Effect of ipragliflozin on liver function in Japanese type 2 diabetes mellitus patients: subgroup analysis of a 3-year post-marketing surveillance study (STELLA–LONG TERM)

Kazuyuki Tobe1), Hiroshi Maegawa2), Ichiro Nakamura3) and Satoshi Uno4)

1) First Department of Internal Medicine, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, Toyama, 930-0194, Japan
2) Department of Medicine, Shiga University of Medical Science, Shiga, 520-2192, Japan
3) Operational Excellence, Medical Affairs Japan, Astellas Pharma Inc., Tokyo, 103-8411, Japan
4) Data Science, Development, Astellas Pharma Inc., Tokyo, 103-8411, Japan

Abstract. The STELLA-LONG TERM prospective post-marketing surveillance study assessed ipragliflozin in Japanese patients with type 2 diabetes mellitus (T2DM). This subgroup analysis of patients with liver impairment used the final 3-year results. Data on patients, adverse drug reactions (ADRs), and changes in glycemic parameters and liver enzymes (aspartate aminotransferase [AST], alanine aminotransferase [ALT], gamma-glutamyl transpeptidase [γ-GTP] and alkaline phosphatase [ALP]) were collected, and the fatty liver index (FLI) was calculated. In the effectiveness analysis (n = 8,763), baseline liver function was normal in 2,605 patients (ALT <31/<21 U/L [men/women]) and abnormal in 3,277 (ALT ≥31/≥21 U/L). The abnormal liver function group had higher mean body weight and BMI than the normal liver function group (p < 0.001). In the safety analysis (n = 11,051), urinary tract infections, genital infections and hepatic disorders were more common in the abnormal than normal liver function group (2.25% vs. 1.07%; 1.78% vs. 1.14% and 1.85% vs. 1.01%). In the abnormal liver function group, there were significant (p < 0.001) decreases from baseline at 36 months in AST and ALT (from 38.8 and 53.7 U/L to 29.3 and 37.7 U/L, respectively), γ-GTP (from 75.4 to 51.7 U/L) and ALP (from 254.8 to 234.5 U/L), which were greater than in the normal liver function group. FLI reductions at 36 months were significant (p < 0.001) in subgroups with baseline FLI of ≥30 or ≥60. In conclusion, ipragliflozin improved liver function over 3 years in patients with impaired liver function, although ADRs occurred more frequently than in the normal liver function group.

Key words: Ipragliflozin, Japan, Liver function, Post-marketing surveillance, Type 2 diabetes mellitus

IPRAGLIFLOZIN is a sodium–glucose cotransporter 2 (SGLT2) inhibitor that, in 2014, was approved for the treatment of type 2 diabetes mellitus (T2DM) in Japan [1]. SGLT2 inhibitors reduce serum glucose levels by stimulating urinary excretion of glucose, and are associated with reductions in blood pressure, triglycerides, and body weight [2]. Large cardiovascular outcomes trials have also indicated that SGLT2 inhibitors may provide cardiorenal protective effects among T2DM patients with cardiovascular or chronic kidney disease [3, 4], although these studies did not include Asian patients with T2DM [2]. According to the Japanese clinical practice guidelines, SGLT2 inhibitors should be considered in patients with T2DM who do not achieve glycemic targets with diet and lifestyle modifications [5].

Fat accumulation in the liver (simple hepatic steatosis) of a patient with T2DM likely signals the presence of non-alcoholic fatty liver disease (NAFLD), given that T2DM is a well-established risk factor for NAFLD [6], and that NAFLD is common in patients with T2DM (present in 55% of T2DM patients globally [7] and in 20–25% in Japan [8]). If the incidence of obesity and T2DM continue to increase at current rates, the prevalence of both NAFLD and non-alcoholic steatohepatitis (NASH) may be expected to increase [9]. This presents a significant public health concern, given that the diagnosis of NAFLD in patients with T2DM is associated with...
a higher prevalence of cardiovascular disease [10], and an increased risk of overall death [11].

In animal models of diabetes with comorbid obesity, hepatic steatosis and/or hepatic inflammation and fibrosis [12-16], chronic ipragliflozin administration improved not only hyperinsulinemia and hyperglycemia, but also obesity, hepatic steatosis, liver inflammation/oxidative stress, hepatic lipid content and liver fibrosis. These preclinical findings are supported by short-term (≤24-week) clinical studies demonstrating improvements in liver function or fatty liver in patients with T2DM treated with ipragliflozin [17-20]. A recent meta-analysis provided further evidence that treatment with SGLT2 inhibitors improves liver structure and function in patients with T2DM [21]. SGLT2 inhibition is a promising pharmacological approach for the treatment of NAFLD in patients with T2DM.

STELLA-LONG TERM is a 3-year prospective post-marketing surveillance study designed to evaluate the safety and effectiveness of ipragliflozin in Japanese patients with T2DM over an extended period of time [22]. Previous subgroup analyses of STELLA-LONG TERM conducted at 3 months have shown that ipragliflozin was associated with consistent decreases in liver enzymes, as well as in fatty liver index (FLI), in patients who had abnormal liver function at baseline (normal [FLI <30], abnormal [FLI ≥30] or fatty [FLI ≥60]). In addition, the proportion of patients with abnormal liver function at baseline whose liver function normalized (defined as ALT <31 U/L in men or <21 U/L for women) and those with abnormal liver function (defined as baseline ALT ≥31 U/L for men or ≥21 U/L for women).

Materials and Methods

Study design

The design of this study has been described in detail in previous publications [22, 23]. Briefly, this was an observational, multicenter, post-marketing surveillance study that was conducted in Japan (ClinicalTrials.gov identifier: NCT02479399).

Patient recruitment

All patients with T2DM who were first prescribed ipragliflozin between 17 July 2014 and 16 October 2015 at participating centers were included. Patients who had hepatitis B or hepatitis C were not excluded from this subgroup analysis. Each patient was followed over a 3-year period.

Treatment

In accordance with the prescribing information, patients received ipragliflozin 50 mg once daily, before or after breakfast. The prescribing information allows ipragliflozin to be administered at a lower dose; caution, and use of a lower dose, is advised in patients with hepatic impairment. The dose of ipragliflozin could also be increased to 100 mg in case of insufficient effectiveness, provided patients were closely monitored. All treatment decisions were made at the attending physician’s discretion.

Subgroups by baseline liver function

For this analysis, patients were divided into two subgroups: those with normal liver function (defined as baseline alanine aminotransferase [ALT] <31 U/L for men or <21 U/L for women) and those with abnormal liver function (defined as baseline ALT ≥31 U/L for men or ≥21 U/L for women).

Data collection and variables

Data on demographic and clinical characteristics, medication, laboratory variables, vital signs (blood pressure and heart rate) and safety (adverse drug reactions [ADRs]) were collected. Changes in aspartate aminotransferase (AST), ALT, gamma-glutamyl transpeptidase (γ-GTP), and alkaline phosphatase (ALP) levels and FLI in patients with normal and abnormal liver function were compared. FLI was calculated as described by Bedogni and colleagues [24]. Changes in FLI over the course of the study were also analyzed in patients according to FLI at baseline (normal [FLI <30], abnormal [FLI ≥30] or fatty [FLI ≥60]). In addition, the proportion of patients with abnormal liver function at baseline whose liver function normalized (defined as ALT <31 U/L in men or <21 U/L in women) after 3 years of treatment with ipragliflozin, and correlations between changes in ALT levels and effectiveness variables/laboratory values were evaluated. Finally, correlations between changes in ALT levels and changes in effectiveness and laboratory parameters were analyzed in patients according to baseline body mass index (BMI) category (<22 kg/m², ≥22 to <25 kg/m², ≥25 to <30 kg/m², ≥30 to <35 kg/m² or ≥35 kg/m²). Patients with abnormal liver function were included in the correlation analysis.

