A CHARACTERIZATION OF QUASIPOSITIVE SEIFERT SURFACES (CONSTRUCTIONS OF QUASIPOSITIVE KNOTS AND LINKS, III)

LEE RUDOLPH †

(Received 8 August 1989; in revised form 7 January 1991; annotated and arXived by the author 13 November 2004)

§0. INTRODUCTION; STATEMENT OF RESULTS

Let \(T_{n, n} \subset S^3 \) be a fiber surface for the torus link \(O\{n, n\} \); say, to be concrete, \(T_{n, n} = \{(z, w) \in S^3 : z^n + w^n \geq 0\} \subset S^3 = \{(z, w) : |z|^2 + |w|^2 = 1\} \).

Characterization Theorem. A Seifert surface \(S \) is quasipositive if and only if, for some \(n \), \(S \) is ambient isotopic to a full subsurface of \(T_{n, n} \). □

This should be contrasted with the following.

Lyon’s Theorem [4]. Any Seifert surface is ambient isotopic to a (full) subsurface of the fiber surface of \(O\{n, n\} \neq O\{n, n\} \) for some \(n \). □

Here, a surface is smooth, compact, oriented, and has no component with empty boundary. A Seifert surface is a surface embedded in \(S^3 \). A subsurface \(S \) of a surface \(T \) is full if each simple closed curve on \(S \) that bounds a disk on \(T \) already bounds a disk on \(S \). The definition of quasipositivity is recalled in §1 after a review of braided surfaces.

The “only if” statement of the Characterization Theorem is proved in [2]. Some results about graphs on braided surfaces (stated, with one eye on other applications [6], in somewhat more generality than needed here) are obtained in [3] and used in [4] to prove the “if” statement of the Characterization Theorem. A conjectural extension to ribbon surfaces in the 4-disk is discussed in [5].

Remark. The relation “\(S \) is a full subsurface of \(T \)” is transitive, so the Characterization Theorem has the interesting corollary (applied in [3] and [7]) that any full subsurface of any quasipositive Seifert surface is quasipositive.

§1. BRAIDS, BRAIDED SURFACES, AND QUASIPOSITIVITY

Let \(\sigma_1, \ldots, \sigma_{n-1} \) be the usual generators of the \(n \)-string braid group \(B_n \). For \(1 \leq i < j \leq n \), let \(\sigma_{i,j} := (\sigma_i \cdots \sigma_{j-2})\sigma_{j-1}(\sigma_i \cdots \sigma_{j-2})^{-1} \). A positive (resp., negative) embedded band in \(B_n \) is any \(\sigma_{i,j} \) (resp., \(\sigma_{i,j}^{-1} \)). An embedded band representation in \(B_n \), of length \(k \), is a \(k \)-tuple \(b = (b(1), \ldots, b(k)) \) of embedded bands. If each \(b(t) \) is positive, then \(b \) is

†Partially supported by NSF grant DMS-8801959.
quasipositive. If each $b(t)$ is some usual generator $\sigma_i = \sigma_{i-1}$ or inverse σ_i^{-1}, then b is a braidword. (A quasipositive braidword is customarily simply called positive.)

Given b, a braided surface $S(b)$ is constructed as in Fig. 1 (cf. [2–4]). More precisely, if $b(t) = \sigma_{i(t)}, j(t) \in B_n, 1 \leq i(t) < j(t) \leq n, \varepsilon(t) = \pm 1, 1 \leq t \leq k$, then $S(b) \subset \mathbb{R}^3 \subset S^3$ is a Seifert surface with handle decomposition $\bigcup_{s=1}^{n} h_s^{(0)} \cup \bigcup_{t=1}^{k} h_t^{(1)}$ such that, for appropriate rectangular coordinates (x,y,z) on \mathbb{R}^3,

1. $h_0^{(0)}$ is contained in the vertical half plane $\{(s,y,z): y \geq 0, z \in \mathbb{R}\}$,
2. $h_1^{(1)}$ is contained in the box $\{(x,y,z): i(t) \leq x \leq j(t), y \leq 0, t-1 \leq z \leq t\}$,
3. $h_t^{(1)}$ joins $h_0^{(0)}$ and $h_j^{(0)}$ with a single half-twist of sign $\varepsilon(t)$.

According to [2], this construction has a converse: if S is any Seifert surface, then there exists b (highly nonunique!) such that S is ambient isotopic to $S(b)$. S is quasipositive if some such b is quasipositive.

