Optimal nutrition in lactating women and its effect on later health of offspring: A systematic review of current evidence and recommendations (EarlyNutrition project)

Marita de Waarda, Brigitte Brandsb, Stefanie M. P. Kouwenhovena, Joaquim Calvo Lermaa, Paula Crespo-Escobarc, Berthold Koletzkob, Bartlomiej M. Zalewskid, and Johannes B. van Goudoevera,e

aDepartment of Pediatrics, VU University Medical Center, Amsterdam, The Netherlands; bDivision of Metabolic and Nutritional Medicine, Dr. von Hauner Children’s Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany; cDepartment of Paediatric Gastroenterology, La Fe University Hospital, Valencia, Spain; dDepartment of Paediatrics, The Medical University of Warsaw, Warsaw, Poland; eDepartment of Pediatrics, Emma Children’s Hospital-Academic Medical Center, Amsterdam, The Netherlands

ABSTRACT
Background: EarlyNutrition (www.project-earlynutrition.eu) is an international research consortium investigating the effects of early nutrition on metabolic programming. Objective: To summarize current evidence and standards, recommendations, guidelines, and regulations on nutrition or supplements in lactating women with emphasis placed on long-term health effects in offspring, including cardiovascular disease, hypertension, overweight/obesity, metabolic syndrome, diabetes, or glucose intolerance. Methods: Medline, Embase, selected databases and websites were searched for documents published between 2010 and 2015. Results: Thirteen documents met the inclusion criteria. Effects of maternal long-chain polyunsaturated fatty acid (LC-PUFA) supplementation on overweight/obesity or hypertension in offspring were assessed in 10 studies. One study described the effect of maternal vitamin D supplementation on overweight/obesity, and the remaining 2 studies assessed the effects of maternal probiotic/synbiotic supplementation during lactation on overweight/obesity or metabolic syndrome in their infants. Forty-one documents contained dietary recommendations on various macro- and micronutrients for lactating women, but without consideration of our long-term health outcomes in infants. Conclusion: Literature on nutrition of lactating women and its effect on their infants’ later health with respect to metabolic programming outcomes appeared to be scarce, and focused mostly on supplementation of LC-PUFA’s. No recent guidelines or recommendations were available, highlighting the significant research gaps regarding this topic.

Introduction

Both fetal and early postnatal life are periods of rapid growth and development during which imbalanced nutrition might result in metabolic or body composition alterations (Gluckman and Hanson, 2008). Emerging evidence specifically suggests that increased risk of overweight or obesity later in life is programmed by nutrition during early life (Barker, 2004; McMullen and Robinson, 2005; Gluckman and Hanson, 2008). This relation is thought to be multifactorial and is likely to be U-shaped, with increased risks of adverse health outcomes both for early-life undernutrition as well as overnutrition (Gluckman and Hanson, 2008). Obesity in children is associated with adolescent and adult onset of noncommunicable diseases, such as type 2 diabetes mellitus, cardiovascular disease and hypertension (Barouki et al., 2012; Agostoni et al., 2013).

Given the well-known short- and long-term advantages of breastfeeding for infant and maternal health (vanRossum et al., 2005; Agostoni et al., 2009), leading health authorities such as the World Health Organization (WHO), the American Academy of Pediatrics (AAP) and the European Society for Pediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN) highly recommend breastfeeding as the preferred source of postnatal nutrition. In the context of the fetal-infant programming hypothesis, maternal diet during lactation is thought to contribute to desirable long-term health advantages in children (Rush, 2001; Luoto et al., 2010) including the quality of growth in later life.

EarlyNutrition (www.project-earlynutrition.eu) is an international research project, sponsored by the European Union 7th Framework Programme (Koletzko et al., 2014b). The project’s objectives include providing evidence of the effects of early nutrition on metabolic programming and their consequent health impacts. This project brings together an international consortium of experts in various research fields. The aim is to form a multilateral partnership for the enhancement of knowledge on early nutrition and metabolic programming and its impact on obesity and the risk of related disorders in adulthood.

The primary objective of the current systematic review, prepared as part of the EarlyNutrition project, was to summarize current evidence from systematic reviews and randomized controlled trials (RCTs) and standards, recommendations, guidelines, and regulations on nutrition in lactating women with emphasis on EarlyNutrition project outcomes. These include

KEYWORDS
Infant; metabolic programming; LC-PUFA; probiotics; Vitamin D

CONTACT Johannes B. van Goudoever h.vangoudoever@vumc.nl Department of Pediatrics, Emma Children’s Hospital-Academic Medical Center & Department of Pediatrics, VU University Medical Center, Amsterdam, c/o Room ZH 9D-11, PO Box 7057, 1007 MB, The Netherlands.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The moral rights of the named author(s) have been asserted.
Table 1. Sources searched.

Website/Database	Description
Cochrane Database of Systematic Reviews (CDSR)	http://www.thecochranelibrary.com/
Database of Abstracts of Reviews of Effects (DARE)	http://www.crd.york.ac.uk/crdweb/
PROSPERO: international prospective register of systematic reviews	http://www.crd.york.ac.uk/prospero/
Health Technology Assessment (HTA) Database	http://www.crd.york.ac.uk/crdweb/ (or as part of The Cochrane Library)
SIGN Guidelines	http://www.sign.ac.uk/
National Guideline Clearinghouse	http://www.guidelines.gov/
National Coordinating Centre for Health Technology Assessment	http://www.hta.ac.uk/
NICE Guidelines	http://www.nice.org.uk/
Health Services/Technology Assessment Texts (HSTAT)	http://www.ncbi.nlm.nih.gov/books/NBK16710/
TRIP	http://www.tripodatabase.com
Clinical Evidence	http://clincalevidence.bmj.com/cceweb/conditions/index.jsp
NHS Evidence	http://www.evidence.nhs.uk/default.aspx
NHS Clinical Knowledge Summaries (formerly PRODIGY)	http://www.cks.nhs.uk/home
Health Systems Evidence: a continuously updated repository of syntheses of research evidence about governance, financial and delivery arrangements within health systems, and about implementation strategies that can support change in health systems	http://www.healthsystems evidence.org/
TRIPProj	Information about ongoing health services research and public health projects from National Library of Medicine http://www.ncbi.nlm.nih.gov/books/NBK16710/
TRIP	Home www.tripodatabase.com

