Supplemental Material
Table of Contents

Supplemental Appendices ... 3

S1.1 PRISMA Checklist .. 3

S1.2 MOOSE Checklist .. 6

S2 Search strategy .. 9

S3 Objective information assessed during quality appraisal ... 11

S4 Study Selection Flow Chart ... 12

S5 References of studies included in the review .. 13

Supplemental tables ... 19

S1.1 Study characteristics: ‘chronic disease focus’ prognostic factor studies .. 19

S1.2 Population characteristics: ‘chronic disease focus’ prognostic factor studies 23

S2.1 Study characteristics: ‘general’ prognostic factor studies .. 27

S2.2 Population characteristics: ‘general’ prognostic factor studies ... 29

S3.1 Study characteristics: prognostic model studies ... 32

S3.2 Population characteristics: prognostic model studies .. 34

S4.1 Study Risk of bias assessment .. 36

S4.2 Study Risk of bias assessment cont’d.. 39

Supplementary figures ... 43

S1 Galbraith plots .. 43

a) DM in HF and all-cause mortality ... 43

b) COPD in HF and all-cause mortality ... 43
c) RD in HF and all-cause mortality .. 44

S2 Funnel plots ... 44

a) DM in HF and all-cause mortality with pseudo 95% confidence intervals ... 44
b) COPD in HF and all-cause mortality with pseudo 95% confidence intervals ... 45
c) RD in HF and all-cause mortality with pseudo 95% confidence intervals ... 45

S3 ‘General’ Prognostic factor and model exposure effects ... 46

a) DM in HF and all-cause mortality: ‘general’ prognostic factor studies ... 46
b) DM in HF and all-cause mortality: prognostic model studies ... 46
c) DM in HF and all-cause hospital admissions: ‘general’ prognostic factor and model studies ... 47
d) COPD in HF and all-cause mortality: ‘general’ prognostic factor and model studies ... 47
e) COPD in HF and all-cause hospital admissions: ‘general’ prognostic factor and model studies ... 48
f) RD and all-cause mortality: ‘general’ prognostic factor studies ... 48
g) RD in HF and all-cause mortality: prognostic model studies ... 49
h) Additional HF and comorbid diseases included in ‘general’ prognostic factor and model studies ... 49
Supplemental Appendices

S1.1 PRISMA Checklist

PRISMA 2009 Checklist

Section/topic	#	Checklist item	Reported on page
TITLE			
Title	1	Identify the report as a systematic review, meta-analysis, or both.	1
ABSTRACT			
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	2
INTRODUCTION			
Rationale	3	Describe the rationale for the review in the context of what is already known.	3-4
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	2-5
METHODS			
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	4
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	4-5
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	4
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	Online appendix S2
Study selection
State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).

Data collection process
Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.

Data items
List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.

Risk of bias in individual studies
Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.

Summary measures
State the principal summary measures (e.g., risk ratio, difference in means).

Synthesis of results
Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I²) for each meta-analysis.

## Section/topic	#	Checklist item
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.

RESULTS

Study selection
Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.

Study characteristics
For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.

Risk of bias within studies
Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).

Results of individual studies
For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.

Synthesis of results
Present results of each meta-analysis done, including confidence intervals and measures of consistency.
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	8-13, Figure 2-7, online figures S1a-c, S2a-c
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	8-13, online figures S1a-c, S2a-c,

DISCUSSION

Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	13-15
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	15-17
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	17

FUNDING

| Funding | 27 | Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review. | 1 |

From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(6): e1000097. doi:10.1371/journal.pmed1000097
S1.2 MOOSE Checklist

From: Donna F. Stroup, PhD, MSc; Jesse A. Berlin, ScD; Sally C. Morton, PhD; Ingram Olkin, PhD; G. David Williamson, PhD; Drummond Rennie, MD; David Moher, MSc; Betsy J. Becker, PhD; Theresa Ann Sipe, PhD; Stephen B. Thacker, MD, MSc; for the Meta-analysis Of Observational Studies in Epidemiology (MOOSE) Group. *Meta-analysis of Observational Studies in Epidemiology. A Proposal for Reporting* JAMA. 2000;283(15):2008-2012. doi: 10.1001/jama.283.15.2008

Reporting of background should include	Comments
Problem definition	Non-cardiovascular comorbidity has been associated with outcomes in non-select heart failure populations but the evidence has not been synthesised and precise estimates are unclear. Severity of comorbidity is an important consideration for prognostic models but this evidence has not been collated.
Hypothesis statement	(i) The risk estimates for chronic disease comorbidities will differ by disease for individual outcomes (ii) Comorbidity severity and severity change is associated with different heart failure outcomes but has not been included in current prognostic models
Description of study outcomes	Quality of life All-cause hospital admission All-cause mortality
Type of exposure or intervention used	Non-cardiovascular comorbidity and severity indicators
Type of study designs used	Cohort studies and secondary analysis of RCT, prognostic factor and model studies
Study population	Non-select chronic or de novo heart failure

Reporting of search strategy should include

Qualifications of searchers (eg librarians and investigators)	The credentials of the investigators are indicated in the authors list.
Search strategy, including time period used in the synthesis and key words	Search strategy detailed on pg.4 and online Appendix S2
Effort to include all available studies, including contact with authors	We used online databases for unpublished studies and contacted experts in the field of heart failure prognosis
Databases and registries searched	MEDLINE, EMBASE, and the Cochrane databases.
Search software used, name and version, including special features used (eg explosion)	We did not employ a search software. RefWorks was used to merge retrieved citations and eliminate duplications
Use of hand searching (eg reference lists of obtained articles)	We performed reference list and citation searches and hand searching of key journals
List of citations located and those excluded, including justification	Details of the literature search process are outlined in the flow chart (online Appendix S2). The citation list is available
Method of addressing articles published in languages other than English

Upon request

Method of handling abstracts and unpublished studies

We excluded studies that were only available as abstracts if a full report could not be retrieved.

Description of any contact with authors

We contacted authors from the prior renal reviews where sub-group severity effect estimates had not been reported.

Reporting of methods should include

Description of relevance or appropriateness of studies assembled for assessing the hypothesis to be tested	Detailed inclusion and exclusion criteria were described in the methods section.
Rationale for the selection and coding of data (eg sound clinical principles or convenience)	We selected data in relation to study source, eligibility, methods, participants, exposure, outcomes, results and analysis.
Documentation of how data were classified and coded (eg multiple raters, blinding and interrater reliability)	Details of data extraction were described in the methods section. In brief, extraction was performed independently and in duplicate and consensus was achieved with an arbitrator where necessary.
Assessment of confounding (eg comparability of cases and controls in studies where appropriate)	We restricted the synthesis to the maximally adjusted estimates from individual studies and recorded the confounders adjusted for each individual estimate.
Assessment of study quality, including blinding of quality assessors, stratification or regression on possible predictors of study results	We used the QUIPS tool to assess risk of bias independently and in duplicate with two reviewers. We tested inter-rater reliability using Cohen’s Kappa. Sensitivity analyses removing studies with high risk sub-domains were performed.
Assessment of heterogeneity	We used sensitivity analysis using apriori identified effect modifiers where heterogeneity was indicated by I^2 \geq 40%, p^2 \leq 0.1 and Galbraith plots.
Description of statistical methods (eg complete description of fixed or random effects models, justification of whether the chosen models account for predictors of study results, dose-response models, or cumulative meta-analysis) in sufficient detail to be replicated	Description of methods of meta-analyses, sensitivity analyses and assessment of publication bias are detailed in the methods.
Provision of appropriate tables and graphics	We included 7 figures to present the meta-analysis across 3 diseases and 4 renal severity sub-groups. We included 1 table of study characteristics. We limited other tables (study characteristics, quality scoring), figures (descriptive flow-chart, Galbraith, funnel and forest plots) to supplementary electronic access.

Reporting of results should include

Graphic summarizing individual study estimates and overall estimate	Forest plots figures were used as described above (Figures 2-7).
Table giving descriptive information for each study included	Online tables 1.1-3.2
Results of sensitivity testing (eg subgroup analysis)	Detailed throughout results. Online figures S1a-c and S2a-c
Indication of statistical uncertainty of findings	95% confidence intervals were presented with all summary estimates, as well as p values for overall effects and χ^2. R^2 were also reported.

Reporting of discussion should include
Qualitative assessment of bias (e.g., publication bias)	Funnel plots and Egger tests were reported (Online figures S2a-c)
Justification for exclusion (e.g., exclusion of non-English language citations)	Provided in the discussion. We excluded general prognosis and model studies that had not reported a comorbidity exposure as independently significant as non-significant exposures are often not reported by investigators. These studies were of interest to investigate how comorbidity had been included. We did not include these studies in meta-analysis.
Assessment of quality of included studies	We included in the discussion the approach we took to identify and measure heterogeneity and publication bias
Reporting of conclusions should include	
Consideration of alternative explanations for observed results	Detailed discussion on the relevance of the findings included
Generalization of the conclusions (e.g., appropriate for the data presented and within the domain of the literature review)	We acknowledge that the predominance of hospital studies limits the generalizability of the findings.
Guidelines for future research	Discussion of clinical and research implications are included
Disclosure of funding source	Pg.1

Transcribed from the original paper within the Support Unit for Research Evidence (SURE), Cardiff University, United Kingdom. February 2011.
S2 Search strategy

Prognosis

MEDLINE(1)

Predict*[tiab] OR Predictive value of tests[mh] OR Scor*[tiab] OR Observer*[tiab] OR Observer variation[mh] OR “Stratification” OR “ROC Curve”[Mesh] OR “Discrimination” OR “Discriminate” OR “c-statistic” OR “c statistic” OR “Area under the curve” OR “AUC” OR “Calibration” OR “Indices” OR “Algorithm” OR “Multivariable”

EMBASE(2)

exp disease course/ OR risk* .mp. OR diagnos*.mp.OR follow-up.mp.OR ep.fs.OR outcome.tw.

CINAHL (adapted from EMBASE)

“Disease course”.af OR risk*.af OR diagno*.af OR follow-up.af OR exp EPIDEMIOLOGY/ OR outcome.tx

All prognosis search strings were combined using the Boolean operator AND with

Population*

"heart failure".ti. OR "ventricular dysfunction".ti. OR "cardiac edema".ti. OR "heart edema".ti. OR Cardiomyopathy.ti. OR "Cardiac failure".ti. OR "Myocardial failure".ti. OR "Heart decompensation".ti. OR "ventric* failure".ti. OR "Ventricular ejection fraction".ti. OR "Cor Pulmonale".ti. OR "diastolic dysfunction".ti. OR "systolic dysfunction".ti. OR "congestive heart disease".ti.

*A validated search string for heart failure was identified initially that used a mixture of controlled vocabulary words and free text headings (heart failure.mp. OR ventricular dysfunction, left.sh. OR cardiomyopathy.mp. OR left ventricular ejection fraction.mp). When combined with the prognosis and outcomes string it resulted in over 23,000 citations in EMBASE alone. Random check of 500 articles demonstrated low precision with only 29% focused on the heart failure population. Heart failure was often an exposure or an outcome rather than the focus of the study. Following this initial search a heart failure string focused to the title of articles was then designed.

