Performance of Uplink NOMA with User Mobility Under Short Packet Transmission

Nikolaos I. Miridakis1 · Emmanouel T. Michailidis2 · Angelos Michalas3 · Emmanouel Skondras4 · Dimitrios J. Vergados5 · Dimitrios D. Vergados4

Accepted: 8 August 2021 / Published online: 19 August 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
The scenario of an uplink two-user non-orthogonal multiple access (NOMA) communication system is analytically studied when it operates in the short packet transmission regime. The considered users support mobility and each is equipped with a single antenna, while they directly communicate with a multi-antenna base station. Power-domain NOMA is adopted for the signal transmission as well as the successive interference cancellation approach is performed at the receiver for decoding. The packet error rate (PER) is obtained in simple closed formulae under independent Rayleigh faded channels and for arbitrary user mobility profiles. The practical time variation and correlation of the channels is also considered. Moreover, useful engineering insights are manifested in short transmission time intervals, which define a suitable setup for the forthcoming ultra-reliable and low latency communication systems. Finally, it turns out that the optimal NOMA power allocation can be computed in a straightforward cost-effective basis, capitalizing on the derived PER expressions.

Keywords Non-orthogonal multiple access (NOMA) · Performance analysis · Short packet transmission · User mobility

This work has been supported by the Personal Agreement 2014–2020, Greece; funded Project for new researchers - phase II (code 5050174).

Nikolaos I. Miridakis
nikozm@uniwa.gr

1 Department of Informatics and Computer Engineering, University of West Attica, Aigaleo, Greece
2 Department of Electrical and Electronics Engineering, University of West Attica, Aigaleo, Greece
3 Department of Electrical and Computer Engineering, University of Western Macedonia, Kozani, Greece
4 Department of Informatics, University of Piraeus, Piraeus, Greece
5 Department of Informatics, University of Western Macedonia, Kozani, Greece
Non-orthogonal multiple access (NOMA) is considered as one of the most prominent solutions for 5G systems due to its increased spectral efficiency over conventional orthogonal multiple access. To avoid jointly using time, frequency and/or code resources, power-domain NOMA has gained considerable attention via superposing multiple users’ signal in the power domain. The received signals create mutual interference. Yet, the detector can employ successive interference cancellation (SIC), i.e., it decodes the strongest signal, and then subtracts it from the remaining signal, such that the next detection stage is interference-free. Doing so, NOMA can increase the system spectral efficiency and multiuser diversity as well as reduce latency. Nowadays, various Internet-of-things (IoT) applications utilize short packet transmission since connectivity and low-latency rather than high throughput is of prime importance. More so, ultra-reliable and low-latency communication (URLLC), which is at the forefront of wireless communications, defines another quite interesting and exciting paradigm that utilizes short packet transmission.

Due to the complementary benefits of NOMA and short packet transmission, their joint investigation has attracted a lot of research interest lately [1–8]. In particular, coded NOMA was studied in [1–5] when all the considered nodes are equipped with single antennas. In [6–8], the case when a multi-antenna receiver is employed was analytically studied. Nevertheless, all the aforementioned works have not considered user mobility, which is present in various modern practical networking setups (e.g., vehicles and moving devices). To our knowledge, the scenario of NOMA short packet transmission systems with user mobility has not been investigated to date. Capitalizing on the mentioned observations, we analytically study a two-user uplink NOMA setup operating in the short packet transmission regime. The users support mobility and the time variation as well as correlation of the channel is modeled by the second-order statistic of level crossing rate (LCR) with respect to either the signal-to-interference-plus-noise ratio (SINR) or signal-to-noise ratio (SNR). Single-antenna mobile users and a multi-antenna base station are adopted, while the received signals undergo independent Rayleigh channel fading conditions. Unlike most previous research works, we capitalize on the fact that SINR (and SNR) is a stationary stochastic process and, doing so, a two-state Markov model is used to analyze the packet error rate (PER) for finite (short) packet transmissions. In addition, we show that the optimal NOMA power allocation can be numerically computed in a straightforward and cost-effective manner based on the derived PER expressions.

