Antimicrobial Susceptibility of *Stenotrophomonas maltophilia* Isolates from Korea, and the Activity of Antimicrobial Combinations against the Isolates

Hae-Sun Chung,1 Seong Geun Hong,2 Young Ree Kim,1 Kyeong Seob Shin,4 Dong Hee Whang,5 Jee Young Ahn,6 Yeon-Joon Park,7 Young Uh,7 Chulhun L. Chang,9 Jong Hee Shin,10 Hye Soo Lee,11 and Yunsop Chong1

1Department of Laboratory Medicine and Research Institute of Antimicrobial Resistance, Yonsei University College of Medicine, Seoul; 2Department of Laboratory Medicine, CHA Bundang Medical Center, CHA University, Seongnam; 3Department of Laboratory Medicine, Jeju National University School of Medicine, Jeju; 4Department of Laboratory Medicine, Chungbuk National University College of Medicine, Cheongju; 5Department of Laboratory Medicine, Inje University College of Medicine, Seoul; 6Department of Laboratory Medicine, Sooncheonhyang University College of Medicine, Gumi; 7Department of Laboratory Medicine, The Catholic University of Korea College of Medicine, Seoul; 8Department of Laboratory Medicine, Yonsei University Wonju College of Medicine, Wonju; 9Department of Laboratory Medicine, Pusan National University School of Medicine, Busan; 10Department of Laboratory Medicine, Chonnam National University Medical School, Gwangju; 11Department of Laboratory Medicine, Chonbuk National University Medical School, Jeonju, Korea

Received: 24 July 2012
Accepted: 15 November 2012

Address for Correspondence:
Seong Geun Hong, MD
Department of Laboratory Medicine, CHA Bundang Medical Center, CHA University, 59 Yatap-ro, Bundang-gu, Seongnam 443-712, Korea
Tel: +82.31-780-5463, Fax: +82.31-780-5476
E-mail: hseo@cha.ac.kr

This research was supported by the Happy Tech Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (grant number 2011004679).

INTRODUCTION

Stenotrophomonas maltophilia is an environmental global emerging Gram-negative multiple-drug-resistant organism that is most commonly associated with respiratory infections (1). Isolation of *S. maltophilia* from human specimens may represent colonization rather than infection. Although not highly virulent, *S. maltophilia* can infect immunocompromised hosts and hospitalized patients being predisposed to infection (2). The mortality rates ranged from 14% to 69% in patients with bacteremia by *S. maltophilia* (3, 4). *S. maltophilia* exhibits high-level intrinsic resistance to a broad spectrums of antibiotics, includ-
ing β-lactams, quinolones, aminoglycosides, tetracycline, disinfectants, and heavy metals (5, 6). S. maltophilia can also acquire resistance through the uptake of resistance genes located in integrons, transposons, and plasmids (7). Therefore, infections caused by S. maltophilia are particularly difficult to manage because they show resistance to many classes of antimicrobial agents. The recommended therapeutic agents for S. maltophilia infection is trimethoprim-sulfamethoxazole by the evidences of case reports and in vitro susceptibility studies (2). Recently, combinations of antimicrobials have been recommended as treatment for S. maltophilia infection, especially in severe septic, neuropenic, debilitated or immunocompromised patients, or when trimethoprim-sulfamethoxazole cannot be used or tolerated (2, 8, 9). However, there is no study focused on the antimicrobial activity of the antibiotics combinations to S. maltophilia in Korea.

The aim of this study was to determine antimicrobial susceptibility of recent clinical S. maltophilia isolates from Korea, and to compare the activity levels of several combinations of antimicrobials.

MATERIALS AND METHODS

Bacterial strains
A total of 206 non-duplicate clinical isolates of S. maltophilia were collected in 2010 from 11 university hospitals. The species were identified using conventional methods and/or the VITEK2 system (bioMerieux, Marcy l’Etoile, France). Among the 206 isolates, 30 were selected for the checkerboard method based on susceptibility: 10 isolates with resistant to trimethoprim-sulfamethoxazole, 26 with resistant to ceftazidime, 22 with nonsusceptible to ticarcillin-clavulanate, and 25 with nonsusceptible to levofloxacin.

