Montivipera bornmuelleri venom: inhibitory effect on *Staphylococcus epidermidis* and *Escherichia coli* F$_1$F$_0$-ATPases and cytotoxicity on HCT116 cancer cell lines

Milena Kfoury ¹, †, Charbel Mouawad ¹, †, Mariam Rifi ¹, Riyad Sadek ², Jean-Marc Sabatier ³, Hala Nehme ⁴, * and Ziad Fajloun ¹, ⁵, *

1 Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and its Applications, EDST, Lebanese University, 1300 Tripoli, Lebanon; milena_kfoury@hotmail.com; charbelmawad11@outlook.com; maryam.rifi8@gmail.com; zfajloun@gmail.com
2 Department of Biology, American University of Beirut, Beirut, Lebanon; rsadek@aub.edu.lb
3 Faculté de Médecine Secteur Nord, 51, Université Aix-Marseille, Institut de NeuroPhysiopathologie, UMR 7051, Boulevard Pierre Drammard-CS80011, 13344 Marseille Cedex 15, France; sabatier.jm1@gmail.com
4 Bioactive Molecules Research Laboratory, Faculty of Sciences, Section II, Lebanese University, B.P. 90656, Jdeidet El-Matin, Lebanon; hala.nehme@ul.edu.lb
5 Department of Biology, Faculty of Sciences, Section III, Lebanese University, Michel Slayman Tripoli Campus, Ras Maska 1352, Lebanon
† Equal contribution
* Correspondences: hala.nehme@ul.edu.lb (HN) and zfajloun@gmail.com (ZF)

Abstract: In this work, we pursued the biological characterization of the venom of *Montivipera bornmuelleri*, a viper from the Lebanese mountains. In relativity to its antibacterial potential, the inhibitory effect of this venom on the F$_1$F$_0$-ATPase enzymes of Gram-positive *Staphylococcus epidermidis* and Gram-negative *Escherichia coli* bacteria was examined. In order to determine the degree of cytotoxicity of the venom on the HCT116 human colon cancer cell lines, the biological MTT proliferation and cell viability test were implemented. After validation of the enzymatic F$_1$F$_0$-ATPase model by the spectrophotometric method, using quercetin as the reference ligand, results revealed that *M. bornmuelleri* venom is able to inhibit the activity of the enzyme of these two bacteria with a concentration of the order of 100-150 µg/mL. In addition, a venom concentration of 10 µg/mL was sufficient to kill the totality of HCT116 cell lines cultivated *in vitro*. These data show that *M. bornmuelleri* venom is a mixture of diverse molecules presenting activities of interest and is a potential source to explore in order to discover new drug candidates.

Keywords: *Montivipera bornmuelleri* snake venom; F$_1$F$_0$-ATPase; *Staphylococcus epidermidis*; *Escherichia coli*; antibacterial activity; HCT116 cells; anticancer activity

1. Introduction

Montivipera bornmuelleri (*M. bornmuelleri*) is a rather small, venomous snake (maximum length of 75 cm) belonging to the viperidae family [1,2]. It is endemic to the Mount Lebanon region, found only at high altitudes (above 1800 m) and listed as endangered by the IUCN due to its limited geographical range [2]. The venom of *M. bornmuelleri* is a mixture of different compounds, with the major being Phospholipase A2 (PLA2), serine-protease, metalloproteinase III [1] and L-amino oxidase (LAAO) [3] and certainly other various molecules unexplored to date. This venom as well as its components display a wide range of biological activities. In fact, crude venom of *M. bornmuelleri* possesses antibacterial activity against Gram-positive and Gram-negative bacteria [4], plays an anticancer effect against HaCaT cells [5], induces upregulation of pro-inflammatory cytokines [6], has pro- and anti-coagulant activities, indirect hemolytic activity [7] and a relaxant effect...
on vascular contractility [8]. As for its characterized components, PLA2 displays antibacterial, hemolytic, anticoagulant and pro-inflammatory activities [9] and the purified LAO from M. bornmuelleri venom shows also an anti-bacterial activity [3].

Since the discovery of penicillin in 1928 by Alexander Fleming [10], many bacteria developed resistance to one or more classes of antibiotics, rendering the treatment of bacterial infections increasingly difficult [11]. In fact, 25000 patients die annually in the EU due to infection by multidrug-resistant (MDR) bacteria, indicating that mortality rates are very high [10]. Therefore, the need for novel antibacterial agents has emerged, especially those based on new bacterial biological processes [11].

Staphylococcus epidermidis, a Gram-positive staphylococcus found on the human skin and mucosal surfaces [12], capable of forming biofilms and causing nosocomial infections [13] and *Escherichia coli*, a Gram-negative bacillus, a part of the mammalian gut microbiome, but also possessing pathological strains [14], both developed a resistance to antibiotics [13], [15] and both possess an F:0-F0-ATPase [16,17]. This membrane associated enzyme found in mitochondria, bacteria and thylakoids [18] consists of a membrane-bound F0 sector, a proton channel, and a soluble F1 sector. The soluble portion is responsible for both the hydrolysis and formation of ATP. Both activities are achieved by a rotary mechanism of the F0 and F1 sectors [19]. Its important role in cell life and death makes it an interesting target for new antimicrobial drugs [20].

