Inversion of the Dual Dunkl–Sonine Transform on \mathbb{R} Using Dunkl Wavelets

Mohamed Ali MOUROU

Department of Mathematics, Faculty of Sciences, Al-Jouf University, P.O. Box 2014, Al-Jouf, Skaka, Saudi Arabia
E-mail: mohamed.ali.mourou@yahoo.fr

Received March 02, 2009, in final form July 04, 2009; Published online July 14, 2009
doi:10.3842/SIGMA.2009.071

Abstract. We prove a Calderón reproducing formula for the Dunkl continuous wavelet transform on \mathbb{R}. We apply this result to derive new inversion formulas for the dual Dunkl–Sonine integral transform.

Key words: Dunkl continuous wavelet transform; Calderón reproducing formula; dual Dunkl–Sonine integral transform

2000 Mathematics Subject Classification: 42B20; 42C15; 44A15; 44A35

1 Introduction

The one-dimensional Dunkl kernel e_{γ}, $\gamma > -1/2$, is defined by

$$e_{\gamma}(z) = j_{\gamma}(iz) + \frac{z}{2(\gamma + 1)}j_{\gamma + 1}(iz), \quad z \in \mathbb{C},$$

where

$$j_{\gamma}(z) = \Gamma(\gamma + 1) \sum_{n=0}^{\infty} \frac{(-1)^n (z/2)^{2n}}{n! \Gamma(n + \gamma + 1)}$$

is the normalized spherical Bessel function of index γ. It is well-known (see [3]) that the functions $e_{\gamma}(\lambda \cdot)$, $\lambda \in \mathbb{C}$, are solutions of the differential-difference equation

$$\Lambda_{\gamma}u = \lambda u, \quad u(0) = 1,$$

where

$$\Lambda_{\gamma}f(x) = f'(x) + \left(\gamma + \frac{1}{2}\right) \frac{f(x) - f(-x)}{x}$$

is the Dunkl operator with parameter $\gamma + 1/2$ associated with the reflection group \mathbb{Z}_2 on \mathbb{R}. Those operators were introduced and studied by Dunkl [2, 3, 4] in connection with a generalization of the classical theory of spherical harmonics. Besides its mathematical interest, the Dunkl operator Λ_{α} has quantum-mechanical applications; it is naturally involved in the study of one-dimensional harmonic oscillators governed by Wigner’s commutation rules [6, 11, 16].

It is known, see for example [13, 14], that the Dunkl kernels on \mathbb{R} possess the following Sonine type integral representation

$$e_{\beta}(\lambda x) = \int_{-|x|}^{|x|} K_{\alpha,\beta}(x, y) e_{\alpha}(\lambda y) |y|^{2\alpha + 1} dy, \quad \lambda \in \mathbb{C}, \quad x \neq 0,$$ \hspace{1cm} (1.1)
where
\[
K_{\alpha,\beta}(x, y) := \begin{cases}
 a_{\alpha,\beta} \text{sgn}(x) \frac{(x^2 - y^2)^{\beta-\alpha-1}}{|x|^{2\beta+1}} & \text{if } |y| < |x|, \\
 0 & \text{if } |y| \geq |x|,
\end{cases}
\]
with \(\beta > \alpha > -\frac{1}{2}\), and
\[
a_{\alpha,\beta} := \frac{\Gamma(\beta + 1)}{\Gamma(\alpha + 1) \Gamma(\beta - \alpha)}.
\]

Define the Dunkl–Sonine integral transform \(X_{\alpha,\beta}\) and its dual \(\mathcal{t}X_{\alpha,\beta}\), respectively, by
\[
X_{\alpha,\beta} f(x) = \int_{|x|}^{|x|} K_{\alpha,\beta}(x, y) f(y) |y|^{2\alpha+1} dy,
\]
\[
\mathcal{t}X_{\alpha,\beta} f(y) = \int_{|x| \geq |y|} K_{\alpha,\beta}(x, y) f(x) |x|^{2\beta+1} dx.
\]

Soltani has showed in [14] that the dual Dunkl–Sonine integral transform \(\mathcal{t}X_{\alpha,\beta}\) is a transmutation operator between \(\Lambda_\alpha\) and \(\Lambda_\beta\) on the Schwartz space \(S(\mathbb{R})\), i.e., it is an automorphism of \(S(\mathbb{R})\) satisfying the intertwining relation
\[
\mathcal{t}X_{\alpha,\beta} \Lambda_\beta f = \Lambda_\alpha \mathcal{t}X_{\alpha,\beta} f, \quad f \in S(\mathbb{R}).
\]

The same author [14] has obtained inversion formulas for the transform \(\mathcal{t}X_{\alpha,\beta}\) involving pseudodifferential-difference operators and only valid on a restricted subspace of \(S(\mathbb{R})\).

The purpose of this paper is to investigate the use of Dunkl wavelets (see [5]) to derive a new inversion of the dual Dunkl–Sonine transform on some Lebesgue spaces. For other applications of wavelet type transforms to inverse problems we refer the reader to [7, 8] and the references therein.

The content of this article is as follows. In Section 2 we recall some basic harmonic analysis results related to the Dunkl operator. In Section 3 we list some basic properties of the Dunkl–Sonine integral transform and its dual. In Section 4 we give the definition of the Dunkl continuous wavelet transform and we establish for this transform a Calderón formula. By combining the results of the two previous sections, we obtain in Section 5 two new inversion formulas for the dual Dunkl–Sonine integral transform.

2 Preliminaries

Note 2.1. Throughout this section assume \(\gamma > -1/2\). Define \(L^p(\mathbb{R}, |x|^{2\gamma+1} dx), 1 \leq p \leq \infty\), as the class of measurable functions \(f\) on \(\mathbb{R}\) for which \(\|f\|_{p,\gamma} < \infty\), where
\[
\|f\|_{p,\gamma} = \left(\int_{\mathbb{R}} |f(x)|^p |x|^{2\gamma+1} dx \right)^{1/p}, \quad \text{if } p < \infty,
\]
and \(\|f\|_{\infty,\gamma} = \|f\|_\infty = \text{ess sup}_{x \in \mathbb{R}} |f(x)|\). \(S(\mathbb{R})\) stands for the usual Schwartz space.

