Associations between Post-Stroke Motor and Cognitive Function: A Cross-Sectional Study

Marte Stine Einstad (✉ marte.s.einstad@ntnu.no)
Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, NTNU-Norwegian University of Science and Technology, Trondheim, Norway

Ingvid Saltvedt
Department of Geriatric Medicine, St. Olavs hospital, Trondheim University Hospital, Trondheim, Norway

Stian Lydersen
Department of Mental Health, Faculty of Medicine and Health Sciences, NTNU-Norwegian University of Science and Technology, Trondheim, Norway

Marie Ursin
Department of Medicine, Vestre Viken Hospital Trust, Bærum Hospital, Drammen, Norway

Ragnhild Munthe-Kaas
Department of Medicine, Vestre Viken Hospital Trust, Bærum Hospital, Drammen, Norway

Hege Ihle-Hansen
Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway

Anne-Brita Knapskog
Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway

Torunn Askim
Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, NTNU-Norwegian University of Science and Technology, Trondheim, Norway

Mona Beyer
Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway

Halvor Næss
Department of Neurology, Haukeland University Hospital, Norway, Centre for Age-Related Medicine, Stavanger University Hospital, Norway, Institute of Clinical Medicine, University of Bergen, Norway

Yngve Seljeseth
Medical Department, Ålesund Hospital, Møre and Romsdal Health Trust, Ålesund, Norway

Hanne Ellekjær
Stroke Unit, Department of Internal Medicine, St. Olavs hospital, University Hospital, Trondheim, Norway

Pernille Thingstad
Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
Abstract

BACKGROUND: Although both motor and cognitive impairments are frequently observed following stroke, these are often managed as distinct entities, and there is little evidence regarding how they are related. The aim of this study was to describe the prevalence of concurrent motor and cognitive impairments three months after stroke and to examine how motor performance was associated with memory, executive function and global cognition.

METHODS: The Norwegian Cognitive Impairment After Stroke (Nor-COAST) study is a prospective multicentre cohort study including patients hospitalized with acute stroke. The National Institutes of Health Stroke Scale (NIHSS) was used to measure stroke severity, and function was measured by the Modified Rankin Scale (mRS). Motor and cognitive functions were assessed three months post-stroke using the Montreal Cognitive Assessment (MoCA), Trail Making Test Part B (TMT-B), 10-Word List Recall (10WLR), Short Physical Performance Battery (SPPB), dual-task cost (DTC) and grip strength. Cut-offs were set according to current recommendations. Associations were examined using linear regression with the cognitive tests as dependent variables and motor domains as covariates, adjusted for age, sex, education and stroke severity.

RESULTS: Of 567 participants included, 242 (43%) were women, mean (SD) age was 72.2 (11.7) years, 416 (75%) had an NIHSS score ≤ 4 and 475 (84%) had an mRS score of ≤ 2. Prevalence of concurrent motor and cognitive impairment ranged from 9.5% for DTC and 10WLR to 22.9% for grip strength and TMT-B. The SPPB was associated with the MoCA (regression coefficient B=0.465, 95%CI [0.352, 0.578]), TMT-B (B=-9.494, 95%CI [-11.726, -7.925]) and 10WLR (B=0.132, 95%CI [0.054, 0.211]). Grip strength was associated with the MoCA (B=0.075, 95%CI [0.039, 0.112]), TMT-B (B=-1.972, 95%CI [-2.672, -1.272]) and 10WLR (B=0.041, 95%CI [0.016, 0.066]). Higher DTC was associated with more time needed to complete the TMT-B (B=0.475, 95%CI [0.075, 0.875]) but not with the MoCA or 10WLR.

CONCLUSION: Three months after suffering mainly minor strokes, 30–40% of participants had motor or cognitive impairments, while 20% had concurrent impairments. Motor performance was associated with memory, executive function and global cognition. The identification of concurrent impairments could be relevant for preventing functional decline.

Clinical Trial Registration: ClinicalTrials.gov Identifier: NCT02650531

Background

Stroke is reported to be the third-most common cause of disability-adjusted life years (DALYs) worldwide (1). Post-stroke motor and cognitive impairments are prevalent, and more than one-third of stroke survivors continue to deal with stroke-related disabilities five years after the incident (2). Motor deficits leading to impaired gait, balance and general reduction in physical function are seen in almost 50% of stroke cases (3). The prevalence of mild and major cognitive impairments appears to vary from 14–29% and 11–42%, respectively, three months post-stroke, depending on the method used to define post-stroke
neurocognitive disorder (4). After one year, the prevalence of post-stroke dementia is about 25%, and about 40% of stroke survivors are reported to have mild cognitive impairment (5, 6).

Assessments of motor and cognitive functions have established roles in the follow-up of stroke patients but have traditionally been studied, diagnosed and managed as distinct entities (7). However, the stroke lesion itself, comorbid cerebrovascular disease and neurodegeneration may all cause both cognitive and motor impairments (8).

