Research on Pathogenic Hippocampal Voxel Detection in Alzheimer’s Disease Using Clustering Genetic Random Forest

Wenjie Liu, Luolong Cao, Haoran Luo and Ying Wang

1 School of Computer Information and Engineering, Changzhou Institute of Technology, Changzhou, China, 2 College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, China, 3 School of Computer Science and Engineering, Changshu Institute of Technology, Suzhou, China

Alzheimer’s disease (AD) is an age-related neurological disease, which is closely associated with hippocampus, and subdividing the hippocampus into voxels can capture subtle signals that are easily missed by region of interest (ROI) methods. Therefore, studying interpretable associations between voxels can better understand the effect of voxel set on the hippocampus and AD. In this study, by analyzing the hippocampal voxel data, we propose a novel method based on clustering genetic random forest to identify the important voxels. Specifically, we divide the left and right hippocampus into voxels to constitute the initial feature set. Moreover, the random forest is constructed using the randomly selected samples and features. The genetic evolution is used to amplify the difference in decision trees and the clustering evolution is applied to generate offspring in genetic evolution. The important voxels are the features that reach the peak classification. The results demonstrate that our method has good classification and stability. Particularly, through biological analysis of the obtained voxel set, we find that they play an important role in AD by affecting the function of the hippocampus. These discoveries demonstrate the contribution of the voxel set to AD.

Keywords: Alzheimer’s disease, genetic evolution, clustering evolution, random forest, voxel-based features

INTRODUCTION

Alzheimer’s disease (AD) can severely affect a variety of cognitive functions, including memory. Since the hippocampus played an important role in memory, there was interest in the possibility that hippocampal degeneration led to an age-related reduction (1). Research on the hippocampus had mainly focused on changes in hippocampal morphology and function, such as the impact of changes in volume on AD (2, 3), and which functions of the hippocampus can be caused by changes in shape (4, 5). These studies lacked the exploration of more subtle changes in the hippocampus. Based on this problem, scientists divided the hippocampus into different hippocampal subregions (6). From the perspective of subregions, they studied which specific changes in the hippocampus led to changes in hippocampal function that eventually was related to AD (7).

In recent years, research on AD using machine learning became an important field. Jiao et al. applied the graph regularization non-negative matrix factorization to factorize the vectorized dynamic functional networks matrix and evaluated the similarity between early mild cognitive impairment (EMCI) and healthy control (HC) (8, 9). The MCI participants were divided into
MATERIALS AND METHODS

Imaging Data

In this study, a total of 1,515 non-Hispanic white participants had high-quality genotype data and MRI image data in ANDI database at the same time, so they were included in the study after quality control. We downloaded 1,515 participants with MRI scans from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). Table 1 shows the characteristics of the 1,515 participants.

Using the T1-weighted template, we aligned the MRI scans collected by voxel-based morphometry. Then, we normalized the aligned images to the Montreal Neurological Institute space. The resulting images were segmented, extracted, and smoothed with an 8-mm FWHM kernel. The hippocampus was extracted using the Automatic Anatomical Labeling atlas (20), freesurfer 6.0 (6), and FMRI Software Library v6.0 (21). To reduce the time for subsequent analysis, we down-sampled the original images (182 × 182 × 182) in three dimensions and obtained the images of size 61 × 73 × 61.

Construction of Clustering Genetic Random Forest

As description in Imaging Data, we obtained the coordinate information of the left and right hippocampus, including 281 voxels in left hippocampus and 302 voxels in right hippocampus, and saved them as matrices M and N (M for left hippocampus and N for right hippocampus). Let vm_i and vn_j represent the elements of M and N. Then we combined the two matrices to get the initial feature site set V ($V = [vm_1, vm_2, ..., vm_i, vn_1, vm_2, ..., vn_j], i = 281, j = 302$).