The Dunkl transform of order \(\gamma + 1/2\) on \(\mathbb{R}\) is defined for a function \(f\) in \(L^1(\mathbb{R}, |x|^{2\gamma+1} dx)\) by
\[
\mathcal{F}_\gamma f(\lambda) = \int_{\mathbb{R}} f(x) e^{\gamma(-i\lambda x)} |x|^{2\gamma+1} dx, \quad \lambda \in \mathbb{R}.
\]
Remark 2.2. It is known that the Dunkl transform F_γ maps continuously and injectively $L^1(\mathbb{R}, |x|^{2\gamma+1}dx)$ into the space $C_0(\mathbb{R})$ (of continuous functions on \mathbb{R} vanishing at infinity).

Two standard results about the Dunkl transform F_γ are as follows.

Theorem 2.3 (see [1]).

(i) For every $f \in L^1 \cap L^2(\mathbb{R}, |x|^{2\gamma+1}dx)$ we have the Plancherel formula

$$\int_{\mathbb{R}} |f(x)|^2 |x|^{2\gamma+1}dx = m_\gamma \int_{\mathbb{R}} |F_\gamma f(\lambda)|^2 |\lambda|^{2\gamma+1}d\lambda,$$

where

$$m_\gamma = \frac{1}{2^{2\gamma+2}(\Gamma(\gamma + 1))^2}. \quad (2.2)$$

(ii) The Dunkl transform F_α extends uniquely to an isometric isomorphism from $L^2(\mathbb{R}, |x|^{2\gamma+1}dx)$ onto $L^2(\mathbb{R}, m_\gamma |\lambda|^{2\gamma+1}d\lambda)$. The inverse transform is given by

$$F_\gamma^{-1}g(x) = m_\gamma \int_{\mathbb{R}} g(\lambda)e_{\gamma}(i\lambda x)|\lambda|^{2\gamma+1}d\lambda,$$

where the integral converges in $L^2(\mathbb{R}, |x|^{2\gamma+1}dx)$.

Theorem 2.4 (see [1]). The Dunkl transform F_α is an automorphism of $S(\mathbb{R})$.

An outstanding result about Dunkl kernels on \mathbb{R} (see [12]) is the product formula

$$e_{\gamma}(\lambda x)e_{\gamma}(\lambda y) = T_\gamma^x(e_{\gamma}(\lambda \cdot))(y), \quad \lambda \in \mathbb{C}, \quad x, y \in \mathbb{R},$$

where T_γ^x stand for the Dunkl translation operators defined by

$$T_\gamma^x f(y) = \frac{1}{2} \int_{-1}^{1} f \left(\sqrt{x^2 + y^2 - 2xyt} \right) \left(1 + \frac{x-y}{\sqrt{x^2 + y^2 - 2xyt}} \right) W_\gamma(t)dt,$$

$$\quad + \frac{1}{2} \int_{-1}^{1} f \left(-\sqrt{x^2 + y^2 - 2xyt} \right) \left(1 - \frac{x-y}{\sqrt{x^2 + y^2 - 2xyt}} \right) W_\gamma(t)dt, \quad (2.3)$$

with

$$W_\gamma(t) = \frac{\Gamma(\gamma + 1)}{\sqrt{\pi} \Gamma(\gamma + 1/2)} (1 + t) \left(1 - t^2 \right)^{\gamma-1/2}.$$

The Dunkl convolution of two functions f, g on \mathbb{R} is defined by the relation

$$f \ast_\gamma g(x) = \int_{\mathbb{R}} T_\gamma^x f(-y)g(y)|y|^{2\gamma+1}dy. \quad (2.4)$$

Proposition 2.5 (see [13]).

(i) Let $p, q, r \in [1, \infty]$ such that $\frac{1}{p} + \frac{1}{q} + \frac{1}{r} = \frac{1}{r}$. If $f \in L^p(\mathbb{R}, |x|^{2\gamma+1}dx)$ and $g \in L^q(\mathbb{R}, |x|^{2\gamma+1}dx)$, then $f \ast_\gamma g \in L^r(\mathbb{R}, |x|^{2\gamma+1}dx)$ and

$$||f \ast_\gamma g||_{r, \gamma} \leq 4 ||f||_{p, \gamma} ||g||_{q, \gamma}. \quad (2.5)$$

(ii) For $f \in L^1(\mathbb{R}, |x|^{2\gamma+1}dx)$ and $g \in L^p(\mathbb{R}, |x|^{2\gamma+1}dx)$, $p = 1$ or 2, we have

$$F_\gamma(f \ast_\gamma g) = F_\gamma f F_\gamma g. \quad (2.6)$$

For more details about harmonic analysis related to the Dunkl operator on \mathbb{R} the reader is referred, for example, to [9, 10].
3 The dual Dunkl–Sonine integral transform

Throughout this section assume $\beta > \alpha > -1/2$.

Definition 3.1 (see [14]). The dual Dunkl–Sonine integral transform $t^\Lambda_{\alpha,\beta}$ is defined for smooth functions on \mathbb{R} by

$$t^\Lambda_{\alpha,\beta}f(y) := \int_{|x| \geq |y|} K_{\alpha,\beta}(x,y) f(x)|x|^{2\beta+1} \, dx, \quad y \in \mathbb{R},$$

(3.1)

where $K_{\alpha,\beta}$ is the kernel given by (1.2).

Remark 3.2. Clearly, if $\text{supp}(f) \subset [-a,a]$ then $\text{supp}(t^\Lambda_{\alpha,\beta}f) \subset [-a,a]$.

The next statement provides formulas relating harmonic analysis tools tied to Λ_{α} with those tied to Λ_{β}, and involving the operator $t^\Lambda_{\alpha,\beta}$.

Proposition 3.3.

(i) The dual Dunkl–Sonine integral transform $t^\Lambda_{\alpha,\beta}$ maps $L^1(\mathbb{R}, |x|^{2\beta+1} \, dx)$ continuously into $L^1(\mathbb{R}, |x|^{2\alpha+1} \, dx)$.

