Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Review

Vaccines based on virus-like nano-particles for use against Middle East Respiratory Syndrome (MERS) coronavirus

Alireza Hashemzadeha,b,c, Amir Avanb,c, Gordon A. Fernsd, Majid Khazaeia,c,*

aDepartment of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
bDepartment of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
cMetabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
dBrighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex BN1 9PH, UK

\textsc{article info}

\textit{Article history:}
Received 11 April 2020
Received in revised form 1 July 2020
Accepted 2 July 2020
Available online 11 July 2020

\textit{Keywords:}
MERS-CoV
Coronavirus
Vaccine
Virus-like particles
Nanoparticles

\textsc{abstract}

Recent advances in virus-like nanoparticles against Middle East respiratory syndrome-related coronavirus (MERS-CoV) can initiate vaccine production faster for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), while ensuring the safety, easy administration, and long-term effects. Patients with this viral pathogen suffer from excess mortality. MERS-CoV can spread through bioaerosol transmission from animal or human sources. The appearance of an outbreak in South Korea sparked off a strong urge to design strategies for developing an effective vaccine since the emergence of MERS-CoV in 2012. Well unfortunately, this is an important fact in virus risk management. The studies showed that virus-like nanoparticles (VLPs) could be effective in its goal of stopping the symptoms of MERS-CoV infection. Besides, due to the genetic similarities in the DNA sequencing of SARS-CoV-2 with MERS-CoV and the first identified severe acute respiratory syndrome (SARS-CoV) in China since 2002/2003, strategic approaches could be used to manage SARS-CoV-2. Gathering the vital piece of information obtained so far could lead to a breakthrough in the development of an effective vaccine against SARS-CoV-2, which is prioritized and focussed by the World Health Organization (WHO). This review focuses on the virus-like nanoparticle that got successful results in animal models of MERS-CoV.

\textcopyright 2020 Published by Elsevier Ltd.

\textbf{Contents}

1. Introduction .. 5742
2. Advantages of nanoparticle-based vaccine .. 5743
3. Spike protein of MERS-CoV ... 5743
4. Vaccines based on Virus-like Particles (VLPs) .. 5743
5. Conclusion ... 5744

\textbf{Declaration of Competing Interest}

* Corresponding author at: Metabolic syndrome Research center, Mashhad University of Medical Sciences, Mashhad, Iran.
E-mail address: Khazaeim@mums.ac.ir (M. Khazaei).

https://doi.org/10.1016/j.vaccine.2020.07.003
0264-410X/© 2020 Published by Elsevier Ltd.

1. Introduction

The Middle East respiratory syndrome (MERS) is a highly infectious viral disease that first appeared in 2012 at Saudi Arabia, originally crossing the species barrier from camels to humans, and an outbreak caused many deaths in South Korea[1–4]. The high mortality of MERS-related coronavirus (MERS-CoV) was $\approx 35\%$, led the World Health Organization to the conclusion that employing effective countermeasures like vaccination were needed to reduce MERS-CoV epidemic impact[5,6]. In vaccine production, a major limiting factor in designing comprehensive delivery systems for aerosol transmissible diseases is the enhancement of efficacy and easy vaccine administration[1,7]. Extensive information on transmission, pathogenesis, and epidemiology of MERS-CoV is needed in...
both humans and animals to facilitate the development of a new vaccine [8]. Recently, the focus is concentrated on MERS-CoV spike (S) protein, a viral surface glycoprotein, providing the basis for the synthesis of virus-like particles (VLPs) [8]. Vaccines based on antibodies, DNA [9], adenviruses, vectors [10,11], antigen and adjuvant delivery have shown potentially promising results and may support future developments based on virus-mimicking behavior. Synthetic vaccines for MERS-CoV utilizing potent antigens in combination of proper adjuvant could increase the potency of the prepared vaccine [12]. In this manner, the nanoscale morphology that is very similar to that of a native MERS-CoV virus [13] with consideration of sequenced delivery of antigen and adjuvant [14] could enhance the immunogenicity and promote danger signals that mimic the authentic MERS-CoV virus.