Antimicrobial susceptibility test
Antimicrobial susceptibility testing was performed using the CLSI agar dilution method (10). The antimicrobial agents used were trimethoprim-sulfamethoxazole (Dong Wha, Seoul, Korea), levofloxacin (Daiichi, Tokyo, Japan), moxifloxacin (Bayer Korea, Seoul, Korea), minocycline (SK Chemicals Life Science, Seoul, Korea), tigecycline (Wyeth Research, Pearl River, NY, USA), cefazidine (Sigma Chemical, St. Louis, MO, USA), ticarcillin-clavulanate (Dong-A, Yongin, Korea), chloramphenicol (Chong Kun Dang, Seoul, Korea), and amikacin (Sigma Chemicals). The breakpoints recommended by CLSI for S. maltophilia were applied to interpret the minimum inhibitory concentrations (MICs) (10). Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853 were used as controls.

In vitro activity of antimicrobial combinations
In vitro activity of antimicrobial combinations was tested by the checkerboard method. The antimicrobial combinations tested were trimethoprim-sulfamethoxazole + ticarcillin-clavulanate, levofloxacin + ceftazidime, ceftazidime + amikacin, and ticarcillin-clavulanate + amikacin. Fractional inhibitory concentration (FIC) index was calculated according to the following formula:

\[
\text{FIC}_A = \frac{\text{MIC of A in combination}}{\text{MIC of A alone}} \\
\text{FIC}_B = \frac{\text{MIC of B in combination}}{\text{MIC of B alone}} \\
\text{FIC index} = \text{FIC}_A + \text{FIC}_B
\]

The FIC indices were interpreted as follows: ≤ 0.5, synergistic; > 0.5 to 4, indifferent; > 4, antagonistic (11).

RESULTS

Antimicrobial susceptibility test
MIC ranges, MIC\(_{50}\)s, MIC\(_{90}\)s, and the percentages of resistant isolates for various antimicrobial agents are shown in Table 1. The MIC of trimethoprim-sulfamethoxazole ranged from ≤ 0.06 to 128 µg/mL, and the MIC\(_{50}\) and MIC\(_{90}\) were 1 and 2 µg/mL, respectively. The susceptibility rate was 96%. The MIC of levofloxacin ranged from 0.12 to 64 µg/mL, and the MIC\(_{50}\) and MIC\(_{90}\)

Table 1. Antimicrobial activity of various antimicrobial agents against S. maltophilia by the agar dilution method

Antimicrobial	MIC (µg/mL)	Susceptibility (%)				
	Range	50%	90%	S	I	R
Cotrimoxazole	≤ 0.06-128	1	2	96	-	4
Levofloxacin	0.12-64	2	16	64	16	20
Moxifloxacin	≤ 0.06-32	0.5	8	-	-	-
Minocycline	0.12-16	0.5	2	99	<1	<1
Tigecycline	≤ 0.06-8	1	4	-	-	-
Cefazidime	1- > 128	64	>128	21	8	71
Ticarcillin-clavulanate	1-16	32	>128	38	38	24
Chloramphenicol	8-128	16	64	7	45	49
Amikacin	≤ 1- > 128	>128	>128	-	-	-

S, susceptible; I, intermediate; R, resistant.
were 2 and 16 µg/mL, respectively, which were higher than those of moxifloxacin (0.5 and 8 µg/mL, respectively). The resistance rate to levofloxacin was 20%. The MIC50 and MIC90 of minocycline were 0.5 and 2 µg/mL, respectively, and only one isolate was resistant to minocycline (the resistance rate < 1%). The MICs of tigecycline ranged from ≤ 0.06 to 8 µg/mL, and the MIC50 and MIC90 were 1 and 4 µg/mL, respectively, which were two-fold higher than those of minocycline. The MIC50 of amikacin was > 128 µg/mL. The MIC90 of ceftazidime 64 µg/mL and the resistance rate was 71%. The MIC90 of ticarcillin-clavulanate was 32 µg/mL and the resistance rate was 24%. The MIC range of chloramphenicol was 8-128 µg/mL, the MIC50 and MIC90 were 16 and 64 µg/mL, respectively. The resistance rate to chloramphenicol was 49%.

