Role of echocardiography for silent cerebrovascular disease

Kenji Matsumoto, Marco R Di Tullio and Shunichi Homma*
Department of Medicine, Columbia University, New York, USA

Abstract
Silent cerebrovascular disease, such as silent brain infarctions and white matter hyperintensities detected on magnetic resonance imaging is frequently observed in the elderly and carries an increased risk of future stroke and dementia. Echocardiography is a widely available and relatively inexpensive imaging modality for detecting of cardioembolic sources. In addition, the associations of abnormal echocardiographic findings with cognitive impairment have been recently shown. Therefore, to understand the association between cardiac abnormalities assessed by echocardiography and silent cerebrovascular disease may provide a cost-effective opportunity to detect abnormalities that may affect the risk of future adverse events, with potential preventative implications. In the present mini review, we highlight the role of echocardiography in silent cerebrovascular disease.

Introduction
Silent cerebrovascular disease (SCD), such as silent brain infarctions (SBI) and white matter hyperintensities (WMH) on magnetic resonance imaging, is frequently observed in elderly [1]. Although often called silent, because it occurs in the absence of clinically apparent neurological symptoms, SCD carries an increased risk of future stroke [2,3] and dementia [4]. As conditions associated with poor brain health represent leading causes of global morbidity and mortality [5], identifying individuals at increased risk of SCD may allow for early and more effective prevention strategies. Echocardiography (both transthoracic (TTE) and transesophageal (TEE)) is a widely available, relatively inexpensive and non-invasive imaging modality that can play an important role for the detection of cardioembolic source for stroke [6]. In addition, the associations of abnormal echocardiographic findings with cognitive impairment have been recently shown [7]. Therefore, to understand the association between cardiac abnormalities assessed by echocardiography and SCD may provide cost-effective opportunities to detect abnormalities that may be acted on to try and decrease the risk of future adverse events.

Left ventricular diastolic function
LV diastolic dysfunction evaluated by transmitral flow velocity and mitral annular tissue Doppler velocity is associated with the presence of SBI [13,16] and WMH [17,18] in community-based studies. The possible mechanism underlying the relationship between diastolic dysfunction and SCD may be multifocal. The early diastolic dysfunction may reflect generalized changes in the vascular system, which could contribute to subclinical atherosclerosis including endothelial dysfunction [13,19]. Moreover, the reduced systemic perfusion and thus impairment of the autoregulation of cerebral blood flow that may occur in LV diastolic dysfunction may affect the progression of WMH [17,20]. On the other hand, an association between LV diastolic dysfunction and SBI was also shown in patients with non-valvular atrial fibrillation [21] and HF [10]. In the advanced diastolic dysfunction observed in those patients, the elevated diastolic filling pressure may lead to blood stasis associated with spontaneous echo contrast and left atrial thrombus formation, which are known risk factors for embolic events [10,22]. Ishikawa et al showed that poor LV diastolic function assessed by TTE was significantly associated with a high prevalence of those left atrial (LA) abnormalities detected by TEE [21].

Left ventricular systolic function
Decreased cerebral blood flow subsequent to low cardiac output [8] and formation of left ventricular (LV) thrombus [9] are two potential pathophysiological mechanisms accounting for SCD in patients with severe systolic heart failure (HF). Previous studies showed that a low LV ejection fraction was independently related to the presence of SCD in HF [10,11]. However, this relationship was not clearly observed in community-based participants whose LV ejection fraction was within the normal range [12-14]. Recently, Russo et al. [14] have shown that the early LV systolic dysfunction detected by lower global longitudinal strain, but not LV ejection fraction, was associated with the presence of SCD. Lower global longitudinal strain, which appears insufficient to result in both significant reduction in cerebral perfusion or be a source of thrombus formation and embolism, might in fact be a sensitive indicator of generalized atherosclerosis [15].

Key words: silent cerebrovascular disease, echocardiography, silent brain infarction
Received: May 01, 2019; Accepted: May 10, 2019; Published: May 13, 2019
several cross-sectional studies [13,26,27]. Furthermore, the association between LV geometric patterns and the prevalence of SCD has been also investigated [28-30]. Nakanishi et al showed that concentric LVH carried the greatest independent risk for both SBI and WMH, followed by eccentric LVH, whereas concentric remodelling was not associated with SCD in the large cohort [29]. On the other hand, Haring et al recently demonstrated that higher LVM in midlife was associated with greater severity of WMH in later life [23]. Overall, it can be said that current evidence supports a strong relationship between LV mass and the presence of SCD.