(ii) For every $f \in L^1(\mathbb{R}, |x|^{2\beta+1} \, dx)$ we have the identity

$$F_{\beta}(f) = F_{\alpha} \circ t^\Lambda_{\alpha,\beta}(f).$$

(3.2)

(iii) Let $f, g \in L^1(\mathbb{R}, |x|^{2\beta+1} \, dx)$. Then

$$t^\Lambda_{\alpha,\beta}(f *_{\beta} g) = t^\Lambda_{\alpha,\beta}f *_{\alpha} t^\Lambda_{\alpha,\beta}g.$$

(3.3)

Proof. Let $f \in L^1(\mathbb{R}, |x|^{2\beta+1} \, dx)$. By Fubini’s theorem we have

$$\int_{\mathbb{R}} t^\Lambda_{\alpha,\beta}(|f|)(y)|y|^{2\alpha+1} \, dy = \int_{\mathbb{R}} \left(\int_{|x| \geq |y|} K_{\alpha,\beta}(x,y)|f(x)||x|^{2\beta+1} \, dx \right) |y|^{2\alpha+1} \, dy$$

$$= \int_{\mathbb{R}} |f(x)| \left(\int_{|x|}^{\infty} K_{\alpha,\beta}(x,y)|y|^{2\alpha+1} \, dy \right) |x|^{2\beta+1} \, dx.$$

But by (1.1),

$$\int_{|x|}^{\infty} K_{\alpha,\beta}(x,y)|y|^{2\alpha+1} \, dy = e_{\beta}(0) = 1.$$

(3.4)

Hence, $t^\Lambda_{\alpha,\beta}f$ is almost everywhere defined on \mathbb{R}, belongs to $L^1(\mathbb{R}, |x|^{2\alpha+1} \, dx)$ and $||t^\Lambda_{\alpha,\beta}f||_{1,\alpha} \leq ||f||_{1,\beta}$, which proves (i). Identity (3.2) follows by using (1.1), (2.1), (3.1), and Fubini’s theorem. Identity (3.3) follows by applying the Dunkl transform F_{α} to both its sides and by using (2.6), (3.2) and Remark 2.2. ■

Remark 3.4. From (3.2) and Remark 2.2, we deduce that the transform $t^\Lambda_{\alpha,\beta}$ maps $L^1(\mathbb{R}, |x|^{2\beta+1} \, dx)$ injectively into $L^1(\mathbb{R}, |x|^{2\alpha+1} \, dx)$.

From [14] we have the following result.
Theorem 3.5. The dual Dunkl–Sonine integral transform \(\mathcal{X}_{\alpha,\beta} \) is an automorphism of \(\mathcal{S}(\mathbb{R}) \) satisfying the intertwining relation
\[
\mathcal{X}_{\alpha,\beta} \Lambda f = \Lambda \mathcal{X}_{\alpha,\beta} f, \quad f \in \mathcal{S}(\mathbb{R}).
\]
Moreover \(\mathcal{X}_{\alpha,\beta} \) admits the factorization
\[
\mathcal{X}_{\alpha,\beta} f = \mathcal{V}_\gamma^{-1} \mathcal{V}_\gamma f \quad \text{for all } f \in \mathcal{S}(\mathbb{R}),
\]
where for \(\gamma > -1/2 \), \(\mathcal{V}_\gamma \) denotes the dual Dunkl intertwining operator given by
\[
\mathcal{V}_\gamma f(y) = \frac{\Gamma(\gamma + 1)}{\sqrt{\pi} \Gamma(\gamma + 1/2)} \int_{|x| \geq |y|} \text{sgn}(x) (x + y) (x^2 - y^2)^{-1/2} f(x) \, dx.
\]

Definition 3.6 (see [14]). The Dunkl–Sonine integral transform \(\mathcal{X}_{\alpha,\beta} \) is defined for a locally bounded function \(f \) on \(\mathbb{R} \) by
\[
\mathcal{X}_{\alpha,\beta} f(x) = \begin{cases}
\int_{|x|} \mathcal{K}_{\alpha,\beta}(x, y) f(y) |y|^{2\alpha+1} \, dy & \text{if } x \neq 0, \\
 f(0) & \text{if } x = 0.
\end{cases}
\]

Remark 3.7.

(i) Notice that by [3.4], \(||\mathcal{X}_{\alpha,\beta} f||_\infty \leq ||f||_\infty \) if \(f \in L^\infty(\mathbb{R}) \).

(ii) It follows from (1.1) that
\[
e_\beta(\lambda x) = \mathcal{X}_{\alpha,\beta}(e_\alpha(\lambda \cdot))(x)
\]
for all \(\lambda \in \mathbb{C} \) and \(x \in \mathbb{R} \).

Proposition 3.8.

(i) For any \(f \in L^\infty(\mathbb{R}) \) and \(g \in L^1(\mathbb{R}, |x|^{2\beta+1} \, dx) \) we have the duality relation
\[
\int_{\mathbb{R}} \mathcal{X}_{\alpha,\beta} f(x) g(x) |x|^{2\beta+1} \, dx = \int_{\mathbb{R}} f(y) \mathcal{X}_{\alpha,\beta} g(y) |y|^{2\alpha+1} \, dy.
\]

(ii) Let \(f \in L^1(\mathbb{R}, |x|^{2\beta+1} \, dx) \) and \(g \in L^\infty(\mathbb{R}) \). Then
\[
\mathcal{X}_{\alpha,\beta}(\mathcal{X}_{\alpha,\beta} f \ast_\alpha g) = f \ast_\beta \mathcal{X}_{\alpha,\beta} g.
\]

Proof. Identity (3.7) follows by using (3.1), (3.5) and Fubini’s theorem. Let us check (3.8). Let \(\psi \in \mathcal{S}(\mathbb{R}) \). By using (3.4), (3.7) and Fubini’s theorem, we have
\[
\int_{\mathbb{R}} f \ast_\beta \mathcal{X}_{\alpha,\beta} g(x) \psi(x) |x|^{2\beta+1} \, dx = \int_{\mathbb{R}} \mathcal{X}_{\alpha,\beta} g(x) \psi \ast_\beta f^-(x) |x|^{2\beta+1} \, dx
\]
\[
= \int_{\mathbb{R}} g(y) \mathcal{X}_{\alpha,\beta} \psi \ast_\beta f^-(y) |y|^{2\alpha+1} \, dy = \int_{\mathbb{R}} g(y) (\mathcal{X}_{\alpha,\beta} \psi \ast_\alpha (\mathcal{X}_{\alpha,\beta} f^-))(y) |y|^{2\alpha+1} \, dy,
\]
where \(f^-(x) = f(-x), \ x \in \mathbb{R} \). But an easy computation shows that \(\mathcal{X}_{\alpha,\beta} f^- = (\mathcal{X}_{\alpha,\beta} f)^- \). Hence,
\[
\int_{\mathbb{R}} f \ast_\beta \mathcal{X}_{\alpha,\beta} g(x) \psi(x) |x|^{2\beta+1} \, dx = \int_{\mathbb{R}} g(y) \mathcal{X}_{\alpha,\beta} \psi \ast_\alpha (\mathcal{X}_{\alpha,\beta} f^-)(y) |y|^{2\alpha+1} \, dy
\]
\[
= \int_{\mathbb{R}} \mathcal{X}_{\alpha,\beta} f \ast_\alpha g(y) \mathcal{X}_{\alpha,\beta} \psi(y) |y|^{2\alpha+1} \, dy = \int_{\mathbb{R}} \mathcal{X}_{\alpha,\beta} (\mathcal{X}_{\alpha,\beta} f \ast_\alpha g)(x) \psi(x) |x|^{2\beta+1} \, dx.
\]
This clearly yields the result. ■
4 Calderón’s formula for the Dunkl continuous wavelet transform

