HOW MANY NEW PARTICLES DO WE NEED AFTER THE HIGGS BOSON?

Marco Drewes
Physik Department T70, Technische Universität München, James Franck Straße 1, D-85748 Garching, Germany

Abstract
The discovery of the scalar boson completes the experimental confirmation of the particles predicted by the Standard Model, which achieves to describe almost all phenomena observed in nature in terms of a few symmetry principles and a handful of numbers, the constants of nature. Neutrino oscillations are the only confirmed piece of evidence for physics beyond the Standard Model found in the laboratory. They can easily be explained if the neutrinos have partners with right handed chirality like all other fermions. Remarkably, right handed neutrinos can simultaneously explain long standing puzzles from cosmology, namely Dark Matter and the baryon asymmetry of the universe. I discuss how close this minimal extension of the Standard Model by right handed neutrinos can bring us to a complete theory of nature and what else may be needed.

1 Introduction

One way to define the ultimate goal of fundamental science is the much-anticipated theory of everything. However, given the fact that we are limited in our ability to make observations by time, space and the sensitivity of our senses and instruments, it is clear from the beginning that this goal cannot be achieved - even if one day we can consistently describe all phenomena we know, we can never be sure that there are no phenomena which have escaped (and will always escape) our notice because they are too far away, involve very feeble interactions with the particles we know, occur only at very short distances or happened in a very distant past. Hence, we may pursue a less ambitious, but nevertheless challenging and possibly achievable goal, a “theory of everything we know” or complete effective theory of nature. Such a theory should

1) describe all phenomena observed in nature and
2) be testable experimentally.

We shall interpret condition 2) in a strong sense and demand that the existence of all particles can be confirmed experimentally and we can study their interactions. In the following we define a complete effective theory as one that fulfils both conditions.

It is immediately clear that there is no guarantee that such theory exists. If, for instance, neutrino masses are generated by physics at energy scales $\sim 10^{16}$ GeV, the (expected) scale of grand unification, then we will most likely never be able to study the mechanism behind this observed phenomenon experimentally. In fact, many popular and well-motivated theories do not fulfil criterion 2), including grand unification and most realisations of supersymmetry. Hence, a theory as anticipated here can only be found if nature is kind enough that all phenomena within reach of our instruments can be explained by physics that is also within reach of our instruments. Even if this is the case the issue of a full (non-perturbative) theory of quantum gravity remains.

\[\text{[We have not observed any phenomenon that require such theory, hence we can formally pass both criteria without it. On the other hand, a truly fundamental theory of nature (whatever that means) should include a}\]
Leaving this aside, we in the following consider a theory as “complete” in the sense of 1) and 2) and treat it as fundamental for all practical purposes if it can be a valid effective field theory up to the Planck scale.

The Standard Model of particle physics (SM) and theory of general relativity (GR) in combination come impressively close to fulfilling both conditions \[1\]. To date, there are only four experimental and observational facts which cannot be understood in this framework\[2\].

(I) the spacetime geometry of the observable universe

(II) flavour violation in neutrino experiments\[3\]

(III) the baryon asymmetry of the universe (BAU) and

(IV) the composition and origin of the observed dark matter (DM).

In addition to this evidence for the existence of “new physics”, there are a number of anomalies in experimental data that have not (yet?) led to a claim of discovery and may also be explained by systematics. Moreover, there are aspects of the SM that can be considered unsatisfying from an aesthetic viewpoint, such as the hierarchy between the electroweak and Planck scale, the strong CP problem, the factorisation of the gauge group and the flavour structure. We do not discuss these here. Instead, we focus on one particular candidate for a complete theory, which is motivated by the principle of minimalism or Ockham’s razor.

2 A “complete” theory of nature

All matter particles in the Standard Model (SM) except neutrinos have been observed with both, left-handed (LH) and right-handed (RH) chirality. The lack of a RH counterpart implies that neutrinos are massless in the SM, while the observed neutrino flavour oscillations (II) clearly suggest that at least two neutrinos are massive. This provides strong motivation to assume that RH neutrinos ν_R exist. These new particles in addition can simultaneously explain the observed DM \[5, 6\] and BAU \[7\]. It has been suggested in \[8\] that they may indeed explain all observed phenomena (II)-(IV) simultaneously, for a review see e.g. Refs. \[2, 9, 10\] and references therein, while the geometry (I) of the universe can be explained without adding any new particles \[11\]. We consider the most general action that only contains SM fields and RH neutrinos with quantum theory of gravity not only for self-consistency, but also because it seems likely that there exist physical systems for which it is required and which some day may be accessible to (at least indirect) observation, including black holes and the very early universe.

2 The observed current acceleration of the universe’s expansion is often included in this list, but can in fact be accommodated in the framework of SM+GR: All observations to date can be explained in terms of a cosmological constant Λ, which is simply a free parameter in GR. Whatever is the microphysical origin of Λ lies outside our current observation, hence knowledge of it is not required to pass conditions 1) and 2).

3 It is sometimes argued that flavour oscillations are “not really” physics beyond the SM, as they can be explained by simply adding a neutrino mass term. However, in a gauge invariant and renormalisable theory such a term can only arise if new physical degrees of freedom are added to the SM, see e.g. discussion in section 2 of Ref. \[2\]. The right handed neutrinos introduced in Sec. \[2\] are one way to achieve this, but not the only one (see e.g. \[3, 4\] for a detailed summary).
renormalisable interactions
\[
S = \int d^4\sqrt{-g} \left[\mathcal{L}_{SM} - \frac{M^2}{2} R - \xi \Phi^\dagger \Phi R \right] + \bar{\nu_R} \gamma_\mu F^{\mu\nu} \nu_R - \bar{\nu_R} F^{\dagger^\mu} l_L \Phi^\dagger - \frac{1}{2} (\bar{\nu_R} M_M \nu_R + \bar{\nu_R} M^2_M \nu_R) \right].
\]

Here flavour and isospin indices are suppressed. \(\mathcal{L}_{SM} \) is the SM Lagrangian, \(F \) is a matrix of Yukawa couplings and \(M_M \) a Majorana mass term for \(\nu_R \). \(l_L = (\nu_L, e_L)^T \) are the left handed SM lepton doublets, \(\Phi \) is the Higgs doublet with \(\Phi = (\epsilon \Phi)^\dagger \), where \(\epsilon \) is the antisymmetric \(SU(2) \) tensor, and \(\nu_R = C \nu_R^T \), with the charge conjugation matrix \(C = i \gamma^2 \sigma_0 \). For \(n \) flavours of \(\nu_R \), the eigenvalues of \(M_M \) introduce \(n \) new mass scales in nature, which we shall label \(M_I \). In analogy with the LH sector we consider the case of \(n = 3 \) flavours of RH neutrinos. This is the minimal number required to generate three non-zero light neutrino masses. We work in a flavour basis where \(M_M = \text{diag}(M_1, M_2, M_3) \). The action (1) is written in the Jordan frame, \(M \) is a mass scale that can be related to (and almost equals) the Planck mass \(M_P \) in the Einstein frame. The difference between Jordan and Einstein frame, which are connected by the conformal transformation \(g_{\mu\nu} \rightarrow g_{\mu\nu}(M^2 + \xi \phi^2)/M_P^2 \) with \(\phi^2 \equiv \Phi^\dagger \Phi \), only matters in section \(3 \). Elsewhere we use the same symbols as in (1) for the canonically normalised fields and follow the notation notation of Ref. [2].

