Epidemiology of hepatitis C virus among hemodialysis patients in the Middle East and North Africa: systematic syntheses, meta-analyses, and meta-regressions

M. HARFOUCHE1, H. CHEMAITELLY1, S. MAHMUD1, K. CHAABNA1,2, S. P. KOUYOUMJIAN1, Z. AL KANAANI1 AND L. J. ABU-RADDAD1,2*

1 Infectious Disease Epidemiology Group, Weill Cornell Medicine-Qatar, Cornell University, Qatar Foundation – Education City, Doha, Qatar
2 Department of Healthcare Policy & Research, Weill Cornell Medicine, Cornell University, New York, USA

Received 7 June 2017; Final revision 14 August 2017; Accepted 6 September 2017; first published online 9 October 2017

SUMMARY
We aimed to investigate hepatitis C virus (HCV) epidemiology among hemodialysis (HD) patients in the Middle East and North Africa (MENA). Our data source was an HCV biological measures database populated through systematic literature searches. Descriptive epidemiologic syntheses, effects meta-analyses and meta-regressions, and genotype analyses were conducted. We analyzed 289 studies, including 106 463 HD patients. HCV incidence ranged between 0 and 100% as seroconversion risk, and between 0 and 14·7 per 1000 person-years as incidence rate. The regional pooled mean estimate was 29·2% (95% CI: 25·6–32·8%) for HCV antibody positive prevalence and 63·0% (95% CI: 55·4–70·3%) for the viremic rate. Region within MENA, country income group, and year of data collection were associated with HCV prevalence; year of data collection adjusted odds ratio was 0·92 (95% CI: 0·90–0·95). Genotype diversity varied across countries with four genotypes documented regionally: genotype 1 (39·3%), genotype 2 (5·7%), genotype 3 (29·6%), and genotype 4 (25·4%). Our findings showed that one-third of HD patients are HCV antibody positive and one-fifth are chronic carriers and can transmit the infection. However, HCV prevalence is declining. In context of growing HD patient population and increasing HCV treatment availability, it is critical to improve standards of infection control in dialysis and expand treatment coverage.

Key words: Epidemiology, hemodialysis, hepatitis C, Middle East and North Africa, prevalence.

INTRODUCTION
Viral hepatitis is the 7th leading cause of mortality worldwide with hepatitis C virus (HCV) accounting for about half of this mortality [1]. Though HCV infection is a public health concern globally, the Middle East and North Africa (MENA) is the most affected region by this infection [1–3]. For 2015, MENA was estimated to have the highest incidence rate of all regions at 62·5 per 100 000 person-year, second largest incidence at 409 000 new infections per year, highest HCV antibody prevalence at 2·3%, and largest number of chronically infected people at 15 million [2].

Recent breakthroughs in HCV treatment, notably the introduction of highly effective direct-acting antivirals (DAA), have ushered a new era for controlling
HCV and reducing its disease burden [4]. Global targets have been set to eliminate HCV and reduce its mortality by 2030 [5, 6].

HCV is a blood borne pathogen transmitted parenterally such as through sharing of injections and use of contaminated medical equipment [7]. Patients undergoing hemodialysis (HD) are at a higher risk of HCV exposure due to sharing of dialysis machines [8]. It has been estimated that HD increases the odds of acquiring HCV by five folds [9]. Characterizing HCV infection levels in HD patients and controlling its transmission through this mode of exposure are integral to improving the quality and healthcare utilization of HD. More specifically, this would lead to the prevention of unnecessary health complications such as liver disease and hepatic malignancies, and to a reduction in associated healthcare costs [10–12].

Against this background, we aimed to characterize HCV epidemiology among HD patients in the MENA region by: (1) systematically describing the evidence on HCV antibody incidence and prevalence in this population; (2) estimating the mean country-specific HCV prevalence in HD patients; (3) estimating HCV viremic rate in HD patients, that is the prevalence of HCV chronic infection (HCV RNA positivity) among antibody positive patients; (4) assessing associations with HCV prevalence in this population; and (5) assessing the frequency, distribution, and diversity of HCV genotypes in HD patients. This study was conducted under the umbrella of the MENA HCV Epidemiology Synthesis Project, an ongoing effort to characterize HCV epidemiology and inform key public health research, policy, and programming priorities in MENA [13–19].

METHODOLOGY

Data source

Our source of data was the MENA HCV Epidemiology Synthesis Project database. This database consists of several sub-databases that include an HCV antibody incidence database comprising 47 incidence studies among 29 600 participants, an HCV antibody prevalence database comprising 2543 antibody prevalence studies among 52 598 736 participants, an HCV RNA prevalence (among antibody positive persons) database comprising 178 RNA prevalence studies among 19 593 HCV antibody-positive participants, and an HCV genotype frequency database comprising 338 HCV genotype studies among 82 257 participants.

The MENA HCV Epidemiology Synthesis Project database was compiled through systematic searches of the literature [13, 15–17, 20–22] informed by the Cochrane Collaboration handbook [23] and reporting the findings using the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines [24]. The searched literature included international databases (PubMed and Embase), regional databases, national databases, and the MENA HIV/AIDS Epidemiology Synthesis Project database [25, 26], in addition to gray literature comprised of public health reports and routine data reporting, which are available from the authors upon request. The systematic reviews used broad search criteria with no language or year restrictions, to capture all publications pertinent to HCV since the discovery of the virus in 1989 [27, 28]. The systematic searches screened for duplicate studies and excluded them to avoid double counting of any single study.

The definition of the MENA region in these searches and in the present article included the 24 countries of Afghanistan, Algeria, Bahrain, Djibouti, Egypt, Iran, Iraq, Jordan, Kuwait, Lebanon, Libya, Mauritania, Morocco, Oman, Pakistan, Palestine, Qatar, Saudi Arabia, Somalia, Sudan, Syria, Tunisia, the United Arab Emirates (UAE), and Yemen.

For the purpose of the present study, we also searched the literature (non-systematically) for studies of the population proportion of HD patients in MENA countries – that is the proportion of HD patients among the whole population in a given country. For estimating the number of people undergoing dialysis, the total population size in each country was obtained from the United Nations World Population Prospects database [29]. The MENA region estimate was calculated as a weighted (by population size) mean of available country measures.

Quantitative analyses

Meta-analyses

We conducted meta-analyses to estimate the country-specific mean HCV antibody prevalence. We further stratified HCV prevalence measures by year of publication and conducted meta-analyses for three different but consecutive temporal durations to descriptively examine changes in prevalence with time. Studies consisting of a minimum of 20 participants were included. We also conducted meta-analyses to estimate the
country-specific mean viremic rate. Studies consisting of a minimum of 10 antibody-positive participants were included. In the event that the study reported HCV prevalence by different strata, such as age and sex, among others, the total sample size was replaced with stratified measures whenever the sample size requirement was fulfilled for each stratum.

Meta-analyses were conducted whenever we had three or more measures to be pooled using a DerSimonian–Laird random-effects model with inverse variance weighting [30]. The variance was stabilized using the Freeman–Tukey type arcsine square-root transformation [31]. Cochran’s Q test was implemented to assess evidence for heterogeneity in effect size; a P-value < 0.1 was considered significant [32, 33]. The I^2 was calculated to assess the proportion of between-study variation in effect size (HCV prevalence or HCV viremic rate) that is due to actual differences in effect size between studies [32]. The prediction interval was calculated to assess the distribution of true effects around the estimated mean [32, 34].

Meta-regressions

We conducted meta-regressions on HCV prevalence studies to assess associations with HCV prevalence. Four types of potential predictors were specified a priori and included in the analyses: region within MENA, country income group, year of data collection, and sample size. Factors with a P-value < 0.1 in univariable analyses were eligible for inclusion in the final multivariable model. Factors with a P-value < 0.05 in the multivariable model were considered as significant predictors.

The region variable consisted of seven strata based on geographic proximity: Fertile Crescent (Iraq, Jordan, Lebanon, Palestine, and Syria); Gulf (Kuwait, Oman, Saudi Arabia, UAE, and Qatar); Horn of Africa (Yemen and Sudan); Maghreb (Algeria, Libya, Morocco, and Tunisia); Egypt; Iran; and Pakistan. This classification covers all MENA countries with available HCV data in HD patients.

The income group variable stratified countries according to their income group per World Bank classification [35]. Low middle-income countries included Egypt, Morocco, Pakistan, Sudan, Syria, Tunisia, and Yemen. Upper middle-income countries included Algeria, Iran, Iraq, Jordan, Lebanon, Libya, and Palestine. High-income countries included Kuwait, Oman, Saudi Arabia, Qatar, and UAE.

For the year-of-data-collection variable, we imputed the missing observations using the median of the observed values calculated by subtracting the year of data collection from the year of publication for each study. A sensitivity analysis was conducted with missing values for the non-imputed observations. The results were similar with no impact on statistical significance (Supplementary Table S1 on the Cambridge Journals Online website).

Genotype diversity

We analyzed the regional and country-specific frequency, distribution, and diversity of HCV genotypes among HD patients. The regional analysis was conducted based on actual frequency from available studies, and also as a weighted estimate by each country’s population size. The frequency for each genotype was calculated with individuals testing positive for multiple genotypes contributing separately to the sum of cases for each genotype, as per earlier methodology [36]. Genotype diversity was assessed using Shannon Diversity Index [37].

Statistical analyses were conducted using R studio version 3.3.2 [38] and StataSE version 13 [39].

RESULTS

HD in MENA

The population proportion of patients undergoing HD varied across countries (Table 1). The lowest reported was 250.2 per million population in Bahrain, and the highest reported was 665.4 per million population in Lebanon. Based on available population proportions, we estimated the country-specific number of patients undergoing HD (Table 1). The lowest was 327 patients in Bahrain, and the highest was 25,225 in Iran. The MENA region population proportion was 383.6 per million population yielding an estimate of 239,759 HD patients.

Scope of evidence

Out of the MENA HCV Epidemiology Synthesis Project database, we identified 21 HCV incidence measures among a total of 8,857 HD patients (Supplementary Table S2), 205 HCV antibody prevalence measures among a total of 92,341 HD patients (Table 2), 31 HCV RNA prevalence measures among a total of 3172 HCV antibody-positive HD patients (Supplementary Fig. S1), and 31 HCV
genotype frequency measures among a total of 2093 HCV RNA-positive HD patients (Table 6; Supplementary Fig. S2).

Out of the 24 included countries, data were available from 19 countries. The number of data points varied by country. Iran, Saudi Arabia, Tunisia, and Egypt contributed the largest number of data points. Several countries contributed as little as one data point.

HCV antibody incidence among HD patients
Egypt \((n = 6)\), Lebanon \((n = 6)\), and Morocco \((n = 4)\) are the countries with the largest number of studies reporting HCV incidence among HD patients (Supplementary Table S2). Most studies had a follow-up duration ranging from 6 to 36 months, and reported incidence either as a risk of seroconversion or as an incidence rate. Seroconversion risk varied widely and was in the range of 0–100%. Incidence rate also varied substantially and was in the range of 0–14.7 per 1000 person-years. Incidence varied extensively even within the same country. For example, in Lebanon, HCV incidence rate varied from 0 to 14.7 per 1000 person-years across different geographical sites [120].

