Research Article

Semih Yilmaz*, Ali İrfan İlbaş, Mikail Akbulut and Aysun Çetin

Grain amino acid composition of barley (Hordeum vulgare L.) cultivars subjected to selenium doses

Selenyum dozlarına maruz bırakılan arpa (Hordeum vulgare L.) çeşitlerinde tane amino asit içeriği

Abstract

Background: Selenium (Se 34) is an essential micronutrient for humans and animals and has growth promoting and antioxidative effects at low concentrations.

Methods: Effects of various sodium selenite (Na2SeO3) doses on grain amino acid content of barley cultivars (Bülbül 89 and Çetin 2000) was investigated using ion exchange liquid chromatography.

Results: Majority of the amino acids could be altered with Selenium (Se) fertilization. Grain Se content of Bülbül 89 (0.175 mg kg−1) and Çetin 2000 (0.171 mg kg−1) were similar and both displayed an increase in proteinogenic, essential, and sulfur amino acids. The response of cultivars was more pronounced for Se accumulation and amino acid content at mid dose (12.5 mg ha−1). The quantities of proteinogenic, essential and sulfur amino acids increased considerably at that dose. Se induced increase in nitrogen content might cause an increase in some of the proteins of grain and consequently can alter amino acid composition. An obvious increase in the limiting amino acids (lysine and threonine) were prominent in response to Se fertilization.

Conclusion: Se treatment influence amino acid composition of barley grains; especially improve the quantity of limiting amino acids and consequently nutritional value of the grain.

Keywords: Amino acid; Na2SeO3; Çetin 2000; Bülbül 89; Hordeum vulgare L.

Özet

Giriş: Selenyum (Se 34) insan ve hayvanlar için esansiyel bir mikronütrient olup düşük dozlarda büyüme teşvik edici ve antioksidatif etki gösterir.

Metod: Çeşitli dozlardaki sodyum selenitin (Na2SeO3) arpa çeşitlerinin (Bülbül 89, Çetin 2000) tane amino asit içeriği üzerindeki etkisi iyon değişimi sıvı kromatografisi ile analiz edilmiştir.

Bulgular: Çeşitlerde amino asitlerin çoğunun selenyum (Se) uygulamasına bağlı olarak değişebilceği gösterilmiştir. Bülbül 89 (0.175 mg kg−1) ve Çetin 2000 (0.171 mg kg−1) çeşitlerinde tane Se içeriği birbirine yakın olup her iki side proteinogenik, esansiyel ve kükürtlü aa içeriğinde artış göstermiştir. Çeşitlerin Se birikimi ve amino asit içeriği bakımından gösterdiği tepki ara dozda (12.5 mg ha−1) daha belirgin olmuştur. Bu doza proteinogenik, esansiyel ve kükürtlü amino asit miktarı belirgin şekilde artış göstermiştir. Tane azot içeriğindeki Se indükledi artış bazı proteinlerin artışına neden olabilir ve buna bağlı olarak amino asit bileşimini değiştirebilir. Çeşitlerde sıvılayıcı amino asitlerdeki (лизин ve treonin) bariz artış Se uygulamasına tepki olarak önem kazanmıştır.

Sonuç: Se uygulaması arpa tanesinde amino asit içeriğini etkilemekle olup özellikle sıvılayıcı amino asitlerin miktarını artırma etkisiyle tanede besin değerinin iyileştirilmesine katkı sağlamaktadır.

Anahtar kelimeler: Amino asit; Na2SeO3; Çetin 2000; Bülbül 89; Hordeum vulgare L.
Introduction

Selenium (Se⁴⁺) is an essential micronutrient for humans, animals and many other life forms [1, 2]. It is also necessary for animal growth, fertility and needed for the prevention of several diseases through mainly taking part in selenocysteine (SeCys)-containing proteins [3]. Sec is involved in active site of selenoproteins as glutathione peroxidase (GSH­Px) and iodothyronine deiodinases [3–5]. Selenium exists in multiple oxidation states, with each state having different fates within the environment. Plants take up Se as selenate (SeO₄²⁻) ions or selenite (SeO₃²⁻) ions [6]. Selenium and selenite are more soluble than the reduced forms of Se [7]. Although there is strong evidence that Se is required for the growth of green algae, the essentiality of Se as a micronutrient in higher plants is still controversial [8]. Plants can functionally concentrate selenium in the body, primarily in the seeds [9], which can be toxic at higher concentrations and cause membrane lipid peroxidation in barley [10].