Throughout this section assume $\gamma > -1/2$.

Definition 4.1. We say that a function $g \in L^2(\mathbb{R}, |x|^{2\gamma+1}dx)$ is a Dunkl wavelet of order γ, if it satisfies the admissibility condition

$$0 < C^\gamma_g := \int_0^\infty |\mathcal{F}_\gamma g(\lambda)|^2 \frac{d\lambda}{\lambda} = \int_0^\infty |\mathcal{F}_\gamma g(-\lambda)|^2 \frac{d\lambda}{\lambda} < \infty. \quad (4.1)$$

Remark 4.2.

(i) If g is real-valued we have $\mathcal{F}_\gamma g(-\lambda) = \overline{\mathcal{F}_\gamma g(\lambda)}$, so (4.1) reduces to

$$0 < C^\gamma_g := \int_0^\infty |\mathcal{F}_\gamma g(\lambda)|^2 \frac{d\lambda}{\lambda} < \infty.$$

(ii) If $0 \neq g \in L^2(\mathbb{R}, |x|^{2\gamma+1}dx)$ is real-valued and satisfies

$$\exists \eta > 0 \quad \text{such that } \mathcal{F}_\gamma g(\lambda) - \mathcal{F}_\gamma g(0) = O(\lambda^\eta) \quad \text{as } \lambda \to 0^+$$

then (4.1) is equivalent to $\mathcal{F}_\gamma g(0) = 0$.

Note 4.3. For a function g in $L^2(\mathbb{R}, |x|^{2\gamma+1}dx)$ and for $(a, b) \in (0, \infty) \times \mathbb{R}$ we write

$$g_{a,b}(x) := \frac{1}{a^{2\gamma+2}} T^{-b}_{\gamma} g_{a}(x),$$

where T^{-b}_{γ} are the generalized translation operators given by (2.3), and $g_{a}(x) := g(x/a), x \in \mathbb{R}$.

Remark 4.4. Let $g \in L^2(\mathbb{R}, |x|^{2\gamma+1}dx)$ and $a > 0$. Then it is easily checked that $g_{a} \in L^2(\mathbb{R}, |x|^{2\gamma+1}dx)$, $\|g_{a}\|_{2,\gamma} = a^{\gamma+1} \|g\|_{2,\gamma}$, and $\mathcal{F}_\gamma(g_{a})(\lambda) = a^{2\gamma+2} \mathcal{F}_\gamma(g)(a\lambda)$.

Definition 4.5. Let $g \in L^2(\mathbb{R}, |x|^{2\gamma+1}dx)$ be a Dunkl wavelet of order γ. We define for regular functions f on \mathbb{R}, the Dunkl continuous wavelet transform by

$$\Phi^\gamma_g(f)(a,b) := \int_{\mathbb{R}} f(x) \overline{g_{a,b}(x)} |x|^{2\gamma+1}dx$$

which can also be written in the form

$$\Phi^\gamma_g(f)(a,b) = \frac{1}{a^{2\gamma+2}} f \ast_{\gamma} \tilde{g}_{a}(b),$$

where \ast_{γ} is the generalized convolution product given by (2.4), and $\tilde{g}_{a}(x) := g(-x/a), x \in \mathbb{R}$.

The Dunkl continuous wavelet transform has been investigated in depth in [5] in which precise definitions, examples, and a more complete discussion of its properties can be found. We look here for a Calderón formula for this transform. We start with some technical lemmas.

Lemma 4.6. For all $f, g \in L^2(\mathbb{R}, |x|^{2\gamma+1}dx)$ and all $\psi \in \mathcal{S}(\mathbb{R})$ we have the identity

$$\int_{\mathbb{R}} f \ast_{\gamma} g(x) \mathcal{F}^{-1}\psi(x) |x|^{2\gamma+1}dx = m_{\gamma} \int_{\mathbb{R}} \mathcal{F}_\gamma f(\lambda) \mathcal{F}_\gamma g(\lambda) \psi^{-}(\lambda) |\lambda|^{2\gamma+1}d\lambda,$$

where m_{γ} is given by (2.2).
Proof. Fix $g \in L^2(\mathbb{R}, |x|^{2\gamma+1}dx)$ and $\psi \in \mathcal{S}(\mathbb{R})$. For $f \in L^2(\mathbb{R}, |x|^{2\gamma+1}dx)$ put

$$S_1(f) := \int_{\mathbb{R}} f \ast_{\gamma} g(x)F^{-1}_\gamma \psi(x)|x|^{2\gamma+1}dx$$

and

$$S_2(f) := m_\gamma \int_{\mathbb{R}} F_\gamma f(\lambda)F_\gamma g(\lambda)\psi^-|\lambda|^{2\gamma+1}d\lambda.$$

