ABSTRACT: There has been significant recent interest in exploiting the large dimension changes that can occur in molecular materials as a function of temperature, stress, or under optical illumination. Here, we report the remarkable thermal expansion properties of chloranilic acid pyrazine co-crystals. We show that the compound shows uniaxial negative thermal expansion over a wide temperature range with a linear contraction coefficient as low as $(-1)1500 \times 10^{-6}$ K$^{-1}$ at 250 K. The corresponding 10% contraction between 200 and 300 K is an order of magnitude larger than in the so-called colossal contraction materials. We adopt a symmetry-inspired approach to describe both the structural changes that occur (using rotational symmetry modes) and the thermal expansion (using strain modes). This allows an extremely compact description of the phase transition responsible for this unusual behavior and gives detailed understanding of its atomic origins. We show how the coupling of primary and secondary strain modes in materials showing extreme expansion and contraction can lead to unusual reversals in the temperature dependence of cell parameters.

INTRODUCTION
There has been significant interest in the physical properties of crystalline organic and hybrid materials in recent years, particularly in some of the mechanical properties traditionally studied in metallic, ceramic, and polymer engineering materials. The weaker bonding interactions present between organic molecules often enhance the magnitude of important properties, and their design-flexibility makes them a rich area for discovery. Much of the interest in the field is driven by the possibility of creating stimulus-responsive materials that display macroscopic changes and can act as actuators or artificial muscles.

For example, there has been a number of reports over the years of “bending crystals”, which undergo dramatic shape changes either on heating or on the application of mechanical stress, some of which have been recently reviewed. This behavior is usually linked to the evolution of twin structures associated with phase transitions and, as such, closely related to the phenomena that lead to effects such as shape memory and superelasticity in metal alloys like nitinol. There has, therefore, been significant interest in martensite-like transitions in organic crystals; recent examples of materials exploiting these include the superelastic terephthalamide and the organic shape memory material (P6Bu$_3$)(BPh$_4$)$^-$ and the classic works of Ubbelohde and Mnyukh.23 The weaker interactions in molecular materials can also lead to more extreme behavior under changes in temperature than in conventional materials. This is exemplified by so-called negative thermal expansion (NTE) materials, which show the unusual property of contracting in volume on heating. Most of the “classic” phonon-driven oxide NTE systems such as ZrW$_2$O$_8$, Sc$_2$(WO$_4$)$_3$, and zeolites have negative linear contraction coefficients that are of comparable magnitude to the positive coefficients of normal materials ($\alpha_l \approx -20-0 \times 10^{-6}$ K$^{-1}$). ZrW$_2$O$_8$, for example, has $\alpha_l = -9 \times 10^{-6}$ K$^{-1}$ from 2 to 300 K corresponding to a percentage contraction $\Delta l/l \approx -0.1\%$ over a 100 K range. The term “colossal negative thermal expansion” was introduced to define materials with α_l more negative than -100×10^{-6} K$^{-1}$ and hence a $\Delta l/l$ contraction larger than 1% over 100 K. The first such material was Ag$_3$[Co(CN)$_6$], which showed a uniaxial NTE of -130×10^{-6} K$^{-1}$; this extreme contraction is related to the inherent flexibility of its framework structure, in which the volume is defined by a weak Ag−Ag argentophilic interaction.25 In essence, this soft interaction leads have recently been shown to display superplasticity.22 Herbstein provides a useful overview of the mechanism of organic transformations in the solid state, in particular summarizing the classic works of Ubbelohde and Mnyukh.

Finally, N,N-dimethyl-4-nitroaniline crystals

Received: March 21, 2019
Revised: May 27, 2019
Published: May 28, 2019
to a large positive expansion in two dimensions, with the framework topology driving a contraction along the perpendicular direction. Colossal isotropic NTE was subsequently reported in other framework systems such as the UiO-66 MOF. Mullaney et al. have also shown how spin crossover can switch the geometry of flexible frameworks; by spin dilution, they could prepare materials with continuous cell parameter changes of +6/-4% over a 60 K range. This is strongly reminiscent of the major “breathing” changes in the geometry of metal organic frameworks such as MIL-53 on gas uptake.

Extreme thermal expansion or contraction coefficients are also found in purely organic crystals where weaker intermolecular forces dominate. Some of the most dramatic are in the thermosalinic or “jumping crystals” such as (phenyl-azophenyl) palladium hexafluoroacetone with $\alpha_a = +260.4 \times 10^{-6}$ K$^{-1}$ between 223 and 348 K and N'-2-propylidene-4-hydroxybenzohydrazide, with $\alpha_{a/b} \approx +230 \times 10^{-6}$ K$^{-1}$ and $\alpha_c \approx -290 \times 10^{-6}$ K$^{-1}$ over the temperature range 298–373 K. (S,S)-octa-3,5-diyne-2,7-diol has been reported to be a biaxial NTE material with $\alpha_{a/b} = +450 \times 10^{-6}$ K$^{-1}$, $\alpha_b = -130 \times 10^{-6}$ K and $\alpha_c = -250 \times 10^{-6}$ K giving a relatively low overall volume expansion $\alpha_V = +60 \times 10^{-6}$ K$^{-1}$ (all 240–330 K). Methanol monohydrate, in contrast, has a large volume expansion $\alpha_V = +500 \times 10^{-6}$ K$^{-1}$ that causes a more modest contraction in one dimension $\alpha_a = -60 \times 10^{-6}$ K$^{-1}$ (both at 155 K) along with negative linear compressibility.

