REPORTE DE CASO

Trombosis de arteria carótida interna en COVID 19: Reporte de caso

Internal Carotid Artery Thrombosis in COVID 19: Case report.

Yadira Álvarez Moreno1, Janeth Bú Figueroa1, Efraín Bú Figueroa1, Marco Soto Fonseca3, Javier Escobar Torres3
jetorres.9307@gmail.com

1 Instituto Hondureño de Seguridad Social IHSS, Tegucigalpa, Honduras, 2 Honduras Medical Center, Tegucigalpa, Honduras, 3 Universidad Nacional Autónoma de Honduras, UNAH; Tegucigalpa, Honduras.

Resumen

Descripción del caso:
Mujer de 37 años con hisopado PCR-RT para COVID-19 positivo, con manifestación neurológica por oclusión de la arteria carótida interna.

Hallazgos clínicos:
Congestión nasal y estornudos de 5 días de duración; cefalea pulsátil en hemicráneo izquierdo 3 días antes del ingreso, con intensidad 6/10 según la escala visual analógica, acompañada de fosfenos, fotofobia y diplopía; con posterior desarrollo de hemiparesia derecha durante un período de 26 horas.

Tratamiento y resultado:
Se le brindó manejo médico con antiagregantes plaquetarios orales y anticoagulantes (subcutáneos y orales) durante su internación, no fue posible realizar trombólisis y trombectomía por alto riesgo de complicaciones. Fue dado de alta a los 14 días, sin limitación funcional, fuerza simétrica en miembros superiores e inferiores, agudeza visual bilateral 20/20, negando cefalea.

Relevancia clínica:
Se describe un patrón que indica cómo están aumentando los datos que apoyan una asociación entre COVID-19 y el accidente cerebrovascular en poblaciones jóvenes con o sin factores de riesgo vascular típicos, a veces con solo síntomas respiratorios leves. Se requieren estudios prospectivos para evaluar más a fondo esta asociación, así como estudios de anticoagulación para prevenir estos eventos potencialmente mortales.
Abstract
Case description:
37-year-old female with PCR-RT swab for COVID-19 positive, with neurological manifestation as a result of internal carotid artery occlusion.

Clinical findings:
Nasal congestion and sneezing of 5 days duration; pulsatile headache in the left hemicranium 3 days prior to admission, with intensity 6/10 according to the visual analogue scale, accompanied by phosphenes, photophobia and diplopia; with subsequent developing right hemiparesis over a 26-hour period.

Treatment and result:
She was given medical management with oral antiplatelet agents and anticoagulants (subcutaneous and oral) during his hospitalization, it was not possible to perform thrombolysis and thrombectomy due to the high risk of complications. He was discharged at 14 days, without functional limitation, symmetrical strength in upper and lower limbs, bilateral visual acuity 20/20, denying headache.

Clinical relevance:
The case presented here describes a pattern in how data supporting an association between COVID-19 and stroke in young populations with or without typical vascular risk factors, sometimes with only mild respiratory symptoms, is increasing. Prospective studies are required to further evaluate this association, as well as anticoagulation studies to prevent these potentially life-threatening events.

Introducción
COVID-19 es una nueva enfermedad causada por el virus SARS-CoV-2 (Coronavirus 2 del síndrome respiratorio agudo severo) que se está propagando rápidamente por todo el mundo1. El COVID-19 ha afectado a más de 39,2 millones de personas y ha causado más de 1,100,000 muertes en todo el mundo2 y aunque es principalmente una enfermedad respiratoria, los estudios científicos sugieren que puede conducir a un estado de hipercoagulabilidad y complicaciones trombóticas3,4.

Publicaciones recientes de China, Francia y Nueva York plantean la posibilidad de que COVID-19 pueda aumentar el riesgo de accidente cerebrovascular isquémico5,6.

