Predictive Machine Learning of Objective Boundaries for Solving COPs

Helge Spieker Arnaud Gotlieb

Simula Research Laboratory, Oslo, Norway; \{helge,arnaud\}@simula.no

Abstract

Solving Constraint Optimization Problems (COPs) can be dramatically simplified by boundary estimation, that is, providing tight boundaries of cost functions. By feeding a supervised Machine Learning (ML) model with data composed of known boundaries and extracted features of COPs, it is possible to train the model to estimate boundaries of a new COP instance. In this paper, we first give an overview of the existing body of knowledge on ML for Constraint Programming (CP) which learns from problem instances. Second, we introduce a boundary estimation framework that is applied as a tool to support a CP solver. Within this framework, different ML models are discussed and evaluated regarding their suitability for boundary estimation, and countermeasures to avoid unfeasible estimations that avoid the solver to find an optimal solution are shown. Third, we present an experimental study with distinct CP solvers on seven COPs. Our results show that near-optimal boundaries can be learned for these COPs with only little overhead. These estimated boundaries reduce the objective domain size by 60-88% and can help the solver to find near-optimal solutions early during search.

1 Introduction

Constraint Optimization Problems (COPs) are commonly solved by systematic tree search, such as branch-and-bound, where a specialized solver prunes those parts of the search space with worse cost than the current best solution. In Constraint Programming (CP), these systematic techniques work without prior knowledge and are steered by the constraint model. However, the worst-case computational cost to fully explore the search space is exponential and the search performance depends on solver configuration, such as selection of right parameters, heuristics, and search strategies, as well as appropriate formulations of the constraint problems to enable efficient pruning of the search space.

Machine Learning (ML) methods, on the other hand, are data-driven and are trained with labeled data or by interaction with their environment, without explicitly considering the problem structure or any solving procedure. At the same time, ML methods can only approximate the optimum and are therefore not a full alternative. The main computational cost of these methods lies in their training, but the cost when estimating an outcome for a new input is low. This low inference cost makes ML an interesting candidate for integration with more costly tree search. Previous research has examined this integration to several extents, albeit selecting the appropriate algorithm within a solver and to configure it for a given instance, learning additional constraints to model a problem, or learning partial solutions.

In this paper, we provide an overview of the body of knowledge on using ML for CP. We focus on approaches where the ML model is trained in a supervised way from existing problem instances with solutions, and collected information gathered while solving them. We discuss of the characteristics of supervised ML and CP and how to use predictive ML to improve CP solving procedures. A graphical overview of predictive ML applications for CP is shown in Figure 1.
The second part of the paper discusses a boundary estimation method called Bion, which combines logic-driven constraint optimization and data-driven ML, for solving COPs. A ML-based estimation model predicts boundaries for the objective variable of a problem instance, which can then be exploited by a CP solver to prune the search space. To reduce the risk of inaccurate estimations, which can render the COP unsatisfiable, the ML model is trained with an asymmetric loss function and adjusted training labels. Setting close bounds for the objective variable is helpful to prune the search space \[54, 34\]. However, estimating tight bounds in a problem- and solver-agnostic way is still an open problem \[35\]. Such a generic method would allow many COP instances to be solved more efficiently. Our method has first been introduced in \[67\], where an initial analysis of the results led us to conclude that Bion was a promising approach to solve COPs. Here, we revisit and broaden the presentation of Bion in the general context of predictive machine learning for constraint optimization. We extend our experimental evaluation analysis and show that boundary estimation is effective to support COP solving.

Bion is a two-phase procedure: First, an objective boundary for the problem instance is estimated with a previously trained ML regression model; Second, the optimization model is extended by a boundary constraint on the objective variable and a constraint solver is used to solve the problem instance. This two-phases approach decouples the boundary estimation from the actual solver and enables its combination with different optimized solvers. Training the estimation model with many problem instances is possible without any domain- or expert-knowledge and applies to a wide range of problems. Solving practical assignment, planning or scheduling problems often requires to repeatedly solve the very same COP with different inputs. Bion is well fitted for these problems, where training samples, which resemble realistic scenarios, can be collected from previous iterations. Besides, for any COP, Bion can be used to pre-train problem-specific ML models which are then deployed to solve new instances.

The remainder of this paper is structured as follows. In Section \[2\] we discuss the necessary background for the integration of predictive ML and CP, including data curation and preparation of problem instances to be usable in ML. Section \[3\] reviews existing work on predictive ML and CP for algorithm selection and configuration, constraint learning, and learning to solve. Afterwards, we introduce Bion in Section \[4\] a ML-based method to estimate boundaries of the objective variable of COPs as a problem- and solver-independent method tool to support constraint optimization solvers. We discuss training techniques to avoid inaccurate estimations, compare various ML models such as gradient tree boosting, support vector machine and neural
networks, with symmetric and asymmetric loss functions. A technical CP contribution lies in the dedicated feature selection and user-parameterized label shift, a new method to train these models on COP characteristics. In Section 5, Bion’s ability to prune objective domains, as well as the impact of the estimated boundaries on solver performance, is evaluated on seven COPs that were previously used in the MiniZinc challenges to compare CP solvers efficiency. Finally, Section 6 concludes the paper with an outlook on future applications of predictive ML to CP.

2 Background

This section presents a background discussion on constraint optimization and supervised machine learning. We introduce the necessary terminology and foundations under the context of predictive ML for CP. For an in-depth introduction beyond the scope of this paper, we refer the interested reader to the relevant literature in constraint optimization [62, 51] and machine learning [36, 30, 55].

2.1 Constraint Optimization Problems

Throughout this paper, constraint optimization is considered in the context of Constraint Programming over Finite Domains [62]. In that respect, every variable \(x \) of an optimization problem is associated with a finite set of possible values, called a Finite Domain (FD) and, noted \(D_x \). Each value is associated with a unique integer without any loss of generality and thus, \(D_x \subseteq \mathbb{X} \). Where \(\mathbb{X} \) (resp. \(\mathbb{X} \)) denotes the lower (resp. upper) bound of \(D_x \). Each variable \(x \) takes one, yet unknown value in its domain, i.e., \(x \in D_x \) and \(\mathbb{X} \leq x \leq \mathbb{X} \), even if not all the values of \(\mathbb{X} \) are necessarily part of \(D_x \).

A constraint is a relation among a subset of the decision variables, which restrain the possible set of tuples of values taken by these variables. In Constraint Programming over FD, different type of constraints can be considered, including arithmetical, logical, symbolic or global relations. For instance, \(x + y * z = 5 \) is an arithmetical constraint while \(x = f \lor y = t \lor (z > 0) = t \), where \(t \) (resp. \(f \)) stands for True (resp. False), is a logical constraint. Symbolic and global constraints include a large panel of non-fixed length relations such as \texttt{all_different([x1, ..., xn])}, which constrains each variable \(x_1 \) to take a different value, \texttt{element([x1, ..., xn], i, v)}, which enforces the relation \(v = x_i \), where \(v, i \) and \(x_1, ..., x_n \) can all be unknowns. More details and examples can be found in [62, 51].

Definition 1 (Constrained Optimization Problem (COP)). A COP is a triple \(\langle V, C, f_z \rangle \) where \(V \) denotes a set of FD variables, called decision variables, \(C \) denotes a set of constraints and \(f_z \) denotes an optimization function which depends on the variables of \(V \). \(f_z \)'s value ranges in the domain of the variable \(z \) (in \(\mathbb{Z} \) \(z \)), called the objective variable.

Solving a COP instance requires finding a variable assignment, i.e., the assignment of each decision variable to a unique value from its domain, such that all constraints are satisfied and the objective variable \(z \) takes an optimal value. Note that COPs have to be distinguished from well-known Constraint Satisfaction Problems (CSPs) where the goal is only to find satisfying variable assignments, without taking care of the objective variable.

Definition 2 (Feasible/Optimal Solutions). Given a COP instance \(\langle V, C, f_z \rangle \), a feasible solution is an assignment of all variables \(V \) in their domain, such that all constraints are satisfied. \(z_{cur} \) denotes the value of objective variable \(z \) for such a feasible solution. An optimal solution is a feasible solution, which optimizes the function \(f_z \) to the optimal objective value \(z_{opt} \).

Definition 3 (Satisfiable/Unsatisfiable/Solved COP). A COP instance \(\langle V, C, f_z \rangle \) is satisfiable (resp. unsatisfiable) iff it has at least one feasible solution (resp. no solution). A COP is said to be solved if and only if at least one of its optimal solutions is provided.
Solving a COP instance can be done by a typical branch-and-bound search process which incrementally improves a feasible solution until an optimal solution is found. Roughly speaking, in case of minimization, branch-and-bound works as follows: starting from an initial feasible solution, it incrementally adds to \(C \) the constraint \(z < z_{\text{cur}} \), such that any later found feasible solution has necessarily a smaller objective value than the current value. This is helpful to cut the search tree of all feasible solutions which have a value equal to or larger than the current one. If there is no smaller feasible value and all possible variable assignments have been explored, then the current solution is actually an optimal solution. Interestingly, the search process can be time-controlled and interrupted at any time. Whenever the search process is interrupted before completion, it returns \(z_{\text{cur}} \), as the best feasible solution found so far by the search process, i.e., a near-optimal solution. This solution is provided with neither proof of optimality nor guarantee of proximity to an optimal solution, but it is still sufficient in many applications.

This branch-and-bound search process is fully implemented in many Constraint Programming (CP) solvers. These solvers provide a wide range of features and heuristics to tune the search process for specific optimization problems. At the same time, they do not reuse any of the already-solved instances of a constraint problem to improve the optimization process for a new instance. In addition to presenting existing works on predictive learning for constraint optimization, this paper proposes a new method to reuse existing known boundaries to nurture a machine learning model to improve the optimization process for a new instance.

2.2 Supervised Machine Learning

At the core of the predictive applications described in this paper, a supervised ML model is trained and deployed. In supervised machine learning, the model is trained from labeled input/output examples to approximate the underlying, usually unknown function.

Definition 4 (Supervised Machine Learning). Given a set of training examples \(\{(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\} \), a supervised machine learning model approximates a function \(P : X \rightarrow Y \), with \(X \) being the input space, and \(Y \) being the output space. Here, \(x_i \) is a vector of instance features and \(y_i \) is the corresponding label, representing the target value to be predicted.

