ON RATE OPTIMALITY FOR ILL-POSED INVERSE PROBLEMS IN ECONOMETRICS

XIAOHONG CHEN
Yale University

MARKUS REISS
Humboldt University Berlin

In this paper we clarify the relations between the existing sets of regularity conditions for convergence rates of nonparametric indirect regression (NPIR) and nonparametric instrumental variables (NPIV) regression models. We establish minimax risk lower bounds in mean integrated squared error loss for the NPIR and NPIV models under two basic regularity conditions: the approximation number and the link condition. We show that both a simple projection estimator for the NPIR model and a sieve minimum distance estimator for the NPIV model can achieve the minimax risk lower bounds and are rate optimal uniformly over a large class of structure functions, allowing for mildly ill-posed and severely ill-posed cases.

1. INTRODUCTION

Recently there has been a growing interest in estimation for nonparametric instrumental variables (NPIV) regression models; see, e.g., Newey and Powell (2003), Darolles, Florens, and Renault (2006), Hall and Horowitz (2005), Blundell, Chen, and Kristensen (2007), and Gagliardini and Scaillet (2009), to name only a few. The estimators proposed in these papers belong to four broad classes: (1) the finite dimensional sieve minimum distance estimator (Newey and Powell, Ai and Chen, 2003; Blundell et al.); (2) the infinite dimensional kernel-based Tikhonov function-level regularized estimator (Darolles et al.; Hall and Horowitz); (3) the finite dimensional orthogonal series Tikhonov function-level regularized estimator (Hall and Horowitz); and (4) the infinite dimensional kernel-based Tikhonov function-first derivative regularized estimator (Gagliardini and Scaillet). Each of these papers presents very different sets of sufficient conditions for consistency and convergence rates of its proposed estimators. For the mildly ill-posed case (e.g., when the singular values of the conditional expectation operator decay to zero at a polynomial rate) and under a set of regularity conditions that are naturally
related to their estimation procedures, Hall and Horowitz establish the minimax risk lower bound in mean integrated squared error loss for the NPIV regression model and show that their estimators achieve this lower bound.

To the best of our knowledge, no published work discusses the relations among the different sets of sufficient conditions imposed in the above mentioned papers. Therefore, it is unclear whether the minimax risk lower bound derived in Hall and Horowitz (2005) is the lower bound under regularity conditions stated in the other papers. It is also unclear whether the estimators proposed in the other papers are rate optimal in a minimax framework corresponding to the conditions stated in these papers. Moreover, when the NPIV problem is severely ill posed (for instance, when the singular values associated with the conditional expectation operator decay to zero at an exponential rate), there are no published results on minimax rates.

In this paper we address these issues based on a general formulation of the problems. In Section 2 we first present the NPIV models. We then provide two basic regularity conditions: the approximation and the link conditions. The approximation condition is about the complexity of the class of structural functions, which is measured as the best finite dimensional linear approximation error rate in terms of a basis expansion that may not be the eigenfunction basis of the conditional expectation operator. The link condition is about the relative smoothness of the conditional expectation operator in terms of the basis used in the approximation condition. We show that these two regularity conditions are natural generalizations of, and are automatically satisfied by, the so-called “general source condition,” an assumption commonly imposed in the literature on ill-posed inverse problems. Our two basic regularity conditions are also implied by the ones assumed in the literature on NPIV models, such as those imposed in Darolles et al. (2006), Hall and Horowitz (2005), and Blundell et al. (2007). In Section 3 we first show that the NPIV model is no more informative than the reduced form NPIR model (i.e., the model assuming a known conditional expectation operator of the endogenous regressors given the instrumental variables). Under the two basic regularity conditions stated in Section 2, we derive the minimax risk lower bound in mean integrated squared error loss for the NPIR and NPIV models, allowing for both the mildly ill-posed case and the severely ill-posed case. In Section 4 we present a simple projection estimator for the NPIR models and establish that it achieves the lower bounds and hence is rate optimal in the minimax sense. When restricting our conditions to various special cases, including the nonparametric mean regression models and the NPIR models under general source conditions, our results reproduce the existing known minimax optimal rates for these special cases. But more importantly, our minimax optimal rate results cover many new cases as long as their model specifications satisfy the approximation and the link conditions. We also discuss what could happen if the link condition on the relative smoothness of the conditional expectation operator is not satisfied. In Section 5 we show that the sieve minimum distance (SMD) estimator for the NPIV models is rate optimal in the minimax sense. In fact, we show that both the projection
NONPARAMETRIC INSTRUMENTAL VARIABLES REGRESSION 499

estimator for the NPIR models and the SMD estimator for the NPIV models are rate optimal uniformly over a large class of structure functions, allowing for arbitrarily decaying speed of the singular values of the conditional expectation operator. Section 6 provides some further discussions on the regularity conditions. Section 7 briefly concludes, and all proofs are gathered in the Appendix.

Before we conclude this introduction, we mention closely related work in more abstract settings of linear ill-posed inverse problems. First, there exist many papers and some monographs devoted to constructing estimators and deriving optimal convergence rates in the deterministic noise framework with a known operator (or a known operator up to a deterministically perturbed error with a specified error rate). See, e.g., Engl, Hanke, and Neubauer (1996), Nair, Pereverzev, and Tautenhahn (2005), and the references therein. Second, there are also many results on minimax optimal rates in mean integrated squared error loss in the random white noise framework with a known operator; see, e.g., Mair and Ruymgaart (1996), Cohen, Hoffmann, and Reiss (2004), Bissantz, Hohage, Munk, and Ruymgaart (2007), and the references therein. Third, there are a few recent papers on constructing estimators that achieve optimal convergence rates in the presence of white noise and an unknown operator, but assuming the existence of an estimator of the operator with a rate. See, e.g., Efroimovich and Koltchinskii (2001), Hoffmann and Reiss (2008), and Johannes, Van Belleghem, and Vanhems (2011).1

2. NPIV MODELS AND BASIC REGULARITY CONDITIONS

We first specify the NPIV regression model as

\[Y_i = h_0(X_i) + U_i, \quad \mathbb{E}[U_i | W_i] = 0, \quad i = 1, \ldots, n, \]

(2.1)

with observations \(\{(X_i, Y_i, W_i)\}_{i=1}^n \), a random sample from the unknown joint distribution of \((X, Y, W) \). Here \(Y \) is a scalar dependent variable, \(X \) is a vector of endogenous regressors in \(\mathbb{R}^d \), and \(W \) is a vector of instrumental variables in \(\mathbb{R}^d \) that satisfy the property \(\mathbb{E}[U | W] = 0 \). (For ease of presentation we assume that \(X \) and \(W \) do not contain any common variables, and the conditional density of \(X \) given \(W \) is well defined.) The parameter of interest is the unknown structure function \(h_0(\bullet) \), while the joint law \(\mathcal{L}_{U WX} \) of \((U, W, X) \) is an unknown nuisance function.

Let us introduce the Hilbert spaces

\[L^2_X = \{ h : \mathbb{R}^d \to \mathbb{R} | \| h \|^2_X := \mathbb{E}[h^2(X)] < \infty \}, \]

\[L^2_W = \{ g : \mathbb{R}^d \to \mathbb{R} | \| g \|^2_W := \mathbb{E}[g^2(W)] < \infty \}. \]

Since the conditional distribution of \(X \) given \(W \) is unspecified, the conditional expectation operator

\[(Kh)(w) := \mathbb{E}[h(X) | W = w] \]
is unknown, except that it is an integral operator mapping from L^2_X to L^2_W. This operator is the key in the construction of estimators of h_0 because, by conditioning on W in 2.1 and using $\mathbb{E}[U \mid W] = 0$, we obtain

$$\mathbb{E}[Y \mid W] = \mathbb{E}[h_0(X) \mid W] + \mathbb{E}[U \mid W] = Kh_0(W). \quad (2.2)$$

Consequently, by regressing Y on W, estimating K, and using this relationship, we can hope to retrieve an estimator of h_0.

Let H denote a subset of L^2_X and assume that $h_0 \in H$ is the unique solution to (2.2) in H. Here H captures all the prior information (such as the smoothness and/or shape properties) about the unknown structure function h_0. Depending on the choice of the function class H, the identification of $h_0 \in H$ imposes different restrictions on the operator K (or equivalently, on the conditional density of X given W). For example, if $H = L^2_X$, then we need the standard identification condition that K is injective, i.e., $\mathcal{N}(K) := \{h \in L^2_X : Kh = 0\} = \{0\}$ (or equivalently, the conditional density of X given W is complete); see, e.g., Newey and Powell (2003), Darolles et al. (2006), Carrasco, Florens and Renault (2007). If $H = \{h \in L^2_X : \sup_x |h(x)| \leq 1\}$, then for identification it suffices to assume that the conditional density of X given W is bounded complete; see, e.g., Blundell et al. (2007) and D’Haultfoeuille (2011). For simplicity, in this paper we assume that K is injective.

2.1. Basic Regularity Conditions

In this paper we would like to establish a minimax risk lower bound for the NPIV model; that is, we would like to derive a result of the form: there are a finite constant $c > 0$ and a rate function $\delta_n \downarrow 0$ as $n \uparrow \infty$ such that

$$\liminf_{n \to \infty} \left(\delta_n^{-1} \inf_{h_n} \sup_{h \in H} \mathbb{E}(\mathcal{L}_{UWX,h} ||\hat{h}_n - h||^2_X) \right) \geq c,$$

where the infimum is over all possible estimators \hat{h}_n for $h \in H$. Note that an NPIV model (2.1) is completely specified by prescribing the joint law \mathcal{L}_{UWX} of (U, W, X) and the structure function h. This lower bound δ_n will be valid for quite general forms of \mathcal{L}_{UWX}, independently of knowing or not knowing it. In particular, although the mean squared error loss and the class of structure functions H will be defined in terms of the distribution of X, there is no need to assume any explicit properties of this distribution to derive a minimax lower bound.

