Scaling of the Sasamoto-Spohn model in equilibrium*

Milton Jara† Gregorio R. Moreno Flores‡

Abstract

We prove the convergence of the Sasamoto-Spohn model in equilibrium to the energy solution of the stochastic Burgers equation on the whole line. The proof, which relies on the second order Boltzmann-Gibbs principle, follows the approach of [9] and does not use any spectral gap argument.

Keywords: KPZ equation; Burgers equation; Sasamoto-Spohn model.
AMS MSC 2010: Primary 60K35, Secondary 82B20; 60H15.
Submitted to ECP on October 29, 2018, final version accepted on December 20, 2018.

1 Model and results

The goal of this note is to show the convergence of a certain discretization of the stochastic Burgers equation:

\[\partial_t u = \frac{1}{2} \partial_x^2 u + \partial_x u^2 + \partial_x \mathcal{W}, \tag{1.1} \]

where \(\mathcal{W} \) is a space-time white noise. This equation can be seen as the evolution of the slope of solutions to the KPZ equation [15] which is itself a model of an interface in a disordered environment. The KPZ/Burgers equation has been subject to an extensive body of work in the last years. It appears as the scaling limit of a wide range of particle systems [4, 8], directed polymer models [1, 20] and interacting diffusions [6], and constitutes a central element in a vast family of models known as the KPZ universality class [5, 21].

Due to the nonlinearity, a lot of care has to be taken to obtain a notion of solution for (1.1). There are today several alternatives, for instance, regularity structure [14], paracontrolled distributions [11] and energy solutions [8, 10, 12], which is the approach we will follow.

The discretization we consider corresponds to

\[du_j = \frac{1}{2} \Delta u_j + \gamma B_j(u) + d\xi_j - d\xi_{j-1}, \tag{1.2} \]

*This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovative programme (grant agreement No 715734)
†Instituto de Matemática Pura e Aplicada, Rio de Janeiro, Brasil. Partially supported by CNPq and FAPERJ. E-mail: mjara@impa.br
‡Pontificia Universidad Católica de Chile, Santiago, Chile. Partially supported by Fondecyt grant 1171257 and Núcleo Milenio ‘Modelos Estocásticos de Sistemas Complejos y Desordenados’. E-mail: grmoreno@mat.uc.cl
Scaling of the Sasamoto-Spohn model in equilibrium

where \((\xi_j)_j\) is an i.i.d. family of standard one-dimensional Brownian motions,

\[
\begin{align*}
\Delta u_j &= u_{j+1} + u_{j-1} - 2u_j, \\
B_j(u) &= w_j - w_{j-1} \quad \text{with} \quad w_j = \frac{1}{3}(u_j^2 + u_j u_{j+1} + u_{j+1}^2).
\end{align*}
\]

This model, introduced in [16] (see also [17]) and further studied in [22], is nowadays often referred to as the Sasamoto-Spohn model.

While the discretization of the second derivative and noise are quite straightforward, there are a priori several ways to discretize the nonlinearity in Burgers equation. This particular choice is motivated by two reasons: first, it only involves nearest neighbor sites and, second, it yields the explicit invariant measure \(\mu = \rho \otimes \mathbb{Z}\), where \(d\rho(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx\) (see Section 3).

Our result states the convergence of the discrete equations (1.2) to Burgers equation in the sense of energy solutions (see Section 2 for a precise definition).

Theorem 1.1. For each \(n \geq 1\), let \(u^n\) be the solution to the system (1.2) for \(\gamma = n^{-1/4}\) and initial law \(\mu\), and let

\[
\mathcal{X}_n^\pi(\varphi) = \frac{1}{n^{1/4}} \sum_j u^n_j(tn) \varphi(\frac{j}{\sqrt{n}}).
\]

The sequence of processes \((\mathcal{X}_n^\pi)_{n \geq 1}\) converges in distribution in \(C([0, T], \mathcal{S}'(\mathbb{R}))\) to the unique energy solution of the Burgers equation.

A similar result was shown in [11] for much more general initial conditions although restricted to the periodic setting.

At the technical level, our approach relies on the techniques of [9] and avoids the use of any spectral gap estimate. The core of the proof consists in deriving certain dynamical estimates among which the so-called second order Boltzmann-Gibbs principle plays a major role. A key ingredient is a certain integration-by-parts satisfied by the model.

The paper is organized as follows: in Section 2, we recall the notion of energy solution from [8]. We show the invariance of the measure \(\mu\) in Section 3. In Section 4, we prove the dynamical estimates. Finally, in Sections 5 and 6, we show, respectively, tightness and convergence to the energy solution. The construction of the dynamics (1.2) is given in the appendix.

