolism, is required in Th2 mediated allergic airway inflammation [16] and recently STAT6 has been found to play a role in regulating lipid homeostasis in liver as increased lipid deposition was observed in STAT6 knockout mice [17]. In addition to the above findings, Zhang et al in 2006 reported that STAT6 silencing inhibits proliferation and induces apoptosis in colon cancer HT-29 cells [1]. In another study, Das et al in 2007...
found that STAT6 is a constitutively expressed survival factor in human prostate cancer [10]. This effect of STAT6 was further strengthened in a study by Cui et al in 2007, where they have shown that unphosphorylated STAT6 transcriptionally up regulates COX-2 expression and protects against apoptosis in NSCLC (non-small cell lung cancer) cells [19].

Although, a few target genes and some interacting partners of STAT6 have been known till date, the precise mechanisms of STAT6 mediated signaling is largely unknown. In view of this, we sought to study the effect of STAT6 silencing on genome wide gene expression patterns in NCI-H460 cells (lung cancer epithelial). The results obtained after siRNA mediated silencing of STAT6 in NCI-H460 cells were also validated in A549 cells.

Materials and Methods

Cell culture and siRNA Transfection

Lung carcinoma (NCI-H460 and A549) cells were obtained from National Centre for Cell Science, Pune, India and maintained in RPMI-1640/DMEM media, containing 10% fetal calf serum and antibiotics (100 U/ml penicillin, 100 μg/ml streptomycin) at 37°C in a humidified atmosphere of 5% CO2 in air.

For transfection in 12 well plates, 1.2 x 10⁶ cells were seeded per well and allowed to adhere overnight. The following day cells were transfected with 60 nM of validated siRNA (Ambion, USA) using tAidTM H Minus Reverse Transcriptase kit (Fermentas, USA) for 4 h. The cells were harvested after 24 h/48 h/72 h post transfection and used for the experiments. The untransfected and scrambled siRNA transfected cells were harvested after 48 h for all the experiments unless otherwise indicated.

RNA Extraction and Real Time PCR

Total RNA was extracted using Trizol reagent (Invitrogen, CA, USA) and 2 μg of RNA was reverse transcribed using Rever-tAid™ H Minus Reverse Transcriptase kit (Fermentas, USA) according to the manufacturer’s protocol. Real time PCR was done using SYBR Green PCR master mix (Applied Biosystems, Foster City, CA). Results were normalized with 18s rRNA. Data was done using SYBR Green PCR master mix (Applied Biosystems, Foster City, CA). Results were normalized with 18s rRNA. Data was analysed using Pfaffl’s method [20]. The primer sequences used for RT-PCR are given in Table S1.

Western Blotting

Cells were trypsinized and cell pellets were lysed with modified RIPA buffer [50 mM Tris-HCl, pH 7.4, 150 mM NaCl, 1 mM EDTA, 1% NP40, 0.25% Na deoxycholate, 1 μg/ml aprotinin, 1 μg/ml leupeptin, 1 μg/ml pepstatin, 1 mM phenylmethylsulfonyl fluoride (PMSF), 1 mM sodium orthovanadate, and 1mM sodium fluoride] and kept in ice for 30 min. Lysate was centrifuged at 12000 rpm for 30 min, supernatant collected and protein estimation was done using the BCA method. Equal amounts of protein (50 μg) were separated on 12% sodium dodecyl sulphate – polyacrylamide gel electrophoresis (SDS-PAGE) and transferred to PVDF membrane. The membrane was blocked with 3% skim milk in Tris buffered saline (20 mM Tris, 150 mM NaCl, pH 7.4) with 0.1% Tween-20 for 1 h and then incubated with primary antibody in 1% skim milk for 2 h followed by incubation with appropriate secondary antibody (anti-mouse ALP linked or anti-rabbit ALP linked) for 1 h. Blots were developed using NBT-BCIP as substrate. Equal loading of protein was confirmed using GAPDH antibody. Measurement of signal intensity on PVDF membranes after western blotting was performed using AlphaImager 3400 (Alpha InnoTech Corpora-

tion, San Leandro, California). The IDV values are calculated as the density values of the specific protein band/GAPDH density values. The fold change with respect to untransfected cells was then calculated based on IDV values. All experiments were repeated at least three times; representative results are presented.

Illumina Microarray

Genome wide effect of STAT6 silencing was studied using Illumina microarray. Two biological replicates of untransfected NCI-H460 cells and NCI-H460 cells transfected with 60nM of STAT6 siRNA (for 48 h) were used in the array experiment. Total RNA was extracted using Trizol reagent (Invitrogen, CA, USA), purified and concentrated using RNeasy MinElute Cleanup Kit (Qiagen, CA, USA) as per the manufacturer’s protocol. All RNA samples were tested for integrity by gel electrophoresis. The Illumina TotalPrep RNA Amplification Kit (Ambion, TX, USA) was used to generate biotinylated, amplified RNA. In brief, 500 ng of total RNA was reverse transcribed with an oligo(dT) primer using ArrayScript enzyme and amplified overnight with T7 RNA polymerase and labeled with biotin according to the manufacturer’s protocol. This labelled amplified RNA (aRNA) was hybridized to Illumina Genome-Wide Expression BeadChips (Human Ref-6 v.3.0, Illumina, CA, USA) representing ~43,000 human transcripts at 58°C overnight. Arrays were incubated with Cy3 streptavidin and washed according to the manufacturer’s protocol. The chip was scanned using Illumina scanner (iScan) and the analysis of the microarray data was done using Illumina Beadstudio 2.0 software. The data was average normalized and the genes which crossed the threshold of detection p value ≤ 0.05 among all the samples and differential score p value ≤ 0.05 among the test samples were considered to be differentially expressed genes. The work-flow diagram of this experiment is given in Figure S1. The data obtained has been deposited in NCBI’s Gene Expression Omnibus [21] and is accessible through Gene Expression Omnibus (GEO) Series accession number GSE25942 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE25942).