By (2.5), (2.6) and Theorem 2.3, we see that $S_1(f) = S_2(f)$ for each $f \in L^1 \cap L^2(\mathbb{R}, |x|^{2\gamma+1}dx)$. Moreover, by using (2.5), Hölder’s inequality and Theorem 2.3 we have

$$|S_1(f)| \leq ||f \ast_{\gamma} g||_\infty ||F^{-1}_\gamma \psi||_{1,\gamma} \leq 4||f||_{2,\gamma}||g||_{2,\gamma}||F^{-1}_\gamma \psi||_{1,\gamma}$$

and

$$|S_2(f)| \leq m_\gamma ||F_\gamma fF_\gamma g||_{1,\gamma} ||\psi||_\infty \leq m_\gamma ||F_\gamma f||_{2,\gamma}||F_\gamma g||_{2,\gamma} ||\psi||_\infty = ||f||_{2,\gamma}||g||_{2,\gamma} ||\psi||_\infty,$$

which shows that the linear functionals S_1 and S_2 are bounded on $L^2(\mathbb{R}, |x|^{2\gamma+1}dx)$. Therefore $S_1 \equiv S_2$, and the lemma is proved. \[\square\]

Lemma 4.7. Let $f_1, f_2 \in L^2(\mathbb{R}, |x|^{2\gamma+1}dx)$. Then $f_1 \ast_{\gamma} f_2 \in L^2(\mathbb{R}, |x|^{2\gamma+1}dx)$ if and only if $F_\gamma f_1F_\gamma f_2 \in L^2(\mathbb{R}, |x|^{2\gamma+1}dx)$ and we have

$$F_\gamma(f_1 \ast_{\gamma} f_2) = F_\gamma f_1F_\gamma f_2$$

in the L^2-case.

Proof. Suppose $f_1 \ast_{\gamma} f_2 \in L^2(\mathbb{R}, |x|^{2\gamma+1}dx)$. By Lemma 4.6 and Theorem 2.3 we have for any $\psi \in \mathcal{S}(\mathbb{R})$,

$$m_\gamma \int_{\mathbb{R}} F_\gamma f_1(\lambda)F_\gamma f_2(\lambda)\psi(\lambda)|\lambda|^{2\gamma+1}d\lambda = \int_{\mathbb{R}} f_1 \ast_{\gamma} f_2(x)F^{-1}_\gamma \psi^-(-x)|x|^{2\gamma+1}dx$$

$$= \int_{\mathbb{R}} f_1 \ast_{\gamma} f_2(x)(F^{-1}_\gamma \psi^-)(x)|x|^{2\gamma+1}dx = m_\gamma \int_{\mathbb{R}} F_\gamma(f_1 \ast_{\gamma} f_2)(\lambda)\psi(\lambda)|\lambda|^{2\gamma+1}d\lambda,$$

which shows that $F_\gamma f_1F_\gamma f_2 = F_\gamma (f_1 \ast_{\gamma} f_2)$. Conversely, if $F_\gamma f_1F_\gamma f_2 \in L^2(\mathbb{R}, |x|^{2\gamma+1}dx)$, then by Lemma 4.6 and Theorem 2.3, we have for any $\psi \in \mathcal{S}(\mathbb{R})$,

$$\int_{\mathbb{R}} f_1 \ast_{\gamma} f_2(x)F^{-1}_\gamma \psi(x)|x|^{2\gamma+1}dx = m_\gamma \int_{\mathbb{R}} F_\gamma f_1(\lambda)F_\gamma f_2(\lambda)\psi(\lambda)|\lambda|^{2\gamma+1}d\lambda$$

$$= \int_{\mathbb{R}} F^{-1}_\gamma(F_\gamma f_1F_\gamma f_2)(x)F^{-1}_\gamma \psi(x)|x|^{2\gamma+1}dx,$$

which shows, in view of Theorem 2.4, that $f_1 \ast_{\gamma} f_2 = F^{-1}_\gamma(F_\gamma f_1F_\gamma f_2)$. This achieves the proof of Lemma 4.7. \[\square\]

A combination of Lemma 4.7 and Theorem 2.3 gives us the following.

Lemma 4.8. Let $f_1, f_2 \in L^2(\mathbb{R}, |x|^{2\gamma+1}dx)$. Then

$$\int_{\mathbb{R}} |f_1 \ast_{\gamma} f_2(x)|^2|x|^{2\gamma+1}dx = m_\gamma \int_{\mathbb{R}} |F_\gamma f_1(\lambda)|^2|F_\gamma f_2(\lambda)|^2|\lambda|^{2\gamma+1}d\lambda,$$

where both sides are finite or infinite.
Lemma 4.9. Let \(g \in L^2(\mathbb{R}, |x|^{2\gamma+1}dx) \) be a Dunkl wavelet of order \(\gamma \) such that \(\mathcal{F}_\gamma g \in L^\infty(\mathbb{R}) \).

For \(0 < \varepsilon < \delta < \infty \) define

\[
G_{\varepsilon, \delta}(x) := \frac{1}{C_g} \int_\varepsilon^\delta g_a *_\gamma \bar{g}_a(x) \frac{da}{a^{4\gamma+5}}
\]

(4.2)

and

\[
K_{\varepsilon, \delta}(\lambda) := \frac{1}{C_g} \int_\varepsilon^\delta |\mathcal{F}_\gamma g(a\lambda)|^2 \frac{da}{a}.
\]

(4.3)

Then

\[
G_{\varepsilon, \delta} \in L^2(\mathbb{R}, |x|^{2\gamma+1}dx), \quad K_{\varepsilon, \delta} \in (L^1 \cap L^2)(\mathbb{R}, |x|^{2\gamma+1}dx),
\]

(4.4)

and

\[
\mathcal{F}_\gamma(G_{\varepsilon, \delta}) = K_{\varepsilon, \delta}.
\]

Proof. Using Schwarz inequality for the measure \(\frac{da}{a^{4\gamma+5}} \) we obtain

\[
|G_{\varepsilon, \delta}(x)|^2 \leq \frac{1}{(C_g)^2} \left(\int_\varepsilon^\delta \frac{da}{a^{4\gamma+5}} \right)^2 \int_\varepsilon^\delta |g_a *_\gamma \bar{g}_a(x)|^2 \frac{da}{a^{4\gamma+5}}.
\]

so

\[
\int_\mathbb{R} |G_{\varepsilon, \delta}(x)|^2 |x|^{2\gamma+1}dx \leq \frac{1}{(C_g)^2} \left(\int_\varepsilon^\delta \frac{da}{a^{4\gamma+5}} \right)^2 \int_\varepsilon^\delta \int_\mathbb{R} |g_a *_\gamma \bar{g}_a(x)|^2 |x|^{2\gamma+1}dx \frac{da}{a^{4\gamma+5}}.
\]

