Novel “Turn-On” Fluorescent Probe for Highly Selectively Sensing Fluoride in Aqueous Solution Based on Tb$^{3+}$-Functionalized Metal–Organic Frameworks

Hao-Yang Zheng, Xiao Lian, Si-Jia Qin, and Bing Yan*

School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China

ABSTRACT: A Zr-based metal–organic framework (Zr-MOF) which has free carbonyl groups is synthesized successfully through mix-ligand strategy. Subsequently, Tb$^{3+}$ is encapsulated into a Zr-MOF by postcoordinated modification. The Tb$^{3+}$@Zr-MOF exhibits the characteristic emission of Tb$^{3+}$ because of efficient sensitization through antenna effects. The Tb$^{3+}$@Zr-MOF is further developed as a novel “turn-on” fluorescent probe to detect fluoride ions in aqueous solution. The results show that Tb$^{3+}$@Zr-MOF exhibits excellent selectivity, high stability, low detection limits, and good anti-interference for sensing fluoride ions. In addition, the possible sensing mechanism that the induced luminescence properties may be attributed to Lewis acid–base interactions is discussed.

INTRODUCTION

Fluoride is one kind of essential trace elements of human body; however, intake of excessive fluoride will cause serious health problems including dental and skeletal fluorosis.1–3 Fluoride ion (F$^-$) is considered as one of the most serious pollutants in water because of its high toxicity.4–6 To make matters worse, it is accessible in many fields of human activities, including toothpaste, drinking water, and dietary supplements.7–9 World Health Organization (WHO) sets that the maximum limit of fluoride ions in drinking water is 1.5 ppm10,11 because of their critical threats to human health. As a result, it is extremely vital to monitor the concentrations of fluoride ions in aqueous solution with high selectivity and sensitivity.

Up to now, a number of analytical methods have been utilized for detecting fluoride, including ion-selective electrode,12,13 liquid chromatography,14 inductively coupled plasma mass spectrometry,15 and so on.7,16 However, these methods have limitations, such as requiring practical skills, well-equipped instrumentation, and time-consuming, which impedes the further application in monitoring the F$^-$. Thus, developing a simple, rapid, and selective sensing technology for determining F$^-$ is very significant. Among the approaches, a fluorescent sensor is an active area of investigation because of its convenient utilization, low cost, high selectivity, and naked-eye sensing ability.

Metal–organic frameworks (MOFs) that also called porous coordination polymers are novel porous crystalline materials.20–23 MOFs have gained more and more attentions in the fields of gas capture/separation,30–34 heterogeneous catalysis,35–38 drug delivery,39–42 and chemical sensing43–51 because of their good crystallization, high surface areas, and tunable chemical properties. Among the multitudinous reported MOFs,47,52–54 lanthanide-based MOFs (Ln-MOFs) are most promising candidates for sensing applications because of their prominent luminescence properties arising from the Laporte forbidden 4f–4f transitions of the lanthanide ions.55 Design and preparation of ideal Ln-MOFs, however, still remain great challenge that is ascribed to the variable nature of coordination sphere and high coordination numbers.56 Fortunately, postsynthesis modification (PSM)56,57 provides possibility for constructing Ln-MOFs succinctly. The major strategies of PSM to fabricate Ln-MOFs include ion-exchange,58 coordinate PSM,59 and covalent PSM.60 To date, Ln-MOFs that were prepared by PSM have been successfully utilized for sensing cations,61 anions,62 gases,63 organic molecules,64 biomarkers65, and monitoring the food spoilage.66 Nevertheless, Ln-MOFs employed in detecting F$^-$ were reported rarely.67–69 In a consequence, developing a reliable fluorescent probe based on Ln-MOFs needs further efforts.

In this work, we report a novel turn-on fluorescent probe for sensing fluoride ions based on Tb$^{3+}$-functionalized MOFs. Herein, the Zr-based MOF (Zr-MOF) is fabricated by mixed ligands. The Zr-MOF is isostructural to UiO-66 and has uncoordinated carbonyl groups.70 Postcoordinated encapsulation generates the Tb$^{3+}$-loaded luminescent Tb$^{3+}$@Zr-MOF. The as-prepared Tb$^{3+}$@Zr-MOF has a similar crystalline framework but different luminescence properties compared to the parent Zr-MOF. The Tb$^{3+}$@Zr-MOF is then applied in...
sensing anions in aqueous solution. The results exhibit that it could detect F^- with high selectivity, good stability, excellent anti-interference, and low limit of detection (LOD), which indicates its great potential in chemical sensing. The possible mechanism is discussed for that Lewis acid–base interactions cause the enhancement of luminescence intensity.

