VERY STRONG TeV EMISSION AS GAMMA-RAY BURST AFTERGLOWS

TOMONORI TOTANI
Department of Physics, School of Science, The University of Tokyo, Tokyo 113-0033, Japan; totani@utaphp2.phys.s.u-tokyo.ac.jp

Received 1998 April 24; accepted 1998 May 19; published 1998 July 1

ABSTRACT

Gamma-ray bursts (GRBs) and following afterglows are considered to be produced by dissipation of kinetic energy of a relativistic fireball, and the radiation process is widely believed to be synchrotron radiation or inverse Compton scattering of electrons. We argue that the transfer of kinetic energy of ejecta into electrons may be an inefficient process and hence the total energy released by a GRB event is much larger than that emitted in soft gamma rays by a factor of $\sim (m_p/m_e)$. We show that, in this case, very strong emission of TeV gamma rays is possible due to synchrotron radiation of protons accelerated up to $\sim 10^{21}$ eV, which are trapped in the magnetic field of afterglow shocks and radiate their energy on an observational timescale of about a few days. This suggests the possibility that GRBs are most energetic in the TeV range, and such TeV gamma rays may be detectable from GRBs even at cosmological distances, i.e., $z \sim 1$, by currently working ground-based telescopes. Furthermore, this model naturally gives a quantitative explanation for the famous long-duration GeV photons detected from GRB 940217. If TeV gamma-ray emission that is much more energetic than GRB photons is detected, it provides a strong evidence for acceleration of protons up to $\sim 10^{21}$ eV.

Subject headings: acceleration of particles — gamma rays: bursts — gamma rays: theory

1. INTRODUCTION

Gamma-ray bursts (GRBs) are widely believed to be the dissipation of kinetic energy of relativistic motion produced by an expanding fireball with a Lorentz factor of $\sim 10^5 - 10^6$ (see e.g., Piran 1994 for a review). The recently discovered afterglows following GRBs are also considered to be similar phenomena, which are the dissipation of kinetic energy in the external shock generated by the collision with interstellar matter (Paczynski & Rhoads 1993; Katz 1994; Mészáros & Rees 1997; Vietri 1997a). The cosmological origin of GRBs is now almost confirmed by the discovery of metal absorption lines at $z = 0.835$ for the optical afterglow of GRB 970508 (Metzger et al. 1997), and some of observations for X-ray, optical, and radio afterglows are in rough agreement with the prediction of the cosmological fireball model (Wijers, Rees, & Mészáros 1997; Waxman 1997a, 1997b; Vietri 1997b). However, there is large variation in the afterglow response of GRBs (e.g., Groot et al. 1998), and it is not yet clear whether the simple afterglow model is applicable for all GRBs.

There are two important but highly uncertain parameters in such theoretical models of GRBs and afterglows: the degree of equipartition between the internal energy of shock-heated matter and magnetic fields (ξ_e) and between protons and electrons (ξ_p). In most publications that calculate model predictions of GRBs or afterglows, these two parameters are assumed to be of order unity and the radiation process is considered as electron synchrotron (or inverse Compton scattering). In this case, the efficiency of energy release in GRBs or afterglows compared to the total energy (E) of a GRB event is of order unity. However, currently there is no clear evidence for efficient energy transfer into electrons and magnetic fields, although some observational data are consistent with $\xi_e \sim 1$ (Waxman 1997a). If the energy transfer from protons into electrons is inefficient, energy stored in electrons is only a fraction of $\xi_e \sim (m_p/m_e)$ of the total fireball energy and hence about 2000 times more energy must be released as kinetic energy of relativistic ejecta than the observed energy emitted as GRB photons. The GRB photon energy is $\sim 10^{52}$ ergs if the radiation is isotropic and the redshift of most distant GRBs, z_{max}, is ~ 1. Then the total energy E may be uncomfortably large because most of the GRB models are based on gravitational collapses of massive stars in which the available energy is $\sim 3 \times 10^{53}$ ergs, and most of this energy will be lost as neutrinos. However, the theoretical estimate of the merger rate of binary neutron stars is about $10^{-11} - 10^{-10}$ times higher than the observed GRB rate (Lipunov et al. 1995; Totani 1997, 1998), which suggests that GRBs are strongly beamed if GRBs are associated with the merger of binary neutron stars (Blindnikov et al. 1984). If GRBs are actually beamed with such a strong beaming factor, the above constraint of the energy budget becomes much weaker. Much more energetic models of GRBs have also been proposed, such as the microquasar model, in which the total energy of $\sim 10^{54}$ ergs can be supplied to a fireball (Paczynski 1998).