It is well-documented that older people in the general population with concurrent impairments in motor and cognitive functions are at increased risk of developing dementia as well as being at risk for higher rates of hospital admissions, falls, dependency and mortality (9). In population-based studies, the simultaneous presence of gait disturbances and memory complaints, called motoric cognitive risk (MCR) syndrome, has also been shown to increase risk of developing dementia (10). Additionally, in the stroke population, impaired balance and gait post-stroke are significant risk factors for cognitive impairment (11, 12). However, previous studies are few in number, and there is a need for additional knowledge about the relationship between motor and cognitive impairments based on multicentre studies of stroke populations.

Previous research has clearly indicated an association between cognitive and motor performance among older people. Vascular pathology appears to be related to motor impairments and executive dysfunction, while impaired memory is a typical symptom of neurodegeneration, especially Alzheimer's disease (13, 14). Gait performance following stroke has been reported to be associated with global cognition, executive function and memory (11, 12, 15). The inability to combine a cognitive task with a motor task like walking, assessed as dual-task cost, has been proposed as an early marker of dementia development (16). However, studies of associations between motor function and different cognitive domains in older populations have found divergent results (10, 17–21), and there is little evidence in stroke populations.

We hypothesized that motor performance would be more closely related to executive function than to memory in a stroke sample, reflecting vascular pathology. A recent consensus report recommended a minimum core battery for assessing the motor-cognitive interphase related to ageing and neurodegeneration in order to increase comparability across research studies, detect subtle or common reversible factors, and accelerate research on dementia, falls, and ageing-related disabilities (7). This test battery included gait speed, dual-task cost of gait speed (DTC-speed), the MoCA and the TMT Parts A & B (22–24).

The overall aim of this study was to describe concurrent impairment in cognition and motor performance and to explore how motor performance was related to global cognition, executive function and memory three months post-stroke.

Methods

The Nor-COAST study
The Norwegian Cognitive Impairment After Stroke (Nor-COAST) study is a prospective cohort study with participants recruited from five different hospitals in Norway between May 2015 and March 2017. The details of the study have been published elsewhere (25). Inclusion criteria were as follows: a diagnosis of stroke according to the WHO criteria (26) or findings on magnetic resonance imaging (MRI) compatible with intracerebral haemorrhage or infarction; symptom onset within one week of admission; age > 18 years; the ability to communicate in Norwegian; and residing within the catchment area of the participating hospitals. Patients with expected survival < three months were excluded. The present study utilized data from the three-month follow-up, and participants who had completed at least one cognitive and one motor function test were included.

Assessments

Participant demographics

The National Institutes of Health Stroke Scale (NIHSS) (27) score at admission was used to measure stroke severity; possible scores range 0–42, with a higher score indicating a more severe stroke. Instrumental activities of daily living (IADL) were assessed with the Nottingham Extended Activities of Daily Living (NEADL), a 0–66-point scale where a higher score indicates greater independence (28), and the inability to walk 200 metres was used as an indicator of physical frailty. Functional dependency was measured with the Modified Rankin Scale (mRS) (29), which comprises six levels scored as 0–5 where 0 indicates no disability and 5 indicates severe disability; 6 is used to indicate death. The Charlson Comorbidity Index (30) was used as a descriptive measure to quantify comorbidity among the participants.

Motor performance tests

The Short Physical Performance Battery (SPPB), an assessment of mobility, consists of three tasks: gait speed, assessed by 4-metre timed trials; balance, assessed by the ability to stand for 10 seconds with the feet in three different positions; and leg strength, measured by the time required for five sit-to-stand movements from a chair. Each task is scored on a 4-point scale, with a total score ranging 0–12 and higher scores indicating better function (31). The cut-off for a score indicating impairment was set at < 10 points (32). To assess dual-task cost, the participants were first asked to walk 10 m at their preferred gait speed, and then walk the same distance while counting backwards (22). Dual-task cost was calculated using the formula

\[
\text{dual-task cost} = \left(\frac{\text{single-task gait speed} - \text{dual-task gait speed}}{\text{single-task gait speed}} \right) \times 100
\]

(16); a reduction of more than 20% was characterized as impairment (16). Grip strength was measured with a Jamar Hydraulic Hand Dynamometer® (Lafayette Instrument Europe, Loughborough, UK), and the highest score of three attempts using the stronger hand was applied in the analyses. Scores < 21 kg were characterized as impairment for women and < 37 kg for men (33).

Cognitive assessments

Global cognition was assessed with the Montreal Cognitive Assessment (MoCA) with possible scores ranging from 0–30 and higher scores indicating better cognition (24). A cut-off for impairment was set at
Results
Of 815 patients recruited to the Nor-COAST study, 700 were followed up at three months, and of these, 567 completed at least one motor and one cognitive assessment (Fig. 1).

The mean (SD) age of the study participants was 72.2 (11.7) years; 242 (43%) were women; and 460 (82%) were diagnosed with ischemic stroke. Baseline mean (SD) NIHSS score was 3.7 (4.7), and 416 (75%) of the participants had NIHSS scores ≤ 4 points, indicating minor strokes (Table 1). The pre-stroke modified Rankin Scale (mRS) score was ≤ 2 in 533 (94%) of the participants, and after three months, 475 (84%) had an mRS score ≤ 2 (Table 1).

