Rainbow Monochromatic k-Edge-Connection Colorings of Graphs

Ping Li1 · Xueliang Li1

Received: 15 February 2020 / Revised: 28 October 2020 / Accepted: 17 March 2021 / Published online: 27 March 2021

Abstract

A path in an edge-colored graph is called a monochromatic path if all edges of the path have a same color. We call k paths P_1, \ldots, P_k rainbow monochromatic paths if every P_i is monochromatic and for any two $i \neq j$, P_i and P_j have different colors. An edge-coloring of a graph G is said to be a rainbow monochromatic k-edge-connection coloring (or RMC_k-coloring for short) if every two distinct vertices of G are connected by at least k rainbow monochromatic paths. We use $rmc_k(G)$ to denote the maximum number of colors that ensures G has an RMC_k-coloring, and this number is called the rainbow monochromatic k-edge-connection number. We prove the existence of RMC_k-colorings of graphs, and then give some bounds of $rmc_k(G)$ and present some graphs whose $rmc_k(G)$ reaches the lower bound. We also obtain the threshold function for $rmc_k(G(n,p)) \geq f(n)$, where $\left\lceil \frac{n}{2} \right\rceil > k \geq 1$.

Keywords Monochromatic path · Rainbow monochromatic path · Rainbow monochromatic k-edge-connection coloring (number) · Threshold function

1 Introduction

The monochromatic connection coloring of a graph, introduced in [4], allows that any two vertices are connected by a monochromatic path. In order to generalize this concept, we consider an edge-coloring of a given graph G with any two vertices are connected by at least k (a fixed integer) edge-disjoint monochromatic paths. If we

Supported by NSFC No. 11871034.
allow some of those k monochromatic paths to have different colors, then the edge-coloring is called MC_k-coloring of G. If we require that those k monochromatic paths have the same color, then the edge-coloring is called UMC_k-coloring of G. The two generalized concepts are introduced in [12]. In this paper, we discuss the third generalized concept, RMC_k-coloring, which requires that the colors of those k monochromatic paths are pairwise differently. We will introduce the above four concepts systematically, and also introduce some notations and previous work below.

For a graph G, let $C : E(G) \rightarrow [k]$ be an edge-coloring of G that allows a same color to be assigned to adjacent edges, here and in what follows $[k]$ denotes the set $\{1, 2, \ldots, k\}$ of integers for a positive integer k. For an edge e of G, we use $C(e)$ to denote the color of e. If H is a subgraph of G, we also use $C(H)$ to denote the set of colors on the edges of H and use $|C(H)|$ to denote the number of colors in $C(H)$. For all other terminology and notation not defined here we follow Bondy and Murty [2].

A monochromatic uv-path is a uv-path of G whose edges are colored with a same color, and G is monochromatically connected if for any two vertices of G, G has a monochromatic path connecting them. An edge-coloring C of G is a monochromatic connection coloring (or MC-coloring for short) if it makes G monochromatically connected. The monochromatic connection number of a connected graph G, denoted by $mc(G)$, is the maximum number of colors that are allowed in order to make G monochromatically connected. An extremal MC-coloring of G is an MC-coloring that uses $mc(G)$ colors.

The notion monochromatic connection coloring was introduced by Caro and Yuster [4]. Huang and Li [10] recently showed that it is NP-hard to compute the monochromatic number for a given graph. Some results were obtained in [3, 9, 11, 13, 14]. Later, González-Moreno et al. in [8] generalized the above concept to digraphs.

We list the main results in [4] below.

Theorem 1 ([4]) Let G be a connected graph with $n \geq 3$. If G satisfies any of the following properties, then $mc(G) = m - n + 2$.

1. \overline{G} (the complement of G) is a 4-connected graph;
2. G is triangle-free;
3. $\Delta(G) < n - \frac{2m - 3(n - 1)}{n - 3}$;
4. $diam(G) \geq 3$;
5. G has a cut vertex.

The Erdős–Rényi random graph model $G(n, p)$ will be studied in this paper. The graph $G(n, p)$ is defined on n labeled vertices (informally, we use $[n]$ to denote the n labeled vertices) in which each edge is chosen independently and randomly with probability p. A property of graphs is a subset of the set of all graphs on $[n]$ (such as connectivity, minimum degree, et al). If a property Q has $Pr[G \sim G(n, p) \text{satisfies } Q] \rightarrow 1$ when $n \rightarrow +\infty$, then we call the property Q almost surely. A property Q is monotone increasing if whenever H is a graph
obtained from H' by adding some edges and H' has property Q, then H also has the property Q.

A function $h(n)$ is a threshold function for an increasing property Q, if for any two functions $h_1(n) = o(h(n))$ and $h(n) = o(h_2(n))$, $G(n, h_1(n))$ does not have property Q almost surely and $G(n, h_2(n))$ has property Q almost surely. Moreover, $h(n)$ is called a sharp threshold function of Q if there exist two positive constants c_1 and c_2 such that $G(n, p(n))$ does not have property Q almost surely when $p(n) \leq c_1 h(n)$ and $G(n, p(n))$ has property Q almost surely when $p(n) \geq c_2 h(n)$. It was proved in [6] that every monotone increasing graph property has a sharp threshold function. The property monochromatic connection coloring of a graph (and also the properties monochromatic k-edge-connection coloring, uniformly monochromatic k-edge-connection coloring and rainbow monochromatic k-edge-connection coloring of graphs which are defined later) is monotone increasing, and therefore it has a sharp threshold function.

Theorem 2 ([9]) Let $f(n)$ be a function satisfying $1 \leq f(n) < (\frac{n}{2})$. Then

$$p = \begin{cases} \frac{f(n) + n \log \log n}{n^2}, & \text{if } f(n) = \Omega(n \log n) \text{ and } f(n) < \left(\frac{n}{2}\right); \\ \log n, & \text{if } f(n) = o(n \log n). \end{cases}$$

is a sharp threshold function for the property $mc(G(n,p)) \geq f(n)$.

Now we generalize the concept monochromatic connection coloring of graphs. There are three ways to generalize this concept.

The first generalized concept is called the monochromatic k-edge-connection coloring (or MC$_k$-coloring for short) of G, which requires that every two distinct vertices of G are connected by at least k edge-disjoint monochromatic paths (allow some of the paths to have different colors). The monochromatically k-edge-connection number of a connected G, denoted by $mc_k(G)$, is the maximum number of colors that are allowed in order to make G monochromatically k-edge-connected.

The second generalized concept is called the uniformly monochromatic k-edge-connection coloring (or UMC$_k$-coloring for short) of G, which requires that every two distinct vertices of G are connected by at least k edge-disjoint monochromatic paths such that all these k paths have the same color (note that for different pairs of vertices the paths may have different colors). The uniformly monochromatically k-edge-connection number of a connected G, denoted by $umc_k(G)$, is the maximum number of colors that are allowed in order to make G uniformly monochromatically k-edge-connected. These two concepts were studied in [12].

It is obvious that a graph has an MC$_k$-coloring (or UMC$_k$-coloring) if and only if G is k-edge-connected. We mainly study the third generalized concept in this paper, which is called the rainbow monochromatic k-edge-connection coloring (or RMC$_k$-coloring for short) of a connected graph. One can see later, compare the results for MC-colorings, MC$_k$-colorings, UMC$_k$-colorings and RMC$_k$-colorings of graphs, the concept RMC$_k$-coloring has the best form among all the generalized concepts of the MC-coloring.
The definition of the third generalized concept goes as follows. For an edge-colored simple graph G (if G has parallel edges but no loops, the following notions are also reasonable), if for any two distinct vertices u and v of G, G has k edge-disjoint monochromatic paths connecting them, and the colors of these k paths are pairwise differently, then we call such k monochromatic paths k rainbow monochromatic uv-paths. An edge-colored graph is rainbow monochromatically k-edge-connected if every two vertices of the graph are connected by at least k rainbow monochromatic paths in the graph. An edge-coloring Γ of a connected graph G is a rainbow monochromatic k-edge-connection coloring (or RMC_k-coloring for short) if it makes G rainbow monochromatically k-edge-connected. The rainbow monochromatically k-edge-connection number of a connected graph G, denoted by $rmc_k(G)$, is the maximum number of colors that are allowed in order to make G rainbow monochromatically k-edge-connected. An extremal RMC_k-coloring of G is an RMC_k-coloring that uses $rmc_k(G)$ colors.

