The Isgur-Wise Function: A Lattice Determination from Pseudoscalar → Pseudoscalar Form Factors

UKQCD Collaboration — presented by James N. Simone

Department of Physics, University of Edinburgh, Edinburgh EH9 3JZ, Scotland

Form factors for pseudoscalar → pseudoscalar decays of heavy-light mesons are found in quenched lattice QCD with heavy-quark masses in the range of approximately 1-2 GeV. The Isgur-Wise function, \(\xi(\omega) \), is extracted from these form factors. Results are in good agreement with \(\xi(\omega) \) derived from CLEO measurements for \(B \to D^* \mu \nu \).

1. THE ISGUR-WISE FUNCTION

Matrix elements are parameterized in terms of two form factors \(h_\pm \)

\[
\langle B(\bar{p}_b)|V^\mu|A(\bar{p}_a)\rangle = \frac{h_+(\omega; m_a, m_b)(v_a + v_b)\mu + h_-(\omega; m_a, m_b)(v_a - v_b)\mu}{\sqrt{m_am_b}}
\]

where \(v_a \) and \(v_b \) are the meson four-velocities and \(\omega = v_a \cdot v_b \).

In the heavy quark limit, \(m_{Q,a,b} \to \infty \), form factor \(h_+ \) tends to zero while \(h_- \) approaches \(\xi(\omega) \), the universal Isgur-Wise form factor\(^1\).

At finite heavy-quark mass, \(h_\pm \) are still related to \(\xi(\omega) \) although there are now both short-distance perturbative corrections and nonperturbative corrections in powers of \(1/m_Q \). Neglecting the power law corrections,

\[
h_+(\omega) = \left[\hat{C}_1 + \frac{\omega + 1}{2} (\hat{C}_2 + \hat{C}_1) \right] \xi_{\text{ren}}(\omega) \quad (2)
\]

\[
h_-(\omega) = \frac{\omega + 1}{2} \left[\hat{C}_2 - \hat{C}_3 \right] \xi_{\text{ren}}(\omega) \quad (3)
\]

where the Wilson coefficients \(\hat{C}_i \) have been computed at next-to-leading order by Neubert\(^2\).

2. METHODOLOGY

An \(O(a) \)-improved fermion action\(^3\) was used to generate fermion propagators for 60 quenched gauge configurations on a \(24^3 \times 48 \beta = 6.2 \) lattice\(^4\). The three light-quark masses, \(m_q \), and the four heavy-quark masses, \(m_{Q,a,b} \), used here are also used in our study of \(f_D \) and \(f_g \) on these same configurations\(^5\). Estimating the heavy-quark mass by the spin-average of the heavy-light pseudoscalar (P) and vector (V) meson masses, in the \(m_q \to 0 \) limit, we find, \(m_Q \approx 1.5, 1.9, 2.1, \) and 2.4 GeV. The light-quark masses in ratio to strange quark mass are \(m_q/m_s \approx 0.41, 0.68, \) and 1.3.

We study euclidean three-point correlation functions

\[
G^\mu(0, t; m_Q, m_a, m_b, \bar{p}_a, \bar{p}_b) = \sum_{\vec{x}, \vec{y}} e^{i \vec{p}_a \cdot \vec{x}} e^{i \vec{q} \cdot \vec{y}} \langle P_a(\vec{x}, t) V^\mu(\vec{y}, 0) P_a^\dagger(\vec{0}, 0) \rangle \quad (4)
\]

where \(\vec{q} = \vec{p}_b - \vec{p}_a \). Operator \(P_a^\dagger \) creates a \(Q_a \bar{q} \) pseudoscalar and \(P_a \) annihilates a \(Q_b \bar{q} \) pseudoscalar. The current \(V^\mu \) is a local \(O(a) \)-improved vector current\(^6\).

We set \(t_b = 24 \) and symmetrize correlators about this time. Correlators have lattice momenta \(\vec{k}_b = (12a/\pi)\vec{p}_b = (0, 0, 0), (1, 0, 0), \) and \(0 \leq |\vec{k}_a|^2 \leq 2 \). Quark mass \(m_{Q,b} \) can be either 2.4 or 1.9 GeV.