By Theorem 2.3, Lemma 4.8, and Remark 4.4, we have

\[
\int_\mathbb{R} |g_a *_\gamma \bar{g}_a(x)|^2 |x|^{2\gamma+1}dx = m_\gamma \int_\mathbb{R} |\mathcal{F}_\gamma(g_a)\lambda|^4 |\lambda|^{2\gamma+1}d\lambda
\]

\[
\leq m_\gamma \|\mathcal{F}_\gamma(g_a)\|_2^2 \int_\mathbb{R} |\mathcal{F}_\gamma(g_a)\lambda|^2 |\lambda|^{2\gamma+1}d\lambda
\]

\[
= \|\mathcal{F}_\gamma(g_a)\|_2^2 \|g_a\|_{2,\gamma}^2 = a^{6\gamma+6} \|\mathcal{F}_\gamma g\|_\infty^2 \|g\|_{2,\gamma}^2.
\]

Hence

\[
\int_\mathbb{R} |G_{\varepsilon, \delta}(x)|^2 |x|^{2\gamma+1}dx \leq \frac{\|\mathcal{F}_\gamma g\|_\infty^2 \|g\|_{2,\gamma}^2}{(C_g)^2} \left(\int_\varepsilon^\delta a^{2\gamma+1}da \right) \left(\int_\varepsilon^\delta \frac{da}{a^{4\gamma+5}} \right) < \infty.
\]

The second assertion in (4.4) is easily checked. Let us calculate \(\mathcal{F}_\gamma(G_{\varepsilon, \delta}) \). Fix \(x \in \mathbb{R} \). From Theorem 2.3 and Lemma 4.7, we get

\[
g_a *_\gamma \bar{g}_a(x) = m_\gamma \int_\mathbb{R} |\mathcal{F}_\gamma(g_a)\lambda|^2 e_\gamma(i\lambda x) |\lambda|^{2\gamma+1}d\lambda,
\]

so

\[
G_{\varepsilon, \delta}(x) = \frac{m_\gamma}{C_g} \int_\varepsilon^\delta \left(\int_\mathbb{R} |\mathcal{F}_\gamma(g_a)\lambda|^2 e_\gamma(i\lambda x) |\lambda|^{2\gamma+1}d\lambda \right) \frac{da}{a^{4\gamma+5}}.
\]

As \(|e_\gamma(iz)| \leq 1 \) for all \(z \in \mathbb{R} \) (see [12]), we deduce by Theorem 2.3 that

\[
m_\gamma \int_\varepsilon^\delta \int_\mathbb{R} |\mathcal{F}_\gamma(g_a)\lambda|^2 |e_\gamma(i\lambda x)||\lambda|^{2\gamma+1}d\lambda \frac{da}{a^{4\gamma+5}}
\]
\[
\leq \int_\varepsilon^\delta \|g_a\|^2 \frac{da}{a^{4\gamma+5}} = \|g\|^2 \int_\varepsilon^\delta \frac{da}{a^{2\gamma+3}} < \infty.
\]

Hence, applying Fubini’s theorem, we find that
\[
G_{\varepsilon,\delta}(x) = m_\gamma \int_\Re \left(\frac{1}{C g} \int_\varepsilon^\delta |\mathcal{F}_\gamma g(a\lambda)|^2 \frac{da}{a} \right) e_\gamma(i\lambda x)|\lambda|^{2\gamma+1} d\lambda \\
= m_\gamma \int_\Re K_{\varepsilon,\delta}(\lambda) e_\gamma(i\lambda x)|\lambda|^{2\gamma+1} d\lambda
\]
which completes the proof.

We can now state the main result of this section.

Theorem 4.10 (Calderón’s formula). Let \(g \in L^2(\Re, |x|^{2\gamma+1} dx) \) be a Dunkl wavelet of order \(\gamma \) such that \(\mathcal{F}_\gamma g \in L^\infty(\Re) \). Then for \(f \in L^2(\Re, |x|^{2\gamma+1} dx) \) and \(0 < \varepsilon < \delta < \infty \), the function
\[
f^{\varepsilon,\delta}(x) := \frac{1}{C_g} \int_\varepsilon^\delta \int_\Re \Phi_\gamma(f)(a,b) g_a(b) |b|^{2\gamma+1} db \frac{da}{a}
\]
belongs to \(L^2(\Re, |x|^{2\gamma+1} dx) \) and satisfies
\[
\lim_{\varepsilon \to 0, \delta \to \infty} \|f^{\varepsilon,\delta} - f\|_{2,\gamma} = 0. \tag{4.5}
\]

Proof. It is easily seen that
\[
f^{\varepsilon,\delta} = f *_\gamma G_{\varepsilon,\delta},
\]
where \(G_{\varepsilon,\delta} \) is given by (4.2). It follows by Lemmas 4.7 and 4.9 that \(f^{\varepsilon,\delta} \in L^2(\Re, |x|^{2\gamma+1} dx) \) and \(\mathcal{F}_\gamma(f^{\varepsilon,\delta}) = \mathcal{F}_\gamma(f) K_{\varepsilon,\delta} \), where \(K_{\varepsilon,\delta} \) is as in (4.3). From this and Theorem 2.3 we obtain
\[
\|f^{\varepsilon,\delta} - f\|^2_{2,\gamma} = m_\gamma \int_\Re |\mathcal{F}_\gamma(f^{\varepsilon,\delta} - f)(\lambda)|^2 |\lambda|^{2\gamma+1} d\lambda \\
= m_\gamma \int_\Re |\mathcal{F}_\gamma f(\lambda)|^2 (1 - K_{\varepsilon,\delta}(\lambda))^2 |\lambda|^{2\gamma+1} d\lambda.
\]
But by (4.1) we have
\[
\lim_{\varepsilon \to 0, \delta \to \infty} K_{\varepsilon,\delta}(\lambda) = 1, \quad \text{for almost all } \lambda \in \Re.
\]
So (4.5) follows from the dominated convergence theorem.

Another pointwise inversion formula for the Dunkl wavelet transform, proved in [5], is as follows.

