Combination of the single-double coupled cluster and the configuration interaction methods; application to barium, lutetium and their ions.

V. A. Dzuba
School of Physics, University of New South Wales, Sydney 2052, Australia
(Dated: June 4, 2014)

A version of the method of accurate calculations for few valence-electron atoms which combines linearized single-double coupled cluster method with the configuration interaction technique is presented. The use of the method is illustrated by calculations of the energy levels for Ba, Ba$^+$, Lu, Lu$^+$ and Lu$^{2+}$. Good agreement with experiment is demonstrated and comparison with previous version of the method (Safronova et al, PRA 80, 012516 (2009)) is made.

PACS numbers: 31.15.A-,31.15.V-

I. INTRODUCTION

Many-electron atoms play an important role in studying fundamental laws of modern physics and searching for new physics beyond the standard model. They are used for measurements of parity and time invariance violation in atoms (see, e.g. reviews [1, 2]), search for space-time variation of fundamental constants (see, e.g. reviews [3, 4]), etc. Another important area of application is the construction of very accurate atomic clocks. Planning and interpreting the measurements require accurate atomic calculations. The calculations also are needed to address the lack of experimental data, e.g. for such systems as superheavy elements [5] and highly-charged ions [6].

For atoms with one external electron above closed-shell core the best results are achieved by the use of all-order techniques based on the construction of the coupled-cluster method [10–12] or correlation potential (CP) method [13, 14]. For heavy atoms with several valence electrons the most accurate methods include multi-configurational Hartree-Fock method (MCHF) [15] and different versions of the configuration interaction techniques. There are also versions of the CC method adopted for two-valence-electron systems [16, 17].

Configuration interaction method combined with the many-body perturbation theory to include core-valence correlations (the CI+MBPT method [18]) turned out to be a very efficient tool for accurate calculations for many-electron atoms having two or three valence electrons (see, also [19–22]). In this method core-valence correlations are included into effective CI Hamiltonian in second order of the MBPT. Recently developed method which combines CI with the linearized single-double coupled cluster method [23] takes core-valence correlations to next level of accuracy by including certain types of the core-valence correlations to all orders. The results for two and three valence electron atoms are significantly better than in the CI+MBPT method [23, 24].

In this paper an independent version of the SD+CI method is presented. It is very similar to what was presented in Ref. [23] but also has some important differences which will be discussed in next section. We study the use of the method using barium, lutetium and their positive ions Ba$^+$, Lu$^+$ and Lu$^{2+}$ as examples. We demonstrate that the accuracy of the results for ions and neutral atoms is correlated. If the SD method works well for a single-valence electron ion then the SD+CI method should give accurate results for corresponding neutral atom. This is important observation since it is well known that the SD approximation does not work well for every atomic system with one external electron (see, e.g. [26]) and triple excitations often need to be included for better accuracy. For some atoms a good alternative to the use of single-electron SD operator is the use of the all-order correlation potential [13, 14, 27].

The results of present work for Ba are in good agreement with earlier calculations of Ref. [23], in spite of some differences in the implementation of the method. We confirm that the use of the SD approximation reduces the deviation of theoretical energies from the experiment by about of factor of two as compared to the CI+MBPT method in which core-valence correlations are included in second-order of MBPT. However, better accuracy for both Ba and Ba$^+$ is achieved when the all-order correlation potential [13] which includes ladder diagrams [13] is used in place of the single-electron SD operator. The two-electron operator (screening of Coulomb interaction) is still included in the SD approximation. Deviation of theoretical energies from experiment are further reduced about four time for Ba$^+$ and about two times for Ba.

In contrast to Ba, the SD approximation produces very accurate results simultaneously for Lu$^{2+}$, Lu$^+$ and Lu.