The ratio of a matrix element to the temporal component of the forward matrix element of the flavor-conserving current is extracted by taking the ratio of three-point functions

\[
\frac{G^\mu(0, t; m_Q, m_a, m_b, \bar{p}_a, \bar{p}_b)}{G^4(0, t; m_Q, m_a, m_b, \bar{p}_a, \bar{p}_b)} \rightarrow \frac{Z_a(\bar{p}_a) E_b}{Z_b(\bar{p}_b) E_a} \times \langle B(\bar{p}_a)|V^\mu|A(\bar{p}_a)\rangle e^{-\delta t}. \quad (5)
\]

For all Lorentz components in the ratio that
are non-zero, a single minimal χ^2 fit, using the
full correlation matrix, is found for the t dependence
in Eqn. 3. Field normalizations $Z_{a,b}$, energies $E_{a,b}$, and $\delta E = E_a - E_b$ are constrained
to values obtained in fits to the meson propagators. ξ
Equation 3 is used with Eqn. 3 to find
h_+ (\omega; m_a, m_b) / h_+ (1; m_b, m_b). After extrapolating
h_+ to the $m_q \to 0$ limit, relation Eqn. 3 is
the Isgur-Wise function $\xi (\omega)$ from
h_+ (\omega).

For flavor-conserving matrix elements, h_-
should be exactly zero. To test this, we allow
both h_{\pm} to be free parameters in the χ^2 fit. For
m_Q = 1.5 GeV and $m_q \to 0$ we find $|h_-| \lesssim 0.1$
which is within 1σ of zero. We then constrain
h_- to zero in fits for flavor-conserving matrix
elements.

3. RESULTS

- **Slope Parameter** The slope parameter, $\rho^2 = -\xi'(1)$, is extracted by finding a minimum χ^2 fit
of the lattice $\xi (\omega)$ to some possible forms for the
Isgur-Wise function

$$\xi_{BSW} (\omega) = \frac{2}{\omega + 1} \exp \left(1 - 2 \rho^2_{BSW} \left(\frac{\omega - 1}{\omega + 1} \right) \right)$$

$$\xi_{pole} (\omega) = \left(\frac{2}{\omega + 1} \right)^{2 \rho^2_{pole}}$$

$$\xi_{ISGW} (\omega) = \exp \left(- \rho^2_{ISGW} (\omega - 1) \right)$$

as discussed in References [4], [5], and [6] respectively. Values obtained for ρ^2 should be relatively
insensitive to the choice of parameterization since
Equations 4, 5, and 6 differ only at $O ((\omega - 1)^2)$.

In the continuum limit, the forward matrix element
of the flavor-conserving vector current has a
known normalization. On the lattice, matrix elements
are normalized by $\langle B(p_b) | V^4 | B(p_b) \rangle$ to reduce lattice artifacts and to cancel the
local vector current renormalization Z_V. It is important to test the consistency of this normalization
method. We fit lattice form factors to the function
$N \xi_{BSW} (\omega)$ with both ρ^2 and the normalization, N, determined by the χ^2 fit. Typically, N
differs from one by $\lesssim 3\%$ which is within 1σ. We then constrained N to one when finding ρ^2.

Label as mass set \mathcal{A} the combination of quark
masses: $m_{Qb} = 2.4$ GeV, $m_{Qs} = m_{Qb}$ and $m_{Qd} = 0$. Values for ρ^2 obtained for this set of masses and Equations 4-6 are shown in Tab. 1. The table also shows ρ^2_{linear} from $\xi_{linear} = 1 - \rho^2_{linear} (\omega - 1)$. Uncertainty estimates are obtained
by a bootstrap procedure with only statistical uncertainties shown. The values obtained agree
with other determinations [7] and our earlier results [10].

- **Measured Form Factors** In Fig. 1 we compare the lattice form factor for mass set \mathcal{A} with
$|V_{cb}| \xi (\omega)$ derived from CLEO [11] data for $B \to D^* \mu \nu$. A fit of the CLEO data to
$|V_{cb}| \xi_{BSW} (\omega)$ with ρ^2 constrained to the lattice value ρ^2_{BSW} of Tab. 1 yields

$$|V_{cb}| = 0.034 \pm 0.034 \sqrt{1.49 \text{ ps}}.$$

Table 1

| ρ^2 vs $\xi (\omega)$ model for parameter set \mathcal{A} |
|-----------------|-------|---------|-------|
| ξ_{BSW} pole | ISGW | linear |
| 0.92 (±0.20) | 0.89 (±0.17) | 0.83 (±0.13) | 0.73 (±0.10) |
The first error is the $\Delta \chi^2 = 1$ error in the fit to the experimental data and the second error reflects the uncertainty in ρ_{BSW}. Statistical uncertainties in the lattice form factor are of the same size as the errors in the experimental form factor.