Controlled vocabulary terms and their subheadings (thesaurus terms) from each database were reviewed to develop a list of possible descriptors for the population that might appear in an article title. This list was then reviewed and added to by two heart failure clinical experts. The search was then rerun using the new population string focused to the title and 1% of the surplus articles from the original search, now screened out, were checked for appropriate exclusion. None of the excluded studies checked were relevant to this review.
Outcomes

"mortalit**.ti,ab. OR survival.ti,ab. OR "Admission**.ti,ab. OR "Readmission**.ti,ab. OR "rehospitalization**.ti,ab. OR "hospitalization**.ti,ab. OR 20 or 21 OR "death**.ti,ab. OR "quality of life".ti,ab. OR health.ti,ab. OR "Kansas City Cardiomyopathy Questionnaire".ti,ab. OR KCCQ.ti,ab. OR "Minnesota Living with Heart Failure Questionnaire".ti,ab. OR "Short form".ti,ab. OR sf-36.ti,ab. OR sf36.ti,ab. OR sf12.ti,ab. OR sf-12.ti,ab. OR euroqol.ti,ab. OR eq-5d.ti,ab. OR "Heart Failure Symptom Scale".ti,ab.

(1) Geersing G, Bouwmeester W, Zuithoff P, Spijker R, Leeflang M, Moons K. Search Filters for Finding Prognostic and Diagnostic Prediction Studies in Medline to Enhance Systematic Reviews. PLoS ONE 2012; 7(2): e32844.doi:10.1371/journal.pone.0032844.

(2) Wilczynski N, Haynes R. Optimal Search Strategies for Detecting Clinically Sound Prognostic Studies in EMBASE: An Analytic Survey. Journal of the American Medical Informatics Association 2005; 12(4):481-485

(3) Damarell R, Tieman J, Slade R, Davidson P. Development of a heart failure filter for Medline: an objective approach using evidence-based clinical practice guidelines as an alternative to hand searching. 2011; Available at: http://www.biomedcentral.com/1471-2288/11/12. Accessed 5th January, 2013.
S3 Objective information assessed during quality appraisal

QUIPs Domains (3)	Objective information assessed
Study participation	Baseline population discussed in some detail
	Sample described by key characteristics
Study attrition	Loss to follow-up <10%
Prognostic factor measurement	Description of chronic disease prognostic factor
	Method of missing data used
Outcome Measurement	Outcome measure/event is described
Study confounding	Confounders (or predictors for models) reported
	Confounders (or predictors for models) discussed/ rationale given
Statistical analysis and reporting	Adjusted AND unadjusted effects reported
	Interactions examined
	Linearity for continuous predictors assessed
	Proportional Hazards assumptions tested where relevant
Statistical analysis and reporting	Predictor selection
Additional model factors considered	Correlations tested
	More than 10 events per variable
	Clinical tool developed
	Internal validation performed
	Discrimination assessed
	Calibration performed
	External validation

(3) Hayden J, van der Windt D, Cartwright J, Cote P, Bombardier C. Assessing bias in studies of prognostic factors. Annals of Internal Medicine 2013;158(4):280-286.
Comorbidity and prognosis in heart failure populations: A systematic review

Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(6): e1000097. doi:10.1371/journal.pmed1000097
References of studies included in the review

(1) Aranda J, J.M, Johnson JW, Conti JB. Current trends in heart failure readmission rates: Analysis of medicare data. Clin Cardiol. 2009; 32:47-52.

(2) Barsheshet A, Shotan A, Cohen E, Garty M, Goldenberg I, Sandach A, et al. Predictors of long-term (4-year) mortality in elderly and young patients with acute heart failure. Eur J Heart Fail. 2010; 12:833-840.

(3) Ahmed A, Aronow WS, Fleg JL. Predictors of mortality and hospitalization in women with heart failure in the Digitalis Investigation Group trial. Am J Ther. 2006;13:325-331.

(4) Chaudhry SI, Wang Y, Gill TM, Krumholz HM. Geriatric conditions and subsequent mortality in older patients with heart failure. J Am Coll Cardiol. 2010; 55:309-316.

(5) Chaudhry SI, McAvay G, Chen S, Whitson H, Newman AB, Krumholz HM, Gill TM. Risk factors for hospital admission among older persons with newly diagnosed heart failure: Findings from the cardiovascular health study. J Am Coll Cardiol. 2013; 61:635-642.

(6) Fernandez-Berges D, Consuegra-Sanchez L, Felix-Redondo FJ, Robles NR, Galan Montejano M, Lozano-Mera L. Clinical characteristics and mortality of heart failure. INCAex study. Rev Clin Esp. 2013; 213:16-24.

(7) Dunlay SM, Redfield MM, Weston SA, Therneau TM, Hall Long K, Shah ND, Roger VL. Hospitalizations after heart failure diagnosis a community perspective. J Am Coll Cardiol. 2009; 54:1695-1702.

(8) Fonarow GC, Abraham WT, Albert NM, Stough WG, Gheorghiade M, Greenberg BH, O'Connor CM, Pieper K, Sun JL, Yancy CW, Young JB; OPTIMIZE-HF Investigators and Hospitals. Factors identified as precipitating hospital admissions for heart failure and clinical outcomes: Findings from OPTIMIZE-HF. Arch Intern Med. 2008; 168:847-854.

(9) Gorelik O, Almoznino-Sarafian D, Shteinshnaider M, Alon I, Tzur I, Sokolsky I, Efrati S, Babakin Z, Modai D, Cohen N. Clinical variables affecting survival in patients with decompensated diastolic versus systolic heart failure. Clin Res Cardiol. 2009; 98:224-232.

(10) Gotsman I, Zwas D, Planer D, Azaz-Livshits T, Admon D, Lotan C, Keren A. Clinical Outcome of Patients with Heart Failure and Preserved Left Ventricular Function. Am J Med. 2008; 121:997-1001.

(11) Hamaguchi S, Kinugawa S, Goto D, Tsuchihashi-Makaya M, Yokota T, Yamada S, Yokoshiki H, Takeshita A, Tsutsui H; JCARE-CARD Investigators. Predictors of long-term adverse outcomes in elderly patients over 80 years hospitalized with heart failure. - A report from the Japanese Cardiac Registry of Heart Failure in Cardiology (JCARE-CARD). Circ J. 2011;75:2403-2410.

(12) Harjola V.-F., Follath F, Nieminen MS, Brutsaert D, Dickstein K, Drexler H, Hochadel M, Komajda M, Lopez-Sendon JL, Ponikowski P, Tavazzi L. Characteristics, outcomes, and predictors of mortality at 3 months and 1 year in patients hospitalized for acute heart failure. Eur J Heart Fail. 2010; 12:239-248.
(13) MacIntyre K, Capewell S, Stewart S, Chalmers JWT, Boyd J, Finlayson A, Redpath A, Pell JP, McMurray JJ. Evidence of improving prognosis in heart failure: Trends in case fatality in 66 547 patients hospitalized between 1986 and 1995. *Circulation*. 2000; 102:1126-1131.

(14) Mahjoub H, Rusinaru D, Souliere V, Durier C, Peltier M, Tribouilloy C. Long-term survival in patients older than 80 years hospitalised for heart failure. A 5-year prospective study. *Eur J Heart Fail*. 2008;10:78-84.

(15) Mogensen UM, Ersboll M, Andersen M, Andersson C, Hassager C, Torp-Pedersen C, Gustafsson F, Køber L. Clinical characteristics and major comorbidities in heart failure patients more than 85 years of age compared with younger age groups. *Eur J Heart Fail*. 2011;13:1216-1223.

(16) Pons F, Lupon J, Urrutia A, Gonzalez B, Crespo E, Diez C, Cano L, Cabanes R, Altimir S, Coll R, Pascual T, Valle V. Mortality and Cause of Death in Patients With Heart Failure: Findings at a Specialist Multidisciplinary Heart Failure Unit. *Rev Esp Cardiol*. 2010; 63:303-314.

(17) Rusinaru D, Mahjoub H, Goissen T, Massy Z, Peltier M, Tribouilloy C. Clinical features and prognosis of heart failure in women. A 5-year prospective study. *Int J Cardiol*. 2009;133:327-335.

(18) Shiba N, Watanabe J, Shinozaki T, Koseki Y, Sakuma M, Kagaya Y, Shirato K; CHART Investigators. Analysis of chronic heart failure registry in the Tohoku district - Third year follow-up. *Circ J*. 2004; 68:427-434.

(19) Tribouilloy C, Buiciuc O, Rusinaru D, Malaquin D, Levy F, Peltier M. Long-term outcome after a first episode of heart failure. A prospective 7-year study. *Int J Cardiol*. 2010; 140:309-314.

(20) Ahluwalia SC, Gross CP, Chaudhry SI, Ning YM, Leo-Summers L, Van Ness P, Fried TR. Impact of comorbidity on mortality among older persons with advanced heart failure. *J Gen Intern Med*. 2012; 27:513-519.

(21) Garty M, Shotan A, Gottlieb S, Mittelman M, Porath A, Lewis BS, Grossman E, Behar S, Leor J, Green MS, Zimlichman R, Caspi A; HFSIS Steering Committee and Investigators. The management, early and one year outcome in hospitalized patients with heart failure: a national Heart Failure Survey in Israel--HFSIS 2003. *Isr Med Assoc J*. 2007; 9:227-233.

(22) Mosterd A, Cost B, Hoes AW, de Bruijne MC, Deckers JW, Hofman A, Grobbe DE. The prognosis of heart failure in the general population: The Rotterdam Study. *Eur Heart J*. 2001; 22:1318-1327.

(23) Burger AJ, Tsao L, Aronson D. Prognostic impact of diabetes mellitus in patients with acute decompensated heart failure. *Am J Cardiol*. 2005; 95:1117-1119.

(24) de Boer RA, Doehner W, van der Horst ICC, Anker SD, Babalis D, Roughton M, Coats AJ, Flather MD, van Veldhuisen DJ; SENIORS Investigators. Influence of Diabetes Mellitus and Hyperglycemia on Prognosis in Patients >=70 Years Old With Heart Failure and Effects of Nebivolol (Data from the Study of Effects of Nebivolol Intervention on Outcomes and Rehospitalization in Seniors With Heart Failure [SENIORS]). *Am J Cardiol*. 2010; 106:78-86.e1.

(25) Flores-Le Roux JA, Comin J, Pedro-Botet J, Benaiges D, Puig-de Dou J, Chillaron JJ, Goday A, Bruguera J, Cano-Perez JF. Seven-year mortality in heart failure patients with undiagnosed diabetes:
an observational study. Cardiovasc Diabetol. 2011; 10:39-2840-10-39. Published online 2011 May 14. doi: 10.1186/1475-2840-10-39

(26) Gerstein HC, Swedberg K, Carlsson J, McMurray JJ, Michelson EL, Olofsson B, Pfeffer MA, Yusuf S; CHARM Program Investigators. The hemoglobin A1c level as a progressive risk factor for cardiovascular death, hospitalization for heart failure, or death in patients with chronic heart failure: an analysis of the Candesartan in Heart failure: Assessment of Reduction in Mortality and Morbidity (CHARM) program. Arch Intern Med. 2008;168:1699-1704.

(27) Gustafsson I, Brendorp B, Seibæk M, Burchardt H, Hildebrandt P, Køber L, Torp-Pedersen C; Danish Investigators of Arrhythmia and Mortality on Dofetilide Study Group. Influence of diabetes and diabetes-gender interaction on the risk of death in patients hospitalized with congestive heart failure. J Am Coll Cardiol. 2004; 43:771-777.

(28) Issa VS, Amaral AF, Cruz FD, Ayub-Ferreira SM, Guimaraes GV, Chizzola PR, Souza GE, Bocchi EA. Glycemia and prognosis of patients with chronic heart failure--subanalysis of the Long-term Prospective Randomized Controlled Study Using Repetitive Education at Six-Month Intervals and Monitoring for Adherence in Heart Failure Outpatients (REMADE) trial. Am Heart J. 2010;159:90-97.