We would also like to present some particular estimators that attain the lower bound rate δ_n. However, before we an establish any minimax lower and upper bounds, it is clear that we have to impose some conditions on the class of structure functions H and on the conditional expectation operator K. In this paper we implicitly assume that the prior information about H already includes some regularity properties that could be described in terms of a Hilbert scale generated by a conveniently chosen (by the researcher) operator B. The regularizing action of
the conditional expectation operator K would also be described as some smoothness relative to the known operator B. Formally, let $B : \text{Dom}(B) \subseteq L^2_X \to L^2_X$ be a densely defined self-adjoint, strictly positive-definite, and unbounded operator (such as differential operators with boundary constraints). For ease of presentation we assume that B has eigenvalues $\nu_k \uparrow \infty$ with corresponding L^2_X-normalized eigenfunctions $\{u_k\}$, which then form an orthonormal basis of L^2_X. For nondiscrete spectrum our results will still hold, but the presentation would become more technical, using spectral measures and abstract functional calculus.

Throughout this paper we denote by $\mathcal{H}(r, R)$ a subset of $\mathcal{H} \subseteq L^2_X$, and make the assumption below.

Assumption 1 (Approximation condition). There are finite constants $r, R > 0$ such that $\mathcal{H}(r, R)$ consists of functions h satisfying

$$\inf_{\{a_k\} : \sum_k a_k^2 < \infty} \left\| h - \sum_{k=1}^m a_k u_k \right\|_X^2 \leq R^2 \nu_{m+1}^{-2r} \quad \text{for all } m \in \mathbb{N}. \quad (2.3)$$

Note that the left-hand side of (2.3) gives the error in approximating h optimally by an element of the m-dimensional space spanned by the basis functions $\{u_1, \ldots, u_m\}$. So, Assumption 1 characterizes the regularity (or smoothness) of the structure functions in $\mathcal{H}(r, R)$ by the L^2_X-approximation error rates when they are approximated by the basis $\{u_k\}$ associated with B. Clearly, Assumption 1 will give a bound on the bias and implies that $\mathcal{H}(r, R)$ is a compact set in L^2_X. For many typical smooth function classes and basis functions like the Fourier basis, wavelets, or splines the approximation error rates are well known.

For any $s > 0$ and $h \in \text{Dom}(B^s) \subseteq L^2_X$ we write $\|h\|_s := \|B^s h\|_X$. Let H^s denote the completion of $\text{Dom}(B^s)$ under the norm $\|\cdot\|_s$. Here $\{H^s\}_{s > 0}$ is called a Hilbert scale generated by B (see, e.g., Engl et al., 1996, for its detailed properties). For any finite constants $r, R > 0$, we define a Sobolev-type ellipsoid as $H^r_R := \{h \in H^r \mid \|h\|_r \leq R\}$. Since

$$H^r_R = \left\{ h = \sum_{k=1}^{\infty} \langle h, u_k \rangle_X u_k, \|h\|^2_r = \sum_{k=1}^{\infty} \nu_k^{2r} \langle h, u_k \rangle_X^2 \leq R^2 \right\},$$

it is clear that H^r_R is a subset of $\mathcal{H}(r, R)$. In most cases of interest, the following hyperrectangle $\Theta^r_{R'}$ in L^2_X is a subset of $\mathcal{H}(r, R)$ for $\beta = r + \frac{1}{2}$ and $R' > 0$ sufficiently small:

$$\Theta^r_{R'} := \left\{ h = \sum_{k=1}^{\infty} \langle h, u_k \rangle_X u_k, |\langle h, u_k \rangle_X| \leq R' \nu_k^{-\beta} \right\} \subseteq \mathcal{H}(r, R).$$

This inclusion is ensured if $\sum_{k=m}^{\infty} (\nu_m / \nu_k)^{2r} \nu_k^{-1}$ is bounded (uniformly in m), for example, whenever $\inf_k \nu_k / k > 0$ or $\sum_k \nu_k^{-1} < \infty$ hold.
Next we formulate the mapping properties of the conditional expectation operator K in terms of the (generalized) Hilbert scale generated by B.

Assumption 2 (Link condition). There are a continuous increasing function $\phi : \mathbb{R}^+ \to \mathbb{R}^+$ and a constant $M > 0$ such that $\|Kh\|_W \leq M\|[\phi(B^{-2})]^{1/2}h\|_X$ for all $h \in \mathcal{H}(r, R)$.

Assumption 2 is in fact equivalent to the range inclusion condition

\[\text{ran}(|K|) \subseteq \text{ran}([\phi(B^{-2})]^{1/2}) \quad \text{with } |K| := (K^* K)^{1/2}, \]

where K^* denotes the Hilbert space (L^2_X) adjoint of K. For the NPIV models, under mild conditions, the conditional expectation operator K is a compact operator. Thus the self-adjoint compact operator $K^* K$ has the eigenvalue-eigenfunction decomposition $\{\lambda_k, e_k\}$, where the eigenvalues are arranged in nonincreasing order: $\lambda_k \geq \lambda_{k+1} \geq \ldots > 0$ and λ_k tends to zero as $k \uparrow \infty$. Then Assumption 2 can be equivalently restated in terms of two possibly different orthonormal bases $\{e_k\}$ and $\{u_k\}$ of L^2_X:

\[\sum_{k=1}^{\infty} \lambda_k \langle h, e_k \rangle_X^2 \leq M^2 \sum_{k=1}^{\infty} \phi(v_k^{-2}) \langle h, u_k \rangle_X^2 \quad \text{for all } h \in \mathcal{H}(r, R). \quad (2.4) \]

Remark 1. We can rewrite Assumptions 1 and 2 without specifying the operator B explicitly. All we require are the existence of an orthonormal basis $\{u_k\}$ in L^2_X and a sequence of increasing positive real numbers $\{\nu_k\}$ such that equations (2.3) and (2.4) hold. In fact, we can then construct the self-adjoint unbounded operator B according to

\[Bh = \sum_{k=1}^{\infty} \nu_k \langle h, u_k \rangle_X u_k, \]

with $\text{Dom}(B) = \{h \in L^2_X : \sum_{k=1}^{\infty} \nu_k^2 \langle h, u_k \rangle_X^2 < \infty\}$.

Example 1

Suppose that X is uniformly distributed on the interval $[0, 1]$ and let $Bf(x) := -f''(x)$ for all $f \in L^2([0, 1])$ with $f'' \in L^2([0, 1])$ and with periodic boundary conditions. Then B has (complex-valued) eigenfunctions $u_k(x) = \exp(2\pi kix)$ with eigenvalues $\nu_k = (2\pi k)^2$ such that

\[H^r = \left\{ f \in L^2([0, 1]) : \sum_{k \in \mathbb{Z}} \nu_k^{2r} |\langle f, u_k \rangle|^2 < \infty \right\} \]

is the classical L^2-Sobolev space H^r_{per} of regularity (smoothness) $2r$ with periodic boundary conditions. See, e.g., Edmunds and Evans (1987) for many examples of generating smooth function spaces from differential operators.
For the typical choice $\phi(t) = t^a$ for some $a > 0$, Assumption 2 translates to $\|Kh\|_W \leq M \|B^{-a}h\|_X$, which means intuitively that the operator K regularizes at least as much as B^{-a}. In the case $Bf(x) := -f''(x)$ the operator K acts like integrating at least $(2a)$-times, i.e., maps L^2 to the L^2-Sobolev space of regularity $2a$.

In the statistics literature, for the standard nonparametric mean regression model (i.e., the model in which K is the identity operator), the minimax risk lower and upper bounds have been established in mean integrated squared error loss for various classes of functions \mathcal{H} such as a Sobolev ball (ellipsoid), a Hölder ball (hyperrectangle), or a Besov ball (ellipsoid, hyperrectangle, or Besov body); see, e.g., Donoho, Liu, and MacGibbon (1990), Yang and Barron (1999), and the references therein. As shown in these papers, what matters for minimax risk lower and upper bounds for nonparametric mean regression estimation is the complexity of the class of functions \mathcal{H} that can be measured in terms of best finite dimensional approximation numbers. This motivates us to impose Assumption 1. However, since the basis $\{u_k\}$ (of the operator B) used to construct the best finite dimensional approximations for the class of functions \mathcal{H} may differ from the eigenfunction basis $\{e_k\}$ (of the operator K^*K), we have to impose Assumption 2 to link these two.

We shall refer to Assumptions 1 and 2 as the two basis regularity conditions; and sometimes call Assumption 1 the approximation condition and Assumption 2 the link condition. Both assumptions are satisfied by those imposed in the literature, such as those in Cohen et al. (2004), Efromovich and Koltchinskii (2001), Hoffmann and Reiss (2008), Blundell et al. (2007), Chen and Pouzo (2008), and others. In the next subsection we show that these two basic regularity conditions are automatically satisfied by the so-called “general source condition,” which in turn is satisfied by conditions imposed in Hall and Horowitz (2005) and all the other papers using the general source condition.

2.2. Relation to Source Conditions

In the numerical analysis literature on ill-posed inverse problems it is common to measure the smoothness (regularity) of the function class \mathcal{H} according to the spectral representation of the operator K^*K. Denote by $\|K\| := \sup_{\|h\|_X \leq 1} \|Kh\|_W$ the operator norm. The so-called “general source condition” (see Tautenhahn, 1998) assumes that there is a continuous function ψ defined on $[0, \|K\|^2]$ with $\psi(0) = 0$ and $\lambda^{-1/2}\psi(\lambda)$ nondecreasing such that

$$\mathcal{H}_{source} := \{ h = \psi(K^*K)g, \ g \in L^2_X, \ \|g\|^2_X \leq R \}, \quad \text{for a finite constant } R,$$

and the original “source condition” corresponds to the choice $\psi(\lambda) = \lambda^{1/2}$ (see Engl et al., 1996). If K^*K is compact with eigenvalue-eigenfunction system
\(\{ \lambda_k, e_k \}, \) then (2.5) is equivalent to

\[
\mathcal{H}_{\text{source}} = \left\{ h = \sum_{k=1}^{\infty} \langle h, e_k \rangle_X e_k, \sum_{k=1}^{\infty} \frac{\langle h, e_k \rangle_X^2}{\psi^2(\lambda_k)} \leq R^2 \right\}.
\]

Therefore the general source condition implies our Assumptions 1 and 2 by setting \(u_k = e_k \) and \(v_k^{-r} = \psi(\lambda_k) \) for all \(k \geq 1 \), and \(\phi(B^{-2}) = K^* K \).

