Modulation of Mouse Rod Photoreceptor Responses by Grb14

Michael L. Woodruff¹, Ammaji Rajala², Gordon L. Fain¹, and Raju V. S. Rajala²,³

¹Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, California, 90095-7239; Departments of ²Ophthalmology and ³Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104; and ⁴Department of Ophthalmology and Jules Stein Eye Institute, University of California Los Angeles, Los Angeles, California, 90095-7000

Running Title: Grb14 modulates rod photoreceptor responses

To whom correspondence should be addressed: Raju V.S. Rajala, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd., Oklahoma City, OK 73104. USA; Telephone: 405-271-8255; Fax: 405-271-8128; E-mail: raju-rajala@ouhsc.edu

Keywords: Grb14, rod, photoreceptor, cyclic nucleotide-gated channel, insulin receptor, vision, cyclic nucleotide phosphodiesterase 6.

Background: Growth factor receptor-bound 14 (Grb14) is a negative regulator of insulin receptor (IR).

Results: Grb14 modulates rod cGMP-gated channels and perhaps also phosphodiesterase 6.

Conclusion: Grb14 may contribute to rod transduction and adaptation.

Significance: Phototransduction can be regulated by proteins involved in the IR signaling pathway.

SUMMARY

Previous experiments have indicated that growth factor receptor-bound protein 14 (Grb14) may modulate rod photoreceptor cyclic guanosine-monophosphate (cGMP) gated channels by decreasing channel affinity for cGMP; however, the function of Grb14 in rod physiology is not known. In this study we examined the role of Grb14 by recording electrical responses from rods in which the gene for the Grb14 protein had been deleted. Suction-electrode recordings from single mouse rods showed that responses of dark-adapted Grb14⁻/⁻ mice to brief flashes decayed more rapidly than strain-controlled wild-type (WT) rods, with decreased values of both integration time and the exponential time course of decay (τREC). This result is consistent with an increase in channel affinity for cGMP produced by deletion of Grb14. However Grb14⁻/⁻ mouse rods also showed little change in dark current and a large and significant decrease in the limiting time constant τD, which are not consistent with an effect on channel affinity but seem rather to indicate modulation of the rate of inactivation of cyclic nucleotide phosphodiesterase 6 (PDE6). Grb14 has been reported to translocate from the inner to the outer segment in bright light, but we saw effects on response time course even in dark-adapted rods, though the effects were somewhat greater after rods had been adapted by exposure to bleaching illumination. Our results indicate that the mechanism of Grb14 action may be more complex than previously realized.

INTRODUCTION

Growth factor receptor-bound protein 14 (Grb14) is an adaptor protein which plays an important role in receptor tyrosine-kinase signaling pathways and insulin signaling (1, 2). While there is convincing evidence of a negative role of Grb14 in insulin signaling (3, 4), experiments with Grb14⁻/⁻ animals have also revealed positive effects of Grb14 on receptor tyrosine-kinase signaling in a tissue specific manner (5, 6).

We previously identified Grb14 in retinal tissue (7): Grb14 is localized predominantly to the rod inner segment, nuclear layer and synapse in dark-adapted rods, whereas in light-adapted rods Grb14 can be found throughout the entire cell including the outer segment (6). Light induces activation of the insulin receptor, and ablation of Grb14 results in the loss of light-dependent activation (6). Grb14 undergoes tyrosine phosphorylation by light-activated non-receptor tyrosine kinase Src, and phosphorylated Grb14 (Grb14-P) acts as a positive regulator of the
insulin receptor (8). By competing for the insulin receptor-specific phosphatase PTP1B (8), Grb14-P enhances activation of the insulin receptor (9).

These observations suggest that Grb14 perhaps in concert with the insulin receptor may have some role in the physiology of photoreceptors. One possible mechanism of Grb14 is the modulation of photoreceptor-specific cyclic nucleotide-gated channels, perhaps by direct binding of the Grb14 Ras-associating domain with the C-terminal region of the CNGA1 channel subunit (10). In vitro kinetic and biochemical assays on rod outer-segment membrane vesicles suggest that the channels may be more sensitive to cGMP and open at a lower concentration of cGMP in Grb14−/− mice (10); however, the functional consequence of Grb14 interaction with the cyclic nucleotide-gated channels in rod physiology in vivo has not been previously investigated.

In this study, we explored the function of Grb14 in rod photoreceptors by recording electrical responses from rods in which the gene for the Grb14 protein had been deleted. We discovered that rod responses from Grb14−/− mice recover after illumination more rapidly than responses of wild-type (WT) mouse rods, as expected if the channels are more sensitive to cGMP and open at a lower concentration after deletion of the Grb14 gene. Much to our surprise, however, the effect of knocking out Grb14 was observed even in dark-adapted rods and seemed unexpectedly to be the result at least in part of an effect on the rod phosphodiesterase. Preliminary results of this study were reported at a meeting of the Association for Research in Vision and Ophthalmology (11).

