Numerical Study of a Helical Heat Exchanger for Wort Cooling in the Artisanal Beer Production Process

Fernando Toapanta-Ramos; Luis González-Rojas; Elmo Calero; Bryan Calderón; William Quitiaquez

Citación: F. Toapanta-Ramos, L. González-Rojas, E. Calero, B. Calderón, W. Quitiaquez, “Numerical Study of a Helical Heat Exchanger for Wort Cooling in the Artisanal Beer Production Process,” Revista Facultad de Ingeniería, vol. 29 (54), e11632, 2020. https://doi.org/10.19053/01211129.v29.n54.2020.11632

Recibido: Agosto 27, 2020; Aceptado: Noviembre 23, 2020; Publicado: Noviembre 24, 2020

Derechos de reproducción: Este es un artículo en acceso abierto distribuido bajo la licencia CC BY

Conflicto de intereses: Los autores declaran no tener conflicto de intereses.
Numerical Study of a Helical Heat Exchanger for Wort Cooling in the Artisanal Beer Production Process

Fernando Toapanta-Ramos¹
Luis González-Rojas²
Elmo Calero³
Bryan Calderón⁴
William Quitiaquez⁵

Abstract
The objective of the present work is to study the behavior of a helical tube and shell heat exchanger, for the cooling of the wort in the process of making craft beer with cold water, through the methodology of computational fluid dynamics (CFD) by finite volume models for heat exchanger modeling. This by using the ANSYS Fluent software, which allows to understand the behavior of the fluid through equations that describe their movement and behavior, using numerical methods and computational techniques. In the mesh convergence, two methods were used, orthogonality and obliquity, with which it was confirmed that the meshing is ideal in the simulations that were carried out. For the simulation, the k-epsilon turbulence model and the energy model were used. Through various simulations, it was obtained that by varying the mass flow, better results are reducing the outlet temperature, with a variation of 15.16 °C, while varying the inlet temperature of the water, there is just a variation from 2.71 °C to 0.01 °C. Therefore, a significant improvement in the performance of

¹ M. Sc. Universidad Politécnica Salesiana (Quito, Ecuador). ltoapanta@ups.edu.ec. ORCID: 0000-0002-0838-4702
² Universidad Politécnica Salesiana (Quito, Ecuador). lgonzalezr1@est.ups.edu.ec. ORCID: 0000-0001-6573-4353
³ Universidad Politécnica Salesiana (Quito, Ecuador). ecalerp@est.ups.edu.ec. ORCID: 0000-0001-5595-5005
⁴ Universidad Politécnica Salesiana (Quito, Ecuador). bcalderons@est.ups.edu.ec. ORCID: 0000-0002-8602-3099
⁵ M. Sc. Universidad Politécnica Salesiana (Quito, Ecuador). wquitiaquez@ups.edu.ec. ORCID: 0000-0001-9430-2082
the heat exchanger was found. In the same way, it was confirmed that the number of spikes in the heat exchanger is adequate, since the outlet temperature would not be reached with less spikes.

Keywords: CFD; heat interchanger; helical tube; wort.

Estudio numérico de un intercambiador de calor helicoidal para el enfriamiento del mosto en el proceso de elaboración de cerveza artesanal

Resumen

El presente trabajo tiene como objetivo estudiar el comportamiento de un intercambiador de calor de tubo helicoidal y coraza, para el enfriamiento del mosto en el proceso de elaboración de cerveza artesanal con agua fría, mediante la metodología de dinámica de fluidos computacional (CFD) por volúmenes finitos para el modelado del intercambiador de calor. Esto utilizando el software Fluent de ANSYS, mismo que nos permite comprender el fluido a través de ecuaciones que describen su movimiento y su comportamiento, mediante métodos numéricos y técnicas computacionales. En la convergencia de malla se manejaron dos métodos, ortogonalidad y oblicuidad, en los que se corroboró que el mallado es ideal en las simulaciones que se realizaron. Para la simulación se empleó el modelo de turbulencia k-épsilon y el modelo de energía. Por medio de varias simulaciones se obtuvo que, mediante la variación del flujo másico del mosto, se obtienen mejores resultados en la reducción de temperatura de salida, donde existe una variación de 15.16 °C. Por otro lado, variando la temperatura de entrada del agua, existe apenas una variación de 2.71 °C a 0.01 °C. Por lo tanto, se encontró una mejora significativa en el funcionamiento del intercambiador de calor. De la misma forma, se confirmó que el número de espigas en el intercambiador de calor es el adecuado, ya que con menos no se alcanzaría la temperatura de salida.

