陽子ビームにさらされるとチタン合金製のビーム窓がもろくなる原因を解明
～RaDIATE国際コラボレーションによる大強度加速器標的・ビーム窓材料開発～

RaDIATE国際コラボレーション
J-PARCセンター

大学共同利用機関法人 高エネルギー加速器研究機構(KEK)
国立研究開発法人 日本原子力研究開発機構(JAEA)
フェルミ国立加速器研究所（FNAL）
パシフィック・ノースウエスト国立研究所（PNNL）
ブルックヘブン国立研究所（BNL）
科学技術施設会議（STFC） ラザフォード・アップルトン研究所（RAL）

本研究成果のポイント

● J-PARCやフェルミ国立加速器研究所(FNAL)などの大強度加速器施設の「ビーム窓」に用いられている高強度の64チタン合金は、陽子ビームにさらされるとかたく、もろくなることが知られており、「レプトンCP対称性の破れ」を検証する日米の長基線ニュートリノ振動実験で必要となる大強度のビーム運転を安定に行うためには、この原因解明が急務でした。

● 今回国際連携で加速器標的やビーム窓に用いる材料への大強度陽子ビーム照射を実施して、最先端機器による分析を行ったところ、64チタン合金には、その主なα(アルファ)相の結晶に、陽子ビームの照射によってナノメートルサイズの欠陥クラスターが高密度で生成するとともに、そのβ(ベータ)相の中に微細なω(オメガ)相と呼ばれる結晶構造が高密度で成長していくために、著しくかたくて組織が変化した可能性を明らかにしました。高エネルギー陽子や中性子に比較的低温でさらされた材料中に生成した欠陥クラスターが硬化を引き起こすことは他の金属でも観測されていますが、陽子ビーム照射がチタン合金中に高密度のω相の生成と成長を誘起する現象は、本研究で初めて観測されました。この現象が材料の性能劣化に与える影響について、引張試験で破壊した材料の破面の解析や原子レベルでの観察などを実施して、さらに調査する必要があります。

● 今回の成果は、大強度の陽子ビーム運転に耐えるビーム窓用チタン合金材料とその熱処理方法を決定するための大きな指針となります。さらに今後、核融合炉や核変換システムなどで必要とされる、照射損傷の影響を受けない新材料の開発にも役立つことが期待されます。
茨城県東海村の大強度陽子加速器実験施設 J-PARC や米国のフェルミ国立加速器研究所(FNAL)をはじめとする世界の大型陽子加速器施設では、加速器で加速した陽子ビームを標的と呼ばれる材料に衝突（照射）させ、ニュートリノ、ハドロン、中性子、ミューオンなどの粒子を作り出して、素粒子原子核物理学、物質生命科学、核融合炉や核変換システムに関する研究を進めています。標的に導かれる陽子は空気分子と衝突するとあちこちに散らばってしまうため、加速器の中は空気分子のほとんどない状態（真空）にします。一方で、標的は多くの場合、ヘリウムガスや窒素ガスで満たされた標的ステーションと呼ばれるエリアの中に設置されています。加速器と標的ステーションは「ビーム窓」と呼ばれる薄い金属の膜によって分けられています（図 1）。標的に向けて加速された大強度の陽子ビームが繰り返し照射するビーム窓は、瞬間的に熱を受け取り、それに伴う熱衝撃（圧力とその伝搬）が発生します。受ける熱量を少なくするために、ビーム窓には薄くて軽く、さらに熱衝撃に耐えるために高強度な材料が適しています。またビーム窓や標的に用いられている材料が陽子ビームを受ける際、材料中では原子レベルでのダメージ（照射損傷という）が起こり、その結晶格子のもとの位置から原子や原子の塊が蹴りだされます。この照射損傷によって、金属材料の機械的性能が著しく劣化するのみならず、温度によっては生成した空隙や欠陥による膨張が起こり、材料の寸法までが変化してしまうことが大きな課題となっています。

