Non-uniform EWMA-PCA based cache size allocation scheme in Named Data Networks

Narges MEHRAN* & Naser MOVAHHEDEINIA

Department of Computer Architecture, Faculty of Computer Engineering, University of Isfahan, Isfahan 81746, Iran

Received July 24, 2016/Revised October 21, 2016/Accepted December 1, 2016

Abstract As a data-centric cache-enabled architecture, Named Data Networking (NDN) is considered to be an appropriate alternative to the current host-centric IP-based Internet infrastructure. Leveraging in-network caching, name-based routing, and receiver-driven sessions, NDN can greatly enhance the way Internet resources are being used. A critical issue in NDN is the procedure of cache allocation and management. Our main contribution in this research is the analysis of memory requirements to allocate suitable Content-Store size to NDN routers, with respect to combined impacts of long-term centrality-based metric and Exponential Weighted Moving Average (EWMA) of short-term parameters such as users behaviours and outgoing traffic. To determine correlations in such large data sets, data mining methods can prove valuable to researchers. In this paper, we apply a data-fusion approach, namely Principal Component Analysis (PCA), to discover relations from short- and long-term parameters of the router. The output of PCA, exploited to mine out raw data sets, is used to allocate a proper cache size to the router. Evaluation results show an increase in the hit ratio of Content-Stores in sources, and NDN routers. Moreover, for the proposed cache size allocation scheme, the number of unsatisfied and pending Interests in NDN routers is smaller than the Degree-Centrality cache size scheme.

Keywords content centric networks, Named Data Networks, future Internet, NDN cache size, exponential weighted moving average, principal component analysis

Citation Mehran N, Movahhedinia N. Non-uniform EWMA-PCA based cache size allocation scheme in Named Data Networks. Sci China Inf Sci, 2018, 61(1): 012104, doi: 10.1007/s11432-016-0501-5

1 Introduction

According to recent predictions [1], IP multimedia traffic (e.g., TV, Video on Demand (VoD), Internet, and P2P) will continue to be in range of 80 to 90 percent of global traffic by 2019. The growing demand for different sort of contents has led to development of Internet architecture based on Named Data Objects (NDOs), such as documents, videos, or other pieces of information. As a prologue, the common existing techniques use peer-to-peer (P2P) overlays or server-based content distribution networks (CDNs). In these networks, Consumer is redirected to the chunks of a copy of the desired content, acquired by the traditional host-to-host networks. Well-known models of P2P networks are Skype and Bit Torrent in which peers are responsible for delivering contents like videos or music to other peers. However, being delivered in overlay layers, the requested contents are not being aware of by the routers. Moreover, CDNs requires dedicated-setup for various contents, and optimal selection of peers in P2P networks imposes heavy loads on links [2]. These efforts helped to propose an architecture for re-designing the Future

* Corresponding author (email: n.mehran@eng.ui.ac.ir)
Internet, called Information-Centric Network (ICN) [3, 4], which has in-network caching to efficiently deliver sub-objects (or chunks) to users. Content-Centric Networking project [5] (recently known as Named Data Networking (NDN) [6]) is one of ICN architectures proposed by PARC (Palo Alto Research Center, formerly Xerox PARC) in 2009. The goal of designing this network is to perform management, routing and resource allocation according to the ID considered for the content, instead of the host ID. Indeed, ICN chooses to search for content by asking, “what’s in it?”, rather than host-centric approach of “where’s the location of holder?”

As in Figure 1, every NDN router has three data structures to handle the Interest and Data message forwarding: a Content Store (CS), which may be called “router’s cache”, or simply “cache”, Pending Interest Table (PIT), and Forwarding Information Base (FIB). CS, as the name implies, stores the chunks of incoming Data for satisfying possible future Interest (requested by a user) in its storage device, simply named cache. PIT role is to store requests not satisfied by CS and passed to next router. Finally, FIB role is to forward Interests to the proper face of an NDN router. On the way that Data message is forwarding back to its destination, if an entry in PIT is matched, the Data chunk is immediately forwarded to the user.

In this article, our focus is on studying the importance degree of router in an NDN to improve the performance of a named based cache-enabled network, and to reduce the end-to-end delay and bandwidth consumption as well. To improve an NDN router functionality, the estimation of cost and energy consumption should be considered [7]. Therefore, the issue of changing the structure of nodes is a challenging problem. Trade-off between the high-speed DRAMs and lower-cost SSDs leads to a decrease in costly memory consumption by wisely reducing the speed. Hence, we use our proposed metric related to each node as a base to non-uniformly distribute the amount of high-speed but costly cache among content routers. Consequently, two parameters, the number of Interests satisfied in each router and the number of Pending Interests (PI), are collected to recognize a router’s importance in honoring unsatisfied users’ Interests. Considering the short-term metrics of outgoing traffic distribution, and user’s incoming pending requests, as well as the long-term metric of topology-related Betweenness-centrality of every content router, a novel method for cache size allocation is derived.