In this Letter, we argue that timescale of energy transfer into electrons by the Coulomb interactions is much larger than the expansion time of the external shock, while the magnetic field may achieve equipartition with protons in the shock-heated matter. We then show that, as a consequence of this scenario, a very strong TeV emission is expected during a few days after GRBs by synchrotron radiation of 10^{20} eV protons, and it may be detectable by current ground-based telescopes even from a GRB at cosmological distances in spite of significant attenuation due to e^\pm creation with intergalactic infrared photons. Synchrotron emission of protons of $\sim 10^{20}$ eV from GRBs was first considered by Vietri (1997c), and Böttcher & Dermer (1998) extended the analysis to emission from afterglows. Both papers concluded that TeV gamma rays are detectable only for nearby GRBs ($z \lesssim 0.1$), assuming that the total fireball energy is of the same order as that of GRB photons. The natural units with $c = \hbar = 1$ are used in this Letter.

2. EFFICIENCY OF ENERGY TRANSFER INTO ELECTRONS AND MAGNETIC FIELDS

The evolution of the external shock is described by $bE = 16\pi r^3 \gamma / 17$, where E is the total energy released in an opening angle of $\Delta \Omega$, $b = (4\pi/\Delta \Omega)$ is a beaming factor, and γ is the Lorentz factor of the shock-heated matter (Blandford & McKee 1976). The location of the shock, r, is measured in the
laboratory frame, and \(n \) is the (unshocked) interstellar matter density. Initially, the kinetic energy stored in electrons is only a fraction of \((m_e/m_p)\) of the total energy, and much more energy of protons must be efficiently transferred into electrons by some interactions in the shock-heated matter in order to achieve energy equipartition between electrons and protons. However, the relative importance of the Coulomb interaction becomes smaller with increasing energy of particles, and the particle energy in relativistic shocks is much greater than that in non-relativistic shocks such as supernova remnants. The timescale of energy transfer in relativistic plasma is difficult to estimate accurately, but a rough estimate is given by \(\tau_{\rho,\gamma} \sim (n/\sigma)^{-1} \), where \(n' = 4\pi n \) is the proton number density of the shocked matter measured in the shocked-shell frame and \(\sigma = 4\pi L_p (e/m_\gamma)^2 \) is the transport cross section for electron-proton collisions. The Coulomb logarithm is given by \(\log L_p = \log (a m_\gamma) \), where \(a = (m_\gamma^4/4\pi n_e e^2)^{1/2} \) is the Debye length (e.g., Lifshitz & Pitaevskii 1981). This timescale should be compared to the expansion time measured in the shell frame, \(r_\gamma \), and we find \(\tau_{\rho,\gamma} (r_\gamma) = 1.1 \times 10^4 E_{51}^{-1/4} n_{45}^{-3/8} n_{51}^{1/2} \), where \(E = 10^{-7} E_{51} \) ergs and \(n_{45} = n_4 \times 10^3 \). Hence, energy transfer through the Coulomb interaction is likely to be inefficient.

