More on $\mathcal{N} = 1$ Matrix Model Curve for Arbitrary N

Changhyun Ahn * and Yutaka Ookouchi †

*Department of Physics, Kyungpook National University, Taegu 702-701, Korea
†Department of Physics, Tokyo Institute of Technology, Tokyo 152-8511, Japan

ahn@knu.ac.kr, ookouchi@th.phys.titech.ac.jp

Abstract

Using both the matrix model prescription and the strong-coupling approach, we describe the intersections of $n = 0$ and $n = 1$ non-degenerated branches for quartic (polynomial of adjoint matter) tree-level superpotential in $\mathcal{N} = 1$ supersymmetric $SO(N)/USp(2N)$ gauge theories with massless flavors. We also apply the method to the degenerated branch. The general matrix model curve on the two cases we obtain is valid for arbitrary N and extends the previous work from strong-coupling approach. For $SO(N)$ gauge theory with equal massive flavors, we also obtain the matrix model curve on the degenerated branch for arbitrary N. Finally we discuss on the intersections of $n = 0$ and $n = 1$ non-degenerated branches for equal massive flavors.
1 Introduction

The exact quantum effective superpotential for the glueball field was proposed by Dijkgraaf and Vafa [1, 2, 3] using a zero-dimensional matrix model. Extremization of the effective glueball superpotential has led to the quantum vacua of the supersymmetric gauge theory. For $\mathcal{N} = 1$ supersymmetric $U(N)$ gauge theory with the adjoint matter Φ, the gauge group $U(N)$ breaks into $\prod_{i=1}^{n} U(N_i)$ for some n where $N = \sum_{i=1}^{n} N_i$. At low energies, the effective theory becomes $\mathcal{N} = 1$ gauge theory with gauge group $U(1)^n$. The low energy dynamics of this gauge theory along the line of [1, 2, 3] have been studied in [4, 5, 6, 7, 8, 9, 10].

Although the $\mathcal{N} = 2$ factorization problem in the strong-coupling approach [11, 12] has been solved for small values of N explicitly [5], the difficulty of solving the general (arbitrary N) factorization problem occurs. In [13], a matrix model curve for $U(N)$ gauge theory with cubic tree-level superpotential where the gauge symmetry breaks into $U(N) \to U(N_1) \times U(N_2)$ with $N = N_1 + N_2$ was studied. One of the lessons is that the description of minimization of glueball superpotential is useful to obtain a matrix model curve at $n = 1$ and $n = 2$ singularity with arbitrary N for $U(N)$ gauge theory. On the singularity, the two-branch cuts of the matrix model curve meet each other. In general, a matrix model curve can be represented as $y_m^2 = W'_2(x)^2 + f_1(x) = \prod_{i=1}^{4} (x - x_i)$ in terms of either a parameter of superpotential and fields or the roots of y_m. The period integrals on the Riemann surface can be written by the elliptic integrals. The glueball equations of motion allowed us to solve for the roots x_i in terms of parameters N_1, N_2 and a parameter of superpotential. It was not transparent to obtain the four different general roots x_i. However at the singularity, since the root x_2 approaches the root x_3 (reducing of the roots of y_m), by tuning the parameter of superpotential to special values depending on N_1 and N_2, it was possible to obtain the roots and parameter of superpotential for general (N_1, N_2). This overcomes the difficulty in the strong-coupling approach (factorization problem) when N is large because a matrix model curve is valid for arbitrary N.

The extension [5] to the $\mathcal{N} = 1$ supersymmetric gauge theories with the gauge groups $SO(N)/USp(2N)$ was obtained in [14]. The factorization problem gave an explicit constructions for the matrix model curve for small values of N. In [15], the description for $U(N)$ gauge theory was generalized to the $SO(N)/USp(2N)$ gauge theories with quartic tree-level superpotential ($n = 1$) by following the method of [13]. In particular, a new result for degenerated branch \footnote{For $U(N)$ gauge theory, the tree-level superpotential is written as $W(\Phi) = \sum_{k=0}^{n} \frac{g_k}{k+1} \text{Tr}\Phi^{k+1}$. Thus, the cubic case can be described by the value $n = 2$. On the other hand, for $SO(N)/USp(2N)$ gauge theories, the tree-level superpotential can be written as $W(\Phi) = \sum_{k=1}^{n+1} \frac{g_{2k}}{2k} \text{Tr}\Phi^{2k}$. The quartic tree-level superpotential, which we will deal with mainly, is represented by the value $n = 1$.} was obtained besides a simple generalization of the results in [13] to these gauge theories.
groups. For the degenerated case, the number of roots of \(y_m \) is less than the number of roots on the non-degenerated case. The matrix model curve for the degenerated case 4 can be written as

\[
y_{m,d}^2 = \left(\frac{W_3'(x)}{x} \right)^2 + 4F \equiv \left(x^2 + x_0^2 \right) \left(x^2 + x_1^2 \right)
\]

in terms of either a parameter of superpotential and field or the roots of \(y_m \). Using a matrix model curve for non-degenerated case, \(y_m^2 = \prod_{i=0}^{N} (x^2 + x_i^2) \), the degenerated curve can be related to \(y_m^2 = x^2y_{m,d}^2 \) implying that one of the roots in the non-degenerated case vanishes. This situation is quite similar to the one studied in [13]. Therefore, the claim in [15] was that the glueball approach is suitable for computation of a general matrix model curve on the degenerated case which depends on the field \(F \), \(N_0 \) and \(N_1 \) for general breaking pattern \(SO(N) \to SO(N_0) \times U(N_1) \) with \(N = N_0 + 2N_1 \). The \(N \) can be any generic value. We should not restrict our discussion to a special point on a matrix model curve but it covers the whole degenerated branch. Thus, as studied in [14] there exist some smooth interpolations between the vacua with different breaking patterns like as Coulomb branch in [5].

It is natural and interesting to describe the glueball approach by adding the massive or massless flavors into the pure \(SO(N)/USp(2N) \) gauge theories. Recall that the Seiberg-Witten (SW) curves \([16, 17, 18]\) for \(SO(N)/USp(2N) \) gauge theories with flavors are characterized by

\[
y_{SO(N)}^2 = P_{2[N/2]}^2(x) - 4\Lambda^{2(N-2-N_f)}x^{2(1+\epsilon)} \prod_{f=1}^{N_f} \left(x^2 - m_f^2 \right),
\]

\[
x^2y_{USp(2N)}^2 = \left(x^2P_{2N}(x) + 2\Lambda^{2N+2-N_f} \prod_{f=1}^{N_f} m_f \right)^2 - 4(-1)^{N_f} \Lambda^{2(2N+2-N_f)} \prod_{f=1}^{N_f} \left(x^2 - m_f^2 \right)
\]

where \(\epsilon = 0 \) for \(N \) odd and \(\epsilon = 1 \) for \(N \) even. When the number of flavors \(N_f \) becomes zero in the power of \(\Lambda \) and the expressions containing the product for the mass \(m_f \) become 1, then the above formula reduces to the SW curve of pure gauge theory. Compared with the pure case, the factorization problem in the strong-coupling approach with flavors becomes more complicated due to the presence of flavor-dependent part. In the strong-coupling approach the \(N = 1 \) matrix model curve is described by the single root part in the SW curve. One of our aims is to observe the singularity on the matrix model curve (i.e.,double roots part) for arbitrary \(N \) in our gauge theories \([19, 20]\) from the point of view of glueball approach. We expect to have a

4For the cases of \(N_f = N - 3 \) for \(SO(N) \) and \(N_f = 2N + 1 \) for \(USp(2N) \) gauge theories, the extra piece proportional to \(x^2 \) should be added. See sections 3 and 5.
general matrix model curve for massless flavors without any difficulty because the analysis from the strong-coupling approach implies that the SW curve looks like the curve for pure gauge theories with different power behavior of x above. However, for massive case (even equal mass for flavors), since we have an extra mass parameter in our factorization problem, most of the matrix model curves for given N and N_f (the number r in the r-th vacua) in our gauge theories do not have an extra double root and therefore, they do not exist at the singularity we are interested in. Instead, when they have an extra overall factor x^2 in the matrix model curve (i.e., degenerated case), there is a chance to obtain the general matrix model curve because the number of roots is reduced and this fact will make easier to compute the equation of motion for glueball field.

In this paper, we deal with two topics:

- One is $n = 0$ and $n = 1$ singularity on the non-degenerated case. This is a simple generalization of the results in [13] to the gauge theories with flavors in the vector representation for $SO(N)$ gauge theory or fundamental representation for $USp(2N)$ gauge theory.

- The other is a study for a general matrix model curve for the gauge theories on the whole degenerated branch.

The effective superpotential for the gauge theories with some flavors was already discussed in [6, 21, 22, 23, 24]. The contributions of the flavors to the effective superpotential, F_{flavor}, can be expressed by the integral of matrix model curve (2.1). In [25, 19, 20], the mass of flavors possesses the same value and there exists one constraint, $W'_3(\pm m_f) = 0$. For the $SO(N)/USp(2N)$ cases, since the superpotential $W_4(x)$ is an even polynomial in x, the relation $W'_3(x) = 0$ always has a zero $x = 0$ as a root. In other words, for massless case, the above constraint is automatically satisfied. Therefore, the massless case and the massive case are quite different from each other (One cannot obtain the massless case as we take the zero limit of the flavor mass in the massive case). As discussed in [19, 20], the massless flavors are charged under the factor $SO(N_0)$, while the massive flavors are charged under the factor $U(N_1)$ in the breaking pattern $SO(N) \to SO(N_0) \times U(N_1)$.

The organization of this paper is as follows. In section 2, we study the matrix model curve at $n = 0$ and $n = 1$ singularity for $SO(N)$ gauge theory with massless flavors. This is the simplest example, because the contributions coming from the flavors can be written in terms of the dual period integral Π_0. Therefore, using previous results obtained in [15] for the pure gauge theory, we obtain a general matrix model curve (2.2) at the singularity for the massless flavor case by minimizing the effective superpotential with respect to the glueball field. To demonstrate on the validity of general matrix model curve, we deal with some explicit examples for $SO(N)$ gauge theories where $N = 4, 5, 6, 7, 8$ or 9 with $N_f(\leq N - 3)$ flavors. We have checked the precise

5Then, we use $SO(N_0)$ or $U(N_1)$ to represent the flavors which are charged under the corresponding gauge groups. Similar arguments hold for $USp(2N)$ gauge theory.
values N_0 and N_1 explicitly by performing the period of $T(x)$ (characterized by a characteristic function) over the compact cycles, for some particular examples. The addition map is used.

In section 3, we study a general matrix model curve on degenerated branch for $SO(N)$ gauge theory with massless flavors. Contrary to the results in section 2, we obtain the matrix model curve characterized by a single field. There are two classes of matrix model curves, (3.1) and (3.2), depending on whether the quantity $(N_0 - N_f - 2)$ is equal to zero or not. After we obtain the general matrix model curve for arbitrary N for $SO(N)$ gauge theory, we explicitly check the equivalence between two approaches (glueball approach and the factorization problem of SW curve). The subtlety for the matrix model curve is discussed when the number of flavor N_f reaches the maximum value $(N - 3)$ in the asymptotic region of the theory. We predict the matrix model curve for the degenerated $SO(N)$ gauge theories with $N_f(\leq N - 3)$ massless flavors where $N \geq 7$ and $SO(N) \to SO(N_0) \times U(N_1), N_0 \neq 0$.

In sections 4 and 5, we extend the studies given in sections 2 and 3 for $SO(N)$ gauge theories to the $USp(2N)$ gauge theory with massless flavors. The procedures are similar to the $SO(N)$ gauge theory. However, there exists one difference: the matrix model curves for the two gauge theories can be represented as $y_m^2 = x^2 (x^2 \pm m)^2 + f_2(x)$ where the plus sign corresponds to the $SO(N)$ gauge theory and the minus sign corresponds to the $USp(2N)$ gauge theory. Therefore, by replacing $(N - 2) \to (2N + 2)$ and $x_i^2 \to -x_i^2$, we obtain the general matrix model curves (4.1), (5.1), and (5.2) for $USp(2N)$ theory from $SO(N)$ theory. When the number of flavors N_f reaches its maximum value $(2N + 1)$ in a theory, the analysis for the curve in degenerated case needs to have an extra term due to the flavor dependent term. We predict the matrix model curve for the degenerated $USp(2N)$ gauge theories with $N_f(\leq 2N + 1)$ massless flavors where $N \geq 4$ and $USp(2N) \to USp(N_0) \times U(N_1), N_0 \neq 0$.

In section 6, we study the degenerated $SO(N)$ gauge theories with massive flavors. Contrary to the massless cases, the constraint for the mass of flavors, $W'(\pm m_f) = 0$, is not automatically satisfied. However, this condition provides that the contribution arising from flavors can be written in terms of a dual period Π_1. By using this fact and performing the equation of motion for glueball field, we obtain a general matrix curve for $SO(N)$ theory. Moreover, we discuss r-Higgs branch discussed in [26, 27, 28, 19, 20, 6] in the context of glueball approach. To obtain a general matrix model curve for this branch we follow the discussion given in [6] about contour of integrals under the change of mass parameter and finally obtain the effective superpotential for the branch. Minimizing the effective superpotential we derive the matrix model curve for the theories (6.5), (6.6), (6.8), and (6.9). After the general discussions, we deal with some explicit examples, $SO(N)$ with $N = 4, 5, 6$ and check the explicit agreement between two approaches. We predict the solutions for the degenerated $SO(N)$ gauge theories with $N_f(\leq N - 3)$ massive
flavors where \(N \geq 7 \) and \(SO(N) \to SO(N_0) \times U(N_1), N_0 \neq 0 \). \(^6\)

In section 7, we give some comments on the \(n = 0 \) and \(n = 1 \) singularities for massive \(SO(N)/USp(2N) \) cases. We do not obtain the general matrix model curves because, in general, the \(F_{\text{flavor}} \) cannot be written as a dual period \(\Pi_1 \). Therefore, the matrix model curve cannot be represented by any simple formulation. However, when the condition, \(c < 0 \) where \(c \) is defined in (7.10) or (7.11), should be satisfied, the flavor-dependent part can be written in terms of \(\Pi_1 \). Thus, in this particular case, we obtain a matrix model curve for arbitrary \(N \).

There exist many related works from the different matter representations for various gauge theories [29]-[37].

2 The \(n = 0 \) and \(n = 1 \) singularity: \(SO(N) \) gauge theory with massless flavors

Let us consider \(SO(N) \) gauge theory with quartic tree-level superpotential \((n = 1)\) and \(N_f \) flavors. We are interested in the intersections of the \(n = 0 \) and \(n = 1 \) branches. At these special points, a vacuum with unbroken gauge group \(SO(N_0) \times U(N_1) \) meets a vacuum with unbroken gauge group \(SO(N) \) with \(N = N_0 + 2N_1 \). Since we are considering an asymptotic free theory, we restrict the number of flavors \(N_f \) to satisfy the condition \(N_f < N - 2 \). As already clarified in [19], the relation between \(W'_3(x) = x(x^2 + m) \) and \(F_6(x) \) corresponding to an \(\mathcal{N} = 1 \) matrix model curve is characterized by

\[
\begin{align*}
y^2_m &= F_6(x) = W'_3(x)^2 + f_2(x), \quad N_f < N - 3, \\
y^2_m &= F_6(x) = W'_3(x)^2 + f_2(x) - 4x^4\Lambda^2, \quad N_f = N - 3
\end{align*}
\]

where \(f_2(x) = f_2x^2 + f_0 \). These relations are valid for any \(SO(N) \) gauge theories where \(N \) is even or odd. All masses of the flavors vanish. The \(\Lambda \) is an \(\mathcal{N} = 2 \) strong-coupling scale. The fluctuating fields \(f_2 \) and \(f_0 \) relate to the glueball fields \(S_1 \) and \(S_0 \) respectively.