RESULTS AND DISCUSSION

Characterization of Zr-MOF and Tb$^{3+}$@Zr-MOF

The Zr-MOF is fabricated under hydrothermal conditions from a mixture of ZrCl$_4$, terephthalic acid (TPA), and isophthalic acid (IPA) according to previous reports70 with some modifications. Powder X-ray diffraction (PXRD) analysis (Figure S1) of the resultant Zr-MOF confirms that it is isostructural to UiO-66 which is constructed from a cluster of six Zr atoms $[\text{Zr}_6\text{O}_4(\text{OH})_4]$ interconnected by TPA ligands to build up a three-dimensional framework with tetrahedral and octahedral cages (Figure S2). It is worth noting that only one carboxylate arm of the IPA coordinates with Zr$^{4+}$, whereas the other is nonbonded because of the asymmetrical structure of IPA compared with TPA. The synthetic method is done in one step, indicating facile synthesis of acidic MOFs from mixed linkers. The existence of free $-\text{COOH}$ groups within the Zr-MOF is demonstrated by infrared spectroscopy. As shown in Figure S3, the new band \sim1700 cm$^{-1}$ disappearing in the Fourier transform infrared spectra (FTIR) spectrum of UiO-66 is ascribed to the stretching vibration of $\text{C}=\text{O}$ of free carboxylate groups. What is more, explicit evidences are located at \sim2900 cm$^{-1}$ which is originated from the stretching vibration of O^{-}H in the free $-\text{COOH}$ groups.71 The parent Zr-MOF still remains highly stable that had been proved in the literature even though the imperfect bonds within MOFs due to the high coordination numbers (12) of Zr$^{4+}$. As a result, the Zr-MOF is suitable for constructing Ln-MOFs through PSM because of its robust skeleton and uncoordinated $-\text{COOH}$. Postcoordinated encapsulation could introduce Tb$^{3+}$ into the Zr-MOF successfully. PXRD patterns (Figure 1a) indicate that the framework of Zr-MOF still remains integral after PSM. The stretching vibration of C=O of free carboxylate groups is weakened after coordinating with Tb$^{3+}$ (Figure S3). The N$_2$ adsorption–desorption isotherms of Zr-MOF and Tb$^{3+}$@Zr-MOF are shown in Figure 1b. Both of the materials exhibit porosity toward N$_2$. The Brunauer–Emmett–Teller (BET) surface area of Zr-MOF derived from the isotherms is calculated as 662 m2 g$^{-1}$. After encapsulating Tb$^{3+}$, the value of BET surface area is 483 m2 g$^{-1}$ that is lower than that of the parent Zr-MOF. It might be attributed to the steric hindrance of coordinated Tb$^{3+}$ ions, which also confirms the successful introduction of Tb$^{3+}$ into channels of Zr-MOF. Furthermore, the X-ray photoelectron spectroscopy (XPS) analysis (Figure S4) also verifies the successful encapsulation of Tb$^{3+}$. The XPS of Tb$^{3+}$@Zr-MOF exhibits the characteristic Tb 4d peaks that the Zr-MOF does not possess. In addition, the binding energy of O 1s is increased from 529.1 to 529.4 eV which implies the successful coordination between $-\text{COOH}$ and Tb$^{3+}$.

Photoluminescence Properties and Sensing Anions

The luminescence spectra of Zr-MOF and Tb$^{3+}$@Zr-MOF in the solid state are recorded at ambient temperature and represented in Figures S8 and 2, respectively. When the Zr-MOF is excited at 302 nm, it exhibits a strong and broad band.
around 398 nm, which originates from the ligand-to-metal charge transfer. After postsynthetic modification, the excitation spectrum of Tb\(^{3+}\)@Zr-MOF is similar to that of the parent Zr-MOF. However, the original emission of ligands is extremely suppressed. With the excitation wavelength at 302 nm, the Tb\(^{3+}\)@Zr-MOF exhibits strong and sharp emissions of Tb\(^{3+}\) which also proves the successful synthesis of Tb\(^{3+}\)@Zr-MOF. The emission peaks located at 488, 544, 584, and 620 nm are assigned to \(^{5}D_{4} \rightarrow ^{7}F_{j} \) (\(j = 6, 5, 4, \) and 3) translations of Tb\(^{3+}\), respectively. No residual ligand centered broad emission of Zr-MOF locates at the near-UV region, indicating that ligands can high efficiently sensitize the luminescence of Tb\(^{3+}\) through antenna effect. The Tb\(^{3+}\)@Zr-MOF exhibits bright green color and could be easily distinguished visually under UV-light irradiation because of its dominant peak presented at 544 nm originating from \(^{3}D_{4} \rightarrow ^{7}F_{5} \). Excellent photoluminescence (PL) properties endow Tb\(^{3+}\)@Zr-MOF with high potential as a fluorescent probe.

The luminescence spectrum (Figure S9) of Tb\(^{3+}\)@Zr-MOF is also obtained when it was suspended in aqueous solution. Compared with the solid-state PL spectrum of Tb\(^{3+}\)@Zr-MOF, the ligand-centered emission is recovered and the luminescence intensity of Tb\(^{3+}\) is decreased, which may be attributed to stretching vibration of O−H that can quench the emission of Tb\(^{3+}\). The photoluminescence stability of Tb\(^{3+}\)@Zr-MOF when it is immersed in water also plays an important role in luminescence sensors. As a result, it is supposed to be researched whether the emission intensity of Tb\(^{3+}\) changes intensely with time going by. The results (Figure S10) exhibit that there is no obvious change of the emission spectra of Tb\(^{3+}\)@Zr-MOF when it is suspended in water after 1 week, which means that Tb\(^{3+}\)@Zr-MOF has good luminescence stability in aqueous solutions.

