Turán Density of 2-edge-colored Bipartite Graphs with Application on \(\{2, 3\}\)-Hypergraphs

Shuliang Bai
Shing-Tung Yau Center
Southeast University
Nanjing, 210096, China
sbai@seu.edu.cn

Linyuan Lu *
Department of Mathematics
University of South Carolina
Columbia, 29208, U.S.A.
lu@math.sc.edu.

Submitted: Dec 24, 2020; Accepted: Jun 1, 2021; Published: Aug 27, 2021
© The authors. Released under the CC BY-ND license (International 4.0).

Abstract

We consider the Turán problems of 2-edge-colored graphs. A 2-edge-colored graph \(H = (V, E_r, E_b) \) is a triple consisting of the vertex set \(V \), the set of red edges \(E_r \) and the set of blue edges \(E_b \) where \(E_r \) and \(E_b \) do not have to be disjoint. The Turán density \(\pi(H) \) of \(H \) is defined to be \(\lim_{n \to \infty} \max_{G_n} h_n(G_n) \), where \(G_n \) is chosen among all possible 2-edge-colored graphs on \(n \) vertices containing no \(H \) as a subgraph and \(h_n(G_n) = \frac{|E_r(G)| + |E_b(G)|}{\binom{n}{2}} \) is the formula to measure the edge density of \(G_n \). We will determine the Turán densities of all 2-edge-colored bipartite graphs. We also give an important application on the Turán problems of \(\{2, 3\}\)-hypergraphs.

Mathematics Subject Classifications: 5D05, 05C65, 05D40

1 Introduction

Given a graph \(H \), the Turán problem asks for the maximum possible number of edges (denoted as \(ex(n, H) \)) in a graph \(G \) on \(n \) vertices without a copy of \(H \) as a subgraph. The Mantel’s theorem [13] states that any graph on \(n \) vertices with no triangle contains at most \(\lfloor n^2/4 \rfloor \) edges. Turán [16] proved that the maximal number of edges in a \(k \)-clique free graph on \(n \) vertices is at most \((k - 2)n^2/(2k - 2) \). The famed Erdős-Stone-Simonovits Theorem [7, 8] proved that the Turán density of any graph \(H \) is \(\pi(H) = 1 - \frac{1}{\chi(H) - 1} \), where \(\chi(H) \) is the chromatic number of \(H \). For hypergraphs the extremal problems are harder, see Keevash [12] for a complete survey of some results and methods on uniform hypergraphs. Although Turán type problems for graphs and hypergraphs have been actively studied

*This author was supported in part by NSF grant DMS 1600811.
for decades, there are only few results on non-uniform hypergraphs, see [14, 15, 10] for related work. Motivated by the study of non-uniform Turán problems [3], in this paper we study a Turán-type problem on edge-colored graphs and show an application on Turán problems of non-uniform hypergraphs of edge size 2 or 3.

A hypergraph \(H = (V, E) \) consists of a vertex set \(V \) and an edge set \(E \subseteq 2^V \). An \(r \)-uniform hypergraph is a hypergraph such that all its hyperedges have size \(r \). Given positive integers \(k \geq r \geq 2 \), and a set of colors \(C \), with \(|C| = k \), a \(k \)-edge-colored \(r \)-uniform hypergraph \(H \) (for short, \(k \)-colored \(r \)-graph) is an \(r \)-uniform hypergraph that allows \(k \) different colors on each hyperedge. We express \(H \) as \(H = (V, E_1, E_2, ..., E_k) \) where \(E_i \) denotes the set of hyperedges colored by \(i \)th color in \(C \), note \(E_1, E_2, ..., E_k \) do not have to be disjoint. We say \(H' \) is a subgraph of \(H \), denoted by \(H' \subseteq H \), if \(V(H') \subseteq V(H), E_i(H') \subseteq E_i(H) \) for every \(i \). Given a family of \(k \)-colored \(r \)-graphs \(H \), we say \(G \) is \(H \)-free if it doesn’t contain any member of \(H \) as a subgraph. To measure the edge density of \(G \) of size \(n \), we use \(h_n(G) \), which is defined by

\[
h_n(G) := \sum_{i=1}^{k} \frac{|E_i(G)|}{\binom{n}{r}},
\]

where \(n = |V(G)| \). Then we define the Turán density of \(H \) as

\[
\pi(H) := \lim_{n \to \infty} \pi_n(H) = \lim_{n \to \infty} \max_{G_n} h_n(G_n),
\]

where the maximum is taken over all \(H \)-free \(k \)-colored \(r \)-graphs \(G_n \) on \(n \) vertices.

By a simple average argument of Katona-Nemetz-Simonovits [11], this limit always exists.

Theorem 1. For any fixed family \(H \) of \(k \)-colored \(r \)-graphs, \(\pi(H) \) is well-defined, i.e. \(\lim_{n \to \infty} \pi_n(H) \) exists.

When \(H = \{H\} \), we simply write \(\pi(\{H\}) \) as \(\pi(H) \). Note that \(\pi(H) \) agrees with the definition of

\[
\pi(H) = \frac{ex(n, H)}{\binom{n}{r}},
\]

where \(ex(n, H) \) is the maximum number of hyperedges in an \(n \)-vertex \(H \)-free \(k \)-colored \(r \)-graph.

In this paper, we let \(k = 2 \). A 2-edge-colored graph is a simple graph (without loops) where each edge is colored either red or blue, or both. We call an edge a double-colored edge if it is colored with both colors. For short, we call the 2-edge-colored graphs simply as 2-colored graphs. A 2-colored graph \(H \) can be written as a triple \(H = (V, E_r, E_b) \) where \(V \) is the vertex set, \(E_r \subseteq \binom{V}{2} \) is the set of red edges and \(E_b \subseteq \binom{V}{2} \) is the set of blue edges. Denote \(|E_r| \) and \(|E_b| \) as the size of each set, denote \(H_r, H_b \) as the induced subgraphs of \(H \) generated by all the red edges and all the blue edges respectively. A graph can be considered as a special 2-colored graph with only one color. We say \(H \) is
proper if there exists at least one edge in each class E_r and E_b. Throughout the paper, we consider the proper 2-colored graphs. The results in this paper were finished in year 2018 and recently we noticed that our study is similar but different to a Turán problem on edge-colored graphs defined by Diwan and Mubayi [4] in which the authors ask for the minimum m, such that the 2-colored graph G, if both its red and blue edges are at least $m + 1$, contains a given 2-colored graph F? What we do differently in this paper is the study of the Turán density defined above for 2-colored graphs.

It is easy to see that $\pi(H) \geq 1$ for any proper 2-colored graph H, since we can take a complete graph with all edges a single color that does not contain a copy of H.

Definition 2. A 2-colored graph H is called bipartite if H does not contain an odd cycle of length $l \geq 3$ with all edges colored by the same color.

For a 2-colored graph H, we say H is degenerate if $\pi(H) = 1$. Note that if H is degenerate, then it must be bipartite. Otherwise, say $H_b = (V, E_b)$ is not a bipartite graph, one may consider the union of the red complete graph and an extremal graph respect to H_b, then the resulting graph is a H-free 2-colored graph with edge density at least $1 + \pi(H_b) > 1$, a contradiction.

In this paper, we will determine the Turán densities of all 2-colored bipartite graphs and characterize the 2-colored graphs achieving these Turán values. The notation $[n]$ is the set of $\{1, \ldots, n\}$. For convenience, we represent an edge $\{a, b\}$ by ab.