Here, we report the remarkable thermal expansion properties of a chloranilic acid pyrazine (CA-Pyz) co-crystal associated with a newly-discovered phase transition. The molecular structure and views of the three-dimensional packing (which will be discussed in detail later in the text) are shown in Figure 1.

Figure 1. Molecular structure of chloranilic acid (CA) and pyrazine (Pyz), and views of the CA-Pyz co-crystal structure at 300 K along a, b, and c (left to right). The monoclinic high-temperature (HT) unit cell is shown in gray. The bold blue “diamond” in the view of the ab plane shows the low-temperature triclinic cell discussed in the text and used for most analysis. Heavy black and blue arrows show directions of rotational symmetry modes for CA and Pyz, respectively. A chain of hydrogen-bonded CA-Pyz molecules is highlighted in red.

Powder and single-crystal diffraction studies have shown that this material undergoes a phase transition which leads to extreme distortions of its unit cell. Its volume change from 200 to 300 K is one of the largest known for an organic crystal, and it shows extreme anisotropy in the contraction and expansion of its a and b cell parameters. Average linear thermal expansion coefficients approaching $\pm 1000 \times 10^{-6}$ K$^{-1}$ are observed from 200 to 300 K corresponding to 10% length changes, an order of magnitude larger than required by the definition of “colossal”. Our structural studies and the application of rigid-body rotational symmetry modes allow us to understand and describe the molecular origins of this fascinating behavior. We also present a simple model to explain the unusual temperature evolution of cell parameters that can arise in materials showing such extreme thermal expansion.

EXPERIMENTAL SECTION

Sample Preparation

Single crystals of CA-Pyz were obtained by slow evaporation of an acetonitrile solution of chloranilic acid (Aldrich, 98%) and pyrazine (Aldrich, 99%) in a 1:1 molar ratio. Chloranilic acid (0.0627 g, 0.3 mmol) and pyrazine (0.0240 g, 0.3 mmol) were dissolved separately in the minimum volume of acetonitrile (typically 6 and 1 mL, respectively) with gentle heating for 30 min. Orange-red rhombohedral-shaped crystals appeared after 2 days. Polycrystalline samples were produced by gentle grinding of crystals.

Single-Crystal Diffraction

Single-crystal X-ray diffraction data were acquired on an Oxford Gemini S Ultra diffractometer equipped with a CCD area detector, using Mo Kα radiation ($\lambda = 0.71073$ Å). Data were collected at 200, 275, 250, 230, 200, and 150 K on both cooling and warming. A Cryostream Plus Controller was used to control the experimental temperature. Crystal structures were solved using SIR92 within the CRYSTALS software. All nonhydrogen atoms were refined anisotropically against F^2. All hydrogen atoms were located by difference Fourier maps and refined isotropically without any restraints.

Powder Diffraction

Synchrotron powder X-ray diffraction data were collected at a beamline 111 at Diamond Light Source in high-resolution mode using the 45 Multi-Analysing Crystal detector and a wavelength $\lambda = 0.8257653$ Å (calibrated against a silicon standard NIST 640c). The sample was loaded into a 0.7 mm external-diameter quartz capillary to a length of 30 mm. The capillary was sealed and attached to a brass holder, which rotated during the measurements. Variable temperature data were collected every 4 K between 180 and 360 K. Laboratory powder X-ray diffraction data were collected in capillary mode on a Bruker D8 diffractometer equipped with a Lynx-Eye detector and an Oxford Cryosystems Cryostream Plus device, using Mo Kα radiation. The sample was warmed from 150 to 400 K at a rate of 15 K/h. A series of 20 min datasets were recorded over a 20 range of $−30°$ using a step size 0.01°. All powder diffraction data were analyzed using the TOPAS Academic software.

Solid-State NMR and Thermal Analysis

1H solid-state NMR was recorded at 205 and 308 K with a 15 kHz spinning rate on a Bruker Advance III HD instrument. Differential scanning calorimetry (DSC) experiments were performed on a PerkinElmer Pyris 1 DSC instrument. The sample (2.831 mg) was heated from 120 to 520 K at rates between 10 and 100 K/min.

Symmetry-Mode Analysis

Symmetry-adapted distortion modes belonging to the irreducible representations of the parent-symmetry group, commonly referred to as “symmetry modes”, were employed here to describe global patterns of rigid-body rotations. For brevity, we refer to such patterns simply as “rotational symmetry modes”.

Rotational symmetry modes were defined for a dummy pivot atom placed at the center of inversion of each molecule. Command files containing both a rotational symmetry-mode description and a more familiar displacive symmetry-mode description were generated in a format suitable for TOPAS Academic. Rotational symmetry-mode amplitudes were refined directly using the laboratory powder diffraction data with displacive symmetry modes fixed at zero. Rotational...
symmetry-mode amplitudes were extracted from single-crystal experiments by minimizing the distances between all atoms in a rotational symmetry-mode description with displacive symmetry-mode amplitudes fixed at zero (based on the 300 K single-crystal structure) and the conventionally redefined fractional atomic coordinates. The sensitivity of extracted rotational symmetry-mode amplitudes to internal distortions of molecules was assessed by also refining displacive symmetry-mode amplitudes to give a perfect fit to the conventional coordinates but with displacive amplitudes restrained to values as close to zero as possible such that rotational symmetry modes described the majority of the atomic movement. All symmetry-mode calculations were performed using the ISODISTORT software.44

RESULTS AND DISCUSSION

Observation and Analysis of a Structural Phase Transition in CA-Pyz. Figure 2 shows powder diffraction data recorded on warming and subsequent cooling of CA-Pyz from 180 to 360 K (equivalent lab data used in Figure 4b are given in the Supporting Information (SI) Figure S1). It is immediately apparent from these data that CA-Pyz undergoes a phase transition at around 300 K, and the extreme splitting of certain hkl reflections suggests that the transition is associated with significant changes in the unit cell parameters. We see no

Figure 2. Pseudo-three-dimensional plot of synchrotron powder diffraction data (λ = 0.8258 Å) collected on CA-Pyz on warming from 180 to 360 and subsequent cooling back to 180 K.

