Live Birth Rate Following Bed Rest Versus Early Mobilization After Embryo Transfer: A Systematic Review And Meta-Analysis

Jorge Rodriguez-Purata1,2, Maitane Alonso-de Mendieta1,2, Maria Jose Gomez-Cuesta1, Enrique Cervantes-Bravo1,2

1Clinica de la Fertilidad “CdelaF”, Colonia Santa Fe, Cuajimalpa de Morelos, Mexico City, Mexico
2Centro Medico ABC, Colonia Santa Fe, Cuajimalpa de Morelos, Mexico City, Mexico

ABSTRACT
Embryo transfer (ET) is the final step of in vitro fertilization (IVF). Different strategies have been proposed to increase the likelihood of implantation, such as post-transfer bed rest. The objective of this manuscript was to compare the clinical outcomes of embryo transfers after IVF of patients offered rest vs. early ambulation. The patient, intervention, comparison, and outcome(s) (PICO) model was used to select the study population, which included women/couples submitted to IVF and prescribed bed rest or early ambulation. Only studies including live birth (LB) as an outcome were included (www.crd.york.ac.uk/PROSPERO/CRD42020188716). A systematic search for studies was conducted on MEDLINE, ClinicalTrials.gov, PubMed, and the Cochrane Library. A librarian coordinated the searches in May 2020, which considered articles published since 1995. All original peer-reviewed articles in English were included, regardless of study design. The search retrieved 27 citations, of which 14 were eligible for full-text analysis and four accepted for inclusion. The studies included data on 21,598 patients/cycles (rest: 20,138; early ambulation: 1,460). Patients prescribed bed rest had an LB rate of 43.6% vs. 52.5% in the individuals not offered bed rest. The meta-analysis yielded an odds ratio of 0.77 (95% CI 0.5–1.2), which means patients on bed rest were 23% less likely to have a LB; nevertheless, this difference was not statistically significant. Considering that there is no difference between the two strategies, there is no evidence to recommend bed rest after embryo transfer.

Keywords: live birth rate, embryo transfer, in vitro fertilization, early mobilization, post-transfer bed rest

INTRODUCTION
Reproductive medicine has radically evolved since the first in vitro fertilization (IVF) cycle was reported in 1978 (Steptoe & Edwards, 1978), mainly due to the groundbreaking advances observed both at the clinical (Macklon et al., 2006) and laboratory levels (Niederberger et al., 2018). As a result, more emphasis has been placed on the optimization and standardization of the embryo transfer (ET) procedure through the development of evidence-based protocols. Although debated, one of the strategies adopted to increase the success rate of IVF cycles is post-transfer bed rest (Sallam, 2005; Abou-Setta et al., 2014).

ET comprises placing the obtained embryos in the uterus of a patient. This is the final, and in some respects the most critical step of a sequence of events that transpire during an IVF cycle. Post-transfer uterine contractions that might potentially affect embryo implantation at the deposition site have been reported (Fanchin et al., 1998; Lesny et al., 1999). Expulsion of the transfer fluid has been observed after ET (Schulman, 1986; Ghazzawi et al., 1999), while other authors have reported that the transfer content is not affected by patient ambulation immediately after transfer (Lambers et al., 2009). For this reason, various interventions have been proposed, such as post-transfer rest (Orvieto et al., 1998), to potentially resolve this situation.

In this regard, several studies, both prospective and retrospective, have evaluated this intervention with contrasting results, with a greater tendency towards no evidence of benefit in post-transfer bed rest (Abou-Setta et al., 2014). Despite these results, patients and their treating physicians continue to recommend limiting post-transfer physical activity (Hawkins et al., 2014) with no real evidence of improvement in clinical outcomes. Other studies have reported negative effects of bed rest (Kuçük, 2013). Importantly, no previous study or meta-analysis has included the live birth rate (LBR) as a primary outcome (Craciunas & Tsampras, 2016; Cozzolino et al., 2019).

Given the above, we conducted a systematic review of the literature and a meta-analysis of the results of studies to determine whether post-transfer rest had an impact on the LBR of patients submitted to IVF cycles.

MATERIAL AND METHODS

Protocol and registration
The study adhered to the principles of the preferred reporting guidelines for systematic reviews and meta-analyses (PRISMA) (Moher et al., 2009a;b) (Figure 1). The study protocol was registered at http://www.crd.york.ac.uk/PROSPERO/CRD42020188716 before it was started. This study did not require institutional review board approval, since it is a systematic review.

