RCON-32. LOCAL CONTROL FOLLOWING PROTON THERAPY FOR PEDIATRIC CHORDOMA
Daniel Indelicato1, Ronny Rotondo1, Raymond Vega1, Adam Holtzman1, Wen Shen Lou1, Christopher Morris1, Eric Sandler1, Philipp Aldana1, and Julie Bradley1
1University of Florida, Jacksonville, FL, USA, 2University of Kansas, Kansas City, KS, USA, 3Nemours Children’s Specialty Clinic, Jacksonville, FL, USA

BACKGROUND: Due to the location and high dose required for disease control, pediatric chordomas are traditionally treated with surgery and proton therapy, but their low incidence limits the clinical outcome data available in the literature. METHODS AND MATERIALS: Between 2008 and 2019, 29 patients with a median age of 14.8 years (range, 3.8–21.8) received proton therapy for non-metastatic chordoma at a single institution. Twenty-four tumors arose in the clivus/cervical spine region and 5 in the lumbarosacral spine. Twenty-six tumors demonstrated well-differentiated histology and 3 were dedifferentiated or not otherwise specified (NOS). Approximately half of the tumors underwent specialized testing: 14 were brachyury-positive and 10 retained INI-1. Seventeen patients had gross disease at the time of radiation. The median radiation dose was 73.8 GyRBE. RESULTS: With a median follow-up of 4.3 years (range, 1.0–10.7), the 5-year estimates of local control, progression-free survival, and overall survival rates were 92%, 92%, and 91%, respectively. Excluding 3 patients with dedifferentiated/NOS chordoma, the 5-year local control, progression-free survival, and overall survival rates were 95%, 82%, and 86%, respectively. Excluding 3 patients with dedifferentiated/NOS chordoma, the 5-year local control, progression-free survival, and overall survival rates were 92%, 92%, and 91%, respectively. Serious toxicities included 3 patients with hardware failure or related infection requiring revision surgery, 2 patients with hormone deficiency, and 2 patients with Eustachian tube dysfunction causing chronic otitis media. CONCLUSION: In pediatric patients with chordoma, proton therapy is associated with a low risk of serious toxicity and high efficacy, particularly in well-differentiated tumors. Complete resection may be unnecessary for local control and destabilizing operations requiring instrumentation may result in additional complications following therapy.

NEUROSURGERY

SURG-02. INITIAL MANAGEMENT OF HYDROCEPHALUS IN THE PEDIATRIC AND YOUNG-ADULT PATIENTS WITH BRAIN TUMORS: THE EFFICACY OF LONG-TERM INDOVING EXTERNAL VENTRICAL DRAINAGE
Shigeru Yamaguchi1, Hiroki Motegi1, Yukitomo Ishi1, Michinari Okamoto1, Akhiro Iguchi1, Yoko Cho1, Minako Sugiyama1, Atushi Manabe1, and Kyosho Houkin1
1Department of Neurosurgery, Hokkaido University Hospital, Sapporo, Japan, 2Department of Pediatrics, Hokkaido University Hospital, Sapporo, Japan

BACKGROUND: Pediatric and Young-Adult (AYA) brain tumors often present with hydrocephalus. As temporary cerebrospinal fluid (CSF) diversion procedure, we perform long-term indwelling external ventricular drainage (EVD) in the case of the management of CSF diversion more than two weeks presumably. The aim of this study is to investigate the initial management for hydrocephalus in pediatric/AYA children with brain tumors especially about long-term EVD. MATERIALS AND METHODS: The patients less than 30 years of age diagnosed with brain tumor between 2005 and 2019 were retrospectively analyzed. Procedures of long-term EVD were similar to that of ventriculoperitoneal shunt (VPS) system. Using flow-controlling VPS system, peritoneal catheter passed out of the body at the anterior chest, and distal end of the catheter was connected to standard EVD system. RESULTS: In total of 345 patients with brain tumor, 109 had hydrocephalus at presentation. Among them, 25 patients (23%) underwent long-term EVD. The main reasons for selecting long-term EVD were to avoid intraparenchymal dissemination (n=13), and to maintain longer period of CSF diversion for the treatment of tumor (n=12). The median of long-term EVD was 38 days (range: 12 – 222 days). Although one case suffered from subarachnoid hemorrhage, this procedure should be taken into consideration if patients have a risk of dissemination and may elude permanent VPS.

