The isotopic signature of the mineralizing fluid of the Lavrion carbonate-replacement Pb-Zn-Ag district

S. F. Tombros
University of Patras

K. St. Seymour
University of Patras

Paul G. Spry
Iowa State University, pgspry@iastate.edu

T. A. Bonsall
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/ge_at_conf

Part of the Geochemistry Commons, Geology Commons, and the Mineral Physics Commons

Recommended Citation

Tombros, S. F.; St. Seymour, K.; Spry, Paul G.; and Bonsall, T. A., "The isotopic signature of the mineralizing fluid of the Lavrion carbonate-replacement Pb-Zn-Ag district" (2010). *Geological and Atmospheric Sciences Conference Presentations, Posters and Proceedings*. 15.
https://lib.dr.iastate.edu/ge_at_conf/15
The isotopic signature of the mineralizing fluid of the Lavrion carbonate-replacement Pb-Zn-Ag district

Abstract
The Pb-Zn-Ag carbonate-replacement deposits in the Lavrion district are genetically related to a 7-10 Ma-old granodiorite, felsic dikes and sills. These deposits are hosted in the Upper and Lower marble and schists of the Cyclades Blueschist unit and occur along the major Legraina detachment fault. Carbonate-replacement orebodies occur as “mantos” and veins, dominated by base metal sulfides and Ag, Bi, Sn, Sb, As, and Pb sulfosalts. Calculated carbon and oxygen isotope compositions of the hydrothermal fluid range from δ13CCO2 of -13.7 to 0.8 per mil and δ18OH2O of 4.2 to 27.4 per mil, at 400º, 350º, 320º, 300º, 250º and 200ºC. These isotopic compositions reveal water-to-rock ratios ranging from 4.8 to 52.6%, which reflect intense interaction of the ore fluid with the host rock in a water-dominated, transitional closed to open hydrothermal system. The range of δ34SH2S for sulfides in the deposits were from -8.5 to 6.8 per mil, for similar temperatures, whereas for barite-fluorite veins from δ34SH2S of -43.6 to -16.4 per mil, at 200º, 150º and 100ºC. This range implies that there was contribution from a magmatic sulfur component exsolved from the Plaka pluton, as well as contribution from a metasedimentary component. Based on the isotopic signature of sulfur for barite, the ranges from -6.7 to -7.6, comprising an increase in the fluid influx. Isotopic temperatures based on pyrite-galena and sphalerite-pyrite pairs revealed at least three major events of carbonate-replacement ore deposition, (i) at ~ 360º, (ii) 320º-280º and (iii) 260º-200ºC.

Keywords
polymetallic ores, ore fluid, carbon, oxygen, sulfur isotopes

Disciplines
Geochemistry | Geology | Mineral Physics

Comments
This proceeding is published as Tombros, S. F., K. Seymour, P. G. Spry, and T. A. Bonsall. "The isotopic signature of the mineralizing fluid of the Lavrion carbonate-replacement Pb-Zn-Ag district." Bulletin of the Geological Society of Greece 43, no. 5 (2010): 2406-2416. doi:10.12681/bgsg.11641.

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial 4.0 License
THE ISOTOPIC SIGNATURE OF THE MINERALIZING FLUID OF THE LA VRION CARBONATE-REPLACEMENT PB-ZN-AG DISTRICT

Tombros S.F.1, St. Seymour K.1, Spry P.G.2 and Bonsall T.A.2

1 University of Patras, Department of Geology, Laboratory of Volcanology and Ore deposits, 26500 Patras, Greece, tompros@mailbox.gr, kstseymr@upatras.gr
2 Iowa State University, Department of Geological and Atmospheric Sciences, 253 Science I, Ames, Iowa 50011-321, pgspry@iastate.edu.

Abstract

The Pb-Zn-Ag carbonate-replacement deposits in the Lavrion district are genetically related to a 7-10 Ma-old granodiorite, felsic dikes and sills. These deposits are hosted in the Upper and Lower marble and schists of the Cyclades Blueschist unit and occur along the major Legraina detachment fault. Carbonate-replacement orebodies occur as “mantos” and veins, dominated by base metal sulfides and Ag, Bi, Sn, Sb, As, and Pb sulfosalts. Calculated carbon and oxygen isotope compositions of the hydrothermal fluid range from δ^{13}C_{CO_2} of -13.7 to 0.8 per mil and δ^{18}O_{H_2O} of 4.2 to 27.4 per mil, at 400º, 350º, 320º, 300º, 250º and 200ºC. These isotopic compositions reveal water-to-rock ratios ranging from 4.8 to 52.6%, which reflect intense interaction of the ore fluid with the host rock in a water-dominated, transitional closed to open hydrothermal system.

