Estimation of Heavy Metals in Selected Medicinal Herbs

Ida Christi V E1, Krishnaprabha C2, Blesson Sha Fogarty N I3, Sangilimuthu A4, Kumutha D1

1Faculty of Pharmacy, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India
2St. James college of Pharmaceutica Sciences, Thrissure, Kerala, India
3KMCH Institute of Health Sciences and Research, Coimbatore, Tamil Nadu, India
4Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India

Article History:
Received on: 20 Mar 2020
Revised on: 03 Apr 2020
Accepted on: 11 May 2020

Abstract
Worldwide nearly 80% of peoples are using the medicinal plants for basic illness due to the presence of primary metabolites, secondary metabolites, minerals and inorganic salts. Some Inorganic minerals available in plants are useful for health and have therapeutic value and some heavy metals are dangerous for health and may cause damage to internal organs. In view of that, the present study designed to quantitatively evaluate the presence of inorganic minerals like Sodium, Potassium, Calcium, Magnesium, Zinc and Copper and heavy metals like Mercury, Arsenic, Lead, Cadmium, Selenium, Cobalt and Chromium in selected medicinal herbs using Flame photometric method and tomic absorption method There is a limitation for the presence of heavy metals in herbal drugs, The distributions of these metals are not uniform all areas, so before using for formulation development all herbs should be taken for the estimation of heavy metals. In this study an attempt to estimate the inorganic elements and heavy metals present in some of the important medicinal plants like Moringa oleifera Lam, Achyranthes aspera Linn, Scoparia dulcis Linn, Achyranthes aspera Linn, Saropus androgynus Linn. and Castus pictus Linn., are mostly used in traditional medicines. Based on the analysis, the result shows the minerals like Sodium, Potassium, Calcium, Magnesium, Zinc and Copper were present in considerable quantity and heavy metals like Mercury, Arsenic, Lead, Cadmium, Selenium, Cobalt and Chromium were within the limit as per WHO standard values. Medicinal plants are containing heavy metals were within the limit as per WHO standard. Further these medicinal plants can use for new herbal formulations.

INTRODUCTION

The selected plants *Moringa oleifera* Lam. (MO), *Achyranthes aspera* Linn. (AA), *Scoparia dulcis* Linn. (SD) (Latha and Pari, 2005), *Saropus androgynus* Linn. (SA), (Gokhale et al., 2002) and *Castus pictus* Linn. (CP) are more useful in the traditional system of medicine for many diseases (Ezeamuzie et al., 1996). Herbal medicines when used for internal administration they must be standardize before formulation for the quantitative estimation of Physical parameters like heavy metals, Phytochemicals estimations. Heavy metals are the substances can be toxic when consumed...
by humans especially like Lead, Cadmium, Mercury, Chromium and Arsenic (Gasser et al., 2009). They are naturally present in the earth in different places in different concentration and it may absorbed and occur in plants (Karayil et al., 2014). Some of the metals are necessary and do some beneficial effect on human like iron and some do toxic effect selenium, arsenic (Graeme and Pollack, 1998a). Heavy metals can, in certain level, causes illness (Karadi et al., 2008), as well as carcinogenic, have adverse reproductive effects, (unfavorably impact nutritionon, and displace more geographically valuable metals such as magnesium and zinc (Duffus, 2003). This document is focused on the estimation of heavy metals like lead, mercury, arsenic, cadmium, selenium, chromium, cobalt and nickel. The guidelines developed to determine with accompanying explanations by the American Herbal Products Association (AHPA) and given the quantitative limits for it. As well as it debates relevant regulations about the prevalence of these chemicals in products sold in the United States. The heavy metals are wide spreader environmental contaminant and potential toxin that may adversely affect human health (Johri et al., 2010). When exposure to cadmium towards the respiratory or gastrointestinal tract (Rao et al., 2006), important non- industrial source of exposure are cigarette smoke and food (from contaminated soil and water). The kidney is the main organ affected by chronic cadmium exposure and toxicity (Rai et al., 2001). Environmental cadmium exposure is also the significant contributory factor may cause the development of chronic kidney diseases, (Wang et al., 2007). And in the presence of other metals also especially for diabetes, hypertension, therefore the souse and environmental impact of and efforts ti limit cd exposure, justify more attention (Graeme and Pollack, 1998a). Metals may produce toxic and sometimes produce effect as same as that of the essential elements in body and interact with metabolic process and produce problems in body (Pasquale et al., 1993).