Scores for the motor and cognitive tests are presented in Table 2. SPPB scores < 10 points were found in 210 (37%) participants. DTC ≥ 20% was measured in 146 (29%) participants, while grip strength was below cut-off in 97 (45%) of the women and 120 (39%) of the men. On the cognitive tests, 185 (33%) scored below 24 points on the MoCA; TMT-B indicated impairment in 194 (37%); and 10WLR showed impairment in 188 (39%) of the participants.

Data collection

Demographic characteristics were retrieved from participants, their caregivers and medical records. At three-month follow-up, participants were evaluated at a hospital outpatient clinic. Motor and cognitive assessments were performed by trained healthcare personnel according to a standardized manual.

Statistics

Demographic and clinical characteristics were summarized using mean and SD for continuous variables and frequencies and percentages for categorical variables. For analyses of prevalence, the clinical variables were dichotomized based on predefined cut-offs and investigated with cross tabulations between each of the motor and cognitive tests. Associations were studied using linear regression with the continuous variables of the cognitive tests as dependent variables and the motor measures as independent variables. First, regression analyses were performed for each combination of motor and cognitive assessments. Second, we conducted analyses for each of the cognitive tests one at a time, including all three motor assessments, as independent variables. All regression analyses were adjusted for age, sex, education and baseline NIHSS score. Residuals were checked for normality by visual inspection of Q-Q plots. Statistical significance was defined as two-sided p-value < 0.05, and 95% confidence intervals (CI) are reported where relevant. Data were analyzed using IBM SPSS Statistics for Windows, version 25 (IBM Corp., Armonk, NY, USA).
Regarding the prevalence of concurrent impairment, dual-task cost in combination with each of the cognitive tests showed a prevalence of approximately 10% (range 9.5–11.3%). The other combinations of tests resulted in reduced scores for both the cognitive and motor tests in about one-fifth of the participants (range 18.6–22.9%) (Fig. 2). Of the participants who scored below 24 points on the MoCA, 103 (57%) scored below 10 points on the SPPB, and of those who took more than 167 seconds to complete the TMT-B or could not complete it, 102 (54%) scored below 10 points on the SPPB (Fig. 2).

As shown in Table 3, the regression analyses showed that both the SPPB score and grip strength were associated with scores on the MoCA (p < 0.001), TMT-B (p < 0.001) and 10WLR (p = 0.001). The DTC was associated only with the score on the TMT-B (p = 0.005). These associations remained statistically significant in the adjusted model (Table 4).

Discussion

In this cross-sectional study of survivors who had suffered mainly mild strokes, we found impairments in either cognitive function or motor function in about one-third of patients, while the prevalence of concurrent impairment ranged from 10–23%, depending on which combination of motor and cognitive domains were assessed. Impairments in mobility and grip strength were associated with impaired global cognition, executive dysfunction and impaired memory. Higher dual-task cost was associated only with executive dysfunction.

The scores on post-stroke cognitive tests identifying impairment shown here are in line with the results of previous studies (37). Previous studies on performance-based screening tests three months after stroke are few and have small sample sizes (38, 39), but Vahlberg et al. (40) found that SPPB scores in 50% of stroke survivors showed impairment 1–3 years post-stroke. This is higher than the 37% in the present study, which is still considerably higher than the 10% found in the general population (41). Motor function has been reported to be a significant predictor of cognitive decline after stroke (12). However, associations between motor performance and cognitive domains have not, to the best of our knowledge, been examined previously in stroke samples. The dual-task cost has been recommended as a valid measure of the motor-cognitive interphase (42) and found to predict incident dementia in individuals with mild cognitive impairment (16). Several studies of elderly persons with cognitive impairment have shown a strong association between the dual-task test and global cognition (10, 19), but this was not supported by a study of patients with Parkinson’s disease (43). In the present study, dual-task cost was associated only with executive function.

In the present study, we have demonstrated that, although the patients suffered mainly mild strokes with low NIHSS scores, cognitive and motor impairments as well as concurrent impairments are prevalent, as the majority of patients with impaired MoCA scores also had impaired SPPB scores and vice versa. Concurrent motor and cognitive impairments have been shown to predict poor prognosis as, for example, an increased risk of developing dementia (44, 45), and there is reason to believe that these impairments can impact recovery and everyday life (46). Therefore, we believe that, as part of the routine follow-up
protocol after stroke, assessments of cognition and global motor functions should be performed to gain more information that may be relevant for prognosis and may indicate a need for continued rehabilitation even three months after a stroke (46). Further cognitive impairments might change responsiveness to motor rehabilitation, which should be taken into consideration when developing targeted interventions in stroke populations (47). We did not find support for motor performance being more closely associated with specific cognitive domains, and we suggest using global tests like the MoCA and SPPB for risk stratification.