2 System Model

Consider an uplink wireless communication setup, where two single-antenna users transmit to a base station equipped with N antenna elements. Power-domain NOMA is used for the signal transmission so as to achieve spectral efficiency, while both signals undergo independent Rayleigh channel fading conditions. Let h_i and s_i denote the channel fading and transmitted symbols of the ith user, respectively, with $i \in \{1, 2\}$. The time autocorrelation of each channel path of the ith user is given by $J_0(2\pi f_i \tau)$, where $J_0(\cdot)$ denotes the zeroth-order Bessel function, τ is the time difference between two correlated
samples and \(f_i \triangleq v_i/\lambda \) stands for the maximum Doppler frequency associated with this channel path. Also, \(v_i \) and \(\lambda \) represent the relative mobile speed of the \(i \)th user and carrier wavelength, correspondingly.

The received signal reads as
\[
\mathbf{r} = p \sum_{i=1}^{2} \alpha_i \mathbf{h}_i s_i + \mathbf{w},
\]
where \(\mathbf{r} \in \mathbb{C}^{N \times 1} \) is the received signal vector, \(p \) is the transmit power and \(\mathbf{w} \in \mathbb{C}^{N \times 1} \) stands for the additive white Gaussian noise vector with its elements having zero-mean and variance \(N_0 \). Also, \(\alpha_i \) defines the NOMA power allocator of the \(i \)th user, such that \(0 < \alpha_i < 1 \) and \(\alpha_i \triangleq 1 - \alpha_2 \). Further, \(\mathbf{h}_i \in \mathbb{C}^{N \times 1} \) represents the received channel fading vector with complex Gaussian entries having zero-mean and unit-variance. Upon the signal reception, SIC is used for detection.

Without loss of generality, we assume that \(s_1 \) is firstly detected by applying the weight vector \(\mathbf{v}_1 \triangleq \mathbf{h}_1/\|\mathbf{h}_1\| \) to the received signal; i.e., \(\mathbf{v}_1^H \mathbf{r} \), where the superscript \(\mathcal{H} \) denotes the Hermitian transpose operator and \(\| \cdot \| \) stands for the Euclidean (vector) norm. Afterwards, in the case when \(s_1 \) is correctly decoded and removed, the same procedure follows for \(s_2 \) to the remaining received signal via the weight vector \(\mathbf{v}_2 \triangleq \mathbf{h}_2/\|\mathbf{h}_2\| \), i.e., \(\mathbf{v}_2^H \mathbf{r}' \), where \(\mathbf{r}' = \alpha_2 \mathbf{h}_2 s_2 + \mathbf{w} \) is the remaining received signal after the contributing part of \(s_1 \) is stripped off. Thereby, assuming a unit-power signal \(s_i \) and perfect channel state information at the receiver, the SINR and SNR at the 1st and 2nd SIC detection stage is given, respectively, as
\[
\gamma_1 \triangleq \frac{p\alpha_1 \|\mathbf{h}_1\|^2}{p\alpha_2 |\mathbf{v}_1^H \mathbf{h}_2|^2 + N_0},
\]
and
\[
\gamma_2 \triangleq \frac{p\alpha_2 N_0}{N_0 \|\mathbf{h}_2\|^2},
\]
where \(| \cdot | \), present in the denominator of (2), denotes the absolute (scalar) value operator.

