MED26 regulates the transcription of snRNA genes through the recruitment of little elongation complex

Hidehisa Takahashi1, Ichigaku Takigawa2, Masashi Watanabe1, Delnur Anwar1, Mio Shibata1, Chieri Tomomori-Sato3, Shigeo Sato3, Amol Ranjan3, Chris W. Seidel3, Tadasuke Tsukiyama1, Wataru Mizushima1, Masayasu Hayashi4, Yasuyuki Ohkawa4, Joan W. Conaway3,5, Ronald C. Conaway3,5 & Shigetsugu Hatakeyama1

Regulation of transcription elongation by RNA polymerase II (Pol II) is a key regulatory step in gene transcription. Recently, the little elongation complex (LEC)—which contains the transcription elongation factor ELL/EAF—was found to be required for the transcription of Pol II-dependent small nuclear RNA (snRNA) genes. Here we show that the human Mediator subunit MED26 plays a role in the recruitment of LEC to a subset of snRNA genes through direct interaction of EAF and the N-terminal domain (NTD) of MED26. Loss of MED26 in cells decreases the occupancy of LEC at a subset of snRNA genes and results in a reduction in their transcription. Our results suggest that the MED26-NTD functions as a molecular switch in the exchange of TBP-associated factor 7 (TAF7) for LEC to facilitate the transition from initiation to elongation during transcription of a subset of snRNA genes.
Transcription by RNA polymerase II (Pol II) proceeds through multiple stages, beginning with recruitment of Pol II and other components of the transcription apparatus to the promoter to form a pre-initiation complex, followed by ATP-dependent unwinding of the DNA template and transcription initiation. Following initiation, Pol II moves away from the promoter, leading to establishment of a productive elongation complex that can complete synthesis of the nascent transcript. Although research for many years was mainly focused on mechanisms that control the pre-initiation and initiation stages of transcription, a growing body of evidence indicates that transcription of many genes is also regulated during transcription elongation.

The product of the members of the eleven-nineteen lysine-rich leukaemia (ELL) gene, which is a translocation partner of mixed lineage leukaemia, and its binding partner ELL-associated factors (EAFs) are key regulators of transcription elongation by Pol II. Recently, two distinct ELL/EAF-containing complexes, super elongation complex (SEC) and little elongation complex (LEC), have been identified. SEC contains P-TEFb (positive transcription elongation factor), ELL/EAF and additional factors, mixed lineage leukaemia-fusion partner proteins, and it regulates transcription elongation of a variety of protein-coding genes, including c-Myc, Hsp70, Hox and HIV promoters. LEC contains ELL/EAF and additional components, KIAA0947 and NMDA receptor regulated 2 (NARG2), which were also identified as components of Drosophila LEC and are called ICE1 and ICE2 (interacts with carboxy terminus of ELL), respectively. Recently, it was shown that LEC specifically regulates the transcription of Pol II-transcribed small nuclear RNA (snRNA) genes.

Pol II-transcribed snRNA genes are structurally different from Pol II-transcribed protein-coding genes. The promoter is composed of a proximal sequence element and an enhancer-like distal sequence element. In addition, Pol II-transcribed snRNA genes contain a 3' box instead of a polyadenylation signal, which is required for 3' end formation. Transcription of Pol II-transcribed snRNA genes requires an integrator complex that specifically binds to the Ser7-phosphorylated form of the TFIIS and elongin A28,29. Recently, we found that MED26-NTD interacts with carboxy terminus of ELL, respectively15,16. Intriguingly, we found that each of the regions is necessary for direct interaction with Pol II and Mediator components; however, deletion of MED26-NTD resulted in loss of Mediator interaction with LEC components, ICE1 and ICE2 (Fig. 1a). Since we previously showed that substitution of two amino-acid residues R61 and K62 of MED26-NTD with A interferes with the interaction of MED26-NTD with LEC, we tested whether the same substitution interferes with the interaction of MED26-NTD and blocks LEC recruitment to a subset of snRNA genes. On the basis of our findings, we propose a model in which MED26-NTD functions as a molecular switch that interacts with TAF7 in the initialization process and then exchanges it for LEC to facilitate the transition from initiation to elongation during transcription of a subset of snRNA genes.

Results

NTD of MED26 is required for interaction with LEC. Since previous mass spectrometric analysis indicated that MED26-NTD interacts with LEC20, we performed western blot to determine whether MED26-NTD is critical for LEC interaction with Mediator. We purified Mediator from HeLa S3 cells stably expressing FLAG-MED26 wild type (wt) or a MED26-NTD deletion mutant (C-terminal short (CS): 421–600). Mediator purified through FLAG-MED26-wt or MED26-CS was copurified with Pol II and Mediator components; however, deletion of MED26-NTD resulted in loss of Mediator interaction with LEC components, ICE1 (KIAA0947), ELL and EAF1 (Fig. 1a). Since we previously showed that substitution of two amino-acid residues R61 and K62 of MED26-NTD with A interferes with the interaction of MED26-NTD and blocks LEC recruitment to a subset of snRNA genes, we tested whether the same substitution interferes with the interaction of MED26-NTD and LEC in cells. FLAG-MED26-wt was copurified with LEC, but MED26-R61A, K62A was not (Fig. 1b). These results show that MED26-NTD is critical for interaction of Mediator with LEC. In turn, we tested whether LEC is copurified with MED26-containing Mediator. We purified LEC from 293FT cells stably expressing FLAG-ICE2 (NARG2). FLAG-ICE2 was copurified with Mediator subunits MED26 and MED1, in addition to ICE1, ELL and EAF1 (Fig. 1c), but FLAG-BTBDB19 was not copurified with any of these proteins (Fig. 1c), indicating that LEC interacts with MED26-containing Mediator. Taken together, the results indicate that MED26-NTD functions as a docking site for LEC to recruit it to Mediator.

Purification and reconstitution of LEC. To address the interactions of individual factors within LEC, we expressed FLAG-ICE2, HA-ICE1, HA-ELL and Myc-EAF1 in the indicated combinations using a baculovirus expression system. FLAG-ICE2 was copurified with HA-ELL only in the presence of HA-ICE1 (Fig. 2a), indicating that ICE1 is required for formation of the protein complex containing ICE1, ICE2 and ELL. Furthermore, HA-ICE1 was copurified with Myc-EAF1 only in the presence of FLAG-ELL (Fig. 2b), indicating that ELL is required for...
formation of the protein complex containing ICE1, ELL and EAF1. FLAG-ICE2 was copurified with HA-ELL and Myc-EAF1 in the presence of HA-ICE1 (Fig. 2c), indicating that ICE1 is required for formation of the protein complex containing ICE1, ICE2, ELL and EAF1. These results raised the possibility that the largest subunit of LEC, ICE1, functions as a core subunit and connects ICE2 and ELL/EAF for the formation of LEC. Considering that EAF1 directly interacts with MED26-NTD20, the EAF family protein is thought to function as an adaptor molecule to connect MED26-NTD and LEC (Fig. 2d).

