Expanded Phenotypic Definition Identifies Hundreds of Potential Causative Genes for Leukodystrophies and Leukoencephalopathies

Veronica M. Urbik, MS1, Marilyn Schmiedel, BS2, Haille Soderholm, BA3, and Joshua L. Bonkowsky, MD, PhD3,4,5

Abstract

Background: The genes responsible for genetic white matter disorders (GWMD; leukodystrophies and leukoencephalopathies) are incompletely known. Our goal was to revise the list of genes considered to cause GWMD. We considered a GWMD to consist of any genetic disease causing T2 signal white matter changes in magnetic resonance images.**Methods and Results:** Using a systematic review of PubMed, Google, published literature reviews, and commercial gene panels, we identified 399 unique genes meeting the GWMD definition. Of this, 87 (22%) genes were hypomyelinating. Only 3 genes had contrast enhancement on magnetic resonance imaging (MRI): ABCD1, GFAP, and UNC13D.**Conclusions:** A significantly greater number of genes than previously recognized, 399, are associated with white matter signal changes on T2 MRI. This expansion of GWMD genes can be useful in analysis and interpretation of next-generation sequencing results for GWMD diagnosis, and for understanding shared pathophysiological mechanisms of GWMDs.

Keywords

leukodystrophy, genes, leukoencephalopathy, classification, diagnosis

Received April 05, 2020. Received revised May 22, 2020. Accepted for publication June 08, 2020.

Leukodystrophies are genetic disorders that affect development or maintenance of the white matter of the central nervous system (CNS).1-3 Leukodystrophies have an incidence of almost 1 in 7500 live births, with significant morbidities and death in a third by age 8.4 A confounding feature to understanding leukodystrophies is their apparent genetic and mechanistic heterogeneity.5 Further, even with advanced next-generation sequencing (NGS) approaches, diagnosis rates remain below 70%,6 suggesting that a quarter of disease-causing genes may not even be known.

A variety of approaches to define and categorize leukodystrophies have been pursued. An international committee of experts classified 30 disorders as leukodystrophies.7 They defined leukodystrophies as genetic, with T2 signal abnormality on magnetic resonance imaging (MRI), and including glial or myelin sheath abnormalities in the CNS. Further, they termed “genetic leukoencephalopathies” to describe disorders that are heritable and result in white matter abnormalities but that did not necessarily meet their strict criteria as a leukodystrophy. Also, more recent classification schemes have been proposed for leukodystrophies, for example, recognizing the complex pathology of different cell types8 or emphasizing the sorting of leukodystrophies into different types based on

1 University of Utah School of Medicine, Salt Lake City, UT, USA
2 NXP Semiconductors Austin Oak Hill, Austin, TX, USA
3 Division of Pediatric Neurology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA
4 Brain and Spine Center, Primary Children’s Hospital, Salt Lake City, UT, USA
5 Primary Children’s Center for Personalized Medicine, Salt Lake City, UT, USA

Corresponding Author:
Josh Bonkowsky, MD, PhD, Department of Pediatrics, University of Utah School of Medicine, 295 Chipeta Way/Williams Building, Salt Lake City, UT 84108, USA.
Email: joshua.bonkowsky@hsc.utah.edu
disease pathology such as hypomyelination or vasculature involvement. Our objective was to identify and include all genes that have been reported to cause T2 white matter abnormalities. Our hypothesis was that a more complete list of genes associated with leukodystrophies and leukoencephalopathies, which we will term “genetic white matter disorders (GWMD),” would be of utility for improving diagnostic yield in genetic testing, and would reveal unexpected shared mechanistic pathways. We chose not to exclude any apparent genetic cause, even if not historically considered as a leukodystrophy or leukoencephalopathy. A secondary aim was to determine whether there were any common genetic or mechanistic pathways identified by grouping similar disorders.