SURG-03. IMMERSIVE VIRTUAL REALITY APPLICATIONS IN NEUROSURGICAL ONCOLOGY
Andrea Caragi1, Angela Mastronuzzi1, Giovanna Stefania Colafati1, Paul Voci1, Nicola Onorini1, Alessia Carboni1, Gadaa Del Baldo1, Aapal Jamadagni1, Alessandro De Benedetis1, and Carlo Efiui Marr2
1Bambino Gesù Children’s Hospital, Rome, Italy, 2Surgical Theatre Inc., Cleveland, OH, USA

Tridimensional (3D) rendering of volumetric neuroimagings is increasingly been used to assist surgical management of brain tumors. New technologies allowing immersive virtual reality (VR) visualization of obtained models offer the opportunity to appreciate neuroanatomical details and spatial relationship between the tumor and normal neuroanatomical structures to a level never seen before. We present our preliminary experience with the Surgical Theatre, a commercially available 3D VR system, in 60 consecutive neurosurgical oncology cases. 3D models were developed from volumetric CT scans and MR standard and advanced sequences. The system allows the loading of 6 different layers at the same time, with the possibility to modulate opacity and threshold in real time. Use of the 3D VR was used during preoperative planning allowing a better definition of surgical strategy. A tailored craniotomy and brain dissection can be simulated in advanced and precise preoperative planning to optimize the surgical procedure. 3D VR was also used offline, both before and after surgery, in the setting of case discussion within the neurosurgical team and during MDT discussion. Finally, 3D VR was used during informed consent, improving communication with families and young patients. 3D VR allows to test surgical strategies to the single patient, contributing to procedural safety and efficacy and to the global improvement of neurosurgical oncology care.

SURG-04. THE APPLICATION OF EN Bloc RESECTION IN THE OPERATION OF PEDIATRIC POSTERIOR FOSSA TUMOR
Ma Jie1, Weiwei Mao1, Shaowei Tian1, Baosheng Wang1, and Yang Zhao1
1Department of Pediatric Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China

OBJECTIVE: To explore the efficacy and safety of en bloc resection therapy on posterior fossa tumor in children. METHODS: A retrospective analysis was conducted on an electronic medical database of 94 pediatric posterior fossa tumor admitted to Department of Pediatric Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine from January 2018 to December 2019. Among them, 35 cases were treated with traditional resection (control group) and 59 cases with en bloc resection (observation group). We counted the amount of blood loss and the time during tumor resection, We compare the symptoms and signs between the two groups and determine a extent of tumor resection based on microscopic observation and postoperative imaging comparison. RESULT: The total tumor resection rate of the observation group (88.1%, 52 / 59) was significantly higher than that of the control group (62.85%, 22 / 35, P < 0.05). The average bleeding volume of 90.8ml in the observation group was significantly smaller than that of the control group (113.3ml, P < 0.05), and the average operation time of 38.6min in the observation group was shorter than that of the control group (57.4min, P < 0.05) only for tumor resection procedure. CONCLUSION: En bloc resection technique can improve the total resection rate of tumors in children’s posterior cranial fossa.
BACKGROUND: An awake surgery is a useful measure to remove tumors located close to eloquent areas of the brain to reduce surgical complications and maximize the resection. However, it has some disadvantages compared to surgeries under general anesthesia. Generally speaking, applying it to a child under 15 years-old (y/o) is hesitating because of anxiety, poor tolerance, failure to cooperate in tasks and so forth. Here, we present a case of a 13y/o girl who underwent an awake surgery due to dysmyeloplastic neuroepithelial tumor (DNT) located in the left parietal lobe. CASE PRESENTATION: She consulted our hospital for epileptic seizures. MRI showed a multilocular mass lesion in the left parietal lobe. The tumor was located in or close to eloquent areas. The epilepsy was refractory even with multiple antiepileptic drugs (AEDs). A Wada examination revealed that her speech area is on the left hemisphere. The operations were performed in two stages. Prior to the operations, we had several thought-out simulations in the operating room and ICU with her, her parents, and our staff including nurses and lab technicians. The first operation was to perform tumor biopsy and place intracranial electrodes. The histological diagnosis was DNT. Video electroencephalogram showed that the epileptogenic lesion was around the tumor. The second operation resulted in total tumor resection and reduction of paroxysmal epileptic spikes without major complications. She is seizure free for more than three years with two AEDs. CONCLUSION: Careful preparations may enable an awake surgery even for a child under 15y/o.