On the other hand, magnetic field in the shocked matter may be in equipartition with the random motion energy of protons, which is directly converted from the kinetic energy of a fireball. Recall that, in the well-known equation of magnetohydrodynamics, the time evolution of magnetic field, \(B(t) \), is governed by the diffusion term and the source term, \(-n B \partial \sigma \), where \(\sigma = n B \) is the proton number density of the shocked matter that is directly converted from the kinetic energy of a fireball. The synchrotron photon energy in the observer’s frame is given by \(E_{\gamma,\text{obs}} = \gamma_\rho E_{\gamma,\text{obs}} (\gamma_\rho)^{-1} \), where \(\gamma_\rho = 2.8 \times 10^{-12} n_{51}^{-1/3} b_{200}^{-2/5} \), and \(b_{200} \) is the beaming factor. The transverse width of beamed shell is larger than the shell thickness unless the beaming factor is extremely large as \(b > 7.21 \times 10^{3} n_{51}^{-1/4} b_{200}^{-1/2} \). Therefore, the protons that correspond to synchrotron photons of \(\lesssim \text{TeV} \) can be trapped within the magnetic field of afterglow shocks on a timescale of about a few days. The cooling time observed on the Earth is related to the rest frame cooling time as \(t_{\text{cool,obs}} = t_{\text{cool}} / (\gamma_\rho^2) \), and hence, the growth timescale of magnetic field may be \(\lesssim r_\gamma / (\gamma_\rho) \). Since the expansion time is \(\sim \gamma_\rho r_\gamma \), it is possible that equipartition between magnetic field and protons is achieved while electrons carry much smaller energy. Although the above argument is quite rough and some unknown processes in relativistic matter may allow electrons to be in equipartition with protons, it seems rather reasonable to consider the case of \(\xi_\rho \sim 1 \) and \(\xi_\rho \sim (m_\gamma/m_p) \ll 1 \). In order to investigate such an energetic model of GRBs, we use \(E = 10^{51} E_{51} \) ergs and \(b = 200 b_{200} \) as typical values, with which \(E \) is about 2000 times larger than the energy emitted in GRB photons, i.e., \(\sim 10^{51} b_{200}^{-1} \) ergs when \(\xi_{\text{max}} \sim 1 \).

3. PROTON SYNCHROTRON IN AFTERGLOW SHOCKS

If the energy transfer from protons into electrons is inefficient but the magnetic field is nearly in equipartition, the synchrotron radiation of protons becomes relatively important. The energy density of shocked matter is given by \(4\pi n' m_p \) in the shell frame, and the magnetic field can be written as \(B = (32\pi n' m_p n'_{\text{mag}})^{1/2} \). It has been considered that protons may be accelerated up to \(\sim 10^{30} \) eV in GRBs because the physical quantities of GRBs allow acceleration of protons to such high energies and the observed flux of the highest energy cosmic rays is consistent with the GRB occurrence rate provided that such protons carry roughly the same amount of energy as GRBs (Waxman 1995; Vietri 1995). We assume that the shock acceleration time is given by \(\eta_\rho = m_\gamma\rho e (eB) \), where \(m_\gamma \) is the proton Lorentz factor in the shell frame, and \(m_\gamma \) is a parameter of order unity. The maximum energy obtained in the external shock is given by the equation \(\eta_\rho = r_\gamma \), and we find \(4.21 \times 10^{21} E_{51}^{-1/2} n_{10}^{1/2} \gamma_\rho^{-1/2} \gamma_\rho^{-1/2} E_{51}^{1/2} \) eV in the observer’s frame, where \(\gamma_{100} = \gamma_\rho / 100 \) and \(\gamma_\rho \) is the initial fireball Lorentz factor. On the other hand, the maximum energy is also constrained by synchrotron cooling. The cooling time at the shell frame is \(t_{\text{syn}} = 3m_\gamma (4\pi m_\gamma^2 U_{\text{mag}} g_\rho) \), where \(U_{\text{mag}} \) is the energy density of magnetic field. The time evolution of magnetic field, \(\gamma_{\text{max}} \), is given by \(\eta_\rho = m_\gamma\rho \), where \(m_\gamma \) is the proton Lorentz factor in the observer’s frame as \(3.27 \times 10^{-12} n_{10}^{-1/4} n_{51}^{-1/4} E_{51}^{-1/4} \), which does not depend on the total fireball energy of GRBs. Therefore, protons may be accelerated up to \(10^{31} \sim 10^{32} \) eV for \(\gamma_{\text{syn}} = 100 \sim 1000 \), which is about 1 order of magnitude greater than the estimate obtained with \(bE \sim 10^{51} \) ergs (Waxman 1995; Vietri 1995).

