Appendix III: Listing of end points

Appendix III.1: Chapter 1 (identity, physical and chemical properties, details of uses, further information, classification and labelling)

Active substance (ISO Common Name) ‡	Spiroxamine
Function (e.g. fungicide)	fungicide
Rapporteur Member State	Federal Republic of Germany
Co-rapporteur Member State	Hungary

Identity (Annex IIA, point 1)

Chemical name (IUPAC) ‡	8-tert-butyl-1,4-dioxaspiro[4.5]decan-2-ylmethyl(ethyl)(propyl)amine (ISO)
Chemical name (CA) ‡	1,4-Dioxaspiro[4.5]decan-2-methanamine, 8-(1,1-dimethylethyl)-N-ethyl-N-propyl-
CIPAC No ‡	572
CAS No ‡	118134-30-8 (unstated stereochemistry)
EC No (EINECS or ELINCS) ‡	none
FAO Specification (including year of publication) ‡	none
Minimum purity of the active substance as manufactured ‡	950 g/kg
Identity of relevant impurities (of toxicological, ecotoxicological and/or environmental concern) in the active substance as manufactured	none
Molecular formula ‡	C_{18}H_{35}NO_{2}
Molecular mass ‡	297.5 g/mol
Structural formula ‡	![Structural formula](image)

‡ Endpoint identified by the EU-Commission as relevant for Member States when applying the Uniform Principles
Physical and chemical properties (Annex IIA, point 2)

Property	Value	
Melting point (state purity) ‡	< - 170 °C °C (> 98.6 %)	
Boiling point (state purity) ‡	Not applicable	
Temperature of decomposition (state purity)	Starts at 120 °C (99 %)	
Appearance (state purity) ‡	Faintly yellowish liquid (98.7 %)	
Vapour pressure (state temperature, state purity) ‡ Diastereomer A	4.0 x 10⁻³ Pa at 20 °C (98.6 %)	
Vapour pressure (state temperature, state purity) ‡ Diastereomer B	6 x 10⁻³ Pa at 20 °C (99.3 %)	
Henry’s law constant ‡ Diastereomer A	2.5 x 10⁻³ Pa m³ mol⁻¹	
Henry’s law constant ‡ Diastereomer B	5.0 x 10⁻³ Pa m³ mol⁻¹	
Solubility in water (state temperature, state purity and pH) ‡ Diastereomer A	>200 g/L at 20 °C (pH 3) (99 %)	
Solubility in water (state temperature, state purity and pH) ‡ Diastereomer B	470 mg/L at 20 °C (pH 5) (99 %)	
Solubility in water (state temperature, state purity and pH) ‡ Diastereomer B	14 mg/L at 20 °C (pH 9) (99 %)	
Solubility in organic solvents ‡ (state temperature, state purity)		
	n-hexane > 200 g/L at 20 °C	
	toluene > 200 g/L at 20 °C	
	dichloromethane > 200 g/L at 20 °C	
	2-propanol > 200 g/L at 20 °C	
	1-octanol > 200 g/L at 20 °C	
	PEG > 200 g/L at 20 °C	
	PEG + ethanol > 200 g/L at 20 °C	
	acetone > 200 g/L at 20 °C	
	dimethylformamide > 200 g/L at 20 °C	
	ethylacetate > 200 g/L at 20 °C	
	acetonitril > 200 g/L at 20 °C	
Surface tension ‡ (state concentration and temperature, state purity)		
	Concentration [mg/L] surface tension [mN/m]	
	2	57
	20	53
	200	47
	at 20 °C (pH 7)	
Partition co-efficient ‡ (state temperature, pH and purity)	log PŒW at 20 °C	
	diastereomer A	
	pH 5	1.28
	pH 7	2.79
	pH 9	4.88
	diastereomer B	
	pH 5	1.41
	pH 7	2.98
	pH 9	5.08

‡ Endpoint identified by the EU-Commission as relevant for Member States when applying the Uniform Principles
Property	Value
--	
Dissociation constant (state purity)‡	$pK_a = 6.9 \ (99\%) \ in \ water$
	$pK_a = 7.9 \ (99\%) \ in \ water/40\% \ 2\text{-propanol}$
UV/VIS absorption (max.) incl. ε‡	The UV-Spectrum shows no maximum of absorbance in the range of 200 nm – 400 nm for both isomers.
(state purity, pH)	ε at 290 nm: < 10
Flammability‡ (state purity)	147 °C (flash point) (97.2 %)
Explosive properties‡ (state purity)	None (A 14) (97.2 %)
Oxidising properties‡ (state purity)	None (A 21) (97.0 %)

‡ Endpoint identified by the EU-Commission as relevant for Member States when applying the Uniform Principles
1) Summary of representative uses evaluated (*name of active substance or the respective variant*) Spiproxamine 500 g/L.*

Crop and/or situation (a)	Member State or Country	Product Name	F G or I (b)	Pests or Group of pests controlled (c)	Preparation	Application	Application rate per treatment (for explanation see the text in front of this section)	PHI (days)	Remarks	
Grape	France	HOGGAR PROSPER	F	Powdery mildew (*Uncinula necator*)	EC	spraying	BBCH 13 - 85 1 - 3 10 - 12 75 - 200 150 - 400 300 35	1000	2 x 100 – 3 x 300 - 400	table 1/4 wine 35
Grape	Italy	PROSPER 500 EC	F	Powdery mildew (*Uncinula necator*)	EC	spraying	BBCH 13 - 19 79 - 85 1 - 2 2 - 3 7 10 - 14 20 30 - 40 1000 1000 1 - 2 x 200 – 3 x 300 - 400	1000	20 - 3 x 300 - 400 75 35	table grapes: 120-180 % of acute dietary reference values!

* For uses where the column "Remarks" is marked in grey further consideration is necessary. Uses should be crossed out when the notifier no longer supports this use(s).
(a) For crops, the EU and Codex classifications (both) should be taken into account; where relevant, the use situation should be described (e.g. fumigation of a structure)
(b) Outdoor or field use (F), greenhouse application (G) or indoor application (I)
(c) e.g. biting and sucking insects, soil born insects, foliar fungi, weeds
(d) e.g. wettable powder (WP), emulsifiable concentrate (EC), granule (GR)
(e) GCPF Codes - GIFAP Technical Monograph No 2, 1989
(f) All abbreviations used must be explained
(g) Method, e.g. high volume spraying, low volume spraying, spreading, dusting, drench
(h) Kind, e.g. overall, broadcast, aerial spraying, row, individual plant, between the plant- type of equipment used must be indicated
(i) g/kg or g/L. Normally the rate should be given for the active substance (according to ISO) and not for the variant in order to compare the rate for same active substances used in different variants (e.g. fluoroxypry). In certain cases, where only one variant is synthesised, it is more appropriate to give the rate for the variant (e.g. benthiavalicarb-isopropyl)
(j) Growth stage at last treatment (BBCH Monograph, Growth Stages of Plants, 1997, Blackwell, ISBN 3-8263-3152-4), including where relevant, information on season at time of application
(k) Indicate the minimum and maximum number of application possible under practical conditions of use
(l) The values should be given in g or kg whatever gives the more manageable number (e.g. 200 kg/ha instead of 200 000 g/ha or 12.5 g/ha instead of 0.0125 kg/ha
(m) PHI - minimum pre-harvest interval

2) Summary of representative uses evaluated (*name of active substance or the respective variant*)*Prothioconazole + Spiproxamine EC 460 (160 + 300) g/L

Crop and/	Member	Product Name	F G	Pests or Group of	Preparation	Application	Application rate per treatment (for explanation see the text in front of this section)	PHI** (days)

† Endpoint identified by the EU-Commission as relevant for Member States when applying the Uniform Principles
Peer review of the pesticide risk assessment of the active substance spiroxamine

Endpoints identified by the EU-Commission as relevant for Member States when applying the Uniform Principles

or situation	State or Country	or I	pests controlled	Type	Conc. of as (d-f)	method kind	growth stage & season	number min/max (k)	interval between applications (min)	g as/hL min - max (l)	water L/ha min - max (l)	g as/ha min - max (l)	Remarks	
Wheat & Triticale	EU - N EU - S	Input, Helix	F	Foliar & ear diseases	EC	160 + 300 g/L	Field crop sprayer	BBCH 30 to BBCH 69	2	14 to 21 days	50-100 (Prothio.) + 93,75-187,5 (Spirox.)	200 - 400	200 + 375	** depending on national request: either PHI in days or growth stage at the latest application
Rye	EU - N EU - S	Input, Helix	F	Foliar & ear diseases	EC	160 + 300 g/L	Field crop sprayer	BBCH 30 to BBCH 61 – 69	2	14 to 21 days	50-100 (Prothio.) + 93,75-187,5 (Spirox.)	200 - 400	200 + 375	# may vary according to national conditions
Barley & Oat	EU - N EU - S	Input, Helix	F	Foliar & ear diseases	EC	160 + 300 g/L	Field crop sprayer	BBCH 30 to BBCH 61	2	14 to 21 days	50-100 (Prothio.) + 93,75-187,5 (Spirox.)	200 - 400	200 + 375	

* For uses where the column "Remarks" is marked in grey further consideration is necessary. Uses should be crossed out when the notifier no longer supports this use(s).

(a) For crops, the EU and Codex classifications (both) should be taken into account; where relevant, the use situation should be described (e.g. fumigation of a structure)

(b) Outdoor or field use (F), greenhouse application (G) or indoor application (I)

(c) e.g. biting and sucking insects, soil born insects, foliar fungi, weeds

(d) e.g. wettable powder (WP), emulsifiable concentrate (EC), granule (GR)

(e) GCPF Codes - GIFAP Technical Monograph No 2, 1989

(f) All abbreviations used must be explained

(g) Method, e.g. high volume spraying, low volume spraying, spreading, dusting, drench

(h) Kind, e.g. overall, broadcast, aerial spraying, row, individual plant, between the plant - type of equipment used must be indicated

(i) g/kg or g/L. Normally the rate should be given for the active substance (according to ISO) and not for the variant in order to compare the rate for same active substances used in different variants (e.g. fluoroxypyr). In certain cases, where only one variant is synthesised, it is more appropriate to give the rate for the variant (e.g. benthiavalicarb-isopropyl).

