Hydrogen Production Technologies
Scope: Energy is one of the most important issues for humankind. Increasing energy demand, regional limitations, and serious environmental effects of the conventional energy sources provide the urgent need for new, clean, and sustainable energy. **Advances in Hydrogen Production and Storage** emphasizes the basics of renewable energy and storage as well as the cutting edge technologies employed for these applications. The series focuses mainly on hydrogen generation, photoelectrochemical solar cells, fuel cells and flow batteries.

Submission to the series:
Please send book proposals to Mehmet Sankir at mehmetsankir@yahoo.com
Hydrogen Production Technologies

Edited by
Mehmet Sankir and
Nurdan Demirci Sankir

WILEY
Contents

Preface

Part I	Catalytic and Electrochemical Hydrogen Production
1	Hydrogen Production from Oxygenated Hydrocarbons: Review of Catalyst Development, Reaction Mechanism and Reactor Modeling
	Mohanned Mohamedali, Amr Henni and Hussameldin Ibrahim
1.1	Introduction
1.2	Catalyst Development for the Steam Reforming Process
1.2.1	Catalyst Development for the Steam Reforming of Methanol (SRM)
1.2.2	Catalyst Development for the Steam Reforming of Ethanol (SRE)
1.2.2.1	Co-Based Catalysts for SRE
1.2.2.2	Ni-Based Catalysts for SRE
1.2.2.3	Bimetallic-Based Catalysts for SRE
1.2.3	Catalyst Development for the Steam Reforming of Glycerol (SRG)
1.3	Kinetics and Reaction Mechanism for Steam Reforming of Oxygenated Hydrocarbons
1.3.1	Surface Reaction Mechanism for SRM
1.3.2	Surface Reaction Mechanism for SRE
1.3.3	Surface Reaction Mechanism for SRG
1.4	Reactor Modeling and Simulation in Steam Reforming of Oxygenated Hydrocarbons
	References

References
2 Ammonia Decomposition for Decentralized Hydrogen Production in Microchannel Reactors: Experiments and CFD Simulations

Steven Chiuta, Raymond C. Everson, Hein W.J.P. Neomagus and Dmitri G. Bessarabov

Section	Page
2.1 Introduction	78
2.2 Ammonia Decomposition for Hydrogen Production	80
2.2.1 Ammonia as a Hydrogen Carrier	80
2.2.2 Thermodynamics of Ammonia Decomposition	84
2.2.3 Reaction Mechanism and Kinetics for Ammonia Decomposition	84
2.2.3.1 Effect of Ammonia Concentration	85
2.2.3.2 Effect of Hydrogen Concentration	85
2.2.4 Current Status for Hydrogen Production Using Ammonia Decomposition	86
2.2.4.1 Microreactors for Ammonia Decomposition	87
2.3 Ammonia-Fueled Microchannel Reactors for Hydrogen Production: Experiments	89
2.3.1 Microchannel Reactor Design	89
2.3.2 Reactor Operation and Performance	91
2.3.2.1 Microchannel Reactor Operation	91
2.3.2.2 Performance and Operational Considerations	92
2.3.2.3 Performance Comparison with Other Ammonia Microreactors	94
2.4 CFD Simulation of Hydrogen Production in Ammonia-Fueled Microchannel Reactors	96
2.4.1 Model Validation	98
2.4.2 Velocity, Temperature and Concentration Distributions	98
2.4.3 Evaluation of Mass Transport Limitations	101
2.4.4 Model Limitations: Towards Multiscale Simulations	103
2.5 Summary	104
Acknowledgments	104
References	104
3 Hydrogen Production with Membrane Systems

F. Gallucci, A. Arratibel, J.A. Medrano, E. Fernandez, M.v. Sint Annaland and D.A. Pacheco Tanaka

3.1 Introduction

3.2 Pd-Based Membranes

- **3.2.1 Long-Term Stability of Ceramic Supported Thin Pd-Based Membranes**
- **3.2.2 Long-Term Stability of Metallic Supported Thin Pd-Based Membranes**

3.3 Fuel Reforming in Membrane Reactors for Hydrogen Production

- **3.3.1 Ceramic Supported Pd-Based Membrane Reactor and Comparison with Commercial Membrane**
- **3.3.2 Metallic Supported Pd-Based Membrane Reactor**

3.4 Thermodynamic and Economic Analysis of Fluidized Bed Membrane Reactors for Methane Reforming

- **3.4.1 Comparison of Membrane Reactors to Emergent Technologies**
 - **3.4.1.1 Methods and Assumptions**
 - **3.4.1.2 Comparison**
- **3.4.2 Techno-Economical Comparison of Membrane Reactors to Benchmark Reforming Plant**

3.5 Conclusions

Acknowledgments

References

4 Catalytic Hydrogen Production from Bioethanol

Peng He and Hua Song

4.1 Introduction

4.2 Production Technology Overview

- **4.2.1 Fermentative Hydrogen Production**
- **4.2.2 Photocatalytic Hydrogen Production**
- **4.2.3 Aqueous Phase Reforming**
- **4.2.4 CO₂ Dry Reforming**
- **4.2.5 Plasma Reforming**
- **4.2.6 Partial Oxidation**
- **4.2.7 Steam Reforming**

