Novel therapeutic targets for cholestatic and fatty liver disease

Michael Trauner , Claudia Daniela Fuchs

ABSTRACT
Cholestatic and non-alcoholic fatty liver disease (NAFLD) share several key pathophysiological mechanisms which can be targeted by novel therapeutic concepts that are currently developed for both areas. Nuclear receptors (NRs) are ligand-activated transcriptional regulators of key metabolic processes including hepatic lipid and glucose metabolism, energy expenditure and bile acid (BA) homeostasis, as well as inflammation, fibrosis and cellular proliferation. Dysregulation of these processes contributes to the pathogenesis and progression of cholestatic as well as fatty liver disease, placing NRs at the forefront of novel therapeutic approaches. This includes BA and fatty acid activated NRs such as farnesoid-X receptor (FXR) and peroxisome proliferator-activated receptors, respectively, for which high affinity therapeutic ligands targeting specific or multiple isoforms have been developed. Moreover, novel liver-specific ligands for thyroid hormone receptor beta 1 complete the spectrum of currently available NR-targeted drugs. Apart from FXR ligands, BA signalling can be targeted by mimetics of FXR-activated fibroblast growth factor 19, modulation of their enterohepatic circulation through uptake inhibitors in hepatocytes and enterocytes, as well as novel BA derivatives undergoing cholehepatic shunting (instead of enterohepatic circulation). Other therapeutic approaches more directly target inflammation and/or fibrosis as critical events of disease progression. Combination strategies synergistically targeting metabolic disturbances, inflammation and fibrosis may be ultimately necessary for successful treatment of these complex and multifactorial disorders.

INTRODUCTION
Although cholestatic and non-alcoholic fatty liver disease (NAFLD) are aetiologically different, they share several key pathophysiological mechanisms which may be amenable to novel therapeutic interventions. Notably, therapeutic concepts for both disease areas have often been promoted by eminent scientists who were active on both sides with ursodeoxycholic acid (UDCA) being a common denominator for a considerable amount of time. Much has changed in recent years due to our significant advances in understanding the molecular mechanism of bile acid (BA) and lipid metabolism, their regulation and what goes awry in disease. NAFLD has become the most common chronic liver disease globally affecting up to 30% of the adult population and cirrhosis due to non-alcoholic steatohepatitis (NASH) as potentially progressive variant has become the second leading indication for liver transplantation with numbers further rising, expected to surpass all other indications in the near future. Intriguingly, rare (orphan) immune-mediated liver diseases (such as primary sclerosing cholangitis (PSC)) have meanwhile become the third leading indication for liver transplantation in Europe already outnumbering hepatitis C, reflecting the huge unmet medical need in PSC and other immune-mediated liver diseases with effective therapeutic strategies still significantly lagging behind other areas of hepatology. While numbers of patients with primary biliary cholangitis (PBC) listed for liver transplantation, have decreased by almost 50% despite opposing epidemiological trends, possibly due to the therapeutic impact of UDCA, PSC has become the leading indication for liver transplantation among patients with immune-mediated liver diseases. Thus, both cholestatic and fatty liver diseases urgently require novel and effective therapies to prevent or at least reduce the growing burden of liver transplantation and death.
Failed metabolic homeostasis

(Sub)lethal cell stress, cell death

Inflammation

Therapeutic strategies

Fibrosis

Figure 1 Failed metabolic homeostasis results in sublethal cell stress, inflammation and fibrosis. In both non-alcoholic fatty liver disease and cholestasis, inadequate metabolic adaptation to substrate overload results in sublethal cell stress or even cell death with release of mediators (eg, cytokines, chemokines, microRNAs), in part as cargo of extracellular vesicles, driving inflammation and fibrosis. The ideal therapeutic strategy would be expected to impact on several if not all critical steps involved in the initiation and progression of liver diseases. Combination strategies synergistically targeting metabolic disturbances, inflammation and fibrosis may be ultimately necessary for successful treatment of complex cholestatic and metabolic liver diseases.

SHARED PATHOGENETIC PRINCIPLES AS TARGETS FOR THERAPEUTIC INTERVENTIONS

NAFLD is considered the hepatic manifestation of metabolic syndrome, where lipid overload as a result of increased fatty acid influx due to insulin resistance in the adipose tissue leads to metabolically stressed hepatocytes with activation of cell death and proinflammatory signalling pathways. NASH may therefore be grossly viewed as an influx problem due to increased fatty acid load with consecutive lipotoxicity, while cholestasis may be considered an efflux problem resulting in accumulation of potentially cytotoxic and proinflammatory BAs and other cholephilic. In both scenarios failed or inadequate metabolic adaptation to substrate overload results in sublethal cell stress or even cell death with release of mediators and extracellular vesicles driving inflammation and fibrosis (figure 1). Interestingly, BA toxicity as result of impaired hepatobiliary excretory function and functional (micro)cholestasis may also be involved in the pathogenesis of NASH. Given the central role of BAs in regulating hepatic lipid metabolism, dysregulation of BA homoeostasis and signalling may further contribute to abnormal lipid metabolism and lipotoxicity in NAFLD. Liver fibrosis is the consequence of a sustained woundhealing process caused by unresolved chronic cell injury and is characterised by excessive accumulation of extracellular matrix components produced by activated hepatic stellate cells (HSC). Since fibrosis represents an important prognostic turning point in the evolution of virtually any liver disease, direct antifibrotic strategies have ever since received much attention. The ideal drug would be expected to impact on all critical steps involved in the progression of liver diseases, ranging from the initial (metabolic) insult, over cellular stress/death, inflammation to fibrosis (figure 1). Nuclear (hormone) receptors (NRs) are ligand-activated transcription factors which control a broad spectrum of genes involved in (BA) metabolism, inflammation, cell proliferation and tissue repair including fibrosis (figures 2 and 3) which makes them highly attractive targets for treatment of metabolic and cholestatic disorders (see below). Direct antifibrotic therapeutic actions may become more critical when liver disease is already too advanced to allow sufficient time for primarily causal therapeutics to act, since clinical progression of advanced fibrosis may occur more rapidly than previously anticipated.

Both cholestatic and fatty liver diseases are characterised by complex cellular interaction of hepatocytes with cholangiocytes, HSCs and proinflammatory cells, such as monocyte-derived macrophages, resident Kupffer cells and lymphocytes. Fatty acid (FA)-induced lipotoxicity results in cellular stress of hepatocytes, but also cholangiocytes and HSCs. BA-induced cell stress may occur both at the level of hepatocytes (eg, via BA retention) and cholangiocytes (eg, via toxic bile composition and/or biliary stasis). Another interesting convergence point are cytoskeletal alterations with formation of Mallory–Denk bodies in response to (FA and BA-induced) cell stress observed in both NASH and cholestasis. In addition to direct activation of inflammatory and profibrogenic cells by toxic BAs and fatty acids, there is intensive cellular crosstalk through proinflammatory and profibrogenic mediators (partly as cargo of extracellular vesicles) released from stressed hepatocytes and cholangiocytes as part of the “reactive cholangiocyte phenotype,” further perpetuating inflammatory and profibrotic responses. Importantly, NRs are broadly expressed in all relevant liver cellular compartments, including hepatocytes, cholangiocytes, HSCs, macrophages and other immune cells, making them highly suitable therapeutic targets for both cholestatic and metabolic liver diseases.

Together with environmental factors and lifestyle, genetic factors are key determinants for the pathogenesis and progression of liver diseases. Although originally discovered in the context of NAFLD/NASH, genetic variants of the patatin-like phospholipase domain-containing 3 (PNPLA3), also known as adiponutrin, play a key role in the progression of liver diseases of virtually any aetiology. Despite the clinical importance of the PNPLA3 (I148M) variant for progression to NASH, fibrosis and hepatocellular cancer (HCC) the function of PNPLA3 is still controversial. In addition to hepatocytes and HSCs, PNPLA3 is also highly expressed in cholangiocytes. Interestingly, patients with PBC carrying the PNPLA3 I148M variant reported
Recent advances in clinical practice

Figure 2 Therapeutic strategies along the enterohepatic and cholehepatic bile acid (BA) circulation. After hepatic synthesis via cytochrome P450 7A1 (CYP7A1) and excretion into bile through the bile salt export pump (BSEP/ABCB11) BAs undergo an enterohepatic circulation, that is, they are reabsorbed in the ileum by apical sodium-dependent bile acid transporter (ASBT/SLC10A2) and transported back to the liver through portal blood where hepatic reuptake of conjugated BAs is mediated via sodium-taurocholate cotransporting polypeptide (NTCP/SLC10A1) and organic anion transporting polypeptides (OATPs) for unconjugated BAs (not shown). In hepatocytes, farnesoid-X receptor (FXR) induces the transcriptional repressor SHP which in turn inhibits CYP7A1 (BA synthesis) and NTCP transcription (BA uptake). FXR induces BSEP, phospholipid export pump/flapopase (MDR3/ABCB4; Mdr2 in mice) and cholesterol export pump (ABCG5/8). At the basolateral membrane organic solute transporter (OST) α/β heterodimer for BA efflux into portal blood. Intestinal FXR via DIET1 induces fibroblast growth factor (FGF) 19, which circulates to the liver and binds to its receptor FGF4, subsequently inhibiting BA synthesis. Gut microbiota deconjugate and dehydroxylate primary BAs into secondary BAs. Enterohepatic drugs acting within the gut-liver axis: (non-)steroidal FXR agonists (eg, obeticholic acid) and FGF19 mimetics. Cholehepatic drugs, such as nor-ursodeoxycholic acid (norUDCA), undergo cholehepatic shunting between hepatocytes and cholangiocytes, thereby cutting short the enterohepatic circulation. Transport blockers: ASBT inhibitors and BA sequestrants as well as NTCP inhibitors, prevent intestinal or hepatic BA reuptake. Tj, tight junction.

less pruritus, which could be due to the role of this enzyme in metabolism of lipid metabolites linked to the pathogenesis of cholestatic liver disease. In male patients with PSC with bile duct stenosis requiring intervention, the PNPLA3 I148M variant may be a risk factor for reduced survival while another study found no impact. Knockdown/inhibition of PNPLA3 variants is currently receiving considerable attention as novel treatment strategy for NASH. Variants of the ABCC4 gene encoding the hepatobiliary phosphatidylinositol floppase not only confer risk for bile duct injury and cholestatic liver disease by altering bile toxicity, but large-scale whole-genome sequencing uncovered a common ABCC4 variant as a general risk factor for elevated ALT and increased risk of liver cancer. As pointed out below, ABCC4 expression can be stimulated by a wide range of NR ligands and chaperones can (partly) restore impaired mutant function. These examples may demonstrate, how genetic variants initially considered only in a specific context may have more global impact on progression of liver diseases irrespective of their specific aetiology.

