The R72P P53 mutation is associated with familial breast cancer in Jewish women

Germline mutations in the \textit{BRCA1} (MIM#113705) and \textit{BRCA2} (MIM#600185) genes account for genetic predisposition and increased risk for breast and ovarian cancer in the majority of families with inherited predisposition to both these neoplasms and in 20–40% of families with site-specific breast cancer (Hall \textit{et al}, 1990; Easton \textit{et al}, 1993; Frank \textit{et al}, 1998). In the majority of high-risk families of different ethnicities, germline mutations are scattered throughout both genes and are family specific (BIC database). In Jewish individuals, only a handful of recurring mutations have been described in high-risk families (Ganguly \textit{et al}, 1997; Eshhar, 1997). Among non-Ashkenazi (Sephardic) Jews, the 185delAG and the Tyr978X \textit{BRCA1} and the 8765delAT in \textit{BRCA2} mutations can be detected in high-risk families (Shiri-Sverdlov \textit{et al}, 2001). Yet, a substantial proportion of familial breast cancer cases have no identifiable \textit{BRCA1}/\textit{BRCA2} germline mutations (Tereschenko \textit{et al}, 2002; Perkowski \textit{et al}, 2003), and other, yet unidentified genetic factors underlie these cases (Slattery and Kerber, 1993). One of the most promising candidates as target for molecular analysis as an inherited breast cancer predisposition gene is the \textit{p53} tumour suppressor gene: it is frequently somatically mutated in a wide range of human cancers including breast cancer (Harris and Hollstein, 1993); germline mutations lead to an increased risk for developing diverse malignancies, including 25–30% of breast cancer cases (Bukholm \textit{et al}, 1997), in the context of Li–Fraumeni syndrome (LFS) or LFL – Li–Fraumeni-like syndrome (Varley, 2003). In addition, based on its pivotal role in DNA damage repair and its physical and functional interactions with \textit{BRCA1} and \textit{BRCA2} proteins (Storey \textit{et al}, 1998), \textit{p53} seems to be a strong candidate breast cancer predisposition gene. However, previous analyses of high-risk families of different ethnic background yielded a paucity of germline mutations in \textit{p53} gene in familial breast cancer (Zelada-Hedman \textit{et al}, 1997; Balz \textit{et al}, 2002).
In addition to bona fide inactivating mutations, which seem to cluster to the central region of the gene (exons 5–8) (Hartmann et al, 1995), there are several missense mutations within this gene that seem to have a deleterious effect on p53 function (p53 database). Notably, the Pro72 and Arg72 variants have been reported to differ in functional activity: the Arg72 variant was found to be more susceptible to degradation by the human papillomavirus (HPV) E6 type 18 protein (Storey et al, 1998), while Pro72 is a stronger inducer of transcription than Arg72. Additionally, the Arg72 variant suppressed effectively cellular transformation (Thomas et al, 1998), while Pro72 is a stronger inducer of transcription than Arg72.

In the present study, the putative contribution of p53 germline mutations to inherited predisposition to breast/ovarian cancer was assessed, initially by genotyping high-risk Jewish individual noncarriers of the predominant Jewish BRCA1/2 mutations for p53 germline mutations, and subsequently by comparing the distribution of the R72P alleles among cases and controls.

MATERIALS AND METHODS

DNA isolation

Genomic DNA was prepared from anticoagulated venous blood samples, using standard techniques, and using the PUREGene DNA extraction kit (Gentra Systems Inc., Minneapolis, MN, USA) and following the manufacturer's recommended protocol.

Breast cancer cases

Ashkenazi and non-Ashkenazi individuals who were counselled at the Oncogenetic services of the Sheba and Rambam Medical Centers were eligible for participation. Their ethnic origin was determined by an interview, and dating parental origin as far back as possible by at least three generations. All individuals had breast cancer and one of the following additional criteria: ovarian cancer; two first or second degree relatives with one of these neoplasms at any age; age at onset under 40 for breast cancer, bilateral breast cancer; cooccurrence of breast and ovarian cancer in one first-degree relative. The study was approved by the Institutional review board of both participating medical centers (Rambam and Sheba) and each participant signed a written, informed consent. All participants were tested, and found not to harbour any of the predominant Jewish mutations in BRCA1/BRCA2 (see below).

Controls

Jewish individuals of diverse ethnic origin who came for genetic counselling at the Genetics institutes in Sheba and Rambam Medical Centers served as 'ethnic controls'. These individuals were either counselled for prenatal disorders or were counselled as to their risk for developing cancer, and none was deemed 'high cancer risk' by standard criteria. All tested individuals were unrelated to each other, had no personal or relevant family history of breast or ovarian cancer, and their precise ancestry was confirmed at least three generations back.

