Territory monitoring and suggestions on oil filling station arrangement according to ecological standards

E E Zhelonkina, L I Boitsenyuk, V S Gruzdev, J S Valiev and E G Pafnutova

State University of Land Use Planning, 15, Kazakova street, Moscow, 105064, Russia
E-mail: pecype-86@mail.ru

Abstract: The article studies the ecological state of the territory of Novoselki OFS and adjacent territories. The situational analysis of the territory was carried out. Its results will be applied in the section “Ecology and development of an ecological passport of the industrial enterprise”. Practical recommendations on greening and reducing the fire risk were provided.

1. Introduction
The current unfavorable situation is connected with the environment and its protection. Having learned how to mine and use natural resources, human does not care about territories where industrial and capital enterprises are located. The predominant amount of extracted natural resources is directly related to the ecosystems. In addition, qualitative and quantitative characteristics of natural resources (animal and plant life, water, soil, etc.), and anthropogenic resources (buildings, structures, production wastes, etc.), as well as possibilities of their use depend on the characteristics of land plots and their use. Economic development of territories, the construction of industrial infrastructure facilities, in particular, oil and gas complex facilities, can danger the environment [1, 2]. It is necessary to form sanitary and protective zones with a special legal status. Safe operation of the facilities and the state of the environment depend on their efficiency. [3]. In this regard, it is necessary to investigate the ecological state of the territory of industrial enterprises (e.g., an oil loading station) and adjacent sanitary protection zones [4, 5].

2. Research methods
The geobotanical description of the territory and sanitary zones of the enterprise was performed. Soil cuts were described; soil and vegetation samples were taken for chemical analysis. Chemical analysis of soil and vegetation samples for the presence of heavy metals of organic pollutants was carried out using standard techniques.

3. Results and Discussion
Novoselki oil filling station (OFS) of the ring oil pipeline around Moscow is located in Podolsk district. The industrial site is located at a distance of 400 m from Hryvna, on the land plot of the forest fund. There is no hydrographic network with permanent watercourses on the territory surrounding the industrial site, except for a small pond and a boggy stream hydrologically connected with the Rogozhka river. In accordance with technical requirements, the OFS has a protection zone 100 m in width. The soils are sod-podzolic, formed on homogeneous loess-like loams, have an average particle size distribution. Significant areas show degradation of the soil cover [6, 7]. This is plane erosion caused by
light erosion of loess loams widespread in the territory due to the disturbance of vegetation cover during production. Pollution with heavy metals and acidification with sulfur dioxide was observed [8] (Table 1).

Table 1. The chemical composition of the soil test site of the southern part of the sanitary protection zone (fragment)

Horizon designation	Sampling depth, cm	pH	P2O5, mg per 100g of soil	K2O mg per 100g of soil	Humus, %	Oil products mg/kg	Zn mg/kg	Cu mg/kg	Mn mg/kg
A₀	0-24	6	15	2.5	1.8	22.6±2.3	21.2	4.8	388
B₁	30-40	4.3	8.8	0.5	-	14.3±1.4	6.5	-	-

As a result of geobotanical surveys of the territory, key herbaceous areas were identified, and herbaceous species of ruderal plants, including tall stems capable of accumulating dry plant residues, which can cause fire, were described (Table 2).

On the territory of the oil filling station, samples of the upper soil layer were taken and chemical analysis was carried out [9, 10] (Table 3).

Table 2. Characteristics of plants growing on the key plot (fragment)

Name of plants	Projective cover, %	Height, cm	Phenophase
Barbarea	2.2	60	Fruits
Taráxacum	25	25	Fruits
Tussilágo	10	15	Vegetates
Tanacétum vulgáre	0.2	20	Vegetates
Plantágo	0.2	25	Vegetates
Atriplex	5	70	Vegetates
Trifolium pratense L.	25	20	Vegetates
Achilléa	10	50	Vegetates
Arctium	24	150	Vegetates

Based on the results of the survey of the OFS territory, it was proposed to cut grass near the underground tanks and within the protected zones in early June, i.e. before insemination of dandelions and other ripening herbs.

The discrepancy in the sanitary and fire regulations of the forests adjacent to the OFS protection zone and the presence of damaged trees and shrubs within the sanitary protection zone were identified.

In the western part of the protection zone at a distance of 10 meters from the enterprise’s border, there is deadwood. In the southern part of the protection zone, in the 10-meter zone from the enterprise, there is a large amount of dead birch, aspen, willow. Technical works have to be performed. To renew protective strips, it is necessary to clean the dead wood and carry out drainage works. Based on the soil and climatic conditions, the most suitable woody plants for the restoration of protective bands will be spruce, pine, larch, or oak. They are well adapted to these conditions.

To the east of the enterprise and beyond its boundary, the tree layer is represented by conifers – pine and spruce providing a sufficient level of soil moistening. On the northern side of the enterprise territory, there is an asphalted parking for cars; the distance to the forest stand corresponds to the standards.

The survey of self-seeding and undergrowth revealed self-seeding oaks in the vicinity of tanks with oil products.

To improve the working space, it is recommended to equip lawns and flower beds near the buildings. Plants were selected. A plan for planting green spaces was developed. Chamomile can be planted on...
lawns to reduce the number of dandelions in the area. Flowers for beds were selected: Bergenia cordifolia - Pulmonalis, Aquilégia, Asteraceae alpinus, etc.

