Modification by vasoactive drugs of tumour destruction by photodynamic therapy with haematoporphyrin derivative

P.A. Cowled & I.J. Forbes

Department of Medicine, University of Adelaide, Queen Elizabeth Hospital, Woodville, South Australia 5011, Australia.

Summary Since the vascular endothelium is a primary site of damage after photodynamic therapy (PDT), it seemed likely that drugs which affect the vasculature may modify the outcome of PDT. Noradrenaline, propranolol, hyalurazine and phenoxbenzamine inhibited photodynamic damage to tumours if these drugs were administered concurrently with HPD, 2h before irradiation. This inhibition was associated with reduced uptake of HPD into tumours. There was no inhibition if irradiation was delayed until 24h after administration of vasoactive drug, presumably because HPD uptake continued after the drugs had ceased to affect the vasculature. Verapamil enhanced photodynamic destruction of tumours when administered concurrently with HPD and the enhancement was associated with increased uptake of HPD into tumours. Verapamil neither increased uptake of HPD nor enhanced photodynamic destruction of cells in vitro. When verapamil was administered after irradiation, regrowth of tumours was inhibited. A similar effect was previously demonstrated with glucocorticoids. Other calcium channel blocking agents diltiazem and nifedipine had no effect on uptake of HPD or inhibition of regrowth of tumours after PDT. Inhibition of capillary or stromal ingrowth into tumours seems a plausible explanation of this effect of verapamil. This commonly used drug may be useful to enhance the efficacy of PDT.

Methods

Mouse tumour assay

The assay was modified from Dougherty et al. (1983) (Cowled & Forbes, 1985; Cowled et al., 1985a). Lewis lung carcinoma cells, cultured in RPMI1640 supplemented with 10% foetal calf serum (FCS), 2.3 mM NaHCO3, 25 mM N-2-hydroxyethylpiperazine N-2-ethanesulphonic acid and 0.16 µg ml-1 gentamicin, were harvested by treatment with 0.01% trypsin. A total of 100 cells were injected subcutaneously into the back of C57B1 mice. Fresh cultures were established every three months from stock frozen in liquid nitrogen. After 7–10 days, tumours were 5–7 mm in diameter and were ready for treatment.

Tumour-bearing mice in groups of 10 were injected with HPD (30 mg kg-1 i.p.), prepared as in Forbes et al. (1980). Twenty-four hours later, the mice were anaesthetised with sodium pentobarbitone (Sagatal, May and Baker Australia Proprietary Limited, 60 mg kg-1), the fur over the tumour was shaved and the tumours were irradiated over a 1 cm diameter spot with a light dose of 225 mJ cm-2 from an incandescent lamp (610–680 nm) (Jacka & Blake, 1983). The skin around the tumours was not shielded. Tumours were impalpable 24h after an effective treatment and the endpoint of the assay was the number of days for five of 10 tumours to recur (TC50). There was a linear relationship between the TC50 and both the light and HPD doses (Cowled & Forbes, 1985). In other experiments, mice were injected with HPD (50 mg kg-1), the tumours irradiated 2h later with 225 mJ cm-2 light and TC50 determined as described above. All experiments were repeated at least once and means and standard deviations between groups of 10 mice were determined. Differences between groups of mice were analysed by unpaired t tests.

Drugs were administered either concurrently with HPD, immediately before irradiation or 24 and 48h after irradiation. The drug dosages, mode of administration and interval between drug administration and irradiation are described in detail in the figure legends.

In vitro photocytotoxicity

Lewis lung carcinoma cells, grown and harvested as described above, were suspended at 106 cells/ml in RPMI 1640/10% FCS and incubated for 1h at 37°C with 50 µCi ml-1 51Cr-sodium chromate (Amersham, Australia). After
washed, 51Cr-labelled cells were suspended at 10^7ml^{-1} in RPMI 1640 without FCS and incubated for 1 h at 37°C with HPD (25 μg ml$^{-1}$) and verapamil (0-100 μg ml$^{-1}$). The cells were washed once, resuspended in phosphate-buffered saline at 0.5 x 10^7ml^{-1} and irradiated for 0-20 min with red light (8 mW cm$^{-2}$). Percentage 51Cr release was determined immediately after irradiation as previously described (Cowed et al., 1985b). Background percentage 51Cr release, from cells incubated in HPD or HPD plus verapamil but not irradiated, was subtracted from all experimental values.

