Comparative genomic analysis of three geographical isolates from China reveals high genetic stability of Plutella xylostella granulovirus

Man-Li Zhang, Ling-Qian Wang, Yong Qi, Yi Wu, Dong-Hui Zhou, Lu-Lin Li

Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, China

Abstract

In this study, the genomes of three Plutella xylostella granulovirus (PlxyGV) isolates, PlxyGV-W and PlxyGV-Wn from near Wuhan and PlxyGV-B from near Beijing, China were completely sequenced and comparatively analyzed to investigate genetic stability and diversity of PlxyGV. PlxyGV-W, PlxyGV-B and PlxyGV-Wn consist of 100,941bp, 100,972bp and 100,999bp in length with G + C compositions of 40.71–40.73%, respectively, and share nucleotide sequence identities of 99.5–99.8%. The three individual isolates contain 118 putative protein-encoding ORFs in common. PlxyGV-W, PlxyGV-B and PlxyGV-Wn have ten, nineteen and six nonsynonymous intra isolate nucleotide polymorphisms (NPs) in six, fourteen and five ORFs, respectively, including homologs of five DNA replication/late expression factors and two per os infectivity factors. There are seventeen nonsynonymous inter isolate NPs in seven ORFs between PlxyGV-W and PlxyGV-B, seventy three nonsynonymous NPs in forty seven ORFs between PlxyGV-W and PlxyGV-Wn, seventy seven nonsynonymous NPs in forty six ORFs between PlxyGV-B and PlxyGV-Wn. Alignment of the genome sequences of nine PlxyGV isolates sequenced up to date shows that the sequence homogeneity between the genomes are over 99.4%, with the exception of the genome of PlxyGV-SA from South Africa, which shares a sequence identity of 98.6–98.7% with the other ones. No events of gene gain/loss or translocations were observed. These results suggest that PlxyGV genome is fairly stable in nature. In addition, the transcription start sites and polyadenylation sites of thirteen PlxyGV-specific ORFs, conserved in all PlxyGV isolates, were identified by RACE analysis using mRNAs purified from larvae infected by PlxyGV-Wn, proving the PlxyGV-specific ORFs are all genuine genes.

Introduction

Baculoviruses have long been explored as biological control agents of agricultural and forest pests attributing to their pathogenicity highly specific for insects, mainly Lepidoptera,
Hymenoptera and Diptera [1]. Genotypic variation in baculovirus populations have been widely detected between isolates from different geographical regions and within virus isolates by their genomic restriction endonuclease (REN) profiles in 1970s-1990s [2]. Differences in phenotypes were also revealed between different isolates and between genotypes derived from the single isolates by in vitro or in vivo techniques [2, 3]. More recently, hundreds of baculoviruses genomes have been completely sequenced, including the genomes of multiple different geographical isolates of some virus species. Nucleotide polymorphisms (NPs) have been documented between the different virus isolates and within the same isolate [3–8]. Comparative analysis of these genome sequences may make it possible to determine the genetic basis for phenotypic variations in populations of the same viral species. This may facilitate the improvement of baculovirus pesticides by mixing different virus genotypes. The codling moth, Cydia pomonella, was reported to be resistant to a Cydia pomonella granulovirus isolate CpGV-M. However, the resistance can be overcome by several other CpGV isolates. Whole-genome sequencing and phylogenetic analyses of these geographic CpGV variants revealed that the resistance is the consequence of a mutation in viral gene \(pe38\) [9, 10].

Plutella xylostella granulovirus (PlxyGV) belongs to the genus \textit{Betabaculoviruses}. It is pathogenic for the diamondback moth, \textit{Plutella xylostella}, a major destructive pest of cruciferous crops worldwide [11]. The virus has been isolated in several countries including Japan, China, India, Kenya, and South Africa [12–17]. In China, PlxyGV was first isolated, in Wuhan, and studied in 1970s [18]. Subsequently, it was isolated in other districts [19, 20]. Some strains of the diamondback moth have developed resistance to chemical pesticides and also become resistant to the bacterial insecticide \textit{Bacillus thuringiensis} that have been used for its control [21, 22]. As an alternative, PlxyGV has been tested for the control of the pest [16, 19, 20, 23]. A registered PlxyGV biopesticide has been commercialized and used in large scale for the control of diamondback moth in China and Malaysia since 2008 [24–29]. Laboratory experiments have also been done to characterize PlxyGV morphology, histopathology, in vitro replication in cell culture, and molecular biology [17, 30–36].

PlxyGV has a single circular double-stranded DNA genome. The complete genome sequence of a PlxyGV isolate (PlxyGV-K1) from Japan was first reported in 2000 to consist of 100,999 bp and encode 120 putative protein-coding open reading frames (ORFs) [37]. Subsequently, the complete genome sequences of five additional isolates from mainland China (PlxyGV-C and PlxyGV-T), Taiwan (PlxyGV-K), Malaysia (PlxyGV-M), and South Africa (PlxyGV-SA) were published in 2016 [38, 39].

In this study, the genomes of three PlxyGV isolates named PlxyGV-W, PlxyGV-B and PlxyGV-Wn were completely sequenced. Intra isolate NPs and inter isolate NPs in the genomes were detected; And their insecticidal activity to the larvae of diamondback moth were also evaluated. In order to investigate genetic diversity and stability of PlxyGV, the genome sequences of these PlxyGV isolates and six previously reported PlxyGV genome sequences were comparatively analyzed, in nucleotide sequence variations, non-synonymous sequence polymorphisms, gene content and phylogeny.

Materials and methods

Virus and insects

The PlxyGV-W and PlxyGV-Wn were isolated near Wuhan in 1979 and 2018 from diseased \textit{P. xylostella} larvae in cabbage fields, respectively [18]. PlxyGV-B is from a commercialized biopesticide, that was originally isolated in Beijing in 1980s. The isolates were propagated by feeding an artificial diet contaminated with the virus occlusion bodies (OBs) to third instar laboratory reared Diamondback moth larvae.
Purification of OBs and extraction of viral DNA were carried out as described by Hashimoto et al. [40], with modifications. Approximately 100 infected larvae were homogenized with a blender. The worm-tissue fragments in the homogenate were removed by differential centrifugation at 750 RPM for 15 min and 8,500 RPM for 25 min, and repeated twice. The pellet was suspended in 3–4 ml of ddH₂O. The suspension was layered onto a 30, 40, 50, and 60% (wt/vol) discontinuous sucrose gradient and centrifuged at 4,000 rpm for 1h. The OB fraction was collected and washed twice by suspension in H₂O and centrifugation. The OBs were dissolved in equal volume of alkaline solution (100 mmol/L NaCl, 100 mmol/L Na₂CO₃, 5 mmol/L EDTA) and incubated at room temperature with stirring, then mixed with equal volume of protein digestive solution [1 mmol/L EDTA, 1% SDS (w/v), 10 mmol/L Tris-HCl (PH 7.4), 0.5 mmol/L NaCl, 0.2 mg/L protease K], incubated in a bath at 58˚C overnight. Viral DNA was extracted twice with an equal volume of phenol-chloroform and precipitated by mixing with ethanol centrifugation, then dissolved in TE buffer and stored at 4˚C.

Genome sequencing

The genomes of the three PlxyGV isolates were sequenced by using Illumina Hisen X ten system. Sequence assembly were done by using SOAP denovo (Version 2.04) software (BGI), and using the first published genome sequence of the PlxyGV-K1 isolated from Japan (NC_002593) as a reference. PCR was performed to synthesize DNA fragments bridging the gaps between contigs by using the genomic DNAs of individual PlxyGV isolates as templates. PCR products were sequenced from both ends. The sequences were assembled with the initial contigs into a single, circular contig. Sequences were analyzed with Lasergene programs (DNASTAR). Homology searches were carried out with GenBank/EMBL, SWISSPROT and PIR databases by using the BLAST algorithm. Multiple sequence alignments were performed by using CLUSTAL W. The PlxyGV genome sequence accession numbers are MN099284 for PlxyGV-W, MN099285 for PlxyGV-B and MN099286 for PlxyGV-Wn.