To clarify the region of ICE1 critical for the direct interaction with ICE2 and ELL, we generated recombinant proteins of two truncate mutants of ICE1. The C-terminal fragment of ICE1 (C-terminal long (CL): 1,191–2,266) bound to ICE2, but the N-terminal fragment of ICE1 (N-terminal long (NL): 1–1,190) did not (Supplementary Fig. 1a). On the other hand, both NL and CL of ICE1 bound to ELL (Supplementary Fig. 1b). These results indicate that the C-terminal fragment of ICE1 is sufficient for the formation of LEC. Consistent with these results, FLAG-ICE1-CL purified from 293FRT cells stably expressing FLAG-tagged BTBD19 and FLAG-tagged ICE2 (NARG2).

LEC enhances transcription elongation of Pol II in vitro. To determine whether LEC activates transcription elongation activity of Pol II, we reconstituted LEC using a baculovirus expression system. Since it was difficult to express a sufficient amount of full-length ICE1 (full length (FL): 1–2,266) for transcription assays, we used the C-terminal fragment of ICE1 (CL: 1,191–2,266). HA-ICE1-CL/FLAG-ICE2/FLAG-ELL/Myc-EAF1 complex was reconstituted by a baculovirus expression system (Fig. 2e), and in vitro transcription elongation assays were performed to determine whether the complex stimulates Pol II transcription elongation. We used a linearized plasmid with a single-stranded 30 oligo(dC) tail on its template strand. Although purified Pol II is unable to bind to double-stranded DNA and initiate transcription without assistance from the general transcription factors, it binds to the single-stranded oligo(dC) tail and initiates transcription specifically at the junction between the single- and double-stranded regions of the template. In the template, the first nontemplate strand (dT) residue is 136 nt downstream of the oligo(dC) tail, and the next run of (dT) residues is located at 240 to 250 residues from the oligo(dC) tail (Fig. 2f, upper panel). When transcription was initiated by the addition of purified Pol II, 50 μM ATP, 50 μM GTP, 2 μM CTP and 10 μCi [α-32P]CTP (Fig. 2f, upper panel), labelled 135-nt transcripts paused immediately before the first template T residue accumulated (Fig. 2f, lower left panel, lane 1). After 30 min, reactions were chased with
Figure 2 | Reconstitution of LEC by a baculovirus expression system. (a) ICE2 (NARG2) binds to ELL in the presence of ICE1 (KIAA0947). FLAG-immunopurified complexes from baculovirus-infected Sf9 cells expressing the indicated proteins were analysed by western blot. (b) ICE1 binds to EAF1 in the presence of ELL. HA-immunopurified complexes from baculovirus-infected Sf9 cells expressing the indicated proteins were analysed by western blot. (c) ICE2 binds to ELL/EAF1 in the presence of ICE1. FLAG-immunopurified complexes from baculovirus-infected Sf9 cells expressing the indicated proteins were analysed by western blot. (d) Proposed architecture of the components of LEC and model for MED26-NTD function as a docking site for LEC. MED26-NTD interacts with LEC through direct interaction with EAF. In turn, the MED26 CTD binds to Pol II through Mediator. The binding site for MED26-NTD on EAF is represented by black bars. (e) Silver staining of HA-ICE1-CL/FLAG-ICE2/FLAG-ELL/Myc-EAF1 complex reconstituted by the baculovirus expression system. FLAG-tagged ELL, Myc-tagged EAF1, FLAG-tagged ICE2 and HA-tagged ICE1 C-terminal fragments (CL: 1,191–2,266) were co-expressed in Sf9 insect cells, and the ICE1-CL/ICE2/ELL/EAF1 complex was purified by anti-HA affinity chromatography as described in the Methods section. * indicates heavy and light chains derived from anti-HA antibodies used in affinity purification. (f) ICE1-CL/ICE2/ELL/EAF1 complex enhances transcription elongation by Pol II. Oligo(dC)-tailed template transcription assays were performed as described in the Results and Methods sections. Arrowhead indicates the position of the nascent transcript that is synthesized in the presence of ATP, GTP and CTP and stalled at the T site.
100 μM CTP and 2 μM UTP in the absence or presence of HA-ICE1-CL/FLAG-ICE2/FLAG-ELL/Myc-EAF1 complex as indicated (Fig. 2f, lower left panel, lanes 2 and 3). When the complex was added with chase nucleotides, the fraction of Pol II that was able to read through the major pause site synthesized longer transcripts (Fig. 2f, lane 3). Quantification of the major paused transcript (#1) and the longer transcript (#2) supports our idea that reconstituted LEC helps Pol II to read through the major pause site and synthesizes the longer transcript (Fig. 2f, lower right panel). These results showed that reconstituted LEC enhances transcription elongation of Pol II in vitro.

MED26 is required for the occupancy of LEC at snRNA genes. To identify the genes in which LEC is present, we performed chromatin immunoprecipitation-sequence (ChIP-seq) analysis of the LEC component ICE1. By plotting the occupancy of ICE1 at the transcription start sites (TSSs), we identified 117 genes. Forty-six of these genes were snRNA or snRNA genes (Supplementary Data 1). These data are consistent with the results of previous studies showing that LEC plays a role in transcription of Pol II-transcribed snoRNA genes. To determine whether MED26 plays a role in recruitment of LEC, we performed ChIP-seq analysis of ICE1 using chromatin from HEK293T cells that had been transfected with control small interfering RNA (siRNA) or MED26 siRNA. By plotting the occupancy of ICE1 at known TSS in cells treated with control siRNA or MED26 siRNAs (Supplementary Fig. 4a). Reverse transcription–qPCR (RT–qPCR) analysis revealed that the expression of a subset of snRNA genes was decreased following transfection with all of the CHiP peaks of ICE1 at snRNA genes were decreased (Fig. 3a–d; Supplementary Fig. 2a–c, Supplementary Data 2). On siRNA-mediated depletion of MED26, almost all of the CHiP peaks of ICE1 at snRNA genes were decreased (Fig. 3a–d; Supplementary Fig. 2a–c), indicating that MED26 is critical for the occupancy of ICE1 at a subset of snRNA genes. In control experiments, we confirmed that MED26 depletion had no significant effect on the expression of Mediator subunit MED1, any of LEC components tested and Pol II subunit.

