Title
Prevalence of amebiasis in inflammatory bowel disease in University Clinical Hospital Mostar.

Permalink
https://escholarship.org/uc/item/86v6w0tg

Journal
SpringerPlus, 5(1)

ISSN
2193-1801

Authors
Babić, Emil
Bevanda, Milenko
Mimica, Mladen
et al.

Publication Date
2016

DOI
10.1186/s40064-016-3261-7

Peer reviewed
Prevalence of amebiasis in inflammatory bowel disease in University Clinical Hospital Mostar

Emil Babić1, Milenko Bevanda1, Mladen Mimica1, Maja Karin1, Mile Volarić1, Ante Bogut1, Tatjana Barišić2, Danijel Pravdić1 and Nikica Šutalo3

Abstract

Aim: To explore the prevalence of amebiasis in inflammatory bowel disease (IBD), Crohn’s disease and ulcerative colitis, in patients in Clinical hospital Mostar (Bosnia and Herzegovina, region of Herzegovina).

Methods: In this study, Entamoeba histolytica/dispar prevalence was investigated in fresh faeces by native microscopy and immunochromatographic rapid assay ‘RIDA®QUICK Entamoeba test’, in 119 cases of new found IBD patients, 84 of ulcerative colitis and 35 of Crohn’s disease and in control group who had also 119 patients who didn’t have any gastrointestinal complaints. IBD diagnosis was established by standard diagnostic procedures (anamnesis, clinical manifestations, laboratory, endoscopy and biopsy).

Results: Entamoeba histolytica/dispar were found in 19 (16.0%) of a total of 119 cases, 12 (14.3%) of the 84 patients with ulcerative colitis and 7 (20.0%) of the 35 patients with Crohn’s disease. As for the 119 patients in the control group who had not any gastrointestinal complaints, 2 (1.7%) patients were found to have E. histolytica/dispar in their faeces. Amoeba prevalence in the patient group was determined to be significantly higher in group with Crohn’s disease, ulcerative colitis and IBD total than in the control group (p < 0.001).

Conclusion: Ameba infections in patients with Crohn’s disease and ulcerative colitis, have a greater prevalence compared to the normal population.

Keywords: Amebiasis, Inflammatory bowel disease, Prevalence, Immune response, Inflammation

Background

Amebiasis affects around 500 million people in the world today (Andersen 2000). It is more prevalent in developing countries (Lau et al. 2013; Verma et al. 2012). The prevalence of parasite infections and amebiasis is very high in Mediterranean region (Abdulsalam et al. 2013; Özçelik et al. 2012; El Guamri et al. 2011). Symptoms of amebiasis can overlap with symptoms of the inflammatory bowel disease (IBD). It can lead to difficulty in diagnosis and treatment in IBD (Hansen and Lund 1998). In that case the diagnosis and management of inflammatory bowel disease can be challenging as certain infections can mimic IBD and lead to a misdiagnosis. Because of the increasing use of corticosteroids, immunosuppressive drugs and biological agents the risk of opportunistic infection including amebiasis are also higher in IBD patients. The role of the physician lies not only in the diagnosis and management of IBD but also in the ability to prevent, recognize and treat infections.

Entamoeba histolytica and Entamoeba dispar are intraluminal parasites. Entamoeba histolytica is invasive species and cause symptomatic disease characterized with abdominal pain, cramps, blood diarrhea. Entamoeba dispar is non-invasive species which is useful as a study model for E. histolytica because both species have a lot of identical gens regions and similar immunogenic effect (Willhoeft et al. 1999; Bruchhaus et al. 1996; Jacobs et al. 1998).

© 2016 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
et al. 1998). IBD is a chronic inflammatory condition of the intestines caused by inadequate mucosal immune response to antigenic components. It is manifested in two major subtypes: Crohn disease and ulcerative colitis. A consensus hypothesis is that in genetically predisposed individuals, a combination of factors including luminal flora and host characteristics result in a chronic state of dysregulated mucosal immune function. This results in an “inappropriate response” to normal microbial flora within the intestine, with or without some component of autoimmunity (Friedman and Blumberg 2008).

Amebiasis can exacerbate symptoms of IBD and has unfavorable influence on course of disease and therapy. Inadequate mucosal immune response on the intraluminal antigenic components is essential in IBD pathogenesis (Kaser et al. 2010).

In this study, the prevalence of Entamoeba histolytica/dispar in the patients hospitalized in Clinical hospital Mostar in Herzegovina region with predominantly Mediterranean climate, diagnosed with either Crohn’s disease or ulcerative colitis was investigated.

