Effect of different geotextile treatments in soil to increase the yield and yield attribute of capsicum (Capsicum annuum)

Arunabha Pal, Rahul Adhikary, Susnata Kumar De and Milan Sardar

DOI: https://doi.org/10.22271/chemi.2020.v8.i3a1.9608

Abstract
Geotextiles are textile like materials of natural product of eco-friendly and biodegradable in nature and act as useful ameliorative towards alleviating soil related constrains of crop production and improve soil structural performance. Application of suitable ameliorative thus necessitates for improving the growth of plant towards increasing the crop yield. In order to assess the effectiveness of various geotextiles on the improvement of growth of crop and enhancement of crop productivity, the present study has been undertaken. with five treatments combinations viz. T1 -non woven jute geotextile, T2 - non woven dry grasses geotextile, T3 - non woven coco coir geotextile, T4 - non woven banana leaf fibre geotextile and T5 - farmers practices (i.e. control). All geotextile materials @ 5 ton /ha were spread on the soil after final land preparation and before seedling or planting of capsicum. The results reveals that the jute fibre geotextile, dry grasses geotextile, coco coir geotextile, and banana leaf geotextile show much better performance than control (farmers practice) in respect of yields, yield attributes and growth parameters. Among the various geotextiles treatments, the jute fibre geotextile proves much superior performance for growth, yield and yield attributes of capsicum.

Keywords: Geotextile, yield of capsicum, yield attribute of capsicum, growth parameter of capsicum

Introduction
A geotextile is defined as any permeable textile material that is used with foundation, soil, rock, earth, etc. to increase stability and decrease wind and water erosion. A geotextile may be made of synthetic or natural fibers. Naturally occurring jute agro geo-textiles are eco-friendly and biodegradable products which act as surface cover materials and useful ameliorative to eliminate soil related constraints to crop production (Yong et al., 2000; Pain et al., 2013 and Adhikary et al. (2016) [6, 7]. A geotextile is designed to be permeable to allow the flow of fluids through it or in it, and a geomembrane is designed to restrict the fluid flow (Mitchell et al., 2003) [8, 9]. It plays a vital role in erosion control, increasing moisture holding capacity in soil, improving water uptake and drainage capacity (Ranganathan, 1994) [10]. Natural fiber geotextiles degrade to form organic mulch and help in quick establishment of vegetation. Different fibers will degrade at different rates e.g. coir geotextiles degrade in 2-3 years while jute degrades in 1-2 years (Adhikary et al., 2018 and Pal et al., 2020) [2, 3]. Coir is therefore useful in situations where vegetation will take longer to establish, and jute is useful in low rainfall areas because it absorbs more moisture. Eco geotextile another similar soil conditioner, are equally effective in erosion control, stabilization of soil slopes and increasing water retention capacity also improve crop productivity (Rajgopal and Ramkrishna, 1997) [11]. Current research suggests that the composition of the geotextile does not dramatically affect performance capabilities. But advantage of the product is that due to its biodegradable in nature, the materials are more stable than mulching, (Benik et al., 2003) [3]. A capsicum (Capsicum annuum) is a vegetable crop originates from South and Central America and members of the Solanaceae family, as are tomatoes, potatoes and eggplant. Plants are bushy, about 60–80cm high and semi-perennials that are grown as annuals in commercial cultivation. They supply good levels of antioxidants and vitamin C. Capsicums are used in salads, baked and stuffed dishes, stews, stir-fries, salsa, pizzas and cheeses, pickles and for stuffing olives. They may also be used for producing paprika which is used for colouring foods, flavouring and in sauces.
Materials and Method
The present study was carried out at the farmer’s field in the
and application of different geotextile treatment on soil to
improve crop yield in humid and hot sub humid region, 2015 -
2016 at Gokna village near Baduria North 24 Parganas West
Bengal. The land is situated at 22º 71' N latitude, 88 º 75' E
longitudes with and altitude at 5 m above the mean sea level.
The climate is subtropical moist sub humid with mean annual
temperature of 36.4 ºC to 14.4º C and mean annual rainfall of
1503mm (Krishi Vigyan Kendra, Ashoknagar). The treatments
treatments also described on (Table 1).