MED26 is required for the expression of snRNA genes. To test whether depletion of MED26 affects the expression of snRNA genes, total RNAs were extracted from HEK293T cells that had been transfected with control siRNA or one of three different MED26 siRNAs (Supplementary Fig. 4a). Reverse transcription–qPCR (RT–qPCR) analysis revealed that the expression of a subset of snRNA and snoRNA genes, including U1, U2, U4-1, U4-2, U5A, U5B, U11 and snord118, was decreased following transfection of all three MED26 siRNAs, but the expression of U6 snRNA genes was not changed by depletion of MED26 (Fig. 5a). These findings show that MED26 is required for the expression of snRNA genes.

To assess the potential contribution of MED26-NTD to the transcription of snRNA genes, we generated mouse embryonic fibroblast (MEF) cells from day 10.5 homozygous embryos in which a gene trapping construct had been inserted into the first intron of the mouse MED26 gene. Consistent with the results of a recent study showing that MED26 is critical for organisational viability but not for cell survival in Drosophila, MED26 plays a role in recruitment of SEC to the c-Myc gene. MED26, MED23 and MED1 were present at the promoter region of the c-Myc gene (Fig. 4b). Significantly larger amounts of MED26, MED23 and MED1 were present at snRNA genes including U1-1, U4-1, U4-2, U5A and U5B than those at the upstream or downstream regions of the respective genes and U6 snRNA gene (Fig. 4b). These results showed that Mediator was present at a subset of snRNA genes.

Region of EAF1 necessary for interaction with MED26-NTD. Since we previously found that EAF1 directly bound to MED26-NTD, we carried out an experiment to determine the region of human EAF1 responsible for interaction with MED26-NTD.
We tested whether recombinant proteins of a series of HA-EAF1 C-terminal deletion mutants bound to FLAG-MED26-NTD (Fig. 6a). The full length (FL) of EAF1 bound to MED26-NTD, but the C-terminal deletion mutant N244 did not (Fig. 6b), indicating that C-terminal amino-acid residues from 245 to 268 in human EAF1 are required for interaction with MED26-NTD.

Comparison of MED26-NTD-binding regions in EAF and TAF7. Since we previously found that EAF and TFIID bind to the overlapping binding site of MED26-NTD and that EAF1 recruitment by Mediator is inhibited by TFIID in vitro, we considered the possibility that a certain TBP-associated factor (TAF) directly interacts with MED26-NTD. First, we investigated which TAFs directly interact with MED26-NTD. We performed
in vitro binding assays using bacterially expressed glutathione S-transferase (GST)-MED26 and a pool of 13 kinds of human TAFs (from TAF1 to TAF13) expressed in a baculovirus expression system and tested which TAFs were pulled down by GST-MED26. We found that TAF1 and TAF7 were copurified with GST-MED26 but not with GST alone. To test whether TAF7 directly interacts with MED26-NTD, we performed in vitro binding assays using bacterially expressed FLAG-MED26-NTD and HA-TAF7. TAF7 directly interacted with MED26-NTD but not with MED26-NTD R61A, K62A (Supplementary Fig. 5a). In turn, TAF1 bound to MED26-NTD only in the presence of TAF7 (Supplementary Fig. 5b), suggesting that TAF1 interacted with MED26-NTD via TAF7 in the first binding assay with pooled TAFs. This result indicates that MED26-NTD interacts with not only free TAF7, but also TAF7 bound to TAF1, raising the possibility that MED26-NTD interacts with TAF7 in the context of TFIID. Since TAF7 is a subunit of TFIID, it is possible that expression of TAF7 as a single subunit results in aggregation and that recombinant protein of TAF7 does not exist as a monomer. To exclude this possibility, we tested whether recombinant HA-TAF7 and FLAG-TAF7 bind to each other. An in vitro binding assay revealed that HA-TAF7 bound to FLAG-MED26-NTD but not to FLAG-TAF7 (Supplementary Fig. 5c). Although it is still possible that recombinant TAF7 proteins form a higher-order state and do not bind to each other, our results suggest that recombinant TAF7 exists at least in part as a monomer. Taken together, our results showed that TAF7 directly bound to MED26-NTD.

Next we investigated whether TAF7 harbours an amino-acid sequence similar to that of the MED26-NTD-binding region of EAF1. Sequence alignment revealed that the amino-acid sequence from 219 to 235 in human TAF7 is partially similar to the amino-acid sequence from 253 to 268 in human EAF1 (Fig. 6c). Notably, both of the regions in TAF7 and EAF are conserved among

Figure 4 | MED26-containing Mediator is present at a subset of snRNA genes. (a) Diagram of the genes and primer locations used for ChIP. (b) Occupancy of Mediator subunits MED26, MED23 and MED1 at a subset of snRNA genes including RNU1, RNU4, RNU5 and U6, and c-Myc genes. Ct values of each ChIP were normalized to that of input. Data points are the average of three independent experiments, and error bars show s.d. The P values for the indicated comparisons were determined by Student’s t-test (*P < 0.05; **P < 0.01). (c) Co-localization of MED26 (red) with coilin (green) in Cajal bodies. HeLa cells were fixed by methanol and stained with anti-MED26 and anti-coilin antibodies. Scale bars, 2 μm.
species (Fig. 6c). To determine whether the region of TAF7 is responsible for interaction with MED26-NTD, we generated recombinant proteins of a series of HA-TAF7 C-terminal deletion mutants (Fig. 6d) and FLAG-MED26-NTD by a baculovirus expression system and tested whether these mutants bind to MED26-NTD. FL and N243 (1–243) of TAF7 bound to MED26-NTD, but N202 (1–202) and N129 (1–129) did not (Fig. 6e), demonstrating that the region from 203 to 243 is required for interaction with MED26-NTD. We next tested whether the same region of TAF7 is required for interaction with MED26 in cells. FLAG-TAF7 FL and a series of C-terminal deletion mutants were purified from HeLa S3 cells stably expressing each of TAF7 FL and deletion mutants. FLAG-FL and N243 were copurified with MED26, but N202 and N129 were not (Fig. 6f), demonstrating that the region from 203 to 243 is required for interaction with MED26 in cells.

Consistent with the results of previous studies showing that the amino-acid sequence from 139 to 249 of TAF7 contributes to the binding site for TAF1 (refs 34–36), FLAG-TAF7 FL, N243 and N202 were copurified with TFIID components TAF1 and TBP, but N129 was not (Fig. 6f). These findings indicate that the region from 203 to 243 of TAF7 is dispensable for interaction with TAF1 or TFIID. Our results indicate that the distinct region of TAF7 contributes to interaction with MED26 and its incorporation into TFIID.

