Canonical and Lie-algebraic twist deformations of κ-Poincare and contractions to κ-Galilei algebras

Marcin Daszkiewicz

Institute of Theoretical Physics
University of Wroclaw pl. Maxa Borna 9, 50-206 Wroclaw, Poland
e-mail: marcin@ift.uni.wroc.pl

Abstract

We propose canonical and Lie-algebraic twist deformations of κ-deformed Poincare Hopf algebra which leads to the generalized κ-Minkowski space-time relations. The corresponding deformed κ-Poincare quantum groups are also calculated. Finally, we perform the nonrelativistic contraction limit to the corresponding twisted Galilean algebras and dual Galilean quantum groups.
1 Introduction

Recently, it has been suggested that the classical Poincaré invariance should be treated as an approximate symmetry in ultra-high energy regime and the relativistic space-time symmetries on Planck scale is deformed \cite{1}-\cite{4}. Besides, there are also arguments based on quantum gravity \cite{5}, \cite{6} and string theory models \cite{7}, \cite{8} which suggest that space-time at Planck length is quantum, i.e. it should be noncommutative. The simplest choice of the noncommutative space-time is the following

\[[\hat{x}_\mu, \hat{x}_\nu] = i\theta_{\mu\nu} + i\theta^\rho_{\mu\nu}\hat{x}_\rho; \quad \theta_{\mu\nu}, \theta^\rho_{\mu\nu} - \text{const}. \] (1)

The first, simplest kind of noncommutativity ($\theta_{\mu\nu} \neq 0, \theta^\rho_{\mu\nu} = 0$ in formula (1)) was investigated in the Hopf-algebraic framework in \cite{9}-\cite{14}. It corresponds to the well-known canonical (soft) deformation of Poincare Hopf algebra obtained by twist procedure \cite{15}. The second type of space-time deformation ($\theta_{\mu\nu} = 0, \theta^\rho_{\mu\nu} \neq 0$) is directly associated with another modification of classical relativistic symmetries - the κ-deformed Poincare Hopf algebra \cite{16}, \cite{17}, which is an example of the Lie-algebraic kind of space-time noncommutativity.

In almost all considerations both modifications of Minkowski space - Lie- and soft-type - are considered separately. Here we ask about such a deformation of relativistic space-time symmetry, when both noncommutativities will appear together, i.e. for which in the formula (1) both coefficients $\theta_{\mu\nu}$ and $\theta^\rho_{\mu\nu}$ are different from zero.

The results of Zakrzewski’s (\cite{18}, \cite{19}) indicate how to look for such a generalized Hopf Poincare structure. The classical r-matrix related to such a modification of space-time symmetries should be a sum of r-matrices for κ-Poincare group and the one describing canonical twist. Besides, this extended r-operator should solve the modified Yang-Baxter equation the same as in the case of κ-deformed Poincare symmetry. In this way, one can see that the explicit form of a proper twist factor allows us to derive a deformation of new quantum group - canonically twisted κ-Poincare Hopf algebra. Moreover, its dual partner can be calculated by a canonical quantization scheme of corresponding extended Poisson-Lie structure \cite{20}.

It should be mentioned, that the above algorithm can be generalized to two other twist deformations of κ-Poincare algebra - Lie-type \cite{21} (see also \cite{22}) and quadratic-one \cite{21}. First of them leads to a Lie-algebraic noncommutativity of Minkowski space, and it introduces in natural way a second (apart of κ) mass-like parameter $\hat{\kappa}$. In the case of quadratic extension of κ-Poincare algebra the deformation parameter is dimensionless.

In this article we consider both the canonical and Lie-algebraic twist deformations of κ-Poincare symmetry. In second Section we recall necessary facts concerning the κ-deformed Poincare algebra and its dual quantum group. The canonical and Lie-algebraic deformations of κ-Poincare algebras and κ-Minkowski space-times are presented in Section 3 and 4, respectively. In Section 5 we find canonically and Lie-algebraically deformed κ-Poincare dual groups. Finally, the nonrelativistic contraction limits (\cite{23}-\cite{25}) to the twisted Galilean algebras and dual quantum groups \cite{26}, \cite{23} are performed in Section 6. The results are briefly discussed and summarized in the last Section.
2 κ-Poincare deformation - short review

2.1 κ-deformed Poincare algebra

The κ-deformed Poincare algebra $U_\kappa(P)$ is the associative and coassociative Hopf structure with generators $M_{\mu\nu}$ and P_μ satisfying the following relations \[27\] \((\eta_{\mu\nu} = (-, +, +, +))\)

\[
[M^{\mu\nu}, M^{\lambda\sigma}] = i \left(\eta^{\mu\sigma} M_{\nu\lambda} - \eta^{\nu\sigma} M_{\mu\lambda} + \eta^{\mu\lambda} M_{\nu\sigma} - \eta^{\nu\lambda} M_{\mu\sigma} \right),
\]

\[
[M^{ij}, P_k] = i \left(\delta^i_k P_j - \delta^j_k P_i \right),
\]

\[
[M^{i0}, P_j] = i \delta^i_j \left[\frac{\kappa}{2} \left(1 - e^{-\frac{2P_0}{\kappa}} \right) + \frac{1}{2\kappa} \vec{P} \right] - \frac{i}{\kappa} P^j P_j,
\]

\[
[M^{ij}, P_0] = 0, \quad [M^{i0}, P_0] = i P_i, \quad [P_\mu, P_\nu] = 0,
\]

with the coproducts, antipodes and counits defined by

\[
\Delta_\kappa(M^{ij}) = M^{ij} \otimes 1 + 1 \otimes M^{ij},
\]

\[
\Delta_\kappa(M^{i0}) = M^{i0} \otimes e^{-\frac{P_0}{\kappa}} + 1 \otimes M^{i0} - \frac{1}{\kappa} M^{ij} \otimes P_j,
\]

\[
\Delta_\kappa(P_0) = P_0 \otimes 1 + 1 \otimes P_0, \quad \Delta_\kappa(P_i) = P_i \otimes e^{-\frac{P_0}{\kappa}} + 1 \otimes P_i,
\]

\[
S_\kappa(M^{ij}) = -M^{ij}, \quad S_\kappa(M^{i0}) = -\left(M^{i0} + \frac{1}{\kappa} M^{ij} P_j \right) e^{\frac{P_0}{\kappa}},
\]

\[
S_\kappa(P_i) = -P_i e^{\frac{P_0}{\kappa}}, \quad S_\kappa(P_0) = -P_0, \quad \epsilon(P_\mu) = \epsilon(M^{\mu\nu}) = 0.
\]

The κ-deformed mass Casimir looks as follows

\[
C_\kappa = \left(2\kappa \sinh \left(\frac{P_0}{\kappa} \right) \right)^2 - \vec{P}^2 e^{\frac{P_0}{\kappa}}.
\]

We see that in $U_\kappa(P)$ one can distinguish the following two Hopf subalgebras: non-deformed $O(3)$-rotation algebra and Abelian fourmomentum algebra. For $\kappa \to \infty$ the deformation disappears and we get the classical Poincare Hopf algebra $U_0(P)$.