Palabras clave: CFD; intercambiador de calor; mosto; tubo helicoidal.
I. INTRODUCCIÓN
La cerveza es una de las bebidas más consumidas en el mundo y la mayor respecto a las alcohólicas [1-3], se encuentra en la vida de los humanos desde hace miles de años [1, 3-6] y su popularidad ha crecido a lo largo de la historia, debido a esto, el enfoque de mejoras en su producción se vuelve imprescindible.
En la elaboración de la cerveza, se busca perfeccionar los métodos para obtener un producto de calidad, desde la preparación de una fórmula establecida, hasta el tratamiento de la bebida en cada una de las etapas, y Rodman [7] reconoce la fermentación como el proceso más importante al elaborar cerveza, por lo tanto, se busca mejorar los tiempos de producción de esta etapa y generar un mejor rendimiento [8-9]. Específicamente, a través de mejoras en el enfriamiento, después de la cocción del mosto.
El enfriamiento del mosto caliente debe realizarse lo más rápido posible para evitar la formación de microorganismos o bacterias [1, 3, 5, 10-11], en lo que refiere al rango de temperaturas, Agulló [12] esclarece que, va desde los 15 °C hasta los 25 °C, cuando la levadura está viva. Este proceso requiere mucho tiempo y energía, debido a esto, acortar su duración y costo requiere enormes ahorros potenciales [8], generalmente, este ahorro energético se pretende a través de mejoras en los intercambiadores de calor.
En la industria cervecera el proceso de enfriamiento se realiza comúnmente mediante intercambiadores de calor de placas [13], debido a que, son de fácil montaje y limpieza; al abrirse fácilmente, permiten la inspección de toda la superficie de transferencia de calor [14]. Durante el intercambio de calor se generan incrustaciones o ensuciamientos [15], los cuales resultan de la capa caramelizada de azúcares en la superficie [5] que reduce la eficiencia del intercambiador de calor [16].
Qiu y Qiu [17] realizaron una máquina para el enfriamiento de cerveza artesanal a través de tubos enrollados de forma helicoidal, donde se puede obtener un producto fresco y refrigerado directamente desde el grifo, a su vez, afirmaron que las máquinas convencionales tienen el problema de ser lentas o distribuir con bajas velocidades los fluidos, lo que se soluciona al utilizar un sistema de tubos enrollados.
de forma helicoidal en diferentes distribuciones, el primero creando una bobina interna (flujo de cerveza) y una externa (flujo de refrigeración), en el otro caso se enrollaron ambas bobinas de forma colineal una sobre otra, donde el segundo caso obtuvo la mejor eficiencia.

Por su parte, Liu et al. [18] mediante una comparación del rendimiento hidrodinámico de un intercambiador de calor helicoidal de tubos múltiples (MTTHC), entre resultados experimentales y de simulación CFD, esclarecen que todos los parámetros favorables y por ende la eficiencia, mejoran al reducir el diámetro de la espiral y aumentar el paso de los tubos helicoidales, la validación de sus datos se obtiene a partir de un error de 9.81% en presión y 7.6% en temperatura, respecto a la investigación experimental.

Wang et al. [19] llevaron a cabo una comparación de resultados experimentales y obtenidos mediante software CFD para un intercambiador de calor de tubo trilobulado helicoidalmente enrollado (HCTTT), las pruebas se realizaron con rangos de número de Reynolds de 2000-40000 y se obtuvieron errores menores al 5% en parámetros de calor (Q), coeficiente de transferencia de calor por convección (h), Número de Nusselt (Nu), factor de fricción (f), lo que lo hace creíble la investigación.

El experimento incluye un análisis de intercambiadores HCPT, HCET, HCTT con un mismo diámetro de 6 mm y se obtuvo que el rendimiento térmico es mayor en el HCTTT hasta un máximo de 1.22 veces, el cual incrementa proporcionalmente al Reynolds.

