RESEARCH ARTICLE

Effects of photosynthetic models on the calculation results of photosynthetic response parameters in young Larix principis-rupprechtii Mayr. plantation

Xuemei Ma1,2, Qiang Liu1*, Zhidong Zhang1, Zewen Zhang1, Zeyu Zhou1, Yu Jiang1, Xuanrui Huang1*†

1 College of Forestry, Hebei Agricultural University, Baoding Hebei, China, 2 Anyang Institute of Technology Anyang Henan, Anyang, China

* hxr1962@163.com (XRH); qiangliu2015@126.com (QL)

Abstract

Accurately predicting the crown photosynthesis of trees is necessary for better understanding the C circle in terrestrial ecosystem. However, modeling crown for individual tree is still challenging with the complex crown structure and changeable environmental conditions. This study was conducted to explore model in modeling the photosynthesis light response curve of the tree crown of young Larix principis-rupprechtii Mayr. Plantation. The rectangular hyperbolic model (RHM), non-rectangular hyperbolic model (NRHM), exponential model (EM) and modified rectangular hyperbolic model (MRHM) were used to model the photosynthetic light response curves. The fitting accuracy of these models was tested by comparing determinants coefficients (R^2), mean square errors (MSE) and Akaike information criterion (AIC). The results showed that the mean value of R^2 of MRHM ($R^2 = 0.9687$) was the highest, whereas MSE value ($MSE = 0.0748$) and AIC value ($AIC = -39.21$) were the lowest. The order of fitting accuracy of the four models for Pn-PAR response curve was as follows: MRHM > EM > NRHM > RHM. In addition, the light saturation point (LSP) obtained by MRHM was slightly lower than the observed values, whereas the maximum net photosynthetic rates (P_{max}) modeled by the four models were close to the measured values. Therefore, MRHM was superior to other three models in describing the photosynthetic response curve, the accurate values were that the quantum efficiency (α), maximum net photosynthetic rate (P_{max}), light saturation point (LSP), light compensation point (LCP) and respiration rate (R_d) were 0.06, 6.06 μmol·m$^{-2}$·s$^{-1}$, 802.68 μmol·m$^{-2}$·s$^{-1}$, 10.76 μmol·m$^{-2}$·s$^{-1}$ and 0.60 μmol·m$^{-2}$·s$^{-1}$. Moreover, the photosynthetic response parameters values among different layers were also significant. Our findings have critical implications for parameter calibration of photosynthetic models and thus robust prediction of photosynthetic response in forests.
Introduction

As the largest carbon flux in global carbon (C) cycling, photosynthesis can assimilate CO$_2$ from the atmosphere and thus dedicating to climate change mitigation. It plays a crucial role in the material cycle and energy flow of forest ecosystems [1–3]. In addition to the stage of leaf development and genetic constitution of plant, photosynthesis is also strongly affected by surrounding environmental conditions (e.g., light, leaf, CO$_2$ concentration, humidity and temperature etc.), during which intensity of light and its availability particularly determine the amount of C assimilated by photosynthesis [4–7]. For the trees, the canopy is the most direct part for photosynthesis to response to incoming solar irradiance. Therefore, better understanding the mechanism of crown leaf photosynthesis response to light availability is thus critical for maintaining forest productivity and management, in particular for dynamic simulation growth models and in parameterization of crown photosynthesis.

Light response curves (P$_n$-PAR curves) describe the relationship between net photosynthetic rate (P$_n$) and photosynthetically active radiation (PAR), and provide information about the photosynthetic efficiency of plants (e.g. quantum yield, the maximum photosynthetic capacity, light compensation point and leaf radiation use efficiency of leaves) [8–10]. The simulation of P$_n$-PAR curves are becoming increasingly important to study the photosynthetic response process of plants to the environment, and analyze the primary productivity of vegetation and forests [1, 11–13]. A series of photo-physiological core parameters, such as maximum net photosynthetic rate (P$_{max}$), apparent quantum yield (AQY), light-saturation point (LSP), light-compensation point (LCP), and dark respiration rate (R$_d$), can be used to assess the canopy photosynthetic rate and capacity of plants in different growth stage. To date, in order to investigate the response of net photosynthetic rate (P$_n$) to light intensity of different plants, many models, including the rectangular hyperbola model (RHM) [14, 15], the nonrectangular hyperbola model (NRHM) [16, 17], the exponential model (EM) [18, 19], and the modified rectangular hyperbola model (MRHM) [20], have been widely applied in modeling the photosynthetic light-response curve (P$_n$-PAR curve) [1, 12]. However, RHM, NRHM, and EM are very complex, some photo- and biochemical parameters (such as P$_{max}$ and LSP) are subject to environmental conditions and cannot be calculated directly using these models when light intensity are above zero [21–24], and the fitted values of photosynthetic parameters were significantly different from the measured ones [20, 25]. In the contrary, owing to the addition of two adjusting factors (β and γ) into this model, which made the model highly advantageous in fitting the photo-inhibition and light saturation stages [20, 26], the MRHM can directly produce P$_{max}$ and LSP, and overcome the limitation of above three models, the accuracy were higher and the results were suitable for fitting P$_n$-PAR curve and photosynthetic parameters under various environmental conditions [20, 24, 26, 27], it has been successfully applied in simulating light-response curves of many plants, such as Keteleeria calcarea [28], Pinus stabuliformis Carr. [29], Pinus koraiensis [30], Betula utilis [31].