If $k = 1$, then an RMC_k-coloring (also MC_k-coloring and UMC_k-coloring) is reduced to a monochromatic connection coloring for any connected graph.

In an edge-colored graph G, if a color i only colors one edge of $E(G)$, then we call the color i a trivial color, and call the edge (tree) a trivial edge (trivial tree). Otherwise we call the edges (colors, trees) nontrivial. A subgraph H of G is called an i-induced subgraph if H is induced by all the edges of G with the same color i. Sometimes, we also call H a color-induced subgraph.

If Γ is an extremal RMC_k-coloring of G, then each color-induced subgraph is connected. Otherwise we can recolor the edges in one of its components by a fresh color, then the new edge-coloring is also an RMC_k-coloring of G, but the number of colors is increased by one, which contradicts that Γ is extremal. Furthermore, each color-induced subgraph does not have cycles; otherwise we can recolor one edge in a cycle by a fresh color. Then the new edge-coloring is also an RMC_k-coloring of G, but the number of colors is increased, a contradiction. Therefore, we have the following result.

Proposition 1. If Γ is an extremal RMC_k-coloring of G, then each color-induced subgraph is a tree.

If Γ is an extremal RMC_k-coloring of G for $i \in \Gamma(G)$, we call an i-induced subgraph of G an i-induced tree or a color-induced tree. We also call it a tree sometimes if there is no confusion.

The paper is organized as follows. Section 2 will give some preliminary results. In Sect. 3, we study the existence of RMC_k-colorings of graphs. In Sect. 4, we give some bounds of $rmc_k(G)$, and present some graphs whose $rmc_k(G)$ reaches the lower bound. In Sect. 5, we obtain the threshold function for $rmc_k(G) \geq f(n)$, where $\lfloor \frac{n}{2} \rfloor > k \geq 1$.

© Springer
2 Preliminaries

Suppose that \(a = (a_1, \ldots, a_q) \) and \(b = (b_1, \ldots, b_p) \) are two positive integer sequences whose lengths \(p \) and \(q \) may be different. Let \(\prec \) be the lexicographic order for integer sequences, i.e., \(a \prec b \) if for some \(h \geq 1 \), \(a_j = b_j \) for \(j < h \) and \(a_h < b_h \), or \(p > q \) and \(a_j = b_j \) for \(j \leq q \).

Let \(D, n, s \) be integers with \(n \geq 5 \) and \(1 \leq s \leq n - 4 \). Let \(r \) be an integer satisfying \(D < r^{(n-s)/2} \). For an integer \(t \geq r \), suppose \(f(x_i) = f(x_1, \ldots, x_t) = \sum_{i \in [t]} (x_i - 1) \) and \(g(x_i) = g(x_1, \ldots, x_t) = \sum_{i \in [t]} (x_i - 2) \), where \(x_i \in \{3, 4, \ldots, n-s\} \). We use \(S_t \) to denote the set of optimal solutions of the following problem:

\[
\min \quad s.t.
\]

Lemma 1 There are integers \(r, x \) with \(r \leq t \) and \(3 \leq x < n - s \), such that the above problem has a solution \(x_1, \ldots, x_t \) in \(S_t \) satisfying that \(x_i = n - s \) for \(i \in [r-1] \), \(x_r = x \) and \(x_j = 3 \) for \(j \in \{r+1, \ldots, t\} \).

Proof Let \(c_i = (c_1, \ldots, c_t) \) be a maximum integer sequence of \(S_t \). Then \(c_i = c_{i+1} \) for \(i \in [r-1] \). Since \(D < r^{(n-s)/2} \), there is an integer \(r \leq t \) such that \(c_i = n-s \) for \(i \leq r-1 \) and \(3 \leq c_i < n-s \) for \(i \in [r, \ldots, t] \). Let \(x = c_r \). Then \(3 \leq x < n-s \). We need to show \(c_i = 3 \) for each \(i \in \{r+1, \ldots, t\} \). Otherwise, suppose \(j \) is the maximum integer of \(\{r+1, \ldots, t\} \) with \(n-s > c_j > 3 \). Let \(d_i = (d_1, \ldots, d_t) \), where \(d_i = c_i \) when \(i \notin \{r, j\} \), \(d_r = c_r + 1 \) and \(d_j = c_j - 1 \). Then \(f(d_i) \geq f(c_i) \geq D \), \(3 \leq d_i < n-s \) for each \(i \in [t] \), and \(g(c_i) = g(d_i) \). i.e., \(d_i \in S_t \). However, \(c_i \prec d_i \), which contradicts that \(c_i \) is a maximum integer sequence of \(S_t \). \(\square \)

Lemma 2 Suppose \(t \geq r, a_i \in S_t \) and \(b_i \in S_r \). Then \(g(b_r) \leq g(a_t) \).

Proof The result holds for \(t = r, \) so let \(t > r \). W.l.o.g., suppose \(a_i = (a_1, \ldots, a_t) \), where \(a_1 = \cdots = a_{t-1} = n-s, 3 \leq a_t < n-s \) and \(a_{t+1} = \cdots = x_t = 3 \). Since \(t > r \) and \(D < r^{(n-s)/2} \), \(t \leq t \) and \(a_t = 3 \). Let \(c_{t-1} = (c_1, \ldots, c_{t-1}) \), where \(c_1 = \cdots = c_{t-1} = n-s, c_t = a_t + 1 \) and \(c_{t+1} = \cdots = x_{t-1} = 3 \). Then \(f(c_{t-1}) \geq D \) and \(g(c_{t-1}) = g(a_t) \). Let \(d_{t-1} \in S_{t-1} \). Then \(g(c_{t-1}) \geq g(d_{t-1}) \). By induction on \(t-r \), \(g(b_r) \leq g(d_{t-1}) \). Thus \(g(b_r) \leq g(a_t) \). \(\square \)

The following result is easily seen.

Lemma 3 If \(a, b, c \) are positive integers with \(c + a - 1 \geq 2 \) and \(a + b = c \), then \(\binom{c}{2} - \binom{a}{2} \geq b \).

Suppose \(X \) is a proper vertex set of \(G \). We use \(E(X) \) to denote the set of edges whose ends are in \(X \). For a graph \(G \) and \(X \subseteq V(G) \), to shrink \(X \) is to delete \(E(X) \) and then merge the vertices of \(X \) into a single vertex. A partition of the vertex set \(V \) is to divide \(V \) into some mutual disjoint nonempty sets. Suppose \(\mathcal{P} = \{V_1, \ldots, V_s\} \) is a partition of \(V(G) \). Then \(G/\mathcal{P} \) is a graph obtained from \(G \) by shrinking every \(V_i \) into a single vertex.
The spanning tree packing number (STP number) of a graph is the maximum number of edge-disjoint spanning trees contained in the graph. We use \(T(G) \) to denote the number of edge-disjoint spanning trees of \(G \). The following theorem was proved by Nash-Williams and Tutte independently.

Theorem 3 ([15, 16]) A graph \(G \) has at least \(k \) edge-disjoint spanning trees if and only if
\[
e(G/\mathcal{P}) \geq k(|G/\mathcal{P}| - 1)
\]
for any vertex-partition \(\mathcal{P} \) of \(V(G) \).

We denote \(s(G) = \min_{|\mathcal{P}| \geq 2} \left(\frac{e(G/\mathcal{P})}{|G/\mathcal{P}| - 1} \right) \). Then Nash–Williams–Tutte Theorem can be restated as follows.

Theorem 4 \(T(G) = k \) if and only if \(s(G) = k \).

If \(\Gamma \) is an extremal \(RMC_k \)-coloring of \(G \), then we say that \(\Gamma \) wastes \(\omega = \sum_{i \in [r]} (|T_i| - 2) \) colors, where \(T_1, \ldots, T_r \) are all the nontrivial color-induced trees of \(G \). Thus \(rmc_k(G) = m - \omega \).

