Trends and determinants of diarrhea among under-five children in Ethiopia: Cross-sectional study design: Multivariate decomposition and multilevel analysis based on Bayesian approach evidenced by EDHS 2000-2016 data.

AUTHORS
Yilkal Negesse, BSc, MPH
Lecturer of Biostatistics, Department of Public Health, College of Health Science Mizan-Tepi University
Address: P.O. Box 260, Mizan-Teferi, Ethiopia
Email: negeseyilkal@gmail.com

Asefa Adimasu, BSc, MPH
Lecturer of Biostatistics, Department of Epidemiology and Biostatistics, institute of public health, College of Medicine and Health Science University of Gonder.
Address: P.O. Box 196, Gonder, Ethiopia
Email: adimasuasefa@gmail.com

Ayenew Negesse, BSc, MPH
Lecturer of Nutrition, Department of Human Nutrition and Food Science, College of Medicine and Health Science Debre Markos University
Address: P.O. Box 269, Debre Markos, Ethiopia
Email: ayenewnegesse@gmail.com

Tadesse Awoke, BSc, MSc, PhD, Associate Professor
Associate professor of Biostatistics and Public Health, Department of Epidemiology and Biostatistics, institute of public health, College of Medicine and Health Science University of Gonder
Address: P.O. Box 196, Gonder, Ethiopia
Email: tawoke7@gmail.com
Trends and determinants of diarrhea among under-five children in Ethiopia: cross-sectional study design: Multivariate decomposition and multilevel analysis based on Bayesian approach evidenced by EDHS 2000-2016 data.

Yilkal Negesse*, Asefa Adimasu2, Ayenew Negesse3, Tadesse Awoke2

1 Department of Public Health, College of Health Science, Mizan-Teferi, Ethiopia
2 Department of Epidemiology and Biostatistics, institute of public health, College of Medicine and Health Science, Gondar, Ethiopia
3 Department of Human Nutrition and Food Science, College of Medicine and Health Science Debre Markos, Ethiopia

Abstract

Background: Despite significant progress in the reduction of under-five child deaths over the last decades in Ethiopia, still diarrhea remains the second cause of morbidity and mortality among under five children next to pneumonia.

Objective: To show trends and determinants of diarrhea among under five children in Ethiopia based on the four Ethiopian Demographic and health surveys data (2000-2016).

Methods: Community-based cross-sectional study design was used. A total of 10753 in 2000, 10039 in 2005, 10946 in 2011 and 10337 in 2016 under five age children were involved. Multivariate decomposition and multilevel analysis based on Bayesian approach was performed.

Results: Ninety seven percent of the change in diarrhea prevalence over time was attributable to difference in behavior. Being twin (AOR=1.3; 95% CrI 1.1-1.5), big weight (AOR=1.63; 95% CrI 1.62–2.02), not vaccinated for rotavirus (AOR= 1.44; 95% CrI 1.12–1.9) and for measles (AOR= 1.2; 95% CrI 1.1–1.33), poor wealth status (AOR 2.6; 95% CrI 1.7–4.06), having more than three under-five children(AOR 1.3; 95% CrI 1.1–1.61), member of health insurance(AOR 2.2; 95% CrI 1.3–3.8) and long distance from the health facility (AOR 2.7; 95% CrI 2.2–3.5) were more likely to experience diarrhea.

Conclusion: The prevalence of diarrhea was significantly declined over the last sixteen years and the decline was due to difference in coefficients between the surveys. Being twin, weight of child at birth, vaccinated for measles and rotavirus, number of under-five children, wealth status, distance to health facility, health insurance and child waste disposal method were significantly associated with diarrhea among under five children in Ethiopia. Therefore Ethiopian government should primarily focus on the strengthening and scaling up of behavioral change packages to prevent diarrheal disease.

Key words: Trends of diarrhea, decomposition analysis, Bayesian, EDHS.
Introduction

Background

According to World Health Organization (WHO) diarrhea is defined as passing loose or watery stool for three or more times during a 24-hour’s period\(^1\). It is classified in to different categories based on different ways, but commonly classified as acute and persistent diarrhea\(^2-4\). Acute diarrhea is caused by an infection and usually begins within 12 hours to 4 days after exposure and resolves within three to seven days; whereas Persistent diarrhea is a diarrhea with or without blood that begins acutely and lasts for \geq 14 days\(^4-5\). Despite significant worldwide progress in reduction of child death by diarrhea over time, still diarrhea remains the major cause of morbidity and mortality of child. Globally, it accounts for one-fourth of all childhood deaths annually and in Africa, is the third leading cause of mortality and were responsible for an estimated 30,000,000 cases of diarrhea and 333,000 death\(^4-6-9\). Different studies showed that, inadequate and unsafe water, lack of sanitation and poor hygiene practices are a complex issue for different diseases and accountable for the occurrence of diarrheal diseases\(^10-13\). Approximately 1.5 to 2.2 million people dies each year by diarrhea linked to poor sanitation, unsafe disposal of wastes, lack of awareness of good hygienic practices, lack of vaccination and drinking contaminated water\(^14-15\). It has also a detrimental impact on childhood growth and cognitive development beyond the cause of death\(^13\). But the development of targeted approaches to address this burden has been hampered by a paucity of comprehensive, fine-scale estimates of factors related to diarrheal disease and death among and within countries\(^8\). Even though still morbidity and mortality of children due to diarrhea is high in Ethiopia; the prevalence of diarrhea among under five children decreased from 26% in 2000 to 12% in 2016\(^16-17\). The decrease in the prevalence of diarrhea could be explained by: (1) behavioral change among households (2) increase in the proportion of children living in households with access to improved drinking water source, living in urban areas, educated parents, exposure to media, small number of family members and under-five children and other related variables. The question of substantive interest in this context is: how much of the change is actually due to the improvement of behavior suggesting the actual decrease in diarrhea prevalence and how much is due to a compositional change in the population distribution. So to prevent and control diarrhea, it is necessary
to know the trends of diarrhea over time, source of variation, the contributing factors for the change in prevalence of diarrhea precisely and determinants of diarrhea using appropriate statistical method of analysis. But there is no evidence that shows studies conducted at national level to identify determinants of diarrhea by considering the clustering effect using Bayesian analysis approach and that examine the contributing factors for the change in the prevalence of diarrhea among under-five children via decomposition analysis. Therefore, this study was done at national level and examines the factors that contribute for the change in the prevalence of diarrhea starting from 2000 to 2016. Moreover, it also identified determinants of diarrhea by considering clustering effect using Bayesian estimation technique evidenced by the recent EDHS data of 2016.

Methods

Study design, period and area

To conduct this study cross sectional study design was employed. This study was done in Ethiopia from 19 February 2019 to 19 April 2020 using EDHS 2000, 2005, 2011 and 2016 survey data. Ethiopia is East African country located 3°-14°N and 33° – 48°E. Administratively, it contains nine regions and two city administrations. Based on household composition, nearly 12% of Ethiopians are under-five aged children and 4% are age 65 and older 18. Ethiopia is an agrarian country and agriculture accounts for 43% of the gross domestic product (GDP) and 84% of the population lives in rural areas 18. Ninety seven percent of urban households had access to an improved source of drinking water as compared with 57% of rural households 18.

Data source

The four consecutive EDHS (2000 to 2016) data were used for this study. Approval letter for the use of those data was gained from the Measure DHS and the data set was downloaded from the Measure DHS website.

Source and study population

All under-five children live in Ethiopia during the surveys were the source population. From this, all under-five children in the selected households during the surveys were included in this study. But children whose status was not known (whether they experience or not diarrhea two weeks before the data collection time) were excluded from this study.
Sample size determination and sampling technique

The EDHS data were collected using stratified two stage cluster sampling technique. The 2000 and 2005 data were collected based on the 1994 population and housing census frame and 2011 and 2016 data were collected based on 2007 population and housing census frame. In the first stage, regions were stratified into urban and rural areas from the list of population. In the second stage, each enumeration areas or clusters were selected systematically and then households were selected from each EA. In 2000 EDHS, a representative sample was collected from 138 in urban areas and 401 in rural areas. In 2005 EDHS, a representative sample was collected from 145 urban and 395 rural enumeration areas. In 2011 EDHS, a national representative sample from 187 urban and 437 rural enumeration areas. In 2016 EDHS, a representative sample was collected from 645 clusters, of which 202 in urban areas and 443 in rural enumeration areas.

Figure 1: Schematic presentation of the sampling procedure.

Variables

The outcome variable of this study was diarrheal disease (Yes/No). The independent variables were classified as community and individual level variables. Place of residence and region of the study participants were considered as community level variables. Whereas family size, number of under-five children, educational status of both husband and mother, working status of mother, wealth index of parents, media exposure, distance to health facility, health insurance, age of the child, sex of the child, being twin, weight of the child at birth, breast feeding, vaccinated for rotavirus and measles, vitamin A supplementation, type of drinking water source, type of latrine and way of child waste disposal were considered as individual level factors.