La activación de neutrófilos es una característica clínica importante en COVID-19; siendo el primero en responder a la invasión de patógenos y daño tisular que median la muerte de patógenos por explosión oxidativa y fagocitosis7. Los neutrófilos activados que no logran extravascular se desgranulan parcialmente en la circulación8 que, debido a su baja densidad de flotación, se conocen como granulocitos de baja densidad. Estas células también se encuentran en enfermedades inflamatorias mediadas por el sistema inmunológico9. Son particularmente propensos a expulsar su contenido, con agentes antimicrobianos almacenados en sus gránulos, un proceso conocido como formación de trampas extracelulares de neutrófilos (NET)10,11.

La formación excesiva de NET conduce a la formación de agregados12 que ocluyen los vasos13 y los conductos14, causando daño a los tejidos. Con inflamación, coagulopatía protrombótica y lesión endotelial como mecanismos involucrados15.
Se ha establecido que las infecciones virales agudas, el estrés oxidativo, la hipoxia y el flujo sanguíneo turbulento actúan como desencadenantes que aumentan el riesgo a corto plazo de accidente cerebrovascular isquémico y otros eventos trombóticos arteriales, como el infarto de miocardio15.

Presentamos el caso de una paciente de 37 años con hisopo PCR-RT positivo para COVID-19, con una manifestación neurológica como resultado de la oclusión de la arteria carótida interna.

Este reporte de caso sigue las Directrices CARE16.

Narrativa

Mujer de 37 años, técnica en salud ambiental; con antecedentes de fiebre reumática durante la infancia, hipertensión y tabaquismo durante 2 años; niega eventos traumáticos y uso de anticonceptivos orales. Acudió al centro de urgencias del hospital, refiriendo congestión nasal y estornudos de 5 días de duración; cefalea pulsátil en hemicráneo izquierdo 3 días antes del ingreso, con intensidad 6/10 según la escala visual analógica, acompañada de fosfenos, fotofobia y diplopía; con posterior desarrollo de hemiparesia derecha durante un periodo de 26 horas; que retrasó la búsqueda de atención de emergencia por temor al COVID-19. Niega fiebre, anosmia, ageusia, convulsiones, tos, dolor torácico o abdominal. Cuando se presentó al hospital, la puntuación en la Escala de accidente cerebrovascular de los Institutos Nacionales de Salud (NIHSS) fue de 8 (las puntuaciones van de 0 a 42, Al ingreso, PA: 130/80 mmHg, FC: 62 latidos por minuto, RR: 18 respiraciones por minuto, SatO\textsubscript{2}: 98%, T: 37.3 °C.Disminución de la agudeza visual en el ojo izquierdo (20/40), ojo izquierdo de menor intensidad en comparación con el contralateral. No hubo signos de afectación pulmonar y / o cardíaca. Disminución de la fuerza y los reflejos en el lado derecho (4/5), lúcidos, orientados. Resto de exploración física dentro de parámetros normales.

Evolución

Se solicitan pruebas complementarias (tabla 1); Tomografía cerebral en fase simple, sin evidencia de lesiones focales y / o difusas. Sin embargo, el Doppler carotídeo del USG describe la ausencia de flujo en la arteria carótida interna izquierda (ACI) debido a la presencia de material ecogénico inmediatamente en la bifurcación de la arteria carótida común (Figura 1 Video de Ultrasonido Carotídeo Doppler).

Símbolos: no disponible (ND), tiempo de protrombina (PT), tiempo de tromboplastina (TTP), índice internacional normalizado (INR), nitrógeno ureico en sangre (BUN), alto peso molecular (HDL), bajo peso molecular (LDL), glutámico- Transaminasa oxaloacética (TGO), transaminasa glutámico-pirúvica (TGP), anticuerpos antinucleares (ANA), anticuerpos anticitoplasma de neutrófilos (ANCA), velocidad de sedimentación globular (ESR), proteína C reactiva (PCR), reacción en cadena de la polimerasa en tiempo real (RT-PCR), electrocardiograma (EKG), tomografía axial computarizada (TC), resonancia magnética (RM), frecuencia cardíaca (FC), fracción de eyecición del ventrículo izquierdo (FEVI).

