Exploring Explicit Domain Supervision for Latent Space Disentanglement in Unpaired Image-to-Image Translation

Jianxin Lin, Yingce Xia, Sen Liu, Tao Qin, Zhibo Chen, Senior Member, IEEE, and Jiebo Luo, Fellow, IEEE

Abstract—Image-to-image translation tasks have been widely investigated with Generative Adversarial Networks (GANs). However, existing approaches are mostly designed in an unsupervised manner while little attention has been paid to domain information within unpaired data. In this paper, we treat domain information as explicit supervision and design an unpaired image-to-image translation framework, Domain-supervised GAN (DosGAN), which takes the first step towards the exploration of explicit domain supervision. In contrast to representing domain characteristics using different generators in CycleGAN or multiple domain codes in StarGAN, we pre-train a classification network to explicitly classify the domain of an image. After pre-training, this network is used to extract the domain-specific features of each image by using the output of its second-to-last layer. Such features, together with the domain-independent features extracted by another encoder (shared across different domains), are used to generate an image in the target domain. Extensive experiments on multiple hair color translation, multiple identity translation, multiple season translation and conditional edges-to-shoes/handbags demonstrate the effectiveness of our method. In addition, we can transfer the domain-specific feature extractor obtained on the Facescrub dataset with domain supervision information to unseen domains, such as faces in the CelebA dataset. We also succeed in achieving conditional translation with any two images in CelebA, while previous models like StarGAN cannot handle this task.

Index Terms—Image-to-image translation, explicit domain supervision, generative adversarial networks.

1 INTRODUCTION

Image-to-image translation covers a wide variety of computer vision problems, including image stylization [1], segmentation [2] and image super-resolution [3]. It aims at learning a mapping that can convert an image from a source domain to a target domain, while preserving the main presentations of the input images. For example, in the aforementioned three tasks, an input image might be converted to a portrait similar to Van Gogh’s styles, a segmentation map splitted into different regions, or a high-resolution image, while the content remains unchanged. Since it is usually challenging to collect a large amount of paired data for such tasks, unsupervised learning algorithms have been widely adopted in image-to-image translation models. Particularly, the generative adversarial networks (GAN) [4] and dual learning [5] are studied. [6], [7], [8] tackle cross-domain image-to-image translation by the aforementioned two techniques, where the GANs are used to ensure the generated images belonging to the target domain, and dual learning can help improve image qualities by minimizing reconstruction loss.

An implicit assumption of image-to-image translation is that an image contains two kinds of features, domain-independent features, which are preserved during the translation (i.e., the content when translating a natural image to Van Gogh’ styles), and domain-specific features, which are changed during the translation (i.e., the styles when translating the image to Van Gogh’ styles). Image-to-image translation aims at transferring images from the source domain to the target domain by preserving domain-independent features while replacing domain-specific features. Therefore, the extraction of domain-specific features plays an important role for image-to-image translation. There are three main challenges in solving the image-to-image translation problem. The first one is how to extract the domain-independent and domain-specific features for a given image. The second is how to merge the features from two different domains into a natural image in the target domain. The third one is that there is no paired data for us to learn such the mappings. In this paper, we focus on solving image-to-image translation problems with latent space disentanglement.

Although it is difficult to obtain the paired data across different image domains, we observe that in many cases, we are aware which domain an image comes from [12].

1. Note that the two kinds of features are relative concepts, and domain-specific features in one task might be domain-independent features in another task, depending on what domains one focuses on in the task.
Motivated by this observation, we propose to use this domain-level signal as explicit supervision and pre-train a deep convolutional neural network (CNN) to predict which domain an image is from. If such a network can well differentiate images from different domains, the output of the second-to-last layer of the network should carry rich domain information which captures each domain’s specific characteristic. Therefore, we can leverage such a pre-trained CNN to extract the domain-specific features of an image.

Compared with works [9], [10], [11] that use two separated domain-specific feature extractors for two domain translation, we utilize the domain classifier as a general domain-specific feature extractor which can be easily generalized to multi-domain translation. With the well-defined domain-specific features, the domain-independent features can be easily obtained by feature disentanglement.

Generally, in this work, we first propose a new frameworks for common image-to-image translation, which is composed by a domain-specific feature extractor, a domain-independent feature extractor, and an image generator. The domain-specific feature extractor is pre-trained based on domain supervision, and then the domain-independent feature extractor and the generator are trained based on Generative Adversarial Networks (GANs) and dual learning [5]. We choose GAN and dual learning due to the following considerations: (1) The dual learning framework can help learn to extract and merge the domain-specific and domain-independent features by minimizing carefully designed reconstruction errors, including self-reconstruction errors and cross-domain reconstruction errors. (2) GAN can ensure that the generated images well mimic the natural images in the target domain. (3) Both dual learning [5], [6], [8] and GAN [4], [14], [15] work well under unsupervised settings. Therefore, we name this framework as Domain-supervised GAN (briefly, DosGAN).