As the representative classifier of machine learning, the random forest was used to identify important features from a large number of features. Therefore, we applied the clustering genetic random forest to mine the important voxel set and the random forest to obtain the initial decision trees and genetic evolution was introduced to evolve decision trees. The clustering evolution was introduced during genetic evolution to obtain new offspring. Through these steps, the features with high classification accuracy were selected from V. The schematic diagram is shown in Figure 1.

We used the AD and HC groups to constitute the initial dataset S. The S was defined as Equation 1.

$$S = \{x_k, y_k\}, \quad k \in [1, 738]$$

where x_k is the voxels of S, and y_k is the corresponding label of x_k (AD is represented by -1 and HC is represented by 1).

The S was randomly divided into training set, validation set and test set by 62:2:2. Using the training set, we randomly selected $\sqrt{583} \approx 24$ features and labels and constructed a single decision tree. Since a random forest was consisted of many decision trees, we repeated the steps above for 300 times. A random forest with 300 decision trees was formed.
The initial decision trees were regarded as the population of genetic evolution. Then, we randomly selected two groups of five trees. The Euclidean distance was introduced to calculate the similarity between trees. The Euclidean distance was defined as Equation 2.

\[
D = \sqrt{\sum_{i=1}^{n} (x_{1i} - x_{2i})^2}
\]

(2)

Subsequently, we applied the clustering evolution to identify the parents. For each group, we calculated the similarities of trees and obtained the upper triangular similarity matrix \(M_u \) (Equation 3).

\[
M_u = \begin{bmatrix}
0 & M_{1,2} & M_{1,3} & M_{1,4} & M_{1,5} \\
0 & 0 & M_{2,3} & M_{2,4} & M_{2,5} \\
0 & 0 & 0 & M_{3,4} & M_{3,5} \\
0 & 0 & 0 & 0 & M_{4,5} \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}
\]

(3)

where the \(M_{1,2} \) is the similarity of tree 1 and tree 2. Then, we performed clustering evolution on the decision trees and selected the tree with the best classification accuracy as parent 1. Another parent 2 was the tree with the largest distance from parent 1, i.e., the parent 1 and 2 were the resulting clusters obtained by clustering evolution. We obtained four parents from the two groups and four new offspring were generated by permutation and combination of these four parents. By calculating the classification performance of these four resulting trees, we selected the best two as the final offspring. The schematic diagram of genetic evolution and clustering evolution are shown in Figure 2. A new random forest with 300 decision trees was formed by repeating the methods above for 150 times.

Assuming that the genetic evolution reached the \(n \)th generation to achieve the optimal classification performance, the accuracy of the resulting decision trees at this time was defined as

\[
Acc_x = \frac{N_{vx}}{N_v}, \quad x \in [1, 300]
\]

(4)

where \(Acc_x \) is the final accuracy of tree \(x \), \(N_{vx} \) is the number of correct predictions by tree \(x \) in validation set, \(x \) is the serial number of the decision trees, and \(N_v \) is the size of the validation set. Through the steps above, the clustering genetic random forest model was constructed.

Parameter Optimization Adjustment

For the constructed model, the best parameter combination of the decision tree number and genetic evolution times was selected. Firstly, the decision tree number and genetic evolution times were defined in \((300, 500)\) and \((1, 500)\). Then, the combination of two parameters was iterated over, and the best one was the optimized parameter. To avoid the difference caused by the decision tree composed of randomly selected features, we repeated the steps above for 10 times. Finally, among the 10 results, we selected the best one as the optimized parameter.

Important Voxel Set Determination

The accuracy of the resulting random forest was tested using the test set. The voxels sites in resulting random forest classified AD and HC, suggesting that these voxels were quite different in AD and HC. Therefore, we defined these voxels as important voxels. AD abnormal hippocampal voxels were further extracted from the important voxels. The abnormal hippocampal voxels were extracted by the following steps.

