Nonlinear Mixing of Collective Modes in Harmonically Trapped Bose–Einstein Condensates

Takahiro Mizoguchi, Shohei Watabe, and Tetsuro Nikuni

Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan

(Dated: March 28, 2018)

We study nonlinear mixing effects among quadrupole modes and scissors modes in a harmonically trapped Bose–Einstein condensate. Using a perturbative technique in conjunction with a variational approach with a Gaussian trial wave function for the Gross–Pitaevskii equation, we find that mode mixing selectively occurs. Our perturbative approach is useful in gaining qualitative understanding of the recent experiment [Yamazaki et al., J. Phys. Soc. Japan 84, 44001 (2015)], exhibiting a beating phenomenon of the scissors mode as well as a modulation phenomenon of the low-lying quadrupole mode by the high-lying quadrupole mode frequency. Within the second-order treatment of the nonlinear mode coupling terms, our approach predicts all the spectral peaks obtained by the numerical simulation of the Gross–Pitaevskii equation.

I. INTRODUCTION

Collective modes, such as dipole, quadrupole and scissors modes, in harmonically trapped ultracold atomic gases have attracted much attention because they offer many-body physics as well as macroscopic quantum phenomena of Bose–Einstein condensates (BECs) [1–5]. In particular, the scissors mode in a BEC manifests superfluidity because of its irrotational nature [4–8]. Frequencies of the collective modes observed in the experiment [1] can be successfully described by the linearized Gross–Pitaevskii (GP) equation for the condensate at \(T = 0 \) [9, 10]. Non-zero temperature effects [7, 8, 11] as well as the Beliaev process [12] are also important for explaining experimental results [3–5, 12], which are not explained by linearized equations at \(T = 0 \) alone.

Even in the case at \(T = 0 \), however, we are faced with an important problem that are not explained by the linear analysis. Recently, various kinds of collective modes in a BEC—low-lying and high-lying quadrupole modes, as well as scissors modes—are simultaneously excited in a cigar-shaped trap [13]. This experiment has shown that oscillations of a scissors mode exhibits beating with a longer period oscillation, whose frequency is that of the low-lying quadrupole mode. The low-lying quadrupole mode is, on the other hand, modulated by a shorter period oscillation with the high-lying quadrupole mode frequency. Within the second-order treatment of the nonlinear mode coupling terms, our approach predicts all the spectral peaks obtained from the numerical simulation of the GP equation.

II. VARIATIONAL ANALYSIS

We derive nonlinear equations in order to understand nonlinear mixing of scissors and quadrupole modes. The earlier study [15] considered nonlinear coupling between scissors modes with different symmetries. In this section, we extend their variational analysis with a Gaussian trial wave function [15] to include mixing effects between both quadrupole and scissors modes in a trapped condensate. As in Ref. [15], we start with the Lagrangian for the condensate order parameter \(\psi(\mathbf{r}, t) \), given by

\[
L [\psi, \psi^*] = \frac{i\hbar}{2} \int d\mathbf{r} \left(\psi \frac{\partial \psi^*}{\partial t} - \psi^* \frac{\partial \psi}{\partial t} \right) - E [\psi, \psi^*],
\]

where the energy functional is given by

\[
E = \int d\mathbf{r} \left[\frac{\hbar^2}{2m} |\nabla \psi|^2 + V|\psi|^2 + g \frac{9}{2} |\psi|^4 - \mu |\psi|^2 \right].
\]

Here, \(g = 4\pi a \hbar^2 / m \) is a coupling constant, \(a \) an s-wave scattering length, and \(m \) an atomic mass. Its Euler-
Lagrangian equation is the GP equation
\[i\hbar \frac{\partial \psi(r,t)}{\partial t} = \left[-\frac{\hbar^2 \nabla^2}{2m} + V(r) + g |\psi(r,t)|^2 \right] \psi(r,t). \tag{3} \]

The external trap potential is given by
\[V(r) = \frac{m}{2} (\omega_x^2 x^2 + \omega_y^2 y^2 + \omega_z^2 z^2) \]
\[= \frac{m}{2} \omega_x^2 + y^2/\kappa^2 + \lambda^2 z^2), \tag{4} \]
where \(\omega_x \), \(\omega_y \) and \(\omega_z \) are trap frequencies of \(x, y, z \) direction, respectively. The parameters \(\kappa \), \(\lambda \), and \(\omega_\perp \) are given by \(\omega_\perp = \sqrt{\omega_x \omega_y \omega_z} \), \(\kappa = \omega_\perp/\omega_y \), and \(\lambda = \omega_z/\omega_\perp \).