As the former two short-term parameters may change frequently, it is logical to consider our observations in a time interval and calculate the Exponentially Weighted Moving Average. Next, the results are combined with Betweenness parameter of routers to use topological information to size the cache of routers based on different centrality metrics. As reported in [8], the attainable gain with non-uniform cache sizing is limited, and a centrality-based metric is not sufficient to find the caching performance of routers; however, as the way nodes are linked to one another, it cannot be ignored in getting the importance of routers. Therefore, this paper aims to show that the use of the long-term static metric in conjunction with the short-term dynamic metrics provide the benefits of both methods. PCA-based analysis, as a computationally low-cost approach, reveals relations in parameters that may not be clear. As that combination may increase the size of input data, the important features are extracted by a PCA method to denoise the gathered data and reduce the computational complexity of the algorithm.

In the following section, the related work presented on NDN and specifically their storage devices are briefed. In Section 3, our main contribution is explained. In Section 4, the evaluations for the proposed method are presented, and in Section 5, the paper is concluded.

2 Related work

ProbCache [9] assesses the caching capability of a path and caches contents probabilistically in order to leave caching space for other data chunks, and acceptably distribute contents in caches along the path from the Producers to the Consumers. By approximating the distance, that content travels from Producer to Consumer. Measuring the content capability of a path, NDN router caches the incoming content. Both uniform and non-uniform cache sizes have been adjusted to fit in both ecosystems.

Authors in [10] design a “cost-aware cache decision policy”, that jointly consider content popularity
and price of links through which the contents have to be retrieved. With the help of cost-aware modular decision policy designed, any classic decision policy can be employed. Cost-aware policies allow caching just the contents that are costly for the operator because they reduce the load on expensive and cheap links, while increasing the load on free links. According to their evaluations, by tuning the trade-off between popularity and price, the cost-aware performance is classified into mostly popularity-driven, balanced, and mostly cost-driven categories. A larger gain is achieved in balanced mode, since designing a better composition of hit ratio and cost fraction.

Cache size allocation schemes have been the subject of other studies, which are closer to our contribution in this paper such as [8, 11–13]. The centrality metrics of routers have been considered in [8] and been found that the achievable gain with the non-uniform cache size allocation method is not significantly better in comparison with uniform cache size allocation scheme. It has been noticed that the Degree-Centrality metrics improve cache hit for all topologies except Abilene topology where the degree metric does not vary significantly across the nodes.

Authors in [11] have introduced a novel cache size optimization scheme and classify cache routers based on their roles in content delivery. The information about users’ behavior and network traffic distribution are collected by the number of received requests, requests served and content replacements. Their scheme has showed better performance than the graph-related schemes as the important routers have been allocated 80% of the total cache resources.

In [12], a scheme has been presented to give higher cache resource to applications with high performance requirement. In order to assign priority to applications, a manifold learning method has been introduced to perform data mining. The presented evaluations show that the hit ratio of applications such as HTTP web and file sharing is more than Web media and User Generated Contents (such as blogs, chats, tweets). As claimed, the differences are from popularity and average content size of the applications.

A new metric has been presented in [13], named Request Influence Degree (RID), to reflect the importance of every router along the content delivery path by considering incoming Interest and outgoing Data messages. The number of all requests received by a router from others has been calculated and multiplied by a weight. The weight is computed from miss rates of caches along the path to show the number of requests that should be sent by a Consumer to reach an in-network router. An Interest message arrived at a special router has this information of past misses. However, as the current router needs to have knowledge about past routers on the path, the message-passing among routers is increased significantly.

The short-term and the long-term parameters presented in this article, are inspired from Xu et al. [11], and the work presented by Rossi and Rossini [8].
3 Proposed scheme

The problem investigated in this article is how to allocate cache size non-uniformly; therefore, we present a scheme by working on the content-store structure of NDN routers. At first, a uniform cache size is allocated to all of NDN routers. After collecting short-term dynamic parameters (satisfied Interests and users’ pending Interests in a router), analysing and combining with the long-term static parameter, suitable cache sizes are estimated and allocated to different NDN routers. Furthermore, to consider the impact of network topology, which is a constant parameter, the relative information is combined with the mentioned parameters. An important long-term centrality metric is Betweenness, because it shows how many times a router is on the shortest path between every Producer-Consumer way. In NDN architecture, it may be shown that this router by possessing a more cache space can store more data chunks for future satisfactions. Besides, in NDN, received Interest and Data packets affect cache size. As these data chunks would be routed for the requester based on the PIT table, so more interfaces stored in a PIT may cause more data chunks expecting to be received. In addition, more number of cache hits actually shows more Interest satisfaction by the cache. This combination is performed by a proper data fusion scheme to denoise and decrease the size of the input data space. The choice of data fusion scheme is explained next.