Firstly, we counted the frequency of voxels in the resulting random forest and sorted them in descending order of frequency. Then, we divided the voxels into subsets and evaluated these
subsets using a traditional random forest. Subsequently, we defined the subset with peak classification accuracy as the important voxels set. Finally, we counted the frequency of voxels in the important voxels set and considered the top N_f voxels as the abnormal hippocampal voxels based on the frequency.

Biological Analysis
To analyze the biological significance of the abnormal voxels, by jointly analyzing the genetic data and image data, we performed quality control (QC) and genome-wide association studies (GWAS) based on linear regression in PLINK v1.9 (22). After QC, we obtained 5,574,300 SNPs and applied the age, gender, education and the top four principal components from population stratification analysis as covariates. With the GWAS results, we applied ECS method (23) and Genome Reference Consortium Human build 37 to calculated the genes’ p-values and obtained 10,435 genes. By applying Bonferroni correction to the resulting genes, we selected 334 genes with corrected p-values < 0.05 for enrichment analysis and pathway analysis (24).

RESULTS

Parameter Optimization Results
We used the strategy described in section Parameter Optimization Adjustment to identify the parameters optimization results. As mentioned previously, we set the number of decision trees in the interval of (300, 500) and the times of genetic evolution in the interval of (1, 500). Then, we compared the accuracies of all parameter combinations. Specifically, we constructed 11 random forests in the interval (300, 500). The numbers of decision trees were 300, 320, ..., 500. For each initial random forest, we performed genetic clustering among 500 parameter combinations to evaluated the accuracy and identify the optimal combination. To avoid the differences caused by different features in random forests, we conducted 10 independent repeated experiments and selected the best one as the optimal combination. The accuracy and parameter combination are shown in Figure 3. From Figure 3, we find that the peak value is at 300 initial decision trees, and the corresponding genetic evolution times are 306. The optimal parameters are 300 and 306.

Comparison With Other Methods
Besides the proposed model, we tested other three models to compare their accuracy and the three models were the traditional random forest, the clustering evolution random forest (25), and the genetic evolution random forest (26).

Traditional Random Forest
The size of traditional random forest was also in the interval (300, 500). To ensure the results’ comparability between different methods, we used the same dataset for training and parameter optimization. The accuracy and parameters are shown in Figure 4 and the best initial decision trees are 300.

Clustering Evolutionary Random Forest
Compared with the traditional random forest, the clustering evolution random forest introduced the process of clustering. Therefore, the number of initial decision trees and clustering evolution times was in the interval (300, 500) and (1, 20). The accuracy and parameters are shown in Figure 5 and the best initial decision trees and clustering evolution times are 360 and 18.

Genetic Evolutionary Random Forest
To find the optimal parameters, the genetic evolution random forest introduced the genetic process and the genetic evolution times were in the interval (1, 500). Figure 6 shows the accuracy and parameter combination and the best parameter combination is 340 and 341.

Comparison of the Four Methods
The test set was used to identify the classification performance of the four models. To ensure the reliability of the results, we...
performed 10 independent repeated experiments in each model using the optimal parameter combinations obtained above. The accuracies of the four models are shown in Figure 7. From Figure 7, we observe that the clustering genetic random forest has the best classification accuracy, and the peak is 85.91%, while other three models are all below 85%. The peak of genetic evolution random forest is 84.56% and is superior to the other two. Moreover, the stability of clustering genetic random forest is also the best among the four models and its classification accuracy differs within 1.34%. This indicates that although the features in the initial decision tree are different, the final classification accuracy difference is small after clustering genetic evolution. The results prove that the accuracy and stability are improved in our model.