The S protein of MERS-CoV is an essential component of the immunogenic vaccines of the future with the advantage of facilitating virus attachment step via Human Dipeptidyl Peptidase 4 (hDPP4) [15–18]. In the current outbreak, severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) uses its S proteins to bind to the angiotensin-converting enzyme 2 and enter the cells with affinities of at least 10 time more severe than acute respiratory syndrome (SARS) [19]. Novavax (USA) designed a virus-like particle (VLP) from MERS-CoV S protein that induced neutralizing antibodies and enhanced the immune response after one injection in a mouse model [20,21]. The synthesis of VLPs in vaccine technology is a novel strategic approach to developing new and more effective vaccines [22]. Using appropriate design of VLPs by S protein of SARS-CoV-2 and proper adjuvants can also stimulate the immune system of the body to produce countermeasures that are more effective. The present review further explores the concept of virus mimicking nanoparticles and the development of nanoparticle vaccines against MERS-CoV. The genetic sequence of SARS-CoV 2 is closely related to the MERS-CoV and SARS-CoV [23], hence, the information obtained from their vaccine advancement efforts could help to progress the development cycle of SARS-CoV-2 vaccine. Herein, this review focuses on the virus-based nanoformulations that have successful results in animal models of MERS-CoV in the hope finding a more effective approach to manage these epidemic diseases.

2. Advantages of nanoparticle-based vaccine

Nanoparticles designed to mimic viruses with engineered nanoscale morphology [13], multivalent antigens [24], and colonizing antigens/adjuvants (danger signals); using a single nanoparticle may promote immune responses via antigen processing and immune system engagement [14]. Nanoscale VLPs with viral characteristics are transported better through the lymphatics and capillaries in comparison with smaller subunit vaccines [13,25–27]. This improves cellular uptake and reduces the systemic inflammatory response [26]. Besides, the ability to deliver multiple antigens promotes antigen-presenting cell or accessory cells to function more effectively, hence, T cell receptors can recognize the synthesized complexes that increase immunogenicity and potency of the vaccine, which could protect the safety and welfare of the patients [25]. Innate immune system activation and better cellular uptake of VLPs, consisting of recombinant viral antigens and adjuvants, can enhance the effects of the complement cascade to attack pathogens and the presentation to follicular dendritic cells, which lead to B cell activation and potentiation of the immune system by inducing proactive immune responses against viral infections [13,28]. In fact, synthetic nano VLPs elicit virus-like characteristics and evoke immune responses against viral infections, which is an essential aspect of vaccine design, development, and future disease management [29–34]. Another advantage is the formation of protein corona around the synthetic nanoparticles via surface passivation that, at first glance, prevents agglomeration and increases the size especially in inorganic nanostructures, but promotes the innovative design of complex vaccines using nanocarriers and proteins via Van der Waals and covalent interactions [35–40]. For instance, VLPs based on inorganic gold nanoparticles have higher surface energy than their organic counterparts, which interact strongly with biomolecules, antigens, and adjuvants, through weak electric forces such as Van der Waals force and dipole–dipole interaction, or covalent bond [38,41].