Statistical analysis

Sample size calculations and the choice of follow-up duration have been described in a prior publication [22]. No sample size calculations were performed for the subgroup comparisons. Quantitative variables (including vital signs, effectiveness and laboratory variables) were summarized as means ± standard deviations (SD). Paired t-tests were used to assess changes from baseline. Qualitative variables (including baseline characteristics) were summarized as n (%). Patient characteristics and effectiveness parameters were compared between the two groups using the two-sample t-test and chi-squared test. No adjustments for type-I error based on multiple
hypothesis testing were performed in the present sub-
group analysis. Pearson’s correlation coefficient was cal-
culated to evaluate the relationship between changes in
ALT and changes in effectiveness/laboratory parameters.
All statistical calculations were performed using SAS
version 9.4 (SAS Institute Inc., Cary, North Carolina,
USA).

Ethics
This surveillance study complied with Japanese Good
Postmarketing Study Practice regulations. Because the
present study collected anonymized clinical data,
informed consent was not required.

Results

Patient disposition
A total of 11,424 patients treated at 2,431 medical
institutions were registered. Case report forms were col-
lected from 11,289 patients. Overall, 11,051 patients
were included in the safety analysis set while the effecti-
veness analysis set included 8,763 patients. Full details
of the overall safety and effectiveness analysis sets have
been reported in the final publication of results from this
study [25].

Patient characteristics
At baseline, 2,605 of the patients included in the effecti-
veness analysis set had normal liver function and 3,277
had abnormal liver function; liver function was unknown
in 2,881 patients.

There were several significant differences in demo-
graphic characteristics between patients with normal and
abnormal liver function in the effectiveness analysis set
(Table 1). Compared with patients with normal liver
function, patients with abnormal liver function had a
lower mean age (53.5 vs. 59.3 years, \(p < 0.001 \)), higher
mean body weight (82.49 vs. 74.24 kg, \(p < 0.001 \)),
higher mean BMI (30.63 vs. 27.56 kg/m², \(p < 0.001 \)), and
shorter mean duration of diabetes (7.17 vs. 9.43 years, \(p
< 0.001 \)) than those with normal liver function. Fewer
patients with abnormal liver function than those with
normal liver function were male (55.8% vs. 68.4% of
patients, \(p < 0.001 \)), had no complications (7.9% vs.
11.3%, \(p < 0.001 \)) or had glycated hemoglobin (HbA1c)
<8.0% (50.9% vs. 58.7%, \(p < 0.001 \)).

Safety
ADRs occurred in 2,129 of the 11,051 patients
(19.27%) and serious ADRs occurred in 210 patients
(1.90%; Table 2). The incidence of ADRs was signifi-
cantly higher in patients with abnormal liver function
(22.15%) than in patients with normal liver function
(19.74%, \(p = 0.014 \)). In contrast, the incidence of serious
ADRs was similar between patients with abnormal liver
function (1.96%) and patients with normal liver function
(2.24%, \(p = 0.414 \)). ADRs of special interest occurring
significantly more frequently in patients with abnormal
liver function than those with normal liver function
included urinary tract infections, genital infections and
hepatic disorders (2.25% vs. 1.07%, \(p < 0.001 \); 1.78% vs.
1.14%, \(p = 0.027 \) and 1.85% vs. 1.01%, \(p = 0.003 \),
respectively).

Effectiveness
Changes in AST, ALT, \(\gamma \)-GTP and ALP over the
course of the study are presented in Fig. 1. Statistically
significant changes in AST and ALT were observed at all
time points in patients with normal or abnormal liver
function at baseline (Figs. 1a and b). In patients with nor-
mal liver function, AST and ALT levels showed slight
but statistically significant increases from baseline (19.2
and 18.7 U/L, respectively) to 36 months (20.8 and 20.3
U/L, respectively; both \(p < 0.001 \) vs. baseline). However,
in patients with abnormal liver function, both AST and
ALT levels showed statistically significant decreases from
baseline (38.8 and 53.7 U/L, respectively) to 36 months
(29.3 and 37.7 U/L, respectively; both \(p < 0.001 \) vs.
baseline). Significant differences in AST and ALT
changes from baseline were detected between patients
with normal liver function and patients with abnormal
liver function at 36 months (+1.5 vs. –8.8 U/L and +1.6
U/L vs. –15.2 U/L, respectively) and at all other time
points (\(p < 0.001 \) for all).

Relative to baseline, statistically significant decreases
in \(\gamma \)-GTP levels were observed in patients with normal
liver function at all time points, except 36 months
(Fig. 1c). In patients with abnormal liver function, signif-
icant decreases in \(\gamma \)-GTP levels from baseline (75.4 U/L)
were observed at 36 months (51.7 U/L) and at all other
time points (\(p < 0.001 \) vs. baseline for all). Significant
differences in the change from baseline at 36 months in
\(\gamma \)-GTP levels were detected between patients with
normal liver function and patients with abnormal liver
function (–1.8 vs. –20.3 U/L), as well as the change from
baseline in this parameter at all other time points (\(p <
0.001 \) for all).

In patients with normal liver function, significant
decreases in ALP levels from baseline (232.8 U/L)
detected at 1 and 3 months only (222.1 and 227.1 U/L;
changes from baseline –11.4 and –3.5 U/L; \(p < 0.05 \) vs.
baseline for both), while in patients with abnormal liver
function, ALP levels were significantly decreased from
baseline (254.8 U/L) at 36 months (234.5 U/L; change
from baseline –16.3 U/L) and at all other time points
(\(p < 0.001 \) vs. baseline for all; Fig. 1d). Significant dif-
Table 1 Baseline patient characteristics (effectiveness analysis set)

