Quantization rule solution to the Hulthén potential in arbitrary dimension with a new approximate scheme for the centrifugal term

Sameer M Ikhdair¹ and Jamal Abu-Hasna²

¹ Physics Department, Near East University, Nicosia, North Cyprus, Turkey
² EEE Department, Near East University, Nicosia, North Cyprus, Turkey
E-mail: sikhdair@neu.edu.tr and jfathi@neu.edu.tr

Received 13 July 2010
Accepted for publication 6 December 2010
Published 14 January 2011
Online at stacks.iop.org/PhysScr/83/025002

Abstract
The bound state energies and wave functions for a particle exposed to the Hulthén potential field in the \(D \)-dimensional space are obtained within the improved quantization rule for any arbitrary \(l \) state. The present approximation scheme we have used to deal with the centrifugal term in the effective Hulthén potential is systematic and accurate. The solutions for the three-dimensional (\(D = 3 \)) case and the s-wave (\(l = 0 \)) case are briefly discussed.

PACS numbers: 03.65.Ge, 12.39.Jh

1. Introduction

It is well known that the exact analytical solution of the hyperradial Schrödinger equation, in any arbitrary spatial dimension (\(D \geq 2 \)), for its bound-state energy levels, is fundamental for understanding the bound energy spectrum of nonrelativistic and relativistic quantum mechanics, since the resulting wave function contains all the information necessary for describing fully any quantum system. There are only a few potentials for which the radial Schrödinger equation can be solved explicitly for all \(n \) and \(l \) quantum numbers. One of these exactly solvable potentials is the Hulthén potential [1, 2], which can be solved in a closed form for s-wave (\(l = 0 \)). However, the three-dimensional (3D) radial Schrödinger equation for the spherically symmetric Hulthén potential cannot be solved analytically for \(l \neq 0 \) states because of the centrifugal term \(\sim r^{-2} \) [3–5]. The Hulthén potential is one of the important molecular potentials used in different areas of physics to describe the interaction between two atoms and has attracted a great deal of interest for some decades in the history of quantum chemistry. Until now, it has also been used extensively to describe the molecular structure and a possible form of atomic and nuclear interactions [6–10]. Further, the study of this potential is only a special example of those exponential-type potentials [11] such as the modified hyperbolic-type potentials (Scarf, modified Rosen–Morse and modified second-type Pöschl–Teller) [12], Eckart [13], Rosen–Morse [14], Manning–Rosen [15] potentials and so forth. So far, numerous attempts have been made to calculate the bound-state energies such as variational [10], supersymmetry quantum mechanics [16, 17], the Nikiforov–Uvarov method (NU) [5, 14, 18, 19], the asymptotic iteration method (AIM) [20], hypervirial perturbation [21], shifted \(1/N \) expansion (SE) and modified shifted \(1/N \) expansion (MSE) [22], exact (improved) quantization rule (EQR or IQR) [23, 24], perturbative formalism [25–29], polynomial solution [30], the wave function ansatz method [31], the factorization method [32] and tridiagonal \(J \)-matrix representation (TJM) [33], which split the original Hamiltonian into two parts as \(H = H_0 + V \), where \(H_0 \) is the part of the Hamiltonian that could be treated analytically, while the remaining part, \(V \), has to be treated numerically to solve the radial Schrödinger, Klein–Gordon and Dirac equations exactly or quasi-exactly for \(l \neq 0 \) within a given potential.

Recently, Ma and Xu proposed an exact (improved) quantization rule (EQR or IQR) [23, 24] and showed its power in calculating the energy levels of all bound states for some solvable quantum systems [23, 24]. The method has been shown to be effective in calculating the bound-state...
solutions of the Schrödinger and the Dirac wave equations with a spherically symmetric potential [34–39]. So far, it has been applied, with great success, to study a great number of potentials such as the rotating Morse [34, 35], the Kratzer-type [36], the trigonometric Rosen–Morse [37], the hyperbolic and the second Pöschl–Teller-like potentials [38], the Hulthen potential [39], the Woods–Saxon potential [40] and so forth. Very recently, Gu and Sun [39] extended the application of the IQR to the solution of the D-dimensional Schrödinger equation with the Hulthen potential for \(l \neq 0 \) using the usual approximation to deal with the centrifugal term [41–43].

Very recently, Dong [12] introduced a more beautiful exact quantization rule to simplify the calculation of the energy levels for exactly soluble quantum systems. The energy spectra of the modified hyperbolic-type potentials have been carried out by this rule. Qiang and Dong [44] found a proper quantization rule (PQR) and showed that the previous complicated and tedious calculations for the energy spectra can be greatly simplified. This new quantization rule can be applied to any exactly soluble potential. The Qiang–Dong PQR has been further applied to exactly soluble shape invariant potentials (SIPs) [45]. Very recently, Yin et al [46] showed that the SWKB is exact for all SIPs.

In this paper, we aim to extend the study by Gu and Sun [39] by using a new improved approximate scheme to deal with the centrifugal term. Further, we solve the present potential model on the assumption that the space may possess an arbitrary number of spatial dimensions \(D \). This arbitrary dimensional study enables one to give analytical tests using energy calculations for interdimensional degeneracy, i.e. \((n, l, D) \to (n, l \pm 1, D \mp 2)\) corresponding to the confined \(D = 2 \)–4 dimensional Hulthen potential.