Point mutations of TAF7 and EAF1 block binding to MED26. We generated point mutants of EAF1 and TAF7, which lose interaction with MED26-NTD (Fig. 7a). Mutations of S262, G263, S264 and D265 to A interfered with the interaction of EAF1 and MED26-NTD (Fig. 7b). Similarly, mutations of S229, S230,
Figure 6 | Similarity of EAF and TAF7 in amino-acids sequence that is necessary for interaction with MED26-NTD. (a) Schematic representation of deletion mutants of human EAF1. (b) Binding ability of deletion mutants of EAF1 with MED26-NTD. The indicated recombinant proteins were expressed in S9 cells. Recombinant proteins of FLAG-tagged MED26-NTD derivatives were immobilized on anti-FLAG M2 agarose and were then incubated with the lysate from S9 cells expressing each deletion mutant of HA-tagged EAF1. After washing, bound proteins were eluted and analysed by western blot. F-MED26-NTD R61A, K62A has a larger molecular weight than that of F-MED26-NTD wt since the linker between the N-terminal hexa-histidine tag and FLAG tag of MED26-NTD R61A, K62A is longer than that of MED26-NTD wt. (c) Sequence alignment of EAF and TAF7 in amino-acid sequence that is required for interaction with MED26-NTD. Light green column indicates hydrophobic residues. Pink column indicates basic residues. Light blue column indicates aromatic residues. Orange column indicates neutral residues. The indicated number of amino acids is from Homo sapiens EAF1 and TAF7, respectively. (d) Schematic representation of deletion mutants of human TAF7. (e) Binding ability of deletion mutants of TAF7 with MED26-NTD. The indicated recombinant proteins were expressed in S9 cells. Recombinant proteins of FLAG-tagged MED26-NTD derivatives were immobilized on anti-FLAG M2 agarose and were then incubated with the lysate from S9 cells expressing each deletion mutant of HA-tagged TAF7. After washing, bound proteins were eluted and analysed by western blot. F-MED26-NTD R61A, K62A has a larger molecular weight than that of F-MED26-NTD wt since the linker between the N-terminal hexa-histidine tag and FLAG tag of MED26-NTD R61A, K62A is longer than that of MED26-NTD wt. (f) Western blot analysis of FLAG-immunopurified complexes from parental HeLa cells (control) and HeLa cells stably expressing FLAG-tagged TAF7 full length (FL) and C-terminal deletion mutants, N243 (1–243), N202 (1–202) and N129 (1–129).

E231 and D232 to A interfered with the interaction of TAF7 and MED26-NTD (Fig. 7c). Consistent with the fact that the region of TAF7 is not well conserved in TAF7L (Fig. 7a), TAF7L did not bind to MED26-NTD (Fig. 7d). To test whether the region of TAF7 is critical for interaction with MED26 in cells, we generated HeLa cells stably expressing FLAG-TAF7 wild type and point mutant (S229A, S230A, E231A, D232A) and purified TFIIID (Fig. 7e). Consistent with our results showing that the region of TAF7 is dispensable for interaction with TFIIID (Fig. 6f), both the wild type and point mutant copurified with similar levels of TFIIID components TAF1 and TBP (Fig. 7f). In contrast, the wild type of TAF7 copurified with MED26 and MED1, but the point mutant did not (Fig. 7f), demonstrating that the region of TAF7 is required for interaction with MED26-containing Mediator. These findings indicate the possibility that TAF7 in the context of TFIIID and/or free TAF7 interacts with MED26-containing Mediator.

TAF7 is present at snRNA genes. To test whether TAF7 is also present at snRNA genes, we compared the peaks of ICE1 (KIAA0947) ChIP-seq and TAF7 ChIP-seq. We identified 2,912 TAF7-bound genes by TSS analysis (Fig. 8a; Supplementary Data 3). Forty-two genes out of the 117 ICE1-bound genes
A subset of ChIP-qPCR analysis also demonstrated that TAF7 was present at a subset of snRNA transcription of Data 4), indicating that TAF7 plays a role in regulating the expression of snRNA genes. Notably, most of the 42 genes were snRNA or snoRNA genes (Fig. 8a; Supplementary Data 4), indicating that TAF7 plays a role in regulating the transcription of snRNA genes. TAF7 was co-localized with ICE1 at a subset of snRNA genes (Fig. 8b–e; Supplementary Fig. 6a–c). ChIP-qPCR analysis also demonstrated that TAF7 was present at a subset of snRNA genes (Fig. 8f).

Knockdown of TAF7 increases LEC recruitment to snRNA genes. Next we tested how depletion of TAF7 in cells affects the expression of snRNA genes. We performed qRT–PCR to analyse snRNA gene expression in HEK293T cells in which TAF7 had been depleted by transient transfection of siRNA (Fig. 9a). Knockdown of TAF7 mildly increased the expression of snRNA genes (Fig. 9b).
that of input. Each value is the average of three independent experiments, and error bars show s.d. The

determined by Student’s t-test (*P<0.05; **P<0.01).

Since partially similar amino-acid sequences of TAF7 and EAF1 contribute to interaction with MED26-NTD, we considered the possibility that EAF1 and TAF7 bind to MED26-NTD in a mutually exclusive manner and that TAF7 inhibits EAF1 recruitment by Mediator. To test this possibility, we performed an immobilized template recruitment assay using an oligo(dC)-tailed template immobilized on streptavidin beads (Fig. 9c). Since sub-stoichiometric Pol II is copurified with MED26-containing Mediator and Pol II binds to the single-stranded oligo(dC) tail, MED26-containing Mediator binds to the oligo(dC)-tailed template via Pol II without any assistance of DNA-binding transcription activators. Using the template, we tested whether MED26-containing Mediator recruits EAF1 to the template (Supplementary Fig. 7a). MED26-containing Mediator recruited EAF1 to the template, but MED26 mut (R61A, K62A)-containing Mediator did not (Supplementary Fig. 7b). Next we performed immobilized template assays in the presence and absence of MED26-containing Mediator and recombinant proteins of EAF1 and N243 of TAF7 and tested whether TAF7 inhibits EAF1 recruitment by MED26-containing Mediator (Fig. 9c). TAF7 N243 inhibited EAF1 recruitment by Mediator in a dose-dependent manner (Fig. 9d), indicating that TAF7 N243 binds to MED26-NTD and blocks EAF1 recruitment (Fig. 9e).

Next we tested whether TAF7 knockdown decreases the occupancy of LEC at snRNA genes in cells. TAF7 depletion moderately increased the occupancy of the components of LEC including ICE1, EAF2 and Pol II at U4-I and U6B snRNA genes (Fig. 9f), but it did not affect the occupancy of MED1 and MED26 at snRNA genes (Supplementary Fig. 7c). These findings suggest that TAF7 plays a role in repression of the transcription of a subset of snRNA genes through interfering with the recruitment of LEC to a subset of Pol II-transcribed snRNA genes.