Every value in \(x \) corresponds to a feature, that is, a problem instance characteristic that describes the input to the model. In most cases, the input consists of multiple features and is also described as the feature vector. The output of the model, \(\hat{y} \), is defined as a vector, too, although it is more common to have a model that only predicts a single value. This is the case in regression problems, when predicting a continuous value, or binary classification, when deciding whether to activate a functionality or not.

The model \(P \) is trained from a training set, consisting of example instances \((x_i, y_i) \). Training the model describes the process to minimize the error between estimated value \(\hat{y} \) and true (observed) value \(y \) of the training examples. The error is assessed with a loss function, that can be different depending on the task of the machine learning model. We show examples for two commonly used types of loss functions. For regression problems, where a continuous output value is estimated, the loss is assessed via the mean squared error. In classification, where a continuous output value is estimated, the loss is assessed via the mean squared error. The cross-entropy loss is calculated.

Definition 5 (Mean Squared Error (MSE)). Given a set of \(N \) estimated and observed target values \(\{(\hat{y}_1, y_1), (\hat{y}_2, y_2), \ldots, (\hat{y}_N, y_N)\} \), the MSE is calculated as:

\[
L = \frac{1}{N} \sum_{i=1}^{N} (\hat{y}_i - y_i)^2
\]

Within the calculation of MSE, positive and negative errors have the same effect, but larger errors are stronger penalized, i.e., they have a larger influence, than smaller errors.
Definition 6 (Cross-Entropy Loss). Given a set of N estimates and K classes, the cross-entropy (also log-likelihood) is calculated as:

$$L = -\frac{1}{N} \sum_{i=1}^{N} \sum_{k=1}^{K} y_{ik} \log \hat{y}_{ik}$$

with \hat{y}_{ik} being the probability of x_i belonging to class k and

$$y_{ik} = \begin{cases} 1 & \text{if } x_i \text{ belongs to class } k \\ 0 & \text{otherwise} \end{cases}$$

An example for the training scheme is shown in Figure 2 for a linear regression model. The weights a_0, a_1 of the linear function are adjusted such that the total error between estimated and true values is minimized. In the given example the training examples do not strictly follow a linear trend and are therefore difficult to approximate with only a small error. This is an indicator to use a more complex model for better results and to describe the output via different features than only x, if possible.

2.3 Machine Learning Models

Many supervised ML models exist and have been shown to be applicable to a wide range of problems. However, there is no one best model and depending on the application, different models can show good performance.

In this section, we introduce five widely used machine learning models for the application in predictive ML for CP: Gradient Tree Boosting, Neural Network, Support Vector Machine, k-Nearest Neighbors, and Linear Regression. We briefly discuss each model and highlight relevant characteristics for applying them for constraint problems.

2.3.1 Gradient Tree Boosting

Gradient Tree Boosting (GTB), also Gradient Boosting Machine, is an ensemble method where multiple individual weak models, whose error rate slightly outperforms random guessing, are combined into a strong learner [31]. At each iteration, additional weak models are trained on a modified subset of data to add information to the previous prediction. The individual weak models in GTB are decision trees, which by themselves have weak estimation accuracy compared to other models, but are robust to handle different types of inputs and features [36] Ch. 10].
2.3.2 Neural Network
A multi-layer Neural Network (NN) approximates the function to-be-learned over multiple layers of nodes or neurons. Neural networks can be applied for different problems, e.g. classification or regression, especially when there is a large amount of training data. Designing a neural network requires selecting an architecture and the number of layers and nodes, as well as performing a careful hyper-parameter optimization to achieve accurate results [30].

An ensemble of multiple NNs can be formed to reduce the generalization error of a single NN [75], by taking the average of all predictions. As errors are expected to be randomly distributed around the actual value, an ensemble can reduce the error.

2.3.3 Support Vector Machine
Support Vector Machines (SVM) map their inputs into a high-dimensional feature space. This feature space is defined by a kernel function, which is a central component. Once the data has been mapped, linear regression is performed in this high-dimensional space [27]. One common variant for regression problems are ε-SVR, which are usually trained using a soft margin loss [66]. Under soft margin loss an error is penalized only if it is larger than a parameter ε, otherwise it is similar to a squared error function. Having the additional margin of allowed errors avoids minimal adjustments during training and allows for higher robustness of the final model.

2.3.4 Nearest Neighbors
Nearest neighbors methods, also k-Nearest Neighbors (kNN) or neighbors, relate an unseen instance to the closest samples, i.e. the nearest neighbors, in the training set [45]. The distance between points is calculated from a distance metric, which is often the euclidean distance. In case of k-nearest neighbors, the number of neighbors to consider is fixed to k, which is usually a small integer value. Other methods set the number of neighbors dynamically from the data density in the training set and a threshold for the maximum distance. For regression problems, the estimated value y is calculated by a weighted average over the neighbors’ values. The weights are either uniform or proportional to the distance.

Nearest neighbor methods have the advantage to be simple and non-parameterized, i.e. they do not require a training phase, but the complete training is necessary to process new instances. Because searching through all training samples for each estimation is inefficient for a large training set, tree-based data structures can be used to organize the data for faster access, for example, K-D trees [17] or Ball trees [58].

2.3.5 Linear Regression
Linear regression (LR) is a simple statistical approach to find a linear relationship between a set of input features and the target value. Applying linear regression is effective in scenarios where a linear relationship can be assumed. In other scenarios, LR is less accurate than the other introduced methods. However, because it is easy to train and apply, LR is commonly used as a baseline method to identify and justify the need for more complex, non-linear methods in ML applications.

The model is formed by the linear relationships between each of the n features and the target value, the dependent variable y. This relationship is captured by the parameter a_i for each feature x_i: $y = a_0 + a_1 x_1 + a_2 x_2 + \cdots + a_n x_n$. Linear regression is trained via the ordinary least squares method [36, Ch. 3], an iterative method to minimize the squared error between estimated and true target.

2.4 Data Curation
Machine learning methods are data-driven and need a data corpus to be trained, before they can be used to make estimations on new instances. In this section, we discuss the collection of a data corpus, its organization for training the model, and the pre-processing to transform the data into a format that is usable as model input.
2.4.1 Collection

A sufficient amount of training data is the basis to train a supervised ML model. Data for CSPs and COPs, that is, problem instances, can either be downloaded from open repositories for existing constraint problems, collected from historical data, or synthetically generated.

For many problems, constraint models and instances can be freely accessed from online repositories. The CSP library (CSPLib) [41] contains a large collection of constraint models, instances, and their results in different modeling languages. Furthermore, problem-specific libraries exist, such as TSPLib [60] for the traveling salesperson problem and related problems, or ASLib [21] for algorithm selection benchmarks. Finally, there are repositories of constraint models and instances in language-specific repositories, for example in MiniZinc1 or XCSP32.

Having a generator allows us to create a large training corpus for a particular problem, but as it also requires additional effort to develop the generator program. This solution might not be suitable in all cases. Another approach is to generate instances directly from the constraint model [33]. The constraint model is reformulated by defining the given instance parameters as variables to be found by the solver. Solving this reformulation with random value assignment then leads to a satisfiable problem instance of the original constraint model.

However, for all generators, the difference between generated instances, that are distributed over the whole possible instance space, and realistic instances, that might only occupy a small niche of the possible instance space, has to be considered by either adjusting the generator to create realistic instances or to ensure the training and test set include realistic instances from other sources.

2.4.2 Data Organization

Data used to build a ML model is split into three parts: a) the training set, b) the development (dev) or validation set, and c) the test set. The training set is used to train the model via a learning algorithm, whereas the dev set is only used to control the parameters of the learning algorithm. The test set is not used during training or to adjust any parameters, but only serves to evaluate the performance of the trained model. Especially the test set should be similar to those instances that are most likely to be encountered in practical applications.

The training set holds the largest part of the data, ranging from 50-80% of the data, while the rest of the data is equally divided between validation and test set. This is a rough estimate and the exact split is dependent on the total size of the data set. In any case, it should be ensured the validation and test set are sufficiently large to evaluate the trained model.

2.4.3 Representation

The representation refers to the format into which a problem instance is transformed before it can be used as ML input. An expressive representation is crucial for the design of a ML model with high influence on its later performance. Representation consists of feature selection and data preparation, which are introduced in the following.

Feature Selection Feature selection defines which information is available for the model to make predictions and if insufficient or the wrong information is present, it is not possible to learn an accurate prediction model, independent of the selected machine learning technique. A good feature selection contains all features which are necessary to calculate the output and captures relations between instance data and the quantity to estimate.

As a long-term vision, it is desirable to learn a model end-to-end, that is from the raw COP formulation and instance parameters, without having to extract handcrafted features. Currently, most machine learning techniques work with fixed, numerical input and output vectors. There are machine learning techniques capable to handle variable-length inputs and outputs, for example, recurrent neural networks like LSTM [37], but these

1Online at: https://github.com/MiniZinc/minizinc-benchmarks
2Online at: http://www.xcsp.org/
have, to the best of our knowledge, not yet been successfully applied in the area of predictive ML for CP and will not be further discussed here. Instead we focus on the common case to handcraft a fixed-size feature vector.

For the selection of features, we first need to consider the application of the machine learning model. Is it a problem-specific application, that handles only instances of one defined optimization problem, or is it a problem-independent application, that handles instances of many different optimization problems?

In COP-specific applications, domain knowledge can be exploited. For example, when building a predictive model for the travelling sales person (TSP) problem [40], features describing the spatial distribution of the cities and the total area size are valuable [55]. Similarly, the constrained vehicle routing problem (CVRP) has been investigated to identify problem-specific features that are beneficial to reason over solution quality [12] or aid the search process [11].

Without domain knowledge, more generic features have to be used to capture the characteristics and variance of different constraint models and their instances. One approach is the design of portfolio solvers, where a learning model is used to decide which solver to run for a given problem instance [74, 57, 10, 15, 11, 16]. Feature extraction exploits the structure of the general constraint model and the specific instance, its constraints, variables and their domains. Features are further categorized as static features, which are constant for one model and instance, and dynamic features, which change during search and are therefore especially relevant for algorithm configuration and selection tasks. As a representative explanation, Table 1 shows an overview of features to describe problem instances. While many of these features are constant for multiple instances of the same constraint problem, e.g. the number of constants or which constraints were defined, the variables and their domains depend on the instance parameters and can offer descriptive information that discriminate several instances of the same problem.

