The unusual NIV]-emitter galaxy GDS J033218.92-275302.7: star formation or AGN-driven winds from a massive galaxy at $z=5.56$

E. Vanzella
A. Grazian
M. Hayes
L. Pentericci
D. Schaerer, et al.
The unusual NIV]-emitter galaxy GDS J033218.92-275302.7: star formation or AGN-driven winds from a massive galaxy at $z=5.56$

E. Vanzella1, A. Grazian2, M. Hayes3, L. Pentericci2, D. Schaerer3,4, M. Dickinson6, S. Cristiani1, M. Giavalisco7, A. Verhamme5, M. Nonino1, and P. Rosati8

1 INAF - Osservatorio Astronomico di Trieste, Via G.B. Tiepolo 11, 40131 Trieste, Italy.
2 INAF - Osservatorio Astronomico di Roma, Via Frascati 33, 00040 Monteporzio Roma, Italy.
3 Geneva Observatory, University of Geneva, 51, Ch. des Maillettes, CH-1290 Versoix, Switzerland
4 Laboratoire d’Astrophysique de Toulouse-Oberrhein, Université de Toulouse, CNRS, 14 Avenue E. Belin, F-31400 Toulouse, France
5 Department of Physics, University of Oxford. Denys Wilkinson Building, Keble Road, Oxford, UK
6 NOAO, PO Box 26732, Tucson, AZ 85726, USA.
7 Astronomy Department, University of Massachusetts, Amherst MA 01003, USA
8 European Southern Observatory, Karl-Schwarzschild-Strasse 2, Garching, D-85748, Germany.

Received - / Accepted -

ABSTRACT

\textbf{Aims.} We investigate the nature of the source GDS J033218.92-275302.7 at redshift ~ 5.56.

\textbf{Methods.} The spectral energy distribution of the source is well-sampled by 16 bands photometry from UV-optical (HST and VLT), near infrared, near infrared (VLT) to mid-infrared (Spitzer). The detection of a signal in the mid-infrared Spitzer/IRAC bands 5.8, 8.0 μm – where the nebular emission contribution is less effective – suggests that there is a Balmer break, the signature of an underlying stellar population formed at earlier epochs. The high-quality VLT/FORS2 spectrum shows a clear Lyα emission line, together with semi-forbidden NIV] 1483.3-1486.5 also in emission. These lines imply a young stellar population. In particular, the NIV] 1483.3-1486.5 feature (if the source is not hosting an AGN) is a signature of massive and hot stars with an associated nebular emission.

\textbf{Results.} From the SED-fitting with a single and a double stellar population and from the Lyα modeling, it turns out that the source seems to have an evolved component with a stellar mass of $\sim 5 \times 10^{10}$ M_\odot and age ~ 0.4 Gyrs, and a young component with an age of ~ 0.01 Gyrs and star formation rate in the range of 30-200 M_\odot yr$^{-1}$. The limits on the effective radius derived from the ACS/z850 and VLT/Ks bands indicate that this galaxy is denser than the local ones with similar mass. A relatively high nebular gas column density is favored from the Lyα line modeling. From ACS observations it turns out that the region emitting Lyα photons is spatially compact and has a similar effective radius (~ 0.1 kpc physical) estimated at the $\sim 1400\AA$ rest-frame wavelength, whose emission is dominated by the stellar continuum and/or AGN. The gas is blown out from the central region, but, given the mass of the galaxy, it is uncertain whether it will pollute the IGM to large distances.

We argue that a burst of star formation in a dense gas environment is active (possibly containing hot and massive stars and/or a low luminosity AGN), superimposed on an already formed fraction of stellar mass.

\textbf{Key words.} galaxies: formation — galaxies: evolution — source GDS J033218.92-275302.7

1. Introduction

In the past few years, dedicated space-borne and ground-based observatories and refined techniques have allowed us to discover and analyze galaxies at increasingly large distances. It is common practice in observational cosmology to select efficiently star-forming galaxies (e.g. Lyman break galaxies, LBGs, or Lyman alpha emitters, LAEs) and active galactic nuclei (AGN) up to redshift 6.5 (e.g. Steidel et al., 1999; Dickinson et al., 2004; Giavalisco et al., 2004). From ACS observations it turns out that the region emitting Lyα photons is spatially compact and has a similar effective radius (~ 0.1 kpc physical) estimated at the $\sim 1400\AA$ rest-frame wavelength, whose emission is dominated by the stellar continuum and/or AGN. The gas is blown out from the central region, but, given the mass of the galaxy, it is uncertain whether it will pollute the IGM to large distances.

We argue that a burst of star formation in a dense gas environment is active (possibly containing hot and massive stars and/or a low luminosity AGN), superimposed on an already formed fraction of stellar mass.
Detailed studies of internal the properties of high-redshift galaxies, such as information about hot stars, dust, ionized gas in HII regions, and the large-scale outflows of neutral and ionized interstellar material (ISM) are now becoming feasible up to redshift 4.5 (e.g. Shapley et al. 2003; Ando et al. 2007; Ouchi et al. 2008; Vanzella et al. 2009). Useful information from the Lyα profile modeling of high-redshift galaxies with radiative transfer codes is producing interesting constraints on the dynamical and physical state of the ISM and ionizing sources (e.g. Verhamme et al. 2008; Schaerer & Verhamme 2008).

From this point of view, thanks to the combination of depth, area, and multivavength coverage, the Great Observatories Origins Deep Survey project (see Dickinson et al. 2003; Giavalisco et al. 2004b for a review about this project) is ideal for studying galaxies at high redshift and the connection between photometric, spectroscopic, and morphological - size properties (e.g. Pentericci et al. 2007; 2009; Conselice et al. 2008; Ravindranath et al. 2006; Vanzella et al. 2009), and their relation with the environment (e.g. Elbaz et al. 2007).

Along with enabling a systematic study of normal galaxies, multi-frequency surveys over large areas and depth also allow us to discover rare objects. In particular, a new class of objects showing prominent N iv] 1486 emission have recently been reported. Such a feature is rarely seen at any redshift. A small fraction (1.1%, 1.7<z<4) of the QSO sample extracted from the SDSS fifth data release is nitrogen rich, showing N iv] 1486 or N m] 1750 emission lines and N iv] 1240 also in emission (typically stronger than the rest of the population (Jiang et al. 2008). Similarly, Glikman et al. (2007) discuss the discovery of two low-luminosity quasars at redshift ~ 4 with Lyα and C iv lines, moderately broad N iv] 1486 emission, and an absent N v] 1240 line. In these particular cases, the blinding intensity of the central engine is reduced, allowing study of the properties of the host galaxy (Fosbury et al. 2003) report on an HII lensed galaxy at redshift 3.537 (the Lynx arc) whose spectrum shows N iv] 1486, O m] 1661, 1666, C m] 1907, 1909, as well as the absence of the N v] 1240 line. Their modeling of the spectrum favors a hot (T ~ 80000K) blackbody over an AGN as the ionizing source. Alternatively, Binette et al. (2003) suggest an obscured AGN as a photionizing source of the Lynx arc. Villar-Martin et al. (2003) propose a population of Wolf-Rayet (WR) stars as the ionization source for the same HII galaxy, with an age below 5 Myr that contributes to a fast enrihment of the interstellar medium. In this scenario the stars involved are much colder than those proposed in Fosbury et al. (2003).