 Larix principis-ruprechtii Mayr (Larch), one of the main species of the total area of all plantations in Northern China, plays an important role in wood production, biodiversity protection, and forest ecological construction, due to its advantages of fast growth, strong adaptability, and high economic value. To the best of our knowledge, little attention has been paid to the application of a variety of dynamic crown photosynthetic light-response models in Larch, and the fitting effect and differences of light responses by these models remains unclear. Therefore, the determinant coefficients (R^2), mean square error (MSE), and Akaike information criterion (AIC) were used to evaluated the performance of four types of light-response models(such as RHM, NRHM, EM, and MRHM) in 16-years-old Larch. Planation. The objectives of the study were to select an optimal P$_n$-PAR curve model for fitting the P$_n$-PAR curves

Competing interests: The authors have declared that no competing interests exist.
of Larch, and to explore the relationships between the parameters of the optimal P_n-PAR curve model and leaf vertical positions. The results are helpful to further explore the spatial heterogeneity of carbon sequestration capacity of Larch needles in canopy, and provide a basis for accurately estimating photosynthetic physiological characteristics and the productivity of its plantation.

Materials and methods

Ethics statement

Conflicts of interest. The authors declare no conflict of interest.

Ethical approval. The authors declare that this article does not contain any research with humans or animal subjects.

Site description and sample tree selection

The experiments were conducted in the field at the scientific research base of the State Forestry and Grassland Bureau established by Hebei Agricultural University, and the practice Base for postgraduate training of Forestry Master’s Degree in Hebei Agricultural University, which is located in Saihanba Forest Farm of Weichang County of Hebei Province in the northern China (Fig 1, Table 1). The farm was mainly composed with *Larix principis-rupprechtii*, *Populus davidiana*, *Betula platyphylla*, and *Quercus mongolica*. The total forest coverage is approximately 82.6%, including 72.6% plantation.

Three sample plots (20 m width × 30 m length) were set up within 16-year-old Larch plantations of the same habitat. The diameter at breast height (DBH, cm) and tree height (H, m) were measured for all trees with the D > 5 cm in each plot, and the mean D (Dm) for three plots were calculated independently. Then, three sample trees, whose D values respectively was similar to Dm of the three plots, were selected to represent experimental materials. According to the previous studies, for trees, the upper limit of the P_n-PAR curves was significantly different within different crown whorls in the vertical direction [32–34]. Thus, we divided the crowns of three sample trees respectively into three vertical layers with the trisection of crown...
depth (the distance from the top of the tree to the base of its live crown, CD), and each layer was divided into two parts in horizontal direction (sunny and shaded) (Fig 2) [35].

Measurements of the light-response process

The light responses of photosynthesis were measured using a portable photosynthetic gas analysis system (LI-6400, LI-COR, Inc., Lincoln, Nebraska, USA) coupled with a standard red-blue light-emitting diode (LED) radiation source (85% red, emission peak at 655 nm + 15% blue, emission peak at 465 nm) (Li-6400-02B, LI-COR, Inc., Lincoln, NE, USA), photosynthetic active radiations (PAR) intensities were set at thirteen lever of 2000, 1500, 1200, 1000, 800, 600, 400, 200, 150, 100, 50, 25, and 0 μmol (photons) m⁻²s⁻¹. Before measuring, the instrument was preheated and calibrated each time, these sample needles were kept for 10–20 min at a CO₂ concentration of 380 μmol (photons) m⁻²s⁻¹ and a PAR value of 1,400 μmol (photons) m⁻²s⁻¹ in the leaf chamber, which reach a steady state around the needles. Then, the sample needles were allowed to equilibrate to 20°C conditions for a minimum time of 2 min and a maximum of 3 min before the data were logged during the measurement of the P_n-PAR curves. The measurements (experiments) were conducted from 8:30 a.m. to 16:30 p.m. on a cloud-free periods day, with an air temperature at 24–26°C and a relative humidity at 30–40%, the fixed exposure time for each level of PAR was set at 2–3 min, these methods are described previously [32, 33]. The data for the P_n-PAR curves were measured once every half month during the growing season (approximately from 15th June to 10th August) in 2018 and 2019.

Table 1. Description of sample site used in the experiment.

Sample site	Latitude (N)	Longitude (E)	Elevation (m)	Climate	Annual mean temperature (°C)	Annual precipitation (mm)	Annual evaporation (mm)	Sunshine hours (h.)	Number of frost-free period (d)	Population size (hm²)
Saihanba Forest Farm	42°02'-42°36'	116°51'-117°39'	1500–2067	cold temperate semi-arid and semi humid continental monsoon	-1.5 (from -42.8 to 30.9°C)	452.6	1230	2368	60	93333
Photosynthesis-light response curve-fitting model and its parameters

The rectangular hyperbola model, the nonrectangular hyperbola model, the exponential model, and the modified rectangular hyperbola model were used to fit the light-response curves and to estimate photosynthetic parameters. The environmental conditions (CO₂ concentration, temperature and humidity) are given. The expressions and parameters of the four models were as follows:

The rectangular hyperbola model (RHM) [15, 36] was represented to the following form:

\[P_n = \frac{\alpha IP_{\text{max}}}{\alpha I + P_{\text{max}}} - R_d \] \hspace{1cm} (1)

Where: \(P_n \) represents the net photosynthetic rate (\(\mu \text{mol (photon)} \text{ m}^{-2} \text{ s}^{-1} \)), \(\alpha \) represents the initial quantum efficiency at low light intensities [22], \(P_{\text{max}} \) represents the maximum net photosynthetic rate (\(\mu \text{mol (photon)} \text{ m}^{-2} \text{ s}^{-1} \)), \(R_d \) represents the respiration rate in the dark (\(\mu \text{mol (photon)} \text{ m}^{-2} \text{ s}^{-1} \)), and \(I \) represents the PAR. \(\alpha, P_{\text{max}}, \) and \(R_d \) are the main parameters to used describe the characteristics of the \(P_n \)-PAR. \(\alpha \) is the initial slope of the \(P_n \)-PAR when \(PAR \) is 0--200 \(\mu \text{mol (photon)} \text{ m}^{-2} \text{ s}^{-1} \), which indicates the plants’ light use efficiency [37–39].