Figure 3. Unit cell parameters based on the triclinic cell (Figure 1, blue) extracted from powder data collected on warming (solid markers) and cooling (open markers and crosses). Data reveal some hysteresis and multiphase behavior just below the phase transition temperature on cooling. (a) Unit cell parameters a and b. (b) Unit cell parameter c. Note the very different y-axis scale of Δl/l ≈ 25% and ≈ 5% in (a) and (b). (c) Unit cell angles α, β, and γ. (d) Unit cell volume. (e) Thermal expansion coefficients for each unit cell axis; values derived by fitting a smooth function to the data shown in (a)–(d) followed by numerical differentiation. (f) Unit cell volume and volumetric strain relative to values extrapolated from high-temperature.
significant features in the DSC at this temperature, but this is perhaps unsurprising given the wide temperature range over which the transition occurs.

The 150 K data can be indexed with a triclinic unit cell with \(a = 4.78 \text{ Å}, b = 5.83 \text{ Å}, c = 10.71 \text{ Å}, \alpha = 82.0^\circ, \beta = 81.5^\circ, \gamma = 77.0^\circ, V = 286 \text{ Å}^3 \). Figure 1 shows the relationship of this triclinic cell (bold blue lines) to the previously reported monoclinic high-temperature cell (gray lines). Figure 3 shows unit cell parameters extracted by Pawley fitting, using both the warming and cooling datasets. On warming, we see some peak broadening just below the phase transition temperature \(T_C \) (300 K), which was modeled using just 4 of the 15 allowed terms of a 4th-order spherical harmonic to describe anisotropic microstrain. \(^45,46\) The magnitudes of the coefficients obtained are included in the SI (Figure S2).

At high temperature, the Bragg peaks are essentially as sharp as at low temperature. On cooling, the phase transition is fully reversible, though there is a subtle thermal history-dependent splitting of some of the “tuning-fork” reflections just below the phase transition temperature. By tuning fork, we mean reflections such as the \(\sim 9.5^\circ \) 20 peak ((11–1) at high \(T \); (011) and (101) at low \(T \)), which undergo particularly marked splitting, resulting in the reflections that are equivalent at high temperature being separated by several degrees in 20 at low temperature. The cooling data can be Pawley-fitted by using three closely related phases just below \(T_C \) and we show their unit cell parameters as open points and crosses in Figure 3. Importantly, the sample regains sharp, essentially unstrained cell parameters as open points and crosses in Figure 3. The power of using symmetry-adapted distortion modes belonging to the irreducible representations of the parent-symmetry group (a.k.a. symmetry modes) to describe the order parameters that arise in symmetry-reducing phase transitions is now widely appreciated.\(^44,53–55\) Key advantages are that the essence of the phase transition can often be captured by a small number of parameters (mode amplitudes), each of which quantifies a structural distortion that breaks the parent symmetry in a unique way, and each of which is defined to be zero in the high symmetry parent phase. Symmetry-mode parameters, thus, tend to have clear physical interpretations and origins.

The full parameterization of an arbitrary crystal–crystal phase transition in terms of symmetry modes was initially accomplished for atomic displacements, which are polar vectors.\(^55–57\) The group theoretical calculations required for the construction of displacive symmetry modes are available within the ISODISTORT software package.\(^44\) ISODISTORT also includes symmetry modes to describe the ordering of atomic species (occupational order–disorder), magnetic moments (time-reversible axial vectors), and, most recently, rotational moments (non-time-reversed axial vectors). A rotational symmetry-mode approach can give a very compact description of an entire pattern of rotation vectors, where each vector rotates a group of atoms, such as a rigid molecule or polyhedral unit. Note that the three components of a molecular rotation vector capture the same information as would be specified by three rotational angles (e.g., around three orthogonal axes) in a conventional rigid-body description. The rotation vector is more convenient, because it can be directly visualized (see below) and because there are no arbitrary conventions to consider regarding the order of the rotations around different axes. A rotation vector’s orientation defines the rotation axis, and its length defines the angle of rotation.\(^58\)

These ideas have previously been applied to describe the low-symmetry structure of the extended solid RbBr₃Mg(H₂O)₆\(^59\) and, more recently, the unusual high-to-low-symmetry phase
transition (on warming) of the molecular ferroelectric 5,6-dichloro-2-methylbenzimidazole and the cooperative motions of networks of interconnected rigid units.