Methods

IBD were diagnosed in 119 patients by clinical presentation, laboratory and serological, endoscopic and histopathologic examinations at Department of internal medicine, University clinical hospital Mostar between March 2009 and December 2011. All patients were treated in gastroenterology ambulance and clinic and IBD (Crohn disease and ulcerative colitis) were confirmed by standard procedure. There was 84 patients diagnosed as ulcerative colitis (70.6 %) and 35 as Crohn’s disease (29.4 %).

Also, 119 patients in the control group was formed by healthy individuals, without gastrointestinal complains and have regular medical examinations which include laboratory examinations and native microscopic exam of fresh feces samples. Therefore, control group was not matched in any way with IBD patients, except of course by age and gender (Tables 1, 2).

If native microscopy was found Entamoeba histolytica/dispar cysts or trophozoits, immunochromatographic rapid assay “RIDA®QUICK Entamoeba test” is used to confirm diagnosis. Native microscopy is performed by the optical microscope, enlargement factor 10× and 40×.

Fresh faeces samples taken from people were examined immediately using the wet mount, Lugol’s iodine and physiological solution. χ^2 test was applied to the groups (ulcerative colitis, Crohn’s disease and control) for a comparison of amoeba frequency among them.

Results

Entamoeba histolytica/dispar cysts and trophozoits were found in 19 (16 %) of the 119 IBD cases and in 2 cases of the control group (1.7 %) (Table 3). Frequency of E. histolytica/dispar in patients with IBD was significantly higher than in control group (Chi square test, $p < 0.001$). When the groups of patients with IBD were compared with the control group separately, the frequency of E histolytica/dispar in patients with ulcerative colitis and Crohn’s disease were also significantly higher than in the control group. E. histolytica/dispar were determined in 12 (14.3 %) of the 84 patients with ulcerative colitis and in 7 (20 %) patients with Crohn’s disease (Table 4).

Table 2 Age distribution of female patients and controls

Age (years) (X ± SD)	Female patients	Control	t*	p
<37	27.62 ± 5.45	29.96 ± 5.23	1.483	0.145
38–52	46.44 ± 4.55	46.42 ± 3.74	0.022	0.983
≥53	66.32 ± 7.81	62.94 ± 7.39	1.347	0.187

* Student t test

There was not significant difference between male and female patients with IBD and amebiasis compared with the control group and it was not found that gender is risk

Table 3 Prevalence of amebiasis in IBD and control group

Entamoeba histolytica/dispar	N (%)	
IBD	Control group	
Negative	100 (84.0)	117 (98.3)
Positive	19 (16.0)	2 (1.7)

$\chi^2 = 13.37, p < 0.001$

$\chi^2 = $ Chi square test

Table 4 Prevalence of amebiasis in ulcerative colitis and Crohn’s disease

Entamoeba histolytica/dispar	N (%)		
UC	CD	Control group	
Negative	72 (85.7)	28 (80.0)	117 (98.3)
Positive	12 (3.14)	7 (2.00)	2 (1.7)

$\chi^2 = 16.194, p < 0.001$

UC ulcerative colitis, CD Crohn’s disease, $\chi^2 = $ Chi square test
factor for amebiasis in IBD (Chi square test, \(p = 0.014 \) and \(p = 0.021 \)). *E. histolytica/dispar* cysts and trophozoites were found in 11 (18.0 %) of the 61 IBD cases in male and 8 (13.8 %) of the 58 IBD cases in female.

Comparing results with previous studies, our results show higher prevalence of amebiasis in CD (Table 6).

Discussion

Entamoeba histolytica/dispar were determined in 19 (16 %) of the 119 patients with IBD and it was significantly higher than in control group (1.7 %). *E. histolytica/dispar* were determined in 12 (14.3 %) of the 84 patients with ulcerative colitis. Results from our study showed higher incidence than study of Prokopowicz et al. performed in Poland where prevalence of amebiasis in ulcerative colitis was five out of 103 patients which accounts for 4.85 % (Prokopowicz et al. 1994). Studies performed in Turkey were found higher prevalence of amebiasis up to 69 %. Bayramicli et al. were found the presence of amebiasis in 19 patients with diagnosis of ulcerative colitis and found amebiasis in 69 % oft he cases (Bayramicli et al. 1997). In a study they carried out by Suleymanlar et al. found *E. histolytica* cysts and trophozoites in 22 (54 %) oft he patients (Suleymanlar et al. 1996).