Existing multi-domain translation models, such as StarGAN, also lack the ability to control the translated results in the target domain and their results usually lack of diversity in the sense that a fixed image usually leads to (almost) deterministic translation result. With two kinds of latent feature (i.e., domain-specific and domain-independent features) disentangled, we can devise a conditional DosGAN (briefly, DosGAN-c) for conditional image-to-image translation [9], which is to translate an image from the source domain to the target domain conditioned on a given image in the target domain and requires that the generated image should inherit some domain-specific features of the conditional image from the target domain. The DosGAN-c shares the same network architecture with DosGAN, and the difference between two frameworks only lies in the inputs and losses. Compared with our previous work cd-GAN [9], this paper generalizes the conditional image-to-image translation to multiple domains with one single model, and reveals the relationship between common image-to-image translation with DosGAN-c and DosGAN.

We carry out experiments on multiple hair color translation, multiple season translation and conditional edges-to-shoes/handbags translation. The results demonstrate that with domain supervision, our approach can better extract domain-specific features and translate images.

Interestingly, we find that the pre-trained domain-specific feature extractor has certain transferability. We transfer the domain-specific feature extractor trained on the Facescrub dataset, where the domain of each image (i.e., the identity of each face image) is known, to the CelebA dataset, where the domain (i.e., identity) of each image is unknown. The two datasets share the same semantic representations (i.e., face images), which provides a viable way to produce the domain-specific features for the faces in the unknown domains. Therefore, we can succeed in achieving conditional translation on CelebA by transferring the pre-trained domain-specific feature extractor, while previous methods cannot.

Our main contributions can be summarized as follows:

- We explicitly exploit domain supervision in unpaired image-to-image translation by extracting well-defined domain-specific features through a simple domain classifier.
- We disentangle two latent features by explicitly utilizing domain supervision and achieve performances better than several strong baseline methods.
- We show that the pre-trained domain-specific feature extractor can be transferred across datasets, which has not been investigated before.
- Our code is publicly available to the research community at https://github.com/linjx-ustc1106/DosGAN-PyTorch.

The remaining parts of this paper are organized as follows. We review related work in Section 2 and present our approach in Section 3. The experimental results are reported in Section 4. We conclude our work and discuss several future directions in the last section.

2 RELATED WORKS

Generative modeling. Image generation has been widely explored in recent years, and works have been putting effort on modeling the natural image distribution. This problem was initially solved by Boltzmann machines [16] and autoencoders [17], [18]. Variational autoencoder (VAE) [19] aims to improve the quality and efficiency of image
generation by reparametrization of a latent distribution. GAN [4] was firstly proposed to generate images from random variables by a two-player minimax game. Various works have been proposed to exploit the capability of GAN for various image generation tasks. InfoGAN [20] learns to disentangle latent representations by maximizing the mutual information between a small subset of the latent variables and the observation. Radford et al. [14] presented a class of deep convolutional generative networks (DCGANs) for high-quality image generation and unsupervised image classification tasks, which bridges the gap between convolutional neural networks (CNNs) and unsupervised image generation.

Supervised image-to-image translation. The supervised image-to-image translation aims to learn a parametric translation function that transforms an input image in a source domain to an image in a target domain when paired data is available. Many computer vision tasks can be posed as this problem. For example, Long et al. [2] proposed a fully convolutional network (FCN) for image-to-segmentation translation. SRGAN [5] maps low-resolution images to high resolution images. Isola et al. [21] proposed a general conditional GAN (pix2pix) for image-to-image translation tasks, including label-to-street scene and aerial-to-map. In order to overcome the limitation of relatively low resolution in pix2Pix and lack of realistic details and texture, [22] proposed a HD version of pix2Pix which increases the resolution to 2048*1024. In this work, a coarse-to-fine generator, three multi-scale discriminators, and a feature matching loss are utilized. Zhu et al. [23] further proposed a BicycleGAN to learn multimodal image-to-image translation by building bijective consistency between output and latent code.

Unpaired image-to-image translation. Since it is usually expensive to collect a large amount of paired data for supervised image-to-image translation tasks, unpaired learning based algorithms have been widely adopted. Based on adversarial training, Dumoulin et al. [24] and Donahue et al. [25] proposed algorithms to jointly learn mappings between latent space and data bidirectionally. Taigman et al. [26] presented a domain transfer network (DTN) for unpaired cross-domain image generation by assuming constant latent space between two domains, which could generate images of target domain’s style and preserve their identity. He et al. [3] proposed a dual learning mechanism that can enable a neural machine translation system to automatically learn from unlabeled data through a dual learning game. Inspired by the idea of dual learning, DualGAN [4], DiscoGAN [7] and CycleGAN [8] were proposed to tackle the unpaired image translation problem by training two cross-domain transfer GANs at the same time. To generate controllable translation result, Lin et al. [9] decompose the image latent space into domain-independent and domain-specific feature spaces, and raise a new problem named as conditional cross-domain translation which can assign domain-specific feature for generated result by feeding a conditional image in the target domain. Similar to [9], other two works [10], [11] proposed to disentangle latent space and generate diverse translation results. Choi et al. [12] further proposed a StarGAN that can perform image-to-image translations for multiple domains using only a single model. Similarly, Liu at al. [13] proposed a UFDN that learns domain-invariant representation from multiple domains and can perform continuous cross-domain image translation and manipulation. Some other works also utilized attention mechanism for more accurate image-to-image translation. DA-GAN [27] firstly finds the instance-level corresponding of two domains in the latent space by introducing attention mechanism, then generates images from the highly-structured latent space. In [28], GANimation is proposed to generate anatomically-aware facial animation. Attention mechanism is exploited to make the scheme more robust and have the capacity of dealing with images in the wild. Authors in [29], [30] introduced attention map to avoid cycle consistency loss distracted by background factors and achieved better performance than original CycleGAN.