It is worth noting that this alternative approximating approach has shown its accuracy in calculating the analytic and numerical energy spectra of the Hulthen potential for \(l \neq 0 \) [3–5]. Further, it has also been applied to the spin and pseudospin symmetries, for example, Wei and Dong studied the approximation of the Dirac equation with scalar and vector modified and deformed generalized Pöschl–Teller and Manning–Rosen potentials within the improved approximation formula to the centrifugal term [47–50].

This paper is organized as follows. In section 2, the EQR (IQR) method is reviewed and extended to any arbitrary dimension \((D \geq 2)\). In section 3, the D-dimensional \((D \geq 2)\) Schrödinger equation is solved by this method with \(l \neq 0 \) quantum numbers to obtain the energy eigenvalues. In what follows, we shall employ this method to extend the work of Gu and Sun [39] by using an improved approximation to the centrifugal term.

3. Eigenvalues of the Hulthen potential

The Schrödinger equation with spherically symmetric potential \(V(r) \) for \(l \neq 0 \) takes the simple form

\[
\frac{-\hbar^2}{2\mu} \nabla_D^2 + V(r) - E_{nl} \psi_{nlm}(r, \Omega_D) = 0,
\]

where the representation of the Laplacian operator \(\nabla_D^2 \), in spherical coordinates, is

\[
\nabla_D^2 = \frac{\partial^2}{\partial r^2} + \left(\frac{D-1}{r} \right) \frac{\partial}{\partial r} - \frac{l(l+D-2)}{r^2},
\]

and

\[
\psi_{nlm}(r, \Omega_D) = \psi_{nl}(r) Y_l^m(\Omega_D),
\]

\[
\psi_{nl}(r) = r^{-(D-1)/2} R(r),
\]

where the prime denotes the derivative with respect to the variable \(x \). Here \(\mu \) is the reduced mass of the two interacting particles, \(k(x) \) is the momentum and \(V(x) \) is a piecewise continuous real potential function of \(x \). The Schrödinger equation is equivalent to the Riccati equation

\[
\phi'(x) + \phi(x)^2 + k(x)^2 = 0,
\]

where \(\phi(x) = \psi'(x)/\psi(x) \) is the logarithmic derivative of the wave function \(\psi(x) \). Due to the Sturm–Liouville theorem, the \(\phi(x) \) decreases monotonically with respect to \(x \) between two turning points, where \(E \geq V(x) \). Specifically, as \(x \) increases across a node of the wave function \(\psi(x) \), \(\phi(x) \) decreases to \(-\infty\), jumps to \(+\infty\) and then decreases again.

Moreover, Ma and Xu [23, 24] generalized this exact quantization rule to the 3D radial Schrödinger equation with spherically symmetric potential by simply making the replacements \(x \to r \) and \(V(x) \to V_{eff}(r) \):

\[
\int_{r_A}^{r_B} k(r)dr = N\pi + \int_{r_A}^{r_B} k'(r) \phi(r) \phi'(r) dr,
\]

where \(r_A \) and \(r_B \) are two turning points determined from the relation \(E_{n,l} = V_{eff}(r) \), \(N = n + 1 \) is the number of nodes of \(\phi(r) \) in the region \(E_{n,l} \geq V_{eff}(r) \) and it is larger by one than the number of nodes of wave function \(\psi(r) \). The first term \(N\pi \) is the contribution from the nodes of the logarithmic derivative of the wave function, and the second term in (3) is called the quantum correction. It is found that, for all well-known exactly solvable quantum systems, this quantum correction is independent of the number of nodes of the wave function of the system. This means that it is enough to consider the ground state in calculating the quantum correction, i.e.

\[
Q_c = \int_{r_A}^{r_B} k_0(r) \phi_0(r) \phi_0'(r) dr = \pi q.
\]

The quantization rule still holds for the Schrödinger equation with spherically symmetric potential in \(D \) dimensions. In what follows, we shall employ this method to extend the work of Gu and Sun [39] by using an improved approximation to the centrifugal term.

2. Exact (improved) quantization rule

A brief outline of the improved quantization rule is presented with an extension to the \(D \)-dimensional space \((D \geq 2)\). The details can be found in [23, 24]. The IQR has recently been proposed for solving exactly the 1D Schrödinger equation,

\[
\psi''(x) + k(x)^2 \psi(x) = 0, \quad k(x) = \frac{\sqrt{2\mu(E - V(x))}}{\hbar},
\]

where

\[
\phi'(x) + \phi(x)^2 + k(x)^2 = 0,
\]

and

\[
\phi(x) = \psi'(x)/\psi(x) \quad \text{is the logarithmic derivative of the wave function} \quad \psi(x) \quad \text{due to the Sturm–Liouville theorem},
\]

\[
\phi(x) \quad \text{decreases monotonically with respect to} \quad x \quad \text{between two turning points, where} \quad E \geq V(x). \quad \text{Specifically, as} \quad x \quad \text{increases across a node of the wave function} \quad \psi(x), \quad \phi(x) \quad \text{decreases to} \quad -\infty, \quad \text{jumps to} \quad +\infty \quad \text{and then decreases again.}
\]