Several studies have been performed to analyze the ability of these generic features to characterize and discriminate COP characteristics [61, 39, 15, 21]. Their main conclusion is that a small number of features can be sufficient discriminators, but that there is no single set of best features for all constraint problems used in their experiments. An approach to overcome this issue is therefore to start with a larger set of features than practically necessary and, perform dimensionality reduction (see the next Section for a detailed explanation) to remove features with little descriptive information.

Data Preparation Once the features are selected and retrieved, the next step is to pre-process the data, such that it can be used by the machine learning model, by performing dimensionality reduction and scaling.

A dimensionality reduction step can shrink the size of the feature vector. Reducing the dimensionality, which means having less model inputs, can thereby also reduce the model complexity. Features that are constant for all instances are removed, as well as features that only show minimal variance below a given threshold. Other dimensionality reduction techniques, e.g. principal component analysis (PCA), apply statistical procedures to reduce the data to a lower-dimensional representation while preserving its variance. These reduction techniques can further reduce the number of features, but at the downside that it is no longer possible to directly interpret the meaning of each feature.

Feature scaling is necessary for many models and means to transform the values of each feature, which might in different ranges, into one common range. Scaled features reduce model complexity as it is not necessary to have the weights of a model account for different input ranges. One common technique is to scale the feature by subtracting its mean and dividing by the standard deviation, which transforms the features to approximately resemble a normal distribution with zero mean and unit variance. Another technique is called minmax-normalization and scales the feature based on the smallest and largest occurring values, such that all values scaled into the range $[-1, 1]$.

Note that it is important to keep track of how each preparation step is performed on the training set, as it has to be repeated in the same way on each new instance during testing and production. This means the feature vector of a new instance contains the same features and each feature is scaled by the same parameters, e.g. it is scaled by the training set’s mean and standard deviation.
Table 1: Examples for static COP features from the feature extractor mzn2feat [4], which analyses COPs formulated in the MiniZinc constraint modeling language [56]. The descriptions are quoted from [4]. NV: Number of variables, NC: Number of constraints, CV: variation coefficient, H: entropy of a set of values

Category	Features
Variables	The number of variables NV; the number cv of constants; the number av of aliases; the ratio \(\frac{av+cv}{NV} \); the number of defined variables \(\text{i.e. defined as a function of other variables} \); the number of introduced variables \(\text{i.e. auxiliary variables introduced during the FlatZinc conversion} \); sum, min, max, avg, CV, and H of the: variables domain size, variables degree, domain size to degree ratio
Domains	The number of: boolean variables be and the ratio \(\frac{be}{NV} \); float variables fv and the ratio \(\frac{fv}{NV} \); integer variables iv and the ratio \(\frac{iv}{NV} \); set variables sv and the ratio \(\frac{sv}{NV} \); array constraints ac and the ratio \(\frac{ac}{NV} \); boolean constraints bc and the ratio \(\frac{bc}{NC} \); int constraints ic and the ratio \(\frac{ic}{NC} \); float constraints fc and the ratio \(\frac{fc}{NC} \); set constraints sc and the ratio \(\frac{sc}{NC} \)
Constraints	The total number of constraints NC, the ratio \(\frac{NC}{NV} \), the number of constraints with FlatZinc annotations; the logarithm of the product of the: constraints domain \(\text{product of the domain size of each variable in that constraint} \) and constraints degree; sum, min, max, avg, CV, and H of the: constraints domain, constraints degree, domain to degree ratio
Global Constraints	The total number gc of global constraints, the ratio \(\frac{gc}{NC} \) and the number of global constraints for each one of the 27 equivalence classes in which we have grouped the 47 global constraints
Graphs	From the Constraint Graph \(\text{CG} \) and the Variable Graph \(\text{VG} \) we compute min, max, avg, CV, and H of the: \(\text{CG} \) nodes degree, \(\text{CG} \) nodes clustering coefficient, \(\text{VG} \) nodes degree, \(\text{VG} \) nodes diameter
Solving	The number of labeled variables \(\text{i.e. the variables to be assigned} \); the solve goal; the number of search annotations; the number of variable choice heuristics; the number of value choice heuristics
Objective	The domain dom, the degree deg, the ratios \(\frac{\text{dom}}{\text{deg}} \) and \(\frac{\text{deg}}{NC} \) of the variable v that has to be optimized; the degree de of v in the variable graph, its diameter di, \(\frac{di}{\text{dom}} \), \(\frac{di}{\text{deg}} \). Moreover, named \(\mu_{\text{dom}} \) and \(\sigma_{\text{dom}} \) the mean and the standard deviation of the variables domain size and \(\mu_{\text{deg}}, \sigma_{\text{deg}} \) the mean and the standard deviation of the variables degree, we compute \(\frac{\text{dom}-\mu_{\text{dom}}}{\sigma_{\text{dom}}} \) and \(\frac{\text{deg}-\mu_{\text{deg}}}{\sigma_{\text{deg}}} \)
Figure 3: The inductive constraint programming loop (adapted from [20]). The CP and ML components can interact with each other and react upon influences from the external world and observations.

3 Predictive Machine Learning for Constraint Optimization

Opportunities for integration of predictive ML in constraint programming are vast and relevant in several research directions [16]. We first look at general categorizations and approaches to the combination of predictive ML and CP, before we discuss the body of knowledge in specialized research areas.

A recent work by Bessiere et al. introduces a general framework for the integration of ML and CP, called the inductive constraint programming loop (ICP) [20]. The framework is based on four main building blocks: a CP component, a ML component, which can be controlled, as well as an external world, that cannot be controlled, and which produces observations. All these building blocks are interconnected and can receive and provide information from and to each other, e.g. the CP component receives new constraint problems via a World-to-CP relation and returns solutions via a corresponding Apply-to-World relation. An overview of the ICP framework and all defined relations is shown in Figure 3. The majority of predictive machine learning applications for CP can be embedded into the ICP framework, as they exploit the ML-to-CP relation, where the ML model transfers information to the component, which is their main purpose. Furthermore, these applications also exploit the opposite CP-to-ML relation to return feedback from the solver, e.g. runtimes, found solutions, to the ML model for improvement.

Lombardi et al. present a general framework for embedding ML-trained models in optimization techniques, called empirical model learning [46]. The approach deploys trained ML models directly in the COP as additional global constraints. Experimental results show, that the embedded empirical ML model can improve the total solving process. The proposed integration further leads to easier deployment of the trained ML model and to reduce the complexity of the setup, but, at the same time, the complexity of the model itself is increased as compared to the pure COP.

3.1 Algorithm Selection and Configuration

The area of algorithm selection and configuration applies predictive ML to analyze individual problem instances and decide for the most appropriate solver, its heuristic, or the setting of certain tuning parameters of a solver.
All these techniques have in common, that they work on a knowledge base that is mostly not restricted to a single constraint optimization problem, but applicable to instances from many different problems. Furthermore, these approaches affect changes onto the solver, but do not modify or adjust the constraint problem or the problem instance.

Algorithm selection within a constraint solver can be used to decide, which search strategy to use. A search strategy consists of a variable selection, that is which variable will next have a value assigned, and a value selection, that is which value is assigned to the variable. Arbelaez and Sebag propose a classification model to select from up to 8 different heuristics, consisting of both variable and value selection [9]. The search strategy is repeatedly selected during search, e.g. upon backtracking, to be able to adapt to characteristics of the problem instance in different regions of the search space. The machine learning model uses a SVM (Support Vector Machine, see Section 2.2) and a set of 57 features to describe an instance.

In [10], this work is extended to a life-long learning constraint solver, whose inner machine learning model is repeatedly re-trained based on newly encountered problem instances and the experiences from selected search heuristics. The methodology is refined to select a heuristic for a predefined checkpoint window, i.e. a heuristic is fixed for a sequence of decisions, before the next heuristic is selected. In total 95 features, describing static features, such as the problem definition, and variable and constraint information, and dynamic features to monitor the search performance.

Similarly, Gent et al. classify problem instances to decide whether solving them benefits from lazy learning, an effective but costly CSP search method [32]. They analyze the primal graph of the instance to extract instance features. The primal graph represents every variable as a node, and variables that occur in the scope of a constraint are connected via edges. Using this graph structure allows to extract features like the edge density, graph width, or the proportion of constraints that share the same variable.

Chu and Stuckey investigate methods to learn a value selection heuristic [25]. As part of their work, they discuss the problem of gathering samples to train the ML model. Ideally, one would require exactly solved instances, but in practice this incurs high computational cost for every training instance. Their approach is to define an alternative scoring function to be used as the training target. This scoring function is chosen such that it does not require exact solving of the instance and therefore gathering the training data is cheaper overall.

Besides supervised ML techniques, adaptive ML methods, such as reinforcement learning, are also applied to configure search algorithms and their parameters, e.g. in large neighborhood search [49] or to select tree search heuristics [47].

Reliable information about expected runtimes for an algorithm on a problem instance can be helpful not only for algorithm selection and configuration, but further for selecting hard benchmark instances, that distinguish different algorithms and to analyze hardness properties of problem classes [40]. Hutter et al. propose empirical performance models (EPM) for runtime prediction. These EPMs use a set of generic and problem-specific features to model the runtime characteristics. Another study on runtime prediction for TSP has been published in [53], where the authors define a set of 47 TSP-specific features to assess instance hardness and algorithm performance. For a comprehensive overview on literature in runtime prediction, we refer the interested reader to [40].

The previously discussed work considered algorithm configuration and selection within one solver to optimize its performance. As mentioned earlier, other approaches are focused towards combining multiple distinct solvers into a portfolio solver [8]. Using machine learning and heuristics, the planning component of the portfolio solver determines the execution schedule of the solver [50, 64]. In case of parallel portfolio solvers, a subset of solvers is run in parallel until a solution is found or, if the optimal solution is wanted, can exchange information about intermediate solutions found during search, e.g. sharing the best found objective bound [6]. Popular portfolio solvers include SATZilla [74], CPhydra [57], Sunny-CP [3], or HaifaCSP [72].
3.2 Constraint Learning

During the last decade, considerable progress has been made in the field of automatic constraint learning. Starting from a dataset of solutions and non-solutions examples, several approaches have been proposed to extract constraint models fitting the data. Pioneering this question, the ICON European project\(^3\) explored different approaches to this problem. It is worth noticing that these approaches to learn in CP are different from the previously described usages of predictive ML to CP, as, unlike statistical ML, the learning model is based on logic-driven approaches which extracts an exact model from examples. Nevertheless, constraint learning approaches can be used to define predictive models to support other constraint models too, and are therefore included here as well.

