Supplemental Information

Bacterial Adaptation to the Host's Diet

Is a Key Evolutionary Force Shaping

Drosophila-Lactobacillus Symbiosis

Maria Elena Martino, Pauline Joncour, Ryan Leenay, Hugo Gervais, Malay Shah, Sandrine Hughes, Benjamin Gillet, Chase Beisel, and François Leulier
Supplemental figure titles and legends

Bacterial adaptation to diet is a key evolutionary force shaping *Drosophila-Lactobacillus* symbiosis

Maria Elena Martino,¹* Pauline Joncour,¹ Ryan Leenay,² Hugo Gervais,¹ Malay Shah,² Sandrine Hughes,¹ Benjamin Gillet,¹ Chase Beisel,²,³ and François Leulier ¹,4*

¹Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, Unité Mixte de Recherche 5242, 69364 Lyon, Cedex 07, France
²North Carolina State University, Department of Chemical and Biomolecular Engineering, Raleigh, NC 27695, United States
³Helmholtz Institute for RNA-based Infection Research, Josef-Schneider-Str. 2 / D15, D-97080 Würzburg, Germany
⁴Lead Contact

*Correspondence: maria-elena.martino@ens-lyon.fr, francois.leulier@ens-lyon.fr
A

Ancestor Lp^NIZO2377 →

Fossil Records G1 →

Fossil Records G20 →

GENERATION 1

GENERATION 2

GENERATION 20

B

Generation Time

$Lp^{NIZO2377} = 3.20 \, h - SEM = 0.52$

Figure S1
Supplemental Figure 1 (related to Fig. 1): Rationale and schematic representation of the experimental setup for studying *L. plantarum* adaptive evolution (AE) with *Drosophila melanogaster*.

(A) The ancestor strain (*Lp*NIZO2877) was added to 40 germ-free (GF) *Drosophila* embryos at the beginning of the first *Drosophila* generation (Generation 1). The first 15 emerging pupae were transferred to a new sterile poor nutrient diet. This allowed the bacteria associated with the pupae to propagate and colonize the new environment. The 15 adults emerged from the 15 transferred pupae, mated and females laid eggs that became the founders of the following fly generation (Generation 2). Once the eggs were laid, the adults were collected and homogenized to isolate the evolved bacteria they carry (fossil records from generation 1). Generation 2 followed the same experimental cycle as Generation 1, with the exception that no further inoculation of the ancestor strain *L. plantarum*NIZO2877 has been performed. Evolving bacteria were propagated through the transfer of the pupae during each generation. The experimental evolution lasted 20 *Drosophila* generations (313 days). Colour shading represents the evolution of the bacterial population during the experiment.

(B) 16S rRNA kinetics of *Lp*NIZO2877 in *Drosophila* Niche (*Drosophila* + Diet). The 16S rRNA gene quantification is shown in logarithmic scale. The mean generation time (h, hours) of *Lp*NIZO2877 in *Drosophila* niche ± the standard error of the mean (SEM) are reported on the graph (see Methods).
Supplemental Figure 2 (related to Fig. 2): Sequence/structural analysis of $Lp^{NIZO2877}$ Acetate kinase A (AckA) protein aligned against the AckA of $Lp^{NIZO2877}$-derived strains (FlyG2.1.8, FlyG9.2.5) evolved in *Drosophila* niche. The secondary structure of the protein is indicated in blue above the sequence alignment. Catalytic residues of the predicted active site are shown in bold blue characters. The mutation sites are highlighted in pink and green for FlyG2.1.8 and FlyG9.2.5 strains respectively. The alignment was performed using Clustal Omega and drawn with ESPript.
Figure S3
Supplemental Figure 3 (related to Fig. 3): CRISPR/Cas9 genome editing in *Lactobacillus plantarum* with a dsDNA repair template.

(A) Construction of the repair template plasmid containing the dsDNA template. Following successful construct generation, cells containing the repair plasmid were transformed with the self-targeting Cas9 plasmid, thereby killing any cells that did not incorporate the repair template into the genome.