3 Framework

In this section, we introduce our proposed framework. We first give a general formulation to image translation and conditional image translation, then describe our network architecture, and finally present the training algorithm and discussion.

3.1 Problem formulation

We work on multiple domain translation with one single model, but to increase readability, we will introduce two domain translation between domain A (denoted as \(D_A\)) and domain B (denoted as \(D_B\)). Suppose we have a domain-specific feature extractor \(\alpha(\cdot)\) and a domain-independent feature extractor \(\beta(\cdot)\). Given an image \(x \in D_A\) or \(x \in D_B\), we can get its domain-specific features \(x^s\) and domain-independent features \(x^i\) by applying the two extractors:

\[
x^s = \alpha(x), \quad x^i = \beta(x).
\]

Note that the domain-independent features of an image should be kept and its domain-specific features should be changed while translating it from one domain to other domain.

Then the style \(S_A\) of \(D_A\) and the style \(S_B\) of \(D_B\) are:

\[
S_A = \int_{x \in D_A} \alpha(x)p_A(x)dx, \quad S_B = \int_{x \in D_B} \alpha(x)p_B(x)dx,
\]

where \(p_A(x)\) and \(p_B(x)\) denote the probabilities of the image \(x\) belonging to \(D_A\) and \(D_B\). Empirically, given a set \(D_A\) of images in domain A (i.e., \(D_A \subset D_A\)) and a set of \(D_B \subset D_B\), \(S_A\) and \(S_B\) can be estimated through

\[
S_A \approx \frac{1}{|D_A|} \sum_{x \in D_A} \alpha(x), \quad S_B \approx \frac{1}{|D_B|} \sum_{x \in D_B} \alpha(x),
\]

where \(|D_A|\) and \(|D_B|\) refer to the number of images in \(D_A\) and \(D_B\). Let \(\oplus\) denote a generator, which takes a set of domain-specific features \(x^s\) and a set of domain-independent features \(x^i\) as inputs and generates an image in the corresponding domain: for any \(x_A \in D_A\) and \(x_B \in D_B\),

\[
x_A = x_A^i \oplus x_A^s, \quad x_B = x_B^i \oplus x_B^s.
\]

2. We will discuss how to learn the two extractors in the following two subsections.
Definition 1 With the above notations, the translation from \(D_A\) to \(D_B\) and the translation from \(D_B\) to \(D_A\) can be written as follows: for any \(x_A \in D_A\) and \(x_B \in D_B\),
\[
x_{AB} = x_A^A \oplus S_B, \quad x_{BA} = x_B^B \oplus S_A,
\]
where \(x_{AB}\) and \(x_{BA}\) denote the translation result.

Definition 2 The conditional image-to-image translation of an image \(x_A\) in domain \(A\) conditioned on an image \(x_B\) in domain \(B\), i.e., \(D_A \times D_B \rightarrow D_B\), and the dual translation \(D_B \times D_A \rightarrow D_A\), can be written as
\[
x_{AB} = x_A^A \oplus x_B^B, \quad x_{BA} = x_B^B \oplus x_A^A. \tag{6}
\]

Different from existing works [9], [10], [11], in this work, the domain-specific feature extractor \(\alpha(\cdot)\) is pre-trained in a supervised setting based on domain supervision and will be kept fixed during the training of the translation system. In the following subsections, we will first discuss how to pre-train \(\alpha(\cdot)\), and then present how to learn the domain-independent feature extractor \(\beta(\cdot)\) and the generator \(\oplus\) from unpaired images for image-to-image translation and conditional image-to-image translation.

3.2 Pre-training of domain-specific feature extractor
Very different from previous works [8], [9], which simply treat multiple domains as different sources of images, in this work, we regard them as explicit supervision and use them in a supervised way to learn the domain-specific feature extractor \(\alpha(\cdot)\).

Given images from \(N\) domains, we train a CNN network to correctly classify the domain of an image. After training, if the classifier network can accurately detect the domain of an image, then the output of the second-to-last layer of this classifier should well capture the domain information of this image. Thus, we denote the input layer to the second-to-last layer of this classifier network as our domain-specific feature extractor \(\alpha(\cdot)\). With this pre-trained \(\alpha(\cdot)\), we will introduce our system architectures for image translation in the coming subsections.

3.3 Architecture for image-to-image translation
The architecture of our proposed system for image-to-image translation is shown in Figure 2. As can be seen, to translate an image \(x_A\) from domain \(A\) to domain \(B\), we first apply the domain-specific feature extractor \(\alpha(\cdot)\) over all the images in domain \(B\) and obtain the style feature \(S_B\) according to Eqn. (3). Then we apply the domain-independent feature extractor \(\beta(\cdot)\) to \(x_A\) and obtain the domain-independent features \(x_A^A\). After that, the generator \(\oplus\) takes \(x_A^A\) and \(S_B\) as inputs and generates the translation results \(x_{AB}\), i.e., \(x_{AB} = x_A^A \oplus S_B\). In practice, the generator is modeled by a neural network and needs to be learned, thus, to be differentiated from the oracle generator \(\oplus\), we use we use \(g\) to denote the generator to be learned.