3. Spike protein of MERS-CoV

The immunogenic MERS-CoV proteins include Spike (S), membrane (M) and envelope (E). Among them, the S protein mediates viral entry into the host cells [42]; accordingly, the S protein can be used as the principal targeting agent against MERS-CoV, because of having the ability to build the developing strategies for new generation of virus-mimicking vaccines. [20,43,44]. The S protein could self-assemble into a crown-like nanoparticle with about 25 nm in diameter, in which the size was reduced to about onequarter of MERS-CoV, and could trigger cell attachment, including fusion and cellular binding [45,46]. In an animal model, the potential of S proteins to stimulate immune responses is confirmed in the presence of alum induced neutralizing antibodies [20]. The S glycoprotein has two subunits, S1 and S2. The S1 subunit binds to the hDPP4 receptor, and the S2 subunit is involved in membrane fusion (virus-cell fusion) [47]. Some neutralizing antibodies deactivate the S1 subunit, receptor-binding domain (RBD), by blocking the interaction with hDPP4. and this could be a principal target in the vaccine development of MERS-CoV [48–55]. Recently, Th1 mediated immunity was seen after induction of virus-neutralizing antibodies after immunization of macaca mulatta by an S protein based VLP against MERS-CoV [42]. VLPs based on S protein also showed a Th1 and Th2 mediated immunity in mice primed with rAd5–vector [56].

4. Vaccines based on Virus-like Particles (VLPs)

High levels of an immunogenically active drug may lead to inflammatory and excessive immunological responses. Therefore, safety precautions and new formulations may be needed to reduce the side effects [31,57,58]. Nanoscale vaccines based on calcium phosphate nanobioceramics [59], liposomes [30,60], polymer-based microparticles [61,62], cationic polymers [63,64], virus-like nanoparticles (VLPs) [65], nanoparticle assemblies from multimeric peptides [66,67] and gold nanoparticles [41,68] could target the lymphatic system and would improve safety and efficacy. In addition, the mentioned structures are amenable for modifications that may increase the biocompatibility, lead to size control, stability, and controlled antigen/adjuvant loading and release.

VLPs are widely used in vaccines as carriers and are comparable to subunit vaccines, in which a viral protein is generated [69–72]. VLPs are recombinant forms of viral proteins and adjuvants with the potential for developing a self-assembled structure. They can act as an adjuvant due to their small size and give rise to the potential immunogenic epitopes that produce higher immunogenicity. Other adjuvants could also be used to cause greater immune responses in comparison with the virus [42,73,74]. The designed vaccines have used recombinant forms or viral proteins including S, S1, or RBD, and vector or DNA based adjuvants against MERS-CoV infection (Table 1). Animals vaccinated with VLPs were shown to effectively overcome the virus due to an increased immune response [20,49,75].
Recently, silkworm larvae have been used to generate the S protein of MERS-CoV, which was then used to prepare nanovesicles [42] by surfactant treatment [81] and mechanical extrusion [82,83]. Recombinant proteins of S, E and M were used to synthesize MERS-CoV VLPs, tested in an animal model and were associated with greater immunogenicity [42]. Nanoparticles derived from rAd5-S protein with alum mediated neutralizing antibodies showed a successful immune response against MERS-CoV, tested in vivo using specific pathogen-free BALB/c mice, which increased Th1 and Th2 immunogenicity [56]. In another study, nanoparticle vaccine platform engineered by employing the recombinant E protein of another virus could produce a chimeric VLP (cVLP), in which different epitopes trigger the cell attachment to different antibodies [84]. For instance, the structural protein of canine parvovirus (CPV), VP2, was fused with the MERS-CoV RBD, generating a cVLP that could increase the immune responses in mice [77]. The recombinant form of S protein of MERS-CoV and influenza A virus M1 protein also showed greater immunogenicity in a mouse model [85]. Nanoparticles from the recombinant form MERS-CoV S protein and M1 protein prevented the virus replication in the lungs of the vaccinated mice [48,86–88]. Aggregations of viral antigens due to protein misfolding may lead to the lower solubility of VLPs. RNA as a molecular chaperone was used as a folding agent and subsequently, it was fused with the RBD of MERS-CoV. The sera that was separated after immunization of the mouse with the synthetic VLP, showed the blockade of the binding site to hDP4 of MERS-CoV RBD [1].

