Cytochrome 2C19 Enzyme Polymorphism Frequency in Different Indigenous Ethnic Groups in Russian Federation: A Systematic Review

Karin Mirzaev*, Dmitry Sychev, Goar Arutyunyan, Alla Yugay and Denis Andreev

Introduction

Individual’s response to specific drugs is a great issue for medicine in the twenty-first century. Genetically determined diversity in the activity of cytochrome P450 (CYP) – enzyme regulating the biotransformation of drugs and xenobiotics – is one of the main causes of the interindividual differences in response to pharmacotherapy. Cytochrome P450 was first described in 1958 by Klingenberg [1] and Garfinkel [2]. The known clinically relevant cytochromes include CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP2E1 and CYP3A4. Some of these isoforms exhibit genetic polymorphisms. The frequency of these polymorphisms differs markedly between ethnic groups. These genetic differences mean some people have an enzyme with reduced or no activity. Patients who are ‘slow metabolisers’ may have an increased risk of adverse reactions to a drug metabolised by the affected enzyme. It is estimated that genetics can account for 20 to 50 percent of variability in drug disposition and effects [3].

CYP2C19 appears to be one of the main CYP2C isoform found in the human. CYP2C19 hydroxylates a wide a wide variety of drugs (clopidogrel, barbiturates, diazepam, lansoprazole, nelfinavir, clonazepam, cyclophosphamide, omeprazole, etc.) [4].

Genetic polymorphism was discovered at Vanderbilt University by Kupfer et al. [5] in 1979 when conducting the research 4'-hydroxylation of the anticonvulsant S-mephentoin. Later in 1993 Wrinton et al. [6] found that S-mefenitoin was the substrate of CYP2C19 enzyme. In 1994, Goldstein and de Morais [7] found that CYP2C19 gene polymorphisms are associated with the loss of heterozygosity on chromosomes 10q (10q1.1-24.3).

There is about 34 CYP2C19 alleles including CYP2C19*1, CYP2C19*2 and CYP2C19*3, CYP2C19*17 (http://www.cypalleles.ki.se/cyp2c19.htm). Among functional defective alleles CYP2C19*2 contributes 75% [8] in Asians and 93% [9] in Caucasians. 25% of defective alleles in Asians [10] is the CYP2C19*3, which is very rare in Caucasians (les than 1%) [11]. These pharmacogenetic variations lead to inappropriate concentrations of drugs and drug metabolites, which may contribute towards the toxicity and risk of adverse drug reactions or lack of therapeutic benefit. In contrast, the pro-drugs such as clopidogrel may be less effective in reducing the rate of cardiovascular events among persons who are carriers of loss-of-function CYP2C19 alleles that are associated with reduced conversion of clopidogrel to its active metabolite.

Several studies have examined the frequency of various CYP2C19 alleles worldwide. The reported allele frequency of CYP2C9*2 was about 50% in Asians, 18% in Caucasians, 34% in Africans and 19% in American populations [12-15]. The allele frequency of CYP2C9*3 among the Caucasian, African and Asian populations was <1%, <1% and 7%, respectively [16]. The CYP2C19*17 genotype was found in 25.7% of the Germans [17], 22.0% of the Norse [18], 20.0% of the Swedes [19], 0.3% of the Koreans [19], 4.0% of the Chinese [20], 1.3% of the Japanese [21].

Abstract

Background and objective: Genetically determined diversity in the activity of cytochrome P450 (CYP) – enzyme regulating the biotransformation of drugs and xenobiotics – is one of the main causes of interindividual differences in response to pharmacotherapy. The objective of this review is to analyze the prevalence of polymorphic markers of gene CYP2C19, associated with the violation of the pharmacological response to clopidogrel among the various ethnic groups living in the Russian Federation.

Methods: A literature review was conducted using the following databases: MEDLINE and eLIBRARY.RU. Russian language articles published between 2003 and 2014 were reviewed.

Results: The authors detected 11 original research studies on CYP2C19 gene in 11 indigenous ethnic groups of Russian Federation. According to the research data, the frequency of CYP2C19*2 and CYP2C19*3 markers prevalence is higher in the Mongolian race (with maximum CYP2C19*2 frequency in the Kalmyks - 25.0% and CYP2C19*3 in Tatars – 21.0%). CYP2C19*17 allele has been studied only in Russians, and was about the same as in the Caucasian race (14.0%).

