The Relationship Between Acculturation and Infant Feeding Styles in a Latino Population

Liz D. Dancel,1 Eliana Perrin,2 H. Shonna Yin,3 Lee Sanders,4 Alan Delamater,4 Krista M. Perreira,5 Andrea B. Bronaugh,6 Svetlana Eden,7 Ayumi Shintani,7 and Russell L. Rothman6

Objective: To assess the relationship between parental acculturation and infant feeding style in a sample of Latino parents.

Methods: A post hoc analysis was performed using data from an ongoing four-site randomized controlled trial to promote early childhood obesity prevention. Cross-sectional data of parent–child dyads at the 12-month well-child visit who self-reported their Latino ethnicity were analyzed. The Short Acculturation Scale for Hispanics (SASH) and a subset of the Infant Feeding Style Questionnaire (IFSQ) that assessed four primary feeding styles were administered. SASH level (low vs. high) with each feeding style was compared by analyses.

Results: Complete SASH data were available for 398 of 431 Latino dyads. Median SASH score was 1.8 (IQR 1.4–2.7); 82% of participants had low acculturation (score < 3). Of the nine outcome variables, four were significantly associated with SASH: “Laissez-Faire/attention” (AOR: 2.3; 95% CI: 1.06–5.13; P = 0.004), “Laissez-Faire/diet quality” (AOR: 3.9; 95% CI: 1.7–8.75; P = 0.005), “Pressuring as soothing” (AOR: 3.6; 95% CI: 1.63–8.05; P = 0.007), and “Restrictive/diet quality” (AOR: 0.4; 95% CI: 0.19–0.94; P = 0.031).

Conclusions: Latino parents with lower acculturation were more likely than those with higher acculturation to endorse feeding styles that are associated with child obesity. Further research is needed to determine why acculturation and feeding style relate.

Introduction

The obesity epidemic continues to be a significant healthcare issue. According to recent data from the National Health and Nutrition Examination Survey (NHANES), children between 2 and 19 years of age have a prevalence of 31% and 16% of overweight (BMI of ≥85th percentile for age and sex) and obesity (BMI > 95th percentile), respectively (1), with rates highest among Hispanic and non-

1 Pediatric Gastroenterology, Greenville Health System, University of South Carolina, Greenville, Greenville, South Carolina, USA 2 Pediatrics, University of North Carolina, Chapel Hill, North Carolina, USA 3 Pediatrics, New York University, New York, New York, USA 4 Pediatrics, University of Miami, Miami, Florida, USA 5 Public Policy, University of North Carolina, Chapel Hill, North Carolina, USA 6 Center for Health Services Research, Vanderbilt University Medical Center, Nashville, Tennessee, USA. Correspondence: Russell L. Rothman (russell.rothman@vanderbilt.edu) 7 Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA.

Funding agencies: All phases of this study were supported by the Eunice Kennedy Shriver Institute for Child Health and Development, NICHD (R01 HD049794), with supplemental funding from CDC and OBSSR (Grant #R01HD059794-04S1, R01HD059794-04S2). Parts of the study were supported by the National Institutes of Health’s National Center for Advancing Translational Sciences through its Clinical and Translational Science Awards Program (CTSA), grants #UL1TR000445, and UL1TR0025747. Dr. Yin is supported by a grant under the Robert Wood Johnson Foundation Physician Faculty Scholars Program and HRSA (12-191-1077- Academic Administrative Units in Primary Care). Funding for the development of the Spanish IFSQ was provided by the Center for Excellence in Children’s Nutrition sponsored by Mead Johnson and Company and The University of North Carolina’s Program on Ethnicity, Culture and Health Outcomes (ECHO). Additional support was provided by the Carolina Population Center (R24 HD050924).

Disclosure: Dr. Perreira reports grants from National Heart, Lung, and Blood Institute, personal fees from Urban Institute, and grants from Robert Wood Johnson Foundation outside the submitted work. The remaining authors have no conflicts of interest to disclose.

