The application of ARIMA model in forecasting population data

Jie Dai and Shuping Chen

College of Mathematics, Xiamen University of Technology, Xiamen 361024, China

1Email: Shupingchen@126.com

Abstract. The prediction of population data plays a positive role in adjusting population policy and promoting the development of social, economic and cultural undertakings. In this paper, the population data of Zhejiang Province from 1978 to 2016 are processed and analyzed by using the principle of time series analysis. In order to test the validity of the parameters selected by this model, the population data of Zhejiang Province in 2017 are verified in this paper. The experimental results show that the actual fitting effect of the model is good. Finally, with the help of SAS software, the population data of Zhejiang Province from 2018 to 2022 are analyzed and forecasted.

1. Introduction

As a country with a large population, the population problem has always been one of the important factors affecting China's economic and social development. As we all known, the population of a country has a significant influence on its political, economic and social development of the country, and the study of the social issues is also closely related to the number and structure of the population. The prediction of population data is conducive to grasping the future trend of economic development and better allocation of existing resources. Therefore, the prediction of population data can effectively control the growth and decline of the population. It can not only provide rich labor resources for all walks of life, but also prevent the negative effects of population aging and decay.

In recent years, many scholars at home and abroad have done a lot of research work on the prediction and analysis of population data. Based on the revised population data for 2006-2015, He et al. [1-3] predicted the population by establishing a time series model and a two-layer "small world" model, and obtained the total population from 2017 to 2030. They also discussed the impact of China's population on economic development by data envelopment analysis. In reference [4], two kinds of population prediction models were established by using ARIMA model based on population time series and exponential smoothing method, and the optimal models were also obtained. This model was used to estimate the population of China from 2006 to 2015. In addition, in order to study the application of various models in the prediction of the income gap between urban and rural residents in the country, a variety of prediction models, such as ARIMA model, grey model and quadratic polynomial were established in reference [5], and the accuracy of the models were also compared. In the same year, Tu et al. [6] used the ARIMA product seasonal model to predict and analyze the tourism demand of Guilin by making a difference in the number of tourists in Guilin, and carried out diagnostic tests on the model. It was found that the product season model has a good fitting effect on the number of tourists in Guilin.
In 2014, Han [7] analyzed and predicted the population of our country by using multiple linear regression model and time series model, the results indicated that China's population will continue to grow in the short term. In the same year, Mumbare et al. [8] carried out time series analysis of the average surviving children during terminal contraception. They preprocessed the data and tested the stationarity of each sequence, and obtained the non-seasonal ARIMA (p, d, q) model. In 2016, Chen et al. [9] predicted the population quantity and structure by time series and the death changes of the corresponding age groups, and analyzed the ARIMA model based on the static data of the sixth population census of Q City.

In reference [10], using the time series data from 2002 to 2016, the practicability of price prediction was demonstrated for the main crops in Karnataka. The results of ARIMA price forecasting fully proved the power of ARIMA model as a price forecasting tool. In reference [11], a linear stochastic model was established by using ARIMA model. The predicted data of the optimal ARIMA model was compared with the measured data to verify the effectiveness of the model, and the results were in good agreement with the actual data.

As a strong economic province, the literatures on the study of the population quantity and structure of Zhejiang Province is not many. Feng et al. [12, 13] used the autoregressive distribution lag model and equal-dimensional grey number supplement model to predict the population data of Zhejiang Province. In this paper, the ARIMA model will be established according to the total population of Zhejiang Province from 1978 to 2017, and the model will be used to predict the population number and structure in the next few years.

2. ARIMA model

There are two methods to test the stationarity of sequences, one is to judge the stationarity of sequences according to the characteristics of sequence diagram and autocorrelation diagram, and the other is to construct test statistics to test hypotheses. The graph test method is a simple and widely used method to judge the stationarity. Its disadvantage is that the discriminant conclusion has a strong subjective color. Therefore, it is best to use the statistical test method to assist the judgment. At present, the most commonly used statistical test method for stationarity is the unit root test. The Flow chart of ARIMA model is shown in Figure 1.