Shared underlying pathologies might explain concurrent impairment in cognition and motor performance, for which there is increasing evidence (9). Theoretically, the impairments can be caused directly by the stroke lesion or by structural and functional impairments that appear at a distance from the stroke lesion, also known as diaschisis (48). Previous studies have shown that stroke survivors have small-vessel disease and neurodegeneration in addition to focal stroke lesions (49, 50), and small-vessel disease and neurodegenerative disease are both reported to be associated with impairments in gait and balance as well as cognition (8, 51–53). Consequently, the observed impairments in motor and cognitive functions may be a symptom of both focal and disseminated brain pathology. The lack of findings of distinct associations could support a hypothesis of mixed pathology, but further research, including neuroimaging, is needed to achieve better insight.

The strengths of this work are the multicentre design, a relatively large sample size, and the comprehensive test battery that has been performed in line with consensus guidelines (7). It is also a strength that the Nor-COAST participants are shown to be representative of the majority of the Norwegian stroke population that suffers from mild strokes (54). Compared to the Norwegian Stroke Registry, the participants included in this sub-study were slightly younger (72 vs 73 years) with a larger proportion suffering from minor impairments (75% vs 69%) measured by baseline NIHSS scores (3). As a result, this sub-sample probably comprises those individuals most likely to benefit from interventions designed to prevent further functional decline. The prevalence of impairments reported in this study is closely related to the choice of test battery and cut-off values, which are in line with current recommendations (7). Because of the large scale of the study, we used a standardized protocol for dual-task cost with counting backwards. This could represent a methodological limitation in this heterogeneous sample, and individual adjustments such as applying more-complex cognitive tasks or motor performance tests could have resulted in other findings (55) but were deemed beyond the scope of this multicentre study. Lastly, the cross-sectional design of the study limits any conclusions in regard to causality.

Conclusion

We found subtle cognitive and motor impairments and combinations of these to be relatively common among stroke survivors despite high premorbid functioning and minor strokes. Motor performance was associated with memory, executive function and global cognition. Further research is needed in regard to the prognostic significance of our findings, as well as their associations to underlying pathology.
Concurrent impairments should be recognized both in a short- and long-term perspective in order to identify and target those patients in need of prolonged rehabilitation to prevent further functional decline.

Abbreviations

10WLR: 10-Word List Recall; ADL: Activities of daily living; CERAD: Consortium to Establish a Registry for Alzheimer's Disease; DTC: Dual-task cost; (MoCA: Montreal Cognitive Assessment; MRI: Magnetic Resonance Imaging; mRS: modified Rankin Scale; NIHSS: National Institutes of Health Stroke Scale; Nor-COAST: Norwegian Cognitive Impairment After Stroke; SPPB: Short Physical Performance Battery; TMT-B: Trail Making Test Part B

Declarations

Acknowledgements

We thank all participants and their families for their contributions, the Nor-COAST research group and the dedicated study staff at St. Olavs hospital, Haukeland University Hospital, Ålesund Hospital, Vestre Viken Hospital Trust; Bærum Hospital and Oslo University Hospital; Ullevål for their valuable work with collection and preparation of data.

Authors’ contributions

MSE, IS and PT have been responsible for planning the present report and have been the major contributors in writing the manuscript. MHU contributed to the planning of the study. SL has been involved in planning and interpretation of statistical analyses, which were performed by MSE. All authors have critically read and approved the final manuscript.

Funding

The Nor-COAST study is funded by the Norwegian Health Association, and additional funding was provided by the Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Science, NTNU-Norwegian University of Science and Technology.

Availability of data and material

The datasets generated and analysed during the current study are not publicly available due to Norwegian legal regulations. Requests to obtain anonymized study data can be addressed to the corresponding author.

Ethics approval, guidelines and consent to participate

The present study was carried out according to the Declaration of Helsinki, and participation was voluntary and based on written informed consent from the participant, or, in cases where participants
were not able to give consent themselves, by their proxy. The study has been approved by the Regional Committee for Medical and Health Research Ethics in North, REK Nord (REC number 2015/171). ClinicalTrials.gov Identifier: NCT02650531.

Consent for publication

Not applicable.

Competing interests

ABK and IS have been investigators in the drug trial Boehringer-Ingelheim 1346.0023, and ABK has also been an investigator for Roche BN29553. The remaining authors declare no conflicts interest.

Authors details

1Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, NTNU-Norwegian University of Science and Technology, Trondheim, Norway. 2Department of Geriatric Medicine, St. Olavs hospital, Trondheim University Hospital, Trondheim, Norway. 3Department of Mental Health, Faculty of Medicine and Health Sciences, NTNU-Norwegian University of Science and Technology, Trondheim, Norway. 4Department of Medicine, Vestre Viken Hospital Trust, Bærum Hospital, Drammen, Norway. 5Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway. 6Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway. 7Institute of Clinical Medicine, University of Oslo, Norway. 8Department of Neurology, Haukeland University Hospital, Norway, Centre for Age-Related Medicine, Stavanger University Hospital, Norway, Institute of Clinical Medicine, University of Bergen, Norway. 9Medical Department, Ålesund Hospital, Møre and Romsdal Health Trust, Ålesund, Norway. 10Stroke Unit, Department of Internal Medicine, St. Olavs hospital, University Hospital, Trondheim, Norway.

