Construction of the hemagglutinin (HA) epitope tags for Subunit H of Complex I in Escherichia coli

Quynh Tho Pham
Southern Methodist University, qtpham@smu.edu

Follow this and additional works at: https://scholar.smu.edu/jour

Recommended Citation
Pham, Quynh Tho (2019) "Construction of the hemagglutinin (HA) epitope tags for Subunit H of Complex I in Escherichia coli," SMU Journal of Undergraduate Research: Vol. 4 , Article 5. DOI: https://doi.org/10.25172/jour.4.1.5

This Article is brought to you for free and open access by SMU Scholar. It has been accepted for inclusion in SMU Journal of Undergraduate Research by an authorized administrator of SMU Scholar. For more information, please visit http://digitalrepository.smu.edu.
Construction of the hemagglutinin (HA) epitope tags for Subunit H of Complex I in *Escherichia coli*

Quynh Tho Pham*
qtpham@smu.edu

ABSTRACT

Complex I is a member of the respiratory chain in both bacteria and human mitochondria. Studies have shown that many human mitochondria disorders are related to the poor assembly of Complex I, rather than simple enzymatic malfunction [1,2,3,4]. For the purpose of analyzing the assembly of the thirteen subunits (A-N) found in the Escherichia coli homolog of the Complex I enzyme, antibodies are needed to recognize the individual subunits. Since the H subunit is the only subunit without an antibody, high-affinity antibodies are needed to be produced from the HA epitope tags. The tags were introduced separately by the polymerase chain reaction (PCR) method in two different plasmids, one containing genes G-H, and the other containing H-I-J-K. DNA sequencing indicated high confidence in HA complexes. After growth of cell cultures, an induced expression of these genes by arabinose verified expression of the protein with induced tag. Then, a western blot was done to test both constructs ability to yield single proteins, of the correct size, that were recognized by the HA-antibody. Therefore, these constructs can be further tested for suitability in the analysis of Complex I assembly.

1. **INTRODUCTION**

Many genetic disorders and degenerative diseases have been associated with mitochondrial malfunction. About one in 5,000 humans have deficiencies in mitochondrial metabolism that contributes to such disorders [1]. These illnesses progress systemically, but eventually affect the whole body. Medication and physical therapy might alleviate the symptoms like muscle weakness, nervous system dysfunction and developmental disability, but currently there is no cure for such disorders. Within the electron transport chain are integrated proteins in charge of catalyzing pivotal pathways. One of the biggest enzymes is the respiratory Complex I [8,9]. The Complex I in *E.Coli* has 13 protein subunits (A-CD-E-F-G-H-I-J-K-L-M-N) where seven are homologs of the Complex I subunits coded by mitochondrial DNA in mammals [10,11, 12]. A key subunit in the assembly process is H, which is a membrane-bound subunit that forms extensive interactions with subunits in the peripheral arm that are associated with diseases [13,14,7,15]. We currently have antibodies against all the subunits except H. To study the assembly of Complex I it will be necessary to have antibodies against each of the subunits. Therefore, this project was undertaken to attach HA epitope tags to subunit H to track its path in the assembly process. In this study, using a bacterial model of Complex I that contains all the essential components found in the human version, the N and C terminal HA tags for the H subunit can be constructed in the expression vector pBAD33 [6,7]. An epitope tag can be introduced into the terminus of a protein by including its DNA sequence in the primer used to clone the gene by polymerase chain reaction (PCR). To facilitate the joining of the tagged gene with other genes for Complex I, adjacent genes G-H and H-I-J-K were cloned. In this way, a variety of assembly experiments can be carried out in future projects.

![Figure 1. PCR clone design for HA tags](image1)

The HA tags were introduced to the H subunit at the C-terminal producing G-HHA and at the N-terminal producing HA-H.

![Figure 2a. PCR primer for HA-H construct](image2)

HA-H-f-XbaI-(B) was used to attach the HA epitope to the H subunit at the N-terminus; notice the start codon compared to the stop codon on the C-terminus.

