Functionalization of polymers and nanomaterials for water treatment, food packaging, textile and biomedical applications: a review

Pooyan Makvandi1,15 · Sidra Iftekhars2 · Fabio Pizzetti3 · Atefeh Zarepour4 · Ehsan Nazarzadeh Zare5 · Milad Ashrafizadehs6 · Tarun Agarwal7 · Vinod V. T. Padils8 · Reza Mohammadianjad9 · Mika Sillanpaas10,11 · Tapas Kumar Maitis7 · Giuseppe Perales12,13 · Ali Zarrabis14 · Filippo Rossis3

Received: 11 August 2020 / Accepted: 27 August 2020 / Published online: 16 September 2020 © The Author(s) 2020

Abstract

The inert nature of most commercial polymers and nanomaterials results in limitations of applications in various industrial fields. This can be solved by surface modifications to improve physicochemical and biological properties, such as adhesion, printability, wetting and biocompatibility. Polymer functionalization allows to graft specific moieties and conjugate molecules that improve material performances. In the last decades, several approaches have been designed in the industry and academia to graft functional groups on surfaces. Here, we review surface decoration of polymers and nanomaterials, with focus on major industrial applications in the medical field, textile industry, water treatment and food packaging. We discuss the advantages and challenges of polymer functionalization. More knowledge is needed on the biology behind cell–polymer interactions, nanosafety and manufacturing at the industrial scale.

Keywords Antibacterial · Drug delivery · Functional polymers · Functionalization · Surface modification

Pooyan Makvandi, Sidra Iftekhar, Fabio Pizzetti and Atefeh Zarepour have contributed equally to this work.

1 Istituto Italiano di Tecnologia, Centre for Micro-BioRobotics, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
2 Department of Environmental Engineering, University of Engineering and Technology Taxila, Taxila 47050, Pakistan
3 Department of Chemistry, Materials and Chemical Engineering, Politecnico di Milano Technical University, 20133 Milan, Italy
4 Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
5 School of Chemistry, Damghan University, 36716-41167 Damghan, Iran
6 Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
7 Department of Biotechnology, Indian Institute of Technology, Kharagpur, Kharagpur 721302, India
8 Department of Nanomaterials in Natural Sciences, Institute for Nanomaterials, Advanced Technologies and Innovation (CXI), Technical University of Liberec (TUL), Studentská 1402/2, Liberec, Czech Republic
9 Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
10 Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang 55000, Vietnam
11 School of Civil Engineering and Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, Toowoomba, QLD 4350, Australia
12 Faculty of Biomedical Sciences, University of Southern Switzerland (USI), Via G. Buffi 13, 6900 Lugano, Switzerland
13 Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Donaueschingenstrasse 13, 1200 Vienna, Austria
14 Sabanci University, Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
15 Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, 14496-14535 Tehran, Iran
Introduction

The inert nature of most commercial polymers and nano-materials limits their development for specific applications in various industries and, therefore, surface modification must be carried out to improve their adhesion, printing and wetting by bringing a variety of polar and other functional groups on surfaces of polymer and nanostructures. Several surface functionalization methods have been established during the past decades that generally follow a common path: first the binding of primary reactive functional groups to the polymer chain ends at the surface, followed by modifying the reactive surface with active/bioactive agents, hydrophobic and hydrophilic monomers, oligomers or polymers to achieve specific surface characteristics matching the needs of the end use (Karnati et al. 2019; Pour et al. 2015; Zare et al. 2019; Zhou et al. 2020).

The immobilization of active/bioactive agents on a polymeric surface is generally performed by covalent bonds, electrostatic interactions and ligand–receptor pairing. Non-covalent physical adsorption is desirable for some applications such as certain drug delivery systems (Richey et al. 2000) and regenerable antimicrobial textiles (Kim and Sun 2001; Sun et al. 2001). The covalent immobilizations offer some other advantages by providing the durability of active/bioactive agents, the extended half-life for biomolecules and preventing their quick metabolism (Alferiev et al. 2006; Harris 1992), as well as preventing the migration of bioactive agents to food from the active food packaging films. Grafting of multifunctional and anchoring compounds via a spacer molecule onto the surface of the solid substrate leads to an increase in the number of available active/bioactive agents per unit area and improves the efficiency of active/bioactive agents by reducing steric restrictions. Hence, the current review focuses on recent advances in the modification of polymer and nanomaterials surfaces, via active/bioactive agents targeted for various medicinal and industrial applications (Fig. 1).

Biomedical applications

Nanomaterials are introduced as different types of materials with at least one-dimension size in the range of nano- and have high surface energy, which are suitable candidates for being utilized in different biomedical applications. This is resulted from their extraordinary properties enabling them to donate new properties to the available tools and improve their performance in physiological conditions, increasing the satisfaction level of the users. Improving the biocompatibility, water solubility, biodegradability, bioavailability, antimicrobial activity, antioxidant and anticancer properties, and imaging capability are among several types of features which could be provided via utilization of nanomaterials in biomedicine (Abd Elkodous et al. 2019; Vuppaladadium et al. 2020; Makvandi et al. 2020; Deb et al. 2019). The application of nanomaterials in the field of biomedicine is varied from utilizing as drug delivery vehicles or therapeutic agents for different types of diseases and infections, to diagnostic agents in biological imaging, cell labeling and biosensors and functionalizing moieties for medical devices like stents or lenses (Jamaledin et al. 2020; Rout et al. 2018). Based on the literature, nanomaterials are classified into three main categories: (1) organic nanoparticles like dendrimers, lipid-based nanosystems, polymers and biopolymers, (2) inorganic nanoparticles including metal and metal oxide nanoparticles (like magnetic, Au, Ag, Cu), carbon-based nanoparticles (graphene, graphene oxide, carbon nanotubes, carbon dot and graphene quantum dot), silica nanoparticles, quantum dots and upconversion nanoparticles and (3) hybrid nanomaterials which are a complex of inorganic and organic nanomaterials in different forms (like core–shell nanoplatforms, nanocomposites, hydrogels, nanocapsules, nanospheres, etc.) (Fig. 2; Yang et al. 2019).
As mentioned before, nanomaterials could provide ideal features for the biomedical applications; for example, surface-modified nanomaterials could allow (selective treatment) or avoid cell internalization (reduce macrophage uptake, main challenge of nanomedicine) as is visible in Fig. 3. They could be used to prepare materials for in vivo applications via enhancing their biocompatibility, reducing their toxicity effect and preventing the activation of the immune system all of which lead to an increase in the bioavailability of the materials inside the body. These modifications are essential especially for different types of drug delivery systems which are designed for supplying sufficient dose of drugs at the targeted site along with reduction the side effects of the drug molecules on the other organs (Singh et al. 2019). For instance, utilizing different types of nanomaterials for transmission of antibacterial agents could improve the effectiveness of the agents and reduce the possibility of the drug resistance. In this regard, antimicrobial agents (like different types of antibiotics or Ag nanoparticles) could be attached on the surface of the nanomaterials or be entrapped inside them (Fig. 4).

Biodegradability is the other important feature which is needed for the safety usage of nanomaterials inside the body. This is a very important property in designing scaffolds for tissue engineering and regenerative medicine applications (Agarwal et al. 2016; Maji et al. 2017). Moreover, it is considered as a method for controlling the cargo release. As a matter of fact, different drug release mechanisms exist, one of which is the bioerosion or degradation of the carrier’s surface, thus enabling drug diffusion toward the external environment (Lee and Yeo 2015).

As far as the coating process is concerned, different techniques exist for polymer functionalization, as esters activation forming amide bonds, click chemistry, thiol chemistry, alcohols addition to isocyanates, imine and oxime linkages,
ring-opening reactions, and multicomponent reactions (Blasco et al. 2017). The first one is a very promising technique since amide bonds show high stability in different environments and compatibility with dissimilar moieties. Click chemistry is also a useful tool, since it is stereospecific and, during the production process, it generates easily removable non-toxic byproducts. Concerning the thiol chemistry, they have high light-mediated reactivity with carbon–carbon double bonds, thus allowing a combination with click chemistry, obtaining quantitative yields and a good product recovery. Shifting to the alcohols addition, it seems a promising technique due to its fast kinetic and good yields, but its application is limited for the isocyanate’s toxicity and the instability of the polymers/isocyanates mixture. Imine and oxime linkages have a relevant role in the field of macromolecular modifications, the obtained linkage can be hydrolytically stable or unstable depending on the final need. Ring-opening reactions are usually used with epoxides, but in recent year they have been also shifted to aziridines and azlactones. Eventually, multicomponent reactions are new synthesis methods that are gaining importance, thanks to their atom economy; their superiority with respect to other techniques is due to the possibility to introduce a high degree of functional complexity in a single modification step. NPs can be coated with different materials, where one of the most used are polymers. They can enhance the biological activity and improve the therapeutic efficiency. Furthermore, different polymers can be used, such as polyethylene glycol, polycaprolactone and polylactic acid; for example, functionalized carbon nano-onions (d’Amora et al. 2020) with hyaluronic acid phospholipid for selective targeting of cancer cells, where carbon nano-onions are a multi-shell fullerene structure with a size ranging from 2 to 100 nm, depending on the synthesis method. This surface modification allowed an increase in dispersing abilities and long-term stability to the carbon nano-onions derivatives. Furthermore, they were able to test their targeting abilities toward specific cancer cells overexpressing the CD44+ receptor. These functionalized carbon nano-onions were tested on zebrafish, showing no toxic effects and manifesting their biosafety and specific targeting also in vertebrate systems. Functionalized polymeric nanoparticles can be also produced with carbonate groups through hydroxyurethane bonds (Yadav et al. 2019). Here, nanoparticles were produced via copolymerization of glycerol carbonate methacrylate with methyl methacrylate by miniemulsion process and were successively functionalized with amines, amino acids and albumin; dopamine was used as hydroxyl-functionalized amine for the coating with phenolic hydrogen bonding moieties. The materials obtained can be used as catalysts for the cycloaddition of carbon dioxide to epoxides under atmospheric pressure (Sousa et al. 2019). The possibility to cell targets, as said, is a pivotal point highlighted by the use of poly(lactic-co-glycolic acid) carcinoembryonic antigen-targeting nanoparticles for drug dispersion and targeting.

Fig. 4 Different approaches for the transmission of antimicrobial properties on a specific platform. Reprinted with permission from Delfi et al. (2020)
delivery in colorectal cancer. Carcinoembryonic antigen is a

cell surface glycoprotein in colorectal cancer patients, whose

serum level evaluation is recommended in clinical settings.

