Software

phenosim - A software to simulate phenotypes for testing in genome-wide association studies

Torsten Günther*, Inka Gawenda and Karl J Schmid

Abstract

Background: There is a great interest in understanding the genetic architecture of complex traits in natural populations. Genome-wide association studies (GWAS) are becoming routine in human, animal and plant genetics to understand the connection between naturally occurring genotypic and phenotypic variation. Coalescent simulations are commonly used in population genetics to simulate genotypes under different parameters and demographic models.

Results: Here, we present phenosim, a software to add a phenotype to genotypes generated in time-efficient coalescent simulations. Both qualitative and quantitative phenotypes can be generated and it is possible to partition phenotypic variation between additive effects and epistatic interactions between causal variants. The output formats of phenosim are directly usable as input for different GWAS tools. The applicability of phenosim is shown by simulating a genome-wide association study in Arabidopsis thaliana.

Conclusions: By using the coalescent approach to generate genotypes and phenosim to add phenotypes, the data sets can be used to assess the influence of various factors such as demography, genetic architecture or selection on the statistical power of association methods to detect causal genetic variants under a wide variety of population genetic scenarios. phenosim is freely available from the authors' website http://evoplant.uni-hohenheim.de

Background

In recent years, genome-wide association studies (GWAS) became widely used to uncover the genetic basis of complex traits by comparing patterns of genetic and phenotypic variation [1-3]. The power of such studies depends on various factors that include the genetic architecture of the trait, the demographic history of the population, and variation in mutation and recombination rates [4]. In addition, the trait under investigation may be adaptive or (in case of a disease trait) can evolve under purifying selection, which both would result in a non-neutral pattern of genetic diversity in the genomic neighborhood of the causal mutation.

Coalescent simulations are widely used to simulate genotypes under complex demographies [5] with recent extensions to include recombination hotspots [6] and selection [7], or to simulate whole genomes [8]. Simulations are often used to test population genetic hypotheses by comparing simulated and observed data. However, such simulations produce only genotypes but not phenotypes, which are also required to test methods for detecting significant associations between genetic and phenotypic variation. Although some tools provide an option to map phenotypes onto simulated genotypes, they only allow the simulation of qualitative phenotypes [9] or require time-consuming forward-in-time simulations to create genotypes from complex demographic scenarios [10-13].

Here, we present phenosim, a tool written in Python [14] that was designed to add a phenotype to genotypes simulated by coalescent-based simulation tools. Simulated phenotypes may either be qualitative or quantitative traits with different effect sizes and may show epistatic interactions. Hence, the simulation of case/control studies as well as the search for quantitative trait nucleotides (QTNs) of a complex trait with a user-defined architecture is possible. By combining simulated genotypes and phenotypes, researchers can assess the influence of different factors on the power of new
methods for association mapping, compare different methods or estimate an optimal sample size and number of markers for a given study design.

Implementation

The general work flow of phenosim is shown in Figure 1. First, the user simulates genotypes with one of four different programs for coalescent simulations. In the current version, phenosim is able to read the output of the ms [5], msHOT[6], msms[7] and GENOME[8] programs. After the import of genotypes, a phenotype generated under a user-defined model is assigned to each genotype. The trait can either be qualitative or quantitative.

For qualitative traits, one- and two-locus models are supported. The user defines the model by setting the penetrance (probability of being affected) for all genotypes. In the two-locus model, this is done by a penetrance table for all possible allelic combinations among the two loci. Therefore, the user may define arbitrary interactions between all alleles of the loci. The case/control-status of all simulated individuals is then assigned according to the model. In many cases, disease states are caused by risk alleles segregating at low allele frequencies in the overall population. As such low frequency variants share a genealogy that may differ from high frequency variants and thus the linkage pattern around these variants may be different [15], the user can restrict causal mutations to a certain frequency range to obtain realistic risk loci. However, as this may result in a low number of cases in the final sample, users need to simulate larger populations and optionally enter a minimum number of cases to be sampled from the population. This procedure reflects the sampling procedure of many case/control studies.