(j) Growth stage at last treatment (BBCH Monograph, Growth Stages of Plants, 1997, Blackwell, ISBN 3-8263-3152-4), including where relevant, information on season at time of application

(k) Indicate the minimum and maximum number of application possible under practical conditions of use

(l) The values should be given in g or kg whatever gives the more manageable number (e.g. 200 kg/ha instead of 200 000 g/ha or 12.5 g/ha instead of 0.0125 kg/ha)

(m) PHI - minimum pre-harvest interval

† Endpoint identified by the EU-Commission as relevant for Member States when applying the Uniform Principles
Appendix III.3: Chapter 3 (impact on human and animal health)

Absorption, distribution, excretion and metabolism (toxicokinetics) (Annex IIA, point 5.1)

Rate and extent of oral absorption ‡	Rapid, about 60 % within 48 h, based on urinary excretion
Distribution ‡	Wide, highest residues in liver, thymus, adrenals (high dose: fat)
Potential for accumulation ‡	No evidence for accumulation
Rate and extent of excretion ‡	> 80 % within 48 h (urine: > 60 %, faeces: > 20 %)
Metabolism in animals ‡	Extensively metabolised (oxidation, sulphate conjugation, dealkylation)
Toxicologically relevant compounds ‡ (animals and plants)	Spiroxamine
Toxicologically relevant compounds ‡ (environment)	Spiroxamine and metabolites

Acute toxicity (Annex IIA, point 5.2)

Rat LD₅₀ oral ‡	~ 500 mg/kg bw	H302
Rat LD₅₀ dermal ‡	1068 mg/kg bw	H312
Rat LC₅₀ inhalation ‡	2 mg/L air; slight pulmonary irritation (4-h exposure, nose-only)	H332
Skin irritation ‡	Severe irritant	H315
Eye irritation ‡	Non-irritant	
Skin sensitisation ‡	Sensitiser (M&K; Buehler)	H317

Short term toxicity (Annex IIA, point 5.3)

| Target / critical effect ‡ | Oral: Liver (histological findings, wt ↑, clinical chemistry), clinical signs, effects on mucosal epithelium of oesophagus and fore-stomach; additionally in dogs: eye (cataracts), STOT RE 2 (eye) |
| Relevant oral NOAEL ‡ | 28-day, rat: 3.4 mg/kg bw/day |
| 90-day, rat: 1.9 mg/kg bw/day |
| 90-day, dog: 15.1 mg/kg bw/day |
| 1-year, dog: 2.5 mg/kg bw/day |
| 90-day, mouse: 25 mg/kg bw/day |
| Relevant dermal NOAEL ‡ | 21-day, rabbit: local effects: 0.2 mg/kg bw/day systemic effects: 5 mg/kg bw/day highest dose tested |
| Relevant inhalation NOAEL ‡ | 28-day, rat: 14.3 mg/m³ air (6-h exposure, nose only, 3.9 mg/kg bw/day) |

‡ Endpoint identified by the EU-Commission as relevant for Member States when applying the Uniform Principles
Genotoxicity ‡ (Annex IIA, point 5.4)

| No genotoxic potential |

Long term toxicity and carcinogenicity (Annex IIA, point 5.5)

| Target/critical effect ‡ | Both species: acanthosis & hyperkeratosis of oesophagus mucosa; bw ↓;
Additionally in rats: hyperplasia of urinary bladder; mortality ↑; uterus (masses, distension)
Additionally in mice: ovaries (cyst); acanthosis & hyperkeratosis of tail; acanthosis of auricles; liver (histological changes) |
| Relevant NOAEL ‡ | 2-year, rat: 4.2 mg/kg bw/day
18-month, mouse: 4.5 mg/kg bw/day |
| Carcinogenicity ‡ | No evidence for carcinogenicity |

Reproductive toxicity (Annex IIA, point 5.6)

Reproduction toxicity

| Reproduction target / critical effect ‡ | Adult: bw and feed intake ↓; APTT ↑
Reproduction and fertility: no evidence for impairment of fertility and reproduction
Offspring: bw gain ↓, delayed development |
Relevant parental NOAEL ‡	5.5 mg/kg bw/day
Relevant reproductive NOAEL ‡	21 mg/kg bw/day
Relevant offspring NOAEL ‡	5.5 mg/kg bw/day

Developmental toxicity

| Developmental target / critical effect ‡ | Maternal:
Rat: bw gain and feed intake ↓
Rat, dermal: bw gain ↓
Rabbit: bw gain and feed intake ↓, clinical signs, mortality
Developmental:
Rat: delayed ossification, wt ↓, cleft palate
Rat, dermal: wavy ribs
Rabbit: wt ↓, spontaneous skeletal malformations slightly ↑ (hydrocephalus internus + caudal displacement of ears, chicken breast) |
| Relevant maternal NOAEL ‡ | Rat: 30 mg/kg bw/day
Rat, dermal: 20 mg/kg bw/day / <5 mg/kg bw/day (systemic / local effects)
Rabbit: 20 mg/kg bw/day |
| Relevant developmental NOAEL ‡ | Rat: 30 mg/kg bw/day
Rat, dermal: 20 mg/kg bw/day
Rabbit: 20 mg/kg bw/day |

‡ Endpoint identified by the EU-Commission as relevant for Member States when applying the Uniform Principles
Neurotoxicity (Annex IIA, point 5.7)

Type of Neurotoxicity	Description
Acute neurotoxicity ‡	Signs of acute toxicity related to general toxicity of spiroxamine
	NOAEL: 10 mg/kg bw/day
Repeated neurotoxicity ‡	No evidence for neurotoxicity up to 50 mg/kg bw/day, systemic toxicity (bw ↓, clinical chemistry findings, histological findings in the oesophagus)
	NOAEL: 2.4 mg/kg bw/day
Delayed neurotoxicity ‡	No data – not required

Other toxicological studies (Annex IIA, point 5.8)

Mechanism studies ‡	Description
	Lung function was depressed upon inhalatory exposure in rats and mice; tolerated air concentrations were 450 mg/m³ or 16 mg/m³, respectively
	Spiroxamine did not inhibit aromatase or steroidogenesis in vitro

‡ Endpoint identified by the EU-Commission as relevant for Member States when applying the Uniform Principles
Studies performed on metabolites or impurities ‡

Metabolite KWG 4168 N-oxide (M03)

Rat LD$_{50}$ oral: ~707 mg/kg bw (f)
H302
No genotoxic potential in vitro
- Ames test: negative
- Hypoxanthine-Guanine Phospho Ribosyl Transferase gene mutation assay: negative
- In vitro chromosome aberration assay: negative
28-day, rat: bw ↓, liver (slight enzyme induction), hyperkeratosis in oesophagus and fore stomach, urinary bladder (hyperplasia); NOAEL: 12.9 mg/kg bw/day
90-day, rat: bw ↓, liver (clinical chemistry, enzyme induction), hyperkeratosis in oesophagus and fore stomach; NOAEL: 8.8 mg/kg bw/day
The toxicological reference values of the spiroxamine are applicable to metabolite M03.

Metabolites M20 and M21

Metabolites M20 and M21 are glucosides of metabolite M03 and the reference values of spiroxamine are also applicable to these metabolites.

Metabolite KWG 4168-aminodiol (M28)

Genotoxicity
- Bacterial reverse mutation assay: negative
- Hypoxanthine-Guanine Phospho Ribosyl Transferase gene mutation assay: negative
- In vitro micronucleus test: negative
No genotoxic potential in vitro

General toxicity
Rat: LD$_{50}$ oral: 550 < LD$_{50}$ < 2000 mg/kg bw (females only)
28-day, rat (supplementary):
There were no treatment-related effects up to the high dose tested. NOAEL: 28.4/31.4 mg/kg bw/day in males/females (highest dose tested)
Developmental toxicity, rat (supplementary):
Maternal NOAEL: 150 mg/kg bw/d based on mortality, clinical observations (gasping and rales), gaseous contents and gas filled parts of the gastrointestinal tract and individual body weight decreases at 500 mg/kg bw/day.
Developmental NOAEL: 30 mg/kg bw/d, changes in ossification at 150 mg/kg bw/day.

ADI: 0.03 mg/kg bw per day (dev tox rat, UF 1000)
based on the developmental NOAEL of 30 mg/kg bw per day (top dose) supported by the 28-d rat.

ARfD: 0.5 mg/kg bw, based on the maternal NOAEL of

‡ Endpoint identified by the EU-Commission as relevant for Member States when applying the Uniform Principles
Metabolite 4-tert-butylocyclohexanol (PTBCOL) (M13)

150 mg/kg bw per day from the dev tox study in rats, UF 300)

Genotoxicity
- Bacterial reverse mutation assay: negative
- In vitro chromosomal aberration (supplementary): negative
- (Q)SAR models: negative and read-cross: no new alerts;

Metabolite M13 is predicted as negative by all (Q)SAR models and no new alerts are identified by read-across; hence, they are not of concern for genotoxicity (EFSA PPR Panel, 2016).

No genotoxic potential in vitro

General toxicity
Rat LD₅₀ oral: 4200 mg/kg bw/day
Rabbit LD₅₀ dermal: >5000 mg/kg bw/day
28-day, rat: 2 weeks recovery
NOAEL: 50 mg/kg bw per day (m/f) based on clinical signs & transient signs of neurotoxicity at the LOAEL of 150 mg/kg bw par day. At 300 mg/kg bw/d in addition: reduced body weights & increased motor activity, changes in organ weights and clinical chemistry/haematology values.

ADI = 0.03 mg/kg bw per day (dev tox study in rat performed with M13 acetate, UF 1000) based on the NOAEL of 31.5 mg/kg bw per day based on clinical signs

ARfD = 0.1 mg/kg bw (dev tox study in rat with M13 acetate, based on clinical signs, in addition, transient signs of neurotoxicity were observed in the 28-d study in rat with M13, UF 300)

The point of departure for both the ADI and ARfD is 31.5 mg/kg bw per day from the developmental toxicity study (40 mg/kg bw per day *156 g/mol /198 g/mol to calculate the amount of M13 from the amount of M13 acetate).

Developmental toxicity, rat:
Maternal NOAEL: 40 mg/kg bw per day based on clinical signs at 160 mg/kg bw per day. Mortality, clinical signs, significantly reduced body weight gains, body weight losses and food consumption at 640 mg/kg bw per day.

Developmental NOAEL: 160 mg/kg bw per day, based on reduced foetal weights, increased incidences of dilatation of the renal pelvis and reduced ossification sites at 640 mg/kg bw per day.

Impurity AE 1344320

4-tert-butylocyclohexyl acetate (M 13 acetate)

Skin & eye irritant H315-H318

Ames test: negative

‡ Endpoint identified by the EU-Commission as relevant for Member States when applying the Uniform Principles
Peer review of the pesticide risk assessment of the active substance spiroxamine

‡ Endpoint identified by the EU-Commission as relevant for Member States when applying the Uniform Principles

Impurity AE 1344300	Rat oral: 500 < LD$_{50}$ < 710 mg/kg bw (M) 212 < LD$_{50}$ < 500 mg/kg bw (F) H302
	Rat LC$_{50}$ inhalative (4-h exp., nose only, vapour): ~13825/16303 mg/m3 air (M/F) H332
	Skin and eye corrosive H314-H318
	Skin sensitisation: non-sensitiser (M&K) Ames test: negative

| Impurity AE 2077192 | Rat LD$_{50}$ oral: > 2000 mg/kg bw Ames test: negative |

| Impurity AE 2074422 | Ames test: negative |

| Impurity AE 1344301 | Ames test: negative |

Impurity AE 2078647	Rat oral: 300 < LD$_{50}$ < 500 mg/kg bw H302
	Ames test: negative

Medical data ‡ (Annex IIA, point 5.9)

No adverse effects in manufacturing personnel reported. Clinical cases/case reports were submitted, correlation between spiroxamine and the observed symptoms is unclear, besides findings of skin and eye irritation from splashes with spiroxamine-containing products.

