Optimal integrated Sachs-Wolfe detection and joint likelihood for cosmological parameter estimation

M. Frommert, T. A. Enßlin, & F. S. Kitaura
Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Straße 1, D-85748 Garching b. München, Germany
mona@mpa-garching.mpg.de

Accepted 2008 September 12. Received 2008 September 12; in original form 2008 July 2

ABSTRACT
We analyse the local variance effect in the standard method for detecting the integrated Sachs-Wolfe effect (ISW) via cross-correlating the cosmic microwave background (CMB) with the large-scale structure (LSS). Local variance is defined as the systematic noise in the ISW detection that originates in the realization of the matter distribution in the observed Universe. We show that the local variance contributes about 11 per cent to the total variance in the standard method, if a perfect and complete LSS survey up to \(z \approx 2 \) is assumed. Due to local variance, the estimated detection significance and cosmological parameter constraints in the standard method are biased. In this work, we present an optimal method of how to reduce the local variance effect in the ISW detection by working conditional on the LSS data. The variance of the optimal method, and hence the signal-to-noise ratio, depends on the actual realization of the matter distribution in the observed Universe. We show that for an ideal galaxy survey, the average signal-to-noise ratio is enhanced by about 7 per cent in the optimal method, as compared to the standard method. In the framework of our method, it is straightforward to correct for the magnification bias coming from gravitational lensing effects. Furthermore there is no need to estimate the covariance matrix by Monte Carlo simulations as in the standard method, which saves time and increases the accuracy. Finally, we derive the correct joint likelihood function for cosmological parameters given CMB and LSS data within the linear LSS formation regime, which includes a small coupling of the two datasets due to the ISW effect.

Key words: Cosmology: CMB – Large-Scale Structure – cosmological parameter estimation

1 INTRODUCTION
The integrated Sachs-Wolfe (ISW) effect (Sachs & Wolfe 1967) is an important probe of the existence and nature of dark energy (Crittenden & Turok 1996) and the nature of gravity (Lue et al. 2004; Zhang 2006b). Spatial curvature also gives rise to an ISW effect, but is well constrained to be very close to zero by cosmic microwave background (CMB) experiments such as the Wilkinson Microwave Anisotropy Probe (Komatsu et al. 2008). However, the detection of the ISW signal remains challenging, for it is obscured by primordial fluctuations in the CMB. In recent years, substantial effort has been made to detect the ISW effect via cross-correlation of the CMB with large-scale structure (LSS) surveys, such as optical galaxy and quasar surveys (Sloan Digital Sky Survey, Adelman-McCarthy et al. (2008), and Two-Micron All-Sky Survey, Jarrett et al. (2000)), radio surveys (NRAO VLA Sky Survey, Condon et al. (1998)), and X-ray surveys (High Energy Astrophysics Observatory, Boldt (1987)). Such cross-correlation studies have, for example, been done by Boughn et al. (1998), Boughn & Crittenden (2004), Boughn & Crittenden (2005), Afshordi et al. (2004), Rassat et al. (2006), Raccanelli et al. (2008), McEwen et al. (2007), Pietrobon et al. (2006), Fosalba et al. (2003), Fosalba & Gaztañaga (2004), Vielva et al. (2006), Liu & Zhang (2006), Ho et al. (2008) and Giannantonio et al. (2008), just to name a few of them.

The standard method for detecting the cross-correlation between the LSS and the CMB involves comparing the observed cross-correlation function with its theoretical prediction for a given fiducial cosmological model. The theoretical prediction is by construction an ensemble average over all possible realizations of the universe given the fiducial parameters, including all possible realizations of the local matter distribution. Assuming ergodicity, this ensemble average can also be thought of as an average over all possible positions of the observer in the Universe (‘cosmic mean’).

However, the ISW effect is created by the decay of the gravitational potential coming from the structures on the largest scales, i.e. from structures that have not yet undergone significant gravitational collapse and are still not decoupled from the expansion of the Universe. These largest scales are most affected by cosmic variance. Therefore, when comparing the observed (local) cross-correlation function to its cosmic mean value, the realization of the
matter distribution in our vicinity acts as a source of systematic noise in the estimation of the cross-correlation, hence leading to a biased detection significance, due to cosmic variance.

In this work, we estimate the contribution of this local variance effect to the total variance in the detected signal under the simplifying assumption that there is no shot noise in the galaxy distribution. We find that the local variance in the detected signal amounts to 11 per cent in the case of an ideal LSS survey going out to about redshift 2 and covering enough volume to include the large scales relevant for the ISW. This agrees with [Cabré et al. (2007)], who compare different methods to estimate the error in standard cross-correlation studies. They find that their MC1 error, which ignores the variance coming from the realization of the matter field and only considers the variance in the CMB fluctuations, systematically underestimates the error by about 10 per cent.

From the above-mentioned surveys, the local matter distribution is known to a certain degree, and hence the local variance effect can be reduced by working conditional on that information. We present a generic technique of how to include the knowledge of the matter distribution into the detection of the ISW via cross-correlation, hence reducing the sources of noise to the unknown part of the matter distribution and the primordial CMB fluctuations. We define the systematic noise that comes from the known part of the matter distribution as bias, for it can be removed by working conditional on the LSS data. Our method is referred to as optimal method, in contrast to the standard method for ISW detection mentioned above. The main idea of the optimal method is to create an ISW template from a Wiener filter reconstruction of the LSS. We then use this template to detect the amplitude of the ISW template rather than of the theoretical cross-correlation function. This makes the variance in the estimated amplitude, and hence the signal-to-noise ratio both depend on the actual realization of the matter in the Universe. For an ideal LSS survey, we show that the average variance in the detected amplitude is reduced by 13 per cent in the optimal method. Rephased in terms of the signal-to-noise ratio, this reduction of the noise leads on average to a higher detection significance by about 7 per cent. As we show in this work, in the framework of the optimal method it is straightforward to correct for the magnification bias due to gravitational lensing, as described by Loverde et al. (2007). Furthermore, there is no need to estimate the covariance matrix by Monte Carlo simulations as in the standard method. This saves time and increases the accuracy of the method.

To our knowledge, the only suggested methods for ISW detection besides this work that also do not suffer from the local variance effect are by Zhang (2006a) and Hernández-Monteagudo (2008). The former involves combining lensing-LSS cross-correlation measurements with the ISW-LSS cross-correlation, and thereby relies on the nowadays still-difficult lensing measurements (Hu & Okamoto 2002). The latter follows an approach very similar to ours. However, Hernández-Monteagudo (2008) does not use a Wiener filter reconstruction of the LSS distribution but works directly on the sphere. In contrast to our work he neglects the shot noise, which could be easily included in his analysis, though. In this work we will go one step further than Hernández-Monteagudo (2008) and derive the correct way of including the information encoded in the ISW for cosmological parameter estimation.

Many of the above-mentioned cross-correlation studies have attempted to constrain cosmological parameters using a likelihood function for the cosmological parameters p given the observed cross-correlation function. Just like the detection significance, these parameter estimates are biased by local variance. Furthermore, to our knowledge, there is no straightforward way of combining the likelihood function for the cross-correlation with the likelihoods for CMB and LSS data. In this work, we derive the correct joint likelihood function $P(T, \delta_\| | p)$ for cosmological parameters, given the CMB map T and the LSS data $\delta_\|$, from first principles for the linear LSS formation regime. This joint likelihood consistently includes the coupling between the two datasets introduced by the ISW effect, which so far has been neglected in analyses deriving cosmological parameter constraints by combining CMB and LSS data (Regimbau et al. 2004, Spergel et al. 2007).

The article is organized as follows. We start by briefly describing the integrated Sachs-Wolfe effect in section 2 and explain in detail the different stochastic processes that are relevant for our analysis and the correction for the magnification bias in section 3. In section 4 we review the standard method for detecting the ISW via cross-correlation and estimate the contribution of the local variance to the total variance of the detected signal. Section 5 is devoted to presenting the optimal method of ISW detection we developed, and to comparing it in detail to the standard method. We discuss the role of the biasing effect due to local variance in parameter constraints and derive the joint likelihood function $P(T, \delta_\| | p)$ in section 6. Concluding remarks on our work are given in section 7.

