Abstract: The problem of compatibility between the wood filler and thermoplastic matrix is of essential importance in composite production. Numerous methods have been developed for increasing this compatibility, which is still representing a challenging objective of composite research throughout the world. The research into these methods is primarily directed towards their efficiency from the viewpoint of the composite performance and their economical acceptability. The latter is of particular importance for the composite production in the developing countries with respect to the shortage of the corresponding funds. With this respect, the utilization of ionizing radiation might have considerable advantages. In this research, the beech wood flour was irradiated by a dose of 10 kGy of 60Co gamma rays for purpose of provoking the changes by the ionizing effect. The effects of ionizing radiation upon the properties of wood particles have been examined by IR spectroscopy and by determination of contents of hydroxyl groups in wood by acetylation as an indirect method. All these methods have been expected to reveal the chemical effects of the applied radiation treatment. The irradiated and the control wood flour were used in order to produce the samples of composite with polypropylene. The polypropylene-wood flour (PP-WF) composites were produced with 40% of wood particles having fraction size 0.3 mm. The melt-blended composites were modified with amido-acrylic acid (AMACA) as a new coupling agent synthesized for this propose in amount of 6 wt.% (based on wood filler) and successively with 0.05 wt.% (based on PP) of organic peroxide during mixing step. The composites containing coupling agents showed superior mechanical properties, compared to the untreated one. The highest extent of improvement of tensile was achieved in PP-WF composites modified with AMACA coupling agent.

Key words: wood plastic composites, polypropylene, wood filler, radiation (γ-rays)

THE INFLUENCE OF IRRADIATED WOOD FILLER ON SOME PROPERTIES OF POLYPROPYLENE - WOOD COMPOSITES

ГЛАСНИК ШУМАРСКОГ ФАКУЛТЕТА, БЕОГРАД, 2007, бр. 95, стр. 73-82

Abstract: Проблем компатибилности између дрвног пуниоца и термопластичне матрице је од битне важности за призводњу композита. Бројне методе су развиле ову компатибилност, што је представља велику изазовну циљ композитне истраживање широм света. Истраживање овојцама је првенствено насред врло њих ефикасности изгледа композита и њих економске пријемљивости. Ова последња је од особеног значаја за производњу композита у развојним земљама у виду отсуства одговарајућих средстава. У овој истраживању, биелошаровски дрвни пуниоц био је ионизован дозом 10 кГи 60Co гама лучима за циљством посебних зацртих утицаја ионизације. Утицај ионизације на својства дрвених кућица су проналазили са ИР спектроскопијом и опредељивањем садржаја гидроксилних група у дрвету са акетилинацијом као индиректним методом. Све ове методе су се очекивале да покају хемички утицај ефеката приложене ионизације. Ионизовани и контролни дрвни пуниоци су били коришћени у једној циљу производње композита са полипропиленом. Композити полипропилен-дрвни пуниоц (PP-WF) добили су 40% дрвених кућица са фракцијом диметра 0.3 мм. Мелт-међвиштени композити су модифицирани са амида-акрилном киселином (AMACA) као новим купонгентом синтезираном за више овог циља у количини од 6 мас. % (на основу дрвног пуниоца) и наредно са 0.05 мас. % (на основу PP) органичним пероксидом по време смештања. Композити содржали купонгенте показали су упркос овом неприближном нивоу највише укључивости у тежину у PP-WF композитима модифицираним AMACA купонгентом.

Кеј кердс: дрвени пластични композити, полипропилен, дрвни пуниоц, ионизација (γ- лучеве)
1. INTRODUCTION

The ever-increasing shortage of high-quality wood with the resulting price increases as well as the environmental protection issues both emphasize the importance and benefits from waste wood utilization (Điporović et al., 1997, 2002). The composite production can be a very profitable utilization of this waste, with the recently noticed trend of combining wood particles with thermoplastic matrices. In the automotive industry, mainly in Europe, components previously made with glass fiber composites that do not require high load-bearing capabilities are now being replaced with hemp, flax and other natural fiber composites. Wood flour and rise husks are commonly used as reinforcing materials for plastic composite decking boards and railing systems in North America (80% of the approximately $3.2 billion market). The market for WPC decking is growing rapidly. Market share grew from 2% of the decking market in 1997 to 8% in 2000 (Smith, 2001), and it is expected to more than double by 2005 (Mapleston, 2001).