II. METHOD

In the single-double linearized couple cluster method (SD) the many electron wave function of an atom is written as an expansion over terms containing single and double excitations of core or valence electrons from the reference Hartree-Fock wave function into basis states above the core (see, e.g. Ref. [10]). The coefficients of the expansion are found by solving the SD equations. The SD
equations for the core have a form
\[(\epsilon_a - \epsilon_m)\rho_{ma} = \sum_{bn} g_{mbn} \tilde{\rho}_{nb} + \]
\[\sum_{bnr} g_{mbnr} \tilde{\rho}_{nrb} - \sum_{bcn} g_{bcn} \tilde{\rho}_{mnb} + \]
\[(\epsilon_a + \epsilon_b - \epsilon_m - \epsilon_n)\rho_{mnab} = g_{mnab} + \]
\[\sum_{cd} g_{cdab} \tilde{\rho}_{mncd} + \sum_{rs} g_{mrns} \tilde{\rho}_{psab} + \]
\[\sum_{r} g_{mnrb} \rho_{ra} - \sum_{c} g_{cnab} \rho_{me} + \sum_{rc} g_{emrb} \tilde{\rho}_{mrac} + \]
\[\sum_{r} g_{nmra} \rho_{rb} - \sum_{c} g_{cmba} \rho_{nc} + \sum_{rc} g_{cmra} \tilde{\rho}_{nrbc} \]
\[(1) \]

Here parameters \(g \) are Coulomb integrals
\[g_{mnab} = \int \int \psi_m^+(r_1) \psi_n^+(r_2) \frac{e^2}{r_12} \psi_v(r_1) \psi_b(r_2) dr_1 dr_2, \]
parameters \(\epsilon \) are the single-electron Hartree-Fock energies. Coefficients \(\rho_{ma} \) and \(\rho_{mnab} \) are the expansion coefficients which are to be found by solving the equations iteratively starting from
\[\rho_{mnij} = \frac{g_{mnij}}{\epsilon_i + \epsilon_j - \epsilon_m - \epsilon_n}, \]
\[\rho_{ma} = 0. \]
\[(2) \]

The tilde above \(g \) or \(\rho \) means the sum of direct and exchange terms, e.g.
\[\tilde{\rho}_{nrbc} = \rho_{nrbc} - \rho_{nrbc}. \]

Indexes \(a, b, c \) numerate states in atomic core, indexes \(m, n, r, s \) numerate states above the core, indexes \(i, j \) numerate any states.

The correction to the energy of the core
\[\delta E_C = \frac{1}{2} \sum_{mnab} g_{abmn} \tilde{\rho}_{mab} \]
\[(3) \]
is used to control the convergence.

In the case of single electron above closed-shell core the SD equations for a particular valence state \(v \) can be obtained from (1) by replacing index \(a \) by \(v \) and replacing \(\epsilon_a \) by \(\epsilon_v + \delta \epsilon_v \) where
\[\delta \epsilon_v = \sum_{mab} g_{abvm} \tilde{\rho}_{mva} + \sum_{mnb} g_{bvmn} \tilde{\rho}_{mnb} \]
\[(4) \]
is a correction to the energy of the valence electron. The SD equations are solved iteratively first for the core and then for as many valence states \(v \) as needed.

In the case of more than one valence electron above closed-shell core interaction between valence electrons needs to be included. This can be done with the use of the configuration interaction (CI) technique. To combine the CI technique with the SD method one needs to modify the SD equations for valence states. The SD equations for the core \((1) \) remain the same. To see why and how the equations should be modified it is instructive to consider an example – the use of the CI technique for an atom with one external electron above closed shells. The result of the CI calculations for such system must be equivalent to the SD calculations and the resulting energy of the calculated state should be very close to those given by Eq. (1). However, no valence state is treated in the CI approach as an initial approximation. Instead, all single electron states of the same symmetry are treated as a basis and the wave function of the valence electron is presented as an expansion
\[\psi_v = \sum_{n} c_n \psi_n. \]
\[(5) \]

Here \(\psi_n \) are single-electron basis states lying above the core, expansion coefficients \(c_n \) and the energy of the valence state \(\psi_v \) are to be found via matrix diagonalization. The SD equations should be run for every basis state \(\psi_n \) in the expansion. However, the energy parameter in all these SD equations must be the same and close to the energy of the state which is to be found. If the lowest state of the given symmetry is to be found then the natural choice is to use the Hartree-Fock energy of the lowest valence basis state.

