Rounding of low serum creatinine levels and consequent impact on accuracy of bedside estimates of renal function in cancer patients

MJ Dooley,*1,2,4, S Singh1 and D Rischin3

1Pharmacy Department, Peter MacCallum Cancer Centre, St Andrew’s Place, East Melbourne 3002, Australia; 2Department of Pharmacy Practice, Victorian College of Pharmacy, Monash University, 381 Royal Parade, Parkville 3052, Australia; 4Department of Haematology and Medical Oncology, Peter MacCallum Cancer Centre, St Andrew’s Place, East Melbourne 3002, Australia

To compare glomerular filtration rate measured by technetium-99m ([Tc99m]) DTPA clearance with estimated creatinine clearance (CrCl) (Cockcroft and Gault (C&G) method) in patients with serum creatinine (Scr) levels <0.06 mmol l⁻¹, and determine the effect of rounding serum creatinine to 0.06 mmol l⁻¹. Patients with serum creatinine values <0.06 mmol l⁻¹ at the time of [Tc99m] clearance determination were identified. Creatinine clearance was calculated by the C&G method using both actual and rounded Scr values. A total of 419 adults had GFR measured by technetium-99m diethyl triamine penta-acetic acid ([Tc99m] DTPA) clearance. Out of this group, 26 patients had a serum creatinine value <0.06 mmol l⁻¹. The C&G estimates of renal function using actual serum creatinine resulted in an overall overestimation of 12.9% when compared to [Tc99m] DTPA clearance. When the value of serum creatinine was rounded to 0.06 mmol l⁻¹, the formula underestimated renal function by −7.0%. Analysis of estimated creatinine clearance for different levels of renal function showed significant differences to [Tc99m] DTPA clearance. Rounding up of serum creatinine to 0.06 mmol l⁻¹ improved the predictive ability of the C&G method for the patients with [Tc99m] DTPA clearance <100 ml min⁻¹, but worsened the effect in those >100 ml min⁻¹. This work indicates that when bedside estimates of renal function are calculated using the C&G formula actual Scr should be used first to estimate CrCl. If the resultant CrCl is <100 ml min⁻¹, then the Scr should be rounded up to 0.06 mmol l⁻¹ and CrCl recalculated. Further assessment of this approach is warranted in a larger cohort of patients.

Keywords: glomerular filtration rate; Cockcroft and Gault; renal function; creatinine clearance; serum creatinine

An assessment of renal function is required when determining the dosage of cytotoxic drugs that are renally excreted. Ideally, a method for estimating glomerular filtration rate (GFR) is required that may be performed at the bedside. Any such estimate needs to be accurate, convenient and inexpensive, and consequently should be a noninvasive formula-based method, which does not require multiple blood samples or tedious urine collection. Creatinine clearance (CrCl) measurement, through 24-h urine collection, has been used to estimate renal function; however, the reliability of this method is very much dependent on an accurate and complete urine collection, and is therefore frequently unsuitable (Davila and Gardner 1987; McDermott et al., 1987; Chambers et al., 1990; Luke et al., 1990; Robinson et al., 1990; Tsubaki et al., 1993; Millward et al., 1996). Various equations and nomograms have been developed to estimate CrCl from serum creatinine (Scr) concentration (Jelliffe, 1973; Cockcroft and Gault 1976; Martin et al., 1998; Wright et al., 2001).

In practice, some patients are encountered who have very low Scr. When such low results are incorporated into various formulae to estimate CrCl, there is concern that this may result in an inaccurate prediction. It has been a common clinical practice to round up the Scr level of these patients when using bedside estimates of renal function (Bertino, 1993; Smythe et al., 1994). In addition, various clinical trials have stipulated this requirement, for example, the current Phase III GOG clinical trial in first-line treatment of ovarian cancer (GOG182). The most common scenario is to arbitrarily round Scr levels <0.06 to 0.06 mmol l⁻¹ and incorporate this into the Cockcroft and Gault (C&G) formula to estimated renal function. It is recognised by clinicians that this is a subjective decision. One of the reasons for the practice of ‘rounding up’ is concern with respect to the potential overestimation of renal function if very low Scr is used. Using an overestimate of renal function could result in the potential of overdosing of patients with cytotoxic chemotherapy agents, such as carboplatin, especially in patients with low Scr postoperatively who may be malnourished.