The physical and chemical similarities of Se and sulfur (S) help elucidate the intimate association between the metabolisms of the two elements in plants [11]. The predominant forms of S and Se available to plants are sulfate, selenate and selenite. These elements have chemical differences from which one can infer that some biochemical processes involving Se may be excluded from those associated with S. Most plant species contain less than 25 μg Se g⁻¹ dry weight and cannot tolerate high levels of Se in the environment. The non-specific integration of the selenoamino acids, selenocysteine (SeCys) and selenomethionine (SeMet) into proteins is believed to be the major contributor of Se toxicity in plants [12, 13]. The existence of Se analogs of S-containing metabolites in plants indicates that the biosynthesis of most Se compounds may depend on the enzymes involved in the S assimilation pathway [13].

Content and amino acid composition are important quality criteria for nutritional value of cereal grains used as fodder. The amino acid composition of cereal grains is somewhat unbalanced and the content of essential amino acids in cereal grains is insufficient to meet the needs of livestock [14]. Barley is one of the most important cereal species used as fodder. Barley cultivars satisfy the requirements of livestock for both energy and protein. It is possible to fortify fodder with Se-enriched barley to prevent diseases caused by Se deficiency. Besides, Se-enriched barley may provide additional compounds that may benefit livestock health. Considering difficulties of several approaches for improving nutritional quality of barley grains, we tested the effect of Se fertilization on grain amino acid composition of two barley cultivars. To the best of our knowledge, no detailed research has been conducted on how Se fertilization influences the amino acid composition of barley grains. This study aims to determine amino acid composition and to take an initial look at the effect of different levels of Se fertilization on the amino acid composition in two barley cultivars.

Materials and methods

Experimental design

The field experiment was arranged in a completely randomized block with three replications. In each repetition, there were 15 different equal plots (2 m² each) and the application of four doses (6.25, 12.50, 18.75, and 25 g ha⁻¹) of Na₂SeO₃ to the two barley cultivars (Çetin 2000, Bülbül 89). The soil texture of the experimental field was analyzed according to the method described by Bouyoucos [15]. Seeds were sowed approximately 2 cm deep in the soil. Na₂SeO₃ was dissolved in water and applied in highly diluted state to the soil for homogenous application soon after the sowing. Controlled irrigation was practiced to prevent leaching of the Se from the soil. After a maturation period of 4 months, 25 whole plants from each plot were harvested manually for analysis.

Selenium analysis

Sample preparation was made by following the procedure of EPA, Perkin Elmer Inc. [16]. Grains were ground in the laboratory mill and digested in a flask and 0.10 g of sample was added to 20 mL of nitric acid (HNO₃) and let stand overnight. Then 3 mL of perchloric acid (HClO₄) was added, refluxes inserted, and heated to 175°C for 60 min. After that, refluxes were removed and continued to heat until dense white fumes were present and evaporated. Deionized water was then added to bring the total volume to 25 mL. A 5 mL aliquot of digested solution was pipetted into a 50 mL volumetric flask to which concentrated HCl (25 mL) and deionized water (15 mL) were added. The flask was placed in a water bath for 20 minutes at 900°C to reduce selenate to selenite. After cooling, the solution was brought to volume with deionized water. Selenium contents in all samples were analyzed by Hydride Generation (FIAS-400, PerkinElmer, USA) Atomic Absorption Spectrophotometer (Perkin Elmer A Analyst-800, PerkinElmer,
USA). The method’s detection limit was 0.003 mg kg⁻¹. All samples were analyzed in triplicate.

Amino acid analysis

Amino acids were analyzed according to ion exchange liquid chromatographic method by Amino Acid Analyzer AAA 339 M. Grains of barley cultivars treated with Se was used to determine the amino acid compositions. Column chromatography method was used to determine qualitative and quantitative amino acid compositions [17]. Ground dry tissue was extracted and hydrolyzed by using hydrochloric acid (6 N) in a drying chamber at 103–105°C during 24 h. The moisture content of the samples varied between 10 and 12% and calculations were made considering the dry matter. Amino acids were separated on an AAA 339 M amino acid analyzer (OSTION LG ANB column, 8 mm diameter, 35 mm length). The chromatography conditions included the use of mobile phase, ninhydrin with added sodium citrate buffer (pH 2.2), eluent flow rate of 15 mL h⁻¹ and a chromatography cycle of 120 min [17]. Standard amino acids were chromatographed in parallel, while qualitative amino acid composition was determined from retention times. Mixture of 18 amino acids was used as internal standard. The colorimetric measurement of the complex resulting from the ninhydrin reaction was carried out at 570 nm (440 nm for proline). Quantitative analysis was by automated determination of peak areas for identified acids [17].