![Flow chart of ARIMA model](image-url)

Figure 1. Flow chart of ARIMA model.
3. Prediction and analysis of population data

3.1. Collection and processing of total population data in Zhejiang Province

In order to analyze and predict the total population of Zhejiang Province over the next five years (assuming that the growth of population data is affected only by its own factors, free from outside interference), we collected the total population of Zhejiang Province from 1978 to 2017 from the statistical yearbook on the website of the Zhejiang Bureau of Statistics (see Table 1), and selected the total population data from 1978 to 2016 for processing and analysis. The total population data of Zhejiang Province in 2017 is used for verification. By using the SAS statistical software, a broken line diagram of the total population of Zhejiang Province from 1978 to 2016, as shown in Figure 2.

Table 1. The total population of Zhejiang Province from 1978 to 2017 (unit: million).

Year	Total population						
1978	3750.96	1988	4169.85	1998	4446.86	2008	4687.85
1979	3792.33	1989	4208.88	1999	4467.46	2009	4716.18
1980	3826.58	1990	4234.91	2000	4501.22	2010	4747.95
1981	3871.51	1991	4261.37	2001	4519.84	2011	4781.31
1982	3924.32	1992	4285.91	2002	4535.98	2012	4799.34
1983	3963.10	1993	4313.30	2003	4551.58	2013	4826.89
1984	3993.09	1994	4341.20	2004	4577.22	2014	4859.18
1985	4029.56	1995	4369.63	2005	4602.11	2015	4873.34
1986	4070.07	1996	4400.09	2006	4629.43	2016	4910.85
1987	4121.19	1997	4422.28	2007	4659.34	2017	4957.63

Figure 2. Annual variation of total population in Zhejiang Province (unit: million).

From Figure 2, it can be seen that the sequence contains a long-term trend of curve increment, which is preliminarily judged to be a non-stationary sequence. The study of ARIMA model for non-stationary time series requires the difference processing of population data. Because the original
sequence diagram series shows an approximate linear trend, the first-order difference is selected. The sequence diagram after the first-order difference is shown in Figure 3.

![Figure 3. Time series diagram after the first-order difference of total population in Zhejiang Province in 1978-2016.](image)

Figure 3. Time series diagram after the first-order difference of total population in Zhejiang Province in 1978-2016.

In order to further determine the stationarity, the autocorrelation diagram of the differential sequence is investigated, as shown in Figure 4.

![Figure 4. Autocorrelation.](image)

Autocorrelations

Lag	Covariance	Correlation	Std Error
0	87.177465	1.00000	0
1	48.047265	0.55114	0.162221
2	35.074173	0.40233	0.205677
3	28.139429	0.32278	0.243389
4	20.575452	0.23602	0.251459
5	24.014403	0.27547	0.262912
6	29.166239	0.33456	0.269244
7	22.057834	0.25302	0.270505
8	9.915084	0.11373	0.270505
9	5.528312	0.06341	0.270896
10	-0.840865	-0.0965	0.270905
11	-3.383406	-0.33881	0.271052
12	-5.231030	-0.6000	0.271401
13	-6.035320	-0.6923	0.271865
14	-14.336694	-1.6445	0.274471
15	-25.140723	-2.8839	0.282332
16	-20.808959	-2.3870	

"." marks two standard errors

In order to further determine the stationarity, the autocorrelation diagram of the differential sequence is investigated, as shown in Figure 4.

The autocorrelation diagram shows that the sequence has a short-term correlation, and then the white noise test is carried out on the sequence. The results shown that the significance level of the test is 0.05, the P value of the delayed statistics is less than 0.0001 and 0.05, so the sequence can’t be regarded as a white noise sequence which is used to fit the ARMA model. The MINIC option specifies that the SAS system outputs the BIC information of all ARMA (p, q) models whose autocorrelation delay order is less than or equal to 5 and the moving average delay order is less than or equal to 5. It is found that the order of the model whose BIC information reaches the minimum is obtained.
It is found that the AR (1) model is fitted to the first order difference sequence and the parameters are significant, which means that the fitting model of the total population data of Zhejiang Province is the ARIMA (1,1,0) model, and the fitting results are as follows:

\[x_t - x_{t-1} = 31.51505 + 0.56721(x_{t-1} - x_{t-2}) + \varepsilon_t, \]

(1)

then

\[x_t = 31.51505 + 1.56721x_{t-1} - 0.56721x_{t-2} + \varepsilon_t. \]

(2)

Partial Autocorrelations

Lag	Correlation
1	0.55114
2	0.14158
3	0.07974
4	0.0180
5	0.14795
6	0.16655
7	-0.04341
8	-0.16173
9	-0.03725

Figure 5. Partial Autocorrelations.

