Ichthyofaunal diversity of Senkhi stream, Itanagar, Arunachal Pradesh: a comparative status between 2004–05 and 2018–19

Koj Taro¹, Lakpa Tamang² & D.N. Das³

¹Department of Zoology, Jawaharlal Nehru College, Pasighat, Arunachal Pradesh 791103, India.
²,³Department of Zoology, Rajiv Gandhi University, Rono Hills, Doimukh, Arunachal Pradesh 791112, India.
¹tarokoj@rediffmail.com, ²lakpatamang@rediffmail.com (corresponding author), ³dndas2011@gmail.com

Abstract: An investigation was conducted during 2018–19 after a time span of 13 years in the Senkhi stream, an important hill stream that flows through western corner of the capital city, Itanagar. The present study aims to compare decadal changes in ichthyofaunal diversity, status, and abundance with reference to the impact of increasing urbanization in the capital city. The ichthyofaunal diversity assessed presently is restricted to 37 species spreading over 30 genera under 13 families which include four species more, not reported in the past. Thus, of the 37 species recorded, 33 species only could be compared, and noticeably resulted ultimate reduction of 14 species belonging to 11 genera under 10 families from the study area. It indicated that nearly 64% decline in fish abundance within stream zone under urban area and about 46% reduction in undisturbed area. The present study hitherto revealed the alarming rate of decline in fish diversity and also unfolded key factors responsible for crucial decline of fish diversity along with the possible mitigation measures.

Keywords: Catch frequency, diversity loss, electrofishing, habitat degradation, restoration, urbanization.
INTRODUCTION

Biodiversity is essential for stabilization of ecosystems and protection of overall environmental quality (Ehrlich & Wilson 1991). Freshwater fish are one of the most threatened taxonomic groups (Darwall & Vie 2005) because of their high sensitivity to the quantitative and qualitative alteration of aquatic habits (Laffaille et al. 2005; Sarkar et al. 2008; Kang et al. 2009). Conservation of fish diversity and associated habitats is a great challenge (Dudgeon et al. 2006). Conservation measures to mitigate the impact of the pressures have largely been slow and inadequate and as a result populations of many of the species are declining rapidly. The Himalayan region in India has been identified as one of the 36 biodiversity ‘hotspot’ areas of the world (https://www.conservation.org) where the state of Arunachal Pradesh (26.28–29.30 °N & 91.30–97.30 °E) constitutes 60.93% of the region and is characterized in having varied topographical features that forms a huge watershed network provided with numerous aquatic habitats. There are 2,500 species of freshwater fishes that have been recognized in the Indian subcontinent out of which 930 are categorized as freshwater species (Jayaram 2010) and 1,570 are marine (Kar 2003; Vijaykumar et al. 2008). Fishing is a common recreational activity and fish is a good source of protein required for a good health. The tribal populace of the state of Arunachal Pradesh are fond of fish and practice fishing and harvesting seasonally from streams and rivers by employing traditional fishing gears and traps as common property resource. However, depletion of the aquatic biodiversity is gradually increasing due to use of modern contraptions in most of the streams and rivers of Arunachal Pradesh (Chaudhry & Tamang 2007; Tamang & Shivaji 2012). A glimpse of such non-conventional methods of fishing using inverter and battery had once been highlighted in the local news (Arunachal24. dated 24 September 2020) operating within D’Ering Wildlife Sanctuary (DEWS).

Senkhi is an important and lonely hill stream, one of the tributary of upper Brahmaputra River and is the prime source of water for people inhabiting Itanagar that caters about 70% of drinking water to urban populace. The stream originates from about 7 km inside dense forest fed by merging various small drainages, before entering a beautiful valley popularly known as ‘Senkhi Valley’ in the north. The freshwater stream moves downwards traversing urban areas like Chandranagar, Police colony, IRBN colony and subsequently meets with Chimpu stream near IRBN firing ground. Thereafter, it forms a contiguous water body with Pachin and eventually confluences with Dikrong river at RCC bridge, Doimukh, covering about 30 km towards east. It consists of varied microhabitats ranging from deep water to fast-flowing riffles. The substratum comprised of medium to large boulders, pebbles, cobbles, and sand. Density of medium to large boulders are higher upstream than downstream. Sand and mixture of various colored gravels are dense towards lower reaches after Jullang village and density of sand increases thereafter up to Doimukh, through twin capital Naharlagun. On account of having varied physiographic features, the stream harbours a good number of fish diversity.

As far as ichthyofauna of the state is concerned, McClelland (1839) seemed to be the earliest pioneer worker followed by Chaudhuri (1913), Hora (1921), Jayaram (1963), Jayaram & Mazumdar (1964), Srivastava (1966), Dutta & Sen (1977), Dutta & Barman (1984, 1985), and Sen (1999). The first compilation of fish fauna of the state was made by Nath & Dey (2000) who listed a total of 131 species, followed by Bagra et al. (2009) who added 82 more totalling to 213 species. Finally, Darshan et al. (2019) listed 218 species, based on field surveys and available literatures.

Tamang et al. (2007b) earlier reported 47 species belonging to 35 genera and 17 families from Senkhi stream. Tamang et al. (2006; 2007a; 2008) had also reported first distributional record of three fish species: Pseudolaguvia shawi, Balitora brucei, Glyptothorax telchitta for the state and one new species Erethistoides senkhiensis from this stream. Therefore, the stream also acts as an important habitat for ichthyological research. Chaudhry & Tamang (2006) had also reported practicing of non-conventional method of fishing like using of chemicals, electrocution and it has been being continued by many people since long time. Thus to validate the current status of ichthyofaunal diversity of the stream, the present study has been conducted, so that the information may be used for restoration of the ongoing situation. Besides, the paper aims to highlight the major key factors responsible for rapid depletion of fish population in the Senkhi stream along with necessary policy decision to be taken for conservation and mitigation of the stream.