Notations: We denote by \(\mathcal{S}(\mathbb{R})\) the space of Schwarz functions on \(\mathbb{R}\). For \(n \geq 1\) and a smooth function \(\varphi\), we define \(\varphi_j^n = \varphi(\frac{j}{\sqrt{n}})\), \(\nabla^n \varphi_j^n = \sqrt{n}(\varphi_{j+1}^n - \varphi_j^n)\) and \(\Delta^n \varphi_j^n = n(\varphi_{j+1}^n + \varphi_{j-1}^n - 2\varphi_j^n)\). We also define

\[
\mathcal{E}(\varphi) = \int \varphi^2(x) \, dx, \quad \mathcal{E}_n(\psi) = \frac{1}{\sqrt{n}} \sum_{j \in \mathbb{Z}} \psi_j^2,
\]

respectively, for \(\varphi \in L^2(\mathbb{R})\) and \(\psi \in l^2(\mathbb{Z})\).

2 Energy solutions of the Burgers equation

We will introduce the notion of an energy solution for Burgers equation [8]. We start with two definitions:

Definition 2.1. We say that a process \(\{u_t : t \in [0, T]\}\) satisfies condition (S) if, for all \(t \in [0, T]\), the \(\mathcal{S}'(\mathbb{R})\)-valued random variable \(u_t\) is a white noise of variance 1.

For a stationary process \(\{u_t : t \in [0, T]\}\), \(0 \leq s < t \leq T\), \(\varphi \in \mathcal{S}(\mathbb{R})\) and \(\varepsilon > 0\), we define

\[
\mathcal{A}_{s,t}^\varepsilon(\varphi) = \int_s^t \int_{\mathbb{R}} u_r(i\varepsilon(x))^2 \partial_x \varphi(x) dx dr
\]
where \(i_\varepsilon(x) = \varepsilon^{-1} 1_{(x, x+\varepsilon]} \).

Definition 2.2. Let \(\{u_t : t \in [0, T]\} \) be a process satisfying condition (S). We say that \(\{u_t : t \in [0, T]\} \) satisfies the energy estimate if there exists a constant \(\kappa > 0 \) such that:

(EC1) For any \(\varphi \in S(\mathbb{R}) \) and any \(0 \leq s < t \leq T \),

\[
E \left[\left| \int_s^t u_r (\partial^2_x \varphi) \, dr \right|^2 \right] \leq \kappa (t-s) \mathcal{E}(\partial_x \varphi)
\]

(EC2) For any \(\varphi \in S(\mathbb{R}) \), any \(0 \leq s < t \leq T \) and any \(0 < \delta < \epsilon < 1 \),

\[
E \left[\left| A_{s,t}^\epsilon (\varphi) - A_{s,t}^\delta (\varphi) \right|^2 \right] \leq \kappa (t-s) \epsilon \mathcal{E}(\partial_x \varphi)
\]

We state a theorem proved in [8]:

Theorem 2.3. Assume \(\{u_t : t \in [0, T]\} \) satisfies (S) and (EC2). There exists an \(\mathcal{S}'(\mathbb{R}) \)-valued stochastic process \(\{A_t : t \in [0, T]\} \) with continuous paths such that

\[
A_t(\varphi) = \lim_{\epsilon \to 0} A_{0,t}^\epsilon(\varphi).
\]

in \(L^2 \), for any \(t \in [0, T] \) and \(\varphi \in S(\mathbb{R}) \).

We are now ready to formulate the definition of an energy solution:

Definition 2.4. We say that \(\{u_t : t \in [0, T]\} \) is a stationary energy solution of the Burgers equation if

- \(\{u_t : t \in [0, T]\} \) satisfies (S), (EC1) and (EC2).
- For all \(\varphi \in S(\mathbb{R}) \), the process

\[
u_t(\varphi) - u_0(\varphi) - \frac{1}{2} \int_0^t u_s (\partial^2_x \varphi) \, ds - A_t(\varphi)
\]

is a martingale with quadratic variation \(t \mathcal{E}(\partial_x \varphi) \), where \(A \) is the process from Theorem 2.3.

Existence of energy solutions was proved in [8]. Uniqueness was proved in [12].

3 Generator and invariant measure

The construction of the dynamics given by (1.2) is detailed in Appendix A. We denote by \(\mathcal{C} \) the set of cylindrical functions \(F \) of the form \(F(u) = f(u_{-n}, \ldots, u_0) \), for some \(n \geq 0 \), with \(f \in C^2(\mathbb{R}^{2n+1}) \) with polynomial growth of its partial derivatives up to order 2. The generator of the dynamics (1.2) acts on \(\mathcal{C} \) as

\[
L = \sum_j \left\{ \frac{1}{2} (\partial_{j+1} - \partial_j)^2 - \frac{1}{2} (u_{j+1} - u_j)(\partial_{j+1} - \partial_j) + \gamma B_j(u) \partial_j \right\},
\]

where \(\partial_j = \frac{\partial}{\partial u_j} \). Let us introduce the operators

\[
S = \sum_j \left\{ \frac{1}{2} (\partial_{j+1} - \partial_j)^2 - \frac{1}{2} (u_{j+1} - u_j)(\partial_{j+1} - \partial_j) \right\}, \quad A = \sum_j \gamma B_j(u) \partial_j,
\]

which formally correspond to the symmetric and anti-symmetric parts of \(L \) with respect to \(\mu = \rho \otimes \mathcal{L} \), where \(d\rho(x) = \frac{e^{-x^2/2}}{\sqrt{2\pi}} \, dx \). We note that our model satisfies the Gaussian integration-by-parts formula:

\[
\int u_j f \, d\mu = \int \partial_j f \, d\mu.
\]
Scaling of the Sasamoto-Spohn model in equilibrium

which will be heavily used in the sequel.