RNA purification and RACE analysis of PlxyGV-specific genes

P. xylostella larvae in third instar were infected with PlxyGV-Wn by feeding with viral OBs-contaminated diet and collected at 12 h, 24 h, 48 h, 72 h and 96 h post infection. 25 infected larvae (five larva from each time point) were immersed and homogenized in 1,000 μl of Trizol and incubated on ice for 10 min, then centrifuged at 11,400 rpm and 4˚C for 10 min. The supernatant was mixed with 200 ml of chloroform with shaking for 15 s, and incubated on ice for 15 min, then centrifuged at 11,400 rpm and 4˚C for 15 min. 400 μl of the upper phase was taken and mixed with 500 μl of isopropyl alcohol, incubated at room temperature, then centrifuged at 11,400 rpm for 10 min. The pellet was rinsed with 200 μl of 75% ethanol in DEPC water at 11,400 rpm for 5 min, air dried, then dissolved in x μl of DEPC water. 8 μl of RNA sample was mixed with 1 μl of DNA digestion buffer and 1 μl of DNase I, and incubated at 37˚C for 30 min. Then 2 μl of 50 mM EDTA was added to inactivated DNase I by incubation at 65˚C for 10 min.

First-strand cDNAs synthesis and RACE were done by using SMARTer® RACE 5’/3’Kit following manufacturer’s instruction. For first-strand cDNAs synthesis, mixed 4.0 μl of 5x first-strand buffer, 0.5 μl DTT (100mM) and 1.0 μl dNTPs (20 mM) to make reaction buffer mix, at first. Send, mixed 1.0 –10 μl of RNA, 1.0μl 5’-CDS primer A (or 3’-CDS primer A) and 0 –10μl DEPC water, incubated the mixtures at 72˚C for 3 min, cooled down at 42˚C for 2 min, then spun at 14,000g for 10s, to make denatured RNAs. To the RNA sample for 5’RACE cDNA synthesis, add 1 μl of SMART II A Oligonucleotide. Then, mixed 5.5 μl of 5’RACE or 3’RACE cDNA synthesis reaction buffer mix, 0.5 µl RNase inhibitor (40 U/µl)
and 2.0 μl SMARTScribe Reverse Transcriptase (100 U), to make 5’RACE or 3’RACE cDNA synthesis master mix. Finally, combined 8 μl of the 5’RACE or 3’RACE cDNA synthesis master mix with the denature RNA sample, incubated at 42˚C for 90 min, then heated at 72˚C for 10 min. Diluted the sample by adding 10 μl (if started with ≤ 200 ng of total RNA) or 100 μl (if started with ≥ 200 ng of total RNA) of Tricine-EDTA buffer to make 5’ RACE-ready cDNA and 3’-RACE-ready cDNA. To perform RACE, mixed 25 μl of 2x seqAmp buffer, 2.5 μl of 5'(3') RACE-ready cDNA, 5 μl of 10x universal primer A mixture, 1 μl of 5'(3') RACE primer, 1 μl of SeqAmp DNA polymerase and 15.5 μl of PCR-grade water, and ran PCR as below: first step: 94˚C, 4 min. Second: 94˚C, 30s; 68˚C, 30s; 72˚C, 3min; 25 cycles. Third: 72˚C, 7 min.

Bioassays

Bioassays on the infectivity of PlxyGV isolates were performed as previously described [41]. To determine the median lethal concentration (LC$_{50}$), virus suspensions in concentrations of 0, 1×107, 2×107, 5×107, and 1×108 OBs/ml were prepared respectively, by suspending the virus OBs in 4% sucrose in double-distilled water containing 0.05% food blue dye. Quantification of PlxyGV was performed by using a qPCR method. The virus suspensions were used to feed newly molted third-instar P. xylotella larvae that had been starved for twelve hours. The larvae that had swallowed the virus suspension were picked and transferred into the wells of twelve-well plates and feed with fresh artificial diet for the duration of the bioassay. Mortality was recorded daily after infection until larvae died or pupated. Forty eight larvae per concentration were used in the infection experiments and the experiments were repeated in triplicate. The LC$_{50}$ values were determined by the probit analysis calculated compared with a relative median potency method. To determine median lethal time (ST$_{50}$), newly molted third-instar P. xylotella larvae were oral infected in the same way as above, using virus suspensions of 1×109 OBs/ml. Mortality was recorded every 6 h after infection until all larvae died or pupated. The ST$_{50}$ values were calculated with the Kaplan–Meier estimator and compared by the log-rank test.

Results

Genome sequences of PlxyGV-W, PlxyGV-B and PlxyGV-Wn

The genomes of PlxyGV-W, PlxyGV-B and PlxyGV-Wn are 100,941 bp, 100,972 bp and 100,999 bp in length with a G + C compositions of 40.73%, 40.71% and 40.71%, respectively. A complete sequence alignment showed a sequence identity of 99.8% between PlxyGV-W and PlxyGV-B, 99.6% between PlxyGV-W and PlxyGV-Wn, and 99.5% between PlxyGV-B and PlxyGV-Wn, respectively. The gene contents, genome organization and variations of the three isolates are demonstrated by Fig 1. It is shown that all the three PlxyGV isolates contains 118 ORFs in common, being 150 bp or longer, starting with an ATG and having minimal overlap with adjacent ORFs or homologous repeat regions (hrs), respectively. All the homologous ORFs and hrs are completely collinear in organization in the three isolates.

Intra-isolate NPs are detected in all the three virus isolates. In PlxyGV-W genome, thirty two single nucleotide polymorphisms (SNPs) and four NPs involving two or more nucleotide alterations are identified. Although the majority of the NPs locate in ORFs, only eight SNPs encode amino acid alterations, occurring in ORF26 (f), ORF32 (lef2), ORF61 (dbp), ORF99 (lef9), ORF104 (fgf), ORF109 (lef8) and ORF113, respectively, and there is a NP with a insertion/deletion (InDel) of twelve nucleotides after AA68 and a deletion of a single nucleotide causing frame shift after AA101, in ORF73 (ac91) (Table 1).
In the PlxyGV-B genome, there are 105 SNPs and six NPs involving multiple nucleotide alterations. The majority of the NPs identified in PlxyGV-W are also found in PlxyGV-B. Nineteen NPs causing amino acid changes in thirteen ORFs of PlxyGV-B genomes including ORF2 (p10), ORF20, f, lef2, ORF35 (mmp), dbp, ORF68 (ac145), ORF72 (hel-1), ORF73 (ac91), ORF84 (pf8), lef9, fgf and lef8 and ORF112 (ac53). ORF73 contains three nonsynonymous NPs (Table 1). Similar to PlxyGV-W, there is an identical NP with an InDel of twelve nucleotides and an InDel of a single nucleotide causing frame shift in ORF73. The difference is that the sequencing reads missing the twelve nucleotides are more than the ones with the twelve nucleotides, in PlxyGV-W ORF73. In contrast, the sequencing reads missing the twelve nucleotides are much less than the ones with the twelve nucleotides, in PlxyGV-B ORF73. In PlxyGV-B ORF20, there is an NP involving an InDel of eighteen nucleotides. PlxyGV-Wn genome contains sixty nine SNP sites. Only six SNPs in five ORFs induce amino acid alterations, including ORF16 (pf5), ORF52 (ac38), ORF70 (38k), ORF73 (2 SNPs) and ORF113 (Table 1). Most SNPs in PlxyGV-Wn genome are different from the ones in PlxyGV-W and PlxyGV-B genomes. Majority of the SNPs in all the three PlxyGV isolates are nucleotide transitions.

