On W_0 and $W_2 \phi$-Symmetric Contact Manifold Admitting Quarter-Symmetric Metric Connection

K. T. Pradeep Kumar1, B. M. Roopa2, K. H. Arun Kumar3

1Department of Mathematics, A C S College of Engineering, India.
2Department of Mathematics, Kumadvathi College, Shikaripura, India.
3Department of Mathematics, Don Bosco I. T., India

E-mail: ktpradeepkumar@gmail.com (corresponding author)

Abstract. The paper deals locally W_0 and W_2 curvature tensor of ϕ-symmetric K-contact manifolds with quarter-symmetric metric connection and some results are obtained.

1. Introduction
In 1970, K. Yano [23] studied conditions of curvatures for semi-symmetric connections in Riemannian manifolds. S. Golab [6] in 1975, defined and studied quarter-symmetric connection in a differentiable manifold with affine connection. In 1977, T. Takahashi [17], has introduced the notion of locally ϕ-symmetry on Sasakian manifolds.

A linear connection $\tilde{\nabla}$ in an n-dimensional differentiable manifold is said to be a quarter-symmetric connection [6] if its torsion tensor T is of the form

$$
T(\Gamma, \Lambda) = \tilde{\nabla}_\Gamma \Lambda - \tilde{\nabla}_\Lambda \Gamma - [\Gamma, \Lambda] = \eta(\Lambda)\phi \Gamma - \eta(\Gamma)\phi \Lambda,
$$

If $\phi \Gamma = \Gamma$, the quarter-symmetric connection reduces to the semi-symmetric connection [5].

2. Preliminaries
A differentiable manifold M of dimensional-n is said to have an almost contact structure (ϕ, ξ, η) if it carries a tensor field ϕ of type $(1, 1)$, a vector field ξ and a 1-form η on manifold M respectively such that,

$$
\phi^2 = -I + \eta \otimes \xi, \quad \eta(\xi) = 1, \quad \eta \circ \phi = 0, \quad \phi \xi = 0.
$$

Thus with this structure a manifold M equipped is called an almost contact manifold and is denoted by (M, ϕ, ξ, η). A Riemannian metric g on an almost contact manifold M such that,

$$
g(\phi \Gamma, \phi \Lambda) = g(\Gamma, \Lambda) - \eta(\Gamma)\eta(\Lambda),
g(\Gamma, \xi) = \eta(\Gamma),
g(\Gamma, \phi \Lambda) = -g(\phi \Gamma, \Lambda),
$$
Here, Γ, Λ are vector fields defined on manifold M. If ξ is a killing vector field, then manifold is called a K-contact Riemannian manifold ([1], [14]). In a K-contact manifold M, the following relations hold:

$$\nabla_\Gamma \xi = -\phi \Gamma,$$

$$g(R(\xi, \Gamma)\Lambda, \xi) = g(\Gamma, \Lambda) - \eta(\Gamma)\eta(\Lambda),$$

$$R(\xi, \Gamma)\xi = -\Gamma + \eta(\Gamma)\xi,$$

$$S(\Gamma, \xi) = (n - 1)\eta(\Gamma),$$

for any vector fields Γ, Λ and Υ. Where R is the Riemannian curvature tensor and S is the Ricci tensor of manifold M.

A manifold M is said to be locally ϕ-symmetric if

$$\phi^2((\nabla_\Omega R)(\Gamma, \Lambda)\Upsilon) = 0,$$

for vector fields $\Gamma, \Lambda, \Upsilon$ and Ω orthogonal to ξ. The notion was first introduced by Takahashi [17].