In order to further verify the effectiveness of the model, the SBC and AIC principle are also used in this paper. It can be seen from Figure 5 that the partial autocorrelation coefficient of the stationary sequence shows a trailing phenomenon after \(p=2 \), so \(p \) can be 1 or 2. Meanwhile, it can be found that the AIC value and SBC value of the model reach the minimum value when \(p=1 \) and \(q=1 \) according to Table 2, which means that the ARIMA (1, 1, 0) is the most suitable one.

Table 2. Comparison between AIC and SBC criterion of ARIMA model.

ARIMA (p, d, q)	ARIMA (1, 1, 0)	ARIMA (2, 1, 0)
AIC	267.4879	268.9201
SBC	270.7631	273.8329

Therefore, the ARIMA (1, 1, 0) model is used to predict the total population of Zhejiang Province in the next six years, and the results are shown in Table 3.

Table 3. Results of predict the total population of Zhejiang Province in 2017-2022.

Forecasts for variable x
obs

40
41
42
43
44
45

According to Table 1, the actual total population data of Zhejiang Province in 2017 is about 49.5763 million, while the model ARIMA (1,1,0) predicts that the total population data of Zhejiang Province in 2017 is about 49.457654 million people. Obviously, it’s 95% confidence interval is [4930.1546, 4961.3763], and the actual data falls into the confidence interval. As we all know, since the full implementation of the two-child policy in 2016, the total population will certainly be more
than the forecast. Therefore, it can be considered that the prediction accuracy of the model fitted in this paper is high and the prediction results are reliable.

3.2. Collection and processing of agricultural population and non-agricultural population data in Zhejiang Province

In order to further verify the effectiveness of the model, the agricultural population and non-agricultural population of Zhejiang Province from 1978 to 2014 were collected from Zhejiang statistical database (see Table 4 and Table 5). In this subsection, the data of the two different groups of data are analyzed and processed respectively.

Since Zhejiang household registration has no longer been divided into agricultural and non-agricultural hukou from 2015, relevant data from 1978 to 2014 can only be collected in the database. Therefore, the agricultural population data and non-agricultural population data of Zhejiang Province from 1978 to 2013 were selected for analysis, and the data for 2014 were retained for verification.

Table 4. Agricultural population data of Zhejiang Province from 1978 to 2014 (unit: million).

Year	Agricultural population						
1978	3321.96	1988	3487.61	1998	3539.78	2008	3292.37
1979	3332.57	1989	3515.46	1999	3519.79	2009	3282.23
1980	3346.40	1990	3538.13	2000	3506.20	2010	3279.06
1981	3362.04	1991	3555.37	2001	3473.63	2011	3279.43
1982	3387.79	1992	3560.13	2002	3438.76	2012	3277.74
1983	3413.05	1993	3563.24	2003	3394.08	2013	3281.48
1984	3425.47	1994	3565.19	2004	3353.16	2014	3279.11
1985	3395.35	1995	3567.14	2005	3335.30		
1986	3417.19	1996	3570.17	2006	3317.26		
1987	3455.14	1997	3557.19	2007	3308.21		

Table 5. Non-agricultural population data of in Zhejiang Province from 1978 to 2014 (unit: million).