(29) Berry C, Brett M, Stevenson K, McMurray JJ, Norrie J. Nature and prognostic importance of abnormal glucose tolerance and diabetes in acute heart failure. Heart. 2008; 94:296-304.

(30) Greenberg BH, Abraham WT, Albert NM, Chiswell K, Clare R, Stough WG, Gheorghiade M, O'Connor CM, Sun JL, Yancy CW, Young JB, Fonarow GC. Influence of diabetes on characteristics and outcomes in patients hospitalized with heart failure: A report from the Organized Program to Initiate Lifesaving Treatment in Hospitalized Patients with Heart Failure (OPTIMIZE-HF). Am Heart J. 2007; 154:647-654.

(31) From AM, Leibson CL, Bursi F, Redfield MM, Weston SA, Jacobsen SJ, Rodeheffer RJ, Roger VL. Diabetes in heart failure: prevalence and impact on outcome in the population. Am J Med. 2006;119:591-599.

(32) MacDonald MR, Jhund PS, Petrie MC, Lewsey JD, Hawkins NM, Bhagra S, Munoz N, Varyani F, Redpath A, Chalmers J, MacIntyre K, McMurray JJ. Discordant short- and long-term outcomes associated with diabetes in patients with heart failure: importance of age and sex: a population study of 5.1 million people in Scotland. Circulation: Heart failure. 2008; 1:234-241.

(33) Ahmed A, Aban IB, Vaccarino V, Lloyd-Jones D, Goff D, J., Zhao J, Love TE, Ritchie C, Ovalle F, Gambassi G, Dell'Italia LJ. A propensity-matched study of the effect of diabetes on the natural history of heart failure: variations by sex and age. Heart. 2007;93:1584-1590.

(34) De Blois J, Simard S, Atar D, Agewall S, Norwegian Heart Failure Registry. COPD predicts mortality in HF: the Norwegian Heart Failure Registry. J Card Fail. 2010; 16:225-229.

(35) Iversen KK, Kjaergaard J, Akken D, Kober L, Torp-Pedersen C, Hassager C, Vestbo J, Kjoller E; ECHOS Lung Function Study Group. The prognostic importance of lung function in patients admitted with heart failure. Eur J Heart Fail. 2010; 12:685-691.
(36) Lainscak M, Hodoscek LM, Dungen H, Rauchhaus M, Doehner W, Anker SD, von Haehling S. The burden of chronic obstructive pulmonary disease in patients hospitalized with heart failure. *Wien Klin Wochenschr*. 2009; 121:309-313.

(37) Macchia A, Monte S, Romero M, D’Ettorre A, Tognoni G. The prognostic influence of chronic obstructive pulmonary disease in patients hospitalised for chronic heart failure. *Eur J Heart Fail*. 2007; 9:942-948.

(38) Rusinaru D, Saaidi I, Godard S, Mahjoub H, Battle C, Tribouilloy C. Impact of Chronic Obstructive Pulmonary Disease on Long-Term Outcome of Patients Hospitalized for Heart Failure. *Am J Cardiol*. 2008; 101:353-358.

(39) Aronson D, Burger AJ. The Relationship Between Transient and Persistent Worsening Renal Function and Mortality in Patients With Acute Decompensated Heart Failure. *J Card Fail*. 2010 July 2010;16:541-547.

(40) Breidthardt T, Socrates T, Noveanu M, Klima T, Heinisch C, Reichlin T, Potocki M, Nowak A, Tschung C, Arena N, Bingisser R, Mueller C. Effect and clinical prediction of worsening renal function in acute decompensated heart failure. *Am J Cardiol*. 2011;107:730-735.

(41) Campbell RC, Sui X, Filippatos G, Love TE, Wahle C, Sanders PW, Ahmed A. Association of chronic kidney disease with outcomes in chronic heart failure: A propensity-matched study. *Nephrol Dial Transplant*. 2009; 24:186-193.

(42) Damman K, Jaarsma T, Voors AA, Navis G, Hillegel HL, van Veldhuisen DJ, COACH investigators. Both in- and out-hospital worsening of renal function predict outcome in patients with heart failure: results from the Coordinating Study Evaluating Outcome of Advising and Counseling in Heart Failure (COACH). *Eur J Heart Fail*. 2009; 11:847-854.

(43) Gotsman I, Zwas D, Planer D, Admon A, Lotan C, Keren A. The significance of serum urea and renal function in patients with heart failure. *Medicine*. 2010; 89:197-203.

(44) Hamaguchi S, Tsuchihashi-Makaya M, Kinugawa S, Yokota T, Ide T, Takeshita A, Tsutsui H; JCARE-CARD Investigators. Chronic kidney disease as an independent risk for long-term adverse outcomes in patients hospitalized with heart failure in Japan. Report from the Japanese Cardiac Registry of Heart Failure in Cardiology (JCARE-CARD). *Circ J*. 2009; 73:1442-1447.

(45) Hillegel HL, Nitsch D, Pfeffer MA, Swedberg K, McMurray JJ, Yusuf S, Granger CB, Michelson EL, Ostergren J, Cornel JH, de Zeeuw D, Pocock S, van Veldhuisen DJ; Candesartan in Heart Failure: Assessment of Reduction in Mortality and Morbidity (CHARM) Investigators. Renal function as a predictor of outcome in a broad spectrum of patients with heart failure. *Circulation*. 2006; 113:671-678.

(46) Kimura H, Hiramitsu S, Miyagishima K, Mori K, Yoda R, Kato S, et al. Cardio-renal interaction: Impact of renal function and anemia on the outcome of chronic heart failure. *Heart Vessels* 2010;25:306-312.

(47) Ismaiov RM, Goldberg RJ, Lessard D, Spencer FA. Decompensated heart failure in the setting of kidney dysfunction: a community-wide perspective. *Nephron Clin Pract*. 2007; 107:c147-55.
(48) Olandoski M, De Lima RR, Da Silva MMF, Pecoits-Filho R, Barboza AO, Erbano BO, Moura LZ, Brofman PR, Faria-Neto JR. Interaction of anemia and decrease in renal function on survival of patients with heart failure. *Int J Cardiol*. 2012;154:338-340.

(49) Petretta M, Scopacasa F, Fontanella L, Carломagno A, Baldissara M, De Simone A, Petretta MP, Bonaduce D. Prognostic value of reduced kidney function and anemia in patients with chronic heart failure. *J Cardiovasc Med*. 2007; 8:909-916.

(50) Takagi A, Iwama Y, Yamada A, Aihara K, Daida H. Estimated glomerular filtration rate is an independent predictor for mortality of patients with acute heart failure. *J Cardiol*. 2010;55:317-321.

(51) Kociol RD, Greiner MA, Hammill BG, Phatak H, Fonarow GC, Curtis LH, Hernandez AF. Long-term outcomes of medicare beneficiaries with worsening renal function during hospitalization for heart failure. *Am J Cardiol*. 2010; 105:1786-1793.

(52) Go AS, Yang J, Ackerson LM, Lepper K, Robbins S, Massie BM, Shlipak MG. Hemoglobin level, chronic kidney disease, and the risks of death and hospitalization in adults with chronic heart failure: the Anemia in Chronic Heart Failure: Outcomes and Resource Utilization (ANCHOR) Study. *Circulation*. 2006;113:2713-2723.

(53) Waldum B, Westheim AS, Sandvik L, Flønaes B, Grundtvig M, Gullestad L, Hole T, Os I. Renal function in outpatients with chronic heart failure. *J Card Fail*. 2010; 16:374-380.

(54) Maeder MT, Rickli H, Pfisterer ME, Muzzarelli S, Ammann P, Fehr T, Hack D, Weilenmann D, Dieterle T, Kiencke S, Estlinbaum W, Brunner-La Rocca HP; TIME-CHF Investigators. Incidence, clinical predictors, and prognostic impact of worsening renal function in elderly patients with chronic heart failure on intensive medical therapy. *Am Heart J*. 2012;163:407-14.

(55) Testani JM, McCauley BD, Chen J, Coca SG, Cappola TP, Kimmel SE. Clinical characteristics and outcomes of patients with improvement in renal function during the treatment of decompensated heart failure. *Am Heart J*. 2011; 163:1000.

(56) Davis III JM, Roger VL, Crowson CS, Kremers HM, Therneau TM, Gabriel SE. The presentation and outcome of heart failure in patients with rheumatoid arthritis differs from that in the general population. *Arthritis Rheum*. 2008; 58:2603-2611.

(57) Barlera S, Tavazzi L, Franzosi MG, Marchioli R, Raimondi E, Masson S, Urso R, Lucci D, Nicolosi GL, Maggioni AP, Tognoni G; GISSI-HF Investigators. Predictors of mortality in 6975 patients with chronic heart failure in the gruppo italiano per lo studio della streptochinasi nell'infarto miocardico-heart failure trial proposal for a nomogram. *Circ Heart Fail*. 2013; 6:31-39.

(58) Huynh BC, Rovner A, Rich MW. Long-term survival in elderly patients hospitalized for heart failure: 14-year follow-up from a prospective randomized trial. *Arch Intern Med*. 2006; 166:1892-1898.

(59) Krumholz HM, Chen YT, Wang Y, Vaccarino V, Radford MJ, Horwitz RI. Predictors of readmission among elderly survivors of admission with heart failure. *Am Heart J*. 2000; 139:72-77.

(60) Martinez-Selles M, Martinez E, Cortes M, Prieto R, Gallego L, Fernandez-Aviles F. Determinants of long-term survival in patients hospitalized for heart failure. *J Cardiovasc Med*. 2010; 11:164-169.
(61) Pocock SJ, Wang D, Pfeffer MA, Yusuf S, McMurray JJV, Swedberg KB, Ostergren J, Michelson EL, Pieper KS, Granger CB. Predictors of mortality and morbidity in patients with chronic heart failure. *Eur Heart J*. 2006;27:65-75.

(62) Wang L, Porter B, Maynard C, Bryson C, Sun H, Lowy E, McDonell M, Frisbee K, Nielson C, Fihn SD. Predicting risk of hospitalization or death among patients with heart failure in the veterans health administration. *Am J Cardiol*. 2012; 12;110:1342-1349.

(63) Senni M, Santilli G, Parrella P, De Maria R, Alari G, Berzuini C, Scuri M, Filippi A, Migliori M, Minetti B, Ferrazzi P, Gavazzi A. A Novel Prognostic Index to Determine the Impact of Cardiac Conditions and Co-Morbidities on One-Year Outcome in Patients With Heart Failure. *Am J Cardiol*. 2006; 98:1076-1082.

(64) Senni M, Parrella P, De Maria R, Cottini C, Bohm M, Ponikowski P, Filippatos G, Tribouilloy C, Di Lenarda A, Oliva F, Pulignano G, Cicoira M, Nodari S, Porcu M, Cioffi G, Gabrielli D, Parodi O, Ferrazzi P, Gavazzi A. Predicting heart failure outcome from cardiac and comorbid conditions: The 3C-HF score. *Int J Cardiol*. 2013; 163:206-211.

(65) O'Connor CM, Abraham WT, Albert NM, Clare R, Gattis Stough W, Gheorghiade M, Greenberg BH, Yancy CW, Young JB, Fonarow GC. Predictors of mortality after discharge in patients hospitalized with heart failure: An analysis from the Organized Program to Initiate Lifesaving Treatment in Hospitalized Patients with Heart Failure (OPTIMIZE-HF). *Am Heart J*. 2008; 156:662-673.

(66) Bouvy ML, Heerdink ER, Leufkens HG, Hoes AW. Predicting mortality in patients with heart failure: a pragmatic approach. *Heart*. 2003; 89:605-609.