Note that (after enlarging its 0-handles in their half-planes as necessary) the link $\partial S(b)$ is presented, with respect to a horizontal braid axis (omitted from the figure) as the closed braid $\hat{\beta}(b)$, where $\hat{\beta}(b) := b(1) \cdots b(k)$.

§2.

The “only if” statement in the Characterization Theorem follows immediately from [2.1] and [2.2] plus the observation that the relation “S is a full subsurface of T” is transitive.

Lemma 2.1. If p is a positive braidword in B_m, then, for some n, $S(p)$ is ambient isotopic to a full subsurface of $T_{n,n}$.

Proof. Let ∇_n be the positive braidword of length $n(n-1)$ in B_n with $\nabla(s) = \sigma_d$ if $s = (n-1)c + d$, $0 \leq c \leq n-1$, $1 \leq d \leq n-1$. Then $\hat{\beta}(\nabla_n)$ is a torus link $O\{n,n\}$ of type (n,n), and $S(\nabla_n)$ is a fiber surface $T_{n,n}$ (cf. [3]). Let n be the greater of m and the length of the braidword p; make the usual identification of B_m with a subgroup of B_n. By lavishly inserting letters into p, pad it out to ∇_n. Now $S(p)$ may be constructed as a (manifestly full) subsurface of $S(\nabla_n)$.

Lemma 2.2. If S is a quasipositive Seifert surface, then S is ambient isotopic to a full subsurface of $S(p)$ for some positive braidword p in some B_n.

‡ The orientation conventions in [2–4] are opposed to those of [5], [6], and the present paper.
Proof. We may assume that $S = S(b)$, where $b = (\sigma_1, \sigma_2, \ldots, \sigma_k)$ is a quasipositive embedded braid word in some B_n. By inspection (cf. the 1-handle pictured in Fig. 2) $S(b)$ is ambient isotopic to a (full) subsurface of $S(p)$ where p is the positive braid word $(\sigma_1, \sigma_2, \ldots, \sigma_k)$. □

§3. GRAPHS ON BRAIDED SURFACES

A graph is a polyhedron G of dimension ≤ 1. If $g \in G$, then g is an isolated point (resp., endpoint; ordinary point; intrinsic vertex) if the link of g in G consists of 0 (resp., 1; 2; $v(g) \geq 3$) points. G is trivalent if $v(g) = 3$ for each intrinsic vertex $g \in G$.

A graph E contained in a vertical half-plane $\{(s,y,z) : y \geq 0, z \in R\}$ is a comb if E is the union of a vertical interval $\{s,y,z) : y = y_0, z_1 \leq z \leq z_m\}$ and $m \geq 2$ horizontal intervals $\{(s,y,z) : x = s, y_0 \geq y \geq 0, z_0 \leq z \leq z_m\}$. E is trivalent, with m endpoints (on the boundary of the half-plane) and $m - 2$ intrinsic vertices.

Let S be a surface in which a graph G is embedded. Let $N_S(G)$ be a regular neighborhood of G. G is full if no simple closed curve $C \subset G$ bounds a disk on S (so G is full if and only if $N_S(G)$ is), and G is proper if $G \cap \partial S$ is precisely the set of endpoints of G. If $N \subset S$ is a subsurface such that each component of $N \cap \partial S$ is an arc, then N is a regular neighborhood $N_S(G)$ of some proper trivalent graph $G \subset S$.

Let G' be another graph embedded in S. G and G' are isotopic if there exists a piecewise-smooth isotopy of S carrying G onto G'. (It may not be possible to find such an isotopy which is smooth near intrinsic vertices.) G and G' are Whitehead-equivalent if $N_S(G)$ and $N_S(G')$ are ambient isotopic on S.

Given a handle decomposition $S = \bigcup_{s=1}^{n} h_s^{(0)} \cup \bigcup_{t=1}^{k} h_t^{(1)}$, set $G^{(0)} := G \cap \bigcup_{s=1}^{n} h_s^{(0)}$, $G^{(1)} := G \cap \bigcup_{t=1}^{k} h_t^{(1)}$. G is well-placed if each point of $G^{(1)}$ is an ordinary point of G, and each component of $G^{(1)}$ is isotopic to a core arc of some $h_t^{(1)}$. If $S = S(b)$ is braided and $\bigcup_{s=1}^{n} h_s^{(0)} \cup \bigcup_{t=1}^{k} h_t^{(1)}$ is its given handle decomposition, G is combed if it is well-placed and $G^{(0)}$ is a disjoint union of combs and isolated points.

Lemma 3.1. Any graph on S is isotopic to a well-placed graph.