Statistical analysis

The Shapiro-Wilk’s test was used and histogram and q–q plots were examined to assess the data normality. Levene test was applied to test variance homogeneity. A two-way analysis of variance (two-way ANOVA) was performed to investigate the effects of barley cultivars and dose groups on amino acid levels. Both main effects and interaction of these two factors are examined with interaction models. Since, interaction terms were found to be statistically significant for nearly half of the amino-acid levels, one-way analysis was also applied to conduct group comparisons. A two-sided independent samples t test was applied to compare barley cultivars and one-way analysis of variance was applied to compare dose groups. Post-hoc analysis was performed with Tukey test. Multiple tests were adjusted using Benjamini-Hochberg procedure. All values are expressed as mean and standard deviation statistics. Analyses were conducted using R 3.2.3 software (www.r-project.org) [18]. A p < 0.05 probability level was considered as statistically significant.

Results and discussion

Soil properties

Saturation, pH, salinity, lime, organic matter, nitrogen, potassium, available phosphorus, calcium, magnesium and chlorine were determined in our previous study in all experimental soil samples [19] as in other studies [20, 21]. The loamy soil comprised 30% sand, 23% clay and 46% silt, with a pH of 8.3. Organic matter content (24.2 mg g⁻¹) was within the normal range by FAO standards [22]. While N (1.8 mg g⁻¹), available P (5.56 mg g⁻¹), Ca (0.08 mg g⁻¹), Mg (0.04 mg g⁻¹) and Cl (0.03 mg g⁻¹) were low, the K level (97.8 mg g⁻¹) was considered as normal [23].

Se content of experimental soil in the previous study was estimated as 0.83 mg kg⁻¹, being twice as high as the world’s mean Se content [19]. The Se content in some soils were calculated to be in the range of 0.01–2 mg kg⁻¹, but mean Se content was reported as 0.4 mg kg⁻¹ [24] in the world.

Grain selenium content

Both Bülbül 89 and Çetin 2000 contained significantly higher selenium concentrations at 6.25, 12.5, 18.75 g ha⁻¹ doses compared to the control set up (For cultivar effect: \(F = 79.945, p < 0.001 \); For dose effect: \(F = 0.843, p = 0.369 \); For interaction effect: \(F = 26.062, p < 0.001 \)) as reported in the previous study [19]. In general, grain selenium content increased with treatment doses, but it was more pronounced at 12.5 g ha⁻¹ (mid dose) in both cultivars (Figure 1) (p < 0.001). This study supports the work of Broadley et al. [25] who also reported increases in grain Se concentration of *Triticum aestivum* L. on application

![Figure 1: Grain Se content (mg kg⁻¹ dry weight) in two barley cultivars subjected to various Se doses. Error bars indicate SE of means.](image_url)
of Na$_2$SeO$_4$. Similarly, Lyons [26] reported that a modest application of 10 g Se ha$^{-1}$ can increase Se concentration of wheat grain by around 10-fold. Differential Se accumulation in different plant genotypes is an expected phenomenon, and the uptake, translocation and accumulation of Se may be distinctive for different plant species, even in cultivars of the same species [27]. Both genetic and environmental factors affect Se concentration in cereal grains. Genetic variation in grain Se has been reported for wheat, although Se acquisition and accumulation is strongly dependent upon environmental conditions, cultural practices and selenium fertilization [28–30].

Effect of Se on amino acid composition

Amino acids are fundamental ingredients in protein synthesis. Previous studies confirmed that Se affects the physiology of plants and as a result, amino acid metabolism may be directly or indirectly influenced. There are several constraints in improving the amino acid composition of grain storage proteins. Classical breeding or genetic engineering strategies which are typical examples to achieve that purpose, may either not be useful or are very difficult steps for the modification of amino acid composition, considering the limited genetic variations in barley. Some other approaches used for the modification of amino acid composition include the work of Jun-cong et al. [31], who reported significant differences in grain protein and B-hordein content when different sowing dates were considered, and the use of high lysine mutant barley genotypes as reported by Shewry [32]. The increments were between the ranges of a few percentage points to a maximum of 30%. A corresponding decrease in B-hordein content was also reported. Reduced starch and crop yield was also observed in those lysine-rich mutant phenotypes. Thus, in spite of a considerable investment in mutation breeding for high lysine barley cultivars, yields were not correlated with lysine content due to segregation of high lysine character with low grain yield.