BAs have emerged as important pathogenic factors and therapeutic targets in both cholestatic and metabolic liver diseases. Since BAs are potentially cytotoxic and proinflammatory at higher pathophysiological concentrations it is important to maintain their homoeostasis by controlling BA transport and metabolism (figure 2). Besides their well-established role in dietary lipid absorption, BAs have recently been recognised to act as hormone-like signalling molecules that serve as ligands for NRs such as the farnesoid X receptor (FXR/NR1H4) as main NR for BAs. In addition to FXR other NRs such as the pregnane X receptor (PXR/NR1I2), the constitutive androstane receptor (CAR/NR1I3) and the vitamin D receptor (VDR/NR1I1) are activated via certain BAs. Through these NRs BA control their own transport and metabolism, lipid and glucose metabolism as well as innate/adaptive immunity. Additional critical NRs for the control of metabolism include peroxisome proliferator-activated receptors (PPARs) α, γ and δ as well as thyroid hormone receptor (THR) β. Another key BA receptor is the Takeda G protein-coupled receptor TGR5 (GP-BAR or M-BAR) a G-protein coupled receptor (GPCR). In contrast to NRs, GPCRs are localised at the cell membrane and cellular BA uptake/transport is not required for the activation of these receptors. Initial studies uncovered a key role of TGR5 in mediating immunosuppressive effects of BAs on macrophages. Moreover, TGR5 has an important role in regulating energy expenditure and lipid metabolism, again highlighting the potential role of BAs as key regulators of immunometabolism. Impaired TGR5 expression and signalling may contribute to the pathogenesis of cholangiopathies such as PBC and PSC, since TGR5 also protects cholangiocytes by stimulating bicarbonate secretion. However, persistent stimulation of TGR5 may predispose to...
glucagon-like peptide1 (GLP-1)46 (figure 2). Thus, BA signalling in cholangiocytes reduces vascular cell adhesion molecule (VCAM-1) expression, thereby counteracting reactive cholangiocyte phenotype. Anti-fibrotic effects of nuclear receptors (NRs) in hepatic stellate cells (HSCs, far right panel); PPARα and γ and VDR reduce expression of profibrogenic genes such as alpha smooth muscle actin (αSMA), Collagen 1α1 (Col1α1), TIMP1, platelet-derived growth factor (PDGF), transforming growth factor beta (TGFβ) and angiopoietin-2 (ANG2). Furthermore, NRs reduce migration, proliferation as well as trans-differentiation of HSC into myofibroblasts. Anti-inflammatory effects of NRs are related to their activation in immune cells such as macrophages and Kupffer cells (as well as adaptive immune cells, not shown). Activation of FGF21, PPARα, γ, δ and VDR reduce expression of proinflammatory cytokines such as tumour necrosis factor alpha (TNFα) and interleukin 1 beta (IL1β) (lower left panel). Cenicriviroc (CVC) an antagonist for C-C chemokine receptor type 2 and 5 (CCR2/5) on macrophages, Kupffer cells and HSCs exerts anti-inflammatory and anti-fibrotic effects. As result of FGF21 and PPARγ activation in adipocytes, insulin sensitivity is increased (lower left panel).

Changes in gut microbiota (dysbiosis) may play a key role in the pathogenesis of NAFLD/NASH and cholestasis52–54 and may also impact on BA composition and signalling.51 55 Conversely, BAs and FXR ligands alter intestinal microbiota which may add to their therapeutic effects in both entities.52 53 56 Specific gut pathobionts such as Klebsiella pneumoniae may disrupt the intestinal epithelial barrier and initiate a hepatic T helper 17 cell immune response in PSC.57 Interestingly, NAFLD pathogenesis has been linked to high-alcohol-producing K. pneumoniae.58 Treating dysbiosis with restoration of its immunological and metabolic function holds much promise in both disease areas. Various absorbable/systemic and non-absorbable antibiotics may act via modulation of gut microbiota and have shown to improve liver biochemistry in PSC, with vancomycin as one of the most promising agents.59 Probiotics have been rather disappointing in treatment of NASH60 and cholestatic disorders such as PSC,61 but faecal microbiota transplantation from lean donors improves insulin resistance in individuals with metabolic syndrome62 and has shown first promising results in PSC.63 Importantly, gut microbiota may not only serve as a trigger of liver injury but may also have protective actions. As such total elimination of

Figure 3 Nuclear receptors as therapeutic targets regulating metabolism and inflammation. Hepatocyte, left panel: farnesoid X receptor (FXR) represses hepatic bile acid (BA) uptake sodium/taurocholate cotransporting polypeptide (NTCP) and BA synthesis cytochrome P450 7A1 (CYP7A1) via induction of the transcriptional repressor SHP (not shown). Moreover intestine-derived fibroblast growth factor (FGF) 19 (binding to the FGR4/βKlotho dimer) also downregulates CYP7A1 expression. Conversely, FXR promotes biliary excretion of BAs, phospholipids (PL) and bilirubin via induction of canalicular bile salt export pump (BSEP), multidrug resistant protein 3 (MRD3) and multidrug resistance-related protein 2 (MRP2), respectively (centre), and also facilitates BA elimination via alternative basolateral BA transporter such as organic solute transporter (OST)β (not shown). BA detoxification by phase 1 and 2 enzymes is stimulated through FXR and peroxisome proliferator-activated receptor (PPAR)α. PPARα stimulates phospholipid secretion (via MRD3), thus counteracting intrinsic bile toxicity. Right panel: FXR as well as PPAR α and δ reduce inflammation via suppression of NFκB. FXR and PPARy improve hepatic insulin sensitivity. FGF19, FGF21, FXR and thyroid hormone receptor beta (THRβ) suppress de novo lipogenesis, while PPAR α and δ stimulate β-oxidation. In cholangiocytes (lower panel), activation of FXR, vitamin D receptor (VDR) and glucocorticoid receptor (GR) exert cholangioprotective effects via upregulation of vasoactive intestinal polypeptide receptor 1 (VPAC1), anion exchange (AE) 2 and cathelicidin. Activation of PPARγ in cholangiocytes reduces vascular cell adhesion molecule (VCAM-1) expression, thereby counteracting reactive cholangiocyte phenotype. Anti-fibrotic effects of nuclear receptors (NRs) in hepatic stellate cells (HSCs, far right panel); PPARα and γ and VDR reduce expression of profibrogenic genes such as alpha smooth muscle actin (αSMA), Collagen 1α1 (Col1α1), TIMP1, platelet-derived growth factor (PDGF), transforming growth factor beta (TGFβ) and angiopoietin-2 (ANG2). Furthermore, NRs reduce migration, proliferation as well as trans-differentiation of HSC into myofibroblasts. Anti-inflammatory effects of NRs are related to their activation in immune cells such as macrophages and Kupffer cells (as well as adaptive immune cells, not shown). Activation of FGF21, PPARα, γ, δ and VDR reduce expression of proinflammatory cytokines such as tumour necrosis factor alpha (TNFα) and interleukin 1 beta (IL1β) (lower left panel). Cenicriviroc (CVC) an antagonist for C-C chemokine receptor type 2 and 5 (CCR2/5) on macrophages, Kupffer cells and HSCs exerts anti-inflammatory and anti-fibrotic effects. As result of FGF21 and PPARγ activation in adipocytes, insulin sensitivity is increased (lower left panel).
intestinal microbiome in germ-free mice has been shown to aggravate liver injury in mouse models of liver fibrosis and PSC.64 65

These specific examples may emphasise the multiple, partly unexpected mechanistic similarities and shared principles between metabolic and cholestatic liver diseases, which have cross-fertilised our pathogenetic understanding for both areas with imminent implications for the development of joint therapeutic strategies.

NUCLEAR RECEPTOR PATHWAYS AS A NEW THERAPEUTIC FRONTIER

The NR superfamily is the largest group of transcriptional regulators and consists of 48 members in humans.23 27 Ligands include both endogenous and exogenous molecules such as hormones, fatty acids, BAs, other intermediary products of metabolism, drugs and toxins.23 27 NRs typically induce transcriptional programmes involved in metabolism or transport of the ligand, thus providing a feedback mechanism to maintain cellular homeostasis.23 27 Many of the recently developed drugs for cholestatic and metabolic liver diseases are high affinity ligands for these NRs (in the nanomolar to low micromolar range), thus avoiding the toxicity otherwise associated with administration of their natural ligands. Thus, NRs such as FXR, PPARs and THR have become key therapeutic targets for the development of new drugs for cholestatic and fatty liver diseases (table 1, figure 3).

Moreover, xenobiotic sensors such as CAR and PXR might be viewed as immunometabolic drugs targeting both biliary homoeostasis,4–6 as well as improved endothelial function mediated by FXR may contribute to the hepatocellular injury and even carcinogenesis in NASH.4–12 92 Thus, restoration of FXR signalling and BA and lipid homoeostasis may explain at least part of the therapeutic effects of FXR ligands in NAFLD/NASH. In addition, broader anti-inflammatory and antifibrotic effects as well as improved endothelial function mediated by FXR may also contribute.93

Obeticholic acid as first in class steroidal FXR agonist

OCA, a 6α-ethyl derivate of chenodeoxycholic acid, is a steroidal FXR agonist (still maintaining its BA structure) and first-in-class therapeutic FXR ligand.84 In patients with PBC, OCA as monotherapy or add-on therapy to UDCA in those with insufficient biochemical response, improved biochemical markers of cholestasis68 69 70 96 and has been conditionally approved as second-line therapy for PBC by the US Food and Drug Administration (FDA) and European Medicines Agency.66 67 In line with the beneficial effects of OCA in PBC, encouraging results were also observed in patients with PSC97 (table 1). The main side effect in PBC and PSC was dose-dependent pruritus. Although long-term efficacy of OCA on biochemical parameters and stabilisation of inflammation and fibrosis in PBC has been demonstrated as extension of the phase 3 registration trial up to 5 years,99 100 a benefit for ’hard’ clinical endpoints still needs to be demonstrated (table 1). Real world data confirmed the efficacy
Table 1: Novel therapeutic approaches for both cholestatic disorders and NASH—key clinical trials

