Glenoid Failure after Total Shoulder Arthroplasty, cemented all-polyethylene versus metal-backed: A Systematic Review Protocol

CURRENT STATUS: Under Review

Renato Aroca Zan, Rafael Fuchs Lazarini, Fábio Teruo Matsunaga, Nicola Archetti Netto, João Carlos Belloti, Marcel Jun Sugawara Tamaoki

Renato Aroca Zan
Faculdade de Ciências Médicas da Santa Casa de São Paulo
re_zan@hotmail.com Corresponding Author
ORCID: https://orcid.org/0000-0001-9289-7983

Rafael Fuchs Lazarini
Hospital Felício Rocho

Fábio Teruo Matsunaga
Universidade Federal de Sao Paulo Escola Paulista de Medicina

Nicola Archetti Netto
Universidade Federal de Sao Paulo Escola Paulista de Medicina

João Carlos Belloti
Universidade Federal de Sao Paulo Escola Paulista de Medicina

Marcel Jun Sugawara Tamaoki
Universidade Federal de Sao Paulo Escola Paulista de Medicina

10.21203/rs.3.rs-27668/v1
Subject Areas

*Orthopedics  Orthopedic Surgery*

Keywords

*Shoulder, arthroplasty, glenoid, loosening, keel, peg, metal back, osteoarthritis, replacement*
Abstract

Background

Anatomical Total Shoulder Arthroplasty (TSA) is an effective treatment adopted in patients with glenohumeral osteoarthritis. The glenoid component failure is the main risk that occurs in this therapeutic choice; however, doubts remain, regarding the selection of the best implant in order to avoid such complication.

Methods

A systematic review of randomized clinical trials (RCTs) or quasi will be carried out, applying the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) protocols, comparing polyethylene (keeled and pegged) versus metal back implants in adult patients with glenohumeral osteoarthritis.

Our search strategy will be carried out in the MEDLINE, PubMed, Cochrane Central Register of Controlled Trials, EMBASE, Web of Science. Data management and extraction will be performed using a data withdrawal form and by analyzing study method characteristics, participant characteristics, intervention characteristics, results, methodological domains.

The summaries of research evidence will be accessed by the Grading of Recommendations Assessment, Development and Evaluation (GRADE). Shoulder function through functional scores such as Constant-Murley (CM) and American Shoulder and Elbow Surgeons (ASES), pain (Visual Analogue Scale), infection, procedure failure, radiograph radiolucency and loosening, are the selected outcomes. Another analysis such as subgroup, heterogeneity, sensitivity and statistical are going to be performed whenever possible.

Discussion

This systematic review aims to analyze how glenoidal implants behave in Total Shoulder Arthroplasties and therefore provide evidence concerning the best clinical practice to avoid complication.

Systematic review registration

PROSPERO, CRD 42018079537.

Background

Osteoarthritis (OA) of the glenohumeral joint is a common clinical condition that affects adult population [1], mainly in patients between 60 and 80 years old [2].

Total Shoulder Arthroplasty has been proved to be effective to treat this condition [3]. There has been an increase rate in these procedures between 300-400% for the last two decades (1990-2010), varying from 13.000 to 42.000 approximately, with an annual variation in the order of 10.6% [4, 5]. It was also observed that approximately 24% of complications of this surgery were related to glenoid implant and 28.5% of those required surgical revision due to loosening. Loosening of the glenoid implant is the main cause of failure, followed by pain and decrease in range of motion after a TSA [6, 7, 8, 9]. This important complication compromises the function of the joint and can even lead need of reoperation.

This systematic review aims to evaluate the glenoid component by comparing the effectiveness of different types of implants, either with metal back or those exclusive in polyethylene (keeled or pegged), considering function of the shoulder and complications (persistence or worsening of pain, infection and failure of the surgery regarding glenoidal implants loosening in the glenohumeral joint).
Methods

Types of Studies and inclusion criteria:
This systematic review will follow recommendations proposed by the Cochrane Handbook of Interventions Reviews [10, 11] and PRISMA protocols [12, 13]. Our study will include only randomized or quasi-randomized controlled clinical trials, comparing metal-backed glenoid designs and polyethylene (keeled or pegged) design in Total Shoulder Arthroplasties.