Ingenuity pathway analysis (IPA)

Datasets representing genes with altered expression profile derived from microarray analyses were imported into the Ingenuity Pathway Analysis Tool (IPA Tool; Ingenuity®Systems, Redwood City, CA, USA; http://www.ingenuity.com). In IPA, differentially expressed genes are mapped to genetic networks available in the Ingenuity database and then ranked by score.

The basis of the IPA program consists of the Ingenuity Pathway Knowledge Base (IPKB) which is derived from known functions and interactions of genes published in the literature. Thus, the IPA Tool allows the identification of biological networks, global functions and functional pathways of a particular dataset. The program also gives the significance value of the genes, the other genes with which it interacts, and how the products of the genes directly or indirectly act on each other, including those not involved in the microarray analysis. The networks created are ranked depending on the number of significantly expressed genes they contain and also list diseases that were most significant. A network is a graphical representation of the molecular relationships between molecules. Molecules are represented as nodes, and the biological relationship between two nodes is represented as an edge (line). All edges are supported by at least 1 reference from the literature, from a textbook, or from canonical information stored in the Ingenuity Pathways Knowledge Base. The intensity of the node color indicates the degree of up- (red) or down- (green) regulation. Nodes are displayed using various shapes that represent the functional class of the gene product.
levels were normalized to amounts of total cellular protein. According to the manufacturer’s instructions. The cholesterol estimated by spectrophotometry at cholesterol Reaction Buffer provided with the kit. Cholesterol was was then added to the reaction mixture and incubated for 45 min or mutated labeled double stranded oligonucleotide (40,000 cpm) 8 mM Tris-KCl (pH 8.0), 2 mM EDTA, 1 mM DTT, 12% glycerol, 1 mg BSA and 1 mg of poly(d)-dC. Either the wild type or mutated labeled double stranded oligonucleotide (40,000 cpn) was then added to the reaction mixture and incubated for 45 min at room temperature. On termination of incubation, samples were loaded onto a non-reducing 6% polyacrylamide gel and electrophoresed in 0.5X TBE. Gels were then dried and subjected to phosphorimager analyses (FLA 2000, Fujifilm, Japan). The densitometric analyses were done using the AlphaImager 3400 (Alpha InnoTech Corporation, San Leandro, California). The same size rectangle box was drawn surrounding each band and the intensity of each was analyzed by the program after subtraction of the background intensity.

Cholesterol assay
Cholesterol content was determined in the cells using cholesterol quantitation kit (Biovision, CA, USA) according to the manufacturer’s instruction. In brief, 10^6 cells were lysed and lipids were extracted by homogenization with 200 μl of chloroform: isopropanol: Triton X-100 (7:11:0.1). These lipid extracts were vacuum dried for 30 min and the residues were dissolved in 200 μl cholesterol Reaction Buffer provided with the kit. Cholesterol was estimated by spectrophotometry at λ = 570 nm in a 96 well plate according to the manufacturer’s instructions. The cholesterol levels were normalized to amounts of total cellular protein.

Promoter Analysis
To identify the common regulatory controls among the altered genes, genes of the cholesterol biosynthesis pathway (HMGC-R- 3-hydroxy-3-methylglutaryl-Coenzyme A reductase, HMGCS1- 3-hydroxy-3-methylglutaryl-Coenzyme A synthase 1 and ID1- Isopentenyl-diphosphate delta isomerase 1) were taken for promoter analysis. Ensembl [23] was used to retrieve 5.0 kb upstream regions from the transcription start sites of these genes and the transcription factor(s) binding within this region was determined using Over-represented Transcription Factor Binding Site Prediction (OTFBS) tool [24] that detects over-represented motifs of known transcription factors for a set of genes.

Electrophoretic Mobility Shift Assay (EMSA)
The electrophoretic mobility shift assay was carried out as described by Shiraga et al. [37]. Nuclear extracts were prepared from untransfected, siRNA-transfected (60 nM, 48 h/72 h) and scrambled siRNA transfected NCI-H460 cells by using NE-PER Nuclear and Cytoplasmic Extraction Reagent Kit (Pierce) according to the manufacturer’s protocol.

The oligonucleotide sequences used in EMSA were taken from an earlier published study [25]. Double stranded DNA was generated by mixing equimolar amounts of the complementary oligonucleotides in annealing buffer (Ambion, CA, USA). Mutated sequence of the transcription factor was also used to check the specificity of the binding of the transcription factor. These annealed double stranded DNA were labeled with [c32-P]-ATP (BRIT, Hyderabad, India) in the presence of T4-poly nucleotide-kinase (New England Biolabs, MA, USA) according to manufacturer’s instructions. Nuclear extracts (18 μg) from the untransfected and siRNA-transfected cells were incubated for 30 min at room temperature in the presence of reaction buffer containing 8 mM Tris-KCl (pH 8.0), 2 mM EDTA, 1 mM DTT, 12% glycerol, 1 mg BSA and 1 mg of poly(d)-dC. Either the wild type or mutated labeled double stranded oligonucleotide (40,000 cpn) was then added to the reaction mixture and incubated for 45 min.