Moreover, Ma and Xu [23, 24] generalized this exact quantization rule to the 3D radial Schrödinger equation with spherically symmetric potential by simply making the replacements \(x \to r \) and \(V(x) \to V_{eff}(r) \):

\[
\int_{r_A}^{r_B} k(r)dr = N\pi + \int_{r_A}^{r_B} k'(r) \phi(r) \phi'(r) dr,
\]

where \(r_A \) and \(r_B \) are two turning points determined from the relation \(E_{n,l} = V_{eff}(r) \), \(N = n + 1 \) is the number of nodes of \(\phi(r) \) in the region \(E_{n,l} \geq V_{eff}(r) \) and it is larger by one than the number of nodes of wave function \(\psi(r) \). The first term \(N\pi \) is the contribution from the nodes of the logarithmic derivative of the wave function, and the second term in (3) is called the quantum correction. It is found that, for all well-known exactly solvable quantum systems, this quantum correction is independent of the number of nodes of the wave function of the system. This means that it is enough to consider the ground state in calculating the quantum correction, i.e.

\[
Q_c = \int_{r_A}^{r_B} k_0(r) \phi_0(r) \phi_0'(r) dr = \pi q.
\]

The quantization rule still holds for the Schrödinger equation with spherically symmetric potential in \(D \) dimensions. In what follows, we shall employ this method to extend the work of Gu and Sun [39] by using an improved approximation to the centrifugal term.

3. Eigenvalues of the Hulthen potential

The Schrödinger equation with spherically symmetric potential \(V(r) \) for \(l \neq 0 \) takes the simple form

\[
\left(-\frac{\hbar^2}{2\mu} \nabla_D^2 + V(r) - E_{nl}\right) \psi_{nlm}(r, \Omega_D) = 0,
\]

where the representation of the Laplacian operator \(\nabla_D^2 \), in spherical coordinates, is

\[
\nabla_D^2 = \frac{\partial^2}{\partial r^2} + \left(\frac{D-1}{r} \right) \frac{\partial}{\partial r} - \frac{l(l+D-2)}{r^2},
\]

and

\[
\psi_{nlm}(r, \Omega_D) = \psi_{nl}(r) Y_l^m(\Omega_D),
\]

\[
\psi_{nl}(r) = r^{-(D-1)/2} R(r),
\]
where $Y_m^l(\Omega_D)$ is the hyperspherical harmonics. The wave functions $\psi_{nlm}(r, \Omega_D)$ belong to the energy eigenvalues E_{nl}, and $V(r)$ stands for the Hulthen potential in the configuration space and r represents the D-dimensional intermolecular distance $\left(\sum_{i=1}^{D} r_i^2\right)^{1/2}$.

Further, substituting equations (6) and (7) into equation (5) yields the wave equation satisfying the radial wave function $R(r)$ in simple analogy to the 2D and 3D radial Schrödinger equation

$$R''(r) + \frac{2\mu}{\hbar^2} \left[E_{nl} - V_{\text{eff}}(r) \right] R(r) = 0,$$

where $V_{\text{eff}}(r)$ is the Hulthen effective potential in D dimensions defined by

$$V_{\text{eff}}(r) = -Z e^2 \alpha \left(\frac{1}{1 - e^{-ar}} + \frac{(\Lambda^2 - 1) h^2}{8\mu r^2} \right),$$

with the parameter

$$\Lambda = 2l + D - 2.$$ \hspace{1cm} (10)

The radial wave function $R(r)$ satisfying equation (8) should be normalizable and finite near $r = 0$ and $r \to \infty$ for the bound-state solutions. The wave function $R(r)$ with the Hulthen potential is an exactly solvable problem for $l = 0$ (s-wave) [2], [51–53]; however, it cannot be solved analytically when $l \neq 0$ because of the centrifugal barrier term, i.e., $(\Lambda^2 - 1) \times h^2 r^{-2}/(8\mu)$. Therefore, to solve equation (8) analytically, we must use a new approximation scheme of exponential type proposed recently by Jia et al (cf e.g. [54–59]) to deal with the centrifugal term,

$$\frac{1}{r^2} \approx \alpha^2 \left(c_0 + \frac{e^{-ar}}{1 - e^{-ar}} \right),$$

where the dimensionless constant $c_0 = 1/12$ is exact as reported by other authors (cf e.g. [3–5]). Very recently, we applied the above approximation scheme (11) to obtain improved bound-state solutions to the Schrödinger equation with the Manning–Rosen potential for arbitrary l-waves [15]. Obviously, the above approximation to the centrifugal term turns to r^{-2} when the parameter α goes to zero (small screening parameter α) as

$$\lim_{\alpha \to 0} \left[\alpha^2 \left(c_0 + \frac{1}{e^{-ar} - 1} + \frac{1}{(1 - e^{-ar})^2} \right) \right] = \frac{1}{r^2},$$

which shows that the usual approximation is the limit of our approximation (cf e.g. [4] and references therein). Further, by defining

$$a = Z e^2 \alpha, \quad b = \alpha^2 L^2, \quad L^2 = \frac{\mu}{2\hbar^2} \left(l + \frac{D-1}{2} \right) \left(l + \frac{D+1}{2} \right),$$

we have, from equation (8),

$$R''(r) + \frac{2\mu}{\hbar^2} \left[E_{nl} + a \frac{e^{-ar}}{1 - e^{-ar}} - b \left(c_0 + \frac{e^{-ar}}{1 - e^{-ar}} \right) \right] R(r) = 0,$$ \hspace{1cm} (13)

where E_{nl} is the bound-state energy of the system and n and l denote the radial and angular quantum numbers, respectively.