Websites of relevant professional bodies and associations that may have produced guidelines:
- European Society of Paediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN) http://www.espgghan.med.up.pt/ |
- North American Society for Pediatric Gastroenterology, Hepatology and Nutrition (NASPGHAN) http://www.naspghan.org |
- American Academy of Pediatrics, http://www.aap.org/ |
- World Health Organization, http://www.who.int/publications/guidelines/en/index.html |
- Institute of Medicine, http://www.iom.edu/ |
- Scientific Committee on Nutrition, http://www.sacn.gov.uk/ |
- EFSA, http://www.efsa.europa.eu/en/publications.htm |
- Guidelines International Network, http://www.g-i-n.net |
- Deutsche Adipositas Gesellschaft, http://www.adipositas-gesellschaft.de/ |
- Association for the Study of Obesity, http://www.aso.org.uk/ |
- World Obesity Federation, http://www.worldobesity.org/ |
- European Association for the Study of Obesity, http://easo.org/ |
- European Association for the Study of Diabetes, http://www.easd.org/ |
- Deutsche Diabetes Gesellschaft, www.deutsche-diabetes-gesellschaft.de |
- Verband der Diabetes-Beratungs- und Schulungsberufe in Deutschland e.V., https://www.vdbd.de/index.php |
- International Diabetes Federation, http://www.idf.org/ |
- Deutsche Gesellschaft für Endokrinologie, http://www.endokrinologie.net/ |
- Schweizerische Gesellschaft für Endokrinologie und Diabetologie, http://www.asemo.ch/ |
- Society for Endocrinology, http://www.endocrinology.org/index.aspx |
- Canadian Society of Endocrinology and Metabolism, http://www.endo metab.ca/ |
- European Society of Endocrinology, http://www.eso-hormones.org/ |
- Endocrine Society, http://www.endocrine.org/ |
- Deutsche Gesellschaft für Epidemiologie, http://www.dgepi.de/ |
- International Society for Developmental Origins of Health and Disease, http://www.mrc-leu.soton.ac.uk/dohad/index.asp |
- International Epidemiological Association, http://ieaweb.org/ |
- International Genetic Epidemiology Society, http://www.geneticepi.org/ |
- Deutsche Gesellschaft für Gastroenterologie, Verdaungs- und Stoffwechselkrankheiten, http://www.dgvs.de/ |
- Österreichische Gesellschaft für Gastroenterologie und Hepatologie, http://www.oeggh.at/ |
- Schweizerische Gesellschaft für Gastroenterologie, http://www.sgsgs.ch/home.html |
- United European Gastroenterology, https://www.ueg.eu/ |
- World Gastroenterology Organisation, http://www.worldgastroenterology.org/ |
- Bundesverband Deutscher Ernährungsmediziner e.V., http://bdem.de/ |
- Deutsche Gesellschaft für Ernährung, https://www.dge.de/ |
- Deutsche Gesellschaft für Ernährungsmedizin e. V., http://dgem.de/ |
- Berufsverband der Occlotrophologen e.V., http://www.vdoe.de/ |
- Verband der Diätassistenten e.V., http://www.vdd.de/ |
- American Society for Nutrition, http://www.nutrition.org/ |
- Parenteral and Enteral Nutrition Society of Asia, http://www.pensa-online.org/index.php |
- European Society for Clinical Nutrition and Metabolism, http://www.espen.org/ |
- European Federation of the Associations of Dietitians, http://www.efad.org |
- International Union of Nutritional Sciences, http://www.iuins.org/ |
- Berufsverband Kinder- und Jugendärzte e.V., http://www.bvjk.de/ |
- Deutsche Gesellschaft für Kinder- und Jugendmedizin e.V., http://www.dgjk.de/ |
- Gesellschaft für Pädiatrische Gastroenterologie und Ernährung e.V., http://www.gpgpe.de/index.html |
- Österreichische Gesellschaft für Kinder- und Jugendheilkunde, http://www.docs4you.at/ |
- Swiss Society of Neonatology, http://www.neonet.ch/en/about-us/aims/ |
- Pediatric Society in Bosnia and Herzegovina, http://www.upubih.org/ |
- Paediatric Research Society, http://www.pr.snh.uk/ |
- Paediatric Society New Zealand, http://www.paediatrics.org.nz/events.asp?PageID=2145870907 |
- American Pediatric Society together with the Society for Pediatric Research, https://www.aps-spr.org/home.asp |
- Canadian Paediatric Society, http://www.cps.ca/en/ |
- Canadian Neonatal Network, http://www.canadianneonatalnetwork.org/portal/ |
- Asia Pacific Paediatric Endocrine Society, http://www.appes.org/AboutUs.aspx |
- European Society for Paediatric Research, http://www.espr.info/ |
- European Paediatric Association, http://www.epa-unepea.org/ |
- European Society for Neonatology, http://esn.espr.info/ |

(Continued on next page)
the effects on later health of the offspring with respect to adiposity overweight or obesity, cardiovascular disease, hypertension, metabolic syndrome, diabetes, or glucose intolerance. The secondary objective was to identify potential research gaps, as this will enable to develop research agendas.

Methods

Search strategy

Bibliographic databases, i.e. Ovid MEDLINE, EMBASE (both http://ovid.com), Cochrane Central Register of Controlled Trials (CENTRAL), and several selected guideline databases or websites of relevant professional organizations that may have produced guidelines were searched in May 2015 (Table 1). In addition, references were obtained by consultation of experts in the field (partners of the EarlyNutrition project). Searches in EMBASE and MEDLINE combined groups of key-words related to our target population, different nutrition components, and the type of preferred documents or study design. The detailed search strategy is provided in Table 2. All other databases, if possible, were searched with a combination of the phrases (infant* or child*) AND (lactat* OR breastfe* OR...
“breast milk”) AND (nutrition OR diet). Alternatively, they were simply hand searched.

Searches were limited to human studies published in the last five years (2010 and onwards), and restricted to English-language publications.

Selection of documents

Studies and documents were eligible for inclusion if they were relating to diet and nutrition for lactating women. In addition, the documents had to consider the effect of this dietary exposure/intervention on EarlyNutrition health outcomes in the offspring, i.e. adiposity, overweight or obesity, cardiovascular disease, hypertension, metabolic syndrome, diabetes, or glucose intolerance.

We excluded documents focusing exclusively on prevention or treatment of a particular disease, such as allergic diseases or iron deficiency anemia that were not related to the outcomes mentioned above, or that focused on the period of pregnancy only. In addition, scientific documents other than randomized controlled trials, systematic reviews and meta-analysis, and documents dedicated to a local community, without national or international outreach were excluded.

Two authors (MDW and either SK, PCE or JCL) searched the provided sources and screened titles, abstracts and then full-text reports for inclusion independently. The total list of titles was additionally screened by BB. Any discrepancies were resolved through discussion or by consultation with an expert in the field.

Data extraction process

For each eligible study MDW, SK, PCE, and JCL independently extracted the following data: general information (title, author, year of publication, type of document: scientific trial or guideline, recommendation or consensus statement), document characteristics (scientific trial: design, participants characteristics, intervention and control regimens), the impact on defined health outcomes, and authors’ suggestions for further research. Other documents: report type, target population, brief recommendation, the impact on defined health outcomes, the level of evidence (if stated by the authors), and authors’ suggestions for further research. Inconsistencies were checked and resolved through discussion.

We did not perform any formal methodological assessment of the included documents’ quality, and we did not attempt to evaluate the level of evidence of each recommendation if not done so by the authors.

Determining research gaps

Research gaps, associated with EarlyNutrition outcomes, were extracted from the identified documents if recognized by the authors of the documents.

Results

Selection of documents

Figure 1 shows a detailed description of the study selection process. The search strategy yielded 4218 documents, 3902 of which were excluded based on title or abstract. Full text evaluation of the remaining 316 records identified 13 documents that met our selection criteria. None of these were guidelines or clinical protocols.