Low density, renewability, recyclability, low energy consumption, biodegradability, low abrasion to tools, low health risk when inhaled and low cost make this material environmentally, economically and socially friendly (Wambua et al., 2003). Some drawbacks of the natural fiber plastic composites are: poor compatibility with hydrophobic
thermoplastic matrix, poor thermal stability above 220°C, hygroscopicity, low bulk density and poor dispersion with ordinary plastic matrix (Điporović et al., 2002).

However, in the wood particles polar and hydrophilic substances prevail, as opposed to the nonpolar and hydrophobic thermoplastic matrix as a polypropylene (PP). Therefore one of the major issues to be tackled in production of such composites is the issue of compatibility. Different modifications known to increase the compatibility of the wood particles and the thermoplastic matrix include acetylation (Điporović, 1990), grafting (Kokta et al., 1986, Điporović et al., 1996), plasma (Young et al., 1994) and radiation (Czvikovsky et al., 1982) treatments, etc. The methods of acetylation and plasma treatment with appropriate adjustments to conditions of our research have been already investigated (Điporović et al., 1996/a, 2002/a, Todorović et al., 1996), and it was only logical to investigate the effect of the radiation treatment. Furthermore, also applicable as the reason for this research, is the need for increased competitiveness through improved product quality.

In this research ionizing radiation was used for preliminary wood particles modification. Further, such particles were used for composite production. The effects of ionizing radiation upon the properties of wood particles were examined by IR spectroscopy, and by determining content of acetyl groups. The compatibility of irradiated wood particles and polypropylene (PP) matrix was followed by changes of mechanical properties of composites.

2. EXPERIMENTAL

Materials: The following materials were used for production of polypropylene-wood composites:

• POLYPROPYLENE (PP) powder, MFR 3 g/10 min; density 0.905 g cm⁻³; stress at break 23 MPa; elongation 570%; elasticity modulus 1,180 MPa; IZOD impact resistance (notched) 34.6 J m⁻¹. Produced by HIPOL, Odzaci.
• ADDITIVES
 – neutralizer, Ca stearate (HICI Chemical);
 – initiator, organic peroxide TRIGONOX 7.5P (AKZO Chemie), 7.5% peroxyde carrier on PP powder;
 – antioxidants: IRGANOX RA1010, IRGANOX PS802, ULTRANOX 626 (CIBA);
• COUPLING AGENT
 – Amidoacrylic acid (AMACA) - 3-[6-(3-carboxy-acryloylamino)-hexylcarbamoyl]-acrylic acid (bruto formula C₁₄H₂₀N₂O₆, density 1.259 g cm⁻³, melting temperature 158°C), synthesized for this use;
• WOOD FILLER, dried wood flour (WFl) of beech (Fagus moesiaca) fraction size 0.30 mm (passed through 40 mesh sieve and retained on 50 mesh sieve).

Radiation treatment. In this research, the WFl was treated by the absorption dose of 10 kGy of ⁶⁰Co gamma rays, for purpose of provoking the changes due to the ionizing
effect. The irradiation was performed at the Institute of Nuclear Sciences “Vinca” Gamma Laboratory.

IR spectrography and Acetylation methods were described in previous study (Điporović et al., 1996/a).