We now study this system through the improved exact quantization rule. At first, we introduce a new variable

$$z(r) = \frac{e^{-ar}}{1 - e^{-ar}}, \quad z'(r) = -a z(1 + z),$$

where $r \in (0, \infty)$ and $z \in (0, \infty)$. Moreover, the turning points z_A and z_B are determined by solving $V_{\text{eff}}(z) = bz^2 + (b - a)z + bc_0 = E_{nl}$ as follows:

$$z_A = \frac{a}{2b} - \frac{1}{2} - \frac{1}{2b} \sqrt{(a - b)^2 + 4b (E_{nl} - bc_0)},$$

$$z_B = \frac{a}{2b} + \frac{1}{2} + \frac{1}{2b} \sqrt{(a - b)^2 + 4b (E_{nl} - bc_0)},$$

with the properties

$$z_A + z_B = \frac{a}{b} - 1, \quad z_A z_B = -\frac{E_{nl}}{b} + c_0.$$ \hspace{1cm} (16)

The momentum $k(z)$ between two turning points is expressed as

$$k(z) = \sqrt{\frac{2\mu b}{\hbar}} \left[z^2 + \frac{(a - b)}{b} z - \frac{(bc_0 - E_{nl})}{b} \right]$$

$$= \sqrt{\frac{2\mu b}{\hbar}} \left[z_B - z \right] \left(z - z_A \right),$$

$$\frac{dk(z)}{dz} = \sqrt{\frac{2\mu b}{\hbar}} \left(\frac{z_B - z}{z - z_A} - \frac{z - z_A}{z_B - z} \right).$$

The Riccati equation (2) now becomes

$$-a z (z + 1) \frac{d\phi_0(z)}{dz} = \frac{2\mu}{\hbar^2} \left[E_0 - b z^2 + (a - b) z + bc_0 \right] - \phi_0(z)^2,$$ \hspace{1cm} (18)

having the only possible solution satisfying

$$\phi_0(r) = c_1 z + c_2, \quad \phi_0'(r) = -a c_1 z (1 + z), \quad c_1 > 0.$$ \hspace{1cm} (19)

where we have used $\phi_0(r) \equiv \phi_0(z)$. Substituting $\phi_0(z)$ into equation (18), one has the ground state energy eigenvalue and wave function solutions

$$\phi_0(z) = vz + a \left(\frac{\mu Z e^2}{2\hbar^2} \frac{1}{va} - \frac{v}{2} \right),$$

$$v = 1 + \frac{1}{2} \sqrt{1 + \frac{8\mu b}{\hbar^2} L^2} = l + \frac{D - 1}{2}, \quad v \geq 1,$$

$$E_{n=0} = E_0 - bc_0 = -\frac{\hbar^2 a^2}{2\mu} \frac{\mu Z e^2}{2\hbar^2} \frac{1}{va} - \frac{v^2}{2}.$$ \hspace{1cm} (20)

After lengthy but straightforward algebra, we can calculate the integral of the quantum correction (4) based on the ground state as

$$Q_c = \pi q = \pi \left(\sqrt{\frac{2\mu}{\hbar}} L + v - 1 \right).$$ \hspace{1cm} (21)
The integral of the momentum $k(r)$ in the quantization rule (3) is calculated as

$$\int_{r_A}^{r_B} k(r) dr = -\frac{2\mu b}{\hbar} \int_{z_A}^{z_B} \left(\sqrt{z - z_A} \left(\frac{z - z_B}{z} \right) \right) dz - \frac{\sqrt{(z - z_A) (z_B - z)}}{1 + z}$$

$$= \frac{2\mu}{\hbar^2} L \left(1 + \sqrt{c_0 - E_{nl}} - \frac{\sqrt{c_0 + (\alpha - E_{nl})}}{b} \right) \pi.$$ (22)

Using relations (21) and (22), the improved quantization rule (3) turns out to be

$$\pi \frac{2\mu}{\hbar} L \left(1 + \sqrt{c_0 - E_{nl}} - \frac{\sqrt{c_0 + (\alpha - E_{nl})}}{b} \right) = \pi \left(\frac{2\mu}{\hbar} A + n + \nu \right).$$ (23)

