Credibility of Folklore Claims on the Treatment of Malaria in North-East India with Special Reference to Corroboration of their Biological Activities

Devanjal Bora1*, J. Kalita2, D. Das3 and Subhan C. Nath4

1Survey of Medicinal Plants Unit, North Eastern India Ayurveda Research Institute (CCRAS), Guwahati - 781028, Assam, India
2Department of Forestry, North Eastern Regional Institute of Science & Technology, Nirjuli - 791109, Arunachal Pradesh, India
3Institutional Level Biotech Hub, Department of Botany, Gargaon College, Simaluguri, Sibasagar - 785686, Assam, India
4Division of Medicinal, Aromatic and Economic Plants, CSIR- North East Institute of Science & Technology, Jorhat - 785006, Assam, India

Abstract

Malaria is one of the major causes of mortality and morbidity throughout the developing countries. In spite of considerable advances made in the development of anti-malarial drugs to combat the disease, appearance of the malaria parasite resistance to the drugs one after another, has triggered the researchers to search for alternative agents of better quality. In view of the fact that plant folk medicines have immense value in providing clue for development of drug, an ethnobotanic survey of medicinal plants practiced for the treatment of malaria in North-East India, followed by the validity of folklore claims of the plant species was conducted based on the review of reported literatures. Seventy four plant species under 67 genera and 41 families used for the preparation of recipes to treat the disease were included in this communication. For each plant species, botanical and vernacular name, part(s) used, method of preparation and mode of administration of the herbal remedies were provided. Biological activities corroborative of folklore medicinal claims of the plant species were also indicated for the credibility of these folklore claims.

Keywords: Biological Activities, Folk Medicine, Malaria, North East India, Review, Validation

1. Introduction

Malaria, caused by Plasmodium species is one of the most severe diseases in the world that kills over 1 million people every year with some 3.2 billion people living in 107 countries or territories currently at risk4. The main reasons that explain this worsening situation are resistance to the current anti-malarial drugs by Plasmodium strains2, lack of new therapeutic targets3 and unavailability and un-affordability of anti-malarial drugs4, 5. The North-East India has been described and classified as a highly endemic region of the world for malaria, claiming an estimated 500 lives annually1, 6. Drug discovery from plants involves a multidisciplinary

*Author for correspondence
Email: devanjal49@rediffmail.com
approach combining botanical, ethnobotanical, phytochemical and biological techniques. Plants continue to provide us new chemical entities (lead molecules) for the development of drugs against various pharmacological targets, including malaria. Since the discovery of quinine, a number of anti-malarial agents both of plant origin and synthetic have been developed. However, appearance of Plasmodium strains, resistance to these drugs one after another, has made the problem most critical one and triggered intensive efforts on the part of researcher world over to search for alternative agents of better quality on one hand, and to develop potentiating combinations of the currently used drugs, to prevent the situation from further deterioration, on the other. At the same time the ethnopharmacology approach used in search for new anti-malarial compounds appears to be predictive.

The North-East region of India situated between 21°34’ N to 29°50’ N latitude and 87°32’ E to 97°52’ E longitudes and covers an area of about 262060 sq km. The area known for its rich flora comprising the states of Arunachal Pradesh, Assam, Manipur, Meghalaya, Mizoram, Nagaland, Tripura and Sikkim which includes hills and plains and extends from sea level to snow line, holds approximately 50 percent of the total flora of India with the number of species ranging from 6000-7000. This area of India is also homeland of people belonging to more than 150 ethnic groups (tribal or tribal in origin), including 22 percent aboriginal people. About 90 percent of the total population of the region has a rural background and most of them still live in remote, isolated areas, maintaining individual identities and a primitive economic life. Traditional agriculture is the primary live hood of these people and these people depend mostly upon surrounding plant resources for day to day needs including medicaments.

Over the last few decades, a large number of ethno-medico-botanical explorations has been conducted in the region and information has been collected on the local use of a large number of plants for the treatments of a large number of diseases including malaria. Unfortunately the information has been scattered in a wide range of professional journals and periodicals, making the data mostly not easily accessible to researchers. The present communication is a review based on the plant species from Northeastern India used for the treatment of malaria and related diseases reported from the region.

2. Materials and Methods

Ethno-medico-botanical case studies reported from North-East India up to the year 2008 were reviewed and the reports on prescriptions using plant species for the treatment of malaria were collected. These references are critically examined for the prescriptions referred for the treatment of malaria and not to include general antipyretic plants. A review of literatures pertaining to biological activities of these the plant species was also conducted to verify the validity of the folklore claims and to find out direct or indirect corroboration with the biological activities; so that pharmacological evaluation of those plant species against Plasmodium strains may be prioritized, for which no direct corroboration was found and for which reports are scarcely available.

3. Results

The plant species with their ethnic uses are arranged prescription wise. For each plant species described, the botanical name followed by family, vernacular name and the name of ethnic community who uses the plant species are provided. Parts of the plant used, method of preparation or formulation and mode of administration along with dosage of folk medicines are listed in Table 1 with their respective references. In Table 2, corroborative biological activities i.e., anti-malarial activity of the cited medicinal plant species available are also given. The table includes only those species whose anti-malarial activity was reported.