2 THE INTEGRATED SACHS-WOLFE EFFECT

The effect of decaying gravitational potential fluctuations on the CMB is called the integrated Sachs-Wolfe effect and is described by

$$T_{\text{ISW}}(\hat{n}) = 2 \int_{\eta_0}^{\eta_0} \Psi'(-\eta, (\eta_0 - \eta) \hat{n}) \, d\eta,$$

where η denotes the conformal time, η_0 and η_0 the conformal time at last scattering and the present epoch, respectively, and \hat{n} is the direction on the sky. Note that the integral in the above equation has to be taken along the backwards light cone. Ψ is the gauge invariant Bardeen potential (Bardeen 1980), which coincides with the Newtonian gravitational potential in the Newtonian gauge used in this work. The prime denotes the derivative with respect to conformal time. In order to keep the notation simple we have redefined $T_{\text{ISW}} \equiv (T_{\text{ISW}} - T_0)/T_0$, where $T_0 = 2.725$ K is the temperature of the CMB monopole. We will use this convention as well for T and T_{prim}, which will be defined in section 3.

In Newtonian gauge, T_{ISW} is obtained by applying a linear operator P to the present matter density contrast $\delta_m(\eta_0)$:

$$T_{\text{ISW}} = P \delta_m(\eta_0).$$

The matter density contrast is defined as $\delta_m(x) \equiv [\rho_m(x) - \bar{\rho}_m]/\bar{\rho}_m$, where $\rho_m(x)$ denotes the density of matter in the Universe at position x, and $\bar{\rho}_m$ is the background matter density. Eq. (3) can be verified by using the perturbation equations derived by e.g. Kodama & Sasaki (1984) or Durrer (2001).

In order to obtain the expression for the operator P in the subhorizon-limit, let us look at the Poisson equation

$$\Delta \Psi = \frac{3H_0^2}{2} (1 + z) \Omega_m \delta_m,$$

where H_0 is the present value of the Hubble constant, $\Omega_m \equiv \rho_{m,0}/\rho_{c,0}$ the present ratio of matter density to critical density, z denotes the redshift, and Δ is the Laplace operator in comoving coordinates. From the Poisson equation we obtain

$$\Psi = \frac{3H_0^2}{2} (1 + z) \Omega_m \delta_m.$$
ψ′(k, η) = \frac{3H_0^2Ω_m}{2k^2} H(η) (1 - f(η)) \mathcal{D}(η) \delta_m(k, η),

(4)

where \(k \) stands for the absolute value of \(k \), \(H(η) \) is the Hubble constant at conformal time \(η \), \(f \equiv d\ln \delta_m/d\ln a \) is the growth function, \(\mathcal{D}(η) \equiv \delta_m(k, η)/δ_m(k, η_0) \) denotes the linear growth factor, and we define Fourier transformed quantities by

\[\delta_m(k, 0) = \int V e^{i\mathbf{k} \cdot \mathbf{x}} \delta_m(\mathbf{x}, 0). \]

(5)

The expression for the operator \(\mathcal{P} \) can then be obtained by Fourier transforming eq. (4) and inserting it into eq. (1). Note, though, that we have not used the subhorizon-limit in this work, for eq. (2) is valid on superhorizon-scales as well.\(^1\)

3 STOCHASTIC PROCESSES

3.1 Realization of the matter distribution

In the standard cosmology adopted in this work, there are different stochastic processes to be considered. For simplifying the notation, let us define

\[G(\chi, C) \equiv \frac{1}{\sqrt{2\pi C}} \exp \left(-\frac{1}{2} \chi \mathcal{C}^{-1} \chi \right) \]

(6)

to denote the probability density function of a Gaussian distributed vector \(\chi \) with zero mean, given the cosmological parameters \(p \) and the covariance matrix \(C \equiv \langle \chi \chi^\dagger \rangle \), where the averages are taken over the Gaussian distribution \(G(\chi, C) \). Note that in general the covariance matrix depends on the cosmological parameters, which is not explicitly stated in our notation. A daggered vector or matrix denotes its transposed and complex conjugated version, as usual. Hence, given two vectors \(a \) and \(b \), \(a b^\dagger \) must be read as the tensor product, whereas \(a^\dagger b \) denotes the scalar product. Note that these conventions can still be used for vectors and matrices in function-spaces, like, e.g., the matter overdensity field \(\delta_m \), which is a continuous function of the position \(x \).

During inflation, the matter density perturbations have been created from quantum fluctuations. This stochastic process was close to Gaussian (Mukhanov 2005), permitting to write down the probability distribution for the matter density contrast given the cosmological parameters \(p \) as

\[P(\delta_m | p) = G(\delta_m, S), \]

(7)

where the covariance matrix \(S \equiv \langle \delta_m \delta_m^\dagger \rangle \) depends on the cosmological parameters \(p \). The average \(\langle \cdot \rangle \) defined in eq. (7) is defined as ensemble average over the different realizations of \(\delta_m \), the index

\[P(\delta_m | p) \]

explicitly states which probability distribution the average has to be taken over. Given homogeneity and isotropy, we note that the Fourier transformation of \(S \) is diagonal

\[\langle \delta_m(k) \delta_m(k') \rangle P(\delta_m | p) = (2\pi)^3 \delta(k - k') P(k), \]

(8)

where \(P(k) \) is the power spectrum, \(\delta(\cdot) \) denotes the Dirac delta function, and the star is used for denoting complex conjugation.

The stochastic process due to the inflationary quantum fluctuations created the angular fluctuations in the CMB, that is, the primordial fluctuations originating from the surface of last scattering at redshift \(z = 1100 \), as well as the integrated Sachs-Wolfe effect imprinted by the more local matter distribution at \(z < 2 \). Throughout this work we will assume that the primordial fluctuations and the ISW are stochastically independent, which is a safe assumption (apart from the very large scales), given that they are associated with matter perturbations of very different wavelengths (Boughn et al. 1998), so that very little intrinsic cross-correlation can be expected. In fact, for notational convenience we will use the symbol \(\delta_m \) to only denote the local matter distribution at \(z < 2 \).

The joint probability distribution for \(T_{\text{ISW}} = \mathcal{P} \delta_m \) and the primordial temperature fluctuations \(T_{\text{prim}} \) then factorizes

\[P(T_{\text{ISW}}, T_{\text{prim}} | p) = P(T_{\text{ISW}} | p) P(T_{\text{prim}} | p), \]

(9)

with

\[P(T_{\text{ISW}} | p) = G(T_{\text{ISW}}, C_{\text{ISW}}), \]

(10)

and

\[P(T_{\text{prim}} | p) = G(T_{\text{prim}}, C_{\text{prim}}), \]

(11)

where we have defined the angular two-point auto-correlation function for the fluctuation \(T_X \) (\(X \) being ‘ISW’ or ‘prim’)

\[C_X \equiv \langle T_X T_X^\dagger \rangle P(T_X | p). \]

(12)

Again, given homogeneity and isotropy, \(C_X \) is diagonal in spherical harmonics space

\[\langle a_l^X a_{l'm'}^X \rangle P(T_X | p) = C_{l,l'}^X \delta_{ll'} \delta_{mm'}, \]

(13)

where \(C_l^X \) is the angular power spectrum of the quantity \(X \), and we have used the expansion coefficients of \(T_X \) into spherical harmonics \(Y_{lm} \),

\[a_{lm}^X \equiv \int_S d\Omega T_X(\hat{n}) Y_{lm}^*(\hat{n}), \]

(14)

where the integral is taken over the sphere. Given that the joint distribution \(P(T_{\text{ISW}}, T_{\text{prim}} | p) \) factorizes into two Gaussian distributions, the sum \(T = T_{\text{ISW}} + T_{\text{prim}} \), which denotes the temperature fluctuation of the CMB, is again Gaussian distributed

\[P(T | p) = G(T, C_{\text{CMB}}), \]

(15)

with

\[C_{\text{CMB}} = C_{\text{ISW}} + C_{\text{prim}}. \]

(16)

Given the cosmological parameters, the angular power spectra \(C_{\text{CMB}}^l \), \(C_{\text{ISW}}^l \) and \(C_{\text{prim}}^l \) can all be calculated using CMBFAST (http://ascl.net/cmbfast.html), CAMB (http://camb.info), or CMBEASY (www.cmbeasy.org). In particular, \(C_{\text{ISW}} \) can be obtained from the three-dimensional matter covariance matrix \(S \) by

\[C_{\text{ISW}} = \mathcal{P} S \mathcal{P}^\dagger, \]

(17)
where we have used that linear transformations of Gaussian random variables are again Gaussian distributed, with the covariance matrix transformed accordingly (see also Cooray 2002).

3.2 CMB detector noise

From CMB detectors, we do not read off the real T as defined in the last section, but a temperature where the detector noise T_{det} has been added. Again this can be modeled as a Gaussian random process.

$$P(T_{\text{det}}) = G(T_{\text{det}}, C_{\text{det}}),$$

(18)

where C_{det} denotes the detector noise covariance. This process is independent of the process that created the real (noiseless) T, such that if we redefine $T \equiv T + T_{\text{det}}$ to be the temperature we read off our detector, we obtain

$$P(T | p) = G(T, C_{\text{CMB}} + C_{\text{det}}),$$

(19)

with C_{CMB} being the covariance matrix of the real (noiseless) CMB.