In [13, 14], Beldiceanu and Simonis have proposed **ModelSeeker**, an approach that returns the best candidate global constraint representing a pattern occurring in a set of positive examples. Following initial research ideas published in [18], Bessiere et al. subsequently developed **Constraint Acquisition** as a strong inductive constraint learning framework [19, 70, 71]. Starting from sequences of integers representing solution and non-solutions, constraint acquisition progressively refines a admissible and maximal model which accommodates all positive and negative examples. In [13, 44], Lallouet and Legtchenko had already proposed a constraint acquisition method based on inductive logic programming where both positive and negative examples can be handled, but the method captured the constraint network structure using some input background knowledge. Constraint Acquisition is independent of any background knowledge and just requires a bias, namely a subset of a constraint language, to be given as input. Interestingly, these constraint learning approaches are all derived from initial ideas developed in Inductive Logic Programming (ILP) [29]. The framework developed in this paper does not originate from ILP and does not try to infer a full CSP or Constraint Optimization model from sequences of positive and negative examples. Instead, it learns from existing solved instances to acquire suggested boundaries for the optimization variables. In that respect, it can complement Constraint Acquisition methods by exploiting solved instances and not only solutions and non-solutions.

3.3 Learning to Solve

Applications and research on predictive ML for CP are sometimes classified as **learning to solve**, putting an emphasis on the ML component and its contribution to CP. These terminology is especially present in research that focuses on learning to solve optimization problems without the need for an additional solver [73, 15, 28, 42, 22]. Connected to the development of deep learning techniques, these approaches are able to solve small instances of constraint problems, but are not competitive to the capabilities of state-of-the-art constraint solvers. A recent survey on the usage of reinforcement learning for combinatorial optimization can be found in [52].

4 Estimating Objective Boundaries

In this part of the paper, we present one application of predictive machine learning for constraint optimization, namely Bion, a novel boundary estimation technique. Boundary estimation supports the constraint solver by adding additional boundaries on the objective of a problem instance. The objective boundaries are estimated via a machine learning model, that has been trained on previously solved problem instances. Through the additional constraints, the search space of the constraint problem is pruned, which again allows to find good solutions early during search.

In general, exact solvers already include heuristics to find feasible initial solutions that can be used for bounding the search [38]. For example, some CP and MIP solvers use LP relaxations of the problem to find boundary. Other CP solvers rely on good branching heuristics and constraint propagation to find close bounds early [62]. These approaches are central to the modus operandi of the solvers and crucial for their performance. Boundary estimation via predictive ML runs an additional bounding step before executing the solver and uses

\(^3\)http://www.icon-fet.eu
a ML-based heuristic, that is learned from historical data to already bound the objective and search space of the COP instance.

With boundary estimation, a different approach to COP solving is taken. The CP solver exploits the constraint structure of a COP and considers only the current instance. In contrast, we train the ML model, which we refer to as the estimator, on the structure of instance parameters and the actual objective value from example instances. Thus it only indirectly infers the model constraints, but it is not explicitly made aware of them. Our approach combines data- and logic-driven approaches to solve COPs and benefits from the estimation provided by the data-driven prediction and also the optimal solution computed by the logic-driven COP solver. In principle, Bion boosts the solving process by reducing the search space with estimated tight boundaries on the optimal objective.

We now introduce the concept of estimated boundaries, which refers to providing close lower and upper bounds for the optimal value z_{opt} of f_z.

Definition 7 (Estimation). An estimation is a domain \hat{z}, \tilde{z} which defines boundaries for the domain of f_z. The domain boundaries are predicted by a supervised ML model $P : \mathbb{R}^n \rightarrow \mathbb{R}^2$, that is, $(\hat{z}, \tilde{z}) = P(x)$.

Definition 8 (Admissible/Inadmissible Estimations). An estimation \hat{z}, \tilde{z} is admissible iff $z_{opt} \in \hat{z}, \tilde{z}$. Otherwise, the estimation is said to be inadmissible.

We further classify the two domain boundaries as cutting and limiting boundaries in relation to their effect on the solver’s search process. Depending on whether the COP is a minimization or maximization problem, these terms refer to different domain boundaries.

Definition 9 (Cutting Boundary). The cutting boundary is the domain boundary that reduces the number of reachable solutions. For minimization, this is the upper domain boundary \tilde{z}; for maximization, the lower domain boundary \hat{z}.

Definition 10 (Limiting Boundary). The limiting boundary is the domain boundary that does not reduce the number of reachable solutions, but only reduces the search space to be explored. For minimization, this is the lower domain boundary \hat{z}; for maximization, the upper domain boundary \tilde{z}.

For the sake of simplicity, in the rest of the paper, we focus exclusively on minimization problems, however, Bion is similarly applicable to maximization problems.

4.1 Optimization with Boundary Constraints

We first present the full process to solve a COP with Bion, which receives as inputs both an optimization model, describing the problem in terms of the variables V and constraints C, and its instance parameters which include data structure sizes, boundaries and constraints parameters. The COP is the same for all instances, only the parameters given as a separate input can change. The process of solving COPs with an already trained estimator is shown as a pseudocode formulation in Algorithm 1. For simplicity of the formulation, we represent the static COP and the instance parameters merged into one triple (V, C, f_z).

Boundary estimation adds a preprocessing step to COP solving, as well as a rule for handling unsatisfiable instances. During preprocessing, the current problem instance is analyzed and the trained estimator estimates a boundary on the objective value of this specific instance. To provide the estimated boundary, instance-specific features are extracted from the COP model and its instance parameters. These features serve as the input of the estimator, which returns the estimated boundary value.

Afterwards, Bion adds the boundary value as an additional constraint on the objective variable to the optimization model. The extended, now instance-specific model and the unmodified instance parameters are then given to the solver. If the solver returns a solution, the process ends, as the problem is solved. However, if the approximated objective value is too low, i.e. the estimation is inadmissible, it can render the problem unsatisfiable. In this case, Bion restarts the solver with the inverted boundary constraint, such that the estimation is
Algorithm 1: Pseudocode formulation for the COP solving process with Bion

1: function SolveWithBion(COP Instance \(\langle V, C, f_z \rangle\), Estimator \(P\), Solver \(S\))
2: \(x \leftarrow \text{PREPROCESS}(\langle V, C, f_z \rangle)\) \(\triangleright\) Extract feature vector \(x\) from COP instance
3: \((\hat{z}, \bar{z}) \leftarrow P(x)\) \(\triangleright\) Predict objective boundary
4: \(C' \leftarrow C \cup \{z \in [\hat{z}, \bar{z}]\}\) \(\triangleright\) Update COP with boundary constraint
5: Result \(\leftarrow \text{solve}(\langle V, C', f_z \rangle)\) \(\triangleright\) Solve updated COP with CP solver
6: if Result = Unsatisfiable then
7: \(C'' \leftarrow C \cup \{z / \notin [\hat{z}, \bar{z}]\}\) \(\triangleright\) Update COP with negated boundary constraint
8: Result \(\leftarrow \text{solve}(\langle V, C'', f_z \rangle)\) \(\triangleright\) Solve updated COP with CP solver
9: end if
10: return Result, \(x, z\) \(\triangleright\) Return solver result; include \(x\) and \(z\) for future model training
11: end function

a lower bound on \(z\). If the COP is now satisfiable, the estimation was inadmissible. Otherwise, unsatisfiability is due to other reasons. When the COP is solved, both the input and the objective value are stored for future training of the estimator.

4.2 Feature Selection

Each COP consists of constraints, variables, and their domains. To use these components as estimator inputs, it is necessary to extract and transform features, which describe a problem and its data in a meaningful way. As we discussed, a good set of features captures relations between instance data and the quantity to estimate, i.e., the objective value. Furthermore, the features are dynamic in terms of the individual variability of an instance, but static in the number of features, that is, each instance of one problem is represented by the same features.

Among the various types of variable structures one can find in COPs, non-fixed data structures such as arrays, lists or sets, are the main contributors of variability and of major relevance for feature selection. For each of these data structures, 9 common metrics from the main categories of descriptive statistics are calculated to gather an abstract, but comprehensive description of the contained data: (1) the number of elements, including the (2) minimum and (3) maximum values. The central tendency of the data is described by both (4) arithmetic mean and (5) median, the dispersion by the (6) standard deviation and (7) interquartile range. Finally, (8) skewness and (9) kurtosis describe the shape of the data distribution. Scalar variables are each added as features with their value.

The constraints of a model are fixed for all instances, but due to different data inputs, the inferred final models for each problem instance differ. To capture information about the variables generated during compilation and model-specific, we use 95 features as implemented in the current version of \textsc{mzn2feat} [4], which are listed in Table 2. Several of these features have the same value for all instances as they capture static properties of the COP, but some add useful information for different instances, which supports the learning performance. Nevertheless, preliminary experiments showed that including the non-static features of the constraint model improves estimation accuracy.

In general, all features can have varying relevance to express the data, depending on the model and the necessary input. However, as Bion is designed to be problem-independent, the same features are at first calculated for all problems. During the data preprocessing phase of the model training, all features with zero variance, that is, the same value for all instances, are removed to reduce the model complexity. Each feature is further standardized by subtracting the mean and dividing by the standard deviation.
4.3 Avoiding Inadmissible Estimations

One main risk, when automatically adding constraints to a COP, is to render the problem unsatisfiable. In the case of boundary estimation, an inadmissible estimation below the optimum value prohibits the solver from finding any feasible solution. Even though this is often detected early by the solver, there is no guarantee and thus it is necessary to tame this issue. To mitigate the risk, three counter-measures are considered in the design of Bion.

First, during COP solving with Bion, unsatisfiable instances provide information about the problem and allow us to restart the solver with an inverted boundary constraint, such that an upper bound becomes a lower bound; Second, training the estimator with an asymmetric loss function penalizes errors on the side of inadmissible underestimates stronger than admissible overestimates, and thereby discourages misestimations; Third, besides exploiting the training error, the estimator is explicitly trained to overestimate. This requires adjusting the training label from the actual optimal objective value towards an overestimation.

4.3.1 Symmetric vs. Asymmetric Loss

Common loss functions used for training ML models, such as MSE, are symmetric and do not differentiate between positive or negative errors. An asymmetric loss function, on the other hand, assigns higher loss values for either under- or overestimations, which means that certain errors are more penalized than others. Figure 4 shows an example of quadratic symmetric and asymmetric loss functions.

