ASSSESSMENT OF FUNGI AND VIRUSES IN ARTICHOKE (Cynara scolymus L.) IN DA LAT, LAM DONG PROVINCE

Hoang Thanh Tung¹, Hoang Dac Khai¹, Do Manh Cuong¹, Le Van Thuc¹2, Le The Bien¹, Ho Viet Long¹, Vo Ha Tuyet Hanh¹, Hoang Le Lan Anh¹, Nguyen Thi Nhu Mai¹, Nguyen Nhu Minh Nguyet¹, Vu Thi Hien¹, Vu Quoc Luan¹, Nguyen Khoa Truong¹, Le Ngoc Trieu¹, Hoang Thi Nhu Phuong³, Duong Tan Nhut¹²

¹Tay Nguyen Institute for Scientific Research, Vietnam Academy of Science and Technology
²Graduate University of Science and Technology, Vietnam Academy of Science and Technology
³Da Lat University

*To whom correspondence should be addressed. E-mail: duongtanhut@gmail.com

Received: 12.6.2020
Accepted: 28.7.2020

SUMMARY

Artichoke (Cynara scolymus L.), a high economic value crop, was brought to Vietnam by the French in the late 19th century. The artichoke was mainly planted in Lam Dong, Lao Cai, Vinh Phuc provinces, etc. At present, the disease situation of Artichoke plants and the lack of disease-free seedlings result in insufficient source of Artichoke for producers. Artichoke plants are mainly vegetative propagation and pathogens easily transferred from mother to daughter plants. Therefore, low propagation rate and fungal infection are two main factors hindering the expansion and development of Artichoke cultivation (in Lam Dong). Therefore, studying and evaluating the situation of fungi and viruses as well as establishing the in vitro propagation procedures in order to produce high number of disease-free seedlings are urgent for the current Artichoke shortage. In this study, samples of purple and white Artichoke varieties, which suspected fungal manifestations, were collected to assessment of fungi and viruses in artichoke. In addition, in vitro propagation by cultivating apical meristem was applied to produce disease-free seedlings. The recorded results showed that, 19 strains of mold were identified on purple and white Artichoke belonged to nine genera including Mucor (M. sp., M. circinelloides, M. fragilis, M. irregularis, and M. racemosus), Alternaria (Alternaria sp., A. alternata, A. gaisen, A. tenuissima, and A. tillandsiae), Fusarium (F. acuminatum and F. solani), Cylindrobasidium (Cylindrobasidium sp1 and Cylindrobasidium sp2), Actinomucor elegans, Curvularia clavata, Plectosphaerella oligotrophica, Phoma herbarum, Rhizomucor variabilis; meanwhile, the Tomato mosaic virus (ToMV) was isolated only purple Artichoke. Shoot explants obtained from apical meristem culture were completely disease-free and used for micropropagation at the next stage.

Keywords: Artichoke, disease-free, fungi, Tomato mosaic virus.

INTRODUCTION

Artichoke (Cynara scolymus L.) belonged to the Asteraceae family, which is a high economic value crop, brought to Vietnam by the French in the late 19th century. Artichoke prefers cool weather all year round with a temperature of about 15 - 18°C (altitude of 1,000 - 1,500 m). Therefore, Artichoke is mainly grown in Da Lat (Lam Dong), Sapa, Muong Khuong (Lao Cai), Tam Dao (Vinh Phuc), etc. Initially, Artichoke included A75 variety (cultivated before 1975) and A80 (hybrid variety) planted since 1980. By 1985,
many new Artichoke varieties were researched and bred, of which the A85 variety was highly appreciated. In addition, Artichoke varieties could be cultivated for 3 main harvesting purposes: flower only, leaf only and both flower and leaf (Lam Dong Agricultural Center, 2017). All plant parts (flower, leaf, stem, root, etc.) are valuable and could be used for many purposes.

The main active ingredient of Artichoke is cynarine (acid 1,3-dicafein quinic – C_{12}H_{23}O_{12}.H_{2}O). In addition, Artichoke also contains other chemical compositions such as inulin, inulinase, tannin, organic salts of metals (potassium, calcium, magnesium, sodium, etc.) as well as antioxidants including quercetin, rutin, anthocyanins, cyanine, luteolin, silymarin (Wang et al., 2003; Bundy et al., 2004; Wittemer et al., 2005). Tannin, flavonic heteroside (cyanoside) and an ether insoluble substance called scolymoside are found in fresh leaves. Particularly, the inflorescence contains protid (3%), lipid (0.1 - 0.3%), sugar (11 - 15.5%, mainly inulin sugar; needed for diabetics), vitamins A, B1, B2, C and manganese, phosphorus, iron minerals (Ministry of Health, 2009).