	Normal liver function	Abnormal liver function	p-value	Unknown
Total, n (%)	2,605 (100.0)	3,277 (100.0)		2,881 (100.0)
Sex, n (%)				
Male	1,782 (68.4)	1,827 (55.8)	<0.001	1,760 (61.1)
Female	823 (31.6)	1,450 (44.2)		1,121 (38.9)
Age, n	2,605	3,277		2,881
Mean ± SD, <65, n (%)	59.3 ± 11.5	53.5 ± 11.9	<0.001	56.9 ± 11.9
≥65, n (%)	1,683 (64.6)	2,647 (80.8)	<0.001	2,108 (73.2)
Body weight, n	2,243	2,889		1,753
Mean ± SD, kg	74.24 ± 15.15	82.49 ± 18.18	<0.001	77.45 ± 16.38
BMI, n	2,104	2,716		1,503
Mean ± SD, <18.5, n (%)	27.56 ± 4.70	30.63 ± 5.44	<0.001	28.78 ± 4.94
≥18.5 to <22.0, n (%)	7 (0.3)	6 (0.2)		6 (0.2)
≥22.0 to <25.0, n (%)	131 (5.0)	52 (1.6)		63 (2.2)
≥25.0 to <30.0, n (%)	496 (19.0)	253 (7.7)		257 (8.9)
≥30.0 to <35.0, n (%)	945 (36.3)	1,089 (33.2)		654 (22.7)
≥35.0, n (%)	526 (20.1)	507 (15.5)		159 (5.5)
<25.0, n (%)	634 (24.3)	311 (9.5)	<0.001	326 (11.3)
≥25.0, n (%)	1,470 (56.4)	2,405 (73.4)		1,177 (40.9)
Unknown, n (%)	501 (19.2)	561 (17.1)		1,378 (47.8)
Type of consultation, n (%)				
Hospitalization	53 (2.0)	81 (2.5)	0.264	20 (0.7)
Outpatient clinic	2,552 (98.0)	3,196 (97.5)		2,861 (99.3)
Duration of diabetes, n				
Mean ± SD, years	9.43 ± 7.03	7.17 ± 5.84	<0.001	7.62 ± 6.37
<5, n (%)	496 (19.0)	931 (28.4)	<0.001	684 (23.7)
≥5 to <10, n (%)	477 (18.3)	793 (24.2)		503 (17.5)
≥10 to <15, n (%)	427 (16.4)	405 (12.4)		344 (11.9)
≥15, n (%)	373 (14.3)	264 (8.1)		233 (8.1)
Unknown, n (%)	832 (31.9)	884 (27.0)		1,117 (38.8)
Complications, n (%)				
No	295 (11.3)	260 (7.9)	<0.001	704 (24.4)
Yes	2,305 (88.5)	3,006 (91.7)		2,146 (74.5)
Unknown	5 (0.2)	11 (0.3)		31 (1.1)
Type of complicationa, n (%)				
Diabetic neuropathy	295 (11.3)	291 (8.9)		208 (7.2)
Diabetic nephropathy	559 (21.5)	639 (19.5)		337 (11.7)
Diabetic retinopathy	285 (10.9)	270 (8.2)		186 (6.5)
CV and cerebrovascular diseases	359 (13.8)	248 (7.6)		231 (8.0)
Myocardial infarction	53 (2.0)	35 (1.1)		30 (1.0)
Angina pectoris	159 (6.1)	99 (3.0)		87 (3.0)
Heart failure	73 (2.8)	50 (1.5)		40 (1.4)
Arteriosclerosis obliterans	46 (1.8)	29 (0.9)		43 (1.5)
Cerebrovascular disorder	107 (4.1)	77 (2.3)		78 (2.7)
Table 1 Cont.

Condition	Normal liver function	Abnormal liver function	p-value\(^a\)	Unknown
Hypertension	1,521 (58.4)	1,999 (61.0)		1,422 (49.4)
Dyslipidemia (hyperlipidemia)	1,774 (68.1)	2,454 (74.9)		1,479 (51.3)
Osteoporosis	55 (2.1)	49 (1.5)		42 (1.5)
Gout and hyperuricemia	252 (9.7)	396 (12.1)		177 (6.1)
Urinary tract infection	5 (0.2)	9 (0.3)		7 (0.2)
Genital infection	2 (0.1)	4 (0.1)		1 (0.0)
Malignant tumor	23 (0.9)	23 (0.7)		22 (0.8)
Unknown	951 (36.5)	1,580 (48.2)		812 (28.2)
eGFR, n	2,414	2,945	(2) <0.001	266
Mean ± SD, mL/min/1.73 m\(^2\)	79.06 ± 20.08	84.01 ± 19.51		77.74 ± 20.60
HbA1c, n (%), <8.0%	1,528 (58.7)	1,667 (50.9)	(1) <0.001	1,671 (58.0)
	1,071 (41.1)	1,603 (48.9)		1,186 (41.2)
HbA1c, n (%), ≥8.0%	6 (0.2)	7 (0.2)		24 (0.8)
SBP, n	2,373	2,948		1,823
Mean ± SD, mmHg	133.2 ± 15.1	133.8 ± 15.1	(2) 0.135	132.7 ± 15.2
DBP, n	2,358	2,904		1,804
Mean ± SD, mmHg	76.9 ± 10.3	79.3 ± 10.3	(2) <0.001	77.7 ± 10.6
LDL cholesterol, n	2,270	2,790		283
Mean ± SD, mg/dL	112.9 ± 31.3	115.8 ± 32.4	(2) 0.001	114.8 ± 30.4
HDL cholesterol, n	2,349	2,971		260
Mean ± SD, mg/dL	52.6 ± 14.3	49.4 ± 12.7	(2) <0.001	51.3 ± 14.4
Non-HDL cholesterol, n	1,438	1,823		137
Mean ± SD, mg/dL	140.1 ± 35.7	146.2 ± 34.3	(2) <0.001	144.1 ± 35.4
Triglycerides, n	2,464	3,088		302
Mean ± SD, mg/dL	177.1 ± 163.2	211.9 ± 200.6	(2) <0.001	201.5 ± 142.7
Uric acid, n	2,235	2,764		178
Mean ± SD, mg/dL	5.22 ± 1.30	5.42 ± 1.32	(2) <0.001	5.61 ± 1.46
Hematocrit, n	2,218	2,674		182
Mean ± SD, %	42.61 ± 4.08	43.82 ± 3.93	(2) <0.001	43.01 ± 3.92
AST, n	2,566	3,225		22
Mean ± SD, U/L	19.2 ± 5.2	38.8 ± 21.7	(2) <0.001	45.0 ± 42.5
ALT, n	2,605	3,277		0
Mean ± SD, U/L	18.7 ± 5.7	53.7 ± 30.9	(2) <0.001	—
γ-GTP (male), n	1,631	1,693		21
Mean ± SD, U/L	42.9 ± 38.6	90.1 ± 100.8	(2) <0.001	61.7 ± 46.5
γ-GTP (female), n	742	1,322		13
Mean ± SD, U/L	25.6 ± 22.3	56.7 ± 57.2	(2) <0.001	40.8 ± 30.9

\(^a\) P-values across subgroups assessed by (1) chi-squared test or (2) two-sample t-test; no statistical comparison between groups was made for specific complications.

\(^b\) Some patients had more than one complication.

ALT, alanine aminotransferase; AST, aspartate aminotransferase; BMI, body mass index; CV, cardiovascular; DBP, diastolic blood pressure; eGFR, estimated glomerular filtration rate; γ-GTP, gamma-glutamyl transpeptidase; HbA1c, glycated hemoglobin; HDL, high density lipoprotein; LDL, low density lipoprotein; SBP, systolic blood pressure; SD, standard deviation.
ferences in ALP changes from baseline were detected between patients with normal liver function and patients with abnormal liver function at 36 months (–3.6 vs. –16.3 U/L) and at all other time points, except at 1 month ($p < 0.001$).

FLI over the course of the study was analyzed in patients according to baseline FLI (Fig. 2). In patients with FLI <30 at baseline, significant decreases in FLI from baseline (19.4) were observed at 3, 6, 12, and 24 months (changes from baseline –3.4, –2.9, –2.7, and –2.7, respectively; $p < 0.05$ vs. baseline for all). In patients with FLI ≥30 and in patients with FLI ≥60, significant decreases in FLI from baseline (71.8 and 83.2, respectively) were observed at 36 months (change from baseline –11.5 and –11.8, respectively) and at all other time points ($p < 0.001$ for all).

Among patients with abnormal liver function at baseline, a continuous increase in the proportion of those whose ALT levels improved (defined as a decrease to <31 U/L for men and <21 U/L for women) was noted throughout the observational period (Table 3). While the proportion of patients whose ALT levels improved was 13.9% at 1 month, it further increased to 33.7% at 36 months.

In correlation analyses, where a moderate or high correlation in either direction ($r \geq 0.4$ or $r \leq –0.4$) that was also statistically significant ($p < 0.05$) was deemed a ‘significant correlation’, changes in ALT levels over the course of the study were not significantly correlated with most effectiveness and laboratory parameters in patients with abnormal liver function (Table 4).