Because of the imperfect bonds within the Zr-MOF, the coordination numbers of Zr\(^{4+}\) may be less than 12, which results in bare metal sites, according to previous reports.\(^{70,72}\) Subsequently, the Tb\(^{3+}\)@Zr-MOF was utilized for sensing anions that can interact with host MOFs through Lewis acid–base interactions. The Tb\(^{3+}\)@Zr-MOF (3 mg) is ground and immersed in aqueous solution containing various anions. The mixture is sonicated to form homogeneous suspension and recorded the luminescence spectra immediately. As shown in Figure 3, the obtained luminescence spectra reveal that various anions have different impacts on the emission of Tb\(^{3+}\). When Br\(^{-}\), NO\(_{3}\)\(^{-}\), CO\(_{3}\)\(^{2-}\), HCO\(_{3}\)\(^{-}\), SiO\(_{3}\)\(^{2-}\), SO\(_{4}\)\(^{2-}\), and PO\(_{4}\)\(^{3-}\) are introduced into the system, luminescence intensity of Tb\(^{3+}\) decreases slightly. I\(^{-}\), S\(^{2-}\), and NO\(_{2}\)\(^{-}\) could quench the emission of Tb\(^{3+}\) thoroughly. Compared with unobviously increasing the luminescence intensity with the influence of Cl\(^{-}\), F\(^{-}\) could extremely enhance the emission of Tb\(^{3+}\). It is worth mentioning that the above phenomenon that various anions affect the luminescence intensity can be distinguished by naked eyes under UV-light irradiation. As shown in the inset of Figure 3, these dark colors of suspensions sever as foils to that of F\(^{-}\), which displays bright green color. The corresponding CIE coordinates of Tb\(^{3+}\)@Zr-MOF immersed in different anions are marked in the diagram (Figure S11). The point of F\(^{-}\) is far from the other anions.

Because of the complicated environment of aqueous solution, the influence of the other anions on the sensing fluorides ions should also be evaluated, which implies the possibility of practical applications. As can be seen in Figure 4, when F\(^{-}\) is added to the other anion solution, the luminescence intensity of Tb\(^{3+}\) is increased apparently compared to that in the absence of F\(^{-}\). This indicates that sensing of fluoride ions by the Tb\(^{3+}\)@Zr-MOF has good anti-interference that is vital for fluorescent probes. On the other hand, we have also estimated the PL stability of sensing F\(^{-}\) through the Tb\(^{3+}\)@Zr-MOF in water of different pHs, which plays a significant role in practice utilization due to different water samples. As shown in Figures S5 and S12, the \(^{3}D_{4} \rightarrow ^{7}F_{5} \)
respectively. We have also estimated the LOD according to the IUPAC criteria using the following equation.

\[\sigma = \frac{3S_b}{S} \]

where \(S_b \) is the standard deviation for replicating detection of blank \(\text{H}_2\text{O} \) solution (\(N = 15 \)). \(S \) is the slope of the linear relationship of eq 1. The LOD is calculated as 0.35 ppm that is lower than the maximum limit (1.5 ppm) of fluoride ions in drinking water stipulated by WHO, although the Tb\(^{3+}\)@Zr-MOF did not have apparent advantages compared with the other sensors (Table S2).

According to previous reports, the enhanced effect on luminescence MOFs may be attributed to (1) interactions between guest specials and MOFs and (2) collapse of the crystal structure. To confirm the anticipation that the induced PL enhancement by \(F^- \) may be ascribed to Lewis acid–base interactions between \(F^- \) and bared metal sites, many experiments are performed. First, PXRD (Figure S13) is employed to study the crystal structure of Tb\(^{3+}\)@Zr-MOF. After being soaked in water with or without \(F^- \), the sharp diffraction peaks in the original Tb\(^{3+}\)@Zr-MOF do not change apparently. This implies that the introduction of \(F^- \) cannot destroy the structure of parent MOFs. Subsequently, the Tb\(^{3+}\)@Zr-MOF that is immersed in \(F^- \) solution for hours and washed with distilled water richly to remove the \(F^- \) by physical absorption is used for XPS tests. Compared with the original Tb\(^{3+}\)@Zr-MOF, it shows characteristic peaks of \(F^- \) in the XPS spectrum (Figure S14). What is more, the binding energy of Zr\(^{4+}\) within the Tb\(^{3+}\)@Zr-MOF has a slight shift (ca. 0.3 eV) after the encapsulation of \(F^- \), which indicates that \(F^- \) coordinates with bared Zr\(^{4+}\) sites due to the imperfect bonds within MOFs and strong nucleophilic ability of \(F^- \). Comparing the luminescence spectra of Tb\(^{3+}\)@Zr-MOF in the absence and presence of \(F^- \), they both exhibit two emission bands that originate from ligands and Tb\(^{3+}\), respectively. However, the intensity ratio (see Figure S15) of Tb\(^{3+}\) and ligands (\(I_{598}/I_{398} \)) is different. The value of \(I_{598}/I_{398} \) is 1.5 when the Tb\(^{3+}\)@Zr-MOF was suspended in water. Introducing \(F^- \) into the system, the value increases to 29. As a result, the enhancement effect of Tb\(^{3+}\)@Zr-MOF induced by \(F^- \) may be attributed to the Lewis acid–base interaction between \(F^- \) and Zr\(^{4+}\) that restores the energy transfer from ligands to Tb\(^{3+}\), which is hindered in water.