HCV antibody prevalence among HD patients
Iran \((n = 41)\), Saudi Arabia \((n = 39)\), and Egypt \((n = 26)\) are the countries with the largest number of studies reporting HCV prevalence among HD patients (Table 2). HCV antibody prevalence varied widely within and across countries and was in the range of 0–100% with a median of 26.5%. For example, in Egypt, HCV prevalence varied from 10.0% to 100% across different geographical sites at different times.

Table 3 shows the pooled mean estimate of HCV prevalence by country, by temporal duration, and for the region. The country-specific mean estimate ranged from 7.3% (95% CI: 3.7–11.7%) in Lebanon to 65.5% (95% CI: 56.5–74.1%) in Egypt. HCV prevalence was 51.6% (95% CI: 46.1–57.1%) in years of publication 1989–1998, and decreased to 27.8% (95% CI: 23.1–32.8%) in 1999–2008, and 18.8% (14.5–23.5%) in 2009–2016.

The mean estimate for the region was 29.2% (95% CI: 25.6–32.8%). Egypt, Syria, Saudi Arabia, Yemen, Morocco, and Qatar had a mean estimate exceeding 40%. There was strong evidence for heterogeneity in effect size (that is HCV prevalence) in all countries \((P \leq 0.01)\). The vast majority of the variation was due to variation in effect size rather than chance \((I^2 > 50\%)\). The prediction intervals confirmed substantial variation in effect size in each country. Forest plots for the country-specific meta-analyses can be found in Supplementary Fig. S3.

HCV viremic rate among HD patients
Tunisia \((n = 13)\) is the country with the largest number of studies reporting HCV viremic rate among HD patients (Table 4). For the rest of the countries, there were either few or no measures. HCV viremic rate varied across studies and was in the range of 19.1–93.3% with a median of 65.4%. The pooled mean estimate for HCV viremic rate across MENA was 63.0% (95% CI: 55.4–70.3%). There was evidence for heterogeneity in effect size estimates (here HCV viremic rate) across the region with a \(P < 0.0001\). The \(I^2\) for the pooled estimate was indicative of the variation being due to true differences in effect size rather than chance \((I^2 = 94.0\%)\). The prediction interval confirmed substantial variation in effect size. Forest plot for the regional meta-analysis can be found in Supplementary Fig. S1.

Associations with HCV antibody prevalence among HD patients
Table 5 shows the results of the univariable and multivariable meta-regressions. Region, income group, and year of data collection were associated with HCV antibody prevalence in the univariable analysis \((P\)-value
First author, year of publication	Year(s) of data collection	Study site	Population	Sample size	HCV prev. (%)
Algeria (n = 3)					
Algerian Ministry of Health, 2008 [41]	2008	–	HD patients	2503	23·8
Afredj, 2009 [42]	1995	–	HD patients	1225	42·0
Zitouni, 2010 [43]	2008–2009	Clinical setting	HD patients	373	22·8
Egypt (n = 26)					
Abdel Hady, 1999 [44]	–	Unspecified	HD patients	96	27·1
Abdel-Wahab, 1994 [45]	1992	Clinical setting	HD patients	78	46·2
Attia, 2010 [46]	2008–2009	Clinical setting	HD patients	206	46·1
El Gohary, 1995 [47]	1990–1992	Clinical setting	HD patients	108	70·4
El Sayed Zaki, 2013 [48]	–	Unspecified	HD patients	30	10·0
El-Emshaty, 2011 [49]	–	Clinical setting	HD patients	39	56·4
Elghohry, 2012 [50]	–	Clinical setting	HD patients	25	72·0
Gohar, 1995 [51]	–	Unspecified	Male HD patients on non-reused dialyzers	131	75·6
Goher, 1998 [52]	–	HD center/units	Female HD patients on non-reused dialyzers	39	79·5
Goher, 1998 [52]	–	HD center/units	Male HD patients on non-reused dialyzers	108	67·6
Goher, 1998 [52]	–	HD center/units	Female HD patients on reused dialyzers	57	66·7
Hammad, 2009 [53]	2008	Clinical setting	HD patients	34	94·1
Hassan, 1993 [54]	1991–1993	Unspecified	HD patients	105	73·3
Helaly, 2015 [55]	2012	HD center/units	HD patients	100	34·0
Mouchiran, 1995 [56]	–	Unspecified	Patients regularly attending renal dialysis units (controlled units)	250	68·0
Mouchiran, 1995 [56]	–	Unspecified	Patients regularly attending renal dialysis units (not controlled units)	100	98·0
Iran (n = 41)					
Ibrahim, 2010 [57]	2007	Clinical setting	HD patients	100	70·0
Ismail, 1994 [58]	–	Clinical setting	HD patients for <1 year	25	72·0
Ismail, 1994 [58]	–	Clinical setting	HD patients for >1 year	39	100
Kamal, 2013 [59]	2011	Clinical setting	HD patients	170	60·6
Kandil, 2007 [60]	2004–2006	Clinical setting	HD patients	31	51·6
Khodir, 2012 [61]	2011	Clinical setting	HD patients	2351	35·0
Saddik, 1997 [62]	–	Clinical setting	HD patients	50	72·0
Shatat, 2000 [63]	1999	Unspecified	HD patients	65	78·5
Zahran, 2014 [64]	–	HD center/units	HD patients	514	49·6
Aghakhani, 2009 [65]					
Alavian, 2015 [66]	2012	HD center/units	HD patients	274	0·0
Ali, 2008 [67]	2005–2006	Clinical setting	HD patients	93	24·7
Amiri, 2005 [68]	2001	HD center/units	HD patients	298	24·8
Azarkar, 2009 [69]	2007	Clinical setting	HD patients	30	0·0
Bozorgi, 2006 [70]	2004	Clinical setting	Male HD patients	44	2·3
Bozorgi, 2006 [70]	2004	Clinical setting	Female HD patients	45	8·9
Broumand, 2002 [71]	–	HD center/units	HD patients	548	19·2
Dadgaran, 2005 [72]	–	HD center/units	HD patients	393	17·8
Dadmanesh, 2015 [73]	2012–2013	Clinical setting	HD patients	138	0·0
Eslamifar, 2007 [74]	2006	HD center/units	HD patients	77	6·5
Ghadir, 2009 [75]	2008	HD center/units	HD patients	90	21·1
Haghazali, 2011 [76]	2007	Clinical setting	HD patients	76	7·9
Table 2 (cont.)

First author, year of publication	Year(s) of data collection	Study site	Population	Sample size	HCV prev. (%)	
Hamissi, 2011 [77]	2009	Clinical setting	Male HD patients	120	5·8	
Hamissi, 2011 [77]	2009	Clinical setting	Female HD patients	75	8·0	
Jahromi, 2007 [78]	2006	Clinical setting	HD patients	34	5·9	
Joukar, 2011 [79]	2009	HD center/units	Female HD patients	228	8·8	
Joukar, 2011 [79]	2009	HD center/units	Male HD patients	286	14·3	
Kalantari, 2014 [80]	2010	HD center/units	HD patients	499	5·2	
Kassaian, 2011 [81]	2009	Clinical setting	HD patients	800	2·1	
Mahdavi, 2009 [82]	2005	HD center/units	HD patients	2403	9·4	
Mak, 2001 [83]		–	HD center/units	HD patients	86	31·4
Makhlooghi, 2008 [84]	2006	HD center/units	HD patients	186	11·3	
Mansour-Ghanaei, 2009 [85]	2007	Clinical setting	HD patients	163	10·4	
Mousavi, 2014 [86]		HD center/units	HD patients	47	4·3	
Rostami, 2013 [87]	2010–2011	HD center/units	Female HD patients	1704	0·9	
Sabur, 2003 [88]	1999–2000	Clinical setting	HD patients	140	26·4	
Salehi, 2014 [89]	2008	HD center/units	HD patients	40	10·0	
Samarbagh-Zadeh, 2015 [90]		–	HD center/units	HD patients	430	9·1
Samimi-Rad, 2008 [91]	2005	HD center/units	Male HD patients	101	1·0	
Samimi-Rad, 2008 [91]	2005	HD center/units	Female HD patients	103	9·7	
Seyrafi, 2006 [92]	2005	HD center/units	HD patients	556	2·9	
Somi, 2007 [93]	2006	HD center/units	HD patients	462	14·9	
Somi, 2014 [94]	2012	HD center/units	HD patients	455	8·1	
Taremi, 2005 [95]	2004	HD center/units	HD patients	324	20·4	
Taziki, 2008 [96]	2006	HD center/units	HD patients	497	12·3	
Toosi, 2007 [97]		–	Clinical setting	HD patients	130	8·5
Zahedi, 2012 [98]	2010	HD center/units	HD patients	228	3·1	

Iraq (n = 16)

First author, year of publication	Year(s) of data collection	Study site	Population	Sample size	HCV prev. (%)
Abdul-Aziz, 2001 [100]	1999–2001	Central laboratory	Male HD patients	62	0·0
Abdul-Aziz, 2001 [100]	1999–2001	Central laboratory	Female HD patients	33	0·0
Abdulllah, 2012 [101]	2010	Clinical setting	HD patients	236	38·9
Abdulllah, 2012 [102]	2005–2007	Clinical setting	HD patients	80	28·7
Al-Dulaimi, 2012 [103]	2010–2011	Clinical setting	HD patients	84	14·3
Al-Mashhadani, 2006 [104]	2002	Clinical setting	HD patients	87	11·5
Hassan, 2008 [105]	1996–2001	Central laboratory	HD patients	35	14·3
Khattab, 2008 [106]	2003–2005	Clinical setting	Male HD patients	102	4·9
Khattab, 2008 [106]	2003–2005	Clinical setting	Female HD patients	67	10·4
Khattab, 2010 [107]	2003–2008	Clinical setting	Male HD patients	153	3·3
Khattab, 2010 [107]	2003–2008	Clinical setting	Female HD patients	91	7·7
Mnuti, 2011 [108]	2008–2010	Clinical setting	Male HD patients	58	39·6
Mnuti, 2011 [108]	2008–2010	Clinical setting	Female HD patients	42	42·8
Ramzi, 2010 [109]		Clinical setting	Male HD patients	63	25·4
Ramzi, 2010 [109]		Clinical setting	Female HD patients	38	28·9
Shihab, 2014 [110]	2012–2013	Clinical setting	HD patients	122	42·6

Jordan (n = 9)

First author, year of publication	Year(s) of data collection	Study site	Population	Sample size	HCV prev. (%)
Al-Jamal, 2009 [111]	2007–2008	Clinical setting	Male HD patients	63	31·7
Al-Jamal, 2009 [111]	2007–2008	Clinical setting	Female HD patients	57	24·5
Batchoun, 2011 [112]		Clinical setting	Male HD patients	67	49·2
Batchoun, 2011 [112]		Clinical setting	Female HD patients	67	46·3
Batieha, 2007 [113]	2003	National	HD patients	1711	20·5
Bdur, 2002 [114]		Clinical setting	HD patients	283	32·5
Guhnaimat, 2007 [115]		Clinical setting	Male HD patients	130	43·8
Guhnaimat, 2007 [115]		Clinical setting	Female HD patients	79	59·5
Said, 1995 [116]	1994	HD center/units	HD patients	273	24·5
Table 2 (cont.)