The effective superpotential for the \(SO(N) \) gauge theory with \(N_f \) flavors is given by [22, 21, 23, 24]

\[
W_{\text{eff}} = 2\pi i [(N_0 - 2)\Pi_0 + 2\Pi_1 \Pi_1] - 2(N - 2 - N_f)S\log \left(\frac{\Lambda}{\Lambda_0} \right) - F_{\text{flavor}},
\]

where the contributions from the flavors are given by the integral for \(y_m \) over \(x \):

\[
F_{\text{flavor}} = \sum_{f=1}^{N_f} \int_{\pm m_f}^{\Lambda_0} y_m dx.
\]

\(^6\)As one can see in [20], there is no degenerated branch for \(USp(2N) \) theory. Therefore, we do not need to study them here.
The log-divergent term was renormalized by the bare Yang-Mills coupling and the cut-off Λ was replaced by the physical scale Λ.\footnote{For the tree-level superpotential of degree $2(n+1)$, the effective superpotential for the $SO(N)$ gauge theory with N_f flavors is $W_{\text{eff}} = 2\pi i [(N_0 - 2)\Pi_0 + \sum_{i=1}^n 2N_i\Pi_i] - 2(N - 2 - N_f)S\log\left(\frac{\Lambda}{\Lambda_0}\right) - F_{\text{flavor}}$. For quartic case ($n = 1$), this will lead to the above effective superpotential.} Note that there exists a relation $S = S_0 + 2S_1$. The periods S_i and dual periods Π_i of holomorphic 3-form for the deformed geometry were written as the integrals over the x-plane \([15, 38, 39]\). The m_f is the mass of the f-th flavor and we have chosen the location of holomorphic 2-cycles at $x = \pm m_f$. Around these points, D5-branes are wrapping on holomorphic 2-cycles, providing a source for a single unit of RR flux at $x = \pm m_f$. Thus the integral of 3-form RR flux around $x = \pm m_f$ is equal to 1. The full effective superpotential can be generated by adding this contribution to the effective superpotential for pure gauge theory.

First, let us consider the simple case in which all masses of flavors are zero in this section. Later, in sections 6 and 7, we will deal with the massive cases. Since the contribution from the flavors, F_{flavor}, becomes $2\pi i N_f \Pi_0$, we can use the results for pure $SO(N)$ gauge theory studied in \([15]\) without much efforts. We only have to replace the quantity $(N_0 - 2)$ appeared in the matrix model curve in \([15]\) with $(N_0 - N_f - 2)$. Therefore, by combining the flavor-dependent part with the dual period Π_0 term, the effective glueball superpotential for massless flavors is

$$W_{\text{eff}} = 2\pi i [(N_0 - 2 - N_f)\Pi_0 + 2N_f \Pi_1] - 2(N - 2 - N_f)S\log\left(\frac{\Lambda}{\Lambda_0}\right).$$

The periods of $T(x)$ defined as the periods of the 1-form at the $n = 0$ and $n = 1$ singularity are given similarly and together with different power behavior of x and Λ, due to the presence of the flavors, the $T(x)$ also takes the form as a complete differential. With the above replacement in mind, we immediately obtain the matrix model curve near the singularity on the non-degenerated case from the glueball equations of motion:

$$g_m^2 = x^2 (x^2 + m)^2 + \langle f_2 \rangle x^2 + \langle f_0 \rangle = \left(x^2 + 2\eta^2 \Lambda^2 (1 + c)\right)^2 \left(x^2 + 4\eta \Lambda^2\right),$$

where the fields, parameter of a superpotential, and the glueball field are given by

$$\langle f_2 \rangle = 4\eta^2 \Lambda^4 (1 + 2c), \quad \langle f_0 \rangle = 16\eta^3 \Lambda^6 (1 + c)^2,$$

$$m = 2\eta \Lambda^2 (2 + c), \quad \langle S \rangle = -\eta^2 \Lambda^4 (1 + 2c), \quad c \equiv \cos\left(\frac{2\pi N_1}{N - N_f - 2}\right). \quad (2.2)$$

Here η is the $(N - N_f - 2)$-th root of unity for $(N - N_f - 2)$ even and the $(N - N_f - 2)$-th root of minus unity for $(N - N_f - 2)$ odd. That is,

$$\eta^{N - N_f - 2} = 1, \quad \text{for} \ (N - N_f - 2) \ \text{even},$$

$$\eta^{N - N_f - 2} = -1, \quad \text{for} \ (N - N_f - 2) \ \text{odd}.$$
This matrix model curve with massless flavors is exactly the same as pure case with the replacement \((N - 2) \rightarrow (N - N_f - 2)\). \(^8\) Note that the above solutions have the special combination \((N - N_f - 2)\) which reflects the addition map discussed in [19], relating the Chebyshev branches (or the Special branches) of two different gauge groups. Namely, we have seen that the Chebyshev branch of \(SO(N)\) with \(N_f\) massless flavors can be reduced to the Chebyshev branch of \(SO(N')\) with \(N'_f\) massless flavors when there exists a relation: \(N - N_f - 2 = N' - N'_f - 2\).

Let us demonstrate these general features (2.2) explicitly by comparing them with the results from strong-coupling approach obtained in [19] already. Let us consider \(SO(N)\) gauge theories with \(N_f(\leq N - 3)\) flavors where \(N = 4, 5, 6, 7, 8\) or 9.

- **\(SO(4)\) with \(N_f = 1\)**

 In [19], the factorization problem resulted in the matrix model curve \(\hat{y}_m^2\) which contains an overall factor \(x^2\). \(^9\) Therefore, there exists no solution for non-degenerated case. We will come to this for degenerated case later.

- **\(SO(5)\) with \(N_f = 1\)**

 In [19], the matrix model curve \(\hat{y}_m^{-2}\) contains an overall factor \(x^2\). Therefore, there exists no solution for non-degenerated case. We will come to this for degenerated case later.

- **\(SO(5)\) with \(N_f = 2\)**

 The SW curve is the same as the curve of \(SO(4)\) with \(N_f = 1\) which reflects the addition map. Then the factorization problem will lead to the one in \(SO(4)\) with \(N_f = 1\) theory.

- **\(SO(6)\) with \(N_f = 1\)**

 This example is the first nontrivial case. By putting the values \((N, N_1, N_f) = (6, 1, 1)\) into the curve (2.2), we predict the matrix model curve for this case,

 \[y_m^2 = x^2 \left(x^2 + 3\eta\Lambda^2 \right)^2 - 4\Lambda^6 = \left(x^2 + \eta\Lambda^2 \right)^2 \left(x^2 + 4\eta\Lambda^2 \right)\]

 where \(\eta\) satisfies \(\eta^2 = -1\) or equivalently \(\eta^6 = 1\). Recall that the matrix model curve for pure \(SO(5)\) gauge theory [15] is identical to this curve. That is, \(N - N_f = 5\). The factorization problem [19] resulted in the matrix model curve \(\hat{y}_m^{-2} = x^2 (x^2 - \alpha^2)^2 - 4\Lambda^6\). There exists a symmetry breaking \(SO(6) \rightarrow \hat{SO}(4) \times U(1)\). For \(\alpha^2 = -3\eta\Lambda^2\), this can be factorized as \((x^2 + 4\eta\Lambda^2)(x^2 + \eta\Lambda^2)^2\). For \(\alpha^2 = 2\Lambda^2\), the curve \(x^2 (x^2 - \alpha^2)^2 - 3x^2 - 3\lambda^2\) will be \(x^4 (x^2 - 4\Lambda^2)\). The latter implies the degenerated case. The characteristic function \(P_6(x) = x^4 (x^2 + 3\eta\Lambda^2)\) becomes \(2x^4 \rho^3 \Lambda^3 T_3 \left(\frac{\pi x}{2\rho\Lambda} \right)\). These are the vacua surviving when the \(N = 2\) theory is perturbed by a quadratic \((n = 0)\) superpotential and the \(SO(6)\) gauge theory becomes massive at low energies.

8One expects that the matrix model curve for \(U(N)\) gauge theory with massless flavors \((U(N) \rightarrow U(N_1) \times U(N_2)\) where \(N = N_1 + N_2\)) at \(n = 1\) and \(n = 2\) singularity takes the form \(y_m^2 = [x + \eta\Lambda(2 + c)](x - \eta\Lambda(2 - c))^2\) where \(c \equiv \cos \left(\frac{\pi N_f}{N + N_f} \right)\) and \(\eta^N = 1\).

9We denote the curve from strong-coupling approach (factorization problem) by \(\hat{y}_m^{-2}\) and the curve from glueball approach by \(y_m^{-2}\).
Let us demonstrate how one can obtain the precise values for \((N_0, N_1)\). The results for a matrix model curve and a characteristic function can be rewritten as follows (we put \(\Lambda = 1\) and \(\eta = -1\)):

\[
\tilde{y}_m^2 = \left(x^2 - 4 \right) \left(x^2 - 1 \right)^2, \quad P_6(x) = x^4 \left(x^2 - 3 \right).
\]

By using these relations, the function \(T(x) = \text{Tr} \frac{1}{x^2} \) is given as \([19]\)

\[
T(x) = \frac{P_6'(x)}{\sqrt{P_6(x)^2 - 4x^6\Lambda^6}} + \frac{(N_f + 2)}{x} = -\frac{3}{\sqrt{x^2 - 4}} + \frac{3}{x}.
\]

There exist three branch cuts on the \(x\)-plane \([-2, -1 - \epsilon], [-1, 1], \) and \([1 + \epsilon, 2]\) before taking the limit \(x_1 \to x_0 (\epsilon \to 0)\). \(^{10}\) Since we are assuming \(n = 0\) and \(n = 1\) singular case, these three-branch cuts are joined at the locations of \(x = \pm 1\) after taking the limit and they reduce to a single-branch cut \([-2, 2]\). Therefore, we can explicitly calculate the values \((N_0, N_1)\) as follows:

\[
N_0 = \frac{1}{2\pi i} \oint_{A_0} T(x) dx = \frac{2}{2\pi i} \int_{-1}^{1} \left(-\frac{3}{\sqrt{x^2 - 4}} + \frac{3}{x} \right) dx = \left(\frac{6}{\pi} \int_{0}^{1} \frac{dx}{\sqrt{4-x^2}} \right) - 3 = 4,
\]

\[
N_1 = \frac{1}{2\pi i} \oint_{A_1} T(x) dx = \frac{2}{2\pi i} \int_{1}^{2} \left(-\frac{3}{\sqrt{x^2 - 4}} + \frac{3}{x} \right) dx = \frac{3}{\pi} \int_{1}^{2} \frac{dx}{\sqrt{4-x^2}} = 1
\]

as we expected. \(^{11}\)

- \(SO(6)\) with \(N_f = 2\)

 Once again the factorization problem \([19]\) resulted in the matrix model curve that contains an overall \(x^2\) factor implying a degenerated case.

- \(SO(6)\) with \(N_f = 3\)

 The factorization problem \([19]\) turned out the matrix model curve that has an overall \(x^2\) factor and is classified as a degenerated case which will be studied later.

- \(SO(7)\) with \(N_f \geq 1\)

 The curve for \(SO(7)\) with \(N_f\) flavors is the same as \(SO(6)\) curve with \((N_f - 1)\) flavors. In particular, since the SW curve of \(SO(7)\) theory with \(N_f = 1\) is identical to the \(SO(6)\) gauge theory with \(N_f = 0\), the factorization problem in \([14]\) implies that the matrix model curve is

\[
y_m^2 = x^2 \left(x^2 + 4\eta \Lambda^2 \right)^2 + 4\eta^2 \Lambda^4 x^2 + 16\eta^3 \Lambda^6 = \left(x^2 + 2\eta \Lambda^2 \right)^2 \left(x^2 + 4\eta \Lambda^2 \right), \quad \eta^4 = 1
\]

\(^{10}\)Recall that a matrix model curve is given by \(y_m^2 = \prod_{i=0}^{2} \left(x^2 + x_i^2 \right)\).

\(^{11}\)Recently \([40]\), the construction of \(T(x)\) on an elliptic curve in terms of three discrete parameters and two continuous ones was studied in the breaking pattern \(U(N) \to U(N_1) \times U(N_2)\) where \(N = N_1 + N_2\). This method will give some hints to obtain this 1-form explicitly without resort to a characteristic function we did here.
where the breaking pattern $SO(7) \rightarrow \hat{SO}(5) \times U(1)$ exists. \(^{12}\) At the intersections with $n = 0$ branch, the characteristic function $P_0(x)$ can be written in terms of the Chebyshev polynomial of degree 4 with an appropriate identification between these two functions.

- $SO(8)$ with $N_f \geq 1$

The curve for $SO(8)$ with $N_f = 1$ can be obtained from the factorization problem. The result is, by applying the method of \(^{19}\) to the present case here, $\tilde{y}_m^2 = \left(x^2 + \frac{4 + 2\sqrt{5}}{2} \eta^2 \Lambda^2\right)^2 \left(x^2 + 4\eta^2 \Lambda^2\right)$ with $\eta^5 = -1$. This curve is exactly the same as the expression from the glueball approach by inserting the values $(N_0, N_1, N_f) = (6, 1, 1)$ into (2.2) where $SO(8) \rightarrow \hat{SO}(6) \times U(1)$. Note that the above matrix model curve is the same as the curve for pure $SO(7)$ gauge theory \(^{15}\): $N - N_f = 7$. Although there is no information about the curve with larger flavors from factorization problem, one predicts a matrix model curve through (2.2).

- $SO(9)$ with $N_f \geq 1$

The curve for $SO(9)$ with N_f flavors is the same as $SO(8)$ curve with $(N_f - 1)$ flavors. In particular, since the SW curve of $SO(9)$ theory with $N_f = 1$ is identical to the $SO(8)$ gauge theory with $N_f = 0$, the factorization problem in \(^{14}\) implies that the matrix model curve becomes

$$y_m^2 = x^2 \left(x^2 + 5\eta^2 \Lambda^2\right)^2 + 8\eta^2 \Lambda^4 x^2 + 36\eta^3 \Lambda^6 = \left(x^2 + 3\eta^2 \Lambda^2\right)^2 \left(x^2 + 4\eta^2 \Lambda^2\right), \quad \eta^6 = 1$$

where the breaking pattern $SO(9) \rightarrow \hat{SO}(7) \times U(1)$ exists. \(^{13}\) At the intersections with $n = 0$ branch, the characteristic function $P_8(x)$ can be written in terms of the Chebyshev polynomial with $\parallel N_f \parallel = 1$ flavors. In particular, since the SW curve of $SO(9)$ theory with $N_f = 1$ is identical to the $SO(8)$ gauge theory with $N_f = 0$, the factorization problem in \(^{14}\) implies that the matrix model curve becomes

\(^{12}\)Let us check how one can determine the precise values for (N_0, N_1). The results for a matrix model curve and a characteristic function are given by (we put $\Lambda = 1$ and $\eta = -1$): $\tilde{y}_m^2 = \left(x^2 - 4\right) \left(x^2 - 2\right)^2, P_0(x) = x^2 \left(x^4 - 4x^2 + 2\right)$. By using these relations, the function $T(x)$ is given by $T(x) = \frac{\int P_8(x) - (N_f + 1) P_0(x) + (N_f + 2)}{\sqrt{P_6(x)^2 - 4x^2 \Lambda^8}} = -\frac{4}{\sqrt{2} - 3} + \frac{3}{2}$. Note that there was a typo in $T(x)$ \(^{14}\) and there should be present an extra $1/x$ term in $T(x)$. There exist three-branch cuts on the x-plane $[-2, -\sqrt{2} - \epsilon], [-\sqrt{2}, \sqrt{2}]$, and $[\sqrt{2} + \epsilon, 2]$ before taking the limit $x_1 \rightarrow x_0 (\epsilon \rightarrow 0)$. These three-branch cuts are joined at the locations of $x = \pm \sqrt{2}$ after taking the limit and they reduce to a single branch cut $[-2, 2]$. Therefore, we can explicitly compute the values (N_0, N_1) as follows: $N_0 = \frac{2}{2\pi i} \int_{\sqrt{2}}^{\sqrt{2}} \left(-\frac{1}{\sqrt{2} - 4} + \frac{3}{2}\right) dx = 5, N_1 = \frac{2}{2\pi i} \int_{\sqrt{2}}^{\sqrt{2}} \left(-\frac{1}{\sqrt{2} - 4} + \frac{3}{2}\right) dx = 1$.