Preparation of composites. In the first step, the dry mixtures of ingredients in the following quantities were used:

– 60% PP powder stabilized with additives: 0.67% TRIGONOX 7.5P (corresponds to 0.05% pure organic peroxide) + 0.05% Ca stearate + 0.15% IRGANOX RA1010 + 0.25% IRGANOX PS802 + 0.15% ULTRANOX 626;
– 40% wood flour (irradiated WFl-γ or control WFl);
– 0% and 6% of coupling agent: AMACA calculated on the weight of wood flour.

Conditions of test specimens preparation. In the second step dry mixtures were melt-mixed in intensive mixer „RHEOMIX 600” under following conditions:

- Temperature 210°C
- Time/rotation frequency ... 7 min/70 rpm.

Press molding process

- Temperature 230°C
- Time heating up 4-5 min, press molding 3-4 min
- Specific pressure 3.1 MPa

Cooling process

- Temperature decreasing up to 20°C
- Time 7 min
- Specific pressure 3.1 MPa

Mechanical tests. Tensile properties were measured by INSTRON 4204 testing equipment according to ASTM D 638 standard method, using speed of 50 mm·min⁻¹ for testing tensile strength and elongation, and 5 mm·min⁻¹ for testing modulus of elasticity. The elongation testing was carried by extension-meter. Notched IZOD impact resistance was tested according to ASTM D 256 standard by ZWICK 5101 testing pendulum. Mechanical properties were presented as the statistical averages of 6-9 measurements. The coefficients of variation were for tensile strength about 7.4%, for elongation about 49%, for modulus of elasticity about 14.6% and for impact resistance (Izod - notched) about 4.9%. The high variation coefficient is the consequence of the material heterogeneity. The number of measurement does not decrease this coefficient significantly.

3. RESULTS AND DISCUSSION

The IR spectra for irradiated and control WF were presented in the previous study (Điporović et al., 1996/a). It was found that the presented spectra had similar shapes.
within the entire scan and that there were no new peaks appearing or the old ones disappearing, with the introduction of radiation treatment. However, it was found that a quantitative difference in the peak heights existed, indicating changes in quantitative ratio of molecular groups. It was noted that the ratio of the relative heights of peaks ascribed to hydroxyls and alcanes decreased due to radiation treatment.

The effect of irradiation is also evident in the results of applying acetylation both to the irradiated and the control samples which were presented in the previous study (Điporović et al., 1996/a). It was noted that the acetyl yield was reduced (about 10.1%) by the radiation treatment. Generally, wood flour irradiation to the sufficient absorbed dose value results in chemical modification of the wood tissue (most probably due to changes regarding the hydroxyl groups).

The results of mechanical properties of PP-WF composites produced with 40% nonirradiated and irradiated wood flour and by AMACA agent addition of 0-6 wt.% are presented in Figures 1-4. The AMACA agent addition of 6% wt. (based on wood filler) was chosen as optimal amount in composites in earlier study (Điporović et al., 2003).

From Fig. 1 it can be noticed that TS values of control composites (PP+WF) are lower than TS values of the original PP matrix. It was expected because of the incompatibility of wood flour with PP matrix, resulting in the absence of adhesion on the surface filler/matrix. By ionizing pretreatment, the hygrophobicity of the wood flour increase. At the same time its better compatibility produces a significant improvement of TS of PP+WFγ composites. Futhermore, it was noticed an obvious improvement of TS composites with 6% of AMACA addition as a coupling agent. It was achieved an improvement

![Figure 1](image_url)

Figure 1. The influence of γ-rays and addition of AMACA as a coupling agent on tensile strength (TS) of PP composites filled with 40% beech wood flour.

Слика 1. Утицај γ-зрака и додатка АМАКА као везујућег агенса на затезну чврстоћу ПП композита испуњених са 40% буковог дрвног брашна.
of about 90%, of TS composite with noniradiated wood flour (PP+WF+6% AMACA) and about 60% of composites with irradiated wood flour (PP+WFγ+6% AMACA). These results prove that AMACA improved the adhesion between wood particles and polymer matrix. The higher values of TS of both composites, comparing to PP show that the addition of 6% AMACA agent resulted in reinforcement of the matrix, which was the aim of the research. The combination of AMACA agent and irradiated wood flour produced less improvement of TS PP composites due to chemical modification of wood tissue affected by γ-rays. The recorded reducing of hydroxyl groups of carbohydrate component and lignin cause lower reactivity of wood particles, which is necessary for achieving the adhesion in presence of any coupling agents.