The \(P_{\text{max}} \) and \(LSP \) cannot be calculated directly using RHM, therefore, \(P_{\text{max}} \) was estimated and calculated by using the nonlinear least squares method under high light intensity [36, 40, 41], \(LSP \) could be expressed respectively as:

\[P_{\text{max}} = A \times LSP - R_d \] \hspace{1cm} (2)

where: \(A \) (AQE) represents apparent quantum efficiency; \(LSP \) represents the light saturation point (\(\mu \text{mol (photon)} \text{ m}^{-2} \text{ s}^{-1} \)); \(R_d \) is as described above. \(A \) was obtained by fitting the light response data which \(PAR \) is equal to or less than 200 \(\mu \text{mol (photon)} \text{ m}^{-2} \text{ s}^{-1} \)

\[LSP = \frac{P_{\text{max}} + R_d}{A} \] \hspace{1cm} (3)

\[LCP = \frac{R_d \times P_{\text{max}}}{\alpha \times (P_{\text{max}} - R_d)} \] \hspace{1cm} (4)

Where: \(LCP \) represents the light compensation point (\(\mu \text{mol (photon)} \text{ m}^{-2} \text{ s}^{-1} \)); \(LSP, A, P_{\text{max}}, R_d \) are as described above.

The nonrectangular hyperbola model (NRHM) [42] was represented to the following form:

\[P_n = \frac{\alpha I + P_{\text{max}} - \sqrt{(\alpha I + P_{\text{max}})^2 - 4\alpha \theta IP_{\text{max}}}}{2\theta} - R_d \] \hspace{1cm} (5)

where: \(P_n \) indicates the net photosynthetic rate (\(\mu \text{mol (photon)} \text{ m}^{-2} \text{ s}^{-1} \)); \(\theta (0 < \theta < 1) \) indicates the convexity (curvilinear angle) (dimensionless); and \(\alpha, I, P_{\text{max}}, \) and \(R_d \) are as described above.

The \(LSP \) was calculated by, Formula 3.

The \(LCP \) can be obtained by:

\[LCP = \frac{(R_d \times P_{\text{max}} - \theta \times R_d^2)}{\alpha \times (P_{\text{max}} - R_d)} \] \hspace{1cm} (6)

Where: \(LCP \) represents the light compensation point (\(\mu \text{mol (photon)} \text{ m}^{-2} \text{ s}^{-1} \)); \(k, \alpha, P_{\text{max}}, R_d \) are as described above.
The expressions for the exponential model (EM) [18] was represented to the following form:

\[P_n = P_{\text{max}} \cdot \left(1 - e^{-\frac{\alpha I}{P_{\text{max}}} R_d} \right) \]

(7)

Where: \(e \) indicates the base of natural logarithm, \(\alpha, I, P_{\text{max}} \), \(P_n \), and \(R_d \) are as described above.

The \(LSP \) was calculated by, Formula 3,

The \(LCP \) was calculated by, Formula 8.

\[LCP = \frac{P_{\text{max}}}{\alpha} \times \ln \frac{P_{\text{max}}}{P_{\text{max}} - R_d} \]

(8)

The modified rectangular hyperbola model (MRHM) [20, 23, 26] was represented to the following form:

\[P_n = \alpha \times \frac{1 - \beta I}{1 + \gamma I} - R_d \]

(9)

where: \(\beta \) and \(\gamma \) are adjusting factors, \(\beta \) represents the photoinhibition item (dimensionless), \(\gamma \) represents the light saturation item (dimensionless), and \(\gamma = \alpha / P_{\text{max}} \). \(\alpha, I, \) and \(R_d \) are as described above.

The \(P_{\text{max}}, LCP \) and \(LSP \) were expressed on the modified rectangular hyperbola model in Eqs 10, 11, and 12, respectively:

\[P_{\text{max}} = \alpha \left(\frac{\sqrt{\beta + \gamma} - \sqrt{\beta}}{\gamma} \right)^2 - R_d \]

(10)

\[LCP = \frac{R_d}{\alpha} \]

(11)

\[LSP = \sqrt{\frac{(\beta + \gamma)/\beta - 1}{\gamma}} \]

(12)

where \(LCP, LSP, \alpha, \beta, \gamma, \) and \(R_d \) are as described above.

Model assessment and validation

The fitting quality of the different models were assessed by mean square errors (MSE), determinants coefficients (\(R^2 \)), and Akaike information criterion (AIC), the best combination with the largest \(R^2 \) value and smallest \(MSE \) and \(AIC \) value represented the higher fitting accuracy.

Mean square error (MSE) was the average of squared forecast errors, it is the specific value of the sum of squared errors to the number of errors.

\[MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 \]

(13)

Determinants coefficients (\(R^2 \)) represents the fitting degree of net photosynthetic rate and light intensity.

\[R^2 = 1 - \frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{\sum_{i=1}^{n} (y_i - \bar{y})^2} \]

(14)

Akaike information criterion (AIC) is a fined technique based on in-sample fit to estimate
the likelihood of a model to predict/estimate the future values.

\[
AIC = 2k + n \ln \frac{\sum (y_i - \hat{y}_i)^2}{n}
\]

(15)

where \(y_i, \hat{y}_i\) and \(\bar{y}_i\) in the equations above represented the measured value, the fitted value and the mean of the measured values, respectively. \(n\) is the number of observations. \(k\) is the number of estimated parameters [43].