A manifold M is said to be ϕ-symmetric if

$$\phi^2((\nabla_\Omega R)(\Gamma, \Lambda)\Upsilon) = 0,$$

A K-contact manifold M is said to be locally W_0 and W_2 ϕ-symmetric if

$$\phi^2((\nabla_\Omega W_0)(\Gamma, \Lambda)\Upsilon) = 0,$$

$$\phi^2((\nabla_\Omega W_2)(\Gamma, \Lambda)\Upsilon) = 0,$$

for $\Gamma, \Lambda, \Upsilon$ and Ω orthogonal to ξ, where W_0 and W_2 curvature tensors respectively given by [18]

$$W_0(\Gamma, \Lambda)\Upsilon = R(\Gamma, \Lambda)\Upsilon - \frac{1}{n - 1}[S(\Lambda, \Upsilon)\Gamma - g(\Gamma, \Upsilon)Q\Lambda],$$

$$W_2(\Gamma, \Lambda)\Upsilon = R(\Gamma, \Lambda)\Upsilon - \frac{1}{n - 1}[g(\Lambda, \Upsilon)Q\Gamma - g(\Gamma, \Upsilon)Q\Lambda].$$

A quarter-symmetric metric connection $\tilde{\nabla}$ in a K-contact manifold is given by [12]

$$\tilde{\nabla}_\Gamma \Lambda = \nabla_\Gamma \Lambda - \eta(\Gamma)\phi \Lambda.$$

A relation between the curvature tensor of manifold with quarter-symmetric metric connection $\tilde{\nabla}$ and the Levi-Civita connection ∇ is given by

$$\tilde{R}(\Gamma, \Lambda)\Upsilon = R(\Gamma, \Lambda)\Upsilon - 2g(\Gamma, \phi \Lambda)\phi \Upsilon + [\eta(\Gamma)g(\Lambda, \Upsilon)$$

$$- \eta(\Lambda)g(\Gamma, \Upsilon)]\xi + [\eta(\Lambda)\Gamma - \eta(\Gamma)\Lambda]$$

$$\eta(\Upsilon),$$

where \tilde{R} and R are curvature of $\tilde{\nabla}$ and ∇ connections respectively.

From (12), we have

$$\tilde{S}(\Lambda, \Upsilon) = S(\Lambda, \Upsilon) - g(\Lambda, \Upsilon) + n \eta(\Lambda)\eta(\Upsilon),$$

where \tilde{S} and S are the Ricci tensors of $\tilde{\nabla}$ and ∇ connections respectively.

On contraction of (13), it follows that

$$\tilde{r} = r,$$

here \tilde{r} and r are the scalar curvatures of $\tilde{\nabla}$ and ∇ connections respectively.
3. Locally ϕ-symmetric quarter-symmetric metric connection

A locally ϕ-symmetric K-contact manifold with quarter-symmetric metric connection is given by

$$\phi^2((\tilde{\nabla}_\Omega \tilde{R})(\Gamma, \Lambda)\Upsilon) = 0,$$

for vector fields $\Gamma, \Lambda, \Upsilon$ and Ω orthogonal to ξ.

From (11) we have

$$\tilde{\nabla}_\Omega \tilde{R}(\Gamma, \Lambda)\Upsilon = (\nabla_\Omega R)(\Gamma, \Lambda)\Upsilon - \eta(\Omega)\phi \tilde{R}(\Gamma, \Lambda)\Upsilon$$

$$+ \eta(\Omega)\{\tilde{R}(\phi \Gamma, \Lambda)\Upsilon + \tilde{R}(\Gamma, \phi \Lambda)\Upsilon + \tilde{R}(\Gamma, \Lambda)\phi \Upsilon\}.$$

Differentiating (12), we obtain

$$\nabla_\Omega \tilde{R}(\Gamma, \Lambda)\Upsilon = (\nabla_\Omega R)(\Gamma, \Lambda)\Upsilon + 2\eta(\Lambda)\phi \tilde{R}(\Gamma, \Lambda)\Upsilon$$

$$+ \phi \tilde{R}(\Gamma, \Lambda)\phi \Upsilon + (\eta(\Lambda)g(\Omega, \phi \Upsilon) - \eta(\Gamma)g(\Omega, \phi \Upsilon))\phi \Upsilon + (\eta(\Lambda)g(\Omega, \Upsilon) - \eta(\Gamma)g(\Omega, \Upsilon))\phi \Upsilon.$$

Now applying ϕ^2 and considering $\Gamma, \Lambda, \Upsilon$ and Ω orthogonal to ξ in (16), we obtain

$$\phi^2(\tilde{\nabla}_\Omega \tilde{R}(\Gamma, \Lambda)\Upsilon) = \phi^2((\nabla_\Omega R)(\Gamma, \Lambda)\Upsilon).$$

Hence we state a K-Contact manifold is locally ϕ-symmetric with quarter-symmetric metric connection ∇ if and only if it is so with Levi-Civita connection ∇.

