Multiple ionisation sources in \textsc{h} ii regions and their effect on derived nebular abundances.

B. Ercolano1,2, R. Wesson2 and N. Bastian1

1Institute of Astronomy, Madingley Rd, Cambridge, CB3 0HA, UK
2Department of Physics and Astronomy, University College London, WC1E 6BT, UK

Submitted:

\textbf{ABSTRACT}

We present a theoretical investigation of the effect of multiple ionisation sources in \textsc{h} ii regions on the total elemental abundances derived from the analysis of collisionally excited emission lines. We focus on empirical methods based on direct temperature measurements that are commonly employed in cases when the temperature of the nebular gas can be determined from the ratio of nebular to auroral lines of (e.g.) doubly ionised oxygen. We find that direct temperature methods that employ a two-temperature zone approach (DT2T methods) are very robust against the spatial distribution of sources. Errors smaller than 0.15 dex are estimated for regions where the metallicity is twice solar and errors below 0.05 dex for solar metallicities and below. The biases introduced by the spatial distribution of the ionisation sources are thus much smaller for DT2T methods than for strong line methods, previously investigated by Ercolano, Bastian & Stasińska. Our findings are in agreement with the recent study of \textsc{h} ii regions in NGC 300 by Bresolin et al.

\textbf{Key words:} galaxies: abundances; galaxies: ISM; ISM: \textsc{h}ii regions; ISM: abundances

\section{INTRODUCTION}

The analysis of emission lines from \textsc{h} ii regions powered by OB stars is often the only means available for the determination of gas abundances both in our Galaxy and others. Accurate abundance determinations are crucial to derive metallicity gradients, which provide a key observational constraint to chemical evolution models of galaxies. The spectra of \textsc{h} ii regions in the optical and infrared are dominated by collisionally excited lines (CELs) of singly and doubly ionised ions of some of the more abundant heavy elements (e.g. oxygen, carbon etc.). While the metallicity diagnostic power of CELs from \textsc{h} ii regions is widely recognised and used for studying the chemical composition of galaxies, the uncertainties inherent to the empirical methods employed are often overlooked, potentially leading to somewhat over-optimistic error estimates.

Ionic abundances can be obtained from emission lines via the solution of the statistical equilibrium equation under the assumption of a gas temperature and density. Both gas temperature and density can be empirically derived from the observations using the ratio of diagnostic emission lines (e.g. Osterbrock and Ferland, 2006). A widely used temperature diagnostic relies on the ratio of nebular to auroral [OIII] lines, in particular ([OIII]4959+[OIII]4363)/[OIII]4363. This method is often referred to as the ‘direct temperature’ method. For faint (distant) or metal-rich regions, however, the [OIII]4363 line is seldom detected, rendering impossible the direct determination of temperature. In these cases one is often forced to use ‘strong-line methods’, which rely on ratios of some of the strongest CELs calibrated with one-dimensional photoionisation models. In a previous paper (Ercolano, Bastian & Stasińska, 2007, EBS07) we showed that commonly employed strong-line methods, may introduce a \textit{systematic} bias of typically 0.1-0.3 dex, but up to 1 dex on the logarithmic oxygen abundance for regions where the gas and the ionising stars are intermixed.

Direct-temperature methods should be more reliable than strong line methods; however even these are not entirely immune by errors introduced by calibrations from spherically symmetric models. While the error on the determination of a single ionic abundance from emission lines via the solution of the statistical equilibrium matrix is simply determined by the accuracy of the gas temperature and (to a lesser extent) density estimates, not all the ionic stages of a given element produce emission lines in the observed wavelength range. For this reason the determination of total elemental abundances from ionic abundances relies on a correction for the unseen stages of ionisation, known as the ionisation correction factor (ICF). A potential bias is therefore introduced by the ICF schemes that are themselves calibrated via one-dimensional photoionisation modeling (e.g. Kingsburgh & Barlow 1994, Peimbert et al., 1992), with the implied assumption of a geometry comprising of a spherical region with a single central location for all ionisation sources.