In present study, it was observed that the main effect of doses on amino acids except for His, Pro, and Glu in cultivars were significant (Table 1). The increase in most limiting amino acids (lysine and threonine) is especially noteworthy after Se fertilization. The lysine level increased to 27% in Çetin 2000 and 8% in Bülbül 89. On the other hand, threonine level increased 19% in Bülbül 89 and 18% in Çetin 2000 (Table 2). Similar results have also been reported by Duma and Karklina [33] indicating

Amino acids	Main effects	Interaction effect
Gly	F = 4.536; p = 0.046	F = 5.361; p = 0.004
Ala	F = 0.359; p = 0.556	F = 20.313; p < 0.001
Val	F = 5.092; p = 0.035	F = 5.679; p < 0.001
Leu	F = 10.309; p < 0.004	F = 12.086; p < 0.001
Ile	F = 7.654; p = 0.012	F = 3.424; p = 0.027
Phe	F = 61.334; p < 0.001	F = 17.033; p < 0.001
Tyr	F = 0.645; p = 0.431	F = 9.818; p < 0.001
Trp	F = 2.859; p = 0.106	F = 5.033; p = 0.006
Lys	F = 7.678; p = 0.012	F = 16.540; p < 0.001
Arg	F = 123.786; p < 0.001	F = 10.397; p < 0.001
Thr	F = 12.200; p = 0.002	F = 26.581; p < 0.001
Ser	F = 31.665; p < 0.001	F = 4.668; p = 0.008
Asp	F = 1.643; p = 0.215	F = 18.912; p < 0.001
Glu	F = 56.623; p < 0.001	F = 1.086; p = 0.390
Pro	F = 0.146; p = 0.706	F = 1.487; p = 0.244
Cys	F = 6.287; p = 0.021	F = 3.946; p = 0.016
Met	F = 46.267; p < 0.001	F = 12.892; p < 0.001
His	F = 6.523; p = 0.019	F = 12.728; p < 0.001
Sulfur aa’s	F = 0.083; p = 0.776	F = 0.021; p = 0.690
Proteinogenic aa’s	F = 2.623; p = 0.121	F = 0.987; p = 0.437
Essential aa’s	F = 0.683; p = 0.418	F = 0.116; p = 0.975

Bold values indicate a statistical significant difference after adjusting multiple tests with Benjamini-Hochberg procedure.
that Se treatment caused an increase of 16.2% in lysine and 22.7% in threonine.

Genetic engineering was used to balance amino acid composition in barley in a study by Hansen et al. [34] in which antisense technology was used to suppress C-hordein biosynthesis and leading to 12 and 18% increases in cysteine and methionine, respectively. Our approach was also seemed to be efficient for the fact that the strategy resulted in 15 and 40% increases in cysteine and methionine levels, respectively. While Hansen et al. [34] obtained 15 and 19% increases in lysine and threonine, we obtained 19 and 27% increases, respectively.

The response of cultivars was especially highlighted at the mid dose ranges (except a few amino acids altered at other doses) (Table 2). Grain Se content was also significantly higher in mid Se dose (Figure 1). At 18.75 g ha⁻¹ Se application, grain Se contents were close between cultivars, but amino acid contents were not as homogenous as grain Se content (p = 0.086). Such a fluctuating result in amino acid content depending on the treated Se doses was also reported by Duma and Karklina [33]. For example, while they have obtained a prominent increase in aspartic acid content in 5 mg mL⁻¹ Se dose, arginine was the highest in 10 mg mL⁻¹ treatment. In the current study, the level of methionine, one of the important sulfur amino acids, increased 40% in Bülbül 89 and 22% in Çetin 2000 (Table 2). Grain methionine content was highest at 6.25 g ha⁻¹ Se dose for Bülbül 89. In Çetin 2000, the highest level was observed at the mid dose and the highest dose (Table 3). Se application at that dose might be utilizable to increase the methionine content in those cultivars. Although cysteine level was also significantly increased, the response to Se application was not as remarkable as methionine as a consequence of interaction effect between cultivars in response to doses (Table 1). The cysteine level increased 9% in Çetin 2000 and 15% in Bülbül 89 at the 12.50 g ha⁻¹ dose (Table 2).