Correlations between changes in ALT levels and changes in effectiveness and laboratory parameters were analyzed in patients according to baseline BMI (Table 5). There were no significant strong ($r \geq 0.4$ or $r \leq –0.4$) correlations between changes in ALT levels and changes in HbA1c, systolic blood pressure, diastolic blood pressure, low-density lipoprotein cholesterol levels or uric acid levels in any BMI subgroup. Although not significantly correlated, r values for the correlation between ALT and HbA1c tended to increase with increasing baseline BMI in the ≥25 to <30 kg/m2, ≥30 to <35 kg/m2, and ≥35 kg/m2 subgroups. There were significant strong correlations between changes in ALT levels and changes

Table 2 Adverse drug reactions

	Total ($n = 11,051$)	Normal liver function ($n = 3,371$)	Abnormal liver function ($n = 3,829$)	p-value	Unknown ($n = 4,051$)
ADRs, n (%)	2,129 (19.27)	626 (19.74)	848 (22.15)	0.014	655 (16.17)
Serious ADRs	210 (1.90)	71 (2.24)	75 (1.96)	0.414	64 (1.58)
ADRs of special interest					
Polyuria/pollakiuria	612 (5.54)	187 (5.90)	245 (6.40)	0.386	180 (4.44)
Volume depletion-related event, including dehydration	243 (2.20)	69 (2.18)	109 (2.85)	0.076	65 (1.60)
Skin complication	198 (1.79)	55 (1.73)	79 (2.06)	0.318	64 (1.58)
Renal disorder	191 (1.73)	59 (1.86)	79 (2.06)	0.544	53 (1.31)
Urinary tract infection	170 (1.54)	34 (1.07)	86 (2.25)	<0.001	50 (1.23)
Genital infection	161 (1.46)	36 (1.14)	68 (1.78)	0.027	57 (1.41)
Hepatic disorder	133 (1.20)	32 (1.01)	71 (1.85)	0.003	30 (0.74)
Cardiovascular disease	67 (0.61)	25 (0.79)	20 (0.52)	0.166	22 (0.54)
Hypoglycemia	57 (0.52)	21 (0.66)	15 (0.39)	0.115	21 (0.52)
Malignant tumor	51 (0.46)	17 (0.54)	16 (0.42)	0.472	18 (0.44)
Cerebrovascular disease	48 (0.43)	18 (0.57)	18 (0.47)	0.570	12 (0.30)
Ketoacidosis, event related to ketone-body increase	7 (0.06)	3 (0.09)	3 (0.08)	—b	1 (0.02)
Fracture	4 (0.04)	1 (0.03)	2 (0.05)	—b	1 (0.02)
Lower limb amputation	0	0	0	—b	0

a p-values across subgroups assessed by chi-squared test.

b No p-value was calculated when at least one element of the contingency table was <10.

ADR, adverse drug reaction.
in body weight ($r = 0.446$, $p < 0.001$), BMI ($r = 0.442$, $p < 0.001$), and ALP levels ($r = 0.483$, $p = 0.008$) only in the subgroup of patients with baseline BMI of <22 kg/m2. In contrast, correlations with changes in γ-GTP levels were significant and strong in all but the lowest (<22 kg/m2) BMI subgroup (r values of 0.403–0.470, all $p < 0.001$). Change in ALT levels were significantly correlated with changes in AST levels across all BMI subgroups (Table 5).

Correlations between the magnitude of change in FLI and changes in effectiveness and laboratory parameters were analyzed in patients according to FLI (Table 6). In all patients, including patients with abnormal or normal FLI, there were no significant correlations between

Fig. 1 Time course changes in liver function-related parameters in patients stratified by liver function status at baseline. * $p < 0.001$, ** $p < 0.05$ vs. baseline (one-sample t-test); † $p < 0.001$ vs. patients with abnormal liver function (two-sample t-test).

ALP, alkaline phosphatase; ALT, alanine aminotransferase; AST, aspartate aminotransferase; γ-GTP, gamma-glutamyl transpeptidase; SD, standard deviation.
The present subgroup analysis of STELLA-LONG TERM was conducted to evaluate the safety of ipragliflozin and its effects on liver function over 3 years in Japanese patients with T2DM. The results of the safety analysis show that the incidence of ADRs was significantly higher in patients with abnormal liver function than in patients with normal liver function at baseline. Individual ADRs with significantly higher incidence among patients with abnormal liver function included urinary tract infections, genital infections and hepatic disorders. Risk factors for ipragliflozin-related ADRs, identified in the primary analysis of STELLA-LONG TERM [25], were more common in the patients with abnormal liver function in this analysis, and included female sex for urinary tract infections and genital infections, and the presence of any complications and mild/moderate hepatic impairment for hepatic disorders.

For the effectiveness analysis, patients were divided into those with normal liver function and those with abnormal liver function on the basis of ALT levels at baseline. In patients with abnormal liver function, continuous, statistically significant decreases in the levels of AST, ALT, γ-GTP, and ALP were observed throughout the study. In patients with normal liver function, changes in AST, ALT, γ-GTP, and ALP levels were also statistically significant at several time points, although they were numerically much smaller than changes observed in patients with abnormal liver function. Over the course of the study among patients who had abnormal liver function at baseline, the proportion whose liver function improved increased continuously from baseline, reaching

Table 3	Change in ALT levels in patients with abnormal liver function at baseline					
	1 month	3 months	6 months	12 months	24 months	36 months
Patients for whom ALT data were available, n (%)	1,867 (100.0)	2,645 (100.0)	2,246 (100.0)	2,154 (100.0)	1,824 (100.0)	1,601 (100.0)
ALT levels improved*, n (%)	259 (13.9)	542 (20.5)	604 (26.9)	663 (30.8)	577 (31.6)	540 (33.7)
ALT levels unchanged or worsened, n (%)	1,608 (86.1)	2,103 (79.5)	1,642 (73.1)	1,491 (69.2)	1,247 (68.4)	1,061 (66.3)

* Improvement was defined as decrease to <31 U/L for men and <21 U/L for women.

ALT, alanine aminotransferase.

Table 4	Pearson’s correlation coefficients between changes in ALT and changes in effectiveness/laboratory parameters in patients with abnormal liver function		
	n	r	p-value
Changes in HbA1c	1,581	0.166	<0.001
Changes in FPG	888	0.096	0.004
Changes in fasting insulin	66	0.059	0.639
Changes in body weight	1,378	0.203	<0.001
Changes in waist circumference	259	0.056	0.373
Changes in SBP	1,435	0.062	0.019
Changes in DBP	1,413	0.078	0.003
Changes in total bilirubin	683	0.102	0.007
Changes in triglycerides	1,478	0.114	<0.001
Changes in FLI	242	0.282	<0.001
Changes in HOMA-IR	16	0.543	0.030

DBP, diastolic blood pressure; FLI, Fatty Liver Index; FPG, fasting plasma glucose; HbA1c, glycated hemoglobin; HOMA-IR, homeostatic model assessment of insulin resistance; SBP, systolic blood pressure.

Discussion

The present subgroup analysis of STELLA-LONG TERM was conducted to evaluate the safety of ipragliflozin and its effects on liver function over 3 years in Japanese patients with T2DM. The results of the safety analysis show that the incidence of ADRs was significantly higher in patients with abnormal liver function than in patients with normal liver function at baseline. Individual ADRs with significantly higher incidence among patients with abnormal liver function included urinary tract infections, genital infections and hepatic disorders. Risk factors for ipragliflozin-related ADRs, identified in the primary analysis of STELLA-LONG TERM [25], were more common in the patients with abnormal liver function in this analysis, and included female sex for urinary tract infections and genital infections, and the presence of any complications and mild/moderate hepatic impairment for hepatic disorders.