SURG-06. A WAKE CRANIOTOMY FOR BRAIN TUMOR IN PEDIATRIC PATIENTS
Carlos Almeida Jr, Alessandra Levy Antoniazzi, Bruna Minniti Mançano, Marcus Matsushita, Rachel Eggers Bacci, Danielli Basso, and Luana Da Cruz
In Barretos’s Children and Young Adults Cancer Hospital, Barretos, Sao Paulo, Brazil.

BACKGROUND: The challenge of surgery in neurooncology is to achieve the maximum resection while preserving brain function. Even the operative cortical mapping during resection of a brain tumor allows direct stimulation in eloquent areas with a reduction in postoperative deficits. This procedure has been performed in adults and children down to the age of 11 y/o. We report here two cases of resection of a brain tumor in a 11-year-old, and 9-year-old child submitted to an awake craniotomy for brain tumor resection. Pediatric patients are prone to more risks than adults because they become easily agitated after pain sensation. Extensive preparation for the procedure is essential for pediatric patients in order to avoid a lack of cooperation. CASE PRESENTATION: Two patients, with 9-year-old presented with seizures due to a tumor in the left tempoparietal region. In order to identify language and motor-controlling areas during resection, we proposed an awake craniotomy. Because of their ages, they were prepared by a multidisciplinary team for the cooperation during the mapping procedure and tumor resection were exceptional. Postoperative cranial MRI confirmed partial resection of the lesion, whose remnant was located in the left motor area. No seizures occurred during the postoperative period, and both were discharged without any neurological disability on the fifth day after the surgery. Histology revealed a dysmyeloplastic neuroepithelial tumor (WHO grade I). CONCLUSION: Brain mapping during resection of a tumor in an awake pediatric patient is feasible and can be safely performed even in patients under 11-year-old.

SURG-07. CEREBELLAR PEDUNCULAR TUMORS IN PEDIATRIC NEUROSURGERY: FEW CITATIONS FOR BEING RARE OR FOR LACK OF AWARENESS
Felipe Hada Sanders, and Hamilton Matsushita; USP, Sao Paulo, SP, Brazil.

We present a case-series of 6 pediatric patients, with a follow-up for a minimum of 1 year, with a diagnostic, therapeutic and prognostic description. This type of disease was first mentioned by Professor Tomita in 1986, in a case-series with 4 patients, with few citations in literature, no other case series cited at the literatures, and in our oncology center of excellence it is an entity that draws attention for diverging from intrinsic tumors of the cerebellum, fourth ventricle and trunk. In this way, we created an algorithm approaching these patients and would like to present this associated to honouring the esteemed professor in neurosurgery.

SURG-08. SUPRASELLAR DERMOID CYST IN A PEDIATRIC PATIENT
Carlos Almeida Jr, Bruna Minniti Mançano, Giselle Caravina Almeida, Cândida D’Agosto Eugui, and Carlos Bezerra Cavalcante; Barretos’s Children and Young Adults Cancer Hospital, Barretos, Sao Paulo, Brazil.

BACKGROUND: Intracranial dermoid cysts (DC) are rare congenital non-neoplastic lesions that account for 0.04 – 0.6% of all intracranial tumors. They are formed by a fibrous capsule composed of epidermal and dermal derivatives (hair follicles, sebaceous and sweat glands), enclosing a viscous fluid. Intracranial DC often arise in the midline and are more common in men. CASE REPORT. A 14-year-old male patient presented with headache, partial motor seizures and behavioral changes. Neurological examination and endocrine workup revealed no abnormalities. Brain magnetic resonance imaging showed a lesion that was 4.4cm x 2.2cm x 4.4cm in size, located at suprasellar region, and extended superiorly to the left lateral ventricle and anterolaterally to the left orbitofrontal lobe, associated with hyperintense fat droplets in the right lateral ventricle. We performed a left transventricular microsurgical approach. The tumor capsule was coagulated and opened and a subtotal resection with peacemal removal of the lesion was obtained; it had gelatinous content, composed of droplets of fat and hair and keratinized scamous epithelium content. A total removal of the DC capsule was not possible due to its firm adherence to optic chiasm and to hypothalamus. Histological examination revealed dermoid cyst. CONCLUSION: Surgery is the only effective treatment, and its goal should be the radical resection of the lesion to avoid recurrence. Whenever radical resection is not possible, because of the adhesions of the cyst capsule to surrounding tissues, a subtotal resection with piecemeal removal may be a satisfactory option in such cases to avoid high morbidity.