Eligibility criteria
The patient, intervention, comparison and outcome(s) (PICO) model was used to select the study population (Schardt et al., 2007). Women/couples who underwent IVF cycles were included, and the outcomes of patients prescribed bed rest vs. early ambulation were compared.

Search strategy
The authors systematically searched the literature for studies that matched the clinical question on MEDLINE, ClinicalTrials.gov, PubMed, and the Cochrane Library. A combination of Medical Subject Heading (MeSH) terms and/or relevant text words was performed to compare the clinical outcomes of rest vs. no post-transfer rest in IVF. The authors also checked citations on the Web of Science and manually searched the references of the articles. The searches were coordinated in May 2020. Updates to the search were made in June 2020. All records were evaluated for eligibility by two independent reviewers (J.R-P./E.C-B). All original peer-reviewed articles were included, regardless of study design.

The searches in electronic databases included the following combined search terms: (“Fertilization in Vitro” OR “in vitro fertilization” OR IVF OR “Reproductive Techniques, Assisted” OR “Oocyte Retrieval” OR “Egg Collection”) AND (“Bed Rest” OR “rest” OR “Bed Rest/adverse effects” OR “Bed Rest/statistics & numerical data” OR “Postoperative period” OR “Early Ambulation”) AND (“Embryo Transfer” OR “Embryo Transfer, Methods” OR “Embryo Implantation”) AND (“Live Birth Rate” OR “Live Birth” OR “Pregnancy Outcome” OR “Pregnancy” OR “Treatment Outcome” OR “Infant, Newborn” OR “Birth Rate” OR “Live-Birth”).
Study selection

Two authors (J.R-P./E.C-B) independently assessed article titles and abstracts. Duplicates were removed using the Zotero software and manually. The final decision to include/exclude articles was made after they were examined in their entirety. Discrepancies were resolved by discussion and consensus among the authors, with the participation of another author (M.J.G.C). To acquire the highest level of evidence, the authors selected randomized trials and observational studies, including cohort and case-control studies. Trials published only as abstracts, letters to the editor, editorials, or studies withdrawn from the literature after publication were excluded. Systematic reviews were also excluded, but references were checked first.

Intervention studies were eligible if: 1) they were randomized controlled trials (RCT), not RCT, prospective, retrospective observational studies, or cohort studies; 2) evaluated rest vs. no rest; 3) reported the LBR or clinical pregnancy rates (CPR) as outcome measures.

Data extraction and quality assessment

If the records were eligible, two reviewers (J.R-P. and E.C-B) collected and imported the data into an electronic database. The following data were captured: year of publication, study design, study period, intervention, number of patients (total, intervention, and comparator), age, rest time, biochemical pregnancy rate (BPR), CPR, LBR, and miscarriage rate (MR). Furthermore, for intervention studies, allocation concealment and blinding were also recorded.

The primary endpoint of the present meta-analysis was LBR. Although it could be argued that the implantation rate might be a better indicator of the effect of bed rest due to its temporality, the authors considered that the optimal clinical objective of an IVF cycle is the birth of a healthy infant that is ultimately sent home with their parents. Furthermore, the authors considered that the decision to prescribe rest or early ambulation might potentially impact the probability of miscarriage. As secondary endpoints, CPR and MR were studied. A LB was defined as any event of LB of a live product of conception after 24 weeks of gestation. LBR was defined as the proportion of LBs in relation to included patients. A clinical pregnancy was defined as the visualization of a gestational sac with a heartbeat after embryo transfer. CPR is the proportion of clinical pregnancies in relation to included patients. A biochemical pregnancy was defined as a blood pregnancy test >5mIU/mL. The BPR is the proportion of biochemical pregnancies in relation to included patients. A miscarriage was defined as the loss of pregnancy before the 20th week of gestation. MR was defined as the proportion of abortions in relation to the number of confirmed pregnancies.

Appraisal of certainty of evidence

Two authors (J.R-P./E.C-B.) independently assessed the risk of bias of each study and the methodological quality of the included studies using the criteria described in the Cochrane Handbook for Systematic Reviews of Interventions (Higgins & Thompson, 2002). In addition, seven specific domains related to risk of bias were assessed: random sequence generation, allocation concealment, blinding of participants and staff, blinding of outcome assessment, incomplete results, selective data reporting, and other biases. Authors’ judgments were expressed as “low”, “high” or “unclear” risk of bias. The evaluation was carried out independently by two reviewers (J.R-P., E.C-B) and disagreement were resolved by discussion between the two parties including a third reviewer (M.J.G-C.).