レプトン CP 対称性的破れ（※1）観測のため、J-PARC や FNAL では現在の陽子ビームの強度を大幅に超えるメガワット級の運転が計画されています。この最先端の高エネルギー物理研究を推進するためには、照射損傷によって性能が劣化しにくい標的やビーム窓の材料を開発または選定して、これらの機器の耐用寿命をより長くすることが重要です。この課題の解決のため、RaDIATE 国際コラボレーション（※2）として、日米欧の数多くの先端加速器機関と原子力総合研究機関が連携しています。2017～2018年に RaDIATE 国際コラボレーションのもと、米国ブルックヘブン国立研究所(BNL)の Brookhaven Linac Isotope Producer(BLIP)で、ビーム窓や標的材料への大強度陽子ビーム照射試験を実施しました。チタン合金は、J-PARC ニュートリノ施設でビーム窓に使用されており、FNAL のニュートリノビーム施設 Long Baseline Neutrino Facility(LBNF)のビーム窓としても利用される可能性があります。しかし、従来の材料のままでは、照射損傷によって機械的性能が劣化してしまい、非常に大強度なビームの熱衝撃に継続的に耐えられないのではないかと危惧されています。このため、様々な種類のチタン合金を照射試験を行った結果、高強度な 64 チタン合金でできています（提供：STFC RAL）。

【背 景】}

図 1：(左) 加速器と標的が設置された標的ステーションの間を仕切る薄い壁が「ビーム窓」です。ビーム窓には加速器で標的に向け加速された大強度陽子ビームが繰り返し入射します。J-PARC ニュートリノ実験施設のビーム窓。高強度な 64 チタン合金でできています（提供：STFC RAL）。
に組み込みました。照射試験を行った材料は米国のパシフィックノースウエスト国立研究所(PNNL)に輸送され、最先端の分析機器を用いて詳細な解析が行われています。図2に照射カプセルと呼ばれる容器の内部に組み込まれた引張試験用と電子顕微鏡観察用の試験材料の照射前の様子を示します。

【研究内容と成果】
現在、J-PARC ニュートリノ施設では軽くて高強度な材料であるチタン合金の中でも、特に高強度の64チタン合金(Ti-6Al-4V、チタン(Ti)に6%のアルミニウム(Al)と4%のバナジウム(V)を加えたもの)をビーム窓の材料として用いています。純チタンは885℃まで加熱すると固体のままで結晶の構造が変化して、低温側の構造(α相)から高温側の構造(β相)に変わりますが、AlとVにはそれぞれα相と

図3: 64チタン合金の電子顕微鏡観察画像。α相の結晶とは異なる構造のβ相が混在しているのが見て取れます。後述するω相は、このβ相の結晶中にβ相と特定的方向関係を持った異なる結晶構造が微細に析出したものです。
β相を安定化させる性質があります。64チタン合金は、これらを意図的に添加し熱処理することにより、α相とβ相の2つの相がバランスよく混在した構造を作り出し、その機械的性質を向上させた、α+β相型と呼ばれるチタン合金の代表です（図3）。ところが陽子ビームを受けた試料で引張試験を行った結果、僅かな照射量で著しく硬くなり、ビーム窓材料にとって重要な「均一伸び」をほぼ失ってしまいます（※3）。他方、同じα+β相型で、β相の割合が少ないTi-3Al-2.5V合金の場合には、3倍の照射を受けても、数％の均一伸びを保つことが明らかとなりました（図4）。

このような引張特性の著しい違いの原因を解明するため、原子レベルの分解能を持ち、ナノメーター（100万分の1ミリ）以下で材料の化学組成や構造の変化を調べることができる、様々な分析装置を備えた最先端の透過型電子顕微鏡（TEM）で照射を受けた64チタン合金を調べました。その結果、その主要なα相の結晶に、原子欠陥のループからなる欠陥クラスターが高密度で観測され、その中にはオメガ相（ω相）と呼ばれる新たな相がビーム照射量の増加に伴ってさらに高密度で成長していく過程が世界で初めて観察できました（図5）。

図4：Ti-6Al-4V合金（左）とTi-3Al-2.5V合金（右）の照射前（実線）と後（破線）の応力ひずみ線図（用語解説※4を参照）の変化の様子。Ti-6Al-4V合金（左）は、照射後に均一伸びをほぼ失ってしまう（降伏点を超えた直後にグラフが下降してしまう）ことがわかります。