Theorem 4.11. Let \(g \in L^2(\Re, |x|^{2\gamma+1} dx) \) be a Dunkl wavelet of order \(\gamma \). If both \(f \) and \(\mathcal{F}_\gamma f \) are in \(L^1(\Re, |x|^{2\gamma+1} dx) \) then we have
\[
f(x) = \frac{1}{C_g} \int_0^\infty \left(\int_\Re \Phi_\gamma(f)(a,b) g_a(b) |b|^{2\gamma+1} db \right) \frac{da}{a}, \quad \text{a.e.},
\]
where, for each \(x \in \Re \), both the inner integral and the outer integral are absolutely convergent, but possibly not the double integral.
5 Inversion of the dual Dunkl–Sonine transform using Dunkl wavelets

From now on assume $\beta > \alpha > -1/2$. In order to invert the dual Dunkl–Sonine transform, we need the following two technical lemmas.

Lemma 5.1. Let $0 \neq g \in L^1 \cap L^2(\mathbb{R}, |x|^{2\alpha+1} dx)$ such that $\mathcal{F}_\alpha g \in L^1(\mathbb{R}, |x|^{2\alpha+1} dx)$ and satisfying

$$\exists \eta > \beta - 2\alpha - 1 \quad \text{such that} \quad \mathcal{F}_\alpha g(\lambda) = \mathcal{O}(|\lambda|^\eta) \quad \text{as} \quad \lambda \to 0. \quad (5.1)$$

Then $X_{\alpha,\beta}g \in L^2(\mathbb{R}, |x|^{2\beta+1} dx)$ and

$$\mathcal{F}_\beta(X_{\alpha,\beta}g)(\lambda) = \frac{m_\alpha}{m_\beta} \frac{\mathcal{F}_\alpha g(\lambda)}{|\lambda|^{2(\beta-\alpha)}}.$$

Proof. By Theorem 2.3 we have

$$g(x) = m_\alpha \int_\mathbb{R} \mathcal{F}_\alpha g(\lambda) e_{\alpha}(i\lambda x) |\lambda|^{2\alpha+1} d\lambda, \quad \text{a.e.}$$

So using (3.6), we find that

$$X_{\alpha,\beta}g(x) = m_\beta \int_\mathbb{R} h_{\alpha,\beta}(\lambda) e_{\beta}(i\lambda x) |\lambda|^{2\beta+1} d\lambda, \quad \text{a.e.} \quad (5.2)$$

with

$$h_{\alpha,\beta}(\lambda) := \frac{m_\alpha}{m_\beta} \frac{\mathcal{F}_\alpha g(\lambda)}{|\lambda|^{2(\beta-\alpha)}}.$$

Clearly, $h_{\alpha,\beta} \in L^1(\mathbb{R}, |x|^{2\beta+1} dx)$. So it suffices, in view of (5.2) and Theorem 2.3 to prove that $h_{\alpha,\beta}$ belongs to $L^2(\mathbb{R}, |x|^{2\beta+1} dx)$. We have

$$\int_\mathbb{R} |h_{\alpha,\beta}(\lambda)|^2 |\lambda|^{2\beta+1} d\lambda = \left(\frac{m_\alpha}{m_\beta} \right)^2 \int_\mathbb{R} |\lambda|^{4\alpha-2\beta+1} |\mathcal{F}_\alpha g(\lambda)|^2 d\lambda$$

$$= \left(\frac{m_\alpha}{m_\beta} \right)^2 \left(\int_{|\lambda| \leq 1} + \int_{|\lambda| \geq 1} \right) |\lambda|^{4\alpha-2\beta+1} |\mathcal{F}_\alpha g(\lambda)|^2 d\lambda := I_1 + I_2.$$

By (5.1) there is a positive constant k such that

$$I_1 \leq k \int_{|\lambda| \leq 1} |\lambda|^{2\eta+4\alpha-2\beta+1} d\lambda = \frac{k}{\eta + 2\alpha - \beta + 1} < \infty.$$

From Theorem 2.3 it follows that

$$I_2 = \left(\frac{m_\alpha}{m_\beta} \right)^2 \int_{|\lambda| \geq 1} |\lambda|^{2(\alpha-\beta)} |\mathcal{F}_\alpha g(\lambda)|^2 |\lambda|^{2\alpha+1} d\lambda$$

$$\leq \left(\frac{m_\alpha}{m_\beta} \right)^2 \int_{|\lambda| \geq 1} |\mathcal{F}_\alpha g(\lambda)|^2 |\lambda|^{2\alpha+1} d\lambda \leq \left(\frac{m_\alpha}{m_\beta} \right)^2 ||\mathcal{F}_\alpha g||_{2,\alpha}^2 \leq \frac{m_\alpha}{(m_\beta)^2} ||g||_{2,\alpha}^2 < \infty$$

which ends the proof. \[\square\]
Lemma 5.2. Let \(0 \neq g \in L^1 \cap L^2(\mathbb{R}, |x|^{2\alpha+1} \, dx) \) be real-valued such that \(\mathcal{F}_a g \in L^1(\mathbb{R}, |x|^{2\alpha+1} \, dx) \) and satisfying

\[
\exists \eta > 2(\beta - \alpha) \quad \text{such that} \quad \mathcal{F}_a g(\lambda) = \mathcal{O}(\lambda^\eta) \quad \text{as} \quad \lambda \to 0^+.
\] (5.3)

Then \(\mathcal{X}_{\alpha,\beta} g \in L^2(\mathbb{R}, |x|^{2\beta+1} \, dx) \) is a Dunkl wavelet of order \(\beta \) and \(\mathcal{F}_\beta (\mathcal{X}_{\alpha,\beta} g) \in L^\infty(\mathbb{R}) \).

Proof. By combining (5.3) and Lemma 5.1 we see that the dual Dunkl–Sonine transform:

\[
\mathcal{F}_\beta (\mathcal{X}_{\alpha,\beta} g)(\lambda) = \mathcal{O}(\lambda^{\eta - 2(\beta - \alpha)}) \quad \text{as} \quad \lambda \to 0^+.
\]

Thus, in view of Remark 4.2, \(\mathcal{X}_{\alpha,\beta} g \) satisfies the admissibility condition (1.1) for \(\gamma = \beta \). □

Remark 5.3. In view of Remark 4.2 each function satisfying the conditions of Lemma 5.4 is a Dunkl wavelet of order \(\alpha \).