In this section, we describe equations in terms of \(\omega_x, \omega_y \) and \(\omega_z \) to formulate general equations for arbitrary trap geometries. In the next section, we will use the parameters \(\omega_\perp \) and \(\lambda \) to study an axially symmetric trap case \((\kappa = 1) \).

We introduce the following trial function for the condensate order parameter \(|\psi(t)|^2 \)
\[|\psi(t)|^2 = A(t) \exp \left[-b_\perp (t) x^2 - b_y(t) y^2 - b_z(t) z^2 \right] \]
\[-c_x y(t) x y - c_y z(t) y z - c_z x(t) x z \], \tag{5} \]
where \(b_\perp \) and \(c_{\zeta \eta} \) \((\zeta, \eta = x, y, z) \) are complex variational parameters. The parameter \(A \) is a normalization factor to ensure the conservation of the total number of condensate atoms \(N \), which is given by
\[A(t) = \frac{2^{1/4}\sqrt{N}}{\pi^{3/4}} [c_x^2 + c_y^2 + c_z^2 + 2b_\perp b_y b_z] \]
\[- (b_x c_y c_z + b_y c_z c_x + b_z c_x c_y)]^{1/4}, \tag{6} \]
where \(b_\perp \) and \(c_{\zeta \eta \zeta} \) \((\zeta, \eta = x, y, z) \) are real (imaginary) parts of \(b_\perp \) and \(c_{\zeta \eta \zeta} \), respectively.

We derive equations of motions for variational parameters for a BEC at \(T = 0 \) in three steps. First, by inserting the trial function \((5) \) into the Lagrangian \((1) \) and carrying out the spatial integration, we obtain
\[\frac{N}{L[b,c]} = \frac{1}{Q} \left(\sum_{\zeta=x,y,z} \alpha_\zeta b_\zeta \right) + \sum_{(\zeta,\eta,\theta) \in X} \beta_\zeta c_{\zeta \theta \eta \theta} \]
\[- \frac{1}{2Q} \sum_{(\zeta,\eta,\theta) \in X} \alpha_\zeta |b_\zeta|^2 + |c_{\zeta \eta \theta}|^2 \]
\[- \frac{1}{Q} \sum_{(\zeta,\eta,\theta) \in X} \sum_{p=\zeta} \beta_{\zeta} [2c_{\zeta \eta \theta} (b_{\eta \theta} + b_{\theta \eta}) + c_{\zeta \eta \theta} \omega \omega \omega] \]
\[- \frac{1}{2Q} \sum_{\zeta=x,y,z} \alpha_\zeta \omega \omega \omega - \frac{\gamma}{2\sqrt{\pi}} \sqrt{Q}, \tag{7} \]
where \(Q = 2\pi^3 A^3/N \), and \(N = N_a/L_{bo} \).

The harmonic oscillator length \(L_{bo} = (\hbar/m\omega) \). The third term on the right hand side of \((7) \) was missing in the earlier study \[15\].

Second, we look for static equilibrium values of variational parameters \(\beta_\zeta \) and \(c_{\zeta \eta \zeta} \). Since the phase of the static order parameter \(\psi \) is uniform, we set \(\beta_\zeta = c_{\zeta \eta \zeta} \equiv 0 \). Because of symmetry of the trap potential, we can set \(c_{\zeta \zeta \zeta} = 0 \). The equilibrium values of parameters \(\beta_\zeta \) and \(c_{\zeta \eta \zeta} \) can be obtained by minimizing the energy functional \((2) \), which leads to
\[\beta_\zeta = (\frac{\sqrt{\pi}}{8\gamma}) \omega \omega \omega (\zeta = x, y, z). \tag{8} \]

Finally, we expand the Lagrangian in terms of \(\mathbf{p} \), and derive the Euler-Lagrange equations to second order in \(\mathbf{p} \), which can be written in the form
\[iM_{\mu \nu} \dot{p}_\nu + F_{\mu \nu} \dot{p}_\nu + G_{\mu \xi} p_\nu p_\xi + H_{\mu \xi} p_\nu \dot{p}_\xi = 0. \tag{10} \]