Adversarial loss Following the idea of GANs, we introduce a discriminator \(d\), which takes a (real or fake) image as input and output a probability indicating how likely the input belongs to a real image domain. We illustrate the objective function as below:
\[
\ell_{GAN} = \frac{1}{|D_A|} \sum_{x_A \in D_A} \log(d_{adv}(x_A)) + \log(1 - d_{adv}(x_{AB})), \tag{7}
\]

where \(x_{AB}\) is defined in Eqn. (5). The \(g \circ \beta\) network tries to fool the discriminators by minimizing \(\ell_{GAN}\), while the discriminator tries to differentiate generated images from real ones by maximizing \(\ell_{GAN}\).

Domain-specific reconstruction loss Different from StarGAN [12] that requires discriminator \(d\) to serve as a classifier that distinguishes which domain the input belongs to, we adapt the discriminator \(d\) to maximize the mutual information between domain-specific features and generated images as InfoGAN [20]. In this case, the domain-specific feature reconstruction cost \(\ell_{\alpha,r}\) of real images and fake images \(\ell_{\alpha,f}\) can be formulated as follows:
\[
\ell_{\alpha,r} = \frac{1}{|D_A|} \sum_{x_A \in D_A} \|d_{feat}(x_A) - x_A^\alpha\|_1, \quad \ell_{\alpha,f} = \frac{1}{|D_A|} \sum_{x_A \in D_A} \|d_{feat}(x_{AB}) - S_B\|_1, \tag{8}
\]

where \(d_{feat}\) represents the domain-specific features predicted from input \(x\) by discriminator \(d\). The discriminator \(d\) minimizes the \(d_{feat}\) to learn to reconstruct correct domain-specific features from real images, and the \(g \circ \beta\) network minimizes the \(d_{feat}\) to generate image containing correct style feature in the target domain.

Image reconstruction loss We use two kinds of reconstruction losses here. (1) Self-reconstruction loss, which is to minimize the L1 norm between \(x\) and \(x_{AA} = g(\alpha(x_A), x_A^A)\). With such a loss, after given the domain-specific features \(x_A^A\) extracted by \(\beta(\cdot)\), we can ensure what \(\beta(\cdot)\) extracts is the domain-independent features.(2) Cross-domain loss, which is to minimize the L1 norm between \(x_A\) and \(x_{ABA} = g(\beta(x_{AB}), x_A^A)\). Thus, the image level reconstruction loss is:
\[
\ell_{im} = \frac{1}{|D_A|} \sum_{x_A \in D_A} \|x_A - x_{AA}\|_1 + \|x_A - x_{ABA}\|_1. \tag{9}
\]

Overall training loss We combine the above three losses to optimize the framework. To optimize the domain-independent feature extractor \(\beta(\cdot)\) and generator \(g\) (remind that \(\alpha(\cdot)\) is fixed), we will minimize
\[
\ell_{\text{total}} = \ell_{GAN} + \lambda_f \ell_{\alpha,f} + \lambda_{im} \ell_{im}, \tag{10}
\]

To optimize the discriminator, we need to minimize
\[
\ell_{\text{d total}} = -\ell_{GAN} + \lambda_f \ell_{\alpha,r}, \tag{11}
\]

where \(\lambda_f\) and \(\lambda_{im}\) are weights to achieve balance among different loss terms.

3.4 Architecture for conditional image-to-image translation
The architecture of DosGAN for conditional image-to-image translation (DosGAN-c) is shown in Figure 3. As can be seen, to translate an image \(x_A\) from domain \(A\) to domain \(B\) conditioned on an image \(x_B\) from domain \(B\), we first apply the domain-specific feature extractor \(\alpha(\cdot)\) on \(x_B\) and obtain the domain-specific feature \(x_B^B\). Then we apply the domain-independent feature extractor \(\beta(\cdot)\) to \(x_A\) and obtain the domain-independent features \(x_A^A\). After that, the generator \(\oplus\) takes \(x_A^A\) and \(x_B^B\) as inputs and generates the translation results \(x_{AB}\). Similarly, \(x_{BA}\) is also generated. A
mathematical definition is in Definition 2. In this setting, for ease of reference, we set $|D_A| = |D_B|$.

Adversarial loss Similar to non-conditional setting, we illustrate the adversarial loss as below:

$$
\ell_{cGAN} = \frac{1}{|D_A|} \sum_{x_A \in D_A} \log(d_{adv}(x_A)) + \log(1 - d_{adv}(x_{AB})) + \frac{1}{|D_B|} \sum_{x_B \in D_B} \log(d_{adv}(x_B)) + \log(1 - d_{adv}(x_{BA})).
$$

(12)

Domain-specific reconstruction loss Different from non-conditional setting, the domain-specific feature reconstruction cost $\ell_{c\alpha,r}$ of real images and $\ell_{c\alpha,f}$ of fake images are modified as follows:

$$
\ell_{c\alpha,r} = \frac{1}{|D_A|} \sum_{x_A \in D_A} ||d_{feat}(x_A) - x_{sA}^a||_1
+ \frac{1}{|D_B|} \sum_{x_B \in D_B} ||d_{feat}(x_B) - x_{sB}^a||_1,
$$

$$
\ell_{c\alpha,f} = \frac{1}{|D_B|} \sum_{x_B \in D_B} \sum_{x_A \in D_A} ||d_{feat}(x_{AB}) - x_{sA}^a||_1
+ ||d_{feat}(x_{BA}) - x_{sB}^a||_1.
$$

(13)

The $g \circ \beta$ network minimizes the $\ell_{c\alpha,f}$ to generate image containing correct domain-specific features from image in the target domain.