Statistical analysis

Clinical outcomes were collected as dichotomous data. The results of the studies were combined in the meta-analysis using a Mantel-Haenszel fixed effect model for a pooled odds ratio (OR) and a 95% confidence interval (CI). Forest plots and the I² statistic were calculated for each study outcome and each group as a way to quantify the statistical heterogeneity of the included studies.
I² was defined as: 0% to 40%: may not be important; 30% to 60%: may represent moderate heterogeneity; 50% to 90%: may represent substantial heterogeneity; 75% to 100%: considerable heterogeneity (Higgins & Thompson, 2002; Higgins et al., 2011). All calculations were performed with RevMan 5.4 (Review Manager, version 5.4, The Cochrane Collaboration, 2020).

RESULTS

Study selection
The search retrieved 27 citations, of which 14 were deemed eligible for review and four accepted for inclusion (Sharif et al., 1998; Bar-Hava et al., 2005; Purcell et al., 2007; Gaikwad et al., 2013) (Figure 1). Data from a total of 21,598 patients/cycles (rest: 20,138; early ambulation: 1,460) were included.

Description of included studies
Of the included studies, one was from the UK (Sharif et al., 1998), one from Israel (Bar-Hava et al., 2005), one from the USA (Purcell et al., 2007), and one from Spain (Gaikwad et al., 2013). There were two randomized controlled trials (Purcell et al., 2007; Gaikwad et al., 2013), one prospective (Bar-Hava et al., 2005), and one retrospective study (Sharif et al., 1998). Table 1 shows the description of the studies.

Study	Design	Randomization	Luteal Phase Support	ET day	ET catheter	Bed-Rest / no Bed-Rest
Sharif et al., 1998	Retrospective	No	100mg/day IM	2, 3	Embryon®	NA / 0 19697/1091 NA NA
Bar-Hava et al., 2005	Prospective	No	NA	3	NA	60 / 0 239/167 34.2 / 34.2 2.9 / 2.7
Purcell et al., 2007	RCT	Yes Numbered opaque envelope	IM (dose NA)	2, 3, 5	Wallace®	30 / 0 82/82 36.9 / 36.8 3.3 / 3
Gaikwad et al., 2013	RCT	Yes Computer	800mg/day PO	3, 5, 6	Wallace®	10 / 0 120/20 41.2 / 40.9** 2 / 2

** The transfer was in ovum donation recipients

Assessment of the risk of study bias
According to the guidelines suggested by the Cochrane Collaboration, the quality of the included studies was moderate (Figure 2).

Live birth rate
Two studies reported LBR (Purcell et al., 2007; Gaikwad et al., 2013). Patients prescribed bed rest after ET had an LBR of 43.6% vs. 52.5% in patients prescribed early ambulation (Table 2). The meta-analysis of the two studies yielded an OR 0.77 ((95% CI 0.5–1.2), I²=29%), which implies a 23% lower chance of having a LB among patients prescribed bed rest, although the difference was not statistically significant (Figure 3).

Clinical pregnancy rate
Three studies reported CPR (Sharif et al., 1998; Amarin & Obeidat, 2004; Purcell et al., 2007). Patients prescribed bed rest had a CPR of 18.7% vs. 25.3% in subjects prescribed early ambulation (Table 2). The meta-analysis of these three studies yielded an OR of 0.75 ((95% CI 0.7–0.9), I²=0%), which implies a 25% lower chance of clinical pregnancy among patients prescribed post-transfer rest (p<0.0001) (Figure 3).
Table 2. Clinical outcomes by study group and total.

	Live Birth Rate	Clinical Pregnancy Rate	Biochemical Pregnancy Rate	Miscarriage Rate
	Bed Rest	No Bed Rest	Bed Rest	No Bed Rest
Sharif et al., 1998	18.6% (3655/19697)	23.5% (256/1091)	18.9% (3722/19697)	29.5% (322/1091)
Bar-Hava et al., 2005			21.3% (51/239)	24.6% (41/167)
Purcell et al., 2007	46.3% (38/82)		50.0% (41/82)	
Gaikwad et al., 2013	41.7% (50/120)	56.7% (68/120)	69.2% (83/120)	75% (90/120)
All	43.6% (88/202)	52.5% (106/202)	25.3% (297/1173)	19.2% (453/1378)

Figure 3. Forest plot of the comparison of bed rest vs. no bed rest after embryo transfer. Analysis: a) Live Birth Rate; b) Clinical Pregnancy Rate.

