Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
12. Gnanasambandam R, Rivera A, Vandorpe DH, et al. Increased Red Cell KCN4 Activity in Sporadic Hereditary Xerocytosis Associated With Enhanced Single Channel Pressure Sensitivity of PIEZO1 Mutant V598M. HemaSphere. 2018;2(5):e55.

13. Iolascon A, Andollo L, Russo R. Advances in understanding the pathogenesis of red cell membrane disorders. Br J Haematol. 2019;187(1):13-24.

14. Carella M, Stewart G, Ajetumobi JF, et al. Genomewide search for dehydrated hereditary stomatocytosis (hereditary xerocytosis): mapping of locus to chromosome 16 (16q23-qter). Am J Hum Genet. 1998;63(3):810-816.

15. Roterdam MG, Fermo E, Becker N, et al. A novel gain-of-function mutation of Piezo1 is functionally affirmed in red blood cells by high-throughput patch clamp. Haematologica. 2019;104(5):e179-e183.

16. Ma Y, Zhao Y, Cai Z, Hao X. Mutations in PIEZO2 contribute to Gordon syndrome, Marden-Walker syndrome and distal arthrogryposis: A bioinformatics analysis of mechanisms. Exp Ther Med. 2019;17(5):3515-3524.

17. Cahalan SM, Lukacs V, Ranade SS, Chien S, Bandell M, Patapoutian A. Piezo1 links mechanical forces to red blood cell volume [abstract]. eLife. 2015;4. Abstract e07370.

18. Ma S, Cahalan S, LaMonte G, et al. Common PIEZO1 Allele in African Populations Causes RBC Dehydration and Attenuates Plasmodium Infection. Cell. 2018;173(2):443-455 e412.

19. Rapetti-Mauss R, Picard V, Guitton C, et al. Red blood cell Gardos channel (KCN4): the essential determinant of erythrocyte dehydration in hereditary xerocytosis. Haematologica. 2017;102(10):e415-e418.

20. Kaestner L, Bogdanova A, Egee S. Calcium Channels and Calcium-Regulated Channels in Human Red Blood Cells. Adv Exp Med Biol. 2020;1131:625-648.

21. Rode B, Shi J, Enders N, et al. Piezo1 channels sense whole body physical activity to reset cardiovascular homeostasis and enhance performance. Nat Commun. 2017;8(1):350.

22. Bae C, Sachs F, Gottlieb PA. The mechanosensitive ion channel Piezo1 is inhibited by the peptide GsMTx4. Biochemistry. 2011;50(29):6295-6300.

23. Shi J, Hyman AJ, De Vecchis D, et al. Sphingomyelinase disables PIEZO1 channel inactivation to enable sustained response to mechanical force [published online ahead of print 4 October 2019]. bioRxiv. doi:10.1101/792564.

24. Abed M, Towhid ST, Mia S, et al. Sphingomyelinase-induced adhesion of eryptotic erythrocytes to endothelial cells. Am J Physiol Cell Physiol. 2012;303(9):C991-C999.

25. Dinkla S, Wessels K, Verdumen WP, et al. Functional consequences of sphingomyelinase-induced changes in erythrocyte membrane structure. Cell Death Dis. 2012;3(10):e410.

DOI 10.1182/blood.2019004174 © 2020 by The American Society of Hematology

TO THE EDITOR:

Impact of anticoagulation prior to COVID-19 infection: a propensity score–matched cohort study

Douglas Tremblay,1 Maaike van Gerwen,2,3 Mathilda Alsen,2 Santiago Thibaud,1 Alaina Kessler,1 Sangeetha Venugopal,1 Iman Makki,1 Qian Qin,1 Sirish Dharmapuri,1 Tomi Jun,1 Sheena Bhalia,1 Shana Berwick,1 Jonathan Feld,1 John Mascarenhas,1 Kevin Troy,1 Caroline Cromwell,1 Andrew Dunn,4 William K. Oh,1 and Leonard Naymagon1