Se inicia heparina de bajo peso molecular (enoxaparina 60 mg subcutánea cada 12 horas) a dosis terapéutica, terapia antiplaquetaria (ácido acetilsalicílico 100 mg y clopidogrel 75 mg por vía oral todos los días) y estatinas (rosuvastatina 40 mg por vía oral todos los días). Por exposición a casos positivos de COVID-19 en su lugar de trabajo, síntomas respiratorios leves previos y presencia de trombosis de la ACI; Se solicitó RT-PCR para SARS-CoV-2; con resultado positivo.

El caso fue evaluado por los servicios de neurología, cirugía vascular y neurocirugía; que consideren eso, dados los hallazgos descritos y que; Las horas de evolución en el momento del diagnóstico, el paciente no es candidato a fibrinólisis ni trombectomía, debido al alto riesgo de complicaciones posteriores. Por tanto, se recomendó continuar con el manejo médico establecido.
Trombosis de arteria carótida interna en COVID 19: Reporte de caso

Tabla 1. Pruebas complementarias

Hematologial	Medical admission	Reference Values
Hemoglobin	11.8	[12-16 g/dL]
Hematocrit	38	[38-47%]
Platelets	234,000	(150,000-500,000)
White blood cells	8,500	(5,000-10,000)
Neutrophils	4,000	(2,000-7,000)
Lymphocytes	3,600	(800-4,600)
TP	17.4	(10.7-14.1 sec)
TTP	34.0	(23.6-36.5)
INR	1.34	

Metabolic / Renal

Glucose	89	(74-100 mg/dL)
BUN	6	(6 - 23 mg/dL)
Creatinine	0.8	(0.5 - 0.9 mg/dL)
Total cholesterol	139	(30 - 200 mg/dL)
HDL cholesterol	57	(45 - 65 mg/dL)
LDL cholesterol	70	(20 - 100 mg/dL)
Triglycerides	123	(30 - 200 mg/dL)
TGO (AST)	14	(0 - 32 U/L)
TGP (ALT)	8	(0 - 41 U/L)
Sodium	144	(135 - 145 mmol/L)
Potassium	4.4	(3.5 - 5.1 mmol/L)
Chlorine	108	(98 - 110 mEq/L)

Perfil Inmune

ANA	0.2	Negativo <1, Positivo> 1
C-ANCA	1.25	Negativo <5, Positivo> 5
P-ANCA	1.08	Negativo <5, Positivo> 5
IgM anticardiolipin	1.025	Negativo <7, Positivo> 7
IgG anticardiolipin	0.282	Negativo <0.8, Positivo> 1.2
Complement C3	97	(90 - 180 mg/dL)
Complement C4	33	(10 - 40 mg/dL)

Otros

- RT-PCR SARS-CoV2: Positive
- ESR: 54.00 (0-20 mm/h)
- PCR: 68.75 (1 - 5 mg/dL)
- Procalcitonin: 0.035 (0 - 0.5 ng/mL)
- D-dimer: NA *
- Fibrinogen: NA *
- LDH: 454 (50-250 U/L)
- IL-6: NA *
- Ferritin: NA *
- Troponins: 3.0 Negativo <1.4 ng/L
- Protein C: 1.83 (1.67-3.16 mg/dL)
- Protein S: 57.48 (56.7-167.9%)

Radiografía Tórax

- Normal

ECO

- Ligera fibrosis y calcificación de válvula mitral, sin estenosis. Disfunción diastólica tipo I. FEVI: 48%.

TAC Tórax

- Tomografía en fase simple dentro de normalidad

TAC Cerebral

- Tomografía en fase simple sin evidencia de lesiones focales y/o difusas.