(67) Lee DS, Austin PC, Rouleau JL, Liu PP, Naimark D, Tu JV. Predicting mortality among patients hospitalized for heart failure: derivation and validation of a clinical model. *JAMA*. 2003; 290:2581-2587.

(68) Pocock SJ, Ariti CA, McMurray JJ, Maggioni A, Kober L, Squire IB, Swedberg K, Dobson J, Poppe KK, Whalley GA, Doughty RN; Meta-Analysis Global Group in Chronic Heart Failure. Predicting survival in heart failure: a risk score based on 39 372 patients from 30 studies. *Eur Heart J*. 2013; 34:1404-1413.
Supplemental tables

S1.1 Study characteristics: ‘chronic disease focus’ prognostic factor studies

Trial/Database	Recruitment Period	Study Follow-up Period	Follow-up Mean(SD)/Median (IQR)* (R)	Heart Failure Clinical definition	Inclusions	Exclusions	Setting	Sample size (no. in analysis if different)	Centres/hospitals	Country	
DIABETES											
Ahmed 2007	DIG	1991-93	4.8y	38m*	Symptoms/signs or objective evidence	>=76y, Serious CM, high Cr, recent acute cardiac event/intervention	RCT	4112	Multicentre (n=302)	USA and Canada	
Berry 2008		2000	33m	27(21-33)mƚ	Discharge code OR prescription + symptoms/signs or objective evidence	HF admission	Recent acute cardiac event/intervention	Hospital	454	Single	UK
Burger 2005	VMAC	1999-00	6m	Signs/ symptoms	Decompensated HF requiring diuretics	Low bp, high risk death	RCT	498	Multicentre (n=55)	USA	
de Boer 2010	SENIORS	2000-02	6-9y	7.5y	Discharge code	<70y, significant renal dysfunction	RCT	2128	Multinational (n=11)	Europe	
Flores-Le Roux 2011	REP	1979-99	20y	5(4.6)y	Discharge and Framingham criteria	Incident HF	Hospital/Community	655	Regional	USA	
Gerstein 2008		1999-01	36.7m*	Clinical diagnosis	NYHA 2-4	Recent acute cardiac event/intervention, high Cr, low bp, serious cardiac CM	RCT	2412	Multinational (n=26)	Multiple	
Study	Citation	Study Period	Follow-up	Clinical diagnosis	Diagnosis Method	Hospital Code	Multicentre	Country			
-------	----------	--------------	-----------	--------------------	------------------	---------------	-------------	----------			
Greenberg 2007	OPTIMIZE-HF	2003-04	6-9m	Clinical diagnosis	Recent acute cardiac event/intervention	Hospital 5791	Multicentre (n=91)	USA			
Gustafsson 2004	DIAMOND	1993-95	5-8y	Symptoms/signs or objective evidence	NYHA 3-4	RCT 5491	Multicentre (n=34)	Denmark			
Issa 2010	REMADHE	1999-07	3.6(2.2)y	Boston criteria	HF for >=6m	RCT 456	Single	Brazil			
MacDonald 2008	Scottish morbidity data	1986-03	1y AND 5y	Discharge code	De novo HF	Hospital 55173 (MEN) 61383 (WOMEN)	Countrywide	UK			
COPD											
Breidthardt 2011	VMAC	1999-00	6m	Signs/ symptoms	Decompensated HF requiring diuretics	RCT 467	Multicentre (n=55)	USA			
Campbell 2009	DIG	1991-93	4.8y	Symptoms/signs or objective evidence	>=76y, Serious CM, high Cr, recent	RCT 4798	Multicentre (n=302)	United States and			
Study (Year)	Study Code	Duration	Definition	Comparator	Study Design	Sample Size	Location				
-------------	------------	----------	------------	------------	--------------	-------------	----------				
Damman 2009	COACH	2002-07	18m	Decompensated HF requiring diuretics	Recent acute cardiac event/intervention	RCT 1023	Multicentre (n=17) Canada				
Go 2006	Kaiser Permanente	1996-02	2.1(0.8-3.9)y*	Discharge code	Hospital/Community 59772 (55170 known) Regional United States						
Gotsman 2010		2001-02	6.5y	Symptoms/signs and/or reduced LVF	Heamodialysis	Hospital 355 Single Israel					
Hamaguchi 2009	JCARE-CARD	2004-05	2.4(0.7)y	Framingham criteria	Decompenated HF	Hospital 2013 (1617) Multicentre (n=164) Japan					
Hillege 2006	CHARM	1999-01	34.4(1-45.2)mL Clinical diagnosis	NYHA 2-4	Acute cardiac event or intervention, high CR, low bp, serious cardiac CM	RCT 2680 Multicentre (n=26) United States					
Ismailov 2007		1995 and 2000	5 y Framingham criteria	Recent acute cardiac event/intervention	Hospital 4350 Multicentre (n=11) United States						
Kimura 2010		2000-04	5 y 26.4(19.9)mL Framingham criteria	NYHA 2-4	Recent acute cardiac event/intervention, heamodialysis, serious cardiac CM	Hospital 711 Single Japan					
Kociol	OPTIMIZE-HF	2003-04	1 y Discharge code		Hospital 20063 (15792) Multicentre (n=259) United States						
Maeder 2012	TIME-CHF	2003-06	18m	HF HA within 12 months, symptoms and BNP NYHA 2-4, admission within 12 mnths	<60y, High CR, serious CM, serious cardiac CM, BMI>35, recent acute cardiac event/intervention	RCT 566 Multicentre (n=15) Switzerland/Germany					
Olandoski 2012		2005-06	4y 19.7(10.6)m Clinical diagnosis Incident admission with HF		Hospital 328 Regional Brazil						
Study	Time Period	Follow Up	Study Design	Case Definition	Hospital	N	Single/Multicentre	Country			
-------	-------------	-----------	--------------	----------------	----------	---	--------------------	---------			
Petretta 2007	2002-05	15.2 (0.3-45.6) ml	Framingham criteria	Recent acute cardiac event/intervention, list for device. Serious CM, serious cardiac CM, high CR, dialysis	Hospital	153	Single	Italy			
Takagi 2010	2002-05	20.3 (1-54.2) ml	not specified	Acute HF	Hospital	194	Single	Japan			
Testani 2011	2004-09	2.6 (1.2-4.2) y*	Clinical diagnosis	BNP>100 pg/mL	Hospital	903	Single	United States			
Waldum 2010	2000-06	5 y, 9 m*	ESC guidelines	NYHA 1-4	Hospital	3605	Multicentre (n=24)	Norway			

RHEUMATOID ARTHRITIS

Study	Time Period	Follow Up	Study Design	Case Definition	Hospital	N	Single/Multicentre	Country
Davis 2008	1979-00	1 y	Framingham criteria	Incident Cases	Hospital	955	Single	United States

Follow up is expressed as mean(SD), median (IQR)* or median (range) y or months (m).
S1.2 Population characteristics: ‘chronic disease focus’ prognostic factor studies

Study	Year	Age Mean(SD/ Median)	Gender (% male)	Systolic HF (% with EF <40% or study defined)	Caucasians (%)	EF Mean(SD/Median) (IQR)* (R)†	NYHA Stages (% 3/4)	Study indicator	Unit of chronic disease exposure measurement	No. included in study	Prevalence	Outcome/s‡ secondary
DIABETES												
Ahmed 2007		64(11)	73	87	32(13)	36	Type	Clinical record	2056	29	AC Mortality/Hospital admission	
Berry 2008		72(13)	49	70	Type	Clinical record/Prescription/admission glucose >11	110	24	AC Mortality			
Burger 2005		62(14)	69	87	27(14)	84	Type	Patient reported/Prescription/Diet therapy	236	47	AC Mortality	
de Boer 2010		76(5)	63	64(<=35%)	36(12)	41	Type	Clinical record/Prescription	555	26	AC Mortality†	
Flores-Le Roux 2011		72(10)	51	46(18)	Type	All then stratified by treatment	Undiagnosed(blood test)/Clinical record/Prescription/Diet...	63	149	16	37	AC Mortality
From 2006		77(12)	46	47(13)	Type	Blood test/Prescription	128	19	AC Mortality			
Gerstein 2008		66	67	46	64	Severity	HBA1C (per 1% higher in all sample)	907	38%	diabetes	AC Mortality‡	
Greenberg 2007		73(14)	48	49	74	39(18)	Type	All: Clinical record/Prescription Insulin treated	2464	42	17	AC Mortality
Gustafsson 2004		73*	60	47(<=35%)	100	63	Type	Clinical record/ Patient reported	900	16	AC Mortality	
Issa 2010		50(11)	70	35(11)	43	Severity	Fasting glucose <=5.5 mmol/L (guideline and evidence driven cut point)	124 (diabetes)	27	AC Mortality		
MacDonald 2008		72(12)	100	Type	Discharge code	7356	13	AC Mortality				
		77(11)	0	33(11.7)	52	Type	GOLD guidelines	7805	13	AC Mortality		
COPD												
De Blois 2010		70(12)	71	83	33(11.7)	52	Type	GOLD guidelines	699	17	AC Mortality	
First Name	Year	Gender	Age	Type of Measure	Severity/Change	Number of Deaths	Number of Causes	Outcome				
-------------	------	--------	-----	-----------------	-----------------	------------------	-----------------	-----------				
Iversen	2010		72	Type and Severity	Self reported	107	22	AC Mortality				
			63	FEV1 <80%	Discharge code	182	35					
				FEV1 50-79%		92	18					
				FEV1 <49% per 10% of predicted		90	17					
Lainscak	2009	73(10)	48	Type		106	17	AC Mortality				
Macchia	2007	80(75-87)*	50	Prescriptions/ Discharge codes		241	24	AC Mortality				
Rusinaru	2008	75(12)	51	Type	Clinical record/ Patient reported AND prescription	156	20	AC Mortality				
			55 (<50%)									
			92(16)									
			90(17)									
Aronson	2010	62(15)	68	Severity change	Increase CR (>=0.5 mg/dL) Reduction eGFR (>=25%)	115	25	AC Mortality				
				(0-30days).	(in-hosp)	159	34					
				(stratified by transient and persistent change)								
Breidthardt	2011	79(71-85)*	55	Severity	"eGFR<60 eGFR30-59 eGFR <=30"	2399	50	AC Mortality / Hospital admission				
			76			2284	48					
			32(13)			115	2					
Campbell	2009	65(9)	76	Severity change	Increase Cr >26.5umol/L in-hosp 0-6m 6-12m	106	11	AC Mortality / Hospital admission				
					(or >25%)	101	16					
					(or >25%)	43	9					
Damman	2009	71(11)	62	Severity change	Increase eGFR >60 (ref) eGFR 45-59 eGFR 30-44 eGFR 15-29 eGFR <15 Dialysis	29240	53	AC Mortality				
					(or >25%)	13241	24					
					(or >25%)	5958	11					
					(or >25%)	1821	3					
					(or >25%)	331	0.6					
					(or >25%)	221	0.4					
Go	2006	72(12)	57	Severity	eGFR <53 eGFR <35 eGFR per ml/min	237	67	AC Mortality / Hospital readmission				
			57	(all pre admission – steady state measure)*		118	33					
Gotsman	2010	74(12)	53	Severity	eGFR <53 eGFR <35 eGFR per ml/min	237	67	AC Mortality / Hospital readmission				
			64	(All discharge values)		118	33					
Study	N(%)	Elevation	Reflectance	Severity Measures	AC Mortality							
------------------	------	-----------	-------------	--	--------------							
Hamaguchi 2009	72(13)	59	44(16)	Severity (All baseline values)	AC Mortality							
				*eGFR>=60	478							
				eGFR>30-59	831							
				eGFR <30ml or dialysis	308							
Hilge 2006	65(12)	67	39(16)	Severity (All baseline values)	AC Mortality							
				(decrease from 75)	577							
				(decrease from 75)	519							
				eGFR >90	618							
				eGFR 89.9-75	547							
				eGFR 74.9-60	419							
				eGFR 59.9-45								
				eGFR <45								
				eGFR per 10ml/min								
				eGFR per 20ml/min								
Ismailov 2007	76	43	94	Severity (All admission values)	AC Mortality							
				*eGFR >60	763							
				eGFR 45-59	725							
				eGFR 30-44	569							
Kimura 2010	69(14)	56	40(15)	Severity	AC Mortality							
Kociol 2010	80*	44	36	90	Increase Cr	AC Mortality / Readmission						
				(in hosp)	3581							
				>=0.3mg/dL	18							
Maeder 2012	77(8)	60	81.6 (<45%)	35(13)	Increase Cr	AC Mortality						
				of >0.5 mg/dL	124							
				(baseline - 6 mths)	22							
Olandoski 2012	68(12)	46	x	Severity change	AC Mortality							
				(over a month in 1 year pre or post hosp admission)	105							
				reduction in eGFR of >=1%	32							
Petretta 2007	64(19-87)†	72	77	34	Type	AC Mortality						
Takagi 2010	69(13)	71	36(11-81)†	Type	eGFR <60	AC Mortality						
Testani 2011	63(16)	54	34	29(15-45)*	Severity change	AC Mortality						
				(any time)	Increase eGFR >=20%	279						
				(persisting at discharge)	Increase eGFR >=20%	163						
Waldun 2010	71(12)	70	72.8	33(12)	Type	AC Mortality						
				eGFR per 5ml/min increase								

