Vortex dynamics of rotating dipolar Bose–Einstein condensates

R Kishor Kumar and P Muruganandam

School of Physics, Bharathidasan University, Palkalaiperur Campus, Tiruchirappalli 620024, Tamil Nadu, India

Received 11 May 2012, in final form 29 August 2012
Published 27 September 2012
Online at stacks.iop.org/JPhysB/45/215301

Abstract

We study the influence of dipole–dipole interaction on the formation of vortices in a rotating dipolar Bose–Einstein condensate (BEC) of 52Cr and 164Dy atoms in quasi two-dimensional geometry. By numerically solving the corresponding time-dependent mean-field Gross–Pitaevskii equation, we show that the dipolar interaction enhances the number of vortices, while a repulsive contact interaction increases the stability of the vortices. Furthermore, an ordered vortex lattice of a relatively large number of vortices is found in a strongly dipolar BEC.

1. Introduction

The most fundamental properties of a superfluid are irrotational ($\nabla \times v_s = 0$, v_s the superfluid velocity) and resistance free flow. An important theoretical development came after the remarkable work by Landau that the excited state of a superfluid would represent the creation of vortices [1]. Quantized vortices have long been studied in superconductors, liquid helium, etc, the so-called superfluids. The successful experimental realization of Bose–Einstein condensates (BECs) of alkali atoms in the past century has provided a new pathway to many developments in the understanding of the quantized vortices [2–9]. In BEC experiments, vortices have been nucleated with the help of either laser stirring or by rotating magnetic traps, and they are observed above a certain critical rotation frequency. The observation of quantized vortices could be considered as unquestionable evidence for the existence of superfluidity in BEC. Quantized vortices in BEC are having obvious analogy with that in liquid helium and in type-II superconductors [10].

Early experiments and theoretical studies on vortices in BEC mostly focused on the conventional Bose gas with local and isotropic interaction. However, many bosonic atoms and molecules have large dipole moments. For example, 52Cr, 164Dy and 168Er BECs, which have a larger anisotropic long-range dipolar interaction superposed on the isotropic short-range atomic interaction, have recently been realized [11–17]. The study of dipolar BECs has revealed various interesting properties due to the peculiar competition between an isotropic, short-range contact interaction and an anisotropic, long-range dipolar interaction. These include, the dependence of stability on the trap geometry [14, 15], new dispersion relations of elementary excitations [18, 19], unusual equilibrium shapes, roton–maxon character of the excitation spectrum [19–22] and novel quantum phases including supersolid and checkerboard phases [23–25].

Recently, there have been studies on vortices in dipolar BECs using mean-field models [23]. For instance, the structure and stability of vortices in dipolar BECs are found to be strongly affected by the anisotropic character of dipole–dipole interaction (DDI) and relative strengths of the dipolar and contact interactions [26–28]. Furthermore, static hydrodynamic solutions, and dynamical stability and instability have been explored in a rotating dipolar BEC within the Thomas–Fermi (TF) limit [29]. A second-order like phase transition of straight and helical vortex lines influenced by dipolar orientation has also been studied [30]. More recently the rotational properties of a dipolar BEC in a quasi-two-dimensional (2D) geometry for an arbitrary orientation of the dipoles with respect to their plane of motion has been studied [31].

However, most of the features of vortices in dipolar BECs have not been explored so far. Also, there has been no studies on vortices in a strongly dipolar BEC. In the present paper, we analyse the formation of vortices in a dipolar BEC and the influence of strong dipolar interaction on the stability as well as on the number of vortices. By numerically solving the 2D Gross–Pitaevskii (GP) equation, for a rotating trapped dipolar...
BEC of ^{52}Cr and ^{164}Dy atoms in a quasi-2D geometry, we study formation and dynamics of vortices both in the presence and absence of s-wave (contact) interaction. The number of vortices in a pure dipolar BEC is found to increase when compared to that of a conventional BEC. We compare the vortex number estimated theoretically with that computed from numerical simulations. Furthermore, we note that the inclusion of a repulsive contact interaction in a dipolar BEC enhances the formation of vortex lattices in the dipolar BEC. We also find that the critical rotation frequency decreases with the increase of the strength of dipolar interaction.