More than 10% increase was observed in the level of all amino acids other than serine, cysteine and glutamate in Çetin 2000 cultivar. The level of alanine, arginine, proline and methionine increased 40, 34, 31 and 28%, respectively. In Bülbül 89, methionine, arginine and proline exhibited the highest response to Se treatment with 40, 36, and 24% increases, respectively. The glutamate was the least responsive amino acid with only 4% increase for that cultivar. A parallel increase in serine and cysteine content of Çetin 2000 and Bülbül 89 was observed with 4 and 8% rise for cysteine, and 9 and 15% rise for serine, respectively (Table 2). The reason for this observation might be the synthesis of serine from 3-phosphoglycerate and its usage as a precursor for cysteine biosynthesis in plants [35].

The rate of increase in aromatic amino acids phenylalanine and tyrosine was almost parallel in the cultivars studied. This can be explained by the fact that chorismate is the precursor in the biosynthesis of those aromatic amino acids. On the other hand, tryptophan biosynthesis did not increase in both cultivars. It was clear that Se fertilization can be used to manipulate the level of phenylalanine, tyrosine and tryptophan, since these amino acids could be converted into other amino acids and compounds. Aspartate is used as a precursor in methionine biosynthesis in plants. A similar impact of Se on aspartate and methionine levels in Çetin 2000 and Bülbül 89 was observed at 11 and 16% in aspartate, and 28 and 40% in methionine, respectively. Glutamate is a very important amino acid and plays a crucial role in nitrogen metabolism and as expected, the amount of glutamate was the highest in both cultivars (Table 3). Glutamate level was also found to be highest in the study of Asween [14]. It is the precursor for the biosynthesis of proline, which is the cyclic form of glutamic acid. Proline synthesis is affected by many abiotic stress factors and although not significant, it was the second in quantity compared to other proteinogenic amino acids in our cultivars (Tables 1 and 3). Se applications resulted in 31

Amino acid	Çetin-2000	Bülbül-89		
	% increase	Se dose	% increase	Se dose
Glycine	17	12.5	9	12.5
Alanine	40	12.5	10	12.5
Valine	20	12.5	8	12.5
Leucine	14	18.75	17	12.5
Isoleucine	15	18.75	15	12.5
Methionine	22	12.5	40	6.25
Phenylalanine	25	18.75	14	12.5
Tyrosine	25	18.75	13	12.5
Tryptophan	a	b	a	b
Lysine	27	12.5	8	12.5
Arginine	34	12.5	36	18.75
Histidine	23	12.5	17	12.5
Threonine	18	12.5	19	12.5
Serine	4	12.5	8	12.5
Proline	31	12.5	24	18.75
Cysteine	9	12.5	15	12.5
Aspartate	11	12.5	16	12.5
Glutamate	9	12.5	4	12.5

aIncrease was not observed.
bAll applied doses.
Table 3: Mean amino acid distribution levels (mg 100 mg⁻¹ dry weight) and one-way analysis results between barley cultivars and doses.