Results

STAT6 downregulation using STAT6 specific siRNA
The efficacy of STAT6 specific siRNA to down regulate STAT6 expression in NCI-H460 cells was evaluated by real time PCR for RNA expression and western blotting for protein levels. As shown in Fig. 1b, the RNA levels decreased by 1.20 fold at 24h, 2.12 fold (p value = 0.046) at 48 h and by 1.66 fold (p value = 0.05) at 72 h in siRNA transfected NCI-H460 cells in comparison to untransfected NCI-H460 cells. There was no significant change in the untransfected cells and scrambled siRNA transfected cells at different time points. However, the protein levels of STAT6 were reduced in a time-dependent manner. As shown in Fig. 1a and 1b, there was 1.13 fold decrease at 24 h, 1.79 fold (p value = 0.02) decrease at 48 h and 2.40 fold (p value = 0.028) decrease at 72 h post transfection of STAT6 specific siRNA in NCI-H460 cells in comparison to untransfected NCI-H460 cells. There was no significant change in the untransfected cells and scrambled siRNA transfected cells at different time points. However, the protein levels of STAT6 were reduced in a time-dependent manner. As shown in Fig. 1a and 1b, there was 1.13 fold decrease at 24 h, 1.79 fold (p value = 0.02) decrease at 48 h and 2.40 fold (p value = 0.028) decrease at 72 h post transfection of STAT6 specific siRNA in NCI-H460 cells in comparison to untransfected NCI-H460 cells at respective time points. We next checked the expression of phosphorylated STAT6 (pSTAT6) protein which is the activated signaling form of STAT6. In concordance with STAT6 protein levels, the expression of pSTAT6 protein levels was also reduced in a time-dependent manner. There was 1.13 fold decrease at 24 h, 1.35 fold (p value = 0.0005) decrease at 48 h and 2.67 fold (p value = 0.001) decrease at 72 h post transfection of STAT6 specific siRNA in NCI-H460 cells when compared with untransfected NCI-H460 cells at respective time points (Fig. 1a and b). Non significant changes were observed in cells transfected with scrambled siRNA (negative control) at different time points.
Genome wide effects of STAT6 silencing in NCI-H460 cell line using Illumina microarray

The gene expression profiles in untransfected NCI-H460 cells and NCI-H460 cells transfected with STAT6 siRNA were determined by illumina microarray using two biological replicates. Illumina array experiment identified 273 differentially expressed genes (187 downregulated and 86 upregulated). Raw data was analysed using Beadstudio 2.0 software. The array data was average normalized and filtered by detection of a p value ≤ 0.05 and differential p value ≤ 0.05. The list of differentially expressed genes along with their fold changes is provided in the Table S2.

Elucidation of pathways and interactions among differentially expressed genes

To investigate possible biological interactions of differently regulated genes, datasets representing genes with altered expression profile derived from microarray analyses were imported into the Ingenuity Pathway Analysis Tool.

The list of differentially expressed genes analyzed by IPA revealed 20 significant networks (Table S3). Fig. 2a represents the list of top 5 networks identified by IPA. Of these networks, Gene expression, Cell death, Lipid metabolism was the highest rated network with 28 focus molecules and the significance score of 54 (Fig. 2b). The score is the probability that a collection of genes equal to or greater than the number in a network could be achieved by chance alone. A score of 3 indicates a 1/1000 chance that the focus genes are in a network not due to random chance. The list of genes in this network with their respective fold changes in the array data is provided in the Table S4.

The IPA analysis also groups the differentially expressed genes into biological mechanisms that are related to toxicity groups. In the toxicology list, Cholesterol biosynthesis and p53 Signaling came out to be the top two most significant pathways with a p value of 0.011.
and 0.013, respectively (Fig. 2c). The genes associated with the top tox list are also given in the Table S5.

Simultaneously, differentially expressed gene list obtained after STAT6 silencing in NCI-H460 cells was fed into the PANTHER web resource to reveal enriched pathways. Interestingly, in this analysis too we found cholesterol biosynthesis and apoptosis signaling among the significantly enriched pathways. The pathways which passed the threshold of \(p \text{ value} < 0.05 \) in PANTHER analysis are listed in Table 1.

STAT6 silencing increases expression of genes associated with cholesterol biosynthesis/homeostasis and enhances cholesterol levels

Since the top most network obtained in IPA analysis was Gene expression, Cell death, Lipid metabolism and cholesterol biosynthesis came out enriched in both IPA and PANTHER analysis we checked the changes in cholesterol levels after STAT6 silencing by siRNA in NCI-H460 cells. Scrambled siRNA was used as a negative control. Fig. 3a shows that the STAT6 silencing increased cholesterol levels in a time dependent manner, with 1.23 fold increase at 24 h, 1.8 fold (\(\text{p value} = 0.005 \)) increase at 48 h and 2.3 fold (\(\text{p value} = 0.004 \)) increase at 72 h post transfection of siRNA in NCI-H460 cells. However, no such change was observed in the cholesterol levels in NCI-H460 cells transfected with scrambled siRNA. We also obtained similar results in A549 cells (Fig. 3a). There was 1.29 fold increase at 24 h, 1.6 fold increase (\(\text{p value} = 0.03 \)) at 48 h and 2.2 fold increase (\(\text{p value} = 0.04 \)) at 72 h post transfection of siRNA in A549 cells, thereby indicating that the increase in cholesterol levels could be a general effect of STAT6 silencing on lung cells.