For quantitative traits, multiple QTNs with additive effects or epistatic interactions between two QTNs are possible. By default locations of causal variants are selected randomly. Nevertheless, the user can determine the position of a QTN manually and/or restrict the selection to an allele frequency range. A phenotype is generated based on the formulas of [16], which we generalize for additive effects among multiple QTNs as follows. The trait value is calculated by adding a fixed variance proportion explained by the QTN to a random

Figure 1 Work flow. Flowchart of the phenosim pipeline.
number drawn from a standard normal distribution with mean 0 and standard deviation 1, $N(0, 1)$. We provide two different models, depending on the ploidy of the individuals. The effect of the j-th QTN is π_j, and the QTN has a derived allele frequency of f_j. It should be noted that the sum of all QTN effects, $\sum_j \pi_j$, equals the heritability, h^2, of the trait. If the individuals are haploid, the allelic state of the i-th individual at the j-th QTN is a_{ij}, where $a_{ij} := 0$ if the allele is ancestral and $a_{ij} := 1$ if it is derived. Then the phenotype Y of individual i is calculated as:

$$Y_h(i) = \sqrt{1 - \sum_j \pi_j \cdot N(0, 1) + \sum_j a_{ij} \sqrt{\frac{\pi_j}{f_j(1-f_j)}}}.$$ \hspace{1cm} (1)

The phenotype of diploid individuals under an additive model without dominance is calculated as:

$$Y_a(i) = \sqrt{1 - \sum_j \pi_j \cdot N(0, 1) + \sum_j Q_{ij} \sqrt{\frac{\pi_j}{2 f_j(1-2f_j)}}}. \hspace{1cm} (2)$$

where $Q_{ij} := 1$ if the j-th QTN is homozygous derived, $Q_{ij} := 0$ if the QTN is heterozygous and $Q_{ij} := -1$ if the QTN is homozygous ancestral. Dominant effects at each QTN and additive effects between loci are also supported for diplids. In this case, equation (1) is used with $a_{ij} := 0$ for homozygous ancestral QTNs and $a_{ij} := 1$ for heterozygous and homozygous derived individuals.

If exactly two QTNs are selected, a positive, additive epistatic effect π_E between these QTNs can be simulated. This epistasis is modeled as a fictive third QTN, whose allelic state is π_E. This epistasis is modeled as a fictive third QTN, E, with $\pi_E = 0.08$, and the number of significant markers that were found at a given distance from the causal locus. In Figure 2 we show the proportion of variance explained by these QTNs and their interaction was identical ($h^2 = 0.1$). Four hundred chromosomes were sub-sampled and the causal polymorphisms were removed from the data. EMMAX [20] was used to detect marker-trait associations and the causal locus for this hypothetical trait. In Figure 2 we show the proportion of significant markers that were located within a distance of 10 kbp to the causal locus. A larger sample size may increase the power to detect such small additive effects in genome-wide scans. Despite the smaller additive effect in model (ii), the number of significant markers within 10 kbp of the QTN was comparable to model (i). Additionally, there is an increased number of significant associations further than 10 kbp from the QTNs. These may represent false positive associations caused by epistasis, such as markers that are in strong linkage disequilibrium with the fictive epistatic marker [27]. The highest power was observed in the third model. QTNs on a common haploblock with epistatic effects create a strong joint QTL and therefore in more than 75% of simulations, a significant marker was located within a distance of 10 kbp to the causal locus. The results show that single marker association methods as EMMAX are able to detect QTNs with small additive effects and a strong positive epistatic interaction. However, in certain situations larger samples than simulated sizes are needed and some results may be confounded by false positives as discussed earlier [27].