MATERIAL AND METHODS

The reinvestigations were conducted after a time span of 13 years from 02 September 2018 to 22 September 2019. Two sampling sites were selected in Senkhi stream with a gap of about 3 km in between
Site-I and Site-II. The site-I extends from Chandranagar – hanging bridge downwards to D.N.G. College, (27.088°N & 93.601°E) covering a total distance of about 3 km and is entirely situated within urban disturbed area. Site-II was selected as control condition (outside urban area) in order to have a comparison with Site-I. Site-II extends from confluence point of Senkhi and Chimpu stream (27.08°N & 93.60°E) near IRBN firing ground to Jullang village (27.06°N & 93.63°E) about 3 km downstream (Image 1). Habitat pattern: Site-I consists of large to medium sized boulders, pebbles and cobles with low quantity of sand deposit, width of stream narrow causing high pressure water during monsoon. Site-II: Stream gradually becoming wider towards downstream, and stream bed consists of large number of pebbles, cobbles, gravels, and sand, but few numbers of large boulders, placed collectively at beginning, middle and end of the site. Overall, it somewhat resembles with plain stream of Assam. However, both the sites mostly share gravelly bed which characterized true hill stream habitat. Random sampling was carried out weekly after dusk from 1800 to 2200 h using a cast net with radius of 2.30 m and 7 x 7 mm mesh size. Sampling in site-II was done in other alternate day. Weekly samplings were restricted to four weeks in a month. The frequency of occurrence of each species was calculated based on the numbers of occasions the species were collected during the samplings. Finally the data of total catch frequencies (%) of species encountered from two respective sites were compared and each result was compared with data of 47 species of the past record (Tamang et al. 2007b), prior to total number of species encountered in each site. Samplings were carried out covering various microhabitats such as shallow to deep and moderate to torrential flowing water. The collected samples were brought to laboratory of Rajiv Gandhi University for identification. The identification of fishes was confirmed following Talwar & Jhingran (1991), Nath & Dey (2000), and Darshan et al. (2019) and subsequently deposited in Rajiv Gandhi University Museum of Fishes (RGUMF). Trophic niche model may be useful for assessing altered as well as less altered fish habitat of the tropical rivers. Trophic niche of the species were recognized examining morphology of mouth, body shape and paired fins. Species having inferior mouth, cylindrical or dorso ventrally flattened body or horizontally situated paired fins are considered as bottom feeder, whereas terminal to sub-terminal mouth with compressed body are categorized as column feeder and upturned mouth with compressed body as surface feeder. The five previously misidentified species were rectified and fourteen name of species were revised and upgraded (indicated by symbol # and ** respectively in Table 1) following “Eschmeyer’s Catalogue of Fishes, 2019. The catch frequency of common (91–100%) and abundant (81–90%) as per Tamang et al. (2007b) were used as standard norms of frequency scale (Table 2). Thus, % catch frequency with respect to species richness is computed as Abundant: 91–100%, Common: 81–90%, Frequent: 61–80%, Occasional: 31–60%, Sporadic: 15–30%, Rare: 05–14%, Extremely rare <05%. The conservation status of the encountered species were categorized following IUCN Red List of Threatened Species (2019-3).

RESULTS AND DISCUSSION

The ichthyofaunal diversity in the present study is restricted to 37 species belonging to 30 genera under 13 families, including additional four species
(not recorded in the past study). While comparing present data (excluding 4 additional species) with that of the past (Tamang et al. 2007b) presented in Table 2, revealed disappearance of 14 species, viz., Glyptothorax pectinopterus, Glyptothorax brevipinnis, Glyptothorax telchita, Glyptothorax cavio, Botia dario, Heteropeustes fossilis, Channa orientalis, Oreichthys cosuatis, Clarias magur, Labeo gonius, Mystus montanus, Oreochromis mossambico, Mastacembelus armatus, Badis badis belonging to 11 genera under 10 families and identified as mostly bottom feeder (10 species), rarely column (4 species). Among all, the family cyprinidae was found to be highly dominant represented by 13 species (35%), followed by danionidae represented by nine species (24%). Other rarely diversified families are: Nemacheilidae, three species (8%), Ambassidae & Amblycipitidae, two species (5%) each, and Anguillidae, Balitoridae, Botiidae, Cobitidae, Etheostomidae, Bagridae, Psilorhynchidae, and Sisoridae with one species (3%) each (Figure 3). With regard to 14 disappeared species, presently it is unwise to consider them as extinct as they may be existing in undisturbed upstream habitat far beyond study sites inside Senkhi valley or other drainage system within the vicinity of Itanagar Wildlife Sanctuary. Therefore, at present, species diversity is raised to 50 species excluding one exotic species Oreochromis mossambico, which had been reported earlier.

Comparative analysis between two sites (Site-I: urban area) and (Site-II: undisturbed area): Of the total 37 species collectively encountered, distribution of 31 species were common in both sites except for six species. The comparative analysis of total catch frequency obtained from 37 species, showed 467.1 and 682.2 in site I and site II respectively, resulting deduction of 215.1, i.e., 31.5% catch frequency in Site-I than Site-II. This is the point in fact which shows that % catch frequency in Site-I is lower, since it is being situated in urban disturbed area compared to Site-II (Table 2). Of the remaining six species, four species—Danio rerio, Bangana dero, Chanda nama, and Parambassis ranga—were only caught in Site-II and two species—Opsarius tileo and Anguilla bengalensis—in Site-I. This may be due to habitat preferences, as Danio rerio, Chanda nama and Parambassis ranga are typically occurs in slow moving water of the plain, characteristics somewhat familiar with Site-II. However, Bangana dero occurs in plain as well as upstream. So, may be due to water contamination, it migrated to lower reaches. The occurrence of Opsarius tileo and Anguilla bengalensis in Site-I is genuine as Opsarius tileo occurs in both the habitat in hill streams. This may be due to low population density, occasionally caught in the past study too. So, Opsarius tileo might not have caught during sampling in Site-II. Anguilla bengalensis was accidentally caught during flood.

The comparative analysis of 33 species (excluding 4 additional species) with those of 47 species of Tamang et al. (2007b) showed respectively 1295.9 and 457.5 total catch frequencies resulting in deduction of 838.4, i.e., 64.7% in Site-I and similarly total catch frequencies 1295.9 and 697.6 respectively which depicts decline of total catch frequency 598.3, i.e., 46.2% in Site-II. This clearly indicates drastic decline of abundance of fish fauna in the study sites. Further, the data of comparative analysis between two sites also revealed 64.7–46.2% = 18.5% relatively more decline in urban area than undisturbed area, except Neolissochilus hexagonolepis, Botia rostrata and Tariqilabeo latius which showed 5.8%, 11.6%, 1.9% higher, respectively (Table 2 and Figure 1). Only one species Opsarius bendelisis showed cent percent catch frequencies in both sites as well as in the past. This indicates that Opsarius bendelisis is the most dominant and adoptive species in the stream.

The percent declining trend of each species in descending order are as follows (Table 2): Site-I (29 out of 47 species earlier study): Tor tor and Garra birostris declined to 65.4% each, Abrichthys kempi and Garra annandalei 61.5%, Neolissochilus hexagonolepis 48.1%, Psilorhynchus balitora 44.2%, Schistura devdevi and Botia rostrata 42.3% each, Opsarius tileo 40.4%, Cyprinion semiplotum 30.8%, Balitora brucei 28.9%, Devario aequipinnatus 26.9%, Tariqilabeo latius 25%, Chagunius chagunia 23.1%, Opsarius barna 19.2%, Danio dangila 17.4%, Pseudolaguvia shawi 13.4%, Pethia conchonius 11.5%, Paracanthocobitis botia 9.6%, Devario devaria, Puntius sophore, & Lepidocephalichthys guntea 5.8% each, Pethia ticto, Raiamas bola, & Puntius chola 3.9% each, and Cabdio jaya, Olyra longicaudata, & Amblyceps arunachalensis 1.9% each. Out of 29, only one species, Opsarius bendelisis showed 100% abundance and hence considered as highly dominant species. Overall, it is clearly indicated that out of 47 earlier reported species, i.e., 18 species were not retraced in Site-I in present study. With regard to Site-II (32 out of 47 species earlier reported), 19 species had declined: Tor puttoria declined to 59.7%, Garra birostris 57.7%, Neolissochilus hexagonolepis and Botia rostrata 53.9% each, Abrichthys uniobarensis (53.8%), Garra annandalei (48%), Schistura devdevi (40.4%), Balitora brucei (26.9%), Tariqilabeo latius (26.9%), Psilorhynchus balitora (25%), Devario aequipinnatus (25%), Danio dangila (11.6%), Pseudolaguvia shawi (9.6%), Opsarius barna (7.7%), Paracanthocobitis botia (5.8%),
Table 1. The revised and updated list of fish species encountered during past study (Tamang et al. 2007b) including four additional species in present study (2018–19), trophic niche and IUCN conservation status.

