Research of distance protection functioning of transmission line with series compensation device

R Nizamova¹, A Ferenets¹ and R Isakov¹

¹ Department of Electrical Equipment, Institute of Automation and Electronic Engineering, Kazan National Research Technical University named after A.N.Tupolev – KAI, Kazan, Russia

e-mail: Nizamovareg@mail.ru

Abstract. Transmission line is one of the main elements of the power supply system. Line capacity can increase, when series compensation are used. Unfortunately, the use of these devices can lead to a failure of operation or to a false operation of the relay protection of the line itself. To analyse the operation of the relay protection of the compensated line, the RTDS software and hardware complex was selected.

1. Introduction

One of the main factors in the successful development of the electric power industry is to ensure the reliability of power supply to consumers. Reliability largely depends on the functioning of the relay protection. Distance protection is a universal type of protection. The principle of operation is based on measuring of the fault resistance, which in turn is proportional to the distance from the place of damage to the place of relay installation.

Transmission line (TL) is one of the main elements of the power supply system, therefore, devices that can increase the efficiency TL itself and the entire electric power system became more widely used. For example, devices of series compensation, which make it possible to increase the transmission capacity of power lines, are very widespread. These devices belong to the flexible alternative current transmission systems (Flexible AC Transmission Systems - FACTS) [1], which allow to increase the maximum power transmitted through the line by reducing reactance.

When using longitudinal compensation devices, special attention must be paid to the protection algorithms. Capacitors located on the overhead line can affect both the measured resistance, they can also affect the choice of direction, due to the inversion of voltage or current [2].

2. Main part

Voltage inversion or current inversion occurs under the condition of a short circuit near the installation site of the series compensation device (SCD) in case of failure of its protection, that is, in the absence of shunting of the SCD during short circuit. Voltage inversion occurs under the condition when the reactive reactance module of the SCD is greater than the reactive resistance module of the TL from the installation site of the protection to the fault location (except SCD) and less than the module of the sum of the reactance of the system and the reactance of the TL. Current inversion occurs under the condition that the reactance module of the SCD is greater than the sum of the reactance of the system and the reactance of the TL.
Thus, in the event of short circuits occurring on the power line with the installed SCD, it can occur as a false positive Z_{R33} or, even worse, a failure in the Z_{K32} distance protection, as shown in Fig. 2.

3. Simulation results
To study the operation of distance protection of a power line equipped with a SCD based on the Real Time Digital Simulator (RTDS) hardware and software system, a three-stage distance protection model was developed.

The interphase three-phase faults were simulated, as shown in Fig.3. In Fig. 4 the boundaries of the response characteristics of the three-stage distance protection and the value of the measured resistance are displayed.
According to the test results, it was revealed that when installing the SCD at the beginning of the protected line, the capacitor remains in operation and influences on the measured resistance by the protection, since the measured resistance is not only excluded in the response zone of the first protection stage, but is also purely capacitive. To solve this problem, the location of the voltage transformer can be changed to relieve voltage not from the bus side (as usual), but from the side of the line, and remote line protection will work correctly. The test results are presented below in Table 1.

![Figure 4](image1.png)

Figure 4. Measurement results.

![Figure 5](image2.png)

Figure 5. Power transmission line with a longitudinal compensation device installed at the beginning of the protected line.

![Figure 6](image3.png)

Figure 6. Measurement results after changes
Table 1. Test results

Fault location	Fig.3.	Fig.5.
Interphase three-phase fault at the beginning of the line before the installation of the series compensation (Fault1)	Actuation	Actuation
Interphase three-phase fault at the beginning of the line after the series compensation (Fault2)	Refusal to operate	Actuation
Interphase three-phase fault at the end of the protected line (Fault3)	False firing	Refusal to operate

4. Conclusions

For the efficient operation of the power supply system, it is necessary that the relay protection is reliable, namely, the protection must operate without fail for all types of fault conditions for which it is intended to be eliminated, and also not to act in case of damage in which the effect of this protection is not provided. According to the test results, it was revealed that the presence of modern multifunctional devices of SCD on the overhead line leads not only to a false response of the protection, but also to a failure of the protection, which significantly reduces the reliability of the transmission of electricity to the consumer.

This work was carried out as part of the international program ERASMUS + project 573879-EPP-1-2016-1-FR-EPPKA2-CBHE-JP “INSPIRE”.

References

[1] Yong-Hua S and Allan T 1999 Flexible Alternating Current Transmission Systems (FACTS) IET, Brunel Institute of Power Systems pp 592
[2] Standard 56947007-29.120.70.254-2018 2018 Organization standard PJSC “FGC UES” Recommendations on the calculation and selection of settings and triggering of protection and automation devices installed in the network adjacent to the switching point of the controlled UPC pp 117
[3] Ziegler G 2011 Numerical Distance Protection: Principles and Applications 4th Edition John Wiley & Sons Limited pp 419
[4] Gondurov S, Ilyukhin E, Pirogov M and Solovyov A 2013 Step remote protection of power lines 35-220 kV. Calculation Method PEIPK pp 52
[5] Isakov R The use of hardware and software complex RTDS for testing relay protection devices and automation Energy of Tatarstan 2 pp 28-31
[6] Metelev I, Dvorkin D and Isakov R 2017 Different load types modeling using MatLab IOP Conference Series: Materials Science and Engineering 412
[7] Metelev I, Isakov R, Ferenetz A, Gilmanshin I, Gilmanshina S and Galeeva A 2018 Using of functional capability of RTDS hardware and software complex in the educational process of electrotechnical speciality master’s training in economy global digitalization conditions IOP Conf. Series: Materials Science and Engineering 240
[8] Isakov R, Davletbaev A and Suleymanova N 2017 Observability of electric power networks factoring in (n-1) security ICIEAM
[9] Isakov R and Ferenets A 2017 Research of remote backup protection functioning at the software and hardware complex RTDS ICIEAM
[10] Nizamov R and Fedorov E 2018 Layout of Items and Structural Assemblies of Electrical Equipment of UAV ICIEAM pp 1-4
[11] Nizamov R, Fedorov E and Ferenets A 2018 Placing the Elements and Structural Assemblies of Electrical Equipment of an UAV International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon) pp 1-5