Comparison of the genomes of PlxyGV-W and PlxyGV-B

PlxyGV-B genome is 31 bp longer than PlxyGV-W genome. The difference is mainly in the hr regions. The hr1, hr2, hr3, and hr4 of PlxyGV-B are 40 bp, 2 bp, 3 bp and 15 bp longer than those of PlxyGV-W, respectively. The sizes of all putative protein-coding ORFs of PlxyGV-B are same as the ones of PlxyGV-W except ORF20 and ORF73 (Table 2). Relative to PlxyGV-W ORF20, PlxyGV-B ORF20 has six amino acids deleted after AA119. And there are twelve additional amino acid variations between these two ORF20 homologs. As mentioned above, both PlxyGV-W and PlxyGV-B ORF73 homologs have two NPs at AA68 and AA101 (PlxyGV-W/94(PlxyGV-B) sites. In PlxyGV-W ORF73, most sequencing reads have the extra twelve nucleotides encoding “TPPP” after AA68, and a small part of sequencing reads miss the twelve
Table 1. Intra-isolate nucleotide polymorphisms in PlxyGV-W, PlxyGV-B and PlxyGV-Wn.

ORF	Name/Dir	PlxyGV-W		PlxyGV-B		PlxyGV-Wn	
		nt	aa	nt	aa	nt	aa
1		G289A		G289A		G309A	
2	10/---	A391G		C486T		C511A	M33I
3				G681T		C1391T	
4	Gran/---	G1031C		A1064G		T1274T	
		A1064G		T1154G		C1274T	
		A1175G				T1280C	
5		G1865T		G1865T		A1520G	
7	Pif1/---	T3443C		A3458G			
10	ie1/---	T6368C					
11	ac146/---	T6807C		G8105A			
14	Pif5/---	G8105A		G8105A			
20		G12756GAGAAGGGCATCTTCGAGG	P89PRRCPS5P				
		T14324G		G14306T		T13017A	
		T14495A		T14477A			
		C14505T		T14487C			
				C14530A			
		G14662GT		G14644GT			
22		G15085A		G15070A			
24		G15839A					
25				C17775T		T17377C	
26	fl/---			A18519G			
				C18690G			
28						A19111C	
29	pif3/---			A21832G			
30	odv-e66/---			C22992T		G22527A	
				C22974T		A23208G	

(Continued)
Table 1. (Continued)

ORF	Name/Dir	PlxGV-W nt	PlxGV-W aa	PlxGV-B nt	PlxGV-B aa	PlxGV-Wn nt	PlxGV-Wn aa
32	lef2/→	G24631A	D69N	G24613A	D69N		
				C24927A	N173K		
							C27728T
34	←	G28191A		G28270A			
35	Mmp/←	T28615C	A28659G	T28702C	A29080G	C29398T	A29500C
36	p13/→	C30478T					
39	←	A32122G					
40	ac106/107/←	C33552T	C33574T	G33696A	G33718A		
41	pif7/←	C33910T					
hr2		G39699T		CT40366C			
50	p10/←	G39699T		C41711T			
51	p47/→	T43504C					
52	ac38/→	T43829C					
53	p24/→	A44488T	T44512A			C44078T	R139K
		A44692T	A44716T				
54	ac13/←	G40580A		G45213T			
55	lef1/←	G45666A		A45729T			
57	←						C46734T
61	Dhp/←	A47648G	A47672G	T47735C	T47759C	T48028C	182V
							V82I
65	←	G50238C		A50279C			
66	ac101/→	A50703G	A50729G				
67	p6.9/→			A50703G	A50729G		
68	ac145/←	A51839ATTG	G51857A				

(Continued)
ORF	Name/Dir	PlxyGV-W	PlxyGV-B	PlxyGV-Wn			
		nt	aa	nt	aa		
69	lef5/-	T5217C	G52152T	A52296G	A52371G		
70	38k/-	T52976C	C53271T	C53295T	A53345G	K321E	
71	pif4/-	A53664G					
72	hel1/->	G54288A	C54366T	A54513G	A54675G	G55573A	
		C55711T	C55735T				
		A56019G	A56043G				
		C56208T	C56232T				
73	ac91/-	A57477C	T57488C	T28I	C57553T	A57592T	L54F
		TCCACCGCGACC57552-T	TPPPT68-72T	T5757STCCACCGCGACC	T68TPPPT	T57602C	T69P
		A57684AC	101fram shift	AC57697A	101fram shift		
74	ovd-e25/-	A58307T					
76	ac92/-	T59321C					
77		T59833C					
80	ovd-ec27/-						
84	pif8/-	T67695C	V109T				
85	tlp20/-	G68166A					
87	gp41/-	A69375	G69454G	T69454G			
88	vlf1/-	C70312T	C71254T				
93	Dnapol/-	G74855A					

(Continued)
In contrast, most sequencing reads miss the twelve nucleotides and small parts of sequencing reads have the ones in PlxyGV-B ORF73. At the AA101/97 site, most sequencing reads contains an “A”, small part of sequencing reads contains “AC” that makes a frame shift. In contrast, most sequencing reads contains “AC” and small part of reads contain “A”, in PlxyGV-B ORF73. There are seven additional nonsynonymous variations in six ORFs between PlxyGV-B and PlxyGV-W (Fig 1 and Table 2).

Table 1. (Continued)

ORF	Name/Dir	PlxyGV-W	PlxyGV-B	PlxyGV-Wn
	nt	aa	nt	aa
			G77305A	
hr4			T78637A	
97			A80551G	C80554A
98	Iap/→		A80957G	
99	lef9/→		G81606A	Q50R
			G81229G	A258S
			T82326C	
			G82434A	G82465A
101	dna-lig/→		A84127G	
			T84914C	T84941C
104	Fgf/→		C85724T	I318V
105			A86069G	F203L
			A869805A	G86922A
			A86996G	
			C87801T	
106	alk-exo/→		A88162G	
			C88804A	
107	hel2/→		C89169T	G89201A
			G89368A	
			G89527A	
			G90072A	
109	lef8/→		T92293C	F655L
			T92324C	F655L
			A93484G	
112	ac53/→		A95747G	F79L
			A95747G	
115	vp1054/→		A95885G	V24A
			A95885G	
			T97116C	
			A97526G	
120	me53/→		A100611G	C34T
			A100611G	
			A100788G	
			T34C	

* Nucleotide polymorphisms (nt) and amino acid changes (aa) encoded are presented. The numbers between letters indicate the positions in the genomes or in ORFs.

https://doi.org/10.1371/journal.pone.0243143.t001
Table 2. Nonsynonymous mutations in PlxyGV-W, PlxyGV-B and PlxyGV-Wn.