4. Discussion and Conclusion

The present study has brought into light 64 prescriptions of plant folk medicines represented by 74 plant species under 67 genera and 42 families, which have been in use among the ethnic communities in North-East India, for the treatment of malaria and related diseases. Most of the drugs (87.5%) are prepared using single plant species; however, plant species used in combinations are also accounted for 12.5% of the formulations. Most of the preparations are orally administered either as extract, juice and decoction or infusion.
Table 1: Ethno-medico-botanic prescriptions for treatment of Malaria in North-East India

Sl. No.	Plants used with local name	Parts used	Method of preparation or Formulation	Mode of administration	Tribe involved; Area of Report
1	*Acacia concina* DC. (Mimosaceae); Khangthur	Leaves	Leaves are soaked in water for overnight and made infusion	5-15 ml is taken orally 4-5 times a day	Mizo; Mizoram22
2	*Acorus calamus* Linn. (Araceae); Bet, Krah-Phiang	Roots	Roots are pounded to make juice	2-3 teaspoonfuls are given orally 3-4 times a day	Garo and Khasi; Meghalaya23,24
3	*Adhatoda vasica* Nees. (Acanthaceae); Kawldawi, Teise	Leaves and roots	Leaves and roots are taken together in equal amounts and boiled in water to make decoction	5-15 ml is taken orally 2-3 times a day	Mizo; Mizoram22 and Angami Naga; Nagaland25
4 *	*Ageratum conyzoides* L. (Asteraceae); Bormadari	Tender roots	Extracted tender roots of *Ageratum conyzoides* L. and *Momordica charantia* L. are mixed with 50 gm of dried powdered stem bark of *Alstonia scholaris*. (L.) R. Br. in 200 ml of warm water	Two teaspoonfuls of the filtrate are given twice a day for 10 days	Bodo; Assam19
5 *	*Alstonia scholaris* R.Br. (Apocynaceae); Thuamriet, Chhatton	Bark	Decoction of the bark	10 ml is given orally in 2-4 times a day	Mizo; Mizoram22 and Plain tribe; Assam26
6 *	*Andrographis paniculata* Nees. (Acanthaceae); Chirata, Kalmegh	Leaves	Leaves are made into paste and 2-3 gm of the paste mixed with water	Given orally once or twice a day	Plain tribe; Assam27
7	*Artemisia nilagirica* Clarke (Asteraceae); Sai	Leaves	Decoction of the leaves	5-10 ml is given orally 3-4 times a day	Mizo; Mizoram22
8 *	*Azadirachta indica* A. Juss. (Meliaceae); Dieng-ja-rasang	Leaves and fruits	Leaves and fruits either singly or in combination are ground to fine paste and 2-3 gm of the paste mixed with water	Orally twice a day	Khasi; Meghalaya28
9	*Begonia inflata* Clarke (Begoniaceae); Sekhupthur	Rhizome	Decoction of the rhizome	5-10 ml is prescribed orally 2-3 times a day	Mizo; Mizoram22
10	*Brucea mollis* (Simroubaceae); Kaunine	Seed powder	Seed powder (50 gm) mixed with a cup of water	Orally once or twice a day	Khasi; Assam29,30
11 *	*Caesalpinia bonduc* L. (Caesalpiniaceae); Leta guti	Tender twigs and seeds	Tender twigs and seeds either singly or in combination are ground to paste and made into small pills of about 1 to 2gm each	Two pills twice a day are prescribed orally for 3-5 days	Dimasa; Meghalaya31
12	*Calotropis gigantea* (L.) R. Br. ex Ait. (Asclepiadaceae); Akom-aring	Fresh leaves	Fresh leaves are pounded	One teaspoonful of extract is given orally thrice a day	Garo; Meghalaya32
13	*Cardiospermum halicacabum* L. (Sapindaceae); Kopal-phuta	Leaves	Leaves are made in to paste adding a pinch of salt and about 10 mg of the paste mixed with water	Given orally once a day	Mahahi; Assam33

(Continue)
14 * Cassia occidentalis L. (Caesalpiniaceae); Herashi Roots Roots are pounded adding little amount of water a tea cup of extracted juice is given orally once a day Rajbanshi; Assam

15 Cissampelos pareira L. (Menispermaceae); Ranchsang-sata-phumru Leaves Decoction of the leaves prescribed orally twice a day Naga; Arunachal Pradesh

16 Citrus medica L. (Rutaceae); Chufu Fruit Fruit juice mixed with powder of a kind of sea shell (locally known as 'kechu') taken orally once or twice a day Angami Naga; Nagaland

17 Clerodendrum colebrookianum Walp. (Verbenaceae); Oremoatong Bark and leaves Bark and leaves in the form of decoction given orally 2-3 times a day Naga; Nagaland

18 * Clerodendrum infortunatum L. (Verbenaceae); Mukhnilai, Sakai-yu-fa Tender shoots Fresh juice of the crushed tender shoots given orally one teaspoonful twice a day Bodo and Dimasa; Assam