‡ refers to AC Mortality ‡
RHEUMATOID ARTHRITIS

Davies 2008	77(12)	45	51 (<50%)	44	Type	1987 American College of Rheumatology criteria	103	11	AC Mortality

Percentages are expressed as mean(SD), Median (IQR)* or Median (Range)*. All outcomes are all-cause (AC). Ejection fraction (EF), New York Heart Association (NYHA). Outcomes are all primary study outcomes except ‡ where the study outcome was secondary.
S2.1 Study characteristics: ‘general’ prognostic factor studies

Trial/Dataset	Recruitment Period	Study Follow-up length	Follow-up Mean(SD)/Median (IQR)* (R)	Heart Failure Clinical definition	Inclusions	Exclusions	Setting	Sample size (no. in analysis if different)	Centres/hospitals	Country
Ahluwalia 2012	Medicare 2001-02	5 y	Discharge code	<=65y	Hospital	Community		9166 9166	National	USA
Ahmed 2006	DIG 1991-93	4.8y	Symptoms/signs or objective evidence	WOMEN	RCT			1926	Multicentre (n=302)	USA and Canada
Aranda 2009	Medicare 2002-04	6-9 m	Discharge code	Hospital				28919 (27646)	National	USA
Barsheshet 2010	HSIS 2003	4 y	Symptoms/ objective evidence at rest	Hospital				1182 (>75y group) 1154 (<75y group)	Multicentre (n=25)	Israel
Chaudhry 2010	Medicare 1998-99 or 2000-01	5y	Discharge code	<65y, heamodialysis	Hospital	Community		62330	Multistate (n=6)	USA
Chaudhry 2013	CHS 1989-99	20y	Clinical history Incident	Cancer	Hospital/ Community	758	Regional	USA		
Dunlay 2009	REP 1987-06	19y	Discharge Code + Framingham criteria	Incident	Hospital/ Community	1077	Regional	USA		
Fernandez-Berges 2013		2000-09	1y	Discharge Code	Hospital			2220	Single	Spain
Fonerarow 2008	OPTIMIZE-HF	2003-04	6-9m	Clinical diagnosis. Symptoms/signs	Hospital			5791	Multicentre (n=91)	USA
Garty 2007	HSIS 2003	1y	Symptoms/signs and objective evidence	AHA stage B-D	Hospital			4102	Multicentre (n=117)	Israel
Gorelik 2009		47.5m	Modified Framingham Decompensated HF, NYHA 2-4	<60yrs, Serious cardiac CM, cancer,	Hospital			473	Single	Israel
Study	Year	Follow Up	Study Characteristics	Criteria/Reference	Case Definition	Hospital Site	Number of Patients	Country/Region		
--------	------	-----------	-----------------------	-------------------	-----------------	--------------	-------------------	----------------		
Gotsman 2008	2001-02	1 y	Symptoms/signs and objective evidence	Clinical diagnosis of HF + echoe	Hospital	289	Single	Israel		
Hamaguchi 2011	JCARE-CARD 2004-05	2.1(0.9)y	Framingham criteria	Decompensated HF <80yrs	Hospital	765(620)	Multicentre (n=164)	Japan		
Harjola 2010	EHFS 2004-05	1 y	ESC guidelines HF admissions	High output HF	Hospital	2981	Multinational (n=30)	Europe		
MacIntyre 2000	Scottish morbidity data 1986-95	1-10y	Discharge code	De Novo HF	Hospital	31040(MEN) 35507(WOMEN)	Countrywide	United Kingdom		
Mahjoub 2008	2000	5y	Framingham criteria amended by ESC	De Novo HF >=80yrs, serious cardiac CM	Hospital	305	Multicentre (n=11)	France		
Mogensen 2011	DIAMOND and ECHOES 1993-96 2001-02	8 y	Symptoms/signs or objective evidence NYHA 2-4	Recent acute cardiac event/intervention	Hospital	8507	Multicentre (n=43)	Denmark, Norway and Sweden		
Mosterd 2001	Rotterdam study 1990-93	4.8-8.5y 6.1y	Symptoms, signs and objective evidence	<55yrs, COPD	Community	181	Regional	Netherlands		
Pons 2010	2001-08	36(16.6-64.5)m*	Clinical diagnosis	De novo HF, women Serious cardiac CM	Hospital	960	Single	Spain		
Rusinaru 2009	2000	5y	Framingham criteria amended byESC	De novo HF, women Serious cardiac CM	Hospital	389 (306)	Multicentre (n=11)	France		
Shiba 2004	CHART 2000-03	1.88(0.92)y	Framingham criteria	De novo HF	Hospital	1154 (684)	Multicentre (n=26)	Japan		
Tribouilloy 2010	2000	7yrs	Framingham criteria amended byESC	De novo HF Serious cardiac CM	Hospital	735	Multicentre (n=11)	France		

Follow up is expressed as mean(SD), median (IQR)* or median (range)‡ years (y) or months (m).
S2.2 Population characteristics: ‘general’ prognostic factor studies

Study	Year	Age Mean (SD/Median (IQR))*(R)	Gender (%) Male	Systolic/ (% with EF <40% (or study defined))	Causcasian (%)	EF Mean (SD)/Median (IQR)*(R)	NYHA Stages (% 3/4)	Chronic disease	Study indicator	Unit of chronic disease exposure measurement	No. included in study	Prevalence	Outcome/s
Ahluwalia 2012		81(75-86)* 81(75-86)*	41 41	x 86 85	X	Diabetes COPD Renal disease Arthritis Dementia Cancer- Lung Cancer- Colorectal Cancer- Endometrial	Type	Discharge codes	7739 6129 5035 5399 4266 214 234 20	42 33 27 29 23 1 1 0.1	AC Mortality		
Ahmed 2006		66(12) 0 79 (<45%) 82 35(14)		Diabetess Renal dysfunction	Type	Not specified eGFR per ml	650	34	Mortality Hospital admission				
Aranda 2009		x 44 x 83 X		Diabetes	Type	Not specified	x	37	Readmission				
Barsheshet 2010		82 (78-87)* 67 (59-72)*	47 63	48 53	Renal dysfunction Diabetes	Type eGFR <60 Clinical record/ blood test/prescription	1361 1207	58 52	AC Mortality				
Chaudhry 2010		80 42 . 87 X		Diabetes Dementia Cancer (any) COPD	Type	Clinical record	24745 6046 1496 21192	40 10 2 34	AC Mortality				
Chaudhry 2013		80(6) 50 43 (<45%) 87 X	30	Renal disease Diabetes	Type	eGFR<60 Patient report/ Prescription/ Blood test	280 193	37 26	Hospital admission				
Dunlay 2009		77(13) 46 46(18)		COPD Diabetes	Type	Clinical record National diabetes	253 232	24 21	Hospital admission				
Study	Year	Criteria	Type of Disease	Clinical record	Death Rate	Mortality							
------------------------	------	----------	-----------------	-----------------	------------	-----------							
Fernandez-Berges 2013	76(10)	47	Diabetes, Renal disease	Clinical record	970 390	44 18							
Fonarow 2008	72(14)	51 53 78 37(17)	Renal dysfunction	Worsening Pre-admission	Clinical record	509 9							
Garty 2007	73(12)	57 52	Renal failure, COPD	Type	Cr=>1.5mg/dl Clinical record	1672 803	41 20						
Gorelik 2009	73(10)	57 61 (<50%) 41(14)	Renal dysfunction, Cancer – any	Severity	eGFR <60 (admission) Clinical record: Non advanced	70 12							
Gotsman 2008	73(12)	53 64	Diabetes, Chronic renal disease	Type	Clinical record	122 110	42 38						
Hamaguchi 2011	85(4)	45	Renal dysfunction	Severity	eGFR per ml/min decrease (baseline)	Mortality							
Harjola 2010	72(62-79)*	62 65 (<45%) 38(15)	Diabetes	Type	Clinical record	987 33							
MacIntyre 2000	72*	78*	100 0	Arthritis, Cancer – any, Renal failure, Diabetes, Lung Disease	Type	Admission code (prior to HF admission)	3383 3330 454 1760 4818	5 5 1 3 7					
Mahjoub 2008	86(5)	37 39(<50%) 52(16)	Cancer – any	Type	Clinical record	37 12							
Mogensen 2011	72(11)	60 55(<45%)	Diabetes, COPD, Renal dysfunction	Type	Clinical record/ Px Clinical record/ Px eGFR<30	1361 1948 970	16 23 11						
Mosterd 2001	77(8)	40	Diabetes	Type	Blood test/ Prescription	32 18							
Pons 2010	69*	71	31 39	Diabetes	Type	Not specified	377 39						
Rusinaru 2010	78(11)	n/a	Cancer	Type	Clinical record	34 9							
Year	Study	2004	2009	2010									
--------	--------------	------	------	------									
	Shiba	68(13)	67	52									
		49(16)	16	43 (~50%)									
	Tribouilloy	75(12)	51(16)	51(16)									
	Type	Diabetes	Type	Cancer									
	Type	Type	Type	Type									
	Clinical record	106	106	106									
	Clinical record	19	19	19									
	Mortality	27	27	27									

Percentages are expressed as mean(SD), Median (IQR)* or Median (Range)ƚ. All outcomes are all-cause (AC). Ejection fraction (EF), New York Heart Association (NYHA). Outcomes are all primary study outcomes except † where the study outcome was secondary.
S3.1 Study characteristics: prognostic model studies