It is well-known that the classical r-matrix corresponding to the above Hopf structure has the form \[18\], \[28\], \[29\]

\[
r_\kappa = \frac{1}{\kappa} M_{0\mu} \wedge P^\nu = \gamma^{\mu\nu;\alpha} M_{\mu\nu} \wedge P_\alpha; \quad \gamma^{\mu\nu;\alpha} = \frac{1}{2\kappa} (\delta^\mu_0 \eta^{\nu\alpha} - \delta^\nu_0 \eta^{\mu\alpha}),
\]

with $a \wedge b = a \otimes b - b \otimes a$. One can check that the matrix \[12\] with itself satisfies a modified Yang-Baxter equation (MYBE)

\[
[[r_\kappa, r_\kappa]] := [r_{\kappa 12}, r_{\kappa 13} + r_{\kappa 23}] + [r_{\kappa 13}, r_{\kappa 23}] = \frac{1}{\kappa^2} M_{\mu\nu} \wedge P^\mu \wedge P^\nu,
\]
where used in the above formula symbol \([[\cdot , \cdot]]\) denotes Schouten bracket while \(r_{\kappa 12} = \frac{1}{\kappa} M_{i0} \wedge P_i \wedge 1, r_{\kappa 13} = \frac{1}{\kappa} M_{i0} \wedge 1 \wedge P_i\) and \(r_{\kappa 23} = \frac{1}{\kappa} 1 \wedge M_{i0} \wedge P_i\).

2.2 \(\kappa\)-deformed Poincare group

The classical \(r\)-matrix (12) defines Poisson-Lie structure [20]. Its standard quantization procedure leads to a dual form of the Hopf algebra (2)-(10) - the \(\kappa\)-deformed Poincare group \(P_\kappa [28], [29]\). It is defined by the following

a) algebraic relations
\[
[\Lambda^\alpha_\beta, a^\rho] = -\frac{i}{\kappa}((\Lambda^\alpha_0 - \delta^\alpha_0)\Lambda^\rho_\beta + \eta^{\alpha\rho}(\Lambda_0^\beta - \eta_{0\beta})), \quad (14)
\]
\[
[a^\rho, a^\sigma] = -\frac{i}{\kappa}(\delta^\sigma_0 a^\rho - \delta^\rho_0 a^\sigma), \quad [\Lambda^\alpha_\beta, \Lambda^\delta_\rho] = 0, \quad (15)
\]

b) coproducts
\[
\Delta(\Lambda^\mu_\nu) = \Lambda^\mu_\alpha \otimes \Lambda^\alpha_\nu, \quad \Delta(a^\mu) = \Lambda^\mu_\nu \otimes a^\nu + a^\mu \otimes 1, \quad (16)
\]

c) antipodes and counits
\[
S(\Lambda^\mu_\nu) = \Lambda^\mu_\nu, \quad S(a^\mu) = -\Lambda^\mu_\nu a^\nu, \quad \epsilon(\Lambda^\mu_\nu) = \delta^\mu_\nu, \quad \epsilon(a^\mu) = 0. \quad (17)
\]

The used above generators \(\Lambda^\mu_\nu\) are dual to \(M^{\mu\nu}\) - Lorentz rotation generators
\[
<\Lambda^\mu_\nu, M^{\alpha\beta}> = (\eta^{\alpha\mu}\delta^\beta_\nu - \eta^{\beta\mu}\delta^\alpha_\nu), \quad (18)
\]
while \(a^\mu\) are dual to \(P_\mu\) (translations)
\[
< a^\mu, P_\nu > = \delta^\mu_\nu. \quad (19)
\]

It should be noted that the relations (16)-(17) remain undeformed as for the classical Poincare group \(P\).

2.3 \(\kappa\)-deformed Minkowski space

It is well-known (see e.g. [30]) that the deformed Minkowski space can be introduced as the quantum representation space (a Hopf module) for quantum Poincare algebra, equipped with a proper defined \(\star\)-multiplication of two arbitrary function. Such a \(\star\)-product should be consistent with the action of deformed symmetry generators satisfying suitably deformed Leibnitz (coproduct) rules. In the case of \(\kappa\)-deformation the \(\star_\kappa\)-multiplication looks as follows (see [31], [32] and references therein)
\[
f(x) \star_\kappa g(x) = \omega (\mathcal{O}_\kappa(x_\mu, \partial^\mu)(f(x) \otimes g(x))), \quad (20)
\]
where \(\omega(f(x) \otimes g(x)) = f(x)g(x)\) and the \(\star_\kappa\)-differential operator is given by
\[
\mathcal{O}_\kappa(x_\mu, \partial^\mu) := \exp(ix_\mu \gamma^\mu(\partial^\nu)), \quad (21)
\]
with
\[\gamma^\mu(\partial^\nu) := \epsilon^\mu_{\rho\tau} \partial^\rho \otimes \partial^\tau + \frac{1}{12} \epsilon^\mu_{\rho\nu} \epsilon^\nu_{\lambda\mu} (\partial^\lambda \partial^\nu \otimes \partial^\rho \otimes \partial^\tau) + \cdots ; \] (22)
\[c^i_0i = -c^i_{i0} = -\frac{1}{2\kappa} \text{ other } c^\mu_{\rho\tau} = 0 . \] (23)

Using the formula (20) in the case \(f(x) = x_\mu, \ g(x) = x_\nu \) we see that the \(\kappa \)-deformed Minkowski space-time takes the form
\[[x_i, x_0]_{\kappa} = x_i^{*\kappa}x_0 - x_0^{*\kappa}x_i = \frac{i}{\kappa}x_i , \quad [x_i, x_j]_{\kappa} = 0 , \] (24)
and in the \(\kappa \to \infty \) limit it becomes classical.