Author contributions: Dr. Dancel helped conceptualize and design the study, helped develop the analysis plan, drafted the initial manuscript, and reviewed and revised the manuscript according to feedback. Drs. Perrin, Yin, Sanders, and Delamater helped conceptualize and design the study, helped to design the data collection instruments, helped to develop data collection protocols at all four sites, supervised data collection at one site, helped to develop the analysis plan, and reviewed and revised the manuscript. Ms. Eden helped in developing the analysis plan, helped to analyze the data, and reviewed and revised the manuscript. Dr. Shintani supervised the development of the analysis plan, supervised the analysis of the data, and reviewed and revised the manuscript. Dr. Rothman helped to conceptualize and design the study, helped to design the data collection instruments, helped to develop data collection protocols at all four sites, supervised data collection at one site, helped to develop the analysis plan, and reviewed and revised the manuscript, and all authors approved the final manuscript as submitted.

Received: 3 June 2014; Accepted: 10 November 2014; Published online 9 March 2015. doi:10.1002/oby.20986
Hispanic African–American children (2). In the preschool population specifically (ages 2–5 years), the prevalence is 24% and 11%, respectively (1). Obesity prevention remains an important area of investigation as children who are overweight by the age of 2 years are two to five times more likely to become overweight or obese during their adolescent years (3). It is hoped that by focusing efforts on young children, healthy behaviors of diet and physical activity will be formed early and will therefore be sustained throughout childhood and adolescence.

Childhood obesity in the Latino population remains an ongoing focus of attention given their disproportionately high rates of obesity compared to non-Hispanic whites. Prior studies investigating the relationship between acculturation and health outcomes and obesity have produced conflicting results (4). While the definition of acculturation is complex, it has traditionally been defined as the process by which the attitudes, values, beliefs, and behaviors of one culture are adopted by another culture (5). The measurement of acculturation can be challenging. In addition to assessing primary language spoken, previously described studies have measured acculturation using place of birth and years of residence in the United States (6). However, the validity of these measures as proxies for a very complex construct have been criticized (7).

One of the ways in which acculturation may influence the development of child obesity is through parental feeding styles. The complex relationship between caregiver and child with respect to responsiveness to hunger and satiety cues and feeding practices has been associated with weight outcomes (8). Specific parental feeding styles, including pressuring, controlling, responsive, and indulgent, have been studied in relation to food intake and weight status in children. (9–11) Even though the rate of overweight and obesity is increasing faster in the African–American and Latino populations, most research on feeding styles and their link to obesity has been conducted in school-aged white children. (12–13)

Previous studies examining the relationship between acculturation and feeding styles have often been limited by the following: (1) poor measure of acculturation (2), inadequate assessment of dietary behaviors, and (3) focus on older children. The purpose of this article is to assess the relationship between parental acculturation and infant feeding styles at 12 months of age in a sample of Latinos.

Methods

Study sample

The Greenlight study is an ongoing multicenter, cluster randomized controlled trial (RCT) evaluating the effectiveness of health communication training and the use of a low-literacy/low-numeracy educational toolkit to prevent obesity in infants and children (14). Caregiver–infant dyads from under-resourced communities are enrolled at 2 months of age and followed at each well-child visit until they reach the age of 2 years. Dyads were enrolled from four participating academic pediatric primary care clinics [affiliated with Vanderbilt University, New York University (NYU), the University of Miami, and the University of North Carolina-Chapel Hill (UNC)], with two sites implementing the obesity prevention intervention and the other two sites acting as an attention control with implementation of an injury prevention program.

Inclusion criteria for the caregiver–infant dyad were as follows: infant between the ages of 6 and 16 weeks and presenting for the 2-month well-child visit, caregiver’s primary language of English or Spanish, and caregiver agreeing to bring the child to all well-child visits until he reaches the age of 2 years. Exclusion criteria related to the infant were as follows: prematurity less than 34 weeks gestational age or birth weight less than 1500 grams, weight for length of less than the 3rd percentile at the 2-month well-child visit, or prior diagnosis of failure to thrive or other known medical condition with associated feeding or nutrition issues. Exclusion criteria related to the caregiver were as follows: age < 18 years, mental or neurologic condition that could impair his/her ability to participate, and poor visual acuity (defined as worse than 20/50 using the Rosenbaum Pocket Screener) at the time of enrollment.