This paper is organized as follows. In section 2, we provide a brief overview on the mean field GP equation describing the properties of rotating dipole BEC confined in an axially symmetric harmonic trap potential. A 2D reduction of the GP equation for a dipolar BEC under strong axial confinement is also discussed in section 2. Then, in section 3, we present the numerical studies on the formation and dynamics of vortices in dipolar BECs of ^{52}Cr and ^{164}Dy atoms. Here, we analyse the formation of vortices in a pure dipolar BEC. We also explore the role of contact interaction on the stability, number of vortices and critical rotation frequency. Finally, in section 4, we provide a summary and conclusion.

2. Theoretical framework

Many phenomenological properties of quantized vortices in BECs can be studied using the mean field GP equation [7–9]. A dipolar BEC with N atoms, each of mass m at absolute zero temperature in a rotating frame can be described by the GP equation as [26]

$$\frac{i}{\hbar} \frac{\partial \phi(r, t)}{\partial t} = \left[-\frac{1}{2} \nabla^2 + V(r) + 4\pi aN|\phi(r, t)|^2 - \Omega_{\text{c}} \right] \phi(r, t) + N \int U_{\text{dd}}(r - r')|\phi(r', t)|^2 \, d^2 r' \phi(r, t),$$

(1)

where $V(r)$ is the confining axially symmetric harmonic potential, $\phi(r, t)$ is the wavefunction at time t with normalization $\int |\phi(r, t)|^2 \, d^2 r = 1$, a is the atomic scattering length, which can be tuned to a large extent via Feshbach resonance. The experimental value of the s-wave scattering length of the ^{52}Cr atom is $a = (103 \pm 4)a_0$ [33]. For the ^{164}Dy atoms, the s-wave scattering length, yet to be measured, is assumed to be equal to that of ^{52}Cr [16]. The axial and radial trap frequencies are $\Omega_{z, \text{w}}$ and $\Omega_{r, \text{w}}$, respectively. In equation (1) length is measured in units of characteristic harmonic oscillator length $l = \sqrt{\hbar/m_0 \omega}$, frequency in units of ω, time in units of ω^{-1}. $L_{z} = -i(x \partial_y - y \partial_x)$ corresponds to the z-component of the angular momentum due to the rotation of the dipolar BEC about the z axis with frequency Ω. Here ∂_{r^2} is expressed in units of the radial trap frequency $\Omega_{r, \text{w}}$. The integral term in equation (1) accounts for the DDI with

$$U_{\text{dd}}(x) = a_{\text{dd}} \left(1 - 3 \cos^2 \frac{\theta}{|x|^3} \right),$$

(2)

where $x = r - r'$ determines the relative position of dipoles and θ is the angle between x and the direction of polarization, z. The constant $a_{\text{dd}} = \mu_0 \hbar^2 m/(12 \pi^2 \mu)$ is a length characterizing the strength of dipolar interaction and, its experimental value for ^{52}Cr and ^{164}Dy are $15a_0$ and $130a_0$, respectively [32], with a_0 being the Bohr radius. $\bar{\mu}$ corresponds to the magnetic dipole moment of a single atom and μ_0 the permeability of the free space.

The three-dimensional (3D) harmonic trap is given by

$$V(r) = \frac{1}{2} \Omega_{\text{c}}^2 r^2 + \frac{1}{2} \Omega_{z}^2 z^2,$$

(3)

where $r = (\bar{r}^2, z)$, with \bar{r} being the radial coordinate and z the axial coordinate. In a disc-shape, with a strong axial trap frequency ($\Omega_{z} > \Omega_{\text{c}}$), the dipolar BEC is assumed to be in the ground state

$$\phi_{\text{1D}}(z) = \frac{1}{(\pi d_2^2)^{1/4}} \exp \left(-\frac{z^2}{2d_2^2} \right),$$

(4)

of the axial trap so that the wavefunction $\phi(r)$ can be written as

$$\phi(r) = \phi_{\text{1D}}(z) \phi_{\text{2D}}(x, y),$$

(5)

where $\phi_{\text{2D}}(x, y)$ is the 2D wavefunction, $d_2 = l$ and $\lambda d_2^2 = 1$ with $\lambda = \Omega_{z}/\Omega_{\text{c}}$ the trap aspect ratio. Using ansatz (5) in equation (1), the z dependence can be integrated out to obtain the following effective 2D equation [34–36]:

$$i \frac{\partial \phi_{\text{2D}}(\bar{r}, t)}{\partial t} = \left[-\frac{\nabla_{\text{2D}}^2}{2} + V_{\text{2D}} - \Omega_{\text{c}} + \frac{4\pi aN}{\sqrt{2\pi d_{2}}} |\phi_{\text{2D}}(\bar{r}, t)|^2 + 4\pi a_{\text{dd}} N \right] \phi_{\text{2D}}(\bar{r}, t),$$