Family	Species name listed in Tamang et al. 2007b	Species name (valid)	Trophic niche	IUCN Red List status
1 Nemacheilidae	Abarichthys elongatus	Abarichthys uniobarensis#	Bottom	NE
2 Nemacheilidae	Anacanthobatis batta	Paracanthobatis batta**	Bottom	LC
3 Cyprinidae	Acrasocheilus hexagonolepis	Neolissochilus hexagonolepis **	Column	NT
4 Amblycipitidae	Amblyceps arunachalensis	Amblyceps arunachalensis	Bottom	EN
5 Cyprinidae	Aspidoparia jaya	Caldio jaya**	Column	LC
6 Badidae	Badis badis	Badis badis	Bottom	LC
7 Balitoridae	Balitora brucei	Balitora brucei	Bottom	NT
8 Danionidae	Barilius barna	Opsarius barna**	Column	LC
9 Danionidae	Barilius bendelisis	Opsarius bendelisis**	Column	LC
10 Danionidae	Barilius bola	Raiamas bola	Column	LC
11 Danionidae	Barilius ilea	Opsarius ilea **	Column	LC
12 Botidae	Botia dario	Botia dario	Bottom	LC
13 Botidae	Botia rostrata	Botia rostrata	Bottom	VU
14 Danionidae	Brachydanio rerio*	Danio rerio**	Column	LC
15 Cyprinidae	Chagunius chagunio	Chagunius chagunio	Bottom	LC
16 Ambassidae	Chanda nama*	Chanda nama	Column	LC
17 Channidae	Channa orientalis	Channa orientalis	Column	NE
18 Claridae	Claris batracus*	Clarisas magur#	Bottom	LC
19 Cyprinidae	Crossocoeilus latus latius	Tarigilabeo latus**	Bottom	LC
20 Danionidae	Danio arcupinnatus	Devario arcupinnatus**	Surface	LC
21 Danionidae	Danio dargila*	Danio dargila	Surface	LC
22 Danionidae	Danio devario*	Devario devario**	Surface	LC
23 Cyprinidae	Garra annandali	Garra annandali	Bottom	LC
24 Cyprinidae	Garra gatyla	Garra birostris #	Bottom	NE
25 Sisoridae	Glyptothorax brevipinnis	Glyptothorax brevipinnis	Bottom	DD
26 Sisoridae	Glyptothorax cavia	Glyptothorax cavia	Bottom	LC
27 Sisoridae	Glyptothorax pectinopterus	Glyptothorax pectinopterus	Bottom	LC
28 Sisoridae	Glyptothorax telchitta	Glyptothorax telchitta	Bottom	LC
29 Sisoridae	Hara hara	Pseudolaguvia shaw#	Bottom	LC
30 Heteropneustidae	Heteropneustes fossilis	Heteropneustes fossilis	Bottom	LC
31 Cyprinidae	Labeo dero*	Bangana dero**	Bottom	LC
32 Cyprinidae	Labeo gouria	Labeo gouria	Bottom	LC
33 Cobitidae	Leptiodocephalichthys guntea*	Leptiodocephalichthys guntea	Bottom	LC
34 Mastacembelidae	Mastacembalus armatus*	Mastacembalus armatus	Bottom	LC
35 Bagridae	Mystus montanusi	Mystus montanusi	Column	LC
36 Bagridae	Olyra longicuata*	Olyra longicuata	Bottom	LC
37 Cyprinidae	Oreichthys cosuatis	Oreichthys cosuatis	Column	LC
38 Cichlidae	Oreochromis mossambica	Oreochromis mossambica	Column	NT
39 Ambassidae	Parambassis ranga*	Parambassis ranga	Column	LC
40 Pisolorhynchidae	Pisolorhynchus balitara	Pisolorhynchus balitara	Bottom	LC
41 Cyprinidae	Puntus chola	Puntus chola	Column	LC
42 Cyprinidae	Puntus conchonius	Pethia conchonius**	Column	LC
43 Cyprinidae	Puntus sophore*	Puntus sophore	Column	LC
Lepidocephalichthys guntea (3.9%), Parambassis ranga (2%), Olyra longicaudata (1.9%), Pethia conchonius (1.9%), whereas, 10 species showed increase in catch frequency, viz., Devario devario (1.9%), Cabdio jaya and Chanda nama (2%), Puntius sophore (3.7), Puntius chola (5.6), Bangana dero (7.7), Cyprinion semiplotum & Pethia ticto (9.6%), Chagunius chagunio (13.5%), Danio rerio (26.9%), and two species, namely, Raiamas bola & Amblyceps arunachalensis showed neither decline nor increase (Table 2). In this case too Opsarius bendelisis showed 100% abundance, and rest of the remaining 15 species were not retracted. Overall result indicates that Site-I (urban area) is more disturbed area than that of Site-II (outside urban area) for which there is severe decline in catch frequency in Site-I (64.7%) whereas moderate in Site-II (46.2%).

The conservation status of 37 fishes as per IUCN Red list (2019-3) revealed that majority (70%) of fish fauna are listed as Least Concern (LC), followed by 11% of them as Near Threatened (NT), 5% Vulnerable (VU), and...
3% are Data Deficient (DD), 5% Not Evaluated (NE), and Endangered (EN) each (Figure 4). The 14 disappeared species mostly belong to LC category, i.e., 11 species and 1 species to NT, DD, and NE (Table 1). However, in case of local abundance, these species fall under extremely rare (8), rare (4) and occasional (2) categories (Table 2).

In the case of ecological trophic niche is concern, it is found that majority of the species are belong to bottom feeder represented by 19 species (51%), followed by 14 (38%) column feeders and four (11%) surface feeders (Figure 5). The percent catch frequencies of each species and availability status are presented in Table 2. The species under extreme threats are: Amblyceps arunachalensis recognized as ‘Endangered’ among all, followed by Neolissochilus hexagonolepis, Schistura devdevi, Balitora brucei, & Anguilla bengalensis as ‘Near Threatened’, and Botia rostrata & Cyprinion semiplotum as ‘Vulnerable’. In the present study four species—Erethistoides senkhiensis, Barilius vagra, Anguilla bengalensis, and Amblyceps apangi—were additionally caught. Erethistoides senkhiensis was doubted to be a new species in the past study and not included in Tamang et al. (2007), and later published as a new species (Tamang et al. 2008). Though, as per
Table 2. Comparative percentage of catch frequencies and species abundance status of past study (Tamang et al. 2007b) and present study (Site-I and Site-II) conducted during 2018–19.