Amino acids	Dose (g ha⁻¹)	p*				
	0	6.25	12.5	18.75	25	
Nonpolar aliphatic aa’s						
Glycine						
Çetin 2000	0.44±0.04a	0.46±0.03ab	0.52±0.03b	0.46±0.01bc	0.46±0.02bc	0.035
Bülbül 89	0.43±0.01	0.45±0.01	0.47±0.02	0.47±0.02	0.43±0.04	0.106
p*	0.510	0.810	0.048	0.419	0.302	
Alanine						
Çetin 2000	0.42±0.01a	0.45±0.02a	0.59±0.01b	0.45±0.03c	0.53±0.03d	<0.001
Bülbül 89	0.46±0.03	0.47±0.01	0.48±0.01	0.49±0.02	0.51±0.03	0.159
p*	0.939	0.095	<0.001	0.104	0.455	
Valine						
Çetin 2000	0.52±0.04a	0.54±0.03ab	0.62±0.02a	0.54±0.04bc	0.57±0.03cd	0.025
Bülbül 89	0.51±0.01a	0.58±0.01b	0.54±0.02bc	0.54±0.02bc	0.51±0.02a	0.001
p*	0.725	0.086	0.009	0.947	0.041	
Leucine						
Çetin 2000	0.64±0.04a	0.66±0.02a,b	0.71±0.03ab	0.74±0.03ab	0.64±0.03a	0.009
Bülbül 89	0.65±0.02a	0.73±0.02b	0.76±0.03b	0.72±0.02b	0.70±0.03ab	0.001
p*	0.983	0.011	0.076	0.291	0.077	
Isoleucine						
Çetin 2000	0.29±0.01	0.31±0.01	0.31±0.02	0.34±0.04	0.27±0.03	0.065
Bülbül 89	0.3±0.04	0.34±0.02	0.35±0.02	0.33±0.01	0.32±0.02	0.197
p*	0.716	0.080	0.502	0.689	0.096	
Methionine						
Çetin 2000	0.03±0.01a	0.04±0.01b	0.04±0.01b	0.03±0.01c	0.04±0.01b	<0.001
Bülbül 89	0.03±0.01a	0.04±0.01b	0.02±0.01b	0.03±0.01a	0.03±0.01a	<0.001
p*	0.089	0.037	<0.001	0.959	0.010	
Aromatic aa’s						
Phenylalanine						
Çetin 2000	0.51±0.02abc	0.53±0.01a	0.51±0.03a,b	0.64±0.03b	0.46±0.03c	<0.001
Bülbül 89	0.55±0.02a	0.62±0.02a	0.63±0.03b	0.58±0.02bc	0.58±0.02ab	0.003
p*	0.073	0.001	0.007	0.027	0.002	
Tyrosine						
Çetin 2000	0.26±0.01abc	0.26±0.01abc	0.28±0.01a	0.33±0.02b	0.23±0.02c	0.001
Bülbül 89	0.25±0.02	0.28±0.02	0.29±0.01	0.27±0.01	0.25±0.02	0.093
p*	0.518	0.172	0.689	0.016	0.275	
Tryptophane						
Çetin 2000	0.04±0.01	0.03±0.01	0.03±0.01	0.03±0.01	0.03±0.01	0.300
Bülbül 89	0.04±0.01a	0.03±0.01b	0.03±0.01b	0.04±0.01a	0.04±0.01a	0.019
p*	0.069	0.802	0.464	0.316	0.494	
Basic aa’s						
Lysine						
Çetin 2000	0.33±0.02a	0.37±0.01b	0.42±0.01c	0.38±0.02b	0.38±0.01b	<0.001
Bülbül 89	0.35±0.02	0.37±0.01	0.38±0.01	0.36±0.01	0.36±0.01	0.086
p*	0.188	0.675	0.008	0.121	0.029	
Arginine						
Çetin 2000	0.38±0.01abc	0.39±0.01abc	0.51±0.06b	0.41±0.02ac	0.47±0.01bc	<0.001
Bülbül 89	0.29±0.02abc	0.35±0.02ab,b	0.34±0.04ab,b	0.39±0.02ab,b	0.26±0.01bc	<0.001
p*	0.001	0.008	0.016	0.370	<0.001	
Histidine						
Çetin 2000	0.19±0.04	0.22±0.01	0.23±0.02	0.22±0.03	0.20±0.03	0.327
Bülbül 89	0.22±0.01	0.23±0.01	0.26±0.02	0.23±0.01	0.23±0.02	0.115
p*	0.181	0.599	0.189	0.732	0.264	
Polar neutral aa’s						
Threonine						
Çetin 2000	0.42±0.03abc	0.47±0.02abc	0.50±0.02b	0.48±0.01b	0.41±0.02c	0.001
Bülbül 89	0.46±0.01abc	0.49±0.01abc	0.54±0.02b	0.49±0.01b	0.44±0.02c	<0.001
and 24% increase in grain proline level in Çetin 2000 and Bülbül 89, respectively. Cultivars exhibited a slight decrease in both Se and proline content at 25 g ha⁻¹ dose compared with that of mid dose (Table 3). The amount of Se (0.252 mg kg⁻¹) and proline (1.247 mg 100 mg⁻¹ dry weight) reached the highest level in Çetin 2000 at the mid Se dose. Although the level of glutamate was lower in our cultivars, the levels of proline and arginine were higher. This indicates that glutamate was used as a precursor for proline and arginine biosynthesis. Histidine biosynthesis is not directly connected to the biosynthesis of other amino acids [35] and its response was comparable in both cultivars.

Essential amino acid content

In this study, the modification of the essential amino acid level in barley grains was realized by Se fertilization. Modification of essential amino acid level, especially limiting ones, might be important for feeding animals since the barley grains are valuable as a fodder. Although statistical significance was not realized in essential amino acid contents of cultivars, they exhibited an increase up to the mid dose application rate and gradually decreased after that rate (For Çetin 2000, p=0.771; For Bülbül 89, p=0.600). Considering the essential amino acid and grain selenium contents, the cultivars showed similar
response to increasing Se doses. Apart from the highest dose, considerable increase in essential amino acid content was observed and reached a maximum level at the mid dose rate (Figure 2). Se might be interfering with amino acid metabolism at the highest dose, while it was promoting the biosynthesis of some amino acids at the mid dose.