3 Performance Metrics

We commence by analyzing PER of the considered uplink NOMA short packet transmission setup. First, we assume that a packet error occurs only when \(\gamma_i < \gamma_{th} \) for any time instance during an entire packet duration with \(\gamma_{th} \) denoting a certain data rate threshold (in bps/Hz). This process is modeled by using the two-state Markov model analyzed in [10, §III.B]. Thereupon, PER at the 1st detection stage becomes [10, Eq. (58)]
\[
P_s^{(1)} = 1 - \exp \left(- \frac{T_p \text{LCR}_1(\gamma_{th})}{1 - F_{\gamma_1}(\gamma_{th})} \right) \left(1 - F_{\gamma_1}(\gamma_{th}) \right),
\]
where \(T_p \), LCR\(_1(\cdot)\) and \(F_{\gamma_1}(\cdot) \) denote the packet transmission time interval, LCR and cumulative distribution function (CDF) of \(\gamma_1 \), respectively. Notably, the defined PER considers the time variations and correlations of the channel, captured by the second-order LCR statistic. Moreover, according to the adopted SIC-enabled reception approach, conditioned on the
successful decoding of the 1st stage, the 2nd stage is being performed. Thus, the instantaneous packet error at the 2nd stage can be modeled by $P_s(1) + P_{s.c}(1 - P_s(1))$, where $P_s(1)$ and $P_{s.c}(2)$ are the instantaneous error probability at the 1st detection stage and conditional error probability at the 2nd stage given that the 1st stage was error-free. Note that the conditional (average) PER of the 2nd stage, i.e., $P_{s.c}(2)$ is computed as per (4), by simply substituting F_{γ_1} and LCR$_1$ with F_{γ_2} and LCR$_2$, correspondingly. Thereby, the following union bound on the unconditional PER at the 2nd stage yields as

$$P_s(2) \leq \sum_{i=1}^{2} \frac{1 - \exp\left(-\frac{T_pLCR_{i}(\gamma_{th})}{1 - F_{\gamma_{i}}(\gamma_{th})}\right)(1 - F_{\gamma_{i}}(\gamma_{th}))}{F_{\gamma_{i}}(\gamma_{th})} \triangleq P_{s.c}^{(2)}$$

(5)

Typically, error rates remain considerably low in ultra-reliable applications, i.e., $\propto \{10^{-6}, 10^{-4}\}$; hence, the latter union bound is quite sharp, yielding $P_s(2) \approx P_{s.c}^{(2)}$.

According to (2) and without delving into details, it is straightforward to show that the corresponding CDF of SINR is given by

$$F_{\gamma_{i}}(\gamma_{th}) = \int_{0}^{\infty} F_{\alpha_{i}[\|h_{i}\|^{2}]}\left(\gamma_{th} + \frac{\gamma_{th}N_{0}}{p} \right) f_{\alpha_{i}[\gamma_{th}^{2}]}(y)dy$$

$$= 1 - \sum_{k=0}^{N_{0} - 1} \frac{\gamma_{th}^{k}}{k!} \exp\left(\frac{\gamma_{th}N_{0}}{p\alpha_{2}}\right) \frac{1}{\Gamma(k + 1, \frac{\gamma_{th}N_{0}}{p\alpha_{2}})}$$

(6)

$$= 1 - \sum_{k=0}^{N_{0} - 1} \sum_{l=0}^{k} \frac{\gamma_{th}^{k}}{l!} \left(\frac{\gamma_{th}}{\alpha_{1} + \frac{1}{\alpha_{2}}}\right)^{k} \left(\frac{\gamma_{th}}{\alpha_{1} + \frac{1}{\alpha_{2}}}\right)^{l}$$

where $\Gamma(\cdot, \cdot)$ is the upper incomplete Gamma function. Also, $F_{\alpha_{i}[\|h_{i}\|^{2}]}(\cdot)$ and $f_{\alpha_{i}[\gamma_{th}^{2}]}(\cdot)$ denote the Erlang CDF and exponential probability density function (PDF), respectively. In a similar basis, according to (3), it holds that

$$F_{\gamma_{2}}(\gamma_{th}) = 1 - \frac{\Gamma(N, \frac{N_{0}\gamma_{th}}{p\alpha_{2}})}{\Gamma(N)}$$

$$= 1 - \exp\left(-\frac{N_{0}\gamma_{th}}{p\alpha_{2}}\right) \sum_{k=0}^{N_{0} - 1} \left(\frac{N_{0}\gamma_{th}}{p\alpha_{2}}\right)^{k} \frac{1}{k!}.$$

(7)