Data processing and analysis

The variables of the study were extracted from kid record (KR) data set using STATA version 14.2. The data were weighted using sampling weight before any statistical analysis to account the sampling design. STATA version 14.2 was used for Editing, recoding, exploratory and multivariate decomposition analysis. For multilevel analysis based on Bayesian approach R version 4.0 software was used. After the data were
cleaned, categorized, coded and weighted, we explored the descriptive statistics by using the frequencies and percentages of data and presented by using tables. Similarly after diarrhea was coded as “1” having diarrhea and those don’t have diarrhea was coded as “0” in the last two weeks prior to the survey and transforming some of the variables and maintaining other variable as it was using Stata version 14.2 software, the trends of diarrhea prevalence among under five children was explained by descriptive analysis, stratified by regions, urban-rural residence and by using selectively important socio-demographic variables. The trend period was divided into four phases; first phase (2000-2005), second phase (2005-2011), third phase (2011-2016) and the overall or fourth phase (2000-2016) to see the differences in diarrhea prevalence over time. The data from EDHS 2000, 2005, 2011 and 2016 were appended together to perform decomposition analysis. And also, the data was imported in to R version 4.0 after the data is exported in .csv excel format from Stata version 14.2 and multilevel analysis was done using Bayesian approach based on EDHS 2016 data.

Multivariate decomposition analysis
Multivariate decomposition was used to split components of group differences in proportion into a component attributable to compositional change between groups and a components attributable to the effect of population behavior or effect of characteristics. The multivariate decomposition analysis is a statistical analysis for examining the change in event that results in differences in outcome between any two surveys. The aim of using decomposition analysis was to compare the difference in two time periods and identify the sources of variations of diarrhea prevalence among under five children. The difference between any two surveys was explained by the compositional changes or characteristics of surveys (endowments), which is explained and by the effects of those characteristics (coefficients) that is not explained. Therefore, the observed change in burden of diarrhea between two surveys was additively decomposed in the endowment (characteristics) component and coefficient (effect of characteristics) component using recently developed mvdcmp Stata package. In the nonlinear model, the response variable is a function of a linear combination of predictors and regression coefficients.

\[Y = F(X\beta) = \logit(Y) = X\beta \]

Where \(Y \) represent the dependent variable.
X represents a set of predictor variables
β denote set of regression coefficients

The proportion difference in Y between the two surveys of A and B can be decomposed as

$$Y_A - Y_B = F(X_A\beta_A) - (X_B\beta_B) \tag{22}.$$

Let the recent 2016 EDHS and reference 2000 EDHS datasets can be denoted by A and B respectively.

For logistic regression, the log-odds or logit of the burden of diarrhea is given by22

$$\text{logit}(A) - \text{logit}(B) = F(X_A\beta_A) - F(X_B\beta_B)$$

Where; E represents endowments, which is explained by characteristics. An endowment is a change in diarrhea due to differences in characteristics. C denotes coefficients or effect of characteristics which is unexplained 22. The coefficient is the change in diarrhea due to the effect of predictor variables.

The equation can be presented as:

$$\text{logit}(A) - \text{logit}(B) = [\beta_{0A} - \beta_{0B}] + \sum X_{ijB} \cdot [\beta_{ijA} - \beta_{ijB}] + \sum \beta_{ijB} \cdot [X_{ijA} - X_{ijB}]$$

Where; β_{0B} is the intercept in the regression equation for EDHS 2000
β_{0A} is the intercept in the regression equation for EDHS 2016.

β_{ijB} is the coefficient of the j^{th} category of the i^{th} determinant in EDHS 2000
β_{ijA} is the coefficient of the j^{th} category of the i^{th} determinant in EDHS 2016
X_{ijB} is the proportion of the j^{th} category of the i^{th} determinant in the EDHS 2000
X_{ijA} is the proportion of the j^{th} category of the i^{th} determinant in EDHS 2016

To determine the specific contribution of each independent variable to each component of differences in the burden of diarrhea we partitioned the endowment and coefficients denoted by C and E into a portion of C_k and E_k, which represent the specific contribution of K^{th} independent variables for each component of C and E respectively.

Multilevel analysis based on Bayesian approach

Multilevel models allow to estimate the relationship between the explanatory variables at different level and dependent variables, and the extent of variation in the outcome of
interest at each level in the model both before and after the inclusion of the explanatory variables in the model. In this study, two levels of data hierarchy was stated. Level one unit were individual children of households and level two units were enumeration areas. Level one (children in the household) are nested within units at the next higher level (enumeration areas). The outcome variable was represented by \(Y_{ij} = \{ \text{having diarrhea, \ no \ diarrhea} \} \), the category is binary type of data. Therefore multilevel binary logistic regression analysis based on Bayesian approach was performed using \textit{Brms} R-package to estimate the parameters of the variable and the extent of random variations between clusters. This package allows R users to easily specify a wide range of Bayesian single-level and multilevel models, which are fitted with the probabilistic programming language of Stan.

Two level model formulation

In this study, the response variable was a dichotomous variable that is whether a child had diarrhea or not within two weeks prior to the start of the 2016 survey. So, the effect of explanatory variables on the dependent variable was investigated using the multilevel binary logistic regression model based on Bayesian statistical analysis approach.

The basic data structure of the two-level logistic regression is a collection of \(j \) groups (enumeration area) and within-group \(j \) (\(j = 1, 2, \ldots, J \)), a random sample \(n \) of level-one units (individual children).

\[
Y_{ij} = \begin{cases}
1 & \text{if } i^{th} \text{ children have diarrhea in the } j^{th} \text{ region} \\
0 & \text{if } i^{th} \text{ children have no diarrhea in the } j^{th} \text{ enumeration area}
\end{cases}
\]

So, this variable has a Bernoulli distribution with successes when the child had diarrhea and failure when the child hadn’t diarrhea.

The probability of having diarrhea for \(i^{th} \) children in the \(j^{th} \) region is \(\pi_{ij} \)

\[
P(X_{ij} = x) = \binom{n}{x} p^x (1-p)^{n-x}, \quad \text{if} \quad X = \sum_{i=1}^{n} Y_{ij}
\]

Let \(\pi_{ij} \) be modeled using a logit link function. The two-level model is given by:

\[
\text{Logit} (\pi_{ij}) = \beta_0 + \sum_{h=1}^{H} \beta_{hj} X_{hj} + \mu_{0j} + \sum_{h=1}^{H} \mu_{hj} \ldots \ldots
\]

Where, \(\beta_{0j} = \beta_0 + \mu_{0j} \)

\(\beta_{1j} = \beta_1 + \mu_{1j} \)

\(\beta_{hj} = \beta_h + \mu_{hj} \)
\[\beta_0 + \sum_{h=1}^k \beta_{hj} X_{hj}, \] is called fixed part of the model
\[\mu_{0j} + \sum_{h=1}^k \mu_{hj}, \] is called random effect of the model
\[X_{ij}, \] are the covariates in the model
\[\beta, \] is the regression coefficient of the parameter.
\[\mu_{hj}, \] is the estimate of random intercept

Models

The following four models were fitted using R version 4.0 software:

I. Null or variance multilevel binary logistic model
II. A model fitted with individual level factors
III. A model fitted with community level factors
IV. A model fitted with both individual and community level factors

Parameter estimation

Bayesian analysis approach is one of the data analysis approach independent to the classical analysis approach and the parameters are estimated from the posterior distribution which is the combination of the prior information and the likelihood of the data. A prior distribution of a parameter is the probability distribution that represents our uncertainty about the parameter before the current data are examined and the likelihood function (often simply called the likelihood) expresses how probable a given set of observations is for different values of the statistical parameters. For this study we used vague prior with beta distribution (1, 1), iteration = 10,000, warmup =1000 (number of iterations that was discarded), chains =2, initials (the starting values of the iterations) =0, cores (specifies the number of cores used for the algorithm) =2 and adapt delta (controls divergent transition) = 0.95.

The posterior distribution was determined as follow using beta distribution (1, 1):

\[f(\theta) = \frac{1}{\beta(1,1)} (\beta_l, \sigma_\mu^2)^{1-1} (1 - \beta_l, \sigma_\mu^2)^{1-1}, \] is the prior distribution

\[\pi_{ij} = \frac{e^{\beta_0 + \beta_1 x_{1ij} + \ldots + \beta_h x_{hij} + \mu_{0j}}}{1 + e^{\beta_0 + \beta_1 x_{1ij} + \ldots + \beta_h x_{hij} + \mu_{0j}}} \] is the probability of having diarrhea

Where, \(e^{\beta_0 + \beta_1 x_{1ij} + \ldots + \beta_h x_{hij} } \) is the fixed effect and \(e^{\mu_{0j}} \) is the random effect of the model with \(\mu_{0j} \sim N (0, \sigma_\mu^2) \). The likelihood of the data is given by:

\[L(y|\beta_{ij}, \sigma_\mu^2) = \prod_{i=1}^{n} \prod_{j=1}^{q} \left[\frac{e^{\beta_0 + \beta_1 x_{1ij} + \ldots + \beta_h x_{hij} + \mu_{0j}}}{1 + e^{\beta_0 + \beta_1 x_{1ij} + \ldots + \beta_h x_{hij} + \mu_{0j}}} \right]^{y_{ij}} \left(1 - \frac{e^{\beta_0 + \beta_1 x_{1ij} + \ldots + \beta_h x_{hij} + \mu_{0j}}}{1 + e^{\beta_0 + \beta_1 x_{1ij} + \ldots + \beta_h x_{hij} + \mu_{0j}}} \right)^{1-y_{ij}} \]
The posterior distribution is the product of the prior and the likelihood as follow:

\[
 f(\beta_{ij}, \sigma_{\mu}^2 | y) = \prod_{i=1}^{n} \prod_{j=1}^{n} \left[\left(\frac{e^{\beta_0 + \beta_0 x_{1ij} + \cdots + \beta_h x_{hij} + \mu_0}}{1 + e^{\beta_0 + \beta_0 x_{1ij} + \cdots + \beta_h x_{hij} + \mu_0}} \right)^{y_{ij}} \left(1 - \frac{e^{\beta_0 + \beta_0 x_{1ij} + \cdots + \beta_h x_{hij} + \mu_0}}{1 + e^{\beta_0 + \beta_0 x_{1ij} + \cdots + \beta_h x_{hij} + \mu_0}} \right)^{1-y_{ij}} \right] \]

\[
 \times \frac{1}{\beta_{(1,1)}} (\beta_{ij}, \sigma_{\mu}^2)^{1-1} (1 - \beta_{ij}, \sigma_{\mu}^2)^{1-1} \text{ } 26
\]