Written and verbal informed consent was obtained from each caregiver in his/her primary language (English or Spanish only). This study was approved by the Institutional Review Boards from the four participating academic centers.

Measures

Infant baseline data collected upon enrollment included race, birth history, medical history, health insurance status, and feeding status. Caregiver demographic data included self-reported age, country of origin, primary language, race, ethnicity, household composition, employment, income level, and education level. Relevant to this particular paper, the following measures were also obtained.

Short acculturation scale for hispanics (SASH). This validated 12-item measure that assesses language preference for personal, social, and media use (15) was administered at the time of enrollment in the caregiver’s primary language (English or Spanish) to all caregivers who self-identified as Latino. Our study used the SASH as it is a more robust measure of acculturation than primary language spoken or years of residence in the United States as used by prior studies. Example items from this questionnaire include the following: “In general, what language(s) do you read and speak?” “What language(s) do you usually speak with your friends?” “In what language(s) are the TV programs you usually watch?” Answer choices were on a 5-point scale: 1 = only Spanish, 2 = Spanish better than English, 3 = both equally, 4 = English better than Spanish, and 5 = only English. A mean acculturation score was calculated for each participant with a range score of 1–5. Low acculturation was defined by the scale developers as having a mean SASH score < 2.99 (15).

Infant Feeding Style Questionnaire (IFSQ). Four domains of the IFSQ were administered in the caregiver’s primary language (English or Spanish) during the 12-month well-child visit. The English version of the IFSQ was developed and validated in a group of African–American children aged between 3 and 20 months (16). This measure assesses behaviors and beliefs on five main feeding styles and their subdomains: “Laissez-Faire” (diet quality, attention), “Pressuring” (pressuring to finish, pressuring with cereal, pressuring as soothing), “Restrictive” (amount, diet quality), “Responsive” (satiety, attention), and “Indulgence” (permissive, coaxing, soothing, and pampering). For the Greenlight study, the “Indulgence” domain was excluded due to the paucity of data relating to its validity as well as the overall low prevalence of these behaviors in the original development paper (16).

The remaining four domains of the IFSQ that were administered included 51 items in nine subdomains that comprised primary
outcomes. Each item of the IFSQ is assessed using a 5-point Likert scale with the following response options: disagree/never, slightly disagree/seldom, neutral/half of the time, slightly agree/most of the time, agree/always. Each IFSQ subdomain score was calculated by taking the mean of all items in each subdomain with a higher score representing endorsement of those behaviors and beliefs (range score of 1–5). Sample items from each subdomain are listed in Table 1. Spanish translation of the IFSQ was completed as part of the Latino Infant Nutrition Study (17). The original questionnaire was first translated to Spanish by a native Spanish speaker, then later back translated to English by a bilingual researcher. Any discrepancies between the translations were discussed with a team of researchers who were fluent in both Spanish and English. Data from the Greenlight Study are currently being used to assess whether there is measurement equivalence between the English and Spanish versions.

Statistical analyses
This analysis was restricted to only those families who self-reported Latino ethnicity. Patient characteristics were summarized using median and interquartile range (IQR) for continuous and ordinal variables, and proportions for categorical variables. Unadjusted analysis comparing SASH level (low vs. high) with key patient characteristics, and each of the nine outcomes of the IFSQ was performed using Wilcoxon rank sum tests.

Proportional odds logistic regression models were used to examine the association of SASH score with each of the nine outcomes of the IFSQ. Each model was adjusted for an a priori defined list of variables including patient age, patient sex, caregiver age, caregiver education (less than high school, high school graduate, partial college, college or higher), Women, Infants, and Children (WIC) program status (Yes, No), income (less than $10,000, $10,000–19,999, $20,000–39,999, $40,000 or more), and study site (Miami, UNC, Vanderbilt, NYU). Proportionality of odds assumption was assessed using a graphical method (18) and held reasonably well for the main predictor of interest. To check for possible multicollinearity (i.e., WIC status and income), variance inflation factor (VIF) was assessed. The maximum VIF value did not exceed a recommended threshold of 10 (19). The variables such as patient age, caregiver’s age, and SASH were modeled as nonlinear terms implemented by restricted cubic splines with three knots (18). Results were reported as adjusted odds ratios (AOR) with 95% confidence intervals (95% CI). Because SASH was included in the adjusted analysis as a continuous and a nonlinear variable, to report the effect of SASH, two points of comparison had to be chosen. We chose to compare subjects with a SASH score of 1 to subjects with a SASH score of 3. Therefore, in this article, an AOR greater than one means that a subject with a SASH score of 1 is more likely to have a higher outcome score compared to subjects with a SASH score of 3. Subjects with missing outcomes or covariate values were excluded from the analyses.