RM Cerebral

- Ver descripción en Figura 2.

Angio-TAC de Cuello y Tórax

- Ausencia de paso de medio de contraste de la arteria carótida interna.

Angio-IRM

- Ver descripción en Figura 2.

Simbolos: No Disponible (NHR), Anticuerpos Antinucleares (ANA), Anticuerpos Anticitoplasma de Neutrófilos (ANCA), Velocidad de Eritrosedimentación (VES), Proteína C Reactiva (PCR), Reacción Cadena de Polimerasa en Tiempo Real (RT-PCR), Electrocardiograma (EKG), Tomografía Axial Computada (TAC), Imagen por Resonancia Magnética (IRM), Frecuencia Cardíaca (FC), Fracción de Ejección del Ventrículo Izquierdo (FEVI).
En su decimocuarto día de hospitalización, hubo una clara mejoría en sus síntomas, manteniéndose en bipedestación, sin limitación funcional, fuerza simétrica en miembros superiores e inferiores, agudeza visual bilateral 20/20, negación de cefalea. El paciente fue dado de alta con medicación preventiva secundaria, consistente en: Rivaroxabán 20 mg al día, Rosuvastatina 20 mg al día, Amlodipino 10 mg al día, Ácido acetilsalicílico 100 mg al día, Clopidogrel 75 mg al día y Esomeprazol 40 mg al día. Un mes después del inicio de los síntomas, se realizó una evaluación de control, en la que no se evidenció limitación visual ni funcional. En la Figura 2 se describe un seguimiento por imágenes de angio-resonancia magnética cerebral (MRI-Angio).

Los antiagregantes plaquetarios se retiraron de su tratamiento debido a los efectos adversos asociados a ellos (sangrado en las encías) e inhibidores de la bomba de protones, y se llamó al ambulatorio de medicina interna a los 15 días para su reevaluación.

Pronóstico

Debido a la persistencia de la oclusión de la arteria carótida interna y la falta de alternativas para la intervención de este proceso y el riesgo latente de formación de nuevos sitios de oclusión; el pronóstico es incierto. Por esta razón, la vigilancia y el seguimiento constantes marcarán la pauta. Hasta el día de hoy, el paciente continúa con anticoagulantes orales; reposo en casa y no ha merecido más hospitalización.

Diagnóstico (Tabla 2)

Perspectiva del paciente

Me considero una mujer activa y trabajadora. Empecé con un malestar general que limitaba mis funciones en casa. Llegar al Instituto Hondureño del Seguro Social fue muy dificil debido
Trombosis de arteria carótida interna en COVID-19: Reporte de caso

A la pandemia de COVID; Tenía miedo de infectarme. Fue una sorpresa para mí y para mi familia cuando los médicos me dieron los resultados de mis pruebas. Mejoré a medida que pasaban los días. Los médicos han estado monitoreando mi progreso en casa.

Discusión

El juego final de COVID-19 generalmente involucra una tormenta de citocinas, un fenómeno flogístico alimentado por bucles de retroalimentación positiva bien entendidos que gobiernan la producción de citocinas y abruman los mecanismos contrarreguladores17, que se manifiesta en pacientes con etapas moderadas y graves de la enfermedad. Nuestro paciente con COVID-19, confirmado con RT-PCR; debutó con una manifestación neurológica asociada a trombosis de la ACI. Este patrón de inflamación severa es motivo de atención en el campo de la neurología vascular porque se ha demostrado un mayor riesgo de complicaciones cardiovasculares. Estos hallazgos se atribuyeron principalmente a la respuesta hiperinflamatoria con compromiso vascular localizado18.

El estado de hipercoagulabilidad y disfunción endotelial como complicaciones del COVID 1919 y la suma de factores de riesgo como tabaquismo, hipertensión, dislipidemia y sedentarismo, aumentan el riesgo de complicaciones tromboembólicas de los grandes vasos, como se evidencia en el caso presentado.

