On Lin-Ni's conjecture in dimensions four and six

魏军城, 徐斌 and 杨文

Citation: 中国科学: 数学 49, 281 (2019); doi: 10.1360/N012018-00120

View online: http://engine.scichina.com/doi/10.1360/N012018-00120

View Table of Contents: http://engine.scichina.com/publisher/scp/journal/SSM/49/2

Published by the 《中国科学》杂志社

Articles you may be interested in

The Characteristic Polynomials of Abelian Varieties of Dimensions Three and Four Over Finite Fields
Science in China Series A-Mathematics, Physics, Astronomy & Technological Science 37, 147 (1994);

The four-dimensional smooth Poincaré conjecture
Chinese Science Bulletin 62, 3807 (2017);

CORRIGENDUM TO YIN WEN-LIN'S PAPER “THE LATTICE-POINTS IN A CIRCLE”
Scientia Sinica 11, 1725 (1962);

ON GODDARD’S CONJECTURE
Chinese Science Bulletin 35, 342 (1990);

ON GLAUBERMAN’S CONJECTURE AND PODUFALOV’S PROBLEM
Science in China Series A-Mathematics, Physics, Astronomy & Technological Science 33, 1174 (1990);
四、六维的 Lin-Ni 猜想

献给齐民友教授 90 华诞

魏军城1*, 徐斌2, 杨文3

1. Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
2. 江苏师范大学数学与统计学院, 徐州 221116;
3. 中国科学院武汉物理与数学研究所, 武汉 430071
E-mail: jcwei@math.ubc.ca, xubin0518@jsnu.edu.cn, wyang@wipm.ac.cn

收稿日期: 2018-04-29; 接受日期: 2018-09-28; 网络出版日期: 2018-12-27; * 通信作者

摘要 本文对于四、六维任意区域的 Lin-Ni 猜想给出一个非常数解的反例, 这里对于区域的对称性、几何以及拓扑性质不作任何假定.

关键词 Lin-Ni 猜想 先验估计 爆破解

MSC (2010) 主题分类 35J75, 35J25, 35J61

1 引言

本文考虑以下非线性椭圆型的 Neumann 边值问题:

\[
\begin{align*}
\Delta u - \mu u + u^q &= 0, & \text{在 } \Omega \text{ 内成立}, \\
u > 0, & \text{在 } \Omega \text{ 内成立}, \\
\frac{\partial u}{\partial \nu} &= 0, & \text{在 } \partial \Omega \text{ 上成立},
\end{align*}
\]

其中 $1 < q < +\infty$, $\mu > 0$, Ω 是 \mathbb{R}^n ($n \geq 2$) 中一个光滑的有界区域.

方程 (1.1) 来源于很多问题. 例如, 在生物数学中, 该方程既可以看成是 Gierer-Meinhardt 系统衍生出的一类 Shadow 系统的平衡态方程, 参见文献 [1, 2]; 也可以看成是 Keller-Segel 模型中趋化方程的平衡态方程, 参见文献 [3]. 当指标 $q = \frac{n+2}{n+2}$ 时, 方程 (1.1) 也可以看成是 Brezis-Nirenberg 型的 Neumann 问题 [4].

注意到方程 (1.1) 至少有一个解, 也就是常数 $u = \mu^{1/q}$. 当 μ 很小以及 $q < \frac{n+2}{n+2}$ 时, Lin 等 [5] 利用爆破分析和紧性的办法, 证明了该常值解是方程 (1.1) 唯一的解. 在此基础上, Lin 和 Ni [5] 提出了以下的猜想:

英文引用格式: Wei J C, Xu B, Yang W. On Lin-Ni's conjecture in dimensions four and six (in Chinese). Sci Sin Math, 2019, 49: 281–306, doi: 10.1360/N012018-00120
猜想 1.1 (Lin-Ni 猜想^[5]) 若 \(q = \frac{n+2}{n-2} \) 以及 \(\mu \) 充分小，问题 (1.1) 只有常数解。

近年来，关于 Lin-Ni 猜想的研究有许多重要的进展。其中第一个结果来自于 Adimurthi 和 Yadava^[6-8] 及 Budd 等^[9]，他们独立地考虑了此猜想在单位球时的情形，也就是针对以下问题：

\[
\begin{align*}
\Delta u - \mu u + u^{\frac{n+2}{n-2}} &= 0, \quad \text{在 } B_R(0) \text{ 内成立,} \\
u &= u(|x|), \quad u > 0, \quad \text{在 } B_R(0) \text{ 内成立,} \\
\frac{\partial u}{\partial \nu} &= 0, \quad \text{在 } \partial B_R(0) \text{ 上成立.}
\end{align*}
\]

(1.2)

他们有如下的结论:

定理 A^[6-9] 当 \(\mu \) 足够小时，

(1) 若 \(n = 3 \) 或者 \(n \geq 7 \)，问题 (1.2) 只有常数解；

(2) 若 \(n = 4, 5, 6 \)，问题 (1.2) 存在一个非常数解．

定理 A 揭示出 Lin-Ni 猜想受维数的影响。由于定理 A 的证明依赖于区域和解的对称性，所以很难被推广运用于一般的区域。该问题在一般区域的结论尚不完全，但是有一些结果。对于三维的凸区域，Zhu^[10] 及 Wei 和 Xu^[11] 证明了以下的结论：

定理 B^[10, 11] 在三维的凸区域，Lin-Ni 猜想是正确的。

Zhu^[10] 的证明利用了爆破分析和先验估计，而 Wei 和 Xu^[11] 则利用分部积分给出了一个直接的证明。随后，Druet 等^[12] 把定理 A 的结论 (1) 推广到区域具有正平均曲率的边界，以及有限能量解的情形。

定理 C^[12] 若 \(\Omega \) 是 \(\mathbb{R}^n \) 中光滑的有界区域，其中 \(n = 3 \) 或者 \(n \geq 7 \)。假定该区域边界的平均曲率恒为正，则存在一个正的常数 \(\mu_0(\Omega, \Lambda) \)，使得对于方程 (1.1) 所有的光滑解，当常数 \(\mu \in (0, \mu_0(\Omega, \Lambda)) \) 时，我们有以下的结论：

\[
\begin{align*}
\Delta u + \mu u &= u^{2^*-1}, \quad \text{在 } \Omega \text{ 内成立,} \\
u &> 0, \quad \text{在 } \Omega \text{ 内成立,} \\
\frac{\partial u}{\partial \nu} &= 0, \quad \text{在 } \partial \Omega \text{ 上成立,} \\
\int_\Omega u^{2^*} \, dx &\leq \Lambda,
\end{align*}
\]

由于定理 C 中能量有界假设是必要的，因为如果没有这个假设，在区域边界处某点具有负平均曲率的条件下，方程 (1.1) 被证明具有无穷能量的解，参考文献 [13]。具体而言，假定光滑的有界区域 \(\Omega \) 满足以下性质 (H1)–(H3):

(H1) \(y \in \Omega \) 当且仅当 \((y_1, y_2, \ldots, -y_i, \ldots, y_n) \in \Omega, \forall i = 3, \ldots, n; \)

(H2) 若 \((r, 0, y''') \in \Omega \) 则 \((r \cos \theta, r \sin \theta, y''') \in \Omega, \forall \theta \in (0, 2\pi), \) 其中 \(y''' = (y_3, \ldots, y_n); \)

(H3) 设 \(T := \partial \Omega \cap \{y_3 = \cdots = y_n = 0\} \)，则集合 \(T \) 存在一个连通的分支 \(\Gamma \) 使得 \(H(x) \equiv \gamma < 0, \forall x \in \Gamma. \)

Wang 等^[13] 对于 Lin-Ni 猜想在 \(n \geq 3 \) 的情形给出了非常简单的反例。

定理 D 假定 \(n \geq 3, q = \frac{n+2}{n-2} \) 以及 \(\Omega \) 是一个光滑的有界区域并且满足性质 (H1)–(H3)。设 \(\mu \) 是一个固定的正的常数，则问题 (1.1) 有无穷多的正解，其能量可以任意大。

对于一部分凸区域，Wang 等^[14] 在 \(n \geq 4 \) 时也给出了 Lin-Ni 猜想非常简单的反例。
定理 E 假定 \(n \geq 4, q = \frac{n+2}{2} \) 以及 \(\Omega \) 是一个光滑的有界区域并且满足性质 (H1) 和 (H2). 设 \(\mu \) 是一个固定的正常数, 则问题 (1.1) 有无穷多的正解, 其能量可以任意大.

定理 A–E 表明 Lin-Ni 猜想依赖于空间的维数以及区域 \(\Omega \) 的形状. 那么一个自然的问题是, 对于一般的区域, Lin-Ni 猜想的结论是否正确?

到目前为止, 这个方向唯一的结果是由 Rey 和 Wei [15] 给出的. 他们在 \(\mu \) 足够小时, 对于五维一般的区域 \(\Omega \) 给出了一个在其内部 \(K \) 个点爆破的非平凡解. 由于定理 A 的结论, Rey 和 Wei [15] 猜测 Lin-Ni 猜想在四至六维一般区域的情形下都存在着非常数解, 这也是本文即将讨论的问题.

本文的目的是针对四维和六维一般区域下的 Lin-Ni 问题在 \(\mu \) 很小的情形下给出一个在 \(\Omega \) 内部单点爆破的非平凡解. 从现在起, 我们将考虑以下问题:

\[
\begin{align*}
\Delta u - \mu u + u^{\frac{n+2}{n-2}} &= 0, & \text{在} \Omega \text{内成立}, \\
u > 0, & \text{在} \Omega \text{内成立}, \\
du/d\nu &= 0, & \text{在} \partial \Omega \text{上成立},
\end{align*}
\]

其中 \(n = 4, 6, \Omega \) 是 \(\mathbb{R}^n \) 中光滑的有界区域以及 \(\mu \) 充分小. 我们的主要结果陈述如下:

主要结论 对于问题 (1.3), 我们可以找到正常数 \(\mu_0 \) 使得对于所有的常数 \(\mu \in (0, \mu_0) \), 方程 (1.3) 在四维和六维任意的区域都具有一个于 \(\Omega \) 内部单点爆破的非平凡解.

结合文献 [15] 中的主要结果, 我们有以下推论:

推论 1.1 Lin-Ni 猜想在四至六维、一般区域的情形下存在非常数解.

为了更加详细地叙述主要定理, 我们引入以下记号. 设 \(G(x, Q) \) 为满足以下条件的 Green 函数:

\[
\begin{align*}
\Delta_x G(x, Q) + \delta_Q - \frac{1}{|\Omega|} &= 0, & \text{在} \Omega \text{内成立}, \\
\partial G/\partial\nu &= 0, & \text{在} \partial \Omega \text{上成立}, \\
\int_{\Omega} G(x, Q) dx &= 0,
\end{align*}
\]

则有

\[G(x, Q) = K(|x - Q|) - H(x, Q), \]

其中

\[K(r) = \frac{1}{c_n r^{n-2}}, \quad c_n = (n - 2)|S^{n-1}| \]

是 Laplace 算子在 \(\mathbb{R}^n \) 中的基本解 (\(|S^{n-1}| \) 表示 \(n - 1 \) 维单位球面的面积), \(n = 4, 6 \).

为了方便起见, 我们通过伸缩变换将问题 (1.3) 转化为以下问题:

\[
\begin{align*}
\Delta u - \mu u + n(n-2)u^{\frac{n+2}{n-2}} &= 0, & \text{在} \Omega \text{内成立}, \\
u > 0, & \text{在} \Omega \text{内成立}, \\
du/d\nu &= 0, & \text{在} \partial \Omega \text{上成立},
\end{align*}
\]

由文献 [16] 可知,

\[U_{\Lambda, Q} = \left(\frac{\Lambda}{\Lambda^2 + |x - Q|^2} \right)^{\frac{n-2}{2}}, \quad \Lambda > 0, \quad Q \in \mathbb{R}^n \]

\[(1.7) \]
给出了以下方程的所有解:

\[-\Delta u = n(n-2)u^{\frac{n+2}{n-2}}, \quad u > 0, \quad \forall x \in \mathbb{R}^n. \tag{1.8}\]

基于以上的讨论，我们在本文中的主要结论可以叙述如下:

定理 1.1 设 \(\Omega \) 为 \(\mathbb{R}^n \) 中一个光滑的有界区域。
(1) 若 \(n = 4 \)，存在正的常数 \(\mu_1 \) 使得对于所有的 \(\mu \in (0, \mu_1) \)，问题 (1.6) 有一个非平凡解

\[u_\mu = U_{\varepsilon, Q} e^{-1/\nu} + O(\mu^{-\frac{1}{2}}), \]

其中 \(c_1 \) 是一个仅依赖于区域的常数，将在下面的讨论中具体给出，\(\Lambda \) 是一个不依赖于其他参数的常数，爆破点 \(Q^\mu \) 的位置依赖于区域和参数 \(\Lambda \) 的选取。

(2) 若 \(n = 6 \)，存在正的常数 \(\mu_2 \) 使得对于所有的 \(\mu \in (0, \mu_2) \)，问题 (1.6) 有一个非平凡解

\[u_\mu = U_\mu \Lambda, Q^\mu + O(\mu), \]

其中 \(\Lambda \to \Lambda_0, \Lambda_0 \) 是一个指定的正常数，爆破点 \(Q^\mu \) 的位置依赖于区域和参数 \(\Lambda \) 的选取。

为了方便起见，我们引入一些记号。设

\[\Omega_\varepsilon := \frac{\Omega}{\varepsilon} = \{ z \mid \varepsilon z \in \Omega \}, \tag{1.9} \]

及

\[\mu = \begin{cases} \left(\frac{c_1}{-\ln \varepsilon}\right)^\frac{1}{2}, & n = 4, \\ \varepsilon, & n = 6. \end{cases} \tag{1.10} \]

通过变换 \(u(x) \to \varepsilon^{-\frac{n+2}{n-2}} u(x/\varepsilon) \)，(1.6) 可以写成以下的形式:

\[\begin{cases} \Delta u - \mu \varepsilon^2 u + n(n-2)u^{\frac{n+2}{n-2}} = 0, & \text{在 } \Omega_\varepsilon \text{ 内成立,} \\ u > 0, & \text{在 } \Omega_\varepsilon \text{ 内成立,} \\ \frac{\partial u}{\partial \nu} = 0, & \text{在 } \partial \Omega_\varepsilon \text{ 上成立.} \end{cases} \tag{1.11} \]