In the field of surface functionalization, ethylene diamine

was successfully used with cellulose nanoparticles forming

aminodeoxy cellulose nanoparticles, which were subse-

quently incorporated into poly(ethylene-co-acrylic acid) to

develop composites. These composites were found to main-

tain their biocompatibility even after the introduction of the

functionalized nanoparticles, thus enabling their use in bio-

medical applications (Chenampulli et al. 2019). Besides pol-

ymers, other materials can also be used for surface func-

tionalization, such as cellular components. Indeed, the surface of

polymeric nanoparticles was functionalized with umbilical
cord-derived mesenchymal stem cell membrane for tumor-
targeted therapy (Yang et al. 2018a). Umbilical cord derived

described mesenchymal stem cells showed tropism against malignant

lesions, low immunogenicity, and high proliferative ability. The

nanoparticles used were poly(lactic-co-glycolic acid)-
based, with a layer of plasma membrane from umbilical
cord mesenchymal stem cells coating on the surface. Such

functionalization increased the cellular uptake efficiency of

poly(lactic-co-glycolic acid) nanoparticles, the tumor cell

killing efficacy of poly(lactic-co-glycolic acid)-encapsulated
doxorubicin and the tumor targeting of nanoparticles. Nano-
gels are also recently gaining relevant importance in bio-

medical applications as drug delivery systems for targeted

applications. They are defined as nanoparticles comprised of

a 3D structure, either physically or chemically crosslinked,

usually of polymeric nature. Sometimes, other definitions

can be also found, such as particles of gels having a diam-

eter in the range of 1 to 100 nm (McNaught and Wilkin-

son 1997). Some of their principal properties are related
to their large surface area and stability. Their formulation

is similar to biological tissues, thanks to the water content

and carbon-based composition, ensuring high biocompat-

ibility and biodegradability (Cho et al. 2018). Nanogels, as

for nanoparticles, can be produced with different methods.
First of all, they can be prepared through chemical reaction

involving a heterogenous polymerization of low molecular

weight monomers or the crosslinking of polymeric precur-

sors (Chacko et al. 2012; Soni et al. 2016). A lot of different

therapeutic possibilities were exploited with different coat-
ings on polyethylene glycol–polyethyleneimine-based nano-
gels developed for spinal cord injury treatment (Mauri et al.

2017). Coatings were prepared using polyethylene glycol

monomethyl ether modifying its terminal hydroxyl groups

with a series of linkers, in order to evaluate the quantity of

polymer chemically bonded and its effect over microglia

internalization. The polyethylene glycol modification with

imidazole or carboxyl moieties proved to be successful. Fur-

thermore, it was shown that a high amount of polyethylene

glycol coating (obtained in carboxyl systems) reduced the

microglia internalization, while a smaller amount (obtained

in imidazole systems) guaranteed higher microglia uptake

compare to nanogels without coatings. In a more recent

work (Mauri et al. 2020), they developed a coating strategy

through primary amines, in order to reduce microglia inter-

nalization. Nanogels were designed following two differ-

ent routes: direct grafting of aliphatic primary amines and

linkage of the -NH₄ modified polyethylene glycol on the

nanogel surface.

A minimal uptake was obtained by combining amine with

nanogel PEGylation. Furthermore, nanogel–polyethylene

glycol–NH₄ satisfied all biocompatibility criteria and, even

if their dimensions were suitable for the microglia phagocytic

activity, they remain available in the extracellular environ-

ment. Photo-crosslinkable nanogel from a polymer template

with intrinsic photoluminescence and large photostability

for theranostic applications is other interesting possibility

(Gyawali et al. 2018). Nanogels were prepared from citric

acid, maleic acid, l-cysteine, and polyethylene glycol using

a solvent- and surfactant-free one-step reaction. To reach

the optimal potential in theranostic applications, a surface

functionalization with arginylglycylaspartic acid peptides

and a doxorubicin encapsulation were applied, resulting in

a pH-responsive drug release in acidic medium resembling

tumor microenvironment. Shifting to other materials, also

hydrogels are gaining relevant importance in biomedical

applications, such as drug delivery and tissue engineering

(Satapathy et al. 2015). Hydrogels are 3D structure made

up of hydrophilic polymers with high water affinity, whose

dissolution is prevented, thanks to the formation of physical

or chemical bonds. The polymers constituting such a matrix

can be chemically modified in order to introduce new features

in the final material, thus allowing the synthesis of hydrogels

for different applications, from controlled drug delivery to

selective targeting tools or diagnostics such as functionalized

polyvinyl alcohol hydrogels with fucoidan for improved

endothelialization and hemocompatibility (Yao et al. 2020).

Fucoidan is a sulfated polysaccharide with anticoagulant

and antithrombotic properties, the problem with such a modifica-

tion was that some mechanical properties were sacrificed.

The use of sodium trimetaphosphate, as a co-crosslinker,

avoided the mechanical losses. These materials were tested

in vivo, exhibiting promising results coupled with higher

patency rate and lower intimal hyperplasia formation. Func-

tionalization with biomolecules is also a good possibility:

in this direction polyamidoamine/thiolated hyaluronic acid

hydrogels were functionalized with human vascular endo-

thelial cadherin fusion protein using a Fc-binding polypeptide

attached to the alkene modified polyamidoamine dendrimer

(Gao et al. 2020). This functionalized hydrogel was improved

to enhance adhesion and proliferation of human umbilical
cord mesenchymal stem cells and facilitated the reconstruc-

tion of vascular-promoting extracellular microenvironment.
Such facilitation is provided through upregulating the expression of endogenous vascular endothelial cadherin and the secretion of human umbilical cord mesenchymal stem cells, including growth factors, extracellular matrix components and immune-modulating factors. Furthermore, human umbilical cord mesenchymal stem cells loaded within hydrogel effectively also promote host cell recruitment and the subsequent vascularization. Hyaluronan-based hydrogels were able to mimic healthy or malignant extracellular matrix, but, as physical gels, they lacked in mechanical properties (Bonneseur et al. 2020). Their functionalization with poly-L-lysine or extracellular matrix proteins (such as type III or type IV collagen) can guarantee stiffness tunability through crosslinking at gradual genipin concentration. The materials showed an increasing in stiffness with gradual genipin concentration and an efficient enzyme resistance with poly-L-lysine treatment. Such structures were able to support glioblastoma and breast cancer cells cultures and were able to enhance or reduce proliferation and viability. Functionalization is also a good strategy to improve drug delivery performances (Arellano-Sandoval et al. 2020). In this field, an agar xylan-type hemicellulose was conjugated with trimethoxysilylpropylmethacrylate crosslinked with N-vinylcaprolactam obtaining a thermo-responsive material. This hybrid hydrogel showed a high capability of controlling the release of antibiotic in time. Other key applications in biomedical field are represented by sensing applications: a polylvinylypyrrolidone hydrogel stabilized with ZnO quantum dots was developed as a sensing platform for hexavalent chromium (Truskewycz et al. 2020). The functionalization of this system with photoluminescent 2-amino-2-methyl-1-propanol and laminating (Sarif Ullah Patwary 2015). Here, in this

Textile applications

One of the most important functional areas of polymeric engineering is the textile industry, which at first was introduced for the aim of human clothing and then was extended with great progress so that it presents some exciting products in recent years. Choosing the best material for clothing in different environmental situations brings a lot of work during years and also introduces a large variety of products which all pursued the same goal, providing the most comfortable situation for a wide range of consumers (Jocić 2016). Different types of materials are used for producing yarn of textiles, which are categorized into two main groups: natural materials such as silk, hemp wool and cotton fibers and synthetic materials including nylon, polyester and rayon. Natural materials have widely been applied as solid-phase extraction absorbents for sample preparation due to their high adsorption capacity of hydrophobic materials. These are eco-friendly materials that exhibit specific features like high mechanical strength, good biocompatibility and desired stability in non-aqueous or aqueous solutions. However, the versatile applications of these materials are restricted due to their monotonous functional groups. Synthetic products also have disadvantages like more rapidly burning, low biodegradability, and skin damages (Katsnelson 2015). These features along with the market demands for introducing novel types of textiles for a specific application has lead to the emergence of novel technologies for engineering of the available materials; among them is the surface functionalization via different agents, especially polymeric nanomaterials to develop the existing properties and also create novel characters.

In other words, surface modifications could lead to the production of vintages with features like low weight, less damage, more comfortable and fewer health risks for conventional or particular usage (Abidin et al. 2018). Utilizing nanotechnology has great effects in the textile industry due to its cost-effectiveness and feasibility via integrating different types of nanomaterials with specific features with the ability to be used in diverse fields including sports, healthcare, military and fashion (Pakdel et al. 2020). Furthermore, nanotechnology has introduced the smart textiles via applying stimuli-responsive polymers with the ability to sense and respect to the environmental changes, which could provide a huge global market with about 26% annual growth rate (Pereira et al. 2020).

Based on the induced properties, the surface-functionalized texture via different agents leads to introduce different types of smart textile that could be classified into different categories, some of the most important of which are:

1. Antimicrobial textiles,
2. Self-cleaning textiles,
3. Cooling management and moisture-wicking textiles,
4. Flame-retardant textiles,
5. Self-healing textiles,

The surface functionalization process could be carried out either during the fabrication of textile fibers through spinning or at the final step on the fabrics via printing, coating and laminating (Sarif Ullah Patwary 2015). Here, in this
section, we will discuss some of these textiles in detail, which are prepared via polymeric functionalization.

Antimicrobial textiles

Clothing, as the material that has the most direct contact with the skin, should have some intrinsic specific features, among most important of them is antimicrobial property. Clothes are known as an external defense barrier against most of the microbial infections and chemicals present in the weather. Moreover, the antimicrobial fibers could be used for the production of the patients’ and healthcare workers’ clothing services, counterpane and blanket in hospitals to minimize the microbial contaminations (Bearman et al. 2017). Inducing antimicrobial feature to the textiles (or their fibers) by polymers could be achieved via two main mechanisms: (a) providing a physical barrier against the attachment of microbial species, including attachment of brush-like polymeric components, and (b) acting as a contact microbiocidal agent and destroying the cellular structure of infections. In the latter mechanism, the cationic and zwitterionic polymers

Fig. 5 a Synthesis of the antibacterial and antiadhesive cotton fabric, b the bacterially adhesive and antiadhesive mechanism of the pristine and treated fabrics, c antibacterial action of treated fabrics, d transmission electron microscopy image of antibacterial effect against *S. aureus* after 0, 12 and 24 h. Adapted with permission from (Lin et al. 2018). Copyright 2018 American Chemical Society
are commonly used, which could affect the microbial species through disturbing the negative charge of the cell membranes. Chitosan, polyethyleneimine, poly-l-lysine and polyvinylamine are some of the most practical examples of the contact mode (Elbourne et al. 2017; Morais et al. 2016). Using surface functionalization with antibacterial polymers has been shown to be advantageous over the type of antibacterial textiles, in which antibacterial nanoparticles like silver nanoparticles are incorporated in the fiber since in the former method, the antibacterial agents are as a part of fabrics’ structure with negligible leaching, their probable toxicity effects are reduced, and they show higher application efficiency during a longer time (Wang et al. 2020e; Timma et al. 2019).

For example, in 2017, Luo and colleagues synthesized antibacterial cotton fabrics via mist polymerization of 3-methylallyloxy-5,5-dimethylhydantoin on the cotton surface. 3-Methylallyloxy-5,5-dimethylhydantoin is composed of an antimicrobial derivative, N-halamine, with specific features like long-term stability, biocompatibility, and the antimicrobial effect against a wide range of microorganisms. This new type of antimicrobial textile showed more than 99.78% bacteriostatic reduction rate and performance efficiency of about 99% even after 30 washing cycles (Luo et al. 2017).