(6)

where $V_{\text{2D}} = [(1 + \epsilon)\kappa^2 + (1 - \epsilon)\kappa^2]/2$ is the trap potential, ϵ is a parameter used to introduce a small anisotropy for the nucleation of the vortices [37, 38]. In equation (6)

$$\tilde{n}(k_p) = \int \exp(i\kappa_p \bar{r}) |\phi_{\text{2D}}(\bar{r})|^2 \, d\bar{r},$$

(7)

where $\kappa_p = (k_x, k_y), h_{\text{2D}}(\xi) = 2 - 3\sqrt{\pi} \xi \exp(\xi^2) \text{erfc}(\xi)$, and the dipolar term is written in Fourier space.

In the following, we study the vortices of a disc-shaped dipolar BEC by solving the above equation (6) with the aid of a combined split step Crank–Nicolson and fast Fourier transform-based numerical scheme [35, 39]. The numerical simulations are carried out with $dx = dy = 0.2$ (space step) and $dt = 0.005$ (time step).

3. Formation and dynamics of vortices in dipolar BEC

Before studying the reduced GP equation (6), it is worth commenting on the validity of 2D approximation, at least, for the trap aspect ratios $\lambda = 30$ and 100, which we are using throughout this paper. For this purpose, we compare the 1D density profile of (4) and that from the numerical solution of the full 3D equation (1) when $\Omega_{z} = 0$. The numerical density profile is
in the time-dependent equation (6) and effected by replacing the term \(i \partial_t\) with \(\gamma\partial_t\) in the mean-field GP equation (1) with \(\Omega = 0\), \(|\phi_{1D}^{\text{num}}(z)|^2\), with trap aspect (a) \(\lambda = 30\) and (b) \(\lambda = 100\). The numerical solution of (1) is obtained using imaginary time propagation with (a) \(dx = dy = dz = 0.2, dr = 0.005\) and (b) \(dx = dy = dz = 0.1, dr = 0.0025\).

In figure 1, we plot the analytical and numerical density profiles of a disc-shaped \(^{52}\text{Cr}\) dipolar BEC of 10 000 atoms for \(\lambda = 30\) and 100. It is easy to see that the 1D density profiles match very well.

We prepare the ground state wavefunction by solving equation (6) numerically using imaginary time propagation in the absence of angular momentum (\(\Omega = 0\)) and trap anisotropy (\(\epsilon = 0\)). The vortices are then created by evolving the ground state with the inclusion of the angular momentum (\(\Omega \neq 0\)) in real-time propagation up to \(t \sim 2 \times 10^4 \omega^{-1}\). A small anisotropy, \(\epsilon = 0.06\) and a phenomenological dissipation (\(\sim 10^{-5}\)) are introduced to facilitate the smooth vortex formation [37, 38, 40]. The presence of a dissipative mechanism is evident in BEC experiments exhibiting collective damped oscillations [37]. Theoretical predictions based on the mean-field GP equation with the dissipative term found to give the correct description of damping. In a rotating BEC, vortex lattices will never be formed without dissipation even if the trapping potential is rotated fast enough. This phenomenological dissipation is affected by replacing the term ‘\(i \partial_t\)’ with ‘\((i - \gamma)\partial_t\)’ in the time-dependent equation (6) and \(\gamma\) accounts for the dissipation. Vortices are formed for rotation frequencies above a critical value, \(\Omega > \Omega_c\). For smaller trap aspect ratios, a BEC with the dominant dipolar interaction with the dipoles aligned along the trap symmetry axis becomes unstable [14, 41]. Here, we consider a dipolar BEC in disc-shaped geometry, \(\lambda \gg 1\), as it is more stable. To explore the effects of the dipolar interaction on the vortex formation, we consider a disc-shaped geometry with the number of atoms fixed to \(N = 10\,000\).