Statistical analyses

The measured light-response data are collated and analyzed and expressed as mean \(\pm\) standard deviation (SD) of three replicates. Statistical analyses of the data were performed using two-way analysis of variance (ANOVA) by GraphPad Prism 8.0 or the SPSS software (version 18.0) and Duncan tests. Parameter values which are significantly different (\(p<0.05\)) are indicated by different letters.

Results

\(Pn\) in response to \(PAR\)

To describe the relationships between \(P_n\) and \(PAR\), photosynthetic light-response curves (\(P_n\)-\(PARs\)) of \textit{Larch} was studied. The results showed that light response curves (\(P_n\)—\(PAR\)) fitted by NRHM, EM and MRHM from different layers were of similar tendency, while RHM were difficult to implement because the curves increased gradually with no extreme. Taking the middle layer as an example, the \(P_n\)-\(PAR\) curves could be divided into three stages, the net photosynthetic rate (\(P_n\)) increased linearly (rapidly) with the augments of photosynthetic available radiation (\(PAR\)) in the first stage, where \(PAR < 200 \mu\text{mol (photons)} \text{ m}^{-2} \text{s}^{-1}\), then increased nonlinearly up to the maximum \(P_n\), in the second stage, the maximum \(P_n\) is 6.00 \(\mu\text{mol (photons)} \text{ m}^{-2} \text{s}^{-1}\) when \(PAR\) is 600 \(\mu\text{mol (photons)} \text{ m}^{-2} \text{s}^{-1}\), and decreased gradually with increasing \(PAR\) in the third stage (Fig 3). At the same \(PAR\), needles under upper layer had a higher \(P_n\) than those of the middle and lower leaves, and \(P_n\) values under different leaf layer could be ranked as: Upper layer > Middle layer > lower layer.

Fitting and comparison of photosynthesis-light response curves

The fitting results showed the fitting \(P_n\) values of the four models were very close to the measured values actually when the \(PAR\) was low (\(PAR < 100 \mu\text{mol (photons)} \text{ m}^{-2} \text{s}^{-1}\)), the gap increased with an increasing \(PAR\), and the difference in \(P_n\) was more remarkable. The \(P_n\) value simulated by NRHM, MRHM, and EM was slightly greater than measured value when \(PAR\) values are 200–2000 \(\mu\text{mol (photons)} \text{ m}^{-2} \text{s}^{-1}\), and the simulated pattern of \(P_n\)-\(PAR\) curves showed similar trend, the light-response curve was best described by three models, especially when light intensity (\(PAR\)) is beyond \(P_{max}\) (Fig 3). However, the \(P_n\) value simulated by the RHM increased with the increasing \(PAR\), the fitting error was too large to use directly (Fig 3A1-3A3). In addition, the mean value of \(R^2\) (range from 0.9748 to 0.9930) of the MRHM model was the highest among the four models, and \(MSE\) value (\(MSE\) range from 0.0646 to 0.0866 \(\mu\text{mol (photons)} \text{ m}^{-2} \text{s}^{-1}\)) and \(AIC\) value (range from -45.7887 to -34.8321 respective) of the MRHM were significantly smaller than those of other three models in upper, middle and lower layer respectively (Table 2). In addition, MRHM model was superior to other three models in south and north orientation.
Fig 3. Comparison of the measured values and fitted values of net photosynthetic light response curves in different layers on the RHM (a1-a3), NRHM (b1-b3), MRHE (c1-c3) and EM (d1-d3) models. PAR represents photosynthetic available radiation, MSE represents mean square error, R^2 represents the coefficient of determination and AIC represents Akaike information criterion.

https://doi.org/10.1371/journal.pone.0261683.g003

Table 2. Fitting accuracy of different P_n-PAR.

Position	Fitting accuracy	P_n-PAR models			
	MSE	RHM	NRHM	MRHM	EM
Upper layer	0.2998	0.1903	0.0733	0.129	
	0.967	0.982	0.993	0.9856	
	-14.57	-17.18	-34.8321	-21.1756	
Middle layer	0.23	0.1518	0.0646	0.144	
	0.9628	0.9816	0.9923	0.9746	
	-17.06	-20.79	-45.7887	-26.5774	
Lower layer	0.4581	0.3	0.0866	0.2398	
	0.8961	0.9473	0.9748	0.912	
	-15.73	-19.27	-37.0383	-22.5198	
North	0.3706	0.1988	0.0748	0.1565	
	0.9563	0.9807	0.9904	0.9735	
	-13.71	-17.52	-39.6365	-22.6997	
South	0.288	0.2292	0.0748	0.1853	
	0.9276	0.9598	0.983	0.9413	
	-16.32	-20.38	-40.393	-22.943	

https://doi.org/10.1371/journal.pone.0261683.t002
Fitting analysis of the photosynthetic parameters based on the models

The Fitting value of photosynthetic parameters were used to estimate the fitting quality of the model, its accuracy and rationality are affected by the model and layer [16, 19, 20, 27]. Therefore, it is very important to study the fitting effect of different models, different layers and different orientations on light response parameter of needle leaves. The results showed P_{max} calculated from the RHM, NRHM and EM were closer to the measured value in the up layer, and was slightly greater than the measured values in the middle and lower layer. The light saturation point (LSP) obtained by above three models were much lower than the measured values in the up, middle and lower layer respectively. The fitted values of P_{max} and LSP by MRHM were close to the measured values in each layer respectively. In addition, the LSP values were significant difference between MRHM and the other three models, while the P_{max} and LSP values were no significant difference, the a values of each model, which are the quantum efficiency at low irradiance, ranged from 0 to 0.125 [44]. R_d value was closer among four models (Fig 4).

