Evaluation of current status in field of electrical voltage measurements

A A Vinogradova¹, S M Leontyuk¹

¹ Saint-Petersburg Mining University, 2, 21st Line, St Petersburg 199106, Russia

E-mail: Vinogradova_AA@pers.spmi.ru

Abstract. In this paper, evaluation of the current status in the field of electrical voltage measurement at a certain moment is given. The reference base and measuring instruments of approved types are analyzed.

1. Introduction
Measurements are essential in any area of human activity [1-5]. In order to be able to effectively apply measurements in practice, it is necessary to change their results (within the required accuracy) when using other means and measurement methods, changing the operator, time and place of measurement and other components of the measuring process [6-8]. This property is called the uniformity of measurements in Russia and other CIS countries.

The legal basis for ensuring the uniformity of measurements is regulatory metrology, which is a set of the state acts and normative and technical documents of various levels that regulate metrological regulations, requirements and standards.

The system for ensuring the uniformity of measurements in accordance with GOST R 8.000-2015 “The state system for ensuring the uniformity of measurements. Main principles” is a set of legislative acts, a reference database, a database of measuring instruments, a base of standard samples, organizations, metrological standards, methodological documents that represent the metrological infrastructure of the Russian Federation. This infrastructure provides a reliable and efficient functioning of transport and healthcare systems, energy and communication complexes, state industries and defense sectors, trade and housing and public utilities, science and education. Recognition of the measurement and testing results, carried out in any country, is possible only if there is a metrological infrastructure, operating according to approved international rules and regulations.

2. Evaluation of the reference database
In the sphere of state regulation of ensuring the uniformity of measurements, all measurement results should be traced to the State Primary Standards (SPS) [9]. Information on the SPS of measurement units is taken from the Federal Fund for ensuring the uniformity of measurements. Information on the State Primary Standards of measurement units is presented in Table 1.
Table 1. Information on the State Primary Standards of measurement units

Registration number	Description of a standard (SPS-State Primary Standard; SPSS-State Primary Special Standard)	Custodian Institute of a standard	Approval date	Date of information update
GAT (SS) 191-2011	SPSS units of AC voltage of industrial frequency in the range from 1 to 500 kV	FGUP "VNIIMS"	2012	18.04.2016
GAT (SS) 204-2012	SPSS units of electrical voltage of standardized lightning and switching pulses in the range from 1 to 1000 kV	FGUP "VNIIMS"	2012	15.04.2013
GAT (SS) 182-2010	SPSS units of pulsed electrical voltage with a pulse duration from 4·10^{-11} to 1·10^{-5} s	FGUP "VNIIMFTRI"	2011	29.04.2016
GAT (SS) 176-2009	SPSS AC voltage of the industrial frequency	FGUP "VNIIMS"	2010	15.06.2012
GAT (SS) 181-2010	SPSS units of DC voltage-volt in the range ±(1…500) kV	FGUP "VNIIMS"	2010	06.06.2012
GAT (SS) 27-2009	SPSS units of electrical voltage-volt in the frequency range of 3·10^7 - 2·10^9 Hz	FGUP "VNIIM named after Mendeleev"	2009	08.08.2012
GAT (SS) 89-2008	SPSS units of electrical voltage (volt) in the frequency range of 10 - 3·10^7 Hz	FGUP "VNIIM named after Mendeleev"	2008	10.08.2012
GAT (SS) 13-01	SPS electrical voltage units	FGUP "VNIIM named after Mendeleev"	2001	14.08.2012

The Federal Fund for ensuring uniformity of measurements contains information on about 10000 measurement standards for electric voltage. The number of approved standards is shown in Table 2 and in the distribution diagram of approved standards by year (Figure 1).

Table 2 Number of approved standards

Year of approval of standards of measurement units	Number of approved standards of measurement units
2012	175
2013	1030
2014	1796
2015	3312
2016	2015
2017	1207
Some information on secondary standards is shown in Table 3.