Biochemical pregnancy rate

Three studies reported BPR (Sharif et al., 1998; Bar-Hava et al., 2005; Gaikwad et al., 2013). A BPR of 19.2% was observed in patients prescribed bed rest vs. 32.9% in individuals not prescribed bed rest (Table 2). The meta-analysis of these studies yielded an OR of 0.58 ((95% CI 0.5–0.7), I²=42%), which implies a 42% lower probability of biochemical pregnancy among patients prescribed bed rest (p<0.0001) (Figure 4).

Miscarriage rate

Two studies reported MR (Purcell et al., 2007; Gaikwad et al., 2013), which, in patients prescribed bed rest, was 27.8% vs. 19.1% in subjects prescribed early ambulation (Table 2). The meta-analysis of these studies yielded an OR of 1.9 ((95% CI 1.0–3.4), I²=0%), which implies patients prescribed post-transfer rest are 1.9 times more likely to have an abortion (p<0.0001) (Figure 4).

DISCUSSION

The present systematic review and meta-analysis is the first published in the literature that included LB as the primary endpoint. By conducting this study to assess the strength of the evidence published to date, the probability of achieving a LB was similar whether post-transfer bed rest was prescribed or not. Interestingly, the evidence showed that patients placed on bed rest immediately after transfer had a higher probability of achieving pregnancy. Nevertheless, patients prescribed bed rest also had a higher probability of having a miscarriage, ultimately yielding similar LB odds.

Since the beginning of our specialty, it has been thought that it is essential to rest after the last phase of an IVF cycle, generally without evidence. This was most likely due to the inefficiency associated with early assisted reproductive technologies. Advances in ovarian stimulation (Macklon et al., 2006) and assisted reproduction laboratories (Niederberger et al., 2018) eventually revealed that the vast majority of the failures to achieve pregnancy were due to deficiencies in other steps of IVF (Niederberger et al., 2018), not necessarily associated with post-transfer bed rest.

Previous studies have tried to evaluate and meta-analyze the dilemma of whether performing post-transfer bed rest benefits patients. In 2014, the Cochrane Library published possible interventions that might help achieve higher success rates after an ET in IVF (Abou-Setta et al., 2014), and concluded that there was not enough information to recommend bed rest. Craciunas & Tsampras (2016) performed a meta-analysis of bed rest versus no bed rest. However, in that particular study, the authors did not include LBR as the primary objective of the analysis. Additionally, the authors included two studies in which the control group underwent less bed rest instead of no bed rest. The authors concluded...
that bed rest was not associated with a higher CPR and that it possibly reduced the implantation rate (Craciunas & Tsampras, 2016). Finally, Cozzolino et al. (2019) also performed a meta-analysis including these studies themselves. Neither of the meta-analyses (Craciunas & Tsampras, 2016 and Cozzolino et al., 2019) included the study carried out by Gaikwad et al. (2013), one of the best designed studies to include the LBR as a primary endpoint.

On the other hand, the most complicated element in changing toward a recommendation of not resting is not the generation of scientific evidence, but the patient education effort that would be required. We often see in daily practice patients asking – and sometimes demanding – that they should rest for 30 minutes or even an hour. We believe that if the results of the present study were explained to a patient, she might understand that resting does not help and might even harm her, as Gaikwad et al. (2013) indicated in a study included in the present review that might very well have been the best designed and executed to date. It might also be useful to explain to patients that the anatomical position of the uterus is not the same in lithotomy as in a sitting or standing position (Sunaga et al., 2013). The body of the uterus in a lithotomy position has a more vertical line, which means that embryos might potentially slide down more easily towards the neck, than in a sitting or standing position, in which the body of the uterus is horizontal with the ground, potentially preventing embryos from slipping.

Several aspects suggest that the results of this review are valid. First, we designed a protocol and conducted a comprehensive literature search with no restrictions on design, blocking, sample size, or country of origin. Second, the main outcome and relevant secondary outcomes were clearly defined to explain possible differences between the groups. Finally, potential publication bias was reduced by including data from studies, not publications.