For the effectiveness analysis, patients were divided into those with normal liver function and those with abnormal liver function on the basis of ALT levels at baseline. In patients with abnormal liver function, continuous, statistically significant decreases in the levels of AST, ALT, γ-GTP, and ALP were observed throughout the study. In patients with normal liver function, changes in AST, ALT, γ-GTP, and ALP levels were also statistically significant at several time points, although they were numerically much smaller than changes observed in patients with abnormal liver function. Over the course of the study among patients who had abnormal liver function at baseline, the proportion whose liver function improved increased continuously from baseline, reaching
Table 5 Pearson’s correlation coefficients between changes in effectiveness/laboratory parameters and changes in ALT in patients with abnormal liver function according to BMI at baseline

Parameter	BMI <22 kg/m²	BMI ≥22 to <25 kg/m²	BMI ≥25 to <30 kg/m²	BMI ≥30 to <35 kg/m²	BMI ≥35 kg/m²										
	n	r	p-value												
HbA1c	55	0.223	0.102	239	0.075	0.248	1,032	0.127	<0.001	787	0.253	<0.001	496	0.382	<0.001
FPG	35	0.136	0.434	164	0.063	0.425	622	0.043	0.287	467	0.130	0.005	293	0.250	<0.001
Fasting insulin	5	−0.944	−<0.001	23	−0.190	0.386	69	−0.046	0.708	55	0.112	0.417	33	0.137	0.448
Body weight	54	0.446	0.001	229	0.110	0.097	1,027	0.221	<0.001	777	0.151	<0.001	487	0.220	<0.001
Waist circumference	13	0.676	0.011	60	0.044	0.738	221	−0.022	0.750	177	0.003	0.969	80	0.045	0.691
BMI	54	0.442	<0.001	229	0.116	0.081	1,027	0.199	<0.001	777	0.149	<0.001	487	0.225	<0.001
SBP	55	0.091	0.507	224	0.041	0.542	970	0.016	0.613	723	0.018	0.626	456	0.154	<0.001
DBP	55	0.071	0.607	221	0.127	0.059	956	0.054	0.096	709	0.029	0.440	447	0.116	0.014
Heart rate	39	0.075	0.652	140	0.075	0.377	600	0.036	0.379	454	0.109	0.020	288	0.135	0.022
WBC	50	−0.104	0.474	205	−0.038	0.584	851	−0.034	0.322	638	0.055	0.167	391	0.049	0.338
RBC	50	−0.144	0.318	206	−0.008	0.910	850	0.051	0.137	639	0.089	0.024	392	0.191	<0.001
Hemoglobin	52	−0.097	0.495	207	0.046	0.510	855	0.048	0.160	633	0.113	0.005	392	0.194	<0.001
Hematocrit	49	−0.072	0.622	206	0.047	0.505	850	0.020	0.557	633	0.101	0.011	394	0.157	0.002
AST	57	0.750	<0.001	239	0.726	<0.001	1,017	0.834	<0.001	777	0.843	<0.001	487	0.872	<0.001
γ-GTP	53	0.327	0.017	220	0.458	<0.001	944	0.421	<0.001	743	0.470	<0.001	449	0.403	<0.001
ALP	29	0.483	0.008	120	0.238	0.009	572	0.110	0.009	442	0.196	<0.001	264	0.267	<0.001
Total bilirubin	28	0.284	0.143	110	−0.067	0.490	451	0.090	0.057	339	0.098	0.071	200	0.308	<0.001
Total cholesterol	34	0.026	0.883	138	0.128	0.134	619	0.051	0.204	471	0.007	0.879	290	0.150	0.011
LDL cholesterol	48	−0.194	0.187	215	0.046	0.503	885	0.080	0.018	669	0.019	0.622	402	0.175	<0.001
HDL cholesterol	49	−0.006	0.967	220	0.025	0.714	950	−0.108	<0.001	721	−0.072	0.054	452	0.008	0.869
Triglycerides	51	0.209	0.141	230	0.007	0.914	988	0.118	<0.001	745	0.054	0.141	461	0.089	0.056
Uric acid	47	−0.008	0.955	190	0.020	0.789	886	0.116	<0.001	674	0.018	0.649	416	0.116	0.018
BUN	43	0.129	0.409	191	−0.125	0.884	865	−0.061	0.075	632	−0.093	0.019	395	−0.089	0.076
Serum albumin	21	−0.354	0.115	91	0.223	0.034	439	−0.010	0.827	330	0.062	0.263	196	−0.029	0.685
Table 5 Cont.

	BMI <22 kg/m²	BMI ≥22 to <25 kg/m²	BMI ≥25 to <30 kg/m²	BMI ≥30 to <35 kg/m²	BMI ≥35 kg/m²										
	n	r	p-value												
Serum creatinine	51	0.001	0.996	221	-0.110	0.104	958	-0.006	0.853	719	-0.142	<0.001	450	-0.029	0.539
Na	38	0.032	0.846	157	-0.094	0.241	687	-0.110	0.004	517	-0.010	0.022	310	-0.093	0.102
Cl	37	0.048	0.778	154	-0.076	0.349	672	-0.133	<0.001	500	-0.174	<0.001	301	-0.119	0.040
K	43	-0.222	0.152	170	0.053	0.492	730	-0.014	0.705	554	-0.026	0.545	333	0.069	0.212
Ca	15	-0.130	0.645	42	0.236	0.132	212	-0.008	0.910	151	0.047	0.565	105	0.110	0.263
P	9	-0.452	—	20	-0.116	0.625	102	-0.029	0.776	72	0.027	0.821	61	-0.150	0.248
Mg	1	—	—	10	0.133	0.714	40	0.086	0.600	20	0.070	0.769	18	-0.447	0.063
Ketone bodies	3	-0.817	—	8	-0.441	—	21	-0.077	0.739	14	0.011	0.970	15	0.350	0.201
Fasting C-peptide	1	—	—	12	0.102	0.751	34	0.475	0.005	34	0.058	0.745	13	-0.044	0.886
eGFR	49	-0.005	0.972	219	0.124	0.066	950	0.043	0.185	710	0.183	<0.001	440	0.014	0.765
pH	19	0.324	0.175	111	-0.050	0.601	523	-0.055	0.206	420	-0.080	0.101	251	-0.232	<0.001
Urinary albumin	4	0.191	—	28	0.217	0.267	107	-0.069	0.480	74	0.153	0.192	45	-0.044	0.774
Urinary creatinine	2	-1.000	—	24	0.011	0.959	73	-0.054	0.648	63	0.111	0.386	37	0.140	0.408
C-peptide index	10	-0.142	0.697	32	0.187	0.305	32	-0.233	0.198	11	0.020	0.952			
Non-HDL cholesterol	30	-0.039	0.838	131	0.109	0.217	572	0.026	0.538	436	0.027	0.574	271	0.139	0.022
Fatty Liver Index	12	0.684	0.014	55	0.324	0.016	213	0.323	<0.001	166	0.157	0.044	73	0.042	0.726
HOMA-IR	5	-0.950	—	22	0.075	0.740	69	-0.062	0.614	55	-0.018	0.895	33	0.069	0.704
HOMA-β	5	-0.950	—	22	0.075	0.740	69	-0.062	0.614	55	-0.018	0.895	33	0.069	0.704

*No p-value was calculated when at least one element of the contingency table was <10.