4.3 Catalyst Overview

4.4 Catalyst Optimization Strategies

4.5 Reaction Mechanism and Kinetic Studies

4.6 Computational Approaches
5 Hydrogen Generation from the Hydrolysis of Ammonia Borane Using Transition Metal Nanoparticles as Catalyst

Serdar Akbayrak and Saim Özkar

5.1 Introduction

5.2 Transition Metal Nanoparticles in Catalysis

5.3 Preparation, Stabilization and Characterization of Metal Nanoparticles

5.4 Transition Metal Nanoparticles in Hydrogen Generation from the Hydrolysis of Ammonia Borane

5.5 Durability of Catalysts in Hydrolysis of Ammonia Borane

5.6 Conclusion

References

6 Hydrogen Production by Water Electrolysis

Sergey A. Grigoriev and Vladimir N. Fateev

6.1 Historical Aspects of Water Electrolysis

6.2 Fundamentals of Electrolysis

6.2.1 Thermodynamics

6.2.2 Kinetics and Efficiencies

6.3 Modern Status of Electrolysis

6.3.1 Water Electrolysis Technologies

6.3.2 Alkaline Water Electrolysis

6.3.3 PEM Water Electrolysis

6.3.4 High Temperature Water Electrolysis

6.4 Perspectives of Hydrogen Production by Electrolysis

Acknowledgment

References

7 Electrochemical Hydrogen Production from SO₂ and Water in a SDE Electrolyzer

A.J. Krüger, J. Kerres, H.M. Krieg and D. Bessarabov

7.1 Introduction

7.2 Membrane Characterization

7.2.1 Weight Change

7.2.2 Ion Exchange Capacity (IEC)

7.2.3 TGA-MS
7.3 MEA Characterization 286
 7.3.1 MEA Manufacture 286
 7.3.2 MEA Characterization 287
7.4 Effect of Anode Impurities 293
7.5 High Temperature SO_2 Electrolysis 295
7.6 Conclusion 297
References 298

Part II Bio Hydrogen Production

8 Biomass Fast Pyrolysis for Hydrogen Production from Bio-Oil 307
 K. Bizkarra, V.L. Barrio, P.L. Arias and J.F. Cambra
 8.1 Introduction 308
8.2 Biomass Pyrolysis to Produce Bio-Oils 310
 8.2.1 Fast Pyrolysis for Bio-Oil Production 313
 8.2.2 Pyrolysis Reactions 318
 8.2.2.1 Hemicellulose Pyrolysis 318
 8.2.2.2 Cellulose Pyrolysis 319
 8.2.2.3 Lignin Pyrolysis 321
 8.2.2.4 Char Formation Process 321
 8.2.3 Influence of the Pretreatment of Raw Biomass and Pyrolysis Parameters on Bio-Oil Production 322
 8.2.4 Pyrolysis Reactors 327
 8.2.4.1 Drop Tube Reactor 327
 8.2.4.2 Bubbling Fluid Beds 327
 8.2.4.3 Circulating Fluid Beds and Transported Beds 328
 8.2.4.4 Rotating Cone 328
 8.2.4.5 Ablative Pyrolysis 329
 8.2.4.6 Vacuum Pyrolysis 329
 8.2.4.7 Screw or Auger Reactors 330
8.3 Bio–oil Reforming Processes 331
 8.3.1 Bio–oil Reforming Reactions 331
 8.3.2 Reforming Catalysts 334
 8.3.2.1 Non-Noble Metal-Based Catalysts 334
 8.3.2.2 Noble Metal-Based Catalysts 338
 8.3.2.3 Conventional Supports 339
 8.3.2.4 Non-Conventional Supports 341
 8.3.3 Reaction Systems 342
8.3.4 Reforming Process Intensifications 343
 8.3.4.1 Sorption Enhanced Steam Reforming 343
 8.3.4.2 Chemical Looping 344
 8.3.4.3 Sorption Enhanced Chemical Looping 345
8.4 Future Prospects 346
References 348

9 Production of a Clean Hydrogen-Rich Gas by the Staged
Gasification of Biomass and Plastic Waste 363
Joo-Sik Kim and Young-Kon Choi
9.1 Introduction 364
9.2 Chemistry of Gasification 365
9.3 Tar Cracking and H₂ Production 367
9.4 Staged Gasification 368
 9.4.1 Two-Stage UOS Gasification Process 368
 9.4.2 Three-Stage UOS Gasification Process 369
9.5 Experimental Results and Discussion 370
 9.5.1 Effects of Type of Feed Material on H₂ Production 370
 9.5.2 Effect of Activated Carbon on H₂ Production 371
 9.5.3 Effects of Other Reaction Parameters on H₂ Production
 9.5.3.1 Temperature 373
 9.5.3.2 ER 374
 9.5.3.3 Gasifying Agent 375
 9.5.4 Comparison of Two-Stage and Three-Stage Gasifiers 376
 9.5.5 Tar Removal Mechanism over Activated Carbon 378
 9.5.6 Deactivation of Activated Carbon and Long-Term Gasification Experiments 379
 9.5.7 Removal of Other Impurities (NH₃, H₂S, and HCl) 381
9.6 Conclusions 383
References 383

10 Enhancement of Bio-Hydrogen Production Technologies by
Sulphate-Reducing Bacteria 385
Hugo Iván Velázquez-Sánchez, Pablo Antonio López-Pérez, María Isabel Neria-González and Ricardo Aguilar-López
10.1 Introduction 386
10.2 Sulphate-Reducing Bacteria for H₂ Production 387
10.3 Mathematical Modeling of the SR Fermentation 388
10.4 Bifurcation Analysis 394
10.5 Process Control Strategies 398
10.6 Conclusions 403
Acknowledgment 403
Nomenclature 403
References 404