Suppose that \(\Gamma \) is an edge-coloring of \(G \) and \(v \) is a vertex of \(G \). The nontrivial color degree of \(v \) under \(\Gamma \) is denoted by \(d^n(v) \), that is, the number of nontrivial colors appearing on the edges incident with \(v \).

Lemma 4 Suppose that \(\Gamma \) is an \(RMC_k \)-coloring of \(G \) with \(k \geq 2 \). Then \(d^n(v) \geq k \) for every vertex \(v \) of \(G \).

Proof Since every two vertices have \(k \geq 2 \) rainbow monochromatic paths connecting them and \(G \) is simple, every two vertices have at least one nontrivial monochromatic path connecting them, i.e., \(d^n(v) \geq 1 \) for each \(v \in V(G) \). Let \(e = vu \) be a nontrivial edge. Then there are \(k - 1 \) rainbow monochromatic paths of order at least three connecting \(u \) and \(v \). Since these \(k - 1 \) rainbow monochromatic paths are nontrivial, \(d^n(v) \geq k \) for each \(v \in V(G) \). \(\square \)

3 Existence of \(RMC_k \)-Colorings

We knew that there exists an \(MC_k \)-coloring or a \(UMC_k \)-coloring of \(G \) if and only if \(G \) is \(k \)-edge-connected. It is natural to ask how about \(RMC_k \)-colorings? It is obvious that any cycle of order at least 3 is 2-edge-connected, but it does not have an \(RMC_2 \)-coloring.

We mainly think about simple graphs in this paper, but in the following result, all graphs may have parallel edges but no loops.

Theorem 5 A graph \(G \) has an \(RMC_k \)-coloring if and only if \(\tau(G) \geq k \).

Proof If \(G \) has \(k \) edge-disjoint spanning trees \(T_1, \ldots, T_k \), then we can color the edges of each \(T_i \) by \(i \) and color the other edges of \(G \) by colors in \([k] \) arbitrarily. Then the coloring is an \(RMC_k \)-coloring of \(G \). Therefore, \(G \) has an \(RMC_k \)-coloring when \(\tau(G) \geq k \).

We will prove that if there exists an \(RMC_k \)-coloring of \(G \), then \(G \) has \(k \) edge-disjoint spanning trees, i.e., \(\tau(G) \geq k \). Before proceeding to the proof, we need a critical claim as follows.
Claim If G has an RMC_k-coloring, then $e(G) \geq k(n - 1)$.

Proof Suppose that Γ is an extremal RMC_k-coloring of G and G_1, \ldots, G_ℓ are all the color-induced trees of G (say G_i is the i-induced tree). If there are two color-induced trees G_i and G_j satisfying that all the three sets $V(G_i) - V(G_j)$, $V(G_j) - V(G_i)$ and $V(G_i) \cap V(G_j)$ are nonempty, then we use $P(G, \Gamma, i, j)$ to denote the graph $(G - E(G_i \cup G_j)) \cup T_1 \cup T_2$, where T_1 and T_2 are two new trees with $V(T_1) = V(G_i) \cup V(G_j)$ and $V(T_2) = V(G_i) \cap V(G_j)$ (note that T_1, T_2 and $G - E(G_i \cup G_j)$ are mutually edge disjoint, then $P(G, \Gamma, i, j)$ may have parallel edges); we also use $\Upsilon(G, \Gamma, i, j)$ to denote the edge-coloring of $P(G, \Gamma, i, j)$, which is obtained from Γ by coloring $E(T_1)$ with i and coloring $E(T_2)$ with j, respectively. Then $|G| = |P(G, \Gamma, i, j)|$ and $e(G) = e(P(G, \Gamma, i, j)).$

We claim that $\Upsilon(G, \Gamma, i, j)$ is an RMC_k-coloring of $P(G, \Gamma, i, j)$, and we prove it below. For any two vertices u, v of G, if at least one of them is in $V(G) - V(G_i \cup G_j)$, or one is in $V(G_i) - V(G_j)$ and the other is in $v \in V(G_i) - V(G_j)$, then none of rainbow monochromatic uv-paths of G are colored by i or j, these rainbow monochromatic uv-paths of G are kept unchanged.

Thus there are at least k rainbow monochromatic uv-paths in $P(G, \Gamma, i, j)$ under $\Upsilon(G, \Gamma, i, j)$; if both of u, v are in $V(G_i) \cap V(G_j)$, then there are at least $k - 2$ rainbow monochromatic uv-paths of G with colors different from i and j, and these rainbow monochromatic uv-paths are kept unchanged. Since T_1 and T_2 provide two rainbow monochromatic uv-paths, one is colored by i and the other is colored by j, there are at least k rainbow monochromatic uv-paths in $P(G, \Gamma, i, j)$ under $\Upsilon(G, \Gamma, i, j)$; if, by symmetry, u and v are in G_i and at most one of them is in $V(G_i) \cap V(G_j)$, then there are at least $k - 1$ rainbow monochromatic uv-paths with colors different from i and j, and these rainbow monochromatic uv-paths are kept unchanged. Since T_1 provides a monochromatic uv-path with color i, there are at least k rainbow monochromatic uv-paths in $P(G, \Gamma, i, j)$ under $\Upsilon(G, \Gamma, i, j)$.

We now introduce a simple algorithm on G. Setting $H := G$ and $\Gamma^* := \Gamma$. If there are two color-induced subgraphs H_i and H_j of H satisfying that all the three sets $V(H_i) - V(H_j)$, $V(H_j) - V(H_i)$ and $V(H_i) \cap V(H_j)$ are nonempty, then replace H by $P(H, \Gamma^*, i, j)$ and replace Γ^* by $\Upsilon(H, \Gamma^*, i, j)$.

We now show that the algorithm will terminate in a finite steps. In the ith step, let $H = H_i$ and $\Gamma^* = \Gamma_i$, and let G_1, \cdots, G_ℓ_i be all the color-induced subgraphs of H_i such that $|G_1| \geq |G_2| \geq \cdots \geq |G_\ell_i|$ (in fact, in each step, each color-induced subgraph is a tree), and let $l_i = (|G_1|, |G_2|, \cdots, |G_\ell_i|)$ be an integer sequence. Suppose $H_{i+1} = P(H_i, \Gamma_i, s, t)$, i.e., $H_{i+1} = H_i - E(G_s \cup G_t) \cup T_1 \cup T_2$, where $V(T_1) = V(G_s) \cup V(G_t)$ and $V(T_2) = V(G_s) \cap V(G_t)$. Then $|T_1| > \max\{|G_s|, |G_t|\}$. Therefore, $l_i < l_{i+1}$. Since G is a finite graph and $e(H_i) = e(G)$ in each step, the algorithm will terminate in a finite step.

Let H' be the resulting graph and Γ' be the resulting RMC_k-coloring of H', and T_1', \ldots, T_r' be the color-induced trees of H' with $|T_1'| \geq \cdots \geq |T_r'|$. Then T_k' is a spanning tree of H'; otherwise, there is at least one vertex w in $V(G) - V(T_k)$. Suppose $u \in V(T_k)$. Since T_1', \ldots, T_{k-1}' provide at most $k - 1$ rainbow monochromatic uw-paths, there is a tree of $\{T_{k+1}', \ldots, T_r'\}$, say T_a', containing u and w. Then
$V(T_k') - V(T_a') \neq \emptyset$; otherwise $|T_k'| < |T_a'|$, a contradiction. Thus $V(T_k') - V(T_a')$, $V(T_a') \cap V(T_k')$ and $V(T_a') - V(T_k')$ are nonempty sets, which contradicts that H' is the resulting graph of the algorithm. Therefore, there are at least k spanning trees of H', i.e., $e(G) = e(H') \geq k(n - 1)$. □

Now, we are ready to prove $\tau(G) \geq k$ by contradiction. Suppose that I' is an RMC$_k$-coloring of G but $\tau(G) < k$. By Theorem 3, there exists a partition $P = \{V_1, \ldots, V_t\}$ of $V(G)$ ($|P| = t \geq 2$), such that $e(G/P) < k(|P| - 1)$. Let $G^* = G/P$ be the graph obtained from G by shrinking each V_i into a single vertex v_i, $1 \leq i \leq t$.