Fluorescence detection of HPD

Twenty-four hours after receiving HPD and vasoactive drugs, the mice were killed, tumours were dissected out and frozen sections (6 μm) were examined under a Zeiss fluorescence microscope with excitation wavelength 420-490 nm. Fluorescence intensity was not quantitated. Uptake of HPD in vitro was assessed by flow cytometry (Becton Dickinson FACS analyser, excitation wavelength 485 ± 10 nm and read-out fluorescence at 575 ± 13 nm) after incubating Lewis lung carcinoma cells for 1 h in HPD plus verapamil as above. Cells were washed and resuspended in phosphate-buffered saline at 2 x 10^6ml^{-1} for fluorescence assays. Fluorescence data were analysed on a Hewlett-Packard model 310 computer with Becton Dickinson 'comset 30' software package and the mean fluorescence was calculated. Since it is possible that HPD could be lost from the tumour cells during disaggregation of the intact tumours, measurement of HPD fluorescence in vivo was not attempted.

Results

Influence of vasoactive drugs administered 24 h before irradiation

Vasoactive drugs were administered i.v. concurrently with HPD (i.p.) and the tumours irradiated 24 h later. The results are shown in Figure 1. Slight increases in T_{50} observed with noradrenaline and hydralazine were not statistically significant. A significant ($P<0.02$) increase in T_{50} was observed after 0.5 mg kg$^{-1}$ propranolol but not after 1.0 mg kg$^{-1}$. Noradrenaline, propranolol and hydralazine administered immediately before irradiation of tumours in HPD-sensitised mice also had no effect on PDT, the T_{50} remaining at 3-4 days in all cases. Drug alone, drug plus HPD, or drug without HPD followed 5 min or 24 h later by irradiation of the tumours did not affect tumours macroscopically. The highest doses of all the drugs tested caused temporary drowsiness in the mice but were not fatal.

Intensity of HPD fluorescence in the tumours was not altered when the vasoactive drugs were administered 24 h before examining fluorescence, indicating that these drugs had no effect on HPD uptake into the tumours. This was in agreement with the lack of influence of the drugs on PDT.

Influence of vasoactive drugs administered 2 h before irradiation

Since the half-life of the vasoactive drugs in mice could be quite short, examination of the response of the tumours to PDT 24 h after drug administration may not reveal short-term effects. Therefore the interval between administration of HPD plus drug and irradiation was shortened to 2 h. Previous studies had shown 2 h was the shortest interval between HPD and irradiation of the tumours at which an adequate response could be obtained (Cowed, 1986).

Irradiation 2 h after injection of HPD (50 mg kg$^{-1}$) resulted in a greater T_{50} than that observed with an interval of 24 h between HPD (30 mg kg$^{-1}$) and light. All the vasoactive drugs which were tested greatly inhibited the tumour response to PDT when the interval between drug and light was 2 h (Figure 2). Propranolol was the most...
inhibitory, appearing to suppress completely the effect of irradiation on some tumours.

Fluorescence of tumours was greatly diminished 2h after concurrent administration of HPD (50 mg kg\(^{-1}\)) and hydrazine (10 ml kg\(^{-1}\)), propranolol (1 mg kg\(^{-1}\)) or phenoxybenzamine (5 mg kg\(^{-1}\)), indicating marked inhibition of uptake of HPD. Noradrenaline also inhibited uptake of HPD into the tumours. Fainter fluorescence after 0.2 mg kg\(^{-1}\) noradrenaline than 0.1 mg kg\(^{-1}\) was associated with a greater inhibition of efficacy of PDT.