Ethics Approval:
This study has been approved by the Research Ethics Committee of Universidade Federal de São Paulo (protocol 0725/2017, 2.157.415 and 70473017.5.0000.5505) (document attached).

Types Of Participants (inclusion And Exclusion Criteria):
The inclusion eligibility studies that assessed adults that underwent TSA due to idiopathic and inflammatory OA [14, 15, 16, 17]. The following exclusion criteria were adopted: Patients with previous surgery, neurological diseases (Charcot’s Arthropathy, Parkinson’s disease), Revision surgeries of arthroplasty and Reverse Total Arthroplasty.

Primary Outcomes:
Functional results, complications and failure represented by new surgical intervention, will be our main outcomes. We will consider the Constant-Murley (CM) [18], American Shoulder and Elbow Surgeons (ASES) [19] and University of California at Los Angeles (UCLA) [20] to measure function as a validated score. Complications like deep infection affecting prosthesis components, persistence or worsening of pain (Visual Analogue Scale - VAS) [21], loosening or breakage of implanted materials, dislocation, surgical revision.

Secondary Outcomes:
Clinical and radiographic outcomes will be assessed by range of motion (forward flexion, lateral and internal rotation) and indirect radiographic signs that evidence the loosening of the glenoid implant. The Lazarus classification for keeled components and Franklin classification for pegged components were the systems selected to assess radiolucency concerning those all-polyethylene components [22, 23].

Quality of life analysis validated short form scores 36 [24], will also be assessed.

Search Methods And Strategy:
The electronic search will be carried out in the MEDLINE (PubMed), Cochrane Central Register of Controlled Trials [25, 26], EMBASE, Web of Science, International Clinical Trials Registry Platform, ClinicalTrials.gov and Literatura Latino-Americana e do Caribe em Ciências da Saúde (LILACS for randomized or quasi-randomized RCTs). The grey literature will also be searched through Google Scholar, OpenGrey and GreyNet [27].

We are going to use the following terms in different combinations and combinations for our search: “total shoulder arthroplasty”, “glenoid”, “keeled”, “pegged”, “loosening”, “metal-backed” and “radiolucency”. No restriction on language or publication status.

Data Collection And Analysis:
Two independent reviewers will access the selected studies, as well as the data extracted from these studies using EndNote X9, in order to facilitate collaboration among them during the selection process.

Two authors will select independently and analyze the eligible studies for this systematic review through the title and abstract. The selected studies will be entirely reviewed. Any disagreement will be resolved through
discussion and, when necessary, will be judged by a third author in an attempt to resolve a possible conflict.

**Data Extraction And Handling:**

Data extraction will be performed by two reviewers who will extract the data using an appropriate extraction form based on methodological characteristics, including design and duration, whether the protocol was published prior to the recruitment of the patients, possible funding sources and study registration; characteristics of the participants including location, number of recruits, their evaluation, inclusion and exclusion criteria, age and classification relevant to the disease addressed; characteristics of the intervention like duration, surgery type and complications; results through time and loss of follow-up; methodological domains and risk of bias.

The extracted data will be also classified according to the time of follow-up into early and late, establishing 1 year as the cutoff for this division.

**Access To Risk Of Bias:**

Two authors will independently evaluate various aspects of methodological quality of the included studies using a modified version of the Cochrane Bone Joint and Muscle Trauma Group tool form [28]. Some items will be considered: random sequence generation, allocation concealment, participant blinding, outcome assessment blinding, selective reporting and potential influence of incomplete outcome data, in each trial, will also be carried out. After judgment and classification, these criteria will produce three levels of bias: low, high or unclear. Disagreements will be solved by the analysis of a third reviewer [29, 30].

**Measures Of Treatment Effect:**

The resulting dichotomous data will be analyzed with relative risk (RR) with a 95% confidence interval. When appropriate, we will express the estimated effects as numbers that need treatment (NNTs). Data on continuous outcomes will be expressed as an average difference of 95% in the confidence interval (CI). We intend to group the results with the mean difference (MD) if two or more trials reveal results from the same valid instrument of evolution (with the same units of measurement). If primary studies measure the same variables using different instruments (as well as different units of measurement), Cochrane Review Manager on its 5.3 version will be used for the statistical analyze.