In the different layers, some simulated values of P_n-PAR response parameters revealed somewhat different, there was no significant difference for LSP, LCP and R_d in upper and middle layers, but was significant difference in lower layers, the values of a and P_{max} were significant for in each layer. In addition, the layer is one of the main factors of affecting the light
response parameters (e.g. \(a, P_{\text{max}}, LCP \)) (Fig 4, S1 Table). Some simulated values of \(P_n\)-PAR response parameters calculated by MRHM was more accurate than those obtained from other three models (Fig 5, S1 Table). The photosynthetic parameters which were fitted by four models showed no significant difference between north and south direction (Fig 6, S3 Table).

Fig 5. Comparison of light response parameters of different layers at the same model. (a) Parameters of the initial quantum efficiency \((a)\). (b) maximum net photosynthetic rate \((P_{\text{max}})\). (c) light saturation point \((LSP)\). (d) light compensation point \((LCP)\). (e) dark respiration rate \((R_d)\) for needles at different canyon (different letters indicate significant difference at \(p < 0.05 \) level with the least significant difference test).

https://doi.org/10.1371/journal.pone.0261683.g005

Discussion

The light response curve \((P_n\text{-PAR curve})\) is an important tool for describing the response of the \(P_n \) to \(PAR \), identifying a series of photosynthetic parameters and evaluating the photosynthetic efficiency of plants [11, 45, 46]. Therefore, constructing of \(P_n\text{-PAR curve} \) and choosing the appropriate model are helpful to simulate canopy photosynthesis and predict plant productivity [47, 48]. In the study, the net photosynthetic rate increased initially and then decreased gradually with the increase of \(PAR \) (Fig 3), which was consistent with the study of leaf \(P_n\text{-PAR curve} \) of some plants in different growth stages [49, 50]. The results indicated light energy absorbed by plants exceeded the needs of plants, the absorption of the excessive light energy would restricted photosynthetic mechanism and series of enzymatic reaction rates in the chloroplasts and result in photo-inhibition of Larch. The upper limit value of \(P_n\text{-PAR curve} \) maintained the state of upper layer > middle layer > lower layer during the whole growth period, which was also proved in other Larch species [32], indicated that the metabolic capacity was
closely related to the light environment [34]. The differences of the \(P_n \)-\(\text{PAR} \) curve among different canopies might be associated with leaf characteristics, solar elevation angle, higher chlorophyll a/b ratios, relative depth into crown (RDINC), etc [32, 51]. Additional, The photosynthetic parameters which were fitted by four models showed no significant difference between north and south direction, which was consistent with that of previous study [52].

The fitting of light-response model is an important method to describe the response mechanism of \(P_n \) to \(\text{PAR} \) and evaluate the photosynthetic efficiency [45]. Among four models, the \(P_n \) value simulated by the RHM consistently increased with the increasing \(\text{PAR} \) with no stable or declined trend (Fig 3A1–3A3), indicated that RHM was more suitable for fitting consistently increased type of \(P_n \)-\(\text{PAR} \) curves. This result agreed with the previous study [53]. Compared to the other three models, the determinants coefficients (\(R^2 \)) value of the MRHM was the highest, and mean square errors (MSE) value and Akaike information criterion (AIC) value were the lowest (Table 2), indicated that MRHM performed better than other three models [23]. In addition, some fitted values of photosynthetic parameters (e.g. \(P_{\text{max}} \) and \(\text{LSP} \)) were close to the measured values (Fig 4, S1 Table), Ye [20] has proved that the unique structure of MRHM made it more flexible in simulating different trends of \(P_n \)-\(\text{PAR} \) curves.

Compared with data fitted (Fig 3) and error analysis (Table 2) on the \(P_n \)-\(\text{PAR} \) curves of the needles at different leaf canopy, there was no significant difference for \(\text{LSP} \), \(\text{LCP} \) and \(R_d \) in upper and middle layers, but was significant difference in lower layers. However, the values of \(a \) and \(P_{\text{max}} \) were significant in each layer. The \(P_n \) in the upper canopy was significantly higher.
than those in the middle and lower canopy, which was not consistent with that of previous study [53]. The different may be due to the comprehensive effects of genetic diversity, different producing areas and environmental factors of trees [54]. It can be seen that layer was one of the main factors of affecting the light response parameters (e.g. \(\alpha, P_{\text{max}}, LCP \)) (Fig 4, S1 Table).

Based on the above discussion, we considered that the light response process and photosynthetic parameter (\(P_{\text{max}}, LSP, LCP, \) and \(R_d \)) fitting by the MRHM models was more reliable (S2 Table). and MRHM could fit well the \(P_n\)-PAR curves of Larch (Fig 4, S2 Table). In addition, the \(P_n\)-PAR of the middle leaf layer can better reflect the changes in leaf layer photosynthetic parameters. However, the results, obtained in the vigorous growth period of \textit{Larix principis-rupprechtii} from June to August, are of spatial and temporal limitation in Saihanba, the further studies are needed to better understand the mechanisms of the photosynthetic physiological ecology of plants to the environment.