Definition 3. Given two k-colored r-graphs G and H, a graph homomorphism is a map $f: V(G) \to V(H)$ which keeps the colored edges, that is, $f(e) \in E_i(H)$ whenever $e \in E_i(G)$ for $i \in [k]$. We say G is H-colorable if there is a graph homomorphism from G to H.

Theorem 4. The Turán densities of all bipartite 2-colored graphs are in the set $\{1, \frac{4}{3}, \frac{3}{2}\}$.

1. A 2-colored graph H is degenerate if and only if it is T-colorable, where T is the 2-colored graph with vertices $[4]$ and red edges $\{12, 13, 34\}$, blue edges $\{12, 23, 34\}$.

2. A 2-colored graph H satisfies $\pi(H) = \frac{4}{3}$, then H must be H_8-colorable but not T-colorable, where H_8 is the 2-colored graph with vertices $[8]$, red edges are

 $$E_r(H_8) = \{12, 13, 24, 34, 16, 37, 48, 25, 35, 18, 46, 27\},$$

 blue edges are

 $$E_b(H_8) = \{56, 57, 68, 78, 26, 15, 47, 38, 35, 18, 46, 27\}.$$

3. A 2-colored bipartite graph H satisfies $\pi(H) = \frac{3}{2}$, then H is not H_8-colorable.
Our consideration on 2-colored graphs is motivated by the study of Turán density of non-uniform hypergraphs, which was first introduced by Johnston and Lu [10], then studied by us [3]. We refer a non-uniform hypergraph \(H \) as \(R \)-graph, where \(R \) is the set of all the cardinalities of edges in \(H \). For example, \(H \) is a hypergraph on vertices \(\{1, 2, 3, 4\} \) with edges \(\{1\} \), \(\{2, 3\} \) and \(\{1, 2, 4\} \), then the edge type of \(H \) is \(R(H) = \{1, 2, 3\} \) as the cardinalities of all edges are 1, 2, 3. Given a hypergraph \(H \) with edge type \(R(H) \), the Turán density of \(H \) is defined as:

\[
\pi(H) = \lim_{n \to \infty} \max \left\{ \frac{1}{n^{|e|}} \sum_{e \in E(G)} \right\},
\]

where the maximum is taken over all \(H \)-free hypergraphs \(G \) on \(n \) vertices satisfying \(R(G_n) \subseteq R(H) \).

A degenerate \(R \)-graph \(H \) has the smallest Turán density, \(|R| - 1 \), where \(|R| \) is the size of set \(R \). For a history of degenerate extremal graph problems, see [9]. Let \(r \geq 3 \), for \(r \)-uniform hypergraphs the \(r \)-partite hypergraphs are degenerate and they generalize the bipartite graphs. An interesting problem is what the degenerate non-uniform hypergraph look like? In [3], we prove that except for the case \(R \neq \{1, 2\} \), there always exist non-trivial degenerate \(R \)-graphs for any set \(R \) of two distinct positive integers. The degenerate \(\{1, 3\} \)-graphs are characterized in [3], what about the the degenerate \(\{2, 3\} \)-graphs? In the last section of this paper, we will apply the 2-colored graphs to bound the Turán density of some \(\{2, 3\} \)-graphs.

The paper is organized as follows: in Section 2, we show some lemmas on the \(k \)-colored \(r \)-uniform hypergraphs; in Section 3, we classify the Turán densities of all 2-colored bipartite graphs; in Section 4, we give an application of the Turán density of 2-colored graphs on \(\{2, 3\} \)-graphs.

2 Lemmas on \(k \)-colored \(r \)-graphs

2.1 Supersaturation and Blowing-up

In this section, we give some definitions and lemmas related to the \(k \)-colored \(r \)-graphs for \(k \geq r \geq 2 \). These are natural generalizations from the Turán theory of graphs. We first define the blow-up of a \(k \)-colored \(r \)-graph.

Definition 1 (Blow-up Families). For any \(k \)-colored \(r \)-graph \(H \) on \(n \) vertices and positive integers \(s_1, s_2, \ldots, s_n \), the blow-up of \(H \) is a new \(k \)-colored \(r \)-graph, denoted by \(H(s_1, s_2, \ldots, s_n) = (V, E_1, \ldots, E_k) \), satisfying

- \(V := \bigcup_{i=1}^n V_i \), where \(|V_i| = s_i \),
- \(E_j = \bigcup_{F \in E_j(H)} \prod_{i \in F} V_i \), for each \(j \in [k] \).

When \(s_1 = s_2 = \cdots = s_n = s \), we simply write it as \(H(s) \).
Lemma 5 (Supersaturation). For any \(k \)-colored \(r \)-graph \(H \) and \(a > 0 \), then there are \(b, n_0 > 0 \) so that if \(G \) is a \(k \)-colored \(r \)-graph on \(n > n_0 \) vertices with \(h_n(G) > \pi(H) + a \) then \(G \) contains at least \(b \binom{n}{v(H)} \) copies of \(H \).

Proof. Since we have \(\lim_{n \to \infty} \pi_n(H) = \pi(H) \), there exists an \(n_0 > 0 \) so that if \(t > n_0 \) then \(\pi_t(H) < \pi(H) + \frac{a}{2} \). Suppose \(n > t \), and \(G \) is a \(k \)-colored \(r \)-graph on \(n \) vertices with \(h_n(G) > \pi(H) + a \). Let \(T \) represent any \(t \)-set, then \(G \) must contain at least \(\frac{a}{2} \binom{n}{t} \) \(t \)-sets \(T \subseteq V(G) \) satisfying \(h_t(G[T]) > (\pi(H) + \frac{a}{2}) \). Otherwise, we would have

\[
\sum_T h_t(G[T]) \leq \binom{n}{t} (\pi(H) + \frac{a}{2}) + \frac{a}{2} \binom{n}{t} \\
= (\pi(H) + a) \binom{n}{t}.
\]

But we also have

\[
\binom{t}{r} \sum_T h_t(G[T]) = \binom{n-t}{t-r} \binom{n}{r} h_n(G) \\
> \binom{n-t}{t-r} \binom{n}{r} (\pi(H) + a) \\
= (\pi(H) + a) \binom{t}{r} \binom{n}{t}.
\]

A contradiction. Since \(t > n_0 \), it follows that each of the \(\frac{a}{2} \binom{n}{t} \) \(t \)-sets \(T \subseteq V(G) \) satisfying \(h_t(G[T]) > (\pi(H) + \frac{a}{2}) \) contains a copy of \(H \), so the number of copies of \(H \) in \(G \) is at least \(\frac{a}{2} \binom{n}{t} (\pi(H) - v(H)) = \frac{a}{2} \binom{n}{v(H)} / (\pi(H) - v(H)) \). Let \(b = \frac{a}{2} / (\pi(H) - v(H)) \), the result follows.

The ‘blow-up’ does not change the Turán density of \(k \)-colored \(r \)-graphs. The following result and proof are natural generalization of results on uniform hypergraphs, see [12].

Lemma 6. For any \(s > 1 \) and any \(k \)-colored \(r \)-graph \(H \), \(\pi(H(s)) = \pi(H) \).

Proof. First, since any \(H \)-free \(r \)-graph \(G \) is also \(H(s) \)-free, we have \(\pi(H) \leq \pi(H(s)) \). We will show that for any \(a > 0 \), \(\pi(H(s)) < \pi(H) + a \).