Trial/Database	Recruitment Period	Study Follow-up length	Follow-up Mean(SD)/Median (IQR)* (R)†	Heart Failure Clinical definition	Inclusions	Exclusions	Setting	Sample size (no. in analysis if different)	Centres/hospitals	Country
Barlera 2013	GISSI-HF 2002-05	4y	3.9y*	ESC guidelines	NYHA 2-4	Recent acute cardiac event/intervention, serious CM	RCT	6975	Multicentre (n=357)	Italy
Bouvy 2003	18m	Discharge code		High risk of death	RCT	152	Multicentre (n=7)		Netherlands	
Huynh 2006	1990-94 14y	2.5y*	Objective evidence OR signs/symptoms and response to diuresis	<70yrs, high risk of death	RCT	282	Single		United States	
Krumholz 2000	Medicare 1994-95	6m	Discharge code, symptoms or objective evidence	<65yrs, serious cardiac CM, in-hospital death	Hospital	1129 (derivation)	Multicentre (n=9)		United States	
Lee 2003	EFFECT 1999-01	1y	Discharge code and modified Framingham criteria	HF admission	RCT	2624	Multicentre (n=34)		Canada	
Martinez-Selles 2010	HOLA 1996	10y	5.2(4.2)y	Symptom and (Sign or objective evidence)	Recent acute cardiac event/intervention	Hospital	701	Single	Spain	
O'Connor 2008	OPTIMIZE-HF 2003-04	60-90days	2.4(0.7)m	Clinical diagnosis	HF admissions	Hospital	5791(4402)	Multicentre (n=91)	United States	
Pocock 2006	CHARM 1999-01	38m*	Clinical diagnosis	NYHA 2-4	Acute cardiac event or intervention, high CR, low bp, serious cardiac CM	RCT	7599	Multinational (n=26)	Multiple	
Pocock	MAGIC	2.5y*	Hospital	39372					Multiple	
Year	Database	Start Year	Duration	Methodology	Outcome 1	Hospital Type	Sample Size	Setting	Country	
------	----------	------------	----------	-------------	-----------	---------------	-------------	---------	---------	
2013	Senni 2006	2003	1yr	ESC guidelines	In-hosp death, heart surgery	Hospital/Community	292 (derivation)	Multicentre (n=3)	Italy	
2013	Senni 2013	2002-06	1 yr	Symptoms, signs and objective evidence	In-hosp death, cancer	Hospital	2016 (derivation)	Multicentre (n=8)	Europe	
2012	Wang 2012	VHA	2009-10	Discharge codes	Chronic HF	Hospital/Community	198640	National	United States	

Follow up is expressed as mean(SD), median (IQR)* or median (range)† years (y) or months (m).
S3.2 Population characteristics: prognostic model studies

Study	Age Mean (SD)	Gender (% male)	Systolic/ LVF (% with EF <40%) (or study defined)	Causcasian (%)	EF Mean (SD)/Median (IQR)* (R)†	NYHA Stages (% stage 3 or 4)	Chronic disease	Study indicator	Unit of chronic disease exposure measurement	No. included in study	Prevalence	Outcome/s
Barlera 2013	67(10)	78					Diabetes, COPD, Renal dysfunction	Type	Clinical record, Clinical examination eGFR per unit decrease<60	1974, 1533	28, 22	AC Mortality
Bouvy 2003	70(37-91)†	34					Diabetes, Renal dysfunction	Type	Clinical record	43, 19	28, 22	AC Mortality
Huynh 2006	79(6)	37	63 (<45%)	45	43(14)		Dementia	Type	Clinical record	13, 19	5, 5	AC Mortality
Krumholz 2000	78(8)	41	44	92			Diabetes	Type	Clinical record	412	36	Readmission
Lee 2003	76 (11)	50	53				Dementia, COPD, Liver cirrhosis, Cancer	Type	Clinical record	225, 543, 34, 34, 234	9, 21, 4, 9, 9	AC Mortality
Martinez-Selles 2010	72(12)	45					COPD	Type	Clinical record	188	27	AC Mortality
O'Connor 2008	72(14)	51	53	78	37(17)		Liver disease, Reactive airways disease	Type	Clinical record	126, 498	2, 9	AC Mortality
Pocock 2006	66(11)	68			39(15)		Diabetes	Type	Clinical record stratified by treatment	707	9	AC Mortality
Pocock 2013	67(11)	67	91	36(14)	44		Diabetes, COPD	Type	Varies across studies	8919, 4035	23, 10	AC Mortality
Senni 2006	71(13)	62	61		38(13)		COPD, Diabetes with target organ	Type, severity	Clinical record	45, 40	15, 14	AC Mortality
Senni 2013	68 (58-76)*	70	90 (<50%)	35 (27-40)*	34	Diabetes with target organ damage	Renal dysfunction (moderate to severe)	Cancer (metastatic or >2 tumors)				
-----------	-------------	----	-----------	-------------	----	-----------------------------------	-------------------------------------	---------------------------------				
						Severity	Clinical record					
Wang 2012	73	98				Renal failure	Clinical record					
						COPD						
						Dementia						
						Cancer*						
						Liver cirrhosis						

Percentages are expressed as mean(SD), Median (IQR)* or Median (Range)*. All outcomes are all-cause (AC). Ejection fraction (EF), New York Heart Association (NYHA). Outcomes are all primary study outcomes except ‡ where the study outcome was secondary.
S4.1 Study Risk of bias assessment

Study participation	Study attrition	Prognostic factor measurement	Outcome Measurement	Study confounding												
Baseline population level of detail provided	Sample described	Risk level	Loss to follow-up	Risk level	Chronic disease exposure description	Method of missing data	Risk level	Outcome measure description	Risk level	Confounders (or predictors for models) reported	Risk level					
Ahmed 2007	Brief	Yes	Med	NR	Med	Yes	NR	Med	Yes	Low	Yes	No	Low			
Berry 2008	Brief	Yes	Med	<10%	Low	Yes	Full case analysis	Med	Yes	Low	Yes	No	Med			
Burger 2005	Brief	Yes	Med	<10%	Low	Yes	NR	Med	Yes	Med	Yes	No	Med			
de Boer 2010	Brief	Yes	Med	NR	Med	Yes	NR	Med	Yes	Med	Yes	No	Med			
Flores-Le Roux 2011	Brief	Yes	Med	<10%	Low	Yes	NR	Med	Yes	Low	Yes	No	Med			
From 2006	Detailed	Yes	Low	<10%	Low	Yes	Single imputation	Low	Yes	Low	Yes	No	Med			
Gerstein 2008	Brief	Yes	Med	<10%	Low	Yes	No missing data	Low	Yes	Low	Yes	No	Med			
Greenberg 2007	Detailed	Yes	Med	<10%	Low	Yes	NR	Med	Yes	Low	Yes	No	Med			
Gustafsson 2004	Detailed	Yes	Low	<10%	Low	Yes	Full case analysis	Med	Yes	Low	Yes	No	Med			
Issa 2010	Brief	Yes	High	<10%	Low	Yes	NR	Med	Yes	Med	Yes	No	Med			
MacDonald 2008	Detailed	Yes	Low	NR	Low	Yes	Full case analysis	Med	Yes	Low	Yes	No	Med			
De Blois 2010	Brief	Yes	Med	>10%	Med	Yes	No missing data	Low	Yes	Med	Yes	No	Low			
Iversen 2010	Detailed	Yes	Low	<10%	Low	Yes	Full case analysis	Low	Yes	Low	Yes	No	Med			
Lainscak 2009	Brief	Yes	High	<10%	Low	Yes	NR	High	Yes	Low	Yes	No	Med			
Macchia 2007	Brief	yes	Med	NR	Low	Yes	NR	Med	Yes	low	Yes	No	High			
Rusinaru 2008	Detailed	Yes	Low	<10%	Low	Yes	Full case analysis	Med	Yes	low	Yes	No	Low			
Renal	Aronson 2010	Brief	Yes	Med	<10%	Low	Yes	Single imputation	Low	Yes	Low	Yes	No	Med		
Study	Brief	Yes	Med	<10%	Low	Yes	NR	Med	Yes	No missing data	Low	Yes	Low	Yes	No	Med
-----------------------------	-------	-----	-----	------	-----	-----	-----	-----	-----	-----------------	-----	-----	-----	-----	----	-----
Breidthardt 2011	Brief	Yes	Med	>10%	High	Yes	No missing data	Low	Yes	Low	Yes	No	Med			
Campbell 2009	Brief	Yes	Med	<10%	Low	Yes	NR	Low	Yes	Low	Yes	No	Low			
Damman 2009	Brief	Yes	Med	<10%	Low	Yes	Single imputation	Low	Yes	Low	No	Yes	Low			
Go 2006	Detailed	Yes	Low	NR	Med	Yes	Full case analysis	Med	Yes	Low	Yes	Yes	Low			
Gotsman 2010	Brief	Yes	Med	<10%	Low	Yes	NR	Low	Yes	Low	Yes	No	Med			
Hamaguchi 2009	Brief	Yes	Med	>10%	Low	Yes	NR	Low	Yes	Low	Yes	No	Med			
Hillege 2006	Detailed	Yes	Low	NR	Med	Yes	Single imputation	Med	Yes	Low	Yes	No	Med			
Ismailov 2007	Brief	Yes	Med	NR	Med	Yes	NR	Med	Yes	Low	Yes	No	Med			
Kimura 2010	Brief	Yes	Med	<10%	Low	Yes	NR	Low	Yes	No	Yes	No	Med			
Kociol 2010	Detailed	Yes	Low	NR	Low	Yes	Single imputation	Med	Yes	Low	Yes	No	Med			
Maeder 2012	Brief	Yes	Med	<10%	Low	Yes	NR	Low	Yes	No	Yes	No	Med			
Olandoski 2012	Brief	Yes	Med	NR	Med	Yes	NR	High	Yes	Med	No	No	High			
Petretta 2007	Brief	Yes	Med	NR	Med	Yes	NR	Low	No	No	No	No	High			
Takagi 2010	None	Yes	High	NR	Med	Yes	NR	Med	Yes	Low	Yes	No	High			
Testani 2011	Brief	Yes	Med	NR	Med	Yes	Full case analysis	Med	Yes	Low	Yes	No	Med			
Waldum 2010	Brief	Yes	Med	<10%	Low	Yes	Full case analysis	Med	Yes	Med	Yes	No	Med			
Davis 2008	Brief	Yes	Low	NR	Low	Yes	NR	Med	Yes	Low	Yes	No	Med			

Prognostic factors (general)