In the econometrics literature on NPIV estimation, Darolles et al. (2006) impose a smoothness condition on the true structure function \(h_0 \) that is closely related to the source condition. Precisely, they assume \(h_0 \in \mathcal{H}_{DFR} \), where

\[
\mathcal{H}_{DFR} = \left\{ h \in L^2_X, \sum_{k=1}^{\infty} \frac{\langle h, e_k \rangle_X^2}{(\lambda_k)^a} < \infty \right\}, \quad \text{for some } a \geq 1.
\]

(2.6)

Darolles et al. (2006) use this assumption \(h_0 \in \mathcal{H}_{DFR} \) to establish the convergence rate of their kernel-based Tikhonov regularized estimator in mean squared error metric \(\mathbb{E}_{h_0}[\| \hat{h} - h_0 \|_X^2] \). This rate, however, will not hold uniformly over \(h_0 \in \mathcal{H}_{DFR} \), since the series in 2.6 is not uniformly bounded away from infinity, which is the role of \(R \in (0, \infty) \) in the definition of \(\mathcal{H}_{source} \).

Hall and Horowitz (2005) assume that \(h_0 \) belongs to a hyperrectangle in \(L^2_X \), using the eigenfunctions \(\{ e_k \} \) of the operator \(K^* K \) as a basis:

\[
\mathcal{H}_{HH} = \left\{ h = \sum_{k=1}^{\infty} \langle h, e_k \rangle_X e_k, \sum_{k=1}^{\infty} |\langle h, e_k \rangle_X| \leq R'k^{-\beta} \right\},
\]

which, when \(\beta > 1/2 \) plays the role of \(r + 1/2 \), implies our Assumptions 1 and 2 by setting \(u_k = e_k \), \(v_k = k \) for all \(k \geq 1 \), and \(\phi(B^{-2}) = K^* K \). Hall and Horowitz also assume that the eigenvalues \(\{ \lambda_k \} \) of the operator \(K^* K \) are such that \(\lambda_k \geq \text{const}. k^{-\alpha} \) for some \(\alpha > 1 \) and \(2\beta > \alpha \geq \beta - 1/2 \), which suggests that we could set \(\phi(t) = t^{\alpha/2} \).

3. THE LOWER BOUND

In this section we shall establish a minimax risk lower bound for the NPIV model under the two basic regularity conditions stated in Section 2. We derive this result by first establishing that the NPIV model is no more informative than the reduced form NPIR model. First, the following abstract assumption ensures a certain complexity of the statistical NPIV model and permits the residuals of \(Y \) given \(W \) to be Gaussian. Recall that \(\mathcal{L}_Z \) denotes the law of the random vector \(Z \).

Assumption 3. Let \(\sigma_0 > 0 \) be a finite constant. Let \(\mathcal{C} \) be a (possibly very large) set of elements \((\mathcal{L}_{UW_X}, h) \) such that the following property holds:

- For all \(h \in \mathcal{H} \), there is a law \(\mathcal{L}_{UW_X} \) with \((\mathcal{L}_{UW_X}, h) \in \mathcal{C} \) such that \(\mathcal{L}_{YW} \) is determined by \(\mathcal{L}_{UW_X} \) and \(h \), and that

\[
V_i := Y_i - \mathbb{E}[Y_i | W_i] = h(X_i) - (Kh)(W_i) + U_i,
\]

given \(W_i \) is \(N(0, \sigma^2(W_i)) \)-distributed with \(\sigma^2(W_i) \geq \sigma_0^2 \).
Example 2
A typical NPIV model (2.1) satisfying Assumption 3 is generated by taking W_i from an arbitrary probability distribution L_W, then generating X_i according to a conditional density of X given W, generating V_i according to $N(0, \sigma^2(W_i))$, and defining

$$U_i := (Kh)(W_i) - h(X_i) + V_i.$$

3.1. Reduction from NPIV Model to NPIR Model
For each NPIV model, we specify the reduced form NPIR model as

$$Y_i = (Kh)(W_i) + V_i, \quad i = 1, \ldots, n,$$

with (W_i, V_i) i.i.d., $L_{V|W=w} = N(0, \sigma^2(w))$, $h \in \mathcal{H}$ the unknown structure function, and K a known injective operator from L^2_X to L^2_W. The observations corresponding to the NPIR are $\{(Y_i, W_i)\}_{i=1}^n$. We shall now formally prove that the NPIV model is statistically more demanding than an indirect regression model with known operator K. We compare statistical experiments in a decision-theoretic sense (see Le Cam and Yang, 2000), and therefore have to ensure first that the classes of parameters are compatible.

DEFINITION 1. Let Assumption 3 hold. The NPIR model class C_0 consists of all model parameters $(L_W, \sigma(\bullet), h)$ such that there is $(L_{UXW}, h) \in C$ with the following properties: $L_W = L^0_W$, $\sigma^2(w) \geq \sigma^2_0 > 0$, the conditional law $L_{X|W}$ is prescribed according to K, and $L_{UX|W}$ is arbitrary among the conditions imposed in C.

LEMMA 1. The NPIR model is more informative than the NPIV model in the sense that for each estimator \hat{h}_n for the NPIV model, there is an estimator \tilde{h}_n for the NPIR model with

$$\sup_{(L_W, \sigma(\bullet), h) \in C_0} \mathbb{E}(L_W, \sigma(\bullet), h)[\|\hat{h}_n - h\|_X^2] \leq \sup_{(L_{UXW}, h) \in C} \mathbb{E}(L_{UXW}, h)[\|\tilde{h}_n - h\|_X^2].$$

3.2. The Lower Bound
We now formally present the minimax risk lower bound for the NPIR and NPIV models in mean squared error loss. We establish the lower bound by considering asymptotically least favorable Bayes priors, more specifically, by applying Assouad’s cube technique; see, e.g., Korostelev and Tsybakov (1993) or Yang and Barron (1999). In this paper we use the notation $a_n \asymp b_n$ to mean that there is a finite positive constant c such that $ca_n \leq b_n \leq c^{-1}a_n$.

Since $\sup_{h \in \mathcal{H}(r, R)} \mathbb{E}_h[\|\hat{h}_n - h\|_X^2] \geq \sup_{h \in H_R^c} \mathbb{E}_h[\|\hat{h}_n - h\|_X^2]$, it suffices to establish the lower bound for functions in H_R^c, a subset of $\mathcal{H}(r, R)$.
THEOREM 1. Let Assumptions 1 and 2 hold. For the NPIR model we have the following minimax risk lower bound:

$$\inf_{\hat{h}_n} \sup_{h \in H_{R'}} \mathbb{E}_h[\|\hat{h}_n - h\|_X^2] \geq \frac{\sigma_0^2}{4\exp(4M)} \delta_n,$$

where the infimum runs over all possible estimators \hat{h}_n based on n observations, and m is the largest possible integer satisfying

$$\sigma_0^2 n^{-1} \sum_{k=1}^{m} \nu_k^{2r} [\phi(\nu_k^{-2})]^{-1} \leq R^2.$$

(i) Mildly ill-posed case: Let $\phi(t) = t^a$ and $\nu_k \asymp k^\epsilon$ for some $a, \epsilon > 0$. If $m \asymp n^{1/(2\epsilon+2a+1)}$, then $\delta_n \asymp n^{-2r/(2r+2a+\epsilon)}$.

(ii) Severely ill-posed case: Let $\phi(t) = \exp(-t^{-a/2})$, $\nu_k \asymp k^\epsilon$ for some $a, \epsilon > 0$. If $m = c \log(n)^{1/a}$ with a sufficiently small $c > 0$, then $\delta_n \asymp (\log n)^{-2r/a}$.

The next corollary follows directly from Lemma 1 and Theorem 1; hence we omit its proof.

COROLLARY 1. Let Assumptions 1, 2, and 3 hold. For the NPIV model we have the same minimax risk lower bound:

$$\inf_{\hat{h}_n} \sup_{h \in H_{R'}} \mathbb{E}_h[\|\hat{h}_n - h\|_X^2] \geq \frac{\sigma_0^2}{4\exp(4M)} \delta_n,$$

where the infimum runs over all possible estimators \hat{h}_n based on n observations.

Remark 2. For the proof of the lower bound we have to consider the likelihood between the observations. This is why we require Gaussianity. Nevertheless, the proof works the same way for other error densities, but bounding the Kullback-Leibler or Hellinger distance between alternatives might be more cumbersome.

Let us also mention that the proof strategy can also yield a lower bound for convergence in probability:

$$\inf_{\hat{h}_n} \sup_{h \in H_{R'}} \mathbb{P}_h \left(\delta_n^{-1} \|\hat{h}_n - h\|_X^2 \geq \frac{\sigma_0^2}{4\exp(4M)} \delta_n \right) \geq c > 0,$$

cf. Korostelev and Tsybakov (1993).

Note that Assumption 2 is automatically satisfied under the general source condition with $K^*K = \phi(B^{-2})$. Following the proof of Theorem 1, we immediately obtain an additional remark.

Remark 3. Suppose that Assumption 1 is satisfied with $h \in \mathcal{H}_{source}$ and $u_k = e_k, v_k^{-r} = \psi(\lambda_k)$ for all $k \geq 1$. Let $\phi(B^{-2}) = K^* K$. Then, for the NPIR and NPIV
models (under Assumption 3), we have the same minimax risk lower bound:

$$\inf_{\hat{h}_n} \sup_{h \in \mathcal{H}} \mathbb{E}_h[\|\hat{h}_n - h\|_X^2] \geq \frac{\sigma_0^2}{4 \exp(4M)} \delta_n,$$

with δ_n given in Theorem 1, where the infimum runs over all possible estimators \hat{h}_n based on n observations.