Suppose that I^* is an edge-coloring of G^* obtained from I' by keeping the color of every edge of G not being deleted (we only delete edges contained in each V_i). It is obvious that I^* is an RMC$_k$-coloring of G^*. However, $e(G^*) < k(|G^*| - 1)$, a contradiction to Claim 3. So, $\tau(G) \geq k$. □

We will turn to discuss simple graphs below. Because a simple graph is also a loopless graph, Theorem 5 holds for simple graphs. For a connected simple graph G, since $1 \leq \tau(G) \leq \tau(K_n) = \left\lceil \frac{e(K_n)}{n - 1} \right\rceil = \lceil \frac{n}{2} \rceil$, we have the following result.

Corollary 1 If G is a simple graph of order n and G has an RMC$_k$-coloring, then $1 \leq k \leq \lceil \frac{n}{2} \rceil$.

By Theorem 5, if $\tau(G) \geq k$, a trivial RMC$_k$-coloring of a graph G is a coloring that colors the edges of the k edge-disjoint spanning trees of G by colors in $[k]$, respectively, and then colors the other edges trivial. Since the edge-coloring wastes $k(n - 2)$ colors, rmck$_k(G) \geq m - k(n - 2)$. Thus, $m - k(n - 2)$ is a lower bound of rmck$_k(G)$ if G has an RMC$_k$-coloring.

Corollary 2 If G is a graph with $\tau(G) \geq k$, then rmck$_k(G) \geq m - k(n - 2)$.

4 Some Graphs with Rainbow Monochromatic k-Edge-Connection Number $m - k(n - 2)$

In this section, we mainly study the graphs with rainbow monochromatic k-edge-connection number $m - k(n - 2)$ (graphs in the following theorem).

Theorem 6 Let G be a graph with $\tau(G) \geq k$. If G satisfies any of the following properties, then rmck$_k(G) = m - k(n - 2)$.

1. G is triangle-free;
2. $\text{diam}(G) \geq 3$;
3. G has a cut vertex;
4. G is not $k + 1$-edge-connected.

We will prove this theorem separately by four propositions below (the second result is a corollary of Proposition 3).

Proposition 2 If G is a triangle-free graph with $\tau(G) \geq k$, then rmck$_k(G) = m - k(n - 2)$.
Proof By Theorem 1, the result holds for \(k = 1 \). Therefore, let \(k \geq 2 \) (this requires \(n \geq 4 \)). Since \(G \) is a triangle-free graph, by Turán’s Theorem, \(e(G) \leq \frac{n^2}{4} \). Then
\[
k \leq \tau(G) \leq \frac{e(G)}{|G| - 1} \leq \frac{n + 1}{4} + \frac{1}{4(n - 1)}.
\]
So, \(n \geq 4k - 1 - \frac{1}{n - 1} \), i.e., \(n \geq 4k - 1 \).

Suppose \(\Gamma \) is an extremal \(RMC_k \)-coloring of \(G \). If there is a color-induced tree, say \(T \), that forms a spanning tree of \(G \), then \(\Gamma \) is an extremal \(RMC_{k-1} \)-coloring restricted on \(G - E(T) \). Otherwise, suppose \(\Gamma \) is not an extremal \(RMC_{k-1} \)-coloring restricted on \(G - E(T) \). Since \(\Gamma \) is obviously an \(RMC_{k-1} \)-coloring restricted on \(G - E(T) \), there is an \(RMC_{k-1} \)-coloring \(\Gamma' \) of \(G - E(T) \) such that \(|\Gamma'(G - E(T))| < |\Gamma(G - E(T))| \). Let \(\Gamma'' \) be an edge-coloring of \(G \) obtained from \(\Gamma' \) by assigning \(E(T) \) with a new color. Then \(\Gamma'' \) is an \(RMC_k \)-coloring of \(G \). However, \(|\Gamma'(G)| < |\Gamma''(G)| \), a contradiction. Since \(G - E(T) \) is triangle-free, by induction on \(k \),
\[
rmc_{k-1}(G - E(T)) = e(G - E(T)) - (k - 1)(n - 2) = m - k(n - 2) - 1.
\]

Therefore,
\[
rmc_k(G) = 1 + |\Gamma'(G - E(T))| = 1 + rmc_{k-1}(G - E(T)) = m - k(n - 2).
\]

Now, suppose that each color-induced tree is not a spanning tree. We use \(\mathcal{F} \) to denote the set of nontrivial color-induced trees of \(G \). We will prove that \(\Gamma \) wastes at least \(k(n - 2) \) colors below.

Case 1. There is a vertex \(v \) of \(G \) such that \(d^v(v) = k \).

Suppose that \(\mathcal{F} = \{T_1, \ldots, T_k\} \) is the set of the \(k \) nontrivial color-induced trees containing \(v \). Since each vertex connects \(v \) by at least \(k - 1 \geq 1 \) nontrivial rainbow monochromatic paths, \(V(G) = \bigcup_{i \in [k]} V(T_i) \). Let \(S = \bigcap_{i \in [k]} V(T_i) \) and \(S_i = V(T_i) - S \).

For any \(i, j \in [k] \), both \(S_i - S_j \) and \(S_j - S_i \) are nonempty. Otherwise, suppose \(S_i \subseteq S_j \). Since \(T_j \) is not a spanning tree, there is a vertex \(u_j \in V(G) - V(T_j) \). Then there are at most \(k - 2 \) nontrivial rainbow monochromatic \(u_jv \)-paths, a contradiction.

According to the above discussion, \(S, S_1, \ldots, S_k \) are all nonempty sets. Moreover, since \(k \geq 2 \), \(|V(G) - S| \geq 2 \).

For each \(i \in [k] \) and a vertex \(u \) in \(S_i \), there is an \(i_u \in [k] \) such that \(u \notin V(T_{i_u}) \). Furthermore, \(u \in V(T_j) \) for each \(j \in [k] - \{i_u\} \); for otherwise, there are at most \(k - 2 \) nontrivial rainbow monochromatic \(uv \)-paths, which contradicts that \(\Gamma \) is an \(RMC_k \)-coloring of \(G \). Therefore, there are exactly \(k - 1 \) nontrivial rainbow monochromatic \(uv \)-paths. This implies that \(uv \) is a trivial edge of \(G \). Thus, \(v \) connects each vertex of \(V(G) - S \) by a trivial edge. Since \(G \) is triangle-free, \(V(G) - S \) is an independent set. It is easy to verify that \(\mathcal{F} \) wastes
\[\sum_{i \in [k]} (|T_i| - 2) = \sum_{i \in [k]} |T_i| - 2k = k|S| + (k - 1)(n - |S|) - 2k = k(n - 2) + |S| - n \]

colors.

Let \(T = T - T \) (recall that \(T \) is the set of nontrivial trees of \(G \)). Since each two vertices of \(V(G) - S \) are in at most \(k - 1 \) trees of \(T \) and \(V(G) - S \) is an independent set, there is at least one tree of \(T \) containing them. Moreover, such a tree contains at least one vertex of \(S \). Suppose that \(F_1, \ldots, F_t \) are trees of \(T \) with \(|V(F_i) \cap (V(G) - S)| = x_i \geq 2 \) and \(x_1 \geq x_2 \geq \cdots \geq x_t \). Let \(w_i \in V(F_i) \cap S \) and \(W_i = V(F_i) \cap (V(G) - S) \cup \{w_i\} \). Then \(3 \leq |W_i| \leq n - |S| + 1 \) for each \(i \in [t] \), and

\[\sum_{i \in [t]} \left(\frac{|W_i| - 1}{2} \right) \geq \left(\frac{n - |S|}{2} \right). \quad (1) \]

Let \(T \) wastes at least \(\sum_{i \in [t]} (|F_i| - 2) \geq \sum_{i \in [t]} (|W_i| - 2) \) colors.