Un estudio multicéntrico de 26 pacientes con COVID-19 y eventos isquémicos o

Figura 2. A. Imagen de resonancia magnética (RM) FLAIR axial, pequeña área hiperintensa cortical frontal lateral izquierda. B, C. La resonancia magnética de difusión confirma evento cerebrovascular isquémico agudo, frontal izquierdo y eventos isquémicos lacunares pequeños en el lóbulo parietal izquierdo. D. Control Axial MRI, muestra una lesión hiperintensa en la región frontal izquierda y una pequeña secuela en el lóbulo parietal izquierdo. E, F. Angio-Persistentemente 3D-TOF, sin señal arteria carótida interna izquierda media izquierda y arteria cerebral.
Trombosis de arteria carótida interna en COVID 19: Reporte de caso

Mohamud y col 21, describió una serie de 6 pacientes COVID-19 con ictus isquémico agudo debido a un trombo intraluminal de la arteria carótida. Se incluyeron seis pacientes con una edad media de 65.8 años (rango, 55-78 años). Todos los pacientes tenían antecedentes de factores de riesgo vascular, como diabetes (83%), hiperlipidemia (100%) y tabaquismo (17%).

Oxley y col 5, publicaron una serie de casos de pacientes COVID 19 con evento cerebrovascular en menores de 50 años, en los que destaca el caso de una paciente de 33 años previamente sana con antecedentes de cefalea, tos y escalofríos . de una semana de evolución, quien posteriormente presentó disartria progresiva con entumecimiento y debilidad en el brazo izquierdo y pierna izquierda durante un periodo de 28 horas y NIHSS 19 puntos. Los estudios de imagen revelaron infarto isquémico parcial en el territorio de la arteria cerebral media derecha con trombo parcialmente oclusivo en la arteria carótida derecha en la bifurcación cervical. La imagen ecocardiográfica y de resonancia magnética de la cabeza y el cuello no reveló el origen del trombo.

Aunque no se contó de manera oportuna debido a limitaciones logísticas, con marcadores comunes de inflamación aguda como IL-6, ferritina y dímero D; Se encontró alteración de CRP, VES y LDH.

Adicionalmente, para descartar otras etiologías comunes de trombogénesis en el paciente, se realizaron estudios de laboratorio de autoinmunidad, todos negativos.

El concepto de COVID-19 como una enfermedad endotelial proporciona un cuadro fisiopatológico unificador de esta agresiva infección y también un marco para una estrategia de tratamiento racional, en un momento en el que tenemos una base de evidencia realmente modesta para orientar nuestros intentos terapéuticos y enfrentar esta pandemia 17.

Tabla 2. Pruebas complementarias

Fecha	Tipo	Valor	Unidad
2020-09-02	TTP (tiempo de tromboplastina parcial)	34	segundos
2020-09-02	Neutrofilos	4,000	mil celulas/mm3
2020-09-02	AST (amino transferasa aspartato)	14	U/L
2020-09-02	Creatinina	0.8	mg/dL
2020-09-02	Linfocitos	3,600	mil celulas/mm3
2020-09-02	Sodio	144	mmol/L
2020-09-02	Glucosa	89	mg/dL
2020-09-02	Recuento de Plaqueta	234,000	mil celulas/mm3
2020-09-02	Colesterol, HDL	57	mg/dL
2020-09-02	WBC (Celulas blancas totales)	8,500	mil celulas/mm3
2020-09-02	Trigliceridos	123	mg/dL
2020-09-02	Colesterol, LDL	70	mg/dL
2020-09-02	Potasio	4.4	mmol/L
2020-09-02	Colesterol, total	139	mg/dL
2020-09-02	Hb (hemoglobina)	11.8	g/dL
2020-09-02	ALT (aminotransferasa alanina)	8	U/L
2020-09-02	Cloruro	108	mEq/L
2020-09-02	BUN (nitrógeno ureico en sangre)	6	mg/dL
2020-09-02	TP (Tiempo de protrombina)	17.4	segundos
2020-09-02	Hct (hematocrito)	38	%
2020-09-03	VSG (velocidad de sedimentación globular)	5.4	mm/1st hora
2020-09-03	PCR (proteina C-reactiva)	68.75	mg/dL
2020-09-03	Troponina I	3	ng/L
2020-09-03	LDH (lactato dehidrogenasa)	454	U/L
2020-09-04	RT-PCR SARS-CoV-2 (COVID-19)	positivo	
Conclusión