**Dealing With Missing Data:**

We will perform an intention-to-treat analysis in order to include all randomized participants of any intervention. Insufficient information according to the estimated effects, as well as the number of participants, mean, uncertainty measurement (standard deviation or error) or number of events; we will contact the authors of the selected trials.

An analysis will be carried out independently of the lost data, submitting them to the worst and best scenarios.

**Heterogeneity Analysis:**

The heterogeneity of the estimated effects between the included studies will be evaluated through visual inspection of the forest plots and the statistical I² test (significant > 50%).

**Data Synthesis:**

The results of comparable tests will be grouped using the fixed-effect model and a 95% CI. However, the variable model will be used when there is a diversity in clinical or methodological characteristics.

**Subgroup Analysis and Heterogeneity Investigation:**

Where appropriate, subgroups will be analyzed in order to explore the difference in side effect related to the type of glenoid selected.

**Confidence in Cumulative Evidence:**
We will apply GRADE (www.gradepro.org) in order to describe and rate the quality of evidence and the strength of the recommendations, classifying them as high, moderate, low and very low [31, 32, 33].

Results:

Following this protocol publication, electronic searches will be carried out and the selected trials will be analyzed. By the time we get the final results, we are going to send this paper for publication. Our intention is to have it ready by the end of 2021.

Discussion:

We observe an increasing rate of TSA in the adult population and, therefore, complications also assume an increasingly important role in this particular treatment. The glenoid component is the main site of these complications in terms of pain, limiting range of motion, but also in worsening quality of life. These findings are correlated with loosening or even implant breakage [34]. There are some evidences that cemented all-polyethylene glenoid implant has a better loosening rate compared to the metal-backed design, but in terms of radiolucency, this statement is reversed [35, 36, 37, 38].

Nowadays we have several types of glenoid implants in both polyethylene and metal-backed designs, however searching the literature, there is a lack of systematic reviews. In fact, we found only one study including trials with low level of evidence such as nonrandomized and case series [39]. Further evaluation on this subject with better methodological quality should be carried out covering functional, clinical, and radiographic outcomes as well as complications.

We expect difficulty to find trials with adequate sample size, standardization in the functional scores, follow-up pattern and also methods of the results, promoting a possible limitation in our revision. The aim of this study is to provide support and scientific evidence for decision making in orthopedic clinical practice regarding the glenoid implant selection on TSA, serving as a guide for future trials with better methodological quality.

List Of Abbreviations

(ASES) American Shoulder and Elbow Surgeons
(CI) Confidence Interval
(CM) Constant-Murley
GRADE Grading of Recommendations Assessment, Development and Evaluation
(LILACS) Literatura Latino-Americana e do Caribe em Ciências da Saúde
(MD) Mean Difference
(NNTs) Numbers that Need Treatment
(OA) Osteoarthritis
(PRISMA) Preferred Reporting Items for Systematic Review and Meta-Analysis
(RCTs) Randomized Clinical Trials
(RR) Relative Risk
(SMD) Standard Mean Difference  
(TSA) Total Shoulder Arthroplasty  
(UCLA) University of California at Los Angeles  

Declarations

Ethics approval and consent

Included.

Consent for publication

Not applicable.

Availability of data and materials

The datasets that will be used and/or analyzed during the current study will be available from the corresponding author on reasonable request.

Competing interests

The author(s) declare(s) that they have no competing interests.

Funding

Unfunded

Authors information

Affiliation

Department of Orthopaedics and Traumatology, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil.  
Renato A. Zan, Fábio T. Matsunaga, Nicola A. Netto, João Carlos Belloti & Marcel J. S. Tamaoki.

Department of Orthopaedics and Traumatology, Hospital Felício Rocho, Belo Horizonte, Minas Gerais, Brazil.

Rafael Fuchs Lazarini.

Contributions

RAZ is the guarantor of the review and drafted the manuscript. RAZ, FTM, JCB and MJST conceptualized the methods. RAZ and RFL contributed for the development of the eligibility criteria, and the data extraction items. RAZ, FTM and MJST designed the work. NAN helped with the electronic search and translation. All authors reviewed several drafts of the manuscript for critical content and also approved the final protocol.

Acknowledgements

Not applicable.