Here, \(p_\nu \) is the \(\nu \)-th component of the vector \(\mathbf{p} \), and we use the Einstein summation convention that implies taking the sum over the repeated indices. The coefficients \(M_{\mu \nu} \) are pure imaginary, while the \(F_{\mu \nu} \), \(G_{\mu \xi} \), and \(H_{\mu \xi} \) are real. The coefficients \(M_{\mu \nu} \), \(F_{\mu \nu} \), and \(G_{\mu \xi} \) are (a)symmetrised such as \(M_{\mu \nu} = -M_{\nu \mu} \), \(F_{\mu \nu} = F_{\nu \mu} \) as well as \(G_{\mu \xi} = G_{\xi \mu} \). Note that \(H_{\mu \xi} \) does not have a symmetry. The matrix \(M \) is given by
\[M = i\pi^{1/5} \left(\begin{array}{ccc} 0 & M^0 & 0 \\ -M^0 & 0 & 0 \\ 0 & 0 & M^s \end{array} \right), \tag{11} \]
where
\[M^q = \text{diag}(2\omega_x^4 \omega_y^2, 2\omega_x^2 \omega_y^4, 2\omega_x \omega_y^6), \tag{12} \]
\[M^s = \text{diag}(\omega_z^2, \omega_x^2, \omega_y^2), \tag{13} \]
and \(F \) is given by
\[F = \left(\begin{array}{ccc} F^{q^*} & 0 & 0 \\ 0 & F^{q} & 0 \\ 0 & 0 & F^{s} \end{array} \right), \tag{14} \]
where
\[F_{\text{inv}} = 2^{1/5} \gamma^{2/5} \begin{pmatrix} 3 \omega_y^2 \omega_z^2 & \omega_z^2 & \omega_z^2 \\ \omega_z^2 & 3 \omega_y^2 \omega_z^2 & \omega_y^2 \\ \omega_y^2 & \omega_y^2 & 3 \omega_y^2 \omega_z^2 \end{pmatrix}, \]
(15)
\[F_{\text{eq}} = \frac{29}{7/5} \gamma \text{diag}(\omega_z^2 \omega_y^2, \omega_z^2 \omega_x^2, \omega_y^2 \omega_x^2), \]
(16)
\[F_{\text{st}} = 2^{1/5} \gamma^{2/5} \text{diag}(\omega_z^2, \omega_x^2, \omega_y^2), \]
(17)
\[F_{\text{st}} = \frac{\pi^{2/5}}{2^{1/5} \gamma^{2/5}} \text{diag}(\omega_z^2(\omega_x^2 + \omega_y^2), \omega_z^2(\omega_x^2 + \omega_y^2)), \]
(18)

\section{III. Perturbative Approach}

Within a linear approximation ignoring the nonlinear terms that includes \(G \) and \(H \) in (10), we obtain the scissors and quadrupole mode frequencies, which are consistent with those in the hydrodynamic (strongly interacting or large-\(N \)) limit [10, 15]. Such a linear approximation is useful when we apply a single-frequency probe. However, if we excite collective modes simultaneously, nonlinear mode mixing may emerge and its effects are visible as in Refs. [13, 14]. In order to study these effects beyond a linear analysis, we use the solution of a linear approximation as an unperturbed solution and regard the nonlinear terms as perturbation. To make this idea more concrete, we introduce a fictitious perturbation parameter \(\epsilon \) such that
\[iM_{\mu \nu} \dot{p}^\nu_{\nu} + F_{\mu \nu} p^\nu_{\nu} + \epsilon (G_{\mu \nu \xi} p^\nu_{\nu} p^\xi_{\xi} + H_{\mu \nu \xi} q^\nu_{\nu} \dot{q}^\xi_{\xi}) = 0. \]
(19)
Following a usual perturbation technique, we will set \(\epsilon \) equal to unity at the end of calculation. We look for an approximate solution as a power series of \(\epsilon \): \(p = p^{(0)} + \epsilon p^{(1)} + \epsilon^2 p^{(2)} + \cdots \). Substituting this power series into (19) and comparing coefficients of each power of \(\epsilon \), we obtain a series of simultaneous equations.

The unperturbed equation, the zeroth order of \(\epsilon \), is given by
\[iM_{\mu \nu} \dot{p}^{(0)}_{\nu} + F_{\mu \nu} p^{(0)}_{\nu} = 0. \]
(20)

One can diagonalize this equation by a matrix \(S \) such that \(q^{(0)}_\mu = i \Omega q^{(0)}_{\mu} \), where \(p^{(0)}_{\nu} = S_{\nu \mu} p^{(0)}_{\mu} \) and \(\Omega \) is a diagonal matrix given by \(\Omega = S^{-1} M^{-1} F S \), whose elements are eigenvalues. The eigenvalues are real numbers, each two of them having the same absolute value with opposite sign. The solution \(q^{(0)}_\mu \) can be given by \(q^{(0)}_\mu = c^{(0)}_\mu \exp(i \Omega_{\mu \nu} t) \), where \(c^{(0)}_\mu \) determines weights of eigenmodes in the initial condition.