Enzymes such as viral proteases encoded by DNA or RNA of the virus or signaling proteins like interferons could be implemented to increase the immunogenicity of the prepared vaccines. Reports showed MERS-CoV uses the protein-coding genes of the host cell, including TMPRSS2 (Transmembrane Serine Protease 2), FURIN (paired basic amino acid cleaving enzyme) and cathepsins, to facilitate virus-cell fusion [89-91]. The presence of a subgroup of interferons, Human type I interferons (IFNs) as an important mediator of the innate immune system could also affective against MERS-CoV. It seems that viral replication and transmission of MERS-CoV was prevented by controlling the previously mentioned cell proteases and the presence of cytokines of the innate immune system [89-94]. IFN signaling is effective after antigen presentation; otherwise, it suppresses the innate immune system [30,62,95]. Therefore, the sequencing of the release mechanism and timing affect the results. The optimal arrangement of the antigen and adjuvant should be taken into consideration in the engineered nanoparticle vaccines [86-98]. The stimulator of interferon genes (STING) agonists combined with antigen presentation could also activate adaptive immunity [99-101]. The synthetic hollow VLPs (hVLPs) have the advantage of encapsulating cargoes that are tailored to meet the timing and dosing requirements using recombinant viral antigens [5]. The mouse immunized with a hollow VLP, composed of a polymeric hollow nanoparticle, RBD antigen and STING agonist, was capable of promoting long-lasting T cells and Th1/Th2 immune responses. The mechanism of action was similar to other STING mediated stimulations and led to generation protective neutralizing antibodies against MERS-CoV [5,99,102].

5. Conclusion

Advances in virus-like nanoparticles against MERS-CoV could help to adopt some basic information against SARS-CoV-2. VLPs are flexible and can be designed for specific aims, for example, to increase vaccine safety and efficacy. Wise recombinant of a subunit antigen and an adjuvant can heighten the innate and adaptive immune responses. It seems timing in adjuvant and antigen release could greatly influence the effectiveness. As this review represents, the nano-engineering of viral proteins could open a new horizon for the preparation of an effective MERS-CoV vaccine.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