CONCLUSIONS

In conclusions, we fabricate a novel turn-on fluorescent probe based on the Tb\(^{3+}\) postcoordination functionalized Zr-MOF that is synthesized through mixed ligands and possess free carbonyl groups because of the asymmetrical structure of IPA. The luminescence spectrum confirms that ligands can highly efficiently sensitize the emission of Tb\(^{3+}\) through antenna effect. Bared Zr metal sites that are ascribed to imperfect bonds within MOF make us to explore the sensing performance of Tb\(^{3+}\)@Zr-MOF for anions. Interestingly, the Tb\(^{3+}\)@Zr-MOF exhibits distinguishable luminescence response to fluoride ions among the other common anions. This may be attributed to Lewis acid–base interactions between \(F^- \) and bare Zr\(^{4+}\) sites within MOFs, which has been proved by the XPS spectrum. The sensor detecting \(F^- \) in aqueous solution exhibits preeminent performance, including high selectivity, excellent stability, good anti-interference, and low LOD. It is conceivable that the Tb\(^{3+}\)@Zr-MOF has high potential to monitor the concentration of \(F^- \) in practice water samples.
EXPERIMENTAL SECTION

Materials and Reagents. TbCl₃·6H₂O was prepared by dissolving the corresponding lanthanide oxide compounds in excess concentrated hydrochloric acid (37%), followed by evaporation and crystallization. TPA, IPA, and ZrCl₄ were purchased from Adamas and used without further purification. All of the other starting materials and reagents were AR and were used as purchased. All aqueous solutions of F⁻, Cl⁻, Br⁻, I⁻, S²⁻, NO₃⁻, NO₂⁻, CO₃²⁻, HCO₃⁻, SiO₃²⁻, SO₄²⁻, and PO₄³⁻ were prepared from sodium or potassium salts.

Instrumentation. The powder X-ray diffraction (PXRD) was performed on a Bruker D8 ADVANCE diffractometer for structure analysis using Cu Kα radiation (40 mA and 40 kV), with a scan range of 2θ from 5° to 50°. SEM was monitored with a Hitachi S-4800 field emission scanning electron microscope. FTIR were collected with the KBr pellets from 4000 to 400 cm⁻¹ using a Nicolet IS10 infrared spectrum radiometer. With the Mg Kα anode, X-ray photoelectron spectra were analyzed under ultrahigh vacuum (<10⁻⁶ Pa) at a pass energy of 93.90 eV using a PerkinElmer PHI 5000C ESCA system. All binding energies of elements were calculated with contaminant carbon (C 1s = 284.6 eV). Under nitrogen protection, TGA was measured with a Netzsch STA 449C system at a heating rate of 5 K min⁻¹. Nitrogen adsorption–desorption isotherms were collected at liquid nitrogen temperature with a Tristar 3020 analyzer. The excitation and emission spectra of the materials were recorded on Edinburgh System at a heating rate of 5 K min⁻¹. Nitrogen adsorption–desorption isotherms were collected at liquid nitrogen temperature with a Tristar 3020 analyzer. The excitation and emission spectra of the materials were recorded on Edinburgh Instruments FLS920 at ambient temperature.

Preparation of Zr-MOF and UiO-66. Zr-MOF was synthesized according to previous reports with a little modification. Briefly, 1.165 g of ZrCl₄·0.665 g of IPA and 0.166 g of IPA were dissolved in 30 mL of N,N-dimethylformamide (DMF). Then, 1.042 g of HCl was added to the solution. The mixture was stirred at ambient temperature for 30 min. The mixed precursor was transferred to a 50 mL Teflon lined autoclave and heated at 180 °C for 24 h in a preheated oven. The resultant white product was filtrated and washed plenty with DMF and acetone orderly. The powder was dried at 100 °C for 24 h in vacuum.

UiO-66 was prepared similarly to Zr-MOF. The only different was that the mixed ligands were replaced by 0.831 g of TPA.

Preparation of Tb³⁺@Zr-MOF. The Tb³⁺@Zr-MOF was synthesized through the postcoordinated modification. The Zr-MOF (200 mg) was immersed in 25 mL of ethanol solution of TbCl₃·6H₂O (0.004 M) for 12 h at ambient temperature with sustained stirring. Subsequently, the solid product was separated from the mixture by centrifugation and washed sustainently stirring. Subsequently, the solid product was separated from the mixture by centrifugation and washed plenty with ethanol at least three times to remove the Tb³⁺ by physical adsorption into the channel of MOFs. The resulting powder was dried at 80 °C.