On another front, LCR is an important second-order statistic that showcases the rate of fading occurrence within a certain time interval. According to the structure of γ_{1} in (2), its corresponding LCR is expressed as [9, Eq. (21)]
\[
\text{LCR}_1(\gamma_{\text{th}}) = \frac{\sqrt{2\pi f_1} \left(\frac{\gamma_{\text{th}} N_0}{p a_1} \right)^{N-\frac{1}{2}} \exp \left(-\frac{\gamma_{\text{th}} N_0}{p a_1} \right)}{(1 + \frac{\gamma_{\text{th}} a_2^2}{a_1^2})^{N-1} \left(1 + \frac{\gamma_{\text{th}} a_2}{a_1} \right) \exp \left(\frac{a_2 p (a_1^2 + a_2^2 \gamma_{\text{th}})}{N_0 (a_1 + a_2 \gamma_{\text{th}})} \right) \times \sum_{l=0}^{N-1} \left(\frac{\gamma_{\text{th}} a_2^2}{a_1^2} \right)^{N-l-1} \frac{\Gamma(l + \frac{3}{2})}{\Gamma(N) \exp \left(\frac{\gamma_{\text{th}} N_0 (a_1 + a_2 \gamma_{\text{th}})}{a_2 p (a_1^2 + a_2^2 \gamma_{\text{th}})} \right)} l!(N-l-1)!.}
\]

Finally, the LCR of \(\gamma_2 \) is presented as [11, Eq. (17)]
\[
\text{LCR}_2(\gamma_{\text{th}}) = \frac{\sqrt{2\pi f_2} \left(\frac{\gamma_{\text{th}} N_0}{p a_2} \right)^{N-\frac{1}{2}} \exp \left(-\frac{\gamma_{\text{th}} N_0}{p a_2} \right)}{(1 + \frac{\gamma_{\text{th}} a_2^2}{a_1^2})^{N-1} \left(1 + \frac{\gamma_{\text{th}} a_2}{a_1} \right) \exp \left(\frac{a_2 p (a_1^2 + a_2^2 \gamma_{\text{th}})}{N_0 (a_1 + a_2 \gamma_{\text{th}})} \right) \times \sum_{l=0}^{N-1} \left(\frac{\gamma_{\text{th}} a_2^2}{a_1^2} \right)^{N-l-1} \frac{\Gamma(l + \frac{3}{2})}{\Gamma(N) \exp \left(\frac{\gamma_{\text{th}} N_0 (a_1 + a_2 \gamma_{\text{th}})}{a_2 p (a_1^2 + a_2^2 \gamma_{\text{th}})} \right)} l!(N-l-1)!.}
\]

4 Engineering Insights

In the short packet transmission regime, recall that \(T_p \) remains quite low. In addition, when ultra-high reliability is required in the considered NOMA setup, it is obvious that a high SNR is a requisite. Capitalizing on the said observations and applying the first-order McLaurin series to the exponential function within (4) (i.e., \(\exp(-z) \rightarrow 1 - z \) as \(z \rightarrow 0^+ \)), we arrive at
\[
\overline{P_s^{(1)}} \approx F_{\gamma_1}(\gamma_{\text{th}}) + T_p \text{LCR}_1(\gamma_{\text{th}}).
\]

Likewise, PER at the 2nd stage approaches
\[
\overline{P_s^{(2)}} \approx F_{\gamma_1}(\gamma_{\text{th}}) + F_{\gamma_2}(\gamma_{\text{th}}) + T_p \left[\text{LCR}_1(\gamma_{\text{th}}) + \text{LCR}_2(\gamma_{\text{th}}) \right].
\]

It is noteworthy that the PER is lower bounded by the corresponding outage probabilities at each detection stage (say, \(F_{\gamma_i}(-) \)), whereon an ‘extra penalty’ is added so as to reach the total PER, which is reflected by the corresponding LCR performance of \(\gamma_i \).