Methods
We conducted a systematic search using keywords “leukodystrophy” or “leukoencephalopathy,” including of PubMed, Google, published literature reviews, and commercial gene panels (Figure 1). We included for consideration any publication reporting white matter signal changes on MRI in human patients. The timeline for publication was January 1, 1990, through December 31, 2018. Exclusion criteria included any white matter change secondary to nongenetic cause, including traumatic, infectious, or autoimmune etiologies. We excluded any genomic-level structural chromosomal changes (deletion, duplication); we also excluded gray matter pathology without white matter involvement, brain iron disorders, and isolated atrophy, thinning, reduced volume, or absence of structures (eg, absence of the corpus callosum). Following review and manual curation, genes were characterized and grouped. We categorized genes as being hypomyelinating if they were specifically stated as such in published literature. We used the same criteria to identify genes reported to cause contrast enhancement. Each gene was linked with its Ensembl stable gene ID from Ensembl 92.

Seven hundred fifty-one disorders of white matter were identified, including from publications, lists from gene panel testing from GeneDx, the United Kingdom National Health Service, scientific crowdsourcing resource Genomics England PanelApp, Invitae, and the University of Chicago. The 751 disorders were limited to 728 genetic diseases, and then to 613 unique genes. Each gene was then reviewed in Online Mendelian Inheritance of Man, and if necessary searches were performed in PubMed to determine whether published examples of T2 MRI white matter changes were reported. Disorders involving nongenetic causes (eg, HIV, cytomegalovirus, dietary B12 deficiency) and portions of chromosomes (eg, 18q Deletion Syndrome, etc) were excluded. Disorders affecting only peripheral myelin were excluded.

Ensembl gene IDs were used to analyze the data on 2 platforms. To categorize the genes by biologic process and metabolic process, we used the Gene Ontology (GO) PANTHER classification system (PANTHER14.1). To conduct pathway analysis, we used Reactome, a biological pathway and process analysis database and visualization tool. Seventy-six leukodystrophy genes could not be mapped to a gene or process in Reactome.

Results
Using a comprehensive review of PubMed, Google, published literature reviews, and commercial gene panels, we identified 399 unique genes with white matter MRI pathology on T2 sequences (Figure 1; Table 1). Of this, 87 (22%) genes were hypomyelinating. Only 3 genes had contrast enhancement on MRI (ABCD1, GFAP, and UNC13D) (Table 2). Gene Ontology term evaluation showed that the most frequent categories of GWMD genes (Figure 2A) were metabolic processes (n = 161), cellular processes (n = 120), localization (n = 49), biological regulation (n = 34), and response to stimulus (n = 14; Supplemental Table 1). Interestingly, although the overall number of genes was fewer, the distribution and type of GO biological processes was very similar to the canonical leukodystrophy genes (Figure 2B; Supplemental Table 2).
Table 1. List of All Identified Genetic White Matter Disorders (GWMD) Genes.

Gene name	Ensembl ID
AARS	ENSG00000090861
AARS2	ENSG00000124608
ABAT	ENSG00000183044
ABCA1	ENSG00000165029
ABCD1	ENSG00000101986
ACDH5	ENSG00000107897
ACER3	ENSG00000078124
ACOX1	ENSG00000161533
ACP33	ENSG00000090487
ACP5	ENSG00000102575
ACSF3	ENSG00000176715
ADAR	ENSG00000160710
ADGRG1	ENSG00000255336
ADSL	ENSG00000239900
AGA	ENSG0000038002
AHDC1	ENSG00000126705
AIMP1	ENSG00000164022
AIMP2	ENSG00000106305
ALDH3A2	ENSG00000072210
ALDH5A1	ENSG00000112294
ALDH6A1	ENSG00000119711
ALDH7A1	ENSG00000164904
ALG12	ENSG00000182858
ALG13	ENSG00000101901
ALG2	ENSG00000119523
ALG6	ENSG00000088035
ALG9	ENSG00000086848
AMACR	ENSG00000031081
AMPD2	ENSG00000116337
AP4B1	ENSG00000134262
AP5Z1	ENSG00000242802
AP0PT1	ENSG00000256053
APP	ENSG00000142192
ARHGAP31	ENSG00000010728
ARHGEF10	ENSG00000104728
ARNT2	ENSG00000172379
ARSA	ENSG00000100299
ASL	ENSG00000126522
ASNS	ENSG000000242802
ASPA	ENSG00000072210
ASXR1	ENSG000000107897
ASXL1	ENSG00000171456
ATN1	ENSG00000111676
ATRP7B	ENSG00000085224
ATR5F2	ENSG00000148090
B3GALNT2	ENSG00000162885
BCAP31	ENSG00000185825
BCKDHA	ENSG000000248098
BCKDHB	ENSG00000083123
BCS1L	ENSG00000074582
BOLA3	ENSG00000163170
BRAT1	ENSG00000106609
BTD	ENSG00000169814
CARS2	ENSG00000134905
CDK5L	ENSG00000080866