Scientific name	Catch frequency (%) (2004–2005)	Catch frequency (%) (2018–2019)				
	Status	SITE-I	Status	SITE-I	Status	
-----------------	--------	--------	--------	--------	--------	
1 Opsarius bendelisis (Hamilton, 1822)	100	Abundant	100	Abundant	100	Abundant
2 Aborichthys uniobarenensis Nanda et al., 2021	92.3	Abundant	30.8	Sporadic	38.5	Occasional
3 Psilorhynchus bailora (Hamilton, 1822)	92.3	Abundant	48.1	Occasional	67.3	Occasional
4 Tor tor (Hamilton, 1822)	88.5	Common	23.1	Sporadic	28.8	Sporadic
5 Garra birostris Nebeshwar & Vishwanath, 2014	80.8	Common	15.4	Sporadic	23.1	Sporadic
6 Garra anandaeni (Hora, 1921)	78.8	Frequent	17.3	Sporadic	30.8	Occasional
7 Neolissochilus hexagonolepis (McClelland, 1839)	71.2	Frequent	23.1	Sporadic	17.3	Sporadic
8 Schistura devdevi (Hora, 1935)	67.3	Frequent	25.0	Sporadic	26.9	Sporadic
9 Botia rostrata Gunther, 1868	65.4	Occasional	23.1	Sporadic	11.5	Rare
10 Opsarius tileo (Hamilton, 1822)	51.9	Occasional	11.5	Rare	-	-
11 Cyprinion semiplatum (McClelland, 1839)	48.1	Occasional	17.3	Sporadic	57.7	Occasional
12 Devario aequipinnatus (McClelland, 1839)	40.4	Occasional	13.5	Rare	15.4	Sporadic
13 Torilabaeus latius (Hamilton, 1822)	36.5	Occasional	11.5	Rare	9.6	Rare
14 Pseudolaguvia shawii (Hora, 1921)	36.5	Occasional	23.1	Sporadic	26.9	Sporadic
15 Glyptothorax pectinopterus (McClelland, 1842)	34.6	Occasional	-	-	-	-
16 Chagunius chagunio (Hamilton, 1822)	34.6	Occasional	11.5	Rare	48.1	Occasional
17 Balitora brucei (Gray, 1830)	32.7	Occasional	3.8	Extremely rare	5.8	Rare
18 Botia dario (Hamilton, 1822)	30.8	Occasional	-	-	-	-
19 Pethia conchonius (Hamilton, 1822)	25	Occasional	13.5	Rare	23.1	Sporadic
20 Opsarius barna (Hamilton, 1822)	25	Sporadic	5.8	Rare	17.3	Sporadic
21 Danio dargila (Hamilton, 1822)	23.1	Sporadic	5.7	Rare	11.5	Rare
22 Acanthocobitis botia (Hamilton, 1822)	15.4	Sporadic	5.8	Rare	9.6	Rare
23 Devario devario (Hamilton, 1822)	15.4	Sporadic	9.6	Rare	17.3	Sporadic
24 Glyptothorax brevipinna Hora, 1923	11.5	Rare	-	-	-	-
25 Heteropneustes fossilis (Bloch, 1794)	9.6	Rare	-	-	-	-
26 Puntius sophore (Hamilton, 1822)	9.6	Rare	3.8	Extremely rare	13.3	Rare
27 Pethia ticto (Hamilton, 1822)	7.7	Rare	3.8	Extremely rare	17.3	Sporadic
28 Lepidocephalichthys guntee (Hamilton, 1822)	7.7	Rare	1.9	Extremely rare	3.8	Extremely rare
29 Channa orientalis Bloch & Schneider, 1801	5.8	Rare	-	-	-	-
30 Oreichthys casuatus (Hamilton, 1822)	5.8	Rare	-	-	-	-
31 Roiamas budo (Hamilton, 1822)	5.8	Rare	1.9	Extremely rare	5.8	Rare
32 Puntius chola (Hamilton, 1822)	5.8	Rare	1.9	Extremely rare	11.4	Rare
33 Parambassis ranga (Hamilton, 1822)	5.8	Rare	-	-	3.8	Extremely rare
34 Cabdio jaya (Hamilton, 1822)	3.8	Extremely rare	1.9	Extremely rare	5.8	Rare
35 Olyra longicaudata McClelland, 1842	3.8	Extremely rare	1.9	Extremely rare	1.9	Extremely rare
36 Amblyceps arunachalensis Nath & Dey, 1989	3.8	Extremely rare	1.9	Extremely rare	3.8	Extremely rare
37 Chanda nama (Hamilton, 1822)	3.8	Extremely rare	-	-	5.8	Rare
38 Claris magur (Linnaeus, 1758)	1.9	Extremely rare	-	-	-	-
Current status of ichthyofaunal diversity in Senkhi stream

Taro et al.

Scientific name	Catch frequency (%) (2004–2005)	Catch frequency (%) (2018–2019)						
	Status	SITE-I	Status	SITE-II	Status			
1		2	3	4	5	6	7	8
39 Labeo gonius (Hamilton, 1822)	1.9 Extremely rare	-	-	-	-	-	-	-
40 Mystus montanus (Jerdon, 1849)	1.9 Extremely rare	-	-	-	-	-	-	-
41 Oreochromis mossambica (Peters, 1852)	1.9 Extremely rare	-	-	-	-	-	-	-
42 Glyptotherax telchita (Hamilton, 1822)	1.9 Extremely rare	-	-	-	-	-	-	-
43 Mastacembalus armatus (Lecepede, 1800)	1.9 Extremely rare	-	-	-	-	-	-	-
44 Badis badis (Hamilton, 1822)	1.9 Extremely rare	-	-	-	-	-	-	-
45 Glyptotherax cavia (Hamilton, 1822)	1.9 Extremely rare	-	-	-	-	-	-	-
46 Danio rerio (Hamilton, 1822)	1.9 Extremely rare	-	-	28.8 Sporadic	-	-	-	-
47 Bangana dero (Heckel, 1822)	1.9 Extremely rare	-	-	9.6 Rare	-	-	-	-

Additional species encountered

48 Erethistoides senkhiensis Tamang, Chaudhry & Choudhury, 2008 - - 9.6 Rare 11.5 Rare
49 Barilius vagra (Hamilton, 1822) - - 9.6 Rare 17.3 Sporadic
50 Anguilla bengalensis (Gray, 1831) - - 1.9 Extremely rare - -
51 Amblyceps apangi Nath & Dey, 1989 - - 1.9 Extremely rare 3.8 Extremely rare

Total of catch frequency (%)

	1295.9	467.1	682.2

Abundant—91–100% | Common—81–90% | Frequent—61–80% | Occasional—31–60% | Sporadic—15–30% | Rare—05–14% | Extremely rare—<05% | (-)—indicated in catch frequency (%) (2018–19) denotes species disappeared.

Figure 5. Ecological niche of different fish species encountered in the present study (2018–2019), showing maximum species as bottom feeders.

For the present study it seems to be locally a rare species and consequently considered Data Deficient in IUCN Red List of Threatened Species. The population density of *Barilius vagra* seems to be very low and might not have caught in the past study. Even in the present sampling its catch frequency is rare in upstream (Site-I) and sporadic in downstream (Site-II). *Anguilla bengalensis* was accidentally caught during flood. Moreover, its population seems to be very low as they mostly lives under hollow gaps of large boulders or rocks which is rarely seen in the study sites and is usually inappropriate and difficult to catch by castnet because of its robust and slippery body. *Amblyceps apangi* mostly hide beneath pebbles and cobbles and usually not comes in castnet, but sometime occasionally entangle, which may be the reason it could not be sampled in the past study.