Los datos que apoyan una asociación entre COVID-19 y accidente cerebrovascular en poblaciones jóvenes con o sin factores de riesgo vascular típicos, a veces con solo síntomas respiratorios leves, están aumentando.

Se requieren estudios prospectivos para evaluar más a fondo esta asociación, así como estudios de anticoagulación para prevenir estos eventos potencialmente mortales.

Tenga en cuenta que, por lo demás, los pacientes jóvenes sanos que sufren un accidente cerebrovascular durante la pandemia, el diagnóstico de COVID-19 debe investigarse a fondo. Por el contrario, en pacientes con síntomas respiratorios leves de COVID-19, se debe mantener un umbral bajo para la investigación del accidente cerebrovascular si presentan síntomas neurológicos.

Consentimiento informado

Se solicitó el consentimiento informado del paciente antes de redactar el manuscrito. Autoriza el uso de la información de su historia clínica, resguardando sus datos de identidad personal.

Referencias

1. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, et al. Equipo de investigación e investigación del nuevo coronavirus de China. un nuevo coronavirus de pacientes con neumonía en China, 2019. N Engl J Med. 2020; 382 (8): 727-733. doi: 10.1056 / NEJMoa2001017.

2. Organización Mundial de la Salud. Informes de situación del coronavirus (COVID-2019); 2020. citado: 20 de agosto de 2020. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/

3. Zhang Y, Xiao M, Zhang S, Xia P, Cao W, Jiang W, et al. Coagulopatía y anticuerpos antifosfolípidos en pacientes con COVID-19. N Engl J Med. 2020; 382 (17): e38. doi: 10.1056 / NEJMc2007575

4. Klok FA, Kruip MJHA, Van der Meer NJM, Arbous MS, Gommers DAMPJ, Kant KM, et al. Incidencia de complicaciones trombóticas en pacientes críticos de UCI con COVID-19. Thromb Res. 2020; 191: 145-147. doi: 10.1016 / j.thromres.2020.04.013.

5. Oxley TJ, Mocco J, Majidi S, Kellner CP, Shoirah H, Singh IP, et al. Accidente cerebrovascular de vasija grande como característica de presentación de Covid-19 en los jóvenes. N Engl J Med. 2020; 382 (20): e60. doi: 10.1056 / NEJMc2009787.

6. Yaghi S, Ishida K, Torres J, Mac Grory B, Raz E, Humbert K, et al. SARS-CoV-2 y accidente cerebrovascular en un sistema de salud de Nueva York. Carrera. 2020; 51 (7): 2002-2011. doi: 10.1161 / STROKEAHA.120.030335.

7. Jenne CN, Liao S, Singh B. Neutrófilos: primeros respondedores multitarea de inmunidad y homeostasis tisular. Cell Tissue Res. 2018; 371 (3): 395-397. doi: 10.1007 / s00441-018-2802-5.

8. Adrover JM, Aroca-Crevillén A, Crainiciuc G, Ostoš F, Rojas-Vega Y, Rubio-Ponce A, et al. El desarme programado del proteoma de neutrófilos reduce la magnitud de la inflamación. Nat Immunol. 2020; 21 (2): 135-144. doi: 10.1038 / s41590-019-0571-2.