In the following, we arrange eigenvalues such that
\[\Omega = \text{diag}(-\Omega_Q, \Omega_Q, -\Omega_-, \Omega_-, -\Omega_+, \Omega_+), \]
(21)
\[\text{where } \Omega_{Q \pm} \text{ correspond to the quadrupole mode frequencies, and } \Omega_{xy, yz, zx} \text{ correspond to the scissors mode frequencies, which are given by } \]
\[\Omega_Q^2 = \Omega_{xy}^2 = \frac{2}{\lambda^{2/3}}, \]
\[\Omega_\pm^2 = \frac{4 \pm 3 \lambda^2 \pm \sqrt{16 - 16 \lambda^2 + 9 \lambda^4}}{2 \lambda^{2/3}}, \]
\[\Omega_{yz, zx}^2 = \frac{1 + \lambda^2}{\lambda^{2/3}}. \]

The mode with \(\Omega_{\pm} \) is the high(low)-lying quadrupole-monopole excitation. In an axially symmetric trap, the \(\Omega_Q \) quadrupole mode and the \(xy \) scissors mode degenerate, so do the \(yz \) scissors mode and the \(zx \) scissors mode. Figure 1 shows the \(\lambda \)-dependence of these frequencies. These frequencies are consistent with those for a trapped condensate in the hydrodynamic limit [10].

Collecting terms of first order in \(\epsilon \), we obtain
\[iM_{\mu \nu} \dot{p}^{(1)}_{\nu} + F_{\mu \nu} p^{(1)}_{\nu} + f^{(0)}_{\nu} = 0, \]
(23)
where \(f^{(1)}_{\nu} \equiv G_{\mu \nu \xi} p^{(1)}_{\nu} p^\xi_{\xi} + H_{\mu \nu \xi} p^{(0)}_{\nu} p^\xi_{\xi}. \) Using the transformation \(S \), this equation reads as
\[\dot{q}^{(1)}_{\mu} = i \Omega_{\mu \nu} q^{(1)}_{\nu} + i S^{-1} M^{-1} f^{(0)}_{\mu}, \]
(24)
where \(p^{(1)}_{\nu} \equiv S_{\mu \nu} q^{(1)}_{\mu}. \) The second term on the right hand side, \(i S^{-1} M^{-1} f^{(0)}_{\mu} \), represents the nonlinear couplings between the collective modes, i.e. the eigenmodes in the

![Graph of the \(\lambda \)-dependence of frequencies \(\Omega_Q, \Omega_+, \Omega_-, \Omega_{xy}, \Omega_{yz}, \Omega_{zx}, \Omega_{xx} \).](graph.png)
linearized equation (20). In order to clearly understand nonlinear mixing effects of eigenmodes, it is more convenient to express the nonlinear term as \(i S_{\mu\nu} M_{\mu\nu}^{-1} f^{(0)} = G_{\rho \sigma \tau} c^{(0)} c^{(0)} \exp[i(\Omega_\sigma + \Omega_\tau)t] \).

This shows that the \(\rho \)-th mode is modulated by nonlinear mixing with the \(\sigma \)-th and \(\tau \)-th modes through the term

\[
G_{\rho \sigma \tau} c^{(0)} c^{(0)} \exp[i(\Omega_\sigma + \Omega_\tau)t]. \tag{25}
\]

Figure 2 shows absolute values of the nonlinear mixing weight \(G_{\rho \sigma \tau} \) in matrix form (column and row indices correspond to \(\sigma \) and \(\tau \), respectively) in a cigar-shaped trap case (\(\lambda = 0.14 \), which corresponds to the experiment of Ref.[13]). We do not show the cases where \(\rho \) is odd, because we have a relation \(G_{\rho+1,\sigma+1,\tau+1} = (G_{\rho \sigma \tau})^* \) for \(\rho, \sigma, \tau \) being odd, where this relation stems from a relation \(q_{\rho+1} = (q_\rho)^* \) for \(\rho \) being odd. Some specific elements in matrices \(G_\rho \) are absent, regardless of any value of the parameter \(\lambda \), which indicates the absence of the nonlinear mixing of collective modes, as well as the selectiveness of the nonlinear mixing.