1Division of Hematology and Medical Oncology, Tisch Cancer Institute, 2Department of Otolaryngology-Head and Neck Surgery, 3Institute for Translational Epidemiology, and 4Division of Hospital Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY

Coronavirus disease 2019 (COVID-19) has emerged as a global pandemic associated with a strikingly high rate of morbidity and mortality.1,2 There is growing evidence that a pathophysiologic component of severe COVID-19 disease may be related to a provoked procoagulant state.3,4 High rates of thromboembolic complications of COVID-19 infection have been reported,7–11 and autopsy studies have identified evidence of macro- and microembolism in COVID-19–infected patients.12,13 Further, perturbations of coagulation markers, most notably dramatic elevations in D-dimer levels, have been noted among COVID-19 patients and have been associated with increased mortality.3,14

Empiric therapeutic anticoagulation (AC) is now being used in clinical practice at many centers and will be evaluated in randomized clinical trials; however, despite the rationale for therapeutic AC, the efficacy of such an approach remains largely untested. We sought to provide evidence for or against the use of therapeutic AC among these patients. To this end, we performed a retrospective analysis of patients with confirmed COVID-19, comparing outcomes among those who were and were not receiving AC for unrelated indications at the time of COVID-19 diagnosis. Our hypothesis was that AC prior to (and during the earliest stages of) COVID-19 infection would be protective for COVID-19–related outcomes.

We retrospectively reviewed all patients with laboratory-confirmed COVID-19 diagnosed across a large New York City health system between 1 March 2020 and 1 April 2020. Confirmed COVID-19 was defined by a positive result on a reverse transcriptase polymerase chain reaction severe acute respiratory syndrome coronavirus 2 assay. Hospitalized and ambulatory patients were included in the analysis. The primary outcome was all-cause mortality. Relevant secondary outcomes included hospitalization, need for invasive mechanical ventilation, new initiation of renal replacement therapy, imaging-confirmed thrombosis, and major (World Health Organization grade ≥3) bleeding.15 This study was approved by the Program for the Protection of Human Subjects of the Icahn School of Medicine at Mount Sinai and conducted in accordance with the Declaration of Helsinki.

To adjusted for bias due to nonrandom allocation of potential covariates among COVID-19 patients, we applied propensity score-matching methods.16 Propensity scores were calculated using a logistic regression model, adjusting for the following
covariates: age, sex, race, Charlson Comorbidity Index and obesity. A 1:3 match was performed using Greedy matching techniques. Two separate analyses, time-to-event analysis and event analysis, were performed for the outcomes all-cause mortality and mechanical ventilation. Event analysis only was performed for the outcome hospitalization. The results of time-to-event analyses were expressed as Kaplan-Meier curves, with significance indicated using a log-rank P value. Cox proportional-hazard models of all-cause mortality, mechanical ventilation, and hospitalization among the different propensity-matched comparisons groups with robust sandwich variance estimates of standard errors were performed, and the results are expressed as hazard ratios (HRs) with 95% confidence interval (CI).

We identified 4343 consecutive patients with laboratory-confirmed COVID-19 between 1 March 2020 and 1 April 2020. A total of 571 patients were excluded because they were younger than 18 years of age (n = 55) or had insufficient clinical documentation because they had been diagnosed at a rapid testing center (n = 516), resulting in a final study population of 3772 patients. There were 241 patients receiving AC, 672 patients receiving antiplatelet therapy, and 2859 patients not receiving AC or antiplatelet therapy at the time of COVID-19 diagnosis (Table 1). All patients in the AC group were continued on AC following COVID-19 diagnosis. Overall, 53.8% of patients required hospitalization, 13.8% required mechanical ventilation, and 15.0% died (Table 1).

