D-meson production in pp and p-Pb collisions measured with ALICE at the LHC

Cristina Terrevoli, for the ALICE Collaboration
Universita’ degli Studi di Padova and INFN, via Marzolo 9, 35131, Padova, Italy
E-mail: cristina.terrevoli@pd.infn.it

Abstract. The open heavy-flavour production studied with ALICE at the LHC in pp collisions at $\sqrt{s} = 7$ TeV and p–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV is presented. Focus is given to the dependence of the production on the multiplicity of charged particles produced in the collision.

1. Introduction

Heavy quarks (charm and beauty) can be used to study several aspects of QCD in high-energy hadronic collisions. They are produced in hard partonic scattering processes occurring in the initial stage of the collisions with large momentum transfer. Therefore, the study of their production in pp collisions provides a precision test of perturbative QCD (pQCD) calculations. In proton-nucleus collisions, heavy-flavour production could be modified by the presence of a nucleus in the colliding system. The cross section and p_T distributions of heavy-flavour hadrons could be influenced by the modification of the parton distributions functions in the nucleus (nPDF), especially at small Bjorken x (see e.g. [1]), by the k_T-broadening caused by soft scatterings of the partons in the incoming nucleus [2], and by possible energy loss of the produced heavy quarks in the nucleus [3]. These effects are commonly called Cold Nuclear Matter (CNM) effects. They are explored through the measurement of the nuclear modification factor R_{pPb}, i.e. the comparison of p–Pb measurements with pp results, to test whether the yield and the transverse momentum distributions follow or not a scaling with the number of binary nucleon-nucleon collisions in p–Pb collisions.

The study of the nuclear modification factor in different event multiplicity classes is also interesting to assess the possible modification of the p_T spectrum in high multiplicity events. Moreover, the measurement of heavy-flavour production, both in pp and p–Pb collisions, as a function of the multiplicity of charged particles produced in hadronic collisions can improve our understanding of their production mechanisms and could give insight into the role of Multi-Parton Interactions (MPI), i.e. several partonic interactions occurring in a single collision between two nucleons. If the production of heavy quarks is affected by the presence of additional hard scatterings between incoming partons, their yield should increase with multiplicity. The shape of the increasing trend depends on how the MPI contribute to the production of particles: if they equally contribute to soft and hard production, from small to large multiplicities, the increase would be linear. Indications of the relevance of MPI in heavy-quark production have been observed by NA27 [4] and recently by ALICE in the J/ψ and D-meson production measurement as a function of charged-particle multiplicity [5, 6].
2. D-meson reconstruction in ALICE

pp collisions at $\sqrt{s} = 7$ TeV (3×10^8 events) and p-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV (10^8 events) collected by the ALICE detector [7], with a minimum-bias trigger, in 2010 and 2013, respectively, were analyzed. Prompt D^0, D^+, D^{*+} were reconstructed via their hadronic decay channels and selected via the reconstruction of decay vertices displaced by a few hundred μm from the interaction vertex. Events were divided in classes using the charged-particle multiplicity measured at mid rapidity through the number of tracklets with $|\eta| < 1$ reconstructed by associating pairs of hits in the Silicon Pixel Detector (SPD) or at forward and backward rapidity using the charge collected by the V0 scintillator array.

3. D-meson production in pp collisions

D-meson p_T-differential cross sections were measured in pp collisions at $\sqrt{s} = 7$ TeV [8] and $\sqrt{s} = 2.76$ TeV [9]. They are well described by pQCD calculations [10, 11]. A pQCD-based energy scaling of the 7 TeV cross section to 2.76 TeV is in good agreement with the measured cross section at the same energy, confirming the robustness of the \sqrt{s} extrapolation needed to define the references for Pb-Pb and p-Pb measurements.

The study of D-meson production, evaluated for various multiplicity and p_T intervals, is presented via the D-meson self-normalized yield, i.e. the corrected per-event yield normalized to the multiplicity-integrated value:

$$\left(\frac{d^2N_D}{dydp_T}\right)^j \left(\frac{1}{\langle d^2N/D/dydp_T\rangle} \right) = \left(\frac{N_{raw \ D}^j}{N_{events}^j} \epsilon_{prompt \ D}^j \right) \left(\frac{1}{N_{MB \ trigger} / \epsilon_{MB \ trigger}} \langle N_{raw \ D} \rangle \right)$$

where the index j identifies the multiplicity interval, $N_{raw \ D}^j$ is the raw yield, $\epsilon_{prompt \ D}^j$ represents the reconstruction and selection efficiencies for prompt D mesons and N_{events}^j the number of events analysed in each multiplicity interval. The results for D^0, D^+, D^{*+} are compatible with each other. The average self-normalized yield of the three species increases with increasing multiplicity and does not depend on p_T within uncertainties in the interval 1-20 GeV/c, as shown in Fig 1. A similar trend is observed when the multiplicity is estimated at mid rapidity (Fig 1 left) or at forward rapidity, (middle), demonstrating that the trend is not connected

Figure 1. Self-normalized average D-meson yields as a function of multiplicity in pp collisions for different p_T ranges [6]. Left: multiplicity estimates at mid rapidity. Middle: multiplicity estimate at forward rapidity. Right: D-meson (red) and J/ψ (black) yields as a function of the relative charged-particle multiplicity at mid rapidity.
Figure 2. Left: Average R_{pPb} of D mesons as a function of p_T compared to models [15]. Right: Average p_T-differential D-meson Q_{pPb} in four ZNA event activity classes.

to a possible bias due to the pseudorapidity region of the multiplicity measurements [6]. The self-normalized yield of D mesons is comparable with that of inclusive J/ψ measured at mid rapidity, and the increasing trend seems to be stronger at mid rapidity than at forward rapidity, as shown in Fig 1 (right). Furthermore, an analogous trend is observed comparing D mesons and non-prompt J/ψ. The similar trends of charm (open and hidden) and beauty suggest that their multiplicity dependence is not, or only slightly, affected by the hadronisation stage. The yield increase can be described by calculations taking into account the influence of the interactions between colour sources in the percolation model [12], and the contribution of MPI, through the PYTHIA-8 [13] and the EPOS 3 event generators [14], that also include the effect of the initial conditions of the collision followed by a hydrodynamic evolution. However more precise measurements are needed for a conclusive discrimination of the possible origins of the effect.