Due to their benefits for human health, the area of Artichoke plantation has been expanded to meet the growing needs of the farmers, to extract medicinal compounds, as well as to export. However, with the situation of Artichoke disease and the shortage of sources of disease-free seedlings, result in insufficient source of Artichoke for producers. In cultivated Artichoke varieties, about 25 viruses classified into 15 genera, belonging to 10 families of viruses that have been identified so far on samples of C. scolymus and C. cardunculus (Gallitelli et al., 2012). In addition, stunting (Artichoke patchy chlorotic stunting, APCS) was the most serious disease on Artichoke, especially in Greece (Kyriakopoulou, 1995). This disease is Artichoke Italian latent nepovirus (AILN), belongs Secoviridae family, which is spread by the Longidorus fasciatus Roca et Lamberti (Kyriakopoulou, 1995). In Vietnam in general and in Lam Dong in particular, Bemisia argentifolii and Aphid have been recorded as the two main pests on Artichoke. They affect the growth and development of plants that cause loss of productivity. In addition, leaf spot and wilt disease are common of Artichoke in Lam Dong (Lam Dong Agricultural Center, 2017).

Besides, the cultivated Artichoke varieties have a life span of more than 30 years ago, degraded varieties, low productivity and reduced quality. According to the farmers, only 1.5 - 2 kg of flower was obtained per tree recently, decreased more than 3 times compared to ten years ago. In order to overcome this problem, farmers and agriculture have paid much attention to the restoration of Artichoke in the past, but there have been no significant changes and the efficiency is not high and not yet synchronized. At present, the main source of Artichoke seedlings in Lam Dong is the actual Artichoke seedlings (seedlings imported from foreign countries like France). Vegetative propagation by axillary shoots is often used for propagation. However, the low propagation rate and the fungal infection are the two main factors hindering the expansion and development of Artichoke in the world through plant breeding. In addition, there are many varieties being planted in farmers’ gardens. Farmers mainly produce young plantlet spontaneously or buy seed from seed production companies. Moreover, it is not proactive in seed source, quality and uniformity of breeding. Therefore, researching and assessing the situation of fungal diseases as well as establishing the in vitro propagation procedures in order to produce high number of disease-free seedlings are urgent for the current Artichoke pharmaceutical crisis.

MATERIALS AND METHODS

Plant samples

Samples of purple (P - 01; P - 02; P - 03; P - 04; P - 05; P - 06) and white (W - 07; W - 08; W - 09) Artichoke varieties, which suspected
fungal manifestations, were collected at Artichoke farmers’ gardens in 12 Ward, Xuan Truong and Xuan Tho Commune (Da Lat, Lam Dong) to assess the situation of fungi and virus infections.

Meristem culture

Ex vitro plants (3-month old) collected from farmers’ gardens in Da Lat were used as *in vitro* culture materials. The mother plant is pre-treated to collect shoots; after that, the meristem tissue was isolated from the shoots and cultured on MS medium (Murashuige, Skoog 1962) supplemented with 0.2 mg/L BA, 30 g/L sucrose and 8 g/L agar. The culture media were sterilized with autoclave at 121°C, 1 atm for 20 min. The explants were cultured *in vitro* under fluorescent light, lighting cycle 12h/day, temperature 25 ± 2°C and humidity 55 - 60%. Shoots were collected to assess the possibility of viral infection.

Fungi isolation

Physiological saline and sample cutting device were prepared. The leaf was washed with NaCl 0.09% twice, then cut the leaf in a rectangular shape with one side shows the sign of disease and one side shows no signs of disease. Samples were placed on PGA (Potato Glucose Agar) and WA (Watter Agar) media containing antibiotics in the incubator at 28°C for 48 hours.

Fungi morphology

After 48 hours incubating, the mycelium system was transferred to grow from isolated specimens into PGA medium and incubated at 28°C for 48 hours. After 48 hours, take out and record the fungal morphology.