Mutation analyses of the predominant Jewish mutations in BRCA1 and BRCA2

Mutational analyses for the three predominant mutations (185delAG, 5382InsC in BRCA1 and 6174delT in BRCA2) were carried out by restriction enzyme digest of amplified polymerase chain reaction (PCR) product. The primers used generated novel restriction sites that distinguish the mutant from the wild-type allele. Thus, restriction enzyme digest followed PCR, and analysis of the digested PCR products on agarose gels was carried out as described previously (Abeliovich et al, 1997; Rohils et al, 1997). The Tyr978X mutation was detected by a modified PCR-restriction enzyme digest with EcoRV, as described previously (Theodor et al, 1998). With each gel, a positive control (i.e. a known mutation proven by DNA sequencing) was run in an adjacent lane.

MUTATIONAL ANALYSES OF THE p53 GENE

Polymerase chain reaction

Polymerase chain reactions were performed in a final volume of 50 μl containing 3 μl template DNA (about 50–100 ng), 10 μM of each primer, 200 μM of each dNTP, standard PCR buffer (1.5 mM MgCl₂), 1 U of Taq DNA polymerase. Thermal cycling was accomplished by PTC-100-60 thermocycler (MJ Research Inc., Watertown, MA, USA). The cycling profile included an initial denaturation at 94°C for 5 min, followed by 35 cycles of thermal cycling including 94°C for 20 s, the designated annealing temperature (range 52–68°C) for 1 min, extension at 72°C for 20 s and a final extension cycle at 72°C for 5 min.

Denaturing gradient gel electrophoresis (DGGE) and sequence analysis of the p53 gene

Primer sequences, PCR conditions and DGGE analyses parameters were carried out under the conditions described previously (Guldberg et al, 1997). All consistently abnormally migrating fragments (i.e. repeated abnormalities on three independent PCRs) were subject to sequence analysis using the big Dye terminator chemistry and kit (PE Biosystems, Foster City, CA, USA), and using the ABI Prism 310 semiautomatic DNA sequencer (PE Biosystems).

Statistical analyses

χ² was performed in order to evaluate Hardy–Weinberg equilibrium (HWE) in the control group, alleles’s prevalence in ethnicities, association genotype/allele – phenotype, Hardy–Weinberg deviation (in the patient group), Fisher’s exact test and Armitage’s trend test (Crow, 2001). Type I error was set at 5%, as is the accepted practised level.

The websites for checking HWE in the control group, χ² for genes and alleles association, HWE by the phenotypic categories in the patient group and Armitage’s trend test: http://ihg.gsf.de/cgi-bin/hw/hwa1.pl, http://www.unc.edu/~preacher/chisq/chisq.htm.

RESULTS

Characteristics of breast cancer cases

Overall, 132 Jewish breast cancer patients were analysed: 108 (82%) patients were of Ashkenazi origin and 24 (18%) were of non-Ashkenazi origin. Among individuals of Ashkenazi origin, 10 patients presented with bilateral breast cancer (9.25%); age range at diagnosis of first breast cancer was 23–70 years (46±10.1 years – mean±s.d.); mean age at counselling was 50.2±10.8 years; the interval between date of diagnosis and date of testing was 0.5–27 years (5.35±5.8 years).

Among non-Ashkenazi cases (n = 24), three patients presented with bilateral breast cancer (12.5%), and the age range at diagnosis of first breast cancer was 26–61 years (42.6±9.8 years); mean age range at counselling was 49±10.6 years. The interval between date of diagnosis and date of testing ranged from 0.5 to 33 years (6.6±7.6 years).

© 2005 Cancer Research UK

British Journal of Cancer (2005) 92(6), 1144–1148
Mutational analyses of the predominant BRCA1/BRCA2 Jewish mutations among cases

All cases were tested and found not to be carriers of one of the predominant mutations in BRCA1 (185delAG, 5382InsC) and BRCA2 (6174delT). The non-Ashkenazis were also analysed for the Tyr978X BRCA1 mutation, and none was a carrier.

Controls

The age range among Ashkenazi controls ($n = 60$) was 27 – 65 years (39.3 ± 8.8 years).

The age range among non-Ashkenazi controls ($n = 107$) was 21 – 70 years (34.1 ± 9.6 years).