Environmental Cd exposure may be a significant contributory factor to the development of chronic kidney disease, especially in the presence of other co-morbidities such as diabetes or hypertension; therefore, the sources and environmental impact of Cd, and efforts to limit Cd exposure, justify more attention (Graeme and Pollack, 1998b). Metals may produce toxic and sometime produce effect as same as that of the essential elements in body and interact with metabolic process and produce problems in body. This present study focused towards the importance of the quantitative evaluation of heavy metals in herbal products.

MATERIALS AND METHODS

Collection and Authentication of Plant

The plants Moringa oleifera Lam. And Achyranthes aspera Linn., Saropus androgynus Linn., Castus pictus Linn, available locally and they were collected from in and around Coimbatore. The plant Scoparia dulcis Linn. was collected from Palakad district in Kerala. The botanical identity has been authenticated by the Director, Botanical Survey of India, Coimbatore (No:BSI/SRC/5/23/2011-12/Tech/376;BSI/SRC/5/23/2012-13/Tech/496). The voucher specimens had been submitted and preserved in herbarium for future reference.

Preparation of Drug Sample

For the estimation of heavy metals the ash from the plant leaves were prepared and the ash dissolved in dilute hydrochloric acid, filtered. The clear liquid was taken for the quantitative estimation of inorganic metals by flame photometer and Atomic Absorption Spectroscopic method (Beckett and Stenlakej, 1987).

Quantitative Estimation

Estimation of Inorganic Minerals by Flame photometer Method

The alkalies and alkaline earth metals such as Na, K, and Ca can be determined by flame photometry. Flame emission photometry is also successfully used for estimation of certain transition elements such as copper, iron and manganese as the energy obtained by the flame is quite sufficient for the excitation of these elements. It is used by the flame to provide the energy of excitation to atoms introduced into the flame. The quantitative results can be obtained by plotting a calibration curve between the standard and sample concentration of the element and flame induction.

Liquid sample containing element, is aspirated into a flame to the formation of the liquid droplets. Evaporation of liquid droplets, resulting formation of salt residue. Then decomposition of residue to formation of free neutral atoms or radicals. These neutral atoms are excited by the thermal energy of the flame. The excited atoms which are unstable, quickly emit photons(radiation) and return to the lower energy state. The measurement of emitted radiation in terms of wavelength or intensity is basic of flame photometry. If E_2 and E_1 represent the energy of the higher and lower energy state. The radiation emitted during the changing energy level may be defined.
Table 1: Estimation of mineral salts in selected medicinal plants

S.No	Name	AA (ppm)	MO (ppm)	SD (ppm)	CP (ppm)	SA (ppm)
1	Sodium	56	28	39	32	35
2	Potassium	57	36	58	25	29
3	Calcium	144	528	304	126	203
4	Manganese	0.58	0.02	0.61	0.87	0.76
5	Iron	16.67	5.23	11	0.931	0.975
6	Magnesium	96	67	77	46	53
7	Zinc	0.61	0.3	0.52	0.12	0.24
8	Copper	0.3308	0.1077	0.2385	0.213	0.132

Results are mean of three sample preparations. Where Moringa oleifera Lam (MO), Achyranthes aspera Linn (AA), Saropus androgynus Linn (SA), Castus pictus Linn (CP) and Scoparia dulcis Linn (SD)

Table 2: Estimation of heavy metals in selected medicinal plants

S.No	Metals	AA (ppm)	MO (ppm)	SD (ppm)	CP (ppm)	SA (ppm)
1	Mercury	<0.005	<0.005	<0.005	<0.004	<0.003
2	Arsenic	<0.001	<0.001	<0.003	<0.001	<0.002
3	Lead	<0.004	<0.004	<0.004	<0.002	<0.003
4	Cadmium	<0.005	<0.005	<0.005	<0.00	<0.006
5	Selenium	<0.005	<0.001	<0.005	<0.006	<0.007
6	Cobalt	<0.02	<0.001	<0.001	<0.005	<0.005
7	Nickel	<0.001	<0.095	<0.001	<0.005	<0.005
8	Chromium	<0.005	<0.001	<0.076	<0.005	<0.005

*Results are mean of three sample preparations.

by equation as,
\[E_2 - E_1 = h\nu \]
Where \(h \) = planks constant, \(\nu \) = the frequency of emitted light.
Which is defined as,
\[\gamma = c/\lambda \]
We get
\[E_2 - E_1 = hc/\lambda \] or \(\lambda = hc/E_2 - E_1 \)
From the above equation calculate the wave length of the emitted radiation which is characteristic of the particular element.