11 Microbial Electrolysis Cells (MECs) as Innovative Technology for Sustainable Hydrogen Production: Fundamentals and Perspective Applications 407
Abudukeremu Kadier, Mohd Sahaid Kalil, Azah Mohamed, Hassimi Abu Hasan, Peyman Abdeshahian, Tayebah Fooladi and Aidil Abdul Hamid

11.1 Introduction 408
11.2 Principles of MEC for Hydrogen Production 409
11.3 Thermodynamics of MEC 410
11.4 Factors Influencing the Performance of MECs 412
 11.4.1 Biological Factors 412
 11.4.1.1 Electrochemically Active Bacteria (EAB) in MECs 412
 11.4.1.2 Extracellular Electron Transfer in MECs 412
 11.4.1.3 Inoculation and Source of Inoculum 414
 11.4.2 Electrode Materials Used in MECs 415
 11.4.2.1 Anode Electrode Materials 415
 11.4.2.2 Cathode Electrode Materials or Catalysts 417
 11.4.3 Membrane or Separator 427
 11.4.4 Physical Factors 427
 11.4.5 Substrates Used in MECs 429
 11.4.6 MEC Operational Factors 431
 11.4.6.1 Applied Voltage 431
 11.4.6.2 Other Key Operational Factors 432
11.5 Current Application of MECs 432
 11.5.1 Hydrogen Production and Wastewater Treatment 432
 11.5.1.1 Treatment of DWW Using MECs 432
 11.5.1.2 Use of MECs for Treatment of IWW and Other Types of WW 432
 11.5.2 Application of MECs in Removal of Ammonium or Nitrogen from Urine 435
11.5.3 MECs for Valuable Products Synthesis

11.5.3.1 Methane (CH₄) 435
11.5.3.2 Acetate 437
11.5.3.3 Hydrogen Peroxide (H₂O₂) 438
11.5.3.4 Ethanol (C₂H₅OH) 438
11.5.3.5 Formic Acid (HCOOH) 439

11.6 Conclusions and Prospective Application of MECs 440

Acknowledgments 441
References 441

12 Algae to Hydrogen: Novel Energy-Efficient Co-Production of Hydrogen and Power 459

Muhammad Aziz and Ilman Nuran Zaini

12.1 Introduction 459
12.2 Algae Potential and Characteristics 461
 12.2.1 Algae Potential 461
 12.2.2 Types of Algae 461
 12.2.3 Compositions of Algae 462
12.3 Energy-Efficient Energy Harvesting Technologies 464
12.4 Pretreatment (Drying) 467
12.5 Conversion of Algae to Hydrogen-Rich Gases 470
 12.5.1 SCWG for Algae 471
 12.5.1.1 Integrated System with SCWG 471
 12.5.1.2 Analysis of the Integrated System 474
 12.5.1.3 Performance of Integrated System 477
 12.5.2 Conventional Thermal Gasification 478
 12.5.2.1 Overview of Integrated System with Conventional Thermal Gasification 479
 12.5.2.2 Case Study: Power Generation from Algae Employing Conventional Thermal Gasification 479
12.6 Conclusions 482
References 483

Part III Photo Hydrogen Production

13 Semiconductor-Based Nanomaterials for Photocatalytic Hydrogen Generation 489

Zipeng Xing, Zhenzi Li and Wei Zhou

13.1 Introduction 490
13.2 Semiconductor Oxide-Based Nanomaterials for Photocatalytic Hydrogen Generation

13.2.1 TiO$_2$-Based Nanomaterials

13.2.1.1 One-Dimensional TiO$_2$ 493
13.2.1.2 Two-Dimensional TiO$_2$ 494
13.2.1.3 Three-Dimensional TiO$_2$ 494

13.2.2 ZnO-Based Nanomaterials

13.2.2.1 One-Dimensional ZnO 500
13.2.2.2 Two-Dimensional ZnO 501
13.2.2.3 Three-Dimensional ZnO 501

13.2.3 Other Semiconductor Oxide-Based Nanomaterials

13.2.3.1 WO$_3$-Based Nanomaterials 503
13.2.3.2 Ta$_2$O$_5$-Based Nanomaterials 503
13.2.3.3 Nb$_2$O$_5$-Based Nanomaterials 504
13.2.3.4 Fe$_2$O$_3$-Based Nanomaterials 505
13.2.3.5 BiVO$_4$-Based Nanomaterials 505

13.3 Semiconductor Sulfide-Based Nanomaterials for Photocatalytic Hydrogen Generation

13.3.1 Single-Metal Sulfide Nanomaterials 506

13.3.1.1 CdS Nanomaterials 507
13.3.1.2 MoS$_2$ Nanomaterials 509

13.3.2 Bi-metal Sulfide Nanomaterials 512
13.3.3 Multi-metal Sulfide Nanomaterials 514

13.4 Metal-Free Semiconductor Nanomaterials for Photocatalytic Hydrogen Generation

13.4.1 g-C$_3$N$_4$ Nanomaterials 517

13.4.1.1 Doped g-C$_3$N$_4$ 520
13.4.1.2 g-C$_3$N$_4$ Composites 521

13.4.2 Other Metal-Free Semiconductor Nanomaterials 524

13.4.2.1 Polymer-Based Nanomaterials 524
13.4.2.2 Graphene-Based Nanomaterials 525
13.4.2.3 Triazine-Based Nanomaterials 526