On average, a single simulation ran 4 min with GENOME [8] and 2 min with phenosim on a single core of an Intel Xeon X5650 (2.66 GHz) Processor. To compare this
Running time with other software tools, we simulated two QTNs and 249,998 neutral loci in a population of 500 diploid individuals using quantiNemo [12]. In six minutes, quantiNemo generated ~120 generations. As the expected coalescent time for a sample is ~4N_e generations [28], this is by far not enough to get a realistic variation pattern comparable to what can be achieved by GENOME in the same time. Although forward simulations like quantiNemo allow more complex demographic, selection and trait scenarios, the combination of coalescent simulators and phenosim is much more suitable for generating multiple simulations of large sample sizes.

Conclusions

Demographic effects, genetic architecture, selection, and different mutation and recombination rates affect the ability to detect the genetic basis of complex traits in natural populations [4]. Such population genetic parameters can now be estimated from genome-wide marker sets prior to further analyses. Since GWAS are widely used in plant and animal genetics, there is a great interest in assessing the power of a particular study or method. Using coalescent simulations in conjunction with phenosim, one can investigate the statistical power and other characteristics of GWAS methods efficiently. Additionally, as different causal markers may contribute different effects to a trait, the essential sample size and number of markers to detect a certain pattern can be estimated.

Availability and requirements

- Project name: phenosim
- Project home page: http://evoplant.uni-hohenheim.de
- Operating system(s): Platform independent
- Programming language: Python
- Other requirements: Python 2.X
- License: no license required
- Any restrictions to use by non-academics: none

Additional material

Additional file 1: phenosim v0.15 The archive includes the current version of phenosim as well as a documentation of its usage. For updated versions, please visit the authors’ website http://evoplant.uni-hohenheim.de.

Acknowledgements

This work is supported by the BMBF under the German plant genomics program GABI (GABI-GENOBAR, 0315066F) and the Bioenergy 2021 Initiative (BioOl, 0315429K), TG is funded by a Volkswagen Foundation Evolutionary Biology scholarship (0/84 225). We thank two anonymous reviewers for their comments and Sariel Hubner for testing the scripts and comments on the software features.

Authors’ contributions

TG, IG and KJS conceived the project. TG and IG designed the software. TG wrote the code. IG analyzed the data. KJS supervised the project. All authors contributed to writing of the manuscript. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Received: 15 March 2011 Accepted: 29 June 2011 Published: 29 June 2011

References

1. Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, Collins FS, Manolio TA: Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proceedings of the National Academy of Sciences of the United States of America 2009, 106(23):9562-7.
2. Antweil S, Huang YS, Vilhjalmsson BJ, Willems G, Horton M, Li Y, Meng D, Platt A, Tarone AM, Hu TT, Jiang R, Mulyati NW, Zhang X, Amer MA, Baxter I, Brachi B, Chory J, Dean C, Debieu M, de Moraes J, Ecker JR, Faure N, Kniskern JM, Jones JDG, Michael T, Nerni A, Roux F, Salt DE, Tang C, Todesco M, Trav MB, Weigel D, Marjomar P, Boerwicz JD, Bergelson J, Nordborg M. Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature 2010, 465(7298):627-31.
3. Stranger BE, Stahl EA, Raj T: Progress and Promise of Genome-wide Association Studies for Human Complex Trait Genetics. Genetics 2010, 187(2):367-383.
4. Wang WYS, Barratt BJ, Clayton DG, Todd JA: Genome-wide association studies: theoretical and practical concerns. Nature reviews Genetics 2005, 6(2):109-18.
5. Hudson RR: Generating samples under a Wright-Fisher neutral model of genetic variation. Bioinformatics 2002, 18:337-338.
6. Hellenthal G, Stephens M: msHOT: modifying Hudson’s ms simulator to incorporate crossover and gene conversion hotspots. Bioinformatics 2007, 23(4):520-1.

7. Evie G, Hermisson J: MSMS: A Coalescent simulation program including recombination, demographic structure, and selection at a single locus. Bioinformatics 2010, 26(10):1364-1366.

8. Liang L, Zöllner S, Abecasis GR: GENOME: a rapid coalescent-based whole genome simulator. Bioinformatics 2007, 23(12):1565-7.