Conclusion

This study describe canopy photosynthesis for \textit{Larix principis-rupprechtii} plantation, the \(P_n\)-PAR curves and photosynthetic response parameters were measured under different layer of three planted \textit{L. principis-rupprechtii} trees by different models during the growing season. The results showed that the fitting effect of MRHM model was superior to those of other three models and it could analyze the light-response data more accurately, the selection of the middle layer of the plant is the best when measuring the photosynthetic performance of the whole tree in combining with the analysis of fitting precision (Fig 3), the accurate values were as follows: \(\alpha, P_{\text{max}}, LSP, LCP \) and \(R_d \) were 0.06, 6.08 \(\mu \text{mol-m}^{-2}\text{s}^{-1} \), 931.08 \(\mu \text{mol-m}^{-2}\text{s}^{-1} \), 11.45 \(\mu \text{mol-m}^{-2}\text{s}^{-1} \) and 0.61 \(\mu \text{mol-m}^{-2}\text{s}^{-1} \), respectively. This study not only helps to further explore the spatial heterogeneity of carbon sequestration capacity of \textit{Larix principis-rupprechtii} leaves in canopy, but also provides a scientific and effective guidance for accurately estimating the productivity of \textit{Larix principis-rupprechtii} plantation.

Supporting information

S1 Table. \(P_n\)-PAR response parameters of leaves in different layers of Larch. Black letter ‘a’ indicates significant differences between models, red letter ‘a’ indicates significant differences among different layers.

S2 Table. Analysis of light response parameters at different layers.

S3 Table. Analysis of light response parameters between south and north.

Acknowledgments

The authors are grateful to Saihanba Forest Farm of Weichang County of Hebei Province for providing the material.

Author Contributions

Conceptualization: Xuemei Ma, Xuanrui Huang.

Formal analysis: Zeyu Zhou, Yu Jiang.

Writing – original draft: Zewen Zhang.
References

1. Zhang XQ, Xu DY. Eco-physiological modelling of canopy photosynthesis and growth of a Chinese fir plantation. For. Ecol. Manag. 2003; 173: 201–211. https://doi.org/10.1016/S0378-1127(02)00015-4

2. Allen AP, Gillooly JF, Brown JH. Linking the global carbon cycle to individual metabolism. Funct. Ecol. 2005; 19: 202–213. https://doi.org/10.1111/j.1365-2435.2005.00952.x

3. Quan XK, Wang CK. Acclimation and adaptation of leaf photosynthesis, respiration and phenology to climate change: A 30-year Larix gmelinii common-garden experiment. For. Ecol. Manag. 2018; 411: 166–175. https://doi.org/10.1016/j.foreco.2018.01.024

4. Kull O, Krujit B. Leaf photosynthetic light response: A mechanistic model for scaling photosynthesis to leaves and canopies. Funct. Ecol. 1998; 12: 767–777. https://doi.org/10.2307/2390464

5. Atkin OK, Scheurwater I, Pons TL. High thermal acclimation potential of both photosynthesis and respiration in two lowland Plantago species in contrast to an alpine congeneric. Glob. Chang. Biol. 2006; 12: 500–515. https://doi.org/10.1111/j.1365-2486.2006.01114.x

6. Campbell C, Atkinson L, Zaragoza-Castells J, Lundmark M, Atkin O, Hurry V. Acclimation of photosynthesis and respiration is asynchronous in response to changes in temperature regardless of plant functional group. New Phytol. 2007; 176: 375–389. https://doi.org/10.1111/j.1469-8137.2007.02183.x

7. Sage RF, Kubien DS. The temperature response of C3 and C4 photosynthesis. Plant Cell Environ. 2010; 30: 1086–1106. https://doi.org/10.1111/j.1365-3040.2007.01682.x PMID: 17661749

8. Akhkha A, Reid I, Clarke DD. Photosynthetic light response curves determined with the leaf oxygen electrode: minimisation of errors and significance. Planta. 2001; 214: 135–141. https://doi.org/10.1007/s004250010599 PMID: 11762163

9. Johnson GN, Murchie E. Gas exchange measurements for determination of photosynthetic efficiency in Arabidopsis leaves. Methods Mol Biol. 2011; 775: 311–326. https://doi.org/10.1007/978-1-61779-237-3_17 PMID: 21863451

10. Lobo FA, de Barros MP, Dalmagro HJ, Dalmolin C. Fitting net photosynthetic light-response curves with Microsoft Excel—a critical look at the models. Photosynthetica. 2013; 51: 445–456. https://doi.org/10.1007/s11099-013-0045-y

11. Henley WJ. Measurement and interpretation of photosynthetic light-response curves in algae in the context of photo inhibition and diel changes. Journal of Phycology. 1993; 29: 729–739. https://doi.org/10.1111/j.0022-3646.1993.00729.x

12. Jin S, Zhou XF, Fan J. Modeling daily photosynthesis of nine major tree species in northeast China. Forest Ecol Manag. 2003; 184: 125–140. https://doi.org/10.1016/S0378-1127(03)00205-6

13. Wilson KB, Baldocchi DD, Hanson PJ. Leaf age affects the seasonal pattern of photosynthetic capacity and net ecosystem exchange of carbon in a deciduous forest. Plant Cell Environ. 2011; 24: 571–583. https://doi.org/10.1046/j.0016-8025.2001.00706.x

14. Kubiske ME, Pregitzer KS. Effects of elevated CO2 and light availability on the photosynthetic light response of trees of contrasting shade tolerance. Tree Physiol. 1996; 16: 351–358. https://doi.org/10.1093/treephys/16.3.351 PMID: 14871736