After posterior distribution was determined, we used Hamiltonians Monte Carlo (HMC) methods to simulate direct draws from the complex posterior distribution. Hamiltonian Monte Carlo (HMC) avoids the random walk behavior and sensitivity to correlated parameters that plague many MCMC methods by taking a series of steps informed by first-order gradient information 28. These features allow the model to converge to high-dimensional target distributions much more quickly than simpler methods such as random walk Metropolis or Gibbs sampler 28. No-U-Turn Sampler (NUTS), an extension to HMC uses a recursive algorithm to build a set of likely candidate points that spans a wide swath of the target distribution, stopping automatically when it starts to double back and retrace its steps28. Therefore since the iteration convergences is fast, we used No-U-Turn Sampler (NUTS). Summary statistics was carried out from the posterior distribution after the model was converged and the 95% credible interval was used for test of significance.

Intra cluster correlation coefficient (ICC)

The main reason to apply multilevel analysis was the existence of significant intra-class correlation. ICC was calculated as follow:

\[
 \text{ICC} = \frac{\sigma_{\mu_0}^2}{\sigma_{\mu_0}^2 + \sigma_{e}^2} \text{ } 25 \text{ where, } \sigma_{e}^2 \text{ and } \sigma_{\mu_0}^2 \text{ are the variance within and between the region respectively. In multilevel logit model, level one residual variance } (\sigma_{e}^2) \text{ is } \pi^2/3 \approx 3.29 \text{ and the formula is written as } \frac{\sigma_{\mu_0}^2}{\sigma_{\mu_0}^2 + 3.29} \text{ } 26. \text{ The 95% posterior credible interval was used for test of significances, in which the interval containing zero for the variance between the regions is considered as non-significant and that doesn’t contain zero is considered as significant. We used the ICC value greater than 10% to consider variation of diarrhea prevalence in the cluster.}

Convergence of the Algorithm

The results obtained from a given HMC analysis are not deemed reliable until the chain has reached its stationary distribution27. The term convergence of an HMC algorithm refers to whether the algorithm has reached its equilibrium (target) distribution27. If the
algorithm has reached its equilibrium, then the generated sample comes from the correct target distribution. So, monitoring the convergence of the algorithm is essential for producing valid results from the posterior distribution. Therefore, to monitor the convergence of the algorithm we used the most popular and straightforward convergence assessment methods in which Rhat = 1, Bulk_ESS and Tail_ESS were greater than 1000, chains of the time serious plots were mixed well and density plot were smooth.

Model comparison and Selection

Models fitted using Bayesian approach was compared based on their Widely Applicable Information Criteria (WAIC) and Leave-One-Out Cross-Validation (LOO) value. A model with small WAIC and LOO is best model. So, a model with small WAIC and LOO value was selected and inference was made based on this model.

Results

Characteristics of the study population

Based on socio-demographic reports of EDHS data, more than 85% of the households were rural settlers. More than four fifth; 86.7% in 2000, 89.2% in 2005, 85.2% in 2011 and 86.2% of the total households in 2016 were leaded by males. With regard to education, the proportion of maternal higher educational status was 0.2% in 2000, 0.4% in 2005, 1.5% in 2011 and 2.5% in 2016 (Table 1).

According to birth related reports of EDHS data, the highest percentage (2.2%) of twin birth was reported in 2016. Both the highest and lowest proportion of small birth weight (34%) and (26.1%) was reported in 2000 and 2016 respectively. The highest proportion of narrow birth interval (<= 23 months) was reported in 2005 (34%) whereas the smallest proportion (23%) was also reported in 2000 (Table 1).

The proportion of children vaccinated for measles was 26.9% both in 2000 and 2005, 47% in 2011 and 60.7% in 2016. Though there was no reports about rotavirus vaccine in the first three EDHS’s, the last EDHS report showed that only 27.7% of children were vaccinated. Amongst the surveyed households, 77% in 2000, 80% in 2005, 63.8% in 2011 and 61.2% of households practiced unsafe way of infant waste disposal (Table 2).

Regarding households’ wealth status and health insurance, 35% of the households in 2005, 44.7% in 2011 and 46.9% in 2016 were poor. Though Community Based Health Insurance (CBHI) was not practiced in 2000 and 2005, exactly 99.4% of the households
in 2011 and 96.3% in 2016 didn’t use it. More than two third; 74.6% in 2005, 75.2% in 2011 and 60.8 % of the households in 2016 reported that distance to health facility was their big problem (Table 1).
Variables	Characteristics	Frequency and percentage distribution of characteristics			
		EDHS 2000	EDHS 2005	EDHS 2011	EDHS 2016
	No (%)	No (%)	No (%)	No (%)	No (%)
Sex of child	Male	5460 (51)	5089 (51)	5636 (51.5)	5307 (51)
	Female	5293 (49)	4950 (49)	5310 (48.5)	5030 (49)
Twin	Yes	136 (1)	143 (1.4)	203 (1.9)	292 (2.2)
	No	10617 (99)	19896 (98.6)	10743 (98.1)	10105 (97.8)
Weight of child at birth	Small	3651 (34)	2805 (28)	3251 (29.7)	2676 (26.1)
	Average	388 (36)	4069 (40.1)	4275 (39.1)	4328 (42.2)
	Big	3200 (30)	3149 (31.4)	3406 (31.2)	3255 (31.7)
Birth order	First	1982 (19)	1666 (16.6)	2068 (18.9)	1923 (18.6)
	2 – 3	3264 (30)	3069 (30.6)	3422 (31.3)	3155 (30.5)
	4 – 5	2362 (22)	2382 (23.7)	2522 (23)	2473 (23.9)
	=>6	3144 (29)	2920 (29.2)	2935 (26.8)	2786 (27)
Birth interval	<=23 month	2215 (23)	3420 (34)	2407 (25)	2446 (27.3)
	=>24 month	7951 (77)	6618 (66)	7221 (75)	6499 (72.7)
Age of child	<1 year	2186 (20.3)	222 (22)	2383 (21.8)	2264 (21.9)
	=>1<2 year	2145 (20)	1872 (18.7)	1915 (17.5)	2001 (19.4)
	=>2<3 year	2084 (19.4)	1883 (18.8)	2045 (18.7)	1926 (18.6)
	=>3<4 year	2260 (21)	2078 (20.7)	2351 (21.5)	1980 (19.1)
	=>4<5 year	2080 (19.3)	1984 (19.8)	2251 (20.6)	2165 (21)
Breast feeding	Still feeding	5318 (49.5)	5111 (51.2)	5253 (45)	4325 (42)
	Ever feed but not now	5366 (50)	4699 (47)	5532 (50.5)	5624 (54.4)
	Never feed	69 (0.64)	178 (4.1)	161 (1.5)	388 (3.8)
Rotavirus vaccine	vaccinated	-	-	-	2858 (27.7)
	Not vaccinated	-	-	-	7479 (72.4)
Measles’ vaccine	Vaccinated	2894 (26.9)	2535 (26.9)	5053 (47.1)	3692 (60.2)
	Not vaccinated	7859 (73.1)	6877 (73.1)	5682 (52.9)	2446 (39.8)
Vitamin A supplemented	Yes	6000 (56.5)	4399 (44.5)	5274 (48.8)	4574 (48.7)
	No	4624 (43.5)	5492 (55.5)	5540 (51.2)	4825 (51.3)
Wealth index	Poor	-	4312 (35)	4889 (44.7)	4848 (46.9)
	Medium	-	2197 (22)	2259 (20.6)	2139 (20.7)
	Rich	-	3529 (35)	3798 (34.7)	3350 (32.4)
Mothers work status	Working	6003 (55.9)	8572 (76.8)	3733 (34.1)	2803 (27.1)
	Not working	4745 (44.1)	2590 (23.2)	4061 (68.9)	7534 (72.9)
Health insurance	Yes	-	-	59 (0.5)	378 (3.7)
	No	-	-	10882 (99.4)	9959 (96.3)
Distance to health facility	Not long	-	2553 (25.4)	2710 (24.8)	4056 (39.2)
	Long	-	7485 (74.6)	8227 (75.2)	6281 (60.8)

Table 1: Frequency and Percentage distribution of characteristics of respondents and their children in Ethiopia.
Continuation of above table