Summary (Annex IIA, point 5.10)

Value	Study	Safety factor	
ADI ‡	0.025 mg/kg bw/day	1 year, dog	100
AOEL sys.‡	0.015 mg/kg bw/day	1 year, dog	overall 167 100 + 60*
ARfD ‡	0.1 mg/kg bw	Acute neurotoxicity, rat	100

*correction for limited oral absorption

Dermal absorption ‡ (Annex IIIA, point 7.3)

Spiroxamine (a.s.)	100 % (default) considering physico-chemical properties (molecular mass: 297.5; log P$_{ow}$: 1.28-5.08)
Impulse EC 500, KWG 4168 500 EC	15 % for the concentrate (applied dose appr. 5 mg/cm2) and 35 % or 40 % for the dilutions (applied dose appr. 0.02 mg/cm2 or 0.008 mg/cm2, respectively) based on in vitro human skin (supported by human in vivo)

www.efsa.europa.eu/efsajournal 11 EFSA Journal 2020;19(2):6385
Exposure scenarios (Annex IIIA, point 7.2)

Operator

Scenario	Spiroxamine EC 500 (application rate 0.4 kg spiroxamine/ha)	Prothioconazole & spiroxamine EC 460 (application rate 0.375 kg spiroxamine/ha)
	German model	German model
High crop tractor mounted equipment	% of AOEL	% of AOEL
Without PPE	1517.3	841.1
With PPE (gloves – M&L + applic., protective garment, sturdy footwear, hood & visor – applic.)	73.4	44.8
High crop hand held sprayer	% of AOEL	% of AOEL
Without PPE	1800.4	
With PPE (gloves – M&L + applic., protective garment, sturdy footwear, hood & visor – applic.)	49.4	
UK POEM	Not calculated	

Workers

Scenario	Spiroxamine EC 500	Prothioconazole & spiroxamine EC 460
	% of AOEL	% of AOEL
Without PPE	2488.7	2488.7
With PPE (gloves, long sleeved shirt & long trousers)	124.7	124.7

Bystanders

Scenario	Spiroxamine EC 500	Prothioconazole & spiroxamine EC 460
	% of AOEL	% of AOEL
Bystanders	max. 22.1 %	max. 4.8 %
Residents	max. 57.5 %	max. 52.3 %
(children, after three applications using a drift value of 1.02 %)		(children, after two applications using a drift value of 0.24 %)

values agreed during the written procedure according to the agreed AOEL and re-calculation of the residential exposure considering three/two applications scenario as applicable, as reported in the final addendum.

† Endpoint identified by the EU-Commission as relevant for Member States when applying the Uniform Principles
Classification and proposed labelling with regard to toxicological data (Annex IIA, point 10)

Substance classified (Spiroxamine)	RMS/peer review proposal
	Harmonised classification - Annex VI of Regulation (EC) No 1272/2008 (CLP Regulation):
	Acute Tox. 4, H302: Harmful if swallowed
	Acute Tox. 4, H312: Harmful in contact with skin
	Skin Irr. 2, H315: Causes skin irritation
	Skin Sens. 1, H317: May cause an allergic skin reaction
	Acute Tox. 4, H332: Harmful if inhaled
	Repr. 2, H361d: Suspected of damaging the unborn child
	STOT RE 2, H373: May cause damage to organs through prolonged or repeated exposure (eye)

† Endpoint identified by the EU-Commission as relevant for Member States when applying the Uniform Principles
Appendix III.4: Chapter 4 (residues)

Metabolism in plants (Annex IIA, point 6.1 and 6.7, Annex IIIA, point 8.1 and 8.6)

Plant groups covered	Fruits (grapes, banana), cereals (wheat)
Rotational crops	Cereals (wheat), leafy crops (Swiss chard, turnip leaves) and root crops (turnip root)
Metabolism in rotational crops similar to metabolism in primary crops?	Yes
Processed commodities	Under conditions simulating industrial and household processing conditions, the main portion of spiroxamine (≥ 75%) is stable. Hydrolysis rate increases at decreasing pH. The main hydrolysis product is metabolite M28 (spiroxamine-aminodiol) for the dioxolane label and metabolite M15 (tert. butyl-cyclohexanone) for the cyclohexyl label.
Residue pattern in processed commodities similar to residue pattern in raw commodities?	Yes
Plant residue definition for monitoring	Spiroxamine (parent only)
Plant residue definition for risk assessment	**Fruits:**
Conversion factor (monitoring to risk assessment)	Grapes: pending reassessment

Summary of residues data according to the representative uses on raw agricultural commodities and feedingstuffs (Annex IIA, point 6.3, Annex IIIA, point 8.2)

Residue input data for dietary risk assessment are pending acceptable residue data for each of the individual groups A, B and C. Provisionally, a non-standard approach for estimating residue values for the different groups from measured total residues in lieu of group specific residue data has been used to refine the risk assessment (see Vol.3 B.7), however these figures are not considered agreed final assessment endpoints and are therefore not presented in this list of endpoints.

† Endpoint identified by the EU-Commission as relevant for Member States when applying the Uniform Principles
Consumer risk assessment (Annex IIA, point 6.9, Annex IIIA, point 8.8)

The consumer risk assessment is surrounded by non-standard uncertainties. A conservative assessment, considering total residues, indicated an exceedance of the ARfD for table grapes. A refinement is justified based on the different toxicological properties and TRVs set for the major residues occurring in fruit, but would require additional quantitative residue data to enable a consumer risk assessment in the conventional way for each of the groups of residues. Provisionally, a non-standard approach has been used by RMS to refine the consumer risk assessment for grapes (see Vol.3 B.7.15).
Appendix III.5: Chapter 5 (fate and behaviour in the environment)

Rate of degradation in soil (Annex IIA, point 7.1.1.2, Annex IIIA, point 9.1.1)

Laboratory studies ‡

Parent	Aerobic conditions					
Soil type	pH	t. °C / % MWHC	DT_{50}/DT_{90} (d)	DT_{50} (d) 20 °C pF2/10kPa	St. (r²)	Method of calculation
silt loam	-	8.1	20 °C / 40 % MWHC	*	-	
sandy loam	-	6.5	20 °C / 40 % MWHC	*	-	
sandy loam	-	7.1	20 °C / 48 % MWHC	*	-	
loamy sand	-	6.3	20 °C / 40 % MWHC	*	-	
loam	-	8.7	20 °C / 15 % MWHC (75 % of 1/3 bar)	*	-	
silt loam	-	7.0	20 °C / 55 % MWHC	22.1 / 73**	-	Chi²: 13.2 1st order

Geometric mean/median

* data available but not fully validated because of the lacking of information on the goodness of fit (visual and statistical assessment) of the kinetic analysis.

** calculated (DT_{90} = DT_{50}*3.32)

** Field studies (normalised data for use in modelling)‡**

Parent	Aerobic conditions								
Soil type (indicate if bare or cropped soil was used).	Location (country or USA state).	X1	pH	Depth (cm)	DT_{50} (d) actual	DT_{50}(d) actual	St. (chi2)	DT_{50} (d) Norm.	Method of calculation
Northern Europe	silt loam (bare soil)	Höfchen, DE, 30122/1	6.5	0-10	-	-	11.3	36.5*	SFO
	loam (vegetation)	Laacher Hof, DE, 30124/8	6.8	0-10	-	-	7.0	38.7*	SFO
	sandy loam (vegetation)	Thurston, UK, 30262/7	7.5	0-10	-	-	6.8	54.2*	SFO
	loamy sand (vegetation)	Pakenham, UK, 30263/5	7.3	0-10	-	-	8.9	51.7*	SFO
	silt loam (bare soil)	Höfchen, DE, 40006/8	6.4	0-10	-	-	5.2	68.6*	SFO
	sandy loam (bare soil)	Laacher Hof, DE, 40007/6	6.6	0-10	-	-	9.8	29.9*	SFO

1 X This column is reserved for any other property that is considered to have a particular impact on the degradation rate.

‡ Endpoint identified by the EU-Commission as relevant for Member States when applying the Uniform Principles

www.efsa.europa.eu/efsajournal 16 EFSA Journal 2020;19(2):6385
Peer review of the pesticide risk assessment of the active substance spiroxamine

Field studies (normalised data for use in modelling)‡

Parent	Aerobic conditions							
Soil type (indicate if bare or cropped soil was used).	Location (country or USA state).	pH	Depth (cm)	DT_{50} (d) actual	DT_{50} (d) actual	St. (chi2)	DT_{50} (d) Norm.	Method of calculation
sandy loam (bare soil)	An der Scheune, DE, 40008/4	5.9	0-10	-	-	9.1	70.0*	SFO
silt loam (bare soil)	Swisttal-Hohn, DE, 40009/2	6.7	0-10	-	-	8.2	39.4*	SFO
clay loam / silt loam (bare soil)	Albig, DE, 40010/6	7.8	0-10	-	-	7.4	36.7*	SFO
sandy loam (spring barley)	Thurston, UK, 40097/1	7.4	0-10	-	-	5.8	88.0*	SFO
sandy loam (spring barley)	Thurston, UK, 40100/5	7.4	0-10	-	-	6.5	SFO	
sandy loam (spring barley)	Pakenham, UK, 40099/8	7.0	0-10	-	-	7.8	53.1*	SFO
sandy loam (spring barley)	Pakenham, UK, 40101/3	7.0	0-10	-	-	9.2	SFO	
silt loam (spring wheat)	Touffreville, FR, 40193/5	7.2	0-10	-	-	3.6	24.2*	SFO
Southern Europe								
silty loamy sand (wine)	Laudun, FR, 50135/2	7.7	0-10	-	-	6.3	36.1+	SFO
weak loamy sand (bare soil)	Nogarole Rocca, IT, 50136/0	7.7	0-10	-	-	4.6	25.4+	SFO
silty loamy sand (bare soil)	Laudun, FR, 40198/6	7.7	0-10	-	-	18.5	72.2*	SFO
silt loam (wine)	Filetto, IT, 40424/1	7.6	0-10	-	-	14.3	46.5*	SFO
Geometric mean/median			-	-	-	45.0 / 43.0		

+ = slow-phase DFOP;
1) = calculated as replicates

Soil adsorption/desorption (Annex IIA, point 7.1.2)

Parent ‡‡	OC %	Soil pH	Kd (mL/g)	Koc (mL/g)	Kf (mL/g)	Kfo (mL/g)	l/n
loamy sand	1.8	7.0	12.78	710	0.7851		
silt loam	2.4	6.0	44.98	1874	0.8310		
silty clay	0.64	7.6	41.07	6417	0.8854		

‡ Endpoint identified by the EU-Commission as relevant for Member States when applying the Uniform Principles

www.efsa.europa.eu/efsajournal 17 EFSA Journal 2020;19(2):6385
Peer review of the pesticide risk assessment of the active substance spiroxamine