In another study, Lin et al. (2018) produced an antibacterial and antiadhesive fabric via spray coating the antibacterial polymer emulsions on the surface of cotton fabrics. The emulsion contained two antibacterial monomers: quaternary ammonium monomers and dodecafluoroheptyl methacrylate with fluorine group (Fig. 5a). This fabrication led to the development of a physical brush-like barrier on the surface of cotton fabrics that prevented bacterial attachment on the surface, while in naked fabrics the contaminants easily attached on to the surface (Fig. 5b). The antibacterial mechanism of this fabric, as shown in Fig. 5c, is based on the simultaneous presence of negatively charged fluorine and positively charged organic quaternary ammonium salts in the structure of this polymeric coating, which leads to the damage of cytoplasmic membrane. Figure 5d shows the transmission electron microscopy images of antibacterial effect of the fabric against Staphylococcus aureus (S. aureus) after 0, 12 and 24 h. As it is clear in the figure, in the first contact with the surface the live cells were attached due to the presence of electrostatic interactions. After 12 h, the passive diffusion of polymeric chain to the cell wall and
cytoplasmic membrane of bacteria led to a damage to cytoplasmic membrane which is accompanied by the leakage of cytoplasm that finally consequences to cell death after 24 h (Lin et al. 2018).

Self-cleaning textiles

The self-cleaning property for a textile is defined as the capability of the textile to remove different types of contaminants spontaneously without using any external wash. This property could be developed via utilizing superhydrophobic or photoactive agents on the surface of a material which is an attractive feature, especially for the textiles. The most important point which should be considered when using this type of coating is that the coating shouldn’t affect other properties of the textile, like its breathability, wearability, and mechanical properties. Thus, it is very important to control the amount of coating ingredients. The mechanism of superhydrophobic agents is architecting the surface via functionalized materials so that the spherical form of water droplets is preserved on the surface of the material and thus they could flow on the surface and remove any types of impurities. Different strategies could be used to induce this feature in textiles, like interaction by polymers with low surface energy, increasing the surface roughness and functionalization by nanomaterials (Ghasemlou et al. 2019; Lu et al. 2015). In this regard, Chen et al. 2019 fabricated a superhydrophobic cotton textile with self-cleaning and heat resistance abilities. They used two modification steps on the surface of cotton fabric (P-cotton in Fig. 6). The first step was applying 9, 10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide (o-cotton), which counted as a flame-retardant component, while the second step was using two different polymeric structures: poly(methyl methacrylate glycidyl ester-co-dodecyl heptafluoroethyl methacrylate) or and silicon-containing compound octa(aminophenyl)silsesquioxane (S-cotton) (Fig. 6a) to reach the low surface energy. The final product showed superhydrophobic–lipophilic property so that different types of droplets on its surface showed spherical shape with contact angle more than 150 (characteristics of superhydrophobic materials) (Fig. 6b).

To confirm the self-cleaning property of the final cotton fabrics, they treated all types of cotton fabrics (P, D and S) with certain amounts of clay and then washed the clay with water (Fig. 6c). The result of this test revealed that only the S-cotton showed self-cleaning property which was originated from its superhydrophobic property (Fig. 6d). They also revealed that the simultaneous presence of phosphorus, fluorine and silicon in the structure of the final product had improved the thermal stability of cotton and donated the thermal retardant property to the fabric (Chen et al. 2019).

Cooling management and moisture-wicking textiles

Providing the thermal comfort is one of the most important features for clothing, especially in hot summer days, which could be provided by cooperation between personal cooling and textiles. In other words, designing a cooling garment is an affordable method for cooling management instead of using air conditioners with high energy consumption (Fu et al. 2019). These are breathable materials with air permeability property, which are designed based on three principles: (1) applying thermo-responsive polymers with the ability of sensing and reacting to the environmental temperature changes, (2) using materials and structures which can transfer the body thermal radiation and (3) incorporating materials with light reflection property (Baji et al. 2020).

Moisture is the other problem of a hot and humid environment and also during higher levels of activity, which could affect the comfortable feeling. Moisture evaporation into the environment could decrease the body temperature and also prevent wetting the clothes due to the sweating. Moisture evaporation from the textiles could be caused by the cooperation of two processes: wetting the fabrics and wicking the liquid flow through the fabric texture via capillary forces. The waterproof textile could be prepared via using hydrophobic polymers and functionalizing agents and also porous structures (Matusiak 2019; Li et al. 2016).

The cooling comfort, breathability and waterproof performance features mostly assemble with each other in a textile to fabricate the most desired cloth. Miao et al. (2018) produced a three-layer fibrous membrane composed of polyacrylonitrile–SiO₂ (PAN–SiO₂, in Fig. 7) as the outer layer, hydrolyzed polyurethane–polyacrylonitrile (PU–HPAN, in Fig. 7) as the transfer layer, and poly urethane as the inner layer with hydrophobic property (Fig. 7). In this trilayer
electrospun fabric, the transfer layer plays a key role in continuous water transfer. Moreover, the progressive spreading feature of the textile also increased the speed of water transferring that could preserve the textile dryness.

This special structure led to transport the water via textile only in one direction and so provided a comfortable dry microenvironment under the cloth (Miao et al. 2018).

In another work in 2019, Wang and his colleagues developed a smart Janus textile with the ability to react in response to thermal and moisture changes, in which two types of thermal responsive polymers were used: poly[2-(2-methoxyethoxy)ethoxyethyl methacrylate] and poly[\(N,N\)-dimethyl(methacryloylethyl)ammonium propane sulfonate] with lower critical solution temperature and upper critical solution temperature, respectively, and the same critical temperature (26–27 °C). For this purpose, cotton fabrics were first functionalized by 2-hydroxy-4′-(2-hydroxyethoxy)-2-methylpropiophenone trimethoxysilylpropylmethacrylate to prepare DB-cotton. The final texture was prepared by a two-step spray coating method that led to produce a diode-like water transporter with thermal responsive feature (Fig. 8a, b). Their results showed that at low temperature (lower than 27 °C) the heat and moisture were preserved to maintain the warm (3.3 °C warmer than cotton fabric), while at high temperature the moisture was transformed across the fabric to decrease the microclimate temperature under the fabric (1.2–2.3 °C cooler than cotton fabric) (Fig. 8c) (Wang et al. 2020c).

Song et al. (2020) designed and fabricated a type of cooling management textile architectures which was working based on the thermal radiation property of body heat loss. This was a type of radiative cooling textile composed of three main layers: a polyethylene textile fabric which was coated by poly(vinylidene fluoride) and nylon 6 and had

Fig. 8 a Smart DB-Janus fabric preparation. b Mechanism of the polymerization and crosslinking reaction around a single cotton fiber. c Thermal responsive reaction of the smart DB-Janus fabric for thermal and moisture management. TMSPMA, 3-(trimethoxysilyl)propyl methacrylate; MEO2MA, 2-(2-methoxyethoxy) ethoxyethyl methacrylate; EGDMA, ethylene glycol dimethacrylate; DMAPS, \(N,N\)-dimethyl(methacryloylethyl) ammonium propane sulfonate. Reprinted with permission from John Wiley and Sons (Wang et al. 2020c), Copyright 2020.
the ability to decrease the temperature of skin about 6.5 °C in comparison to the bare skin. This novel texture worked based on the selection between absorbing/emitting thermal radiations and reflected the solar energy (more than 90%) due to its micro-nanostructure (Song et al. 2020).

Flame-retardant textiles

Flame-retardant textiles could be used in particular for firefighters’ clothing and for protecting against uncontrollable fires. Using flame retardants (for textiles and buildings) has increased annually during the last years, while most of them show adverse effects on the environment and humans (Yasin et al. 2018). Thus, it is necessary to discover new types of eco-friendly flame retardants or new methods for preparing flame-retardant textiles. In this regard, some natural extracts such as banana pseudostem sap, coconut shell, and spinach leaves juice, and also some proteins such as casein and whey protein are among natural flame retardants that have recently been used (Yang et al. 2018b).

Another approach for producing these types of textiles is using polymeric and nanocomposite agents with natural flame-retardant properties in the textiles structure. For example, Zhang et al. fabricated an eco-friendly flame-retardant cotton fabric via surface coating of cotton by ammonium salt of melamine hexa(methylphosphonic acid). The final product showed a high limiting oxygen index (about 43%) which was maintain to about 33.4% after 50 laundering cycles that confirmed its high flame-retardant stability. Moreover, the toxicity results of this fabric revealed no toxicity against humans and the environment (Zhang et al. 2018).

Mourgas et al. (2019) produced a type of improved flame-retardant polyamide 6 via co-condensation of two types of organophosphorus compounds on the surface of polyamide via ε-caprolactam. The knitted fabric of this new type of polyamide showed high thermal stability, excellent flame retardancy and high limiting oxygen index values of about 35%. The presence of phosphorus groups in the structure of this textile was the main reason of its flame-retardant ability. Moreover, it was shown that the presence of the organophosphorus compounds in the structure of polyamide had no negative effect on its other features (Mourgas et al. 2019).

Self-healing textiles

Self-healing textiles are a class of smart textiles with autonomous repairing ability and are known as one of the most attractive subcategories of the textile industry. This property could prolong the lifetime of the products and could be created by different coating agents like micro/nanocapsules and polymeric coatings. Shelf-healing textiles are also classified as a type of responsive materials, which are activated due to the intrinsic or extrinsic triggers (Bekas et al. 2016; Gaddes et al. 2016).

In a research conducted by Xue et al., a self-healing superhydrophobic fabric was synthesized by coating the poly(ethylene terephthalate) fabrics by polydimethylsiloxane and octadecylamine via dip coating process (Fig. 9). This hydrophobic textile showed high permanence to washing (even after 120 cycles of washing) and different pH solutions. It could also heal its hydrophobicity after 12 h at room temperature, while increasing the temperature could reduce the healing time (Xue et al. 2016).

Water treatment

The industrial activities in the last decades drastically increased the amount and versatility of contaminant pollution in the aquatic environment leading to severe damage to the environment (Srivastava et al. 2020; Zare et al. 2018a).

Most of the contaminants adding up to wastewater are toxic and on the accumulation in living organisms possess
a risk to them (Ambat et al. 2020; Ben Hamida et al. 2018; Bessaies et al. 2020; Iftekhar et al. 2020a, b; Wang et al. 2019) For the depletion of these contaminants including heavy metal ions, dyes, organic contaminants, etc., a variety of methods have been employed along with various types of materials spanning from natural to synthetic, waste to hybrids and renewable to engineered (Hosseini et al. 2019; Zare et al. 2018b; Asif et al. 2016; Gao et al. 2017; Iftekhar et al. 2017a, 2018b). In recent decades, the paradigm has shifted toward the application of nanomaterials from bulk, causing the huge progressions of nanotechnology in creating novel nanomaterials for many industrial and environmental applications. The attention toward nanotechnology has been diverted due to the associated physiochemical characteristics which the bulky phase could not hold making their way to be used in many areas of science especially in water treatment (Chenab et al. 2020; Iftekhar et al. 2017b, c, 2018c, d, 2020a). Over time researchers divined that compared to bare nanomaterials, functionalization with the polymers allowed the adaptation for specific pollutants both with efficiency and selectivity owing to the presence of specific functional groups. The selection of polymers for the functionalization required the knowledge of removal pathways involved between the functional groups and pollutants. Moreover, besides the chemical nature of the functional groups, other parameters also play a vital role toward the selectivity of polymer-functionalized materials, viz. the physical state, and physical features (beads, gels, fibers, membranes, etc.) need to be considered for targeted water treatment method (Rivas et al. 2018). The fabrication and testing of polymer-functionalized materials have been expanded over the decades, and the common moieties used for functionalization include N-donors (amides, amines) and O-donors (ethers, alcohols) both of which proved to be of great interest. The removal/reaction pathway mainly depends on the functional groups carried by the polymeric materials as well as the effluent acidity. For instance, the removal of metal cations occurred by the anionic functional moieties via ion exchange, whereby complexation interactions were likely due to uncharged functional moieties. The removal mechanism and the selectivity of polymeric materials could be controlled easily by adjusting the pH of effluent solution (Beaugeard et al. 2020; Rivas et al. 2018; Gao et al. 2018). In this section, firstly the influence of the physical state of polymeric materials and properties of functional moieties toward the implementation in a water treatment process will be discussed. Then, considering particular selectivity of polymer-functionalized materials bearing various functional groups, i.e., hydroxyl, carboxylic, amines, phosphonic and sulfonic, toward targeted pollutant will be given a special attention. **Selection of polymeric materials for targeted application**

As mentioned above, the overall performance of the polymer-functionalized materials depends on two important things that must be taken under consideration- (a) the physical state of the material in water and the chemical nature of the functional moieties bore by the polymer. Due to the versatility of polymerization methods, a wide range of materials have been synthesized. Based on their chemical structure, such materials are either soluble or insoluble in water (Fig. 10). The removal of pollutant by water-soluble polymers is widely used through liquid-phase polymer-based retention, which when merged with ultrafiltration, leading to the establishment of the polymer-enhanced ultrafiltration process employing functionalized membranes. The other process is a solid-phase extraction which includes fixed-bed ion exchange column processes, for the removal was employed via insoluble polymeric materials (Gao et al. 2017, 2018; Graillot et al. 2015; Srivastava et al. 2018). The hydrophilicity of polymeric materials facilitated a direct interaction of the functional groups with the pollutant in the polymer, enhancing the efficiency of ultrafiltration process, but the removal of the polymer–pollutant complex is a difficult and expensive process. The difficulty in separation of material limits its implementation at an industrial level due to the involvement of ultrafiltration steps that required relatively high pressure and thus could lead to high operating costs.