For any \(i, j \in [k] \), since both \(S_i - S_j \) and \(S_j - S_i \) are nonempty, there are at most \(k - 2 \) rainbow monochromatic paths connecting every vertex of \(S_i - S_j \) and every vertex of \(S_j - S_i \) in \(T \). Thus there are at least two trees of \(T \) containing the two vertices, i.e., \(t \geq 2 \).

If \(k = 2 \) and \(|S| - 1 = 3 \), then \(T \) wastes at least two colors, and thus \(T \) wastes at least \(k(2 - 2) \) colors. Otherwise, \(|S| - 1 \geq 4 \). Then by Lemma 1, the expression \(\sum_{i \in [t]} (|W_i| - 2) \), subjects to (1), \(n - |S| + 1 \geq |W_i| \geq 3 \) and \(t \geq 2 \), is minimum when \(|W_i| = n - |S| + 1 \), and \(|W_i| = 3 \) for \(i = 2, 3, \ldots, t \). Then \(T \) wastes at least \(n - |S| \) colors, and thus \(T \) wastes at least \(k(n - 2) \) colors.

Case 2. each vertex \(v \) of \(G \) has \(d^*(v) \geq k + 1 \).

Suppose \(T = \{T_1, \ldots, T_r\} \) and \(|T_i| \geq |T_{i+1}| \) for \(i \in [r - 1] \). Since \(d^*(v) \geq k + 1 \) for each vertex \(v \) of \(G \), \(\sum_{i \in [r]} |T_i| \geq (k + 1)n \).

If \(r \leq \frac{n}{2} + k \), then \(\sum_{i \in [r]} (|T_i| - 2) \geq k(n - 2) \). This implies that \(T \) wastes at least \(k(n - 2) \) colors. Thus, we consider \(r > \frac{n}{2} + k \).

Since each pair of non-adjacent vertices is connected by at least \(k \) rainbow monochromatic paths of order at least three, and each pair of adjacent vertices are connected by at least \(k - 1 \) rainbow monochromatic paths of order at least three, there are at least \(k \left(\frac{n}{2} - e(G) \right) + (k - 1)e(G) = k \left(\frac{n}{2} \right) - e(G) \) such paths. Since each \(T_i \) of \(T \) provides \(\left(\frac{|T_i| - 1}{2} \right) \) paths of order at least three, we have

\[\sum_{i \in [r]} \left(\frac{|T_i| - 1}{2} \right) \geq k \left(\frac{n}{2} \right) - e(G). \]

Since \(e(G) \leq \frac{n^2}{4} \),

\[\sum_{i \in [r]} \left(\frac{|T_i| - 1}{2} \right) \geq k \left(\frac{n}{2} \right) - \frac{n^2}{4}. \quad (2) \]

If \(|T_i| = n - 1 \) for each \(i \in [r] \), since \(r > \frac{n}{2} + k \), \(T \) wastes \(r(n - 3) > k(n - 2) \)
By Lemma 1, there are integers t, x with $t < r$ and $3 \leq x \leq n - 2$, such that the expression $\sum_{i \in [r]}(|T_i| - 2)$, subject to (2) and $3 \leq |T_i| \leq n - 1$, is minimum when $|T_i| = n - 1$ for $i \in [r]$, $|T_{t+1}| = x$ and $|T_j| = 3$ for $j \in \{t + 1, \cdots, r\}$. By (2),

$$t\left(\frac{n-2}{2}\right) + \left(x - 1\right) + r - t - 1 \geq k\left(\frac{n}{2}\right) - \frac{n^2}{4}. \quad (3)$$

This implies that Γ wastes at least

$$w(\Gamma) = t(n - 3) + x - 2 + r - t - 1 \quad (4)$$

colors.

If $t \geq k$, or $t = k - 1$ and $x \geq \frac{n}{2} + k - 1$, then Γ wastes at least

$$(k - 1)(n - 3) + x - 2 + r - k = k(n - 2) + (r + x + 1 - 2k - n) \geq k(n - 2)$$

colors.

If $t = k - 1$ and $x < \frac{n}{2} + k - 1$, then suppose y is a positive integer such that $x + y = \left[\frac{n}{2} + k - 1\right]$. Let $z = \left[\frac{n}{2} + k - 1\right]$. Recall that $n \geq 4k - 1$ and $x \geq 3$, and then $x + z - 3 \geq 7$. By Lemma 3, $(z - 1)_2 - (x - 1)_2 \geq y - 1$. We have

$$\sum_{i \in [r]}\left(\frac{|T_i| - 1}{2}\right) = (k - 1)\left(\frac{n-2}{2}\right) + \left(x - 1\right) + r - k$$

$$\leq (k - 1)\left(\frac{n-2}{2}\right) + \left(z - 1\right) + y + 1 + r - k$$

$$\leq (k - 1)\left(\frac{n-2}{2}\right) + \left(\frac{n}{2} + k - 1\right) - y + 1 + r - k$$

$$= \frac{4k - 3}{8}n^2 - \frac{8k - 7}{4}n + \frac{(k - 1)(k + 2)}{2} + r - y$$

$$= k\left(\frac{n}{2}\right) - \frac{n^2}{4} - \left(\frac{n^2}{8} + \frac{6k - 7}{4}n - \frac{(k + 2)(k - 1)}{2}\right) + r - y.$$
Then \(h(n) \geq 0 \) when \(n \geq \frac{1}{2} (\sqrt{160k^2 - 384k + 292} - 12k + 18) \). Thus \(h(n) \geq 0 \) when \(n \geq \frac{k}{2} + 9 \). Recall that \(n \geq 4k - 1 \), and then \(n \geq \frac{k}{2} + 9 \) holds for \(k \geq 3 \). So \(\Gamma \) wastes at least \(k(n - 2) \) colors if \(k \geq 3 \). If \(k = 2 \), then \(h(n) = \frac{1}{8} (n^2 + 6n - 32) \). Since \(n \geq 4k - 1 = 7 \), \(h(n) \geq 0 \). Therefore, \(\Gamma \) wastes at least \(k(n - 2) \) colors when \(k = 2 \).

If \(t \leq k - 2 \), then the number of trees of order 3 is at least \(r - t - 1 \). Recall that \(n \geq 4k - 1 \geq 7 \) and \(k \geq 2 \). By (3),

\[
 r - t - 1 \geq k \left(\frac{n}{2} - \frac{n^2}{4} - t \left(\frac{n - 2}{2} \right) - \left(\frac{x - 1}{2} \right) \right)
 \geq k \left(\frac{n}{2} - \frac{n^2}{4} - (k - 1) \left(\frac{n - 2}{2} \right) \right)
 \geq k(2n - 3) + \frac{1}{4} (n^2 - 10n + 12)
 \geq k(2n - 3) - \frac{9}{4} \geq k(n - 2).
\]

Thus, \(\Gamma \) wastes at least \(k(n - 2) \) colors. \(\square \)

For a graph \(G \), we use \(N_{uv} \) to denote the set of common neighbors of \(u \) and \(v \), and let \(n_{uv} = |N_{uv}| \), \(n_G = \min\{n_{uv} : u, v \in V(G) \text{ and } u \neq v\} \).

Proposition 3 If \(G \) is a graph with \(\tau(G) \geq k \), then \(rmc_k(G) \leq m - k(n - 2) + n_G \).

Proof Suppose \(\Gamma \) is an extremal \(RM C_k \) coloring of \(G \). Let \(u, v \) be two vertices of \(G \) with \(n_{uv} = n_G \). Let \(V(G) = N[v] - \{u\} = A, N_{uv} = C \) and \(N(v) - \{u\} = B \). Then \(C \subseteq B \). Suppose that \(\mathcal{F} \) is the set of nontrivial trees containing \(u \) and \(v \), \(\mathcal{F} \) is the set of nontrivial trees containing \(u \) and at least one vertex of \(B \) but not \(v \), and \(\mathcal{H} \) is the set of nontrivial trees containing \(v \) and at least one vertex of \(A \) but not \(u \). Thus, \(\mathcal{F}, \mathcal{F} \) and \(\mathcal{H} \) are pairwise disjoint.