We first performed a propensity-matched analysis of patients who were on AC prior to COVID-19 infection compared with those who were not on AC or antiplatelet therapy. Propensity matching yielded 139 patients who received AC and 417 patients who did not receive treatment, with balanced variables between the groups (supplemental Table 1, available on the Blood Web site). There was no statistically significant difference in survival (P = .367; Figure 1A) or time-to-mechanical ventilation (P = .742; Figure 1B) between the 2 groups. The HRs for all-cause mortality, mechanical ventilation, and hospital admission in the AC vs no-AC/antiplatelet groups were 1.208 (95% CI, 0.750-1.946), 0.905 (95% CI, 0.571-1.435), and 1.027 (95% CI: 0.654-1.612), respectively. We performed the same analysis but compared patients receiving antiplatelet therapy vs patients not receiving antiplatelet therapy or AC prior to COVID-19 infection (supplemental Table 2). Again, there was no statistically significant difference in survival (P = .997) or time-to-mechanical ventilation (P = .256) between the 2 groups (supplemental Figure 1). The HRs for all-cause mortality, mechanical ventilation, and hospital admission in the antiplatelet therapy group vs the no AC/antiplatelet group were 1.029 (95% CI, 0.862-1.224), 0.895 (95% CI, 0.608-1.300), and 0.967 (95% CI, 0.742-1.263), respectively.

Table 1. Baseline characteristics and outcomes of the study population

	Total population (N = 3772)	No AC or antiplatelets (n = 2859)	AC (n = 241)	Antiplatelets (n = 672)	P
Age, mean (SD), y	56.6 (18.2)	52.36 (17.6)	73.25 (13.6)	68.77 (12.4)	<.001
Males	2067 (54.8)	1533 (53.6)	133 (55.2)	401 (59.7)	.018
Race					
NHW	1036 (27.5)	792 (27.7)	89 (36.9)	155 (23.1)	<.001
NHB	979 (25.9)	712 (24.9)	69 (28.7)	198 (29.5)	
Other	1540 (40.8)	1186 (41.5)	68 (28.2)	286 (42.5)	
Unknown	217 (5.8)	163 (5.9)	15 (6.2)	33 (4.9)	
CCI, mean (SD)	1.13 (1.78)	0.67 (1.34)	2.96 (2.48)	2.45 (2.03)	<.001
Lung disease	562 (14.9)	392 (13.7)	52 (21.6)	118 (17.6)	<.001
Obesity	1066 (28.3)	740 (25.9)	89 (36.9)	237 (35.3)	<.001
Current smoker	155 (4.1)	115 (4.0)	11 (4.6)	29 (4.3)	<.001
Prior VTE	123 (3.3)	38 (1.3)	64 (26.6)	21 (3.2)	<.001
All-cause mortality	567 (15.0)	317 (11.1)	81 (33.6)	169 (25.2)	<.001
Intubation-mechanical ventilation	519 (13.8)	332 (11.6)	57 (23.7)	130 (19.4)	<.001
Hospital admission	2031 (53.8)	1321 (46.2)	200 (83.0)	510 (75.9)	<.001
New RRT	132 (3.5)	91 (3.2)	7 (2.9)	34 (5.1)	.051
Overt thrombosis	46 (1.2)	29 (1.0)	3 (1.2)	14 (2.1)	.076
Major bleeding	23 (0.6)	11 (0.4)	3 (1.2)	9 (1.3)	.007

Unless otherwise noted, all data are n (%).
CCI, Charlson Comorbidity Index; NHB, non-Hispanic black; NHW, non-Hispanic white; RRT, renal replacement therapy; SD, standard deviation; VTE, venous thromboembolism.
The ongoing uncertainty regarding the role of a procoagulant state in the pathophysiology of severe COVID-19 has led some to use AC as a therapeutic modality; however, rigorous data are lacking. In a cohort of 449 COVID-19 patients from Wuhan, China, prophylactic heparin was used in 99 patients and was associated with an improvement in mortality in a specific subgroup (those with a sepsis-induced coagulopathy score ≥4). However, the rate of prophylactic AC was low, and the reasoning behind its implementation patterns was not provided.