13.5 Summary and Prospects

Acknowledgments 528
References 528
14 Photocatalytic Hydrogen Generation Enabled by Nanostructured TiO\textsubscript{2} Materials 545

Mengye Wang, Meidan Ye, James Iocozzia and Zhiqun Lin

14.1 Introduction 546

14.2 Photocatalytic H\textsubscript{2} Generation 547

14.2.1 Mechanism 547

14.2.2 Types of Reactions 549

14.2.2.1 Photocatalytic Reactions 549

14.2.2.2 Photoelectrocatalytic Reactions 549

14.3 Main Experimental Parameters in Photocatalytic H\textsubscript{2} Generation Reaction 549

14.3.1 The Sacrificial Agent 549

14.3.2 The pH Value 551

14.3.3 Others 551

14.4 Types of TiO\textsubscript{2} Nanostructures 551

14.4.1 Pure TiO\textsubscript{2} for H\textsubscript{2} Generation 551

14.4.1.1 Phase Effects on Photocatalytic H\textsubscript{2} Generation 551

14.4.1.2 Nanostructure Effects on Photocatalytic H\textsubscript{2} Generation 553

14.4.1.3 Black TiO\textsubscript{2} 554

14.4.2 Modified TiO\textsubscript{2} for H\textsubscript{2} Generation 556

14.4.2.1 Ion Doping 556

14.4.2.2 Noble Metal Loading 560

14.4.2.3 Dye Sensitization 562

14.4.2.4 Heterostructures 562

14.4.2.5 Graphene Modification 567

14.5 Conclusions and Outlook 568

Acknowledgments 569

References 569

15 Polymeric Carbon Nitride-Based Composites for Visible-Light-Driven Photocatalytic Hydrogen Generation 579

Pablo Martín-Ramos, Jesús Martín-Gil and Manuela Ramos Silva

15.1 Introduction 580

15.2 General Comments on g-C\textsubscript{3}N\textsubscript{4} and its Basic Properties 581

15.2.1 g-C\textsubscript{3}N\textsubscript{4} as a Semiconductor for Photocatalytic Processes for Water Splitting 582

15.2.1.1 Thermodynamics of Photocatalytic Water Splitting 583
15.2.2 Limitations of Bulk g-\(\text{C}_3\text{N}_4\) as a Photocatalyst and Steps to Overcome Them 585

15.3 Synthesis of Bulk g-\(\text{C}_3\text{N}_4\) 586

15.4 Functionalization of g-\(\text{C}_3\text{N}_4\) 588
 15.4.1 Structural Modifications of g-\(\text{C}_3\text{N}_4\) 588
 15.4.1.1 Mesoporous g-\(\text{C}_3\text{N}_4\) 588
 15.4.1.2 g-\(\text{C}_3\text{N}_4\) Nanosheets and Thin Films 589
 15.4.1.3 One-Dimensional g-\(\text{C}_3\text{N}_4\) Structures 590
 15.4.1.4 Micro/Nanospheres 590
 15.4.2 Non-metal Ion Doping of g-\(\text{C}_3\text{N}_4\) (C, B, F, S, P, I, etc.) 591
 15.4.3 Noble-Metal-Loaded g-\(\text{C}_3\text{N}_4\) 592
 15.4.4 Metal Ion-Promoted g-\(\text{C}_3\text{N}_4\) 593
 15.4.5 Heteromolecule Doped g-\(\text{C}_3\text{N}_4\) 594
 15.4.6 Dye-Sensitized g-\(\text{C}_3\text{N}_4\) 595
 15.4.7 Composites of g-\(\text{C}_3\text{N}_4\) with Transitional Metal-/Metal Oxide-Based Semiconductors 595
 15.4.8 Composites of g-\(\text{C}_3\text{N}_4\) with Carbonaceous Materials 597

15.5 Photocatalytic Hydrogen Production Using g-\(\text{C}_3\text{N}_4\) 598
 15.5.1 Evaluation Criterion of Efficiency for Photocatalytic Water Splitting 599
 15.5.2 Recent Progress on g-\(\text{C}_3\text{N}_4\)-Based Materials for H\(_2\) Production from Water Splitting 601

15.6 Conclusions 614

References 615

Index 623
Preface

Energy is one of the most important issues for humankind. Increasing energy demand, regional limitations and serious environmental effects of conventional energy sources have brought about the need for new, clean and sustainable energy. This book series has been planned as a presentation of the basics in the areas of renewable energy and storage as well as the cutting-edge new technologies for these applications. *Hydrogen Production Technologies* is the first volume of the series due to the undeniable importance of hydrogen as a clean energy carrier. Hydrogen has been gaining more attention in both transportation and stationary power applications. Fuel cell-powered cars are on the roads and the automotive industry is demanding feasible and efficient technologies to produce hydrogen. There are various ways to produce hydrogen in a safe and cost-effective manner. This volume covers the new technologies used to obtain hydrogen more efficiently via catalytic, electrochemical, bio- and photohydrogen production and as such is a valuable component in the research area of hydrogen production. The principles and methods described herein lead to reasonable mitigation of the great majority of problems associated with hydrogen production technologies. The book is edited to be useful as a text for university students at both introductory and advanced graduate levels and as a reference text for researchers in universities and industry. The chapters are written by distinguished authors who have extensive experience in their fields. Besides researchers in the engineering area, those in the energy, materials science and chemical engineering fields have been focusing on new materials and production technologies in order to generate hydrogen in an efficient and cost-effective way. Hence a multidisciplinary approach is taken to covering the topics of this book. Readers will absolutely have a chance to compare the fundamental production techniques and learn about the pros and cons of these technologies.