Prevalence of amebiasis by age group of patients with IBD and the control group

Table 5

Age (years)	Broj (%)	Amebiasis	IBD	Control	\(x^2 \)	\(p \)
\(\leq 37 \)	9,676	32 (74.4)	40 (100.0)	11 (25.6)	0 (0.0)	0.002
	43 (100)	40 (100)	43 (100)	43 (100)	38 (100)	38 (100)
38–52	4.492	0.049*	32 (84.2)	41 (97.6)	6 (15.8)	1 (2.4)
	38 (100)	42 (100)	38 (100)	38 (100)	36 (94.7)	36 (97.3)
\(\geq 53 \)	0.320	1.000*	36 (94.7)	36 (97.3)	2 (3.5)	1 (2.7)
	38 (100)	37 (100)	38 (100)	38 (100)	38 (94.7)	37 (100)

* Fisher test

Study prevalence comparison

Table 6

Study	Number (%)	UC	CD	IBD
Babic et al.	12/84 (3.14)	19/100 (16)		
Ustun et al.	13/130 (10)	1/160 (0.62)		
Tözün et al.	284/375 (73)	308/1088 (28.3)		

\[\chi^2 = 11.55, p = 0.0031 \]

UC ulcerative colitis, CD Crohn’s disease, \(\chi^2 = \) Chi square test

...
patients with comorbidity of IBD and amebiasis. Other studies confirmed CRP as a good parameter of inflammation and disease activity in IBD or amebiasis separately but we didn’t find data about correlation in CRP and both disease simultaneously (Kiss et al. 2011; Ahmed et al. 1992). This result indicates on necessity of future investigations about this. We did not found that amebiasis is gender correlated and prevalence was not significantly higher in males or females in IBD.

Conclusion

Results in our study indicate that differential diagnosis is extremely important for IBD and amebiasis patients, especially in region with high prevalence of amebiasis. It is essential to distinguish amebiasis colitis and IBD already on beginning of diagnostic algorithm (Ibrahim et al. 2005). Similarity in the symptoms of these two diseases can complicate diagnostic procedure because both may present with similar symptoms. It is very important to consider amebic colitis in cases of exacerbation of symptoms in inflammatory bowel disease in region with high prevalence of amebiasis.

Our results confirmed possibility that decrease of protective factors in IBD (slim in bowels, loss of albumins, inappropriate nutrition) enables colonization by parasites, including *E. histolytica/dispar* (Vucelic 2002). There is hyperactivity of mucosal immune system to the intraluminal antigens in IBD where *E. histolytica/dispar* can participate in initiation or maintenance of immune response.

Authors' contributions

Contributors EB and MB were involved in the concept and design of the survey, EB, MK, MV, AB, NS collected, assembled, analysed and interpreted the data and wrote the manuscript; MM, TB and DP critically reviewed and edited the manuscript. All authors have approved the final version of the article, including the authorship list. EB accepts responsibility for the integrity of the work as a whole from inception to the published article. All authors read and approved the final manuscript.

Author details

1 Department of Gastroenterology and Hepatology, University of Mostar Clinical Hospital, Bijeli Brijeg bb, 88000 Mostar, Bosnia and Herzegovina. 2 Department of Gynecology, University of Mostar Clinical Hospital, Bijeli Brijeg bb, 88000 Mostar, Bosnia and Herzegovina. 3 Department of Abdominal Surgery, University of Mostar Clinical Hospital, Bijeli Brijeg bb, 88000 Mostar, Bosnia and Herzegovina.

Competing interests

The authors declare that they have no competing interests.

Received: 14 March 2016 Accepted: 7 September 2016 Published online: 15 September 2016

References

Abdulsalam AM, Ithoi I, Al-Mekhlaﬁ HM, Khan AH, Ahmed A, Surin J, Mak JW (2013) Prevalence, predictors and clinical signiﬁcance of Blastocystis sp. in Sebha, Libya. Parasit Vectors 6:86. doi:10.1186/1756-3305-6-86

Ahmed M, McIntosh KP, Sturm AW, Hussain R (1992) Systemic manifestations of invasive amebiasis. Clin Infect Dis 15:974–982

Andersen PL (2000) Amebiasis. Ugeskr Laeger 162:1537–1541

Bayramci OÜ, Daşay D, Konukçu F, Kilic G, Akbayir N, Övunc O (1997) Uterosat koliti amebiasisinden bir klinik. Türk J Gastroenterol 8:94–96

Bruchhaus I, Jacobs T, Leippe M, Tannich E (1996) Entamoeba histolytica and Entamoeba dispar: differences in numbers and expression of cysteine proteinase genes. Mol Microbiol 22:255–263