Year	Non-Agricultural population						
1978	429.00	1988	682.24	1998	907.08	2008	1395.48
1979	459.76	1989	693.42	1999	947.67	2009	1433.95
1980	480.18	1990	696.78	2000	995.02	2010	1468.90
1981	509.47	1991	706.00	2001	1046.21	2011	1501.88
1982	536.53	1992	725.78	2002	1097.22	2012	1521.61
1983	550.05	1993	750.06	2003	1157.50	2013	1545.41
1984	567.62	1994	776.01	2004	1224.06	2014	1580.06
1985	634.21	1995	802.49	2005	1266.81		
1986	652.88	1996	829.92	2006	1312.17		
1987	666.05	1997	865.09	2007	1351.13		
3.2.1. Processing of agricultural population data in Zhejiang Province. Using the calculation steps like that given in subsection 3.1, it can be concluded that the fitting model of the agricultural population data of Zhejiang Province is the ARIMA (1,1,0) model, and the fitting results are as follows:

\[x_t - x_{t-1} = 0.77577(x_{t-1} - x_{t-2}) + \epsilon_t, \] \hspace{1cm} (3)

then

\[x_t = 1.77577x_{t-1} - 0.77577x_{t-2} + \epsilon_t. \] \hspace{1cm} (4)

It can be concluded from Table 6 that that the predicted value of agricultural population data in Zhejiang Province in 2014 predicted by ARIMA (1, 1, 0) model is 32.843814 million which means that the result is at 95% confidence level, and the interval is [3257.8470, 3310.9158]. The actual agricultural population in Zhejiang Province in 2014 was 32.7911 million according to Table 4. It can be found that the difference is 52714, and the actual data fall into the confidence interval, so it can be considered that the prediction accuracy of the fitted model is high and the prediction results are reliable.

Table 6. Results of predict the agricultural population of Zhejiang Province in 2014-2017.

obs	Forecast	Std Error	95% Confidence Limits
37	3284.3814	13.5382	3257.8470
38	3286.6321	27.5905	3232.5557
39	3288.3782	42.3948	3205.2860
40	3289.7328	57.2733	3177.4791

Finally, the forecast results of agricultural population in Zhejiang Province from 2015 to 2017 are shown in Table 7.

Table 7. Results of predict the agricultural population of Zhejiang Province in 2015-2017 (unit: million).

Year	Agricultural population	Year	Agricultural population	Year	Agricultural population
2015	3286.6321	2016	3288.3782	2017	3289.7428

3.2.2. Processing of Non-agricultural population data in Zhejiang Province. The same calculation steps as for the total population data in Zhejiang Province apply here, it can be founded that the fitting model of the non-agricultural population data of Zhejiang Province is the ARIMA (1,1,0) model, and the fitting results are as follows:

\[x_t - x_{t-1} = 31.45073 + 0.62253(x_{t-1} - x_{t-2}) + \epsilon_t, \] \hspace{1cm} (5)

then

\[x_t = 31.45073 + 1.62253x_{t-1} - 0.62253x_{t-2} + \epsilon_t. \] \hspace{1cm} (6)

By the same way, the non-agricultural population data for the next four years from 2013 are shown in Table 8.
Table 8. Results of predict the non-agricultural population of Zhejiang Province in 2014-2017.

obs	Forecast	Std Error	95% Confidence Limits
37	1572.0979	12.7189	1547.1694 1597.0264
38	1600.5837	24.2414	1553.0715 1648.0959
39	1630.1886	35.2314	1561.1362 1699.2410
40	1660.4903	45.4002	1571.5075 1749.4731

Finally, the forecast results of non-agricultural population in Zhejiang Province from 2015 to 2017 are shown in Table 9.

Table 9. Results of predict the non-agricultural population of Zhejiang Province in 2015-2017 (unit: million).

Year	Non-Agricultural population	Year	Non-Agricultural population	Year	Non-Agricultural population
2015	1600.5837	2016	1630.1886	2017	1660.4903

3.3. Verification of model

According to the subsections 3.1 and 3.2, it can be found that the optimal model of the agricultural population data, non-agricultural population data and the total population data of Zhejiang are all ARIMA (1, 1, 0). As can be seen from Table 10, the prediction of the total population data of Zhejiang Province from 2015 to 2017 is more accurate, which further verifies the validity of the ARIMA (1,1,0) model. Therefore, the ARIMA (1, 1, 0) model of the total population data of Zhejiang Province has good effectiveness, and the fitting results are as follows:

\[x_t = 31.51505 + 1.56721x_{t-1} - 0.56721x_{t-2} + \epsilon_t. \]

Table 10. Results of predict the population of Zhejiang Province in 2015-2017 (unit: million).