The validity of this ‘rounding up’ approach has not been determined. An accurate measurement of GFR is possible by measuring the clearance of the radiolabelled isotopes such as technetium-99m diethyl triamine penta-acetic acid ([Tc99m] DTPA) and chromium 51-ethylene diamine tetra-acetic acid.
Materials and Methods

This was a retrospective study of adult patients with cancer who had GFR measured by $[\text{Tc}^{99m}]$ DTPA clearance at the Peter MacCallum Cancer Centre between March 2000 and June 2003. Patients with Scr values <0.06 mmol$^{-1}$ at the time of $[\text{Tc}^{99m}]$ DTPA clearance determination were identified. Height and actual body weight were measured. Age and gender were recorded.

GFR was determined by $[\text{Tc}^{99m}]$ DTPA clearance (Dooley et al., 2002). $[\text{Tc}^{99m}]$ DTPA was prepared 30–60 min prior to injection using fresh elute and a current DTPA kit (Amersham International formulation). Instant thin layer chromatography was performed on all DTPA preparations approximately 30 min after reconstitution of the kit and at the time of dose administration. Radioactivity was sampled in a Well scintillation counter to confirm labelling efficiency of greater than 98%. $[\text{Tc}^{99m}]$ DTPA (400 MBq) was administered via a three-way tap and cannula to enable correlation with renal imaging. A 10 ml sodium chloride 0.9% flush per dose ensured no dose residue in any of the apparatus. Dose apparatus and injection site were checked for dose residue using a scintillation probe. Blood samples (10 ml) were taken at baseline and at 2, 3 and 4 h postinjection, Plasma was separated and counts obtained. The clearance of $[\text{Tc}^{99m}]$ DTPA was calculated from a single exponential derived from the blood samples between 2 and 4 h after injection. The GFR was calculated without correction for body surface area (BSA).

Scr was measured using an alkaline picrate kinetic method, with Roche Diagnostic Hitachi 912 reagent. Creatinine clearance was then calculated by the C&G method using Eq. (1) from both actual Scr value and then rounded to 0.06 mmol$^{-1}$. Body surface area (Mosteller, 1987) and body mass index (BMI) (World Health Organization, 2000) were calculated using Eqs. (2) and (3).

\[
\text{creatinine clearance} (\text{ml min}^{-1}) = \frac{[140 - \text{age}] \times \text{actual body weight}}{[1 - (\text{sex} \times 0.15)]} \times (0.814 \times \text{Scr}) \text{ (Cockcroft and Gault, 1976)}
\]

where the actual body weight is measured in kilograms, Scr is measured in micromoles per litre, age in years and sex = 0 (males) or 1 (females).

\[
\text{BSA} (m^2) = \left(\frac{\text{height} \times \text{weight}}{3600}\right)^{1/2} \text{ (Mosteller, 1987)}
\]

where BSA is measured in square metres, height in centimeters and body weight in kilograms.

\[
\text{BMI} (kg \cdot m^{-2}) = \frac{\text{weight}}{\text{height}^2}
\]

(BMI (World Health Organisation, 2000)

RESULTS

A total of 419 adults had GFR measured by $[\text{Tc}^{99m}]$ DTPA clearance during the period under study (March 2000 and June 2003). In all, 26 adult patients in this group were found to have Scr of <0.06 mmol$^{-1}$. There were 11 males and 15 females. Patient demographics are detailed in Table 1.

RESULTS

A total of 419 adults had GFR measured by $[\text{Tc}^{99m}]$ DTPA clearance during the period under study (March 2000 and June 2003). In all, 26 adult patients in this group were found to have Scr of <0.06 mmol$^{-1}$. There were 11 males and 15 females. Patient demographics are detailed in Table 1.

Results of measured GFR and estimated CrCl are detailed in Table 2 and shown graphically in Figures 1–4. There were 25 patients with Scr of 0.05 mmol$^{-1}$ and one patient with Scr of 0.04 mmol$^{-1}$.

The C&G estimates of renal function using actual Scr resulted in an overall overestimation of 12.9% when compared to $[\text{Tc}^{99m}]$ DTPA clearance. When the value of Scr was rounded to 0.06 mmol$^{-1}$, the formula underestimated renal function by 7.0%.

