IDEAL GAMES AND RAMSEY SETS

CARLOS DI PRISCO, JOSÉ G. MIJARES, AND CARLOS UZCÁTEGUI

Abstract. It is shown that Matet’s characterization of the Ramsey property relative to a selective co-ideal \(H \), in terms of games of Kastanas, still holds if we consider semiselectivity instead of selectivity. Moreover, we prove that a co-ideal \(H \) is semiselective if and only if Matet’s game-theoretic characterization of the \(H \)-Ramsey property holds. This lifts Kastanas’s characterization of the classical Ramsey property to its optimal setting, from the point of view of the local Ramsey theory, and gives a game-theoretic counterpart to a theorem of Farah, asserting that a co-ideal \(H \) is semiselective if and only if the family of \(H \)-Ramsey subsets of \(\mathbb{N}^{[\infty]} \) coincides with the family of those sets having the abstract \(H \)-Baire property. Finally, we show that under suitable assumptions, for every semiselective co-ideal \(H \) all sets of real numbers are \(H \)-Ramsey.

1. Introduction

Let \(\mathbb{N} \) be the set of nonnegative integers. Given an infinite set \(A \subseteq \mathbb{N} \), the symbol \(A^{[\infty]} \) (resp. \(A^{[<\infty]} \)) represents the collection of the infinite (resp. finite) subsets of \(A \). Let \(A^{[n]} \) denote the set of all the subsets of \(A \) with \(n \) elements. If \(a \in \mathbb{N}^{[<\infty]} \) is an initial segment of \(A \in \mathbb{N}^{[\infty]} \), then we write \(a \sqsubseteq A \). Also, let \(A/a := \{ n \in A : \max(a) < n \} \) and write \(A/n \) to mean \(A/\{ n \} \).

Let \((P,\leq)\) be a poset. A subset \(D \subseteq P \) is dense in \(P \) if for every \(p \in P \), there is \(q \in D \) with \(q \leq p \). The subset \(D \subseteq P \) is open if \(p \in D \) and \(q \leq p \) imply \(q \in D \). We say \(P \) is \(\sigma \)-distributive if the intersection of countably many dense open subsets of \(P \) is dense. \(P \) is \(\sigma \)-closed if every decreasing sequence of elements of \(P \) has a lower bound.

Definition 1.1. A family \(\mathcal{H} \subseteq \wp(\mathbb{N}) \) is a co-ideal if it satisfies the following:

(i) \(A \subseteq B \) and \(A \in \mathcal{H} \) implies \(B \in \mathcal{H} \) and
(ii) \(A \cup B \in \mathcal{H} \) implies \(A \in \mathcal{H} \) or \(B \in \mathcal{H} \).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
The complement \(I = \varphi(N) \setminus H \) is the **dual ideal** of \(H \). We will suppose that co-ideals differ from \(\varphi(N) \). Also, we say that a nonempty family \(F \subset H \) is **\(H \)-disjoint** if for every \(A, B \in F \), \(A \cap B \notin H \). We say that \(F \) is a **maximal \(H \)-disjoint family** if it is \(H \)-disjoint and it is not properly contained in any other \(H \)-disjoint family.

A subset \(X \) of \(\mathbb{N}^{[\omega]} \) is **Ramsey** if for every \([a, A] \neq \emptyset \) with \(A \in \mathbb{N}^{[\omega]} \) there exists \(B \in [a, A] \) such that \([a, B] \subseteq X \) or \([a, B] \cap X = \emptyset \). Some authors have used the term “completely Ramsey” to express this property, reserving the term “Ramsey” for a weaker property. Galvin and Prikry [4] showed that all Borel subsets of \(\mathbb{N}^{[\omega]} \) are Ramsey, and Silver [12] extended this to all analytic sets. Mathias in [10] showed that if the existence of an inaccessible cardinal is consistent with \(\text{ZF}^+ \), then it is consistent with \(\text{ZF} + \text{DC} \), that every subset of \(\mathbb{N}^{[\omega]} \) is Ramsey. Mathias introduced the concept of a selective co-ideal (or a happy family), which has turned out to be of wide interest. Ellentuck [2] characterized the Ramsey sets as those having the Baire property with respect to the exponential topology of \(\mathbb{N}^{[\omega]} \).

A game-theoretic characterization of the Ramsey property was given by Kastanas in [6], using games in the style of Banach-Mazur with respect to Ellentuck’s topology.

In this work we will deal with a game-theoretic characterization of the following property:

Definition 1.2. Let \(H \subset \mathbb{N}^{[\omega]} \) be a co-ideal. \(X \subset \mathbb{N}^{[\omega]} \) is **\(H \)-Ramsey** if for every \([a, A] \neq \emptyset \) with \(A \in H \) there exists \(B \in [a, A] \cap H \) such that \([a, B] \subseteq X \) or \([a, B] \cap X = \emptyset \). We say \(X \) is **\(H \)-Ramsey null** if for every \([a, A] \neq \emptyset \) with \(A \in H \) there exists \(B \in [a, A] \cap H \) such that \([a, B] \cap X = \emptyset \).

Mathias considered sets that are \(H \)-Ramsey with respect to a selective co-ideal \(H \) and generalized Silver’s result to this context. Matet [9] used games to characterize sets which are Ramsey with respect to a selective co-ideal \(H \). These games coincide with the games of Kastanas if \(H \) is \(\mathbb{N}^{[\omega]} \) and with the games of Louveau [5] if \(H \) is a Ramsey ultrafilter.