Shifted Squared Error Loss is an imbalanced variant of squared error loss. The parameter \(a \) shifts the penalization towards under- or overestimation and influences the magnitude of the penalty. Formally speaking,

Definition 11 (Shifted Squared Error Loss).

\[
L(r) = r^2 \cdot (\text{sgn}(r) + a)^2
\]

with absolute error \(r = \hat{y} - y \)

where \(\hat{y} \) is the estimated value and \(y \) is the true target value, and \(a \) is a parameter which shifts the penalization towards under- or overestimation.

In Section 5 we compare the usage of both symmetric and asymmetric loss functions plus label shift to evaluate the importance of adjusting model training to the problem instances.

4.3.2 Label Shift

Boundary estimation only approximates the objective function of the COP, which means there is no requirement on the convergence towards a truly optimum solution. Said otherwise, Bion can accept estimation errors after training. This allows Bion to work with fewer training examples than what could be expected with a desired exact training method. This is appropriate here, as collecting labeled data requires solving many COPs instances first, which can be very costly.
However, there is a risk that the trained model underestimates (in case of minimization) the actual objective value. Such an inadmissible estimation, as defined above, leads to an unsatisfiable constraint system and prohibits the COP solver from finding any feasible solution. On the other hand, a too loose, but admissible overestimation may not sufficiently approximate the actual optimum. To address this risk, we introduce label shift in Bion, which adjusts the training procedure with one user-controlled parameter. Label shift is similar to the concept of prediction shift described in [69], but based on the specific COP model.

Definition 12 (Label Shift).

\[
y' = y + \lambda (z - y) \quad \text{(Overestimation)}
\]

\[
y' = y - \lambda (y - z) \quad \text{(Underestimation)}
\]

where \(z\) is the upper bound of the objective domain, \(y\) is the optimal objective value of the training instance, and \(y'\) is the adjusted label for training the estimator, as the result of the label shift adjustment. Label shift depends on \(\lambda\), which is an adjustment factor to shift the target value \(y\) between the domain boundary and the actual optimum. The trade-off between a close and admissible estimation and an inadmissible estimation is thus controlled by the value of \(\lambda\).

4.4 Estimated Boundaries during Search

Using Bion to solve a COP consists of the following steps:

1. (Initially) Train an estimator model for the COP
2. Extract a feature vector from each COP instance
3. Estimate both a lower and an upper objective boundaries
4. Update the COP with estimated boundaries
5. Solve the updated COP with the solver

The boundaries provided by the estimator can be embedded as hard constraints on the objective variable, i.e., by adding \(z \in \hat{z} \ldots \bar{z}\). The induced overhead is negligible, but dealing with misestimations requires additional control. If all feasible solutions are excluded, because the cutting bound is wrongly estimated, the instance is rendered unsatisfiable. This issue is handled by reverting to the original domain.

If only optimal solutions are excluded, because the limiting bound is wrongly estimated, then only non-optimal solutions can be returned and this stays impossible to notice. This issue cannot be detected in a single optimization run of the solver. However, in practical cases where the goal is to find good-enough solutions early rather than finding truly-proven optima, it can be an acceptable risk to come-up with an good approximation of the optimal solutions only.

Conclusively, hard boundary constraints are especially suited for cases where a high confidence in the quality of the estimator has been gained, and the occurrence of inadmissible estimations is unlikely.

5 Experiments

We experimentally evaluate our method Bion in three experiments, which focus on the impact of label shift and asymmetric loss functions for training the estimator, on the estimators’ performance to bound the objective domain, and on the impact of estimated boundaries on solver performance.
Table 2: Overview of benchmark problems. All considered problems are minimization problems with a large variety in the number of available training instances.

Problem	Objective	Search	Instances
MRCPSP	Max-Max	Model-Specific	11182
RCPSP	Leq-Max	Model-Specific	2904
Bin Packing	Sum	Solver-Default	500
Cutting Stock	Sum	Solver-Default	121
Jobshop	Leq-Max	Solver-Default	74
VRP	Sum	Model-Specific	74
Open Stacks	Max-Max	Model-Specific	50

5.1 Setup

5.1.1 Constraint Optimization Problems

We selected seven problems, that were previously used in MiniZinc challenges \[68\] to evaluate CP solvers. These problems are those with the largest number of instances in the MiniZinc benchmarks\[4\], ranging from 50 to multiple thousands. In practice, it is more likely to only have few examples instances available, therefore we also include problems with few training examples. These COPs, which are all minimization problems, are listed in Table 2 along with the type of objective function, whether they contain a custom search strategy, and the number of available instances. Considering training sets of different sizes, from 50 to over 11,000 instances, is relevant to understand scenarios that can benefit from boundary estimation. The column Objective describes the objective function type, which is related to the solver’s ability to efficiently propagate domain boundaries. The COPs have two main groups of objective functions. One group minimizes the sum, the other minimizes the maximum of a list of variables. For the models minimizing the maximum, two formulations are present in our evaluation models. Max-Max uses the MiniZinc built-in max (\(z = \max(V)\)), whereas Leq-Max constrains the objective to be greater-or-equal all variables (\(\forall v \in V : v \leq z\)). Both formulations are decomposed into different FlatZinc constraints, which can have an impact on the ability to propagate constraints.

5.1.2 Training Settings

We implement Bion in Python using scikit-learn \[59\]. Exceptions are NNs, where Keras \[24\] and TensorFlow \[1\] are used, and GTB, where XGBoost \[23\] is used, both to support custom loss functions. mzn2feat \[4\] is used for COP feature extraction. In our comparison, we consider asymmetric (GTB\(_a\), NN\(_a\)) and symmetric versions (GTB\(_s\), NN\(_s\)) of GTB and NN, and symmetric versions of SVM and linear regression.

The performed experiments are targeted towards evaluating the general effectiveness of boundary estimation over a range of different problems. Therefore, we used the default parameters of each ML model as provided by the chosen frameworks as much as possible. As loss factors for the asymmetric loss functions, we set \(a = -1\) for GTB\(_a\) and \(a = -0.8\) for NN\(_a\), where a smaller \(a\) caused problems during training. The model parameters were not adjusted for individual problems. Parameter tuning is also often not performed in a practical application, although it potentially allows to improve the performance for some problems. For Bin Packing, we introduced a trivial upper boundary as there was originally no finite boundary in the model.

5.2 Boundary Estimation Performance

We evaluate the capability to learn close and admissible objective boundaries, that prune the objective variable’s domain. To this end, we focus on 1) the impact of label shift and asymmetric loss functions for training the

\[\text{Accessible at https://github.com/MiniZinc/minizinc-benchmarks/}\]
estimator, 2) the estimators’ performance to bound the objective domain, and 3) the impact of estimated boundaries on solver performance.

Estimation performance is measured through repeated 10-fold validation. In each repetition, the instances are randomly split into ten folds. Nine of these folds form the training set, the other the validation set. The model is trained 10 times, one time with each fold as validation set. We repeat this process 30 times, to account for stochastic effects, and report median values.

Training times for the models are dependent on the number of training samples available. We trained on commodity hardware without GPU acceleration. In general, training takes less than five seconds per model, except for MRCPSP with up to 30 seconds. Another exception are the neural networks which take on average 1 minute to train and maximum 6 minutes for MRCPSP.

5.2.1 Adjustment Factors for Label Shift

To avoid inadmissible estimations, we introduced the label shift method. Label shift trains the estimator not on the exact objective value, but adjusts the label of the training samples according to a configuration parameter \(\lambda \).

We evaluate the effect of the adjustment factor \((\lambda \in \{0, 0.1, 0.2, \ldots, 1.0\}) \) on the quality of estimations. The results are shown in Figure 5, both the ratio of admissible estimations and the ratio of instances for which the domain is pruned. Here, we do not distinguish the different benchmark problems, but aggregate the results as they show similar behavior for the different problems.

![Figure 5: Admissible estimations in relation to adjustment factor \(\lambda \). Label shift increases admissible estimations for both symmetric and asymmetric models.](image)

The results confirm that choosing \(\lambda \) is a trade-off, where a larger value increases admissible estimations, but reduces pruning. Furthermore, the difference between symmetric and asymmetric loss is visible. Without label shift, the symmetric models have close to 50% admissible estimations, which is expected as the symmetric error is equally distributed between inadmissible underestimations and admissible overestimations. The asymmetric models achieve 88/92% (GTB\(_s\)/NN\(_s\)) admissible estimations without label shift, but with an increased \(\lambda \) the performance further improves. For GTB\(_s\) and NN\(_s\), the largest ratio of domain pruning is achieved with an adjustment factors of 0.4 and 0.3, whereas for the asymmetric versions \(\lambda = 0.2 \) is the best value. The best adjustment for the linear model is 0.6, and 0.4 for SVM. The asymmetric estimators already overestimate the actual objective value and therefore only need a small \(\lambda \).

In conclusion, applying label shift is beneficial to increase the number of admissible estimations and to control the effectiveness of boundary estimation. When choosing \(\lambda \) for a different setting, a reasonable value is \(\lambda \in [0.1, 0.5] \), it is therefore recommendable to start with a low \(\lambda \) and increase only, if the number of admissible estimations is insufficient.
5.3 Estimation Performance

We analyze here the capability of each model to estimate tight domain boundaries, as compared to the original domains of the COP. As evaluation metrics, the size of the estimated domain is compared to the original domain size. Furthermore, the distance between cutting boundary and optimal objective value is compared between the estimated and original domain. A closer gap between cutting bound and objective value leads to a relatively better first solution when using the estimations and is therefore of practical interest. Table 3 shows the estimation performance per problem and estimator. The results show that asymmetric models are able to estimate closer boundaries than symmetric models. For each model, the estimation performance is consistent over all problems.

Table 3: Reduction in objective domain through estimated boundaries (in %). Gap: Domain size between cutting boundary and optimum \(((1 - (|Z - z_{opt}|/|Z - z_{opt}|)) \times 100) \). Size: Ratio between new and initial domain size \(((1 - (|\hat{Z} - \hat{Z}|/|Z - \hat{Z}|)) \times 100) \). Cells show the median and the median absolute deviation (MAD): No superscript indicator \(\leq 5 \leq 10 \leq 20 \leq 30 \leq 40 \).