By the supersaturation lemma, for any \(a > 0 \), there are \(b, n_0 > 0 \) so that if \(G \) is a \(k \)-colored \(r \)-graph on \(n > n_0 \) vertices with \(h_n(G) > \pi(H) + a \) then \(G \) contains at least \(b \binom{n}{v(H)} \) copies of \(H \). Consider an auxiliary \(v(H) \)-graph \(U \) on the same vertex set as \(G \) such that the edges of \(U \) correspond to copies of \(H \) in \(G \). Note that \(U \) contains at least \(b \binom{n}{v(H)} \) edges. For any \(S > 0 \), if \(n \) is large enough we can find a copy \(K \) of \(K_{v(H)}(s) \) in \(U \). Note that \(K \) is the complete \(v(H) \)-partite \(v(H) \)-graph with \(S \) vertices in each part, then \(\pi(K) = 0 \). Fix one such \(K \) in \(U \). Color each edge of \(K \) with one of the \(v(H)! \) colors corresponding to the possible orderings with which the vertices of \(H \) are mapped into the parts of \(K \). By Ramsey theory, one of the color classes contains at least \(S^v / v! \) edges. For large enough \(S \) (such that \(S^v / v! \geq s \)) it follows that \(U \) contains a monochromatic copy of \(K_{v(H)}(s) \), which gives a copy of \(H(s) \) in \(G \). Thus \(\pi(H(s)) < \pi(H) + a \).
Note when we say \(G \) is \(H \)-colorable, it is equivalent to say \(G \) is a subgraph of a blow-up of \(H \). It is easy to prove the following lemmas.

Lemma 7. Let \(\mathcal{H} \) be a family of \(k \)-colored \(r \)-graphs. If \(G \) is \(H \)-colorable for any \(H \in \mathcal{H} \), then \(\pi(G) \leq \pi(\mathcal{H}) \).

Definition 2. Given two \(k \)-colored \(r \)-graphs \(G_1 \) and \(G_2 \) with vertices set \(V_1 \) and \(V_2 \), we define the product of \(G_1 \) and \(G_2 \), denoted by \(G_1 \times G_2 = (V_1 \times V_2, E_1, \ldots, E_k) \), where for any \(i \in [k] \),

\[
E_i = E_i(G_1) \times E_i(G_2) = \{ e \times f \mid e \in E_i(G_1), f \in E_i(G_2) \},
\]

where \(e \times f \) is defined through the following way: denote \(e = \{v_1, \ldots, v_r\} \in E_i(G_1) \), \(f = \{u_1, \ldots, u_r\} \in E_i(G_2) \), then \(e \times f = \bigcup_{\sigma \in S_r} \{(v_1, u_{\sigma(1)}), \ldots, (v_r, u_{\sigma(r)})\} \), where \(\sigma = (\sigma(1), \ldots, \sigma(r)) \) takes over all permutations of \([r]\).

Lemma 8. A \(k \)-colored \(r \)-graph \(G \) is \(G_1 \) and \(G_2 \) colorable, then it's \((G_1 \times G_2)\)-colorable.

Proof. There exist two graph homomorphisms \(f_1 : V(G) \rightarrow V(G_1) \) and \(f_2 : V(G) \rightarrow V(G_2) \) such that for any edge \(e \in \{v_1, \ldots, v_r\} \in E(G) \), without loss of generality, let \(e \in E_1(G) \), we have

\[
f_1(e) = \{f_1(v_1), \ldots, f_1(v_r)\} \in E_1(G_1),
\]

and

\[
f_2(e) = \{f_2(v_1), \ldots, f_2(v_r)\} \in E_1(G_2).
\]

Define a map \(f := f_1 \times f_2 \) from \(V(G) \) to \(V(G_1) \times V(G_2) \), such that \(f(v) = (f_1(v), f_2(v)) \) for any \(v \in V(G) \). Then we have

\[
f(e) = \{(f_1(v_1), f_2(v_1)), \ldots, (f_1(v_r), f_2(v_r))\} \in f_1(e) \times f_2(e) \subset E_1(G_1 \times G_2).
\]

Thus the map \(f \) is a graph homomorphism. Hence \(G \) is \((G_1 \times G_2)\)-colorable. \(\square \)

2.2 Construction of 2-colored graphs

To compute the lower bound of \(\pi(H) \), we need to construct a family of \(H \)-free 2-colored graphs \(G_n \) with \(h_n(G_n) \) as large as possible. Here are three useful constructions.

\(G_A \): A 2-colored graph \(G_A \) on \(n \) vertices is generated by partitioning the vertex set into two parts such that \(V(G_A) = X \cup Y \) and the red edges either meet two vertices in \(X \) or meet one vertex in \(X \) plus the other in \(Y \), the blue edges meet one vertex in \(X \) plus the other in \(Y \). In other words, the red edges \(E_r(G_A) = \{ \binom{X}{2} \} \cup \{ \binom{X}{1} \times \binom{Y}{1} \} \) and blue edges \(E_b(G_A) = \{ \binom{X}{1} \times \binom{Y}{1} \} \). Let \(|V(G_A)| = n, |X| = xn \) and \(|Y| = (1 - x)n \) for some real number \(x \in (0, 1) \). We have

\[
h_n(G_A) = \frac{\binom{|X|}{2}}{2} + 2 \frac{\binom{|X|}{1} \binom{|Y|}{1}}{\binom{n}{2}}
\]

\[
= 4x - 3x^2 + o_n(1),
\]

which reaches the maximum \(\frac{4}{3} \) at \(x = \frac{2}{3} \).
\[G_A: h_n(G_A) = \frac{4}{3} + o_n(1) \text{ at } |X| = \frac{2}{3}n. \]

G_B: It is obtained from \(G_A \) by simply exchanging red edges with blue edges. In other words, the red edges \(E_r(G_B) = \{ (X_1)^1 \times (Y_1)^1 \} \) and blue edges \(E_b(G_B) = \{ (X_1)^1 \} \cup \{ (X_1)^3 \} \).

\[G_B: h_n(G_B) = \frac{4}{3} + o_n(1) \text{ at } |X| = \frac{2}{3}n. \]

G_C: A 2-colored graph \(G_C \) on \(n \) vertices is generated by partitioning the vertex set into two parts such that \(V(G_C) = A \cup B \) and the red edges either meet two vertices in \(A \) or meet one vertex in \(A \) plus the other in \(B \), the blue edges either meet two vertices in \(B \) or meet one vertex in \(A \) plus the other in \(B \). In other words, the red edges \(E_r(G_C) = \{ (A)^2 \} \cup \{ (A)^1 \times (B)^1 \} \) and blue edges \(E_b(G_C) = \{ (A)^1 \times (B)^1 \} \cup \{ (B)^2 \} \).

\[G_C: h_n(G_C) = \frac{3}{2} + o_n(1) \text{ at } |A| = \frac{1}{2}n. \]

G_D and G_E: Two variations of \(G_C \) are the following constructions:

\[G_D: h_n(G_D) = \frac{3}{2} + o_n(1). \]
\[G_E: h_n(G_E) = \frac{3}{2} + o_n(1). \]

Following a similar description of above constructions, the red/blue edges of \(G_D \) are in the sets \(E_r(G_D) = \{ (X)^2 \} \times (Y)^1 \} \) and \(E_b(G_D) = \{ (V(G_D))^2 \} \setminus E_r(G_D) \) respectively; the blue/red edges of \(G_E \) are in the sets \(E_b(G_E) = \{ (C)^1 \times (D)^1 \} \) and \(E_r(G_E) = \{ (V(G_E))^2 \} \setminus E_b(G_E) \) respectively.