19 * Coptis teeta Wall (Ranunculaceae); Aru, Rinko Rhizome Rhizome is cut into 2 mm thick slices and three slices are soaked in water overnight and made infusion given orally once in the morning Mishimi and Adi; Arunachal Pradesh

20 Cy clea peltata Hook.f. & Thoms. (Menispermaceae); Rekong-bong-long Leaves Leaves are pounded a tea cup of extract is given orally once or twice a day Karbi; Assam

21 * Cy perus rotundus L. (Cyperaceae); Mutha Holarrhena pubescens (Buch.-Ham.) Wall. ex G.Don. (Apocynaceae); Doukhr Stem juice Stem juice of the discount of seed is prescribed orally thrice a day for 10 days Bodo; Assam

22 Dicentra scandens (D.Don) Walp. (Fumaraceae); Rhoodo Fresh leaves or tender stem Decoction is prepared from fresh leaves or tender stem About 3 teaspoonsfuls of decoction are taken orally thrice a day Chakhesang; Nagaland

23 * Dichroa febrifuga Lour. (Sexifragaceae); Khawsik-damdawi Roots Decoction of the roots prescribed orally 2-5 times a day Mizro; Mizoram

24 Emilia sonchifolia DC. (Asteraceae); Sher-ja mento Roots Roots are pounded adding little amount of water a tea cup of the extract is given orally once a day Mon; Arunachal Pradesh

25 * Eucalyptus globulus Labill. (Myrtaceae); Tephisei Leaves and bark Decoction of the leaves and bark given orally once or twice a day. The decoction is also used by the patients for bath Angami Naga; Nagaland

(Continue)
No.	Common Name	Family	Part(s) Used	Preparation	Dosage	Location(s)
26	*Eupatorium adenophorum*	Asteraceae	Leaves	Infusion of the leaves	prescribed orally once a day	Naga; Nagaland
27	*Exacum tetragonum*	Gentianaceae	Whole plant	Whole plant is boiled in water to prepare decoction	given orally once or twice a day	Angami Naga; Nagaland
28	*Helianthus annuus* L.	Asteraceae	Leaves and flowers	Leaves and flowers are boiled in water and the decoction mixed with honey	given orally 2-3 times a day	Manipuri; Manipur
29	*Impatiens racemosa* Hook.f.	Balsaminaceae	Whole plant	Decoction of the whole plant	taken orally 2-3 times a day	Mon; Arunachal Pradesh
30	*Lactuca serriola* L.	Asteraceae	Leaves	Leaf juice	orally as tonic after malarial fever	Apatani; Arunachal Pradesh
31	*Lantana camara* L.	Verbenaceae	Bark or whole plant	Either barks or whole plant are boiled in water to prepare decoction	A tea cup of the decoction is given orally 2-5 times a day	Karbi; Assam and Mizoram
32	*Leonotis nepetifolia* R. Br.	Lamiaceae	Seed powder	A teaspoonful of seed powder is mixed with water	given orally once or twice a day	Monpa; Arunachal Pradesh
33	*Lepionurus sylvestris* Blume	Opiliaceae	Leaves	Leaves are mixed with ginger are made into paste	2-3 gm of the paste mixed with water is prescribed orally once a day	Karbi; Assam
34	*Leucas zeylanica* Br.	Lamiaceae	Young leaves	Young leaves are pounded adding some amount of water	a tea cup of extract is given orally once a day for one month	Karbi, Angami Naga; Nagaland
35	*Mentha arvensis* L.	Lamiaceae	Herb	About 100 gm fresh herb of *Mentha arvensis* L. are pounded with equal amount of the fresh leaves of *Ocimum tenuiflorum* (L.) Burm.f. The extracted juice mixed with 25 ml. of the fruit juice of *Citrus limon* L.	prescribed orally once a day	Bodo; Assam
36	*Mesua indica* Wall.	Clusiaceae	Leaves	Leaves are crushed, ground and the paste (3-5 gm) is mixed with water	prescribed orally once or twice a day	Garo; Meghalaya
37	*Mikania micrantha* H.B.K.	Asteraceae	Leaf	Leaf juice	given orally 2-4 times a day	Mizo; Mizoram
38	*Murraya koenigii* (L.) Spreng.	Rutaceae	Leaves	Leaves are crushed and soaked in water for 3-4 hr and made infusion	given orally 2-3 times a day	Dimasa; Meghalaya
39	*Myrica esculenta* Buch.-Ham.	Myricaceae	Bark	Bark is cut into pieces and boiled in water to make decoction	given orally 2-3 times a day	Angami Naga; Nagaland
40	*Nyctanthes arbor-tristis* L.	Oleaceae	Leaves	About 250 ml of decoction obtained by boiling the leaves (200 gm) in one liter of water, is stored in a bottle. One tea cup of the decoction mixed with ½ to 1 teaspoonful of sugar	given orally once a day in the morning on empty stomach	Dimasa; Assam