The book is organized into three parts. Part I shows the catalytic and electrochemical principles involved in hydrogen production technologies. It should be clear from this part that the fundamentals and modern status
of water electrolysis, ammonia decomposition, methane reforming, steam reforming of hydrocarbons and biethanol, hydrolysis of ammonia borane and also \(\text{SO}_2 \) electrolyzer are of great importance. Therefore, their various aspects are discussed such as catalyst development, thermodynamics and kinetics of reaction mechanisms, reactor and mathematical modeling, novel membrane structures, and advanced nanoparticles. Part II is devoted to biohydrogen production. This part is designed to be a good introduction to gasification and fast pyrolysis of biomass, dark fermentation, microbial electrolysis and power production from algae. It specifically presents various catalytic formulations as well as reactor designs to overcome catalytic deactivation due to coking. In addition to gasification of wood, dried sewage sludge, and plastic waste, newly developed staged gasifiers with fewer impurities are discussed. Moreover, there is a discussion of dark fermentation using sulphate-reducing bacteria from the genus *Desulfovibrio* utilized in hydrogen production. Part II also addresses hydrogen production from electrochemically active bacteria (EAB) by decomposing organic compound into hydrogen in microbial electrolysis cells (MECs). Lastly, highly efficient harvesting of energy from algae in the forms of hydrogen and enhanced process integration reducing exergy destruction are demonstrated. The last part of the book is concerned with photohydrogen generation. Recent developments in the area of semiconductor-based nanomaterials, specifically semiconductor oxides, nitrides and metal-free semiconductor-based nanomaterials for photocatalytic hydrogen production are extensively discussed. Moreover, Part III also includes pristine and doped \(\text{TiO}_2 \) nanostructures for fast hydrogen production during photocatalytic water splitting. Finally, an earth abundant catalyst for water splitting is presented as a very promising narrow band gap visible-light photocatalyst.

Since the findings range over many useful topics specifically discussed in the book, readers from diverse fields such as chemistry, physics, materials science and engineering, mechanical and chemical engineering and also energy-focused engineering programs can benefit from this comprehensive review of the hydrogen production technologies.

Series Editors
Mehmet Sankır, PhD and Nurdan Demirci Sankır, PhD
Department of Materials Science and Nanotechnology Engineering
TOBB University of Economics and Technology
Ankara, Turkey
January 1, 2017
Part I

CATALYTIC AND ELECTROCHEMICAL HYDROGEN PRODUCTION
Hydrogen Production from Oxygenated Hydrocarbons: Review of Catalyst Development, Reaction Mechanism and Reactor Modeling

Mohanned Mohamedali, Amr Henni and Hussameldin Ibrahim*

Clean Energy Technologies Research Institute (CETRi), Process Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, Canada

Abstract
Hydrogen is viewed as a clean and efficient fuel for future energy generation, with an enormous amount of research being pursued to study the various routes for the production, storage, and application of hydrogen fuel. To date, diverse approaches have been employed for the production of hydrogen-rich fuel through catalytic processes using nonrenewable materials as well as sustainable feedstocks. This review of the recent literature, is intended to provide an outlook on the catalyst development, reaction mechanism and reactor modeling studies of hydrogen production using catalytic steam reforming of oxygenated hydrocarbons with focus on methanol, ethanol, and glycerol feedstocks. Various attempts to optimize the catalyst performance, including the utilization of various noble and transition active metals as well as oxide support materials, are extensively discussed. Tremendous effort has been dedicated to develop a reaction mechanism for the reforming of oxygenated hydrocarbons, with no consensus to date on the exact reaction pathway due to the complex nature of the reforming process. This review provides insights into the fundamental understanding of the reaction mechanism and the contribution of the active metals and support on the observed kinetics. Moreover, the previous literature on the modeling and simulation of the hydrogen production process is also reviewed.

Keywords: Hydrogen production, oxygenated hydrocarbons, catalyst development, reaction kinetics, reaction mechanism, reactor modeling

