Estimation of actual evapotranspiration

S.1. Regional scale: Lake Victoria drainage basin
An empirical model between observed temperature and calculated potential evapotranspiration (ET_p) based on Langbein (1949) was used, where T is average annual temperature and ET_p is potential evaporation:

$$ET_p = 325 + 21T + 0.9T^2.$$ \hspace{1cm} (S1)

The actual evapotranspiration was then estimated using an empirical relation (Turc 1954) as:

$$ET_a = \frac{P}{\sqrt{0.9 + \left(\frac{P^2}{ET_p^2}\right)}}$$ \hspace{1cm} (S2)

where ET_a is the annual estimate of actual evapotranspiration.

S.2. Local scale: Orongo village
Due to lack of local temperature observations, observed pan evapotranspiration (E_{pan}) was used in combination with the method described in Allen et al (1998) to estimate local actual evapotranspiration. First the pan coefficient (K_{pan}) was determined using representative literature values of monthly relative humidity and wind speed (Ochumba and Johnson 1996). Reference evapotranspiration (E_{To}) was then calculated as:

$$E_{To} = K_{pan}E_{pan}$$ \hspace{1cm} (S3)

where E_{To} is the reference evapotranspiration over a hypothetical surface consisting of green short grass. This reference evapotranspiration was converted to a crop evapotranspiration using a crop coefficient (K_c) for each day of a year. The crop coverage of an average plot for the Orongo village was estimated based on a survey of local farmers. The results from this survey show that maize covers approximately 64% of agricultural plots. The rest is covered by various crop (e.g. millet, beans, sweet potato, cassava and sukuma) of which millet constitutes the single majority with 18%. K_c was determined for each crop based on this average plot composition in the main agriculture area of the Orongo village and FAO literature values (Allen et al 1998). The K_c value was set to 1 after harvest which is the equivalent of using mulch after harvest.

The actual evapotranspiration was assumed to be equal to crop evapotranspiration and thus calculated with a daily time-step:

$$ET_a = ET_c = ET_o \sum_{i=1}^{n} K_{ci} \frac{A_i}{A_{tot}}$$ \hspace{1cm} (S4)

where A_i is the area of each crop, K_{ci} is the associated crop coefficient and A_{tot} is the total cultivated area for an average farmer.
References
Allen R G, Pereira L S, Raes D and Smith M 1998 Crop evapotranspiration—guidelines for computing crop water requirements Food and Agriculture Organisation of the United Nations (FAO) Irrigation and Drainage Paper No. 56 (Rome: FAO)
Langbein W B 1949 Annual Runoff in the United States US Geological Survey Circular p 52 14
Ochumba P B O and Johnson T C 1996 The Limnology, Climatology and Paleoclimatology of the East African Lakes ed E O Odada (Amsterdam: Gordon and Breach)
Turc L 1954 The water balance of soils’, relation between precipitation evaporation and flow Ann. Agronomiques 5 491–569