3 The geometry of the universe and Higgs inflation

If the universe contained only radiation and matter, then the cosmic microwave background (CMB) radiation from different directions in the sky would originate from regions that were causally disconnected at that time of emission. This makes it difficult to understand why the CMB temperature is the same up to Gaussian fluctuations \(\delta T/T \sim 10^{-5} \) in all directions (“horizon problem”). Moreover, the inferred overall spatial curvature is zero or very small \([14]\), which means that it was extremely close to zero at earlier times (“flatness problem”). Both problems can be understood if there was a phase of cosmic inflation, i.e. accelerated expansion, in the universe’s very early history \([15–17]\). Inflation also predicts Gaussian temperature/density perturbations \([18]\) with nearly flat spectrum, characterised by a spectral index \(n_s \) close to one, in good agreement with observation. In the model (1) inflation can be realised through the potential energy of the Higgs field \([11]\), which leads to a negative equation of state if it dominates the universe. The Higgs expectation value \(\chi \) in the Einstein frame is related to \(\phi \) in the Jordan frame via the conformal transformation. To explain the flatness and homogeneity of the universe inflation must last \(\gtrsim 50 - 60 \) e-folds, implying that the effective potential \(U(\chi) \) must be sufficiently flat that \(\chi \) “rolls slowly” while moving towards the minimum. Moreover, \(U(\chi) \) must not have any wiggles at values below the scale of inflation. If radiative corrections to \(U(\chi) \) are negligible, the model (1) is consistent with CMB observations if \(\xi \approx 47000 \sqrt{\lambda} \) and predicts a spectral index \(n_s \approx 0.97 \) and scalar-to-tensor ratio \(r \approx 0.003 \) for CMB temperature fluctuations \([12]\). Here \(\lambda \) is the Higgs self-coupling. In this scenario, hot big bang initial conditions for the radiation dominated era are generated through particle production and subsequent thermalisation during oscillations of \(\chi \) around its minimum \([12]\). The reheating temperature is \(10^{13} - 10^{14} \) GeV, though this value is subject to some theoretical uncertainty, as the reheating process involves a complicated interplay between perturbative and non-perturbative dissipation \([19]\), and a detailed analysis requires a
consistent treatment of all medium effects in the primordial plasma [20]. Radiative corrections introduce a critical mass scale $m_{\text{crit}} = 129.6 + 2.0^{+2.05}_{-0.056} - 0.5^{+0.118}_{-0.0007} \text{GeV}$, where $y_t = y_t(\mu_t)$ is the top Yukawa at $\mu_t = 173.2 \text{GeV}$ in the $\overline{\text{MS}}$ scheme and α_s is the strong coupling at the Z-mass. Inflation happens if the Higgs mass m_H is larger than m_{crit} [26, 28]. While the above conclusions remain almost unchanged for $m_H > m_{\text{crit}}$, calculations become rather sensitive to quantum corrections in the vicinity of $m_H = m_{\text{crit}}$ [29]. This uncertainty can be parametrised by two numbers that enter the relation between the inflationary and low energy values of the running masses. With the top quark mass varied within two standard deviations from its best fit experimental value, there exist values of these unknown parameters for which (1) with $r \gtrsim 1$, $m_{\text{crit}} \approx 100 \text{GeV}$ at temperature $T = 150 \text{GeV}$ and (2) with $r \lesssim 1$, calculations become rather sensitive to quantum corrections in the vicinity of $m_H = m_{\text{crit}}$ [26, 28].

4 Neutrino masses and the seesaw mechanism

For $M_I > \text{eV}$ there are two distinct sets of neutrino mass eigenstates. We represent them by flavour vectors of Majorana spinors ν and N. The elements of $V = V^\dagger_{\nu} V_L - U^\dagger_J \nu^R_R + \text{c.c}$ have light masses $\sim m_\nu = -\theta M_M \theta^T \ll M_M$ (in terms of eigenvalues) and are mainly superpositions of the “active” SU(2) doublet states ν_L. They can be identified with the observed neutrino mass eigenstates. The elements of $N = V^T_{\nu} V_R + \Theta^T \nu^c_R + \text{c.c}$ have masses of the order of M_I and are mainly superpositions of the “sterile” singlet states ν_R. Here c.c. stands for the C-conjugation defined after (1), $\Theta \ll 1$ is the mixing matrix between active and sterile neutrinos and $\theta \equiv \Theta U^T_N$. V_ν is the usual neutrino mixing matrix and U_ν its unitary part, V_N and U_N are their equivalents in the sterile sector. More precisely, $V_\nu \equiv (1 - \frac{1}{2} \theta^\dagger \theta^T) U_\nu$ with $\theta \equiv m_D M^{-1}_M$, $m_D \equiv F \chi (\chi = 174 \text{ GeV at temperature } T = 0)$. The unitary matrices U_ν and U_N diagonalise the mass matrices $m_\nu \approx -\theta M_M \theta^T$ and $m_N = M_M + \frac{1}{2} (\theta^\dagger \theta M_M + M^T_M \theta^T \theta^*)$, respectively. This setup is known as seesaw mechanism [31–34].

Experimentally the scale of the M_I is almost unconstrained. Neutrino oscillation experiments at energies $E \ll M_I$ only involve the light states ν_i and probe the specific combination $m_\nu = -F M^{-1}_M E^T$ [35]. If $m_H/M_I \ll 1$, then the N_I tend to give large radiative corrections to m_H, and the observed light Higgs mass $m_H \approx 10^{-17} M_P$ [36, 37] can only be explained if either the model parameters are “fine tuned” or one introduces additional new physics to stabilise m_H (e.g. supersymmetry). This hierarchy problem is absent if $M_I < m_H$. We restrict ourselves to this regime here. Another motivation for this choice comes from the criterion 2): It is very difficult to find the N_I-particles in the laboratory in foreseeable time if they are heavier than the electroweak scale.