15. Luo YQ, Hui DF, Cheng WX, Coleman JS, Johnson DW, Sims DA. Canopy quantum yield in a mesocosm study. Agricultural and Forest Meteorology. 2000; 100(1); 35–48. https://doi.org/10.1016/S0168-1923(99)00085-4

16. Dias-Filho MB. Photosynthetic light response of the C4 grasses Brachiaria brizantha and B. humidicola under shade. Sci. Agr. 2002; 59(1): 65–68. https://doi.org/10.1590/S0103-9016200200100009

17. Moreno-Sotomayor A, Weiss A, PaparoZZET, Arkebauer T.J. Stability of leaf anatomy and light response curves of field grown maize as a function of age and nitrogen status. Journal of Plant Physiology. 2002; 159(8): 819–826. https://doi.org/10.1078/0176-1617-00809

18. Bassman JH, Zwier JC. Gas exchange characteristics of Populus trichocarpa, Populus deltoides and Populus trichocarpa × P. deltoides clones. -Tree Physiol. 1991; 8(2): 145–159. https://doi.org/10.1093/treephys/8.2.145 PMID: 14972886

19. Rascher U, Liebig M, Luttgé U. Evaluation of instant light-response curves of chlorophyll fluorescence parameters obtained with a portable chlorophyll fluorometer on site in the field. Plant Cell and Environment. 2000; 23: 1397–1405. https://doi.org/10.1046/j.1365-3040.2000.00650.x

20. Ye ZP. A new model for relationship between irradiance and the rate of photosynthesis in Oryza sativa. Photosynthetica. 2007; 45: 637–640. https://doi.org/10.1007/s11099-007-0110-5
21. Steele JH. Environmental control of photosynthesis in the sea. Limnol. Oceanogr. 1962; 7: 137–150. https://doi.org/10.4319/lo.1962.7.2.0137

22. Marshall B, Bischoe PV. A Model for C\textsubscript{3} leaves describing the dependence of net photosynthesis on irradiance. J. Exp. Bot. 1980; 31(1): 29–39. https://doi.org/10.1093/jxb/31.1.41

23. Ye ZP, Yu Q. Comparison of new and several classical models of photosynthesis in response to irradiance. J. Plant Ecol. 2008a; 32(6): 1356–1361. https://doi.org/10.1093/jplc/dcn265 PMID: 19151040

24. Ye ZP, Wang JL. Comparison and analysis of light-response models of plant photosynthesis. J. Jinggangshan Univ. (Sci. Technol.). 2009; 30(4): 9–13. https://doi.org/10.1673/JB(2009)04-0009-05

25. Chen ZY, Peng ZS, Yang J, Chen WY, Ou-Yang ZM. A mathematical model for describing light-response curves in Nicotiana tabacum L. Photosynthetica. 2011; 49(3): 467–471. https://doi.org/10.1007/s11099-011-0056-5

26. Ye ZP, Yu Q. A coupled model of stomatal conductance and photosynthesis for winter wheat. Photosynthetica 2008b; 46(4): 637–640. https://doi.org/10.1007/s11099-008-0110-0

27. Chen WY, Chen ZY, Luo FY, Peng ZS, Yu MQ. Comparison between modified exponential model and common models of light-response curve.—Chinese Journal of Plant Ecology, 2012; 36: 1277–1285. https://doi.org/10.3724/SP.J.1258.2012.01277

28. Chai SF, Tang JM, Yang X, Xie WL, Wei X, Jiang YS. Fitting analysis for 4 Photosynthesis light-response curve model of Keteleeriancalcar. Journal of Guangxi Academy of Sciences. 2015; 31(4): 286–291. https://doi.org/10.13657/j.cnki.gzxyxb.20151126.001

29. Zhu SZ. Modeling on the Photosynthetic light-response curve of Chinese Pine (Pinu stabulaefor m) Carr., J. Journal of Shanxi University (Nat. Sci. Ed.), 2016; 39(4), 184, 679–685. https://doi.org/10.1345/j.cnki.shanxi.univ.(nat.sci.).2016.04.028

30. Zu YG, Wei XX, Yu JH, Li DW, Pang HH, Tong L. Responses in the physiology and biochemistry of Korean pine (Pinus koraiensis) under supplementary UV-B radiation. Photosynthetica. 2011; 49: 448–458. https://doi.org/10.1007/s11099-011-0057-4

31. Xu ZF, Hu TX, Zhang YB. Effects of experimental warming on phenology, growth and gas exchange of freehill birch (Betul utile) saplings, Eastern Tibetan Plateau, China. European Journal of Forest Research. 2012; 131(3): 811–819.

32. Liu Q, Dong LH, Li FR, Xie LF. Spatial heterogeneity of canopy photosynthesis for Larix olgensis. Chin. J. Appl. Ecol. 2016; 27: 2787–2796. https://doi.org/10.13287/j.1001-9332.201609.008

33. Liu Q, Dong LH, Li FR. Modeling net CO\textsubscript{2}, assimilation (AN) within the crown of young planted Larix olgensis trees. Can. J. For. Res. 2018; 48(9): https://doi.org/10.1085/cjfr-2018-0151

34. Liu Q, Li FR. Spatial and seasonal variations of standardized photosynthetic parameters under different environmental conditions for young planted Larix olgensis Henry Trees. Forests. 2018; 9: 522. https://doi.org/10.3390/f9090522

35. Liu Q, Jia WW, Li FR. Determination of the most effective design for the measurement of photosynthetic light-response curves for planted Larix olgensis trees. Scientific Reports. 2020; 10: 11664. https://doi.org/10.1038/s41598-020-68429-w PMID: 32669616