令

\[S_\varepsilon[u] := -\Delta u + \mu \varepsilon^2 u - n(n-2)u^{\frac{n+2}{n-2}}, \quad u_+ = \max(u, 0), \tag{1.12} \]

并引入以下泛函:

\[J_\varepsilon[u] := \frac{1}{2} \int_{\Omega_\varepsilon} |\nabla u|^2 + \frac{1}{2} \mu \varepsilon^2 \int_{\Omega_\varepsilon} u^2 - \frac{(n-2)^2}{2} \int_{\Omega_\varepsilon} |u|^{\frac{n+2}{n-2}}, \quad u \in H^1(\Omega_\varepsilon). \tag{1.13} \]

由于空间维数的影响，我们需要处理其产生的不同困难。在维数的情形下，一个主要的问题是

\(\mu \) 与 \(\varepsilon \) 的关系十分隐秘。六维则在某种意义上是一种临界情形，这源自常数项 \(\mu u \) 不再出现于该问题线性化算子的主要项。为了克服此困难，我们必须引入一个人为的参数 \(\eta \)。因为该线性化算子的核空间包含常数，所以，此情形可以被看作是某种 “共振” 现象。

本文的结构如下: 第 2 节构造出一个合适的近似爆破解 \(W \)，并列举出该近似函数一些所需的性质。第 3 节分析一类在近似解 \(W \) 处的线性化算子。第 4 节求解与之对应的一个非线性问题。第 5 节研究剩余的有限维问题，然后在第 6 节中求解所对应的约化泛函的临界值。我们将一些详细计算的结果留在了第 7 节。
2 近似爆破解

本节将构造一个合适的近似解，并在这个近似解的附近求解定理 1.1 所需的解。我们将根据不同的维数构造相应形式的近似解。

设参数 μ 和 ε 的关系由 (1.10) 给出。对于 Ω 内的点 Q, (1.7) 中定义的 $U_{\Lambda,Q}/\varepsilon$ 提供了方程 (1.11) 的一阶逼近解。由于多出的线性项 $\mu \varepsilon^2 u$ 和齐次的 Neumann 边值，我们需要在 $U_{\Lambda,Q}/\varepsilon$ 的基础上进行一些修正，从而得到更加精确的近似解。接下来将根据不同的维数来定义低阶项。

当 $n = 4$ 时，考虑以下的线性方程：

$$
\Delta \Psi + U_{1,0} = 0, \quad \text{在 } \mathbb{R}^4 \text{ 中成立},
\Psi(0) = 1. \quad (2.1)
$$

注意到方程 (2.1) 拥有一个唯一的镜像对称解，并且该解具有以下的渐近行为：

$$
\Psi(|y|) = \frac{1}{2} \ln |y| + I + O\left(\frac{1}{|y|}\right), \quad \Psi' = -\frac{1}{2|y|} \left(1 + O\left(\frac{\ln(1 + |y|)}{|y|^2}\right)\right), \quad \text{当 } |y| \to \infty, \quad (2.2)
$$

其中 I 是一个不依赖于 y 的常数。对于 Ω_ε 中的点 Q, 设

$$
\Psi_{\Lambda,Q} = \frac{\Lambda}{2} \ln \frac{1}{\Lambda \varepsilon} + \Lambda \tilde{\Psi}\left(\frac{y-Q}{\Lambda}\right). \quad (2.3)
$$

其中 $\Psi_{\Lambda,Q}$ 满足 $\Delta \Psi_{\Lambda,Q} + U_{\Lambda,Q} = 0$ 在 \mathbb{R}^4 中成立。从 (2.2) 中得到

$$
|\Psi_{\Lambda,Q}(y)| \leq C \left|\ln \frac{1}{\varepsilon(1 + |y-Q|)}\right|, \quad |\partial_y \Psi_{\Lambda,Q}(y)| \leq C \left|\ln \frac{1}{\varepsilon(1 + |y-Q|)}\right|, \quad (2.4)
$$

$$
|\partial_y \Psi_{\Lambda,Q}(y)| \leq \frac{C}{1 + |y-Q|}.
$$

接下来考虑 $n = 6$ 的情形。设 $\Psi(|y|)$ 为以下方程的镜像解：

$$
\Delta \Psi + U_{1,0} = 0, \quad \text{在 } \mathbb{R}^6 \text{ 中成立},
\Psi \to 0, \quad \text{当 } |y| \to +\infty. \quad (2.5)
$$

不难发现

$$
\Psi(y) = \frac{1}{4|y|^2} \left(1 + O\left(\frac{1}{|y|^2}\right)\right), \quad \text{当 } |y| \to +\infty. \quad (2.6)
$$

对于 Ω_ε 中的点 Q, 设

$$
\Psi_{\Lambda,Q}(y) = \Psi\left(\frac{y-Q}{\Lambda}\right),
$$

其中 $\Psi_{\Lambda,Q}$ 满足

$$
\Delta \Psi_{\Lambda,Q}(y) + U_{\Lambda,Q} = 0, \quad \text{在 } \mathbb{R}^6 \text{ 中成立}.
$$

通过直接的计算，有

$$
|\Psi_{\Lambda,Q}(y)| \leq \frac{C}{(1 + |y-Q|)^3}, \quad |\partial_y \Psi_{\Lambda,Q}(y)| \leq \frac{C}{(1 + |y-Q|)^3}, \quad |\partial_{y_i} \Psi_{\Lambda,Q}(y)| \leq \frac{C}{(1 + |y-Q|)^3}, \quad (2.7)
$$
考虑到线性项 $\mu \varepsilon^2 u$ 的影响，我们需要对近似解进行修正使其满足 Neumann 边界条件。出于这个目的，我们需要在原近似解的基础上增加一个修正项。定义

$$
\hat{U}_{\Lambda, Q/\varepsilon}(z) = -\Psi_{\Lambda, Q/\varepsilon}(z) - c_n \mu^{-1} \varepsilon^{n-4} \Lambda^{\frac{n-2}{2}} H(\varepsilon z, Q) + R_{\varepsilon, \Lambda, Q}(z) \chi(\varepsilon z),
$$

(2.8)

其中 $R_{\varepsilon, \Lambda, Q}$ 是满足以下边值问题的唯一解:

$$
\begin{align*}
\Delta R_{\varepsilon, \Lambda, Q} - \varepsilon^2 R_{\varepsilon, \Lambda, Q} &= 0, & \text{在 } \Omega_{\varepsilon} \text{ 内成立}, \\
\mu \varepsilon^2 \frac{\partial R_{\varepsilon, \Lambda, Q}}{\partial \nu} &= -\frac{\partial}{\partial \nu} [U_{\Lambda, Q/\varepsilon} - \mu \varepsilon^2 \Psi_{\Lambda, Q/\varepsilon} - c_n \varepsilon^{n-2} \Lambda^{\frac{n-2}{2}} H(\varepsilon z, Q)], & \text{在 } \partial \Omega_{\varepsilon} \text{ 上成立},
\end{align*}
$$

(2.9)

这里 $\chi(x)$ 是一个在 Ω 上的光滑截断函数，满足以下性质:

$$
\chi(x) = \begin{cases}
1, & \text{若 } d(x, \partial \Omega) < \frac{\delta}{4}, \\
0, & \text{若 } d(x, \partial \Omega) > \frac{\delta}{2}.
\end{cases}
$$

从 (2.2), (2.6), $U_{\Lambda, Q}$ 的表达展开式以及 H 的定义，我们得到 $R_{\varepsilon, Q}$ 在 Ω_{ε} 的边界上满足

$$
R_{\varepsilon, Q} = O(\varepsilon^{n-3}),
$$

由此可以得到

$$
|R_{\varepsilon, \Lambda, Q}| + |\varepsilon^{-1} \nabla_x R_{\varepsilon, \Lambda, Q}| + |\varepsilon^{-2} \nabla_x^2 R_{\varepsilon, \Lambda, Q}| \leq \begin{cases}
CA, & n = 4, \\
C\varepsilon^2, & n = 6.
\end{cases}
$$

(2.10)

现在可以定义近似解。当 $n = 4$ 时，令

$$
\Lambda_{4, 1} \leq \Lambda \leq \Lambda_{4, 2}, \quad Q \in \mathcal{M}_{\delta_4} := \{x \in \Omega | d(x, \partial \Omega) > \delta_4\},
$$

(11.1)

其中

$$
\Lambda_{4, 1} = \exp \left(-\frac{1}{2}\right) \varepsilon^{\beta}, \quad \Lambda_{4, 2} = \exp \left(-\frac{1}{2}\right) \varepsilon^{-\beta}
$$

为依赖于区域的两个常数以及 δ_4 是一个充分小的数，将在随后的讨论中给出。定义四维的近似解为

$$
W_{\varepsilon, \Lambda, Q} = U_{\Lambda, Q} + \mu \varepsilon^2 \hat{U}_{\Lambda, Q} + \frac{c_4 \Lambda}{|\Omega|} \mu^{-1} \varepsilon^2,
$$

(2.12)

其中 $\bar{Q} = Q/\varepsilon$。

当 $n = 6$ 时，令参数 (Λ, Q, η) 满足

$$
\sqrt{\frac{\varepsilon}{c_6}} \left(\frac{1}{96} - \Lambda_6 \varepsilon^{\frac{3}{2}}\right) \leq \Lambda \leq \sqrt{\frac{\varepsilon}{c_6}} \left(\frac{1}{96} + \Lambda_6 \varepsilon^{\frac{3}{2}}\right),
$$

$$
Q \in \mathcal{M}_{\delta_6} := \{x \in \Omega | d(x, \partial \Omega) > \delta_6\},
$$

(13.3)

$$
\frac{1}{48} - \eta_6 \varepsilon^{\frac{3}{2}} \leq \eta \leq \frac{1}{48} + \eta_6 \varepsilon^{\frac{3}{2}},
$$

1) 对于四维的情形，由于参数 Λ 所设置的区间依赖于 ε，因此在计算误差时需要考虑 Λ。同时我们注意到 (2.9) 第二个方程右端的每一项都携带 Λ。
其中 $c_6 = 4|S^0|$, Λ_6 和 η_6 为仅依赖于区域的参数，以及 δ_6 是一个充分小的数，也将在随后的讨论中给出。定义六维的近似解为

$$
W_{\varepsilon, \Lambda, Q, \eta} = U_{\Lambda, Q} + \mu \varepsilon^2 \hat{U}_{\Lambda, Q} + \eta \mu^{-1} \varepsilon^4,
$$

(2.14)

其中 $\bar{Q} = Q/\varepsilon$。

我们说明四维和六维近似解的设置是有区别的。对于后者，我们需要引入一个新的参数 η。这样做的原因是在处理六维线性化的问题中，线性项 $\mu \varepsilon^2$ 不起作用。事实上这也是主要的困难之一。对于 Neumann 边值问题来说，这也是一个新颖的点。

为方便起见，接下来，我们分别用记号 W, U, \hat{U}, R 和 Ψ 代替 $W_{\varepsilon, \Lambda, Q}, U_{\varepsilon, Q/\varepsilon}, \hat{U}_{\varepsilon, \Lambda, Q}$ 和 $\Psi_{\varepsilon, Q/\varepsilon}$。通过上述讨论，我们可以得到 W 在边界上的法向导数为 0，并且满足

$$
-\Delta W + \mu \varepsilon^2 W = \begin{cases}
8U^3 + \mu^2 \varepsilon^4 \hat{U} - \mu \varepsilon^2 \Delta (R_{\varepsilon, \Lambda, Q} \chi), & n = 4, \\
24U^2 + \mu^2 \varepsilon^4 \hat{U} - \mu \varepsilon^2 \Delta (R_{\varepsilon, \Lambda, Q} \chi) + \varepsilon^6 \left(\eta - \frac{c_6 \Lambda^2}{\Omega}\right), & n = 6.
\end{cases}
$$

(2.15)

注意到 W 连续依赖于 Λ, \bar{Q} 和 η (六维的情形)。对于 Ω_{ε} 中的点 z，设置

$$
\langle z - \bar{Q} \rangle = (1 + |z - \bar{Q}|^2)^{\frac{1}{2}}.
$$

通过简单的计算，有

$$
|W(z)| \leq \begin{cases}
C(\varepsilon^2 (-\ln \varepsilon)^{\frac{1}{2}} + \langle z - \bar{Q} \rangle^{-2}), & n = 4, \\
C(\varepsilon^3 + \langle z - \bar{Q} \rangle^{-4}), & n = 6,
\end{cases}
$$

(2.16)

$$
|D_{\Lambda} W(z)| \leq \begin{cases}
C(\varepsilon^2 (-\ln \varepsilon)^{\frac{1}{2}} + \langle z - \bar{Q} \rangle^{-2}), & n = 4, \\
C(\langle z - \bar{Q} \rangle^{-4}), & n = 6,
\end{cases}
$$

(2.17)

$$
|D_{\bar{Q}} W(z)| \leq \begin{cases}
C(\langle z - \bar{Q} \rangle^{-3}), & n = 4, \\
C(\langle z - \bar{Q} \rangle^{-5}), & n = 6,
\end{cases}
$$

(2.18)

$$
|D_{\eta} W(z)| = O(\varepsilon^3), & n = 6.
$$

(2.19)

根据 W 的表达式，我们有以下关于误差和能量的估计，这些估计的证明将在第 7 节给出。

引理 2.1 对于四维的情形，有

$$
|S_z[W](z)| \leq C(\langle z - \bar{Q} \rangle^{-4} \varepsilon^2 (-\ln \varepsilon)^{\frac{1}{2}} + \langle z - \bar{Q} \rangle^{-2} \varepsilon^4 (-\ln \varepsilon)) \\
+ C\left(\frac{\varepsilon^4}{(-\ln \varepsilon)^{\frac{1}{2}}} + \frac{\varepsilon^4}{-\ln \varepsilon}\right) \ln \left(\frac{1}{\varepsilon (1 + |z - \bar{Q}|)}\right).
$$

(2.20)

$$
|D_{\Lambda} S_z[W](z)| \leq C(\langle z - \bar{Q} \rangle^{-5} \varepsilon^2 (-\ln \varepsilon)^{\frac{1}{2}} + \langle z - \bar{Q} \rangle^{-2} \varepsilon^4 (-\ln \varepsilon)) \\
+ \frac{\varepsilon^4}{(-\ln \varepsilon)^{\frac{1}{2}}} + \frac{\varepsilon^4}{-\ln \varepsilon}\right) \ln \left(\frac{1}{\varepsilon (1 + |z - \bar{Q}|)}\right),
$$