Luminescence Sensing Experiment. For experiments of sensing anions, 3 mg of Tb³⁺@Zr-MOF was immersed in aqueous solution (3 mL, 1 mM) of various anions, including F⁻, Cl⁻, Br⁻, I⁻, S²⁻, NO₃⁻, NO₂⁻, CO₃²⁻, HCO₃⁻, SiO₃²⁻, SO₄²⁻, and PO₄³⁻. These suspensions were sonicated for 3 min to get homogeneous mixture and then recorded the luminescence spectra immediately.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsomega.8b02134.

PXRD patterns; representation of the crystal structure; ATR–FTIR spectra; XPS spectra; SEM images; EDX spectrum and mapping images; TGA; luminescence decay curves; excitation and emission spectra; CIE diagrams; histogram of the luminescence intensity in pH; PXRD patterns; XPS spectra; and solvents sensing data (PDF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: byan@tongji.edu.cn.

ORCID

Bing Yan: 0000-0002-0216-9454

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work is supported by the National Natural Science Foundation of China (21571142), Developing Science Founds of Tongji University.

REFERENCES

(1) Cametti, M.; Rissanen, K. Recognition and sensing of fluoride anion. Chem. Commun. 2009, 20, 2809–2829.

(2) Clarkson, J. J.; McLoughlin, J. Role of fluoride in oral health promotion. Int. Dent. J. 2000, 50, 119–128.

(3) Mohammadi, A. A.; Yousefi, M.; Yaseri, M.; Jalilzadeh, M.; Mahvi, A. H. Skeletal fluorosis in relation to drinking water in rural areas of West Azerbaijan, Iran. Sci. Rep. 2017, 7, 17300.

(4) Rashid, A.; Guan, D.-X.; Farooqi, A.; Khan, S.; Zahir, S.; Jehan, S.; Khattak, S. A.; Khan, M. S.; Khan, R. Fluoride prevalence in groundwater around a fluorite mining area in the flood plain of the River Swat, Pakistan. Sci. Total Environ. 2018, 635, 203–215.

(5) Basool, A.; Farooqi, A.; Xiao, T.; Ali, W.; Noor, S.; Ahbola, O.; Ali, S.; Nasim, W. A review of global outlook on fluoride contamination in groundwater with prominence on the Pakistan current situation. Environ. Geochem. Health 2018, 40, 1265–1281.

(6) Zhao, Q.; Zhang, C.; Liu, S.; Liu, Y.; Zhang, K. Y.; Zhou, X.; Jiang, J.; Xu, W.; Yang, T.; Huang, W. Dual-emissive Polymer Dots for Rapid Detection of Fluoride in Pure Water and Biological Systems with Improved Reliability and Accuracy. Sci. Rep. 2015, 5, 16420.

(7) Hudnall, T. W.; Chiu, C.-W.; Gabbai, F. P. Fluoride Ion Recognition by Chelating and Cationic Boranes. Acc. Chem. Res. 2009, 42, 388–397.

(8) Lin, Q.; Zhu, X.; Fu, Y.-P.; Zhang, Y.-M.; Fang, R.; Yang, L.-Z.; Wei, T.-B. Rationally designed anion-responsive-organogels: sensing F⁻ via reversible color changes in gel-gel states with specific selectivity. Soft Matter 2014, 10, 5715–5723.

(9) Zhang, W.; Li, G.; Xu, L.; Zhuo, Y.; Wang, W.; Yan, N.; He, G. 9,10-Azaboranophene-containing small molecules and conjugated polymers: synthesis and their application in chemodosimeters for the ratiometric detection of fluoride ions. Chem. Sci. 2018, 9, 4444–4450.

(10) Rafique, T.; Naseem, S.; Usmani, T. H.; Bashir, E.; Khan, F. A.; Bl hunger, M. I. Geochemical factors controlling the occurrence of high fluoride groundwater in the Nagar Parkar area, Sindh, Pakistan. J. Hazard. Mater. 2009, 171, 424–430.

(11) Mohapatra, S.; Sahu, S.; Nayak, S.; Ghosh, S. K. Design of Fe₃O₄@SiO₂@Carbon Quantum Dot Based Nanostructure for...
fluorine in water using combustion ion chromatography for fluorine: A mass balance approach to determine individual perfluorinated chemicals in water. J. Chromatogr. A 2007, 1143, 98–104.

(15) Jamari, N. L. A.; Adamopoulos, G.; Herna

(20) Zhu, H.; Fan, J.; Du, J.; Peng, X. Fluorescent Probes for Sensing and Imaging within Specific Cellular Organelles. J. Chem. 2017, 32, 942–950.

(16) Appiah-Ntiamoah, R.; Gadisa, B. T.; Kim, H. Correction: An effective electrochemical sensing platform for fluoride ions based on fluorescein isothiocyanate-MWCNT composite. New J. Chem. 2018, 42, 12263.

(17) Du, M.; Huo, B.; Liu, J.; Li, M.; Fang, L.; Yang, Y. A near-infrared fluorescent probe for selective and quantitative detection of fluoride ions based on Si-Rhodamine. Anal. Chem. Acta 2018, 1030, 172–182.

(18) Liu, J.-B.; Wang, W.; Li, G.; Wang, R.-X.; Leung, C.-H.; Ma, D.-L. Luminescent Iridium(III) Chemosensor for Tandem Detection of F⁻ and A⁻. ACS Omega 2017, 2, 9150–9155.