Given a co-ideal \(H \subset \mathbb{N}^{[\omega]} \), the collection \(\{ [a, A] : (a, A) \in \mathbb{N}^{<\omega} \times H \} \) is not, in general, a basis for a topology on \(\mathbb{N}^{[\omega]} \), but the following abstract version of the Baire property and related concepts will be useful.

Definition 1.3. Let \(H \subset \mathbb{N}^{[\omega]} \) be a co-ideal. \(X \subset \mathbb{N}^{[\omega]} \) has the abstract **\(H \)-Baire property** if for every \([a, A] \neq \emptyset \) with \(A \in H \) there exists \([b, B] \subseteq [a, A] \) with \(B \in H \) such that \([b, B] \subseteq X \) or \([b, B] \cap X = \emptyset \). We say \(X \) is **\(H \)-nowhere dense** if for every \([a, A] \neq \emptyset \) with \(A \in H \) there exists \([b, B] \subseteq [a, A] \) with \(B \in H \) such that \([b, B] \cap X = \emptyset \). Also, \(X \) is **\(H \)-meager** if it is the union of countably many \(H \)-nowhere dense sets.

Given a decreasing sequence \(A_0 \supseteq A_1 \supseteq A_2 \supseteq \cdots \) of infinite subsets of \(\mathbb{N} \), a set \(B \) is a **diagonalization** of the sequence (or \(B \) **diagonalizes** the sequence) if and only if \(B/n \subseteq A_n \) for each \(n \in B \). A co-ideal \(H \) is **selective** if and only if every decreasing sequence in \(H \) has a diagonalization in \(H \).

A co-ideal \(H \) has the **\(Q^+ \)-property** if for every \(A \in H \) and every partition \((F_n)_n \) of \(A \) into finite sets, there is \(S \in H \) such that \(S \subseteq A \) and \(|S \cap F_n| \leq 1 \) for every \(n \in \mathbb{N} \).

Proposition 1.4 ([10]). A co-ideal \(H \) is selective if and only if the poset \((H, \subseteq^\ast) \) is \(\sigma \)-closed and \(H \) has the **\(Q^+ \)-property**.
Given a co-ideal \mathcal{H}, recall that a set $D \subseteq \mathcal{H}$ is dense open in the ordering (\mathcal{H}, \subseteq) if (a) for every $A \in \mathcal{H}$ there exists $B \in D$ such that $B \subseteq A$ and (b) for every $A, B \in \mathcal{H}$, if $B \subseteq A$ and $A \in D$, then $B \in D$. Please notice that we will also consider the ordering $(\mathcal{H}, \subseteq^*)$, where $A \subseteq^* B$ if and only if $A \setminus B$ is a finite set, but any reference to “dense open” in this paper will be only with respect to the ordering (\mathcal{H}, \subseteq).

Given a sequence $\{D_n\}_{n \in \mathbb{N}}$ of dense open sets in (\mathcal{H}, \subseteq), a set B is a diagonalization of $\{D_n\}_{n \in \mathbb{N}}$ if and only if $B/n \in D_n$ for every $n \in B$. A co-ideal \mathcal{H} is semiselective if for every sequence $\{D_n\}_{n \in \mathbb{N}}$ of dense open subsets of \mathcal{H}, the family of its diagonalizations is dense in (\mathcal{H}, \subseteq).

Proposition 1.5 (3). A co-ideal \mathcal{H} is semiselective if and only if the poset $(\mathcal{H}, \subseteq^*)$ is σ-distributive and \mathcal{H} has the Q^+-property.

Since σ-closedness implies σ-distributivity, then semiselectivity follows from selectivity, but the converse does not hold (see [3] for an example).

In Section 2 we list results of Ellentuck, Mathias and Farah that characterize topologically the Ramsey property and the local Ramsey property. In Section 3 we define a family of games and present the main result, which states that a co-ideal \mathcal{H} is semiselective if and only if the \mathcal{H}-Ramsey sets are exactly those for which the associated games are determined. This generalizes results of Kastanas [6] and Matet [9]. The proof is given in Section 4. In Section 5 we show that in Solovay’s model, for every semiselective co-ideal \mathcal{H} all sets of real numbers from $L(\mathbb{R})$ are \mathcal{H}-Ramsey.

2. Topological characterization of the Ramsey property

The following are the main results concerning the characterization of the Ramsey property and the local Ramsey property in topological terms.

Theorem 2.1 (Ellentuck). Let $\mathcal{X} \subseteq \mathbb{N}[\omega]$ be given.

(i) \mathcal{X} is Ramsey if and only if \mathcal{X} has the Baire property with respect to Ellentuck’s topology.

(ii) \mathcal{X} is Ramsey null if and only if \mathcal{X} is meager with respect to Ellentuck’s topology.

Theorem 2.2 (Mathias). Let $\mathcal{X} \subseteq \mathbb{N}[\omega]$ and let a selective co-ideal \mathcal{H} be given.

(i) \mathcal{X} is \mathcal{H}-Ramsey if and only if \mathcal{X} has the abstract \mathcal{H}-Baire property.

(ii) \mathcal{X} is \mathcal{H}-Ramsey null if and only if \mathcal{X} is \mathcal{H}-meager.

Theorem 2.3 (Farah, Todorcevic). Let \mathcal{H} be a co-ideal. The following are equivalent:

(i) \mathcal{H} is semiselective.