(2.21)

$$
|D_{\bar{Q}} S_z[W](z)| \leq C(\langle z - \bar{Q} \rangle^{-5} \varepsilon^2 (-\ln \varepsilon)^{\frac{1}{2}} + \langle z - \bar{Q} \rangle^{-3} \varepsilon^4 (-\ln \varepsilon)
$$

(2.22)

(2.23)
\[(z - \bar{Q})^{-1} \frac{\varepsilon^4}{-\ln \varepsilon}, \]
\[(2.22) \]

以及
\[J_\varepsilon[W] = 2 \int_{\mathbb{R}^4} U_{1,0}^4 + \frac{c_4 \Lambda^2}{4} \varepsilon^2 \left(\frac{c_1}{-\ln \varepsilon} \right)^{\frac{1}{2}} \ln \frac{1}{\Lambda \varepsilon} - \frac{c_4^2 \Lambda^2}{2|\Omega|} \varepsilon^2 \left(\frac{c_1}{-\ln \varepsilon} \right)^{-\frac{1}{2}} \]
\[+ \frac{1}{2} c_4^2 \Lambda^2 \varepsilon^2 H(Q,Q) + O \left(\varepsilon^2 \left(\frac{c_1}{-\ln \varepsilon} \right)^{\frac{1}{2}} \Lambda^2 \right) + O(\varepsilon^4 (-\ln \varepsilon)^2). \]
\[(2.23) \]

而对于六维的情形，我们有
\[S_\varepsilon[W](z) = -\varepsilon^6 \left(24 \eta^2 - \eta + \frac{c_6 \Lambda^2}{|\Omega|} \right) + O(1) \varepsilon^3 (z - \bar{Q})^{-4}, \]
\[(2.24) \]
\[|D_\Lambda S_\varepsilon[W](z)| = O(1) (z - \bar{Q})^{-4} \varepsilon^3 + \varepsilon^6, \]
\[(2.25) \]
\[|D_\eta S_\varepsilon[W](z)| = O(1) (z - \bar{Q})^{-4} \varepsilon^3 + \varepsilon^6 \]
\[(2.26) \]
\[|D_\bar{Q} S_\varepsilon[W](z)| \leq C (z - \bar{Q})^{-5} \varepsilon^3, \]
\[(2.27) \]

以及
\[J_\varepsilon[W] = 4 \int_{\mathbb{R}^8} U_{1,0}^3 + \left(\frac{1}{2} \eta^2 |\Omega| - c_6 \Lambda^2 A^2 + \frac{1}{48} c_6 A^2 - 8 \varepsilon^4 |\Omega| \right) \varepsilon^3 + \frac{1}{2} c_6^2 A^4 \varepsilon^4 H(Q,Q) \]
\[+ \frac{1}{2} \varepsilon^4 \int_{\Omega} \frac{\Lambda^2}{|x - Q|^4} + O(\varepsilon^5). \]
\[(2.28) \]

3 有限维约化

我们将利用有限维约化的方法来求解此临界指数的问题. 有限维约化的办法首先被 Floer 和 Weinstein 应用于构造一维非线性 Schrödinger 方程的单胞 (bump) 解. 随后, 这个方法被发展并应用于临界指标的问题, 我们推荐读者参见文献 [15, 17–20] 以及这些文献中引用的参考文献. 对于最新的以及处理临界指标问题手法较为精细的内容可参见文献 [21].

这个方法的过程如下: 我们将求解非线性问题 (1.11) 分为以下两个步骤. 第一步, 在有限维近似核空间的补空间中求解该问题. 第二步, 我们把原问题等价于一个在有限维的集合中求解极值问题. 由于我们证明中一个新颖的地方是对于六维的问题引入了一个新的空间 (与参数 η 对应). 这有别于处理临界指标问题的其他方法. 传统方法中线性化算子的核空间是 \(n + 1 \) 维, 而现在我们需要处理的核空间维数为 \(n + 2 = 8 \) 维.

定义空间 \(H^4(\Omega_\varepsilon) \) 及其内积
\[(u, v)_\varepsilon = \int_{\Omega_\varepsilon} (\nabla u \cdot \nabla v + \mu \varepsilon^2 uv). \]
\[(3.1) \]

对于四维的情形, 任意的函数在空间 \(H^4(\Omega_\varepsilon) \) 中正交于以下函数:
\[Y_0 = \frac{\partial W}{\partial \Lambda}, \quad Y_i = \frac{\partial W}{\partial Q_i}, \quad 1 \leq i \leq 4, \]
\[(3.2) \]
等价于在空间 $L^2(\Omega_\varepsilon)$ 中正交于函数 $Z_i, 0 \leq i \leq 4$, 其中

$$
\begin{cases}
 Z_0 = -\Delta \frac{\partial W}{\partial \Lambda} + \mu \varepsilon^2 \frac{\partial W}{\partial \Lambda}, \\
 Z_i = -\Delta \frac{\partial W}{\partial Q_i} + \mu \varepsilon^2 \frac{\partial W}{\partial Q_i}, & 1 \leq i \leq 4.
\end{cases}
$$

(3.3)

通过直接的计算可得

$$|Z_i(z)| \leq C(\varepsilon^4 + (z - \bar{Q})^{-6}).$$

(3.4)

接下来将考虑以下问题：对于给定的函数 h, 寻找 ϕ 使得以下方程成立:

$$
\begin{cases}
 -\Delta \phi + \mu \varepsilon^2 \phi - 24W^2 \phi = h + \sum_{i=0}^4 c_iZ_i, & \text{在 } \Omega_\varepsilon \text{ 内成立}, \\
 \frac{\partial \phi}{\partial \nu} = 0, & \text{在 } \partial \Omega_\varepsilon \text{ 上成立}, \\
 \langle Z_i, \phi \rangle = 0, & 0 \leq i \leq 4.
\end{cases}
$$

(3.5)

对于六维的情形，任意的函数在空间 $H^1(\Omega_\varepsilon)$ 中正交于以下函数:

$$Y_6 = \frac{\partial W}{\partial \Lambda}, \quad Y_i = \frac{\partial W}{\partial Q_i}, \quad 1 \leq i \leq 6, \quad Y_7 = \frac{\partial W}{\partial \eta}.$$

(3.6)

则等价于在空间 $L^2(\Omega_\varepsilon)$ 中正交于函数 $Z_i, 0 \leq i \leq 7$, 其中

$$
\begin{cases}
 Z_0 = -\Delta \frac{\partial W}{\partial \Lambda} + \mu \varepsilon^2 \frac{\partial W}{\partial \Lambda}, \\
 Z_i = -\Delta \frac{\partial W}{\partial Q_i} + \mu \varepsilon^2 \frac{\partial W}{\partial Q_i}, & 1 \leq i \leq 6, \\
 Z_7 = -\Delta \frac{\partial W}{\partial \eta} + \mu \varepsilon^2 \frac{\partial W}{\partial \eta}.
\end{cases}
$$

(3.7)

通过直接的计算，有

$$|Z_i(z)| \leq C(\varepsilon^6 + (z - \bar{Q})^{-8}), \quad 0 \leq i \leq 6, \quad Z_7(z) = O(\varepsilon^6).$$

(3.8)

同四维的问题一样，考虑以下问题：对于给定的 h, 寻找 ϕ 使得以下方程成立:

$$
\begin{cases}
 -\Delta \phi + \mu \varepsilon^2 \phi - 48W \phi = h + \sum_{i=0}^7 d_iZ_i, & \text{在 } \Omega_\varepsilon \text{ 内成立}, \\
 \frac{\partial \phi}{\partial \nu} = 0, & \text{在 } \partial \Omega_\varepsilon \text{ 上成立}, \\
 \langle Z_i, \phi \rangle = 0, & 0 \leq i \leq 7.
\end{cases}
$$

(3.9)

我们将在一个加权的空间中处理问题 (3.5) 和 (3.9) 的存在性和唯一性。出于这个目的，定义

$$
\begin{align*}
 &\|\phi\|_* = \|(z - \bar{Q})\phi(z)\|_\infty, \quad \|f\|_* = \varepsilon^{-3(-1 \ln \varepsilon)^{1/2}} |f| + \|(z - \bar{Q})^3f(z)\|_\infty, \quad n = 4, \\
 &\|\phi\|_{**} = \|(z - \bar{Q})^2\phi(z)\|_\infty, \quad \|f\|_{**} = \|(z - \bar{Q})^4f(z)\|_\infty, \quad n = 6.
\end{align*}
$$

(3.10)

其中 $\|f\|_\infty = \max_{z \in \Omega_\varepsilon} |f(z)|, \quad |f| = |\Omega_\varepsilon|^{-1} \int_{\Omega_\varepsilon} f(z)dz$ 表示 f 在 Ω_ε 积分的平均。

在介绍问题 (3.5) 和 (3.9) 的存在性之前，我们需要下面的引理。
引理 3.1 设函数 u 和 f 满足

$$-\Delta u = f, \quad \frac{\partial u}{\partial \nu} = 0, \quad \bar{u} = \bar{f} = 0,$$

则

$$|u(x)| \leq C \int_{\Omega} \frac{|f(y)|}{|x-y|^{n-2}} dy. \quad (3.11)$$

详细的讨论参见文献 [15, 引理 3.1], 这里省略证明。

作为该引理的推论，我们有下面的推论:

推论 3.1 若 $n = 4$, 假定函数 u 和 f 满足

$$\begin{cases}
-\Delta u + \mu \varepsilon^2 u = f, & \text{在 } \Omega \varepsilon \text{ 内成立,} \\
\frac{\partial u}{\partial \nu} = 0, & \text{在 } \partial \Omega \varepsilon \text{ 上成立,} \\
\pi = \bar{f} = 0,
\end{cases}$$

则

$$\|u\| \leq C \|f\|. \quad (3.12)$$

若 $n = 6$, 假定函数 u 和 f 满足

$$\begin{cases}
-\Delta u + c \mu \varepsilon^2 u = f, & \text{在 } \Omega \varepsilon \text{ 内成立,} \\
\frac{\partial u}{\partial \nu} = 0, & \text{在 } \partial \Omega \varepsilon \text{ 上成立,} \\
\bar{u} = \bar{f} = 0,
\end{cases}$$

其中 c 是一个任意的常数, 则

$$\|u\| \leq C \|f\|. \quad (3.13)$$

证明 对于四维的情形, 利用分部积分, 有 $\bar{f} = \mu \varepsilon^2 \bar{u}$. 我们可以把原方程改写为

$$\Delta (u - \bar{u}) = \mu \varepsilon^2 (u - \bar{u}) - (f - \bar{f}).$$

借助引理 3.1, 我们有

$$|u(y) - \bar{u}| \leq C \mu \varepsilon^2 \int_{\Omega \varepsilon} \frac{|u(x) - \bar{u}|}{|x-y|^2} dx + C \int_{\Omega \varepsilon} \frac{|f(x) - \bar{f}|}{|x-y|^2} dx.$$

因为 $\langle y - \bar{Q} \rangle \int_{R^4} \frac{1}{|x-y|^2} (x - \bar{Q})^{-3} dx < \infty$, 所以,

$$\|(y - \bar{Q})u - \bar{u}\|_\infty \leq C \mu \varepsilon^2 \|\langle y - \bar{Q} \rangle^3 (u - \bar{u})\|_\infty + C \|\langle y - \bar{Q} \rangle^3 (f - \bar{f})\|_\infty \leq C \mu \|\langle y - \bar{Q} \rangle^3 u - \bar{u}\|_\infty + C \|\langle y - \bar{Q} \rangle^3 f - \bar{f}\|_\infty,$$

$$\|(y - \bar{Q})u - \bar{u}\|_\infty \leq C \|\langle y - \bar{Q} \rangle^3 f - \bar{f}\|_\infty.$$

利用上式, 进一步有

$$\|(y - \bar{Q})u\|_\infty \leq C \|\langle y - \bar{Q} \rangle\|_\infty |\bar{u}| + C \varepsilon^{-3} |\bar{f}| + \|\langle y - \bar{Q} \rangle^3 f\|_\infty \leq C \|f\|.$$
于是我们完成了四维情形的证明.

对于六维的情形，利用引理 3.1，有

$$|y - Q| u| \leq C \int_{\Omega} \frac{|y - Q|(|\varepsilon^2 u| + |f|)}{|x - y|^4} dx \leq C(|\mu \ln \varepsilon||u|| + ||f||),$$

其中我们用到类似于四维情形的估计. 由此可以得到 $||u|| \leq ||f||$, 从而该推论证毕.

接下来陈述本节中的主要结果:

命题 3.1 存在常数 $\varepsilon_0 > 0$, 以及一个不依赖于 (2.11) 中定义的 ε, Λ, Q 及 (2.13) 中定义的 ε, η, Λ, Q 的常数 $C > 0$, 使得对所有的 $\varepsilon \in (0, \varepsilon_0)$ 以及 $h \in L^\infty(\Omega)$, 问题 (3.5) 和 (3.9) 拥有一个唯一的解 $\phi = L_\varepsilon(h)$. 另外, 对于问题 (3.5) 和 (3.9), 我们有以下的估计:

$$||L_\varepsilon(h)||_\ast \leq C||h||_\ast, \quad |c_i| \leq C||h||_\ast, \quad 0 \leq i \leq 4,$$

$$||L_\varepsilon(h)||_\ast \ast \leq C||h||_\ast \ast, \quad |d_i| \leq C||h||_\ast \ast, \quad 0 \leq i \leq 6.$$ \hspace{1cm} (3.14)

进一步地, 该映射 $L_\varepsilon(h)$ 满足以下估计:

$$||D(\Lambda, Q)L_\varepsilon(h)||_\ast \leq C||h||_\ast, \quad n = 4; \quad ||D(\eta, \Lambda, Q)L_\varepsilon(h)||_\ast \ast \leq C\varepsilon^{-1}||h||_\ast \ast \ast, \quad n = 6.$$ \hspace{1cm} (3.15)

此命题的证明同文献 [15, 命题 3.1] 的证明类似, 这里提供证明的概要. 首先需要以下的引理:

引理 3.2 对于四维的情形, 假定 ϕ_ε 和 $h = h_\varepsilon$ 满足方程 (3.5). 若 $||h_\varepsilon||_\ast$ 随着 ε 趋于 0 而趋于 0, 那么 $||\phi_\varepsilon||_\ast$ 也满足此性质. 对于六维的情形, 假定 ϕ_ε 和 $h = h_\varepsilon$ 满足方程 (3.9). 若 $||h_\varepsilon||_\ast \ast$ 随着 ε 趋于 0 而趋于 0, 那么 $||\phi_\varepsilon||_\ast \ast$ 也满足此性质.