3 Canonical twist deformation of \(\kappa \)-Poincare algebra

3.1 Extended classical r-matrix

Let us consider the following extension of classical r-matrix (12)
\[r = r_\kappa + r_{\hat{\kappa}} + r_\xi , \] (25)
with
\[r_{\hat{\kappa}} = \frac{1}{2\kappa} M_{12} \wedge P_0 , \] (26)
and
\[r_\xi = \frac{\xi}{2} P_3 \wedge P_0 , \] (27)

where the formulas (26) and (27) describe Lie-algebraic and canonical twist deformations of \(\kappa \)-Poincare algebra, respectively. Due to the commutation relations \([P_\mu, P_\nu \] = \[M_{12}, P_3 \] = 0 (see (3) and (5)) we can see that both matrices \(r_{\hat{\kappa}} \) and \(r_\xi \) satisfy the classical Yang-Baxter equation (CYBE)
\[[[r_{\hat{\kappa}}, r_{\hat{\kappa}}]] = [[r_\xi, r_\xi]] = 0 ; \] (28)

the mixed Schouten brackets vanish as well
\[[[r_{\hat{\kappa}}, r_\xi]] = [[r_\xi, r_{\hat{\kappa}}]] = 0 . \] (29)

By explicit calculation one can check that
\[[[r_{\kappa}, r_{\cdot}]] = [[r_{\cdot}, r_{\kappa}]] = 0 ; \quad r_{\cdot} = r_{\hat{\kappa}}, \ r_\xi , \] (30)

which together with the formulas (28) and (29) means that the extended r-matrix (25) satisfies the modified Yang-Baxter equation (13)
\[[[r, r]] = \frac{1}{\kappa^2} M_{\mu\nu} \wedge P^\mu \wedge P^\nu . \] (31)
3.2 Canonical deformation of κ-Poincare algebra

In accordance with (30) one can consider the canonical ($r = r_\kappa + r_\xi$) deformation of enveloping κ-Poincare algebra $U_\kappa(\mathcal{P})$. As already mentioned in Introduction we can get such a modification of space-time relativistic symmetry by a proper (κ-deformed) twisting procedure.

First of all, let us introduce an element $\mathcal{F}_\xi \in U_\kappa(\mathcal{P}) \otimes U_\kappa(\mathcal{P})$ with the following linear term in series expansion with respect to the deformation parameter ξ

$$\mathcal{F}_\xi = 1 + ir_\kappa^{(1)} \otimes r_\xi^{(2)} + \cdots ; \quad r_\xi = r_\kappa^{(1)} \otimes r_\xi^{(2)}.$$ \hspace{1cm} (32)

Next, we define Drinfeld twist factor as the function (32) satisfying so-called κ-deformed cocycle condition \cite{33}

$$\mathcal{F}_{\xi_1 \otimes 1} \cdot (\Delta_\kappa \otimes 1) \mathcal{F}_\xi = \mathcal{F}_{\xi_2 \otimes 1} \cdot (1 \otimes \Delta_\kappa) \mathcal{F}_\xi,$$ \hspace{1cm} (33)

and the normalization condition

$$(\varepsilon \otimes 1) \mathcal{F}_\xi = (1 \otimes \varepsilon) \mathcal{F}_\xi = 1,$$ \hspace{1cm} (34)

with $\mathcal{F}_{\xi_1 \otimes 1} = \mathcal{F}_\xi \otimes 1$ and $\mathcal{F}_{\xi_2 \otimes 1} = 1 \otimes \mathcal{F}_\xi$. The solution of above equations has been found in \cite{19} and it looks as follows

$$\mathcal{F}_{\xi,\kappa} = \exp \left(i\kappa \frac{\xi}{2} P_3 \otimes \left(e^{-\frac{P_0}{\kappa}} - 1 \right) \right).$$ \hspace{1cm} (35)

One can easily see that in the limit $\xi \to 0$ factor $\mathcal{F}_{\xi,\kappa}$ goes to the unit operator

$$\lim_{\xi \to 0} \mathcal{F}_{\xi,\kappa} = 1,$$ \hspace{1cm} (36)

while in the case $\kappa \to \infty$ we get a standard canonical-twist element for the classical Poincare Hopf algebra $U_0(\mathcal{P})$

$$\mathcal{F}_{\xi,\infty} = e^{-i\frac{\xi}{2} P_3 \otimes P_0}.$$ \hspace{1cm} (37)

It is well-known that twist $\mathcal{F}_{\xi,\kappa}$ does not modify the algebraic part of κ-Poincare algebra (2)-(5) and counits, but it changes the coproducts (6)-(8) and antipodes (9), (10) according to

$$\Delta_{\mathcal{F}_{\xi,\kappa}}(a) = \mathcal{F}_{\xi,\kappa} \Delta_\kappa(a) \mathcal{F}_{\xi,\kappa}^{-1},$$ \hspace{1cm} (38)

$$S_{\mathcal{F}_{\xi,\kappa}}(a) = u(\kappa, \xi) S_\kappa(a) u^{-1}(\kappa, \xi),$$ \hspace{1cm} (39)

where $u(\kappa, \xi) = \sum f(1) S_\kappa(f(2))$, and where we use Sweedler’s notation $\mathcal{F}_{\xi,\kappa} = \sum f(1) \otimes f(2)$. Hence, using the formula

$$u(\kappa, \xi) = \exp \left(i\kappa \xi P_3 \left(\exp\left(\frac{P_0}{\kappa}\right) - 1 \right) \right),$$ \hspace{1cm} (40)
we obtain
\[
\Delta_{\mathcal{F}_{\xi,\kappa}}(P_0) = P_0 \otimes 1 + 1 \otimes P_0, \quad \Delta_{\mathcal{F}_{\xi,\kappa}}(P_i) = P_i \otimes e^{-\frac{P_0}{\kappa}} + 1 \otimes P_i, \tag{41}
\]
\[
\Delta_{\mathcal{F}_{\xi,\kappa}}(M^{ij}) = \Delta_{\kappa}(M^{ij}) + \frac{\xi}{2} \left(\delta^i_3 P_i - \delta^i_3 P_j \right) \otimes \left(e^{-\frac{P_0}{\kappa}} - 1 \right), \tag{42}
\]
\[
\Delta_{\mathcal{F}_{\xi,\kappa}}(M^{i0}) = \Delta_{\kappa}(M^{i0}) - \frac{\xi}{2} P_3 \otimes P_i e^{-\frac{P_0}{\kappa}} + \\
+ \frac{\xi}{2} \left(\delta^i_3 P_i - \delta^i_3 P_j \right) \otimes P_j \left(e^{-\frac{P_0}{\kappa}} - 1 \right), \tag{43}
\]
and
\[
S_{\mathcal{F}_{\xi,\kappa}}(P_0) = S_{\kappa}(P_0) = -P_0, \quad S_{\mathcal{F}_{\xi,\kappa}}(P_i) = S_{\kappa}(P_i) = -P_i e^{\frac{P_0}{\kappa}}, \tag{47}
\]
\[
S_{\mathcal{F}_{\xi,\kappa}}(M^{ij}) = S_{\kappa}(M^{ij}) - \kappa \xi \left(\delta^i_3 P_i - \delta^i_3 P_j \right) \cdot \left(\exp(P_0/\kappa) - 1 \right), \tag{48}
\]
\[
S_{\mathcal{F}_{\xi,\kappa}}(M^{i0}) = S_{\kappa}(M^{i0}) - \xi \left(\delta^i_3 P_i - \delta^i_3 P_j \right) P_j \cdot e^{\frac{P_0}{\kappa}} \cdot \\
\cdot \left(\exp(P_0/\kappa) - 1 \right) - \xi P_3 P_i e^{\frac{2P_0}{\kappa}} + \\
- \kappa \xi \left(\delta^i_3 \left[\frac{\kappa}{2} \left(1 - e^{-\frac{2P_0}{\kappa}} \right) + \frac{1}{2\kappa} \bar{P}^2 \right] - \frac{1}{\kappa} P_i P_3 \right), \tag{49}
\]
\[
\cdot e^{\frac{P_0}{\kappa}} \cdot \left(\exp(P_0/\kappa) - 1 \right). \tag{50}
\]