Compound class	Cholestasis	NASH
Steroidal FXR agonist	Obeticholic acid (OCA):	Obeticholic acid (OCA):
► POSE (phase 3)106:	► FLINT (phase 2b)115: 25 mg OCA for 18 months improved NAFLD activity score (predefined primary endpoint) and its individual components, but did not result in significantly higher NASH resolution (22 vs 13% compared with placebo); however, a higher proportion of patients (35 vs 19%) showed improved fibrosis (by at least one stage). Side effects: pruritus and hypercholesterolaemia (increased LDL cholesterol, reduced HDL cholesterol).	
patients with PBC with insufficient biochemical response or intolerance to UDCA showed improvement of ALP and other liver enzymes when treated with 5–10 mg (up titration) or 10 mg OCA for 12 months. Total bilirubin concentrations stabilised. Side effects: pruritus, fatigue, increased LDL cholesterol. Long-term data (up to 5 years) confirm phase 3 efficacy and safety data, 4% withdrew treatment.107.	► REGENERATE (phase 3)117: 18-month interim analysis in patients with non-cirrhotic NASH (F2 or F3); showed that 25 mg OCA significantly improved fibrosis by >1 stage (23% vs 12% under placebo) but not NASH (12% vs 8%, n.s.).	
► COBALT (NCT02308111): ongoing phase 4 study, evaluates long-term clinical outcomes in patients with PBC.	► REVERSE (NCT0349254): ongoing phase 3 study evaluating whether OCA improves in fibrosis with no worsening of NASH in adults with compensated cirrhosis due to NASH.	
► AESOP (phase 2)108:		
In patients with PSC, ALP was significantly reduced by 5–10 mg OCA but not by 1.5–3 mg OCA over 24 weeks.		
Non-steroidal FXR agonists	Cilofexor:	Cilofexor:
► PSC (phase 2)109: 12 weeks of cilofexor improved serum ALP, γGT, AST, ALT, bile acid and C4 levels. No pruritus (even trend for improvement).	► NASH with F1-F3 (phase 2)110: 24 weeks of cilofexor treatment reduced hepatic fat content (MRI-PDFF) and serum γGT (but not ALT and AST). No significant changes in lipid parameters. Side effects: dose-dependent pruritus.	
► PRIMIS (NCT03389120): ongoing phase 3 evaluating whether cilofexor reduces the risk of fibrosis progression in non-cirrhotic patients with PSC.	► ATLAS (phase 2)111: cilofexor, ASK-1 inhibitor selonsertib and ACC inhibitor firsocostat tested in patients with advanced fibrosis (F3-F4) due to NASH; primary endpoint (≥1 stage improvement in fibrosis without worsening of NASH) was not reached in any of the monotherapy groups; selonsertib monotherapy group was discontinued following termination of the STELLAR trials112. Combination of firsocostat and cilofexor over 48 weeks did not improve fibrosis ≥1 stage without worsening of NASH, but significantly higher proportions had a ≥2-point NAS reduction with improvements in steatosis, lobular inflammation and ballooning; significant improvements in ALT, AST, bilirubin, bile acids, CK18, insulin, eGFR, ELF score, and liver stiffness.	
► PBC (phase 2)112: improvement of serum ALP, γGT, AST, ALT, bile acid and C4 levels by 12 weeks. Side effects: pruritus. Tropifexor:	► FLIGHT-FXR (phase 2)116: at 12 weeks interim analysis tropexifor reduced ALT and γGT levels as well as liver fat content (MRI-PDFF). After 48 weeks no significant differences in histological improvement of NASH or fibrosis (F2-F3) compared with placebo were seen, but significant reductions of collagen proportional area. Side effects: pruritus; increased serum levels of LDL-cholesterol and decreased HDL-cholesterol.	
► PBC (phase 2)113: 4 weeks of tropifexor treatment showed dose dependent improvement of γGT and ALT (but not ALP). Side effects: pruritus.	MET409	
Aldafermin/NGM282:	► NASH with F1-F3 (phase 2)114: 24 weeks of cilofexor treatment reduced hepatic fat content (MRI-PDFF) and serum γGT (but not ALT and AST). No significant changes in lipid parameters. Side effects: dose-dependent pruritus.	
► PBC (phase 2)115: 28 days of aldafermin slightly improved liver enzymes. Side effects: gastrointestinal symptoms (mostly diarrhea).	► NASH with F2/F3 (phase 2): improved hepatic fat content (MRI-PDFF), serum aminotransferase levels and non-invasive fibrosis markers (pro-C3) after 24 weeks (1 mg)116 in line with a 12-week study testing higher doses (3 and 6 mg)118; histological improvement of fibrosis or NASH did not reach statistical significance119 despite encouraging signals of a 12-week open label study120. Side effects: dose-dependent diarrhea, abdominal pain, nausea, increases in LDL-cholesterol which could be managed with statins118 119 121.	
► PSC (phase 2)117: 12 weeks of aldafermin reduced γGT and ALT (but not ALP). Side effects: gastrointestinal symptoms.	No larger clinical trials in this indication.	
FGF19 mimetic	Aldafermin/NGM282:	
PPARα agonists	Bezafibrate:	
► BEZU950 (phase 3)96: bezafibrate 400 mg/day over 24 months resulted in complete biochemical response (defined as normalisation of hepatic serum biochemistry including ALP, aminotransferases, albumin, bilirubin and prothrombin index) in 31% of patients with PBC with an incomplete response to UDCA vs 0% on placebo; 67% normalised ALP, also improved pruritus and liver stiffness. Side effects: increases in serum creatinine, myalgia and hepatotoxicity (ALT>5 x ULN).	► NASH with F2/F3 (phase 2): improved hepatic fat content (MRI-PDFF), serum aminotransferase levels and non-invasive fibrosis markers (pro-C3) after 24 weeks (1 mg)116 in line with a 12-week study testing higher doses (3 and 6 mg)118; histological improvement of fibrosis or NASH did not reach statistical significance119 despite encouraging signals of a 12-week open label study120. Side effects: dose-dependent diarrhea, abdominal pain, nausea, increases in LDL-cholesterol which could be managed with statins118 119 121.	
► FITCH118: bezafibrate was superior to placebo in improving moderate-to-severe pruritus in patients with PSC and PBC.	No larger clinical trials in this indication.	
PPARγ agonist	No systematic clinical trials in this indication.	Pioglitazone:
► PIVENS (phase 3)79: non-diabetics with NASH; 96 weeks of treatment with pioglitazone improved serum transaminases, hepatic steatosis and inflammation, while no significant improvement of fibrosis and NASH was observed. Side effects: weight gain.		
	► In NASH patients with T2DM 36 months treatment was associated with resolution of NASH and improvement in individual histological scores, including fibrosis; improved hepatic fat content (MR-PDFF) and adipose tissue, hepatic and muscle insulin sensitivity. Side effects: weight gain65.	
Table 1 Continued

Compound class	Cholestasis	NASH
PPARδ agonist	**Seladelpar:**	**Seladelpar:**
	► PBC (phase 2)\(^{160}\): 12 weeks of seladelpar treatment improved ALP in patients with PBC with inadequate response to UDCA (normalisation in five patients treated for full 12 weeks), but three patients developed fully reversible, asymptomatic grade 3 ALT increases (one on 50 mg, two on 200 mg), study was terminated after 41 patients were randomised.	► NASH (phase 2)\(^{162}\): 52 weeks of seladelpar treatment in patients with NASH (NAS ≥4; F1-F3) improved liver enzymes, but changes in liver fat content by MRI-PDFF were not significant from placebo.
	► ENHANCE (NCT03602560): Ongoing phase 3 study evaluating the safety and efficacy of lower doses (5 or 10 mg) of seladelpar in patients with PBC with inadequate response or intolerant to UDCA. By 3 months (interim analysis) 10 mg seladelpar normalised ALP levels in 27% of patients. Improvement of pruritus\(^{246}\).	
	► PSC (phase 2; NCT04024813)—ongoing.	
PPARγ/δ agonist	**Elafibranor:**	**Elafibranor:**
	► PBC (Phase 2a)\(^{171}\): at 12 weeks elafibranor improved serum ALP, ALT, γGT, bilirubin, cholesterol, triglycerides and CRP in patients with PBC without adequate response or intolerance to UDCA. A potential antipruritic effect was also observed.	► GOLDEN (phase 2)\(^{246}\): resolution of NASH (F0-F3) without fibrosis worsening, based on a modified definition, while the predefined end point was not met; improved cardiometabolic risk profile.
	► ELATIVE (NCT04526663), phase 3 study evaluating the effect of 80 mg elafibranor in patients with PBC not responding to UDCA.	► RESOLVE-IT\(^{172}\): phase 3 study in biopsy-proven NASH patients (NAS ≥4; F1–F3): 72 weeks of elafibranor did not achieve the primary end point NASH resolution without worsening fibrosis (19% of patients in the treatment arm compared with 15% of patients in the placebo group; n.s.).
PPARγ agonist	**Saroglitazar:**	**Saroglitazar:**
	► PBC (phase 3, open label)\(^{160}\): 16 weeks of saroglitazar (in addition to UDCA) improved serum ALP (primary endpoint) and γGT levels.	► NASH (phase 2)\(^{166}\): improved ALT, liver fat content (MRI-PDFF), insulin resistance and atherogenic disorders over 16 weeks. Side effects: weight gain (mild and not significant compared with placebo).
		► NASH (phase 2)\(^{166}\): very small study demonstrating improved serum lipid and lipoprotein profiles; improvement of NAS score (primary end point) was not significant, but improvements in hepatocyte ballooning and steatosis; NASH resolution and fibrosis improvement were observed
FGF21 mimetics	**No clinical trials in this indication.**	
THR β1 agonists	**Despite preclinical effects on biliary homeostasis not yet tested clinically.**	

200
Trauner M, Fuchs CD. Gut 2022; 71:194–209. doi:10.1136/gutjnl-2021-324305
Table 1 Continued

Compound class	Cholestasis	NASH
Norucholic acid (norUDCA; nor-ursodeoxycholic acid)	▶️ PSC (phase 2)\(^{112}\): dose-dependent improvement of serum ALP levels and other liver enzymes over 12 weeks, independent of previous response to UDCA; good safety profile without aggravation of pruritus. ▶️ Phase 3 study (NCT03872921) in PSC with biochemical, histological and clinical endpoints ongoing	▶️ NAFLD (phase 2a)\(^{115}\): significant reduction of serum ALT at 12 weeks compared with placebo. norUDCA was safe and well tolerated. ▶️ OASIS (phase 2b; EudraCT: 2018-003443-31) assessing histological efficacy in NASH ongoing.

CCR2/CCR5 antagonist	Cenicriviroc:	Cenicriviroc:
▶️ PERSEUS (phase 2)\(^{246}\): 24 weeks of CVC treatment in patients with PSC achieved a modest (but not significant) reduction in ALP; CVC was well tolerated.	▶️ CENTAUR (phase 2): after 1 year twice as many patients with NASH (NAS ≤4, F1-3) receiving CVC had an improvement in fibrosis by ≥1 NAS stage without worsening of NASH; resolution rates of NASH were similar in the CVC and the placebo group\(^{212}\). However, final analysis after 2 years revealed that a similar proportion on CVC or placebo achieved ≥1-stage fibrosis improvement and no worsening of NASH\(^{209}\).	▶️ AURORA (NCT03028740): phase 3 study evaluating CVC for the treatment of liver fibrosis (improvement by at least one stage and no worsening of NASH) in adults with NASH (F2–F3) was terminated early due to lack of efficacy.

LOXL2 inhibitor	Simtuzumab:	Simtuzumab:
▶️ PSC (phase 2)\(^{226}\): treatment for 96 weeks did not improve fibrosis (hepatic collagen content, Ishak fibrosis stage) or frequency of PSC-related clinical events compared with placebo.	▶️ NASH with F3 or F4 (phase 2b)\(^{217}\): treatment for 96 weeks did not improve hepatic collagen content (predefined primary endpoint in patients with bridging fibrosis) or hepatic venous pressure gradient (predefined primary endpoint in patients with cirrhosis) compared with placebo.	