Image reconstruction loss Similar to the non-conditional image-to-image translation, the reconstructed images are defined as follows:

$$
x_{AA} = g(x_A^s, x_A^i); x_{AB} = g(x_B^s, x_B^i);
x_{ABA} = g(\beta(x_{AB}), x_A^s); x_{BAB} = g(\beta(x_{BA}), x_B^s).
$$

(14)

Correspondingly, the reconstruction loss is

$$
\ell_{cim} = \frac{1}{|D_A|} \sum_{x_A \in D_A} \sum_{x_B \in D_B} \left(||x_A - x_{AA}||_1 + ||x_A - x_{ABA}||_1
+ ||x_B - x_{BB}||_1 + ||x_B - x_{BAB}||_1 \right).
$$

(15)

Overall training loss The total training loss of the generation network and discriminator are defined as follows:

$$
\ell_{net, c} = \ell_{cGAN} + \lambda_f \ell_{c\alpha,f} + \lambda_{im} \ell_{cim},
$$

$$
\ell_{d, c} = -\ell_{cGAN} + \lambda_f \ell_{c\alpha,r},
$$

(16)

(17)

where λ_f and λ_{im} are weights to achieve balance among different loss terms. The $g \circ \beta$ and d should try to minimize $\ell_{net, c}$ and $\ell_{d, c}$ respectively. The overall process is summarized in Algorithm 1.
requires that the identity may have different face appearance at different times. Our model is trained with features from real images in every training step, and ideally can accurately reconstruct source input with its own domain-specific features.

4 Experiments

4.1 Implementation details

In the following experiments, our DosGAN/DosGAN-c’s network configuration is shown in Figure 5. For $\alpha(\cdot)$, it consists of one convolution layer with stride 1 and kernel size 4 × 4; six convolution layers with stride 2 and kernel size 4 × 4; the last two convolution layers that are implemented for domain-specific feature output and classification output. The number of domain-specific features is set to 64 for experiments in Section 4.6, 1024 for experiments in Section 4.7 and 1024 for experiments from Section 4.4 to Section 4.6 according to different tasks’ domain classification accuracy and feature compactness. For discriminator d, we use PatchGANS [21] that consists of six convolution layers with stride 2 and kernel size 4 × 4, and two separated convolution layers that are implemented for discrimination output and domain-specific feature reconstruction output. For $\beta(\cdot)$, it one convolution layer with stride 1 and kernel size 7 × 7, two convolution layers with stride 2 and kernel size 4 × 4, and 3 residual blocks [31]. Each convolution layer is followed by Instance Normalization (IN) [32] and ReLU units [33]. For generator g, it first processes the domain-specific features through a fully-connected layer and adds it to domain-independent features from encoder e. Then the combined feature is input to 3 residual blocks, two deconvolution layers with stride 2 and kernel size 3 × 3 followed by IN and ReLU units, and one convolution layer with stride 1 and kernel size 7 × 7.

The parameters $\lambda_f = 0.5$ for experiments in Section 4.7 and $\lambda_f = 0.15$ for experiments in Section 4.8 and $\lambda_f = 5$ for experiments from Section 4.4 to Section 4.6, and $\lambda_m = 10$ for all the experiments. We train our networks using Adam [34] with learning rate of 0.0001. For all experiments, we train models with a learning rate of 0.0001 in the first 100000 iterations and linearly decay the learning every 1000 iteration.

4.2 Baselines

To verify the generality of our model, we compare with four state-of-the-art image translation models for different image-to-image translation tasks.

CycleGAN [6], [7], [8]. CycleGAN was proposed for cross-domain translation task, which jointly trains two mappings with adversarial loss and dual loss.

BicycleGAN [23]. BicycleGAN was proposed for multi-modal cross-domain translation and learns to combine input image with latent code. We compare with BicycleGAN when the paired data is available.

cd-GAN [9]. cd-GAN was proposed for unpaired conditional cross-domain translation, which aims to translate an image from source domain conditioned on a given image in the target domain. We show that our model can also deal with this problem.

StarGAN [12]. StarGAN can perform multi-domain translation using a single model. We compare with StarGAN in the case of multi-domain translation.
4.3 Datasets

For multi-domain translation, we compare our model with StarGAN on multiple hair color (black, blond, brown, gray) translation on CelebA dataset [35], and multiple identity translation on both Facescrub dataset [36] and CelebA.

For multiple hair colors translation, the initial images in CelebA whose sizes are 178×218 are cropped to 178×178 and then resized to 128×128. The test set is built by randomly selecting 2000 images from the original dataset. All the remaining images are used as the training set.

For multiple season translation, the season dataset [37] consists of approximately 6000 images and are categorized into four seasons, i.e., Spring, Summer, Autumn and Winter. All images are resized to 256×256.

For multiple identity translation, the Facescrub dataset [36] comprises more than 100 thousands face images of 531 male and female celebrities, with about 200 images per person. We resize all face images to 128×128 and obtain 531 identity domains. We build the test set by randomly selecting 20 images per person from the original dataset. All the remaining images are used as the training set. The face images of CelebA dataset contains 10177 identities but do not have corresponding identity labels. We apply a cropping box $(25, 60, 133, 168)$ on CelebA images and resize them to 128×128.