Cancer has a high incidence and mortality, and both are increasing rapidly worldwide. Among the numerous human cancers, colon cancer is a major cause of death (9.2% mortality rate, after lung cancer) and has a very high incidence (10.2%) in both males and females, preceded by lung and female breast cancer [21]. Some of the current therapies used to treat this type of cancer include radical surgery, considered to be the most effective method of treatment and adjuvant chemotherapy (Palliative chemotherapy, anti-EGFR therapy and anti-angiogenic therapy) [22]. However, it is known that such treatments as chemotherapy have significant side effects and influence quality of life of patients. In fact, many patients express heavy concerns towards the known side effects of chemotherapy, such as loss of hair (50% of patients), constant fatigue (42% of patients) and disturbance of work duties (39% of patients) [23]. Some chemotherapeutic agents may even cause cardiotoxicity and other cardiac side effects [24]. As these types of treatments continue to prove unsatisfactory and even dangerous, it is important to continue screening for new anticancer medication and improved therapies to treat colon cancer. Since then, the search for a natural extract having a cytotoxic effect on the human colon cancer cell lines will undoubtedly contribute to the discovery of new molecules which could possibly be explored as drug-candidates for this type of cancer.

This work aims to assess *M. bornmuelleri* venom’s ability to inhibit two bacteria F:0-F0-ATPase, *S. epidermidis* and *E. coli* and its cytotoxic effect on the HCT116 colorectal cancer cell lines.

2. Materials and Methods

2.1. Reagents and chemicals

Extraction of the venom from *Montivipera bornmuelleri* snake was done by Dr. Riyad Sadek (American University of Beirut). The venom sample was stored at -20°C until use.

Adenosine 5’-triphosphate disodium salt hydrate ATP (99%), ammonium molybdate tetrahydrate (99%), dimethyl sulfoxide DMSO (99%), ethylenediaminetetraacetic acid disodium salt dehydrate EDTA (99%), potassium phosphate monobasic KH2PO4, Trizma base (99%) and quercetin (95%) were purchased from Sigma-Aldrich (Saint Louis, MO, USA). L-Ascorbic acid (99%) was provided by HiMedia (Mumbai, India) and Glycerol was
obtained from Loba Chemie (Mumbai, India). Magnesium chloride MgCl₂ was supplied by Acros organics (New Jersey, USA). Hydrochloric acid HCl and sulfuric acid H₂SO₄ (96.3%) were provided by VWR chemicals.

2.2. Bacterial cultures

Staphylococcus epidermidis (ATCC® 14990™) and *Escherichia coli* (ATCC® 25922™) were obtained from the American type culture collection ATCC (Manassas, VA, USA). Both bacterial strains are nonpathogenic and thus classified as biosafety level 1 (BSL-1). Nutrient broth and agar were purchased from CONDA (Madrid, Spain).

S. epidermidis: 50 µL from frozen stock tubes are inoculated on nutrient agar (NA) plates. 8-10 colonies of the bacteria from NA culture plates are inoculated in sterile tubes containing 10 mL TSB in order to prepare pre-cultures. Both plates and tubes are incubated for 48 hours with partial aeration at standard conditions and 37°C, and finally stored at 5°C until use.

E. coli: 2-3 colonies of the bacteria from NA culture plates are inoculated in 5 mL of nutrient medium (TSB) and incubated at 37°C for 18h, with slightly open caps. In order to determine the number of bacteria, a UV-VIS spectrophotometer is used to measure the optical density (OD) of the obtained pre-cultures at 620 nm. This value corresponds to the number of bacteria x 10⁹ (CFU/mL).

2.3. Preparation of the bacterial sample

In order to study the membrane-bound F₁F₀-ATPase, it must first be isolated from bacterial cells. The protocol used followed the method by Issa et al. [25] with some modifications. A volume of 500 µL of *S. epidermidis* bacterial suspension was centrifuged at 10000xg and 4°C for 10 minutes. Supernatant was removed and the pellet is resuspended in 500 µL of Tris-HCL (pH 8.5) then sonicated on ice 6 times for 30 seconds each, and 10 seconds of rest between each cycle. The suspension was again centrifuged at 10000xg and 4°C for 10 min and the supernatant removed. The obtained pellet contains the F₁F₀-ATPase enzyme.

Similarly, 500 µL of *E. coli* bacterial suspension was centrifuged at 10000xg and 4°C for 15 minutes. 400 µL of a Tris-HCL buffer (50 mM; pH 8.5) containing 4% (v/v) of EDTA was used to resuspend the pellet after the supernatant removed, followed by incubation for 10 minutes at room temperature. A volume of 100 µL of 4% (v/v) glycerol was added to the bacterial suspension. Next, a freeze-thaw cycle is performed on the suspension, which is then sonicated 3 times on ice for one-minute each. The suspension was lastly subjected to another centrifugation at 10000xg and 4°C for 15 minutes and the supernatant removed. The obtained pellet contains the F₁F₀-ATPase enzyme and was washed twice with Tris-HCL buffer (50 mM; pH 8.5) to remove glycerol and EDTA.