Altogether the result of the present reinvestigation prior to disappearance of 14 species and drastic decline in catch frequencies within a time span of thirteen years broadly revealed rapid dwindling of existing fish fauna in the study sites primarily due to human intervention on various aspects.

On the backdrop of human interaction in the stream we gathered the information from dwelling people using unstructured questionnaire along with physical observation throughout the study sites. In fact the major key factors that has seriously jeopardized the stream ecosystems leading to sharp declination of fish fauna...
Current status of ichthyofaunal diversity in Senkhi stream

Taro et al.

Journal of Threatened Taxa | www.threatenedtaxa.org | 26 July 2022 | 14(7): 21356–21367

may be as follows:

1. Electro-fishing: Electric fishing was frequently observed in the study site-I and rarely in Site-II. Chaudhry & Tamang (2006) had already reported the practicing of nonconventional method of fishing like using of chemicals (lime and bleaching power) and electrofishing in the Senkhi stream. This is basically operated during winter season (November–February) when water level comes down and intensity of current becomes more effective. Electro fishing is mostly dreadful to bottom dwelling fishes like species belonging to genera *Glyptothorax*, *Garra*, *Schistura*, *Aborichthys*, *Channa*, *Anguilla*, *Mastacembelus*, *Pseudolaguvia*, *Olyra* and *Amblyceps* as members of these genera live inside boulders and cannot escape or run away immediately when electric rod is run over the boulders. Besides, eggs, fish larva, juveniles, crustacean (crab and shrimp), various aquatic insects, and zooplankton which are prime food for growing larval fishes are also destroyed. Such fishing technique enables easy and more collection in short time with less effort (Image 4). However, using of chemicals was not observed as reported earlier, mainly due to siltation of organic wastes.

2. Water contamination: Being a solvent the water gets polluted very easily and causes various water borne internal and external diseases. Water contamination has been observed mostly in urban area within study site-I which covers Police colony, Chandranagar, and IRBN colony. Discharge of untreated domestic savage into the stream is one of the key factors responsible for water contamination and habitat degradation in Senkhi stream.

3. Sewage disposal: The study site is primarily fed by a major perennial drainage that brings all sorts of organic and inorganic wastes far off Ganga market places (ca 3 km) and other surrounding areas during heavy floods (June-August). Our field observation throughout...
the study sites and at the time of sampling, has led to identification of the following sewage wastes mostly in Site-I (urban area): (i) Organic wastes (vegetable): cabbage, cauliflower, tomato, peels of potato, onion, long guard, and pumpkin; radish, green lettuce, french bean, soya bean, bitter guard, brinjal, ladies finger etc.; fruits: spoiled apple, banana, orange, lemon, pineapple and its peels; dead animal: pig, dog, cat, poultry bird were occasionally seen entrapped between boulders and sometime on marginal area of the stream, and intestine, skull, bony jaws of commercial cattle were frequently seen in the stream bed; (ii) Inorganic wastes: all sorts of cold drink plastic bottles and packets were seen densely accumulating among the boulders towards banks and middle section of the stream; footwear: plastic, foam, rubber, nylon and leather shoes and slippers; other items include large number of wrapped polythene bag, commercial fish thermocol box, plates, plastic sheets, vinyl carpet, cement bags, rubber pipe, pieces of tin sheet, umbrella, helmet, vehicle tyre, blanket, plastic sheets, plastic ball etc. Sillation of organic and inorganic debris over stream bed seen till premonsoon season; (iii) Human waste: typically human faecal matter is known to spread many water borne diseases to human like diarrhoea, typhoid, cholera, polio, hepatitis, and skin borne diseases. Some direct disposal of wastes have been seen within study Site-I as well as along the main drainage mentioned above.

4. Habitat degradation and disruption of riparian vegetation: Habitat alteration was more commonly seen in the lower reaches of the stream near Jullang village and beyond it. This was extraction of bed materials like boulders, cobbles, pebbles, gravels, and sand for developmental activities (Image 3a). This mining operation seems increasing due to increase in demand for developmental activities within capital city and its vicinity. Ecologically viable riparian vegetation have been replaced by residential houses and walls creating fish habitat congested, unsuitable and threatening mostly in Site-I (Image 3b). Habitat loss is also seen by displacing heavy boulders towards stream banks by JCB machine to protect from flash flood devastation. Moreover, due to disruption of aquatic ecosystem, one sustainable recreational angling, practiced especially for *Cyprinion semiplotum* using bamboo rod, nylon line and loops were entirely disappeared which was popular in the year 1995–1998 (personal observation).

CONCLUSION

In modern days management of fish diversity and its relevant habitats is a great issue and challenges (Dudgeon et al. 2006). Fresh water fish are one of the most threatened taxonomic groups (Darwall & Vie 2005) because of their high sensitivity to the quantitative and qualitative alteration of aquatic habits (Laffaille et al. 2005). One of the regular visible sign of development efforts in Itanagar, the capital, is the rapid urbanization and spreading of settlements which have adverse effect on stream ecosystem and its fauna. Much of the upstream areas near by Senkhi valley have already low vegetation cover consequences to low water discharge in the stream. Therefore, adoption of all above mentioned activities would only aggravate the already existing problems, first by destruction of the minimal viable population and secondly, by the destruction of the habitat itself. It has been observed that Senkhi stream harbors a good number of fish diversity. However, most of the fish fauna are freshwater bottom feeders which are very sensitive to ecosystem alteration. It was observed that anthropogenic activities may be the sole reasons responsible for the worsening condition of the Senkhi stream ecosystem. Hence, this might have resulted serious fish stock depletions and disappearance of 14 species in the present catch.

The fish are staple diet of the tribal folklore and an important source of protein required for the hardworking tribal communities of the state. Hence, sustainability of fish harvesting must continue for future generations. One can emulate examples from the state itself, where the tribal customary laws protect the flora and fauna in their own village area.

Keeping in view all above mentioned issues and overall result of the present study suggests urgent adoption and implementation of the following conservation strategies and mitigation measures by the concerned state government departments/ non-government agencies/ local volunteer organizations:

i. Disposal of organic and inorganic wastes into the stream should be banned.

ii. Disposal of human wastes directly into the stream should be replaced by safety tank.

iii. Illegal and unscientific methods of fishing should be strictly band.

iv. Construction of residential houses and walls closely attached to stream banks should be avoided by laws. Moreover, the hilly regions are prone to flash flood and land slide which is risky to life.

v. Creation of awareness campaign among
the local communities relating to importance of fish biodiversity, ecosystem and water source.

If urgent steps are not taken in appropriate time, the serious irreparable damage may cause to stream in near future. Therefore, the documentation of available present fish species and its rapid declining trend status is utmost important for conservationist, researcher, planner, relevant government department/institution/ non-government agencies and local volunteer organization so that immediate necessary conservation strategies and mitigation measures could be implemented for restoration of aquatic fauna, its habitat and water resource.

REFERENCES

Bagra, K., K. Kadu, K. Nebeshwar-Sharma, B.A. Laskar, U.K. Sarkar & D.N. Das (2009). Ichthyological survey and review of the checklist of fish fauna of Arunachal Pradesh, India. Checklist 5(2): 330–350.

Chaudhary, S. & L. Tamang (2007). Need to adopt traditional fishing gears in Senkhi. Current Science 93(12): 1647.