证明 下面给出证明的主要思路, 反证法. 首先考虑四维的情形. 假设 $||\phi_\varepsilon||_\ast = 1$. 在方程 (3.5) 两端同时乘以 Y_j 然后在 Ω 内积分, 可得

$$\sum_1 c_i \langle Z_i, Y_j \rangle = \langle -\Delta Y_j + \varepsilon^2 Y_j - 24 W^2 Y_j, \phi_\varepsilon \rangle - \langle h_\varepsilon, Y_j \rangle.$$ \hspace{1cm} (3.16)

根据 Z_i 和 Y_j 的定义, 不难发现

$$\langle Z_0, Y_0 \rangle = ||Y_0||_\varepsilon^2 = \gamma_0 + o(1),$$

$$\langle Z_i, Y_i \rangle = ||Y_i||_\varepsilon^2 = \gamma_1 + o(1), \quad 1 \leq i \leq 4,$$ \hspace{1cm} (3.17)

其中 γ_0 和 γ_1 是严格正的常数, 以及

$$\langle Z_i, Y_j \rangle = o(1), \quad i \neq j.$$ \hspace{1cm} (3.18)

另一方面, 通过直接的计算, 有

$$\langle -\Delta Y_j + \varepsilon^2 Y_j - 24 W^2 Y_j, \phi_\varepsilon \rangle = o(||\phi_\varepsilon||_\ast), \quad \langle h_\varepsilon, Y_j \rangle = O(||h_\varepsilon||_\ast).$$

结合上述的讨论以及方程 (3.16), 我们可以解出 $c_i (i = 0, \ldots, 4)$ 满足

$$c_i = O(||h_\varepsilon||_\ast) + o(||\phi_\varepsilon||_\ast).$$ \hspace{1cm} (3.19)

特别地, c_i 随着 ε 趋于 0 而趋于 0.
利用 $\|\phi_\varepsilon\|_* = 1$ 以及经典的椭圆估计, 我们可以得到一串收敛的子列使得其极限 $\phi_{\varepsilon, 0} = \phi_\varepsilon(y - \bar{Q})$ 是满足以下方程的一个非平凡解:

$$-\Delta \phi_0 = 24U_{\Lambda, 0}^2 \phi_0.$$

运用利靴法 (参见文献 [22, 命题 2.2]), 有 $|\phi_0(y)| \leq C(1 + |y|)^{-2}$. 作为推论, ϕ_0 可以写成 (参见文献 [23])

$$\phi_0 = \alpha_0 \frac{\partial U_{\Lambda, 0}}{\partial \Lambda} + \sum_i \alpha_i \frac{\partial U_{\Lambda, 0}}{\partial y_i}.$$

另一方面, 从等式 $(Z_i, \phi_\varepsilon) = 0$ 可以得到

$$\int_{\mathbb{R}^4} -\Delta \frac{\partial U_{\Lambda, 0}}{\partial \Lambda} \phi_0 = \int_{\mathbb{R}^4} U_{\Lambda, 0}^2 \frac{\partial U_{\Lambda, 0}}{\partial \Lambda} \phi_0 = 0,$$

$$\int_{\mathbb{R}^4} -\Delta \frac{\partial U_{\Lambda, 0}}{\partial y_i} \phi_0 = \int_{\mathbb{R}^4} U_{\Lambda, 0}^2 \frac{\partial U_{\Lambda, 0}}{\partial y_i} \phi_0 = 0, \quad 1 \leq i \leq 4.$$

通过直接计算可得

$$\int_{\mathbb{R}^4} \left| \nabla \frac{\partial U_{\Lambda, 0}}{\partial \Lambda} \right|^2 = \gamma_0 > 0, \quad \int_{\mathbb{R}^4} \left| \nabla \frac{\partial U_{\Lambda, 0}}{\partial y_i} \right|^2 = \gamma_1 > 0, \quad 1 \leq i \leq 4,$$

$$\int_{\mathbb{R}^4} \nabla \frac{\partial U_{\Lambda, 0}}{\partial \Lambda} \nabla \frac{\partial U_{\Lambda, 0}}{\partial y_j} = \int_{\mathbb{R}^4} \nabla \frac{\partial U_{\Lambda, 0}}{\partial y_i} \nabla \frac{\partial U_{\Lambda, 0}}{\partial y_j} = 0, \quad i \neq j.$$

利用上述两个方程式, 我们得到 α_i 满足一个非线性椭圆方程, 因此, $\alpha_i = 0, 0 \leq i \leq 4, \phi_0 = 0$. 作为推论, 我们有 $\phi_\varepsilon(z - \bar{Q})$ 在 $C^1_{\text{loc}}(\Omega_r)$ 趋于 0.

接下来, 我们利用方程 (3.5) 证明 $\|\phi_\varepsilon\|_* = o(1)$. 结合 (3.5) 和推论 3.1, 有

$$\|\phi_\varepsilon\|_* \leq C \left(||W^2\phi_\varepsilon||_{{**}} + ||h||_{{**}} + \sum_i |c_i| \|Z_i\|_{{**}} \right). \quad (3.20)$$

我们逐项分析 (3.20) 的右端项. 借助 (2.16), 可推导出

$$|\langle z - \bar{Q} \rangle^3 W^2 \phi_\varepsilon| \leq C \varepsilon^4 (-\ln \varepsilon)(z - \bar{Q})^2 \|\phi_\varepsilon\|_* + \langle z - \bar{Q} \rangle^{-1} |\phi_\varepsilon|. \quad (3.21)$$

因为 $\|\phi_\varepsilon\|_* = 1$, 我们知道方程 (3.21) 右端的第一项可以被 $\varepsilon^2 (-\ln \varepsilon)$ 控制住, 对于第二项, 我们可得其在任意的球 $B_R(Q)$ 一致收敛到 0. 在 $\Omega_r \setminus B_R(Q)$ 中可以被 $\langle z - \bar{Q} \rangle^{-2} \|\phi_\varepsilon\|_* = \langle z - \bar{Q} \rangle^{-2}$ 控制住, 从而可以通过选取 R 使得其充分小. 由此推出, 若 ε 充分小, 则

$$|\langle z - \bar{Q} \rangle^3 W^2 \phi_\varepsilon| = o(1). \quad (3.22)$$

另一方面,

$$\varepsilon^{-3} (-\ln \varepsilon)^{\frac{1}{2}} W^2 \phi_\varepsilon \leq C \varepsilon (-\ln \varepsilon)^{\frac{1}{2}} \int_{\Omega_r} (\langle z - \bar{Q} \rangle^{-4} + \varepsilon^4 (-\ln \varepsilon)) |\phi_\varepsilon| \leq C \varepsilon (-\ln \varepsilon)^{\frac{1}{2}} \int_{\Omega_r} (\langle z - \bar{Q} \rangle^{-5} + \varepsilon^4 (-\ln \varepsilon)(z - \bar{Q})^{-1}) \|\phi_\varepsilon\|_* = o(1).$$

于是可得

$$||W^2\phi_\varepsilon||_{{**}} = o(1).$$
利用 (3.4), 我们有

\[
(z - \bar{Q})^3 |Z_i| \leq C \left(\frac{1}{-\ln \varepsilon} + (z - \bar{Q})^{-3}\right) = O(1),
\]

\[
\varepsilon^{-3} (-\ln \varepsilon)^{\frac{1}{2}} |Z_i| \leq C \varepsilon (-\ln \varepsilon)^{\frac{1}{2}} \int_{\Omega_\varepsilon} |z - \bar{Q}|^{-6} + \varepsilon^4 |dx| = o(1).
\]

从以上的式子可推导出 $|Z_i| = O(1)$. 因此,

\[
\|\phi_\varepsilon\|_* \leq C \left(\|W^2 \phi_\varepsilon\|_* + \|h\|_* + \sum_i |c_i| |Z_i|_*\right) = o(1),
\]

(3.23)

这与我们的假设 $\|\phi_\varepsilon\|_* = 1$ 矛盾。对于六维的情形, 仍然假设 $\|\phi_\varepsilon\|_* = 1$. 类似于四维情形的讨论, 我们有

\[
d_i = O(|h|_*) + o(\|\phi\|_*), \quad 0 \leq i \leq 6,
\]

\[
d_7 = O(\varepsilon^{-2} |h|_*) + O(\varepsilon^{-1} |\phi|_*),
\]

(3.24)

以及 $\phi(z - \bar{Q})$ 在 $C^1_{lb} (\Omega_\varepsilon)$ 趋于 0. 接下来利用方程 (3.9) 证明 $\|\phi_\varepsilon\|_* = o(1)$. 首先, 将 (3.9) 写成如下的形式:

\[
-\Delta \phi_\varepsilon + \mu \varepsilon^2 (1 - 48\eta) \phi_\varepsilon = h + \sum_i d_i Z_i + 48 U \phi_\varepsilon + 48\varepsilon^3 \hat{U} \phi_\varepsilon.
\]

(3.25)

由于 $\int_{\Omega_\varepsilon} \phi = 0$, 我们可以推出方程 (3.25) 两端在 Ω_ε 的积分均为 0. 再一次利用推论 3.1, 有

\[
\|\phi_\varepsilon\|_* \leq C \left(\|U + \varepsilon^3 \hat{U}\|_* \phi_\varepsilon\|_* + \|h\|_* + \sum_i |d_i| |Z_i|_*\right).
\]

(3.26)

根据函数 U 和 \hat{U} 的定义, 不难发现

\[
U + \varepsilon^3 \hat{U} \leq C (z - \bar{Q})^{-4}.
\]

类似于四维的情形, 可以证明 $||(z - \bar{Q})^{-4} \phi_\varepsilon\|_* = o(1), \|Z_i\|_* = O(1) \ (0 \leq i \leq 6), \|Z_7\|_* = O(\varepsilon^2)$. 因此, 利用上述结论以及 (3.24), 我们可以推导得到

\[
\|\phi_\varepsilon\|_* \leq o(1) + C \|h\|_* + o(1) \|\phi_\varepsilon\|_* = o(1),
\]

这个与我们的假设 $\|\phi_\varepsilon\|_* = 1$ 矛盾. 从而我们完成了引理的证明.

\[\square\]

命题 3.1 的证明 由于四维和六维情形的证明类似, 我们在这里只给出前者的证明. 设定

\[
H = \{\phi \in H^1(\Omega_\varepsilon) | \langle Z_i, \phi \rangle = 0, 0 \leq i \leq 4\},
\]

其空间的内积定义为 $(\cdot, \cdot)_\varepsilon$. 问题 (3.5) 等价于寻找 $\phi \in H$ 使得

\[
(\phi, \theta)_\varepsilon = \langle 24 W^2 \phi + h, \theta \rangle, \quad \forall \theta \in H,
\]

(3.27)

也就是

\[
\phi = T_\varepsilon(\phi) + \tilde{h},
\]

(3.27)
其中 h 线性地依赖于 h, T_e 是空间 H 的紧算子. 借助 Fredholm 二择一的结论, 我们现在需要证明算子 $Id - T_e$ 的核空间是 0. 我们注意到若函数 $\phi \in \text{Ker}(Id - T_e)$ 并且满足方程 (3.5), 其中 $h = 0$, 从引理 3.2 可得, 随着 ε 趋于 0, $\|\phi\|$ 也趋于 0, 于是可以得到 $\text{Ker}(Id - T_e)$ 是零空间. 作为推论, 我们可以
从引理 3.2 和 (3.19) 导出不等式 (3.14). 这也证明了命题 3.1 的第一个部分.

算子 L_e 相对于 Λ 和 Q 的光滑性可以从 T_e 以及 h 相对于 Λ 和 Q 的光滑性推导出来. 通过对 (3.5) 微分, 以及把函数 ϕ 相对于 Λ 和 Q 的导数写成核函数 Z_i 和其正交部分的线性组合形式, 我们可以用类似于处理第一部分的办法得到不等式 (3.15). 与之相关的详细计算可参见文献 [18, 24].

4 有限维约化: 一个非线性化问题

本节把注意力放在一个非线性化问题上. 令 $S_e[u]$ 如方程 (1.12) 中定义, 则 (1.11) 等价于

$$
\begin{cases}
S_e[u] = 0, & u_+ \neq 0, \text{ 在 } \Omega_e \text{ 内成立,} \\
\frac{\partial u}{\partial \nu} = 0, & \text{在 } \partial \Omega_e \text{ 上成立.}
\end{cases}
$$

事实上, 如果 u 满足 (4.1), 可以通过最大值原理证明 $u > 0$ 在 Ω_e 内成立. 观察到

$$
S_e[W + \phi] = -\Delta(W + \phi) + \mu \varepsilon^2(W + \phi) - n(n - 2)(W + \phi)\frac{n+2}{n-2}
$$

可以被写作

$$
S_e[W + \phi] = -\Delta \phi + \mu \varepsilon^2 \phi - n(n + 2)W\frac{n+2}{n-2} \phi + R^e - n(n - 2)N_e(\phi),
$$

其中

$$
N_e(\phi) = (W + \phi)\frac{n+2}{n-2} - W\frac{n+2}{n-2} - \frac{n+2}{n-2}W\frac{n+2}{n-2} \phi,
$$

$$
R^e = S_e[W] = -\Delta W + \mu \varepsilon^2 W - n(n - 2)W\frac{n+2}{n-2}.
$$

从引理 2.1 中得到

$$
\begin{cases}
\|R^e\|_* \leq C \varepsilon \Lambda + \varepsilon^2 (\ln \varepsilon)^\frac{1}{2}, & \|D_{(\Lambda,\bar{Q})}R^e\|_* \leq C \varepsilon, \quad n = 4, \\
\|R^e\|_{****} \leq C \varepsilon^2 \frac{1}{2}, & \|D_{(\Lambda,\bar{Q})}R^e\|_{****} \leq C \varepsilon^2, \quad n = 6.
\end{cases}
$$

现在考虑寻找函数 ϕ, 以及选取一些适当的常数 c_i 使得 ϕ 和 c_i 满足下列四维的线性化问题:

$$
\begin{cases}
-\Delta(W + \phi) + \mu \varepsilon^2(W + \phi) - 8(W + \phi)^3 = \sum_{i} c_i Z_i, & \text{在 } \Omega_e \text{ 中成立,} \\
\frac{\partial \phi}{\partial \nu} = 0, & \text{在 } \partial \Omega_e \text{ 上成立,}
\end{cases}
$$

寻找函数 ϕ, 以及选取一些适当的常数 d_i 使得 ϕ, d_i 满足下列六维的线性化问题:

$$
\begin{cases}
-\Delta(W + \phi) + \mu \varepsilon^2(W + \phi) - 24(W + \phi)^2 = \sum_{i} d_i Z_i, & \text{在 } \Omega_e \text{ 中成立,} \\
\frac{\partial \phi}{\partial \nu} = 0, & \text{在 } \partial \Omega_e \text{ 上成立,}
\end{cases}
$$

其中 $Z_i(\cdot, \phi) = 0, \quad 0 \leq i \leq 7$.