2.4. Phosphate quantification protocol

The hydrolysis of ATP by F₁F₀-ATPase leads to the formation of ADP and inorganic phosphate (Pi). The latter is used to quantify the enzymatic reaction. A linear regression showing absorbance values as a function of standard Pi solution concentrations ranging from 10 to 50 µM is used to deduce the concentration of Pi. Standard Pi solutions are prepared in tris-HCL buffer (50 mM, pH 8.5) and their concentrations are quantified using the method of Lowry et al. [26]. In each tube containing 1000 µL of the different Pi concentrations, and one tube containing 1000 µL of Tris-HCL buffer serving as a negative control, is added 100 µL of a 1% ammonium molybdate solution and the contents are thoroughly mixed, allowing the formation of a phosphomolybdic acid complex. After adding 100 µL of a 1% ascorbic acid solution to each tube and incubating for 10 min at
room temperature, a blue molybdous compound is formed. Both ammonium molybdate and ascorbic acid solutions are prepared in 0.25N of H$_2$SO$_4$. A spectrophotometer is used to measure the optical density of each tube at 700 nm. The assays for each Pi concentration were done in triplicate.

2.5. Study of the inhibition the membrane-bound S. epidermidis and E. coli ATP synthases by quercetin

After obtaining a pellet containing the isolated F$_1$F$_0$-ATPase enzyme as previously described in section 2.3, inhibitory assays was carried out using quercetin, a natural inhibitor of the enzyme, at different volumes, for both S. epidermidis and E. coli. The pellet was first resuspended in Tris-HCL buffer (50 mM; pH 8.5) and MgCl$_2$ (15 mM) and incubated at 37°C for 10 minutes. Then to each sample was added a different volume of quercetin solution so that different concentrations are obtained (1-500 µM) as well as 100 µM of ATP to start the reaction. The concentration of ATP used was saturating for the enzyme. Next, each tube was incubated at 37°C for 40 min, and 1% (v/v) of SDS was added to each sample in order to stop the reaction. The samples were then centrifuged at 10000xg for 10 minutes and finally the pellet was removed and the supernatant, containing the Pi released by the enzymatic reaction was tested as described in section 2.4 to study the inhibition of the enzyme. Two control tubes were prepared, one lacking the inhibitor quercetin to obtain the maximum activity of the enzyme, and one lacking both the inhibitor and ATP, was used as a blank. All tests were performed in triplicate.

Inhibitory concentration (IC$_{50}$) value of quercetin was calculated using GraphPad Prism (GraphPad Software, San Diego, USA). This was achieved by using a curve of the enzymatic activity (%) as a function of log of different concentrations of quercetin (µM).

2.6. Study of the potential inhibitory effect of M. bornmuelleri venom on the membrane-bound S. epidermidis and E. coli F$_1$F$_0$-ATPases

The pellet containing the isolated F$_1$F$_0$-ATPase as described in section 2.3 is tested with M. bornmuelleri venom as described in section 2.4 to study its effect on the enzyme. The same protocol was applied on both S. epidermidis and E. coli membrane-bound F$_1$F$_0$-ATPase: To each tube containing the membrane-bound enzyme are added different concentrations of M. bornmuelleri venom (0-200 µg/mL) prepared in Tris-HCL buffer (50 mM; pH 8.5), MgCl$_2$ (15 mM), Tris-HCL buffer (50 mM; pH 8.5) and lastly ATP (100µM, a saturating concentration) to start the reaction, and for a final volume of 1 mL for each tube. Samples are then incubated at 37°C for 40 minutes, and 1% (v/v) of SDS is added to each sample in order to stop the reaction. Lastly, the tubes are centrifuged at 10000xg and 4°C for 10 minutes. Two blanks, one containing Tris-HCL MgCl$_2$ and ATP and the other without ATP were prepared. A positive control tube, containing the enzyme, Tris-HCL, MgCl$_2$, and ATP was prepared to determine the maximum activity of the enzyme. All assays were done in triplicate.

For both bacteria, curves of the enzymatic activity (%) as a function of different concentrations of the venom (µg/mL) are established.

2.7. HCT116 Cell culture

To the medium used for HCT116 Cell line culture were added 1% Penicillin Streptomycin (100 U·mL$^{-1}$) and 10% heat-inactivated fetal bovine serum (FBS) in order to amplify it. DMEM acquired at Sigma Aldrich (Gibco Dulbecco’s Modified Eagle Medium) was used to culture the HCT116 Cell line at 37°C in a humidified atmosphere with 5% CO$_2$ and 95% air.
2.8. Cellular viability assay

The MTT test for cellular viability was performed as follows: 96 well plates were used to seed HCT116 cells at a density of 10^4 cells/well, when they reached 60-80% confluency the cells were treated for 24 hours and experiments were carried out with different concentrations of the venom extract. The medium was then discarded and to each well was added 100 µL of MTT solution. Finally, the absorbance was measured by ELISA READER at 570 nm. All tests were done in triplicate.