The Extraction of Abnormal Hippocampal Voxels

Figure 7 shows that the clustering genetic random forest is a more effective model in classification. The essence of the identified features was hippocampal voxels. Therefore, the abnormal hippocampal voxels could be detected by analyzing the features in the resulting random forest. The voxels in resulting decision trees were candidate abnormal voxels. Table 2 lists the top 14 voxels with frequency greater than 25. However, these voxels were not all abnormal voxels, and we needed to extract the voxels with the best classification performance from them. We firstly set the number of candidate abnormal voxels subsets to be in the interval (70, 580) with a stride of 5. The classification performance was tested using a random forest that consisted of 340 decision trees. Figure 8 shows the accuracies of the subsets and the peak accuracy is 82.34%. The subset with accuracy 82.34% was the abnormal hippocampal voxels. The top 260 voxels are in Supplementary Table 1.
Fifty one genes passed the Bonferroni correction (corrected SNPs to identify the pathogenic genes of AD. One hundred and traditional random forest.

Method Discoveries Overlap with our method

CGRF 260 -
RF 570 252
GERF 90 44
CERF 535 238

CGRF, clustering genetic random forest; RF, random forest; GERF, genetic evolution random forest; CERF, clustering evolution random forest.

We defined the abnormal hippocampal voxels according to the experiment using random forest. The subset with a high frequency was the abnormal hippocampal voxels in AD.

Table 3 shows the important abnormal hippocampal voxels discovered by four models. The fewest important voxels were identified by the genetic evolution random forest, followed by clustering genetic random forest. Interestingly, the random inheritance was applied in these two models, the obtained voxels were the least, and their ratio was the highest. Combined with Figure 7, a higher classification performance was found in the model with high ratio to our model than other two models. This indicated that the genetic process improved the classification performance.

Assessment of Biological Significance

We performed GWAS using the obtained 260 important voxels and gene-based association analysis using the resulting p-value of SNPs to identify the pathogenic genes of AD. One hundred and Fifty one genes passed the Bonferroni correction (corrected p-value < 0.001) and were considered as the pathogenic genes. The top 10 genes are listed in Table 4. We applied the selected genes to detect the gene ontology (GO) terms and pathways that provided information on AD pathological relationships. We identified 37 GO terms and 72 pathways and showed them in Figure 9 (https://hiplot.com.cn/basic/circular-barplot).

Table 4: The top 10 significant genes identified in our study.

No.	CHR	Gene	Corrected P
1	8	CSM1D	4.28E-43
2	16	RBFOX1	1.75E-21
3	9	PTPRD	9.38E-20
4	16	WWOX	1.09E-17
5	3	FHT	2.12E-16
6	11	DLG2	2.76E-13
7	7	DPP6	6.11E-13
8	11	NELL1	8.53E-13
9	7	MAG2	1.56E-12
10	4	SORCS2	3.36E-12

CHR is the chromosome; Gene is the gene name; corrected P is the p-value after Bonferroni correction.

DISCUSSION

In this study, we proposed a model based on machine learning to identify the abnormal hippocampal voxels. Previous research on machine learning was used to detect features classified AD and HC (27–29). Bron et al. applied the SVM and convolutional neural network to predict the MCI patient’s conversion to AD (30). Huang et al. proposed Epigenome-Wide Association Studies plus using a supervised machine learning strategy to predict the significant brain CpGs associated with AD (31). However, our model started with voxel images and discovered a voxel set distinguished AD and HC well. An interesting finding was that we introduced the clustering evolution to select the parents with low similarity. The advantages were that not only the good decision trees were preserved, but also the diversity of decision trees was guaranteed. As shown in Figure 7, we come to a conclusion that the genetic evolution was quite suitable for detecting the voxel. The combination of genetic evolution and clustering evolution could improve the classification performance and stability of the model. As shown in Table 3, the voxels identified by random forest model and clustering evolution random forest model are above 500. The voxels of our model are 260, and the voxels’ overlaps with the two models are 252 and 238. They are very close to the resulting voxels of our model. This indicates that our model extracts the important voxels that contribute to classification and discards poorly classified voxels.