(B) Spacer design for targeting *ackA* in *Lp*\(^{\text{NIZO2877}}\)_FlyG2.1.8. The spacer will only successfully cleave *Lp*\(^{\text{NIZO2877}}\)_FlyG2.1.8, while allowing any edited survivors to evade cleavage due to a spacer mis-match and presence of a non-PAM.

(C) Transformation results after Cas9 self-targeting with the repair template plasmid. Presence of the repair template allowed for a total of 15 survivors clones to Cas9 killing.

(D) *ackA* locus sequencing results for 10 of the survivors. Two survivors contained the un-edited *ackA* gene in *Lp*\(^{\text{NIZO2877}}\)_FlyG2.1.8, and one did not yield a PCR product (No Ampl.). Seven colonies contained the edited *ackA* sequence.

(E) Plasmid removal after editing. Successfully edited cells were passaged multiple times through non-selective media to remove the genome editing plasmids. After validation of plasmid removal, strains had their genomes sequenced and were analyzed for *in vivo* validation.
Supplemental Figure 4 (related to Fig. 4): Development of two Real-Time PCR assays for the discrimination and quantification of Lp^{NIZO2877} and $Lp^{\text{NIZO2877-evolved}}$ strain FlyG2.1.8.

(A) Real-time PCR standard curves obtained from the amplification of Lp^{NIZO2877} (green) and FlyG2.1.8 (grey) strains. The graph shows the interpolated standard curves using determined threshold cycles (C_T) values and known template numbers for five standard samples. All points represent the mean of triplicate PCR amplifications. The respective efficiency values and curve equations are reported on the graph.

(B, C) Fluorescence amplification plots obtained from the amplification of Lp^{NIZO2877} and FlyG2.1.8 strains using Lp^{NIZO2877}-specific (B) and FlyG2.1.8 specific (C) Real-time assays.
Figure S5
Supplemental Figure 5 (related to Fig. 5): *L. plantarum* adaptive evolution (AE) in *Drosophila* diet without *Drosophila melanogaster*.

(A) Rationale and schematic representation of the experimental setup. The ancestor (*Lp*^{NIZO2877}) was added to sterile poor nutrient diet (Cycle 1). As soon as the microbial load reached the same value found on the 15 pupae used for propagating the bacterial population in the Niche adaptive evolution setup (10⁷ CFU/mL of diet; Figure S1A), part of the medium was crushed and transferred to a new sterile poor nutrient diet. Fossil records were isolated from the crushed medium at the end of each cycle. Cycle 2 followed the same experimental course as Cycle 1. *L. plantarum* experimental evolution on *Drosophila* diet lasted 20 cycles. Colour shading represents the evolution of the bacterial population during the experiment.

(B) Sequence/structural analysis of *Lp*^{NIZO2877} AckA protein aligned against AckA from *Lp*^{NIZO2877}-derived strain (DietG20.1.2) evolved in Drosophila diet. The secondary structure of the acetate kinase A protein is indicated in blue above the sequence alignment. The key catalytic residues of the predicted active sites are shown in bold blue characters. The mutation site is highlighted in cyan. The alignment was performed using Clustal Omega and drawn with ESPript.
Supplemental Figure 6 (related to Fig. 6): Sequence/structural analysis of $Lp^{NIZO2877}$ AckA protein aligned against AckA from Lp^{WJL}. The secondary structure of the acetate kinase A protein is indicated in blue above the sequence alignment. The key catalytic residues of the predicted active sites are shown in bold blue characters. The mutation sites are highlighted in green. The alignment was performed using Clustal Omega and drawn with ESPript.
Supplemental tables Titles and Legends