‡ Endpoints identified by the EU Commission as relevant for Member States when applying the Uniform Principles

Soil Type	pH	Water Solubility (mg/L)	K_{OC}/K_{OM} (L/kg)	DT_{50} soil (d)	
loamy sand	0.3	7.7	7.25	2415	0.8333
sand	0.7	5.9	4.61	659	0.7682
sand	0.2	6.7	8.552	[4276]*	1.063
sandy loam	0.45	5.8	14.47	[3216]*	1.055
sandy loam	1.12	6.7	15.09	[1347]*	1.025
loam	0.97	7.8	381.7	[39346]*	1.024
silty clay	1.05	5.1	892.6	[85008]*	1.013

Arithmetic mean/median

| | 2415 / 1874 | 0.8206 / 0.8324 |

| pH dependence, Yes or No | No. Due to the basic properties (amine) of spiroxamine, a significant absorption was observed in all soils. The pH range of natural soils used in agriculture is expected to have only a very minor influence because spiroxamine was also relatively stable in hydrolysis experiments conducted at different pH values. |

* U.S. soil not considered for calculating the mean (worst case approach)

Route and rate of degradation in water (Annex IIA, point 7.2.1)

Degradation in water / sediment

Parent	Distribution (e.g. max in water 75.5 % after 6 h. Max. sed. 60 % after 2 d)									
Water / sediment system	pH water phase	pH sed.	t °C	DT_{50} - DT_{90} whole sys. (d)	St. (chi^2)	DT_{50} - DT_{90} water (d)	St. (chi^2)	DT_{50} - DT_{90} sed. (d)	St. (chi^2)	Method of calculation
Hönninger Weiher	7.2	6.2	20	346**	13.4	0.6 – 2.0 *	6.6	310 – 1028 *	2.9	SFO/ Level PI
Stillwell	8.5	7.8	20	247 – 820 **	7.8	1.3 – 4.3 *	7.3	-	-	SFO/ Level PI
Anglerweiher	7.1	7.2	20	16.4 – 54.3	12.6	0.8	10.5	39.3	17.3	SFO/ Level PI
Hönninger Weiher	7.2	5.5	20	51.6 – 171	18.4	0.7	11.7	152.9	13.1	SFO/ Level PI
Geometric mean/median	66.2 / 71.6	0.8	123							

* DisT50 / DisT90 (Level PI evaluation)
** SFO kinetics derived from slow Phase DFOP

PEC surface water and PEC sediment (Annex IIIA, point 9.2.3)

Parent

Parameters used in FOCUS_{sw} step 1 and 2

Version control no. of FOCUS calculator:
Molecular weight (g/mol): 297.5
Water solubility (mg/L): 470
K_{OC}/K_{OM} (L/kg): 2415 / 1400
DT_{50} soil (d):
Peer review of the pesticide risk assessment of the active substance spiroxamine

Calculations Notifier: 30.3 days (geometric mean, field n=18)
Re-calculations RMS: with the geometric mean DT_{50} in soil of 45.0 d derived from the slow phase of DFOP kinetics observed in the 18 field dissipation studies, showed only minor changes to the original values provided by the notifier (concentrations in surface water after use of spiroxamine in cereals and vine is mainly affected by spray drift entries).

DT_{50} water/sediment system (d): -
DT_{50} water (d): 3.1 (geom. mean) of level P-II DegT50
DT_{50} sediment (d): 1000 (worst case)

Maximum occurrence observed in sediment (%): 50.7 (this represents not the worst case, which was determined to 60.1 % (dioxane labelled))

Parent

Parameters used in FOCUS_{sw} step 3 and step 4

Version control no. of FOCUS software: SWASH 2.1
Vapour pressure: 0.00972 Pa
K_{ow}/K_{oc}: 2415 / 1400
1/n: (Freundlich exponent general or for soil, susp. solids or sediment respectively) 0.82

Main routes of entry

Application rate

Crop: vines, variation 1
Crop interception: 40 /50 /60
Number of applications: 3
Interval (d): 10
Application rate(s): 3 * 300 g as/ha
Application window: BBCH 13-85

Application rate

Crop: vines, variation 2
Crop interception: 50 /50
Number of applications: 2
Interval (d): 7
Application rate(s): 2 * 200 g as/ha
Application window: BBCH 13-19

Application rate

Crop: vines, variation 3
Crop interception: 85 / 85 /85
Number of applications: 3
Interval (d): 10
Application rate(s): 3 * 400 g as/ha
Application window: BBCH 79-85

Application rate

Crop: vines, variation 4
Crop interception: 50 / 50 / 85 / 85 /85
Number of applications: 2 + 3
Interval (d): 10 / 10
Application rate(s): 2 * 200 + 3 * 400 g as/ha
Application window: BBCH 13-19 and BBCH 79-85

‡ Endpoint identified by the EU-Commission as relevant for Member States when applying the Uniform Principles
Application rate

Crop: cereals, variation 1
Crop interception: 50 /50
Number of applications: 2
Interval (d): 14
Application rate(s): 2 * 375 g as/ha
Application window: BBCH 30

Application rate

Crop: cereals, variation 2
Crop interception: 70 /70
Number of applications: 2
Interval (d): 14
Application rate(s): 2 * 375 g as/ha
Application window: BBCH 30-69 (wheat, rye triticale)
BBCH 30-61 (barley)

FOCUS STEP 1 simulations were generally not performed.

Crop	Compound	FOCUS STEP 2 PEC_{sw, max} (µg/L)	FOCUS STEP 2 PEC_{sed, max} (µg/kg)
Vines, variation 1, South Europe	Spiroxamine	1 x 300 g as/ha	3 x 300 g as/ha
		5.71	13.48
	Spiroxamine	1 x 300 g as/ha	3 x 300 g as/ha
		136.62	323.63
Vines early, variation 2, South Europe	Spiroxamine	1 x 200 g as/ha	2 x 200 g as/ha
		3.80	6.93
	Spiroxamine	1 x 200 g as/ha	2 x 200 g as/ha
		91.08	166.16
Vines late, variation 3, South Europe	Spiroxamine	1 x 400 g as/ha	3 x 400 g as/ha
		10.70	11.03
	Spiroxamine	1 x 400 g as/ha	3 x 400 g as/ha
		107.72	222.43
Vines variation 4, early + late, South Europe	Spiroxamine	1 x 400 g as/ha	5 x 400 g as/ha
		10.70	17.86
	Spiroxamine	1 x 400 g as/ha	5 x 400 g as/ha
		149.47	424.11
cereals, variation 1*, North Europe	Spiroxamine	1 x 375 g as/ha	2 x 375 g as/ha
		3.45	5.49
	Spiroxamine	1 x 375 g as/ha	2 x 375 g as/ha
		79.76	130.74
cereals, variation 1*, South Europe	Spiroxamine	1 x 375 g as/ha	2 x 375 g as/ha
		6.07	10.15
	Spiroxamine	1 x 375 g as/ha	2 x 375 g as/ha
		145	243.33

* Simulations with variation 2 are not reported since they do not represent worst case conditions
‡ Endpoint identified by the EU-Commission as relevant for Member States when applying the Uniform Principles
Peer review of the pesticide risk assessment of the active substance spiroxamine

‡ Endpoint identified by the EU-Commission as relevant for Member States when applying the Uniform Principles

www.efsa.europa.eu/efsajournal
21
EFSA Journal 2020;19(2):6385

FOCUS STEP 3	Scenario	Water body	PEC_{sw, max} (µg/L)	1 x 300 g as/ha	3 x 300 g as/ha
Vines, variation 1	D6 (Thiva)	Ditch	5.090	4.654	
R1 (Weiherbach)	Pond	0.182	0.177		
R1 (Weiherbach)	Stream	3.671	3.194		
R2 (Porto)	Stream	5.018	4.277		
R3 (Bologna)	Stream	5.275	4.515		
R4 (Roujan)	Stream	3.684	3.141		

PEC_{sed, max} (µg/kg)	1 x 300 g as/ha	3 x 300 g as/ha	
D6 (Thiva)	Ditch	5.125	15.109
R1 (Weiherbach)	Pond	0.636	1.17
R1 (Weiherbach)	Stream	0.585	1.941
R2 (Porto)	Stream	1.133	2.56
R3 (Bologna)	Stream	1.216	2.224
R4 (Roujan)	Stream	2.318	2.564

FOCUS STEP 3	Scenario	Water body	PEC_{sw, max} (µg/L)	1 x 200 g as/ha	3 x 200 g as/ha
Vines early, variation 2	D6 (Thiva)	Ditch	1.126	1.044	
R1 (Weiherbach)	Pond	0.038	0.037		
R1 (Weiherbach)	Stream	0.808	0.732		
R2 (Porto)	Stream	1.104	1.000		
R3 (Bologna)	Stream	1.161	1.056		
R4 (Roujan)	Stream	0.811	0.734		

PEC_{sed, max} (µg/kg)	1 x 200 g as/ha	2 x 200 g as/ha	
D6 (Thiva)	Ditch	1.184	2.740
R1 (Weiherbach)	Pond	0.148	0.215
R1 (Weiherbach)	Stream	0.344	0.664
R2 (Porto)	Stream	0.676	1.452
R3 (Bologna)	Stream	0.270	0.459
R4 (Roujan)	Stream	1.449	1.447

FOCUS STEP 3	Scenario	Water body	PEC_{sw, max} (µg/L)	1 x 400 g as/ha	3 x 400 g as/ha
Vines late, variation 3	D6 (Thiva)	Ditch	6.834	6.052	
R1 (Weiherbach)	Pond	0.243	0.212		
R1 (Weiherbach)	Stream	4.875	4.272		
R2 (Porto)	Stream	6.720	5.728		
R3 (Bologna)	Stream	7.066	6.026		
R4 (Roujan)	Stream	5.011	4.272		

PEC_{sed, max} (µg/kg)	1 x 400 g as/ha	3 x 400 g as/ha	
D6 (Thiva)	Ditch	10.088	17.682
R1 (Weiherbach)	Pond	0.622	1.142
R1 (Weiherbach)	Stream	0.467	1.078
R2 (Porto)	Stream	0.757	1.404
R3 (Bologna)	Stream	1.823	5.814
R4 (Roujan)	Stream	0.784	1.476
Peer review of the pesticide risk assessment of the active substance spiroxamine

FOCUS STEP 3	Vines late, variation 4 (only multiple applications)	PEC_{sw, max} (µg/L)	2 x 200 g as/ha + 3 x 400 g as/ha
D6 (Thiva)	Ditch	5.968	
R1 (Weiherbach)	Pond	0.237	
R1 (Weiherbach)	Stream	4.112	
R2 (Porto)	Stream	5.489	
R3 (Bologna)	Stream	5.799	
R4 (Roujan)	Stream	4.111	