The analysis of estimated CrCl for different levels of renal function showed significant differences to $[\text{Tc}^{99m}]$ DTPA clearance. Patients with $[\text{Tc}^{99m}]$ DTPA clearance \leq 100 ml min$^{-1}$ had CrCl estimated that were less predictive than those >100 ml min$^{-1}$. Rounding up of Scr to 0.06 mmol$^{-1}$ improved the predictive ability of the C&G method for the patients with $[\text{Tc}^{99m}]$ DTPA clearance \leq 100 ml min$^{-1}$, but worsened the effect in those with >100 ml min$^{-1}$.

Four patients (15.4%) were underweight (BMI $<18.5 \text{ kg} \cdot \text{m}^{-2}$), 15 (57.7%) patients were normal weight (BMI 18.5–25 kg \cdot m$^{-2}$) and seven (26.9%) patients were overweight (BMI $>25 \text{ kg} \cdot \text{m}^{-2}$). The mean C&G and $[\text{Tc}^{99m}]$ DTPA clearance in BMI categories are detailed in Table 3.

The r^2 (least-squares line) for the $[\text{Tc}^{99m}]$ DTPA clearance measurement ranged from 0.9791 to 0.9999 (mean: 0.9956, s.d.: 0.0061).

DISCUSSION

A small number of patients present with Scr levels <0.06 mmol$^{-1}$, approximately one in 16 patients in this study population. This study evaluated the common practice of arbitrarily rounding Scr in these patients to 0.06 mmol$^{-1}$. There is no published evidence of
the frequency in practice outside anecdotal reports and as specified requirements in assessment of renal function in clinical trials. The results of this study indicate that this practice does not result in a reduction in the precision of the C&G formula to estimate CrCl for patients with GFR ≤ 100 ml min⁻¹, it actually improves the estimate nearer to the true GFR. Conversely, for those patients with a GFR > 100 ml min⁻¹ rounding Scr up to 0.06 mmol l⁻¹ reduced the precision of the estimate. Consequently, for patients with an Scr less than 0.06 mmol l⁻¹ round upwards should only be applied to those whose estimated CrCl is less than

[Tc⁹⁹m] DTPA	Mean ± s.d. (ml min⁻¹)	Range (ml min⁻¹)	MPE (%)	P-value
All	111 ± 46	45–256		
≤ 100 ml min⁻¹	77 ± 14	45–96		
> 100 ml min⁻¹	140 ± 45	103–256		
C&G	117 ± 38	55–207	129	0.352
≤ 100 ml min⁻¹	98 ± 28	55–152	29.2	0.024
> 100 ml min⁻¹	135 ± 38	86–207	−0.1	0.631
C&G (with rounded Scr)	97 ± 30	46–172	−7.0	0.029
≤ 100 ml min⁻¹	82 ± 23	46–127	7.9	0.543
> 100 ml min⁻¹	110 ± 29	72–172	−189	0.003

CrCl = creatinine clearance; Scr = serum creatinine; [Tc⁹⁹m] DTPA = technetium-99m diethyl triamine penta-acetic acid; C&G = Cockcroft and Gault; MPE = mean percentage error.

Table 2 Calculated CrCl values using actual and rounded Scr values compared to [Tc⁹⁹m] DTPA clearance in patients with Scr < 0.06 mmol l⁻¹

Figure 1 [Tc⁹⁹m] DTPA clearance and CrCl estimated by the C&G method using actual Scr values.

Figure 2 [Tc⁹⁹m] DTPA clearance and CrCl estimated by the C&G method using rounded Scr values.

Figure 3 Percentage difference between [Tc⁹⁹m] DTPA clearance and CrCl estimated by the C&G method using actual Scr values.

Low serum creatinine

MJ Dooley et al
Clinical measurements and rounding to 0.085 and 0.088 mmol l\(^{-1}\) may be that these papers utilised 24-h urine collection et al Smythe in poorer correlation with direct measures (Bertino, 1993; that the criterion standard was inulin clearance. However, other further reduction in the precision of their GFR estimates. It is normal GFR. In these patients, rounding of Scr resulted in low producers of muscle creatinine. All these patients had a classified as underweight and hence could be expected to be

There were only four patients in this study who were recalculated. Further assessment of this approach is warranted in a larger cohort of patients.