Discussion

In this report, we present evidence that the human Mediator subunit MED26 contributes to the recruitment of LEC to a subset of Pol II-transcribed snRNA genes. MED26 depletion in cells decreased the expression of snRNA genes and the occupancy of LEC components at the genes. Molecular genetic approaches using MEF cells from MED26 gene trap homozygous embryos have revealed that wild-type MED26 contributes more to the expression of snRNA genes than does a MED26 point mutant that does not interact with LEC. Our results indicate that Mediator plays a crucial role in the transcription of snRNA genes through recruitment of LEC. Our results are also consistent with evidence that a meta-coactivator complex containing Mediator and Ada-Two-A-containing histone acetyltransferase play a role in transcription of a subset of snRNA genes in mouse embryonic stem (ES) cells37. In a recent study, LEC was copurified with TFIIH38. Notably, knockdown of ELL as well as components of TFIIH reduced global RNA synthesis after ultraviolet irradiation, indicating that ELL plays a role in the restart of transcription after transcription-coupled DNA repair (TCR)38. This evidence indicates the possibility that LEC plays a role in TCR in snRNA gene transcription. Our results indicate that Mediator can function as a key coordinator by orchestrating multiple coregulator complexes and regulate the expression of a subset of snRNA genes possibly through activating transcription elongation and/or repressing activated Pol II after TCR.

This study and our previous research suggest that MED26-NTD contributes to the recruitment of SEC and LEC to Pol II-transcribed protein-coding genes and snRNA genes, respectively, through direct interaction with EAF20. However, the hypothesis does not completely explain the mechanisms by which target genes of SEC and LEC are determined, because EAF is a shared component of both SEC and LEC. It is conceivable that other factors also contribute to the determination of target genes of SEC or LEC. A recent study showed that depletion of ICE1 also decreased the occupancy of other LEC components at snRNA genes, indicating that ICE1 functions as a scaffold protein for LEC and contributes to the recruitment of LEC to the promoter13. It has also been reported that the minor difference in U1 and U6 promoters results in a slight
conformational change of snRNA-activating protein complex (SNAPc) and could determine the Pol II and Pol III specificities of the U1 and U6 promoters. The results of those studies and our study raise the possibility that a combination of MED26, ICE1, SNAPc and other factors contributes to the LEC recruitment to snRNA genes. It has been shown that LEC contains additional components, UPSL1 and ZC3H8. In our mass spectrometric analysis of MED26-NTD-interacting proteins, we identified ICE1 (KIAA0947), ICE2 (NARG2), ELL and EAF, but not UPSL1 and ZC3H8, as interacting proteins, suggesting that a form of LEC composed of ICE1, ICE2, ELL and EAF is recruited to the promoters by Mediator.

![Diagram](https://example.com/molecular_diagram.png)

Figure 9 | Depletion of TAF7 in cells increases the occupancy of LEC at Pol II-transcribed snRNA genes. (a) Western blot showing TAF7 and Hsp90 at 48h after transient transfection of non-targeting (control) siRNA pool or siRNA pool targeting TAF7. (b) Effect of TAF7 depletion on transcript levels of Pol II-transcribed snRNA genes detected by RT-qPCR performed with total RNA from cells transfected with siRNAs. C_t values were normalized to GAPDH. Data points are the average of three independent experiments, and error bars show s.d. The P values for the indicated comparisons were determined by Student’s t-test (*P < 0.05; **P < 0.01). (c) Schematic representation of immobilized oligo(dC)-tailed template assay. Templates immobilized on streptavidin beads were incubated with purified recombinant protein EAF1 in the presence or absence of Mediator and/or TAF7 N243. After washing, bead-bound proteins were detected by western blot. (d) TAF7 interferes with EAF1 recruitment by Mediator in vitro. Upper panel shows immobilized oligo(dC)-tailed template assays. Assays were performed with an oligo(dC)-tailed template, EAF1, and Mediator in the presence or absence of TAF7 N243. Lower panel shows silver staining of Mediator and HA-tagged TAF7 N243 used in the assay. Mediator (x1) and HA-TAF7 N243 (x1) contain 1 pmol of the each protein or protein complex. (e) Model of immobilized oligo(dC)-tailed template assay. TAF7 N243 inhibits EAF1 recruitment to the oligo(dC)-tailed template by MED26-containing Mediator. (f) Depletion of TAF7 increased the occupancy of ICE1 (KIAA0947), EAF2 and total Pol II at U4-1 and U6 snRNA genes. C_t values of each ChIP were normalized to that of input. Data points are the average of three independent experiments, and error bars show s.d. The P values for the indicated comparisons were determined by Student’s t-test (*P < 0.05; **P < 0.01).
We found that EAF and TAF7 harbour a partially similar amino-acid sequence that is necessary for direct interaction with MED26-NTD. We presented evidence that TAF7 is present at a subset of snRNA genes. We found that TAF7 blocks EAF1 recruitment by Mediator in vitro and that depletion of TAF7 in cells increased the occupancy of LEC and Pol II at a subset of snRNA genes, resulting in an increase in the expression of the genes. Our results are consistent with the results of previous studies showing that TAF7 has a role in repression of the transcription of a subset of genes30,41. TAF7 was shown to inhibit TAF1 acetyltransferase activity, which is necessary for transcription initiation. The release of TAF7 from TFIIID allows transcription initiation, indicating that TAF7 functions as a checkpoint factor of transcription initiation and represses TFIIID-dependent transcription initiation by preventing premature transcription initiation42. It has also been shown that depletion of Mediator subunits decreases transcription of the metallothionein A gene and that depletion of both TAFs and Mediator subunits restores the transcription42, suggesting that transcription of the gene is regulated by the balance of TFIID and Mediator. This report is consistent with our results suggesting that the transcription of a subset of snRNA genes is regulated by the balance of TAF7-containing TFIIID and MED26-containing Mediator. This report is consistent with our results suggesting that the transcription of a subset of snRNA genes is regulated by the balance of TAF7-containing TFIIID and MED26-containing Mediator. TBP and some of the TAFs have been shown to be involved in the transcription of snRNA genes43,44. Our results raise the possibility that TAF7 in the context of TFIIID is involved in snRNA gene transcription; however, further experiments are needed to address the precise composition of the form of TBP-TAFs in snRNA gene transcription.

The results of our study raise the possibility that TAF7 occludes the MED26-NTD and interferes with the recruitment of LEC in the step of initiation or the very early step of elongation to prevent premature transcription elongation. After TAF7 is released from MED26-NTD on an appropriate signal, LEC can be recruited to the genes through direct interaction of EAF and MED26-NTD to facilitate the transition from initiation to elongation in transcription of a subset of snRNA genes (Fig. 10).