El-said et al. [20] compara los resultados de un intercambiador de calor de placas helicoidales (HPHE) con un rango de Reynolds de 2000-7000 en el fluido caliente y 1400-7000 en el fluido frío y un radio de paso de 0.24-1.31, obteniendo que la eficiencia varía de 0.1758 a 0.6756 en los intervalos establecidos, el error que mantiene en comparación a los datos experimentales es del 13 %, además, afirma que todos los parámetros mejoran, a excepción de la presión donde existe una ligera caída.

Hatef y Ranjbar [21] en su estudio del efecto de los parámetros geométricos en transferencia de calor e hidrodinámica características del intercambiador helicoidal, el cual se desarrolla validando los datos numéricos obtenidos con el modelo.
experimental, utilizando para su estudio un intercambiador de doble tubo helicoidal, observaron que el coeficiente de transferencia de calor aumenta en relación con el diámetro interno del tubo, la relación de curvatura y por la disminución del paso de la bobina. En cuanto al número de Nusselt se ve afectado con el aumento del radio de la bobina del intercambiador [22], dando como resultado la disminución del coeficiente global de transferencia de calor.

La presente investigación pretende establecer los parámetros adecuados para reducir la temperatura del mosto de la cerveza en el menor tiempo posible, a través de una simulación en CFD, considerando el agua como fluido de enfriamiento, en un intercambiador de calor de tubo helicoidal y coraza.

II. MÉTODOS Y MATERIALES

El proceso de elaboración de cerveza está compuesto por diferentes etapas, como el precalentamiento, maceración, lúpulo, enfriamiento, intercambio de calor, fermentación y finalmente gasificación, el intercambiador de calor es la parte central de este análisis y donde el fluido se somete a diferentes cambios. El proceso inicia con el precalentamiento del agua, para que cumpla con las condiciones de entrada previo a la maceración, en este punto se agregan los granos y se llevan a un proceso de cocción que permite obtener el mosto, el cual representa el objeto de estudio, este mosto se enfriará a través del intercambiador de calor, procurando que el enfriamiento se realice en el menor tiempo posible y se pueda continuar con el proceso de gasificación, donde culmina la preparación de cerveza.

El fluido con mayor temperatura es el mosto, el cual ingresa al intercambiador de calor a una temperatura de 70°C en el tubo de geometría helicoidal, mientras que el agua utilizada para el enfriamiento ingresa a 15°C a la coraza, este proceso se muestra en la Figura 1, la temperatura de salida del intercambiador del mosto deberá ser de 25°C para la cerveza de alta fermentación tipo ale.
A. Descripción del sistema

La investigación ha previsto el diseño de un intercambiador de calor de coraza y tubo helicoidal. Los materiales empleados en el diseño de la carcasa es el acero comercial, mientras que para el tubo helicoidal se considera el cobre DHP tipo L.

La forma del tubo helicoidal se describe con dos parámetros geométricos el paso p y el radio de la hélice Rh, la selección del intercambiador de carcaza es debido a que el fluido caliente no debe entrar en contacto con el fluido de enfriamiento que circula por la geometría de la carcasa.

Uno de los factores más importantes en el proceso de enfriamiento de fluidos es la selección correcta de la geometría del intercambiador de calor y sobre todo en lo que refiere al tubo helicoidal. Las dimensiones geométricas seleccionadas para ese sistema se especifican en la Tabla 1.

Geometría	Parámetro	Valor (m)
Tubo helicoidal	Diámetro exterior	D_e 0.015
	Diámetro interior	D_i 0.01339
	Diámetro de bobina	D_c 0.320
	Longitud efectiva	L_e 0.320
	Paso de hélice	P 0.07111
Carcasa	Longitud de carcasa	L_S 0.400
	Diámetro de carcasa	D_S 0.350
	Diámetro exterior carcasa	D_E 0.03
B. Descripción de los fluidos de trabajo

Para generar un sistema que pueda ser aplicado, se establecen los parámetros de estudio a través materiales comerciales cobre tipo L y acero. Las propiedades termodinámicas de los materiales se muestran en la Tabla 2, para efectos de cálculo se consideran las propiedades termodinámicas como cobre puro, ya que el cobre DHP tiene una pureza mayor al 99 %.