The algebraic relations (2)-(5) together with coproducts (41)-(46), antipodes (47)-(52) and classical counits (10) define the canonical twist deformation of \(\kappa\)-Poincare algebra \(\mathcal{U}_{\xi,\kappa}(\mathcal{P})\). We see, that for \(\xi \to 0\) one gets the \(\kappa\)-Poincare algebra \(\mathcal{U}_{\kappa}(\mathcal{P})\), which is in accordance with the formula (36), i.e. there is no twist transformation in such a case. For parameter \(\kappa \to \infty\), the algebra \(\mathcal{U}_{\xi,\kappa}(\mathcal{P})\) passes into well-known \(\theta^{\mu\nu}\)-Poincare Hopf structure [10], and this time, it agrees with the form of twist factor (37).

3.3 Canonical extension of \(\kappa\)-Minkowski space

Let us now find a noncommutative Minkowski space corresponding to the canonical deformation of \(\kappa\)-Poincare. As it was mentioned in the first section, our space-time can be defined as a quantum representation space for the extended quantum Poincare algebra
\(U_{\kappa,\xi}(P)\), equipped with a proper deformed \(\star\)-multiplication. We define our \(\star\)-product for arbitrary two functions depending on space-time coordinates as follows
\[
f(x) \star_{\kappa,\xi} g(x) = \omega \left(O_{\kappa,\xi}(x, \partial^\mu)(f(x) \otimes g(x)) \right),
\]
where the \(\star\)-operator \(O_{*,\kappa}(x, \partial^\mu)\) is given by the superposition of two \(\star\)-operators: for the \(\kappa\)-deformed r-matrix \(r_\kappa\) (see (21)), and for the canonical deformed matrix \(r_\xi\) (see twist factor (35)) [30]
\[
O_\xi(x, \partial) := F^{-1}_{\xi,\kappa}(x, \partial^\mu) = \exp \left(-i\kappa \frac{\xi}{2} \partial^3 \otimes \left(e^{-\frac{\xi}{\kappa}} - 1 \right) \right).
\]
Consequently, our operator takes the form
\[
O_{\kappa,\xi}(x, \partial^\mu) := O_\xi(x, \partial^\mu) \circ O_\kappa(x, \partial^\mu),
\]
and we obtain the following commutation relations
\[
[x_i, x_0]_{\kappa,\xi} = \frac{i}{\kappa} x_i + \frac{i\xi}{2} \partial^3_i, \quad [x_i, x_j]_{\kappa,\xi} = 0.
\]
The relations (56) define the canonically extended \(\kappa\)-Minkowski space-time \(M_{\kappa,\xi}\). We see that the soft deformation of \(\kappa\)-Poincare algebra introduces two kinds of noncommutativity: Lie-type associated with parameter \(\kappa\), and canonical type - corresponding to parameter \(\xi\). Of course, for \(\xi \to 0\) one gets the \(\kappa\)-deformed Minkowski space-time \(M_\kappa\), while in the \(\kappa \to \infty\) limit we obtain well-known \(\theta^{\mu\nu}\)-deformed Minkowski space \(M_\theta\) (see e.g. [10]).

4 Lie-algebraic twist deformation of \(\kappa\)-Poincare algebra

4.1 Deformation of algebra

In the case of Lie-algebraic deformation \((r = r_\kappa + r_\kappa)\) the twist factor has been found in [19]. Here we consider its antisymmetric form
\[
F_{\kappa,\kappa} = \exp \left(\frac{i}{2\kappa} M_{12} \wedge P_0 \right).
\]
By tedious calculation we get the following coproduct of deformed \(\kappa\)-Poincare algebra \(U_{\kappa,\kappa}(P)\)
\[
\Delta_{F_{\kappa,\kappa}}(P_0) = P_0 \otimes 1 + 1 \otimes P_0, \quad \Delta_{F_{\kappa,\kappa}}(P_3) = P_3 \otimes e^{-\frac{P_0}{\kappa}} + 1 \otimes P_3,
\]
\[
\Delta_{F_{\kappa,\kappa}}(P_1) = \Delta_\kappa(P_1) - \sin \left(\frac{P_0}{2\kappa} \right) \otimes P_2 + P_2 \otimes \sin \left(\frac{P_0}{2\kappa} \right) e^{-\frac{P_0}{\kappa}} +
\]
8
For Lie-algebraic deformation we define the

\[
\kappa
\]\(\text{The algebraic sector as well as the antipodes remain -1 + 1 = } \Delta \kappa_i + \left[\kappa_2 \hat{\kappa} M \right] \Delta F M \left[\sin F \Delta 12 \cos ij \left(\hat{\kappa}, \kappa \right) \hat{\kappa} \right] M \left(\hat{\kappa}, \kappa \right) \right] = \Delta \kappa \left[\cos \left(\frac{P_0}{2\kappa} \right) - 1 \right] \), \quad (63)

\[
\Delta_{F,\kappa} (P_2) = \Delta_\kappa (P_2) + \sin \left(\frac{P_0}{2\kappa} \right) \otimes P_1 - P_1 \otimes \sin \left(\frac{P_0}{2\kappa} \right) e^{-\frac{P_0}{\kappa}} + \frac{1}{2\kappa} M^{12} \otimes P_1 + \frac{1}{2\kappa} P_i \otimes M^{12} e^{-\frac{P_0}{\kappa}} - i \left[M^{10}, M^{12} \right] \otimes \sin \left(\frac{P_0}{2\kappa} \right) e^{-\frac{P_0}{\kappa}} + i \sin \left(\frac{P_0}{2\kappa} \right) \otimes [M^{10}, M^{12}] - \left[[M^{10}, M^{12}], M^{12} \right] \otimes \left[\cos \left(\frac{P_0}{2\kappa} \right) - 1 \right] e^{-\frac{P_0}{\kappa}} - \left[\cos \left(\frac{P_0}{2\kappa} \right) - 1 \right] \otimes \left[[M^{10}, M^{12}], M^{12} \right] = \Delta_\kappa \left(M^{12} \right) + \frac{1}{2\kappa} \left(\delta^{1i} P_2 - \delta^{2i} P_1 \right)
\]