ORF Name	Size (aa)	PlxyGV-W	PlxyGV-B	PlxyGV-Wn
2 P10	83	49S	49S	49N⁰
7 PIF1	536	385R	385R	385K
8	175	18V, 110N, 137A	18V, 110N, 137A	18I, 110T, 137T
9	80	62I	62I	62M
10 IE1	393	129RD, 320G	129D, 320G	129G, 320E
11 AC146	180	116V	116V	116A
15 EXON0	216	45L, 120L	45L, 120L	45M, 120S
16 PIF5	351	32T	32T	32K
18	313	102T, 185V	102T, 185V	102P, 185A
20	229/223/229	52C, 57W, 66S, 69L, 79LI, 88RRRR, 94A, 114RCPSPR	52N, 57E, 66C, 69A, 79SL, 88PPSC, 94P, 114^6	52C, 57W, 66S, 69L, 79LI, 88RRRR, 94A, 114RCPSPR
25	431	134E	134E	134K
26	533	494L	494L	494R
30 ODV-E66	682	205F	205F	205Y
32 LEF2	270	69D, 173N	69D, 173N/K	69N, 173K
35 MMP	402	10M	10M	10V
37 PIF2	368	199F, 202S	199F, 202S	199L, 202G
38	528	181K, 206Q	181K, 206Q	181E, 206K
43 AC109	414	122V, 381S	122V, 381S	122A, 381T
49 PIF0	627	286A	286A	286T
56 FGF	221	6S, 149D	6S, 149D	6Y, 149E
61 DBP	263	82I	82I	82V
65	152	115E	115E	115K
69 LEF5	247	212R	212R	212K
70 38K	340	321E	321E	321K
72 HEL1	1124	97I, 531N, 665N, 1110R	97I, 531N, 665N, 1110K/R	97N, 531S, 665D, 1110R
73 AC91	153/159/155	28I, 54F, 69TPPP/\^\wedge, 103-153fs/n	28T/I, 54F, 69/4/TPPP, 103/PPP/PPP/PPP	28T,I, 54L/F, 69T/PPP, 103/8
75 AC93	156	24D	24D	24E
78 LEF4	432	32D, 911	32D, 911	32E, 91T
81	107	43W	43W	43G
82	340	232Y	232Y	232C
83	69	32R	32R	32K
84 PIF8	533	66H, 109I, 481S	66H, 109Y 481S	66Y, 109Y 481A
85 TLP20	139	71C	71C	71S
89 VLF1	346	75L89N,	75L89N,	75V, 89K
93 DNAPOL	978	345K	345K	345R
94 AC66	651	291A	291A	291S
95 LEF3	337	179R,180I	179R,180I	179K, 180M,
96 PIF6	128	123R,	123R,	123H
99 LEF9	494	50R, 258S	50Q, 258A	50Q, 258A
101 DNA-LIG	523	383V	383V	383I
103	63/63/66			63\^LKK
104 FGF	396	203F,318V	203F, 318I	203L, 318I
107 HEL2	436	12S	12S	12G
109 LEF8	838	479I, 655F	479I, 655F	479M, 655L
112 UBI-LIG	137	61I,117T	61I,117T	61M, 117I

(Continued)
Comparison of PlxyGV-Wn genome with the genomes of PlxyGV-W and PlxyGV-B

PlxyGV-Wn genome is 58 bp and 27 bp longer than the genomes of PlxyGV-W and PlxyGV-B, respectively. Similarly, the differences are also mainly due to the differences in the length of the hrs. There are totally 486 nucleotide substitutions between the genomes of PlxyGV-Wn and PlxyGV-W, including seventy three nonsynonymous point mutations in forty seven ORFs (Table 1 and Fig 1). Twelve positions with nonsynonymous point mutation have polymorphisms in either both or one virus isolate. In addition, there are 262 nucleotide InDels. Relative to PlxyGV-Wn ORF73, PlxyGV-W ORF73 has an insertion of 23 nt after AA101, resulting in a frameshift at C-terminal. However, PlxyGV-W ORF73 has a polymorphism at this part as described above. A single nucleotide substitution at the 3’-end of ORF103 has the stop codon in PlxyGV-W changed to leucine codon and adds additional two codons to the C-terminal in PlxyGV-Wn. The sizes of the other ORFs are identical between PlxyGV-Wn and PlxyGV-W.

There are 469 nucleotide substitutions between the genomes of PlxyGV-Wn and PlxyGV-B. Relative to PlxyGV-B, PlxyGV-Wn genome has 144 nt insertions and 117 nt deletions. These nucleotide mutations encode seventy seven nonsynonymous changes in forty six ORFs. Majority of nonsynonymous variations between PlxyGV-Wn and PlxyGV-B are same as the ones between PlxyGV-Wn and PlxyGV-W with a few exceptions (Table 2 and Fig 1). Relative to PlxyGV-B, PlxyGV-Wn ORF73 has four codons inserted after AA68 and a cluster of eight proline codons deleted after AA95. Unlike PlxyGV-B ORF20 that contains five nonsynonymous mutations relative to PlxyGV-Wn ORF20, PlxyGV-W ORF20 encodes the same amino acid sequences as PlxyGV-Wn ORF20. ORF61 and ORF99 contain one and two nonsynonymous variations between PlxyGV-Wn and PlxyGV-W whereas there is no difference in these two ORFs between PlxyGV-Wn and PlxyGV-B.

PlxyGV-W and PlxyGV-B demonstrate higher insecticidal activity than PlxyGV-Wn for P. xylostella larvae

The infectivity of PlxyGV-W, PlxyGV-B and PlxyGV-Wn were tested for newly molted third-instar P. xylostella larvae by feeding the larvae with viral OBs and determining LC\textsubscript{50} and ST\textsubscript{50} in bioassays. As shown in Table 3, the LC\textsubscript{50} of PlxyGV-Wn is about two times of the ones of the other two virus isolates while there is no significant difference between PlxyGV-W and PlxyGV-B. No significant difference is detected in ST\textsubscript{50} between all the three isolates at a concentration of 1×109 OBs/ml (Table 4).

Comparison of the genome sequences of nine PlxyGV isolates

To investigate diversity of PlxyGV isolates from different area, the genome sequences of PlxyGV-W, PlxyGV-B, PlxyGV-Wn are compared with six additional complete PlxyGV
genome sequences available in data bases: PlxyGV-C (KU529791.1, 100,980 bp), PlxyGV-K (KU529794.1, 100,978 bp), PlxyGV-T (KU529792.1, 101,004 bp), PlxyGV-SA (KU666537.1, 100,941 bp), and PlxyGV-K1 (NC_002593.1, 100,999 bp). Complete genome sequence alignments show that sequence identities between the genomes of all the PlxyGV isolates, except PlxyGV-SA, are over 99.4% (Fig 2). PlxyGV-SA shares a sequence identity of 98.6% or 98.7% with all the other viral isolates. The sequence identity between the genomes of PlxyGV-C, -K, -M, and -T is as high as 99.9%. PlxyGV-W and PlxyGV-B, similarly, share sequence identities of 99.5% or 99.4% with PlxyGV-C, -K, -M, -T, -K1, and -Wn. PlxyGV-Wn demonstrates an identical sequence identity of 99.6% with PlxyGV-C, -K, -M, -T, and -K1. PlxyGV-K1 has a sequence identity of 99.7% with PlxyGV-C, -K, -M, and -T.

The frequency of variation in hrs is much higher than in other regions. The rates of mutation between PlxyGV-W and the other isolates occurring in hrs, other noncoding sequences and ORFs are 53.29 – 96.66, 0.84 – 36.51, and 0.82 – 11.83 per 1,000 bases, respectively (S1 Table). Similar variation frequencies in hrs, other noncoding sequences and ORFs are also observed between genomes of the other viral isolates. Base transitions account for most variations between the genomes of the virus isolates. Base transitions are two to three times of transversions between PlxyGV-W and PlxyGV-B, -Wn, -K1, -C, -K, -M, and -T genomes, and nine times of transversions between PlxyGV-W and PlxyGV-SA genomes.

Table 3. Concentration-mortality of PlxyGV-W, PlxyGV-B and PlxyGV-Wn for Plutella xylostella larve.