However, we have to note that the irradiated wood particles, in combination with AMACA agent, significantly improve the elongation of composites (PP+WFγ+6% AMACA) (Fig. 2). This effect can be a consequence of both the achieved adhesion between filler and matrix and probably better surface wetting of wood particles which, due to irradiation, became similar to matrix polymer and in that way affected better homogenization during hot mixing in presence of AMACA agent. The elongation of other PP composites was similar.

The influence of γ-rays and addition of AMACA agent on modulus of elasticity of PP composites was not significant, which could be seen in Fig. 3. However, it was obvious that all the composites had significantly higher values of E comparing to PP, which was the aim of the research. The addition of 40% beech wood flour improved this property approximately by 144%. Similar values of E of all PP composites show that the addition of wood

![Figure 2. The influence of γ-rays and addition of AMACA as a coupling agent on elongation (ε) of PP composites filled with 40% beech wood flour](image)

Слика 2. Утицај γ-зрака и додатка AMACA као везујућег агенса на елонгацију (ε) ПП композита испуњених са 40% буковог дрвног брашна
filler is responsible for this property, which was proved in previous studies (Điporović et al., 1997, 2002).

The results of the impact resistance of PP composite illustrated in Fig. 4 show that the addition of wood flour in amount of 40% in composite improves toughness of PP composites. This effect can be a consequence of better impact resistance of wood particles as filler. The modification of wood particles by γ-rays has negative effects on this property. Therefore, the values of impact resistance of PP composite with irradiated wood flour were lower than those for composite with nonirradiated wood particles. We have to say that this effect is more emphasized in PP composites with AMACA agent (PP+WFγ+6% AMACA). These results suggest that chemical modification of wood tissue by γ-rays may leave consequence on the structure and internal bonds of carbohydrate components and lignin making the wood brittle and more breakable. The addition of AMACA agent could not neutralize the negative effect of γ-rays. Therefore, the composites with nonirradiated wood flour (PP+WF+6% AMACA) and this agent showed the best impact resistance.

3. CONCLUSIONS

Based on the results of the mechanical properties of PP - WF composites, it can be stated that:

1. Beech wood flour irradiated by a dose of 10 kGy of 60Co γ-rays can be used for production of polypropylene (PP) composites, having improved elongation characteristics;
2. The irradiated wood particles of beech wood flour in amount of 40% in PP composites have a positive effect on tensile strength of composite without coupling agents added. This is probably due to chemical modification of wood tissue, caused by ionizing effect during the pretreatment;

3. However, irradiation of the some wood flour could not improve tensile strength of these composites having coupling agent;

4. Somehow, irradiated wood flour interfere full coupling effect of AMACA agent. Thus, interaction of irradiated wood filler with AMACA coupling agent, need further investigation.

Напомена: Истраживања изнета у овом раду финансирало је Министарство за науку и технолошку иновацију у оквиру пројекта BTN-361005A.

REFERENCES

Czvikovsky T., Tapolcai I. (1982): Modification of polypropylene with radiation-treated wood flour, Proc. V Symp. on Radiation Chemistry, Budapest (785-792)

Điporović M. (1990): Some properties of particleboards based on acetylated wood particles, M.Sc. Thesis, Faculty of Forestry of Belgrade University, Belgrade (in Serbian)

Điporović M., Dingova E., Miljković J., Popov-Pergal K. (2003): The influence of different coupling agents on some properties of polypropylene-wood composites, Mater. Sci. Forum 9 (219-224)
THE INFLUENCE OF IRRADIATED WOOD FILLER ON SOME PROPERTIES OF POLYPROPYLENE COMPOSITES