(continued)
Gene name	Ensembl ID
ERCC3	ENSG00000163161
ERCC6	ENSG000000225830
ERCC8	ENSG00000049167
ETFDH	ENSG00000171503
ETHE1	ENSG00000105755
FA2H	ENSG00000103089
FAM126A	ENSG00000122591
FARS2	ENSG00000145982
FASTKD2	ENSG00000118246
FBXL4	ENSG00000112234
FH	ENSG00000091483
FIG4	ENSG00000112367
FKR1	ENSG00000181027
FKN	ENSG00000106692
FMR1	ENSG00000102081
FOLR1	ENSG00000111015
FOXC1	ENSG00000054598
FOXRED1	ENSG00000110074
FUCAl	ENSG00000179163
GAA	ENSG00000171298
GALC	ENSG00000054983
GALT	ENSG000000213930
GAN	ENSG0000002261609
GBA	ENSG00000177628
GBE1	ENSG000001114480
GCAH	ENSG00000105607
GFCAP	ENSG00000131095
GFMI	ENSG00000168927
GJA1	ENSG00000152661
GJB1	ENSG00000169562
GJC2	ENSG00000198835
GLA	ENSG00000102393
GLBL	ENSG00000170266
GLRX5	ENSG00000182512
GLUL	ENSG00000135821
GLYCTK	ENSG00000168237
GM2A	ENSG00000196743
GNAO1	ENSG00000087258
GNS	ENSG00000135677
GPHN	ENSG00000171723
HEPACAM	ENSG00000165478
HEXA	ENSG000000213616
HHHI/SLC25A15	ENSG000000102743
HIBCH	ENSG00000198130
HIHEHI	ENSG00000149196
HLC5	ENSG000000915297
HMBS	ENSG000000256269
HMGLC	ENSG00000017305
HSD17B10	ENSG00000072506
HSD17B4	ENSG00000133835
HSPD1	ENSG00000044381
HTRA1	ENSG00000166033
IBA57	ENSG00000181873
IDS	ENSG00000010404
IDUA	ENSG000000217415
IFI1H1	ENSG00000115267
ISCA1	ENSG0000000135070