[1] Kim YS, Son A, Kim J, Bin Kwon S, Kim MH, Kim P, et al. Chaperna-mediated assembly of ferritin-based Middle East respiratory syndrome-coronavirus nanoparticles. Front Immunol 2018:9.
[2] Breban R, Riou J, Fontanet A. Interhuman transmissibility of Middle East respiratory syndrome coronavirus: estimation of pandemic risk. The Lancet 2013;382:694–9.
[3] Choi JY. An outbreak of Middle East respiratory syndrome coronavirus infection in South Korea, 2015. Yonsei Med J 2015;56:1174–6.
[4] Ki M. 2015 MERS outbreak in Korea: hospital-to-hospital transmission. Emerg Infect Dis 2016;22:E1–7.
[5] Organization WH. WHO MERS-CoV global summary and assessment of risk. Geneva: WHO; 2017.
[6] Zhang RZ, Tsai SS, Chao HR, Shieh YC, Chuang KP. Innovation of a new virus-like nanoparticle vaccine system for the specific aerosol relative disease. Aerosol Air Qual Res 2016;16:2421–7.
[7] Excler JL, Delvecchio CJ, Wiley RE, Williams M, Yoon IK, Modjarrad K, et al. Toward developing a preventive MERS-CoV vaccine-report from a workshop organized by the Saudi Arabia Ministry of Health and the International Vaccine Institute, Riyadh, Saudi Arabia, November 14–15, 2015. Emerg Infect Dis 2016;22:1–7.
Alharbi NK, Padron-Regalado E, Thompson CP, Kupke A, Wells D, Sloan MA, Jung S-Y, Kang KW, Lee E-Y, Seo D-W, Kim H-L, Kim H, et al. Heterologous
Bachmann MF, Jennings GT. Vaccine delivery: a matter of size, geometry,
Chen HW, Huang CY, Lin SY, Fang ZS, Hsu CH, Lin JC, et al. Synthetic virus-like
Junkins RD, Gallovic MD, Johnson BM, Collier MA, Watkins-Schulz R, Cheng N,
Corti D, Zhao J, Pedotti M, Simonelli L, Agnihothram S, Fett C, et al.
Reddy ST, Berk DA, Jain RK, Swartz MA. A sensitive in vivo model for
Walkey CD, Olsen JB, Song F, Liu R, Guo H, Olsen DWH, et al. Protein corona
Du L, Yang Y, Zhou Y, Liu S, Zheng B-J, Jiang S. The spike protein of SARS-CoV—a
Zhu Z, Chakraborti S, He Y, Roberts A, Sheahan T, Xiao X, et al. Potent cross-
Heesters BA, Myers RC, Carroll MC. Follicular dendritic cells: dynamic antigen
Fang RH, Hu C-M-J, Luk BT, Gao W, Copp JA, Tai Y, et al. Cell membrane-coated
Kanekiyo M, Wei C-J, Yassine HM, McTamney PM, Boyington JC, Whittle JRR,
Kato T, Takami Y, Deo VK, Park EY. Preparation of virus-like particle mimetic
Amanna IJ, Raué H-P, Slifka MK. Development of a new hydrogen peroxide–
Du L, He Y, Zhou Y, Liu S, Zheng B-J, Jiang S. The spike protein of MERS-CoV—a
Buchholz UJ, Bukreyev A, Yang L, Lamirande EW, Murphy BR, Subbarao K, et al. Contributions of the structural proteins of severe acute respiratory syndrome coronavirus to protective immunity. Proc Natl Acad Sci 2004;101:9804–9.
Du L, Guo G, Kong M, Ma C, Sun S, Poong P, et al. Identification of a receptor-binding domain in the S protein of the novel human coronavirus Middle East respiratory syndrome coronavirus as an essential target for vaccine development. J Virol 2013;87:9399–409.
Shah P, Muthuraman MM, Ming C, Trubner I, Mahmoud SH, Kandiel A, Elsheshye R, et al. Bacterial outer membrane vesicles (OMVs)-based dual vaccine for influenza a H1N1 virus and mers-CoVs. Vaccines 2019;7:46.
Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsileh C-L, Abouna O, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2020;367:1260–73.
Coleman CM, Liu YV, Mu H, Taylor JK, Massare M, Flyer DC, et al. Purified coronavirus spike protein nanoparticles induce coronavirus neutralizing antibodies in mice. Vaccine 2014;32:1609–14.
Fries LF, Smith GE, Glenn GM. A recombinant viruslike particle influensa A (H7N9) vaccine. N Engl J Med 2013;369:2564–6.