However, in most of this work we will neglect the detector noise, for the ISW is only present on the largest angular scales, where the dominant source of noise is cosmic variance (Afshordi 2004). The only part where we include the detector noise will be in section 3 where we derive the joint likelihood for the cosmological parameters, given CMB and LSS data, for in this likelihood we also include smaller angular scales.

3.3 Shot noise

Unfortunately, the matter distribution is not directly known, and we have to rely on LSS catalogues from which we can try to reconstruct it. A process to be considered when working with such catalogues is the stochastic distribution of the galaxies, which only on average follows the matter distribution. Since the galaxies are discrete sources from which we want to infer the properties of the underlying matter overdensity field, we have to deal with shot noise in the galaxy distribution. More specifically, we assume the observed number $N_g(x_i)$ of galaxies in a volume element $\Delta V(x_i)$ at a discrete position x_i to be distributed according to a Poisson distribution

$$P(N_g(x_i) | \lambda(x_i)) = \frac{\lambda(x_i)^{N_g(x_i)} e^{-\lambda(x_i)}}{N_g(x_i)!}.$$

(20)

Here, $\lambda(x)$ denotes the expected mean number of observed galaxies within $\Delta V(x)$, given the matter density contrast,

$$\lambda(x) = w(x) \bar{n}_g \Delta V \left[1 + b \delta_m(x)\right].$$

(21)

In the above equation, $\bar{n}_g \equiv N_g^{\text{tot}} / V$ denotes the cosmic mean galaxy density, with N_g^{tot} being the total number of galaxies in the volume V. Note that we have added an index ‘r’ to stress that these are the actual (real) number of galaxies present in ΔV, not the observed number of galaxies N_g, which can be smaller due to observational detection limits. The window $w(x) \equiv \Phi(x) m(\hat{n})$ denotes the combined selection function $\Phi(x)$ and sky mask $m(\hat{n})$ of the survey, and b the galaxy bias, which in general depends on redshift, scale and galaxy type. The variance in the observed number of galaxies $N_g(x)$ within $\Delta V(x)$ is then

$$\sigma^2_g(x) \equiv \langle [N_g(x) - \lambda(x)]^2 \rangle \bar{n}_g = \lambda(x).$$

Here, we have used the index N_g on the average to indicate the average over the Poisson distribution in eq. 20.

If the average number of galaxies $\lambda(x)$ is large, the Poisson distribution is well approximated by a Gaussian distribution around $\lambda(x)$. For simplicity we will use the Gaussian approximation throughout this work. Furthermore we will ignore the dependence of the noise on $\delta_m(x)$ by using $\sigma^2_g(x) = w(x) \bar{n}_g \Delta V$ instead of the correct noise term $\sigma^2_g(x) = \lambda(x)$, for the latter would require a non-linear and iterative approach. Such an approach is beyond the scope of this paper, but is also irrelevant for the main finding of this work. However, see Kitaura et al. (in preparation) and Enßlin et al. (2008) for a better handling of the Poisson noise and bias variations.

Since the cosmic mean galaxy density \bar{n}_g is not known, we have to estimate it from the observed galaxy counts by

$$\bar{n}_g \Delta V \equiv \sum_{i=0}^{N_g^{\text{tot}}} w(x_i),$$

(22)

where N_g^{tot} is the total number of observed galaxies and the sum goes over all the pixels in our volume.

With the above-mentioned simplifications, we can now work with the following linear data model. First we define the observed galaxy density contrast at position x to be

$$\delta_g(x) \equiv \frac{N_g(x) - w(x) \bar{n}_g \Delta V}{\bar{n}_g \Delta V},$$

(23)

which is the convention used in Kitaura et al. (in preparation). Note that this definition differs from the one usually used in cross-correlation studies by a factor of $w(x)$ (see e.g. Pogosian et al. 2005). We then write

$$\delta_g = R \delta_m + \epsilon,$$

(24)

where $\epsilon(x)$ is the additive noise-term that originates in the Poissonian distribution of $N_g(x)$, and R is the linear response operator. In the simplest case, $R(x_i, x_j) \equiv b w(x_i) \delta_{ij}$, but in general R maps the continuous space in which δ_m lives onto the discrete pixel space of our data δ_g, and it can also include the mapping from redshift-space onto comoving coordinate space.

Gravitational lensing introduces a magnification bias in the observed galaxy density contrast, as described by Loverde et al. (2003). In our data model, it is straightforward to take this effect into account by letting

$$R \delta_m(\hat{n}, z) \equiv w(\hat{n}, z) [b \delta_m(r(z) \hat{n}, z) + 3 \Omega_m H_0^2 (2.5 s(z) - 1) \times \int \frac{dz'}{H(z')} r(z') (r(z) - r(z')) (1 + z') \delta_m(r(z) \hat{n}, z')]^s,$$

(25)

where $r(z)$ is the comoving distance corresponding to redshift z, and the slope s of the number count of the source galaxies is defined as

$$s \equiv \frac{d \log_{10} N(< m)}{dm},$$

(26)

with m being the limiting magnitude and $N(< m)$ being the count of objects brighter than m. Note that in order to get the correct formula for the magnification bias term in 3 dimensions, we used the Dirac delta function as the normalized selection function used by Loverde et al. $W(z, z') \equiv \delta(z - z')$.

From the Poisson distribution in eq. 20, we see that

$$P(\epsilon | p) = G(\epsilon, N),$$

(27)
with the noise covariance matrix

\[N(x_i, x_j) \equiv \langle \epsilon(x_i) \epsilon(x_j) \rangle_N = \frac{w(x_i)}{n_p} \Delta V \delta_{ij}. \]

(28)

4 Standard Cross-Correlation Method

4.1 Description

In this section, we briefly review the standard method for detecting the cross-correlation of the CMB with the projected galaxy density contrast, which was first described by Boughn et al. (1998), but see for example also Ho et al. (2008) and Giannantonio et al. (2008). Note that we use the word galaxy density contrast for convenience, but the method is of course the same when working with other tracers of the LSS as mentioned in section 1.

Theoretical cross-correlation function of two quantities \(X(\mathbf{n}) \) and \(Y(\mathbf{n}) \) on the sky is defined in spherical harmonics space as

\[C^{X,Y}_l \equiv \langle \hat{a}^X_{lm} \hat{a}^Y_{lm} \rangle_{\text{all}}. \]

(29)

The average in the above definition is an ensemble average over all possible realizations of the universe with given cosmological parameters, i.e., over \(P(\delta_0, \delta_g, T|p) \). This is indicated by the index 'all' on the average. We will denote the abstract cross-correlation function as a vector in Hilbert space by \(\xi_{XY} \) to simplify the notation. This can be understood as a vector in pixel space or as a vector in \(a_{lm} \)-space. Only when evaluating the expressions we derive, we will choose the representation of the abstract vector \(\xi_{XY} \) in spherical harmonics space, \(\langle \xi_{XY} \rangle_{\text{all}} = C^{X,Y}_l \delta_{ll} \). In the following we will work with the cross-correlation function of the projected galaxy density contrast with the CMB temperature fluctuations, \(\xi_{g,CMB}^g \), in order to reproduce the standard approach in the literature.

The observed projected galaxy density contrast \(\delta_{g}^{\text{projected}} \) for a redshift bin centered around redshift \(z_i \) in a direction \(\mathbf{n} \) on the sky is

\[\delta_{g}^{\text{projected}}(\mathbf{n}, z_i) = \int dz W(z, z_i) \delta_g(\mathbf{n}, z) \]

\[= \int dz W(z, z_i) [R \delta_m(\mathbf{n}, z) + \epsilon(\mathbf{n}, z)], \]

(30)

where \(W(z, z_i) \) denotes the normalized selection function that defines the \(i \)-th bin, and \(\delta_g \) is given by eq. (23). Note that in many cross-correlation studies the normalized selection function \(\Phi(x) \) of the survey is used to define the bin. However, since later on we will consider a perfect galaxy survey covering all the redshift range relevant for the ISW, we need to introduce the additional narrow selection function \(W(z, z_i) \) defining the bin.