	GTBa	GTBs	LR	NNa	NNs	SVM						
	Gap	Size	Gap	Size	Gap	Size	Gap	Size	Gap	Size		
Bin Packing	68	65	60	58	48	48	78	68	50	48	15	18
Cutting Stock	64*	66	58	59	48	49	41*	71*	48	49	29	17
Jobshop	69	69	60	60	50	50	87	81	50	48	19	20
MRCPSP	64	61	60	59	49	49	80	76	49	49	13	19
Open Stacks	64*	60*	59	53	43*	43	56*	33*	47*	42*	15*	15
RCSPS	65	64	60	60	50	50	80*	76*	50	50	13	20
VRP	70	70	60	60	50	50	89	88	50	50	0	0

First, we look at the share of admissible estimations. Most models achieve 100 % admissible estimations in all problems. Exceptions exist for Cutting Stock (GTBa, GTBs, LR: 91 %, SVM: 50 %) and RCSPS (NNs, SVM: 83 %, all other models: \(\geq 98\% \)). In general, NNa has the highest number of admissible estimations, followed by GTBa. The largest reduction is achieved by NNa, making it the overall best performing model. GTBa is also capable to consistently reduce the domain size by over 60 %, but not as much as NNa. Cutting Stock and Open Stacks are difficult problems for most models, as indicated by the deviations in the results. LR and NNs reduce the domain size by approximately 50 %, when the label shift adjustment factor \(\lambda \) is 0.5, as selected in the previous experiment.

Conclusively, these results show that Bion has an excellent ability to derive general estimation models from the extracted instance features. The estimators reduce substantially the domains and provide tight boundaries.

5.4 Effect on Solver Performance

Our final experiment investigates the effect of objective boundaries on the actual solver performance, as described in Section 4.4. This includes both estimated boundaries as well as fixed boundaries calculated from the known best solution and the first solution found by the solver without boundary constraints. The goal for this combination of estimated and fixed boundaries is to understand how helpful objective boundaries actually are and also how well boundary estimation provides useful boundaries. By setting the fixed boundary in relation to the first found solution, we enforce an actual, non-trivial reduction in the solution space for the solver.

The setup for the experiments is as follows. For each COP, 30 instances are randomly selected. Each instance is solved using four distinct configurations, namely

1. the unmodified model without boundary constraints;
2. the estimations from NN_a as upper and lower boundary constraints;

3. the estimations from NN_b, only as an upper boundary constraint;

4. a fixed upper boundary of the middle between the optimum and the first found solution when using no boundary constraints (z_{first}): $z = z_{\text{opt}} + \lfloor (z_{\text{first}} - z_{\text{opt}})/2 \rfloor$.

We selected three distinct solvers with different solving paradigms and features: Chuffed (as distributed with MiniZinc 2.1.7) [26], Gecode 6.0.1 [63], and Google OR-Tools 6.8. These solvers represent state-of-the-art implementations, as shown by their high rankings in the MiniZinc challenges. All runs are performed with a 4 hour timeout on a single CPU core of an Intel E5-2670 with 2.6 GHz.

Three metrics are used for evaluation (all in %), each comparing a run with some boundary constraint to the unmodified run. The Equivalent Solution Time compares the time it takes the unmodified run to reach a solution of similar or better quality than the first found solution when using boundary constraints. It is calculated as $(t_{\text{Original}} - t_{\text{Bounds}})/t_{\text{Original}} \times 100$. The Quality of First compares the quality of the first found solutions with and without boundary constraints and is calculated as $(1 - z_{\text{Bounds}}/z_{\text{Original}}) \times 100$. The Time to Completion, finally, relates the times until the search is completed and the optimal solution is found. It is calculated in the same fashion as the Equivalent Solution Time.

The results are shown in Table 4, listed per solver and problem. We do not list the results for the Cutting Stock problem for Chuffed and OR-Tools, because none of the configurations, including the unmodified run, found a solution for more than one instance. Gecode found at least one solution for 26 of 30 instances, but none completed, and we include the results for the 26 instances. For all other problems and instances all solvers and configurations found at least one solution.

We obtain mixed results for the different solvers and problems, which indicates that the capability to effectively use objective boundaries is both problem- and solver-specific, and that deploying tighter constraints on the objective domain is not beneficial in every setting. This holds true both for the boundaries determined by boundary estimation (columns Upper and Both) and the fixed boundary, which is known to reduce the solution space in relation to the otherwise first found solution when using no boundary constraints. The general intuition, and also confirmed by the literature, is that in many cases a reduced solution space allows more efficient search and for several of the COPs, this is confirmed. An interpretation for why the boundary constraints in some cases hinder effective search, compared to the unbounded case, is that the solvers can apply different techniques for domain pruning or search once an initial solution is found. However, when the solution space is strongly reduced finding this initial solution is difficult as the right part of the search tree is only discovered late in the process.

The best results are obtained for solving Jobshop with Chuffed, where the constraints improve both the time to find a good initial solution and the time until the search is completed. Whether both an upper and lower boundary constraint can be useful is visible for the combination of Gecode and RCPSP. Here, posting only the upper boundary is not beneficial for the Equivalent Solution Time, but with both upper and lower boundary Gecode is 14% faster than without any boundaries. Chuffed has a similar behaviour for RCPSP regarding Time to Completion, where the upper boundary alone has no effect, but posting both bounds reduces the total solving time by 4%.

At the same time, we observe that posting both upper and lower boundaries, even though they reduce the original domain boundaries, do not always help to improve the solver performance. Two examples are the combination of Chuffed and Jobshop or OR-Tools with Open Stacks. In both cases does the lower boundary constraints reduce the performance compared to the behaviour with only the upper boundary, here in terms of Time to Completion.

In addition to the specific solver implementations, a reasons for the effectiveness of objective boundaries the actual ability of the COP model to propagate the posted boundary constraints seems relevant. However, when considering the relation between the COPs objective function formulations (see Table 2) and effectiveness of boundary constraints, we do not observe a strong link in our results, that would clearly explain the measured results.
Table 4: Effect of boundaries on solver performance (in %). Fixed: Upper boundary set to middle between optimum and first found solution of unbounded run. Upper: Upper boundary set to estimated boundary. Both: Upper and lower boundary set to estimated boundaries. Results are averaged over 30 instances, lower values are better.

	Equiv. Solution Time	Quality of First	Time to Completion						
	Fixed	Upper	Both	Fixed	Upper	Both	Fixed	Upper	Both
Bin Packing	-9.4	36.1	13.0	-37.9	-57.7	-57.7	36.1	2140.7	2364.5
Jobshop	-96.5	-96.4	-96.6	-38.1	-60.0	-60.0	-27.6	-53.6	-42.5
MRCPSP	0.0	0.0	0.0	-10.8	-0.4	0.0	1.2	0.3	-3.4
Open Stacks	-1.3	-1.3	-0.9	-24.0	-13.2	-13.2	2.0	-0.4	2.9
RCPSp	-3.2	197.4	25.3	-3.3	0.0	0.0	-4.2	0.0	-4.2
VRP	0.4	0.0	0.0	-23.5	0.0	0.0	2.0	7.0	7.0

(a) Chuffed

	Bin Packing	Cutting Stock	Jobshop	MRCPSP	Open Stacks	RCPSp	VRP		
	Fixed	Upper	Both	Fixed	Upper	Both	Fixed	Upper	Both
	53.5	0.3	-0.6	-4.7	0.0	0.0	-10.3	-4.0	-13.0
Cutting Stock	5627.0	7.3	-29.5	-8.5	-5.5	-2.6	-	-	-
Jobshop	189.3	-6.4	37.4	-10.9	6.1	6.1	0.0	0.0	0.0
MRCPSP	0.0	0.0	23.6	-10.8	-0.4	-0.2	1.3	0.0	4.0
Open Stacks	0.0	-1.5	0.0	-24.0	-12.8	-12.8	8.9	6.4	6.8
RCPSp	-17.2	56.8	-14.4	-2.8	0.0	0.0	-11.8	12.0	-9.4
VRP	0.0	0.0	0.0	-21.0	0.0	0.0	-19.0	-18.0	-8.0

(b) Gecode

	Bin Packing	Jobshop	MRCPSP	Open Stacks	RCPSp	VRP			
	Fixed	Upper	Both	Fixed	Upper	Both	Fixed	Upper	Both
	-22.7	35.0	39.2	-37.4	-57.0	-57.2	104.4	170.0	172.4
Jobshop	1.1	0.0	0.0	-16.5	-0.8	-0.8	0.0	0.0	0.0
MRCPSP	-3.2	-3.0	45.3	-10.8	-0.4	0.0	-2.4	-2.1	1.2
Open Stacks	-5.0	-2.6	-3.1	-24.0	-13.2	-13.2	6.3	-1.2	2.3
RCPSp	0.0	147.2	30.4	-3.3	0.0	0.0	-6.6	27.0	7.8
VRP	-95.3	0.0	0.0	-38.2	0.0	0.0	32.0	-3.0	-5.0

(c) OR-Tools

In conclusion, objective boundary constraints can generally improve solver performance. Still, there are dependencies on the right combination of solver and COP model to make best use of the reduced domain. Which combination is most effective and what the actual reasons for better performance are is yet an open question and, to the best of our knowledge, has not been clearly answered in the literature. From the comparison with a fixed objective boundary that is known to reduce the solution space, we observe that the estimated boundaries are often competitive and provide a similar behaviour when the external requirements are met. This makes boundary estimation a promising approach for further investigation and, once the external requirements on the combination of solver and COP model are properly identified, also practical deployment.

6 Conclusion

Predictive ML has been shown to be very successful in supporting many important applications of CP, including algorithm configuration and selection, learning constraint models, and providing additional insights to support CP solvers.

In the first part of the paper, we presented the integration in these applications and discussed necessary
components for their success, such as data curation and trained ML models. Given the increasing interest in ML and the vast development of the field, we expect integration of predictive ML and CP to receive further attention as well. We broadly identified three types of integration, that we expect to be most relevant for future applications and research: The first is to have a ML model included in the solver itself and thereby to foster either learning during infer and search or lifelong learning of a solver. In this scenario, ML helps for configuration, filtering consistency and propagators selection, labelling heuristics selection and potentially for any solver decisions. Second, embedding ML models into the constraint model at compile time. Combining ML and CP in one model allows us to model problems that can not be solved by one of the paradigms alone. Furthermore, interaction of both paradigms can potentially enable further synergies at solving-time. The third and final category is a loose coupling between ML and CP by having a solver- and model- external ML component that can make predictions, which can affect both the solver and the model. Each of these three integration types has advantages and drawbacks and different application areas for which they are the most appropriate.

In the second part of the paper, we presented one application of predictive ML for CP, namely boundary estimation. We introduced Bion, a novel boundary estimation method for constraint optimization problems (COP), which belongs to the third type mentioned above. A ML model is trained to estimate close boundaries on the objective value of a COP instance. To avoid inadmissible misestimations, training is performed using asymmetric loss and label shift, a technique to automatically adjust training labels.