Year	Agricultural population	Non-Agricultural population	Total	Actual value	Phase difference (absolute value)	95% Confidence Limits
2015	3286.6321	1600.5837	4887.2158	4873.34	13.8758	4785.6272 4988.8045
2016	3288.3782	1630.1886	4918.5668	4910.85	7.7168	4766.4222 5070.7114
2017	3289.7328	1660.4903	4950.2231	4957.63	7.4069	4748.9866 5151.4595

4. Summary

The population problem has always been an important issue in the development of human society. The prediction of the population data of a country and a state in the next few years will not only play a guiding role in the economic and social development of the region but also provide scientific basis for the evaluation of relevant policies. As an economically developed coastal city, Zhejiang Province urgently needs to grasp the development trend of its own population. The study of its population structure can play a positive role in promoting the development of local economic and cultural undertakings.

In this paper, with the help of SAS statistical software, the ARIMA (1,1,0) model is constructed according to the total population data of Zhejiang Province from 1978 to 2016. In order to test whether...
the selected parameters of the model are reasonable, the population data of Zhejiang Province in 2017 are validated. The experimental results show that the model has a good fitting effect. Then, in order to further verify the practical effectiveness of the model, the data of agricultural population and non-agricultural population in Zhejiang Province are processed, analyzed and verified according to the same modeling method. Through verification and combining with practice, it is concluded that the actual fitting effect of ARIMA (1, 1, 0) model based on total population data is good. Finally, we predict the population data of Zhejiang Province in the next few years. The prediction results show that the population of Zhejiang Province is generally increasing year by year. It is hoped that the study of this topic can provide a theoretical reference for the planning and adjustment of relevant policies in Zhejiang Province.

References
[1] He X H, Han T, Dong Q and Liang W K 2017 Prediction of the number of Chinese population in the Future under the Comprehensive two-child Policy based on the time Prediction Model[J]. Course education research 36 247-248
[2] Li Z K, Zhang L N, Zheng J S and He X H 2017 The influence of China's population on Economic Development in the Future[J]. Shenzhen 31 219
[3] He X H, Zhang S H and Wang Ying X J 2017 Prediction of China's population under the Comprehensive two-Child Policy based on the two-tier "small World" Model[J]. Scientist 17 11,44
[4] Tu X L and Tu H Y 2009 A Comparative study of ARIMA and exponential smoothing method in population Prediction in China[J]. Statistics and Decision 16 21-23
[5] Tu X L 2011 A Comparative study on the Prediction models of income Gap between Urban and Rural residents in China[J]. Journal of Anhui Agricultural Sciences 39(24) 15057-15062
[6] Tu X L and Huang Y L 2011 Application of ARIMA Multiplicative Seasonal Model to the Forecast for Travel Demand-A Case Study of Guilin[J]. Journal of Guangxi University of Finance and Economics 24(1) 112-117
[7] Han S T and Zhou Y X 2014 A Comparative study of multiple Linear regression and ARIMA in China's population Prediction[J]. China Management Informationization 17(22) 100-103
[8] Mumbare S S, Gosavi S and Almale B 2014 Trends in Average Living Children at the Time of Terminal Contraception: A Time Series Analysis Over 27 Years Using ARIMA (p, d, q) Nonseasonal Model[J]. Indian journal of community medicine: official publication of Indian Association of Preventive & Social Medicine 39(4) 223-228
[9] Chen P and Lu W Q 2016 Analysis on the Application of ARIMA Model in Regional population Prediction[J]. Contemporary Economics 6 111-113
[10] Jadhav V, Chinnappa Reddy B V, Gaddi G M 2017 Application of ARIMA Model for Forecasting Agricultural Prices [J]. Journal of Agricultural Science and Technology 5 981-992
[11] Karthika M, Krishnaveni and Thirunavukkarasu V 2017 Forecasting of meteorological drought using ARIMA model [J]. Indian Journal of Agricultural Research 2 103-111
[12] Xia F 2011 Prediction of Total population in Zhejiang Province based on ADL[J]. Statistical Science and Practice (11) 43-45
[13] Zhang J J and Ma D D 2011 Application of Equal dimensional Grey number compensation Model in population Prediction: a case study of Zhejiang Province[J]. Journal of Wenzhou University(Natural Sciences) 32(4) 37-42