The refined structures from single-crystal diffraction experiments allow us to develop a straightforward description of the child LT phase of CA-Pyz in terms of the rotational symmetry modes belonging to the Γ_2 irrep of the parent HT phase. The Γ_2 irrep of space group C2/m results in a P1 subgroup of index 2 with basis $\{(1/2, 1/2, 0), (1/2, -1/2, 0), (0, 0, -1)\}$ and origin at $(0,0,0)$ relative to the conventional parent cell (the blue cell of Figure 1). The child has 36 displacive symmetry modes (spanning the same space as the 6 free xyz atom-position parameters in the conventional description), 24 of which (the Γ_1 modes) describe structural degrees of freedom already present in the parent. Alternatively, if we assume rigid molecules, which merely rotate around their respective inversion centers, we need only consider 6 rotational symmetry modes (spanning the same space as the 6 free xyz components of the two molecular rotation vectors). The LT phase has a Γ_1 and two Γ_2 irrep modes for each molecule, which are illustrated in Figure 1. The $\Gamma_1\text{Ag}(a)$ modes (labeled r_5 and r_6 in Figure 1 and below) describe rotations around the parent b axis and are allowed degrees of freedom in the parent; the rotation axes associated with this mode are perpendicular to the CA molecular plane and in the Pyz molecular plane and perpendicular to the N–N vector. The symmetry-breaking $\Gamma_2\text{Bg}_1(a)$ modes (r_1 and r_2) are rotations around the parent c axis and lie approximately parallel to the C–O bond of CA and the N–N vector of Pyz. The symmetry-breaking $\Gamma_2\text{Bg}_1(b)$ modes (r_3 and r_4) are rotations around the parent a axis and are approximately perpendicular to the C–O axis of CA and to the Pyz plane.

For small rotations of rigid molecules, these 6 parameters should allow us to capture the key features of the phase transition. If additional molecular distortions occur, these can be described by refining additional displacive symmetry-mode amplitudes as internal degrees of freedom within the "semirigid" bodies. These internal modes can also be used to correct for distortions caused by large changes in cell metric when rigid bodies are defined using parent fractional coordinates. If one attempts to simultaneously use both 6 rotational symmetry modes and 36 displacive symmetry modes to describe the structure, then the description will, of course, be over-parameterized. This is corrected by removing 6 appropriate linear combinations of displacive symmetry modes that result in pure rotations. Alternatively, one can use soft restraints to keep unnecessary displacive symmetry-mode amplitudes close to zero during refinement, forcing the rotational symmetry modes to "do most of the work" in describing atomic coordinate shifts. We adopt this latter approach for part of our analysis.

Rotational symmetry-mode amplitudes, extracted by fitting the rotating rigid bodies (as defined using the 300 K high symmetry parent structure) to the refined conventional atomic coordinates from lower temperature single-crystal datasets, are shown in Figure 4a. Figure 4b shows equivalent mode amplitudes refined directly from relatively low-quality laboratory powder diffraction data. The good qualitative and quantitative agreement between Figure 4a and 4b shows that this restricted parameter set (in contrast to traditional xyz refinements) can be reliably extracted from low-quality data.
Figure 5. Relationship between the high- and low-temperature structures of CA-Pyz. Left-hand pictures show ADPs from 295 K neutron diffraction refinements using the monoclinic cell. Middle pictures show views down the c-axis (top) and perpendicular to planes of CA (bottom) at high temperature using the triclinic cell. Right-hand plots are equivalent views at low temperature. Pink cylinders represent the overall rotation of each molecule from high to low temperature; their length is proportional to the rotation angle. Blue arrows show the direction of movement of the corresponding CA-Pyz chain. Black arrows show directions of the important rotational symmetry modes.

laboratory powder diffraction data. We see from these plots that \(\Gamma_2 \) rotations (circles) have by far the highest magnitude and are, therefore, the most important in describing and understanding the phase transition. Pyz molecular rotations (open markers) are also much more important than those of the CA molecule (closed markers). Figure 4d displays the resulting rotation vectors for each molecule. For Pyz, we see that the large \(\sim 16^\circ \) rotation is almost aligned with the N–N vector. For CA, the smaller \(\sim 4^\circ \) rotation is approximately perpendicular to the C=O vector and slightly out of the molecular plane. We emphasize that the mode amplitudes of Figure 4a, or their simpler representation in Figure 4g, describe the structural changes that occur due to the phase transition. From the temperature dependence of \(r_6 \), we see that the effects of the transition are apparent from \(\sim 150 \) to 300 K.

As with any rigid-body description, there are approximations in this approach such that the rigid-body coordinates will be slightly different to those from free refinement. Some differences arise from the fact that at high temperatures, the relatively rigid molecules undergo correlated vibrational motions leading to the well-known underestimation of bond lengths when using harmonic displacement parameters.86 The magnitude of this effect can be appreciated from the left-hand panels of Figure 5, which show anisotropic displacement parameters extracted from neutron single-crystal diffraction refinements. These lead to the HT Pyz molecule showing shorter apparent bond lengths than at low temperature. Our TLS analysis of the neutron-derived structure gives observed and corrected C–N distances of 1.275 and 1.360 Å, respectively. These compare to bond lengths of 1.269 and 1.346 Å obtained from single-crystal X-ray data at 300 K and 150 K, respectively, confirming the librational shortening. Distortions due to the extreme changes in cell metric observed in this particular compound also lead to atoms being up to 0.1 Å from true positions in the molecular rotation description. If internal displacive symmetry-mode amplitudes are refined to give perfect atomic overlap with a restraint applied so that as much of the atomic displacements are captured by rotational symmetry modes as possible, the values of \(r_1 \) to \(r_6 \) (as shown in Figure 4a) change very little. The rotating rigid-body model, therefore, captures most of the key structural changes in a small number of parameters that can be routinely and reliably determined.