If the LSS survey and the CMB map cover the full sky, it is convenient to define an estimator for the cross-correlation function of the projected galaxy density contrast with the CMB in spherical harmonics space \(\xi_{g,CMB}^g \),

\[\hat{C}_l^{g,CMB} = \frac{1}{2l+1} \sum_{m} \text{Re} \left(a^g_{lm} a^{\text{CMB}}_{lm} \right), \]

(31)

where \(a^g_{lm} \) and \(a^{\text{CMB}}_{lm} \) are the expansion coefficients of the observed \(\delta_{g}^{\text{projected}} \) and \(T \) into spherical harmonics as defined in eq. (14). The hat has been added to discriminate the estimator of the cross-correlation function from its theoretical counterpart \(\xi_{g,CMB}^g \). In the case that the experiments cover only a part of the sky, one has to take into account the effects of mode-coupling when working in spherical harmonics space. In this case it is therefore more straightforward to define other estimators for the cross-correlation function, such as averages over the sphere in real space (see e.g. Giannantonio et al. 2008), or quadratic estimators as in Afshordi et al. (2004). However, for the statement we will make in this work the actual definition of the estimator is not relevant, and we find the one defined in spherical harmonics space the most convenient to work with, since a closely related quantity also appears within the framework of the optimal detection method presented later on in section 5. Again, we use the notation \(\xi_{g,CMB}^g \) for the estimator of the cross-correlation \(\xi_{g,CMB}^g \). In order to keep the notation simple, we will from now on understand \(\xi_{g,CMB}^g \) and \(\xi_{g,CMB}^g \) as being vectors in spherical harmonics space as well as in bin-space, containing the cross-correlation functions for all the different bins.

In the literature, the probability distribution of the above-defined estimator \(\xi_{g,CMB}^g \) around the theoretical cross-correlation function \(\xi_{g,CMB}^g \) is usually approximated by a Gaussian,

\[P \left(\xi_{g,CMB}^g | p \right) = \mathcal{N} \left(\xi_{g,CMB}^g - \xi_{g,CMB}^g, C \right), \]

(32)

where the covariance matrix of the cross-correlation estimator is defined as

\[C \equiv \left(\langle \xi_{g,CMB}^g - \xi_{g,CMB}^g \rangle_{\text{all}} \langle \xi_{g,CMB}^g - \xi_{g,CMB}^g \rangle_{\text{all}}^\dagger \right)_{\text{all}}. \]

(33)

The first question usually addressed in the above-mentioned cross-correlation studies is whether a non-zero cross-correlation function can be detected at all. To this end one assumes a fiducial cosmological model, which is used to predict the theoretical cross-correlation function and covariance matrix \(C \). In this work we use the flat \(\Lambda \)CDM model with parameter values given by Komatsu et al. (2008), table 1: \(\Omega_b h^2 = 0.02265, \Omega_L = 0.721, h = 0.701, n_s = 0.96, \tau = 0.084, s_8 = 0.817 \). The covariance matrix is usually estimated by Monte Carlo simulations (see Cabrè et al. 2007 for an overview), or analytically as in Afshordi et al. (2004). The analytical prediction is possible in the case that the joint probability distribution for the projected galaxy density contrast and CMB given the cosmological parameters, \(P(\delta_{g}^{\text{projected}}, T_{\text{CMB}} | p) \), is Gaussian, which is valid in the framework of linear perturbation theory. Here we have used the index gi to denote the projected galaxy density contrast of bin i. Then the covariance matrix in spherical harmonics space can be expressed in terms of two-point correlation functions as

\[C_l(i,j) \equiv \frac{1}{(2l+1) f_{\text{sky}}} \left[C_{g,i}^{\text{CMB}} C_{g,j}^{\text{CMB}} + C_{g,ij}^{\text{CMB}} \right], \]

(34)

where we have used the auto-correlation power spectrum for the CMB, as defined in eq. (13), \(C_{g,ij}^{\text{CMB}} \) contains by definition the power coming from the underlying matter distribution plus the shot noise. Note that, in principle, \(C_{g,CMB}^{\text{CMB}} \) in the above formula also includes detector noise, which we neglect here as discussed in section 3.2. \(f_{\text{sky}} \) is the fraction of the sky covered by both, the galaxy survey and the CMB experiment. In the following we will assume \(f_{\text{sky}} = 1 \).

Putting an amplitude or fudge factor \(A_{cc} \) in front of the theoretical cross-correlation function \(\xi_{g,CMB}^g \) by hand, one can now find out whether it is possible to detect a non-zero \(A_{cc} \). The index 'cc' on the amplitude indicates that it is the amplitude of the cross-correlation function. Of course this amplitude should be one in the fiducial model. However, even if the data are taken from a universe in which the underlying cosmology is the fiducial model we will in
general not estimate the amplitude to be one. This is due to the different sources of stochastic uncertainty or noise in the estimate of \(A_{cc} \), which we have described at length in section 3. The likelihood for the amplitude given the physical parameters reads

\[
P(\xi_{\text{CMB}} | A_{cc}, \rho) = G \left(\xi_{\text{CMB}} - A_{cc} \xi_{\text{CMB}}, C \right).
\]

A commonly used estimator of the amplitude \(A_{cc} \) is the maximum likelihood amplitude

\[
\hat{A}_{cc} = \frac{\sum_l (2l+1) \sum_{i,j} C_l^{g,\text{CMB}} C_l^{-1}(i,j) \tilde{C}_l^{g,\text{CMB}}}{\sum_l (2l+1) \sum_{i,j} C_l^{g,\text{CMB}} C_l^{-1}(i,j) C_l^{g,\text{CMB}}},
\]

where in the second line we have used the representation of the cross-correlation functions in spherical harmonics space. The maximum likelihood amplitude is an unbiased estimator (if the underlying cosmology is actually the fiducial model we have for the average over all cosmic realizations

\[
\langle \hat{A}_{cc} \rangle_{\text{all}} = 1,
\]

since \(\langle \tilde{C}_l^{g,\text{CMB}} \rangle_{\text{all}} = C_l^{g,\text{CMB}} \) by definition of the latter quantity. Note that here we have assumed that the data are taken in a universe where the underlying cosmology is actually the fiducial model. This will be assumed in the rest of the paper as well.

The variance in \(\hat{A}_{cc} \) is given by

\[
\sigma_{cc}^2 = \left(\hat{A}_{cc} - \langle \hat{A}_{cc} \rangle_{\text{all}} \right)^2_{\text{all}} = (\xi_{\text{CMB}} \xi_{\text{CMB}})^{-1} = \sum_l (2l+1) \sum_{i,j} C_l^{g,\text{CMB}} C_l^{-1}(i,j) C_l^{g,\text{CMB}}^{-1}. \tag{38}
\]

In the standard literature, an estimated significance is given to the detection of the amplitude, the estimated signal-to-noise ratio

\[
\left(\frac{S}{N} \right)_{cc} = \frac{\hat{A}_{cc}}{\sigma_{cc}} = \frac{\sum_l (2l+1) \sum_{i,j} C_l^{g,\text{CMB}} C_l^{-1}(i,j) \tilde{C}_l^{g,\text{CMB}}}{\sqrt{\sum_l (2l+1) \sum_{i,j} C_l^{g,\text{CMB}} C_l^{-1}(i,j) C_l^{g,\text{CMB}}}}, \tag{39}
\]

However, since the real signal is \(A_{cc} = 1 \), the actual signal-to-noise ratio is given by

\[
\left(\frac{S}{N} \right)_{cc} = \frac{1}{\sigma_{cc}} \left(\sum_l (2l+1) \sum_{i,j} C_l^{g,\text{CMB}} C_l^{-1}(i,j) C_l^{g,\text{CMB}} \right)^{-1}, \tag{40}
\]

and is therefore independent of the data.

4.2 Analysis of error-contributions

In this section we analyse the different sources of noise that contribute to the total variance in eq. (38). In order to simplify this task we assume that there is no shot noise in the galaxy distribution, that is, we set \(\epsilon = 0 \) in eq. (23), which means that the galaxies trace the matter distribution perfectly. Furthermore we work with the ideal case that we have a galaxy survey that covers the whole sky and goes out to redshift 2. With these two assumptions we have a perfect knowledge of the matter distribution \(\delta_m \) relevant for the ISW effect.