An equivalent way to determine the lower bound δ_n is to choose the largest possible integer m such that

$$\delta_n = n^{-1} \sum_{k=1}^m \lambda_k^{-1}, \quad \sigma_0^2 n^{-1} \sum_{k=1}^m [\psi(\lambda_k)]^{-2} \lambda_k^{-1} \leq R^2.$$

4. AN UPPER BOUND FOR THE NPIR MODEL

We prove an upper bound for the NPIR model. The aim of this section is to convince the reader that the lower bounds given in Section 3 are rate optimal, and to provide an easy method to attain these rates. Again we assume that B has eigenvalues $\nu_k \uparrow \infty$ with corresponding L^2_X-normalized eigenfunctions (u_k), which then form an orthonormal basis of L^2_X. For $m \geq 1$ we define our estimator as

$$\hat{h}_n := \sum_{k=1}^m \hat{\eta}_k u_k, \quad \hat{\eta}_k := \frac{1}{n} \sum_{i=1}^n Y_i ((K^*)^{-1} u_k)(W_i). \quad (4.1)$$

This simple projection procedure using the basis $\{u_k\}$ (of B) does not seem to have been studied before. It is a natural generalization of the well-known spectral cut-off method using the eigenfunction basis $\{e_k\}$ of $K^* K$. Given the prior information about $\mathcal{H}(r, R)$, this is a mathematically satisfactory construction.

4.1. General Assumptions and Results

For the upper bound we impose the following assumptions on the NPIR model.

Assumption 4.

(i) There is a finite $\sigma_1 > 0$ such that $\sigma(w) \leq \sigma_1$ for all $w \in \text{supp}(\mathcal{L}_W)$.

(ii) There is a finite $S > 0$ such that $\|Kh\|_{\infty} = \sup_{w \in \text{supp}(\mathcal{L}_W)} |(Kh)(w)| \leq S$ for all $h \in \mathcal{H}(r, R)$.

Assumption 4 is typically assumed in papers on nonparametric estimation of ill-posed indirect regression; see, e.g., Bissantz et al. (2007). When K is the identity operator, Assumption 4(ii) requires that $\|h\|_{\infty} \leq S$ for all $h \in \mathcal{H}(r, R)$, which is a condition imposed in Yang and Barron (1999, Thms. 6 and 7) to derive their minimax rate for a standard nonparametric regression model.

Assumption 5 (Reverse link condition). There is a finite $c > 0$ such that $\|Kh\|_{W} \geq c\|\phi(B^{-2})\|_{1/2} h\|_X$ for all $h \in \mathcal{H}(r, R)$.

Assumption 5 is the reverse condition of Assumption 2 and is often imposed in papers on ill-posed inverse problems. We shall sometimes call Assumptions 2 and 5 together as the exact link (or exact range) condition. See Section 4.2 for a relaxation of this condition.

PROPOSITION 1. For the NPIR models, suppose that Assumptions 1, 4, and 5 hold. Then the estimator \hat{h}_n in (4.1) is well defined and satisfies

$$
\sup_{h \in H(r,R)} \mathbb{E}_h [\| \hat{h}_n - h \|_X^2] \leq v_{m+1}^{-2r} R^2 + 2n^{-1} (S^2 + \sigma_1^2) c^{-2} \sum_{k=1}^{m} \{ \phi(v_k^{-2}) \}^{-1}.
$$

If $m = m(n)$ is such that $n^{-1} \sum_{k=1}^{m} v_k^{2r} \{ \phi(v_k^{-2}) \}^{-1} \asymp 1$, then, under Assumption 2, this estimator \hat{h}_n is rate optimal in the minimax sense: There is a finite constant $C > 0$ such that

$$
\sup_{h \in H(r,R)} \mathbb{E}_h [\| \hat{h}_n - h \|_X^2] \leq C v_{m+1}^{-2r} \asymp n^{-1} \sum_{k=1}^{m} \{ \phi(v_k^{-2}) \}^{-1} \asymp \delta_n,
$$

with δ_n given in Theorem 1.

(i) Mildly ill-posed case: Let $\phi(t) = t^a$ and $v_k \asymp k^\epsilon$ for some $a, \epsilon > 0$. If $m \asymp n^{1/(2r\epsilon + 2a + 1)}$, then $\delta_n \asymp n^{-2r/(2r\epsilon + 2a + \epsilon^{-1})}$.

(ii) Severely ill-posed case: Let $\phi(t) = \exp(-t^{-a/2})$, $v_k \asymp k^\epsilon$ for some $a, \epsilon > 0$. If $m \asymp c \log(n)^{1/a}$ with a sufficiently small $c > 0$, then $\delta_n \asymp (\log n)^{-2r/a}$.

Remark 4. As the proof reveals, the upper bound does not require that the errors are Gaussian; the existence of second moments suffices.

Remark 5. When K is the identity operator, the NPIR model becomes the standard nonparametric mean regression model, and Assumption 2 is automatically satisfied with $\phi()$ being a constant, then Theorem 1 and Proposition 1 together reproduce the well-known minimax lower and upper bounds for the nonparametric mean regression model (see, e.g., Yang and Barron, 1999, Thm. 7), in which $\delta_n \asymp \frac{m}{n}$, and m is the largest possible integer satisfying $v_{m+1}^{-2r} \asymp \frac{m}{n}$.

Comparing the minimax optimal rates in mean integrated squared error loss for the nonparametric mean regression model and for the NPIR model, we see the squared bias is of the same order (v_{m+1}^{-2r}), but the variance blows up from $\frac{m}{n}$ for the nonparametric mean regression model to $n^{-1} \sum_{k=1}^{m} \{ \phi(v_k^{-2}) \}^{-1}$ for the NPIR model.

Notice that the minimax optimal rate $\delta_n \asymp (\log n)^{-2r/a}$ for the severely ill-posed case is independent of ϵ (hence independent of the dimension d of X). For the mildly ill-posed case, when $\phi(t) = t^a$ and $v_k \asymp k^\epsilon$ for some $a > 0$ and $\epsilon = 1/d$, Theorem 1 and Proposition 1 together give the minimax optimal rate $\delta_n \asymp n^{-2r/(2r^2 + 2a + d)}$ for the NPIR models. This rate is well-known for the special case when $H(r,R)$ is a d-dimensional Sobolev ball H^r_R and the operator K is...
elliptic with ill-posedness degree a (i.e., $\|Kh\|_W \asymp \|B^{-a}h\|_X$ for all $h \in L^2_X$); see, e.g., Cohen et al. (2004).

Note that Assumptions 2 and 5 are automatically satisfied under the general source condition with $K^*K = \phi(B^{-2})$. Applying Proposition 1 and Remark 3, we immediately obtain a new remark.

Remark 6. For the NPIR models, suppose that Assumption 4 holds, and Assumption 1 is satisfied with $h \in H_{source}$ and $u_k = e_k$, $v_k^r = \psi(\lambda_k)$ for all $k \geq 1$. Let $\hat{\phi}(B^{-2}) = K^*K$. Then the estimator \hat{h}_n defined in (4.1) with $u_k = e_k$ reaches the minimax rate uniformly over $h \in H_{source}$:

$$\sup_{h \in H_{source}} \mathbb{E}_h[\|\hat{h}_n - h\|_X^2] \leq C \delta_n,$$

with δ_n and m given in Remark 3.

In the literature on ill-posed inverse problems with known operator K, many other estimation procedures are available (like Tikhonov’s method) that employ source conditions; some lead to rate-optimal estimators only for mildly ill-posed cases. See, e.g., Bissantz et al. (2007) and Florens et al. (2011) for recent results.

4.2. Relaxation of the Exact Link Condition

For the minimax risk lower bound we impose Assumption 2, and for the upper bound we use Assumption 5. Together, these two assumptions require that the operator K satisfies

$$c\|\phi(B^{-2})\|^{1/2}_X \leq \|Kh\|_W \leq M\|\phi(B^{-2})\|^{1/2}_X$$

for all $h \in L^2_X$,

which is equivalent to

$$\text{ran}(\phi(B^{-2}))^{1/2} = \text{ran}(|K|). \quad (4.2)$$

This is a standard condition imposed even in books and papers on ill-posed inverse problems with deterministic errors; see, e.g., Engl et al. (1996), Nair et al. (2005), and the references therein. This condition usually holds when K acts exactly along certain function classes; see Section 6 for such an example. Moreover, this exact range condition (4.2) is automatically satisfied under the source condition with $K^*K = \phi(B^{-2})$. However, Assumption 5 may fail more generally. Luckily, this assumption is not strictly necessary.

Let us indicate one possibility of how Assumption 5 can be relaxed to requiring

$$\text{ran}(\phi(B^{-2}))^{1/2} \subseteq \text{ran}|K| + L,$$

for some finite-dimensional linear space L.

To keep it simple, we consider the case that the subspace L is spanned by one eigenfunction u_ℓ of B with $u_\ell \notin \text{ran}|K|$ and $1 \leq \ell \leq m$. Then the simple estimator \hat{h}_n using $\hat{\eta}_\ell$ given in (4.1) is no longer well defined, but we can consider for some
\(v \in L^2_W \) the estimator

\[
\tilde{\eta}_\ell := \frac{1}{n} \sum_{i=1}^{n} Y_i v(W_i), \quad \tilde{h}_n := \sum_{k=1, k \neq \ell}^m \hat{\eta}_k u_k + \tilde{\eta}_\ell u_\ell.
\]

Following the bias variance decomposition in the proof of Proposition 1, we obtain

\[
\mathbb{E}[(\tilde{\eta}_\ell - \langle h, u_\ell \rangle_X)^2] \leq (\langle Kh, v \rangle_W - \langle h, u_\ell \rangle_X)^2 + 2n^{-1} (S^2 + \sigma_1^2) \|v\|_W^2 \\
\asymp \langle h, K^* v - u_\ell \rangle_X^2 + n^{-1} \|v\|_W^2.
\]

(4.3)

The definition of \(H_R^\ell \) implies with some uniform constant \(C > 0 \)

\[
\sup_{h \in H_R^\ell} \mathbb{E}[(\tilde{\eta}_\ell - \langle h, u_\ell \rangle_X)^2] \leq C (R^2 \|B^{-r} (K^* v - u_\ell)\|_X^2 + n^{-1} \|v\|_W^2)
\]

(4.4)

From inequality (4.4), it is easy to derive that this error in estimating the coefficient \(\langle h, u_\ell \rangle_X \) is minimized by

\[
v = (KK^* + n^{-1} R^{-2} B^{2r})^{-1} Ku_\ell,
\]

which is always well defined. Consequently, in terms of minimax optimal rate over the class of functions \(H_R^\ell \), the rate in Proposition 1 does not deteriorate if we use \(\tilde{\eta}_\ell \) instead of \(\hat{\eta}_\ell \), and its error bound

\[
n^{-1} \|(KK^* + n^{-1} R^{-2} B^{2r})^{-1} Ku_\ell\|_W^2
\]

is not larger than the minimax optimal rate. See Section 6 for a concrete example.