Another modification comes from the need to exclude double counting. All terms in the SD equations which have only excitations of valence electrons must be removed since valence excitations are included in the CI calculations.

The modified SD equations for valence states have the form
\[(\epsilon_0 - \epsilon_m)\rho_{mvl} = \sum_{bn} g_{mbn} \rho_{nb} + \]
\[\sum_{bc} g_{mbcn} \rho_{nrb} - \sum_{bcn} g_{bcn} \rho_{mnb} + \]
\[(\epsilon_0 + \epsilon_b - \epsilon_m - \epsilon_n)\rho_{mnvb} = g_{mnvb} + \]
\[\sum_{cd} g_{cdvb} \rho_{mncd} + \sum_{rs} g_{mrvs} \rho_{psab} - \]
\[\sum_{c} g_{cnvb} \rho_{me} + \sum_{rc} g_{emvb} \tilde{\rho}_{mrac} + \]
\[\sum_{r} g_{nmrvb} \rho_{rb} - \sum_{c} g_{cmvb} \rho_{nc} + \sum_{rc} g_{cmvb} \tilde{\rho}_{nrbc} \]
\[(6) \]
These equations are obtained from (1) by replacing core index \(a \) by valence index \(v \), removing the term \(\sum_{n} g_{mnvb} \rho_{v} \) which has only valence excitations, and replacing \(\epsilon_a \) by \(\epsilon_0 \). The energy parameter \(\epsilon_0 \) is fixed and is the same for all states in the expansion (5). Usually it is chosen to be the Hartree-Fock energy of the lowest basis state of given symmetry. Note that expression (2) is not used in the CI calculations. Instead, the energy of the valence state is found as an eigenstate of the CI matrix. This approach is very similar to one used in Ref. 23 for positron binding to atoms. It can also be used for negative ions. Neither positron nor extra electron are bound.
to an atom in the Hartree-Fock approximation. Therefore, their states above the core cannot be used as initial approximation but should be used as basis states for the CI calculations.

In case of more than one external electron, the Coulomb interaction between valence electrons needs to be modified as well. Replacing in the equations for the double excitation coefficients (11) core indexes a, b by valence indexes v, w and removing terms which have only valence excitations we get the expressions for screened Coulomb integrals to be used in the CI calculations

$$g_{mnvw} = g_{mnvw} + \sum_{cd} g_{cdvw} \rho_{mncd} - \sum_{i} (g_{cnvw} \rho_{mc} + g_{envw} \rho_{ne}) + \sum_{rc} (g_{cnrw} \rho_{mrc} + g_{enrw} \rho_{marc} + g_{enwr} \rho_{marc})$$

The effective CI Hamiltonian can be written as a sum of one and two electron parts

$$\hat{H}_{\text{CI}} = \sum_{i} \hat{h}_{1}(r_{i}) + \sum_{i<j} \hat{h}_{2}(r_{i}, r_{j}).$$

Here N_{v} is the number of valence electrons. The single electron part is given by

$$\hat{h}_{1} = c \alpha \mathbf{p} + (\beta - 1) mc^{2} + V_{\text{core}} + \hat{\Sigma}_{1},$$

where α and β are Dirac matrixes, V_{core} is the self-consistent potential of the atomic core (including nuclear part), $\hat{\Sigma}_{1}$ is the single-electron correlation operator responsible for the correlation interaction of a valence electron with the core. Its matrix elements are obtained from (6) and can be written as

$$\langle v \vert \hat{\Sigma}_{1} \vert m \rangle = (\epsilon_{v} - \epsilon_{m}) \rho_{mv}.$$

The two-electron part \hat{h}_{2} of the CI Hamiltonian (8) is the sum of the Coulomb interaction and the two-electron correlation operator $\hat{\Sigma}_{2}$. Matrix elements of \hat{h}_{2} in the SD approximation are given by (7).