In the present work we report on the source GDS J033218.92-275302.7 at redshift 5.563 located within the GOODS southern field, for which extensive information (photometry, spectroscopy and morphology) is available. The galaxy has been discovered during the ESO/FORS2 spectroscopic survey (Vanzella et al. 2006). We focus our attention on this source because it shows several unique characteristics. First the high S/N spectrum exhibits a relatively bright N iv] 1486 feature in emission, a unique example among the more than 100 spectra of high z starburst galaxies that were obtained from the GOODS/FORS2 campaign (Vanzella et al. 2008). Second, while the spectrum shows a bright Lyα line indicating a young stellar component, the photometry shows a prominent Balmer break indicating that there is also an evolved component. Finally, the bright IRAC flux suggests that this is a massive galaxy, especially interesting if one considers its very high redshift.

Indeed the object was already noted by several authors; for example, Fontanot et al. (2007) selected it as an AGN candidate on the basis of morphological and color considerations, but discarded it from the sample because of its peculiar galaxy – like optical spectrum. Wiklind et al. (2008) report it among the 11 candidates with photometric redshifts in the range 4.9<z<5.5, dominated by an old stellar population, with ages 0.2-1.0 Gyr and having very high stellar masses, in the range (0.5-5)×10^11 M⊙. Also Stark et al. (2007) report for this source a stellar mass higher than 10^11 M⊙. Similarly, Pentericci et al. (2009) note that this is one of a handful of bright Lyα emitting LBGs at high redshift with an evolved population, indicating that not all Lyman alpha emitters are young primeval galaxies.

As noted recently by Schaerer & de Barros (2009) and Raiter et al. (2009), strong nebular emission lines may bias the result of the SED-fitting of high-redshift galaxies (e.g. [O iii] 4959-5007, Hα). Indeed the apparent photometric breaks might actually be produced in some cases by the boost of some of the lines. Something similar may be happening in this case, therefore it is important to quantify the strength of these lines and their influence on global photometry.

In the present work we perform dedicated SED-fitting allowing single and multiple stellar populations, and important information is extracted from the Lyα profile modeling. Together with the morphological appearance, constraints have been placed on the stellar mass density, ages, gas, dust content, and outflows.

The work is structured as follow. In Section 2 a summary of the photometric, spectroscopic, and morphological properties is given, and in Sect. 3 the possible scenarios are discussed about the nature of the source. Section 4 describes the SED and Lyα modeling, and in Sect. 5 we discuss the results. Section 6 concludes the work. In the following the standard cosmology is adopted (H_0=70 km/s/Mpc, Ω_M=0.3,Ω_Λ=0.7). If not specified, magnitudes are given on the AB system.

2. Source GDS J033218.92-275302.7

Source GDS J033218.92-275302.7 is located within the southern field of the Great Observatories Origins Deep Survey. The multi-wavelength observations consists of deep U, R (VLT), B_J35, V_606, i_775 and z_850 (HST), J, H, Ks (VLT), 3.6, 4.5, 5.8, 8.0, and 24 μm (Spitzer) bands. Moreover observations in the X-ray and radio domains are available from Chandra and the Very Large Array, respectively (Luo et al. 2008, Miller et al. 2008).

A considerable part of the spectroscopic information of that field has been collected by the VLT/FORS2 spectrograph, which has produced about one thousand redshift determinations (with a resolution of ~13Å, at ~8600Å), between redshift 0.5 and 6.2, in particular more than one hundred LBGs have been confirmed at redshift beyond 3.5 (Vanzella et al. 2005, 2006, 2008). The VLT/FORS2 spectroscopic survey has been complemented in the redshift interval 1.6 < z < 3.5 and at z < 1 by the VLT/VIMOS spectroscopic survey, which is producing more than 3000 spectroscopic identifications (Popeo et al. 2008, Balestra et al. 2010). Such measurements increase the spectroscopic information available from previous works (e.g. VVDS Le Fèvre et al. 2005, Szokoly et al. 2004).

Source GDS J033218.92-275302.7 with z_850=24.61±0.03 was selected as a V_606-band dropout and was confirmed to be at redshift 5.563 (redshift of the Lyα line, Vanzella et al. 2006).
Fig. 1. 1-dimensional spectrum of the galaxy discussed in the present work. The Lyα and N iv] 1486 emission lines are evident, together with the detection of the continuum and the IGM attenuation. The inner box shows a zoom of the Lyα line, the asymmetry and the red tail are visible (the latter is marked with a solid segment, 40Å long, or 1500 km s⁻¹). The transmissions of the ACS V606, i775, and z850 are also shown. The exposure time was 14400s.

2.1. UV spectral properties

The main spectral features are the Lyα emission line (EW=60Å rest frame), the break of the continuum blueward of the line, and the semi-forbidden emission line N iv] 1486, a doublet λ1 λ1483.3-1486.5Å (see Fig. 1 and Table 1 for a physical quantities summary). The detection of the N iv] 1486 in emission is unusual for LBGs. However, this atomic transition has a sub class of QSOs (e.g., Glikman et al. (2007), Baldwin et al. (1981)).

Table 1. Summary of the physical quantities derived from the spectral features and morphological analysis.

Obs. Spect. properties	z (Lyα 1215.7)	5.563
FWHM (Lyα 1257.5)	600±100 km s⁻¹	
EW(1 Lyα)	59.79 Å (89 Å from phot.)	
L(1 Lyα)	3.8±0.3×10⁶ erg sec⁻¹	
SFR(1 Lyα)	31 M⊙/yr	
z (N iv] 1486)	5.533 (1486.5Å)	
FWHM (N iv] 1486)	400±100 km s⁻¹	
EW(1 N iv] 1486)	22.6±0.1 Å (33 Å from phot.)	
L(N iv] 1486)	1.3±0.1×10⁶ erg sec⁻¹	
L(1 N iv] 1240-1243)	<1.06±0.07×10⁷ erg sec⁻¹	
L(1 Li] 1393.8-1402.8	<1.13±0.03×10⁷ erg sec⁻¹	
L(N iv] 1548.2-1550.8	<6×10⁷ erg sec⁻¹ (2σ limit)	
V(Lyα - N iv] 1486)	457±10 km s⁻¹	

Morph. (rest-frame) (kpc physical)

r(Lyα)(GALFIT)	0.08±0.01 kpc (ACS i775 band)
r(Lyα)(GALFIT)	0.11±0.01 kpc (ACS z850 band)
r(Lyα)(3300Å)	<0.9 kpc (0.6" seeing, ISAAC Ks band)
S/G(1400Å)(SEextr)	0.83 (S/G, ACS z850 band)
area(1400Å)(SEextr)	8.8 kpc² (AREA3F 303 pix., z850 band)

† continuum not detected, 2σ of the noise fluctuations is adopted.
* adopting the continuum derived from the ACS z850 band.

1 the ratio of those components is related to the electron density.

2.1. UV spectral properties

The main spectral features are the Lyα emission line (EW=60Å rest frame), the break of the continuum blueward of the line, and the semi-forbidden emission line N iv] 1486, a doublet λ1 λ1483.3-1486.5Å (see Fig. 1 and Table 1 for a physical quantities summary). The detection of the N iv] 1486 in emission is unusual for LBGs. However, this atomic transition has been identified by Forbes et al. (2003) in the Lyα arc and in a sub class of QSOs (e.g., Glikman et al. (2007), Baldwin et al. (2003)).

In the following the main properties of the UV spectrum are described:

1. As shown in the top panel of Fig. 2 an emission line at λ 9742Å is detected. The spectral resolution is in principle sufficient to resolve the double profile of the two N iv] 1486 components, i.e 1483.3 Å and 1486.5 Å. We interpret this feature as the detection of one of the two components. A first possibility is that this line is the 1483.3 Å component: in this case the redshift turns out to be higher than the observed Lyα redshift. The Lyα emission from LBGs is commonly observed to be redshifted relative to the systemic velocity traced by other, non-resonant emission lines or stellar absorption lines (Shapley et al. (2003), Tephen et al. (2007), Verhamme et al. (2008), Vanzella et al. (2009)). Therefore, it would be unusual if, in this object, the N iv] redshift were higher than that from Lyα. The other possibility is that we are detecting the 1486.5 Å component at redshift 5.553, suggesting a high-density limit and a velocity offset (i.e. a presence of an outflow) between Lyα and N iv] lines of ~457 km/s (dz=0.01). A further proof of this possibility is that the redshift and outflow estimated from the spectrum are consistent with the results from the Lyα profile modeling discussed below (see Sect. 4.2). Therefore, in the following we assume the line to be the 1486.5 Å component.