The range of δ^{34}S_{H_2S} for sulfides in the deposits were from -8.5 to 6.8 per mil, for similar temperatures, whereas for barite-fluorite veins from δ^{34}S_{H_2S} of -43.6 to -16.4 per mil, at 200º, 150º and 100ºC. This range implies that there was contribution from a magmatic sulfur component exsolved from the Plaka pluton, as well as contribution from a metasedimentary component. Based on the isotopic signature of sulfur for barite, the log δ^{34}S_{(barite)}/δ^{34}S_{(omin)} ranges from -6.7 to -7.6, comprising an increase in the fluid influx. Isotopic temperatures based on pyrite-galena and sphalerite-pyrite pairs revealed at least three major events of carbonate-replacement ore deposition, (i) at ~ 360º, (ii) 320º-280º and (iii) 260º-200ºC.

Key words: polymetallic ores, ore fluid, carbon, oxygen, sulfur isotopes.

1. Introduction

The Lavrion district is famous for the production of Pb (~ 1.4 Mt, at 20%) and Ag (~ 3.5 kt, at 400 g/t) since the Golden Age of Athens (Conofagos, 1980). Recent mining in this area was mainly conducted by Compagnie Françoise des Mines du Laurium (~ 0.9 Mt, at 3% Pb and 4.2 kt Ag, at 140 g/t, Conofagos, 1980). The area is considered as the northern part of the Cycladic Blueschist Belt, which is one of the most spectacular Alpine orogenic belts worldwide (Blake et al., 1981). Within this belt, various types of base and precious metal ores including skarn (i.e., Serifos, Lavrion and
Tinos), epithermal veins (i.e., Lavrion, Antiparos, Tinos, Mykonos and Ikaria), and carbonate-replacement deposits (i.e., Lavrion and Sifnos) were reported by Melidonis, (1980), Salemink (1985), Skarpelis (2002), Voudouris et al. (2008a, b), Tombros et al. (2007; 2008; 2009) and St. Seymour et al. (2009a, b). In addition to the above ore styles, a porphyry- and breccia-hosted and supergene mineralization has also been identified in the Lavrion district (Bonsall et al., 2007). Different genetic models have been proposed for the formation of the carbonate-replacement Pb-Zn-Ag deposits at Lavrion i.e., granitoid-related (Leleu, 1966), Mississippi Valley- (Kalogeropoulos and Mitropoulos, 1983) and manto-type (Skarpelis, 2002). The present study investigates the provenance of the Lavrion mineralizing fluid, based on the calculated values of its δ13C CO2, δ18O H2O and δ34S H2S isotopic signature.

2. Geological Setting

The Lavrion district has been the focus of intense research and numerous studies (e.g., Marinos and Petrascheck, 1956; Economou and Sideris, 1976; Papanikolaou and Syskakis, 1991; Bonsall et al., 2007; Skarpelis, 2007; Skarpelis et al., 2008; Baziotes et al., 2009). Two different Alpine nappes were distinguished locally (Fig. 1): The “Cyclades Blueschist Belt”, at the base, which was initially a Mesozoic continental margin. It is composed of an underlying meta-volcanosedimentary sequence, i.e., comprises of Mesozoic neritic carbonates and overlying Tertiary meta-flysch and meta-lastic
rocks (Kaesariani schists), sandwiched between the Upper and Lower marbles, at the top (Fig. 1) (Marinos and Petrascheck, 1956).

