Vortex and spiral instabilities at gap edges in three-dimensional self-gravitating disc-satellite simulations

Min-Kai Lin

Canadian Institute for Theoretical Astrophysics, 60 St. George Street, Toronto, ON, M5S 3H8, Canada

1 May 2014

ABSTRACT

Numerical simulations of global three-dimensional (3D), self-gravitating discs with a gap opened by an embedded planet are presented. The simulations are customised to examine planetary gap stability. Previous results, obtained by Lin & Papaloizou from two-dimensional (2D) disc models, are reproduced in 3D. These include (i) the development of vortices associated with local vortensity minima at gap edges and their merging on dynamical timescales in weakly self-gravitating discs, (ii) the increased number of vortices as the strength of self-gravity is increased and their resisted merging, and (iii) suppression of the vortex instability and development of global spiral arms associated with local vortensity maxima in massive discs. The vertical structure of these disturbances are examined. In terms of the relative density perturbation, the vortex disturbance has weak vertical dependence when self-gravity is neglected. Vortices become more vertically stratified with increasing self-gravity. This effect is seen even when the unperturbed region around the planet’s orbital radius has a Toomre stability parameter $\sim 10$. The spiral modes display significant vertical structure at the gap edge, with the midplane density enhancement being several times larger than that near the upper disc boundary. However, for both instabilities the vertical Mach number is typically a few per cent, and on average vertical motions near the gap edge do not dominate horizontal motions.

Key words: planetary systems: formation — planetary systems: protoplanetary discs

1 INTRODUCTION

Astrophysical discs may develop radial structure for several reasons (Armitage 2011). It has been suggested that protoplanetary discs contain ‘dead zones’ in which the magnetorotational instability is inefficient, leading to a reduced accretion rate in this region (Gammie 1996). Matter then accumulates at the radial boundary of a dead zone and the actively accreting region, leading to a local density bump.

Structure can also be induced by an external potential such as an embedded satellite. A sufficiently massive planet opens a gap in the disc (Lin & Papaloizou 1986), and the gap edges involve radial structure with characteristic length-scales of the local disc scale-height.

It is well established that localised radial structure in thin discs can be dynamically unstable (Lovelace et al. 1999; Li et al. 2000, 2001). The evolution of radially structured discs may then be affected by such instabilities. More specifically, a necessary condition for instability is the existence of an extremum in the ratio of vorticity to surface density, or vortensity$^1$. Indeed, instabilities have been demonstrated explicitly for dead zone boundaries (Varnière & Tagger 2006; Lyra et al. 2009a, 2009b; Crespe et al. 2011) as well as planetary gap edges (Koller et al. 2003; Li et al. 2005; de Val-Borro et al. 2007; Lyra et al. 2009a; Lin & Papaloizou 2010).

These studies consider non-self-gravitating or weakly self-gravitating discs. In fact, instabilities in structured astrophysical discs can be traced back to Lovelace & Hohlfield (1978), who considered self-gravitating particle discs. Sellwood & Khan (1991) studied a similar system, while self-gravitating gaseous discs were examined by Papaloizou & Lin (1989), Papaloizou & Savonije (1991) and Meschiari & Laughlin (2008, who adopted disc profiles to mimic planetary gaps).

Lin & Papaloizou (2011a,b) explored in more detail the role of self-gravity on the stability of gaps self-consistently opened by a planet. They performed a series of linear and nonlinear calculations for a range of disc masses. They found

1 This is modified by a factor involving the entropy for non-barotropic discs.
vortex formation in weakly self-gravitating discs and global spiral arms in massive discs, but both are associated with the gap edge.

The above studies have employed the razor-thin or two-dimensional (2D) disc approximation. It is natural to extend these models to three-dimensions (3D). However, note that non-axisymmetric instabilities in pressure-supported thick discs, i.e. the Papaloizou-Pringle instability (PPI), was originally studied in 3D [Papaloizou & Pringle 1984, 1985; Goldreich et al. 1986]. The vortex-forming instability mentioned above is essentially the PPI operating in a thin disc with the density bump being analogous to a torus. Some early studies of slender tori also included self-gravity (e.g. Goodman & Narayan 1988; Christodoulou & Narayan 1992).

Recently, 3D non-self-gravitating, rotationally-supported global discs have been simulated with a local density bump, either set as an initial condition [Meheut et al. 2010, 2012b, c], or self-consistently generated by a resistivity jump in magnetic discs [Lyra & Mac Low 2012]. The latter models the dead zone scenario. These simulations display vortex formation similar to 2D discs. On the other hand, instabilities at planetary gap edges in 3D self-gravitating discs have not yet been simulated.

In this work we extend the 2D self-gravitating disc models of Lin & Papaloizou (2011a,b) to 3D. Because the instabilities are associated with radial structure with comparable size to the disc thickness, it is not obvious at first that 2D is a good approximation. Thus, our priority in this first study is to verify results obtained in Lin & Papaloizou (2011a,b) by simulating equivalent systems in 3D. We also identify some three-dimensional effects that sets the direction for future investigations.

This paper is organised as follows. After reviewing the main 2D results in the next subsection, we describe our 3D disc-planet models in 2. Numerical methods are stated in 3. We go through our simulations in 4 with additional result analyses presented in 5. We summarise and conclude in 6 with a discussion of several limitations of our simulations.

1.1 Gap stability in 2D

For discussion purposes here we consider a barotropic disc \(^2\). For a radially structured disc the quantity governing stability is the vortensity profile

\[ \eta \equiv \frac{\kappa^2}{2\Omega \Sigma} , \]  

where \( \kappa^2 \equiv R^{-3}d(R^4\Omega^2)/dR \) is the square of the epicyclic frequency, \( \Omega \) is the disc angular velocity and \( \Sigma \) its surface density. \( R \) is the cylindrical radius. If the disc is self-gravitating, the Toomre parameter \( Q \) is also important,

\[ Q \equiv \frac{c_s \kappa}{\pi G \Sigma} = \frac{c_s}{\pi G} \left( \frac{2\Omega \eta}{\Sigma} \right)^{1/2} , \]  

2 Our locally isothermal numerical models are not strictly barotropic. However, the instabilities of interest are associated with localised structure and we adopt sound-speed profiles that vary slowly in these regions. Hence we can consider it to be isothermal and barotropic.

where \( c_s \) is the sound-speed. \( Q < 1 \) signifies local axisymmetric gravitational instability [Toomre 1964]. We remark that some studies of instabilities in structured discs employ values of \( \kappa^2 \) marginally above zero or even negative (e.g. [Li et al. 2004, 2001]), implying the classic Toomre instability may operate. Of course, if the disc is strictly non-self-gravitating and \( \kappa^2 > 0 \), then \( \Sigma \) can be rescaled so that \( Q > 1 \), giving a self-consistent model.

The connection between \( Q \) and \( \eta \) results in the vortensity profile of a planetary gap to resemble its Toomre parameter profile because of vortensity generation and destruction across planet-induced shocks [Lin & Papaloizou 2010]. Extrema in \( Q \) and \( \eta \) nearly coincide at the same radius. Fig. 1 shows a typical Toomre profile. Here we focus on the outer disc where we find instabilities strongest in the numerical simulations.

As mentioned in 1 disc profiles with stationary points in \( \eta \) (and therefore in \( Q \) for planetary gaps) can be dynamically unstable. The gap profile fulfils this requirement and has the following stability properties (taken from Lin & Papaloizou 2011a,b):

(i) In weakly or non-self-gravitating discs, instability is associated with the vortensity minimum or \( \min(Q) \), leading to local vortex formation.

