SUPPLEMENTARY INFORMATION

MOLECULAR AND CYTOGENETIC CHARACTERIZATION OF MYELODYSPLASTIC SYNDROMES IN CELL-FREE DNA

Nieves García-Gisbert¹,², Sara García-Ávila¹,³, Brayan Merchán¹, Marta Salido⁴,⁵, Concepción Fernández-Rodríguez C¹,⁵, Joan Gibert¹, Lierni Fernández-Ibarrondo¹,², Laura Camacho¹,², Marta Lafuente¹,², Raquel Longarón¹,⁵, Blanca Espinet⁴,⁵, Patricía Vélez¹,³, Ramon M Pujo², Marcio Andrade-Campos¹, Leonor Arenillas⁴,⁵, Antonio Salar¹,³, Xavier Calvo⁴,⁵, Carles Besses¹, Beatriz Bellosillo¹,³

¹Group of Applied Clinical Research in Hematology, IMIM-Hospital del Mar, Barcelona, Spain ²Pompeu Fabra University, Barcelona, Spain ³Department of Hematology, Hospital del Mar, Barcelona, Spain ⁴Group of Translational Research on Hematological Neoplasms, IMIM-Hospital del Mar, Barcelona, Spain ⁵Department of Pathology, Hospital del Mar, Barcelona, Spain ⁶Department of Dermatology, Hospital del Mar, Barcelona, Spain

Supplementary Table 1. Classification of AML patients included in the study.

PATIENT	WHO 2017 CLASSIFICATION (Arber et al, Blood, 2016)
1	AML with minimal differentiation
2	AML with myelodysplasia-related changes
3	AML with myelodysplasia-related changes
4	AML with recurrent genetic abnormalities (biallelic mutations of CEBPA)
5	AML with recurrent genetic abnormalities (NPM1 mutated)
6	AML with recurrent genetic abnormalities (NPM1 mutated)
7	AML with recurrent genetic abnormalities (NPM1 mutated)
8	AML with recurrent genetic abnormalities (NPM1 mutated)
9	AML with recurrent genetic abnormalities (NPM1 mutated)
10	AML with recurrent genetic abnormalities, t(8;21)(q22;q22.1);RUNX1-RUNX1T1
11	AML, NOS
12	AML, NOS, Pure erythroid leukemia
13	AML, NOS, with maturation
14	AML, NOS, without maturation
15	AML, NOS, without maturation
16	Therapy-related myeloid neoplasm
17	Therapy-related myeloid neoplasm
18	Therapy-related myeloid neoplasm
Supplementary Table 2. Genes and genomic regions covered by the NGS panel design (hg19).

GENES	CHROMOSOME LOCATION	COVERED REGION
ASXL1	20q11.21	Full exonic region
ATM	11q22.3	Full exonic region
BCOR	Xp11.4	Full exonic region
BCORL1	Xq26.1	Full exonic region
CALR	19p13.13	Exon 9
CBL	11q23.3	Full exonic region
CEBPA	19q13.11	Full exonic region
CHEK2	22q12.1	Full exonic region
CSF3R	1p34.3	Full exonic region
CSNK1A1	5q32	Full exonic region
CUX1	7q22.1	Full exonic region
DDX41	5q35.3	Full exonic region
DLEU7	13q14.3	Full exonic region
DNM1A	2q23.3	Full exonic region
EGR1	5q31.2	Full exonic region
ETV6	12p13.2	Full exonic region
EZH2	7q36.1	Full exonic region
FLT3	13q12.2	Full exonic region
GATA2	3q21.3	Full exonic region
IDH1	2q34	Exon 4
IDH2	15q26.1	Exon 4
JAK2	9p24.1	Full exonic region
KIT	4q12	Exon 17
KMT2A	11q23.3	Full exonic region
KRAS	12p12.1	Full exonic region
MPL	1p34.2	Full exonic region
NF1	17q11.2	Full exonic region
NPM1	5q35.1	Full exonic region
NRAS	1p13.2	Full exonic region
PHF6	Xq26.2	Full exonic region
PPM1D	17q23.2	Full exonic region
PRPF8	17p13.3	Full exonic region
PTPN11	12q24.13	Full exonic region
RAD21	8q24.11	Full exonic region
RUNX1	21q22.12	Full exonic region
SETBP1	18q12.3	Full exonic region
SF3B1	2q33.1	Exons 14,15,16
SH2B3	12q24.12	Full exonic region
SRSF2	17q25.1	Full exonic region
STAG2	Xq25	Full exonic region
TET2	4q24	Full exonic region
TNFSF11	13q14.11	Full exonic region
TP53	17p13.1	Full exonic region
TP53RK	20q13.12	Full exonic region
TP53TG5	20q13.12	Full exonic region
U2AF1	21q22.3	Full exonic region
WT1	11p13	Full exonic region
ZRSR2	Xp22.2	Full exonic region