Mutational analysis

DGGE analysis of exons 4 – 9 of the $p53$ gene revealed consistent migration abnormalities in 167 fragments; 134 of these fragments were shown to be the Arg72Pro polymorphism (see below). Migration abnormalities in other fragments containing exons 4 and 6 and introns 3 and 9 were detected in 2, 23, 4 and 4 patients, respectively. All abnormally migrating fragments were sequenced and results showed that all abnormal migration patterns could be attributed to previously described polymorphisms (Table 1). No inactivating mutations could be shown in any of the analysed individuals.

R72P analysis The distribution of the Arg72Pro polymorphism in cases and controls is presented in Tables 2 and 3. Among cases, no deviation from the HWE was shown. Allele distribution of the Arg72Pro missense mutation among breast cancer cases (Ashkenazi and non-Ashkenazi) and average risk controls (Ashkenazi ($n = 60$), non-Ashkenazi ($n = 107$)) showed significant differences:

For non-Ashkenazi cases, 62.5%, 33.3% and 4.2% were homozygous, heterozygous and homozygous for the Arg72, Arg72Pro and the Pro72 polymorphisms, respectively ($P = 0.00052$), and among Ashkenazi cases, allele distribution was 68.5%, 29.6% and 1.9%, whereas for controls, the distribution was 50%, 40% and 10%, respectively ($P = 0.0125$) (Tables 2 and 3).

In Armitage’s trend test, which examines genotype – phenotype correlation, Arg72 homozygosity was significantly associated with breast cancer cases for the Ashkenazi subgroup ($P = 0.00750$) as well as in the non-Ashkenazi subgroup ($P = 0.00075$).

Analysis by allele prevalence (A/P) also shows a significant association between the arginine-bearing allele and high-risk cases ($P = 0.00432$ for Ashkenazi origin; $P = 0.02412$ for non-Ashkenazi origin).

DISCUSSION

In the present study, no inactivating germline mutations in exons 4 – 9 of the $p53$ gene were detected in high-risk Jewish individuals who are not carriers of any of the predominant Jewish mutations in BRCA1/BRCA2. Previous analyses of high-risk families of different ethnic background yielded a paucity of germline mutations in $p53$ gene in familial breast cancer: only two mutations were identified among 237 high-risk Norwegian individuals (Borresen et al, 1992), one mutation among 126 high-risk American individuals (Sidransky et al, 1992) and one mutation among 21 families from the UK (Evans et al, 2002).

Similar to the results of the present study, no inactivating $p53$ germline mutations were found in any of Swedish familial breast cancer patients (Zelada-Hedman et al, 1997) or in German breast and/or ovarian cancer families (Balz et al, 2002). Thus, despite

Table 1 Polymorphisms detected in the $p53$ gene

Ethnic origin	Number of cases	Exon/intron	Sequence alteration	Predicted effect on protein
Ashkenazi	2	Exon 4	c.108G > A	P36P
Ashkenazi	4	Intron 3	Inv3–29	
Ashkenazi	5	Exon 6	c.606T > C	R202R
Ashkenazi	18	Exon 6	c.639A > G	R213R
Ashkenazi	4	Intron 9	Inv9–13	

Table 2 $p53$ Arg72Pro polymorphism distribution among non-Ashkenazi Jews, breast cancer cases and controls

PS3 alleles	Cases ($n = 24$)	Controls ($n = 107$)	Alleles	Genotype	Armitage’s trend test
Arg/Arg	15 62.5%	24 22.4%	P = 0.02412	P = 0.00052	P = 0.00750
Arg/Pro	8 33.3%	70 65.4%			
Pro/Pro	1 4.2%	13 12.2%			

Table 3 $p53$ Arg72Pro polymorphism distribution among Ashkenazi Jews, breast cancer cases and controls

PS3 alleles	Cases ($n = 108$)	Controls ($n = 60$)	Alleles	Genotype	Armitage’s trend test
Arg/Arg	74 68.5%	30 50%	P = 0.00432	P = 0.0125	P = 0.00452
Arg/Pro	32 29.6%	24 40%			
Pro/Pro	2 1.9%	6 10%			
features suggesting that this might be a strong candidate underlying inherited breast cancer predisposition, p53 germline mutations probably contribute little to these families, unless it is in the context of LFS or LFS-like phenotype. It is still possible that germline sequence alterations in the p53 gene affect breast cancer risk. Intronic variants within the p53 gene have a functional effect on p53 protein activity and occur at high frequency in familial breast cancer cases. Lehman et al. (2000) detected an intronic variant (13964G/C) at a significantly high frequency among familial breast cancer cases (n = 42), with evidence that this sequence variant is associated with prolonged in vitro survival in response to cisplatinum treatment and showed decreased chemotherapy-induced apoptosis (Lehman et al., 2000). The data regarding the high rate of this specific polymorphism in high-risk women could not be reproduced in Australian women (Marsh et al., 2001). In addition, intronic polymorphisms with no known functional consequences (e.g. intron 3–16bp insertion) were reported to be over-represented in Swedish (Sjalander et al., 1996) and German breast cancer-prone families (Wang-Gohrke et al., 1998).