Balzarini M, Giugliani R, Marrone-Nadal M, Sud M, Hauser J, Aho C, et al. A synthetic virus-like particle streptococcal vaccine candidate using B-cell epitopes from the proline-rich region of pneumococcal surface protein A. Vaccines 2015;3:850–74.
Kim PS, Reinic AS. Discontinuous of VIOXX. The Lancet 2005;365:23,
Fronen CA, Robbins GR, Shen TW, Kip MG, Ting JP, DeSimone JM. Controlled analysis of nanoparticle charge on mucosal and systemic antibody responses following pulmonary immunization. Proc Natl Acad Sci 2015;112:488–93.
Moller-Madsen J, Cho H, McMenamin MC, Han SH, Lee YD, et al. Feasibility of placing a modified fully covered self-expansible metal stent above the papilla to minimize stent-induced bile duct injury in patients with refractory biliary strictures (with videos). Gastrointest Endosc 2012;75:1080–5.
Buchmann MT, Jhang G, Seok GT. Vaccine nanoparticles: a matter of size, structure, function, and molecular properties. Nat Rev Immunol 2010;10:787–96.
Reddy ST, Berk DA, Jain RK, Swartz MA. A sensitive in vivo model for quantifying interstitial convective transport of injected macromolecules and DNA nanoparticles. J Pharmacol 2006;101:1162–9.
Heesters BA, Myers RC, Carroll MC. Follicular dendritic cells: dynamic antigen libraries. Nat Rev Immunol 2014;14:495–504.
Moon JJ, Suh H, Bershteyn A, Stephan MT, Liu H, Huang B, et al. Interleukin-2 crosslinked multivalued melanin as synthetic vaccines for potent humoral and cellular immune responses. Nat Mater 2011;10:243–51.
Hansel MC, Crespo MP, Abraham W, Moynihan KD, Szeto GL, Chen SH, et al. Nanoparticle STING agonists are potent lymph node–targeted vaccine adjuvants. J Clin Investig 2015;125:2352–46.
Nuhn L, Vanparijs N, De Beuckelaer A, Laerbaert V, Desvergne G, Deswarre K, et al. pH-degradable imidazoquinoline-ligated nanogels for lymph node–targeted vaccine activation. Proc Natl Acad Sci 2013;110:803–7.
Kanekiyo M, Wei C-J, Yassine HM, McTamney PM, Boyington JC, Whittle JRR, et al. pH-degradable imidazoquinoline-ligated nanogels for lymph node–targeted vaccine activation. Proc Natl Acad Sci 2013;110:803–7.
Nueno L, Vanparijs N, De Beuckelaer A, Laerbaert V, Desvergne G, Deswarre K, et al. pH-degradable imidazoquinoline-ligated nanogels for lymph node–targeted vaccine activation. Proc Natl Acad Sci 2013;110:803–7.
Fang BH, Hu C-M-J, Zhang BT, Gao W, Coppieters C, et al. Cell membrane-coated nanoparticles for anticancer vaccination and drug delivery. Nano Lett 2014;14:2181–8.
Kanekiyo M, Wei C-J, Yassine HM, McTamney PM, Boyington JC, Whittle JRR, et al. Self-assembling influenza nanoparticle vaccines elicit broadly neutralizing H1N1 antibodies. Nature 2013;499:102–6.
Amanna IJ, Ruell H-P, Silika MK. Development of a new hydrogen peroxide–induced vaccine platform. Vaccines 2013;1:112–22.
Lesnian A, Fenaroli F, Monopoli MP, Åberg C, Dawson KA, Salvati A. Effects of the presence or absence of a protein corona on silica nanoparticle uptake and impact on cells. ACS Nano 2012;6:5845–57.
Walkey CD, Olsen JH, Song F, Liu S, Guo H, Olsen DWH, et al. Protein corona fingerprinting predicts the cellular interaction of gold and silver nanoparticles. ACS Nano 2014;8:2439–55.
Walkey CD, Chan WC. Understanding and controlling the interaction of nanoparticles with proteins in a physiological environment. Chem Soc Rev 2012;41:2780–99.
Wilson DR, Sen R, Sunshine JC, Pardoll DM, Green JJ, Kim YJ. Biodegradable STING agonist nanoparticles for enhanced cancer immunotherapy. Nanomed Nanotechnol Biol Med 2018;14:237–46.