Material	Cp (J kg⁻¹ K⁻¹)	k (W m⁻² K⁻¹)	ρ (kg m⁻³)
Cobre tipo L	385	401	8933
Acero	434	60.5	7854

Por otro lado, la Tabla 3 denota las propiedades termodinámicas de los fluidos de trabajo caliente y frío, como mosto de cerveza y agua, respectivamente.

Fluido	ρ (kg m⁻³)	Cp (J Kg⁻¹ K⁻¹)	k (W m⁻² K⁻¹)	μ (kg m s⁻¹)	Pr
Agua	999.1	4186	0.589	1.138E-3	8.09
Mosto	989.1	4187	0.6405	5.715E-4	3.73

Mediante el análisis se pretende obtener parámetros de temperatura y presión a la salida del mosto en el intercambiador de calor, la malla que se muestra en la Figura 2 se obtuvo después de establecer como válida su aplicación con varias simulaciones y una calidad de malla referente a la oblicuidad y ortogonalidad.
La convergencia del mallado por oblicuidad se muestra en la Figura 3 con un promedio de 0.20981. Por otro lado, la convergencia de malla en ortogonalidad presenta un promedio de 0.82443 con un mínimo de 0.11565 como se observa en la Figura 4. Las estadísticas obtenidas del mallado del intercambiador de calor corresponden a 1696103 nodos con 3227323 elementos.

C. Modelo de simulación

En el modelado de tubos helicoidales se consideran las ecuaciones gobernantes que corresponden al software ANSYS Fluent 2019, dentro del que se puede apreciar el modelo de turbulencia k-épsilon RNG (k-ε).

Las ecuaciones fundamentales de continuidad se basan en el concepto de conservación de masa, momento y energía de Navier Stokes, obtenidos a través de métodos numéricos y expresadas en las ecuaciones 1, 2, 3, respectivamente.

\[
\frac{\partial \rho}{\partial t} + \nabla \rho \mathbf{v} = 0 \quad (1)
\]
\[
\frac{\partial}{\partial t} + (\rho \overrightarrow{E}_r) + \nabla \cdot (\rho \overrightarrow{v} \overrightarrow{v}) + \rho (2\overrightarrow{a} \times \overrightarrow{v} + \overrightarrow{a} \times \overrightarrow{a} + \overrightarrow{a} \times \overrightarrow{v}) = -\nabla p + \nabla \cdot \overrightarrow{r} + \overrightarrow{F}\tag{2}
\]

\[
\frac{\partial}{\partial t} + (\rho \overrightarrow{E}_r) + \nabla \cdot (\rho \overrightarrow{v} \overrightarrow{H}_r) = \nabla \cdot (k \nabla T + \overrightarrow{r} \cdot \overrightarrow{v}) + \overrightarrow{S}_h\tag{3}
\]

Para el cálculo de equilibrio de momentos es necesario obtener el esfuerzo cortante que se genera sobre los fluidos, a través de la ecuación 4.

\[
\overrightarrow{r} = \mu \left[(\nabla \overrightarrow{v} + \overrightarrow{v} T) - \frac{2}{3} \nabla \cdot \overrightarrow{I} \right]\tag{4}
\]

Debido a la existencia de curvas en el modelo estudiado, se utiliza el modelo kappa épsilon RNG, en la ecuación 5 se presenta el modelo de turbulencia para la energía cinética kappa.

\[
\frac{\partial}{\partial t} (\rho k) + \frac{\partial}{\partial x_i} (\rho k u_i) = \frac{\partial}{\partial x_j} \left(\alpha_k \mu_{eff} \frac{\partial k}{\partial x_j} \right) + G_k - G_b - \rho \varepsilon - Y_M + S_k\tag{5}
\]

Por otro lado, la ecuación 6 representa la difusividad épsilon en el modelo de turbulencia.

\[
\frac{\partial}{\partial t} (\rho \varepsilon) + \frac{\partial}{\partial x_i} (\rho \varepsilon u_i) = \frac{\partial}{\partial x_j} \left(\alpha_{\varepsilon} \mu_{eff} \frac{\partial \varepsilon}{\partial x_j} \right) + C_{1\varepsilon} \frac{\varepsilon}{k} \left(G_k + C_{3\varepsilon} G_b \right) - C_{2\varepsilon} \rho \varepsilon^2 - R_\varepsilon + S_\varepsilon\tag{6}
\]