Polymorphic region close to EGR1
- 5q31.2 chr5:137805574-137805662

Polymorphic region in locus D7S486
- (1) 7q3.1 chr7:115814732-115815082
- (2) 7q3.1 chr7:115825276-115825301
- (3) 7q3.1 chr7:115900252-115900830
- (4) 7q3.1 chr7:115948439-115949024
- (5) 7q3.1 chr7:115953508-115953582
Supplementary Fig 1. Sample workflow for DNA extraction and mutational analysis.

Supplementary Fig 2. Correlation between percentage of ring sideroblasts in bone marrow and VAFs of SF3B1 mutations in BM and cfDNA.

Supplementary Fig 3. CNV results by NGS in a patient with 20q- y 5q- alterations. Results of the coverage analysis of EGR1 (chr5) and TP53TG5 (chr20) genes are shown, which were included in the design of the NGS gene panel to cover chr5 and chr20 chromosomal aberrations. Each dot in the plot represents a genomic region covered by the gene panel. The green line shows the normal values (two copies of the genomic region). Dots above 2 indicate a potential gain of genetic material and dots below 2 indicate a potential loss of genetic material. A) CNV analysis of EGR1 and TP53TG5 in BM DNA. B) CNV analysis of EGR1 and TP53TG5 in cfDNA C) CNV analysis of a patient with normal karyotype. D)CMA results confirming the 5q- and 20q- in the patient.
Supplementary methods. R code used in R 3.6.2 to create the figures. Required files to generate the figures and full list of variants identified is provided in Supplemental Data 1-3.

```r
#Imports ####
library(readr)
library(readxl)
library(tidyverse)
library(maftools)

#Mutation Data
MUTS_SMDs_BxLIQUIDA_TODOS <- read_delim("SupplementaryData1_Variants.tsv", ",", escape_double = FALSE, trim_ws = TRUE)

# Patient conditions
Listado_paciente_muestraSMD <- read_delim("SupplementaryData2_PatientList.csv", ";", escape_double = FALSE, col_types = cols(DNA_MO = col_character(), NHC = col_character(), cfDNA = col_character()), trim_ws = TRUE)
Listado_paciente_muestraSMD <- pivot_longer(Listado_paciente_muestraSMD, cols = cfDNA:DNA_MO)

#Sample name preprocessing
MUTS_SMDs_BxLIQUIDA_TODOS$Sample <- gsub("_[0-9]+.smCounter.anno", "", MUTS_SMDs_BxLIQUIDA_TODOS$Sample)
MUTS_SMDs_BxLIQUIDA_TODOS$Sample <- gsub("^[0-9]+\."", "", MUTS_SMDs_BxLIQUIDA_TODOS$Sample)

#Join Databases
MUTS_SMDs_BxLIQUIDA_TODOS <- left_join(MUTS_SMDs_BxLIQUIDA_TODOS, Listado_paciente_muestraSMD, by=c("Sample"="value"))
setdiff(Listado_paciente_muestraSMD$value, MUTS_SMDs_BxLIQUIDA_TODOS$Sample)
setdiff(MUTS_SMDs_BxLIQUIDA_TODOS$Sample, Listado_paciente_muestraSMD$value)

