ABSTRACT: A pathological hallmark of Huntington’s disease (HD) is the formation of neuronal protein deposits containing mutant huntingtin fragments with expanded polyglutamine (polyQ) domains. Prior studies have shown the strengths of solid-state NMR (ssNMR) to probe the atomic structure of such aggregates, but have required in vitro isotopic labeling. Herein, we present an approach for the structural fingerprinting of fibrils through ssNMR at natural isotopic abundance (NA). These methods will enable the spectroscopic fingerprinting of unlabeled (e.g., ex vivo) protein aggregates and the extraction of valuable new long-range 13C−13C distance constraints.

Protein aggregates that are the hallmark of many incurable protein-misfolding disorders continue to be challenging targets for structural studies. However, knowledge of their structures is essential to understand the molecular mechanism of protein misfolding and aggregation.¹ Magic angle spinning (MAS) ssNMR has provided not only high-resolution structures of protein fibrils but also unique and crucial insights into the atomic-level underpinnings of polymorphic aggregated states.²,³ The latter studies directly compare 1D and 2D spectra of distinct fiber polymorphs, as “spectroscopic fingerprints”, taking advantage of the structural sensitivity of NMR chemical shifts. Thus far, these experiments rely on multidimensional correlation spectroscopy applied to poly-peptides with 13C/15N isotope enrichment, which limits or prevents applications to samples that are hard or impossible to label, such as patient- or animal-derived materials.

Here, an approach for determining high-resolution structural fingerprints of protein aggregates at NA is presented and shows how the absence of isotopic enrichment is a substantial advantage for these kinds of structure-based analyses. This approach is demonstrated on neurotoxic aggregates formed by the first exon of mutant huntingtin protein (with 44 Gln residues; Q44-HttEx1) and a peptide-based model of its polyQ core ($D_{2}Q_{45}K_{2}$), both at NA (Figure 1a). Notably, we report for the first time the extraction of long-range 13C−13C distances on protein fibrils at NA, yielding intermolecular constraints that map out the core arrangement of Q44-HttEx1 fibrils. These measurements are enabled both by the dilute network of NA 13C spins (1.1%) and by enhancing sensitivity with dynamic nuclear polarization (DNP).

PolyQ expansion diseases, such as HD, are caused by an autosomal dominant genetic mutation that leads to an expanded CAG trinucleotide repeat in a affected genes.⁴ Expansion beyond 35 Gln residues in Htt causes the

Figure 1. (a) Secondary structure schematic of Q44-HttEx1 and $D_{2}Q_{45}K_{2}$. (b) 13C spectra of Q44-HttEx1 with and without μw irradiation. The polyQ and PPII-helix resonances are labeled.

Received: August 21, 2018
Published: October 19, 2018
misfolding and aggregation of fragments of the protein in HD patients’ neurons. In vitro, mutant HttEx1 forms amyloid-like fibrils that are toxic to neurons, with the aggregation conditions dictating differences in both structure and toxicity. In vivo, the cellular milieu likely influences aggregate formation. Cryo-EM studies on cellular HttEx1 aggregates revealed a fibril morphology reminiscent of those obtained in vitro, but were unable to provide the atomic-resolution structural data needed for a direct comparison, due to the heterogeneity of the fibrils. Given the correlations between the structure of aggregate polymorphs and their cytotoxicity, it is of great importance to develop approaches that probe structural polymorphisms between aggregates directly from heterogeneous sources, including neuronal cell tissues, model animals, and patients. Here, we show how DNP-ssNMR enables 13C−13C and 13C−15N correlation spectra to be recorded at NA, providing spectral fingerprints, which had previously required isotopic labeling. Beyond chemical-shift-based fingerprinting, we show how DNP-enabled studies of aggregates at NA open up exciting possibilities for powerful structural measurements. The simplified spin−spin interactions at NA (i.e., without dipolar truncation), enable local and long-range distance measurements, not possible in densely isotopically enriched samples, thus allowing comparisons of local and supra-molecular structures between fibril polymorphs. Combined, the chemical-shift analysis and distance information provide a rich structural fingerprint. The enhanced sensitivity necessary to enable these demanding studies is provided by MAS DNP, in which the inherently larger polarization of unpaired electrons is transferred to nuclei using suitable microwave (μw) irradiation.