Variables	Characteristics	Frequency and percentage distribution of characteristics	EDHS 2000	EDHS 2005	EDHS 2011	EDHS 2016
			No (%)	No (%)	No (%)	No (%)
Residence	Urban	1141 (10.6)	741 (7.4)	1413 (12.9)	1151 (11.1)	
	Rural	9612 (89.4)	2298 (92.6)	9534 (87.1)	9186 (88.9)	
Region	Tigray	709 (6.6)	652 (6.5)	701 (6.3)	682 (6.6)	
	Afar	107 (1)	96 (1)	110 (1)	104 (1)	
	Amhara	2797 (26)	2299 (22.9)	2472 (22.6)	1954 (18.9)	
	Oromia	4356 (40.5)	3982 (39.7)	4615 (42.2)	4537 (43.9)	
	Somali	127 (1.2)	428 (4.3)	330 (3)	472 (4.6)	
	B/Gumuz	108 (1)	95 (0.9)	125 (1)	113 (1.1)	
	SNPP	2297 (21.4)	2265 (22.6)	2287 (20.9)	2149 (20.8)	
	Gambella	25 (0.2)	28 (0.3)	35 (0.3)	24 (0.2)	
	Harari	23 (0.2)	21 (0.2)	26 (0.2)	24 (0.2)	
	Addis Ababa	167 (1.6)	140 (1.4)	208 (1.9)	233 (2.3)	
	Dire-Dawa	35 (0.3)	34 (0.3)	36 (0.3)	43 (0.4)	
Mother's educational level	No formal education	8771 (82)	7896 (78.7)	7562 (69.1)	6809 (65.9)	
	Primary	1426 (13)	1699 (16.9)	2980 (27.2)	2777 (26.9)	
	Secondary	532 (4.9)	401 (4)	245 (2.2)	491 (4.8)	
	Higher	24 (0.2)	42 (0.4)	159 (1.5)	260 (2.5)	
Father's educational level	No formal education	6732 (63.5)	5771 (58.1)	5360 (49.7)	4700 (48.2)	
	Primary	2682 (25.3)	3054 (30.8)	4527 (42)	3849 (39.5)	
	Secondary	1054 (10)	1000 (10.1)	550 (5.1)	766 (7.9)	
	Higher	140 (1.3)	111 (1.1)	348 (3.2)	442 (4.5)	
Head of household	Male	9327 (86.7)	8957 (89.2)	9323 (85.2)	8908 (86.2)	
	Female	1426 (13.3)	1082 (10.8)	1623 (14.8)	1429 (13.8)	
Media exposure	Yes	893 (8.3)	1222 (12.2)	2007 (18.4)	1846 (17.9)	
	No	9849 (91.7)	8799 (87.8)	8927 (81.6)	8491 (82.1)	
Family members	<=5	4655 (43.3)	4116 (41)	4812 (44)	5865 (56.7)	
	>=6	6098 (56.7)	5922 (59)	6134 (56)	4472 (43.3)	
Number of U-5 children	<=2	9169 (85.3)	5922 (83.2)	9041 (82.6)	8541 (82.6)	
	>=3	1584 (14.7)	1685 (16.8)	1906 (17.4)	1796 (17.4)	
drinking water	Improved	2224 (21.4)	5289 (55.4)	4951 (46.5)	5719 (56.2)	
	Not improved	8169 (78.6)	4254 (44.6)	5686 (53.5)	4464 (43.8)	
Child waste disposal	Safe	2457 (23)	1987 (20)	3647 (36.2)	2553 (38.8)	
	Not safe	8256 (77)	7945 (80)	6419 (63.8)	4035 (61.2)	
Type of toilet	Improved	1494 (14.4)	891 (9)	1342 (12.6)	1036 (21.4)	
	Not improved	8903 (85.6)	9073 (91)	9287 (87.4)	3804 (78.6)	
Overall trends of diarrhea among under five-children in Ethiopia

By looking the trend, Ethiopia has been shown a decrement in diarrhea prevalence among under-five children over the study period, from 26% in 2000 to 18% in 2005, to 14% in 2011 and to 12% in 2016. The highest decrement was noticed in the first phase (2000-2005 with a 10.4% point change compared with 8%, 4% and 2% point change in second phase (2005-2011) and in the third phase (2011-2016) respectively. The overall change (2000-2016) in diarrhea prevalence was 14% (Figure 2).

Figure 2: Trend of diarrhea prevalence in Ethiopia from 2000 to 2016.

Trends of diarrhea prevalence in Ethiopia by selected characteristics

The trends of diarrhea prevalence among under-five children showed variation based on different characteristics. Diarrhea prevalence decrement was observed in most of the characteristics and increment in some of the characteristics in each phases. Among rural residents, the largest decrement was observed during the first phase of the study period (2000-2005) with 7.6% point change followed by second (2005-2011) and third (2011-2016) phases with 4.7% and 1.9% point changes respectively and the overall change (2000-2016) was 14.2% point change. Based on region, the largest point change in first phase was observed in Gambella regional state with 17.7% point change followed by Dire-Dawa with 13.9% point change. But in the second phase, diarrhea prevalence was increased in Gambella by 8.6% point change, in Benishangul-Gumuz by 1.9% point change and in Tigray by 0.5% point change. Similarly in third phase it was increased by 3.3% point change in Dire-Dawa and by 1% point change in Harari. The overall change of decrement of diarrhea prevalence based on region was higher in southern nation nationalities and people of Ethiopia (SNNP) regional state with 18.5% point change. Households that have more than three under-five age children showed highest point of change (10.9%) in the second phase and the overall point change of diarrhea prevalence was 16%. Respondents who had have improved drinking water source showed decrement of diarrhea prevalence among under-five children with 8.5%, 4%, 0.6% and 13.1% point change in first, second, third and fourth phases respectively (Table 2).
Table 2: Trends of diarrhea prevalence among under-five children by selected characteristics in Ethiopia.

Variables	Characteristics	2000	2005	2011	2016	Phase 1 (2000-2005)	Phase 2 (2011-2015)	Phase 3 (2016-2020)	Over all (2016-2020)
Sex of child	Male	26.3	18.1	14.4	12.2	-8.2	-4.1	-2.2	-14.1
	Female	24.9	18.1	12.6	11.5	-6.8	-5.5	-1.1	-13.4
Twin	Yes	19.3	14.8	23.6	13.8	-4.5	4.3	5.5	-7.5
	No	25.7	18.2	13.4	11.8	-7.5	-4.8	-1.6	-13.9
Weight of child at birth	Small	26.3	20	14.9	15.7	-6.3	-5.9	0.8	-10.6
	Average	23.3	15.5	12.6	9.8	-7.8	-2.9	-2.8	-13.5
	Big	27.5	19.8	13.5	11.6	-7.7	-6.3	-1.9	-15.9
Birth order	First	27.2	17.5	11.2	13.1	-9.7	-6.3	1.9	-14.1
	2 – 3	26.6	16.7	13.4	12.4	-9.9	-3.3	-1	14.2
	4 – 5	25.4	20.9	14.7	12	-4.5	-6.2	-2.7	-13.4
	=>6	23.8	17.8	14.4	10.4	-6	-3.4	-4	-13.4
Birth interval	<=<23 month	25.2	17.6	10.4	9.9	-7.6	-7.2	-0.5	-15.3
	=>24 month	24.9	18.4	14.3	11.6	-6.5	-4.1	-2.7	-13.3
Age of child	<1 year	27.3	21.3	17.2	14.7	-6	-4.1	-2.5	-12.6
	=>1<2 year	37.2	28.4	22.8	17.8	-8.8	-5.6	5	-19.4
	=>2<3 year	28.7	18.6	14.1	13	-10.1	-4.5	-1.1	-15.7
	=>3<4 year	19.2	12.6	9	9.2	-6.6	-3.6	0.2	-10
	=>4<5 year	15.7	10.2	6	4.8	-5.5	-4.2	-1.2	-10.9
Breast feeding	Still feeding	31.2	23.2	18.4	12	-8	-4.8	-6.4	-19.2
	Ever feed but not now	20	12.7	9.1	11.9	-7.3	-3.6	2.8	-8.1
	Never feed	36.2	19.1	13.5	10.3	-17.1	-5.6	-3.2	-25.9
Rotavirus vaccine	Vaccinated	-	-	-	12.5	-	-	-	-
	Not vaccinated	-	-	-	11.6	-	-	-	-
Measles’ vaccine	Vaccinated	22.6	20	14	13.2	-2.6	-6	-0.8	-9.4
	Not vaccinated	26.7	17.7	13.3	18.2	-9	-4.4	4.9	8.5
Vitamin A supplemented	Yes	24.9	19.4	13.6	12.8	-5.5	-5.8	-0.8	-12.1
	No	25.5	17.3	13.3	11.4	-8.2	-4	-1.9	-14.1
Mothers work status	Working	26.7	18.5	13.2	11.3	-8.2	-5.3	-1.9	-15.4
	Not working	24.8	18	14.1	13.3	-6.8	-3.9	-0.8	-11.5
Wealth index	Poor	-	19.1	13.8	12.6	-5.3	-1.2	-	-
	Medium	-	19.8	13.2	12.5	-6.6	-0.7	-	-
	Rich	-	15.9	13.5	12.6	-2.4	-0.9	-	-
Health insurance	Yes	-	-	10.3	10.8	-	-	0.5	-
	No	-	-	13.6	11.9	-	-	-1.7	-
Distance to health facility	Not long	-	16.3	12.1	12.6	-4.2	0.5	-	-
	Long	-	18.7	14	11.4	-4.7	-2.6	-	-
Variables	Characteristic	Point difference in diarrhea prevalence							
-----------	----------------	--							
		2000 N=107	2005 N=10	2011 N=10	2016 N=103	Phase1 (2005-2000)	Phase2 (2011-2005)	Phase3 2016-2011	Over all (2016-2000)
Residence	Urban	21.1	12.3	11.2	10.9	-8.8	-1.1	-0.3	-10.2
	Rural	26.2	18.6	13.9	12	-7.6	-4.7	-1.9	-14.2
Region	Tigray	17.9	12.9	13.4	13	-5	0.5	-0.4	-4.9
	Afar	20.6	13.5	12.7	11.5	-7.1	-0.8	-1.2	-9.1
	Amhara	20.3	14.7	13.7	13.8	-5.6	-1	0.1	-6.5
	Oromia	27.2	17.8	11.5	10.7	-9.4	-6.3	-0.8	-16.5
	Somali	22.8	12.4	20	6.1	-10.4	7.6	-13.9	-16.7
	B/Gumuz	26.9	21.3	23.2	8.8	-5.6	1.9	-14.4	-18.1
	SNNP	32.5	25.2	16.5	14	-7.3	-8.7	-2.5	-18.5
	Gambella	32	14.3	22.9	16	-17.7	8.6	-6.9	-16
	Harari	26.1	19	11.5	12.5	-7.1	-7.5	1	-13.6
	Addis Ababa	16.8	13.6	9.6	7.7	-3.2	-4	-1.6	-9.1
	Dire-Dawa	25.7	11.8	8.3	11.6	-13.9	3.5	3.3	-14.1
Mother’s educational level	No formal education	26.2	18.3	14	11.3	-7.9	-4.3	-2.7	-14.9
	Primary	24.1	19.5	12.8	13.3	-4.6	-6.7	0.5	-10.8
	Secondary	19.4	10.7	10.6	14.7	-8.7	-0.1	4.1	-4.7
	Higher	41.7	2.4	11.3	7.3	-39.3	8.9	-4	-34.4
Father’s educational level	No formal education	25	18.2	13.7	10.5	-6.8	-4.5	-3.2	-14.5
	Primary	29.1	19.2	14	13.4	-9.9	-5.2	-0.6	-15.7
	Secondary	20.8	14.7	11.6	12.8	-6.1	-3.1	1.2	-8
	Higher	22.1	6.3	10.6	10	-15.8	4.3	-0.6	-12.1
Sex of household head	Male	25.7	18.2	13.4	12.2	-7.5	-4.8	-1.2	-13.5
	Female	24.9	17.3	14.2	9.9	-7.6	-3.1	4.3	-15
Media exposure	Yes	24.3	16.1	13.4	14	-8.2	-2.7	0.6	10.3
	No	25.7	18.4	13.6	11.4	-7.3	-4.8	-2.2	-14.3
family members	<=5	27.9	18.1	13.7	10.5	-9.8	-4.4	-3.2	-17.4
	=>6	23.9	18	13.4	13.6	-5.9	-4.6	0.2	-10.3
Number of U-5 children	<=2	25.8	18.9	13.6	12.6	-6.9	-5.3	-1	-13.2
	=>3	24.4	18	13.5	8.4	-6.4	-10.9	-5.1	-16
Drinking water	Improved	25.1	16.6	12.6	12	-8.5	-4	-0.6	-13.1
	Not improved	25.7	19.9	14.6	11.4	-5.8	-5.3	-3.2	-14.3
Child waste disposal	Safe	24.3	19.4	14.2	14.6	-4.9	-5.2	0.4	-9.3
	Not safe	25.8	17.9	13.7	10.8	-7.9	-4.2	-2.9	-15
Type of toilet	Improved	23.6	20.7	12	9.8	-2.9	-8.7	-2.2	-13.8
	Not improved	25.9	17.9	13.8	11.6	-8	-4.1	-2.2	-14.3
Decomposition analysis

