Enrichment of vitamin D response elements in RA-associated loci supports a role for vitamin D in the pathogenesis of RA

A Yarwood1,3, P Martin1,3, J Bowes1, M Lunt1, J Worthington1,2, A Barton1,2 and S Eyre1

The aim of this study was to explore the role of vitamin D in rheumatoid arthritis (RA) pathogenesis by investigating the enrichment of vitamin D response elements (VDREs) in confirmed RA susceptibility loci and testing variants associated with vitamin D levels for association with RA. Bioinformatically, VDRE genomic positions were overlaid with non-HLA (human leukocyte antigen)-confirmed RA susceptibility regions. The number of VDREs at RA loci was compared to a randomly selected set of genomic loci to calculate an average relative risk (RR). Single-nucleotide polymorphisms (SNPs) in the DHCR7/NADSYN1 (nicotinamide adenine dinucleotide synthase 1) and CYP2R1 loci, previously associated with circulating vitamin D levels, were tested in UK RA cases (n = 3870) and controls (n = 8430). Significant enrichment of VDREs was seen at RA loci (P = 9.23 × 10⁻⁸) when regions were defined either by gene (RR 5.50) or position (RR 5.86). SNPs in the DHCR7/NADSYN1 locus showed evidence of positive association with RA, rs4944076 (P = 0.008, odds ratio (OR) 1.14, 95% confidence interval (CI) 1.03–1.24). The significant enrichment of VDREs at RA-associated loci and the modest association of variants in loci-controlling levels of circulating vitamin D supports the hypothesis that vitamin D has a role in the development of RA.

Genes and Immunity (2013) 14, 325–329; doi:10.1038/gene.2013.23; published online 2 May 2013

Keywords: vitamin D; rheumatoid arthritis; VDRE; Mendelian randomization

INTRODUCTION

Vitamin D is a steroid hormone that has an important role in many processes.1 Vitamin D acts through its nuclear receptor, the expression of which on immune cells raises the question of a role for the hormone in the control of the immune system. Numerous lines of evidence support a regulatory role for vitamin D; indeed the active form, calcitriol or 1,25-dihydroxyvitamin D3 (VitD3), has been found to control over 200 genes including those involved in cell differentiation, proliferation, apoptosis and angiogenesis.2–4 The vitamin D receptor acts by binding to specific sequences in DNA known as vitamin D response elements (VDREs), which result in transcriptional regulation of vitamin D-responsive genes.

Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease (AID) that causes inflammation of synovial joints. RA is thought to arise as a result of an autoimmune reaction due to a breach in self tolerance, inducing a type 1 T helper cell-driven immune response that causes infiltration of immune cells into the joint and secretion of pro-inflammatory cytokines.5

Vitamin D deficiency is common in RA and the active form of vitamin D can alter several aspects of the immune responses, which are pivotal to RA pathogenesis. The cytokine profile of immune cells can be affected; for example, production of interferon-γ (IFN-γ) and interleukin-1β (IL-1β) by RA synoviocytes is known to increase the expression of MMP-1 by RA FLS; inhibition of interferon-γ production also reduces antigen presentation by antigen-presenting cells, and in turn reduces T-cell activation, acting as a negative feedback regulator.6 Vitamin D inhibits the differentiation of monocytes to dendritic cells,7 reduces the production of IL-12 by dendritic cells and stimulates phagocytosis of bacteria by macrophages.8,9 Boonstra et al.10 showed that vitamin D increased the production of IL-4, IL-5 and IL-10 by type 2 T helper cells; IL-4 and IL-10 normally act to inhibit type 1 T helper cell function. Vitamin D has also been shown to inhibit the activation of type 17 T helper cells by inhibiting the expression of IL-6.11–12 In addition, vitamin D can affect the invasiveness of cultured RA fibroblast-like synoviocytes (FLS), in which higher concentrations of calcitriol were shown to significantly decrease the invasion of RA FLS by 53%.13 The expression of matrix metalloproteinases (MMP), such as MMP-1 and MMP-2, can also be affected by vitamin D. MMPs are key molecules involved in the destruction of cartilage and bone in RA. IL-1β is known to increase the expression of MMP-1 by RA FLS; Laragione et al.13 have shown that in both human and rats, treatment of activated FLS with calcitriol significantly inhibited IL-1β-induced expression of MMP-1 by 73–75%.