(ii) The \mathcal{H}-Ramsey subsets of $\mathbb{N}[\omega]$ are exactly those sets having the abstract \mathcal{H}-Baire property, and the following three families of subsets of $\mathbb{N}[\omega]$ coincide and are σ-ideals:

(a) \mathcal{H}-Ramsey null sets,

(b) \mathcal{H}-nowhere dense sets, and

(c) \mathcal{H}-meager sets.
In the next section we state results by Kastanas [6] and Matet [9] (Theorems 3.1 and 3.2 below) which are the game-theoretic counterparts of Theorems 2.1 and 2.2, respectively, and we also present our main result (Theorem 3.3 below), which is the game-theoretic counterpart of Theorem 2.3.

3. Characterizing the Ramsey Property with Games

The following is a relativized version of a game due to Kastanas [6], employed to obtain a characterization of the family of completely Ramsey sets (i.e. \mathcal{H}-Ramsey for $\mathcal{H} = \mathbb{N}[\leq \omega]$). The same game was used by Matet in [9] to obtain the analog result when \mathcal{H} is selective.

Let $\mathcal{H} \subseteq \mathbb{N}[\leq \omega]$ be a fixed co-ideal. For each $\mathcal{X} \subseteq \mathbb{N}[\leq \omega], A \in \mathcal{H}$ and $a \in \mathbb{N}[\leq \omega]$ we define a two-player game $G_\mathcal{H}(a, A, \mathcal{X})$ as follows: player I chooses an element $A_0 \in \mathcal{H} \upharpoonright A$: II answers by playing $n_0 \in A_0$ such that $a \subseteq n_0$, and $B_0 \in \mathcal{H} \cap (A_0/n_0)[\leq \omega]$; then I chooses $A_1 \in \mathcal{H} \cap B_0[\leq \omega]$; II answers by playing $n_1 \in A_1$ and $B_1 \in \mathcal{H} \cap (A_1/n_1)[\leq \omega]$; and so on. Player I wins if and only if for every $a \cup \{n_j : j \in \mathbb{N}\} \in \mathcal{X}$:

\[
\begin{array}{cccc}
I & A_0 & A_1 & \cdots & A_k & \cdots \\
II & n_0, B_0 & n_1, B_1 & \cdots & n_k, B_k & \cdots \\
\end{array}
\]

A strategy for a player is a rule that tells him (or her) what to play based on the previous moves. A strategy is a winning strategy for player I if player I wins the game whenever he (or she) follows the strategy, no matter what player II plays. Analogously, it can be defined what a winning strategy for player II is. The precise definitions of strategy for two-player games can be found in [7,11].

Let $s = \{s_0, \ldots, s_k\}$ be a nonempty finite subset of \mathbb{N}, written in its increasing order, and let $\overrightarrow{B} = \{B_0, \ldots, B_k\}$ be a sequence of elements of \mathcal{H}. We say that the pair (s, \overrightarrow{B}) is a legal position for player II if $(s_0, B_0), \ldots, (s_k, B_k)$ is a sequence of possible consecutive moves of II in the game $G_\mathcal{H}(a, A, \mathcal{X})$, respecting the rules. In this case, if σ is a winning strategy for player I in the game, we say that $\sigma(s, \overrightarrow{B})$ is a realizable move of player I according to σ. Notice that if $r \in B_k/s_k$ and $C \in \mathcal{H} \upharpoonright B_k/s_k$, then $(s_0, B_0), \ldots, (s_k, B_k), (r, C)$ is also a sequence of possible consecutive moves of II in the game. We will sometimes use the notation $(s, \overrightarrow{B}, r, C)$ and say that $(s, \overrightarrow{B}, r, C)$ is a legal position for player II and $\sigma(s, \overrightarrow{B}, r, C)$ is a realizable move of player I according to σ.

We say that the game $G_\mathcal{H}(a, A, \mathcal{X})$ is determined if one of the players has a winning strategy.

Theorem 3.1 (Kastanas). \mathcal{X} is Ramsey if and only if for every $A \in \mathbb{N}[\leq \omega]$ and $a \in \mathbb{N}[\leq \omega]$ the game $G_{\mathbb{N}[\leq \omega]}(a, A, \mathcal{X})$ is determined.

Theorem 3.2 (Matet). Let \mathcal{H} be a selective co-ideal. \mathcal{X} is \mathcal{H}-Ramsey if and only if for every $A \in \mathcal{H}$ and $a \in \mathbb{N}[\leq \omega]$ the game $G_\mathcal{H}(a, A, \mathcal{X})$ is determined.

Now we state our main result:

Theorem 3.3. Let \mathcal{H} be a co-ideal. The following are equivalent:

1. \mathcal{H} is semiselective.
2. $\forall \mathcal{X} \subseteq \mathbb{N}[\leq \omega], \mathcal{X}$ is \mathcal{H}-Ramsey if and only if for every $A \in \mathcal{H}$ and $a \in \mathbb{N}[\leq \omega]$ the game $G_\mathcal{H}(a, A, \mathcal{X})$ is determined.
So Theorem 3.3 is a game-theoretic counterpart to Theorem 2.3 in the previous section, in the sense that it gives us a game-theoretic characterization of semiselectivity. Obviously, it also gives us a characterization of the \mathcal{H}-Ramsey property, for semiselective \mathcal{H}, which generalizes the main results of Kastanas in [6] and Matet in [9] (Theorems 3.1 and 3.2 above).