294
(4.6) 和 (4.7) 中的第一个方程也可以被写为

\[-\Delta \phi + \mu \varepsilon z^2 \phi - 24W^2 \phi = 8N_c(\phi) - R^2 + \sum_i c_i Z_i,
\]

\[-\Delta \phi + \mu \varepsilon z^2 \phi - 48W \phi = 24N_c(\phi) - R^2 + \sum_i d_i Z_i.\]

(4.8)

为了运用压缩映射的办法证明 (4.6) 和 (4.7) 分别在 $\|\phi\|_{\ast}$ 和 $\|\phi\|_{\ast\ast\ast}$ 的估计，我们需要下面关于高阶项 N_c 的估计。

引理 4.1 当 $n = 4$ 时，存在不依赖于 Λ 和 Q 的常数 $\varepsilon_1 > 0$，以及不依赖于 ε, Λ, Q 的常数 C，使得对所有的 $\varepsilon \leq \varepsilon_1$，若 $\|\phi\|_{\ast} \leq C\varepsilon \Lambda$，则

\[\|N_c(\phi)\|_{\ast} \leq C\varepsilon \Lambda \|\phi\|_{\ast},\]

(4.9)

\[\|N_c(\phi_1) - N_c(\phi_2)\|_{\ast} \leq C\varepsilon \Lambda \|\phi_1 - \phi_2\|_{\ast}.\]

(4.10)

当 $n = 6$ 时，存在不依赖于 Λ, Q 和 η 的常数 $\varepsilon_2 > 0$，以及不依赖于 ε, Λ, Q 和 η 的常数 C，使得对所有的 $\varepsilon \leq \varepsilon_2$，若 $\|\phi\|_{\ast\ast\ast} \leq C\varepsilon^{2\frac{3}{4}}$，则

\[\|N_c(\phi)\|_{\ast\ast\ast} \leq C\varepsilon \|\phi\|_{\ast\ast\ast},\]

(4.11)

\[\|N_c(\phi_1) - N_c(\phi_2)\|_{\ast\ast\ast} \leq C\varepsilon \|\phi_1 - \phi_2\|_{\ast\ast\ast}.\]

(4.12)

证明 由于两种情形的证明类似，这里只考虑四维的情形。从 (4.3) 中，我们注意到

\[|N_c(\phi)| \leq C(W \phi^2 + |\phi|^3).\]

(4.13)

我们有 $\varepsilon^{-3}(-\ln \varepsilon)^2 W \phi^2 + |\phi|^3 = \varepsilon(-\ln \varepsilon)^2 \int Q \alpha(W \phi^2 + |\phi|^3)$，利用以下的方式估计上式右端的积分项:

\[|W \phi^2 + |\phi|^3| \leq C((z - Q)^{-2} + \varepsilon(-\ln \varepsilon)^2)|\phi|^2 + |\phi|^3\]

\[\leq C((z - Q)^{-2} + \varepsilon(-\ln \varepsilon)^2(z - Q)^{-2}||\phi||_{\ast}^2 + (z - \bar{Q})^{-3}||\phi||_{\ast}^3)\]

\[\leq C((z - \bar{Q})^{-4} + \varepsilon^3(-\ln \varepsilon)^2(z - \bar{Q}^{-2})\Lambda ||\phi||_{\ast}.\]

作为推论，有 $\varepsilon^{-3}(-\ln \varepsilon)^2 W \phi^2 + |\phi|^3 \leq C\varepsilon^2(-\ln \varepsilon)^{\frac{3}{2}} \Lambda ||\phi||_{\ast} \leq C\varepsilon \Lambda ||\phi||_{\ast}$. 另一方面，

\[||z - \bar{Q}||^3(W \phi^2 + |\phi|^3)||_{\infty} \leq C\varepsilon \Lambda ||\phi||_{\ast}.\]

因此，(4.9) 成立。对于 (4.10)，有

\[N_c(\phi_1) - N_c(\phi_2) = \partial_{\vartheta} N_c(\vartheta)(\phi_1 - \phi_2),\]

其中 $\vartheta = x \phi_1 + (1 - x) \phi_2$, $x \in [0, 1]$. 根据 $\partial_{\vartheta} N_c(\vartheta) = 3[2W^2 + (1 - x)^2 W^2 + W^2]$, 我们导出

\[\partial_{\vartheta} N_c(\vartheta) \leq C(|W||\vartheta| + \vartheta^2).\]

(4.14)

重复 (4.9) 的证明，可得 (4.10).

\[\square\]

命题 4.1 若 $n = 4$，我们可以找到常数 C，不依赖于 (2.11) 中定义的 ε, Λ 和 Q，使得对于充分小的 ε，问题 (4.6) 会有一个唯一的解 $\phi = \phi(\Lambda, Q, \varepsilon)$ 并且满足以下的估计:

\[\|\phi\|_{\ast} \leq C\varepsilon \Lambda.\]

(4.15)
进一步地，\((\Lambda, \bar{Q}) \to \phi(\Lambda, \bar{Q}, \varepsilon)\) 在 * 范数意义下是 \(C^1\) 连续的，以及
\[
\|D(\Lambda, \bar{Q})\phi\|_* \leq C\varepsilon. \tag{4.16}
\]
若 \(n = 6\) 则可以找到常数 \(C\)，不依赖于 (2.13) 中定义的 \(\varepsilon, \Lambda, \eta \) 和 \(Q\)，使得对于充分小的 \(\varepsilon\)，问题 (4.7) 会有一个唯一的解 \(\phi = \phi(\Lambda, \eta, \bar{Q}, \varepsilon)\) 并且满足以下的估计：
\[
\|\phi\|_{***} \leq C\varepsilon^{\frac{2}{3}}. \tag{4.17}
\]
进一步地，\((\Lambda, \eta, \bar{Q}) \to \phi(\Lambda, \eta, \bar{Q}, \varepsilon)\) 在 *** 范数意义下是 \(C^1\) 连续的，以及
\[
\|D(\Lambda, \eta, \bar{Q})\phi\|_{***} \leq C\varepsilon^{\frac{2}{3}}. \tag{4.18}
\]

证明 这里只给出四维情形的证明。同文献 [18] 的思路一样，考虑从空间 \(\mathcal{F} = \{\phi \in H^1(\Omega_\varepsilon) \ | \|\phi\|_* \leq C\varepsilon\} \to H^1(\Omega_\varepsilon)\) 定义的映射
\[
A_\varepsilon(\phi) = L_\varepsilon(8\varepsilon N_\varepsilon(\phi) + \bar{R}^\varepsilon),
\]
其中 \(C'\) 是一个充分大的数，稍后再确定，\(L_\varepsilon\) 由命题 3.1 给出。我们注意到求解问题 (4.6) 等价于找到映射 \(A_\varepsilon\) 的不动点。另一方面，对于空间 \(\mathcal{F}\)，利用 (4.5)、命题 3.1 和引理 4.1，有
\[
\|A_\varepsilon(\phi)\|_* \leq 8\|L_\varepsilon(N_\varepsilon(\phi))\|_* + \|L_\varepsilon(\bar{R}^\varepsilon)\|_* \leq C_1(\|N_\varepsilon(\phi)\|_{**} + \varepsilon)\Lambda
\leq C_2 C'\varepsilon^2\Lambda + C_1\varepsilon\Lambda \leq C'\varepsilon\Lambda,
\]
其中 \(C' = 2C_1\) 并且 \(\varepsilon\) 充分小。上式推出 \(A_\varepsilon\) 将空间 \(\mathcal{F}\) 映到其自身。现在证明 \(A_\varepsilon\) 是一个压缩映射。事实上，对于空间 \(\mathcal{F}\) 中的函数 \(\phi_1\) 和 \(\phi_2\)，在 \(\varepsilon\) 充分小时，
\[
\|A_\varepsilon(\phi_1) - A_\varepsilon(\phi_2)\|_* \leq C\|N_\varepsilon(\phi_1) - N_\varepsilon(\phi_2)\|_{**} \leq C\varepsilon\Lambda\|\phi_1 - \phi_2\|_* \leq \frac{1}{2}\|\phi_1 - \phi_2\|_*.\]
\]
利用压缩映射定理可知，\(A_\varepsilon\) 在空间 \(\mathcal{F}\) 中有一个唯一的不动点，即问题 (4.6) 有一个唯一的解 \(\phi\) 并且有 \(\|\phi\|_* \leq C'\varepsilon\Lambda\)。

我们将证明映射 \((\Lambda, \bar{Q}) \to \phi(\Lambda, \bar{Q})\) 是 \(C^1\) 连续的。注意到，如果对 \(\mathcal{F}\) 中的函数 \(\psi\)，设置
\[
B(\Lambda, \bar{Q}, \psi) \equiv \psi - L_\varepsilon(8\varepsilon N_\varepsilon(\psi) + \bar{R}^\varepsilon),
\]
那么 \(\phi\) 可以被定义为以下方程的解：
\[
B(\Lambda, \bar{Q}, \phi) = 0. \tag{4.19}
\]
我们有 \(\partial_\psi B(\Lambda, \bar{Q}, \psi)[\theta] = \theta - 8\varepsilon L_\varepsilon(\theta(\partial_\psi N_\varepsilon)(\psi))\)。利用命题 3.1 和方程 (4.14)，可得
\[
\|L_\varepsilon(\theta(\partial_\psi N_\varepsilon)(\psi))\|_* \leq C\|\theta(\partial_\psi N_\varepsilon)(\psi)\|_{**} \leq \|(z - \bar{Q})^{-1}(\partial_\psi N_\varepsilon)(\psi)\|_{**} \|\theta\|_*
\leq C\|\bar{Q} - z\|^{-1}(\bar{W}_+|\psi| + |\psi|^2)|_{**} \|\theta\|_*.
\]
运用 (2.16) 和 (3.10)，有 \(\|L_\varepsilon(\theta(\partial_\psi N_\varepsilon)(\psi))\|_* \leq C\varepsilon\|\theta\|_*\)。所以，\(\partial_\psi B(\Lambda, \bar{Q}, \phi)\) 是可逆的并且其逆映射是一致有界。那么利用 \((\Lambda, \bar{Q}, \psi) \to L_\varepsilon(N_\varepsilon(\psi))\) 是 \(C^1\) 连续的以及隐函数定理可知，\((\Lambda, \bar{Q}) \to \phi(\Lambda, \bar{Q})\) 也是 \(C^1\) 连续的。
最后，我们证明 (4.16)。对 (4.19) 关于参数 Λ 求导，有

$$\partial_\Lambda \phi = (\partial_\varepsilon B(\Lambda, \xi, \phi))^{-1}((\partial_\Lambda L_\varepsilon)(N_\varepsilon(\phi)) + L_\varepsilon((\partial_\Lambda N_\varepsilon)(\phi)) + L_\varepsilon(\partial_\Lambda R^\varepsilon)).$$

运用命题 3.1，可得

$$\|\partial_\Lambda \phi\|_* \leq C(\|N_\varepsilon(\phi)\|_* + \|N_\varepsilon(\phi)\|_* + \|\partial_\Lambda R^\varepsilon\|_*).$$

借助引理 4.1 和 (4.15)，我们得到 $\|N_\varepsilon(\phi)\|_* \leq C\varepsilon^2$. 根据 N_ε 的定义，有

$$\|\partial_\Lambda N_\varepsilon(\phi)\| = 3\phi^2|\partial_\Lambda W|.$$

结合 $|\partial_\Lambda W(z)| \leq C((z - \bar{Q})^{-2} + \varepsilon^2(-\ln \varepsilon)^{\frac{1}{2}})$, 可得 $\|\partial_\Lambda N_\varepsilon(\phi)\|_* \leq C\varepsilon$. 最后，利用 (4.5)，可以证明 $\|\partial_\Lambda \phi\|_* \leq C\varepsilon$. 通过同样的办法我们可以估计出 ϕ 关于参数 \bar{Q} 的导数. 这样就完成了全部的证明. \[\square\]

5 有限维和维: 约化的能量

定义四、六维约化的能量泛函如下:

$$I_\varepsilon(\Lambda, Q) \equiv J_\varepsilon[W_\Lambda, Q + \phi_{\varepsilon, \Lambda}, \bar{Q}], \quad n = 4,$$

$$I_\varepsilon(\Lambda, \eta, Q) \equiv J_\varepsilon[W_\Lambda, Q + \phi_{\varepsilon, \Lambda, \eta}, \bar{Q}], \quad n = 6. \tag{5.2}$$

我们有下面的命题:

命题 5.1 函数 $u = W_{\Lambda, Q} + \phi_{\varepsilon, \Lambda, Q}$ 是问题 (1.11) 在四维情形的解并且仅当参数 (Λ, \bar{Q}) 是 I_ε 的临界值. 函数 $u = W_{\Lambda, \eta, Q} + \phi_{\varepsilon, \Lambda, \eta, \bar{Q}}$ 是问题 (1.11) 在六维情形的解并且仅当参数 (Λ, η, \bar{Q}) 是 I_ε 的临界值.