References

1. Murray CJ, Vos T, Lozano R, Naghavi M, Flaxman AD, Michaud C, et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2197–223.

2. Luengo-Fernandez R, Paul NL, Gray AM, Pendlebury ST, Bull LM, Welch SJ, et al. Population-based study of disability and institutionalization after transient ischemic attack and stroke: 10-year results of the Oxford Vascular Study. Stroke. 2013;44(10):2854–61.

3. Fjærtoft H, Indredavik, B., Mørch, B., Phan, A., Skogseth-Stephani, R. & Varmdal, T. Årsrapport 2018, Norsk Hjerneslagregister. 2019.

4. Munthe-Kaas R, Aam S, ihle-hansen H, Lydersen S, Knapskog A-B, Wyller T, et al. Impact of different methods defining post-stroke neurocognitive disorder: The Nor-COAST study. Alzheimer's & Dementia: Translational Research & Clinical Interventions. 2020;6.
5. Pendlebury ST, Rothwell PM. Incidence and prevalence of dementia associated with transient ischaemic attack and stroke: analysis of the population-based Oxford Vascular Study. The Lancet Neurology. 2019;18(3):248–58.

6. Ihle-Hansen H, Thommessen B, Fagerland MW, Wyller TB, Engedal K, Oksengard AR, et al. Impact of white matter lesions on cognition in stroke patients free from pre-stroke cognitive impairment: a one-year follow-up study. Dementia and geriatric cognitive disorders extra. 2012;2(1):38–47.

7. Montero-Odasso M, Almeida QJ, Bherer L, Burhan AM, Camicioli R, Doyon J, et al. Consensus on Shared Measures of Mobility and Cognition: From the Canadian Consortium on Neurodegeneration in Aging (CCNA). The journals of gerontology Series A, Biological sciences and medical sciences. 2018.

8. Auriat AM, Ferris JK, Peters S, Ramirez J, Black SE, Jacova C, et al. The Impact of Covert Lacunar Infarcts and White Matter Hyperintensities on Cognitive and Motor Outcomes After Stroke. Journal of stroke and cerebrovascular diseases: the official journal of National Stroke Association. 2019;28(2):381–8.

9. Chhetri JK, Chan P, Vellas B, Cesari M. Motoric Cognitive Risk Syndrome: Predictor of Dementia and Age-Related Negative Outcomes. Frontiers in medicine. 2017;4:166.

10. Verghese J, Annweiler C, Ayers E, Barzilai N, Beauchet O, Bennett DA, et al. Motoric cognitive risk syndrome: multicountry prevalence and dementia risk. Neurology. 2014;83(8):718–26.

11. Ursin MH, Bergland A, Fure B, Torstad A, Tveit A, Ihle-Hansen H. Balance and Mobility as Predictors of Post-Stroke Cognitive Impairment. Dementia and geriatric cognitive disorders extra. 2015;5(2):203–11.

12. Ben Assayag E, Shenhar-Tsarfaty S, Korczyn AD, Kliper E, Hallevi H, Shopin L, et al. Gait measures as predictors of poststroke cognitive function: evidence from the TABASCO study. Stroke. 2015;46(4):1077–83.

13. Verghese J, Lipton RB, Hall CB, Kulsansky G, Katz MJ, Buschke H. Abnormality of gait as a predictor of non-Alzheimer's dementia. The New England journal of medicine. 2002;347(22):1761–8.

14. Beauchet O, Sekhon H, Barden J, Liu-Ambrose T, Chester VL, Szturm T, et al. Association of Motoric Cognitive Risk Syndrome with Cardiovascular Disease and Risk Factors: Results from an Original Study and Meta-Analysis. Journal of Alzheimer's disease: JAD. 2018;64(3):875–87.

15. Sagnier S, Renou P, Olindo S, Debruxelles S, Poli M, Rouanet F, et al. Gait Change Is Associated with Cognitive Outcome after an Acute Ischemic Stroke. Front Aging Neurosci. 2017;9:153.

16. Montero-Odasso MM, Sarquis-Adamson Y, Speechley M, Borrie MJ, Hachinski VC, Wells J, et al. Association of Dual-Task Gait With Incident Dementia in Mild Cognitive Impairment: Results From the Gait and Brain Study. JAMA neurology. 2017.

17. Montero-Odasso M, Speechley M, Muir-Hunter SW, Sarquis-Adamson Y, Sposato LA, Hachinski V, et al. Motor and Cognitive Trajectories Before Dementia: Results from Gait and Brain Study. J Am Geriatr Soc. 2018;66(9):1676–83.
18. Kueper JK, Speechley M, Lingum NR, Montero-Odasso M. Motor function and incident dementia: a systematic review and meta-analysis. Age and ageing. 2017;46(5):729–38.

19. Tangen GG, Engedal K, Bergland A, Moger TA, Mengshoel AM. Relationships between balance and cognition in patients with subjective cognitive impairment, mild cognitive impairment, and Alzheimer disease. Phys Ther. 2014;94(8):1123–34.