We will also consider the periodic model \(u^M \) on \(\mathbb{Z} / M \mathbb{Z} \) and denote by \(L_M, S_M \) and \(A_M \) the corresponding generator and its symmetric and anti-symmetric parts respectively. Finally, denote \(\mu_M = \rho^\otimes \mathbb{Z} / M \mathbb{Z} \) and let \(\rho_M \) be its density.

Lemma 3.1. The measure \(\mu_M \) is invariant for the periodic dynamics \(u^M \).

Proof. The lemma follows from Echeverría’s criterion ([7], Thm 4.9.17) once we show

\[
\int L_M f \, d\mu_M = 0,
\]

for all \(f \in C^2(\mathbb{R}^\mathbb{Z} / M \mathbb{Z}) \) with polynomial growth of its derivatives up to order 2. By standard integration-by-parts,

\[
\int S_M f \, d\mu_M = \int f(u)S_M^\dagger \rho_M(u) \, du_{-M} \cdots du_M,
\]

where

\[
S_M^\dagger = \frac{1}{2} \sum_{j \in \mathbb{Z} / M \mathbb{Z}} \left\{ (\partial_{j+1} - \partial_j)^2 + (u_j - u_{j+1})(\partial_j - \partial_{j+1}) + 2 \right\}.
\]

It is a simple computation to show that \(S_M^\dagger \rho_M \equiv 0 \). It then remains to verify that

\[
\int A_M f \, d\mu_M = \int \sum_{j \in \mathbb{Z} / M \mathbb{Z}} (w_j - w_{j+1}) \partial_j f(u) \rho_M(u) \, du_{-M} \cdots du_M = 0.
\]

But, using standard integration-by-parts once again, we can verify that there exists a degree three polynomial in two variables \(p(\cdot, \cdot) \) such that

\[
\int A_M f \, d\mu_M = \int \sum_{j \in \mathbb{Z} / M \mathbb{Z}} f(u) \left\{ p(u_j, u_{j+1}) - p(u_{j-1}, u_j) \right\} \, d\mu_M.
\]

Finally, Gaussian integration-by-parts yields a degree two polynomial in two variables \(\tilde{p}(\cdot, \cdot) \) such that

\[
\int A_M f \, d\mu_M = \int \sum_{j \in \mathbb{Z} / M \mathbb{Z}} \left\{ \tilde{p}(\partial_j, \partial_{j+1}) - \tilde{p}(\partial_{j-1}, \partial_j) \right\} f(u) \, d\mu_M,
\]

which is telescopic. This ends the proof.

By construction of the infinite volume dynamics and taking the limit \(M \to \infty \), we obtain

Corollary 1. The measure \(\mu \) is invariant for the dynamics (1.2).

4 The second-order Boltzmann-Gibbs principle

We recall the Kipnis-Varadhan inequality: there exists \(C > 0 \) such that

\[
E \left[\sup_{0 \leq t \leq T} \left\| \int_0^t F(u(sn)) \, ds \right\|^2 \right] \leq CT\|F(\cdot)\|_{-1,n}^2 ds,
\]

where the \(\| \cdot \|_{-1,n} \)-norm is defined through the variational formula

\[
\|F\|^2_{-1,n} = \sup_{f \in \mathcal{E}} \left\{ 2 \int F(u) f \, d\mu + n \int f L f \, d\mu \right\}.
\]
The proof of this inequality in our context follows from a straightforward modification of the arguments of [12], Corollary 3.5. In our particular model, we have

\[- \int fLfd\mu = \frac{1}{2} \sum_j \int ((\partial_{j+1} - \partial_j)f)^2 d\mu\]

so that the variational formula becomes

\[
||F||^2_{1,n} = \sup_{f \in \mathcal{C}} \left\{ 2 \int F(u)fd\mu - \frac{n}{2} \sum_j \int ((\partial_{j+1} - \partial_j)f)^2 d\mu \right\}.
\]

Denote by \(\tau_j\) the canonical shift \(\tau_j u_i = u_{j+i}\) and let \(\overline{u}^l_j = \frac{1}{l} \sum_{k=1}^l u_{j+k}\).