Since IL-4 is known to phosphorylate STAT6, we wanted to look for the role of IL-4 in cholesterol synthesis. In NCI-H460 cells, there was 1.48 fold (\(\text{p value} = 0.01 \)) change in the level of pSTAT6 (phosphorylated form of STAT6) protein after IL-4 treatment, 0.48 fold (\(\text{p value} = 0.01 \)) change after transfection of STAT6 siRNA and 0.69 fold (\(\text{p value} = 0.05 \)) change when the cells transfected with STAT6 siRNA were treated with IL-4 (Fig. 3b). Corresponding to this, there was 0.8 fold (\(\text{p value} = 0.05 \)) change in the cholesterol levels after IL-4 treatment, 1.5 fold (\(\text{p value} = 0.01 \)) change after transfection of STAT6 siRNA and 1.32 fold (\(\text{p value} = 0.03 \)) change when the cells transfected with STAT6 siRNA were treated with IL-4 (Fig. 3d). Similar results were also observed in A549 cell line (Fig. 3d).

We next looked for the differentially expressed genes associated with cholesterol biosynthesis/homeostasis obtained from the microarray data. In concordance with the illumina array data, the transcript levels of these genes were confirmed to be upregulated by real time PCR. We observed 1.27 fold (\(\text{p value} = 0.03 \)) increase in HMGCR levels, which is the key regulatory enzyme of cholesterol biosynthesis pathway. We also observed 1.94 fold (\(\text{p value} = 0.03 \)) increase in HMGCS1, 2.7 fold increase in IDI1, 4.2 fold (\(\text{p value} = 0.04 \)) increase in CYP27B1 (Cytochrome P450, family 27, subfamily B, polypeptide 1), and 3.0 fold increase in INSIG1 (Insulin induced gene 1) levels at 48 h post transfection of NCI-H460 cells with STAT6 specific siRNA in comparison to the untransfected NCI-H460 cells (Fig. 3c).
Similar increase in transcript levels of these genes were also observed in another lung cancer cell line, A549 (Fig. 3c) where we observed 1.6 fold (p value = 0.03) increase in HMGCR levels, 1.4 fold increase in HMGCS1, 1.56 fold increase in IDI1, 2.4 fold increase in CYP27B1, and 1.25 fold increase in INSIG1 levels at 48 h post transfection of A549 cells with STAT6 specific siRNA in comparison to the untransfected A549 cells. This implies that the effects of STAT6 silencing are general and not restricted to any particular lung cancer cell line.

The protein levels of HMGCR, HMGCS1 and IDI1 were also examined in untransfected and siRNA transfected NCI-H460 cells at 48h and 72h post transfection. There were 2.9, 3.5 (p value = 0.040) and 4.3 fold increase in HMGCS1, 0.94, 1.8 and 2.4 (p value = 0.03) fold increase in HMGCR levels, 1.6, 2.4 and 2.5 (p value = 0.024) fold increase in IDI1 levels at 24 h, 40 h and 72 h post transfection, respectively. Non significant changes were observed in case of cells transfected with scrambled siRNA (Fig. 3c).

Promoter analysis and validation of Candidate Transcription Factors

We next performed the promoter analysis for the 3 enzymes (HMGCR, HMGCS1, IDI1) of the cholesterol biosynthesis pathway (Fig. 4a) that are upregulated after STAT6 silencing using the OTFBS, a tool that predicts common transcription factors for a set of genes. This was reasonable as genes with similar functions or that participate in a common process are often transcriptionally coregulated [26,27]. This analysis revealed FOXD3 and FOXJ2 as the significant potential transcription factors consistently occurring in the promoters of HMGCR, HMGCS1 and IDI1. The binding sites of FOXJ2 and FOXD3 to the 5kB region upstream of transcription start site of these genes as revealed by OTFBS have been shown in Fig. 4b. To validate these transcription factors, electrophoretic mobility shift assay was performed for one of the candidate transcription factors, FOXJ2. As seen from Fig. 4c, when FOXJ2 oligonucleotides were incubated with the nuclear extract of the untransfected NCI-H460 cells, there was considerable formation of the DNA-protein complex in comparison to the free labeled probe. This complex formation increased significantly in case of nuclear extracts from siRNA transfected NCI-H460 cells and this increase was 2.07 fold at 48 h and 2.17 fold at 72 h post transfection of STAT6 specific siRNA indicating that STAT6 silencing increased the binding of FOXJ2 to their binding elements that validate our predicted finding detailed above.

Table 1. Enriched pathways from PANTHER analysis.

Pathways	Homo sapiens genes (reference)	Differentially expressed gene list
	#	# expected +/− p value
Cholesterol biosynthesis	13	3 0.16 + 5.71E-04
Serine glycine biosynthesis	5	2 0.06 + 1.75E-03
Apoptosis signaling pathway	123	6 1.49 + 4.15E-03
Oxytocin receptor mediated signaling pathway	60	4 0.73 + 6.42E-03
Thryotropin-releasing hormone receptor signaling pathway	62	4 0.75 + 7.19E-03
Cytoskeletal regulation by Rho GTPase	98	5 1.19 + 7.22E-03
SHT2 type receptor mediated signaling pathway	69	4 0.84 + 1.03E-02
Cysteine biosynthesis	1	1 0.01 + 1.20E-02
Histamine H1 receptor mediated signaling pathway	47	3 0.57 + 2.00E-02
Lipolate biosynthesis	2	1 0.02 + 2.39E-02
Proline biosynthesis	4	1 0.05 + 4.73E-02

(* # - number of genes, expected - the number of genes expected in the list for this PANTHER category, based on the reference list, +/− - Over representation of a category is denoted by a + sign and under representation by a − sign). doi:10.1371/journal.pone.0028509.t001