Study	Brief	Yes	Med	<10%	Low	Yes	NR	Med	Yes	No missing data	Low	Yes	Low	Yes	No	Med
Ahluwalia 2012	Brief	Yes	Med	<10%	Low	Yes	No missing data	Med	Yes	Med	Yes	No	Med			
Ahmed 2006	Brief	Yes	Med	NR	Med	No	NR	Med	Yes	Low	Yes	No	Low			
Aranda 2009	Brief	Yes	Med	NR	High	Yes	NR	Med	Yes	Med	No	No	High			
Barsheeshet 2010	Detailed	Yes	Low	NR	Med	Yes	Full case analysis	Low	Yes	Low	Yes	Yes	Low			
Chaudhry 2010	Brief	Yes	Med	<10%	Low	No	Missings catagorised	Med	Yes	Low	Yes	No	Med			
Chaudhry 2013	Detailed	Yes	Low	<10%	Low	Yes	Missings catagorised	Med	Yes	Low	Yes	Yes	Low			
Dunlay 2009	Detailed	Yes	Low	<10%	Low	Yes	Multiple imputation	Med	Yes	Low	Yes	No	Med			
Fernandez-Berges 2013	Brief	Yes	Med	<10%	Low	No	NR	High	Yes	Med	Yes	Yes	Med			
Fonarow 2008	Detailed	Yes	Low	<10%	Low	Yes	NR	Med	Yes	Low	Yes	No	Med			
Garty 2007	Brief	Yes	Med	<10%	Low	No	NR	Med	Yes	Low	No	No	High			
Gorelik 2009	Brief	Yes	High	NR	Med	Yes	NR	Med	Yes	Low	Yes	No	Med			
Gotsman 2008	Brief	Yes	Med	NR	Med	Yes	NR	Med	yes	Low	Yes	No	Med			
Study	Type	Prognostic Model	Prognostic Model	Methodology	Case Handling	Missingness	Result	Type								
------------------------	---------	---------------------------------	------------------	---------------------------	---------------	---------------	---------	-------								
Hamaguchi 2011	Brief	Yes	Med	<10%	Low	Yes	NR	Med								
Harjola 2010	Brief	Yes	Med	<10%	Low	Yes	Single imputation	Low	Yes	No	Med					
MacIntyre 2000	Detailed	Yes	Low	<10%	Low	Yes	Full case analysis	Med	Yes	No	Med					
Mahjoub 2008	Detailed	Yes	Low	<10%	Low	Yes	Full case analysis	Med	Yes	No	Med					
Mogensen 2011	Brief	Yes	Low	<10%	Low	Yes	NR	Med								
Mosterd 2001	Detailed	Yes	Med	<10%	Low	Yes	Full case analysis	Med	Yes	No	High					
Pons 2010	Brief	Yes	Med	<10%	Low	Yes	NR	Med								
Rusinaru 2009	Detailed	Yes	Low	<10%	Low	Yes	Full case analysis	Med	Yes	No	Med					
Shiba 2004	Detailed	Yes	Low	<10%	Low	Yes	Full case analysis	High	Med	No	Med					
Tribouilloy 2010	Detailed	Yes	Low	<10%	Low	Yes	Full case analysis	Med	Yes	No	Med					

Prognostic models

Study	Type	Prognostic Model	Prognostic Model	Methodology	Case Handling	Missingness	Result	Type			
Barlera 2013	Brief	Yes	Med	<10%	Low	Yes	Multiple imputation	Low	Yes	No	Low
Bouvy 2003	Brief	Yes	Med	<10%	Low	No	Single imputation	Med	Yes	Yes	Med
Huynh 2006	Brief	Yes	High	<10%	Low	No	Full case analysis	Med	Yes	No	Med
Krumholz 2000	Brief	Yes	Med	NR	Med	No	Missings catagorised	Med	Yes	No	Low
Lee 2003	Detailed	Yes	Low	<10%	Low	Yes	Full case analysis	Med	Yes	Yes	Low
Martinez-Selles 2010	Brief	Yes	Med	NR	Med	No	NR	Med			
O'Connor 2008	Detailed	Yes	Low	<10%	Low	No	Full case analysis	Med	Yes	No	Med
Pocock 2006	Detailed	Yes	Low	NR	Med	Yes	NR	Med			
Pocock 2013	Brief	Yes	Med	NR	Med	No	Multiple imputation	Med	Yes	No	Med
Senni 2006	Brief	Yes	Med	<10%	Low	Yes	Single imputation	Low	Yes	Yes	Med
Senni 2013	Brief	Yes	Low	<10%	Low	Yes	Full case analysis	Med	Yes	Yes	Low
Wang 2012	Brief	Yes	Med	NR	Med	Yes	Single imputation	Med	Yes	No	Med

NR Not reported
S4.2 Study Risk of bias assessment cont’d

Study	Adjusted AND unadjusted effects reported	Interactions examined	Linearity for continuous predictors assessed	Proportional Hazards assumptions tested	Predictor selection	Risk level		
Ahmed 2007	Yes	Yes	N/A	NR	Full model	Low		
Berry 2008	Yes	NR	NR	NR	Selected by significance level + stepwise	Med		
Burger 2005	No	NR	NR	NR	Full model	Low		
de Boer 2010	Yes	Yes	N/A	NR	Full model	Low		
Flores-Le Roux 2011	No	NR	No	NR	Pre-specified predictors	Med		
From 2006	No	Yes	N/A	NR	Full model	Low		
Gerstein 2008	No	NR	NR	Yes	Full model	Med		
Greenberg 2007	No	Yes	Yes	NR	Stepwise	Med		
Gustafsson 2004	Yes	Yes	Yes	Yes	Pre-specified predictors	Low		
Issa 2010	No	Yes	No	NR	Selected by significance level	Med		
MacDonald 2008	No	Yes	No	NR	Full model	Med		
De Blois 2010	Yes	NR	N/A	NR	Selected by significance level	Med		
Iversen 2010	Yes	Yes	yes	Yes	Backward selection	Low		
Lainscak 2009	Yes	NR	NR	NR	Selected by significance level	Med		
Macchia 2007	Yes	NR	NR	NR	Selected by significance level	Med		
Rusinaru 2008	Yes	NR	NR	NR	Backward selection	Med		
Aronson 2010	Yes	NR	NR	NR	Selected by significance level	Med		
Breidthardt 2011	Yes	NR	N/A	NR	Selected by significance level	Med		
Campbell 2009	N/A	Yes	N/A	Yes	N/A	Low		
Damman 2009	Yes	NR	N/A	NR	Full model	Med		
Go 2006	No	Yes	N/A	NR	Pre-specified predictors	Low		
Study	Model Selection	Prognostic Factors	Prognostic Factors (general)	Rheumatoid arthritis				
---------------	-----------------	--------------------	-------------------------------	----------------------				
Gotsman 2010	No	Yes	NR	Pre-specified predictors	Med			
Hamaguchi 2009	Yes	NR	NR	Pre-specified predictors	Med			
Hillege 2006	Yes	Yes	Yes	Pre-specified predictors	Low, Low			
Ismailov 2007	Yes	NR	NR	Selected by significance level	Med, Med			
Kimura 2010	No	NR	NR	Selected by significance level	High, Med			
Kociol 2010	No	NR	NR	Full model	Low			
Maeder 2012	No	Yes	NR	Selected by significance level	Med, Med			
Olandoski 2012	No	Yes	No	Pre-specified predictors	High, High			
Petretta 2007	Yes	Yes	Yes	Selected by significance level + stepwise	Med, Med			
Takagi 2010	No	NR	NR	Full model	High, Med			
Testani 2011	Yes	Yes	NR	Selected by significance level + backwards	Med, Med			
Waldum 2010	No	Yes	Yes	Selected by significance level	Med, Med			
Davis 2008	No	NR	N/A	Full model	High, Med			
Ahluwalia 2012	No	Yes	N/A	Yes	Full model			
Ahmed 2006	No	NR	NR	Full model	Med, Med			
Aranda 2009	No	NR	NR	N/A	Full model			
Barsheshet 2010	No	Yes	NR	Selected by significance level	Med, Low			
Chaudhry 2010	Yes	NR	Yes	N/A	Stepwise			
Chaudhry 2013	Yes	NR	NR	N/A	Selected by significance level + backwards	Low, Low		
Dunlay 2009	Yes	Yes	Yes	N/A	Full model			
Fernandez-Berges 2013	Yes	NR	NR	NR	Selected by significance level	Med, Med		
Fonarow 2008	No	NR	Yes	NR	Stepwise			
Garty 2007	No	NR	NR	N/A	Stepwise			
Gorelik 2009	No	NR	NR	Selected by significance level	High, Med			
Gotsman 2008	No	NR	NR	Pre-specified predictors	High, Med			
Hamaguchi 2011	No	NR	NR	Pre-specified predictors	Med, Med			
Harjola 2010	Yes	NR	yes	Yes	Selected by significance level	Low, Low		
MacIntyre 2000	No	Yes	N/A	Yes	Full model			
Rheumatoid arthritis								
Study	Direction	NR1	NR2	NR3	NR4	Methodology	Risk of bias	Quality
-------------------	-----------	-----	-----	-----	-----	---	--------------	---------
Mahjoub 2008	No	NR	NR	NR	NR	Selected by significance level + backwards	Med	Low
Mogensen 2011	No	Yes	Yes	Yes	NR	Backward selection	Low	Low
Mosterd 2001	No	NR	No	NR	NR	Pre-specified predictors	High	Med
Pons 2010	Yes	NR	NR	NR	NR	Backward selection	Med	Med
Rusinaru 2009	No	NR	NR	NR	NR	Pre-specified predictors	Med	Med
Shiba 2004	No	NR	NR	NR	NR	Backward selection	High	Med
Tribuilloy 2010	No	NR	Yes	Yes	NR	Full model	Med	Med
	Prognostic models							
Barlera 2013	No	Yes	Yes	Yes	NR	Stepwise	Low	Low
Bouvy 2003	Yes	NR	NR	N/A	N/A	Selected by significance level	Med	Med
Huynh 2006	Yes	NR	NR	NR	NR	Selected by significance level + forwards	High	Med
Krumholz 2000	No	NR	NR	Yes	NR	Stepwise	Med	Med
Lee 2003	Yes	yes	yes	N/A	N/A	Selected by significance level	Low	Low
Martinez-Selles 2010	No	Yes	NR	NR	NR	Selected by significance level + backwards	Med	Med
O’Connor 2008	Yes	Yes	Yes	Yes	NR	Stepwise	Low	Low
Pocock 2006	No	Yes	Yes	Yes	NR	Forward selection	Low	Low
Pocock 2013	No	Yes	Yes	Yes	NR	Forward selection	Med	Med
Senni 2006	No	NR	NR	N/A	N/A	Selected by significance level	Med	Med
Senni 2013	No	Yes	NR	N/A	N/A	Other e.g. LASSO, bootstrap	Low	Low
Wang 2012	No	Yes	Yes	N/A	N/A	Backward selection	Med	Med

NR Not reported
NA Not applicable
Additional assessments for prognostic model studies

Study	NR	Yes	Score	Yes	Yes	Yes	No
Barlera 2013	NR	Yes	Score	Yes	Yes	Yes	No
Bouvy 2003	NR	No	Score	No	Yes	Yes	No
Huynh 2006	No	Yes	Score	Yes	Yes	No	No
Krumholz 2000	NR	Yes	Score	Yes	NR	Yes	No
Lee 2003	Yes	Yes	Score	Yes	Yes	Yes	No
Martinez-Selles 2010	NR	Yes	Score	No	Yes	Yes	No
O'Connor 2008	NR	Yes	Score	Yes	Yes	NR	Yes
Pocock 2006	NR	Yes	Score	Yes	Yes	Yes	No
Pocock 2013	NR	Yes	Score	Yes	NR	Yes	No
Senni 2006	NR	No	Score	Yes	Yes	Yes	No
Senni 2013	NR	Yes	Score	Yes	Yes	Yes	No
Wang 2012	Yes	Yes	Score	Yes	Yes	Yes	No
Supplementary figures

S1 Galbraith plots

a) DM in HF and all-cause mortality

b) COPD in HF and all-cause mortality
c) RD in HF and all-cause mortality

S2 Funnel plots

a) DM in HF and all-cause mortality with pseudo 95% confidence intervals
b) COPD in HF and all-cause mortality with pseudo 95% confidence intervals

Egger test (p=0.118)

c) RD in HF and all-cause mortality with pseudo 95% confidence intervals

Egger test (p=0.56)
a) DM in HF and all-cause mortality: ‘general’ prognostic factor studies