Microscopic morphology of fungal and actinomycetes was observed after 24 h, 48 h, 72 hand 96 h under microscope. The mycelium system, structure and shape of spores and petiole were recorded.

Each obtained colony was isolates and examined morphological characteristics by slide (Proctor, 1977). The micro characteristics of each mycelial colony was observed under microscope with 1000× magnification.

Check for viruses

Common viruses on Artichoke were tested on field-collected samples using RT-PCR (Table 1). Nucleic acid extraction by CTAB1 (Weising et al., 2005) improved by adding 10% SDS to the extraction buffer and without RNA reduction.

DNA extraction and quality control

The quality and concentration of isolated DNA were checked as described (Weising et al., 2005). The optical density at 260 nm represented for DNA concentration and optical density ratio measured at two wavelengths 260 nm and 280 nm for DNA purity. DNA samples (kept at -20°C) which achieve a purity (1.75 - 1.95) based on the OD260/OD280 ratio can be used for further research.

PCR amplification

A reaction volume (50 μL) including 5 μL My Red HS Taq mix (Bioline), 0.2 μM primer and about 30 ng DNA template were prepared. The amplification is performed on the Eppendorf thermocycler system (Eppendorf, Hamburg, Germany) with the heat program as follows: (1) Initial denaturation at 94°C for 5 min; (2) 36 cycles of 45 s of denaturation 94°C, 45 s of primer annealing at 50°C, and 1 min 30 s of primer extension at 72°C; (3) extends the circuit at 72°C for 15 min.

Analysis of RT-PCR amplified products

The amplified product is electrophoresis to separate on 2% Agarose gel using TBE buffer for 3 h at 60 V. Then, the sample was stained with ethidium bromide (0.5 μg/mL), photographed under light with a wavelength of 254/312 nm on UVP Gel Studio Plus System (Analitik Jena, Germany).
Table 1. Testing of viruses on Artichoke samples collected in the field.

No.	Type of viruses	Primers 5’ – 3’	Amplicon size (bp)	References
1	Artichoke Italian latent nepovirus (AILV)	ATTCACTAGTCCCTATTTAG	769	Minutillo et al., 2012
2	Artichoke mottled crinkle tombusvirus (AMCV)	ATGGCAATGGTAAAGAGAAA	553	Minutillo et al., 2012
3	Artichoke latent potyvirus (ArLV)	TTGTTCATAAGGGAGCGGT	499	Minutillo et al., 2012
4	Clover yellow vein virus (CYVV)	CATTCCAGACAGAGACATCAATGCAG	750	Bariana, 2016
5	Tomato spotted wilt virus (TSWV)	AGCTAACCATGGTTAAGCTCACTAAGGAAAGC	760	Sivparad and Gubba, 2008
6	Cucumber mosaic virus (CMV)	GTTTATTACAAGGCGGTACGG	657	Kumar et al., 2008
7	Turnip mosaic virus (TuMV)	ATTCCTGATAACGCTCGAGAGCA	986	Sanchez et al., 2003
8	Potato virus X (PVX)	AAG CCT GAC AAA TTC GC	101	Sanchez et al., 2003
9	Tomato mosaic virus (ToMV)	GAA AGC GGA CAGAAA CCC GCT G	508	Silva et al., 2008

RESULTS AND DISCUSSION

In vitro propagation

Apical meristem tissue with 0.1 – 0.2 mm in size (Fig. 1A, B) derived from ex vitro plant was obtained. Then, apical meristem was cultured on shoot regeneration medium in 8 weeks (El-Zeiny et al., 2013). Those shoots of purple and white Artichoke were obtained (Fig. 1C, D) and checked for viruses.

Currently, Artichoke was propagated by three main methods: (1) separating seedlings from the mother plant (most common), (2) seedling and (3) plantlet from tissue culture (at least). Besides, some companies have imported Artichoke seeds from foreign countries such as France, USA, etc. However, the propagation is still spontaneous, not synchronized and there is no long-term strategy in controlling seed sources. Therefore, seedlings are of poor quality and carry pathogens (Lam Dong Agricultural Center, 2017).