(Continue)
No.	Species	Part of Plant	Preparation	Administration	Region
41	Ocimum tenuiflorum L. (Lamiaceae); Thulsi	Leaves	A decoction prepared by boiling the leaves of Ocimum tenuiflorum L., Nyctanthes arbor-tristis L. and Ananas comosus (L.) Merill in 250 gm, 150 gm and 100 gm quantities respectively in one liter of water for half an hour adding bulbs (8-10 nos) of Allium sativum L., seed powder (10 gm) of Piper nigrum L. and rhizome (4 thin slices of Zingiber officinale Rosc.)	Prescribed orally one tea cup a day on empty stomach	Tiwa; Assam
42	Passiflora nepalensis Wall. (Passifloraceae); Nau-awimu	Roots	Decoction of root	Taken orally 2-3 times a day	Mizo; Mizoram
43	Phlogacanthus tubiflorus Nees. (Acanthaceae); Titaphul	Leaves	Leaf extract	Taken orally 2-3 times a day	Karbi; Assam
44	Piper longum L. (Piperaceae); Voko-hrui	Fruits	Decoction (10-20 ml) of the fruits obtained with a small amount of ginger	Is given orally with sugar 3-4 times a day	Mizo; Mizoram
45	Plantago major L. (Plantaginaceae); Kelbe-an	Roots	Decoction (20 ml.) of the roots	Given orally thrice a day	Mizo; Mizoram
46	Pogostemon benghalense (Burm.f.) Kuntze (Lamiaceae); Suklati	Leaves	Infusion (100 ml) of the leaves	Given orally twice a day	Deori; Assam
47	Polygala parsicariaefolia Candolle (Polygalaceae); Sherita	Whole plant	Whole plant is boiled with water and made decoction	Prescribed orally 2-3 times a day	Khasi; Meghalaya
48	Potentilla albiloba Wall. (Rosaceae); Lo-li	Roots	Roots either alone or mixed with other herb in warm water	Prescribed orally 2-3 times a day	Mon; Arunachal Pradesh
49	Prunus serotina D. Don. (Rosaceae); Tlaizang	Bark	Decoction of the bark	Taken 2-3 times a day	Mizo; Mizoram
50	Prunus communis Hudson (Rosaceae); Ahom-bogori	Root bark	Infusion (200 ml) of the root-bark of Prunus communis Hudson and the leaves of Stereospermum chelonioides (L. f.) DC. either singly or in combination of both in equal proportions	Given orally twice a day	Tangsa; Arunachal Pradesh
51	Rauvolfia serpentina (Apocynaceae); Sarpagandha	Roots	Decoction of roots	Given orally 2-3 times a day	Plain tribe; Assam
52	Rubus ellipticus Sm. (Rosaceae); Mydyha	Roots	Decoction is prepared by boiling the roots of both the plants	Prescribed orally 2-3 times a day	Angami Naga; Nagaland
53	Semecarpus anacardium L. f. (Anacardiaceae); Bholagutia	Seeds	Seed oil	Is applied on the nail tip to prevent the disease	Mizo; Mizoram

(Continue)
54. *Scutellaria glandulosa* Coleb. (Lamiaceae); Seikkhana

- **Parts Used:** Leaves
- **Preparation:** Decoction of leaves
- **Usage:** Given orally 2-3 times a day
- **Location:** Angami Naga; Nagaland

55. *Solanum anguivi* Lamk. (Solanaceae); Thesokeeu

- **Parts Used:** Seeds
- **Preparation:** Raw seeds
- **Usage:** is eaten raw
- **Location:** Karbi; Assam

56. *Solanum kurzii* Brace ex Prain (Solanaceae); Longkoks

- **Parts Used:** Fruits
- **Preparation:** Infusion is prepared from fresh fruits
- **Usage:** Taken once a day
- **Location:** Naga; Nagaland

57. *Stereospermum chelonoides* DC. (Bignoniaceae); Longkoks

- **Parts Used:** Bark
- **Preparation:** Bark is ground and mixed with water
- **Usage:** given orally once a day
- **Location:** Naga; Nagaland

58. *Terminalia bellera* (Gaertn.) Roxb. (Combretaceae); Baora

- **Parts Used:** Fruits
- **Preparation:** 5-6 fresh fruits of *Terminalia bellera* (Gaertn.) Roxb. mixed with 10-12 fresh fruits each of *Terminalia chebula* Retz. and *Phyllanthus emblica* L. and 15-20 fresh shoots of *Phyllanthus fraternus* Webster. are ground together and the extracted juice mixed with 250 ml of water is boiled for few minutes and then allowed to cool
- **Usage:** Two teaspoonful of mixture is prescribed thrice a day for 15 days
- **Location:** Bodo; Assam

59. *Tinospora cordifolia* (L.) Miers. (Menispermaceae); Amar

- **Parts Used:** Stem
- **Preparation:** Infusion of about 50 gm. each of the dried stem of *Tinospora cordifolia* (L.) Miers. and the dried leaves and stem of *Andrographis paniculata* (Burn.f) Wall. ex Nees. soaked overnight in a glass of water
- **Usage:** given alternately on empty stomach in morning
- **Location:** Bodo; Assam

60. *Toddalia asiatica* (L.) Lam. (Rutaceae); Soh-sat-khlaw

- **Parts Used:** Decoction of the root bark
- **Preparation:**
- **Usage:** given orally once a day
- **Location:** Khasi; Meghalaya