PEC_{sed, max} (µg/kg)	2 x 200 g as/ha + 3 x 400 g as/ha
D6 (Thiva)	Ditch
R1 (Weiherbach)	Pond
R1 (Weiherbach)	Stream
R2 (Porto)	Stream
R3 (Bologna)	Stream
R4 (Roujan)	Stream

Water body	FOCUS STEP 3 spring cereals 3	FOCUS STEP 3 winter cereals 3
D1 (Lanna)	ditch 2.392 5.621 0.648 2.309 8.013 0.868	ditch 2.392 5.621 0.648 2.309 8.013 0.868
stream	2.092 1.253 0.085 1.810 1.667 0.143	stream 2.092 1.253 0.085 1.810 1.667 0.143
D3 (Vredepeel)	ditch 2.364 1.514 0.106 2.072 2.412 0.209	ditch 2.364 1.572 0.110 2.069 2.198 0.192
D4 (Skousbo)	pond 0.081 0.222 0.020 0.071 0.329 0.028	pond 0.081 0.270 0.025 0.072 0.387 0.030
stream	2.040 0.408 0.026 1.768 0.595 0.046	stream 2.013 0.283 0.018 1.766 0.512 0.039
D5 (La Jaillière)	pond 0.081 0.308 0.029 0.076 0.427 0.036	pond 0.081 0.344 0.033 0.083 0.524 0.043
stream	2.001 0.093 0.006 1.783 0.169 0.013	stream 1.903 0.059 0.004 1.793 0.162 0.011
R4 (Roujan)	stream 1.563 6.488 0.139 1.353 6.624 0.144	ditch 2.332 0.674 0.045 2.076 2.691 0.214
D1 (Lanna)	ditch 2.392 5.621 0.648 2.309 8.013 0.868	pond 0.081 0.479 0.031 0.103 1.072 0.056
stream	2.092 1.253 0.085 1.810 1.667 0.143	stream 1.557 3.422 0.033 1.346 8.947 0.103
D3 (Vredepeel)	ditch 2.364 1.572 0.110 2.069 2.198 0.192	stream 2.187 3.159 0.029 1.902 6.801 0.085
D4 (Skousbo)	pond 0.081 0.270 0.025 0.072 0.387 0.030	stream 1.557 3.947 0.097 1.726 9.594 0.250

† Endpoint identified by the EU-Commission as relevant for Member States when applying the Uniform Principles
FOCUS STEP 4
Vines, variation 1

Scenario	Water body	PEC\(_{\text{sw, max}}\) (µg/L)	5 m buffer zone	10 m buffer zone	PEC\(_{\text{sed, max}}\) (µg/kg)	
			1 x 300 g as/ha	3 x 300 g as/ha	1 x 300 g as/ha	3 x 300 g as/ha
D6 (Thiva)	Ditch	3.076	2.790	1.113	0.993	
R1 (Weih)	Pond	a)	a)	0.116	0.112	
R1 (Weih)	Stream	2.675	2.317	0.968	0.828	
R2 (Porto)	Stream	3.656	3.103	1.323	1.108	
R3 (Bolog)	Stream	3.843	3.276	1.391	1.170	
R4 (Rouj)	Stream	2.684	2.279	0.971	0.814	

Scenario	Water body	PEC\(_{\text{sw, max}}\) (µg/L)	5 m buffer zone	10 m buffer zone	PEC\(_{\text{sed, max}}\) (µg/kg)	
			1 x 300 g as/ha	3 x 300 g as/ha	1 x 300 g as/ha	3 x 300 g as/ha
D6 (Thiva)	Ditch	3.145	9.366	1.171	3.558	
R1 (Weih)	Pond	a)	a)	0.415	0.748	
R1 (Weih)	Stream	0.556	1.802	0.181	0.586	
R2 (Porto)	Stream	1.083	2.452	0.224	0.505	
R3 (Bolog)	Stream	0.888	1.809	0.323	0.611	
R4 (Rouj)	Stream	2.254	2.426	0.701	0.762	

Scenario	Water body	PEC\(_{\text{sw, max}}\) (µg/L)	1 x 300 g as/ha	3 x 300 g as/ha	1 x 300 g as/ha	3 x 300 g as/ha
D6 (Thiva)	Ditch	0.390	0.342	0.421	1.306	
R1 (Weih)	Pond	0.058	0.056	0.216	0.390	
R1 (Weih)	Stream	0.339	0.286	0.084	0.264	
R2 (Porto)	Stream	0.463	0.383	0.085	0.191	
R3 (Bolog)	Stream	0.487	0.404	0.114	0.257	
R4 (Rouj)	Stream	0.340	0.281	0.327	0.348	

a) not provided by the applicant

‡ Endpoint identified by the EU-Commission as relevant for Member States when applying the Uniform Principles
FOCUS STEP 4

Vines early, variation 2

Scenario	Water body	PEC$_{sw,\text{max}}$ (µg/L)	5 m buffer zone	10 m buffer zone	
		1 x 200 g as/ha	2 x 200 g as/ha	1 x 200 g as/ha	2 x 200 g as/ha
D6 (Thiva)	Ditch	0.671	0.611	0.236	0.207
R1 (Weiherbach)	Pond	a)	a)	0.024	0.023
R1 (Weiherbach)	Stream	0.583	0.523	0.205	0.178
R2 (Porto)	Stream	0.797	0.714	0.280	0.243
R3 (Bologna)	Stream	0.838	0.754	0.295	0.256
R4 (Roujan)	Stream	0.606	0.609	0.275	0.276

Scenario	Water body	PEC$_{sed,\text{max}}$ (µg/kg)	5 m buffer zone	10 m buffer zone	
		1 x 200 g as/ha	2 x 200 g as/ha	1 x 200 g as/ha	2 x 200 g as/ha
D6 (Thiva)	Ditch	0.715	1.648	0.257	0.588
R1 (Weiherbach)	Pond	a)	a)	0.094	0.133
R1 (Weiherbach)	Stream	0.337	0.648	0.104	0.198
R2 (Porto)	Stream	0.662	1.426	0.123	0.268
R3 (Bologna)	Stream	0.195	0.330	0.069	0.115
R4 (Roujan)	Stream	1.433	1.432	0.423	0.423

Scenario	Water body	PEC$_{sw,\text{max}}$ (µg/L)	20 m buffer zone		
		1 x 200 g as/ha	2 x 200 g as/ha	2 x 200 g as/ha	
D6 (Thiva)	Ditch	0.080	0.068	0.090	0.202
R1 (Weiherbach)	Pond	0.012	0.011	0.050	0.066
R1 (Weiherbach)	Stream	0.070	0.091	0.049	0.093
R2 (Porto)	Stream	0.095	0.080	0.046	0.101
R3 (Bologna)	Stream	0.100	0.084	0.024	0.039
R4 (Roujan)	Stream	0.144	0.144	0.198	0.198

‡ Endpoint identified by the EU-Commission as relevant for Member States when applying the Uniform Principles
FOCUS STEP 4	Vines late, variation 3	PEC\textsubscript{cw, max} (µg/L)	5 m buffer zone	10 m buffer zone	
Scenario	Water body				
D6 (Thiva)	Ditch	4.130	3.632	1.495	1.295
R1 (Weiherbach)	Pond	a) 0.155	a) 0.134		
R1 (Weiherbach)	Stream	3.550	3.098	1.285	1.107
R2 (Porto)	Stream	4.894	4.154	1.771	1.484
R3 (Bologna)	Stream	5.146	4.371	1.862	1.561
R4 (Roujan)	Stream	3.649	3.098	1.320	1.106

PEC\textsubscript{sed, max} (µg/kg)	5 m buffer zone	10 m buffer zone			
Scenario	Water body				
D6 (Thiva)	Ditch	6.227	10.982	2.343	4.190
R1 (Weiherbach)	Pond	a) 0.404	a) 0.745		
R1 (Weiherbach)	Stream	0.387	0.821	0.133	0.292
R2 (Porto)	Stream	0.644	1.352	0.194	0.302
R3 (Bologna)	Stream	1.331	5.531	0.484	1.439
R4 (Roujan)	Stream	0.571	1.319	0.207	0.513

20 m buffer zone	PEC\textsubscript{cw, max} (µg/L)	PEC\textsubscript{sed, max} (µg/kg)	5 m buffer zone	10 m buffer zone	
D6 (Thiva)	Ditch	0.523	0.447	0.850	1.544
R1 (Weiherbach)	Pond	0.078	0.067	0.209	0.389
R1 (Weiherbach)	Stream	0.450	0.382	0.054	0.109
R2 (Porto)	Stream	0.620	0.513	0.075	0.111
R3 (Bologna)	Stream	0.652	0.540	0.171	0.619
R4 (Roujan)	Stream	0.462	0.382	0.073	0.237

‡ Endpoint identified by the EU-Commission as relevant for Member States when applying the Uniform Principles
Peer review of the pesticide risk assessment of the active substance spiroxamine

‡ Endpoint identified by the EU-Commission as relevant for Member States when applying the Uniform Principles

FOCUS STEP 4, Vines early + late (only multiple applications)

Scenario	Water body	PEC_{sw, max} (µg/L)		
		5 m	10 m	20 m
D6 (Thiva)	Ditch	3.583	1.278	0.441
R1 (Weiherbach)	Pond	a) 0.150	0.074	
R1 (Weiherbach)	Stream	2.983	1.066	0.369
R2 (Porto)	Stream	3.982	1.424	0.492
R3 (Bologna)	Stream	4.207	1.504	0.520
R4 (Roujan)	Stream	2.982	1.066	0.369

PEC_{sed, max} (µg/kg)

Scenario	Water body	PEC_{sw, max} (µg/L)		
		5 m	10 m	20 m
D6 (Thiva)	Ditch	14.493	5.555	2.060
R1 (Weiherbach)	Pond	a) 1.091	0.569	
R1 (Weiherbach)	Stream	1.991	0.656	0.275
R2 (Porto)	Stream	3.271	0.712	0.268
R3 (Bologna)	Stream	4.055	1.408	0.627
R4 (Roujan)	Stream	3.914	0.951	0.402

No TWA reported for FOCUS STEP 2 simulations.