During the Tertiary, it experienced two episodes of regional metamorphism. The first occurred at ~ 70 Ma, during collision between the Apulian microplate and Eurasia, and reached the blueschist to eclogite facies ($T_{\text{max}} \approx 450-550^\circ\text{C}$ and $P_{\text{max}} \approx 12-18$ kbar; Bröcker and Pidgeon, 2007). This event was followed by an episode of greenschist to amphibolite facies metamorphism, at 25-18 Ma ($T_{\text{max}} \approx 450^\circ-480^\circ\text{C}$ and $P_{\text{max}} \approx 5-7$ kbars), which occurred as a result of isothermal decompression and exhumation (Wijbrans et al., 1993). Finally, contact metamorphism during Miocene was associated with the intrusion of the 8.3 to 11.9 Ma-old Plaka granodiorite and 7.3 Ma, felsic dykes and sills (Altherr and Siebel, 2002; Skarpelis et al., 2008).

The Cyclades Blueschist unit in the area is tectonically overlain by the “Upper unit” ophiolites i.e., a heterogeneous unit composed of unmetamorphosed Permian to Mesozoic sediments, intercalated ophiolitic fragments, Tertiary-greenschist facies rocks and Late-Cretaceous medium pressure-high temperature rocks (also called prasinites, Baltatzis, 1996; Photiades and Carras, 2001) (Fig. 1). It is separated from the Cyclades Blueschist unit by a detachment fault that formed during the early Miocene as back-arc extension dominated the Cyclades (Skarpelis, 2007). During this extensional period, granodioritic magmas intruded these units, and hornfels developed around the margins of the Plaka pluton (Skarpelis et al., 2008) (Fig. 1).

3. Types of Sulfide Mineralization and Their Paragenesis

There are several types of sulfide mineralization present in the Lavrion district, which are related to progressive decrease in temperature of formation: (i) porphyry-style, low-grade, molybdenite mineralization in the proximity of Plaka granodiorite, which occurs as quartz tension gashes and minor stockworks. It is associated with the potassic alteration assemblage of orthoclase-sericite-biotite (Bonsall et al., 2007; Voudouris et al., 2008a, b), (ii) Ca-Fe skarn, hosted in schists and marbles located at the margins of Plaka pluton, with the assemblages magnetite and magnetite-hematite representing endoskarns (stage I), and pyrite-pyrrhotite and Fe-rich-sphalerite-pyrite-Ag-rich-galena (\pm arsenopyrite-bismuthinite-chalcopyrite-mackinawite-glauconodite-native bismuth-scheelite-tetradymite, $T \leq 581\pm3^\circ\text{C}$, Glatz, 1967) to form exoskarns (stage II) (Marinos and Petrascheck, 1956; Leleu et al., 1973; Economou et al., 1981; Bonsall et al., 2007), (iii) breccia-porphyry dike mineralization which contains minor amounts of arsenopyrite, pyrite, magnetite, pyrrhotite, Fe-rich sphalerite and chalcopyrite (stage I), galena, argentian tetrahedrite and tennantite, freibergite, wurtzite and enargite (stage II) and marcassite, argentian galena, and Bi-Cu-Ag-Pb-Sn-sulfosalts (stage III) (Economou and Sideris, 1976; Bonsall et al., 2007; Voudouris et al., 2008a, b) and (vi) carbonate-replacement Pb-Zn-Ag mantos, chimney-orebodies and veins (e.g., vein 80) with the generalized assemblage: pyrite, arsenopyrite, pyrrhotite, loellingite, rammelbergite, sphalerite (with Fe \geq 10 wt. %), greenockite, niccolite, laggisite, gerdorsfite and chalcopyrite (stage I), pyrite, argentian chalcopyrite and tetrahedrite, enargite, luzonite, freibergite, wurtzite (with Fe \leq 2 wt. %), and galena (stage II), marcassite, argentian galena, bournonite, miargyrite, pyrrygyrite-proustite ($T \geq 192^\circ\text{C}$, Hall, 1966), stephanite, nuffeldite, argentite, polybasite, pearsite, chalcocite, stannite, petrulite, isotropic-orpiment ($T = 265\pm5^\circ\text{C}$, Hall and Yund, 1964), stibnite, native Bi, As and Au, covellite, and Bi-Cu-Ag-Pb-Sn-sulfosalts (cosalite, aikinite, lilianite, isotropic matildite, $T = 195 \pm 5^\circ\text{C}$, (Craig, 1967), bismuthite, ramdohrite, semseyite, wittichenite, emplectite and mummeite (stage III). These ores are related to carbonatization of the schists and silicification of the marbles, and late formation of vein and vuggy fluorite, siderite and barite. These hypogene stages were followed by a supergene
one (stage V) with more than fifty different minerals including, native Au and Ag (Skarpelis and Ardyraki, 2008).