El Guarni Y, Belghydi D, Barkia A, Taibi M, Augier N, Aschka A (2011) Parasitic infection of the digestive tract in children in a regional hospital center in Ghardaﬁ (Kénitra, Morocco): some epidemiological features. East Afr J Public Health. 8:250–257

Friedman S, Blumberg RS (2008) Inflammatory bowel disease. In: Harrison’s principles of internal medicine, 17th ed. McGraw Hill, pp 1886–1899

Hanssen LH, Lund C (1998) Amebiasis-a differential diagnosis from inflammatory bowel disease. Ugeskr Laeger 160:5514–5515

Ibrahim TM, Iheunumewku N, Gill V, Vantapoh P (2005) Differentiating amoebic ulcer-haemorrhagic recto-colitis from idiopathic inflammatory bowel disease: still a diagnostic dilemma. West Indian Med J 54:210–212

Jacobs T, Bruchhaus I, Dandeker T, Tannich E, Leippe M (1998) Isolation and molecular characterization of a surface-bound proteinase of *Entamoeba histolytica*. Mol Microbiol 27:269–276

Kaser A, Zensig S, Blumberg RS (2010) Inflammatory bowel disease. Annu Rev Immunol 28:573–621

Kiss LS, Szamosi T, Molnar T, Mihelich P, Lakatos L, Vincze A (2011) Early clinical remission and normalisation of CRP are the strongest predictors of efficacy, mucosal healing and dose escalation during the first year of adalimumab therapy in Crohn’s disease. Hungarian IBD Study Group. Aliment Pharmacol Ther 34:911–922

Lau YL, Anthony C, Fahrmann SA, Ibrahim I, Ithoi I, Mahmoud R (2013) Real-time PCR assay in differentiating *Entamoeba histolytica*, *Entamoeba dispar*, and *Entamoeba moshkovskii* infections in Orang Asli settlements in Malaysia. Parasit Vectors 6:250

Lysy J, Zimmerman J, Sherman Y, Feigin R, Ligmusky M (1991) Crohn’s colitis complicated by superimposed invasive amebic colitis. Am J Gastroenterol 86:1065–1066

Özpek S, Coşkun KA, Yünłu O, Alın A, Malayli E (2012) The prevalence, isolation and morphotyping of potentially pathogenic free-living amoebae from tap water and environmental water sources in Sivas. Türkiye Parazitol Derg. 36:198–203

Prokopowicz D, Zagorski K, Kramarz P (1994) Amoebiasis-a problem in patients with ulcerative colitis. Wiad Lek 47:248–251

Şimşek HO, Başyigit S, Aktas B, Vargol E, Şimşek GÇ, Kucukazman M, Nazlıgül Y (2016) Comparing the type and severity of inflammatory bowel disease in relation to IgG4 immunohistochemical staining. Acta Gastroenterol Belg 79(2):216–221

Suleymantar I, Altıgın S, Ertugrul C, Istan F (1996) Uterosat kolit ve intestinal amebiasis birliktegi ve tedavide kasıtsalı sorunlar. Gastroenterologi 7:22

Tozun N (2002) Clinical and epidemiological data on inflammatory bowel disease, colorectal cancer and *Helicobacter pylori* infection in Turkey. Ann Gastroenterol 15:365–370

Üstün S, Dagcı H, Aksoy U, Guruz Y, Erozs G (2003) Prevalence of amebiasis in inflammatory bowel disease in Turkey. World J Gastroenterol 9:1834–1835

Verma AK, Verma R, Ahuja V, Paul P (2012) Real-time analysis of gut flora in *Entamoeba histolytica* infected patients of Northern India. BMC Microbiol 12:183

Vinayak VK, Kumar P, Punj V, Vashisth N, Kanwar JR, Bhasin DK, Singh K (1993) Detection of *Entamoeba histolytica* antigens in stool of amebiasis. Indian J Gastroenterol 12:77–79

Vucelíc B (2002) Uprane bolesti crijeva. U: Vucelíc B i sur. (ured.) Gastroenterologija i hepatologija. Zagreb: Medicinska naklada, pp 723–760

Willhoft E, Hamann L, Tannich E (1999) DNA sequence corresponding to the gene encoding cysteine proteinases of *Entamoeba histolytica*. Mol Microbiol 86:1063–1065

Woodman I, Schofield JHB, Haboubi N (2015) The histopathological mimics of inflammatory bowel disease: a critical appraisal. Tech Coloproctol 19:717–727