ACC, Acetyl-CoA Carboxylase; ALP, alkaline phosphatase; ALT, alkaline phosphatase; ASK, apoptosis signal-regulating kinase; AST, aspartate aminotransferase; CVC, cenicriviroc; FGF, fibroblast growth factor; FXR, farnesoid-X receptor; HDL, high density lipoprotein; LDL, low density lipoprotein; LOXL2, lysyl oxidase-like 2; NASH, non-alcoholic fatty liver disease; NASH, non-alcoholic steatohepatitis; norUDCA, nor-ursodeoxycholic acid; PBC, primary biliary cholangitis; PDFF, proton density fat fraction; PPAR, peroxisome proliferator-activated receptor; PSC, primary sclerosing cholangitis; T2DM, type 2 diabetes mellitus; UDCA, ursodeoxycholic acid; ULN, upper limit of normal.

and safety of OCA in PBC with lower efficacy and reduced tolerability in patients with cirrhosis.\(^{98,99}\) Notably, use of OCA was associated with an increase in hepatic decompensation in patients with compensated PBC cirrhosis,\(^{100}\) which led to an update of the PBC label with a contraindication for use in patients with decompensated cirrhosis, a prior decompensation event or with compensated cirrhosis and evidence of portal hypertension.

A phase 2a study in patients with type 2 diabetes and NAFLD showed improved insulin sensitivity as well as gamma glutamyl transferase (γGT) and alanine amino transferase (ALT) by OCA.\(^{101}\) A subsequent phase 2b trial in patients with NASH revealed an improvement in the NAS score as predefined primary endpoint in patients with cirrhosis.\(^{98}\) Notably, use of OCA was associated with an increase in hepatic decompensation in patients with compensated PBC cirrhosis,\(^{100}\) which led to an update of the PBC label with a contraindication for use in patients with decompensated cirrhosis, a prior decompensation event or with compensated cirrhosis and evidence of portal hypertension.

A phase 2a study in patients with type 2 diabetes and NAFLD showed improved insulin sensitivity as well as gamma glutamyl transferase (γGT) and alanine amino transferase (ALT) by OCA.\(^{101}\) A subsequent phase 2b trial in patients with NASH revealed an improvement in the NAS score as predefined primary endpoint in patients with cirrhosis.\(^{98}\) Notably, use of OCA was associated with an increase in hepatic decompensation in patients with compensated PBC cirrhosis,\(^{100}\) which led to an update of the PBC label with a contraindication for use in patients with decompensated cirrhosis, a prior decompensation event or with compensated cirrhosis and evidence of portal hypertension.

A phase 2a study in patients with type 2 diabetes and NAFLD showed improved insulin sensitivity as well as gamma glutamyl transferase (γGT) and alanine amino transferase (ALT) by OCA.\(^{101}\) A subsequent phase 2b trial in patients with NASH revealed an improvement in the NAS score as predefined primary endpoint in patients with cirrhosis.\(^{98}\) Notably, use of OCA was associated with an increase in hepatic decompensation in patients with compensated PBC cirrhosis,\(^{100}\) which led to an update of the PBC label with a contraindication for use in patients with decompensated cirrhosis, a prior decompensation event or with compensated cirrhosis and evidence of portal hypertension.

A phase 2a study in patients with type 2 diabetes and NAFLD showed improved insulin sensitivity as well as gamma glutamyl transferase (γGT) and alanine amino transferase (ALT) by OCA.\(^{101}\) A subsequent phase 2b trial in patients with NASH revealed an improvement in the NAS score as predefined primary endpoint in patients with cirrhosis.\(^{98}\) Notably, use of OCA was associated with an increase in hepatic decompensation in patients with compensated PBC cirrhosis,\(^{100}\) which led to an update of the PBC label with a contraindication for use in patients with decompensated cirrhosis, a prior decompensation event or with compensated cirrhosis and evidence of portal hypertension.

A phase 2a study in patients with type 2 diabetes and NAFLD showed improved insulin sensitivity as well as gamma glutamyl transferase (γGT) and alanine amino transferase (ALT) by OCA.\(^{101}\) A subsequent phase 2b trial in patients with NASH revealed an improvement in the NAS score as predefined primary endpoint in patients with cirrhosis.\(^{98}\) Notably, use of OCA was associated with an increase in hepatic decompensation in patients with compensated PBC cirrhosis,\(^{100}\) which led to an update of the PBC label with a contraindication for use in patients with decompensated cirrhosis, a prior decompensation event or with compensated cirrhosis and evidence of portal hypertension.
Recent advances in clinical practice

by choosing a lower dose which still effectively reduced liver fat.113

Some non-steroidal FXR agonists may act exclusively in the gut, effects which may be mediated largely by stimulation of intestinal FGF19 expression.114 As such, the intestine-restricted FXR agonist tiazonarin, reduced weight gain, decreased insulin resistance and improved hepatic steatosis in mice.115 Interestingly, an opposing strategy with intestinal FXR antagonism through specific BA species (eg, taurine or glycine-ß-muricholic acid) also has beneficial effects against hepatic steatosis in mice; these effects were mediated through inhibition of intestinal FXR-dependent ceramide production which contributes to obesity and hepatic steatosis.116 117 However, such beneficial effects of FXR antagonism may be restricted to the intestine, since inhibition of hepatic FXR gives rise to cholesis, steatosis or even liver cancer as suggested from FXR knockout studies in mice.85

UDCA—FXR agonist or antagonist?
UDCA can be viewed as the first available ‘enterohepatic drug’ circulating with the endogenous BA pool enriched by UDCA.118 UDCA is used for treatment of a broad range of cholestatic disorders with proven survival benefit as first-line treatment of PBC.2 In addition to its cytoprotective properties, UDCA acts as a secretagogue in hepatocytes and cholangiocytes, stimulating the vesicular targeting of transporters to the canalicular membrane.2 UDCA is a weak FXR agonist in vitro119 which competes with stronger FXR-agonistic signalling of endogenous BAs in man thus acting as weak agonistic antagonist.120 UDCA had only limited therapeutic efficacy in NASH in larger randomised controlled studies,121-124 although improvement of hepatic insulin resistance was observed in one high-dose study.123 Short-term, high-dose UDCA (given prior to bariatric surgery to morbidly obese patients with NAFLD), showed FXR-agonistic effects in vivo, thereby stimulating BA synthesis and inducing lipid accumulation in liver as well as visceral white adipose tissue.120 Although enhanced triglyceride (TG) storage could be viewed beneficial as reflection of lipid partitioning counteracting lipotoxicity, it may be counterintuitive to stimulate both BA and TG synthesis as two deranged key pathways in the pathogenesis of NASH. In line with these findings, UDCA is no longer recommended for treatment of NAFLD/NASH.123

Fibroblast growth factor 19
FXR stimulates expression of intestinal FGF19 in the terminal ileum, which—after reaching the liver via the portal circulation and binding to FGFR4/ßKlotho receptor complex—inhibits hepatic BA synthesis through repression of CYP7A1.50 126 FGF19 is also a key regulator of postprandial lipid and glucose metabolism, as reflected by suppression of lipogenesis and gluconeogenesis, but promotion of fatty acid oxidation and glycogen synthesis.50 126 In addition to its role in regulating BA homeostasis and metabolic pathways (figures 2 and 3), FGF19 also stimulates cell proliferation in the liver and molecular alterations of FGF19-FGFR4 signalling which raises potential concerns for hepatic carcinogenesis, when overstimulated by FXR ligands.127 Notably, aberrant FGF19-FGFR4 signalling has been identified in HCC127 but not in CCC where other pathways/genomic alterations including FGFR2 (intrahepatic CCC)128 or TP53 and KRAS (PSC-associated extrahepatic/peripheral CCC)129 among others are involved. Importantly, non-tumorigenic variants of FGF19, such as M52/M70/NGM282 (aldafermin),130 131 have been developed which can be used therapeutically with beneficial effects on metabolism without promoting or perhaps even countering carcinogenesis.132 133

The FGF19 mimetic M70/NGM282 improved liver injury in the Md2/Abcb4−/− mouse model of sclerosing cholangitis.130 Moreover, M52, protected Md2/Abcb4−/− and Fxr−/− mice from spontaneous hepatic fibrosis, cellular proliferation and HCC formation.134 In patients with PBC with insufficient response to UDCA NGM282/aldafermin mildly improved cholestatic liver enzymes, but mainly gastrointestinal side effects such as diarrhoea, abdominal pain and nausea (but not pruritus) were observed (table 1). Interestingly, NGM282/ aldafermin improved non-invasive serum markers of hepatic fibrosis without reducing cholestatic liver enzymes such as ALP in patients with PSC135 possibly reflecting direct anti-inflammatory and antifibrotic actions. Whether NGM282/aldafermin-related anti-inflammatory and antifibrotic effects may reduce the risk of malignancies in PSC remains open. FGF19 is also an attractive therapeutic target in NASH (table 1) where NGM282/aldafermin, significantly reduced hepatic fat content, serum aminotransferase levels and non-invasive fibrosis markers while histological improvement of fibrosis or resolution of NASH did not reach statistical significance after 24 weeks of treatment.136 Interestingly, enrichment of Veillonella, a BA-sensitive bacteria whose enrichment is enabled by NGM282/aldafermin, may be a marker for therapeutic response.137 Side effects of NGM282 are mostly of gastrointestinal origin but also include increases in LDL-cholesterol,138 which can be managed by statins.139 These findings emphasise that FXR/FGF-19-mediated suppression of BA synthesis will result in increased hepatocellular cholesterol levels with subsequent downregulation of LDL-receptor and increased serum cholesterol levels.88 This is an important consideration for any FXR-pathway targeted therapy in NASH and associated cardiovascular risk.7

Peroxisome proliferator-activated receptors
PPARs are a group of NRs that fine tune lipid and glucose metabolism and regulate inflammation and fibrosis.140 141 The three isoforms, PPARα, PPARγ and PPARδ (also known as β), are expressed in different parenchymal and non-parenchymal liver cell compartments, making them highly attractive targets for therapy of metabolic142 and cholestatic liver diseases.143 Various drugs target PPARα (fibrates), PPARγ (thiazolidinediones/glitza zones), PPARδ (seladelpar) or simultaneously two PPAR isoforms (PPARα/β—glitazars and PPARδ/β—elafibranor). Recently more broadly acting pan-PPAR ligands such as lanifibranor have been propagated. Bezafibrate is a strong and predominant PPARα ligand with activity for other isoforms and therefore is sometimes also referred to as pan PPAR ligand.140 141

PPAR alpha
Despite their key role in lipid metabolism and management of dyslipidaemia,140 PPARα ligands (fibrates) did not show convincing efficacy in NASH in smaller pilot studies.144 However, several studies have demonstrated beneficial effects of fibrates (bezafibrate and fenofibrate) in cholestasis which seem to be mediated by repression of BA synthesis, stimulation of phospholipid excretion (counteracting intrinsic BA toxicity on bile ducts) and anti-inflammatory effects (via suppression of NFκB signalling).145 Bezafibrate 400 mg/day over 24-month resulted in complete biochemical response in 31% of patients with PBC with an incomplete response to UDCA70 (table 1). In 67% of patients even complete normalisation of alkaline phosphatase was observed, which is more rarely obtained with FXR
ligands (7% with OCA) or budesonide (35%). Importantly, pruritus, liver stiffness and prognostic scores of PBC improved, in line with other recent studies confirming the positive effects on pruritus and long-term outcomes from the vast Japanese experience. Side effects include increases in serum creatinine, myalgia and hepatotoxicity (ALT elevations). Increases in creatinine appear to be a pharmacodynamic effect without nephropathy and and usually do not require cessation of treatment. Bezafibrate is currently not approved for the treatment of cholestatic liver diseases and thus used off-label when prescribed to patients with PBC or PSC. Moreover, bezafibrate is not available in the USA, where fenofibrate with a narrower PPARα-spectrum could be used since it has also demonstrated beneficial effects in smaller studies. Encouraging first results with fibrates have also been reported in PSC.