Thus, one can finally find the approximation to the bound-state energy levels E_{nl} for the D-dimensional Hulthén potential,

$$E_{nl}^{(D)} = \frac{\hbar^2 \alpha^2}{2\mu} \left(\frac{l + D - 1}{2} \right) \left(\frac{l + D - 3}{2} \right) c_0 - \left[\frac{\mu Z e^2}{\hbar^2 (n + l + 1 + \alpha)} - \frac{(n + l + \alpha - 1)^2}{2} \right]$$

$$\frac{\hbar^2 \alpha^2}{2\mu} \left(\frac{l + D - 1}{2} \right) \left(\frac{l + D - 3}{2} \right) c_0$$

$$- \left[\frac{\mu Z e^2}{\hbar^2 (n + l + 1 + \alpha)} - \frac{(n + l + \alpha - 1)^2}{2} \right]^2,$$ (24)

where $n, l = 0, 1, 2, \ldots$. Therefore, the energy spectrum in 3D space can be obtained as

$$E_{nl} = \frac{\hbar^2 \alpha^2}{2\mu} \left(\frac{l + D - 1}{2} \right) \left(\frac{l + D - 3}{2} \right) c_0$$

$$\frac{\mu Z e^2}{\hbar^2 (n + l + 1 + \alpha)} - \frac{(n + l + \alpha - 1)^2}{2}, \quad n = 0, 1, 2, \ldots,$$ (25)

which is identical to equation (34) of [4]. In the case of the s-wave ($l = 0$), the previous relation turns out to become

$$E_n = \frac{\hbar^2 \alpha^2}{2\mu} \left(\frac{n + \alpha - 1}{2} \right)^2, \quad n = 0, 1, 2, \ldots,$$ (26)

which is identical to the ones obtained before using the AIM [20], SUSYQM approach [60–64], quasi-linearization method [65] and NU method [42, 66]. Moreover, if we take the dimensionless constant $c_0 = 0$ in the present approximation, equation (24) reduces to

$$E_{nl} = \frac{\hbar^2 \alpha^2}{2\mu} \left[\frac{\mu Z e^2}{\hbar^2 (n + l + 1 + \alpha)} - \frac{(n + l + \alpha - 1)^2}{2} \right]^2,$$ (27)

which is consistent with the energy eigenvalues formula given in equation (32) of [20], equation (24) of [67] and equation (28) of [42] when $D = 3$. By taking the chosen parameters $\hbar = 2\mu = e = 1$ and for $Z = 1$, the above result is consistent with equation (24) of [39]. The critical screening parameter can be found as $\alpha_c = \frac{\mu Z e^2}{\hbar^2 (n + l + 1 + \alpha)}$ when $E_{nl} = 0$ and $c_0 = 0$.

4. Eigenfunctions

We are now in a position to study the corresponding eigenfunction of this quantum system for completeness. The Riccati equation of relation (8) is [68]

$$\phi'(r) = -\frac{2\mu}{\hbar^2} [E_{nl} - V_{eff}(r)] - \phi(r)^2,$$ (28)

where

$$\phi(r) = \frac{R'(r)}{R(r)}.$$ (29)

Based on

$$R(r) = e^{\int_0^r \phi(r) \, dr} = e^{-\alpha r} \frac{\sinh \left(\frac{1}{\hbar} \mu Z e^2 \frac{1}{\alpha} - \frac{v}{2} \right)}{\alpha},$$ (30)

and using equation (19), we can easily calculate the eigenfunction of the ground state as

$$R_0(r) = N_0(e^{-ar})^2 (1 - e^{-ar})^{\nu}, \quad \tilde{E}_{n,0} > 0, \quad \nu \geq 1,$$ (31)

where

$$\tilde{E}_{n,0} = \sqrt{\frac{2\mu}{\hbar^2 \alpha^2}} (bc_0 - E_0) = \frac{\mu Z e^2}{\hbar^2 \alpha} - \frac{v}{2},$$ (32)

with v is defined in equation (20) and N_0 is the normalization constant.

Let us find the eigenfunction for any quantum number n. At first, considering the boundary conditions

$$y = \begin{cases} 0 & \text{when } \quad r \to \infty, \\ 1 & \text{when } \quad r \to 0, \end{cases}$$ (33)

with $R(y) \to 0$, based on equation (31), we may define more general radial eigenfunctions, valid for any quantum number n, of the form

$$R(y) = y^{\tilde{E}_{n,l}} (1 - y)^{\nu} F(y), \quad y = e^{-ar}, \quad \tilde{E}_{n,l} > 0, \quad \nu \geq 1,$$ (34)

satisfying the boundary conditions in equation (33), where

$$\tilde{E}_{n,l} = \frac{\mu Z e^2}{\hbar^2 \alpha} - \frac{n + \nu}{2} > 0.$$ (35)

Substituting equation (34) into (8) leads to the following hypergeometric equation,

$$y (1 - y) F''(y) + [1 + 2\tilde{E}_{n,l} - (1 + 2\tilde{E}_{n,l} + 2\nu) y] F'(y)$$

$$- \nu (v + 2\tilde{E}_{n,l} - 2\mu Z e^2 \frac{1}{\hbar^2 \alpha}) F(y) = 0,$$ (36)

whose solutions are the hypergeometric functions

$$F(y) = 2F_1(A, B; C; y)$$

$$= \frac{\Gamma(C)}{\Gamma(A) \Gamma(B)} \sum_{k=0}^{\infty} \frac{\Gamma(A+k) \Gamma(B+k)}{\Gamma(C+k)} \frac{y^k}{k!},$$ (37)
where
\[
A = \tilde{\varepsilon}_{nl} + v - \sqrt{\tilde{\varepsilon}_{nl}^2 + \frac{2\mu Z e^2}{\hbar^2}} = -n, \\
B = \tilde{\varepsilon}_{nl} + v + \sqrt{\tilde{\varepsilon}_{nl}^2 + \frac{2\mu Z e^2}{\hbar^2}}, \\
C = 1 + 2\tilde{\varepsilon}_{nl}.
\] (38)