61. *Vandellia sessiliflora* Benth. (Scrophulariaceae); Nyons-shu

- **Parts Used:** Whole plant
- **Preparation:** Decoction of the whole plant
- **Usage:** given orally twice a day
- **Location:** Mon; Arunachal Pradesh

62. *Verbena officinalis* L. (Verbenaceae); Shunutamtsu

- **Parts Used:** Herb
- **Preparation:** An amount of 5-10 gm herb is macerated with approximately 50 ml of water, strained extract is given orally once a day
- **Usage:**
- **Location:** Naga; Nagaland

63. *Vitex peduncularis* Wall. ex Schauer (Verbenaceae); Thingkhawi-hlu

- **Parts Used:** Leaves, root and bark
- **Preparation:** Decoction of the leaves, root and bark is prepared 10-15 ml is given orally 2-3 times a day
- **Usage:**
- **Location:** Mizo; Mizoram

64. *Zanthoxylum hamiltonium* Wall. (Rubiaceae); Ombeng

- **Parts Used:** Roots and stem bark
- **Preparation:** Decoction of the root and stem bark
- **Usage:** given orally twice a day
- **Location:** Adi; Arunachal Pradesh

N.B. * in the serial no. of prescription indicates having direct or indirect corroboration with reported biological activities

Parts of the species such as roots and bark are generally prescribed in the form of a decoction. Among the total plant species enumerated in this communication, positive correlation between folklore use and biological activities has been recorded for 18 plant species, although ethnic use of plant parts and parts possessing corroborative biological activities are different for a few species like *Cassia occidentalis*, *Azadirachta indica* and *Clerodendrum infortunatum*. In *Cassia occidentalis* folk claim is obtained for roots only having antimalarial activity in leaves or in combination with other plant species. In *Azadirachta indica* leaves have antimalarial properties, but folk claim is obtained for fruits also along with leaves. Likewise in *Clerodendrum infortunatum* tender shoots are used by the folk healers, but only leaf extract is reported to possess antimalarial activity.
Table 2: Corroborative Biological activities of folk claimed plant species

Plant species	Parts used in folk claims	Reported Biological activities
Momordica charantia	Tender roots	Extract of the entire plant of shows antimalarial action against in vitro cultured *Plasmodium falciparum*
Alstonia scholaris	Stem bark	Echitamine chloride isolated from bark exhibits antimalarial activity in a rodent system infected with *Plasmodium berghei*. Methanolic extracts of the plant parts also shows pronounced antiplasmodial activity
Andrographis paniculata	Leaves	Leaf extracts possess antimalarial activity. The most potent dose has been reported to be 150mg/kg bw
Azadirachta indica	Leaves and fruits	Leaf extracts possess antimalarial activity. Both stem and roots possess antimalarial activity. Berberine isolated from the rhizome also possess antimalarial activity
Caesalpinia bonduc	Tender twigs and seeds	Leaf extract found to have antimalarial activity. Oral administrations of 0.1 and 0.2 gm/kg of the water extracts of leaves in albino mice are also reportedly found active against acute *Plasmodium yoelli nigeriensis* infection
Cassia occidentalis	Roots	Mixture of five plants of a traditional antimalarial formulation including roots of *Cassia occidentalis* exhibits antimalarial activity. The ethanolic extracts of leaves of *C. occidentalis* also exhibit antimalarial activity
Clerodendrum infortunatum	Tender shoots	Leaf extracts possess antimalarial activity. The most potent dose has been reported to be 150mg/kg bw
Coptis teeta	Rhizomes	Rhizome extract shows antimalarial activity. Berberine isolated from the rhizome also possess antimalarial activity
Cyperus rotundus	Tuber	Tuber extract possesses antimalarial activity
Tinospora cordifolia	Stem juice	Both stem and roots possess antimalarial activity. Berberine isolated from aerial parts of the plants also exhibits antiprotozoal activity
Dichroa febrifuga	Roots	The alkaloid, febrifugin isolated from the root and leaves shows 100 times as active as compared to quinine, against *Plasmodium lophurae*.
Eucalyptus globulus	Leaves and stem bark	Essential oil possesses in vitro antimalarial activity on two strains of *Plasmodium falciparum*
Lantana camara	Bark or whole plant	Extract exhibits antimalarial activity
Ocimum tenuiflorum	Leaves	Aqueous extracts of the leaves tested in vivo against *Plasmodium berghei* show antimalarial activity. Inhalation therapy to cure *Plasmodium vivax* and *Plasmodium falciparum* infections has also been suggested
Nyctanthes arbor-tristis	Leaves	Ethanolic extracts of aerial parts shows antimalarial activity
Terminalia bellerica	Fruits	A bioactivity - guided fractionation of an extract of fruit rind led to the isolation of two new lignans named termilignan and thannilignan, together with 7-hydroxy-3′,4′-(methylenedioxy) flavan and anolignan B. These compounds possess antimalarial activity in vitro
Phyllanthus fraternus	Shoots	Aqueous extracts of whole plant was tested in vivo against *Plasmodium berghei* following Perter’s 4 day test. It shows antimalarial activity
Toddalia asiatica	Root bark	A coumarin (5, 7-dimethoxy -8-(3′-hydroxy-3′-methyl-1-butene)-coumerin) isolated from the roots shows antimalosomal activity
These shows indirect close correlation with the claims. Further, reports on related biological activities of some important plant species like **Begonia inflata**, **Dicentra scandens**, **Impatiens racemosa**, **Lepionurus sylvestris**, **Passiflora nepalensis**, **Phlogacanthus tubeflorus**, **Polygala parscariaefolia**, **Potentilla albilflora** and **Solanum kurzii** are scarcely available and their correlation with the folk claims could not be ascertained in the present study and hence, pharmacological evaluation of these plant species against *Plasmodium* strains may be prioritized.