5. AN UPPER BOUND FOR THE NPIV MODEL

We now provide an upper bound for the NPIV model, for which additional considerations due to the unknown conditional expectation operator are necessary. It is, of course, more complex to construct an estimator that is rate optimal for the NPIV model than for the NPIR model, which is why the approaches in the literature are more diverse and require different additional assumptions. Here we restrict ourselves to presenting a simple estimator to illustrate that it is possible to construct a rate-optimal estimator for the NPIV model in both mildly ill-posed and severely ill-posed cases based on the SMD estimator of Newey and Powell (2003), Ai and Chen (2003), and Blundell et al. (2007). First, for each integer \(J \geq 1 \), we denote by span\(\{p_1, \ldots, p_J\} \) a \(J \)-dimensional linear subspace of \(L^2_W \) that becomes dense in \(L^2_W \) as \(J \to \infty \). Let \(P_{Jn}(w) = (p_1(w), \ldots, p_{Jn}(w))^t \) and \(\mathbf{P} = (P_{Jn}(W_1), \ldots, P_{Jn}(W_n))^t \). We compute a sieve least squares estimator of \(\mathbb{E}[Y - h(X)|W = \bullet] \) as

\[
\hat{\mathbb{E}}[Y - h(X)|W = \bullet] = \sum_{t=1}^{n} (Y_t - h(X_t)) P_{Jn}(W_t)^t \mathbf{P}^{-1} P_{Jn}(\bullet).
\]
For each integer $m \geq 1$, we denote by $\mathcal{H}_m := \text{span}\{\psi_1, \ldots, \psi_m\}$ an m-dimensional linear subspace of L^2_X that becomes dense in L^2_X as $m \to \infty$. Then we compute the SMD estimator of the true structure function h_0 as

$$\hat{h}_n = \arg\min_{h \in \mathcal{H}_m(\cap) \cap \mathcal{H}(r, R)} \frac{1}{n} \sum_{i=1}^{n} \left\{ \frac{1}{n} \left[Y - h(X) \right] W_i \right\}^2. \quad (5.1)$$

Depending on the prior information about $\mathcal{H}(r, R)$, sometimes one may compute \hat{h}_n in closed form. For example, if $\mathcal{H}(r, R) = H^r_R$ and the density of X is bounded below and above by positive constants, then

$$\hat{h}_n(x) = \sum_{k=1}^{m} \hat{\pi}_k \psi_k(x) = \psi^m(x) \hat{\Pi}, \quad (5.2)$$

$$\hat{\Pi} = (\Psi' \mathbf{P} (\mathbf{P}' \mathbf{P})^{-1} \mathbf{P}' \mathbf{P} (\mathbf{P}' \mathbf{P})^{-1} \mathbf{P}' \mathbf{Y}, \quad (5.3)$$

with $\mathbf{Y} = (\psi^m(X_1), \ldots, \psi^m(X_n))^\prime$, $\mathbf{Y} = (Y_1, \ldots, Y_n)^\prime$, the penalization matrix $\mathbf{C} = \int \left\{ (B^r \psi^m(x))' (B^r \psi^m(x))' \right\} dx$, and $\hat{\lambda}$ satisfies $\hat{\lambda}^2 \mathbf{C} \hat{\Pi} = R^2$.

In addition to the assumptions on the NPIR models, we impose an additional assumption.

Assumption 6. The basis $\{\psi_k\}$ is a Riesz basis associated with the operator B; that is, $\sum_{k=1}^{\infty} \langle h, \psi_k \rangle^2_X \propto \sum_{k=1}^{\infty} \langle h, u_k \rangle^2_X$ for all $h \in L^2_X$.

Assumption 6 allows for the use of a Riesz basis $\{\psi_k\}$ instead of the ideal orthonormal basis $\{u_k\}$ to approximate the unknown structure function $h \in \mathcal{H}(r, R)$ with the same order of the approximation errors. Of course in applications we need some information about the tail behavior of the density of X before we can construct such a basis. For example, if we know that the density of X is bounded above and below by finite positive constants, then we could use wavelets as the $\{\psi_k\}$.

Assumption 7.

(i) $\mathbb{E}\left[Y - \Pi_m(h(X)) \right] W = \bullet$ belongs to $A^{r_K}_c(\mathcal{W})$ (Hölder ball of regularity r_K) for any $\Pi_m(h) \in \mathcal{H}_m$;

(ii) (a) the smallest and the largest eigenvalues of $\mathbb{E}\{P^J_n(W) P^J_n(W)^\prime\}$ are bounded and bounded away from zero for each J_n; (b) $P^J_n(W)$ is a tensor product of either a cosine series or a B-spline basis of order γ_b or a wavelet basis of order γ_b, with $\gamma_b > r_K > d/2$;

(iii) the density of W is continuous and bounded away from zero over its support \mathcal{W}, which is a compact connected subset in \mathbb{R}^d with Lipschitz continuous boundaries and non-empty interior;

(iv) (a) $J_n \to \infty$ and $J_n^2/n \to 0$; (b) $\lim_n J_n/m(n) = c \in (1, \infty)$ and $J_n > m(n)$.

Assumption 7 implies that the sieve least square estimate $\hat{\mathbb{E}}[h(X) \mid W = \bullet]$ of $\mathbb{E}[h(X) \mid W = \bullet]$ performs well; see, e.g., Blundell et al. (2007) for details.
THEOREM 2. For the NPIV models, suppose that Assumptions 1, 2, 4, 5, 6, and 7 hold. Then the estimator \(\hat{h}_n \) defined in (5.1) satisfies
\[
\| \hat{h}_n - h \|_X^2 \leq C \max \left\{ \nu_{m+1}^{-2r}, \frac{m}{n} [\phi(\nu_m^{-2})]^{-1} \right\}
\]
uniformly over \(h \in \mathcal{H}(r, R) \) except on an event whose probability tends to zero as \(n \uparrow \infty \). If \(m = m(n) \) is such that \(n^{-1} \sum_{k=1}^{m} v_k^{2r} [\phi(\nu_k^{-2})]^{-1} \asymp 1 \), then this estimator \(\hat{h}_n \) is rate optimal in the minimax sense: There is a finite constant \(C > 0 \) such that
\[
\| \hat{h}_n - h \|_X^2 \leq C \nu_n^{-2r} m \left[\phi(\nu_m^{-2}) \right]^{-1} \asymp \delta_n,
\]
with \(\delta_n \) given in Theorem 1, uniformly over \(h \in \mathcal{H}(r, R) \) except on an event whose probability tends to zero as \(n \uparrow \infty \).

(i) Mildly ill-posed case: Let \(\phi(t) = t^a \) and \(v_k \asymp k^\epsilon \) for some \(a, \epsilon > 0 \). If \(m \asymp n^{1/(2\epsilon+2ae+1)} \), then \(\delta_n \asymp n^{-2r/(2r+2a+\epsilon^{-1})} \).

(ii) Severely ill-posed case: Let \(\phi(t) = \exp(-t^{-a/2}) \), \(v_k \asymp k^\epsilon \) for some \(a, \epsilon > 0 \). If \(m = c \log(n)^{1/ae} \) with a sufficiently small \(c > 0 \), then \(\delta_n \asymp (\log n)^{-2r/a} \).

This minimax rate theorem appears to be new in the literature and can be proved by slightly modifying the proof of Blundell et al. (2007) for their Theorem 2. Hall and Horowitz (2005) obtain minimax optimal rate \(\sup_{h \in \mathcal{H}_H} \mathbb{E}_h[\| \hat{h}_n - h \|_X^2] \leq C \delta_n \) for their estimators in the mildly ill-posed case for the class of functions \(\mathcal{H}_H \) defined in (2.7). Hoffmann and Ress (2008) propose a wavelet estimator in the case of an unknown operator \(K \) that is elliptic with ill-posedness degree \(a \). They assume there exists an estimator of \(K \) with specified rate, and their class of functions \(\mathcal{H}(r, R) \) is a Besov ball that could be bigger than the function class defined in our Assumption 1, but they do not consider the severely ill-posed case.

6. MORE ON REGULARITY CONDITIONS

In this section we use examples to discuss the pros and cons of imposing two basic regularity conditions (the approximation and the link conditions) versus using the general source condition. To simplify the discussion, here we assume the operator \(K \) is known. In the first class of examples the operator \(K \) has very smooth eigenfunction basis (in the sense that its eigenfunctions are many times differentiable), while in the second class of examples, the operator \(K \) has eigenfunctions that are not differentiable.

6.1. Examples of \(K \) Having Infinitely Times Differentiable Eigenfunctions

Suppose that the \(\{W_i\}_{i=1}^n \) are uniformly distributed on \([0, 1]\) and \(K \) is a circular convolution operator on \(L^2((0, 1]) \): \(Kh(w) = \int_0^1 k(x - w)h(x) \, dx \) with a 1-periodic function \(k \) that satisfies \(k(-x) = k(x) \) and has Fourier coefficients...
\[|\mathcal{F} k(m)| = \int_0^1 k(x) \cos(mx) \, dx \propto (1 + |m|)^{-a}. \] Then \(K \) is a positive-definite self-adjoint operator that is diagonalized by the Fourier basis.

Source condition. In this canonical case the exact link between \(K \) and \(B \) is easily established with \(B = K^{-1}, \phi(t) = t \), hence \(\|Kh\|_W = \|(\phi(B^{-2}))^{1/2}h\|_X \) for all \(h \in L^2([0,1]) \). The smoothness of the unknown function \(h \) is also described using \(B = K^{-1}; \) hence the Hilbert scale space \(H^r \) (generated by \(B \)) is equal to the classical periodic Sobolev space \(H^{ra}_{per} \) of smoothness (or regularity) \(ra \). Applying Remark 6, we obtain the minimax optimal rate for this scale of periodic Sobolev spaces.

