RESEARCH ARTICLE

REVISITING THE DEMOCRATIC REPUBLIC OF THE CONGO STRATIFICATION MAP FOR THE YEAR 2000 USING CLOUD-BASED COMPOSITING AND OBJECT-BASED CLASSIFICATION ALGORITHMS

Wilfred Kombe Ibey¹ and Jean-Paul Kibambe Lubamba²,³
1. Universityof Kisangani, Natural Renewable Resources Management Faculty, BP. 2012, Kisangani, République Démocratique du Congo.
2. University of Kinshasa, Agronomy Faculty, Dpt of Natural Resources Management.
3. Wildlife Conservation Society, DRC.

Abstract

National stratification maps are essential to improve forest management systems. For the Democratic Republic of the Congo, the existing maps derived from remote sensing techniques do not allow an optimal representation of the diverse land cover classes constituting the national stratification scheme. This situation is inherent to the cloud persistence, the seasonality effects and the spatial resolution of the input satellite imagery used that is not always adequate for the discrimination of certain land cover classes. This paper explores a cloud-based median luminance best pixel approach to obtain a cloud-free mosaic of optimal quality. The mosaic produced has necessitated nearly 2,500 Landsat scenes and a following object-based classification enabled the generation of a stratification map for the year 2000 according to the national stratification theme. A stratified random sampling approach that required 1,141 reference samples allowed estimating the map accuracy at 79.32%. Land cover classes areas computed using standard good practices recommendations to estimate land areas indicated that the dense moist forest area was about 158,810,975 ± 7,460,671 ha representing 68.40% ± 3.21% of the country area. Thanks to the free, user-friendly and cloud-based platforms for satellite images processing, the methodology implemented is easily replicable for other tropical countries.

Introduction:

The forests of the Democratic Republic of Congo (DRC) represent around 60% of the overall Congo Basin forest estate and play an important role in the sequestration of atmospheric CO2, thus contributing to balancing the flow of global greenhouse gas emissions [1,2]. Monitoring the dynamics of Congolese forests is therefore of importance, particularly since the advent of the REDD+ mechanism [2,3]. In order to progress in meeting the requirements of the Warsaw Framework for REDD+, the DRC recently submitted to the United Nations Framework Convention on Climate Change (UNFCCC) its first Forest Reference Emission Level (FREL) covering the period 2000-2014 [4]. The year 2000 was chosen as the base year of the DRC’s FREL as it corresponds to the reference year for several map products at the national level [4].

Corresponding Author:- Jean-Paul Kibambe Lubamba
Address: University of Kinshasa, Agronomy Faculty, Dpt of Natural Resources Management.
The DRC, like several other Congo Basin countries including Congo-Brazzaville [5] and Equatorial Guinea [6] and many other tropical forest countries [7], was confronted with the lack of reliable historical data on land cover and land cover change during the establishment of its FREL [4]. The data included a homogeneous national stratification map for the base year 2000, allowing to distinguish different land cover classes described in the country’s national forest classification operational guide [8]. Indeed, the 2000 national stratification map included in DRC’s FREL is the result of merging two maps. The first map covers the extent of three western provinces namely Mai-Ndombe, Kwila and Kwango while the second map spans over the remaining DRC territory. These two maps differ in terms of (1) the classification techniques used (i.e., object-oriented classification and visual interpretation for the first vs. pixel-based classification for the second map), (2) the labeling systems of the land cover classes, and (3) the types of satellite images used as inputs to produce them [9].

An additional constraint in obtaining a homogeneous national stratification map for the DRC is the classes aggregation found in existing maps, which do not adequately represent the classes described in the national stratification scheme. As an example, the class known as dense rainforest found in many land cover maps [10,11,3] is in fact an aggregation of several classes of the national stratification scheme, notably the dense moist forest, the edaphic forest, the secondary forest as well as the closed to open deciduous woodland (Miombo). Such aggregation is either the direct consequence of the spatial resolution of each map i.e. 1-km for [11] or it is tributary of the main objective pursued by the authors i.e. [3] whose vegetation map at 60 m spatial resolution mainly aimed at representing the major land cover classes at the national level.

Recently, [12] have developed a national stratification map for the year 2000 at 30 m spatial resolution. Although at this spatial resolution it is theoretically possible to discriminate the different land cover classes constituting the DRC’s forest classification system, this map only represents two general classes (i.e., forest and non-forest) and therefore cannot meet the requirement of obtaining a homogeneous and detailed cartography of the national stratification scheme.

In turn, cloud-based geo-spatial data display and processing platforms, such as Google Earth (GE), Collect Earth (CE), Google Earth Engine (GEE), and System for Earth observation, data access, Processing, Analysis for Land monitoring (SEPAL) [13], have significantly reduced the time required to process spatial data for deriving homogeneous and detailed vegetation maps [14]. In fact, those free, user-friendly and cloud-based platforms for satellite images processing make the use of remote sensing techniques more accessible to a larger number of practitioners. SEPAL for instance, is a cloud-based supercomputer platform that is part of the Openforis tools such as Collect Earth [15]. SEPAL provides access to and processing of historical and recent satellite images archives of the USGS (United States Geological Survey) Landsat (L4-5, L7 and L8) and ESA (European Space Agency) Copernicus (Sentinel-1 and 2) programs. CE for its part is a tool for querying high and very high spatial resolution satellite images and collecting various data through the GE archives in conjunction with Bing Maps and GEE [16].

There is therefore a need to demonstrate how cloud-based geo-spatial processing algorithms can be routinely used to improve capacities in producing reliable classification maps that reflect national stratification schemes. Such demonstration is of paramount importance in developing countries where computation capacities to process a large amount of satellite imagery are still low and where adequate infrastructures and standard operating protocols to produce consistent land cover maps through time are still lacking.