Điporović M., Miljković J., Dingova E., (1997): The influence of wood flour addition on the properties of polypropylene composites modified with maleic anhydride, Proc. The 3rd International Conference on the Development of Forestry and Wood Science / Technology „ICFWST ’97”, 29.09-03.10.1997, Belgrade and Mt. Goč (422-443)

Điporović M., Miljković J., Dingova E. (2002/a): The influence of acetylated wood filler on some properties of polypropylene composites, Proc. 3rd International Conference - Wood Science and Engineering in the Third Millennium, Brashov (69-74)

Ђипоровић М., Милјковић Ј., Дингова Е., Попов-Перган К. (2002): Развој термо-изазивајућих композита на бази дрвећа, Дрварски гласник 41-42, Шумарски факултет Универзитет у Београду, Београд (21-26)

Điporović M., Miljković J., Todorović P., Dingova E. Babić D. (1996/a): On some utilizations of ionization in wood-fiber plastic composites, FORTROP ’96 International Conference - Proceedings Vol. 8 - Forest Products Utilization, Bangkok (149-157)

Điporović M., Todorović P., Miljković J., Zlatanović M., Beloševac R. (1996): Some effects of plasma treatment on wood fibers for composite production, Proc. of the 11th Biennial European Conference on Fracture - ECF 11, EMAS, Cradley Heath, Warley (1759-1762)

Kokta B.V., Dancault C., Beshay A.D. (1986): Use of wood fibers grafted aspen in thermoplastic composites, IV Effect of extreme conditions on the mechanical properties of polyethylene composites, Polymer Composites 7 (337-348)

Mapleston P. (2001): Wood composites in decking, the view from Principia, Modern Plastics, June (62-65)

Smith P.M. (2001): U.S. woodfiber-plastic composite decking market, Proc. VI International Conference on Woodfiber- Plastic Composites, Forest Prod. Soc., Madison (13-17)

Todorović P., Miljković J., Điporović M.,(1996): On the absorption of gamma rays by wood particles and wood-based composites, Proc. of III Pacific Rim Bio-based Composites Symposium, Kyoto (184-192)

Wambua P., Ivens J., Verpoest I. (2003): Natural fibers: Can they replace glass in fiber reinforced plastics?, Composites Sci. and Techn. 63 (1259-1264)

Young R.A., Denes F., Sabharwal H., Nielsen L., Tu X. (1994): Improvement of biobased composites properties trough could plasma treatments, Proc. II Pacific Rim Bio-Based Composites Symposium Proceedings, Vancouver (153-159)

Миланка Ђипоровић

УТИЦАЈ Г-ЗРАКА НА НЕКА СВОЈСТВА ПОЛИПРОПИЛЕН-ДРВНИХ КОМПОЗИТА

Резиме

Резултати механичких својстава композита на бази дрвног брашна и полипропилена добијени у овом раду, указују да се букуто брашно озрачињено гама зрацима извора 60Co дозом од 10 kGy може користити за производњу побољшаних полипропиленских композита. Озрачени честице дрвног брашна у количини од 40% у композиту позитивно утичу на затезну чврстоћу полипропиленских композита због хемијске модификације дрвног ткива изазване јонизујућим ефектом током предтретмана зрачивања.
Додатак амидо-акрилне киселине (АМАСА), као везујућег агенса, у количини од 6 маc.% (рачунато на масу дрвног пуниоца) значајно ојачава полипропиленске композите испу њене са 40% дрвног брашна, захваљујући побољшању адхезије на контактиој површини пунилац/матрица. Озрачивањем, као предтретманом, дрвног брашно показује боље ефекте на својства полипропиленских композита када се користи самостално, јер озрачене честице због своје умањене хемијске реактивности ометају потпуни адхезивни ефекат АМАСА, као агенса спајања.