\[
\Delta_{F,\kappa} (M^{ij}) = \Delta_\kappa (M^{ij}) - i \left[M^{ij}, M^{12} \right] \wedge \sin \left(\frac{P_0}{2\kappa} \right) + \left[[M^{ij}, M^{12}], M^{12} \right] \perp \left[\cos \left(\frac{P_0}{2\kappa} \right) - 1 \right], \quad (64)
\]

\[
\Delta_{F,\kappa} (M^{i0}) = \Delta_\kappa (M^{i0}) - \frac{1}{2\kappa} M^{12} \otimes P_1 + \frac{1}{2\kappa} P_i \otimes M^{12} e^{-\frac{P_0}{\kappa}} - i \left[M^{i0}, M^{12} \right] \otimes \sin \left(\frac{P_0}{2\kappa} \right) e^{-\frac{P_0}{\kappa}} + i \sin \left(\frac{P_0}{2\kappa} \right) \otimes [M^{i0}, M^{12}] - \left[[M^{i0}, M^{12}], M^{12} \right] \otimes \left[\cos \left(\frac{P_0}{2\kappa} \right) - 1 \right] e^{-\frac{P_0}{\kappa}} + \frac{1}{2\kappa} \left(\delta^{1i} P_1 + \delta^{2i} P_2 \right) \otimes M^{12} \left[\cos \left(\frac{P_0}{2\kappa} \right) - 1 \right] e^{-\frac{P_0}{\kappa}} \right)
\]

\[
\Delta_{F,\kappa} (M^{12}) = \Delta_\kappa (M^{12}) - \frac{1}{2\kappa} \left(\delta^{1i} P_2 - \delta^{2i} P_1 \right) \otimes M^{12} \sin \left(\frac{P_0}{2\kappa} \right) e^{-\frac{P_0}{\kappa}} + \frac{1}{2\kappa} \left(\delta^{1i} P_1 + \delta^{2i} P_2 \right) \otimes M^{12} \left[\cos \left(\frac{P_0}{2\kappa} \right) - 1 \right] e^{-\frac{P_0}{\kappa}} \right)
\]

The algebraic sector as well as the antipodes remain \(\kappa\)-deformed, i.e. \(S_{F,\kappa} (a) = S_\kappa (a)\) (see [9], [10]).

4.2 Two-parameter extension of \(\kappa\)-Minkowski space

For Lie-algebraic deformation we define the \(\ast\)-operator as follows

\[
\mathcal{O}_{\kappa,\hat{\kappa}} (x_{\mu}, \partial^\mu) := \mathcal{O}_\hat{\kappa} (x_{\mu}, \partial^\mu) \circ \mathcal{O}_\kappa (x_{\mu}, \partial^\mu);
\]

\[
(66)
\]
\[O_\kappa(x_\mu, \partial^\mu) := \mathcal{F}_{\kappa,\hat{\kappa}}^{-1}(x_\mu, \partial^\mu) = \exp \left(-\frac{i}{2\hat{\kappa}}(x_1 \partial^2 - x_2 \partial^1) \wedge \partial^0 \right), \tag{67}\]

and our \((\kappa, \hat{\kappa})\)-deformed Minkowski space takes the form

\[[x_i, x_0]_{\kappa,\hat{\kappa}} = \frac{i}{\kappa} x_i + \frac{i}{\hat{\kappa}}(\delta^1_i x_2 - \delta^2_i x_1) , \quad [x_i, x_j]_{\kappa,\hat{\kappa}} = 0. \tag{68}\]

The relations (68) define the Lie-algebraic extension of \(\kappa\)-Minkowski space-time \(\mathcal{M}_{\kappa,\hat{\kappa}}\). We see that above deformation of \(\kappa\)-Poincare algebra introduces Lie-algebraic type of space-time noncommutativity corresponding to both parameters \(\kappa\) and \(\hat{\kappa}\). It should be also noted that in the \(\hat{\kappa} \to \infty\) limit we get the \(\kappa\)-deformed Minkowski space-time \(\mathcal{M}_\kappa\), while for \(\kappa \to \infty\) we obtain the Minkowski space for Lie-twisted Poincare algebra \(\mathcal{M}_\hat{\kappa}\). [22]

5 Canonical and Lie-algebraic twist deformation of \(\kappa\)-Poincare group

In accordance with the equation (31) one can define the corresponding to the matrix (25) Poisson-Lie structure as follows [20]

\[\{ f, g \} = 2r^{AB} (X^R_A f X^R_B g - X^L_A f X^L_B g) . \tag{69}\]

The symbols \(X^R_A, X^L_A\) denote the right- and left-invariant vector fields on classical Poincare group \(\mathcal{P}\) given by

\[X^\alpha_\beta = \Lambda^\mu_\alpha \frac{\partial}{\partial \Lambda^\mu_\beta} - \Lambda^\mu_\beta \frac{\partial}{\partial \Lambda^\mu_\alpha} , \quad X^\alpha = \Lambda^\mu_\alpha \frac{\partial}{\partial a^\mu} , \tag{70}\]

\[X^\alpha_\beta = \Lambda^\nu_\beta \frac{\partial}{\partial \Lambda^\nu_\alpha} - \Lambda^\nu_\alpha \frac{\partial}{\partial \Lambda^\nu_\beta} + a^\beta \frac{\partial}{\partial a_\alpha} - a^\alpha \frac{\partial}{\partial a_\beta} , \quad X^\alpha = \frac{\partial}{\partial a_\alpha} . \tag{71}\]