Lemma 4.1. Let \(l \geq 1\) and let \(g\) be a function with zero mean with respect to \(\mu\) which support does not intersect \(\{1, \cdots, l\}\). Let \(g_j(s) = g(\tau_j u(s))\). There exists a constant \(C > 0\) such that

\[
E \left[\left| \int_0^t ds \sum_j g_j(s)(u_{j+1}(sn) - \overline{u}^l_j(sn))\varphi_j \right|^2 \right] \leq C \frac{tl}{\sqrt{n}} ||g||^2_{L^2(\mu)} E_n(\varphi) \tag{4.2}
\]

Proof. Let \(\psi_i = \frac{u_{j+i}}{l}, i = 0, \cdots, l-1\). Then,

\[
u_{j+1} - \overline{u}^l_j = \sum_{i=1}^{l-1} (u_{j+i} - u_{j+i+1})\psi_i.
\]

Hence,

\[
\sum_j \varphi_j g_j(u_{j+1} - \overline{u}^l_j) = \sum_j \varphi_j g_j \sum_{i=0}^{l-1} (u_{j+i} - u_{j+i+1})\psi_i \\
= \sum_k \left(\sum_{i=1}^{l-1} \varphi_{k-i} g_{k-i} \psi_i \right)(u_k - u_{k+1}) \\
= \sum_k F_k(u_k - u_{k+1})
\]

Now, for \(f \in \mathcal{C}\), using integration-by-parts,

\[
2 \int \sum_j \varphi_j g_j(u_{j+1} - \overline{u}^l_j)fd\mu = 2 \int \sum_k F_k(u_k - u_{k+1})fd\mu \\
= 2 \int \sum_k F_k(\partial_k - \partial_{k+1})fd\mu \\
\leq \int \sum_k \left\{ \alpha F_k^2 + \frac{1}{\alpha}((\partial_k - \partial_{k+1})f)^2 \right\} d\mu,
\]

by Young’s inequality. Taking \(\alpha = 2/n\), we find that the above is bounded by

\[
\frac{2}{n} \sum_k \int F_k^2 d\mu + \frac{n}{2} \sum_k \int ((\partial_k - \partial_{k+1})f)^2 d\mu,
\]

which, thanks to the Kipnis-Varadhan inequality, shows that the left-hand-side of (4.2) is bounded by

\[
C \frac{t}{n} \sum_k \int F_k^2 d\mu.
\]
Finally, as g is centered,
\[
\sum_{k} F_k^2 d\mu \leq \sum_{k} \sum_{i=1}^{l-1} \varphi_{k-i}^2 g^2 d\mu \leq l\sqrt{n} \int g^2 d\mu \mathcal{E}_n(\varphi). \]

We now state the second-order Boltzmann-Gibbs principle: let $Q(l, u) = (\overline{u}_l^l)^2 - \frac{1}{l}$.

Proposition 4.2. Let $l \geq 1$. There exists a constant $C > 0$ such that
\[
E \left[\left\| \int_0^t ds \sum_j \left\{ \varphi_j^l(sn)u_j(s) - \tau_j Q(l, u(s)) \right\} \varphi_j \right\|^2 \right] \leq C \frac{l}{\sqrt{n}} \mathcal{E}_n(\varphi)
\]

Proof. We use the factorization
\[
u_j u_{j+1} - \tau_j Q(l, u) = \nu_j(u_{j+1} - \overline{u}_j^l) + \overline{u}_j^l(u_j - \overline{u}_j^l) + \frac{1}{l}.
\]
We handle the first term with Lemma 4.1. The second term is treated in the following lemma.

Lemma 4.3. Let $l \geq 1$. There exists a constant $C > 0$ such that
\[
E \left[\left\| \int_0^t ds \sum_j \left\{ \overline{u}_j^l(sn)[u_j(s) - \overline{u}_j^l(sn)] + \frac{1}{l} \right\} \varphi_j \right\|^2 \right] \leq C \frac{l}{\sqrt{n}} \mathcal{E}_n(\varphi)
\]