20. Shim H, Kim M, Won CW. Motoric cognitive risk syndrome is associated with processing speed and executive function, but not delayed free recall memory: The Korean frailty and aging cohort study (KFACS). Archives of gerontology and geriatrics. 2020;87:103990.

21. Bennett DA, Schneider JA, Buchman AS, Barnes LL, Boyle PA, Wilson RS. Overview and findings from the rush Memory and Aging Project. Current Alzheimer research. 2012;9(6):646–63.

22. Montero-Odasso M, Verghese J, Beauchet O, Hausdorff JM. Gait and cognition: a complementary approach to understanding brain function and the risk of falling. J Am Geriatr Soc. 2012;60(11):2127–36.

23. Reitan RM. Validity of the Trail Making Test as an indicator of organic brain damage. Perceptual and Motor Skills. 1958;8:271–6.

24. Nasreddine ZS, Phillips NA, Bedirian V, Charbonneau S, Whitehead V, Collin I, et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005;53(4):695–9.

25. Thingstad P, Askim T, Beyer MK, Bråthen G, Ellekjær H, Ihle-Hansen H, et al. The Norwegian Cognitive impairment after stroke study (Nor-COAST): study protocol of a multicentre, prospective cohort study. BMC Neurol. 2018;18(1):193.

26. The World Health Organization MONICA Project (monitoring trends and determinants in cardiovascular disease): a major international collaboration. WHO MONICA Project Principal Investigators. J Clin Epidemiol. 1988;41(2):105–14.

27. Brott T, Adams HP, Jr., Olinger CP, Marle JR, Barsan WG, Biller J, et al. Measurements of acute cerebral infarction: A clinical examination scale. Stroke. 1989;20(7):864–70.

28. Gladman JR, Lincoln NB, Adams SA. Use of the extended ADL scale with stroke patients. Age and ageing. 1993;22(6):419–24.

29. van Swieten JC, Koudstaal PJ, Visser MC, Schouten HJ, van Gijn J. Interobserver agreement for the assessment of handicap in stroke patients. Stroke. 1988;19(5):604–7.

30. Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J Chronic Dis. 1987;40(5):373–83.

31. Guralnik JM, Simonsick EM, Ferrucci L, Glynn RJ, Berkman LF, Blazer DG, et al. A short physical performance battery assessing lower extremity function: association with self-reported disability and prediction of mortality and nursing home admission. Journal of gerontology. 1994;49(2):M85-94.

32. Guralnik JM, Ferrucci L, Simonsick EM, Salive ME, Wallace RB. Lower-extremity function in persons over the age of 70 years as a predictor of subsequent disability. The New England journal of medicine. 1995;332(9):556–61.
33. Sallinen J, Stenholm S, Rantanen T, Heliovaara M, Sainio P, Koskinen S. Hand-grip strength cut points to screen older persons at risk for mobility limitation. J Am Geriatr Soc. 2010;58(9):1721–6.

34. Ivnik RJ, Malec JF, Smith GE, Tangalos EG, Petersen RC. Neuropsychological tests' norms above age 55: COWAT, BNT, MAE token, WRAT-R reading, AMNART, STROOP, TMT, and JLO. The Clinical Neuropsychologist. 1996;10(3):262–78.

35. Welsh KA, Butters N, Mohs RC, Beekly D, Edland S, Fillenbaum G, et al. The Consortium to Establish a Registry for Alzheimer's Disease (CERAD). Part V. A normative study of the neuropsychological battery. Neurology. 1994;44(4):609–14.

36. Morris JC, Heyman A, Mohs RC, Hughes JP, van Belle G, Fillenbaum G, et al. The Consortium to Establish a Registry for Alzheimer's Disease (CERAD). Part I. Clinical and neuropsychological assessment of Alzheimer's disease. Neurology. 1989;39(9):1159–65.

37. Barbay M, Diouf M, Roussel M, Godefroy O. Systematic Review and Meta-Analysis of Prevalence in Post-Stroke Neurocognitive Disorders in Hospital-Based Studies. Dement Geriatr Cogn Disord. 2018;46(5–6):322–34.

38. Cohen JW, Ivanova TD, Brouwer B, Miller KJ, Bryant D, Garland SJ. Do Performance Measures of Strength, Balance, and Mobility Predict Quality of Life and Community Reintegration After Stroke? Archives of physical medicine and rehabilitation. 2018;99(4):713–9.

39. Stookey AD, Katzel LI, Steinbrenner G, Shaughnessy M, Ivey FM. The Short Physical Performance Battery as a Predictor of Functional Capacity after Stroke. Journal of Stroke and Cerebrovascular Diseases. 2014;23(1):130–5.

40. Vahlberg B, Cederholm T, Lindmark B, Zetterberg L, Hellström K. Factors Related to Performance-Based Mobility and Self-reported Physical Activity in Individuals 1–3 Years after Stroke: A Cross-sectional Cohort Study. Journal of Stroke and Cerebrovascular Diseases. 2013;22(8):e426-e34.

41. Bergland A, Strand BH. Norwegian reference values for the Short Physical Performance Battery (SPPB): the Tromsø Study. BMC Geriatr. 2019;19(1):216.