It is known that every analytic set is \mathcal{H}-Ramsey for \mathcal{H} semiselective (see Theorem 2.2 in [3] or Lemma 7.18 in [11]). Assuming $AD_\mathbb{R}$, i.e., the axiom of determinacy for games over the reals (see [7] or [11]), we obtain the following from Theorem 3.3:

Corollary 3.4. Assume $AD_\mathbb{R}$. If \mathcal{H} is a semiselective co-ideal, then every subset of $\mathbb{N}^{[\infty]}$ is \mathcal{H}-Ramsey.

4. Proof of the Main Result

Throughout the rest of this section, fix a semiselective co-ideal \mathcal{H}. Before proving Theorem 3.3 in Propositions 4.1 and 4.2 below we will deal with winning strategies of players in a game $G_\mathcal{H}(a, A, X)$.

Proposition 4.1. For every $X \subseteq \mathbb{N}^{[\infty]}$, $A \in \mathcal{H}$ and $a \in \mathbb{N}^{[<\infty]}$, I has a winning strategy in $G_\mathcal{H}(a, A, X)$ if and only if there exists $E \in \mathcal{H} \upharpoonright A$ such that $[a, E] \subseteq X$.

Proof. Suppose σ is a winning strategy for I. We will suppose that $a = \emptyset$ and $A = \mathbb{N}$ without loss of generality.

Let $A_0 = \sigma(\emptyset)$ be the first move of I using σ. We will define a tree T of finite subsets of A_0, and for each $s \in T$ we will also define a family $M_s \subseteq A_0^{[\infty]}$ and a family $N_s \subseteq (A_0^{[\infty]})^{[s]}$, where $|s|$ is the length of s. Put $\{p\} \in T$ for each $p \in A_0$ and let

$$M_{\{p\}} \subseteq \{\sigma(p, B) : B \in \mathcal{H} \upharpoonright A_0\}$$

be a maximal \mathcal{H}-disjoint family (see paragraph after Definition 1.1), and set

$$N_{\{p\}} = \{\{B\} : \sigma(p, B) \in M_{\{p\}}\}.$$

Suppose we have defined $T \cap A_0^{[n]}$ and we have chosen a maximal \mathcal{H}-disjoint family M_s of realizable moves of player I of the form $\sigma(s, \vec{B})$ for every $s \in T \cap A_0^{[n]}$. Let

$$N_s = \{\vec{B} : \sigma(s, \vec{B}) \in M_s\}.$$

Given $s \in T \cap A_0^{[n]}$, $\vec{B} \in N_s$ and $r \in \sigma(s, \vec{B})/s$, we put $s \cup \{r\} \in T$. Then choose a maximal \mathcal{H}-disjoint family

$$M_{s \cup \{r\}} \subseteq \{\sigma(s, \vec{B}, r, C) : \vec{B} \in N_s, C \in \mathcal{H} \upharpoonright \sigma(s, \vec{B})/r\}.$$

Put

$$N_{s \cup \{r\}} = \{(\vec{B}, C) : \sigma(s, \vec{B}, r, C) \in M_{s \cup \{r\}}\}.$$

Now, for every $s \in T$, let

$$U_s = \{E \in \mathcal{H} : (\exists F \in M_s) E \subseteq F\} \quad \text{and} \quad V_s = \{E \in \mathcal{H} : (\forall F \in M_s \setminus \{\max(s)\}) \max(s) \in F \rightarrow F \cap E \notin \mathcal{H}\}.$$

Claim 4.2. For every $s \in T$, $U_s \cup V_s$ is dense open in $(\mathcal{H} \upharpoonright A_0, \subseteq)$.
Proof. Fix $s \in T$ and $A \in \mathcal{H} \upharpoonright A_0$. If $(\forall F \in M_s \setminus \{\max(s)\}) \max(s) \in F \rightarrow F \cap A \notin \mathcal{H}$ holds, then $A \in \mathcal{V}_s$. Otherwise, fix $F \in M_s \setminus \{\max(s)\}$ such that $\max(s) \in F$ and $F \cap A \in \mathcal{H}$. Let $\overrightarrow{B} \in N_s \setminus \{\max(s)\}$ be such that $\sigma(s \setminus \{\max(s)\}, \overrightarrow{B}) = F$. Notice that since $\max(s) \in F$, then

$$(s \setminus \{\max(s)\}, \overrightarrow{B}, \max(s), F \cap A/\max(s))$$

is a legal position for player II. Then, using the maximality of M_s, choose $\hat{F} \in M_s$ such that

$$E := \sigma(s \setminus \{\max(s)\}, \overrightarrow{B}, \max(s), F \cap A/\max(s)) \cap \hat{F}$$

is in \mathcal{H}. So $E \in \mathcal{U}_s$ and $E \subseteq A$. This completes the proof of Claim 4.2. \qed

Claim 4.3. There exists $E \in \mathcal{H} \upharpoonright A_0$ such that for every $s \in T$ with $s \subseteq E$, $E/s \in \mathcal{U}_s$.