Fig. 10 Different polymer-based materials for the removal of pollutants from water. Reprinted with permission from Rivas et al. (2018)
and significant membrane fouling (Fenyvesi et al. 2020). On the contrary, the removal of materials is easy in solid-phase extraction process, where the slow kinetics and low removal rate of such materials were led by the insoluble material. The problem can be overcome by using hydrosoluble polymeric materials. Additionally, the adaptability of material’s physical state enabled their application in elution processes via membranes (Ajji and Ali 2010; Asif et al. 2016; Habib et al. 2017), fixed beds or packed columns (Dakova et al. 2009). Deducing that the selection of non-soluble polymer-functionalized materials was appropriate when the two processes, i.e., pollutant removal and material separation, are combined in one step. In contrast, hydrosoluble polymeric sorbents are suitable when fast kinetics is essential but the addition step is needed to achieve separation of material.

Pertaining to the functional moieties carried by the polymer, their chemical nature could significantly affect the selectivity. A large number of materials functionalized with different groups are reported in the literature and the common functional moieties were alcohols, crown ethers, amines, amides, carboxylic, phosphonic and sulfonic acids, allowing the removal of pollutant through functionalized materials through sorption which mainly took place by either ion exchange or complexation. Both types of interactions for carboxylic, amines, phosphonic and sulfonic groups were reported in the literature (Iftekhar et al. 2018a) as shown in Fig. 11. The predominant mechanism is ion exchange when the polymeric material bears charged functional groups (polyelectrolytes), while such interactions are generally reversible and weak. On the other hand, for the polymeric material carrying uncharged functional groups, the prevalent mechanism is more likely complexation leading to the formation of coordination bonds between the pollutant and functional groups, which are stronger than electrostatic ones but are still reversible. Another aspect that needs to be considered prior to selection of polymer for functionalization is the pollutant which ought to be trapped from effluent. The functional groups mainly consist of electron donor atoms like oxygen, nitrogen, phosphorous and sulfur (Beaugeard et al. 2020). Some of the examples of O-donor and N-donor used for the decontamination of pollutants from water are listed in Table 1.

Fig. 11 Representation of dominant mechanisms on various functional groups
acid, which contains only one carboxylic group per monomer unit. After the expansion in the use of new polymeric materials, a variety of simple or complex polymers were used for functionalization such as maleic acid-based polymers leading to high selectivity toward pollutants as the polymerization of its monomer is easy with other comonomers, viz. salicylic acid, styrene, etc. Some of the carboxylic acid bearing polymers used for the modification of materials and removal of pollutants from water are listed in Table 1. Depending on the application, the nanomaterials functionalized with carboxylic acid polymers are synthesized in different physical states. The water-insoluble forms are mostly used in the form of resins, beads, gels, membranes, fibers. The possibility of adding a variety of ligand groups helps beads and resins to gain attention (Beaugeard et al. 2020). Kobylinska et al. prepared

Table 1	Polymers materials bearing O- and N-donor functional moieties for the removal of various pollutants			
Functional moiety	pKₐ	Physical state	Targeted pollutant	References
Polyvinyl alcohol	> 14	Beads, nanofiber, membrane, nanocomposite	Cd, Cr, Cu, Pb, Zn, Mo	Al-Hwaii et al. (2019), Isawi (2020), Lee (2019) and Vatanpour et al. (2020)
Poly (itaconic acid)	4.5	Water-soluble polymer	Pb, Cu, Cd, Sn, Zn	Rezania et al. (2019)
Polyethylene glycol (PEG)	–	Hydrosoluble membrane	Zn, Pb, Cr	Baharuddin et al. (2019)
Amines	10–11	Membrane, fiber, hydrosoluble polymer, nanocomposite bead, insoluble resin	Cu, Co, Sr, Tetracycline,	Fakhri et al. (2019), Sum et al. (2019), Wamba et al. (2018) and Wang et al. (2020b)
1. 3-(Aminopropyl)triethoxysilane				
2. N-[3-(trimethoxysilyl)propyl] 1H-imidazole				
3. 1-(3-triethoxysilylpropyl) diethylenetriamine				
4. Bis[3-(trimethoxysilyl) propy]ethylene diamine				
5. N-[3(trimethoxysilyl)] propyl]ethylenediamine				
6. 2-Aminoethyl-3-aminopropyl-trimethoxysilane				
7. 3-(Cyanopropyl)triethoxysilane				
8. Bis[3-(triethoxysilyl) propyl]amine				
Polyethyleneimine (PEI)	10–11	Nanocomposite resin, beads, membrane	Pb, Cd, Hg, Se, Ar, Se, Cr, As, La, Yb, MB, RhB	Arshad et al. (2019), Guo et al. (2019) and Wilfong et al. (2020)
EDTA	2–2.7, 6.7–10.2	Membrane, nanocomposite, beads	Acid red 88, Malchite green, Reactive blue 2, acid yellow 76, acid blue 25, indigo, Hg, Eu, Cu, Cr	Luo et al. (2020), Ranjeh et al. (2020), Rončević et al. (2019) and Xia et al. (2019)
Acrylic acid	4.5	Membrane, hydrogel, resin, nanocomposite, beads	Hg, Pb, Cd, Zn, Cu, Ni, 4 nitrophenol, Cr, Co, Sn	Ansari et al. (2019), Kochameshki et al. (2019), Sarma et al. (2019) and Tang and Qiu (2019)
Polyphenylsulfone				
2-Ethylhexyl phosphonic acid	–	Nanofiber, membranes, resins	Zn, Ni, Eu, Nd, La, Pb, Cr, Cd, phenol, MB	Nayak et al. (2019) and Sarma et al. (2019)
Imidazole sulfonic acid		Membrane, resin, hydrogel	MB, CR, RhB, MO, Cu, SO₄²⁻, Pb, NO₃⁻	Ran et al. (2019), Tirtom and Dinçer, (2020) and Zhang et al. (2019)
core–shell superparamagnetic nanoparticles immobilized with ethylenediaminetetraacetic acid derivatives which increased the chemical stability of nanoparticles in acidic media and enhanced the affinity for the removal of Pb, Cu, Zn, Cd (Kobylinska et al. 2020). Ethylenediaminetetraacetic acid was also used for the functionalization of graphene oxide by a realizable silanization chemical reaction for Hg removal from desulphurization wastewater treatment (Sun et al. 2020). The materials did not show an exemplary removal of Hg in case of multilayer graphene oxide as the active sites including carboxylic groups and hydroxyl groups were not accessible by Hg ions. Carboxylic immobilized ferroferric oxide was inserted in membranes exhibited excellent hydrophilicity with high water flux have a potential for the simultaneous removal of Pb, Cd and Cr (Mishra et al. 2020). Muller et al. (2019) used ethylenediaminetetraacetic acid as complexing agent to functionalize polyvinyl alcohol hybrid with alumina to form an efficient complex for the scavenging of metallic cations (Fig. 12). To promote adhesion with alumina and ethylenediaminetetraacetic acid, a well-defined homopolymer holding either alkyne or azide was functionalized through chemical modification by phosphoric acid (Muller et al. 2019).

However, in comparison to amines, carboxylic acid groups have low selectivity still providing significant removal of some pollutants, particularly metal ions. Further, they offer excellent removability under neutral and basic pH conditions the performance under acidic conditions is also rather good. For polymeric materials carrying carboxylic groups generally, the possible two mechanisms found could be hinge on the solution pH and pKa value of acid/base couple. The carboxylic functions will not dissociate in case the solution pH is less than pKa and electrostatic interaction will take place between the pollutant and oxygen atom of carboxylic groups preceding to the formation of coordination bonds which agrees to the polychelatogen behavior through complexation process.

In the other case, the interaction corresponds to electrostatic exchanges between the negative charge of the carboxylate groups and the positively charge pollutant being consistent with the polyelectrolyte behavior dominated by ion exchange (Fig. 13). The removal feature of this group also depends on the nature of pollutant (Beaugeard et al. 2020).

Polymeric materials bearing amine moieties

One of the most widely used functional groups for the immobilization purpose is amine groups. A large number of polymers bearing amine groups have been reported in the literature such as 1,3-phenylenediamine (Darabi et al. 2019), triethylenetetramine (Darabi et al. 2019),
aminopropyltriethoxysilane (Ramasamy et al. 2018, 2019), poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate), 2-amino pyrimidine (Sadjadi et al. 2019), etc. Along with many others, the functionalization of nanomaterials with amino/silanes is very common. The modification is mostly conducted by grafting process between nanomaterials or membranes and alkoxyaminosilanes where the OH group of nanomaterials react with the alkoxy group of polymers. The crosslinking is also possible by the formation of covalent bond with the hydrogen atoms on the surface of NPs. The commonly used precursors of amine functional groups are listed in Table 1. The functionalization success rate depends on many factors like the temperature, contact time, precursor concentration and the nature of the solvent. Amine-functionalized silicate material was used for the removal of Cr which is governed by electrostatic interaction (Fellenz et al. 2017). Lou et al. reported synthesis of magnetic bentonite functionalize with aminopropyltriethoxysilane for the removal of methylene blue and in 120 min the maximum adsorption capacity was 91.83 mg/g (Lou et al. 2017).