The aim of this paper is to estimate whether the use of ICF schemes to derive total elemental abundances of \textsc{h} ii regions from direct-temperature methods introduces a bias in the case of regions ionised by multiple stars intermixed with the nebular gas. Via the
analysis of theoretical H ii region spectra obtained with the mo-
cassin code (Ercolano et al. 2003, 2005, 2008) in the set-up used by EBS07, we show that, unlike strong line methods, direct tem-
perature methods using a two-temperature approach are very reli-
able also in cases when the stars are fully distributed within the
nebular gas. These results are in line with the recent findings of
Bresolin et al (2009, B09) who found good agreement between
CEL abundances obtained by direct temperature methods with the
abundances derived from absorption line analysis of stellar photo-
spheres in a sample of H ii regions in the spiral galaxy NGC 300.

The paper is organised as follows. Section 2 summarises the
model setup and input parameters. Section 3 contains a brief de-
scription of the methods employed. Our results are given in Section
4, while Section 5 is dedicated to a discussion and conclusions.

2 THEORETICAL EMISSION LINE SPECTRA: MODEL
SETUP AND INPUT PARAMETERS

We have used the theoretical nebular spectra of EBS07, which
were obtained using the three-dimensional photoionisation code
mocassin (Ercolano et al. 2003, 2005, 2008). This code uses a
Monte Carlo approach to the transfer of radiation and can easily
deal with multiple ionisation sources arbitrarily distributed within
the simulation region. The atomic database included opacity data
from Verner et al. (1993) and Verner & Yakovlev (1995), energy
levels, collision strengths and transition probabilities from Version
5.2 of the CHIANTI database (Landi et al. 2006, and references
therein) and the improved hydrogen and helium free-bound contin-
uous emission data of Ercolano & Storey (2006). The model setup
and input parameters are described in EBS07, here we summarise
briefly the main points, but refer the interested reader to EBS07 for
further details.

The regions are assumed to be spherical and consisting of
homogeneous gas with number density \(N_H = 100 \, \text{cm}^{-3} \). The to-
total number of ionising photons is constant for all models and is
\(Q_{\text{phot}} = 2.8 \times 10^{50} \, \text{s}^{-1} \). We consider models of five different metal-
llicities (\(Z/Z_\odot = 0.05, 0.2, 0.4, 1.0 \) and 2.0). The solar abundance
model assumes the values of Grevesse and Sauval (1998) with the
exception of C, N and O abundances which are taken from Allende
Prieto et al. (2002), Holweger (2001) and Allende Prieto, Lambert
and Asplund (2001), respectively. The higher and lower metallicity
cases were obtained from the solar abundances by scaling using the
empirical abundance trends observed in H ii regions by Izotov et al
(2006). The gas is ionised by 240 sources belonging to two pop-
ulations, a hot (\(M_* = 56 \, M_\odot \)) and cool (\(M_* = 37 \, M_\odot \)) population,
each population, as a whole, emits equal quantities of H-ionising
photons. The stellar spectra were computed with the starburst99
spectral synthesis code (Leitherer et al. 1999) with the up-to-date
non-LTE stellar atmospheres implemented by Smith, Norris and
Crowther (2002) using single isochrones for the appropriate stellar
masses. The stars were distributed as follows: (i) centrally con-
centrated at the centre of the spherical region - C-models; (ii) dis-
tributed in the half-volume of the spherical region - H-models; (iii)
distributed in the full spherical volume - F-models. In the C-models
all stars share the same location at the origin of the Cartesian axes.
In the H- and F-models the stars are distributed stochastically such
as to obtain a statistically homogeneous 3D distribution of sources
in the half or full spherical region, respectively. The Stroemgren
sphere of stars in the F-models seldom overlap, while those of the
C-model completely overlap, with the H-model representing the in-
termediate case.

In Table 1 we list the subset of the emission lines from our
theoretical spectra that were used for the analysis described in the
following section.

3 THE DIRECT TEMPERATURE METHOD

The aim of this study is to test whether the abundances determined
from the emission line spectrum of an H ii region ionised by multi-
ple stars intermixed with the gas are different from the abundances
determined by a region with exactly the same physical characteris-
tics but with all ionisation sources concentrated in the centre.
EBS07 indeed demonstrated that large biases are introduced by this
effect when strong-line methods are used. The main reason for such
differences was due to a decrease of the ‘effective ionisation pa-
rameter’ of the gas when the stars were fully distributed within the
medium compared to when the same stars were all concentrated at
the centre of the nebula. This affected the temperature structure of
the nebula significantly enough to produce large errors in the de-
derived abundances.