Proof. Obvious. □

Lemma 3.2. Any trivalent, full, proper graph on $S(b)$ is isotopic, by an isotopy supported on the 0-handles, to a combed graph.
Proof. Let \(G \) satisfy the hypotheses. By \ref{lem:combed} we can assume \(G \) is well-placed. Let
\[S(b) \cap \{(x,y,z): y \geq 0, z \in \mathbb{R}\} = h^0 \] be a 0-handle. By fullness of \(G \) and the Jordan Curve Theorem, each component of \(G \cap h^0 \) is an isolated point or a tree. By the properness of \(G \), if \(e \) is an endpoint of \(G \cap h^0 \), then \(e \in \partial h^0 \), and \(e \) is interior to an attaching arc of some 1-handle (resp., exterior to all the attaching arcs) iff \(e \) is an ordinary point (resp., an endpoint) of \(G \). Thus after a preliminary isotopy supported in a collar of \(\partial h^0 \), we can assume that every endpoint of \(G \cap h^0 \) is an interior point of the interval \(J := S(b) \cap \{(s,0,z): z \in \mathbb{R}\} \).

For each tree component \(E \) of \(G \cap h^0 \), let \(I \subset J \) be the smallest subinterval containing all the endpoints of \(E \), let \(A \) be the subarc of \(E \) joining the endpoints of \(I \), and let \(D(E) \) be the subdisk of \(h^0 \) bounded by \(I \cup A \). The set of disks \(D(E) \) is partially ordered by inclusion. Using trivalence of \(G \), we can construct the desired isotopy by induction over this poset.

\[\square \]

Lemma 3.3. Let \(G \subset S(b) \) be combed. If for some \(s, t \), there is a comb \(E \subset G \cap h^0 \) which has two or more endpoints in the attaching arc \(h^0 \cap h^1 \), then there is a combed graph \(G' \) Whitehead-equivalent to \(G \) such that \(G'^{(1)} \) has fewer components than \(G^{(1)} \).

Proof. Let \(E = \{(s,y_0,z): z_1 \leq z \leq z_m\} \cup \bigcup_{i=1}^m \{(s,y,z): y_0 \geq y \geq 0, z = z_i\} \) be such a comb. Then, for some \(i \), adjacent endpoints \((s,0,z_i), (s,0,z_{i+1}) \) of \(E \) are in \(h^1 \). Altering \(G \) in a neighborhood of \(h^0 \cap \bigcup \{(s,y,z): 0 \leq y \leq y_0, z_i \leq z \leq z_{i+1}\} \), we can replace \(G \) with a Whitehead-equivalent graph \(G'' \) which is still trivalent, full, proper, and well-placed, such that \(G''^{(1)} \) has fewer components than \(G^{(1)} \). (Cf. Fig. 3) the “Whitehead move” we use is the equivalent, on the level of graphs, of a handle-slide on the level of regular neighborhoods.) Then we apply \ref{lem:combed} to \(G'' \) to obtain \(G' \).

\[\square \]

§4.

At this point, \(S(\nabla_n) \) is no longer the best choice of a braided surface ambient isotopic to \(T_{n,n} \). Instead, for \(\nu := (n-1)^2 + 1 \), let \(q \) be the quasipositive band representation of length \(2(\nu-1) \) in \(B_\nu \) defined as follows: for \(1 \leq s \leq \nu-1 \), set \(q(s) = \sigma_{1,\nu-s+1} \); for \(\nu \leq s \leq 2(\nu-1) \), if \(s-\nu = (n-1)c+d \), \(0 \leq c,d \leq n-2 \), then set \(q(s) = \sigma_{1,\nu-c-(n-1)d} \). (The case \(n = 3 \) is illustrated in Fig. 4.)
LEMMA 4.1. $S(q)$ is ambient isotopic to $T_{n,n}$.

Proof. First show that $\hat{\beta}(q)$ is ambient isotopic to $O\{n,n\}$ (this is a straightforward exercise in braid relations and Markov moves, given that $O\{n,n\} = \hat{\beta}(\nabla_n)$). Then calculate

$$\chi(S(q)) = v - 2(v - 1) = 2 - v = 1 - (n - 1)^2 = n - n(n - 1) = \chi(T_{n,n}).$$

Finally, use the familiar fact that up to ambient isotopy a fiber surface is the unique Seifert surface of maximal Euler characteristic for its boundary.