Virus	LC_{50} (95%CI) (×10^{7} OB/mL)	Relative median potency (95%CI)
	PlxyGV-W	PlxyGV-B
Test 1		
PlxyGV-W	1.695 (1.171–2.335)	-
PlxyGV-B	1.570 (1.080–2.162)	0.926 (0.583–1.457)
PlxyGV-Wn	3.131 (2.284–4.291)	1.847 (1.183–3.085)
Test 2		
PlxyGV-W	2.300 (1.318–4.155)	-
PlxyGV-B	3.375 (1.352–4.199)	1.033 (0.472–2.374)
PlxyGV-Wn	4.516 (3.002–7.292)	1.964 (0.979–5.903)
Test 3		
PlxyGV-W	2.282 (1.393–3.840)	-
PlxyGV-B	2.371 (1.441–3.921)	1.039 (0.520–2.168)
PlxyGV-Wn	5.038 (3.480–7.865)	2.208 (1.148–6.195)

Table 4. Time-mortality of PlxyGV-W, PlxyGV-B and PlxyGV-Wn for Plutella xylostella larve.

Virus	LT_{90±SEM} (95%CI)(h)	Log Rank(Mantel-Cox)			
		PlxyGV-W	PlxyGV-B		
		\chi^2	P	\chi^2	P
Test 1					
PlxyGV-W	101±3.758 (93.634–108.366)	-	-	-	-
PlxyGV-B	113±2.761 (107.589–118.411)	0.094	0.759	-	-
PlxyGV-Wn	119±3.779 (111.593–126.407)	4.093	0.043	3.598	0.058
Test 2					
PlxyGV-W	117±3.012 (111.097–122.903)	-	-	-	-
PlxyGV-B	123±2.207 (118.675–127.325)	3.554	0.059	-	-
PlxyGV-Wn	123±2.207 (118.675–127.325)	1.796	0.180	0.099	0.753
Test 3					
PlxyGV-W	119±1.685 (115.65–122.35)	-	-	-	-
PlxyGV-B	125±5.271 (117.016–132.984)	1.014	0.314	-	-
PlxyGV-Wn	125±6.854 (117.016–132.984)	2.702	0.100	1.098	0.295

https://doi.org/10.1371/journal.pone.0243143.t003

https://doi.org/10.1371/journal.pone.0243143.t004
Except PlxyGV-K1, all the eight additional PlxyGV isolates have 118 putative protein-coding ORFs in common. ORF organization are completely collinear between the genomes of them. PlxyGV-K1 genome was reported having 120 putative protein-coding ORFs. Sequence alignment shows that the ORF38 and ORF39 of PlxyGV-K1 match the upstream and downstream sequences of the ORF38 in the other isolates, respectively. The difference results from a frameshift induced by a single nucleotide deletion in the genome of PlxyGV-K1 relative to the other PlxyGV isolates. Similarly, the sequence of PlxyGV-K1 ORF48 and ORF49 match the downstream and upstream of the ORF49 (p74) of the other PlxyGV isolates. This is also from a single nucleotide insertion/deletion between PlxyGV-K1 and the other isolates. This causes a frameshift and creates a stop codon immediate downstream of the deletion. Whether these differences between PlxyGV-K1 and the other virus isolates result from evolution or sequencing error needs further verification.

APart from the ORFs described above, ORF73 and ORF20 are most variable among the ORFs of PlxyGV isolates. ORF73 is homologous to AC91. Homologs of this gene are found in genomes of all Group I alphabaculoviruses and CpGV in addition to PlxyGV [42]. It is rich in proline and serine/threonine residues. The amino acid sequence from AA69 to AA74 of PlxyGV-SA ORF73 is different from the ones of the other isolates while PlxyGV-B ORF73 misses four amino acids in this region. There is a glutamine residue at AA96 (AA92 for PlxyGV-B) position in ORF73 homologs of PlxyGV-W, -B, -Wn, -T, and -K1. Following the AA96 is a long
cluster of repetitive proline residues varying in number among the virus isolates. PlxyGV-K ORF73 miss all the C-terminal sequences after AA102. The C-terminal of PlxyGV-W ORF73 is totally different from the ones of the other isolates due to frame shift as mentioned before. The ORF20 homologs consist of 223–235 amino acids. There are 4–6 repeated “RCPSPR” and 4 “RC/SP/Q/S/ESPR/H” repeats in the middle region. PlxyGV-B and PlxyGV-SA ORF20 have two copies, PlxyGV-W and PlxyGV-Wn have one copy of “RCPSPR” less than the other isolates.

The identity levels of total amino acid sequences of the prospective protein products, except ORF9, 13, 26, 73, 95 and 108, between the viral genomes are similar to the identity levels of nucleotide sequences (Fig 2). The prospective amino acid sequences of ORF1, 3, 4 (granulin), 12 (AC145), 13 (ODV–E18), 17 (AC29), 27, 29 (PIF3), 33, 41 (PIF7), 53 (P24), 81, 91 (AC76), 100 (FP), 102, 110, 114 (Ubi-lig), and 119 are identical in all of the nine viral isolates (Fig 1). The sizes of individual ORFs of nine PlxyGV isolates and the non-synonymous substitutions per base pair (NSSP) of each ORF are listed in Table 5. As shown in Fig 4, the NSSP levels of most ORFs are between 0 and 5 per thousand; thirty six ORFs have NSSP levels over 5 per thousand, most are functional unknown. ORF19 demonstrates the second highest NSSP (26.67 per thousand). ORF61-ORF72 and ORF74-ORF102 regions seem more conservative than other parts. These regions contain seventeen baculovirus core genes [42] and only one PlxyGV specific gene. Organization in these regions are similar among all baculoviruses [43].

The genes unique to PlxyGV

There are thirteen ORFs unique to PlxyGV, including ORF1, 3, 5, 19, 22, 27, 33, 58, 81, 105, 108, 111 and 119. These ORFs do not have any additional homologs in data bases. ORF1, 3,
Table 5. ORF size and number of nonsynonymous mutations in nine PlxyGV isolates.

ORF Name	W	B	Wn	C	T	K	M	SA	K1	Number of mutations	NSSP (x10^-3)
P10	66	66	66	66	66	66	66	66	66	0	0
P10	83	83	83	83	83	83	83	83	83	2	8.03
PK	105	105	105	105	105	105	105	105	105	0	0
PIF1	248	248	248	248	248	248	248	248	248	0	0
PIF1	131	131	131	131	131	131	131	131	131	1	2.54
PIF1	356	356	356	356	356	356	356	356	356	5	3.11
PIF1	175	175	175	175	175	175	175	175	175	5	9.52
PIF1	80	80	80	80	80	80	80	80	80	6	2.93
AC146	180	180	180	180	180	180	180	180	180	1	1.85
AC145	98	98	98	98	98	98	98	98	98	0	0
ODV-E18	80	80	80	80	80	80	80	80	80	9	2.54
49K	446	446	446	446	446	446	446	446	446	3	2.24
EXON0	216	216	216	216	216	216	216	216	216	3	4.63
PIF5	351	351	351	351	351	351	351	351	351	4	3.8
AC29	58	58	58	58	58	58	58	58	58	0	0
ODV-E66	100	100	100	100	100	100	100	100	100	8	26.67
P10	229	229	229	235	235	235	235	235	235	14	20.93
P10	320	320	320	320	320	320	320	320	320	2	2.08
PIF3	305	305	305	305	305	305	305	305	305	23	8.74
AC145	131	131	131	131	131	131	131	131	131	1	2.54
AC29	338	338	338	338	338	338	338	338	338	1	0.99
LEF2	431	431	431	431	431	431	431	431	431	6	4.64
F	553	553	553	553	553	553	553	553	553	2	1.21
LEF2	79	79	79	79	79	79	79	79	79	0	0
ODV-E66	210	210	210	210	210	210	210	210	210	2	3.17
PIF3	181	181	181	181	181	181	181	181	181	0	0
ODV-E66	682	682	682	682	682	682	682	682	682	7	3.42
LEF2	129	129	129	129	129	129	129	129	129	1	2.58
LEF2	270	270	270	270	270	270	270	270	270	9	12.35
LEF2	97	97	97	97	97	97	97	97	97	0	0
MMP	133	133	133	133	133	133	133	133	133	1	2.51
PIF2	528	528	528	528	528	528	528	528	528	8	5.05
PIF2	263	263	263	263	263	263	263	263	263	1	1.27
PIF2	368	368	368	368	368	368	368	368	368	9	8.15
AC106/107	206	206	206	206	206	206	206	206	206	1	1.62
PIF7	53	53	53	53	53	53	53	53	53	0	0
V-UBI	114	114	114	114	114	114	114	114	114	1	2.92
PIF7	414	414	414	414	414	414	414	414	414	5	4.03
LEF11	130	130	130	130	130	130	130	130	130	6	15.38
LEF11	252	252	252	252	252	252	252	252	252	5	6.61
SOD	153	153	153	153	153	153	153	153	153	3	6.54