(continued)
Gene name	Ensembl ID
NDUFA10	ENSG00000130414
NDUFA12	ENSG00000184752
NDUFA2	ENSG00000131495
NDUFA9	ENSG00000139180
NDUFAF1	ENSG00000137806
NDUFAF2	ENSG00000164182
NDUFAF3	ENSG00000178057
NDUFAF4	ENSG00000123545
NDUFAF5	ENSG00000101247
NDUFAF6	ENSG00000156170
NDUFB3	ENSG00000119013
NDUFB9	ENSG00000147684
NDUFS1	ENSG00000023228
NDUFS2	ENSG00000158864
NDUFS3	ENSG00000213619
NDUFS4	ENSG00000164258
NDUFS6	ENSG00000145494
NDUFS7	ENSG00000115286
NDUFS8	ENSG00000110717
NDUFS9	ENSG00000167792
NDUFS11	ENSG00000178127
NDUFS12	ENSG00000151092
NDUFS16	ENSG00000148826
NOTCH1	ENSG00000148400
NOTCH3	ENSG00000074181
NPC1	ENSG00000141458
NPC2	ENSG00000119655
NUBPL	ENSG00000151413
OAT	ENSG00000065154
OCLN	ENSG00000197822
OCP1	ENSG00000122126
OPA1	ENSG00000198836
OPA3	ENSG00000125741
OSGEP	ENSG00000092094
OSTM1	ENSG00000081087
OTC	ENSG00000036473
PAFAH1B	ENSG00000071686
PAH	ENSG00000171759
PC	ENSG00000173599
PCCAC	ENSG00000175198
PCCB	ENSG00000114054
PDHA1	ENSG00000131828
PDHX	ENSG00000110435
PEX1	ENSG00000127980
PEX10	ENSG00000157911
PEX12	ENSG00000108733
PEX13	ENSG00000162928
PEX14	ENSG00000142655
PEX15	ENSG00000121680
PEX19	ENSG00000162735
PEX26	ENSG00000021513
PEX5	ENSG00000139197
PEX6	ENSG00000124587
PGAP1	ENSG00000197121
PGN	ENSG00000197912
PHGDH	ENSG00000092621
PHYH	ENSG000000170573
PIGA	ENSG000000165195
PLA2G6	ENSG000000184381
PLEKHG2	ENSG00000090924
PLP1	ENSG00000123560
PMM2	ENSG00000140650
PMP22	ENSG00000109099
POLG1	ENSG00000140521
POLG2	ENSG00000256525
POLR1A	ENSG00000068654
POLR1C	ENSG00000171453
POLR3A	ENSG00000148606
POLR3B	ENSG00000135030
POMGNT1	ENSG00000085998
POMK	ENSG00000185900
POMT1	ENSG00000130714
POMT2	ENSG00000093830
PPRF15B	ENSG00000158615
PPT1	ENSG00000131238
PRF1	ENSG00000180644
PRKDC	ENSG00000253729
PRODH	ENSG00000100003
PRUNE1	ENSG00000143633
PSAP	ENSG00000197746
PSAT1	ENSG00000135069
PSEN1	ENSG00000080815
PURA	ENSG00000185129
PYCR2	ENSG00000143811
QARS	ENSG00000172053
RAB11B	ENSG00000185236
RAS	ENSG00000113643
RAS2	ENSG00000146282
RMND1	ENSG00000155906
RNAHEH2A	ENSG00000104889
RNAHEH2B	ENSG00000136104
RNAHEH2C	ENSG00000172922
RNAS2T2	ENSG00000026297
RNF216	ENSG00000011275
RPIA	ENSG00000153574
RPS6KC1	ENSG000000136643
RRM2B	ENSG00000048392
RXLYT1	ENSG00000118600
SAMHD1	ENSG000000101347
SCO2	ENSG00000130489
SCP2	ENSG00000116171
SDHA	ENSG00000073578
SDHAF1	ENSG00000205138
SDHB	ENSG00000117118
SDHD	ENSG00000204370
SEPSecs	ENSG00000109618
SGSH	ENSG00000181523
SHPK	ENSG00000197417
SLC13A5	ENSG00000141485
SLC16A2	ENSG00000147100
SLC17A5	ENSG00000119899
SLC1A4	ENSG00000115902
SLC25A1	ENSG000000100075
A subgroup analysis of the single largest GO term of GWMD genes, “metabolic process,” showed that the most frequent GO terms in this group were organic substance metabolic process (n = 119), cellular metabolic process (n = 63), primary metabolic process (n = 20), oxidation reduction process (n = 19), and catabolic process (n = 19; Figure 2C; Supplemental Table 3).

We used a biological pathway analysis tool, Reactome,21 to identify whether GWMD genes were more represented in certain processes or shared common biological features (Table 3).
Figure 2. A, Revised genetic white matter disorders (GWMD) genes organized by Gene Ontology (GO) term biological process. B, Thirty canonical leukodystrophy genes organized by GO term biological process. C, Revised GWMD genes in the category “Metabolism” displayed by subtypes of metabolic processes.

Table 3. Reactome Pathway Listing of the 25 Most Overrepresented Biological Pathways, Grouped by Biological Mechanisms, and From Most to Fewest Number of Genes.a