Proteinogenic amino acid content

Although the amount of total proteinogenic amino acid content was different in the cultivars, their response was similar at 6.25, 18.75 and 25 g ha⁻¹ doses (Figure 3). Bülbül 89 did not show a significant change at 6.25, 12.5, 25 g ha⁻¹ doses, but Çetin 2000 showed a sharp increase at the mid dose rate (For Çetin 2000, p = 0.829; For Bülbül 89, p = 0.944). At 25 g ha⁻¹ both cultivars exhibited a decrease in proteinogenic amino acid content (Figure 3).

Sulfur amino acid content

Sufficient supplies of sulfur amino acids in seeds help the accumulation of sulfur-rich proteins up to a level adequate to meet the nutritional requirement of livestock and poultry [36]. An increase in sulfur amino acid content was observed at 12.5 g ha⁻¹ in Çetin 2000 and up to 18.75 g ha⁻¹ in Bülbül 89 (Figure 4) (For Çetin 2000, p = 0.901; For Bülbül 89, p = 0.864). Total sulfur amino acid of Çetin 2000 was lower compared to Bülbül 89 (p = 0.864). Similar results were observed in the study carried out by Lee et al. [37]. They reported that free amino acid content of *Brassica oleracea* cv. Majestic increased in response to increasing Se doses.

In conclusion, our study indicates that Se fertilization alters the amino acid content in grains of barley. Total sulfur amino acid content of grains can be increased by applying the appropriate dose of Se. However, this depends on cultivars; for instance, methionine level was the highest in Bülbül 89 cultivar at the lowest dose. Moreover, limiting amino acid (lysine and threonine) content of grain can also be increased by Se fertilization. Considering the disadvantages of mutation breeding and the difficulties in genetic manipulation of barley for increasing the limiting amino acid content, Se fertilization might be an effective way to improve the limiting amino acids of grains.

Acknowledgements: We would like to thank to Turcosa Analytics Ltd Co staff for their assistance in conducting the statistical analysis.