3.1. Vortices in a pure dipolar BEC

First, we consider the case of a pure dipolar BEC with \(a_{dd} = 15\,a_0\) and \(a = 0\) with the trap aspect ratio, \(\lambda = 30\). The formation of a vortex is analysed by varying the rotation frequency \(\Omega\) in the range of 0.1–0.9. When the condensate begins to rotate, it elongates and the boundary surface becomes unstable. Then ripples are developed on the surface and a consequence vortices enter into the condensate above a critical rotation frequency, \(\Omega_c \sim 0.38\). As time progresses, these vortices approach a stable configuration. The density plots of \(\phi_{2D}(\rho, t)\) of the time development of vortices for \(\Omega = 0.6\) are shown in figures 2(a)–(d). About seven vortices form a stable pattern as shown in figure 2(d). We have calculated the phase from the final wavefunction \(\phi(\vec{r}, t)\), which varies continuously from 0 (dark) to \(2\pi\) (bright) and shown in figure 2(e). At the place where a vortex is located, a bifurcation (branching) in the phase is visible.

We have also performed the numerical simulation using the full 3D equation (1) for the above set of parameters with the same rotation frequency, which again confirms the number of vortices and is shown in figure 2(f). Furthermore, the expectation value of the angular momentum, defined as

\[
\langle L_z \rangle = i \int \phi^*(\vec{r}, t)(\vec{\gamma} \times \vec{\partial})\phi(\vec{r}, t) \, d\vec{r}
\]

is also calculated as a function of time and is shown in figure 3. The expectation value of the angular momentum \(\langle L_z \rangle\) gradually increases with periodic oscillation (see the inset in figure 3) and then settles to an almost steady value confirming the stable vortex pattern. The oscillation is due to the shape (quadrupole) deformation of the condensate at the vortex-free state and it is associated with the creation of vortices. In figures 4(a)–(c) and 4(d)–(f), we depict the contour plots of the density \(\phi_{2D}^2\) and the corresponding phase distribution of condensate wavefunction \(\phi_{2D}\) for different rotation frequencies, \(\Omega = 0.38, 0.44, 0.47\), respectively.

Next we consider the development of vortices in a dipolar BEC with larger dipolar strength, for example, \(a_{dd} = 130\,a_0\). In this case, the critical rotation frequency is found to be \(\Omega_c = 0.271\), which is small when compared to that observed with \(a_{dd} = 15\,a_0\) above. Thus, a BEC with larger dipolar interaction nucleates vortices with a smaller rotation frequency [28]. At a critical rotation frequency \(\Omega_c\), a single vortex is formed as shown in figure 5(a), while the corresponding phase is depicted in figure 5(d). On increasing \(\Omega\) above

\[
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |\phi(x, y, z)|^2 \, dx \, dy.
\]
Contour plots of the density $|\phi_{2D}(\rho, t)|^2$ showing the development of vortices in a dipolar BEC with $a = 0$, $a_{dd} = 15 a_0$, $N = 10\,000$, $\lambda = 30$ and $\Omega = 0.6$ after the trapping potential begins to rotate: (a) $t = 0$, (b) $t = 1000 \omega^{-1}$, (c) $t = 2000 \omega^{-1}$ and (d) $t = 20\,000 \omega^{-1}$. (e) Phase distribution of the condensate wavefunction $\phi_{2D}(\rho, t)$ of fully developed vortices (steady-vortex state) shown in (d) and (f). Three-dimensional contour plot showing the vortices obtained from the numerical simulation of the full 3D equation (1) with the above parameters.

Figure 3. Time evolution of the expectation value of the angular momentum $\langle L_z \rangle$ during the development of vortices shown in figure 2.

Ω_c, a greater number of vortices are created as illustrated in figures 5(b)–(c) for $\Omega = 0.29$ and $\Omega = 0.33$, respectively, and the corresponding phases are shown in figures 5(d)–(f).

Furthermore, it is interesting to note that in figure 5, vortex arrays as well as a single vortex are not centred with respect to the trap symmetry axis, in contrast to the centred vortex arrays that are shown in figure 4 for a smaller dipolar interaction strength as it also happens in conventional BECs. In this case, the quadruple oscillation persists for longer times. This is essentially due to the strong dipolar strength, $a_{dd} = 130 a_0$ of 164Dy atoms.

On increasing Ω further, the system with $a_{dd} = 15 a_0$ destabilizes as Ω approaches unity. Moreover, a pure dipolar BEC with $a_{dd} = 130 a_0$ becomes unstable for $\Omega > 0.62$. Rotation frequencies larger than 0.62 create a large number of vortices and make the boundary surfaces more unstable. Certain peculiar dynamics is observed during the formation of vortices when the rotation frequency $\Omega \lesssim 0.5$ for larger dipolar strength ($a_{dd} = 130 a_0$). The dipolar BEC deforms as it rotates and the boundary surfaces become unstable, as a result more vortices enter and it remains stable for a while. Then, as time progresses, again the surfaces become unstable and a few more vortices enter into the condensate and this scenario repeats for reasonably longer times. In this case $\langle L_z \rangle$ shows periodic oscillations for a very long time.