(Continued)
ORF	Name	W	B	Wn	C	T	K	M	SA	K1	Number of mutations	NSSP (x10^-3)
49	PIF0	627	627	627	627	627	627	627	627	51	7	3.72
50	P10	135	135	135	135	135	135	146	135	6	14.81	
51	P47	386	386	386	386	386	386	386	386	4	3.45	
52	AC38	207	207	207	207	207	207	207	207	1	1.61	
53	P24	159	159	159	159	159	159	159	159	0	0	
54	AC13	150	150	150	150	150	150	150	150	1	2.22	
55	LEF1	251	251	251	251	251	251	251	251	1	1.33	
56	PIF1	221	221	221	221	221	221	221	221	2	3.02	
57	100	100	100	100	100	100	100	100	100	4	13.33	
58	53	53	53	53	53	53	53	53	53	1	6.29	
59	AC150	79	79	79	79	79	79	79	79	2	8.44	
60	LEF6	86	86	86	86	86	86	86	86	2	7.75	
61	DBP	263	263	263	263	263	263	263	263	2	2.53	
62	AC103	377	377	377	377	377	377	377	377	2	1.77	
63	AC102	96	96	96	96	96	96	96	96	2	6.94	
64	AC101	152	152	152	152	152	152	152	152	3	6.58	
66	AC100	366	366	366	366	366	366	366	366	3	2.73	
67	P6.9	56	56	56	56	56	56	56	56	1	5.95	
68	AC145/150	66	66	66	66	66	66	66	66	1	5.05	
69	LEF5	247	247	247	247	247	247	247	247	2	2.70	
70	38K	340	340	340	340	340	340	340	340	4	3.92	
71	PIF4	161	161	161	161	161	161	161	161	2	4.14	
72	HEL1	1124	1124	1124	1124	1124	1124	1124	1124	9	2.67	
73	AC91	153	159	155	158	102	158	150	158	75	158	
74	ODV-E25	214	214	214	214	214	214	214	214	1	1.56	
75	AC93	156	156	156	156	156	156	156	156	2	4.27	
76	AC92	250	250	250	250	250	250	250	250	1	1.33	
77	AC89	135	135	135	135	135	135	135	135	2	4.94	
78	LEF4	432	432	432	432	432	432	432	432	4	3.09	
79	VP39	320	320	320	320	320	320	320	320	1	1.04	
80	ODV-EC27	287	287	287	287	287	287	287	287	5	5.81	
81	107	107	107	107	107	107	107	107	107	0	0	
82	340	340	340	340	340	340	340	340	340	7	6.86	
83	69	69	69	69	69	69	69	69	69	3	14.49	
84	Pi8	533	533	533	533	533	533	533	533	7	4.38	
85	TLP20	139	139	139	139	139	139	139	139	2	4.80	
86	AC81	191	191	191	191	191	191	191	191	1	1.75	
87	GP41	283	283	283	283	283	283	283	283	4	4.71	
88	AC78	89	89	89	89	89	89	89	89	1	3.75	
89	VLF1	346	346	346	346	346	346	346	346	4	3.85	
90	175	175	175	175	175	175	175	175	175	4	7.62	
91	AC76	81	81	81	81	81	81	81	81	0	0	
92	AC75	145	145	145	145	145	145	145	145	1	2.30	
93	DNAPOL	978	978	978	978	978	978	978	978	10	3.41	
94	AC66	651	651	651	651	651	651	651	651	6	3.07	

(Continued)
Table 5. (Continued)

ORF	Name	W	B	Wn	C	T	K	M	SA	K1	Number of mutations	NSSP (x10^-3)@
95	LEF3	337	337	337	337	337	337	297			4	3.96
96	PIF6	128	128	128	128	128	128	128			1	2.60
97	IAP	194	194	194	194	194	194	194			3	5.15
98	LEF9	494	494	494	494	494	494	494			4	2.70
100	FP	138	138	138	138	138	138	138			0	0
101	DNA-LIG	523	523	523	523	523	523	523	523	523	3	1.91
102		61	61	61	61	61	61	61	61	61	0	0
103		63	63	66	66	66	66	66	66	66	2	10.58
104	FGF	396	396	396	396	396	396	396	396	396	4	3.37
105		214	214	214	214	214	214	214	214	214	5	6.23
106	ALK-EXO	378	378	378	378	378	378	378	378	378	4	3.53
107	HEL2	436	436	436	436	436	436	436	436	436	1	0.76
108		281	281	281	281	281	281	281	281	281	3	3.56
109	LEF8	838	838	838	838	838	838	838	838	838	6	2.39
110		114	114	114	114	114	114	114	114	114	0	0
111		192	192	192	192	192	192	192	192	192	3	5.21
112	UBI-LIG	137	137	137	137	137	137	137	137	137	4	9.73
113		198	198	198	198	198	197	197	197	198	9	15.15
114		109	109	109	109	109	109	109	109	109	0	0
115	VP1054	311	311	311	311	311	311	311	311	311	3	3.22
116		59	59	59	59	59	59	59	59	59	2	11.30
117		249	249	249	249	249	249	249	249	249	2	2.68
118	EGT	429	429	429	429	429	429	429	429	429	6	4.66
119		142	142	142	142	142	142	142	142	142	0	0
120	ME53	308	308	308	308	308	308	308	308	308	1	1.08

@ Variations in PlxyGV-K1 ORF13, 26, 38, 39, 48, 49, 95 and 108 were not counted in.

https://doi.org/10.1371/journal.pone.0243143.t005

Fig 4. Nonsynonymous variations in ORFs of nine PlxyGV isolates. Scatter plots represent ORFs with their levels of nonsynonymous sequence substitution per base pair (NSS/bp × 10^-3) demonstrated. Red, green, light blue, orange, black and blue colors indicate structure protein, transcription factor, DNA replication factor, auxiliary, function unknown and PlxyGV unique genes, respectively. Hollow circles indicate baculovirus core genes. ORF71, which shows 158 NSS per base pair (×10^-3) is not included.

https://doi.org/10.1371/journal.pone.0243143.g004
27, 33, 81, and 119 have identical predicted amino acid sequences among the nine viral isolates. The transcription start sites (TSS) and the polyadenylation sites (PAS) of these PlxyGV-specific genes were determined by Rapid Amplification of cDNA Ends analysis, using total RNAs purified from *P. xylostella* larvae infected by PlxyGV-Wn. As shown in Fig 5, ORF27 and ORF19 have three and two TSSs separately. The other ORFs have a single TSS. Notably, the TSS of ORF22 is located at 191 nt downstream of the first ATG and 80 nt upstream of the third ATG. The sequences between the two ATGs are highly variable among ORF22 homologs of the PlxyGV isolates. This suggests that the third ATG is the real start codon of ORF22. Similarly, the TSS of ORF105 were localized to 306 nt downstream of the first ATG and 254 nt upstream of the second ATG, implying that the second ATG is likely the real start codon. A TATA box, and A(A/T)CGT(G/T) and CGTGC motifs are present in regions between 40 nt upstream of TSS and initiation ATG, and a baculovirus late promoter motif A/G/TTAAG is located within 100 nt upstream of initiation ATG of individual ORFs are shown in Fig 5 (and S2 Table). Predicted RNA polymerase II TSS motifs CAGT/CAAT/CATT locating between TSS and the initiation ATG are also listed in S2 Table. None of the TSS identified were associated with the TAAG motifs although there are some present in ORF3 (-13), ORF 5 (-73), ORF19 (-13 and ORF58 (-91, and -25). As shown in Fig 5, the TSS of ORF33 and ORF111 extend to upstream of ORF34 and ORF110 respectively.

