Research Article

C*-Algebras Generated by a System of Unilateral Weighted Shifts and Their Application

Beyaz Basak Koca and Nazim Sadik

Department of Mathematics, Faculty of Science, Istanbul University, 34134 Istanbul, Turkey

Correspondence should be addressed to Beyaz Basak Koca, basakoca@istanbul.edu.tr

Received 5 September 2012; Accepted 28 November 2012

Academic Editor: Lars Diening

Copyright © 2012 B. B. Koca and N. Sadik. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We study the structure C*-algebras generated by a system of unilateral weighted shifts. Finally the obtained results are applied to a class of integral equations.

1. Introduction

The structure of C*-algebras generated by isometry is determined in [1, 2]. The structure is the same with the structure of C*-algebras generated by unilateral weighted shift operators, that is, the structure of C*-algebras generated by multiplication operators with the independent variable in the Hardy space on the unit disc. The analogue of the unit disc on \(\mathbb{C}^N \) is the polydisc

\[
\Delta^N = \left\{ z = (z_1, z_2, \ldots, z_N) \in \mathbb{C}^N : |z_i| < 1, 1 \leq i \leq N \right\}
\] (1.1)

or the unit ball

\[
B^N = \left\{ z = (z_1, z_2, \ldots, z_N) \in \mathbb{C}^N : |z_1|^2 + |z_2|^2 + \cdots + |z_N|^2 < 1 \right\}.
\] (1.2)

The structures of C*-algebras generated by multiplication operators with the independent variable in the Hardy space on the unit ball and polydisc are different. To understand this difference we study the structure of C*-algebras generated by system of unilateral weighted shifts.
Let I be a multiindex (i_1, \ldots, i_N) of integers and $I \pm \varepsilon_j$ denotes $(i_1, \ldots, i_j \pm 1, \ldots, i_N)$ for the multi-index I. Here ε_j is another multi-index $(\delta_1, \ldots, \delta_N)$, where δ_i is the Kronecker symbol.

Let $\{e_I\}_{I \geq 0}$ be an orthonormal basis of a separable complex Hilbert space H and let $\{\omega_{I,j} : I \geq 0, 1 \leq j \leq N\}$ be a bounded net of complex numbers. Denote by A_j the bounded linear operators whose effect on the elements of basis $\{e_I\}_{I \geq 0}$ of H is given as $A_j e_I = \omega_{I,j} e_{I+\varepsilon_j}$, $1 \leq j \leq N$. A family of N operators, denoted by $A = (A_1, A_2, \ldots, A_N)$, is called a system of unilateral weighted shifts, and the numbers $\{\omega_{I,j} : I \geq 0, 1 \leq j \leq N\}$ are called the weights of the system. It is known from [3, page 209, Corollary 2] that for shifts with nonzero weights $\{\omega_{I,j}\}$, without loss of generality we may always assume the weights are a set of positive real numbers, that is, the system A positive. It is possible to show that if there exists a solution for the multivariable moment problem for the net $\{\beta^2_I\}_{I \geq 0}$ where $\beta_{I+\varepsilon_j} = \omega_{I,j} \beta_I$, $\beta_0 = 1$, that is, if there exists the probability measure ν_A on $[0,1]^N = [0,1] \times \cdots \times [0,1]$ (N times) such that

$$\beta^2_I = \int_{[0,1]^N} r_1^{2i_1} r_2^{2i_2} \cdots r_N^{2i_N} d\nu(r_1, r_2, \ldots, r_N),$$

then the system A is unitarily equivalent to the system of multiplication operators by the independent variables z_j, $1 \leq j \leq N$, on the space

$$H^2(\Delta^N, \mu_A) = \left\{ f = \sum_{I \geq 0} f_I z^I : \sum_{I \geq 0} |f_I|^2 \beta^2_I < \infty \right\},$$

where $\mu_A = \nu_A d\theta_1 d\theta_2 \cdots d\theta_N$, $0 \leq \theta_i \leq 2\pi$.

The reader can find for more details of such operators in the article by Jewell and Lubin [3] and Ergezen and Sadik [4]. Furthermore the papers of Curto and Yoon [5] and Curto and Yan [6] are closely related to our study.