In figure 6, we plot the snapshots of density $|\phi_{2D}|^2$ showing the dynamics. Furthermore, it is evident that the number of vortices increasing rather slowly as time progresses. However, the above dynamics is not seen when the dipolar strength is relatively low or zero.

We also examine the speed at which the vortices are formed in a dipolar BEC. In conventional BECs, with repulsive contact interaction, it takes about a few hundred milliseconds for the propagation of surface ripples that are created due to trap deformation to the vortex formation [37, 38]. While in dipolar BECs, apart from trap deformation, the anisotropy nature of DDI breaks the axial symmetry more easily [31] and stimulates rapid vortex formation. Our numerical simulations also confirm this rapid vortex formation as it takes about a few tens of milliseconds for the creation of vortices, which is one order less compared to non-dipolar BECs. We considered a similar set of trap parameters, contact interaction strength and rotation frequency as in [37].
Figure 4. Contour plots of the density distributions $|\phi_{2D}|^2$ showing the steady vortex state in a rotating dipolar BEC with $a_{dd} = 15 a_0$, $\dd = 0$, $N = 10000$, $\lambda = 30$: (a) $\Omega \equiv \Omega_c = 0.38$, (b) $\Omega = 0.44$ and (c) $\Omega = 0.47$. (d)–(f) The corresponding phase distributions of the condensate wavefunction ϕ_{2D} of (a)–(c).

Figure 5. Contour plots of the density distributions $|\phi_{2D}|^2$ showing the steady vortex state in a rotating dipolar BEC with $a_{dd} = 130 a_0$, $\dd = 0$, $N = 10000$, $\lambda = 30$: (a) $\Omega \equiv \Omega_c = 0.271$, (b) $\Omega = 0.29$ and (c) $\Omega = 0.33$. (d)–(f) The corresponding phase distributions of the condensate wavefunction ϕ_{2D} of (a)–(c).

Next, it is of interest to study the dependence of the vortex number (N_v) on the rotation frequency Ω in dipolar BEC. In a rotating superfluid, the number of vortices formed for a given rotation frequency can be predicted using the Feynman rule [42], that is, $N_v = (m\Omega/h)R_{\rho}^2(\Omega)$, where $R_{\rho}(\Omega)$ is the radius of the rotating fluid. In the TF limit, the radius of the trapped BEC under rotation is given by [7]

$$R_{\rho}(\Omega) = R_{\rho}(0) \left(1 - \frac{\Omega^2}{\Omega_c^2}\right)^{-1/4}.$$ \hspace{1cm} (10)
Then the relation connecting vortex number and the rotation frequency can be written as

$$N_v = \Omega R^2_{TF}(0) \left(1 - \frac{\Omega^2}{\Omega_p^2}\right)^{-1/2}.$$

(11)

The TF (3D disc/pancake) radius $R_{TF}(0)$ is given by [22]

$$R_{TF}(0) = |15N\lambda(a + 2a_{dd})|^{1/5}.$$

(12)

Here we use $R_p(0) = R_{TF}(0)/\sqrt{3}$ [43].

The above relation (10) is used to study the vortex number in conventional BECs in a rotating deep optical lattice [44]. Here we use the above equation (11) to estimate the vortex number in a rotating dipolar BEC. This will be more useful to confirm the dominance of dipolar strength over Feynman’s rule. We also calculate the vortex number as a function of the rotation frequency Ω by numerically solving the GP equation (6). The numerical vortex numbers are calculated in the equilibrium state by evolving equation (6) in real-time propagation for sufficiently longer times, typically of the order of 150 000–200 000 ω^{-1}.

In figure 7(a), we plot the vortex number N_v obtained by using equation (11) (theory) and that calculated numerically (num) for $a = 0$, $a_{dd} = 15a_0$ and $130a_0$ for $\lambda = 30$. We also show the vortex number for the case of conventional BEC with $a \neq 0$ and $a_{dd} = 0$ and dipolar BEC with $a = 100a_0$. For $a_{dd} = 15a_0$, the numerical and theoretical vortex numbers agree reasonably well. However, for larger dipolar strength, $a_{dd} = 130a_0$, with higher rotation frequencies, $\Omega \geq 0.6$, the numerical results deviate from results of the TF approximation. The reason behind this is the fact for stronger dipolar interaction with larger rotation frequencies, the shape of the density profile may not be correctly described by the parabolic TF profile.