* Mentor: Dr. Steven Vik, Department Chair, Professor, Advisor for Undergraduate Studies of Biological Sciences, Dedman School of Humanities and Sciences
2. MATERIALS AND METHODS

HA tags induction via polymerase chain reaction

The PCR vesicle contained the 9.5 μL of sterile, nucleus free water, 12.5 μL Q5 High-Fidelity 2X Master Mix (New England BioLabs, CA), 1 μL of HA-H-f-Xbal-(B) (Eurofin MWG Operon, KY), 1 μL of A-K pBAD33-r, and 2 μL of pBAD400 [16]. PCR was performed at 98°C for 30 sec, 25 PCR cycles were then carried out (98°C for 5-10 s/ 69°C for 10-30 s/ 71°C for 2 min), and a final extension step was performed at 71°C for 2 min. PCR products were purified with QIAquick PCR Purification Kit (QIAGEN, Germany) for sequencing. The DNA sequence data of G-HA pBAD33 was confirmed with the use of 11 primers (pBAD3, HK pBAD33 [17], 1 μL T4 DNA ligase (New England BioLabs, CA), 2 μL H2O, 2 μL 10X Reaction Ligation Buffer (New England BioLabs, CA), 10 μL HA-HK PCR product and 5 μL pBAD33 [17])

DNA sequencing by Lone Star Labs of Houston TX

Plasmid DNA were prepared by QIAGEN Plasmid Midi Kit (QIAGEN, Germany) for sequencing. The DNA concentrations for HAH-K pBAD33 (.035 A) were calculated to be 17.5 μL and 19.0 μL for G-HHA pBAD33 (.038 A) at A260, after a dilution of 100. Sequence data of HAH-HK pBAD33 was confirmed with the use of seven primers (pBAD3, H-62, H-200, H-350, I-140, J-80, K-20) that covered the four genes. The DNA sequence data of G-HHA pBAD33 was confirmed with the use of 11 primers (pBAD3, G-120, G-260, G-390, G-520, G-660, G-790, G-900, H-62, H-200, H-350) that covered the two genes.

Ligation of PCR product and expression vector pBAD33

Restriction endonuclease Sbf1-HF and Xbal were used to digest the receiving plasmid pBAD33 prior to ligation to ensure enzymatic activity. The ligation reaction contained 1μL T4 DNA ligase (New England BioLabs, CA), 2μL H2O, 2 μL 10X Reaction Ligation Buffer (New England BioLabs, CA), 10 μL HA-HK PCR product and 5 μL pBAD33 [17]

Gel Extraction of expression vector pBAD33

Expression vector was digested (30 μL of sterile, nucleus free water, 3 μL of CutSmart buffer (New England BioLabs, CA), 4 μL of pBAD33 [17], 1 μL of Xbal (New England BioLabs, CA), 1 μL of SacI-HF (New England BioLabs, CA)) for 2 hours by first enzyme and for 2 additional hours by second enzyme in 37°C water bath and heat deactivated for 20 min at 65°C. One microfilter was removed from tube and checked by gel electrophoresis. Undigested plasmid was loaded in an adjacent lane. In a successful digestion, the super-coiled band will disappear, and a single band should be seen at the full-length size. After successfully digestion of both restriction enzymes, digestion was loaded into agarose gel and ran for 50 min at 135 V. Gel was sliced over UV light and purified by QIAquick Gel Extraction Kit (QIAGEN, Germany).

3. RESULTS

Introduction of HA tags through PCR at N-terminal

The H-K fragment was copied from pBA400, the template plasmid. The HA tag was introduced into H-K fragment through PCR. The HA-HK fragment was double digested to confirm correct base pair size of 7.8 kb (5.3 kb from

Figure 2b. PCR primer for G-HHA construct HA-H-f-Xbal-(B) was used to attach the HA epitope H subunit at the C-terminus.
pBAD33, 2.4 kb from H-K, and 0.1 kb from HA tag). The HA-HK PCR product and pBAD33 were ligated to create the HA-HK pBAD33 plasmid. GeneJET Plasmid Miniprep Kit (Thermo Scientific, MA) was used to purify plasmid DNA in six colonies, which were double digested with restriction endonucleases SacI-HF and XbaI, and checked by gel electrophoresis.

To confirm correct base pair size for HAH-K pBAD33, double digested of the second digested sample was performed by restriction endonuclease AvaI.