ALP, alkaline phosphatase; ALT, alanine aminotransferase; AST, aspartate aminotransferase; BMI, body mass index; BUN, blood urea nitrogen; DBP, diastolic blood pressure; eGFR, estimated glomerular filtration rate; FPG, fasting plasma glucose; γ-GTP, gamma-glutamyl transpeptidase; HbA1c, glycated hemoglobin; HDL, high density lipoprotein; HOMA-β, homeostatic model assessment of β-cell function; HOMA-IR, homeostatic model assessment of insulin resistance; LDL, low density lipoprotein; RBC, red blood cells; SBP, systolic blood pressure; WBC, white blood cells.
33.7% at 3 years. In the 2-year results of STELLA-LONG TERM [26], the subgroup of patients with abnormal liver function showed a continuous decrease from baseline in AST, ALT, γ-GTP, and ALP levels. The present analysis demonstrates that this effect is maintained a further year after the start of ipragliflozin treatment. To the best of our knowledge, this is the first study in Japanese patients to demonstrate long-term benefit of ipragliflozin on liver function in this patient subpopulation.

After 1 month, ALP levels decreased both in patients with normal and in patients with abnormal liver function in the present study. Distinct forms of ALP are found in tissues other than the liver, including the bones, small intestine, and placenta [27]. In this study, we did not collect ALP data according to the type of isozyme, and therefore, it is difficult to speculate about the reason for this finding. Another possible reason is, as with the other parameters, mean changes in ALP from baseline were correlated with changes in AST regardless of BMI. Distinct forms might be assessed at each patient visit and, hence, it might lead to contradictory results between ALP values at the first and second months.

Our results confirm those from several previous studies in Japanese patients with T2DM, where ipragliflozin improved hepatic dysfunction [17], fatty liver [18, 19], and hepatic steatosis (liver-to-spleen attenuation ratio assessed using computed tomography) [28]. Where assessed, this improvement was independent of change in body weight [17, 19] or BMI [19]. One of these studies included 20 patients with T2DM receiving ipragliflozin 50 mg/day for 24 weeks; using magnetic resonance spectroscopy, study investigators demonstrated significant reductions from baseline in hepatic fat [18]. Collectively, these studies suggest ipragliflozin may have therapeutic efficacy in T2DM-associated hepatic steatosis. Other SGLT2 inhibitors have also been reported to improve liver function in T2DM [29-31]. In a pooled post-hoc analysis of canagliflozin studies in Japanese patients with T2DM, the subgroup of patients with impaired liver function (ALT >30 U/L) experienced improvements not only in glycemic parameters but also liver function and body weight [31]. While patients with impaired liver function were not examined specifically in an analysis of multiple clinical studies of empagliflozin in patients with T2DM, authors reported that the greatest reductions in ALT levels occurred in those in the highest tertile of ALT level at baseline, and that these reductions were generally independent of changes in body weight or HbA1c [30].

In our study, the changes in ALT levels in patients with abnormal liver function were not significantly correlated with changes in most effectiveness and laboratory parameters. They were significantly correlated with changes in body weight and BMI only in patients with a low BMI (BMI <22 kg/m²), i.e. were independent of BMI in most patients with abnormal liver function. As expected, changes in ALT were significantly correlated with changes in AST regardless of BMI.

For the effectiveness analysis, patients were also divided into those with normal (FLI <30), abnormal and fatty liver (FLI ≥30 and ≥60) on the basis of FLI at baseline. In this subgroup analysis, numerically greater decreases in FLI were observed in patients with abnormal or fatty FLI scores than in patients with normal liver FLI scores at baseline, and FLI scores decreased significantly from baseline in all subgroups. Prior subgroup analyses of ipragliflozin studies in Japanese patients with T2DM, which excluded patients in whom hepatic steatosis could be ruled out (i.e. baseline FLI <30) [19, 20], also found that FLI improved significantly from baseline after ipragliflozin treatment (from mean ± SD 64.5 ± 21.6 to 51.9 ± 26.5, p < 0.01 [20] and from 70.1 ± 19.4 to 60.3 ± 25.5, p = 0.0009 [19]). This improvement was correlated with changes in fasting plasma glucose levels.

Table 6 Pearson’s correlation coefficients between changes in effectiveness/laboratory parameters and change in fatty liver index

	Total	FLI normal (FLI <30)	FLI abnormal (FLI ≥30)						
	n	r	p-value	n	r	p-value	n	r	p-value
HbA1c	449	0.126	0.007	59	0.073	0.580	390	0.129	0.011
FPG	350	0.146	0.006	53	0.224	0.106	297	0.130	0.026
Fasting insulin	59	0.161	0.224	9	–0.475	0.196	50	0.198	0.168
SBP	446	0.153	0.001	59	0.000	1.000	387	0.154	0.002
DBP	438	0.145	0.002	59	0.026	0.842	379	0.137	0.008
Total bilirubin	279	–0.087	0.147	39	0.205	0.210	240	–0.103	0.112

DBP, diastolic blood pressure; FLI, Fatty Liver Index; FPG, fasting plasma glucose; HbA1c, glycated hemoglobin; SBP, systolic blood pressure.
in one of these analyses ($r = 0.4683, p = 0.0323$ [19]). However, our study did not confirm this correlation. In a previous, short-term study conducted by Takase et al., significant positive correlations were noted between the change in FLI and changes in FPG and HbA1c, while no significant correlation was detected between the change in FLI and changes in other parameters, including body weight and BMI [19]. These results contrast with the findings of the present study, in which no significant correlations were detected between the change in FLI and changes in any of the effectiveness or laboratory parameters analyzed. Two factors could have contributed to producing this difference in findings. First, in the study by Takase et al., ipragliflozin was administered for 16 weeks [19], while in the present study, it was administered for 3 years, which might be associated with the lack of correlation observed. Second, the study by Takase et al. included a total of 24 patients [19], while between 59 and 449 patients were included in the analysis of correlation between the change in FLI and changes in the effectiveness and laboratory parameters in the present study.

Several studies have identified ipragliflozin-related improvements in NAFLD parameters in addition to its favorable effect on glycemic parameters among Japanese patients with T2DM [32, 33], supporting our findings of a marked reduction in FLI and ALT levels in those with abnormal or fatty liver. In one of these studies [32], 24 weeks’ treatment increased the liver-to-spleen attenuation ratio, assessed via abdominal computed tomography, and significantly decreased HbA1c and ALT and fasting plasma glucose from baseline levels. In the control group treated with the thiazolidinedione pioglitazone [32], there were similar changes in these parameters compared with ipragliflozin. However, pioglitazone was associated with an increase in body weight whereas ipragliflozin gave a reduction in body weight (between-group difference $p < 0.0001$) [32]. In an ipragliflozin study that included patients with NAFLD or NASH [33], glycemic parameters and body weight were significantly reduced from baseline in both subgroups of patients, as were AST and ALT levels, indicating improvement in hepatic function. Significant reductions in γ-GTP, steatosis and a trend towards a reduction in liver stiffness were observed only in the NASH group [33]. Improvements in liver histopathology, including hepatic steatosis, and reductions in hepatic impairment among Japanese patients with both T2DM and NAFLD have been observed with other SGLT2 inhibitors as well, including dapagliflozin, canagliflozin and luseogliflozin [34-38].

It should be noted that there were significant differences in several baseline characteristics between patients with normal liver function and patients with abnormal liver function. More patients with abnormal liver function were aged <65 years and had a duration of diabetes of <5 years than patients with normal liver function. As would be expected, patients with normal liver function more frequently had no complications and adequate glycemic control than those with abnormal liver function.

This study had several limitations. Firstly, because this was a single-arm, observational study conducted in routine clinical practice, the safety findings and changes in laboratory parameters reported here could be affected by factors other than ipragliflozin (e.g., concomitant antidiabetic drugs). Additionally, a substantial proportion of patients in our study (33%) had unknown liver function status at baseline, and changes in laboratory parameters were not evaluated after patients completed or discontinued ipragliflozin treatment. This should be taken into account when interpreting the long-term effects of ipragliflozin on liver function.