Calarza JM, Latham T, Cupo A. Virus-like particle (VLP) vaccine conferred complete protection against a lethal influenza virus challenge. Viral Immunol 2005;18:244–51.

Gregory A, Williamson D, Tithball R. Vaccine delivery using nanoparticles. Front Cell Infect Microbiol 2013:3.

Jagu S, Kwak K, Karanam B, Huh WK, Damotharan V, Chivukula SV, et al. Optimization of multimeric human papillomavirus L2 vaccines. PLoS ONE 2013:8.

Almeida JPM, Lin AY, Figueroa ER, Foster AE, Drezek RA. In vivo gold nanoparticle delivery of peptide vaccine induces anti-tumor immune response in prophylactic and therapeutic tumor models. Small 2015;11:1453–9.

Charlton Hume HK, Vidigal J, Carrondo MJT, Middelberg APJ, Roldão A, Lua LHL. Synthetic biology for bioengineering virus-like particle vaccines. Biotechnol Bioeng 2019;116:919–35.

Bohowie MJ, Nagasawa M, Swartz JR. Virus-like particles: Next-generation nanoparticles for targeted therapeutic delivery. Bioeng Transl Med 2017;2:43–57.

Guo P, Huang J, Zhao Y, Martin CR, Zare RN, Moses MA. Nanomaterial preparation by extrusion through nanoporous membranes. Small 2018;14:1703493.

Mi P, Zhang P, Liu G. Bio-inspired virus-like nanovesicle for effective vaccination. Hum Vac Immunotherapeut 2016;12:2090–1.

Murata K, Lechmann M, Qiao M, Guoji T, After HJ, Liang TJ. Immunization with hepatitis C virus-like particles protects mice from recombinant hepatitis C virus-vaccinia infection. Proc Natl Acad Sci 2003;100:6753–8.

Quan F-S, Companis RW, Nguyen HH, Kang S-M. Induction of heterosubtypic immunity to influenza virus by intranasal immunization. J Virol 2008;82:1350–9.

Wang L, Shi W, Joyce MG, Modjarrad K, Zhang Y, Leung K, et al. Evaluation of candidate vaccine approaches for MERS-CoV. Nat Commun 2015;6:1–11.

Coleman CM, Venikataraman T, Liu YY, Glenn GM, Smith GE, Flyer DC, et al. MERS-CoV spike nanoparticles protect mice from MERS-CoV infection. Vaccine 2017:35:1586–9.

Wang C, Zheng X, Gai W, Wong G, Wang H, H. et al. Novel chimeric virus-like particles vaccine displaying MERS-CoV receptor-binding domain induce specific humoral and cellular immune response in mice. Antiviral Res 2017;140:55–61.

Wang C, Zheng X, Gai W, Zhao Y, Wang H, Wang H, et al. MERS-CoV virus-like particles produced in insect cells induce specific humoral and cellular immunity in rhesus macaques. Oncotarget 2017;8:12686.

Luke T, Wu H, Zhao JC, Channappanavar R, Coleman CM, Jao JA, et al. Human polyclonal immunoglobulin G from transchromosomic bovines inhibits MERS-CoV in vivo. Sci Transl Med 2016;8.

Kim Y-S, Son A, Kim J, Kwon SB, Kim MH, Kim P, et al. Chaperna-mediated assembly of ferritin-based Middle East respiratory syndrome-coronavirus nanoparticles. Front Immunol 2018;9:1093.

Zhang P, Chen Y, Zeng Y, Shen C, Li R, Guo Z, et al. Virus-mimetic nanovesicles as a versatile antigen-delivery system. Proc Natl Acad Sci 2015;112:E6219–38.

Gangadaran P, Hong CM, Oh JM, Rajendran RL, Kalimuthu S, Son SH, et al. In vivo non-invasive imaging of radio-labeled exosome-mimetics derived from red blood cells in mice. Front Pharmacol 2018;9:817.

Jang SC, Kim OY, Yoon CM, Choi D-S, Roh T-Y, Park J, et al. Biopointed exosome-mimetic nanovesicles for targeted delivery of chemotherapy to malignant tumors. ACS Nano 2013;7:7688–710.

Ong HK, Tan WS, Ho XL. Virus like particles as a platform for cancer vaccine development. Peefil 2017;5:4053.

Lan J, Deng Y, Song J, Huang B, Wang W, Tan W. Significant spike-specific IgG and neutralizing antibodies in mice induced by a novel chimeric virus-like particle vaccine candidate for middle east respiratory syndrome coronavirus. Virol Sin 2018;33:453–5.