By considering the finiteness of the solutions, the quantum condition is given by
\[
\tilde{\varepsilon}_{nl} + v - \sqrt{\tilde{\varepsilon}_{nl}^2 + \frac{2\mu Z e^2}{\hbar^2}} = -n, \quad n = 0, 1, 2, \ldots,
\] (39)
from which we obtain equation (25). Now, we may write down the radial wave functions (34) as
\[
R(r) = N_{nl} (e^{-\alpha r})^{\frac{l+1}{2}} (1 - e^{-\alpha r})^\nu \\
\times \frac{1}{2} F_1(-n, n+2; \tilde{\varepsilon}_{nl} + v; 1+2\tilde{\varepsilon}_{nl}; e^{-\alpha r}).
\] (40)

If we set \(n = 0 \) in equation (40), then we can easily obtain equation (31). Finally, the unnormalized total wave functions are obtained as
\[
\psi_{nlm}(r, \Omega_D) = N_{nl} r^{-(D-1)/2} (e^{-\alpha r})^{\frac{l+1}{2}} (1 - e^{-\alpha r})^\nu \\
\times \frac{1}{2} F_1(-n, n+2; \tilde{\varepsilon}_{nl} + v; 1+2\tilde{\varepsilon}_{nl}; e^{-\alpha r}) I_l^m(\Omega_D).
\] (41)

which is identical to equation (42) of [4] when \(D = 3 \). Thus, the Jacobi polynomials can be expressed in terms of the hypergeometric functions [69]
\[
P_n^{(\alpha, \beta)}(1 - 2x) = \frac{\Gamma(n+1+A)}{n!\Gamma(1+A)} \frac{1}{2} F_1(-n, n+A+B+1; A+1; x).
\] (42)

The hypergeometric function \(\frac{1}{2} F_1(A; B; C; x) \) is a special case of the generalized hypergeometric function [69, 70]
\[
P_p F_q(\alpha_1, \alpha_2, \ldots, \alpha_p; \beta_1, \ldots, \beta_q; x) = \sum_{k=0}^{\infty} \frac{(\alpha_1)_k (\alpha_2)_k \cdots (\alpha_p)_k}{(\beta_1)_k (\beta_2)_k \cdots (\beta_q)_k} \frac{x^k}{k!}
\] (43)

where the Pochhammer symbol is defined by \((y)_k = \Gamma(y+k)/\Gamma(y)\).

Let us find the normalization constant. Introducing the change of parameters \(y(r) = e^{-\alpha r} \) and making use of equation (41), with the help of equation (42), we are able to express the normalization condition \(\int_0^\infty R(r)^2 dr = 1 \) as
\[
\frac{N_{nl}^2}{\alpha} \int_0^1 y^{2\tilde{\varepsilon}_{nl}-1} (1-y)^{2l+D-1} \left[P_n^{2\tilde{\varepsilon}_{nl}, 2l+D-2} (1-2y) \right]^2 dy = 1.
\] (44)

Unfortunately, there is no formula available to calculate this key integration. Nevertheless, we can find the explicit normalization constant \(N_{nl} \). For this purpose, it is not difficult to obtain the results of the above integral by using the following formulae [69–71]:
\[
P_n^{(\alpha, \beta)}(x) = (n+\alpha)! (n+\beta)! \\
\times \sum_{p=0}^n \frac{1}{p! (n+\alpha-p)! (\beta+p)! (n+p)!} \left(\frac{x-1}{2} \right)^{n-p} \left(\frac{x+1}{2} \right)^p.
\] (45)

and
\[
B(x, y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}, \quad \text{Re}(x), \text{Re}(y) > 0.
\] (46)

Thus, the normalization constant \(N_{nl} \) is now obtained as
\[
N_{nl} = \frac{1}{(n+2l+D-2)! \Gamma(2\tilde{\varepsilon}_{nl} + n + 1)} \\
\times \sqrt{\frac{\alpha \Gamma(2\tilde{\varepsilon}_{nl} + 2n + 2l + D + 1)}{\Gamma(2\tilde{\varepsilon}_{nl} + 2n + 1) \sum_{p,q=0}^n (f_p f_q f_{pq})^{-1}}},
\] (47)

where
\[
f_p = (-1)^p p! \Gamma(2\tilde{\varepsilon}_{nl} + n - p + 1)(2l + p + D - 2)! (n + p)!,
\] (48a)
\[
f_q = (-1)^q q! \Gamma(2\tilde{\varepsilon}_{nl} + n - q + 1)(2l + D + q - 2) (n + q),
\] (48b)
\[
f_{pq} = (2l + p + q + D - 1).
\] (48c)

It is worth noting that one of the disadvantages of the EQR (QIR) approach is that it cannot get the eigenfunctions of the studied potential models. The estimation shown in this section is only the reverse of logarithmic derivative to the original Schrödinger equation, i.e. \(\phi_0(r) = \frac{d}{dr} \ln(R_0(r)) \) (see equation (30)) [72]. The traditional method is thus used again.