Findings with a two-sided p < 0.05 were considered statistically significant. All statistical analyses were performed using statistical package R statistical software version 2.15.0 (2012-03-30, http://www.r-project.org).

Results
Enrollment of parent–child dyads into the Greenlight study is shown in Figure 1. Of the 865 dyads enrolled, 431 caregivers (49.8%) self-identified as Latino with complete SASH data available for 398 caregivers (46%). Their characteristics with stratification by acculturation level are summarized in Table 2. Ninety-six percent of caregivers and 50% of infants were female; greater than 90% of the infants were enrolled in the WIC program and had Medicaid as their insurance. Almost half (46.4%) of the caregivers were descendants from Mexico. Median SASH score was 1.8 (IQR 1.4-2.7, range 1–5) with 328 participants (82%) categorized as having low acculturation (SASH < 2.99). There were no significant differences in patient age, weight, caregiver age, or marital status between acculturation groups. Significantly, more caregivers with low acculturation had less than a high school education (45.1% vs. 21.4%) and made less than $10,000 in annual household income (39.6% vs. 17.6%). For the IFSQ completed by the Latino subset, Cronbach’s alpha was calculated for each of the nine subdomains with “Laissez-Faire/attention” having an alpha of 0.37 and “Laissez-Faire/diet quality” an alpha of 0.51. All other subdomains had an alpha of > 0.6.

The unadjusted analysis for the association between SASH and IFSQ score at the 12-month well-child visit is shown in Table 3. Complete IFSQ data were available for 284 participants (32.8%). All nine subdomains except for “Restrictive/amount consumed” and “Responsive/attention and interactions” were statistically significantly different between the low-acculturation and high-acculturation groups. Low acculturation was more associated with behaviors and beliefs in the “Laissez-Faire/attention,” “Laissez-Faire/diet quality,” “Pressuring to finish,” “Pressuring with cereal,” and “Pressuring as soothing”
OBSERVATIONAL STUDY DESIGN

The adjusted analysis for the association between SASH and IFSQ score at the 12-month well-child visit is shown in Table 4. After adjusting for patient age, patient sex, caregiver age, caregiver education, WIC status, income, and study site, four of the nine parent feeding styles remained significantly associated with acculturation: “Laissez-Faire/attention” (AOR: 2.3; 95% CI: 1.06-5.13; P = 0.004), “Laissez-Faire/diet quality” (AOR: 3.9; 95% CI: 1.7-8.75; P = 0.005), “Pressuring as soothing” (AOR: 3.6; 95% CI: 1.63-8.05; P = 0.007), and “Restrictive/diet quality” (AOR: 0.4; 95% CI: 0.19-0.94; P = 0.031). Compared to parents with high acculturation, those with low acculturation were more likely to exhibit “Laissez-Faire/attention” behaviors, “Laissez-Faire/diet” behaviors, and “Pressuring as soothing” behaviors, and less likely to exhibit “Restrictive/diet quality” behaviors.