Local administration of noradrenaline (200 \(\mu\)l of 0.02 mg ml\(^{-1}\), i.p.) 2h after injection of verapamil (2 mg kg\(^{-1}\)) potentiated the effects of the drugs plus HPD (without irradiation), and drugs plus HPD (without irradiation) had no macroscopic effect on the tumours. These results would indicate that the effect of noradrenaline on uptake of HPD into tumours could be at least partly due to effects of noradrenaline on the tissue blood vessels and not merely due to systemic vasoconstriction affecting the distribution or circulation of HPD in the mouse.

Under the conditions tested, the alpha blocker phenoxybenzamine did not prevent the inhibition of PDT by noradrenaline, an alpha agonist (Figure 2). Indeed the inhibition of PDT was enhanced, most tumours being macroscopically unaffected. Phenoxybenzamine itself administered concurrently with HPD 2h before irradiation, also inhibited PDT (Figure 2). The inhibition of PDT by noradrenaline was not altered by concurrent administration of the beta blocker propranolol (Figure 2). Higher doses of propranolol in combination with noradrenaline were fatal to the mice. All drugs alone, drugs plus HPD (without irradiation) and drugs plus irradiation (without HPD) had no effect on the rate of tumour growth.

Calcium channel blockers

Verapamil (2 mg kg\(^{-1}\)) potentiated PDT when administered concurrently with HPD 24h before irradiation (Figure 3). No greater effect was seen using this drug at 10 mg kg\(^{-1}\). A marked increase in fluorescence in frozen sections 24h after injection of verapamil (10 mg kg\(^{-1}\)) plus HPD suggested that verapamil increased uptake or retention of HPD in the tumours. A second calcium channel blocking agent, nifedipine, was also tested. Nifedipine, being extremely insoluble in aqueous solutions, was dissolved in 5% dimethyl sulfoxide (DMSO) in saline and then injected concurrently with HPD. Both the photodynamic effect and the uptake of HPD, as assessed by fluorescence, were greatly inhibited. However, 5% DMSO without nifedipine administered with HPD also inhibited both the uptake of HPD and the photodynamic response. The reason for this inhibition is unclear. Thus the influence of nifedipine on PDT could not be assessed. Diltiazem was also tested (Figure 3). In contrast to verapamil, when diltiazem (10 mg kg\(^{-1}\)) was administered concurrently with HPD 24h before irradiation, there was no change in the TC\(_{50}\), which remained at 4 days. The fluorescence of HPD in tumours was similarly unaffected by diltiazem. Controls of drugs alone, drug plus HPD or drug plus light plus HPD were not done on the tumours.

Verapamil (2 mg kg\(^{-1}\)) administered 24 and 48h after irradiation significantly increased the TC\(_{50}\) from 3.6 to 6 days. However, in contrast, neither nifedipine (2 mg kg\(^{-1}\), dissolved in 5% DMSO in saline) or diltiazem (10 or 50 mg kg\(^{-1}\)) had any effect on the TC\(_{50}\) when administered 24 and 48h after PDT (Figure 4). The insolubility of nifedipine in aqueous solutions limited the doses at which it could be tested. A control solution of 5% DMSO in saline administered 24 and 48h after PDT had no effect on the rate of recurrence of the tumours. Verapamil (10 mg kg\(^{-1}\)) administered to mice at the time of tumour transplant also had no effect on the rate of tumour growth. The mean time for tumours to become palpable was 7.8±1.4 days when verapamil was administered with transplants and 7.5±1.3 days without verapamil.