Lemma 5.4. Let \(g \) be as in Lemma 5.2 Then for all \(f \in L^1(\mathbb{R}, |x|^{2\beta+1} \, dx) \) we have

\[
\Phi_{\mathcal{X}_{\alpha,\beta} g}^\beta (f)(a,b) = \frac{1}{a^{2(\beta - \alpha)}} \mathcal{X}_{\alpha,\beta} \left[\Phi_g^\alpha \left(\mathcal{X}_{\alpha,\beta} f \right)(a,\cdot) \right](b).
\]

Proof. By Definition 4.5 we have

\[
\Phi_{\mathcal{X}_{\alpha,\beta} g}^\beta (f)(a,b) = \frac{1}{a^{2\beta + 2}} f *_{\beta} (\mathcal{X}_{\alpha,\beta} g)_a(b).
\]

But \((\mathcal{X}_{\alpha,\beta} g)_a = \mathcal{X}_{\alpha,\beta} (\tilde{g}_a) \) by virtue of (1.2) and (3.3). So using (3.3) we find that

\[
\Phi_{\mathcal{X}_{\alpha,\beta} g}^\beta (f)(a,b) = \frac{1}{a^{2\beta + 2}} f *_{\beta} [\mathcal{X}_{\alpha,\beta} (\tilde{g}_a)](b)
= \frac{1}{a^{2(\beta - \alpha)}} \mathcal{X}_{\alpha,\beta} \left[\Phi_g^\alpha \left(\mathcal{X}_{\alpha,\beta} f \right)(a,\cdot) \right](b),
\]

which gives the desired result. □

Combining Theorems 4.10, 4.11 with Lemmas 5.2, 5.4 we get

Theorem 5.5. Let \(g \) be as in Lemma 5.2 Then we have the following inversion formulas for the dual Dunkl–Sonine transform:

(i) If both \(f \) and \(\mathcal{F}_\beta f \) are in \(L^1(\mathbb{R}, |x|^{2\beta+1} \, dx) \) then for almost all \(x \in \mathbb{R} \) we have

\[
f(x) = \frac{1}{C_{\mathcal{X}_{\alpha,\beta} g}^\beta} \int_0^\infty \left(\int_{\mathbb{R}} \mathcal{X}_{\alpha,\beta} \left[\Phi_g^\alpha \left(\mathcal{X}_{\alpha,\beta} f \right)(a,\cdot) \right](b)(\mathcal{X}_{\alpha,\beta} g)_{a,b}(x) |b|^{2\beta+1} db \right) da a^{2(\beta - \alpha) + 1}.
\]

(ii) For \(f \in L^1 \cap L^2(\mathbb{R}, |x|^{2\beta+1} \, dx) \) and \(0 < \varepsilon < \delta < \infty \), the function

\[
f^{\varepsilon,\delta}(x) := \frac{1}{C_{\mathcal{X}_{\alpha,\beta} g}^\beta} \int_\varepsilon^\delta \left(\int_{\mathbb{R}} \mathcal{X}_{\alpha,\beta} \left[\Phi_g^\alpha \left(\mathcal{X}_{\alpha,\beta} f \right)(a,\cdot) \right](b)(\mathcal{X}_{\alpha,\beta} g)_{a,b}(x) |b|^{2\beta+1} db \right) da a^{2(\beta - \alpha) + 1}
\]

satisfies

\[
\lim_{\varepsilon \to 0, \delta \to \infty} \| f^{\varepsilon,\delta} - f \|_{2,\beta} = 0.
\]

Acknowledgements

The author is grateful to the referees and editors for careful reading and useful comments.
References

[1] de Jeu M.F.E., The Dunkl transform, *Invent. Math.* **113** (1993), 147–162.

[2] Dunkl C.F., Differential-difference operators associated with reflection groups, *Trans. Amer. Math. Soc.* **311** (1989), 167–183.

[3] Dunkl C.F., Integral kernels with reflection group invariance, *Canad. J. Math.* **43** (1991), 1213–1227.

[4] Dunkl C.F., Hankel transforms associated to finite reflection groups, *Contemp. Math.* **138** (1992), 123–138.

[5] Jouini A., Dunkl wavelets and applications to inversion of the Dunkl intertwining operator and its dual, *Int. J. Math. Math. Sci.* **6** (2004), 285–293.

[6] Kamefuchi S., Ohnuki Y., Quantum field theory and parastatistics, Springer-Verlag, Berlin, 1982.

[7] Mourou M.A., Trimèche K., Calderón’s formula associated with a differential operator on $(0, \infty)$ and inversion of the generalized Abel transform, *J. Fourier Anal. Appl.* **4** (1998), 229–245.

[8] Mourou M.A., Trimèche K., Inversion of the Weyl integral transform and the Radon transform on \mathbb{R}^n using generalized wavelets, *Monatsh. Math.* **126** (1998), 73–83.

[9] Mourou M.A., Trimèche K., Calderon’s reproducing formula related to the Dunkl operator on the real line, *Monatsh. Math.* **136** (2002), 47–65.

[10] Mourou M.A., Trimèche K., Transmutation operators and Paley–Wiener associated with a singular differential-difference operator on the real line, *Anal. Appl. (Singap.)* **1** (2003), 43–70.

[11] Rosenblum M., Generalized Hermite polynomials and the Bose-like oscillator calculus, in *Nonselfadjoint Operators and Related Topics* (Beer Sheva, 1992), *Oper. Theory Adv. Appl.*, Vol. 73, Birkhäuser, Basel, 1994, 369–396, [math.CA/9307224](https://arxiv.org/abs/math.CA/9307224).

[12] Rösler M., Bessel-type signed hypergroups on \mathbb{R}, in Probability Measures on Groups and Related Structures, XI (Oberwolfach, 1994), Editors H. Heyer and A. Mukherjea, Oberwolfach, 1994, World Sci. Publ., River Edge, NJ, 1995, 292–304.

[13] Soltani F., L^p-Fourier multipliers for the Dunkl operator on the real line, *J. Funct. Anal.* **209** (2004), 16–35.

[14] Soltani F., Sonine transform associated to the Dunkl kernel on the real line, *SIGMA* **4** (2008), 092, 14 pages, [arXiv:0812.4666](https://arxiv.org/abs/0812.4666).

[15] Xu Y., An integral formula for generalized Gegenbauer polynomials and Jacobi polynomials, *Adv. in Appl. Math.* **29** (2002), 328–343.

[16] Yang L.M., A note on the quantum rule of the harmonic oscillator, *Phys. Rev.* **84** (1951), 788–790.