The notation $\hat{\Sigma}$ for the operator of the core-valence correlations was introduced in Ref. [18] in the framework of the CI method combined with the many-body perturbation theory (MBPT). In this and following works [19-22] the $\hat{\Sigma}_{1}$ and $\hat{\Sigma}_{2}$ operators were calculated in the lowest second-order of the MBPT. This corresponds to substituting the initial approximation (2) into (6) and (7) without iterating the SD equations (16). Thus, present work further advances the method by including higher-order correlations. This leads to significant improvement in the accuracy of the calculations for many atomic systems.

The SD+CI method was first developed in Ref. [23]. Its implementation in present work is independent and slightly different. Most of the difference is in energy denominators. Energy denominators in equations (6) and (7) are hidden in the expressions for the excitation coefficients ρ. In corresponding expressions of Ref. [23] (see Eq.(22-24) in [23]) the energy denominators are shown explicitly and they are different from what can be fund in (6) and (7). Energy denominator of every term containing valence state v is corrected in [23] by the energy difference $\epsilon_{v} - \epsilon_{e}$, where ϵ_{e} is the Hartree-Fock energy of the valence state v and ϵ_{e} is an external parameter. It can be chosen to be the energy of the lowest state of given symmetry or it can be used as a fitting parameter. Let us consider in more detail why different energy denominators may appear.

Moving core excitations into valence space leads to the following second-order corrections to the matrix elements of the CI Hamiltonian [18]

$$\Delta H_{IJ}^{\text{CI}} = \sum_{M} \frac{\langle I \vert U \vert M \rangle \langle M \vert U \vert J \rangle}{E - E_{M}},$$

where U is residual Coulomb interaction, $\vert J \rangle$ and $\vert M \rangle$ are many-electron states in the valence space, states $\vert M \rangle$ are many electron states with excitations from the core, E_{M} is the many-electron energy of the state $\vert M \rangle$, E is the energy of the state to be found in the calculations. Expression (12) corresponds to the Brillouin-Wigner (BW) version of the MBPT. The alternative is to use the Rayleigh-Schrödinger (RS) MBPT in which Eq. (12) transfers to

$$\Delta H_{IJ}^{\text{CI}} = \sum_{M} \frac{\langle I \vert U \vert M \rangle \langle M \vert U \vert J \rangle}{E_{I} - E_{M}}.$$

There are two reasons to use the BW MBPT rather than the RS one. First, the CI matrix is not symmetric in the RS approach, $H_{IJ}^{\text{CI}} \neq H_{JI}^{\text{CI}}$. Second, energy denominator $E_{I} - E_{M}$ for highly excited state $\vert I \rangle$ may accidently become very small leading to unphysical enhancement of otherwise small contribution.

The downside of the use of the BW version of the MBPT is that there is no exact solution to the problem of reducing the many-electron expression (12) to single- and two-electron operators $\hat{\Sigma}_{1}$ and $\hat{\Sigma}_{2}$. Thus different approximations can be used.

One can see from (12) that the core-valence correlation operator $\hat{\Sigma}$ is the energy-dependent operator which should be calculated at the energy close to the energy of the state of interest. The $\epsilon_{v} - \epsilon_{e}$ corrections to the energy denominators used in Ref. [23] were introduced to ensure correct dependence of the $\hat{\Sigma}$ operator on the energy (see also [24]). This might be important for highly excited states. For low lying states which are always of the most interest the corrections are less important and can be neglected.