The optimal power allocation, defined by \(\alpha^* \), defines a key performance indicator for the considered NOMA setup. Specifically, the optimization problem can be designed such that PER at the 2nd stage should be minimized under the constraint of PER at the 1st stage not exceeding a predetermined threshold value \(\epsilon \). It can be formulated as
\[
P_1 : \quad \min_{\alpha^*} \overline{P_s^{(2)}}
\text{subject to: } \overline{P_s^{(1)}} \leq \epsilon, \quad 0 < \alpha_1 < 1.
\]

Unfortunately, \(P_1 \) is a non-convex optimization problem since both the objective and constraint function (regarding PER) are non-convex functions. However, \(\alpha^* \) can be directly obtained by a numerical search over the real line in the range \(\{0, 1\} \) for arbitrary antenna arrays \(N \) and user mobility profiles.
5 Numerical Results

The derived analytical results are verified via numerical validation where they are cross-compared with corresponding Monte-Carlo simulations. The Rayleigh faded channels are generated by using the sum-of-sinusoids method [12], which is a modified Jakes model. In what follows, for ease of presentation and without loss of generality, we assume that $f_1 = f_2 \triangleq f$; namely, the two users have an identical mobility profile (i.e., the same relative speed). The packet duration T_p is set to be 1 millisecond, appropriate for low-latency short packet transmission.

In Fig. 1, the maximum Doppler frequency is set to be $f = 162$ Hz, which corresponds to a vehicular speed of 50 km/hr regarding a cellular system with carrier frequency 3.5 GHz. We model a base station equipped with 2 antenna elements operating in a high SNR region. The PER of the 1st detection stage is depicted as well as the conditional PER at the 2nd stage (given that the 1st stage is correctly decoded), which can be directly computed by setting $i = 2$ in (5). The performance gap between the two stages is evident and gets even more emphatic for an increasing transmit SNR p/N_0. Further, it can be seen that PER of the 1st stage dominates the overall system performance for relatively low α_1 values in comparison to PER at the 2nd stage; and vice versa for relatively high α_1 values. This is a reasonable outcome since lower α_1 values typically reduce γ_1 in (2) as well as increase γ_2 in (3), while quite the opposite result holds as α_1 increases.

In Fig. 2, the role of multiple antennas at the receiver is highlighted, by considering a conventional base station with $N = 8$ antennas compared to a massive antenna array of
\(N = 128 \) antennas. The union bound of PER at the 2nd stage is illustrated. It is noteworthy that the massive antenna scenario outperforms the conventional case only when the power allocation factor \(\alpha_1 \) is carefully selected. Obviously, the PER performance is not affected by an increase of \(N \) for a relatively low \(\alpha_1 \). On the other hand, there is a certain range of \(\alpha_1 \) values, where the presence of a vast antenna array is greatly beneficial. The optimal \(\alpha_1 \) (namely, \(\alpha^* \)) is lying in this range, which can be quite easily computed as per \(P_1 \). Also, as expected, PER is dramatically reduced for a lower rate threshold, \(\gamma_{th} \). Notice that a relatively low data rate requirement is the typical case of various URLLC applications since high data rates are being sacrificed so as to guarantee connectivity and ultra-high reliability.

6 Conclusion

An uplink two-user NOMA communication system was considered, which operates under independent Rayleigh faded channels. The case when the users and receiver are equipped with a single-antenna and multi-antenna elements, respectively, was studied. Moreover, user mobility was supported reflecting several practical applications, e.g., vehicle-to-vehicle and device-to-device networking setups. Particularly, we focused on the short packet transmission regime, which relates to the rather timely URLLC applications. Closed-form expressions regarding the system PER were derived under arbitrary
user mobility profiles and various antenna array ranges. Finally, some new useful engineering insights were obtained, while the optimal NOMA power allocation per user was formulated based on the derived PER results.

Funding This research was funded in the context of the Project “A Mobile Edge Computing-Enabled 5G Vehicular Networking Architecture to Support Innovative Services” (MIS 5050174) under the call for proposals “Supporting Researchers with an Emphasis on Young Researchers–Cycle B” (EDULLL 103). The Project is co-financed by Greece and the European Union (European Social Fund–ESF) by the Operational Programme Human Resources Development, Education and Lifelong Learning 2014–2020.

Data availability The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Declarations

Conflict of Interest The authors declare that they have no conflict of interest.