The effect of maternal fatty acid supplementation was assessed in 10 of the included studies, 1 study described the effect of Vitamin D supplementation and the remaining 2 assessed the effects of maternal probiotics/synbiotic supplementation during lactation. An outline of all included studies is provided in Table 3.

Forty-one of the excluded documents did contain dietary recommendations on various macro- and micronutrients for lactating women (Table 4), but without consideration of our EarlyNutrition outcomes.

Long-chain polyunsaturated fatty acid supplementation during lactation

Seven of the included publications on maternal long-chain polyunsaturated fatty acid (LC-PUFA) supplementation were systematic reviews (Muhlhauser et al., 2010; Campoy et al., 2012; Rodriguez et al., 2012; Martinez-Victoria and Yago, 2012; Koletzko et al., 2014b; Stratakis et al., 2014; Delgado-Noguera et al., 2015), one of which a Cochrane review (Delgado-Noguera et al., 2015). The remaining 3 documents were original reports of randomized controlled trials (RCTs) (Jensen et al., 2010; Bergmann et al., 2012; Hauner et al., 2012) (Table 3).

The seven systematic reviews enclosed a total of 10 publications (describing outcomes of five randomized trials), including the three RCTs we identified. The remaining seven publications were published before the year 2010, and were therefore not individually identified by our search (Helland et al., 2001; Ulbak et al., 2004; Jensen et al., 2005; Lauritzen et al., 2005; Lucia Bergmann et al., 2007; Helland et al., 2008; Asserhoj et al., 2009). Their results were however included in the current review, since the previous reviews were based upon them (Table 4).

The (updated) Cochrane review was the most recently published document and included all 10 publications. The remaining systematic reviews included part, but not all, of the publications (Table 3).

The effects of LC-PUFA supplementation exclusively during lactation was described in 1 systematic review, whereas two others additionally included supplementation during both pregnancy and lactation. The remaining four reviews also included supplementation only during pregnancy. Since this subject did not fall within the scope of the current review, we did not recite results exclusively on this topic.

Doses of n-3 LCPUFA in the described intervention groups ranged from 200 mg docosahexaenoic acid (DHA) to 1183 mg DHA plus 803 mg eicosapentaenoic acid (EPA) (with a total of 2494 mg n-3 LC-PUFA), and were derived from fish oil or algal oils.

Intervention periods extended from 15, 18, or 21 weeks of pregnancy to 3 or 4 months after delivery or exclusively during the first 4 months postpartum.

The EarlyNutrition outcome “overweight/obesity” was assessed in nine publications, at various time-points, and with various parameters (i.e. weight, body mass index, and fat mass...
and fat distribution) (Helland et al., 2001; Jensen et al., 2005; Lauritzen et al., 2005; Lucia Bergmann et al., 2007; Helland et al., 2008; Asserhoj et al., 2009; Jensen et al., 2010; Bergmann et al., 2012; Hauner et al., 2012).

Table 5 summarizes the results, which were categorized into short-term (up to 12 months), medium-term (up to 24 months), and long-term (beyond 24 months) outcomes according to Delgado et al. (Delgado-Noguera et al., 2015).

All included reviews came to the same conclusion that evidence on the potential relationship between maternal n-3 LC-PUFA intake and infant growth or later body composition was inconclusive. Supplementation with LC-PUFA did not seem to exert a clear and consistent short- or long-term benefit in offspring, and any transient early differences disappeared in subsequent assessments.

The EarlyNutrition outcome “hypertension” was assessed in two of the publications based on the same RCT (Ulbaek et al., 2004; Asserhoj et al., 2009). At 2.5 years of age in both systolic or diastolic blood pressure (SBP and DBP) between groups was observed. At seven years of age, children in the LC-PUFA supplemented group had a higher unadjusted mean SBP and mean arterial pressure (MAP). After adjustment for covariates SBP did not differ between the randomized groups anymore. Due to an interaction between intervention and sex ($p = 0.027$ for DBP and $p = 0.026$ for MAP), adjusted ANOVA was performed separately for the two sexes. Among boys, both DBP and MAP differed between the randomized groups, but blood pressure of girls did not.

Vitamin D supplementation during lactation

The one publication on vitamin D intake during lactation referred to the EarlyNutrition outcome overweight/obesity, and was a prospective, double blinded, randomized controlled trial of vitamin D supplementation during lactation in both mother and infant (Czech-Kowalska et al., 2014).

Examined outcomes in the infants were weight, length, head circumference, and body composition (fat mass) by dual-energy X-ray absorptiometry (DXA) measurements at three time points: three weeks after delivery (baseline visit), and three and six months after delivery. The maternal intervention group received 1200 IU/d of cholecalciferol, the control group 400 IU/d. All breastfed infants received 400 IU/d. No significant differences in body composition and bone mass as examined by DXA were found between the intervention groups at any time point. However, serum hydroxy-vitamin D status (25(OH)D) was significantly higher in the 1200 IU/d group although the recommended level (>20 ng/mL by the Institute of Medicine (IOM) or >30 ng/mL (Holick et al., 2011; Pludowski et al., 2013b; Pludowski et al., 2013a) was still not reached in many women. This might have been due to the low baseline levels at study entry (65% of postpartum vitamin D deficiency).
Reference	Included in	Study Design	Year	Moment of Intervention	Early Nutrition Infant outcome
VITAMIN D					
Czech-Kowalska et al. (Czech-Kowalska et al., 2014)	—	RCT	2014	Lactation (3 wks pp)	Overweight/obesity
SYNBIOTICS/PROBIOTICS					
Ostadrahimi et al. (Ostadrahimi et al., 2013)	—	RCT	2013	Lactation	Overweight/obesity
Aalto et al. (Aalto et al., 2011)	—	RCT	2011	Pregnancy (1st and 3rd trimester)	Metabolic syndrome
—	—	Lactation (6 mo pp)			
LC-PUFA					
Campoy et al. (Campoy et al., 2012)	—	Systematic review	2012	Pregnancy	Overweight/obesity
—	—	Lactation			
—	—	Both			
Koletzko et al. (Koletzko et al., 2014a)	—	Systematic review	2014	Pregnancy	Overweight/obesity
—	—	Lactation			
—	—	Both			
Martinez-Victoria et al. (Martinez-Victoria and Yago 2012)	—	Systematic review	2012	Pregnancy	Overweight/obesity
—	—	Lactation			
—	—	Both			
Strafakis et al. (Strafakis et al., 2014)	—	Systematic review	2014	Pregnancy	Overweight/obesity
—	—	Lactation			
—	—	Both			
Muhlhauser et al. (Muhlhauser et al., 2010)	—	Systematic review	2010	Pregnancy	Overweight/obesity
—	—	Lactation			
—	—	Both			
Rodriguez et al. (Rodriguez et al., 2012)	—	Systematic review	2012	Pregnancy and lactation	Overweight/obesity
—	—	Lactation			
—	—	Both			
Delgado et al. (Delgado-Noguera et al., 2015)	—	Cochrane review	2015	Both pregnancy and lactation	Overweight/obesity
—	—	Lactation only			