2. C*-Algebras Generated by a System of Unilateral Weighted Shifts

Let Ω denote the family of the systems A which satisfy the functional model defined above. Moreover, let Ω_1 be a subset of Ω defined by

$$\Omega_1 = \left\{ A \in \Omega : \nu_A(U(1,1,\ldots,1)) > 0 \text{ for arbitrary neighborhood } U(1,1,\ldots,1) \text{ of the point } (1,1,\ldots,1) \in [0,1]^N \right\}.$$

Theorem 2.1 (see [4, page 25, Theorem 2]). Let $A \in \Omega$. A necessary and sufficient condition for the operator algebra generated by the system A to be isometrically isomorphic to the polydisc algebra is that A belongs to Ω_1.

This theorem will be helpful in studying the structure of C*-algebra $C^*(A)$ generated by $A \in \Omega_1$.

Let P denote the orthogonal projection of $L_2(\Delta^N, \mu_A)$ onto $H^2(\Delta^N, \mu_A)$ and let φ lie in $C(\text{supp } \mu_A)$. Then the Toeplitz operator $T_\varphi f = P(\varphi f)$ for f in $H^2(\Delta^N, \mu_A)$.

Without loss of generality we may take \(N = 2 \). The following theorems for \(N = 1 \) were given by Sadikov [7].

Theorem 2.2. Let \(A \in \Omega \). If the algebra generated by the system \(A \) is polydisc algebra then the commutator ideal \(\mathcal{J} \) of \(C^*(A) \) contains properly the ideal of compact operators \(\mathcal{K} \) and the quotient space \(\mathcal{J}/\mathcal{K} \) is isometrically isomorphic to \(C(T \times \{0, 1\}) \oplus \mathcal{K} \) and \(C^*(A)/\mathcal{J} = C(T \times T) \), where \(T \) is unit circle and \(\{0, 1\} \) is the two point space.

Corollary 2.3. Let \(T_\psi \in C^*(A) \). Then necessary and sufficient condition for \(T_\psi \) to be Fredholm is that \(\psi(z) \) is nonvanishing for \(z \in T^2 \) and \(\psi|_{T^2} \) is homotopic to constant.

Theorem 2.2 and Corollary 2.3 are proved by using the methods of Douglas and Howe in their study [8] and Curto and Muhly in [9].

Let

\[
S_1 = \{ (r_1, r_2) \in [0, 1] \times [0, 1] : r_1^2 + r_2^2 \leq 1 \},
\]

\[
\tilde{S}_1 = \{ (r_1, r_2) \in [0, 1] \times [0, 1] : r_1^2 + r_2^2 = 1 \},
\]

and let \(\Omega_2 \) be subset of \(\Omega \) defined by

\[
\Omega_2 = \{ A \in \Omega : \nu_A(U(a)) > 0 \text{ for arbitrary neighborhood } U(a) \text{ of the arbitrary point } a \in \tilde{S}_1 \}. \tag{2.3}
\]

Theorem 2.4 (see [10, p. 1932, Theorem 2]). Let \(A \in \Omega \). A necessary and sufficient condition for the operator algebra generated by the system \(A \) to be isometrically isometric to the ball algebra is that \(A \) belongs to \(\Omega_2 \).

Theorem 2.5. Let \(A \in \Omega \). If the algebra generated by the system \(A \) is ball algebra then \(C^*(A) \) contains \(\mathcal{K} \) ideal of compact operators and \(C^*(A) = \{ T_\psi + K : \psi \in C(\text{supp } \mu_A), K \in \mathcal{K} \} \). The quotient \(C^*(A)/\mathcal{K} \) is naturally identified with \(C(S_3) \) by a map \(\sigma(T_\psi + K) = \psi|_{S_3} \).