2. There is no detection for the Si iv] 1393.8-1402.8 doublet, either in emission or absorption, and similarly for the N iv] 1486 doublet; their luminosity limits are reported in Table 1 (see also Figure 2).

3. From the 2-dimensional spectrum, the FWHM of the spatial profiles of the Lyα and the continuum (by collapsing columns along the Y-axis, see Fig. 3) are fully comparable, ~ 0.7 arcsec. This is also compatible with the seeing during observations, 0.7 arcsec. More interestingly, a better constraint on the Lyα extension comes from the ACS i775 band. As shown in Fig. 3 the i775 band is mainly probing the UV emission region between the Lyα line and 1300Å (less than 100Å rest-frame), and the part blueward of the Lyα line is strongly attenuated by the IGM absorption. Since the Lyα equivalent width is ~ 60Å, it turns out that the ACS i775 image is dominated by the Lyα emission. In Sect. 2.3 we show that the morphological properties derived from the i775 band (probing the Lyα line) and the z850 band (not containing the Lyα line and probing the emission at 1400Å) are similar, e.g. the effective radii of the two are the same order. This implies that the spatial extension of the Lyα line is similar to the emitting region at 1400Å rest-frame.

Figure 3 shows the contour plots of the 2-dimensional Lyα region. Various sigmas above the noise fluctuation are reported from 1 to 20. It is evident that the asymmetric shape in the wavelength domain (that extends at least ~ 40Å (3σ)). If the Lyα...
emission arises from a simple expanding shell of material, then it is expected to have less of velocity width at its outer extremes than along the line of sight to the central region, where the transverse velocity component tends to zero.

2.2. Photometric properties

Fig. 3 shows the overall SED (black squares) and Table 2 summarizes the multi-band photometry of the source collected from different instruments mounted on ground and space-based telescopes. Magnitudes, errors and 1-σ lower limits (Lm.) are derived from the MUSIC catalog (Grazian et al. 2006; Santini et al. 2009). There are other two WFI U bands observations not reported in the table, U35 and U38, with a slightly different filter shape. Their lower limits are 27.84 and 26.75, respectively, much shallower than the limit provided by the VLT ACS catalog (27.84 and 26.75). Despite the high redshift of the source discussed here, its $(i_{775}-z_{850})$ color is 0.59, significantly bluer than the typical threshold of 1.3 adopted to select galaxies beyond redshift 5.5 (e.g. Dickinson et al. 2004; Bouwens et al. 2007). This comes from the contribution of the $\text{Ly}\alpha$ emission to the flux in the i_{775} filter (see Fig. 4), that decreases the $(i_{775}-z_{850})$ color by about 0.7 magnitudes (as shown in Vanzella et al. 2009). For this reason it has been selected as a V_{606}-band dropout source. It is also an R-band dropout source if referred to the ground-based photometry, see Table 2. As shown in Fig. 3 the source has been detected in the V_{606} band with a magnitude of 27.63 ± 0.22, showing an attenuation of $\sim94\%$ to respect the $1400\AA$ emission (z_{850} band), which is consistent with the average IGM transmission at this redshift (e.g. Songaila 2004).

Apart from the IGM attenuation that influences the bands bluer than the z_{850}, the main feature of the SED is the discontinuity detected between VLT/ISAAC J, H, and Ks bands ($\lambda \sim 3400\AA$ rest-frame) and the Spitzer/IRAC channels ($\lambda \geq 5400\AA$ rest-frame), see Fig. 3. Such a discontinuity is consistent with estimates available in the literature for the same object (FIREWORKS, Wiklind et al. 2008; Stark et al. 2007; Wiklind et al. 2008; Raiter et al. 2009).

The typical uncertainties (1σ) span the range 0.03 to 0.11 going from the HST/ACS, VLT/ISAAC and Spitzer channels 1 and 2, for the last two Spitzer bands (5.6 and 8 μm) the errors increase to $0.2/0.3$ mags.
Vanzella et al.: The unusual N iv-emitter galaxy at z=5.56.

Fig. 5. The resulted template fitting over the MUSIC multi-band catalog of the GDS J033218.92-275302.7. **Left:** Single stellar population modeling. Blue solid line is the fit adopting the maximum ratio [O iii]/[O ii] (prescription "Single/[O iii] max" in Table 3), and red dashed line is the fit with the Schaerer & de Barros (2009) method ("Single SB09" in the same table), see text for details. **Right:** Double stellar population modeling. Green dashed line shows the evolved component (age ∼ 0.4 Gyr), the thin cyan line the young contribution (age ∼ 0.01 Gyr), and black thick line the best fit composition of the two.

Table 2. Summary of the photometric information (magnitudes and 1-σ errors) for our source.

| U_VIMOS † | B435 | V606 | R547 | i775 | z850 | J814 | H850 | Ks217 | 3.6µm | 4.5µm | 5.8µm | 8.0µm | 24µm |
|-----------|------|------|------|------|------|------|------|-------|-------|-------|-------|-------|-------|------|
| 29.49 | 29.86 | 27.86 | 27.11 | 25.22 | 24.61 | 24.68 | 24.80 | 24.21 | 22.82 | 23.00 | 23.37 | 23.18 | 22.61 |
| 1σ l.m | 1σ l.m | 0.179 | 0.195 | 0.039 | 0.031 | 0.116 | 0.151 | 0.140 | 0.014 | 0.024 | 0.235 | 0.198 | 1σ l.m. |

† Other two WFI U bands are available, U35 and U38 with slightly different filter shape. The lower limits are 27.84 and 26.75, respectively, much shallower than the limit provided by the U_VIMOS.

2.3. Morphological properties

Image cutouts of the isolated source GDS J033218.92-275302.7 in the B435, V606, i775, z850 (HST/ACS), and Ks (VLT/ISAAC) bands are shown in Fig. 4, where each box is 1.0 arcsec wide for the ACS figures (6 kpc proper at the redshift of the source), while it is 3 arcsec on a side for the ISAAC Ks image. We considered the ACS/z850 and the ISAAC/Ks bands to derive basic morphological quantities (see Table 1).

- z850 band (λrest ~ 1400 Å)
 The uncorrected-PSF effective radius (Re) available from the ACS/GOODS public catalog v2.0 is 3.37 pixels. The same quantity derived from a sample of 80 stellar-like sources (SExtractor star/galaxy index larger than 0.97, 1.0=star, 0.0=extended source) with z850 magnitude in the range 23.5-25 gives a median value and 1σ percentiles of 2.590±0.091 implying that this source is not a stellar-like object (see Fig. 6). The same result is obtained for the i775 band (~6σ from the median value of the stars). We note that the SExtractor star/galaxy index of the source is quite high, 0.83, but lower than the typical value of the stars. Therefore, even though the present galaxy is clearly a compact source in the UV rest-frame, it is marginally resolved both in the i775 and z850 bands.