Methods

Cell culture

Human embryonic kidney 293T cells, HeLa cells, HeLa S3 cells and their derivatives, and Flp-In 293 cells (Invitrogen, Carlsbad, CA) and their derivatives were covered in PBS, and the placenta, other maternal tissues, head, limbs and all inner organs were removed and then homogenized with a 22-gauge syringe. MEF cells were then cultured under an atmosphere of 5% CO\textsubscript{2} at 37 °C in DMEM (Sigma-Aldrich Corp., St Louis, MO) supplemented with 10% (v/v) fetal bovine serum (Invitrogen), 55 μM β-mercaptoethanol (Gibco, Grand Island, NY), 2 mM l-glutamine, penicillin (10 U ml-1) and streptomycin (0.1 mg ml-1). Generation of a HeLa S3 cell line stably expressing FLAG-tagged MED26 wild type, CS (421–600) and R61A, K62A and Flp-In 293 cells stably expressing FLAG-tagged ICE2 and ICE1-CL (1,191–2,266) were described previously20.

Production of recombinant proteins

N-terminally 6 X His- and FLAG-tagged MED26-NTD (residues 1–113), MED26-NTD R61A, K62A and N-terminally 6 X His- and HA-tagged TAF7 were expressed in BL21 (DE3) CodonPlus Escherichia coli (Strategene, La Jolla, CA) and then purified by using ProBond metal affinity beads (Invitrogen). For production of recombinant proteins in Sf9 cells, epitope-tagged ELL, EAF1 and MED26 were subcloned into pBacPAK8 expressing the BacPAK system (Clontech Laboratories, Mountain View, CA). Full length, deletion mutants or point mutants of ICE1 (KIAA0947), ICE2 (NARG2), MED26, TAF7 and EAF1 were subcloned into pFastBac HTB (Life Technologies, Carlsbad, CA) or pBacPAK8 with epitope tags and expressed singly or together with the BAC-to-BAC system (Clontech).

Western blot

Anti-FLAG M2 antibodies (1:2,000 dilutions, Sigma-Aldrich Corp.), anti-HA antibodies (1:2,000 dilutions, Covance, Princeton, NJ), anti-Myc antibodies (1:1,000 dilutions, Covance), anti-TAF7 antibodies (1:200 dilutions, sc-101167, Santa Cruz Biotechnology, Santa Cruz, CA), anti-ELL antibodies (1:1,000 dilutions, A301-645A, Bethyl Laboratories, Montgomery, TX), anti-EAF2 antibodies (1:1,000 dilutions, sc-5334 X, Santa Cruz Biotechnology) and anti-Myc antibodies (1:2,000 dilutions, sc-899 X, Santa Cruz Biotechnology) were used in western blots. Mouse monoclonal anti-EAF1 antibody (1:500 dilutions) was a gift from Michael Thirman (Department of Medicine, University of Chicago). Uncropped immunoblots are shown in Supplementary Figs 8–17.

Immunoprecipitation and affinity purification

Protein complexes were purified from nuclear extracts or S100 fractions of cell lines stably expressing FLAG-tagged proteins using anti-FLAG M2 agarose (Sigma-Aldrich Corp.) as described previously20. Briefly, nuclear extracts and S100 fractions were prepared according to the method of Dignam et al.20 from parental HeLa cells or HEK293 FRT cells stably expressing FLAG-tagged proteins. Each of the nuclear extracts or S100 fractions was incubated with 100 μl anti-FLAG agarose beads for 2 h at 4 °C. The beads were washed five times with a 100-fold excess of a buffer containing 50 mM HEPES-NaOH (pH 7.9), 0.3 M NaCl, 0.1% Triton X-100 and 10% (v/v) glycerol, and then eluted with 100 μl of a buffer containing 0.1 M NaCl, 50 mM HEPES-NaOH (pH 7.9), 0.05% Triton X-100, 10% (v/v) glycerol and 0.25 mg ml-1 FLAG peptide.

Oligo(dC)-tailed template transcription assay

Transcription reactions were carried out in the presence of 20 mM HEPES-NaOH, pH 7.9/20 mM Tris-HCl, pH 7.9/60 mM KCl/2 mM dithiothreitol (DTT)/0.5 mg ml-1 BSA/1% (wt/vol) polyvinyl alcohol (average molecular weight of 30,000–70,000 Da)/3% (wt/vol) glycerol/8 U of RNasin/8 mg MgCl\textsubscript{2}/25 ng oligo(dC)-tailed pad-GR220/0.01 U Pol II and ribonucleoside triphosphates and transcription factors as indicated in the figures. In the experiments for which results are shown in Fig. 2F, reaction mixtures were preincubated for 30 min at 28 °C before the addition of ribonucleoside triphosphates. Reactions were stopped after incubation at 28 °C for the times indicated in the figure, and products were resolved in 6% polyacrylamide gels containing 7 M urea, 45 mM Tris-borate and 1 mM EDTA (pH 8.3).

Generation of MEF cells

ES cell line RR660, in which the gene trapping construct pG70fsix had been inserted into the first intron of one allele of the mouse MED26 gene, was purchased from Mouse Regional Resource Center (MMRRC) at JAX. The ES cell line was injected into blastocysts of C57Bl/6 mice, and chimera mice were generated. After homozygous mice had been generated, homozygous embryos were generated by mating homozygous mice. The embryos were covered in PBS, and the placenta, other maternal tissues, head, limbs and all inner organs were removed and then homogenized with a 22-gauge syringe. MEF cells were then cultured under an atmosphere of 5% CO\textsubscript{2} at 37 °C in DMEM (Sigma-Aldrich Corp.) supplemented with 10% (v/v) fetal bovine serum (Invitrogen),
Immobilized oligo(dC)-tailed template assays. A biotinylated oligo(dC)-tailed template generated from the plasmid pAD-GR220 was immobilized on Dynabeads (Life Technologies). Promoter-binding assays were performed as follows. Various combinations of proteins were incubated with 2.0 µl of Dynabeads in a reaction mixture containing 62.5 mM KCl/12.5% v/v glycerol/12.5 mM HEPES, pH 7.9/20 mM Tris-HCl, pH 7.9/0.06 mM EDTA, pH 8.0/7.5 mM MgCl2/0.5 mg ml−1 BSA/0.3 mM DTT/0.025% NP40 in a total volume of 60 µl. After 30 min at 28 °C, beads were collected using a magnetic particle concentrator (Life Technologies), washed three times in the same buffer without BSA and resuspended in SDS-PAGE loading buffer. Bound proteins were identified by western blot.

Gene expression analysis. Total RNA was isolated using Isogen II (Nippon gene, Tokyo, Japan). For RT–qPCR, total mRNA was reverse transcribed using the iScript Select cDNA Synthesis Kit (Bio-Rad, Hercules, CA). The threshold cycle (Ct) values were determined by real-time PCR reactions using Applied Biosystems StepOne Realtime PCR System and Power SYBR Green PCR Master Mix (Life Technologies). Promoter-binding assays were performed as follows. A set of consensus mammalian Mediator subunits identified by multidimensional protein identification technology. The little elongation complex functions at initiation and elongation phases of snRNA gene transcription. Mol. Cell 44, 954–965 (2011).