2.9. Statistical Analysis

Data were analyzed using GraphPad Prism (GraphPad Software, San Diego, USA) and represented mean ± SD of at least 3 independent experiments performed in triplicate for each condition. One Way ANOVA test were performed. Differences were considered significant at $p < 0.05(\ast)$, $p < 0.01(\ast\ast)$, $p < 0.001(\ast\ast\ast)$ and $p < 0.0001(\ast\ast\ast\ast)$.

3. Results

3.1. Validation of the phosphate dosage method

The linearity of measurement of the inorganic phosphate (Pi) resulting from the ATP hydrolysis during the enzymatic reaction catalyzed by F$_1$F$_0$-ATPase enzyme is essential to achieve quantitative analysis on the assays. So, a suitable colorimetric method was chosen as previously described by Lowry et al 1945 [26] with some optimizations elaborated previously by our team [27]. Experiments were performed with solutions of low concentrations of Pi of 10, 20, 30, 40 and 50 µM.

Results represented in Figure 1 show a positive linear correlation between the optic density (OD) and the Pi concentration ($R^2 > 0.9954$) with a good repeatability of the measurements since the relative standard deviation (RSD %) is less than 3% for each standard Pi solution assayed in triplicate. This regression will be used to quantify the Pi released during enzymatic assays catalyzed by the S. epidermidis and E. coli membrane-bound F$_1$F$_0$-ATPases.

![Figure 1. Linearity of the Pi dosage. Standard Pi solutions of 10 µM to 50 µM prepared in tris-HCl buffer (pH = 8.5; 50 mM). Incubation time: 10 min. $\lambda = 700$ nm. Error bars show the standard deviation obtained from experiments done in triplicate.](image)

3.2. Screening of the reference inhibitor quercetin on S. epidermidis and E. coli F$_1$F$_0$-ATPase enzymes
The natural quercetin was chosen as reference inhibitor of the two bacteria F1F0-ATPases in order to validate the experimental model. The dose–response curves representing the enzymatic activity (%) of *S. epidermidis* and *E. coli* F1F0-ATPases as a function of log of reference inhibitor concentrations are represented in Figure 2. a and b, respectively. The corresponding IC50 values obtained are 24.2 ± 2.2 μM for *S. epidermidis* and 30.0 ± 1.5 μM for *E. coli*. These values are in good agreement with those reported in literature [28] which validate the developed method. Good repeatabilities were obtained on assays with RSD < 5% for both bacteria.

3.3. Effect of the *M. bornmuelleri* venom on the membrane *S. epidermidis* and *E. coli* F1F0-ATPase enzymes

The *M. bornmuelleri* venom test on the membrane *S. epidermidis* and *E. coli* F1F0-ATPase enzymes shows that this extract is a potentially active inhibitor on those enzymes. In fact, seven concentrations in μg/ml of *M. bornmuelleri* venom were tested (2.5, 5, 10, 25, 50, 100, 200). When the snake venom concentration increases, the enzyme activity for the two strains of bacteria Gram-positive *S. epidermidis* and Gram-negative *E. coli* decreases and reaches a plateau with a minimum enzymatic activity of approximately 20% (maximum inhibition of 80%) (Figure 2, c and d).

![Figure 2](image_url)

Figure 2. Effect of the *M. bornmuelleri* venom on the F1F0-ATPase enzymatic activities of *S. epidermidis* and *E. coli* bacteria strains. The IC50 of the quercetin -used as an inhibitory reference ligand- on the enzymes are showed. (a) Dose-response curve representing the enzymatic activity (%) of *S. epidermidis* F1F0-ATPase as a function of the log of the concentration of quercetin. (b) Dose-response curve representing the enzymatic activity (%) of *E. coli* F1F0-ATPase as a function of the log of the concentration of quercetin. (c) Histogram showing the enzymatic activity (%) of the *M. bornmuelleri* venom on the membrane *S. epidermidis* F1F0-ATPase. (d) Histogram showing the enzymatic activity (%) of the *M. bornmuelleri* venom on the membrane *E. coli* F1F0-ATPase. For the four graphs represented here, the error bars show the standard deviation obtained from experiments done in triplicate. Data
are expressed as mean ± SD (n = 3). Quercetin was used as a positive control. One-way ANOVA-test: ns (no significant), * p < 0.05; *** p < 0.001 when compared with the control. The M. bornmuelleri venom exerts a dose dependent inhibition on ATPase activity.

3.4. Effect of the M. bornmuelleri venom on HCT116 cancer cell lines

The cytotoxic activity of M. bornmuelleri on human cancer HCT116 cells was examined using MTT (bromure de 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium) assay. Cancer cells were exposed to increasing concentrations of M. bornmuelleri venom (0.5, 1, 2.5, 5, 10, 50 and 50 µg/mL) for 24h. Results were expressed as the percentage of cell viability in comparison with the untreated control cells with 100% of viability. The data showed that the M. bornmuelleri venom inhibits the total cell viability of HCT116 cells with a low concentration of 10 µg/mL of the M. bornmuelleri venom. In fact, this concentration was able to induce a significant decrease in cell viability (95 % of viability) in comparison to the control (Figure 3, a). The results reveal the strong cytotoxic effect of the Lebanese snake M. bornmuelleri venom on HCT116 cells with an IC₅₀ of 6.9 µg/mL calculated by Prism software (Figure 3, b).