The vertex set \(A \) is partitioned into \(k + 1 \) pairwise disjoint subsets \(A_0, \ldots, A_k \) (some sets may be empty) such that every vertex of \(A_i \) is in exactly \(i \) nontrivial trees of \(\mathcal{F} \) for \(i \in \{0, \ldots, k - 1\} \) and every vertex of \(A_k \) is in at least \(k \) nontrivial trees of \(\mathcal{F} \). The vertex set \(B \) can also be partitioned into \(k + 1 \) pairwise disjoint subsets \(B_0, \ldots, B_k \) (some sets may be empty) such that every vertex of \(B_i \) is in exactly \(i \) nontrivial trees of \(\mathcal{F} \) for \(i \in \{0, \ldots, k - 1\} \) and every vertex of \(B_k \) is in at least \(k \) nontrivial trees of \(\mathcal{F} \). Then \(\mathcal{F} \) wastes

\[
 w_1 = \Sigma_{T \in \mathcal{T}}(|T| - 2) \geq \sum_{i=0}^{k} (\sum_{j=0}^{i} |A_j| + |B_j|)
\]

For every vertex \(w \) of \(A_i \), since \(N(v) \cap A = \emptyset \), there are at least \(k \) nontrivial trees containing \(v \) and \(w \). Since there are \(i \) such trees in \(\mathcal{F} \) for \(i \neq k \), there are at least \(k - i \)
nontrivial trees connecting \(v \) and \(w \) in \(\mathcal{H} \). Since every nontrivial tree of \(\mathcal{H} \) must contain \(v \) and a vertex of \(B \), \(\mathcal{H} \) wastes

\[
w_2 = \sum_{H \in \mathcal{H}} (|H| - 2) \geq \sum_{i=0}^{k} |A_i|
\]
colors.

Let \(C_i = \{ w : w \in B_i \cap C \text{ and } uw \text{ is a trivial edge } \} \). For each vertex \(w \) of \(B \), if \(w \in B_i - C_i \), then there are at least \(k \) nontrivial trees containing \(u \) and \(w \); if \(w \in C_i \), there are at least \(k-1 \) nontrivial trees containing \(u \) and \(w \). This implies that each vertex of \(B_i - C_i \), \(i \in \{0, \ldots, k-1\} \), is in at least \(k-i \) nontrivial trees of \(\mathcal{F} \), and each vertex of \(C_i \) is in at least \(k-i-1 \) nontrivial trees of \(\mathcal{F} \). Now we partition \(\mathcal{F} \) into two parts, \(\mathcal{F}_1 \) and \(\mathcal{F}_2 \), such that

\[
\mathcal{F}_1 = \{ F \in \mathcal{F} : V(F) \subseteq B \cup \{u\} \}
\]

and

\[
\mathcal{F}_2 = \mathcal{F} - \mathcal{F}_1.
\]

Then for every \(F \) of \(\mathcal{F}_1 \), \(u \) connects a vertex of \(C \) in \(F \). Thus, there are at most \(|C| - \sum_{i=0}^{k} |C_i| \) trees in \(\mathcal{F}_1 \). Therefore, \(\mathcal{F} \) wastes

\[
w_3 = \sum_{F \in \mathcal{F}} (|F| - 2) \\ \geq \sum_{i=0}^{k} (k-i)|B_i - C_i| + \sum_{i=0}^{k-1} (k-i-1)|C_i| - \left(|C| - \sum_{i=0}^{k-1} |C_i| \right) \\ = -|C| + \sum_{i=0}^{k} (k-i)|B_i|
\]
colors.

According to the above discussion, \(\Gamma \) wastes at least

\[
w_1 + w_2 + w_3 \geq -|C| + \sum_{i=0}^{k} |A_i| + \sum_{i=0}^{k} |B_i| = k(n-2) - n_G
\]
colors. Therefore, \(rmc_k(G) \leq m - k(n-2) + n_G \). \(\Box \)

If \(G \) is not an \(s+1 \)-connected graph, then \(n_G \leq s \). Thus, we have the following result.

Corollary 3 If \(G \) is a graph with \(\tau(G) \geq k \) and \(G \) is not \(s+1 \)-connected, then \(rmc_k(G) \leq m - k(n-2) + s \).

The next theorem decreases this upper bound by one when \(s = 1 \).

Proposition 4 If \(G \) has a cut vertex and \(\tau(G) \geq k \geq 2 \), then \(rmc_k(G) = m - k(n-2) \).

Proof Let \(\Gamma \) be an extremal \(RMC_k \)-coloring of \(G \). Suppose that \(a \) is a vertex cut of \(G \) and \(A_1, \ldots, A_t \) are components of \(G - \{a\} \). Let \(w \) be a vertex of \(A_1 \), and let \(\mathcal{F} = \{ T_1, \ldots, T_r \} \) be the set of nontrivial trees connecting \(w \) and some vertices of
\[\text{Proposition 6} \quad (\[4\]) \quad \text{If } G \text{ is a cycle of order } n, \text{ then } mc(G) \geq e(G) - \left\lfloor \frac{2n}{3} \right\rfloor. \]

By Proposition 6, if \(P \) is a Hamiltonian path of \(K_n \) with \(n \geq 4 \), then \(mc(G\setminus P) \geq e(G\setminus P) - \left\lfloor \frac{2n}{3} \right\rfloor \). The following result is obvious.

Corollary 4 \(\text{rmc}_2(K_n) \geq \left\lfloor \frac{3n^2 - 13n}{6} \right\rfloor + 2, \quad n \geq 4. \)

Remark 1 The above corollary implies that there are indeed some graphs with rainbow monochromatic \(k \)-edge-connection number greater than the lower bound. In fact, for any \(k \geq 2 \) and \(s \geq 2 \), there exist graphs with rainbow monochromatic \(k \)-
edge-connection number greater than or equal to \(m - k(n - 2) + s - 1\). We construct the \((k, s)\)-perfectly-connected graphs below. A graph \(G\) is called a \((k, s)\)-perfectly-connected graph if \(V(G)\) can be partitioned into \(s + 1\) parts \(\{v\}, V_1, \ldots, V_s\), such that \(\tau(G|V_i|) \geq k\), \(V_i, \ldots, V_s\) induces a corresponding complete \(s\)-partite graph (call it \(K^s\)), and \(v\) has precisely \(k\) neighbors in each \(V_i\). Since \(\tau(G|V_i|) \geq k\), each \(G|V_i|\) has \(k\) edge-disjoint spanning trees (say \(T^*_i, \ldots, T^*_{i}^k\)). Let the \(k\) neighbors of \(v\) in \(V_i\) be \(u_i^1, \ldots, u_i^k\) and let \(e_i^1 = vu_i^1, \ldots, e_i^k = vu_i^k\). Let \(T_j = \bigcup_{i \in [s]} e_j^i \cup \bigcup_{i \in [s]} T^*_{ij}\) for \(j \in \{2, \ldots, k\}\). Let \(\Gamma\) be an edge-coloring of \(G\) such that \(\Gamma(T^*_i \cup e_i^j) = i\) for \(i \in [s]\), \(\Gamma(T^*_j) = s + j - 1\) for \(j \in \{2, \ldots, k\}\), and the other edges are trivial. Then \(\Gamma\) is an \(RMC_k\)-coloring of \(G\) and \(|\Gamma(G)| = m - k(n - 2) + s - 1\), and thus \(rmc_k(G) \geq m - k(n - 2) + s - 1\). □

We propose an open problem below. If the answer for the problem is true, then it will cover our main Theorem 6.

Problem 1 For an integer \(k \geq 2\) and a graph \(G\) with \(\tau(G) \geq k\), does \(rmc_k(G) \leq mc(G) - (k - 1)(n - 2)\) hold? More generally, does \(rmc_k(G) \leq rmc_t(G) - (k - t)(n - 2)\) hold for any integer \(1 \leq t < k\)?

5 Random Results

The following result can be found in text books.