Influence of verapamil on the photoactivity of HPD in vitro

Verapamil could act on PDT by affecting the supply of HPD to tumours, or by a direct effect on tumour cells. In an attempt to distinguish between these possibilities, the influence of verapamil on photodynamic destruction of tumour cells was examined *in vitro*. Verapamil had no effect on \(^{51}\)Cr release from HPD-sensitised Lewis lung carcinoma cells (Figure 5). Uptake of HPD into Lewis lung carcinoma cells was assessed by flow cytometry. The mean fluorescence was proportional to the concentration of HPD added to the incubation mixture (data not shown), suggesting mean fluorescence was a measure of intracellular HPD concentration. Verapamil did not markedly affect the mean fluorescence of Lewis lung carcinoma cells incubated in HPD (Figure 6), suggesting HPD uptake was not affected by verapamil. Neither verapamil (10–50 \(\mu\)g ml\(^{-1}\)) alone nor verapamil plus light increased \(^{51}\)Cr release above background. Since incubation of cells in verapamil alone at a concentration of 100 \(\mu\)g ml\(^{-1}\) caused some release of \(^{51}\)Cr above background, higher concentrations of verapamil were not tested.
administered 24 and 48 h after PDT. Each bar represents the mean ± s.d. of two experiments. A, HPD and light only; B, verapamil (2 mg kg⁻¹); C, nifedipine (2 mg kg⁻¹); D, diltiazem (10 mg kg⁻¹); E, diltiazem (50 mg kg⁻¹). *P < 0.02.

Figure 4 Influence of calcium channel blocking drugs administered 24 and 48 h after PDT. Mice with Lewis lung carcinoma were given HPD (30 mg kg⁻¹ i.p.) and tumours irradiated 24 h later with 225 J cm⁻² red light. The calcium channel blocking drugs were administered i.p. 24 and 48 h after irradiation. Each bar represents the mean ± s.d. of two experiments. A, HPD and light only; B, verapamil (2 mg kg⁻¹); C, nifedipine (2 mg kg⁻¹); D, diltiazem (10 mg kg⁻¹); E, diltiazem (50 mg kg⁻¹).

Discussion

The influence on PDT of drugs affecting vasculature was examined using a transplantable tumour model in mice. Noradrenaline, propranolol and hydralazine inhibited PDT if given 2 h before tumours were irradiated, but had no effect when administered with HPD 24 h before irradiation. The fluorescence of HPD in tumours was reduced 2 h after administration of noradrenaline with HPD, but not after 24 h. Phenoxybenzamine, an alpha receptor blocking agent and the beta blocker propranolol did not block the inhibitory effect of noradrenaline on PDT. Noradrenaline acts mainly on alpha receptors (Weiner, 1985). Administration of noradrenaline, hydralazine or propranolol immediately before irradiation had no effect on the TC₀°C.

There is controversy as to whether blood vessels of tumours respond to vasoactive drugs. Blood flow in rat tumours was reduced by local administration of noradrenaline (Mattsson et al., 1980) and vasoconstriction was observed directly by microangiography (Mattsson et al., 1981). Decreasing vascular responses to propranolol, papaverine and dihydralazine have been observed as tumours age (Wickersham et al., 1977; Peterson & Mattsson, 1984). As tumours enlarge, the blood vessels become stretched and tortuous, lose adrenergic innervation and show a relative lack of smooth muscle (Mattsson & Peterson, 1981). The inhibition of PDT by vasodilators administered 2 h before irradiation could be explained by dilatation of normal vessels causing diversion of blood from tumours. Reduction of tumour blood flow has been demonstrated after the intravenous doses of noradrenaline used in this study and this effect was blocked by phenoxybenzamine (Mattsson et al., 1978). However, since phenoxybenzamine itself inhibited PDT, this drug could not be used to block the inhibitory action of noradrenaline on PDT. Administration of these drugs immediately before irradiation had no effect on the response of the tumours to PDT, suggesting that the degree
of vasodilation or vasoconstriction of the tumour vasculature at the time of irradiation does not influence the outcome of PDT.

Damage to tumours by PDT appears to be mediated by toxic oxygen species, particularly singlet oxygen and hydroxyl radicals (Das et al., 1985). It is possible that vasoactive drugs alter tumour responses to PDT by altering the oxygen tension in the tumours and hence altering the production of toxic oxygen species. Vasoactive drugs have been reported to alter oxygen tension (Kruuv et al., 1967).