RCTs included in systematic reviews on LC-PUFAs, and describing (one of) our outcomes: published 2010-onwards

Reference	Included in	Study Design	Year	Moment of Intervention	Early Nutrition Infant outcome
Hauner et al. (Hauner et al., 2012)	Delgado	RCT	2012	Both pregnancy and lactation (15 w PCA–4 mo pp)	Overweight/obesity
—	Koletzko	—	—	—	—
—	Rodriguez	—	—	—	—
Bergmann RL et al. (Bergmann et al., 2012)	Delgado	RCT	2012	Pregnancy (21 w–37 wks PCA)	Overweight/obesity
—	Stratakis	—	—	—	—
Jensen et al. (Jensen et al., 2010)	Campoy	RCT	2010	Lactation (5 days–4 mo pp)	Overweight/obesity
—	Delgado	—	—	—	—

RCTs included in systematic reviews on LC-PUFAs, and describing (one of) our outcomes: published before 2010

Reference	Included in	Study Design	Year	Moment of Intervention	Early Nutrition Infant outcome
Asserhoj et al. (Asserhoj et al., 2009)	Delgado	RCT	2009	Lactation (2 w–4 mo pp)	Overweight/obesity
—	Muhlhauser	—	—	—	—
—	Koletzko	—	—	—	—
—	Rodriguez	—	—	—	—
—	Stratakis	—	—	—	—
Helland et al. (Helland et al., 2008)	Delgado	RCT	2008	Both pregnancy and lactation (18 w PCA–3 mo pp)	Overweight/obesity
—	Campoy	—	—	—	—
—	Muhlhauser	—	—	—	—
—	Koletzko	—	—	—	—
—	Rodriguez	—	—	—	—
—	Stratakis	—	—	—	—
Lucia Bergmann et al. (Lucia Bergmann et al., 2007)	Delgado	RCT	2007	Pregnancy (21 w–37 w PCA)	Overweight/obesity
—	Campoy	—	—	—	—
—	Muhlhauser	—	—	—	—
—	Koletzko	—	—	—	—
—	Rodriguez	—	—	—	—
—	Stratakis	—	—	—	—
Lauritzen et al. (Lauritzen et al., 2005)	Delgado	RCT	2005	Lactation (2 w–4 mo pp)	Overweight/obesity
—	Muhlhauser	—	—	—	—
—	Koletzko	—	—	—	—
—	Rodriguez	—	—	—	—
—	Stratakis	—	—	—	—
Jensen et al. (Jensen et al., 2005)	Delgado	RCT	2005	Lactation (5 days–4 mo pp)	Overweight/obesity
—	Muhlhauser	—	—	—	—
—	Koletzko	—	—	—	—
—	Rodriguez	—	—	—	—
—	Stratakis	—	—	—	—
Ulb et al. (Ulb et al., 2004)	Delgado	RCT	2004	Both pregnancy and lactation (18 w PCA–3 mo pp)	Hypertension
—	Muhlhauser	—	—	—	—
—	Koletzko	—	—	—	—
—	Rodriguez	—	—	—	—
—	Stratakis	—	—	—	—
Helland et al. (Helland et al., 2001)	Delgado	RCT	2001	Lactation (2 w–4 mo pp)	Overweight/obesity
—	Muhlhauser	—	—	—	—
—	Koletzko	—	—	—	—
—	Rodriguez	—	—	—	—
—	Stratakis	—	—	—	—

LC-PUFA; long chain- polyunsaturated fatty acid. PCA; post-conceptual age. PP; postpartum. DHA; docohexaenoic acid. EPA; eicosapentaenoic acid. GA; Gestational age. FOS; Fructo-oligosaccharide. W; weeks. Mo; months. y; years. BMI; body mass index. HC; head circumference.
Table 4. Dietary recommendations in excluded documents.

REFERENCE	RECOMMENDATION
MACRONUTRIENTS & OVERALL ENERGY INTAKE	
EFSA 2013: Scientific Opinion on Dietary Reference Values for energy	For exclusive breastfeeding during the first six months of life, the mean energy expenditure of lactation over this period is 2.8 MJ/day (670 kcal/day) based on a mean milk production of 807 g/day, an energy density of milk of 2.8 kJ/g (0.67 kcal/g), and an energetic efficiency of 80%. Energy mobilization from tissues in the order of 0.72 MJ/day (170 kcal/day) may contribute to this energy expenditure and reduce the additional energy requirement during lactation to 2.1 MJ/day (500 kcal/day) over pre-pregnancy requirements.
EFSA 2010: Scientific Opinion on Dietary Reference Values for water	Adequate intake of water for females is 2.0 L/day (P95: 3.1 L). Adequate intake for lactating women is approximately 700 mL/day higher.
Australian dietary guidelines 2013	Minimum recommended intake for lactating women are: 7 serves/day of vegetables 2 serves/day of fruit 8 1/2 serves/day of grain/cereal (2 slices of bread = 2 serves.) 2 1/2 serves/day for milk, yoghurt, cheese and/or alternatives 2 1/2 serves/day for lean meats and poultry, fish, eggs, tofu, nuts and seeds, and legumes/beans For women who are lactating, not drinking alcohol is the safest option.
WHO 2013: Counseling for maternal and newborn health care	Women in the postnatal period need to maintain a balanced diet. Iron and folic acid supplementation should also continue for 3 months after birth.
MICRONUTRIENTS: GENERAL ADVICE	
Australian and New Zealand, Early-Life Nutrition, Working Party 2014: Nurturing future health through nutrition	Women who are breastfeeding require additional food and should drink sufficient clean water. Typically, a breastfeeding woman needs an additional 2,000–2,100 kJ/day over the recommended daily intake for women. The energy intake of a breastfeeding woman would be at least 20% fat – any less may affect the fat content of your milk. Ensure an adequate intake of iodine (150 mg daily) and other important vitamins and minerals. In case of a vegan, vegetarian, or other restrictive diet, there may be a greater risk for nutrient deficiencies. Consideration of seeing a dietitian to ensure the diet is nutritionally balanced to meet the needs of breastfeeding is needed.
EFSA 2012: Scientific Opinion on Dietary Reference Values for protein	Available data are insufficient to establish an upper limit for n-3 LC-PUFA (individually or combined) for any population group.
EFSA 2012: Scientific Opinion on the Tolerable Upper Intake Level of EPA, DHA and DPA1	The Panel proposes to set an adequate intake of 250 mg of eicosapentaenoic acid (EPA) plus docosahexaenoic acid (DHA) for adults based on cardiovascular considerations. To this intake 100 to 200 mg of preformed DHA should be added during lactation to compensate for oxidative losses of maternal dietary DHA and accumulation of DHA in body fat of the infant.
EFSA 2010: Scientific Opinion on Dietary Reference Values for fats	For lactation a protein intake of 19 g/day during the first six months, and 13 g/day after six months is recommended.
Dietary Guidelines for Americans 2010	For lactating women consuming 8–12 ounces/week of seafood from a variety of seafood types is associated with improved infant health outcomes, such as visual and cognitive development. Lactating women should limit white (albacore) tuna to 6 ounces/week and should not eat tilefish, shark, swordfish, and king mackerel, due to their high methyl mercury content. Lactating women should be very cautious about drinking alcohol, if they choose to drink at all.
NGC 2010: NGC-8567	Women who are breastfeeding should consume 8 to 12 ounces of seafood per week from a variety of seafood types. Due to their high methyl mercury content, lactating women should limit white (albacore) tuna to 6 ounces per week and should not eat the following four types of fish: tilefish, shark, swordfish, and king mackerel. They should maintain appropriate calorie balance to maintain weight during breastfeeding.
SACP 2011: Early-Life Nutrition Report	There are increased requirements for a number of nutrients for lactation. These include referent nutrient intakes set for the provision of energy (for different stages of lactation), protein, folate, vitamin A, vitamin D, vitamin C, B vitamins (thiamin, riboflavin, niacin, vitamin B12) and also for a number of minerals (calcium, phosphorus, magnesium, zinc, copper and selenium) [Department of Health, 1991]. Current advice is that all of these intakes can be achieved through a varied and balanced diet, apart from vitamin D, which requires a 10 μg daily supplement for the duration of breastfeeding in order to ensure the requirement is met.
WHO 2013: Essential Nutrition Actions: Improving Maternal, Newborn, Infant and Young Child Health and Nutrition	Recommended composition of multiple micronutrient supplements for lactating women, designed to provide the daily recommended intake of each nutrient (one RNI): Vitamin A 800 μg, Vitamin D 5 μg, Vitamin E 15 mg, Vitamin C 55 mg, Thiamine (vitamin B1) 1.4 mg, Riboflavin (vitamin B2) 1.4 mg, Niacin (vitamin B3) 18.0 mg, Vitamin B6 1.9 mg, Vitamin B12 2.6 μg, Folic acid 400 μg, Iron 27.0 mg, Zinc 10 mg, Copper 1.15 mg, Selenium 30 μg, Iodine 250 μg. Lactating women should be given this supplement providing one reference nutrition intake (RNI) of micronutrients daily, whether they receive fortified rations or not. Iron and folic acid supplements, when already provided, should be continued.
CALCIUM	
EFSA 2012: Scientific Opinion on the Tolerable Upper Intake Level of calcium	The upper limit for calcium for all adults, including lactating women is 2,500 mg. This upper limit was based on different long-term intervention studies in which a total daily intake of 2,500 mg of calcium/day from all sources (diet and supplements) was tolerated without adverse effects.