Besides the low propagation rate, the possibility of fungal infection is the main factor hindering the expansion and development of Artichoke in Lam Dong province as well as in Vietnam. Pests such as Bemisia argentifolii and Aphid, are 2 main pests of Artichoke, which affect the growth and development of plants due to reducing the yield. The main previously reported diseases are leaf spot (caused by Ramularia cynarae) and wilt disease (caused by Verticillium dahliae) which are common of Artichoke in Lam Dong (Lam Dong Agricultural Center, 2017). However, there have been no recorded results on the impact of the origin of harmful microorganisms. The
results of this study will provide more information on the situation of fungal diseases of artichokes in Da Lat (Lam Dong) in order to be more proactive in control measures as well as towards restoring artichoke plantlets by in vitro propagation.

Figure 1. Artichoke’s shoots derived from apical meristem culture. **A:** Purple apical meristem; **B:** White apical meristem; **C:** Purple shoots; **D:** White shoots. Bars: 0.2 mm (upper panel); 10 mm (lower panel).

Fungi isolation

Through the process of sample collection in the field, the results have recorded a number of samples showing fungal manifestations for analysis on two varieties of purple and white Artichoke (Fig. 2). Stems, leaves, roots with fungal manifestations of purple and white Artichoke varieties were used to isolate and identify fungi. We isolated 19 strains of mold belonged to 09 genera including *Mucor* (5 species: *M. sp.*, *M. circinelloides*, *M. fragilis*, *M. irregularis*, and *M. racemosus*) (Fig. 3), *Alternaria* (5 species *A. sp.*, *A. alterinata*, *A. gaisen*, *A. tenueisima*, and *A. tillandsiae*) (Fig. 4), *Fusarium* (2 species *F. acuminatum* and *F. solani*), *Cylindrobasidium* (2 species: *C. sp1 and C. sp2*) (Fig. 5), and *Actinomucor elegans*, *Curvalaria clavata*, *Plectosphaerella oligotrophica*, *Phoma herbarum*, *Rhizomucor variabilis* (Fig. 6).

The result showed that fungal infection in artichokes depends on the varieties. *Mucor sp.* and *Fusarium sp.* were obtained from both varieties of Artichokes. *Curvalaria clavata*, *Phoma herbarum* and *Rhizomucor variabilis* were identified from white Artichoke meanwhile, *Actinomucor elegans*, *Plectosphaerella oligotrophica* were isolated from purple Artichoke (Table 2).

Besides the low propagation rate, the risk of fungal infection is the main factor hindering the expansion and development of Artichoke in Lam Dong province as well as in Vietnam. *Bemisia argentifolii* and Aphid are the two main harmful insects of Artichoke. They affect the growth and development of plants; therefore,
can affect the yield of harvests. The main preventive measures are plowing and drying soil thoroughly before cultivating, cleaning gardens, creating ventilation to restrict their habitats, etc. or using chemical methods (Lam Dong Agricultural Center, 2017).

Currently, leaf spot and wilt diseases are common on Artichoke in Lam Dong. Residues of diseased plants far from the farming area are regularly cleared. Plants are grown in high, well-ventilated, well-drained areas as well as adequately fertilized to enhance plant resistance. The disease-free varieties problem should be solved. Therefore, the source of disease-free seedlings with good growth, development and adaptation to local climatic conditions is an urgent need for seeds that will need to be addressed (Lam Dong Agricultural Center, 2017).

![Figure 2. Some fungal manifestations on Artichoke plants collected in the field. A, B, C: Purple Artichoke; D, E, F: White Artichoke. Bar: 2 cm.](image)