Example 1. The product of \(G_A \) and \(G_B \) is a blow-up of \(T \), where \(V(T) = [4] \), the red edges \{12, 13, 34\} and the blue edges \{12, 23, 34\}:
We define a map \(f : V(H) \to \{1, 2, 3, 4\} \) as follows:

1. If \(v \) appears in \(X \) of \(G_A \) and in \(Y \) of \(G_B \), set \(f(v) = 1 \).
2. If \(v \) appears in \(Y \) of \(G_A \) and in \(X \) of \(G_B \), set \(f(v) = 2 \).
3. If \(v \) appears in \(X \) of \(G_A \) and in \(X \) of \(G_B \), set \(f(v) = 3 \).
4. If \(v \) appears in \(Y \) of \(G_A \) and in \(Y \) of \(G_B \), set \(f(v) = 4 \).

One can check \(f \) is a graph homomorphism from the product \(G_A \times G_B \) to \(T \).

3 Turán density of bipartite 2-colored graphs

In this section, we will prove results in Theorem 4. We first give a boundary to divide the Turán densities of 2-colored non-bipartite graphs and 2-colored bipartite graphs.

Lemma 9.

1. For any 2-colored non-bipartite graph \(H \), \(\pi(H) \geq \frac{3}{2} \).
2. For any 2-colored bipartite graph \(H \), \(\pi(H) \leq \frac{3}{2} \).

Before proceeding to the proof, we see several important 2-colored graphs whose Turán density achieves value \(\frac{3}{2} \), and we will use these results to prove Lemma 9. The following lemma will be used in the proof of Lemma 12 which is useful to prove item 2 of Lemma 9.

Lemma 10. Let \(K_3 \) be a triangle with three double-colored edges, i.e.

\[
K_3 = ([3], \{12, 13, 23\}, \{12, 13, 23\}).
\]

Then

\[
ex(n, K_3) = \left(\frac{n}{2} \right) + \left\lceil \frac{n^2}{4} \right\rceil.
\]

In particular, \(\pi(K_3) = \frac{3}{2} \).

Proof. Observe that \(K_3 \) is not contained in \(G_C \), thus \(\pi(K_3) \geq \frac{3}{2} \). Now we prove the other direction. Let \(n \) be a positive integer and \(G \) be any \(K_3 \)-free 2-colored graph on \(n \) vertices. Construct an auxiliary graph \(F \) on the same vertex set \(V(G) \) and with the edge sets consisting of all double-colored edges in \(G \). Let \(H = E_r(F) \) consisting of all red colored edges of \(F \). Notice that \(H \) is triangle-free. By Mantel’s theorem, we have

\[
|E(H)| \leq \left\lceil \frac{n^2}{4} \right\rceil.
\]
Note that H is a subgraph of G and the number of the rest of edges in G is at most $\binom{n}{2}$. Therefore, we have
\[|E(G)| \leq \left(\frac{n}{2}\right) + |E(H)| \leq \left(\frac{n}{2}\right) + \left\lfloor \frac{n^2}{4} \right\rfloor = \left(\frac{3}{2} + o(1)\right) \left(\frac{n}{2}\right).\]
This implies that $\pi(K_3) = \frac{3}{2}$.

Corollary 11. Let $K_3^- = ([3], \{12, 13, 23\}, \{12, 13\})$, then $\pi(K_3^-) = \frac{3}{2}$.

Proof. Since K_3^- is a subgraph of K_3, then $\pi(K_3^-) \leq \frac{3}{2}$. By Lemma 9, $\pi(K_3^-) \geq \frac{3}{2}$. The result follows.

Except the 2-colored non-bipartite graph, some bipartite graphs also achieves $\pi(H) = \frac{3}{2}$. See the following 2-colored graph on four vertices $\{1, 2, 3, 4\}$:

![Graph](image)

Lemma 12. $T_1 = ([4], \{12, 34, 13, 24\}, \{12, 34, 14, 23\})$. Then
\[ex(n, T_1) = \left(\frac{n}{2}\right) + \left\lfloor \frac{n^2}{4} \right\rfloor \text{ for any } n \neq 3\]
and $ex(3, T_1) = 6$. In particular, we have $\pi(T_1) = \frac{3}{2}$.

Proof. When $n \leq 3$, the complete 2-colored graph does not contain T_1. Thus $ex(n, T_1) = 0, 0, 2, 6$ when $n = 0, 1, 2, 3$, respectively. The assertion holds for $n \leq 3$. It is sufficient to prove for $n \geq 4$. Since T_1 is not contained in G_C, we have
\[ex(n, T_1) \geq \left(\frac{n}{2}\right) + \left\lfloor \frac{n^2}{4} \right\rfloor.\]
Now we prove the other direction by induction. We may assume $n \geq 4$. Let n be a positive integer and G be any T_1-free 2-colored graph on n vertices.

Note K_3 is referring to a triangle with 3 double colored edges.

Case 1: G doesn’t contain K_3 as a subgraph, by Lemma 10, we have
\[|E(G)| \leq ex(n, K_3) = \left(\frac{n}{2}\right) + \left\lfloor \frac{n^2}{4} \right\rfloor.\]

Case 2: G contains a copy of K_3, let $V_1 = \{a, b, c\}$ be the vertices of this triangle and $V_2 = V(G) \setminus V_1$. Then there are at most 4 edges from any vertex in V_2 to V_1. To see this, suppose there are 5 edges from the vertex $w \in V_2$ to V_1, then there are only two possible graphs on $V_1 \cup \{w\}$ and each of them contains a copy of T_1. A contradiction.
Applying the inductive hypothesis to $G[V_2]$, we have

$$|E(G[V_2])| \leq \left(\frac{n-3}{2} \right) + \left\lfloor \frac{(n-3)^2}{4} \right\rfloor + \epsilon.$$

Here $\epsilon = 1$ if $n = 6$ and 0 otherwise.

Then the number of edges in G is:

if $n \neq 6$,

$$|E(G)| = |E(G[V_1])| + |E(G[V_2])| + |E(V_1, V_2)|$$

$$\leq 6 + \left(\frac{n-3}{2} \right) + \left\lfloor \frac{(n-3)^2}{4} \right\rfloor + 4(n-3)$$

$$= \left(\frac{n}{2} \right) + n + \left\lfloor \frac{n^2 - 6n + 9}{4} \right\rfloor$$

$$= \left(\frac{n}{2} \right) + \left\lfloor \frac{n^2 - 2n + 9}{4} \right\rfloor$$

$$= \left(\frac{n}{2} \right) + \left\lfloor \frac{n^2}{4} \right\rfloor.$$

if $n = 6$,

$$|E(G)| = |E(G[V_1])| + |E(G[V_2])| + |E(V_1, V_2)|$$

$$\leq 6 + \left(\frac{n-3}{2} \right) + \left\lfloor \frac{(n-3)^2}{4} \right\rfloor + \epsilon + 4(n-3)$$

$$= 24$$

$$= \left(\frac{6}{2} \right) + \left\lfloor \frac{6^2}{4} \right\rfloor.$$

The induction step is finished. It follows that $h_n(G) \leq \frac{3}{2}$. Therefore, $\pi(T_1) = \frac{3}{2}$.