If we calculate the Poisson brackets (69) with use of the formulas (12), (26) and (27), in a first step, and if we perform its standard quantization by replacing \(\{ \cdot, \cdot \} \to \frac{1}{i}[\cdot, \cdot]\), as a second step, then we obtain the following set of commutation relations

\[[\Lambda^\alpha_\beta, a^\rho_\sigma] = -\frac{i}{\kappa}((\Lambda^\alpha_0 - \delta^\alpha_0)\Lambda^\rho_\beta + \eta^{\alpha\rho}(\Lambda_0\beta - \eta_0\beta)) + \tag{72}\]

\[+ \frac{1}{\hat{\kappa}}((\Lambda^\rho_0(\eta_{2\beta}\Lambda^\alpha_1 - \eta_{1\beta}\Lambda^\alpha_2) + \delta^\rho_0(\delta^\alpha_2\Lambda_{1\beta} - \delta^\alpha_1\Lambda_{2\beta})) , \tag{73}\]

\[[a^\rho_\sigma, a^{\rho'}_{\sigma'}] = -\frac{i}{\kappa}(\delta^\rho_0 a^{\rho'} - \delta^\rho_0 a^{\rho'}) + \frac{i}{\hat{\kappa}}(\delta^\rho_0(\delta^\rho_2 a^{1} - \delta^\rho_1 a^{2}) + \tag{74}\]

\[+ \frac{i}{\hat{\kappa}}(\delta^\rho_0(\delta^\rho_1 a^{2} - \delta^\rho_2 a^{1}) + i\frac{\xi}{2}(\delta^\rho_3\delta^\rho_0 - \delta^\rho_0\delta^\rho_3) + \tag{75}\]

\[+ \frac{i}{2}(\Lambda^\rho_0\Lambda^\sigma_3 - \Lambda^\rho_3\Lambda^\sigma_0) , \quad [\Lambda^\alpha_\beta, \Lambda^\rho_\sigma] = 0 . \tag{76}\]
Next, if we define the ∗-operation in such a way that Λ^μ_ν and a^μ are selfadjoint elements, we see that the above relations together with coproducts (16), counits and antipodes (17) give a Hopf ∗-algebra - the $(\hat{\kappa}, \xi)$-deformed κ-Poincare group $\mathcal{P}_{\kappa, \hat{\kappa}, \xi}$. In such a way for $\hat{\kappa} = \infty$ we get dual group to the canonically deformed algebra $\mathcal{U}_{\kappa, \xi}(\mathcal{P})$, while for $\xi = 0$ we obtain dual partner for $\mathcal{U}_{\kappa, \hat{\kappa}}(\mathcal{P})$.

It should be also noted that for $\kappa \to \infty$, $\hat{\kappa} \to \infty$ and $\xi \to 0$ we obtain the classical (undeformed) Poincare group \mathcal{P}. For $\kappa \to \infty$ and $\xi \to 0$ we get the Lie-algebraically twisted classical Poincare group [21], while in the case $\kappa \to \infty$ and $\hat{\kappa} \to \infty$ we obtain the canonical deformation of classical Poincare Hopf algebra [9].

6 Constructions to twisted κ-Galilei algebras and κ-Galilei groups

In this section we calculate the nonrelativistic contractions of Hopf structures derived in previous sections, i.e. we find their nonrelativistic counterparts - the canonical and Lie-algebraic twist deformations of κ-Galilei algebra.

6.1 Canonical deformation of κ-Galilei algebra

Let us introduce the following standard redefinition of Poincaré generators [34] (see also [35])

$$P_0 = \frac{\Pi_0}{c}, \quad P_i = \Pi_i, \quad M_{ij} = K_{ij}, \quad M_{i0} = cV_i,$$

where parameter c describes the light velocity. We start with canonical twisted algebra $\mathcal{U}_{\xi, \kappa}(\mathcal{P})$, i.e. we introduce two parameters κ and ξ such that $\kappa = \bar{\kappa}/c$ and $\xi = \bar{\xi}c$. Next, one performs the contraction limit of algebraic part (2)-(5) and co-sector (41)-(46) in two steps (see e.g. [23]). Firstly, we rewrite the formulas (2)-(5) and (41)-(46) in term of the operators (77) and parameters κ, ξ. Secondly, we take the $c \to \infty$ limit, and in such a way, we get the following algebraic

$$\left[K^{ij}, K^{kl} \right] = i \left(\delta^{il} K^{jk} - \delta^{jl} K^{ik} + \delta^{jk} K^{il} - \delta^{ik} K^{jl} \right),$$

$$\left[K^{ij}, V^k \right] = i \left(\delta^{jk} V^i - \delta^{ik} V^j \right), \quad \left[K^{ij}, \Pi_k \right] = i \left(\delta^j_k \Pi_i - \delta^i_k \Pi_j \right),$$

$$\left[V_i, V_j \right] = 0 \quad \left[V^i, \Pi_0 \right] = i \Pi_i \quad \left[\Pi_\rho, \Pi_\sigma \right] = 0,$$

$$\left[V^i, \Pi_j \right] = \delta^i_j \frac{1}{2\kappa} \Pi^2 - \frac{1}{\kappa} \Pi_i \Pi_j \quad \mathcal{C}_\kappa = \Pi^2 e^{\frac{\kappa}{r}},$$

and coalgebraic

$$\Delta_{\xi, \kappa}(\Pi_0) = \Pi_0 \otimes 1 + 1 \otimes \Pi_0 \quad \Delta_{\xi, \kappa}(\Pi_i) = \Pi_i \otimes e^{\frac{\kappa}{r}} + 1 \otimes \Pi_i.$$
\[\Delta_{\xi,\kappa}(K^{ij}) = \Delta_{\kappa}(K^{ij}) + \frac{\xi}{2} (\delta^i_j \Pi_i - \delta^i_j \Pi_j) \otimes \left(e^{-\frac{n_0}{\kappa}} - 1 \right) , \quad (83) \]

\[\Delta_{\xi,\kappa}(V^i) = \Delta_{\kappa}(V^i) - \frac{\xi}{2} \Pi_3 \otimes \Pi_i e^{-\frac{n_0}{\kappa}} + \]

\[+ \frac{\xi}{2} \left(\delta^i_3 \Pi_i - \delta^i_3 \Pi_j \right) \otimes \left(e^{-\frac{n_0}{\kappa}} - 1 \right) e^{-\frac{n_0}{\kappa}} , \quad (84) \]

\[+ \frac{\xi}{2} \left(\tilde{\delta}^i_3 \Pi_i - \tilde{\delta}^i_3 \Pi_j \right) \otimes \Pi_j \left(e^{-\frac{n_0}{\kappa}} - 1 \right) , \quad (85) \]

sectors, where \(\Delta_{\kappa}(a) = \Delta_{\kappa}(a) \). The antipodes look as follows

\[S_{\xi,\kappa}(\Pi_0) = S_{\kappa}(\Pi_0) = -\Pi_0 , \quad S_{\xi,\kappa}(\Pi_i) = S_{\kappa}(\Pi_i) = -\Pi_i e^{\frac{n_0}{\kappa}} , \quad (87) \]

\[S_{\xi,\kappa}(K^{ij}) = S_{\kappa}(K^{ij}) - \frac{\xi}{2} \Pi_3 \left(\tilde{\delta}^i_3 \Pi_i - \tilde{\delta}^i_3 \Pi_j \right) \otimes \left(e^{-\frac{n_0}{\kappa}} - 1 \right) , \quad (88) \]