References

1. Amjad, M., & Musavian, L. (Dec. 2018). Performance analysis of NOMA for ultra-reliable and low-latency communications. In *Proceedings of IEEE Globecom workshops*, Abu Dhabi, UAE.
2. Yu, Y., Chen, H., Li, Y., Ding, Z., & Vucetic, B. (2018). On the performance of non-orthogonal multiple access in short-packet communications. *IEEE Communications Letters*, 22(3), 590–593.
3. Schiessl, S., Skoglund, M., & Gross, J. (2020). NOMA in the uplink: delay analysis with imperfect CSI and finite-length coding. *IEEE Transactions on Wireless Communications*, 19(6), 3879–3893.
4. Lai, X., Zhang, Q., & Qin, J. (2019). Cooperative NOMA short-packet communications in flat Rayleigh fading channels. *IEEE Transactions on Vehicular Technology*, 68(6), 6182–6186.
5. Ghanami, F., Hoddani, G., Vucetic, B., & Shirvanimoghaddam, M. (2021). Performance analysis and optimization of NOMA with HARQ for short packet communications in massive IOT. *IEEE Internet of Things Journal*, 8(6), 4736–4748.
6. Tran, D., Sharma, S., Chatzinotas, S., Woungang, I., & Ottersten, B. (2021). Short-packet communications for MIMO NOMA systems over Nakagami-m fading: BLER and minimum blocklength analysis. *IEEE Transactions on Vehicular Technology*, 70(4), 3583–3598.
7. Yuan, L., Zheng, Z., Yang, N., & Zhang, J. (2021). Performance analysis of short-packet non-orthogonal multiple access with Alamouti space-time block coding. *IEEE Transactions on Vehicular Technology*, 70(3), 2900–2905.
8. Huang, X., & Yang, N. (May 2019). On the block error performance of short-packet non-orthogonal multiple access systems, In *Proceedings of IEEE ICC*, Shanghai, China.
9. Ali, A. O. D., Yetis, C. M., & Torlak, M. (2017). Novel expressions and applications for the level crossing rate of maximal ratio combining in the presence of cochannel interferers. *IEEE Transactions on Vehicular Technology*, 66(11), 9793–9808.
10. Fukawa, K., Suzuki, H., & Tateishi, Y. (2012). Packet-error-rate analysis using Markov models of the signal-to-interference ratio for mobile packet systems. *IEEE Transactions on Vehicular Technology*, 61(6), 2517–2530.
11. Beaulieu, N. C., & Dong, X. (2003). Level crossing rate and average fade duration of MRC and EGC diversity in Ricean fading. *IEEE Transactions on Communications*, 51(5), 722–726.
12. Patzold, M., Wang, C.-X., & Hogstad, B. O. (2009). Two new sum-of-sinusoids-based methods for the efficient generation of multiple uncorrelated Rayleigh fading waveforms. *IEEE Transactions on Wireless Communications*, 8(6), 3122–3131.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Nikolaos I. Miridakis was born in Athens, Greece, in 1982. He received his M.Sc. and Ph.D. degrees in Networking and Data Communications from the Department of Information Systems, Kingston University, U.K. in 2008 and from the Department of Informatics, University of Piraeus, Greece in 2012, respectively. Since 2012, he has been with the Department of Informatics, University of Piraeus, Greece where he is a Senior Researcher. Since 2012, he has been with the School of Electrical and Information Engineering and the Institute of Physical Internet, Jinan University, Zhuhai, China as a Distinguished Research Associate. Currently, he is an Assistant Professor with the Department of Informatics and Computer Engineering, University of West Attica, Greece. His main research interests include wireless communications, and more specifically interference analysis and management in wireless communications, multicarrier communications, MIMO systems, statistical signal processing, diversity reception, fading channels, and cooperative communications. Dr. Miridakis serves as a reviewer and TPC member for several prestigious international journals and conferences. He was also recognized as an Exemplary Reviewer by IEEE Transactions on Communications, IEEE Transactions on Vehicular Technology, and Elsevier Physical Communication in 2017. Since 2019, he serves as an Associate Editor of the IEEE Communications Letters.