5 Baryogenesis via leptogenesis

The observable universe at present contains no significant amounts of antimatter, see [38] for a discussion. In the standard model of cosmology the absence of antimatter is explained as the result of an almost complete mutual annihilation of matter and antimatter in the early universe after pair creation processes came out of thermal equilibrium. The matter we observe today is only a small remnant that survived this process due to a tiny excess $Y_B \approx 8.6 \times 10^{-11}$ [14] of matter over antimatter. The inflationary period described in section 3 and subsequent reheating produce a dense primordial plasma that contains matter and antimatter in equal amounts [12], hence Y_B has to be generated dynamically at later times. This process of baryogenesis requires
baryon number (B) violation, C and CP violation and a deviation from thermal equilibrium \[^{39}\]. In the model \(^1\) the latter is realised during the production \(^8\) or the freezeout and decay \(^2\) of \(N_I\) in the early universe. We focus on the experimentally accessible mass range \(M_f \sim \text{GeV}\), in which the BAU is generated during \(N_I\) production. This scenario is often referred to as \textit{baryogenesis from neutrino oscillations}. The asymmetry has to be generated at temperatures \(T > T_{\text{sph}} \sim 130 - 140\ \text{GeV}\) \([^41\ 43]\), where sphaleron processes rapidly violate baryon number \(B\) \([^44]\). The violation of total lepton \(L\) number is suppressed by \(M_f/T \ll 1\), but there can be significant asymmetries \(Y_\alpha\) in the individual flavours. For \(M_f/T \ll 1\) the helicity states of the Majorana fields \(N_I\) effectively act as ”particles” and ”antiparticles”, and one can assign approximately conserved lepton charges to the sterile flavours. Flavour dependent scatterings transfer a part \(\delta L\) of the lepton asymmetry into the RH fields, where they are hidden from the sphaleron processes that partly transfer the remaining net asymmetry \(-\delta L\) into \(B\). Once the \(N_I\) come into equilibrium the \(Y_\alpha\) and \(B\) get washed out. If this process is incomplete at the time of sphaleron freezeout at \(T = T_{\text{sph}}\), then a net \(B \neq 0\) remains protected from further washout at lower temperatures. This mechanism is explained in more detail in Refs. \(^2\ 9\ 45-48\). Due to the great importance of flavour and finite density effects it is most conveniently treated in the nonequilibrium quantum field theory approach to leptogenesis \[^{46, 49-65}\], though crucial results have previously been found in a detailed analysis using density matrix equations \(^8\). The upper panel in figure \[^{1}\] shows that the masses and mixings required to explain the BAU with \(n = 3\) lie well within reach of the BELLE II and LHCb experiments. Hence, these experiments have the potential to unveil the common origin of matter in the universe and neutrino masses \[^{66}\].

However, if one aims to address all problems (I)-(IV) in the framework of \(^1\), then one mass eigenstate \(N_1\) must compose the observed DM and be very long lived. This implies that its coupling is so feeble that it gives no significant contribution to the neutrino mass matrix \[^5\] \(m_\nu\) and has a negligible abundance in the primordial plasma at \(T > T_{\text{sph}}\). The latter fact implies that effectively only two RH neutrinos \(N_{2,3}\) participate in baryogenesis. In this scenario, which is effectively \(n = 2\) as far as baryogenesis and the seesaw are concerned, it is much more difficult to explain the observed BAU. The sources and washout rates for the asymmetries \(Y_\alpha\) are proportional by different combinations of the same Yukawa couplings \(F_{\alpha I}\) \[^4\]. For \(n = 2\) the strengths of the \(N_I\) couplings to all active flavours \(\alpha\) are essentially governed by just one parameter \(\alpha_{\alpha I}\). Hence, they are “tied together” and a large asymmetry generation at \(T \gg T_{\text{sph}}\) necessarily implies a large washout for all flavours at \(T \gtrsim T_{\text{sph}}\) \[^6\]. The BAU can be explained if all \(N_I\)-interactions are sufficiently small to prevent a complete washout at \(T > T_{\text{sph}}\); see lower panel in figure \[^{1}\] while the source term is resonantly enhanced by a degeneracy in the masses \(M_2\) and \(M_3\) at the level < \(10^{-3}\) \[^{45, 48}\]. A mass splitting of this size is stable against radiative corrections \[^{102}\] and could be explained by an approximate lepton number conservation \[^{103}\]. A detection of \(N_{2,3}\) in existing experiments is unlikely in this scenario, and experimental confirmation of this model requires dedicated search experiments, see e.g. \[^{104}\].

\[^4\] This fixes the absolute scale of neutrino masses because it implies that one light neutrino is (almost) massless.

\[^5\] The source term is e.g. given in \[^{48}\] and \(\Gamma_\alpha = (FF^\dagger)_{\alpha \gamma_{\text{av}}}^\gamma_{\text{av}} T\), where \(\gamma_{\text{av}}\) is a numerical coefficient that depends on \(M_f/T\) and has been calculated in thermal field theory in the relativistic and non-relativistic regime \[^{55, 56, 62, 88, 97}\].

\[^6\] In contrast, for \(n = 3\) there are considerable regions in parameter space where the \(|F_{\alpha I}|\) are very different in size, leading to a flavour asymmetric washout. For instance, the \(N_I\) interactions with muons can be large enough to yield observable branching ratios (e.g. \(|(F_{\alpha I})^2| \gtrsim 10^{-4}\) at \(M_2 = 2\ \text{GeV}\) while the coupling to electrons is small enough to avoid a complete chemical equilibration \[^{66}\].
Figure 1: Masses and mixings of N_2 for normal neutrino mass hierarchy. **Upper panel:** For values of $|\Theta_{\mu 2}|^2$ below the red line the BAU can be explained for $n = 3$ with $M_1 = 1$ GeV, $M_3 = 3$ GeV, $m_1 = 2.5 \times 10^{-3}$ eV, $m_2 = 9.05 \times 10^{-3}$ eV $m_3 = 5 \times 10^{-2}$ eV and all known neutrino parameters fixed to the best fit value in Ref. [67]. The gray area represents bounds on $U_{\mu}^2 \equiv \sum_I |\Theta_{\mu I}|^2$ from the past experiments PS191 [68], NuTeV [69] (both re-analysed in [70]), NA3 [71], CHARMII [72] and DELPHI [73] (as given in [74]). They are stronger than those from neutrinoless double β-decay [75–80] or violation of lepton flavour [80, 81] and universality [82–85]. The blue lines indicate the current bounds on U_{μ}^2 from LHCb [86] (dotted) and BELLE [87] (dashed). These can improve significantly (at least an order of magnitude) with the upgrade to BELLE II and the LHC’s 14 TeV run, see discussion in Ref. [66]. For larger masses baryogenesis is possible [65], but it is hard to find the N_I in experiments. **Lower panel:** With $n = 2$ RH neutrinos baryogenesis can only be successful if their masses M_2 and M_3 are degenerate. The observed BAU can be generated for mixings $U^2 \equiv \text{tr}(\theta^\dagger\theta)$ in the region between the solid blue “BAU” lines. The regions below the solid black “seesaw” line and dashed black “BBN” line are excluded by neutrino oscillation experiments and big bang nucleosynthesis, respectively. The areas above the green lines of different shade are excluded by direct search experiments, as indicated in the plot. Plot taken from [45].
6 Sterile neutrino Dark Matter