Due to big number of scenarios only worst case combinations are reported on level FOCUS STEP 4

#### Scenario	Day	PEC_{act, sw} (µg/L)	TWAC_{sw} (µg/L)	PEC_{act, sed} (µg/kg)	TWAC_{sed} (µg/kg)
FOCUS STEP 4, vines, variation 1					
Single application 1 x 300 g as/ha to vines at 5 m buffer zone					
D6 (ditch)	21	0.021	0.275	1.830	2.511
R1 (stream)	21	< 0.001	0.029	0.430	0.485
R2 (stream)	21	< 0.001	0.023	0.941	1.002
R3 (stream)	21	< 0.001	0.057	0.429	0.610
R4 (stream)	21	< 0.001	0.086	1.530	1.812

Multiple application 3 x 300 g as/ha to vines at 5 m buffer zone

Scenario	Day	PEC_{act, sw} (µg/L)	TWAC_{sw} (µg/L)	PEC_{act, sed} (µg/kg)	TWAC_{sed} (µg/kg)
D6 (ditch)	21	0.056	0.897	5.897	7.951

* EFSA Journal 2020;19(2):6385

www.efsa.europa.eu/efsajournal
Scenario Details

FOCUS STEP 4, vines, variation 1

Scenario	Day	PEC_{act, sw} (µg/L)	TWAC_{sw} (µg/L)	PEC_{act, sed} (µg/kg)	TWAC_{sed} (µg/kg)
R1 (stream)	21	< 0.001	0.063	1.236	1.462
R2 (stream)	21	< 0.001	0.044	2.260	2.287
R3 (stream)	21	0.001	0.110	1.582	1.689
R4 (stream)	21	< 0.001	0.112	1.735	2.017

Single application 1 x 300 g as/ha to vines at 10 m buffer zone

FOCUS STEP 4, vines, variation 1

Scenario	Day	PEC_{act, sw} (µg/L)	TWAC_{sw} (µg/L)	PEC_{act, sed} (µg/kg)	TWAC_{sed} (µg/kg)
D6 (ditch)	21	0.008	0.098	0.722	0.964
R1 (pond)	21	0.011	0.040	0.324	0.396
R1 (stream)	21	< 0.001	0.011	0.131	0.153
R2 (stream)	21	< 0.001	0.009	0.184	0.202
R3 (stream)	21	< 0.001	0.021	0.171	0.234
R4 (stream)	21	< 0.001	0.037	0.425	0.537

Multiple application 3 x 300 g as/ha to vines at 10 m buffer zone

FOCUS STEP 4, vines, variation 3

Scenario	Day	PEC_{act, sw} (µg/L)	TWAC_{sw} (µg/L)	PEC_{act, sed} (µg/kg)	TWAC_{sed} (µg/kg)
D6 (ditch)	21	0.021	0.316	2.309	3.062
R1 (pond)	21	0.006	0.051	0.570	0.711
R1 (stream)	21	< 0.001	0.026	0.371	0.460
R2 (stream)	21	< 0.001	0.017	0.467	0.463
R3 (stream)	21	< 0.001	0.039	0.567	0.536
R4 (stream)	21	< 0.001	0.046	0.504	0.613

Additional Details

- **PEC_{act, sw}** and **PEC_{act, sed}** represent the predicted environmental concentrations (active substance in water and sediments, respectively).
- **TWAC_{sw}** and **TWAC_{sed}** denote the toxic unit water and sediment, respectively.

† Endpoint identified by the EU-Commission as relevant for Member States when applying the Uniform Principles
Peer review of the pesticide risk assessment of the active substance spiroxamine

‡ Endpoint identified by the EU-Commission as relevant for Member States when applying the Uniform Principles

www.efsa.europa.eu/efsajournal

Water body	PEC_{sw, max} [µg/L]	PEC_{sed, max} [µg/kg]	TWA_{sw, 21 d} [µg/L]	PEC_{sw, max} [µg/L]	PEC_{sed, max} [µg/kg]	TWA_{sw, 21 d} [µg/kg]
FOCUS STEP 4, Spring cereals, 5 m buffer zone						
D1 (Lanna) ditch	0.647	1.623	0.170	0.593	2.234	0.220
stream	0.763	0.462	0.031	0.639	0.614	0.050
D3 (Vredepeel) ditch	0.640	0.417	0.029	0.537	0.659	0.054
pond	0.070	0.193	0.017	0.061	0.286	0.024
stream	0.744	0.150	0.010	0.624	0.217	0.016
D4 (Skousbo) pond	0.070	0.268	0.025	0.065	0.370	0.031
stream	0.730	0.034	0.002	0.629	0.061	0.004
D5 (La Jaillière) pond	0.070	0.300	0.029	0.071	0.455	0.037
stream	0.734	0.103	0.007	0.623	0.186	0.014
R4 (Roujan) stream	0.908	6.419	0.130	0.911	6.595	0.135
FOCUS STEP 4, Winter cereals, 5 m buffer zone						
D1 (Lanna) ditch	0.647	1.623	0.170	0.593	2.234	0.220
stream	0.763	0.462	0.031	0.639	0.614	0.050
D2 (Brimstone) ditch	0.648	1.569	0.125	0.548	2.074	0.183
stream	0.777	1.864	0.144	0.650	1.568	0.126
D3 (Vredepeel) ditch	0.640	0.433	0.030	0.536	0.602	0.050
D4 (Skousbo) pond	0.070	0.236	0.022	0.062	0.336	0.026
stream	0.734	0.103	0.007	0.623	0.186	0.014
D5 (La Jaillière) pond	0.070	0.300	0.029	0.071	0.455	0.037
stream	0.694	0.022	0.001	0.633	0.058	0.004
D6 (Thiva) ditch	0.631	0.184	0.012	0.538	0.726	0.055
R1 Wetterbach) pond	0.070	0.449	0.027	0.102	1.036	0.054
stream	0.568	3.386	0.033	1.258	8.887	0.098
R3 (Bologna) stream	0.798	3.025	0.023	1.228	6.482	0.064
R4 (Roujan) stream	0.698	3.907	0.097	1.726	9.502	0.247
Water body	1 x 375 g as/ha*	2 x 375 g as/ha*				
	PECsw, max [µg/L]	PECsed, max [µg/kg]	TWÅw, 21 d [µg/L]	PECsw, max [µg/L]	PECsed, max [µg/kg]	TWÅw, 21 d [µg/kg]
D1 (Lanna)	ditch 0.177	0.316	0.023	0.155	0.630	0.057
	stream 0.197	0.017	0.001	0.168	0.170	0.013
D3 (Vredepeel)	ditch 0.176	0.113	0.008	0.142	0.182	0.014
	stream 0.184	0.008	0.001	0.164	0.059	0.004
D4 (Skousbo)	pond 0.034	0.156	0.014	0.029	0.139	0.011
	stream 0.183	0.004	< 0.001	0.166	0.017	0.001
D5 (La Jaillière)	pond 0.034	0.135	0.012	0.030	0.180	0.014
	stream 0.183	0.004	< 0.001	0.166	0.017	0.001
R4 (Roujan)	stream 0.197	2.047	0.028	0.217	0.658	0.032

FOCUS STEP 4, Winter cereals, 20 m buffer zone

Water body	1 x 375 g as/ha*	2 x 375 g as/ha*				
	PECsw, max [µg/L]	PECsed, max [µg/kg]	TWÅw, 21 d [µg/L]	PECsw, max [µg/L]	PECsed, max [µg/kg]	TWÅw, 21 d [µg/kg]
D1 (Lanna)	ditch 0.178	0.453	0.044	0.155	0.630	0.057
	stream 0.210	0.128	0.008	0.168	0.170	0.013
D2 (Brimstone)	ditch 0.178	0.447	0.035	0.144	0.592	0.048
	stream 0.214	0.531	0.041	0.171	0.430	0.033
D3 (Vredepeel)	ditch 0.175	0.087	0.006	0.141	0.167	0.013
	pond 0.034	0.113	0.010	0.029	0.164	0.012
	stream 0.205	0.044	0.003	0.164	0.051	0.004
D5 (La Jaillière)	pond 0.034	0.141	0.013	0.033	0.222	0.017
	stream 0.221	0.063	0.004	0.167	0.016	0.001
D6 (Thiva)	ditch 0.177	0.344	0.027	0.142	0.198	0.015
	pond 0.034	0.292	0.015	0.032	0.281	0.017
R1 Weiherbach	pond 0.034	2.145	0.010	0.299	0.678	0.023
	stream 0.256	112.253	0.043	0.294	0.544	0.016
R4 (Roujan)	stream 0.289	1.122	0.013	0.412	1.095	0.059

#RMS values used soil DT50 45 days, note application dates for winter cereals used by RMS may not have been completely correct

~Applicant values used soil DT50 30.3. days

Time after max. peak [days]	PECsw [µg/L]	TWÅsw [µg/L]	PECsed [µg/kg]	TWÅsed [µg/kg]	PECsw [µg/L]	TWÅsw [µg/L]	PECsed [µg/kg]	TWÅsed [µg/kg]

spring cereals

FOCUS STEP 4 5 m buffer

Water body	PECsw [µg/L]	TWÅsw [µg/L]	PECsed [µg/kg]	TWÅsed [µg/kg]				
D1 (Lanna), ditch single application	0.647	-	1.623	-	0.763	-	0.462	-
D1 (Lanna), stream single application	0.524	0.582	1.620	1.623	0.211	0.561	0.449	0.460
2	0.427	0.527	1.612	1.622	0.008	0.316	0.431	0.454
4	0.290	0.440	1.582	1.619	0.001	0.159	0.399	0.439
7	0.175	0.349	1.514	1.610	< 0.001	0.091	0.359	0.418
14	0.073	0.231	1.348	1.570	< 0.001	0.046	0.292	0.375
21	0.033	0.170	1.215	1.514	< 0.001	0.031	0.249	0.342
28	0.020	0.134	1.112	1.455	< 0.001	0.023	0.219	0.316
42	0.011	0.094	0.967	1.346	< 0.001	0.016	0.180	0.278
50	0.008	0.081	0.907	1.291	< 0.001	0.013	0.165	0.261
100	0.002	0.043	0.694	1.059	< 0.001	0.007	0.118	0.200

† Endpoint identified by the EU-Commission as relevant for Member States when applying the Uniform Principles