Proof. Let $\psi_i = \frac{l-i}{l}$. Then,
\[
\overline{u}_j^l[u_j - \overline{u}_j^l] = \sum_{i=0}^{l-1} \psi_i(u_{j+i} - u_{j+i+1}) \overline{u}_j^l.
\]
For $f \in \mathcal{C}$, using integration-by-parts,
\[
\int \overline{u}_j^l[u_j - \overline{u}_j^l] f d\mu = \int \sum_{i=0}^{l-1} \psi_i(u_{j+i} - u_{j+i+1}) \overline{u}_j^l f d\mu = \int \left\{ \sum_{i=0}^{l-1} \psi_i \overline{u}_j^l(\partial_{j+i} - \partial_{j+i+1}) f - \frac{1}{l} f \right\} d\mu
\]
\[
The second summand comes from the term $i = 0$. Hence,
\[
2 \int \sum_j \varphi_j \left\{ \overline{u}_j^l[u_j - \overline{u}_j^l] + \frac{1}{l} \right\} f d\mu = 2 \int \sum_j \varphi_j \sum_{i=0}^{l-1} \psi_i \overline{u}_j^l(\partial_{j+i} - \partial_{j+i+1}) f d\mu
\]
\[
By Young’s inequality, this last expression is bounded by
\[
\int \sum_{j} \sum_{i=0}^{l-1} \left\{ \alpha \varphi_j^2(\overline{u}_j^l)^2 + \frac{1}{\alpha} \psi_i^2((\partial_{j+i} - \partial_{j+i+1}) f)^2 \right\} d\mu \leq \alpha l \int \sum_j \varphi_j^2(\overline{u}_j^l)^2 d\mu + \frac{1}{\alpha} \int \sum_j ((\partial_j - \partial_{j+1}) f)^2 d\mu \]
\[
Taking $\alpha = 2l/n$, this is further bounded by
\[
\frac{2l^2}{n} \int (\overline{u}_j^l)^2 d\mu \sum_j \varphi_j^2 + \frac{n}{2} \int \sum_j ((\partial_j - \partial_{j+1}) f)^2 d\mu \leq \frac{l}{\sqrt{n}} \mathcal{E}_n(\varphi) + \frac{n}{2} \int \sum_j ((\partial_j - \partial_{j+1}) f)^2 d\mu
\]
\[
The result then follows from the Kipnis-Varadhan inequality. \qed

ECP 24 (2019), paper 3.
Page 6/12
http://www.imstat.org/ecp/
5 Tightness

In the sequel, we let $\varphi \in S$ be a test function. Remember the fluctuation field is given by

$$X_t^n(\varphi) = \frac{1}{n^{1/4}} \sum_j u_j(tn) \varphi^n_j.$$

Recalling the definition of the operators S and A from Section 3, the symmetric and anti-symmetric parts of the dynamics are given by

$$dS_t^n(\varphi) = \frac{1}{n^{1/4}} n \sum_j u_j(tn) \Delta^n \varphi^n_j dt = \frac{1}{n^{1/4}} \sum_j u_j(tn) \Delta^n \varphi^n_j dt$$

$$dB_t^n(\varphi) = -\frac{1}{n^{1/4}} n \sum_j w_j(tn) (\varphi^n_{j+1} - \varphi^n_j) dt = \sum_j w_j(tn) \nabla^n \varphi^n_j dt$$

where we used $\gamma = n^{-1/4}$. Then, the martingale part of the dynamics corresponds to

$$M_t^n(\varphi) = X_t^n(\varphi) - X_0^n(\varphi) - S_t^n(\varphi) - B_t^n(\varphi) = n^{1/4} \int_0^t \sum_j (\varphi_j - \varphi_{j+1}) d\xi_j(s)$$

and has quadratic variation

$$\langle M_t^n(\varphi) \rangle_t = n^{1/2} \sum_j (\varphi^n_j - \varphi^n_{j+1})^2 = t \mathcal{E}_n(\nabla^n \varphi^n).$$

We will use Mitoma’s criterion [19]: a sequence \mathcal{Y}^n is tight in $C([0, T], S'(\mathbb{R}))$ if and only if $\mathcal{Y}^n(\varphi)$ is tight in $C([0, T], \mathbb{R})$ for all $\varphi \in S(\mathbb{R})$.

5.1 Martingale term

We recall that $\langle M_t^n(\varphi) \rangle = t \mathcal{E}_n(\nabla^n \varphi^n)$. From the Burkholder-Davis-Gundy inequality, it follows that

$$\mathbb{E} \left[|M_t^n(\varphi) - M_s^n(\varphi)|^p \right] \leq C |t-s|^{p/2} \mathcal{E}_n(\nabla^n \varphi^n)^{p/2},$$

for all $p \geq 1$. Tightness then follows from Kolmogorov criterion by taking p large enough.

5.2 Symmetric term

Tightness is obtained via a second moment computation and Kolmogorov criterion:

$$\mathbb{E} \left[|S_t^n(\varphi) - S_s^n(\varphi)|^2 \right] \leq |t-s| \frac{1}{\sqrt{n}} \sum_j \mathbb{E}[u_j^2](\Delta^n \varphi^n_j)^2 = |t-s| \mathcal{E}_n(\Delta^n \varphi^n).$$

5.3 Anti-symmetric term

We study the tightness of the term

$$B_t^n(\varphi) = \int_0^t \sum_j w_j(sn) \nabla^n \varphi^n_j ds$$

$$= \int_0^t \sum_j \frac{1}{3} [u_{j+1}(sn) + u_j(sn) u_{j+1}(sn) + u_j^2(sn)] \nabla^n \varphi^n_j ds.$$
Lemma 5.1. The process

\[Y_t^n(\varphi) = \int_0^t ds \sum_j \varphi_j \{ (u_j(sn)u_{j+1}(sn) - u_j^2(sn)) + 1 \} \]

goes to zero in the ucp topology.