![Figure 3. Cell viability of HCT116 colon cancer cells was measured by MTT assay after treatment with increased concentrations of M. bornmuelleri venom. (a) Results are expressed as mean ± SD of three independent experiments (n=3). One-way ANOVA-test: ns (no significant), **** p < 0.0001 when compared with the control. At 10, 50 and 100 µg/mL, the M. bornmuelleri venom showed a high cytotoxic activity against HCT116 cancers cells. (b) Curves for MTT assay showing IC₅₀ values and the % of cell viability in function of concentrations M. bornmuelleri venom.](image)

4. Discussion

Montivipera bornmuelleri is among three viper species found in Lebanon and inhabiting mountainous regions at altitudes above 1800 m [2]. Our previous studies aimed to characterize this snake and its venom in order to prove its important therapeutic applications. Indeed, an ecological study found that the snake prefers rocky regions with few thorny cushion plants and its maximum size is around 60 cm [2]. Its venom was analyzed and it was shown that it contains mainly three enzymes: PLA₂, Metalloprotease III and serine protease, which possess many biological activities. In fact, the venom displayed both pro- and anti-coagulant activities depending on its concentration, as well as indirect hemolytic activity, possibly due to the presence of PLA₂ [7]. It was shown by in vivo experiments on mice that it induced an up-regulation of pro-inflammatory cytokines (INF-γ, TNF-α, IL-1β, IL-4 and IL-17) while also down-regulating the anti-inflammatory cytokine IL-10 [6]. In addition, the M. bornmuelleri venom exhibits antibacterial effect against both Gram-positive and Gram-negative bacteria, as well as antifungal activity [4]. Moreover, given the resistance to antibiotics of a multitude of bacteria and now more than ever, the need to discover new antibacterial agents [37] such as those capable of acting on the
F:Fo-ATPase enzymes which are essential for the pathogenic microorganisms survival, we were interested in testing the venom effect of *M. bornmuelleri* on the F:Fo-ATPases of bacteria from both Gram-positive (*S. epidermidis*) and Gram-negative (*E. coli*) genera. In agreement with our previous results [4], we found here that the venom inhibited the activity of the F:Fo-ATPase enzyme presented in the membranes of these two bacteria. This membrane-bound enzyme plays an important role in cell life and death by both synthesizing and hydrolyzing ATP. Since ATP deprivation is linked to cell death [20], *M. bornmuelleri* venom having the ability to inhibit the activity of this enzyme translates its ability as an effective antimicrobial agent. Thus, we showed that this crude venom managed to reduce the enzymatic activity to a minimum of 20% at concentrations of 100 to 150 µg/mL. However, this inhibitory effect was only assayed on isolated F:Fo-ATPase of both bacteria, and not on total cells. The ability of the venom to inhibit the ATPase of Gram-negative bacteria, which are more resistant to antibiotics than Gram-positive ones due to the presence of an outer membrane that must be passed by drugs to attain their target [29], with the same level of inhibition (maximum of 80%) than Gram-positive bacteria confirms it a broad spectrum of activity and an important property. Indeed, it can be used against both types of bacteria instead of acting against only one, and this expands its potential applications. Another potential benefit for this activity, is the fact that the transfer of antibiotic resistance genes is possible between Gram-positive and Gram-negative bacteria [30] or between the same types of bacteria, such as *S. epidermidis* which is able to transfer these genes to *S. aureus*, and thus spread antibiotic resistance [13], so an antibacterial agent that is not susceptible to resistance by the various bacteria proves to be even more useful. PLA2, an enzyme purified from *Protobothrops mucrosquamatus* snake venom is able to control both Gram-positive (*Bacillus subtilis*) and Gram-negative (*Pseudomonas aeruginosa*) bacterial strains [31]. Metalloproteinase isolated from *Asgkistrodon halys*, inhibited also Gram-positive (*Staphylococcus aureus*) and Gram-negative (*Proteus vulgaris*) bacteria [32]. LAAO, purified from *Bothriechis schlegelii* venom exerts too an inhibitory effect against both Gram-positive (*S. aureus*) and Gram-negative (*Acinetobacter baumannii*) bacteria [33]. All of these enzymes are found in *M. bornmuelleri* venom and could be responsible for its antibacterial activity, which is in accordance with these findings in the literature [2].