Given its immunoregulatory potential, a role for vitamin D has been postulated in AIDs. Circumstantial evidence supports this possibility; for example, circulating vitamin D levels have been reported to correlate with the risk of multiple sclerosis,14 type 1 diabetes (T1D)15 and Crohn’s disease.16 In RA, decreased serum levels of precursor vitamin D (25(OH)D) and active VitD3 have been reported in cross-sectional studies.17 However, findings may be confounded by the decreased physical activity and reduced sun exposure that RA patients with disability experience, which means that it is not clear whether the associations observed are cause or effect. With regards to disease onset, the
evidence surrounding vitamin D intake is conflicting. Merlino et al.18 showed an inverse prospective association between high vitamin D intake and the risk of RA in women from the Iowa health study. However, a large prospective study of 180,000 women showed no association between vitamin D intake and subsequent development of RA.19

Low serum levels of vitamin D have also been associated with increased disease severity;20–23 however, the regulatory genes associated with disease severity may be different to those associated with susceptibility, therefore, there may be a different set of genes regulating disease severity, which remain unexplored for VDRE enrichment.

Thus, there is conflicting epidemiological evidence for a role of vitamin D in influencing disease susceptibility to RA, and differentiating cause from effect is challenging. However, there is emerging genetic evidence that vitamin D levels may be linked to the onset of AIDs. First, a recent study by Ramagopalan et al.24 determined VDREs throughout the genome using chromatin immunoprecipitation (ChIP), followed by massively parallel sequencing (ChIP-seq). The authors identified VDREs in lymphoblastoid cell lines from two individuals of European ancestry before and after VitD\textsubscript{3} stimulation. In the basal state, before stimulation, 623 genomic sites were identified, whereas after calcitriol stimulation, the number of VDRE sites increased to 2776. The authors demonstrated significant enrichment of VDREs in known AID susceptibility loci, including Crohn’s disease, systemic lupus erythematosus, T1D and multiple sclerosis (P-value < 0.001 in all diseases). Interestingly, the study also tested 16 RA susceptibility loci and found significant VDRE enrichment (P < 0.001). However, only 9 of the 16 loci have been confirmed to be associated with RA; in addition, there are now 45 non-HLA (human leukocyte antigen) loci confirmed to be associated with RA susceptibility.27

The second piece of genetic evidence to support a role for vitamin D in the aetiology of AID comes from a recent study in a T1D cohort, this study confirmed the association of four vitamin D metabolism genes (GC, DHCR7/NADSYN1, CYP2R1, CYP24A1) with vitamin D levels in healthy controls; in addition, two of these genes showed association with T1D susceptibility (DHCR7 P = 1.2 \times 10^{-3} and CYP2R1 P = 3.0 \times 10^{-5}).28

The association of the same variants in the same genes that control circulating levels of vitamin D with an AID provides an unbiased test of the hypothesis that vitamin D levels are important in the aetiology of AIDs (Mendelian randomization). Therefore, the aims of the current study were, first, to investigate potential enrichment of VDREs in RA susceptibility loci that have been confirmed to date;27 second, to test variants previously associated with circulating levels of vitamin D and T1D susceptibility for association with RA susceptibility.

RESULTS

Enrichment of VDREs at RA loci

Out of the 46 RA regions defined by gene, a total of 39 VDREs were identified in 17 RA regions, showing that 37% of RA regions contain VDREs. The relative risk (RR) for RA-associated genes harbouring VDREs compared with random genes was 5.5 (95% CI 2.55–26.33) (Table 1).

Analysing the data using a simple 2 \times 2 table also showed a significant increase in VDREs in RA-associated loci compared with the rest of the protein-coding genes in the genome obtained from ensembl build 65, \(P = 1.20 \times 10^{-10} \) (odds ratio (OR) 5.72, 95% confidence interval (CI) 2.95–10.79) (Table 1).

However, this 2 \times 2 table method does not take into account the number of VDREs in each gene region; therefore, a trend test was carried out using a 2 \times 16 table (online Supplementary Table 2), which also showed a significant enrichment of VDREs (\(P = 9.23 \times 10^{-8} \)).