First author, year of publication	Year(s) of data collection	Study site	Population	Sample size	HCV prev. (%)
Kuwait \((n = 3) \)					
Altawalah, 2015 \[117\]	2012	Clinical setting	Kuwaiti HD patients	740	4·7
Altawalah, 2015 \[117\]	2012	Clinical setting	Non-Kuwaiti HD patients	625	8·2
El Reshaid, 1995 \[118\]	1994	Clinical setting	HD patients	232	40·0
Lebanon \((n = 9) \)					
Abdelnour, 1997 \[119\]	–	Clinical setting	HD patients	108	15·7
Abou Rached, 2016 \[120\]	2010–2012	HD center/units	HD patients in Beirut	559	3·6
Abou Rached, 2016 \[120\]	2010–2012	HD center/units	HD patients in Mount Lebanon	1632	4·5
Abou Rached, 2016 \[120\]	2010–2012	HD center/units	HD patients in Beqaa	394	5·6
Abou Rached, 2016 \[120\]	2010–2012	HD center/units	HD patients in South Lebanon	339	7·1
Abou Rached, 2016 \[120\]	2010–2012	HD center/units	HD patients in North Lebanon	757	5·0
Abou Rached, 2016 \[120\]	2010–2012	HD center/units	HD patients in Nabatieh	88	0·0
Mourani, 1999 \[121\]	1997	Clinical setting	HD patients	317	27·0
Naman, 1996 \[122\]	–	Clinical setting	HD patients	630	30·8
Libya \((n = 5) \)					
Alashek, 2010 \[123\]	2009	HD center/units	HD patients	749	25·1
Alashek, 2012 \[124\]	–	HD center/units	HD patients	2410	12·0
Daw, 2002 \[125\]	1999–2001	–	HD patients	200	20·5
El-Zouki, 1993 \[126\]	–	Clinical setting	HD patients	47	42·5
Elzouki, 1995 \[127\]	–	Clinical setting	HD patients	153	21·0
Morocco \((n = 7) \)					
Benani, 1997 \[128\]	–	HD center/units	HD patients	49	48·9
Benjelloun, 1996 \[129\]	–	HD center/units	HD patients	114	35·1
Boulaajaj, 2005 \[130\]	1983–2002	Clinical setting	HD patients	186	76·0
Foullous, 2015 \[131\]	–	HD center/units	HD patients	630	30·8
Lioussli, 2014 \[132\]	2009	HD center/units	Patients on peritoneal dialysis	38	8·0
Lioussli, 2014 \[133\]	2009	HD center/units	Patients on HD	67	60·0
Sekkat, 2008 \[133\]	2003–2004	HD center/units	HD patients	303	68·3
Oman \((n = 1) \)					
Al-Dhahry, 1992 \[134\]	1991	Clinical setting	HD patients	102	26·5
Pakistan \((n = 7) \)					
Ali, 2011 \[135\]	–	–	HD patients	25	28·0
Chishti, 2015 \[136\]	2010–2011	Clinical setting	HD patients	200	29·0
Gul, 2003 \[137\]	1999	Clinical setting	HD patients	50	68·0
Khan, 2011 \[138\]	2010	Clinical setting	HD patients	384	29·2
Khokhar, 2005 \[139\]	2002–2003	Clinical setting	HD patients	97	23·7
Mahmud, 2014 \[140\]	2012–2013	Mixed setting	HD patients	189	16·4
Mumtaz, 2009 \[141\]	2008	Clinical setting	HD patients	50	28·0
Palestine \((n = 12) \)					
Al Zabadi, 2016 \[142\]	2014	HD center/units	HD patients in Hebron	177	7·3
Al Zabadi, 2016 \[142\]	2014	HD center/units	HD patients in Ramallah	135	3·7
Al Zabadi, 2016 \[142\]	2014	HD center/units	HD patients in Nablus	174	5·0
Al Zabadi, 2016 \[142\]	2014	HD center/units	HD patients in Beit Jala	93	8·6
Al Zabadi, 2016 \[142\]	2014	HD center/units	HD patients in Tulkarem	71	5·6
Al Zabadi, 2016 \[142\]	2014	HD center/units	HD patients in Qalqelia	44	15·9
Al Zabadi, 2016 \[142\]	2014	HD center/units	HD patients in Jenin	117	15·4
Al Zabadi, 2016 \[142\]	2014	HD center/units	HD patients in Jericho	25	4·0
Al Zabadi, 2016 \[142\]	2014	HD center/units	HD patients in Salfeet	32	9·4
Dumaidi, 2014 \[143\]	2012–2013	Clinical setting	HD patients in Jenin	87	41·4
Dumaidi, 2014 \[143\]	2012–2013	Clinical setting	HD patients in Tulkarem	59	6·8
First author, year of publication	Year(s) of data collection	Study site	Population	Sample size	HCV prev. (%)
-----------------------------------	---------------------------	------------	------------	-------------	---------------
El-Kader, 2010 [144]	2007	Clinical setting	HD patients	246	17.9
Qatar (n = 1)					
Abboud, 1995 [145]	–	Clinical setting	HD patients	130	44.6
Saudi Arabia (n = 39)					
Al Ghamdi, 2001 [146]	1997	Clinical setting	HD patients	56	57.0
Al Jiffri, 2003 [147]	1991	Clinical setting	HD patients	248	72.6
Al Muheiren, 1992 [148]	–	Clinical setting	HD patients	20	45.0
Al Muhanna, 1995 [149]	–	Clinical setting	HD patients	162	43.2
Al Nasser, 1992 [150]	–	Clinical setting	Male HD patients	40	42.5
Al Nasser, 1992 [150]	–	Clinical setting	Female HD patients	26	50.0
Al Saran, 2014 [151]	2009	Clinical setting	HD patients	144	27.8
Al Shohaib, 1995 [152]	1992	Clinical setting	HD patients	139	52.5
Alsaran, 2009 [153]	2007–2008	Clinical setting	HD patients	83	33.0
Ayoola, 1991 [154]	–	Clinical setting	Male HD patients	33	42.5
Ayoola, 1991 [154]	–	Clinical setting	Female HD patients	41	41.5
Bahakim, 1991 [155]	1990	Clinical setting	HD patients	65	26.1
Bernhie, 1995 [156]	1991	Clinical setting	HD patients	94	60.0
Fukunle, 1991 [157]	–	Clinical setting	Nationals HD patients	113	48.7
Fukunle, 1991 [157]	–	Clinical setting	Expatriates HD patients	77	61.0
Huraib, 1995 [158]	–	Clinical setting	HD patients	1147	68.0
Hussein, 1994 [159]	1993	Clinical setting	HD patients	67	40.0
Hussein, 2007 [160]	2003	Clinical setting	HD patients	180	18.9
Karkar, 2006 [161]	–	Clinical setting	HD patients	265	29.0
Kashem, 2002 [162]	–	Clinical setting	HD patients	75	46.0
Kashem, 2003 [163]	2002	Clinical setting	HD patients	90	46.7
Kumar, 1997 [164]	1993–1996	Clinical setting	HD patients	47	51.1
Mitwalli, 1992 [165]	–	Clinical setting	HD patients	36	22.2
Mitwalli, 2000 [166]	1997	Clinical setting	HD patients	109	54.1
Saran, 2011 [167]	2009	Clinical setting	HD patients	146	24.1
Saxena, 2001 [168]	–	Clinical setting	HD patients	189	43.9
Saxena, 2003 [169]	1995–2000	Clinical setting	Male HD patients	99	49.5
Saxena, 2003 [169]	1995–2000	Clinical setting	Female HD patients	97	33.0
Saxena, 2003 [170]	1995–2000	Clinical setting	Male HD patients	91	38.5
Saxena, 2003 [170]	1995–2000	Clinical setting	Female HD patients	98	49.0
Saxena, 2004 [171]	1995–2000	Clinical setting	Male HD patients	86	62.8
Saxena, 2004 [171]	1995–2000	Clinical setting	Female HD patients	86	37.2
Shaheen, 1995 [172]	–	Clinical setting	HD patients	408	72.3
Shobokshi, 2003 [173]	1998–2002	Clinical setting	HD patients	29054	55.7
Souqiyreh, 1995 [174]	1993–1994	Clinical setting	HD patients	1392	54.0
Souqiyreh, 2001 [175]	2000	HD center/units	HD patients	6694	50.0
Soyannwo, 1996 [176]	1992	Clinical setting	Male HD patients	47	53.2
Soyannwo, 1996 [176]	1992	Clinical setting	Female HD patients	49	46.9
Tashkandy, 2012 [177]	2000–2004	Clinical setting	HD patients	1357	78.2
Sudan (n = 3)					
El-Amin, 2007 [178]	2005	HD center/units	HD patients	236	23.7
Gasim, 2012 [179]	2010	HD center/units	HD patients	353	8.5
Suliman, 1995 [180]	1994	HD center/units	HD patients	46	34.9
Syria (n = 5)					
Abdulkarim, 1998 [181]	–	HD center/units	HD patients	120	75.0
Othman, 2001 [182]	1996	Clinical setting	Male HD patients	80	53.7
Othman, 2001 [182]	1996	Clinical setting	Female HD patients	59	42.4
Moukeh, 2009 [183]	2006	Clinical setting	Male HD patients	280	53.9
Moukeh, 2009 [183]	2006	Clinical setting	Female HD patients	270	54.8
Tunisia (n = 14)					
Ayed, 2003 [184]	2001	HD center/units	HD patients in Tunis	1394	22.2
HCV among hemodialysis patients

Risk factors for HCV infection among HD patients

Few studies assessed risk factors for HCV infection among HD patients. Duration and frequency of dialysis and exposure to blood transfusions were the most commonly reported risk factors [45, 51, 52, 62, 109, 182].

HCV genotype and subtype distribution among HD patients

Table 6 shows the frequency, distribution, and Shannon Diversity Index of HCV genotypes among HD patients. Supplementary Fig. S2 also shows the distribution of HCV genotypes and subtypes.

The vast majority (92.3%) of viremic HD patients were infected by a single strain (Supplementary Fig. S2). At the regional level, four HCV genotypes were documented in HD patients: genotype 1 (68.8%), genotype 2 (9.6%), genotype 3 (7.9%), and genotype 4 (13.5%). Weighted by country population size, the regional genotype distribution was: genotype 1 (39.3%), genotype 2 (5.7%), genotype 3 (29.6%), and genotype 4 (25.4%). No cases of genotypes 5, 6, and 7 were reported.