Overall from 2000 to 2016, there has been a significant decline in prevalence of diarrhea in Ethiopia. The overall decomposition result showed that 97.1% of decline in prevalence of diarrhea over time was due to difference in the effects of characteristics between the surveys. About 2.9% of decline was due to difference in characteristics (compositional factors) but the change due to difference in characteristics (compositional factors) was not significant (Table 3).

Factors including mother’s education level, number of family members and mothers working status showed a significant effect for the decline of diarrhea prevalence. Keeping compositional changes constant, change in behavior of women who don’t have formal education contributed more than 100% for the decline of diarrhea prevalence over the past sixteen years. The behavioral change of mothers who have primary and secondary education level contributed 25% and 9.2% for the decline of diarrhea prevalence over the past sixteen years respectively. Compared with mothers who were working, behavioral change of mothers who were not working contributes 18% for decrement of diarrhea prevalence. Similarly, behavioral change of respondents who have more than six family members contributed 30% for the decline of diarrhea prevalence for the last sixteen years as compared to respondents who have less than five family members (Table 3).

Table 3: Decomposition of change in diarrhea prevalence among under-five children in Ethiopia, from 2000 to 2016

Diarrhea	Coef	L- CI	U- CI	Pct.
E	-0.004	-0.016	0.008	2.9
C	-0.13	-0.15	-0.11	97.1*
R	-0.14	-0.2	-0.11	

Variables	Characteristics	Difference due to characteristics	Difference due to coefficient			
		Coef	Pct.	Coef	Pct.	
Residence	Urban (ref)	0.000 (-0.00, 0.00)	-0.05	-0.000(-0.06, 0.064)	0.62	
	Rural					
Mothers work status	working (ref)	-0.003 (-0.01, 0.005)	2.4	0.03*(0.004, 0.05)	-18	
	Not working					
Mother's educational level	No formal ed	-0.05 (-0.02, 0.01)	3.7	0.2 *(0.01, 0.4)	-148.3	
	Primary	0.01 (0.00, 0.05)	-3.24	0.03*(0.004, 0.07)	-25	
	Secondary	0.000(0.000, 0.0001)	0.0002	0.01*(0.002, 0.02)	-9.2	
	Higher (ref)					
Father's educational level	No formal ed	0.001(-0.004, 0.005)	-0.65	-0.05(-0.14, 0.05)	33.3	
	Primary	0.001(-0.004, 0.006)	-0.70	-0.02(-0.05, 0.02)	12.2	
	Secondary	-0.00 (-0.001, 0.001)	0.02	(-0.02, 0.11)	1.9	
	Higher (ref)					
Family members	<=5 (ref)		-0.002 (-0.005, 0.001)	1.2	0.41*(0.02, 0.06)	-30
	>=6					
Number of under-five children	<=2 (ref)	-0.001 (-0.002, 0.000)	0.47	-0.005(-0.011, 0.002)	3.7	
	>=3					
Sex of household head	Male (ref)	0.0003 (-0.000, 0.001)	-0.22	-0.004(-0.1, 0.003)	2.6	
	Female					
Media exposure	Yes (ref)	0.001(-0.008, 0.003)	-0.87	-0.02(-0.07, 0.03)	16.7	
	No					
Water source	Improved (ref)	0.07 (-0.004, 0.004)	-0.005	0.04(-0.017, 0.046)	-10.4	
	Not improved					
Mothers work status	working (ref)	-0.003 (-0.01, 0.005)	2.4	0.03*(0.004, 0.05)	-18	
	Not working					
Constant		-0.37* (-0.58, -0.16)			266.6	

(* = significant at 5% level of significance)
Multilevel analysis based on Bayesian approach

Random intercept only model

In this model Rhat value is one and all effective sample size (both Bulk_ESS and Tail_ESS) are greater than 1000. Therefore this model is converged. The variance between regions having diarrhea is 0.72 which is significant because the 95% credible interval didn’t contain zero. Therefore we reject the null hypothesis which states that the variation across the region was zero. So that the variation of having diarrhea among under-five children in Ethiopia between regions was none zero (Table 4). The results also displayed that the intraclass correlation coefficient (ICC) was 0.14, meaning that roughly 14% of the variability in prevalence of diarrhea among under-five children was attributable to the regional level (Table 4).

Table 4: Model 1 without covariates

	Estimates	SE	AOR	95%CrI	Rhat	Bulk_ESS	Tail_ESS
Fixed effect							
β_0= intercept*	-2.1	0.11	0.1	0.09	0.2	1	1256
Random effect							
σ^2	0.52	0.19	0.1	1.1	1	1328	1901
ICC	0.14	0.11	0.18				
LOO	74970						
WAIC	74976						

(*= significant at 5% level of significance)
Model with individual level factors only
As shown in table 6, this model Rhat value is one and all effective sample sizes (both Bulk_ESS and Tail_ESS) are greater than 1000 for each estimate values. In addition to this sex of the child, weight of the child, age of the child, breast feeding, sex of household head, wealth index, number of family members, number of under-five children, mothers working status, health insurance, vaccine for rotavirus and type of child waste disposal were significantly associated with diarrhea among under five children in Ethiopia (Table 5).
Table 5: Model 2 fitted by individual level factors only