For sufficiently narrow bins, the integration kernels for ISW and galaxy density contrast are approximately constant over the bin and hence \(\sigma_{isw}^2 = \text{const}(i) \times \sigma_{isw}^2 \) (cf. section 3). Under the above assumptions, eqs (36), (38), and (40) simplify to

\[
\hat{A}_{cc} = \sum_l (2l+1) \frac{C_l^{ISW,\text{CMB}}}{C_l^{ISW,\text{CMB}} + C_l^{ISW,\text{CMB}}},
\]

with the variance (eq. 38)

\[
\sigma_{cc}^2 = \left(\sum_l (2l+1) \frac{C_l^{ISW}}{C_l^{ISW} + C_l^{ISW}} \right)^{-1},
\]

and the signal-to-noise ratio in eq. (40) simplifies to

\[
\left(\frac{S}{N} \right)_{cc} = \sqrt{\sum_l (2l+1) \frac{C_l^{ISW}}{C_l^{ISW} + C_l^{ISW}}},
\]

The signal-to-noise ratio as a function of the maximum summation index \(l_{max} \) for our fiducial model is depicted in the top panel of Fig. 1 for which we have modified CMBEASY in order to obtain \(C_l^{ISW} \) and \(C_l^{CMB} \). There are contributions to the signal-to-noise up to roughly \(l = 100 \). Note, though, that our assumptions of Gaussianity of the matter realization and the assumption of \(\mathcal{P} \) being a linear operator do not hold on small scales where structure growth has become non-linear. However, this issue will not be addressed in this work and it will not affect our main results, which are due to advantages of our method on the very large scales, which are most affected by cosmic variance.

The above estimator for the amplitude is only unbiased when averaging over the joint distribution

\[
\langle \hat{A}_{cc} \rangle_{\text{all}} \equiv \langle (\hat{A}_{cc})_{\text{prim}} \rangle_{\text{ISW}} = 1.
\]

Here we indicate averages over \(P(T_{\text{prim}} | p) \) and \(P(T_{\text{ISW}} | p) \) by the indices ‘prim’ and ‘ISW’, respectively. This means that both the primordial CMB fluctuations and the realization of the local matter distribution are included in the error budget. We call the latter the local variance, indicating that it originates in the realization of the matter distribution in our observed Universe. Let us now estimate the contribution of the local variance to the total variance of \(\hat{A}_{cc} \). To this end we split the variance in eq. (42) into two parts

\[
\sigma_{cc}^2 \equiv \langle (\hat{A}_{cc} - 1)^2 \rangle_{\text{prim}}\text{ISW}
\]
where we have defined the contributions to the variance coming from primordial CMB fluctuations, and the local variance as \(\sigma_{\text{prim}}^2 \) and \(\sigma_{\text{loc}}^2 \), respectively. Both can be easily calculated, and the second contribution turns out to be

\[
\sigma_{\text{loc}}^2 = 2 \left(\frac{l(l+1)}{2} \left(\frac{2C_{\text{ISW}}}{C_{\text{CMB}}+C_{\text{ISW}}} \right)^2 \right) \left(\frac{1}{\sigma_{\text{prim}}^2 + \sigma_{\text{loc}}^2} \right)^2.
\]

In the bottom panel of Fig. 1, we plot the relative contribution of the local to the total variance \(\sigma_{\text{loc}}^2 / \sigma_{\text{cc}}^2 \) against the maximum \(l \) that we consider in the analysis, for our fiducial cosmological model. For a maximum multipole \(l_{\text{max}} = 100 \), this relative contribution amounts to

\[
\frac{\sigma_{\text{loc}}^2}{\sigma_{\text{cc}}^2} \approx 11\%.
\]

This estimate agrees with Cabrég et al. (2007), who compare different error estimates for the standard cross-correlation method. They compare what they call the MC1 method, which only takes into account the variance in the CMB and ignores the variance in the galaxy overdensity, with the MC2 method, which includes also the variance in the galaxy overdensity. Both methods rely on performing Monte Carlo (MC) simulations of the CMB, and of the galaxy overdensity in the case of MC2, and the simulations used to compare the different error estimates have converged with an accuracy of about 5 per cent, as stated in the paper. The result is that, compared to the MC2 method, the MC1 method underestimates the error by about 10 per cent, which agrees well with our estimate.

\section{5 Optimal Method}

Since the expected ISW effect is known from our galaxy survey, it is possible to find a cross-correlation estimator that does not include the local variance in the error-budget, but is unbiased already when averaging conditional on the observed galaxy density contrast \(\delta_g \). We will introduce such an estimator in this section. To this end, we first derive the posterior distribution given in eq. (7) as a prior for cosmological parameters, given CMB and LSS data, which includes the small coupling of the two datasets introduced by the ISW effect (cf. section 6).

\subsection{5.1 Derivation of the posterior distribution}

Let us first ask the question what the observed galaxy density contrast tells us about the matter distribution \(\delta_m \). Given the data model in eq. (24) and the noise distribution in eq. (27), we know that

\[
P(\delta_g | \delta_m, p) = P(\delta_g - R \delta_m | \delta_m, p) = G(\delta_g - R \delta_m, N),
\]

where \(G(\delta_g - R \delta_m, N) \) is the probability distribution of galaxies and matter distribution

\[
P(\delta_g, \delta_m | p) = G(\delta_g - R \delta_m, N) G(\delta_m, S) = G(\delta_m - D_j, D) G(\delta_g, RSR^T + N),
\]

which can be interpreted as the information source of our LSS knowledge (Enßlin et al. 2008). A detailed derivation of the expression for the joint probability distribution in eq. (49) can be found in

\[\text{Figure 1. Comparison of the average signal-to-noise ratio and variance of the optimal method with the ones of the standard method for } z_{\text{max}} = 2.\]

\[\text{Top panel: Average signal-to-noise ratio of the optimal method (solid) and signal-to-noise ratio of the standard method (dashed) versus the maximal multipole considered in the analysis. Middle panel: Relative improvement of the average signal-to-noise ratio in the optimal method. Bottom panel: Average relative improvement of the variance in the optimal method (solid) and relative contribution of the local variance to the total variance in the standard method (dashed).}\]
This distribution can be trivially integrated over \(\delta_m \) in order to obtain the evidence
\[
P(\delta | p) = G(\delta_y, RSR^T + N).
\]
(52)
Therefore the posterior distribution
\[
P(\delta_m | \delta_o, p) = \frac{P(\delta_m, \delta_o | p)}{P(\delta_y | p)}
\]
reads
\[
P(\delta_m | \delta_o, p) = G(\delta_m - D_j, D).
\]
(53)
From this posterior one can directly read off the maximum a-posteriori estimator for the matter distribution \(\delta_m \)
\[
\Delta \equiv D_j = (R^T N^{-1} R + S^{-1})^{-1} R^T N^{-1} \delta_y.
\]
(54)
This is the Wiener filter applied to the galaxy-overdensity
\[
\frac{P_{\text{CMB}}(\tau \delta)}{P_{\text{ISW}}(\tau \delta)}.
\]
(56)
Since the uncertainty in the reconstructed matter distribution is not related to the primordial CMB fluctuations (cf. section 3.1), the joint probability distribution for \(T_{\text{ISW}}, T_{\text{prim}} \), and \(T_{\text{det}} \) given \(\delta_y \) factorizes:
\[
P(T_{\text{ISW}}, T_{\text{prim}}, T_{\text{det}} | \delta_y, p) = P(T_{\text{ISW}} | \delta_y, p) P(T_{\text{prim}} | p) P(T_{\text{det}} | p).
\]
(57)
Note that in the above equation we have used the fact that the primordial CMB fluctuations do not depend on the galaxy distribution.
We now again use the fact that the sum of stochastically independent Gaussian distributed random variables is again Gaussian distributed with the sum of the covariance matrices. We then obtain the posterior distribution for \(T \), given the LSS data:
\[
P(T | \delta_y, p) = G(T - \tau, \hat{C}).
\]
(58)
Here we have used the probability distributions for \(T_{\text{prim}} \) and \(T_{\text{det}} \), eqs 11 and 15, and we have defined the covariance matrix for the total noise
\[
\hat{C} \equiv \eta D P \eta^T + C_{\text{prim}} + C_{\text{det}}.
\]
(59)
As in section 4 we will neglect the detector noise in the rest of this section and only include it when deriving the likelihood in section 6. However, if needed it can easily be included into the following equations by replacing \(C_{\text{prim}} \rightarrow C_{\text{prim}} + C_{\text{det}} \).