Conclusions

The present subgroup analysis of STELLA-LONG TERM shows that, in Japanese patients with T2DM, ipragliflozin is associated with a continuous improvement in liver function over a 3-year period. The incidence of ADRs was higher in patients with abnormal liver function than in those with normal liver function.

Acknowledgments

The authors thank all the participants in this study. This study was funded by Astellas Pharma Inc. We would like to thank Georgii Filatov and Tracy Harrison of Springer Healthcare Communications who provided medical writing assistance. This medical writing assistance was funded by Astellas Pharma Inc.

Disclosures

Kazuyuki Tobe has received lecture fees from MSD K.K., Novo Nordisk Pharma Ltd., Kowa Pharmaceutical Co. Ltd. and grants from Daiichi Sankyo Co. Ltd., Ono Pharmaceutical Co. Ltd., Takeda Pharmaceutical Co. Ltd., Nippon Boehringer Ingelheim Co. Ltd., MSD K.K., Mitsubishi Tanabe Pharma Corporation, Teijin Pharma Limited, Eli Lily Japan K.K., Asahi Kasei Pharma Corporation, The Mitsubishi Foundation, and Suntory Global Innovation Center Ltd.; Hiroshi Maegawa has received lecture fees from MSD K.K., Sanofi K.K., Astellas Pharma Inc., Nippon Boehringer Ingelheim Co. Ltd., Takeda Pharmaceutical Co. Ltd., Mitsubishi Tanabe Pharma Corporation, Daiichi Sankyo Co. Ltd., Astra Zeneca K.K., Eli Lilly Japan K.K., Novo Nordisk
Pharma Ltd. and Sumitomo Dainippon Pharma Co. Ltd., research support from Astellas Pharma Inc., AstraZeneca K.K., Nippon Boehringer Ingelheim Co. Ltd., Sunstar Inc., Mitsubishi Tanabe Pharma Corporation, Kyowa Kirin Co. Ltd., Nissan Chemical Corporation and MIKI Corporation, and grants from Takeda Pharmaceutical Co. Ltd., Astellas Pharma Inc., MSD K.K., Nippon Boehringer Ingelheim Co. Ltd., Mitsubishi Tanabe Pharma Corporation, Daiichi Sankyo Co. Ltd., Sumitomo Dainippon Pharma Co. Ltd., Kowa Pharmaceutical Co. Ltd., Taisho Pharmaceutical Co. Ltd., Shionogi & Co. Ltd., Novartis Pharma K.K. and Nipro Corporation. Ichiro Nakamura and Satoshi Uno Limited, Shionogi & Co. Ltd., Novartis Pharma K.K. and Kyowa Kirin Co. Ltd., Nissan Chemical Corporation

10. Targher G, Bertolini L, Padovani R, Rodella S, Tessari R, et al. (2007) Prevalence of nonalcoholic fatty liver disease and its association with cardiovascular disease among type 2 diabetic patients. *Diabetes Care* 30: 1212–1218.

11. Adams LA, Harmsen S, St Sauver JL, Charcharoenwitthaya P, Enders FB, et al. (2010) Nonalcoholic fatty liver disease increases risk of death among patients with diabetes: a community-based cohort study. *Am J Gastroenterol* 105: 1567–1573.

12. Hayashizaki-Someya Y, Kurosaki E, Takasu T, Mitori H, Yamazaki S, et al. (2015) Ipragliflozin, an SGLT2 inhibitor, exhibits a prophylactic effect on hepatic steatosis and fibrosis induced by choline-deficient l-amino acid-defined diet in rats. *Eur J Pharmacol* 754: 19–24.

13. Honda Y, Imajo K, Kato T, Kessoku T, Ogawa Y, et al. (2016) The selective SGLT2 inhibitor ipragliflozin has a therapeutic effect on nonalcoholic steatohepatitis in mice. *PLoS One* 11: e0146337.

14. Tahara A, Kurosaki E, Yokono M, Yamajuku D, Kihara R, et al. (2013) Effects of SGLT2 selective inhibitor ipragliflozin on hyperglycemia, hyperlipidemia, hepatic steatosis, oxidative stress, inflammation, and obesity in type 2 diabetic mice. *Eur J Pharmacol* 715: 246–255.

15. Tahara A, Takasu T (2019) SGLT2 inhibitor ipragliflozin increases the risk of chronic liver disease and hepatocellular carcinoma. *Gastroenterology* 126: 460–468.

16. Younossi ZM, Golabi P, de Avila L, Paik JM, Srishord M, et al. (2019) The global epidemiology of NAFLD and NASH in patients with type 2 diabetes: a systematic review and meta-analysis. *J Hepatol* 71: 793–801.

17. Okanoue T, Umemura A, Yasui K, Itoh Y (2011) Nonalcoholic fatty liver disease and nonalcoholic steatohepatitis in Japan. *J Gastroenterol Hepatol* 26 Suppl 1: 153–162.

18. Estes C, Anstee QM, Arias-Loste MT, Bantel H, Bellentani S, et al. (2018) Modeling NAFLD disease burden in China, France, Germany, Italy, Japan, Spain, United Kingdom, and United States for the period 2016–2030. *J Hepatol* 69: 896–904.

19. Targher G, Bertolini L, Padovani R, Rodella S, Tessari R, et al. (2007) Prevalence of nonalcoholic fatty liver disease and its association with cardiovascular disease among type 2 diabetic patients, *Diabetes Care* 30: 1212–1218.

20. Adams LA, Harmsen S, St Sauver JL, Charcharoenwitthaya P, Enders FB, et al. (2010) Nonalcoholic fatty liver disease increases risk of death among patients with diabetes: a community-based cohort study. *Am J Gastroenterol* 105: 1567–1573.

21. Hayashizaki-Someya Y, Kurosaki E, Takasu T, Mitori H, Yamazaki S, et al. (2015) Ipragliflozin, an SGLT2 inhibitor, exhibits a prophylactic effect on hepatic steatosis and fibrosis induced by choline-deficient l-amino acid-defined diet in rats. *Eur J Pharmacol* 754: 19–24.

22. Honda Y, Imajo K, Kato T, Kessoku T, Ogawa Y, et al. (2016) The selective SGLT2 inhibitor ipragliflozin has a therapeutic effect on nonalcoholic steatohepatitis in mice. *PLoS One* 11: e0146337.

23. Tahara A, Kurosaki E, Yokono M, Yamajuku D, Kihara R, et al. (2013) Effects of SGLT2 selective inhibitor ipragliflozin on hyperglycemia, hyperlipidemia, hepatic steato‐

24. Okanoue T, Umemura A, Yasui K, Itoh Y (2011) Nonalcoholic fatty liver disease and nonalcoholic steatohepatitis in Japan. *J Gastroenterol Hepatol* 26 Suppl 1: 153–162.

25. Estes C, Anstee QM, Arias-Loste MT, Bantel H, Bellentani S, et al. (2018) Modeling NAFLD disease burden in China, France, Germany, Italy, Japan, Spain, United Kingdom, and United States for the period 2016–2030. *J Hepatol* 69: 896–904.

26. Targher G, Bertolini L, Padovani R, Rodella S, Tessari R, et al. (2007) Prevalence of nonalcoholic fatty liver disease and its association with cardiovascular disease among type 2 diabetic patients, *Diabetes Care* 30: 1212–1218.

27. Adams LA, Harmsen S, St Sauver JL, Charcharoenwitthaya P, Enders FB, et al. (2010) Nonalcoholic fatty liver disease increases risk of death among patients with diabetes: a community-based cohort study. *Am J Gastroenterol* 105: 1567–1573.