Table 3. List of pollutants emitted into the atmosphere

Code	Name of pollutants	Quality criteria for the atmospheric air	Hazard Class		
		MPC m. (mg/m³)	MPC pp (mg/m³)	RSIL (mg/m³)	
123	Dioxide Iron trioxide, Iron oxide	-	0.04000000	-	3
143	Manganese and its compounds (IV oxide)	0.01000000	0.00100000	-	2
301	Nitrogen dioxide; (NO2)	0.20000000	0.04000000	-	3
304	Nitric oxide (II)	0.40000000	0.06000000	-	3
328	Carbon soot	0.15000000	0.05000000	-	3
330	Sulfur dioxide and sulfurous nhydride (SO 2)	0.50000000	0.05000000	-	3
337	Carbon oxide (CO)	5.00000000	3.00000000	-	4
344	Inorganic Fluorides	0.20000000	0.03000000	-	2
405	Hydrocarbons C1-5 (pentane)	100.00000000	25.00000000	-	4
501	Pentilenes, Amylenes (mixture of isomers)	1.50000000	-	-	3
602	Benzene C6H6	0.30000000	0.10000000	-	2
616	Dimethylbenzene, Xylene (mixture of isomers o-, m-, p-)	0.20000000	-	-	3
621	Methylbenzene, Toluene	0.60000000	-	-	3
627	Ethylbenzene	0.02000000	-	-	3
703	Benz [a] pyrene; 3, 4-benzpyrene	-	0.0000010	-	1
1042	Butan-1-ol; N-butyl alcohol	0.10000000	-	-	3
1061	Ethanol; Ethanol	5.00000000	-	-	4
1210	Butyl acetate	0.10000000	-	-	4
1240	Ethyl acetate	0.10000000	-	-	4
1401	Propan-2-one; Acetone	0.35000000	-	-	4
2704	Hydrocarbons (gasoline)	5.00000000	1.50000000	-	4
2732	Hydrocarbons (kerosene)	-	-	1.20000000	4
2735	Oil mineral e oil (spindle, machine) Oil aerosol	-	-	0.05000000	4
2750	Solvent naphtha	-	-	0.20000000	4
2754	Alkanes C12-C19; Carbonwater limit C12-C19	1.00000000	-	-	4
2902	Suspended substances	0.50000000	0.50000000	-	3
2908	Inorganic dust	0.30000000	0.10000000	-	3
342	Hydrogen fluoride (H2F2)	0.02000000	0.00500000	-	2

It was recommended to plant trees and shrubs (linden, viburnum, lilac, bird cherry, yellow acacia, barberry, etc.) that will trap dust and create comfort and aesthetics along the paths where the administrative building is located. The collected data and recommendations will be included in the section “Environmental certification of enterprises” that will justify the requirements for the operation of oil filling stations and their territories, buildings, facilities and equipment.

4. Conclusion
The survey revealed an insignificant level of anthropogenic pollution of the territory and sanitary protection zones. Soil trampling has the greatest negative impact. It causes the spread of ruderal plant species. Near the underground oil reservoirs, self-seeding and undergrowing trees were found. They
have to be removed in accordance with sanitary standards. In the ten-meter sanitary zone, there are dead wood and shrub species which have to be cut. It is recommended to perform sanitary cutting, remove self-seeding tree species and mow the territory. It is necessary to conduct environmental monitoring of the territory and develop an environmental passport of the enterprise which have to be updated every five years.

References

[1] Zhelonkina E E, Boytsenyuk L I and Valiyev D S 2014 Analysis of the ecological condition of lands in the Nefteyugansk region of the Khanty-Mansiysk Autonomous District Land Management, Cadastre and Monitoring of Lands [in Russian – Zemleustrojstvo, kadastr i monitoring zemel] 12(120) 42–4

[2] Uddie J, Bhattacharyya S and Ozawa-Meida L 2018 Vulnerability assessment of climate change impact on critical oil/Gas infrastructure A decision-maker's perception in the Niger Delta Int. J. of Climate Change Impacts and Responses 10(4) 25–39

[3] Smith J W N and Kerrison G 2013 Benchmarking of decision-support tools used for tiered sustainable remediation appraisal topical collection on remediation of site contamination Water Air and Soil Pollution 224(12) 224

[4] Saatsaz M, Monsef I, Rahmani M and Ghods A 2018 Site suitability evaluation of an old operating landfill using AHP and GIS techniques and integrated hydrogeological and geophysical surveys Environmental Monitoring and Assessment 190(3) 144

[5] Shapovalov D A and Gruzdev V S 2008 The impact of technogenic emissions on soil and vegetation as in the case with OJSC Severstal Ecology and Industry of Russia [in Russian – Ekologiya i promyshlennost Rossii] 7 32–5

[6] Boytsenyuk L I, Zhelonkina E E and Pafnutova E G 2019 Estimation of the condition of the natural and recreational zone of the Novoseltsevo village, Mytishchi district Int. Scientific Practical Conf. “Current issues of land management and cadasters at the present stage” pp 48–54

[7] Danilov V F, Shurygin, V Y and Alexandrovich D A 2017 System of the automated leak detection of oil products (Astra Salvensis) pp 287–95

[8] Xie D, He Q, Zhang X, Wang J and Zhou K 2017 Study on the Pollutant Emissions Characteristics of Typical Petrochemical Enterprises in Hainan Province IOP Conf. ser. Earth and Environmental Sci. 233(5)

[9] Marvin C H, Burniston D A, Shen L, Helm P A and Reiner E J 2018 Polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans associated with settling particles in Lake Ontario Chemosphere 212 pp 983–93

[10] Heibati B, Godri Pollitt K J, Charati J Y, Karimi A and Mohammadyan M 2018 Biomonitoring-based exposure assessment of benzene, toluene, ethylbenzene and xylene among workers at petroleum distribution facilities Ecotoxicology and Environmental Safety 149 19–25