Summary: We discuss the quantum-mechanical scattering of a massless scalar field on a δ-potential in a ghost-free theory and obtain analytic solutions for the scattering coefficients. Due to the non-locality of the ghost-free theory the transmission coefficient tends to unity for frequencies much larger than the inverse scale of non-locality, even for infinitely strong potentials. At the same time there exists a critical strength of the δ-potential barrier below which there is always a frequency that is totally reflected. These scattering properties in ghost-free theories are quite generic and distinguish them from local field theories. Moreover, we study quasi-normal states that are present for the δ-potential well. In the limit of vanishing non-locality, we recover the standard results of local field theory.

MSC:

81U15 Exactly and quasi-solvable systems arising in quantum theory

Keywords:

Lippmann-Schwinger equation; nonlocality; quasinormal modes; scattering coefficients

Software:

DLMF

Full Text: DOI arXiv

References:

[1] Dirac, P. A.M., The principles of quantum mechanics, (1947), Oxford University Press Oxford, UK · Zbl 0030.04801
[2] Landau, L. D.; Lifshitz, E. M., Quantum mechanics, (1965), Pergamon Press Bristol, UK · Zbl 0178.57901
[3] Cohen-Tannoudji, C.; Diu, B.; Laloe, F., Quantum mechanics, vol. 2, (1987), Wiley New Jersey, USA
[4] Sakurai, J. J., Modern quantum mechanics, (1994), Addison-Wesley Boston, USA · Zbl 1392.81003
[5] Shankar, R., Principles of quantum mechanics, (1994), Plenum Press New York, USA · Zbl 0893.00007
[6] Weinberg, S., The quantum theory of fields, (1995), Cambridge University Press Cambridge, UK
[7] Griffiths, D. J., Introduction to quantum mechanics, (1995), Prentice Hall New Jersey, USA · Zbl 0818.00001
[8] Modesto, L.; Moffat, J. W.; Nicolini, P., Phys. Lett. B, 695, 397, (2011)
[9] Biswas, T.; Gerwick, E.; Koivisto, T.; Mazumdar, A., Phys. Rev. Lett., 108, (2012)
[10] Frolov, V. P.; Zelnikov, A.; de Paula Netto, T., J. High Energy Phys., 06, (2015)
[11] Modesto, L.; Myung, Y. S.; Yi, S.-H., (2017)
[12] Koseleev, A.; Marto, J.; Mazumdar, A., (2018)
[13] Buoninfante, L.; Lambiase, G.; Mazumdar, A., (2018)
[14] Biswas, T.; Koivisto, T.; Mazumdar, A., J. Cosmol. Astropart. Phys., 1011, (2010)
[15] Calcagni, G.; Modesto, L.; Nicolini, P., Eur. Phys. J. C, 74, 2999, (2014)
[16] Hossenfelder, S.; Modesto, L.; Premont-Schwarz, I., Phys. Rev. D, 81, (2010)
[17] Zhang, Y.; Zhu, Y.; Modesto, L.; Bambi, C., Eur. Phys. J. C, 75, 96, (2015)
[18] Frolov, V. P., Phys. Rev. Lett., 115, (2015)
[19] Conroy, A.; Mazumdar, A.; Teimouri, A., Phys. Rev. Lett., 114, (2015)
[20] Li, Y.-D.; Modesto, L.; Rachwal, L., J. High Energy Phys., 12, (2015)
[21] Calcagni, G.; Modesto, L., Phys. Lett. B, 773, 596, (2017)
[22] Cornell, A. S.; Harmsen, G.; Lambiase, G.; Mazumdar, A., (2017)
[23] Kajuri, N., Phys. Rev. D, 95, (2017)
[24] Boos, J.; Frolov, V. P.; Zelnikov, A., Phys. Rev. D, 97, (2018)
[25] Buoninfante, L.; Koshelev, A. S.; Lambiase, G.; Marto, J.; Mazumdar, A., (2018)
[26] Buoninfante, L.; Harmsen, G.; Maheshwari, S.; Mazumdar, A., (2018)
[27] Frolov, V. P.; Zelnikov, A., Phys. Rev. D, 93, (2016)
[28] Lippmann, B. A.; Schwinger, J., Phys. Rev., 79, 469, (1950)
[29] Olver, F. W.; Lozier, D. W.; Boisvert, R. F.; Clark, C. W., NIST handbook of mathematical functions, (2010), Cambridge University Press New York, NY, USA · Zbl 1198.00002
[30] Boonserm, P.; Visser, M., J. High Energy Phys., 03, (2011)

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.