Dentro del cálculo de tubos en forma helicoidal se generan fuerzas centrífugas que influyen en los factores de cálculo [24], específicamente en el número de Reynolds, por lo tanto, se debe encontrar una relación que corrija la desviación que existe debido a las fuerzas mencionadas, esta relación se denomina número de Dean y se obtiene mediante la ecuación 7.

\[
De = Re \left(\frac{D h}{D_c} \right)^{0.5}\tag{7}
\]

III. RESULTADOS Y DISCUSIÓN

La simulación se inicia bajo el modelo de turbulencia de k-épsilon RNG con flujos másicos de 0.7kg s\(^{-1}\) y 7.5kg s\(^{-1}\) para el mosto y el agua respectivamente, con condiciones de entrada de 101325Pa de presión y con una temperatura de 70ºC, debido a que es un intercambiador de coraza, se establece como temperatura exterior 18ºC, correspondiente al agua que fluye por la coraza, la Figura 5 muestra el comportamiento del tubo helicoidal con los parámetros indicados.
Después de realizar la primera simulación se obtiene una temperatura de salida de 33.43 °C, que no corresponde a la temperatura prevista para iniciar el proceso de fermentación.

En la búsqueda de los parámetros correctos para el intercambiador de calor establecido con las dimensiones iniciales, se reduce el flujo másico a 0.5 kg s\(^{-1}\), manteniendo la temperatura y flujo de entrada para el agua, el comportamiento de esta simulación se muestra en la Figura 6.

Fig. 5. Simulación 1 del comportamiento del mosto en el tubo helicoidal.

Fig. 6. Simulación 2, comportamiento del mosto en el tubo helicoidal.
Los resultados obtenidos tras la segunda simulación muestran una mejora significativa, generando una temperatura de salida del mosto de 28.54 °C, acercándose de forma satisfactoria al resultado esperado. Como parámetros para la tercera simulación se estableció un flujo másico de entrada para el mosto y el agua de 0.2 y 7 kg s⁻¹, respectivamente, el parámetro de temperatura del agua se mantiene en 18 °C, el comportamiento generado se muestra en la Figura 7.

Fig. 7. Simulación 3, comportamiento del mosto en el tubo helicoidal.

Los resultados obtenidos a partir de la tercera simulación muestran que la temperatura de salida del mosto descendió de forma radical hasta 18.42 °C, sobrepasando el límite esperado de 25 °C. Los parámetros de entrada para la simulación 4 se ingresan como: 2.5 kg·s⁻¹ y 8 kg·s⁻¹ para el flujo másico de entrada del mosto y el agua, respectivamente, mientras que la temperatura del agua no cambia con respecto a las simulaciones anteriores, el comportamiento del mosto en el tubo helicoidal para la cuarta simulación se muestra en la Figura 8. A partir de la cuarta simulación se obtiene una temperatura de salida del mosto de 28.44 °C, que sube respecto a la simulación 3. Sin embargo, nuevamente se aleja del resultado deseado.
A partir de la quinta simulación se considera como una variable importante, la temperatura de entrada del agua para el enfriamiento, la cual se reduce a 15 °C y los flujos máscicos se consideran como en la primera simulación: 0.7 kg s\(^{-1}\) para el mosto y 7.5 kg s\(^{-1}\) para el agua, el comportamiento del mosto en el tubo helicoidal para estos parámetros se muestra en la Figura 9.

Con los nuevos parámetros establecidos se obtiene una temperatura de salida del mosto de 30.72 °C.
Siguiendo con el proceso de emulación de parámetros de las simulaciones iniciales con la nueva temperatura de entrada del agua, se establece a 0.5 kg·s⁻¹, para el mosto y 7.5 kg·s⁻¹, para el agua, este comportamiento se aprecia en la Figura 10. La simulación 6 muestra una temperatura de salida del mosto de 27.84 °C. La temperatura de salida que se ha obtenido con la simulación cumple con el requerimiento para el proceso de elaboración de la cerveza tipo ale, producto establecido para la simulación. Aunque el cambio en la geometría del tubo helicoidal [21] permite obtener buenos resultados en cuanto a la transferencia de calor, también hay que considerar las variaciones del flujo másico de entrada.

Fig. 10. Simulación 6, comportamiento del mosto en el tubo helicoidal.