For conditional cross-domain translation [9], we carry out experiments on edges \rightarrow shoes dataset [38] and edges \rightarrow handbags dataset [39].

4.4 Multiple identity translation

We conduct multiple identity translation with DosGAN and conditional DosGAN (briefly, DosGAN-c) as illustrated in Eqn. (5) and Eqn. (6) respectively. Given random inputs and target identities in conditional inputs, the results of multiple identity translation compared with StarGAN [12] are shown in Figure 4. In general, our proposed method can successfully transfer the identity of input image to identity of the conditional input and greatly outperforms StarGAN. There are several aspects of observation.

(1) Our model can translate not only the input to the target identity, but also the specific face details (such as makeup, eyeglass) in the conditional input, while StarGAN can only translate input to the deterministic output without specific details.

(2) Our translation results are much visually better than StarGAN. One main reason may be that using manually-set domain code without semantic meaning for domain representation is inappropriate and insufficient for multiple domain translation, especially when the domain number is large (i.e., $N = 531$). On the contrary, our results are generated by combing domain-independent features and domain-specific features which are well disentangled and are both from real image inputs. Therefore, our model does not need to learn to relate domain code with corresponding identity.
of each image, but only needs to focus on generating results with two kinds of well-defined features.

(3) Our model can more accurately reconstruct the original inputs \(x_A \) than StarGAN as the images at the fifth column in the left figure and the first column in the right figure. This is because StarGAN is required to reconstruct the original image with original domain code, but domain code for the same identity may have different face appearance at different time, which causes a relatively hard optimization for reconstruction accuracy. Our domain-specific features can effectively avoid this problem since the reconstruction of \(x_A \) is generated by domain-specific features from itself.

For quantitative evaluation, we argue that if images translated by a model are accurately classified as the target identity’s classes, the model is successful on multiple identity translation. We translate source image to random target identity in each test minibatch, and report the top-1 and top-5 face recognition accuracy of generated images from StarGAN and our model in Table 1 with re-trained VGG-16 network [40]. We can see that our proposed method achieves better face recognition accuracy than StarGAN in both settings. We also surprisingly find that the classification accuracy of images generated by DosGAN is much higher than that of real faces in the test set. To explain this phenomenon, we split the training set into two parts: One is used to train the classifier VGG-16, and the other is used to train the feature extractor for DosGAN. The training and testing accuracy of two VGG-16’s is shown in Table 2. We can find our model’s accuracy is slightly higher than test images’ with VGG-16\(_{\text{half}}\). We can conclude that our model can effectively make use of training images’ domain-specific features and carry the learned features for image generation, which results in similar accuracy with the original training set. Even for VGG-16\(_{\text{half}}\), our model has higher accuracy than test images since our model aggregates multiple images’ domain-specific features for each identity, while test images are only dependent on their individual information.

Table 1
Top-1 and top-5 face recognition accuracy [%] of multiple identity translation results on Facescrub.

	StarGAN [12]	DosGAN-c	DosGAN	Real Faces
Top-1	55.04	60.79	94.01	80.20
Top-5	71.34	75.92	97.98	95.13

Table 2
Top-1 face recognition accuracy [%] of VGG-16 trained on full training set and half training set.

	Real Faces (Train)	Real Faces (Test)	DosGAN
VGG-16	99.68	80.20	94.01
VGG-16\(_{\text{half}}\)	99.53	78.42	80.98

4.5 Adapting translation from Facescrub to CelebA

Most existing image-to-image translation works focus on translation within dataset that has clear domain information. However, there are still many datasets that does not
contain domain information. An example is CelebA: for any photo in CelebA, we do not know which identity this photo belongs to. As far as we know, no previous work has touched how to achieve identity translation on CelebA, since there is no way to extract domain-specific features.

Considering both CelebA and Facescrub are face datasets, we can transfer the \(\alpha(\cdot) \) trained on Facescrub to that for CelebA, and then retrain \(\beta(\cdot) \) and \(g \) in the DosGAN-c for CelebA to achieve conditional image-to-image translation. The basic assumption on this translation transferring is that the two datasets share the same semantic representations (i.e., face images), the \(\alpha(\cdot) \) trained on Facescrub provides a viable way to estimate the domain-specific features for the faces in the CelebA. The results of multiple identity translation on CelebA are shown in Figure 8. We can observe that our model can still successfully translate the identity of input to the identity of conditional input with invariant domain-independent features (i.e., face emotion, face orientation).

To verify the disentanglement of domain-independent features and domain-specific features, we show the results of domain-specific feature interpolations in Figure 7. We sample two conditional inputs \(x_{B1} \) and \(x_{B2} \) and obtain their domain-specific features \(x'_{B1} \) and \(x'_{B2} \). Then we linearly interpolate between \(x'_{B1} \) and \(x'_{B2} \) and combine intermediary feature with domain-independent features of input \(x_A \). We observe that our model can produce smooth translations through variation of domain-specific feature while remaining the domain-independent features invariant. This indicates that DosGAN-c learns not only individual translation with specific real images, but also a generalized domain-specific feature distribution.

![Conditional Input](image)

Fig. 8. Our results on multiple identity translation on 3 identities in Facescrub with domain supervision from 528 identities in Facescrub.