Proof of Lemma 9. For Item 1, let H be a 2-colored non-bipartite graph, without loss of generality, assume H contains an odd cycle with red edges. For any n, let G be a 2-colored graph generated by construction G_D, then H can not be contained in G. Similarly, if H contains an odd cycle with blue edges, then it is not contained in any 2-colored graph generated by construction G_E. Thus $\pi(H) \geq \frac{3}{2}$.

For Item 2, it is sufficient to prove that any 2-colored bipartite graph H is T_1-colorable. For any 2-colored bipartite graph H, the subgraph H_r can be partitioned into two disjoint parts $V_1(H_r)$ and $V_2(H_r)$ such that the red edges form a bipartite graph between $V_1(H_r)$ and $V_2(H_r)$. Similarly for the subgraph H_b, the blue edges form a bipartite graph between
Let S be the set of vertices incidents to double colored edges, then S can be divided into four classes: $V_1(H_r) \cap V_1(H_b)$, $V_1(H_r) \cap V_2(H_b)$, $V_2(H_r) \cap V_1(H_b)$, and $V_2(H_r) \cap V_2(H_b)$. We define a map $f : V(H) \to \{1, 2, 3, 4\}$ as follows:

1. If $v \in V_1(H_r) \cap V_1(H_b)$, set $f(v) = 1$.
2. If $v \in V_1(H_r) \cap V_2(H_b)$, set $f(v) = 4$.
3. If $v \in V_2(H_r) \cap V_1(H_b)$, set $f(v) = 3$.
4. If $v \in V_2(H_r) \cap V_2(H_b)$, set $f(v) = 2$.
5. If $uv \in E_r(H) \setminus E_b(H)$, set $f(u) = 1, f(v) = 2$.
6. If $uv \in E_b(H) \setminus E_r(H)$, set $f(u) = 3, f(v) = 4$.

One can verify that this map f is a graph homomorphism from H to T_1. By Lemma 12, we have $\pi(H) \leq \frac{3}{2}$.

3.1 The degenerate 2-colored graphs

In this part, we will determine the degenerate 2-colored graphs. We will see that the 2-colored bipartite graph $T = ([4], \{12, 13, 34\}, \{12, 23, 34\})$ shown in Example 1 plays an important role.

Lemma 13. Let n be a positive integer, for any T-free 2-colored graph G on n vertices, G has at most $\binom{n+1}{2}$ edges. Thus T is degenerate.

Proof. We will prove this lemma by induction on n. It is trivial for $n = 1, 2, 3, 4$. Assume $n \geq 5$. We assume that the statement holds for any T-free 2-colored graphs on less than n vertices.

Let $G = (V, E_r, E_b)$ be a T-free 2-colored graph on n vertices. We also assume G contains at least one double-colored edge uv, or else $|E_r(G)| + |E_b(G)| \leq \binom{n}{2} < \binom{n+1}{2}$. Then G is one of the following cases.

Case 1: There exists a vertex w so that both uw and vw are double-colored edges. Since G is T-free, there is no double-colored edges from u, v, w to the rest of the vertices. By inductive hypothesis, when G is restricted to the complement set of $\{u, v, w\}$, the number of edges of $G[V \setminus \{u, v, w\}]$ is at most $\binom{n-2}{2}$. Thus, G has at most

$$6 + 3(n-3) + \binom{n-2}{2} = \binom{n+1}{2}.$$

Case 2: Now we assume no such w exists. Let $X = \{x \in V : |E(\{x\}, \{u, v\})| \geq 3\}$. That is, for each vertex $x \in X$, x has exactly 3 edges connecting to u and v. Since G is T-free, for each $x \in X$, x has no double-colored edges to any vertex not in $\{u, v, x\}$. In particular, the induced subgraph $G[X]$ of G has no double-colored edge. Let
$V_1 = \{u, v\} \cup X$ and V_2 be the complement set. Then the induced subgraph $G[V_1]$ has at most
\[
2 + 3|X| + \left(\frac{|X|}{2}\right) < \left(\frac{|X| + 3}{2}\right) = \left(\frac{|V_1| + 1}{2}\right)
\]
edges. Applying the inductive hypothesis to $G[V_2]$, then $G[V_2]$ has at most $\left(\frac{|V_2| + 1}{2}\right)$ edges. Note that all edges from X to V_2 are single colored and the number of edges from $\{u, v\}$ to each vertex in V_2 is at most 2. Thus the total number of edges from V_1 to V_2 is at most $|V_1||V_2|$ edges. Combining these facts together, we have G has at most N edges, where
\[
N = \left(\frac{|V_1| + 1}{2}\right) + |V_1||V_2| + \left(\frac{|V_2| + 1}{2}\right) = \left(\frac{|V| + 1}{2}\right).
\]

We finish the inductive step. Then we have
\[
\pi(T) = \lim_{n \to \infty} \max_{G_n} h_n(G_n) \leq \lim_{n \to \infty} \left(\frac{n+1}{2}\right) = 1,
\]
implying $\pi(T) = 1$. T is degenerate.

Proof of Item 1 of Theorem 4. Assume H is a degenerate 2-colored graph, then it must be G_A and G_B-colorable. By Lemma 8, it must be $G_A \times G_B$-colorable. Note that the product of these two graphs is T-colorable. Thus H is T-colorable, see Example 1. By Lemma 13, the result follows.

Remark 14. Note both $h_n(G_A)$ and $h_n(G_B)$ are equal to $\frac{4}{3} + o_n(1)$, then any 2-colored graph H with $\pi(H) < \frac{4}{3}$ is G_A and G_B-colorable, from above proof, H is then T-colorable, thus further implies $\pi(H) = 1$.

3.2 Non-degenerate 2-colored bipartite graphs

In this part, we will further classify the non-degenerate 2-colored bipartite graphs. By Lemma 9, the largest possible Turán density of a 2-colored bipartite graph H is $\frac{3}{2}$, so if $\pi(H) < \frac{3}{2}$, it must be contained in the construction G_c and its variations G_D, G_E, thus it must be colored by the product of these constructions. While the product of graphs generated by the three constructions is a blow-up of following graph H_8. Let ACX stand for the vertex in $A \times C \times X$, similar for other labels:

![Diagram](https://example.com/diagram.png)

H_8
To compute the Turán density of H_8, we need the following 2-colored graph $T_2 = ([4], \{12, 14, 23, 24, 34\}, \{12, 13, 14, 23, 34\})$. T_2 is not contained in a variation of G_C, thus $\pi(T_2) \geq \frac{3}{2}$.

![Graph T2](image)

Lemma 15. For any positive integer n, let G be a $\{T_1, T_2\}$-free 2-colored graph on n vertices. Then $|E(G)| \leq \binom{n}{2} + \left\lfloor \frac{n^2 + 3n}{6} \right\rfloor$. Thus $\pi(\{T_1, T_2\}) \leq \frac{4}{3}$.

Proof. It is not hard to check the cases for $n \leq 3$. Let $n \geq 4$, by induction on n we assume the statement holds for any $\{T_1, T_2\}$-free graph on less than n vertices. Note if G contains no double-colored edge, the result is trivial. Thus we assume G contains at least one double-colored edge. Then G is one of the following cases.

Case 1: G contains a triangle consisting of three double-colored edges, let $V_1 = \{a, b, c\}$ be the vertices of this triangle and $V_2 = V(G) \setminus V_1$. By Lemma 12 “Case 2”, for any vertex $w \in V_2$, there are at most 4 edges from w to V_1.