All the PlxyGV-specific ORFs have single PAS (Fig 5 and S2 Table). The PAS of ORF3 and ORF58 are located downstream of ORF4 and ORF57 respectively. In most cases, there is one or two transcription termination signal elements AATAAA or ATTAAA (ORF27) near the PAS. ORF108 lacks a typical AATAAA or ATTAAA. However there is an AATTAAT located 23 nt upstream of the PAS.

Fig 5. Structures of the transcription cassettes of PlxyGV-specific genes. The transcription start sites are in bold and underlined, and transcription direction are indicated by arrows. The major promotor elements, TATA boxes, A(A/T) CGT(G/T), CGTGC, and A/G/TTAAG motifs are present in grey bold. Their positions relative to the initiation ATG of the individual PlxyGV-specific ORFs are shown by the numbers above. The initiation ATG and stop codons are in black bold and underlined. The transcription terminator elements, AATAAA and ATTAAA are in black bold and their positions relative to the stop codons of individual PlxyGV-specific ORFs are indicated by the number underneath.

https://doi.org/10.1371/journal.pone.0243143.g005
Phylogenetic tree of PlxyGV isolates

An evolutionary tree of the nine virus isolates was constructed using MEGA6 software with the neighbor joining method, based on concatenated amino acid sequences encoded by the thirtyeight baculovirus core genes [42], using Hyphantria cunea granulovirus (HycuGV) as an outgroup. HycuGV was shown to be most close to PlxyGV [44]. In the process, PlxyGV-K1 ORF48 and ORF49 were merged into one ORF by filling the single missing base relative to their homologs in the other viral isolates. It can be seen that PlxyGV-C clusters with PlxyGV-K. This cluster is near PlxyGV-M and PlxyGV-T. PlxyGV-W and PlxyGV-B are located in the same cluster. PlxyGV-Wn is more distant from PlxyGV-W and PlxyGV-B than the other isolates except PlxyGV-SA. PlxyGV-K1 is closer to PlxyGV-T, -M, -C and -K than PlxyGV-Wn although they are in the same clade. PlxyGV-SA is relatively distant from the other isolates.

Discussion

In this study, we describe the genome sequencing and analysis of three PlxyGV isolates. PlxyGV-W was first isolated from a diamondback moth larva from cabbage fields in Wuhan city, in early 1980s. PlxyGV-B was originally isolated near Beijing in the early 1980s. The PlxyGV-Wn was isolated in Wuhan, in April, 2018. The sequence data show that the genomes of PlxyGV-W and PlxyGV-B share a sequence identity of 99.8%. And the amino acid sequences encoded by these two viral genomes are almost identical except for variations in ORF20 and ORF73. Surprisingly, although PlxyGV-Wn was isolated from the same area as PlxyGV-W, it shares higher sequence identity with PlxyGV-K1, -T, -C, -K and -M than with PlxyGV-W and -B (Fig 2), and is more closely related to PlxyGV-K1, -T, -C, -K and -M than to PlxyGV-W and -B as demonstrated by the phylogenetic tree (Fig 6). It implies that PlxyGV-Wn and PlxyGV-W originated from different populations, which may have emerged in Wuhan at different time points in history. Located at the junction of the Yantze and Han rivers, Wuhan is a transportation hub that facilitates the introduction of species from different regions. In addition, PlxyGV-W and -B demonstrated higher insecticide activity to diamondback moth larvae than PlxyGV-Wn. How the genomic sequence variations determine the differential insecticidal activity between PlxyGV-Wn and the other two virus isolates will require further investigation. Notably, among the forty eight ORFs containing non-synonymous variations between PlxyGV-Wn and PlxyGV-W and/or PlxyGV-B are homologs of egt and six per os infectivity factor genes pif0, pif1, pif2, pif5, pif6 and pif8 and odv-e66, an additional possible per os infectivity factor gene. Egt encodes ecdysteroid UDP-glucosyltransferase to block molting and pupation in infected larvae, thereby to prolong the feeding stage of infected larvae [45, 46]. per os infectivity factors are required for infection of insects [47–50].

![Phylogenetic tree of PlxyGV isolates](https://doi.org/10.1371/journal.pone.0243143.g006)
Previously, intra isolate genetic diversity was reported in many baculoviruses. Phenotypic changes were observed between genotypes. For instance, twenty-five genotypic variants of a nucleopolyhedrovirus were identified and purified from a single Panolis flammea larva. Four of the genotypic variants were found having significant difference in pathogenicity, speed of killing and yield [2]. Genome sequencing makes it possible to characterize inter and intra isolate diversity of same species. Complete NPs contained in a baculovirus genome was first identified in Mamestra configurata nucleopolyhedrovirus v90/4 [4]. It is considered that presence of a pool of polymorphisms may provide advantage in adapting to a changeable environment. In this study, intra isolate NPs are identified in the genomes of all the three PxyGV isolates. The NPs occurring in PxyGV-W almost completely overlap with the ones in PxyGV-B, although PxyGV-B has more nucleotide polymorphisms than PxyGV-W. Notably, the ORFs containing non-synonymous polymorphisms include homologs of three DNA replication factors HEL1, LEF5 and DBP, two late expression factors LEF8 and LEF9, and per os infectivity factor PIF9. The NP profile in PxyGV-Wn genome is totally different from the ones in the other two isolates. The ORFs with non-synonymous polymorphisms in PxyGV-Wn genome also include a homolog of per os infectivity factor, PIF5.

Genome sequence comparison of nine PxyGV isolates reveals high genetic stability of PxyGV. These PxyGV isolates are from five areas of four countries, but they have limited variations in genome size and nucleotide sequence. The maximal length difference is only sixty three base pairs, which exists between PxyGV-W/PxyGV-SA (100,941 bp) and PxyGV-T (101,004 bp). The minimum sequence homogeneity is 98.6 percent, existing between PxyGV-SA and one from Japan. No gain/loss of prospective protein-coding ORFs identified among the viral isolates. The high genetic stability of PxyGV ensures the stability and specificity of its control effect on diamondback moth, and is helpful to commercialization of PxyGV insecticides. In addition, it also facilitates the construction of recombinant PxyGVs with enhanced insecticidal activity through genetic manipulation, ensuring that the superior properties obtained by engineered viruses are not easily lost or changed.

Previously reported genomes of different geographic isolates of the same baculovirus species usually have variations in gene contents, frequently occurring in bro gene associated regions [4, 51]. PxyGV lacks bro homologs. Similarly, seven Erinnyis ello granulovirus (ErelGV) field isolates also have common ORF contents and organization, but all of them are isolated in Brazil [7]. Similar to other baculoviruses, NPs are mainly present in hrs and two ORFs containing repetitive sequences in PxyGV genome. All the ORFs with the highest levels of nonsynonymous mutations have unknown functions. Paralogous genes p10 and ac145/ac150 homologs demonstrate relatively high levels of non-synonymous mutations. Baculoviruses have thirty eight core genes whose homologs are present in all baculovirus genomes sequenced to date [42]. Generally, the PxyGV core gene homologs contain low levels of non-synonymous variations among the nine viral isolates. Similar phenomenon were also observed in ErelGV isolates [7].