(ii) As the strength of self-gravity is increased, the vortex mode shifts to higher azimuthal wavenumber \( m \). This is partly due to the stabilisation effect of self-gravity on low \( m \) vortex modes.

(iii) The timescale for vortex-merging increases with the strength of self-gravity. In non-self-gravitating discs, vortices merge on dynamical timescales and the result is a single, azimuthally extended vortex. Multi-vortex configurations can last much longer with increased disc gravity. Merging eventually takes place but the resulting vortex is azimuthally localised. In the moderately self-gravitating case discussed in Lin & Papaloizou (2011a,b), a vortex-pair persists until the end of the simulation.

(iv) The vortex mode is suppressed with sufficiently strong self-gravity and replaced by a global spiral instability associated with the local vortensity maxima or \( \max(Q) \). The instability can be physically understood as gravitational coupling between the gap edge and the wider disc exterior to it.

We shall confirm the above in 3D disc models, except for the azimuthally localised, post-merger vortices in 3. This requires very long simulations with self-gravity (\( \sim 200 \) orbits in Lin & Papaloizou 2011a), which are currently impractical in 3D.

These instabilities also affect planetary migration, leading to vortex-planet and spiral-planet interactions [Lin & Papaloizou 2011a, b, c, d]. In order to focus on gap stability we will not consider migration (and because of resolution limits in a 3D simulation), but we can still measure disc-planet torques. In particular, we will confirm that spiral modes make the disc-on-planet torques more positive with increasing instability strength.
2 DISC-PLANET MODELS

We consider a three-dimensional gas disc of mass $M_d$ with an embedded planet of mass $M_p$, both rotating about a central star of mass $M_\ast$. To describe the system, we use both spherical polar co-ordinates $r = (r, \theta, \phi)$ and cylindrical co-ordinates $r = (R, \phi, z)$ centred on the star. The frame is non-rotating. The disc is governed by the standard fluid equations

\[
\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0,
\]

\[
\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = -\frac{1}{\rho} \nabla p - \nabla \Phi_{\text{eff}}
\]

\[
p = \rho c_s^2,
\]

where $\rho$ is the mass density, $\mathbf{u}$ is the velocity field, $p$ is the pressure and $\Phi_{\text{eff}}$ is an effective potential. Physical viscosity is not included in this study (but artificial viscosity is employed in the numerical simulations to treat shocks). The effect of viscosity on vortex modes and spiral modes have been investigated previously [de Val-Borro et al. 2007, Lin & Papaloizou 2011b]. We do not expect its effect to differ in 3D.

2.1 Equation of state

We adopt a modified isothermal equation of state (EOS) where the sound-speed $c_s$ depends on $R$ and the planet position if present. Without a planet, we set

\[
c_s = c_{iso} \equiv H \Omega_k
\]

where $H = hR$ is the disc scale-height with constant aspect-ratio $h$ and $\Omega_k = \sqrt{GM_\ast/R^3}$ is the Keplerian frequency. When a planet is present, we set

\[
c_s = \frac{H h \sqrt{\Omega_{k_p}^2 + \Delta \omega^2}}{(h^2 + H^2/2)^{3/2}}
\]

with planet,

\[
\Delta \omega = \frac{GM_p}{d_p (h^2 + H^2/2)^{3/2}}
\]

where $H_p = h d_p$, $\Omega_{k_p} = GM_p/d_p^3$ and $d_p = \sqrt{|r - r_p|^2 + \epsilon_p^2}$ is the softened distance to the planet at position $r_p$ and $\epsilon_p$ is the softening length defined later. This EOS is taken from [Peplinski et al. 2008] and is used here to increase the temperature near to planet in order to reduce mass accumulation in this region. The dimensionless parameter $h_p$ controls the temperature increase at $r_p$ relative to that given by $c_{iso}$.

2.2 Effective potential

The effective potential is:

\[
\Phi_{\text{eff}} = \Phi_\ast + \Phi_p + \Phi + \Phi_i,
\]

where

\[
\Phi_\ast = \frac{GM_\ast}{r}
\]

is the stellar potential and

\[
\Phi_p = -\frac{GM_p}{d_p}
\]

is the softened planet potential. $\Phi$ is the gravitational potential due to the disc material and is given via the Poisson equation

\[
\nabla^2 \Phi = 4\pi G \rho.
\]

In Eq. (8), $\Phi_i$ is the indirect potential due to the disc and the planet,

\[
\Phi_i(r) = \int \frac{G \rho(r')}{r^2} r' \cdot r' dr' + \frac{GM_p}{|r_p|} r \cdot r_p.
\]

The indirect potential accounts for the acceleration of the co-ordinate origin relative to the inertial frame. This term is included for consistency but is unimportant for the instabilities of interest.

2.3 Initial disc

The physical disc occupies $r \in [r_i, r_o]$, $\theta \in [\theta_{\min}, \pi - \theta_{\min}]$ and $\phi \in [0, 2\pi]$. The vertical domain is such that $\tan (\pi/2 - \theta_{\min})/h = n_H$ scale-heights. The density field is initialised to

\[
\rho(0) = \beta \rho_0,
\]

where $\rho_0$ is the density profile corresponding to a non-self-gravitating disc,

\[
\rho_0(R,z) = \frac{\Sigma_0}{\sqrt{2\pi H}} \left( \frac{R}{r_i} \right)^{-\sigma} \left[ 1 - \frac{r_i}{R + h r_i} \right] \times \exp \left( -\frac{\Phi_\ast}{c_{iso}^2} - \frac{1}{h^2} \right).
\]

with fixed power-law index $\sigma = 3/2$. $\beta$ is a function to account for vertical self-gravity, such that the surface density of the initial disc is the same as that corresponding to $\rho_0$. We calculate $\beta$ in Appendix A with some approximations. Because of this, we always first evolve the disc without a planet.

The constant $\Sigma_0$ is chosen via the Keplerian Toomre parameter $Q_o$ at the outer boundary,

\[
Q_o \equiv \frac{c_{iso} \Omega_k}{\pi G \Sigma} \bigg|_{R=R_o},
\]

\[
\Sigma \equiv \int_{z_{\min}}^{z_{\max}} \rho_o dz.
\]

Note that the integration for surface density $\Sigma$ is taken over the finite vertical domain being considered.

The disc is initialised with zero meridional velocity ($u_r = u_\phi = 0$). The azimuthal velocity is set by centrifugal balance with stellar gravity, pressure and self-gravity, but for the disc models being considered, which are thin and
not very massive, the initial azimuthal velocity is essentially Keplerian.

Our disc models are labelled by $Q_0 \propto M_*^{-1}$. This gives an indication of the strength of self-gravity. Specifically it measures gravitational stability against local axisymmetric perturbations at the outer disc boundary. All of our discs satisfy the Toomre criterion for stability.

2.4 Planet configuration

In this work the planet is treated as a fixed external potential. Its purpose is to create and maintain a structured disc.

3 NUMERICAL METHOD

We evolve the disc-planet system using the ZEUS-MP finite-difference code in spherical coordinates (Hayes et al. 2006). The computational domain is divided into $(N_r, N_\theta, N_\phi)$ zones, logarithmically spaced in radius and uniformly spaced in the angular coordinates. We assume symmetry about the midplane, so the computational domain only covers the upper plane $(z > 0)$. Hydrodynamic boundary conditions are outflow at $r_i$, $r_o$, reflecting at $\theta_{\min}$ and periodic in $\phi$.

ZEUS-MP was chosen for its ability to treat self-gravity on a spherical grid with parallelisation. It solves the discretised Poisson equation using a conjugate gradient method (for details, see Hayes et al. 2006). To supply boundary conditions to the solver, we approximate the boundary potential using spherical harmonic expansion as described in Boss (1980). The expansion in spherical harmonics $Y_{l,m}$ is truncated at $l_{\text{max}}, m_{\text{max}}$. We assume negligible contributions to the disc potential beyond the physical disc boundaries.