PPAR gamma

In line with their key metabolic effects on insulin sensitivity, glucose and lipid metabolism thiazolidinediones/glitazones (PPARγ agonists) such as pioglitazone have been shown to improve NASH and fibrosis. Glitazones also have shown beneficial or in combination with vitamin E according to current licensed drug therapy for NASH exists, they can be used alone and and usually do not require cessation of treatment. Bezafibrate is currently not approved for the treatment of cholestatic liver diseases and thus used off-label when prescribed to patients with PBC or PSC. Moreover, bezafibrate is not available in the USA, where fenofibrate with a narrower PPARα-spectrum could be used since it has also demonstrated beneficial effects in smaller studies. Encouraging first results with fibrates have also been reported in PSC.

PPAR δ is ubiquitously expressed and profoundly influences BA and lipid metabolism, as well as inflammation and fibrosis, making it an attractive therapeutic target for metabolic and cholestatic liver diseases. However, PPARδ-triggered mechanisms could promote cancer cell survival and cancer progression, which has raised concerns for their clinical development. Seldelapar is currently the only PPARδ ligand clinically developed for treatment of PBC, PSC and NASH, with the most robust results obtained in PBC so far. Development of this drug was transiently halted due to safety signals in follow-up biopsies in the NASH programme. After an in-depth investigation and comprehensive safety evaluation, all holds on seldelapar for ongoing clinical studies in were lifted. However, the results in NASH were rather controversial with a disconnection of no significant fat reduction (MR-PDFF) and dose-dependent histological improvements which however did not reach statistical significance.

Dual PPAR agonists

In addition to agonists for specific isoforms, drugs that activate more than one PPAR have been developed. Dual PPARα/γ agonists, termed glitazars, improve insulin resistance, dyslipidaemia and fatty liver in rodents. Saroglitazar was shown to improve ALT, liver fat content, insulin resistance and atherogenic dyslipidaemia in patients with NASH with encouraging histological signals. However, it has to be kept in mind that some compounds of this class of drugs were also shown to have cardiovascular and renal side effects. Of note, in patients with PBC with inadequate response to UDCA 16 weeks of saroglitazar treatment improved the primary endpoint ALP.

The dual PPARα/δ agonists elafibranor showed beneficial effects on NASH resolution in a post-hoc analysis (with modified endpoint criteria) of the phase 2b GOLDEN-505 study, but had no significant impact on the main endpoint of NASH resolution without an increase in fibrosis in the phase 3 RESOLVE-IT trial. Elafibranor has also shown first results with improvement of cholestatic liver enzymes in patients with PBC not responding to UDCA (table 1). In line with preclinical data, the pan PPAR agonist lanifibranor showed encouraging phase 2 data with NASH resolution without worsening of fibrosis over 24 weeks in addition to improved liver enzymes and a beneficial lipid profile with increased HDL cholesterol and reduced triglycerides.

Fibroblast growth factor 21

FGF21 is another member of the FGF19 subfamily and is physiologically induced mainly in the liver during fasting through a mechanism dependent on PPARα. FGF21 is a key metabolic messenger regulating glucose and lipid metabolism, insulin sensitivity, energy homeostasis, macronutrient preference and also exerts anti-inflammatory actions via inhibition of c-Jun N-terminal kinase (JNK) and NF-κB signalling pathways. The interest in therapeutic applications for FGF21 in NASH was stimulated by its ability to correct metabolic dysfunction and decrease body weight in diabetes and obesity. Pegbelfermin, a pegylated FGF21 analogue with prolonged half-life, and efruxifermin, a fusion polypeptide of FGF21 with human IgG1 Fc, both reduced hepatic lipid content (MRI-PDFF) in pilot phase 2a studies patients with NASH (table 1). Efruxifermin was also shown to improve markers of fibrosis in F1-F2 patients and F4 patients with NASH with compensated cirrhosis (table 1). Other approaches include humanised bispecific or monoclonal antibodies activating the FGFRI/β-Klotho complex and have been shown to improved liver fat content and serum lipids.

Thyroid hormone receptor

Thyroid hormones stimulate hepatic fatty acid β-oxidation as well as cholesterol and phospholipid excretion into bile. THRs include different isoforms and in liver THR-β1 isoform represents 80% of THRs, while 20% are represented by THR-α1. Selective modulation of THR-β1 allows targeting hepatic genes without cardiac side effects. Numerous studies have linked subclinical hypothyroidism and low thyroid function with NAFLD, NASH and fibrosis as well as cardiovascular mortality. Low-dose thyroid hormone treatment reduced hepatic lipid content in patients with diabetes with NAFLD. Two promising thryromimetic compounds specifically targeting THR-β1 in the liver, resmetirom (MGL-3196) and VK2809 are currently studied and have shown already beneficial effects in phase 2 studies in NASH with additional

Trauner M, Fuchs CD. Gut 2022;71:194–209. doi:10.1136/gutjnl-2021-324305

203
beneficial impact on associated cardiometabolic risk profiles (table 1).

PBC is frequently associated with other autoimmune diseases including Hashimoto’s thyroiditis and hypothyroidism may aggravate cholestasis in PBC since thyroid hormones and THR-β1 regulate BA homeostasis and bile formation including stimulation of biliary phospholipid excretion via ABCB4. Notably, defective ABCB4 expression and function result in bile duct injury and various cholestatic syndromes emphasising its relevance as therapeutic target. Expression of ABCB4 is also controlled by FXR and PPARα and the effects of FXR with THR-β1 may be synergetic, suggesting that these drugs could be combined in the treatment of cholestatic disorders.

ENTEROHEPATIC BILE ACID CIRCULATION AS THERAPEUTIC TARGET

In addition to direct FXR agonists and FGF19 mimetics, pharmacological modulation of BA transport within their enterohepatic circulation may also indirectly alter BA signalling along the FXR-FGF19 axis (figure 2). Blocking ileal BA absorption depletes the body from primary BAs and—a consequence of the compensatory increase of BA synthesis—also cholesteryl, making this an attractive therapeutic approach for both metabolic and cholestatic liver diseases. BA sequestrants/resins have originally been developed as treatment for hypercholesterolaemia when additional effects on glucose and lipid metabolism such as reductions in hemoglobin A1c (Hba1c) but increases in serum triglycerides—which now can be explained by the role of BA signalling in control of lipid and glucose homeostasis—have already been noted in earlier clinical studies. Similar observations have been made in patients with intestinal resections and the rationale for apical sodium-dependent bile acid transporter (ASBT) inhibitors is also based on the beneficial effects of surgical interruption of the enterohepatic circulation in patients with paediatric cholestasis. Resins bind BAs in the intestinal lumen, but resin-bound BAs are still able to signal through TGR5 which stimulates secretion of GLP1 from cells. The BA sequestrant/ resin has originally been developed as treatment for hypercholesterolaemia when additional effects on glucose and lipid metabolism such as reductions in hemoglobin A1c (Hba1c) but increases in serum triglycerides—which now can be explained by the role of BA signalling in control of lipid and glucose homeostasis—have already been noted in earlier clinical studies. Similar observations have been made in patients with intestinal resections and the rationale for apical sodium-dependent bile acid transporter (ASBT) inhibitors is also based on the beneficial effects of surgical interruption of the enterohepatic circulation in patients with paediatric cholestasis. Resins bind BAs in the intestinal lumen, but resin-bound BAs are still able to signal through TGR5 which stimulates secretion of GLP1 from enteroendocrine L-cells. The high potential of GLP1 receptor agonists has recently been demonstrated by phase 2 studies with liraglutide and semaglutide, effects which may be largely mediated by its effects on insulin sensitivity and body weight. Apart from its metabolic effects, GLP1 also cholangioprotective effects against apoptosis and attenuating the reactive cholangiocyte phenotype. The BA sequestrant colesevelam and ASBT inhibitors (lopinabant and A4250) completely reversed hepatic steatosis in fed mice, effects which may be largely mediated by its effects on insulin sensitivity and body weight. Apart from its metabolic effects, GLP1 also cholangioprotective effects against apoptosis and attenuating the reactive cholangiocyte phenotype. The BA sequestrant colesevelam and ASBT inhibitors (lopinabant and A4250) completely reversed hepatic steatosis in fed mice, indicating that interruption of enterohepatic circulation of BAs may have therapeutic potential for attenuating cholestatic liver injury beyond their currently explored role in treatment of pruritus.

Inhibition of ileal BA uptake protects against hepatic steatosis and restored insulin sensitivity in high-fat diet-fed mice, effects which are mediated by a marked shift in hepatic BA composition, with a reduction in hydrophilic, FXR antagonist species and an increase in FXR agonistic BAs. However, clinical studies in human NASH with resins and ASBT inhibitors have so far been disappointing.