5. Acknowledgement

Authors are grateful to Director General, Central Council for Research in Ayurvedic Sciences (CCRAS), New Delhi, India and Department of Bio-technology, Govt. of India for their keen interest in the present work and necessary facilities provided.

6. References

1. Korenromp E. World Malaria Report: Roll Back Malaria. World Health Organisation: Geneva. 2004.
2. Trape JF, Pison G, Spiegel A, Enel C, Rogier C. Combating malaria in Africa. Trends in Parasitology. 2002; 18:224–30.
3. Bathurst J, Hentschel C. Medicines for Malaria Venture: sustaining antimalarial drug development. Trends in Parasitology. 2006; 22:301–7.
4. Benoit-Vical F. Ethnomedicine in malaria treatment. Drugs. 2005; 8:45–52.
5. Mutabingwa TK. Artemisinin-based combination therapies (ACTs): Best hope for malaria treatment but inaccessible to the needy. Acta Tropica. 2005; 95:305–15.
6. Dev V, Hira CR, Rajkhowa MK. Malaria-attribute morbidity in Assam, northeastern India. Ann Trop Med Parasitol. 2001; 95:789–96.
7. Jachak SM, Saklani A. Challenges and opportunities in drug discovery from plants. Current Science. 2007 May 9; 92:1251–7.
8. Nath SC. Antimalarial Episode: Past, Present and Future. Himalaya: Man and Nature. 1990; 14 (2-3):30–4.
9. Kretti AU, Andrade-Neto VF, Brandoa L, Ferrari MDG, Wanessa MS. The search for new Antimalarial drugs from plants used to treat fever and malaria or plants randomly selected: A Review. Mem Inst Oswaldo Cruz. 2001; 96(8):1033–42.
10. Baruah MK, Choudhury PD, Sarma GC. Ethnomoedicinal plants used by the Khasi tribe of Cachar district, Assam. J Econ Taxon Bot. 2006; 30 (Suppl):110–4.
11. Saxena S, Pant N, Jain DC, Bhakuni RS. Antimalarial agents from plant sources. Current Science. 2003; 85:1314–29.
12. Mao AA, Hynniewta TM, Sanjappa M. Plant wealth of Northeast India with reference to ethnobotany, Ind. J Trad Knowl. 2009; 8(1):96–103.
13. Nath SC. Diversity of higher plants of medicinal value growing in Northeast India in relation to conservation and sustainable use. J Ass Sc Soc. (Biodiversity Special). 2000; 41(4):267–88.
14. Hynniewta TM, Baishya AK. Floristic wealth of Northeast India. Proceedings of Zool Soc Assam. Special Edition. 1992; 23–30.
15. Nath SC, Bordoloi DN. Northeast India – An ethnobotanic survey. Himalaya: Man and Nature. 1988; 11(8-9):2–6.
16. Begum D, Nath SC. Ethnobotanic Review of medicinal plants used for skin diseases and related problems in Northeastern India. J Herbs Spices and Medicinal Plants. 2000; 7(3):55–93.
17. Baruah M, Kalita D. Ethnomedicines used by Mishing tribes of Dibrugarh district, Assam. Ind J Trad Knowl. 2007; 6 (4):595–8.
18. Borthakur SK, Choudhury BT, Gogoi R. Folklore hepatoprotective herbal recipes from Assam in Northeast India. Ethnobotany. 2004; 16:76–82.
19. Deka D, Sarma GC, Devi N, Pathak N. Indigenous herbal medicines used against malaria in Goalpara and Morigaon district of Assam. J Econ Taxon Bot. 2006; 30 (Suppl):177–83.
20. Dutta ML, Nath SC. Ethno – medico botany of the Tai - Ahoms of Assam. J Econ Taxon Bot. 1999; 23(2):591–8.
21. Nath SC, Begum D. Bibliographic information on Ethnobotany of North East India. Ethnobotany. 1998; 10:122–6.
22. Sharma HK, Lalrampari C, Dolui AK. Traditional medicinal plants in Mizoram. Fitoterapia. 2001; 72(2):146–61.
23. Kharkongor P, Joseph J. Folklore medicobotany of rural Khasi and Jaintia tribes in Meghalaya. In: Jain SK, editor. Glimpses of Indian Ethnobotany. 1981; 124–36.
24. Jain SK, Saklani A. Cross-cultural ethnobotanical studies in Northeast India. 1992; 4(1-2):25–38.
25. Megoneitso R, Rao RR. Ethnobotanical studies in Nagaland-4. Sixty two medicinal plants used by the
Credibility of Folklore Claims on the Treatment of Malaria in North-East India with Special Reference to Corroboration of their Biological Activities

Angami-Nagas. Journal of Economic and Taxonomic Botany. 1983; 4(1):167–72.