Case 2: G contains $V_1 = \{a, b, c\}$ such that $|E(G[V_1])| = 5$, without loss of generality, let ab, bc be double colored edges, and ac is blue colored edge. Let $V_2 = V(G) \setminus V_1$. For any vertex $w \in V_2$, there are at most 4 edges to V_1. If there are 5 edges from w to V_1, then the following graphs include all of the possibilities and they contain T_1, T_2 as subgraph respectively.

![Graph Case 2](image)

Case 3: G contains two incident double-colored edges ab and bc, but no edge connecting a and c. Let $V_1 = \{a, b, c\}$, $V_2 = V(G) \setminus V_1$. Then there cannot be 5 edges from any vertex $w \in V_2$ to V_1, otherwise, G is a graph either in Case 1 or in Case 2. Thus there are at most 4 edges from any vertex in V_2 to V_1.

Case 4: If G is not the above three cases, then for any double-colored edge connecting a and b, there are at most 2 edges from any other vertex to $\{a, b\}$.

Applying the inductive hypothesis to $G[V_2]$, we have

$$|E(G[V_2])| \leq \left(\frac{|V_2|}{2} \right) + \left\lfloor \frac{|V_2|^2 + 3|V_2|}{6} \right\rfloor.$$

Then the number of edges in G is: for the first three cases,
We first prove Lemma 16.

|E(G)| = |E(G[V_1])| + |E(G[V_2])| + |E(V_1, V_2)|
\leq 6 + \left(\frac{n - 3}{2}\right) + \left[\frac{(n - 3)^2 + 3(n - 3)}{6}\right] + 4(n - 3)
= \left(\frac{n + 1}{2}\right) + \left[\frac{(n - 3)^2 + 3(n - 3)}{6}\right]
= \left(\frac{n}{2}\right) + \left[\frac{n^2 - 6n + 9 + 3(n - 3) + 6n}{6}\right]
= \left(\frac{n}{2}\right) + \left[\frac{n^2 + 3n}{6}\right].

for Case 4,

|E(G)| = |E(G[V_1])| + |E(G[V_2])| + |E(V_1, V_2)|
\leq 2 + \left(\frac{n - 2}{2}\right) + \left[\frac{(n - 2)^2 + 3(n - 2)}{6}\right] + 2(n - 3)
= \left(\frac{n}{2}\right) - 1 + \left[\frac{(n - 2)^2 + 3(n - 2)}{6}\right]
= \left(\frac{n}{2}\right) + \left[\frac{(n - 2)^2 + 3(n - 2) - 6n}{6}\right]
= \left(\frac{n}{2}\right) + \left[\frac{n^2 - 7n - 2}{6}\right]
< \left(\frac{n}{2}\right) + \left[\frac{n^2 + 3n}{6}\right].

The induction step is finished. It follows that \(\pi(\{T_1, T_2\}) \leq \frac{4}{5}\).

Lemma 16. \(\pi(H_8) = \frac{4}{3}\).

Proof. We first prove \(\pi(H_8) \leq \frac{4}{3}\). To show this, we prove that \(H_8\) is \(T_1\) and \(T_2\)-colorable, i.e. there are graph homomorphisms from \(H_8\) to \(T_1\) and from \(H_8\) to \(T_2\).

For \(T_1\): We define a map \(f\) by \(f(ACX) = f(BCX) = 4, f(ADY) = f(BDY) = 3, f(ACY) = f(BCY) = 2, f(ADX) = f(BDX) = 1\). One can check that \(f\) is a graph homomorphism from \(H_8\) to \(T_1\).

For \(T_2\): We define a map \(g\) by \(g(ACX) = g(ADX) = 1, g(ADY) = g(ACY) = 3, g(BDX) = g(BDY) = 2, g(BCY) = g(BCX) = 4\). It is easy to check that \(g\) is a graph homomorphism from \(H_8\) to \(T_2\).

For any positive integer \(n\), let \(G_n\) be a 2-colored graph on \(n\) vertices such that \(h_n(G_n) \geq \pi(T_1, T_2) + \epsilon = \pi(T_1(s), T_2(s)) + \epsilon\) for any \(s \geq 2\) and \(\epsilon > 0\). Then \(G_n\) contains \(T_1(s)\) or \(T_2(s)\) as subgraph, further \(G_n\) contains \(H_8\) as subgraph. Then \(\pi(H_8) \leq \pi(\{T_1, T_2\})\). By Lemma 15, \(\pi(H_8) \leq \frac{4}{3}\). By Remark 14, if \(\pi(H_8) < \frac{4}{3}\), then \(\pi(H_8) = 1\), while \(H_8\) is not \(T\)-colorable, a contradiction. Thus it must be the case \(\pi(H_8) = \frac{4}{5}\). \(\square\)
Remark 17. As we know, if $\pi(H) < \frac{3}{2}$, it must be colorable by G_c and its variations, then it must be be colorable by H_8 according to Lemma 8. Thus $\pi(H) \in \{1, \frac{4}{3}\}$.

For convenience, we use numbers to represent vertices: $ACX = 1, ADY = 2, ACY = 3, ADX = 4, BDX = 5, BCY = 6, BCX = 7, BDX = 8$. Then H_8 has edges:

$$E_r(H_8) = \{12, 13, 24, 34, 16, 37, 48, 25, 35, 18, 46, 27\};$$

$$E_b(H_8) = \{56, 57, 68, 78, 26, 15, 47, 38, 35, 18, 46, 27\}.$$

Now we are ready to finish the proof of Theorem 4.

Proof of Items 2 and 3 in Theorem 4. By Remark 14, Remark 17 and Lemma 9, the Turán densities of all bipartite 2-colored graphs are in the set $\{1, \frac{4}{3}, \frac{3}{2}\}$. To show Item 2, let H be a 2-colored graph with $\pi(H) = \frac{4}{3}$, then H must be H_8-colorable. One can check if H does not contain T as a subgraph, then H must be T-colorable, implying $\pi(H) = 1$, a contradiction. By excluding the bipartite 2-colored graphs in Item 2, we obtain the result in Item 3.

\square

Example 2. Let T_3 be the following 2-colored graph, T_3 is non-degenerate and $\pi(T_3) = \frac{4}{3}$.

\begin{center}
\begin{tikzpicture}
\node (1) at (0,0) {1};
\node (2) at (1,0) {2};
\node (3) at (0.5,1) {3};
\node (4) at (-0.5,1) {4};
\draw (1) -- (2);
\draw (1) -- (3);
\draw (1) -- (4);
\draw (2) -- (3);
\draw (2) -- (4);
\draw (3) -- (4);
\end{tikzpicture}
\end{center}

4 The degenerate $\{2, 3\}$-graphs

In this section, we study degenerate $\{2, 3\}$-graphs and show an application of the study of 2-edge-colored graphs on the Turán density of $\{2, 3\}$-graphs. A $\{2, 3\}$-graph is a non-uniform hypergraph where each edge consists of 2 or 3 vertices. Given a $\{2, 3\}$-graph G, we call an edge of cardinality i as an i-edge, and use $E_i(G)$ to represent the set of i-edges. Thus G can be represented by $G = (V(G), E_2(G), E_3(G))$. A 2-edge e is called a double edge if $e \subset f$, for some 3-edge $f \in E_3(G)$. For convenience, we use the form of ac to denote the edge $\{a, b\}$ and use abc to denote the edge $\{a, b, c\}$. The notation $H_n^{\{2,3\}}$ represents a $\{2, 3\}$-graph on n vertices, $K_n^{\{2,3\}}$ represents the complete hypergraph on n vertices with edge set $\binom{[n]}{2} \cup \binom{[n]}{3}$.