IV. CONCLUSIONES

Considerando los parámetros que se han variado para las simulaciones, se obtiene mejores resultados en la reducción de la temperatura de salida, al cambiar el flujo másico del mosto, donde existe una variación de hasta 15.16 °C al variarlo de 0.7 a 0.2 kg·s⁻¹, que, al variar la temperatura de entrada del agua, donde existe una variación máxima de 2.71 °C y mínima de 0.01 °C.

Los flujos másicos de 0.2 y 7 kg·s⁻¹ del mosto y agua respectivamente son los flujos ideales para el funcionamiento del intercambiador de calor. El error obtenido respecto a los cálculos matemáticos corresponde al 2.71 % entre una temperatura estimada de 25 °C y una obtenida de 25.67 °C.
Futuras investigaciones de los intercambiadores de tubo helicoidal y coraza deberían enfocarse en el comportamiento y resultados al variar parámetros como el diámetro y paso de la hélice, ya que este estudio no realizó modificaciones considerables sobre el dimensionamiento inicial.

AUTHORS’ CONTRIBUTION

Fernando Toapanta-Ramos: Conceptualización, Metodología, Investigación, Análisis formal, Software, Validación, Escritura – revisión y edición.

Luis González-Rojas: Metodología, Investigación, Software.

Elmo Calero: Metodología, Investigación, Software.

Bryan Calderón: Metodología, Investigación, Software.

William Quitiaquez: Metodología, Análisis formal, Software, Validación.

AGRADECIMIENTOS

Los autores agradecen de manera especial al Grupo de Investigación de Energías Renovables e Implementación Mecánica de Pymes y al Branch ASHRAE UPS-QUITO de la Universidad Politécnica Salesiana, Quito-Ecuador.

REFERENCIAS

[1] A. L. de Azebedo-Delcor, “Análise Técnico-Econômica De Uma Indústria Cervejeira Artesanal,” Master Thesis, Universidade Federal de Santa Catarina, Brazil, 2019.

[2] L. Rodhouse, F. Carbonero, “Overview of craft brewing specificities and potentially associated microbiota,” *Critical reviews in food science and nutrition*, vol. 59 (3), pp. 462-473, 2019. https://doi.org/10.1080/10408398.2017.1378616

[3] S. H. Suqui, E. P. Morales, “Implementación de un sistema de fermentación para la elaboración de cerveza artesanal con la utilización de tres variedades de cebada,” Grade Thesis, Universidad Politécnica Salesiana Sede Cuenca, Peru, 2015.

[4] A. Marcos, M. López Díaz-Ufano, V. Pascual Fuster, “¿El consumo moderado de cerveza podría incluirse dentro de una alimentación saludable?,” *SEMERGEN-Medicina de Familia*, vol. 41 (Supl 1), pp. 1-12, 2015. https://doi.org/10.1016/S1138-3593(15)30006-X

[5] M. Mosher, K. Trantham, *Brewing Science: A Multidisciplinary Approach*, Springer International Publishing Switzerland, 2017.

[6] C. Tyrawa, R. Preiss, M. Armstrong, G. Van Der Merwe, “The temperature dependent functionality of Brettanomyces bruxellensis strains in wort fermentations,” *Journal of the Institute of Brewing*, vol. 125 (3), pp. 315-325, 2019. https://doi.org/10.1002/jib.565
[7] A. D. Rodman, M. Weaser, L. Griffiths, D. I. Gerogiorgis, “Dynamic Optimisation and Visualisation of Industrial Beer Fermentation with Explicit Heat Transfer Dynamics,” Computer Aided Chemical Engineering, vol. 46, pp. 1459-1464, 2019. https://doi.org/10.1016/b978-0-12-818634-3.50244-7

[8] A. D. Rodman, D. I. Gerogiorgis, “Multi-objective process optimisation of beer fermentation via dynamic simulation,” Food and Bioproducts Processing, vol. 100, pp. 255-274, 2016. https://doi.org/10.1016/j.fbp.2016.04.002

[9] A. D. Rodman, D. I. Gerogiorgis, “Parameter estimation and sensitivity analysis for dynamic modelling and simulation of beer fermentation,” Computers & Chemical Engineering, vol. 136, e106665, 2020. https://doi.org/10.1016/j.compchemeng.2019.106665

[10] M. Gisbert Verdú, “ Diseño del proceso industrial para la elaboración de cerveza,” Grade Thesis, Universidad Politécnica de Valencia-Campus Alcoy, Spain, 2014.