The objective of the present research is to use these cloud-based platforms to produce a DRC-wide stratification map for the reference year 2000 that discriminates the land cover classes as described in the country’s national stratification scheme. The specific objectives of the research are threefold: (1) using the best median pixel approach to produce an annual composite which excludes the seasonality effects and the lack of data (i.e., clouds, poor quality image, atmospheric haze, etc.); (2) conducting an object-oriented supervised classification for producing a historical map of the year 2000 with an improved spatial discrimination of the vegetation types described in the national stratification scheme; and (3) generating reliable land cover classes areas at the national scale. In addition, the approach developed in the research is meant to be straightforward so that it can be easily replicated for other tropical countries that are still facing challenges in producing reference maps that comply with national stratification schemes.
Materials and Methods:

Data
Producing a DRC-wide mosaic for the year 2000 required the use of almost 2,500 Landsat 4-5 (L4-5) and Landsat 7 (L7) scenes (Table 1) to cover the entire country area spanning over 2,345,409 sq.km. These scenes with a spatial resolution of 30 m were acquired around the year 2000 and selected through the SEPAL platform. Three spectral bands were used for these analyses: (1) Medium Infrared [MIR]: 1.55 - 1.75 µm; (2) Near Infrared [NIR]: 0.76 - 0.90 µm and Red [R]: 0.63 - 0.69 µm. These bands were preferred to other spectral bands because: (i) the R can distinguish between vegetated and bare areas; (ii) the NIR is sensitive to the structure of healthy or disturbed vegetation, including cultivated areas; and (iii) the MIR is sensitive to the reflectance of vegetation and soil, in addition to being able to capture the reflectance at the peak of chlorophyll absorption [11]. In addition to the L4-5 and L7 images, nationwide SRTM (Shuttle Radar Topographic Mission) images at 30 m spatial resolution were acquired from the OSFAC (ObservatoireSatellital de Forêt d'Afrique Centrale) database [17]. This data was used to characterize the vegetation types based on the altitudinal gradient [11,2].

Methodology:

The Figure 1 summarizes the methodology consisting of five steps that are: (1) delineation of blocks; (2) generation of mosaics; (3) segmentation and calibration of classification models; (4) object-based classification and (5) evaluation of results including the calculation of the number of reference samples to be collected and the production of land cover area statistics. These different steps are detailed below.

Delineation of blocks
The DRC’s geographic location straddling the Equator causes an inversion of the seasonality between the North and South, making it difficult to map simultaneously the totality of country ecosystems using satellite-based remote sensing techniques [11]. To circumvent that issue, the country was divided into three blocks (Figure 2) to stratify the seasonality. The northern block (in blue) corresponds to the area covered by the Sudanian and Sudano-Guinean savannah, while the central (in orange) and southern (in red) blocks correspond respectively to the areas of dense humid forest and Zambézian savannah [2].
Figure 2:- Delimitation of DRC into three seasonal blocks (blue, orange and red).

Mosaics generation

The collection of Landsat scenes was conducted per block according to specific Julian Days (JD) to generate per block mosaics within the SEPAL platform [13]. The selection of images was constrained with a maximum threshold of 10% cloud cover in order to generate a high quality and cloud-free composite for the year 2000. To achieve the cloud-free composite objective, the strategy consisted in increasing the number of scenes collected per block and extending the time series around the year 2000, i.e. 1996-2003 for the northern block, 1995-2003 for the central block and 1996-2003 for the southern block (Table 1).

Table 1:- Specific parameters for the collection of scenes and the production of mosaics per block.

	Satellite	Sensor	Julian Date	Date Gregorian Calendar	Time series	No. of Lands at scenes covering the block	Average acquisition per scene	No. of scenes collected/block
North	L4-5	TM	350	15-Dec	1996-2003	36	14	75
	L7	ETM+						426
Sub-Total								
Center	L4-5	TM	167	15-June	1995-2003	56	17	202
	L7	ETM+						551
Sub-Total								
South	L4-5	TM	93	02-April	1996-2003	90	14	859
	L7	ETM+						379
Segmentation and calibration of classification models

Multi-resolution segmentation by region [18] was used to partition the mosaics of each block into homogeneous segments [19-22]. These segments were constructed by merging the spectral and spatial information of adjacent pixels using the MIR, NIR and R Landsat bands [23,24,21]. The segmentation was carried out under the constraint of obtaining segments or objects whose sizes are finer (here referred as S-N1 segments of about 3.41 ± 4.80 hectares) in heterogeneous landscapes and larger (i.e., S-N2 segments of about 22.40 ± 22.41 hectares) in homogeneous ones [25,21,26,22]. A S-N2 segment corresponds to an aggregation of several S-N1 segments and represents a dense and spatially homogeneous vegetation cover. The aggregation of homogeneous segments was considered to reduce the time required to calibrate the classification model.

The classification model calibration for dense and homogeneous landscapes of the central block (Figure 3) and certain areas of the southern block was carried out based on S-N2 segments from which so-called reference segments (RS) within each block were extracted. The RSs were visually identified within each block on landscapes that are characteristic of a specific targeted vegetation. The calibration thus consisted in assigning the type of vegetation corresponding to the RSs considering the following information as inputs for decision-making: (i) expert knowledge from the authors, (ii) NDVI (Normalized Difference Vegetation Index) indices [27] (equation 1) and (iii) NDWI (Normalized Difference Water Index) [28] (equation 2). These two indices are commonly used in remote sensing respectively for their sensitivity to characterize vegetation cover and water availability[29,30]. They have already been successfully applied in the characterization of certain types of vegetation in DRC, notably edaphic forest and grassland classes [11].

\[
\text{NDVI} = \frac{\rho_{\text{NIR}} - \rho_{\text{R}}}{\rho_{\text{NIR}} + \rho_{\text{R}}}, \quad (1)
\]

with \(p_{\text{NIR}}\) : luminance of the Near Infrared spectral band and \(p_{\text{R}}\) : luminance of the Red spectral band

\[
\text{NDWI} = \frac{\rho_{\text{NIR}} - \rho_{\text{MIR}}}{\rho_{\text{NIR}} + \rho_{\text{MIR}}}, \quad (2)
\]

with \(p_{\text{NIR}}\) : luminance of the Near Infrared spectral band and \(p_{\text{MIR}}\) : luminance of the Medium Infrared spectral band

Figure 3: Overlay of S-N2 segments on the best median pixel mosaic around the City of Yangambi in the Tshopo Province.
For landscapes that are less dense and more homogeneous, the calibration of the classification model was carried out at the S-N1 segments level, especially in the northern and southern blocks.