\(^{13}\)By using $\tilde{y}_m^2 = \left(x^2 - 4\right) \left(x^2 - 2\right)^2, P_8(x) = x^4 \left(x^2 - 3\right)^2 - 2x^2$, the function $T(x)$ is given by $T(x) = \frac{\int P_8(x) - (N_f + 1) P_0(x) + (N_f + 2)}{\sqrt{P_6(x)^2 - 4x^2 \Lambda^8}} = -\frac{6}{\sqrt{2} - 3} + \frac{3}{2}$. There exist three-branch cuts on the x-plane $[-2, -\sqrt{3} - \epsilon], [-\sqrt{3}, \sqrt{3}], \text{and} \ [\sqrt{3} + \epsilon, 2]$ before taking the limit $x_1 \rightarrow x_0 (\epsilon \rightarrow 0)$. These three-branch cuts are joined at the locations of $x = \pm \sqrt{3}$ after taking the limit and they reduce to a single branch cut $[-2, 2]$. Therefore, we can explicitly compute the values (N_0, N_1) as follows: $N_0 = \frac{2}{2\pi i} \int_{\sqrt{3}}^{\sqrt{3}} \left(-\frac{6}{\sqrt{2} - 4} + \frac{3}{2}\right) dx = 7, N_1 = \frac{2}{2\pi i} \int_{\sqrt{3}}^{\sqrt{3}} \left(-\frac{6}{\sqrt{2} - 4} + \frac{3}{2}\right) dx = 1$.

9
calculation,

$$\frac{1}{2\pi i} \tau_{ij} = \frac{\partial^2 F_p(S_k)}{\partial S_i \partial S_j} - \delta_{ij} \sum_{l=1}^{n} \frac{N_l}{N_i} \frac{\partial^2 F_p(S_k)}{\partial S_i \partial S_l} - \delta_{ij} \left(\frac{N_0 - N_f - 2}{N_i} \right) \frac{\partial^2 F_p(S_k)}{\partial S_0 \partial S_l},$$

where \(i, j = 1, 2, \cdots, n\). In the quartic tree-level superpotential case \((n = 1)\) we are considering, there is only one coupling constant and it is given by, due to the cancellation of first two terms above,

$$\frac{1}{2\pi i} \tau = -\frac{i\pi}{16} \frac{(N_0 - N_f - 2)^2}{(N - N_f - 2)^2} \log \left(\frac{16}{1 - k^2} \right),$$

where \(k^2 = \frac{x_0^2 - x_1^2}{x_1^2 - x_0^2}\). Since we are assuming asymptotically free gauge theory, the quantity \((N - N_f - 2)\) is greater than zero. When the condition \((N_0 - N_f - 2) = 0\) is satisfied, \(\tau\) becomes zero. In this case, the asymptotic freedom for \(SO(N_0)\) gauge theory breaks down. Therefore the situation is the same as the one-cut case (equivalently \(n = 0\) case) in which the coupling constant is trivially zero. Our result gives a consistency.

\section{The curve for degenerated \(SO(N)\) gauge theory with massless flavors}

In the non-degenerated case, every root of \(W'_3(x)\) possess at least one D5 brane wrapping around it. For the degenerated case, some roots do not contain wrapping D5 branes around them. At the classical limits, there are symmetry breakings characterized by

$$SO(N) \rightarrow SO(N_0) \times U(N_1), \quad SO(N) \rightarrow U([N/2]), \quad SO(N) \rightarrow SO(N).$$

The last pattern occurs only if further constraints are imposed on the first two breaking patterns. For degenerated case we can write the matrix model curve which is valid on the whole degenerated branch. As we did for pure gauge theory, the dual periods are defined by the integrals over \(x\) and the equation of motion of a single field \(F\) provides one relation. Recalling the simple replacements \((N - 2) \rightarrow (N - N_f - 2)\) and \((N_0 - 2) \rightarrow (N_0 - N_f - 2)\) we made
before, we can obtain the matrix model curve 14 as

\[y_{m,d}^2 = (x^2 + m)^2 + 4F, \quad m = \frac{K^2 - F}{K}, \quad K \equiv \left[\frac{(-\Lambda^2)^{N-N_f-2}}{(-F)^{N_1}} \right]^{\frac{1}{N_0-N_f-2}}. \]

(3.1)

Here we rescaled the function \(K \) and corrected a typo appeared in [15]. This formula depends on the parameter \(F, N_0, N_1, \) and \(N_f \). Turning on a field \(F \) to the particular values will reduce to the last breaking pattern \(SO(N) \rightarrow \widetilde{SO}(N) \) above. When \((N_0 - N_f - 2) = 0 \) (we will meet this situation in the examples below), the above formula becomes ill-defined. We go back to the derivation of the formula 15 and can find another formula for this special case,

\[y_{m,d}^2 = \left(x^2 + D \right)^2 - \frac{4\Lambda^4}{\eta^2}, \quad \eta^{2N_1} = 1, \quad \text{for} \quad (N_0 - N_f - 2) = 0 \]

(3.2)

where \(D \) is arbitrary parameter.

To demonstrate these general solutions (3.1) and (3.2), let us consider \(SO(N) \) gauge theories with \(N_f(\leq N - 3) \) flavors where \(N = 4, 5 \) or 6.

- \(SO(4) \) with \(N_f = 1 \)

There are two breaking patterns on the degenerated case: \(\widetilde{SO(2)} \times U(1) \) and \(U(2) \).

1) For the breaking pattern \(SO(4) \rightarrow \widetilde{SO(2)} \times U(1), \) by substituting the values \((N, N_1, N_f) = (4, 1, 1) \) into (3.1) with the footnote 14 (recall that \(N = N_0 + 2N_1 \)), the matrix model curve from glueball approach can be represented by

\[y_{m,d}^2 = \left(x^2 + m - 2\Lambda^2 \right)^2 + 4F, \quad m = \frac{F}{\Lambda^2} + \Lambda^2. \]

We find that the solutions given in [19] perfectly agree with the above result for \(y_{m,d}^2 \) from glueball approach. In other words, the factorization problem characterized by \(P_4^2(x) - 4x^6\Lambda^2 = H_2^2(x) \left[(x^2 - D)^2 + 4F \right] \) reproduces the above solution where \(D = \Lambda^2 - \frac{F}{\Lambda^2} \) (For the notation of [19], \(a \) is equal to \(-2D \) and \((\alpha^2 + 2\Lambda^2) \) corresponds to \(\Lambda^2 - \frac{F}{\Lambda^2} = D \). Then \(\alpha^2 = -\Lambda^2 - \frac{F}{\Lambda^2} \) which is equal to \(-m \). For \(F = 0 \), there exists a Special branch with \(SO(4) \rightarrow \widetilde{SO(4)} \) and for \((m - 2\Lambda^2)^2 + 4F = 0 \), there exists a Chebyshev branch with \(SO(4) \rightarrow \widetilde{SO(4)} \).

14For the degenerated case also, the relation between \(W_4'(x) \) and \(F_4(x) \) can be written as

\[y_{m,d}^2 = F_4(x) = \left(\frac{W_4'(x)}{x} \right)^2 + 4F, \quad N_f < N - 3, \]

\[y_{m,d}^2 = F_4(x) = \left(\frac{W_4'(x)}{x} \right)^2 + 4F - 4x^2\Lambda^2, \quad N_f = N - 3. \]

In particular, when \(N_f = N - 3 \), the matrix model curve \(y_{m,d}^2 \) has an extra contribution from \(4x^2\Lambda^2 \). Therefore in this particular case, the curve should be \(y_{m,d}^2 = \left(x^2 + m - 2\Lambda^2 \right)^2 + 4F \) and \(m - 2\Lambda^2 = \frac{K^2 - F}{K} \).

15In this case, there is a relation \(2N_1 \log \left\lfloor \frac{4m^2}{(a^2 + b^2)} \right\rfloor = 0 \). By putting \(\eta = \pm \frac{4\Lambda^2}{\eta^{2N_1}} \) and realizing \(D = \frac{1}{2} (a^2 + b^2) \), one gets the above formula.
2) For the breaking pattern $SO(4) \rightarrow U(2)$, we obtain the following matrix model curve from the glueball approach, by plugging the values $(N, N_1, N_f) = (4, 2, 1)$ into (3.1) with the footnote 14,

$$y_{m,d}^2 = (x^2 + m - 2\Lambda^2)^2 + 4F, \quad m = \left(\frac{-F^2}{\Lambda^2}\right)^{\frac{1}{3}} - F \left(\frac{-\Lambda^2}{F^2}\right)^{\frac{1}{3}} + 2\Lambda^2.$$

Again by using the different parametrization (as in previous case) from the one in [19], we can obtain the same matrix model curve with D which is equal to $-m + 2\Lambda^2$ above where the relation $6\alpha^2\Lambda^2 + 14\Lambda^4 - 2(\alpha^2 + 3\Lambda^2)\sqrt{4\alpha^2\Lambda^2 + 9\Lambda^4} = 4F$ (corresponding to $b - a^2/4$ in the notation of [19]) will provide one solution for $\alpha^2 = -m$ in the above. Therefore, the results obtained from two approaches are equivalent to each other.

- $SO(5)$ with $N_f = 1$

 There are two breaking patterns on the degenerated case: $SO\tilde{(3)} \times U(1)$ and $SO\tilde{(1)} \times U(2)$.

 1) For the former case $SO(5) \rightarrow SO\tilde{(3)} \times U(1)$, since the condition $(N_0 - N_f - 2) = 0$ is satisfied, the matrix model curve can be read off, from (3.2),

$$y_{m,d}^2 = (x^2 + D)^2 - 4\Lambda^4.$$

This is exactly the first kind of solution given in [19] and the D here corresponds to $a/2 = -\alpha^2$ there and $-4\Lambda^4$ corresponds to $(b - a^2/4)$. For $D^2 = 4\Lambda^4$, there is a Chebyshev vacuum where $SO(5) \rightarrow SO\tilde{(5)}$.

 2) For the second breaking pattern $SO(5) \rightarrow SO\tilde{(1)} \times U(2)$, by paying attention to the value of N_0, we simply put $N_0 = 1$ and find the following matrix model curve,

$$y_{m,d}^2 = (x^2 + m)^2 + 4F, \quad m = \frac{\eta F}{\Lambda^2} - \eta \Lambda^2$$

where η is 2-nd root of unity. These solutions are exactly the same as the ones from factorization problem in [19] ($m = a/2$ and $b - a^2/4 = 4F$). For $a = \pm2\Lambda^2$ (+ sign corresponds to $\eta = -1$ above and − sign corresponds to $\eta = 1$), there is a Special vacuum where $SO(5) \rightarrow SO\tilde{(5)}$. This curve is the same as the matrix model curve for pure degenerated $SO(4)$ gauge theory [15] ($N - N_f = 4$) where $SO(4) \rightarrow U(2)$.

- $SO(6)$ with $N_f = 1$

 In this case, there are three kinds of breaking patterns on the degenerated case: $SO\tilde{(4)} \times U(1)$, $SO\tilde{(2)} \times U(2)$, and $U(3)$.

 1) For the breaking pattern $SO(6) \rightarrow SO\tilde{(4)} \times U(1)$, the matrix model curve is represented as from (3.1) with $(N, N_1, N_f) = (6, 1, 1)$

$$y_{m,d}^2 = (x^2 + m)^2 + 4F, \quad m = \frac{\Lambda^6}{F} - \frac{F^2}{\Lambda^6}.$$
Identifying $4F$ here with b in [19] (and $m = -a$), we can see the exact agreement. Recall that this curve is identical to the matrix model curve for pure degenerated $SO(5)$ gauge theory [15] ($N - N_f = 5$) where $SO(5) \to SO(3) \times U(1)$.

2) On the other hand, for the breaking pattern $SO(6) \to U(3)$, the matrix model curve can be written as from (3.1) together with $(N, N_1, N_f) = (6, 3, 1)$

$$y_{m,d}^2 = \left(x^2 + m\right)^2 + 4F, \quad m = \frac{\eta F}{\Lambda^2} - \eta^2 \Lambda^2$$

where $\eta^3 = 1$. By identifying (a, b) with $(-m, 4F)$, we can see the complete agreement with the first, second and third solutions of the equation (6.38) in [19] although we have not written them explicitly. For $b = 4F = 0$, this leads to a Special vacuum of $SO(6) \to \hat{SO}(6)$.

3) For the breaking pattern $SO(6) \to \hat{SO}(2) \times U(2)$, the solution from factorization was not new one but can be written as the previous solution we have discussed already.

- $SO(6)$ with $N_f = 2$
 1) For the breaking pattern $SO(6) \to \hat{SO}(4) \times U(1)$, the matrix model curve can be written as from (3.2)

$$y_{m,d}^2 = \left(x^2 + D\right)^2 - 4\Lambda^4.$$

This corresponds to the first kind solution in [19]. When $D^2 = 4\Lambda^4$, this will lead to a Chebyshev vacuum with $SO(6) \to \hat{SO}(6)$.

2) For the breaking pattern $SO(6) \to \hat{SO}(2) \times U(2)$, the matrix model curve is given by from (3.1) with $(N, N_1, N_f) = (6, 2, 2)$

$$y_{m,d}^2 = \left(x^2 + m\right)^2 + 4F, \quad m = \frac{\eta F}{\Lambda^2} - \eta \Lambda^2$$

where η is 2-nd root of unity. This can be seen from the degenerated pure $SO(4)$ gauge theory with the breaking pattern $SO(4) \to U(2)$ [15] through the addition map. If we change the parametrization by $4F = 4\eta a\Lambda^2 + 4\Lambda^4$, the above matrix model curve can be rewritten as

$$y_{m,d}^2 = \left(x^2 + a\right)^2 + 4\eta \Lambda^2 x^2,$$

which is exactly the same as the second kind of solution in [19]. For $a = 0$, it gives a Chebyshev vacuum of $SO(6) \to \hat{SO}(6)$. For $a = -\eta \Lambda^2$, a Special branch appears. 16

- $SO(6)$ with $N_f = 3$

In this case, there are three breaking patterns: $\hat{SO}(4) \times U(1)$, $\hat{SO}(2) \times U(2)$ and $U(3)$.

16For the breaking pattern $SO(6) \to U(3)$, we can predict the following matrix model curve, from (3.1) with $(N, N_1, N_f) = (6, 3, 2)$, $y_{m,d}^2 = \left(x^2 + m\right)^2 + 4F$, and $m = \frac{\eta^2 x^2}{\Lambda^2} - \frac{1}{\Lambda} \Lambda F x^2$ where $\eta^8 = 1$. In this case, the factorization problem becomes very complicated. Since we cannot obtain the explicit results for the matrix model curve from the factorization, we have not checked them in this example.
1) For the first two cases, we expect that the matrix model curves are the same as the ones in $SO(4)$ theory with $N_f = 1$ as discussed above, which comes from the addition map for massless case. For the breaking pattern $SO(6) \rightarrow \widehat{SO}(4) \times U(1)$, the matrix model curve can be represented as from (3.1) with the footnote 14

$$y_{m,d}^2 = \left(x^2 + m - 2\Lambda^2\right)^2 + 4F, \quad m = \frac{F}{\Lambda^2} + \Lambda^2.$$

From the result of [19], the matrix model curve was $\tilde{y}_m^2 = (x^2 - \alpha^2 - 2\Lambda^2)^2 - 4\alpha^2 - 4\Lambda^4$. By introducing a new field $4F = -4\alpha^2\Lambda^2 - 4\Lambda^4$, one can identify $\alpha^2 = -\Lambda^2 - \frac{F}{\Lambda^2}$ which is equal to $-m$ in the above.

2) For the breaking pattern, $SO(6) \rightarrow \widehat{SO}(2) \times U(2)$, from (3.1) with the footnote 14 the matrix model curve can be obtained, with $(N, N_1, N_f) = (6, 2, 3)$,

$$y_{m,d}^2 = \left(x^2 + m - 2\Lambda^2\right)^2 + 4F, \quad m = \left(-\frac{F^2}{\Lambda^2}\right)^{\frac{1}{3}} - F \left(-\frac{\Lambda^2}{F^2}\right)^{\frac{1}{3}} + 2\Lambda^2.$$

As expected, this matrix model curve is the same as the one in $SO(4)$ theory with $N_f = 1$ case and agrees with the one from the factorization problem. In other words, the factorization problem for $SO(6)$ is solved by the matrix model curve. For the breaking pattern $SO(6) \rightarrow \widehat{SO}(6)$, the factorization problem becomes so complicated was the SW curve does not possess any power of x^2, contrary to the factorization problem for $SO(N) \rightarrow \widehat{SO}(N_0) \times U(N_1)$, $N_0 \neq 0$ in which the SW curve has a power of x^2 (either Chebyshev or Special branch) making the factorization easier. Therefore, at least one expects that our matrix model curve (3.1) and (3.2) will predict the solutions for the degenerated $SO(N)$ gauge theories with $N_f(\leq N - 3)$ massless flavors where $N \geq 7$ and $SO(N) \rightarrow \widehat{SO}(N_0) \times U(N_1)$, $N_0 \neq 0$.