4. Locally W_0 ϕ-symmetric K-contact manifold

A K-contact manifold M is said to be a locally W_0 ϕ-symmetric with quarter-symmetric metric connection if

$$\phi^2((\tilde{\nabla}_\Omega \tilde{W}_0)(\Gamma, \Lambda)\Upsilon) = 0,$$

for $\Gamma, \Lambda, \Upsilon$ and Ω orthogonal to ξ, where \tilde{W}_0 is the W_0 curvature tensor with quarter-symmetric metric connection given by

$$\tilde{W}_0(\Gamma, \Lambda)\Upsilon = \tilde{R}(\Gamma, \Lambda)\Upsilon - \frac{1}{(n-1)}[\tilde{S}(\Lambda, \Upsilon)\Gamma - g(\Gamma, \Upsilon)\Omega \Lambda],$$

From (11) we can write

$$\tilde{\nabla}_\Omega \tilde{W}_0(\Gamma, \Lambda)\Upsilon = (\nabla_\Omega \tilde{W}_0)(\Gamma, \Lambda)\Upsilon - \eta(\Omega)\phi \tilde{W}_0(\Gamma, \Lambda)\Upsilon$$

$$+ \eta(\Omega)\{\tilde{W}_0(\phi \Gamma, \Lambda)\Upsilon + \tilde{W}_0(\Gamma, \phi \Lambda)\Upsilon + \tilde{W}_0(\Gamma, \Lambda)\phi \Upsilon\}.$$

Differentiating (20) with respect to Ω, we obtain

$$(\nabla_\Omega \tilde{W}_0)(\Gamma, \Lambda)\Upsilon = (\nabla_\Omega \tilde{R})(\Gamma, \Lambda)\Upsilon$$

$$- \frac{1}{(n-1)}[(\nabla_\Omega \tilde{S})(\Lambda, \Upsilon)\Gamma].$$
Use of (17) and (13) in (22), we have
\[
(\nabla_{\Omega}W_0)(\Gamma, \Lambda)\phi = (\nabla_{\Omega}R)(\Gamma, \Lambda)\phi + 2[\eta(\Lambda)g(\Gamma, \Omega) - \eta(\Gamma)g(\Omega, \Lambda)]\phi \phi + [g(\Omega, \phi \Lambda)g(\Lambda, \phi \Lambda) - g(\Omega, \phi \Lambda)g(\Lambda, \phi \Lambda)]\phi \phi + [g(\Gamma, \phi \Lambda)g(\Gamma, \phi \Lambda) + g(\Omega, \phi \Lambda)]\phi \phi - g(\Omega, \phi \Lambda)\eta(\phi) + [\eta(\Lambda)g(\Omega, \phi \phi)\phi \phi + g(\Omega, \phi \Lambda)\Lambda] - \frac{1}{(n-1)}[n\eta(\Lambda)g(\Omega, \phi \phi)\phi \phi + n\eta(\Gamma)g(\Gamma, \phi \phi)\phi \phi + n\eta(\Lambda)g(\Lambda, \phi \phi)\phi \phi + n\eta(\Gamma)g(\Gamma, \phi \phi)\phi \phi].
\]