When defining regions by gene, the RA-defined gene may not be the true causal gene. To overcome this issue, we also defined regions by position, extending 50 kb up- and downstream of the associated single-nucleotide polymorphism (SNP) site. Defining regions by SNP position identified 25 VDREs in 16 out of 46 regions (35.5% of RA-associated SNPs contain VDREs within 50 kb), again showing a significant enrichment of VDREs at RA loci (after 100,000 randomizations, RR 5.86, 95% CI 2.04–51) (Table 1). However, only one RA-associated SNP was shown to lie directly within a VDRE; rs947474 is located on chromosome 10 and maps within the PRKCD locus.

Association of SNPs in vitamin D gene regions with RA

DHCR7/NADSYN1. After QC, 360 SNPs in 3870 UK RA cases and 8430 UK controls remained for analysis, capturing 59% of variation across the DHCR7/NADSYN1 (nicotinamide adenine dinucleotide synthase 1) locus (\(r^2 > 0.8 \)). Weak association (\(P = 0.04 \)) was seen at rs11600569, which is in complete linkage disequilibrium with the vitamin D SNP associated with T1D (rs12785878); the OR is the same in both diseases (OR 1.07) (Table 2).28

Association was seen between rs4944076, located in an intron of NADSYN1 and RA (\(P = 0.008 \), OR 1.14, 95% CI 1.03–1.24) after principal components analysis to correct for geographical variation (Figure 1, Table 2, full results Supplementary Table 3). This SNP was modestly correlated (\(r^2 = 0.3 \)) with rs12785878.28

CYP2R1. After QC, 177 SNPs remained for analysis, capturing 47% of the variation across the CYP2R1 region (\(r^2 > 0.8 \)). Weak association was seen at four SNPs (Table 2): two of these SNPs, rs7116978 and rs6486205 (\(P = 0.05 \), OR 1.06, 95% CI 1.03–1.18), are highly correlated with rs11600569 (\(r^2 = 0.87 \)), previously associated with vitamin D levels and T1D (Supplementary Figure 1).

DISCUSSION

Although RA loci have previously been shown to be enriched for VDREs, this was in a total of 16 non-confirmed loci, of which only nine have since been validated as RA susceptibility loci. Here, we perform the first comprehensive analysis of VDREs in all 45 confirmed non-HLA RA susceptibility loci. We have shown that genes or regions surrounding SNPs associated with susceptibility to RA are significantly enriched for VDREs. Indeed, the vitamin D receptor has a binding site at 17 out of 46 confirmed non-HLA

| Table 1. VDRE enrichment results when regions are defined by gene or SNP position |
|-------------------|-----|---------------|-----------------|
| | RR | 95% CI | \(\chi^2 \) |
	P-value	OR	95% CI	
Defining regions by gene	5.50	2.55–26.33	1.21 \times 10^{-10}	
Defining regions by position (50 kb)	5.86	2.04–51	5.72	2.95–10.79

Abbreviations: CI, confidence interval; OR, odds ratio; RR, relative risk.
RA-associated genes, and binds within 50 kb of 35.5% of RA-associated SNPs, resulting in a RR of 5.86 compared with the rest of the genome. We have also shown that SNPs within the vitamin D-associated loci \textit{DHCR7/NADSYN1} show modest association with RA susceptibility, suggesting that vitamin D may have a role in the development of RA.

There are some points that should be considered when interpreting these results. Primarily, the RA-associated genes as defined by this study may not represent the true causal gene. Indeed, when genes are assigned to loci, any functionality that is associated is largely speculative, and involves variants being assigned to the nearest gene, or to a gene in the region that is a plausible biological candidate. Therefore, we used GRAIL (gene relationships across implicated loci), which is the best method to assign genes to loci in a non-biased fashion. We also used a position-based approach, as well as a gene-based approach, with the assumption that a causal gene will lie reasonably close to the currently defined associated variant. However, associated variants may not exert their effects on nearby genes, but may be acting on genes some distance away in \textit{cis} or \textit{trans}.30

Although most regions have been fine-mapped using the immunochip (a custom SNP array designed for dense genotyping of 186 loci identified through genome-wide association studies),27 in large sample collections, it is possible that the true causal variants are not the currently defined RA-associated variants or those in tight linkage disequilibrium with them and, indeed, independent associations may exist in already confirmed susceptibility loci. Therefore, more causal variants may exist within VDREs than indicated here, and functional studies to define causal SNPs will be necessary to understand the full picture.