Molecular immunology. Hela cells grown on glass coverslips were fixed for 7 min at room temperature with 100% methanol. Then, the cells were incubated for 15 min with PBS containing 0.2% Triton X-100. After blocking cells with 3% BSA in PBS, the cells were incubated with antisera directed against primary antibodies to collagen (ab18112, Abcam, Cambridge, UK) at 1:1,000 dilutions, MED26 (H-228, sc-48776 X, Santa Cruz Biotechnology) at 1:2,000 dilutions or ICE1 (KIAA0947) at 1:3,000 dilutions in PBS containing 3% BSA. The cells were then washed twice with cold PBS and re-incubated with Alexa488-labelled goat polyclonal antibody to mouse IgG or Alexa568-labelled goat polyclonal antibody to rabbit IgG (Life Technologies), covered with a drop of VECTASHIELD (Vector Laboratories, Burlingame, CA) and then photographed with a charge-coupled device camera (DP71, Olympus, Japan) attached to an Olympus BX51 microscope.

C. DNA was purified from cells and used for ChIP-seq analysis. 7.9/20 mM Tris-HCl, pH 7.9/0.06 mM EDTA, pH 8.0/7.5 mM MgCl2/0.5 mg ml−1 BSA/0.3 mM DTT/0.025% NP40 in a total volume of 60 µl. After 30 min at 28 °C, beads were collected using a magnetic particle concentrator (Life Technologies), washed three times in the same buffer without BSA and resuspended in SDS-PAGE loading buffer. Bound proteins were identified by western blot.

55 µM β-mercaptoethanol (Gibco), 2 mM l-glutamine, penicillin (10 U ml−1) and streptomycin (0.1 mg ml−1). MED26 gene trap MEF cell lines stably expressing HA-tagged MED26 wt or mutant (R64A, K62A) were generated by a Plat E retrovirus packaging system.

ChIP-seq and gene annotation. Sequencing reads were acquired through primary Solexa image analysis. Filtered reads were then aligned to the human genome (hg19) using the Bowtie alignment tool. Only those sequences that matched uniquely to the genome with up to two mismatches and mapped to less than three locations were retained in subsequent analyses. Sequences reads for each ChIP-seq data set and its associated whole-cell extract controls were used for input. Sequence reads from replicate or triplicate ChIP-seq data set of ICE1 (KIAA0947) or TAF7 were used in analysis with the MACS2 peak finding program version 2.0.10, and significantly enriched regions of ChIP-seq signals were determined. Three of each data set from triplicate samples was summed up using MACS2. The significance cut-off was set to false discovery rate <1% and a fold change between 5 and 50. All other MACS parameters were left default. Genes were identified if an enriched peak region was found within ±1 kb of the TSS of any transcript isoform of the gene. The tStart positions of the Ensembl gene annotation were used for TSS analysis.

References

1. Conaway, R. C. & Conaway, J. W. The Mediator complex and transcription elongation. Biochem. Biophys. Acta 1829, 69–75 (2013).

2. Hochheimer, A. & Tjian, R. Diversified transcription initiation complexes expand promoter selectivity and tissue-specific gene expression. Genes Dev. 17, 1309–1320 (2003).

3. Malik, S. & Roeder, R. G. Dynamic regulation of pol II transcription by the mammalian Mediator complex. Trends Biochem. Sci. 30, 256–263 (2005).

4. Saunders, A., Core, L. J. & Lis, J. T. Breaking barriers to transcription elongation. Nat. Rev. Mol. Cell Biol. 7, 557–567 (2006).

5. Kwak, H. & Lis, J. T. Control of transcriptional elongation. Annu. Rev. Genet. 47, 483–508 (2013).

6. Kong, H. E., Barlow, C. A., Shilatifard, A., Conaway, J. W. & Conaway, R. C. ELL-associated factors 1 and 2 are positive regulators of RNA polymerase II elongation factor ELL. Proc. Natl Acad. Sci. USA 102, 10094–10098 (2005).

7. Shilatifard, A., Lane, W. S., Jackson, K. W., Conaway, R. C. & Conaway, J. W. An RNA polymerase II elongation factor encoded by the human ELL gene. Science 271, 1873–1876 (1996).

8. Lin, C. et al. AFF4, a component of the ELL/P-TEFb elongation complex and a shared subunit of MLL chimeras, can link transcription elongation to leukemia. Mol. Cell 37, 429–437 (2010).

9. Sobhian, B. et al. HIV-1 Tat assembles a multifunctional transcription elongation complex and stably associates with the 75K snRNp. Mol. Cell 38, 439–451 (2010).

10. He, N. et al. HIV-1 Tat and host AFF4 recruit two transcription elongation factors into a bifunctional complex for coordinated activation of HIV-1 transcription. Mol. Cell 38, 428–438 (2010).

11. Luo, Z., Lin, C. & Shilatifard, A. The super elongation complex (SEC) family in transcriptional control. Nat. Rev. Mol. Cell Biol. 13, 543–547 (2012).

12. Smith, E. R. & Workman, L. P. The little elongation complex regulates small nuclear RNA transcription. Mol. Cell 44, 954–965 (2011).

13. Hu, D. et al. The little elongation complex functions at initiation and elongation phases of snRNA gene transcription. Mol. Cell 51, 493–505 (2013).

14. Jawdekar, G. W. & Henry, R. W. Transcriptional regulation of human small nuclear RNA genes. Biochem. Biophys. Acta 1779, 295–305 (2008).

15. Egloff, S., O’Reilly, D. & Murphy, S. Expression of human snRNA genes from two different phases of snRNA gene transcription. Mol. Cell 49, 590–594 (2013).

16. Egloff, S. et al. Serine-7 of the RNA polymerase II CTD is specifically required for snRNA gene expression. Science 318, 1777–1779 (2007).

17. Baillat, D. et al. Integrator, a multiprotein Mediator of small nuclear RNA processing, associates with the C-terminal repeat of RNA polymerase II. Cell 123, 265–276 (2005).

18. Medlin, J. et al. P-TEFb is not an essential elongation factor for the intronless human U2 snRNA and histone H2b genes. EMBO J. 24, 4154–4165 (2005).

19. Malik, S. & Roeder, R. G. The metazoan Mediator co-activator complex as an integrative hub for transcriptional regulation. Nat. Rev. Genet. 11, 761–772 (2010).

20. Takahashi, H. et al. Human Mediator subunit MED26 functions as a docking site for transcription elongation factors. Cell 146, 92–104 (2011).

21. Huang, Y. et al. Mediator complex regulates alternative mRNA processing via the MED23 subunit. Mol. Cell 45, 459–469 (2012).

22. Galbraith, M. D. et al. HIF1A employs CDK8-Mediator to stimulate RNP II elongation in response to hypoxia. Cell 153, 1327–1339 (2013).