[11] J. Alpízar Quirós, “Prefactibilidad técnica y financiera de una micro cervecería de cerveza artesanal,” Master Thesis, Universidad de Costa Rica, Costa Rica, 2018.

[12] V. Agulló, “ Efecto de lamaceración escalonada de la temperatura de fermentación en las propiedades funcionales de la cerveza,” Master Thesis, Universidad Miguel Hernandez de Eilche, Spain, 2015.

[13] J. A. Mocada, J. Bellina, H. D. Delgado, C. Escurra, S. P. Asalde, “ Diseño de una línea de Producción para la elaboración de cerveza artesanal de algarroba,” Universidad de Piura, Peru, 2015.

[14] J. A. Vladimir, M. M. Kukltzin, “ Metodología De Cálculo Para El Diseño Térmico De Un Intercambiador De Calor Deplacas,” Grade Thesis, Universidad Nacional Autónoma de México, Mexico, 2015.

[15] M. M. Sarafray, V. Nikkhah, S. A. Madani, M. Jafarian, F. Hormozi, “Low-frequency vibration for fouling mitigation and intensification of thermal performance of a plate heat exchanger working with CuO/water nanofluid,” Applied Thermal Engineering, vol. 121 (5), pp. 388-399, 2017. https://doi.org/10.1016/j.applthermaleng.2017.04.083

[16] A. A. Sánchez-Escalona, E. Gonzorga-Leyva, C. Zalazar-Oliva, “Predicción de la resistencia térmica de las incrustaciones en los enfriadores de ácido sulfhídrico,” Minería y Geología, vol. 34 (3), pp. 90-100, 2018.

[17] D. Qiu, D. Qiu, Draft beer machine, US Patent App. 15/418,677, 2018.

[18] X. Liu, F. Wang, Z. Li, C. Zhu, H. Zhang, H. Zhang, “Parametric investigation of thermal-hydrodynamic performance in the innovative helically coiled heat exchangers in the heat pump system,” Energy and Buildings, vol. 216, e109961, 2020. https://doi.org/10.1016/j.enbuild.2020.109961

[19] G. Wang, T. Dbouk, D. Wang, Y. Pei, x. Peng, H Yuan, S. Xiang, “Experimental and numerical investigation on hydraulic and thermal performance in the tube-side of helically coiled-twisted trilobal tube heat exchanger,” International Journal of Thermal Sciences., vol. 153, e106328, 2020. https://doi.org/10.1016/j.ijthermalsci.2020.106328

[20] E. M. S. El-said, M. Abdulaziz, M. M. Awad, “A numerical investigation on heat transfer enhancement and the flow characteristics in a new type plate heat exchanger using helical flow duct,” Cogent Engineering, vol. 28, pp. 1-25, 2017. https://doi.org/10.1080/23311916.2017.1396638

[21] M. H. Seyyedvallilu, S.F. Ranjbar, “The Effect of Geometrical Parameters on Heat Transfer and Hydro Dynamical Characteristics of Helical Exchanger,” International Journal Recent Advance Mechanical Engineering, vol. 4 (1), pp. 35-46, 2015. https://doi.org/10.14810/ijmecha.2015.4104

[22] G. Wang, D. Wang, J. Deng, Y. Lyu, Y. Pei, S. Xiang, “Experimental and numerical study on the heat transfer and flow characteristics in shell side of helically coiled tube heat exchanger based on multi-objective optimization,” International Journal of Heat and Mass Transfer, vol. 137, pp. 349-364, 2019.
Numerical Study of a Helical Heat Exchanger for Wort Cooling in the Artisanal Beer Production Process

https://doi.org/10.1016/j.ijheatmasstransfer.2019.03.137

[23] Y. A. Cengel, A. J. Ghajar, Heat and Mass Transfer: Fundamentals and Applications, McGrawHill, 2015.

[24] O. Abushammala, R. Hreiz, C. Lemaître, É. Favre, “Optimal design of helical heat/mass exchangers under laminar flow: CFD investigation and correlations for maximal transfer efficiency and process intensification performances,” International Journal of Heat and Mass Transfer, vol. 153, e119610, 2020. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119610