Remarkable Thermal Expansion Behavior of CA-Pyz.

We can adopt a similar language to describe the cell parameter changes relative to 300 K that occur on cooling. This involves using strain modes, which transform as polar symmetrized second-rank tensors. The six degrees of freedom of the low-temperature cell appear as four parent-allowed \(\Gamma_2 \) strain modes labeled here \(s_1 \) and two parent-symmetry-breaking \(\Gamma_2 \) modes \(s_2 \). As expected, \(\Gamma_2 \) strain modes refine to essentially zero above \(T_c = 300 \) K for the monoclinic HT phase but show a marked deviation from 0 below 300 K, with the \(\Gamma_2 \) \(s_2 \) strain reaching a remarkable \(\sim 0.14 \) \(\sim 14\% \) by 180 K. It also seems that the \(\Gamma_1 \) strains show a different temperature dependence than those of \(\Gamma_2 \) irreps, with significant deviations from their high-temperature extrapolated behavior only appearing below \(T \approx 260 \) K. The \(\Gamma_2 \) \(s_2 \) mode also displays a clear discontinuity at this lower temperature.

The influence of the strain modes on individual cell parameters depends on the cell setting used. To properly decouple the physical changes of the crystal from the cell setting, we have calculated thermal expansion along the principal axes of the expansion tensor. Figure 4e–g shows expansion indicatrices considering just \(\Gamma_j \), just \(\Gamma_2 \), and \(\Gamma_1 + \Gamma_2 \) overall strains and their relationships to the parent cell axes. As anticipated from Figure 2, we see extremely large negative thermal expansion (blue) close to the parent b-axis, extremely large positive expansion (red) close to the a-axis, and more normal (though still large) positive expansion close to the c-axis. Average thermal expansion coefficients over a 200–300 and 250–300 K temperature range are given in Table 1, and their full temperature evolution is plotted in Figure 3e. We see that the extreme uniaxial contraction \(\alpha_a = -1500 \) K\(^{-1}\) at 250 K) is dominated by \(\Gamma_2 \) strains, and that the dominant effect of \(\Gamma_2 \) is an expansion of the interlayer c-axis. If we use a nonstandard C1 setting for the child structure, we, of course, see the same temperature dependence of strain modes, but they manifest in a different temperature dependence of cell parameters (see SI Figure S7 and discussion...
Table 1. Irrep-Specific Thermal Expansions (left) over the 250–300 K range (200–300 K Values Given in Parentheses for $\Gamma_1^1 + \Gamma_2^2$), along Principal Axes X1−X3, Ordered from Lowest (X1) to Highest (X3) Values, and Overall Volume Expansion

thermal expansion (10^{-6} K^{-1}) along principal axes	principal-axis components for overall $\Gamma_1^1 + \Gamma_2^2$ expansion					
Γ_1^1	Γ_2^2	$\Gamma_1^1 + \Gamma_2^2$	a	b	c	
X1	−34	−1345	−1375 (−893)	−0.10	0.99	−0.07
X2	+33	+196	+188 (0.052)	−0.17	0.01	0.99
X3	+205	+1522	+1524 (1065)	−0.99	0.10	0.03
volume	+138	+88	+245 (270)			

Right-hand columns show each principal-axis direction relative to crystallographic axes for the overall strain (i.e., components of X_n). Estimated uncertainties on expansion coefficients are $\sim 30 \times 10^{-6} K^{-1}$.

Below). In this alternative description, the large -14% amplitude of the s_5 Γ_2^2 mode predominantly influences the cell angle γ, which changes from 90 to $\sim 101.5^\circ$ between 300 and 150 K.

The trigonometric dependencies of the individual child-cell parameters on the strain modes are considerably more complicated than that of the volume. However, we can expand these dependencies to first order and then apply the observed 150 K strain-mode amplitudes to determine which contributions are most important to the thermal expansion (Table 2). These approximations also help to rationalize the extremely unusual temperature dependencies of the cell parameters in Figure 3. For example, the unit cell angle β initially decreases on cooling through Γ_1^1, but then increases below $T \simeq 260 K$, whereas angle increases monotonically on cooling. When we look at which modes influence α and β, we see that they vary in opposite directions with respect to either mode s_5 or s_6 of Γ_2^2 (the sensitivity to s_5 is weak and the amplitude of s_5 is large, whereas the sensitivity to s_6 is strong and the amplitude of s_6 is small. As a result, s_6 and s_5 end up making comparable angle changes of magnitudes 0.811 and 0.575$^\circ$ at 150 K. The total contributions of Γ_2^2 are then $\Delta \alpha = 0.811 - 0.575 = 0.236^\circ$ and $\Delta \beta = -0.811 + 0.575 = -0.236^\circ$. The sizeable amplitudes of s_5 and s_6 of Γ_2^2 must also be considered, especially due to the high sensitivity of s_6 to Γ_2^2; the total contributions of Γ_1^1 strains are $\Delta \alpha = -1.019 - 0.199 = -0.820^\circ$ at 150 K, which are ultimately much larger than those of Γ_2^2. The combined multiirrep contributions ($\Gamma_1^1 + \Gamma_2^2$) are then $\Delta \alpha = 0.820 + 0.236 = 1.056^\circ$ and $\Delta \beta = -0.820 - 0.236 = -0.584^\circ$ at 150 K. However, because the Γ_1^1 modes acquire significant amplitudes only well below the 300 K transition (Figure 4c), the Γ_2^2 decrease in $\Delta \beta$ with decreasing temperature is well underway, before the much larger Γ_2^2 increase in $\Delta \beta$ begins to evolve, resulting in the striking trend reversal observed.