It is enough to show compactness of the operators \(A_i^*A_i - A_iA_i^* \), \(i = 1, 2 \) for proving that commutant of the algebra \(C^*(A) \) is \(\mathcal{K} \). For this, we just study the case \(i = 2 \). Then the case \(i = 1 \) is similarly showed, as well. With the basic computations, we obtain \((A_2^*A_2 - A_2A_2^*)e_{(m,n)} = (\omega_{(m,n),2} - \omega_{(m,n+1),2}^2)e_{(m,n)} \). If we show \(\omega_{(m,n),2}^2 - \omega_{(m,n-1),2}^2 \) converges the zero when \(|I| \to \infty \) then the proof is completed. For this, we need the following lemma.

Lemma 2.6. Let \(\nu_A \) be a measure determined by the system \(A \in \Omega_2 \) and \(I = (m, n) \), then the expression

\[
\frac{\int_{S_1} r_1^{2m} r_2^{2n+4} d\nu(r_1, r_2)}{\int_{S_1} r_1^{2m} r_2^{2n} d\nu(r_1, r_2)} - \frac{\int_{S_1} r_1^{2m} r_2^{2n} d\nu(r_1, r_2)}{\int_{S_1} r_1^{2m} r_2^{2n-2} d\nu(r_1, r_2)} \tag{*}
\]

converges to zero when \(|I| \to \infty \).
In view of the following process, the lemma is proved. Without loss of generality, we can take $n = 1$. Hence the second fractional of the expression (*) becomes $I_1/I_2 := \int_{S_1} r_1^{2m} r_2^2 d\nu(r_1, r_2) / \int_{S_1} r_1^{2m} d\nu(r_1, r_2)$. It is enough to show I_1/I_2 goes to zero when $m \to \infty$.

Take $r_{20} = \sqrt{\varepsilon/2}$ and $r_{10} = \sqrt{1 - (\varepsilon/2)^2} = \sqrt{1 - r_{20}^2}$ for given $\varepsilon > 0$. Consider $S_{10} := \{(r_1, r_2) : r_{10} < r_1 \leq 1 \cap S_1$ and $S_{11} := S_1/S_{10}$. We have $I_1 = I_{10} + I_{11}$, where $I_{10} = \int_{S_{10}} \int_{S_1} r_1^{2m} r_2^2 d\nu(r_1, r_2)$. It easily shows that $I_{10} \leq (\varepsilon/2) I_2$ and $I_{11} \leq r_{10}^{2m} \nu(S_1)$ for all m. Moreover, take $r_{11} = (1 + r_{10})/2$; then we have $I_{12} \geq r_{11}^{2m} \nu(S_{101})$ for all m, where $S_{101} = \{(r_1, r_2) : r_{11} < r_1 \leq 1 \cap S_1$. Hence, there exists $M > 0$ such that for all $m > M$ it is obtained $I_1/I_2 < \varepsilon$.

It follows from Lemma 2.6 and a well-known result in C^*-algebras [2, page 212, Proposition 1] that $K \subset C^*(A)$.

3. An Application

Throughout this section, we follow the notations and definitions in the preceding section.

Let H be separable complex Hilbert space, let $B(H)$ denote the algebra of linear bounded operators on H and let I be identity operator. Consider an operator

$$T = B_1 + B_2 S + K,$$

(3.1)

where B_1 and B_2 are the elements of a subalgebra Λ of $B(H)$ such that the image $\tau(\Lambda)$ is a commutative subalgebra of the algebra $B(H)/K$ under the natural quotient map τ from $B(H)$ to $B(H)/K$ and S denotes an automorphism in the algebra $\tau(\Lambda)$, that is, $\tau(S)\tau(B)\tau(S^{-1}) = \tau(B')$, where B and B' belong to Λ. It is obvious that if $B \in \Lambda$ then $SBS^{-1} = B' + K$, where $B' \in \Lambda$ and $K \in K$.

Theorem 3.1 (see [11]). *If the operator $\tau(B_1)\tau(B_1') - \tau(B_2)\tau(B_2')$ has an inverse in $\tau(\Lambda)$ then $T = B_1 + B_2 S + K$ is Fredholm operator.*

Using the Theorem 3.1 we take $A \in \Omega_2$ and consider the operator $T_{\psi_1} + T_{\psi_2} S + K$, where T_{ψ_1} and T_{ψ_2} are Toeplitz operators in $C^*(A)$ and the operators S and T satisfy the conditions given above.