Nonlinear mixing for the quadrupole modes is clearly distinct from that for the scissors modes. Matrices \(G_2', G_4', \) and \(G_6' \) for three quadrupole modes, which have essentially the same structure, have two characteristic features (Figs. 2(a), (b) and (c)). First, all the quadrupole modes are coupled with each other, including itself. This indicates that \(\Omega_{Q,\pm} \leftarrow \Omega_{Q,\pm} + \Omega_{Q,\pm} \). Second, the matrices \(G_2', G_4' \) and \(G_6' \) involves a tridiagonal matrix, which leads to the nonlinear mixing \(\Omega_{Q,\pm} \leftarrow \Omega_{xy,yz,zx} + \Omega_{xy,yz,zx} \). The others such as \(\Omega_{Q,\pm} \leftarrow \Omega_{Q,\pm} + \Omega_{xy,yz,zx} \) and \(\Omega_{Q,\pm} \leftarrow \Omega_{xy,yz,zx} \) do not occur.

The matrices \(G_8', G_{10}', \) and \(G_{12}' \) for the scissors modes...

\[
G_{\rho \sigma \tau} = i S_{\mu\nu} M_{\mu\nu}^{-1} f^{(0)} = \frac{1}{2} H_{\mu\nu} \left(S_{\nu\sigma} S_{\tau\rho} S_{\xi\tau} + S_{\nu\tau} S_{\xi\rho} S_{\xi\sigma} \right), \tag{26}
\]

where \(G' \) is symmetric such as \(G'_{\rho \sigma \tau} = G'_{\rho \sigma \tau} \).
have distinct two features (Figs. 2 (d), (e) and (f)). First, the nonlinear mixing of all the quadrupole modes ($Q_{xy,yz,xx} \leftrightarrow Q_{Q,\pm Q,\pm}$) are absent. Second, the nonlinear mixing between a scissors mode and itself ($\sigma \leftrightarrow \sigma + \tau$ for $\sigma, \tau = 7, 8, \cdots, 12$) are also absent. These two features are in contrast with those for $G'_{Q}G_{Q}$ and G'_{G}.

On the other hand, a common feature can be found with respect to a beating phenomenon. From all the matrices $G'_{Q}G'_{Q}G'_{Q}$, we find that the beating effect is caused by the quadrupole modes. Indeed, for the σ-th mode, we have a nonlinear mixing term with $\sigma \leftrightarrow \sigma + \tau$ for $\sigma = Q_{Q}$ and σ_{Q}, where an exception is for the scissors mode in the x-y plane, the coupling with the quadrupole mode ($\sigma = Q_{Q}$) being absent.

The nonlinear mixing G' is helpful in understanding the recent experiment [13]. In this experiment, the xx scissors mode with the frequency Ω_{xx} shows a beating phenomenon, where its oscillation amplitude is modulated by the longer-period oscillation with the low-lying quadrupole mode frequency Ω_{-}. For the xx scissors mode, the matrix elements of $G'_{Q2,\sigma,\tau}$ for the $(\pm \Omega_{-}, \pm \Omega_{-})$ sector are quite large compared with the other matrix elements (Fig. 2 (f)). This indicates that the nonlinear mixing between the xx scissors mode (Ω_{xx}) and the low-lying quadrupole mode ($\pm \Omega_{-}$) is strong, and the beating emerges from the term $\exp[i(\Omega_{xx} \pm \Omega_{-})t]$. This fact clearly explains the experimental results [13].

Our perturbative approach also answers the question why the oscillation of the low-lying quadrupole mode was modulated by the short period oscillation with the high-lying quadrupole mode frequency (Ω_{+}). For the low-lying quadrupole mode (Ω_{-}), we can find relatively large matrix elements in $G'_{Q4,\sigma,\tau}$ for the $(\Omega_{yz}(zx), \Omega_{yz}(zx))$ sections (Fig. 2 (b)). This indicates that the low-lying quadrupole mode is modulated by the oscillation $\exp[2\Omega_{yz}(zx)t]$. Since the high-lying quadrupole mode frequency satisfies $\Omega_{+} \simeq 2\Omega_{yz}(zx)$ in a cigar-shaped trap case ($\lambda \ll 1$) (see Fig. 1), which is the case in the experiment [13], the modulation of the low-lying quadrupole mode may be due to the nonlinear mixing between the $yz(zx)$ scissors modes. If the modulation were caused by the nonlinear mixing between these low-lying and high-lying quadrupole modes, a beating phenomenon could emerge like the scissors mode case. However, it was not the case in the experiment [13], where beating phenomena were not observed in the low-lying quadrupole mode. This result can be supported by the matrix element in the (Ω_{-}, Ω_{-}) section quite smaller than that in the $(\Omega_{yz}(zx), \Omega_{yz}(zx))$ section (Fig. 2 (b)).