Choudhuri, B.L. (1913). Zoological results of the Abor Expedition. 1911-1912 XVIII. Fish. Records of the Indian Museum 8: 243–258.

Darshan, A., S.K. Abujam & D.N. Das (2019). Biodiversity of Fishes in Arunachal Himalaya-Systematics, Classification, and Taxonomic identification. 1st Edition, Elsevier, Academic Press, London, UK, 270 pp.

Darwall, W.R.T. & J.C. Vie (2005). Identifying important sites for conservation of freshwater biodiversity: extending the species based approach. Fisheries Management and Ecology 12(5): 287–293. https://doi.org/10.1111/j.1365-2400.2005.00449.x

Dudgeon, D., A.H. Arthington, M.O. Gessner, Z.I. Kawabata, D.J. Knowler, C. Leveque, R.J. Naiman, A.H. Prieur-Richard, D. Soto, M.L.J. Stiassny & C.A. Sullivan (2006). Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews 81: 163–82.

Dutta, A.K. & R.P. Barman (2014). On a new species of the genus Garra Hamilton (Pisces: Cyprinidae) from Namdapha Wildlife Sanctuary, Arunachal Pradesh, India. Bulletin of the Zoological Society of India 61(1–3): 283–287.

Dutta, A.K. & R.P. Barman (1985). Fauna of Namdapa, Arunachal Pradesh (Pisces). Records of the Indian Museum 61(1–3): 275–277.

Dutta, A.K. & T.K. Sen (1977). Schizopygopsis stoliczkae Steindachner-First record from Arunachal Pradesh, India, with observation on geographical range. Newsletter Zoological Survey of India 3(4): 143–144.

Ehrlich, P.R. & E.O. Wilson (1991). Biodiversity Studies: Science and Policy. Science 253: 758–762.

Fricke, R., W.N. Eschmeyer & R. van der Laan (eds) (2019). Eschmeyer’s Catalog of Fishes: genera, species, references. http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp. Accessed on 05 November 2019.

Hora, S.L. (1921). On some new record and rare species of fishes from Eastern Himalayas. Records of the Indian Museum 21(5): 731–744.

IU CN 2019. The IUCN Red List of Threatened Species. Version 2019-3. https://www.iucnredlist.org. Accessed on 15 November 2019.

Jayaram, K.C. & N. Mazumdar (1964). On a collection of fish from Kameng frontier division, NEFA. Journal of the Bombay Natural History Society 62(2): 264–280.

Jayaram, K.C. (1963). A new species of sisorid from Kameng Frontier Division (NEFA). Journal of the Zoological Society of India 15(1): 85–87.

Jayaram, K.C. (2010). The Freshwater Fishes of the Indian Region. 2nd Ed. Narendra Publishing House, Delhi, 616 pp.

Kang, B., D. He, L. Perrett, H. Wang, W. Hu, W. Deng & Y. Wu (2009). Fish and Fisheries in the Upper Mekong: current assessment of the fish community, threats and conservation. Reviews in Fish Biology and Fish 19: 465–480.

Kar, D. (2003). Fishes of Barak drainage, Mizoram and Tripura, pp. 203–211. In: Kumar, A., C. Bohra & L.K. Singh (eds.). Environment, Pollution and Management. APH Publishing Corporation, New Delhi, 604 pp.

Laffaille, P., A. Acou, J. Guillouet & A. Leguit (2005). Temporal change in European eel, Anguilla anguilla, stock in a small catchment after installation of fish passes. Fisheries Management and Ecology 12: 123–129.

McClelland, J. (1839). Indian Cyprinidae. Asiatic Research 19(2): 217–471.

Nath, P. & S.C. Dey (2000). Fish and Fisheries of North Eastern India (Arunachal Pradesh). Narendra Publishing House, Delhi.

Sen, N. (1999). On a collection of fishes from Subansiri and Siang districts of Arunachal Pradesh. Records of the Zoological Society of India 97(1): 141–144.

Sen, T.K. (1985). Fish fauna of Assam and neighbouring North Eastern states of India. Records of the Zoological Society of India, Occasional paper 64: 1–216.

Selvastava, C.B. (1966). On a collection of fishes from Tirap Frontier Division (NEFA), India. Journal of the Zoological Society of India 18: 122–128.

Talwar, P.K. & A.K. Jhingran (1991). Inland fishes of India and adjacent countries. Oxford and IBH Publishing Co Pvt Ltd, New Delhi, 1158 pp.

Tamang, L. & S. Chaudhury (2012). Range extension of Conta pectinata Ng, 2005 (Teleostei: Sisoridae) in upper Brahmaputra River drainage in Arunachal Pradesh, India. Journal of Threatened Taxa 4(2): 2402–2405. https://doi.org/10.11609/jott.o2933.2402-5

Tamang, L., S. Chaudhury & D. Choudhury (2006). On a new record of freshwater fish, Pseudolaguvia shawi (Hara) from Arunachal Pradesh, India (Teleostei: Eristidae). Zoos Print Journal 21(11): 2443–2446. https://doi.org/10.11609/zpt.2111.2443-6

Tamang, L., S. Chaudhury & D. Choudhury (2007a). Balitora brucei (Gray) and Glyptothorax telchitta (Hamilton), two new reports for Arunachal Pradesh, India. Journal of the Bombay Natural History Society 104: 229–230.

Tamang, L., S. Chaudhury & D. Choudhury (2007b). Ichthyofaunal contribution to the state and comparison of habitat contiguity on taxonomic diversity in Senkhi stream, Arunachal Pradesh, India. Journal of the Bombay Natural History Society 104(2): 170–177.

Tamang, L., S. Chaudhury & D. Choudhury (2008). Eristhoides senkhiensis, a new catfish (Teleostei: Eristhidae) from India. Ichthyological Exploration of Freshwaters 19(2): 185–191.

Vijaykumar, K., C. Vijayalaxmi & Z. Parveen (2008). Ichthyofaunal diversity of Kagina River in Gulgarga district of Karnataka. The Ecoscan 2(2): 161–163.
Journal of Threatened Taxa is indexed/abstracted in Bibliography of Systematic Mycology and Microbiology, BIOSIS Previews, CAB Abstracts, EBSCO, Google Scholar, Index Copernicus, Index Fungorum, JournalSeek, National Academy of Agricultural Sciences, NewJour, OCLC WorldCat, SCOPUS, Stanford University Libraries, Virtual Library of Biology, Zoological Records.

NAAS rating (India) 5.64

The opinions expressed by the authors do not reflect the views of the Journal of Threatened Taxa, Wildlife Information Liaison Development Society, Zoo Outreach Organization, or any of the partners. The journal, the publisher, the host, and the partners are not responsible for the accuracy of the political boundaries shown in the maps by the authors.