4. Samples and Methods

Material for stable isotope studies was obtained from calcite intergrown with Pb-Zn-Ag sulfides, as well as smithsonite, cerussite, aragonite, and pyrite, sphalerite and galena, from the Ca-Fe skarns, carbonate-replacement ores. Additionally, late barite and gypsum, host marbles and Plaka granodiorite and associated porphyritic dikes and sills were sampled. Samples were collected from underground and surface locations at Plaka, Kamariza, Sounio, Esperanza, Adame, Avlaki, Villa, Mega Pefka, Christina, and Sounio deposits. All minerals analyzed were hand picked and checked under a binocular microscope to ensure a purity of >95 %. Isotopic compositions of oxygen and carbon were analyzed on a Thermo-Finnigan Delta-Plus XL mass spectrometer, at the Stable Isotope Research Facility, Indiana University. Carbon and oxygen in carbonates were liberated as CO$_2$ by treating the samples with 100 % phosphoric acid at 75ºC (Clayton et al., 1989, in Lefticariu et al., 2006). Sulfur was released as SO$_2$ from sulfides and sulfates by heating samples to 1,100ºC in the presence of CuO (Fritz et al., 1974, Lefticariu et al., 2006) and then, measured using a Finnigan MAT 252 mass spectrometer. The isotopic ratios are reported in standard δ notation per mil relative to V-SMOW for oxygen, V-PDB for carbon, and V-CDT for sulfur. Analytical precision was better than ± 0.05 per mil.

5. Conditions of Emplacement of the Plaka Pluton

In order to estimate the conditions of emplacement of the Plaka pluton, we have used the amphibole geobarometer (based on the variation in the AlIV content of the amphibole as a function of pressure), utilizing the experimental calibrations of Schmidt (1992). The composition of the analyzed amphiboles varies from the crystals core to the rim from 1.21 (Al$_2$O$_3$ = 7.06 wt. %) to 0.87 (Al$_2$O$_3$ = 5.99 wt. %), which mirrors ascent of the granodiorite magma. The spectrum of the calculated pressure values ranges between 2.75 to 1.15 kbars. Temperatures of crystallization were calculated by using the Vyhnal et al. (1991) geothermometer which is a function of the pressure. The calculated temperatures range between 725º and 685ºC for the above pressure values.

6. Carbon and Oxygen Isotopes

Twelve carbon and oxygen isotope analyses were obtained from calcite in the carbonate-replacement mineralization and five metamorphic calcite from the Upper and Lower Marbles. Ten additional isotopic values for calcite are from Bosnall et al. (2007) and fifteen of cerrusite, late aragonite and phosgenite from Gilg and Boni (2004).

Calcite in carbonate-replacement from Kamariza, Villia, Esperanza, Adame and M. Pefka deposits displays values of δ^{13}C = -8.6 to -3.1 and δ^{18}O = 18.4 to 34, δ^{13}C = -11.8 to -8.3 and δ^{18}O = 34.0 to 38.7 to, δ^{13}C = -13.5 to -1.4 and δ^{18}O = 18.0 to 28.6, δ^{13}C = -12.0 to -2.0 and δ^{18}O = 21.2 to 26.1, and δ^{13}C = -15.6 and δ^{18}O = 18 per mil, respectively. Based on the calcite-water and CO$_2$-water equations of Ohmoto and Rye (1979), the calculated isotopic values, for the same locations, were: δ^{13}CCO$_2$ = -6.7 to -2.2 and δ^{18}OH$_2$O = 8.9 to 26.2 (at 400º, 350º, 320º, 300º, 250º and 200ºC), δ^{13}CCO$_2$ = -9.3 to -5.8 and δ^{18}OH$_2$O = 4.2 to 8.9 (at 300ºC), δ^{13}CCO$_2$ = -10.8 to -4.4 and δ^{18}OH$_2$O = 13.7 to 24.3 (at 320ºC), δ^{13}CCO$_2$ = -9.2 to 0.8 and δ^{18}OH$_2$O = 16.2 to 21.2 (at 350ºC), and δ^{13}CCO$_2$ = -13.7 and δ^{18}OH$_2$O = 26.6 per mil (at 300ºC) (Fig. 2).