Inhibition of NTCP by Myrcludex B (bulevirtide), a small peptide inhibitor originally designed to prevent hepatitis B virus uptake via NTCP may also reduce intrahepatic BA levels. However, small molecule inhibitors of NTCP can also prevent HBV infection without interrupting BA uptake. Moreover, several drugs such as rosiglitazone, zafirlukast and sulfasalazine inhibit NTCP in a chemical mouse model of sclerosing cholangitis NTCP inhibition by Myrcludex B improved hepatic inflammation and fibrosis. However, this therapeutic approach has so far not yet been tested clinically for cholestasis. Notably, genetic absence of NTCP in mice and men results in increased serum levels of unconjugated BAs, but is well tolerated without pruritus, fat malabsorption or liver dysfunction.

norUDCA AS PARADIGM CHOLEHEPATIC DRUG

Nor-ursodeoxycholic acid (norUDCA, recently assigned the new international non-proprietary name norucholic acid) is a side-chain-terminated derivative of UDCA and is resistant to side-chain conjugation with glycine and taurine. Consequently, norUDCA—in contrast to its parent compound UDCA—undergoes cholehepatic shunting between cholangiocytes and hepatocytes, which results in the generation of a HCO₃⁻-rich hypercholeresis and high intrahepatic enrichment. norUDCA has shown anti-cholestatic, anti-inflammatory, immunomodulatory and anti-fibrotic actions in animal models and improves cholestatic liver and bile duct injury in the Mdr2/Abcb4 mice model of sclerosing cholangitis. Clinically, norUDCA improved biochemical markers of cholestasis in a recent phase 2 clinical trial in PSC irrespective of prior exposure and response to UDCA (table 1). Since norUDCA reinforces the HCO₃⁻ umbrella it may also be a therapeutic approach in other cholangiopathies with defective HCO₃⁻ secretion such as PBC.

In addition to its beneficial effects on the biliary tree, norUDCA has also direct hepatoprotective, anti-inflammatory and anti-fibrotic effects in mouse models of NASH, making it a promising therapeutic agent in NAFLD/NASH with first encouraging phase 2a data (table 1). Notably, norUDCA does not act via FXR or other NRs, making it an attractive combination partner for drugs targeting NRs within the enterohepatic circulation (figure 2).

TARGETING INFLAMMATION AND FIBROSIS VIA CHEMOKINE RECEPTORS CCR2/CCR5

Macrophages have emerged as essential players in acute and chronic liver injury and in a wide range of liver diseases including NASH and more recently also PSC. Cenicriviroc (CVC) is a dual CCR2/CCR5 chemokine receptor antagonist that is able to block CCR2/5 on macrophages and HSC (figure 3) and is currently developed as anti-inflammatory/anti-fibrotic treatment in NASH and other indications. Despite encouraging interim data after 1 year, final analysis after 2 years revealed that no significant antifibrotic effect in NASH (table 1). A long-term phase 3 study (AUORRA, NCT03028740) was terminated early due to lack of efficacy, but CVC is still investigated in combination strategies (eg, FXR agonist tropifexor/TANDEM trial see above).

Pharmacological or genetic inhibition of peribiliary macrophage recruitment attenuated liver injury and fibrosis in mouse models of PSC. Interestingly, microbe-stimulated monocytes drive Th17 differentiation in vitro and induce cholangiocytes to produce chemokines mediating recruitment of Th17 cells and more monocytes into portal tracts. Interestingly, Th17 cells may also be involved in NASH progression and, securinumab, a monoclonal antibody against IL17A, is currently investigated in patients with psoriasis and coexisting NAFLD (NCT04237116). In a rodent model combination of all-trans retinoic acid and CVC synergistically reduced liver fibrosis and bile duct injury, although a reduction in neutrophils and T cells but not macrophages was observed. Recently, an open label,
proof of concept phase 2 study with CVC in patients with PSC (PERSEUS trial, NCT02653625) has been completed with negative results (table 1).

SIMTUZUMAB AS ANTIFIBROTIC STRATEGY

Simtuzumab is a humanised monoclonal antibody against lysyl oxidase-like 2 (LOXL2), which has raised much hope for treatment of fibrosis in both NASH and PSC, since LOXL2 contributes to fibrogenesis by cross-linkage of collagen and regulates bile duct permeability.223 226 In patients with PSC and NASH increased serum levels of LOXL2 correlate with more advanced fibrosis and severity of portal hypertension.224 225 Despite these encouraging findings, simtuzumab failed to show antifibrotic effects in NASH patients with bridging fibrosis or compensated cirrhosis227 and in patients with PSC228 (table 1). However, despite being ‘negative’ the biomaterial and data obtained during these clinical trials have provided important pathogenetic and clinical insights into these diseases.23 229 Other antifibrotic strategies have recently been reviewed elsewhere in more detail.230 231

CONCLUSIONS

A better understanding of the pathogenesis of cholestatic and metabolic liver diseases has crossfertilised drug development for both disease areas. Several novel therapeutic approaches for cholestatic and fatty liver diseases currently investigated in phase 2 and 3 clinical trials are based on shared pathogenetic and therapeutic principles (table 1). Due to the central role of NRs and BAs as integrators of metabolism and inflammation, targeting these pathways has great potential. Some of these approaches have already resulted in first encouraging results (table 1) and even conditional approval of novel therapies, but their long-term efficacy, tolerability and safety still needs to be evaluated. Apart from therapeutic efficacy a positive impact on pruritus in cholestatic disorders (seen with fibrates) and beneficial cardiometabolic profile in NASH (seen with PPAR and THR-1 ligands) is an important aspect for considering long-term treatment with these drugs. Based on the complex pathophysiology of cholestatic and fatty liver diseases and the multiple pathways involved in their progression, multitargeted treatments or combination therapies that engage different targets are urgently required. Several of the currently explored drugs (eg, NR ligands) simultaneously target multiple key pathogenic processes and may show even synergistic effects when combined in the management of these disorders, for example, combining FXR and PPAR ligands in PBC232–233 and NASH.234 235 Interestingly, in extension of dual PPARα/γ and α/δ agonists, dual FXR/PPARδ agonists are currently developed for treatment of NASH.235 As broadly acting drugs NR (eg, FXR) ligands are also explored in combination with anti-diabetic (eg, GLP-1 RA; SGLT2 inhibitors) or anti-inflammatory drugs (eg, CVC) to achieve a higher therapeutic efficacy in NASH which is still in an unsatisfactory range for single agents.236 Apart from combining existing drugs, the development of dual GLP-1/glucagon receptor or GLP-1/GIP agonists or even triagonists237 with first promising results in NASH237–239 may show up another promising approach in drug development. Notably, these peptide hormones can be combined with NR ligands thus increasing the efficacy in target organs while at the same time restricting side effects.238 A major challenge will be to test the plethora of therapeutic options which requires innovative designs such as basket trials.240

Correction notice This article has been corrected since it published Online First. The corresponding address has been amended and the heading ‘norUDCA as paradigm cholehepatic drug’ added.

Contributors Concept and supervision: MT; drafting of the manuscript; MT; critical revision of the manuscript for important intellectual content: MT and CDF; obtained funding: MT; material support: CDF and MT. The authors thank Alexandra Weisgram for editorial assistance.

Funding This work was supported by the grants F7310-B21 and I2755-B30 from the Austrian Science Foundation (to MT).

Competing interests MT: Consulting: Albireo, BiorX, Boehringer Ingelheim, Falk, Genfit, Intercept, Janssen, MSD, Gilead, Novartis, Shire, Phenex, Regulus. Speakers bureau: Falk Foundation, Gilad, Intercept, MSD. Grants: Albireo, Cymbay, Falk, Gilead, Intercept, MSD, Takeda, Alnylam, Ultragenyx. Travel grants: Abbvie, Falk, Gilead, Intercept. Intellectual property rights: Co-Inventor or Patent on Medical Use nor UDCA. CDF received travel grants from Falk and Gilead.

Patient and public involvement Patients and/or the public were not involved in the design, conduct, or reporting, or dissemination plans of this research.

Patient consent for publication Not applicable.

Provenance and peer review Commissioned; externally peer reviewed.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iD

Michael Trauner http://orcid.org/0000-0002-1275-6425

REFERENCES

1. Lazaridis KN, Gores GJ, Lindor KD. Ursodeoxycholic acid ‘mechanisms of action and clinical use in hepato-biliary disorders’. J Hepatol 2001;35:134–46.
2. Beuers U, Trauner M, Jansen P, et al. New paradigms in the treatment of hepatic cholestasis from UDCA to FXR, PXR and beyond. J Hepatol 2015;62:525–37.
3. Trauner M, Meier PJ, Boyer IL. Molecular pathogenesis of cholestasis. N Engl J Med 1998;339:1217–27.
4. Arab JP, Arrese M, Trauner M. Recent insights into the pathogenesis of nonalcoholic fatty liver disease. Annu Rev Pathol 2018;13:321–50.
5. Hirschfield GM, Heathcote EJ, Gershwin ME. Pathogenesis of cholestatic liver disease and therapeutic approaches. Gastroenterology 2010;139:1481–96.
6. Friedman SL, Neuschwander-Tetri BA, Rinaelli M, et al. Mechanisms of NAFLD development and therapeutic strategies. Nat Med 2018;24:908–22.
7. Younossi Z, Tacke F, Arrese M, et al. Global perspectives on nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Hepatology 2019;69:2672–82.
8. Williams R, Alexander G, Armstrong I, et al. Disease burden and costs from excess alcohol consumption, obesity, and viral hepatitis: fourth report of the Lancet Commission on liver disease in the UK. Lancet 2018;391:1097–107.
9. Webb GJ, Rana A, Hodoson J, et al. Twenty-Year comparative analysis of patients with autoimmune liver diseases on transplant waitlists. Clin Gastroenterol Hepatol 2018;16:278–87.
10. Eslam M, Newsome PN, Sarin SK, et al. A new definition for metabolic dysfunction-assOCIATED fatty liver disease: an international expert consensus statement. J Hepatol 2020;73:202–9.
11. Neuschwander-Tetri BA. Hepatic lipotoxicity and the pathogenesis of nonalcoholic steatohepatitis: the central role of non-esterified fatty acid metabolites. Hepatology 2010;52:774–88.
12. Arab JP, Karpen SJ, Dawson PA, et al. Bile acids and nonalcoholic fatty liver disease: molecular insights and therapeutic perspectives. Hepatology 2017;65:350–82.
13. Trauner M, Fuchs CD, Halibasic E, et al. New therapeutic concepts in bile acid transport and signaling for management of cholestasis. Hepatology 2017;65:1393–404.
14. Jansen PLM, Ghallab A, Vartak N, et al. The ascending pathophysiology of cholestatic liver disease. Hepatology 2017;65:722–38.
15. Kotas ME, Medzhito R. Homeostasis, inflammation, and disease susceptibility. Cell 2015;160:816–27.
16. Hotamisligil GS. Inflammation, metaflammation and immunometabolic disorders. Nature 2017;542:177–85.
17. Hirosa P, Ibrabim SH, Gores GJ, et al. Lipotoxic lethal and sublethal stress signaling in hepatocytes: relevance to NASH pathogenesis. J Lipid Res 2016;57:1758–70.
18. Pizarro M, Balasubramaniyan N, Solis N, et al. Bile secretory function in the obese Zucker rat: evidence of cholestasis and altered canalicul function. Gut 2004;53:1837–43.
19. Geier A, Dietrich CG, Große T, et al. Characterization of organic anion transporter regulation, glutathione metabolism and bile formation in the obese Zucker rat. J Hepatol 2005;43:1021–30.
Recent advances in clinical practice

20 Segovia-Miranda F, Morales-Navarrete H, Kücük M, et al. Three-dimensional spatially resolved geometrical and functional models of human liver tissue reveal new aspects of NAPLD progression. *Nat Med* 2019;25:1885–93.