Table S1. Bacterial strains, Related to Figures 1, 2, 3, 5. List of all *L. plantarum* strains used and sequenced in this study.
L. plantarum Strains	**Description**	**Fly/Diet generation of isolation**	**Replicate**	**Accession Number**	**Reference**
NIZO2877	Isolated from Vietnamese hotdog	-	-	LHIZ00000000	(Martino et al., 2015a)
WIL	Isolated from Drosophila melanogaster intestine	-	-	LKLZ00000000	(Martino et al., 2015b)
FlyG2.1.8	NIZO2877-evolved strain	2	1	PEBE00000000	This study
FlyG3.1.8	NIZO2877-evolved strain	3	1	PEGI00000000	This study
FlyG7.1.6	NIZO2877-evolved strain	7	1	PEGJ00000000	This study
FlyG8.1.1	NIZO2877-evolved strain	8	1	PEGK00000000	This study
FlyG8.1.2	NIZO2877-evolved strain	8	1	PEGL00000000	This study
FlyG9.1.4	NIZO2877-evolved strain	9	1	PEGM00000000	This study
FlyG10.1.5	NIZO2877-evolved strain	10	1	PEGN00000000	This study
FlyG10.1.9	NIZO2877-evolved strain	10	1	PEGO00000000	This study
FlyG11.1.2	NIZO2877-evolved strain	11	1	PEGP00000000	This study
FlyG11.1.6	NIZO2877-evolved strain	11	1	PEGQ00000000	This study
FlyG20.1.4	NIZO2877-evolved strain	20	1	PEGR00000000	This study
FlyG2.1.8Rev	NIZO2877-evolved strain	-	-		This study
FlyG9.2.5	NIZO2877-evolved strain	9	2	PEGS00000000	This study
FlyG11.1.6	NIZO2877-evolved strain	11	2	PEGT00000000	This study
FlyG20.2.6	NIZO2877-evolved strain	20	2	PEGU00000000	This study
DietG20.1.2	NIZO2877-evolved strain	20	1	PEGV00000000	This study
DietG20.2.2	NIZO2877-evolved strain	20	2	PEGW00000000	This study