Left atrial parameters and silent cerebrovascular disease

Several studies showed that LA enlargement is associated with both SBI [31] and WMH [32]. Recently, Russo et al. [33] demonstrated that greater LA volumes and smaller LA reservoir function assessed by real-time three-dimensional echocardiography were associated with SCD in a community-based cohort. Poor LA function can be an expression of long-standing hypertension, LVH, LV diastolic dysfunction and increased filling pressure which may lead to reduce cerebral perfusion [34] and is therefore considered as a powerful marker of cardiovascular diseases [35]. In addition, due to the strong association between increased LA size and incident atrial fibrillation [36], cardioembolism may be the other possible mechanism linking LA dysfunction and SCD. On the other hand, Sugiykota et al found that LA abnormalities such as LA thrombus, spontaneous echo contrast and LA appendage emptying velocity, known risk factors for embolic stroke assessed by TEE, were associated with the presence of SBI in patients with atrial fibrillation [37].

Aortic atherosclerosis and silent cerebrovascular disease

Complex aortic arch plaques (AAP) are considered an important source of thromboembolism and ischemic stroke in the elderly [38]. Accordingly, the association between complex AAP detected by TEE and SBI were shown in patients with atrial fibrillation [37] and HF [10]. Recently, Tugcu et al [39] showed an association of AAP assessed by TEE with WMH in a large community-based cohort. The presence of AAP, strongly associated with arterial stiffness [40], may be also considered as a marker of diffuse and subclinical atherosclerosis.

Other findings

Rodriguez et al. [41] showed an association between left-sided annular or valvular calcification and SCD in a large community-based elderly cohort, although it is still unknown whether such abnormalities are just markers of subclinical atherosclerosis [42,43]. Finally, Di Tullio et al. [44] reported that patent foramen ovale was not associated with SCD as well as future stroke in the general population.

Conclusions

Although the precise underlying mechanisms are unclear, current evidence shows that various cardiac abnormalities detected by echocardiography are associated with the presence of SCD. Therefore, primary prevention strategies resulting in reduced vascular risk-factors may concurrently improve both heart and brain health. Further prospective investigations are needed to refine the role of echocardiography for SCD in clinical settings.

References

1. Smith EE, Saposnik G, Biessels GJ, Doubal FN, Fornage M, et al. (2017) Prevention of Stroke in Patients With Silent Cerebrovascular Disease: A Scientific Statement for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke: 48: e44-e71. [Crossref]
2. Kuller LH, Longstreth WT Jr, Arnold AM, Bernick C, Bryan RN, et al. (2004) White matter hyperintensity on cranial magnetic resonance imaging: a predictor of stroke. Stroke: 35: 1821-1825. [Crossref]
3. Vermeer SE, Hollander M, van Dijk EH, Hofman A, Koudstaal PJ, et al. (2003) Silent brain infarcts and white matter lesions increase stroke risk in the general population: the Rotterdam Scan Study. Stroke: 34: 1126-1129. [Crossref]
4. Debette S, Beiser A, DeCarli C, Au R, Himali JJ, et al. (2010) Association of MRI markers of vascular brain injury with incident stroke, mild cognitive impairment, dementia, and mortality: the Framingham Offspring Study. Stroke: 41: 600-606. [Crossref]
5. Gardiner H, Wright CB, Rundek T, Sacco RL. (2015) Brain health and shared risk factors for dementia and stroke. Nat Rev Neurol 11: 651-657. [Crossref]
6. Nakanishi K, Homma S (2016) Role of echocardiography in patients with stroke. J Cardio Case Rep , 2019. doi: 10.15761/JCCR.1000115
7. Matsumoto K (2019) Role of echocardiography for silent cerebrovascular disease

J Cardio Case Rep , 2019
doi: 10.15761/JCCR.1000115
Volume 2: 2-3
22. Doukkly R, Garcia-Sayan E, Patel M, Pant R, Wassouf M, et al. (2016) Impact of diastolic function parameters on the risk for left atrial appendage thrombus in patients with nonvalvular atrial fibrillation: a prospective study. *J Am Soc Echocardiogr* 29: 545-553. [Crossref]

23. Haring B, Omidpanah A, Suchy-Dicey AM, Best LG, Verney SP, et al. (2017) Left Ventricular Mass, Brain Magnetic Resonance Imaging, and Cognitive Performance: Results From the Strong Heart Study. *Hypertension* 70: 964-971. [Crossref]

24. Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP (1990) Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. *N Engl J Med* 322: 1561-1566. [Crossref]

25. Levy D, Anderson KM, Savage DD, Kannel WB, Christiansen JC, et al. (1988) Echocardiographically detected left ventricular hypertrophy: prevalence and risk factors: the Framingham Heart Study. *Ann Intern Med* 108: 7-13. [Crossref]

26. Henskens LH, van Oostenbrugge RJ, Kroon AA, Hofman PA, Loder J, et al. (2017) Detection of silent cerebrovascular disease refines risk stratification of hypertensive patients. *J Hypertens* 27: 846-853. [Crossref]