证明 这里只给出六个维情形的证明, 四维情形可以类似地证明. 注意到 $u = W + \phi$ 是方程 (1.11) 的解. 当且仅当 u 是 J_ε 的临界点, 这也等价于 (4.7) 中的系数满足 $d_i = 0$. 通过以下的关系:

$$\langle Z_0, Y_0 \rangle = \|Y_0\|^2 = \gamma_0 + o(1),$$

$$\langle Z_i, Y_i \rangle = \|Y_i\|^2 = \gamma_1 + o(1), \quad 1 \leq i \leq 6,$$

$$\langle Z_7, Y_7 \rangle = \|Y_7\|^2 = \gamma_2 \varepsilon^3, \tag{5.3}$$

其中 γ_0, γ_1 和 γ_2 均为正的常数, 以及

$$\langle Z_i, Y_j \rangle = o(1), \quad i \neq j, \quad 0 \leq i, j \leq 6, \tag{5.4}$$

$$\langle Z_i, Y_j \rangle = O(\varepsilon^3), \quad i \neq j, \quad i = 7 \quad \text{或者} \quad j = 7,$$

我们有

$$J'_\varepsilon[W + \phi][Y_i] = 0, \quad 0 \leq i \leq 7. \tag{5.5}$$

另一方面, 从 (5.2) 推出 $I'_\varepsilon(\Lambda, \eta, Q) = 0$ 等价于 $J'_\varepsilon(W + \phi)$ 作用在 $W + \phi$ 关于 Λ, η 和 \bar{Q} 的导数为 0. 利用 Y_i 的定义和命题 4.1, 有

$$\frac{\partial(W + \phi)}{\partial \Lambda} = Y_0 + y_0, \quad \frac{\partial(W + \phi)}{\partial Q_i} = Y_i + y_i, \quad 1 \leq i \leq 6, \quad \frac{\partial(W + \phi)}{\partial \eta} = Y_7 + y_7,$$

$$\frac{\partial(W + \phi)}{\partial \bar{Q}} = y_7 - \frac{\partial W}{\partial \bar{Q}} - \bar{Q} = 0, \quad \frac{\partial(W + \phi)}{\partial R} = y_7 - \frac{\partial W}{\partial R} - R = 0.$$
其中 $\|y_i\|_{\infty} = O(\varepsilon^2)$, $0 \leq i \leq 7$. 我们写下如下的方程:

$$
-\Delta (W + \phi) + \mu \varepsilon^2 (W + \phi) - 24 (W + \phi)^2 = \sum_{j=0}^{7} \alpha_j Z_j,
$$

然后记 $a_{ij} = \langle y_i, Z_j \rangle$. 因为对于所有的函数 θ, 若 $\langle \theta, Z_i \rangle = \langle \theta, Y_0 \rangle = 0$ $(0 \leq i \leq 7)$, 则 $J_\varepsilon W + \phi [\theta] = 0$, 我们推出 $I_\varepsilon (\Lambda, \eta, Q) = 0$ 等价于 $[b_{ij} + [a_{ij}]] [\alpha_j] = 0$. 其中 $b_{ij} = \langle Y_i, Z_j \rangle$. 利用 $\|y_i\|_{\infty} = O(\varepsilon^2)$ 以及 Z_i 和 Y_i $(0 \leq i \leq 7)$ 的表达式, 可以直接得到

$$
\begin{align*}
& b_{00} = \gamma_0 + o(1), \quad b_{ii} = \gamma_1 + o(1), \quad 1 \leq i \leq 6, \quad b_{77} = \gamma_2 \varepsilon^3, \\
& b_{ij} = o(1), \quad 0 \leq i \neq j \leq 6, \quad b_{ij} = O(\varepsilon^3), \quad i = 7 \quad \text{或者} \quad j = 7, \quad i \neq j, \\
& a_{ij} = O(\varepsilon^2), \quad 0 \leq i \leq 7, \quad 0 \leq j \leq 6, \quad a_{ij} = O(\varepsilon^4), \quad 0 \leq i \leq 7.
\end{align*}
$$

从上面的计算可知, $[b_{ij} + a_{ij}]$ 是一个可逆的矩阵, 这可以推出 $\alpha_i = 0$. 于是可得 $I_\varepsilon (\Lambda, \eta, Q) = 0$ 等价于 (5.5), 于是命题 5.1 证毕.

在证明了命题 5.1 之后, 接下来将考虑 I_ε 的临界值. 首先, 计算出 I_ε 的表达式.

命题 5.2 当 $n = 4$ 时, 若 ε 充分小, 则

$$
I_\varepsilon (\Lambda, \eta, Q) = J_\varepsilon [W] + \varepsilon^2 \left(-\frac{c_1}{\ln \varepsilon} \right) \sigma_{\varepsilon, 4}(\Lambda, Q),
$$

其中 $\sigma_{\varepsilon, 4} = O(\Lambda^2) + o_\varepsilon (1), D_\Lambda (\sigma_{\varepsilon, 4}) = O(\Lambda) + o_\varepsilon (1)$. 当 $n = 6$ 时, 若 ε 充分小, 则

$$
I_\varepsilon (\Lambda, \eta, Q) = J_\varepsilon [W] + \varepsilon^4 \sigma_{\varepsilon, 6}(\Lambda, \eta, Q),
$$

其中 $\sigma_{\varepsilon, 6} = o_\varepsilon (1), D_{\Lambda, \eta} (\sigma_{\varepsilon, 6}) = o_\varepsilon (1)$.

证明 这里只给出四维情形的证明, 六维情形的证明类似. 利用 (5.1)、Taylor 展开和 $J_\varepsilon W + \phi [\phi] = 0$, 我们有

$$
I_\varepsilon (\Lambda, Q) - J_\varepsilon [W] = J_\varepsilon [W + \phi] - J_\varepsilon [W] = -\int_0^1 J''_\varepsilon (W + t\phi) [\phi, \phi] (t) dt
= -\int_0^1 \left(\int_{\Omega_\varepsilon} (|\nabla \phi|^2 + \mu \varepsilon^2 \phi^2 - 24 (W + t\phi)^2 \phi^2) \right) t dt,
$$

由此得到

$$
I_\varepsilon (\Lambda, Q) - J_\varepsilon [W] = -\int_0^1 \left(8 \int_{\Omega_\varepsilon} (N_\varepsilon (\phi) \phi + 3 [W^2 - (W + t\phi)^2] \phi^2) \right) t dt + \int_{\Omega_\varepsilon} R^\varepsilon \phi.
$$

我们可以按如下方式估计 (5.8) 右端的第一项:

$$
\int_{\Omega_\varepsilon} N_\varepsilon (\phi) \phi \leq C \int_{\Omega_\varepsilon} |\phi|^4 + |W \phi|^3 = O(\varepsilon^4 \ln \varepsilon).
$$

类似地, 对于 (5.8) 右端的第二项, 我们得到

$$
\int_{\Omega_\varepsilon} [W^2 - (W + t\phi)^2] \phi^2 \leq C \int_{\Omega_\varepsilon} |\phi|^4 + |W \phi|^3 = O(\varepsilon^4 \ln \varepsilon).
$$
对于 (5.8) 中的最后一项，有

$$ |R^e| = |S_e[W]| = O(\varepsilon^4(-\ln\varepsilon)(z - \tilde{Q})^{-2} + \varepsilon^2(-\ln\varepsilon)^{1/2}(z - \tilde{Q})^{-4}) $$

$$ + O(\Lambda)\left(\frac{\varepsilon^4}{-\ln\varepsilon}\left|\ln\frac{1}{\varepsilon(1 + |z - Q|)}\right| + \frac{\varepsilon^4}{(-\ln\varepsilon)^{1/2}}\right) $$

在 \(\Omega_\varepsilon \) 一致成立。通过简单的计算可得 \(|f_{\Omega_\varepsilon} R^e\phi| = O(\varepsilon^2(-\ln\varepsilon)^{1/2}\Lambda^2 + \varepsilon^3(-\ln\varepsilon)^{3/2}) \)，这里用到了 \(\|\phi\|_* = O(\varepsilon\Lambda) \)。这就完成了命题 5.2 第一部分的证明。

对方程 (5.8) 的两端进行求导，利用 (4.3), (4.5) 以及引理 2.1, 依次对每一项进行估计，然后重复同样的讨论过程，我们可以给出 \(I_e \) 关于 \(\Lambda \) 导数的估计。命题 5.2 证毕。

\[\square \]

6 定理 1.1 的证明

本节将分别证明 \(I_e(\Lambda, Q) \) 和 \(I_e(\Lambda, \eta, Q) \) 存在着临界点，从而结合命题 5.1 证明出定理 1.1。根据命题 5.2 和引理 2.1, 定义

$$ K_e(\Lambda, Q) = \frac{I_e(\Lambda, Q) - 2\int_{\Omega_\varepsilon} U^4}{(-\ln\varepsilon)^{1/2}\varepsilon^2}. \quad (6.1) $$

$$ K_e(\Lambda, \eta, Q) = \frac{I_e(\Lambda, \eta, Q) - 4\int_{\Omega_\varepsilon} U^3}{\varepsilon^3}. \quad (6.2) $$

对于四维的情形，有

$$ K_e(\Lambda, Q) = \frac{1}{4} c_4 \Lambda^2 \ln \frac{1}{\Lambda\varepsilon}\left(\frac{c_1}{-\ln\varepsilon}\right) - \frac{c_4^2 \Lambda^2}{2|\Omega|} + \frac{1}{2} c_4^2 \Lambda^2 H(Q, Q)\left(\frac{c_1}{-\ln\varepsilon}\right)^{1/2} + O\left(\frac{\Lambda^2}{-\ln\varepsilon} + \varepsilon\right), \quad (6.3) $$

对于六维的情形，有

$$ K_e(\Lambda, \eta, Q) = \left(\frac{1}{2}\eta^2|\Omega|-c_6 \Lambda^2 \eta + \frac{1}{48} c_6 \Lambda^2 - 8\eta^4|\Omega|\right) + \frac{1}{2} c_6^2 \Lambda^4 H(Q, Q)\varepsilon $$

$$ + \frac{1}{2} \left(\eta - \frac{c_6 \Lambda^2}{|\Omega|}\right)\varepsilon \int_{\Omega} |\Lambda^2 - \tilde{Q}|^4 + o(\varepsilon). \quad (6.4) $$

接下来将考虑 \(K_e(\Lambda, Q) \)，找出其相对于 \(\Lambda \) 和 \(Q \) 的临界点，以及找出 \(K_e(\Lambda, \eta, Q) \) 相对于 \(\Lambda \), \(\eta \) 和 \(Q \) 的临界点。

首先，考虑四维情形时的 \(K_e(\Lambda, Q) \)。根据参数 \(\Lambda \) 和 \(Q \) 的设定，我们知道 \(\Lambda \) 和 \(Q \) 落在一个紧致集合里，从而可以得到 \(K_e(\Lambda, Q) \) 在这个紧致的集合里拥有一个最大值，我们断言：

断言 6.1 \(K_e(\Lambda, Q) \) 相对于 \(\Lambda \) 和 \(Q \) 的最大值点不会落在参数区域的边界上。

一旦我们能证明上述断言，那么就可以证明 \(K_e(\Lambda, Q) \) 存在一个内点极值点。在我们证明这个断言之前，首先考虑

$$ F_e(\Lambda) = \frac{1}{4} c_4 \Lambda^2 \ln \frac{1}{\Lambda\varepsilon}\left(\frac{c_1}{-\ln\varepsilon}\right) - \frac{c_4^2 \Lambda^2}{2|\Omega|} $$

注意到

$$ \frac{\partial}{\partial\Lambda} [F_e(\Lambda)] = \frac{1}{2} c_4 \Lambda \ln \frac{1}{\Lambda\varepsilon}\left(\frac{c_1}{-\ln\varepsilon}\right) - \frac{1}{4} c_4 \Lambda \left(\frac{c_1}{-\ln\varepsilon}\right) - \frac{c_4^2 \Lambda}{|\Omega|}. $$
选取 \(c_1 = \frac{2a}{11} \), 我们可以找到

\[
\Lambda^* = \exp \left(-\frac{1}{2} \right) \in \left(\exp \left(-\frac{1}{2} \right) \varepsilon^\delta, \exp \left(-\frac{1}{2} \right) e^{-\beta} \right),
\]

其中 \(\beta \in (0, \frac{1}{2}) \) 是一个固定的常数，使得 \(\frac{\partial}{\partial \Lambda} F_2 \mid _{\Lambda = \Lambda^*} = 0 \). 我们可得 \(\Lambda^* \) 是函数 \(F_2(\Lambda) \) 在 \([\Lambda_{141}, \Lambda_{142}] \) 中的最大值点，其中 \(\Lambda_{141} = \exp(-\frac{1}{2})e^\delta, \Lambda_{142} = \exp(-\frac{1}{2})e^{-\beta} \). 为了证明上述断言，我们需要在能量的展开式中考虑 \(\Lambda \) 的影响。通过第 7 节中第一部分的计算，我们有

\[
K_\varepsilon(\Lambda, Q) = \frac{1}{4} c_{42} \Lambda^2 \ln \frac{1}{\Lambda \varepsilon} \left(\frac{c_1}{\Lambda^3 \ln \varepsilon} - c_{23} \Lambda^2 H(Q, Q) \left(\frac{c_1}{\Lambda^3 \ln \varepsilon} \right)^{\frac{1}{2}} + \frac{1}{2} c_{34} \Lambda^2 H(Q, Q) \left(\frac{c_1}{\Lambda^3 \ln \varepsilon} \right)^{\frac{1}{2}} + O \left(\frac{\Lambda^2}{\Lambda \ln \varepsilon} + \varepsilon \right). \]

选取 \(\Lambda = \Lambda^*, Q = p \). (这里 p 是函数 \(H(Q, Q) \) 取得最大值的点，这样的点是不难找到的。我们注意到这样一个事实：随着 \(d(Q, \partial \Omega) \to 0, H(Q, Q) \to -\infty \)，详细证明参见文献 [15] 及其参考文献。因此我们可以找到这样的点 p.)

我们将证明最大值点不会落在 \(\partial M_{\delta} \)。选取 \(\delta_4 \) 使得 \(\omega_1 < \max_{\partial M_{\delta}} H < \omega_2 \)，其中 \(\omega_1 \) 和 \(\omega_2 \) 是充分大的负数。接下来固定集合 \(M_{\delta} \)。我们可以很容易发现 \(K_\varepsilon(\Lambda, Q) < K_\varepsilon(\Lambda, p) \) 对任意的 \(Q \in \partial M_{\delta} \) 和 \(\Lambda \in [\Lambda_{141}, \Lambda_{142}] \) 成立。

接下来证明 \(K_\varepsilon(\Lambda^*, p) > K_\varepsilon(\Lambda_{142}, Q) \), 不难发现

\[
F_\varepsilon[\Lambda_{142}] \le c \varepsilon^{-2c},
\]

其中 \(c < 0 \). 考虑到 \(K_\varepsilon(\Lambda_{142}, Q) \) 中其他项都是 \(\varepsilon^{-2c} \) 的无穷小量，于是可以找到常数 \(c < 0 \) 使得对于任意的 \(Q \in M_{\delta} \)，有 \(K_\varepsilon(\Lambda_{142}, Q) \le c \varepsilon^{-2c} \). 另一方面，根据 \(\Lambda^* \) 和 \(p \) 的选取，得到 \(K_\varepsilon(\Lambda^*, p) = O(1) \)。因此，我们可以证明 \(K_\varepsilon(\Lambda^*, p) > K_\varepsilon(\Lambda_{142}, Q) \), \(\forall Q \in M_{\delta} \).