In terms of cytotoxicity, our previous studies showed that the *M. bornmuelleri* venom has a specific cytotoxicity against benign A5 and low-grade malignant II4 cancer cell lines, which was higher than that observed with HaCaT keratinocytes [5] as well as B16 skin melanoma cells and 3-MCA-induced murine fibrosarcoma cell lines, which were more sensitive to the venom when overexpressing ovalbumin. However, it did not manage to reduce tumor size *in vivo* [34]. It has been shown that the venom possesses a vasorelaxant effect on K⁺ depolarized smooth muscle and inhibits the contraction of smooth muscle tissue induced by CaCl₂, phenylephrine and AngI [8] but did not have a strong cytotoxicity towards human erythrocytes [3]. Here, different concentrations of the crude venom of *M. bornmuelleri* were tested against human colon cancer cell line HCT116 and it was found that a low concentration of 10 µg/mL was able to totally reduce cancer cell viability (by 95%) compared to untreated control cells and with an IC₅₀ value of 6.9 µg/mL. This is in agreement with the literature, where the snake venom toxin from *Vipera lebetina turanica* was also tested on HCT116 colon cancer cells and reduced their viability with an IC₅₀ value of 1.14 µg/mL. This cell growth inhibition was achieved by inducing apoptosis in the treated cells through increase in ROS generation, upregulation of death receptors DR4 and DR5, cleavage of caspases-3, 8 and 9 and activation of the JNK pathway [35]. *M. bornmuelleri* venom could act through similar pathways and it would be beneficial to elucidate its mechanism of action in future studies. In addition, crude venom from the Malaysian *Cryptelytrops purpureomaculatus* demonstrated cytotoxic activity in SW480 and SW620 colon cancer cell lines with EC₅₀ values of 29.43 µg/mL and 23.19 µg/mL respectively, which
is in good agreement with our results. In this study, LAAO was also isolated from the venom and decreased the viability of the SW480 and SW620 colon cancer cell lines with lower EC50 values of 13.56 µg/mL and 13.17 µg/mL respectively through apoptosis [36]. The purification of a single component from *M. bornmuelleri* venom in order to test it on HCT116 cells could similarly prove to possess an enhanced cytotoxic effect compared to the crude venom. However, another study in which Malaysian mangrove pit viper *Tri- mersurus purpureomaculatus* venom was assayed on HT-29 colon cancer cell lines, showed that viability was reduced with a low IC50 value of 0.42 µg/mL, suggesting that high cytotoxicity could result from synergistic interactions between various compounds present in the venom instead of only one component. Indeed, the different fractions obtained by HPLC had demonstrated each variable cytotoxic activity [37]. Since colon cancer is a major cause of cancer-related death and its incidence and mortality are increasing quickly [21], and its treatment faces the problem of the resistance of this disease to chemotherapy [38], which is also unsatisfactory since it has many adverse side effects and lowers quality of life of patients [23], finding new treatments for this life-threatening disease is an important step that must be taken to improve public health, and natural sources such as snake venoms, and specifically *M. bornmuelleri* venom as we showed in this study, prove to be of special interest to discover such therapeutic agents.

Author Contributions: Conceptualization, H.N. and Z.F.; methodology, M.K., C.M. M.R. and R.S.; software, C.M. and Z.F.; formal analysis, H.N. and Z.F.; investigation, Z.F., H.N. and J.M.S.; resources, Z.F.; writing—original draft preparation, M.K.; writing—review and editing, H.N. and Z.F.; supervision, Z.F.; project administration, Z.F.; funding acquisition, Z.F. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Lebanese University.

Acknowledgments: We gratefully thank Mrs Lara Bitar and Rim Wehbe for their significant discussion and help. We thank also all the research assistants of the LBA3B laboratory for their attribution on this work.

Conflicts of Interest: The authors declare no conflict of interest.

References

[1] M. Rima, S. M. A. Naini, M. Karam, R. Sadek, J. M. Sabatier, and Z. Fajloun, “Vipers of the Middle East: A rich source of bioactive molecules,” *Molecules*, vol. 23, no. 10, 2018, doi: 10.3390/molecules23102721.

[2] S. Hraoui-bloquet, R. Sadek, W. Hleihel, and Z. Fajloun, “An ecological study of the Lebanon mountain viper *Montivipera Bornmuelleri* Werner, 1898 with a preliminary biochemical characterization of its venom,” no. April 2015.

[3] M. Rima et al., “Identification of L-Amino Acid Oxidase (Mb-LAAO) with Antibacterial Activity in the Venom of Montivipera bornmuelleri, a Viper from Lebanon,” *Infect. Disord. - Drug Targets*, vol. 13, no. 5, pp. 337–343, 2014, doi: 10.2174/18715265130150403122334.

[4] Accary C, Hraoui-Bloquet S, Hamze M, Mallem Y, El Omar F, Sabatier JM, Desfotis JC, Fajloun Z. “Protein Content Analysis and Antimicrobial Activity of the Crude Venom of Montivipera bornmuelleri; a Viper from Lebanon,” *Infect. Disord. - Drug Targets*, vol. 14, no. 1, pp. 49–55, 2014, doi: 10.2174/1871526514666140522114754.

[5] Sawan S, Yaacoub T, Hraoui-Bloquet S, Sadek R, Hleihel W, Fajloun Z, Karam M. “Montivipera bornmuelleri venom selectively exhibits high cytotoxic effects on keratinocytes cancer cell lines,” *Exp. Toxicol. Pathol.*, vol. 69, no. 4, pp. 173–178, 2017, doi: 10.1016/j.etp.2017.01.001.