3.1 Data-fusion algorithm

Our objective is the dimensionality-reduction data fusion to remove unimportant attributes and combine the most important information in a low-dimension set. The learning-based dimensionality-reduction data-fusion schemes, like ISOMAP or K-Means, are generally slow and imposing high computational load on processing the input data, especially for large-scale real-network data processing [14]. According to [15], PCA has this special capability to extract only the most important information from the data by using the first few components estimated from the original data set. Therefore, to reduce the size of information and combine features with different qualities, PCA is selected.

PCA demonstrates the technique of approximating the x variables with linear combinations of f uncorrelated factors, where $f \ll x$. As PCA is capable of filtering unrelated data, it can find the hidden correlation among the variables to generate a set of uncorrelated principal components. As illustrated in Figure 2, if the data set X is the observations from two features, then PCA is interpreted as a geometrical representation of the two original axes. The new axes are computed from the two largest variances (eigenvalues) of the data set. By choosing just the first principal component, the data can be projected to get the important features of the original information. To this end, first, a covariance matrix is obtained from the data table. Then, the eigenvectors and eigenvalues of the covariance matrix are calculated to perform Eigen-decomposition and to derive the principal components of the data set.

3.2 Cache allocation scheme

Considering a total cache size for the network and by processing the output information of PCA, a proper size is allocated to the cache of each router. Denoting w_i as the weight, importance degree of node i, obtained by PCA output and C_{total} as the overall cache size of routers, the cache size allocated to each router, c_i, is obtained proportional to w_i as below:

$$c_i = C_{\text{total}} \times w_i, \quad i \in [1, n], \quad \sum_{i=1}^{n} w_i = 1.$$

(1)

In uniform cache size allocation scheme, w_i is the same among all the caches in the network; however, in non-uniform cache size allocation scheme, this ratio differs according to the metrics considered and calculated for each router.
3.3 Metric definition

Considering NDN as a graph, the routers and the point-to-point links between routers show the nodes and the links in the graph correspondingly. As the links are assumed symmetric and full duplex, the equivalent graph would be unidirectional. To find out how influential a node in a group is, a graph-related long-term parameter, namely Betweenness Centrality (BC), precomputed offline, is used. This metric is an indicator of node centrality in the graph of a network. In order to find this type of centrality, Eqs. (2)–(4) are adopted [16].

Eq. (2) computes the pair-wise dependencies of two nodes, s and t, on a special node, v [16]:

$$
\delta(s, t|v) = \frac{\sigma(s, t|v)}{\sigma(s, t)},
$$

(2)

where $\sigma(s, t)$ shows the number of different shortest paths from node s to t. In other words, the pair-wise dependency shows the fraction of all the number of geodesics between pair of nodes, $\sigma(s, t)$, that include node v, $\sigma(s, t|v)$.

By aggregating these computations, we can have [16]:

$$
\delta(s|v) = \sum_{t \in V} \delta(s, t|v).
$$

(3)

Then, for all $s, v \in V$, we can compute the one-sided dependency of s on vertices one edge farther away [16]:

$$
\delta(s|v) = \sum_{w: \begin{array}{c} (v, w) \in E \text{ and} \\ \text{dist}(s, w) = \text{dist}(s, v) + 1 \end{array}} \frac{\sigma(s, v)}{\sigma(s, w)} (1 + \delta(s|w)).
$$

(4)

If a node can reach other nodes on a short path or it is on a significant number of shortest paths between other nodes, it can be concluded that the centrality of this node is high. This metric is used in [17] where only the NDN routers with higher values of BC parameter cache the data chunks because they are more important than other nodes and are more likely to get the cache hits.

The next step is to collect information containing the number of pending Interests and the number of data chunks going from the current node. These two metrics are sampled at the routers. In order to smooth out the fluctuations of the obtained samples, a type of Weighted Moving Average (WMA) procedure is applied. In this type of WMA, called Exponential WMA (EWMA) [18], the current and the past few samples are weighted exponentially and summed. The sampling frequency should be selected based on the behavior of fluctuations; therefore, 100 samples per second (every 0.01 s) is an almost
fair one. In this manner, older observations are assigned smaller weights. Finally, once the weights are assigned, a feature value based on the samples of each dynamic parameter is computed for the router.