3.1 Simulation setup

Computational units are such that $G = M_* = 1$. The radial range of the disc is $(r_i, r_o) = (1, 25)$. The vertical extent is $n_H = 2$ scale-heights. The grid resolution is $(N_r, N_\theta, N_\phi) = (256, 32, 512)$. We quote time in units of $\tau = 2\pi / \Omega_k(r_p)$. Between $0 < t < 10P_0$ the disc is evolved without a planet and $(l_{\text{max}}, m_{\text{max}}) = (48, 0)$. The planet is introduced at $t = 10P_0$ and its mass smoothly increased from zero to its full value between $10P_0 < t < 20P_0$. For $t > 20P_0$ we set $(l_{\text{max}}, m_{\text{max}}) = (16, 10)$.

The unstable modes of interest are associated with vortensity extrema at gap edges, so these features need to be resolved. Numerical diffusivity, e.g. due to low resolution or grid choice, may inhibit such instabilities. For example, in their 2D studies of vortex generation at gap edges, de Val-Borro et al. (2007) did not find instability in Cartesian simulations.

Test runs with half the resolution in each co-ordinate also produce vortex and spiral modes, but with reduced growth rate. While the resolution adopted here can confirm these instabilities operate in 3D, it may be inadequate to probe secondary instabilities on longer timescales (see §6.3).

Table 1. Simulation parameters. $Q_p$ is the Keplerian Toomre parameter evaluated at $r_p$. Case 0 was run without self-gravity.

| Case | $h$ | $10^3q$ | $Q_0$, $Q_p$ | $M_d/M_*$ | mode |
|------|-----|---------|--------------|-------------|------|
| 0    | 0.05| 2       | $\infty$     | 0.021       | vortex |
| 1    | 0.07| 2       | 8.0, 14.8    | 0.021       | vortex |
| 2    | 0.07| 2       | 4.0, 7.40    | 0.042       | vortex |
| 3    | 0.07| 2       | 3.0, 5.54    | 0.056       | vortex |
| 4    | 0.05| 1       | 4.0, 7.39    | 0.030       | vortex |
| 5    | 0.05| 1       | 3.0, 5.54    | 0.040       | vortex |
| 6    | 0.05| 1       | 1.7, 3.14    | 0.070       | spiral |
| 7    | 0.05| 1       | 1.5, 2.77    | 0.080       | spiral |

We set $m_{\text{max}} = 10$ for the boundary potential as a compromise between accounting for the non-axisymmetry of unstable modes and computation time. We typically find vortex modes with azimuthal wave-number $m = 3–6$. We tested a run (case 3 below) with $m_{\text{max}} = 12$ and obtained similar results. However with $m_{\text{max}} = 0$, vortex merging proceeds soon after their formation, whereas it is resisted with $m_{\text{max}} = 10$ (consistent with high-resolution 2D results). The global spiral modes have $m = 2$, so large $m_{\text{max}}$ is not crucial. Indeed, tests with $m_{\text{max}} = 4$ also yield the spiral instability.

4 RESULTS

Our simulations are summarised in Table 1. If the stellar mass is taken to be $M_* = M_\odot$ then $q = 10^{-5}$ corresponds to a Jupiter-mass planet. The planetary masses considered here are larger than our previous 2D investigations (Lin & Papaloizou 2011a,b) in order to achieve higher instability growth rates and shorten the computation time. We will examine gap stability as a function of $Q_0$.

4.1 Vortex modes in weakly self-gravitating discs

We first compare Case 0 and Case 1. The setup for these runs are identical except that the disc potential is neglected in Case 0, which corresponds to the standard approach to model disc-planet systems (e.g. D’Angelo & Lubow 2010). Case 1 is the self-gravitating version of Case 0. We show below that, even with a minimum Toomre parameter of $Q_0 = 8$, disc self-gravity affects the evolution of the vortex instability.

Fig. 2 shows the midplane gap profile at $t = 25P_0$ in terms of the relative density perturbation. The snapshot is taken before instabilities develop. Case 1 has a slightly deeper gap and steeper gap edges than Case 0. This is because in a self-gravitating calculation such as Case 1, fluid bound to the planet adds to its mass. For both runs, the mass in the planet’s Hill sphere is $\sim 0.02M_\oplus$.

4.1.1 Development of instability

Fig. 3 shows the evolution of the gap. It is clear that the vortex instability can develop in 3D with or without self-gravity. At $t = 30P_0$, two vortices are visible in Case 0 while 3 vortices are seen in Case 1 (in both cases there may be another vortex coinciding with the outer planetary wake).

For the weakly self-gravitating discs considered here,
vortex modes with the same $m$ have been excited, but without self-gravity vortices merge soon after formation. (In Case 0, the over-density at the outer gap edge just ahead of the planet appears to be a merging vortex-pair, rather than a single vortex from the instability.) At $t = 40 P_0$, only a vortex-pair remains in Case 0 while merging is delayed in Case 1 with a 3-vortex configuration.

The differences between self-gravitating and non-self-gravitating simulations shown in Fig. 3 are similar to those seen in 2D simulations. Lin & Papaloizou demonstrated that self-gravity sets a minimal inter-vortex distance so that merging is resisted. Three-dimensionality does not affect the evolution of the vortex instability in the $r\phi$ plane. However, at this level of self-gravity merging is only delayed. The final state for both cases is a single vortex circulating the gap edge.

4.1.2 Effect of self-gravity on vortex vertical structure

Here we compare the final vortex in Case 0 and Case 1. Fig. 4 shows their vertical structure in the $Rz$ plane. The snapshots correspond to the vortex centroid, marked by white lines at intermediate azimuths in the right panel of Fig. 3. Without self-gravity the vortex instability produces predominantly columnar disturbances in the relative density perturbation $W$. Case 0 is consistent with recent linear calculations of the vortex instability in non-self-gravitating 3D discs, which show that $W$ has essentially no vertical dependence at the radius where vortex-formation is expected (Meheut et al. 2012b; Lin 2012). In Fig. 4 the Case 0 vortex does show very weak vertical dependence near the upper boundary. This is likely due to the finite vertical domain adopted in our model.

3 Linear calculations of vertically isothermal discs usually assume an atmosphere of infinite extent.
arrows are mass flux vectors \( \rho \). Case 1. Contours show the relative density perturbation and the disc (top, Case 0) and a weakly self-gravitating disc (bottom, Case 4). The azimuthal range is that marked by white lines in Fig. 3 (right panel).

By contrast, the self-gravitating vortex in Case 1 clearly display stratification in the relative density perturbation. The vortex is more concentrated toward the midplane. With self-gravity, density enhancement in the vortex can be \( \sim 50\% \) higher than without.

In Fig. 5 we plot vertical velocities averaged over the vortices. The non-self-gravitating case typically involves positive vertical velocity (also seen in Meheut et al. 2012b). Perhaps not surprisingly, the self-gravitating case has as strong or even over-density near the midplane to provide vertical acceleration. The precise values in Fig. 5 depends on the averaging procedure but the contrast in \( sgn(u_z) \) between the two cases is robust (even when we consider the point in the Ro plane where density perturbation is largest and do not perform an average). The quantity \( \langle u_z^2 / c_{\text{iso}}^2 \rangle^{1/2} \) behave similarly.

Although there is vertical motion, it is worth noting that the vertical Mach number is only a few per cent. Fig. 3 also indicate that the flow is horizontal on average. This suggests approximate vertical hydrostatic balance. If self-gravity is included, then just like in the set up of the initial disc, the additional vertical force will enhance the midplane density. Hence, we observe a more stratified vortex in Case 1.