4. D-meson production in p-Pb collisions

Figure 2 (left) shows the D-meson R_{pPb} (average of D^0, D^+, D^{++}) as a function of p_T in minimum-bias events, compared with theoretical calculations [15]. R_{pPb} is compatible with unity within uncertainties in the measured p_T range. Predictions based either on Color Glass Condensate calculations [16], or next-to-leading order (NLO) pQCD calculations of D-meson production, including EPS09 nPDFs [17], or k_T-broadening [18] with CNM energy loss [19] can describe the measurement by considering only initial-state effects, but the comparison is not conclusive, due to the sizeable uncertainties at low p_T. The analysis of D-meson production was also carried out in four event activity classes and the nuclear modification factor was calculated as: $Q_{pPb} = \frac{(dN/D)/(dp_T)_{pp}^{cent}}{(T_{pPb})_{cent}}$, where $(dN/D)/(dp_T)_{pp}^{cent}$ is the yield of D mesons in p–Pb collisions in a given event activity class, $(dN/D)/(dp_T)_{pp}$ is the cross section of D mesons in pp collisions at the same \sqrt{s}, and $(T_{pPb})_{cent}$ is the average nuclear overlap function in a given event activity class. In contrast to the multiplicity-integrated R_{pPb}, Q_{pPb} is influenced by potential biases in the centrality estimation that are not related to nuclear effects [20]. The least biased estimator is based on the energy deposited by nuclear fragments in the Pb-going side (ZNA), measured with the Zero Degree Neutron Calorimeter. The D-meson Q_{pPb} estimated with the ZNA is consistent within uncertainties with binary collision scaling of the yield in pp collisions, it is independent of the event activity, as it is shown in Fig 2 (right). D-meson per-event yields were also studied in p–Pb collisions as a function of the relative charged-particle multiplicity, in a similar way as for the pp data. The D-meson self-normalized yields increase with the relative charged-particle...
Figure 3. Left: Self-normalized D-meson yield as a function of multiplicity in pp (red) and p–Pb (green) collisions. Right: Self-normalized D-meson and J/ψ yields in p–Pb collisions.

multiplicity, and the increase is independent of \(p_T \) within the measurement uncertainties, Fig 3 (left). This behavior is similar to that of the corresponding measurements in pp collisions. The increasing trend is present also in the J/ψ measured in p–Pb collisions at backward and forward rapidity, Fig 3 (right). In p–Pb collisions, in addition to the MPI, the contribution from multiple binary nucleon–nucleon collisions should also be considered.

5. Conclusions

D-meson self-normalized yields show an increasing trend with increasing multiplicity, and the trend is similar for pp and p–Pb collisions. The \(Q_{\text{PbPb}} \) measured in event-activity classes defined with the least-biased estimator (ZNA) are consistent with the multiplicity-integrated \(R_{\text{PbPb}} \) and with unity. This suggests that there is no evidence of a deviation of D-meson production in p–Pb from binary scaling, even in high event-activity collisions.

References

[1] Eskola K J, Paukkunen H, Salgado C A, 2009 JHEP 0904 065
[2] Lev M and Petersson B, 1983 Z.Phys. C21 155
[3] Vitev I, 2007 Phys. Rev. C75 064906
[4] Aguilar-Benitez A et al., [NA27 Coll.] 1988 Z.Phys. C41 191
[5] Abelev B et al. [ALICE Coll.] 2012 Phys.Lett. B712 165-175
[6] Abelev B et al. [ALICE Coll.] 2015 arXiv:1505.00664
[7] Abelev B et al. [ALICE Coll.] 2014 Int. J. Mod. Phys. A 29, 1430044
[8] Abelev B et al. [ALICE Coll.] 2012 JHEP 1201 128
[9] Abelev B et al. [ALICE Coll.] 2012 JHEP 1207 191
[10] Capecchi M, Frixione S, Houdeau N, Mangano M L, Nason P, Ridolfi G, 2012 JHEP 1210 137
[11] Kniehl B A, Kramer G, Spiesberger H, 2012 EPJ C72 2082
[12] Ferreiro E G, Pajares C, 2012 PRC 86 034903
[13] Sjostrand T, Mrenna S, Skands P, 2008 Comp. Phys. C178 arXiv:0710.3820
[14] Werner K, Guiot B, Karpenko I, Pierog T, 2014 PRC 89 064903
[15] Abelev B et al. [ALICE Coll.] 2014 Phys.Rev.Lett. 113 232301
[16] Fuji H, Watanabe K, 2013 Nucl. Phys. A 920 78
[17] Mangano L, Paigeo N, Ridolfi G, 1992 Phys. B 373 295
[18] Sharma R, Vitev I, Zhang B, 2009 Phys. Rev. C 80 054902
[19] Abelev B et al. [ALICE Coll.] 2012 JHEP 09 112
[20] Adam J et al. [ALICE Coll.] 2015, Phys. Rev. C 91 064905