Calcite in the Upper and Lower marbles display measured isotope values of δ^{13}C = -6.7 to -2.8 and
δ18O = 13.2 to 29.8 per mil (Lower marble from Kamariza and Sounio deposits) and δ13C = -10.9 to -4.8 and δ18O = 27.7 to 28.4 per mil (Upper marble from Villia and Sounio). Based on the same equations of O’Neil et al., (1969) and Ohmoto and Rye (1979), the calculated isotopic values were: δ13C = -3.7 to -2.6 and δ18O = 10.4 to 27.0 (Lower marble, at 420°C; obtained from Knoll, 1988), and δ13C = -8.0 to -2.3 and δ18O = 3.5 to 14.6 (at 315°C), δ13C = -10.8 to -4.4 and δ18O = 13.7 to 24.3 (at 320°C; obtained from Knoll, 1988) (Fig. 2).

Fig. 2: Carbon versus oxygen isotope diagram for hydrothermal and metamorphic calcite showing stable isotope systematics of hydrothermal fluids from Kamariza, Villia, Speranza, Adame, M. Pefka, Lavrion deposits (the marine limestone and “igneous calcite” boxes after Bowman (1998) are indicated and the estimated δ18O and δ13C values of Miocene-age meteoric water for southern Europe from Zachos et al., 2001).

δ18O = 13.2 to 29.8 per mil (Lower marble from Kamariza and Sounio deposits) and δ13C = -10.9 to -4.8 and δ18O = 27.7 to 28.4 per mil (Upper marble from Villia and Sounio). Based on the same equations of O’Neil et al., (1969) and Ohmoto and Rye (1979), the calculated isotopic values were: δ13C = -3.7 to -2.6 and δ18O = 10.4 to 27.0 (Lower marble, at 420°C; obtained from Knoll, 1988), and δ13C = -8.0 to -2.3 and δ18O = 3.5 to 14.6 (at 315°C), δ13C = -10.8 to -4.4 and δ18O = 13.7 to 24.3 (at 320°C; obtained from Knoll, 1988) (Fig. 2).

Fig. 3: Histogram of the frequency of the δ18O_H2O values of cerussite, aragonite and phosgenite from the Kamariza deposits.
Finally, the isotopic compositions of cerussite, aragonite and phosgenite range from δ18O = -25.9 to 24.6 (some of the measured values were adopted from Gilg and Boni, 2004, and are for the Kamariza and Adame deposits), δ18O = 30.0 to 33.0 and δ18O = 27.1 to 28.7 per mil (both from Kamariza). These correspond to isotopic calculated values of δ18O H2O that range from 17.1 to 32.8, 26.2 to 27.3 and 27.0 to 29.0 per mil (at 100°C) (Fig. 3).

7. Oxygen and Hydrogen Isotopes

Oxygen and hydrogen isotope compositions of quartz from Plaka granodiorite range from 6.8 to 9.1 and from -70 to -78 per mil (one measured value was obtained by Altherr et al., 1988). These correspond to calculated δ18O H2O fluid values of 5.3 to 5.9 per mil and -55 to -62 per mil, at 700°C. The δ18O and δD values from quartz in skarn of 10.8 and -76 per mil corresponds to δ18O H2O = 3.2 per mil and δD H2O = -67, at 500°C (Baltatzis, 1981).

8. Sulfur Isotope Study and Temperature of Sulphide Deposition

Temperature determinations for primary sulphide deposition based on δ34S isotopes, were obtained for the isotopic coexistence of the pyrite-galena and sphalerite-galena pairs according to the equations of Ohmoto and Lasaga (1982). The calculated temperatures during sulphide deposition range between 358° to 306°C for Plaka, to 359° to 225°C for Kamariza, 350° to 260°C for Villia, 300° to 225°C for Adame, 320° to 220°C for Sounio, 300° to 225°C for Speranza, and ~ 200°C for Avlaki (Fig. 4).