Table 2. Colony characteristics and mold cell morphology isolated on artichoke

No	Strains	Bacterial colony	Cell morphology	Classification
1	P – 01 N1	Mycelium: thin and grows close to the agar surface Colonies diameter: 2 cm (72 h)	Hyphae: branching, no partition; long convex stems without walls, fungal spore-shaped follicles, oval-shaped spores	*Mucor fragilis*
2	P – 01 N2	Mycelium: thin, grows close to the agar surface, light orange-yellow (center) Colonies diameter: 2.3 cm (48 h)	Hyphae: slender, branched, nonspecific septum (r = 29.5 – 37.7 µm), no spores appear	*Alternaria alternata*
P	N	Description		
---	---	---		
3	P – 01 N3	Mycelium: thick, white, porous and protruding Colonies diameter: 2.5 cm (48 h) and 4.0 cm (72 h) Hyphae: baffled (l = 53 – 89 µm, r = 10 – 17 µm) Spore stem: long, walled (15 µm) Spores: long, spore tip up (crescent) Fusarium solani		
4	P – 01 D1	Mycelium: thin, grows high, light yellow (center), black spores Colonies diameter: 4.0 cm (48 h) and 9.0 cm (72 h) Follicular spores: cone-shaped, long sporoid, without septum Spore oval (l = 14.22 µm, r = 6.95 µm) Mucor fragilis		
5	P – 01 D2	Mycelium: thin, grows high, light yellow in the center Colonies diameter: 2.0 cm (48 h) and 6.0 cm (72 h) Main hyphae: large (r = 28 – 30 µm), branched to smaller, non-baffled branches Spore: cone-shaped, long, non-septal spleen, oval spores Mucor spp.		
6	P – 01 D3	Mycelium: thick, white and grows high, Colonies diameter: 1.5 cm (48 h) and 2.2 cm (72 h: black and gray) Hyphae: branched, without baffles (r = 7.5 – 8.2 µm) Spores: oval, tapered at both ends (l = 13.2 – 13.5 µm, r = 2.9 – 4.1 µm) Spore stem: short (l ~ 37 µm) without septum Alternaria spp.		
7	P – 01 L1	Mycelium: thick, gray-green and grows on the surface of agar Colonies diameter: 2.0 cm (48 h) and 5.5 cm (72 h: black and gray) Hyphae: thin, branched partitioned walls (l = 119 – 189 µm) Spore pouches: spherical, with dividing walls Alternaria gaisen		
8	P – 01 L2	Mycelium: white, smooth, porous, thick and grows above the jelly surface Colonies diameter: 2.0 cm (48 h) and 6.0 cm (72 h) Hyphae: thin (r = 18 – 22 µm), baffled (l = 125 – 169 µm). Spore: sickle shaped Cylindrobasidium sp.		
9	P – 03 N1	Mycelium: thin, white and high Colonies: cotton, porous, pale moss green color Hyphae: branched, without baffles Spore: oval, long stalk Mucor irregularis		
10	P – 03 G1	Mycelium is thin, white and high Colonies: cotton, porous Hyphae: branched, baffled Spore: oval Actinomucor elegans		
11	P – 03 L1	Mycelium: thin and white Colonies: round, growing on the surface of agar Hyphae: branched, with baffles Spore: slightly oval, short stalk Mucor racemosus		
12	P – 03 D1	Mycelium: white, sprouting above the agar surface Colonies: round Hyphae: branched, without baffles, spherical reproductive organs Spores: spherical, sporangia with protruding spines Mucor circinelloides		
13	P – 05 L1	Colonies: white, porous, orange-brown Colonies diameter: 1.5 cm (72 h) Hyphae: branched, without baffles (r = 4.2 – 12.8 µm) Spore: oval (l = 14.2 – 17.4 µm, r = 4.7 – 6.2 µm), growing in clusters of 2 – 3 spores Plectosphaerella oligotrophica		
14	P – 05 L2	Mycelium: white, porous, thin filament center, thick and porous filament Hyphae: branched, not baffled (r = 5 – 11.6 µm). Spores: long, tapering rods at both Cylindrobasidium sp.		
Colonies diameter: 3.2 cm (72 h)
ends (l = 13.4 – 17.7 µm, r = 5.4 – 7.2 µm), short-stemmed spores, at the position of attaching smaller spores.

15 P – 06 L1
Mycelium: thick, white, grows protruding, black pigment, white filamentous colonies (center), black filamentous (border)
Colonies diameter: 1.0 cm (48 h) and 3.5 cm (72 h)
Hyphae: branched, partitioned (l = 109.2 – 146.3 µm, r = 6.3 – 7.8 µm)
Spores: oval, tapered at the ends, clustered around the hyphae (l = 32.4 – 33.6 µm, r = 11.5 – 14.9 µm)
Alternaria tenuissima

16 P – 06 L2
Mycelium: thick, yellowish-white, protruding, black and gray pigmented (border) and pink (center)
Colonies diameter: 1.5 cm (48 h)
Hyphae: thin, branched, baffled (l = 45 – 58 µm), no spores present
Alternaria tenuissima

17 P – 06 L3
Mycelium: thick, white, black pigment secretion
Colonies diameter: 1.2 cm (48 h) and 2.5 cm (72 h: black gray (center), white sponge (border))
Hyphae: thin, branched, baffled (l = 110 – 115 µm, r = 20 – 29 µm)
Spore: cylindrical, slightly rounded at both ends (spore pointed at the tip) (l ~ 226.37 µm, r ~ 72.99 µm)
Spore stem: long, bulging at the end of contact with spore, with septum
Alternaria tillandsiae