(Continued on next page)
Table 4. (Continued)

REFERENCE	RECOMMENDATION
FOLATE	The Panel notes that the average folate concentration of breast milk is 80 μg/L (about 180 nmol/L) and that this amount is not dependent on dietary folate intake or status of the lactating women.
EFSA 2014	The Panel considers that lactating women have increased folate requirements compared with non-lactating women to compensate for folate losses through their milk. A lactating woman would require 128 μg/day of additional folate to compensate for her losses. A value of 130 μg/day is added to the average requirement for non-lactating women, resulting in an average requirement of 380 μg DFE/day, with a population reference intake of 500 μg DFE/day.
Scientific Opinion on Dietary Reference Values for folate	
IODINE	The National Health and Medical Research Council (NHMRC) recommends that all women who are breastfeeding take an iodine supplement of 150 μg each day.
NHMRC public statement 2010 Iodine Supplementation for Pregnant and Breastfeeding Women	Women with pre-existing thyroid conditions should seek advice from their medical practitioner prior to taking a supplement.
WHO 2013	WHO and UNICEF recommend iodine supplementation (240 μg/day or 400mg/year) for lactating women in countries where less than 20% of households have access to iodized salt, until the salt iodization program is scaled up.
Essential Nutrition Actions: Improving Maternal, Newborn, Infant and Young Child Health and Nutrition.	It is recommended that lactating women consume 250 μg of iodine per day.
WHO 2014	Iodine concentrations in breast milk of European women vary widely and large iodine stores exist in conditions of adequate iodine status before lactation. The Panel therefore considered that a full compensation for the iodine secreted in breast milk may not be justified for the derivation of dietary reference values for iodine for lactating women. Therefore, for lactating women the same adequate intake is proposed as for pregnant women, i.e. 200 μg/day.
Fortification of food-grade salt with iodine for the prevention and control of iodine deficiency disorders	
EFSA 2014	
Scientific Opinion on Dietary Reference Values for iodine	
VITAMIN A	There is no convincing evidence that maternal vitamin A supplementation (both <200.000IU/day and ≥200.000IU/day) during lactation results in a reduction in infant mortality or morbidity in low and middle income countries.
Gogia S. et al 2011 (PMID 21975770)	Vitamin A supplementation in postpartum women is not recommended for the prevention of maternal and infant morbidity and mortality.
WHO 2011	Vitamin A population reference intakes for women are 650 μg retinol equivalent/day. For lactation, additional vitamin A requirements of 1300 μg retinol equivalent/day are recommended, related to transfer of retinol into breast milk.
Guideline: Vitamin A Supplementation in Postpartum Women	Lactating women secrete vitamin C via breast milk. Vitamin C concentration in human milk reflects maternal vitamin C intake more than the infants’ requirement (WHO/FAO, 2004). The Panel notes that mean vitamin C concentration of human milk from healthy mothers not taking vitamin C supplements is in the range of 35–90 mg/L. For lactating women 60 mg/day in addition to the population reference intake of 95 mg/day of non-lactating women are proposed.
EFSA 2015	The upper limit of vitamin D for all adults, including lactating women is 100 μg/day.
Scientific Opinion on Dietary Reference Values for vitamin A	Population groups at higher risk of having a low vitamin D status including all breastfeeding women, particularly teenagers and young women, are currently advised to take a supplement that meets 100% of the reference nutrient intake for their age group. This is 10 μg/day (400 IU) for adults.
VITAMIN C	In 1991, Committee on Medical Aspects of Food and Nutrition Policy set a reference nutrient intake (RNI) of 10 μg of vitamin D per day for all pregnant and breastfeeding women.
EFSA 2013	In 2007, the Scientific Advisory Committee on Nutrition confirmed that these recommendations should remain unchanged.
Scientific Opinion on Dietary Reference Values for vitamin C	Lactating women should take a vitamin D supplement (10 μg/day) to ensure they get enough vitamin D.
VITAMIN D	Midwives should offer every woman information and advice on the benefits of taking a vitamin D supplement (10 μg/day) while breastfeeding. They should explain that it will increase both the mother’s and her baby’s vitamin D stores and reduce the baby’s risk of developing rickets.
EFSA 2012	It is recommended that breastfeeding mothers take a supplement containing 10 μg vitamin D.
Scientific Opinion on the Tolerable Upper Intake Level of vitamin D	There is no evidence that calcium requirements are different for lactating females compared with non-lactating counterparts, since post-lactation maternal bone mineral is restored without consistent evidence that higher calcium intake is required. The estimated average requirement for calcium for non-lactating women and adolescents are applicable, which are 800 mg/day and 1,100 mg/day respectively.
NICE 2014	
NICE guidelines [PH56]	
NICE public health guidance 11, 2014 Maternal and child nutrition	
Public Health England 2014 Vitamin D for healthcare professionals and the public	
NGC 2011	
NGC-6418	
SIGN 2010 Management of obesity IoM 2011	

(Continued on next page)
which highly depends on the maternal diet before birth and to sun exposure.