| Table 2. Logistic regression results showing top SNP associations in the \textit{DHCR7/NADSYN1} and \textit{CYP2R1} regions with RA |
|----------------|-------------|-------------|-------------|-------------|-------------|-------------|
| SNP | SNP position | SNP type | MAF in controls | MAF in cases | P-value | OR | 95% CI |
| \textit{DHCR7/NADSYN1} | | | | | | | |
| rs4944076 | 70889302 | Intronic | 0.09 | 0.10 | 0.008 | 1.135 | 1.034:1.246 |
| rs4944997 | 7084016 | Intronic | 0.09 | 0.10 | 0.008 | 1.135 | 1.033:1.246 |
| rs2919722 | 70631179 | Intronic | 0.40 | 0.42 | 0.014 | 1.072 | 1.014:1.133 |
| rs1002171 | 70895219 | Intronic | 0.05 | 0.05 | 0.014 | 1.166 | 1.031:1.319 |
| rs11600569 | 70851395 | Intronic | 0.22 | 0.23 | 0.040 | 1.071 | 1.003:1.143 |
| \textit{CYP2R1} | | | | | | | |
| rs117162870 | 14782929 | Intronic | 0.04 | 0.05 | 0.04 | 1.15 | 1.009:1.305 |
| rs116856365 | 14726866 | Intronic | 0.04 | 0.05 | 0.04 | 1.42 | 1.004:1.300 |
| rs7116978 | 14838347 | Intronic | 0.37 | 0.38 | 0.05 | 1.06 | 0.999:1.118 |
| rs6486205 | 14837832 | Intronic | 0.37 | 0.38 | 0.05 | 1.06 | 0.999:1.118 |

Abbreviations: CI, confidence interval; MAF, minor allele frequency; NADSYN1, nicotinamide adenine dinucleotide synthase 1; OR, odds ratio. rs11600569 shown in bold is perfectly correlated ($r^2 = 1$) with rs12785878 previously associated with vitamin D levels and T1D.28
Finally, it is possible that some genes and SNPs included in the randomized control groups will ultimately be associated with RA, once all contributing genetic factors have been identified. However, that would reduce the likelihood of a difference being observed between currently defined RA loci and random non-RA-associated loci, and would be more likely to lead to a type 2 error. Reassuringly, results from the two methods to define RA regions produced very similar results. In addition, defining region by position showed an increased RR compared with defining regions by gene (RR 5.86 and RR 5.50, respectively) (Table 1), suggesting that as the regions are more specifically centred on the RA-associated variant, VDRE enrichment increases.

Several studies have found reduced vitamin D levels in individuals with RA and other AIDs, but determining whether their association with disease is cause or effect is challenging. However, several SNPs have been reproducibly associated with vitamin D levels, if the same SNPs are also associated with vitamin D disease, it provides strong evidence that the pathway is causal (Mendelian randomization). In the current study, the genetic results are of borderline significance; a SNP perfectly correlated (r² = 1) with the TID-associated variant showed modest association (rs11600569 P = 0.04) after correction for geographical variation. Although this association would not remain significant after correction for multiple testing, it is interesting to note that the effect size seen for the association of this SNP with RA is the same as was previously identified in TID (OR 1.07, P = 0.008) increasing the plausibility of this result. In addition, we have shown association between other SNPs in the DHCR7/NADSYN1 locus and RA (P = 0.008), and although these SNPs have not been previously associated with vitamin D levels, since the association between SNPs in this region and vitamin D levels was identified by genome-wide association studies, the causal variant in the region responsible for altering vitamin D levels has not yet been determined, and it is possible that a secondary association in the region could be identified.

All variants associated with vitamin D levels (Table 2) are intronic variants. The most associated variant rs4944076 lies in an intron of NADSYN1. Bioinformatics analysis using the programme ASSIMILATOR (rs4944076) that retrieves and queries the experimental data generated by ENCODE, which is available on the UCSC web browser, has shown that rs4944076 lies within a region of open chromatin, DNase 1 hypersensitivity and histone modification, suggesting possible regulatory potential. In addition, one SNP, rs4944997, has been found to be an expression-quantitative-trait locus, potentially regulating the expression of NADSYN1. However, the associations at this locus are modest and will require replication and identification of the functional variant before speculation of the functional effect of the variant can be determined.