# Upload pathways for the oncoplot###
Genes_and_pathways <- read_delim("SupplementaryData3_Genes_and_pathways.csv", ";", escape_double = FALSE, col_names = FALSE, trim_ws = TRUE)
colnames(Genes_and_pathways) <- c("Genes", "Pathways")
Genes_and_pathways$PATHWAY <- as.factor(Genes_and_pathways$Pathways)
genes <- Genes_and_pathways$Genes

#Preprocessing to fin maftools import
MUTS_SMDs_BxLIQUIDA_TODOS$Consequence[grepl("missense_variant", MUTS_SMDs_BxLIQUIDA_TODOS$Consequence)] <- "Missense_Mutation"
MUTS_SMDs_BxLIQUIDA_TODOS$Consequence[grepl("start_lost", MUTS_SMDs_BxLIQUIDA_TODOS$Consequence)] <- "Translation_Start_Site"
MUTS_SMDs_BxLIQUIDA_TODOS$Consequence[grepl("stop_gained", MUTS_SMDs_BxLIQUIDA_TODOS$Consequence)] <- "Nonsense_Mutation"
MUTS_SMDs_BxLIQUIDA_TODOS$Consequence[grepl("stop_lost", MUTS_SMDs_BxLIQUIDA_TODOS$Consequence)] <- "Nonstop_Mutation"
MUTS_SMDs_BxLIQUIDA_TODOS$Consequence[grepl("splice_donor_variant", MUTS_SMDs_BxLIQUIDA_TODOS$Consequence)] <- "Splice_Site"
MUTS_SMDs_BxLIQUIDA_TODOS$Consequence[grepl("splice_acceptor_variant", MUTS_SMDs_BxLIQUIDA_TODOS$Consequence)] <- "Splice_Site"
MUTS_SMDs_BxLIQUIDA_TODOS$Consequence[grepl("splice_region_variant,intron_variant", MUTS_SMDs_BxLIQUIDA_TODOS$Consequence)] <- "Splice_Site"
MUTS_SMDs_BxLIQUIDA_TODOS$Consequence[grepl("splice_donor_variant,coding_sequence_variant", MUTS_SMDs_BxLIQUIDA_TODOS$Consequence)] <- "Splice_Site"
MUTS_SMDs_BxLIQUIDA_TODOS$Consequence[grepl("frameshift_variant", MUTS_SMDs_BxLIQUIDA_TODOS$Consequence)] <- "Frame_Shift_Inc"
MUTS_SMDs_BxLIQUIDA_TODOS$Consequence[grepl("splice_donor_variant", MUTS_SMDs_BxLIQUIDA_TODOS$Consequence)] <- "Splice_Site"
MUTS_SMDs_BxLIQUIDA_TODOS$Consequence[grepl("frameshift_variant", MUTS_SMDs_BxLIQUIDA_TODOS$Consequence)] <- "Frame_Shift_Del"
MUTS_SMDs_BxLIQUIDA_TODOS$Consequence[grepl("splice_donor_variant", MUTS_SMDs_BxLIQUIDA_TODOS$Consequence)] <- "In_Frame_Del"
MUTS_SMDs_BxLIQUIDA_TODOS$Consequence[grepl("splice_donor_variant", MUTS_SMDs_BxLIQUIDA_TODOS$Consequence)] <- "In_Frame_Del"

unique(MUTS_SMDs_BxLIQUIDA_TODOS$Consequence)
colnames(MUTS_SMDs_BxLIQUIDA_TODOS$Consequence)[1] <- "Variant_Type"
colnames(MUTS_SMDs_BxLIQUIDA_TODOS[5]) <- "Start_Position"
colnames(MUTS_SMDs_BxLIQUIDA_TODOS$End_Position) <- "Start_Position"
colnames(MUTS_SMDs_BxLIQUIDA_TODOS$Reference_Allele) <- gsub("^>.*\\/", "", MUTS_SMDs_BxLIQUIDA_TODOS$Variant)
colnames(MUTS_SMDs_BxLIQUIDA_TODOS$Tumor_Seq_Allele2) <- gsub("^>.*\\/", "", MUTS_SMDs_BxLIQUIDA_TODOS$Variant)
colnames(MUTS_SMDs_BxLIQUIDA_TODOS$Type) <- "Type"
colnames(MUTS_SMDs_BxLIQUIDA_TODOS$Type) <- "Type"
colnames(MUTS_SMDs_BxLIQUIDA_TODOS$Type) <- "Type"