Genotype 1 was commonly found in Morocco (100%), Tunisia (77.3%), Jordan (73.3%), Syria (60.7%), Iran (55.7%), Bahrain (55.5%), Iraq (51.5%), and Saudi Arabia (46.8%). It was also common in Lebanon (28.1%), Pakistan (22.2%), and Egypt (16.1%).
Table 3. Pooled mean estimate for hepatitis C virus (HCV) antibody prevalence among hemodialysis patients across countries of the Middle East and North Africa

Country	Studies Total	Samples Total	HCV Prevalence across studies	Pooled HCV prevalence	Heterogeneity measures
	N	N	Range (%) Median	Mean (%) 95% CI	Q^a (P-value) I^2b (95% CI) Prediction intervalc (%)
Algeria	3	4101	22.8–42.0 23.8	29.3 17.4–42.7	133.7 (P < 0.0001) 98.5 (97.4–99.1) 0.0–100
Egypt	26	4915	10.0–100 69.0	65.5 56.5–74.1	809.1 (P < 0.0001) 96.9 (96.2–97.5) 18.9–98.6
Iran	41	15 140	0–31.4 8.5	9.2 5.9–10.8	1076.5 (P < 0.0001) 96.3 (95.6–96.9) 0.0–29.4
Iraq	16	1353	0–42.9 14.3	16.6 9.0–25.7	248.2 (P < 0.0001) 94.0 (91.6–95.6) 0.0–62.1
Jordan	9	2730	20.5–59.5 32.5	36.1 27.4–45.2	120.7 (P < 0.0001) 93.4 (89.5–95.8) 9.0–69.1
Kuwait	3	1597	4.7–40.0 8.2	14.9 2.8–34.1	155.8 (P < 0.0001) 98.7 (97.8–99.2) 0.0–100
Lebanon	9	4214	0–27.0 5.6	7.3 3.7–11.7	159.0 (P < 0.0001) 95.0 (92.3–96.7) 0.0–27.1
Libya	5	3559	12.0–42.5 21.0	22.5 14.2–31.9	95.1 (P < 0.0001) 95.8 (92.7–97.6) 0.6–61.2
Morocco	7	1387	8.0–76.0 49.0	46.4 28.5–64.7	239.4 (P < 0.0001) 97.5 (96.3–98.3) 0.2–98.1
Pakistan	7	995	16.4–68.0 28.0	30.4 21.7–39.9	49.4 (P < 0.0001) 87.8 (77.3–93.5) 5.7–63.5
Palestine	12	1260	2.9–41.4 8.0	10.3 5.6–16.2	93.8 (P < 0.0001) 88.3 (81.4–92.6) 0.0–36.8
Saudi Arabia	39	43 250	18.9–78.2 46.9	47.4 43.7–51.1	998.1 (P < 0.0001) 96.2 (95.5–96.8) 26.8–68.4
Sudan	3	635	8.5–34.9 23.7	20.4 7.6–37.2	36.4 (P < 0.0001) 94.5 (87.3–97.6) 0.0–100
Syria	5	809	42.4–75.0 53.9	56.6 47.5–65.5	24.2 (P < 0.0001) 83.5 (62.6–92.7) 24.7–85.7
Tunisia	14	5602	14.6–46.5 29.8	27.4 22.6–32.5	194.4 (P < 0.0001) 93.3 (90.4–95.3) 10.3–48.9
Yemen	3	300	40.0–62.7 40.2	47.4 32.7–62.3	8.6 (P = 0.010) 76.8 (24.2–92.9) 0.0–100
Oman	1	102	– –	26.5 18.2–36.1	– – – –
Qatar	1	130	– –	44.6 35.9–53.6	– – – –
UAE	1	262	– –	24.4 19.3–30.1	– – – –
All countries	205	92 341	0–100 26.5	29.2 25.6–32.8	26 145.8 (P < 0.0001) 99.2 (99.2–99.3) 0.0–82.0

CI, Confidence interval; UAE, United Arab Emirates.

a Q: The Cochran’s Q statistic is a measure assessing the existence of heterogeneity in effect size.

b I^2: A measure that assesses the magnitude of between-study variation that is due to differences in effect size across studies rather than chance.

c Prediction interval: A measure that estimates the 95% interval in which the true effect size in a new study will lie.
Table 4. **Pooled mean estimate for hepatitis C virus (HCV) viremic rate among hemodialysis patients across countries of the Middle East and North Africa.**

HCV viremic rate is the prevalence of **HCV chronic infection (HCV RNA positivity)** among antibody-positive persons.

Country	Studies Total	Samples Total	HCV RNA prevalence among antibody-positive persons	Pooled HCV viremic rate	Heterogeneity measures		
	N	N	Range (%) Median	Mean (%) 95% CI	Q^a (P-value)	I^2b (95% CI)	Prediction interval^c (%)
Iran	4	219	48.6–64.3 52.3	51.1 44.3–57.9	1.3 (P = 0.7)	0.0 (0.0–65.0)	36.4–68.8
Iraq	2	144	26.1–61.5 43.8	38.9 30.9–47.4	–	–	–
Jordan	1	92	–	31.5 22.2–42.0	–	–	–
Lebanon	2	63	30.4–65.0 47.7	39.7 27.6–52.8	–	–	–
Libya	1	32	–	72.0 53.2–86.2	–	–	–
Morocco	4	309	48.9–70.0 59.7	57.9 49.2–66.5	5.3 (P = 0.1)	43.5 (0.0–81.1)	27.0–85.9
Pakistan	1	25	–	28.0 12.1–49.4	–	–	–
Palestine	2	290	19.1–84.1 51.6	29.0 28.8–34.5	–	–	–
Syria	1	56	–	87.5 75.9–94.8	–	–	–
Tunisia	13	1942	51.0–93.3 76.2	75.1 69.6–80.2	61.9 (P < 0.0001)	80.6 (67.8–88.3)	54.6–91.1
All countries	31	3172	19.1–93.3 65.4	63.0 55.4–70.3	499.9 (P < 0.0001)	94.0 (92.4–95.2)	21.7–95.5

HCV, Hepatitis C virus; RNA, Ribonucleic acid.

^a Q: The Cochran's Q statistic is a measure assessing the existence of heterogeneity in effect size.

^b I^2: A measure that assesses the magnitude of between-study variation that is due to differences in effect size across studies rather than chance.

^c Prediction interval: A measure that estimates the 95% interval in which the true effect size in a new study will lie.
Genotype 4 was commonly found in Egypt (83·9%), Saudi Arabia (50·0%), Iraq (45·4%), and Lebanon (40·6%). It was also present in the rest of the countries apart from Morocco. Pakistan was the only country where genotype 3 was the most common genotype (62·2%). Genotype 3 was also common in Iran (39·4%), but otherwise rare in the rest of the countries. Genotype 2 was common in Bahrain (33·3%) and Lebanon (25·0%), and somewhat common in Pakistan (13·3%) and Tunisia (11·8%), but otherwise rare.

For genotype 1, subtype 1a and 1b were commonly observed in MENA (Supplementary Fig. S2). Subtypes 2a, 2b, 2c, 3a, 3b, and 4a were also detected in this region. Combinations of the above genotypes and subtypes were observed among multiply infected individuals.

Genotype diversity varied across countries. It was highest in Lebanon with a relative Shannon Diversity Index of 63·7% (score: 1·24 out of a maximum of 1·95) and lowest in Morocco 0·0% (score: 0·0 out of a maximum of 1·95). For the region as a whole, the relative Shannon Diversity Index was 49·1% (score: 0·95 out of a maximum of 1·95) for the unweighted analysis, and 63·9% (score: 1·24 out of a maximum of 1·95) for the weighted analysis by country population size.

DISCUSSION

Through a comprehensive investigation of HCV epidemiology among HD patients in MENA, we found that there is ongoing and considerably high HCV incidence in this population across the region. However, the incidence rate varied between countries and across different settings within the same country (Supplementary Table S2). We also found high HCV prevalence in HD patients, with the prevalence varying substantially across the region and within each country. About one-third (29·2%) of HD patients have already been infected with HCV (Table 3), with two-thirds of them (63·0%) being chronic carriers (Table 4) that can potentially transmit the infection to other patients through dialysis. We also found substantial diversity of HCV genotypes in HD patients, with genotype 1 being the most common at the regional level (Table 6). Importantly, we found that HCV prevalence in HD patients is on a declining trend (Tables 3 and 5).
These findings suggest that the standard of infection control in dialysis differs across countries and across dialysis units within each country. They also indicate that extensive improvement is needed to control HCV transmission among HD patients. Fortunately, improvements appear to be already taking place as validated by the declining trend in prevalence. These findings highlight further the importance of addressing HCV infection and disease burden in HD patients, especially considering the recent availability and increasing affordability of DAAs for HCV treatment [4], and that the number of patients undergoing dialysis is rising rapidly with the aging of the population and growing prevalence of chronic diseases that lead to renal disease [40, 195–197].

Our pooled mean estimate for HCV prevalence among HD patients indicated that HCV prevalence among HD patients in MENA is higher than that in other regions such as Europe (7% [198]), the USA (7% [199, 200]), and the Asia-Pacific region (range across countries of 1–18%) [201]. This finding may not only suggest inferior standards of dialysis in MENA, but may also reflect the higher background HCV prevalence in the whole population in this region [2, 3]. Indeed, HCV prevalence among HD patients in MENA countries reflected in part HCV prevalence in the population at large in each country. For example, HCV prevalence among HD patients in Egypt and Pakistan was much higher than that in other MENA countries (Table 5), reflecting the higher prevalence in the wider population in these two countries [13, 21].

These emergencies appear to have led to reuse and sharing of supplies and equipment intended for single use such as infusion vials, and machine filters [205, 206]. The lingering emergencies may undermine the recent improvements and reverse the trend of declining HCV prevalence in HD patients. Furthermore, these emergencies appeared to reflect the distribution of circulating genotypes in each country [8, 203]. The high HCV prevalence in the whole population in MENA countries also reflects the higher background HCV prevalence in the whole population in this region [2, 3]. Indeed, HCV prevalence among HD patients in MENA countries, reflected in part HCV prevalence in the population at large in each country. For example, HCV prevalence among HD patients in Egypt and Pakistan was much higher than that in other MENA countries (Table 5), reflecting the higher prevalence in the wider population in these two countries [13, 21].

Table 6. Frequency, distribution, and Shannon Diversity Index of hepatitis C virus (HCV) genotypes among hemodialysis patients across the Middle East and North Africa

Country	Studies	Samples Total N	Genotype 1 n (%)	Genotype 2 n (%)	Genotype 3 n (%)	Genotype 4 n (%)	Shannon diversity index (H)	Index relative to total possible diversity
Bahrain	1	9	5 (55·5%)	3 (33·3%)	–	1 (11·1%)	0·94	48·1%
Egypt	1	62	10 (16·1%)	–	–	52 (83·9%)	0·44	22·7%
Iran	7	269	150 (55·7%)	–	106 (39·4%)	13 (4·3%)	0·84	43·1%
Iraq	2	33	17 (51·5%)	–	1 (3%)	15 (45·5%)	0·81	41·6%
Jordan	1	30	22 (73·3%)	–	–	8 (26·6%)	0·58	29·9%
Lebanon	4	64	28 (43·8%)	–	6 (9·4%)	26 (40·6%)	1·24	63·7%
Morocco	2	68	68 (100%)	–	–	–	0·00	0·0%
Pakistan	1	90	20 (22·2%)	52 (57·8%)	18 (20·0%)	–	0·98	50·5%
Saudi Arabia	1	30	22 (73·3%)	–	–	8 (26·6%)	0·84	41·6%
Syria	1	28	17 (60·7%)	–	–	11 (39·3%)	0·67	34·4%
Tunisia	10	1529	1182 (77·3%)	181 (11·8%)	10 (1%)	156 (100%)	0·72	36·8%
All countries (unweighted)	31	2214b	1524 (68·8%)	213 (9·6%)	177 (7·9%)	300 (13·5%)	0·95	49·1%
All countries (weighted by population size)	31	2214b	1524 (39·3%)	213 (5·7%)	177 (29·6%)	300 (25·4%)	1·24	63·9%

No data were found for HCV genotypes 5, 6, and 7.

a The maximum value for Shannon Diversity Index is 1·95 assuming full genotype diversity of seven HCV genotypes [17, 37].

b Each individual testing positive for multiple genotypes contributed separately to the sum of cases for each genotype.
East has been recently published [208]. Its modes of exposure including dialysis from one population to another through different transmission networks where HCV is circulating.