Lemma 5 ([1], Chernoff Bound) If \(X\) is a binomial random variable with expectation \(\mu\), and \(0 < \delta < 1\), then

\[
Pr[X < (1 - \delta)\mu] \leq \exp\left(-\frac{\delta^2 \mu}{2}\right)
\]

and if \(\delta > 0\),

\[
Pr[X > (1 + \delta)\mu] \leq \exp\left(-\frac{\delta^2 \mu}{2 + \delta}\right).
\]

Let \(p = \frac{\log n + a}{n}\). The authors in [5] proved that

\[
Pr[G(n, p) \text{ is connected}] \rightarrow \begin{cases}
1, & a \rightarrow +\infty; \\
\exp^{-e^{-a}}, & |a| = O(1); \\
0, & a \rightarrow -\infty.
\end{cases}
\]

Thus, \(p = \frac{\log n}{n}\) is the threshold function for \(G(n, p)\) being connected.

A sufficient condition for \(G(n, p)\) to have an \(RMC_k\)-coloring almost surely is that \(T(G(n, p)) \geq k\) almost surely. For the STP number problem of \(G(n, p)\), Gao et al. proved the following results.

Lemma 6 ([7]) For every \(p \in [0, 1]\), we have
\[T(G(n,p)) = \min \left\{ \delta(G(n,p)), \left[\frac{e(G(n,p))}{n-1} \right] \right\} \]

almost surely.

In this section, we denote \(\beta = \frac{2}{\log e - \log 2} \approx 6.51778 \).

Lemma 7 ([7]) If

\[p \geq \frac{\beta(\log n - \log \log n/2) + o(1)}{n-1}, \]

then \(T(G(n,p)) = \left[\frac{e(G(n,p))}{n-1} \right] \) almost surely; if

\[p \leq \frac{\beta(\log n - \log \log n/2) - o(1)}{n-1}, \]

then \(T(G(n,p)) = \delta(G(n,p)) \) almost surely.

We knew that \(m - k(n - 2) \) is a lower bound of \(rmck(G) \). Next is an upper bound of \(rmck(G) \). Although the upper bound is rough, it is useful for the subsequent proof.

Proposition 7 If \(G \) is a graph with \(\tau(G) \geq k \), then \(rmck(G) \leq m - (k - 1)(n - 2) \).

Proof Since the result holds for \(k = 1 \), we only consider \(k \geq 2 \). Suppose \(\Gamma \) is an extremal \(RMCk \)-coloring of \(G \) and \(\mathcal{F} = \{T_1, \ldots, T_r\} \) is the set of nontrivial color-induced trees with \(|T_1| \geq \cdots \geq |T_r| \). Then

\[k \binom{n}{2} - e(G) \leq \sum_{i \in [r]} \left(\frac{|T_i| - 1}{2} \right). \tag{5} \]

Case 1. \(T_1 \) is a spanning tree of \(G \).

Then \(\Gamma' \) is an extremal \(RMCk - 1 \)-coloring restricted on \(G' = G - E(T_1) \) (this result has been proved in Theorem 2). By induction on \(k \),

\[|\Gamma(G')| = rmck_{k-1}(G') \leq e(G') - (k - 2)(n - 2). \]

Then

\[rmck(G) = 1 + |\Gamma(G')| = 1 + rmck_{k-1}(G') \leq 1 + e(G') - (k - 2)(n - 2) \leq m - (k - 1)(n - 2). \]

Case 2. \(|T_i| \leq n - 1 \) for each \(i \in [r] \).

By Lemmas 1 and 2, the expression \(\sum_{i \in [r]} (|T_i| - 2) \), subjects to (5) and \(3 \leq |T_i| \leq n - 1 \), is minimum when \(|T_1| = \cdots = |T_{r-1}| = n - 1 \) and \(|T_r| = x + 1 \), where \(x \) is an integer with \(3 \leq x + 1 \leq n - 2 \).

If \(r \leq k - 1 \), then \(\sum_{i \in [r]} \left(\frac{|T_i| - 1}{2} \right) < (k - 1) \binom{n-2}{2} < k \binom{n}{2} - e(G) \), a contradiction to (5).

If \(r > k \), then \(\Gamma \) wastes at least \(k(n - 3) \geq (k - 1)(n - 2) \) colors. Thus \(rmck(G) \leq m - (k - 1)(n - 2) \).

If \(r = k \), then

\[\text{...} \]
So, \(x^2 - x - \alpha \geq 0\), where
\[
\alpha = 2\binom{n}{2} + (2n - 3)(k - 1) - e(G) = 2\left[(2n - 3)(k - 1) + e(G)\right].
\]
The inequality holds when \(x \geq \frac{1 + \sqrt{1 + 4\alpha}}{2} \geq \sqrt{x}\). Thus, \(I\) wastes at least
\[
\Sigma_{i \in [k]}(|T_i| - 2) = (k - 1)(n - 2) + x - 1 \geq (k - 1)(n - 2) + \sqrt{x} - 1.
\]
Since \(k \geq 2\), \(\sqrt{x} \geq 1\). Thus \(\text{rmck}(G) \leq m - (k - 1)(n - 2)\).

Theorem 7 Let \(k = k(n)\) be an integer such that \(\left\lceil \frac{n}{k}\right\rceil > k \geq 1\) and let \(\text{rmck}(K_n) > f(n) \geq k(n - 1)\). Then
\[
p = \begin{cases}
\frac{f(n) + kn}{n^2}, & f(n) \geq O(n \log n) \text{ and } k = o(n); \\
\min \left\{ \frac{k \cdot \log n}{n}, \frac{n}{f(n)} \right\}, & f(n) = o(n \log n) \text{ and } k = o(n); \\
1, & k = O(n) \text{ and } f(n) < \text{rmck}(K_n).
\end{cases}
\]
is a sharp threshold function for the property \(\text{rmck}(G, p) \geq f(n)\).

Proof Let \(c\) be a positive constant and let \(E(||G(n, cp)||)\) be the expectation of the number of edges in \(G(n, cp)\). Then
\[
E(||G(n, cp)||) = \begin{cases}
\frac{c(n - 1)}{2n} f(n) + \frac{c \cdot k(n - 1)}{2}, & f(n) \geq O(n \log n) \text{ and } k = o(n); \\
\frac{c \cdot k(n - 1)}{2}, & f(n) = o(n \log n), k = o(n) \text{ and } k > \log n; \\
\frac{c \log n(n - 1)}{2}, & f(n) = o(n \log n), k = o(n) \text{ and } k \leq \log n; \\
\frac{c^n}{2}, & k = O(n) \text{ and } f(n) < \text{rmck}(K_n).
\end{cases}
\]
By Lemma 5, both inequalities
\[
\Pr[||G(n, cp)|| < \frac{1}{2} E(||G(n, cp)||)] \leq \exp \left(-\frac{1}{8} E(||G(n, cp)||) \right) = o(1)
\]
and
\[
\Pr[||G(n, cp)|| > \frac{3}{2} E(||G(n, cp)||)] \leq \exp \left(-\frac{1}{10} E(||G(n, cp)||) \right) = o(1)
\]
hold for each \(p\).

Case 1. \(k = O(n)\), i.e., there is an \(l \in \mathbb{R}^+\) such that \(l \cdot n \leq k \leq \left\lfloor \frac{n}{2} \right\rfloor\).

Since \(G(n, p) = K_n\), \(\text{rmck}(G(n, p)) \geq f(n)\) always holds. On the other hand, we have
\[||G(n, l \cdot p)|| \leq \frac{3}{2} E(||G(n, l \cdot p)||) = \frac{3l}{2} \cdot \binom{n}{2} < k(n - 2) \]

almost surely. By Claim 3, \(G(n, l \cdot p) \) does not have \(RMC_k \)-colorings almost surely.

Case 2. \(k = o(n) \).

Case 2.1. \(f(n) \geq O(n \log n) \).