*Corresponding author: hussameldin.ibrahim@uregina.ca
1.1 Introduction

The global reliance on fossil fuels as the main energy source for power generation, transportation, and as a feedstock for chemical industries is widely increasing with the discoveries of new fossil fuel reserves and the technological advancement in their production and application. According to the recent annual energy outlook released in 2014 by the International Energy Agency (IEA), fossil fuels are projected to supply more than 80% of the world total energy by 2040. However, fossil fuel-based energy generation has increased the concentration of greenhouse gas emissions to an alarming level of 400 ppm in 2013 [1]. The continued increasing levels of anthropogenic greenhouse gases in the atmosphere will ultimately cause further weather changes, resulting in severe impacts on life on earth; therefore, combating climate change requires sustainable development of green technologies and policies to mitigate climate change. In accordance with the Paris Climate Conference (COP21) of 2015, several countries have pledged to reduce their emission levels to possibly achieve a 2 °C scenario (2DS) and cut the emissions to 60% by 2100, corresponding to cumulative CO₂ emissions of 1000 GtCO₂. In order to achieve such objectives a portfolio of low-carbon technologies has to be deployed to reach the 2DS, consisting of energy efficiency, fuel switching, and renewable energies. According to the 2016 energy technology perspective report issued by the IEA, the contribution toward the reduction of the cumulative CO₂ emissions in the 2DS over the period 2013 to 2050 is estimated to be 38% from electricity efficiency, 12% for carbon capture and sequestration (CCS), and around 32% should come from the deployment of renewable energy sources. To establish clean energy for the future, the development of low carbon energy supply is urgently required. Among the possible alternatives, hydrogen has the potential to provide an ideal energy carrier that can meet the increasing global demand for energy and efficiently replace the existing fossil fuels [2, 3]. Hydrogen can provide an energy of 122 kJ/g, which is almost three times higher than hydrocarbon fuels [4], and is projected to contribute 34% of the total renewable resources in 2050 [5]. The application of hydrogen in the transportation and power generation sectors is receiving growing interest from both the technological and the policy-making aspects [6–8]. The contribution of hydrogen as a fuel for the transportation sector is mainly driven by the great achievements in fuel cell technology and the development of internal combustion engines that uses hydrogen fuel [9–12]. Fuel cell-based engines have three times higher efficiency than conventional gasoline engines due to the excellent characteristics of hydrogen as an energy...
carrier [13], in addition to the outstanding performance of hydrogen as a transportation fuel [14]. Hydrogen fuel being a gas at normal temperature and pressure, as compared to liquid hydrocarbon fuels, presents a major challenge for safe storage and transportation [15, 16]. Traditional storage schemes require energy-intensive techniques and have great safety concerns; however, the latest developments in the methods and technologies of the materials used for hydrogen storage are promising for realizing the hydrogen economy. Several review papers have described the current status and future trends in hydrogen storage materials [15, 17, 18]. Hydrogen can be produced from various energy sources using different processes, which could be categorized into renewable and nonrenewable resources. Hydrogen production from fossil fuel derivatives, such as methane and coal through gasification and thermocatalytic processes, is considered the major source for nonrenewable hydrogen production, representing more than 95% of the hydrogen produced to date [19]. In addition to being nonrenewable, hydrogen produced from fossil fuel resources contributes to global warming by releasing CO$_2$ during the production process. On the other hand, biomass is considered as a sustainable route for hydrogen production with less net CO$_2$ produced due to the fact that the CO$_2$ released from the conversion of biomass has already been naturally captured from the atmosphere. In addition to the most widely used thermochemical technology, other methods, such as the electrolysis of water, have also been used for hydrogen production, with a major drawback of being highly energy intensive and having a low efficiency of around 25% [20, 21]. Other technologies, such as the photobiological techniques, are also reported based on the photosynthetic stimulation of some types of bacteria to release hydrogen; however, the sluggish release rate of hydrogen is considered a major challenge for these technologies [22–24]. Several review papers are available that give a detailed overview of the different hydrogen generation technologies [14, 25, 26]. Dincer et al. [27] followed a comparative assessment approach to evaluate several hydrogen production schemes such as natural gas reforming, electrolysis, coal and biomass gasification. The assessment criteria included environmental, economic and social impacts of these various methods. It was concluded that for the case of Turkey, biomass gasification has the best energy efficiency, whereas electrolysis methods were found to be less attractive when the hydrogen cost is considered.

This chapter aims at reviewing the sustainable and environmentally friendly hydrogen production from the steam reforming of oxygenated hydrocarbons, with a special focus on methanol, ethanol and glycerol, to recapitulate the state of the art in this field, and summarize the research
conducted in the past five years (2012 to 2016) in order to get deep insights into the promising future for these technologies. The literature pertaining to the catalyst development for the steam reforming process, reaction mechanism, reactor modeling and simulations is thoroughly reviewed following a comparative analysis approach whenever possible.

1.2 Catalyst Development for the Steam Reforming Process

The catalyst development is considered the heart of sustainable hydrogen production through the steam reforming of oxygenated hydrocarbons. The hydrogen production rate, purity, and the selectivity of the reforming process are significantly impacted by the characteristics of the catalyst used. This crucial role of the catalyst has been highlighted by the numerous research projects conducted over the past years to understand the fundamentals of the catalytic process, and to develop highly efficient catalysts that can increase the overall conversion, improve hydrogen yield and prolong their lifetime [28, 29]. There are certain catalytic traits that need to exist for an efficient catalyst to be used in the steam reforming hydrogen production. These characteristics are prominently dependent on the nature of the oxygenated hydrocarbon feed (i.e., methanol, ethanol or glycerol) as well as the feed purity (i.e., crude versus pure) [30]. However, there are general requirements for catalytic surfaces such as: (1) the activity for C-C bond cleavage to produce CO, CO₂, and CH₄, (2) steam reforming of intermediates to produce hydrogen, and (3) the ability to produce free oxygen while preventing coke formation as well as C-O bond creation [31, 32]. Based on the contribution in the catalytic reforming reaction, there are three distinct parts of the catalyst: the active metal, the support, and the metal-support interactions. Control of the interaction between the metal and support is essential to improve the dispersion of the active sites and consequently achieve a better reaction rate and hydrogen yield. It was found that it is not only the nature of the individual support and metal sites that affects the reforming reaction but rather the interface that plays a vital role as reported recently [33]. In the following section we will thoroughly review and summarize the work that been performed over the past five years in the development of active metals and support materials for the catalytic transformation of oxygenated hydrocarbons to hydrogen. As stated earlier, this review chapter will focus on methanol, ethanol and glycerol as models for the oxygenated hydrocarbon feed; thus, accordingly, this section will be discussed in light of these three contexts.
1.2.1 Catalyst Development for the Steam Reforming of Methanol (SRM)