EXPERIMENTAL PROCEDURES

Animals

All animal work was in strict accordance with the NIH Guide for the Care and Use of Laboratory Animals, and the Association for Research in Vision and Ophthalmology Statement on the Use of Animals in Vision Research. All protocols were approved by the IACUC of the University of Oklahoma Health Sciences Center, the Dean A. McGee Eye Institute, and the University of California Los Angeles. Grb14−/− mice were kindly provided Dr. Roger Daly, Garvan Institute of Medical Research, Australia (3) and were rederived on a BALB/c background. Control recordings from WT BALB/c mice were always made from littermates of the Grb14−/− mice used in our experiments.

Immunoblot Analysis

Retinas from wild type and Grb14−/− mice were homogenized in a lysis buffer containing 1% Triton X-100, 137 mM NaCl, 20 mM Tris-HCl (pH 8.0), 10% glycerol, 1 mM EGTA, 1 mM MgCl2, 1 mM phenylmethylsulfonyl fluoride, 0.2 mM Na3VO4, 10 µg/ml leupeptin, and 1 µg/ml aprotinin (12). Insoluble material was removed by centrifugation at 17,000 x g for 20 min at 4°C, and the protein concentrations of the solubilized proteins were determined by the Bicinchoninic Acid reagent following the manufacturer’s instructions (Pierce Biotechnology, Rockford, IL). Proteins were resolved by 10% or gradient (4-20%) SDS-PAGE and transferred to nitrocellulose membranes. The blots were washed twice for 10 min with TTBS (20 mM Tris-HCl at pH 7.4, 100 mM NaCl and 0.1% Tween-20) and blocked with either 5% bovine serum albumin or non-fat dry milk powder (Bio-Rad) in TTBS for 1 h at room temperature. Blots were then incubated with anti-Grb14 (1:1000), anti-CNGA1 (1:500), anti-PDEγ (1:1000), anti-RGS9-1 (1:1000), anti-Gβ5 and anti-Gβ5S (1:1000), anti-R9AP (1:1000), anti-PDEβ (1:1000), and anti-actin (1:1000) for 1 h at room temperature. Following primary antibody incubations, immunoblots were incubated with HRP-linked secondary antibodies (mouse or rabbit or goat) and developed by enhanced chemiluminescence according to the manufacturer’s instructions. The GAP protein antibodies (RGS9-1, Gβ5L and R9AP) were kindly provided by Dr. Theodore G. Wensel (Baylor College of Medicine, Houston).

Suction-Electrode Recordings

Suction-electrode recordings were made from single mouse rods by methods previously described (13-15). Grb14−/− and WT littermates between 2 and 6 months of age were dark adapted typically for 5 h but for at least 3 h in a light-tight box. Rods were perfused at 37–39°C with DMEM (catalog #D-2902, Sigma, St. Louis, MO) supplemented with 15 mm NaHCO3, 2 mm Na succinate, 0.5 mm Na glutamate, 2 mm Na gluconate, and 5 mm NaCl, bubbled with 5% CO2, pH 7.4. Data were filtered at 30 Hz (8 pole Bessel filter) and sampled at 100 Hz. Flashes of 500 nm light 20 ms in duration were attenuated to different light levels by absorptive neutral density filters. At
dim flash intensities, 10–20 individual responses presented at 5 s intervals were averaged to obtain mean flash responses. At medium flash intensities, 5–10 responses were averaged and the interflash interval was increased to 10 s. At bright flash intensities above saturation for the rods, only 3–5 responses were averaged, and the interflash interval was increased to 15–20 s. A 500 nm light was also used for steps of light and for bleaching. The amount of bleaching was determined as in previous experiments (16) from the photosensitivity of mouse rods of 5.7×10^{-9} μm2 (17). Other details of response presentation are given in the text and figure legends.

The values of τ_D for dark-adapted WT and Grb14$^{-/-}$ rods were measured as in Woodruff et al. (13) from a series of five flashes each at 7 intensities, chosen for each rod to fall within one and a half log units above the flash intensity that just produced saturation of the rod response amplitude. Flash intensities were in the range of 159–3250 photons μm$^{-2}$. The time in saturation (T_{sat}) was measured as the time from the beginning of the flash to the time at which the mean circulating current recovered to 25% of its dark-adapted value. The value of τ_D was then calculated rod by rod (Table 1) or from mean values (Fig. 5) as the best-fitting slope of T_{sat} versus the natural logarithm of the flash intensity (18). Unless otherwise stated, errors are given as standard errors of the mean. Curve fitting and plotting of data were done with the program Origin (OriginLab, Northampton, MA).