(19) Wang, Y.; Zhao, Q.; Zang, L.; Liang, C.; Jiang, S. Discriminating detection of multiple analytes (F⁻ and CN⁻) by a single probe through colorimetric and fluorescent dual channels. Dyes Pigments 2015, 123, 166–175.

(20) Zhu, H.; Fan, J.; Du, J.; Peng, X. Fluorescent Probes for Sensing and Imaging within Specific Cellular Organelles. Acc. Chem. Res. 2016, 49, 2115–2126.

(21) Gharami, S.; Sarkar, D.; Ghosh, P.; Acharya, S.; Aich, K.; Murmu, N.; Mondal, T. K. A coburnian based azo-phenol ligand as efficient fluorescent “OFF-ON-OFF” chemosensor for sequential detection of Mg²⁺ and F⁻: Application in live cell imaging and as molecular logic gate. Sens. Actuators B 2017, 253, 317–325.

(22) Cui, R.; Liu, W.; Zhou, L.; Li, Y.; Jiang, Y.; Zhao, X.; Cui, Y.; Zhu, Q.; Zheng, Y.; Deng, R.; Zhang, H. Highly efficient green phosphorescent organic electroluminescent devices with a terbium complex as the sensitizer. Dyes Pigments 2017, 136, 361–367.

(23) Cui, R.; Liu, W.; Zhou, L.; Zhao, X.; Jiang, Y.; Zheng, Y.; Zhang, H. High performance red phosphorescent organic electroluminescent devices with characteristic mechanisms by utilizing terbium or gadolinium complexes as sensitzers. J. Mater. Chem. C 2017, 5, 2066–2073.

(24) Ye, H. Q.; Li, Z.; Peng, Y.; Wang, C. C.; Li, T. Y.; Zheng, Y. X.; Sapelkin, A.; Adamopoulos, G.; Hernández, I.; Wyatt, P. B.; Gillin, W. P. Organ-ørumb systems for optical amplification at telecommunication wavelengths. Nat. Mater. 2014, 13, 382–386.

(25) Zhou, Y.; Zhang, J. F.; Yoon, J. Fluorescence and Colorimetric Chemosensors for Fluoride-Ion Detection. Chem. Rev. 2014, 114, 5511–5571.

(26) Chen, L.; Luque, R.; Li, Y. Controllable design of tunable nanostructures inside metal-organic frameworks. Chem. Soc. Rev. 2017, 46, 4614–4630.

(27) Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The Chemistry and Applications of Metal-Organic Frameworks. Science 2013, 341, 1230444.

(28) Zhou, H.-C.; Long, J. R.; Yaghi, O. M. Introduction to Metal-Organic Frameworks. Chem. Rev. 2012, 112, 673–674.

(29) Van Vleet, M. J.; Weng, T.; Li, X.; Schmidt, J. R. In Situ, Time-Resolved, and Mechanistic Studies of Metal-Organic Framework Nucleation and Growth. Chem. Rev. 2018, 118, 3681–3721.

(30) Guo, A.; Ban, Y.; Yang, K.; Yang, W. Metal-organic framework-based mixed matrix membranes: Synergistic effect of adsorption and diffusion for CO₂/CH₄ separation. J. Membr. Sci. 2018, 562, 76–84.

(31) Lin, Y.; Kong, C.; Zhang, Q.; Chen, L. Metal-Organic Frameworks for Carbon Dioxide Capture and Methane Storage. Adv. Energy Mater. 2017, 7, 1601296.

(32) Olajire, A. A. Synthesis chemistry of metal-organic frameworks for CO₂ capture and conversion for sustainable energy future. Renewable Sustainable Energy Rev. 2018, 92, 570–607.

(33) Trickett, C. A.; Helal, A.; Al-Maythalony, B. A.; Yamani, Z. H.; Cordova, K. E.; Yaghi, O. M. The chemistry of metal-organic frameworks for CO₂ capture, regeneration and conversion. Nat. Rev. Mater. 2017, 2, 17045.

(34) Banerjee, D.; Simon, C. M.; Plonka, A. M.; Motkuri, R. K.; Liu, J.; Chen, X.; Smit, B.; Parise, J. B.; Haranczyk, M.; Thallapally, P. K. Metal-organic framework with optimally selective xenon adsorption and separation. Nat. Commun. 2016, 7, 11831.

(35) Hu, M.-L.; Safarik, V.; Doustkhah, E.; Rostamnia, S.; Morsali, A.; Nouruzi, N.; Behesti, S.; Akhbari, K. Taking organic reactions over metal-organic frameworks as heterogeneous catalysis. Microporous Mesoporous Mater. 2018, 256, 111–127.

(36) Huang, D.; Drake, H. J.; Li, J.; Pang, J.; Wang, Y.; Yuan, S.; Wang, Q.; Cai, P.; Qin, J.; Zhou, H.-C. Flexible and Hierarchical Metal-Organic Framework Composites for High-Performance Catalysis. Angew. Chem., Int. Ed. 2018, 57, 8916–8920.