Introduction of HA tags through PCR at C-terminal

The G-H fragment was copied from pBA400, the template plasmid. HA tag was introduced into G-H fragment through PCR. G-HHA fragment was double digested to confirm correct base pair size of 9.1 kb (3.8 kb from G-HHA and 5.4 kb from pBAD33). The G-HHA PCR product and gel extracted pBAD33 fragment were ligated to create the HA-HK pBAD33 plasmid. GeneJET Plasmid Miniprep Kit (Thermo Scientific, MA) was used to purify plasmid DNA in five colonies, which were double digested with restriction endonucleases SacI-HF and XbaI, and checked by gel electrophoresis.

Pham: Construction of the hemagglutinin (HA) epitope tags for Subunit H

Published by SMU Scholar, 2019
Figure 8. Confirmation of G-HHA pBAD33 with XbaI and SacI-HF.
Expected band sizes of 9.1 kb (3.8 kb from G-HHA and 5.4 kb from pBAD33) were observed.
The DNA sequence data of HA-HK pBAD33 and G-HHA pBAD33 were confirmed by DNA sequencing by Lone Star Labs of Houston TX.

Detection of HA-tags through western blot
To determine if the tagged H subunits were made successfully, western blots were performed from cells harvested in medium induced with and without arabinose. The presence of the HA tag was detected by the HA antibody. Both plasmids showed expression of the tagged H subunit after induction with arabinose, and the H subunit was detected on western blots.

Figure 9. Western Blot data of HAH-K and G-HHA with arabinose induction.
Expression of the plasmids with and without arabinose were observed.

Figure 10. Western Blot data of HAH-K and G-HHA with glucose induction.
Expression of the plasmids with arabinose or glucose were observed.

4. DISCUSSION
Both plasmids showed expression of the tagged H subunits after induction with arabinose and glucose. The use of glucose to suppress transcription of genes was not observed; however, arabinose was able to activate the genes. It is unlikely that the tag interfered with this process, but recloning of the plasmid to eliminate the possibility of mutations elsewhere is an alternative. From the western blot, the H-HA complex is recognizable by the HA antibody therefore creating an indirect antibody for the H subunit. Currently, all clinical mutations occur at junctions of subunits. Due to the location of the H subunit on the protein, its junctions with the G and I subunits will give key insights on how the peripheral arm and the membrane-bound proteins interact with each other during assembly. The next step is to begin mutagenesis on the H subunit and incorporate them to all the genes in complex I and track assembly of the whole protein in pBAD33. Further experiments are needed to analyze how different mutations in the H subunit will behave during assembly of Complex I. Therefore, tags for both termini were constructed to allow for more flexibility.

5. REFERENCES
[1] Guerrero-Castillo, S., Baertling, F., Kownatzki, D., Wessels, H.J., Arnold, S., Brandt, U. and Nijtmans, L. (2017). The Assembly Pathway of Mitochondrial Respiratory Chain Complex I. Cell Metab 25, 128-139.
[2] Rodenburg, R.J. (2016). Mitochondrial complex I-linked disease. Biochim Biophys Acta 1857, 938-45.
[3] Stroud, D.A., Surgenor, E.E., Formosa, L.E., Reljic, B., Frazier, A.E., Dibley, M.G., Osellame, L.D., Stait, T., Beilharz, T.H., Thorburn, D.R., Salim, A. and Ryan, M.T. (2016). Accessory subunits are integral for assembly and function of human mitochondrial complex I. Nature 538, 123-126.
[4] Wirth, C., Brandt, U., Hunte, C. and Zickermann, V. (2016). Structure and function of mitochondrial complex I. Biochim Biophys Acta 1857, 902-14.
[5] Kohda, M., Tokuzawa, Y., Kishita, Y., Nyuzuki, H., Moriyama, Y., Mizuno, Y., Hirata, T., Yatsuka, Y., Yamashita-Sugahara, Y., Nakachi, Y., Kato, H., Okuda, A., Tamura, S., Borna, N.N., Banshoya, K., Aigaki, T., Sato-Miyata, Y., Ohnuma, K., Suzuki, T., Nagao, A., Maehata, H., Matsuda, F., Higasa, K., Nagasaki, M., Yasuda, J., Yamamoto, M., Fushimi, T., Shimura, M., Kainoi-Ichimoto, K., Harashima, H., Yamazaki, T., Mori, M., Murayama, K., Ohtake, A. and Okazaki, Y. (2016). A Comprehensive Genomic Analysis Reveals the Genetic Landscape of Mitochondrial Respiratory Chain Complex Deficiencies. PLoS Genet 12, e1005679.
[6] Baradaran, R., Berrisford, J.M., Minhas, G.S. and Sazanov, L.A. (2013). Crystal structure of the entire respiratory complex I. Nature 494, 443-8.