New_\text{PI}_\text{Sample}(t) is considered to be the time series of PIT snapshots (the number of pending Interests in PIT at different moments) and by denoting PI_Avg(t) as the output of EWMA, the PI prediction is calculated using the current and the past users’ PI samples in an NDN router by (5)–(7):

\[
PI\text{_Avg}(t) = g \times \text{New_PI_Sample}(t) + (1 - g) \times PI\text{_Avg}(t-1),
\]

where \(g\) is a constant value (0 < \(g\) < 1). A smaller \(g\) assigns smaller weight to current observation, and gives more importance to long-term history. Having long-term correlation between PI samples, a particularly good selection for \(g\) is \(1/2^4 = 0.125\) which is a reciprocal power of two. Because by multiplying (5) and 1/\(g\), it is possible to keep everything integer and have a faster calculation.

In addition, it is worthy to have a measurement for variability of observations by computing the standard deviation of EWMA output. In other words, for showing the fluctuation of samples from the average value, another Exponentially Weighted Moving Average (Eq. (6)) is computed from the absolute difference of current sample and EWMA given by (5). The selected value for \(g'\) is considered \((1/2^2) = 0.25\) that increases the sensitivity of new-sample deviation from the EWMA in (5):

\[
PI\text{_Dev}(t) = PI\text{_Dev}(t-1) + g'.\{\text{New_PI_Sample}(t) - PI\text{_Avg}(t)\} - PI\text{_Dev}(t-1).
\]

Given the values of average and deviation, then the question is how to estimate the number of PIs. This value should not be smaller than average (Eq. (5)); otherwise cache size will decrease, which is not a fair allocation in our algorithm. It is, therefore, desirable to assign an average value plus some margin. Here, deviation is used as the margin, because it represents the variation of observations from the average value. When samples greatly fluctuate around the average, it is better to select a large margin; on the contrary, in case of small fluctuations, a small margin is preferred. By minimizing estimation error, the proper equation is obtained as follows (Eq. (7)). In other words, by considering the minimum estimation error between New_\text{PI}_\text{Sample}(t) and Estimated_\text{PI}(t), and changing the factor of PI_\text{Dev}(t), the estimation of the average number of pending Interests is assessed. By employing the key attribute of EWMA method, the last value of Estimated_\text{PI}(t) is selected by a measurement from the past \(t\) seconds of gathered PIs.

\[
Estimated_\text{PI}(t) = PI\text{_Avg}(t) + (0.1 \times PI\text{_Dev}(t)).
\]

The same equations can be considered for the number of Interests satisfied by CS in current NDN router. If New_\text{HI}_\text{Sample}(t) (the number of satisfied Interests in CS at different moments) is the time series of the outgoing Hit Interests (HIs) retrieved from CS of a router at moment \(t\), EWMA of the number of hits in a router is predicted as

\[
HI_\text{Avg}(t) = g \times \text{New_HI_Sample}(t) + (1 - g) \times HI_\text{Avg}(t-1).
\]

According to (9), another EWMA is computed from subtraction of current sample and the measured EWMA in (8):

\[
HI_\text{Dev}(t) = HI_\text{Dev}(t-1) + g'.\{\text{New_HI_Sample}(t) - HI_\text{Avg}(t)\} - HI_\text{Dev}(t-1).
\]

Considering the average value (Eq. (8)) and the EWMA of deviations (Eq. (9)), estimation for the number of router’s HIs is calculated as below:

\[
Estimated_\text{HI}(t) = HI_\text{Avg}(t) + (0.1 \times HI_\text{Dev}(t)).
\]

In the next section, we will describe how to use PCA to allocate a size to every router’s cache, based on these time-variant variables and time-invariant one.
3.4 The proposed cache size allocation scheme

After estimating the EWMA of outgoing HIs and incoming users’ PIs, the PCA data-fusion algorithm is used to combine the dynamic parameters with static Betweenness-centrality parameter. This algorithm finds the most important information in a new subspace and projects data set on the orthogonal uncorrelated principal components of the subspace. In large-scale data sets, it can be seen as $I \times J$ matrix, where I is the number of routers in the network, and J is the number of features collected from every router. This input is fed to PCA algorithm to calculate the importance of the router in NDN. Then, this value is utilized to allocate proper cache size to the router. The PCA steps are explained below:

- Normalizing the elements of the data set:
 \[x = \frac{x - \text{mean}}{\text{std.dev}}. \]
 (11)

 where mean is the average and std.dev is the standard deviation of the data set.

- Finding the covariance matrix of the normalized data set (it shows how much the two variables change together):
 \[\text{Cov}_{i,j} = \frac{1}{I} \sum_{q=1}^{I} x_{q,i} \cdot x_{q,j}. \]
 (12)

- Calculating the eigenvectors of the covariance matrix for each component as
 \[Q_i \text{Cov} = \lambda_i \text{Cov}, \]
 (13)

 where i is the global ID for the router i in NDN.

By setting a desired value for L (not larger than J), it is possible to extract just L number of features from the most important features of the data table. In this article, just the first eigenvector is selected, because the first one is made out of the largest possible variance of the data set.