Verapamil, a calcium channel blocking agent and vasodilator, enhanced the efficacy of PDT. Enhancement of HPD fluorescence in tumours suggested that this resulted from increased uptake of HPD. However, since vasodilators inhibited both uptake of HPD and the degree of photodynamic damage, an effect of verapamil other than its vasodilatory action is probably responsible. The capacity of verapamil to affect blood flow of tumours is also controversial. In one study, tumour blood flow was increased by verapamil without altering blood flow in normal tissues (Kaelin et al., 1982), but no enhancement of tumour blood flow was detected in another study (Robinson et al., 1985). It is of interest that verapamil increases the number of low density lipoprotein (LDL) receptors on the surface of cells (Stein et al., 1985), as it has been suggested that HPD may be taken up into cells by LDL receptors (Candide et al., 1986).

Verapamil enhances the effect of cytotoxic drugs in other systems. Tumour cell lines, including Lewis lung carcinoma used in this study, resistant to Adriamycin and vincristine, were made sensitive by verapamil (Tsuruo et al., 1982, 1983a, b, c). Intracellular concentrations of cytotoxic drugs were elevated, suggesting that verapamil enhanced uptake or inhibited transport of drugs out of cells. Our studies in vitro did not indicate a direct action of verapamil on the tumour cells. When Lewis lung carcinoma cells were incubated in HPD plus verapamil, HPD fluorescence and ^{32}P release were not increased significantly.

The most important effect of verapamil in enhancing PDT appears not to be the enhancement of uptake of HPD into tumours, but prolongation of the tumour-free interval when the drug is administered after irradiation. At least two mechanisms may be suggested to explain this phenomenon: (1) enhancement of the effect of hypoxia induced by capillary damage after PDT and (2) inhibition of regrowth of the tumour from surviving cells. Since virtually all non-malignant cells appear to proliferate and differentiate in response to appropriate growth factors, it seems likely that capillaries and host stromal cells may only grow in association with multiplying tumour cells if they also receive the necessary growth factors. Verapamil could inhibit some steps necessary for this process. High-dose cortisone, in combination with heparin, has been shown to inhibit angiogenesis (Folkman et al., 1983; Crum et al., 1985). Gluco- corticoids administered after PDT also inhibit recurrence of tumours (Cowled et al., 1985a). It is also of interest that the effects on PDT of verapamil are not common to all calcium channel blocking drugs and the reasons for these differences are not known. Diltiazem, a drug with pharmacological action similar to that of verapamil (Needleman et al., 1985), had no effect on the uptake of HPD. Diltiazem and nitidipine also had no effect on the rate of recurrence of tumours after PDT.

We conclude that many vasoactive drugs may modify the uptake of HPD, inhibiting PDT if tumours are irradiated shortly afterwards. Verapamil acts differently, both enhancing the uptake of HPD and acting after photodynamic destruction to inhibit the regrowth of tumours. Verapamil may be very useful clinically to enhance the efficacy of PDT and experimentally to study the regrowth of tumours after PDT.

We would like to thank Lorraine Mackenzie and Sharon Bransbury for expert technical assistance and Joseph Webster, Department of Clinical Immunology, Flinders Medical Centre for performing the flow cytometry assays. Nitidipine was kindly supplied by Bayer Australia Limited and diltiazem by ICI Australia Operations Proprietary Limited.

References

Benson, R.C. (1985). Treatment of diffuse transitional cell carcinoma in situ by whole bladder hematoporphyrin derivative photodynamic therapy. J. Urol., 134, 675.

Berensonbaum, M.C., Hall, G.W. & Hoyes, A.D. (1986). Cerebral photosensitisation by haematoporphyrin derivative. Evidence for an endothelial site of action. Br. J. Cancer, 53, 81.

Bugelski, P.J., Porter, C.W. & Douglas, T.J. (1981). Autoradiographic distribution of hematoporphyrin derivative in normal and tumor tissue of the mouse. Cancer Res., 41, 4606.

Candide, C., Morlier, P., Maziere, J.C. and 5 others (1986). In vitro interaction of the photoactive anticancer porphyrin derivative photofrin II with low density lipoprotein, and its delivery to cultured human fibroblasts. FEBS Lett., 207, 133.

Cowled, P.A. (1986). Photodynamic therapy with haematoporphyrin derivative, a review. Thesis submitted to the University of Adelaide for the Degree of Doctor of Philosophy.