Approximation + link conditions. Suppose \(\{u_k\}_{k \geq 1} \) is an orthonormal basis of \(L^2([0,1]) \) such that \(\|Kg\|^2_{L^2([0,1])} \propto \sum_{k=1}^{\infty} k^{-2a} \langle g, u_k \rangle^2 \). A typical example is given by sufficiently regular periodized wavelet bases (see Cohen, Daubechies, and Vial, 1993). Then we can define

\[Bg := \sum_{k \geq 1} k\langle g, u_k \rangle u_k, \]

and the Hilbert scale spaces \(H^r \) can be interpreted as approximation spaces for the basis \((u_k) \). In the convolution example we obtain \(\|Kh\|_W \propto \|B^{-a}g\|_X \). Consequently, the exact link conditions (Assumptions 2 and 5) between \(K \) and \(B \) hold with \(\phi(t) = ta \). Applying Proposition 1, we obtain minimax optimal rate for the Hilbert scale space \(H^r \) generated by \(B \).

The Hilbert scale of approximation spaces generated by \(B \) does not necessarily coincide with the Hilbert scale generated by \(K \). The most pronounced example is the case \(a < 1/2 \), where all nonperiodic wavelets on an interval still satisfy \(\|Kg\|^2_{L^2([0,1])} \propto \sum_{k=1}^{\infty} k^{-2a} \langle g, u_k \rangle^2 \) (see Cohen et al. 1993). Hence the approximation spaces for unknown true structure function need not exhibit any boundary condition. This means that a smooth but nonperiodic function on \([0,1]\) will have high regularity \(r \) in terms of the approximation space, while it is an element in periodic Sobolev spaces up to regularity \(1/2 \) only. If we have in mind that our true function \(h \) is smooth but not periodic, we should therefore rather choose the approximation space approach. On the other hand, wavelets work well just to some maximal regularity, and they therefore will not reconstruct very smooth and periodic functions as well as the Fourier basis.

If \(K \) is more ill posed, that is, \(a \geq 1/2 \), we can adopt the ideas explained in Section 4.2. We remain in the approximation space framework and use nonperiodic compactly supported wavelets as basis functions \(\{u_k\} \). Only the wavelets \(\psi_{\lambda} \) with support at the boundary are not in the periodic Sobolev spaces \(H^{s}_{per}, s \geq 1/2 \). Using some (statistical) kernel function \(L_b : [-b, b] \to \mathbb{R} \) of bandwidth \(b \), we can consider the periodically smoothed version

\[\tilde{\psi}_{\lambda}(x) := \int_{-b}^{b} \psi_{\lambda}((x - y)) L_b(y) \, dy, \quad x \in [0,1], \]
where \(\{z \} = z - [z] \in [0, 1) \) denotes the fractional part of \(z \in \mathbb{R} \). If \(L \) and \(\psi_h \) are sufficiently often differentiable, then \(\tilde{\psi}_h \) lies in the range \(H^a_{per} \) of \(K \). Using \(v = K^{-1} \tilde{\psi}_h \) in equation 4.3, standard kernel estimates \((h \in H^r \) implies \(h \in H^s_{per} \) for all \(s \leq r \) and \(s < 1/2 \)) show that for all \(h \in H^r \) (with adapted notation)
\[
\mathbb{E}[\langle \tilde{h}_\lambda - (h, \psi_h) \rangle^2] \leq C_1 ((h, \tilde{\psi}_h - \psi) + n^{-1} \| K^{-1} \tilde{\psi}_h \|^2) \leq C_2 (b^{2a} + n^{-1} b^{-2a}).
\]

Optimizing over \(b \), we infer that \(\langle h, \psi_h \rangle \) can be estimated at rate \(n^{-s/(s+a)} \), which for \(r \geq 1/2 \) is nearly \(n^{-1/(2a+1)} \). Since in a wavelet approximation space of dimension \(2^j \) only of the order \(J \) wavelets lie at the boundary, the rate in estimating \(h \) will be \(n^{-s/(s+a)} \log(n) + n^{-2r/(2r+2a+1)} \), which for \(r \geq 1/2 + 1/4a \) is roughly \(n^{-1/(2a+1)} \). If we had taken a method based on the source condition approach (like projection on eigenfunctions of \(K \), or Tikhonov methods) the best achievable rate would have been roughly \(n^{-1/(2a+2)} \).

6.2. Examples of \(K \) Having Nondifferentiable Eigenfunctions

Depending on applications, it is perfectly conceivable that the eigenfunctions of \(K \) are rough while the basis functions \(u_k \) of \(B \) are smooth (or differentiable). For example, we can use the Haar basis \(\psi_{jk}(x) = \psi(2^j x - k) \) on \(L^2([0, 1]) \) \((\psi(x) = 1_{[0,1/2)} - 1_{[1/2,1]} \), \(j \in \mathbb{N}_0 \), \(k = 0, \ldots, 2^j - 1 \), and \(\psi_{-1,0} = 1_{[0,1]} \) and define somewhat artificially in this Haar basis
\[
K \psi_{jk} := 2^{aj} \psi_{jk}.
\]

Then \(K \) is self-adjoint with eigenfunctions \(\psi_{jk} \), which are step functions. For \(ar < 1/2 \), the Hilbert scale \(H^r \) of \(K \) (or of the Haar basis) will be a Sobolev space, whereas for any \(ar \geq 1/2 \) this Hilbert scale \(H^r \) will not be described in terms of traditional smoothness. Note that this \(H^r \) will always contain piecewise constant jump functions. Nevertheless, the larger \(r \) is, the less complex is the function class \(\mathcal{H}(r, R) \), that is, the smaller the approximation error rate. As for the convolution operator, we could instead define the function class \(\mathcal{H}(r, R) \) in terms of a basis \(\{u_k\} \) associated to \(B \), which is smoother and satisfies at the same time the link conditions of Assumptions 2 and 5.

In conclusion, we see that rate-optimal methods may behave poorly if the function of interest, the structure function \(h \), is not regular in the setting for which the method is designed. An important part of the specification of rate optimality is therefore always the associated function class.

7. PERSPECTIVES

In this paper, we clarify the relations between the existing sets of regularity conditions for convergence rates of NPIV regression models. We establish minimax risk lower bounds in mean squared error loss for the NPIV models under two basic regularity conditions that allow for both mildly ill-posed and severely ill-posed cases. We also show that the simple SMD estimator achieves the minimax
risk lower bound, hence is rateoptimal for both mildly ill-posed and severely ill-posed cases.

Many of the ideas in this paper can be easily adapted to treat other kinds of ill-posed inverse problems in econometrics. For instance, when the problem is mildly ill posed, Horowitz and Lee (2007) show that their kernel-based Tikhonov regularized estimator of nonparametric quantile instrumental variables (IV) regression reaches the minimax rate under conditions very similar to those imposed in Hall and Horowitz (2005) for NPIV regression. Similarly, one could show that the penalized SMD estimator proposed in Chen and Pouzo (2008) for nonlinear and possibly nonsmooth nonparametric conditional moment models is also rate optimal, as their estimator achieves the minimax risk lower bounds established in our paper for the NPIV regression model.

Once this is established, the intriguing open problem remains how to choose the regularization parameters adaptively from the data, not knowing the true regularity, and even to select among the different proposed procedures (e.g., generated by different operators B) in a data-driven way.

NOTES

1. Johannes et al. (2011) provide some related results in a paper included in this issue that was completed and submitted after the submission of our work.

2. See Chernozhukov and Hansen (2005), Chernozhukov, Imbens, and Newey (2007) for using bounded completeness for identification in nonparametric quantile instrumental variable regression. For additional results on identification in semi/nonparametric models with endogeneity, see, e.g., Blundell and Powell (2003), Florens (2003), Florens, Johannes, and Van Bellegem (2011), and the references therein.

REFERENCES

Ai, C. & X. Chen (2003) Efficient estimation of models with conditional moment restrictions containing unknown functions. *Econometrica* 71, 1795–1844.

Bissantz, N., T. Hohage, A. Munk, & F. Ruymgaart (2007) Convergence rates of general regularization methods for statistical inverse problems and applications. *SIAM Journal on Numerical Analysis* 45, 2610–2636.

Blundell, R., X. Chen, & D. Kristensen (2007) Semi-nonparametric IV estimation of shape-invariant Engel curves. *Econometrica* 75, 1613–1670.

Blundell, R. & J.L. Powell (2003) Endogeneity in semiparametric and nonparametric regression models. In M. Dewatripont, L. P. Hansen, & S. J. Turnovský (eds.), *Advances in Economics and Econometrics: Theory and Applications*, vol. 2, pp. 312–357. Cambridge University Press.

Carrasco, M., J.-P. Florens, & E. Renault (2007) Linear inverse problems in structural econometrics estimation based on spectral decomposition and regularization. In J.J. Heckman & E.E. Leamer (eds.), *Handbook of Econometrics*, vol. 6, Ch. 77. North-Holland.

Chen, X. & D. Pouzo (2008) Estimation of Nonparametric Conditional Moment Models with Possibly Nonsmooth Moments. Cowles Foundation Discussion Paper d1650, Yale University.

Chernozhukov, V. & C. Hansen (2005) An IV model of quantile treatment effects. *Econometrica* 73, 245–261.

Chernozhukov, V., G. Imbens, & W. Newey (2007) Instrumental variable estimation of nonseparable models. *Journal of Econometrics* 139, 4–14.
Cohen, A., I. Daubechies, & P. Vial (1993) Wavelets on the interval and fast wavelet transforms. *Applied Computational Harmonic Analysis* 1(1), 54–81.

Cohen, A., M. Hoffmann, & M. Reiss (2004) Adaptive wavelet Galerkin methods for linear inverse problems. *SIAM Journal of Numerical Analysis* 42, 1479–1501.

Darolles, S., J.-P. Florens, & E. Renault (2006) Nonparametric Instrumental Regression. Mimeo, GREMAQ, University of Toulouse.

D’Haultfoeuille, X. (2011) On the completeness condition in nonparametric instrumental problems. *Econometric Theory* 27 (this issue).