Discussion

Results from this cross-sectional analysis of 12-month-old Latino children show that those caregivers with low acculturation were more likely to endorse infant feeding styles that are more commonly associated with obesogenic behaviors and beliefs than did those with high acculturation. Specifically, after adjusting for various socioeconomic factors that may confound our results, low acculturation was significantly associated with a more Laissez-Faire feeding style, more “Pressuring to soothe” behaviors, and less “Restriction” with respect to diet quality, all of which have been shown to be associated with increased weight in prior studies. (20–22)

This relationship between parental acculturation and feeding styles is a complex and dynamic one, often confounded by culture, geography, community, and other factors. An observational study by Sussner et al was one of the first to demonstrate an association between language use of low-income Hispanic mothers, as defined as either exclusive or nonexclusive use of their native language, and BMI of their children at 2 and 3 years of age (3). It was found that children at 24 months of age were at higher risk of being overweight if there was maternal exclusive native language use; however, there was no association at 36 months of age. Other measures of acculturation such as birthplace (US or foreign-born) and years of residence in the United States (less than or greater than 8 years) were not significantly associated with BMI (3). In a study of WIC participants, acculturation was measured in the Spanish-speaking participants by a single item—main language spoken in the home (23). Although the study was able to elicit differences in feeding behaviors between English- and Spanish-speaking participants, it failed to acknowledge the complexity of acculturation and its many factors as it relates to health. For example, acculturation has been associated with negative health effects, such as substance abuse and birth outcomes (e.g., prematurity, low birth weight), positive health effects, such as likelihood of preventive health care utilization, or many times mixed or no health effects (6). Unfortunately, the variability in how acculturation is measured in these studies makes it difficult for conclusions to be drawn and comparisons to be made.

Although a commonly used measure of acculturation continues to be primary language spoken, some studies have attempted to use a more robust measure using multi-item questionnaires. In a study of older children of recent immigrants, Tovar et al assessed acculturation on a 10-point Likert scale with regard to overall daily life, dietary intake, and physical activity (24). Using the Caregiver’s Feeding Styles Questionnaire, most mothers were categorized as having a high-demanding/low-responsive feeding style (many rules and little regard to the child’s cues) or low-demanding/high-responsive feeding style (few rules and more permissive behavior), the latter of which was positively associated with weight in older children after adjusting for ethnicity and acculturation (24).

Other proxies of acculturation, such as length of time spent in the United States, have been shown to be associated with breastfeeding initiation and duration, an area of interest for researchers given its relationship to future overweight and obesity in children (25). One study showed that women who had lived in the United States for a shorter duration were more likely to have reported breastfeeding their infant at 2 months of age than women who lived in the United States longer (25). These results were in keeping with previously published data that low acculturation was associated with increased breastfeeding practices. (26–29)

Specific feeding styles, such as indulgent, uninvolved, or permissive practices, have been shown to be more common among Latino parents than non-Latino parents (20). These permissive feeding styles have
	Combined, N = 398 (%)	SASH < 3, N = 328 (%)	SASH ≥ 3, N = 70 (%)	P value	
Patient’s sex					
Male	50.5	49.1	57.1	0.221^a	
Female	49.5	50.9	42.9		
Patient’s age, months [median (IQR)]	12.3 (12.1-12.8)	12.3 (12.1-12.7)	12.3 (12.1-12.8)	0.252^b	
Patient weight, kg	9.8 (8.9-10.6)	9.6 (8.8-10.5)	10.1 (9.2-10.7)	0.084^b	
Caregiver’s sex					
Male	3.8	3.7	4.3	0.802^a	
Female	96.2	96.3	95.7		
Caregiver’s age, years [median (IQR)]	27.8 (23.7-32)	27.3 (23.8-32.3)	25.9 (22.4-30.6)	0.053^b	
Patient’s insurance				<0.001^a	
Medicaid	89.7	92.4	77.1		
Private	6.3	3.4	20		
None	4	4.3	2.9		
WIC status				<0.001^a	
No WIC	8.6	6.4	18.6		
WIC	91.4	93.6	81.4		
Annual income				<0.001^a	
<$10,000	35.8	39.6	17.6		
$10,000-$19,999	32.6	34	26.5		
$20,000-$39,999	21.5	20.1	27.9		
$40,000 or more	10.1	6.3	27.9		
Caregiver education				<0.001^a	
Less than high school	41	45.1	21.4		
High school graduate	30.9	31.4	28.6		
Partial college	16.6	14.9	24.3		
College or higher	11.6	8.5	25.7		
Marital status	196			0.217^a	
Single, never married	16.8	15.2	24.2		
Living with partner	33.7	35.1	27.3		
Married	44	45.7	36.4		
Separated	3.8	2.6	9.1		
Divorced	1.6	1.3	3		
Widowed	0	0	0		
Region of origin	429				
USA	17				
Mexico	46.4				
Central America	16.6				
South America	11.7				
Caribbean	7.5				
Other	0.5				
SASH [median (IQR)]	398	1.8 (1.4-2.7)	1.7 (1.3-2.1)	3.5 (3.2-4)	<0.001^b
Site	431				
Miami	15.8	14	24.3		
UNC	20.9	22.3	14.3		
Vanderbilt	19.3	19.2	20		
NYU	44	44.5	41.4		