colnames(MUTS_SMDs_BxLIQUIDA_TODOS$Type) <- "Type"
# Check samples for each condition
SMD_MO <- MUTS_SMDs_BxLIQUIDA_TODOS[MUTS_SMDs_BxLIQUIDA_TODOS$name == "DNA_MO",]
unique(SMD_MO$NHC)
unique(SMD_MO$Sample)

SMD_cfDNA <- MUTS_SMDs_BxLIQUIDA_TODOS[MUTS_SMDs_BxLIQUIDA_TODOS$name == "cfDNA",]
unique(SMD_cfDNA$NHC)
unique(SMD_cfDNA$Sample)

# Check if mutation is only tissue / only plasma or in both
only_tissue <- anti_join(SMD_MO, SMD_cfDNA, by=c("NHC"="NHC", "Hugo_Symbol"="Hugo_Symbol",  
"Start_Position"="Start_Position", "HGVSc"="HGVSc"))
only_tissue$Role <- "Tissue"
only_plasma <- anti_join(SMD_cfDNA, SMD_MO, by=c("NHC"="NHC", "Hugo_Symbol"="Hugo_Symbol",  
"Start_Position"="Start_Position", "HGVSc"="HGVSc"))
only_plasma$Role <- "Plasma"
paired_moving_muts <- rbind(only_tissue, only_plasma)

paired_staying <- anti_join(MUTS_SMDs_BxLIQUIDA_TODOS, paired_moving_muts, by=c("Sample"="Sample",  
"Hugo_Symbol"="Hugo_Symbol", "Start_Position"="Start_Position", "HGVSc"="HGVSc"))
paired_staying$Role <- "Stay"

# Merge and change ID to shared tissue / cfDNA identifier
MUTS_SMDs_BxLIQUIDA_TODOS <- rbind(paired_moving_muts, paired_staying)
colnames(MUTS_SMDs_BxLIQUIDA_TODOS)[1] <- "Sample"
colnames(MUTS_SMDs_BxLIQUIDA_TODOS)[80] <- "Tumor_Sample_Barcode"
MUTS_SMDs_BxLIQUIDA_TODOS$Hugo_Symbol[MUTS_SMDs_BxLIQUIDA_TODOS$HGVSp ==  
"NP_004963.1:p.Val617Phe"] <- "JAK2_p.V617F"

# Upload to maftools and check everything looks nice
SMDs <- read.maf(MUTS_SMDs_BxLIQUIDA_TODOS, isTCGA = F, clinicalData = Listado_paciente_muestraSMD)  
check <- SMDs@data
Sample_type_colors <- RColorBrewer::brewer.pal(n = 4, name = "ReDS")[c(2,4)]
CL_colors <- c(Sample_type_colors)
names(CL_colors) <- c("DNA_MO", "cfDNA")
CL_colors <- list(name = CL_colors)

vc_cols <- c("#A6CEE3","darkolivegreen3","cornflowerblue","#33A02C","coral","#A36D90","#FDBF6F","#A36D90",  
"firebrick3")
names(vc_cols) <- c(  
'Frame_Shift_Del',  
'Missense_Mutation',  
'Nonsense_Mutation',  
'Multi_Hit',  
'Frame_Shift_Ins',  
'In_Frame_Ins',  
'Splice_Site',  
'In_Frame_Del',  
'Translation_Start_Site'  
)
# Plot oncoplot
oncoplot(SMDs, colors = vc_cols, annotationColor = CL_colors, removeNonMutated = FALSE, pathways =  
Genes_and_pathways,  
top = 1000, fontSize = 0.7, sortByAnnotation = TRUE, anno_height = 0.5, SampleNameFontSize = 0.6,  
additionalFeature = list(c("Role", "Tissue"), c("Role", "Plasma")), annoBorderCol = 'black',  
additionalFeatureCol = c("black", "black"), additionalFeatureCex = 0.7, gene_mar = 9,  
additionalFeaturePch = c(0,15), showTumorSampleBarcodes = TRUE)
dev.off()