Figure 3 shows the λ-dependence of the dominant nonlinear mixing weight in G'. We plot the maximum absolute value among four matrix elements in the $(\pm \Omega_{\sigma}, \pm \Omega_{\tau})$ sections as well as in the $(\pm \Omega_{\tau}, \mp \Omega_{\upsilon})$ sections. In the
cigar shape trap case ($\lambda \ll 1$), the dominant nonlinear mixing for the quadrupole mode $\Omega_{Q,zx}$ is the mixing between the zx scissors modes and itself, leading to the frequency $2\Omega_{zx}$ (Figs. 3 (a), (b) and (c)). The dominant nonlinear mixing for the $yz(xz)$ scissors mode is the mixing between the $yz(xz)$ scissors mode and the low-lying quadrupole mode, leading to the frequency $\Omega_{yz(xz)} \pm \Omega_{Q}$ (Figs. 3 (e), and (f)). This is consistent with the experimental result [13]. On the other hand, in a pancake-shaped trap case ($\lambda \gg 1$), the dominant nonlinear mixing for the Q_{Q} quadrupole mode is the mixing between its own mode and the low-lying quadrupole mode.

We can also discuss frequencies in the second-order perturbation by using the nonlinear mixing terms $G'_{\rho\sigma\tau}$. In the second order of ϵ, we have

$$iM_{\mu\nu}p_{\nu}^{(2)} + F_{\mu\nu}p_{\nu}^{(2)} + f_{\mu}^{(0,1)} + f_{\mu}^{(1,0)} = 0. \quad (27)$$

The inhomogeneous terms, $iS_{\rho\sigma\tau}^{-1}M_{\nu\xi}^{-1}f_{\xi}^{(i,j)}$ for $(i,j) = (1,0)$ and $(0,1)$, have the same form as that in the first order case (24). In the case $(i,j) = (1,0)$, the nonlinear mixing is given by $G'_{\rho\sigma\tau} q_{\rho}^{(1)} q_{\sigma}^{(0)} q_{\tau}^{(1)}$, where $G'_{\rho\sigma\tau}$ is the same as $G_{\rho\sigma\tau}$ in (26). On the other hand, in the case $(i,j) = (0,1)$, the nonlinear mixing is given by $G'_{\rho\sigma\tau} q_{\sigma}^{(0)} q_{\rho}^{(1)} q_{\tau}^{(1)}$, where $G'_{\rho\sigma\tau}$ is defined by replacing the frequencies Ω_{ρ} and Ω_{τ} in (26) with frequencies of $q_{\rho}^{(0)}$ and $q_{\tau}^{(1)}$, respectively. Although values of $G'_{\rho\sigma\tau}$ itself may change from those given in (26), the position of matrix elements being zeros, where nonlinear mixing is absent, does not change. This aspect is very useful in predicting the modulation frequency in the second order perturbation. For instance, in Fig. 2 (a) for the matrix $G'_{\rho\sigma\tau}$, the index of the Ω_{Q} row may be replaced with $\Omega_{Q} + \Omega_{-}$, since we have the modulation $\Omega_{Q} \leftrightarrow \Omega_{Q} + \Omega_{-}$ in the first-order perturbation. In the second order perturbation, the modulation of the oscillation for the Ω_{Q} quadrupole mode then have the frequency with $2\Omega_{Q} + \Omega_{-}$ and $\Omega_{Q} + 2\Omega_{-}$, i.e., the modulations $\Omega_{Q} \leftrightarrow (\Omega_{Q} + \Omega_{-}) + \Omega_{-}$ as well as $\Omega_{Q} \leftrightarrow (\Omega_{Q} + \Omega_{-}) + \Omega_{-}$ occur. On the other hand, in the same order perturbation for the Ω_{Q} quadrupole mode, the modulation with the frequency $2\Omega_{-} + \Omega_{zx}$, i.e., the modulation $\Omega_{Q} \leftrightarrow (\Omega_{-} + \Omega_{zx}) + \Omega_{-}$, may be absent, since in the first order perturbation, the modulation $\Omega_{Q} \leftrightarrow \Omega_{-} + \Omega_{zx}$ does not exist (Fig. 2 (a)).