Then the data set is projected onto this eigenvector; therefore, the data points in the new subspace are obtained by
\[F_{I \times 1} = X_{I \times 3} \cdot Q_{3 \times 1}. \]
(14)

A flow diagram of PCA-based data-fusion process is depicted in Figure 3. By showing the parameters collected from each router i with: $X_1[i]$, $X_2[i]$, $X_3[i]$, and the principal components of the first eigenvector with: PC_1, PC_2 and PC_3 such that $PC_1 + PC_2 + PC_3 = 1$, then the fused data for an NDN router is obtained by
\[F_{\text{fused}}[i] = X_1[i]PC_1 + X_2[i]PC_2 + X_3[i]PC_3. \]
(15)

At the end, it is essential to normalize the elements of vector F to have a ratio for calculating the cache of each router. Eq. (16) is used to compute the weight of an NDN router:
\[w_i = \frac{F_{\text{fused}}[i]}{\sum_{i=1}^{n} F_{\text{fused}}[i]}, \quad i \in [1, n], \quad \sum_{i=1}^{n} w_i = 1. \]
(16)

Using this value, the percentage of the overall NDN cache size, which should be allocated to that router, is derived. In other words, by considering the total cache size of the network and the quota of each router, as mentioned in (1), the suitable size for CS of the router is decided.

Algorithm 1 presents the proposed scheme. In this algorithm, all the steps are performed offline except the second step, which need the runtime of NDN. As explained, the raw data table, consisting of three aspects of information, is processed by PCA-based data-fusion algorithm [19]. First, by considering a graph for NDN, the centrality metric of every router is computed. Second, by running the NDN network, the short-term parameters are calculated. Third is the place where EWMA of short-term metrics is estimated. In the fourth and fifth steps, the principal components are obtained from the three parameters and the fused data is computed for the router. Then by normalizing the fused data, the importance of
Algorithm 1 Proposed cache size allocation algorithm

\textbf{PROPOSED\textsc{CACHESIZE}\textsc{ALLOCATION} (Topology of NDN Network)}

\begin{algorithmic}
\STATE 1: Calculating Betweenness-centrality of every node offline;
\FOR {every NDN router}
\STATE 2: Counting the number of PIs in PIT and the number of HIs in current CS;
\END\FOR
\STATE 3: Estimating the EWMA of counters in previous step;
\STATE 4: Applying the data-fusion PCA algorithm on vectors of: (Betweenness, EWMA of PIs, EWMA of HIs);
\STATE 5: Using the principal components to calculate the fused data for every router;
\STATE 6: After normalizing the fused-data vector, the importance of every router in NDN is presented;
\STATE 7: By considering an overall cache size for the NDN network, counting every router’s cache size.
\end{algorithmic}

routers are figured out. Finally, the algorithm produces the granted cache size based on importance of an NDN router, which needs to be modified to get the new cache storage volume.

Assume that output of Step 2 is ready and the additional cost of online runtime is neglected. The algorithm for Betweenness-centrality metric of every router runs in $O(NM)$ time on unweighted networks [16], where M is the number of links and N is the number of routers in the NDN network. After gathering the information from Step 2, the load of processing them in Step 3 is about $O(Nt_s)$, where N is the number of NDN core routers and t_s is the number of samples of HIs and PIs. In Step 4, by having just three features from an NDN router, it takes $O(kN)$ to compute the principal components. k is the number of feature. Other steps also take $O(N)$ to calculate the weights as an importance for every NDN cache. Therefore, the total time complexity of Algorithm 1 is $O(NM + Nt_s + kN)$, which is a polynomial time complexity. In other words, the complexity of this algorithm is dependent on network topology and the number of samples from all the NDN routers’ short-term metrics.

4 Evaluations

Among ICN architectures, NDN is a more complete paradigm, which includes an SDK (CCNx [5]), and simulation software like ndnSIM [20] and ccnSim [21]. In addition, a new ICN simulator, Icarus, has been developed [22]. This new simulator offers researchers to evaluate their studies in other ICN architectures [23], but we wanted to mainly focus on an NDN based simulator that can be extended by other TCP/IP protocols with the proposed method in future. Therefore, we evaluate our proposed method by using the open source NS-3 based simulator, ndnSIM-v1 released by the Internet Research Lab of UCLA.

We test our experiments on a real-network topology called Abilene topology. The Abilene network, in the USA, connects most of the research labs and universities. Figure 4(a) indicates the topology of this network with eleven routers in 2011. Abilene is an advanced backbone network operated by the University Corporation for Advanced Internet Development (UCAID) to support the physical components of the Internet2 project [24]. This topology has been used in various assessments for the CCN researches, like [25]. Our experiments are tested in a topology observed in Figure 4(b). The routers are connected by point-to-point links with a bandwidth of 10 Gbps. Twelve Consumer nodes attached to the routers
Figure 4 (a) Abilene core topology [24]; (b) simulated topology with Abilene routers.