図5：Ti-6Al-4V合金のβ相の透過型電子顕微鏡による観察の様子。各画面の右上に示す電子線の回折画像、母相（β相）に相当する明るい点の間に、ビーム照射量の増加に伴って明確なスポットがあらわれました。そのスポットのひとつに相当する部分（→で示します）を選び出した電子線の透過画像（大きい画面）では、高密度に分布するこんにちは白い点が、照射量の増加に従って、左→中→右に大きくなっていく様子が見てとれます。これが今回初めてとらえられた、陽子ビーム照射によって誘引されたω相が照射量の増加に伴い成長していく様子です。
て誤って低温で熱処理をするとβ相中に生成し、延性を著しく損なわせることが知られています。ω相は微細な前駆体として照射前から材料の中存在しているのですが、γ子ビーム照射によってその析出が加速され、材料を著しくもろくした可能性が考えられます。64チタン合金がγ子ビーム照射によって顕著に均一伸びを失う原因は、α相の結晶に微細な欠陥クラスターが高密度で生成するとともに、α相の粒界に存するβ相の中に脆化の原因となるω相が生成し、成長していくためである可能性が高いことが分かりました。これら二つの合金の引張挙動の違いを完全に理解するにはさらに検討が必要です。

【本研究の意義、今後への期待】
これまで大強度γ子加速器施設のビーム窓材料として64チタン合金を採用していましたが、わずかな照射損傷で均一伸びを失ってしまうことが明らかとなりました。そのため、J-PARCやFNALの非常に大強度な次世代ニュートリノ施設のビーム窓には使用できない恐れがあります。チタン合金には様々な種類があり、熟処理によっても性能を変えることができます。今回の結果から、照射によってもろくなりにくいチタン合金の種類や熟処理の決定に関して大きな手掛かりをつかむことが出来ました。事実、RaDIATE国際コラボレーションが行っている研究では、ある種のチタン合金で、照射によってもろくならない兆候を示すデータが得られております。本研究は日米のニュートリノ振動実験で必要となる大強度γ子ビーム運転に耐えるビーム窓材料の開発に向けての大きな成果となり、今後、核融合炉や核変換システムなどで必要とされる照射によって性能がほとんど劣化しない新材質の開発にも役立つことが期待されます。

RaDIATE国際コラボレーションは、ビーム窓用チタン合金材料をはじめ、世界の先端大型加速器施設が直面する標的・ビーム窓材料の課題解決に取り組んでおり、素粒子・原子核物理学、物質生命科学や核変換技術上のブレーキスルーにつながり、かつてない大強度での加速器運転を実現するため、今後その国際連携研究の意義はますます大きいものになっていくと考えられています。

【論文情報】

| タイトル | Tensile behavior of dual-phase titanium alloys under high-intensity proton beam exposure: radiation-induced omega phase transformation in Ti-6Al-4V |
| --- | --- |
| 著者 | Taku Ishida1,2, Eiichi Wakai1,3, Shunsuke Makimura1,2, Andrew M. Casella6, Danny J. Edwards6, Ramprashad Prabhakaran8, David J. Senor6, Kavin Ammigan7, Sujit Bidhar7, Patrick G. Hurh7, Frederique Pellemoine7, Christopher J. Densham8, Michael D. Fitton8, Joe M. Bennett8, Dohyun Kim9, Nikolaos Simos9, Masayuki Hagiwara1,4, Naritoshi Kawamura1,3, Shin-ichiro Meigo1,5, Katsuya Yonehara7, On behalf of the RaDIATE COLLABORATION |
| 所属 | 1J-PARCセンター, 2KEK素粒子原子核研究所, 3KEK物質構造科学研究所, 4KEK共通基盤研究施設, 5JAEA, 6PNNL, 7FNAL, 8STFC RAL, 9BNL |
| 雑誌名 | Journal of Nuclear Materials |
| DOI | https://doi.org/10.1016/j.jnucmat.2020.152413 |
【用語説明】