Corresponding author

Correspondence to Renato A. Zan (re_zan@hotmail.com or rzan@unifesp.com.br).
1. Neer CS 2nd, Watson KC, Stanton FJ. Recent experience in total shoulder replacement. J Bone Joint Surg Am. 1982;64(3):319–37.
2. Rasmussen JV, Brorson S, Hallan G, Dale H, Äärimaa V, Mokka J, Jensen SL, Fenstad AM, Salomonsson B. Is it feasible to merge data from national shoulder registries? A new collaboration within the Nordic Arthroplasty Register Association. J Shoulder Elbow Surg. 2016 Dec;25(12):369–77.
3. Matsen FA 3rd. Early effectiveness of shoulder arthroplasty for patients who have primary glenohumeral degenerative joint disease. J Bone Joint Surg Am. 1996;78:260–4.
4. Khatib O, Onyekwelu I, Yu S, Zuckerman JD. Shoulder arthroplasty in New York State, 1991 to 2010: changing patterns of utilization. J Shoulder Elbow Surg. 2015 Oct;24(10):286–91.
5. Day JS, Lau E, Ong KL, Williams GR, Ramsey ML, Kurtz SM. Prevalence and projections of total shoulder and elbow arthroplasty in the United States to 2015. J Shoulder Elbow Surg. 2010 Dec;19(8):1115–20.
6. Franklin JL, Barrett WP, Jackins SE, Matsen FA 3. Glenoid loosening in total shoulder arthroplasty. Association with rotator cuff deficiency. J Arthroplasty. 1988;3:39–46.
7. Sperling JW, Cofield RH, Rowland CM. Neer hemiarthroplasty and Neer total shoulder arthroplasty in patients fifty years old or less. Long-term results. J Bone Joint Surg Am. 1998 Apr;80:464–73.
8. Torchia ME, Cofield RH, Settergren CR. Total shoulder arthroplasty with the Neer prosthesis: long-term results. J Shoulder Elbow Surg. 1997;6:495–505.
9. Wirth MA, Rockwood CA Jr. Complications of total shoulder-replacement arthroplasty. J Bone Joint Surg Am. 1996;78:603–16.
10. Higgins J, Green S. Cochrane Handbook for Systematic Reviews of Interventions. Version 5. London: Cochrane Collaboration; 2011.
11. McKenzie JE, Brennan SE, Ryan RE, Thomson HJ, Johnston RV, Thomas J. Chapter 3: Defining the criteria for including studies and how they will be grouped for the synthesis. In: Higgins JPT, Thomas J, Chandler J, Cumpton M, Li T, Page MJ, Welch VA, editors. Cochrane Handbook for Systematic Reviews of Interventions version 6.0 (updated July 2019). Cochrane, 2019.
12. Moher D, Shamseer L, Clarke M, Gherisi D, Liberati A, Petticrew M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015 Jan;4:1.
13. Shamseer L, Moher D, Clarke M, Gherisi D, Liberati A, Petticrew M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ. 2015;349.
14. Edwards TB, Labriola JE, Stanley RJ, O’Connor DP, Elkousy HA, Gartsman GM. Radiographic comparison of pegged and keeled glenoid components using modern cementing techniques: a prospective randomized study. J Shoulder Elbow Surg. 2010 Mar;19(2):251–7.
15. Kilian CM, Press CM, Smith KM, O’Connor DP, Morris BJ, Elkousy HA, Gartsman GM, Edwards TB. Radiographic and clinical comparison of pegged and keeled glenoid components using modern cementing techniques: midterm results of a prospective randomized study. J Shoulder Elbow Surg. 2017 Dec;26(12):2078–85.
16. Gartsman GM, Elkousy HA, Warnock KM, Edwards TB, O’Connor DP. Radiographic comparison of pegged and keeled glenoid components. J Shoulder Elbow Surg. 2005 May-Jun;14(3):252–7.
17. Rahme H, Mattsson P, Wikblad L, Nowak J, Larsson S. Stability of cemented in-line pegged glenoid compared with keeled glenoid components in total shoulder arthroplasty. J Bone Joint Surg Am. 2009 Aug;91(8):1965–72.
18. Constant CR, Murley AH. A clinical method of functional assessment of the shoulder. Clin Orthop Relat Res. 1987 Jan;214:160–4.
19. Michener LA, McClure PW, Sennett BJ. American Shoulder and Elbow Surgeons Standardized Shoulder Assessment Form, patient self-report section: reliability, validity, and responsiveness. J Shoulder Elbow Surg. 2002 Nov-Dec;11(6):587–94.
20. Amstutz HC, Sew Hoy AL, Clarke IC. UCLA anatomic total shoulder arthroplasty. Clin Orthop Relat Res. 1981 Mar-Apr;155:7–20.
21. McCormack HM, Horne DJ, Sheather S. Clinical applications of visual analogue scales: a critical review.
Psychol. Med. 1988;18:1007–19.