The last one is the $SO(6) \rightarrow U(3)$ breaking pattern. In this case the matrix model curve is given by, from (3.1) and the footnote 14 with $(N, N_1, N_f) = (6, 3, 3)$, $y_{m,d}^2 = (x^2 + m - 2\Lambda^2)^2 + 4F$, and $m = \left(\frac{F^3}{\Lambda^6}\right)^{\frac{1}{3}} - F \left(-\frac{\Lambda^2}{F^2}\right)^{\frac{1}{3}} + 2\Lambda^2$. Since the factorization problem becomes very complicated, we have not checked them in this example.
4 The $n = 0$ and $n = 1$ singularity: $USp(2N)$ gauge theory with massless flavors

As in the $SO(N)$ case discussed previous section, we can obtain the matrix model curve without explicit calculation by looking at the pure $USp(2N)$ gauge theory. We only have to replace the expression $(2N + 2)$ in the result of [15] for the matrix model curve with $(2N - N_f + 2)$. With this replacement in mind, we immediately obtain the matrix model curve near the singularity on the non-degenerated case from the glueball approach:

\[y_m^2 = x^2 (x^2 + m)^2 + \langle f_2 \rangle x^2 + \langle f_0 \rangle = [x^2 + 2\eta\Lambda^2 (1 + c)]^2 (x^2 + 4\eta\Lambda^2), \]

where the fields, parameter of a superpotential, and glueball field are given by

\[\langle f_2 \rangle = 4\eta^2\Lambda^4 (1 + 2c), \quad \langle f_0 \rangle = 16\eta^3\Lambda^6 (1 + c)^2, \]

\[m = 2\eta\Lambda^2 (2 + c), \quad \langle S \rangle = -\eta^2\Lambda^4 (1 + 2c), \quad c \equiv \cos \left(\frac{2\pi N_1}{2N - N_f + 2} \right). \quad (4.1) \]

Here η is the $(2N - N_f + 2)$-th root of unity, that is $\eta^{2N-N_f+2} = 1$. This matrix model curve with massless flavors is exactly the same as pure case with the replacement $(2N + 2) \rightarrow (2N - N_f + 2)$. Note that the above solutions have the special combination $(2N - N_f + 2)$ which reflects the addition map discussed in [20], relating the Chebyshev branches (or the Special branches) of two different gauge groups. Namely, the curve of $USp(2N)$ with N_f massless flavors can be reduced to the curve of $USp(2N - 2r)$ with $(N_f - 2r)$ massless flavors.

Let us demonstrate these general features (4.1) explicitly by comparing them with the results from strong-coupling approach obtained in [20] already. Let us consider $USp(2N)$ gauge theories with $N_f(\leq 2N + 1)$ flavors where $N = 2$ or 3.

- $USp(4)$ with $N_f = 1$

 From the results in [20], the matrix model curve has an extra double root at $d = \frac{3\pm \sqrt{3}}{2}\Lambda^2\epsilon$ on the non-degenerated case. It was factorized as $y_m^2 = (t + \frac{3\pm \sqrt{3}}{2}\epsilon\Lambda^2)^2 (t + 4\epsilon\Lambda^2)$ where ϵ is 5-th root of unity. On the other hand, the matrix model curve from the glueball approach

18 The effective glueball superpotential for massless flavors is $W_{\text{glue}} = 2\pi i [(2N_0 + 2 - N_f)\Pi_0 + 2N_1\Pi_1] - 2(2N + 2 - N_f)S\log (\frac{2\rho}{\Lambda^4})$.

19 By recognizing the matrix model curve for $USp(2N)$ gauge theory characterized by $y_m^2 = \prod_{i=0}^2 (x^2 - x_i^2)$, one can read off the matrix model curve for $USp(2N)$ with flavors from the curve for $SO(N)$ gauge theory with flavors by replacing $(N - 2) \rightarrow (2N + 2), x_i^2 \rightarrow -x_i^2$ where $i = 0, 1, 2$ as follows: $x_0^2 = -4\eta\Lambda^2$, and $x_1^2 = -2\eta\Lambda^2 (1 + c)$ where η satisfies the condition $\eta^{2N-N_f+2} = 1$ for $(2N - N_f + 2)$ even and $\eta^{2N-N_f+2} = -1$ for $(2N - N_f + 2)$ odd. When we define $\epsilon = -\eta$ it satisfies $\epsilon^{2N-N_f+2} = 1$ for both cases. The solutions can be rewritten as $x_2^2 = 4\epsilon\Lambda^2$, $x_0^2 = 2\epsilon\Lambda^2 (1 + c)$, and $\epsilon^{2N-N_f+2} = 1$ where c is given in (4.1). This is exactly the same as (4.1) by using the different parametrization.

20 We use a relation $t = x^2$ all the time in this paper.
becomes, from (4.1) with \((N, N_1, N_f) = (2, 1, 1)\),

\[y_m^2 = \left(x^2 + \frac{3 \pm \sqrt{5}}{2} \eta \Lambda^2 \right)^2 \left(x^2 + 4 \eta \Lambda^2 \right) \]

where the other values in different parametrization are given by

\[m = \frac{7 \pm \sqrt{5}}{2} \eta \Lambda^2, \quad \langle f_2 \rangle = 2 \left(1 \pm \sqrt{5} \right) \eta^2 \Lambda^4, \quad \langle f_0 \rangle = 2 \left(7 \pm 3 \sqrt{5} \right) \eta^3 \Lambda^6. \]

Here \(\eta\) is 5-th root of unity. Now it is easy to see the exact agreement between two results.

- \(USp(4)\) with \(N_f = 2\)

The matrix model curve obtained from the factorization problem can be represented, at singular point, as \(y_m^2 = (t + 2 \eta \Lambda^2)^2 (t + 4 \eta \Lambda^2)\) where \(\eta\) is 4-th root of unity (Note that there is a typo in [20]). The characteristic function \(B_6(x) = x^2 (x^4 + 4 \eta \Lambda^2 x^2 + 2 \eta^2 \Lambda^4)\) will become \(2 \rho^2 x^2 \Lambda^4 T_2 \left(\frac{x^2}{2 \rho \Lambda^2} + 1 \right)\) with \(\rho^4 = 1\) by identifying \(\rho = \eta\). These are the vacua surviving when the \(\mathcal{N} = 2\) theory is perturbed by a quadratic \((n = 0)\) superpotential and the \(USp(4)\) gauge theory becomes massive at low energies. To see the correctness of our formula (4.1) we put simply the values \((2N_0, N_1, N_f) = (2, 1, 2)\) (Note that \(2N = 2N_0 + 2N_1\)) where \(USp(4) \rightarrow USp(2) \times U(1)\) into the formula (4.1) and get the following matrix model curve,

\[y_m^2 = x^2 \left(x^2 + 4 \eta \Lambda^2 \right)^2 + 4 \eta^2 \Lambda^4 x^2 + 16 \eta^3 \Lambda^6 = \left(x^2 + 2 \eta \Lambda^2 \right)^2 \left(x^2 + 4 \eta \Lambda^2 \right). \]

Now there exists a perfect agreement.

Let us demonstrate how one can determine the precise values for \((2N_0, N_1)\). The results can be rewritten as follows (we put \(\Lambda = 1\) and \(\eta = 1\):

\[y_m^2 = \left(x^2 + 4 \right) \left(x^2 + 2 \right)^2, \quad B_6(x) = x^2 \left(x^4 + 4 x^2 + 2 \right). \]

By using these relations, the function \(T(x) = \text{Tr} \frac{1}{x - \Phi}\) is given as [20]

\[T(x) = \frac{B_6'(x) - \frac{N_f}{x} B_6(x)}{\sqrt{B_6(x)^2 - 4 x^4 \Lambda^8}} + \frac{(N_f - 2)}{x} = \frac{4}{\sqrt{x^2 + 4}}. \]

There exist three branch cuts on the \(x\)-plane \([-2i, -(\sqrt{2} + e)i], [-\sqrt{2}i, \sqrt{2}i], \) and \([(\sqrt{2} + e)i, 2i]\) before taking the limit \(x_1 \rightarrow x_0\). Since we are assuming \(n = 0\) and \(n = 1\) singular case, these three-branch cuts are joined at the locations of \(x = \pm \sqrt{2}i\) after taking the limit and they reduce to a single-branch cut \([-2i, 2i]\). Therefore, we can explicitly calculate the values \((2N_0, N_1)\) as follows:

\[2N_0 = \frac{1}{2\pi i} \oint_{A_0} T(x) dx = \frac{2}{2\pi i} \int_{-\sqrt{2}i}^{\sqrt{2}i} \frac{4}{\sqrt{x^2 + 4}} dx = 2, \]

\[N_1 = \frac{1}{2\pi i} \oint_{A_1} T(x) dx = \frac{2}{2\pi i} \int_{-\sqrt{2}i}^{\sqrt{2}i} \frac{4}{\sqrt{x^2 + 4}} dx = 1. \]
as we expected.

- \(USp(4) \) with \(N_f = 3 \)

The matrix model curve at the singularity was given in [20] as \(\tilde{y}_m^2 = (t + \eta \Lambda^2)^2 (t + 4\eta \Lambda^2) \) where \(\eta^3 = 1 \). Note that \(\alpha^2 \) corresponds to \(-3\eta \Lambda^2\). The \(B_6(x) \) is equal to \(2\rho^3 x^3 \Lambda^3 T_3 \left(\frac{1}{2\rho \Lambda} \right) \) by putting \(\rho = \eta \). At these intersection points, the vacua survive when the \(\mathcal{N} = 2 \) theory is perturbed by a quadratic \((n = 0)\) superpotential. If we put the values \((2N_0, N_1, N_f) = (2, 1, 3)\) where \(USp(4) \to USp(2) \times U(1) \) into our formula (4.1) we obtain the matrix model curve at the singularity,

\[
y_m^2 = x^2 \left(x^2 + 3\eta \Lambda^2 \right)^2 + 4\eta^3 \Lambda^6 = \left(x^2 + \eta \Lambda^2 \right)^2 \left(x^2 + 4\eta \Lambda^2 \right).
\]

We see the agreement between two approaches.

- \(USp(4) \) with \(N_f = 4 \)

There is no non-degenerated case and we will discuss it in the degenerated case later.

- \(USp(4) \) with \(N_f = 5 \)

In [20], the factorization problem resulted in the matrix model curve \(\tilde{y}_m^2 \) which contains an overall factor \(x^2 \). Therefore, there exists no solution for non-degenerated case. We will come to this case for degenerated case later.

- \(USp(6) \) with \(N_f = 2 \)

1) For the first solution \(USp(6) \to USp(4) \times U(1) \) in [20], the matrix model curve has an extra double root at \(d = -\varepsilon \Lambda^2 \), where \(\varepsilon \) is 6-th root of unity. At the singular points, the matrix model can be factorized as \(\tilde{y}_m^2 = (t + 3\varepsilon \Lambda^2)^2 (t + 4\varepsilon \Lambda^2) \). If we simply put the values \((2N_0, N_1, N_f) = (4, 1, 2)\) into our general formula (4.1) for the matrix model curve at the singularities, we obtain the following results,

\[
y_m^2 = x^2 \left(x^2 + 5\eta \Lambda^2 \right)^2 + 8\eta^2 \Lambda^4 x^2 + 36\eta^3 \Lambda^6 = \left(x^2 + 3\eta \Lambda^2 \right)^2 \left(x^2 + 4\eta \Lambda^2 \right)
\]

where \(\eta \) is 6-th root of unity. If we identify this \(\eta \) with \(-\varepsilon \) in the solution for factorization problem, we see the agreement of two approaches. \(^{21}\) This choice for \(B_8(x) \) can be written as a Chebyshev polynomial of degree 3 with appropriate identification. At these intersection points, the vacua survive when the \(\mathcal{N} = 2 \) theory is perturbed by a quadratic \((n = 0)\) superpotential.

By the addition map, the above matrix model curve from glueball approach can be obtained by using \(\tilde{y}_m^2 = \left(x^2 + 4 \right) \left(x^2 + 3 \right)^2 \), and \(B_6(x) = x^2 \left(x^6 + 6x^4 + 9x^2 + 2 \right) \), the function \(T(x) \) is given by \(T(x) = \frac{B_8(x) - x^2 B_6(x)}{\sqrt{B_6(x)^2 - 4x^4 \Lambda^8}} + \frac{(N_f - 2)}{x} = \frac{6}{\sqrt{x^2 + 3}} \). There exist three branch cuts on the \(x \)-plane \([-2i, -(\sqrt{3} + \varepsilon)i], [-\sqrt{3}i, \sqrt{3}i]\), and \([(\sqrt{3} + \varepsilon)i, 2i]\) before taking the limit \(x_1 \to x_0 \). These three-branch cuts are joined at the locations of \(x = \pm \sqrt{3}i \) after taking the limit and they reduce to a single-branch cut \([-2i, 2i]\). Therefore, we can explicitly calculate the values \((2N_0, N_1)\) as follows: \(2N_0 = \frac{1}{2\pi i} \oint_{A_0} T(x)dx = \frac{3}{2\pi i} \int_{-\sqrt{3}i}^{\sqrt{3}i} \frac{6}{\sqrt{x^2 + 4}} dx = 4 \), and \(N_1 = \frac{1}{2\pi i} \oint_{A_1} T(x)dx = \frac{2}{\pi i} \int_{-\sqrt{3}i}^{\sqrt{3}i} \frac{6}{\sqrt{x^2 + 4}} dx = 1 \) as we expected.
also from the pure $USp(4)$ gauge theory $(2N - N_f = 4)$ with the breaking pattern $USp(4) \to USp(2) \times U(1)$ [15].

2) For the second solution $USp(6) \to USp(2) \times U(2)$, the matrix model curve $\hat{g}_m^2 = t (t + d)^2 - 4\eta \Lambda^6$ has an extra double root at $d = -3\epsilon \Lambda^2$, $\epsilon^6 = 1$ and it can be factorized as $\hat{g}_m^2 = (t - \epsilon \Lambda^2)^2 (t - 4\epsilon \Lambda^2)$ with $\eta = e^3$. If we simply put the values $(2N_0, N_1, N_f) = (2, 2, 2)$ into our general formula (4.1) for the matrix model curve at the singularities, we obtain the following results,

$$y_m^2 = x^2 \left(x^2 + 3\eta \Lambda^2 \right) + 4\eta^3 \Lambda^6 = \left(x^2 + \eta \Lambda^2 \right) \left(x^2 + 4\eta \Lambda^2 \right),$$

where η is 6-th root of unity. If we identify this η with $-\epsilon$ in the solution for factorization problem, we see the agreement of two approaches. At the intersection points, the vacua survive when the $\mathcal{N} = 2$ theory is perturbed by a quadratic $(n = 0)$ superpotential.

- $USp(6)$ with $N_f = 4$

The factorization problem [20] turned out that the matrix model curve has an overall x^2 factor and is classified as a degenerated case which will be studied later.

- $USp(6)$ with $N_f = 6$

Again the factorization problem [20] turned out the matrix model curve has an overall x^2 factor and it is classified as a degenerated case which will be studied later.