**※1 レプトン CP 対称性の破れ**

宇宙が形成された際に、どのようにして物質が反物質よりも多く存在するようになったのかは、宇宙や我々の存在にもかかわる根源的な謎の 1 つですが、現代宇宙論ではこの差は基本的な物理法則の「破れ」に起因していると考えられています。物理法則は基本的に対称であり、物質粒子に当てはまる法則は反物質粒子に当てはまることはわかっています。クオーク（物質を構成する素粒子）と反クオークの対称性はわずかに破られていることが分かりています。「荷電共役変換（C）・パリティ反転（P）対称性の破れ」と呼ばれるこの対称性の破れは、電子・ミューオン・ニュートリノを含む素粒子群であるレプトンではまだ実証されていません。ところが、先日 T2K 国際コラボレーションによって、J-PARC で生成したニュートリノと反ニュートリノの相違を 295 km 離れたニュートリノ検出器「スーパーカミオカンデ」で測定し、CP 対称性の大きな破れを示す兆候が得られたと報告がありました（参考）。この確証のために、現在、J-PARC をさらに大強化するとともに、スーパーカミオカンデの 8 倍もの有効体積を持つ「ハイパーカミオカンデ検出器」の建設が進んでいます。米国でも、イリノイ州の Fermilab で建設中の大強度ニュートリノ生成施設 LBNF から、1,300 km 離れたサウダゴダ州でニュートリノを検出する Deep Underground Neutrino Experiment (DUNE) という壮大なプロジェクトが進行中です。2027 年ごろに開始を予定しているこれらの実験のためには、ニュートリノビームを生み出す陽子加速器をメガワット級に大強化することが必要です。したがって、かつてない大強度でのビーム運転が引き起こす照射損傷に耐えうる標的やビーム窓用の材料開発は極めて重要です。

（参考）：J-PARC プレスリリース（2020.04.16）：ニュートリノの「CP 位相角」を大きく制限 - 粒子と反粒子の振る舞いの違いの検証に大きく前進する成果をネイチャー誌で発表 -
https://j-parc.jp/c/press-release/2020/04/16000516.html

**※2 RaDIATE 国際コラボレーション**

RaDIATE は Radiation In Accelerator Target Environments の略。標的・ビーム窓・コリメータ・ビームダングなど、大強度粒子加速器の直射を受ける機器に用いられる「加速器標的環境材料」に関する研究開発を進めるために、米国 FNAL、英国 STFC が提唱し、2012 年に FNAL を代表機関として開始された国際コラボレーション。2020 年現在、FNAL、STFC、米国 SNS、欧州 ESS・CERN、J-PARC（KEK と JAEA が共同で運営）などの大強度陽子加速器による素粒子原子核・中性子源・核変換研究施設に加え、米国 PNNL、英国 Oxford 大学、JAEA など、原子炉・核融合炉材料の放射線損傷に関する豊富な知見と技術を有する研究機関に所属する、日米欧の計 13 機関の 70 名を超える研究者や技術者が、標的環境材料の耐放射線損傷性能や耐ビーム熱衝撃性能に関する先端的な研究を連携して進めていく。

（参考）RaDIATE 国際コラボレーション Web サイト（英語）：https://radiate.fnal.gov/

**※3 引張試験と均一伸び**

引張試験では初めは加えた応力に比例して材料がひずみます。やがて降伏応力を超えると伸び始め、
グラフは曲線を示します。曲線が上昇している場合は、材料が均一に伸びていることを示しており、最高荷重点までの伸びを「均一伸び」と呼びます（図6）。均一伸びは、大きいと亀裂の進展を抑制するため、構造材料として重要な性質と考えられています。通常、照射損傷によって材料は硬くなり降伏応力は上昇しますが、同時に均一伸びは小さくなり、材料はもろくなります。このふるまいのことを照射硬化・脆化と呼びます。

図6：（左）引張試験で得られる理想的な応力-歪線図の例。朗国パシフィックノースウエスト国立研究所（PNNL）での引張試験の様子。ダンベルの形をした試験片を引っ張り、試験片の元の長さからの変形率（歪）と断面積あたりの荷重（応力）から材料の強度特性を知ることができます。