Cowled, P.A. & Forbes, I.J. (1985). Photocytotoxicity in vivo of haematoporphyrin derivative components. Cancer Lett., 28, 111.

Cowled, P.A., Mackenzie, L. & Forbes, I.J. (1985a). Potentiation of photodynamic therapy with haematoporphyrin derivative by glucocorticoids. Cancer Lett., 29, 107.

Cowled, P.A., Forbes, I.J., Swincer, A.G., Treynery, V.C. & Ward, A.D. (1985). Separation and photocytotoxicity in vitro of some components of haematoporphyrin derivative. Photochem. Photobiol., 41, 445.

Crum, R., Szabo, S. & Folkman, J. (1985). A new class of steroids inhibits angiogenesis in the presence of heparin or a heparin fragment. Science, 230, 1735.

Das, M., Dint, R., Mukhtar, H. & Bickers, D.R. (1985). Role of active oxygen species in the photodestruction of microsomal cytochrome P-450 and associated mono-oxygenases by haemato- porphyrin derivative in rats. Cancer Res., 45, 608.

Dougherty, T.J., Boyle, D.G., Weisaupt, K.R. and 4 others (1983). Photoradiation therapy: clinical and drug advances. In Advances in Experimental Medicine and Biology, vol. 160: Porphyrin Photosensitization, Kessel, D. & Dougherty, T.J. (eds) p. 3. Plenum Press: New York.

Folkman, J., Klagsberg, R., Linhardt, R.J., Haudenschild, D. & Taylor, S. (1983). Angiogenesis inhibition and tumor regression caused by heparin or a heparin fragment in the presence of cortisone. Science, 221, 719.

Forbes, I.J., Cowled, P.A., Leong, A.S.-Y. and 4 others (1980). Phototherapy of human tumours using haematoporphyrin derivative. Med. J. Aust., 2, 489.

Hayata, Y., Kato, H., Konaka, C. and 6 others (1984). Photoradiation therapy with hematoporphyrin derivative in early and advanced bladder cancer. Cancer Res., 42, 3944.

Henderson, B.W., Waldow, S.M., Mang, T.S., Potter, W.R., Malone, P.B. & Dougherty, T.J. (1985). Tumour destruction and kinetics of tumour cell death in two experimental mouse tumours following photodynamic therapy. Cancer Res., 45, 572.

Jacka, F. & Blake, A.J. (1983). A lamp for cancer phototherapy. Aust. J. Phys., 36, 221.

Kaelin, W.G., Shrivastav, S., Shand, D.G. & Jirtle, R.L. (1982). Effect of verapamil on malignant tissue blood flow in SMT-2A tumor-bearing rats. Cancer Res., 42, 3944.

Kruuv, J.A., Inch, W.R. & McCredie, J.A. (1967). Blood flow and oxygenation of tumours in mice. Cancer, 20, 60.

Lee See, K., Forbes, I.J. & Betts, W.H. (1984). Oxygen dependency of photocytotoxicity with haematoporphyrin derivative. Photochem. Photobiol., 39, 631.

Mattsson, J., Alpsten, M., Applegren, L. & Peterson, H.-I. (1980). Influence of noradrenaline on local tumour blood flow. Eur. J. Cancer, 16, 99.
MATTSSON, J., APPLEGREN, L., KARLSSON, K. & PETERSON, H.-I. (1978). Influence of vasoactive drugs and ischaemia on intratumour blood flow distribution. *Eur. J. Cancer*, **14**, 761.

MATTSSON, J., APPLEGREN, K.L., KARLSSON, L. & PETERSON, H.-I. (1981). Influence of vasoactive drugs on local tumor blood flow. *Bibl. Anat.*, **20**, 614.

MATTSSON, J. & PETERSON, H.-I. (1981). Influence of vasoactive drugs on tumour blood flow (review). *Anticancer Res.*, **1**, 59.