The main source of vitamin D comes from endogenous production in the skin after exposure to UVB light from the sun, which results in the conversion of 7-dehydrocholesterol (present in the skin) to vitamin D₃. This is then metabolized in the liver by CYP2R1 and CYP27A1 enzymes to form 25(OH)D₃, the major circulating form of vitamin D that is converted to its active form, 1,25(OH)₂D₃ (calcitriol) in the kidneys by CYP27B1. DHCR7 encodes an enzyme that catalyzes the conversion of 7-dehydrocholesterol to cholesterol, which removes pro-cholesterol from the vitamin D pathway, reducing the availability of 7-dehydrocholesterol for conversion to 25(OH)D₃. We could speculate that variants resulting in increased DHCR7 activity could, therefore, lead to increased removal of 7-dehydrocholesterol from the vitamin D pathway, causing vitamin D deficiency.

In conclusion, analysis of all 45 confirmed RA non-HLA susceptibility loci to date has shown a significant enrichment of VDREs at RA loci; in addition, we have shown the modest association of SNPs, previously associated with vitamin D levels, with RA. Validation of this finding is required in larger, independent studies. If confirmed, the genetic association along with the significant enrichment of VDREs in RA-associated loci would provide supportive evidence for the involvement of vitamin D in RA, and may pave the way for future trials of vitamin D therapy to prevent RA.

MATERIALS AND METHODS

Analysis of enrichment of VDREs at RA loci

The enrichment of VDREs at confirmed RA loci was investigated bioinformatically to compare the genomic location of defined RA loci with the genomic positions of VDREs identified by Ramagopalan et al. A total of 2776 VDREs identified by ChIP-seq in lymphoblastoid cell lines after VitD₃ stimulation were obtained from Ramagopalan et al., and were assigned to the nearest gene within 100 kb using the Ensembl genome browser (www.ensembl.org) build 65. The 100 kb threshold was selected arbitrarily: it is possible that VDREs act on more distant genes, however it has been shown that calcitriol-responsive genes have a VDRE at a median distance of 66.6 Kb from the transcription start site.

RA loci were defined using the ensemble genome sequence in two ways:

1. First, regions were defined based on the most plausible candidate gene, a query gene list was created using the 45 non-HLA loci defined in a recent study by Eyre et al. (Supplementary Table 1). Each associated SNP from this study was assigned to the most functionally plausible candidate gene using GRAIL. GRAIL uses the literature to identify relationships between genes, and selects the best candidate gene in a region in relation to a particular phenotype. One locus contained multiple candidate genes (IL2–IL21), and therefore was included twice, creating a final list of 46 genes in the query list.

2. Second, regions were defined using the base pair position of each associated SNP from Eyre et al. and defining the RA loci by extending 50 kb up- and downstream of each of the associated SNP (one locus IKZF3 had two candidate SNPs, see Supplementary Table 1).

The genomic locations of these defined RA loci obtained from Ensembl were then compared with the genomic positions of the VDREs from Ramagopalan et al. using perl scripts to determine the number of VDREs present in RA loci.

To identify an enrichment of VDREs, a comparison set of the same number of random loci was created. Perl scripts were used to select random genes from all protein-coding genes in the genome (except those already associated with RA) or base pair positions from the ensemble genome sequence, and regions were defined in the same way as described for the RA loci. In total, 100,000 randomly selected comparison gene sets were generated and VDRE enrichment was determined by assessing the RR. This was calculated by dividing the number of VDREs in the query gene list by the average number of VDREs in 100,000 randomizations. Some random gene sets will undoubtedly contain zero VDREs, but the risk ratio cannot be calculated if there are no events in the control group. To overcome this problem, 0.5 was added to the total number of VDREs in all gene sets, including the query list.

STATA version 11 (http://www.stata.com) was then used to calculate P-values. A χ² test was performed to test the null hypothesis that the probability of a VDRE existing at a given locus did not depend on whether that locus was close to a region associated with RA risk, by creating a 2 x 2 table cross-classifying genes by association with RA and presence of a VDRE. As this method does not take into account the number of VDREs in each region, a trend test was performed using a 2 x N table.

Analysis of SNPs associated with circulating levels of vitamin D

The regions surrounding two genes previously associated with circulating levels of vitamin D and TID were fine-mapped as part of a larger study (DHCR7/NADSYN1 and CYP2R1). All known SNPs in the region from HapMap and the 1000 genomes project low-coverage whole-genome sequence, and regions were defined in the same way as described for the RA loci. In total, 100,000 randomly selected comparison gene sets were generated and VDRE enrichment was determined by assessing the RR. This was calculated by dividing the number of VDREs in the query gene list by the average number of VDREs in 100,000 randomizations. Some random gene sets will undoubtedly contain zero VDREs, but the risk ratio cannot be calculated if there are no events in the control group. To overcome this problem, 0.5 was added to the total number of VDREs in all gene sets, including the query list.