For the identified genes, in the CSMD gene family associated with AD (32, 33), CSMD1 was expressed in developing nerve cells (34) and the expression of CSMD1 (Corrected P: 4.28E-43) was associated with cognitive function (35) and mental illness (36). Its homologous gene CSMD2 could lead to the decline of cognitive ability (37), and CSMD3 existed in the hippocampus and was related to AD by affecting the transmission of information between cells (38). RBFOX1 (Corrected P: 1.75E-21) associated with AD by affecting amyloid levels (39). The lack of PTPRD (Corrected P: 9.38E-20) led to cognitive impairment and intellectual disability (40), and PTPRD was associated with LMCI (41). WWOX (Corrected P: 1.09E-17) deficiency led
Detection of GO terms and pathways can provide important information of the function of the pathogenic voxels. The GO terms GO:0021675 and GO:0007417 (central nervous system development, Corrected P: 1.90E-02) were the sub-terms of neural system development (GO:0007399, Corrected P: 9.09E-04), and the GO:0007399 was associated with the neurological disorders. For example, through gene-level analysis, neural function genes were enriched in GO:0007399 (44) and in neurological disease, the significant genes were also enriched in GO:0007399 (45–47). The PI3K-Akt signaling pathway (hsa04151, Corrected P: 1.70E-03) and AGE-RAGE signaling pathway in diabetic complications (hsa04933, Corrected P: 2.30E-03) involved in the process of cell apoptosis (48, 49). Together with Calcium signaling pathway (hsa04020, Corrected P: 2.41E-07), they were associated with Alzheimer’s disease pathway (hsa05010, Corrected P: 1.13E-02) and contributed to AD by disrupting intracellular calcium ions (50–52). Oxytocin signaling pathway (hsa04921, Corrected P: 3.19E-07) played a role in AD by protecting the nerves (53). Vascular smooth muscle contraction (hsa04270, Corrected P: 1.26E-06) was related with AD by affecting the neurodegeneration (54).

In this study, we proposed a novel model to mine the abnormal hippocampal voxels. This model used the decision trees as the initial feature set, and applied the genetic evolution to evolve the features. In the process of genetic evolution, the clustering evolution was introduced to identify the parents. Finally, we extracted the important voxels set from the initial features. Additionally, the results demonstrated that our model was superior to other models in terms of the accuracy and stability. The voxels set identified could be regarded as the abnormal hippocampal region. Naturally, our study had several limitations. We have conducted the research of voxel detection here. However, due to limited conditions, better results may be obtained if the mouse experiments are used to verify the results. Since genetic data and imaging data are equally important; we will continue to look for other data such as SNP, protein, and RNA to construct the fusion features for detection.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data can be found at: http://adni.loni.usc.edu/.

ETHICS STATEMENT

Ethical approval was not provided for this study on human participants because the ethical review was applied by ADNI. We applied and obtained the access from ADNI. The patients/participants provided their written informed consent to participate in this study. Written informed consent was obtained from the individual(s) for the publication of any potentially identifiable images or data included in this article.

AUTHOR CONTRIBUTIONS

WL and YW led, supervised, and designed the research and wrote the article. WL, LC, HL, and YW performed features extraction and selection. WL, LC, and HL performed data pre-processing and quality control. WL did biological significance analysis. All authors reviewed, commented on, edited, and approved the manuscript.
FUNDING
This research was funded by MOE (Ministry of Education in China) Project of Humanities and Social Sciences (21YJAZH091) and by National Statistical Science Research Project (2020LY074). Data collection and sharing for this project was funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI was funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer’s Therapeutic Research Institute at the University of Southern California. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California. The commercial funders were not involved in the study design, collection, analysis, interpretation of data, the writing of this article or the decision to submit it for publication.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fpsyt.2022.861258/full#supplementary-material