Conclusion: The results of the investigation will be beneficial for developing guidelines for CYP2C19 genotype-directed antiplatelet therapy for each region of Russia.

Keywords: CYP2C19 Polymorphism; Pharmacogenetics; Ethnic differences of CYP2C19*2; CYP2C19*3; CYP2C19*17; Clopidogrel resistance

*Corresponding author: Karin Mirzaev, I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation, Tel: +79852720253; Fax: +7 495 9155801; E-mail: karin05doc@yandex.ru

Received April 24, 2014; Accepted June 27, 2014; Published July 04, 2014

Citation: Mirzaev K, Sychev D, Arutyunyan G, Yugay A, Andreev D (2014) Cytochrome 2C19 Enzyme Polymorphism Frequency in Different Indigenous Ethnic Groups in Russian Federation: A Systematic Review J Pharmacogenomics Pharmacoproteomics 5: 136. doi:10.4172/2153-0645.1000136

Copyright: © 2014 Mirzaev K, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Determining the CYP2C19 genotype can help by determining the metabolizer phenotype. Normal CYP2C19 enzyme activity is expected when two CYP2C19*1 alleles are considered to be present (CYP2C19*1/1*2); CYP2C19 Intermediate Metabolizer (IM) phenotype is suggested by the presence of one CYP2C19 allele with decreased function and one CYP2C19 allele with normal function or one CYP2C19 allele with decreased function and one CYP2C19 allele with increased function (CYP2C19*1/1*2, *1/*3, *2/*17, *3/*17); CYP2C19 Poor Metabolizer (PM) phenotype is suggested by the presence of two CYP2C19 non-functional alleles CYP2C19*2 or CYP2C19*3 (CYP2C19*2/*2, *2/*3, *3/*3). Heterozygosity or homozygosity for the increased function CYP2C19*17 allele is associated with increased CYP2C19 activity and an ultra-rapid metabolizer phenotype (UM) (http://www.pharmgkb.org/).

Approximately 3% of the European population, 4-7% of the African population [4], 12-16% of the Koreans [22,23], 18-23% of the Japanese [24,25], 15-17% of the Chinese [26] are CYP2C19-poor metabolizers.

Extensive and intermediate metabolizer phenotypes are the most common in humans, because CYP2C19 poor-metabolizer phenotypes behave as autosomal recessive traits [8].

Since cytochrome enzymes are responsible for metabolizing over half of all drugs on the market today, it is important for a physician to have valuable information to determine whether a patient’s specific genotype may impact their drug response. Moreover, knowing the CYP2C19 phenotype of a patient may help in prescribing optimum dose of drug to achieve better therapeutic outcome.

The Russian Federation is a geographically huge country with a vast variety of ethnic groups. Nowadays, there is a lack of publications referred to CYP2C19 gene polymorphisms prevalence among the different ethnicities in the Russian Federation (except Russians). Therefore, the aim of this study was: (1) to analyze the prevalence of allelic variations and frequencies for different ethnic groups living in the Russian Federation and (2) acquaint foreign researchers with the this data.

Materials and Methods

We conducted a systematic literature review to identify published studies of CYP2C19 allelic variations and frequencies for different indigenous ethnic groups in Russian Federation. A literature review was conducted using the following databases: MEDLINE and eLIBRARY. RU. Russian language articles published between 2003 and 2014 were reviewed.
Search terms "Cytochrome P450", "CYP2C19", "CYP2C19*2","CYP2C19*3", "CYP2C19*17", "Genetic polymorphism of CYP2C19", "Pharmacogenetics" were used.

Included studies had to meet the following inclusion criteria: (1) CYP2C19 genotyping performed in all patients, (2) there is an indication of the ethnicity of participants in all studies, (3) original studies published between 2003 (the first publication in Russians) and 2014. Exclusion criteria: review articles.

The following data were abstracted: population characteristics (healthy or patients), number of subjects, ethnicity, frequency of alleles and genotypes, region of population residence.

There were no restrictions of inclusion on the basis of patient characteristics, publication type (journal article, abstract or conference proceedings), or publication language.