Print copies of the Journal are available at cost. Write to: The Managing Editor, JoTT

Worldwide Information Liaison Development Society
No. 12, Thiruvananathal Nagar, Saravanampatti - Kalapatti Road, Saravanampatti, Coimbatore, Tamil Nadu 641035, India

N. J. Praveen, Bengaluru, India
Dr. C. Srivinivasu, Osmiya University, Hyderabad, India
Dr. K.S. Gopi Sundar, International Crane Foundation, Baraboo, USA
Dr. Gomubabat Sundev, Professor of Ornithology, Ulubara, Mongolia
Prof. Reuven Yosef, International Birding & Research Centre, Eliat, Israel
Dr. Taej Mundkur, Wetlands International, Wageningen, The Netherlands
Dr. Carol Inskipp, Bishop Auckland Co., Durham, UK
Dr. Tim Inskipp, Bishop Auckland Co., Durham, UK
Dr. V. Santharam, Rishi Valley Education Centre, Chittoor Dr., Andhra Pradesh, India
Dr. S. Balachandran, Bombay Natural History Society, Mumbai, India
Mr. J. P. Lowe, National Taiwan Normal University, Taipei City, Taiwan
Dr. Albert G. Orr, Griffith University, Nathan, Australia

Mammals
Dr. Giovani Amori, CNR, Istituto di Ecosystem Studies, Rome, Italy
Dr. Anwaruddin Chowdhury, Guwahati, India
Dr. David Mallon, Zoological Society of London, UK
Dr. Shomita Mukherjee, SACON, Coimbatore, Tamil Nadu, India
Dr. Karin Schwartz, George Mason University, Fairfax, Virginia.
Dr. M. Zafar-ul Islam, Prince Saud Al Faisal Wildlife Research Center, Taif, Saudi Arabia
Mr. Monnendu Roy, London, UK
Dr. Saito Motoki, The Butterfly Society of Japan, Tokyo, Japan
Dr. Sanjay Sondhi, TITI TRUST, Kalapurksh, Dehradun, India
Dr. Nityn Kulkarni, Tropical Research Institute, Jabalpur, India
Dr. Robin Won Jin Sang, National Parks Board, Singapore
Dr. Lional Mondal, National History Museum of Geneva, Genève, Switzerland.
Dr. Asheesh Shrivam, Nehru Gram Bharati University, Allahabad, India
Dr. Rosana Moreira da Rocha, Universidade Federal do Paraná, Curitiba, Brazil
Dr. Kirt R. Arnold, North Dakota State University, Saxey, Germany
Dr. James M. Carpenter, American Museum of Natural History, New York, USA
Dr. David M. Clabom, Missouri State University, Springfield, USA
Dr. Karen Chabrel, Marine Biologist, Wellington, New Zealand
Dr. Amazonas Chagas Júnior, Universidade Federal de Mato Grosso, Cuiaba, Brasil
Mr. Monsoon Jyoti Gogoi, Assam University, Silchar, Assam, India
Dr. Bhargava L. Chauhan, IIT, New Delhi, India
Dr. Himender Bharti, Punjab University, Punjab, India

Other Disciplines
Dr. Anwaruddin Chowdhury, Guwahati, India
Dr. David Mallon, Zoological Society of London, UK
Dr. Shomita Mukherjee, SACON, Coimbatore, Tamil Nadu, India
Dr. Karin Schwartz, George Mason University, Fairfax, Virginia.
Dr. M. Zafar-ul Islam, Prince Saud Al Faisal Wildlife Research Center, Taif, Saudi Arabia

Birds
Dr. Hem Sagar Baral, Charles Sturt University, NSW Australia
Mr. H. Byju, Coimbatore, Tamil Nadu, India
Dr. Chris Bowden, Royal Society for the Protection of Birds, Sandy, UK
Dr. Priya Davidar, Pondicherry University, Kalapatp, Puducherry, India
Dr. J.W. Duckworth, IUCN SSC, Bath, UK
Dr. Rajah Jayapal, SACON, Coimbatore, Tamil Nadu, India
Dr. Raji S. Kali, M.L.N. College, Yamuna Nagar, Haryana, India
Dr. V. Santharam, Rishi Valley Education Centre, Chittoor Dr., Andhra Pradesh, India
Dr. S. Balachandran, Bombay Natural History Society, Mumbai, India
Mr. J. P. Lowe, National Taiwan Normal University, Taipei City, Taiwan
Dr. Albert G. Orr, Griffith University, Nathan, Australia

Dr. Sameer Padhye, Katholieke Universiteit Leuven, Belgium
Dr. Albert G. Orr, Griffith University, Nathan, Australia
Dr. S. R. Padhye, Katholieke Universiteit Leuven, Belgium
Dr. Nancy van der Poorten, Toronto, Canada
Dr. Karen Chabrel, NIWA, Wellington, New Zealand
Dr. R.M. Sharma, (Retd) Scientist, Zoological Survey of India, Pune, India
Dr. Manja Siliwal, WILD, Coimbatore, Tamil Nadu, India
Dr. G.P. Sinha, Botanical Survey of India, Allahabad, India
Dr. A.A. Subramanian, Zoological Survey of India, New Alipore, Kolkata, India
Dr. P.M. Sureeshan, Zoological Survey of India, Kochi, Cochin, Kerala, India
Dr. R. Varatharajan, Manipur University, Imphal, Manipur, India
Dr. Eduardo Vives, Museu de Ciències Naturals de Barcelona, Terrassa, Spain
Dr. James Young, Hong Kong Lepidopterists' Society, Hong Kong

Dr. R. Sundararaj, Environmental Department, La Ala Al Kuwait Real Estate. Co. K.S.C., Kuwait
Dr. Himender Bharti, Punjab University, Punjab, India
Mr. P. Murundu Roy, London, UK
Dr. Saito Motoki, The Butterfly Society of Japan, Tokyo, Japan
Dr. Sanjay Sondhi, TITI TRUST, Kalapurksh, Dehradun, India
Dr. Nityn Kulkarni, Tropical Research Institute, Jabalpur, India
Dr. Robin Won Jin Sang, National Parks Board, Singapore
Dr. Lional Mondal, National History Museum of Geneva, Genève, Switzerland.
Dr. Asheesh Shrivam, Nehru Gram Bharati University, Allahabad, India
Dr. Rosana Moreira da Rocha, Universidade Federal do Paraná, Curitiba, Brazil
Dr. Kirt R. Arnold, North Dakota State University, Saxey, Germany
Dr. James M. Carpenter, American Museum of Natural History, New York, USA
Dr. David M. Clabom, Missouri State University, Springfield, USA
Dr. Karem Chabrel, Marine Biologist, Wellington, New Zealand
Dr. Amazonas Chagas Júnior, Universidade Federal de Mato Grosso, Cuiaba, Brasil
Mr. Monsoon Jyoti Gogoi, Assam University, Silchar, Assam, India
Dr. Hoa Chong Chiu, Research Fellow, TATA, Shenzhen, China
Dr. R.J. Shiel, University of Adelaide, SA 5005, Australia
Dr. Siddharth Kulkarni, The George Washington University, Washington, D.C.
Dr. Priyadasan Panjaram Rajan, ATREE, Bengaluru, India
Dr. Phil Alderson, Chichester, West Sussex, England
Dr. John E.N. Veron, Coral Reef Research, Townsville, Australia
Dr. David Mallon, Zoological Society of London, UK
Dr. Shomita Mukherjee, SACON, Coimbatore, Tamil Nadu, India
Dr. Angie Appel, Wild Cat Network, Germany
Dr. P.O. Nameer, Kerala Agricultural University, Thrissur, Kerala, India
Dr. Ian Redmond, UNEP Convention on Migratory Species, Lansdown, UK
Dr. Heidi S. Riddle, Riddle's Elephant and Wildlife Sanctuary, Arkansas, USA
Dr. Karin Schwartz, George Mason University, Fairfax, Virginia.
Dr. Lala A.K. Singh, Bhubaneswar, Orissa, India
Dr. Mewa Singh, Mycological Society of India
Dr. Paul Racey, University of Exeter, Devon, UK
Dr. Honnaivali N. Kumara, SACON, Anakkarty P.O., Coimbatore, Tamil Nadu, India
Dr. Nishith Dharaiya, HNG University, Patan, Gujarat, India
Dr. Spartaco Gippoliti, Socio Onorario Società Italiana per la Storia della Fauna "Giuseppe Altobello", Rome, Italy
Dr. Justus Joshua, Green Forest Foundation, Tiruchirapalli, Tamil Nadu, India
Dr. Hans-Peter Schmid, Jenaer Landesmuseum Forst, Jena, Germany
Dr. H. Raghuram, The American College, Madurai, Tamil Nadu, India
Dr. Paul Bates, Harison Institute, Kent, UK
Dr. Jim Sanderson, Small Wild Cat Conservation Foundation, Hartford, USA
Dr. Dan Challender, University of Kent, Canterbury, UK
Dr. David Mallon, Manchester Metropolitan University, Derbyshire, UK
Dr. Brian L. Cypher, California State University Stanislaus, Belmont, CA
Dr. Karthik R. Vinayak, Wildlife Trust of India, Kollam, India
Dr. Rajah Jayapal, SACON, Coimbatore, Tamil Nadu, India
Dr. Priya Davidar, Pondicherry University, Kalapatp, Puducherry, India
Dr. Himansu Sekhar Das, Terrestrial & Marine Biodiversity, Abu Dhabi, UAE