TABLE 3
Top-1 and top-5 face recognition accuracy [%] of 3 identities identity translation results on Facescrub.
StarGAN [12]
Top-1
Top-5

4.6 Adapting translation to unseen domains

To further evaluate the transferability of DosGAN-c, we choose 528 of 531 identities in Facescrub as the dataset with domain information, and the rest 3 identities are shuffled and used as dataset without domain information. We train the StarGAN and our DosGAN-c on 528 identities. Then we directly test the two models on the rest 3 identities, without any further tuning like that in Section 4.5. The domain codes of StarGAN for unknown 3 identities are provided based on the prediction of classifier trained on 528 identities. The translation examples on 3 identities are shown in Figure 8. The face recognition accuracy of translation results on 3 identities are shown in Table 2. We can observe that performance of StarGAN decreases rapidly and StarGAN can not generalize its model to image translation that contains unseen domains. On the contrary, given pre-trained classifier, our model does not need any other additional information to deal with unseen identities, and shows consistent performance on image translation across different datasets.

4.7 Multiple hair color translation

To further verify the effectiveness of our DosGAN on non-conditional setting, we compare with StarGAN on multiple hair colors translation as shown in Figure 9. Compared to StarGAN, our model can ensure more consistency of domain-independent features in translated results, while StarGAN is found to translate with aged features in gray hair results and female features in blond hair results. In additional, StarGAN often fails to transfer gray hair as well as ours. This is because our model can well disentangle images’ latent space, and domain-specific feature centroid estimated over the whole domain images can be better representation for domain characteristic. We also show the classification accuracy of translation results with re-trained VGG-16 network in Table 3. Our model also achieve better classification accuracy than StarGAN. To investigate the domain-specific feature variation in multiple hair color, we conduct additional experiment on conditional multiple hair colors translation as shown in Figure 10. We can observe that our DosGAN-c can vary hair colors in translated results according to different conditional inputs, and also can achieve better classification accuracy than StarGAN as shown in Table 4.

TABLE 4
Classification accuracy [%] on multiple hair color translation.
StarGAN [12]
Classification Accuracy

4.8 Multiple season translation

We also carry out multi-domain translation on multiple season translation task. This task aims to demonstrate the effectiveness of DosGAN on generating higher resolution images and natural images. The translation results compared with StarGAN are shown in Figure 11. Compared with StarGAN, we can observe that our model can translate the input images to the target domain with more accurate details and higher quality. For example, the translated results of our DosGAN have more clear edges, precisely contain most season features, remain other season-invariant features, such as the waterfall. We also present the Frchet Inception Distance (FID) scores of StarGAN and DosGAN in Table 5. The FID scores verify our model’s significant improvement on StarGAN.
Fig. 9. Comparison between StarGAN and our DosGAN on multiple hair color translation.

Fig. 10. Comparison between StarGAN and our DosGAN-c on multiple hair color translation. The first row is x_B for DosGAN-c’s conditional inputs and target hair color examples for StarGAN.

TABLE 5
FID scores of multiple season translation.

	StarGAN [12]	DosGAN	Improvement
FID	81.81	51.14	30.67

4.9 Conditional cross-domain translation results

TABLE 6
PSNR [dB] between ground truth and translation result generated from paired edge image and ground truth image.

	edges→handbags	edges→shoes
CycleGAN [8]	8.45	13.23
cd-GAN [9]	16.05	17.85
Bicyclegan [23] (Supervised)	16.65	18.95
DosGAN-c	16.47	18.02

To further investigate the effectiveness of our DosGAN on conditional setting, we compare our model with CycleGAN [8], BicycleGAN [23] and cd-GAN [9] on conditional edges→handbags and edges→shoes. The conditional translation results are shown in Figure [12]. In order to measure the accuracy of domain-specific features in translation results, we present the quantitative comparison results in Table [6] where we calculate Peak Signal to Noise Ratio (PSNR) between ground truth and translation result generated from paired edge image (providing domain-independent features) and ground truth shoe/handbag image (providing domain-specific feature). From Figure [12] we show that our model can visually transfer the domain-specific features from the conditional input to the translation result. The PSNR results in Table [6] further verify that our model’s performance is better than cd-GAN and comparable with supervised model BicycleGAN.

5 Conclusions

In this paper, we have presented a novel framework called DosGAN/DosGAN-c to utilize domain information as explicit supervision for unconditional or conditional image-to-image translation. The effectiveness of our approach has been demonstrated on cross-domain and multi-domain image translation tasks. Moreover, the pre-trained domain-specific feature extractor can be transferred to other datasets without domain supervision information.

There are several interesting future directions. First, we can apply our model to more image translation tasks. Second, we would like to explore how to use our techniques for zero-shot image-to-image translation. Furthermore, we believe that our framework can be generalized to other tasks such as language and speech.

REFERENCES

[1] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. Image style transfer using convolutional neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 2414–2423, 2016.
[2] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 3431–3440, 2015.
[3] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A. Tejani, J. Totz, Z. Wang, and W. Shi. Photo-realistic single image super-resolution using a generative adversarial network. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 4381–4389, 2017.
[4] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural information processing systems, pages 2672–2680, 2014.
[5] Di He, Yingce Xia, Tao Qin, Liwei Wang, Nenghai Yu, Tieyan Liu, and Wei-Ying Ma. Dual learning for machine translation. In Advances in Neural Information Processing Systems, pages 820–828, 2016.
[6] Zili Yi, Hao Zhang, Ping Tan, and Minglun Gong. Dualgan: Unsupervised dual learning for image-to-image translation. In The IEEE International Conference on Computer Vision (ICCV), Oct 2017.
Fig. 11. Comparison between StarGAN and our DosGAN on multiple season translation.