Ionic abundances from direct-temperature methods should be
immune from this error as long as the temperature gradients within
a given ionic phase are not too large (see e.g. Stasińska, 1980 and
Kingdon & Ferland, 1995). However total elemental abundances
can only be obtained by applying an ICF scheme to correct for
the unseen ionisation stages. The question therefore remains as to
what is the effect of the geometrical distribution of the stars on the
ICFs, which rely on theoretical calibrations via one-dimensional
photoionisation models (e.g. Kingsburgh & Barlow, 1994, hereafter
KB94; Peimbert et al., 1992, hereafter PG92).

To answer this question we took a subset of lines typically
observed in extragalactic H ii regions, including the important tem-
perature diagnostic lines of [O ii] at 4363Å and [N ii] at 5754Å,
from the line spectra produced by the photoionisation models de-
scribed in Section 2. We then used these model spectra to derive
chemical abundances via the direct temperature method. The lines
used for the analysis are listed in Table 1.

We considered the nebula as being composed of two separate
zones of low and high ionisation: first, we assumed a temperature
of 10 000 K to obtain electron densities from the [O ii] \(\lambda3726/\lambda3729 \)
and [S ii] \(\lambda6717/\lambda6731 \) line ratios. Then, the average of these two
electron densities was used to derive a temperature from the [N ii]
\(\lambda6548/\lambda6584/\lambda4754 \) line ratio. This temperature was then used to
recalculate the densities, and the temperature recalculated once
more using the resulting density. The abundances of singly-ionised
species were derived using this temperature and density. Then, we
used the same iterative approach, but using the [Cl iii] \(5517/5537 \)
and [Ar iv] \(4711/4740 \) line ratios as density diagnostics, and the
[O iii] \(4959+5007/4363 \) ratio as a temperature diagnostic. Abun-
dances of doubly and more highly ionised species were derived using
this temperature and density.

Total abundances relative to hydrogen were calculated for He,
C, N, O, Ne, S and Ar, using the two commonly used ICF schemes
of KB94 and PTPR92. For several atoms these schemes use the
same correction; they differ for helium (KB94 does not correct for
neutral helium while PTPR92 does), argon and sulfur.

© RAS, MNRAS 000, 1–77
Table 1. Model emission line fluxes, relative to Hβ = 100.

λ (Å)	Ion	0.05c	0.05f	0.05h	0.20c	0.20f	0.20h	0.40c	0.40f	0.40h	1.00c	1.00f	1.00h	2.00c	2.00f	2.00h
3726.03	[O ii]	12.38	27.70	14.07	40.05	87.69	35.55	35.20	25.30	36.85	48.28	17.57	63.89	62.60	55.92	
3728.82	[O ii]	16.51	37.10	18.78	53.18	116.7	47.19	46.62	26.28	37.43	49.24	19.14	64.69	63.40	56.71	
3868.75	[Ne ii]	22.93	11.58	21.12	43.07	26.43	44.01	35.20	21.10	31.42	26.82	24.33	24.10	0.34	0.49	0.30
3967.46	[Ne ii]	6.910	3.491	6.363	12.97	7.965	13.25	9.349	6.359	9.468	8.080	7.333	8.010	0.04	0.07	0.02
4068.60	[S ii]	0.471	1.828	0.634	1.426	5.011	1.341	1.590	6.435	1.747	1.020	4.000	1.547	1.072	0.03	0.05
4076.35	[S ii]	0.163	0.632	0.219	0.493	1.734	0.464	0.550	2.227	0.535	0.354	1.390	0.329	0.374	0.11	0.15
4363.21	[O iii]	9.693	3.995	8.741	17.84	9.475	17.28	11.34	8.542	11.78	9.468	9.138	8.805	2.413	3.05	2.37
4711.37	[Ar iv]	1.385	0.491	1.235	2.319	0.898	2.451	1.765	0.710	1.890	0.847	0.822	0.803	0.04	0.06	0.02
4740.17	[Ar iv]	1.069	0.377	0.952	1.737	0.672	1.838	1.295	0.520	1.386	0.593	0.575	0.557	0.02	0.03	0.01
4958.91	[O iii]	110.1	52.62	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
5006.84	[O iii]	328.6	157.0	303.0	598.0	347.4	619.8	481.5	305.2	493.0	49.40	53.64	5.531	12.50	5.504	
5754.60	[N ii]	0.026	0.059	0.030	0.076	0.165	0.068	0.097	0.258	0.089	0.075	0.193	0.237	0.266	0.215	
6312.10	[S iii]	0.923	1.045	0.982	2.261	0.867	1.942	5.979	18.26	5.485	4.476	4.773	4.723	4.293	4.356	4.345
6548.10	[N ii]	0.321	0.943	0.396	1.114	0.917	1.895	5.979	17.84	2.831	2.741	16.14	21.44	15.15		
7136.80	[Ar iii]	0.808	1.193	0.875	2.969	2.414	3.833	5.865	3.412	2.342	4.033	3.014	4.011	2.592		
7319	[O ii]	0.544	1.025	0.597	1.479	2.856	1.290	1.015	2.393	0.902	0.311	0.676	0.291	0.644	0.568	0.551
7751.43	[Ar iv]	0.194	0.286	0.210	0.711	1.058	0.679	0.877	1.405	0.818	0.561	0.966	0.528	0.722	0.961	0.621
We also considered the case where a low-ionisation temperature diagnostic is not available. In this situation, one can either use the [O ii] temperature for all ions, or estimate the low ionisation temperature using relations such as that found by Pilyugin et al. (2006). We confirm previous findings that applying a single temperature diagnostic introduces considerable errors into the abundance determinations. This case will not be further discussed.