21 Tsuchida T, Friedman SL. Mechanisms of hepatic stellate cell activation. *Nat Rev Gastroenterol Hepatol* 2017;14:397–411.

22 Trautwein C, Friedman SL, Scruppan D, et al. Hepatic fibrosis: concept to treatment. *J Hepatol* 2015;62:515–24.

23 Karpen SJ, Trauner M. The new therapeutic frontier—nuclear receptors and the liver. *J Hepatol* 2010;52:455–62.

24 Sanyal AJ, Harrison SA, Ratziu V, et al. The natural history of advanced fibrosis due to nonalcoholic steatohepatitis: data from the Simtuzumab trials. *Hepatology* 2019;70:1317–35.

25 Nakamoto N, Sasai N, Aoki R, et al. Gut pathobionts underlie intestinal barrier dysfunction and liver T helper 17 cell immune response in primary sclerosing cholangitis. *Nat Microbiol* 2019;4:492–503.

26 Yuan J, Chen C, Cui J, et al. Fatty liver disease caused by High-Alcohol-Producing Klebsiella pneumoniae. *Cell Metab* 2019;30:1172–82.

27 Danman J, Rodriguez EA, Ali AH, et al. Review article: the evidence that vancomycin is a therapeutic option for primary sclerosing cholangitis. *Aliment Pharmacol Ther* 2018;47:886–95.

28 Meroni M, Longo M, Dongiovanni P. The role of probiotics in nonalcoholic fatty liver disease: a new insight into therapeutic strategies. *Nutrients* 2019;11:2642.

29 Vlieggaar FP, Monckmaan JF, van Erpecum KJ. Probiotics in primary sclerosing cholangitis: a randomized placebo-controlled crossover pilot study. *Eur J Gastroenterol Hepatol* 2008;20:688–92.

30 Vitezze A, Varone L, Hleim E, et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. *Gut* 2012;61:913–6.

31 Allegretti JR, Kassam Z, Carrellas M, et al. Fecal microbiota transplantation in patients with primary sclerosing cholangitis: a pilot clinical trial. *Am J Gastroenterol* 2019;114:1071–9.

32 Mazagava M, Wang L, Anfora AF, et al. Commensal microbiota is hepatoprotective and prevents liver fibrosis in mice. *Faseb J* 2015;29:1043–55.

33 Tabibian JH, O’Hara SP, Trussoni CE, et al. Absence of the intestinal microbiota exacerbates hepatobiliary disease in a murine model of primary sclerosing cholangitis. *Hepatology* 2016;63:185–96.

34 European Association for the Study of the Liver. Electronic address: easloffice@easloffice.eu. European Association for the Study of the Liver. EASL clinical guidelines: the diagnosis and management of patients with primary biliary cirrhosis. *J Hepatol* 2017;67:145–72.

35 Lindor KD, Bowlus CL, Boyer J, et al. Primary biliary cholangitis: 2018 practice guideline from the American association for the study of the liver diseases. *Hepatology* 2019;69:394–419.

36 Nevens F, Androne P, Mazzella G, et al. A placebo-controlled trial of obeticholic acid in primary biliary cirrhosis. *N Engl J Med* 2016;375:631–43.

37 Trauner M, Nevens F, Shiffman ML, et al. Long-term efficacy and safety of obeticholic acid for patients with primary biliary cholangitis: 3-year results of an international open-label extension study. *Lancet Gastroenterol Hepatol* 2019;4:445–53.

38 Corpechot C, Chazouillères O, Rousseau A, et al. A placebo-controlled trial of bezafibrate in primary biliary cirrhosis. *N Engl J Med* 2018;378:2171–81.

39 Hirschfield GM, Beuers U, Kupcinski L, et al. A placebo-controlled randomised trial of budesonide for pBC following an insufficient response to UDCA. *J Hepatol* 2021;74:321–9.

40 Corpechot C. Primary biliary cirrhosis beyond ursodeoxycholic acid. *Semin Liver Dis* 2016;36:15–26.

41 Arenas F, Hervias I, Uriz M, et al. Combination of ursodeoxycholic acid and glucocorticoids upregulates the AE2 alternating promoter in human liver cells. *J Clin Invest* 2008;118:695–709.

42 Gao L, Wang L, Woo E, et al. Clinical management of primary biliary Cholangitis—Strategies and evolving trends. *Clin Rev Allergy Immunol* 2020;59:175–94.

43 Karsten H, Folseraas T, Thorburn D, et al. Primary sclerosing cholangitis—a comprehensive review. *J Hepatol* 2017;67:1298–323.

44 Vesterhus MV, Therapies in primary sclerosing cholangitis: pathophysiological basis and clinical opportunities. *J Gastroenterol* 2020;55:588–614.

45 Neuschwander-Tetri BA, Loomba R, Sanyal AJ, et al. Farnesoid X receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (Flib): a multicentre, randomised, placebo-controlled trial. *Lancet* 2015;385:956–65.

46 Younossi ZM, Liu R, Wei Y, et al. Pioglitazone treatment for patients with non-alcoholic steatohepatitis: interim analysis from a multicentre, randomised, placebo-controlled phase 3 trial. *Lancet* 2019;394:2184–96.

47 Sanyal AJ, Chalasani N, Kowdley KV, et al. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. *N Engl J Med* 2010;362:1675–85.

48 Cui K, Orskov B, Bill F, et al. Long-term pioglitazone treatment for patients with nonalcoholic steatohepatitis and prediabetes or type 2 diabetes mellitus. *Ann Intern Med* 2016;165:305–15.

49 MussJO, Sisodiawal D. Neuschwander-Tetri BA. A placebo-controlled trial of obeticholic acid for non-alcoholic steatohepatitis in patients with non-cirrhotic, non-alcoholic steatohepatitis (Flib): a multicentre, randomised, placebo-controlled trial. *Lancet* 2015;385:956–65.

50 Younossi ZM, Liu R, Wei Y, et al. Pioglitazone treatment for patients with non-alcoholic steatohepatitis: interim analysis from a multicentre, randomised, placebo-controlled phase 3 trial. *Lancet* 2019;394:2184–96.

51 Sanyal AJ, Chalasani N, Kowdley KV, et al. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. *N Engl J Med* 2010;362:1675–85.

52 Cui K, Orskov B, Bill F, et al. Long-term pioglitazone treatment for patients with nonalcoholic steatohepatitis and prediabetes or type 2 diabetes mellitus. *Ann Intern Med* 2016;165:305–15.

53 MussJO, Sisodiawal D. Neuschwander-Tetri BA. A placebo-controlled trial of obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (Flib): a multicentre, randomised, placebo-controlled trial. *Lancet* 2015;385:956–65.
et al. Targeted disruption of the nuclear receptor FXR/Gut 2022;97:2021;7:33–7.

2015;7:10713.

Adaptive changes in hepatobiliary transporter expression in primary biliary cirrhosis. J Hepatol 2003;38:717–77.

FXR cause progressive familial intrahepatic cholestasis. Mutations in the nuclear bile acid receptor

et al. Ursodeoxycholic acid for treatment of primary biliary cholestasis: results of a randomized trial. Hepatology 2004;39:770–7.

et al. Ursodeoxycholic acid for treatment of primary biliary cirrhosis and inadequate response to ursodeoxycholic acid. Gut 2015;64:1201–6.

et al. Mutations in the nuclear bile acid receptor

et al. Suppressed hepatic bile acid signalling despite elevated production of primary and secondary bile acids in NAFLD. Gut 2018;67:1891–9.

et al. Ursodeoxycholic acid improves histological endpoints in patients with primary biliary cholangitis. J Clin Hepatol 2016;11:753–62.

et al. Ursodeoxycholic acid for treatment of patients with primary biliary cholangitis: a phase 2, randomized, placebo-controlled trial. Hepatology 2020;72:1253–66.

et al. Nonsteroidal FXR ligands: current status and clinical applications. Handb Exp Pharmacol 2019;256:167–205.

et al. Randomized placebo-controlled trial of ursodeoxycholic acid with vitamin E in nonalcoholic steatohepatitis. Clin Gastroenterol Hepatol 2006;4:1537–43.

et al. Separating tumorigenicity from bile acid regulatory activity in endocrine hormone FGFr9. Cancer Res 2014;74:3028–36.

et al. The continuing importance of bile acids in liver and intestinal disease. Wien Klin Wochenschr 2013;125:976–80.

et al. Suppression of hepatic bile acid synthesis by a potent and selective FXR agonist endowed with anticholestatic activity. J Cell Med 2002;45:3569–72.

et al. Ursodeoxycholic acid for treatment of primary biliary cirrhosis and inadequate response to ursodeoxycholic acid. Gut 2015;64:1201–6.

et al. Mutations in the nuclear bile acid receptor

et al. Ursodeoxycholic acid for treatment of primary biliary cirrhosis and inadequate response to ursodeoxycholic acid. Gut 2015;64:1201–6.

et al. Ursodeoxycholic acid for treatment of primary biliary cirrhosis and inadequate response to ursodeoxycholic acid. Gut 2015;64:1201–6.

et al. Ursodeoxycholic acid for treatment of primary biliary cirrhosis and inadequate response to ursodeoxycholic acid. Gut 2015;64:1201–6.
Rubenstrunk A, Harlf R, Hum DW, et al. Safety issues and prospects for future generations of PPAR modulators. Biochim Biophys Acta 2007;1771:1065–81.

Vuppallanchi R, Gonzalez-Hueso MS, Payan-Olivas R, et al. Multicenter, open-label, single-arm study to evaluate the efficacy and safety of Saroglitazar in patients with primary biliary cholangitis. Clin Transl Gastroenterol 2020;12:e00327.

Ratzu V, Harrison SA, Franque S, et al. Elafibranor, an Agonist of the Peroxisome Proliferator-Activated Receptor-α and -δ, Induces Resolution of Nonalcoholic Steatohepatitis Without Fibrosis. Gastroenterology 2016;150:1147–59.

Harrison SA, Ratzu V, Bedossa P. RESOLVE-1 phase 3 of Elafibranor in NASH: final results of the week 72 interim surrogate efficacy analysis. Hepatology 2020;72:2LP3.

Schattenberg JM, Pares A, Kowley KV, et al. A randomized placebo-controlled trial of elafibranor in patients with primary biliary cholangitis and incomplete response to UDCA. J Hepatol 2021;74:1344–54.

Boyer-Díaz Z, Ariu-Zabalba P, Andrés-Roas M, et al. Pan-Ppr agonist lanifibranor improves portal hypertension and hepatic fibrosis in experimental advanced chronic liver disease. J Hepatol 2021;74:1188–99.

Franque S, Bedossa P, Ratzu V. The PanPPAR agonist lanifibranor induces both resolution of NAS and improvement of liver fibrosis in non-cirrhotic NASH: results of the native phase 2 B trial. Hepatology 2020;72:9A–11.