The amino-functionalized materials are reported to be favorable for the removal of anionic species as well as cationic in comparison to carboxylic, phosphonic and sulfonic groups which are least stable for extraction of anionic pollutants. For this purpose, the most commonly used amines are polymers with quaternary and ternary amines and such functionalized materials generally behaved as anion exchange materials (Fig. 13) with ion exchange as a dominant mechanism (Vogel and Meier-Haack 2014). To understand this, Bui et al. (2011) employed aminopropyl-functionalized silica for the removal or 14 different pharmaceuticals (Atenolol, Acetaminophen, Clofibric, Carbamazepine acid, Estrone, Diclofenac, Gemfibrozil, Gemfibrozil, Ibuprofen, Oxaprozin, Iopromide, Sulfamethoxazole, Ketoprofen, Tri-methoprim). The material showed reduced adsorption for the two compounds containing amine groups and estrone while increased adsorption for acidic pharmaceuticals, viz. diclofenac and clofibric acid. The possibility of hindered adsorption of estrone was pointed out as being extremely hydrophobic, while the surface amino groups are hydrophilic. On the other hand, the neutral and cationic forms of amino functional groups exist at pH 5.5 leading to an increase in surface charge, letting the adsorption of anionic compounds on the surface via electrostatic interaction. Meanwhile, the adsorption of cationic compounds decreased due to higher surface charge owing to higher electrostatic repulsion (Bui et al. 2011). The amino groups would also show interaction with the silanol groups through electrostatic interaction or hydrogen bonding and block the availability of surface silanol groups. This approach impairs the removal of cationic pollutants, whereas it is beneficial for the anionic contaminants (Iftekhar et al. 2018b, 2020a).

Polymeric materials bearing phosphonic moieties

Phosphonic groups (R-PO₃H₂) with two dissociation constants (i.e., pkₐ₁ = 2–3 and pKₐ₂ = 6–7) are referred to as
diacids. Compared to other functional groups, the removal capacity of phosphonic acid moieties is fascinating at low pH. At pH ≥ 2, phosphonic groups dissociate facilitating the electrostatic interaction as the competition between the H⁺ and pollutant is comparatively low due to the negative charge carried by the materials bearing phosphonic functional units (Alexandratos and Hussain 1998; Ferrah et al. 2011). The hydrophilic character of polymeric material increased due to a negative charge facilitating faster kinetics. Meanwhile, the scenario is completely different for pH between 2–7 and above 7. When the pH lies between pKₐ₁ and pKₐ₂, phosphonic moieties behaved both as polychelatogen and polyelectrolyte (Fig. 14) due to the dissociation of only one hydroxyl group. Above pH 7, two acid moieties dissociate due to electrostatic forces. Being hard acids, phosphonic groups showed a better affinity toward hard cations compared to soft cations (Beaugeard et al. 2020; Tokuyama et al. 2011). Artiushenko et al. (2020) tested aminodi(methylenephosphonic) acid covalently immobilized on silica for the preconcentration of rare earth’s elements from polluted water. However, the extraction of rare earth’s elements from the material required the application of strong acids. The adsorption of trivalent ions on phosphonic acid immobilized nanomaterials was higher than that of divalent ions. This provides materials modified with phosphonic acid groups high selectivity feature to scavenge the pollutants particularly at low pH (Tokuyama et al. 2011). Generally, in case of carboxylic and amines, the polymers are available commercially and employed as chelating agents, conversely, phosphonic derivatives had to be exclusively manufactured to produce more complex structures. A hydrosoluble polymer containing phosphoric groups was used for selective recovery of Gd from a mixture of Gd/Ni and the dominant mechanism was found to be ion exchange and solvation (Rodrigues et al. 2019). Further to achieve more selective recovery and removal of pollutants, different ligand groups were combined. Page et al. (Reaves 2004; Page et al. 2017) studied the combined effect of different ligand groups with phosphonic groups, viz. sulfonic/phosphonic, aminophosphonic or iminodiacetic for selective recovery of La, Sm and HO from common impurities of Fe, Th and Al. Likewise, compared to common resin, the bifunctional chelating resin bearing phosphonic and sulfonic groups showed better removal of fluoride (Li et al. 2020). Among all examples, bifunctional polymer-supported aminophosphonic acid (Zidan et al. 2020), carboxylic–amine–phosphonic acid (Wang et al. 2020a), diphasphonic (Fila et al. 2019), polyamine in the presence of HDPE (Zhao et al. 2019a) proved to be of interest for the removal of metal cations.

Polymers bearing sulfonic moieties

Sulfonic acids (R-SO₃H) own the electro-attractor character of the sulfur atom which caused the negative pKa value (−2) often termed as hard monoacids. Regardless of solution pH, this acid group always dissociate in aqueous medium following the ion exchange mechanism. The polymeric materials carrying this group behave only as polyelectrolytes and interaction with pollutants is electrostatic (Gao et al. 2017). Different types of materials are functionalized with sulfonic acid groups either to alter the hydrophilic/hydrophobic property of materials or the acidity, being highly acidic permitted the high removal of pollutants. One of the most commonly reported physical forms of polymeric nanomaterials bearing this group is resins. Bayramoglu et al. (2020) prepared a sulfonic acid-functionalized terpolymer resin as a cation exchange resin for the depletion of disperse dyes, i.e., Disperse Violet 28 and Direct Red R. The ion exchange and the strong electrostatic interaction between amine groups of dyes and sulfonic groups of the resin contributed toward the high adsorption of dyes onto the resin (Fig. 15). Other forms of materials bearing sulfonic groups studied include gels.
Haleem et al. (2020) reported the poly(n-isopropylacrylamide-co-2-acrylamido-2-methylpropane sulfonic acid) hybrid gel embedding Ag and Pd nanoparticles, used as a catalyst for degradation of P-nitrophenol and Rhodamine-B. Hydrosoluble polymers bearing sulfonic acid groups were not investigated frequently. A water-soluble polymer immobilized by sulfonic groups was prepared by Zhou et al. (2019) and used for the removal of cationic (methylene blue, neutral red, Rhodamine-B) and anion (Orange G, acid fuchsin, methyl orange) dyes. The functionalized material is highly selective for cationic dyes. Zhao et al. (2019b) fabricated the functionalized composite membrane with an environmentally friendly fabrication process that demonstrated high durability with low operating pressure for the removal of metal ions and disperse dyes. Because of their peculiar structure, the properties of materials carrying sulfonic groups are easy to tune compared to other ligands. Due to the low pKa (below zero) values, sulfonic groups allowed the adsorption process possible under acidic pH range. Page et al. (2017) concluded that compared to phosphonic groups the adsorption is superior with a factor of 1.5 with sulfonic groups. The sorption kinetics was also reported to be good for sulfonic-functionalized material like that of carboxylic groups. The overall removability of the sulfonic group is significant under acidic range, but the selectivity was low compared to phosphonic groups (Page et al. 2017).

Food packaging

Due to the advantages of polymer nanoparticles over traditional materials, their application in food packaging has increased enormously. The polymer-functionalized materials are mainly developed to enhance the barrier properties to UV rays and gasses along with adding heat resistance, stability, strength and stiffness. This is one of the possible justifications why the world’s largest food companies are investing in this area of research to obtain the packaging materials with improves antimicrobial, mechanical and barrier properties (Silvestre et al. 2011; Hoseinnejad et al. 2018). In this context, the application of PNPs will be subcategorized as improved, active and intelligent polymer nanoparticles packaging materials will be discussed.

Improved polymer nanoparticles packaging

The addition of polymer nanoparticles in polymer matrix rallies the packaging properties mentioned above and thus
led to the development of many polymer nanoparticles packaging materials. Among these, the first reported materials found in the literature, which emerged in the market as better materials, were the clay nanoparticles incorporated in the polymer matrix. The homogenous dispersion of clay nanoparticles is a need in a polymer matrix to enhance its properties depending on enthalpic and entropic factors to determine the morphological arrangement (Rhim et al. 2013; Silvestre et al. 2011). This uniform dispersion is only achievable when polymer–clay interactions are constructive that necessitates adequately promising enthalpic factors, which in case of polar solvents is possible by utilizing alkyl-ammonium surfactants (Bumbudsanpharoke and Ko 2019). Generally, the materials can be prepared by melt processing or (in situ) polymerization. To prepare polymeric clay materials, various polymers and clay fillers were used. Among these, the most widely used polymers are polyethylene terephthalate, nylon, polystyrene, polyolefins, polylactide, polyamide, polyimides, epoxy resins polyurethane and ethylene–vinyl alcohol.
Carbon nanotubes on combining with polymers could not only enhance the features of the polymer matrix but also improve the antimicrobial property. Liu et al. (2019) fabricated the polylactic acid/carbon nanotubes/chitosan fibers through electrospinning, which demonstrated antimicrobial activity against Staphylococcus aureus than against E. coli. The experiments further exhibited that 7% contents of core–shell improved the shelf life of strawberries for several days. To the best of the authors knowledge, we are unable to find the studies related to a combination of single-wall carbon nanotubes with polymer matrix as a food packaging material. Additionally, the applications at the industrial scale stopped due to many studies suggesting that carbon nanotubes are cytotoxic for humans (Silvestre et al. 2011; Zubair and Ullah 2020).

Intelligent polymer nanoparticles packaging

The purpose of “Intelligent polymer nanoparticles packaging” is to examine the packaged food condition or environment the food is surrounded by. The latest advancements for intelligent polymer nanoparticles include pathogen sensors, freshness indicators and oxygen indicators. During food storage, microorganism growth is facilitated by oxygen, which boosted the interest to develop irreversible and non-toxic oxygen sensors to ensure absence of oxygen in the packaging system while packing under nitrogen and vacuum (Dobrucka 2019; Silvestre et al. 2011). To photosensitize the methylene blue via triethanolamine, TiO$_2$ nanoparticles were encapsulated in a polymer matrix using UVA light by Lee et al.
and noticed that rate of color recovery was proportionate to the oxygen level exposure (Lee et al. 2002). Likewise, SnO₂ was used as a photosensitizer for oxygen indication where the film color fluctuates subject to the oxygen exposure (Mills and Hazafy 2009). Based on the gas emissions of microorganisms, different types of gas sensors developed which could be used for identification and quantification (Dobrucka 2019; Silvestre et al. 2011). Polymer nanoparticles sensors, owing to high stability and sensitivity, are the most prevalent forms of sensors. Sensors developed using conducting nanoparticles entrenched in a polymer matrix to identify and detect microorganism specific responses are under investigation (Liu et al. 2007). From the pattern of response produced by such sensors, three forms of bacteria were identified, namely *Vibrio parahemolyticus*, *Salmonella* spp. and *Bacillus cereus*. Other innovations in this area of research are at an early stage consisting of devices that will detect the release of preservatives as soon as the food starts to spoil and thus offer a base for intelligent preservative-packing technology.

Other industrial applications

Polymer-functionalized nanomaterials belong to the polymer nanotechnology spectrum that is wide implemented in an interdisciplinary field. This section provides an overview of the application of polymer-functionalized materials in sensor, energy storage sector and catalysis.

Sensors

The sensing characteristics of polymer nanoparticles depend on the chemical and structural alterations because of the polymer and nanoparticles interaction with the environment affording a subsequent output usually as an optical or electrical signal (Zare et al. 2014; Ahmad et al. 2019; Belbruno 2019; Boyaciyan and von Klitzing 2019). Subramanian et al. (2018) detected the vapors of toluene and benzene at room temperature with polyaniline metal oxide composite (TiO₂/SnO₂). The interaction of sensor material and vapors of analyte occurs by surface adsorption. Metals exhibiting surface plasmon resonance are typically used for optical sensors (Boyaciyan and von Klitzing 2019). By utilizing the chitosan and polymer film of Ag metal, Verma and Gupta (2015) spotted the presence of heavy metals optically in polluted water. The Ag films coated with polymer and chitosan are capable of binding metal ions of their surface and this binding changes the dielectric features of the sensing surface. The shift in surface plasmon response can be detected by using a UV/Vis spectrometer and the possibility of detecting the very low concentration of metal ions, i.e., 1 ppb increases. Boyaciyan et al. (2018) prepared a sensor device by embedding the Au nanoparticles in the polyelectrolyte matrix. The former being pH-sensitive on an addition to the insensitive matrix, i.e., polyelectrolyte matrix, made it sensitive to pH alterations and thus helping them in detecting the pH changes in the surrounding environment. The interaction of Au nanoparticles with polyelectrolyte matrix altered with changing pH and in turn altered the surface plasmonic characteristics detected through UV/Vis spectrometer (Boyaciyan et al. 2018). In another study, a voltammetric sensor developed using 3-thiophene acetic acid coating Au nanoparticles forming a conductive 3D network film (Fig. 17) resulting polymerization was used for adenine. This procedure developed sensor exhibited improved sensitivity and selectivity for adenine determination with limits of detection of 0.99 nM (Wang et al. 2018).