(37) Zhu, L.; Liu, X.-Q.; Jiang, H.-L.; Sun, L.-B. Metal-Organic Frameworks for Heterogeneous Basic Catalysis. Chem. Rev. 2017, 117, 8129–8176.

(38) Maina, J. W.; Pozo-Gonzalo, C.; Kong, L.; Schütz, J.; Hill, M.; Duméé, L. F. Metal organic framework based catalysts for CO₂ conversion. Mater. Horiz. 2017, 4, 345–361.

(39) Teplensky, M. H.; Fantham, M.; Li, P.; Wang, T. C.; Mehta, J. P.; Young, L. J.; Moghadam, P. Z.; Hupp, J. T.; Farha, O. K.; Kaminski, C. F.; Fairen-Jimenez, D. Temperature Treatment of Highly Porous Zirconium-Containing Metal-Organic Frameworks Extends Drug Delivery Release. J. Am. Chem. Soc. 2017, 139, 7522–7532.

(40) Wuttke, S.; Lismont, M.; Escudero, A.; Rungtaweeveranit, B.; Parak, W. J. Positioning metal-organic framework nanoparticles within the context of drug delivery—A comparison with mesoporous silica nanoparticles and dendrimers. Biomaterials 2017, 123, 172–183.

(41) Xing, K.; Fan, R.; Wang, F.; Nie, H.; Du, X.; Gai, S.; Wang, P.; Yang, Y. Dual-Stimulus-Triggered Programmable Drug Release and Luminescent Ratiometric pH Sensing from Chemically Stable Biocompatible Zinc Metal-Organic Framework. ACS Appl. Mater. Interfaces 2018, 10, 22746–22756.

(42) Zheng, H.; Zhang, Y.; Liu, L.; Wan, W.; Guo, P.; Nystroöm, A.; Zou, X. One-pot Synthesis of Metal-Organic Frameworks with Encapsulated Target Molecules and Their Applications for Controlled Drug Delivery. J. Am. Chem. Soc. 2016, 138, 962–968.

(43) Lian, X.; Yan, B. Trace Detection of Organophosphorus Chemical Warfare Agents in Wastewater and Plants by Luminescent UiO-67(HI) and Evaluating the Bioaccumulation of Organophosphorus Chemical Warfare Agents. ACS Appl. Mater. Interfaces 2018, 10, 14869–14876.

(44) Qu, X.-L.; Yan, B. Ln(III)-Functionalized Metal-Organic Frameworks Hybrid System: Luminescence Properties and Sensor for trans,trans-Muconic Acid as a Biomarker of Benzene. Inorg. Chem. 2018, 57, 7815–7824.

(45) Xu, X.-Y.; Yan, B.; Lian, X. Wearable glove sensor for non-invasive organophosphorus pesticide detection based on a double-fluorescence strategy. Nat. Commun. 2018, 10, 13722–13729.

(46) Yan, B. Lanthanide-Functionalized Metal-Organic Framework Hybrid Systems To Create Multiple Luminescent Centers for Chemical Sensing. Acc. Chem. Res. 2017, 50, 2789–2798.

(47) Zhang, Y.; Yuan, S.; Day, G.; Wang, X.; Yang, X.; Zhou, H.-C. Luminescent sensors based on metal-organic frameworks. Coord. Chem. Rev. 2018, 354, 28–45.
(48) Zhao, X.; Zhang, Y.; Han, J.; Jing, H.; Gao, Z.; Huang, H.; Wang, Y.; Zhong, C. Design of “turn-on” fluorescence sensor for L-Cysteine based on the instability of metal-organic frameworks. *Microporous Mesoporous Mater.* 2018, 268, 88–92.

(49) Zheng, H.-Y.; Lian, X.; Qin, S.-J.; Yan, B. Lanthanide hybrids of covalently-coordination cooperative post-functionalized metal-organic frameworks for luminescence tuning and highly-selectively sensing of tetrahydrofuran. *Dalton Trans.* 2018, 47, 6210–6217.

(50) Hu, S.; Yan, J.; Huang, X.; Gao, L.; Lin, Z.; Luo, F.; Qiu, B.; Wong, K.-Y.; Chen, G. A sensing platform for hypoxanthine detection based on amino-functionalized metal organic framework nanosheet with peroxidase mimic and fluorescence properties. *Sens. Actuators, B* 2018, 267, 312–319.

(51) Gao, X.; Zhao, H.; Zhao, X.; Li, Z.; Gao, Z.; Wang, Y.; Huang, H. Aqueous phase sensing of bismuth ion using fluorescent metal-organic framework. *Sens. Actuators, B* 2018, 266, 323–328.

(52) Ghanbarian, M.; Zeinali, S.; Mostafavi, A. A novel MIL-53(Cr-Fe)/Ag/CNT nanocomposite based resistive sensor for sensing of volatile organic compounds. *Sens. Actuators, B* 2018, 267, 381–391.

(53) Li, Y.; Hu, X.; Zhang, X.; Cao, H.; Huang, Y. Unconventional application of gold nanoclusters/Zn-MOF composite for fluorescence turn-on sensitive detection of zinc ion. *Anal. Chim. Acta* 2018, 1024, 145–152.