We also study the vortex number of a dipolar BEC confined in a harmonic trap with a large trap aspect ratio, for example, $\lambda = 100$. Figure 7(b) shows the plots of numerical and theoretical vortex number N_v with Ω for a dipolar BECs with $a = 0$, $a_{dd} = 15a_0$ and 130a_0 for $\lambda = 100$. We find a similar dependence of the vortex number on the rotation frequency as above. However, the rotating dipolar BEC ($a_{dd} = 130a_0$) is stable for larger rotation frequencies as against $\Omega < 0.62$ seen earlier with $\lambda = 30$.

3.2. Effect of contact interaction on vortices

In the above, we have mostly analysed the formation of vortices in a dipolar BEC with contact interaction set to zero. In general, the presence of a repulsive contact interaction enhances the stability of the dipolar BEC [14]. It is of interest to study the role of inclusion of contact interaction a on the formation of vortices. In order to see the effect of inclusion of contact interaction on the formation and stability of vortices, we consider the case of rotating dipolar BEC with suitable repulsive contact interaction.

First, we fix the contact interaction strength, say for example $a = 10a_0$, and vary Ω to analyse the vortex formation in 52Cr and 164Dy condensates. In figures 8(a)–(c), we plot the density profiles of the vortices with dipolar strengths $a_{dd} = 15a_0$ (52Cr), for different rotation frequencies $\Omega = 0.5$, 0.6 and 0.65, respectively. The corresponding phase distribution of the condensate wavefunction is plotted in figures 8(d)–(f). For instance, a stable vortex lattice with eight vortices as shown in figure 8(b) is found for $a_{dd} = 15a_0$ and $\Omega = 0.6$ with $a = 10a_0$. While in the absence of the contact interaction it supports only seven vortices as seen in figure 2(e), it is evident that the inclusion of repulsive contact interaction in a dipolar BEC increases the number of vortices.
Figure 7. Plot of the equilibrium vortex number \(N_v \) as a function of the rotation frequency \(\Omega / \Omega_1 \) for conventional BEC with \(a = 100a_0 \), dipolar BECs with \(a_{dd} = 15a_0 \) (\(^{52}\text{Cr} \)) and \(a_{dd} = 130a_0 \) (\(^{164}\text{Dy} \)), and \(a = 0 \) (pure dipolar) as well as \(a = 100a_0 \) for different trap aspect ratios: (a) \(\lambda = 30 \) and (b) \(\lambda = 100 \). Here ‘theory’ represents the vortex number estimated using equation (11) and ‘num’ corresponds to numerically computed values.

Figure 8. Contour plots of the density distributions \(|\phi_{2D}|^2 \) of a rotating dipolar BEC showing steady vortex state with \(a = 10a_0 \), \(a_{dd} = 15a_0 \), \(N = 10000 \), \(\lambda = 30 \); (a) \(\Omega = 0.5 \) (b) \(\Omega = 0.6 \) and (c) \(\Omega = 0.65 \). (d)–(f) The corresponding phase distributions of the condensate wavefunction \(\phi_{2D} \) of (a)–(c).

In figures 9(a)–(c), we show the contour plots of \(|\phi_{2D}|^2 \) of a stronger dipolar BEC with \(a = 10a_0 \) and \(a_{dd} = 130a_0 \) (\(^{164}\text{Dy} \)) for rotation frequencies \(\Omega = 0.5, 0.6 \) and 0.65. Figures 9(d)–(f) depict the corresponding phase distributions of \(\phi_{2D} \). As many as 18, 30 and 35, vortices for \(\Omega = 0.5, 0.6 \) and 0.65, respectively (figures 9(a)–(c)), have been observed. We saw earlier that a dipolar BEC with \(a = 0 \) and \(a_{dd} = 130a_0 \) becomes unstable for rotation frequencies, \(\Omega > 0.62 \). Thus, as expected [14], the inclusion of a small repulsive contact interaction \(a = 10a_0 \) enhances the stability of the rotating dipolar BEC.