5.2 Estimation of the ISW amplitude

We can now ask the same question as before, namely if it is at all possible to detect a non-zero amplitude \(\Delta \), that we put in front of our ISW template in eq. (55). Again we can write down the likelihood function for the amplitude
\[
P(T | \Delta, \delta_y, p) = G(T - \Delta \tau, \hat{C}),
\]
and estimate the amplitude by a maximum likelihood estimator
\[
\Delta \equiv \frac{T_{\text{CMB}} C_{\text{ISW}}^{-1} \tau}{\tau^T C_{\text{ISW}}^{-1} \tau} = \frac{\sum_{l}(2l+1) \frac{C_{\text{CMB}}}{C_{\text{ISW}}}}{\sum_{l}(2l+1) \frac{C_{\text{ISW}}}{C_{\text{ISW}}}}.
\]
(61)
where we have defined the estimator \(\hat{C}_I \) of the ISW autocorrelation function analogous to the cross-correlation estimator in eq. 41.
\[
\hat{C}_I \equiv \frac{1}{2l+1} \sum_{m} |a^r_{lm}|^2.
\]
(62)
This maximum likelihood amplitude is again an unbiased estimator, but now with respect to the probability distribution conditional on \(\delta_y \).
\[
\langle \Delta \rangle_{\text{cond}} = 1,
\]
(63)
where the index ‘cond’ on the average denotes an average over the distribution \(P(T_{\text{CMB}} | \Delta, \delta_y, p) \).
In other words, we have eliminated the noise component coming from the realization of the known part of \(\delta_m \), thus reducing the sources of noise to the unknown part of \(\delta_m \) and the primordial CMB fluctuations. The variance in \(\Delta \) is
\[
\sigma^2 \equiv \langle (\Delta - \langle \Delta \rangle_{\text{cond}})^2 \rangle_{\text{cond}}
\]
\[
= \left(\tau^T \hat{C}_I^{-1} \tau \right)^{-1} \sum_{l} (2l+1) \frac{C_{\text{ISW}}}{C_{\text{ISW}}}^{-1},
\]
and we obtain the signal-to-noise ratio
\[
\left(\frac{S}{N} \right)_\tau \equiv \frac{1}{\sigma} \sqrt{\sum_{l} (2l+1) \frac{C_{\text{ISW}}}{C_{\text{ISW}}}}.
\]
(65)
Note that the error estimate (and hence the signal-to-noise ratio) of the optimal method depends on the concrete LSS realization, and how well it is suited to detect the ISW effect. In a universe, where by chance the local LSS does/does not permit a good ISW detection, the error is small/large, as it should be.
We would like to point out that in the optimal method there is no need to estimate the covariance matrices from Monte Carlo simulations, since for a given set of cosmological parameters, the matter covariance matrix (power spectrum) \(S \) can be calculated analytically using the fitting formula provided by [Bardeen et al. 1986], since it is still linear on the scales we are interested in. \(C_{\text{prim}} \) can be obtained from Boltzmann codes such as CMBEASY, and the noise covariance \(N \) can be estimated from the data.

5.3 Comparison of signal-to-noise ratios and biasing

In order to compare our method to the standard one, let us now again make the simplifying assumption that there is no shot noise in the galaxy distribution, and that we have a perfect galaxy survey, as we did in section 4.2. At the end of this section, we will also approximately look at the effects of a galaxy survey that is incomplete in redshift, i.e. that goes out to a maximal redshift \(z_{\text{max}} \). For the perfect survey, the shot noise covariance matrix \(N \) is zero, and hence the posterior for \(\delta_m \) in eq. 55 is infinitely sharply peaked around the reconstruction \(\delta_m \) (eq 54), which turns into
\[
\delta_{\text{m}}^\text{rec} = (R^T N^{-1} R)^{-1} R^T N^{-1} \delta_y
\]
\[
= R^{-1} \delta_y.
\]
(66)
Here, R^{-1} should be read as the pseudo-inverse of R, e.g. as defined in terms of Singular Value Decomposition (see Press et al. (1992) and Zaroubi et al. (1995)). The posterior for δ_m in eq. (53) is therefore now a Dirac delta function

$$P(\delta_m | \delta_0, p) = \delta(\delta_m - R^{-1} \delta_0),$$

which makes our ISW template exact, and the noise covariance matrix due to the error in the reconstruction is zero, $\mathcal{P} \mathcal{D} \mathcal{P}^\dagger = 0$, hence leaving us with $\hat{C} = C_{\text{prim}} = C_{\text{CMB}} - C_{\text{ISW}}$. Since our perfect LSS survey covers the complete volume relevant for the ISW, our template is now equal to the ISW-temperature fluctuations, $\tau = T_{\text{ISW}}$. We can then substitute all indices τ in eqs (61)-(65) by the index ISW, and the estimated amplitude becomes

$$\hat{A}_\tau = \sum_l (2l + 1) \frac{\hat{C}_{\text{ISW}}^{2l+1} \tau - C_{\text{ISW}}^{2l+1}}{\Sigma_{l}^{max}},$$

with the variance

$$\sigma_{\tau}^2 = \left(\sum_l (2l + 1) \frac{\hat{C}_{\text{ISW}}^{2l+1} \tau - C_{\text{ISW}}^{2l+1}}{\Sigma_{l}^{max}} \right)^{-1},$$

and the signal-to-noise ratio

$$\frac{S}{N}_\tau = \sqrt{\sum_l (2l + 1) \frac{\hat{C}_{\text{ISW}}^{2l+1} \tau - C_{\text{ISW}}^{2l+1}}{\Sigma_{l}^{max}}}. \quad (70)$$

As we mentioned before, the variance, and hence the signal-to-noise ratio of the optimal method, depend on the actual realization of the matter distribution in our observed Universe. In Fig. 2 we plot the probability distribution of our signal-to-noise ratio for $l_{\text{max}} = 100$ and $z_{\text{max}} = 2$, which we have inferred from the distribution of T_{ISW} using the central limit theorem for $\langle S/N \rangle_\tau$, and from that deriving the distribution for $\langle S/N \rangle_\tau$. We have also checked the validity of the central limit theorem in this case by comparing with the correct probability distribution of the signal-to-noise ratio given by an expansion into Laguerre polynomials as derived e.g. in Castaño-Martínez & López-Blázquez (2005). The probability distribution is such that the signal-to-noise ratio can easily differ by $\Delta (S/N)_\tau \approx 1$ for two different realizations of the matter distribution.

The mean signal-to-noise ratio $\langle S/N \rangle \tau^\text{av} \equiv 1/\sigma_{\tau}^2 \equiv 1/\sqrt{\langle \sigma^2 \rangle_{\text{ISW}}}^\text{av}$ increases with l_{max}, as it did for the standard method. For every l_{max} we compare the mean signal-to-noise ratio of the optimal method to the signal-to-noise ratio of the standard method (cf. eq. 43) in the top panel of Fig. 1, again for $z_{\text{max}} = 2$. Note that in our formula for the signal-to-noise ratio, eq. (70), there is now a minus sign between $C_{l,\text{CMB}}^\text{ISW}$ and $C_{l,\text{ISW}}^\text{ISW}$, in contrast to the signal-to-noise ratio of the standard method in eq. (43), which has a plus sign instead. Thus we take advantage of the LSS instead of moving it into the error budget. The absolute enhancement of the signal-to-noise ratio in our method is therefore independent of l_{max}, for the main advantage of working conditional on the LSS arises on the very large scales, where the contribution of the ISW to the CMB is highest. The average relative improvement of the signal-to-noise is depicted in the middle panel of Fig. 1. It amounts to about 7 per cent for $l_{\text{max}} = 100$. In the bottom panel of Fig. 1 we compare the mean relative improvement $(\sigma_{\tau, \text{av}}^2 - \sigma_{\tau}^2)/\sigma_{\tau, \text{av}}^2$ of the variance in the optimal method with the contribution of the local to the total variance in the standard method. The variance is reduced by about 13 per cent in the optimal method, as compared to the standard method.

Note that the maximal average signal-to-noise ratio we can hope for when trying to detect the ISW via cross-correlation, given a perfect LSS survey, is $\langle S/N \rangle \tau^\text{av} \approx 7.3$, with a variance as depicted in Fig 2. Hence, if we are lucky and live in an environment that allows for a high signal-to-noise ratio, we can maximally obtain a detection significance of about $(7.5 - 8)\sigma$.

Let us now look at the effect of an incomplete galaxy survey. Incomplete galaxy surveys can be treated generically with our method, because the dark matter field, and hence the ISW effect, are split into a known part (the reconstruction) and an unknown part (an additive noise term uncorrelated with the reconstruction). However, for now we only want to give a rough estimate of the consequences of an incomplete survey. Therefore we introduce a sharp cut-off in redshift, z_{max}, and we simply redefine $T_{\text{ISW}} \equiv T_{\text{ISW}}(< z_{\text{max}})$ to be the part of the ISW effect created at $z < z_{\text{max}}$. The part of the ISW that has been created at $z > z_{\text{max}}$ is then considered part of the primordial temperature fluctuations T_{prim}. The power-spectra $C_{l,\text{ISW}}^\text{ISW}$ and $C_{l,\text{prim}}$ are redefined accordingly. With this redefinition we have introduced a correlation between what we consider the ISW and primordial fluctuations, which we would not have if we
had used the reconstruction for redefining T_{ISW}. However, for getting the picture, we ignore this subtlety for the moment.