9. Carmona-Rivera C, Zhao W, Yalavarthi S, Kaplan MJ. Las trampas extracelulares de neutrófilos inducen disfunción endotelial en el lupus eritematoso sistémico mediante la activación de la metaproteinasa 2 de la matriz. Ann Rheum Dis. 2015; 74 (7): 1417-24. doi: 10.1136 / annrheumdis-2013-204837.

10. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y, Zychlinsky A. Las trampas extracelulares de neutrófilos matan bacterias. Ciencias. 2004; 303 (5663): 1532-5. doi: 10.1126 / science.1092385.
11. Boeltz S, Amini P, Anders HJ, Andrade F, Bilyy R, Chatfield S, et al. A NET o no a NET: opiniones actuales y estado de la ciencia sobre la formación de trampas extracelulares de neutrófilos. Diferencia de muerte celular. 2019; 26 (3): 395-408. doi: 10.1038 / s41418-018-0261-x.

12. Schauer C, Janko C, Muñoz LE, Zhao Y, Kienhöfer D, Frey B, et al. Las trampas extracelulares de neutrófilos agregadas limitan la inflamación al degradar citocinas y quimiocinas. Nat Med. 2014; 20 (5): 511-7. doi: 10.1038 / nm.3547.

13. Jiménez-Alcázar M, Rangaswamy C, Panda R, Bitterling J, Simsek YJ, Long AT, et al. Las ADNasas del huésped previenen la oclusión vascular por trampas extracelulares de neutrófilos. Ciencias. 2017; 358 (6367): 1202-1206. doi: 10.1038 / science.aam8897.

14. Leppkes M, Maueröder C, Hirth S, Nowecki S, Günther C, Billmeier U, et al. La cromatina de neutrófilos descondensada externizada ocluye los conductos pancreáticos e impulsa la pancreatitis. Nat Commun. 2016; 7: 10973. doi: 10.1038 / ncomms10973.

15. Boehme AK, Esenwa C, Elkind MS. Factores de riesgo de accidente cerebrovascular, genética y prevención. Circ Res. 2017; 120 (3): 472-495. doi: 10.1161 / CIRCRESAHA.116.308398.

16. Riley DS, Barber MS, Kienle GS, Aronson JK, von Schoen-Angerer T, Tugwell P, et al. Explicaciones y elaboraciones de CARE 2013: Directrices para la presentación de informes de casos. J Clin Epi. 2017; 89: 218-235. doi: 10.1016 / jclinepi.2017.04.026.

17. Libby P, Lüscher T. COVID-19 es, en definitiva, una enfermedad endotelial. Europ Heart J. 2020; 41 (32): 3038-3044. Doi: 10.1093 / eurheartj / ehaa623

18. Madjid M, Safavi-Naeini P, Solomon SD, Vardeny O. Efectos potenciales de los coronavirus en el sistema cardiovascular: una revisión. JAMA Cardiol. 2020; 5 (7): 831-840. doi: 10.1001 / jamacardio.2020.1286.

19. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Curso clínico y factores de riesgo para la mortalidad de pacientes adultos hospitalizados con COVID-19 en Wuhan, China: un estudio de cohorte retrospectivo. Lanceta. 2020; 395 (10229): 1054-1062. doi: 10.1016 / S0140-6736 (20) 30566-3.

20. Taylor BES, Khandelwal P, Rallo MS, Patel P, Smith L, Sun H, et al. . Resultados y espectro de eventos neurovasculares importantes entre pacientes con COVID-19: una experiencia de 3 centros. Neurocirugía Abierta. 2020; 1 (3): okaa008. doi: 10.1093 / neuopn / okaa008.

21. Mohamud AY, Griffith B, Rehman M, Miller D, Chebi A, Patel SC, et al. . Trombo de arteria carótida intraluminal en COVID-19: ¿otro peligro de tormenta de citocinas ?. Soy J Neuroradiol. 2020; 41 (9): 1677-1682. doi: 10.3174 / ajnr.A6674.