REFERENCES
1. Prull MW, Gabrieli JDE, Bunge SA. Age-related changes in memory: a cognitive neuroscience perspective. The Handbook of Aging and Cognition. 2nd ed. Mahwah, NJ: Lawrence Erlbaum Associates Publishers (2000). p. 91–153.
2. Jack CR, Petersen RC, O’Brien PC, Tangalos EG, Jack CR, O'Brien PC, Tangalos EG, Petersen RC, O'Brien PC, Tangalos EG, O'Brien PC. MR-based hippocampal volumetry in the diagnosis of Alzheimer's disease. Neurology. (1992) 42:183–8. doi: 10.1221/wnl.42.1.183
3. Fox N, Warrington E, Freeborough P, Freeborough P, Warrington E, Freeborough P, Kennedy A, Kennedy A, Freeborough P, Warrington E. A computational atlas of the hippocampal formation using ex vivo, ultra-high resolution MRI: application to adaptive segmentation of in vivo MRI. Neuroimage. (2015) 115:117–37. doi: 10.1016/j.neuroimage.2015.04.042
4. van der Meer D, Rokicki J, Kaufmann T, Cordova-Palomera A, Moerget M, et al. Brain scans from 21,297 individuals reveal the genetic architecture of hippocampal subfield volumes. Mol Psychiatry. (2020) 25:3053–65. doi: 10.1038/s41380-018-0262-7
5. Jiao Z, Ji Y, Zhang Y, Shi H, Jiao Z, Ji Y, Zhang Y, Shi H, Wang S-H, Wang C. Constructing dynamic brain functional networks via hyper-graph manifold regularization for mild cognitive impairment classification. Front Neurol. (2021) 15:669345. doi: 10.3389/fnins.2021.669345
6. Liu Y, Yan Z. A combined deep-learning and lattice Boltzmann model for segmentation of the hippocampus in MRI. Sensors. (2020) 20:3628. doi: 10.3390/s2013628
7. Liu Y, Yan Z. A combined deep-learning and lattice Boltzmann model for segmentation of the hippocampus in MRI. Sensors. (2020) 20:3628. doi: 10.3390/s2013628
8. Jiao Z, Jiao T, Zhang J, Shi H, Wu B, Zhang YJ, Jiao T, Zhang J, Shi H, Wu B, Zhang YJ. Sparse structure deep network embedding for transforming brain functional network in early mild cognitive impairment classification. Int J Imaging Syst Technol. (2021) 31:1197–210. doi: 10.1002/ima.22331
9. Yi P, Jin L, Xu T, Wei LAN, Rui GUO. Hippocampal segmentation in brain MRI images using machine learning methods: a survey. Chin J Electr. (2021) 30:793–814. doi: 10.1049/cje.2021.06.002
10. Li S, Shi F, Pu F, Li X, Jiang T, Xie S, et al. Hippocampal shape analysis of Alzheimer’s disease based on machine learning methods. J Neurol Radiol. (2007) 28:1339. doi: 10.3174/jnrr.80620
11. Tsao S, Gajawelli N, Zhou J, Shi J, Ye J, Wang Y, et al. Feature selective temporal prediction of Alzheimer’s disease progression using hippocampus surface morphometry. Brain Behav. (2017) 7:e00733. doi: 10.1002/brb3.733
12. Prull MW, Gabrieli JDE, Bunge SA. Age-related changes in memory: a cognitive neuroscience perspective. The Handbook of Aging and Cognition. 2nd ed. Mahwah, NJ: Lawrence Erlbaum Associates Publishers (2000). p. 91–153.
24. Bu D, Luo H, Huo P, Wang Z, Zhang S, He Z, et al. KOBAS-i: intelligent prioritization and exploratory visualization of biological functions for gene enrichment analysis. *Nucleic Acids Res.* (2021) 49:W317–25. doi: 10.1093/nar/gkaa447

25. Bi X-a, Hu X, Wu H, Wang YJ, Informatics h. Multimodal data analysis of Alzheimer’s disease based on clustering evolutionary random forest. *IEEE J Biomed Health Inform.* (2020) 24:2973–83. doi: 10.1109/JBHI.2020.2973324

26. Bi Xa, Zhou W, Li L, Xing Z. Detecting risk gene and pathogenic brain region in EMIC using a novel GERF algorithm based on brain imaging and genetic data. *IEEE J Biomed Health Inform.* (2021) 25:3019–28. doi: 10.1109/JBHI.2021.3067798