Probiotic and symbiotic supplementation during lactation

Two publications of RCTs referring to probiotic or symbiotic (both pre-and probiotic) supplementation in lactating mothers, assessing the EarlyNutrition outcomes overweight/obesity and metabolic syndrome were identified. (Aaltonen et al., 2011; Ostadrahimi et al., 2013). In the first RCT, by Aaltonen et al. 256 pregnant women in Finland were randomized to receive dietary counseling + a probiotic supplement, dietary counseling + placebo, or no counseling + placebo, starting in the first trimester until six months after delivery. Anthropometrics of the offspring were measured at three study visits (first trimester, third trimester, and six months postdelivery). In addition, infants' breastfeeding status was recorded and their metabolic status was evaluated, by serum 33 split proinsulin concentration was

Increased maternal vitamin D intakes increase maternal serum 25OHD levels, with no effect on the neonatal serum 25OHD levels of breastfed infants unless the maternal intake of vitamin D is extremely high (i.e., 4,000 to 6,400 IU/day). Observational studies report no relationship between maternal serum 25OHD levels and bone mass density. There is no evidence that lactating adolescents require any more vitamin D or higher serum 25OHD levels than non-lactating adolescents. The estimated average requirement is thus 400 IU/day of vitamin D for lactating women and adolescents. Either single dose (150000IU) or daily maternal cholecalciferol (5000IU) can provide breast milk concentrations that result in vitamin D sufficiency in their infants. Larger trials demonstrating the safety of cholecalciferol supplementation in lactating mothers need to be conducted before universally adopting this strategy for preventing infant vitamin D deficiency.

The adequate intake for vitamin K for lactating women is 90 mcg/day. These recommendations only fulfill the requirement for coagulation function.

WHO recommends a reduction in sodium intake to reduce blood pressure and risk of cardiovascular disease, stroke and coronary heart disease in adults to <2 g/day sodium (5 g/day salt) in adults (strong recommendation). This recommendation applies to all individuals, with or without hypertension, including lactating women.

The population reference intake for zinc for adult women is 7.5–12.7 mg/day. This is derived from zinc requirement of individuals with a body weight at the 97.5th percentile for reference weights for women. During lactation, zinc requirements are an additional 2.9 mg/day, related to transfer into breast milk.

Adequate intake for adults: 40 µg/day. For lactating women, an additional 5 µg/day, is recommended to compensate for biotin losses through breast milk. Mean concentrations of biotin in mature human milk measured by microbiological assays typically range between about 4 and 6 µg/L. The Panel concludes that no average requirement and no population reference intake for chromium can be defined, that there is no evidence of beneficial effects associated with chromium intake in healthy subjects, and that the setting of an adequate intake for chromium is also not appropriate.

An adequate intake of 70 µg/day for adults was set. Based on an average amount of selenium secreted in breast milk of 12 µg/day and an absorption efficiency of 70% from usual diets, an additional selenium intake of 15 µg/day was considered to replace these losses. Thus, an adequate intake of 85 µg/day is proposed for lactating women.
dietary counseling + placebo groups, compared to the control group. In a multivariate analysis, the independent effect of dietary counseling on the infants’ 32–33 split proinsulin was still statistically significant (with breastfeeding and mother’s glucose level at 6 months, and weight gain during pregnancy). However, there was no effect of the probiotic supplementation in this population.

The second trial, by Ostradahimi et al. in 2013, was conducted in lactating mothers and their exclusively breastfed infants in Iran. The authors examined the effect of a synbiotic supplement on infant weight and growth (synbiotic: n = 40, placebo, n = 40). They found that the administration of synbiotics may prevent weight loss in undernourished lactating mothers, enhance breastfeeding duration and infant weight gain.

Research gaps

Research gaps as identified and described by the authors of the 13 included studies were summarized in Table 6. All included systematic reviews on maternal LC-PUFA supplementation pointed out that there was a wide variation in interventions, outcome parameters and follow-up periods between trials and that most trials were prone to methodological limitations. In addition, identified research gaps comprised a lack of control for nutritional status and intakes at baseline, as well as for genetic variation. The latter was based on the identification of polymorphisms in the fatty acid desaturase (FADS) gene cluster (Glaser et al., 2011; Lattka et al., 2011). This gene plays a role in the conversion of n-3 LC-PUFA’s from their precursors, and it was demonstrated that pregnant and lactating women with the less common genotypes of the FADS gene cluster had very low conversion rates (Koletzko et al., 2011; Lattka et al., 2011; Steer et al., 2013).

For vitamin D supplementation, the authors stated that taking into account previous studies, vitamin D supplementation seems to be a more effective source for supplementation than additional input from diet and endogenous skin synthesis in many contemporary industrialized populations with changing lifestyles (sun exposure, obesity, unhealthy diet). Yet, they feel that more studies are needed in various settings, specifically addressing infants’ long-term outcomes.

The identified research gap for studies on pro- and synbiotic supplementation was the need for targeted studies to evaluate the independent effect of synbiotic supplementation in lactating mothers on infants’ health outcomes.

Discussion

The EarlyNutrition project was designed to answer clinically important questions and to help in building foundations of future evidence-based recommendations. To our knowledge, this is the first systematic review assessing the effect of nutrition of lactating women on their infants’ later health with respect to adiposity, overweight or obesity, cardiovascular disease, hypertension, metabolic syndrome, diabetes, or glucose intolerance. Literature on this topic appeared to be scarce, and focused mostly on the supplementation of LC-PUFA’s. In the past five years, no guidelines or recommendations on nutrition in breastfeeding women relating to our defined effects on their offsprings’ health were published.

The lack of literature and guidelines was unsuspected, since the programming hypothesis of early-life nutrition now is a pertinent topic. The hypothesis proposes that overweight or obesity, impaired glucose metabolism, and heightened blood pressure are modulated by environmental cues that originate in developmental plasticity, including nutritional aspects (Barker, 2004).

In both developed and less developed countries, excess body weight is now a major health problem; more than 20% of children and adolescents in Europe and more than 30% in the United States suffer from overweight or obesity (www.IASO.org). Becoming obese earlier in life clearly amplifies certain health risks such as type 2 diabetes. Based on the fetal-infant programming hypothesis it has been suggested that attempts to prevent obesity should start during early life. Alteration of early exposure to certain nutrients via maternal diet during lactation is such an attempt. However, our current review showed that (human) evidence for the effectiveness of this is so far scarce and limited to interventions with LC-PUFAs, vitamin D and probiotics/synbiotics.