To derive PSF-corrected morphological parameters, we ran the GALFIT program (Peng et al. (2002)) in both bands. The morphological shape of the source is not particularly complicated so a good fit is reached (reduced χ² = 0.591) by adopting a simple Gaussian profile (Sérsic model with n=0.5) and leaving the Re, the axis ratio B/A, the coordi-
nates X, Y, the magnitude, and the position angle as free parameters (SExtractor estimates were used as a first guesses). In the left panel of Fig. 7, the z_{850} band image of the galaxy is shown, and the residuals map provided by GALFIT, as a result of the subtraction of the best-fit model from the original galaxy, do not show significant structures (middle panel of the same figure). An effective radius $R_e=0.55\pm0.05$ pixels (0.11\pm0.01 kpc physical) and $B/A=0.61\pm0.14$ have been obtained. We explored how the variation in the residuals (standard deviation calculated on a 20×20 pixels area centered on the source) as a function of the R_e (fixed during GALFIT runs) is shown. The minimum value corresponds to $R_e=0.65$ pixels, i.e. 0.02 arcsec or 0.12 kpc proper. The dotted line indicates the median value of the background residuals (standard deviation calculated in the blank regions).

Fig. 7. The ACS z_{850} image of the source (left, 100×100 pixels) and the residual image after subtraction of the model derived from GALFIT (middle). In the right panel the behavior of the residuals (standard deviation calculated on a 20×20 pixels area centered on the source) as a function of the R_e (fixed during GALFIT runs) is shown. The minimum value corresponds to $R_e=0.65$ pixels, i.e. 0.02 arcsec or 0.12 kpc proper. The dotted line indicates the median value of the background residuals (standard deviation calculated in the blank regions).

3. Possible scenarios for GDS J033218.92-275302.7

3.1. A chance superposition ?

If we interpret the emission line detected at $\lambda=9742$ Å as a $[\text{O} \text{ii}]$ at redshift $z=5.563$, the rest-frame $[\text{O} \text{ii}]$ would be 1.614. It is well known that in the GOODS-S field there is an overdensity structure at that redshift, $z=1.61$ (e.g. Vanzella et al. 2008, Castellano et al. 2007, Kurk et al. 2009). However, we can exclude this possibility on the basis of the ACS morphology, shows a compact and circular shape (see Fig. 4) and from the ultradepend UV band observations carried out by the VLT/VIMOS instrument (Nonino et al. 2009), provide an upper limit of ~30 AB at 1σ (also it has not been detected in the ACS B_{435} band image). The source should be detectable in the blue if there is star formation activity traced by the $[\text{O} \text{ii}]$ at 3727 Å. Moreover, assuming a flat continuum at that 1σ limit (30 AB), the rest-frame $[\text{O} \text{ii}]$ equivalent width would be larger than 10 Å. Even though we consider this possibility largely unlikely, we note that an example of strong $[\text{O} \text{ii}]$ at 3727 Å emitter has been reported by Stern et al. (2000).

3.2. Is it an AGN ?

The spectral range up to 10164 Å allows us to detect possible emission lines testing for the presence of an AGN (e.g. $\text{N} \text{v}$ 1240-1243, $\text{Si} \text{iv}$ 1393.8-1402.8, and $\text{C} \text{iv}$ 1548.2-1550.8). Those features are routinely detected in spectra of the most obscured AGNs (e.g. Polletta et al. 2008, 2009).

3.2.1. Line emission in the UV

$\text{N} \text{v}$ 1240-1243 feature.

Observationally, the $\text{N} \text{v}$ emission is often present in the AGN case. The FORS2 spectrum allow us to measure emis-
sion features down to 2×10^{42} erg/s. No N v line is detected (see Fig. 2).

– C iv 1548.2–1550.8 feature.

Unfortunately, the C iv line is at the very red limit of the observed spectrum, which in this particular slit position is determined by the detector end. Figures 8 and 2 (top panel) show the 2-dimensional and the 1-dimensional spectra zoomed at the red edge, respectively. On one hand, if the redshift of the C iv feature is higher than 5.565 (z(C iv)>5.565, higher than the Lyα redshift), then the doublet is completely out. Alternatively, if z(C iv)<5.554, then the doublet is completely in. In general, LBGs show the observed Lyα redshift as higher than the other spectral features because of its asymmetry which typically arises from backscattering of the receding material (e.g. Shapley et al., 2003; Vanzella et al., 2009). Similarly, in the AGN case, a blueshift of the C iv feature with respect to the observed Lyα peak is typically observed, of several hundred kilometers per second. In particular a blueshift of $\sim 600\pm 100$ km s$^{-1}$ with respect to the Lyα line is measured in the SDSS QSO composite spectrum (e.g. see Table 4 and Figure 9 of Vanden Berk et al., 2001). If this is the case, the C iv feature should fall in the available spectrum, and its luminosity limit is $\sim 6\times10^{42}$ erg/s at 2σ of the background noise fluctuation.

The limits and luminosities estimates on Lyα, N v, Si iv, and C iv are reported in Table 1.

3.2.2. X-ray emission

We further note that this source has not been detected in the X-ray by the 2 Ms Chandra ultra-deep observations, neither in the MIPS 24μm by Spitzer (with 1σ lower limit of 22.61 AB) nor by the VLA at 20 cm down to $8\mu Jy$ (at 1σ, Tozzi et al., 2009). A correlation between 2-10 keV X-ray luminosity and $[O \text{iii}]$ 5007 or Hα emission line luminosities is observed for galaxies at $z<1$ (e.g., Panessa et al., 2006, Silverman et al., 2008). Assuming that this correlation also holds at higher redshifts, then we may use the X-ray luminosity to derive a constraint on the fluxes for AGN-powered emission lines in the IRAC bands.

From the current 2 Ms observations, there is no detection at the position of the source (3σ limit of $\sim 3\times10^{41}$ erg/s at 3-13 keV rest-frame. Luo et al., 2008). This limit roughly corresponds to an upper limit for both Hα and $[O \text{iii}]$ 5007 luminosities of $\sim 10^{44.5-42.5}$ and 10^{41-43} erg s$^{-1}$, respectively. Such values are affected by large uncertainties in the assumed relations (intrinsic scatter) and the limit derived from the 2 Ms image. However, if compared to the (at least) one magnitude jump between the VLT/ISAAC and Spitzer/IRAC magnitudes, these estimations suggest that, besides a line contribution to the IRAC magnitudes, there is also a significant contribution from stellar emission beyond 5000A rest-frame, i.e., of a relatively evolved stellar population (see Sect. 4). For example a line luminosity of 7×10^{42} erg s$^{-1}$ is needed to boost the 4.5μm AB magnitude from 24 to 23 (adopting a bandwidth of 10100A. Fazio et al., 2004).

3.2.3. A rare class of QSOs: an open possibility

It is interesting to compare our N iv 1486 emitter spectrum with the composite spectra of quasars available in the literature. This has already been done by several authors (e.g. Baldwin et al., 2003; Glikman et al., 2007, and Jiang et al., 2008). None of the published average quasar spectral templates show any trace of N iv 1486 emission. Nevertheless, focusing the attention on this spectral feature, Benz et al., 2004 compile a sample of 6650 quasars in the range 1.6<z<4.1 showing the N iv 1486 line (other than the N m 1750), and more recently an updated work by Jiang et al., 2008 (on SDSS data release 5) reported that such objects are $\sim 1.1\%$ of the total SDSS quasar sample. They also note that for this small fraction, the N v 1240 and Lyα are much stronger than the rest of the population. We recall that our source does not show the N v 1240 line.