27. Jiao Z, Chen S, Shi H, Xu J. Multi-modal feature selection with feature correlation and feature structure fusion for MCI and AD classification. *Brain Sci.* (2022) 12:80. doi: 10.3390/brainsci12010080

28. Jiao Z, Gao P, Ji Y, Shi H. Integration and segregation of dynamic functional connectivity states for mild cognitive impairment revealed by graph theory indicators. *Contrast Media Mol Imaging.* (2021) 2016:890024. doi: 10.1155/2016/890024

29. Tzimourta KD, Christou V, Tzallas AT, Giannakeas N, Angelidis A, Gidlow C, et al. Machine learning approaches for ALS disease classification. *Brain Sci.* (2022) 12:241. doi: 10.3390/brainsci1204241

30. Bron EE, Klein S, Papma JM, Venkatraghavan V, Linde RS, et al. Machine learning and statistical approaches for Alzheimer’s disease analysis based on resting-state EEG recordings: a systematic review. *Int J Neurosens. (2020)* 31:2130002. doi: 10.11241/S0129065731000023

31. Huang Y, Sun X, Jiang H, Yu S, Robins C, Armstrong MJ, et al. Machine learning approach to brain epigenetic analysis reveals kinases associated with Alzheimer’s disease. *Nat Commun.* (2021) 12:4472. doi: 10.1038/s41467-021-24710-8

32. Zhang Y, Li M, Wang Q, Hsu JS, Deng W, Ma X, et al. A joint study of whole exome sequencing and structural MRI analysis in major depressive disorder. *Psychol Med.* (2020) 50:384-95. doi: 10.1017/s0033291719000072

33. Stepanov VA, Bocharova AV, Maruzin AV, Zhukova NG, Alifirova VM, Zhukova IA. Replicative association analysis of genetic markers of cognitive traits with Alzheimer's disease in the Russian population. *Mol Biol.* (2014) 48:835–44. doi: 10.1134/s0026893314050068

34. Gonda X, Eszleri N, Torok D, Gal Z, Bokor J, Millinghoffer A, et al. Genetic underpinnings of affective temperaments: a pilot GWAS investigation identifies a new genome-wide significant SNP for anxious temperament in ADGRB3 gene. *Transl Psychiatry.* (2021) 11:337. doi: 10.1038/s41386-021-01436-1

35. Althansu L, Giddaluru S, Fernandes C, Christoforou A, Reivang L, Lundervold AJ, et al. A genetic association study of CSMD1 and CSMD2 with cognitive function. *Brain Behav Immun.* (2017) 61:209–16. doi: 10.1016/j.bbi.2016.11.026

36. Liu Y, Fu X, Tang Z, Li C, Yu X, Zhang F, et al. Altered expression of CSMD2 with cognitive function. *CNS Neurol Disord Drug Targets.* (2019) 18:301-13. doi: 10.2174/1388853518666683

37. Gutierrez MA, Dwyer BE, Franco SJJE. Csmd2 is a synaptic transmembrane protein that interacts with PSD-95 and is required for neuronal maturation. *eNeuro.* (2019) 6:eNEURO.0434-18.2019. doi: 10.1523/ENEURO.0434-18.2019

38. Mizukami T, Kohno T, Hattori MJN. CUB and Sushi multiple domains 3 regulates dendrite development. *Neurosci Res.* (2016) 100:11-7. doi: 10.1016/j.neures.2016.03.003

39. Raghavan NS, Dumitrescu L, Mornimo E, Mahoney ER, Lee AJ, Gao Y, et al. Association between common variants in RBFOX1, an RNA-binding protein, and brain amyloidosis in early and preclinical Alzheimer’s disease. *JAMA Neurol.* (2020) 77:1288–98. doi: 10.1001/jamanetworkneuro.2020.1760