A. Basis states

A complete set of single-electron states is needed for solving the SD equations (16) and for construction of the
many-electron states for the CI calculations. We use the same B-spline technique [29] for both purposes. Forty B-spline states of the order of nine are calculated in a box of radius 40 a_B in each partial wave up to l_{max} = 6. All of them are used for calculating terms in the SD equations indexes n, m, r, s in [16,10]. The SD equation for valence states are solved for few (three of four) states above the core in each partial wave up to l_{max} = 3. The second-order correlation potential Σ is used for higher states. Fourteen states above the core in each partial wave up to l_{max} = 4 are used in the CI calculations. With this choice of the parameters the basis is sufficiently saturated.

B. Breit and QED corrections

Breit and quantum electrodynamic (QED) corrections are not very important for barium and lutetium. We include them however to be sure that remaining deviation of the calculated energies from experiment is mostly due to higher-order correlations. We do this in the same way as in our previous works (see, e.g. [27, 30]).

We treat Breit interaction in zero energy transfer approximation. The Breit Hamiltonian includes magnetic interaction and retardation:

$$\hat{H}^B = -\frac{\mathbf{\alpha_1 \cdot \alpha_2} + (\mathbf{\alpha_1 \cdot n})(\mathbf{\alpha_2 \cdot n})}{2r}.$$ (13)

Here r = nr, r is the distance between electrons, and α is the Dirac matrix.

Breit interaction is included in the self-consistent Hartree-Fock procedure. Thus the effect of Breit interaction on self consistent atomic potential is included. This effect, which is often called the relaxation effect, is still linear in Breit but non-linear in Coulomb interaction. Its inclusion leads to more accurate results than treating Breit interaction perturbatively.

To include the QED corrections we use the radiative potential approach developed in Ref. [31]. This radiative potential has the form

$$V_{rad}(r) = V_U(r) + V_g(r) + V_e(r),$$ (14)

where V_U is the Uehling potential, V_g is the potential arising from the magnetic formfactor, and V_e is the potential arising from the electric formfactor. The V_U and V_e terms can be considered as additions to nuclear potential while inclusion of V_g leads to some modification of the Dirac equation (see Ref. [31] for details).

III. RESULTS

Performing calculations in the V^{N-2} approximation for Ba and V^{N-3} approximation for Lu we have pairs of atomic systems with similar electron structure. Ba has electron structure similar to Lu^{2+} and Ba^{2+} is similar to Lu^{2+}. It is natural to expect some similarities in the results. It turns out however that barium and lutetium are sufficiently different so that best results are achieved with slightly different procedures. We will therefore discuss them separately.

A. Barium and its positive ion

Table I presents results of calculations of the energy levels of Ba^{+}. As one can see the accuracy of the SD approximation for the ion is on the level 0.5 - 0.7%. Significantly better accuracy can be achieved if the all-order correlation potential [13, 14] is used [27]. Corresponding numbers are presented in Table II under the header “CP+CI”. Note that these numbers are slightly different from those presented in Ref. [27]. The difference is due to the fact that in present work the energies were obtained as a result of matrix diagonalization while in Ref. [27] they were found by solving single-electron equations for Brueckner orbitals.

Similar improvement in accuracy of the calculations can be achieved for neutral barium if single-electron SD matrix elements [10] are replaced by the matrix elements of the all-order correlation potential as in Ref. [27].

The results for neutral barium are presented in Table II. The results of previous calculations in the SD+CI approximation [23] are also presented for comparison. As one can see, in spite of some difference in the methods (see discussion of energy denominators in section II), the results of both SD+CI calculations are very close to each other. It was pointed out in Ref. [23] that the deviation of the calculated energies from experiment in the SD+CI calculations is about two times smaller than in the CI+MBPT calculations. This is the effect of selected higher-order core valence correlations included in the SD+CI method but not in the CI+MBPT method. Which higher-order correlations play the most important role varies from atom to atom. The SD approximation is not always the best choice. It turns out that for barium better results are achieved when single-electron SD matrix elements [10] are replaced by the matrix elements of the all-order correlation potential, while screened Coulomb integrals are kept the same (see Eq. [7]). Corresponding results are presented in Table II in the CP+CI column. As one can see, the difference with
TABLE II: Excitation energies (cm$^{-1}$) of the lowest states of Ba in SD+CI and CP+CI approximations; $\Delta = E_{\text{theor}} - E_{\text{expt}}$.