^aPearson chi-square test.
^bWilcoxon test.
been associated with consumption of more energy-dense diets and less intake of fruits and vegetables (9). In a sample of 659 parents of 1- to 5-year-olds with over half of them Latino, those who spoke Spanish primarily were more likely to use food to calm their children (30). Interestingly, there were no significant differences between English-speaking Latinos and White parents suggesting a role for acculturation status rather than race or ethnicity alone (30).

Our study has several strengths. Our sample population of primarily Latino women was from geographically diverse areas with four study sites serving as our reference base. Recruitment from pediatric residency continuity clinics which often serve low-income and minority patients allowed us to focus our attention on the population in which we were most interested. While those who self-identified as Latino were collectively analyzed as a group, there were participants from various countries of origin. Those who were descendants from Mexico comprised the largest subgroup, followed by US-born Latinos, Central American, South American, and Caribbean. While recognizing that acculturation is likely a bidirectional process that is complex and not easily defined, by using the SASH, we were able to measure acculturation in a more robust way given it is a multi-item questionnaire factoring in personal, social, and media interaction. We felt that this measure would better characterize acculturation rather than years spent in the United States or primary language spoken alone. Finally, the IFSQ strengthened our study, as this measure is fairly comprehensive in evaluating both behaviors and beliefs of parental feeding styles in infants and young children.

There are also several limitations. First, we performed a cross-sectional analysis; therefore, only associations are examined and conclusions regarding causation cannot be drawn. Second, although there were 431 caregiver–infant dyads that self-identified as Latino, SASH data were only available on 398 of them at study enrollment. IFSQ data at 12 months of age were complete for only 284 dyads, and thus, attrition was an issue. In addition, nearly, all of our participants were of low socioeconomic status making the ability to generalize to all Latinos difficult. While there were representatives from various countries of origin, analyses were carried out on the group as a whole. It would be beneficial for future studies to assess this relationship between the different groups (descendants from Mexico vs. others; U.S-born vs. foreign-born; time spent in the US). The IFSQ was previously found valid and reliable in a low-income African–American population but has not yet been validated in a Latino population (16). Except for the “Laissez-Faire/attention” and “Laissez-Faire/diet quality” feeding styles, reliability scores were fairly good in our sample (Cronbach’s alpha between 0.63 and 0.79). The difference in internal reliability may be due to the Spanish translation process of the IFSQ as there may have been subtle differences between the two versions administered. In addition, both the SASH and the IFSQ are self-reported measures and therefore may not represent actual beliefs and behaviors as the potential for social desirability bias may be present. Finally, while we showed an association between acculturation and the IFSQ, we recognize that this may or may not translate to actual differences in weight status.

Still, the strong observed association between acculturation and infant feeding styles may help inform clinical and community efforts to prevent childhood obesity and improve community health in the Latino population. Child obesity prevention efforts may ultimately be more beneficial when tailored to acculturation status and specific feeding practices endorsed by caregivers. Rather than providing generalized recommendations for healthy feeding practices to this.