9. Mailund T, Schierup MH, Pedersen CNS, Mechtenberg PJM, Madsen JN, Schauer L: CoaSim: A flexible environment for simulating genetic data under coalescent models. BMC Bioinformatics 2005, 6:252.

10. Chadeau-Hyam M, Hoggart CJ, O'Reilly PF, Whittaker JC, Iorio MD, Balding DJ: Fregene: simulation of realistic sequence-level data in populations and ascertained samples. BMC Bioinformatics 2008, 9:364.

11. Lambert BW, Tenwilliger JD, Weiss KM: ForSim: a tool for exploring the genetic architecture of complex traits with controlled truth. Bioinformatics 2008, 24(16):1821-2.

12. Neuenschwander S, Hospital F, Guillaume F, Goudet J: quantiNemo: an individual-based program to simulate quantitative traits with explicit genetic architecture in a dynamic metapopulation. Bioinformatics 2008, 24(13):1552-3.

13. Peng B, Amos CI: Forward-time simulation of realistic samples for genome-wide association studies. BMC Bioinformatics 2010, 11:442.

14. van Rossum G: Python Reference manual. Mathematics and Computer Science); 1995.

15. Nordborg M, Tavaré S: Linkage disequilibrium: what history has to tell us. Trends in Genetics 2002, 18(2):83-90.

16. Besenbacher S, Mailund T, Schierup MH: Local phylogeny mapping of quantitative traits: higher accuracy and better ranking than single-marker association in genomewide scans. Genetics 2009, 181(2):447-53.

17. Hudson RR, Kaplan NL: Statistical properties of the number of recombination events in the history of a sample of DNA sequences. Genetics 1985, 111:147-64.

18. Mailund T, Besenbacher S, Schierup MH: Whole genome association mapping by incompatibilities and local perfect phylogenies. BMC Bioinformatics 2006, 7:454.

19. Kang HM, Zaitlen Na, Wade CM, Kirby A, Heckerman D, Daly MJ, Eskin E: Efficient control of population structure in model organism association mapping. Genetics 2008, 178(3):1709-23.

20. Kang HM, Sul JH, Service SK, Zaitlen NA, Kong SY, Freimer NB, Sabatti C, Eskin E: Variance component model to account for sample structure in genome-wide association studies. Nature Genetics 2010, 42(4):348-354.

21. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira M, Bender D, Maller J, Sklar P, De Bakker PI, Daly MJ: PLINK: A tool set for whole-genome association and population-based linkage analyses. The American Journal of Human Genetics 2007, 81(3):559-575.

22. Abecasis GR, Cardon LR, Cookson WO: A general test of association for quantitative traits in nuclear families. American journal of human genetics 2000, 66:279-92.

23. Abecasis GR, Chen HS, Cookson WO, Cardon LR: Merlin-rapid analysis of dense genetic maps using sparse gene flow trees. Nature Genetics 2002, 30:97-101.

24. Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES: TASSO: software for association mapping of complex traits in diverse samples. Bioinformatics 2007, 23(19):2633-5.

25. Kim S, Plagnol V, Hu TT, Toomajian C, Clark RM, Ossowski S, Ecker JR, Weigel D, Nordborg M: Recombination and linkage disequilibrium in Arabidopsis thaliana. Nature Genetics 2007, 39(9):1151-5.

26. Li Y, Huang Y, Bergelson J, Nordborg M, Borevitz JO: Association mapping of local climate-sensitive quantitative trait loci in Arabidopsis thaliana. Proceedings of the National Academy of Sciences 2010, 107(49):21199-21204.

27. Platt A, Vilhjálmsdóttir BJ, Nordborg M: Conditions under which genome-wide association studies will be positively misleading. Genetics 2010, 186(3):1045-1052.

28. Nordborg M, D. J. Balding, M. J. Bishop, and C. Cannings (Editors), Handbook of Statistical Genetics. Coalescent theory New York: John Wiley and Sons, 2001, 179-212.