We are fully aware of the several limitations of this study. First, the RCTs with a relatively small number of women included in this meta-analysis might not be sufficient to recognize small differences between groups. There were also differences regarding the inclusion and exclusion criteria between the included studies. The quality of the included trials was moderate due to attrition bias and possible reporting and selection bias. However, it should be mentioned that both LBR and CPR had extremely low heterogeneity, so the final conclusions were not affected.

Finally, all studies included data from transfers of more than one embryo; therefore, caution is suggested in extrapolating data to transfers of a single embryo.

CONCLUSIONS

The findings of this systematic review and meta-analysis suggest that bed rest after ET is not beneficial in terms of achieving a LB. Future randomized controlled studies should focus on the mechanisms through which bed rest might negatively impact ET success rates. In addition, an analysis of the costs related to prolonged bed rest for inpatients or outpatients should be performed, especially in the absence of a direct benefit.

PROSPERO registration number: CRD42020188716

AUTHORS’ CONTRIBUTIONS

J.R-P. designed the review. J.R-P and E.C-B. searched databases and selected articles and performed data extraction and analysis. J.R-P provided statistical support and data analysis. J.R-P. took the lead in writing the review. M-J.G. and E.C-B. revised several draft versions of the manuscript. All authors read and approved submission of the final version of the manuscript.

CONFLICT OF INTERESTS

The authors report no conflict of interest.

Corresponding author:

Jorge Rodriguez-Purata
Clinica de la Fertilidad “CdelaF”
Centro Medico ABC
Colonia Santa Fe
Cuajimalpa de Morelos
Mexico City, Mexico
E-mail: jorge@cdelaf.com
ORCID ID: orcid.org/0000-0001-5432-0884

REFERENCES

Abou-Setta AM, Peters LR, D’Angelo A, Sallam HN, Hart RJ, Al-Inany HG. Post-embryo transfer interventions for assisted reproduction technology cycles. Cochrane Database Syst Rev. 2014;8:CD006567. PMID: 25157849 DOI: 10.1002/14651858.CD006567.pub3
Amarin ZO, Obeidat BR. Bed rest versus free mobilisation following embryo transfer: a prospective randomised study. BJOG. 2004;111:1273-6. PMID: 15521874 DOI: 10.1111/j.1471-0528.2004.00346.x

Bar-Hava I, Kerner R, Yoeli R, Ashkenazi J, Shalev Y, Orvieto R. Immediate ambulation after embryo transfer: a prospective study. Fertil Steril. 2005;83:594-7. PMID: 15749486 DOI: 10.1016/j.fertnstert.2004.07.972

Eden J, Levit L, Berg A, Morton S, eds; Institute of Medicine (US) Committee on Standards for Systematic Reviews of Comparative Effectiveness Research. Finding What Works in Health Care: Standards for Systematic Reviews. Washington (DC): National Academies Press (US); 2011. Available at: https://www.ncbi.nlm.nih.gov/books/NBK209518/PMID: 24983062 DOI: 10.17226/13059

Cozzolino M, Troiano G, Esencan E. Bed rest after an embryo transfer: a systematic review and meta-analysis. Arch Gynecol Obstet. 2019;300:1121-30. PMID: 31520259 DOI: 10.1007/s00404-019-05296-5

Craciunas L, Tsampras N. Bed rest following embryo transfer might negatively affect the outcome of IVF/ICSI: a systematic review and meta-analysis. Hum Fertil (Camb). 2016;19:16-22. PMID: 26986834 DOI:10.1016/j.humfert.2015.11.001

Fanchin R, Righini C, Olivennes F, Taylor S, de Ziegler D, Frydman R. Uterine contractions at the time of embryo transfer after pregnancy rates after in-vitro fertilization. Hum Reprod. 1998;13:1968-74. PMID: 9740459 DOI: 10.1093/humrep/13.7.1968

Gaikwad S, Garrido N, Cobo A, Pellicer A, Remohi J. Bed rest after embryo transfer negatively affects in vitro fertilization: a randomized controlled clinical trial. Fertil Steril. 2013;100:729-35. PMID: 23755954 DOI: 10.1016/j.fertnstert.2013.05.011

Ghazzawi IM, Al-Hasani S, Karaki R, Souso S. Transfer technique and catheter choice influence the incidence of transcervical embryo expulsion and the outcome of IVF. Hum Reprod. 1999;14:677-82. PMID: 10221694 DOI: 10.1093/humrep/14.4.677