Study	Sample size (n)	Diabetes (n)	Prevalence (%)	Adjusted	ES (95% CI)	Effect
Ahmed et al (2006)	1926	650	34	A, G, E	1.16 (1.11, 1.22)	HR
Barsheshet et al (2010)	1154	706	61	A, G, C, At, Sv, D, L, P, Ef	1.43 (1.15, 1.77)	HR
Barsheshet et al (2010) (>75 years)	1182	501	42	A, G, C, At, Sv, D, L, P, Ef	1.28 (1.07, 1.53)	HR
Chaudhry et al (2010)	62330	24745	40	A, G, E, L, P, Ef	1.28 (1.23, 1.34)	OR
Fernandez-Borges et al (2013)	2220	970	44	A, R, C, D	1.35 (1.11, 1.66)	HR
Gotman et al (2008)	289	122	42	A, G, S, C, L, Ef	1.68 (1.03, 2.74)	HR
Harjila et al (2010)	2981	987	33	A, G, C, L, P, Ef	1.38 (1.08, 1.76)	HR
MacIntyre et al (2000) (Men)	31400	*	A, S, C		1.55 (1.41, 1.70)	HR
MacIntyre et al (2000) (Women)	35507	*	A, S, C		1.50 (1.38, 1.62)	HR
Mognersen et al (2011)	8507	1361	16	A, G, R, C, Ef	1.47 (1.37, 1.58)	HR
Mosterd et al (2001)	181	32	18	A	3.19 (1.80, 5.65)	HR
Pons et al (2010)	960	377	40	A, G, C, At, Sv, D, Ef	1.80 (1.27, 2.51)	HR
Rusinaru et al (2009)	389	106	27	A, G, R, C, Sv, Ef	2.05 (1.41, 3.00)	HR
Shiba et al (2004)	1154	223	19	A, S, C, Sv, L	1.94 (1.26, 2.99)	HR
Tribouilloy et al (2010)	735	181	25	A, G, R, C, D, L	1.53 (1.22, 1.92)	HR

Figure S3a Adjusted variables: age(A), gender(G), ethnicity(E), social(S), risk factors(R), comorbidities(C), aetiology(At), heart failure severity(Sv), drugs(D), laboratory(L), physical(P), ejection fraction(Ef)

*not reported

b) DM in HF and all-cause mortality: prognostic model studies

Study	Sample size (n)	Diabetes (n)	Prevalence (%)	Adjusted	ES (95% CI)	Effect
Barlera et al (2013)	6975	1974	28	A, G, R, C, Sv, L, P, Ef	1.34 (1.22, 1.48)	HR
Bouvy et al (2003)	152	43	28	A, G, C, D, P	2.37 (1.15, 4.85)	OR
Pocock et al (2006) (Other)	7599	2164	29	A, G, R, C, Sv, P, Ef	1.50 (1.34, 1.68)	HR
Pocock et al (2006) (Insulin group)	7599	707	9	A, G, R, C, Sv, P, Ef	1.80 (1.56, 2.08)	HR
Pocock et al (2013)	39372	8919	23	A, G, R, C, Sv, D, P, Ef	1.42 (1.37, 1.48)	HR
Senni et al (2006)	292	40	14	A, C, Sv, D, Ef	2.41 (0.28, 8.80)	LogOR
Senni et al (2013)	2016	304	15	A, C, Sv, D, Ef	1.62 (1.40, 1.80)	OR

Figure S3b Adjusted variables: age(A), gender(G), ethnicity(E), social(S), risk factors(R), comorbidities(C), aetiology(At), heart failure severity(Sv), drugs(D), laboratory(L), physical(P), ejection fraction(Ef)
c) DM in HF and all-cause hospital admissions: ‘general’ prognostic factor and model studies

Study	Sample size (n)	Diabetes (n)	Prevalence (%)	Adjusted variables	ES (95% CI)	Effect
Ahmed et al (2006)	1926	650	34	A,G,E,C,At,Sv,D,L,P,Ef	1.44 (1.27, 2.63)	HR
Aranda et al (2009)	28919	10700	37	*	1.13 (1.07, 1.20)	OR
Chaudhry et al (2013)	758	193	26	A,G,S,C,Sv,D,Ef	1.36 (1.13, 1.64)	HR
Dunlay et al (2009)	1077	232	21	A,G,C,Ef	1.53 (1.31, 1.79)	HR

Prognostic model

Study	Sample size (n)	Prevalence (%)	Adjusted variables	ES (95% CI)		
Krumholz et al (2000)	1129	412	36	Sv,L	1.17 (0.99, 1.39)	HR

Figure S3c Adjusted variables: age(A), gender(G), ethnicity(E), social(S), risk factors(R), comorbidities(C), aetiology(At), heart failure severity(Sv), drugs(D), laboratory(L), physical(P), ejection fraction(Ef)

*not reported

d) COPD in HF and all-cause mortality: ‘general’ prognostic factor and model studies

Study	Sample size (n)	COPD (n)	Prevalence (%)	Adjusted variables	ES (95% CI)	Effect type	C-statistic
Ahluwalia et al (2012) (Community)	9166	1866	20	A.G,E,C	1.70 (1.58, 1.82)	HR	
Ahluwalia et al (2012) (Hospital)	9166	4363	47	A.G,E,C	1.24 (1.19, 1.31)	HR	
Garty et al (2007)	4102	803	20	A,G,C,Sv,D	1.25 (1.04, 1.50)	OR	
Mogensen et al (2011)	8507	1948	23	A.G,R,C,Ef	1.46 (1.37, 1.55)	HR	
Tribouilloy et al (2010)	735	146	20	A.S,R,C,D,L	1.44 (1.13, 1.84)	HR	

Prognostic model

Study	Sample size (n)	COPD (n)	Prevalence (%)	Adjusted variables	ES (95% CI)	Effect type	C-statistic
Barfera et al (2013)	6975	1533	22	A.G,R,C,Sv,D,L,P,Ef	1.43 (1.30, 1.58)	HR	.75
Lee et al (2003)	2624	543	21	A.C,L,P	1.41 (1.13, 1.75)	OR	.77
Martinez-Selles et al (2010)	701	188	27	A.C,L,Ef	1.60 (1.30, 1.90)	HR	.75
Pocock et al (2013)	39372	4005	10	A.G,R,C,Sv,D,P,Ef	1.23 (1.15, 1.31)	HR	*
Senni et al (2006)	292	45	15	A.G,R,C,D,L	1.41 (0.99, 2.35)	LogOR	0.82

Figure S3d Adjusted variables: age(A), gender(G), ethnicity(E), social(S), risk factors(R), comorbidities(C), aetiology(At), heart failure severity(Sv), drugs(D), laboratory(L), physical(P), ejection fraction(Ef)
e) COPD in HF and all-cause hospital admissions: ‘general’ prognostic factor and model studies

Study	Sample (n)	Prevalence	Adjusted variables	Effect
Prognostic factors (general)	Dunlay et al (2009) 1077 253	23.5	A,G,C,Ef	1.47 (1.26, 1.72) HR
Prognostic model	Wang et al (2012) 198640 61380	30.9	A,G,S,R,C,Sv,D,L,P	1.14 (1.10, 1.19) OR .815

Figure S3 Adjusted variables: age(A), gender(G), ethnicity(E), social(S), risk factors(R), comorbidities(C), aetiology(At), heart failure severity(Sv), drugs(D), laboratory(L), physical(P), ejection fraction(Ef)

f) RD and all-cause mortality: ‘general’ prognostic factor studies

Study	Renal dysfunction (n)	Renal dysfunction (%)	Prevalence	Adjusted variables	Measure	Hazard Ratio (95% CI)	Effect
Ahluwalia et al (2012) (community)	1365	15	A,G,E,C	Type		1.77 (1.63, 1.92) HR	
Ahluwalia et al (2012) (hospital)	3670	40	A,G,E,C	Type		1.57 (1.49, 1.65) HR	
Barsheshet et al (older)	793	67	A,G,C,A,Sv,D,L,P,Ef	Type		1.35 (1.11, 1.63) HR	
Barsheshet et al (younger)	568	50	A,G,C,A,Sv,D,L,P,Ef	Type		1.58 (1.28, 1.95) HR	
Fernandez-Borges (2013)	390	18	A,R,C,D	Type		1.49 (1.19, 1.87) HR	
Garty et al (2007)	1672	41	A,G,C,Sv,D	Type		1.79 (1.53, 2.09) OR	
Gorelik et al (2009)	331	70	A,C,S,D,L	Type		1.42 (1.04, 1.95) HR	
Goldin et al (2008)	110	138	A,G,S,C,Ef	Type		2.27 (1.42, 3.61) HR	
MacIntyre et al (2000) (men)	454	1	A,S,C	Severity (renal failure)	2.12 (1.80, 2.59) HR		
MacIntyre et al (2000) (women)	454	1	A,S,C	Severity (renal failure)	1.58 (1.32, 1.88) HR		
Mogensen et al (2011) (older)	291	35	A,R,C,Ef	Severity (severe)		1.36 (1.13, 1.53) HR	
Mogensen et al (2011) (younger)	6990	9	A,R,C,Ef	Severity (severe)		2.21 (2.02, 2.43) HR	
Fonarow et al (2008)	509	9	*	Severity change (pre-hospital)	1.46 (1.06, 2.00) OR		
Ahmed et al (2008) (women)	*	*	*	A,G,E,C,A,Sv,D,L,P,Ef,gGFR (per ml/min increase)	0.99 (0.98, 0.99) HR		
Hamaguchi et al (2011)	*	*	*	A,G,R,C,A,Sv,D,Ef	eGFR (per ml/min decrease)	1.02 (1.01, 1.04) HR	

Figure S3f Adjusted variables: age(A), gender(G), ethnicity(E), social(S), risk factors(R), comorbidities(C), aetiology(At), heart failure severity(Sv), drugs(D), laboratory(L), physical(P), ejection fraction(Ef)

*not reported
g) **RD in HF and all-cause mortality: prognostic model studies**

Study	Sample size	Renal dysfunction (n)	(%)	Adjusted variables	Measure	Hazard Ratio (95% CI)	Effect Type	C-statistic
Bouvy et al (2003)	152	19	13	A,G,C,D,P	Type	5.22 (1.88, 14.45)	OR 0.8	
Senni et al (2006)	292	41	14	A,C,Sv,D,Ef	Type	1.37 (0.63, 5.54)	logOR 0.82	
Senni et al (2013)	2016	157	8	A,C,Sv,D,Ef	Type	1.79 (1.50, 2.10)	OR 0.87	
Barfera et al (2013)	6975	*	*	A,G,R,C,Sv,L,PEf	eGFR(per ml/min decrease)	1.02 (1.01, 1.02)	HR 0.75	

Figure S3g Adjusted variables: age(A), gender(G), ethnicity(E), social(S), risk factors(R), comorbidities(C), aetiology(At), heart failure severity(Sv), drugs(D), laboratory(L), physical(P), ejection fraction(Ef)

*h*not reported

h) **Additional HF and comorbid diseases included in ‘general’ prognostic factor and model studies**

Disease	Mortality	Hospital admissions	Measure
Rheumatoid arthritis	HR 1.89		Type
(Chronic disease focus) (n=1)			
Arthritis (n=2)	HR 0.87-1.16		Type
Dementia (n=5)	OR 2.0, HR 1.44-2.02	OR 1.1	Type
Cancer – Lung (n=1)	HR 1.86 (hospital)-3.58(community)	Type	
Cancer - Colorectal (n=1)	HR 1.39		Type
Cancer – Endometrial (n=1)	HR 2.11		Type
Cancer – metastatic (n=2)	LogOR 4.36,	OR1.22	Type
Cancer – any (n=7)	HR 1.44-2.97, OR 1.85-3.02	Type	
Lung Disease (n=2)	HR 1.37-1.58	OR 1.29	Type
Liver disease (n=3)	HR1.98, OR 5.8		Type