4 RESULTS

Our analysis indicates that the errors on the abundances introduced by the geometrical distribution of the ionising stars are much smaller when direct temperature methods are used instead of strong line methods. We stress here that our aim is not to assess the validity of the ICFs but to assess the effect of the distribution of the ionising sources on the derived abundances. Therefore, we are not comparing the derived abundances to the ‘right answer’ (i.e. the input abundances for our models), but rather comparing the results from model nebulae with distributed ionising sources to those with a centrally concentrated source.

Figure 1 shows the logarithmic error, \(E_{F-C} \), on the abundances of various elements due to the spatial distribution of the ionisation sources. The black solid line shows results using KB94 ICFs and the red dashed lines shows the results for the ICF scheme of PTR92. The errors are due partly to temperature effects (e.g. a steep temperature profile or differences in the mean temperatures of various ions) and partly to the ICFs which may be more or less sensitive to changes in the effective ionisation parameter brought about by a different spatial distribution of sources (see discussion in EBS07). Here we are mostly interested in the latter, and in order to isolate this effect we calculate a correction to the error due to the ICFs, \(\Delta(E_{F-C}) \), by comparing the C and F-model theoretical and empirical ICFs according to the following:

\[
\Delta(E_{F-C}) = \log_{10}\left(\frac{ICF^0_F}{ICF^0_C} \div \frac{ICF^T_F}{ICF^T_C}\right)
\]

(1)

where ICF\(_F^0\), ICF\(_C^0\) are the observational ICFs for the F- and C-models, respectively, and ICF\(_F^T\), ICF\(_C^T\) are their theoretical counterparts calculated by the photoionisation model.

The logarithmic errors and the ICF corrections are summarised in Table 2. In the following we will discuss the sources of error in more detail for each element.

4.1 Helium

KB94 do not include an ICF correction for the unseen neutral helium; the very small \(E_{F-C} \) for KB94 shown in Figure 1 is therefore only due to the lack of correction and the C- and F-models having different amounts of neutral helium. PTR92 on the other hand correct for neutral helium and it is indeed the ICF correction employed that at low metallicities is sensitive to changes in the effective ionisation parameter. The \(\Delta(E_{F-C}) \) corrections given in Table 2 drastically reduce the \(E_{F-C} \) values for PTR92.

4.2 Oxygen

The abundance of oxygen derived by the direct temperature method with a two temperature description of the medium (DT2T) is not very sensitive to the geometrical distribution of the ionisation sources (i.e. to the effective ionisation parameter) for the range of metallicities discussed here. The largest errors occur for metal-rich regions (twice solar) and are always below 0.15 dex. We note that both the empirical and theoretical ICFs for oxygen are roughly unity for all models considered here. The small error at higher metallicities is due to the steepening of the temperature profile which is more accentuated for the C-models (see discussion in EBS07 and Stasińska 1980). This causes the oxygen abundances to be underestimated in the C-models more than in the F-models producing the error observed.

4.3 Nitrogen

Nitrogen also shows a similar behaviour with a slightly larger error (0.21 dex) for metal-rich regions. The nitrogen ICFs are not unity and some of the error shown in Figure 1 are indeed due to a different response of the ICFs to the change in the effective ionisation potential. The ICF correction is \(\Delta(E_{F-C}) = -0.14 \) for nitrogen in the Z/Z\(_{0}\) = 2 case, which brings the nitrogen \(E_{F-C} \) to roughly 0.1 dex. The remainder of the error can again be ascribed to the steepening of the temperature profile as discussed above.