An intriguing finding in the present study is that the distribution of the R72P missense mutation significantly differs in affected individuals compared with ethnically matched controls. Specifically, ethnically diverse Jewish breast cancer individuals are significantly more likely to be R72 homozygotes, compared with average risk, unaffected individuals.

The Pro72 and Arg72 p53 gene variants have been reported to display different functional activities: the Arg72 variant is more susceptible to degradation by the HPV E6 type 18 protein (Storey et al., 1998), while Pro72 is a stronger inducer of transcription than the Arg72 variant. Additionally, the Arg72 variant suppressed effectively cellular transformation (Thomas et al., 1999), and was more efficient than the Pro72 variant in inducing apoptosis (Dumont et al., 2003).

ACKNOWLEDGEMENTS

This study was in part sponsored by a grant from the Middle East Cancer Consortium (MECC) to Eitan Friedman.

REFERENCES

Abeliovich D, Kaduri L, Lerer I, Weinberg N, Amir G, Sagi M, Zlotogora J, Heching N, Perez T (1997) The founder mutations 185delAG and 5382insC in BRCA1 and 6174delT in BRCA2 appear in 60% of ovarian cancer and 30% of early-onset breast cancer patients among Ashkenazi women. Am J Hum Genet 60: 505 – 514

Balz V, Prissack HB, Bier H, Bojar H (2002) Analysis of BRCA1, TP53, and TSG101 germline mutations in German breast and/or ovarian cancer families. Cancer Genet Cytogenet 138: 120 – 127

Borresen A, Andersen T, Garber J, Barbier-Piraux N, Thorlacius S, Eyfjord J, Ottestad L, Smith-Sorensen B, Hovig E, Malkin D (1992) Screening for germ line TP53 mutations in breast cancer patients. Cancer Res 52: 3234 – 3236

Bukholm I, Nesland J, Karesen R, Jacobsen U, Borresen-Dale A (1997) Expression of E-cadherin and its relation to the p53 protein status in human breast carcinomas. Virchows Arch 431: 317 – 321

Buyru N, Tigli H, Dalay N (2003) P53 codon 72 polymorphism in breast cancer. Oncol Rep 10: 711 – 714

Crow JF (2001) The beanbag lives on. Nature 409: 771

Dumont P, Leu JI, Della Pietra III AC, George DL, Murphy M (2003) The Pro72 and Arg72 p53 gene variants have been reported to display different functional activities: the Arg72 variant is more susceptible to degradation by the HPV E6 type 18 protein (Storey et al., 1998), while Pro72 is a stronger inducer of transcription than the Arg72 variant. Additionally, the Arg72 variant suppressed effectively cellular transformation (Thomas et al., 1999), and was more efficient than the Pro72 variant in inducing apoptosis (Dumont et al., 2003).

The rate of this sequence variant has also been evaluated in breast cancer cases in ethnically diverse populations, with inconsistent results. In line with the findings in the present study, a significantly higher prevalence of homozygosity for the p53 arginine-bearing allele was observed in Turkish breast cancer patients compared with controls (Buyru et al., 2003), whereas among Japanese breast cancer cases, Pro72 homozygosity was significantly more prevalent than in controls (32% Pro72 in cases and 40.4% in controls) (Huang et al., 2003). Notably, there was no evidence of association between p53 codon 72 polymorphism and breast cancer risk Tunisian (Mabrouk et al., 2003), and Russian individuals (Suspitsin et al., 2003). In addition, this polymorphic variant was reported to be associated with breast cancer survival among English breast cancer patients, but this association lacked statistical significance in multivariate analysis (Goode et al., 2002).

The limitations of this study should be pointed out. This is a limited study encompassing only women affected with breast cancer, counselled and tested in two medical centres in Israel. The implications to other breast cancer populations, even among Jewish individuals, are unclear and need to be validated. Furthermore, the applicability of this finding to average risk population is unclear and needs to be established.