Pathway name	Genes	Reactions		
Metabolism				
Metabolism	177/5569	2.18e-9	2.33e-7	250/2213
Metabolism of amino acids and derivatives	41/931	1.54e-5	0.001	41/283
Diseases of metabolism	23/303	3.04e-7	2.31e-5	33/114
Metabolism of water-soluble vitamins and cofactors	20/377	2.56e-4	0.009	27/140
Defects in vitamin and cofactor metabolism	8/70	1.67e-4	0.008	9/22
Defects in biotin metabolism	6/34	1.11e-4	0.006	6/6
Biotin transport and metabolism	6/48	6.85e-4	0.023	9/13
Multiple carboxylase deficiency	5/32	7.18e-4	0.023	4/4
Mitochondrial				
Citric acid cycle and respiratory electron transport	45/404	1.11e-16	2.79e-14	30/65
Respiratory electron transport, ATP synthesis, heat production	38/273	1.11e-16	2.79e-14	20/29
Respiratory electron transport	37/215	1.11e-16	2.79e-14	17/19
Complex I biogenesis	25/144	3.66e-15	6.89e-13	13/13
Protein				
Protein localization	29/244	2.87e-13	4.30e-11	45/53
tRNA aminoacylation	15/232	1.99e-4	0.008	19/42
Recycling of elf2:GDP	5/36	0.001	0.036	2/2
Peroxisomal				
Peroxisomal protein import	17/114	9.31e-10	1.16e-7	23/26
Class I peroxisomal protein import	9/40	3.08e-7	2.31e-5	6/6
Glycosylation				
Diseases of glycosylation	22/234	1.48e-8	1.39e-6	24/77
Diseases associated with glycosylation precursor biosynthesis	7/65	5.99e-4	0.021	8/16
Diseases associated with N-glycosylation of proteins	7/49	1.11e-4	0.006	8/23
Defective POMT1	3/5	1.90e-4	0.008	1/1
Defective POMT2	3/5	1.90e-4	0.008	1/1
Other				
Branched chain amino acid catabolism	10/106	1.26e-4	0.007	11/28
Mucopolysaccharidases	6/37	1.75e-4	0.008	12/22
Loss of MECP2 binding to DNA	2/2	8.98e-4	0.028	1/1

Abbreviation: FDR, false discovery rate.

*aMany genes are counted in more than one category (eg, metabolism, diseases of metabolism).
An analysis of the 25 most significantly represented biological pathways revealed that the majority of GWMD genes were involved in just 2 general categories: metabolism (metabolism, diseases of metabolism, metabolism of amino acids, biotin metabolism, defects in vitamin and cofactor metabolism, metabolism of water soluble vitamins and cofactors, biotin transport) and respiratory electron transport/mitochondrial function (respiratory electron transport; respiratory electron transport, ATP synthesis, and heat production; citric acid cycle; complex I biogenesis) (Figure 3).

We also manually evaluated the biological roles of GWMD genes, to confirm the GO and Reactome classifications, as well as to evaluate in greater details gene functions. Genes with roles in the mitochondrion or mitochondrial function (COX7, HSPD1, RMND1, etc) were the single largest group. Interestingly, although as expected genes with lysosomal or peroxisomal roles were frequent, GWMD genes that are transcription factors were approximately as frequent (MEF2C, SOX10, TAF2, etc).

Discussion

We have identified a significantly greater number of genes than previously recognized, 399, that are associated with myelin signal changes on T2 MRI. This larger group of GWMD (leukodystrophy and leukoencephalopathy) genes was similar in GO group composition to previous more restrictive definitions of leukodystrophy genes.

Of a total of 27 possible biological pathways represented in the analysis tool Reactome, GWMD genes were present in 23 of those groups, confirming the diverse potential etiologies of GWMDs. Genes involved in metabolic pathways were the most represented group of genes.

While nearly 400 genes is a significantly larger number of genes associated with GWMDs than previously considered, it is only a small proportion (1.9%) of the estimated 21 000 protein-coding genes in the entire human genome. From this perspective, given the complexities of myelin development and maintenance, and the diverse cell types that can affect myelin involved including oligodendrocytes, astrocytes, neurons, and microglia, 399 genes seem proportionate.

The definition of leukodystrophies has been a contentious and at times divisive topic. An initial organized attempt was made in 2015, but already in a short period of time new data suggested potential revisions to this list of approximately 30 genes.