RESULTS

In Fig. 1, we show the results of quantitative immunoblot analysis to compare expression levels of Grb14 (panel A), of the rod-channel alpha subunit (CNGA1—panel B), and of several important transduction proteins for WT rods and rods of Grb14$^{-/-}$ littermates (panels C – G). Densitometric analysis of immunoblots performed in the linear range of detection and normalized to actin (panel H) are plotted in the histograms of Fig. 11 as means with SEM. These results indicate that there were no statistically significant changes (Student’s t-test) in the expression level of the channels, PDE or GAP proteins (RGS9-1, Gβ5L, Gβ5S and R9AP) between wild type and Grb14$^{-/-}$ animals.

In Fig. 2, we compare responses to a graded series of flashes of dark-adapted WT (Fig. 2A) and Grb14$^{-/-}$ littermates (Fig. 2C). Deletion of the Grb14 gene produced a clear acceleration of the decay of the response. In Table 1, we give mean values with standard errors for the integration time, calculated cell by cell from the time integral of the mean dim-flash response divided by the peak amplitude of the response; and the exponential decay time constant of the dim-flash response, τ_{REC} (see for example 15). Both the integration time and τ_{REC} are smaller, and these differences were statistically significant (Student’s t-test, $p < 0.05$).

The acceleration in the rate of decay of the flash response is consistent with previous experiments indicating that rod cGMP-gated channels may be more sensitive to cGMP or open at a lower concentration of cGMP in Grb14$^{-/-}$ mice (10). Responses would decay faster because, during the recovery of cGMP concentration after illumination, the channels would begin to reopen at a lower cGMP concentration. Previous experiments have also indicated, however, that Grb14 translocates from the inner segment of the rod to the outer segment during bright illumination (6). We were therefore surprised to see such a large effect of deletion of the Grb14 gene on the decay time of the response even in dark-adapted rods.

To investigate the effect of light exposure, we illuminated rods with 500 nm light at an intensity of 3.6×10^{5} photons μm$^{-2}$ s$^{-1}$ for 335 seconds, sufficient to bleach approximately 50% of the rhodopsin (see Methods and Materials and 16). After waiting 45 min to one hour for the circulating current and sensitivity of the rod to come to steady state and for any protein translocation to occur, we recorded rod responses from WT (Fig. 2B) and Grb14$^{-/-}$ mice (Fig. 2D). Responses in WT rods decayed more rapidly after bleaching, as we have previously documented (16). A similar effect was observed for Grb14$^{-/-}$ rods. The results in Table 1 verify that the integration time and τ_{REC} were shorter for bleached rods than dark-adapted rods in both genotypes ($p < 0.05$), and both the sensitivity and maximum response amplitude (r_{max}) were also significantly smaller. Moreover, deletion of the Grb14 gene produced an acceleration of the integration time constant and τ_{REC} in bleached rods similar to the effect of gene deletion on dark-adapted rods, and these differences were again significant ($p < 0.05$).
In Fig. 3, we show averaged waveforms from WT and Grb14^{-/-} rods in the dark and after bleaching. In panels A and B of Fig. 3, we show responses to flashes of the same intensity of 730 photons μm⁻². Part A gives actual changes in circulating current, and part B responses normalized rod by rod to the peak amplitude of the response for that rod. A similar comparison is given in panels C and D for flashes of intensity 220 photons μm⁻². These results show the progressive change in the time course of decay caused by deletion of Grb14 and light adaptation after pigment bleaching. The decay of responses of bleached Grb14^{-/-} rods is surprisingly rapid: it is nearly as fast as from mouse rods with 4-6 times over-expressed GAP proteins (19,20).

In the inserts of panels C and D of Fig. 3, we give superimposed responses for dark-adapted WT (black) and Grb14^{-/-} (red) rods at the even dimmer flash intensity of 8 photons μm⁻². Responses to bleach-adapted rods at this intensity are not shown, because they were too small to be seen above the noise of the recording. The dim-flash responses in the inserts to Fig. 3 rise with a similar time course, indicating that deletion of Grb14 had no effect on response activation. To confirm this observation, we calculated rate of rise by fitting the initial time course of the flash response with a function of the form

$$
\frac{r}{r_{\text{max}}} = 1 - \exp\left[-\frac{1}{2} IA(t-t_{\text{eff}})^2\right]
$$

were r/r_{max} is the normalized flash response, I is the flash intensity in photoisomerizations from a collecting area of 0.5 μm² (21,22), A is the amplification constant, t is time, and t_{eff} is the effective delay time of transduction (23). We estimated best-fitting values of the amplification constants with the program Origin for responses to flashes of an intensity of 21 photons μm⁻² for WT and Grb14^{-/-} rods and found no significant difference: WT 23.0 ± 3.8 s⁻², n = 15; Grb14^{-/-} 23.3 ± 2.8 s⁻², n = 10. These values were not significantly different and were similar to those we have previously published for mouse rods (24). The mean values of t_{eff} were also similar (WT 29 ms, Grb14^{-/-} 28 ms).