Proof. For each $n \in \mathbb{N}$, let

$$\mathcal{D}_n = \bigcap_{\max(s) = n} \mathcal{U}_s \cup \mathcal{V}_s,$$

$$\mathcal{U}_n = \bigcap_{\max(s) = n} \mathcal{U}_s$$

(if there is no $s \in T$ with $\max(s) = n$, then we put $\mathcal{D}_n = \mathcal{U}_n = \mathcal{H} \upharpoonright A_0$). By Claim 4.2, every \mathcal{D}_n is dense open in $(\mathcal{H} \upharpoonright A_0, \subseteq)$. Using semiselectivity, choose a diagonalization $\hat{E} \in \mathcal{H} \upharpoonright A_0$ of the sequence $(\mathcal{D}_n)_n$. Let

$$E_0 := \{n \in \hat{E} : \hat{E}/n \notin \mathcal{U}_n\} \text{ and } E_1 := \hat{E} \setminus E_0.$$

Let us prove that $E_1 \notin \mathcal{H}$. Suppose $E_1 \in \mathcal{H}$. By the definitions, $(\forall n \in E_1) \hat{E}/n \notin \mathcal{U}_n$. Let $n_0 = \min(E_1)$ and fix $s_0 \in \hat{E}$ such that $\max(n_0) = n_0$, satisfying, in particular, the following:

$$(\forall F \in M_{s_0 \setminus \{n_0\}}) n_0 \in F \rightarrow F \cap E_1/n_0 \notin \mathcal{H}.$$

Notice that $|s_0| > 1$, by the construction of the M_s's.

Now, let $m = \max(s_0 \setminus \{n_0\})$. Then $m \in E_0$ and therefore $\hat{E}/m \in \mathcal{U}_m \subseteq \mathcal{U}_{s_0 \setminus \{n_0\}}$. So there exists $F \in M_{s_0 \setminus \{n_0\}}$ such that $\hat{E}/m \subseteq F$. Since $m < n_0$, $n_0 \in F$. But $F \cap E_1/n_0 = E_1/n_0 \in \mathcal{H}$, a contradiction. Hence, $E_1 \notin \mathcal{H}$ and therefore $E_0 \in \mathcal{H}$. Then $E := E_0$ is as required. \qed

Claim 4.4. Let E be as in Claim 4.3 and let $s \cup \{r\} \in T$ with $s \subseteq E$ and $r \in E/s$. If $E/s \subseteq \sigma(s, \overrightarrow{B})$ for some $\overrightarrow{B} \in N_s$, then there exists $C \in \mathcal{H} \upharpoonright \sigma(s, \overrightarrow{B})/r$ such that $E/r \subseteq \sigma(s, \overrightarrow{B}, r, C)$ and $(\overrightarrow{B}, C) \in N_{s \cup \{r\}}$.

Proof. Fix s and r as in the hypothesis. Suppose $E/s \subseteq \sigma(s, \overrightarrow{B})$ for some $\overrightarrow{B} \in N_s$. Since $E/r \in \mathcal{U}_{s \cup \{r\}}$, there exists $(\overrightarrow{D}, C) \in N_{s \cup \{r\}}$ such that $E/r \subseteq \sigma(s, \overrightarrow{D}, r, C)$. Notice that $E/r \subseteq \sigma(s, \overrightarrow{B}) \cap \sigma(s, \overrightarrow{D})$. Since M_s is \mathcal{H}-disjoint, then $\sigma(s, \overrightarrow{D})$ is necessarily equal to $\sigma(s, \overrightarrow{B})$ and therefore $\sigma(s, \overrightarrow{B}, r, C) = \sigma(s, \overrightarrow{D}, r, C)$. Hence $(\overrightarrow{B}, C) \in N_{s \cup \{r\}}$ and $E/r \subseteq \sigma(s, \overrightarrow{B}, r, C)$. \qed

Claim 4.5. Let E be as in Claim 4.3. Then $[0, E] \subseteq \mathcal{X}$.

Proof. Let \(\{k_i\}_{i \geq 0} \subseteq E \) be given. Since \(E/k_0 \in U(k_0) \), there exists \(B_0 \in N(k_0) \) such that \(E/k_0 \subseteq \sigma(k_0, B_0) \). Thus, by the choice of \(E \) and applying Claim \(4.4 \) iteratively, we prove that \(\{k_i\}_{i \geq 0} \) is generated in a run of the game in which player I has used his winning strategy \(\sigma \). Therefore \(\{k_i\}_{i \geq 0} \in \mathcal{X} \). \(\square \)

The converse is trivial. This completes the proof of Proposition \(4.7 \). \(\square \)

Now we turn to the case when player II has a winning strategy. The proof of the following is similar to the proof of Proposition 4.3 in [9]. First we show a result we will need in the sequel. It should be compared with Lemma 4.2 in [9].

Lemma 4.6. Let \(B \in \mathcal{H} \), \(f : \mathcal{H} \mid B \rightarrow \mathbb{N} \), and \(g : \mathcal{H} \mid B \rightarrow \mathcal{H} \mid B \) be given such that \(f(A) \in A \) and \(g(A) \subseteq A \setminus f(A) \). Then there is \(E_{f,g} \in \mathcal{H} \mid B \) with the property that for each \(p \in E_{f,g} \) there exists \(A \in \mathcal{H} \mid B \) such that \(f(A) = p \) and \(E_{f,g} \setminus p \subseteq g(A) \).