18 W – 07 L1
Mycelium: thick, white, black pigment
Colonies diameter: 2.0 cm (48 h) and 5.0 cm (72 h: black gray)
Hyphae: thin, branched, baffled (l = 77.5 – 87.4 µm, r = 7.8 – 11.2 µm)
Spore: oval, tip slightly pointed (l = 33 – 42 µm, r = 18.7 – 20.9 µm)
Spore stem: long, branched, attached 2-3 spores / stem
Curvalaria lavate

19 W – 07 L2
Mycelium: thick, white, grows close to the surface of the medium, producing pink gold pigment
Colonies diameter: 3.0 cm (48 h) and 6.0 cm (72 h: yellow (center), pink (next round) and white (border))
Hyphae: thin, branched, baffled (l = 141.8 – 147.07 µm, r = 19.3 – 21.3 µm), tend to be curled into filaments, without the presence of spores
Fusarium acuminatum

20 W – 08 L1
Mycelium: white, thick, porous, rising high on the surface of agar
Colonies diameter: 1.5 cm (48 h) and 2.5 cm (72 h)
Hyphae: branched, baffled, at the branching site where there is a bulge (such as burning bamboo, l ~ 57.6 µm, r ~ 7.38 µm), no spores appear
Phoma herbarum

21 W – 08 N2
Mycelium: thin, white, reaching high, black spores.
Colonies: cottony, porous, yellowish (central)
Colonies diameter: 2.5 cm (48 h) and 4.0 cm (72 h)
Main hyphae: large in size, smaller in branching and baffled
Spore: oval, spherical; peduncle has no baffle
Rhizomucor variabilis

22 W – 09 G1
Mycelium: white, flakes close to the surface of the agar
Colonies diameter: 4.5 cm (72 h)
Hyphae: branched, baffled
Spore: rhomboid, tapered at both ends, 5-10 spores at a site.
Mucor circinelloides
Figure 3. Five *Mucor* species isolated from purple and white Artichoke samples. **A, B:** Colonies (front and back); **C:** Mycelium; 1: *Mucor* sp.; 2: *M. circinelloides*; 3: *M. fragilis*; 4: *M. irregularis*; 5: *M. racemosus*.

Figure 4. Five *Alternaria* species isolated from purple and white Artichoke samples. **A, B:** Colonies (front and back); **C:** Mycelium; 1: *Alternaria* sp.; 2: *A. alterinata*; 3: *A. gaisen*; 4: *A. tenuissima*; 5: *A. tillandsiae*.
Figure 5. Fusarium and Cylindrobasidium species isolated from purple and white Artichoke samples. A, B: Colonies (front and back); C: Mycelium; 1: Fusarium acuminatum; 2: F. solani; 3: Cylindrobasidium sp1; 4: Cylindrobasidium sp2.

Figure 6. Other fungi species isolated from purple and white Artichoke samples. A, B: Colonies (front and back); C: Mycelium; 1: Actinomucor elegans; 2: Plectosphaerella oligotrophica; 3: Curvalaria clavata; 4: Phoma herbarum; 5: Rhizomucor variabilis.
Check for viruses

Genomic DNA was used as template for RT-PCR to test the presence of 9 viruses (AILV, AMCV, ArLV, CYVV, TSWV, CMV, TuMV, PVX, ToMV) on Artichoke (Table 1). The electrophoresis result showed that only purple artichoke field samples (P-02) were infected with ToMV at a mild level (Fig. 7). All other samples showed free-virus infection of all 9 investigated viruses. The results of this study showed that Artichokes in Lam Dong have not recorded common viruses (except for TMoV in purple varieties). The current low Artichoke production may be due to the fact that current varieties have been cultivated for a long time leading to reduced yields. Therefore, it is necessary to take appropriate breeding measures to improve the current Artichoke yield and quality. Restoration of Artichoke variety via in vitro culture (apical meristem culture) can create disease-free and good quality plantlets.