Weigh accurately 100 mg of sodium chloride and potassium chloride separately dissolve in 100 ml of distilled water. Prepare a series of standard solutions of sodium chloride, potassium chloride 10, 20, 30, 40, 50 \(\mu \)g/ml concentrations. Switch the flame photometer and select the sodium filter. Set the gas in flame and air pressure at 0.4 to 0.5 kg/cm\(^2\). Automize the flame intensity to 0% using distilled water with the knob. Automize the flame intensity to 100% using 50\(\mu \)g/ml standard solution (highest concentrations). Measure the flame intensity of all the standard solutions with different concentrations like 10, 20, 30, 40, 50 \(\mu \)g/ml, and unknown sample solution. Plot the graph between concentration and percent flame intensity. From the graph, make the percentage flame intensity of the known sample and by extrapolating, determine corresponded concentration (Becketta and Stenlakej, 1987).

Atomic Absorption method
This technique is closely related to flame emission spectrometry. They use a flame as the atomizer. The sample solution is aspirated into the flame same as flame emission spectrometry, here the element is converted to atomic vapor, it contains the atoms of the elements. Some are remain in the ground state. These ground state atoms can absorb radiation of a particular wavelength that is produced by a special source made from that element. The wavelengths of radiation given by the atoms in the flame is as identical in principle to absorption spectrometry (Abou-Arab et al., 1999). The absorbance is directly proportional to the path length in the flame and to the concentration of atomic vapour in the flame. Both of the variables are difficult to determine, but the path length in the flame can be held constant and the concentration of atomic...
vapour is directly proportional to the concentration of the analyte in the solution being aspirated. The calibration curve is prepared with concentration in the solution versus absorbance. The inorganic elements like magnesium, Zinc, Iron, Manganese, and copper like elements are estimated by Atomic absorption method. The heavy metals like mercury, Lead, Arsenic, Cadmium, Selenium, Chromium, Nickel, Cobalt were also estimated by same Atomic Absorption method (Honary et al., 2007). The estimations were carried out in triplicate and calculated statistically.

RESULTS AND DISCUSSION

Estimation of Inorganic Elements
The quantity of inorganic elements like Potassium, Manganese, Sodium, Calcium, Magnesium, Zinc, Iron and Copper were estimated by flame photometry and atomic absorption methods and the quantity present in the selected plant leaves were expressed in the Table 1.

![Figure 1: Quantity of minerals present in the selected herbs](image)

Estimation of Heavy Metals
The selected plants leaves powder were estimated for the presence of Heavy metals by atomic absorption spectrometry method. The quantities of all heavy metals present in these plants were tabulated below. Where Moringa oleifera Lam (MO). Achyranthes aspera Linn.(AA). Saropus androgynus Linn.(SA). Castus pictus Linn. (CP) and Scoparia dulcis Linn.(SD).

The herbal drugs usage has been increased in recent years. The inorganic minerals which are necessary for human health were quantified and tabulated and also the quantity of heavy metals present in the selected plants leaves were estimated and tabulated. According to the WHO (2005) the standard quantity or limits of heavy metals in the medicinal plants were listed as Arsenic 3ppm, Lead 10ppm, Cadmium 0.3ppm, Chromium 1ppm and Mercury 0.03ppm. The results shows the quantity of these heavy metals present in the selected plants were within the limit and the results were tabulated in the Table 2, (Commission Regulation , 2006). The results of this study reveals that the concentration of some of the inorganic minerals like Ca, Na, K, Cu, Mn, Mg and Zn present in the samples are in good quantity expressed in figure 1, because all these minerals are necessary for human life, where as the heavy metalsare within or remarkably much lower when comparing with the limits recommended by WHO. Different region of the world and countries set on maximum values for toxic metals in various quantities and now the world has recently been published by the WHO (WHO, 2007). In this context, the WHO propose some limit for Lead 10mg/kg and for Cadmium 0.3mg/kg in dried herbs (WHO, 2007).