最后来证明最大值点的 \(\Lambda \) 不会满足 \(\Lambda = \Lambda_{141} \). 选取 \(\Lambda = \varepsilon^\beta/2, Q = p \), 直接的计算推导出

\[
k_\varepsilon(\varepsilon^\beta/2, p) = \frac{\beta c_{34} \varepsilon^\beta}{4|\Omega|}(1 + o(1)), \quad K_\varepsilon(\Lambda_{141}, Q) = \frac{\beta c_{23} \varepsilon^{-2c}}{4|\Omega|}(1 + o(1)).
\]

当 \(\varepsilon \) 充分小时，\(K_\varepsilon(\varepsilon^\beta/2, p) > K_\varepsilon(\Lambda_{141}, Q), \forall Q \in M_{\delta} \). 于是，我们证明了断言 6.1 在四维情形时是正确的。换言之，我们可得函数 \(K_\varepsilon(\Lambda, Q) \) 在 \([\Lambda_{141}, \Lambda_{142}] \times M_{\delta} \) 的内部有一个最大值点。因此，我们找到了函数 \(K_\varepsilon(\Lambda, Q) \) 关于 \(\Lambda \) 和 \(Q \) 的极值点。

对于六维的情形，令 \(\eta = \frac{1}{2\varepsilon} + a \varepsilon^\delta, \quad \frac{c_{45} \Lambda^2}{|\Omega|} = \frac{\eta_6}{\varepsilon} + b \varepsilon^\delta \), 则

\[
K_\varepsilon(a, b, Q) := K_\varepsilon(\Lambda, \eta, Q) = \frac{1}{6912} |\Omega| + [F(\varepsilon^\beta - (8a^2 + ab)\varepsilon + o(\varepsilon), (6.5)
\]

其中 \(F(x) = \frac{|\Omega|}{|\Omega|h(\varepsilon^\beta, x) + \frac{1}{c_6} \int_\Omega \frac{1}{|x-y|^\delta} dy}, \quad -\eta_6 \le a \le \eta_6, -\Lambda_6 \le b \le \Lambda_6 \).

设定 \(C_0 = F(p_0), p_0 \) 为 \(F(x) \) 取得最大值的点。事实上，随着 \(d(Q, \partial \Omega) \to 0, H(Q, Q) \to -\infty \)，以及 \(I(x) = \int_{\Omega} \frac{1}{|x-y|^\delta} dy \) 在 \(\Omega \) 内一致有界，于是，我们总可以选取满足上述要求的点 \(p_0 \)。现在引入另外 5 个常数 \(C_i, i = 1, 2, 3, 4, 5 \), 其中 \(C_2 < C_1 < C_0, 0 < C_3 < C_4 < \eta_6, 0 < C_3 < C_5 < \Lambda_6 \), 具体的值随后给出。

设定

\[
\Sigma_0 = \{ -C_4 \le a \le C_4, -C_5 \le b \le C_5, Q \in \mathcal{N}_{C_2} \},
\]

(6.6)

其中 \(\mathcal{N}_{C_i} = \{ q : F(q) > C_i \} (i = 1, 2) \) 以及选取 \(\delta_6 \) 满足 \(\mathcal{N}_{C_2} \subset M_{\delta_6} \).
定义

\[B = \{(a, b, Q) \mid (a, b) \in B_{C_3}(0), Q \in \overline{N_{C_1}}\}, \quad B_0 = \{(a, b) \mid (a, b) \in B_{C_3}(0)\} \times \partial N_{C_1}, \quad (6.7) \]

其中 \(B_r(0) := \{0 \leq a^2 + b^2 \leq r\}. \)

显然, \(B_0 \subset B \subset \Sigma_0, \) 这里 \(B \) 是一个紧致的集合. 令 \(\Gamma \) 是 \(B \) 的所有连续映射组成的集合. 我们按如下方式定义 \(c \):

\[c = \min_{\varphi \in \Gamma} \max_{y \in B} K_\varepsilon(\varphi(y)). \]

我们将要证明 \(c \) 是一个极值. 出于这个目的, 我们将要验证以下两个条件:

(1) \(\max_{y \in B} K_\varepsilon(\varphi(y)) < c, \forall \varphi \in \Gamma; \)

(2) 对于 \(\partial \Sigma_0 \) 上所有满足 \(K_\varepsilon(y) = c \) 的点 \(y \), 我们找到 \(y \) 相对于集合 \(\partial \Sigma_0 \) 的切向向量 \(\tau_y \) 使得 \(\partial_{\tau_y} K_\varepsilon(y) \neq 0 \).

假定 (T1) 和 (T2) 成立. 利用经典的形变理论我们可以证明出 \(c \) 是 \(K_\varepsilon(\Lambda, \eta, Q) \) 在集合 \(\Sigma_0 \) 内的一个 (拓扑非平凡) 极值点 (因同样的记号在文献 [25] 中被引入用来寻找平均曲率退化的极值点).

为了证明 (T1) 和 (T2), 定义 \(\varphi(y) = \varphi(a, b, Q) = (\varphi_a, \varphi_b, \varphi_Q) \), 其中 \((\varphi_a, \varphi_b) \in [-C_4, C_4] \times [-C_5, C_5] \), \(\varphi_Q \in N_{C_2} \).

对于任意的映射 \(\varphi \in \Gamma \) 和 \(N_{C_1} \) 中的点 \(Q, Q' \) 由 \(\varphi_Q(a, b, Q) \) 是一个从 \(N_{C_1} \) 到 \(N_{C_2} \) 的连续函数并满足 \(\varphi_Q(a, b, Q) = Q, \forall Q \in \partial N_{C_1} \). 设 \(D \) 是包含集合 \(N_{C_2} \) 最小的球, 定义从 \(D \) 到 \(D \) 的映射 \(\tilde{\varphi}_Q \) 如下:

\[
\tilde{\varphi}_Q(x) = \varphi_Q(x), \quad x \in N_{C_1},
\]

\[
\tilde{\varphi}_Q(x) = \text{Id}, \quad x \in D \setminus N_{C_1}.
\]

我们可以证明存在 \(Q' \in D \) 使得 \(\tilde{\varphi}_Q(Q') = p_0 \). 如若不成立, \(\frac{\varphi_Q - p_0}{||\varphi_Q - p_0||} \) 提供了一个从 \(D \) 到 \(S^5 \) 的连续映射, 然而 Brouwer 不动点定理告诉我们这个是不可能的. 于是, 存在 \(Q' \in D \) 使得 \(\tilde{\varphi}_Q(Q') = p_0 \). 借助 \(\tilde{\varphi} \) 的定义, 我们可以得到 \(Q' \in N_{C_1} \). 那么,

\[
\max_{y \in B} K_\varepsilon(\varphi(y)) \geq K_\varepsilon(\varphi(a, b, Q'), \varphi(a, b, Q'), p_0) \geq \frac{1}{6912} |\Omega| + (C_0 - C_6 |\Omega|) \varepsilon + o(\varepsilon), \quad (6.8)
\]

其中 \(C_6 = 8C_4^3 + C_4C_5 \) 代表了 \(8a^3 + ab \) 在 \([-C_4, C_4] \times [-C_5, C_5] \) 中的最大值. 作为推论, 有

\[
c \geq \frac{1}{6912} |\Omega| + (C_0 - C_6 |\Omega|) \varepsilon + o(\varepsilon). \quad (6.9)
\]

对于 \((a, b, Q) \in B_0 \), 有 \(F(\varphi_Q(a, b, Q)) = C_1 \). 于是,

\[
K_\varepsilon(\varphi(a, b, Q)) \leq \frac{1}{6912} |\Omega| + (C_1 + C_7 |\Omega|) \varepsilon + o(\varepsilon), \quad (6.10)
\]

其中 \(C_7 = \max_{(a, b) \in B_{C_3}(0)} 8a^3 + ab < 8C_3^3 + C_2^3 \).

如果选取 \(C_0 - C_1 > (8C_4^3 + C_4C_5 + 8C_3^3 + C_2^3) |\Omega| > (C_0 + C_7 |\Omega|) \), 那么, \(\max_{y \in B_0} K_\varepsilon(\varphi(y)) < c \) 成立. 这样就推出了 (T1).

为了证明 (T2), 我们观察到

\[
\partial \Sigma_0 := \{(a, b, Q) \mid a = -C_4 \text{ 或者 } a = C_4 \text{ 或者 } b = -C_5 \text{ 或者 } b = C_5 \text{ 或者 } Q \in \partial N_{C_2}\}.
\]
因为 C_4 和 C_5 是任意的，所以可以设定 $0 < 24C_2^2 < C_5$。那么当 $a = -C_4$ 或者 $a = C_4$，可以选取 $\tau_y = \frac{a}{\partial z}$；当 $b = -C_5$ 或者 $b = C_5$，可以选取 $\tau_y = \frac{b}{\partial a}$. 根据 C_4 和 C_5 的选取，我们可以证明 $\partial z \cdot y(y) \neq 0$. 最后考虑若 $Q \in \partial N_{C_2}$，则有

$$K_z(a, b, Q) \leq \frac{1}{6912}[|\Omega| + (C_2 + C_3)|\Omega|]| + o(\varepsilon),$$ \hspace{1cm} (6.11)

其中右端项在 $C_2 < C_1 + C_7|\Omega| - C_0|\Omega|$ 时小于 c_1. 于是我们就验证了 (T2).

综上所述，我们证明了当 ε 充分小时，c 是一个临界值，也就是 K_z 在集合 Σ_0 中存在内部的极值点. 从而推出 K_z 在集合 (2.13) 存在极值点.

定理 1.1 的证明 若 $n = 4, \varepsilon$ 充分小时，我们证明了 I_c 有一个极值点 (Λ^c, Q^c). 令 $u_c = W_{\Lambda^c, Q^c, \varepsilon}$，则 u_c 是问题 (1.12) 在四维情形时的一个非平凡解. 利用最大值原理可以得到 u_c 于 Ω_c 满足 $u_c > 0$. 令 $u_{\mu} = \varepsilon^{-1}u_c(x/\varepsilon)$. 根据我们的构造，$u_{\mu}$ 满足定理 1.1 所需的所有条件，于是我们完成了四维情形的证明. 类似地，我们也可以证明六维的情形. 定理 1.1 证毕.

7 引理 2.1 的证明

我们把证明分为两部分. 首先考虑四维的情形. 根据 W 的定义、(2.10) 和 (2.15)，可得

$$S_c[W] = -\Delta W + \mu c^2 W - 8W^3$$

$$= 8U^3 + \varepsilon^4\left(\frac{c_1}{-\ln \varepsilon}\right)\hat{U} - \varepsilon^2\left(\frac{c_1}{-\ln \varepsilon}\right)^{1/2} \Delta(R_{c, \Lambda, Q}) - 8W^3$$

$$= O(\varepsilon^4(-\ln \varepsilon)(\varepsilon - \bar{Q})^{-2} + \varepsilon^2(-\ln \varepsilon)^{1/2}(\varepsilon - \bar{Q})^{-4})$$

$$+ O(\Delta)\left(\frac{\varepsilon^4}{-\ln \varepsilon}\left|\frac{1}{\varepsilon(1 + |\varepsilon - \bar{Q}|)}\right| + \frac{\varepsilon^4}{(-\ln \varepsilon)^2}\right).$$

同样的过程，我们可得 $D_{\Lambda}S_c[W]$ 和 $D_{Q}S_c[W]$ 的估计.

接下来证明能量估计 (2.23). 从 (2.15) 和 (2.16) 可以得到

$$\int_{\Omega_c} |\nabla W|^2 + \varepsilon^2\left(\frac{c_1}{-\ln \varepsilon}\right)^{1/2} \int_{\Omega_c} W^2$$

$$= 8 \int_{\Omega_c} U^3W + \varepsilon^4\left(\frac{c_1}{-\ln \varepsilon}\right)\int_{\Omega_c} \hat{U}W - \varepsilon^2\left(\frac{c_1}{-\ln \varepsilon}\right)^{1/2} \int_{\Omega_c} \Delta(R\lambda)W. \hspace{1cm} (7.1)$$

对于方程 (7.1) 右端的第一项，有

$$\int_{\Omega_c} U^3W = \int_{\Omega_c} U^4 + \varepsilon^2\left(\frac{c_1}{-\ln \varepsilon}\right)^{1/2} \int_{\Omega_c} \hat{U}U^3 + \frac{c_4\Lambda}{|\Omega|} \varepsilon^2\left(\frac{c_1}{-\ln \varepsilon}\right)^{-1/2} \int_{\Omega_c} U^3. \hspace{1cm} (7.2)$$

注意到 $\int_{\Omega_c} U^4 = \int_{R^4} U^4 + O(\varepsilon^4)$，$\int_{\Omega_c} U^3 = \frac{c_4\Lambda}{8} + O(\varepsilon^2)$，则

$$\int_{\Omega_c} U^3W = \int_{R^4} U^4 + \frac{c_2^2\Lambda}{2|\Omega|} \varepsilon^2\left(\frac{c_1}{-\ln \varepsilon}\right)^{-1/2} + \varepsilon^2\left(\frac{c_1}{-\ln \varepsilon}\right)^{1/2} \int_{\Omega_c} \hat{U}U^3 + O(\varepsilon^4\left(\frac{c_1}{-\ln \varepsilon}\right)^{-1/2}).$$

对于上述等式右端的第三项，有

$$\int_{\Omega_c} \hat{U}U^3 = - \int_{\Omega_c} \Psi U^3 - c_4\Lambda\left(\frac{c_1}{-\ln \varepsilon}\right)^{-1/2} \int_{\Omega_c} H(x, Q)U^3 + \int_{\Omega_c} (R\lambda)U^3$$

$$= - \int_{\Omega_c} \Psi U^3 - c_4\Lambda\left(\frac{c_1}{-\ln \varepsilon}\right)^{-1/2} \int_{\Omega_c} H(x, Q)U^3 + \int_{\Omega_c} (R\lambda)U^3$$