(54) Feng, J.-f.; Liu, T.-f.; Shi, J.; Gao, S.-y.; Cao, R. Dual-Emitting UiO-66(Zr&Eu) Metal-Organic Framework Films for Ratiometric Temperature Sensing. *ACS Appl. Mater. Interfaces* 2018, 10, 20854–20861.

(55) Cui, Y.; Chen, B.; Qian, G. Lanthanide metal-organic frameworks for luminescent sensing and light-emitting applications. *Coord. Chem. Rev.* 2014, 273-274, 76–86.

(56) Decadt, R.; Van Hecke, K.; Depla, D.; Leus, K.; Weinberger, D.; Van Driessche, I.; Van Der Voort, P.; Van Deun, R. Synthesis, Crystal Structures, and Luminescence Properties of Carboxylate Based Rare-Earth Coordination Polymers. *Inorg. Chem.* 2012, 51, 11623–11634.

(57) Cohen, S. M. Postsynthetic Methods for the Functionalization of Metal-Organic Frameworks. *Chem. Rev.* 2012, 112, 970–1000.

(58) Weng, H.; Yan, B. A flexible Tb(III) functionalized cadmium metal organic framework as fluorescent probe for highly selectively sensing ions and organic small molecules. *Sens. Actuators, B* 2016, 228, 702–708.

(59) Qin, S.-J.; Yan, B. Dual-emissive ratiometric fluorescent probe based on Eu(III)/C-dots@MOF hybrids for the biomarker diaminotoluene sensing. *Sens. Actuators, B* 2018, 272, S10–S17.

(60) Abdelfattah, R. M.; Carlos, L. D.; Silva, A. M. S.; Rocha, J. Near-infrared emitters based on post-synthetic modified Ln(3+)-IRMOF-3. *Chem. Commun.* 2013, 49, 5019–5021.

(61) Weng, H.; Yan, B. A Eu(III) doped metal-organic framework conjugated with fluorescein-labeled single-stranded DNA for detection of Cu(II) and sulfide. *Anal. Chim. Acta* 2017, 988, 89–95.

(62) Xu, X.-Y.; Yan, B. A fluorescent wearable platform for sweat Cl− analysis and logic smart-device fabrication based on color adjustable lanthanide MOFs. *J. Mater. Chem. C* 2018, 6, 1863–1869.

(63) Xu, X.-Y.; Yan, B. Nanoscale LnMOF-functionalized nonwoven fibers protected by a polydimethylsiloxane coating layer as a highly sensitive ratiometric oxygen sensor. *J. Mater. Chem. C* 2016, 4, 8514–8521.

(64) Qin, S.-J.; Yan, B. A facile indicator box based on Eu(III) functionalized MOF hybrid for the determination of 1-naphthol, a biomarker for carbaryl in urine. *Sens. Actuators, B* 2018, 259, 125–132.

(65) Xu, X.-Y.; Lian, X.; Hao, J.-N.; Zhang, C.; Yan, B. A Double-Stimuli-Responsive Fluorescent Center for Monitoring of Food Spoilage based on Dye Covalently Modified EuMOFs: From Sensory Hydrogels to Logic Devices. *Adv. Mater.* 2017, 29, 1702298.

(66) Hao, J.-N.; Yan, B. Ln(3+) post-functionalized metal-organic frameworks for color tunable emission and highly sensitive sensing of toxic anions and small molecules. *New J. Chem.* 2016, 40, 4654–4661.

(67) Wan, Y.; Sun, W.; Liu, J.; Liu, Z. A 3D porous luminescent terbium metal-organic framework for selective sensing of F- in aqueous solution. *Inorg. Chem. Commun.* 2017, 80, S3–S7.

(68) Yang, Z.-R.; Wang, M.-M.; Wang, X.-S.; Yin, X.-B. Boric-Acid-Functional Lanthanide Metal-Organic Frameworks for Selective Ratiometric Fluorescence Detection of Fluoride Ions. *Anal. Chem.* 2017, 89, 1930–1936.

(69) Zhao, X.; Wang, Y.; Hao, X.; Liu, W. Fluorescent molecule incorporated metal-organic framework for fluoride sensing in aqueous solution. *Appl. Surf. Sci.* 2017, 402, 129–135.

(70) Song, J. Y.; Ahmed, I.; Seo, P. W.; Jhung, S. H. UiO-66-Type Metal-Organic Framework with Free Carboxylic Acid: Versatile Adsorbents via H-bond for Both Aqueous and Nonaqueous Phases. *ACS Appl. Mater. Interfaces* 2016, 8, 27394–27402.

(71) Lian, X.; Miao, T.; Xu, X.; Zhang, C.; Yan, B. Eu3+ functionalized Sc-MOFs: Turn-on fluorescent switch for ppb-level biomarker of plastic pollutant polystyrene in serum and urine and on-site detection by smartphone. * Biosens. Bioelectron.* 2017, 97, 299–304.

(72) He, T.; Zhang, Y.-Z.; Kong, X.-J.; Yu, J.; Lv, X.-L.; Wu, Y.; Gao, Z.-J.; Li, J.-R. *ACS Appl. Mater. Interfaces* 2018, 10, 16650–16659.