As in the $SO(N)$ case we can obtain the coupling constant by using simple replacement of $(2N_0 + 2)$ in pure gauge theory result with $(2N_0 - N_f + 2)$ we can get the coupling constant near the singularity without explicit calculation,

$$\frac{1}{2\pi i} \tau_{ij} = \frac{\partial^2 F_p(S_k)}{\partial S_i \partial S_j} - \delta_{ij} \frac{1}{N_i} \sum_{l=1}^n N_l \frac{\partial^2 F_p(S_k)}{\partial S_i \partial S_l} - \delta_{ij} \left(\frac{2N_0 - N_f + 2}{N_i} \right) \frac{\partial^2 F_p(S_k)}{\partial S_0 \partial S_i},$$

where $i, j = 1, 2, \ldots, n$. In the quartic tree-level superpotential case $(n = 1)$, there is only one coupling constant and it is given by,

$$\frac{1}{2\pi i} \tau = -\frac{i\pi}{16} \frac{(2N_0 - N_f + 2)^2}{(2N - N_f + 2)^2} \log \left(\frac{16}{1 - k^2} \right),$$

where $k^2 = \frac{x_1^2(x_2^2 - x_3^2)}{x_1^2(x_2^2 - x_3^2)}$. When the condition $(2N_0 - N_f + 2) = 0$ is satisfied, τ becomes zero. As discussed $SO(N)$ case, the asymptotic freedom for $USp(2N_0)$ gauge theory breaks down and effectively the situation is the same as $n = 0$ case. Our result gives a consistency with $n = 0$ case.

22By using $\hat{g}_m^2 = (x^2 + 4)(x^2 + 1)^2$, and $B_8(x) = x^2 (x^6 + 6x^4 + 9x^2 + 2)$, the function $T(x)$ is given by $T(x) = \frac{6}{\sqrt{x^2 + 4}}$. Therefore, we can explicitly calculate the values $(2N_0, N_1)$ as follows: $2N_0 = 2\pi \int_{-1}^{1} \frac{6}{\sqrt{x^2 + 4}} dx = 2$, and $N_1 = \frac{2}{2\pi i} \int_{i}^{2i} \frac{6}{\sqrt{x^2 + 4}} dx = 2$.

18
5 The curve for degenerated $USp(2N)$ gauge theory with massless flavors

Again, we want to get a matrix model curve for a degenerated $USp(2N)$ case from the degenerated $SO(N)$ results discussed in previous section. From the matrix model curve for $SO(N)$ gauge theory, $y_{m,d}^2 = (x^2 + a^2)(x^2 + b^2)$, by simply replacing (a^2, b^2) of $SO(N)$ with $(-a^2, -b^2)$, we obtain the matrix model curve for $USp(2N)$ gauge theory. In other words, we replace the parameter m of a superpotential in $SO(N)$ with $-m$. Therefore, our matrix model curve becomes
\[y_{m,d}^2 = (x^2 - m)^2 + 4F, \quad m = \frac{K^2 - F}{K}, \quad K \equiv \frac{(-\Lambda^2)^{2N-N_f+2} \eta^{-2N_1}}{(-F)^{N_1}} \]
where we use the notation $USp(2N) \rightarrow USp(2N_0) \times U(N_1)$ with $2N = 2N_0 + 2N_1$.

As in $SO(N)$ case there is a special case in which the condition $(2N_0 - N_f + 2) = 0$ is satisfied and the matrix model curve is given as
\[y_{m,d}^2 = (x^2 + D)^2 - \frac{4\Lambda^4}{\eta^2}, \quad \eta^{2N_1} = 1, \quad \text{for} \quad (2N_0 - N_f + 2) = 0. \]

Let us demonstrate these general features (5.1) and (5.2) explicitly by comparing them with the results from strong-coupling approach obtained in [20] already. Let us consider $USp(2N)$ gauge theories with $N_f(\leq 2N + 1)$ flavors where $N = 2$ or 3.

• $USp(4)$ with $N_f = 2$

In [20], the first kind solution belongs to the degenerated case. To see the equivalence we put the values $(2N_0, N_1, N_f) = (0, 2, 2)$ into our formula (5.1) (Note $2N = 2N_0 + 2N_1$). However in this breaking pattern, since we have the relation $(2N_0 - N_f + 2) = 0$, the matrix model curve (5.2) is given by
\[y_{m,d}^2 = (x^2 + D)^2 - \frac{4\Lambda^4}{\eta^2}, \quad \eta^4 = 1. \]

The factorization problem [20] resulted in $\tilde{y}_{m}^2 = (x^2 - \alpha^2)^2 + 4\Lambda^4$. The gauge group breaks into $USp(4) \rightarrow USp(0) \times U(2)$. One can see the equivalence between two approaches by identifying $\alpha^2 = -D$.

\[\text{The relation between } W_3'(x) \text{ and } F_4(x) \text{ can be written as} \]
\[y_{m,d}^2 = F_4(x) = \left(\frac{W_3'(x)}{x} \right)^2 + 4F, \quad N_f < 2N + 1, \]
\[y_{m,d}^2 = F_4(x) = \left(\frac{W_3'(x)}{x} \right)^2 + 4F - 4x^2\Lambda^2, \quad N_f = 2N + 1. \]

In particular, when $N_f = 2N + 1$, the matrix model curve $y_{m,d}^2$ has an extra contribution from $4x^2\Lambda^2$. Therefore in this particular case, the curve should be $y_{m,d}^2 = (x^2 - m - 2\Lambda^2)^2 + 4F$ and $m + 2\Lambda^2 = \frac{K^2 - F}{K}$.

\[\text{The relation between } W_3'(x) \text{ and } F_4(x) \text{ can be written as} \]
\[y_{m,d}^2 = F_4(x) = \left(\frac{W_3'(x)}{x} \right)^2 + 4F, \quad N_f < 2N + 1, \]
\[y_{m,d}^2 = F_4(x) = \left(\frac{W_3'(x)}{x} \right)^2 + 4F - 4x^2\Lambda^2, \quad N_f = 2N + 1. \]
• \textit{USp}(4) with \(N_f = 3 \)

The first kind of solution in [20] is the one corresponding to the degenerated case with the breaking pattern \(\widetilde{y}_m^2 = (t + D)^2 + 4F \), \(D = \frac{F^2}{\Lambda^2} - \frac{\Lambda^6}{F} \). The \(-\alpha^2 \) corresponds to \(D \) here. To see the agreement, we put the values \((2N_0, N_1, N_f) = (2, 1, 3)\) into (5.1) (the breaking pattern with \((N_0, N_1, N_f) = (0, 2, 3)\) where \(\text{USp}(4) \rightarrow \text{USp}(0) \times U(2) \) reproduces the same result) and get the matrix model curve,

\[
y_{m,d}^2 = \left(x^2 - m\right)^2 + 4F, \quad m = \frac{\Lambda^6}{F} - \frac{F^2}{\Lambda^6}. \]

Therefore, there is an agreement.

• \textit{USp}(4) with \(N_f = 4 \)

1) The first kind of solution in [20] is represented as \(\widetilde{y}_m^2 = (t + d)^2 + 4\eta \Lambda^2 t, \eta^2 = 1 \) and the breaking pattern is \(\text{USp}(0) \times U(2) \). The \(\alpha^2 \) corresponds to \(-d \pm 2\Lambda^2 \). If we change the parametrization for matrix model curve by \(d = \frac{F}{\eta \Lambda^2} - \eta \Lambda^2 \), it is rewritten as \(\widetilde{y}_m^2 = \left(t + \eta \Lambda^2 - \frac{F}{\eta \Lambda^2}\right)^2 + 4F \). To see the agreement, we put the values \((2N_0, N_1, N_f) = (0, 2, 4)\) into our general formula (5.1) and get the matrix model curve as

\[
y_{m,d}^2 = \left(x^2 - m\right)^2 + 4F, \quad m = \frac{\eta F}{\Lambda^2} - \eta \Lambda^2
\]

where \(\eta^2 = 1 \). We see an agreement.

2) For the other breaking pattern \(\text{USp}(4) \rightarrow \text{USp}(2) \times U(1) \), we check the equivalence by putting the values \((2N_0, N_1, N_f) = (2, 1, 4)\) into (5.1). In this case since the condition \((2N_0 - N_f + 2) = 0\) is satisfied, the matrix model curve (5.2) is given by

\[
y_{m,d}^2 = \left(x^2 + D\right)^2 - 4\Lambda^4.
\]

Since the results from the factorization problem is \(\widetilde{y}_m^2 = (t - \alpha^2)^2 - 4\Lambda^4 \), we see a perfect agreement.

• \textit{USp}(4) with \(N_f = 5 \)

1) For the first kind of solution, the matrix model curve can be written as \(\widetilde{y}_m^2 = (t + D)^2 + 4F, D = \epsilon \left(\frac{F^2}{\Lambda^2}\right)^{\frac{1}{2}} - \epsilon F \left(\frac{\Lambda^2}{F^2}\right)^{\frac{1}{2}} \) where \(\epsilon^3 = 1 \). The \(D \) corresponds to \(a/2 \) in [20]. We use different parametrization and the breaking pattern is \(\text{USp}(4) \rightarrow \text{USp}(0) \times U(2) \). Putting the values \((2N_0, N_1, N_f) = (0, 2, 5)\) into (5.1) with the footnote 23 we get the matrix model curve as

\[
y_{m,d}^2 = \left(x^2 - m - 2\Lambda^2\right)^2 + 4F, \quad m = -\eta \left(\frac{F^2}{\Lambda^2}\right)^{\frac{1}{3}} + \frac{F}{\eta} \left(\frac{\Lambda^2}{F^2}\right)^{\frac{1}{3}} - 2\Lambda^2
\]

with \(\eta^3 = 1 \). An agreement between two approaches is evident.

2) By putting the values \((2N_0, N_1, N_f) = (2, 1, 5)\) into (5.1) with the footnote 23 where \(\text{USp}(4) \rightarrow \text{USp}(2) \times U(1) \), we get

\[
y_{m,d}^2 = \left(x^2 - m - 2\Lambda^2\right)^2 + 4F, \quad m = \frac{F}{\Lambda^2} - 3\Lambda^2.
\]
From the results in [20], the second kind of solution can be represented as \(\tilde{y}_m^2 = (t + D)^2 + 4\Lambda^2 (3\Lambda^2 + m) \). If we introduce \(F = \Lambda^2 (3\Lambda^2 + m) \), we get \(m = -3\Lambda^2 + \frac{F}{\Lambda^2} \) and see an agreement.

- **USp(6) with \(N_f = 2 \)**

 The matrix model curve is \(\tilde{y}_m^2 = \left(t - \frac{\Lambda}{2} \right)^2 - 4\epsilon \Lambda^4 \), where \(\epsilon^2 = 1 \) and the breaking pattern is \(USp(6) \rightarrow USp(0) \times U(3) \). In this case since the condition \(2N_0 - N_f + 2 = 0 \) is satisfied, the matrix model curve (5.2) from glueball approach is given as

\[
y_{m,d}^2 = \left(x^2 + D \right)^2 - \frac{4\Lambda^4}{\eta^2}, \quad \eta^6 = 1.
\]

Therefore, by identifying \((\frac{-a}{2}, \epsilon)\) with \((D, \eta^4)\), we can see the agreement between two results.

- **USp(6) with \(N_f = 4 \)**

 1) For the first kind of the solution from the factorization problem it was given in [20] as \(\tilde{y}_m^2 = (t + D)^2 + 4F, \) \(D = \eta^2 \frac{\sqrt{2 + \Lambda^8}}{\sqrt{F}} \), where \(\eta^4 = 1 \). We use different parametrization to see the equivalence easily. By putting the values \((2N_0, N_1, N_f) = (4, 1, 4)\) where \(USp(6) \rightarrow USp(4) \times U(1) \) (We also get the same results if we put \((2N_0, N_1, N_f) = (0, 3, 4)\). Therefore, we cannot tell which one corresponds to \((\frac{2}{2\pi}, J_{A_0} T(x)dx, \frac{1}{2\pi}, J_{A_1} T(x)dx) \) on this branch without doing these computations), we obtain the matrix model curve as

\[
y_{m,d}^2 = \left(x^2 - m \right)^2 + 4F, \quad m = \frac{\eta \Lambda^4}{\sqrt{F}} - \eta^3 \frac{\sqrt{F}}{\Lambda^4}
\]

where \(\eta^4 = 1 \). Therefore, the results obtained from two approaches are the same.

2) For the second solution, the matrix model curve is \(\tilde{y}_m^2 = (t + d)^2 - 4\epsilon \Lambda^4 \), where \(\epsilon^2 = 1 \) and the breaking pattern is given by \(USp(6) \rightarrow USp(2) \times U(2) \). In this case since the condition \(2N_0 - N_f + 2 = 0 \) is satisfied, the matrix model curve (5.2) from glueball approach is given as

\[
y_{m,d}^2 = \left(x^2 + D \right)^2 - \frac{4\Lambda^4}{\eta^2}, \quad \eta^4 = 1.
\]

Therefore, by identifying \((d, \epsilon)\) with \((D, \eta^2)\), we can see the agreement between two results.

This solution is exactly the same as the degenerated solution with \(USp(4) \rightarrow USp(0) \times U(2) \) with \(N_f = 2 \): We can expect to have this feature from the addition map.

- **USp(6) with \(N_f = 6 \)**

 1) The matrix model curve is \(\tilde{y}_m^2 = (t + d)^2 - 4\epsilon \Lambda^2 t \), where \(\epsilon^2 = 1 \) and the breaking pattern is given by \(USp(6) \rightarrow USp(2) \times U(2) \). In this case by putting the values \((2N_0, N_1, N_f) = (2, 2, 6)\) into (5.1), the matrix model curve from glueball approach is given by

\[
y_{m,d}^2 = \left(x^2 - m \right)^2 + 4F, \quad m = \frac{\eta F}{\Lambda^2} - \eta \Lambda^2
\]

where \(\eta \) is 2-nd root of unity. Therefore, by identifying \(F = d\epsilon \Lambda^2 - \Lambda^4 \) and \(\eta = \epsilon \) respectively we can see the agreement between two results. These solutions are exactly the same as the
degenerated solution with $USp(4) \rightarrow USp(0) \times U(2)$ we have discussed ($N_f = 4$): We can expect to have this feature from the addition map.

2) For the breaking pattern $USp(6) \rightarrow USp(4) \times U(1)$, the condition $(2N_0 - N_f + 2) = 0$ is satisfied and the matrix model curve is given by

$$y_{m,d}^2 = (x^2 + D)^2 - 4\Lambda^4$$

which agrees with the one in [20]. The D here corresponds to $-s_1$ there. We can see this solution from the breaking pattern $USp(4) \rightarrow USp(2) \times U(1)$ through the addition map.

In summary, for the $USp(2N)$ gauge theories with $N_f(\leq 2N + 1)$ flavors where $N = 2, 3$, the solutions (5.1) and (5.2) coincide with the matrix model curve from the strong-coupling approach except that we could not check the $USp(6)$ gauge theory with $N_f = 6$ where there exists a breaking pattern $USp(6) \rightarrow USp(0) \times U(3)$ (in this case, $N_0 = 0$). Since the SW curve for $USp(2N) \rightarrow USp(0) \times U(N)$ has less power of x^2 compared with the SW curve for $USp(2N) \rightarrow USp(2N_0) \times U(N_1)$, $N_0 \neq 0$, the factorization problem will be more complicated due to the existence of many parameters. Therefore, one expects that our matrix model curve (5.1) and (5.2) will predict the solutions for the degenerated $USp(2N)$ gauge theories with $N_f(\leq 2N + 1)$ massless flavors where $N \geq 4$ and $USp(2N) \rightarrow USp(2N_0) \times U(N_1)$, $N_0 \neq 0$.

6 The curve for degenerated $SO(N)$ gauge theory with massive flavors

For the massive case, there exists one extra condition $W_3'(\pm m_f) = 0$ where $m_f(\neq 0)$ is the mass of flavor which is different from the m introduced in [15] or section 2 as a parameter of a matrix model curve. From this condition, the mass of flavor can be written as

$$m_f^2 = -\frac{1}{2} \left(x_0^2 + x_1^2 + x_2^2 \right), \quad W_3'(x) = x \left(x^2 - m_f^2 \right).$$

Equivalently, $m_f = \pm i \sqrt{\frac{x_0^2 + x_1^2 + x_2^2}{2}}$ is pure imaginary where the matrix model curve is described by $y_m^2 = \prod_{i=0}^2 (x^2 + x_i^2)$ with $x_0 < x_1 < x_2$. The fact that m_f is pure imaginary implies the flavor-dependent part F_{flavor} can be written in terms of the dual period Π_1 (not Π_0) and other term. Therefore, we encounter a complete different story when the masses of flavors are nonzero. The absolute value $|m_f|$ is greater than x_0: $x_0 < |m_f|$. When we take the singular limit $x_0^2 \rightarrow x_0^2$, the three-branch cuts $[-ix_2, -ix_1], [-ix_0, ix_0]$ and $[ix_1, ix_2]$ are joined at $x = \pm ix_0$.