Table 1 System parameters used in the experiments

Parameter	Value
Chunk size	10 KB
Network	
Cache size	10–128 MB
Network size	27 Nodes
Topology	Abilene, with 11 Nodes
Core network link capacity	10 Gb/s
Access network link capacity	1 Gb/s
Rate of interest	20 Hertz
Simulation time	500 s
Number of seeds	10 (generated with normal distribution)
Catalog	
Catalog size	10^7
File size	100 MB
(Cache/Catalog) ratio	13×10^{-8}
Popularity	
Plateau factor in Mandelbrot-Zipf Distribution (q)	0, 5, 50
Shaping factor in Mandelbrot-Zipf distribution (s)	[0.5, 2.5]
Forwarding & caching policy	
Forwarding strategy	BestRoute
Replacement policy	LRU

extend the topology. Each Consumer may request any of the four different applications running on various Producer nodes. The ndn::BestRoute [26] Forwarding Strategy, a module defining how Interest and Data are being forwarded, is selected. This NDN-specific forwarding strategy is able to handle network problems effectively with adaptive forwarding. The Consumer applications issue Interests at a configurable frequency, and initiate the data transferring. The chunk size in [27] is considered as packet-level size 1 KB, but in NDN literature, it is expected to be 10 KB [28].

The conditions, under which the simulation is made, are tabulated in Table 1. The cache replacement policy is LRU (Least Recently Used). The total chunk-based in-network cache size of a router is set to 13000 chunks, corresponding to the 13×10^{-8} of the catalog size. It is assumed that every Interest requests a unique chunk of content object at a specific time. This uniqueness is achieved by adding a sequence number to the end of the prefix. Therefore, the Producer application is configured to reply to a received interest with the related data chunk.
Table 2 Normalized parameters gathered from the NDN routers

Parameter	BC	EWMA of PIs	EWMA of HIs
NDN Router 0	0.62963791	0.57540494	0.56401801
NDN Router 1	0.24072418	0.06403307	0.33221026
NDN Router 2	1	0.61991863	0.96397991
NDN Router 3	0.06481895	0	0.96397991
NDN Router 4	0.31481895	0.51107432	0.58686915
NDN Router 5	0.83331471	0.00547495	0
NDN Router 6	0.87963791	0.81142273	0.68312906
NDN Router 7	0	0.17876889	0.59078904
NDN Router 8	0.25	0.28850586	0
NDN Router 9	0.78704738	0.81981368	0
NDN Router 10	0.75	0.99840404	0.35154242

The content distribution of the network is modeled by Mandelbrot-Zipf distribution as [29]

\[
p(i) = \frac{1}{\sum_{j=1}^{\lvert F \rvert} \frac{1}{(j+q)^s}}, \quad i \in [1, \lvert F \rvert].
\]

(17)

\(p(i) \) denotes probability of retrieving the \(i \)th content from the number of files \(\lvert F \rvert \) in the network. The parameters \(q \) and \(s \) are fixed for an ISP. \(s \) indicates the Mzipf shaping factor in the range of \([0.5, 2.5]\) and as the name implies, it shapes the request arrival pattern. \(q \) is the plateau factor, which controls the plateau shape (flattened head) near the lowest ranked contents. If \(q \) is equal to zero, then Mzipf degenerates into a Zipf distribution [28].

By applying this popularity distribution of files, it is observed that from \(10^7 \) number of files in a catalog such as a large YouTube-like catalog, with \(q = 5.0 \) and \(s = 0.7 \), the requests are forwarded toward 7073017 files, which is above 90% of users’ popular contents [30]. If shaping factor, \(s \), is reduced to 2.0, then the number of the most popular files in the catalog is decreased to just six files.

Therefore, by caching these six popular files, it is possible to decrease the network bandwidth and improve the speed of users’ request satisfaction.

The experiments are repeated ten times, all of them are evaluated in 500 s of simulation time, which is about one-day runtime of a real NDN network. Every Consumer node issues 20 requests per second. The results, the evaluation, and its metrics are as follows. The normalized values computed for every router, based on the parameters selected in this paper, are shown in Table 2.

As observed in Figure 5, the number of PIs (averaged on PIT tables) follows the Poisson distribution. Indeed, content items and data chunks, are requested by Consumers according to a specific workload (i.e., Poisson arrival).