Effect of STAT6 silencing in NCI-H460 cells on apoptosis and cell cycle

Some previous reports have shown the involvement of STAT6 in apoptosis and cell cycle kinetics in different cell types [4,18,19]. Since in our study too, Gene expression, cell death, Lipid metabolism emerged as the most significant network in IPA analysis and apoptosis signalling pathway as one of the significantly enriched pathways in PANTHER analysis, we thus made an attempt to investigate whether silencing of STAT6 in NCI-H460 has any effect on apoptosis and cell cycle progression. The annexin assay carried out to quantify the number of apoptotic cells (Fig. 5a) revealed that there was a time-dependent increase in annexin V positive cells upon STAT6 silencing in NCI-H460 cells. The percentage of annexin V positive cells increased from 4.5% in untransfected NCI-H460 cells to 3.6% at 24 h, 11.5% (p value = 0.05) at 48 h and 23.7% (p value = 0.006) at 72 h post transfection of NCI-H460 cells with STAT6 specific siRNA. We also did the annexin assay in A549 cells but we did not observe any significant changes in the annexin positive cells after STAT6 silencing (Figure S2). We also investigated the changes in cell cycle distribution using Guava flow cytometer. As shown in Fig. 5b, downregulation of STAT6 in NCI-H460 cells caused no significant change in the distribution of population of cells in different phases of cell cycle.

The most significant network in the IPA analysis revealed genes like ATF5 (Activating transcription factor 5), BCL2L1 (BCL2-like 1), NUAK2 (NUAK family, Ser/Thr kinase, 2) and TRIB3 (Tribbles homolog 3) which are directly or indirectly related to apoptosis. Our Real Time data showed that ATF5, BCL2L1, NUAK2 and TRIB3 decreased to 0.32, 0.57, 0.87 and 0.23 fold, respectively in siRNA transfected NCI-H460 cells in comparison to untransfected NCI-H460 cells (Fig. 5c). Simultaneously, we also checked for the change in expression of some pro-apoptotic and anti-apoptotic proteins by western blotting (Fig. 5d). We observed 0.85, 0.80 (p
value = 0.05) and 0.74 fold change in BCL-2 (B-cell lymphoma 2) levels, 0.96, 0.83 (p value = 0.023) and 0.80 (p value = 0.04) change in BCL-xL levels and there was slight increase in BAX (BCL2-associated X protein) levels with a fold change of 1.0, 1.37 (p value = 0.05) and 1.1 at 24 h, 48 h and 72 h post siRNA transfection in NCI-H460 cells, respectively.

Additionally, we found that there was 0.87, 1.38 (p value = 0.032) and 1.11 fold change in pSTAT6 protein upon IL-4 treatment in NCI-H460 cells. GAPDH was used as a loading control for densitometric analysis. The samples were normalized to 18s rRNA expression. The real time data is expressed as the mean ± S.D. of 3 independent experiments. * indicates p value < 0.05 in comparison to untransfected cells. a) Western blot analysis was done to analyze the change in expression of pSTAT6 protein upon IL-4 treatment in NCI-H460 cells. GAPDH was used as a loading control for densitometric analysis. Graph represents the fold change in protein expression compared to untransfected NCI-H460 cells. The data is expressed as the mean ± S.D. of 3 independent experiments performed in triplicates. * indicates p value < 0.05 in comparison to untransfected cells. b) Real Time PCR was performed to determine the changes in expression level of genes related to cholesterol biosynthesis and homeostasis in NCI-H460 cells and A549 cells 48h post transfection of STAT6 specific siRNA. The real time data is expressed as the mean ± S.D. of 3 independent experiments performed in triplicates. * indicates p value < 0.05 in comparison to untransfected cells. c) Cholesterol assay was carried out to determine the effect of IL-4 treatment on total cholesterol levels in untransfected and siRNA transfected NCI-H460 cells and A549 cells. The data is expressed as the mean ± S.D. of 3 independent experiments performed in triplicates. * indicates p value < 0.05 in comparison to untransfected cells. d) The western blot of HMGCS1, HMGCR and IDI1 was done on cell extracts from untransfected and siRNA transfected NCI-H460 cells at different time points. GAPDH was used as a loading control for densitometric analysis. Graph represents the fold change in protein expression compared to untransfected NCI-H460 cells. The data is expressed as the mean ± S.D. of 3 independent experiments. * indicates p value < 0.05 in comparison to untransfected cells.
silencing at 24 h, 48 h and 72 h, respectively in NCI-H460 cells (Fig. 5d).

Discussion

Signal transducer and activator of transcription-6 (STAT6) is a member of the STAT family of latent transcription factor and has been found to be overexpressed in various types of cancer like prostate and colon cancer [3,28]. The transcription factor binding validated by EMSA. 18 μg of nuclear extracts from untransfected or siRNA transfected NCI-H460 cells were incubated with wild type labeled oligonucleotide containing the binding elements of FOXJ2. Mutated probe was used to check the specificity of the DNA-protein complexes. On termination of incubation, samples were resolved in a non-denaturing polyacrylamide gel and subjected to phosphorimager analysis. Lane 1: labeled FOXJ2 specific oligos, lane 2: untransfected NCI-H460 cells incubated with labeled FOXJ2 specific oligos, lane 3: NCI-H460 cells transfected with STAT6 specific siRNA at 48 h incubated with labeled FOXJ2 specific oligos, lane 4: NCI-H460 cells transfected with STAT6 specific siRNA at 72 h incubated with labeled FOXJ2 specific oligos, lane 5: NCI-H460 cells transfected with scrambled siRNA incubated with labeled FOXJ2 specific oligos, lane 6: untransfected NCI-H460 cells incubated with labeled mutated FOXJ2 specific oligos.

doi:10.1371/journal.pone.0028509.g004

and after STAT6 silencing in NCI-H460 cells using illumina microarray.