Fixed effect	Characteristics	Estimate	SE	AOR	95%CrI L-CrI U-CrI	Rhat	Bulk_ESS	Tail_ESS	
β0-intercept*		-5.79	0.66	0.00	0.00	0.01	1	7416	12213
Sex of child	Male (ref)								
	Female*	0.44	0.08	1.55	1.31	1.83	1	3800	3995
Twin	Yes	0.19	0.2	1.21	0.83	1.77	1	29375	13792
	No (ref)								
Weight of a child at birth	Small	0.17	0.11	0.84	0.69	1.03	1	25302	14351
	Average (ref)								
	Big*	0.5	0.11	1.65	1.32	2.05	1	22959	15308
Birth order	First (ref)								
	2 – 3	-0.32	0.26	0.73	0.45	1.22	1	11507	13120
	4 – 5	-0.35	0.28	0.71	0.41	2	1	10980	12821
	>=6	-0.37	0.30	0.69	0.40	1.26	1	10423	11916
Birth interval	<=<23 month	-0.12	0.08	0.89	0.76	1.04	1	24797	14898
	=>24 month (ref)								
Age of child	<=1<2 year	0.21	0.13	1.23	0.95	1.6	1	2813	4510
	>=2<3 year	0.01	0.13	1.01	0.78	1.31	1	8782	6148
	>=3<4 year*	-0.51	0.15	0.6	0.45	0.8	1	4524	5085
	=>4<5 year*	-1.2	0.18	0.3	0.21	0.43	1	3485	4312
Breast feeding	Still feeding (ref)	-0.13	0.08	0.87	0.75	1.02	1	29492	13970
	Ever feed but not now								
	Never feed*	-4.62	0.82	0.01	0.00	0.04	1	32438	12662
Rotavirus vaccine	vaccinated(ref)	0.37	0.13	1.45	1.13	1.89	1	24053	14971
	Not vaccinated*								
Measles' vaccine	vaccinated (ref)	-0.07	0.11	0.93	0.75	1.15	1	22111	14956
	Not vaccinated								
Vitamin supplemented	Yes (ref)	-0.19	0.09	0.83	0.66	1.04	1	25507	14935
	No								
Mothers working status	Working (ref)	0.24	0.12	1.27	1.01	1.6	1	24847	15706
	Not working*								
Wealth index	Poor*	.95	0.23	2.6	1.7	4.03	1	16045	14275
	Medium	0.09	0.24	1.1	0.68	1.74	1	14461	14475
	Rich (ref)								
Health insurance	Yes (ref)	0.78	0.27	2.2	1.28	3.75	1	22749	13767
	No*								
Distance to health facility	Not long (ref)	-0.9	0.07	0.92	0.80	1.35	1	39952	9417
Fixed effect	Characteristic	Estimates	SE	AOR	95% CrI	Rhat	Bulk_ESS	Tail_ESS	
------------------------------	-----------------------------	-----------	----	------	---------	------	----------	----------	
Mother’s educational level	No formal education	0.12	0.45	1.13	9.47	2.72	1	10980	12821
	Primary	-0.75	0.42	0.47	0.21	1.1	1	9007	12634
	Secondary	-0.74	0.43	0.48	0.21	1.1	1	9079	12634
	Higher (ref)								
Father’s educational level	No formal education	-0.55	0.37	0.58	0.28	1.21	1	9487	11643
	Primary	0.07	0.37	1.1	0.52	2.2	1	10376	13442
	Secondary	-0.05	0.37	0.95	0.45	2	1	9326	11632
	Higher (ref)								
Sex of household head	Male (ref)								
	Female*	-0.61	0.14	0.55	0.4	0.72	1	26077	14244
Media exposure	Yes (ref)	0.11	0.19	1.11	0.8	1.61	1	22407	15301
	No								
Family members	<=5 (ref)	0.35	0.13	1.41	1.1	1.8	1	19389	14735
	=>6								
Number of U-5 children	<=2 (ref)	0.26	0.1	1.3	1.1	1.6	1	23311	15564
	=>3								
Drinking water	Improved (ref)								
	Not improved	-0.18	0.95	0.84	0.70	1.01	1	20154	14786
Child waste disposal	Safe (ref)	1.44	0.14	4.2	3.2	5.6	1	22683	15326
	Not safe								
Type of toilet	Improved *	0.25	0.12	1.3	1	1.6	1	21514	15321
	Not improved								
Random effect	\(\sigma_{\mu_0}^2 \)	0.38	0.05	0.25	0.53	1	4116	7893	
	ICC	0.11	0.10	0.1	0.13				
	LOO	7968							
	WAIC	7958							

(Ref = reference category, *= significant at 5% level of significance)
Model with only community level factors

As shown in table 6, this model Rhat value is one and all effective sample sizes (both Bulk_ESS and Tail_ESS) are greater than three hundred times the number of chains.

Table 6: Model 3 fitted by community level factors only

Characteristics	Estimates	SE	AOR	95%CrI	Rhat	Bulk_ESS	Tail_ESS	
Fixed effects								
β0-intercept*	-2.2	0.21	0.11	0.08	0.17	1	2798	5647
Residence	Urban (ref)							
Rural	0.1	0.11	1.1	0.90	1.35	1	3459	7155
Random effect								
σμ*	0.52	0.19	0.1	1.1	1	1	3805	7577
ICC	0.14		0.11	0.18				
LOO	7998							
WAIC	7981							

(Ref = reference category), (*= significant at 5% level of significance)
Model with both individual and community level factors

As shown in table 7, this model Rhat value is one and all effective sample sizes (both Bulk_ESS and Tail_ESS) are greater than 1000. Therefore this model was converged. This model has smallest Widely Applicable Information Criteria (WAIC =7904) as compared to random intercept only model (WAIC=74976), model with only individual level factors (WAIC=7981) and model with only community level factors (WAIC=7958). Therefore this model is the best fitted model for the data because it has smallest WAIC as compared to the rest models. So interpretation and reports were made based on this model. Of all the factors included in the full model (model with both individual and community level factors) for multilevel analysis, being twin, child’s age, weight of child at birth, vaccinated for measles and rotavirus, number of under-five children, number of family members, wealth index, distance to health facility, member of health insurance and child waste disposal method were significantly associated with under-five children diarrhea in Ethiopia.

Being twin, the odds of having diarrhea were 30% (AOR=1.3; 95% CrI 1.1-1.5) higher than those children who were single (AOR=1.3; 95% CrI 1.1-1.5). The odds of having diarrhea among children whose weight was big at birth were 63% (AOR=1.63; 95% CrI 1.62- 2.02) higher as compared to children whose weight was average (normal) at birth. The odds of developing diarrhea among children in the age group between 1–2 years were 1.3 times (AOR=1.3; 95 % CrI 1.06–1.47) higher than those children whose age was below one years. Children who were not vaccinated for rotavirus and Measles were 1.44 and 1.2 times (AOR= 1.44; 95 % CrI 1.12–1.9, AOR= 1.2; 95 % CrI 1.1–1.33) more likely to develop diarrhea than to those who were vaccinated for rotavirus and measles respectively. The odds of developing diarrhea in children living in households who were not a member of health insurance were 2.2 times (AOR 2.2; 95 % CrI 1.3–3.8) higher than children living in households who a member of health insurance. And also children living in households who travel long distance to health facility were 2.7 times (AOR 2.7; 95 % CrI 2.2–3.5) higher than children living in households who short distance to health facility. The odds of having diarrhea among children living in households with no safe child waste disposal methods were 4.2 times (AOR 4.2; 95 % CrI 3.2 –5.6) higher than in children living in households with safe child waste disposal methods (Table 7).
Fixed effect	Category	Estimates	SE	AOR	95%CrI of AOR	Rhat	Bulk_ESS	Tail_ESS	
\(\beta_0 \) intercept*		-5.8	0.7	0.00	0.00	0.01	1	5814	9217
Sex of child	Male (ref)								
	Female	-0.11	0.07	0.89	0.78	1.02	1	10361	5807
Twin	Yes*	0.26	0.07	1.3	1.1	1.5	1	19613	8366
	No (ref)								
Weight of child at birth	Small	-0.19	0.11	0.83	0.67	1.02	1	19808	14137
	Average (ref)								
	Big*	0.48	0.11	1.63	1.62	2.02	1	20612	13727
Birth order	First (ref)								
	2 – 3	-0.36	0.26	0.7	0.43	1.2	1	10903	11827
	4 – 5	-0.25	0.29	0.78	0.44	1.38	1	10235	10907
	=>6	-0.29	0.3	0.76	0.42	1.35	1	10209	10942
Birth interval	<=23 month	-0.03	0.08	0.97	0.83	1.13	1	20381	13298
	=>24 month (ref)								
Age of child	<1 year (ref)								
	=>1<2 year*	0.22	0.08	1.3	1.06	1.47	1	9648	5850
	=>2<3 year	-0.15	0.09	0.86	0.72	1.03	1	3604	4530
	=>3<4 year*	-0.54	0.1	0.6	0.48	0.71	1	3251	4625
	=>4<5 year	-1.23	0.12	0.3	0.23	0.4	1	3377	4837
Breast feeding	Still breast feed								
	(ref)								
	Ever breast feed	-0.09	0.8	0.91	0.78	1.07	1	24022	13505
	but not now	-0.27	0.31	0.80	0.42	1.42	1	22263	12015
	Never breast feed								
Rota vaccine	vaccinated (ref)								
	Not vaccinated*	0.32	0.13	1.44	1.12	1.9	1	9367	6075
Measles’ vaccine	Yes (ref)	0.2	0.05	1.2	1.1	1.33	1	14128	6067
	No*								
Vitamin supplementation	Yes (ref)								
	No	-0.12	0.06	0.88	0.78	1.01	1	25507	14935
Wealth index	Poor*	.95	0.23	2.6	1.7	4.03	1	16045	14275
	Medium	0.09	0.24	1.1	0.68	1.74	1	14461	14475
	Rich (ref)								
Mothers working status	Working (ref)								
	Not working	0.24	0.2	1.3	1.0	1.6	1	8311	5878
Health insurance	Yes (ref)								
	No*	0.78	0.27	2.2	1.3	3.8	1	7888	5393
Continuation of above table