The load of each category of nodes is shown by the hit ratio, which is the ratio of the requests that are satisfied in every node to the total number of requests (hits plus misses) presented in (18):

\[
\text{HitRatio}(t) = \frac{\sum_{\text{requests}} \text{Hit}(t)}{\sum_{\text{requests}} \text{Hit}(t) + \text{Miss}(t)}.
\]

(18)

The average of hit ratios among a set of nodes can be considered to evaluate the performance of all caches; e.g., the set of Producers, or the set of NDN routers. As the number of Producer nodes in our topology is four, and also the number of routers is eleven, so the average hit ratio is considered for evaluations.

As the performance of the proposed method and previous state of the art overlap in small catalog size, in our evaluations, large catalog size is applied. Therefore, the hit ratios have decreased because different types of chunks need to be stored. Higher traffic and hit ratio of caches requires that the system running the simulations have more powerful processing unit.
As observed in Figure 6, by assigning a better size to every cache based on the proposed scheme, the router’s load is increased. In this way, most of the requests are satisfied before arriving at the Producer. The enhancement of the proposed method at the average hit ratio of routers is 20.7% against Degree-Centrality method and about 17.7% against the Uniform method. As observed, until the 200 s of the simulation time, the hit-ratio of the methods is close to each other, but the proposed method supersedes the hit ratio of routers’ hit ratio in the second half.

Figure 7 shows that the proposed scheme outperforms the Degree-Centrality allocation scheme and the Uniform scheme in Producer’s hit ratio. As observed, the proposed scheme increases Producer’s CS hit ratio in comparison with other schemes. The Producer’s CS miss action may be due to the data which is not stored in cache, therefore a miss occurs in CS and the Producer must generate that content by means of its permanent repository in response to the unsatisfied interest message; however, by increasing the CS hit ratio, the permanent repository’s load decreases. The average hit ratio in our scheme is 7.9% better than Degree-Centrality method; the proposed scheme is also 5.5%, better than Uniform method. The management of in-network caching facilities helps to reduce the references to the repository in application layer. Hence, the Producer just needs to store the less popular chunks. The comparison in Table 3 indicates that the chunks of different applications in the proposed method can achieve better number of hits comparing to other methods and improve the overall Producers’ CS hit ratios.

Figure 8 illustrates the Round Trip Time (RTT) of the transmitted Interest and its delivered Data. As it can be seen, the proposed scheme is slightly different from the Uniform and Degree-Centrality schemes in RTT. The average delay of proposed scheme decreases about 0.15% in comparison with Uniform method and about 0.12% in comparison with Degree-Centrality method. This is because of the levels in our topology. In other words, in considered Abilene-based topology, requests are passed from a few routers to reach its data; but if a tree-based topology is considered with more levels of routers, it is expected that the reduction of delay in the cache-size allocation schemes may show their differences.

The average number of PIs, received and stored in PITs of routers, in the proposed method and the Uniform and Degree-Centrality methods are compared in Figure 9. It is observed that by applying the
proposed scheme, the number of PIs is reduced about 37%. It means that by exploiting the proposed cache-size allocation scheme and controlling the Satisfied Interests by increasing the cache size of important nodes, the average number of unsatisfied Interests, in comparison with previous schemes, and consequently the traffic in NDN are decreased. In this graph, it is observed that by increasing the NDN router cache hit, the number of PIs in PIT is decreased because the Interests are satisfied earlier.

5 Conclusion

The router’s cache size is one of the essential issues in NDN performance. To assign proper size of cache to each router in this network, a method is proposed based on both a long-term static metric (Betweenness-centrality) and two short-term dynamic metrics (the number of Pending Interests and the number of data
chunks). After smoothing out the short-term parameters using EWMA, a data fusion technique based on PCA is applied to extract the principle factors of this data set. Using these factors, the quota for the cache size of each router is obtained. A typical scenario based on Abilene core topology is implemented in NS-3 simulator to evaluate the performance of the proposed method. Evaluation results show that the proposed method does not just increase hit ratio of the routers, but it also has the advantage of exploiting the information of graph-based centrality metric without considerable computation in nodes and message-passing between them. Future efforts for extending this study involve applying mobility in NDN for real-time applications [31]; in other words, we aim to incorporate other parameters such as influence of mobile Consumer devices on cache size allocation scheme of different routers. Then by exploiting another matrix decomposition data-fusion approach [32], importance of each router is computed.

Acknowledgements The authors would like to thank Fereshte Dehghani and Elahe Hadi for their suggestions and feedbacks.

Conflict of interest The authors declare that they have no conflict of interest.