Response-intensity curves, sensitivity, and limiting time constant

In Fig. 4, we show response-intensity curves for dark-adapted WT rods (●), dark-adapted Grb14^{-/-} rods (■), bleached WT rods (○), and bleached Grb14^{-/-} rods (□). Means and standard errors were calculated and have been plotted for the same cells used for Fig. 2 and Table 1. Bleaching decreased maximum response amplitude and sensitivity in WT and Grb14^{-/-} rods, both by reducing the amount of pigment available to absorb photons and by producing adaptation similar to that produced by background light (16). The effect of bleaching was similar for rods of the two genetic backgrounds. There were small differences in maximum response amplitudes between WT and Grb14^{-/-} rods, indicative of a difference in the circulating currents; but these differences were not statistically significant.

Although the small effect on rod circulating current was unexpected, the other results we have so far presented seem consistent at least in part with previous data indicating an effect of Grb14 on cGMP-gated channels (10). Rod cGMP-gated channels are also known to be modulated by Ca²⁺-calmodulin (25-28), and deletion of the channel Ca²⁺-calmodulin binding site also accelerates the decay of the rod response (14). The acceleration of decay in Grb14^{-/-} rods was however greater than in rods lacking the Ca²⁺-calmodulin binding site, and we therefore wondered whether the effect of deleting the Grb14 gene could affect some other aspect of the physiology of the photoreceptor. Rod response decay can also be accelerated by an increase in the rate of inactivation of the rod effector enzyme, cyclic-nucleotide phosphodiesterase 6 (PDE6). Previous experiments have shown that in mouse rods, the rate of PDE6 inactivation can be estimated from measurements of the limiting time constant t_D (15,19,20). We therefore compared the values of limiting time constants in WT and Grb14^{-/-} littermates.

In Fig. 5, we show mean values of the time in saturation (T_{sat}) as a function of the natural logarithm of the flash intensity for both WT rods (●) and Grb14^{-/-} rods (○). The value of T_{sat} was plotted as the time required for the recovery of 25% of the dark circulating current after the beginning of the flash (see Methods and Materials). The values of T_{sat} were uniformly smaller for Grb14^{-/-} rods than for WT rods at any given light intensity, reflecting the more rapid recovery of Grb14^{-/-} rods. A similar phenomenon was seen previously for rods whose channel Ca²⁺-
calmodulin binding site had been disrupted (14). The straight lines in the figures give best-fitting slopes, which provide estimates of the limiting time constants τ_D. We have fitted only those regions of each of the two curves which are most nearly linear, avoiding the change in slope at higher intensities likely due to the finite concentration of PDE6 in each disk compartment (29). The value of τ_D is about 25% smaller in Grb14$^{+/−}$ rods.

In Table 1 we give values of τ_D, averaged from determinations made for individual rods. The values are similar to those estimated from the best fits to the means of T_{sat} in Fig. 4 and are significantly different (Student’s t-test, p < 0.05). We were unable to make a similar comparison for bleached rods, both because responses were smaller and T_{sat} measurements accordingly more difficult, and because the large desensitization of the rod produced by bleaching (see Fig. 3) had the effect that the range of light intensities over which T_{sat} measurements could be made extended into the range where values of T_{sat} become nonlinear with light intensity (29).

Previous experiments have shown that the rate of decay of mouse rod responses can also be accelerated by increased expression of either PDEγ (30) or GAP proteins (19,20). Although the data in Fig. 1 indicate that neither PDEγ nor any of the GAP proteins is over-expressed in Grb14$^{+/−}$ rods, we nevertheless reinvestigated this question in the experiment of Fig. 6. Here we present a concentration series of protein expression for R9AP, PDEγ, and actin. These data confirm our view that protein over-expression is not responsible for the kinetic changes we have observed.

DISCUSSION

Our experiments show that deletion of the Grb14 gene produces a clear effect on the response properties of mouse rods. Responses decay more rapidly, consistent with previous experiments indicating an effect of gene deletion on the sensitivity of rod outer-segment channels to cGMP (10). As the cGMP concentration in the rod recovers after a flash, channels in Grb14$^{+/−}$ rods open more rapidly and speed the increase in current back to baseline.

Some of our findings are however at variance with previous results. The experiments of Rajala and coworkers (6) found that Grb14 was nearly undetectable in dark-adapted rod outer segments either with immunohistochemistry or with cryosectioning, though subsequent experiments indicated a small concentration of the protein may be present (10); the protein then translocates and can be found at much higher concentration after bright light exposure. We were therefore surprised to discover a large effect of deletion of the Grb14 gene on response decay even in dark-adapted photoreceptors. One possible explanation of this result is that Grb14 is present in dark-adapted rod outer segments but at too low a concentration to be detected by the methods used in previous experiments (6). Although deletion of the Grb14 gene accelerated response decay in both dark-adapted and bleached rods, the results in Table 1 show that the effect was greater in bleached rods. In the case of T_{REC} for example, deletion of the Grb14 gene in dark-adapted rods reduced the mean value from 201 ms to 160 ms, for a decrease of 20%. In bleach-adapted rods on the other hand, the mean value fell from 142 ms to 66 ms, a decrease of 54%. The decreases in integration times were 32% for dark-adapted rods and 43% for bleach-adapted rods. It is possible that deletion of the Grb14 gene has a larger effect on bleached rods because the concentration of Grb14 is greater in the outer segments of WT rods which have been exposed to bright light (6).