Fixed effect	Category	Estimates	SE	AOR	95%CrI of AOR	Rhat	Bulk_ ESS	Tail_ ESS	
		L-CrI	U-CrI						
Distance to health facility	Not long (ref)								
	Long *	1	0.12	2.7	2.2	3.5	1	6206	5558
Mother’s educational level	No formal education	-0.62	0.43	0.54	0.23	1.23	1	8733	10849
	Primary	-0.5	0.43	0.60	0.26	1.37	1	8748	10747
	Secondary	0.58	0.47	1.78	0.71	4.47	1	11355	12382
	Higher (ref)								
Health insurance	Yes (ref)	0.78	0.27	2.2	1.3	3.8	1	7888	5393
	No*								
Distance to health facility	Not long (ref)								
	Long *	1	0.12	2.7	2.2	3.5	1	6206	5558
Father’s educational level	No formal education	-0.7	0.38	0.5	0.24	1.04	1	8430	10462
	Primary	-0.09	0.38	0.91	0.44	1.90	1	9386	12115
	Secondary	-0.16	0.38	0.85	0.41	1.8	1	8416	10409
	Higher (ref)								
Household head	Male (ref)	-0.22	0.13	0.81	0.61	1.05	1	8669	6074
	Female*								
Media exposure	Yes (ref)	0.27	0.19	1.30	0.89	1.9	1	17430	14082
	No								
family members	<=5(ref)	0.35	0.13	1.41	1.1	1.83	1	7623	5854
	=>6*								
No of under five children	<=2 (ref)	0.26	0.11	1.3	1.1	1.61	1	9026	5453
	=>3*								
Source of drinking water	Improved(ref)	-0.17	0.12	0.84	0.66	1.06	1	19868	13216
	Not improved								
Child waste disposal	Safe (ref)	1.44	0.14	4.2	3.2	5.6	1	7238	5718
	Not safe*								
Type of toilet	Improved(ref)	0.21	0.13	1.23	0.95	1.6	1	18719	13886
	Not improved								
Random effect	$\sigma_{\mu_0}^2$	0.36	0.05	0.25	0.52	1	1500	2913	
ICC		0.11	0.10	0.13					
LOO		7931							
WAIC		7904							

(Ref = reference category), (* = significant at 5% level of significance)
Discussion

Diarrheal diseases are a major cause of child mortality and one of the main causes of medical consultation for children in Sub-Saharan African countries \(^\text{14}\). The aim of this study was to describe trends, identify the factors that contributed positively or negatively for the change in diarrhea prevalence among under five children for the last sixteen years and to identify determinants of diarrhea in Ethiopia based on data of 2016 Ethiopian Demographic and Health Survey.

In this study, the trend of diarrhea prevalence has been significantly declined from 26% in 2000 to 12% in 2016 (overall phase). This finding is compatible with the study done in democratic republic of Congo \(^\text{8,30}\). This could be due to the launching of the Health Extension Program (HEP), improving access to health care to meet the primary attention of the MDG agenda and the introduction of integrated community cause management program\(^\text{31,32}\). When we decompose this change, behavioral change of the respondents between the surveys contributed 97.1% for the decline of diarrhea prevalence over the last sixteen years. From decomposition analysis, surprisingly behavioral change of women who hadn’t formal education contributed more than 148% for the change of diarrhea prevalence among under-five children in Ethiopia. Similarly, behavioral change of women who were not working and households who had more than six family members contributed 18% and 30% respectively for the change. Comparable finding was also reported from the study conducted in Democratic Republic of Congo\(^\text{30}\). This could be due to Governments commitment to improve awareness of the community through health education and enabling them to use health services.

The multilevel binary logistic regression analysis based on Bayesian approach revealed that from child socio-demographic characteristics; being twin, weight of the child at birth and age of the child were significantly associated with diarrhea among under-five children. As indicated by related literatures; similarly, this finding showed that being twin were more risk to be infected by diarrhea as compared to children who were single. This finding is consistent with the study conducted in Bangladesh, Cameroon, Nigeria and Niger\(^\text{33-35}\). This might be due to children who are twin might not get exclusive breast milk at early ages and are not immune. Similarly, the quality of care and attention from parents decreased. So they are easily susceptible for different diseases. Children who were
obese at birth were more likely to develop diarrhea as compared to children who were normal at birth. This might be due to microbial metabolites, particularly short chain fatty acids, can lead to signaling changes in the host enterocytes and motility disorders and finally causes diarrhea. The odds of developing diarrhea among children in the age group between 1–2 years were higher than those children whose age was below one year. On the contrary, the odds of developing diarrhea among children in the age group between 3–4 years were less likely to be occur than those children whose age was below one year. This finding was supported by previous studies conducted from Ethiopia, Ghana, Cameroon, Bangladeshi, Niger and Nigeria. This could be due to, the age six month to two years are the time of crawling and at this time children eat whatever they get even their fecal matter if their care givers are irresponsible for their child care; but children whose age is greater than two years can differentiated dirty things and don’t eat whatever they get.

From Socio-economic and demographic characteristics of household; number of under-five children, family size, wealth status of the household, member of health insurance and distance to health facility were significantly associated with diarrhea among under-five children. Children from households who had greater than two under-five children were more risk to be infected by diarrhea as compared to children from households who had equal to or less than two under-five children. Similarly, children who were from households who had greater than six family members were more risk to develop diarrhea as compared to children who were from households who had less than five family members. This finding is concurrent with previous studies conducted in Ethiopia. If the number of under-five children and family members increased in the household, it is expected that children will be more vulnerable to diarrhea mainly because of the decreased quality of care and attention from parents. The odds of having diarrhea in children who were from poor household wealth status were higher than those who were from the rich households. This finding is supported by the study conducted in India. This is because in resource-limited settings, like Ethiopia; children can’t get balanced diets, improved type of drinking water and health care. The odds of developing diarrhea among children living in households who were not a member of health insurance and who travel long distance to health facility was higher as compared to children living in households who were a member of health insurance and who travel short distance to
health facility. This study was supported by a study conducted in Egypt, Nigeria and Tanzania.33, 35, 44 This might be due to the fact that households who hadn’t health facilities close to their area of residence and who have not community based health insurance may not access health care services easily.

Moreover, from the child care related factors, vaccinated for rotavirus and measles were associated with diarrhea among under five children. The study revealed that children who were not vaccinated for rotavirus and measles were more risk to experience diarrhea as compared to those children who were vaccinated. This finding was in agreement with the previous study conducted in Ethiopia.45 Measles is a highly contagious disease which disrupts the epithelial cells and suppresses the immune system leading to infection in various organ systems and protein losing enteropathy.46 Similarly, Rotavirus is the most common cause of severe gastroenteritis and diarrhea among young children worldwide.47 Due to this reason, rotavirus vaccine was introduced by WHO in 200648 and after 7 year, our country Ethiopia has begun to give rotavirus vaccine in 2013.17 Once more, from the hygiene and sanitation related factors, unsafe disposal of child waste was significantly associated with diarrhea among under five children. Children who were from households who dispose waste unsafely were more likely to develop diarrhea as compared to children who were from households who dispose waste safely. This finding is consistent with the findings in Bangladeshi, Cameroon and sub-Saharan countries (Nigeria, Niger, and Burki-nafaso).37-41 This is because if they don’t disposed any waste materials properly including child’s wastes, children as well as adults are risk for feco-oral diseases through flies.49

Strengths and limitations of the study

Fitting multilevel model using Bayesian approach to get fine estimates of the parameters and considering all the national regional states of Ethiopia by taking large sample size at different time points was the strength of this study. To show trends and to perform decomposition analysis, we can’t get some variables for each survey (for example health insurance, distance to health facility and wealth index).

Conclusion and recommendations

The prevalence of diarrhea was significantly declined over the last sixteen years and the decline was due to difference in coefficients between the surveys. From this, majority of the decline was due to behavioral change of women who hadn’t formal education. Based
on multilevel analysis being twin, age of the child, weight of child at birth, vaccinated for measles and rotavirus, number of under-five children, number of family members, wealth status, distance to health facility, health insurance and child waste disposal method were significantly associated with diarrhea among under five-children in Ethiopia. Therefore Ethiopian government and Ministry of Health should primarily focus on the strengthening and scaling up of behavioral change package strategies of the community to prevent diarrheal disease. Similarly the government should resolve structural related problems that precipitate diarrhea disease of under-five children. The Health Institutions should enforce the communities to implement diarrhea management strategies via the existing health extension packages with greatest tone than the previous by considering those modifiable factors of diarrhea. And also the community should be a member of health insurance, should vaccinate their children based on the national guideline, should practice safe waste disposal methods and implement all the components of health extension packages based on health professional’s order with a greatest tone than the previous trend.

Abbreviations

AOR: Adjusted Odds Ratio; CrI: Credible interval; DHS: Demographic Health Survey; EA: Enumeration Area; EDHS: Ethiopian Demographic and Health Survey; HMC: Hamiltonians Monte Carlo; LOO: Leave-One-Out Cross-Validation; WAIC: Widely Applicable Information Criteria; WHO: World Health Organization.

Declarations

Ethics approval and consent to participate
Not applicable

Consent for Publication
Not applicable

Availability of Data and Materials
The datasets analyzed during the current study are available from the corresponding author upon reasonable request.

Conflict of Interests
The authors declare that they have no competing interests.

Funding
We did not receive any fund for this research.

Authors’ Contribution

YN, AA, AN and TA were involved for this study from the inception to design, acquisition of data, data cleaning, data analysis and interpretation and drafting and revising of the manuscript. TA prepared the final draft of the manuscript. All authors read and approved the final manuscript.