23. Donner, A. J., Ebmeier, C. C., Taatjes, D. J. & Espinosa, J. M. CDK8 is a positive regulator of transcriptional elongation within the serum response network. Nat. Struct. Mol. Biol. 19, 761–772 (2012).

24. Whyte, W. A. et al. Master transcription factors and Mediator establish enhancer-driven super-enhancers at key cell identity genes. Cell 153, 307–319 (2013).

25. Sato, S. et al. A set of consensus mammalian Mediator subunits identified by multidimensional protein identification technology. Mol. Cell 14, 685–691 (2004).
26. Cevher, M. A. et al. Reconstitution of active human core Mediator complex reveals a critical role of the MED14 subunit. Nat. Struct. Mol. Biol. 21, 1028–1034 (2014).

27. Tsai, K. L. et al. Subunit architecture and functional modular rearrangements of the transcriptional Mediator complex. Cell 157, 1430–1444 (2014).

28. Diebold, M. L. et al. The structure of an Isw1/Spt6 complex reveals an interaction domain conserved in TFIIH, elongin A and Med26. EMBO J. 29, 3979–3991 (2010).

29. Booth, V., Koth, C. M., Edwards, A. M. & Arrowsmith, C. H. Structure of a conserved domain common to the transcription factors TFIIS, elongin A, and CRSP70. J. Biol. Chem. 275, 31266–31268 (2000).

30. Devaiha, B. N. et al. Novel functions for TAF7, a regulator of TAF1-independent transcription. J. Biol. Chem. 285, 38772–38780 (2010).

31. Gegonne, A. et al. TFIID component TAF7 functionally interacts with both TFIH and P-TEFs. Proc. Natl Acad. Sci. USA 105, 5367–5372 (2008).

32. Kiss, T. Biogenesis of small nuclear RNPs. J. Cell Sci. 117, 5949–5951 (2004).

33. Marr, S. K., Lis, J. T., Treisman, J. E. & Marr, 2nd M. T. The metazoan-specific Mediator subunit 26 (Med26) is essential for viability and is found at both active genes and pericentric heterochromatin in Drosophila melanogaster. Mol. Cell. Biol. 34, 2710–2720 (2014).

34. Gegonne, A., Weissman, J. D. & Singer, D. S. TAFII55 binding to TAFII250 inhibits its acetyltransferase activity. Proc. Natl Acad. Sci. USA 98, 12432–12437 (2001).

35. Gegonne, A., Weissman, J. D., Zhou, M., Brady, J. N. & Singer, D. S. TAF7: a possible transcription initiation check-point regulator. Proc. Natl Acad. Sci. USA 103, 6021–6026 (2006).

36. Chiang, C. M. & Roeder, R. G. Cloning of an intrinsic human TFIID subunit that interacts with multiple transcriptional activators. Science 267, 531–536 (1995).

37. Krebs, A. R. et al. ATAC and Mediator coactivators form a stable complex and regulate a set of non-coding RNA genes. EMBO Rep. 11, 541–547 (2010).

38. Mourguie, S. et al. ELL, a novel TFIIH partner, is involved in transcription restart after DNA repair. Proc. Natl Acad. Sci. USA 110, 17927–17932 (2013).

39. Kim, M. K. et al. Identification of SNAPc subunit domains that interact with specific nucleotide positions in the U1 and U6 gene promoters. Mol. Cell. Biol. 30, 2411–2423 (2010).

40. Huttten, S., Chachamhi, G., Winter, U., Melchior, F. & Lamond, A. I. A role for the CB-associated SUMO isopeptidase USP11 in RNAPII-mediated snRNA transcription. J. Cell Sci. 127, 1065–1078 (2014).

41. Kloet, S. L., Whiting, J. L., Gaflken, P., Ranish, J. & Wang, E. H. Phosphorylation-dependent regulation of cyclin D1 and cyclin A gene transcription by TFIID subunits TAF1 and TAF7. Mol. Cell. Biol. 32, 3358–3369 (2012).

42. Marr, 2nd M. T., Isogai, Y., Wright, K. J. & Tjian, R. Coactivator cross-talk specifies transcriptional output. Genes Dev. 20, 1458–1469 (2006).

43. Bernues, J. et al. Common and unique transcription factor requirements of human U1 and U6 snRNA genes. EMBO J. 12, 3573–3585 (1993).

44. Zaborowska, J., Taylor, A. & Murphy, S. A novel TBP-TAF complex on RNA polymerase II-transcribed snRNA genes. Transcription 3, 92–104 (2012).

45. Takahashi, H. et al. Proteomics reveals a physical and functional link between hepatocyte nuclear factor-4alpha and transcription factor IID. J. Biol. Chem. 284, 32405–32412 (2009).

46. Dignam, J. D., Martin, P. L., Shastry, B. S. & Roeder, R. G. Eukaryotic gene transcription with purified components. Methods Enzymol. 101, 582–598 (1983).

47. Morita, S., Kojima, T. & Kitamura, T. Plat-E: an efficient and stable system for transient packaging of retroviruses. Gene Ther. 7, 1063–1066 (2000).

Acknowledgements
We thank Laszlo Tora (IGBMC, Strasbourg, France) for kindly providing a series of baculoviruses encoding the TAFs (TAF1-13), Michael Thirman (University of Chicago) for a generous gift of the anti-EAF1 antibody, and Yuma Nagano and Toyoyuki Ose (Hokkaido University Faculty of Pharmaceutical Sciences, Japan) and Takashi Yasukawa and Teijiro Aso (Kochi Medical School, Japan) for helpful discussion. We are grateful to Yuri Soida and Miho Uchiumi for help in preparing the manuscript. This work was supported in part by KAKENHI (24390065 to S.H.; 24689016, 24659121, 22150002 and 25118501 to H.T.; 25280079 to I.T.) from the Ministry of Education, Culture, Sports, Science and Technology in Japan and by Takeda Science Foundation, Osaka Cancer Research Foundation and Mitsubishi Pharma Research Foundation (all to H.T.), and funds from the Stowers Institute (to J.W.C. and R.C.C) and grant GM41628 from NIGMS, NIH (to J.W.C. and R.C.C)

Author contributions
H.T. planned the research, performed most of the experiments and wrote the manuscript. I.T. and C.W.S. analysed the data of ChIP-seq. M.H. and Y.O. helped with the generation of mouse embryonic fibroblast cells. M.K. and Y.K. performed the experiments and wrote the manuscript.

Additional information
Accession codes: The ChIP-seq data are available under DDBJ sequence Read Archive, accession number DRA002712.

Supplementary Information accompanies this paper at http://www.nature.com/naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

How to cite this article: Takahashi, H. et al. MED26 regulates the transcription of snRNA genes through the recruitment of little elongation complex. Nat. Commun. 6:5941 doi: 10.1038/ncomms6941 (2015).