Our experiments also indicate that the deletion of Grb14 shortens the time of rod response saturation (T_{sat}) and the limiting time constant τ_D (Fig. 5). Calculations based on the model of Gross et al. (31) show that an increase in channel affinity should shorten T_{sat} but should have no effect on τ_D (D. Tranchina, personal communication). The effect on τ_D suggests instead that Grb14 in WT rods may normally prolong the decay of light-activated PDE6. An effect on PDE decay could also explain most of the other effects we have observed in Grb14-deletion rods, including the acceleration of the exponential time constant of decay (τ_{REC}) and T_{sat}. Moreover an effect on PDE decay might explain why rod responses were accelerated even in dark-adapted rods, and why there was little difference in dark current between WT and Grb14$^{+/−}$ rods, a result that seems inconsistent with channel modulation.

We cannot exclude the possibility that deletion of Grb14 is having its principal or even its exclusive effect on PDE kinetics rather than on channel affinity. We have recently demonstrated that phosphorylated Grb14 is a competitive
inhibitor of insulin receptor-specific phosphatase, PTP1B (8). It is tempting to speculate that Grb14 may regulate the phosphorylation or dephosphorylation of PDE itself or some other transduction protein, which then alters PDE function. Although there is now considerable evidence for modulation of PDE6 (see 32), this evidence is for acceleration of PDE6 decay and not for its prolongation, and it is unclear how an effect of Grb14 can be reconciled with other evidence for light-dependent regulation of PDE6 recovery. Further studies are required to examine the possible interaction and effect of Grb14 on PDE6 activity.

Previous experiments have indicated that Grb14 interacts with the insulin receptor in rod outer segments (6). The experiments we report in this paper do not yet permit us to unravel the various mechanisms of activation of Grb14, the insulin receptor, or the tyrosine phosphatase PTP1B in the physiology of the rod. We plan additional experiments with animals whose rods specifically lack these other proteins, as well as from mice with rods having modified cGMP-gated channels, in order to shed more light on these intriguing phenomena and their role in the physiology of vision.

REFERENCES

1. Cariou, B., Bereziat, V., Moncoq, K., Kasus-Jacobi, A., Perdereau, D., Le Marcis, V., and Burnol, A. F. (2004) Regulation and functional roles of Grb14. *Front Biosci* 9, 1626-1636

2. Daly, R. J. (1998) The Grb7 family of signalling proteins. *Cell Signal* 10, 613-618

3. Cooney, G. J., Lyons, R. J., Crew, A. J., Jensen, T. E., Molero, J. C., Mitchell, C. J., Biden, T. J., Ormandy, C. J., James, D. E., and Daly, R. J. (2004) Improved glucose homeostasis and enhanced insulin signalling in Grb14-deficient mice. *EMBO J* 23, 582-593

4. Desbuquois, B., Carre, N., and Burnol, A. F. (2013) Regulation of insulin and type 1 insulin-like growth factor signaling and action by the Grb10/14 and SH2B1/B2 adaptor proteins. *The FEBS journal* 280, 794-816

5. Lin, R. C., Weeks, K. L., Gao, X. M., Williams, R. B., Bernardo, B. C., Kiriazis, H., Matthews, V. B., Woodcock, E. A., Bouwman, R. D., Mollica, J. P., Speirs, H. J., Dawes, I. W., Daly, R. J., Shioi, T., Izumo, S., Febbraio, M. A., Du, X. J., and McMullen, J. R. (2010) PI3K(p110 alpha) protects against myocardial infarction-induced heart failure: identification of PI3K-regulated miRNA and mRNA. *Arteriosclerosis, thrombosis, and vascular biology* 30, 724-732

6. Rajala, A., Daly, R. J., Tanito, M., Allen, D. T., Holt, L. J., Lobanova, E. S., Arshavsky, V. Y., and Rajala, R. V. (2009) Growth factor receptor-bound protein 14 undergoes light-dependent intracellular translocation in rod photoreceptors: functional role in retinal insulin receptor activation. *Biochemistry* 48, 5563-5572

7. Rajala, R. V., and Chan, M. D. (2005) Identification of a NPXY motif in growth factor receptor-bound protein 14 (Grb14) and its interaction with the phosphotyrosine-binding (PTB) domain of IRS-1. *Biochemistry* 44, 7929-7935