26. Boissya CL, Majumder R, Majumder AK. Some medicinal plants from Darrang District of Assam, India. Anthropos. 1981; 76:220–2.

27. Gogoi R, Das MK. Observation of some medicinal importance to the Brahmaputra Valley Assam. J Econ Taxon Bot. 2003; 27(2):434–41.

28. Chhetri RB. Further observations on ethnomedicobotany of Khali Hills in Meghalaya, India. Ethnobotany. 1994; 6(1&2):33–6

29. Borthakur SK. Less known medicinal uses of plants among the tribes of Karbi-Anglong (Mikir Hills), Assam. 1976; 18(1-4):166–71.

30. Borthakur SK. Certain plants in folklore and folk-life of Karbi (Mikir) of Assam. In: Jain SK, editors. Glimpses of Indian ethnobotany. 1981; 170–81.

31. Rao RR. Ethnobotanical studies in Meghalaya, some interesting reports of herbal medicines. In: Jain SK, editor. Methods and Approaches in Ethnobotany. 1989; 39–47.

32. Maikhuri RK, Gangwar AK. Ethnobotanical notes on the Khasi and Garos tribes on Meghalaya, Northeast India. J Econ Taxon Bot. 1993; 47(4):345–57.

33. Sharma SK, Bhattacharya DK, Devi B. Traditional uses of herbal medicines by Modahi tribe of Nalbari district of Assam. Ethnobotany. 2002; 14(1&2):103–11.

34. Barua KN, Barua IC, Das M. Ethnobotany of Rajbonshis of Assam. J Econ Taxon Bot. 1999; 23(2):609–14.

35. Nath SC, Bordoloi DN. Ethnobotanical observations of some medicinal folklores of Tirap district. Arunachal Pradesh. J Econ Taxon Bot. 1989; 13(2):321–5.

36. Jamir NS. Some interesting medicinal plants used by Nagas. J Res Edu Ind Med. 1990; 9(2):81–7.

37. Gogoi R, Borthakur SK. Notes on Herbal recipes of Bodos tribe in Kamrup District, Assam. Ethnobotany. 2001; 13(1&11):15–23.

38. Kohli YP. Some prominent medicinal plants of Arunachal Pradesh. Arunachal Forest News. 1992; 10(1/2):35–8.

39. Mudgal V, Jain SK. Coptis teeta Wall. - local uses, distribution and cultivation. Bull Bot Surv Ind. 1980; 22(1-4):179–80.

40. Maikhuri RK, Ramakrishnan PN. Ethnobiology of some tribal societies of Arunachal Pradesh in Northeastern India. J Econ Taxon Bot Add Ser. 1992; 10:61–78.

41. Pfoze NL, Chiezou DN. Dicentra scandens (D. Don) Walp. – A highly potent ethnomedicinal plant against malaria, high blood pressure and diabetes. Ind J Trad Knowl. 2006; 5(2):268–70

42. Pandey HC, Rawat MS, Singh AK. Some healing herbs of the Mons amongst the minor forest produce. Arunachal Forest News. 1990; 8(1/2):34–7.

43. Sinha SC. Ethnobotany of Manipur – medicinal plants. Frontier Bot. 1987; 1:133–52.

44. Baruah P, Sarma GC. Studies on the medicinal uses of Plants by the Northeast tribes – II. J Econ Taxon Bot. 1987; 11(1):71–6.

45. Sarkar S, Handique PJ, Goswami RK, Ahmed A, Goswami LC, Choudhury S. A study on the utilization of indigenous plants of Karbi Angling district of Assam. II Food and Vegetables, medicinal plants. J Assam Sci Soc. 1989; 31(2):43–54.

46. Tiwari KC. Some rare folk tribal medicines from Garo hills in North Eastern India. J Econ Taxon Bot Addl Ser. 1992; 10:319–22.

47. Handique PJ, Medhi KK, Goswami PK, Goswami LC, Choudhury S. Preliminary study on the utilization of indigenous plants of Karbi-Anglang District of Assam. J Assam Sci Soc. 1987; 29(2):8–15.

48. Dutta ML, Nath SC. Ethno-medico botany of the Deories of Assam. Fitoterapia. 1998; 69(2):147–54.

49. Nath SC, Bordoloi DN. Diversity of Economic Flora in Arunachal Pradesh: Plant folk medicines among the Chakma Singhphoo and Tangsa Tribals. Himalayan Biodiversity Conservation Strategies. 1993; 179–89.

50. Kumar Y, Haridarshan K, Rao RR. Ethnobotanical notes on certain medicinal plants among some Garo people around Balphakram Sanctuary Meghalaya. Bull Bot Surv Ind. 1980; 22(1-4):161–5.

51. Rao RR, Jamir NS. Ethnobotanical studies in Nagaland II. 54 medicinal plants used by Nagas. J Econ Taxon Bot. 1982; 3(1):11–7.