Research on viral diseases in Artichoke has been interesting since about the 1960s. Artichoke virus causes dwarfism, and curly leaves (Morton, 1957) and the latent Artichoke S virus are the two earliest detected viruses. In the next stage, a series of virus causing disease was identified as AILV; ACMV; CMV; TSWV; ToMV; Cynara virus, etc. were also isolated from Artichoke disease samples from around the world, respectively (Gallitelli et al., 2012). To date, about 25 viruses, classified into 15 genera, belonging to 10 families of viruses have been found on samples of C. scolymus and C. cardunculus (Gallitelli et al., 2012). Stunting (APCS) is the most serious disease in Artichoke (Kyriakopoulou, 1995). Recently, the next generation sequencing technology (NGS) has developed, allowing for complete sequencing of AILN’s RNA-1 and RNA-2 molecules (Elbeaino et al., 2017).

CONCLUSION

In this study, the results showed that, 19 strains of mold were recorded from 9 samples of white and purple Artichoke varieties. Belonged to 5 Mucor species (Mucor sp., M. circinelloides, M. fragilis, M. irregularis, M. racemosus), 5 Alternaria species (Alternaria sp., A. alternata, A. gaisen, A. tenuissima, A. tillandsiae), 2 Fusarium species (F. acuminatum and F. solani), 2 Cylindrobasidium species (Cylindrobasidium sp1 and Cylindrobasidium sp2), Actinomucor elegans, Curvalaria clavata, Plectosphaerella oligotrophica, Phoma herbarum and Rhizomucor variabilis. In addition, among 9 investigated virus types only ToMV were found in purple Artichoke. The shoots derived from apical meristem culture were free-viruses and used for micropropagation studies at the next stage.

Acknowledgement: This work was financially supported by the Lam Dong Science and Technology Department.

REFERENCES

Bariana HS (2016) Detection of five seedborne legume viruses in one sensitive multiplex
polymerase chain reaction test. American Phytopathol Soc 84(10): 1201-1205.

Bundy R, Walker AF, Middleton RW (2004) Artichoke leaf extract reduces symptoms of irritable bowel syndrome and improves quality of life in otherwise healthy volunteers suffering from concomitant dyspepsia: a subset analysis. J Altern Complement Med 10(4): 667-669.

Elbeaino T, Belghacem I, Mascia T, Gallitelli D, Digiaro M (2017) Next generation sequencing and molecular analysis of artichoke Italian latent virus. Arch Virol 162: 1805-1809.

El-Zeiny OAH, El-Behairy UA, Zocchi G, Rashwan MM (2013) Commercial production of Globe Artichoke (Cynara scolymus L.) in vitro. Egypt J Agric Res 91(3): 933-1007.

Gallitelli D, Mascia T, Martelli GP (2012) Viruses in artichoke. Adv Virus Res 84: 289-324.

Kumar S, Khan M S, Raj SK, Sharma AK (2009) Elimination of mixed infection of Cucumber mosaic and Tomato aspermy virus from Chrysanthemum morifolium Ramat. cv. Pooja by shoot meristem culture. Sci Hort 119: 108-112.

Kyriakopoulou PE (1995) Artichoke Italian latent virus causes artichoke patchy chlorotic stunting disease. Ann Appl Biol 127: 489-497.

Lam Dong Agricultural Center (2017) Artichoke planting technical process. http://khuyennong.lamdong.gov.vn/du-lieu-khuyen-nong/ky-thuat-trong-trot.

Minutillo SA, Mascia T, Gallitelli D (2012) A DNA probe mix for the multiplex detection of ten artichoke viruses. European J Plant Pathol 134(3): 459-465.

Morton DJ (1957) Investigations on the curly-dwarf virus disease of the globe artichoke. Phyto Pathol 47: 529.

Murashuige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15(3): 473-479.

Sanchez F, Wang X, Jenner CE, Walsh JA, Ponz F (2003) Strains of Turnip mosaic poty virus as defined by the molecular analysis of the coat protein gene of the virus. Virus Res 94: 33-43

Silva RM, Souto ER, Pedroso JC, Arakava R, Almeida AMR, Barboza, AAL, Vida JB (2008) Detection and identification of TMV infecting tomato under protected cultivation in Paraná State. Brazilian Arch Biol Tech 51(5): 903-909.

Sivparas BJ, Gubba A (2008) Isolation and molecular characterization of Tomato spotted wilt virus (TSWV) isolates occurring in South Africa. African J Agricultl Res 3: 428-434.

Proctor AG (1977) Mycological method. In: Collins CH, Lyne PM (Eds.) Microbiological methods, 4th editions. Butter Worths, UK.