\footnote{For the last breaking pattern $USp(6) \rightarrow USp(0) \times U(3)$, since the factorization problem was not solved exactly in [20], we cannot check the results explicitly. We simply put the results from glueball approach, $y_{m,d}^2 = (x^2 + m)^2 + 4F$, and $m = \sqrt{\frac{\eta^4}{\Lambda^4} - \frac{2^{4/3}}{n}}, \eta^8 = 1.$}
As in massless cases, we want to study two topics, 1) the behavior of \(n = 0 \) and \(n = 1 \) singularities and 2) the curve for degenerated case. Although for the degenerated case, we obtain a general matrix model curve (in the sense that the curve holds for the generic value of \(N \)), as we will see below, there exist some difficulties for \(n = 0 \) and \(n = 1 \) singularities which will be discussed in next section. Thus, in this section we concentrate on the degenerated case in which the matrix model curve can be written as \(y_m^2 = x^2 (x^2 + a^2) (x^2 + b^2) \). According to the notation above, we simply put the values \((x_0, x_1, x_2) \) as \((0, a, b) \). There are two-branch cuts \([-ib, -ia]\) and \([ia, ib]\). The mass of flavors can be written as \(m_f = \pm \sqrt{\frac{a^2+b^2}{2}} \), as before. Therefore, the position of mass is always on the branch cuts: \(a < |m_f| < b \). Recall that the property of the integral\(^{25}\),

\[
\int_{ix_0}^{\Lambda_0} y_m dx = \int_P^{\Lambda_0} y_m dx = \int_{ix_2}^{\Lambda_0} y_m dx, \quad ix_0 < P < ix_2.
\]

In addition, we have to pay attention to the form of \(\mathcal{F}_{\text{flavor}} \). Naively the contributions from \(\mathcal{F}_{\text{flavor}} \) is given by (2.1). However, to get the phase factor correctly it should be as follows and by simple manipulations it is written as a dual period \(\Pi_1 \) plus other term:

\[
\mathcal{F}_{\text{flavor}} = N_f \int_{m_f}^{\Lambda_0} y_m dx + N_f \int_{-\Lambda_0}^{-m_f} y_m dx = 2\pi i N_f \Pi_1 + 2N_f \int_{\Lambda_0}^{\Lambda_0} y_m dx.
\]

Note that we used the fact that \(\int_{ix_2}^{\Lambda_0} y_m dx = \pi i \Pi_1 \). In previous paper [15], there was a typo in a dual period \(\Pi_1 \). Therefore, the effective superpotential with massive flavors in degenerated branch can be given as

\[
W_{\text{eff}} = 2\pi i [(N_0 - 2) \Pi_0 + (2N_1 - N_f) \Pi_1] - 2 (N_1 - 2 - N_f) S \log \left(\frac{\Lambda}{\Lambda_0} \right) - 2N_f \int_{\Lambda_0}^{\Lambda_0} y_m dx.
\]

(6.3)

It is ready to calculate the equations of motion for the fields \(f_0 \) and \(f_2 \), in general. When we compute the equation of motion for a field \(F \) for degenerated case, it is noteworthy to observe the following relation under the large \(\Lambda_0 \) limit where \(y_m^2 = x^2 (x^2 + a^2) (x^2 + b^2) = x^2 \left(\left(x - m_f \right)^2 + 4F \right) \),

\[
2N_f \int_{i\Lambda_0}^{\Lambda_0} \frac{\partial y_m}{\partial F} dx \simeq -4N_f \log i.
\]

\(^{25}\)One can consider a noncompact cycle \(\bar{B}_1 \) which has an intersection number one with \(A_1 \) compact cycle and meet at \(x = m_f = P \). Then since the closed loop \(B_1 - \bar{B}_1 \) does not contain any pole in the \(y_m(x) \), there exists a relation \(\oint_{B_1 - \bar{B}_1} y_m dx = 0 \). Therefore, the dual period \(\Pi_1 = \frac{1}{2\pi i} \oint_{\bar{B}_1} y_m dx \) can be written as \(\frac{1}{2\pi i} \int_{ix_2}^{\Lambda_0} y_m dx + \frac{1}{2\pi i} \int_{\Lambda_0}^{ix_0} y_m dx \) which will be \(\frac{1}{2\pi i} \int_{ix_2}^{\Lambda_0} y_m dx \). We perform similar computation for the cycle \(\bar{B}_1 \) and obtain \(\frac{1}{2\pi i} \int_{\Lambda_0}^{ix_0} y_m dx \) By changing the upper bound \(i\Lambda_0 \) into \(\Lambda_0 \) with an extra term, we get the relation \(\int_P^{\Lambda_0} y_m dx = \int_{ix_2}^{\Lambda_0} y_m dx \).
By using previous results given in [15] and this log \(i \)-term, we obtain one equation of motion,

\[
(N_0 - 2) \log \left| \frac{4\Lambda^2}{(a + b)^2} \right| + (2N_1 - N_f) \log \left| \frac{4\Lambda^2}{(b^2 - a^2)} \right| - N_f \log i = 0. \tag{6.4}
\]

Note the last term for the phase factor which comes from the last term in the formula (6.3). Strictly speaking, the coefficient in the last term (6.4) we got from the glueball approach is 2, not \(-1\). It is not clear how this arises but on the other hand, the strong-coupling approach implies that the relation (6.4) should be correct. Therefore, after we solve this equation, the matrix model curve can be represented as

\[
y_{m,d}^2 = \left(x^2 - m_f^2 \right)^2 + 4F, \quad m_f^2 = -\frac{K^2 - F}{K}, \quad K \equiv \left[\frac{(\epsilon\Lambda^2)^{-2}\epsilon(i\Lambda^2)^{-N_f}}{(\eta i \sqrt{F})^{-2N_1 - N_f}} \right]^{\frac{1}{8\Lambda^2}}. \tag{6.5}
\]

where \(\epsilon^2 = \eta^2 = 1 \). Recall that \(m_f^2 = -\frac{(a^2 + b^2)}{2} \) and \(4F = -\frac{(b^2 - a^2)^2}{4} \). The quartic (in \(x \)) matrix model curve in the breaking pattern \(SO(N) \to SO(N_0) \times U(N_1) \) with \(N_f \) massive flavors \((N = N_0 + 2N_1) \) depends on \(N_0, N_1, N_f \) and a field \(F \). Contrary to the non-degenerated case, this formula is always valid (On the non-degenerated case, there exists another condition \(c < 0 \) where \(c \) is given by (7.10) or (7.11) which will be discussed in next section). Note that we use a different notation to see the condition \(W_3^T(\pm m_f) = 0 \) easily. When the condition \((N_0 - 2) = 0\) is satisfied, we have to use different formula, as we did before,

\[
y_{m,d}^2 = \left(x^2 - m_f^2 \right)^2 + \frac{4\Lambda^4}{\eta^2}, \quad \eta^{2N_1 - N_f} = i^{N_f}, \quad \text{for} \quad (N_0 - 2) = 0. \tag{6.6}
\]

Here we used the equation (6.4) when \((N_0 - 2) = 0\) and identified \(\eta \) with \(\pm \frac{4\Lambda^2}{b^2 - a^2} \). Note \(m_f^2 = -\frac{1}{2} (a^2 + b^2) \).

The discussions above are valid to the \(r = 0 \) branch studied in [19]. The immediate question is how do we represent the matrix model curve for \(r \neq 0 \) vacua? As already discussed in [6], the nonzero \(r \)-vacua can be realized by changing a mass parameter \(m_f \). If the singularity passes through the first cut (enclosed by the \(A_1 \) contour), the \(A_1 \) contour is deformed and has transformed to \(A_1 + C_1 - \tilde{C}_1 \). Note that in our present case, the contours \(A_1 \) and \(C_1(\tilde{C}_1) \) correspond to a contour around the branch cut \([ix_1, ix_2]\) and a contour around \(m_f \) on the upper(lower) sheet respectively. On the pseudo-confining vacua the singularity is located on the second sheet, so we have \(\frac{1}{2\pi i} \oint_{\tilde{C}_1} T(z)dz = 0 \) and \(\frac{1}{2\pi i} \oint_{C_1} T(z)dz = 1 \). After transition we see

\[2\pi i \frac{\partial T}{\partial F} = 2 \log \left| \frac{4\Lambda^2}{(a + b)^2} \right|, \quad 2\pi i \frac{\partial T}{\partial F} = 2 \log \left| \frac{4\Lambda^2}{(b^2 - a^2)} \right|.
\]

In particular, when \(N_f = N - 3 \), the matrix model curve \(y_{m,d}^2 \) has an extra contribution from \(4\Lambda^2 (x^2 - m^2) \).

Therefore, in this particular case, the curve should be \(y_{m,d}^2 = \left(x^2 - m_f^2 - 2\Lambda^2 \right)^2 + 4F \) and \(m_f^2 + 2\Lambda^2 = -\frac{K^2}{K} \).
have \(N_1 - 1 = \frac{1}{2\pi i} \int_{A_1} T(z) dz \). Thus, the effective value of \(N_1 \) is reduced by 1 in this transition. Therefore, if we pass through \(r \)-singularities, after transition the effective value of \(N_1 \) has been reduced by \((N_1 - r)\). In addition, the effective number of flavor is also reduced by \((N_f - r)\).

The contribution from the singularity on the first sheet has different sign from the one on the second sheet because the sign of \(y_m \) is different between the two sheets. Therefore, by adding the quantity \(r \) from the second sheet, \(\mathcal{F}_{\text{flavor}} \) on the \(r \)-branch can be summed and represented as follows:

\[
\mathcal{F}_{\text{flavor}} = (N_f - r) \int_{m_f}^{\Lambda_0} y_m dx + (N_f - r) \int_{-\Lambda_0}^{-m_f} y_m dx + r \int_{-\Lambda_0}^{\Lambda_0} (-y_m) dx + r \int_{-\Lambda_0}^{-m_f} (-y_m) dx
\]

where we introduce the following notation,

\[
\tilde{N} = N - 2r, \quad \tilde{N}_f = N_f - 2r, \quad \tilde{N}_1 = N_1 - r. \tag{6.7}
\]

Therefore, by combining the modified \(N_1 \) and the contribution from the flavors, after transition the effective superpotential can be given as

\[
W_{\text{eff}} = 2\pi i \left[(N_0 - 2)\Pi_0 + (2\tilde{N}_1 - \tilde{N}_f)\Pi_1 \right] - 2(\tilde{N} - 2 - \tilde{N}_f)S \log \left(\frac{\Lambda}{\Lambda_0} \right)
\]

\[-2\tilde{N}_f \int_{i\Lambda_0}^{\Lambda_0} y_m dx.
\]

In the log term, we used the fact \(\tilde{N} - 2 - \tilde{N}_f = N - 2 - N_f \). This effective superpotential for nonzero \(r \)-vacua takes the same form for \(r = 0 \) vacua \((6.3)\) with modified quantities \((6.7)\) and therefore includes \((6.3)\).

Now it is straightforward to obtain the matrix model curve for \(r \neq 0 \) vacua. The general matrix model curve \(^{28}\) can be given by starting with \((6.5)\) and changing the values \((N, N_1, N_f)\) appearing in \((6.5)\) into \((\tilde{N}, \tilde{N}_1, \tilde{N}_f)\) where they are defined as in \((6.7)\):

\[
y_{m,d}^2 = \left(x^2 - m_{f,j}^2 \right)^2 + 4F, \quad m_{f,j}^2 = -\frac{K^2 - F}{K}, \quad K \equiv \left[\left(\epsilon \Lambda^2 \right)^{\tilde{N} - 2} - \left(\epsilon i \Lambda^2 \right)^{-\tilde{N}_f} \right]^{-1}_{n_0 - 2} \tag{6.8}
\]

where \(\epsilon^2 = \eta^2 = 1 \) and moreover when the \(N_0 \) is equal to 2, as we did before, the matrix model curve with modified quantities \((6.7)\) becomes

\[
y_{m,d}^2 = \left(x^2 - m_{f,j}^2 \right)^2 - \frac{4\Lambda^4}{\eta^2}, \quad \eta^{2\tilde{N}_1 - \tilde{N}_f} = i^{\tilde{N}_f}, \quad \text{for} \quad (N_0 - 2) = 0. \tag{6.9}
\]

\(^{28}\)When \(\tilde{N}_f = \tilde{N} - 3 \), the matrix model curve should be \(y_{m,d}^2 = \left(x^2 - m_{f,j}^2 - 2\Lambda^2 \right)^2 + 4F \) and \(m_{f,j}^2 + 2\Lambda^2 = -\frac{K^2 - F}{K} \).
Therefore both equations (6.8) and (6.9) are the most general expressions including (6.5) and (6.6). To demonstrate these general solutions, let us consider some explicit examples, $SO(N)$ theories with $N_f (\leq N - 3)$ flavors for $N = 4, 5, 6$. For $SO(6)$ gauge theories, we only consider even number of flavors as we did in [19].

- $SO(4)$ with $N_f = 1$: Non-baryonic $r = 0$ branch
 1) $SO(4) \rightarrow SO(2) \times U(1)$

 The matrix model curve derived by the factorization problem of degenerated case was given in [19]. After the factorization (Note that the $F_6(x)$ has an overall factor x^2 in the non-degenerated case) we have obtained $F_4(x) = (x^2 - A)^2 - 4\Lambda^2 \left(x^2 - m^2_f\right)$ and from the relation between $W'_{d}(x)$ and $F_4(x)$ one can read off the $W'_{d}(x)$. By the condition $W'_{d}(\pm m_f) = 0$, we see $A = m_f^2$ and the matrix model curve from strong-coupling approach can be written as

 $$\tilde{y}_m^2 = \left(x^2 - m_f^2 - 2\Lambda^2\right)^2 - 4\Lambda^4.$$

 Now let us see this observation from the glueball approach. If we substitute the values $(N_0, N_1, N_f) = (2, 1, 1)$ where $N = N_0 + 2N_1$ into our general formula (6.6) (In this case the condition $(N_0 - 2) = 0$ is satisfied and also see the footnote 27), we obtain the matrix model curve on the degenerated case,

 $$y_{m,d}^2 = \left(x^2 - m_f^2 - 2\Lambda^2\right)^2 + 4\Lambda^4$$

 with the phase factor $\eta = i$. Therefore, we do not see the agreement: $\tilde{y}_m^2 \neq y_{m,d}^2$. Let us go back a derivation for (6.6). According to the strong-coupling approach, the curve is characterized by $\tilde{y}_m^2 = \left(x^2 - m_f^2\right)\left(x^2 - m_f^2 - 4\Lambda^2\right)$. Then a^2 in the matrix model curve $y_{m,d}^2 = (x^2 + a^2)(x^2 + b^2)$ corresponds to $-m_f^2 - 4\Lambda^2$ and b^2 corresponds to $-m_f^2$. So in this particular case, the previous condition $a < |m_f| < b$ does not hold. In other words, the glueball approach is not allowed. 29

- $SO(5)$ with $N_f = 1$: Non-baryonic $r = 0$ branch

To see the equivalence between two approaches easily, we solve the factorization again by using the following parametrization, $P_4^2(x) - 4x^2\Lambda^4 \left(x^2 - m_f^2\right) = H_2^2(x) \left[(x^2 - b)^2 + 4F\right]$. Note $4F = c$ in the notation of [19]. From the relationship between $F_4(x)$ and $W_4(x)$, we obtain $b = m_f^2$ and additionally there exists one equation corresponding to (5.15) of [19]. However for the present purpose, we reexpress it in terms of F by writing a as a function of F or c.
\[F^4 - 2F^2 \Lambda^8 + \Lambda^{16} - F \Lambda^8 m_f^4 = 0. \] Solving this equation, we can get \(m_f^2 \) as follows:
\[m_f^2 = \pm \frac{F^2 - \Lambda^8}{\sqrt{F^4}}. \]

In this case, the matrix model curve is written as
\[\tilde{y}_m^2 = \left(x^2 - m_f^2 \right)^2 + 4F. \]

On the other hand, if we put the values \((N_0, N_1, N_f) = (3, 1, 1)\) where \(SO(5) \rightarrow SO(3) \times U(1) \) into (6.5) we obtain the matrix model curve,
\[\tilde{y}_{m,d}^2 = \left(x^2 - m_f^2 \right)^2 + 4F, \quad m_f^2 = \pm \frac{\Lambda^8 - F^2}{\Lambda^4 \sqrt{F}}. \]

Therefore, there is a perfect agreement. Although there is a breaking pattern \(SO(5) \rightarrow SO(1) \times \tilde{U}(2) \), the corresponding matrix model curve does not exist.