In Fig. 3 we plot the signal-to-noise ratio of the standard method together with the average signal-to-noise ratio of the optimal method versus z_{max} for $l_{\text{max}} = 100$, where we have used the above-described redefinition of C_l^{ISW} in eqs (70) and (43). With decreasing maximal redshift of the LSS survey, the total signal-to-noise ratio in both methods goes down, as does its relative enhancement of the optimal method as compared to the standard one. Also the relative contribution of the local to the total variance in the standard method goes down with decreasing survey depth.

As we stated in section 4.2, the amplitude-estimate of the standard method is biased when the averaging is performed conditional on the galaxy-data δ_g. This leads to an over- or underestimation of the detection significance, for the estimated amplitude is used when estimating the signal-to-noise ratio from the data. As we have shown, the contribution of the local to the total variance of the estimator is quite small, about 11 per cent for an ideal galaxy survey and even smaller for a shallower survey. However, we could be unlucky and live in an unlikely realization of the matter distribution, given the power spectrum, which would enhance the effect of the biasing.

With the method we presented in this work, the local variance effect is reduced. If we knew the local matter distribution perfectly, we would not be affected by local variance at all, as we have shown. Unfortunately, we have to rely on reconstructions of the matter distribution from LSS surveys, which suffer from shot noise, and the effects of mask and selection function. However, the reconstruction treats mask and selection function in an optimal way, and extracts the maximum amount of information from the LSS data which can then be used in the ISW detection.

6 LIKELIHOOD FUNCTION FOR COSMOLOGICAL PARAMETERS

The above-described biasing effect is of course also present when moving from the pure detection of the ISW to the task of constraining cosmological parameters using the ISW, which has been attempted in many of the above-mentioned cross-correlation studies. This problem can already be seen in the likelihood function for the cosmological parameters of the standard method in eq. (52). The estimator of the cross-correlation function $\tilde{C}_{g,T}$ could be quite different from the theoretical prediction with the underlying parameter values, just because we are living in an unlikely realization of the matter distribution, given the power spectrum. Then the likelihood in eq. (52) would favour cosmological parameter values for which the theoretical prediction of the cross-correlation function is closer to its estimator, hence biasing the parameter estimates.

Furthermore, to our knowledge, there is no straightforward way of combining the likelihood from the cross-correlation in eq. (52) with the likelihoods for CMB and LSS data, as e.g. given by Verde et al. (2003), Percival et al. (2004) and Cole et al. (2005). Usually, when combining CMB with LSS data for deriving constraints on cosmological parameters, it is assumed that the two datasets are stochastically independent, i.e. that $P(T, \delta_g | p) = P(T | p) P(\delta_g | p)$ [cf. Tegmark et al. (2004), Spergel et al. (2007) and Komatsu et al. (2008)]. But the ISW effect (and also other effects as e.g. the Sunyaev-Zel’dovich-effect) introduces a small stochastic dependence of the CMB data on the LSS data. That is, instead of assuming that the joint likelihood factorizes, one should consider

$$P(T, \delta_g | p) = P(T | \delta_g, p) P(\delta_g | p),$$

in which we insert eqs (58) and (52), obtaining

$$P(T, \delta_g | p) = G(T - \tau, \tilde{C}) G(\delta_g, RSR^T + N),$$

$$= P(T | p) P(\delta_g | p) Q(T, \delta_g | p),$$

and we recall for convenience the definition of \tilde{C}, eq. (59),

$$\tilde{C} \equiv P D P^T + C_{\text{prim}} + C_{\text{det}},$$

of D, eq. (50).

$$D \equiv \left(R^T N^{-1} R + S^{-1}\right)^{-1},$$

and of τ, eq. (56).

$$\tau \equiv P G^T.$$

In the last step in eq. (72), we have expressed the joint likelihood in terms of the likelihoods $P(T | p)$ and $P(\delta_g | p)$ for only CMB and only LSS data, respectively, and the coupling term

$$Q(T, \delta_g | p) \equiv \frac{P(T, \delta_g | p)}{P(T | p)} = \frac{G(T - \tau, \tilde{C})}{G(T, C_{\text{CMB}})}.$$

Eq. (72) is the generic expression for the joint likelihood $P(T, \delta_g | p)$ for the cosmological parameters p, given CMB and LSS data, consistently including the small coupling term $Q(T, \delta_g | p)$ between the two datasets introduced by the ISW effect. The quantities depending on the cosmological parameters are S, C_{prim}, P, R and, in general, N. Multiplying the likelihood by a prior $P(p)$ for the cosmological parameters, one can then sample the parameter space and derive constraints on the cosmological parameters from the posterior distribution $P(p | T, \delta_g) \propto P(T, \delta_g | p) P(p)$.

Note that this likelihood function remains valid if galaxy bias variations, position dependent noise, and other non-linear effects of galaxy formation are taken into account, as long as the variance of the reconstruction $D \equiv \left((\delta_m^{\text{rec}} - \delta_m) (\delta_m^{\text{rec}} - \delta_m)\right)$ is estimated consistently (see Enßlin et al. 2008 for methods to treat such complications).

7 CONCLUSIONS

Due to the obscuration by primordial CMB fluctuations, the detection of the integrated Sachs-Wolfe effect remains a challenge, and has to be performed by cross-correlating the CMB signal with the large-scale structure. The standard method for doing so involves comparing the observed cross-correlation function to its theoretical prediction, which is by construction an ensemble average over all realizations of the primordial CMB fluctuations and matter distributions. Hence, the realization of the matter distribution in our Universe acts as a source of systematic noise in the estimate of the cross-correlation function, an effect that we have named the local variance.

Since the ISW is only present on the largest scales, the effect of the local variance is quite notable, amounting to about 11 per cent of the total variance in the standard method for an ideal LSS survey. This leads to a biased estimated detection significance of the cross-correlation, and when moving from the pure ISW detection to parameter estimation, it also biases the parameter constraints. We note that even if the local variance contributes only about 11 per cent to the total variance of the detected signal, we could be unlucky
and live in an unlikely realization of the matter distribution, given the power spectrum. This would enhance the effect of the bias on the detection significance and parameter constraints.

Given that information about the matter distribution can be inferred from the LSS survey, the local variance can be reduced by working conditional on this information. In this work, we have presented a generic technique of how to include the knowledge of the matter distribution into ISW detection in an optimal way, hence reducing the effect of the local variance. This optimal method requires a three-dimensional Wiener filter reconstruction of the LSS, including an estimator of the full reconstruction uncertainty covariance matrix. Note that also other reconstruction techniques that provide an estimator of the uncertainty covariance can easily be included into our method. The reduction of the local variance stresses the importance to measure and reconstruct the LSS to the highest possible accuracy, as aimed by Kitaura & Enßlin (2008) and Kitaura et al. (in preparation).

The conditionality on the LSS data results in a dependence of the variance in the detected signal on the actual realization of the matter distribution in the observed Universe. The average variance in the optimal method is reduced by about 13 per cent as compared to the standard method, again in the case of an ideal LSS survey. The reduction of the noise translates into an average enhancement of the signal-to-noise or detection significance by about 7 per cent for the optimal method. However, note that also the signal-to-noise ratio depends on the actual realization of the matter distribution.

We would also like to point out that in the optimal method, there is no need to estimate the covariance matrix by Monte Carlo simulations, which saves time and increases the accuracy of the method (using 1000 Monte Carlo simulations to estimate the standard covariance matrix of the cross-correlation function only reaches an accuracy of about 5 per cent, as stated by Cabr´e et al. (2007)).

In order to consistently include the information encoded in the ISW effect for deriving cosmological parameter constraints, we have derived the joint likelihood $P(T, \delta_0 | p)$ for the cosmological parameters p, given CMB and LSS data within the linear regime of structure formation. If one wishes to use the ISW effect for constraining cosmological parameters, one should include the additional CMB-galaxy data coupling term $Q(T, \delta_0 | p)$, which we have factored out in eq. (72), into the usual likelihood analysis.

ACKNOWLEDGMENTS

The authors would like to thank Simon White, Thomas Riller, Carlos Hernandez-Monteagudo, Jens Jasche, André Waellken, Anthony Banday, and Georg Robbers for useful discussions and comments. Thanks also to Pier-Stefano Corasaniti for suggesting to include the effects of the magnification bias. We acknowledge the use of CMBEASY. This project was partly funded by the Transregional Collaborative Research Centre TRR 33 - The Dark Universe.