Wang M, Simon JE, Aviles IF, He K, Zheng QY, Tadmor Y (2003) Analysis of antioxidative phenolic compounds in artichoke (Cynara scolymus L.). J Agric Food Chem 51(3): 601-608.

Weising K, Nybom H, Wolff K, Kahl G (2005) DNA Fingerprinting in Plants Principles, Methods, and applications (second Edition). Cpe Press Taylor and Fancies Group.Wittemer SM, Ploch M, Windeck T, Müller SC, Drewelow B, Derendorf H, Veit M (2005) Bioavailability and pharmacokinetics of caffeoylquinic acids and flavonoids after oral administration of Artichoke leaf extracts in humans. Phytomedicine 12(1-2): 28-38.
ĐÁNH GIÁ VỀ NẤM VÀ VIRUS TRÊN CÂY ARTICHOKE (Cynara scolymus L.)
TẠI ĐÀ LẠT, TỈNH LÂM ĐỒNG

Hoàng Thanh Tùng1, Hoàng Đức Khải1, Đỗ Mạnh Cường1, Lê Văn Thúc1,2, Lê Thế Biên1, Hồ Việt Long1, Võ Hà Tuyết Hạnh1, Hoàng Lê Lan Anh1, Nguyễn Thị Như Mai1, Nguyễn Như Minh Nguyệt1, Vũ Thị Hiền1, Vũ Quốc Luân1, Nguyễn Khoa Trường3, Lê Ngọc Triệu1, Hoàng Thị Như Phương1, Dương Tấn Nhựt1

1Viện Nghiên cứu Khoa học Tây Nguyên, Viện Hàn lâm Khoa học và Công nghệ Việt Nam
2Học viện Khoa học và Công nghệ, Viện Hàn lâm Khoa học và Công nghệ Việt Nam
3Trường Đại học Đà Lạt

TÓM TẮT

Artichoke (Cynara scolymus L.) là một loại cây có giá trị kinh tế cao được người Pháp đưa vào Việt Nam vào cuối thế kỷ 19. Artichoke được trồng chủ yếu ở các tỉnh Lâm Đồng, Lào Cai, Vĩnh Phúc, v.v. Hiện nay, tình trạng bệnh hại trên cây Artichoke và sự thiếu hụt nguồn cây giống sạch bệnh dẫn đến nguồn nguyên liệu Artichoke vẫn không đủ để cung ứng cho các nhà sản xuất. Nguồn cung cấp giống Artichoke tại Lâm Đồng chủ yếu là cây giống thực sinh và cây có nguồn gốc từ chồi non. Tuy nhiên, tỷ lệ nhân giống thấp và khả năng lây nhiễm nấm, virus là hai yếu tố chính cản trở việc mở rộng và phát triển của Artichoke. Do vậy, việc nghiên cứu đánh giá tình hình nấm bệnh và phục tráng giống nhằm tạo cây giống sạch bệnh với số lượng lớn là việc làm hết sức cần thiết trong tình trạng thiếu hụt giống Artichoke như hiện nay. Trong nghiên cứu này, những mẫu nghi ngờ có biểu hiện nấm bệnh trên giống Artichoke tím và trắng tại vườn ươm đã phân lập được 19 loại nấm bệnh thuộc các nhóm: 5 loại thuộc chi Mucor (Mucor sp., M. circinelloides, M. fragilis, M. irregularis, M. racemosus), 5 loại thuộc chi Alternaria (Alternaria sp., A. alternata, A. gaisen, A. tenuissima, A. tillandsiae), 2 loại thuộc chi Fusarium (F. acuminatum và F. solani), 2 loại thuộc chi Cylindrobasidium (Cylindrobasidium sp1 và Cylindrobasidium sp2), và các loại khác như Actinomucor elegans, Curvularia clavata, Plectosphaerella oligotrophica, Phoma herbarum, Rhizomucor variabilis. Ngoài ra, Tomato mosaic virus (ToMV) chỉ được phân lập trên giống tím. Mẫu chồi thu nhận từ những cây đỉnh sinh trong vườn là hoàn toàn sạch bệnh và được sử dụng cho các nghiên cứu vi nhân giống ở giai đoạn tiếp theo.

Tiểu khảo: Artichoke, nấm bệnh, sạch bệnh, Tomato mosaic virus.