Our approach consisted solely of inclusion based on the presence of white matter T2 signal hyperintensity on MRI and presumed/proven genetic etiology. This methodology poses certain limitations, in that there is no consistent pathophysiology. However, this limitation is also a strength in avoiding certain biases. Since T2 signal hyperintensity of the myelin is essentially a defining term of glial/myelin sheath abnormality, this meets the Vanderver et al inclusion criteria. Further, we avoided exclusion criteria that could be construed as arbitrary. For example, when considering inborn errors of metabolism, lysosomal sialic acid

Figure 3. Reactome pathway analysis of genetic white matter disorders (GWMD) genes. Analysis is arranged in a hierarchy, with the center of each circular “burst” as the root of one top-level pathway. Each step away from center represents the next level lower in the pathway hierarchy. Yellow-coded pathways are significantly overrepresented; light gray signifies pathways not significantly overrepresented. A, Reactome pathway analysis of entire revised GWMD gene set. B, Reactome pathway analysis of 30 canonical leukodystrophy genes. C, Reactome pathway analysis of contrast-enhancing genes. D, Reactome pathway analysis of hypomyelinating gene set.
storage disorder (Salla disease) met inclusion but the lysosomal disorder Niemann-Pick C did not.7

This finding of a large number of genes that can cause a white matter disorder (leukodystrophy or leukencephalopathy) highlights that early use of an NGS approach such as whole exome sequencing or whole genome sequencing should be considered as a first-line diagnostic approach. With so many different genes that can cause similar T2 signal changes, NGS can provide lower costs and faster time to diagnosis.23 For the clinician, this information about the many different genes that can cause GWMD further emphasize the need for early use of NGS in diagnosis.

An important and unresolved question is why this diversity of different genes all cause white matter pathology. In the undertaking of this project, we hypothesized that shared biological mechanisms and pathophysiology would be revealed. We did observe common themes, including overrepresentation of genes involved in metabolism and in mitochondrial function. This suggests, and is concordant with commonly accepted understanding, that the white matter is particularly sensitive to disturbances in metabolism and in energy homeostasis. It is possible that therapies directed toward these downstream targets (metabolic and energy homeostasis) could provide broad benefits for many different GWMD. Another interesting issue is the phenotypic variability, including age of onset and disease severity. This phenotypic diversity is seen even within the same disease, such as X-linked adrenoleukodystrophy or metachromatic leukodyostrophy. Thus, while it is not currently possible to generalize about phenotypic presentation or age of onset, perhaps there are patterns of severity that could be experimentally explored. For example, whether diseases with more profound disturbances of energy homeostasis cause an earlier and more severe presentation.

Conclusions

We found 399 genes that are associated with white matter changes on T2 MR image sequences. This is approximately 10-fold higher than has been standardly considered as the number of genes responsible for leukodystrophies. There are not consistent biological differences between this revised list and previous definitions of leukodystrophy genes. This expanded understanding of the genetics of GWMDs including leukodystrophies and leukencephalopathies can be useful in analysis and interpretation of NGS results for diagnosis and in understanding the pathophysiology of GWMDs.

Authors’ Note

VMU, MS, and HS contributed equally to the manuscript. All data reported in this study are included in this publication.

Author Contributions

VMU, MS, and JLB contributed to conception and design. JLB drafted manuscript. All authors contributed to acquisition, analysis, and interpretation; critically revised manuscript; gave final approval; and agrees to be accountable for all aspects of work ensuring integrity and accuracy.

Declaration of Conflicting Interests

The authors declared the following potential conflicts of interest with respect to the research, authorship, and/or publication of this article: M.S. is an employee of NXP Semiconductor. J.L.B. has served as a consultant to Bluebird Bio, Calico Life Sciences, Denali Inc, Enzyme, and Neurogene; is on the board of directors of wFluidx Inc; and owns stock in Orchard Therapeutics.

Ethical Approval

The University of Utah IRB granted this work an exemption as non-human subjects research.

Funding

The authors disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: J.L.B. was supported by the Bray Chair in Child Neurology Research and by NIH grant 3UL1TR002538-01S1. V.M.U. was supported by NIH grant T35HL007744.

ORCID iD

Joshua L. Bonkowsky, MD, PhD Ⓢ https://orcid.org/0000-0001-8775-147X

Supplemental Material

Supplemental material for this article is available online.