22. Franklin JL, Barrett WP, Jackins SE, Matsen FA 3. Glenoid loosening in total shoulder arthroplasty. Association with rotator cuff deficiency. J Arthroplasty. 1988;3:39–46. rd. .

23. Lazarus MD, Jensen KL, Southworth C, Matsen FA 3rd. The radiographic evaluation of keeled and pegged glenoid component insertion. J Bone Joint Surg Am. 2002;84(7):1174–82.

24. Taft C, Karlsson J, Sullivan M. Do. SF-36 summary components scores accurately summarize subscale scores? Qual Life Res. 2001;10(5):395–404.

25. Searching for studies.: The Cochrane Collaboration; 2011. URL:http://training.cochrane.org/resource/searching-studies.

26. Cochrane Handbook for Systematic Reviews. of Interventions Version 5.1.0 [updated Mach 2011]. JPT Higgins SG, editor: The Cochrane Collaboration; 2011.

27. Mahood Q, Van Eerd D, Irvin E. Searching for grey literature for systematic reviews: challenges and benefits. Res Synth Methods. 2014;5(3):221–34.

28. Assessing risk of bias in included studies.: The Cochrane Collaboration; 2011. URL:http://methods.cochrane.org/bias/ assessing-risk-bias-included-studies.

29. Guyatt G, Oxman AD, Akl EA, Kunz R, Vist G, Brozek J, et al. GRADE guidelines: 1. Introduction-GRADE evidence profiles and summary of findings tables. J Clin Epidemiol. 2011;64(4):383–94.

30. Schünemann HJ, Higgins JPT, Vist GE, Glasziou P, Akl EA, Sketz N, Guyatt GH. Chapter 14: Completing ‘Summary of findings’ tables and grading the certainty of the evidence. In: Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA, editors. Cochrane Handbook for Systematic Reviews of Interventions version 6.0 (updated July 2019). Cochrane, 2019.

31. Boileau P, Avidor C, Krishnan SG, et al. Cemented polyethylene versus uncemented metal-backed glenoid components in total shoulder arthroplasty: a prospective, double-blind, randomized study. J Shoulder Elbow Surg. 2002;11:51–9.

32. Fox TJ, Cil A, Sperling JW, Sanchez-Sotelo J, Schleck CD, Cofield RH. Survival of the glenoid component in shoulder arthroplasty. J Shoulder Elbow Surg. 2009;18:859–63.

33. Walch G, Young AA, Boileau P, Loew M, Gazielly D, Mole` D. Patterns of Loosening of Polyethylene Keeled Glenoid Components After Shoulder Arthroplasty for Primary Osteoarthritis. Results of a Multicenter Study with More Than Five Years of Follow-up. J Bone Joint Surg Am. 2012;94:145–50.

34. Boileau P, Moineau G, Morin-Salvo N, Avidor C, Godenèche A, Lévine C, et al. Metal-backed glenoid implant with polyethylene insert is not a viable long-term therapeutic option. J Shoulder Elbow Surg. 2015;24:1534–43.

35. Throckmorton TW, Zarkadas PC, Sperling JW, Cofield RH. Pegged versus keeled glenoid components in total shoulder arthroplasty. J Shoulder Elbow Surg. 2010;19:726–33.

36. Papadonikolakis A, Matsen FA 3rd. Metal-Backed Glenoid Components Have a Higher Rate of Failure and Fail by Different Modes in Comparison with All-Polyethylene Components: A Systematic Review. J Bone Joint Surg Am. 2014 Jun 18;96(12):1041-7.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- EthicalapprovalCEP.pdf
- PRISMAPchecklist.docx