Although less obvious from Figure 3d, similar effects are seen in the cell volume, which shows a marked discontinuity at 260 K and a smaller discontinuity at 300 K. This is more apparent in the plot of volumetric strain relative to that extrapolated from the HT structure in Figure 3 and the thermal expansion plots of ($1/\alpha$)da/dT in Figure 3e. Unlike the individual cell parameters, the dependence of the cell volume on the strain amplitudes is relatively simple (a third-order multivariable polynomial)

$$\frac{\Delta V}{V} = s_1 + s_3 + s_4 s_3 s_5 + s_4 s_6 + \frac{1}{2} (s_2^2 + s_6^2 + s_5 s_2^2 + s_5 s_6^2) + \frac{1}{\sqrt{2}} s_2 s_5 s_6$$

Considering only the lowest-order term in each strain (s_1, s_3, s_4, s_5, s_6), we see that the volume change is approximately linear in, and hence very sensitive to, strains s_3, s_5, s_4, which tend to operate primarily on the cell-edge lengths. In contrast, the volume change is merely quadratic in, and hence much less sensitive to, strains s_2, s_5, s_6, which tend to operate primarily on the cell angles. As a result, despite the fact that the Γ_1^1 strain s_5 dominates the structural (and presumably the energetic) changes, the much smaller Γ_2^2 strain s_4 makes the dominant contribution to the volume change.

It remains to explore why the primary Γ_2^2 strain modes and secondary Γ_1^1 strain modes evolve at such different temperatures. In this context, the word "secondary" implies the mathematical inability to generate the low-symmetry subgroup and hence the physical inability to drive the transition; in this case, the secondary modes do not break any parent symmetries at all since Γ_1^1 is also the identity irrep. One possible explanation is the occurrence of a second-phase transition near 260 K, which would necessarily be isosymmetric (space group $P1$ is retained) and first order since its order parameter belongs to the identity irrep. We see no strong evidence to support such a phase transition in our data. In addition, a closer examination of Figure 4c reveals that the secondary Γ_1^1 modes exhibit small but nonzero departures from their high-temperature trends between 260 and 300 K. We, therefore, believe that the observed behavior is caused by a coupling between the primary Γ_2^2 and secondary Γ_1^1 order parameters. In essence, for strains as large as those observed in CA-Pyz, cross-coupling terms in the Landau free-energy expansion become sufficiently large that they can no

Table 2. First-Order Terms in the Expansion of Each Child-Cell Parameter (Å or Radian Units) in the Unitless Strain-Mode Amplitudes at 300 K, along with the Resulting Contributions at 150 K in Parentheses

irrep	mode	$\Delta \alpha$	$\Delta \beta$	$\Delta \gamma$			
Γ_1^1	s_1 (−0.0009)	3.234 s_1 (−0.003)	3.234 s_1 (−0.003)	0.444 s_1 (≥0)	−0.214 s_1 (≥0)	−0.214 s_1 (≥0)	−0.976 s_1 (0.049)
Γ_1^1	s_2 (0.0169)	0	0	−3.061 s_2 (−0.052)	1.050 s_2 (0.109)	1.050 s_2 (0.109)	0
Γ_1^1	s_3 (−0.0053)	2.082 s_3 (−0.011)	2.082 s_3 (−0.011)	0	0.062 s_3 (≥0)	0.062 s_3 (≥0)	0.976 s_3 (−0.295)
Γ_1^1	s_4 (−0.0228)	0	0	10.549 s_4 (−0.240)	0.152 s_4 (−0.199)	0.152 s_4 (−0.199)	0
Γ_1^1	s_5 (0.1422)	3.670 s_5 (0.522)	−3.670 s_5 (0.522)	0	0	0.071 s_5 (−0.575)	−0.072 s_5 (0.575)
Γ_1^1	s_6 (0.01612)	0	0	0	−0.878 s_6 (0.811)	0.878 s_6 (0.811)	0

The values in a given column can be summed to determine the approximate total change in the corresponding cell parameter. Some of the smaller nonzero 150 K values were rounded to zero. For example, the pseudo-linear slope of the $\Delta \alpha(s_2)$ curve is $\sim −3.061 \, \text{Å}$, so that a value of $s_2 = 0.0169$ (at 150 K) results in a change of $\Delta \alpha \approx (−3.061 \, \text{Å})(0.0169) = −0.052 \, \text{Å}$, in addition to $\Delta \alpha = \Delta \beta \approx (+1.050)(0.0169)(180/\pi) = +1.019^\circ$. DOI: 10.1021/acs.chemmater.9b01135 Chem. Mater. XXXX, XXX, XXX-XXX
longer be ignored. A simple phenomenological description of such a coupling is described in the SI.