Results and Discussion
Vegetables play a major role in Indian agriculture by
providing food, nutritional and economic security and more
importantly, producing higher returns per unit area and
time. In addition, vegetables have higher productivity, shorter
maturity cycle, and high value and provide greater income
leading to improved livelihoods.

Yield and yield attributes of capsicums
The results (Table 2) of pooled data of green capsicum yield
recorded in 2015 and 2016 were showed variation with the
application of various kinds of geotextile. The green capsicum
yield were recorded as 20.85 q/ha, 19.12 q/ha, 17.48 q/ha,
14.04 q/ha and 7.13 q/ha respectively in non-woven jute
geotextile, dry grasses geotextile, coco-coir geotextile and
banana leaf fiber geotextile and control (farmer’s practice).
The above results are in agreement with those reported by
Khristaria et al. (1994) [7] and Divies et al. (2006) [3]. The
maximum yield was recorded in non-woven Jute fibre
geotextile. The response of yield over control due to each
treatment were 13.72 tons/ha (192.3%), 11.98 tons/ha (167.9%),
10.34 tons/ha (145%) and 6.90 tons/ha (96.7%) respectively in non-woven jute geotextile, dry grasses, coco-coir geotextile and
banana leaf fibre geotextile. The yield of dry capsicum also showed similar result i.e. highest (4.85
 tons/ha) and lowest (1.66 tons/ha), were recorded jute
grotextile and control respectively. The above results are
in agreement with those reported by Dayal (1989) [4] and Sharma et al. (2010) [14].

Physiological parameter of capsicum crop
The result of physical parameters inducing growth of
capsicum crop presented in (Table 3) by application of
various geotextile. Although the difference of plant height and
number of branch occurred due to application of each of the
gotextiles, but better performance were observed with the
application of jute geotextiles. The height of plant observes
during harvesting were recorded 54.33 cm & 49.46 cm in jute
grotesile and control plot respectively and number of
branches at the time of harvesting also recorded 12.8 & 11.03
in jute geotextile and control plot. The physiological growth
of the capsicum crops due to application of geotextiles
follows in the order of: jute > dry grasses > coco-coir >
banana leaf fiber > control. These results are highly indicative
of the effect of geotextile on the physiological growth of the
capsicum crop. The results of the dry matter production and
crop growth rate influencing yield and growth of capsicum
crop due to various geotextiles management are presented in
(Table 3). The results reveal that total dry matter weight were
found 357.46, 345.4, 334.96, 300.96 and 278.26 g/plant
respectively in jute, dry grasses, coco-coir, banana leaf fiber
grotesile and control. Response of dry matter production
over control due to each treatment were 79.2 g/plant
(28.46%), 67.13 g/plant (24.12%), 56.13 g/plant (20.37%),
and 52.70 g/plant (18.93%) respectively. Wight of single green
capsicum also showed similar trend of
results as observed for the earlier. Wight of single green
capsicum highest values (180.54 g) are observed for the
treatments of jute geotextiles followed by the treatments of
dry grasses (169.5 g), coco-coir geotextiles (164.61 g) and
banana leaf fiber geotextiles (159.35 g). The above results are
in agreement with those reported by Paza (2007) [11],
Adhikary et al. (2018) [2] and Adhikary et al. (2016) [1].

Table 1: Experimental Details

Treatment Details	Plot size:	Design:	Replication:	Date of planting:
T1: Non woven jute fibre geotextile (5 ton+ NPK @ 60: 40: 40 kg/ha)	36 sq m.	RBD	3	January 2nd 2015
T2: Non woven dry grasses fibre geotextile. (5 ton+ NPK @ 60: 40: 40 kg/ha)				
T3: Non woven coco coir geotextile. (5 ton+ NPK @ 60: 40: 40 kg/ha)				
T4: Non woven banana leaf fibre geotextile. (5 ton+ NPK @ 60: 40: 40 kg/ha)				
T5: Control (farmer practice). (NPK @ 60: 40: 40 kg/ha)				

Table 2: Effects different Geotextile on Capsicum yield and yield attribute component

Treatment	No. of Plant/ ha	No. of Green Capsicum /Plant	Wt of single Green Capsicum (gm)	Green Capsicum (tons/ha)	Dry Capsicum (tons/ha)
Jute	25000.000	4.62	180.54	20.85	4.85
Dry grasses	25000.000	4.51	169.54	19.12	4.45
Coco coir	25000.000	4.25	164.61	17.48	4.06
Banana leaf fibre	25000.000	3.52	159.35	14.04	3.26
Control	25000.000	2.19	130.51	7.13	1.66
SEM(±)		0.01	0.34	0.08	0.02
CD at 5%		0.05	1.10	0.25	0.06
Table 3: Effects of different Geotextile on physiological parameter of Capsicum.