Gene expression profiling and network analysis by IPA and PANTHER revealed Gene expression, Cell death and Lipid metabolism to be most favoured after STAT6-siRNA treatment in NCI-H460 cells. An important observation in the current study was the finding of cholesterol biosynthesis and p53 signalling in the toxicity list during IPA analysis. We observed significant increase in the cholesterol levels in NCI-H460 cells and in A549 cells as a result of STAT6 silencing (Fig. 3a). Our data also showed significant increase in the level of HMGCR, HMGCS1 and IDI1 (cholesterol synthesis) and INSIG1, and CYP27B1 (cholesterol homeostasis) genes at both transcriptional (real time PCR) and translational levels (western blot analysis). In this study for the first time we report that siRNA mediated silencing of STAT6 leads to

PLoS ONE | www.plosone.org 8 December 2011 | Volume 6 | Issue 12 | e28509
the up-regulation of some of the genes involved in cholesterol biosynthesis/homeostasis resulting in enhanced cholesterol levels in the cells. Till date, there are only a few reports where indirect links between STAT6 and cholesterol biosynthesis have been observed. King et al in their study reported that IL-4 deficiency in C57BL/6 LDL receptor (LDLr)-/- mice promotes gallstone formation which maybe due to deregulation of genes involved in cholesterol metabolism, thereby implying that IL4 might be linked to cholesterol metabolism [30]. Black et al also observed that the use of IL-4 lowers the blood cholesterol levels [31]. We also found slightly decreased cholesterol levels after IL-4 treatment in our study. Herein, we show for the first time that direct inhibition of STAT6 can lead to an increase in cholesterol levels in lung cancer cells.

This inverse relationship of cholesterol biosynthesis and STAT6 is further strengthened by the reports on cholesterol lowering drugs simvastatin and atorvastatin which target HMGCR, lead to an increase in phosphorylated STAT6 [32,33]. It is also well established that STAT6 is important for the development of asthma [34,35,36] and a study on US population by Fessler, et al in

Figure 5. Effect of STAT6 silencing on apoptosis and cell cycle. a) To determine whether STAT6 downregulation in NCI-H460 cells leads to apoptosis, Annexin-V-PE binding assay was done at different time periods as described in "Materials and Methods" section. X-axis represents Annexin V-PE positive cells whereas Y-axis represents 7-AAD positive cells. % here indicates the percentage of dead cells. b) Cell cycle assay was also done to check the distribution pattern of untransfected and siRNA transfected NCI-H460 cells in different phases of cell cycle. Cells were harvested post transfection (at different time points as indicated) and subsequently assayed for their DNA content by flow cytometry. c) Real Time PCR was done in NCI-H460 cells to validate the genes which emerged out to be associated with apoptosis or cell death from the most significant network in the IPA analysis. The samples were normalized to 18s rRNA expression. The real time data is expressed as the mean ± S.D. of 3 independent experiments performed in triplicates. * indicates p value < 0.05 in comparison to untransfected cells. d) Western blot was performed to analyze the expression of some pro-apoptotic and anti-apoptotic proteins in untransfected and siRNA transfected NCI-H460 cells. GAPDH was used as a loading control. The data is expressed as the mean ± S.D. of 3 independent experiments. * indicates p value < 0.05 in comparison to untransfected cells.

doi:10.1371/journal.pone.0028509.g005
2009 has shown that serum total cholesterol and non-HDL-cholesterol are inversely related to asthma [37], thereby further pointing towards the inverse relationship between STAT6 and cholesterol.

In the present study, we not only observed inverse relationship of STAT6 and cholesterol biosynthesis but also found several conserved FOXJ2 and FOXD3 binding sites in the 5Kb region upstream of HMGCR, HMGCS1 and IDI1 (genes of the cholesterol synthesis pathway). FOXJ2 belongs to the family of forkhead box (FOX) proteins [38] and has been validated in our study using EMSA. [39]. Although, the structural and functional domains of FOXJ2 have been characterized [40], very little is known of the biological effects of FOXJ2 [41]. The enhanced binding of FOXJ2 to the key enzymes of cholesterol biosynthesis as a result of STAT6 silencing could have great potential in understanding the complexities of STAT6 signaling.

Several reports in the literature suggest that STAT6 knockdown is associated with inhibiting proliferation and enhancing apoptosis [1,3]. Moreover, STAT6 has also been found to be activated spontaneously in human cancers such as prostate cancer [18], B cell lymphoma [42] and Hodgkin’s lymphoma [43] suggesting that an active STAT6 signaling may be beneficial for cancer cell growth. In our study, cell death and p53 signaling came out as significantly altered upon STAT6 silencing as revealed by the IPA analysis (Fig. 2a and c). Since, p53 is well documented to have a role in apoptosis [44,45] we checked the expression of the genes associated with p53 signaling such as p53, phosphorylated p53, PUMA, BCL-2, BAX, BCL-xL by western blot analysis. We observed increased expression of p53, phosphorylated p53, PUMA and BAX and reduced expression of BCL-2 and BCL-xL after STAT6 silencing. However, further study is needed to investigate the role of p53 in STAT6 signaling. Herein, we also observed an increase in annexin positive cells in a time dependent manner in 2009. Takeda K, Tanaka T, Shi W, Matsumoto M, Minami M, et al. (1996) Essential Figure 57–69. Takeda K, Kamanaka M, Tanaka T, Kishimoto T, Akira S (1996) Impaired IL-13-mediated functions of macrophages in STAT6-deficient mice. J Immunol 157: 3220–3222.