Proof. For each \(n \in \{f(A) : A \in \mathcal{H} \mid B\} \), let

\[
U_n = \{ E \in \mathcal{H} \mid B : (\exists A \in \mathcal{H} \mid B) (f(A) = n \land E \subseteq g(A)) \}
\]

and

\[
V_n = \{ E \in \mathcal{H} \mid B : (\forall A \in \mathcal{H} \mid B) (f(A) = n \rightarrow (g(A) \setminus E = \emptyset)) \}.
\]

The set \(D_n = U_n \cup V_n \) is dense open in \(\mathcal{H} \mid B \). Choose \(E \in \mathcal{H} \mid B \) such that for each \(n \in E \), \(E/n \in D_n \). Let

\[
E_0 = \{ n \in E : E/n \in U_n \} \text{ and } E_1 = \{ n \in E : E/n \in V_n \}.
\]

Now, suppose \(E_1 \in \mathcal{H} \). Then, for each \(n \in E_1 \), \(E_1/n \in V_n \). Let \(n_1 = f(E_1) \). So \(n_1 \in E_1 \) by the definition of \(f \). But, by the definition of \(g \), \(g(E_1) \subseteq n_1 \) and so \(E_1/n_1 \not\in V_{n_1} \), a contradiction. Therefore, \(E_1 \not\in \mathcal{H} \). Hence \(E_0 \in \mathcal{H} \), since \(\mathcal{H} \) is a co-ideal. The set \(E_{f,g} := E_0 \) is as required. \(\square \)

Proposition 4.7. For every \(\mathcal{X} \subseteq \mathbb{N}^{<\infty} \), \(A \in \mathcal{H} \) and \(a \in \mathbb{N}^{<\infty} \), II has a winning strategy in \(G_{\mathcal{H}}(a, A, \mathcal{X}) \) if and only if \(\forall A' \in \mathcal{H} \mid A \) there exists \(E \in \mathcal{H} \mid A' \) such that \([a, E] \cap \mathcal{X} = \emptyset \).

Proof. Let \(\tau \) be a winning strategy for II in \(G_{\mathcal{H}}(a, A, \mathcal{X}) \) and let \(A' \in \mathcal{H} \mid A \) be given. We are going to define a winning strategy \(\sigma \) for I, in \(G_{\mathcal{H}}(a, A', \mathbb{N}^{<\infty} \setminus \mathcal{X}) \), in such a way that we will get the required result by means of Proposition 4.1. So, in a play of the game \(G_{\mathcal{H}}(a, A', \mathbb{N}^{<\infty} \setminus \mathcal{X}) \), with II's successive moves being \((n_j, B_j) \), \(j \in \mathbb{N} \), define \(A_j \in \mathcal{H} \) and \(E_{f_j,g_j} \) as in Lemma 4.6, for \(f_j \) and \(g_j \) such that

1. for all \(\hat{A} \in \mathcal{H} \mid A' \),

\[
(f_0(\hat{A}), g_0(\hat{A})) = \tau(\hat{A});
\]

2. for all \(\hat{A} \in \mathcal{H} \mid B_j \cap g_j(A_j) \),

\[
(f_{j+1}(\hat{A}), g_{j+1}(\hat{A})) = \tau(A_0, \cdots, A_j, \hat{A});
\]

3. \(A_0 \subseteq A' \) and \(A_{j+1} \subseteq B_j \cap g_j(A_j) \);

4. \(n_j = f_j(A_j) \) and \(E_{f_j,g_j}/n_j \subseteq g_j(A_j) \).
Now, let \(\sigma(\emptyset) = E_{f_{g_{0}}} \) and \(\sigma((n_{0}, B_{0}), \ldots, (n_{j}, B_{j})) = E_{f_{g_{j+1}}} \).

Conversely, let \(A_{0} \) be the first move of I in the game. Then there exists \(E \in \mathcal{H} \upharpoonright A_{0} \) such that \([a, E] \cap X = \emptyset\). We define a winning strategy for player II by letting him (or her) play \((\min E, E \setminus \{\min E\})\) at the first turn and arbitrarily from there on. \(\square \)

We are ready now for the following:

Proof of Theorem 3.3. If \(\mathcal{H} \) is semiselective, then part (2) of Theorem 3.3 follows from Propositions 4.1 and 4.7.

Conversely, suppose part (2) holds and \((\mathcal{D}_{n})_{n} \) is a sequence of dense open sets in \((\mathcal{H}, \subseteq)\). For every \(a \in \mathbb{N}^{<\infty} \), let \(X_{a} = \{ B \in [a, \mathbb{N}]: B/a \text{ diagonalizes some decreasing } (A_{n})_{n} \text{ such that } (\forall n) \ A_{n} \in \mathcal{D}_{n} \} \) and define \(\mathcal{X} = \bigcup_{a \in \mathbb{N}^{<\infty}} X_{a} \).

Fix \(A \in \mathcal{H} \) and \(a \in \mathbb{N}^{<\infty} \) with \([a, A] \neq \emptyset\), and define a winning strategy \(\sigma \) for player I in \(G_{\mathcal{H}}(a, A, \mathcal{X}) \), as follows: let \(\sigma(\emptyset) \) be any element of \(\mathcal{D}_{0} \) such that \(\sigma(\emptyset) \subseteq A \). At stage \(k \), if II’s successive moves in the game are \((n_{j}, B_{j})\), \(j \leq k \), let \(\sigma((n_{0}, B_{0}), \ldots, (n_{k}, B_{k})) \) be any element of \(\mathcal{D}_{k+1} \) such that \(\sigma((n_{0}, B_{0}), \ldots, (n_{k}, B_{k})) \subseteq B_{k} \). Notice that \(a \cup \{n_{0}, n_{1}, n_{2}, \ldots\} \in X_{a} \).