Results and Discussion

We detected 11 original research studies on CYP2C19 gene in 11 indigenous ethnic groups in Russian Federation (Table 1). These data may confer important benefits in terms of determination of appropriate strategies of drug therapy, clinical safety and for best decision-making in public health about the rational use of CYP2C19 substrates in different indigenous ethnic groups in Russian Federation. However, lack of information about frequency of CYP2C19 alleles could create a barrier to the use of pharmacogenetic testing in these populations [27].

Ethnic distribution of CYP2C19 alleles and genotypes was studied among Russians, Tatars, Karachays, Circassians, Ingushes, Chechens, Kalmyks and Dagestan’s people (Laks, Dargins, Avars). The ethnicity was identified on the basis of patient’s ethnic self-identification. In some cases the researchers surveyed the parents of the trial subjects in order to identify ethnicity.

Freidin et al. was investigated 130 Russians living in Russian city of Tomsk were enrolled (median age 39 ± 13, 5 years, 67 women and 63 men) [28]. CYP2C19*2 allele frequency was 14.7%, CYP2C19*1/1, CYP2C19*1/*2 and CYP2C19*2/*2 genotype frequencies – 66.9 % (81 participants), 31.4 % (38 participants) и 1.7 % (2 participants) respectively. The results shown in this work confirmed the data of additional studies conducted among Caucasians [29], at the same time CYP2C19*2 frequency is remarkably lower than that in the Mongolian race [8].

Kantemirova B.I. et al. identified CYP2C19*2 among Russians, Chechens, Tatars, Kalmyks and Ingushes. The study included 208 healthy children aged from 1 to 18 years [30]. According to the study, for functional deficient CYP2C19*2, allele frequency is highest among Kalmyks – 25%: 11.0% in Chechens; 14% in Tatars; 8.0% in Ingushes.

The difference between CYP2C19 genotype (Table 1) frequencies among Kalmyks and Ingushes (χ²=7,656; p=0,0163) as well as between the Kalmyks and the Chechens (χ²=3,6; p=0,0255) were statistically significant. Relatively high allele and genotype CYP2C19*2 frequencies in Kalmyks are natural, as Kalmyks belong to Mongolian race. The cause of low incidence of the CYP2C19*2 allele variant in the research among Tatars is probably mixing with other ethnic groups and incorrect selection of patients.

The polymorphic marker CYP2C19*2 has also been identified among other indigenous ethnic groups of the North Caucasus: Karachays and Circassians [31], Laks, Dargins, Avars [32].

Romodanovsky et al. [31] investigated 202 participants: 77 Circassians and 125 Karachays (median age 56 ± 11, 31 men and 46 women). The CYP2C19*2 allele frequencies among Karachays and Circassians were 18.8 % and 14.0 % respectively.

In Dagestan’s peoples (Laks, Dargins, Avars) was observed the lowest rate of CYP2C19*2 polymorphism in Russian Federation – 6.5 %.

On the whole the CYP2C19*2 allele frequencies in ethnic groups of the North Caucasus are close to those received earlier among most of the nations of Caucasian (White) race [29], which is natural, as Karachayevs, Cherkess, Ingushes, Laks, Dargins, Avars belong to Caucasian race (not to be confused “Caucasian” and “Caucasus”).

The frequency of CYP2C19*2 polymorphic marker was also studied among Bashkirs [33], Yakuts, Buryats, Altayans and Tuvinians [34] (Table 1). The results are close to those received among the Mongolian race.

In our literature review we have evaluated the prevalence of the CYP2C19 gene polymorphisms among the 11 ethnicities in the Russian Federation. As it was expected, CYP2C19*2 allele prevalence was higher among the Asian population, with the highest rate in Kalmyks - 25,0 %., The highest rate of CYP2C19*3 polymorphism was observed in Tatars - 21,2 %.

However, the high rate of CYP2C19*3 polymorphism is very uncommon in humans (up to 5-7% in the Asian population and about 1% in the European population [16]) and this phenomenon calls for additional studies. CYP2C19*17 allele prevalence in the Russian population was observed in one study [35] and it was similar to those in the European population (14,0%).

In general, the CYP2C19 gene polymorphisms prevalence among Tatars, Kalmyks, Yakuts, Tuvin, Buryats and Altays was similar to those in mongoloids. The CYP2C19 gene polymorphisms prevalence among the Russians, Karachayevs, Cherkess, Ingushes, Laks, Dargins, Avars was similar to those in the European population [36-40].