Next we study the effect of dipolar strength in the formation of vortices for a fixed contact interaction strength and rotation frequency. By choosing the condensate parameters as \(a = 20a_0 \), \(\Omega = 0.6 \) and \(\lambda = 30 \), we analyse the pattern of vortices for different dipolar strengths. About five vortices were observed in the absence of dipolar interaction, that is, \(a_{dd} = 0 \), as shown in figure 10(a). This number increases to 10 when \(a_{dd} = 15a_0 \) (figure 10(b)) and further to 31 for \(a_{dd} = 130a_0 \) (figure 10(c)). This indicates that the dipolar interaction favours a greater number of vortices in a rotating BEC.
Figure 9. Contour plots of the density distributions $|\phi_{2D}|^2$ of a rotating dipolar BEC showing a steady vortex state with $a = 10 a_0$, $a_{dd} = 130 a_0$, $N = 10000$, $\lambda = 30$: (a) $\Omega = 0.5$ (b) $\Omega = 0.6$ and (c) $\Omega = 0.65$. (d)–(f) The corresponding phase distributions of the condensate wavefunction ϕ_{2D} of (a)–(c).

Table 1. Critical rotation frequency Ω_c for vortices in a dipolar BEC.

a/a_0	a_{dd}/a_0	Ω_c
0	15	0.380
0	130	0.271
20	0	0.500
20	15	0.390
20	130	0.275
100	0	0.360
100	15	0.320

We also calculate the critical rotation frequencies Ω_c of a dipolar BEC with different contact and dipolar interaction strengths. The results are given in Table 1. The critical rotation frequency, Ω_c, for a rotating dipolar BEC decreases with the increase (or addition) of dipolar interaction or contact interaction. Similar conclusions have been drawn in earlier studies, which suggest that the critical rotation frequency depends on both the strengths of contact and DDI [28]. However, the dipolar interaction plays a more dominant role in decreasing Ω_c than contact interaction.

4. Summary and conclusion

We have studied the influence of dipole–dipole interaction on the formation of vortices in a rotating dipolar Bose–Einstein condensate (BEC) of the 52Cr and 164Dy atoms. In particular, we have performed numerical simulation of the quasi-2D Gross–Pitaevskii equation and showed that vortices appear more rapidly in a dipolar BEC when compared to non-dipolar BECs. Furthermore, the number of vortices (N_v) is found to be significant in a dipolar BEC and increases monotonically with the increase of rotation frequency. We also compared the number of vortices with the Feynman rule. Our analysis suggests that for stronger dipole–dipole interaction strengths
and higher rotation frequencies N_t falls well outside the curve predicted by the Feynman rule. We have calculated the critical rotation frequency (Ω_c) for vortices, which decreases considerably with the increase of dipolar strength.

The competition between the contact and dipolar interaction on the formation of vortices in a dipolar BEC is found to be complementary as the contact interaction enhances the stability of the vortices, whereas the dipolar interaction increases the number of vortices.

Acknowledgments

This work forms a part of Department of Science and Technology (Ref. no. SR/S2/HEP-03/2009) and Council of Scientific and Industrial Research (Ref. no. 03(1186)/10/EMR-II), Government of India funded research projects.