DISCUSSION

Trimethoprim-sulfamethoxazole showed the lowest MIC90 (2 µg/mL) and the isolates showed a high susceptibility rate of 96% to this agent. Trimethoprim-sulfamethoxazole is still considered the treatment of choice for suspected or culture-proven *S. maltophilia* infections. Resistance rates to trimethoprim-sulfamethoxazole have been reported to vary geographically, which were generally less than 10% (2, 12, 13). In this study, all hospitals showed low resistance rate of 5%-10% except one hospital (26%). Some studies with isolates from cystic fibrosis patients and from some Asian countries, such as Taiwan and Turkey, showed high resistance rates (31.3%-100%) (13-25).

In this study, the resistance rate to levofloxacin was 20%, which was higher than the rates of 3% to 11% seen in previous studies (13, 20, 21, 26). Especially, three of hospitals showed high resistance rates over 30%. MIC50 of levofloxacin was also higher than our previous study (27). Moxifloxacin was more active than levofloxacin considering low MICs. Moxifloxacin could be suggested as an alternative to levofloxacin. Further clinical studies are necessary to evaluate the effectiveness of moxifloxacin in treating *S. maltophilia* infections, because there is little data published on the clinical efficacy of moxifloxacin.

The tetracycline derivatives minocycline and tigecycline have shown good in vitro activity against clinical isolates of *S. maltophilia*, but there is little clinical data for treating *S. maltophilia* infections (28, 29). In this study, two isolates were intermediate and one isolate were resistant to minocycline. But, minocycline shows highest in vitro activity against *S. maltophilia* strains, and this data was similar to that of Taiwan, Brazil, Spain, and the USA (16, 21, 22, 30). MICs of tigecycline ranged from ≤ 0.06 to 8 µg/mL, and MIC50 and MIC90 were 1 and 4 µg/mL, respectively. Antimicrobial susceptibilities of a worldwide collection of 1,586 *S. maltophilia* tested against tigecycline, MIC50 and MIC90 of tigecycline were 0.5 and 2 µg/mL (31). The tigecycline in vitro surveillance in Taiwan collected a total of 903 *S. maltophilia*, MIC range of tigecycline was from 0.13 to 16 µg/mL, and MIC50 and MIC90 were 2 and 4 µg/mL (32).

The rates of susceptibility to ceftazidime and ticarcillin-clavulanate were similar with other studies (13-25). The β-lactams and/or β-lactamase inhibitor combinations show little activity against *S. maltophilia*, because the organism has a high intrin-
sic resistance to most penicillins and cephalosporins, and to all carbapenems (7). Chloramphenicol showed similar resistant rate with previous reports, but much lower susceptibility rate due to high intermediate rate (45%) (15, 19, 21, 23).

Considering of the highest MIC, amikacin demonstrated the least active drug to S. maltophilia among the tested drugs. The aminoglycosides show poor activity against S. maltophilia because of high intrinsic resistance and therefore is not useful in monotherapy (7).

Because of historical evidence, case reports and high in vitro susceptibility rates, cotrimoxazole is usually considered the treatment of choice for S. maltophilia infection (2). However, increasing resistance to cotrimoxazole and the alternate antimicrobials may cause problems for the empirical treatment of S. maltophilia infections. Therefore, combination therapy may be indicated in the setting of severe sepsis, neutropenia or polymicrobial infections, but clinical evidence is still lacking (2, 7). Combination therapy may be more practical when cotrimoxazole therapy is contraindicated. We assessed the activity of four antimicrobial combinations by the checkerboard method, since these combinations had been reported to have synergistic effects to S. maltophilia (7). Synergistic effect was demonstrated by all combinations (34%-66%) (Table 2). Synergy for trimethoprim-sulfamethoxazole resistant S. maltophilia isolates were shown by trimethoprim-sulfamethoxazole plus ticarcillin-clavulanate (4/6), ceftazidime plus amikacin (4/6), and ticarcillin-clavulanate plus amikacin (5/6).