In addition to parameters of homogeneity and density, other information available in the scientific literature and in the country’s national stratification standards [8] were considered to distinguish certain types of vegetation in the RSs. These include canopy texture (i.e. rough or coarse vs. smooth) [10,11] which was used to improve the calibration of the classification model, particularly in the case of certain highly heterogeneous landscapes in the northern and southern blocks.

Object-based classification:-
A supervised object-based classification [31] using the nearest neighbor maximum likelihood algorithm was applied to derive vegetation types by block. This algorithm has proven to be efficient for mapping vegetation types [32,33] and the classification approach preferred has the distinct advantage of requiring only a few set of training samples per vegetation types within each block.

The labeled objects (segments or polygons) resulting from the classification process were subsequently converted to a raster format at a spatial resolution of 30 m, equivalent to the Landsat spatial resolution, to obtain the stratification map of the whole country.

Results Evaluation:-
The evaluation of the classification output was carried out through a stratified random sampling design of reference samples throughout the whole DRC.

Number of reference samples;
Equation (3) [34,35] was used to calculate the number (n) of samples required per class of the stratification map.
\[
n = \frac{\sum W_i S_i}{(S(o))^2} \times \frac{1}{(1 - U_i)^2},
\]

where: n is the total number of samples; S(o) is the standard error of the overall acceptable accuracy: i.e. 0.01; W_i is the proportion area of the class i; S_i is the standard deviation of class i and U_i the user accuracy of class i.

The expected user accuracy (U_i) for each class has been set as follows based on expert knowledge and the expected complexity to distinguish each vegetation type: 0.50 (dense forest on dry land); 0.45 (edaphic forest); 0.99 (secondary forest); 0.90 (open forest); 0.60 (submontane forest); 0.45 (mountain forest); 0.20 (mangrove forest); 0.70 (wooded & shrubby savannah); 0.99 (grassland); 0.90 (urban area) and 0.90 (water body). The standard error of the overall precision for the whole country was set at 0.01.

The n samples were then allocated to different classes according to each class area and a minimum of 100 samples was allocated to any minority class [36].

Interpretation of reference samples;
Reference samples were visually interpreted on Collect Earth (CE) [16] through a squared evaluation unit of 0.09 ha [37] corresponding to the spatial resolution of the stratification map. The interpretation was mainly carried out on images from the year 2000 and in priority on any high-spatial resolution satellite images when available [38]. In case where images for the year 2000 were missing, images acquired around this year were used (Table 1).

To guarantee the independence of reference samples, their interpretation was carried out regardless of the class predicted by the automated classification process (Section 2.2.4). Furthermore, the assignment of the vegetation class corresponding to each reference sample was based on the majority rule within each evaluation unit. The comparison of reference samples with the results from the automated classification led to a confusion matrix that was used to calculate common map accuracy indices that are typically the user accuracy, the producer accuracy, the overall accuracy and the Kappa index [39,36].
Areas calculation;
Two approaches were used for calculating the areas of different classes: pixel count and statistical estimation. The pixel count was conducted at the provincial level and summarized at the national level. The statistical estimation of class’ areas and the associated errors were performed using SEPAL’s Stratified Area Estimator Analysis module[13], following the good practices approach for estimating land areas proposed by [35].

Because the forest class is of major interest in particular for operationalizing the REDD+ mechanism at the national level, the final stratification map was subsequently aggregated into two major classes namely Forest (i.e., Dense moist forest, Edaphic forest, Mangrove forest, Secondary forest, Close to open deciduous woodland (Miombo), Submontane forest and Mountain forest) and Non-Forest (i.e., Savana woodland & Shrubland, Grassland and Urban & Bare areas) to estimate the reference forest area for the year 2000 (i.e., Forest 2000).

Results:-
Landsat mosaic
Figure 4 shows the mosaic for the year 2000 at 30 m spatial resolution, resulting from the aggregation of three blocks (i.e., north, center and south) mosaics using a total of 2,492 Landsat scenes. Despite the large number of Landsat scenes required, the mosaic necessitated very little memory space allowing its easy display and processing on standard computers that are commonly available in most of developing country remote sensing national institutions. The mosaic covers homogeneously the entire country thanks to the median luminance best pixel mosaicking process. Common cloud persistence in the southwestern was significantly reduced so that remaining clouds on the mosaic represent only 0.2% (No Data in Table 2) of the country area.

Vegetation class areas
Figure 5 below shows the stratification map (i.e., Vgt DRC 2000) for the year 2000 with a spatial resolution of 30 m comprising 12 land cover classes. The pixel count-based surface area of the forest class (called Forest 2000) was estimated at 160,684,890 ha representing 69.08% of the national territory.
Table 2 below shows pixel count-based areas of different classes by province and their relative proportions at both national and provincial levels.

Province	D M F (ha)	S F (ha) %	G L (ha) %	W S L (ha) %	W B (ha) %	C O D W (ha) %	N D (ha) %	E F (ha) %	S M F (ha) %	M F (ha) %	U B A (ha) %	M a F (ha)
Kinshasa	61.00	.5146	.0339	.0504	.0151	.0009	.0071	.0118	.0003	.0007	.0001	.0001
Congo Central	51.07	.0528	.0293	.0179	.0018	.0018	.0031	.0038	.0001	.0001	.0001	.0001
Mai-Ndombe	7.05	.0557	.0192	.0148	.0114	.0089	.0122	.0146	.0003	.0003	.0001	.0001