So the game \(G_{\mathcal{H}}(a, A, \mathcal{X}) \) is determined for every \(A \in \mathcal{H} \) and \(a \in \mathbb{N}^{<\infty} \) with \([a, A] \neq \emptyset\). Then, by our assumptions, \(\mathcal{X} \) is \(\mathcal{H} \)-Ramsey. So given \(A \in \mathcal{H} \), there exists \(B \in \mathcal{H} \upharpoonright A \) such that \(B^{<\infty} \subseteq \mathcal{X} \) or \(B^{<\infty} \cap \mathcal{X} = \emptyset \). The second alternative does not hold, so \(\mathcal{X} \cap \mathcal{H} \) is dense in \((\mathcal{H}, \subseteq)\). Hence, \(\mathcal{H} \) is semiselective. \(\square \)

5. The Ramsey property in Solovay models

Recall that the Mathias forcing notion \(\mathbb{M} \) is the collection of all the sets of the form

\([a, A] := \{ B \in \mathbb{N}^{<\infty} : a \sqsubseteq B \subseteq A \} \),

ordered by \([a, A] \leq [b, B]\) if and only if \([a, A] \subseteq [b, B] \).

If \(\mathcal{H} \) is a co-ideal, then \(\mathbb{M}_{\mathcal{H}} \), the Mathias partial order with respect to \(\mathcal{H} \), is the collection of all the \([a, A] \) as above but with \(A \in \mathcal{H} \), ordered in the same way.

A co-ideal \(\mathcal{H} \) has the Mathias property if it satisfies the following: if \(x \) is \(\mathbb{M}_{\mathcal{H}} \)-generic over a model \(M \), then every \(y \in x^{<\infty} \) is \(\mathbb{M}_{\mathcal{H}} \)-generic over \(M \). Also, \(\mathcal{H} \) has the Prikry property if for every \([a, A] \in \mathbb{M}_{\mathcal{H}} \) and every formula \(\varphi \) of the forcing language of \(\mathbb{M}_{\mathcal{H}} \), there is \(B \in \mathcal{H} \upharpoonright A \) such that \([a, B]\) decides \(\varphi \).

Theorem 5.1 ([3], Theorem 4.1]). For a co-ideal \(\mathcal{H} \) the following are equivalent:

1. \(\mathcal{H} \) is semiselective.
2. \(\mathbb{M}_{\mathcal{H}} \) has the Prikry property.
3. \(\mathbb{M}_{\mathcal{H}} \) has the Mathias property.

Suppose \(M \) is a model of ZFC and there is an inaccessible cardinal \(\lambda \) in \(M \). The Levy partial order \(\text{Col}(\omega, < \lambda) \) produces a generic extension \(M[G] \) of \(M \) where \(\lambda \) becomes \(\aleph_{1} \). Solovay’s model (see [13]) is obtained by taking the submodel of \(M[G] \) formed by all the sets hereditarily definable in \(M[G] \) from a sequence of ordinals (see [10] or [3]).
In [10], Mathias shows that if $V = L$, λ is a Mahlo cardinal and $V[G]$ is a generic extension obtained by forcing with $Col(\omega, < \lambda)$, then every set of real numbers defined in the generic extension from a sequence of ordinals is H-Ramsey for H a selective co-ideal. This result can be extended to semiselective co-ideals under a suitable large cardinal hypothesis.

Theorem 5.2. Suppose λ is a weakly compact cardinal. Let $V[G]$ be a generic extension by $Col(\omega, < \lambda)$. Then, if H is a semiselective co-ideal in $V[G]$, every set of real numbers in $L(\mathbb{R})$ of $V[G]$ is H-Ramsey.

Proof. Let H be a semiselective co-ideal in $V[G]$. Let A be a set of reals in $L(\mathbb{R})^V[G]$; in particular, A is defined in $V[G]$ by a formula φ from a sequence of ordinals. Let $[a, A]$ be a condition of the Mathias forcing M_H with respect to the semiselective co-ideal H. Finally, let H be a name for H. Notice that $H \subseteq V_\lambda$.

Since $V[G]$ satisfies that H is semiselective, the following statement holds in $V[G]$:

For every sequence $D = (D_n : n \in \omega)$ of open dense subsets of H and for every $x \in H$ there is $y \in H$, $y \subseteq x$, such that y diagonalizes the sequence D.

Therefore, there is $p \in G$ such that, in V, the following statement holds:

$$\forall D \forall \tau (p \Vdash_{Col(\omega, < \lambda)} (\dot{D} \text{ is a name for a sequence of dense open subsets of } \dot{H} \text{ and } \tau \in \dot{H}) \rightarrow (\exists x (x \in H, x \subseteq \tau, x \text{ diagonalizes } \dot{D}))).$$

Notice that every real in $V[G]$ has a name in V_λ, and names for subsets of H or countable sequences of subsets of H are contained in V_λ. Also, the forcing $Col(\omega, < \lambda)$ is a subset of V_λ. Therefore the same statement is valid in the structure $(V_\lambda, \in, H, Col(\omega, < \lambda))$. This statement is Π^1_1 over this structure, and since λ is Π^1_1-indescribable, there is $\kappa < \lambda$ such that in $(V_\gamma, \in, H \cap V_\gamma, Col(\omega, < \lambda) \cap V_\gamma)$

$$\forall D \forall \tau (p \Vdash_{Col(\omega, < \kappa)} (\dot{D} \text{ is a name for a sequence of dense open subsets of } \dot{H} \cap V_\kappa \text{ and } \tau \in \dot{H} \cap V_\kappa) \rightarrow (\exists x (x \in H \cap V_\kappa, x \subseteq \tau, x \text{ diagonalizes } \dot{D}))).$$

We can get κ inaccessible, since there is a Π^1_1 formula expressing that λ is inaccessible. Also, κ is such that p and the names for the real parameters in the definition of A and for A belong to V_κ.