- \(SO(5) \) with \(N_f = 2 \): Non-baryonic \(r = 1 \) branch

From the solution for the factorization, we have obtained
\[\hat{y}_m^2 = (x^2 - s)^2 - 4x^2 \Lambda^2 \]
where we wrote the characteristic function \(P_2(x) \) in [19] as \((x^2 - s)^2\). Taking into account the condition \(W_3'(\pm m_f) = 0 \), we get \(m_f^2 = s \). If we introduce a new notation \(4F \equiv -4\Lambda^4 - 4s\Lambda^2 \), the mass of flavor can be rewritten as
\[m_f^2 = -\Lambda^2 - \frac{F}{\Lambda^2} \]
and the curve becomes
\[\hat{y}_m^2 = \left(x^2 - m_f^2 - 2\Lambda^2 \right)^2 + 4F. \]

Since the breaking pattern of this solution is \(SO(5) \rightarrow SO(1) \times \tilde{U}(2) \), by putting \((\tilde{N}, \tilde{N}_1, \tilde{N}_f, N_0) = (3, 1, 0, 1)\) into our general formula (6.8) (we took \(\epsilon = -1 \)) with the footnote 28, we obtain the matrix model curve,
\[\hat{y}_{m,d}^2 = \left(x^2 - m_f^2 - 2\Lambda^2 \right)^2 + 4F, \quad m_f^2 = -\Lambda^2 - \frac{F}{\Lambda^2}. \]

Therefore, we see the agreement between two approaches.

- \(SO(5) \) with \(N_f = 2 \): Non-baryonic \(r = 0 \) branch

By using the same parametrization as [19] with \(F_4(x) = (x^4 + 4bx^2 + 2c) \) we can represent \(c \) as a function of \(a, b \) and \(m_f \) and there is an extra equation characterized by,
\[a^2 + m_f^2 + 2a(2\Lambda^2 + m_f^2) = 0. \]
To see the equivalence between two approaches let us introduce a new notation \(4F \equiv c - 4b^2 \) and take into account the condition \(W_3'(\pm m_f) = 0 \). Finally, by taking \(2b = -m_f^2 - 2\Lambda^2 \) and solving the two equations (the relation for \(c \) and the above equation) we get the mass
\[m_f^2 = -3\Lambda^2 + \frac{F}{\Lambda^2}. \]
The matrix model curve can be written as
\[\hat{y}_m^2 = \left(x^2 - m_f^2 - 2\Lambda^2 \right)^2 + 4F. \]

If we put \((N_0, N_1, N_f) = (1, 2, 2)\) where there is \(SO(5) \rightarrow SO(1) \times U(2) \) into (6.5) (we took \(\epsilon = -1 \)) with the footnote 27, we obtain the matrix model curve
\[\hat{y}_{m,d}^2 = \left(x^2 - m_f^2 - 2\Lambda^2 \right)^2 + 4F, \quad m_f^2 = \frac{F}{\Lambda^2} - 3\Lambda^2. \]

We see an agreement. In this case, for
\[\left(m_f^2 + 2\Lambda^2 \right)^2 + 4F = 0, \]
there is a Chebyshev branch with \(SO(5) \rightarrow SO(5) \).

- \(SO(6) \) with \(N_f = 1 \): Non-baryonic \(r = 0 \) branch

If we rewrite \(c \) in the results of [19] as \(c = 4F \) the matrix model curve for degenerated case can be represented as
\[\hat{y}_m^2 = \left(x^2 - m_f^2 \right)^2 + 4F \]
with one equation,
\[F^6 - 2F^3\Lambda^{12} - 4F^2m_f^4\Lambda^{12} - 2F^2\Lambda^{16} + 2F^2m_f^2\Lambda^8 - F^2 - \Lambda^8 = 0. \]
\[F m_f^6 \Lambda^{12} + \Lambda^{24} = 0 \] which is the last equation of (5.18) in [19]. Solving this constraint, we can obtain \(m_f^2 \) as follows:

\[m_f^2 = \pm \frac{(F^2 + \Lambda^6)}{i \Lambda^3 F^4}, \quad \text{or} \quad \pm \frac{(F^2 - \Lambda^6)}{\Lambda^3 F^4}. \]

To see the agreement with our general formula we simply put \((N_0, N_1, N_f) = (4, 1, 1)\) where there exists \(SO(6) \to SO(4) \times \hat{U}(1) \) into (6.5) we can get the matrix model curve

\[y_{m,d}^2 = \left(x^2 - m_f^2 \right)^2 + 4F, \quad m_f^2 = \pm \frac{(\Lambda^6 - F^2)}{F^4 \Lambda^3}, \quad \pm i \frac{(\Lambda^6 + F^2)}{F^4 \Lambda^3}. \]

This implies a perfect agreement. For \(m_f^4 + 4F = 0 \), a Chebyshev branch \(SO(6) \to SO(6) \) appears.

1) \(SO(6) \to SO(2) \times \hat{U}(2) \)

First, let us consider the former case. The matrix model curve given in [19] is \(\hat{y}_m^2 = \left(t - m_f^2 \right)^2 + 4\Lambda^4 \) by inserting \(a = m_f^2 + 2\eta \Lambda^2 \) into \(F_4(x) \). By putting \((N_0, N_1, N_f) = (2, 2, 2)\) into our general formula (6.6) we obtain the matrix model curve from the viewpoint of glueball approach,

\[y_{m,d}^2 = \left(x^2 - D \right)^2 + 4\Lambda^4. \]

This leads to an agreement between two approaches. When \(D^2 + 4\Lambda^4 = 0 \), there is a Chebyshev branch \(SO(6) \to SO(6) \).

2) \(SO(6) \to \hat{U}(3) \)

Secondly, we move to the latter case. The solutions were displayed in equation (5.22) of [19]. If we use a new notation \(F \equiv -(b + \Lambda^2)^2 \), the matrix model curve can be rewritten as \(\hat{y}_m^2 = \left(x^2 - m_f^2 \right)^2 + 4F \) with \(m_f^2 = \pm i \frac{(F + \Lambda^4)}{\Lambda^2} \). To see the equivalence with our general formula, we put the breaking pattern on this solution, namely \(SO(6) \to \hat{U}(3) \) into the formula (6.8) and get the matrix model curve

\[y_{m,d}^2 = \left(x^2 - m_f^2 \right)^2 + 4F, \quad m_f^2 = \pm i \frac{(F + \Lambda^4)}{\Lambda^2}. \]

One can see an agreement between two approaches.

- \(SO(6) \) with \(N_f = 2 \): Non-baryonic \(r = 0 \) branch

1) \(SO(6) \to \hat{U}(3) \)

The first kind of solution studied in [19] gives a relation for mass \(m_f^2 = a - 2\eta \Lambda^2 \). There was a typo in the equation of [19]. If we introduce a new notation \(4F \equiv 4a\eta \Lambda^2 - 4\Lambda^4 \), the mass can be rewritten as \(m_f^2 = \eta \left(\frac{F}{\Lambda^2} - \Lambda^2 \right) \). Since this solution has the breaking pattern \(SO(6) \to \hat{U}(3) \)
by putting \((\tilde{N}, \tilde{N}_1, \tilde{N}_f, N_0) = (4, 2, 0, 0)\) into our general formula (6.8) we obtain the matrix model curve

\[
y^2_{m,d} = \left(x^2 - m_f^2 \right)^2 + 4F, \quad m_f^2 = -\epsilon \left(\frac{F}{\Lambda^2} - \Lambda^2 \right)
\]

where \(\epsilon\) is 2-th root of unity. This leads to an agreement.

2) \(SO(6) \rightarrow SO(2) \times \hat{U}(2)\)

The other solution has the matrix model curve \(\tilde{y}^2_m = \left(x^2 - m_f^2 \right)^2 - 4\Lambda^4\). Since the condition \((N_0 - 2) = 0\) is satisfied, the matrix model curve from (6.9) can be rewritten as

\[
y^2_{m,d} = \left(x^2 - m_f^2 \right)^2 - 4\frac{\Lambda^4}{\eta^2}, \quad \eta^2 = 1.
\]

A perfect agreement occurs.

- \(SO(6)\) with \(N_f = 3\): Non-baryonic \(r = 0\) branch

The solution for the breaking pattern \(SO(2) \times \hat{U}(2)\) can be represented as follows: \(\tilde{y}^2_m = \left(x^2 - m_f^2 - 2\Lambda^2 \right)^2 - 4\Lambda^4\). We use \(F = \Lambda^2 (D + m_f^2 + \Lambda^2)\). From the relationship between \(F(x)\) and \(W'(x)\), we have \(D = -m_f^2 - 2\Lambda^2\) implying \(F = -\Lambda^4\). Putting this relation we get the above matrix model curve.

On the other hand, by substituting the values \((N_0, N_1, N_f) = (2, 2, 3)\) where \(SO(6) \rightarrow SO(2) \times \hat{U}(2)\) into (6.6) we obtain the matrix model curve as

\[
y^2_{m,d} = \left(x^2 + D \right)^2 + 4\Lambda^4.
\]

However, as we have discussed in \(SO(4)\) with \(N_f = 1\) case, the glueball approach given by (6.6) does not include this case also: The location of the flavors is different from the region belonging to the branch cut. For \(D^2 - 4\Lambda^4 = 0\), \(SO(6) \rightarrow SO(6)\) Chebyshev branch occurs.

- \(SO(6)\) with \(N_f = 3\): Non-baryonic \(r = 1\) branch

In [19], it was discussed by using the addition map that this branch was the same as the one for \(SO(4)\) with \(N_f = 1\) case. Since our general formula also has the same structure, the glueball approach here reproduces the same results from the factorization problem there. That is, for the breaking pattern \(SO(6) \rightarrow \hat{U}(3)\), the values \((\tilde{N}_0, \tilde{N}_1, \tilde{N}_f) = (0, 2, 1)\) correspond to \((N_0, N_1, N_f) = (0, 2, 1)\) for \(SO(4)\) theory with \(N_f = 1\). Moreover, on the breaking pattern \(SO(6) \rightarrow SO(2) \times \hat{U}(2)\), the values \((\tilde{N}_0, \tilde{N}_1, \tilde{N}_f) = (2, 1, 1)\) correspond to \((N_0, N_1, N_f) = (2, 1, 1)\) of \(SO(4)\) theory with \(N_f = 1\).

In summary, for the \(SO(N)\) gauge theories with \(N_f(\leq N - 3)\) flavors where \(N = 4, 5\) or 6, we have checked that the solutions (6.5), (6.6), (6.8), and (6.9) coincide with the matrix model curve from the strong-coupling approach except that we could not check the \(SO(4)\) gauge theory with \(N_f = 1\) where there exists a breaking pattern \(SO(4) \rightarrow \hat{U}(2)\) (in this case, \(N_0 = 0\)) and \(SO(6)\) with \(N_f = 3\) where there exists a breaking pattern \(SO(6) \rightarrow \hat{U}(3)\) (\(N_0 = 0\)). Therefore,
at least one expects that our matrix model curve (6.5), (6.6), (6.8), and (6.9) will predict the solutions for the degenerated $SO(N)$ gauge theories with $N_f (\leq N - 3)$ massive flavors where $N \geq 7$ and $SO(N) \rightarrow SO(N_0) \times U(\tilde{N}_1), N_0 \neq 0$.

7 Discussion on the $n = 0$ and $n = 1$ singularity with massive flavors

To obtain a general matrix model curve for $n = 0$ and $n = 1$ singularities for our gauge theories, we have to describe the behavior of the matrix model curve $y_m^2 = \prod_{i=0}^2 (x^2 + x_i^2)$ in the limit $x_1 \rightarrow x_0$. Contrary to the degenerated case we have studied in previous section, there exist two possibilities for the position of the mass of flavors. One is $x_0 < |m_f| < x_2$ and the other is $x_2 < |m_f| < \sqrt{\frac{7}{2}} x_2$. In the former case, since the position of flavor mass is on the branch cut $[ix_1, ix_2]$, $\mathcal{F}_{\text{flavor}}$ can be written in terms of a dual period Π_1. Then by following the derivation in previous section we obtain the matrix model curve near the singularity on the non-degenerated case as follows:

$$y_m^2 = x^2 \left(x^2 - m_J^2 \right)^2 + \langle f_2 \rangle x^2 + \langle f_0 \rangle = \left[x^2 \pm 2\eta \Lambda^2 (1 + c) \right]^2 \left(x^2 \pm 4\eta \Lambda^2 \right),$$

where the fields, parameter of a superpotential, and glueball field are given by

$$\langle f_2 \rangle = 4\eta^2 \Lambda^4 (1 + 2c), \quad \langle f_0 \rangle = \pm 16\eta^3 \Lambda^6 (1 + c)^2,$$

$$m_J^2 = \pm 2\eta \Lambda^2 (2 + c), \quad \langle S \rangle = -\eta^2 \Lambda^4 (1 + 2c),$$

$$c \equiv \cos \left[\frac{\langle 2\tilde{N}_1 - \tilde{N}_J \rangle}{\tilde{N} - \tilde{N}_J - 2} \right], \quad \eta_{\tilde{N} - \tilde{N}_J - 2} = i \tilde{N}_J$$

together with (6.7). We can see that the solutions for the roots $x_2^2 = \pm 4\eta \Lambda^2$ and $x_0^2 = \pm 2\eta \Lambda^2 (1 + c)$ satisfy the relation $2x_0^2 \leq x_2^2$, implying that these solutions are consistent with the condition we have assumed before (Note $|m_f| = \sqrt{(2x_0^2 + x_2^2)/2} < x_2$). Note that c should

30 Using this solution from the glueball approach, one obtains the matrix model curve for arbitrary N. For example, for $SO(7)$ with $N_f = 1$ (non-baryonic $r = 0$ branch), when we consider the breaking pattern $SO(3) \times U(2)$, by putting $(N_0, N_1, N_f) = (3, 2, 1)$ into our general formula (6.5) we predict the matrix model curve as, $y_m^2 = \left(x^2 - m_J^2 \right)^2 + 4F$, and $m_J^2 = \pm \left(\Lambda^{10 - d^4} \right) / F^{\sqrt{\Phi_N}}$. For $SO(7)$ with $N_f = 2$ (non-baryonic $r = 1$ branch), after we put $(\tilde{N}, \tilde{N}_1, \tilde{N}_J, N_0) = (5, 1, 0, 3)$ into (6.8) we obtain the matrix model curve, $y_m^2 = \left(x^2 - m_J^2 \right)^2 + 4F$, and $m_J^2 = -\Lambda^6 + \frac{\epsilon^2}{F}$ (In this case, we took $\epsilon = -1$). Moreover, for $SO(7)$ with $N_f = 3$ (non-baryonic $r = 1$ branch), the factorization problem becomes the same as the one for $SO(5)$ with $N_f = 1$ case through the addition map.

31 Note that when we compute the equation of motion for f_0, since the extra piece from the flavor part, an integral $\int_{\lambda_0}^{\lambda_0} \frac{d \theta}{\sqrt{\tilde{x}_1}} dx$, behaves like $O(\Lambda_0^{-2})$, it does not contribute. Then the equation of motion for f_0 looks similar to the pure case [15] and it is given by $\frac{\lambda_1^2 - 2x_0^2}{x_0^2} = -\cos \left[\frac{\pi(2\tilde{N}_1 - \tilde{N}_J)}{\tilde{N} - \tilde{N}_J - 2} \right]$ and the equation of motion for f_2 leads to \(\left(\tilde{N} - \tilde{N}_J - 2 \right) \log \left[\frac{\lambda_1^2}{\lambda_0^2} \right] + N_f \log i = 0 \). After solving this, one gets $x_2^2 = \pm 4\eta \Lambda^2$, and $\eta_{\tilde{N} - \tilde{N}_J - 2} = i \tilde{N}_J$.