A review of HCV among HD patients in the Middle East has been recently published [208]. Its findings agreed overall with our findings despite differences between the two studies in the focus, scope, and analysis plans. Our study covered more countries in MENA over a longer duration, examined analytically trends and associations, and reported a broader set of outcome measures and analyses (such as for the genotype distribution). In total, 205 studies were included in our analyses compared to 56 studies in Ashkani-Esfahani et al. study [208]. Both studies concluded that there is high HCV prevalence in HD patients that needs to be addressed through targeted interventions.

Our study had several limitations. The availability of data varied from one county to another and we did not identify any data for five MENA countries (Afghanistan, Bahrain, Djibouti, Mauritania, and Somalia). Sample size varied also across studies and the sampled HD populations may have been sampled from specific geographic areas within a given country, and may not be representative of the wider HD population in the country. Despite these limitations, we were able to identify a large volume of data for MENA countries that allowed us to conduct different types of analyses, generate multiple inferences, and produce a comprehensive mapping of HCV epidemiology among HD patients in this region.

CONCLUSIONS

Our findings revealed ongoing HCV incidence and high HCV prevalence among HD patients in MENA, but incidence and prevalence appear to be declining year by year. About one-fifth of HD patients are chronic carriers of HCV infection, in need of HCV treatment, and potentially can transmit the infection to other HD patients. In context of rapidly growing HD patient population, these findings highlight the need to improve standards of infection control in dialysis in MENA.

Moreover, in context of recent availability and increasing affordability of DAAs for HCV treatment, these findings highlight the urgency to address HCV infection and disease burden in HD patients. Governments that are reluctant to take on national level HCV elimination projects, could initially focus on HD patients as a candidate population for micro-elimination as a way to advance the agenda for HCV DAA treatment. With HCV circulation among HD patients being a major mode of HCV transmission, tackling this infection and disease burden is critical to HCV global elimination and mortality reduction targets by 2030.

SUPPLEMENTARY MATERIAL

The supplementary material for this article can be found at https://doi.org/10.1017/S0950268817002242.

ACKNOWLEDGEMENTS

This publication was made possible by NPRP grant number 9-040-3-008 from the Qatar National Research Fund (a member of Qatar Foundation). The findings achieved herein are solely the responsibility of the authors. The authors are also grateful for infrastructure support provided by the Biostatistics, Epidemiology, and Biomathematics Research Core at Weill Cornell Medicine-Qatar.

DECLARATION OF INTEREST

The authors have no competing interest to declare.

REFERENCES

1. StanawayJD, et al. The global burden of viral hepatitis from 1990 to 2013: findings from the Global Burden of Disease Study 2013. The Lancet 2016; 388: 1081–1088.
2. World Health Organization. Global Viral Hepatitis Report. Geneva: World Health Organization, 2017 (http://www.who.int/hepatitis/publications/global-hepatitis-report2017/en/). Accessed May 2017. Licence: CC BY-NC-SA 3.0 IGO.
3. World Health Organization. The Epidemiology of Hepatitis C Virus in the World Health Organization Eastern Mediterranean Region: Implications for Strategic Action. Eastern Mediterranean Hepatitis C Virus Epidemiology Synthesis Project, 2017 (in press).
4. Flamm SL. Advances in the treatment of hepatitis C virus infection from EASL 2015. Gastroenterology & Hepatology 2015; 11: Supplement 3.
5. World Health Organization. Global Health Sector Strategy on Viral Hepatitis 2016–2021. Towards Ending Viral Hepatitis. World Health Organization, 2016 (http://www.who.int/hepatitis/strategy2016-2021/ghss-hep/en/). Accessed May 2017.
6. World Health Organization. Combating Hepatitis B and C to Reach Elimination by 2030: Advocacy Brief. World
HCV among hemodialysis patients

7. Prati D. Transmission of hepatitis C virus by blood transfusions and other medical procedures: a global review. *Journal of Hepatology* 2006; 45: 607–616.
8. Sy T, Jamal MM. Epidemiology of hepatitis C virus (HCV) infection. *International Journal of Medical Sciences* 2006; 3: 41–46.
9. Sun J, et al. Hepatitis C infection and related factors in hemodialysis patients in China: systematic review and meta-analysis. *Renal Failure* 2009; 31: 610–620.
10. Bikbov B. Hepatitis C virus and kidney disease: evidence, hope, and hurdles. *Nephron* 2017; 136: 51–53.
11. Fabrizi F, et al. Meta-analysis: effect of hepatitis C virus infection on mortality in dialysis. *Alimentary Pharmacology & Therapeutics* 2004; 20: 1271–1277.
12. Fabrizi F, Poordad FF, Martin P. Hepatitis C infection and the patient with end-stage renal disease. *Hepatology* 2002; 36: 3–10.
13. Mohamoud YA, et al. The epidemiology of hepatitis C virus in Egypt: a systematic review and data synthesis. *BMC Infectious Diseases* 2013; 13: 288.
14. Chaabna K, et al. Protocol for a systematic review and meta-analysis of hepatitis C virus (HCV) prevalence and incidence in the horn of Africa sub-region of the Middle East and North Africa. *Systematic Reviews* 2014; 3: 146.
15. Fadlalla FA, et al. The epidemiology of hepatitis C virus in the Maghreb region: systematic review and meta-analyses. *PLoS ONE* 2015; 10: e0121873.
16. Mohamoud YA, Riome S, Abu-Raddad LJ. Epidemiology of hepatitis C virus in the Arabian Gulf countries: systematic review and meta-analysis of prevalence. *International Journal of Infectious Diseases* 2016; 46: 116–125.
17. Chemaitelly H, Chaabna K, Abu-Raddad LJ. The epidemiology of hepatitis C virus in the Fertile Crescent: systematic review and meta-analysis. *PLoS ONE* 2015; 10: e0135281.
18. Mahmoud S, Akbarzadeh V, Abu-Raddad LJ. The epidemiology of hepatitis C virus in Iran: Systematic review and meta-analyses. (under preparation). 2017.
19. Chaabna KMY, Chemaitelly H, Muntaz GR, Abu-Raddad LJ. Protocol for a systematic review and meta-analysis of hepatitis C virus (HCV) prevalence and incidence in The Horn of Africa sub-region of the Middle East and North Africa. PROSPERO 2014: CRD42014010318, 2014 (http://www.crd.york.ac.uk/PROSPERO/display_record.asp?ID=CRD42014010318).
20. Chemaitelly H, et al. The epidemiology of hepatitis C virus in Afghanistan: systematic review and meta-analysis. *International Journal of Infectious Diseases* 2015; 40: 54–63.
21. Chaabna K, Kouyoumjian SP, Abu-Raddad LJ. Hepatitis C virus epidemiology in Djibouti, Somalia, Sudan, and Yemen: systematic review and meta-analysis. *PLoS ONE* 2016; 11: e0149966.
22. Al-Kanaani ZMS, Abu-Raddad L. The epidemiology of hepatitis C virus in Pakistan: systematic review and meta-analyses (under preparation). 2016.
23. Higgins JP, Green S. Cochrane handbook for systematic reviews of interventions: John Wiley & Sons, 2011.
24. Moher D, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *PLoS Medicine* 2009; 6: e1000097.
25. Abu-Raddad LJ, et al. Characterizing the HIV/AIDS Epidemic in the Middle East and North Africa: Time for Strategic Action. World Bank Publications, 2010 (https://openknowledge.worldbank.org/handle/10986/2457), License: CC BY 3.0 IGO. Accessed May 2017.
26. Abu-Raddad LJ, et al. Epidemiology of HIV infection in the Middle East and North Africa. *AIDS* 2010; 24: S5–S23.
27. Choo Q-L, et al. Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. *Science* 1989; 244: 359.
28. Kuo G, et al. An assay for circulating antibodies to a major etiologic virus of human non-A, non-B hepatitis. *Science* 1989; 244: 362–364.
29. DESA U. World population prospects: the 2015 revision, key findings and advance tables. *Working Paper No* 2015.
30. Borenstein M, et al. A basic introduction to fixed-effect and random-effects models for meta-analysis. *Research synthesis methods* 2010; 1: 97–111.
31. Freeman MF, Tukey JW. Transformations related to the angular and the square root. The Annals of Mathematical Statistics 1950; Dec 1: 607–611.
32. Borenstein M, et al. Front Matter, in Introduction to Meta-Analysis. Chichester, UK: John Wiley & Sons, Ltd, 2009.
33. Higgin J, et al. Measuring inconsistency in meta-analysis. *British Medical Journal* 2003; 327: 557–560.
34. Higgins J, Thompson SG, Spiegelhalter DJ. A re-evaluation of random-effects meta-analysis. *Journal of the Royal Statistical Society: Series A (Statistics in Society)* 2009; 172: 137–159.
35. The World Bank. World bank country and lending groups. 2017 (https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups). Accessed May 2017.
36. Messina JP, et al. Global distribution and prevalence of hepatitis C virus genotypes. *Hepatology* 2015; 61: 77–87.
37. Shannon CE. The mathematical theory of communication. 1963. In. Europe PMC, 1996.
38. Anon. RStudio Team. RStudio: Integrated Development. Boston, MA: R. RStudio, Inc., 2015 (http://www.rstudio.com/).
39. Anon. StataCorp. 2015. *Stata Statistical Software: Release 14*. College Station, TX: StataCorp LP.
40. United States Renal Data System. 2016 *USRDS Annual Data Report: Epidemiology of Kidney Disease in the United States*. Bethesda, MD: National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, 2016 (https://wwwUSRDS.org/2016/view/Default.aspx). Accessed May 2017.
41. National Office of Statistics (Algeria). National Office of Statistics: Algeria Population and Housing Census 2008. In, 2008.
42. Afredji N. Hepatite B, C et grossesse. Conference presentation at: Palais de la culture Moufdi Zakaria, Algerie. 7ème Journée de la Clinique Médicale, 2009.

43. Zitouni S, et al. Prevalence and incidence des hepatites virales VHB et VHC et prevalence de la infection HCV/HBC dans trois centres D'hémodialyse a Constantine-Algerie. La 4ème journée Nationale d’Hygienie Hospitalière et de Latte Contre Les Infections associées aux soins Palais de la Culture – Algerie, 2011, p. 209.

44. Abdel Hady SI, El-Din MS, El-Din ME. A high hepatitis E virus (HEV) seroprevalence among unpaid blood donors and haemodialysis patients in Egypt. The Journal of the Egyptian Public Health Association 1998; 73: 165–179.

45. Abdel-Wahab MF, et al. High seroprevalence of hepatitis C infection among risk groups in Egypt. The American Journal of Tropical Medicine and Hygiene 1994; 51: 563–567.

46. Attia EA, Hassan SI, Youssef NM. Cutaneous disorders in uremic patients on hemodialysis: an Egyptian case-controlled study. International Journal of Dermatology 2010; 49: 1024–1030.

47. El Gohary A, et al. High prevalence of hepatitis C virus among urban and rural population groups in Egypt. Acta Tropica 1995; 59: 155–161.

48. El Sayed Zaki M, Magdy Abd El Razeek H, Magdy Abd El Razeek M. Hepatitis E viral seroprevalence among multiple transfused Egyptian children. Journal of Viral Hepatitis 2013; 20: 40–41.

