Comment on Complex Extension of Quantum Mechanics

Ali Mostafazadeh*

Department of Mathematics, Koç University, 34450 Sariyer, Istanbul, Turkey

Abstract

In their Erratum [Phys. Rev. Lett. 92, 119902 (2004), quant-ph/0208076], written in reaction to quant-ph/0310164, Bender, Brody and Jones propose a revised definition for a physical observable in \mathcal{PT}-symmetric quantum mechanics. We show that although this definition avoids the dynamical inconsistency revealed in quant-ph/0310164, it is still not a physically viable definition. In particular, we point out that a general proof that this definition is consistent with the requirements of the quantum measurement theory is lacking, give such a proof for a class of \mathcal{PT}-symmetric systems by establishing the fact that this definition implies that the observables are pseudo-Hermitian operators, and show that for all the cases that this definition is consistent with the requirements of measurement theory it reduces to a special case of a more general definition given in quant-ph/0310164. The latter is the unique physically viable definition of observables in \mathcal{PT}-symmetric quantum mechanics.

Bender, Brody and Jones [Phys. Rev. Lett. 92, 119902 (2004), quant-ph/0208076] have recently proposed the following definition of a physical observable in \mathcal{PT}-symmetric quantum mechanics. **Def. 1:** A linear operator A is called an observable if it satisfies $A^T = \mathcal{CPT} A \mathcal{CPT}$. (1)

This definition avoids the incompatibility of their initial definition [2] with the dynamical aspects of the theory [3]. The purpose of this comment letter is to use the requirements of the quantum measurement theory to provide a critical assessment of the viability of Def. 1. In particular, we point out that (a) a general proof that Def. 1 is consistent with these requirements is lacking, (b) give such a proof for a class of \mathcal{PT}-symmetric systems by establishing the fact that (1) implies that A is a pseudo-Hermitian operator [4], and (c) show that for all the cases that Def. 1 is consistent with these requirements it reduces to a more general definition [5].

*E-mail address: amostafazadeh@ku.edu.tr
namely **Def. 2**: A linear operator \(A \) is called an observable if it is Hermitian with respect to the \(\mathcal{CPT} \)-inner product \(\langle \cdot | \cdot \rangle \), i.e., \(\langle \cdot | A \cdot \rangle = \langle A \cdot | \cdot \rangle \).

Standard quantum measurement theory imposes the following conditions on any linear operator \(A \) that is to be identified with a physical observable. (i) the eigenvalues of \(A \) must be real; (ii) \(A \) has a complete set of eigenvectors that are mutually orthogonal with respect to the defining inner product \(\langle \cdot | \cdot \rangle \) of the Hilbert space \(\mathcal{H} \).

It is a well-known result of linear algebra that (i) and (ii) are the necessary and sufficient conditions for the Hermiticity of an operator \(A \), i.e., \(\langle \cdot | A \cdot \rangle = \langle A \cdot | \cdot \rangle \). In \(\mathcal{PT} \)-symmetric QM, \(\langle \cdot | \cdot \rangle \) is the \(\mathcal{CPT} \)-inner product [2]. This shows that the most general definition that is compatible with (i) and (ii) is Def. 2. As a result, Def. 1 would be a physically viable definition, only if it turns out to be a special case of Def. 2. It is not equivalent to Def. 2, for it puts the additional restriction that the Hamiltonian \(H \) be not only \(\mathcal{PT} \)-symmetric but also symmetric (\(H^T = H \)); it cannot for example be used to determine the observables for the \(\mathcal{PT} \)-symmetric system defined by the Hamiltonian \(H = (p + ix)^2 + x^2 \), [6].

Next, we note that one can use the identities \([\mathcal{P}, \mathcal{T}] = [\mathcal{C}, \mathcal{PT}] = 0 \) and \(\mathcal{C}^2 = \mathcal{P}^2 = 1 \) to show that Eq. (1) implies

\[
A^\dagger = \eta_+^{-1} A \eta_+ ,
\]

where \(A^\dagger = \mathcal{T} A^T \mathcal{T} \) is the usual adjoint of \(A \) and \(\eta_+ := \mathcal{PC} \). Eq. [2] is the defining relation for a pseudo-Hermitian operator [4]. It is equivalent to the condition that \(A \) be Hermitian with respect to the inner product \(\langle \cdot, \cdot \rangle_{\eta_+} := \langle \cdot, \eta_+ \cdot \rangle \) where \(\langle \cdot, \cdot \rangle \) is the ordinary \(L^2 \)-inner product. Therefore, Def. 1 implies that the observables \(A \) are Hermitian operators with respect to \(\langle \cdot, \cdot \rangle_{\eta_+} \), i.e., \(\langle \cdot, A \cdot \rangle_{\eta_+} = \langle A \cdot, \cdot \rangle_{\eta_+} \). For \(\mathcal{PT} \)-symmetric theories defined on the real line, one can show by a direct computation [7] that \(\langle \cdot, \cdot \rangle_{\eta_+} \) coincides with the \(\mathcal{CPT} \)-inner product. This proves that for these theories Def. 1 does indeed adhere to the requirements (i) and (ii) above. For \(\mathcal{PT} \)-symmetric theories defined using a complex contour, such a proof is lacking.

This is a serious shortcoming. In effect it means that in order to employ Def. 1 one must not only establish the reality of the eigenvalues of an observable \(A \) but also prove that (1) implies the completeness of the eigenvectors of \(A \) and their orthogonality. Moreover, Def. 1 does not provide any practical means to construct the observables of the theories to which it applies. As argued in [8] the situation is different if one adopts Def. 2. One then would just compute the matrix elements \(A_{mn} = \langle \phi_m | A | \phi_n \rangle \) in the energy eigenbasis \(\{ \phi_n \} \) and check whether \(A^*_{mn} = A_{nm} \).

In conclusion, there is no logical reason why one should adopt Def. 1 while there is already an alternative, namely Def. 2, that avoids all the above-mentioned problems. A conceptual consequence of adapting Def. 2 is that the only structural difference between conventional QM and \(\mathcal{PT} \)-symmetric QM is that in the latter one defines the Hilbert space using the eigenvalue
problem of a differential operator. As explained in [5], the fact that there is (up to unitary equivalence) a single separable Hilbert space shows that this difference does not have any fundamental ramifications. This in turn suggests that the \mathcal{PT}-symmetric QM should be viewed as a framework for dealing with phenomenological and effective theories.

This work has been supported by the Turkish Academy of Sciences in the framework of the Young Researcher Award Program (EA-TÜBA-GEBİP/2001-1-1).

References

[1] According to [2], given a linear operator A represented by the infinite matrix $A(x, x')$ in the standard position representation, the transpose A^T of A is the operator that is represented by $A^T(x, x') := A(x', x)$. A is called symmetric if $A^T = A$.

[2] C. M. Bender, D. C. Brody and H. F. Jones, Phys. Rev. Lett. 89, 270401 (2002); See also ibid Am. J. Phys. 71, 1095 (2003).

[3] This incompatibility was initially revealed in an attempt to construct the observables for a finite-dimensional toy model. It was then generally established in [5].

[4] A. Mostafazadeh, J. Math. Phys. 43, 205 (2002).

[5] A. Mostafazadeh, preprint: quant-ph/0310164.

[6] For other examples of nonsymmetric \mathcal{PT}-symmetric Hamiltonians see Eq. (15) of [2] and A. Mostafazadeh, J. Phys. A 36, 7081 (2003).

[7] A. Mostafazadeh, J. Math. Phys. 44, 974 (2003).