What is it about the CA-Pyz structure that causes the \(\Gamma_2^+ - \Gamma_1^+ \) strain coupling to increase below \(\sim 260 \text{ K} \)? The structural distortions in CA-Pyz are best understood with respect to the H-bonded chains, which run along the child-cell’s body diagonal ([110] of the parent) and are emphasized by red and blue shading in Figure 5. Rotational symmetry-mode refinement shows that the main structural change is a cooperative rotation of all Pyz molecules in the \(z = 0 \) plane, which occurs around an axis close to the H···N(Pyz)N···H hydrogen bond direction (animations available in the SI). This is dominated by the \(r_6 \Gamma_2^+ \) rotation, with the smaller \(r_4 \Gamma_1^+ \) contribution acting to bring the rotation vector in line with the H-bonded chain. The significant shift in Pyz positions driven by the rotation couples with a sliding of adjacent planes of CA molecules, with each layer moving laterally from its high-temperature position by \(\sim 1 \text{ Å} \) between 300 and 250 K. This is enabled by the relatively weak van der Waals interactions between CA planes and leads to the significant expansion of the \(b \)-axis on cooling. In addition to the dominant \(\Gamma_2^+ \) rotations, we see a small \(r_6 \Gamma_1^+ \) rotation below 260 K (shown with squares in Figure 4a). This corresponds (Figures 1 and 5) to a rotation of Pyz around an axis perpendicular to the N···N direction and in the plane of the ring. This motion “buckles” the CA-Pyz chain, causing a reduction in the \(c \) axis (\(\sim 0.2 \text{ Å} \)) and a small expansion on cooling in the \(ab \) plane (\(\sim 0.1 \text{ Å} \) increase in \(\sqrt{ab \sin(\gamma)} \) as an in-plane measure of the dimension) as the Pyz plane becomes more closely aligned with it. It seems likely that this distortion occurs as a result of the large \(r_4 \) rotation and provides the observed coupling between \(\Gamma_2^+ \) and \(\Gamma_1^+ \) strains that emerges with the decreasing temperature.

CONCLUSIONS

Our variable temperature single-crystal and powder diffraction studies have shown that CA-Pyz undergoes a reversible phase transition close to room temperature, which leads to extreme anisotropy in thermal expansion and a remarkable 14% size reduction in one dimension over a 100 K range. The effects of the transition are seen over a \(\sim 150 \) to 300 K temperature range. Highly anisotropic thermal expansion coefficients up to \(+1500 \) and \(-1500 \times 10^{-6} \text{ K}^{-1} \) result. These occur over a significant temperature range close to room temperature and without any external driving effects such as spin crossover or composition change. In the HTE form, anisotropic atomic displacement parameters derived from neutron diffraction data suggest significant (\(\sim 22^\circ \)) librational disorder of pyrazine molecules around an axis defined by the H···N(Pyz)N···H hydrogen bonds, which freeze out as a \(\sim 16^\circ \) static rotation on cooling. The transition, which is presumably entropically driven, is enabled by the cooperative sliding of adjacent molecular layers by \(\sim 1 \text{ Å} \) and leads to the high thermal anisotropy. It, thus, has similarities to the alkyl-chain disorder reported in a Co complex, which leads to cell parameter changes of \(+8/−5\% \) at a first-order transition, and to the abrupt uniaxial contraction caused by oxalate reorientation in [Ni(en)](ox) \(_2 \). It differs from these examples in that the transition is second-order-like and occurs over a broad temperature range. The cooperative nature of the structural change, which involves relatively small displacements of adjacent layers, and the relationship between the parent and child cells is reminiscent of a diffusionless martensitic transition. It is, therefore, likely that a similar change can be stress-induced, potentially leading to phenomena such as superelasticity or shape memory. Extreme cell parameter changes are often associated with martensitic transitions. For example, the transitions in NiTi and the organic superelastic terephthalamide correspond to respective cell parameter changes approaching \(\pm 10 \) and \(\pm 7\% \).

This work also shows that rotational symmetry modes provide a powerful symmetry-derived description of the phase transition in CA-Pyz, allowing us to describe the essence of the structural changes in a small number of parameters, principally a \(\Gamma_2^+ \) strain and rotation. The use of strain modes to describe thermal expansion also allows us to understand the unusual temperature dependence of cell parameters in this material in terms of coupling between primary and secondary order parameters. These methods can be used for a wide range of molecular and hybrid materials undergoing phase transitions and can be readily applied using the ISODISTORT and TOPAS approaches, allowing useful information to be determined on such materials even using relatively low-quality powder diffraction data.

ASSOCIATED CONTENT

* Supporting Information
 The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.chemmater.9b01135.

Influence of secondary mode coupling on thermal expansion; laboratory powder diffraction data showing the phase transition; microstrain peak shape parameters; cell parameter data from single-crystal experiments and in alternate cell settings; selected bond lengths from single-crystal experiments, plots of anisotropic displacement parameters; \(^1\text{H} \) solid-state NMR data (PDF). Crystallographic data (CIF) (CIF) (CIF) (CIF) (CIF)

Animations of key distortions (MOV) (MOV) (MOV)

AUTHOR INFORMATION

* Corresponding Authors
 *E-mail: ivana.radosavljevic@durham.ac.uk (I.R.E.).
 *E-mail: john.evans@durham.ac.uk (J.S.O.E.).

ORCID

Huiyu Liu: 0000-0003-1725-6056
Ivana Radosavljevic Evans: 0000-0002-0325-7229

Author Contributions

All authors have given approval to the final version of the manuscript.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank Dr David Apperley of the Durham Solid State NMR service. I.R.E. acknowledges the Royal Society and the Leverhulme Trust for the award of a Senior Research Fellowship (SFR/R1/180040).