Acquisition of fat cells early in life appears to be an irreversible process, and early exposure to n-3 LC-PUFA’s is suggested to have the potential to limit adipose tissue deposition, mainly by limiting the production of prostacyclin which has been shown to enhance adipogenesis. A deficiency in vitamin D during breastfeeding has been shown to be associated with a range of negative health outcomes in mother and child, such as cardiovascular disease, hypertension and diabetes (Pludowski et al., 2013a). Finally, research in animals and humans has shown that probiotics have an effect on the host energy metabolism by altering the gut microbiota. The combination of probiotics and prebiotics, referred to as synbiotics, may affect the host by improving the survival and the implementation of live bacterial strains in the gastrointestinal tract, thus exerting potentiated positive health effects. Our results showed that there is little evidence to support a favorable programming effect by maternal n-3 LC-PUFA or vitamin D supplementation during lactation. One small trial suggested that there might be a possible positive effect of maternal probiotic/synbiotic supplementation on infants’ weight gain and body composition. Yet, much more evidence is needed to support these findings and to formulate evidence-based recommendations.

A major part of the documents excluded from this review focused on nutrition in lactating women, and some of them did include recommendations (Table 4). However, most of these recommended intakes were extrapolated from known losses of nutrients in milk, sometimes with adjustment for bioavailability, and not on possible health effects for the infants. Studies analyzing those losses also emerged from our literature search. Although these studies did not fall within the scope of our review, they can be considered crucial early stages for the documents that we were searching for, since effects of nutrients on health of offspring can only be expected if certain levels in breastmilk will be reached. Research on the extent to which the nutrient composition of human milk can be affected by maternal status and intake is on the other hand scarce (Allen, 2012). In the past, nutrients have been categorized into 2 groups during lactation. Poor maternal status of group I nutrients (thiamin, riboflavin, vitamin B-6, vitamin B-12, choline, retinol,
Table 5. Documents on LC-PUFA supplementation during lactation—summary of study results.

Parameter	In reference	Time-point	Individual conclusion	Conclusion in meta-analysis Delgado	Meta-analysis based on
Weight:					
Short-term	Helland et al., 2001	6 w, 3, 6, 9 & 2 mo	No difference	LC-PUFA supplementation: significant higher weight	Helland et al.
	Jensen et al., 2005	3 w, 2, 4, 8, 12 mo	No difference		Lauritzen et al.
	Lauritzen et al., 2005	2, 4 & 9 mo	No difference		Hauner et al.
	Hauner et al., 2012	6 w, 4 & 12 mo	No difference		
Medium-term	Jensen et al., 2005	18 & 24 mo	No difference	LC-PUFA supplementation: significant lower weight	Lucia Bergmann et al.
	Lucia Bergmann et al., 2007	21 mo	No difference		
Long-term	Jensen et al., 2010	30 mo	No difference		
	Lauritzen et al., 2005	2.5 y	No difference		
	Helland et al., 2008	7 y	No difference		
	Asserhoj et al., 2009	7 y	No difference		
	Bergmann et al., 2012	6 y	No difference		
	Jensen et al., 2010	5 y	No difference		
BMI:					
Short-term	Lauritzen et al., 2005	2, 4 & 9 mo	No difference	No difference	Hauner et al.
	Lucia Bergmann et al., 2007	1 & 3 mo	No difference		
	Hauner et al., 2012	6 w, 4 & 12 mo	No difference		
Medium-term	Lucia Bergmann et al., 2007	21 mo	LC-PUFA supplementation: significant lower weight	-“no studies reported on this outcome”	Bergmann et al.
Long-term	Lauritzen et al., 2005	2.5 y	LC-PUFA supplementation: significant higher BMI	No difference	
	Helland et al., 2008	7 y	No difference		
	Asserhoj et al., 2009	7 y	No difference		
	Bergmann et al., 2012	6 y	No difference		
Fat mass & Fat distribution: Short-term	Hauner et al., 2012	6 w, 4 & 12 mo	No difference	No difference	Hauner et al.
Medium-term	None				
Long-term	Lauritzen et al., 2005	2.5 y	No difference	No difference	Bergmann et al.
	Helland et al., 2008	7 y	No difference		
	Asserhoj et al., 2009	6 y	No difference		
	Bergmann et al., 2012	7 y	No difference		

LC-PUFA; Long chain-polyunsaturated fatty acids. W; weeks. Mo; months. Y; years. BMI; body mass index.
vitamin A, vitamin D, selenium and Iodine) results in low concentrations of these nutrients in breast milk whereby the infant becomes depleted, whereas group II nutrients (folate, calcium, Iron, copper, and zinc) in breast milk are relatively unaffected by maternal intake or status; the mother gradually becomes more depleted when intake is less than the amount secreted in breast milk. The major strength of the current review is the extensive search strategy. Limitations were the restriction to English-language publications leading to the possibility that eligible documents in other languages may have been omitted, and the restriction on year of publication. To ensure that we included the latest and most up-to-date documents we only considered documents published from 2010 onwards, in order to be consistent with other systematic reviews performed as part of the EarlyNutrition project. It is therefore possible that we have not included some potentially relevant documents. On the other hand, as systematic reviews were included, with studies originating more than 5 years ago, we are quite confident that the important studies are included. Another limitation is that we did not set out to critically appraise the documents that we identified, in terms of their quality, nor did we directly assess any of the information that the documents and conclusions were based upon.

Conclusions

This systematic review of current literature and recommendations on nutrition of lactating women and its effects on later health outcomes in their offspring showed that current evidence is scarce and many aspects of nutrition need further elucidation. This review can form a foundation for further research based on gaps provided by the authors of included documents and identified during the process of this review.

Funding

The research leading to these results has received funding from the European Union’s Seventh Framework Programme (FP7/2007–2013), project EarlyNutrition under grant agreement n° [289346].

References

Aaltonen, J., Ojala, T., Laitinen, K., Poussa, T., Ozanne, S. and Isolauri, E. (2011). Impact of maternal diet during pregnancy and breastfeeding on infant metabolic programming: A prospective randomized controlled study. Eur. J. Clin. Nutr. 65(1):10–19.
Agostoni, C., Baselli, L. and Mazzoni, M. B. (2013). Early nutrition patterns and diseases of adulthood: A plausible link? Eur. J. Intern. Med. 24 (1):5–10.
Agostoni, C., Braegger, C., Decsi, T., Kolacek, S., Koletzko, B., Michelsen, K. F., Mihatsch, W., Moreno, L. A., Puntis, J., Shamir, R., Szajewska, H., Turck, D. and van Goudoever, J. (2009). Breast-feeding: A commentary by the ESPGHAN Committee on Nutrition. J. Pediatr. Gastroenterol. Nutr. 49(1):112–125.

Allen, L. H. (2012). B vitamins in breast milk: Relative importance of maternal status on intake, and effects on infant status and function. Adv. Nutr. 3(3):362–369.

Aserhoj, M., Nehammer, S., Matthiesen, J., Michelsen, K. F. and Lauritzen, L. (2009). Maternal fish oil supplementation during lactation may adversely affect long-term blood pressure, energy intake, and physical activity of 7-year-old boys. J. Nutr. 139(2):298–304.

Barker, D. J. (2004). The developmental origins of chronic adult disease. Acta Paediatr. Suppl. 93(446):26–33.