40. Uhl GR, Henderson IM, Martinez M, Stokes MP. Reduced PTPRD expression differentially alters brain phosphotyrosine phosphoprotein profiles of 2 and 12 month-old mice. *bioRxiv [Preprint]*. (2021). doi: 10.1101/2021.03.02.435356

41. Bi X-a, Li L, Xu R, Xing Z. Pathogenic factors identification of brain imaging and gene in late mild cognitive impairment. *Interdisciplin Sci Comput Life Sci.* (2021) 13:511–20. doi: 10.1007/s12539-021-00449-0

42. Ehaidib SN, Ali MJA-B, Al-Obaid JJ, Aljassim KM, Alfadhel MJTn. Novel homozygous mutation in the WGOX gene causes seizures and global developmental delay. *Repr. (2018)* 9:203–8. doi: 10.1515/insci-2018-0029

43. Cheng Y-Y, Chou Y-T, Lai F-J, Jan M-S, Chang T-H, Jou I-M, et al. Wrox deficiency leads to neurodevelopmental and degenerative neuropathies and gliogen synthesize kinase 3 mediated epileptic seizure activity in mice. *Acta Neuropathol Commun.* (2020) 8:1–16. doi: 10.1186/s40478-020-0883-3

44. Deng L, Hou L, Zhang J, Tang X, Cheng Z, Li G, et al. Polymorphism of rs3737597 in DISCI gene on chromosome 1q42.2 in sALS patients: a chinese han population case-control study. *Mol Neurobiol.* (2017) 54:3162–79. doi: 10.1007/s12051-016-9869-3

45. Cristino AS, Williams SM, Hawi Z, An JY, Bellgrove MA, Schwartz CE, et al. Neurodevelopmental and neuropsychiatric disorders represent an interconnected molecular system. *Mol Psychiatry.* (2014) 19:294–301. doi: 10.1038/mp.2013.16

46. Polimanti R, Gelernter J. Widespread signatures of positive selection in common risk alleles associated to autism spectrum disorder. *PLoS Genet.* (2017) 13:e1006618. doi: 10.1371/journal.pgen.1006618

47. Dai J, Chen H, Chai Y. Advanced glycation end products (AGEs) induce apoptosis of fibroblasts by activation of NLRP3 inflammasome via reactive oxygen species (ROS) signaling pathway. *Med Sci Monit.* (2019) 25:7499–508. doi: 10.12659/MSM.915806

48. Kanehisa M, Furumichi M, Sato Y, Ishiguro-Watanabe M, Tanabe M. KEGG: integrating viruses and cellular organisms. *Nucleic Acids Res.* (2021) 49:D545–51. doi: 10.1093/nar/gkaa970

49. Sushma, Mondal AC. Role of GPCR signaling and calcium dysregulation in Alzheimer’s disease. *Mol Cell Neurosci.* (2019) 101:103414. doi: 10.1016/j.mcn.2019.103414

50. Lee SY, Hwang DY, Kim YK, Lee JW, Shin IC, Oh KW, et al. PS2 mutation increases neuronal cell vulnerability to neurotoxins through activation of caspase-3 by enhancing of ryanoend receptor-mediated calcium release. *FASEB J.* (2006) 20:151–3. doi: 10.1096/fj.05-4017fje;1

51. Almansoub H, Tang H, Wu Y, Wang D-Q, Aboud Razak M, Mahamane Salissou M, et al. Oxytocin alleviates MPTP-induced neurotoxicity in mice by targeting MicroRNA-26a/death-associated protein kinase 1 pathway. *J Alzheimers Dis.* (2020) 64:71–19. doi: 10.3233/JAD-190199

52. Hald ES, Timm CD, Alford PW. Amyloid beta influences vascular smooth muscle contractility and mechanoadaptation. *J Biomech Eng.* (2016) 138:111007. doi: 10.1115/1.4034560

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

© Copyright 2022 Liu, Cao, Luo and Wang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.