Proof. Using integration by parts,

\[
\int \sum_j \varphi_j (u_j u_{j+1} - u_j^2) f d\mu = \int \sum_j \varphi_j (u_{j+1} - u_j) u_j f d\mu = \int \sum_j \varphi_j (\partial_{j+1} - \partial_j) (u_j f) d\mu = \int \sum_j \varphi_j \{ u_j (\partial_{j+1} - \partial_j) f - f \}
\]

Hence,

\[
\int \sum_j \varphi_j \{ (u_j u_{j+1} - u_j^2) + 1 \} f d\mu = \int \sum_j \varphi_j u_j (\partial_{j+1} - \partial_j) f d\mu
\]

Using Young’s inequality,

\[
2 \int \sum_j \varphi_j \{ (u_j u_{j+1} - u_j^2) + 1 \} f d\mu \leq \int \sum_j \left\{ \alpha \varphi_j^2 u_j^2 + \frac{1}{\alpha} ((\partial_{j+1} - \partial_j) f)^2 \right\} d\mu \leq \frac{2}{\sqrt{n}} E_n(\varphi) + \frac{n}{2} \sum_j \int ((\partial_{j+1} - \partial_j) f)^2 d\mu,
\]

by taking \(\alpha = 2/n \). Into the Kipnis-Varadhan inequality, this yields

\[
E \left[\sup_{0 \leq t \leq T} \left\| \int_0^t ds \sum_j \varphi_j \{ (u_j(sn)u_{j+1}(sn) - u_j^2(sn)) + 1 \} \right\|^2 \right] \leq \frac{CT}{\sqrt{n}} E_n(\varphi)
\]

which shows that this process goes to zero in the ucp topology. \(\Box \)

This means we can switch the term \(w_j \) in the anti-symmetric part of the dynamics by \(u_j u_{j+1} \) modulo a vanishing term. Note that, as we apply the previous lemma to a gradient, the constant term \(1 \) will disappear. We are then left to prove the tightness of

\[
\tilde{B}_t^n(\varphi) = \int_0^t \sum_j u_j(sn)u_{j+1}(sn)\nabla^n \varphi_j^2 ds.
\]

From Proposition 4.2, we have

\[
E \left[\left\| \tilde{B}_t^n(\varphi) - \int_0^t \sum_j \tau_j Q(l, u(sn))\nabla^n \varphi_j^2 ds \right\|^2 \right] \leq C \frac{t l}{\sqrt{n}} E_n(\nabla^n \varphi^n)
\]

where, here and below, \(C \) denotes a constant which value can change from line to line. On the other hand, a careful \(L^2 \) computation, taking dependencies into account, shows that

\[
E \left[\left\| \int_0^t \sum_j \tau_j Q(l, u(sn))\nabla^n \varphi_j^2 ds \right\|^2 \right] \leq C \frac{l^2 \sqrt{n}}{l} E_n(\nabla^n \varphi^n).
\]
Observe that \(\lim_{n \to \infty} \mathcal{E}_n(\nabla^n \varphi^n) = \int \partial_x \varphi(x)^2 \, dx < \infty\). Summarizing,

\[
E \left[\left| \tilde{B}_t^n(\varphi) \right|^2 \right] \leq Ct^3/2.
\]

For \(t \geq 1/n\), we take \(l \sim \sqrt{tn}\) and get

\[
E \left[\left| \tilde{B}_t^n(\varphi) \right|^2 \right] \leq Ct^3/2.
\]

For \(t \leq 1/n\), a crude \(L^2\) bound gives

\[
E \left[\left| \tilde{B}_t^n(\varphi) \right|^2 \right] \leq Ct^2 \sqrt{n} \leq Ct^3/2.
\]

This gives tightness.

6 Convergence

From the previous section, we get processes \(X, S, B\) and \(M\) such that

\[
\lim_{n \to \infty} X_n = X, \quad \lim_{n \to \infty} S_n = S, \quad \lim_{n \to \infty} B_n = B, \quad \lim_{n \to \infty} M_n = M,
\]

along a subsequence that we still denote by \(n\). We will now identify these limiting processes.

6.1 Convergence at fixed times

A straightforward adaptation of the arguments in [6], Section 4.1.1, shows that \(X_t^n\) converges to a white noise for each fixed time \(t \in [0, T]\). This in turns proves that the limit satisfies property (S).

6.2 Martingale term

The quadratic variation of the martingale part satisfies

\[
\lim_{n \to \infty} \langle M^n(\varphi) \rangle_t = t ||\partial_x \varphi||_{L^2}^2.
\]

By a criterion of Aldous [2], this implies convergence to the white noise.