Thirteen ORFs specific to PxyGV are conserved in all the PxyGV isolates. The TSS and PAS of the ORFs were identified by RACE analysis. The data suggest that all these PxyGV-specific ORFs are transcribed during infection. Seven of these PxyGV unique ORFs have no nonsynonymous variation among all the PxyGV isolates, implying these genes must play important roles in replication and infection of PxyGV. Notably, none of the PxyGV-specific genes were found to start transcription from late promotor motifs. We are not sure whether these results reflected the real situation. If the levels of some transcripts starting from TAAG motifs were very low, they might not be detected.

The PxyGV isolates analyzed in this study are from five geographically separate areas, the mainland of China, Taiwan, Japan, Malaysia and South Africa. Phylogenetic analysis shows that PxyGV-SA is distantly related to the other isolates, which may reflect their geographic
distance from the other isolates. PlxyGV-M from Malaysia, PlxyGV-C from mainland China and the two isolates from Taiwan, PlxyGV-K and -T are closely related. However, PlxyGV-C is distantly related to other three isolates from the mainland of China. It is likely some isolates migrated from one area to another area recently.

Supporting information
S1 Table. Mutation frequency of eight PlxyGV isolates relative to the PlxyGV-W genome sequence in coding, noncoding and hr regions ($\times 10^{-3}$).

S2 Table. The transcription start sites and polyadenylation sites of PlxyGV specific genes.

Acknowledgments
We thank Professor Qin, Qi-Lian and Professor Zhang, Huan for their kind support and technical assistance in GV counting. Thank professor George F Rohrmann for critical reviewing the manuscript.

Author Contributions
Conceptualization: Lu-Lin Li.
Data curation: Man-Li Zhang, Lu-Lin Li.
Formal analysis: Lu-Lin Li.
Funding acquisition: Lu-Lin Li.
Investigation: Man-Li Zhang, Ling-Qian Wang, Yong Qi, Dong-Hui Zhou, Lu-Lin Li.
Project administration: Lu-Lin Li.
Resources: Man-Li Zhang, Yi Wu, Lu-Lin Li.
Supervision: Lu-Lin Li.
Writing – original draft: Man-Li Zhang, Lu-Lin Li.
Writing – review & editing: Lu-Lin Li.

References
1. King AMQ, Lefkowitz E, Adams MJ, Carstens EB. Virus Taxonomy: Ninth report of the international committee on taxonomy of viruses. Academic Press; 2011.
2. Hodgson DJ, Vanbergen AJ, Watt AD, Hails RS, Cory JS. Phenotypic variation between naturally co-existing genotypes of a Lepidopteran baculovirus. Evol Ecol Res. 2001; 3: 687–701.
3. Erlandson MA. Genetic variation in field populations of baculoviruses: Mechanisms for generating variation and its potential role in baculovirus epizootiology. Virol. Sin. 2009; 24: 458–469.
4. Li L, Li Q, Willis LG, Erlandson M, Theilman D, Donly C. Complete comparative genomic analysis of two field isolates of Mamestra configurata nucleopolyhedrovirus-A. J Gen Virol, 2005; 86(Pt 1): 91–105. https://doi.org/10.1099/vir.0.80488-0 PMID: 15604435
5. Xu YP, Cheng RL, Xi Y, Zhang CX. Genomic diversity of Bombyx mori nucleopolyhedrovirus strains. Genomics, 2013; 102: 63–71. https://doi.org/10.1016/j.ygeno.2013.04.015 PMID: 23639478
6. Wennmann JT, Radtke P, Eberle KE, Alletti GG, Jehle JA. Deciphering single nucleotide polymorphisms and evolutionary trends in isolates of the Cydia pomonella granulovirus. Viruses. 2017; 9:227. https://doi.org/10.3390/v9080227 PMID: 28820456
7. Brito AF, Melo FL, Ardisson-Araujo DMP, Sihler W, Souza ML, Ribeiro BM. Genome-wide diversity in temporal and regional populations of the betabaculovirus Erinnyis ellogranulovirus (ErelGV). BMC Genomics. 2018; 19(1): 698. https://doi.org/10.1186/s12864-018-5070-6 PMID: 30249206

8. Thézé J, Lopez-Vaamonde C, Cory JS, Herniou EA. Biodiversity, evolution and ecological specialization of baculoviruses: A treasure trove for future applied research. Viruses. 2018; 10, 366. https://doi.org/10.3390/v10070366 PMID: 29997344

9. Eberle KE, Asser-Kaiser S, Sayed SM, Nguyen HT, Jehle JA. Overcoming the resistance of codling moth against conventional Cydia pomonella granulovirus (CpGV-M) by a new isolate CpGV-112. J. Invertebr. Pathol. 2008; 98: 293–298. https://doi.org/10.1016/j.jip.2008.03.003 PMID: 18479703

10. Gebhardt MM, Eberle KE, Radtke P, Jehle JA. Baculovirus resistance in codling moth is virus isolate-dependent and the consequence of a mutation in viral gene pe38. Proc Natl Acad Sci USA. 2014; 111: 15711–15716. https://doi.org/10.1073/pnas.1411089111 PMID: 25331863

11. Zalucki MP, Shabbir A, Silva R, Adamson D, Liu SS, Furlong MJ. Estimating the economic cost of one of the world’s major insect pests, Plutella xylostella: just how long is a piece of string? J Econ Entomol, 2012; 105: 1115–1129. https://doi.org/10.1603/EC12107 PMID: 22928287

12. Asayama T, Osaki N. A granulosis of the diamondback moth, Plutella xylostella. J Invertebr Pathol. 1970; 15: 284–286.

13. Kadir BBA, Payne CC, Crook NE, Winstanley D. Characterization and cross transmission of baculoviruses infectious to the diamondback moth, Plutella xylostella and some other lepidopteran pests of brassica crops. Bio Control Sci Technol. 1999; 9: 227–238.

14. Rabindra RJ, Geetha N, Renuka S, Yaradharajan S, Regupathy A. Occurrence of a granulosis virus from two populations of Plutella xylostella (L.) in India. In: Proceedings of the third international MARDI workshop. Kuala Lumpur; 1996. pp 113–115.

15. Muthamia EK, Ogada PA, Mukunzu MJ, Vanbeek NAM, Wesonga JM, Ateka EM. Characterization of Plutella xylostella granulovirus (PlxyGV) isolates for the management of diamondback moth in Kenya. Afr J Hortic Sci. 2011; 4: 19–23.

16. Parnell M, Grzywacz D, Jones KA, Brown M. The strain variation and virulence of granulovirus of diamondback moth (Plutella xylostella Linnaeus, Lep., Yponomeutidae) isolated in Kenya. J Invertebr Pathol. 2002; 79: 192–196. https://doi.org/10.1016/s0022-2011(02)00001-0 PMID: 12133708

17. Hashimoto Y, Shimojo E, Hayashi K, Minakata T, Kondo A, Miyasono M, et al. Isolation and characterization of a granulosis virus isolated from diamondback moth, Plutella xylostella (Linnaeus) (Lepidoptera: Yponomeutidae). Bull Fac Text Sci Kyoto Inst Tech. 1996; 20: 43–51.

18. Xing SJ. Plutella xylostella granulovirus suspension agent has been registered as a biopesticide. Pesticide Market News. 2008–22. (in Chinese).

19. Yang MM, Li ML, Zhang YA, Wang YZ, Qu LJ, Wang QH, et al. Baculoviruses and insect pest control in China. Afr J Microbiol Res. 2012; 6(2): 214–218.