Recently, the combination of carbon nanotubes with polymer is found to be capable of interacting with targeted molecules and thus aided in the augmentation of the intensity of electrochemical signals, creating sensors that are both selective and sensitive. The frequently used polymer used for the surface modification of carbon nanotubes as a monomer is pyrrole due to its conductive properties and is ideal for biological and pharmaceutical analyses from acidic to neutral region. Other polymer of interest is orthophenylenediamine which is fairly akin to pyrrole (Beluomini et al. 2019). The polymer was used for the functionalization of single-wall carbon nanotubes and used for the detection of brucine with limits of detection of 0.21 μmol/L (Liu et al. 2012).

Energy storage

The creation of renewable and sustainable sources for storage like wind and solar energy divisions is needed on urgent basis because of the escalating energy crisis instigated by the diminution of traditional fossil fuels. As renewable energy resources are sporadic, effective

Fig. 18 Synthesis of corn-like SnO₂ coated PDA nanoparticles used as anodes for Li-ion batteries. HPC-g-PAA: hydroxypropylcellulose-g-polyacrylic acid; PDA: polydopamine
energy storage techniques are needed to generate and store renewable energy quickly and steadily. This led to the growing research interest in Electrochemical Energy Storage Systems with cells, batteries and capacitors being among various storage systems that have been crucial (Fard et al. 2017a, b; Boyaciyan and von Klitzing 2019). In this area, the appropriate application of polymer nanoparticles is lithium-ion batteries which is based on four main components consisting of anode, cathode, separator and electrolyte. Presently, porous polyolefin-based polymers, viz. polypropylene and polyethylene, were used in separators that restrict the electrolyte diffusion because of hydrophobic surface (Wang et al. 2020d; Song et al. 2012). Polydopamine-based separator coated with polyethylene which improved the electrolyte diffusion and the discharge capacity of the battery stayed 84.1%. In lithium ions batteries, the positive and negative electrode, i.e., cathode and anode, play an important role in determining the electrochemical performance. A template method for the growth of the SnO2 nanoparticles coated polydopamine by tapping a bottlebrush like cellulose-g-acrylic acid (Fig. 18). It was stated that coated polymer nanoparticles performed better than uncoated and exhibited long cycling stability up to 300 cycles (Liu et al. 2017).

Dye-sensitized solar cell is another type used for energy storage based on photosensitizing dye having light adsorption behavior coated on semiconductor like TiO2. The harvesting of solar cell energy enhancement is possible through polydopamine which owns wide band absorption feature (Wang et al. 2020d). Nam et al. (2012) prepared polymer nanoparticles dye-sensitized solar cell via polymerization of dopamine under N2 atmosphere in tris(hydroxymethyl)aminomethane solution; the resulting mixture was used for coating of TiO2 electrode as a dye. It was also reported that the coating method significantly affects the photovoltaic parameters. The polydopamine–TiO2–DC acquired by dip coating technique offered greater efficiency than the polydopamine–TiO2–CV samples obtained through capacitance–voltage method (Nam et al. 2012). The ultrafast high energy density, long-term stability and charge–discharge behavior are unique features of supercapacitors, which has fascinated considerable attention recently. Normally, carbon and metal materials are materials used in supercapacitors; however, polymer nanoparticles are also used widely (Wang et al. 2020d). Madhu et al. (2015) prepared electrode made of mixed oxide (Ni–Co) coated with polydopamine and observed that the coated material resulted in an increase of surface area from 36 to 59 m2/g compared to bare NiCo2O4 samples, yielding a quick ion diffusion in electrolyte (Veeramani et al. 2016).

Catalysis

The broad array of diverse polymer nanoparticle-type nanoreactors are made with catalytic activity. For example, chemically attracted metal nanoparticles to polymer chains, homogenous distribution of functionalized nanoparticles in microgel assembly, polymeric membrane surfaces, or polymer-functionalized metallic thin films (Boyaciyan and von Klitzing 2019). Functionalized polymer brushes for hydrogen evolution were prepared by Stern et al. (2018). The highly oriented planar pyrolytic graphite was used for the growth of cationic polyelectrolyte brushes, which catalyze hydrogen production from water by binding molybdenum sulfide of cationic polyelectrolyte. To become mobile the growth of polyelectrolyte brushes on spherical surfaces (Lu and Ballauff 2016), Gill et al. (2009) fabricated polymer brush catalysts based on MNPs functionalized by piperazone and employed for the Knoevenagel condensation. After the reaction, the brushes can be pulled out selectively anywhere due to the presence of MNPs (Yan et al. 2019). 4-Nitrophenol was successfully reduced by thermosensitive functionalized nanoreactors which are capable of adjusting the catalytic activity, switching on and off concerning temperature (Jia et al. 2016).

Conclusion

Despite the great progresses in the last years and the high success of polymer functionalization in different fields, several challenges still remain. First of all, a better understanding of the biological mechanisms behind cell–polymer interactions could guarantee a better design. Indeed, many of the pathways involved in cell uptake, toxicity, etc., are still under investigation and a common theory is far to be established. In parallel, also safety concerns should be taken into particular consideration: nanotoxicity indeed aims to study the potential negative chronic impact of nano-objects in humans. In the last decades, clinical studies underlined that potentially they can contribute to damage, inflammation and undesired entrance through biological barriers. The factors behind possible toxic effects should be investigated to ameliorate their use considering that nano-objects can come in contact with genetic material through inhalation, skin absorption or ingestion. Toxicity is a big issue that should be considered not only in the final application but also during the entire manufacturing and then disposal. The large-scale production represents an other big challenge due to the fact that it is well known that small volumes (laboratory scale) favor the surface respect to the bulk, while increasing the scale the opposite. A big technological progress should be
done to allow reliable synthesis, functionalization and storage of these devices. Moreover, financial and economic barriers represent a high impediment in their final use due to the high cost behind all the points addressed above. In summary, we can state that polymers and nano-objects represent a milestone for many applications, from medicine to catalysis. However, the easy combination of polymers cannot satisfy all the properties needed and so surface functionalization represents a winning strategy that consent to introduce ideal properties different from the ones of the native polymers: the functionalization approaches appear as the basic line for the amelioration of the performances of these devices.

Acknowledgements Vinod V.T. Padil would like to gratefully acknowledge financial support under the “Project Hybrid Materials for Hierarchical Structures” (HyHi, Reg. No. CZ.02.1.01/0.0/0.0/16_019/0000843) and Research Infrastructure NanoEnvICz (Project No. LM2018124) supported by the Ministry of Education, Youth and Sports of the Czech Republic and European Union—European Structural and Investment Funds in the frames of Operational Program Research, Development and Education.

Funding Open access funding provided by Politecnico di Milano within the CRUI-CARE Agreement.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Abd Elkodous M, El-Sayyad GS, Abdelrahman JY, El-Bastawisy HS, Mosallam FM, Nasser HA, Gobara M, Baraka A, Elsayed MA, El-Batal AI (2019) Therapeutic and diagnostic potential of nanomaterials for enhanced biomedical applications. Colloids Surf B Biointerfaces 180:411–428

Abidin NZ, Sabri MMM, Kalantari K, Afifi AM, Ahmad R (2018) Corrosion detection for natural/synthetic/textiles fiber polymer composites. In: Structural health monitoring of biocomposites, fibre-reinforced composites and hybrid composites. https://doi.org/10.1016/B978-0-08-102291-7.00006-X

Agarwal T, Kabiraj P, Hari Narayana G, Kulanthaivel S, Kasiviswanathan U, Pal K, Giri S, Maziti TK, Banerjee I (2016) Alginate bead based hexagonal close packed 3D implant for bone tissue engineering. ACS Appl Mat Interfaces 8:32132–32145

Agarwal T, Rustagi A, Das J, Kumar Maziti T (2018) PAMAM dendrimer grafted cellulose paper scaffolds as a novel in vitro 3D liver model for drug screening applications. Coll Surf B Biointerfaces 172:346–354

Agarwal T, Maziti Kumar T, Behera B, Kumar Ghosh S, Apoorva A, Padmavati M (2019) Biofunctionalized cellulose paper matrix for cell delivery applications. Int J Biol Macromol 139:114–127

Agarwal T, Biswas P, Pal S, Kumar Maziti T, Chakraborty S, Kumar Ghosh S, Dhars (2020a) Inexpensive and versatile paper-based platform for 3D culture of liver cells and related bioassays. ACS Appl Bio Mater 3:2522–2533

Agarwal T, Borrelli MR, Makvandi P, Ashrafizadeh M, Kumar Maziti T (2020b) Paper-based cell culture: paving the pathway for liver tissue model development on a cellulose paper chip. ACS Appl Bio Mater 3:3956–3974

Ahmad OS, Bedwell TS, Essen C, Garcia-Cruz A, Piletsky SA (2019) Molecularly imprinted polymers in electrochemical and optical sensors. Trends Biotechnol. https://doi.org/10.1016/j.tibtech.2018.08.009

Ajji Z, Ali AM (2010) Separation of copper ions from iron ions using PVA-g-(acrylic acid/N-vinyl imidazole) membranes prepared by radiation-induced grafting. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2009.08.049

Alessandrotos SD, Hussain LA (1998) Synthesis of α-, β-, and γ-ketophosphonate polymer-supported reagents: the role of intramolecular coordination in the complexation of metal ions. Macromolecules. https://doi.org/10.1021/ma971587d

Alféreiev IS, Connolly JM, Stachelek SJ, Ottey A, Rauova L, Levy RJ (2006) Surface heparinization of polyurethane via bromoalkylation of hard segment nitrogen. Biomacromolecules 7:317–322. https://doi.org/10.1021/bm0506694

Ali-Hwaiiti M, Ibrahim KA, Harrara M (2019) Removal of heavy metals from waste phospogypsum materials using polyethylene glycol and polyvinyl alcohol polymers. Arab J Chem 12:3141–3150

Ambat I, Srivastava V, Itekkhar S, Haapaniemi E, Sillanpää M (2020) Effect of different co-solvents on biodiesel production from various low-cost feedstocks using Sr-Al double oxides. Renew Energy 146:2158–2169. https://doi.org/10.1016/j.renene.2019.08.061

Ansari TM, Ajmal M, Saeed S, Naeem H, Ahmad HB, Mahmood K, Farooqi ZH (2019) Synthesis and characterization of magnetic poly(acrylic acid) hydrogel fabricated with cobalt nanoparticles for adsorption and catalytic applications. J Iran Chem Soc. https://doi.org/10.1007/s13738-019-01738-8