27. Fox ER, Taylor HA Jr, Benjamin EJ, Ding J, Liebson PR, et al. (2005) Left ventricular mass indexed to height and prevalent MRI cerebrovascular disease in an African American cohort: the Atherosclerotic Risk in Communities study. *Stroke* 36: 546-550. [Crossref]

28. Selvetella G, Notte A, Maffei A, Calistrri V, Sezamendella V, et al. (2003) Left ventricular hypertrophy is associated with asymptomatic cerebral damage in hypertensive patients. *Stroke* 3: 1766-1770. [Crossref]

29. Nakamishi K, Jin Z, Homma S, Elkind MS, Rundek T, et al. (2017) Left ventricular mass, geometry and silent cerebrovascular disease: The Cardiovascular Abnormalities and Brain Lesions (CABL) study. *Am Heart J* 185: 85-92. [Crossref]

30. Kohara K, Zhao B, Jiang Y, Takata Y, Fukusaku T, et al. (1999) Relation of left ventricular hypertrophy and geometry to asymptomatic cerebrovascular damage in essential hypertension. *Am J Cardiol* 83: 367-370. [Crossref]

31. Cogswell RJ, Noeby FL, Gottesman RF, Chen LY, Solomon S, et al. (2017) High prevalence of subclinical cerebral infarction in patients with heart failure with preserved ejection fraction. *Eur J Heart Fail* 19: 1303-1309. [Crossref]

32. Oh JE, Shin JW, Sohn EH, Jung JO, Jeong SH, et al. (2012) Effect of cardiac function on cognition and brain structural changes in dementia. *J Clin Neurol* 8: 123-129. [Crossref]

33. Russo C, Jin Z, Liu R, Iwata S, Tugcu A, et al. (2013) LA volumes and reservoir function are associated with subclinical cerebrovascular disease: the CABL (Cardiovascular Abnormalities and Brain Lesions) study. *JACC Cardiovasc Imaging* 6: 313-323. [Crossref]

34. Abbayaratana WP, Seward JB, Appleton CP, Douglas PS, Oh JK, et al. (2006) Left atrial size: physiologic determinants and clinical applications. *J Am Coll Cardiol* 47: 2357-2363. [Crossref]

35. Benjamin EJ, D’Agostino RB, Belanger AJ, Wolf PA, Levy D (1995) Left atrial size and the risk of stroke and death. The Framingham Heart Study. *Circulation* 92: 835-841. [Crossref]

36. Cozma D, Popescu BA, Ligezan D, Lucian P, Mornos C, et al. (2007) Left atrial remodeling: assessment of size and shape to detect vulnerability to atrial fibrillation. *Pacing Clin Electrophysiol* 30 Suppl 1: S147-150. [Crossref]

37. Sugisaki K, Takagi M, Sakamoto S, Fujita S, Ito A, et al. (2015) Predictors of silent brain infarction on magnetic resonance imaging in patients with nonvalvular atrial fibrillation: A tramesophagial echocardiographic study. *Am Heart J* 169: 783-790. [Crossref]

38. Kronzon I, Tunick PA (2006) Aortic atherosclerotic disease and stroke. *Circulation* 114: 63-75. [Crossref]

39. Tugcu A, Jin Z, Homma S, Elkind MS, Rundek T, et al. (2016) Atherosclerotic Plaques in the Aortic Arch and Subclinical Cerebrovascular Disease. *Stroke* 47: 2813-2819. [Crossref]

40. van Popele NM, Grobbee DE, Bots ML, Asmar R, Topouchian J, et al. (2001) Association between arterial stiffness and atherosclerosis: the Rotterdam Study. *Stroke* 32: 454-460. [Crossref]

41. Rodriguez CJ, Bartz TM, Longstreth WT Jr, Kizer JR, Barasch E, et al. (2011) Association of annular calcification and aortic valve sclerosis with brain findings on magnetic resonance imaging in community dwelling older adults: the cardiovascular health study. *J Am Coll Cardiol* 57: 2172-2180. [Crossref]

42. Abramowitz Y, Jilaihawi H, Chakravarty T, Mack MJ, Makkar RR (2015) Mitral Annulus Calcification. *J Am Coll Cardiol* 66: 1934-1941. [Crossref]

43. Adler Y, Levinger U, Koren A, Tanne D, Fink N, et al. (2000) Relation of nonobstructive aortic valve calcium to carotid arterial atherosclerosis. *Am J Cardiol* 86: 1102-1105. [Crossref]

44. Di Tullio MR, Jin Z, Russo C, Elkind MS, Rundek T, et al. (2013) Patent foramen ovale, subclinical cerebrovascular disease, and ischemic stroke in a population-based cohort. *J Am Coll Cardiol* 62: 35-41. [Crossref]