References

1. Hoefig CS, Renko K, Köhrle J, Birringer M, Schomburg L. Comparison of different selenocompounds with respect to
nutritional value vs. toxicity using liver cells in culture. J Nutr Biochem 2011;22:945–55.
2. Lea CT, Yarlagadda VN, Eric DH, Piet NLL. Selenium: environmental significance, pollution, and biological treatment technologies. Biotechnol Adv. 2016;34:886–907.
3. Papp LV, Lu J, Holmgren A, Khanna KK. From selenium to selenoproteins: synthesis, identity, and their role in human health. Antioxid Redox Signal 2007;9:775–806.
4. Rotruck JT, Pope AH, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG. Selenium: biochemical role as a component of glutathione peroxidase. Science 1973;179:588–90.
5. Pallud S, Lennon AM, Ramauge M, Gavarett JM, Croteau W, Pierre M, et al. Expression of the type II iodothyronine deiodinase in cultured rat astrocytes is selenium dependent. J Biol Chem 1997;272:18104–10.
6. White PJ, Broadley MR, Bowen HC, Johnson SE. Selenium and its relationship with sulphur. In: Hawkesford MJ, de Kok LJ, editors. Sulphur in plants – an ecological perspective. London: Springer, 2007:225–52.
7. Ryser AM, Strawn DG, Marcus MA, Johnson JL, Gunter ME, Möller G. Micro-spectroscopic investigation of selenium-bearing mineral fractions from the Western US Phosphate Resource Area. Geochem. Trans 2005;6:1–11.
8. Terry N, Zayed AM, De Souza MP, Tarun AS. Se in higher plants. Annu Rev Plant Phys 2000;51:401–32.
9. Ducasay L, Lozek O. Effect of selenium foliar application on its content in winter wheat grain. Plant Soil Environ 2006;52:78–82.
10. Akbulut M, Çakır S. The effects of Se phytotoxicity on the antioxidant systems of leaf tissues in barley (Hordeum vulgare L.) cultivars determined by gas chromatography with flame ionization and mass selective detection. J Agric Food Chem 1991;39:2546–53.
11. Sors TG, Ellis DR, Salt DE. Selenium uptake, translocation, assimilation and metabolic fate in plants. Photosynth Res 2005;86:373–89.
12. Brown TA, Shrift A. Exclusion of selenium from proteins in selenium-tolerant Astragalus species. Plant Physiol 1981;67:1951–3.
13. Brown TA, Shrift A. Selenium toxicity and tolerance in higher plants. Biol Rev 1981;56:79–84.
14. Assew T.M. Amino acid composition of spring barley cultivars used in Norway. Acta Agric Scand B Soil Plant Sci 2009;59:395–401.
15. Bouyoucos GJ. A recalibration of the hydrometer for making mechanical analysis of soil. Agron J 1951;43:434–8.
16. Perkin-Elmer I. Analytical methods: atomic absorption spectroscopy; Flow injection mercury/hydride analyses; THGA Graphite Furnace. Recommended Analytical Conditions 2000.
17. Ortofavea FS, Chelombit’ko VA. Amino acid and mineral composition of Nepeta grandiflora. Chem Nat Compd 2007;43:367–8.
18. R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org, 2008.
19. Libas AI, Yilmaz S, Akbulut M, Bogdevich O. Uptake and distribution of selenium, nitrogen and sulfur in three barley cultivars subjected to selenium applications. J Plant Nutr 2012;35:442–52.
20. Walkley A, Black IA. An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci 1934;37:29–37.
21. Olsen SR, Cole CV, Watanabe FS, Dean LA. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. United States Department of Agriculture. Circular 939, 1954.
22. Sillanpaa M. Micronutrient assessment at the country level: An international study, In: FAO Soils Bulletin 63./FAO, Rome (Italy). Land and Water Development Div, 1990:214.
23. Lindsay WI, Norvell WA. Development of DTPA micronutrient soil test. Proc Soil Sci Soc Am 1978;35:600–2.
24. Fordyce FM. Selenium deficiency and toxicity in the environment. In: Olle S, editor. Essentials of medical geology, Berlin, Springer, 2013:375–416.
25. Broadley MR, Alcock J, Alford J, Cartwright P, Foot I, Fairweather-Tait SJ, et al. Selenium biofortification of high-yielding winter wheat (Triticum aestivum L.) by liquid or granular Se fertilisation. Plant Soil 2010;332:5–18.
26. Lyons G. Selenium in cereals: improving the efficiency of agronomic biofortification in the UK. Plant Soil 2010; 332:1–4.
27. Johnsson L. Trends and annual fluctuations in selenium concentrations in wheat grain. Plant Soil 1991;138:67–73.
28. Eurola M, Hietaniemi V, Kontturi M, Tuuri H, Kangas A, Niskanen M, et al. Selenium content of Finnish oats in 1997–1999: effect of cultivars and cultivation techniques. Agric Food Sci 2004;13:46–53.
29. Lyons GH, Judson GJ, Ortiz-Monasterio I, Genc Y, Stangouilis JCR, Graham RD. Selenium in Australia: selenium status and biofortification of wheat for better health. J Trace Elem Med Biol 2005;19:75–82.
30. Garvin DF, Welch RM, Finley JW. Historical shifts in the seed mineral micronutrient concentration of US hard red winter wheat germplasm. J Sci Food Agric 2006;86:2213–20.
31. Jun-cong Q, Jin-xin C, Jun-mei W, Fei-bo WU, Lian-pu C, Guoping Z. Protein and hordein fraction content in barley seeds as affected by sowing date and their relations to malting quality. J Zhejiang Univ Sci B 2005;11:1069–75.
32. Shewry PR. Improving the protein content and quality of temperate cereals: wheat, barley and rye. Impacts of agriculture on human health and nutrition. In: Welch RM, Çakmak I, editors. Encyclopedia of life support systems. Oxford: Eolss Publishers, 2006.
33. Duma M, Karklina D. Selenium and changes of amino acids content in germinated barley grains, 3rd Baltic conference on food science and technology FOODBALT-2008 conference proceedings, Jelgava, 2008:25–9.
34. Hansen M, Lange M, Friis C, Dionisio G, Holm PB, Vinces E. Antisense-mediated suppression of C-hordein biosynthesis in the barley grain results in correlated changes in the transcriptome, protein profile, and amino acid composition. J Exp Bot 2007;58:3987–95.
35. Lehninger AL, Nelson DL, Cox MM. Principles of biochemistry. New York: Worth Publishers, 1993:688–734.
36. Krishnan HB. Engineering soybean for enhanced sulfur amino acid content. Crop Sci 2005;45:454–61.
37. Lee J, Finley JW, Harlly JA. Effect of selenium fertilizer on free amino acid composition of broccoli (Brassica oleracea cv. Majestic) determined by gas chromatography with flame ionization and mass selective detection. J Agric Food Chem 2005;53:9105–11.