A very good review paper by Sá et al. [29] has been published which summarizes the development on catalysts used for the SRM process reported before 2010. In this section we will mainly present the latest work conducted after 2010 to provide the most recent perspective in order to keep up to date with the rapid progress in the research related to the catalyst development for the SRM process. The most common catalyst for SRM is Cu-based catalyst. Tremendous effort has been dedicated to understanding the catalytic reforming over Cu-based catalysts and to prepare efficient catalysts with high dispersion, high surface area, and small particle sizes. Several approaches are available to accomplish these objectives such as investigating novel synthesis methods [34], using promoters [33, 35], utilizing active support materials and the optimization of the operating conditions for higher hydrogen yield and improved catalyst stability [36, 37]. Table 1.1 summarizes the recent literature pertaining to the heterogeneous catalyst development for SRM process using Cu-based catalysts. Researchers in this field have been focusing on improving certain characteristics of the Cu-based catalysts such as the particle size, support surface area, and Cu dispersion. To achieve these objectives several approaches were used, including the optimization of the synthesis method, using support promoting materials, and the utilization of novel non-oxide supports. Cu supported on ZnO has gained considerable attention in the literature owing to its high activity in SRM [38]. The ZnO support provides the required surface area to disperse the Cu metals and prevent its agglomeration, and most importantly increase the reducibility of Cu by acting as a withdrawing agent for H atoms [37, 39]. A recent study suggested that increasing the surface area of the ZnO support by varying its calcination temperature can significantly improve the Cu dispersion, whereas the reducibility of the ZnO support could be controlled by changing the Zn precursor gel [39]. The selectivity of the Cu/ZnO catalyst prepared using highly polar precursor solution of Zn acetate as opposed to Zn nitrate was proven to be even higher than the commercial Cu/ZnO/Al₂O₃ catalyst [39], which was attributed to the increase in the catalyst reducibility. The effects of the support pretreatments, such as calcination conditions [40] and anodic oxidation [41], have also been studied in the literature. Nakajima et al. [42] have also proposed a new approach for the fabrication of Cu/ZnO catalyst by preparing ZnO nanowires on quartz substrates and then using UV laser to grow Cu on the surface of ZnO nanowires. The careful control of the ZnO nanowires length has shown an improved selectivity toward hydrogen
Catalyst	Preparation method	Steam/methanol	Temperature (°C)	Methanol conversion (%)	Remarks	Ref.
CuO/ZnO/ZrO$_2$/Al$_2$O$_3$	Sonochemically co-precipitation	1.5	200	100	Ultrasonic power-enhanced surface area, metal dispersion and reduced particle sizes	[34]
CuO–ZnO–Al$_2$O$_3$	Microwave-assisted solution combustion	1.5	240	100	Microwave irradiation and fuel/nitrate ratio resulted in higher crystallinity, surface area, smaller particle size and hence significantly improved the catalyst stability	[110]
Cu$_{0.07}$Fe$_{0.93}$Al$_2$O$_4$	Solution combustion synthesis	1.1	330	70	Solution combustion synthesis is better than the impregnation method for Cu-Metal-Al$_2$O$_4$, however, the impregnation method produced catalyst with relatively higher surface area than the combustion-based method. The catalyst deactivation was evident due to sintering, but the turnover frequency of the combustion synthesis route was higher than the impregnation method.	[111]
Cu$_{0.10}$Fe$_{0.90}$Al$_2$O$_4$						
Cu$_{0.15}$Fe$_{0.85}$Al$_2$O$_4$						
Cu$_{0.1}$Mg$_{0.9}$Al$_2$O$_4$						
Cu$_{0.1}$Mn$_{0.9}$Al$_2$O$_4$						
Cu$_{0.1}$Zn$_{0.9}$Al$_2$O$_4$						
Cu$_{0.1}$/Fe$_{0.9}$/Al$_2$O$_4$	Incipient wetness impregnation					
Ni$_x$MgyO	Modified incipient wetness method	3	600	97.4	Three different incipient wetness methods were used to prepare the catalyst, which showed different properties. The additional hydrothermal treatment of the Ni nanoparticles resulted in higher crystallinity, surface area, smaller particle size and hence significantly improved the catalyst stability	[79]
Cu$_{30}$Zn$_{60}$Al$_{10}$	Co-precipitation method	1.2	250	57	Co-precipitation method was used to prepare Cu-based catalyst with different ratios. A linear correlation was realized between the Cu specific surface, reducibility and the methanol conversion. Doping with ZrO$_2$ has improved the activity but reduced the selectivity, in contrast to CeO$_2$.	[112]
Cu$_{50}$Zn$_{50}$Al$_{10}$						
Cu$_{50}$Zn$_{30}$Zr$_{10}$Al$_{10}$						
Cu$_{50}$Zn$_{30}$Ce$_{10}$Al$_{10}$						
CuO/CeO$_2$ (5.5% Cu)	Incipient wetness method			73	Two operation regimes were used, a continuous regime where the catalyst lost its activity with time, and a discontinuous regime where the catalyst activation was performed to reactivate the catalyst by swiping off the coke using inert gas.	[63]
Catalyst	Preparation method	Steam/methanol Temperature (°C)	Methanol conversion (%)	Remarks	Ref.	
------------------------------	-----------------------------	---------------------------------	-------------------------	---	------	
Ni$_3$Mg$_2$O	Modified incipient wetness	3	600	Three different incipient wetness methods were used to prepare the catalyst, which showed different properties. The additional hydrothermal treatment of the catalysts at 100 °C for 24 h after precipitation has improved the coke resistance by preventing the agglomeration of Ni nanoparticles. The basicity of the MgO support has supplied enough oxygen to burn the carbon.	[79]	
Cu$_3$O/Zn$_3$O/Zr$_3$O/Al$_2$O$_3$	Sonochemically co-precipitation	1.5	200	Ultrasonic power-enhanced surface area, metal dispersion and reduced particle sizes	[34]	
CuO–ZnO–Al$_2$O$_3$	Microwave-assisted solution combustion synthesis	1.5	240	Microwave irradiation and fuel/nitrate ratio resulted in higher crystallinity, surface area, smaller particle size and hence significantly improved the catalyst stability	[110]	
Cu$_{0.07}$Fe$_{0.93}$Al$_2$O$_4$	Solution combustion synthesis	1.1	330	Solution combustion synthesis is better than the impregnation method for Cu-Metal-Al$_2$O$_4$, however, the impregnation method produced catalyst with relatively higher surface area than the combustion-based method. The catalyst deactivation was evident due to sintering, but the turnover frequency of the combustion synthesis route was higher than the impregnation method.	[111]	
CuO.10Fe.90Al2O4		98				
CuO.15Fe.85Al2O4		92				
CuO.1Mg0.9Al2O4		72				
CuO.1Mn0.9Al2O4		32				
CuO.1Zn0.9Al2O4		70				
CuO.1/Fe.9/Al2O4	Incipient wetness method	88				
Ni$_x$Mg$_y$O$_z$	Modified incipient wetness	3	600		[79]	
Ni$_x$Mg$_y$O$_z$	Modified incipient wetness	3	600		[79]	
Cu$_{30}$Zn$_60$Al$_10$	Co-precipitation method	1.2	250	Co-precipitation method was used to prepare Cu-based catalyst with different ratios. A linear correlation was realized between the Cu specific surface, reducibility and the methanol conversion. Doping with ZrO$_2$ has improved the activity but reduced the selectivity, in contrast to CeO$_2$.	[112]	
Cu$_{40}$Zn$_50$Al$_10$		60				
Cu$_{50}$Zn$_40$Al$_10$		66				
Cu$_{60}$Zn$_30$Al$_10$		62				
Cu$_{50}$Zn$_30$Zr$_10$Al$_10$		75				
Cu$_{50}$Zn$_30$Ce$_10$Al$_10$		60				
CuO/Co$_2$ (5.5% Cu)	Incipient wetness method	–	300	Two operation regimes were used, a continuous regime where the catalyst lost its activity with time, and a discontinuous regime where the catalyst activation was performed to reactivate the catalyst by swiping off the coke using inert gas.	[63]	