The figure shows the lattice $\xi(\omega)$ from $P \to P$ transitions and $\xi(\omega)$ from CLEO $P \to V$ decay data to be remarkably similar in shape. Further studies of heavy quark spin symmetry using $P \to V$ three-point functions are underway[12,13].

\begin{table}[h]
\centering
\begin{tabular}{lcc}
\hline
ρ^2_{BSW} vs m_Q (GeV). & \\
\hline
m_Q & 1.9 & 2.4 \\
ρ^2 & $0.91 (^{+41}_{-20})$ & $1.06 (^{+66}_{-34})$ \\
\hline
\end{tabular}
\caption{Table 2}
\end{table}

The table shows values for ρ^2_{BSW} from separate analyses of flavor-conserving matrix elements with $m_Q = 1.9$ and 2.4 GeV. The errors are large and the change in ρ^2 with m_Q is only about 0.5σ over the range of m_Q studied.

The $O(1/m_Q)$ corrections to Eqn. 2 that relates $h_+(\omega)$ to $\xi(\omega)$ may be small since, by Luke’s theorem[14], there can be at most $O(1/m_Q^2)$ corrections to this relation at $\omega = 1$.

For mass set A with $|\vec{k}_b| = 0$, the variations in the values of $\xi(1)$ extracted from $h_+(1; m_a, m_b)$ are $< 0.5\%$ as m_{Q_a} is varied over the four possible values of m_Q. The differences are smaller than the statistical uncertainties. For $|\vec{k}_b| = 1$, the variations in $\xi(1)$ values are now as much as ten times larger than for the zero momentum case. However, the differences are still within 1σ of zero.

Tests using the relation in Eqn. 3 which is not protected from $O(1/m_Q)$ corrections by Luke’s theorem, are more sensitive indicators of m_Q effects[13]. A study of h_- may then help characterize the nonperturbative power law corrections to $\xi(\omega)$ at finite m_Q.

\begin{table}[h]
\centering
\begin{tabular}{lcc}
\hline
ρ^2_{BSW} vs m_{q/m_s}. & \\
\hline
m_{q/m_s} & 0.41 & 0.68 & 1.3 \\
ρ^2 & $1.09 (^{+24}_{-11})$ & $1.19 (^{+17}_{-10})$ & $1.31 (^{+15}_{-6})$ \\
\hline
\end{tabular}
\caption{Table 3}
\end{table}

A study of h_- also helps compare the value of ρ^2_{BSW} in Tab. 2 to values in the chiral limit. The trend is for ρ^2 to decrease with decreasing light-quark mass. Further work is necessary to understand the chiral behavior of $\xi(\omega)$.

\section{4. CONCLUSION}

Using heavy quark symmetry and the lattice is an effective way to study $B \to D$ decays.

\section{ACKNOWLEDGEMENTS}

The authors wish to acknowledge their conversations with C. Bernard, J. Mandula, M. Ogilvie, Y. Shen, and A. Soni concerning this work. This work was carried out on a Meiko i860 Computing Surface supported by SERC Grant GR/32779, the University of Edinburgh and Meiko Limited.

\section{REFERENCES}

1. N. Isgur and M. Wise, Phys. Lett. B232 (1989) 113; B237 (1990) 527.
2. M. Neubert, SLAC-PUB-6263 (1993).
3. B. Sheikholeslami and R. Wohlert, Nucl. Phys. B259 (1985) 572.
4. C. R. Allton, et al., Edinburgh 93/524 (1993).
5. H. Wittig, these proceedings and Edinburgh 93/526 or SHEP 92/93-24.
6. G. Heatlie, et al., Nucl. Phys. B325 (1991) 266.
7. M. Neubert and V. Rieckert, Nucl. Phys. B382 (1992) 97.
8. N. Isgur, et al., Phys. Rev. D39 (1989) 799.
9. Y. Shen, these proceedings. C. Bernard, et al., BUHEP-93-15.
10. UKQCD collaboration, S. Booth, et al. Edinburgh 93/525 or SHEP 92/93-17 (1993).
11. CLEO collaboration, LEPTON-PHOTON 93 proceedings.
12. N.M. Hazel, these proceedings.
13. H. Hoeber, these proceedings.
14. M.E. Luke, Phys. Lett. B252 (1990) 447.
15. D.S. Henty, these proceedings.