More interestingly and similar to our findings, Glikman et al. (2007) have discovered two low luminosity QSOs at redshift ~ 4 showing Lyα, N iv 1486 and C iv 1548-1550 emissions, but no detection of N v 1240. In one case the equivalent width of the N iv 1486 is larger than the C iv one (240A vs. 91A), while it is the opposite for the other (24A vs. 91A). Our source has a luminosity of $M_{145}=-22.1$ (AB) and shows a clear N iv 1486 emission with an equivalent width of ~ 22A and FWHM ~ 400 km s$^{-1}$. The Lyα line shows a narrow component with a measured FWHM of ~ 600 km s$^{-1}$. As performed in Glikman et al. (2007), since the blue side of the line profile is absorbed, we forced the symmetry in the line by mirroring the red side of the line profile over the peak wavelength and computed the Gaussian fit. The narrow-line component increases to ~ 750 km s$^{-1}$. The broad-line feature (indicated with a segment in the inner box of Fig. 1) gives an FWHM of ~ 3500 km s$^{-1}$. This would put the source in the QSO regime (velocity width larger than 1000 km s$^{-1}$). Therefore, the present source may be consistent with the interpretation of a low-luminosity quasar in which the host starburst galaxy is visible (similarly to Glikman et al., 2007).

The study of stellar populations of low-luminosity AGNs (e.g. low-luminosity Seyfert galaxies, low-ionization nuclear emission line regions, LINERs, and transition-type objects, TOs) has been addressed for the local Universe (e.g., González Delgado et al., 2004, but this is still a poorly explored regime at higher redshift. While it is beyond the scope of the present work to explore the link between the coevolution of (circum)nuclear starburst activity and the central black hole accretion, we simply note that both AGN and star-formation required gas to fuel them, and it happens on different temporal and spatial scales, on sub-parsec and typically above few hundred parsecs (up to several kilo-parsecs) regions, respectively (e.g., Davies et al., 2007, Chen et al., 2009). In the present case, the size of the UV emitting region is compact, but still resolved in the z_{50} ACS image (as shown in Sect. 2). In summary, the presence of an AGN – in a rare evolutionary stage – may be indicated by the N iv 1486 and broad Lyα features, even though N v 1240, Si iv 1394-1493, and (possibly) C iv 1548-1550 are not detected.

3.3. A multi-burst galaxy in a peculiar stage of evolution?

The source GDS J033218.92-275302.7 has already been analyzed in Wiklind et al., 2008, who classify it as a “pure” balmer break galaxy (their ID #5197). The discontinuity detected between the Ks and 3.6μm bands is interpreted as a signature of the Balmer break, suggesting a relatively evolved age of stellar populations with a significant stellar mass already in place (age of ~ 0.7Gyr and $M^{*} \sim 7-8\times10^{10}M_{\odot}$). A similar conclusion has been reached by Stark et al., 2007, who find an even higher stellar mass of $10^{11}M_{\odot}$ (their ID 32_8020).

However, most probably the observed (Ks-3.6μm) color is contaminated by emission lines in the 3.6μm band, e.g. $[O \text{iii}]$
A similar boost to the flux in the 4.5\,\mu m band may come from the H\alpha emission line. It was also selected as H\alpha emitter by R. Chary et al., private communication. Apart from the evident Ly\alpha emission, which implies the presence of young (< 10 Myr) stars – i.e., some “current”/ongoing star formation – significant nebular emission is also robustly supported by the detection of the N\,\alpha 1486 line. As mentioned above, a similar feature has been identified in the Ly\alpha arc and may indicate a short powerful starburst in which very hot and massive stars (T≥80000 K, Fosbury et al. (2003) or cooler Wolf-Rayet stars are involved (Villar-Mart\'\i n et al. (2004)). A similar blackbody ionizing source may be present in this source. The ongoing star formation activity would also be responsible for the measured outflow, whose spectral signature is in the red tail of the Ly\alpha profile (see Ly\alpha modeling in Sect. 4.2). It is beyond the scope of the present work to model the ionizing source; nevertheless, we note that in a “pure” nebular scenario, the continuum is practically flat, and the observed “breaks” are produced by strong nebular emission lines (see Rafter et al. (2009) for a dedicated discussion). Alternatively, a different interpretation suggests a contribution from a relatively evolved stellar population that produces the Balmer break signature (see next section). Given the current spectroscopic and photometric information, the following mixed scenario may be possible: 1) ongoing active star formation in an HII-like region that produces nebular emission, as probed by the Ly\alpha and N\,\alpha 1486 features, and 2) an already evolved population of stars formed at higher redshift, as probed by the signal detected in the IRAC bands, in particular, redwards of the 4.5\,\mu m (beyond ~7000\,Å rest-frame).

4. SED and Ly\alpha modeling

We cannot definitively distinguish between the two scenarios described above, in particular for the explanation of the N\,\alpha 1486 feature. In either case, even though the source reflects an early stage of coevolution of the (circumnuclear starburst) galaxy with its AGN or it is an HII source, the features of the host galaxy are detected and can be investigated. We therefore need to model the SED allowing for multiple stellar populations. Moreover, valuable information can be derived from the Ly\alpha line modeling. This is performed in the following sections.

4.1. Modeling the SED

The SED modeling was performed adopting the multiwavelength GOODS-MUSIC photometric catalog (Grazian et al. (2006)), and the spectral fitting technique was developed in Fontana et al. (2003, 2006) (similar to those adopted in other works, e.g., Dickinson et al. (2003); Drory et al. (2004). In the previous section we pointed out that this galaxy likely contains very compact objects such as the one we are studying. We fix the rest-frame equivalent width of the Ly\alpha line to be EW=60\,Å, as measured from the spectrum and regardless of the star formation rate.

As discussed in the previous section, the contribution of nebular lines to the photometry may affect the IRAC magnitudes of the 3.6\,\mu m and 4.5\,\mu m bands. In particular, the [O\,\alpha] emission contributes to the 3.6 \mu m channel and the H\alpha line to the 4.5 \mu m channel. While the H\alpha line can be modeled relatively easily and its luminosity can be assumed to be proportional to the global SFR through the well-known Kennicutt relations, disentangling the [O\,\alpha] contribution is harder. Moustakas et al. (2006) investigated the [O\,\alpha] nebular emission line as a quantitative SFR diagnostic and conclude that the large dispersion in the [O\,\alpha]/H\alpha ratio among star-forming galaxies precluded its suitability for SFR studies.

We therefore treat the [O\,\alpha] contribution in three different ways: 1) by assuming a mean [O\,\alpha] flux as inferred in local starburst galaxies (corresponding to a ratio f([O\,\alpha])/f([O\,\alpha])=0.32), 2) by assuming a maximum [O\,\alpha] flux in the 3.6 \mu m band 10 times larger than in the previous case, corresponding to the maximum observed [O\,\alpha]/H\alpha in star-burst galaxies, and 3) by neglecting the 3.6 \mu m band in the fit.

In the SED-fitting computation, the formal errors of the observed magnitudes have a minimum-value permitted for each band. This was done to avoid over-fitting in the χ² minimization procedure, and it affects only the 3.6 and 4.5 \mu m bands, whose errors are increased to 0.1 (the minimum permitted) during the fit.

The results of the various fits are reported in Table 3 for each model, we report the best-fit (bf) total stellar mass, age, τ (the star formation e-folding timescale), current SFR, and E(B−V) (indicated with E(B−V)) for the single and double populations, as well as the minimum and maximum values allowed by the fit (at 1σ). For the double stellar populations the best-fit ages of the young and the evolved components are reported (in the last two columns).

4.1.1. A single stellar population model

Although the single stellar population model with a declining exponential SFR is clearly an oversimplification it can set useful limits. From Table 3 we see that in all cases the best-fit stellar mass is well above 10^{10}\,M\odot and the age more than 700 Myrs, implying a formation redshift z>13. The variation in the [O\,\alpha] flux of a factor 10 does not have a strong impact on the values of mass, age and SFR. Even neglecting the 3.6\,\mu m band, the stellar mass is set to 4.5×10^{10}\,M\odot (with a minimum value of 3.4), but the most notable change is that some dust extinction is allowed, with a best fit E(B−V)_{min}=0.06.