8. Basavarajappa, D. K., Gupta, V. K., Dighe, R., Rajala, A., and Rajala, R. V. (2011) Phosphorylated Grb14 is an endogenous inhibitor of retinal protein tyrosine phosphatase 1B, and light-dependent activation of Src phosphorylates Grb14. *Molecular and cellular biology* 31, 3975-3987

9. Rajala, R. V., Tanito, M., Neel, B. G., and Rajala, A. (2010) Enhanced retinal insulin receptor-activated neuroprotective survival signal in mice lacking the protein-tyrosine phosphatase-1B gene. *J Biol Chem* 285, 8894-8904

10. Gupta, V. K., Rajala, A., Daly, R. J., and Rajala, R. V. (2010) Growth factor receptor-bound protein 14: a new modulator of photoreceptor-specific cyclic-nucleotide-gated channel. *EMBO reports* 11, 861-867
11. Rajala, R. V., Woodruff, M., and Fain, G. (2013) Modulation of Mouse Rod cGMP-Gated Channels by Grb14 Investigative Ophthalmology and Visual Science 54, E-Abstract 2459
12. Li, G., Anderson, R. E., Tomita, H., Adler, R., Liu, X., Zack, D. J., and Rajala, R. V. (2007) Nonredundant role of Akt2 for neuroprotection of rod photoreceptor cells from light-induced cell death. J Neurosci 27, 203-211
13. Woodruff, M. L., Janisch, K. M., Peshenko, I. V., Dizhoor, A. M., Tsang, S. H., and Fain, G. L. (2008) Modulation of phosphodiesterase6 turnoff during background illumination in mouse rod photoreceptors. J Neurosci 28, 2064-2074
14. Chen, J., Woodruff, M. L., Wang, T., Concepcion, F., Tranchina, D., and Fain, G. L. (2010) Channel modulation and the mechanism of light adaptation in mouse rods. J Neurosci 30, 16232-16240
15. Chen, C. K., Woodruff, M. L., Chen, F. S., Chen, Y., Cilluffo, M. C., Tranchina, D., and Fain, G. L. (2012) Modulation of mouse rod response decay by rhodopsin kinase and recoverin. J Neurosci 32, 15998-16006
16. Nymark, S., Frederiksen, R., Woodruff, M. L., Cornwall, M. C., and Fain, G. L. (2012) Bleaching of mouse rods: microspectrophotometry and suction-electrode recording. J Physiol 590, 2353-2364
17. Woodruff, M. L., Lem, J., and Fain, G. L. (2004) Early receptor current of wild-type and transducin knockout mice: photosensitivity and light-induced Ca2+ release. J Physiol 590, 2353-2364
18. Pepperberg, D. R., Cornwall, M. C., Kahlert, M., Hofmann, K. P., Jin, J., Jones, G. J., and Ripps, H. (1992) Light-dependent delay in the falling phase of the retinal rod photoresponse. Vis Neurosci 8, 9-18
19. Chen, C. K., Woodruff, M. L., Chen, F. S., Chen, D., and Fain, G. L. (2010) Background light produces a recoverin-dependent modulation of activated-rhodopsin lifetime in mouse rods. J Neurosci 30, 1213-1220
20. Krispel, C. M., Chen, D., Melling, N., Chen, Y. J., Martemyanov, K. A., Quillinan, N., Arshavsky, V. Y., Wensel, T. G., Chen, C. K., and Burns, M. E. (2006) RGS Expression Rate-Limits Recovery of Rod Photoresponses. Neuron 51, 409-416
21. Field, G. D., and Rieke, F. (2002) Mechanisms regulating variability of the single photon responses of mammalian rod photoreceptors. Neuron 35, 733-747
22. Field, G. D., and Rieke, F. (2002) Nonlinear signal transfer from mouse rods to bipolar cells and implications for visual sensitivity. Neuron 34, 773-785
23. Pugh, E. N., Jr., and Lamb, T. D. (1993) Amplification and kinetics of the activation steps in phototransduction. Biochim Biophys Acta 1141, 111-149
24. Chen, C. K., Woodruff, M. L., Chen, F. S., Shim, H., Cilluffo, M. C., and Fain, G. (2010) Replacing the Rod with the Cone Transducin Alpha Subunit Decreases Sensitivity and Accelerates Response Decay. J Physiol 588, 3231-3241
25. Gordon, S. E., Downing-Park, J., and Zimmerman, A. L. (1995) Modulation of the cGMP-gated ion channel in frog rods by calmodulin and an endogenous inhibitory factor. J Physiol (Lond) 486, 533-546
26. Hsu, Y. T., and Molday, R. S. (1993) Modulation of the cGMP-gated channel of rod photoreceptor cells by calmodulin [published erratum appears in Nature 1993 Sep 16;365(6443):279] [see comments]. Nature 361, 76-79
27. Koutalos, Y., Nakatani, K., and Yau, K. W. (1995) The cGMP-phosphodiesterase and its contribution to sensitivity regulation in retinal rods. J Gen Physiol 106, 891-921
28. Nakatani, K., Koutalos, Y., and Yau, K. W. (1995) Ca2+ modulation of the cGMP-gated channel of bullfrog retinal rod photoreceptors. J Physiol (Lond) 484, 69-76
29. Martemyanov, K. A., Krispel, C. M., Lishko, P. V., Burns, M. E., and Arshavsky, V. Y. (2008) Functional comparison of RGS9 splice isoforms in a living cell. Proc Natl Acad Sci U S A 105, 20988-20993
30. Tsang, S. H., Woodruff, M. L., Chen, C. K., Yamashita, C. Y., Cilluffo, M. C., Rao, A. L., Farber, D. B., and Fain, G. L. (2006) GAP-Independent termination of photoreceptor light response by excess gamma subunit of the c-GMP-phosphodiesterase. J Neurosci 26, 4472-4480
31. Gross, O. P., Pugh, E. N., Jr., and Burns, M. E. (2012) Calcium feedback to cGMP synthesis strongly attenuates single-photon responses driven by long rhodopsin lifetimes. Neuron 76, 370-382
32. Fain, G. L. (2011) Adaptation of mammalian photoreceptors to background light: putative role for direct modulation of phosphodiesterase. Mol Neurobiol 44, 374-382