References

1. Bielschowsky MH, Henneberg R. Über familiäre diffuse Sklerose (Leukodystrophia cerebri progressiva hereditaria). J Psychol Neurol. 1928;36:131-181.
2. Kaye EM. Update on genetic disorders affecting white matter. Pediatr Neurol. 2001;24(1):11-24.
3. Maria BL, Deidrick KM, Moser H, Naidu S. Leukodystrophies: pathogenesis, diagnosis, strategies, therapies, and future research directions. J Child Neurol. 2003;18(9):578-590.
4. Bonkowsky JL, Nelson CR, Kingston JL, Filloux FM, Mundorff MB, Srivastava R. The burden of inherited leukodystrophies in children. Neurology. 2010;75(8):718-725. doi:10.1212/WNL.0b013e3181ee46b
5. van der Knaap MS, Bugiani M. Leukodystrophies: a proposed classification system based on pathological changes and pathogenetic mechanisms. Acta Neuropathol. 2017;134(3):351-382.
6. Vanderver A, Simons C, Helman G, et al. Whole exome sequencing in patients with white matter abnormalities. Ann Neurol. 2016;79(6):1031-1037.
7. Vanderver A, Prust M, Tondutı̈ D, et al. Case definition and classification of leukodystrophies and leukencephalopathies. Mol Genet Metab. 2015;114(4):494-500.
8. Kevelam S, Steenweg M, Srivastava S, et al. Update on leukodystrophies: a historical perspective and adapted definition. NeuroPediatrics. 2016;47(6):349-354.
9. Ensembl 2018. Accessed February 15, 2019. http://apr2018.archive.ensembl.org
10. Kolodny EH. Dysmyelinating and demyelinating conditions in infancy. *Curr Opin Neurol Neurosurg*. 1993;6(3):379-386.
11. Vanderver A. Tools for diagnosis of leukodystrophies and other disorders presenting with white matter disease. *Curr Neurol Neurosci Rep*. 2005;5(2):110-118.
12. Wang X, He F, Yin F, et al. The use of targeted genomic capture and massively parallel sequencing in diagnosis of Chinese leukoencephalopathies. *Sci Rep*. 2016;6:35936.
13. Kohlschütter A, Bley A, Brockmann K, et al. Leukodystrophies and other genetic metabolic leukoencephalopathies in children and adults. *Brain Dev*. 2010;32(1):82-89.
14. Pouwels PJ, Vanderver A, Bernard G, et al. Hypomyelinating leukodystrophies: translational research progress and prospects. *Ann Neurol*. 2014;76(1):5-19.
15. Parikh S, Bernard G, Leventer RJ, et al. A clinical approach to the diagnosis of patients with leukodystrophies and genetic leukoencephalopathies. GLIA Consortium. *Mol Genet Metab*. 2015;114(4):501-515.
16. Ashrafi MR, Tavasoli AR. Childhood leukodystrophies: a literature review of updates on new definitions, classification, diagnostic approach and management. *Brain Dev*. 2017;39(5):369-385.
17. Ji H, Li D, Wu Y, et al. Hypomyelinating disorders in China: the clinical and genetic heterogeneity in 119 patients. *PLoS One*. 2018;13(2):e0188869.
18. Ashburner M, Ball CA, Blake JA, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. *Nat Genet*. 2000;25(1):25-29.
19. The Gene Ontology Consortium. The gene ontology resource: 20 years and still going strong. *Nucleic Acids Res*. 2019;47(D1):D330-D338.
20. Mi H, Muruganujan A, Ebert D, Huang X, Thomas PD. PANTHER version 14: more genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. *Nucleic Acids Res*. 2019;47(D1):D419-D426.
21. Fabregat A, Jupe S, Matthews L, et al. The reactome pathway knowledgebase. *Nucleic Acids Res*. 2018;46(D1):D649-D655.
22. Schiffmann R, van der Knaap MS. Invited article: an MRI-based approach to the diagnosis of white matter disorders. *Neurology*. 2009;72(8):750-759.
23. Richards J, Korgenski EK, Taft RJ, Vanderver A, Bonkowsky JL. Targeted leukodystrophy diagnosis based on charges and yields for testing. *Am J Med Genet A*. 2015;167A(11):2541-2543.