Then, there is an \(s \in \mathbb{R}^+ \) and \(f(n) \geq s \cdot n \log n \). Let

\[
c_1 = \begin{cases}
\beta + 1, & s \geq 1; \\
\beta + 1, & 0 < s < 1.
\end{cases}
\]

Since \(f(n) \geq s \cdot n \log n \), we have

\[
c_1 p \geq \frac{(\beta + 1)(\log n + kn)}{n} \geq \frac{\beta (\log n - \log \log n/2) + o(1)}{n - 1}.
\]

Since

\[
||G(n, c_1 p)|| \geq \frac{1}{2} E(||G(n, c_1 p)||) = \frac{\beta + 1}{2} \cdot \frac{n - 1}{2n} f(n) + \frac{k(n - 1)(\beta + 1)}{4}
\]

almost surely, by Lemma 7, \(T(G(n, c_1 p)) = \left[\frac{||G(n, c_1 p)||}{n - 1} \right] > k \) almost surely, i.e., \(G(n, c_1 p) \) has \(RMC_k \)-colorings almost surely. Therefore,

\[
rmc_k(G(n, c_1 p)) \geq ||G(n, c_1 p)|| - k(n - 2)
\]

\[
\geq \frac{\beta + 1}{2} \cdot \frac{n - 1}{2n} f(n) + \frac{k(n - 1)(\beta + 1)}{4} - k(n - 2)
\]

\[
> \frac{(\beta + 1)(n - 1)}{4n} f(n)
\]

\[
> f(n)
\]

almost surely.

Let \(c_2 = \frac{2}{3} \). Then

\[
||G(n, c_2 p)|| \leq \frac{3}{2} E(||G(n, c_2 p)||)
\]

\[
\leq \frac{3c_2}{2} \cdot \frac{n - 1}{2n} f(n) + \frac{3c_2}{2} \cdot \frac{k(n - 1)}{2}
\]

\[
< \frac{1}{2} [f(n) + k(n - 1)]
\]

almost surely. Thus, either \(G(n, c_2 p) \) does not have \(RMC_k \)-colorings almost surely, or

\[
rmc_k(G(n, c_2 p)) < ||G(n, c_2 p)|| - (k - 1)(n - 2) < \frac{1}{2} f(n)
\]

almost surely [(recall that \(rmc_k(G) \leq m - (k - 1)(n - 2) \) by Proposition 7)].
Case 2.2. \(f(n) = o(n \log n) \).
If \(k \leq \log n \), then \(p = \frac{\log n}{n} \). Let \(c_1 = \beta + 1 \) and \(c_2 = \frac{1}{2} \) be two constants. Since
\[
c_1p > \frac{(\beta + 1) \log n}{n} \geq \frac{\beta(\log n - \log \log n/2 + \omega(1))}{n - 1},
\]
by Lemma 7, \(T(G(n, c_1p)) = \left\lfloor \frac{||G(n, c_1p)||}{n-1} \right\rfloor \) almost surely. Since
\[
||G(n, c_1p)|| \geq \frac{1}{2} E(||G(n, c_1p)||) = \frac{\log n(n-1)(\beta + 1)}{4}
\]
almost surely, \(T(G(n, c_1p)) \geq \log n \geq k \) almost surely, i.e., \(G(n, c_1p) \) has \(RMC_k \)-coloring almost surely. Therefore,
\[
rmc_k(G(n, c_1p)) \geq ||G(n, c_1p)|| - k(n - 2)
\]
\[
\geq \frac{\log n(n-1)(\beta + 1)}{4} - k(n - 2)
\]
\[
\geq \frac{3\log n(n-1)}{4} > f(n)
\]
almost surely. For \(G(n, c_2p) \), since \(c_2p = \frac{\log n}{2n} \), \(G(n, c_2p) \) is not connected almost surely, i.e., \(G(n, c_2p) \) does not have \(RMC_k \)-colorings almost surely.
If \(k > \log n \) and \(k = o(n) \), then \(p = \frac{k}{n} \). Let \(c_1 = \beta + 1 \) and \(c_2 = 1 \). Then
\[
c_1p = \frac{(\beta + 1) k}{n} > \frac{(\beta + 1) \log n}{n} \geq \frac{\beta(\log n - \log \log n/2 + \omega(1))}{n - 1},
\]
i.e., \(T(G(n, c_1p)) = \left\lfloor \frac{||G(n, c_1p)||}{n-1} \right\rfloor \) almost surely. Since
\[
||G(n, c_1p)|| \geq \frac{1}{2} E(||G(n, c_1p)||) = \frac{k(n-1)(\beta + 1)}{4}
\]
almost surely, \(T(G(n, c_1p)) \geq k \) almost surely, i.e., \(G(n, c_1p) \) has \(RMC_k \)-colorings almost surely. Thus
\[
rmc_k(G(n, c_1p)) \geq ||G(n, c_1p)|| - k(n - 2) \geq \frac{3}{4} k(n - 1) > \frac{3}{4} (n - 1) \log n > f(n)
\]
almost surely. For \(G(n, c_2p) \), since
\[
||G(n, c_2p)|| \leq \frac{3}{2} E(||G(n, c_2p)||) = \frac{3}{4} k(n-1) < k(n - 2)
\]
almost surely. By Claim 3, \(G(n, c_2p) \) does not have \(RMC_k \)-colorings almost surely.

Remark 2 Since \(rmc_k(G) = rmc_k(K_n) \) if and only if \(G = K_n \), we only concentrate on the case \(1 \leq f(n) < rmc_k(K_n) \). If \(n \) is odd, then \(G \) has \(RMC_{[\frac{4}{2}]} \)-colorings if and only if \(G = K_n \). So, we are not going to consider the case \(k = [\frac{4}{2}] \). \(\square \)
Acknowledgements The authors would like to thank the reviewers for helpful comments and suggestions.

References

1. Alon, N., Spencer, J.: The Probabilistic Method, Wiley-Interscience Series in Discrete Mathematics and Optimization, 3rd edn. Wiley, (2008)
2. Bondy, J.A., Murty, U.S.R.: Graph Theory. London: Springer, (2008)
3. Cai, Q., Li, X., Wu, D.: Erdős-Gallai-type results for colorful monochromatic connectivity of a graph. J. Comb. Optim. 33(1), 123–131 (2017)
4. Caro, Y., Yuster, R.: Colorful monochromatic connectivity. Discrete Math. 311(16), 1786–1792 (2011)
5. Erdős, P., Rényi, A.: On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci. 5(1), 17–60 (1960)
6. Friedgut, E., Kalai, G.: Every monotone graph property has a sharp threshold. Proc. Am. Math. Soc. 124, 2993–3002 (1996)
7. Gao, P., Pérez-Giménez, X., Sato, C.M.: Arboricity and spanning-tree packing in random graphs. Random Struct. Alg. 52(3), 495–535 (2017)
8. González-May, D., Guevara, M., Montellano-Ballesteros, J.J.: Monochromatic connecting colorings in strongly connected oriented graphs. Discrete Math. 340(4), 578–584 (2017)
9. Gu, R., Li, X., Qin, Z., Zhao, Y.: More on the colorful monochromatic connectivity. Bull. Malays. Math. Sci. Soc. 40(4), 1769–1779 (2017)
10. Huang, Z., Li, X.: Hardness results for three kinds of colored connections of graphs. Theoret. Comput. Sci. 841, 27–38 (2020)
11. Jin, Z., Li, X., Wang, K.: The monochromatic connectivity of some graphs. Taiwan. J. Math. 24(4), 785–815 (2020)
12. Li, P., Li, X.: Monochromatic k-edge-connection colorings of graphs. Discrete Math. 343(2), 111679 (2020)
13. Li, X., Wu, D.: A survey on monochromatic connections of graphs. Theory Appl. Graphs I, 4 (2018)
14. Mao, Y., Wang, Z., Yanling, F., Ye, C.: Monochromatic connectivity and graph products. Discrete Math. Algorithm Appl. 8(1), 1650011.19 (2016)
15. Nash-Williams, J.A.: Edge-disjoint spanning trees of finite graphs. J. Lond. Math. Soc. 1(1), 445–450 (1961)
16. Tutte, W.T.: On the problem of decomposing a graph into n connected factors. J. Lond. Math. Soc. 1(1), 221–230 (1961)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.