Given a family of $\{2, 3\}$-graphs \mathcal{H}, the Turán density of \mathcal{H} is defined to be:

$$\pi(\mathcal{H}) = \lim_{n \to \infty} \pi_n(\mathcal{H}) = \lim_{n \to \infty} \max \left\{ \frac{|E_2(G)|}{\binom{n}{2}} + \frac{|E_3(G)|}{\binom{n}{3}} \right\},$$

where the maximum is taken over all H-free hypergraphs G on n vertices satisfying $G \subseteq K_n^{\{2,3\}}$, and G is \mathcal{H}-free $\{2, 3\}$-graph. Please refer to [3] for details on the Turán density of non-uniform hypergraphs.

Next let us see some definitions and results for $\{2, 3\}$-graphs.
Definition 3. [10] Let H be a hypergraph containing some 2-edges. The 2-subdivision of H is a new hypergraph H' obtained from H by subdividing each 2-edge simultaneously. Namely, if H contains t 2-edges, add t new vertices x_1, \ldots, x_t to H and for $i = 1, 2, \ldots, t$ and replace the 2-edge $\{u_i, v_i\}$ with $\{u_i, x_i, v_i\}$.

Theorem 18. [10] Let H' be the 2-subdivision of H. If H is degenerate, then so is H'.

Definition 4. [10] The suspension of a hypergraph H, denoted by $S(H)$, is the hypergraph with $V = V(H) \cup \{v\}$ where $\{v\}$ is a new vertex not in $V(H)$, and the edge set $E = \{e \cup \{v\} : e \in E(H)\}$. We write $S^t(H)$ to denote the hypergraph obtained by iterating the suspension operation t-times, i.e. $S^2(H) = S(S(H))$ and $S^3(H) = S(S(S(H)))$, etc.

Proposition 1. [10] For any family of hypergraphs \mathcal{H} we have that $\pi(S(\mathcal{H})) \leq \pi(\mathcal{H})$.

Theorem 19. [3] Let R be a set of distinct positive integers with $|R| \geq 2$ and $R \neq \{1, 2\}$. Then a non-trivial degenerate R-graph always exists.

A chain C^R is a special R-graph containing exactly one edge of each size such that any pair of these edges are comparable under inclusion relation. In [3], we say a degenerate R-graph is trivial if it is a subgraph of a blow-up of the chain C^R. By Theorem 19, there exist non-trivial degenerate $\{2, 3\}$-graphs. The $\{2, 3\}$-graph $H = \{12, 123\}$ is a chain, thus it is degenerate. By Theorem 18, the subdivision $H' = \{14, 24, 123\}$ is also degenerate, but it is non-trivial. As showed in [10], $H^0 = S(K^1_{2,3}) = \{13, 12, 123\}$ is not degenerate, and $\pi(H^0) = \frac{5}{4}$.

So what does the degenerate $\{2, 3\}$-graph look like? To answer this question, we may need to construct a family of $\{2, 3\}$-graphs G_n with $h_n(G_n) > (1 + \epsilon)$ for some $\epsilon > 0$. Here are three $\{2, 3\}$-graphs with edge density greater than 1.

Note that for any R-graph H (with possible loops), one can construct the family of H-colorable R-graph by blowing up H in certain way. The langrangian of H is the maximum edge density of the H-colorable R-graph that one can get this way. For more details of R-graphs with loops, blow-up, and Lagrangian, please refer to [3]. In this part, we will use an easy-understood way to calculate the edge densities.

Example 3. A $\{2, 3\}$-graph $G^{(2,3)}_1$ is a blowing-up of the general hypergraph H_1 with vertex set $\{a, b, c\}$ and edge set $\{aa, ab, ac, abc\}$, if there exists a partition of vertex set such that $V(G^{(2,3)}_1) = A \cup B \cup C$ and every 2-edge meets two vertices in A (or B, or C), every 3-edge meets A, B, C one vertex respectively. In other words, $E(G^{(2,3)}_1) = \binom{A}{2} \cup \binom{A}{1} \binom{B}{1} \cup \binom{A}{1} \binom{C}{1} \cup \binom{A}{1} \binom{B}{1} \binom{C}{1}$.

Let $|A| = xn$ and $|B| = |C| = \frac{1-x}{2}n$ for some value $x \in (0, 1)$. We have

$$h_n(G^{(2,3)}_1) = \frac{\binom{xn}{2} + \binom{xn}{1}(\frac{1-x}{1}) \binom{xn}{1} + \binom{xn}{1}(\frac{1-x}{2}) \binom{xn}{2}}{\binom{n}{3}}$$

$$= x^2 + 2x(1-x) + \frac{3}{2}x(1-x)^2 + o_n(1)$$

$$= \frac{7}{2}x - 4x^2 + \frac{3}{2}x^3 + o_n(1).$$
The above value reaches the maximum value $\frac{245}{243} + o_n(1)$ at $x = \frac{7}{9}$.

$$G^{(2,3)}_1: \quad h_n(G^{(2,3)}_1) = \frac{245}{243} \text{ at } |A| = \frac{7}{9}n.$$

Example 4. A $\{2,3\}$-graph $G^{(2,3)}_2$ is a blowing-up of the general hypergraph H_2 with vertex set $\{x, y\}$ and edge set $\{xy, xxx, xxy\}$, if there exists a partition of vertex set such that $V(G^{(2,3)}_2) = X \cup Y$ and every 2-edge meets one vertex in X and one vertex in Y, every 3-edge either meet three vertices in X or two vertices in X plus one vertex in Y. Actually $G^{(2,3)}_2$ is H_2-colorable. In other words,

$$E(G^{(2,3)}_2) = \binom{X}{3} \cup \binom{X}{2} \binom{Y}{1} \cup \binom{X}{1} \binom{Y}{1}.$$

Let $|X| = xn$ and $|Y| = (1 - x)n$ for some value $x \in (0, 1)$, we have

$$h_n(G^{(2,3)}_2) = \frac{x^n}{3} + \binom{x^n}{2} \frac{(1-x)^n}{1} + \frac{xn(1-x)n}{2}$$

$$= x^3 + 3x^2(1-x) + 2x(1-x) + o_n(1)$$

$$= 2x + x^2 - 2x^3 + o_n(1).$$

The above value reaches the maximum value $\frac{19 + 13\sqrt{13}}{54} + o_n(1) \approx 1.21985\ldots + o_n(1)$ at $x = \frac{1 + \sqrt{13}}{6}$.

$$G^{(2,3)}_2: \quad h_n(G^{(2,3)}_2) \approx 1.21985 \text{ at } |X| = \left(\frac{1 + \sqrt{13}}{6}\right)n.$$

Example 5. A $\{2,3\}$-graph $G^{(2,3)}_3$ is a blowing-up of the general hypergraph H_3 with vertex set $\{e, f\}$ and edge set $\{ee, eef\}$, if there exists a partition of vertex set such that $V(G^{(2,3)}_2) = E \cup F$ and every 2-edge meets two vertices in E, every 3-edge meets two vertices in E plus one vertex in F. Actually $G^{(2,3)}_3$ is H_3-colorable. In other words,

$$E(G^{(2,3)}_3) = \binom{E}{2} \cup \binom{E}{2} \binom{Y}{1}.$$
Let $|E| = xn$ and $|F| = (1 - x)n$ for some value $x \in (0, 1)$, we have

$$h_n(G_3^{(2,3)}) = \binom{xn}{2} \binom{(1-x)n}{1} \binom{n}{3}$$

$$= x^2 + 3x^2(1 - x) + o_n(1)$$

$$= 4x^2 - 3x^3 + o_n(1).$$

The above value reaches the maximum value $\frac{256}{243} + o_n(1)$ at $x = \frac{8}{9}$.