49. El-Emshaty WM, et al. Diagnostic performance of an immunoassay for simultaneous detection of Hcv core antigen and antibodies among haemodialysis patients. Brazilian Journal of Microbiology: [Publication of the Brazilian Society for Microbiology] 2011; 42: 303–309.

50. Elgohry I, Elbanna A, Hashad D. Occult hepatitis B virus infection in a cohort of Egyptian chronic hemodialysis patients. Clinical Laboratory 2011; 58: 1057–1061.

51. Gohar SA, et al. Prevalence of antibodies to hepatitis C virus in hemodialysis patients and renal transplant recipients. The Journal of the Egyptian Public Health Association 1994; 70: 465–484.

52. Goher SA, et al. Dialyzer reuse and hepatitis C virus in hemodialysis population in Egypt. Scientific Medical Journal 1998; 10: 43–54.

53. Hammad AM, Zaghloul MHED. Hepatitis G virus infection in Egyptian children with chronic renal failure (single centre study). Annals of Clinical Microbiology and Antimicrobials 2009; 8: 1.

54. Hassan NF, Kotkat A. Prevalence of antibodies to hepatitis C virus in pregnant women in Egypt. The Journal of Infectious Diseases 1993; 168: 248–249.

55. Helaly GF, et al. Occult hepatitis B virus infection among chronic hemodialysis patients in Alexandria, Egypt. Journal of Infection and Public Health 2015; 8: 562–569.

56. Mouchiran FH, et al. Hepatitis C Virus Infection among hemodialysis patients. Egyptian Journal of Medical Microbiology 1995; 4: 289–299

57. Ibrahim S. Quality of care assessment and adherence to the international guidelines considering dialysis, water treatment, and protection against transmission of infections in university hospital-based dialysis units in Cairo, Egypt. Hemodialysis International International Symposium on Home Hemodialysis 2010; 14: 61–67.

58. Ismail ZA, et al. Prevalence of hepatitis C virus antibodies in hemodialysis patients. The Medical Journal of Cairo University 1994; 62: 283–291.

59. Kamal NN, et al. Health-related quality of life among hemodialysis patients at El-Minia University Hospital, Egypt. Journal of Public Health (Germany) 2013; 21: 193–200.

60. Kendall ME, Rasheed MA, Saad NE. Hepatitis C and B viruses among some high risk groups of Egyptian children. Journal of Medical Sciences 2007; 7: 1259–1267.

61. Khodir SA, et al. Prevalence of HCV infections among hemodialysis patients in Al Gharbiyah Governorate, Egypt. Arab Journal of Nephrology and Transplantation 2012; 5: 145–147.

62. Saddik Y, El Azoni M. Hepatitis C virus [HCV] antibodies in patients with chronic renal failure and treated with regular hemodialysis and those treated with renal transplantation. Scientific Medical Journal 1997; 9: 79–99.

63. Shatat HZ, Kotkat AM, Farghaly AG. Immune response to hepatitis B vaccine in haemodialysis patients. The Journal of the Egyptian Public Health Association 2000; 75: 257–275.

64. Zahran AM. Prevalence of seroconversion of hepatitis C virus among hemodialysis patients in Menoufia Governorate, Egypt. Arab Journal of Nephrology and Transplantation 2014; 7: 133–135.

65. Aghakhani A, et al. Significance of hepatitis B core antibody as the only marker of hepatitis B virus infection in high risk patients. Iranian Journal of Pathology 2009; 4: 80–84.

66. Alavian SM, et al. Anti-hepatitis B antibodies in hemodialysis patients in Isfahan, Iran: prevalence and risk factors. Hepatitis Monthly 2015; 15: e23633.

67. Ali J, Besharat S, Khodabakshi B. Occult hepatitis B virus infection in Egyptian children with chronic renal failure (single centre study). Annals of Clinical Microbiology and Antimicrobials 2009; 8: 1.

68. Amiri ZM, Shaikbaki S, Toorchi M. Seroprevalence of hepatitis C and risk factors in haemodialysis patients in Guilan, Islamic Republic of Iran. Eastern Mediterranean Health Journal 2005; 11: 372–376.

69. Azarkar Z, et al. Survey of HBV and HCV markers in haemodialysis and thalassemia, South Khorasan, Birjand 2007. Scientific Journal of Iranian Blood Transfusion Organization 2009; 6: 233–237.

70. Brouchhri S, et al. Assessment of prevalence and risk factors of hepatitis C virus infection in hemodialysis patients in Ghazvin. Scientific Journal of Iran Blood Transfusion Organization 2006; 2: 331–337.

71. Broumand B, et al. Prevalence of hepatitis C infection and its risk factors in hemodialysis patients in Tehran: preliminary report from “the effect of dialysis unit isolation on the incidence of hepatitis C in dialysis patients” project. Saudi Journal of Kidney Diseases and Transplantation: an Official Publication of the Saudi Center for Organ Transplantation, Saudi Arabia 2002; 13: 467–472.
72. Dadgaran S. Prevalence and risk factors of hepatitis C virus among hemodialysis patients. Journal of Guilan University of Medical Sciences 2005; 14: 76–86.
73. Dadmanesh M, et al. Evaluation of prevalence and risk factors of hepatitis G virus infection among hemodialysis patients referred to Iranian army hospitals in Tehran during 2012–2013. Hepatitis Monthly 2015; 15: e18322.
74. Eslamifar A, et al. Hepatitis G virus exposure in dialysis patients. International Urology and Nephrology 2007; 39: 1257–1263.
75. Ghadir M, et al. Effect of hepatitis C and B infections on anemia in hemodialysis patients. Journal of Medical Council of Islamic Republic of Iran 2009; 27: 921–923.
76. Haghazali S, et al. Occult HBV infection in hemodialysis patients in Qazvin. Razi Journal of Medical Sciences 2011; 18: 8–15.
77. Hamissi J, Hamissi H. Occurrence of hepatitis B and C infection among hemodialyzed patients with chronic renal failure in Qazvin, Iran: a preliminary study. International Journal of Collaborative Research on Internal Medicine & Public Health 2011; 3: 89–96.
78. Jahromi SA, Nejat E, Hosseini M. Prevalence of anti-HCV antibody in haemodialysis patients referring to haemodialysis unit of Jahrom. Journal of Medical Sciences (Jahrom medical journal) 2007; 5: 38–43.
79. Joukar F, et al. Hepatitis C and hepatitis B seroprevalence and associated risk factors in hemodialysis patients in Guilan province, north of Iran: HCV and HBV seroprevalence in hemodialysis patients. Hepatitis Monthly 2011; 11: 178–181.
80. Kalantari H, et al. Prevalence and risk factors of hepatitis B and C viruses among hemodialysis patients in Isfahan, Iran. Advanced Biomedical Research 2014; 3: 73.
81. Kassaian N, et al. Hepatitis C in patients with multi blood transfusion in Isfahan, Iran. Hepatology International 2011; 5(1): 226.
82. Mahdavi MM, et al. Hepatitis B infection in hemodialysis patients in Tehran province, Iran. Hepatitis Monthly 2009; 9: 206–210.
83. Mak VM, et al. A study on the prevalence of anti-hepatitis C virus among the hemodialysis patients referred to Sirra hospital of Ahwaz. Jundishapur Scientific Medical Journal 2001; 29: 1–5.
84. Makhlongh A, Jamshidi M, Mahdavi MR. Hepatitis C prevalence studied by polymerase chain reaction and serological methods in haemodialysis patients in Mazandaran, Iran. Singapore Medical Journal 2008; 49: 921–923.
85. Mansour-Ghanael F, et al. Prevalence of hepatitis B and C infection in hemodialysis patients of Rasht (Center of Guilan Province, Northern part of Iran). Hepatitis Monthly 2009; 9: 45–49.
86. Mousavi SSB, Motemednia F, Mousavi MB. Epidemiology of hepatitis e virus infection in patients on chronic hemodialysis. Jundishapur Journal of Microbiology 2014; 7: e6993.
87. Rostami Z, et al. Health related quality of life in Iranian hemodialysis patients with viral hepatitis: changing epidemiology. Hepatitis Monthly 2013; 13: e9611.
88. Sabur BBP, Mehrabi Y. Evaluation of prevalence rate and distribution of the predisposing factors of hepatitis C in hemodialysis patients in Kermanshah province (1999–2000). Behboud Journal 2003; 27: 60–66.
89. Salehi M, et al. Hepatitis G virus exposure in dialysis patients and blood donors in Isfahan-Iran. International Journal of Preventive Medicine 2014; 5: S219.
90. Samarbas-Zadeh AR, et al. Prevalence of hepatitis G virus among hemodialysis and kidney transplant patients in Khuzestan Province, Iran. Jundishapur Journal of Microbiology 2015; 8: e20834.
91. Samimi-Rad K, Hosseini M. Hepatitis C virus infection and hcv genotypes of hemodialysis patients. Iranian Journal of Public Health 2008; 37: 146–152.
92. Seyrafi S, et al. Comparison and prevalence of hepatitis B and C infection and hepatitis B vaccination in hemodialysis patients and staffs in 13 hemodialysis centers in Isfahan (Iran). Nephrol Dialysis Transplantation 2006; 21: 484–484.
93. Somali MH, et al. Hepatitis C virus infection in dialysis centers of Tabriz, Iran: a multicenter study. Archives of Clinical Infectious Diseases 2007; 2: 23–26.
94. Somali MH, et al. Risk factors of HCV seroconversion in hemodialysis patients in Tabriz, Iran. Hepatitis Monthly 2014; 14: e17417.
95. Taremi M, et al. Hepatitis E virus infection in hemodialysis patients: a seroepidemiological survey in Iran. BMC Infectious Diseases 2005; 5: 36.
96. Taziki O, Espahbodi F. Prevalence of hepatitis C virus infection in hemodialysis patients. Saudi Journal of Kidney Diseases and Transplantation: an Official Publication of the Saudi Center for Organ Transplantation, Saudi Arabia 2008; 19: 475–478.
97. Toosi MN, et al. Risk factors and seroprevalence of hepatitis B and C infections among hemodialysis patients in Tehran. Iranian Journal of Pathology 2007; 2: 181–186.
98. Zahedi MJ, et al. Seroprevalence of hepatitis viruses B, C, D and HIV infection among hemodialysis patients in Kerman province, South-East Iran. Hepatitis Monthly 2012; 12: 339–343.
99. Ziaee M, Azizee R, Nameei MH. Prevalence of HCV infection in hemodialysis patients of South Khorasan in comparison With HBV, HDV, HTLV III/I, And HIV infection. Bangladesh Journal of Medical Science 2014; 13: 36.
100. Abdul-Aziz M, et al. Prevalence of hepatitis B & C among people attending Kirkuk public health laboratory. Al-Taqami 2001; 23: 6–15.
101. Abdullah AM, Hardan A, Latif II. Genotyping of hepatitis C virus isolates from Iraqi hemodialysis patients by reverse transcription-PCR and one step nested RT-PCR. Diyalma Journal of Medicine 2012; 3: 9–18.
102. Abdullah BA, Khaled MD, Maarouf MN. Detection of hepatitis C virus (HCV) by ELISA, RIBA and reverse transcriptase- polymerase chain reaction (RT-PCR) technique among kidney dialysis patients in Nineveh governorate/Iraq. Science Journal of Thi-Qar 2012; 3: 55–67.
103. Al-Dulaimi SBK, et al. Toxoplasma gondii, HCV, and HBV seroprevalence in haemodialysis patients with
chronic renal failure in Al-Kindy Hospital Baghdad, Iraq. Al-Mustansiriyah Journal of Science 2012; 23: 33–38.
104. Al-Mashhadani JI. Hepatitis C virus infection among haemodialysis patients in Al-Anbar governorate. Iraqi Journal of Community Medicine 2007; 20: 20–23.
105. Hassan AS. Prevalence of anti-hepatitis C virus antibodies among blood donors and risky groups in Diyala. Journal of the Faculty of Medicine of Baghdad 2008; 50: 467–470.
106. Khattab OS. Prevalence and risk factors for hepatitis C virus infection in hemodialysis patients in an Iraqi renal transplant center. Saudi Journal of Kidney Diseases and Transplantation: an Official Publication of the Saudi Center for Organ Transplantation, Saudi Arabia 2008; 19: 110–115.
107. Khattab OS. How to decrease the prevalence of hepatitis C in Iraqi hemodialysis patients. The Iraqi Postgraduate Medical Journal 2010; 9: 31–35.
108. Mnuti JK, Al-Abbadi FA. Hepatitis C virus infection assessment among chronic hemodialysis patients in Al-Kadhmiya teaching hospital. Iraqi Postgraduate Medical Journal 2011; 10: 460–464.
109. Ramzi ZS, et al. Prevalence and risk factors for hepatitis C virus infection in hemodialysis patients in Sulaimani. Zanco Journal of Medical Sciences 2010; 14: 44–50.
110. Shihab SS, et al. Viral hepatitis infections in Basrah haemodialysis unit: serological diagnosis and viral loading. European Journal of Experimental Biology 2014; 4: 106–112.
111. Al-Jamal M, et al. Hepatitis C virus (HCV) infection in hemodialysis patients in the south of Jordan. Saudi Journal of Kidney Diseases and Transplantation 2009; 20: 488.
112. Batchoun RG, Al-Najdawi MA, Al-Taamary S. Anti-ENA antibody profile in hepatitis C patients undergoing hemodialysis. Saudi Journal of Kidney Diseases and Transplantation 2011; 22: 682–688.
113. Batieha A, et al. Epidemiology and cost of haemodialysis in Jordan. Eastern Mediterranean Health Journal 2007; 13: 654–663.
114. Bdur S. Hepatitis C virus infection in Jordanian haemodialysis units: serological diagnosis and genotyping. Journal of Medical Microbiology 2002; 51: 700–704.
115. Ghunaimat M, et al. Point prevalence of hepatitis C antibodies among hemodialysis patients at king Hussein medical center. Journal of the Royal Medical Services 2007; 14: 63–67.
116. Said RA, et al. Hepatitis C virus infection in hemodialysis patients in Jordan. Saudi Journal of Kidney Diseases and Transplantation: an Official Publication of the Saudi Center for Organ Transplantation, Saudi Arabia 1995; 6: 140–143.
117. Altawalah H. Prevalence of Blood Borne Viruses in the Dialysis Unit, Mubarak Al-Kabeer Hospital, Kuwait. Idsa: IDWeek 2014, 2014.
118. El-Reshaid K, et al. Hepatitis C virus infection in patients on maintenance dialysis in Kuwait: epidemiological profile and efficacy of prophylaxis. Saudi Journal of Kidney Diseases and Transplantation: an Official Publication of the Saudi Center for Organ Transplantation, Saudi Arabia 1995; 6: 144–150.
119. Abdelnour GE, et al. Detection of anti-hepatitis C virus antibodies and hepatitis C virus RNA in Lebanese hemodialysis patients. European Journal of Epidemiology 1997; 13: 863–867.
120. Rachad AA, et al. Incidence and prevalence of hepatitis B and hepatitis C viruses in hemodialysis patients in Lebanon. World Journal of Nephrology 2016; 5: 101.
121. Mourani C, et al. Multicenter study of children with terminal renal failure in Lebanon. Le Journal Medical Libanais the Lebanese Medical Journal 1999; 47: 309–312.
122. Naman RE, et al. Hepatitis C virus in hemodialysis patients and blood donors in Lebanon. Le Journal Medical Libanais the Lebanese Medical Journal 1996; 44: 4–9.
123. Alashek WA, McIntyre CW, Taal MW. Epidemiology and aetiology of dialysis-treated end-stage kidney disease in Libya. BMC Nephrology 2012; 13: 1.
124. Alashek WA, McIntyre CW, Taal MW. Hepatitis B and C infection in haemodialysis patients in Libya: prevalence, incidence and risk factors. BMC Infectious Diseases 2012; 12: 265.
125. Daw MA, et al. Prevalence of hepatitis C virus antibodies among different populations of relative and attributable risk. Saudi Medical Journal 2002; 23: 1356–1360.
126. Elzouki AN, et al. Prevalence of anti-hepatitis C virus antibodies and hepatitis C virus viraemia in chronic haemodialysis patients in Libya. Nephrology, Dialysis, Transplantation: Official Publication of the European Dialysis and Transplant Association – European Renal Association 1995; 10: 475–476.
127. El-Zouki AY, Bendard AB, Sharif MS. HCV in hemodialysis patients in Benghazi, Libya. Annals of Saudi Medicine 1993; 13: 203.
128. Benani A, et al. HCV genotypes in Morocco. Journal of Medical Virology 1997; 52: 396–398.
129. Benjelloun S, et al. Anti-HCV seroprevalence and risk factors of hepatitis C virus infection in Moroccan population groups. Research in Virology 1996; 147: 247–255.
130. Boulajaj K, et al. Prevalence of hepatitis C, hepatitis B and HIV infection among haemodialysis patients in Ibn-Rochd University Hospital, Casablanca. Nephrologie et Therapeutique 2005; 1: 274–284.
131. Foullous A, et al. Epidemiological and virological study of hepatitis C virus infection in hemodialysis (case of six centers) in Morocco. Journal of Biology, Agriculture and Healthcare 2015; 5: 99–105.
132. Lioussi Z, et al. Viral hepatitis C and B among dialysis patients at the Rabat University Hospital: prevalence and risk factors. Saudi Journal of Kidney Diseases and Transplantation: an Official Publication of the Saudi Center for Organ Transplantation, Saudi Arabia 2014; 25: 672–679.
133. Sekkat S, et al. Prevalence of anti-HCV antibodies and seroconversion incidence in five haemodialysis units in
Morocco. *Nephrologie and Theraquipe* 2008; 4: 105–110.