4.2 Vortex modes with moderate self-gravity

Cases 2—5 are all self-gravitating and develop the vortex instability. Case 2 and Case 3 are continuations of Case 1 to more massive discs. Case 4 and Case 5 are identical runs except a Jupiter-mass planet (\( q = 10^{-3} \)) and a thinner disc (\( h = 0.05 \)) are adopted.

We compare the relative density perturbation between Case 2 and Case 3 in Fig. 4. The snapshots are taken at \( z = H \) but are very similar to razor-thin disc simulations (Li et al. 2009; Yu et al. 2010; Lin & Papaloizou 2011a). In both Cases the \( m = 5 \) vortex mode is excited (cf. \( m = 3—4 \) in Case 1). At \( t = 30P_h \), vortices are just beginning to emerge in Case 3, whereas distinct blobs can already be identified in Case 2, with larger over-densities than vortices in Case 3. This indicates a stronger instability with decreasing strength of self-gravity. Vortex merging ensues in Case 2 but does not occur in Case 3 within the simulation timescale (unlike Case 1).

For razor-thin discs, Lin & Papaloizou (2011a) have shown that self-gravity has a stabilising effect against vortex modes with low \( m \). This contributes to favouring higher \( m \) modes and hence more vortices with increasing self-gravity. Fig. 6 together with results for Case 1, show that this effect persist in 3D. Resisted-merging, seen in 2D models, also occur in 3D. Because this is due to vortices executing mutual horseshoe turns, only horizontal self-gravitational forces are important. We do not expect the vertical dimension to significantly affect vortex-vortex gravitational interaction.

4.2.1 A 3D vortex in Case 3

Here we examine the vortex in Case 3 marked by horizontal white lines in Fig. 4. Note that no merging has occurred. The vortex is radially located about \( r_v \sim r_p + 3r_h \). It has azimuthal and radial sizes \( \Delta \varphi_v \sim 9h \) and \( \Delta r_v \sim 2.5H \), respectively. Its mass is \( M_v \sim 8.4 \times 10^{-4} M_\odot \). The vortex Hill radius \( r_{h,v} \sim 0.9H \) is smaller than its horizontal size but comparable to its vertical size at the vortex centroid.

Fig. 4 shows the vertical structure of the vortex described above. As expected it is more stratified than in weakly self-gravitating discs (Fig. 3), especially at the vortex centroid where the over-density is maximum. The initial Keplerian Toomre parameter at \( r = r_v \) is \( Q = 4.3 \). A density

\[ Q = \frac{c_s}{\Omega_k} \left( \frac{\rho}{\rho_\odot} \right) \]

4 Since no merging has occurred, \( M_v \) can also be estimated by the mass contained in an annulus about \( r_v \) in the unperturbed disc divided by \( m = 5 \). This gives \( 8 \times 10^{-4} M_\odot \) if the annulus width is \( 2r_h \).
Figure 6. Development of the vortex instability at gap edges in moderately self-gravitating discs. The relative density perturbation is shown for Case 2 (top) and Case 3 (bottom) at $z = H$. The planet position is marked by the cross. Horizontal lines in the plot for $Q_0 = 3$, $t = 50P_0$ indicate azimuths taken in Fig. 4.

enhancement by a factor $\gtrsim 2$ easily gives $Q \lesssim 2$, so that self-gravity in the perturbed state is dynamically important.

Ahead and behind the vortex centroid, the flow field is mostly horizontal (top and bottom panels in Fig. 4). It corresponds to the motion of an anti-cyclonic disc vortex common in 2D simulations (Li et al. 2001). In this plane, vertical motions only become significant compared to $u_R$ close to the vortex centroid (middle panel). We plot the average $u_z$ for the vortex in Fig. 5. Azimuthal slices at the vortex centroid, behind it and ahead of it are also shown. The average vertical velocity is positive (solid line). This is qualitatively different to the merged vortex in the weakly self-gravitating Case 1 (Fig. 3). We have examined other vortices but could not identify a ‘typical’ vertical flow structure (c.f. anti-cyclonic horizontal flow is generic). Although the vertical velocities appear to display a range of behaviour, the vertical Mach number is still very small.

We also find the vortices have height-dependent azimuthal structure. Fig. 5 shows several slices in the $\phi z$ plane. The choice of radii for these plots were based on the vortex described above (corresponding to the right vortex in the figure). The vortices are more columnar closer to the gap edge ($r - r_p = 4r_h$, top slice). Moving away from the gap edge, the vortices develop front-back asymmetry and are thinner with increasing height ($r - r_p = 5.5r_h$).

The increased three-dimensional structure away from the gap edge could be related to density waves emitted by the vortex (Paardekooper et al. 2010). Back-reaction of these waves on the vortex vertical structure, if any, is expected to be weaker on the side of the vortex adjacent to the low-density gap edge (top slice in Fig. 5).

The perturbed azimuthal velocities away from the vortex centroids again follow the expected anti-cyclonic motion in the horizontal plane (being positive interior and negative exterior to the centroid). However, unlike the previous $Rz$ plots, here the vertical velocities can often be comparable or larger than the perturbed azimuthal velocities (e.g. $r - r_p = 5.5r_h$, bottom panel). Of course, the total azimuthal velocity is supersonic and therefore much larger than vertical velocities. As remarked above, the vortices do not share the same structure. For example, the left vortex centroid involves negative vertical velocity while $u_z > 0$ for the right vortex ($r - r_p = 4.75r_h$, middle panel).

Figure 7. Vertical structure of a vortex in the moderately self-gravitating Case 3. The relative density perturbation are overlaid by the mass flux vectors $\rho u$ projected onto this plane. The slices are taken at $t = 50P_0$ and azimuths $(\phi - \phi_p)/\pi = 0.86$ (top), 0.81 (middle) and 0.76 (bottom). These correspond to the horizontal lines marked in Fig. 6.

Figure 8. Vertical velocities $u_z$, normalised by the sound speed, for the vortex in the self-gravitating Case 3 shown in Fig. 6. The velocities are all radially averaged over $r - r_p \in [4.0, 5.5]r_h$. The solid line is also averaged over the vortex azimuthal extent. Azimuthal slices ahead of the vortex (dotted), at the centroid (dashed) and behind the vortex (dashed-dot) are also shown.
4.2.2 Case 4 and Case 5

Cases 4—5 are additional examples of the vortex instability in 3D discs with smaller $h$ ($\approx 0.05$) than the above runs (with $h = 0.07$). However, initial Toomre profile is nearly independent of $h$, so the strength of self-gravity is unchanged. We also used a smaller planetary mass, $q = 10^{-3}$ so the ratio $q/h^3 = 8$ is not significantly larger than Cases 2—3 ($q/h^3 = 5.8$). We checked that prior to instability, the outer gap edge profiles of these cases are similar.

We found the instability grows slower with $h = 0.05$ as vortices become identifiable at $t = 35P_0$, compared to $t = 30P_0$ for Cases 2 and 3. A decrease in growth rate with sound-speed (which is proportional to $h$) was already noted in 2D [Li et al. 2000]. Thus, the effect of sound-speed on the vortex instability remain unchanged by the 3D geometry.

Fig. 10 show several snapshots of Case 4 and Case 5 at $t = 50P_0$ near the upper disc boundary. As before, high in the atmosphere the density enhancement is weaker with increasing self-gravity. Consistent with 2D simulations, the more self-gravitating Case 5 develops the $m = 6$ vortex mode whereas $m = 5$ vortices develop in Case 4 with weaker self-gravity. Merging is strongly resisted in these runs. In fact, Case 5 was extended to $t = 135P_0$ and only one vortex-pair merged.

