CAMELOT
Computational-Analytical Multi-fidelity Low-thrust Optimisation Toolbox

Marilena Di Carlo, Juan Manuel Romero Martin, Massimiliano Vasile

Department of Mechanical and Aerospace Engineering
University of Strathclyde, Glasgow, UK

marilena.di-carlo@strath.ac.uk

6th International Conference on Astrodynamics Tools and Techniques
Darmstadt, 14-17 March 2016
Computational-Analytical Multi-fidelity Low-thrust Optimisation Toolbox (CAMELOT)

Preliminary design and optimisation of multiple-target low-thrust missions.

- **FABLE**: Fast Analytical Boundary-value Low-thrust Estimator
- **MP-AIDEA**: Multi-Population Adaptive Inflationary Differential Evolution Algorithm
- **AIDMAP**: Automatic Incremental Decision Making And Planning algorithm
Cost estimation of low-thrust orbital transfer using **multi-fidelity** analytical approach and **surrogate** models.

Low-fidelity fast analytical estimation of low-thrust transfer cost.

Analytical low-thrust control law:

Transfer type	Reference
\(a_0 \rightarrow a_f\)	Ruggiero et al. (2011)
\((a_0, i_0) \rightarrow (a_f, i_f), e = 0\)	Edelbaum (1961)
\((a_0, i_0) \rightarrow (a_f, i_f), e = 0, a < \bar{a}\)	Kechichian (2010)
\((a_0, \Omega_0) \rightarrow (a_f, \Omega_f), e = 0\)	Kechichian (2010)
\((a_0, e_0, \omega_0) \rightarrow (a_f, e_f, \omega_f)\)	da Silva et al. (2015)
\(a_0 \rightarrow a_f, e_0 = e_f\)	Burt (1967)
\(e_0 \rightarrow e_f, a_f = a_0\)	Ruggiero et. al. (2011)
\((e_0, i_0) \rightarrow (e_f, i_f), a_f = a_0\)	Burt (1967)
\(i_0 \rightarrow i_f\)	Pollard (2000)
\(\omega_0 \rightarrow \omega_f\)	Ruggiero et al. (2011)

Change of semimajor axis and inclination of circular orbit (Edelbaum):

- Semimajor axis [km] vs. Time [days]
- Inclination [deg] vs. Time [days]
- Velocity [km/s] vs. Time [days]
Higher-fidelity analytical model:

- **Osculating analytical propagator** based on analytical formulas for the perturbed Keplerian motion (first order expansion in the perturbing acceleration):
 - low-thrust acceleration
 - J2 zonal harmonic
 - atmospheric drag
 - solar radiation pressure (eclipses)

- **Averaged analytical propagator**
- Different control parametrisation can be implemented
Use of surrogate models to model the cost of the transfer to allow for fast evaluation of complex trajectories

Surrogate models:
- **Kriging**
- **Co-Kriging** (few samples from higher-fidelity model, many samples from low-fidelity model)
- **Tchebycheff** sparse grid

Multi-fidelity optimisation: maximisation of expected improvement associated to Co-Kriging
- Maximisation of expected improvement: point where the likelihood of achieving an improvement is maximised
Multi population single objective adaptive global optimiser based on the combination of Differential Evolution with Monotonic Basin Hopping

- Automatic adaptation of the parameters of Differential Evolution and Monotonic Basin Hopping
- **Local search** after Differential Evolution
- **Local restart**: transition from one local minimum to another
- Strategy to avoid multiple detection of the same local minima
 - Basin of attraction
 - **Global restart**
Single objective **incremental decision making algorithm** for the solution of complex **combinatorial optimisation problems** such as tasks planning and scheduling.

- **AIDMAP** decision making map based on **tree-like** topology:
 - Nodes: decisions made
 - Edges: cost associated to decision

- Tree built **incrementally with time** through **exploration** and **growth** by virtual agents

- Possible heuristics:
 - **Deterministic**: Branch-and-Cut algorithm
 - **Probabilistic**: bio-inspired Physarum algorithm
Applications

- Multiple Atira Asteroids Fly-by Mission
- Multiple Active Debris Removal Mission
Multiple Atira Asteroids Fly-by Mission

- $a < 1$ AU, $Q < 0.983$ AU
- 14 known Atira asteroids - many more IEOs are expected to exist
- Observation of the inner Solar System: limitations of ground-based survey (Sun in the instrument field of view)
- Fly-by at the nodal points of the asteroids’ orbit
Multiple Atira Asteroids Fly-by Mission

- AIDMAP
 - Identification of optimal:
 - sequence of asteroids
 - departure dates
 - times of flight
 - Impulsive model: Lambert arcs with departure dates at steps of 10 days.

133,761 solutions identified:
Multiple Atira Asteroids Fly-by Mission

- **AIDMAP**

 Best Solution: fly-by with 6 asteroids, $\Delta V = 3.77$ km/s

Asteroid	Departure Date	ToF [days]	ΔV [km/s]
2013JX28	2020/09/29	205	0.87
2006WE4	2022/05/14	215	0.86
2004JG6	2023/06/14	235	0.61
2012VE46	2024/09/11	265	0.36
2004XZ130	2026/09/15	205	0.73
2008UL90	2028/07/31	195	0.34

TOT. | 3.77
Multiple Atira Asteroids Fly-by Mission

MP-AIDEA

- Identification of **new departure dates leading to reduced** ΔV
- Global optimisation with search space defined allocating **time window of ± 10 days** around previously identified departure dates