5. Conclusions

In this paper, we have applied an alternative method for obtaining approximate energy eigenvalues and eigenfunctions of the \(D \)-dimensional Schrödinger equation for the Hulthén potential with \(l \neq 0 \) within the improved approximation scheme for the centrifugal term. The advantage of this method is that it gives the eigenvalues through the calculation of two integrations (21) and (22) and solving the resulting algebraic equation. Firstly, we can easily obtain the quantum correction by only considering the solution of the ground state of the quantum system since it is independent of the number of nodes of the wave function for exactly solvable quantum system. Secondly, the wave functions have also been obtained by solving the Riccati equation. The general expressions obtained for the energy eigenvalues and wave functions can be easily reduced to the 3D space \((D = 3) \), s-wave \((l = 0) \), c0 = 0 (usual approximation) cases. The method presented here is a systematic one, simple, practical and more powerful than the
other known methods. It is worth extending this method to the solutions of other nonrelativistic [23, 24, 34], [36–39] and relativistic [35] wave equations with different potential fields. Finally, it can be also used to deal with many exactly solvable quantum systems with a wide range of potentials as stated by many authors [23, 24], [34–39].

Acknowledgments

We thank the kind referee for positive enlightening comments and suggestions, which greatly helped us in making improvements to this paper. Partial support from the Scientific and Technological Research Council of Turkey is acknowledged.

Appendix. Integral formulae

The following integral formulae are useful in the calculation of the momentum integral and the quantum correction terms [34, 36, 68]:

\[
\int_{r_A}^{r_B} \frac{r}{\sqrt{(r-r_A)(r_B-r)}} \, dr = \frac{\pi}{2} (r_A + r_B), \quad (A.1)
\]

\[
\int_{r_A}^{r_B} \frac{1}{\sqrt{(r-r_A)(r_B-r)}} \, dr = \frac{\pi}{\sqrt{r_A r_B}}, \quad (A.2)
\]

\[
\int_{r_A}^{r_B} \frac{1}{r} \, dr = \pi, \quad (A.3)
\]

\[
\int_{r_A}^{r_B} \frac{1}{r} \sqrt{(r-r_A)(r_B-r)} \, dr = \pi \left[\frac{1}{2} (r_A + r_B) - \sqrt{r_A r_B} \right], \quad (A.4)
\]

\[
\int_{r_A}^{r_B} \frac{1}{(a+br)\sqrt{(r-r_A)(r_B-r)}} \, dr = \frac{\pi}{\sqrt{(a+br_A)(a+br_B)}}, \quad (A.5)\]

\[r_B > r_A > 0.\]