Table S1
Table S2. Summary of mutations detected across the experimental evolution of *L. plantarum*, related to Figures 1, 2, 3, 5. List of all mutations detected in the *L. plantarum* experimental evolution replicates. §Locus tag refers to *L. plantarum* reference strain WCFS1 (Kleerebezem et al., 2003). nt: nucleotide; WGS: whole genome sequencing; SS: Sanger sequencing. Mutations identified by Sanger sequencing were confirmed from alignments of both forward and reverse reads.
Strain	Generation/Transfer	Gene/Region	Locus Tag	Annotation	Mutation	Position in LpNIZO2877	Method
FlyG2.1.8	Niche 1 1	ackA	lp_03010	acetate kinase deletion (Δ3)	2571613-5	WGS/SS	
FlyG3.1.8	Niche 1 1	ackA	lp_03010	acetate kinase deletion (Δ3)	2571613-5	WGS/SS	
FlyG7.1.6	Niche 1 7	int1	-	intergenic region	1 nt substitution	504874	WGS/SS
		cheY	lp_1544	two-component system response regulator	1 nt substitution	1348923	WGS/SS
		ackA	lp_03010	acetate kinase deletion (Δ3)	2571613-5	WGS/SS	
FlyG8.1.1	Niche 1 8	int1	-	intergenic region	1 nt substitution	504874	WGS
		cheY	lp_1544	two-component system response regulator	1 nt substitution	1348923	WGS
		ackA	lp_03010	acetate kinase deletion (Δ3)	2571613-5	WGS	
FlyG8.1.2	Niche 1 8	int1	-	intergenic region	1 nt substitution	504874	WGS
		cheY	lp_1544	two-component system response regulator	1 nt substitution	1348923	WGS
		ackA	lp_03010	acetate kinase deletion (Δ3)	2571613-5	WGS	
FlyG9.1.4	Niche 1 9	int1	-	intergenic region	1 nt substitution	504874	WGS
		cheY	lp_1544	two-component system response regulator	1 nt substitution	1348923	WGS
		adhE	lp_3662	alcohol dehydrogenase/acetalddehyde dehydrogenase 1 nt substitution	2268660	WGS/SS	
		int2	-	intergenic region	1 nt substitution	2456364	WGS/SS
		ackA	lp_03010	acetate kinase deletion (Δ3)	2571613-5	WGS	
FlyG10.1.5	Niche 1 10	int1	-	intergenic region	1 nt substitution	504874	WGS
		cheY	lp_1544	two-component system response regulator	1 nt substitution	1348923	WGS
		ackA	lp_03010	acetate kinase deletion (Δ3)	2571613-5	WGS	
FlyG10.1.9	Niche 1 10	int1	-	intergenic region	1 nt substitution	504874	WGS
		cheY	lp_1544	two-component system response regulator	1 nt substitution	1348923	WGS
		ackA	lp_03010	acetate kinase deletion (Δ3)	2571613-5	WGS	
FlyG11.1.2	Niche 1 11	int1	-	intergenic region	1 nt substitution	504874	WGS
		cheY	lp_1544	two-component system response regulator	1 nt substitution	1348923	WGS
		ackA	lp_03010	acetate kinase deletion (Δ3)	2571613-5	WGS	
FlyG11.1.6	Niche 1 11	int1	-	intergenic region	1 nt substitution	504874	WGS
		cheY	lp_1544	two-component system response regulator	1 nt substitution	1348923	WGS
Niche	Start	End	Gene	Description	Substitution Type	WGS/SS	
---------	-------	-----	------	--------------------------------------	-------------------	--------	
FlyG20.1.4	1	20	ackA	lp_03010 acetate kinase deletion (Δ3)	1 nt substitution	2571613-5 WGS	
			patB	lp_0749 phosphate ABC transporter ATP-binding protein	1 nt substitution	120791 WGS/SS	
				- lp_0797 exoribonuclease II	1 nt substitution	177140 WGS/SS	
	int1			- lp_2499 transport ATP-binding protein/permease	1 nt substitution	947607 WGS	
				- lp_1238 LysR family transcriptional regulator	1 nt substitution	110564 WGS/SS	
	cheY			lp_1544 two-component system response regulator	1 nt substitution	1348923 WGS	
	int3			-	1 nt substitution	1736935 WGS/SS	
	ackA			lp_03010 acetate kinase deletion (Δ3)	1 nt substitution	2571613-5 WGS	
FlyG9.2.5	2	9	ackA	lp_03010 acetate kinase deletion (Δ3)	1 nt substitution	2571613-5 WGS	
			int4	-	1 nt substitution	1982853 WGS/SS	
FlyG11.2.6	2	11	ackA	lp_03010 acetate kinase deletion (Δ3)	1 nt substitution	2571613-5 WGS	
			int4	-	1 nt substitution	1982853 WGS	
FlyG20.2.6	2	20	cheY	lp_1544 two-component system response regulator	1 nt substitution	1348886 WGS/SS	
				- lp_2212 NADH-flavin reductase	1 nt substitution	1937136 WGS	
	int4			-	1 nt substitution	1982853 WGS	
				- lp_0197 cell surface protein precursor, LPXTG-motif cell wall anchor	deletion (Δ6)	2471707-12 WGS/SS	
	ackA			lp_03010 acetate kinase deletion (Δ3)	1 nt substitution	2571613-5 WGS	
DietG20.1.2	1	20	ackA	lp_03010 acetate kinase deletion (Δ3)	1 nt substitution	2571576 WGS/SS	
DietG20.2.2	2	20	ackA	lp_03010 acetate kinase deletion (Δ3)	1 nt substitution	2571576 WGS/SS	