Emmanouel T. Michailidis was born in Athens, Greece. He received the Ph.D. degree with specialization in "Broadband Aerospace Communications" in 2011 from the University of Piraeus, Piraeus, Greece. Since 2018, he has been an Adjunct Lecturer with the Department of Electrical and Electronics Engineering and the Department of Informatics and Computer Engineering, School of Engineering, University of West Attica, Aigaleo, Greece. Since 2012, he has been a Post-Doctoral Researcher with the Dept. of Digital Systems, School of Information and Communication Technologies, University of Piraeus. He is author and coauthor of more than 40 publications in international journals, conference proceedings, and book chapters. Dr. Michailidis received several best paper awards in his areas of research and his current research interests include channel modeling and performance analysis of next-generation wireless, aerial and satellite communication systems.

Angelos Michalas is a Professor in the Electrical and Computer Engineering Department of the University of Western Macedonia. From 2015 is the director of the MSc Programme "Modern Information Technologies and Services" co-organized from the Department of Informatics of the UOWM and the Department of Informatics of the University of Piraeus. His research interests focus on the design and performance evaluation of wired and wireless networks, advanced distributed network services and Quality of Service/Experience. He has participated in a large number of European and National research programs in these areas. Dr Michalas is the author of several peer-reviewed publications in these areas and serves as a technical program committee member and reviewer in international conferences and journals. He is member of scientific unions including the IEEE, the ACM and the Technical Chamber of Greece.
Emmanouil Skondras is a Postdoctoral researcher in Next Generation Wireless Networks at University of Piraeus, Department of Informatics. He received his PhD in Next Generation Wireless Networks at University of Piraeus, Department of Informatics. Also, he received his MSc in Computer Science at the Athens University of Economics and Business, Department of Informatics and his BSc in Informatics and Computer Technology from the Technological Educational Institution of Western Macedonia, along with two yearly scholarships and one award in respect of his high degrees. Additionally, he is Adjunct Lecturer in MSc Programmes of University of Piraeus and University of Western Macedonia, while at the same time he is working as ICT specialist in Network Operations Center (NOC) of University of Piraeus. He has also worked in R&D projects of Information Technology Industry. His research interests are in the area of Sensor as well as Communication Networks, mainly in Wireless Networks, such as Failing Ad Hoc Networks (FANETs), Vehicular Ad Hoc Networks (VANETs), Cellular and Mesh Networks.

Dimitrios J. Vergados was born in 1980, and is currently an Assistant Professor at the Department of Informatics, University of Western Macedonia, Greece, and also a post-doctoral researcher at the School of Electrical and Computer Engineering, National Technical University of Athens (NTUA), Greece. He received his PhD and his B. Engineering degrees from the school of Electrical and Computer Engineering, NTUA in 2009 and 2003 respectively. He has been employed in research projects and as a Visiting Lecturer in several universities in Greece and Norway. His research interests include distributed systems, wireless networks, simulation modeling, scheduling algorithms, multihop networks, and smart-grids. He has authored several publications in these areas.

Dimitrios D. Vergados is a Professor, Deputy Head of the Department of Informatics at the University of Piraeus, Director of the M.Sc. Programme "Advanced Informatics and Computing Systems". He has significant research experience related to the project proposal. In particular, he has participated in several research projects and has published more than 220 publications (Journals with high impact factor, books, conferences Proceedings, and symposia) in research topics related with the project like wireless communications, Wireless Sensor Networks, Internet of Things and Smart Grid cloud computing, Security in Information Systems and Telecommunications and has more than 3200 Citations in his research Work (Source Scholar Google: h-index 23, i10-index 54). He has participated in many Conferences (more than 60) (in the majority presenting his research work) and moreover he has also given more than 20 invited talks. He has also visited several European Universities through Staff Mobility of Erasmus/Erasmus+ Network Programme. He has participated in several research projects.
funded by EU and National Agencies. He has served as a committee member and evaluator and reviewer in National and International Organizations and Agencies. He was also served as a member of the Board of the Hellenic Telecommunications and Post Commission (EETT) (2013–2017) and Invited Distinguished Trainer/Speaker of Europol at the 2nd Training Course on Payment Card Fraud Forensics and Investigations (July 2016) (See also Commissions of Trust and PI Achievements Document). He has been a member of the technical program committee in several international conferences (more than 100 since 2007). He is a guest editor, member of the Editorial Board and a reviewer in several journals and Conferences. He is an IEEE Senior Member.