28. Hayashizaki-Someya Y, Kurosaki E, Takasu T, Mitori H, Yamazaki S, et al. (2015) Ipragliflozin, an SGLT2 inhibitor, exhibits a prophylactic effect on hepatic steatosis and fibrosis induced by choline-deficient l-amino acid-defined diet in rats. *Eur J Pharmacol* 754: 19–24.

29. Honda Y, Imajo K, Kato T, Kessoku T, Ogawa Y, et al. (2016) The selective SGLT2 inhibitor ipragliflozin has a therapeutic effect on nonalcoholic steatohepatitis in mice. *PLoS One* 11: e0146337.

30. Tahara A, Kurosaki E, Yokono M, Yamajuku D, Kihara R, et al. (2013) Effects of SGLT2 selective inhibitor ipragliflozin on hyperglycemia, hyperlipidemia, hepatic steato‐

31. Okanoue T, Umemura A, Yasui K, Itoh Y (2011) Nonalcoholic fatty liver disease and nonalcoholic steatohepatitis in Japan. *J Gastroenterol Hepatol* 26 Suppl 1: 153–162.

32. Estes C, Anstee QM, Arias-Loste MT, Bantel H, Bellentani S, et al. (2018) Modeling NAFLD disease burden in China, France, Germany, Italy, Japan, Spain, United Kingdom, and United States for the period 2016–2030. *J Hepatol* 69: 896–904.

33. Targher G, Bertolini L, Padovani R, Rodella S, Tessari R, et al. (2007) Prevalence of nonalcoholic fatty liver disease and its association with cardiovascular disease among type 2 diabetic patients, *Diabetes Care* 30: 1212–1218.
(2017) Ipragliflozin, a sodium glucose co-transporter 2 inhibitor, reduces intrahepatic patient body weight and abdominal visceral fat volume in patients with type 2 diabetes. *Expert Opin Pharmacother* 18: 1433–1438.

19. Takase T, Nakamura A, Miyoshi H, Yamamoto C, Atsumi T (2017) Amelioration of fatty liver index in patients with type 2 diabetes on ipragliflozin: an association with glucose-lowering effects. *Endocr J* 64: 363–367.

20. Yamauchi Y, Nakamura A, Takahashi K, Takase T, Yamamoto C, et al. (2019) Factors with remission of fatty liver in patients with type 2 diabetes treated with ipragliflozin. *Endocr J* 66: 995–1000.

21. Coelho FDS, Borges-Ca M, von Hafe M, Neves JS, Vale C, et al. (2020) Effects of sodium-glucose co-transporter 2 inhibitors on liver parameters and steatosis: a meta-analysis of randomized clinical trials. *Diabetes Metab Res Rev* e3413.

22. Maegawa H, Toke K, Tabuchi H, Nakamura I (2016) Baseline characteristics and interim (3-month) efficacy and safety data from STELLA-LONG TERM, a long-term post-marketing surveillance study of ipragliflozin in Japanese patients with type 2 diabetes in real-world clinical practice. *Expert Opin Pharmacother* 17: 1985–1994.

23. Tabuchi H, Maegawa H, Toke K, Nakamura I, Uno S (2019) Effect of ipragliflozin on liver function in Japanese type 2 diabetes mellitus patients: a subgroup analysis of the STELLA-LONG TERM study (3-month interim results). *Endocr J* 66: 31–41.

24. Bedogni G, Bellantoni S, Miglioli L, Masotti F, Passalacqua M, et al. (2006) The Fatty Liver Index: a simple and accurate predictor of hepatic steatosis in the general population. *BMC Gastroenterol* 6: 33.

25. Nakamura I, Maegawa H, Toke K, Uno S (2021) Real-world evidence for long-term safety and effectiveness of ipragliflozin in Japanese patients with type 2 diabetes mellitus: final results of a 3-year post-marketing surveillance study (STELLA-LONG TERM). *Expert Opin Pharmacother* 22: 373–387.

26. Nakamura I, Toke K, Maegawa H, Uno S (2019) Safety and effectiveness of ipragliflozin in Japanese patients with type 2 diabetes mellitus: 24-month interim results of the STELLA-LONG TERM post-marketing surveillance study. *Jpn Pharmacol Ther* 47: 1765–1789 (In Japanese).

27. Lowe D, Sanvictores T, John S (2020) Alkaline phosphatase. In: StatPearls [Internet]. StatPearls Publishing LLC, Copyright © 2020, Treasure Island (FL).

28. Bando Y, Ogawa A, Ishikura K, Kanekura H, Hisada A, et al. (2017) The effects of ipragliflozin on the liver-to-spleen attenuation ratio as assessed by computed tomography and on alanine transaminase levels in Japanese patients with type 2 diabetes mellitus. *Diabetol Int* 8: 218–227.

29. Katsuyama H, Hamasaki H, Adachi H, Moriyama S, Kawaguchi A, et al. (2016) Effects of sodium-glucose co-transporter 2 inhibitors on metabolic parameters in patients with type 2 diabetes: a chart-based analysis. *J Clin Med Res* 8: 237–243.

30. Sattar N, Fitchett D, Hantel S, George JT, Zinman B (2018) Empagliflozin is associated with improvements in liver enzymes potentially consistent with reductions in liver fat: results from randomised trials including the EMPA-REG OUTCOME(R) trial. *Diabetologia* 61: 2155–2163.

31. Seko Y, Sumida Y, Sasaki K, Itoh Y, Iijima H, et al. (2018) Effects of canagliflozin, an SGLT2 inhibitor, on hepatic function in Japanese patients with type 2 diabetes mellitus: pooled and subgroup analyses of clinical trials. *J Gastroenterol* 53: 140–151.

32. Ito D, Shimizu S, Inoue K, Saito D, Yanagisawa M, et al. (2017) Comparison of ipragliflozin and pioglitazone effects on nonalcoholic fatty liver disease in patients with type 2 diabetes: a randomized, 24-week, open-label, active-controlled Trial. *Diabetes Care* 40: 1364–1372.

33. Miyake T, Yoshida S, Furukawa S, Sakai T, Tada F, et al. (2018) Ipragliflozin ameliorates liver damage in non-alcoholic fatty liver disease. *Open Med (Wars)* 13: 402–409.

34. Akuta N, Kawamura Y, Watanabe C, Nishimura A, Okubo M, et al. (2019) Impact of sodium glucose co-transporter 2 inhibitor on histological features and glucose metabolism of non-alcoholic fatty liver disease complicated by diabetes mellitus. *Hepatol Res* 49: 531–539.

35. Shimizu M, Suzuki K, Kato K, Jojima T, Iijima T, et al. (2019) Evaluation of the effects of dapagliflozin, a sodium-glucose co-transporter-2 inhibitor, on hepatic steatosis and fibrosis using transient elastography in patients with type 2 diabetes and non-alcoholic fatty liver disease. *Diabetes Obes Metab* 21: 285–292.

36. Sumida Y, Murotani K, Saito M, Tamasawa A, Osonoi Y, et al. (2019) Effect of luseogliflozin on hepatic fat content in type 2 diabetes patients with non-alcoholic fatty liver disease: a prospective, single-arm trial (LEAD trial). *Hepatol Res* 49: 64–71.

37. Yamashima M, Miyakih H, Mima S, Shibata H, Ryu Sasaki R, et al. (2019) The long-term efficacy of sodium glucose co-transporter 2 inhibitor in patients with non-alcoholic fatty liver disease. *Intern Med* 58: 1987–1992.

38. Akuta N, Kawamura Y, Fujiyama S, Sezaki H, Hosaka T, et al. (2020) SGLT2 inhibitor treatment outcome in non-alcoholic fatty liver disease complicated with diabetes mellitus: the long-term effects on clinical features and liver histopathology. *Intern Med* 59: 1931–1937.