Asteroid	AIDMAP Dep. Date	MP-AIDEA Departure Date	AIDMAP ΔV [km/s]	MP-AIDEA ΔV [km/s]
2013JX28	2020/09/29	2020/09/20	0.87	0.95
2006WE4	2022/05/14	2022/05/24	0.86	0.69
2004JG6	2023/06/14	2023/06/12	0.61	0.61
2012VE46	2024/09/11	2024/09/05	0.36	0.34
2004XZ130	2026/09/15	2026/09/18	0.73	0.72
2008UL90	2028/07/31	2028/08/10	0.34	0.29
TOTAL			**3.77**	**3.61**
Multiple Atira Asteroids Fly-by Mission

- **FABLE**
 - Direct optimisation method and multiple shooting algorithm
 - Spacecraft injected into an hyperbolic escape orbit from Earth that encounters the first asteroids at its nodal point.
 - Low-thrust engine: $T = 0.07 \text{ N}, I_{sp} = 3000 \text{ s}$

Asteroid	m_0 [kg]	m_f [kg]	ΔV [km/s]
2013JX28	700	700	-
2006WE4	700	673.45	1.12
2004JG6	673.45	642.07	1.37
2012VE46	642.07	633.47	0.39
2004XZ130	633.47	600.89	1.51
2008UL90	600.89	594.17	0.30
TOT.			**4.69**
Multiple Atira Asteroids Fly-by Mission

- **FABLE**
 - Transfer to a **reduced perihelion orbit (0.725 AU)** for observation of asteroids of the inner Solar System
 - Transfer: low-thrust propulsion or Earth gravity-assist
 - \(T_0 / T_{⊕} = 0.88 \)
 - \(T_f / T_{⊕} = 0.78 \)

\(\Delta V \) [km/s]	ToF [days]
1.79	422

\(\Delta V \) [km/s]	ToF [days]
1.31	565
Multiple Active Debris Removal Mission

- Deorbiting of **large satellites from LEO** (800 - 1400 km) using a **low-thrust servicing spacecraft** ($T = 0.1$ N, $I_{sp} = 1600$ s, $m = 1000$ kg)

- Two possible strategies:
 - multi-target delivery of **de-orbiting kits** (100 kg) to perform a controlled re-entry;
 - low-thrust **fetch and deorbit** using the single servicing spacecraft.

- Selected targets: 25 objects with high Criticality of Spacecraft Index and low inclination (J2 drift to change Ω)

![Graph showing perigee and apogee altitude vs. inclination.](image)
Multiple Active Debris Removal Mission

- FABLE: transfer between two satellites (multi-target delivery of deorbiting kit)
Multiple Active Debris Removal Mission

- FABLE: transfer between two satellites (multi-target delivery of deorbiting kit)
- FABLE: deorbiting of objects (fetch and de-orbit)
 - Spiral with negative tangential acceleration: $\gamma = 0$ deg
 - Increase of eccentricity (negative thrust at apogee and positive thrust at perigee): $\gamma = 1.5$ deg
Multiple Active Debris Removal Mission

- **FABLE**: transfer between two satellites (multi-target delivery of deorbiting kit)

- **FABLE**: deorbiting of objects (fetch and de-orbit)
 - Spiral with negative tangential acceleration: $\gamma = 0 \text{ deg}$
 - Increase of eccentricity (negative thrust at apogee and positive thrust at perigee): $\gamma = 1.5 \text{ deg}$

- **FABLE**: surrogate model of the cost of the transfer for different possible initial mass of the spacecraft and time of flight of the transfer
Multiple Active Debris Removal Mission

- FABLE: transfer between two satellites (multi-target delivery of deorbiting kit)
- FABLE: deorbiting of objects (fetch and de-orbit)
 - Spiral with negative tangential acceleration: $\gamma = 0$ deg
 - Increase of eccentricity (negative thrust at apogee and positive thrust at perigee): $\gamma = 1.5$ deg
- FABLE: surrogate model of the cost of the transfer for different possible initial mass of the spacecraft and time of flight of the transfer
- AIDMAP: identification of the optimal sequence of targets to be removed using surrogate model
Multiple Active Debris Removal Mission

Multi-target delivery of de-orbiting kits:

Departure Object	Arrival Object	ΔV [km/s]	ToF [days]	m_0 [kg]	m_f [kg]
1	39015	0.0628	30.43	1900.00	1892.40
2	40343	0.1128	65.75	1792.40	1779.55
3	40340	0.0595	33.14	1679.55	1673.19
4	39016	0.0429	29.73	1573.19	1568.89
5	40342	0.0339	42.28	1468.89	1465.72
6	40338	0.0013	7.05	1365.72	1365.60
7	40339	0.1116	44.55	1265.60	1256.63
8	39011	0.0035	14.19	1156.63	1156.37
9	39012	0.0448	28.04	1056.37	1053.34
Total	-	-	0.4731	294.17	-

Fetch and deorbit:

Departure Object	Arrival Object	ΔV [km/s]	ToF [days]	m_0 [kg]	m_f [kg]
1	39244	1.1307	159.91	3000.00	890.11
2	36413	0.9811	182.32	2890.11	802.79
Total	-	-	2.1118	373.23	-

CAMELOT Applications
Conclusions

Multiple Atira Asteroids Fly-by Mission
Multiple Active Debris Removal Mission
Conclusions

CAMELOT, toolbox for the preliminary design of multi-target low-thrust missions:

- **FABLE**: low-thrust transfer estimator
- **MP-AIDEA**: single objective multi population adaptive global optimiser
- **AIDMAP**: single objective combinatorial optimiser

Applications:

- **Multiple Atira Asteroids Fly-By Mission**
 - Six asteroids fly-by in less than 10 years
 - Limited propellant consumption

- **Multiple Active Debris Removal Mission**
 - De-orbiting kits: 10 objects removed from LEO in less than 1 year
 - Fetch and deorbit: 3 objects removed from LEO
Thank you. Questions?