Treatment	No. of branch at Harvesting	Height of the plant during Harvesting(cm)	50% flowering (DAS)/plant	50% fruits (DAS)/plant	Dry Matter at Harvesting(gm/plant)	Crop Growth Rate(gm/day)
Jute	12.80	54.43	3.63	4.50	357.46	3.57
Dry grasses	12.33	50.88	3.30	4.33	345.40	3.45
Coco coir	12.06	50.10	3.00	4.16	334.96	3.35
Banana leaf fibre	11.73	49.93	2.90	4.06	332.96	3.31
Control	11.03	49.46	2.50	3.86	278.26	2.78
SEm(±)	0.100	1.460	0.070	0.050	2.340	0.020
CD at 5%	0.330	4.750	0.220	0.180	7.630	0.080

Conclusion

The results of the present study led to suggest that application of each of geotextiles increased growth and yield of capsicum crop. Used of different geotextiles in soil as soil conditioner in which jute geotextile was found to be most efficient to keep the soil in friable condition that helps to improve soil condition which helps to increase the yield.

References

1. Adhikary N, Disha A, Mahata AP, Pal A, Adhikary R, Sardar M *et al*. Journal of Soil and Water Conservation. 2016; 15(3):242-245.
2. Adhikary R, Ravi Sankar L. Use of geotextiles for improving crop productivity on groundnut in Inceptisols. International Journal of Chemical Studies. 2018; 6(5):2673-2678.
3. Benik SR, Wilson BN, Biesboer DD, Hansen B, Stenlund D. Evaluation of erosion control products using natural rainfall events. Journal of Soil and Water Conservation. 2003; 58(2):98-104.
4. Dayal D. Response of summer groundnut to mulching under varying irrigation regime, Journal of Groundnut-News. 1989; 2(1):5.
5. Divies K, Fullen MA. A pilot project on the potential contribution of palm geotextile to soil conservation, Earth surface processes and landforms (In press), 2006.
6. Dutta T, Chakraborty T. Effect of organic manures and subabul leaf mulching under varying levels of fertility on growth and yield of potato and weed biomass. Indian Journal of Agron. 1995; 40(1):140-142.
7. Khistaria MK, Patel JS, Paidh VI, Patel JC. Effect of different mulches on the yield of groundnut under rainfed conditions, Gujarat Agricultural University Research Journal. 1994; 20(1):139-140.
8. Mitchell DJ, Barton AP, Fullen MA, Hocking TJ, WuBo Z, Zheng Y. Field studies of the effects of jute geotextiles on runoff and erosion in Shropshire, UK. Soil Use and Management. 2003; 19(2):182-184.
9. Pain, Debabrata De, Susanta Kumar, Tarafdar PK, Pal Arunabha, Mahata *et al*. Efficient use of geotextiles as soil conditioner to increase potato productivity on inceptisols of West Bengal. Journal of Soil and Conservation. 2013; 12(2):103-107.
10. Pal A, Adhikary R, Bera M, De SK, Sardar M. Application of different geotextile in soil to improve the soil health in humid and hot sub humid region of West Bengal. International Journal of Current Microbiology and Applied Sciences, 2020, 9(06).
11. Paza A. The fertilization of potato with cash crops and straw. Framenta Agronomical. 2007; 24(40):100-105.
12. Ranganathan SR. Development potential of jute geotextiles. Journal of Geotextiles and Geomembrane. 1994; 13(6-7):421-433.
13. Rajagopal K, Ramakrishna S. Degradation behaviour of coco geotextiles with in clay soils. Proc. Of Asian Regional Conf. on Geosynthesis, 1997; 25-29.
14. Sharma VAK, Dekshinamurtic Curr. Sci. 1971; 40:35.
15. Mitchell DJ, Barton AP, Fullen MA, Hocking TJ, WuBo Z, Zheng Y. Field studies of the effects of jute geotextiles on runoff and erosion in Shropshire, UK. Soil Use and Management. 2003; 19(2):182-184.