(Continued)
Catalyst	Preparation method	Steam/methanol	Temperature (°C)	Methanol conversion (%)	Remarks	Ref.
3% Ni/Cu/ZrO₂	Successive impregnation method	–	400	83	The successive impregnation of bimetallic Ni/Cu on ZrO₂ support is performed. Ni loading of 15 wt% was found to be the optimum for both the activity and selectivity due to the formation of Cu in the core and Ni on the shell side of the catalyst.	[100]
15% Ni/Cu/ZrO₂					scrincing cula C. Monoa heating was deployed to dry the impregnated samples.	
30% Ni/Cu/ZrO₂					scope of the catalyst was investi The reported method of combining impregnation with the aid of surfactant provided an excellent preparation procedure.	[72]
Ce₀.₅Zr₀.₃₃Gd₀.₁₆₆O₂	Surfactant-assisted method	2	550	40	A standard wet impregnation technique was used to prepare the catalyst. Slow heating was deployed to dry the impregnated samples.	[77]
Ce₀.₅Zr₀.₃₃Gd₀.₁₆₆O₂		6	600	67	scrincing cula C. Monoa heating was deployed to dry the impregnated samples.	
Ni₁₋ₓCuₓ/Fe₂O₄ (x = 0, 0.5, and 1.0)	Solid-state reaction technique	1.5	360	–	The effect of varying the reduction temperature between 240 to 500 °C on the properties of the catalyst was investigated	[104]
CuO/ZnO (Zinc Acetate precursor calcined at 300 °C)	Modified hydrothermal method	2.5	220	11.7	The polarity of the catalyst was controlled by changing the Zn precursor, while the surface area was tuned by changing the calcination temperature. The increased polarity of the ZnO improved the reduction ability of the CuO catalyst and hence increased the selectivity. Also, the increase in ZnO surface area (higher calcination temperature) has promoted the Cu dispersion and Cu specific surface area.	[39]