Barouki, R., Gluckman, P. D., Grandjean, P., Hanson, M. and Heindel, J. J. (2012). Developmental origins of non-communnicable disease: Implications for research and public health. Environ. Health 11:42.

Bergmann, R. L., Bergmann, K. E., Richter, R., Haschke-Becher, E., Henrich, W. and Dudenhausen, J. W. (2012). Does docosahexaenoic acid (DHA) status in pregnancy have any impact on postnatal growth? Six-year follow-up of a prospective randomized double-blind monocenter study on low-dose DHA supplements. J. Perinat. Med. 40(6):677–684.

Campoy, C., Escolano-Margarit, M. V., Anjos, T., Szajewska, H. and Uauy, R. (2012). Omega 3 fatty acids on child growth, visual acuity and neurodevelopment. Br. J. Nutr. 107(Suppl 2):S85–S106.

Czech-Kowalska, J., Latka, E., Bulsiewicz, D., Jaworski, M. and Heindel, J. J. (2012). Genetic variants of the fatty acid desaturase gene cluster predict amounts of red blood cell docosahexaenoic and other polyunsaturated fatty acids in pregnant women: Findings from the Avon Longitudinal Study of Parents and Children. Am. J. Clin. Nutr. 93(1):211–219.

Lattka, E., Rzechak, P., Szabo, E., Jakobik, V., Weck, M., Weyermann, M., Grallert, H., Rothenbacher, D., Heinrich, J., Brenner, H., Decsi, T., Illig, T. and Koletzko, B. (2011). Genetic variants in the FADS gene cluster are associated with arachidonic acid concentrations of human breast milk at 1.5 and 6 mo postpartum and influence the course of milk dodecanoic, tetracosenoic, and trans-9-octadecenoic acid concentrations over the duration of lactation. Am. J. Clin. Nutr. 93(2):382–391.

Laourtizen, L., Hoppe, C., Straarup, E. M. and Michaelsen, K. F. (2005). Maternal fish oil supplementation in lactation and growth during the first 2.5 years of life. Pediatr. Res. 58(2):235–242.

Lucia Bergmann, R., Bergmann, K. E., Haschke-Becher, E., Richter, R., Dudenhausen, J. W., Barclay, D. and Haschke, F. (2007). Does maternal docosahexaenoic acid supplementation during pregnancy and lactation lower BMI in late infancy?. J. Perinat. Med. 35(4):295–300.

Luoto, R., Kalliomaki, M., Laitinen, K. and Isolauri, E. (2010). The impact of perinatal probiotic intervention on the development of overweight and obesity: Follow-up study from birth to 10 years. Int. J. Obes. (Lond.) 34(10):1531–1537.

Martinez-Victoria, E. and Yago, M. D. (2012). Omega 3 polyunsaturated fatty acids and body weight. Br. J. Nutr. 107(Suppl 2):S107–S116.

McMillen, I. C. and Robinson, J. S. (2005). Developmental origins of the metabolic syndrome: Prediction, plasticity, and programming. Physiol. Rev. 85(2):571–633.

Mühlhausler, B. S., Gibson, R. A. and Makrides, M. (2010). Effect of long-chain polyunsaturated fatty acid supplementation during pregnancy or lactation on infant body composition: A systematic review. Am. J. Clin. Nutr. 92(4):857–863.

Mykkänen, L., Hafnian, S. M., Hales, C. N., Ronnemaa, T. and Laakso, M. (1997). The relation of proinsulin, insulin, and proinsulin-to-insulin ratio to insulin sensitivity and acute insulin response in normoglycemic subjects. Diabetes 46(12):2084–2091.

Ostadrahimi, A., Nikniaz, L., Mahdavi, R., Hejazi, M. A. and Nikniaz, Z. (2013). Effects of synthetic supplementation on lactating mothers' energy intake and BMI, and infants' growth. Int. J. Food Sci. Nutr. 64(6):711–714.

Pludowski, P., Holick, M. F., Pilz, S., Wagner, C. L., Hollis, B. W., Grant, W. B., Shoenfeld, Y., Larchbaum, E., Llewellyn, D. J., Kienreich, K. and Soni, M. (2013a). Vitamin D effects on musculoskeletal health, immunity, autoimmunity, cardiovascular disease, cancer, fertility, pregnancy, dementia and mortality—a review of recent evidence. Autoimmun. Rev. 12(10):976–989.

Pludowski, P., Karczmarewicz, E., Bayer, M., Carter, G., Chlebna-Sokol, D., Czech-Kowalska, J., Delski, R., Decsi, T., Dudenhausen, A., Franek, E., Gluszko, P., Graest, W. B., Holick, M. F., Yankovskaya, I., Konstantynowicz, J., Ksiazek, J., Ksiezopolska-Orlowska, K., Lewinski, A., Litwin, M., Lohner, S., Lorenz, R. S., Łukaszewicz, J., Marciniowska-Suchowierska, E., Milewicz, A., Misiorowski, W., Nowicki, M., Povoroznyuk, V., Rozentrypt, P., Rudenka, E., Shoenfeld, Y., Socha, P., Solnica, B., Szalecki, M., Talalaj, M., Varbico, S. and Zmijewski, M. A. (2013b). Practical
guidelines for the supplementation of vitamin D and the treatment of deficits in Central Europe—recommended vitamin D intakes in the general population and groups at risk of vitamin D deficiency. *Endokrynol. Pol.* 64(4):319–327.

Rodriguez, G., Iglesia, I., Bel-Serrat, S. and Moreno, L. A. (2012). Effect of n-3 long chain polyunsaturated fatty acids during the perinatal period on later body composition. *Br. J. Nutr.* 107(Suppl 2):S117–S128.

Rush, D. (2001). Maternal nutrition and perinatal survival. *J. Health Popul. Nutr.* 19(3):S217–S264.

Steer, C. D., Lattka, E., Koletzko, B., Golding, J. and Hibbeln, J. R. (2013). Maternal fatty acids in pregnancy, FADS polymorphisms, and child intelligence quotient at 8 y of age. *Am. J. Clin. Nutr.* 98(6):1575–1582.

Stratakis, N., Gielen, M., Chatzi, L. and Zeegers, M. P. (2014). Effect of maternal n-3 long-chain polyunsaturated fatty acid supplementation during pregnancy and/or lactation on adiposity in childhood: A systematic review and meta-analysis of randomized controlled trials. *Eur. J. Clin. Nutr.* 68(12):1277–1287.

Ulbak, J., Lauritzen, L., Hansen, H. S. and Michaelsen, K. F. (2004). Diet and blood pressure in 2.5-y-old Danish children. *Am. J. Clin. Nutr.* 79(6):1095–1102.

van Rossum, C. T. M., Büchner, F. L. and Hoekstra, J. A. (2005). Quantification of Health Effects of Breastfeeding: Review of the Literature and Model Simulation. pgs. 15–24. RIVM Available at http://www.rivm.nl/dsresource?objectid=7ccfa02-db10-42c0-aefa-c3d797cf6108&type=org&disposition=inline.