Figure 5: Map Vgt DRC 2000.
	70	.5	29	7	1	0	.7	.2	.2	1	2	.3	2	0	2	.7
No	.8	.9	.8	70	7	0		.5	7	0		.5	3	.3	5	0
rd-	.1	1	96	5	8	2		.6	2	4	5	6	4	6	7	0
Kiv	.1	.1	6	1	3	1		.1	1	.2	1	.6	8	7	9	0
u	.3	1	7	0	7	5		.3	3	3	3	3	3	3	3	0
	.6	2	9	0	8	2		.6	8	4	5	5	5	5	5	0
Su	.7	0	1	7	0	8		.7	5	5	6	6	6	6	6	0
d-	.9	1	.1	6	1	3		.1	1	2	1	.6	8	7	9	0
Kiv	.1	.1	.1	9	0	8		.1	1	.2	1	.6	8	7	9	0
	.3	1	7	0	7	5		.3	3	3	3	3	3	3	3	0
Ma	.9	1	.2	8	0	8		.9	5	5	5	5	5	5	5	0
nie	.3	1	7	0	8	2		.3	5	5	6	6	6	6	6	0
ma	.1	.1	.1	9	0	8		.1	1	.2	1	.6	8	7	9	0
	.3	1	7	0	7	5		.3	3	3	3	3	3	3	3	0
Lu	.9	1	.2	8	0	8		.9	5	5	5	5	5	5	5	0
ala	.3	1	7	0	8	2		.3	5	5	6	6	6	6	6	0
ba	.1	.1	.1	9	0	8		.1	1	.2	1	.6	8	7	9	0
	.3	1	7	0	7	5		.3	3	3	3	3	3	3	3	0
Ha	.9	1	.2	8	0	8		.9	5	5	5	5	5	5	5	0
ut-	.3	1	7	0	8	2		.3	5	5	6	6	6	6	6	0
Loma	.1	.1	.1	9	0	8		.1	1	.2	1	.6	8	7	9	0
mi	.3	1	7	0	7	5		.3	3	3	3	3	3	3	3	0
Ta	.9	1	.2	8	0	8		.9	5	5	5	5	5	5	5	0
ngan	.3	1	7	0	8	2		.3	5	5	6	6	6	6	6	0
nyi	.1	.1	.1	9	0	8		.1	1	.2	1	.6	8	7	9	0
ka	.3	1	7	0	7	5		.3	3	3	3	3	3	3	3	0
Ha	.9	1	.2	8	0	8		.9	5	5	5	5	5	5	5	0
ut-	.3	1	7	0	8	2		.3	5	5	6	6	6	6	6	0
Kat	.1	.1	.1	9	0	8		.1	1	.2	1	.6	8	7	9	0
ang	.3	1	7	0	7	5		.3	3	3	3	3	3	3	3	0
Ka	.9	1	.2	8	0	8		.9	5	5	5	5	5	5	5	0
saí-	.3	1	7	0	8	2		.3	5	5	6	6	6	6	6	0
Ori	.1	.1	.1	9	0	8		.1	1	.2	1	.6	8	7	9	0
ent	.3	1	7	0	7	5		.3	3	3	3	3	3	3	3	0
San	.9	1	.2	8	0	8		.9	5	5	5	5	5	5	5	0
kur	.3	1	7	0	8	2		.3	5	5	6	6	6	6	6	0
u	.1	.1	.1	9	0	8		.1	1	.2	1	.6	8	7	9	0
	.3	1	7	0	7	5		.3	3	3	3	3	3	3	3	0

937
	9	7	5	3	1	2	7	5	3	1	2	7	5	3	1	2	7	5	3	1	
Lo ma mi	42	30	19	8	7	6	3	7	12	8	6	2	0	0	0	0	0	0	0	0	
Ka saï-Ce ntral	1	5	3	9	2	0	9	2	6	8	1	0	0	0	0	0	0	0	0	0	
Ka saï	5	7	9	1	3	0	1	2	6	0	0	0	0	0	0	0	0	0	0	0	
Pix el cou nt	99	60	55	17	9	5	2	1	28	2	4	10	3	6	16	1	27	1	2	1	27
% / cou ntry	42	25	5	3	12	1	4	12	0	4	1	1	7	3	1	0	0	0	0	0	

1DMF: Dense Moist Forest; SF: Secondary Forest; GL: Grassland; WSL: Woodland & Shrubland; WB: Water Bodies; CODW: Closed to Open Deciduous Woodland; ND: No Data; EF: Edaphic Forest; SMF: Submontane Forest; MF: Mountain Forest; UBA: Urban and Bare Areas; MaF: Mangrove Forest.

The dense moist forest on land is the predominant country vegetation with an area equivalent to 99,661,380 ha, which is close to 43% of the national territory. This class is mainly present in the provinces of Tshopo, Tshuapa, Bas-Uélé, Sankuru, Maniema and Mai Ndombe. The edaphic forest class is mainly present in the provinces of Equateur, Mai Ndombe and Tshuapa and remains flooded almost all year, and includes the extent of DRC peatlands [40]. The secondary forest for its part results from the anthropogenic pressure and is generally found along the main roads, close to farming communities, rural agglomerations and urban centres [11].

The Close to open deciduous woodland is a combination of Close to open deciduous forest with an open canopy and as an undergrowth grassland layer. It is also called "Miombo forest" which is found in the south-east and south-west of the country, respectively in the Lualaba provinces, Haut-Katanga and Kwango. Submontane forest and mountain forest are found exclusively in the eastern provinces of the country, mainly North and South Kivu. The grassland is one of the most represented vegetation in the north and south of the central forest massif as well as in the west of the country in the Kasai-Central province.

Finally, Woodland and Shrubland were aggregated into a single class due to the lack of auxiliary information, particularly the respective ranges of canopy heights, which could improve their discrimination. These two types of savannas form a buffer zone at the frontier between dense moist forest and grasslands that are predominant in the Kasai Oriental province.
Statistical estimation of class areas
Table 3 below presents the results of the statistical area estimation and the associated errors for each class. The Forest 2000 class was estimated at 158,810,975 ± 7,460,671 ha representing about 68.40% ± 3.21% of the national area.

Land cover class	Area estimate (ha)	± 90% IC (ha)	Relative error (%)
Dense moist forest	95,486,748	4,865,011	5.0
Secondary forest	18,229,040	3,494,241	19.1
Grassland	50,266,714	4,945,162	9.8
Woodland & Shrubland	17,844,567	4,018,111	22.5
Water bodies	3,038,740	1,367,186	44.9
Close to open deciduous woodland	30,775,268	3,931,362	12.7
Edaphic forest	10,332,160	2,061,707	19.9
Submontane forest	246,659	128,398	7.6
Mountain forest	1,602,527	1,037,415	4.32
Urban & Bare areas	206,707	128,398	7.6
Mangrove Forest	1,367,186	1,037,415	4.32

The area estimate of the Urban & Bare areas class is significantly different from that obtained using the pixel count method, with a relative error of about 72.42%. This difference is due to omission errors, notably 4 samples of Urban & Bare areas class on the Vgt DRC 2000 map that corresponded in fact to secondary forest (1 sample) and grassland (3 samples) according to the visual interpretation of reference points.