As the DHCR7/NADSYN1 locus lies in a region identified by the Wellcome Trust Case Control Consortium (WTCCC) to be a region in which allele frequencies show geographic differentiation in the UK, principal components analysis was carried out (described previously) to correct for this. The study was approved by the North West Ethics Committee (MREC 99/8/84).
Role of VDRE in RA-associated loci
A Yarwood et al

Conflict of interest
The authors declare no conflict of interest.

Acknowledgements
We thank Arthritis Research UK for their support (grant ref 17552). This work was supported by the innovative medicines initiative joint undertaking (IMI JU) funded project BeTheCure, (contract number 115142-2).

Author contributions
Conception and design of study: AY, SE, AB; acquisition and analysis of data: AY, PM, ML, JB; interpretation of data: AY, PM; manuscript preparation: AY, PM, SE, AB, JW.

References
1 Holick MF. Vitamin D deficiency. N Engl J Med 2007; 357: 266–281.
2 Holick MF. Resurrection of vitamin D deficiency and rickets. J Clin Invest 2006; 116: 2062–2072.
3 DeLuca HF. Overview of general physiologic features and functions of vitamin D. Am J Clin Nutr 2004; 80(Suppl 6): 1689–1695S.
4 Holick MF. High prevalence of vitamin D inadequacy and implications for health. Mayo Clin Proc 2006; 81: 353–373.
5 McInnes IB, O’Dell JR. State-of-the-art: rheumatoid arthritis. Ann Rheum Dis 2010; 69: 1898–1906.
6 Cippitelli M, Santoni A. Vitamin D3: a transcriptional modulator of the interferon-gamma gene. Eur J Immunol 1998; 28: 3017–3030.
7 DeLuca HF, Cantorna MT. Vitamin D: its role and uses in immunology. FASEB J 2001; 15: 2579–2585.
8 Griffin MD, Lutz WH, Phan VA, Bachman LA, McKean DJ, Kumar R. Potent inhibition of dendritic cell differentiation and maturation by vitamin D analogs. Biochem Biophys Res Commun 2000; 270: 701–708.
9 Griffin MD, Lutz W, Phan VA, Bachman LA, McKean DJ, Kumar R. Dendritic cell modulation by 1alpha,25 dihydroxyvitamin D3 and its analogs: a vitamin D receptor-dependent pathway that promotes a persistent state of immaturity in vitro and in vivo. Proc Natl Acad Sci USA 2001; 98: 6800–6805.
10 Boonstra A, Barrat FJ, Crain C, Heath VL, Savelkoul HFJ, O’Garra A. 1{alpha}, 25–OH–D3 is a rheumatoid arthritis susceptibility gene. Ann Rheum Dis 2010; 74(Suppl 6): 1689–1746.
11 Stockinger B, Th17 cells: an orphan with influence. Immunol Cell Biol 2007; 85: 83–84.
12 Xue ML, Zhu H, Thakur A, Willcox M. 1alpha,25-Dihydroxyvitamin D3 inhibits pro-inflammatory cytokine and chemokine expression in human corneal epithelial cells colonized with Pseudomonas aeruginosa. Immunol Cell Biol 2002; 80: 340–345.
13 Laragione T, Shah A, Gulkos PS. The vitamin D receptor regulates rheumatoid arthritis synovial fibroblast invasion and morphology. Mol Med 2012; 18: 194–200.
14 Ascherio A, Munger KL, Simon KC. Vitamin D and multiple sclerosis. Lancet Neurol 2010; 9: 599–612.
15 Mathieu C, Gysenens C, Giulietti A, Bouillon R. Vitamin D and diabetes. Diabetologia 2005; 48: 1247–1257.
16 Pappa HM, Grand RJ, Gordon CM. Report on the vitamin D status of adult and pediatric patients with inflammatory bowel disease and its significance for bone health and disease. Inflamm Bowel Dis 2006; 12: 1162–1174.
17 Xi D, Liu B, Christiansen C. Serum concentration of vitamin D metabolites in rheumatoid arthritis. Clin Rheumatol 1987; 6: 238–243.
18 Merlino LA, Curtis J, Mikuls TR, Cerhan JR, Criswell LA, Saag KG. Vitamin D intake is inversely associated with rheumatoid arthritis: results from the Iowa Women’s Health Study. Arthritis Rheum 2004; 50: 72–77.