Poulos et al. (33) demonstrated synergy between trimethoprim-sulfamethoxazole and ticarcillin-clavulanic acid by the checkerboard method and by the time-kill assay in 19 different trimethoprim-sulfamethoxazole-resistant strains. In our study, synergistic activities by trimethoprim-sulfamethoxazole plus ticarcillin-clavulanate were shown in 67% of trimethoprim-sulfamethoxazole-resistant S. maltophilia, MIC values of trimethoprim-sulfamethoxazole were not decreased below susceptible breakpoint. Likewise, other antimicrobial combinations (ceftazidime plus amikacin, ticarcillin-clavulanate plus amikacin) were synergistic, MIC value of each antibiotic agent sometimes was not clearly decreased (data not shown). Antibiotics for combination therapy should be chosen on the basis of in vitro susceptibility test (7). Therefore, it is uncertain and needs to be evaluated that combination therapy with trimethoprim-sulfamethoxazole plus ticarcillin-clavulanate inhibit the growth in vivo of trimethoprim-sulfamethoxazole resistant S. maltophilia.

Although the choice of monotherapy or combination therapy is a controversial issue, several authors suggest combination treatment, especially in patients at risk (2, 7). Synergy testing may help determine the most appropriate combination in each special setting, but the problem is a lack of standardization of the techniques to determine synergy (34). Clinical data of in vivo combination therapy should be warranted.

ACKNOWLEDGMENTS

The microorganisms were provided by the National Biobank of Korea - Chonbuk National University Hospital, which is supported by the Ministry of Health, Welfare and Family Affairs. All materials derived from the National Biobank of Korea were obtained with informed consent under institutional review board-approved protocols. The authors have no conflicts of interest to disclose.

REFERENCES

1. Brooke JS. Stenotrophomonas maltophilia: an emerging global opportunistic pathogen. Clin Microbiol Rev 2012; 25: 2-41.
2. Abbott II, Slavin MA, Turnidge JD, Thursky KA, Worth LJ. Stenotrophomonas maltophilia: emerging disease patterns and challenges for treatment. Expert Rev Anti Infect Ther 2011; 9: 471-88.
3. Jang TN, Wang FD, Wang LS, Liu CY, Liu JM. Xanthomonas maltophilia bacteremia: an analysis of 32 cases. J Formos Med Assoc 1992; 91: 1170-6.
4. Victor MA, Arpi M, Bruun B, Jonsson V, Hansen MM. Xanthomonas maltophilia bacteremia in immunocompromised hematological patients. Scand J Infect Dis 1994; 26: 163-70.
5. Zhang L, Li XZ, Poole K. Multiple antibiotic resistance in Stenotrophomonas maltophilia: involvement of a multidrug efflux system. Antimicrob Agents Chemother 2000; 44: 287-93.
6. Alonso A, Martinez JL. Multiple antibiotic resistance in Stenotrophomonas maltophilia. Antimicrob Agents Chemother 1997; 41: 1140-2.
7. Looney WJ, Narita M, Muhlemann K. Stenotrophomonas maltophilia: an emerging opportunistic human pathogen. Lancet Infect Dis 2009; 9: 312-23.
8. Liaw SJ, Teng LJ, Hsueh PR, Ho SW, Luh KT. In vitro activities of antimicrobial combinations against clinical isolates of Stenotrophomonas maltophilia. J Formos Med Assoc 2002; 101: 495-501.
9. Mudre RR, Harris AP, Muller S, Edmond M, Chow JW, Papadakis K, Wagener MW, Bodey GP, Steckelberg JM. Bacteremia due to Stenotrophomonas (Xanthomonas) maltophilia: a prospective, multicenter study of 91 episodes. Clin Infect Dis 1996; 22: 508-12.
10. Clinical Laboratory and Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing: Twenty-first Informational Supplement. Wayne, 2011.
11. Odds FC. Synergy, antagonism, and what the chequerboard puts between them. J Antimicrob Chemother 2003; 52: 1.
12. Gales AC, Jones RN, Forward KR, Linares J, Sader HS, Verhoef J. Emerging importance of multidrug-resistant Acinetobacter species and Stenotrophomonas maltophilia as pathogens in seriously ill patients: geographic patterns, epidemiological features, and trends in the SENTRY Antimicrobial Surveillance Program (1997-1999). Clin Infect Dis 2001; 32 Suppl 2: S104-13.
13. Sader HS, Jones RN. Antimicrobial susceptibility of uncommonly isolated non-enteric Gram-negative bacilli. Int J Antimicrob Agents 2005; 25: 95-109.
14. Fedler KA, Biedenbach DJ, Jones RN. Assessment of pathogen frequency and resistance patterns among pediatric patient isolates: report from the 2004 SENTRY Antimicrobial Surveillance Program on 3 continents.
24. Weiss K, Restieri C, De Carolis E, Laverdiere M, Guay H. Comparative activity of new quinolones against 326 clinical isolates of Stenotrophomonas maltophilia. J Antimicrob Chemother 2000; 45: 363-5.