SURG-09. REACTIVATION OF HERPES SIMPLEX VIRUS AFTER NEUROLOGIC SURGERY
Carlos Almeida Jr, Bruna Minniti Mançano, Seila Israel Prado, Giselle Caravina Almeida, Fernanda Magalhães Souza, and Lucas Dias Lourenço; Barretos’s Children and Young Adults Cancer Hospital, Barretos, Sao Paulo, Brazil.

BACKGROUND: Herpes simplex virus encephalitis (HSV) is a rare complication after neurosurgery, and its clinical picture mimics features of other common and frequent infectious complications of bacterial origin. Probably, triggering factors are manipulation and surgical stress, since most cases occur due to reactivation rather than primary infection. The main symptoms include fever and altered consciousness. DNA identification of HSV by PCR has acquired rapid measures, and potentially neurologic sequelae such as cognitive and motor. CASE REPORT. An 18-year-old male patient presented with loss of vision due to cystic craniopharyngioma. We inserted an Omaya catheter and drained the cyst. On the third day, he presented with fever, seizures, and decreased consciousness. Magnetic resonance imaging (MRI) showed high signal intensity on T2-weighted and FLAIR images in the left frontal and temporal lobe, cingulate gyrus, and corpus callosum, with mass effect. He was submitted to decompressive craniectomy and empirical antibiotic therapy. CSF and blood cultures were negative. Due to inexpressive clinical improvement after 48 hours, CSF was collected for polymerase chain reaction (PCR), and we performed a brain biopsy and started intravenous acyclovir. Histology and PCR confirmed HSV type 1 and 2. He received antiviral for two weeks and was discharged after surgical procedure. CONCLUSION: Clinical suspicion, CSF PCR, and imaging are of paramount importance for early diagnosis of HSV, which should be considered in the differential diagnosis of recent postoperative neurologic surgery in cases of unexplained postoperative fever with altered consciousness.

SURG-10. SPECTROSCOPIC MEASUREMENT OF 5-ALA-INDUCED INTRACELLULAR PROTOPORPHYRIN IX IN PEDIATRIC BRAIN TUMORS
Michael Schweke1, Sadahiro Kaneg1,2, Eric Suarez Morina1, and Walter Stummer1;1Department of Neurosurgery, University Hospital Münster, Münster, Germany, 2Department of Neurosurgery National Hospital Organization Hokkaido Medical Center, Sapporo, Hokkaido, Japan.

OBJECTIVE: 5-ALA guided resection of glioma in adults enables better delineation between tumor and normal brain, allowing improved resection and improved patients’ outcome. Recently, several reports were published regarding 5-ALA for resection of pediatric brain tumors. The aim of this study was to determine the intracellular fluorescence of the protoporphyrin IX in pediatric brain tumors by hyperspectral imaging and to compare it with visually observed intraoperative fluorescence. METHODS: 5-ALA was administered orally four hours prior to surgery. During tumor resection the fluorescence intensity was assessed, the signal to be strong, weak or absent. Subsequently, fluorescence intensity of samples was measured via spectroscopy. In addition, clinical data, imaging and laboratory data were analyzed. RESULTS: Eleven children (1–16 years) were operated. Tumor entities included: three medulloblastomas, two pilocytic astrocytomas (PA), two anaplastic ependymomas and one diffuse astrocytoma, anaplastic pilomyxoid astrocytoma and anaplastic pleomorphic xanthoastrocytoma. Strong fluorescence was visible in all anaplastic tumors and one PA; one PA demonstrated weak fluorescence. Visible fluorescence was strongly associated with intracellular fluorescence intensity and PPPX content.