Table 3. Information on secondary standards

No	Registration number	Description	Custodian	CI, in months	Rosstandart Order
1	2.1.ZBT.0914.2017	State secondary standard (SSS) units of alternating electrical voltage in the range of values (0.1 – 10) V in the frequency range (30 – 2000) MHz	FBU	24	30.01.2018
2	2.1.ZZT.0225.2017	State secondary standard units of alternating electrical voltage in the range from 2 mV to 1000 V in the frequency range from 10 Hz to 1 MHz	FGUP	12	30.10.2017
3	2.1.ZZM.0350.2017	State secondary standard units of DC electrical voltage in the range from -1 to -100 KV and from 1 to 100 KV.	FGUP	12	14.03.2017
4	2.2.GZZ.0016.2017	Secondary standard units of the scaling conversion factor and the phase shift of AC electrical voltage of the industry frequency in the range from 1 to 330/√3KV	LLC "NPP (RPE) Mars-Energo “	24	13.10.2015
5	2.1.ZZT.0011.2017	State secondary standard units of harmonic currents in coaxial paths in the range from 0.1 to 3.0 V in the frequency range from 30 to 1000 MHz VET(SS) 27-01-05	FGUP	24	20.08.2015
6	2.1.ZZB.0076.2017	State secondary standard (reference standard) units of electrical voltage and electromotive force with nominal units 1 V and 10 V (GVET (SSS) 13-10-89)	FGUP "VNIIM named after Mendeleev "	12	19.08.2015
7	2.1.ZSP.0617.2017	State secondary standard units of AC voltage in the value range 0.0001 - 1000 V, in the frequency range 10 - 3·10^7 Hz	FBU "Test-St. Petersburg “	12	04.06.2015
8	2.1.ZBN.1882.2017	State secondary standard units of AC voltage in the value range (0.1 - 10) V and in the frequency range (30 - 2·10^5) MHz	FBU "Nizhegorodsky SMCC“	24	01.06.2015
9	2.1.ZZT.0007.2017	State secondary standard units of DC electrical voltage of nominal value of 1 V (VET (SSS) 13-13-01)	FGUP "VNIIMFTRI"	36	26.03.2014
10	2.1.ZZV.0023.2017	State secondary standard units of electrical voltage-transfer secondary standard with a nominal value of 1 V (GVET 13-3-2010)	FGUP "VNIIM named after Mendeleev “	12	31.12.2013
11	2.1. ZAY.0061.2013	State secondary standard units of AC voltage in the value range of (0.1 - 300) V, (10 - 30·10^6) Hz	FBU "Krasnodarsky SMCC “	12	15.05.2013
12	2.1. ZAY.0050.2013	State secondary standard units of AC voltage in the value range of (2·10^3 - 1·10^3) V, in the frequency range of (10 - 1·10^6) Hz	FBU "Krasnodarsky SMCC “	12	15.05.2013
13	2.1.ZZM.0026.2017	State secondary standard units of electrical voltage GVET 13-12-04	FGUP "VNIIMS“	36	13.03.2013

*Calibration interval
Figure 1. Diagram of number of approved standards by year

Analysis by the criterion “Calibration interval” is shown in Table 4.

Year	2015
Month	6
Number of	13
Year	2016
Month	6
Number of	20
Year	2017
Month	6
Number of	25

Having conducted a standard analysis by the criterion “Calibration Interval”, it can be concluded that a general trend is maintained and the largest number of the measuring means has CI of 12 months. Having conducted a standard analysis by a year of the last periodic calibration, it can be concluded that a large number of standards are currently not calibrated with expired date of the last calibration. Having conducted a standard analysis by the grades, it can be concluded that the standards of the third grade were approved: for 2015 – 265 pcs, 2016 – 467 pcs, 2017 – 487 pcs; the next place in the number is occupied by the standards of the second grade.

3. Conclusion
Using the information of the Federal Fund for ensuring the uniformity of measurements and other scientific and technical sources, analysis of the reference database was conducted in this article. The analysis shows that in the reference database, most of the standards are of the third grade, the number of approved standards increased from 2012 up to 2015 with a decline in 2016. Having conducted a
standard analysis by the criterion “Calibration Interval”, it can be concluded that the general trend is maintained and the largest number of the measuring means has CI of 12 months.

References

[1] Krausz F, Stockman M I 2014 Nature Photonics 8 205-213
[2] Piquemal F, Jeckelmann B, Callegaro L, Hällström J, Janssen T J B M, Melcher J, Rietveld G, Siegner U, Wright P and Zeier M 2017 Metrologia BIPM & IOP Publishing Ltd. 54(5)
[3] Salah H R 2015 Journal of Control Engineering and Instrumentation 1(1) 11–28
[4] Riordan S 2015 Studies in History and Philosophy of Science 50 38–47
[5] Kolesnichenko S V, Afanasyeva O V 2018 Journal of Mining Institute 230 167–175
[6] Gereikhanov R K, Magomedov A M 2015 Bulletin of the Dagestan State Technical University Technical science 37(2) 25–31
[7] Sargent M 2016 Chemical metrology 76(8) 8119-8122
[8] Dobiliene J, Meskuotiene A Journal of Physics: Conference Series 588 1–5
[9] Zyskin V M 2016 Standard samples 2 44-54