42. Montero-Odasso M, Bergman H, Phillips NA, Wong CH, Sourial N, Chertkow H. Dual-tasking and gait in people with mild cognitive impairment. The effect of working memory. BMC geriatrics. 2009;9:41.

43. Gaßner H, Marxreiter F, Steib S, Kohl Z, Schlachetzki JCM, Adler W, et al. Gait and Cognition in Parkinson's Disease: Cognitive Impairment Is Inadequately Reflected by Gait Performance during Dual Task. Front Neurol. 2017;8:550.

44. Montero-Odasso M, Speechley M, Muir-Hunter S, Pieruccini-Faria F, Sarquis-Adamson Y, Hachinski V, et al. Dual decline in gait speed and cognition is associated with future dementia: evidence for a phenotype. Age Ageing. 2020.

45. Grande G, Vetrano DL, Fratiglioni L, Marseglia A, Vanacore N, Laukka EJ, et al. Disability trajectories and mortality in older adults with different cognitive and physical profiles. Aging Clin Exp Res. 2020;32(6):1007–16.

46. Wondergem R, Pisters MF, Wouters EJ, Olthof N, de Bie RA, Visser-Meily JMA, et al. The Course of Activities in Daily Living: Who Is at Risk for Decline after First Ever Stroke? Cerebrovasc Dis.
47. Lingo VanGilder J, Hooyman A, Peterson DS, Schaefer SY. Post-Stroke Cognitive Impairments and Responsiveness to Motor Rehabilitation: A Review. Current Physical Medicine and Rehabilitation Reports. 2020.

48. Carrera E, Tononi G. Diaschisis: past, present, future. Brain. 2014;137(Pt 9):2408–22.

49. Arba F, Quinn T, Hankey GJ, Ali M, Lees KR, Inzitari D. Cerebral small vessel disease, medial temporal lobe atrophy and cognitive status in patients with ischaemic stroke and transient ischaemic attack. European journal of neurology. 2017;24(2):276–82.

50. Georgakis MK, Duering M, Wardlaw JM, Dichgans M. WMH and long-term outcomes in ischemic stroke: A systematic review and meta-analysis. Neurology. 2019;92(12):e1298-e308.

51. Callisaya ML, Beare R, Phan T, Blizzard L, Thrift AG, Chen J, et al. Progression of white matter hyperintensities of presumed vascular origin increases the risk of falls in older people. The journals of gerontology Series A, Biological sciences and medical sciences. 2015;70(3):360–6.

52. Molad J, Kliper E, Korczyn AD, Ben Assayag E, Ben Bashat D, Shenhar-Tsarfaty S, et al. Only White Matter Hyperintensities Predicts Post-Stroke Cognitive Performances Among Cerebral Small Vessel Disease Markers: Results from the TABASCO Study. Journal of Alzheimer's disease: JAD. 2017;56(4):1293–9.

53. Keleman A, Wisch JK, Bollinger RM, Grant EA, Benzinger TL, Morris JC, et al. Falls Associate with Neurodegenerative Changes in ATN Framework of Alzheimer’s Disease. J Alzheimers Dis. 2020;77:745–52.

54. Kuvås KR Sl, Aam S, Thingstad P, Ellekjær H, Askim T. The Risk of Selection Bias in a Clinical Multi-Center Cohort Study. Results from the Norwegian Cognitive Impairment After Stroke (Nor-COAST) Study. Clin Epidemiol. 2020;12:1327–36.

55. Patel P, Bhatt T. Task matters: influence of different cognitive tasks on cognitive-motor interference during dual-task walking in chronic stroke survivors. Topics in stroke rehabilitation. 2014;21(4):347–57.

Tables
Table 1
Baseline characteristics.

Demographics	n		
Age, years, mean (SD)	567	72.2	(11.7)
Females, n (%)	567	242	(42.7%)
Living alone, n (%)	564	195	(34.4%)
Education > 9 years, n (%)	567	424	(74.8%)

Stroke classification	n		
Infarction, n (%)	558	460	(82.4)
Haemorrhage, n (%)	558	51	(9.0%)
Not classified, n (%)	558	47	(8.3%)

NIHSS score at admittance (0–42), mean (SD)	n		
	553	3.7	(4.7)

NIHSS score at admittance	n		
Mild stroke (0–4), n (%)	553	416	(75.2%)
Moderate stroke (5–15), n (%)	553	113	(20.4%)
Moderate to severe stroke (16–20), n (%)	553	20	(3.5%)
Severe stroke (>20), n (%)	553	4	(0.7%)

Charlson Comorbidity Index, baseline (0–24), mean (SD)	n		
	567	3.9	(1.9)

mRS (0–6), pre-stroke, mean (SD)	n		
	565	0.7	(0.9)

SD standard deviation; *NIHSS* National Institutes of Health Stroke Scale, (0-42p); *mRS* Modified Rankin Scale (0-6p);
Table 2
Assessments at three-month follow-up.