Arellano-Sandoval L, Delgado E, Camacho-Villegas TA, Bravo-Madrigal J, Manriquez-González R, Lugo-Fabres PH, Toriz G, García-Uristegui L (2020) Development of thermosensitive hybrid hydrogels based on xylan-type hemicellulose from agave bagasse: characterization and antibacterial activity. MRS Commun 10:147–154. https://doi.org/10.1557/mrc.2019.165

Arshad F, Selvaraj M, Zain J, Banat F, Haija MA (2019) Polyethyleneimine modified graphene oxide hydrogel composite as an efficient adsorbent for heavy metal ions. Sep Purif Technol. https://doi.org/10.1016/j.seppur.2018.06.035

Artiushenko O, Avila EP, Nazarkovsky M, Zaitsev V (2020) Reusable pH-responsive microfluidic device for phase separation of rare earth metal ions. Sep Purif Technol. 231:115934

Asif MB, Majeed N, Itekkhar S, Habib R, Fida S, Tabraiz S (2016) Inexpensive and versatile paper-based platform for 3D culture of liver cells and related bioassays. ACS Appl Bio Mater 3:2522–2533

Babaruddin NH, Sulaiman NM, Aroua MK, Nawawi MGM, Kassim MA, Othman MR, Dahlan I (2019) Starch as novel water soluble...
biopolymer in removal mixtures heavy metal ions via polymer enhanced ultrafiltration. In: AIP conference proceedings. https://doi.org/10.1063/5.15117134

Baji A, Agarwal K, Oopath SV (2020) Emerging developments in the use of electrospray fibers and membranes for protective clothing applications. Polymers (Basel). https://doi.org/10.3390/polym12020492

Bayramoglu G, Kunduzcu G, Arica MY (2020) Preparation and characterization of strong cation exchange terpolymer resin as effective adsorbent for removal of disperse dyes. Polym Eng Sci. https://doi.org/10.1002/pen.25272

Bearman G, Munoz-Price S, Morgan DJ, Murthy RK (2017) Infection prevention: new perspectives and controversies. Infect Prev New Perspect. Context. https://doi.org/10.1007/978-3-319-60980-5

Beaugeard V, Muller J, Graillo A, Ding X, Robin JJ, Monge S (2020) Molecularly imprinted polymers. Chem Rev. https://doi.org/10.1021/acs.chemrev.9b00171

Bekas DG, Tsirka K, Baltzis D, Paipetis AS (2016) Self-healing materials: a review of advances in materials, evaluation, characterization and monitoring techniques. Compos Part B Eng 87:92–119

Belbruno JJ (2019) Synthesis of novel adsorbent with DOPO and fluorine-silicon-containing crosslinked polymer. Carbohydr Polym 208:14–21. https://doi.org/10.1016/j.carbpol.2018.12.023

Ben Hamida S, Iftekhar S, Ambat I, Srivastava V, Sillanpää M, Hamrouni B (2020) Synthesis of novel adsorbent for removal of arsene from synthetic and natural water. J Environ Sci. https://doi.org/10.1016/j.jenvsc i.2019.02.019

Bendaoud KB, Ladhari N, Zerzouki M (2019) Dry and wet ozonation of denim: Multivariate analysis and monitoring techniques. Compos Part B Eng 87:92–119

Ben Hamida S, Iftekhar S, Ambat I, Srivastava V, Sillanpää M, Hamrouni B (2020) Synthesis of novel adsorbent with DOPO and fluorine-silicon-containing crosslinked polymer. Carbohydr Polym 208:14–21. https://doi.org/10.1016/j.carbpol.2018.12.023

Carbone M, Donia DT, Sabbatella G, Antiocchia R (2016) Silver nanoparticles in polymeric matrices for fresh food packaging. J King Saud Univ Sci. https://doi.org/10.1016/j.jksus.2016.05.004

Chacko RT, Ventura J, Zhuang J, Thayumanavan S (2012) Polymer nanogels: a versatile nanoscopic drug delivery platform. Adv Drug Deliv Rev 64:836–851. https://doi.org/10.1016/j.addr.2012.02.002

Chen T, Hong J, Peng C, Chen G, Yuan C, Xu Y, Zeng B, Dai L (2019) Superhydrophobic and flame retardant cotton modified with DOPO and fluorine-silicon-containing crosslinked polymer. Carbohydr Polym 208:14–21. https://doi.org/10.1016/j.carbpol.2018.12.023

Chenab KK, Sohrabi B, Jafari A, Ramakrishna S (2020) Water treatment: functional nanomaterials and applications from adsorption to photodegradation. Mater Today Chem. https://doi.org/10.1016/j.mtchem.2020.100262

Chenamulpi S, Unnikrishnan G, Thomas S, Narine SS (2019) Novel ethylene diamine functionalised nanocellulose/poly(ethylene-co-acrylic acid) composites for biomedical applications. Cellulose 26:1795–1809. https://doi.org/10.1007/s10570-018-2227-6

Chi H, Song S, Luo M, Zhang C, Li W, Li L, Qin Y (2019) Effect of PLA nanocomposite films containing bergamot essential oil, TiO₂ nanoparticles, and Ag nanoparticles on shelf life of mangoes. Sci Hort (Amsterdam). https://doi.org/10.1016/j.scienta.2019.01.059

Cho H, Jammalmadaka U, Tappa K (2018) Nanogels for pharmaceutical and biomedical applications and their fabrication using 3D printing technologies. Materials (Basel). https://doi.org/10.3390/ma11020302

d’Amora M, Camisasca A, Boarino A, Giordani S, Arpicco S (2020) Improved ultrafiltration. In: AIP conference proceedings. https://doi.org/10.1063/5.15117134

Dobrucka R (2019) Application of nanotechnology in food packaging. Curr Opin Colloid Interface Sci. https://doi.org/10.1016/j.cocis.2019.10.005

Elbourne A, Crawford RJ, Ivanova EP (2017) Nano-structured antimicrobial surfaces: from nature to synthetic analogues. J Colloid Interface Sci 508:603–616. https://doi.org/10.1016/j.jcis.2017.07.021

Fakhri H, Mahjoub AR, Aghayan H (2019) Effective adsorption of Co²⁺ and Sr²⁺ ions by 10-tungsten-2-molybdophosphoric acid...
supported amine modified magnetic SBA-15. J Radioanal Nucl Chem 321:449–461
Fard LA, Ojani R, Bakhsh Raoof J, Zare EN, Mansour Lakouraj M (2017a) PdCo porous nanostructures decorated on polypyrrole @ MWNTs conductive nanocomposite—Modified glassy carbon electrode as a powerful catalyst for methanol electrooxidation. Appl Surf Sci 401:40–48
Fard LA, Ojani R, Bakhsh Raoof J, Zare EN, Mansour Lakouraj M (2017b) Poly (pyrrole-co-aniline) hollow nanosphere supported Pd nanoparticles as high-performance catalyst for methanol electrooxidation in alkaline media. Energy 127:419–427
Fellenz N, Perez-Alonso FJ, Martin PP, Garcia-Fierro JL, Bengoa JF, Marchetti SG, Rojas S (2017) Chromium(VI) removal from water by means of adsorption-reduction at the surface of amino-functionalized MCM-41 sorbents. Microporous Mesoporous Mater. https://doi.org/10.1016/j.micromeso.2016.10.012
Fenyvesi É, Barkács K, Gruiz K, Varga E, Kenyeres I, Záray G, Szente HA hydrogel promotes endothelial differentiation of hMSCs. Adv Mater 20:100690. https://doi.org/10.1002/adma.20170303c
Fila D, Hubicki Z, Kolodyńska D (2019) Recovery of metals from waste nickel–metal hydride batteries using multifunctional Diphostix resin. Adsorption. https://doi.org/10.1007/s10450-019-00013-9
Fu K, Yang Z, Pei Y, Wang Yongxin, Xu B, Wang YuHuang, Yang B, Hu L (2019) Designing textile architectures for high energy efficiency human body sweat- and cooling-management. Adv Fiber Mater 1:61–70. https://doi.org/10.1007/s42765-019-00003-y
Gaddes D, Jung H, Pena-Francesch A, Dion G, Tadigadapa S, Dressick WJ, Demirel MC (2016) Self-healing textile: enzyme encapsulated layer-by-layer structural proteins. ACS Appl Mater Interfaces 8:20371–20378
Gao B, Saeiazi B, Babu I, Itfekhar S, Iakovleva E, Srivastava V, Doshi B, Hammouda S Ben, Kaliloula S, Sillanpää M (2017) Modification of ZnIn2S4 by anthraquinone-2-sulfonate doped polypyrrole as acceptor-donor system for enhanced photocatalytic degradation of tetracycline. J Photochem Photobiol A Chem 348:150–160. https://doi.org/10.1016/j.jphotochem.2017.08.037
Gao B, Itfekhar S, Srivastava V, Doshi B, Sillanpää M (2018) Insights into the generation of reactive oxygen species (ROS) over polythiophene/ZnIn2S4 based on different modification processing. Catal Sci Technol 8:2186–2194. https://doi.org/10.1039/c8cy00303c
Gao C, Zhang X, Xie J, Wang X, Cao L, Chen G, Mao H, Bi X, Gu Z, Yang J (2020) VE-cadherin functionalized injectable PAMAM/HA hydrogel promotes endothelial differentiation of hMSCs and vascularization. Appl Mater Today 20:100690. https://doi.org/10.1016/j.apmt.2020.100690
Ghasemlou M, Daver F, Ivanova EP, Adhikari B (2019) Bio-inspired inorganic and metal nanoparticles and their antimicrobial activity in food packaging applications. Crit Rev Microbiol 44:161–181
Hoseini J, Zare EN, Ajjoo D (2019) Experimental and theoretical calculation investigation on effective adsorption of lead(II) onto poly(aniline-co-pyrophosphate) nanospheres. J Mol Liq 296:111789
Hoseini J, Zare EN, Ajjoo D (2019) Experimental and theoretical calculation investigation on effective adsorption of lead(II) onto poly(aniline-co-pyrophosphate) nanospheres. J Mol Liq 296:111789
Itfekhar S, Farooq MU, Sillanpää M, Asif MB, Habib R (2017a) Removal of Ni(II) using multi-walled carbon nanotubes electrodes: relation between operating parameters and capacitive deionization performance. Arab J Sci Eng 42:235–240. https://doi.org/10.1007/s13369-016-2301-5
Itfekhar S, Srivastava V, Sillanpää M (2017b) Synthesis and application of LDH intercalated cellulose nanocomposite for separation of rare earth elements (REEs). Chem Eng J. https://doi.org/10.1016/j.cej.2016.10.028
Itfekhar S, Srivastava V, Sillanpää M (2017c) Enrichment of lanthanides in aqueous system by cellulose based silica nanocomposite. Chem Eng J 320:151–159. https://doi.org/10.1016/j.cej.2017.02.049
Itfekhar S, Ramsamy DL, Srivastava V, Asif MB, Sillanpää M (2018a) Understanding the factors affecting the adsorption of Lanthanum using different adsorbents: a critical review. Chemosphere. https://doi.org/10.1016/j.chemosphere.2018.04.053
Itfekhar S, Srivastava V, Casas A, Sillanpää M, Sillanpää M (2018b) Synthesis of novel Ga-g-PAM/SiO2 nanocomposite for the recovery of rare earth elements (REE) ions from aqueous solution. J Clean Prod 170:251–259. https://doi.org/10.1016/j.jclepro.2017.09.166
Itfekhar S, Srivastava V, Hammouda SBSB, Sillanpää M (2018c) Fabrication of novel metal ion imprinted xanthan gum-layered double hydroxide nanocomposite for adsorption of rare earth elements. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2018.04.054
Itfekhar S, Srivastava V, Ramsamy DL, Naseer WA, Sillanpää M (2018d) A novel approach for synthesis of exfoliated biopolymeric-LDH hybrid nanocomposites via in-situ coprecipitation with gum Arabic: application towards REEs recovery. Chem Eng J 347:398–406. https://doi.org/10.1016/j.cej.2018.04.126
Itfekhar S, Srivastava V, Abdul Wasayh M, Hezarjaribi M, Sillanpää M (2020a) Incorporation of inorganic matrices through different routes to enhance the adsorptive properties of xanthan via adsorption and membrane separation for selective REEs recovery. Chem Eng J. https://doi.org/10.1016/j.cej.2020.124281
Liu Y, Chakrabartty S, Alocilja EC (2007) Fundamental building materials: From synthetic wastewater. In: Sillanpää M (ed) Advanced water treatment: adsorption. Elsevier, New York. https://doi.org/10.1016/B978-0-12-819216-0.00007-2