A δ34S isotope value obtained from arsenopyrite in the skarn (high temperature mineralization, Plaka area) is 7.3 per mil, which corresponds to a calculated value of δ34S H2S of 6.8 per mil (based on the arsenopyrite-H2S equation of Ohmoto and Lasaga, 1982, at T= 400°C, Economou et al., 1981) (Fig. 5). The δ34S measured isotopic values of pyrite from Plaka, Villia, Kamariza, Sounio, Speranza and M. Pefka locations display a range of δ34S values of -2.6 to 3.9, 4.3 to 5.7, ≈ 1.3, -3.2 to -0.4, -1.8 to -0.9, -3.7 to 4.5, ≈ 0.4 and ≈ -2.7 per mil, respectively. Based on the equations for pyrite-H2S of

Fig. 4: Histogram of the frequency of the temperature values obtained by isotope geothermometry from the Plaka, Kamariza, Sounio, Speranza, Adame, Villia and Avlaki deposits.
Ohmoto and Rye (1979) and Ohmoto and Lasaga (1982), the calculated δ34S$_{\text{H}_2\text{S}}$ values are -1.6 to 2.9, 3.2 to 4.6, ≈ 0.3, -2.1 to 0.8, -2.8 to -0.2, -1.5 to 2.2, ≈ -0.7 and ≈ -1.2 per mil, in the fluid, at T = 200°, 250°, 300°, 320° and 350°C (Fig. 5).

Values of δ34S of sphalerite from Villia, Adame, Kamariza, Sounio, Spiliazeza, Speranza, Villia, Adame, Sounio, Christina, and M. Pefka exhibit a range from 4.2 to 4.8, -1.6 to 1.6, -3.7 to -1.1, -2.8 to -1.2, -3.9 to 1.3, 0.6 to 4.1, ≈ -1.4 and ≈ 9.4 per mil, respectively. The calculated values for the isotopic composition of the fluid (based on the sphalerite-H$_2$S equation of Ohmoto and Rye, 1979; Ohmoto and Lasaga, 1982) were δ34S$_{\text{H}_2\text{S}}$ = 3.9 to 4.5, -1.8 to 1.4, -3.3 to -0.8, -2.4 to -0.7, -3.3 to -0.7, 0.4 to 3.7, ≈ -1.0, and ≈ 9.1 per mil, at the same temperatures, respectively (Fig. 5). The δ34S values for galena from Plaka, Villia, Adame, Kamariza, Sounio, Spiliazeza, and Avlaki range from -3.3 to 4.1, 2.3 to 3.9, -3.4 to 1.5, -4.7 to -0.4, -5.0 to 2.6, 0.2 to 1.7 and 2.7 to 3.6 per mil, respectively. The calculated values (based on the galena-H$_2$S equation of Ohmoto and Rye, 1979; Ohmoto and Lasaga, 1982) were δ34S$_{\text{H}_2\text{S}}$ = -2.5 to 6.0, 4.1 to 5.6, -1.8 to 1.6, -2.8 to 1.7, -8.5 to -1.1, 2.0 to 3.5 and -0.2 to 1.7 per mil, at the same temperatures (Fig. 5).

Finally, sulfur isotope compositions of barite and gypsum from the Kamariza and Sounio deposits reveal values of δ34S which range from δ34S = 17.3 to 20.4 and ≈ 23.5, and ≈ 0.2 per mil, corresponding to calculated δ34S$_{\text{H}_2\text{S}}$ of -19.5 to -16.4, ≈ -35.0 and ≈ -43.6 per mil (based on the barite-H$_2$S and gypsum-H$_2$S equations of Kusakabe and Robinson, 1977 and Ohmoto and Rye, 1979, at T = 200°, 150° and 100°C) (Fig. 5).

Calculations of water-to-rock ratios were performed by assuming a closed system for the early mineralized stages, at T ≥ 300°C (as evidenced by the occurrence of calcite veins mainly as stockworks), and an open system for the late ones, at T ≤ 300°C. Calculations were achieved by using the equa-
The calculated isotopic compositions reveal water-to-rock ratios with values of, 6.6 to 10.1% (for Villia), 8.5% (for Adame), 8.9 to 52.6% (for Kamariza), 29.6% (for Speranza), 40.3% (for Sounio) and 2.6% (for Plaka).

9. Discussion and Conclusions

Oxygen and carbon isotope data suggest multiple sources for the ore fluid, i.e., magmatic and metamorphic (Fig. 2). There is a recognizable depletion in δ¹³C and δ¹⁸O values which can be the result of interaction of modified high-temperature magmatic fluids with the hosts or to have formed under medium to high water-to-rock ratios, i.e., 4.8 to 52.6%. This depletion is also correlated to simple cooling of the fluid, from 400° to 150°C, which was caused by mixing of the Ag-bearing fluid with meteoric waters had entered the highly permeable carbonate-host.