Boundary estimation has its strength in the combination of data-driven machine learning and exact constraint optimization through branch-and-bound. Decoupling these two parts enables broad adaptation to different problems and compatibility with a wide range of solvers. Because estimator training requires a set of sample instances, Bion is suited for scenarios where a COP has to be frequently solved with different data inputs. After additional instances have been solved, it is then possible to retrain the model to improve the estimations. An experimental evaluation showed the capability to estimate admissible boundaries and prune the objective domain with marginal overhead for the solver. Testing the estimated boundaries on CP solvers showed that boundary estimation is effective to support solving COPs.

The example of boundary estimation with Bion motivates the potential advantage of integrating ML and constraint optimization, that we identified and discussed in the first part of this article. At the same time, it stresses the necessity for data-efficient learning models and generic instance representations to capture relevant problem and instance information.

Acknowledgment

This research was supported by the Research Council of Norway through the T-Largo grant (Project No.: 274786) and the European Commission through the H2020 project AI4EU (Project No.: 825619).

References

[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A system for large-scale machine learning. In 12th {USENIX} symposium on operating systems design and implementation ({OSDI} 16), pages 265–283, 2016.
[2] Luca Accorsi and Daniele Vigo. A Fast and Scalable Heuristic for the Solution of Large-Scale Capacitated Vehicle Routing Problems. Research Report OR-20-2, University of Bologna, 2020.
[3] Roberto Amadini and Peter J. Stuckey. Sequential Time Splitting and Bounds Communication for a Portfolio of Optimization Solvers. Lecture Notes in Computer Science, 8656 LNCS:108–124, 2014. ISSN 16113349. doi: 10.1007/978-3-319-10428-7_11.
[4] Roberto Amadini, Maurizio Gabbielli, and Jacopo Mauro. An enhanced features extractor for a portfolio of constraint solvers. In *Symposium on Applied Computing*, pages 1357–1359, 2014. ISBN 978-1-4503-2469-4. doi: 10.1145/2554850.2555114.

[5] Roberto Amadini, Fabio Biselli, Maurizio Gabbielli, Tong Liu, and Jacopo Mauro. Feature Selection for SUNNY: A Study on the Algorithm Selection Library. In *2015 IEEE 27th International Conference on Tools with Artificial Intelligence (ICTAI)*, pages 25–32. IEEE, 2015. ISBN 978-1-5090-0163-7. doi: 10.1109/ICTAI.2015.18.

[6] Roberto Amadini, Maurizio Gabbielli, and Jacopo Mauro. Sunny-cp: A sequential cp portfolio solver. In *Proceedings of the 30th Annual ACM Symposium on Applied Computing*, SAC ’15, page 1861–1867, New York, NY, USA, 2015. Association for Computing Machinery. ISBN 9781450331968. doi: 10.1145/2695664.2695741. URL https://doi.org/10.1145/2695664.2695741.

[7] Roberto Amadini, Maurizio Gabbielli, and Jacopo Mauro. A multicore tool for constraint solving. In *International Joint Conference on Artificial Intelligence*, pages 232–238, 2015. ISBN 978-1-57735-738-4.

[8] Roberto Amadini, Maurizio Gabbielli, and Jacopo Mauro. Parallelizing Constraint Solvers for Hard RCPSP Instances. In Paola Festa, Meinolf Sellmann, and Joaquin Vanschoren, editors, *LION 2016*, volume 10079 of *Lecture Notes in Computer Science*, pages 227–233. Springer International Publishing, 2016. ISBN 978-3-319-50348-6. doi: 10.1007/978-3-319-50349-3_16.

[9] Alejandro Arbelaez and Michele Sebag. Online Heuristic Selection in Constraint Programming. In *International Symposium on Combinatorial Search*, 2009.

[10] Alejandro Arbelaez, Youssef Hamadi, and Michele Sebag. Continuous Search in Constraint Programming. In *International Conference on Tools with Artificial Intelligence*, pages 53–60, 2010. ISBN 978-1-4244-8817-9. doi: 10.1109/ICTAI.2010.17.

[11] Florian Arnold and Kenneth Sörensen. Knowledge-guided local search for the vehicle routing problem. *Computers & Operations Research*, 105:32–46, 2019. ISSN 0305-0548. doi: 10.1016/j.cor.2019.01.002.

[12] Florian Arnold and Kenneth Sörensen. What makes a VRP solution good? The generation of problemspecific knowledge for heuristics. *Computers & Operations Research*, 106:280–288, 2019. ISSN 0305-0548. doi: 10.1016/j.cor.2018.02.007.

[13] Nicolas Beldiceanu and Helmut Simonis. A constraint seeker: Finding and ranking global constraints from examples. *Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)*, 6876 LNCS:12–26, 2011. ISSN 0302-9743. doi: 10.1007/978-3-642-23786-7_4.

[14] Nicolas Beldiceanu and Helmut Simonis. A Model Seeker: Extracting Global Constraint Models from Positive Examples. In *Principles and Practice of Constraint Programming*, Lecture Notes in Computer Science, pages 141–157, Berlin, Heidelberg, 2012. Springer. ISBN 978-3-642-33558-7. doi: 10.1007/978-3-642-33558-7_13.

[15] Irwan Bello, Hieu Pham, Quoc V. Le, Mohammad Norouzi, and Samy Bengio. Neural Combinatorial Optimization. *International Conference on Learning Representation*, 2017. ISSN 1081-0706. doi: 10.1146/annurev.cellbio.15.1.81.

[16] Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine Learning for Combinatorial Optimization: A Methodological Tour d’Horizon. *arXiv:1811.06128 [cs, stat]*, 2018.
[17] Jon Louis Bentley. Multidimensional binary search trees used for associative searching. *Communications of the ACM*, 18(9):509–517, 1975. doi: 10.1145/361002.361007.

[18] Christian Bessiere, Remi Coletta, and Thierry Petit. Learning implied global constraints. In *IJCAI International Joint Conference on Artificial Intelligence*, pages 44–49, 2007.

[19] Christian Bessiere, Frédéric Koriche, Nadjib Lazaar, and Barry O’Sullivan. Constraint acquisition. *Artificial Intelligence*, 24:315–342, 2015. doi: 10.1016/j.artint.2015.08.001.

[20] Christian Bessiere, Luc De Raedt, Tias Guns, Lars Kotthoff, Mirco Nanni, Siegfried Nijssen, Barry O’Sullivan, Anastasia Paparrizou, Dino Pedreschi, and Helmut Simonis. The Inductive Constraint Programming Loop. *IEEE Intelligent Systems*, 32(5):44–52, 2017. doi: 10.1109/MIS.2017.3711637.

[21] Bernd Bischl, Pascal Kerschke, Lars Kotthoff, Marius Lindauer, Yuri Malitsky, Alexandre Fréchette, Holger Hoos, Frank Hutter, Kevin Leyton-Brown, Kevin Tierney, and Joaquin Vanschoren. ASlib: A benchmark library for algorithm selection. *Artificial Intelligence*, 237:41–58, 2016. ISSN 00043702. doi: 10.1016/j.artint.2016.04.003.

[22] Quentin Cappart, Didier Chételat, Elias Khalil, Andrea Lodi, Christopher Morris, and Petar Velicković. Combinatorial optimization and reasoning with graph neural networks. *arXiv:2102.09544 [cs, math, stat]*, 2021.

[23] Tianqi Chen and Carlos Guestrin. XGBoost. In *Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD ’16*, pages 785–794. ACM Press, 2016. ISBN 978-1-4503-4232-2. doi: 10.1145/2939672.2939785.

[24] François Chollet and Others. Keras, 2015.

[25] Geoffrey Chu and Peter J. Stuckey. Learning Value Heuristics for Constraint Programming. In *International Conference on AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems*, pages 108–123. Springer, 2015.

[26] Geoffrey Chu, Peter J. Stuckey, Andreas Schutt, Thorsten Ehlers, Graeme Gange, and Kathryn Francis. Chuffed, a lazy clause generation solver, 2016.

[27] Corinna Cortes and Vladimir Vapnik. Support-vector networks. *Machine Learning*, 20(3):273–297, 1995. doi: 10.1007/BF00994018.

[28] Hanjun Dai, Elias Khalil, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning Combinatorial Optimization Algorithms over Graphs. In *Advances in Neural Information Processing Systems*, pages 6351–6361, 2017.

[29] Luc De Raedt, Anton Dries, Tias Guns, and Christian Bessiere. Learning Constraint Satisfaction Problems: An ILP Perspective. In Christian Bessiere, Luc De Raedt, Lars Kotthoff, Siegfried Nijssen, Barry O’Sullivan, and Dino Pedreschi, editors, *Data Mining and Constraint Programming: Foundations of a Cross-Disciplinary Approach*, Lecture Notes in Computer Science, pages 96–112. Springer International Publishing, Cham, 2016. ISBN 978-3-319-50137-6. doi: 10.1007/978-3-319-50137-6_5.

[30] Pedro Domingos. A few useful things to know about machine learning. *Communications of the ACM*, 55(10):78–78, 2012. doi: 10.1145/2347736.2347755.

[31] Jerome H. Friedman. Greedy Function Approximation: A Gradient Boosting Machine. *The Annals of Statistics*, 29(5):1189–1232, 2001.
[32] Ian P. Gent, Chris Jefferson, Lars Kotthoff, Ian Miguel, Neil C.A. Moore, Peter Nightingale, and Karen Petrie. Learning when to use lazy learning in constraint solving. In European Conference on Artificial Intelligence (ECAI), pages 873–878, 2010. ISBN 9781607506058. doi: 10.3233/978-1-60750-606-5-873.

[33] Ian P. Gent, Bilal Syed Hussain, Christopher Jefferson, Lars Kotthoff, Ian Miguel, Glenna F. Nightingale, and Peter Nightingale. Discriminating Instance Generation for Automated Constraint Model Selection. In Principles and Practice of Constraint Programming, volume 8656 of LNCS, pages 356–365, 2014. ISBN 978-3-319-10427-0. doi: 10.1007/978-3-319-10428-7_27.

[34] Stefano Gualandi and Federico Malucelli. Exact Solution of Graph Coloring Problems via Constraint Programming and Column Generation. INFORMS Journal on Computing, 24(1):81–100, 2012. ISSN 1091-9856. doi: 10.1287/ijoc.1100.0436.