302
\[
= -\frac{c_4 \Lambda^2}{16} \ln \frac{1}{\Lambda \varepsilon} - \frac{c_4 \Lambda^2}{8} \left(\frac{c_1}{-\ln \varepsilon} \right)^{\frac{1}{2}} H(Q, Q) + O(\Lambda^2).
\]
从而，
\[
\int_{\Omega_x} U^3 W = \int_{\Omega} U^4_{1,0} + \frac{c_4 \Lambda^2}{8|\Omega|} \varepsilon^2 \left(\frac{c_1}{-\ln \varepsilon} \right)^{\frac{1}{2}} - \frac{c_4 \Lambda^2}{16} \ln \frac{1}{\Lambda \varepsilon} \varepsilon^2 \left(\frac{c_1}{-\ln \varepsilon} \right)^{\frac{1}{2}}
- \frac{c_4 \Lambda^2}{8} \varepsilon^2 H(Q, Q) + O\left(\varepsilon^2 \left(\frac{c_1}{-\ln \varepsilon} \right)^{\frac{1}{2}} \Lambda^2 + \varepsilon^4 \left(\frac{c_1}{-\ln \varepsilon} \right)^{\frac{1}{2}} \right). \tag{7.3}
\]
对于方程 (7.1) 右端的第二项, 有
\[
\int_{\Omega_x} \hat{U} W = \int_{\Omega_x} \hat{U} U + \varepsilon^2 \left(\frac{c_1}{-\ln \varepsilon} \right)^{\frac{1}{2}} \int_{\Omega_x} \hat{U}^2 + \frac{c_4 \Lambda^2}{|\Omega|} \varepsilon^2 \left(\frac{c_1}{-\ln \varepsilon} \right)^{\frac{1}{2}} \int_{\Omega_x} \hat{U}.
\]
利用
\[
\int_{\Omega_x} \hat{U} U = O\left(\varepsilon^2 \left(\frac{c_1}{-\ln \varepsilon} \right)^{\frac{1}{2}} \Lambda^2 \right), \quad \int_{\Omega_x} \hat{U}^2 = O(\varepsilon^4 (-\ln \varepsilon) \Lambda^2),
\]
\[
\int_{\Omega_x} \hat{U} = \varepsilon^4 \left(\frac{c_1}{-\ln \varepsilon} \right)^{\frac{1}{2}} \int_{\Omega} \frac{1}{|x - Q|^2} + O(\varepsilon^4 \Lambda),
\]
其中我们运用了 \(\int_{\Omega} G(x, Q) = 0 \), 则有
\[
\varepsilon^4 \left(\frac{c_1}{-\ln \varepsilon} \right) \int_{\Omega_x} \hat{U} W = \frac{c_4 \Lambda^2}{|\Omega|} \varepsilon^2 \int_{\Omega} \frac{1}{|x - Q|^2} + O\left(\varepsilon^2 \left(\frac{c_1}{-\ln \varepsilon} \right)^{\frac{1}{2}} \Lambda^2 \right). \tag{7.4}
\]
对于方程 (7.1) 右端剩余的一项, 有
\[
\int_{\Omega_x} \Delta (R \chi) W = \varepsilon^2 \left(\frac{c_1}{-\ln \varepsilon} \right)^{\frac{1}{2}} \frac{c_4 \Lambda}{|\Omega|} \int_{\Omega_x} \Delta (R \chi) + O(\Lambda^2)
= \varepsilon^2 \left(\frac{c_1}{-\ln \varepsilon} \right)^{\frac{1}{2}} \frac{c_4 \Lambda}{|\Omega|} \int_{\partial \Omega_x} \frac{\partial (R \chi)}{\partial \nu} + O(\Lambda^2)
= \left(\frac{c_1}{-\ln \varepsilon} \right)^{-1} \frac{c_4 \Lambda}{|\Omega|} \int_{\partial \Omega_x} \frac{\partial (U - \varepsilon^2 \left(\frac{c_1}{-\ln \varepsilon} \right)^{\frac{1}{2}} \Psi - c_4 \Lambda \varepsilon^2 H)}{\partial \nu} + O(\Lambda^2)
= \left(\frac{c_1}{-\ln \varepsilon} \right)^{-1} \frac{c_4 \Lambda}{|\Omega|} \int_{\Omega_x} \Delta \left(U - \varepsilon^2 \left(\frac{c_1}{-\ln \varepsilon} \right)^{\frac{1}{2}} \Psi - c_4 \Lambda \varepsilon^2 H \right) + O(\Lambda^2)
= \left(\frac{c_1}{-\ln \varepsilon} \right)^{-1} \frac{c_4 \Lambda}{|\Omega|} \int_{\Omega_x} \left(-8U^3 + \varepsilon^2 \left(\frac{c_1}{-\ln \varepsilon} \right)^{\frac{1}{2}} U + c_4 \Lambda \varepsilon^4 \frac{1}{|\Omega|} \right) + O(\Lambda^2)
= \left(\frac{c_1}{-\ln \varepsilon} \right)^{-\frac{1}{2}} \frac{c_4 \Lambda^2}{|\Omega|} \int_{\Omega} \frac{1}{\varepsilon^2 \Lambda^2 + |x - Q|^2} + O(\Lambda^2 + \varepsilon^2 (-\ln \varepsilon)). \tag{7.5}
\]
(7.3)–(7.5) 推出
\[
\frac{1}{2} \int_{\Omega_x} \left(|\nabla W|^2 + \varepsilon^2 \left(\frac{c_1}{-\ln \varepsilon} \right)^{\frac{1}{2}} W^2 \right) = 4 \int_{\Omega} U^4_{1,0} + \varepsilon^2 \left(\frac{c_1}{-\ln \varepsilon} \right)^{\frac{1}{2}} \frac{c_4 \Lambda^2}{2|\Omega|} - \frac{c_4 \Lambda^2}{2} H(Q, Q) \varepsilon^2
- \frac{c_4 \Lambda^2}{4} \varepsilon^2 \left(\frac{c_1}{-\ln \varepsilon} \right)^{\frac{1}{2}} \ln \frac{1}{\Lambda \varepsilon} + O\left(\varepsilon^2 \left(\frac{c_1}{-\ln \varepsilon} \right)^{\frac{1}{2}} \Lambda^2 \right)
\]
和 (7.9) 推出 右端的第一项 (7.10)。我们有

$$\frac{1}{2} \int_{\Omega_x} |\nabla W|^2 \, d^* + \frac{\mu \varepsilon^2}{2} \int_{\Omega_x} W^2 - 2 \int_{\Omega_x} W^4$$

$$= 2 \int_{\mathbb{R}^4} U_{1,0}^4 + \frac{c_4 A^2}{4} \varepsilon^2 \left(\frac{c_1}{-\ln \varepsilon} \right)^{\frac{1}{2}} \ln \frac{1}{\Lambda \varepsilon} - \frac{c_4 A^2}{2\Omega} \varepsilon^2 \left(\frac{c_1}{-\ln \varepsilon} \right)^{-\frac{1}{2}}$$

$$+ \frac{1}{2} \frac{c_4 A^2}{\varepsilon^2} H(Q, Q) + O\left(\varepsilon^2 \left(\frac{c_1}{-\ln \varepsilon} \right)^{\frac{1}{2}} \Lambda^2 \right) + O(\varepsilon^4 (\varepsilon^2 \Lambda^2)).$$

利用 (7.6) 和 (7.7)，可得

$$J_\varepsilon[W] = -\Delta W + \varepsilon^3 W - 24 W^2$$

$$= 24U^2 + \varepsilon^6 \hat{U} - \varepsilon^3 \Delta (R \chi) + \varepsilon^6 \left(\eta - \frac{c_6 A^2}{\Omega} \right) - 24U^2 - 24 \eta^2 \varepsilon^6 + O(\varepsilon^3 (\varepsilon^2 \Lambda^2))$$

$$= -\varepsilon^6 \left(24 \eta^2 - \eta + \frac{c_6 A^2}{\Omega} \right) + O(\varepsilon^3 (\varepsilon^2 \Lambda^2)).$$

在本节的最后，我们证明 (2.24)–(2.28)。通过 W 的定义，(2.10) 和 (2.15)，我们有

$$S_\varepsilon[W] = -\Delta W + \varepsilon^3 W - 24 W^2$$

$$= 24U^2 + \varepsilon^6 \hat{U} - \varepsilon^3 \Delta (R \chi) + \varepsilon^6 \left(\eta - \frac{c_6 A^2}{\Omega} \right) - 24U^2 - 24 \eta^2 \varepsilon^6 + O(\varepsilon^3 (\varepsilon^2 \Lambda^2))$$

$$= -\varepsilon^6 \left(24 \eta^2 - \eta + \frac{c_6 A^2}{\Omega} \right) + O(\varepsilon^3 (\varepsilon^2 \Lambda^2)).$$

利用同样的办法，我们可以得到 $D_\chi S_\varepsilon[W]$，$D_Q S_\varepsilon[W]$ 和 $D_\eta S_\varepsilon[W]$ 的估计。接下来计算能量的展开式。从 (2.15) 和 (2.16) 推出

$$\int_{\Omega_x} |\nabla W|^2 + \varepsilon^3 \int_{\Omega_x} W^2 = \int_{\Omega_x} (-\Delta W + \varepsilon^3 W)W$$

$$= \int_{\Omega_x} \left(24U^2 + \varepsilon^6 \hat{U} - \varepsilon^3 \Delta (R \chi) + \varepsilon^6 \left(\eta - \frac{c_6 A^2}{\Omega} \right) \right)W. \quad (7.9)$$

对于 (7.9) 右端的第一项，有

$$\int_{\Omega_x} U^2 W = \int_{\Omega_x} U^3 + \varepsilon^3 \int_{\Omega_x} \hat{U}U^2 + \eta \varepsilon^3 \int_{\Omega_x} U^2$$

$$= \int_{\mathbb{R}^4} U_{1,0}^3 + \frac{1}{24} c_6 \eta A^2 \varepsilon^3 - \varepsilon^3 \int_{\Omega_x} U^2 \varepsilon - \frac{c_6 A^2}{\Omega} \varepsilon^4 \int_{\Omega_x} U^2 H + O(\varepsilon^5)$$

$$= \int_{\mathbb{R}^4} U_{1,0}^3 + \frac{1}{24} c_6 \eta A^2 \varepsilon^3 - \frac{1}{24} c_6 A^4 \varepsilon^4 H(Q, Q) - \frac{1}{576} c_6 A^2 \varepsilon^3 + O(\varepsilon^5). \quad (7.10)$$
对于 (7.9) 右端的第二和三项，类似于四维情形处理的方法，可得

$$
\varepsilon^6 \int_{\Omega_{\varepsilon}} \hat{U}W = \varepsilon^6 \int_{\Omega_{\varepsilon}} \hat{U}(U + \varepsilon^3 \hat{U} + \eta \varepsilon^3) = -\eta \Lambda^2 \varepsilon^4 \int_{\Omega} \frac{1}{|x - Q|^2} + O(\varepsilon^5), \quad (7.11)
$$

$$
- \varepsilon^3 \int_{\Omega_{\varepsilon}} \Delta(R \chi) W = \varepsilon^3 \eta \int_{\Omega_{\varepsilon}} \Delta(U - \varepsilon^3 \Psi - c_6 \varepsilon^4 \Lambda^2 H) + O(\varepsilon^5) = \varepsilon^6 \eta \int_{\Omega_{\varepsilon}} U + O(\varepsilon^5)
$$

$$
= \eta \Lambda^2 \varepsilon^4 \int_{\Omega} \frac{1}{|x - Q|^4} + O(\varepsilon^5), \quad (7.12)
$$

$$
\varepsilon^6 \left(\eta - \frac{c_6 \Lambda^2}{|\Omega|} \right) \int_{\Omega_{\varepsilon}} W = (\eta^2 |\Omega| - c_6 \eta \Lambda^2) \varepsilon^3 + \left(\eta - \frac{c_6 \Lambda^2}{|\Omega|} \right) \varepsilon^4 \int_{\Omega} \frac{\Lambda^2}{|x - Q|^3} + O(\varepsilon^5). \quad (7.13)
$$

从 (7.10)–(7.13) 可推出

$$
\frac{1}{2} \int_{\Omega_{\varepsilon}} |\nabla W|^2 + \frac{1}{2} \int_{\Omega_{\varepsilon}} W^2 = 12 \int_{\mathbb{R}^6} U_{1,0}^3 + \left(\frac{1}{2} \eta^2 |\Omega| - \frac{c_6 \Lambda^2}{48} \right) \varepsilon^3 - \frac{c_6^2 \Lambda^4}{2} H(Q, Q) \varepsilon^4
$$

$$
= \frac{1}{2} \left(\eta - \frac{c_6 \Lambda^2}{|\Omega|} \right) \varepsilon^4 \int_{\Omega} \frac{\Lambda^2}{|x - Q|^3} + O(\varepsilon^5), \quad (7.14)
$$

则

$$
\int_{\Omega_{\varepsilon}} W^3 = \int_{\mathbb{R}^6} U_{1,0}^3 + 3 \varepsilon^3 \int_{\Omega_{\varepsilon}} U^2 \hat{U} + 3 \varepsilon^3 \int_{\Omega_{\varepsilon}} U^2 \eta + 3 \varepsilon^6 \int_{\Omega_{\varepsilon}} U \eta^2 + 3 \varepsilon^6 \int_{\Omega_{\varepsilon}} U \eta \hat{U} + \varepsilon^9 \int_{\Omega_{\varepsilon}} \eta^3 + O(\varepsilon^5)
$$

$$
= \int_{\mathbb{R}^6} U_{1,0}^3 + \frac{1}{8} c_6 \eta \Lambda^2 \varepsilon^3 + \frac{1}{192} c_6 \eta \Lambda^2 |\Omega| \varepsilon^3 + \frac{1}{8} c_6^2 \Lambda^4 H(Q, Q) \varepsilon^4 + O(\varepsilon^5). \quad (7.15)
$$

从 (7.14) 和 (7.15) 可得六维能量的表达式

$$
J_{\varepsilon}[W] = 4 \int_{\mathbb{R}^6} U_{1,0}^3 + \left(\frac{1}{2} \eta^2 |\Omega| - c_6 \eta \Lambda^2 + \frac{1}{48} c_6 \Lambda^2 - 8 \eta^3 |\Omega| \right) \varepsilon^3 + \frac{1}{2} c_6^2 \Lambda^4 H(Q, Q) \varepsilon^4
$$

$$
= \frac{1}{2} (\eta - \frac{c_6 \Lambda^2}{|\Omega|}) \varepsilon^4 \int_{\Omega} \frac{\Lambda^2}{|x - Q|^3} + O(\varepsilon^5). \quad (7.16)
$$

因此，我们完成了引理 2.1 的证明。
On Lin-Ni’s conjecture in dimensions four and six

Juncheng Wei, Bin Xu & Wen Yang

Abstract We give negative answers to Lin-Ni’s conjecture for any four and six dimensional domains. No condition on the symmetry, geometry and topology of the domain is needed.

Keywords Lin-Ni’s conjecture, a priori estimate, blow-up solution

MSC(2010) 35J75, 35J25, 35J61
doi: 10.1360/N012018-00120