Given the absence of effective COVID-19–directed therapies to date, there remains great interest in unconventional or repurposed approaches. Therapeutic AC has been used in prior pandemics of respiratory viruses, such as H1N1 influenza. The findings of the present study are limited to an assessment of the impact of prediagnosis AC among patients with COVID-19 infection. Our study does not exclude the possibility that therapeutic AC may have a role among some patients with severe COVID-19 infection, particularly those who are critically ill. However, evaluation of this therapeutic strategy in a prospective randomized control trial is urgently needed to fully assess its efficacy and safety. Currently, the routine use of empiric therapeutic AC among patients with COVID-19 is not recommended by the American Society of Hematology. Although the findings described herein support this position, they do not rule out the possibility that, among some subgroups of COVID-19 patients, therapeutic AC following diagnosis may be of utility. Future research endeavors should be aimed at identifying these groups of patients.

There are several important limitations to the current study, including its retrospective nature. We examined all patients, both ambulatory and hospitalized; however, there are many patients carrying COVID-19 who were never tested and, therefore, were not evaluated in this analysis. Although we included a number of factors in our propensity score matching, there are factors that were not included that could impact mortality, need for mechanical ventilation, or hospitalization. We also did not examine the influence of interventions after patients were hospitalized, which could conceivably impact our outcomes (particularly with respect to in-hospital prophylactic AC). However, prediagnosis AC was not associated with a decreased rate of hospitalization, suggesting that AC does not protect against development of severe COVID-19 disease. It is also possible that, if thrombotic complications are more a feature of later-stage disease, studying exposure to AC early in the disease course may fail to detect latent benefit. Strengths of our study include a very large consecutive inclusive cohort during the peak of the COVID-19 pandemic, with clinically relevant exposures and outcomes, as well as a rigorous statistical analysis.

Our results suggest that AC alone is unlikely to be protective for COVID-19–related morbidity and mortality. Nevertheless, it bears reemphasizing that further studies, particularly prospective controlled trials, are needed to validate these findings and identify appropriate patients for whom therapeutic AC may be beneficial.

Acknowledgments
The authors acknowledge the Anticoagulation and COVID-19 Working Group at Mount Sinai for their input on thrombosis and COVID-19. They also acknowledge Teja Ganta for assisting with data collection.

Authorship
Contribution: D.T. and L.N. designed the study, analyzed the data, and wrote the manuscript; D.T., M.v.G., M.A., S.T., A.K., S.V., J.M., Q.Q., S.D., T.J., S. Bhalla, S. Berwick, J.F., and L.N. collected clinical data; M.v.G. and M.A. performed statistical analyses; J.M., K.T., C.C., A.D., and W.K.O. provided critical input and analysis; and all authors wrote and edited the manuscript.

Conflict-of-interest disclosure: J.M. has received research funding from CTI Biopharma. A.D. has received research funding from Pfizer/Bristol-Myers Squibb, served on the scientific advisory board for Bristol-Myers Squibb, and received an honorarium from Johnson & Johnson. W.K.O. has acted as a consultant for Astellas, AstraZeneca, Bayer, Janssen, Sanofi, Sema4, and TeneoBio. The remaining authors declare no competing financial interests.

ORCID profiles: D.T., 0000-0002-4719-7192; M.v.G., 0000-0002-0568-7388; S.T., 0000-0001-8454-5136; A.K., 0000-0001-9058-5118; I.M., 0000-0002-7260-7384; Q.Q., 0000-0003-0653-8920; S.D., 0000-0001-8178-430X; T.J., 0000-0002-2120-1704; J.M., 0000-0002-8400-0483; W.K.O., 0000-0001-5113-8147; L.N., 0000-0002-6312-1307.
Correspondence: Leonard Naymagon, Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Pl, Box 1079, New York, NY 10029; e-mail: leonard.naymagon@mountsinai.org.

Footnotes
Data sharing requests should be sent to Leonard Naymagon (leonard.naymagon@mountsinai.org).

The online version of this article contains a data supplement.