4.4 Neon

The situation for neon is much more complicated. \(\Delta(E_{F-C}) \) at Z/Z\(_{0}\) = 2 is \(-0.3\) dex, which actually increases the magnitude of the error. The large discrepancy \((E_{F-C}) \sim 0.7\) is due to the displacement of the Ne\(^{2+}\) and O\(^{2+}\) regions which results in a significant difference between T\(_{e}(\text{Ne}^{2+})\) and T\(_{e}(\text{O}^{2+})\) at high Z’s. Using T\(_{e}(\text{O}^{2+})\) in the determination of Ne\(^{2+}\) abundance then results in the large error. Indeed we find that at Z/Z\(_{0}\) = 2, T\(_{e}(\text{Ne}^{2+})\)/T\(_{e}(\text{O}^{2+})\) = 0.85 for the C-model and 0.93 for the F-model, the difference has a significant impact on abundances derived via CELs due to their exponential dependence on temperature. We calculate the correction due to the difference in the two temperature regions to be -0.61 dex, which brings the total \(E_{F-C} \) to roughly 0.1 dex, which is comparable to what we found for oxygen and nitrogen.

© RAS, MNRAS 000-1-77
the DT2T method are still lower than 0.15 dex at Z = 0.05 for PTR92 and 0.27 dex for KB94 at the same metallicity. Most of the error here can be ascribed to the different responses of the ICFs to the change of the effective ionisation parameter. Indeed applying the \(\Delta(E_{F-C}) \) corrections given in Table 2 brings \(E_{F-C} \) to values smaller than 0.1 dex both for KB94 and PTR92.

The results obtained for the H-models lie in between those of the F and C models and are therefore not included in this discussion.

5 DISCUSSION & CONCLUSIONS

The main conclusion of this short paper is that abundance determinations from collisionally excited emission lines (CEls) of H II regions via direct temperature methods that use a two-temperature description of the ionised region are very robust and not affected significantly by the spatial distribution of ionisation sources. Indeed the maximum errors on the oxygen abundance derived with the DT2T method caused by the spatial distribution of ionisation sources. The black solid line shows results obtained via the DT2T method. The thinner lines show results obtained from strong line methods, namely as follows. Red dashed: O23 (Pilyugin, 2000, 2001b); green dotted: O3N2 (Stasińska 2006); blue dash dotted: N2 (Pettini & Pagel 2004); magenta dash double dot: S23 (Pérez-Montero & Díaz 2005); cyan long dash: S3O3 (Stasińska 2006); black thin solid: Ar3O3 (Stasińska 2006). The yellow shaded region indicates the metallicity range of the H II regions in NGC 300 analysed by B09.

4.5 Argon

PTR92 do not employ a correction for Ar\(^+\), and the small errors shown are due to the change in the ionisation structure of F- and C-models. KB94 do include an ICF for Ar, however this is quite sensitive to changes to the effective ionisation parameter. The maximum errors for KB94 are of 0.3 dex at solar metallicities against a maximum error of 0.1 dex obtained by PTR92 at Z/Z\(_{\odot}\) = 0.05.

4.6 Sulfur

Sulfur presents larger problems at low metallicities for both methods with maximum errors of 0.4 dex at Z/Z\(_{\odot}\) = 0.05 for PTR92 and 0.27 dex for KB94 at the same metallicity. Most of the error here can be ascribed to the different responses of the ICFs to the change of the effective ionisation parameter. Indeed applying the \(\Delta(E_{F-C}) \) corrections given in Table 2 brings \(E_{F-C} \) to values smaller than 0.1 dex both for KB94 and PTR92.

The results obtained for the H-models lie in between those of the F and C models and are therefore not included in this discussion.