Wirblich C, Coleman CM, Korup D, Abraham TS, Bernbaum JK, Jähring PR, et al. A safe, efficient dual-use vaccine for humans and animals against MERS-CoV and rabies virus. J Virol 2016.

Channappanavar R, Liu L, Xia S, Du L, Meyerholz DK, Perlman S, et al. Protective effect of intranasal regimens containing peptide middle east respiratory syndrome coronavirus fusion inhibitor against MERS-CoV infection. J Infect Dis 2015;212:1894–903.

Li Y, Wan Y, Liu P, Zhao J, Lu C, Qi J, et al. A humanized neutralizing antibody against MERS-CoV targeting the receptor-binding domain of the spike protein. Cell Res 2015;25:1237–49.

Zheng Y, Shang J, Yang Y, Liu C, Wan Y, Geng Q, et al. Lyssosomal proteases are a determinant of coronavirus tropism. J Virol 2018;92:e01504–e1518.

Millet JK, Whittaker CR. Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein. Proc Natl Acad Sci 2014;111:15214–9.

Shirato K, Kawase M, Matsuyama S. Middle east respiratory syndrome coronavirus infection mediated by the transmembrane serine protease TMPRSS2. J Virol 2013;87:12552.

Li W, Hulswit RJG, Widjaja I, Raj VS, McBride R, Peng W, et al. Identification of sialic acid-binding function for the Middle East respiratory syndrome coronavirus spike glycoprotein. Proc Natl Acad Sci 2017;114:ER508–17.

de Wilde AH, Raj VS, Oudshoorn D, Besteboer TM, van Nieuwkoop S, Limpens RWAL, et al. MERS-coronavirus replication induces severe in vitro cytopathy and is strongly inhibited by cyclosporin A or interferon-α treatment. J Gen Virol 2013;94:1749–60.

Falzarano D, de Wit E, Martellaro C, Callison J, Munster VJ, Feldmann H. Inhibition of novel h coronavirus replication by a combination of interferon-α2b and ribavirin. Sci Rep 2013;3:1686.

Neuhäus V, Chichester JA, Ebensen T, Schwarz K, Hartman CE, Shoji Y, et al. A new adjuvanted nanoparticle-based H1N1 influenza vaccine induced antigen-specific local mucosal and systemic immune responses after administration into the lung. Vaccine 2014:32:3216–22.

Segura-Cerda CA, de Jesús A-Sánchez M, Marquina-Castillo B, Mata-Espinosa D, Barrios-Payán J, Vega-Domínguez PJ, et al. Immune response elicited by two rBCG strains devoid of genes involved in c-di-AMP metabolism affect protection versus challenge with M. tuberculosis strains of different virulence. Vaccine 2018;36:2069–78.

Sivick KE, Desblain AL, Glickman LH, Reiner GL, Corrales L, Suh NH, et al. Magnitude of therapeutic STING activation determines CD8+ T cell-mediated anti-tumor immunity. Cell Rep 2018;25:3074–85 e5.

Tzeng A, Kaufe MJ, Zhu EF, Moynihan KD, Opel CF, Yang NJ, et al. Temporally programmed CDS8+ DC activation enhances combination cancer immunotherapy. Cell Rep 2016;17:2503–11.

Morera-Texlera L, Mayer-Barber K, Sher A, O’Gara A. Type I interferons in tuberculosis: Poes and occasionally friend. J Exp Med 2018;215:1273–85.

Boox CM, Cheng G. The roles of type I interferon in bacterial infection. Cell Host Microbe 2016;19:760–9.

Stiffer SA, Feng CC. Interfering with immunity: detrimental role of type I IFNs during infection. J Immunol 2015;194:2455–65.

Li X-D, Wu J, Gao D, Wang H, Sun L, Chen ZJ, Pivotal roles of ccAS-cGAMP signaling in antiviral defense and immune adjuvant effects. Science 2013;341:1390–4.