MUSSEY, D.A. & DATTA-GUPTA, N. (1984). Inability to elicit rapid cytotoxic effects on L1210 cells derived from porphyrin-injected mice following in vitro photoirradiation. *J. Natl Cancer Inst.*, **72**, 427.

NEEDLEMAN, P., CORR, P.B., & JOHNSON, E.M. (1985). Drugs used for the treatment of angina: organic nitrates, calcium channel blockers, and beta-adrenergic antagonists. In *Goodman and Gilman’s the Pharmacological Basis of Therapeutics*, 7th edn, Gilman, A.G., Goodman, L.S., Rall, T.W. & Murad, F. (eds) p. 806. Macmillan: New York.

PETERSON, H.-I. & MATTSSON, J. (1984). Vasoactive drugs and tumor blood flow. *Biochemistry*, **21**, 503.

ROBINSON, B.A., CLUTTERBUCK, R.D., MILLAR, J.L. & McELWAIN, T.J. (1985). Verapamil potentiation of melphalan cytotoxicity and cellular uptake in murine fibrosarcoma and bone marrow. *Br. J. Cancer*, **52**, 813.

SELMAN, S.H., KREIMER-BIRNBAUM, M., KLAUNING, J.E., GOLDBLATT, P.J., KECK, R.W. & BRITTON, S.L. (1984). Blood flow in transplantable bladder tumors treated with hematoporphyrin derivative and light. *Cancer Res.*, **44**, 1924.

SELMAN, S.H., MILLIGAN, A.J., KREIMER-BIRNBAUM, M., KECK, R.W., GOLDBLATT, P.J. & BRITTON, S.L. (1985). Hematoporphyrin derivative photochemotherapy of experimental bladder tumors. *J. Urol.*, **133**, 330.

STAR, W.M., MARJINNISSEN, J.P.A., VAN DEN BERG-BLOK, A.E. & REINHOLD, H.S. (1984). Destructive effect of photoradiation on the microcirculation of a rat mammary tumor growing in ‘sandwich’ observation chambers. In *Porphyrin Localization and Treatment of Tumors*, Doiron, D.R. & Gomer, C.J. (eds) p. 637. Alan R. Liss: New York.

STEIN, O., LEITERSDORF, E. & STEIN, Y. (1985). Verapamil enhances receptor-mediated endocytosis of low-density lipoproteins by aortic cells in culture. *Arteriosclerosis*, **5**, 35.

TSURUO, T., IIDA, H., TSUKAGOSHI, S. & SAKURAI, Y. (1982). Increased accumulation of vincristine and adriamycin in drug-resistant P388 tumor cells following incubation with calcium antagonists and calmodulin inhibitors. *Cancer Res.*, **42**, 4730.

TSURUO, T., IIDA, H., NAGANUMA, K., TSUKAGOSHI, S. & SAKURAI, Y. (1983a). Promotion by verapamil of vincristine responsiveness in tumor cell lines inherently resistant to the drug. *Cancer Res.*, **43**, 808.

TSURUO, T., IIDA, H., NOJIRI, M., TSUKAGOSHI, S., & SAKURAI, Y. (1983b). Circumvention of vincristine and adriamycin resistance in vitro and in vivo by calcium influx blockers. *Cancer Res.*, **43**, 2905.

TSURUO, T., IIDA, H., TSUKAGOSHI, S., SAKURAI, Y. (1983c). Potentiation of vincristine and adriamycin effects in human hemopoietic tumor cell lines by calcium antagonists and calmodulin inhibitors. *Cancer Res.*, **43**, 2267.

WEINER, N. (1985). Norepinephrine, epinephrine, and the sympathomimetic amines. In *Goodman and Gilman’s the Pharmacological Basis of Therapeutics*, 7th edn, Gilman, A.G., Goodman, L.S., Rall, T.W. & Murad, F. (eds) p. 145. Macmillan: New York.

WICKERSHAM, J.K., BARRETT, W.P., FURUKAWA, S.B., PUFFER, H.W. & WARNER, N.E. (1977). An evaluation of the response of the microvasculature in tumors in C3H mice to vasoactive drugs. *Bibl. Anat.*, **15**, 291.