If we let $G_\kappa = G \cap Col(\omega, < \kappa)$, then $G_\kappa \subseteq Col(\omega, < \kappa)$ and it is generic over V. Also, $p \in G_\kappa$. Here $H \cap V_\kappa$ is a $Col(\omega, < \kappa)$-name in V which is interpreted by G_κ as $H \cap V[G_\kappa]$; thus $H \cap V[G_\kappa] \in V[G_\kappa]$. Moreover, since every subset (or sequence of subsets) of $H \cap V[G_\kappa]$ which belongs to $V[G_\kappa]$ has a name contained in V_κ, we have that, in $V[G_\kappa]$, $H \cap V_\kappa$ is semiselective, and in consequence it has both the Prikry and the Mathias properties.

Now the proof can be finished as in [10]. Let \dot{r} be the canonical name of an $M_{H \cap V[G_\kappa]}$-generic real and consider the formula $\varphi(\dot{r})$ in the forcing language of $V[G_\kappa]$. By the Prikry property of $H \cap V[G_\kappa]$, there is $A' \subseteq A$, $A' \in H \cap V[G_\kappa]$, such that $[a, A']$ decides $\varphi(\dot{r})$. Since $2^{2\omega}$ computed in $V[G_\kappa]$ is countable in $V[G]$, there is (in $V[G]$) an $M_{H \cap V[G_\kappa]}$-generic real x over $V[G_\kappa]$ such that $x \in [a, A']$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
To see that there is such a generic real in \mathcal{H} we argue as in 5.5 of [10] using the semiselectivity of \mathcal{H} and the fact that $\mathcal{H} \cap V[G_\kappa]$ is countable in $V[G_\kappa]$, every $y \in [a, x \setminus a]$ is also $M_{\mathcal{H} \cap V[G_\kappa]}$-generic over $V[G_\kappa]$, and also $y \in [a, A']$. Thus $\varphi(x)$ if and only if $[a, A'] \models \varphi(\check{r})$, if and only if $\varphi(y)$. Therefore, $[a, x \setminus a]$ is contained in A or is disjoint from A. □

As in [10], we obtain the following.

Corollary 5.3. If ZFC is consistent with the existence of a weakly compact cardinal, then so is the statement that for every semiselective co-ideal \mathcal{H} all sets of real numbers from $L(\mathbb{R})$ are \mathcal{H}-Ramsey.

Eisworth ([1]) showed that the hypothesis of the existence of a Mahlo cardinal in Mathias’s result cannot be weakened.

Question. Can the weakly compact cardinal hypothesis in the statement of Theorem 5.2 be weakened? Would a Mahlo cardinal suffice?

Acknowledgments

The authors thank A. Blass, J. Bagaria and the referee for helping to correct some deficiencies in previous versions of the article.

References

[1] Eisworth, T., *Selective ultrafilters and $\omega \to (\omega^\omega)^\omega$*, Proc. Amer. Math. Soc., 127 (1999) 3067-3071. MR1660136 (2000a:03083)

[2] Ellentuck, E., *A new proof that analytic sets are Ramsey*, J. Symbolic Logic, 39 (1974), 163-165. MR0349393 (50:1887)

[3] Farah, I., *Semiselective co-ideals*, Mathematika, 45 (1997), 79-103. MR1644345 (2000b:03165)

[4] Galvin, F., and K. Prikry, *Borel sets and Ramsey’s theorem*, J. Symbolic Logic, 38 (1973), 193-198. MR037630 (50:2399)

[5] Jech, T., *Set Theory*. Springer Verlag, 2003. MR1940513 (2004g:03071)

[6] Kastanas, I., *On the Ramsey property for sets of reals*, J. Symbolic Logic, 48 (1983), 1035-1045. MR727792 (85j:03080)

[7] Kochris, A.S., *Classical Descriptive Set Theory*. Springer-Verlag, Grad. Texts in Math. 156, 1995. MR1321597 (96e:03057)

[8] Louveau, A., *Une méthode topologique pour l'étude de la propriété de Ramsey*, Israel J. Math., 23 (1976), 97-116. MR0411971 (54:100)

[9] Matet, P., *Happy Families and Completely Ramsey Sets*. Springer-Verlag, Archive for Mathematical Logic, 32 (1993), 151-171. MR1201647 (94i:03095)

[10] Mathias, A.R.D., *Happy families*. Annals of Mathematical Logic, 12 (1977), 59-111. MR0491197 (58:10462)

[11] Moschovakis, Y.N., *Descriptive Set Theory*. North-Holland, Amsterdam, 1980. MR561709 (82e:03002)

[12] Silver, J., *Every analytic set is Ramsey*, J. Symbolic Logic, 35 (1970) 60-64. MR0332480 (48:10807)

[13] Solovay, R. M., *A model of set-theory in which every set of reals is Lebesgue measurable*, Annals of Mathematics (2), 92 (1970), 1-56. MR0265151 (42:54)

[14] Todorcevic, S., *Introduction to Ramsey Spaces*, Princeton University Press, Princeton, New Jersey, 2010. MR2653812