Table S2
Table S3. Metabolomic dataset of *Drosophila* diet inoculated with Lp\(^{NIZO2877}\) and FlyG2.1.8 separately, Related to Figure 6. Table of metabolites resulted to be significantly different between Lp\(^{NIZO2877}\) - and FlyG2.1.8-associated *Drosophila* diets based on two-sided t-tests (p<0.05). Fold-changes (FC) are calculated with the ratio between means of Lp\(^{NIZO2877}\) and FlyG2.1.8 replicates for each metabolite. Metabolites with a positive FC are overrepresented in FlyG2.1.8-associated samples and those with a negative FC are underrepresented in FlyG2.1.8-associated samples. FC detail: If mean(FlyG2.1.8) > mean(Lp\(^{NIZO2877}\)), FC = mean(FlyG2.1.8)/mean(Lp\(^{NIZO2877}\)); If mean(Lp\(^{NIZO2877}\))>mean(FlyG2.1.8), FC = - mean(Lp\(^{NIZO2877}\))/mean(FlyG2.1.8)
Metabolite	Metabolite Class	log2 FC	Fold Change	p-value
Amino Acid		-1.02	0.20	0.0119
Carbohydrate		1.08	1.09	0.0152
Amino Acid		1.08	1.09	0.0152
Carbohydrate		1.08	1.09	0.0152
Amino Acid		1.08	1.09	0.0152
Carbohydrate		1.08	1.09	0.0152
Amino Acid		1.08	1.09	0.0152
Carbohydrate		1.08	1.09	0.0152
Amino Acid		1.08	1.09	0.0152
Carbohydrate		1.08	1.09	0.0152
Amino Acid		1.08	1.09	0.0152
Carbohydrate		1.08	1.09	0.0152
Amino Acid		1.08	1.09	0.0152
Carbohydrate		1.08	1.09	0.0152
Amino Acid		1.08	1.09	0.0152
Carbohydrate		1.08	1.09	0.0152
Amino Acid		1.08	1.09	0.0152
Carbohydrate		1.08	1.09	0.0152
Amino Acid		1.08	1.09	0.0152
Carbohydrate		1.08	1.09	0.0152
Amino Acid		1.08	1.09	0.0152
Carbohydrate		1.08	1.09	0.0152
Amino Acid		1.08	1.09	0.0152

Note: The table above is a subset of metabolites and their fold changes with corresponding p-values. The full dataset includes more metabolites and their respective changes. The fold changes are calculated as the ratio of the metabolite levels in the treatment group relative to the control group, and the p-values indicate the statistical significance of these changes (lower p-values indicate stronger evidence of differential expression).
Carbohydrate	Cofactors and Vitamins	Lipids	Nucleoside Nucleotides	Other	Small Molecules	Total
fructose 1,6-diphosphate/glucose 1,6-diphosphate						
nicotinamide adenine dinucleotide (NAD+)						
palmitoyl-oleoyl-glycerol (16:0/18:1)						
oleoyl-linoleoyl-glycerol (18:1/18:2)						
N-palmitoyl-sphinganine (d18:0/16:0)						
1,2-dioleoyl-GPC (18:1/18:1)						
1-palmitoleoyl-GPC (16:1)*						
1-palmitoyl-GPC (16:0)						
glycerophosphoglycerol						
1-palmitoyl-GPE (16:0)						
1-stearoyl-GPC (18:0)						
oleoyl ethanolamide						
myo-inositol						
raffinose						
ribitol						
myo-inositol						
raffinose						
ribitol						
myo-inositol						
raffinose						
ribitol						
myo-inositol						
raffinose						
ribitol						
myo-inositol						
raffinose						
ribitol						
myo-inositol						
raffinose						
ribitol						
Compound	Lipid	Nucleotide	Peptide			
--------------------------	-------------	-----------------	-----------			
1-palmitoylglycerol (16:0)	1,0186	1,0525	0,7021			
1-palmitoylglycerol (18:1)	1,0186	1,0525	0,7021			
1-palmitoylglycerol (18:2)	1,0186	1,0525	0,7021			
1-palmitoylglycerol (18:3)	1,0186	1,0525	0,7021			
1-palmitoylglycerol (20:0)	1,0186	1,0525	0,7021			
1-palmitoylglycerol (20:1)	1,0186	1,0525	0,7021			
1-palmitoylglycerol (20:2)	1,0186	1,0525	0,7021			
1-palmitoylglycerol (20:3)	1,0186	1,0525	0,7021			
1-palmitoylglycerol (22:0)	1,0186	1,0525	0,7021			
1-palmitoylglycerol (22:1)	1,0186	1,0525	0,7021			
1-palmitoylglycerol (22:2)	1,0186	1,0525	0,7021			
1-palmitoylglycerol (22:3)	1,0186	1,0525	0,7021			
1-palmitoylglycerol (24:0)	1,0186	1,0525	0,7021			
1-palmitoylglycerol (24:1)	1,0186	1,0525	0,7021			
1-palmitoylglycerol (24:2)	1,0186	1,0525	0,7021			
1-palmitoylglycerol (24:3)	1,0186	1,0525	0,7021			
1-palmitoylglycerol (26:0)	1,0186	1,0525	0,7021			
1-palmitoylglycerol (26:1)	1,0186	1,0525	0,7021			
1-palmitoylglycerol (26:2)	1,0186	1,0525	0,7021			
1-palmitoylglycerol (26:3)	1,0186	1,0525	0,7021			
1-palmitoylglycerol (28:0)	1,0186	1,0525	0,7021			
1-palmitoylglycerol (28:1)	1,0186	1,0525	0,7021			
1-palmitoylglycerol (28:2)	1,0186	1,0525	0,7021			
1-palmitoylglycerol (28:3)	1,0186	1,0525	0,7021			
1-palmitoylglycerol (30:0)	1,0186	1,0525	0,7021			
1-palmitoylglycerol (30:1)	1,0186	1,0525	0,7021			
1-palmitoylglycerol (30:2)	1,0186	1,0525	0,7021			
1-palmitoylglycerol (30:3)	1,0186	1,0525	0,7021			
1-palmitoylglycerol (32:0)	1,0186	1,0525	0,7021			
1-palmitoylglycerol (32:1)	1,0186	1,0525	0,7021			
1-palmitoylglycerol (32:2)	1,0186	1,0525	0,7021			
1-palmitoylglycerol (32:3)	1,0186	1,0525	0,7021			