References
1. Cisco Systems, Inc.. The zettabyte era: trends and analysis. White Paper, 2015
2. Passarella A. A survey on content-centric technologies for the current Internet: CDN and P2P solutions. Comput Commun, 2012, 35: 1–32
3. Kurose J. Information-centric networking: the evolution from circuits to packets to content. Comput Netw, 2014, 66: 112–120
4. Kutscher D, Eum S, Pentikousis K, et al. Information-centric networking (ICN) research challenges. RFC 7927, 2016. http://www.rfc-editor.org/info/rfc7927
5. Palo Alto Research Center. PARC’s open-source implementation of content-centric networking, CCNx. http://www.ccnx.org/
6. Zhang L X, Afanasyev A, Burke J, et al. Named data networking. ACM SIGCOMM Comput Commun Rev, 2014, 44: 66–73
7. Perino D, Varvello M. A reality check for content centric networking. In: Proceedings of the ACM SIGCOMM Workshop on Information-centric Networking, Toronto, 2011. 44–49
8. Rossi D, Rossini G. On sizing CCN content stores by exploiting topological information. In: Proceedings of IEEE Conference on Computer Communications Workshops, Orlando, 2012. 280–285
9. Psaras I, Chai W K, Pavlou G. In-network cache management and resource allocation for information-centric networks. IEEE Trans Parall Distrib Syst, 2014, 25: 2920–2931
10. Araldo A, Rossi D, Martignon F. Cost-aware caching: Caching more (costly items) for less (ISP's operational expenditures). IEEE Trans Parall Distrib Syst, 2016, 27: 1316–1330
11. Xu Y M, Li Y, Lin T, et al. A novel cache size optimization scheme based on manifold learning in content centric networking. J Netw Comput Appl, 2014, 37: 273–281
12. Xu Y M, Li Y, Lin T, et al. An adaptive per-application storage management scheme based on manifold learning in information centric networks. Future Gener Comput Syst, 2014, 36: 170–179
13. Cui X D, Liu J, Huang T, et al. A novel metric for cache size allocation scheme in Content Centric Networking. In: Proceedings of National Doctoral Academic Forum on Information and Communications Technology, Beijing, 2013. 1–6
14. Laszlo M, Mukherjee S. A genetic algorithm that exchanges neighboring centers for k-means clustering. Pattern Recogn Lett, 2007, 28: 2359–2366
15. Abdi H, Williams L. Principal component analysis. Wiley Interdisciplin Rev: Comput Stat, 2010, 2: 433–459
16. Brandes U. On variants of shortest-path betweenness centrality and their generic computation. Social Netw, 2008, 30: 136–145
17. Chai W K, He D L, Psaras I, et al. Cache “less for more” in information-centric networks (extended version). Comput Commun, 2013, 36: 758–770
18. Steiner S H. Exponentially weighted moving average control charts with time-varying control limits and fast initial response. J Qual Technol, 1999, 31: 75–86
19. Raol J R. Multi-Sensor Data Fusion with MATLAB. Boca Raton: CRC Press, Taylor & Francis Group, 2009. 380–385
20. Afanasyev A, Moiseenko I, Zhang L. ndnSIM: NDN simulator for NS-3. University of California, Los Angeles, Technical Report, 2012
21. Rossini G, Rossi D. ccnSim: a highly scalable CCN simulator. In: Proceedings of IEEE International Conference on Communications, Budapest, 2013. 2309–2314
22. Saino L, Psaras I, Pavlou G. Icarus: a caching simulator for information centric networking (ICN). In: Proceedings of the 7th International ICST Conference on Simulation Tools and Techniques, Lisbon, 2014. 66–75
23 Ahlgren B, Dannewitz C, Imbrenda C, et al. A survey of information-centric networking. IEEE Commun Mag, 2012, 50: 26–36
24 Abilene Core Topology. https://uit.stanford.edu/service/network/internet2/abilene
25 Eftekhar S, Ghahfarokhi B S, Moghim N. Otanes: a live TV simulator for Content-Centric Networking. In: Proceedings of the 7th IEEE International Conference on Information and Knowledge Technology, Urmia, 2015. 1–6
26 Yi C, Afanasyev A, Moiseenko I, et al. A case for stateful forwarding plane. Comput Commun, 2013, 36: 779–791
27 Psaras I, Clegg R G, Landa R, et al. Modelling and evaluation of CCN-caching trees. In: Proceedings of the 10th International Conference on IFIP Networking, Valencia, 2011. 78–91
28 Rossi D, Rossini G. Caching performance of content centric networks under multi-path routing (and more). Technical Report, Telecom ParisTech, 2011
29 Saleh O, Hefeeda M. Modeling and caching of peer-to-peer traffic. In: Proceedings of the 14th IEEE International Conference on Network Protocols (ICNP’06), Santa Barbara, 2006
30 Tortelli M, Grieco L A, Boggia G. Performance assessment of routing strategies in Named Data Networking. In: Proceedings of GTTI Session on Telecommunication Network, 2013
31 Luo Y Q, Eymann J, Timm-Giel A. Mobility support for content centric networking. Telecommun Syst, 2015, 59: 271–288
32 Halko N, Martinsson P G, Tropp J A. Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositions. SIAM Rev, 2011, 53: 217–288