For sufficiently small $|\Theta_{\alpha l}|$, the N_l-particles are collisionless and can be very long lived, hence they are obvious decaying DM candidates. The main decay channel is $N \rightarrow \nu\nu$ and leaves no astronomically observable signature, but the radiative decay $N \rightarrow \nu\gamma$ predicts a narrow photon emission line at energy $M_1/2$ from DM dense regions. Until 2014 the non-observation of such line could considerably constrain the mass and mixing $[5, 105–122]$, see figure 2. Recently a tentative signal has been reported that can be interpreted as emission from the decay of a sterile neutrino N_1 with $M_1 \approx 7$ keV $[123, 124]$. This interpretation, which certainly requires further confirmation at this stage, is fully consistent with the predictions of the minimal model $[11]$ and all known constraints $[123, 125, 126]$. The main constraints come from the requirements to predict the correct DM abundance Ω_{DM} and be consistent with structure formation, see e.g. $[2, 10, 127]$ and references therein. Even though N_1-particles in the universe are so feebly coupled that they have never reached thermal equilibrium, their distribution is proportional to an equilibrium distribution if $Y_\alpha = 0$ because they are thermally produced via mixing $[2, 10, 128]$. This production is most efficient at $T \sim 100$ MeV $[130, 131]$. For $Y_\alpha \neq 0$ the MSW effect $[132, 133]$ can lead to a level crossing between the ν_i and N_1 dispersion relations in the thermal plasma, which results in a resonant producing of N_1 $[6]$ that adds a non-thermal component to the momentum distribution $[134]$. The superposition of the thermal and non-thermal spectra can be approximated as a combination of a warm and a cold DM component $[134, 136]$. The observation of structures on scales < 100 Mpc in the spatial matter distribution imposes a bound on the mean free path λ_{DM} of N_1, as freely streaming DM would wash out and strongly suppress small scale structures. For a thermal spectrum there is a unique relation between λ_{DM} and M_1, $\lambda_{DM} \sim 1\text{Mpc}(\text{keV}/M_1)$ $[137]$, but for a non-thermal spectrum it is very difficult to perform numerical simulations $[138]$.

![Figure 2: Constraints on the mass and mixing of the DM candidate N_1 as explained in the plot. Along the solid black production curves the observed Ω_{DM} is explained for $Y_\alpha = 0$ (upper curve) and the maximal $Y_\alpha = 1.24 \times 10^{-4}$ found in $[45]$ (lower curve). We do not display a lower bound on M_1 from structure formation, which should lie somewhere between 1 keV and 10 keV, as it is a matter of ongoing discussion. Plot taken from $[123]$.

[Diagram of constraints on M_{DM} vs. $\sin^2(2\theta)$]
that make predictions for the distribution of matter in the universe today based on the initial N_1 spectra at $T \sim 100$ MeV, and the bounds from structure formation suffer from considerable uncertainties. If one takes the most conservative viewpoint, then the $Y_\alpha = 0$ scenario is already excluded (see e.g. [9]) and the required $Y_\alpha \sim 10^{-4}$ can only be produced in the late decay of $N_{2,3}$ in the minimal model discussed here if exhibits considerable parameter tunings [45]. Since the parameter space in figure 2 is constrained in all directions, the combination of observations with future X-ray telescopes [127, 139, 140] and a better understanding of structure formation can in principle falsify or confirm this DM scenario.

7 Conclusions

In a minimal extension of the SM there exist parameter choices for which all established observations in fundamental physics can be explained with only three new particles, RH neutrinos, and a non-minimal coupling of the Higgs field to gravity. This model in principle could be a valid and complete effective field theory up to the Planck scale.

References

[1] Particle Data Group Collaboration, J. Beringer et al., Review of Particle Physics (RPP), Phys.Rev. D86 (2012) 010001.

[2] M. Drewes, The Phenomenology of Right Handed Neutrinos, International Journal of Modern Physics E, Vol. 22 (2013) 1330019, [arXiv:1303.6912].

[3] M. Fukugita and T. Yanagida, Physics of neutrinos and applications to astrophysics, Springer (Berlin) (2003) 1–593.

[4] R. Mohapatra and P. Pal, Massive neutrinos in physics and astrophysics. Third edition, World Sci.Lect.Notes Phys. 72 (2004) 1–476.

[5] S. Dodelson and L. M. Widrow, Sterile-neutrinos as dark matter, Phys. Rev. Lett. 72 (1994) 17–20, [hep-ph/9303287].

[6] X.-D. Shi and G. M. Fuller, A new dark matter candidate: Non-thermal sterile neutrinos, Phys. Rev. Lett. 82 (1999) 2832–2835, [astro-ph/9810076].

[7] M. Fukugita and T. Yanagida, Baryogenesis Without Grand Unification, Phys. Lett. B174 (1986) 45.

[8] T. Asaka and M. Shaposhnikov, The vmsm, dark matter and baryon asymmetry of the universe, Phys. Lett. B620 (2005) 17–26, [hep-ph/0505013].

[9] A. Boyarsky, O. Ruchayskiy, and M. Shaposhnikov, The role of sterile neutrinos in cosmology and astrophysics, Ann. Rev. Nucl. Part. Sci. 59 (2009) 191–214, [arXiv:0901.0011].

[10] K. Abazajian, M. Acero, S. Agarwalla, A. Aguilar-Arevalo, C. Albright, et al., Light Sterile Neutrinos: A White Paper, [arXiv:1204.5379].
[11] F. L. Bezrukov and M. Shaposhnikov, The Standard Model Higgs boson as the inflaton, Phys.Lett. B659 (2008) 703–706, [arXiv:0710.3755].

[12] F. Bezrukov, D. Gorbunov, and M. Shaposhnikov, On initial conditions for the Hot Big Bang, JCAP 0906 (2009) 029, [arXiv:0812.3622].

[13] G. F. Smoot, C. Bennett, A. Kogut, E. Wright, J. Aymon, et al., Structure in the COBE differential microwave radiometer first year maps, Astrophys.J. 396 (1992) L1–L5.

[14] Planck Collaboration Collaboration, P. Ade et al., Planck 2013 results. XVI. Cosmological parameters, [arXiv:1303.5076].

[15] A. A. Starobinsky, A new type of isotropic cosmological models without singularity, Phys. Lett. B91 (1980) 99–102.

[16] A. H. Guth, The inflationary universe: A possible solution to the horizon and flatness problems, Phys. Rev. D23 (1981) 347–356.

[17] A. D. Linde, A New Inflationary Universe Scenario: A Possible Solution of the Horizon, Flatness, Homogeneity, Isotropy and Primordial Monopole Problems, Phys.Lett. B108 (1982) 389–393.

[18] V. F. Mukhanov and G. Chibisov, Quantum Fluctuation and Nonsingular Universe. (In Russian), JETP Lett. 33 (1981) 532–535.