Accuracy assessment
The confusion matrix shown in Table 4 originates from the cross-comparison of the DRC 2000 Vgt map and the visual interpretation of reference samples.

Vgt DRC 2000	Reference samples 2000
	D MF SF GL WS L W B COD W EF SM F MF UB A Ma F Total UA (%)
DMF	108 5 1 3 1 2 120 90.00
SF	11 69 7 11 2 1 102 67.65
GL	2 1 77 12 17 3 112 68.75
WSL	1 12 24 1 102 62.75
WB	98 2 100 98.00
CODW	3 2 16 5 79 1 106 74.53
EF	16 4 82 102 80.39
SMF	7 3 3 83 4 1 101 82.18
MF	2 1 1 4 92 100 92.00
UBA	5 4 9 5 77 100 77.00
MaF	4 3 7 2 2 2 76 96 79.17
Total	159 100 148 103 101 99 89 87 96 83 76 1,1 41
PA (%)	67.92 69.00 52.03 62.14 97.03 79.80 92.13 95.40 95.83 92.77 10 0

PA (%)
The Vgt DRC 2000 map has an overall accuracy estimated at 79.32%, with a Kappa index of 0.78. The Mountain forest and Dense moist forest classes have the highest user accuracies respectively of 92 and 90% whereas the Woodland & Shrubland stratum has the lowest user accuracy of about 63%.

Discussion:

Parameters for selecting Landsat scenes per block

The quality of the median luminance best pixel mosaic is primarily a function of the quality of Landsat scenes that were selected as inputs and therefore of the choice of the JD specific to each block [11,2]. The ultimate objective of the Landsat scenes selection was to minimize both the effects of seasonality and the presence of no data pixels [41,42,11,2].

In the northern block, the selected Julian day (JD = 350) corresponds approximately to the beginning of the dry season (JD = 335), while for the central (JD = 167) and southern (JD = 93) blocks, they correspond to the periods of the year with the lowest rainfall. The Landsat scenes were therefore collected during the low rainfall period for the three blocks. The main reason for using this period is that Landsat satellite images acquired during the rainy season in the northern block could bias the signal analysis of herbaceous land cover classes, which would then present higher NDVI values. The direct consequence would be the difficulty to discriminate herbaceous from woody vegetation within the northern block.

In the central and southern blocks, the JDs were chosen to maximize the depiction of deciduous woody vegetation, particularly the Close to open deciduous woodland (Miombo) class, whose foliage matures during the dry season. Thus, the use of rainy season scenes in these blocks would lead to an underestimation of deciduous forests.

Beyond the choice of JD per block, the relevance and representativity of the mosaic for the target year (2000) is important to evaluate. Such representativeness is a function of the number of scenes from the year 2000 that have been used in comparison to those from other years. In fact, the selection of input images has been extended before and beyond the year 2000 in order to obtain the best scenes with regard to the criteria set, i.e. a maximum of 10% cloud cover. Table 5 below illustrates that 43.5% of the scenes used for the mosaic in the northern block were from the year 2000, 43.3% for the central and 34.2% for the southern blocks. Thus, most of the scenes for all three blocks were from the year 2000, which indicates that the final mosaic produced for this study is representative of the target year as compared to other years (Table 5).

Table 5:- Landsat scenes (n) collected per block during the period 1995-2001 to produce the mosaic for the year 2000.

	1995		1996		1997		1998		1999		2000		2001		Total	
North	n	%	n	%	n	%	n	%	n	%	n	%	n	%	N	%
	8	1.6	29	5.8	14	28.	21	43.	10	20.	501	10	0			
Center	1	2.3	35	4.6	26	3.5	52	6.9	14	19.	32	6	43.	5	753	10
South	13	11.	19	16.	16	15.	28	23.	19	15.	42	34.	2	123		

Calibration of classification models

Four main parameters were used to calibrate the classification models: landscape homogeneity, density and roughness of the canopy, and altitude. The classification model was calibrated by block, based on RS-N1 segments for heterogeneous environments and SR-N2 for more homogeneous landscapes. The preliminary identification of vegetation types to drive the classification model was also based on the density, which, together with homogeneity,
provides information on the horizontal physiognomy of the landscape, particularly the degree to which the canopy is open. The horizontal physiognomy was a key parameter for the discrimination between dense and open forests.

The vertical physiognomy was characterized by canopy texture based on the shape of tree crowns. It was used to distinguish edaphic forest from dense moist forest or even secondary forest. Indeed, the smooth texture which is specific to the edaphic forest is due to the persistence of water in the undergrowth throughout the year whereas the canopy texture of dense moist forest is rougher.

Altitude, also used by several authors including [11,7], made it possible to discriminate between low and high altitude vegetations, particularly mountain and submontane forests.

Minimum number of samples per land cover class

The accuracy assessment of the VgtDRC 2000 map was carried out according to good practices recommendations from [35]. These practices relate to three main elements: sampling design, response design and analysis of reference data.

The most used sampling methods are the systematic and random stratified samplings [43]. The first method selects the samples based on a regular spatial distance while for the second one the samples are selected randomly either equally or proportionally to the land cover classes areas on the map [44]. The latter was used in this research even though it generates a few samples in the land cover classes represented in small proportions [43]. To address the potential under-representativeness of samples in land cover classes covering small areas, [36] proposed allocating between 20-100 samples to these classes. Thus, for the VgtDRC 2000 map, 100 samples were allocated to each class considered as a minority class, namely mountain and submontane forests, mangroves and water bodies.

Mapping evaluation and products comparison

The conversion of the object-based stratification map to a raster format resulted in a final product at 30 m spatial resolution. This conversion did not induce any significant loss of information in terms of each class area (Table 6).