[35] Minh Hoang Ha, Claude-Guy Quimper, and Louis-Martin Rousseau. General Bounding Mechanism for Constraint Programs. In Principles and Practice of Constraint Programming, volume 9255, pages 30–38, 2015. ISBN 978-3-319-23218-8. doi: 10.1007/978-3-319-23219-5.

[36] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning. Springer Series in Statistics. Springer, New York, NY, second edition, 2009. ISBN 978-0-387-84857-0. doi: 10.1007/978-0-387-84858-7.

[37] Sepp Hochreiter and Jurgen Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9(8), 1997. doi: 10.1162/neco.1997.9.8.1735.

[38] John N. Hooker. Integrated Methods for Optimization, volume 170 of International Series in Operations Research & Management Science. Springer, second edition, 2012. ISBN 978-1-4614-1899-3. doi: 10.1007/978-1-4614-1900-6.

[39] Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Identifying key algorithm parameters and instance features using forward selection. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 7997 LNCS:364–381, 2013. ISSN 03029743. doi: 10.1007/978-3-642-44973-4_40.

[40] Frank Hutter, Lin Xu, Holger H. Hoos, and Kevin Leyton-Brown. Algorithm runtime prediction: Methods & evaluation. Artificial Intelligence, 206:79–111, 2014. ISSN 00043702. doi: 10.1016/j.artint.2013.10.003.

[41] Christopher Jefferson, Ian Miguel, Brahim Hnich, Toby Walsh, and Ian P Gent. CSPLib: A problem library for constraints. http://www.csplib.org, 1999.

[42] Mohit Kumar, Samuel Kolb, Stefano Teso, and Luc De Raedt. Learning MAX-SAT from Contextual Examples for Combinatorial Optimisation. Proceedings of the AAAI Conference on Artificial Intelligence, 34(04):4493–4500, 2020. ISSN 2374-3468. doi: 10.1609/aaai.v34i04.5877.

[43] Arnaud Lallouet and Andrei Legtchenko. Building consistencies for partially defined constraints with decision trees and neural networks. International Journal on Artificial Intelligence Tools, 16(04):683–706, 2007. ISSN 02182130. doi: 10.1142/S0218213007003503.

[44] Arnaud Lallouet, Matthieu Lopez, Lionel Martin, and Christel Vrain. On learning constraint problems. In International Conference on Tools with Artificial Intelligence, ICTAI, pages 45–52, 2010. doi: 10.1109/ICTAI.2010.16.

[45] Daniel T. Larose. K-Nearest Neighbor Algorithm. Discovering Knowledge in Data: An Introduction to Data Mining, pages 90–106, 2004. ISSN 0471687545. doi: 10.1002/0471687545.ch5.
[46] Michele Lombardi, Michela Milano, and Andrea Bartolini. Empirical decision model learning. *Artificial Intelligence*, 244:343–367, 2017. doi: 10.1016/j.artint.2016.01.005.

[47] Manuel Loth, Michèle Sebag, Youssef Hamadi, and Marc Schoenauer. Bandit-based Search for Constraint Programming. In *International Conference on Principles and Practice of Constraint Programming*, pages 464–480, 2013.

[48] Flavien Lucas, Romain Billot, Marc Sevaux, and Kenneth Sörensen. Reducing Space Search in Combinatorial Optimization Using Machine Learning Tools. In Ilias S. Kotsireas and Panos M. Pardalos, editors, *Learning and Intelligent Optimization*, Lecture Notes in Computer Science, pages 143–150, Cham, 2020. Springer International Publishing. ISBN 978-3-030-53552-0. doi: 10.1007/978-3-030-53552-0_15.

[49] Jean-Baptiste Mairy, Yves Deville, and Pascal Van Hentenryck. Reinforced adaptive large neighborhood search. *The Seventeenth International Conference on Principles and Practice of Constraint Programming (CP 2011)*, page 55, 2011.

[50] Yuri Malitsky and Meinolf Sellmann. Instance-specific algorithm configuration as a method for non-model-based portfolio generation. *Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)*, 7298 LNCS:244–259, 2012. ISSN 03029743. doi: 10.1007/978-3-642-29828-8_16.

[51] Kim Marriott and Peter J Stuckey. *Programming with Constraints: An Introduction*. MIT press, 1998.

[52] Nina Mazyavkina, Sergey Sviridov, Sergei Ivanov, and Evgeny Burnaev. Reinforcement learning for combinatorial optimization: A survey. *Computers & Operations Research*, 134:105400, 2021. ISSN 0305-0548. doi: 10.1016/j.cor.2021.105400.

[53] Olaf Mersmann, Bernd Bischl, Heike Trautmann, Markus Wagner, Jakob Bossek, and Frank Neumann. A novel feature-based approach to characterize algorithm performance for the traveling salesperson problem. *Annals of Mathematics and Artificial Intelligence*, 69(2):151–182, 2013. ISSN 10122443. doi: 10.1007/s10472-013-9341-2.

[54] Michela Milano and Mark Wallace. Integrating operations research in constraint programming. *4OR*, 4(3):175–219, 2006. ISSN 1619-4500. doi: 10.1007/s10288-006-0019-z.

[55] Kevin P. Murphy. *Probabilistic Machine Learning: An introduction*. MIT Press, 2022. URL probml.ai.

[56] Nicholas Nethercote, Peter J. Stuckey, Ralph Becket, Sebastian Brand, Gregory J. Duck, and Guido Tack. MiniZinc: Towards a Standard CP Modelling Language. In Christian Bessière, editor, *Principles and Practice of Constraint Programming – CP 2007*, volume 4741, pages 529–543. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007. ISBN 978-3-540-74969-1. doi: 10.1007/978-3-540-74970-7_38.

[57] Eoin O’Mahony, Emmanuel Hebrard, Alan Holland, Conor Nugent, and Barry O’Sullivan. Using case-based reasoning in an algorithm portfolio for constraint solving. In *Irish Conference on Artificial Intelligence and Cognitive Science*, pages 210–216, 2008.

[58] Stephen M. Omohundro. Five balltree construction algorithms. *Science*, 51(1):1–22, 1989. doi: 10.1016/S0092-8240(89)80047-3.

[59] F Pedregosa, G Varoquaux, A Gramfort, V Michel, B Thirion, O Grisel, M Blondel, P Prettenhofer, R Weiss, V Dubourg, J Vanderplas, A Passos, D Cournapeau, M Brucher, M Perrot, and E Duchesnay. Scikit-learn: Machine learning in python. *Journal of Machine Learning Research*, 12:2825–2830, 2011.

[60] Gerhard Reinelt. TSPLIB—A Traveling Salesman Problem Library. *ORSA Journal on Computing*, 3(4):376–384, 1991. doi: 10.1287/ijoc.3.4.376.
[61] Mark Roberts and Adele Howe. Learning from planner performance. *Artificial Intelligence*, 173(5-6): 536–561, 2009. ISSN 00043702. doi: 10.1016/j.artint.2008.11.009.

[62] Francesca Rossi, Peter Van Beek, and Toby Walsh. *Handbook of Constraint Programming (Foundations of Artificial Intelligence)*. Elsevier Science Inc., New York, USA, 2006. ISBN 0-444-52726-5.

[63] Christian Schulte, Guido Tack, and Mikael Z. Lagerkvist. *Modeling and Programming with Gecode*. 2018.

[64] Jendrik Seipp, Silvan Sievers, Malte Helmert, and Frank Hutter. Automatic Configuration of Sequential Planning Portfolios. In *AAAI Conference on Artificial Intelligence*, 2015.

[65] Kate Smith-Miles, Jano Van Hemert, and Xin Yu Lim. Understanding TSP difficulty by learning from evolved instances. *Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)*, 6073 LNCS:266–280, 2010. ISSN 03029743. doi: 10.1007/978-3-642-13800-3_29.

[66] Alex J. Smola and Bernhard Schölkopf. A tutorial on support vector regression. *Statistics and Computing*, 14(3):199–222, 2004. doi: 10.1023/B:STCO.0000035301.49549.88.

[67] Helge Spieker and Arnaud Gotlieb. Learning Objective Boundaries for Constraint Optimization Problems. In *The 6th International Conference on Machine Learning, Optimization and Data Science - LOD 2020*, volume 12566 of LNCS. Springer, 2020.

[68] Peter J. Stuckey, Thibaut Feydy, Andreas Schutt, Guido Tack, and Julien Fischer. The MiniZinc Challenge 2008–2013. *AI Magazine*, 35(2):55–60, 2014. ISSN 0738-4602.

[69] Andrei Tolstikov and Frederik Janssen. Evaluation of Different Heuristics for Accommodating Asymmetric Loss Functions in Regression. *Discovery Science*, 10558:67–81, 2017.

[70] Dimosthenis C. Tsouras, Kostas Stergiou, and Christian Bessiere. Structure-Driven Multiple Constraint Acquisition. In *Principles and Practice of Constraint Programming*, volume 11802, pages 709–725. Springer International Publishing, Cham, 2019. ISBN 978-3-030-30047-0 978-3-030-30048-7. doi: 10.1007/978-3-030-30048-7_41.

[71] Dimosthenis C. Tsouras, Kostas Stergiou, and Christian Bessiere. Omissions in Constraint Acquisition. In Helmut Simonis, editor, *Principles and Practice of Constraint Programming*, Lecture Notes in Computer Science, pages 935–951, Cham, 2020. Springer International Publishing. ISBN 978-3-030-58475-7. doi: 10.1007/978-3-030-58475-7_54.

[72] Michael Veksler and Ofer Strichman. Learning general constraints in CSP. *Artificial Intelligence*, 238: 135–153, 2016. ISSN 9783319180076. doi: 10.1016/j.artint.2016.06.002.

[73] Oriol Vinyals, Samy Bengio, and Manjunath Kudlur. Order Matters: Sequence to sequence for sets. In *International Conference on Learning Representations (ICLR)*, 2015.

[74] Lin Xu, Frank Hutter, H.H. Hoos, and K. Leyton-Brown. SATzilla-07: The design and analysis of an algorithm portfolio for SAT. *Proceedings of the 13th international conference on Principles and practice of constraint programming*, pages 712–727, 2007. ISSN 3540749691.

[75] Zhi Hua Zhou, Jianxin Wu, and Wei Tang. Ensembling neural networks: Many could be better than all. *Artificial Intelligence*, 137(1-2):239–263, 2002. doi: 10.1016/S0004-3702(02)00190-X.