References

[1] Hulthén L 1942 Ark. Mat. Astron. Fys. A 28 5
[2] Flügge S 1974 Practical Quantum Mechanics (Springer: Berlin)
[3] Ikhdair S M and Sever R 2009 Phys. Scr. 79 035002
[4] Ikhdair S M 2009 Eur. Phys. J. A 39 307
[5] Ikhdair S M and Sever R 2010 Appl. Math. Comput. 216 911
[6] Qiang W C, Zhou R S and Gao Y 2007 Phys. Lett. A 371 201
[7] Hall R L 1992 J. Phys. A: Math. Gen. 25 1373
[8] Roy B and Roychoudhury R 1987 J. Phys. A: Math. Gen. 20 3051
[9] Be切尔er A and Bühring W 1988 J. Phys. B: At. Mol. Opt. Phys. 21 817
[10] Varshni Y P 1990 Phys. Rev. A 41 4682
[11] Dong S, Garcia-Ravelo J and Dong S-H 2007 Phys. Scr. 76 393
[12] Dong S-H 2009 Int. J. Quantum Chem. 109 701
[13] Dong S-H, Qiang W-C, Sun G-H and Bezerra V B 2007 J. Phys. A: Math. Theor. 40 10535
[14] Qiang W-C, Wu J-Y and Dong S-H 2009 Phys. Scr. 79 065011
[15] Qiang W-C and Dong S-H 2009 Phys. Scr. 79 045004
[16] Qiang W-C and Dong S-H 2007 Phys. Lett. A 368 13
[17] Ikhdair S M 2011 Phys. Scr. 83 015010
[18] Cooper F, Khare A and Sukhatme U 1995 Phys. Rep. 251 267
[19] Morales D A 2004 Chem. Phys. Lett. 394 68
[20] Nikiforov A F and Uvarov V B 1988 Special Functions of Mathematical Physics (Basil: Birkhauser)
[21] Ikhdair S M and Sever R 2010 Appl. Math. Comput. 216 545
[22] Bayrak O, Kocak G and Boztozan I 2006 J. Phys. A: Math. Gen. 39 11521
[23] Killingbeck J B, Grosjean A and Jolicard G 2002 J. Chem. Phys. 116 447
[24] Bag M, Panja M M and Dutt R K 1992 Phys. Rev. A 46 6059
[25] Ma Zhong and Xu B W 2005 Europhys. Lett. 69 685
[26] Ma Zhong and Xu B W 2005 Int. J. Mod. Phys. E 14 599
[27] Gönül B, Koksal K and Bakır E 2006 Phys. Scr. 73 279
[28] Ikhdair S M and Sever R 2006 Int. J. Mod. Phys. A 21 6465
[29] Ikhdair S M and Sever R 2007 J. Mol. Struct. 809 103
[30] Ikhdair S M and Sever R 2007 J. Math. Chem. 41 329
[31] Ikhdair S M and Sever R 2007 J. Math. Chem. 41 343
[32] Ikhdair S M and Sever R 2007 J. Mol. Struct. 806 155
[33] Dong S H 2002 Phys. Scr. 65 289
[34] Dong S H 2007 Factorization Method in Quantum Mechanics (Dordrecht: Springer)
[35] Nasser I et al 2007 J. Phys. B: At. Mol. Opt. Phys. 40 4245
[36] Qiang W-C and Dong S-H 2007 Phys. Lett. A 363 169
[37] Qiang W-C, Zhou R-S and Gao Y 2007 J. Phys. A: Math. Theor. 40 1677
[38] Ikhdair S M and Sever R 2009 J. Math. Chem. 45 1137
[39] Ma Zhong, Gonzalez-Cisneros A, Xu B-W and Dong S-H 2007 Phys. Lett. A 371 180
[40] Dong S-H and Gonzalez-Cisneros A 2008 Ann. Phys. 323 1136
[41] Gu X-Y and Sun J-I 2010 J. Math. Phys. 51 022106
[42] Ikhdair S M and Sever R 2010 Int. J. Mod. Phys. A 25 3941
[43] Greene R L and Aldrich C 1976 Phys. Rev. A 14 2363
[44] Ikhdair S M and Sever R 2007 J. Math. Chem. 42 461
[45] Saad N 2007 Phys. Scr. 76 623
[46] Qiang W-C and Dong S-H 2010 Europhys. Lett. 89 10003
[47] Serrano F A, Gu X-Y and Dong S-H 2010 J. Math. Phys. 51 082103
[48] Yin C, Cao Z and Shen Q 2010 Ann. Phys. 325 528
[49] Wei G-F and Dong S-H 2009 Phys. Lett. A 373 2428
[50] Wei G-F and Dong S-H 2009 Europhys. Lett. 87 40004
[51] Wei G-F and Dong S-H 2008 Phys. Lett. A 373 49
[52] Wei G-F and Dong S-H 2010 Phys. Lett. B 686 288
[53] Dominguez-Adame F 1989 Phys. Lett. A 136 175
[54] Chetouani L, Guechi L, Lecheheb A, Hammann T F and Messoubere A 1996 Physics A 234 529
[55] Talukdar B, Yunus A and Amin M R 1989 Phys. Lett. A 141 326
[56] Chen Z-Y, Li M and Jia C-S 2009 Mod. Phys. Lett. A 24 1863
[57] Diao Y-F, Yi L-Z, Chen T and Jia C-S 2009 Mod. Phys. Lett. B 23 2269
[58] Chen T, Liu J-Y and Jia C-S 2009 Phys. Scr. 79 055002
[59] Chen T, Diao Y-F and Jia C-S 2009 Phys. Scr. 79 065014
[60] Jia C-S, Chen T and Cui L-G 2009 Phys. Lett. A 373 1621
[61] Jia C-S, Liu J-Y and Wang P-Q 2008 Phys. Lett. A 372 4779
[62] Gönül B, Özer O, Cançelik Y and Kocak M 2000 Phys. Lett. B 275 238
[63] Gönül B 2004 Chin. Phys. Lett. 21 1685
[64] Dutt R, Choudhury K and Varshni Y P 1985 J. Phys. A: Math. Gen. 18 1379
[65] Xu T, Cao Z-Q, Ou Y-C, Shen Q-S and Zhu G-L 2006 Chin. Phys. 15 1172
[66] Filho E D and Ricotta R M 1995 Mod. Phys. Lett. A 10 1613
[67] Mandelzweig V B 2006 Ann. Phys. 321 2810
[66] Ikhdaïr S M 2009 Int. J. Mod. Phys. C 20 25
[67] Jia C-S, Liu J-Y and Wang P-Q 2008 Phys. Lett. 372 4779
[68] Dong S-H, Morales D and Garcia-Ravelo J 2007 Int. J. Mod. Phys. E 16 189
[69] Gradshteyn I S and Ryzhik I M 1994 Tables of Integrals, Series and Products 5th edn (New York: Academic)
[70] Sezgo G 1939 Orthogonal Polynomials (New York: American Mathematical Society)
[71] Magnus W, Oberhettinger F and Soni R P 1966 Formulas and Theorems for the Special Function of Mathematical Physics 3rd edn (Berlin: Springer)
[72] Gu X-Y, Zhang M and Sun J-Q 2010 Chin. J. Phys. 48 222