Land cover class	Object-based area (ha)	Pixel-count based area (ha)	Absolute difference (%)
Dense moist forest	99,661,913	99,661,380	-0.001
Secondary forest	17,455,756	17,455,506	-0.001
Grassland	60,019,321	60,017,518	-0.003
Woodland & Shrubland	9,054,622	9,054,277	-0.004
Water bodies	2,253,588	2,252,714	-0.039
Close to open deciduous woodland (Miombo)	28,492,257	28,491,772	-0.002
No Data	428,425	428,325	-0.023
Edaphic forest	10,516,427	10,516,427	-
Submontane forest	3,904,797	3,904,768	-0.001
Mountain forest	627,770	627,769	-
Urban & Bare areas	164,341	164,311	-0.018
Mangrove Forest	27,269	27,268	-0.003
Total	**232,606,486**	**232,602,037**	

However, the area estimates comparison between the pixel count and the statistical approaches showed significant differences for the classes Woodland & Shrubland and Urban & Bare areas (Table 3). These differences are mainly tributary of the 30 m spatial resolution of the final map that is still too coarse to allow discriminating tree and shrub savannas at the frontier with dense moist forest. The same applies to the discrimination between the Urban & Bare areas and the Grassland class, especially in provinces where the latter class is predominant (i.e., Kasai-Oriental, Lomami, Haut-Lomami, etc. see Table 2). Furthermore, the low precision found for Woodland & Shrubland in the confusion matrix (Table 4) is also a direct consequence of the low level of discrimination for these two classes. However, with all the savannas aggregated into a single class, the pixel count and statistical area estimates for that
class are much closer, leading to about 14% decrease of the map overall relative error from 4.32% (Table 3) to 3.71% (Table 7), which is significant.

Table 7: Area estimates of vegetation types and associated errors with the savannah classes aggregated into a single class.

Land cover class	Pixel count (ha)	Area estimate (ha)	± 90% IC (ha)	Relative error (%)
Dense moist forest	99,661,380	95,294,536	4,790,060	5.0
Secondary forest	17,455,506	20,823,910	3,829,227	18.4
Grassland, Woodland & Shrubland	69,071,795	69,736,731	4,536,415	6.5
Water bodies	2,252,714	3,038,740	1,367,186	45.0
Close to open deciduous woodland (Miombo)	28,491,772	27,386,476	2,966,111	10.8
Edaphic forest	10,516,427	10,332,160	2,061,707	20.0
Submontane forest	3,904,768	3,233,979	246,659	7.6
Mountain forest	627,769	732,192	128,398	17.5
Urban & Bare areas	164,311	1,573,399	1,056,745	67.2
Mangrove Forest	27,268	21,587	1,869	8.7
Total	232,173,711	232,173,711	8,619,652	3.71

Figure 6 presents a visual comparison of the map Vgt DRC 2000 (map A) with those produced by [11] (map B), [3] (map C) and [4] (map D). Three locations are targeted, namely the province of Tshopo in the north of the country (Location 1), the province of Kwango in the south-west (Location 2) and the province of Tanganyika in the south-west (Location 3). These areas were chosen because they are characteristic of specific landscapes in DRC. In fact, the Location 1 shows intrusions of secondary forest within the dense forest massif which illustrates the intensity of anthropogenic activities, while the Locations 2 (southwest) and 3 (southeast) illustrate how open forests can be adjacent with dense forests along the watercourses in the south of the country.

The visual comparison illustrated in Figure 6 shows that the map Vgt DRC 2000 (Figure 6, A-1) discriminates the secondary forest intrusions in the core of the dense moist forest at the difference of the map produced by [11] (Figure 6, B-1). The main reason of that difference being that the latter map’s coarser spatial resolution does not allow to distinguishing detailed land cover shapes. The Vgt DRC 2000 map is in turn very similar to the map produced by [3] (Figure 6, C-1) that is at 60-m spatial resolution. The same similarity is observed with the [4] (Figure 6, D-1) which is at the same spatial resolution as the Vgt DRC 2000 even though the latter assimilates secondary forest to a non-forest area, unlike the three other maps.

The four maps are very similar considering the discrimination of the vegetation types in the Kwango Province (Figure 6, A-2; B-2; C-2 and D-2), while only the first three maps (Figure 6, A-3; C-3; D-3) are convergent about the land cover classes found in the Tanganyika Province.
Figure 5: Visual comparison of maps in the province of Tshopo: (A to D - 1), Kwango (A to D - 2) and Tanganyika (A to D - 3) for the products: Vgt DRC 2000 (Map A), [11] (Map B), [3] (Map C) and [4] (Map D).

The comparison of pixel count-based areas between the four maps also shows some discrepancies for the major land cover class that is the dense humid forest here considered as the aggregation of all forest classes, i.e. dense moist forest, edaphic forest, secondary forest, close to open deciduous woodland (Miombo), submontane forest and mountain forest (Table 8).

Table 8: Comparison of the dense humid forest area for the year 2000.

Vegetation type	Areas (Ha)	National proportion (%)	Study scale	Data sources
Dense humid forest	160,684,890	69.08	DRC	Map Vgt DRC 2000
Dense humid forest	159,529,000	68.58	DRC	[3]
Dense humid forest¹	133,437,600	57.36	DRC	[11]
Dense humid forest²	147,273,000	63.31	Africa	[10]

¹aggregation of the following classes: edaphic forest, dense moist forest, old secondary forest, young secondary forest, rural complex, close to open deciduous woodland (Miombo).
²aggregation of the following classes: dense forest and forest/other mosaic.

The area of the dense humid forest class for the year 2000 is very close when comparing the map Vgt DRC 2000 and the map produced by [3], whereas the two products result from two different methodological approaches, notably an object-based classification for the first and a pixel-based approach for the second. Such finding was also corroborated by [45] who observed that these two classification approaches lead to similar area estimates in homogeneous and poorly fragmented landscapes such as the dense moist forest.