www.efsa.europa.eu/efsajournal 29 EFSA Journal 2020;19(2):6385
spring cereals	FOCUS STEP 4 5 m buffer	D3 (Vredepeel), single application	Ditch	D4 (Skousbo), single application	D5 (La Jailliere) pond, single application	R4 (Roujan), stream multiple application
Initial	0	0.640 -	0.417	-	0.070 -	0.193 -
Short-term	1	0.250 0.460 0.406 0.415	0.058	0.064 0.193 0.193		
	2	0.025 0.285 0.390 0.411	0.047	0.058 0.192 0.193		
	4	0.001 0.146 0.362 0.399	0.032	0.048 0.188 0.193		
Long-term	7	0.001 0.084 0.328 0.381	0.018	0.038 0.180 0.191		
	14	< 0.001 0.042 0.269 0.344	0.005	0.024 0.160 0.186		
	21	< 0.001 0.029 0.231 0.315	0.002	0.017 0.143 0.180		
	28	< 0.001 0.022 0.204 0.292	0.001	0.013 0.130 0.172		
	42	< 0.001 0.014 0.169 0.258	< 0.001	0.009 0.111 0.159		
	50	< 0.001 0.012 0.155 0.243	< 0.001	0.008 0.103 0.152		
	100	< 0.001 0.006 0.111 0.187	< 0.001	0.004 0.077 0.122		
spring cereals	FOCUS STEP 4 5 m buffer	D4 (Skousbo), stream single application	D5 (La Jailliere) pond, single application			
Initial	0	0.744 -	0.150	-	0.070 -	0.268 -
Short-term	1	< 0.001 0.198 0.145 0.148	0.063	0.066 0.268 0.268		
	2	< 0.001 0.099 0.140 0.146	0.056	0.063 0.266 0.268		
	4	< 0.001 0.050 0.131 0.141	0.045	0.057 0.262 0.267		
Long-term	7	< 0.001 0.028 0.119 0.135	0.030	0.048 0.253 0.266		
	14	< 0.001 0.014 0.099 0.122	0.011	0.034 0.229 0.261		
	21	< 0.001 0.010 0.085 0.113	0.005	0.025 0.207 0.253		
	28	< 0.001 0.007 0.075 0.105	0.003	0.020 0.189 0.245		
	42	< 0.001 0.005 0.062 0.093	< 0.001	0.014 0.161 0.228		
	50	< 0.001 0.004 0.057 0.087	< 0.001	0.012 0.150 0.219		
	100	< 0.001 0.002 0.040 0.067	< 0.001	0.006 0.108 0.177		
spring cereals	FOCUS STEP 4 5 m buffer	D5 (La Jailliere), stream single application	R4 (Roujan), stream single application			
Initial	0	0.730 -	0.034	-	0.911 -	6.595 -
Short-term	1	< 0.001 0.046 0.033 0.033	0.891	0.855 6.583 6.590		
	2	< 0.001 0.023 0.032 0.033	0.267	0.735 6.572 6.585		
	4	< 0.001 0.012 0.031 0.032	0.002	0.381 6.551 6.574		
Long-term	7	< 0.001 0.007 0.029 0.031	0.681	0.280 6.519 6.559		
	14	< 0.001 0.003 0.025 0.029	0.001	0.202 6.499 6.527		
	21	< 0.001 0.002 0.022 0.027	< 0.001	0.135 6.433 6.509		
	28	< 0.001 0.002 0.019 0.025	< 0.001	0.105 6.372 6.488		

† Endpoint identified by the EU-Commission as relevant for Member States when applying the Uniform Principles
Term	Winter Cereals	Winter Cereals	Winter Cereals	Winter Cereals	
	FOCUS STEP 4	D4 (Skousbo)	D5 (La Jailliere), pond	**FOCUS STEP 4**	
	5 m buffer	stream,	multiple application	**5 m buffer**	
		single			
Initial	0	0.734	0.071	0.455	
	Short-term				
1	< 0.001	0.137	0.064	0.454	
2	< 0.001	0.069	0.058	0.452	
4	< 0.001	0.034	0.047	0.445	
	Long-term				
7	< 0.001	0.020	0.035	0.430	
14	< 0.001	0.010	0.015	0.390	
21	< 0.001	0.007	0.007	0.354	
28	< 0.001	0.005	0.004	0.324	
42	< 0.001	0.003	0.002	0.278	
50	< 0.001	0.003	0.001	0.259	
100	< 0.001	0.001	< 0.001	0.190	
	Time after max. peak [days]	PECsw [µg/L]	TWA_{sw} [µg/L]	PEC_{sed} [µg/kg]	TWA_{sed} [µg/kg]
Initial	0	0.647	1.623	0.763	0.462
	Short-term				
1	0.524	0.582	1.620	0.211	0.561
2	0.427	0.527	1.612	0.008	0.316
4	0.290	0.440	1.582	0.001	0.159
	Long-term				
7	0.175	0.349	1.514	< 0.001	
14	0.073	0.231	1.348	< 0.001	
21	0.033	0.170	1.215	< 0.001	
28	0.020	0.134	1.112	< 0.001	
42	0.011	0.094	0.967	< 0.001	
50	0.008	0.081	0.907	< 0.001	
100	0.004	0.043	0.701	< 0.001	
	Winter Cereals	FOCUS STEP 4	D2 (Brimstone), ditch	**FOCUS STEP 4**	
	5 m buffer	5 m buffer	single application	**5 m buffer**	
Initial	0	0.648	1.569	0.777	1.864
	Short-term				
1	0.530	0.586	1.494	0.636	1.768
2	0.437	0.533	1.428	0.524	1.681
4	0.304	0.449	1.314	0.365	

‡ Endpoint identified by the EU-Commission as relevant for Member States when applying the Uniform Principles
Peer review of the pesticide risk assessment of the active substance spiroxamine

Long-term	7	0.003	0.359	1.175	1.433	< 0.001	0.428	1.357	1.692
	14	0.006	0.182	0.995	1.304	< 0.001	0.214	1.101	1.526
	21	0.016	0.125	0.909	1.205	0.011	0.144	0.992	1.392
	28	0.014	0.098	0.842	1.134	0.013	0.111	0.918	1.296
	42	0.008	0.069	0.740	1.031	0.008	0.078	0.810	1.165
	50	0.007	0.059	0.696	0.986	0.007	0.067	0.762	1.109
	100	0.002	0.031	0.526	0.801	0.003	0.035	0.578	0.893

Winter cereals

FOCUS STEP 4

Time after max. peak [days]	PEC_{sw} [µg/L]	TWA_{sw} [µg/L]	PEC_{sed} [µg/kg]	TWA_{sed} [µg/kg]
Initial	0.640	-	0.433	-
Short-term				
1	0.264	0.473	0.422	0.431
2	0.027	0.296	0.406	0.427
4	0.001	0.151	0.377	0.415
Long-term				
7	< 0.001	0.087	0.340	0.396
14	< 0.001	0.044	0.279	0.357
21	< 0.001	0.030	0.239	0.327
28	< 0.001	0.022	0.210	0.303
42	< 0.001	0.015	0.174	0.267
50	< 0.001	0.013	0.160	0.251
100	< 0.001	0.006	0.114	0.193

Winter cereals

FOCUS STEP 4

Time after max. peak [days]	PEC_{sw} [µg/L]	TWA_{sw} [µg/L]	PEC_{sed} [µg/kg]	TWA_{sed} [µg/kg]
Initial	0.694	-	0.022	-
Short-term				
1	< 0.001	0.030	0.021	0.021
2	< 0.001	0.015	0.021	0.021
4	< 0.001	0.007	0.020	0.021

 Endpoint identified by the EU-Commission as relevant for Member States when applying the Uniform Principles
Peer review of the pesticide risk assessment of the active substance spiroxamine

Long-term | 7 | < 0.001 | 0.004 | 0.018 | 0.020 | < 0.001 | 0.035 | 0.148 | 0.167
| 14 | < 0.001 | 0.002 | 0.016 | 0.019 | < 0.001 | 0.018 | 0.124 | 0.152
| 21 | < 0.001 | 0.001 | 0.014 | 0.017 | < 0.001 | 0.012 | 0.108 | 0.140
| 28 | < 0.001 | 0.001 | 0.013 | 0.016 | < 0.001 | 0.009 | 0.097 | 0.131
| 42 | < 0.001 | < 0.001 | 0.011 | 0.015 | < 0.001 | 0.006 | 0.082 | 0.117
| 50 | < 0.001 | < 0.001 | 0.010 | 0.014 | < 0.001 | 0.005 | 0.076 | 0.111
| 100 | < 0.001 | < 0.001 | 0.007 | 0.011 | < 0.001 | 0.003 | 0.055 | 0.088

winter cereals | FOCUS STEP 4 5 m buffer | R1 (Weiherbach), pond multiple application | R1 (Weiherbach), stream multiple application
Initial | 0 | 0.102 | - | 1.036 | - | 1.258 | - | 8.887 | -
Short-term | 1 | 0.090 | 0.096 | 1.034 | 1.035 | < 0.001 | 0.667 | 8.828 | 8.868
| 2 | 0.077 | 0.091 | 1.031 | 1.035 | < 0.001 | 0.334 | 8.770 | 8.842
| 4 | 0.056 | 0.080 | 1.019 | 1.034 | 0.004 | 0.167 | 8.663 | 8.787
Long-term | 7 | 0.035 | 0.066 | 0.993 | 1.030 | < 0.001 | 0.163 | 8.525 | 8.710
| 14 | 0.014 | 0.063 | 0.925 | 1.015 | 0.038 | 0.125 | 8.263 | 8.556
| 21 | 0.007 | 0.054 | 0.872 | 0.992 | < 0.001 | 0.098 | 8.057 | 8.428
| 28 | 0.026 | 0.052 | 0.826 | 0.985 | < 0.001 | 0.078 | 8.024 | 8.345
| 42 | 0.004 | 0.044 | 0.776 | 0.980 | < 0.001 | 0.062 | 8.009 | 8.201
| 50 | 0.003 | 0.040 | 0.742 | 0.966 | < 0.001 | 0.054 | 7.818 | 8.157
| 100 | 0.005 | 0.025 | 0.697 | 0.865 | < 0.001 | 0.031 | 7.746 | 7.935

winter cereals | FOCUS STEP 4 5 m buffer | R3 (Bologna), stream multiple application | R4 (Roujan), stream multiple application
Initial | 0 | 1.228 | - | 6.482 | - | 1.726 | - | 9.502 | -
Short-term | 1 | 0.233 | 1.040 | 6.409 | 6.464 | 1.632 | 1.567 | 9.320 | 9.446
| 2 | 0.004 | 0.549 | 6.333 | 6.433 | 0.490 | 1.366 | 9.148 | 9.372
| 4 | 0.003 | 0.276 | 6.199 | 6.364 | 0.003 | 0.707 | 8.851 | 9.248
Long-term | 7 | 0.002 | 0.159 | 6.034 | 6.268 | 1.226 | 0.543 | 8.496 | 9.071
| 14 | 0.001 | 0.096 | 5.753 | 6.160 | 0.002 | 0.370 | 7.919 | 8.906
| 21 | < 0.001 | 0.064 | 5.557 | 6.112 | 0.001 | 0.247 | 7.541 | 8.635
| 28 | < 0.001 | 0.066 | 6.035 | 6.058 | < 0.001 | 0.189 | 7.264 | 8.392
| 42 | < 0.001 | 0.056 | 6.088 | 6.000 | < 0.001 | 0.126 | 6.854 | 8.007
| 50 | < 0.001 | 0.052 | 5.859 | 5.997 | < 0.001 | 0.106 | 6.663 | 7.832
| 100 | < 0.001 | 0.028 | 5.224 | 5.735 | < 0.001 | 0.054 | 6.380 | 7.097

 Endpoint identified by the EU-Commission as relevant for Member States when applying the Uniform Principles
Appendix III.6: Chapter 6 (effects on non-target species)

Toxicity data for aquatic species (most sensitive species of each group) (Annex IIA, point 8.2, Annex IIIA, point 10.2)

Group	Test substance	Time-scale (Test type)	Endpoint	Toxicity¹ (mg/L)
Laboratory tests ‡				
Fish	Danio rerio	230 d (flow-through)	FLC, Mortality F1-ELS, NOEC/EC₁₀	0.002 nom
	Danio rerio	160 d (with sediment, static conditions – pulsed exposure) 2 pulses, 14 d interval)	FLC, biomarker vitellogenin NOEC	0.0158 mm*
	Oncorhynchus mykiss	93 d (flow-through)	ELS, EC₀	0.014 based on nom NOEC values

¹ indicate whether based on nominal (nom) or mean measured concentrations (mm). In the case of preparations indicate whether endpoints are presented as units of preparation or as mean measured initial (mm).
² nominal = measured initial concentration
* Endpoints given are based on mean measured initial concentration. Due to study design, actual exposure might be much lower. The endpoints of the study are not acceptable to be used on the risk assessment. They are listed as additional information only.