Table S1 5’-3’ Primer sequences used for Real-time Table S1 Genes in the most significant network identified by IPA with their fold change in the array data. (XLS)

Table S2 The list of 273 differentially expressed genes after transfection of STAT6 specific siRNA in NCI-H460 cells. (XLS)

Table S3 The list of networks generated from IPA analysis using the differentially expressed genes obtained in the illumina array data. (XLS)

Table S4 Genes associated with the toxicology list generated from IPA analysis using the differentially expressed genes obtained in the illumina array data. (XLS)

Author Contributions
Conceived and designed the experiments: RD NS. Performed the experiments: RD NS. Analyzed the data: RC RD NS. Wrote the paper: RC RD NS.

References
1. Baus D, Nonnenmacher F, Jankowski S, Doring C, Brautigam C, et al. (2009) STAT6 and STAT1 are essential antagonistic regulators of cell survival in classical Hodgkin lymphoma cell line. Leukemia 23: 1605–1613.
2. Zhu J, Guo L, Watson CJ, Hu-Li J, Paul WE (2001) Stat6 is necessary and sufficient for IL-4’s role in Th2 differentiation and cell expansion. J Immunol 166: 7276–7281.
3. Li BH, Yang XZ, Li PD, Yuan Q, Liu XH, et al. (2008) IL-4/Stat6 activities correlate with apoptosis and metastasis in colon cancer cells. Biochem Biophys Res Commun 369: 554–560.
4. Zhang M, Zhou Y, Xie C, Zhou F, Chen Y, et al. (2006) STAT6 specific siRNA inhibits proliferation and induces apoptosis in colon cancer HT-29 cells. Cancer Lett 243: 38–46.
5. Darnell JE Jr., Kerr IM, Stark GR (1994) Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264: 1415–1421.
6. Schindler C, Darnell JE Jr. (1993) Transcriptional responses to polypeptide ligands: the Jak-STAT pathway. Annu Rev Biochem 64: 621–653.
7. Hohenstein D, Warnuberger G, Hoeijmakers JH, Jurch A (2000) Signaling mechanisms, interaction partners, and target genes of STAT6. Cytokine Growth Factor Rev 17: 173–188.
8. Takeda K, Tanaka T, Shi W, Matsumoto M, Minami M, et al. (1996) Essential role of Stat6 in IL-4 signalling. Nature 380: 627–630.
9. Takeda K, Kamanaka M, Tanaka T, Kishimoto T, Akira S (1996) Impaired IL-13-mediated functions of macrophages in STAT6-deficient mice. J Immunol 157: 3220–3222.
10. Kaplan MH, Schindler U, Smiley ST, Grusby MJ (1996) Stat6 is required for mediating responses to IL-4 and for development of Th2 cells. Immunity 4: 313–319.
11. Shimoda K, van Deursen J, Santner MY, Sarawar SR, Carson RT, et al. (1996) Loss of IL-4-induced Th2 response and IgE class switching in mice with disrupted Stat6 gene. Nature 380: 630–633.
12. Jaruga B, Hong F, Sun R, Radaeva S, Gao B (2003) Crucial role of IL-4/STAT6 in T cell-mediated hepatic up-regulating eotaxins and IL-5 and recruiting leukocytes. J Immunol 171: 3233–3244.
13. Kato A, Yoshidome H, Edwards MJ, Lentsch AB (2000) Reduced hepatic ischemia/reperfusion injury by IL-4: potential anti-inflammatory role of STAT6. Inflamm Res 49: 275–279.
14. Low SH, Vasanth S, Larson CH, Mukherjee S, Sharma N, et al. (2006) Polycystin-1, STAT6, and P600 function in a pathway that transduces ciliary mechanosensation and is activated in polycystic kidney disease. Dev Cell 10: 57–69.
15. Yu HH, Liu PH, Lin YC, Chen WJ, Lee HH, et al. (2010) Interleukin 4 and STAT6 gene polymorphisms are associated with systemic lupus erythematosus in Chinese patients. Lupus 19: 1219–1226.
16. Shum BO, Mackay CR, Goepp CF, Frost MJ, Kumar RK, et al. (2006) The adipocyte fatty acid-binding protein aP2 is required in allergic airway inflammation. J Clin Invest 116: 2183–2192.
17. Ill J, Wang W, Sajic T, Osudy N, Guetean E, et al. (2009) Differential proteomic analysis of STAT6 knockout mice reveals new regulatory function in liver lipid homeostasis. J Proteome Res 8: 4511–4524.
18. Das S, Roth CP, Wasson LM, Vathinathan JK (2007) Signal transducer and activator of transcription-6 (STAT6) is a constitutively expressed survival factor in human prostate cancer. Prostate 67: 1550–1564.
19. Cui X, Zhang L, Luo J, Rajasekar A, Hazra S, et al. (2007) Unphosphorylated STAT6 contributes to constitutive cyclooxygenase-2 expression in human non-small cell lung cancer. Oncogene 26: 4253–4260.
20. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29: e45.
21. Edgar R, Domrachev M, Lash AE (2002) Gene Expression Omnibus: NCBI database for high-throughput and genome-wide expression data. Nucleic Acids Res 30: 207–210.