[7] Lim, S.C., Hroudova, J., Van Bergen, N.J., Lopez Sanchez, M.I., Trounce, I.A. and McKenzie, M. (2016). Loss of mitochondrial DNA-encoded protein ND1 results in disruption of complex I biogenesis during early stages of assembly. FASEB J 30, 2236-48.

[8] Berrisford, J.M., Baradaran, R. and Sazanov, L.A. (2016). Structure of bacterial respiratory complex I. Biochim Biophys Acta 1857, 892-901.

[9] Fiedorczuk, K., Letts, J.A., Degliesposti, G., Kaszuba, K., Skehel, M. and Sazanov, L.A. (2016). Atomic structure of the entire mammalian mitochondrial complex I. Nature 538, 406-410.

[10] Chomyn, A., Cleeter, M.W., Ragan, C.I., Riley, M., Doolittle, R.F. and Attardi, G. (1986). URF6, last unidentified reading frame of human mtDNA, codes for an NADH dehydrogenase subunit. Science 234, 614-8.

[11] Chomyn, A., Mariottiini, P., Cleeter, M.W., Ragan, C.I., Matuno-Yagi, A., Hatefi, Y., Doolittle, R.F. and Attardi, G. (1985). Six unidentified reading frames of human mitochondrial DNA encode components of the respiratory-chain NADH dehydrogenase. Nature 314, 592-7.

[12] Weidner, U., Geier, S., Ptock, A., Friedrich, T., Leif, H. and Weiss, H. (1993). The gene locus of the proton-translocating NADH: ubiquinone oxidoreductase in Escherichia coli. Organization of the 14 genes and relationship between the derived proteins and subunits of mitochondrial Complex I. J Mol Biol 233, 109-22.

[13] Baertling, F., Sanchez-Caballero, L., Timal, S., van den Brand, M.A., Ngu, L.H., Distelmaier, F., Rodenburg, R.J. and Nijtmans, L.G. (2016). Mutations in mitochondrial complex I assembly factor NDUFAF3 cause Leigh syndrome. Mol Genet Metab

[14] Gorman, G.S., Blakely, E.L., Hornig-Do, H.T., Tuppen, H.A., Greaves, L.C., He, L., Baker, A., Falkous, G., Newman, J., Trenell, M.I., Lecky, B., Petty, R.K., Turnbull, D.M., McFarland, R. and Taylor, R.W. (2015). Novel MTND1 mutations cause isolated exercise intolerance, complex I deficiency and increased assembly factor expression. Clin Sci (Lond) 128, 895-904.

[15] Scheffler, I.E. (2015). Mitochondrial disease associated with complex I (NADH-CoQ oxidoreductase) deficiency. J Inherit Metab Dis 35, 295-304.

[16] Amarnah, B., De Leon-Rangel, and J., Vik, S. (2006) Construction of a deletion strain and expression vector for the Escherichia coli NADH:ubiquinone oxidoreductase(Complex I). Biochim Biophys Acta 1757, 1557-1560.

[17] Brockmann, B., Hoppmann, D.K., Strahl, H., and Deckers-Hebestreit, G. (2013) Time-Delayed In Vivo Assembly of Subunit a into Preformed Escherichia coli FoF1 ATP Synthase. Journal of Bacteriology 195, 4074-4084.

6. ACKNOWLEDGEMENTS
This study was supported by the Engaged Learning Program. I would like to thank my mentor Dr. Steven Vik and lab members Hind Alkhaldi, and Fang Zhang.