Table S3
Table S4. Primers, Related to Figures 1, 2, 4, 5. List of DNA oligonucleotide primers used in this study.
Name	DNA sequence (5'–3')	Annealing t°	Reference
ackA_F	TAAGACGCAAGATACCGTG	62	This study
acka_R	ACGCACAATCATCAGCTTT	62	This study
int1_F	TTAAAAACATCGGCTACGGAAG	63	This study
int1_R	TTAATTTATCGCCCCGCAAGA	62	This study
cheY_F	CTCGCTCTGTATGCTTTACT	59	This study
cheY_R	TAACAGCACTAGCCACGTTT	60	This study
adeE_F	GGCTCCCTTAATTCACAAGG	62	This study
adeE_R	ATCCTTGAAAAGCTAACCGGG	63	This study
int2_F	AGCGATATCCTCTGTGAAC	60	This study
int2_R	CGCGTTGTGCTAGCTAATT	61	This study
lp_0055_F	GCCATGTGTGTAACGTTGC	61	This study
lp_0055_R	GTGATCCAAGGGGTCCAAAT	62	This study
pstB_F	AAGCACAATAGGACGGCTTC	60	This study
pstB_R	TGCGTGATAAGCCACATCTT	62	This study
lp_0797_F	ATTTTCCAAAGTGATGTCG	63	This study
lp_0797_R	ACTTTGATCATTTGATGAC	63	This study
lp_1258_F	GGCCTTAACCGATGAATCTA	62	This study
lp_1258_R	GACCTGTTCCTCCGCGT	60	This study
int3_F	TCTTCTACACCTTGTTTTTC	62	This study
int3_R	GCGAATGTCATAGTCGGGA	62	This study
int4_F	GACGATTAGACTAGTCGGT	61	This study
int4_R	CAGTCTAGTTTTCCACAG	62	This study
lp_0197_F	CGCCCAATGTGACATGATT	63	This study
lp_0197_R	CGTTGTGCTAGGATGATGG	63	This study
ackA2_F	GTGAATCAGTGGGTGTTGG	63	This study
ackA2_R	ACCATGATCAAAGCGGTGA	65	This study
int5_F	CAACGCCGAAGTTACATGCT	60	This study
int5_R	GCAATCCCTGCGTTGATCATC	62	This study
int6_F	GTCCAGCTATTTCCACGGAT	62	This study
int6_R	CATACGCAAATAGGTTCCCATA	63	This study
16S_UniF	GTGSTGCAYGGYTGTCGTC	70	(Packey et al., 2013)
16S_UniR	ACGTCTCCTACCTCCTCCTC	68	(Packey et al., 2013)
ackA_NIZO2877_F	CGAACGTGTCACTAAAGCCTT	63	This study
acka_FlyG2	GCGAACGTGTCACTAAAGAG	62	This study
acka_R_RT	CACCGCCAATCATCAGCTCT	63	This study