In addition to its given handle decomposition $S(q) = \bigcup_{s=1}^{v} h_s^{(0)} \cup \bigcup_{t=1}^{2(v-1)} h_t^{(1)}$, which will now be called fine, we need a coarse handle decomposition with a single 0-handle $H_1^{(0)} := h_1^{(0)}$ and $v - 1$ 1-handles $H_i^{(1)} := h_i^{(1)} \cup h_{v-s+1}^{(0)} \cup h_{v+s}^{(1)}$ where $1 \leq s = 1 + c + (n - 1)d \leq v - 1$, $0 \leq c, d \leq n - 1$, $s' = d + (n - 1)c$. Note that, if G is well-placed with respect to the coarse handle decomposition, then G is certainly well-placed with respect to the fine one.

THEOREM 4.2. Any full subsurface of $T_{n,n}$ is quasipositive.

Proof. Let $S \subset S(q)$ be a full subsurface. We may assume $S \cap \partial S(q) = \emptyset$. Among all graphs $G \subset S(q)$ with $N_{S(q)}(G)$ isotopic to S on $S(q)$, such that G is proper, full, trivalent, and well-placed with respect to the coarse handle decomposition, let G_0 be such that $G_0^{(1)}$ (also with respect to the coarse handle decomposition) has the minimal number of components. Now apply 3.2 with respect to the fine handle decomposition, to find a combed graph G_1 isotopic to G_0. Let $E \subset G_1$ be a comb; then E has no more than one endpoint in any attaching arc of a 1-handle of the fine handle decomposition, for otherwise 3.3 would contradict the assumed minimality of G_0.

We are nearly done. Of course $N_{S(q)}(G_1)$ is isotopic to S on $S(q)$. On the other hand, Fig. 5 shows how to perform local moves (in the vicinity of each coarse 1-handle) which effect an ambient isotopy of $N_{S(q)}(G_1)$ is in \mathbb{R}^3 that pushes $N_{S(q)}(G_1)$ off $S(q)$ and onto a quasipositive braided surface. (The fact that the coarse decomposition has a single
Lee Rudolph

Fig. 5. The black surface on the left is $N_{x_0}(G_i)$; it is isotopic, in \mathbb{R}^3, to the black surface on the right, which can be braided by expanding the thin vertical pieces into fat 0-handles.

0-handle ensures that the local moves do not interfere with each other. It was for this reason that the coarse decomposition was introduced. □

Taken with §2.4.2 completes the proof of the Characterization Theorem.

§5. A CONJECTURAL GENERALIZATION

Let $d : \mathbb{C}^2 \to [0, \infty] : (z, w) \mapsto (|z|^2 + |w|^2)^{1/2}$. A smoothly embedded surface $S \subset D^4(r) := d^{-1}([0, r])$, $r > 0$, is ribbon-embedded if $\partial S = S \cap \partial D^4(r)$ and the restriction $d^2|S$ is a Morse function which has no local maxima on Int S. If $S \subset D^4(r)$ is ribbon-embedded and $r' \in [0, r]$ is a regular value of $d^2|S$, then $S' := S \cap D^4(r')$ is ribbon-embedded in $D^4(r')$, and S' is full on S; call (S, S') a ribbon-embedded pair. A surface ambient isotopic to a ribbon embedded surface is a ribbon; a subsurface $S' \subset S$ of a ribbon is a subribbon if the pair (S, S') is ambient isotopic to a ribbon-embedded pair.

Let $\Gamma_n(\varepsilon)$ be the complex plane curve \{$(z, w) \in \mathbb{C}^2 : z^n + w^n = \varepsilon$\}. Then, for all sufficiently small $\varepsilon \neq 0$, the sets $\Gamma_n(\varepsilon) \cap D^4(1)$ are mutually isotopic ribbon-embedded surfaces. Let $\tilde{T}_{n, n}$ denote any one of them.

Conjecture. A ribbon is quasipositive if and only if, for some n, it is ambient isotopic to a subribbon of $\tilde{T}_{n, n}$.