The protons accelerated up to \(\sim 10^{31} \) eV will radiate their energy by synchrotron radiation in magnetic fields of afterglow shocks. The synchrotron photon energy in the observer’s frame is given by \(E_{\gamma,\text{obs}} = \gamma_\rho E_{\gamma,\text{obs}} (\gamma_\rho)^{-1} \), where \(\gamma_{\text{syn}} \) is the maximum energy in the observer’s frame. The timescale of energy loss rate of a proton in the shell frame. After some calculations,
we find

\[L(e_\gamma) = 2.5 \times 10^{55} \xi p B E_{52}^{1/4} E_{300}^{1/4} n_{1/2}^{1/2} t_{\text{day}}^{-3/4} \gamma_{\text{TeV}} \text{ ergs s}^{-1}, \]

(3)

where we have assumed \((\gamma_0, \gamma_\infty) = (10^2, 10^{12})\). If we observe this emission from a distance of \(d = 3000 d_{\text{Mpc}} (z \sim 1)\), then the observed flux above 1 TeV is \(5.9 \times 10^{-9} \xi p B E_{52}^{1/4} E_{300}^{1/4} n_{1/2}^{1/2} t_{\text{day}}^{-3/4} \gamma_{\text{TeV}}\) photons cm\(^{-2}\) s\(^{-1}\). This flux is further attenuated by the \(e^+\) creation with intergalactic infrared photon field. The current estimate of the optical depth for this intergalactic absorption is still highly uncertain, but a typical value for TeV gamma rays is \(\tau \sim 10^{2} (e^+ = 2.2 \times 10^{14})\) for \(z \sim 1\) (Salamon & Stecker 1998). The amount of infrared background is related to the amount of stars in the universe, and this is uncertain by a factor of about 2. A factor of 2 reduction of the estimate of \(\tau\) results in the attenuation of \(e^+\) ~ 150. Therefore, the above flux would be attenuated by a factor of at least 100, and the attenuated flux is consistent with the upper limits set by the Whipple telescope (Connaughton et al. 1997) for some GRBs, which are about \(10^{-10}\) to \(10^{-9}\) cm\(^{-2}\) s\(^{-1}\) depending on the source position in the field of view \((\sim 3^\circ)\). However, if a burst location is determined as well as some recent GRBs for which afterglows are detected and observation is made for a timescale of a day, a flux of \(~\!10^{-12}\) cm\(^{-2}\) s\(^{-1}\) is detectable by currently working ground-based air Cerenkov telescopes (see, e.g., Kifune 1996 for a general review), and hence the TeV photons from GRBs at \(z \sim 1\) are marginally detectable. Detectability increases rapidly with decreasing distance because of the decrease of optical depth as well as the increase of the original (unattenuated) flux, and TeV gamma rays from \(z \sim 0.5\) would be easily detectable.

The above estimate is based on the relatively small distance scale of GRBs, \(z_{\text{max}} \sim 1\), but larger distance scales are also suggested by cosmic evolution of the star formation rate (Totani 1997; Sahu et al. 1997; Wijers et al. 1998) or by the recently detected host galaxy for GRB 971214 (Kulkarni et al. 1998). The original TeV flux expected on the Earth before absorption in intergalactic fields is almost insensitive to the unknown distance scale of GRBs because we have just scaled the total energy \((E)\) from the observed energy emitted as GRB photons. The increase of the intergalactic optical depth with \(z\) beyond \(z \sim 1\) is also rather slow compared to \(z < 1\) (Salamon & Stecker 1998), and hence the detectability of TeV gamma rays is not so sensitive to the GRB distance scale if \(z_{\text{max}} \approx 1\). A more precise estimate of detectability requires better determination of infrared background, and, in other words, discovery of the TeV afterglow would give important information for the intergalactic infrared photon field.