Isawi H (2020) Using zeolite/polyvinyl alcohol/sodium alginate nano-composite beads for removal of some heavy metals from wastewater. Arab J Chem 13:5691–5716

Jamaledin R, Yiu CKY, Zare EN, Niu L-N, Vecchione R, Chen G, Isawi H (2020) Using zeolite/polyvinyl alcohol/sodium alginate nanocomposites and their application for the removal of rare earth elements from synthetic wastewater. In: Sillanpää M (ed) Advanced water treatment: adsorption. Elsevier, New York. https://doi.org/10.1016/B978-0-12-819216-0.00007-2

Kochameshki MG, Mahmoudian M, Marjani A, Farhadi K, Enayati M, Mollayousefi HS (2019) Graphene oxide grafted poly(acrylic acid) synthesized via surface initiated RAFT as a pH-responsive additive for mixed matrix membrane. J Appl Polym Sci. https://doi.org/10.1002/app.44897

Lee SW, Mao C, Flynn CE, Belcher AM (2002) Ordered monolayer structures, using genetically engineered viruses. Science. https://doi.org/10.1126/science.1068545

Li Y, Yang F, Yu J, Ding B (2016) Hydrophobic fibrous membranes with tunable porosity structures for equilibrium and breathable waterproof performance. Adv Mater Interfaces. https://doi.org/10.1002/admi.201600516

Li R, Tian X, Ashraf I, Chen B (2020) Fluoride removal using a chelating resin containing phosphonic–sulfonic acid bifunctional group. J Chromatogr A. https://doi.org/10.1016/j.chroma.2019.460097

Lin I, Chen X, Chen C, Hu I, Zhou C, Cai X, Wang W, Zheng C, Zhang P, Cheng J, Guo Z, Liu H (2018) Durably antibacterial and bacteriostatic adsorptive cotton fabrics coated by cationic fluorinated polymers. ACS Appl Mater Interfaces 10:6124–6136. https://doi.org/10.1021/acsami.7b16235

Liu Y, Chakrabarty S, Alcocija EC (2007) Fundamental building blocks for molecular biowire based forward error-correcting biosensors. In: Nanotechnology. https://doi.org/10.1088/0957-4484/18/42/424017

Liu P, Zhang X, Xu W, Guo C, Wang S (2012) Electrochemical sensor for the determination of brucine in human serum based on molecularly imprinted poly-o-phenylenediamine/SWNTs composite film. Sens Actuators B Chem. https://doi.org/10.1016/j.snb.2012.01.011

Mauri E, Vegliānese P, Papa S, Mariani A, De Paola M, Rigamonti R, Chincarini GMF, Rimondo S, Sacchetti A, Rossi F (2017) Chemosensitive functionalization of nanogels for microglia treatment. Eur Polym J 94:143–151. https://doi.org/10.1016/j.eurpolymj.2017.07.003

Mauri E, Vegliānese P, Papa S, Rossetti A, De Paola M, Mariani A, Posel Z, Posocco P, Sacchetti A, Rossi F (2020) Effects of primary amine-based coatings on microglia internalization of nanogels. Colloids Surf B Biointerfaces. https://doi.org/10.1016/j.colsurfb.2019.110574

McNaught AD, Wilkinson A (1997) Compendium of chemical terminology. Blackwell Science, Oxford
Wang Z, Zou Y, Li Y, Cheng Y (2020d) Metal-containing polydopamine nanomaterials: catalysis, energy, and theranostics. Small. https://doi.org/10.1002/smll.201907042

Wang C, Makvandi P, Zare EN, Tay FR, Niu L (2020e) Advances in antimicrobial organic and inorganic nanocompounds in biomedicine. Adv Ther 3:2000024

Wilfong WC, Kail BW, Wang Q, Shi F, Shipley G, Tarka TJ, Gray ML (2020) Stable immobilized amine sorbents for heavy metal and REE removal from industrial wastewaters. Environ Sci Water Res Technol 6:1286–1299

Wu D, Sun Y, Wang Q (2013) Adsorption of lanthanum(III) from aqueous solution using 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester-grafted magnetic silica nanocomposites. J Hazard Mater 260:409–419

Xia K, Guo Y, Shao Q, Zan Q, Bai R (2019) Removal of mercury(II) by EDTA-functionalized magnetic CoFe2O4@SiO2 nanomaterial with core–shell structure. Nanomaterials. https://doi.org/10.3390/nano9111532

Xie L, Lv XY, Han ZJ, Ci JH, Fang CQ, Ren PG (2012) Preparation and performance of high-barrier low density polyethylene/organic montmorillonite nanocomposite. Polym Plast Technol Eng. https://doi.org/10.1080/03602559.2012.699131

Xue CH, Bai X, Jia ST (2016) Robust, self-healing superhydrophobic fabrics prepared by one-step coating of PDMS and octa-decylamine. Sci Rep 6:1–11. https://doi.org/10.1038/srep27262

Yadav N, Seidi F, Del Gobbo S, D’Elia V, Crespy D (2019) Versatile functionalization of polymer nanoparticles with carbonate groups: via hydroxyurethane linkages. Polym Chem 10:3571–3584. https://doi.org/10.1039/c9py00597h

Yamamoto O (2001) Influence of particle size on the antibacterial activity of zinc oxide. Int J Inorg Mater. https://doi.org/10.1016/S1466-6049(01)00197-0

Yan S, Jiang C, Guo J, Fan Y, Zhang Y (2019) Synthesis of silver nanoparticles loaded onto polymer-inorganic composite materials and their regulated catalytic activity. Polymers (Basel). https://doi.org/10.3390/polym11030401

Yang N, Ding Y, Zhang Y, Wang B, Zhao X, Cheng K, Huang Y, Taleb M, Zhao J, Dong WF, Zhang L, Nie G (2018a) Surface functionalization of polymeric nanoparticles with umbilical cord-derived mesenchymal stem cell membrane for tumor-targeted therapy. ACS Appl Mater Interfaces 10:22963–22973. https://doi.org/10.1021/acsami.8b05633

Yang TT, Guan JP, Tang RC, Chen G (2018b) Condensed tannin from Dioscorea cirihosta tuber as an eco-friendly and durable flame retardant for silk textile. Ind Crops Prod 115:16–25. https://doi.org/10.1016/j.indcrop.2018.02.018

Yang G, Phua SZF, Bindara AK, Zhao Y (2019) Degradability and clearance of inorganic nanoparticles for biomedical applications. Adv Mater 31:1805730

Yao Y, Zaw AM, Anderson DEJ, Hinds MT, Yim EKF (2020) Fucoidan functionalization on poly(vinyl alcohol) hydrogels for improved endothelialization and hemocompatibility. Biomaterials 249:120011. https://doi.org/10.1016/j.biomaterials.2020.120011

Yasin S, Behary N, Perwuelz A, Guan J (2018) Life cycle assessment of flame retardant cotton textiles with optimized end-of-life phase. J Clean Prod 172:1080–1088. https://doi.org/10.1016/j.jclepro.2017.10.198

Yildirim S, Röcker B (2018) Active packaging. In: Nanomaterials for food packaging: materials, processing technologies, and safety issues. https://doi.org/10.1007/978-3-319-51271-8_8.00007-3

Zare EN, Mansour Lakouraj M, Baghayeri M (2014) Electro-magnetic polyfuran/FeO nanocomposite: synthesis, characterization, anti-oxidant activity, and its application as a biosensor. Int J Polym Mat Polym Biomater 64:175–183

Zare EN, Motahari A, Sillanpää M (2018a) Nanoadsorbents based on conducting polymer nanocomposites with main focus on poly-aniline and its derivatives for removal of heavy metal ions/dyes: a review. Environ Res 162:173–195

Zare EN, Mansour Lakouraj M, Kasirian N (2018b) Development of effective nano-biosorbent based on poly m-phenylene diamine grafted dextrin for removal of Pb (II) and methylene blue from water. Carbohydr Polym 201:539–548

Zare EN, Makvandi P, Tay FR (2019) Recent progress in the industrial and biomedical applications of tragacanth gum. Carbohydr Polym 212:450–467. https://doi.org/10.1016/j.carbpol.2019.02.076

Zhang F, Gao W, Jia Y, Lu Y, Zhang G (2018) A concise water-solvent synthesis of highly effective, durable, and eco-friendly flame-retardant coating on cotton fabrics. Carbohydr Polym 199:256–265. https://doi.org/10.1016/j.carbpol.2018.05.085

Zhang P, Gong JL, Zeng GM, Song B, Fang S, Zhang M, Liu HY, Huan SY, Peng P, Niu QY, Wang DB, Ye J (2019) Enhanced permeability of rGO/S-GO layered membranes with tunable inter-structure for effective rejection of salts and dyes. Sep Purif Technol. https://doi.org/10.1016/j.seppur.2019.03.041

Zhao W, Liu Z, Yuan Y, Liu F, Zhu C, Ling C, Li A (2019a) Insight into Cu(II) adsorption on polyanime resin in the presence of HEDP by tracking the evolution of amino groups and Cu(II)-HEDP complexes. ACS Sustain Chem Eng. https://doi.org/10.1021/acssuschemeng.8b06169

Zhao X, Liu Y, Shuizhang W, Wang C (2019b) Preparation and performance of three-layered structure composite membrane for heavy metal ions and hazardous dyes rejection. Polym Eng Sci. https://doi.org/10.1002/pes.24965

Zhou X, Zheng P, Wang L, Liu X (2019) Preparation of sulfonated poly(arylene ether nitrile)-based adsorbent as a highly selective and efficient adsorbent for cationic dyes. Polymers (Basel) 11:32. https://doi.org/10.3390/polym11010032

Zhou W, Qiao Z, Zare EN, Huang J, Zheng X, Sun X, Shao M, Wang H, Wang X, Chen D, Zheng J, Fang S, Li YM, Zhang X, Yang L, Makvandi P, Wu A (2020) 4D-printed dynamic materials in biomedical applications: chemistry, challenges, and their future perspectives in the clinical sector. J Med Chem. https://doi.org/10.1021/acs.jmedchem.9b02115

Zidan IH, Cheira MF, Bakry AR, Atia BM (2020) Potentiality of flame retardant cotton textiles with optimized end-of-life phase. J Clean Prod 172:1080–1088. https://doi.org/10.1016/j.jclepro.2017.10.198

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.