TABLE 3 Unadjusted analyses for the association between SASH and IFSQ score at the 12-month well-child visit

Outcome	Combined, N = 284	SASH < 3, N = 236	SASH ≥ 3, N = 48	P value*
Laissez-Faire, attention	1.8 (1.2-2.2)	1.8 (1.4-2.2)	1.4 (1-1.9)	<0.001
Laissez-Faire, diet quality	1.8 (1.5-2.3)	1.8 (1.5-2.5)	1.5 (1.2-2.3)	0.031
Pressuring to finish	2.5 (1.9-3)	2.5 (1.9-3.1)	2.2 (1.8-2.6)	0.029
Pressuring with cereal	1.8 (1.4-2.6)	2 (1.6-2.6)	1.4 (1-2.2)	<0.001
Pressuring as soothing	1.8 (1.2-2.8)	1.8 (1.2-2.8)	1.5 (1-2.1)	0.019
Restrictive, amount consumed	4 (3-4.5)	4 (3-4.5)	3.9 (2.8-4.2)	0.18
Restrictive, diet quality	3.9 (3.3-4.4)	3.7 (3.2-4.3)	4.4 (3.5-5)	0.005
Responsive, satiety and hunger	4.3 (3.9-4.4)	4.1 (3.9-4.4)	4.4 (4.1-4.9)	0.002
Responsive, attention and interactions	4 (3.2-4.5)	4 (3.2-4.6)	4 (3-4.6)	0.792

Median (IQR).

*Wilcoxon rank sum test.

TABLE 4 Adjusted analyses for the association between SASH and IFSQ score at the 12-month well-child visit

Outcome	Adjusted OR (95% CI)	P valuea
Laissez-Faire, attention	2.33 (1.06-5.13)	0.004
Laissez-Faire, diet quality	3.86 (1.7-8.75)	0.005
Pressuring to finish	1.22 (0.56-2.65)	0.5
Pressuring with cereal	1.69 (0.78-3.66)	0.115
Pressuring as soothing	3.62 (1.63-8.05)	0.007
Restrictive, amount consumed	0.79 (0.36-1.74)	0.565
Restrictive, diet quality	0.43 (0.19-0.94)	0.031
Responsive, satiety and hunger	0.54 (0.24-1.2)	0.065
Responsive, attention and interactions	0.89 (0.4-2.01)	0.96

*aComparing SASH score of 1 to SASH score of 3.
population, more consistent and positive change may arise when considering one’s cultural context and acculturation status. From a public health perspective, providing effective yet culturally sensitive education and counseling for obesity prevention is extremely important for this at-risk population. Further research on the sociocultural context as it relates to feeding practices is needed to evaluate the effect of acculturation and infant feeding styles on future overweight and obesity in Latino children.

Acknowledgments

We thank Dr. Dancel, Dr. Perrin, DR. Yin, Dr. Sanders, Dr. Delamater, Dr. Perreira, Ms. Bronaugh, Ms. Eden, Dr. Shintani, and Dr. Rothman for their contribution to this study.