4.3 Edge-spiral modes in massive discs

Lin & Papaloizou (2011a) found that as the strength of self-gravity is increased, instability eventually shifts from localised vortices to low $m$ global spirals extending from the outer gap edge to the outer disc. The vortex instability is suppressed because they are associated with vortensity minima (which we will check in [Lin & Papaloizou 2011a]) gives a simple energy argument which show that such association is not possible for sufficiently strong self-gravity. Association with vortensity maximum is favoured instead. These are the spiral instabilities. Lin & Papaloizou called them edge modes since they can still be considered associated with the gap edge.

We begin to observe edge modes in our 3D models when $Q_0 = 1.7$ (Case 6). Its evolution is depicted in Fig. 11. A $m = 2$--3 disturbance develops at the outer gap edge at $t = 35P_0$ and induces spiral density waves in the exterior disc through self-gravity. Interaction between the edge disturbance and the wider disc leads to the global spiral pattern seen at $t = 40P_0$ and $t = 45P_0$. This coupling is necessary for instability. The edge mode is associated with a local max($Q$) just inside the unperturbed outer gap edge. In Case 6, max($Q$) $\approx 8$ so a local gravitational instability is not possible. However, we can still consider the global edge mode as being composed of two parts: an edge disturbance where density perturbation is largest, and the spiral arm it induces.

Comparison between the two heights in Fig. 11 show that edge modes are significantly vertically stratified. Most of the density perturbation is confined near the midplane. Unlike vortex modes the spirals appear transient. Their amplitudes are much reduced by $t = 50P_0$, but are still visible. This is likely a radial boundary effect. The transition to a low density annulus towards the outer disc edge is a result of the standard outflow boundary condition applied there. While the linear edge mode instability is insensitive to boundary conditions, its long term evolution is affected.

Note that the transition from vortex to spiral modes with decreasing $Q_0$ is not abrupt. It is possible to have a mixture.
The outer disc edge can reflect waves back to the gap edge to stabilise it, causing saturation (Lin & Papaloizou 2011b).

4.3.1 **Vertical structure of an edge mode**

Several vertical cuts of the edge mode in Case 6 are shown in Fig. 12. The slices are taken at azimuths marked by white lines in Fig. 11. The top three plots are associated with the edge disturbance, while the bottom plot is taken at the transition between the edge disturbance and its spiral arm extending to the outer disc.

Fig. 12 shows that the horizontal flow in the edge disturbance differs significantly from the vortex mode. If the second plot is considered the ‘centroid’, then the inward (outward) flow ahead (behind) it is in the opposite sense to anti-cyclonic motion associated with a vortex mode. The centroid is the most stratified region. Its midplane over-density $\sim 3.37$ corresponds to a Toomre $Q \sim 1$ in the centroid, but we do not observe fragmentation.

As we move away from the centroid in the decreasing $\phi$ direction, the edge mode decreases in amplitude but occupies more of the vertical domain. The bottom plot in Fig. 12 shows a radial split: the columnar disturbance in $R - r_p \in [5.8, 6.5]r_h$ is the beginning of the spiral wave excited by the edge disturbance. The spiral arm is fully three-dimensional.

In Fig. 13 we plot the average vertical velocity inside an edge disturbance of the spiral mode. A simulation with $Q_0 = 1.5$ (Case 7) is also plotted for comparison (its midplane density perturbation is shown in Fig. 11). The flow is typically downwards toward the midplane. This is expected because of strong vertical self-gravity, as these are massive discs and the midplane density enhancement is large. Note that $u_z$ approaches zero again beyond $z/H \sim 1.5$ because of the imposed reflective upper boundary.

5 **ADDITIONAL RESULTS ANALYSIS**

In this section we examine some secondary quantities derived from the hydrodynamic simulations above. To keep this discussion concise, we will use selected simulations from above for illustration.

5.1 **Three-dimensionality**

A simple measure of three-dimensionality of the flow is to compare vertical to horizontal motion. Since we are interested in non-axisymmetric perturbations to the gap edge, we first Fourier transform the meridional momentum densities $(v_{Rm}, v_{zm}) \equiv \int_0^{2\pi} \rho \times (u_R, u_z) \exp (-i m \phi) d\phi$. (17)

We define the three dimensionality as $\Theta_m(z/H)$, where

$$\Theta_m^2 \equiv \frac{\langle |v_{zm}|^2 \rangle}{\langle |v_{zm}|^2 \rangle + \langle |v_{Rm}|^2 \rangle},$$

and $\langle \cdot \rangle$ denotes a radial average. Admittedly, this is a crude measure, and exact values of $\Theta_m$ varies somewhat with details of the average. However, we have experimented with different averaging domains and found the features described below are robust.

The top panel in Fig. 15 shows $\Theta_m$ for Cases 1–3 at $t = 40P_0$. The radial average is taken over $r - r_p \in [3, 7]r_h$. These are all vortex modes (see Fig. 3 and Fig. 6). The flow becomes increasingly three-dimensional away from the midplane but $\Theta_m = O(10^{-1})$ is small. In an averaged sense the flow is mostly horizontal. At the end of the simulation for Case 1, an azimuthally extended vortex dominates the flow.
for which we measured $\Theta_1 \sim 0.2 - 0.3$. Thus, although vertical motion can become an appreciable fraction of horizontal motion, the former never dominates.

$\Theta_m$ for Cases 4—7 are shown in bottom panel of Fig. 15. The radial average is performed over $r - r_p \in [2.5, 5.5]r_h$ because the global spirals in Cases 6—7 significantly protrude the gap edge. The snapshot is taken at $t = 50P_0$ for Cases 4—5, at $t = 40P_0$ for Case 6 and at $t = 30P_0$, so that the vortices and spirals have comparable overdensities at the gap edge. It also reflects the fact that spiral modes are more unstable than vortex modes and develop earlier (Lin & Papaloizou 2011b). $\Theta_m \sim 0.2$ is again not particularly large, but the spiral modes are distinctly more three-dimensional than vortex modes. This is likely due to additional vertical acceleration provided by the strong self-gravity in those cases.

5.2 Vortensity field

A fundamental distinction between the linear vortex and edge mode instability is their association with local vortensity minimum and maximum, respectively. In this section we compare vortensity fields of discs with vortex modes (Case 2) and edge modes (Case 7). More specifically, we examine the relative perturbation to the vertical component of vortensity,

$$\Delta \eta_z \equiv \frac{\eta_z(t) - \eta_z(t = 0)}{\eta_z(t = 0)}, \quad (19)$$

where

$$\eta_z \equiv \frac{\hat{z} \cdot \nabla \times \mathbf{u}}{\rho}. \quad (20)$$

Fig. 16 compares $\Delta \eta_z$ in the midplane when vortices
and spirals develop. For planetary gaps, vortensity maxima and minima are both located near the gap edges with characteristic separation of the local scale-height. The vortensity ring at the inner gap edge \((r - r_p \approx -2r_h)\) remain well-defined. The vortex instability is associated with the local vortensity minimum near the outer gap edge — seen as localised closed contour lines centred about \(r - r_p \sim 2r_h\). The vortensity ring at \(r - r_p \sim +2r_h\) becomes distorted as a consequence of large-scale vortex formation just exterior to it. By contrast, the edge-spiral mode is associated with the local vortensity maximum. Their development inherently disrupts the vortensity rings. This is seen in the right panel as the outer ring is broken up.