52. Jamir TT, Sharma HK, Dolui AK. Folklore medicinal plants of Nagaland, India. Fitoterapia. 1999; 70(4):395–401.

53. Gbessor M, Kedjagni KK, Agbo K, Aklilikouk K, Amegbo KA. In vitro antimalarial activity of six medicinal plants. Phytotherapy Research. 1990; 4(3):115–7.

54. Goyal H, Sukumar S, Purushothaman KK. Anti-malarials from Indian medicinal plants. J Res Ayur Siddha. 1981; 2(3):286–95.

55. Keawprabud N, Kirby GC, Stele JCP, Houghton PJ. Antiplasmodial activity of extracts and alkaloids of three Alstonia species from Thailand. Planta medica. 1999; 65(8):690–4.
56. Misra P, Pal NL, Guru PY, Katiyar JC, Srivastava V, Tandon JS. Antimalarial activity of Andrographis paniculata (Kalmegh) against Plasmodium berghei NK 65 in Mastomys natalensis. International Journal of Pharmacognosy. 1992; 30(4):263–74.

57. Rahman NNA, Furuta T, Kojima S, Takane K, Ali Mohd M. Antimalarial activity of extracts of Malaysian medicinal plants. Journal of Ethnopharmacology. 1999; 64(3):249–54.

58. Mac Kinnon S, Durst T, Arnason JT, Angerhofer C, Pezzuto J, Sanchez-Vindas PE, Poveda LJ, Gbessor M. Antimalarial activity of tropical Meliaceae extracts & gedunin derivatives. J Natural Products. 1997; 60(4):336–41.

59. Obaseki O, Jegete.-Sadunsin HA. The antimalarial activity of Azadirachta indica. Fitoterapia. 1986; 57(4):247–51.

60. Gasquet M, Delmas F, Timon-David P, Keita A, Gunido M, Koita N, Diallo D, Doumbo O. Evaluation in vitro and in vivo of a traditional antimalarial, “Malarial 5”. Fitoterapia. 1997; 64(5):423–6.

61. Tona L, Cimanga RK, Mesia K, Musuamba CT, De Bruyne T, Apers S, Hernans N, Van Miert S, Pieters L, Totte J, Vlietinck AJ. In vitro antiplasmodial activity of extracts and fractions from seven medicinal plants used in Democratic Republic of Congo. Journ Ethnopharmacology. 2004; 93:27–32.

62. Goswami A, Dixit VK, Srivastava BK. Antimalarial trials on herbal extracts-1. Clerodendrum infortunatu. Boinature. 1998; 18(2):45–9.

63. Sharma SK, Satyanarayana S, Yadav RNS, Dutta LP. Screening of Coptis teeta Wall. for antimalarial effects, A preliminary Report. Indian Journal of Malariology. 1993; 30(3):179–81.

64. Weenen H, Nkunya MHH, Bray BH, Mwasumbi LB, Kinabo LS, Kilimali VAEB. Antimalarial activity of Tanzanian medicinal plants. Planta Medica. 1990; 56(4):368–70.

65. Singh SS, Pandey SC, Srivastava S, Gupta VS, Patro B, Ghosh AC. Chemistry and medicinal property of Tinospora cordifolia (Gubuchi). Indian Journal of Pharmacology. 2003; 35(2):83–91.

66. Janbaz KH, Gilani AH. Studies on preventive and curative effects of Berberine on chemical induced hepatotoxicity in rodents. Fitoterapia. 2000; 71(1):25–33.

67. Milhau G, Valentin A, Benoit F, Mallie M, Bastide JM, Pelissier Y, Bessiere JM. In vitro antimalarial activity of eight essential oils. Journal of Essential Oil Research. 1997; 9(3):329–33.

68. Anonymous. Screening of Natural/Synthetic Compounds for Antimalarial activity. 3/2.6 A profile of malaria Research Centre. 2002.

69. Rajeswari S. Ocimum sanctum, the Indian Home Remedy. Current Medical Scene. Cipla Ltd. Bombay. 1992.

70. Roy RG, Nadesayaa NN, Gosh RB, Gopalakrishnan, DV, Murthy NN, Dorairaz TJ, Sitaraman ML. Study on inhalation therapy by an indigenous compounds on Plasmodium vivax and Plasmodium falciparum infection. A preliminary communication. Indian J Med Res. 1976; 64:1451.

71. Deolankar RP, Rojatkar SR, Nagsampgi BA, Wagh UV. In vitro antimalarial activity of medicinal plants of India. Ind J Med Res. 1988; 87:379–83.

72. Valsaraj R, Pushpangadan P, Smitt UW, Adersen A, Christensen SB, Sittie A, Nyman U, Nielsen C, Olsen CE. New anti-HIV-1, antimalarial and antifungal compounds from Terminalia bellerica. Journal of Natural Products. 1997; 60(7):739–42.

73. Oketch-Rabah HR, Mwangi JW, Lisgarten J, Mberu EK. A new antiplasmodial coumarin from Toddalia asiatica roots. Fitoterapia. 2000; 71(6):636–40.