References

[1] Landau L 1941 J. Phys. USSR 5 71
[2] Matthews M R, Anderson B P, Haljan P C, Hall D S, Wieman C E and Cornell E A 1999 Phys. Rev. Lett. 83 2498
[3] Madison K W, Chevy F, Wohlleben W and Dalibard J 2000 Phys. Rev. Lett. 84 806
[4] Abo-Shaeer J R, Raman C, Vogels J M and Ketterle W 2001 Science 292 476
[5] Pethick C and Smith H 2002 Bose–Einstein Condensation in Dilute Gases (Cambridge: Cambridge University Press)
[6] Griffin A, Nikuni T and Zaremba E 2009 Bose Condensed Gases at Finite Temperatures (Cambridge: Cambridge University Press)
[7] Fetter A L 2009 Rev. Mod. Phys. 81 647
[8] Adhikari S K and Muruganandam P 2002 Phys. Lett. A 301 333
[9] Bao W and Wang J 2006 J. Comput. Phys. 217 612
[10] Donnelly R J 1991 Quantized Vortices in Helium II (Cambridge: Cambridge University Press)
[11] Griesmaier A, Werner J, Hensler S, Stuhler J and Pfau T 2005 Phys. Rev. Lett. 94 160401
[12] Griesmaier A, Stuhler J and Pfau T 2006 Appl. Phys. B 82 211
[13] Lahaye T, Koch T, Fröhlich B, Fattori M, Metz J, Griesmaier A, Giovanazzi S and Pfau T 2007 Nature 448 672
[14] Koch T, Lahaye T, Metz J, Fröhlich B, Griesmaier A and Pfau T 2008 Nature Phys. 4 218
[15] Lahaye T, Menotti C, Santos L, Lewenstein M and Pfau T 2009 Rep. Prog. Phys. 72 126401
[16] Lu M, Burdick N Q, Youn S H and Lev B L 2011 Phys. Rev. Lett. 107 190401
[17] Aikawa K, Frisch A, Mark M, Baier S, Rietzler A, Grimm R and Ferlaino F 2012 Phys. Rev. Lett. 108 210401
[18] Wilson R M, Ronen S and Bohn J L 2010 Phys. Rev. Lett. 104 094501
[19] Santos L, Shlyapnikov G V and Lewenstein M 2003 Phys. Rev. Lett. 90 250403
[20] Santos L, Shlyapnikov G V, Zoller P and Lewenstein M 2000 Phys. Rev. Lett. 85 1791
[21] Yi S and You L 2001 Phys. Rev. A 63 053607
[22] Parker N G and O’Dell D H J 2008 Phys. Rev. A 78 041601
[23] Baranov M A 2008 Phys. Rep. 464 71
[24] Tieleman O, Lazarides A and Morais Smith C 2011 Phys. Rev. A 83 013627
[25] Zhou K, Liang Z and Zhang Z 2010 Phys. Rev. A 82 013634
[26] Yi S and Pu H 2006 Phys. Rev. A 73 061602
[27] Wilson R M, Ronen S and Bohn J L 2009 Phys. Rev. A 79 013621
[28] Abad M, Guilleumas M, Mayol R, Pi M and Jezek D M 2009 Phys. Rev. A 79 063622
[29] van Bijnen R M W, O’Dell D H J, Parker N G and Martin A M 2007 Phys. Rev. Lett. 98 150401
[30] Klawunn M, Nath R, Pedri P and Santos L 2008 Phys. Rev. Lett. 100 240403
[31] Klawunn M and Santos L 2009 New J. Phys. 11 055012
[32] Malet F, Kristensen T, Reimann S M and Kavoulakis G M 2011 Phys. Rev. A 83 033628
[33] Youn S H, Lu M W, Ray U and Lev B L 2010 Phys. Rev. A 82 043425
[34] Pasquiou B, Bismut G, Beauls Q, Crubellier A, Maréchal E, Pedri P and Santos L 2005 Phys. Rev. A 71 043619
[35] van Bijnen R M W, O’Dell D H J, Parker N G and Martin A M 2007 Phys. Rev. Lett. 98 150401
[36] Klawunn M, Nath R, Pedri P and Santos L 2008 Phys. Rev. Lett. 100 240403
[37] Klawunn M and Santos L 2009 New J. Phys. 11 055012
[38] Malet F, Kristensen T, Reimann S M and Kavoulakis G M 2009 Phys. Rev. A 83 033628
[39] Youn S H, Lu M W, Ray U and Lev B L 2010 Phys. Rev. A 82 043425
[40] Passioub B, Bismut G, Beauls Q, Crubellier A, Maréchal E, Pedri P, Vernac L, Gorceix O and Laburthe-Tolra B 2010 Phys. Rev. A 81 042716
[41] Pedri P and Santos L 2005 Phys. Rev. Lett. 95 200404
[42] Muruganandam P and Adhikari S K 2012 Laser Phys. 22 813
[43] Fischer U R 2006 Phys. Rev. A 73 031602
[44] Tsubota M, Kasamatsu K and Ueda M 2002 Phys. Rev. A 65 023603
[45] Kasamatsu K, Machida M, Sasa N and Tsubota M 2005 Phys. Rev. A 71 063616
[46] Muruganandam P and Adhikari S K 2009 Comput. Phys. Commun. 180 1888
[47] Vudragovic D, Vidanovic I, Balaz A, Muruganandam P and Adhikari S K 2012 Comput. Phys. Commun. 183 2021
[48] García-Ripoll J J and Pérez-García V M 2001 Phys. Rev. A 64 053611
[49] Wilson R M, Ronen S and Bohn J L 2009 Phys. Rev. A 80 023614
[50] Feynman R P 1955 Phys. Rev. Lett. 1 17
[51] Abad M, Guilleumas M, Mayol R, Pi M and Jezek D M 2010 Laser Phys. 20 1190
[52] Kato A, Nakano Y, Kasamatsu K and Matsui T 2011 Phys. Rev. A 84 053623