Journal of Threatened Taxa is indexed/abstracted in Bibliography of Systematic Mycology, Biological Abstracts, BIOSIS Previews, CAB Abstracts, EBSCO, Google Scholar, Index Copernicus, Index Fungorum, JournalSeek, National Academy of Agricultural Sciences, NewJour, OCLC WorldCat, SCOPUS, Stanford University Libraries, Virtual Library of Biology, Zoological Records.
Articles

The Javan Leopard Panthera pardus melas (Cuvier, 1809) (Mammalia: Carnivora: Felidae) in West Java, Indonesia: estimating population density and occupancy
– Anton Ario, Senjaya Marcusiana, Ayi Rustadi, Robi Gumilang, I Gede Gelse
Darma Putra Wirawan & Toni Ahmad Slamet, Pp. 21331–21346

Breeding phenology and population dynamics of the endangered Forest Spiny Reed Frog Acris ciliaris (Schlegel, 1837) in Shimba Hills, Kenya
– Alfayo Koskey, George Eshiamwata, Bernard Kirui & Phylus K. Cheruiyot, Pp. 21347–21355

Ichthyofaunal diversity of Senkhi stream, Itanagar, Arunachal Pradesh: a comparative status between 2004–05 and 2018–19
– Koj Taro, Lakpa Tamang & D.N. Das, Pp. 21356–21367

First record of Proceratium Roger, 1863, Zaspithectus Wheeler, 1918, and Volleinhovia Mayr, 1865 (Hymenoptera: Formicidae) from the Western Ghats of peninsular India, description of three new species, and implications for Indian biogeography
– Kalesh Sadasivan & Manoj Kripakaran, Pp. 21368–21387

Communications

New queen? Evidence of a long-living Jaguar Panthera onca (Mammalia: Carnivora: Felidae) in Tikal National Park, Guatemala
– Carlos A. Gaitán, Manolo J. García, M. André Sandoval-Lemus, Vivian R. González-Castillo, Gerber D. Guzmán-Flores & Cristel M. Pineda, Pp. 21388–21395

First camera trap record of Striped Hyena Hyaena hyaena (Linnaeus, 1758) (Mammalia: Carnivora: Hyaenidae) in Parsa National Park, Nepal
– Pramod Raj Regmi, Chhetra Pradhan & Prakash Singh, Pp. 21396–21401

Range extension and new ecoregion records of the Crocodile Monitor Varanus salvator (Peters & Doria, 1878) (Varanidae) in Papua New Guinea
– Borja Reh & Jim Thomas, Pp. 21402–21408

A checklist of fish and shellfishes of the Poonthura estuary, southwestern coast of India
– Kiranya Bella, Pramila Sahadevan, Giri Bhavan Sreekanth & Rajeev Raghavan, Pp. 21409–21420

A new species of Protosticta Selys, 1885 (Odonata: Zygoptera: Platystictidae) from Western Ghats, India
– Kalesh Sadasivan, Vinayan P. Nair & K. Abraham Samuel, Pp. 21421–21431

A case study on utilization and conservation of threatened plants in Sechu Tuan Nalla Wildlife Sanctuary, western Himalaya, India
– Puneet Kumar, Harminder Singh & Sushil Kumar Singh, Pp. 21432–21441

A survey of ethno-medicinally important tree species in Nauradehi Wildlife Sanctuary, central India
– Tinku Kumar, Akash Kumar, Amit Jugnu Bishwas & Pramod Kumar Khare, Pp. 21442–21448

Short Communications

Effects of a Bengal Slow Loris Nycticebus bengalensis (Primates: Lorisidae) bite: a case study from Murlen National Park, Mizoram, India
– Amit Kumar, Alroy J. Giordano & Sushanto Gouda, Pp. 21449–21452

First record of Garra briostris Nebeshwar & Vishwanath, 2013 (Cypriniformes: Cyprinidae) from Doyang and Dikhu rivers of Brahmaputra drainage, Nagaland, India
– Sophiya Eung, Metevinu Kechu & Pranay Punj Pankaj, Pp. 21453–21457

Two new records of Lilac Silverline Apharitis lilacinus (Lepidoptera: Lycaenidae) from northeastern India
– Madhu Chetri, Biswajit Chakdar & Girish Jathar, Pp. 21458–21461

Illustrated description of the mantis Mesopteryx paulsiana (Mantodea: Mantidae) collected from West Bengal, India
– Gaurav K. Mishra, Pooja Maurya & Dalip K. Upreti, Pp. 21467–21469

Notes

A new southern distribution record for Pacific Marten Martes caurina
– Maximillian L. Allen, Brianne Kenny, Benjamin Crawford & Morgan J. Farmer, Pp. 21470–21472

First Asian record of Light-mantled Albatross Phoebetria palpebrata (Foster, 1785) from Rameswaram Island, Tamil Nadu, India
– H. Byju & N. Raveendran, Pp. 21473–21475

Salvia misella Cobea (Lamiaceae) - a new record for Eastern Ghats of India
– Prabhakumar Das, Pradeep Kumar Kamila & Pratap Chandra Panda, Pp. 21576–21579

Salsola oppositifolia Desf. in Great Rann of Kachchh, Gujarat – a new record for India
– Rakesh Gujar, Vinesh Gamit, Ketan Tatu & R.K. Sugoor, Pp. 21580–21483

Extended distribution of Impatiens scapiflora (Balsaminaceae) to the flora of Eastern Ghats, India
– T.S. Saravanan, S. Kaliamoorthy, M.U. Sharief & M.U. Shari, Pp. 21484–21486