It is worth noting that the stellar mass and ages we find are comparable to those derived by Wiklind et al. (2008) and Stark et al. (2007) if the nebular line treatment is not inserted. If we insert the [O\,\alpha] prescription, our estimates become somewhat smaller, even though still significatively large given the redshift of the source (corresponding to ~ 0.91 Gyrs after the Big-Bang). In particular, Stark et al. (2007) derive a mass of 1.4 × 10^{11}\,M\odot but without including the 5.8\,\mu m and 8\,\mu m IRAC bands in the SED fitting, while Wiklind et al. report a mass of 7×10^{10}\,M\odot but assume a photometric redshift of 5.2.

For comparison we have also fitted the SED with the method of Schaerer & de Barros (2009) allowing for numerous emission lines. The results obtained (see Table 3 and Fig. 5) are compatible with the two other approaches used here (see also next section). In addition, these models predict an intrinsic Ly\alpha emission line.
equivalent width of EW(Lyα) \sim 49-70 Å (1 σ interval), in good agreement with the observations. It is worth mentioning that the present source is different from those analyzed by Schaerer & de Barros (2009), extracted from a sample of z ≈ 6 star-forming galaxies of [Eyles et al. (2007)]. First, the photometric break between the NIR bands and the first two Spitzer bands is the double population with maximum [O iii] and Hα lines, and the average extinction ($E(B-V)$)$_{star}$ $=$ 0.03-0.06) is smaller but not incompatible with the extinction factor that comes from the Lyα profile modeling (see below).

The galaxy shows an Lyα emission line with an FWHM of 600 km s$^{-1}$, an evident asymmetric profile, a clear sharp decline in flux on the blue side and a red tail of Lyα photons extending up to \sim40 Å (1500 km s$^{-1}$) from the peak of the line (see inner box of Fig. 1 and Fig. 3).

4.2. Modeling of the Lyα line

The galaxy shows an Lyα emission line with an FWHM of 600 km s$^{-1}$, an evident asymmetric profile, a clear sharp decline in flux on the blue side and a red tail of Lyα photons extending up to \sim40 Å (1500 km s$^{-1}$) from the peak of the line (see inner box of Fig. 1 and Fig. 3).
Lyα is a resonance line that undergoes a complicated radiation transport, with the line formation under the influence of numerous parameters: not only dust but also the geometry, kinematics, and temperature structure of the neutral ISM (e.g., Ahn et al. (2003), Verhamme et al. (2006)). These parameters influence the line profile and, if sufficient care is taken, the line profile itself can be used to provide independent and unique constraints (Verhamme et al. 2008). Using the Monte Carlo Lyman-alpha (MCLya) radiation transfer code of Verhamme et al. (2006), we computed a wide array of possible emergent line profiles.

Parameter fitting is performed using a standard least squares fitting engine to minimize the χ² statistic. Details of the software and fitting can be found in Hayes et al. (2009, in prep). The parameter space is not entirely unconstrained; e.g., it is possible to observationally constrain two of the parameters: the N [IV] 1486 line puts the systemic redshift at 5.53; and the velocity shift between N [IV] 1486 and Lyα constrain the expanding velocity of the gas shell to respect the stellar component, \(V_{\text{exp}} = 457 \text{ km s}^{-1} \) (See Table 4). Since our grid of shell parameters is discrete, we adopted the nearest values of the outflow velocity of 400 and 500 km s\(^{-1}\). We ran six independent fits in total for all combinations of constraints denoted as follows: zsys, Vexp, τ exp, b, z, and Vfree constraining both z and Vexp (400 and 500 km/s); zsys constraining z; V400 and V500 constraining Vexp (400 and 500 km/s, respectively); and Vfree in which all parameters are fit without constraint.

The results of the fits are presented in Fig. 5 and Table 4. In general, all the fits agree with the case Vfree, in particular V500 and Vfree produce the same values. The Lyα modeling favors high HI column densities (\(N_{\text{HI}} > 10^{20.8} \text{ cm}^{-2} \)), outflow velocities of 400-500 km/s (consistent with observations when \(V_{\text{exp}} \) is allowed to vary), and a \(T_{1216} \sim 3.0 \) for all models with 1σ error of \(+1/-2 \) (in the free case), which provides a rough estimate of the extinction E(B−V)\(\sim 0.3^{+0.2}_{-0.1} \).

We also explored the possibility that the emerging Lyα shape is caused by a static gas (\(V_{\text{exp}} = 0 \)). In this case the expected double-peaked structure (e.g., Verhamme et al. 2006) would mimic the single peak observed, since the bluer one could be self-absorbed (by the galaxy and IGM). From the modeling it turns out that high values of the Doppler parameter b and intrinsic FWHM are favored, \(\sim 160 \text{ km/s} \) and 1000 km/s, respectively. This is not surprising since it is a way to drive photons away from line center in the absence of a wind. However, in all cases the resulting fit worsens in general and, in particular, the extended red and wavy tail of the line is no longer reproduced. Conversely, this feature favor the above interpretation of backscattered photons from an expanding shell (the presence of a wind would agree also with the ongoing star formation activity).

A summary of the modeling indicates that:

1. The column density of the nebular neutral gas is high, \(N_{\text{HI}} > 10^{20.8} \). We note that this value is comparable to those found for the damped Lyman-alpha systems, e.g., Wolfe et al. (2005).
2. The outflow velocity derived from the Lyα modeling is consistent with the observed one, and it is relatively high (greater than 400 km/s).
3. A young and an evolved stellar population are both present. The first with an SFR in the range 30-200 \(M_\odot \text{yr}^{-1} \) and negligible contribution to the total stellar mass (1%). The second with a stellar mass of \(\sim 5 \times 10^{10} M_\odot \) and an age of 0.4 Gyr.
4. The extinctions derived from the different methods are compatible within the 1-σ uncertainties and in general are relatively small (in the range 0<E(B−V)<0.3).

Although the signal-to-noise ratios are low, the galaxy is strongly detected in both the IRAC 5.8 and 8.0 μm bands, where no nebular lines or strong nebular continuum should contribute at \(z = 5.56 \). Even if emission lines contribute flux to the shorter wavelength IRAC channels, the longer-wavelength IRAC channels indicate a significant increase in flux density relative to the rest-frame UV continuum, suggesting the presence of a Balmer break from an evolved stellar population.

Summarizing, this galaxy shows several interesting observed properties: 1) its stellar mass is still relatively high (\(M_* \sim 5 \times 10^{10} M_\odot \)) with a component of already evolved stellar populations (\(\sim 0.4 \) Gyr); 2) it contains a star-forming component able to produce nebular emission lines and with an age of \(\sim 10 \) Myr; 3) a substantial wind is measured both from the optical spectrum and from the Lyα modeling, of 450/500 km/s; and 4) the source is compact in the rest-frame UV and U-band rest-frame wavelengths.

5.2. An already dense galaxy?

As described in the previous sections, the SED fitting analysis implies a stellar mass of \(M_* \sim 5 \times 10^{10} M_\odot \), with a significant,

Table 4. Best-fit parameters from the Lyα line fitting. Values marked in bold face have been fixed during the fitting procedure.