25. Travassos LH, Pinheiro MN, Coelho FS, Sampaio JL, Merquior VL, Marques EA. Phenotypic properties, drug susceptibility and genetic relatedness of Stenotrophomonas maltophilia clinical strains from seven hospitals in Rio de Janeiro, Brazil. J Appl Microbiol 2004; 96: 1143-50.

26. Wu H, Wang JT, Shiau YR, Wang HY, Yang Lauderdale TL, Chang SC. A multicenter surveillance of antimicrobial resistance on Stenotrophomonas maltophilia in Taiwan. J Microbiol Immunol Infect 2012; 45: 120-6.

27. Chung HS, Hong SG, Lee Y, Kim M, Yong D, Jeong SH, Lee K, Chong Y. Antimicrobial susceptibility of Stenotrophomonas maltophilia isolates from a Korean tertiary care hospital. Yonsei Med J 2012; 53: 439-41.

28. Belvisi V, Fabietti P, Del Borgo C, Marocco R, Di Vincenzo E, Soscia F, Mastroianni CM. Successful treatment of Stenotrophomonas maltophilia soft tissue infection with tigecycline: a case report. J Chemother 2009; 21: 367-8.

29. Blanquer D, De Otero J, Padilla E, Gomez E, Mayol A, Irigaray R, Espejo P, Rada MA, Makrantoni G, Perez AB. Tigecycline for treatment of nosocomial-acquired pneumonia possibly caused by multi-drug resistant strains of Stenotrophomonas maltophilia. J Chemother 2008; 20: 761-3.

30. Galles AC, Jones RN, Sader HS. Antimicrobial susceptibility profile of contemporary clinical strains of Stenotrophomonas maltophilia isolates: can moxifloxacin activity be predicted by levofloxacin MIC results? J Chemother 2008; 20: 38-42.

31. Farrell DJ, Sader HS, Jones RN. Antimicrobial susceptibilities of a worldwide collection of Stenotrophomonas maltophilia isolates tested against tigecycline and agents commonly used for S. maltophilia infections. Antimicrob Agents Chemother 2010; 54: 2735-7.

32. Chen YH, Lu PL, Huang CH, Liao CH, Lu CT, Chuang YC, Tsao SM, ChenYS, Liu YC, Chen WY. Trends in the susceptibility of clinically important resistant bacteria to tigecycline: results from the Tigecycline In Vitro Surveillance in Taiwan study, 2006 to 2010. Antimicrob Agents Chemother 2012; 56: 1452-7.

33. Poulos CD, Matsumura SO, Willey BM, Low DE, McGear A. In vitro activities of antimicrobial combinations against Stenotrophomonas (Xanthomonas) maltophilia. Antimicrob Agents Chemother 1995; 39: 2220-3.