The vertical structures also differ. Fig. 17 compares \(\Delta \eta_z\) at azimuths coinciding with a vortex or the edge disturbance of the spiral mode. Both instabilities involve \(\Delta \eta_z < 0\). It is clear that the spiral mode has stronger vertical dependence. Its region of \(\Delta \eta_z < 0\) becomes thinner away from the midplane. In the vortex case this region remains about the same width and \(\Delta \eta_z\) is approximately uniform within it. While \(\min(\Delta \eta_z)\) of comparable magnitude, the vortensity ring at \(r - r_p = 2r_h\) is much weaker and thinner in the spiral case (\(\Delta \eta_z\) being a factor \(\sim 4\) smaller than the vortex case).

5.3 Disc-planet torques

The presence of non-axisymmetric disturbances at gap edges is expected to significantly affect disc-planet torques. It has been confirmed in 2D simulations that both vortex and spiral modes lead to oscillatory torques of either sign (Li et al. 2005; Lin & Papaloizou 2011b). It this section we measure the disc-on-planet torques in several of the above simulations to confirm the main features found in 2D.

We calculate the specific torque acting on the planet due to a mass element as

\[
\frac{dT(r)}{d\psi} = r_p \times \rho G\rho(r) d^3 r \frac{f(r, r_p)}{r_p}.
\]

\[
f(r, r_p) \equiv 1 - \exp \left( -\frac{1}{2} \frac{r - r_p}{\epsilon_c r_h} \right).
\]

The tapering function \(f\) reduce contributions from close to the planet, thereby reducing numerical artifacts arising from this region because of the diverging potential and limited resolution. We set the parameter \(\epsilon_c = 1\) so that tapering...
Figure 18. Instantaneous disc-on-planet torques in simulations where the vortex mode develops. Top: Case 3. Bottom: Case 5. Note that Case 5 has been extended to $t = 135P_0$.

does not significantly reduce contributions from the instabilities, since they develop at $\gtrsim 2\tau_h$ away from the planet’s orbital radius.

Fig. 18 shows the disc-on-planet torques in Case 3 and Case 5, which develop the $m = 5$ and $m = 6$ vortex modes, respectively. These plots are qualitatively similar to 2D simulations (e.g., Li et al. 2005). The torques oscillate on orbital time-scales and its instantaneous values can be of either sign. However, upon averaging over the simulation we find the total torques are negative in both cases. This means inwards migration is still favoured.

We extended Case 5 to $t = 135P_0$ and find the vortices have similar over-densities as at $t = 50P_0$. However, Fig. 18 shows the torque oscillation amplitudes decrease towards the end of Case 5 compared to $t \in [40, 80]P_0$. At $t = 50P_0$ the vortices are located in $r - r_p \in [3.5, 5.5]r_h$ but by $t = 135P_0$ they are located in $r - r_p \in [4, 6]r_h$. Given that $t \in [40, 80]P_0$ is only 20$P_0$ to 50$P_0$ after the planet potential has been fully introduced, gap-formation is probably ongoing during this time. We expect torque amplitudes to be larger during gap-formation since the vortices lie closer to the planet.

Next we examine disc-planet torques in the presence of the spiral modes. The top panel of Fig. 19 shows the instantaneous disc-on-planet torques. Contributions from the inner disc ($r < r_p$) and outer disc ($r > r_p$) are plotted separately for comparison with Fig. 18b in Lin & Papaloizou (2011b), which is similar to the present plot. Large oscillations in the outer torque due to edge mode spirals cause the total torque to be positive or negative at a given instant.

Unlike the vortex modes, Fig. 19 shows that spiral modes can lead to a positive running-time averaged torques (bottom panel). The average torques become more positive with time after spiral modes develop, and with increasing self-gravity (which increases the instability strength). This was also observed in high-resolution 2D simulations in Lin & Papaloizou (2011b). There it was suggested that the creation of large ‘voids’ in between spiral arms decreases the time-averaged density in the planet-induced wakes, thereby reducing associated torque magnitudes. Since the outer planetary wake normally provides a negative torque, the spiral modes make the total torque more positive. The similarity between 2D and 3D results indicate that outwards migration induced by spiral modes, which was seen in 2D by Lin & Papaloizou (2011b, 2012), will also operate in 3D.

6 SUMMARY AND DISCUSSION

We have performed customised numerical simulations of three-dimensional self-gravitating discs, in which an embedded satellite or planet has opened a gap. We explicitly verified in 3D the main results on gap stability previously obtained from 2D calculations (Koller et al. 2003; Li et al. 2005; de Val-Borro et al. 2007; Meschiari & Laughlin 2008), in particular those by Lin & Papaloizou (2011a,b). Planetary gaps are potentially unstable because of the existence of vortensity extrema generated by planet-induced shocks. Disc-satellite interaction also occur in other systems such as stars in black hole accretion discs (Kocsis et al. 2011; McKernan et al. 2011; Baruteau et al. 2011). Furthermore, gaps opened by satellites are just one type of structured disc. Other examples include dead zone boundaries mentioned in §1 and transition discs (Regály et al. 2012). Thus, although we were motivated by previous works on planetary gap stability, and hence considered disc-planet systems, we expect our results to be applicable to discs with radial structure of other origin, provided the vortensity profiles involve stationary points and therefore prone to the same instabilities.
6.1 Confirmed 2D results

We demonstrated the development of the vortex instability at the outer gap edge opened by a giant planet in 3D discs. We began with a non-self-gravitating disc, in which a few vortices develop then quickly merge. The quasi-steady state is a single azimuthally extended vortex at the gap edge. This evolution is similar to the 2D simulation in de Val-Borro et al. (2007).

We also showed the effect of self-gravity on the vortex instability observed in 2D (Lyra et al. 2009, Lin & Papaloizou 2011a) persists in 3D. We observe more vortices as the strength of self-gravity is increased by increasing the density scale. These vortices resist merging on dynamical timescales. In our disc models with $Q_0 = 3$, the multi-vortex configuration lasts until the end of the simulations.

As expected from 2D linear theory (Lin & Papaloizou 2011b), vortex modes are suppressed in our massive disc models. Instead, a global spiral instability develops which is associated with the local vortensity maximum just inside the outer gap edge. These are distinct from vortex modes since self-gravity is essential.

Our limited numerical resolution does not permit accurate disc-planet torque measurements, but the qualitative effect of the vortex and spiral instabilities, previously studied in 2D, have been reproduced in 3D — oscillatory torques of either sign and the tendency for spiral modes to provide on average a positive torque. The similarity to 2D results is not surprising since for giant planets $r_b \gtrsim H$, so the razor-thin disc approximation is expected to be valid as far as disc-planet interaction is concerned. Furthermore, vertical self-gravity increases the midplane density while reducing that in the atmosphere (Appendix A), so that given a fixed temperature profile the 2D approximation is even better for self-gravitating discs.

It is worth mentioning here that in shearing sheet simulations, Mamatsashvili & Rice (2009) found self-gravity to favour vortices of smaller scale. They initialized a local patch of an unstructured disc with random velocity perturbations. Their gravito-turbulent discs are dominated by small vortices limited by the local Jeans length (which is smaller than the scale-height). Without self-gravity, they merge to form larger vortices. These observations are similar to the above results for the vortex mode. However, the setups are quite different as we consider radially structured, laminar global discs. Our large-scale vortices develop from a linear instability and have horizontal sizes of a few scale-heights. Thus, confirmation of the above results in 3D is only valid for the edge instabilities considered in this paper.

6.2 Effects of 3D

In our simulations the dominant three-dimensional effect is vertical self-gravity on the density field. In the non-self-gravitating limit, the relative density perturbation associated with a vortex is columnar with weak vertical dependence. This is consistent with with 3D linear and nonlinear simulations (Machut et al. 2010, 2012, Lin 2012).