Param.	zsys,V400	zsys,V500	zsys,V400	zsys,V500	zsys,Vexp	Vfree
n(HI) [cm\(^{-2}\)]	20.8	20.8	20.8	20.8	21.4	21.4^{+0.6}_{-0.6}
Vexp [km s\(^{-1}\)]	400	500	500	400	500	500^{+0.01}_{-0.01}
τ exp	3.0	3.0	3.0	3.0	3.0	3.0^{+0.0}_{-0.0}
b [km s\(^{-1}\)]	10.0	40.0	40.0	20.0	10.0	10.0^{+0.0}_{-0.07}
z	5.553	5.553	5.553	5.553	5.540	5.540^{+0.007}_{-0.001}
χ²	3.97	3.22	3.22	3.19	1.785	1.785

3 Where the Doppler parameter is \(b = (V_m^2 + V_{\text{turb}}^2)^{0.5} \) as the contribution of thermal and turbulent motions.
evolved component with an age of ~ 0.4 Gyr. If the very compact size measured in the ACS and ISAAC images for the rest-frame ultraviolet light can be assumed to apply to the overall distribution of the evolved stellar population, then it implies a very high stellar mass density:

1. If we assume a constant size over all wavelengths from the 1400Å to optical bands rest-frame (ACS z850 band, 0.11 kpc physical), the stellar density in a spherical symmetric shape turns out to be $\rho_{\star}=(0.5 M_{\odot} / (4 \pi r_{e}^{3}) \sim 3.5 \times 10^{12} M_{\odot} kpc^{-3}$.

2. Similarly, assuming a constant size over all wavelengths from the 3300Å rest frame (ISAAC K s band, 0.9 kpc physical), the stellar density in a spherical symmetric shape turns out to be $\rho_{\star}=(0.5 M_{\odot} / (4 \pi r_{e}^{3}) \sim 8.2 \times 10^{9} M_{\odot} kpc^{-3}$.

In both cases, given the estimations of the effective radius and the stellar mass of $\sim 5 \times 10^{10} M_{\odot}$, the source appears to be ultradense if compared with the local mass-size relation. In case (1) the stellar mass density should be considered an upper limit if the r_{e} derived from the 1400Å rest-frame is a fair estimate of the smallest size. Locally, on average, the r_{e} is larger than 2 kpc (3 kpc) for early type (late type) galaxies with the comparable stellar mass (Shen et al. 2003).

Interestingly, the Lyα modeling suggests (in all cases) a relatively high column density of the neutral gas, the N_{HI} turns out in the range $10^{20.8-21.4} cm^{-2}$. We further note that, assuming that the Schmidt law is valid at this redshift (Kennicutt 1998), adopting the observed area of 8.8 kpc2 and two possible SFRs estimates (see Table 3), 30 and 100 $M_{\odot} yr^{-1}$, the mass of the gas turns out to be 8×10^{8} and $2 \times 10^{10} M_{\odot}$, respectively, which represents a significant fraction if compared to the stellar mass ($\sim 5 \times 10^{10} M_{\odot}$).

As noted by Buitrago et al. (2008), massive ultradense spheroid observed at intermediate redshift $\sim 1.5-3$ and the globular clusters have remarkably similar stellar densities ($> 10^{10} M_{\odot} kpc^{-3}$), suggesting a similar origin. A massive ultradense galaxy at $z \sim 1.5-3$ should form its stars very quickly in earlier epochs and in a high gas-density environment. In this sense the present source may represent a “precursor” of the ultradense spheroids recently discovered at redshift 1.5-3.

5.3. Feedback in action?

The current burst of star formation may be caused by a previous inflow of gas and/or to a merger event (even though the UV morphology is quite regular). A vigorous wind of ~ 450 km/s is detected both from the observations (Lyα and N iv) 1486 velocity offset) and from the Lyα modeling (leaving all parameters free). As discussed above, the Lyα emission arise from a compact region with an effective radius not larger than 0.1 kpc (the PSF-deconvolved Re in the i rest band is ~ 0.08 kpc physical), a possible indication that the outflow of gas is in its initial phase of expansion from the central region. This particular phase of the galaxy evolution showing hot and massive stars and/or a low-luminosity AGN may be an efficient mechanism to blow the material out from the potential well of the galaxy, in some way influencing the subsequent star formation activity and/or the surrounding IGM.

Wind propagation and escape is quite sensitive to the entrainment fraction and to the velocity of the wind itself. This occurs because the two primary forces limiting wind propagation are the galaxy’s potential well and the ram pressure of the gas that must be swept up even if the wind is fast. Moreover, if entrainment is significant, then the mass over which the wind energy and momentum must be shared may be much greater.

Therefore it is first useful to compare the escape velocity from the halo with the estimated wind velocity. Following the calculation of Ferrara et al. (2000), the escape velocity can be expressed as

$$v_{e}^{2} = \frac{2GM_{H}}{r_{H}}$$

with $p=1.65$. The isothermal halo density profile is assumed $(\rho_{H}(r) = \rho_{c}/[1 + (r/r_{c})^{2}])$, with an extension out to a radius $r_{200} = 3r_{H} = [3M_{H} / 4\pi(200\rho_{c})]^{1/3}$, defined as the radius within which the mean dark matter density is 200 times the critical density $\rho_{crit} = 3H_{0}^{2}(1+z)^{3}/8\pi G$ at redshift z of the galaxy. The r_{H} turns out to be ~ 0.3 kpc at this redshift, assuming a halo mass of $M_{H} = 10^{12} M_{\odot}$. Under these assumptions, the escape velocity is $v_{e} \sim 340 \text{kms}^{-1}$, about the same (or a bit larger) as the wind estimated velocity from spectral features, $\sim 450 \text{kms}^{-1}$ (or from the Lyα modeling, $\sim 500 \text{kms}^{-1}$). It is possible that we are observing the transport of material from the galaxy to the halo, which will remain confined. If we assume a slightly lower mass of the halo, e.g. $M_{H} = 5 \times 10^{11} M_{\odot}$ (a factor 10 higher than the stellar mass), then the escape velocity turns out to be $v_{e} \sim 380 \text{kms}^{-1}$ and an $r_{H} = 24$ kpc. In this case, the velocity of the wind would be sufficient to escape the potential well of the halo.

Indeed, from SPH simulations it appears that the main contributors to the metal enrichment of the low-density regions of the IGM are “small” galaxies with stellar masses below $10^{10} M_{\odot}$ (Aguirre et al. 2001b), and similar results have been obtained by other authors (e.g. Oppenheime & Davé (2008), Bertone et al. (2008)). In the present case the uncertainty on the halo mass prevents any clear conclusion. If we assume a value lower than $10^{12} M_{\odot}$, then the expanding material may reach characteristic distances (namely “stall radius”) where the outflow ram pressure is balance by the IGM pressure up to few hundred kpcs (e.g. Aguirre et al. 2001a).

6. Concluding remarks

A peculiar galaxy belonging to the GOODS-S field has been discussed. The main observed features are the relatively strong nebular emission in the ultraviolet (Lyα and N iv) 1486 and the presence of the Balmer Break detected through the NIV I1486 and/or the Lyα modeling, it turns out that the source seems to have an evolved component with stellar mass of $\sim 5 \times 10^{10} M_{\odot}$ and age ~ 0.4 Gyr, a young component with an age of ~ 0.01 Gyr (contributing to $\sim 1\%$ of the total stellar mass), and a star formation rate in the range of $30-200 M_{\odot} yr^{-1}$. At present no evidence of common “N iv” emitters” is observed in surveys of high redshift galaxies or quasars. However, there are rare cases in the literature that show this line emission (together with other atomic transitions), spanning from a pure HII region source to a subclass of low-luminosity quasars. In the first case, very hot and massive stars with low metallicity are required to produce the N iv line; however, it is difficult to reproduce the signal measured in the Spitzer/IRAC channels with a pure HII nebula, in particular at wavelengths beyond 4.5 μm, i.e. to reconcile the two observed facts: 1) the presence of a relatively evolved stellar population and 2) the low-metallicity environment needed if the N iv emission arises from stellar photoionization. Alternatively, the low-luminosity quasar/AGN interpretation may explain the N iv emission, the broad Lyα component, and the properties of
the host galaxy discussed here, i.e., starforming, massive, and evolved galaxy. The limits on the size derived from the ACS/2500 and VLT/Ks bands indicate that this object is denser than the local ones with similar mass, with a significant mass of the gas still in place (comparable to the stellar one). A relatively high nebular gas column density is also favored from the Lyα line modeling, $N_{H2} \geq 10^{13} \text{cm}^{-2}$, comparable to those found for the damped Lyman-alpha systems. The region emitting Lyα photons is spatially compact, close to that at the continuum emission at 1400Å, ∼0.1 kpc, in which a vigorous outflow (∼450/500 km/s) has been measured from the spectrum and Lyα modeling. The gas is expanding from this region, but given the uncertainty on the halo mass, it is dubious whether it will pollute the IGM to great distances.