These heavy metals determination was performed by using atomic absorption spectrometry (AAS). Here the concentration of lead was found to be much lesser quantity when compared with the standard limit 10mg/g of Lead (WHO, 1999). Because the more quantity of lead in herbal medicines will produce hazardous effect like deleterious effect on central nervous system (Khan et al., 2001), side effects in kidney and bones etc (Abou-Arab et al., 1999). Minerals like Copper and Zinc are important but there should be a limits, (de Souza et al., 2008) they were also determined and documented in the table no.1, that also found within the limit as per WHO guideline for copper 40mg/kg and Zinc 60mg/kg (FDA, 1993). Zinc is essential for plant growth and also for human body normal growth, brain development and bone formation. Copper is also playing important role in human body like oxidative defence system where as the concentration increases it will leads to toxic (Jones et al., 1977). Copper and lead are required for metabolic functions. The development of new blood vessels, for wound healing property is promoted by copper. Zinc enhances the human immune system, work as cofactor for some enzymes involved in metabolic pathways (Baker and Brooks, 1989). If the level increases it also leads to toxicity and interfere with copper metabolism (Maqsood and Khan, 2005). The arsenic and Cadmium content were determined and found that are within the permissible limit (WHO, 2003). Exposure in high dose they may produce nausea, vomiting, abnormal heart beat, damages blood vessels (Zhao et al., 2009). Arsenic poisoning
leads to convulsion, confusion, vomiting, diarrhea, and in severe condition sit may leads to coma and death.

CONCLUSIONS

On basis of this experimental study, result shows the quantity of all the heavy metals estimated are below the permissible limit of WHO guideline. The result shows that all these selected plants are having the inorganic minerals in the considerable quantity and may helpful for health requirements. The result shows Moringa oleifera Lam. Achyranthes aspera Linn. Saropus androgynus Linn., Castus pictus Linn and Scoparia dulcis Linn. are safe for internal administration for their therapeutic values and will not produce any harmful effect by heavy metal toxicity. These plants are advisable for the development of new herbal formulations.

ACKNOWLEDGEMENT

The authors are grateful to the Management of Karpagam Academy of Higher Education, Coimbatore, for providing laboratory facilities to complete this work.

Conflict of Interest

There are no conflicts of interest.

Funding Support

None.

REFERENCES

Abou-Arab, A. A. K., Kawther, M. S., Tantawy, M. E. E., Badeea, R. I., Khayria, N. 1999. Quantity estimation of some contaminants in commonly used medicinal plants in the Egyptian market. Food Chemistry, 67(4):357–363.

Baker, A., Brooks, R. R. 1989. Terrestrial higher plants which hyperaccumulate metallic elements- A review of their distribution, ecology and phytochemistry. Biorecovery, pages 1–81.

Becketta, H., Stenlakej, B. 1987. Practical Pharmaceutical Chemistry. 4(2):347–355.

Commission Regulation 2006. (EC) No. 1881/2006 of 19 , setting maximum levels for certain contaminants in foodstuffs as regards heavy metals. Official Journal of the European Union, (1881):5–24.

de Souza, S. M., de Lima, J. C., Campos, C. E. M., Grandi, T. A., Trichès, D. M. 2008. Ageing-induced structural evolution of mechanically alloyed Ga40Se60. Journal of Physics: Condensed Matter, 20(34):345226–345226.

Duffus, J. H. 2003. Toxicology of Metals—Science Confused by Poor Use of Terminology. Archives of Environmental Health: An International Journal, 58(5):263–266.

Ezeamuzie, I. C., Ambakederemo, A. W., Shode, F. O., Ekwebelem, S. C. 1996. Antiinflammatory Effects of Moringa oleifera Root Extract. International Journal of Pharmacognosy, 34(3):207–212.

FDA 1993. FDA Quality standard for foods and with no identity standards bottle water Food and drug administration code of Fe. Reg. 58:41612–41612.

Gasser, U., Klier, B., Kühn, A. V., Steinhoff, B. 2009. Current findings on the heavy metal content in herbal drugs. Phar meuropa Scientific Notes, (1):37–50.