[19] J. Garcia-Bellido, D. G. Figueroa, and J. Rubio, Preheating in the Standard Model with the Higgs-Inflaton coupled to gravity, Phys. Rev. D79 (2009) 063531, [arXiv:0812.4624].

[20] M. Drewes and J. U. Kang, The Kinematics of Cosmic Reheating, Nucl. Phys. B 875 (2013) 315–350, [arXiv:1305.0267].

[21] F. L. Bezrukov, A. Magnin, and M. Shaposhnikov, Standard Model Higgs boson mass from inflation, Phys.Lett. B675 (2009) 88–92, [arXiv:0812.4950].

[22] A. De Simone, M. P. Hertzberg, and F. Wilczek, Running Inflation in the Standard Model, Phys.Lett. B678 (2009) 1–8, [arXiv:0812.4946].

[23] A. Barvinsky, A. Y. Kamenshchik, and A. Starobinsky, Inflation scenario via the Standard Model Higgs boson and LHC, JCAP 0811 (2008) 021, [arXiv:0809.2104].

[24] F. Bezrukov and M. Shaposhnikov, Standard Model Higgs boson mass from inflation: Two loop analysis, JHEP 0907 (2009) 089, [arXiv:0904.1537].

[25] A. Barvinsky, A. Y. Kamenshchik, C. Kiefer, A. Starobinsky, and C. Steinwachs, Asymptotic freedom in inflationary cosmology with a non-minimally coupled Higgs field, JCAP 0912 (2009) 003, [arXiv:0904.1698].

[26] F. Bezrukov, M. Y. Kalmykov, B. A. Kniehl, and M. Shaposhnikov, Higgs Boson Mass and New Physics, JHEP 1210 (2012) 140, [arXiv:1205.2893].
[27] G. Degrassi, S. Di Vita, J. Elias-Miro, J. R. Espinosa, G. F. Giudice, et al., *Higgs mass and vacuum stability in the Standard Model at NNLO*, *JHEP* **1208** (2012) 098, [arXiv:1205.6497](http://arxiv.org/abs/1205.6497).

[28] D. Buttazzo, G. Degrassi, P. P. Giardino, G. F. Giudice, F. Sala, et al., *Investigating the near-criticality of the Higgs boson*, *JHEP* **1312** (2013) 089, [arXiv:1307.3536](http://arxiv.org/abs/1307.3536).

[29] F. Bezrukov and M. Shaposhnikov, *Higgs inflation at the critical point*, [arXiv:1403.6078](http://arxiv.org/abs/1403.6078).

[30] Y. Hamada, H. Kawai, K.-y. Oda, and S. C. Park, *Higgs inflation still alive*, [arXiv:1403.5043](http://arxiv.org/abs/1403.5043).

[31] P. Minkowski, *mu → e gamma at a rate of one out of 1-billion muon decays?*, *Phys. Lett.* **B67** (1977) 421.

[32] M. Gell-Mann, P. Ramond, and R. Slansky in *Supergravity*, ed. by D. Freedman et al., *North Holland* (1979).

[33] R. N. Mohapatra and G. Senjanovic, *Neutrino mass and spontaneous parity nonconservation*, *Phys. Rev. Lett.* **44** (1980) 912.

[34] T. Yanagida, *Horizontal Symmetry and Masses of Neutrinos*, *Prog.Theor.Phys.* **64** (1980) 1103.

[35] A. Broncano, M. Gavela, and E. E. Jenkins, *The Effective Lagrangian for the seesaw model of neutrino mass and leptogenesis*, *Phys.Lett.* **B552** (2003) 177–184, [hep-ph/0210271](http://arxiv.org/abs/hep-ph/0210271).

[36] **ATLAS Collaboration** Collaboration, G. Aad et al., *Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC*, *Phys.Lett.* **B716** (2012) 1–29, [arXiv:1207.7214](http://arxiv.org/abs/1207.7214).

[37] **CMS Collaboration** Collaboration, S. Chatrchyan et al., *Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC*, *Phys.Lett.* **B716** (2012) 30–61, [arXiv:1207.7235](http://arxiv.org/abs/1207.7235).

[38] L. Canetti, M. Drewes, and M. Shaposhnikov, *Matter and Antimatter in the Universe*, *New J. Phys.* **14** (2012) 095012, [arXiv:1204.4186](http://arxiv.org/abs/1204.4186).

[39] A. D. Sakharov, *Violation of CP Invariance, c Asymmetry, and Baryon Asymmetry of the Universe*, *Pisma Zh. Eksp. Teor. Fiz.* **5** (1967) 32–35.

[40] E. K. Akhmedov, V. A. Rubakov, and A. Y. Smirnov, *Baryogenesis via neutrino oscillations*, *Phys. Rev. Lett.* **81** (1998) 1359–1362, [hep-ph/9803255](http://arxiv.org/abs/hep-ph/9803255).

[41] Y. Burnier, M. Laine, and M. Shaposhnikov, *Baryon and lepton number violation rates across the electroweak crossover*, *JCAP* **0602** (2006) 007, [hep-ph/0511246](http://arxiv.org/abs/hep-ph/0511246).

[42] M. D’Onofrio, K. Rummukainen, and A. Tranberg, *The Sphaleron Rate through the Electroweak Cross-over*, *JHEP* **1208** (2012) 123, [arXiv:1207.0685](http://arxiv.org/abs/1207.0685).

[43] M. D’Onofrio, K. Rummukainen, and A. Tranberg, *The Sphaleron Rate in the Minimal Standard Model*, [arXiv:1404.3565](http://arxiv.org/abs/1404.3565).
[44] V. A. Kuzmin, V. A. Rubakov, and M. E. Shaposhnikov, *On the anomalous electroweak baryon number nonconservation in the early universe*, Phys. Lett. B155 (1985) 36.

[45] L. Canetti, M. Drewes, T. Frossard, and M. Shaposhnikov, *Dark Matter, Baryogenesis and Neutrino Oscillations from Right Handed Neutrinos*, Phys. Rev. D87 (2013), no. 9 093006, [arXiv:1206.5537](http://arxiv.org/abs/1206.5537).

[46] M. Drewes and B. Garbrecht, *Leptogenesis from a GeV Seesaw without Mass Degeneracy*, JHEP 1303 (2013) 096, [arXiv:1208.4607](http://arxiv.org/abs/1208.4607).

[47] V. V. Khoze and G. Ro, *Leptogenesis and Neutrino Oscillations in the Classically Conformal Standard Model with the Higgs Portal*, JHEP 1310 (2013) 075, [arXiv:1307.3764](http://arxiv.org/abs/1307.3764).

[48] B. Shuve and I. Yavin, *Baryogenesis through Neutrino Oscillations: A Unified Perspective*, [arXiv:1401.2459](http://arxiv.org/abs/1401.2459).

[49] W. Buchmuller and S. Fredenhagen, *Quantum mechanics of baryogenesis*, Phys. Lett. B483 (2000) 217–224, [hep-ph/0004145](http://arxiv.org/abs/hep-ph/0004145).