Taking account of (9), we write (23) as
\[
(\nabla_{\Omega}W_0)(\Gamma, \Lambda)\phi = (\nabla_{\Omega}W_0)(\Gamma, \Lambda)\phi + 2[\eta(\Lambda)g(\Gamma, \Omega) - \eta(\Gamma)g(\Omega, \Lambda)]\phi \phi + [g(\Omega, \phi \Lambda)g(\Lambda, \phi \Lambda) - g(\Omega, \phi \Lambda)g(\Lambda, \phi \Lambda)]\phi \phi + [g(\Gamma, \phi \Lambda)g(\Gamma, \phi \Lambda) + g(\Omega, \phi \Lambda)]\phi \phi - g(\Omega, \phi \Lambda)\eta(\phi) + [\eta(\Lambda)g(\Omega, \phi \phi)\phi \phi + g(\Omega, \phi \Lambda)\Lambda] - \frac{1}{(n-1)}[n\eta(\Lambda)g(\Omega, \phi \phi)\phi \phi + n\eta(\Gamma)g(\Gamma, \phi \phi)\phi \phi + n\eta(\Lambda)g(\Lambda, \phi \phi)\phi \phi + n\eta(\Gamma)g(\Gamma, \phi \phi)\phi \phi].
\]

Now applying (2) and (24) in (21), we have
\[
\phi^2(\nabla_{\Omega}W_0)(\Gamma, \Lambda)\phi = \phi^2(\nabla_{\Omega}W_0)(\Gamma, \Lambda)\phi + 2[\eta(\Lambda)g(\Gamma, \Omega) - \eta(\Gamma)g(\Omega, \Lambda)]\phi \phi + [g(\Omega, \phi \Lambda)g(\Lambda, \phi \Lambda) - g(\Omega, \phi \Lambda)g(\Lambda, \phi \Lambda)]\phi \phi + [g(\Gamma, \phi \Lambda)g(\Gamma, \phi \Lambda) + g(\Omega, \phi \Lambda)]\phi \phi - g(\Omega, \phi \Lambda)\eta(\phi) + [\eta(\Lambda)g(\Omega, \phi \phi)\phi \phi + g(\Omega, \phi \Lambda)\Lambda] - \frac{1}{(n-1)}[n\eta(\Lambda)g(\Omega, \phi \phi)\phi \phi + n\eta(\Gamma)g(\Gamma, \phi \phi)\phi \phi + n\eta(\Lambda)g(\Lambda, \phi \phi)\phi \phi + n\eta(\Gamma)g(\Gamma, \phi \phi)\phi \phi].
\]

If we consider \(\Gamma, \Lambda, \phi \phi \phi \) orthogonal to \(\xi \), (25) reduces to
\[
\phi^2(\nabla_{\Omega}W_0)(\Gamma, \Lambda)\phi = \phi^2(\nabla_{\Omega}W_0)(\Gamma, \Lambda)\phi.
\]

Hence A K-contact manifold is locally \(W_0 \) \phi-symmetric with \(\tilde{\nabla} \) if and only if it is so with Levi-Civita connection \(\nabla \).

Next from (2) and (23) in (21) then we get
\[
\phi^2(\nabla_{\Omega}W_0)(\Gamma, \Lambda)\phi = \phi^2(\nabla_{\Omega}R)(\Gamma, \Lambda)\phi + 2[\eta(\Lambda)g(\Gamma, \Omega) - \eta(\Gamma)g(\Omega, \Lambda)]\phi \phi + [g(\Omega, \phi \Lambda)g(\Lambda, \phi \Lambda) - g(\Omega, \phi \Lambda)g(\Lambda, \phi \Lambda)]\phi \phi + [g(\Gamma, \phi \Lambda)g(\Gamma, \phi \Lambda) + g(\Omega, \phi \Lambda)]\phi \phi - g(\Omega, \phi \Lambda)\eta(\phi) + [\eta(\Lambda)g(\Omega, \phi \phi)\phi \phi + g(\Omega, \phi \Lambda)\Lambda] - \frac{1}{(n-1)}[n\eta(\Lambda)g(\Omega, \phi \phi)\phi \phi + n\eta(\Gamma)g(\Gamma, \phi \phi)\phi \phi + n\eta(\Lambda)g(\Lambda, \phi \phi)\phi \phi + n\eta(\Gamma)g(\Gamma, \phi \phi)\phi \phi].
\]

Taking \(\Gamma, \Lambda, \phi \phi \phi \) orthogonal to \(\xi \) in (27) followed by a simplification we get
\[
\phi^2(\nabla_{\Omega}W_0)(\Gamma, \Lambda)\phi = \phi^2(\nabla_{\Omega}R)(\Gamma, \Lambda)\phi.
\]