FOOTNOTES

We are grateful to Mr. Dustin T. Allen for his expert assistance in breeding and maintaining the animals used in this research, and to Daniel Tranchina (New York University) for doing model calculations on the effects of increasing the affinity of rod channels to cGMP. This work was supported by NIH/NEI grants EY016507 and EY00871 (to RVSR) and EY01844 (to GLF). Grb14−/− mice were kindly provided Dr. Roger Daly, Garvan Institute of Medical Research, Australia. The authors thank Dr. Robert S. Molday (University of British Columbia, Canada) for providing channel antibodies and Dr. Theodore G. Wensel (Baylor College of Medicine, Houston) for providing antibodies against RGS9-1, Gβ5, and R9AP.

FIGURE LEGENDS

Figure 1. Expression levels of transduction proteins in wild type and Grb14−/− animals. Ten micrograms of two independent retinal proteins were subjected to immunoblot analysis with antibodies against (A) Grb14, (B) CNGA1, (C) RGS9-1, (D) Gβ5L (also detects short form Gβ5S) and Gβ5S, (E) R9AP, (F) PDE6β, (G) PDE7, and (H) actin. (I) Densitometric analysis of 4 independent immunoblots was performed in the linear range of detection and absolute values were then normalized to actin. Values are mean ± SEM, (n=4). The wild-type was set as 100 percent. Student “t” test was used to show that there were no significant differences in the expression level of transduction proteins between wild type and Grb14−/− animals.

Figure 2. Rod responses to 20 ms flashes of 500 nm light for Grb14−/− and control rods under dark-adapted and bleach-adapted conditions. (A) Dark-adapted WT strain control at light intensities of 2.4,
8.0, 21, 70, 122, 220, 403, 733, 1430 and 2600 photons μm$^{-2}$. Traces are mean responses from 22 rods. (B) Responses of WT rods after 50% bleach. Light intensities were 70, 220, 733, 2600, 8620, and 22700 photons μm$^{-2}$. Traces are mean responses from 11 rods. (C) Flash responses for dark-adapted Grb14$^{-/-}$ at the same light intensities used for the dark-adapted WT rods. The traces are the mean of 10 rods. (D) Grb14$^{-/-}$ flash responses after 50% bleach at light intensities of 70, 122, 220, 403, 733, 1430, 2600, 4730, and 8620 photons μm$^{-2}$. Traces are the mean responses from 10 rods. Data in this and subsequent figures were acquired at 100 Hz and Bessel-filtered at 35 Hz.

Figure 3. The Grb14$^{-/-}$ and bleached rods have a more rapid rate of response recovery. (A) Superimposed means of responses to flash intensity of 730 photons μm$^{-2}$ for dark-adapted WT (black), dark-adapted Grb14$^{-/-}$ (red), bleached-adapted WT (blue) and bleach-adapted Grb14$^{-/-}$ (green). (B) The same traces as in A, normalized to show the kinetic difference in the recovery phases of the responses. (C) As in A but superimposed means are for flashes of intensity 220 photons μm$^{-2}$. Insert shows superimposed means for dark-adapted WT (black) and dark-adapted Grb14$^{-/-}$ (red) at flash intensity of 8 photons μm$^{-2}$. (D) Same traces as in C, normalized to show the kinetic difference in the recovery phases of the responses.