Donoho, D., R. Liu, & B. MacGibbon (1990) Minimax risk over hyperrectangles, and implications. *Annals of Statistics* 18, 1416–1437.

Edmunds, D. & W. Evans (1987) *Spectral Theory and Differential Operators*. Oxford University Press.

Efroymovich, S. & V. Koltchinskii (2001) On inverse problems with unknown operators. *IEEE Transactions on Information Theory* 47, 2876–2893.

Engl, H., M. Hanke, & A. Neubauer (1996) *Regularization of Inverse Problems*. Kluwer Academic.

Florens, J.-P. (2003) Inverse problems and structural econometrics: The example of instrumental variables. In M. Dewatripont, L.P. Hansen, & S.J. Turnovsky (eds.), *Advances in Economics and Econometrics: Theory and Applications*, vol. 2, pp. 284–311. Cambridge University Press.

Hoffmann, M. & M. Reiss (2008) Nonlinear estimation for linear inverse problems with error in the operator. *Annals of Statistics* 36(1), 310–336.

Johannes, J., S. Van Belleghem, & A. Vanhems (2011) Convergence rates for ill-posed inverse problems with an unknown operator. *Econometric Theory* 27 (this issue).

Korostelev, A. & A. Tsybakov (1993) *Minimax Theory of Image Reconstruction*, Lecture Notes in Statistics, v.82. Springer.

Le Cam, L. & G. Lo Yang (2000) *Asymptotics in Statistics. Some Basic Concepts*, 2nd ed. Springer.

Mair, A. & F. Ruymgaart (1996) Statistical inverse problems in Hilbert scales. *SIAM Journal on Applied Mathematics* 56, 1424–1444.

Nair, M., S. Pereverzev, & U. Tautenhahn (2005) Regularization in Hilbert scales under general smoothing conditions. *Inverse Problems* 21, 1851–1869.

Newey, W.K. & J. Powell (2003) Instrumental variables estimation for nonparametric models. *Econometrica* 71, 1565–1578.

Tautenhahn, U. (1998) Optimality for ill-posed problems under general source conditions. *Numerical Functional Analysis and Optimization* 19, 377–98.

Yang, Y. & A. Barron (1999) Information-theoretic determination of minimax rates of convergence. *Annals of Statistics* 27(5), 1564–1599.

APPENDIX: Proofs

Proof of Lemma 1. Let \(\hat{h}_n = \hat{h}_n((X_i, Y_i, W_i))_{i=1}^n \) be an estimator for the NPIV model. Knowing the operator \(K \) amounts to knowing the conditional law of \(X_i \), given \(W_i \). Let us call the observations in the NPIR model \(\{(Y_i', W_i')\}_{i=1}^n \) for some \((\mathcal{L}_W, \sigma(\bullet), h) \in C_0 \).

We then generate artificially i.i.d. observations \(X_i' \) according to the conditional law \(\mathcal{L}_W | W = w \) with \(w = W_i' \). Then the observations \(\{(X_i', Y_i', W_i')\}_{i=1}^n \) follow the law of some
\[(L_{UW}X, h) \in \mathcal{C}\] because \(Y_i' = h(X_i') + U_i'\) holds with \(U_i' = (Kh)(W_i') - h(X_i') + V_i'\) satisfying \(\mathbb{E}[U_i' | W_i'] = 0\) and \(L_{V'W'} = N(0, \sigma^2(w)).\) Consequently, the (randomized) estimator \(\hat{h}_n((Y_i', W_i'))_{i=1}^n\) has the same risk under \((L_W, \sigma(\bullet), h) \in \mathcal{C}_0\) as \(\hat{h}_n\) has under \((L_{U'W'X'}, h) \in \mathcal{C},\) and is thus not larger than the maximal risk over \(\mathcal{C}.\)

Proof of Theorem 1. We consider for \(\theta = (\theta_k)\) with \(\theta_k \in \{-1, +1\}\) and a sequence \((\gamma_k),\) to be specified below, the following functions in \(L^2_X:\)

\[h_{\theta} := \sum_{k=1}^m \theta_k \gamma_k u_k.\]

The property \(h_{\theta} \in H^r_R\) yields the following constraint on \(m\) and \((\gamma_k):\)

\[\|h_{\theta}\|_r^2 = \sum_{k=1}^m \gamma_k^2 \|u_k\|_r^2 \leq R^2.\]

For \(\ell = 1, \ldots, m\) and each \(\theta,\) introduce \(\theta^{(\ell)}\) by \(\theta_k^{(\ell)} = \theta_k\) for \(k \neq \ell\) and \(\theta_\ell^{(\ell)} = -\theta_\ell.\) Then because of the Gaussianity of the \(V_i\) given \(W_i,\) the log-likelihood of \(P_{\theta^{(\ell)}}\) w.r.t. \(P_{\theta}\) is

\[\log \left(\frac{dP_{\theta^{(\ell)}}}{dP_{\theta}} \right) = \frac{1}{2} \sum_{i=1}^n \frac{2\gamma_\ell (Ku_\ell)(W_i)}{\sigma^2(W_i)} V_i - \frac{1}{2} \sum_{i=1}^n \left(\frac{2\gamma_\ell (Ku_\ell)(W_i)}{\sigma(W_i)} \right)^2.\]

Its expectation satisfies

\[\mathbb{E}_{\theta} \left[\log \left(\frac{dP_{\theta^{(\ell)}}}{dP_{\theta}} \right) \right] = -2\gamma_\ell^2 n \| (Ku_\ell) \sigma^{-1} \|^2_{W} \]
\[\geq -2M \sigma_0^{-2} \gamma_\ell^2 n \| \phi(B^{-2}) \|_{X}^{1/2} \mu_\ell \]
\[= -2M \sigma_0^{-2} \gamma_\ell^2 n \sigma_\ell^2.\]

In terms of the Kullback-Leibler divergence, this means \(\text{KL}(P_{\theta^{(\ell)}}, P_{\theta}) \leq -\mu_\ell\) (note \(\mu_\ell < 0\)). More explicitly, we obtain by Markov’s inequality

\[\mathbb{P}_{\theta} \left(-\frac{1}{2} \sum_{i=1}^n \left(\frac{2\gamma_\ell (Ku_\ell)(W_i)}{\sigma(W_i)} \right)^2 \leq -2\mu_\ell \right) \leq \frac{-\mu_\ell}{-2\mu_\ell} = \frac{1}{2}.\]

Using the symmetry of the distribution of \(V_i\) given \(W_i,\) we infer by conditioning on \((W_i)_{1 \leq i \leq n}\)

\[\mathbb{P}_{\theta} \left(\frac{dP_{\theta^{(\ell)}}}{dP_{\theta}} \geq \exp(2\mu_\ell) \right) = \mathbb{E}_{\theta} \left[\mathbb{P}_{\theta} \left(\log \left(\frac{dP_{\theta^{(\ell)}}}{dP_{\theta}} \right) \geq 2\mu_\ell \left| (W_i)_{1 \leq i \leq n} \right. \right) \right] \geq \frac{1}{2}.\]
We calculate for each estimator \hat{h}_n:

\[
\sup_{\theta \in \{1, +1\}^m} \mathbb{E}_h [\| \hat{h}_n - h \|^2] \\
\geq \sup_{\theta \in \{1, +1\}^m} \mathbb{E}_\theta [\| \hat{h}_n - h \theta \|^2] \\
\geq 2^{-m} \sum_{\theta \in \{1, +1\}^m} \sum_{k=1}^m \mathbb{E}_\theta [\| \hat{h}_n - h \theta \theta_k \|^2] \\
= \sum_{k=1}^m 2^{-m} \sum_{\theta \in \{1, +1\}^m} \frac{1}{2} \left(\mathbb{E}_\theta [\| \hat{h}_n - h \theta \theta_k \|^2] + \mathbb{E}_\theta [\| \hat{h}_n - h \theta \theta_k \|^2] \right) \\
= \sum_{k=1}^m 2^{-m} \sum_{\theta \in \{1, +1\}^m} \frac{1}{2} \mathbb{E}_\theta \left[\| \hat{h}_n - h \theta \theta_k \|^2 + \| \hat{h}_n - h \theta \theta_k \|^2 \right] \\
\geq \sum_{k=1}^m 2^{-m} \sum_{\theta \in \{1, +1\}^m} \frac{\exp(2 \mu_k)}{8} \| h \theta - h \theta_k \|^2 \mathbb{P}_\theta \left(\frac{d \mathbb{P}_\theta}{d \mathbb{P}_0} \geq \exp(2 \mu_k) \right) \\
\geq \sum_{k=1}^m \frac{\exp(2 \mu_k)}{4} \gamma_k^2.
\]

We choose $\gamma_k = \sigma_0 n^{-1/2} \left(\phi(v_k^{-2}) \right)^{-1/2}$ such that $\mu_k = -2M$ and then pick the largest $m \geq 1$ such that $\sum_{k=1}^m v_k^2 \gamma_k^2 \leq R^2$.