Moreover if we take into account the orthonormal projection P has the form

$$(Pf)(z_1, z_2) = \int_{\Delta^2} K(z, l) f(l_1, l_2) d\mu_A(l_1, l_2),$$

(3.2)

where K is the reproducing Bergman kernel of the functional space $H^2(\Delta^2, \mu_A)$, then the equation $Tf = \varphi$ is written in the form

$$\int_{\Delta^2} K(z, l) \psi_1(l_1, l_2) f(l_1, l_2) d\mu_A(l_1, l_2) + \int_{\Delta^2} K(z, l) \psi_2(l_1, l_2) f(l_1, l_2) d\mu_A(l_1, l_2) + (Kf)(z_1, z_2) = \varphi(z_1, z_2).$$

(3.3)
Hence we have the following theorem.

Theorem 3.2. If the function \(q_1(z_1, z_2)q_3(z_2, z_1) - q_2(z_1, z_2)q_3(z_2, z_1) \) does not vanish in \(S_3 \), then all of Noether’s theorems is true for (3.3). In particular, if we take \(\omega_{1,1} = \sqrt{(m+1)/(2+m+n)} \), \(\omega_{1,2} = \sqrt{(n+1)/(2+m+n)} \) and \(Sf (l_1, l_2) = f (l_2, l_1) \) then (3.3) has the form

\[
\int_{S_3} \frac{q_1(l_1, l_2)f(l_1, l_2)}{(1 - z_1 \bar{z}_1 - z_2 \bar{z}_2)^2} ds + \int_{S_3} \frac{q_2(l_1, l_2)f(l_2, l_1)}{(1 - z_1 \bar{z}_1 - z_2 \bar{z}_2)^2} ds + (Kf)(z_1, z_2) = \varphi(z_1, z_2),
\]

where \(ds \) is the surface measure in \(S_3 \).

References

[1] L. A. Coburn, “The C*-algebra generated by an isometry,” *Bulletin of the American Mathematical Society*, vol. 73, pp. 722–726, 1967.

[2] L. A. Coburn, “The C*-algebra generated by an isometry. II,” *Transactions of the American Mathematical Society*, vol. 137, pp. 203–217, 1971.

[3] N. P. Jewell and A. R. Lubin, “Commuting weighted shifts and analytic function theory in several variables,” *Journal of Operator Theory*, vol. 1, no. 2, pp. 207–223, 1979.

[4] F. Ergezen and N. Sadik, “On some operator algebras generated by unilateral weighted shifts,” *Publications Mathematicae Debrecen*, vol. 76, no. 1-2, pp. 21–30, 2010.

[5] R. E. Curto and J. Yoon, “Jointly hyponormal pairs of commuting subnormal operators need not be jointly subnormal,” *Transactions of the American Mathematical Society*, vol. 358, no. 11, pp. 5139–5159, 2006.

[6] R. E. Curto and K. R. Yan, “The spectral picture of Reinhardt measures,” *Journal of Functional Analysis*, vol. 131, no. 2, pp. 279–301, 1995.

[7] N. M. Sadikov, “Toeplitz operators on the disc,” *Izvestiya Akademii Nauk Azerbaïdzhan SSR. Seriya Fiziko-Tekhnicheskikh i Matematicheskikh Nauk*, vol. 5, no. 4, pp. 8–12, 1984 (Russian).

[8] R. G. Douglas and R. Howe, “On the C*-algebra of Toeplitz operators on the quarterplane,” *Transactions of the American Mathematical Society*, vol. 158, pp. 203–217, 1971.

[9] R. E. Curto and P. S. Muhly, “C*-algebras of multiplication operators on Bergman manifolds,” *Journal of Functional Analysis*, vol. 64, no. 3, pp. 315–329, 1985.

[10] F. Ergezen, “On unilateral weighted shifts in noncommutative operator theory,” *Topology and Its Applications*, vol. 155, no. 17-18, pp. 1929–1934, 2008.

[11] N. M. Sadikov, “On a method of Z. I. Halilov,” *Akademiya Nauk Azerbaïdzhan SSR. Doklady*, vol. 37, no. 1, pp. 13–15, 1981 (Russian).