Here the enhanced sensitivity afforded by DNP translates into a 50-fold enhancement of the ssNMR signals of HttEx1 protein aggregates (Figure 1b). With the aid of this enhancement, we can determine the 13C and 15N connectivities in 2D spectra that provide a one-bond spectral fingerprint of the sample (Figure 2a). Distinct signals in this NA fingerprint define the amyloid core and the oligoproline regions of Q44-HttEx1. In the double quantum (DQ) single quantum (SQ) 13C−13C correlation experiment and heteronuclear 13C−15N correlation spectrum (Figure 2), two types of spectroscopically inequivalent glutamine residues are observed. In addition, no C′−NH+1 correlation is observed between the two types of glutamine residues, indicating that β-strands consist only of one or the other type of glutamine. Further confirmation of this interpretation is derived from analogous fingerprint spectra obtained on the polyQ core model peptide, D2Q15K2 (Figure 2b). Upon comparison of the Q44-HttEx1 and D2Q15K2 spectral fingerprints in Figure 2, no appreciable difference between chemical shift values is observed for either type of glutamine in the polyQ amyloid core.

To measure distances in MAS ssNMR, the dipolar coupling is reintroduced and the buildup of signal intensity of resonances reflecting the interaction between two nuclei is measured as a function of the buildup time. To enable the extraction of the corresponding interatomic distances, one
simulates the distance-dependence of the polarization transfer curve. However, the precision and accuracy of this approach are often compromised due to effects from networks of coupled nuclei, relaxation, and contributions from other NMR parameters. In densely isotopically enriched proteins, the presence of a third strongly coupled nucleus often attenuates the transfer efficiency between two weakly coupled nuclei (i.e., at long distances), in a process known as dipolar truncation (Figure S1).12,13,22 Use of DQ-selected 13C-pairs in NA samples circumvents the issue of dipolar truncation, leading to simplified spin dynamics. This facilitates the extraction of long-range distance contributions with an accuracy that is not achievable in more conventional ssNMR 13C−13C distance measurements. We use 2D DQ/SQ 13C−13C correlation experiments (Figure S2) to obtain polarization buildup curves reflecting the integrated Ca−Ca correlations of the polyQ and oligoproline signals, shown in Figure 3.

To obtain distance information from the buildup curve a library of individual polarization buildup curves, representative of different 13C−13C distances, were numerically simulated with SPINEVOLUTION.20 Because of the 13C spin dilution at NA, only individual 13C−13C spin pairs need to be considered rather than multi-13C spin systems that require variations across a multitude of distance and angular combinations. Details of the fitting procedure can be found in the SI.

Interestingly long-range Ca−Ca contacts are only detected for one set of oligoproline signals in Q44-HttEx1. The corresponding buildup curve (Figure 3a) is best fit with a single 3.6 Å distance. The ability to probe Ca−Ca distances provides direct access to the secondary structure and allows discrimination between PPI and PPII helices, which are expected to have Ca−Ca distances in the ∼3 Å and ∼3.9 Å range, respectively.23 Moreover, the fact that we are not able to detect any long-range cross-peaks for the second type of oligoproline observed in Figure 2a imply that it is not forming a regular secondary structure, thus consistent with a random coil configuration. Note that access to oligoproline structural information using this approach should prove useful since PPII elements are present in fibrillar proteins and in folded and unfolded proteins.23

Fitting the Ca−Ca polyQ core buildups was conducted as follows. We first tried to fit the data assuming only $i−i±1$ intrastrand Ca−Ca contributions within the 3.5 to 3.9 Å range.24 The best fit intrastrand contact (3.8 Å) is presented as a dashed line in Figure 3b for Q44-HttEx1. There is a mismatch between these simulated intrastrand distances and the experimental points, indicating that the experimental data also contain long-range distance contributions. To evaluate whether this mismatch stems from underlying non-Gln signals we performed an analogous analysis on the polyQ model peptide (D$_2$Q$_{15}$K$_2$) lacking the flanking domains. As shown in