22. Thomas PD, Campbell MJ, Kejariwal A, Mi H, Karlak B, et al. (2003) PANTHER: a library of protein families and subfamilies indexed by function. Genome Res 13: 2129–2141.
23. Hubbard TJ, Aken BL, Ayling S, Ballester B, Beal K, et al. (2009) Ensembl 2009. Genome Res 19: 188–199.
24. Zheng J, Wu J, Sun Z (2003) An approach to identify over-represented cis-regulatory elements in related sequences. Nucleic Acids Res 31: 1995–2005.
25. Pandey AK, Munjal N, Datta M (2010) Gene expression profiling and network analysis reveals lipid and steroid metabolism to be the most favored by TNFalpha in HepG2 cells. PLoS One 5: e9063.
26. Yap YL, Lam DC, Luc G, Zhang XW, Hernandez D, et al. (2005) Conserved transcription factor binding sites of cancer markers derived from primary lung adenocarcinoma microarrays. Nucleic Acids Res 33: 409–421.
27. Blais A, Dynlacht BD (2005) Constructing transcriptional regulatory networks. Genes Dev 19: 1499–1511.
28. Ni Z, Lou W, Lee SO, Dhir R, DeMiguel F, et al. (2002) Selective activation of members of the signal transducers and activators of transcription family in prostate carcinoma. J Urol 167: 1859–1862.
29. Zhang MS, Zhou YF, Zhang WJ, Zhang XL, Pan Q, et al. (2006) Apoptosis induced by short hairpin RNA-mediated STAT6 gene silencing in human colon cancer cells. Chin Med J (Engl) 119: 801–808.
30. King VL, Salassa S, Duggery A (2002) Interleukin-4 deficiency promotes gallstone formation. J Lipid Res 43: 768–771.
31. Black HES, NJ (1993) Use of interleukin-4 for lowering blood-cholesterol levels. J Lipid Res 43: 768–771.
32. Aprahamian T, Bourjeil R, Ruiz J, Perlman H, Lefer DJ, et al. (2006) Simvastatin treatment ameliorates autoimmune disease associated with accelerated atherosclerosis in a murine lupus model. J Immunol 177: 3028–3034.
33. Matsumoto M, Einhaus D, Gold ES, Aderem A (2004) Simvastatin augments lipopolysaccharide-induced proinflammatory responses in macrophages by differential regulation of the c-Fos and c-Jun transcription factors. J Immunol 172: 7377–7384.
34. Kuperman D, Schofield B, Wilks-Karp M, Grubsky MJ (1998) Signal transducer and activator of transcription factor 6 (Stat6)-deficient mice are protected from antigen-induced airway hyperresponsiveness and mucus production. J Exp Med 187: 939–946.
35. Akimoto T, Numata F, Tamura M, Takata Y, Higashida N, et al. (1998) Abrogation of bronchial eosinophilic inflammation and airway hyperreactivity in signal transducers and activators of transcription (STAT6)-deficient mice. J Exp Med 187: 1537–1542.
36. Darcan-Nicolaisen Y, Meinecke H, Fels G, Hegedu O, Haberland A, et al. (2009) Small Interfering RNA against Transcription Factor STAT6 Inhibits Allergic Airway Inflammation and Hyperreactivity in Mice. Journal of Immunology 182: 7501–7508.
37. Feudler MB, Massig MW, Spruell B, Jaramillo R, Draper DW, et al. (2009) Novel relationship of serum cholesterol with asthma and wheeze in the United States. J Allergy Clin Immunol 124: 967–974 e961-915.
38. Perez-Sanchez C, Gomez-Ferreria MA, de La Fuente CA, Granadino B, Velasco G, et al. (2009) FHx, a novel fork head factor with a dual DNA binding specificity. J Biol Chem 275: 12909–12916.
39. Kaufmann E, Knochel W (1996) Five years on the wings of fork head. Mech Dev 57: 3–20.
40. Gomez-Ferreria MA, Rey-Campos J (2003) Functional domains of FOXJ2. J Mol Biol 329: 631–644.
41. Martin-de-Lara F, Sanchez-Aparicio P, Arias de la Fuente C, Rey-Campos J (2008) Biological effects of Fog2 over-expression. Transgenic Res 17: 1131–1141.
42. Guiter C, Dusanter-Fourt I, Copie-Bergman C, Boulard ML, Le Gouvello S, et al. (2004) Constitutive STAT6 activation in primary mediastinal large B-cell lymphoma. Blood 104: 543–549.
43. Skinnider BF, Elia AJ, Gascoyne RD, Patterson B, Trumper L, et al. (2002) Signal transducer and activator of transcription 6 is frequently activated in Hodgkin and Reed-Sternberg cells of Hodgkin lymphoma. Blood 99: 618–626.
44. Oren M (2003) Decision making by p53: life, death and cancer. Cell Death Differ 10: 431–442.
45. Meulmeester E, Jochemsen AG (2008) p53: a guide to apoptosis. Curr Cancer Drug Targets 8: 87–97.
46. Bailey DP, Kashyap M, Mirmonsef P, Bouton LA, Domen J, et al. (2004) Constitutive STAT6 activation in primary mediastinal large B-cell lymphoma. Blood 104: 543–549.
47. Kaplan MH, Daniel C, Schindler U, Grusby MJ (1998) Small Interfering RNA against Transcription Factor STAT6 Inhibits Allergic Airway Inflammation and Hyperreactivity in Mice. Journal of Immunology 182: 7501–7508.