Thus we can state that if \(M \) is \phi-symmetric with quarter-symmetric metric connection then a K-contact manifold is locally \(W_0 \) \phi-symmetric with quarter-symmetric metric connection \(\tilde{\nabla} \) if and only if it is locally \phi-symmetric with Levi-Civita connection \(\nabla \).
5. ξ-W_0 flat K-contact manifold

A K-contact manifold M with the quarter-symmetric metric connection is said to be ξ-W_0 flat if $\bar{W}_0(\Gamma, \Lambda)\xi = 0$, for Γ, Λ on M. If this expression holds for Γ, Λ orthogonal to ξ, then a manifold is a horizontal ξ-W_0 flat manifold.

Using (12) in (20), we get
\[
\bar{W}_0(\Gamma, \Lambda)\Upsilon = R(\Gamma, \Lambda)\Upsilon - 2g(\Gamma, \phi\Lambda)\phi\Upsilon + [\eta(\Gamma)g(\Lambda, \Upsilon) - \eta(\Lambda)g(\Gamma, \Upsilon)]\xi + \frac{1}{(n-1)}[\tilde{S}(\Lambda, \Upsilon)\Gamma - g(\Upsilon, \Lambda)\phi\Gamma].
\] (29)

Putting $\Upsilon = \xi$ and using (2), (5) and (13) in (29), we get
\[
\bar{W}_0(\Gamma, \Lambda)\xi = 2[\eta(\Lambda)\Gamma - \eta(\Gamma)\Lambda] = \frac{1}{(n-1)}[2(n-1)\eta(\Lambda)\Gamma - \eta(\Lambda)\phi\Lambda].
\] (30)

If we consider Γ, Λ orthogonal to ξ then (30), implies that
\[
\bar{W}_0(\Gamma, \Lambda)\xi = 0.
\] (31)

Hence we state that a K-contact manifold is horizontal ξ-W_0 flat with quarter-symmetric metric connection.

Again using (13) in (29), we have
\[
\bar{W}_0(\Gamma, \Lambda)\Upsilon = W_0(\Gamma, \Lambda)\Upsilon - 2g(\Gamma, \phi\Lambda)\phi\Upsilon + [\eta(\Gamma)g(\Lambda, \Upsilon) - \eta(\Lambda)g(\Gamma, \Upsilon)]\xi + \frac{1}{(n-1)}[g(\Lambda, \Upsilon)\Gamma - n\eta(\Lambda)\eta(\Upsilon)\Gamma].
\] (32)

Putting $\Upsilon = \xi$ and using (2) in (32), it follows that
\[
\bar{W}_0(\Gamma, \Lambda)\xi = W_0(\Gamma, \Lambda)\xi - \eta(\Gamma)\Lambda.
\] (33)

From (33), it implies that
\[
\bar{W}_0(\Gamma, \Lambda)\xi = W_0(\Gamma, \Lambda)\xi.
\] (34)

Hence a K-contact manifold is horizontal ξ-W_0 flat with quarter-symmetric metric connection if and only if the manifold is ξ-W_0 flat with Levi-Civita connection.

6. Locally W_2 ϕ-symmetric K-contact manifold

A K-contact manifold M is said to be a locally W_2 ϕ-symmetric with quarter-symmetric metric connection if
\[
\phi^2((\tilde{\nabla}_{\Omega}\bar{W}_2)(\Gamma, \Lambda)\Upsilon) = 0,
\] (35)

for all $\Gamma, \Lambda, \Upsilon$ and Ω orthogonal to ξ, where \bar{W}_2 is the W_2 curvature tensor with quarter-symmetric metric connection given by
\[
\bar{W}_2(\Gamma, \Lambda)\Upsilon = \bar{R}(\Gamma, \Lambda)\Upsilon - \frac{1}{(n-1)}[g(\Lambda, \Upsilon)\phi\Gamma - g(\Upsilon, \Lambda)\phi\Gamma],
\] (36)