As the strength of self-gravity is increased, vortices become more vertically stratified — they are condensed towards the midplane. For moderately self-gravitating discs, the vortex midplane density enhancement can be twice that near the upper boundary. The spiral modes display significant vertical structure near the gap edge, while the density waves they launch in the outer disc is columnar. The latter is probably due to the chosen equation of state (see below).

The effect of vertical self-gravity on the vortex mode is seen even in our least massive disc model with $Q_0 = 8$. One can consider an initially smooth disc which is justified to be non-self-gravitating. However, this approximation may become less good with the creation of a vortensity minimum, because it can also be a local minimum in the Toomre $Q$ (Eq. [2]). That is, the Toomre parameter is decreased with the development of local radial structure (such as a density bump). The non-self-gravitating approximation worsens further when the vortex instability associated with $\min(\eta)$ develops, because the vortices are regions of enhanced density, especially if they merge into a single large vortex. Thus, the non-self-gravitating approximation is not guaranteed to hold in the perturbed state even if it does in the initial disc.

It is interesting to note that linear calculations of the vortex instability in vertically isothermal, non-self-gravitating discs show that the vertical velocity vanishes near the vortex centroid (Machut et al. 2012, Lin 2012, but this is not observed in nonlinear calculations (Machut et al. 2012, and in the present simulations). This contrasts to their anti-cyclonic horizontal flow, which can be computed in linear theory and seen in hydrodynamic simulations (Li et al. 2000, 2001). This suggests that vertical motions in this case may be associated with secondary processes (e.g. Goodman et al. 1987).

Although we observe somewhat complicated vertical flow for both vortex and spiral instabilities, the vertical Mach number is at most a few per cent in magnitude. Also, the magnitude of vertical motion is at most $\sim 20\%$ of the radial motion on average. This suggests that the disturbances at the gap edge is roughly two-dimensional in the present disc models. This would be consistent with early studies which find instabilities associated with co-rotation singularities are two-dimensional (Papaloizou & Pringle 1984, Goldreich et al. 1985). Recent 3D linear calculations also find that, even with a vertical temperature gradient, the vortex mode (without self-gravity) is largely 2D near the vortensity minimum (Lin 2012).

6.3 Caveats and outlooks

In order to provide 3D examples of previous 2D results, a range of disc models had to be simulated, each for many dynamical timescales with full self-gravity. To maintain reasonable computational cost, numerical resolution in the $r \phi$ plane is much reduced compared to razor-thin disc simulations ($\sim 4-6$ cells per $H$ compared to $\sim 16$ in 2D). Despite this, our plots in the $r \phi$ plane closely resemble those obtained from 2D simulations.

On the other hand, the low resolutions adopted here are unlikely to capture elliptic instabilities which may destroy vortices in 3D (Lesur & Papaloizou 2009, 2010). This might not be a serious issue when the condition for the vortex instability is maintained (by a planet in the present context). Also, the vortex grows on dynamical timescales whereas the elliptic instability takes much longer (Lesur & Papaloizou 2000). The initial development of vortices is not expected...
to be suppressed by the elliptic instability (as found by Methet et al. [2012b]).

The vortex instability produces smaller vortices with increasing self-gravity. According to Lesur & Papaloizou (2009), vortices with small aspect-ratios (\( \lesssim 4 \)) are strongly unstable in 3D, but note that their model is a local patch of a smooth disc without self-gravity, whereas we considered a gap edge in a global self-gravitating disc.

Inclusion of self-gravity may change the stability properties of vortices. In particular, we found that a vortex can flatten somewhat under its own weight. Lithwick (2009) suggested vertical gravity helps to stabilise vortices in 3D. Vertical self-gravity can enhance this effect. Lithwick found in local 3D simulations that ‘tall’ vortices are unstable whereas ‘short’ vortices survive as in 2D (Godon & Livio 1999). We may expect the more stratified vortices formed in self-gravitating discs to be more stable than those in non-self-gravitating discs (Barranco & Marcus 2004). The elliptic instability is also weakened by stratification (Lesur & Papaloizou 2009), so vertical self-gravity may also be stabilising in this respect.

We have adopted the locally isothermal EOS for simplicity and direct comparison with previous 2D results. This EOS limits the 3D structure of density waves compared to thermally stratified discs (e.g. Lin et al. 1990, Lubow & Ogilvie 1998, Ogilvie & Lubow 1999), which can cause refraction of waves out of the midplane. The locally isothermal EOS represents the limit of efficient cooling (Boss 1998). This might apply in optically thin regions of a disc, but is violated if high densities develop, such as self-gravitating clumps (Pickett et al. 2000). Our edge instabilities only reach moderate over-densities. Nevertheless, enhanced vertical stratification of the edge disturbances observed in our simulations are likely exaggerated by the EOS. Clearly, it is necessary to extend models of edge instabilities in self-gravitating discs to include an appropriate energy equation.

Another important issue is vertical boundary conditions. We simulated a thin disc and imposed a reflecting upper boundary to prevent mass loss from above. This setup may enhance the two-dimensionality of the problem. The vortex instability tends to involve the entire column of fluid, especially in the weak self-gravity regime. It is therefore a global instability in \( z \). We suspect the spiral mode is less affected by vertical boundary conditions because the instability tends to concentrate material at the midplane. Future simulations will consider varying the vertical domain size and upper disc boundary conditions.

Our torque measurements indicate migration will be significantly affected by the vortex and spiral instabilities. Preliminary 3D simulations with a freely migrating planet have been performed. We recover the vortex-planet scattering and the spiral-induced outward migration described by Lin & Papaloizou (2010, 2012). The disc-planet torque is determined by the density field, and the above instabilities have density perturbations that either have weak vertical dependence or concentrated at the midplane. Thus, we believe that at present, 2D simulations are more advantageous for studies focusing on migration, because high resolution is feasible and needed.

ACKNOWLEDGMENTS

I thank C. Baruteau and G. Mamatsashvili for comments on the first version of this paper. Computations were performed on the GPC supercomputer at the SciNet HPC Consortium. SciNet is funded by: the Canada Foundation for Innovation under the auspices of Compute Canada; the Government of Ontario; Ontario Research Fund - Research Excellence; and the University of Toronto.

REFERENCES

Armitage P. J., 2011, ARAA, 49, 195
Barranco J. A., Marcus P. S., 2005, ApJ, 623, 1157
Baruteau C., Cuadra J., Lin D. N. C., 2011, ApJ, 726, 28
Boss A. P., 1980, ApJ, 236, 619
Boss A. P., 1998, ApJ, 503, 923
Christodoulou D. M., Narayan R., 1992, ApJ, 388, 451
Cossins P., Lodato G., Clarke C., 2010, MNRAS, 401, 2587
Crespe E., Gonzalez J.-F., Arena S. E., 2011, in SF2A-2011: Proceedings of the Annual meeting of the French Society of Astronomy and Astrophysics, G. Alecian, K. Belkacem, R. Samadi, & D. Valls-Gabaud, ed., pp. 469–473
D’Angelo G., Lubow S. H., 2010, ApJ, 724, 730
de Val-Borro M., Artymowicz P., D’Angelo G., Peplinski A., 2007, A&A, 471, 1043
Gammie C. F., 1996, ApJ, 457, 355
Godon P., Livio M., 1999, ApJ, 523, 350
Goldreich P., Goodman J., Narayan R., 1986, MNRAS, 221, 339
Goodman J., Narayan R., 1988, MNRAS, 231, 97
Goodman J., Narayan R., Goldreich P., 1987, MNRAS, 225, 695
Hayes J. C., Norman M. L., Fiedler R. A., Bordner J. O., Li P. S., Clark S. E., ud-Doula A., Mac Low M., 2006, ApJS, 165, 188
Kocsis B., Yunes N., Loeb A., 2011, Phys. Rev. D, 84, 024032
Koller J., Li H., Lin D. N. C., 2003, ApJL, 596, L91
Lesur G., Papaloizou J. C. B., 2009, A&A, 498, 1
Lesur G., Papaloizou J. C. B., 2010, A&A, 513, A60
Li H., Colgate S. A., Wendroff B., Liska R., 2001, ApJ, 551, 874
Li H., Finn J. M., Lovelace R. V. E., Colgate S. A., 2000, ApJ, 533, 1023
Li H., Li S., Koller J., Wendroff B. B., Liska R., Orban C. M., Liang E. P. T., Lin D. N. C., 2005, ApJ, 624, 1003
Li H., Lubow S. H., Li S., Lin D. N. C., 2009, ApJL, 690, L52
Lin D. N. C., Papaloizou J., 1986, ApJ, 309, 846
Lin D. N. C., Papaloizou J. C. B., Savonije G. J., 1990, ApJ, 364, 326
Lin M.-K., 2012, ApJ, 754, 21
Lin M.-K., Papaloizou J. C. B., 2010, MNRAS, 405, 1473
Lin M.-K., Papaloizou J. C. B., 2011a, MNRAS, 415, 1426
Lin M.-K., Papaloizou J. C. B., 2011b, MNRAS, 415, 1445
Lin M.-K., Papaloizou J. C. B., 2012, MNRAS, 421, 780