REFERENCES

Adelman-McCarthy J. K. et al., 2008, ApJS, 175, 297
Afshordi N., 2004, Phys. Rev. D, 70, 083536
Afshordi N., Loh Y.-S., Strauss M. A., 2004, Phys. Rev. D, 69, 083524
Bardeen J. M., 1980, Phys. Rev. D, 22, 1882

© 2008 RAS, MNRAS 000, 11

Bardeen J. M., Bond J. R., Kaiser N., Szalay A. S., 1986, ApJ, 304, 15
Boldt E., 1987, Phys. Rep., 146, 215
Boughn S., Crittenden R., 2004, Nature, 427, 45
Boughn S. P., Crittenden R. G., 2005, New Astronomy Review, 49, 75
Boughn S. P., Crittenden R. G., Turok N. G., 1998, New Astronomy, 3, 275
Cabré A., Fosalba P., Gaztaña E., Manera M., 2007, MNRAS, 381, 1347
Castaño-Martínez A., López-Blázquez F., 2005, Test, 14, 397
Cole S. et al., 2005, MNRAS, 362, 505
Condon J. J., Cotton W. D., Greisen E. W., Yin Q. F., Perley R. A., Taylor G. B., Broderick J. J., 1998, AJ, 115, 1693
Cooray A., 2002, Phys. Rev. D, 65, 103510
Crittenden R. G., Turok N., 1996, Physical Review Letters, 76, 575
Doran M., 2005, Journal of Cosmology and Astro-Particle Physics, 10, 11
Durrer R., 2001, Journal of Physical Studies, 5, 177
Enßlin T. A., Frommert M., Kitaura F. S., 2008, submitted, astro-ph/0806.3474
Erdoğdu P. et al., 2004, MNRAS, 352, 939
Fisher K. B., Lahav O., Hoffman Y., Lynden-Bell D., Zaroubi S., 1995, MNRAS, 272, 885
Fosalba P., Gaztaña E., 2004, MNRAS, 350, L37
Fosalba P., Gaztaña E., Castander F. J., 2003, ApJ, 597, L89
Gianantonio T., Scarton R., Crittenden R. G., Nichol R. C., Boughn S. P., Myers A. D., Richards G. T., 2008, Phys. Rev. D, 77, 123520
Hernández-Monteagudo C., 2008, A&A, 490, 15
Ho S., Hirata C., Padmanabhan N., Seljak U., Bahcall N., 2008, Phys. Rev. D, 78, 043519
Hu W., 2001, ApJ, 557, L79
Hu W., Okamoto T., 2002, ApJ, 574, 566
Jarrett T. H., Chester T., Cutri R., Schneider S., Skrutskie M., Huchra J. P., 2000, AJ, 119, 2498
Kitaura F. S., Enßlin T. A., 2008, MNRAS, 389, 497
Kodama H., Sasaki M., 1984, Progress of Theoretical Physics Supplement, 78, 1
Komatsu E. et al., 2008, astro-ph/0803.0547
Lewis A., Challinor A., Lasenby A., 2000, ApJ, 538, 473
Liu X., Zhang S.-N., 2006, ApJ, 636, L1
Loverde M., Hui L., Gaztaña E., 2007, Phys. Rev. D, 75, 043519
Lue A., Scoccimarro R., Starkman G., 2004, Phys. Rev. D, 69, 044005
McEwen J. D., Vielva P., Hobson M. P., Martínez-González E., Lasenby A. N., 2007, MNRAS, 376, 1211
Mukhanov V., 2005, Physical foundations of cosmology. Physical foundations of cosmology, by V. Mukhanov. Cambridge, UK: Cambridge University Press, 2005
Percival W. J. et al., 2004, MNRAS, 353, 1201
Pietrobon D., Balbi A., Marinucci D., 2006, Phys. Rev. D, 74, 043524
Pogosian L., Corasaniti P. S., Stephan-Otto C., Crittenden R., Nichol R., 2005, Phys. Rev. D, 72, 103519
Press W. H., Teukolsky S. A., Vetterling W. T., Flannery B. P., 1992, Numerical recipes in C. The art of scientific computing. Cambridge: University Press, —c1992, 2nd ed.
Raccanelli A., Bonaldi A., Negrello M., Matarrese S., Tormen G., de Zotti G., 2008, MNRAS, 386, 2161
APPENDIX A: PROOF OF THE EQUIVALENCE OF THE NUMBER OF BINS

We now outline the proof that if one uses the correct kernel, i.e. the ISW kernel rather than the kernel for the galaxy density contrast in the analysis, the estimated amplitude A_{cc} and the variance σ_{cc}^2 are independent of the number of bins chosen, provided that all bins together cover the whole volume relevant for the ISW effect. The proof here is done only for the variance, but follows the same scheme for the estimated amplitude. The total variance σ_{cc}^2 one obtains when working with N bins is given by eq. (38), where we have substituted the index gi by ISW(i), following the argument of section 4.2.

\[
\sigma_{cc}^2 = \sum_i (2l_i + 1) \sum_{i,j} c_{ISW(i),CMB} c_{ISW(j),CMB}^{-1} \hat{Q}_i^{ISW(i),CMB} \hat{Q}_j^{ISW(j),CMB}^{-1}.
\]

We then use the form of the covariance matrix given by eq. (43), where we have substituted the index gi by ISW(i), following the argument of section 4.2.

\[
c_{ISW(i),CMB} = \sum_j c_{ISW(i),ISW(j)} \quad \text{and} \quad c_{ISW} = \sum_j c_{ISW(j),CMB}.
\]

Now we choose a fixed but arbitrary number of bins N, invert the covariance matrix and by inserting the above relations we obtain

\[
\sum_{i,j} c_{ISW(i),CMB} c_{ISW(j),CMB}^{-1} = \left(\frac{c_{ISW}}{c_{ISW} + c_{CMB}} \right)^{-1}.
\]

Inserting this into eq. (A1), the resulting formula for σ_{cc}^2 is exactly what we obtain from one single bin covering the whole volume relevant for the ISW effect. We have checked this explicitly for $N = 2.5$ and it is straightforward, though timely, to also check it for any other number of bins.

APPENDIX B: DERIVATION OF THE JOINT PROBABILITY DISTRIBUTION

In this section we will derive in detail the expression for the joint probability distribution $P(\delta_g, \delta_m | p)$ given in eq. (49). We start with

\[
P(\delta_g, \delta_m | p) = G(\delta_g - R \delta_m, N) G(\delta_m, S)
\]

where

\[
G(\delta, R \delta, N) = \frac{1}{\sqrt{2\pi N|2\pi S|}} \exp \left(-\frac{1}{2} (\delta - R \delta)^2 \right)
\]

\[
C_{ISW} = \sum_j c_{ISW(j),CMB}.
\]

and it is straightforward, though timely, to also check it for any other number of bins.

B1 Lemma 1

In this subsection we prove that

\[
\hat{Q}_i^{ISW(i),CMB} \hat{Q}_j^{ISW(j),CMB}^{-1} = \left(\frac{c_{ISW}}{c_{ISW} + c_{CMB}} \right)^{-1}
\]

by inserting the respective expressions for D and j. We start with eq. (B7) and transform it into an equation which is true.

\[
N^{-1} R(S^{-1} + M)^{-1} R^T N^{-1} - N^{-1} = -(RSR^T + N)^{-1}
\]

B2 Lemma 2

In the following we prove that

\[
|2\pi N| |2\pi S| = |2\pi D| |2\pi (RSR^T + N)|
\]

which we name Lemma 2, allowing us to reformulate eq. (B1) as

\[
= \frac{1}{\sqrt{2\pi D |2\pi (RSR^T + N)|}} \exp \left(-\frac{1}{2} (\delta_m - D j)^2 \right)
\]

which is what we claimed in eq. (49).
which is equivalent to
\[|N||S| = |D||RSR^\dagger + N|, \]
(B10)

for the factors of \(2\pi\) cancel for matrices that operate on the same vector space. Let us write
\[
\frac{|N||S|}{|D|} = |N||S||D^{-1}|
\]
\[
= |N||SD^{-1}|
\]
\[
= |N||S (S^{-1} + R^\dagger N^{-1} R)|
\]
\[
= |N| \exp \left(\log |1 + SR^\dagger N^{-1} R| \right)
\]
\[
= |N| \exp \left(\text{Tr} \log (1 + SR^\dagger N^{-1}) \right)
\]
\[
= |N| \exp \left(\log |1 + RSR^\dagger N^{-1}| \right)
\]
\[
= |N||RSR^\dagger N^{-1} + 1|
\]
\[
= |(RSR^\dagger N^{-1} + 1)N|
\]
\[
= |RSR^\dagger + N|. \]
(B11)

The crucial step here was to use the cyclic invariance of the trace \(\text{Tr}\) and to notice that this cyclic invariance still holds for the trace of a logarithm, which can be easily verified using the Taylor expansion of the logarithm.