Hawkins LK, Rossi BV, Correia KF, Lipskind ST, Hornstein MD, Missmer SA. Perceptions among infertile couples of lifestyle behaviors and in vitro fertilization (IVF) success. J Assist Reprod Genet. 2014;31:255-60. PMID: 24449866 DOI: https://doi.org/10.1007/s10815-014-0176-5

Higgins JP, Altman DG, Gøtzsche PC, Jüni P, Moher D, Oxman AD, Savovic J, Schulz KF, Weeks L, Sterne JA; Cochrane Bias Methods Group; Cochrane Statistical Methods Group. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928. PMID: 22008217 DOI: 10.1136/bmj.d5928

Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21:1539-58. PMID: 12111919 DOI: 10.1002/sim.1186

Küçük M. Bed rest after embryo transfer: Is it harmful? Eur J Obstet Gynecol Reprod Biol. 2013;167:123-6. PMID: 23274041 DOI: 10.1016/j.ejogrb.2012.11.017

Lambers MJ, Lambalk CB, Schats R, Hompes PG. Ultrasound evidence that bedrest after embryo transfer is useless. Gynecol Obstet Invest. 2009;68:122-6. PMID: 19590224 DOI: 10.1159/000226283

Lesny P, Killick SR, Tietlow RL, Robinson J, Maguiness SD. Embryo transfer--can we learn anything new from the observation of junctional zone contractions? Hum Reprod. 1998;13:1540-6. PMID: 9688388 DOI: 10.1093/humrep/13.6.1540

Macklon NS, Stouffer RL, Giudice LC, Fauser BC. The science behind 25 years of ovarian stimulation for in vitro fertilization. Endocr Rev. 2006;27:170-207. PMID: 16434510 DOI: 10.1210/er.2005-0015

Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009a;6:e1000097. PMID: 19621072 DOI: 10.1371/journal.pmed.1000097

Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol. 2009b;62:1006-12. PMID: 19621072 DOI: 10.1016/j.jclinepi.2009.06.005

Niederberger C, Pellicer A, Cohen J, Gardner DK, Palermo GD, N’Neill CL, Chow S, Rosenwaks Z, Cobo A, Swain JE, Schoolcraft WB, Frydman R, Bishop LA, Aharon D, Gordon C, New E, Decherney A, Tan SL, Paulson RJ, Goldfarb JM, et al. Forty years of IVF. Fertil Steril. 2018;110:185-324.e5. PMID: 30053940 DOI: 10.1016/j.fertnstert.2018.06.005

Orvieto R, Ashkenazi J, Bar-Hava I, Ben-Rafael Z. Bed rest following embryo transfer--necessary? Fertil Steril. 1998;70:982. PMID: 9806588 DOI: 10.1016/S0015-0284(98)00344-6

Purcell KJ, Schembri M, Telles TL, Fujimoto VY, Cedars MI. Bed rest after embryo transfer: a randomized controlled trial. Fertil Steril. 2007;87:1322-6. PMID: 17362946 DOI: 10.1016/j.fertnstert.2006.11.060

Sallam HN. Embryo transfer: factors involved in optimizing the success. Curr Opin Obstet Gynecol. 2005;17:289-98. PMID: 15870564 DOI: 10.1097/01.coc.0000169107.08000.dd

Schardt C, Adams MB, Owens T, Keitz S, Fontelo P. Utilization of the PICO framework to improve searching PubMed for clinical questions. BMC Med Inform Decis Mak. 2007;7:16. PMID: 17537961 DOI: 10.1186/1472-6947-7-16

Schulman JD. Delayed expulsion of transfer fluid after IVF/ET. Lancet. 1986;1:44. PMID: 2867285 DOI: 10.1016/S0140-6736(86)91925-2
Sharif K, Afnan M, Lashen H, Elgendy M, Morgan C, Sinclair L. Is bed rest following embryo transfer necessary? Fertil Steril. 1998; 69:478-81. PMID: 9531881 DOI: 10.1016/S0015-0282(97)00534-7

Steptoe PC, Edwards RG. Birth after the reimplantation of a human embryo. Lancet. 1978;2:366. PMID: 79723 DOI: 10.1016/s0140-6736(78)92957-4

Sunaga Y, Anan M, Shinkoda K. Biomechanics of rising from a chair and walking in pregnant women. Appl Ergon. 2013;44:792-8. PMID: 23452381 DOI: 10.1016/j.apergo.2013.01.010