Assessments of motor performance	n		
SPPB (0–12), mean (SD)	563	9.4	(3.1)
Dual-task cost, (%), mean (SD)	500	12.3	(16.2)
Grip strength (kg), mean (SD)			
Men	305	40.1	(11.7)
Women	216	21.7	(6.9)
Gait speed 4 m, (m/s), mean (SD)	550	1.0	(0.3)

Assessments of cognitive performance	n		
MoCA (0–30), mean (SD)	562	23.8	(4.7)
TMT-B (0-300), mean (SD)	525	154.7	(83.9)
10-Word List Recall (0–10), mean (SD)	484	5.2	(2.7)

Assessments of function	n		
Able to walk 200 m, 3 months, n (%)	527	485	(92.0%)
mRS (0–6), 3 months, mean (SD)	565	2.0	(1.3)
Nottingham EADL (0–66), 3 months, mean (SD)	553	49.0	(13.0)

SD standard deviation; SPPB Short Physical Performance Battery (0-12p); Dual-task cost ([single-task gait speed – dual-task gait speed]/single-task gait speed x 100) (0-100%); MoCA Montreal Cognitive Assessment (0-30p); TMT-B Trail Making Test Part B (0-300 seconds); 10-Word List Recall the recall part of the 10-Word List Learning and Recall from the CERAD (Consortium to Establish a Registry for Alzheimer's Disease) Battery (0–10 words); mRS Modified Rankin Scale; Nottingham EADL Nottingham Extended Activities of Daily Living scale (0-66p)
Table 3
Regression analyses with one motor domain at a time as covariatea.

Regression coefficient	n	B	p-value	95% CI
MoCA				
SPPB	539	0.465	< 0.001	0.352, 0.578
Dual-task cost	485	-0.004	0.661	-0.023, 0.015
Grip strength	503	0.075	< 0.001	0.039, 0.112
TMT-B				
SPPB	507	-9.494	< 0.001	-11.726, -7.925
Dual-task cost	468	0.475	0.005	0.075, 0.875
Grip strength	479	-1.972	< 0.001	-2.672, -1.272
10-Word List Recall				
SPPB	464	0.132	0.001	0.054, 0.211
Dual-task cost	430	0.000	0.951	-0.014, 0.015
Grip strength	446	0.041	0.001	0.016, 0.066

MoCA Montreal Cognitive Assessment; SPPB Short Physical Performance Battery; Dual-task cost ([single-task gait speed – dual-task gait speed]/single-task gait speed x 100); TMT-B Trail Making Test Part B

aadjusted for age, sex, education and stroke severity (NIHSS score at admission)
Table 4
Regression analyses with all motor domains as covariates in the same modela.

Regression coefficient	B	p-value	95% CI
MoCA (n = 463)			
SPPB	0.309	< 0.001	0.179, 0.438
Dual-task cost	-0.006	0.497	-0.025, 0.012
Grip strength	0.063	< 0.001	0.028, 0.097
TMT-B (n = 448)			
SPPB	-8.588	< 0.001	-11.204, -5.972
Dual-task cost	0.499	0.009	0.124, 0.873
Grip strength	-1.613	< 0.001	-2.296, -0.930
10-Word List Recall (n = 417)			
SPPB	0.099	0.048	0.001, 0.198
Dual-task cost	-0.002	0.786	-0.017, 0.013
Grip strength	0.036	0.010	0.010, 0.061

MoCA Montreal Cognitive Assessment; SPPB Short Physical Performance Battery; Dual-task cost ([single-task gait speed – dual-task gait speed]/single-task gait speed x 100); TMT-B Trail Making Test Part B

aadjusted for age, sex, education and stroke severity (NIHSS score at admission)

Figures
Figure 1

Flow chart on inclusion.

Enrolled in the Nor-COAST study n = 815

Dead during hospital stay n = 5

Lost to follow-up n = 110

Dead since index stay n = 31
Decline participation n = 44
Can’t reach the patient n = 16
Withdrawn n = 2
Excluded for other reasons n = 17

3-months follow-up n = 700

Telephone interview n = 84
Not assessed with clinical measures n = 49

Included in the present study n = 567
Prevalence of motor and cognitive impairments. Legends Figure 2: MoCA Montreal Cognitive Assessment; SPPB Short Physical Performance battery; Dual-task cost ([single-task gait speed − dual-task gait speed]/single-task gait speed x 100); TMT-B Trail Making Test Part B. Impaired performance was defined as: MoCA < 24p, TMT-B > 167 sec, 10-Word List Recall < 5 words, SPPB < 10 p, Dual-task cost > 20% and grip strength < 21kg (women) and < 37 kg (men).
Figure 2

Prevalence of motor and cognitive impairments. Legends Figure 2: MoCA Montreal Cognitive Assessment; SPPB Short Physical Performance battery; Dual-task cost ([single-task gait speed – dual-task gait speed]/single-task gait speed x 100); TMT-B Trail Making Test Part B. Impaired performance was defined as: MoCA < 24p, TMT-B > 167 sec, 10-Word List Recall < 5 words, SPPB < 10 p, Dual-task cost > 20% and grip strength < 21kg (women) and < 37 kg (men).