Table 2. Logarithmic errors and ICF corrections

Z/Z\(_{\odot}\)	Helium	Oxygen	Nitrogen												
	\(E_{F-C} \)	\(\Delta(E_{F-C}) \)	\(E_{F-C} \)	\(\Delta(E_{F-C}) \)	\(E_{F-C} \)	\(\Delta(E_{F-C}) \)									
KB94	PTR92	KB94	PTR92	KB94	PTR92	KB94	PTR92								
0.05	0.01	0.22	1.0	-0.14	0.05	0.03	0.03	1.0	1.0	1.0	0.05	0.07	0.07	-0.03	-0.03
0.2	-0.01	0.11	1.0	-0.06	0.2	0.03	0.03	1.0	1.0	0.2	1.0	0.03	0.03	+0.08	+0.08
0.4	-0.01	0.08	1.0	-0.03	0.4	0.02	0.02	1.0	1.0	0.4	0.4	0.04	0.04	+0.03	+0.03
1.0	-0.03	0.03	1.0	-0.007	1.0	0.06	0.06	1.0	1.0	1.0	0.08	0.08	-0.03	-0.03	
2.0	-0.02	0.02	1.0	-0.047	2.0	0.13	0.13	1.0	1.0	2.0	0.21	0.21	-0.14	-0.14	

![Figure 2](image_url)
Figure 2. Errors on the logarithmic abundances calculated via the DT2T method caused by the spatial distribution of ionisation sources. The black solid line shows results obtained via the DT2T method. The thinner lines show results obtained from strong line methods, namely as follows. Red dashed: O23 (Pilyugin, 2000, 2001b); green dotted: O3N2 (Stasińska 2006); blue dash dotted: N2 (Pettini & Pagel 2004); magenta dash double dot: S23 (Pérez-Montero & Díaz 2005); cyan long dash: S3O3 (Stasińska 2006); black thin solid: Ar3O3 (Stasińska 2006). The yellow shaded region indicates the metallicity range of the H II regions in NGC 300 analysed by B09.
supergiants in the same galaxy. They found excellent agreement between
the results from supergiants and direct temperature analysis
of the Hα regions, while noticing that a systematic bias affected the
results from some popular calibration of strong lines. The calibra-
tions used in B09 were not considered by EBS07 and included (i)
the R23 ratio from the theoretical calibration of McGaugh (1991,
M91) using the analytical prescriptions of Kuzio de Naray et al.
(2004) and Tremonti et al. (2004, their Eq. 1, T04), (ii) the theo-
retical prediction for the [N II]λ6583/[O II]λ3727 ratio by Kewley
& Dopita (2002, KD02), and (iii) N2 = log([N II]λ6583/Hα), cali-
brated empirically by Pettini & Pagel (2004, PP04).

In order to estimate whether the spatial distribution of stars
may be playing a role in producing the bias observed by B09 and
predicted by ECD07, we have used the emission line spectra in Ta-
ble 1 to compute the oxygen abundances given by the M91, T04,
KD02 and PP04 calibrations listed above and compared it to the
DT2T results in Figure 3. The metallicity range of the B09 sample
is again highlighted by the yellow section. The errors of the strong
line methods are comparable to those lamented in the B09 paper,
however a detailed comparison with the observation is premature at
this point. The main problem is that the set of models run by EBS07
comprised a very idealised ionising source population which was
designed to highlight eventual temperature fluctuations that may be
introduced by the distribution of stars with spectra of very different
hardness (see also Section 3), which turns out to be equivalent to a
much harder 'effective' spectrum than that inferred by B09 for the
Hα regions in NGC 300. The parameter η = (O+/O++)/(S+/S++)
(Vilchez & Pagel, 1988) was introduced as a measure of the hard-
ness of the ionising field, with larger numbers corresponding to a
softer spectrum. B09 find an average log(η) parameter of roughly
0.7, while we find values ranging between -0.2 and 0.2, indicating a
significantly harder spectrum than that of the B09 Hα regions.
Another problem is the fact that EBS07 explored a wide metallicity
range and as a consequence the narrow metallicity range of the Hα
regions in NGC 300 is very sparsely sampled, as shown in Figure 3

\[R23 = ([O II]λ3727 + [O III]λ3727+4959,5007)/Hβ, \]

only one model data point actually falls in that range. In view of
these shortcomings of the models we can at present only suggest
that the spatial distribution of ionising sources is the cause of the
metallicity bias that affects strong line measurements and postpone
firmer statements to a future work where the parameter range is
better suited to match those particular observations.