This gives the lower bound

\[
\inf_{\hat{h}_n} \sup_{h \in H} \mathbb{E}_h [\| \hat{h}_n - h \|^2] \geq \inf_{\hat{h}_n} \sup_{h \in H} \mathbb{E}_h [\| \hat{h}_n - h \|^2] \geq \frac{\sigma_0^2}{4 \exp(4M)} n^{-1} \sum_{k=1}^m \left[\phi(v_k^{-2}) \right]^{-1},
\]

where m is the largest possible with $\sum_{k=1}^m v_k^2 \gamma_k^2 \leq R^2$, i.e.,

\[
\sigma_0^2 n^{-1} \sum_{k=1}^m v_k^2 \gamma_k^2 \left[\phi(v_k^{-2}) \right]^{-1} \leq R^2.
\]

(i) (Mildly ill-posed case): When $\phi(t) = t^a$ and $v_k \asymp k^e$ for some $a, e > 0$, we have asymptotically as $n \to \infty$:

\[
n^{-1} \sum_{k=1}^m v_k^2 \left[\phi(v_k^{-2}) \right]^{-1} = n^{-1} \sum_{k=1}^m k^{2e+2+2a} \asymp n^{-1} m^{2e+2+2a+1}.
\]

Hence, choosing $m \asymp n^{1/(2e+2a+1)}$ we obtain the asymptotic lower bound

\[
\delta_n \asymp n^{-1} \sum_{k=1}^m \left[\phi(v_k^{-2}) \right]^{-1} \asymp n^{-1} m^{2e+1} \asymp n^{-2e/(2e+2a+e^{-1})}.
\]
(ii) (Severely ill-posed case): When \(\phi(t) = \exp(-t^{-a}/2) \), \(v_k \asymp k^\epsilon \) for some \(a, \epsilon > 0 \), we have

\[
n^{-1} \sum_{k=1}^{m} v_k^{2r} [\phi(v_k^{-2})]^{-1} = n^{-1} \sum_{k=1}^{m} k^{2\epsilon r} \exp(k^{\epsilon}) \asymp n^{-1} m^{2\epsilon r} \exp(m^{\epsilon}),
\]

which means that we have to choose \(m = c \log(n)^{1/\alpha} \) with a sufficiently small \(c > 0 \). The resulting lower bound is

\[
\delta_n \asymp n^{-1} \sum_{k=1}^{m} [\phi(v_k^{-2})]^{-1} \asymp n^{-1} \exp(m^{\epsilon}) \approx m^{-2\epsilon r} \approx (\log n)^{-2r/\alpha}.
\]

Proof of Proposition 1. The definition of the estimator \(\hat{h}_n \) involves the functions \((K^*)^{-1} u_k\), and first we need to show that \(u_k \) lies in the range of \(K^* \). From the reverse link condition we infer for the operator \(T = [\phi(B^{-2})]^{-1/2} K K [\phi(B^{-2})]^{-1/2} \):

\[
\langle T g, g \rangle_X = \langle K [\phi(B^{-2})]^{-1/2} g, K [\phi(B^{-2})]^{-1/2} g \rangle_X \geq c^2 \| g \|_X^2
\]

for all \(g \) in the range of \([\phi(B^{-2})]^{-1/2}\). This implies that \(T \) is a strictly positive self-adjoint operator, which is thus invertible with bounded inverse. Consequently, there exists \(v_k \) with \(T v_k = u_k \). Since \(v_k \) is an eigenfunction of \(B \), we have \([\phi(B^{-2})]^{1/2} T v_k = [\phi(v_k^{-2})]^{1/2} u_k \).

We conclude that \(u_k \) is in the range of \([\phi(B^{-2})]^{1/2} T = K^* K [\phi(B^{-2})]^{-1/2} \) and hence in particular in the range of \(K^* \).

For the upper bound we note that

\[
\mathbb{E}[\hat{\eta}_k] = \mathbb{E}[(K h)(W_i) ((K^*)^{-1} u_k)(W_i)] = \langle K h, (K^*)^{-1} u_k \rangle_W = \langle h, u_k \rangle_X
\]

and

\[
\text{Var}(\hat{\eta}_k) = \frac{1}{n} \text{Var}((K h)(W_i) ((K^*)^{-1} u_k)(W_i)) + V_i ((K^*)^{-1} u_k)(W_i)) \leq 2n^{-1} (\| K h \|_\infty^2 \mathbb{E}[(K^*)^{-1} u_k^2(W_i)] + \mathbb{E}[V_i^2] \mathbb{E}[(K^*)^{-1} u_k^2(W_i)]) \leq 2n^{-1} (S^2 + \sigma_i^2) \| (K^*)^{-1} u_k \|_W^2.
\]

From \(\| K g \|_W \geq c^2 \| [\phi(B^{-2})]^{1/2} g \|_X \) for all \(g \in L^2_X \) we infer by duality \(\| (K^*)^{-1} g \|_W \leq c^{-1} \| [\phi(B^{-2})]^{-1/2} g \|_X \) for all \(g \in \text{ran}(K^*) \). Hence,

\[
\mathbb{E}_h [||\hat{h}_n - h||_X^2] \leq 2n^{-1} (S^2 + \sigma_i^2) c^{-2} \sum_{k=1}^{m} [\phi(v_k^{-2})]^{-1} + \sum_{k=m+1}^{\infty} \langle h, u_k \rangle_X^2.
\]

The property \(h \in \mathcal{H}(r, R) \) gives the bias estimate

\[
\sum_{k=m+1}^{\infty} \langle h, u_k \rangle_X^2 \leq v_{m+1}^{-2r} R^2.
\]

When choosing \(m \) as for the lower bound, then the variance term matches the lower bound in order and the estimator \(\hat{h}_n \) attains the minimax rate provided the bias term is not of larger order. This is equivalent to requiring for some uniform constant \(c > 0 \) that

\[
v_{m+1}^{-2r} n^{-1} \sum_{k=1}^{m} [\phi(v_k^{-2})]^{-1} \geq c, \quad \text{in turn follows from } v_{m+1} \geq v_k \quad \text{for } k \leq m \quad \text{and}
\]

\[
n^{-1} \sum_{k=1}^{m} v_k^{2r} [\phi(v_k^{-2})]^{-1} \asymp 1.
\]
and \(\nu \) where the

\[\sqrt{\hat{k}} \tau \]

by setting \(m \sim n^{1/(2\tau+2\nu+1)} \). Thus we obtain the upper bound: \(\delta_n \sim m^{-2r/\tau} \sim n^{-2r/(\tau+2\nu+\epsilon^{-1})} \).

(ii) For the severely ill-posed case with \(\phi(t) = \exp(-t^{-a/2}) \), \(v_k \asymp k^\epsilon \), we have

\[n^{-1} \sum_{k=1}^{m} [\phi(v_k^{-2})]^{-1} = n^{-1} \sum_{k=1}^{m} k^{2a\epsilon} \preceq n^{-1} m^{2a\epsilon+1} \preceq m^{-2r\epsilon} \]

by setting \(m = c \log(n)^{1/\epsilon} \) with a sufficiently small \(c > 0 \). Thus we obtain the upper bound: \(\delta_n \sim m^{-2r\epsilon} \asymp (\log n)^{-2r/a} \).

Proof of Theorem 2. Given Assumption 6 \(\{\psi_k\} \) is a Riesz basis associated with the operator \(B \), there is a bounded invertible operator \(\hat{B} \) on \(L^2_X \) such that \(\hat{B}\psi_k = u_k \) for all \(k \). This implies that \(\mathcal{H}_{m(n)} = \text{span}\{u_1, \ldots, u_{m(n)}\} \). Denote \(\Pi_{m(n)}(h) \) as the projection of \(h \in \mathcal{H}(r, R) \) onto \(\mathcal{H}_{m(n)} \). Then

\[\|\hat{h}_n - h\|_X^2 \lesssim 2 \{ \|\Pi_{m(n)}(h) - h\|_X^2 + \|\hat{h}_n - \Pi_{m(n)}(h)\|_X^2 \} \]

As in Blundell et al. (2007), we define \(\tau_n \) as a sieve measure of ill-posedness:

\[\tau_n := \sup_{h \in \mathcal{H}_{m(n)}: \|h\| \neq 0} \frac{\|h\|_X}{\|KH\|_W} = \sup_{h \in \text{span}\{u_1, \ldots, u_{m(n)}\}: \|h\| \neq 0} \frac{\|h\|_X}{\|KH\|_W} \]

which is well defined under the conditions for identification. Then

\[\|\hat{h}_n - \Pi_{m(n)}(h)\|_X \lesssim \tau_n \times \|K[\hat{h}_n - \Pi_{m(n)}(h)]\|_W \]

Under Assumption 7, by the definition of \(\hat{h}_n \) and applying Claims 2 and 3 in Blundell et al. (2007), we have

\[\|\hat{h}_n - \Pi_{m(n)}(h)\|_X \lesssim \tau_n \times \{ O_p(J_n^{-r\epsilon} + \sqrt{J/n} + \|K[h - \Pi_{m(n)}(h)]\|_W) \} \]

where the \(O_p() \) holds uniformly over \(h \in \mathcal{H}(r, R) \).

By definition of \(\tau_n \) we have

\[\tau_n^2 \lesssim \sup_{h \in \text{span}\{u_1, \ldots, u_{m(n)}\}: \|h\| \neq 0} \frac{\|h\|_X^2}{\|\phi(B - 2)\|_X^2} \lesssim [\phi(v_{m(n)}^{-2})]^{-1} \]

where the first inequality is due to Assumption 5 (the reverse link condition), and the second inequality holds because \(v_k \) is increasing in \(k \) and \(\phi(t) \) is a nondecreasing function in \(t \geq 0 \).

Given the above upper bound on \(\tau_n \) and Assumption 2, since \(\phi(t) \) is increasing in \(t > 0 \) and \(v_k \) is increasing in \(k \geq 1 \), we obtain

\[\tau_n^2 \|K[h - \Pi_{m(n)}(h)]\|_W^2 \lesssim [\phi(v_{m(n)}^{-2})]^{-1} M^2 \sum_{k=1}^{\infty} \phi(v_k^{-2}) \langle h - \Pi_{m(n)}(h), u_k \rangle_X^2 \]

\[\lesssim M^2 \sum_{k=1}^{\infty} \langle h - \Pi_{m(n)}(h), u_k \rangle_X^2 \]
Thus, under Assumptions 1, 2, 5, and \(\lim_n \frac{J_n}{m(n)} = c \in (1, \infty) \) and \(J_n > m(n) \), we obtain

\[
\tau_n^2 \| K [h - \Pi_{m(n)}(h)] \|_W^2 \leq M^2 \| h - \Pi_{m(n)}(h) \|_X^2 \leq M^2 R^2 v_{m(n)+1}^{-2r},
\]

and thus

\[
\| \hat{h}_n - h \|_X^2 \leq C' \max \left\{ \frac{v_{m(n)+1}^{-2r}}{n}, \frac{J_n}{n} \tau_n^2 \right\} \leq C \max \left\{ \frac{v_{m(n)+1}^{-2r}}{n}, \frac{m(n)}{n} \phi(v_{m(n)})^{-1} \right\}
\]

uniformly over \(h \in \mathcal{H}(r, R) \) except on an event whose probability tends to zero as \(n \uparrow \infty \).