\[S_{\xi,\kappa}(V^i) = S_{\kappa}(V^i) - \frac{\xi}{2} \left(\tilde{\delta}^i_3 \Pi_i - \tilde{\delta}^i_3 \Pi_j \right) \Pi_j \left(e^{-\frac{n_0}{\kappa}} - 1 \right) , \quad (89) \]

\[\cdot \left(e^{-\frac{n_0}{\kappa}} - 1 \right) - \frac{\xi}{2} \Pi_3 \Pi_i e^{\frac{n_0}{\kappa}} + \]

\[- \frac{\xi}{2} \left(\tilde{\delta}^i_3 \Pi_i - \tilde{\delta}^i_3 \Pi_j \right) \otimes \left(e^{-\frac{n_0}{\kappa}} - 1 \right) , \quad (90) \]

\[\cdot \left(e^{-\frac{n_0}{\kappa}} - 1 \right) - \frac{\xi}{2} \Pi_3 \Pi_i e^{\frac{n_0}{\kappa}} , \quad (91) \]

with \(S_{\kappa}(a) = S_{\kappa}(a) \). The relations (78)-(91) define the canonically twisted \(\kappa \)-Galilei algebra \(U_{\xi,\kappa}(G) \). One can see that for \(\xi \to 0 \) we get the \(\kappa \)-deformed Galilei group \(U_{\kappa}(G) \) firstly studied in [26] (see also [23]). In \(\frac{\pi}{\kappa} \to \infty \) limit we obtain the canonically deformed algebra \(U_{\xi}(G) \) found in [25]. Obviously, for \(\frac{\pi}{\kappa} \to \infty \) and \(\xi \to 0 \) one gets the undeformed Galilei quantum group \(U_0(G) \).

6.2 Lie-algebraic deformation of \(\kappa \)-Galilei algebra

In the case of Lie-algebraic modification of \(\kappa \)-Poincare algebra, we perform contraction with respect the parameters \(\kappa = \frac{\pi}{c} \) and \(\tilde{\kappa} = \frac{\pi}{\kappa} \). Due to the relations (58)-(65) we obtain the coproducts \(\Delta_{\pi,\kappa}(\Pi_\rho) \), \(\Delta_{\pi,\kappa}(K^{ij}) \) and \(\Delta_{\pi,\kappa}(V^i) \) such that \(\Delta_{\pi,\kappa}(a) = \Delta_{\pi,\kappa}(a) \). In this way we get the Lie-twisted Galilei algebra \(U_{\pi,\kappa}(G) \), which for \(\pi \to \infty \) passes into \(\kappa \)-deformed Galilei group \(U_{\pi}(G) \).

6.3 Canonical and Lie-algebraic deformation of \(\kappa \)-Galilei group

Finally, let us find the contraction of \((\tilde{\kappa},\xi) \)-deformed Poincare group \(P_{\tilde{\kappa},\xi,\xi} \) (see (72)-(76) and (16), (17)). In this purpose we introduce the following redefinition of \(A^\mu_\nu, A^\mu_\nu \)
\[\Lambda_0 = \left(1 + \frac{\tau^2}{c^2}\right)^{\frac{1}{2}}, \quad \Lambda^i_0 = \frac{v^i}{c}, \quad \Lambda^0_i = \frac{v^k R^k_i}{c}, \] (92)

\[\Lambda^k_i = \left(\delta^k_i + \left(1 + \frac{\tau^2}{c^2}\right)^{\frac{3}{2}} - 1\right)\frac{v^k v^j}{\tau^2} R^j_i, \] (93)

\[a^i = b^i, \quad a^0 = c\tau, \] (94)

where \(\{ R^i_j, v^i, \tau, b^i \} \) denote the generators of Galilei group. With use of the formulas (92)-(94) in the contraction limit \(c \to \infty \) we get

\[[R^k_i, b^j] = -\frac{i}{\kappa}(v^k R^i_j - \delta^k_i v^\rho R^\rho_j) + \frac{1}{\kappa}v^i(\delta^k_2 R^k_1 - \delta^k_1 R^k_2), \] (95)

\[[R^k_i, \tau] = \frac{1}{\kappa}(\delta^k_2 R^k_1 - \delta^k_1 R^k_2 - (\delta^k_2 R^k_1 - \delta^k_1 R^k_2)), \] (96)

\[[v^i, b^j] = -\frac{i}{\kappa}(v^i v^j - \frac{1}{2} \delta^{ij} \tau^2), \quad [v^i, \tau] = -\frac{i}{\kappa}v^i - \frac{1}{\kappa}(\delta^i_2 v^1 - \delta^i_1 v^2), \] (97)

\[[\tau, b^j] = -\frac{i}{\kappa}b^j + \frac{i}{\kappa}(\delta^i_2 b^1 - \delta^i_1 b^2) + \frac{\tau}{2}(R^i_3 + \delta^i_3), \] (98)

\[[b^i, b^j] = i\xi(2v^i R^j_3 - R^i_3 v^j), \] (99)

\[[R^i_j, R^k_l] = [v^i, R^k_l] = [v^i, v^j] = 0. \] (100)

The coproducts remain undeformed

\[\Delta(R^i_j) = R^i_k \otimes R^k_j, \quad \Delta(v^i) = R^i_j \otimes v^j + v^i \otimes 1, \] (101)

\[\Delta(\tau) = \tau \otimes 1 + 1 \otimes \tau, \quad \Delta(b^i) = R^i_j \otimes b^j + v^i \otimes \tau + b^i \otimes 1. \] (102)

The relations (95)-(102) with classical antipodes and counits define the \((\hat{\kappa}, \xi) \)-deformed Galilei group \(G_{\kappa, \hat{\kappa}, \xi} \). As in the case of relativistic symmetries, for \(\hat{\kappa} = \infty \) we get dual group to the Galilei algebra \(U_{\kappa, \tau}(\mathcal{G}) \), while for \(\xi = 0 \) we obtain dual partner for the algebra \(U_{\kappa, \tau}(\mathcal{G}) \).

Finally, one should also notice that in the \(\hat{\kappa} \to \infty \) and \(\xi \to 0 \) limits we get the well-known \(\kappa \)-deformed Galilei group \(G_{\kappa, \tau}(\mathcal{G}) \) (see [36]), while for \(\kappa \to \infty \) and \(\xi \to 0 \) or \(\hat{\kappa} \to \infty \), we obtain the quantum Galilei groups recovered in [37].

7 Final remarks

In this article we introduced two twist extensions of \(\kappa \)-Minkowski spaces corresponding to soft and Lie-algebraic type of noncommutativity (see [56] and [68]). For such modified
space-times we find their quantum Poincare algebras and corresponding dual quantum groups. The nonrelativistic contractions are performed as well.