IV. COMPARISON WITH SPECTRAL ANALYSIS

We compare the analytical results in the previous section with the numerical simulation of the GP equation. In this simulation, we simultaneously excite the quadrupole modes and the scissors mode using a perturbative external potential $\delta V(r,t) = \theta(-t)(0.2x^2 + 0.25y^2 + 0.12x) + 0.25y^2 + 0.12x)$ in the dimensionless form, where $\theta(t)$ is the Heaviside step function. This type of perturbative potential was used in the experiment of Ref. [13] to excite

![FIG. 4. Spectral intensities of modes for (a) Ω_{Q} mode, (b) Ω_{-} mode, (c) Ω_{+} mode, and (d) Ω_{zx} mode, obtained from numerical simulation of GP equation in axially symmetric trap cases ($\lambda = 0.5, 1.0, 1.5$). Arrows with largest labels in each panel indicate frequencies $\Omega_{Q,zx}$ that are determined by the maximum peak position. Filled-head (open-head) arrows together with a linear combination of the Ω_{i} label represent frequencies predicted by the first-order (second-order) perturbation approximation. Spectrum of a quadrupole mode involves other quadrupole mode peak indicated by an arrow with a parenthetical label (Ω_{Q}) (Figs. (a)-(c)).]
three kinds of the quadrupole modes with $\Omega_{Q,\pm}$ and the xx scissors mode with Ω_{xx}.

To extract the spectra of each collective mode, we employ the following three steps. First, we calculate moments $[6, 7, 16]$ from the condensate wavefunction $\Psi(\mathbf{r}, t)$, where the GP equation was numerically solved by applying the method in Ref. [17]. These moments are defined as $\langle \chi \rangle \equiv \int d\mathbf{x} \chi |\Psi(\mathbf{r}, t)|^2$, where $\chi = x^2, y^2, z^2, xy, yz, \text{and } zx$. From these quantities, we evaluate deviations from their time-averaged values. Second, we relate these moments to the vector \mathbf{p} in (9) within the linear approximation. One finds that the explicit relations are given by

$$\langle x^2 \rangle \simeq -\left(\frac{2}{\pi}\right)^{2/5} \frac{\gamma^{4/5}}{\omega_x^2} \delta b_{x,i},$$

(28)

$$\langle xv_x \rangle \simeq \frac{2}{b_x^{(0)}} \delta b_{x,i},$$

(29)

$$\langle xy \rangle \simeq -\frac{\gamma^{4/5}}{2^{3/5} \pi^{2/5} \omega_x^2 \omega_y^2} \delta \chi_{xy,i},$$

(30)

$$\langle xv_y + yv_x \rangle \simeq \left(\frac{1}{b_x^{(0)}} + \frac{1}{b_y^{(0)}}\right) \delta \chi_{xy,i}.$$

(31)

The analogous relations for the other moments are easily obtained. These relations enable us to give the vector \mathbf{p} as a function of the moment $\langle \chi \rangle$, instead of the variational parameters δb_{ν} and $\delta \chi_{\mu\nu}$. Finally, we apply the Fourier transformation to the vector $\mathbf{q} \langle \chi \rangle \equiv S^{-1} \mathbf{p} (\langle \chi \rangle)$.

Figure 4 shows spectral intensities obtained from the numerical simulation in the GP equation. All peaks are excellently explained by our perturbative approach within the second order analysis (Fig. 4). One may find a relatively weak peak at the high-lying quadrupole mode frequency Ω_{Q} in the Ω_{Q} quadrupole mode (Fig. 4 (a)). This is because in order to extract each collective mode, we apply the linear approximations such as (28)-(29) to $\langle \chi \rangle$ that includes all the nonlinear effects. This is the case in Figs. 4 (b) and (c).

In the comparison of our perturbation approach with the numerical simulation, we use renormalized frequencies Ω, that are determined from the principal spectral peaks in Fig. 4. This is because the frequencies in (22) are rather consistent with the hydrodynamic (strongly interacting or large-N) limit, where the kinetic pressure energy is negligible [10], and it is not the case in this numerical simulation. In Appendix A, we show results where the frequencies given in (22) are used. In the intermediate regime (not in the hydrodynamic regime), it is difficult to apply analytic calculations, but collective mode frequencies obtained in the experiment [1] are well described by the numerical calculation of the linearized equation [9]. Since eigenmodes numerically obtained from the linearized equation in the intermediate regime [9] are smoothly connected to those in the hydrodynamic limit [10], our perturbative approach is applicable beyond the hydrodynamic limit if we take renormalized frequencies. This is the reason why our perturbative approach well predicts all the spectral peaks obtained in the numerical simulation not in the hydrodynamic limit. The merit of our present approach using the nonlinear mixing weight is that it gives clear physical understanding of nonlinear mixing effects between specific collective modes, such as quadrupole modes as well as scissors modes.