There are a number of points that need to be acknowledged when considering these results. The use of the Jaffe's method of Scr measurement has been shown to influence the accuracy of the estimate; however, the methodology used in the laboratory for this study has been validated against enzymatic methods and showed less than 1.2% variability, indicating minimal influence on the results (Dooley et al, 2002). There was a fairly small number of subjects included, however, as stated earlier, patients meeting the criteria for assessment represent a small subset of the patient population. This study applied direct measurement of GFR, namely \([\text{Tc}^{99\text{m}}\text{m}]\) DTPA clearance, and the conclusions are not influenced by limitation of comparison to CrCl estimations from 24-h urine collections. The C&G formula was utilised and even though there are other bedside formulae available, all have similar significant limitations (Poole et al, 2002). It must be noted that when any of these bedside estimates are to be used for dosage adjustment of renally eliminated drugs, then the clinician must have an appreciation of the inherent limitations. When an accurate estimate of GFR is required, then clearance should be measured using a method such as \([\text{Tc}^{99\text{m}}\text{m}]\) DTPA or Cr\(^{51}\) EDTA.

This study compared measured GFR (\([\text{Tc}^{99\text{m}}\text{m}]\) DTPA) with estimated CrCl in patients with Scr levels <0.06 mmol l\(^{-1}\). This work indicates that when bedside estimates of renal function are calculated using the C&G formula, then actual Scr should be used first to estimate CrCl. If the resultant CrCl is \(\leq 100\ \text{ml min}^{-1}\), then the Scr should be rounded up to 0.06 mmol l\(^{-1}\) and CrCl recalculated. Further assessment of this approach is warranted in a larger cohort of patients.

REFERENCES

Bertino Jr JS (1993) Measured versus estimated creatinine clearance in patients with low serum creatinine values. \textit{Ann Pharmacother} 27: 1439–1442
Bjorvasson TD, Cocchetto DM, McGowan FX, Verghese G, Sedor F (1983) Nomogram for estimating creatinine clearance. \textit{Clin Pharmacokinet} 8: 365–369
Chambers JT, Chambers SK, Schwartz PE (1990) Correlation between measured creatinine clearance and calculated creatinine clearance in ovarian cancer patients. \textit{Gynecol Oncol} 36: 66–68
Chow MS, Schweizer R (1985) Estimation of renal creatinine clearance in patients with unstable serum creatinine concentrations: comparison of multiple methods. \textit{Drug Intell Clin Pharm} 19: 385–390

Table 3 Calculated CrCl estimates using actual and rounded Scr values in BMI categories in patients with Scr <0.06 mmol l\(^{-1}\)

BMI (kg m\(^{-2}\))	Mean ± s.d. (ml min\(^{-1}\))	Range (ml min\(^{-1}\))	MPE (%)	P-value	
\([\text{Tc}^{99\text{m}}\text{m}]\) DTPA	< 18.5	102±19.9	74–121		
	18.5–25	103±41.2	45–199		
	> 25	133±63.0	70–256		
C&G	< 18.5	81±22.9	48–100	−21.0	0.04
	18.5–25	115±34.7	75–191	20.0	0.25
	> 25	146±36.2	96–207	20.0	0.34
C&G (with rounded Scr)	< 18.5	72±10.2	59–84	−27.7	0.03
	18.5–25	93±24.8	63–130	−2.3	0.26
	> 25	122±30.1	80–172	0.1	0.46

\(\text{CrCl} = \) creatinine clearance; \(\text{Scr} = \) serum creatinine; \(\text{BMI} = \) body mass index; \([\text{Tc}^{99\text{m}}\text{m}]\) DTPA = technetium-99m dextran triamine penta-acetic acid; C&G = Cockcroft and Gault; MPE = mean percentage error.

Figure 4 Percentage difference between \([\text{Tc}^{99\text{m}}\text{m}]\) DTPA clearance and CrCl estimate by the C&G method using Scr rounded to 0.06 mmol l\(^{-1}\).
Cocchetto DM, Tschanz C, Bjornsson TD (1983) Decreased rate of creatinine production in patients with hepatic disease: implications for estimation of creatinine clearance. *Ther Drug Monit* 5: 161 – 168

Cochran M, St John A (1993) A comparison between estimates of GFR using [99m]TcDTPA clearance and approximation of Cockcroft and Gault. *Aust NZ J Med* 23: 494 – 497