134. Al-Dhabry SHS, *et al.* Antibodies to hepatitis C virus in Omani patients with renal disease. *Transplantation Proceedings* 1992; 24: 1938–1939.

135. Ali I, *et al.* Prevalence of HCV among the high risk groups in Khyber Pakhtunkhwa. *Virology Journal* 2011; 8: 296.

136. Christi SM, Khan AM, Bashir F. Serological monitoring of HCV marker in hemodialysis patients from tertiary care hospitals of Karachi. *Medical Forum Monthly* 2015; 26: 6–11.

137. Gul A, Iqbal F. Prevalence of hepatitis C in patients on maintenance haemodialysis. *Journal of the College of Physicians and Surgeons Pakistan* 2003; 13: 15–18.

138. Khan S, *et al.* Rising burden of hepatitis C virus in hemodialysis patients. *Virology Journal* 2011; 8: 438.

139. Khokhar N, *et al.* Risk factors for hepatitis C virus infection in patients on long-term hemodialysis. *Journal of the College of Physicians and Surgeons Pakistan* 2005; 15: 326–328.

140. Mahmud HM, *et al.* Hemodialysis patients profile at Dow university of health sciences, Karachi. Pakistan. *Pakistan Journal of Medical Sciences* 2014; 30: 1327.

141. Mumtaz A, *et al.* Erectile dysfunction in hemodialysis patients. *Journal of Ayub Medical College Abbottabad* 2009; 21: 4–7.

142. Al Zabadi H, Rahal H, Fuqaha R. Hepatitis B and C prevalence among hemodialysis patients in the West Bank hospitals, Palestine. *BMC Infectious Diseases* 2016; 16: 41.

143. Dumaidi K, Al-Jawabreh A. Prevalence of occult HBV among hemodialysis patients in two districts in the northern part of the West Bank, Palestine. *Journal of Medical Virology* 2014; 86: 1694–1699.

144. El-kader YE-OA, Elmanama AA, Ayesh BM. Prevalence and risk factors of hepatitis B and C viruses among haemodialysis patients in Gaza strip, Palestine. *Virology Journal* 2010; 7: 210.

145. Abboud O, Rashid A, Al-Kaabi S. Hepatitis C virus infection in hemodialysis patients in Qatar. *Saudi Journal of Kidney Diseases and Transplantation: an Official Publication of the Saudi Center for Organ Transplantation, Saudi Arabia* 1995; 6: 151–153.

146. Al-Ghondi SM, Al-Harbi AS. Hepatitis C virus serostatus in hemodialysis patients returning from holiday: another risk factor for HCV transmission. *Saudi Journal of Kidney Diseases and Transplantation: an Official Publication of the Saudi Center for Organ Transplantation, Saudi Arabia* 2001; 12: 14–20.

147. Al-Jiffri AM, *et al.* Hepatitis C virus infection among patients on hemodialysis in Jeddah: a single center experience. *Saudi Journal of Kidney Diseases and Transplantation: an Official Publication of the Saudi Center for Organ Transplantation, Saudi Arabia* 2003; 14: 84–89.

148. Al-Mugeiren M, *et al.* Seropositivity to hepatitis C virus (HCV) in Saudi children with chronic renal failure maintained on haemodialysis. *Annals of Tropical Paediatrics* 1992; 12: 217–219.

149. Al-Muhanna FA. Hepatitis C virus infection among hemodialysis patients in the eastern region of Saudi Arabia. *Saudi Journal of Kidney Diseases and Transplantation: an Official Publication of the Saudi Center for Organ Transplantation, Saudi Arabia* 1995; 6: 125–127.

150. Al Nasser MN, *et al.* Seropositivity to hepatitis C virus in Saudi haemodialysis patients. *Vox Sanginis* 1992; 62: 94–97.

151. Al Saran K, *et al.* Factors affecting response to hepatitis B vaccine among hemodialysis patients in a large Saudi Hemodialysis Center. *Saudi Journal of Kidney Diseases and Transplantation: an Official Publication of the Saudi Center for Organ Transplantation, Saudi Arabia* 2014; 25: 185–191.

152. Al Shohaib SS, *et al.* The prevalence of hepatitis C virus antibodies among hemodialysis patients in Jeddah area, Saudi Arabia. *Saudi Journal of Kidney Diseases and Transplantation: an Official Publication of the Saudi Center for Organ Transplantation, Saudi Arabia* 1995; 6: 128–131.

153. Alsaran KA, *et al.* Effect of hepatitis C virus on hemoglobin and hematocrit levels in Saudi hemodialysis patients. *Renal Failure* 2009; 31: 349–354.

154. Ayoola E, *et al.* Prevalence and significance of antibodies to hepatitis C virus among Saudi haemodialysis patients. *Journal of Medical Virology* 1991; 35: 155–159.

155. Bahakim H, *et al.* Hepatitis C virus antibodies in high-risk Saudi groups. *Vox Sanginis* 1991; 60: 162–164.

156. Bernich B, *et al.* Prevalence of hepatitis C virus antibodies in hemodialysis patients in madinah Al munawarah. *Saudi Journal of Kidney Diseases Transplantation* 1995; 6: 132–135.