6.3 Symmetric term

A second moment bound shows that

\[
E \left[\left| S_t^n(\varphi) - \int_0^t X_s^n(\partial_x^2 \varphi) \, ds \right|^2 \right] \leq C t^2 / n,
\]

which shows that

\[
S(\varphi) = \lim_{n \to \infty} S^n(\varphi) = \int_0^\cdot X_s(\partial_x^2 \varphi) \, ds.
\]

6.4 Anti-symmetric term

We just have to identify the limit of the process \(\tilde{B}_t^n(\varphi)\). Remembering the definition of the field \(X^n\), we observe that

\[
\sqrt{n}Q(\varepsilon \sqrt{n}, u(0)) = X_t^n(i_\varepsilon(0))^2 - \frac{1}{\varepsilon}.
\]
Scaling of the Sasamoto-Spohn model in equilibrium

from where we get the convergences

$$\lim_{n \to \infty} \sqrt{n}Q(\varepsilon \sqrt{n}, u(nt)) = A_t(i_{\varepsilon}(0))^2 - \frac{1}{\varepsilon}$$

and

$$A_{s,t}^\varepsilon(\varphi) := \lim_{n \to \infty} \int_s^t \sum_j \tau_j Q(\varepsilon \sqrt{n}, u(rn)) \nabla^n \varphi_j^r dr.$$

The second limit follows by a suitable approximation of $i_{\varepsilon}(x)$ by $S(R)$ functions (see [8], Section 5.3 for details). Now, by the second-order Boltzmann-Gibbs principle and stationarity,

$$E \left[\left\| \int_0^t \nabla^n \varphi_j^r \partial_x^2 \varphi \right\|^2 \right] \leq \kappa t. \quad (6.1)$$

Taking $l \sim \varepsilon \sqrt{n}$ and the limit as $n \to \infty$ along the subsequence,

$$E \left[\left\| B_t(\varphi) - B_s(\varphi) - A_{s,t}^\varepsilon(\varphi) \right\|^2 \right] \leq C(t - s)\varepsilon. \quad (6.1)$$

The energy estimate (EC2) then follows by the triangle inequality. Theorem 2.3 yields the existence of the process

$$A_t(\varphi) = \lim_{\varepsilon \to 0} A_{0,t}^\varepsilon(\varphi).$$

Furthermore, from (6.1), we deduce that $B = A$.

It remains to check (EC1). It is enough to check that

$$E \left[\left\| \int_0^t \nabla^n \varphi_j^r \partial_x \varphi \right\|^2 \right] \leq \kappa t. \quad (6.2)$$

Using the smoothness of φ and a summation by parts, it is further enough to verify that

$$E \left[\left\| \int_0^t n^{1/4} \sum_j [u_{j+1}(sn) - u_j(sn)] \nabla^n \varphi_j^r \right\|^2 \right] \leq \kappa t. \quad (6.2)$$

For that purpose, we will use Kipnis-Varadhan inequality one last time: let $f \in \mathcal{C}$,

$$2 \int n^{1/4} \sum_j (u_{j+1} - u_j) \nabla^n \varphi_j^r f d\mu = 2 \int n^{1/4} \sum_j \nabla^n \varphi_j^r (\partial_{j+1} - \partial_j) f d\mu \leq \sum_j \left\{ \alpha \sqrt{n} (\nabla^n \varphi_j^r)^2 + \frac{1}{\alpha} \int ((\partial_{j+1} - \partial_j) f)^2 d\mu \right\} \leq 2\varepsilon_n (\nabla^n \varphi^n) + \frac{n}{2} \sum_j \int ((\partial_{j+1} - \partial_j) f)^2 d\mu,$$

with $\alpha = 2/n$, from where (6.2) follows.
A Construction of the dynamics

The system of equations (1.2) can be reformulated as

\[u_j(t) = \frac{1}{2} \int_0^t \Delta u_j(s) \, ds + \gamma \int_0^t B_j(u(s)) \, ds + \xi_j(t) - \xi_{j-1}(t). \]

We consider the system \(u^M \) on \(\mathbb{Z}_M = \mathbb{Z}/M\mathbb{Z} \) evolving under its invariant distribution. We first check that, for all \(j \) and \(T > 0 \)

\[\mathbb{E} \left[\sup_{0 \leq t \leq T} |u^M_j(t)|^2 \right] < \infty, \]

so that the dynamics is well-defined. Everything boils down to estimates of type

\[\mathbb{E} \left[\sup_{0 \leq t \leq T} \left| \int_0^t u^M_j(s) \, ds \right|^2 \right] \leq T \mathbb{E} \left[\sup_{0 \leq t \leq T} \int_0^t |u^M_j(s)|^2 \, ds \right] \]

\[\leq T \mathbb{E} \left[\int_0^T |u^M_j(s)|^2 \, ds \right] \leq T^2, \]

where we used invariance in the last step.