---

For example, Cossins et al. (2010) find optical depths \( \tau > 0.2 \) beyond \( \sim 1000 \)AU in their models of protoplanetary discs.
Lithwick Y., 2009, ApJ, 693, 85
Lovelace R. V. E., Hohlfeld R. G., 1978, ApJ, 221, 51
Lovelace R. V. E., Li H., Colgate S. A., Nelson A. F., 1999, ApJ, 513, 805
Lubow S. H., Ogilvie G. I., 1998, ApJ, 504, 983
Lyra W., Johansen A., Klahr H., Piskunov N., 2008, A&A, 491, L41
Lyra W., Johansen A., Klahr H., Piskunov N., 2009a, A&A, 493, 1125
Lyra W., Johansen A., Zsom A., Klahr H., Piskunov N., 2009b, A&A, 497, 869
Lyra W., Mac Low M.-M., 2012, ArXiv e-prints
Mamatsashvili G. R., Rice W. K. M., 1999, ApJ, 513, 805
Meheut H., Keppens R., Casse F., Benz W., 2012a, ArXiv e-prints
Meheut H., Casse F., Varniere P., Tagger M., 2010, A&A, 516, A31+
Meheut H., Keppens R., Casse F., Benz W., 2012a, ArXiv e-prints
Ogilvie G. I., Lubow S. H., 1999, ApJ, 515, 767
Paardekooper S., Lesur G., Papaloizou J. C. B., 2010, ApJ, 725, 146
Papaloizou J. C., Savonije G. J., 1991, MNRAS, 248, 353
Papaloizou J. C. B., Lin D. N. C., 1989, ApJ, 344, 645
Papaloizou J. C. B., Pringle J. E., 1984, MNRAS, 208, 721
Papaloizou J. C. B., Pringle J. E., 1985, MNRAS, 213, 799
Papaloizou J. C. B., Pringle J. E., 1987, MNRAS, 225, 267
Pepiλkısın A., Artymowicz P., Mellema G., 2008, MNRAS, 386, 164
Pickett B. K., Durisen R. H., Cassen P., Mejia A. C., 2000, ApJL, 540, L95
Regály Z., Juhasz A., Sándor Z., Dullemont C. P., 2012, MNRAS, 419, 1701
Sellwood J. A., Kahn F. D., 1991, MNRAS, 250, 278
Toomre A., 1964, ApJ, 139, 1217
Varnière P., Tagger M., 2006, A&A, 446, L13
Yu C., Li H., Li S., Lubow S. H., Lin D. N. C., 2010, ApJ, 712, 198

**APPENDIX A: MODIFICATION TO VERTICAL STRUCTURE BY SELF-GRAVITY**

We describe a simple procedure to set up the vertical structure of a locally isothermal, self-gravitating disc. We imagine setting up a non-self-gravitating disc, then slowly switch on the vertical force due to self-gravity. We expect the midplane density to increase at the expense of gas density higher in the atmosphere. It is assumed that the temperature profile remains unchanged.

Vertical hydrostatic equilibrium between gas pressure, stellar gravity and self-gravity reads

\[
\rho^2 \frac{\partial \phi^*}{\partial z^2} = -4\pi G \rho. \quad (A2)
\]

Assuming a smooth radial density profile, we use the plane-parallel atmosphere approximation for the disc potential, i.e.

\[
\frac{\partial^2 \Phi}{\partial z^2} = 4\pi G \rho. \quad (A2)
\]

Next, we write the density field as

\[
\rho(R, z) = \rho_N(R, z) \times \beta(z; R) \quad (A3)
\]

where \(\rho_N\) is the density field corresponding to the non-self-gravitating disc:

\[
\rho_N = \frac{\Sigma(R)}{2\pi H(R)} \exp(-z^2/2H^2) \quad (A4)
\]

\[
\equiv \rho_{N0}(R) \exp(-z^2/2H^2), \quad (A5)
\]

where \(\rho_{N0} = \rho_N(R, z = 0)\) is the midplane density. The explicit expression for \(\rho_N\) above assumes a thin disc. The function \(\beta\) describes the modification to the local density in order to be consistent with self-gravity. By construction, its governing equation is

\[
\rho_{N0}^2(R) \frac{\partial^2 \beta}{\partial z^2} = -4\pi G \rho_{N0} \beta. \quad (A6)
\]

Let

\[
\chi = \ln \beta - z^2/2H^2, \quad (A7)
\]

\[
\xi = \left(\frac{4\pi G \rho_{N0}}{\rho_{N0}} \right)^{1/2} z, \quad (A8)
\]

then the governing equation can be written in dimensionless form

\[
\frac{\partial^2 \chi}{\partial \xi^2} = -K \exp \chi, \quad (A9)
\]

\[
K \equiv \frac{\rho_{N0}^2}{4\pi G \rho_{N0} H^2}. \quad (A10)
\]

Note that \(K(R)\) is proportional to the local Keplerian Toomre parameter. Eq. (A10) can be further reduced to a first order differential equation, but this is unnecessary because we pursue a numerical solution at the end. Appropriate boundary conditions are

\[
\chi(z = 0) = \ln \beta_0, \quad (A11)
\]

\[
\left. \frac{\partial \chi}{\partial \xi} \right|_{z=0} = 0. \quad (A12)
\]

\(\beta_0(R)\) is the midplane density enhancement. To determine its value, we impose the surface density before and after modification by self-gravity to remain the same. Then we require

\[
F(\beta_0) = \frac{\sqrt{2K}}{\pi} \int_{\sqrt{n}}^{\sqrt{R^2}} \exp \chi(\xi; \beta_0) d\xi - \text{erf} \left( \frac{n}{\sqrt{2}} \right) = 0, \quad (A12)
\]

where \(n\) is the number of scale-heights of the non-self-gravitating disc we originally considered. At a given cylindrical radius \(R\), we solve Eq. (A12) using Newton-Raphson iteration. Each iteration involves integrating the governing ODE for \(\chi\) (Eq. (A1)). At the end of the iteration, we have \(\beta(z; R)\) and the midplane enhancement \(\beta_0(R)\).

We comment that the procedure outlined above can be extended to polytropic discs. In this case, there is an additional unknown — the new disc thickness after adjustment by self-gravity and an additional constraint — the density should vanish at the new disc surface.