A degenerate \{2, 3\}-graph must appear as subgraphs in all above \{2, 3\}-graphs $G_1^{(2,3)}$, $G_2^{(2,3)}$ and $G_3^{(2,3)}$, thus it must appear as subgraph in the product of these hypergraphs. By taking this product, we get a 12-vertex \{2, 3\}-graph which is $H_9^{(2,3)}$-colorable. Thus we have

Lemma 20. The degenerate \{2, 3\}-graphs must be $H_9^{(2,3)}$-colorable.

The following theorem shows a relation between such \{2, 3\}-graphs and the 2-colored graphs and can help us determine the upper bound for the Turán density of some \{2, 3\}-graphs.

Theorem 21. Let $H = (V, E_r, E_b)$ be a 2-colored graph, and $H' = (V', E_2, E_3)$ be a \{2, 3\}-graph obtained from H by adding a new vertex $v \not\in V$ such that $V' = V \cup \{v\}$ and $E_2 = E_r$, and $E_3 = \{e'|e' = e \cup v, e \in E_b\}$. Then $\pi(H') \leq \pi(H)$.

THE ELECTRONIC JOURNAL OF COMBINATORICS 28(3) (2021), #P3.42 18
Proof. Let \(n \) be positive integer, let \(G = (V, E_2(G), E_3(G)) \) be an arbitrary \(H' \)-free \(\{2, 3\} \)-graph on \(n \) vertices. For any vertex \(v \in V(G) \), let \(G_v = (V(G) \setminus \{v\}, E_{v,2}, E_{v,3}) \) be a 2-colored graph obtained form \(G \), such that the red edges are \(E_{v,2} = E_2(G) \), the blue edges are \(E_{v,3} = \{u, w| \{vuw \} \in E_3 \} \). Observe that \(G_v \) is \(H \)-free since \(G \) is \(H' \)-free. Thus \(h_{n-1}(G_v) \leq \pi_n(H) \). Since

\[
\left| E_2(G) \right| = \frac{1}{n-2} \sum_{v \in V(G)} |E_{v,2}| \quad \text{and} \quad \left| E_3(G) \right| = \frac{1}{3} \sum_{v \in V(G)} |E_{v,3}|
\]

Then

\[
h_n(G) = \frac{|E_2(G)|}{\binom{n}{2}} + \frac{|E_3(G)|}{\binom{n}{3}} = \sum_{v \in V(G)} \frac{|E_{v,2}|}{(n-2)\binom{n}{2}} + \sum_{v \in V(G)} \frac{|E_{v,3}|}{3\binom{n}{3}} = \frac{1}{n} \sum_{v \in V(G)} \frac{|E_{v,2}|}{\binom{n-1}{2}} + \frac{1}{n} \sum_{v \in V(G)} \frac{|E_{v,3}|}{\binom{n-1}{2}} \leq \frac{1}{n} \sum_{v \in V(G)} h_{n-1}(G_v) \leq \pi(H).
\]

Therefore \(\pi(H') \leq \pi(H) \). \qed

So far we couldn’t give an upper bound of \(\pi(H_9^{\{2,3\}}) \), but we can show a subgraph of \(\pi(H_9^{\{2,3\}}) \) are degenerate using above theorem. Let us observe that if we remove a single vertex \(AXF \) and edges connecting to it, the resulting sub-hypergraph is \(H_5^{\{2,3\}} \)-colorable, where \(H_5^{\{2,3\}} = ([5], \{12, 13, 34, 125, 135, 345\}) \).

![Diagram](image1.png)

Observe that we can also obtain \(H_5^{\{2,3\}} \) from \(T \) by adding vertex 5, and connect it with blue edges. Thus we have \(\pi(H_5^{\{2,3\}}) = 1 \).
In $H_9^{(2,3)}$, removing a single 2-edge connecting vertices AXE and AYE, the resulting subgraph is $H_6^{(2,3)}$ colorable, where $H_6^{(2,3)} = ([6], \{34, 35, 134, 235, 456\})$. However, we don’t know the Turán density of $H_6^{(2,3)}$. We remark that determining the degenerate $\{2,3\}$-hypergraph is still unknown.

References

[1] N. Alon, C. McDiarmid and B. Read, Acyclic colorings of graphs, *Random Structures and Algorithms* 2(3), 277–289, 1991.
[2] N. Alon, M. Krivelevich and B. Sudakov, Turán Numbers of Bipartite Graphs and Related Ramsey-Type Questions, *Combinatorics, Probability and Computing* 12, 477–494, 2003.
[3] S. Bai and L. Lu, On the Turán density of $\{1,3\}$-Hypergraphs, *Electronic Journal of Combinatorics*, 26(1), #P1.34, 2019.
[4] Ajit Diwan and D. Mubayi, Turán’s theorem with colors, Available at http://www.math.cmu.edu/~mubayi/papers/webturan.pdf. 2006.
[5] P. Erdős, A. Gyárfás and L. Pyber, Vertex coverings by monochromatic cycles and trees, *Journal of Combinatorial Theory, Series B*, 51, 90–95, 1991.
[6] P. Erdős and A. Stone, On the structure of linear graphs, *Bulletin Of The American Mathematical Society*, 52, 1087–1091, 1946.
[7] P. Erdős and M. Simonovits, A limit theorem in graph theory, *Studia Scientiarum Mathematicarum Hungarica*, 1, 51–57, 1966.
[8] P. Erdős, On the structure of linear graphs, *Israel Journal of Mathematics*, 1, 156–160, 1963.
[9] Zoltán Füredi and Miklós Simonovits, The History of Degenerate (Bipartite) Extremal Graph Problems, *Bolyai Society Mathematics Study*, 25, 169–264, 2013.
[10] T. Johnston and L. Lu, Turán problems on non-uniform hypergraphs, *Electronic Journal of Combinatorics*, 21(4), 22–56, 2014.
[11] G. Katona, T. Nemetz and M. Simonovits, On a problem of Turán in the theory of graphs, *Mathematics Fizikai Lapok*, 15, 228-238, 1964.
[12] P. Keevash, Hypergraph Turán problems, *Surveys in Combinatorics, Cambridge University Press, Cambridge*, 83–140, 2011.
[13] W. Mantel, Problem 28 (Solution by H. Gouwentak, W. Mantel, J. Teixeira de Mattes, F. Schult and W. A. Wythoff), *Wiskundige Opgaven*, 60–61, 1907.
[14] D. Mubayi and Y. Zhao, Non-uniform Turán-type problems, *Journal of Combinatorial Theory, Series A*, 111, 106–110, 2004.
[15] Y. Peng, H. Peng, Q. Tang and C. Zhao, An extension of the Motzkin–Straus theorem to non-uniform hypergraphs and its applications, *Discrete Applied Mathematics*, 200, 170–175, 2016.
[16] P. Turán, On an extremal problem in graph theory (in Hungarian), *Mathematics Fizikai Lapok*, 48, 436–452, 1941.