Stellar and nuclear-physics constraints on two r-process components in the early Galaxy

B. Pfeifferab, U. Ottb, K.-L. Kratza

aInstitut für Kernchemie, Universität Mainz, D-55128 Mainz, Germany

bMax-Planck-Institut für Chemie, Department of Cosmochemistry, D-55128 Mainz, Germany

Recent astrophysical results indicate the existence of (at least) two types of the rapid neutron-capture nucleosynthesis (r-process). The evidence is based on a variety of observations in different fields:

(a) The study of extinct radionuclides present in the early Solar System \cite{1,2}.
(b) Isotope abundance anomalies observed in presolar diamonds \cite{3,4}.
(c) The strongest – because less model-dependent – indication for more than one type of r-process, however, may come from the observation of heavy neutron-capture element abundances in very metal-poor halo stars \cite{5–8} as well as in the globular cluster M15 \cite{9}.

On the one hand, metallicity-scaled abundances of elements in the Pt peak and down to Ba (Z=56) in all halo stars so far investigated are in remarkable agreement with the solar r-process pattern ($N_{r,\odot}$), while on the other hand the abundances of “low-Z” neutron-capture elements (39Y to 48Cd) in CS 22892-052 are lower than solar \cite{8}. An interesting feature of the abundances of these elements is their pronounced odd-even-Z staggering, which reflects nuclear-structure properties of the progenitor isotopes involved. All odd-Z elements from 39Y to 47Ag are clearly under-abundant compared to solar, whereas the even-Z elements (40Zr - 48Cd) are closer to solar (see Fig. 1).

Taking advantage of our site-independent waiting-point approach to fit the $N_{r,\odot}$ pattern, we now can test under which stellar conditions the possible two r-processes, presumably separated by the A\approx130 $N_{r,\odot}$ peak, have to run. When assuming that the abundances are a living record of the first (few) generation(s) of Galactic nucleosynthesis \cite{10}, the observed pattern beyond Z\approx40 up to 90 Th should most likely be produced by only one (or a few) r-process event(s) in a unique stellar site, e.g. supernovae of type II (SNII). This scenario (the “main” r-process) then produces the “low-Z” elements under-abundant compared to solar, and reaches the full solar values presumably around 52Te. For CS22892-052 both, the general trend as well as the detailed structure of the “low-Z” abundances (40\leqZ\leq48) are nicely reproduced in our fit with the ETFSI-Q atomic masses (see Fig. 1). At the same time, the good overall reproduction of the “high-Z” elements (beyond 56Ba) is maintained \cite{11}. Starting our calculations from an Fe-group seed would require neutron densities of $n_n\geq10^{23}$ cm$^{-3}$ at freeze-out ($T_9=$1.35). It should be mentioned in this context, that our approach would imply a roughly constant abundance ratio between the “low-Z” and “high-Z” elements. This has recently been confirmed in the case of HD115444, where our
Figure 1. Comparison between observed (filled squares) and calculated (solid line) elemental r-abundances from the ultra-metal-poor halo star CS 22892-052. The abundance distribution from $Z \simeq 40$ to 90 Th is denoted as the "main" r-process in the text. The scaled solar-system distribution is shown as dashed curve with filled circles. The $N_{r,\odot} - N_{r,\text{main}}$ "residuals" at "low-Z" require contributions from a second ("weak") r-process; see Fig. 2.

Consequently, the abundance "residuals" ($N_{r,\odot} - N_{r,\text{main}} = N_{r,\text{resid}}$) at low Z will require a separate "weak" r-process component of yet unknown stellar site. When assuming seed compositions from 14Si to 24Cr or 28Ni in solar-system fractions, our calculations can reproduce the $N_{r,\text{weak}}$ pattern in CS22892-052 with neutron densities of $n_n \leq 10^{20}$ cm$^{-3}$ and process durations $\tau \simeq 500$–1000 ms (see Fig. 2). These stellar conditions might be provided in explosive shell-burning scenarios (see, e.g. \cite{12,13}).

The "weak" component as identified here must be of secondary origin, as is clearly shown by its absence in the old metal-poor halo stars \cite{8}. In contrast, the presence there of the main component with a pattern virtually identical to that of the solar system r-process in the mass range above $A \simeq 130$–140 attests to its primary and robust nature. Another outcome of our calculations is that the "weak" component does not make a significant contribution to the $A \simeq 130$ abundance peak, in agreement with calculations from Truran and Cowan \cite{13}. Our result thus does not support the conclusion of Qian et al. \cite{2} of separate r-process sources being responsible for the observed abundance level in the early solar system of extinct radionuclides 129I and 182Hf. In this context, we note that in all models \cite{2,10,11} the actinides are coproduced with the nuclides in the Hf range, but that the observed limit on the abundance in the early solar system of 247Cm (247Cm/235U$<4 \times 10^{-3}$; \cite{14}) is barely compatible with expectations based on the same approach as used for 182Hf. An improved measurement
Figure 2. Comparison between abundance “residuals” \(N_{r,\odot} - N_{\text{halo}} = N_{r,\text{resid}} \); filled diamonds) and calculated (full curve) elemental r-abundances from the ultra-metal-poor halo star CS 22892-052. This abundance distribution for “low-Z” elements is denoted as the “weak” r-process in the text. The scaled solar-system distribution is shown as dashed curve with filled circles, the observed halo-values are displayed as filled squares.

of this abundance ratio may be an important step to address the question whether or not for \(^{182}\text{Hf}\) a special process \cite{15} is required.

REFERENCES

1. G.J. Wasserburg et al., Ap. J. 466 (1996) L109.
2. Y.-Z. Qian et al., Ap. J. 494 (1998) 285.
3. U. Ott, Ap. J. 463 (1996) 344.
4. S. Richter et al., Nature 391 (1998) 261.
5. J. Westin et al., Ap. J. 530 (2000) 783.
6. D.L. Burris et al., astro-ph/0005188.
7. J.A. Johnson et al., contribution to this conference.
8. C. Sneden et al., Ap. J. 533 (2000) L139.
9. C. Sneden et al., Ap. J. 536 (2000) L85.
10. J.J. Cowan et al., Ap. J. 521 (1999) 194.
11. K.-L. Kratz et al., J. Radioanal. Nucl. Chem. 243 (2000) 133.
12. F.-K. Thielemann et al., Astron. Astrophys. 74 (1979) 175.
13. J.W. Truran and J.J. Cowan, contribution to this conference.
14. J.H. Chen and G.J. Wasserburg, EPSL 52 (1981) 1.
15. B.S. Meyer and D.D. Clayton, Space Sci. Rev., in press.