4. DETECTABILITY OF GeV PHOTONS

GRB 940217 has the third largest energy fluence in the 3B BATSE catalog (Meegan et al. 1996), and this GRB is famous for the detection of high-energy photons by the EGRET detector with very long duration (Hurley et al. 1994). The EGRET detected high-energy photons ranging from 36 MeV to 18 GeV during \(\sim 5000\) s. We show that these EGRET photons are well explained by the proton synchrotron of the model. The observer’s time when the external shock phase begins, \(t_d\), is given by \(t_d / (2 \tau)\), where the deceleration radius is \(r_d = (176 E_{16}^{16\pi m \nu E_{\gamma}^{3/2}})\). This deceleration time sensitively depends on \(\gamma_0\), and it can be as short as \(t_d = 1.3 \times 10^{12} E_{52}^{1/4} n_{1/4}^{1/2} t_{\text{day}}^{-3/4} \gamma_{\text{TeV}}\) s when \(\gamma_0 \sim 1000\). Therefore, the EGRET photons can be considered to be the external shock origin and our model is applicable, although other explanations by internal shocks may also be possible. The observed photon spectrum (Fig. 3 of Hurley et al. 1994) seems consistent with the standard spectrum of synchrotron radiation, \(d\nu/d\nu \propto \gamma^{-2}\), and by fitting the data with this photon index, we find that the differential photon flux \(d\nu/d\nu \propto 2 \times 10^{-11} \gamma_{\text{TeV}}\) photons cm\(^{-2}\) s\(^{-1}\) keV\(^{-1}\) for the first 180 s and delayed photons (180–5400 s), respectively. This time evolution is consistent with the \(\tau^{-3/4}\) profile of equation (3). If we assume that the fluence of this GRB in the BATSE range, \(6.6 \times 10^{-4}\) ergs cm\(^{-2}\), is \(1/2000\) of the total energy \(E\), the distance to this GRB is \(d = 113 \times 10^{12} E_{52}^{3/2}\) Mpc and hence the differential photon flux obtained from equation (3) is \(5.6 \times 10^{-11} \xi \Delta B E_{52}^{1/4} E_{300}^{1/4} n_{1/2}^{1/2} t_{\text{day}}^{-3/4} \gamma_{\text{TeV}}\) photons cm\(^{-2}\) s\(^{-1}\) keV\(^{-1}\), where \(t_d = t_{\text{obs}}(5000\) s). This photon flux is consistent with the observation if the energy conversion into accelerated protons and magnetic field is near the equipartition: \(\xi \Delta B \sim \gamma_{\text{TeV}} \sim 0.2 n_{1/2}\). Therefore, the delayed GeV photons from GRB 940217 are naturally explained by our model. On the other hand, there exist some GRBs that are as bright as GRB 940217 but are not accompanied by such long-duration GeV photons. In such GRBs, the onset of the external shock phase might be very long after the GRBs and/or the density of interstellar matter is quite low. In fact, if the progenitor of a GRB is a massive star, the intense stellar wind prior to the death of the star could have swept up the interstellar medium near the star. In this case, the TeV or GeV luminosity, which is proportional to \(n_{1/2}\), could be very small and significantly delayed compared to GRBs.