© 2015 The Obesity Society

References

1. Skinner AC, Skelton JA. Prevalence and trends in obesity and severe obesity among children in the United States. JAMA Pediatr 2014;168:561-566.
2. Ogden CL, Carroll MD, Kit BK et al. Prevalence of childhood and adult obesity in the United States, 2011-2012. JAMA 2014;311:806-814.
3. Suoser KM, Lindsay AC, Peterson KE. The influence of maternal acculturation on child body mass index at age 24 months. J Am Diet Assoc 2009;109:218-225.
4. Ciampa PJ, White RO, Perrin EM et al. The association of acculturation and health literacy, numeracy and health-related skills in Spanish-speaking caregivers of young children. J Immigr Minor Health 2013;15:492-498.
5. Abraido-Lanza AF, Armbriister AN, Florez KR et al. Toward a theory-driven model of acculturation in public health research. Am J Public Health 2006;96:1342-1346.
6. Lara M, Gamboa C, Kahramanian MI et al. Acculturation and Latino health in the United States: A review of the literature and its sociopolitical context. Annu Rev Public Health 2005;26:367-397.
7. Ellison J, Jandorf L, Duhamel K. Assessment of the Short Acculturation Scale for Hispanics (SASH) among low-income, immigrant Hispanics. J Cancer Educ 2011;26:478-483.
8. Gross RS, Fierman AH, Mendelsohn AL et al. Maternal perceptions of infant hunger, satiety, andpressuring feeding styles in an urban Latino WIC population. Acad Pediatr 2010;10:29-35.
9. Hoerr SL, Hughes SO, Fisher JO et al. Associations among parental feeding styles and children’s food intake in families with limited incomes. Int J Behav Nutr Phys Act 2009;6:55.
10. Powers SW, Chamberlin LA, van Schack KB et al. Maternal feeding strategies, child eating behaviors, and child BMI in low-income African-American preschoolers. Obesity. 2006;14:2026-2033.
11. Thompson AL, Adair LS, Bentley ME. Pressuring and restrictive feeding styles influence infant feeding and size among a low-income African-American sample. Obesity. 2013;21:562-571.
12. Birch LL, Fisher JO, Grimm-Thomas K et al. Confirmatory factor analysis of the child feeding questionnaire: A measure of parental attitudes, beliefs and practices about child feeding and obesity proneness. Appetite 2001;36:201-210.
13. Burdette HL, Whitaker RC, Hall WC et al. Maternal infant-feeding style and children’s adiposity at 5 years of age. Arch Pediatr Adolesc Med 2006;160:513-520.
14. Sanders LM, Perrin EM, Yin HS et al., on behalf of the Greenlight Study Team. “Greenlight Study”: A controlled trial of low-literacy early childhood obesity prevention. Pediatrics 2014;133:e1724-e1737.
15. Marin G, Sabogal F, VanOss Marin B et al. Development of a short acculturation scale for Hispanics. Hisp J Behav Sci 1987;9:183-205.
16. Thompson AL, Mendez MA, Borja JB et al. Development and validation of the infant feeding style questionnaire. Appetite 2009;53:210-221.
17. Toledo L, Perreira K, Stabbs E et al. Salud Infantil: Understanding and Promoting the Nutritional Health of Latino Infants. Chapel Hill, NC: Carolina Population Center. 2009.
18. Harrell Jr. F. Regression modeling strategies. New York: Springer-Verlag; 2001.19.
19. Kutner MH, Nachtsheim CJ, Neter J. Applied linear regression models. 4th Edition, Mcgraw-Hill Irwin, 2004.
20. Hughes SO, Power TG, Fisher JO et al. Revisiting a neglected construct: Parenting styles in a child-feeding context. Appetite. 2005;44:83-92.
21. Farrow CV, Blissett J. Controlling feeding practices: cause or consequence of early child weight? Pediatrics 2008;121:e164-e169.
22. Gross RS, Mendelsohn AL, Fierman AH et al. Maternal controlling feeding styles during early infancy. Clin Pediatr 2011;50:1125-1133.
23. Seth JG, Evans AE, Harris KK et al. Preschooler feeding practices and beliefs: differences among Spanish- and English-speaking WIC clients. Fam Community Health 2007;30:257-270.
24. Tovar A, Hennessy E, Pirie A et al. Feeding styles and child weight status among recent immigrant mother-child dyads. Int J Behav Nutr Phys Act 2012;9:62.
25. Chapman DJ, Perez-Escamilla R. Acculturative type is associated with breastfeeding duration among low-income Latinos. Matern Child Nutr. 2013;9:188-198.
26. Harley K, Stamm NL, Eskenazi B. The effect of time in the U.S. on the duration of breastfeeding in women of Mexican descent. Matern Child Health J 2007;11:119-125.
27. Gibbons-Davis CM, Brooks-Gunn J. Couples’ immigration status and ethnicity as determinants of breastfeeding. Am J Public Health 2006;96:641-646.
28. Celi AC, Rich-Edwards JW, Richardson MK et al. Immigration, race/ethnicity, and social and economic factors as predictors of breastfeeding initiation. Arch Pediatr Adolesc Med 2005;159:255-260.
29. Singh GK, Kogan MD, Dee DL. Nativity/immigrant status, race/ethnicity, and socioeconomic determinants of breastfeeding initiation and duration in the United States, 2003. Pediatrics 2007;119:S1:S38-S46.
30. Evans A, Seth JG, Smith S, et al. Parental feeding practices and concerns related to child underweight, picky eating, and using food to calm differ according to ethnicity/race, acculturation, and income. Matern Child Health J 2011;15:899-909.