[6] T. Yacoub, M. Rima, R. Sadek, W. Hleihel, Z. Fajloun, and M. Karam, “Montivipera bornmuelleri venom has immunomodulatory effects mainly up-regulating pro-inflammatory cytokines in the spleens of mice,” *Toxicol. Reports*, vol. 5, no. October 2017, pp. 318–323, 2018, doi: 10.1016/j.toxrep.2018.02.011.
C. Accary, M. Rima, A. Kouzayha, W. Hleihel, R. Sadek, J. C. Desfontis, Z. Fajloun, S. Hraoui-Bloquet. “Open Journal of Hematology,” no. June 2015, 2014, doi: 10.13055/ohjmt.

C. Accary, C. Hraoui-Bloquet S, Sadek R, Alameddine A, Fajloun Z, Desfontis JC, Mallem Y. “The relaxant effect of the Montivipera bornmuelleri snake venom on vascular contractility.” J. Venom. Res., vol. 7, no. February, pp. 10–15, 2016, [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/27826409%0Ahttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMCS074800.

C. Accary, A. Mantash, Y. Mallem, Z. Fajloun, and A. Elkak, “Separation and biological activities of phospholipase A2 (Mb-PLA2) from the venom of montivipera bornmuelleri, a lebanese viper,” J. Liq. Chromatogr. Relat. Technol., vol. 38, no. 8, pp. 833–839, 2015, doi: 10.1080/10826076.2014.968660.

R. I. Aminov, “A brief history of the antibiotic era: Lessons learned and challenges for the future,” Front. Microbiol., vol. 1, no. DEC, pp. 1–7, 2010, doi: 10.3389/fmicb.2010.00134.

A. J. Alanis, “Resistance to antibiotics: Are we in the post-antibiotic era?,” Arch. Med. Res., vol. 36, no. 6, pp. 697–705, 2005, doi: 10.1016/j.arcmed.2005.06.009.

Namvar AE, Bastarahang S, Abbasi N, Ghehi GS, Farhadbakhtiarian S, Arezi P, Hosseini M, Baravati SZ, Jokar Z, Chermahiin SG. “Clinical characteristics of Staphylococcus epidermidis: a systematic review.”, GMS Hyg. Infect. Control, vol. 9, no. 3, p. Doc23, 2014, doi: 10.3205/dghk000243.

K. Penelitian, “Strategi Implementasi..., Baragina Widyaningrum, Program Pascasarjana, 2008,” Nat Rev Microbiol, vol. 7, no. 8, pp. 555–567, 2008, doi: 10.1038/nrmicro2182.Staphylococcus.

Z. D. Blount, “The unexhausted potential of E. coli,” Elife, vol. 4, pp. 1–12, 2015, doi: 10.7554/eLife.05826.

Reinthaler FF, Posch J, Feierl G, Wüst G, Haas D, Ruckenbauer G, Mascher F, Marth E. “Antibiotic resistance of E. Coli in sewage and sludge,” Water Res., vol. 37, no. 8, pp. 1685–1690, 2003, doi: 10.1016/S0043-1354(02)00569-9.

J. Hermolin and R. H. Fillingame, “H+-ATPase activity of Escherichia coli F1F0 is blocked after reaction of dicyclohexylcarbodiimide with a single proteolipid (subunit c) of the F0 complex,” J. Biol. Chem., vol. 264, no. 7, pp. 3896–3903, 1989, doi: 10.1016/s0021-9258(19)84937-2.

C. Uribe-Alvarez, N. Chiquete-Félix, M. Contreras-Zentella, S. Guerrero-Castillo, A. Peña, and S. Uribe-Carvajal, “Staphylococcus epidermidis: Metabolic adaptation and biofilm formation in response to different oxygen concentrations,” Pathog. Dis., vol. 74, no. 1, pp. 1–15, 2018, doi: 10.1093/femsdp/ftv111.

S. Hong and P. L. Pedersen, “ATP Synthase and the Actions of Inhibitors Utilized To Study Its Roles in Human Health, Disease, and Other Scientific Areas,” Microbiol. Mol. Biol. Rev., vol. 72, no. 4, pp. 590–641, Dec. 2008, doi: 10.1128/mmbrr.00016-08.

R. J. Devenish, M. Prescott, and A. J. W. Rodgers, “The Structure and Function of Mitochondrial F1F0-ATP Synthases,” International Review of Cell and Molecular Biology, vol. 267. Academic Press, pp. 1–58, Jan. 01, 2008, doi: 10.1016/S1937-6448(08)00601-1.

S. Nesci, F. Trombetti, C. Algieri, and A. Pagliarani, “A Therapeutic Role for the F1F0-ATP Synthase,” SLAS Discovery, vol. 24, no. 9, SAGE Publications Inc., pp. 893–903, Oct. 01, 2019, doi: 10.1177/2472555219860448.

F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre, and A. Jemal, “Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries,” CA. Cancer J. Clin., vol. 68, no. 6, pp. 394–424, 2018, doi: 10.3322/caac.21492.

Shen H, Yang J, Huang Q, Jiang MJ, Tan YN, Fu JF, Zhu LZ, Fang XF, Yuan Y. “Different treatment strategies and molecular features between right-sided and left-sided colon cancers,” World J. Gastroenterol., vol. 21, no. 21, pp. 6470–6478, 2015, doi: 10.3748/wjg.v21.i21.6470.