Gokhale, A. B., Damre, A. S., Kulkarni, K. R., Saraf, M. N. 2002. Preliminary evaluation of anti-inflammatory and anti-arthritic activity of S. lappa, A. speciosa and A. aspera. Phytomedicine, 9(5):433–437.

Graeme, K. A., Pollack, C. V. 1998a. Heavy Metal Toxicity, Part I: Arsenic and Mercury. The Journal of Emergency Medicine, 16(1):45–56.

Graeme, K. A., Pollack, C. V. 1998b. Heavy metal toxicity, part ii: lead and metal fume fever. The Journal of Emergency Medicine, 16(2):171–177.

Honary, S., Eb rahimi, P., Naghibi, F., Mosaddegh, M., Shahhoseini, S. 2007. Study on the Simultaneous Determination of Pb and Cd in some Commercial Medicinal Plants by both Atomic Absorption and Voltametry Methods. Analytical Letters, 40(12):2405–2414.

Johri, N., Jacquillet, G., Unwin, R. 2010. Heavy metal poisoning: the effects of cadmium on the kidney. BioMetals, 23(5):783–792.

Jones, J. W., Boyer, K., Barnes, R. M. 1977. Analysis of food and related materials using inductively couples plasma, in applications of Inductively Coupled Plasma to Emission Spectroscopy-1977. Eastern Analytical Symposium, pages 83–106.

Karadi, R. V., Palkar, M. B., Gaviraj, E. N., Gadge, N. B., Mannur, V. S., Alagawadi, K. R. 2008. Antiultrathic Property of Moringa oleifera Root Bark. Pharmaceutical Biology, 46(12):861–865.

Karayil, S., Bhavani, Vivek 2014. Heavy Metal Analysis from Traditionally used Herb Ceropogia-juncea(Roxb.)IOSR. Journal of Pharmacy, 4(12):7–11.

Khan, I. A., Allgood, J., Walker, L. A., Abourashed, E. A., Schlenk, D., Benson, W. H. 2001. Determination of Heavy Metals and Pesticides in Ginseng Products. Journal of AOAC INTERNATIONAL, 84(3):936–939.
Latha, M., Pari, L. 2005. Antihyperlipidemic Effect of Aqueous Extract of Scoparia dulcis in Albino Rats Treated with Streptozotocin. *Journal of Herbs, Spices & Medicinal Plants*, 11(3):59–66.

Maqsood, Z. T. F. N., Khan, B. 2005. Study of Some Micronutrients in selected Medicinal plants. *Scientia Iranica*, 12:269–273.

Pasquale, A. D., Paino, E., Pasquale, R. D., Germano, M. P. 1993. Contamination by Heavy Metals in Drugs from Different Commercial Sources.

Rai, V., Kakkar, P., Khatoon, S., Rawat, A. K. S., Mehrotra, S. 2001. Heavy Metal Accumulation in Some Herbal Drugs. *Pharmaceutical Biology*, 39(5):384–387.

Rao, G. P. C., Seshiaiah, K., Rao, Y. K., Wang, M. C. 2006. Solid Phase Extraction of Cd, Cu, and Ni from Leafy Vegetables and Plant Leaves Using Amberlite XAD-2 Functionalized with 2-Hydroxy-acetophenone-thiosemicarbazone (HAPTSC) and Determination by Inductively Coupled Plasma Atomic Emission Spectroscopy. *Journal of Agricultural and Food Chemistry*, 54(8):2868–2872.

Wang, J., Fang, W., Yang, Z., Yuan, J., Zhu, Y., Yu, H. 2007. Inter- and intraspecific variations of cadmium accumulation of 13 leafy vegetable species in a greenhouse experiment. *Journal of Agricultural and Food Chemistry*, 55(22):9118–9123.

WHO 1999. World Health Organization Geneva. *WHO Monographs on Selected Medicinal Plants*, 1.

WHO 2003. *WHO Elemental Mercury and Inorganic Mercury Compounds Human Health Aspects Concise International Chemical Assessment. Document 50*. World Health Organization. Geneva.

WHO 2007. World Health Organization, Dept. of Technical Cooperation for Essential Drugs and Traditional Medicine. WHO guidelines for assessing quality of herbal medicines with reference to contaminants and residues.

Zhao, F. J., Ma, J. F., Meharg, A. A., McGrath, S. P. 2009. Arsenic uptake and metabolism in plants. *New Phytologist*, 181(4):777–794.