V. CONCLUSION

To understand nonlinear mixing effects among collective modes in a harmonically trapped Bose–Einstein condensates, we studied quadrupole modes and scissors modes by using a variational calculation with a Gaussian trial wave function together with a perturbation approach. We derived equations of motions for variational parameters to second-order in fluctuations, and applied a perturbative approach to reveal structure of nonlinear couplings between unperturbed collective modes. We estimated the nonlinear mixing weight and found that mode mixing selectively occurs.

Although it is not always guaranteed to apply perturbative techniques to nonlinear equations, such as the Gross-Pitaevskii equation, our approach clearly explained the recent experiment [13], where the scissors mode exhibits a beating phenomenon with a longer period oscillation that corresponds to the low-lying quadrupole mode frequency, and an oscillation of the low-lying quadrupole mode is modulated by a shorter period oscillation with the high-lying quadrupole mode frequency. All the spectral peaks numerically obtained from the Gross-Pitaevskii equation are also excellently explained with the application of the second order perturbation analysis despite the case where the hydrodynamic limit approach is not applied. Nonlinear mixing weight obtained in our perturbation study will be helpful in understanding nonlinear mixing effects between collective modes in a trapped Bose–Einstein condensates.

ACKNOWLEDGMENTS

The authors would like to thank M. Yamazaki for useful discussion. The second author is partially supported by JSPS KAKENHI Grant Number JP16K17774.

Appendix A

We show results of spectral analysis with the frequencies in (22) (Fig. 5). The situation of the numerical simulation is the same as that in Fig. 4. However, arrows are pointed based on the frequencies (22), instead of the renormalized frequencies Ω, determined from frequencies giving maximum peaks of intensities. In contrast to the case in Fig. 4, the arrows cannot well predict the peak position of the spectra. This is because the frequencies
in (22) obtained in the variational approach correspond to those in the hydrodynamic (strongly interacting or large-N) limit [15], which is no the case in the numerical simulation.

FIG. 5. Spectral intensities of modes for (a) Ω_Q mode, (b) Ω_- mode, (c) Ω_+ mode, and (d) Ω_{zx} mode, together with arrows pointing the unperturbed frequencies (22). Only the difference between Fig. 4 and Fig. 5 is whether to use the renormalized frequencies or the unperturbed frequencies (22) for arrows.

[1] D. S. Jin, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, Phys. Rev. Lett. 77, 420 (1996).
[2] M.-O. Mewes, M. R. Andrews, N. J. van Druten, D. M. Kurn, D. S. Durfee, C. G. Townsend, and W. Ketterle, Phys. Rev. Lett. 77, 988 (1996).
[3] D. S. Jin, M. R. Matthews, J. R. Ensher, C. E. Wieman, and E. A. Cornell, Phys. Rev. Lett. 78, 764 (1997).
[4] O. M. Maragò, S. A. Hopkins, J. Arlt, E. Hodby, G. Hechenblaikner, and C. J. Foot, Phys. Rev. Lett. 84, 2056 (2000).
[5] O. Maragò, G. Hechenblaikner, E. Hodby, and C. Foot, Phys. Rev. Lett. 86, 3938 (2001).
[6] D. Guéry-Odelin and S. Stringari, Phys. Rev. Lett. 83, 4452 (1999).
[7] D. Guéry-Odelin, F. Zambelli, J. Dalibard, and S. Stringari, Physical Review A 60, 4851 (1999).
[8] B. Jackson and E. Zaremba, Phys. Rev. Lett. 87, 100404 (2001).
[9] M. Edwards, P. A. Ruprecht, K. Burnett, R. J. Dodd, and C. W. Clark, Phys. Rev. Lett. 77, 1671 (1996).
[10] S. Stringari, Phys. Rev. Lett. 77, 2360 (1996).
[11] T. Nikuni, Physical Review A 65, 033611 (2002).
[12] E. Hodby, O. M. Maragò, G. Hechenblaikner, and C. J. Foot, Phys. Rev. Lett. 86, 2196 (2001).
[13] M. Yamazaki, K. Wakayama, M. Harada, and A. Morinaga, J. Phys. Soc. Japan 84, 44001 (2015).
[14] P. A. Ruprecht, M. Edwards, K. Burnett, and C. W. Clark, Phys. Rev. A 54, 4178 (1996).
[15] U. Al Khawaja and H. T. C. Stoof, Phys. Rev. A 65, 013605 (2001).
[16] A. Griffin, T. Nikuni, and E. Zaremba, Bose-Condensed Gases at Finite Temperatures (Cambridge University Press, 2009).
[17] B. Jackson and E. Zaremba, Phys. Rev. A 66, 033606 (2002).