[50] A. De Simone and A. Riotto, *Quantum Boltzmann Equations and Leptogenesis*, JCAP 0708 (2007) 002, [hep-ph/0703175](http://arxiv.org/abs/hep-ph/0703175).

[51] M. Garny, A. Hohenegger, A. Kartavtsev, and M. Lindner, *Systematic approach to leptogenesis in nonequilibrium QFT: Vertex contribution to the CP-violating parameter*, Phys. Rev. D80 (2009) 125027, [arXiv:0909.1559](http://arxiv.org/abs/0909.1559).

[52] M. Garny, A. Hohenegger, A. Kartavtsev, and M. Lindner, *Systematic approach to leptogenesis in nonequilibrium QFT: Self-energy contribution to the CP-violating parameter*, Phys. Rev. D81 (2010) 085027, [arXiv:0911.4122](http://arxiv.org/abs/0911.4122).

[53] A. Anisimov, W. Buchmuller, M. Drewes, and S. Mendizabal, *Leptogenesis from Quantum Interference in a Thermal Bath*, Phys. Rev. Lett. 104 (2010) 121102, [arXiv:1001.3856](http://arxiv.org/abs/1001.3856).

[54] M. Garny, A. Hohenegger, and A. Kartavtsev, *Medium corrections to the CP-violating parameter in leptogenesis*, Phys. Rev. D81 (2010) 085028, [arXiv:1002.0331](http://arxiv.org/abs/1002.0331).

[55] M. Beneke, B. Garbrecht, M. Herranen, and P. Schwaller, *Finite Number Density Corrections to Leptogenesis*, Nucl. Phys. B838 (2010) 1–27, [arXiv:1002.1326](http://arxiv.org/abs/1002.1326).

[56] M. Garny, A. Hohenegger, and A. Kartavtsev, *Quantum corrections to leptogenesis from the gradient expansion*, [arXiv:1005.5385](http://arxiv.org/abs/1005.5385).

[57] B. Garbrecht, *Leptogenesis: The Other Cuts*, Nucl. Phys. B847 (2011) 350–366, [arXiv:1011.3122](http://arxiv.org/abs/1011.3122).

[58] M. Beneke, B. Garbrecht, C. Fidler, M. Herranen, and P. Schwaller, *Flavoured Leptogenesis in the CTP Formalism*, Nucl. Phys. B843 (2011) 177–212, [arXiv:1007.4783](http://arxiv.org/abs/1007.4783).

[59] A. Anisimov, W. Buchmuller, M. Drewes, and S. Mendizabal, *Quantum Leptogenesis I*, Annals Phys. 326 (2011) 1998–2038, [arXiv:1012.5821](http://arxiv.org/abs/1012.5821).
[60] C. Fidler, M. Herranen, K. Kainulainen, and P. M. Rahkila, *Flavoured quantum Boltzmann equations from cQPA*, JHEP 1202 (2012) 065, [arXiv:1108.2309](https://arxiv.org/abs/1108.2309).

[61] B. Garbrecht, *Leptogenesis from Additional Higgs Doublets*, Phys.Rev. D85 (2012) 123509, [arXiv:1201.5126](https://arxiv.org/abs/1201.5126).

[62] B. Garbrecht and M. Herranen, *Effective Theory of Resonant Leptogenesis in the Closed-Time-Path Approach*, Nucl.Phys. B861 (2012) 17–52, [arXiv:1112.5954](https://arxiv.org/abs/1112.5954).

[63] M. Garny, A. Kartavtsev, and A. Hohenegger, *Leptogenesis from first principles in the resonant regime*, [arXiv:1112.6428](https://arxiv.org/abs/1112.6428).

[64] T. Frossard, M. Garny, A. Hohenegger, A. Kartavtsev, and D. Mitrouskas, *Systematic approach to thermal leptogenesis*, Phys.Rev. D87 (2013) 085009, [arXiv:1211.2140](https://arxiv.org/abs/1211.2140).

[65] B. Garbrecht, *More Viable Parameter Space for Leptogenesis*, [arXiv:1401.3278](https://arxiv.org/abs/1401.3278).

[66] L. Canetti, M. Drewes, and B. Garbrecht, *Probing leptogenesis with GeV scale sterile neutrinos at LHCb and BELLE* (initial title: Lab-to-Genesis), [arXiv:1404.7114](https://arxiv.org/abs/1404.7114).

[67] F. Capozzi, G. Fogli, E. Lisi, A. Marrone, D. Montanino, et al., *Status of three-neutrino oscillation parameters, circa 2013*, [arXiv:1312.2878](https://arxiv.org/abs/1312.2878).

[68] G. Bernardi et al., *Further limits on heavy neutrino couplings*, Phys. Lett. B203 (1988) 332.

[69] NuTeV Collaboration, A. Vaitaitis et al., *Search for neutral heavy leptons in a high-energy neutrino beam*, Phys. Rev. Lett. 83 (1999) 4943–4946, [hep-ex/9908011](https://arxiv.org/abs/hep-ex/9908011).

[70] O. Ruchayskiy and A. Ivashko, *Experimental bounds on sterile neutrino mixing angles*, JHEP 1206 (2012) 100, [arXiv:1112.3319](https://arxiv.org/abs/1112.3319).

[71] NA3 Collaboration, J. Badier et al., *Direct Photon Production From Pions and Protons at 200-GeV/c*, Z.Phys. C31 (1986) 341.

[72] CHARM II Collaboration, P. Vilain et al., *Search for heavy isosinglet neutrinos*, Phys.Lett. B343 (1995) 453–458.

[73] DELPHI Collaboration, P. Abreu et al., *Search for neutral heavy leptons produced in Z decays*, Z.Phys. C74 (1997) 57–71.

[74] A. Atre, T. Han, S. Pascoli, and B. Zhang, *The Search for Heavy Majorana Neutrinos*, JHEP 0905 (2009) 030, [arXiv:0901.3589](https://arxiv.org/abs/0901.3589).

[75] F. Bezrukov, *nu MSM-predictions for neutrinoless double beta decay*, Phys.Rev. D72 (2005) 071303, [hep-ph/0505247](https://arxiv.org/abs/hep-ph/0505247).

[76] J. Lopez-Pavon, S. Pascoli, and C.-f. Wong, *Can heavy neutrinos dominate neutrinoless double beta decay?*, [arXiv:1209.5342](https://arxiv.org/abs/1209.5342)

[77] T. Asaka and S. Ejiri, *Direct Search for Right-handed Neutrinos and Neutrinoless Double Beta Decay*, [arXiv:1308.3550](https://arxiv.org/abs/1308.3550).
[78] A. Merle and V. Niro, *Influence of a keV sterile neutrino on neutrino-less double beta decay – how things changed in the recent years*, arXiv:1302.2032.