30
be negative or zero but $c \neq -1$. When $c = -1$, then this will be the vacuum in the degenerated case. The constraint $|m_f| < x_2$ is too restrictive and most of the examples from factorization problem [19, 20] are beyond this criterion.

There exists one more possibility, $x_2 < |m_f| < \sqrt{2} x_2$. In this case, since F_{flavor} cannot be written in terms of a dual period Π_1, we cannot obtain a general matrix model curve. Namely, the integral F_{flavor} can be represented by an elementary function but when we solve the equations to obtain the roots x_0 and x_2, a general solution for the matrix model curve is not apparent.

In summary, at $n = 0$ and $n = 1$ singularity we obtain some partial results for matrix model curve (the curve does not exist for all the range of N, N_1, and N_f but for some particular values) in which the condition, c is negative or zero ($c \neq -1$), should be satisfied. To see the correctness of the result let us study an example satisfying this condition only. \(^{32}\)

- $SO(5)$ with $N_f = 1$: Non-baryonic $r = 0$ branch

The matrix model curve derived by the factorization was given in [19] as (There is a typo in the presentation of [19]) $y_m^2 = x^2 \left(x^2 - m_f^2 \right)^2 - 4 \Lambda^4 \left(x^2 - m_f^2 \right)$). This matrix model curve has an extra double root at $m_f^2 = 4 \eta \Lambda^2$ where $\eta^2 = 1$ and have the following factorized form, $y_m^2 = (x^2 \pm 2i \Lambda^2)^2 \left(x^2 \pm 4 \eta \Lambda^2 \right)$. To see the equivalence of two approaches we substitute $(N_0, N_1, N_f) = (3, 1, 1)$ where $SO(5) \to SO(3) \times \widetilde{U}(1)$ and $N = N_0 + 2N_1$ into our general formula (7.10) and then obtain the matrix model curve:

$$y_m^2 = \left(x^2 \pm 2 \eta \Lambda^2 \right)^2 \left(x^2 \pm 4 \eta \Lambda^2 \right)$$

where $\eta^3 = i$. Therefore for pure imaginary $\eta = -i$, we see the agreement.

For $USp(2N)$ case, as already discussed in section 4, we have to pay attention to the signs in the matrix model curve. To get the right results for $USp(2N)$ theory from the results for $SO(N)$ theory, we simply replace $x_0^2 \to -x_0^2$, $x_2^2 \to -x_2^2$, and $(N - 2) \to (2N + 2)$ respectively. With this in mind, the matrix model can be written as

$$y_m^2 = x^2 \left(x^2 - m_f^2 \right)^2 + \langle f_2 \rangle x^2 + \langle f_0 \rangle = \left(x^2 \pm 2 \eta \Lambda^2 \right)^2 \left(x^2 \pm 4 \eta \Lambda^2 \right),$$

where the fields, parameter of a superpotential, and glueball field are given by

$$\langle f_2 \rangle = 4 \eta^2 \Lambda^4 (1 + 2c), \quad \langle f_0 \rangle = \pm 16 \eta^3 \Lambda^6 (1 + c)^2,$$

\(^{32}\)For $SO(5)$ with $N_f = 2$ (non-baryonic $r = 0$ branch), the matrix model curve was given in [19] as $y_m^2 = \left(x^2 - m_f^2 \right)^2 \left(x^2 - 4 \Lambda^2 \right)$. To see whether there exists the equivalence of two approaches, we substitute $(N_0, N_1, N_f) = (3, 1, 2)$ into our general formula (7.10) and then obtain the matrix model curve: $y_m^2 = \left(x^2 \pm 2 \eta \Lambda^2 \right)^2 \left(x^2 \pm 4 \eta \Lambda^2 \right)$ where $\eta = -1$ with $m_f^2 = \pm 4 \eta \Lambda^2$. However, in this case, $c = 1$. Therefore, we cannot see an agreement between two approaches. That is, the matrix model curve exists only from the strong-coupling approach. One can easily see that for $SO(6)$ with $N_f = 1$ (non-baryonic $r = 0$ branch), the c value is $1/2$, for $SO(6)$ with $N_f = 2$ (non-baryonic $r = 0$ branch), $c = 1$, and for $SO(6)$ with $N_f = 3$ (non-baryonic $r = 0$ branch) the c value is -1. Most of the examples studied in [19] belong to the case where c is positive or $-1.$
\[
m_j^2 = \pm 2\eta \Lambda^2 (2 + c), \quad \langle S \rangle = -\eta^2 \Lambda^4 (1 + 2c), \quad (7.11)
\]
\[
c \equiv \cos \left[\frac{\pi (2\widetilde{N}_1 - \widetilde{N}_f)}{2N - N_f + 2} \right], \quad \eta^{2\widetilde{N} - \widetilde{N}_f + 2} = i\widetilde{N}_j,
\]
with the modified quantities are given by \(2\widetilde{N} = 2N - 2r, \widetilde{N}_f = N_f - 2r\), and \(2\widetilde{N}_1 = 2N_1 - 2r\). In addition, we can see that the solutions for different parametrization are given by \(x_2^2 = \pm 4\eta\Lambda^2\), and \(x_0^2 = \pm 2\eta\Lambda^2 (1 + c)\) which satisfy the relation \(2x_0^2 \leq x_2^2\), implying that these solutions are consistent with the condition we have assumed before. Note that \(c\) defined in (7.11) should be negative or zero \((c \neq -1)\). \(^{33}\) Let us consider one example.

- \(USp(4)\) with \(N_f = 2\): Non-baryonic \(r = 1\) branch

The matrix model curve can be written as \(\widetilde{y}_m^2 = t^3 - 2m_f^2t^2 + (-4\Lambda^4 + m_f^4) t + 4\Lambda^4m_f^2\) with \(a = -2m_f^2\). Requiring an extra double root it becomes \(\widetilde{y}_m^2 = (t \pm 2i\Lambda^2)^2 (t \pm 4i\Lambda^2)\) at \(m_f^2 = \mp 4i\Lambda^2\). To see the equivalence we put the values \((2\widetilde{N}, 2\widetilde{N}_1, \widetilde{N}_f) = (2, 2, 0)\) where \(USp(4) \to USp(0) \times U(2)\) into (7.11) we obtain the matrix model

\[
y_m^2 = (x^2 \pm 2\eta\Lambda^2)^2 \left(x^2 \pm 4\eta\Lambda^2 \right), \quad \eta^4 = 1.
\]

For the cases of pure imaginary \(\eta = \pm i\), the matrix model curve from the glueball approach coincides with the curve from strong-coupling approach.

Acknowledgments

This research of CA was supported by Korea Research Grant(KRF-2002-015-CS0006). This research of YO was supported by a 21st Century COE Program at TokyoTech “Nanometer-Scale Quantum Physics” by the Ministry of Education, Culture, Sports, Science and Technology. CA is grateful to B. Feng for discussions. YO wants to thank for Hiroyuki Fuji, Katsushi Ito, Shu’ya Mizoguchi and Masaki Shigemori for discussions, and Yukawa Institute for Theoretical Physics where the final stage of this work was undertaken.

\(^{33}\)For \(USp(4)\) with \(N_f = 2\) (non-baryonic \(r = 1\) branch), the matrix model curve is \(\widetilde{y}_m^2 = t^3 + 2\left(m_f^2 - s_1 \right) t^2 + \left(-4\Lambda^4 + m_f^4 - 2m_f^2s_1 + s_1^2 \right) t - 4\left(\Lambda^4m_f^2 - \Lambda^4s_1 \right)\) with \(a = -2m_f^2\). Requiring an extra double root, the matrix model curve becomes \(\widetilde{y}_m^2 = (t \pm 2i\Lambda^2)^2 (t \pm 4i\Lambda^2)\) at \(m_f^2 = \mp 4i\Lambda^2\). To see whether the equivalence arises, let us put \((\widetilde{N}, \widetilde{N}_1, \widetilde{N}_f) = (1, 0, 0)\) into (7.11) where the breaking pattern is \(USp(4) \to U(1) \times USp(2)\) we obtain the matrix model as \(y_m^2 = (x^2 \pm 4\eta\Lambda^2)^3, \eta^4 = +1\). In this case, since \(c = 1\), one cannot see the agreement between two approaches. In other words, there exists only a matrix model curve from strong-coupling approach. One can easily see that for \(USp(6)\) with \(N_f = 2\) (non-baryonic \(r = 0\) branch), the \(c\) value is \(\frac{1}{2}\), for \(USp(6)\) with \(N_f = 4\) (non-baryonic \(r = 0\) branch), \(c = 1\), and for \(USp(6)\) with \(N_f = 6\) (non-baryonic \(r = 0\) branch) the \(c\) value is \(-1\). Most of the examples studied in [20] belong to the case where \(c\) is positive or \(-1\).
References

[1] R. Dijkgraaf and C. Vafa, “Matrix models, topological strings, and supersymmetric gauge theo ries,” Nucl. Phys. B 644, 3 (2002) [arXiv:hep-th/0206255].

[2] R. Dijkgraaf and C. Vafa, “On geometry and matrix models,” Nucl. Phys. B 644, 21 (2002) [arXiv:hep-th/0207106].

[3] R. Dijkgraaf and C. Vafa, “A perturbative window into non-perturbative physics,” [arXiv:hep-th/0208048].

[4] F. Cachazo, M. R. Douglas, N. Seiberg and E. Witten, “Chiral rings and anomalies in supersymmetric gauge theory,” JHEP 0212, 071 (2002) [arXiv:hep-th/0211170].

[5] F. Cachazo, N. Seiberg and E. Witten, “Phases of N = 1 supersymmetric gauge theories and matrices,” JHEP 0302, 042 (2003) [arXiv:hep-th/0301006].

[6] F. Cachazo, N. Seiberg and E. Witten, “Chiral Rings and Phases of Supersymmetric Gauge Theories,” JHEP 0304, 018 (2003) [arXiv:hep-th/0303207].

[7] F. Ferrari, “Quantum parameter space in super Yang-Mills. II,” Phys. Lett. B 557, 290 (2003) [arXiv:hep-th/0301157].

[8] F. Ferrari, “Quantum parameter space and double scaling limits in N = 1 super Yang-Mills theory,” Phys. Rev. D 67, 085013 (2003) [arXiv:hep-th/0211069].

[9] F. Ferrari, “On exact superpotentials in confining vacua,” Nucl. Phys. B 648, 161 (2003) [arXiv:hep-th/0210135].

[10] H. Fuji and Y. Ookouchi, “Comments on effective superpotentials via matrix models,” JHEP 0212, 067 (2002) [arXiv:hep-th/0210148].

[11] F. Cachazo, K. A. Intriligator and C. Vafa, “A large N duality via a geometric transition,” Nucl. Phys. B 603, 3 (2001) [arXiv:hep-th/0103067].

[12] F. Cachazo and C. Vafa, “N = 1 and N = 2 geometry from fluxes,” [arXiv:hep-th/0206017].

[13] D. Shih, “Singularities of N = 1 supersymmetric gauge theory and matrix models,” [arXiv:hep-th/0308001].

[14] C. Ahn and Y. Ookouchi, “Phases of N = 1 supersymmetric SO / Sp gauge theories via matrix model,” JHEP 0303, 010 (2003) [arXiv:hep-th/0302150].
[15] C. Ahn and Y. Ookouchi, “The matrix model curve near the singularities,” [arXiv:hep-th/0309156].

[16] A. Brandhuber and K. Landsteiner, “On the monodromies of N=2 supersymmetric Yang-Mills theory with gauge group SO(2n),” Phys. Lett. B 358, 73 (1995) [arXiv:hep-th/9507008].

[17] U. H. Danielsson and B. Sundborg, “The Moduli space and monodromies of N=2 supersymmetric SO(2r+1) Yang-Mills theory,” Phys. Lett. B 358, 273 (1995) [arXiv:hep-th/9504102].

[18] P. C. Argyres and A. D. Shapere, Nucl. Phys. B 461, 437 (1996) [arXiv:hep-th/9509175].

[19] C. Ahn, B. Feng and Y. Ookouchi, “Phases of N = 1 SO(N(c)) gauge theories with flavors,” [arXiv:hep-th/0306068].

[20] C. Ahn, B. Feng and Y. Ookouchi, “Phases of N = 1 USp(2N(c)) gauge theories with flavors,” [arXiv:hep-th/0307190].

[21] S. G. Naculich, H. J. Schnitzer and N. Wyllard, “Matrix model approach to the N = 2 U(N) gauge theory with matter in the fundamental representation,” JHEP 0301, 015 (2003) [arXiv:hep-th/0211254].

[22] Y. Ookouchi, “N = 1 gauge theory with flavor from fluxes,” [arXiv:hep-th/0211287].

[23] Y. Ookouchi and Y. Watabiki, “Effective superpotentials for SO/Sp with flavor from matrix models,” Mod. Phys. Lett. A 18, 1113 (2003) [arXiv:hep-th/0301226].

[24] C. Ahn and S. Nam, “N = 2 supersymmetric SO(N)/Sp(N) gauge theories from matrix model,” Phys. Rev. D 67, 105022 (2003) [arXiv:hep-th/0301203].

[25] V. Balasubramanian, B. Feng, M. x. Huang and A. Naqvi, “Phases of N = 1 supersymmetric gauge theories with flavors,” [arXiv:hep-th/0303065].

[26] P. C. Argyres, M. Ronen Plesser and A. D. Shapere, “N = 2 moduli spaces and N = 1 dualities for SO(n(c)) and USp(2n(c)) super-QCD,” Nucl. Phys. B 483, 172 (1997), [arXiv:hep-th/9608129].

[27] G. Carlino, K. Konishi and H. Murayama, “Dynamical symmetry breaking in supersymmetric SU(n(c)) and USp(2n(c)) gauge theories,” Nucl. Phys. B 590, 37 (2000) [arXiv:hep-th/0005076].
[28] G. Carlino, K. Konishi, S. P. Kumar and H. Murayama, “Vacuum structure and flavor symmetry breaking in supersymmetric SO(n(c)) gauge theories,” Nucl. Phys. B 608, 51 (2001) [arXiv:hep-th/0104064].

[29] K. Intriligator, P. Kraus, A. V. Ryzhov, M. Shigemori and C. Vafa, “On Low Rank Classical Groups in String Theory, Gauge Theory and Matrix Models,” [arXiv:hep-th/0311181].

[30] K. Landsteiner and C. I. Lazaroiu, “On Sp(0) factors and orientifolds,” [arXiv:hep-th/0310111].

[31] M. Matone, “The affine connection of supersymmetric SO(N)/Sp(N) theories,” JHEP 0310, 068 (2003) [arXiv:hep-th/0307285].

[32] F. Cachazo, “Notes on supersymmetric Sp(N) theories with an antisymmetric tensor,” [arXiv:hep-th/0307063].

[33] S. G. Naculich, H. J. Schnitzer and N. Wyllard, “Matrix-model description of N = 2 gauge theories with non-hyperelliptic Seiberg-Witten curves,” Nucl. Phys. B 674, 37 (2003) [arXiv:hep-th/0305263].

[34] M. Aganagic, K. Intriligator, C. Vafa and N. P. Warner, “The glueball superpotential,” [arXiv:hep-th/0304271].

[35] P. Kraus, A. V. Ryzhov and M. Shigemori, “Loop equations, matrix models, and N = 1 supersymmetric gauge theories,” JHEP 0305, 059 (2003) [arXiv:hep-th/0304138].

[36] L. F. Alday and M. Cirafici, “Effective superpotentials via Konishi anomaly,” JHEP 0305, 041 (2003) [arXiv:hep-th/0304119].

[37] S. G. Naculich, H. J. Schnitzer and N. Wyllard, JHEP 0308, 021 (2003) [arXiv:hep-th/0303268].

[38] H. Fuji and Y. Ookouchi, “Confining phase superpotentials for SO/Sp gauge theories via geometric transition,” JHEP 0302, 028 (2003) [arXiv:hep-th/0205301].

[39] J. D. Edelstein, K. Oh and R. Tatar, “Orientifold, geometric transition and large N duality for SO/Sp gauge theories,” JHEP 0105, 009 (2001) [arXiv:hep-th/0104037].

[40] R. A. Janik, “Exact U(N(c)) → U(N(1)) x U(N(2)) factorization of Seiberg-Witten curves and N = 1 vacua,” [arXiv:hep-th/0311093].