![Figure 3](https://doi.org/10.1021/jacs.8b09002)
Figure 3c, buildup curves of this polyQ amyloid assembly showed a similar deviation from the intrastrand simulations. Thus, it appears these measurements are detecting a significant presence of close intermolecular contacts in the polyQ amyloid core. To explore this, we modeled interstrand distances from parallel and antiparallel β-strand arrangements in our simulations. In parallel β-strands, Cα atoms maintain the same relative orientation between strands, while they alternate facing toward and away from each other in antiparallel β-strands (Figure 3d,e). Simulated buildup curves for parallel and antiparallel arrangements are plotted as green and blue solid lines respectively in Figure 3b,c. The simulated distances were derived from canonical cross-β structure interstrand arrangements (i.e., 4.8 Å hydrogen bonding distance between β-strands).

Both configurations fit the data reasonably well within the error of the measurement; however, an antiparallel structure best fits the data, based on a χ^2 analysis (Table 1). We also list indeed required) isotopically enriched samples. Overall, these results are an important first demonstration of structural measurements of protein fibrils at NA with DNP-enhanced ssNMR. The atomic resolution structural measurements made possible by these methods will complement conventional ssNMR and cryo-EM studies and pave the way for studies of unlabeled protein aggregates derived from cells, patients, and other hard-to-label sources.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.8b09002.

Details regarding samples, NMR, and simulations (PDF)

AUTHOR INFORMATION

Corresponding Authors

Adam N. Smith: 0000-0002-1373-1115
Patrick C. A. van der Wel: 0000-0002-5390-3321
Gael De Paepe: 0000-0001-9701-3593

Present Address

Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors thank Drs. Daniel Lee and Diego Gauto for helpful discussions, and Dr. James Conway for use of the EM facility. This work was funded by European Union Horizon 2020 research and innovation program under the Marie Sklodowska-Curie Action-795423-BOLD-NMR (A.N.S.), European Research Council grant ERC-CoG-2015 No. 682895 (G.D.P.), and NIH grants R01 GM112678 (P.v.d.W.) and T32 GM088119 (J.C.B.).