157. Fakunle YM, *et al.* Prevalence of antibodies to hepatitis C virus in hemodialysis patients in Riyadh. *Annals of Saudi Medicine* 1991; 11: 504–506.

158. Huraib S, *et al.* High prevalence of and risk factors for hepatitis C in hemodialysis patients in Saudi Arabia: a need for new dialysis strategies. *Nephrology, Dialysis, transplantation: Official Publication of the European Dialysis and Transplant Association – European Renal Association* 1995; 10: 470–474.

159. Hussein MM, *et al.* Observations in a Saudi-Arabian dialysis population over a 13-year period. *Nephrology Dialysis Transplantation* 1994; 9: 1072–1076.

160. Hussein MM, *et al.* The impact of polymerase chain reaction assays for the detection of hepatitis C virus infection in a hemodialysis unit. *Saudi Journal of Kidney Diseases and Transplantation: an Official Publication of the Saudi Center for Organ Transplantation, Saudi Arabia* 2007; 18: 107–113.

161. Karkar A, *et al.* Prevention of viral transmission in HD units: the value of isolation. *Saudi Journal of Kidney Diseases and Transplantation: an Official Publication of the Saudi Center for Organ Transplantation, Saudi Arabia* 2006; 17: 183–188.

162. Kashem A, Karim MR. Prevalence of hepatitis B and C among hemodialysis patients in Najran of Saudi Arabia. *Bangladesh Renal Journal* 2002; 21: 34–38.
163. Kashem A, et al. Hepatitis C virus among hemodialysis patients in Najran: prevalence is more among multicenter visitors. Saudi Journal of Kidney Diseases and Transplantation: an Official Publication of the Saudi Center for Organ Transplantation, Saudi Arabia 2003; 14: 206–211.

164. Kumar R. Hepatitis C virus infection among hemodialysis patients in the Najran region of Saudi Arabia. Saudi Journal of Kidney Diseases and Transplantation: an Official Publication of the Saudi Center for Organ Transplantation, Saudi Arabia 1997; 8: 134–137.

165. Mitwalli A, et al. Hepatitis C in chronic renal failure patients. American Journal of Nephrology 1992; 12: 288–291.

166. Mitwalli AH, et al. Hepatitis C virus (HCV) infection in Saudi dialysis patients and healthy controls. Saudi Journal of Gastroenterology: Official Journal of the Saudi Gastroenterology Association 2000; 6: 79–83.

167. Saran KA, et al. Evaluation of quality of care in a large Saudi hemodialysis center (Prince Salman Center for Kidney Diseases, Riyadh, KSA). Renal Failure 2011; 33: 555–561.

168. Saxena AK, et al. Prevalence of hepatitis C antibodies among hemodialysis patients in Al-hasa region of Saudi Arabia. Saudi Journal of Kidney Diseases and Transplantation: an Official Publication of the Saudi Center for Organ Transplantation, Saudi Arabia 2001; 12: 562–565.

169. Saxena AK, Panhotra BR. The susceptibility of patients with type-2 diabetes to hepatitis C virus infection among hemodialysis patients in their medical practice. Swiss Medical Weekly 2003; 133: 611–618.

170. Saxena AK, et al. Impact of dedicated space, dialysis equipment, and nursing staff on the transmission of hepatitis C virus in a hemodialysis unit of the Middle East. American Journal of Infection Control 2003; 31: 26–33.

171. Saxena AK, Panhotra BR. The impact of nurse understaffing on the transmission of hepatitis C virus in a hospital-based hemodialysis unit. Medical Principles and Practice 2004; 13: 129–135.

172. Shaheen FA, et al. Prevalence of hepatitis C antibodies among hemodialysis patients in the Western province of Saudi Arabia. Saudi Journal of Kidney Diseases and Transplantation: an Official Publication of the Saudi Center for Organ Transplantation, Saudi Arabia 1995; 6: 136–139.

173. Shobokshi OA, et al. Hepatitis C virus seroprevalence rate among Saudis. Saudi Medical Journal 2003; 24: S81-S86.

174. Souqiyeh MZ, et al. The annual incidence of seroconversion of antibodies to the hepatitis C virus in the hemodialysis population in Saudi Arabia. Saudi Journal of Kidney Diseases and Transplantation: an Official Publication of the Saudi Center for Organ Transplantation, Saudi Arabia 1995; 6: 167–173.

175. Souqiyeh MZ, et al. Dialysis centers in the kingdom of Saudi Arabia. Saudi Journal of Kidney Diseases and Transplantation: an Official Publication of the Saudi Center for Organ Transplantation, Saudi Arabia 2001; 12: 293–304.

176. Soyanwwo MA, et al. Hepatitis C antibodies in hemodialysis and pattern of end-stage renal failure in Gassim, Saudi Arabia. African Journal of Medicine and Medical Sciences 1996; 25: 13–22.

177. Tashkandy MA, et al. An audit of end-stage renal disease in a tertiary care hospital. Archives of Hellenic Medicine 2012; 29: 207–211.

178. El-Amin HH, et al. Hepatitis C virus infection in hemodialysis patients in Sudan: two centers’ report. Saudi Journal of Kidney Diseases and Transplantation: an Official Publication of the Saudi Center for Organ Transplantation, Saudi Arabia 2007; 18: 101–106.

179. Gasim GI, et al. Epidemiology of hepatitis B and hepatitis C virus infections among hemodialysis patients in Khartoum, Sudan. Journal of Medical Virology 2012; 84: 52–55.

180. Suliman SM, et al. Prevalence of hepatitis C virus infection in hemodialysis patients in Sudan. Saudi Journal of Kidney Diseases and Transplantation: an Official Publication of the Saudi Center for Organ Transplantation, Saudi Arabia 1995; 6: 154–156.

181. Abdulkarim AS, et al. Hepatitis C virus genotypes and hepatitis G virus in hemodialysis patients from Syria: identification of two novel hepatitis C virus subtypes. The American Journal of Tropical Medicine and Hygiene 1998; 59: 571–576.

182. Othman B, Monem F. Prevalence of antibodies to hepatitis C virus among hemodialysis patients in Damascus, Syria. Infection 2001; 29: 262–265.

183. Moukeh G, et al. Epidemiology of hemodialysis patients in Aleppo city. Saudi Journal of Kidney Diseases and Transplantation 2009; 20: 140.

184. Ayed K, et al. Hepatitis C virus infection in hemodialysis patients from Tunisia: national survey by serologic and molecular methods. Transplantation Proceedings 2003; 35: 2573–2575.

185. Ben Othman S, et al. High prevalence and incidence of hepatitis C virus infections among dialysis patients in the East-Centre of Tunisia. Pathologie Biologique 2004; 52: 323–327.

186. Hmaied F, et al. Hepatitis C virus infection among dialysis patients in Tunisia: incidence and molecular evidence for nosocomial transmission. Journal of Medical Virology 2006; 78: 185–191.

187. Hachicha J, et al. Viral hepatitis C in chronic hemodialyzed patients in southern Tunisia. Prevalence and risk factors. Annales de medecine interne 1995; 146: 295–298.

188. Hmida S, et al. HCV antibodies in hemodialyzed patients in Tunisia. Pathologie Biologique 1995; 43: 581–583.

189. Jenni S, et al. Seropositivity to hepatitis C virus in Tunisian hemodialysis patients. Nouvelle revue francaise d'hematologie 1994; 36: 349–351.

190. Sassi F, et al. Hepatitis C virus antibodies in dialysis patients in Tunisia: a single center study. Saudi Journal of Kidney Diseases and Transplantation: an
HCV among hemodialysis patients

El Shahat YI, et al. Hepatitis C virus infection among dialysis patients in United Arab Emirates. *Saudi Journal of Kidney Diseases and Transplantation: an Official Publication of the Saudi Center for Organ Transplantation, Saudi Arabia* 2000; 11: 218–222.

Aman K, et al. Prevalence and associated factors of hepatitis C virus infection among renal disease patients on maintenance hemodialysis in three health centers in Aden, Yemen: a cross sectional study. *Saudi Journal of Kidney Diseases and Transplantation: an Official Publication of the Saudi Center for Organ Transplantation, Saudi Arabia* 2015; 26: 380–385.

Haidar NA. Prevalence of hepatitis B and hepatitis C in blood donors and high risk groups in Hajjah, Yemen Republic. *Saudi Medical Journal* 2002; 23: 1090–1094.

Selm SB. Prevalence of hepatitis C virus infection among hemodialysis patients in a single center in Yemen. *Saudi Journal of Kidney Diseases and Transplantation: an Official Publication of the Saudi Center for Organ Transplantation, Saudi Arabia* 2010; 21: 1165–1168.

Word Health Organization. *Global Status Report on Noncommunicable Diseases 2014*. World Health Organization, 2014 (http://www.who.int/nmh/publications/ncd-status-report-2014/en/). Accessed May 2017.

Grassmann A, et al. ESRD patients in 2004: global overview of patient numbers, treatment modalities and associated trends. *Nephrology Dialysis Transplantation* 2005; 20: 2587–2593.

Anand S, Bitton A, Gaziano T. The gap between estimated incidence of end-stage renal disease and use of therapy. *PLoS ONE* 2013; 8: e72860.

Zampieron A, et al. European study on epidemiology and management of hepatitis C virus (HCV) infection in the haemodialysis population part 3: prevalence and incidence. *European Dialysis and Transplant Nurses Association/European Renal Care Association Journal* 2006; 32: 42–44.

Patel PR, et al. Epidemiology, surveillance, and prevention of hepatitis C virus infections in hemodialysis patients. *American Journal of Kidney Diseases* 2010; 56: 371–378.

Finelli L, et al. National surveillance of dialysis-associated diseases in the United States, 2002. *Seminars in dialysis* 2005; 18: 52–61.

Johnson DW, et al. Frequencies of hepatitis B and C infections among haemodialysis and peritoneal dialysis patients in Asia-pacific countries: analysis of registry data. *Nephrology Dialysis Transplantation* 2009; 24: 1598–1603.

Center for disease control and prevention. Recommendations for preventing transmission of infections among chronic hemodialysis patients; 2001. (MMWR recommendations and reports)

Zampieron A, et al. European study on epidemiology and the management of HCV in the haemodialysis population. Part 1: Centre policy. *European Dialysis and Transplant Nurses Association/European Renal Care Association Journal* 2004; 30: 84–90.

MoPH. *Syrian Refugees Crisis: Impact on Lebanese Public Hospitals*. Lebanon: APIS Health Consulting Group Report: Ministry of public Health, 2016.

Daw MA, Dau AA. Hepatitis C virus in Arab world: a state of concern. *The Scientific World Journal* 2012; 2012: 719494.

Fabrizi F, Messa P. Transmission of hepatitis C virus in dialysis units: a systematic review of reports on outbreaks. *The International Journal of Artificial Organs* 2015; 38: 471–480.

Mahmud S, et al. Hepatitis C virus genotypes in the Middle East and North Africa: Distribution, diversity, and patterns. *Journal of Medical Virology* 2017.

Ashkani-Esfahani S, Alavian SM, Salehi-Marzijarani M. Prevalence of hepatitis C virus infection among hemodialysis patients in the Middle-East: a systematic review and meta-analysis. *World Journal of Gastroenterology* 2017; 23: 151–166.