As it was mentioned in Introduction the Lie-algebraic twist introduces in natural way a second mass-like parameter of deformation. Consequently, in such a way, one can obtain a "modification" of so-called Doubly Special Relativity [38–40] with one fundamental mass parameter, by introducing a second observer-independent mass-like scale.

It should be also noted that this paper is only a starting point for a further investigation. For example, it is interesting to ask about the noncommutative field theory given on such generalized quantum Minkowski space-times. In particular, its formulation requires the construction of a proper differential calculus, a proper star product of fields, and a suitable deformation of statistics for creation/annihilation operators (see e.g. [41–44]). The above problems are now under considerations and they are postponed for further investigation.

Acknowledgments

The author would like to thank Jerzy Lukierski and Mariusz Woronowicz for many valuable discussions. There are also thanks for Andrzej Borowiec, Jerzy Kowalski-Glikman and Marek Mozrzymas for discussions on classical r-matrices.

This paper has been financially supported by Polish funds for scientific research (2008-10) in the framework of a research project.

References

[1] S. Coleman, S.L. Glashow, Phys. Rev. D 59, 116008 (1999)
[2] R.J. Protheore, H. Meyer, Phys. Lett. B 493, 1 (2000)
[3] F.W. Stecker, S.L. Glashow, Astroparticle Phys. 16, 97 (2001)
[4] G. Amelino-Camelia, T. Piran, Phys. Lett. B 497, 265 (2001)
[5] S. Doplicher, K. Fredenhagen, J.E. Roberts, Phys. Lett. B 331, 39 (1994); Comm. Math. Phys. 172, 187 (1995); hep-th/0303037
[6] A. Kempf and G. Mangano, Phys. Rev. D 55, 7909 (1997); hep-th/9612084
[7] N. Seiberg and E. Witten, JHEP 09, 032 (1999); hep-th/9908142
[8] J. de Boer, P.A. Grassi and P. van Nieuwenhuizen, Phys. Lett. B 574, 98 (2003)
[9] R. Oeckl, Nucl. Phys. B 581, 559 (2000)
[10] M. Chaichian, P.P. Kulish, K. Nishijima and A. Tureanu, Phys. Lett. B 604, 98 (2004)
[11] J. Wess, "Deformed coordinate spaces: Derivatives"; hep-th/0408080
[12] P. Kosinski and P. Maslanka, "Lorentz-invariant interpretation of noncommutative space-time: Global version"; hep-th/0408100
[13] F. Koch and E. Tsouchnika, Nucl. Phys. B 717, 387 (2005); hep-th/0409012
[14] C. Gonera, P. Kosinski, P. Maslanka and S. Giller, "Space-times symmetry of noncommutative field theory"; hep-th/0504132
[15] N.Yu. Reshetikhin, Lett. Math. Phys. 20, 331 (1990)
[16] J. Lukierski, A. Nowicki, H. Ruegg and V.N. Tolstoy, Phys. Lett. B 264, 331 (1991)
[17] J. Lukierski, A. Nowicki and H. Ruegg, Phys. Lett. B 293, 344 (1992)
[18] S. Zakrzewski, "Poisson Structures on the Poincare group"; q-alg/9602001
[19] J. Lukierski and V.D. Lyakhovsky, Proceedings of the Conference "Non-Commutative Geometry and Representation Theory in Mathematical Physics", Karlstad, Proceedings Serie of Contemporary Mathematics (2005); hep-th/0406155
[20] L.A. Takhtajan, "Introduction to Quantum Groups"; in Clausthal Proceedings, Quantum groups 3-28 (see High Energy Physics Index 29 (1991) No. 12256)
[21] J. Lukierski and M. Woronowicz, Phys. Lett. B 633, 116 (2006); hep-th/0508083
[22] J. Lukierski, A. Nowicki, H. Ruegg and V.N. Tolstoy, J. Phys. A 27, 2389 (1994); hep-th/9312068
[23] J.A. de Azcarraga and J.C. Perez Bueno, J. Math. Phys. 36, 6879 (1995)
[24] J.A. de Azcarraga and J.C. Perez Bueno, J. Phys. A 29, 6353 (1996)
[25] M. Daszkiewicz, Mod. Phys. Lett. A 23, 505 (2008), IFT-UWR-LV-420; arXiv: 0801.1206 [hep-th]
[26] S. Giller, P. Kosinski, M. Majewski, P. Maslanka and J. Kunz, Phys. Lett. B 286, 57 (1992)
[27] S. Majid, H. Ruegg, Phys. Lett. B 329, 189 (1994)
[28] S. Zakrzewski, J. Phys. A 27, 2075 (1994)
[29] P. Kosinski and P. Maslanka, "The κ-Weyl group and its algebra" Published in "From field theory to quantum groups", Singapore World Scientific Publishing (1996)
[30] C. Blohmann, J. Math. Phys. 44, 4736 (2003); q-alg/0209180
[31] P. Kosinski, J. Lukierski and P. Maslanka, Czech. Jour. Phys. 50, No. 11, 1283 (2000)
A. Agostini, G. Amelino-Camelia and F. d’Andrea, ”Hopf-algebra description of noncommutative space-time symmetries”, hep-th/0306013; A. Agostini, hep-th/0312305 (PhD Thesis)

V.G. Drinfeld, Soviet Math. Dokl. 32, 254 (1985); Algebra i Analiz (in Russian), 1, Fasc. 6, p. 114 (1989)

E. Inönü and E.P. Wigner, Proc. Nat. Acad. Sci. 39, 510 (1953)

A. Barut, R. Raczka, ”Theory of group representation” Mir, Moskow 1980 (in Russian)

S. Giller, C. Gonera, P. Kosinski, P. Maslanka, ”The quantum Galilei group”; q-alg/9505007

Y. Brihaye, E. Kowalczyk, P. Maslanka, ”Poisson-Lie structure on Galilei group”; math/0006167; M. Daszkiewicz; in preparation

G. Amelino-Camelia, Phys. Lett. B 510, 255 (2001); hep-th/0012238

G. Amelino-Camelia, Mod. Phys. Lett. A 17, 899 (2002); gr-qc/0204051

B. Bruno, G. Amelino-Camelia and J. Kowalski-Glikman, Phys. Lett. B 522, 133 (2001); hep-th/0107039

A. Sitarz, Phys. Lett. B 349, 42 (1995); hep-th/9409014

M. Arzano, A. Marciano, Phys. Rev. D 76, 125005 (2007)

M. Daszkiewicz, J. Lukierski, M. Woronowicz, Phys. Rev. D 77, 105007 (2008); arXiv: 0708.1561 [hep-th]

C.A.S. Young, R. Zegers, Nucl. Phys. B 797, 537 (2008); arXiv: 0711.2206 [hep-th]