Conclusions:

This paper proposed an alternative methodology to produce a 30 m DRC-wide stratification map according to the land cover classes defining the national stratification scheme as described by [8]. This research showed that the median luminance best pixel approach allowed to obtain a cloud-free mosaic of optimal quality and which minimizes the seasonality effects. The mosaic has also proven to require very little memory space on standard
computers whereas the time series used comprised nearly 2,500 Landsat scenes. The areas of the different land cover classes and associated errors were estimated according to the good practices recommendations to estimate land areas [35] based on a set of 1,141 reference points spread over the entire national territory using a stratified random sampling. The precision indices indicated that the map was indeed representative of the different classes’ areas for the year 2000, particularly the dense moist forest which is of paramount interest. The area of this class was therefore estimated at 160,684,890 ha (pixel count-based area) and 158,810,975 ± 7,460,671 ha (area statistical estimation), i.e. approximately 68.40% ± 3.21% of the country area. Thanks to the use of free, user-friendly and cloud-based platforms for satellite images processing, the methodology implemented in the research can be replicated in other Congo basin countries where stratification maps are still an issue in order to fully operationalize the REDD+ mechanism and for other forest management purposes.

Author Contributions:
The two authors contributed equally.

Acknowledgments:
The authors would like to thank MrsMireyAtallah and Dr. ConfianceMfuka for their useful comments to the earlier version of this manuscript.

Conflicts of Interest:
The authors declare no conflict of interest.