Using (11) we can write
\[
(\tilde{\nabla}_{\Omega}\bar{W}_2)(\Gamma, \Lambda)\Upsilon = (\nabla_{\Omega}\bar{W}_2)(\Gamma, \Lambda)\Upsilon - \eta(\Omega)\phi\bar{W}_2(\Gamma, \Lambda)\Upsilon + \eta(\Omega)\{\bar{W}_2(\phi\Gamma, \Lambda)\Upsilon + \tilde{\Omega}_2(\Gamma, \phi\Lambda)\Upsilon + \bar{W}_2(\Gamma, \Lambda)\phi\Upsilon\}.
\] (37)
Differentiating (36), we obtain
\[
(\nabla_\Omega \tilde{W}_2)(\Gamma, \Lambda) \Upsilon = (\nabla_\Omega \tilde{R})(\Gamma, \Lambda) \Upsilon.
\] (38)

Use of (17) in (38), we have

\[
(\nabla_\Omega \tilde{W}_2)(\Gamma, \Lambda) \Upsilon = (\nabla_\Omega R)(\Gamma, \Lambda) \Upsilon + 2[\eta(\Lambda)g(\Gamma, \Omega) - \eta(\Gamma)g(\Omega, \Lambda)](\phi \Upsilon) \\
+ [g(\Omega, \phi \Gamma)g(\Lambda, \Upsilon) - 2g(\Gamma, \phi \Lambda)g(\Omega, \Upsilon) - g(\Omega, \phi \Lambda)g(\Gamma, \Upsilon)]\xi \\
+ [\eta(\Lambda)g(\Gamma, \Upsilon) - \eta(\Gamma)g(\Lambda, \Upsilon)](\phi \Upsilon) + 2g(\Gamma, \phi \Lambda)\Omega + g(\Omega, \phi \Lambda)\Gamma
\] (39)

Taking account of (10), we write (39) as

\[
(\nabla_\Omega \tilde{W}_2)(\Gamma, \Lambda) \Upsilon = (\nabla_\Omega W_2)(\Gamma, \Lambda) \Upsilon + 2[\eta(\Lambda)g(\Gamma, \Omega) - \eta(\Gamma)g(\Omega, \Lambda)](\phi \Upsilon) \\
+ [g(\Omega, \phi \Gamma)g(\Lambda, \Upsilon) - 2g(\Gamma, \phi \Lambda)g(\Omega, \Upsilon) - g(\Omega, \phi \Lambda)g(\Gamma, \Upsilon)]\xi \\
+ [\eta(\Lambda)g(\Gamma, \Upsilon) - \eta(\Gamma)g(\Lambda, \Upsilon)](\phi \Upsilon) + 2g(\Gamma, \phi \Lambda)\Omega + g(\Omega, \phi \Lambda)\Gamma
\] (40)

Now applying (2) and (40) in (37), we have

\[

\phi^2(\nabla_\Omega \tilde{W}_2)(\Gamma, \Lambda) \Upsilon = \phi^2(\nabla_\Omega W_2)(\Gamma, \Lambda) \Upsilon + 2[\eta(\Lambda)g(\Gamma, \Omega) - \eta(\Gamma)g(\Omega, \Lambda)](\phi \Upsilon) \\
+ [\eta(\Lambda)g(\Gamma, \Upsilon) - \eta(\Gamma)g(\Lambda, \Upsilon)](\phi \Upsilon) + 2g(\Gamma, \phi \Lambda)(\phi \Upsilon) \phi^2 \Omega \\
+ g(\Omega, \phi \Lambda)(\phi \Upsilon) - g(\Omega, \phi \Gamma)\phi^2 \Lambda(\phi \Upsilon) + \phi(\Upsilon) + [\eta(\Lambda)g(\Omega, \phi \Upsilon)](\phi \Upsilon) - \eta(\Omega)(\phi \Upsilon) - \eta(\Omega)(\phi \Upsilon)(\phi \Upsilon)
\] (41)

Considering \(\Gamma, \Lambda, \Upsilon\) and \(\Omega\) orthogonal to \(\xi\), (41) reduces to

\[
\phi^2(\nabla_\Omega \tilde{W}_2)(\Gamma, \Lambda) \Upsilon = \phi^2(\nabla_\Omega W_2)(\Gamma, \Lambda) \Upsilon.
\] (42)

Hence we can state a \(K\)-contact manifold is locally \(W_2\) \(\phi\)-symmetric with \(\tilde{\nabla}\) if and only if it is so with Levi-Civita connection \(\nabla\).