36. Kyei-Boahen S, Lada R, Astatkie T, Gordon R, Caldwell, C. Photosynthetic response of carrots to varying irradiances. Photosynthetica. 2003; 41(2): 301–305. https://doi.org/10.1007/BF000011967, 74465.cc

37. Cox PM, Huntingford C, Harding RJ. A canopy conductance and photosynthesis model for use in a GCM land surface scheme. J. Hydrol. (Amst.) 1998; 212-213(1–4): 79–84. https://doi.org/10.1016/S0022-1694(98)00203-0

38. Gardiner ES, Krauss KW. Photosynthetic light response of flooded cherrybark oak (Quercus pagoda) seedlings grown in two light regimes. Tree Physiol. 2001; 21: 1103–1111. https://doi.org/10.1093/trephys/21.11.1103 PMID: 11581017

39. Larocque GR. Coupling a detailed photosynthetic model with foliage distribution and light attenuation functions to compute daily gross photosynthesis in sugar maple (Acer Saccharum Marsh.) stands. Ecol. Modell. 2002; 148: 213–232, https://doi.org/10.1016/s0304-3800(01)00442-2

40. Peek MS, Russek-Cohen E, Wait DA, Forseth IN. Physiological response curve analysis using nonlinear mixed models. Oecologia. 2002; 132: 175–180. https://doi.org/10.1007/s00442-002-0954-0 PMID: 28547349

41. Posada JM, Lechowicz MJ, Kitajima K. Optimal photosynthetic use of light by tropical tree crowns achieved by adjustment of individual leaf angles and nitrogen content. Annals of Botany. 2009; 103; 795–805. https://doi.org/10.1093/aob/mcp265 PMID: 19151040

42. Thornley J. Mathematical Models in Plant Physiology. London: Academic Press. 1976; https://doi.org/10.1017/S0014479700007675
43. Zhang GY, Fang BS. A uniform design-based back propagation neural network model for amino acid composition and optimal pH in G/11 xylanase. J. Chem. Technol. Biotechnol. 2006; 81(7): 1185–1189. https://doi.org/10.1002/jctb.1510

44. Ma YJ, Cao ZZ, Li Y. Photosynthetic Characteristics of Lespedeza tomentosa and Influencing Factors. ACTA AGRESTIA SINICA. 2010; 18(2): 183–186. https://doi.org/10.3724/SP.J.1077.2010.01263

45. Wang HZ, Han L, Xu YL Niu JL, Yu J. Simulated photosynthetic responses of Populus euphratica during drought stress using light-response models. Acta Ecol. Sin. 2017; 37: 2315–2324. https://doi.org/10.5846/stxb201511242373

46. Zheng T, Chen J, He L, Arain MA, Thomas SC, Murphy JG, et al. Inverting the maximum carboxylation rate (Vcmax) from the sunlit leaf photosynthesis rate derived from measured light response curves at tower flux sites. Agric. Meteorol. 236: 48–66. https://doi.org/10.1016/j.agrformet.2017.01.008

47. Yuan WP, Liu SG, Zhou GS, Zhou GY, Tieszen LL, Baldocch D, et al. Deriving a light use efficiency model from eddy covariance flux data for predicting daily gross primary production across biomes. Agric. Forest Meteorol. 2007; 143(3–4): 189–207. https://doi.org/10.1016/j.agrformet.2006.12.00

48. Pinto H, Powell JR, Sharwood RE, Tissue DT, Ghannoum O. Variations in nitrogen use efficiency reflect the biochemical subtype while variations in water use efficiency reflect the evolutionary lineage of C4 grasses at interglacial CO2. Plant Cell Environ. 2016; 39(3): 514–526. https://doi.org/10.1111/pce.12636 PMID: 26381794

49. Shang LQ, Chen H, Pan CD, Photosynthetic physiological characteristics of two main walnut cultivars in southern Xinjiang Basin at different growth stages. Chin. Agric. Sci. Bull. 2018; 485: 67–74. CNKI: SUN:ZNTB.0.2018-14-010.

50. Zhang N, Su X, Zhang XB, Yao X, Cheng T, Zhu Y, et al. Monitoring daily variation of leaf layer photosynthesis in rice using UAV-based multi-spectral imagery and a light response curve model. Agricultural and Forest Meteorology. 2020; 291(15): 1. https://doi.org/10.1016/j.agrformet.2020.108098

51. Lang Y, Wang M, Zhang GC, Zhao QK. Experimental and simulated light responses of photosynthesis in leaves of three species under different soil water conditions. Photosynthetica. 2013; 51: 370–378. https://doi.org/10.1007/s11099-013-0036-z

52. Zhang YQ, Gao SL, Wei XB, Shi WH, Ma Z, Su SH. Effects of photosynthetic models on the calculation results of photosynthetic response parameters in Sapindus mukorossi leaves. Journal of Beijing Forestry University. 2019; 41(4): 32–40. https://doi.org/10.13332/j.1000–1522.20180163

53. Huang LS, Han HR, Niu SK, Cheng XQ, Zhou WS. Spatial heterogeneity of canopy photosynthesis in Larch Plantations. Journal of Nanjing Forestry University. 2017; 41(2): 193–197. https://doi.org/10.3969/j.issn.1000-2006.2017.02.029

54. Di XY, Li XN, Wang QX, Wang MB. Genetic diversity of natural populations of Larix principis-rupprechtii in Shanxi Province, China. Biochemical Systematics and Ecology. 2014; 54: 71–77. https://doi.org/10.1016/j.bse.2013.12.035