The oxygen and hydrogen isotope compositions are consistent with magmatic water composition, and are similar to those characterizing the Tinos, Mykonos and Serifos granitoids and skarns (Tombros et al., 2007, 2008; Tombros, 2009 and St. Seymour et al., 2009a, b). However, granitoids in Lavrion area are weakly affected by alteration (e.g., silicification, propylitization, carbonatization, and sericitization, Bonsall et al., 2007) due to their interaction with the mineralizing fluids; as it was depicted from the δD values of the Plaka granitoid. For the early stages of Lavrion ores the calculated δ¹⁸O and δD isotopic values reflect the dominance of a magmatic component, whereas the late-stage fluids are consistent with isotopic exchange of the mineralizing fluid with Miocenic meteoric waters.

The mixing hypothesis of the fluid is also supported by the δ³⁴S data: The calculated δ³⁴S compositions of sulfides i.e., δ³⁴S = -8.0 to 9.0 per mil from the Lavrion deposits are interpreted to reflect a double source. The positive δ³⁴S values could have been the result of the direct addition of magmatic volatiles to the hydrothermal fluid (e.g., δ³⁴S = 6.8 per mil from skarn-arsenopyrite). The negative δ³⁴S values can be explained by the introduction of isotopically light sedimentary sulfur into the hydrothermal system from the enclosing metasedimentary rocks, at higher pH conditions. Sulfur isotope compositions δ³⁴S of barite and gypsum from carbonate-replacement ores, range from -43.6 to -16.4 to per mil and reflect seawater sulfate values of Miocene (e.g., -40 to -20 per mil, Ohmoto and Rye, 1979).

Temperatures based on δ³⁴S pyrite-galena and sphalerite-pyrite pairs revealed at least three thermal pulses during deposition of the carbonate-replacement ore: (i) ~ 360º, (ii) 320º-280º and (iii) 260º to 200°C. Telescoping phenomena i.e., co-existence of minerals which belong to different paragenetic stages is apparent in the Lavrion ores. This can be explained by the protracted period of the ore-forming event of more than 2 Ma (10 to 8 Ma, Skarpelis, 2007). A primary closed, channelized hydrothermal system was operational in Lavrion in the early stages resulted in As-rich skarn deposits (T ≤ 500ºC). Then, the hydrothermal system in the late stages of its evolution had opened (T ≥ 100ºC), and resulted in the precipitation of fluorite-barite ores.

10. References

Altherr, R., and Siebel, W. 2002. I-type plutonism in a continental back-arc setting: Miocene granitoids and monzonites from the central Aegean Sea, Greece. Contributions to Mineralogy and Petrology, 143, 397-415.

Baltatzis, E. 1981. Contact metamorphism of a calcilicate hornfels from Plaka area, Lavrium, Greece. Neues Jahrbuch für Mineralogie Monatshefte, 11, 481-488.
Baltatzis, E. 1996. Blueschist-to-greenschist transition and the P-T path of prasinites from the Lavrion area, Greece: Mineralogical Magazine, 60, p. 551-561.

Baziotis, I., Proyer, A., and Mposkos, E., 2009, High-pressure/low-temperature metamorphism of basalts in Lavrion (Greece): Implications for the preservation of peak metamorphic assemblages in blueschists and greenschists: European Journal of Mineralogy, 21, 133-148.

Bonsall, T.A., Spry, P.G., Voudouris, P., St. Seymour, K., Tombros, S., and Melfos, V. 2007. Fluid inclusion and stable isotope characteristics of carbonate replacement Pb-Zn deposits in the Lavrion district, Greece. In Andrews, C.J., et al., eds., Mineral exploration and research: Digging deeper, Irish Association for Economic Geology, Dublin, 283-286.

Bowman, J.R. 1998. Stable-isotope systematics of skarns. In Lentz, D.R., ed., Mineralized intrusion-related skarn systems, Mineralogical Association of Canada Short Course Series, 26, 99-145.