Figure 4. Response as a function of flash intensity Grb14$^{-/-}$ and WT rods under dark-adapted and bleach-adapted conditions. Data are from the rods of Fig. 2. Error bars give standard errors of the mean. Means have been fitted with exponential saturation function, $r = r_{max} \cdot [1 - \exp(-kI)]$, where r is the amplitude of the response, r_{max} is the maximum value of the response, I is the flash intensity, and k is a constant. Best fitting values were as follows: WT dark-adapted, $r_{max} = 13.7$, $k = 0.026$; Grb14$^{-/-}$ dark-adapted, $r_{max} = 14.7$, $k = 0.027$; WT bleach-adapted, $r_{max} = 4.7$, $k = 0.0019$; and Grb14$^{-/-}$ bleach-adapted, $r_{max} = 6.0$, $k = 0.0025$.

Figure 5. Grb14$^{-/-}$ rods have accelerated limiting time constant suggesting faster inactivation of PDE6. Time in saturation measured as time from beginning of flash to time at which current had recovered to 25% of its dark value (see Methods and Materials); means and SEMs for 18 WT rods and 15 Grb14$^{-/-}$ rods. Straight lines are best fitting slopes to means, giving values of the limiting time constant τ_D of 163 ms for WT and 122 ms for Grb14$^{-/-}$ rods. See also Table 1.

Figure 6. Concentration series of R9AP and PDEγ expression in retinal homogenates of wild type and Grb14$^{-/-}$ animals. For each line, 1.0, 2.5, 5.0 and 10.0 μg of protein was loaded, and subjected to immunoblot analysis with antibodies against (A) R9AP, (B) PDEγ, and (C) actin. The blots shown are
representative of three retinas examined from wild type and Grb14⁻/⁻ animals. Representative immunoblots quantifying the expression of (C) R9AP and (D) PDEγ in retinal homogenates of WT and Grb14⁻/⁻ animals. For each line, 1.0, 2.5, 5.0 and 10.0 μg of protein was loaded. Densitometric analysis of the R9AP and PDEγ immunoblots was performed in the linear range of detection and potted as values of band intensity versus protein concentration. Data are mean and SEM for 3 wild type and 3 Grb14⁻/⁻ animals. Ten microgram protein concentration of Wild type was set as 1.0. Student “t” test was used to show that there were no significant differences in the expression level of R9AP and PDEγ at different concentrations between wild type and Grb14⁻/⁻ animals.
Table 1

	r_{max}	S_f^D or S_F	t_i	τ_{REC}	τ_D
Control (23)	14.2 ± 0.6	0.32 ± 0.05	316 ± 25	201 ± 15	174 ± 11
Control bleached (11)	5.6 ± 0.7	0.005 ± 0.001	180 ± 30	142 ± 36	
Grb14^{−/−} (17)	14.7 ± 0.7	0.31 ± 0.03	215 ± 12	160 ± 12	118 ± 5
Grb14^{−/−} bleached (11)	6.4 ± 0.8	0.010 ± 0.002	102 ± 9	66 ± 5	

All values are means ± SE. Numbers in parentheses in first column give number of rods recorded. Values of r_{max} (maximum response amplitude) were determined cell by cell from responses to saturating flashes; S_f^D (dark-adapted flash sensitivity) or S_F (flash sensitivity of bleached rods), by dividing the peak amplitude of the mean dim-flash response for each cell by the flash intensity; t_i (the integration time), from the time integral of the mean dim-flash response for each cell divided by the peak amplitude of the response; τ_{REC} (response decay constant) by fitting a single exponential decay function to averaged responses of small-amplitude (less than 0.3 r_{max}); and τ_D (the limiting time constant) for dark-adapted rods as described in the Experimental Procedures.
Figure 1

Wild type	Grb14⁺
A	Grb14
B	CNGA1
C	RGS9-1
D	Gβ5_L
	Gβ5_S

Wild type	Grb14⁺
E	R9AP
F	PDE6β
G	PDEγ
H	Actin

I

Normalized Expression to Actin (%)

- Grb14
- Grb14⁺

Grb14	CNGA1	RGS9-1	Gβ5_L	Gβ5_S	R9AP	PDE6β	PDEγ
Figure 3

(A) Photocurrent (pA) vs Time (s)

(B) Normalized photocurrent vs Time (s)

(C) Close-up of (A) at a different time scale

(D) Close-up of (B) at a different time scale
Figure 4

![Graph illustrating the response (pA) of WT, WT 50% bleach, Grb14⁻/⁻, and Grb14⁻/⁻ 50% bleach as a function of flash intensity (photons μm⁻²). The graph shows a dose-response relationship with error bars indicating variability.]
Figure 5

Graph showing the relationship between Tsat (ms) and Ln flash intensity (photons μm$^{-2}$) for WT and Grb14$^{-/-}$.
Figure 6

Protein (µg)	Wild type	Grb14−/−
1.0		
2.5		
5.0		
10.0		

A

R9AP

B

PDEγ

C

Actin

D

R9AP

E

PDEγ

Density

Protein concentration (µg)

Protein concentration (µg)