Conclusion

- The evaluation of the interindividual differences in the prevalence of CYP2C19 gene polymorphisms is very important in the Russian Federation because of the high multinationality.
- The results of the pharmacogenetic investigation may be beneficial for developing guidelines for CYP2C19 genotype–directed antplatelet therapy for each region of the Russian Federation.
- Since cytochrome enzymes are responsible for metabolizing over half of all drugs on the market today, it is important for a physician to have valuable information to determine whether a patient’s specific genotype may impact their drug response. Moreover, knowing the CYP2C19 phenotype of a patient may help in prescribing optimum dose of drug and in predicting the increased risk of adverse reactions to achieve better therapeutic outcome.

Competing Interests

The authors declare that they have no competing interests.

References

1. Klingenberg M (1958) Pigments of rat liver microsomes. Arch Biochem Biophys 75: 376-386.
2. Garfinkel D (1958) Studies on pig liver microsomes. I. Enzymic and pigment composition of different microsomal fractions. Arch Biochem Biophys 77: 493-509.
3. Evans WE, McLeod HL (2003) Pharmacogenomics—drug disposition, drug targets, and side effects. N Engl J Med 348: 538-549.

4. Goldstein JA (2001) Clinical relevance of genetic polymorphisms in the human CYP2C subfamily. Br J Clin Pharmacol 52: 349-365.

5. Kuper A, Desmond PV, Schenker SBR (1979) Family study of a genetically determined deficiency of mephenytoin hydroxylase in man (letter). Pharmacologist 21: 173.

6. Wrighton SA, Stevens JC, Becker GW, VandenBranden M (1993) Isolation and characterization of human liver cytochrome P450 2C19: correlation between 2C19 and S-mephenytoin 4'-hydroxylase. Arch Biochem Biophys 306: 240-245.

7. Goldstein JA, de Morais SM (1994) Biochemistry and molecular biology of the human CYP2C subfamily. Pharmacogenetics 4: 265-299.

8. de Morais SM, Wilkinson GR, Blaisdell J, Nakamura K, Meyer UA, et al. (1994) The major genetic defect responsible for the polymorphism of S-mephenytoin metabolism in humans. J Biol Chem 269: 15419-15422.

9. Chang M, Dahl ML, Tybring G, Gøthardsen E, Bertlsson L (1995) Use of omeprazole as a probe drug for CYP2C9 phenotype in Swedish Caucasians: comparison with S-mephenytoin hydroxylation phenotype and CYP2C9 genotype. Pharmacogenetics 5: 358-363.

10. De Morais SM, Wilkinson GR, Blaisdell J, Meyer UA, Nakamura K, et al. (1994) Identification of a new genetic defect responsible for the polymorphism of (S)-mephenytoin metabolism in humans. Mol Pharmacol 46: 594-598.

11. Brasen K, de Morais SM, Meyer UA, Goldstein JA (1995) A multifamily study on the relationship between CYP2C9 genotype and s-mephenytoin oxidation phenotype. Pharmacogenetics 5: 312-317.

12. Mega JL, Close SL, Viviotti SD, Shen L, Hockett RD, et al. (2009) Cytochrome p-450 polymorphisms and response to clopidogrel. N Engl J Med 360: 354-362.

13. Luo HR, Poland RE, McLeod HL, McLeod DH (2009) Identification of a new genetic defect responsible for the polymorphism of (S)-mephenytoin metabolism in humans. J Clin Invest 119: 608-616.

14. Giusti B, Gori AM, Marcucci R, Saracini C, Sestini I, et al. (2009) Relation of cytochrome P450 2C19 polymorphism in young patients treated with clopidogrel after myocardial infarction: a cohort study. Lancet 373: 309-317.

15. Bonello L, Armero S, Ait Mokhtar O, Mancini J, Aldebert P, et al. (2010) Clopidogrel loading dose adjustment according to platelet reactivity monitoring in patients carrying the 2C19*2 loss of function polymorphism. J Am Coll Cardiol 56: 1630-1636.