REFERENCES

1. Cucinotta D, Vanelli M. WHO declares COVID-19 a pandemic. Acta Biomed. 2020;91(1):157-160.
2. Wu Z, McGoogan J. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72,314 cases from the Chinese Center for Disease Control and Prevention. JAMA. 2020;323(13):1239.
3. Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020;18(4):844-847.
4. Thachil J, Tang N, Gando S, et al. ISTH interim guidance on recognition and management of coagulopathy in COVID-19. J Thromb Haemost. 2020;18(5):1023-1026.
5. Connors J, Levy J. COVID-19 and its implications for thrombosis and anticoagulation. Blood. 2020;135(23):2033-2040.
6. Levi M, Thachil J, Iba T, Levy J. Coagulation abnormalities and thrombosis in patients with COVID-19. Lancet Haematol. 2020;7(6):e438-e440.
7. Zhang Y, Xiao M, Zhang S, et al. Coagulopathy and antiphospholipid antibodies in patients with Covid-19. N Engl J Med. 2020;382(18):1708-1720.
8. Danzi G, Loffi M, Galeazzi G, Gherbesi E. Acute pulmonary embolism and COVID-19 pneumonia: a random association? Eur Heart J. 2020;41(19):1858.
9. Klok F, Kruip M, van der Meer N, et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19 [published online ahead of print 10 April 2020]. Thromb Res. doi:10.1016/j.thromres.2020.04.013.
10. Lodigiani C, Iapichino G, Carenzo L, et al. Humanitas COVID-19 Task Force. Venous and arterial thromboembolic complications in COVID-19 patients admitted to an academic hospital in Milan, Italy. Thromb Res. 2020;191:9-14.
11. Litijos J, Leclerc M, Chochois C, et al. High incidence of venous thromboembolic events in anticoagulated severe COVID-19 patients [published online ahead of print 22 April 2020]. J Thromb Haemost. doi:10.1111/jth.14869.
12. Wichmann D, Spiehake J, Lutgehetmann M, et al. Autopsy findings and venous thromboembolism in patients with COVID-19: a prospective cohort study [published online ahead of print 6 May 2020]. Ann Intern Med. doi:10.7326/M20-2003.
13. Dolhnikoff M, Duarte-Neto A, de Almeida Monteiro R, et al. Pathological evidence of pulmonary thrombotic phenomena in severe COVID-19 [published online ahead of print 15 April 2020]. J Thromb Haemost. doi:10.1111/jth.14844.
14. Guan W, Ni Z, Hu Y, et al; China Medical Treatment Expert Group for Covid-19. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382(18):1708-1720.
15. Miller A, Hoogstraten B, Staquet M, Winkler A. Reporting results of cancer treatment. Cancer. 1981;47(1):207-214.
16. Austin P. An introduction to propensity score methods for reducing the effects of confounding in observational studies. Multivariate Behav Res. 2011;46(3):399-424.
17. Obi A, Tignanelli C, Jacobs B, et al. Empirical systemic anticoagulation is associated with decreased venous thromboembolism in critically ill influenza A H1N1 acute respiratory distress syndrome patients [published correction appears in J Vasc Surg Venous Lymphat Disord. 2019;7(4):621]. J Vasc Surg Venous Lymphat Disord. 2019;7(3):317-324.
18. Jacobs B, Obi A, Arya S, et al. Is there an indication for therapeutic anticoagulation for venous thromboembolism (VTE) prophylaxis in critically ill H1N1 influenza A patients? Chest. 2012;142(4):234A.
19. Tang N, Bai H, Chen X, Gong J, Li D, Sun Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thromb Haemost. 2020;18(5):1094-1099.
20. American Society of Hematology. COVID-19 and VTE/anticoagulation: frequently asked questions. Available at: https://www.hematology.org/covid-19/covid-19-and-vte-anticoagulation. Accessed 1 May 2020.

DOI 10.1182/blood.2020006941

© 2020 by The American Society of Hematology