Cockcroft DW, Gault MH (1976) Prediction of creatinine clearance from serum creatinine. *Nephron* 16: 31 – 41

Davila E, Gardner LB (1987) Clinical value of the creatinine clearance before the administration of chemotherapy with cisplatin. *Cancer* 60: 161 – 164

Dooley MJ, Poole SG, Rischin D, Webster LK (2002) Carboplatin dosing gender bias and inaccurate estimates of glomerular filtration rates. *Eur J Cancer* 38: 44 – 51

Fawdry RM, Gruenewald SM, Collins LT, Roberts AJ (1985) Comparative assessment of the techniques for estimation of glomerular filtration rate with 99mTc-DTPA. *Eur J Nucl Med* 11: 7 – 12

Jelliffe RW (1973) Creatinine clearance: bedside estimate. *Ann Intern Med* 79: 604 – 605

Kesteloot H, Joossens JV (1996) On the determinants of the creatinine clearance: a population study. *J Hum Hypertension* 10: 245 – 249

Kirkpatrick CMJ, Duffull SB, Begg EJ (1999) Pharmacokinetics of gentamicin in 957 patients with varying renal function dosed once daily. *Br J Clin Pharmacol* 47: 637 – 643 doi: 10.1046/j.1365-2125.1999.00938.x

Luke DR, Halstenson CE, Opsahl JA, Matzke GR (1990) Validity of creatinine clearance estimates in the assessment of renal function. *Clin Pharmacol Ther* 48: 503 – 508

Martin L, Chatelut E, Boneu A, Rostaing L, Rousséilles C, Caselles O, Canal P (1998) Improvement of the Cockcroft–Gault equation for predicting glomerular filtration in the cancer patient. *Ann Oncol* 9: 613 – 619

McDermott DF, Galindo A, Sherman RL, Jaffe EA, Coleman M, Pasmanter MW (1987) Inadequacy of predicted creatinine clearance as guide to chemotherapy. *Cancer Treat Rep* 71: 1067 – 1069

Millward MJ, Webster LK, Toner GC, Bishop JF, Rischin D, Stokes KH, Johnston VK, Hicks R (1996) Carboplatin dosing based on measurement of renal function – experience at the Peter MacCallum Cancer Institute. *Aust NZ J Med* 26: 372 – 379

Mosteller RD (1987) Simplified calculation of body-surface area. *N Eng J Med* 317: 1098

Pesola GR, Akhavan J, Madhu A, Shah NK, Carlon GC (1993) Prediction equation estimates for creatinine clearance in the intensive care unit. *Intern Care Med* 19: 39 – 43

Peters AM (1991) Quantification of renal haemodynamics with radio-nucleotides. *Eur J Nucl Med* 18: 274 – 286

Rehling, Moller ML, Lund JO, Trap-Jensen J (1984) Simultaneous measurement of Tc-99mDTPA, Cr-51 EDTA and inulin in man. *Clin Sci* 66: 613 – 619

Poole SG, Dooley MJ, Rischin (2002) A comparison of bedside renal function estimates and measured glomerular filtration rate (Tc99mDTPA clearance) in cancer patients. *Ann Oncol* 13: 949 – 955

Robert S, Zarowitz BJ, Peterson EL, Dumler F (1993) Predictability of creatinine clearance estimates in critically ill patients. *Crit Care Med* 21: 1487 – 1495

Robinson BA, Frampton CM, Colls BM, Atkinson CH, Fitzharris BM (1990) Comparison of methods of assessment of renal function in patients with cancer treated with cisplatin, carboplatin or methotrexate. *Aust NZ J Med* 20: 657 – 662

Smythe M, Hoffman J, Kizy K, Dmuchowski C (1994) Estimating creatinine clearance in elderly patients with low serum creatinine concentrations. *Ann J Hosp Pharm* 51: 198 – 204

Tsubaki T, Goodwin S, Leader WG, Chandler MHH (1993) Estimation of creatinine clearance in patients with gynecologic cancer. *Clin Pharmacol* 12: 685 – 690

World Health Organization (2000) *Obesity: Preventing and Managing the Global Epidemic Report of a WHO Consultation*. Geneva: World Health Organization

Wright JG, Boddy AV, Highley MS, Fenwick J, McGill A, Calvert AH (2001) Estimation of glomerular filtration rate in cancer patients. *Br J Cancer* 84: 452 – 459