Table S4
Table S5. Plasmids used in this work, Related to Figure 3. List of plasmids used to engineer \(Lp^{\text{NIZO2877}} \) with CRISPR-Cas9.
Plasmid	Description	Resistance	Source	Stock
pJP005	RecT protein under a nisin-inducible promoter, without nisK and nisR genes	Cm	Van Pijkeren and Britton, 2012	CB653
pMSP3545	Gram-positive bacterial shuttle vector for nisin-controlled inducible expression	Emr	Addgene-CN44888	CB6794
pCas9	Plasmid containing Streptococcus pyogenes Cas9 and its tracrRNA	Amp	Addgene-CN 42874	CB6372
p3545Cas9	Shuttle vector containing S. pyogenes Cas9 and its tracrRNA	Emr	This work	CB6777
p3545Cas9RSR	Shuttle vector containing S. pyogenes Cas9, tracrRNA, and a repeat-spacer-repeat array for targeting	Emr	This work	CB6798
p3545Cas9ackA	Cas9 shuttle vector targeting the acetate kinase gene in NIZO/G2	Emr	This work	CB6799
CB711	pJP005 vector with repair template for the ackA target	Emr	This work	CB711

Table S5
Table S6. Oligonucleotides used to engineer \(Lp^{\text{NIZO2877}} \) with CRISPR-Cas9, Related to Figure 3.
Shorthand	Name	Sequence
oRL1	pCas9.Gibson.fwd	GATGATAAGCTGTCAAAAACATGAGAAATTCTTCTTACGAAATCTATCCTGTGGAGCTTAG
oRL2	pCas9.Gibson.rev	ATTTTTAGGATAAACTTCTGCCCCACCTTTTTCTCGACTCTAGCTGTGACTC
oRL3	pMSP3545.Gibson.fwd	ATTGATTGGATGTCAGTAGGAGGTGACTGAAAGTGGGGCGAGAGTTATTCTCAA
oRL4	pMSP3545.Gibson.rev	CCTACTAAGCTCCACAGAGTAGATTTCCTATGAAAGTTATTCTCTGTTGAGACGCTTACTC
oRL5	gBlockRSR.Gibson.fwd	TTGGTGCCAAGAAACGCTGACTGTGTCAGCTGACGAGTTAGCTGATCA
oRL6	gBlockRSR.Gibson.rev	GGAGGACACTCACATGCGGTACAGGATGAGTTGACTGACG
oRL7	Acet.Kin.pJP005.f	ATTTACTAGTGGTTTTTTTCTATGATGACGCTCT
oRL8	Acet.Kin.pJP005.r	TCACGACGCTCCACAAGAGCTACTATGAGGAAAG
oRL9	pJP005.seq.rev	TGATTGCTTCTATGCAAAGGCAA
oRL10	pJP005.seq.fwd	ATTGCTAGAAGGATTTCTGCTAAAGG
oRL11	Acet.Kin.Outer.fwd	GGAGGAGGACACGAAAGCC
oRL12	Acet.Kin.Outer.rev	TGGCGCGTCAAAAAGCGTTTGGTTG
oRL13	G2.Reversion.sgRNA.fwd	CCACGGCGGAACGGCGTTATCGGTCAAAAAGGTTTTTAGACGCTAGTGGCTGGTTTGGGGCAACATTCCAA
oRL14	G2.Reversion.sgRNA.rev	GGCGGCTGCCGATGCGTTTTTTTGGGACCATTCCAAAAACGCTAGTGGCTTAAAACACTTTTAGTGACGTCG

Table S6