[79] I. Girardi, A. Meroni, and S. Petcov, *Neutrinoless Double Beta Decay in the Presence of Light Sterile Neutrinos*, arXiv:1308.5802.

[80] A. Ibarra, E. Molinaro, and S. Petcov, *Low Energy Signatures of the TeV Scale See-Saw Mechanism*, Phys. Rev. D84 (2011) 013005, arXiv:1103.6217.

[81] L. Canetti and M. Shaposhnikov, *The ν MSM and muon to electron conversion experiments*, Hyperfine Interact. 214 (2013), no. 1-3 5–11.

[82] A. Abada, D. Das, A. Teixeira, A. Vicente, and C. Weiland, *Tree-level lepton universality violation in the presence of sterile neutrinos: impact for R_K and R_π*, JHEP 1302 (2013) 048, arXiv:1211.3052.

[83] A. Abada, A. Teixeira, A. Vicente, and C. Weiland, *Sterile neutrinos in leptonic and semileptonic decays*, JHEP 1402 (2014) 091, arXiv:1311.2830.

[84] L. Basso, O. Fischer, and J. J. van der Bij, *Precision tests of unitarity in leptonic mixing*, Europhys. Lett. 105 (2014) 11001, arXiv:1310.2057.

[85] M. Endo and T. Yoshinaga, *Lepton Universality Test of Extra Leptons using Hadron Decay*, arXiv:1404.4498.

[86] LHCb collaboration Collaboration, R. Aaij et al., *Search for Majorana neutrinos in B^− → π^+ μ^− μ^− decays*, Phys. Rev. Lett. 112 (2014) 131802, arXiv:1401.5361.

[87] Belle Collaboration Collaboration, D. Liventsev et al., *Search for heavy neutrinos at Belle*, Phys. Rev. D87 (2013), no. 7 071102, arXiv:1301.1105.

[88] A. Anisimov, D. Besak, and D. Bodeker, *Thermal production of relativistic Majorana neutrinos: Strong enhancement by multiple soft scattering*, JCAP 1103 (2011) 042, arXiv:1012.3784.

[89] C. P. Kiessig, M. Plumacher, and M. H. Thoma, *Decay of a Yukawa fermion at finite temperature and applications to leptogenesis*, Phys. Rev. D82 (2010) 036007, arXiv:1003.3016.

[90] M. Laine and Y. Schroder, *Thermal right-handed neutrino production rate in the non-relativistic regime*, JHEP 1202 (2012) 068, arXiv:1112.1205.

[91] A. Salvio, P. Lodone, and A. Strumia, *Towards leptogenesis at NLO: the right-handed neutrino interaction rate*, JHEP 1108 (2011) 116, arXiv:1106.2814.

[92] S. Biondini, N. Brambilla, M. A. Escobedo, and A. Vairo, *An effective field theory for non-relativistic Majorana neutrinos*, arXiv:1307.7680.

[93] D. Besak and D. Bodeker, *Thermal production of ultrarelativistic right-handed neutrinos: Complete leading-order results*, JCAP 1203 (2012) 029, arXiv:1202.1288.
[94] B. Garbrecht, F. Glowna, and P. Schwaller, Scattering Rates For Leptogenesis: Damping of Lepton Flavour Coherence and Production of Singlet Neutrinos, arXiv:1303.5498.

[95] D. Bodeker and M. Laine, Kubo relations and radiative corrections for lepton number washout, arXiv:1403.2755.

[96] M. Laine, Thermal right-handed neutrino production rate in the relativistic regime, JHEP 1308 (2013) 138, arXiv:1307.4909.

[97] B. Garbrecht, F. Glowna, and M. Herranen, Right-Handed Neutrino Production at Finite Temperature: Radiative Corrections, Soft and Collinear Divergences, arXiv:1302.0743.

[98] D. Gorbunov and M. Shaposhnikov, How to find neutral leptons of the νMSM?, JHEP 10 (2007) 015, arXiv:0705.1729.

[99] M. Shaposhnikov, The νMSM, leptonic asymmetries, and properties of singlet fermions, JHEP 08 (2008) 008, arXiv:0804.4542.

[100] T. Asaka, S. Eijima, and H. Ishida, Mixing of Active and Sterile Neutrinos, JHEP 1104 (2011) 011, arXiv:1101.1382.

[101] D. Gorbunov and A. Panin, On the minimal active-sterile neutrino mixing in seesaw type I mechanism with sterile neutrinos at GeV scale, Phys.Rev. D89 (2014) 017302, arXiv:1312.2887.

[102] A. Roy and M. Shaposhnikov, Resonant production of the sterile neutrino dark matter and fine-tunings in the [nu]MSM, Phys.Rev. D82 (2010) 056014, arXiv:1006.4008.

[103] M. Shaposhnikov, A possible symmetry of the νmsm, Nucl. Phys. B763 (2007) 49–59, hep-ph/0605047.

[104] W. Bonivento, A. Boyarsky, H. Dijkstra, U. Egede, M. Ferro-Luzzi, et al., Proposal to Search for Heavy Neutral Leptons at the SPS, arXiv:1310.1762.

[105] K. Abazajian, G. M. Fuller, and W. H. Tucker, Direct detection of warm dark matter in the X-ray, Astrophys.J. 562 (2001) 593–604, astro-ph/0106002.

[106] A. Boyarsky, A. Neronov, O. Ruchayskiy, and M. Shaposhnikov, Constraints on sterile neutrino as a dark matter candidate from the diffuse x-ray background, Mon. Not. Roy. Astron. Soc. 370 (2006) 213–218, astro-ph/0512509.

[107] A. Boyarsky, O. Ruchayskiy, and M. Markevitch, Constraints on parameters of radiatively decaying dark matter from the galaxy cluster 1e0657-56, astro-ph/0611168.

[108] K. Abazajian and S. M. Koushiappas, Constraints on Sterile Neutrino Dark Matter, Phys.Rev. D74 (2006) 023527, astro-ph/0605271.

[109] K. N. Abazajian, M. Markevitch, S. M. Koushiappas, and R. C. Hickox, Limits on the radiative decay of sterile neutrino dark matter from the unresolved cosmic and soft x-ray backgrounds, astro-ph/0611144.
A. Boyarsky, A. Neronov, O. Ruchayskiy, and M. Shaposhnikov, *Restrictions on parameters of sterile neutrino dark matter from observations of galaxy clusters*, Phys. Rev. D74 (2006) 103506, [astro-ph/0603368].

A. Boyarsky, J. Nevalainen, and O. Ruchayskiy, *Constraints on the parameters of radiatively decaying dark matter from the dark matter halo of the milky way and ursa minor*, [astro-ph/0610961].

C. R. Watson, J. F. Beacom, H. Yuksel, and T. P. Walker, *Direct X-ray Constraints on Sterile Neutrino Warm Dark Matter*, Phys.Rev. D74 (2006) 033009, [astro-ph/0605424].