Fig. 12. Comparison among CycleGAN, cd-GAN, BicycleGAN and our DosGAN-c on conditional edges→handbags (a) and edges→shoes (b) translation. The conditional input provides domain-specific features to the translation result. CycleGAN doesn’t take conditional inputs and can be viewed as a baseline in this comparison.

[7] Taeksoo Kim, Moonsu Cha, Hyunsoo Kim, Jung Kwon Lee, and Jiwon Kim. Learning to discover cross-domain relations with generative adversarial networks. In Proceedings of the 34th International Conference on Machine Learning, pages 1857–1865, 2017.

[8] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros. Unpaired image-to-image translation using cycle-consistent adversarial networks. In The IEEE International Conference on Computer Vision (ICCV), Oct 2017.

[9] Jianxin Lin, Yingce Xia, Tao Qin, Zhibo Chen, and Tie-Yan Liu. Conditional image-to-image translation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018.

[10] Xun Huang, Ming-Yu Liu, Serge Belongie, and Jan Kautz. Multimodal unsupervised image-to-image translation. In ECCV, 2018.

[11] Hsin-Ying Lee, Hung-Yu Tseng, Jia-Bin Huang, Maneesh Kumar Singh, and Ming-Hsuan Yang. Diverse image-to-image translation via disentangled representations. In European Conference on Computer Vision, 2018.

[12] Yunjey Choi, Minje Choi, Munyoung Kim, Jung-Woo Ha, Sunghun Kim, and Jaegul Choo. Stargan: Unified generative adversarial networks for multi-domain image-to-image translation. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018.

[13] Alexander H. Liu, Yen-Cheng Liu, Yu-Ying Yeh, and Yu-Chiang Frank Wang. A unified feature disentangler for multi-domain image translation and manipulation. In S. Bengio, H. Lach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Processing Systems 31, pages 2595–2604. Curran Associates, Inc., 2018.

[14] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.

[15] Emily I. Denton, Soumith Chintala, Rob Fergus, et al. Deep generative image models using a laplacian pyramid of adversarial networks. In Advances in neural information processing systems, pages 1486–1494, 2015.

[16] Paul Smolensky. Information processing in dynamical systems: Foundations of harmony theory. Technical report, COLORADO UNIV AT BOULDER DEPT OF COMPUTER SCIENCE, 1986.

[17] Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data with neural networks. science, 313(5786):504–507, 2006.

[18] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extracting and composing robust features with denoising autoencoders. In Proceedings of the 25th international conference on Machine learning, pages 1096–1103. ACM, 2008.

[19] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.

[20] Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel. Infogan: Interpretable representation learning by information maximizing generative adversarial
nets. In Advances in Neural Information Processing Systems, pages 2172–2180, 2016.

[21] P. Isola, J. Zhu, T. Zhou, and A. A. Efros. Image-to-image translation with conditional adversarial networks. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 5967–5976, July 2017.

[22] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao, Jan Kautz, and Bryan Catanzaro. High-resolution image synthesis and semantic manipulation with conditional gans. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018.

[23] Jun-Yan Zhu, Richard Zhang, Deepak Pathak, Trevor Darrell, Alexei A Efros, Oliver Wang, and Eli Shechtman. Toward multimodal image-to-image translation. In Advances in Neural Information Processing Systems, pages 465–476, 2017.

[24] Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Alex Lamb, Martin Arjovsky, Olivier Mastropietro, and Aaron Courville. Adversarially learned inference. arXiv preprint arXiv:1606.00704, 2016.

[25] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao, Jan Kautz, and Bryan Catanzaro. High-resolution image synthesis and semantic manipulation with conditional gans. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018.

[26] Yaniv Taigman, Adam Polyak, and Lior Wolf. Unsupervised cross-domain image generation. arXiv preprint arXiv:1611.02200, 2016.

[27] Jun-Yan Zhu, Richard Zhang, Deepak Pathak, Trevor Darrell, Alexei A Efros, Oliver Wang, and Eli Shechtman. Toward multimodal image-to-image translation. In Advances in Neural Information Processing Systems, pages 465–476, 2017.

[28] Aron Yu and Kristen Grauman. Fine-grained visual comparisons with local learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 192–199, 2014.

[29] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[30] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans trained by a two time-scale update rule converge to a local nash equilibrium. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems 30, pages 6626–6637. Curran Associates, Inc., 2017.
Fig. 13. Extra results of StarGAN and our DosGAN on multi-hair color translation.
Fig. 14. Extra results of CycleGAN (a), cd-GAN (b), BicycleGAN (c) and our DosGAN-c (d) on conditional edges-to-handbags translation. For each sub-figure, the first column is inputs, and the first row is conditional inputs for cd-GAN, BicycleGAN and DosGAN-c.
Fig. 15. Extra results of CycleGAN (a), cd-GAN (b), BicycleGAN (c) and our DosGAN-c (d) on conditional edges-to-shoes translation.