Toxicity/exposure ratios for the most sensitive aquatic organisms (Annex IIIA, point 10.2)

FOCUS Step 2

1) Spiroxamine EC 500:
European use pattern: Vines, grapes, 1-3 x 300 g as/ha, BBCH 13-85, Specific countries use pattern: Grapes, early, 1-2 x 200 g as/ha, BBCH 13-19, and Grapes late, BBCH 79-85, 2-3 x 300-400 g as/ha. Maximum PECₜₐₘₚₚₚportion

FOCUS Step 2

2) Prothioconazole & Spiroxamine EC 460:
Cereals, 2 x 200 g Prothioconazole/ha and 375 g Spiroxamine/ha, BBCH 30-69
Maximum PECₜₐₘₚₚₚportion

1 indicate whether Northern or Southern
2 include critical groups which fail at Step 1.
3 indicate whether maximum or twa values have been used.

† Endpoint identified by the EU-Commission as relevant for Member States when applying the Uniform Principles

www.efsa.europa.eu/efsajournal 34 EFSA Journal 2020;19(2):6385
If the Annex VI Trigger value has been adjusted during the risk assessment of the active substance, it should appear in this column. E.g. if it is agreed during the risk assessment of mesocosm, that a trigger value of 5 is required, it should appear as a minimum requirement to MS in relation to product approval.

Refined aquatic risk assessment using higher tier FOCUS modelling.

FOCUS Step 3

1) Spiroxamine EC 500:
 European use pattern: Vines, grapes, 1-3 x 300 g as/ha, BBCH 13-85; Specific countries use pattern:
 Grapes, early, 1-2 x 200 g as/ha, BBCH 13-19, and Grapes late, BBCH 79-85, 2-3 x 300-400 g as/ha.

 Maximum PECsw values used

Scenario1,2,3	PECsw,max4µg as/L	Fish prolonged	Annex VI trigger5
	Danio rerio	Ec10 = 2.0 µg as/L	

 European use pattern

 | | | | |
 | D6 /ditch | 5.09 | 0.4 | 10 |
 | R1 /pond | 0.182 | 11 | 10 |
 | R1 /stream | 3.671 | 0.5 | 10 |
 | R2 /stream | 5.018 | 0.4 | 10 |
 | R3 /stream | 5.275 | 0.4 | 10 |
 | R4 /stream | 3.684 | 0.5 | 10 |

 Specific countries use pattern

 | | | | |
 | D6 /ditch | 6.834 | 0.3 | 10 |
 | R1 /pond | 0.243 | 8.2 | 10 |
 | R1 /stream | 4.875 | 0.4 | 10 |
 | R2 /stream | 6.72 | 0.3 | 10 |
 | R3 /stream | 7.066 | 0.3 | 10 |
 | R4 /stream | 5.011 | 0.4 | 10 |

2) Prothioconazole & Spiroxamine EC 460:
 Cereals, 2 x 200 g Prothioconazole/ha and 375 g Spiroxamine/ha, BBCH 30-69

Scenario1,2,3	PECsw,max4µg as/L	Fish prolonged	Annex VI trigger5
	Danio rerio	Ec10 = 2.0 µg as/L	

 | | | | |
 | D1 /ditch | 2.392 | 0.8 | 10 |
 | D1 /stream | 2.092 | 1.0 | 10 |
 | D2 /ditch | 2.395 | 0.8 | 10 |
 | D2 /stream | 2.131 | 0.9 | 10 |
 | D3 /ditch | 2.355 | 0.8 | 10 |

† Endpoint identified by the EU-Commission as relevant for Member States when applying the Uniform Principles
Peer review of the pesticide risk assessment of the active substance spiroxamine

† Endpoints identified by the EU-Commission as relevant for Member States when applying the Uniform Principles

www.efsa.europa.eu/efsajournal 36 EFSA Journal 2020;19(2):6385

Scenario	Water body type	Test organism	Toxicity endpoint (mg/L)	Buffer zone distance	PEC_{sw}^4 max (µg/L)	TER	Annex VI trigger^5
European use pattern							
D4 /pond	0.081	24.6	10				
D4 /stream	2.045	1.0	10				
D5 /pond	0.081	24.6	10				
D5 /stream	2.206	0.9	10				
D6 /ditch	2.382	0.8	10				
R1 /pond	0.115	17.4	10				
R1 /stream	1.554	1.3	10				
R3 /stream	2.187*	0.9	10				
R4 /stream	1.557*	1.3	10				

1 drainage (D1 - D6) and run-off (R1 - R4)
2 ditch/stream/pond
3 include critical groups which fail at Step 2.
4 indicate whether PEC_{sw}, or PEC_{sed} and whether maximum or twa values used
5 If the Annex VI Trigger value has been adjusted during the risk assessment of the active substance, it should appear in this column. E.g. if it is agreed during the risk assessment of mesocosm, that a Trigger value of 5 is required, it should appear as a minimum requirement to MS in relation to product approval.
* Due to only minor effects of recalculation of DT_{50} on the PEC values in single applications, PEC values for multiple application were not recalculation and therefore still based on the notifier’s DT_{50}

FOCUS Step 4

1) Spiroxamine EC 500:
European use pattern: Vines, grapes, 1-3 x 300 g as/ha, BBCH 13-85,
Specific countries use pattern: Grapes, early, 1-2 x 200 g as/ha, BBCH 13-19, and Grapes late, BBCH 79-85, 2-3 x 300-400 g as/ha.
Maximum PEC_{sw} values used (related to the EC_{10} of 2.0 µg as/L)

Scenario	Water body type	Test organism	Toxicity endpoint (mg/L)	Buffer zone distance	PEC_{sw}^4 max (µg/L)	TER	Annex VI trigger^5
European use pattern							
D6	ditch	Fish	Chronic	0.002	20 m	0.390	5.1
R1	pond	Fish	Chronic	0.002	20 m	0.058	34.5
R1	stream	Fish	Chronic	0.002	20 m	0.339	5.9
R2	stream	Fish	Chronic	0.002	20 m	0.463	4.3
R3	stream	Fish	Chronic	0.002	20 m	0.487	4.1
R4	stream	Fish	Chronic	0.002	20 m	0.340	5.9

Scenario	Water body type	Test organism	Toxicity endpoint (mg/L)	Buffer zone distance	PEC_{sw}^4 max (µg/L)	TER	Annex VI trigger^5
Specific countries use pattern							
D6	ditch	Fish	Chronic	0.002	20 m	0.523	3.8
R1	pond	Fish	Chronic	0.002	20 m	0.078	26
R1	stream	Fish	Chronic	0.002	20 m	0.450	4.4

^ Endpoint identified by the EU-Commission as relevant for Member States when applying the Uniform Principles
Peer review of the pesticide risk assessment of the active substance spiroxamine

‡ Endpoints identified by the EU-Commission as relevant for Member States when applying the Uniform Principles.

www.efsa.europa.eu/efsajournal

EFSA Journal 2020;19(2):6385

Scenario	Water body type	Test organism	Time scale	Toxicity endpoint (mg/L)	Buffer zone distance (m)	PEC_{sw} max (µg/L)	TER	Annex VI trigger

Spring cereals

Scenario	Water body type	Test organism	Time scale	Toxicity endpoint (mg/L)	Buffer zone distance (m)	PEC_{sw} max (µg/L)	TER	Annex VI trigger
D1	ditch	Fish	Chronic	0.002	20 m	0.177	11.3	10
D1	stream	Fish	Chronic	0.002	20 m	0.197	10.2	10
D3	ditch	Fish	Chronic	0.002	20 m	0.176	11.4	10
D4	pond	Fish	Chronic	0.002	20 m	0.034	58.8	10
D4	stream	Fish	Chronic	0.002	20 m	0.184	10.9	10
D5	pond	Fish	Chronic	0.002	20 m	0.034	58.8	10
D5	stream	Fish	Chronic	0.002	20 m	0.183	10.9	10
R4	stream	Fish	Chronic	0.002	20 m	0.217	9.2	10

Winter cereals

Scenario	Water body type	Test organism	Time scale	Toxicity endpoint (mg/L)	Buffer zone distance (m)	PEC_{sw} max (µg/L)	TER	Annex VI trigger
D1	ditch	Fish	Chronic	0.002	20 m	0.178	11.2	10
D1	stream	Fish	Chronic	0.002	20 m	0.21	9.5	10
D2	ditch	Fish	Chronic	0.002	20 m	0.178	11.2	10
D2	stream	Fish	Chronic	0.002	20 m	0.214	9.3	10
D3	ditch	Fish	Chronic	0.002	20 m	0.175	11.4	10
D4	pond	Fish	Chronic	0.002	20 m	0.034	58.8	10
D4	stream	Fish	Chronic	0.002	20 m	0.205	9.7	10
D5	pond	Fish	Chronic	0.002	20 m	0.034	58.8	10
D5	stream	Fish	Chronic	0.002	20 m	0.221	9.0	10
D6	ditch	Fish	Chronic	0.002	20 m	0.177	11.3	10
R1	pond	Fish	Chronic	0.002	20 m	0.034	58.8	10
R1	stream	Fish	Chronic	0.002	20 m	0.299*	6.7	10
R3	stream	Fish	Chronic	0.002	20 m	0.294*	6.8	10
R4	stream	Fish	Chronic	0.002	20 m	0.412*	4.9	10

1 drainage (D1-D6) and run-off (R1-R4)
2 ditch/stream/pond
3 include critical groups which fail at Step 3.
4 indicate whether PEC_{sw}, or PEC_{sed} and whether maximum or twa values used
5 If the Annex VI Trigger value has been adjusted during the risk assessment of the active substance, it should appear in this column. E.g. if it is agreed during the risk assessment of mesocosm, that a Trigger value of 5 is required, it should appear as a minimum requirement to MS in relation to product approval.

† Endpoint identified by the EU-Commission as relevant for Member States when applying the Uniform Principles.
* Due to only minor effects of recalculation of DT_{50} on the PEC values in single applications, PEC values for multiple application were not recalculation and therefore still based on the notifier’s DT_{50}

Classification and proposed labelling with regard to ecotoxicological data (Annex IIA, point 10 and Annex IIIA, point 12.3)

Active substance	RMS/peer review proposal
Spiroxamine: Acute Category 1, Chronic Category 1	environment, GSH 09

Preparation	RMS/peer review proposal
Spiroxamine EC 500: Acute Category 1, Chronic Category 1 Label: environment, GSH 09	
Prothioconazole & Spiroxamine EC 460: Acute Category 1, Chronic Category 1 Label: environment, GSH 09	