S. Riemer-Sorensen, K. Pedersen, S. H. Hansen, and H. Dahle, *Probing the nature of dark matter with cosmic x-rays: Constraints from 'dark blobs' and grating spectra of galaxy clusters*, [astro-ph/0610034].

A. Boyarsky, A. Neronov, O. Ruchayskiy, M. Shaposhnikov, and I. Tkachev, *Where to find a dark matter sterile neutrino?*, Phys.Rev.Lett. 97 (2006) 261302, [astro-ph/0603660].

A. Boyarsky, D. Iakubovskyi, O. Ruchayskiy, and V. Savchenko, *Constraints on decaying Dark Matter from XMM-Newton observations of M31*, Mon.Not.Roy.Astron.Soc. 387 (2008) 1361, [arXiv:0709.2301].

A. Boyarsky, D. Malyshev, A. Neronov, and O. Ruchayskiy, *Constraining DM properties with SPI*, Mon.Not.Roy.Astron.Soc. 387 (2008) 1345, [arXiv:0710.4922].

H. Yuksel, J. F. Beacom, and C. R. Watson, *Strong Upper Limits on Sterile Neutrino Warm Dark Matter*, Phys.Rev.Lett. 101 (2008) 121301, [arXiv:0706.4084].

M. Loewenstein, A. Kusenko, and P. L. Biermann, *New Limits on Sterile Neutrinos from Suzaku Observations of the Ursa Minor Dwarf Spheroidal Galaxy*, Astrophys.J. 700 (2009) 426–435, [arXiv:0812.2710].

S. Riemer-Sorensen and S. H. Hansen, *Decaying dark matter in Draco*, [arXiv:0901.2569].

A. Boyarsky, O. Ruchayskiy, D. Iakubovskyi, M. G. Walker, S. Riemer-Sorensen, et al., *Searching for Dark Matter in X-Rays: How to Check the Dark Matter origin of a spectral feature*, Mon.Not.Roy.Astron.Soc. 407 (2010) 1188–1202, [arXiv:1001.0644].

C. R. Watson, Z.-Y. Li, and N. K. Polley, *Constraining Sterile Neutrino Warm Dark Matter with Chandra Observations of the Andromeda Galaxy*, JCAP 1203 (2012) 018, [arXiv:1111.4217].

R. Essig, E. Kuflik, S. D. McDermott, T. Volansky, and K. M. Zurek, *Constraining Light Dark Matter with Diffuse X-Ray and Gamma-Ray Observations*, [arXiv:1309.4091]

A. Boyarsky, O. Ruchayskiy, D. Iakubovskyi, and J. Franse, *An unidentified line in X-ray spectra of the Andromeda galaxy and Perseus galaxy cluster*, [arXiv:1402.4119]

E. Bulbul, M. Markevitch, A. Foster, R. K. Smith, M. Loewenstein, et al., *Detection of An Unidentified Emission Line in the Stacked X-ray spectrum of Galaxy Clusters*, [arXiv:1402.2301].
L. Canetti, M. Drewes, and M. Shaposhnikov, *Sterile Neutrinos as the Origin of Dark and Baryonic Matter*, Phys. Rev. Lett. **110** (2013) 061801, [arXiv:1204.3902](http://arxiv.org/abs/1204.3902).

K. N. Abazajian, *Resonantly-Produced 7 keV Sterile Neutrino Dark Matter Models and the Properties of Milky Way Satellites*, Phys.Rev.Lett. **112** (2014) 161303, [arXiv:1403.0954](http://arxiv.org/abs/1403.0954).

A. Boyarsky, D. Iakubovskyi, and O. Ruchayskiy, *Next decade of sterile neutrino studies*, Phys.Dark Univ. **1** (2012) 136–154, [arXiv:1306.4954](http://arxiv.org/abs/1306.4954).

P. Di Bari, P. Lipari, and M. Lusignoli, *The muon-neutrino → s-neutrino interpretation of the atmospheric neutrino data and cosmological constraints*, Int.J.Mod.Phys. **A15** (2000) 2289–2328, [hep-ph/9907548](http://arxiv.org/abs/hep-ph/9907548).

A. D. Dolgov and S. H. Hansen, *Massive sterile neutrinos as warm dark matter*, Astropart. Phys. **16** (2002) 339–344, [hep-ph/0009083](http://arxiv.org/abs/hep-ph/0009083).

T. Asaka, M. Laine, and M. Shaposhnikov, *Lightest sterile neutrino abundance within the νMSM*, JHEP **0701** (2007) 091, [hep-ph/0612182](http://arxiv.org/abs/hep-ph/0612182).

T. Asaka, M. Laine, and M. Shaposhnikov, *On the hadronic contribution to sterile neutrino production*, JHEP **06** (2006) 053, [hep-ph/0605209](http://arxiv.org/abs/hep-ph/0605209).

L. Wolfenstein, *Neutrino oscillations in matter*, Phys. Rev. **D17** (1978) 2369.

S. P. Mikheev and A. Y. Smirnov, *Resonance enhancement of oscillations in matter and solar neutrino spectroscopy*, Sov. J. Nucl. Phys. **42** (1985) 913–917.

M. Laine and M. Shaposhnikov, *Sterile neutrino dark matter as a consequence of νMSM-induced lepton asymmetry*, JCAP **0806** (2008) 031, [arXiv:0804.4543](http://arxiv.org/abs/0804.4543).

A. Boyarsky, J. Lesgourgues, O. Ruchayskiy, and M. Viel, *Realistic sterile neutrino dark matter with keV mass does not contradict cosmological bounds*, Phys. Rev. Lett. **102** (2009) 201304, [arXiv:0812.3256](http://arxiv.org/abs/0812.3256).

A. Boyarsky, J. Lesgourgues, O. Ruchayskiy, and M. Viel, *Lyman-alpha constraints on warm and on warm-plus-cold dark matter models*, JCAP **0905** (2009) 012, [arXiv:0812.0010](http://arxiv.org/abs/0812.0010).

J. Bond, G. Efstathiou, and J. Silk, *Massive Neutrinos and the Large Scale Structure of the Universe*, Phys.Rev.Lett. **45** (1980) 1980–1984.

M. R. Lovell, V. Eke, C. S. Frenk, L. Gao, A. Jenkins, et al., *The Haloes of Bright Satellite Galaxies in a Warm Dark Matter Universe*, Mon.Not.Roy.Astron.Soc. **420** (2012) 2318–2324, [arXiv:1104.2929](http://arxiv.org/abs/1104.2929).

A. Neronov, A. Boyarsky, D. Iakubovskyi, and O. Ruchayskiy, *Potential of LOFT telescope for the search of dark matter*, [arXiv:1312.5178](http://arxiv.org/abs/1312.5178).

T. Takahashi, K. Mitsuda, R. Kelley, H. Aharonian, F. Aarts, et al., *The ASTRO-H X-ray Observatory*, [arXiv:1210.4378](http://arxiv.org/abs/1210.4378).