References:
[1] International Tropical Timber Organization (ITTO) & Food and Agriculture Organization of the United Nations (FAO). State of the forests in the Amazonian, Congo And South-East Asia Basins, a report prepared for the Three Tropical Basins Summit Brazzaville, Congo Republic[31 may - 3 june, 2011; FAO: Rome, Italy, 2011
[2] Verhegghen, A.; Mayaux, P.; de Wasseige, C.; Defourny, P. Mapping Congo Basin vegetation types from 300 m and 1 km multi-sensor time series for carbon stocks and forest areas estimations. Biogeosciences2012, 9, 5061-5079
[3] Potapov, P.V.; Turubanova, S.A.; Hansen, M.C.; Adusei, B.; Broich, M.; Altstatt, A.; Mane, L; Justice, C.O. Quantifying forest cover loss in Democratic Republic of the Congo, 2000-2010, with Landsat ETM+ Data. Remote Sens. Env. 2012, 12, 106-116
[4] MEDD. Forests’ Reference Emission Level for Reducing Emissions from Deforestation in the Democratic Republic of Congo, Kinshasa, Democratic Republic of the Congo, 2018
[5] Republic of Congo. Forest Reference Emission Level (FREL) for the Republic of Congo, Brazzaville, Congo Republic, 2017; pp. 15-21
[6] Equatorial Guinea. Presentation of the Equatorial Guinea Forest Reference Emission Level at the UNFCCC, Malabo, Guinea Equatorial, 2020; pp. 22
[7] Fernandez-Landa, A.; Algeet-Albarquero, N.; Fernandez-Moya, J.; Guillén-Climent, M.L.; Pedroni, L.; Garcia, F.; Espejo, A.; Villegas, J.F.; Marchamalo, M.; Bonatti, J.; et al. An Operational Framework for Land Cover Classification in the Context of REDD+ Mechanism. A Cas Study from Costa Rica. Remote sens.2016, 8, 593
[8] Department of Forest Monitoring and Management (SPIAF). Operational Guide – Forest Stratification Standards. Kinshasa, Democratic Republic of the Congo, 2007; pp. 5-22
[9] DIAF-JICA. Project Report : Ministry of Environment and Sustainable Development, Kinshasa, Democratic Republic of the Congo, 2015
[10] Mayaux, P.; Bartholomé, E.; Fritz, S.; Belward, A. A new land-cover map of Africa for the year 2000. J. Biogeogr. 2004, 31, 861-877
[11] Vancutsem, C.; Pekel, J.-F.; Evrard, C.; Malaisse, F.; Defourny, P. Mapping and characterizing the vegetation types of the Democratic Republic of Congo using SPOT VEGETATION time series. Int. J. Appl. Earth Obs. Geoinf. 2009, 11, 62-76
[12] MEDD & JICA/JAFTA. Project Report : Technical guide and manual for forest remote sensing. Kinshasa, Democratic Republic of the Congo, 2018; pp. 6-24
[13] System for Earth observation data access, Processing and Analysis for Land monitoring. Available online: https://sepal.io/ (accessed on 04 06 2020)
[14] Li, Qingyu; Qiu, C.; Ma, L.; Schmitt, M.; Xiang Zhu, X. Mapping the Land Cover of Africa at 10 m Resolution from Multi-Source Remote Sensing Data with Google Earth Engine. Remote sens. 2020, 12, 602; doi:10.3390/rs12040602
[15] Khain Lwin, K.; Ota, T.; Shimizu, K.; Mizoue, N. Assessing the Importance of Tree Cover Threshold for Forest Cover Mapping Derived from Global Forest Cover in Myanmar. Forests2019, 10, 1062; doi: 10.3390/f10121062
[16] Bey, A.; Sanchez-Paiz Diaz, A.; Maniatis, D.; Marchi, G.; Mollicone, D.; Ricci, S.; Bastin, J.-F.; Moore, R.; Frederici, S.; Rezende, M.; et al. Collect Earth: Land Use and Land Cover Assessment through Augmented Visual Interpretation. Remote sens. 2016, 8, 807; doi: 10.3390/rs8100807
[17] Satellite Observatory of Central African Forests (OSFAC). Available online: https://www.osfac.net/fr/ (accessed on 26 05 2020)
[18] Baatz, M.; and Schape, A. Multiresolution segmentation: An optimization approach for high quality multi-scale image segmentation. In Angewandte Geographische Informations – Verarbeitung XII, J. Strobl, T. Blaschke and G. Griesebner (Eds), 2000; pp. 12-33
[19] Yan, G.; Mas, J.-F.; Maathuis, B.H.P.; Xiangmin, Z.; Van Dijk, P.M. Comparaison of pixel-based and object-oriented image classification approaches – a case study in a coal fire area, Wuda, Inner Mongolia, China. Int. J. Remote sens. 2006, 27, 18, 4039-4055
[20] Tian, J.; and Chen, D.-M. Optimization in multi-scale segmentation of high-resolution satellite images for artificial feature recognition. Int. J. Remote sens.2006, 28, 20, 4625-4644
[21] Ernst, C.; Mayaux, P.; Verheghen, A.; Bodart, C.; Musampa, C.; Defourny, P. National forest cover change in Congo Basin: deforestation, reforestation, degradation and regeneration for the years 1990, 2000 and 2005. Global Change Biology2013, 19, 1173-1187, doi: 10.1111/gcb.12092
[22] Weiqi Zhou; Cadenasso, M.L.; Schwarz, K.; and Pickett, S.T.A. Quantifying Spatial Heterogeneity in Urban Landscapes: Integrating Visual Interpretation and Object-Based Classification. Remote sens.2014, 6, 3369, 3386; doi: 10.3390/rs6043369
[23] Desclée, B.; Bogaert, P.; Defourny, P. Forest change detection by statistical object-based method. Remote sens. Env. 2006, 102, 1-11
[24] Duveller, G.; Defourny, P.; Desclée, B.; Mayaux, P. Deforestation in Central Africa: Estimates at regional, national and Landscape levels by advances processing of systematically-distributed Landsat extracts. Remote sens. Env. 2008, 112, 1969-1981
[25] Radoux, J.; Defourny, P.; Bogaert, P. GEOBIA 2008 -Pixels, Objects, Intelligence. In : GEOrgaphic Object Based Image Analysis for the 21st Century, (eds Hay GI, Blaschke T, Marceau D). University of Calgary, Alberta, Canada. 2008; ISPRS Vol. N° XXXVIII-4/C1. Archives ISSN N°: 1682-1777
[26] Mengistie, K.; Shneider, T.; Teketay, D.; Knoke, T. Land Use/Land Cover Change Analysis Using Object-Based Classification Approach in Munessa-Shashemene Landscape of the Ethiopian Highland. Remote sens. 2013, 5, 2411-2435; doi: 10.3390/rs5052411
[27] Tucker, C.J.; Townshend, J.R.G.; Goff, T.E.; African Land-Cover Claffification Using Satellite Data. Science1985, 227, 4685, 369-375.
[28] Gao, B.-C. NDWI – A normalized difference water index for remote sensing of vegetation liquid water from space. Remote sens. Env. 1996, 58, 257-266
[29] Li, H.; Xie, Y.; Yu, L.; Wang, L. A study on land cover classification of arid region based on Multi-temporal TM images. In Procedia Environmental Sciences volume 10, 2011 3rd International Conference on Environmental Science and Information Application Technology (ESIAT 2011), Beijing, China, 18-19 June 2011; Wu, Y.
[30] Yang, X.; Yang, T.; Ji, Q.; He, Y.; Ghebrezgabher, M.G. Regional-scale grassland classification using moderate-resolution imaging spectrometer datasets based on multistep unsupervised classification and indices suitability analysis. Journal Appl. Remote Sens. 2014, 8, (1), 083548
[31] Definiens-Imaging. Trimble Documentation: eCognition Developer 9.0. User Guide, Trimble Germany GmbH, Arnulfstrasse 126, D-80636 Munich, Germany, 2014; pp. 113-122
[32] Churches, E.C.; Wampler, P.L. Sun, W.; Smith, A.J. Evaluation of forest cover estimates for Haiti using supervised classification of Landsat data. International Journal of Applied Earth Observationand Geoinformation2014, 30, 203-216
[33] Ghebrezgabher, M.G.; Yang, T.; Yang, X.; Wang, X.; Khan, M. Extracting and analyzing forest and woodland cover change in Eritrea based on Landsat data using supervised classification. The Egyptian Journal of Remote Sensing and Space Sciences2016, 19, 37-47
[34] Cochran, W. G. Sampling techniques. 3rd ed.; John Wiley & Sons New York, United States of America, 1977, pp.110
[35] Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good practices for estimating area and assessing accuracy of land change. Remote sens. Env. 2014, 148, 42-57
[36] Congalton, R.G.; & Green, K. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices, 2nd ed. CRC Press, 2008; pp. 141-155
[37] Stehman, S.V.; and Czaplewski, R.L. Design and analysis for thematic map accuracy assessment: Fundamental principles 1998. Remote Sens. Env. 1998, 64, 331–344
[38] Strahler, A.H.; Boschetti, L.; Foody, G.M.; Friedl, M.A.; Hansen, M.C.; Herold, M.; Mayaux, P.; Morisette, J.T.; Stehman, S.V.; Woodcock, C.E. Global Land Cover Validation: Recommendations for Evaluation and Accuracy Assessment of Global Land Cover Maps. European Communities, Luxembourg, Grand-Duché de Luxembourg, 2006; pp. 3-4
[39] Foody, G.M. Status of land cover classification accuracy assessment. Remote Sens. Env. 2002, 80, 185–201
[40] Dargie, G.C.; Lawson, I.T.; Rayden, T.J.; Miles, L.; Mitchard, E.T.A.; Page, S.E.; Bocko, Y.E.; Ifo, S.A.; Lewis, S.L. Congo Basin peatlands: threats and conservation priorities. Mitig. Adapt. Strateg. Glob. Change, 2018
[41] Hansen, M.C.; Roy, D.P.; Lindquist, E.; Adusei, B.; Justive, C.O.; Altstatt, A. A method for integrating MODIS and Landsat data for systematic monitoring of forest cover and change in the Congo Basin. Remote Sens. Env. 2008, 112, 2495-2513
[42] Lindquist, E.J.; Hansen, M.C.; Roy, D.P.; Justice, C.O. The suitability of decadal image data sets for mapping tropical forest cover change in the Democratic Republic of Congo: implications for the global land survey. Int. J. Remote Sens. 2008, 29, 24, 7269-7275
[43] Food and Agriculture Organization of the United Nations (FAO). Map Accuracy Assessment and Area Estimation: A practical Guide; National forest monitoring assessment working paper, n°46/E, Rome, Italy, 2016; pp. 11-23
[44] Stehman, S.V. Sampling designs for accuracy assessment of land cover. Int. J. Remote Sens. 2009, 30, 5243–5272
[45] Kibambe, L. J.-P. Modeling the Forest Cover Loss in Democratic Republic of the Congo - Methods Development and Application at National Scale. PhD Thesis, Université Catholique de Louvain, Louvain-La-Neuve, July 2nd 2013.