REFERENCES

1. Ross, C. A.; Poirier, M. A. Nat. Rev. Mol. Cell Biol. 2005, 6 (11), 891–898.
2. Van der Wel, P. C. A. Solid State Nucl. Magn. Reson. 2017, 88, 1–14.
3. Tycko, R. Neuron 2017, 86 (3), 632–645.
4. Bates, G. P.; Dorsey, R.; Gusella, J. F.; Hayden, M. R.; Kay, C.; Leavitt, B. R.; Nance, M.; Ross, C. A.; Scallill, R. J.; Wietzel, R.; Wild, E. J.; Tahrizi, S. J. Nat. Rev. Dis. Prim. 2015, 5, 15005.
5. Nekooki-Machida, Y.; Kurosawa, M.; Nukina, N.; Ito, K.; Oda, T.; Tanaka, M. Proc. Natl. Acad. Sci. U. S. A. 2009, 106 (24), 9679–9684.
6. Lin, H.-K.; Boatz, J. C.; Krabbendam, I. E.; Koldai, R.; Hou, Z.; Wietzel, R.; Dolga, A. M.; Poirier, M. A.; Van der Wel, P. C. A. Nat. Commun. 2017, 8 (May), 15462.
7. Qiang, W.; Yau, W.-M.; Lu, J.-X.; Collinge, J.; Tycko, R. Nature 2017, 541 (7636), 217–221.
8. Frederick, K. K.; Michaels, V. K.; Corzilius, B.; Ong, T. C.; Jacavone, A. C.; Griffen, R. G.; Lindquist, S. Cell 2015, 163 (3), 620–628.
9. Bäuerlein, F. J. B.; Saha, I.; Mishra, A.; Kalamov, M.; Martínez-Sánchez, A.; Klein, R.; Dudanova, I.; Hipp, M. S.; Hartl, F. U.; Baumeister, W.; Fernández-Busnadiego, R. Cell 2017, 171, 179–187.
(10) Takahashi, H.; Hediger, S.; De Paëpe, G. Chem. Commun. 2013, 49 (82), 9479.
(11) Märker, K.; Pingret, M.; Mouesca, J. M.; Gasparutto, D.; Hediger, S.; De Paëpe, G. J. Am. Chem. Soc. 2015, 137 (43), 13796–13799.
(12) Märker, K.; Paul, S.; Fernández-de-Alba, C.; Lee, D.; Mouesca, J. M.; Hediger, S.; De Paëpe, G. Chem. Sci. 2017, 8 (2), 974–987.
(13) Costa, P. R. Spins, Peptides, and Alzheimer’s Disease: Solid-State Nuclear Magnetic Resonance Investigations of Amyloid Peptide Conformation. Thesis, MIT, 1996.
(14) Smith, A. N.; Long, J. R. Anal. Chem. 2016, 88 (1), 122–132.
(15) Lee, D.; Hediger, S.; De Paëpe, G. Solid State Nucl. Magn. Reson. 2015, 66, 6–20.
(16) Can, T. V.; Ni, Q. Z.; Griffin, R. G. J. Magn. Reson. 2015, 253, 23–35.
(17) Mentink-Vigier, F.; Vega, S.; De Paëpe, G. Phys. Chem. Chem. Phys. 2017, 19, 3506–3522.
(18) Teymoori, G.; Pahari, B.; Stevensson, B.; Edén, M. Chem. Phys. Lett. 2012, 547, 103–109.
(19) Teymoori, G.; Pahari, B.; Edén, M. J. Magn. Reson. 2015, 261, 205–220.
(20) Veshtort, M.; Griffin, R. G. J. Magn. Reson. 2006, 178 (2), 248–282.
(21) De Paëpe, G. Annu. Rev. Phys. Chem. 2012, 63 (1), 661–684.
(22) Märker, K. Atomic-level structure determination of organic assemblies by dynamic nuclear polarization enhanced solid-state NMR. Thesis, University Grenoble Alpes, 2017.
(23) Adzhubei, A. A.; Sternberg, M. J. E.; Makarov, A. a. J. Mol. Biol. 2013, 425 (12), 2100–2132.
(24) Pauling, L.; Corey, R. B. Proc. Natl. Acad. Sci. U. S. A. 1951, 37 (11), 729–740.
(25) Serpell, L. C. Biochim. Biophys. Acta, Mol. Basis Dis. 2000, 1502 (1), 16–30.
(26) Mentink-Vigier, F.; Mathies, G.; Liu, Y.; Barra, A. L.; Caporini, M. A.; Lee, D.; Hediger, S.; Griffin, R. G.; De Paëpe, G. Chem. Sci. 2017, 8 (12), 8150–8163.
(27) Bouleau, E.; Saint-Bonnet, P.; Mentink-Vigier, F.; Takahashi, H.; Jacquot, J. F.; Bardet, M.; Aussenac, F.; Purea, A.; Engelke, F.; Hediger, S.; Lee, D.; De Paëpe, G. Chem. Sci. 2015, 6 (12), 6806–6812.
(28) Hoop, C. L.; Lin, H.-K.; Kar, K.; Magyarfalvi, G.; Lamley, J. M.; Boatz, J. C.; Mandal, A.; Lewandowski, J. R.; Wetzel, R.; Van der Wel, P. C. A. Proc. Natl. Acad. Sci. U. S. A. 2016, 113 (6), 1546–1551.
(29) Isas, J. M.; Langen, R.; Siemer, A. B. Biochemistry 2015, 54 (25), 3942–3949.
(30) Schneider, R.; Schumacher, M. C.; Mueller, H.; Nand, D.; Klaukien, V.; Heise, H.; Riedel, D.; Wolf, G.; Behrmann, E.; Raunser, S.; Seidel, R.; Engelhard, M.; Baldus, M. J. Mol. Biol. 2011, 412 (1), 121–136.