Filippo KH, Potthoff MJ. Metabolic messengers: FGFR2. Nat Metab 2021;3:309–17.

Tillman EJ, Rolph T. Fg21: an emerging therapeutic target for non-alcoholic steatohepatitis and related metabolic diseases. Front Endocrinol 2020;11:601290.

Sanyal A, Charles ED, Neuschwander-Tetri BA, et al. Pegbelfermin (BMS-886036), a PPARδ-mediated fibroblast growth factor 21 analogue, in patients with non-alcoholic steatohepatitis: a randomised, double-blind, placebo-controlled, phase 2A trial. Lancet 2019;392:2705–17.

Harrison SA, Ruane PJ, Freilich BL, et al. Efruxifermin in non-alcoholic steatohepatitis: a randomized, double-blind, placebo-controlled, phase 2A trial. Nat Med 2021;27:1262–71.

Harrison SA, Ruane P, Freilich B. Efruxifermin (FX) improved markers of fibrosis, liver injury and metabolism in F4 NASH patients with compensated cirrhosis. J Hepatol 2021;75:5204.

Mayo L, Zabalza P, Andrés-Roas M, et al. Evaluation of acute and sub-acute liver injury in patients with advanced and very advanced chronic liver disease. Liver Int 2012;32:90–8.

Yuan C, Lin JZ, Siegfaff DH, et al. Identical gene regulation patterns of T and selective thyroid hormone receptor modulator gc-1. Endocrinology 2012;153:501–11.

Sinha RA, Bruinstroep E, Singh BK, et al. Nonalcoholic fatty liver disease and hypercholesterolemia: roles of thyroid hormones, metabolites, and agonists. Thyroid 2019;29:1173–91.

Layden TL, Boyer JL. The effect of thyroid hormone on bile salt-independent bile flow and Na+-K+-ATPase activity in liver plasma membranes enriched in bile canaliculi. J Clin Invest 1976;57:1009–18.

Bashir M, Nadeem M, Javed N, et al. Thyroid dysfunction in primary biliary cirrhosis, primary sclerosing cholangitis and non-alcoholic fatty liver disease. Liver Int 2009;29:1094–100.

Blaustein J, Claudet T, Cupenas F, et al. Thyroid hormone receptor β1 stimulates ABCB4 to increase biliary phosphatidylcholine excretion in mice. J Lipid Res 2018;59:1610–9.

Sanyal A, Boyer JL, Schattenberg J, et al. Hepatobiliary effects of elafibranor in patients with primary biliary cholangitis: an open label, randomized, placebo-controlled trial. Hepatology 2018;68:328–57.

Kara G, Savci Y, Hacioglu S, et al. Curcumin improves sclerosing cholangitis in patients with primary biliary cholangitis: a randomised placebo-controlled trial. Gut 2012;61:203–10.

Boyer JL. The effect of thyroid hormone on bile salt-independent bile flow and Na+-K+-ATPase activity in liver plasma membranes enriched in bile canaliculi. J Clin Invest 1976;57:1009–18.

Blaustein J, Claudet T, Cupenas F, et al. Thyroid hormone receptor β1 stimulates ABCB4 to increase biliary phosphatidylcholine excretion in mice. J Lipid Res 2018;59:1610–9.

Sanyal A, Boyer JL, Schattenberg J, et al. Hepatobiliary effects of elafibranor in patients with primary biliary cholangitis: an open label, randomized, placebo-controlled trial. Hepatology 2018;68:328–57.

Kara G, Savci Y, Hacioglu S, et al. Curcumin improves sclerosing cholangitis in patients with primary biliary cholangitis: a randomised placebo-controlled trial. Gut 2012;61:203–10.

Boyer JL. The effect of thyroid hormone on bile salt-independent bile flow and Na+-K+-ATPase activity in liver plasma membranes enriched in bile canaliculi. J Clin Invest 1976;57:1009–18.

Blaustein J, Claudet T, Cupenas F, et al. Thyroid hormone receptor β1 stimulates ABCB4 to increase biliary phosphatidylcholine excretion in mice. J Lipid Res 2018;59:1610–9.

Sanyal A, Boyer JL, Schattenberg J, et al. Hepatobiliary effects of elafibranor in patients with primary biliary cholangitis: an open label, randomized, placebo-controlled trial. Hepatology 2018;68:328–57.

Kara G, Savci Y, Hacioglu S, et al. Curcumin improves sclerosing cholangitis in patients with primary biliary cholangitis: a randomised placebo-controlled trial. Gut 2012;61:203–10.

Boyer JL. The effect of thyroid hormone on bile salt-independent bile flow and Na+-K+-ATPase activity in liver plasma membranes enriched in bile canaliculi. J Clin Invest 1976;57:1009–18.
Recent advances in clinical practice

215 Newsome PN, Buchholz K, Cusi K, et al. A placebo-controlled trial of subcutaneous Semaglutide in nonalcoholic steatohepatitis. *N Engl J Med* 2021;384:1113–24.

216 Marzioni M, Alpini G, Saccomanno S, et al. Exendin-4, a glucagon-like peptide 1 receptor agonist, protects cholangiocytes from apoptosis. *Gut* 2009;58:390–7.

217 Marzioni M, Alpini G, Saccomanno S, et al. Glucagon-like peptide 1 and its receptor agonist exendin-4 modulate cholangiocyte adaptive response to cholestasis. *Gastroenterology* 2007;133:244–55.

218 Baghdaryan A, Fuchs CD, Österreicher CH, et al. Inhibition of intestinal bile acid absorption improves cholestatic liver and bile duct injury in a mouse model of sclerosing cholangitis. *J Hepatol* 2016;64:674–81.

219 Mietheke AG, Zhang W, Simmons J, et al. Pharmacological inhibition of apical sodium-dependent bile acid transporter changes bile composition and blocks progression of sclerosing cholangitis in multigrain resistance 2 knockout mice. *Hepatology* 2016;63:512–23.

200 Fuchs CD, Paumgartner G, Militz V, et al. Colecysleten attenuates cholestatic liver and bile duct injury in Mdr2-/- mice by modulating expression, signalling and excretion of faecal bile acids. *Gut* 2018;67:1683–91.

201 Rao A, Kosters A, Melis JE, et al. Inhibition of ileal bile acid uptake protects against nonalcoholic fatty liver disease in high-fat-fed mice. *Sci Transl Med* 2016;8:357ra122.

202 Newsome PN, Palmer M, Freiich B, et al. Volkblaat in adults with non-alcoholic steatohepatitis: 24-week interim analysis from a randomised, phase II study. *J Hepatol* 2020;73:231–40.

203 Verrier ER, Colpitts CC, Sureau C, et al. Hepatitis B virus receptors and molecular drug targets. *Hepatol Int* 2016;10:567–73.

204 Kaneko M, Futamura Y, Tsukuda S, et al. Chemical array system, a platform to identify novel hepatitis B virus entry inhibitors targeting sodium taurocholate cotransporting polypeptide. *Sci Rep* 2018;8:2769.

205 Donkers JM, Zehnder B, van Westen GJ, et al. Reduced hepatitis B and D viral entry using clinically applied drugs as new inhibitors of the bile acid transporter *ntcp*. *Sci Rep* 2017;7:15307.

206 Sliepevic D, Roscam Abbing RLP, Fuchs CD, et al. Na+-taurocholate cotransporting polypeptide inhibition has hepatoprotective effects in cholestasis in mice. *Hepatology* 2018;68:1057–69.

207 Sliepevic D, Kaufman C, Wichers CG, et al. Impaired uptake of conjugated bile acids and hepatitis B virus pre-S1 binding in non-Na+-taurocholate cotransporting polypeptide knockout mice. *Hepatology* 2019;69:1066–77.

208 Van FM, Paulusma CC, Huijdekoper H, et al. Sodium taurocholate cotransporting polypeptide (SLC10A1) deficiency: conjugated hypercholanemia without a clear clinical phenotype. *Hepatology* 2015;61:260–7.

209 Yoon YB, Hagley LR, Hofmann AF, et al. Effect of side-chain shortening on the physiologic properties of bile acids: hepatic transport and effect on biliary secretion of 23-norursodeoxycholate in rodents. *Gastroenterology* 1986;90:837–52.

210 Hallibasic E, Fiorotto R, Fickert P, et al. Side chain structure determines unique physiologic and therapeutic properties of norursodeoxycholic acid in Mdr2-/- mice. *Hepatology* 2009;49:1972–81.

211 Fickert P, Wagner M, Marschall H-U, et al. 24-norursodeoxycholic acid is superior to ursodeoxycholic acid in the treatment of sclerosing cholangitis in md2(-/-) mice. *Hepatology* 2015;62:207–19.

212 Fickert P, Hirschfeld GM, Denk G, et al. norUrsodeoxycholic acid improves cholestasis in primary sclerosing cholangitis. *J Hepatol* 2017;67:549–58.

213 Hallibasic E, Steinacher D, Trauner M. Nor-Ursodeoxycholic acid as a novel therapeutic approach for cholestatic and metabolic liver diseases. *Dig Dis* 2017;35:288–92.

214 Beraza N, Malaya Y, Sander LE, et al. Hepatocyte-Specific NEMO deletion promotes NK1c and TRAIL-dependent liver damage. *J Exp Med* 2009;206:1727–37.

215 Traussnigg S, Schattenberg JM, Dimri M, et al. Norursodeoxycholic acid versus placebo in the treatment of non-alcoholic fatty liver disease: a double-blind, randomised, placebo-controlled, phase 2 dose-finding trial. *Lancet Gastroenterol Hepatol* 2019;4:781–93.

216 Lefere S, Tacke F. Macrophages in obesity and non-alcoholic fatty liver disease: crossstalk with metabolism. *Hepatol Rep* 2019;3:10–43.

217 Cadamuro M, Girardi N, Gores GJ, et al. The emerging role of macrophages in chronic cholangiopathies featuring biliary fibrosis: an attractive therapeutic target for orphan diseases. *Front Immunol* 2020;11:757.

218 Lefere S, Devischer L, Tacke F. Targeting CCR2/5 in the treatment of nonalcoholic steatohepatitis (NASH) and fibrosis: opportunities and challenges. *Expert Opin Investig Drugs* 2020;29:892–905.

219 Friedman SL, Ratziu V, Harrison SA, et al. A randomized, placebo-controlled trial of cenicriviroc for treatment of nonalcoholic steatohepatitis with fibrosis. *Hepatology* 2018;67:1754–67.

220 Ratziu V, Sanyal A, Harrison SA, et al. Cenicriviroc treatment for adults with nonalcoholic steatohepatitis and fibrosis: final analysis of the phase 2B CENTAUR study. *Hepatology* 2020;71:833–46.

221 Guicciardi ME, Trussoni CE, Krishnan A, et al. Macrophages contribute to the pathogenesis of sclerosing cholangitis in mice. *J Hepatol* 2018;69:676–86.