Lindley C, McCune JS, Thomason TE, Lauder D, Sauls A, Adkins S, Sawyer WT. “Perception of Chemotherapy Side Effects Cancer versus Noncancer Patients,” Cancer Pract., vol. 7, no. 2, pp. 59–65, 1999.

J. J. Monsuez, J. C. Charniot, N. Vignat, and J. Y. Artigou, “Cardiac side-effects of cancer chemotherapy,” Int. J. Cardiol., vol. 144,
D. Issa, A. Najjar, H. Greige-Gerges, and H. Nehme, “Screening of Some Essential Oil Constituents as Potential Inhibitors of the ATP Synthase of Escherichia coli,” J. Food Sci., vol. 84, no. 1, pp. 138–146, Jan. 2019, doi: 10.1111/1750-3841.14421.

“The determination of inorganic phosphate in the presence of labile phosphate esters - PubMed.” https://pubmed.ncbi.nlm.nih.gov/21018750/ (accessed May 30, 2021).

H. Nehme, H. Ayde, D. El Obeid, J. M. Sabatier, and Z. Fajloun, “Potential inhibitory effect of apis mellifera’s venom and of its two main components—melittin and pla2—on escherichia coli f1f0-ATPase,” Antibiotics, vol. 9, no. 11, pp. 1–14, 2020, doi: 10.3390/antibiotics9110824.

P. K. Dadi, M. Ahmad, and Z. Ahmad, “Inhibition of ATPase activity of Escherichia coli ATP synthase by polyphenols,” Int. J. Biol. Macromol., vol. 45, no. 1, pp. 72–79, Jul. 2009, doi: 10.1016/j.ijbiomac.2009.04.004.

Z. Breijyeh, B. Jube, and R. Karaman, “Resistance of gram-negative bacteria to current antibacterial agents and approaches to resolve it,” Molecules, vol. 25, no. 6, MDPI AG, Mar. 02, 2020, doi: 10.3390/molecules25061340.

P. Courvalin, “Aac00371-0003,” vol. 38, no. 7, pp. 1447–1451, 1994.

N. G. De Oliveira Junior, M. H. E Silva Cardoso, and O. L. Franco, “Snake venoms: Attractive antimicrobial proteinaceous compounds for therapeutic purposes,” Cell. Mol. Life Sci., vol. 70, no. 24, pp. 4645–4658, 2013, doi: 10.1007/s00018-013-1345-x.

R. P. Samy, P. Gopalakrishnakone, V. T. K. Chow, and B. Ho, “Viper metalloproteinase (Agkistrodon halys Pallas) with antimicrobial activity against multi-drug resistant human pathogens,” J. Cell. Physiol., vol. 216, no. 1, pp. 54–68, 2008, doi: 10.1002/jcp.21373.

M. I. Alam, O. R, A. MA, Q. H, and A. O, “Therapeutic potential of snake venoms as antimicrobial agents,” Front. Drug, Chem. Clin. Res., vol. 2, no. 4, pp. 1–9, 2019, doi: 10.15761/fdcr.1000136.

Haddoub C, Rima M, Heurtebise S, Lawand M, Jundi D, Sadek R, Amigorena S, Fajloun Z, Karam MC. “Cytotoxic effect of Montivipera bornmuelleri’s venom on cancer cell lines: In vitro and in vivo studies,” PeerJ, vol. 8, no. October, 2020, doi: 10.7717/peerj.9909.

Park MH, Jo M, Won D, Song HS, Han SB, Song MJ, Hong JT. “Snake venom toxin from vipera lebetina turanica induces apoptosis of colon cancer cells via upregulation of ROS- and JNK-mediated death receptor expression,” BMC Cancer, vol. 12, no. 1, p. 1, 2012, doi: 10.1186/1471-2407-12-228.

S. A. Z. Abidin, P. Rajadurai, E. H. Chowdhury, I. Othman, and R. Naidu, “Cytotoxic, anti-proliferative and apoptosis activity of l-amino acid oxidase from malaysian cryptelytrops purpureomaculatus (cp-laao) venom on human colon cancer cells,” Molecules, vol. 23, no. 6, 2018, doi: 10.3390/molecules23061388.

C. H. Tan, J. L. Liew, S. Navanesan, K. S. Sim, N. H. Tan, and K. Y. Tan, “Cytotoxic and anticancer properties of the Malaysian mangrove pit viper (Trimeresurus purpureomaculatus) venom and its disintegrin (purpureomaculin),” J. Venom. Anim. Toxins Incl. Trop. Dis., vol. 26, no. May 2020, pp. 1–14, 2020, doi: 10.1590/1678-9199-JVATITD-2020-0013.

L. Galligan, D. B. Longley, M. McEwan, T. R. Wilson, K. McLaughlin, and P. G. Johnston, “Chemotherapy and TRAIL-mediated colon cancer cell death: The roles of p53, TRAIL receptors, and c-FLIP,” Mol. Cancer Ther., vol. 4, no. 12, pp. 2026–2036, Dec. 2005, doi: 10.1158/1535-7163.MCT-05-0262.