ABBREVIATIONS

CA, chloranilic acid; Pyz, pyrazine

REFERENCES

(1) Sato, O. Dynamic molecular crystals with switchable physical properties. Nat. Chem. 2016, 8, No. 644.
the Porous Aluminum Terephthalate (MIL-53) Upon Hydration.

Chem. - Eur. J. 2004, 10, 1373−1382.

(48) Liu, Y.; Her, J.-H.; Dailly, A.; Ramirez-Cuesta, A. J.; Neumann, D. A.; Brown, C. M. Reversible Structural Transition in MIL-53 with Large Temperature Hysteresis. J. Am. Chem. Soc. 2008, 130, 11813−11818.

(49) Ishida, H.; Kashino, S. 1:1 Complexes of chloranilic acid with pyrazine and morpholine: one- and two-dimensional hydrogen-bond networks. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1999, 55, 1923−1926.

(50) Steiner, T. The Hydrogen Bond in the Solid State. Angew. Chem., Int. Ed. 2002, 41, 48−76.

(51) Ford, S. J.; Delamore, O. J.; Evans, J. S. O.; McIntyre, G. J.; Johnson, M. R.; Radosavljević Evans, I. Giant Deuteron Migration During the Isosymmetric Phase Transition in Deuterated 3,5-Pyridinedicarboxylic Acid. Chem. - Eur. J. 2011, 17, 14942−14951.

(52) Schomaker, V.; Trueblood, K. N. On the rigid-body motion of molecules in crystals. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1968, 24, 63−76.

(53) Lewis, J. W.; Payne, J. L.; Evans, I. R.; Stokes, H. T.; Campbell, B. J.; Evans, J. S. O. An Exhaustive Symmetry Approach to Structure Determination: Phase Transitions in Bi2Sn2O7. J. Am. Chem. Soc. 2016, 138, 8031−8042.

(54) Stroppa, A.; Barone, P.; Jain, P.; Perez-Mato, J. M.; Picozzi, S. Hybrid Improper Ferroelectricity in a Multiferroic and Magnetoelectric Metal-Organic Framework. Adv. Mater. 2013, 25, 2284−2290.

(55) Ramam, S.; Campbell, B. J.; Satyavarapu, K. K.; Stokes, H. T.; Perselli, F.; Evans, J. S. O. The superstructure determination of displacive distortions via symmetry-mode analysis. Acta Crystallogr., Sect. A: Found. Crystallogr. 2012, 68, 222−234.

(56) Campbell, B.; Evans, J.; Perselli, F.; Stokes, H. Rietveld refinement of structural distortion-mode amplitudes. IUCr Crystal. Comp. Newsletter 2007, 8, 81−95.

(57) Orobengoa, D.; Capillas, C.; Aroyo, M. I.; Perez-Mato, J. M. AMPLIMODES: symmetry-mode analysis on the Bilbao Crystallographic Server. J. Appl. Crystallogr. 2009, 42, 820−833.

(58) Etter, M.; Müller, M.; Dinnebier, R. E. Rotational Rigid Body Symmetry Modes: A Tool for the Investigation of Phase Transitions. Z. Anorg. Allg. Chem. 2014, 640, 3079−3087.

(59) Müller, M.; Dinnebier, R. E.; Dippol, A.-C.; Stokes, H. T.; Campbell, B. J. A symmetry-mode description of rigid-body rotations in crystalline solids: a case study of Mg(H2O)6RbBr3. J. Appl. Crystallogr. 2014, 47, 532−538.

(60) Liu, H.; Zhang, W.; Halasyamani, P. S.; Stokes, H. T.; Campbell, B. J.; Evans, J. S. O.; Evans, I. R. Understanding the Behavior of the Above-Room-Temperature Molecular Ferroelectric 5, 6-Dichloro-2-methylbenzimidazole Using Symmetry Adapted Distortion Mode Analysis. J. Am. Chem. Soc. 2018, 140, 13441−13448.

(61) Campbell, B.; Howard, C. J.; Averett, T. B.; Whittle, T. A.; Schmid, S.; Machlis, S.; Yost, C.; Stokes, H. T. An algebraic approach to cooperative rotations in networks of interconnected rigid units. Acta Crystallogr., Sect. A: Found. Adv. 2018, 74, 408−424.

(62) Uddin, M. J.; Middya, T. R.; Chaudhuri, B. K. Room temperature ferroelectric effect and enhanced dielectric permittivity in Rochelle salt/PVA percolative composite films. Curr. Appl. Phys. 2013, 13, 461−466.

(63) Busing, W. R.; Levy, H. A. The effect of thermal motion on the estimation of bond lengths from diffraction measurements. Acta. Cryst. 1964, 17, 142−146.

(64) Su, S.-Q.; Kamachi, T.; Yao, Z.-S.; Huang, Y.-G.; Shiota, Y.; Yoshizawa, K.; Azuma, N.; Miyazaki, Y.; Nakano, M.; Maruta, G.; et al. Assembling an alkyl rotor to access abrupt and reversible crystalline deformation of a cobalt (II) complex. Nat. Commun. 2015, 6, No. 8810.

(65) Yao, Z.-S.; Mito, M.; Kamachi, T.; Shiota, Y.; Yoshizawa, K.; Azuma, N.; Miyazaki, Y.; Takahashi, K.; Zhang, K.; Nakanishi, T.; et al. Molecular motor-driven abrupt anisotropic shape change in a single crystal of a Ni complex. Nat. Chem. 2014, 6, No. 1079.