Acknowledgments

We, authors, acknowledge the Demographic and Health Surveys (DHS) Program funded by the U.S. Agency for International Development (USAID) for the accusation of dataset.

References

1. Organization WH, Supply WUJW, Programme SM. Progress on sanitation and drinking water: 2015 update and MDG assessment: World Health Organization 2015.
2. Agegnehu MD, Bewket Zeleke L, Goshu YA, et al. Diarrhea Prevention Practice and Associated Factors among Caregivers of Under-Five Children in Enemay District, Northwest Ethiopia. *J Environ Public Health* 2019;2019:5490716. doi: 10.1155/2019/5490716 [published Online First: 2019/06/20]
3. Mwenda JM, Ntoto KM, Abebe A, et al. Burden and Epidemiology of Rotavirus Diarrhea in Selected African Countries: Preliminary Results from the African Rotavirus Surveillance Network. *The Journal of Infectious Diseases* 2010;202(Supplement_1):S5-S11. doi: 10.1086/653557
4. Organization WH, Unicef. Ending preventable child deaths from pneumonia and diarrhoea by 2025: The integrated Global Action Plan for Pneumonia and Diarrhoea (GAPPD): World Health Organization 2013.
5. Ahmed HM, Mitchell M, Hedt B. National implementation of Integrated Management of Childhood Illness (IMCI): policy constraints and strategies. *Health policy* 2010;96(2):128-33.
6. Jin Y, Mankadi PM, Rigotti JL, et al. Cause-specific child mortality performance and contributions to all-cause child mortality, and number of child lives saved during the Millennium Development Goals era: a country-level analysis. *Global health action* 2018;11(1):1546095.
7. Organization WH. Diarrhoea: why children are still dying and what can be done. 2009
8. Reiner Jr RC, Graetz N, Casey DC, et al. Variation in Childhood Diarrheal Morbidity and Mortality in Africa, 2000–2015. *New England Journal of Medicine* 2018;379(12):1128-38.
9. Troeger C, Forouzanfar M, Rao PC, et al. Estimates of global, regional, and national morbidity, mortality, and aetiologies of diarrhoeal diseases: a systematic analysis for the Global Burden of Disease Study 2015. *The Lancet Infectious Diseases* 2017;17(9):909-48.
10. Gebru T, Taha M, Kassahun W. Risk factors of diarrhoeal disease in under-five children among health extension model and non-model families in Sheko district rural community, Southwest Ethiopia: comparative cross-sectional study. *BMC Public Health* 2014;14(1):395. doi: 10.1186/1471-2458-14-395
11. Degebasa MZ WD, Marama MT. Diarrheal status and associated factors in under five years old children in relation to implemented and unimplemented community-led total sanitation and hygiene in Yaya Gulele. 2017
12. Prevention of diarrhoea in young children: abundant experience in developing countries. *Prescrire international* 1999;8(40):61-3. [published Online First: 2000/06/10]
13. Control CfD, Prevention. Diarrhea: common illness, global killer. USA: Department of Health and Human Services 2015

14. Lanata CF, Fischer-Walker CL, Olascoaga AC, et al. Global causes of diarrheal disease mortality in children< 5 years of age: a systematic review. PLoS one 2013;8(9):e72788.

15. Mashoto KO, Malebo HM, Msisiri E, et al. Prevalence, one week incidence and knowledge on causes of diarrhea: household survey of under-fives and adults in Mkuranga district, Tanzania. BMC Public Health 2014;14(1):985.

16. ICF. TDP. EDHS E. demographic and health survey 2000: key indicators report. . 2000.

17. EDHS E. demographic and health survey 2016: key indicators report. The DHS Program ICF 2016

18. Demographic CE. Health Survey-2011. Central Statistical Agency Addis Ababa. Ethiopia ICF International Calverton, Maryland, USA. 2012, 2016.

19. ICF. TDP. EDHS E. demographic and health survey 2005: key indicators report. . 2005

20. ICF. TDP. EDHS E. demographic and health survey 2011: key indicators report. . 2011

21. Ethiopia D. Final report Central Statistical Agency Addis Ababa: Ethiopia, 2011.

22. Powers DA, Yoshioka H, Yun M-S. mvdcmp: Multivariate decomposition for nonlinear response models. The Stata Journal 2011;11(4):556-76.

23. Goldstein H. Multilevel statistical models: John Wiley & Sons 2011.

24. Bürkner P-C. Advanced Bayesian multilevel modeling with the R package brms. arXiv preprint arXiv:170511123 2017

25. Snijders TA, Bosker RJ. An introduction to basic and advanced multilevel modeling. Sage, London WONG, GY, y MASON, WM (1985): The Hierarchical Logistic Regression Model for Multilevel Analysis, Journal of the American Statistical Association 1999;80(5):13-524.

26. Kawo KN, Asfaw ZG, Yohannes N. Multilevel Analysis of Determinants of Anemia Prevalence among Children Aged 6–59 Months in Ethiopia: Classical and Bayesian Approaches. Anemia 2018;2018

27. Kynn M. Eliciting expert knowledge for Bayesian logistic regression in species habitat modelling. Queensland University of Technology, 2005.

28. Hoffman MD, Gelman A. The No-U-Turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research 2014;15(1):1593-623.

29. Watanabe S. Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory. Journal of Machine Learning Research 2010;11(Dec):3571-94.

30. Emina JB, Kandala N-B. Accounting for recent trends in the prevalence of diarrhoea in the Democratic Republic of Congo (DRC): results from consecutive cross-sectional surveys. BMJ open 2012;2(6):e001930.

31. Legesse H, Degefie T, Hiluf M, et al. National scale-up of integrated community case management in rural Ethiopia: implementation and early lessons learned. Ethiop Med J 2014;52(Suppl 3):15-26.

32. Miller NP, Amouzou A, Hazel E, et al. Assessment of the impact of quality improvement interventions on the quality of sick child care provided by Health Extension Workers in Ethiopia. Journal of global health 2016;6(2)

33. Barakat A, Halawa EF. Household costs of seeking outpatient care in Egyptian children with diarrhea: a cross-sectional study. Pan African Medical Journal 2013;14(1)

34. Bawankule R, Singh A, Kumar K, et al. Disposal of children’s stools and its association with childhood diarrhea in India. BMC public health 2017;17(1):12.

35. Pinzón-Rondón ÁM, Zárate-Ardila C, Hoyos-Martínez A, et al. Country characteristics and acute diarrhea in children from developing nations: a multilevel study. BMC Public Health 2015;15(1):811.

36. Fayfman M, Flint K, Srinivasan S. Obesity, Motility, Diet, and Intestinal Microbiota-Connecting the Dots. Current gastroenterology reports 2019;21(4):15. doi: 10.1007/s11894-019-0680-y [published Online First: 2019/03/20]
37. Tambe AB, Nzefa LD, Nicoline NA. Childhood diarrhea determinants in sub-Saharan Africa: a cross sectional study of Tiko-Cameroon. *Challenges* 2015;6(2):229-43.
38. Caruso B, Stephenson R, Leon JS. Maternal behavior and experience, care access, and agency as determinants of child diarrhea in Bolivia. *Revista Panamericana de Salud Pública* 2010;28:429-39.
39. Bado AR, Susuman AS, Nebie EI. Trends and risk factors for childhood diarrhea in sub-Saharan countries (1990–2013): assessing the neighborhood inequalities. *Global health action* 2016;9(1):30166.
40. Messelu Y, Trua K. Application of multilevel binary logistic regressions analysis in determining risk factors of diarrheal morbidity among under five children in Ethiopia. *Public Health Research* 2016;6(4):110-18.
41. Melese B, Paulos W, Astawesegn FH, et al. Prevalence of diarrheal diseases and associated factors among under-five children in Dale District, Sidama zone, Southern Ethiopia: a cross-sectional study. *BMC public health* 2019;19(1):1235.
42. Mihrete TS, Alemie GA, Teferra AS. Determinants of childhood diarrhea among underfive children in Benishangul Gumuz regional state, north West Ethiopia. *BMC pediatrics* 2014;14(1):102.
43. Woldu W, Bitew BD, Gizaw Z. Socioeconomic factors associated with diarrheal diseases among under-five children of the nomadic population in Northeast Ethiopia. *Tropical medicine and health* 2016;44(1):40.
44. Kanté AM, Gutiérrez HR, Larsen AM, et al. Childhood illness prevalence and health seeking behavior patterns in rural Tanzania. *BMC public health* 2015;15(1):951.
45. Azage M, Kumie A, Worku A, et al. Childhood diarrhea in high and low hotspot districts of Amhara Region, northwest Ethiopia: a multilevel modeling. *Journal of health, population and nutrition* 2016;35(1):13.
46. Rybolt A, Laughon B, Greenough III W, et al. Protein-losing enteropathy associated with Clostridium difficile infection. *The Lancet* 1989;333(8651):1353-55.
47. Madhi SA, Cunliffe NA, Steele D, et al. Research Article (New England Journal of Medicine) Effect of human rotavirus vaccine on severe diarrhea in African infants. *Malawi Medical Journal* 2016;28(3):108-14.
48. https://www.cdc.gov/vaccines/pubs/pinkbook/downloads/rota.pdf.
49. Cairncross S, Hunt C, Boisson S, et al. Water, sanitation and hygiene for the prevention of diarrhoea. *International journal of epidemiology* 2010;39(suppl_1):i193-i205.