From (2) and (39) in (37) then we get

\[
\phi^2(\nabla_\Omega \tilde{W}_2)(\Gamma, \Lambda) \Upsilon = \phi^2(\nabla_\Omega R)(\Gamma, \Lambda) \Upsilon + 2[\eta(\Lambda)g(\Gamma, \Omega) - \eta(\Gamma)g(\Omega, \Lambda)](\phi \Upsilon) \\
+ [\eta(\Lambda)g(\Gamma, \Upsilon) - \eta(\Gamma)g(\Lambda, \Upsilon)](\phi \Upsilon) + 2g(\Gamma, \phi \Lambda)(\phi \Upsilon) \phi^2 \Omega \\
+ g(\Omega, \phi \Lambda)(\phi \Upsilon) - g(\Omega, \phi \Gamma)(\phi \Upsilon) \phi^2 \Lambda(\phi \Upsilon) + \phi(\Upsilon) + [\eta(\Lambda)g(\Omega, \phi \Upsilon)](\phi \Upsilon) - \eta(\Omega)(\phi \Upsilon) - \eta(\Omega)(\phi \Upsilon)(\phi \Upsilon)
\] (43)

Taking \(\Gamma, \Lambda, \Upsilon\) and \(\Omega\) orthogonal to \(\xi\) in (43) followed by a simplification we get

\[
\phi^2(\nabla_\Omega \tilde{W}_2)(\Gamma, \Lambda) \Upsilon = \phi^2(\nabla_\Omega R)(\Gamma, \Lambda) \Upsilon.
\] (44)

Thus we can state that if \(M\) is \(\phi\)-symmetric with quarter-symmetric metric connection then a \(K\)-contact manifold is locally \(W_2\) \(\phi\)-symmetric with quarter-symmetric metric connection \(\tilde{\nabla}\).
7. ξ-W_2 flat K-contact manifold

A K-contact manifold M with quarter-symmetric metric connection is said to be ξ-W_2 flat if $\tilde{W}(\Gamma,\Lambda)\xi = 0$, for Γ, Λ on M. If this expression holds for Γ, Λ orthogonal to ξ, then a manifold is a horizontal ξ-W_2 flat manifold.

Using (12) in (36), we get

$$\tilde{W}(\Gamma,\Lambda)\Upsilon = R(\Gamma,\Lambda)\Upsilon - 2g(\Gamma, \phi\Lambda)\phi\Upsilon + [\eta(\Gamma)g(\Lambda, \Upsilon) - \eta(\Lambda)g(\Gamma, \Upsilon)]\xi$$

$$+ [\eta(\Lambda)\Gamma - \eta(\Gamma)\Lambda]g(\Upsilon, \Upsilon) - \frac{1}{(n-1)}[g(\Lambda, \Upsilon)Q\Gamma - g(\Gamma, \Upsilon)Q\Lambda]. \quad (45)$$

Putting $\Upsilon = \xi$ and using (2), (5) and (13) in (45), we get

$$\tilde{W}(\Gamma,\Lambda)\xi = 2[\eta(\Lambda)\Gamma - \eta(\Gamma)\Lambda] - \frac{1}{(n-1)}[\eta(\Lambda)Q\Gamma - \eta(\Gamma)Q\Lambda]. \quad (46)$$

If Γ, Λ orthogonal to ξ then (46), implies that $\tilde{W}(\Gamma,\Lambda)\xi = 0, \quad (47)$

Hence we state a K-contact manifold is horizontal ξ-W_2 flat with quarter-symmetric metric connection.