Here, by appealing to results in [2], we can define *quasipositive ribbon* as follows (the original definition involves braids, and “band representations” more general than the embedded band representations used in this paper). Let D denote the bidisk \{$(z, w) : |z| \leq 1, |w| \leq 1$\}, $\partial_1 D := \{(z, w) : |z| = 1, |w| \leq 1$\}. Let Γ be a non-singular complex plane curve which intersects $\partial_1 D$ transversely and the rest of ∂D not at all. Let $\eta : D \to D^4(1)$ be a smoothing (a homeomorphism which is a diffeomorphism except along the corner torus $\partial(\partial_1 D)$). Then $\eta(\Gamma \cap D)$ is a quasipositive ribbon, and every quasipositive ribbon arises this way.
The following facts are known, cf. [1], [2], [3]. (1) One may “push in” the interior of a Seifert surface in $S^3 = \partial D^4(1)$ to obtain a ribbon with the same boundary; if the Seifert surface is quasipositive, so is the ribbon. (2) In particular, $T_{n,n}$ itself is a quasipositive ribbon, for it is the push-in of the 3-sphere—of the Milnor fiber of $z^n + w^n$. (3) If S is a quasipositive ribbon, then for some n, S is a subribbon of $\tilde{T}_{n,n}$. (This can be seen as follows. Realize S by $\eta(\Gamma \cap D)$ as above. Without loss of generality, the completion of Γ in $\mathbb{CP}^2 \supset \mathbb{C}^2$ is non-singular and transverse to the line at infinity. Let $f(z,w)$ be the defining polynomial of Γ. For all sufficiently large $R > 0$, $\eta(\Gamma \cap D)$ is isotopic to a union of components of the ribbon-embedded surface $\{(z,w) \in \mathbb{C}^2 : f(z,Rw) = 0\} \cap D^4(1)$. This is in turn a subribbon of $\{(z,w) \in \mathbb{C}^2 : f(z,Rw) = 0\} \cap D^4(r)$ for generic $r \geq 1$. Because Γ is transverse to the line at infinity, $\{(z,w) \in \mathbb{C}^2 : f(z,Rw) = 0\} \cap D^4(r)$ is isotopic to $\{(z,w) \in \mathbb{C}^2 : z^n + w^n = 1\} \cap D^4(r)$ for all sufficiently large r, where n is the degree of f. Finally, by rescaling, this last ribbon is isotopic to $\tilde{T}_{n,n}$.)

Thus what remains conjectural is that every subribbon of $\tilde{T}_{n,n}$ is quasipositive. If this is true, then (up to ambient isotopy) an oriented link L in $S^3 = \partial D^4(r)$ bounds a piece of complex plane curve in $D^4(r)$ if and only if L has some representation as the closure of a quasipositive braid. The Characterization Theorem gives some hope that this is so, but it seems likely that entirely different techniques will be needed for a proof.

References

0. H. Lyon: Torus knots in the complements of links and surfaces, Mich. Math. J. 27 (1980), 39–46.
1. L. Rudolph: Algebraic functions and closed braids, Topology 22 (1983), 191–202.
2. L. Rudolph: Braided surfaces and Seifert ribbons for closed braids, Comment. Math. Helv. 58 (1983), 1–37.
3. L. Rudolph: Constructions of quasipositive knots and links, I, Nœuds, Tresses, et Singularités (ed. C. Weber), L’Ens. Math. (1983), 233–245.
4. L. Rudolph: Constructions of quasipositive knots and links, II, Contemp. Math. 35 (1984), 485–491.
5. L. Rudolph: Quasipositive annuli (Constructions of quasipositive knots and links, IV), preprint (1990).
6. L. Rudolph: Quasipositive plumbing (Constructions of quasipositive knots and links, V), preprint (1990).
7. L. Rudolph: Quasipositivity and new link invariants, Revista Matemática de la Universidad Complutense de Madrid 2 (1989), 85–109.
8. J. R. Stallings: Constructions of fibred knots and links, Proc. Sympos. Pure Math. XXXII, Part 2 (Providence: AMS, 1979), 55–60.

Department of Mathematics and Computer Science
Clark University
Worcester
Massachusetts 01610
U.S.A.
ADDENDA

Typographical errors in the original publication have been corrected without notice; it is to be hoped that no new ones have been introduced. The following notes provide updates on various points.

1. Boileau and Orevkov [10] have proved that, indeed, up to ambient isotopy an oriented link L in S^3 bounds a piece of complex plane curve in D^4 if and only if L has some representation as the closure of a quasipositive braid. In fact their proof shows that many subribbons of $\tilde{T}_{n,n}$ are quasipositive; as far as I am aware, the Conjecture in full generality remains open (but is perhaps of somewhat less interest).

2. [5] was published as [11].

3. A considerably expanded version of [6] was published as [12].

Additional References

10. MICHIEL BOILEAU and STEPAN YU. OREVKOV: Quasipositiveité d’une courbe analytique dans une boule pseudo-convexe, C. R. Acad. Sci. Paris 332 (2001), 825–830. MR1836094

11. L. RUDOLPH: Quasipositive annuli (Constructions of quasipositive knots and links, IV), J. Knot Theory Ramifications 1 (1992), 451–466. MR1194997

12. L. RUDOLPH: Quasipositive plumbing (Constructions of quasipositive knots and links, V) Proc. Amer. Math. Soc. 126, 257–267. MR1452826