Because of the \(e^+\) pair creation in intergalactic field, more than 99% of TeV gamma rays from \(z \sim 1\) must disappear before reaching the Earth. The created \(e^+\) pairs, whose energy is about \(\sim\) TeV, lose their energy by the inverse Compton (IC) scattering of the cosmic microwave background photons, and typical energy of the secondary IC photons is \(E_{\gamma} \sim 0.6 E_{0\text{TeV}}\) GeV, which is in the detectable range of the EGRET. The expected time delay of these secondary photons is \(~d(2\gamma E_{\gamma}) = 1.8 d\gamma_{\text{TeV}}\text{ day}\) (Cheng & Cheng 1996), where \(\gamma_{\text{TeV}} = 10^4 \gamma_{\text{TeV}}\) is the Lorentz factor of the created pair. If the attenuation of TeV gamma rays is significant \(e^+ > 1\), almost all energy originally emitted in the TeV range should be converted into the GeV range, which is much larger than the original energy emitted in GeV photons by proton synchrotron. This effect becomes significant with increasing optical depth for TeV photons and compensates for the decrease of flux due to the increase of distance, and hence we might be able to detect delayed GeV photons for rather distant GRBs. In the limit of \(e^+ > 1\) and neglecting the time delay due to propagation in the intergalactic field, we have estimated the differential photon flux as \(1.7 \times 10^{-7} \xi \Delta B E_{52}^{1/4} E_{300}^{1/4} n_{1/2}^{1/2} t_{\text{day}}^{-3/4} \gamma_{\text{TeV}}\) photons GeV\(^{-1}\) cm\(^{-2}\) s\(^{-1}\). This estimate may be further reduced by the delay of about a few days but not so far from the EGRET sensitivity. Delayed GeV emission on a timescale of a few days from GRBs at cosmological distances may be detectable by the EGRET or is likely to be detected by the future GLAST experiment. Future ground-based telescopes with reduced threshold energy down to tens of a GeV range, e.g., the VERITAS project (Weekes et al. 1998), will also be useful for search of the secondary GeV photons.

5. DISCUSSION

The typical Lorentz factor of electrons in afterglow shocks is \(\gamma_\infty = 5 \times 10^4\), and we have considered the case of \(\xi = 1/2000\). Then the observed synchrotron photon energy of a
electron with a Lorentz factor γ_e is $\gamma_e^2 eBm_e = 2.5 \times 10^{-17}(2000\xi)^{1/2}D_{25}^{1/2}L_{45}^{1/2}E_{16}^{3/2} \text{eV}$, which is the radio band, and it seems to contradict the observations of X-ray or optical afterglows. However, acceleration of electrons and/or IC scattering of synchrotron photons can raise the photon energy. Furthermore, ξ, may also increase with time in the afterglow. In fact, $\tau_{\gamma e}/(r^2\gamma) = 8700D_{25}^{1/2}E_{16}^{3/2}n_{10}^{2}\gamma^{1.5}$ decreases as $\propto \gamma^{1.5} \propto r^{-1}$, and it is possible that energy transfer from protons into electrons becomes efficient gradually with the expansion of afterglow shock. Note that there are considerable variations for the behavior of afterglows observed in X-ray, optical, and radio bands (e.g., Groot et al. 1998). Efficiency of energy transfer into electrons and its time evolution could have large variations among GRBs, and it may be one of the origins of the complicated behavior of GRB afterglows.

It should be noted that the proton synchrotron emission extends to X-ray, optical, and radio bands with the standard synchrotron spectrum of $dL/d\nu \propto \nu^{-1}$. If $\alpha = 2$, the luminosity per decade of photon energy at $\nu = 1 \text{ keV}$ is $(10^{10} r^{1/2}$ times smaller than that in the TeV range, and the differential flux observed from a distance of 3000 Mpc is $\sim 1.5 \times 10^{-14} \xi_{45} E_{25}^{1/4}D_{25}^{1/4}n_{10}^{1/2}D_{10}^{3/2}d_{10}^{-2} \text{ ergs cm}^{-2} \text{ s}^{-1} \text{ keV}^{-1}$. This flux is comparable to the observed flux of X-ray afterglows for distant bursts such as GRB 970402 or GRB 970508 (Piro et al. 1997a, 1997b). Therefore, the proton synchrotron radiation could contribute to the X-ray afterglows, although it is rather difficult to detect in the optical or lower energy bands because of the hardness of the spectrum. Note that optical afterglows are associated only to a small fraction of GRBs for which X-ray afterglows are detected. Therefore, it can be speculated that proton synchrotron was dominant in such GRBs. The complicated behavior of afterglows may be a consequence of a complicated mixture of proton synchrotron and electron synchrotron or inverse Compton scattering.