Again using (13) in (45), we have

$$\tilde{W}(\Gamma,\Lambda)\Upsilon = W_2(\Gamma,\Lambda)\Upsilon - 2g(\Gamma, \phi\Lambda)\phi\Upsilon + [\eta(\Lambda)\Gamma - \eta(\Gamma)\Lambda]g(\Upsilon, \Upsilon)$$

$$+ [\eta(\Gamma)g(\Lambda, \Upsilon) - \eta(\Lambda)g(\Gamma, \Upsilon)]\xi. \quad (48)$$

Putting $\Upsilon = \xi$ and using (2) in (48), it follows that

$$\tilde{W}(\Gamma,\Lambda)\xi = W_2(\Gamma,\Lambda)\xi + \eta(\Lambda)\Gamma - \eta(\Gamma)\Lambda. \quad (49)$$

From (49), it implies that

$$\tilde{W}(\Gamma,\Lambda)\xi = W_2(\Gamma,\Lambda)\xi. \quad (50)$$

Hence we have the following:

Theorem: A K-contact manifold is horizontal ξ-W_2 flat with quarter-symmetric metric connection if and only if the manifold is ξ-W_2 flat with Levi-Civita connection.

References

[1] Blair D E 1976 *Lecture Notes in Mathematics, Springer-Verlag* 509
[2] Chaubey S K and Ojha R H 2010 *Diff. Geom. Dyn. Syst.* 12 52-60
[3] De U C 2008 *International Electronic Journal of Geometry* 1(1) 33-38
[4] De U C and Sengupta J 2000 *Commun. Fac. Sci. Univ. Ank. Series* 49 5-13
[5] Friedmann A and Schouten J A 1924 *Math. Zeitschr.* 21 211-223
[6] Golab S 1975 *Tensor, N.S.* 29 249-254
[7] Gurupadavva Ingalahalli, Anil S C and Bagewadi C S 2020 *Int. J. Math. And Appl.* 8(2) 27-34
[8] Hasseb A Prakash A and Siddqi M D 2017 *Acta. Math. Univ. Comenianae* LXXXVI(1) 143-152
[9] Hayden H A 1932 *Proc. London Math. Soc.* 34 27-50
[10] Hui S K and Richard Santiago Lemmee 2018 *KYUNGPOOK Math. J.* 58 347-359
[11] Kenmotsu K 1972 *Tohoku Math. J.* 24 93-103
[12] Pradeep Kumar K T, Bagewadi C S and Venkatesha 2017 *Differ. Geom. Dyn. Syst.* 13 128-137
[13] Prakash D G and Mirji K K 2015 *Journal of Mathematics* Article ID 728298, 6 pages
http://dx.doi.org/10.1155/2015/728298.
[14] S. Sasaki, *Lecture note on almost contact manifolds*, Tohoku University Part-I 1965
[15] Selcen Yüksel Perktaş, Erol Kılıç and Mukut Mani Tripath 2010 Diff. Geom. Dyn. Syst. 12 299-310
[16] Shaikh A A and Baishya K K 2005 Yokohama Math. J. 52 97-112
[17] T. Takahashi 1977 Tohoku Math. J. 29 91-113
[18] Tripathi M M and Punam Gupta 2012 arXiv:1202.6138v1 [math.DG] 28 1-32
[19] Venkatesha, Pradeep Kumar K T, Bagewadi C S and Gurupadavva Ingalahalli 2012 International Journal of Mathematics and Mathematical Sciences ID 757032 doi:10.1155/2012/757032
[20] Venkatesha, Pradeep Kumar K T and Bagewadi C S 2015 Azerbaijan Journal of Mathematics 5(1) 3-12
[21] Venkatesha, Arasaiah, Vishnuvardhana S V, Naveen Kumar R T 2019 FACTA UNIVERSITATIS, Ser. Math. Inform. 34(1) 35-44
[22] Vishnuvardhana S V and Venkatesha 2020 CUBO, A Mathematical Journal 22(2) 257-271
[23] Yano K 1970 Rev. Roumaine Math. Pures Appl. 15 1579-1586
[24] Yano K and Imai T 1982 Tensor N.S. 38 13-18