Such special objects are the key to understanding fundamental passages in the formation and evolution of the galaxy population. Future instruments will shed light on the nature of this interesting object, in particular, the JWST and the ELTs will give better and new constraints on the optical rest-frame morphology and nebular emission.

Acknowledgements. We would like to thank the anonymous referee for very constructive comments and suggestions. We are grateful to the ESO staff in Paranal and Garching, who greatly helped in the development of this program. We thank J. Retzlaff for the informations about the VLT/Ks images of the GOODS-S field and the useful comments and discussions of P. Tozzi, F. Caftera, R. Chary, S. Recchi, P. Monaco, and F. Fontanot about the work. EV would like to thank Anna Rainter and R.A.E. Fosbury for precious discussions about the photionization modeling. We acknowledge financial contributions from contract ASI/COFIN 1016/07/0 and PRIN INFN 2007 “A Deep VLT and LBT view of the Early Universe”.

References

Ando, M., Ohta, K., Iwata, I., Akiyama, M., et al., 2006, ApJ, 645, 9
Ando, Masatada, Ohta, Kogii, Iwata, Ikaru, Akiyama, Masayuki, Aoki, Kentaro, Tanaura, Naoyuki, 2007, PASJ, 59, 717
Agurze, Anthony, Hernquist, Lars, Schaye, Joop, Weinberg, David H., 2001, ApJ, 560, 599A
Agurze, Anthony, Hernquist, Lars, Schaye, Joop, Katz, Neal, Weinberg, David H., Gardner, Jeffrey, 2001, ApJ, 561, 521A
Ahn, Sang-Hyoun, Lee, Hee-Won, Lee, Huyng Mok, 2003, MNRAS, 340, 863A
Baldwin, J. A., Hamann, F., Korista, K. T., et al., 2003, ApJ, 583, 649
Balestra, I., Mainieri, V., Popesso, P., Dickinson, M., et al., 2010, A&A, 512, 12
Balick, S. W. V., et al., 2004, AJ, 132, 1727
Benz, M. C., Hall, P. B., & Osmer, P. S., 2004, AJ, 128, 561
Bertone, Serena, Stoehr, Felix, Caftera, R. Chary, S. Recchi, P. Monaco, and F. Fontanot about the work. EV would like to thank Anna Rainter and R.A.E. Fosbury for precious discussions about the photionization modeling. We acknowledge financial contributions from contract ASI/COFIN 1016/07/0 and PRIN INFN 2007 “A Deep VLT and LBT view of the Early Universe”.
Santini, P., Fontana, A., Grazian, A., Salimbeni, S., Fiore, F., Fontanot, F., 2009, A&A accepted, (arXiv/0905.0683)
Schaerer, D., Verhamme, A., 2008, A&A, 480, 369
Schaerer, Daniel, de Barros, Stephane, 2009, A&A accepted, (arXiv/0905.0866)
Shapley, A. E., Steidel, C. C., Pettini, M., Adelberger, K. L., 2003, ApJ, 588, 65
Shen, Shiyin, Mo, H. J., White, Simon D. M., Blanton, Michael R., 2003, MNRAS, 343, 978S
Silverman, J. D., Lamareille, F., Maier, C., et al., 2008, ApJ, 696, 396
Songaila, Antionette, 2004, AJ, 127, 2598
Stark, D. P., Bunker, A. J., Ellis, R. S., Eyles, L. P., Lacy, M., 2007, ApJ, 659, 84S
Stark, D. P., Ellis, R. S., Bunker, A., Bundy, K., Targett, T., Benson, A., Lacy, M., 2009, ApJ, 697, 1493
Steidel, C. C., Adelberger, K. L., Giavalisco, M., Dickinson, M., Pettini, M., 1999, ApJ, 519, 1
Stern, D., Bunker, A., Spinrad, H., Dey, A., 2000, ApJ, 537, 73
Sokoly, G. P., Bergeron, J., Hasinger, G., Lehmann, I., Kewley, L., Mainieri, V., Nonino, M., Rosati, P., Giacconi, R., Gilli, R., Gilmozzi, R., Norman, C., Romaniello, M., Schreier, E., Tozzi, P., Wang, J., Zheng, W., Zirm, A., 2004, ApJS, 155, 271
Taniguchi, Y., Akiyama, T., Tanaka, Y., et al., 2005, PASJ, 57, 165
Taniguchi, Y., Murayama, T., Scoville, N. Z., Sasaki, S. S., et al. 2009, (arXiv/0906.1873)
Tapken, C., Appenzeller, I., Noll, S., Richting, S., Heidt, J., Meinkohm, E. and Mehlert, D., 2007, A&A, 467, 63
Taylor-Mager, Violet A., Connelie, Christopher J., Windhorst, Rogier A., Jansen, Rolf A., 2007, ApJ, 659, 162
Tozzi, P., Mainieri, V., Rosati, P., Padovani, P., et al., 2009, ApJ, 698, 740
Trujillo, Ignacio, Conselice, C. J., Bundy, Kevin, Cooper, M. C., 2007, MNRAS, 382, 1097
Vanden Berk, Daniel E., Richards, Gordon T., Bauer, Amanda, et al., 2001, AJ, 122, 549
van Dokkum, Pieter G., Franx, Marijn, Kriek, Mariska, Holden, Bradford, Illingworth, Garth D., Magee, Daniel, et al., 2008, ApJ, 677, 5
Vanzella, E., Cristiani, S., Dickinson, M., et al., 2005, A&A, 434, 53
Vanzella, E., Cristiani, S., Dickinson, M., et al., 2006, A&A, 454, 423
Vanzella, E., Cristiani, S., Dickinson, M., Giavalisco, M., et al., 2008, A&A, 478, 83
Vanzella, E., Giavalisco, M., Dickinson, M., Cristiani, S., Nonino, M., et al., 2009, ApJ, 695, 1163
Verhamme, A., Schaerer, D., Maselli, A., 2006, A&A, 460, 397
Verhamme, A., Schaerer, D., Atek, A., Tapken, C., 2008, A&A, 491, 89
Villar-Martín, M., Cerviño, M., González Delgado, R. M., 2004, MNRAS, 355, 1132
Wiklind, T., Dickinson, M., Ferguson, H. C., Giavalisco, M., Mobasher, B., Grogan, N. A., Panagia, N., 2008, ApJ, 676, 781
Wolfe, A. M. Gaviser, E., Prochaska, J. X., 2005, ARA&A, 43, 861W
Wyuts, Stijn, Labb`e, Ivo, Schreiber, Natascha M. Forster, Franx, Marijn, et al., 2008, ApJ, 682, 985
Yan, H., Dickinson, M., Stern, D., Eisenhardt, P. R. M., Chary, R., Giavalisco, M., et al., 2005, ApJ, 634, 109