16. Collet JP, Brind'Amour L, Knudsen M, Sorensen T, Gudjonsson O, et al. (2009) Linkage disequilibrium between the CYP2C19*17 allele and wildtype CYP2C8 and CYP2C9 alleles: identification of CYP2C haplotypes in healthy Nordic populations. Eur J Clin Pharmacol 66: 1199-1205.

17. Geisler T, Schaeffer E, Eppen J, Winter S, Buse V, et al. (2008) CYP2C9 and nongenetic factors predict poor responsiveness to clopidogrel loading dose after coronary stent implantation. Pharmacogenomics 9: 1251-1259.

18. Pedersen RS, Brasc-Anderersen C, Sim SC, Bergmann TK, Halling J, et al. (2010) Linkage disequilibrium between the CYP2C19*17 allele and wildtype CYP2C8 and CYP2C9 alleles: identification of CYP2C haplotypes in healthy Nordic populations. Eur J Clin Pharmacol 66: 806-811.

19. Ramjot M, Allikiv E, Bohman L, Ingelmann-Sundberg M, Roh HK, et al. (2010) CYP2C9 activity comparison between Swedes and Koreans: effect of genotype, sex, oral contraceptive use, and smoking. Eur J Clin Pharmacol 66: 871-877.

20. Sim SC, Riisager C, Dahl ML, Allikiv E, Christensen M, et al. (2006) A common novel CYP2C9 gene variant causes ultrapid drug metabolism relevant for the drug response to proton pump inhibitors and antidepressants. Clin Pharmacol Ther 79: 103-113.

21. Sugimoto K, Uno T, Yamazaki H, Tateishi T (2008) Limited frequency of the CYP2C19*17 allele and its minor role in a Japanese population. Br J Clin Pharmacol 65: 437-439.

22. Söhn DR, Kusaka M, Ishizaki T, Shin SG, Jang IJ, et al. (1992) Incidence of S-mephenytoin hydroxylation deficiency in a Korean population and the interphenotypic differences in diazepam pharmacokinetics. Clin Pharmacol Ther 52: 160-169.

23. Roh HK, Dahl ML, Tybring G, Yamada H, Cha YN, et al. (1996) CYP2C19 genotype and phenotype determined by omeprazole in a Korean population. Pharmacogenetics 6: 547-551.

24. Nakamura K, Goto F, Ray WA, McAlistier CB, Jacqz E, et al. (1985) Interethnic differences in genetic polymorphism of debrisoquin and mephenytoin hydroxylation between Japanese and Caucasian populations. Clin Pharmacol Ther 38: 402-408.

25. Jurina M, Inaba T, Kadar D, Kalow W (1985) Genetic polymorphism of mephenytoin (p450)-hydroxylation: difference between Orientals and Caucasians. Br J Clin Pharmacol 19: 483-487.

26. Bertlsson L, Lou YQ, Du YL, Liu Y, Kuang TY, et al. (1992) Pronounced differences between native Chinese and Swedish populations in the polymorphic hydroxylations of debrisoquin and S-mephenytoin. Clin Pharmacol Ther 51: 388-397.

27. Jaja C, Burke W, Thummel K, Edwards K, Veenstra DL (2008) Cytochrome p450 enzyme polymorphism frequency in indigenous and native american populations: a systematic review. Community Genet 11: 141-149.

28. Freidin MB, Bragina E Yu, Petrousky FI (2003) Association of the GSTT1, GSTP1, and GSTM1 gene polymorphisms with atopy. Med Immunol 1: 107-112.

29. Bonello L, Armero S, Ait Mokhtar O, Mancini J, Aldebert P, et al. (2010) Clopidogrel loading dose adjustment according to platelet reactivity monitoring in patients carrying the 2C19*2 loss of function polymorphism. J Am Coll Cardiol 56: 1630-1636.

30. Kantemirova BI, Timolleeva NV, Sychev DA (2011) A comparative study of CYP2C19 gene polymorphism in children living in the Astrakhan region. Achieve Of Science In Practice 2: 136-143.

31. Komarov AL, Panchenko EP, Donnikov AE, Shakhmatova OO, Dzhalilova NN (2014) Cytochrome 2C19 Enzyme Polymorphism Frequency in Different Indigenous Ethic Groups in Russian Federation: A Systematic Review J Pharmacogenomics Pharmacoproteomics 5: 136. doi:10.4172/2153-0645.1000136