19 Costenbader KH, Feskanich D, Holmes M, Karlson EW, Ito-Garcia E. Vitamin D intake and risks of systemic lupus erythematosus and rheumatoid arthritis in women. Ann Rheum Dis 2008; 67: 530–535.
20 Haga HJ, Schmedes A, Naderi Y, Moreno AM, Peen E. Severe deficiency of 25-hydroxyvitamin D(3) (25-OH-D(3)) is associated with high disease activity of rheumatoid arthritis. Clin Rheumatol (e-pub ahead of print 15 January 2013; doi:10.1007/s10026-012-2154-6).
21 Kostoglou-Athanassiou I, Athanassiou P, Lyraiki A, Rafakis I, Antoniades C. Vitamin D and rheumatoid arthritis. Ther Adv Endocrinol Metab 2012; 3: 181–187.
22 Baykal T, Senel K, Alp F, Erdal A, Ugur M. Is there an association between serum 25-hydroxyvitamin D concentrations and disease activity in rheumatoid arthritis? Br J Rheumatol 2012; 113: 610–611.
23 Higgins MJ, Mackie SL, Thalayasingam N, Bingham SJ, Hamilton J, Kelly CA. The effect of vitamin D levels on the assessment of disease activity in rheumatoid arthritis. Clin Rheumatol (e-pub ahead of print 23 January 2013; doi:10.1007/s10026-012-2174-x).
24 Song GG, Bae SC, Lee YH. Association between vitamin D intake and the risk of rheumatoid arthritis: a meta-analysis. Clin Rheumatol 2012; 31: 1733–1739.
25 Rossini M, Maddali BS, La MG, Minisola G, Malavolta N, Bernini L et al. Vitamin D deficiency in rheumatoid arthritis: prevalence, determinants and associations with disease activity and disability. Arthritis Res Ther 2012; 14: R216.
26 Ramagopalan SV, Heger A, Berlanga AJ, Maugeri NJ, Lincoln MR, Burratt A et al. A ChiP-seq defined genome-wide map of vitamin D receptor binding: associations with disease and evolution. Genome Res 2010; 20: 1352–1360.
27 Eyre S, Bowes J, Diogo D, Lee A, Barton A, Martin P et al. High-density genetic mapping identifies new susceptibility loci for rheumatoid arthritis. Nat Genet 2012; 44: 1336–1340.
28 Cooper JD, Smyth DJ, Walker NM, Stevens H, Burren OS, Wallace C et al. Inherited variation in vitamin D genes is associated with predisposition to autoimmune disease type 1 diabetes. Diabetes 2011; 60: 1624–1631.
29 Hingorani A, Humphries S. Nature’s randomised trials. Lancet 2003; 366: 1906–1908.
30 Pomerantz MM, Ahmadynejeh N, Jia L, Herman P, Verzi MP, Doddapaneni H et al. The 8q24 cancer risk variant rs6983267 shows long-range interaction with MYC in colorectal cancer. Nat Genet 2009; 41: 882–884.
31 Wang TJ, Zhang F, Richards JB, Kestenbaum B, van Meurs JB, Berry D et al. Common genetic determinants of vitamin D insufficiency: a genome-wide association study. Lancet 2010; 376: 180–188.
32 Martin P, Barton A, Eyre S. ASSIMILATOR: a new tool to inform selection of associated genetic variants for functional studies. Bioinformatics 2011; 27: 144–146.
33 Veyrieras JB, Kudaravalli S, Kim SY, Dermitzakis ET, Gilad Y, Stephens M et al. High-resolution mapping of expression-QTLs yields insight into human gene regulation. PLoS Genet 2008; 4: e1000214.
34 Raychaudhuri S, Plenge RM, Rossin EJ, Ng AC, Purcell SM, Sklar P et al. Identifying relationships among genomic disease regions: predicting genes at pathogenic SNP associations and rare deletions. PLoS Genet 2009; 5: e1000534.
35 The Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 2007; 447: 661–678.
36 Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 2006; 38: 904–909.

Supplementary Information accompanies this paper on Genes and Immunity website (http://www.nature.com/gene)