We finally note that energy emitted as $10^{20} - 10^{21} \text{ eV}$ protons must be roughly the same as that emitted as GRB photons if the GRB is the origin of ultra-high energy cosmic rays (UHECRs) observed on Earth (Waxman 1995; Vietri 1995). On the other hand, in our model, energy distributed to such protons is much greater (at least by a factor of ~ 100) than GRB photons. However, as we have shown, such protons are likely trapped in afterglow shocks and lose their energy by synchrotron radiation. If the escape fraction of protons just cancels the overproduction of 10^{20} eV protons, GRBs could still be the origin of UHECRs. If the escape fraction is further smaller, then the UHECRs must be explained by other sources. The Larmor radius becomes larger with increasing proton energy, and the escape fraction may increase with proton energy. This suggests a possibility that the spectrum of UHECRs becomes significantly harder above 10^{20} eV, which should be tested by future experiments.

The author would like to thank S. Sasaki and an anonymous referee for useful comments. He has been supported by the Research Fellowships of the Japan Society for the Promotion of Science for Young Scientists and the Grant-in-Aid for the Scientific Research Fund (grant 3730) of the Ministry of Education, Science, and Culture of Japan.

REFERENCES

Blandford, R. D., & McKee, C. F. 1976, Phys. Fluids, 19, 1130
Blinnikov, S. I., et al. 1984, Soviet Astron. Lett. 10, 177
Böttcher, M., & Dermier, C. D. 1998, ApJ, 499, L131
Cheng, L. X., & Cheng, K. S. 1996, ApJ, 459, L79
Connaughton, V., et al. 1997, ApJ, 479, 859
Groot, P. J., et al. 1998, ApJ, 493, L79
Hurley, K., et al. 1994, Nature, 372, 652
Katz, J. I. 1994, ApJ, 432, L107
Kifune, T. 1996, Space Sci. Rev., 75, 31
Kulkarni, S. R., et al. 1998, Nature, 393, 35
Lifshitz, E. M., & Pitaevskii, L. P. 1981, Physical Kinetics (Oxford: Pergamon)
Lipunov, V. M., et al. 1995, ApJ, 454, 593
Meegan, C. A., et al. 1996, ApJS, 106, 65
Mészáros, P., & Rees, M. 1997, ApJ, 476, 232
Mészáros, P., & Rees, M. 1997, ApJ, 476, 232
Metzger, M. R., et al. 1997, ApJ, 457, 879
Paczynski, B. 1998, ApJ, 494, L45
Paczynski, B., & Rhoads, J. 1993, ApJ, 418, L5
Piran, T. 1994, in Unsolved Problems in Astrophysics, ed. J. N. Bahcall & J. P. Ostriker (Princeton: Princeton Univ. Press), 343
Piro, L. et al. 1997a, IAU Circ. 6617
Piro, L. et al. 1997b, IAU Circ. 6656
Salamon, M. H., & Stecker, F. W. 1998, ApJ, 493, 547
Sahu, K., et al. 1997, ApJ, 489, L127
Totani, T. 1997, ApJ, 486, L71
Weekes, T. C., et al. 1998, Proc. ACT Workshop, Kruger Park, in press
Wijers, R. M. J., Bloom, J. S., Bagla, J. S., & Natarajan, P. 1998, MNRAS, 294, L17
Wijers, A. M. J. R., Rees, M. J., & Mészáros, P. 1997, MNRAS, 288, L51