Next, we show tightness of the processes (in \(M \)) where we now identify \(u^M \) with a periodic system on the line. This follows from Kolmogorov’s criterion. It is enough to control expressions of type

\[\mathbb{E} \left[\left| \int_s^t u^M_j(r) \, dr \right|^4 \right] \leq |t-s|^3 \mathbb{E} \left[\int_s^t |u^M_j(r)|^4 \, dr \right] \leq C |t-s|^3. \]

Together with a standard estimate on the increments of the Brownian motion, this yields

\[\mathbb{E} \left[|u^M_j(t) - u^M_j(s)|^2 \right] \leq C |t-s|^2. \]

Hence, each coordinate is tight. By diagonalization, we can extract a subsequence of \(M_k \) such that \((u^M_{j_k}) \) converges in law in \(C[0,T] \) for each \(j \). This gives a meaning to the system (1.2).

References

[1] Alberts, T., Khanin, K. and Quastel, J. (2014) The intermediate disorder regime for directed polymers in dimension 1 + 1, Ann. Probab. 42, 1212–1256 MR-3189070
[2] Aldous, D. (1981) Weak convergence and the general theory of processes, Unpublished notes
[3] Amir, G., Corwin, I. and Quastel, J. (2010) Probability distribution of the free energy of the continuum directed random polymer in 1 + 1 dimensions, Comm. Pure. Appl. Math. 64, (4), 466–537 MR-2796514
[4] Bertini, L. and Giacomin, G. (1997) Stochastic Burgers and KPZ equations from particle systems, Comm. Math. Phys. 183, (3), 571–607 MR-1462228
[5] Corwin, I. (2012) The Kardar-Parisi-Zhang equation and universality class, Random Matrices Theory Appl. 1, 1130001 MR-2930377
[6] Diehl, J., Gubinelli, M. and Perkowski, N. (2016) The Kardar-Parisi-Zhang equation as scaling limit of weakly asymmetric interacting Brownian motions, Comm. Math. Phys. 354, no. 2, 549–589 MR-3663617
[7] Ethier, S., Kurtz, T. (2009) Markov processes: characterization and convergence, vol. 282, Wiley, Hoboken MR-0838085

ECP 24 (2019), paper 3. http://www.imstat.org/ecp/
Scaling of the Sasamoto-Spohn model in equilibrium

[8] Goncalves, P. and Jara, M. (2014) Nonlinear fluctuations of weakly asymmetric interacting particle systems, Arch. Ration. Mech. Anal. 212, no. 2, 597–644 MR-3176353

[9] Goncalves, P., Jara, M. and Simon, M. (2017) Second order Boltzmann-Gibbs principle for polynomial functions and applications, J. Stat. Phys. 166, no. 1, 90–113 MR-3592852

[10] Gubinelli, M. and Jara, M. (2013) Regularization by noise and stochastic Burgers equations, Stoch. Partial Differ. Equ. Anal. Comput. 1, no. 2, 325–350 MR-3327509

[11] Gubinelli, M. and Perkowski, N. (2017) KPZ reloaded Comm. Math. Phys. 349, no. 1, 165–269 MR-3592748

[12] Gubinelli, M. and Perkowski, N. (2018) Energy solutions of KPZ are unique, J. Amer. Math. Soc. 31, 427–471 MR-3758149

[13] Gubinelli, M. and Perkowski, N. (2018) Probabilistic approach to the stochastic Burgers equation, In: Eberle A., Grothaus M., Hoh W., Kassmann M., Stannat W., Trutnau G. (eds) Stochastic Partial Differential Equations and Related Fields. SPDERF 2016. Springer Proceedings in Mathematics & Statistics, vol 229. Springer, Cham MR-3828193

[14] Hairer, M. (2013) Solving the KPZ equation, Annals of Mathematics 178, 559–664 MR-3071506

[15] Kardar, M., Parisi, G and Zhang, Y-C. (1986) Dynamic scaling of growing interfaces Phys. Rev. Lett., 56(9):889–892

[16] Krug, J. and Spohn, H. (1991) Kinetic roughening of growing surfaces, In: Godreéche, C. (ed.) Solids Far from Equilibrium, pp. 412–525. Cambridge University Press, Cambridge MR-1163829

[17] Lam, C.-H. and Shin, F.G. (1998) Improved discretization of the Kardar-Parisi-Zhang equation, Phys. Rev. E 58, 5592–5595

[18] Liggett, T. (2005) Interacting Particle Systems, Classics in Mathematics, Springer-Verlag Berlin Heidelberg MR-2108619

[19] Mitoma, I. (1983) Tightness of probabilities in $C([0, 1], Y')$ and $D([0, 1], Y')$, Ann. of Probability, 11, 4, 989–999 MR-0714961

[20] Moreno Flores, G., Quastel, J. and Remenik, D., in preparation

[21] Quastel, J. (2012) Introduction to KPZ, Curr. Dev. Math. 2011, 125–194, Int. Press, Somerville, MA MR-3098078

[22] Sasamoto, T. and Spohn, H. (2009) Superdiffusivity of the 1D Lattice Kardar-Parisi-Zhang Equation, J. Stat. Phys., 137: 917–935 MR-2570756