Bröcker, M., and Pidgeon, R.T. 2007. Protolith ages of meta-igneous and metatuffaceous rocks from the Cycladic Blueschist Unit, Greece: Results of a reconnaissance U-Pb zircon study. Journal of Geology, 115, 83-98.

Conofagos, C. 1980. The Lavrion and the ancient Greek techniques for silver production. Athens, Ekdotiki Athinon, 458 p.

Clayton, R.N., Goldsmith, J.R., and Mayeda, T.K. 1989. Oxygen isotope fractionation in quartz, albite, anorthite and calcite. Geochimica et Cosmochimica Acta, 53, 725-733.

Craig, J.R. 1967. Phase relations and mineral assemblages in the Ag-Bi-Pb-S system. Mineralium Deposita, 1, 278-306.

Economou, M., and Sideris, C. 1976. A mineralized brecciated granodiorite porphyry in the Laurium mines, Greece. Neues Jahrbuch für Mineralogie Abhandlungen, 128, 209-218.

Economou, M., Skounakis, S., and Papathanasiou, C. 1981. Magnetite deposits of skarn type from the Plaka area of Laurium, Greece. Chemie der Erde, 40, 241-252.

Fritz, P., Drimmie, R.J., and Norwick, K. 1974. Preparation of sulfur dioxide for mass spectrometer analysis by combustion of sulfide with copper oxide. Analytical Chemistry, 76, 164-166.

Glatz, A.C., 1967. The Bi₂Te₃-Bi₂S₃ system and the synthesis of tetradymite. American Mineralogist, 52, 161-170.

Gilg, H.A. and Boni, M., 2004, Stable isotope studies on Zn and Pb carbonates: Could they play a role in mineral exploration? In: Applied Mineralogy, Developments in Science and Technology, Pecchio, M., Andrade, F.R.D., D’Agostino, L.Z., Kahn, H., Sant’Agostino, L.M., Tassinari, M.M.M.L., (eds), ICAM-BR, São Paulo, 2, 781-784.

Hall, H.T., 1966. The systems Ag-Sb-S, Ag-As-S and Ag-Bi-S: Phase relations and mineralogical significance. PhD Thesis, Brown University, 240 p.

Hall, H.T., and Yund, 1964. Equilibrium relations among some silver sulfosalts and arsenic sulfides. American Geophysical Union Translations, 45, 1311-1321.

Kalogeropoulos, S.I., and Mitropoulos, P. 1983. Fluid inclusion characteristics of fluorite from Lavrion (Greece). Annales Geologiques des Pays Helleniques, 31, 130-135.

Knoll, O. 1988. Ore mineralogy and fluid inclusion studies of Pb-Zn-ores from Lavrion-Greece. MSc Thesis, Hamburg, University of Hamburg, 72 p.

Kusakabe, M., and Robinson, B. 1977. Oxygen and sulfur isotope equilibria in the BaSO₄-HSO₄⁻·H₂O system from 110° to 350°C and applications. Geochimica and Cosmochimica Acta, 41, 1033-1040.

Lefticariu, L., Pratt, L. M., and Ripley, E. M. 2006. Mineralogic and sulfur isotope effects accompanying the oxidation of pyrite in millimolar solutions of hydrogen peroxide at temperatures from 4 to 150 °C. Geochimica et Cosmochimica Acta, 70, 4889-4905.
Voudouris, P., Melfos, V., Spry, P. G., Bonsall, T., Tarkian, M., and Solomos, C. 2008a. Mineralogical and fluid inclusion study of the Kamariza carbonate-replacement deposit, Lavrion, Greece. *Mineralogy and Petrology*, 94, 85-106.

Voudouris, P., Melfos, V., Spry, P. G., Bonsall, T., Tarkian, M., and Economou-Eliopoulos, M. 2008b. Mineralogical study and constraints on fluid evolution in the Plaka-related ore system, Lavrion, Greece. *Mineralogy and Petrology*, 93, 79-110.

Wijbrans, J.R., Van Wees, J.D., Stephenson, R.A., and Cloetingh, S.A.P.L. 1993. Pressure-temperature-time evolution of the high-pressure metamorphic complex of Sifnos, Greece. *Geology*, 21, 443-446.

Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K., 2001, Trends, rhythms, and aberrations in global climate 65 Ma to present: *Science*, 292, p. 686-693.