We finally note that we have not included a discussion of the
well known abundance discrepancy between CELs and recombi-
nation lines (RLs). A number of possible causes has been identi-
fied in the literature including temperature fluctuations (Peimbert,
1967), hydrogen-deficient, metal-rich inclusions (Liu et al., 2000;
Stasinska et al. 2007) and X-ray irradiated quasi-neutral clumps
(Ercolano, 2009). The jury is still out however as to which of the
above effects or a combination thereof is to blame for the discrep-
ancy. Until the latter problem is resolved all abundances determined
via nebular emission lines carry a potential error. The excellent
agreement between the results obtained by B09 from direct temper-
ature analysis of CELs and those from the supergiants in NGC 300,
however, indicates that in this Galaxy temperature fluctuations and
X-ray irradiated quasineutral clumps, if at all present, must be play-
ing a minor role.

ACKNOWLEDGMENTS

BE and NB are supported by a Science and Technology Facility
Council Advanced Fellowship. We thank the referee for construc-
tive comments.

REFERENCES

Allende Prieto, C., Lambert, D. L., & Asplund, M., 2001, ApJL,
556, L63
Allende Prieto, C., Lambert, D. L., & Asplund, M., 2002, ApJL,
573, L137
Bresolin, F., Gieren, W., Kudritzki, R.-P., Pietrzyński, G., Ur-
bania, M. A., & Carraro, G. 2009, ApJ, 700, 309
Ercolano, B., Barlow, M. J., Storey, P. J., & Liu, X.-W., 2003,
MNRAS, 340, 1136
Ercolano, B., Barlow, M. J., & Storey, P. J. 2005, MNRAS, 362,
1038
Ercolano, B., & Storey, P. J. 2006, MNRAS, 372, 1875
Ercolano, B., Bastian, N., & Stasińska, G. 2007, MNRAS, 379,
945
Ercolano, B., Young, P. R., Drake, J. J., & Raymond, J. C., 2008,
ApJS, 175, 534
Ercolano, B., 2009, MNRAS, 397, L69
Grevesse, N., & Sauval, A. J., 1998, Space Science Reviews, 85,
161
Holweger, H., 2001, Joint SOHO/ACE workshop "Solar and
Galactic Composition", 598, 23
Izotov, Y. I., Stasińska, G., Meynet, G., Guseva, N. G., & Thuan,
T. X. 2006, A&A, 448, 955
Kewley, L. J., & Dopita, M. A., 2002, ApJS, 142, 35
Kingdon, J., & Ferland, G. J., 1995, ApJ, 442, 714
Kingsburgh, R. L., & Barlow, M. J., 1994, MNRAS, 271, 257
Landi, E., & Phillips, K. J. H., 2006, ApJS, 166, 421
Leitherer, C., et al., 1999, ApJS, 123, 3
Liu, X.-W., Storey, P. J., Barlow, M. J., Danziger, I. J., Cohen, M.,
& Bryce, M. 2000, MNRAS, 312, 585
McGaugh, S. S. 1991, ApJ, 380, 140

© RAS, MNRAS 000.11-??
Osterbrock, D. E., & Ferland, G. J. 2006, Astrophysics of gaseous nebulae and active galactic nuclei, 2nd. ed. by D.E. Osterbrock and G.J. Ferland. Sausalito, CA: University Science Books, 2006.

Pettini, M., & Pagel, B. E. J. 2004, MNRAS, 348, L59

Peimbert, M. 1967, ApJ, 150, 825

Peimbert, M., Torres-Peimbert, S., & Ruiz, M. T. 1992, Revista Mexicana de Astronomia y Astrofisica, 24, 155

Pilyugin, L. S. 2000, A&A, 362, 325

Pilyugin, L. S. 2001, A&A, 369, 594

Pilyugin, L. S., Vilchez, J. M., & Thuan, T. X. 2006, MNRAS, 370, 1928

Smith, L. J., Norris, R. P. F., & Crowther, P. A. 2002, MNRAS, 337, 1309

Stasińska, G. 1980, A&A, 85, 359

Stasińska, G. 2006, A&A, 454, L127

Stasińska, G., Tenorio-Tagle, G., Rodríguez, M., & Henney, W. J. 2007, A&A, 471, 193

Tremonti, C. A., et al. 2004, ApJ, 613, 898

Verner, D. A., Yakovlev, D. G., Band, I. M., & Trzhaskovskaya, M. B. 1993, Atomic Data and Nuclear Data Tables, 55, 233

Verner, D. A., & Yakovlev, D. G. 1995, A&AS, 109, 125

Vilchez, J. M., & Pagel, B. E. J. 1988, MNRAS, 231, 257