In conclusion, the contribution of the p53 germline mutations to inherited predisposition to breast cancer by inactivating mutations seems to be limited in Jewish women. It seems that a common missense mutation (R72P) confers an increased risk to breast cancer in familial cases of Jewish origin. The applicability and the generalisability of this preliminary finding need to be confirmed.
correlation between p53 codon 72 polymorphism and risk of bladder or breast carcinoma in Tunisian patients. *Ann NY Acad Sci* **1010**: 764–770
Marsh A, Spurdle AB, Turner BC, Fereday S, Thorne H, Pupo GM, Mann GJ, Hopper JL, Sambrook JF, Chenexiv-Trench G (2001) The intronic G13964C variant in p53 is not a high-risk mutation in familial breast cancer in Australia. *Breast Cancer Res* **3**: 346–349
Perkowska M, Brozek I, Wysocka B, Haraldsson K, Sandberg T, Johansson U, Sellberg G, Borg A, Limon J (2003) BRCA1 and BRCA2 mutation analysis in breast-ovarian cancer families from northeastern Poland. *Hum Mutat* **21**: 553–554
Rohlf MS, Learning WG, Friedman KJ, Couch FJ, Weber BL, Silverman LM (1997) Direct detection of mutations in the breast and ovarian cancer susceptibility gene BRCA1 by PCR-mediated site-directed mutagenesis. *Clin Chem* **43**: 24–29
Shiri-Sverdlov R, Gershoni-Baruch R, Ichezkel-Hirsch G, Gotlibir WH, Bruchim Bar-Sade R, Chetrit A, Rizel S, Modan B, Friedman E (2001) The Tyr978X BRCA1 mutation in non-Ashkenazi Jews: occurrence in high-risk families, general population and unselected ovarian cancer patients. *Community Genet* **4**: 50–55
Sidransky D, Tokino T, Helzlsouer K, Zehnbauer B, Rausch G, Shelton B, Prestigiacomo L, Vogelstein B, Davidson N (1992) Inherited p53 gene mutations in breast cancer. *Cancer Res* **52**: 2984–2986
Sjaland A, Birgander R, Hallmans G, Cajander S, Lenner P, Athlin L, Beckman G, Beckman L (1996) p53 polymorphisms and haplotypes in breast cancer. *Carcinogenesis* **17**: 1313–1316
Slattery ML, Kerber RA (1993) A comprehensive evaluation of family history and breast cancer risk. The Utah Population Database. *JAMA* **270**: 1563–1568
Storey A, Thomas M, Kalita A, Harwood C, Gardiol D, Mantovani F, Breuer J, Leigh IM, Matlashewski G, Banks L (1998) Role of a p53 polymorphism in the development of human papillomavirus-associated cancer. *Nature* **393**: 229–234
Suspitsin EN, Buslov KG, Grigoriev MY, Ishutkina JG, Ulibina JM, Gorodinskaya VM, Pozharisski KM, Berstein LM, Hanson KP, Togo AV, Imyanitov EN (2003) Evidence against involvement of p53 polymorphism in breast cancer predisposition. *Int J Cancer* **103**: 431–433
Tereschenko IV, Basham VM, Ponder BA, Pharoah PD (2002) BRCA1 and BRCA2 mutations in Russian familial breast cancer. *Hum Mutat* **19**: 184–188
Theodor L, Bar-Sade R, Kruglikova A, Ben-Baruch G, Risel S, Shiri-Sverdlov R, Hirsh Yechezkel G, Modan B, Papa MZ, Rechavi G, Friedman E (1998) An identical novel mutation in BRCA1 and a common haplotype in familial ovarian cancer in non-Ashkenazi Jews. *Br J Cancer* **77**: 1880–1883
Thomas M, Kalita A, Labrecque S, Pim D, Banks L, Matlashewski G (1999) Two polymorphic variants of wild-type p53 differ biochemically and biologically. *Mol Cell Biol* **19**: 1092–1100
Varley JM (2003) Germline TP53 mutations and Li–Fraumeni syndrome. *Hum Mutat* **21**: 313–320
Wang-Gohrke S, Rebbeck TR, Besenfelder W, Kreienberg R, Runnebaum IB (1998) p53 germline polymorphisms are associated with an increased risk for breast cancer in German women. *Anticancer Res* **18**: 2095–2099
Zelada-Hedman M, Borresen-Dale AL, Claro A, Chen J, Skoog L, Lindblom A (1997) Screening for TP53 mutations in patients and tumours from 109 Swedish breast cancer families. *Br J Cancer* **75**: 1201–1204