State	J	Ref. [23]	This work	SD+CI Δ	SD+CI Δ	CP+CI Δ	Expt. Δ
6s2	3S	0	0	0	0	0	0
6s5d	3D	1	9249 216	-8882 -151	8936 -97	9033	9033
		2	9441 225	9132 -84	9187 71	9216	9216
		3	9840 243	9505 -92	9560 59	9597	9597
6s5d	1D	2	11721 326	11471 76	11508 113	11395	11395
6s6p	3Po	0	12556 290	12541 275	12325 50	12266	
		1	12919 282	12898 261	12679 42	12637	12637
		2	13819 304	13796 281	13568 53	13515	13515
6s6p	1Po	1	18292 232	18173 113	17973 87	18060	
5d2	3F	2	20722 -212	20850 -84	20934	20934	20934
		3	20956 -294	21080 -170	21250	21250	21250
		4	21462 -162	21584 -40	21624	21624	21624
5d6p	3Po	0	22154 89	22006 -59	22065		
		1	22931 -131	23062 0	23062	23062	23062
		2	23237 163	23035 -39	23074	23074	23074
5d2	1D	2	22931 -131	23062 0	23062	23062	23062
5d6p	1Do	2	23237 163	23035 -39	23074		
5d2	3P	0	22729 -480	22862 -212	23209	23209	23209
		1	22877 -603	23018 -462	23480	23480	23480
		2	23663 255	23794 -124	23918	23918	23918
5d6p	3Do	1	24266 74	24044 -148	24192		
		2	24635 103	24410 -122	24532	24532	24532
		3	25110 130	24885 -95	25030	25030	25030
5d6p	3Po	0	25721 79	25528 -114	25642		
		1	25789 85	25600 -104	25704	25704	25704
		2	26088 131	25902 -55	25957	25957	25957
6s7s	3S	1	26425 265	26135 -25	26160	26160	26160

*aRef. [32].

The experimental energies is further reduced by about two times.

The accuracy of present calculations for barium is better than in previous calculations with the use of the CI+MBPT method [13, 33]. This is in spite of the fact that present calculations are pure ab initio ones while in earlier calculations rescaling of the second-order correlation operator $\hat{\Sigma}$ was used to fit the energies of the lowest states.

B. Lutetium and its ions

The results for energy levels of Lu$^{2+}$ are presented in Table III. There are two sets of the SD results. One (called SD) corresponds to the standard SD method for atoms with one external electron in which the SD equations are iterated for a specific valence state and correction to the energy is calculated using [14]. Another set (called SD+CI) is based on the CI method. Hartree-Fock valence states are treated as a basis (as in Eq. [5]) and the energy of the valence state is found as an eigenstate of the CI Hamiltonian. This two approaches are almost equivalent. Some small difference in results is mostly due to the fact that equations [14] used in the CI calculations are iterated with the fixed energy parameter ϵ_0 while energy of the valence state [14] in the standard SD method changes on every iteration. Other factor which can make minor contribution to the difference is incompleteness of the basis in the expansion [14] and the fact that the SD equations [14] are iterated only for few first basis states in the expansion. In the end the difference between SD and SD+CI results is very small. The difference of thesees result and experiment is also small. It is on the level 0.4% or better. This reflects general trend for isoelectronic sequences of alkali atoms. For example, the SD approximation gives poor accuracy for cesium [26], better accuracy for Ba$^+$ (see Table I) and even better accuracy for Lu$^{2+}$. In contrast to Ba$^+$, using the correlation potential method does not lead to improvement in accuracy. Therefore we limit further calculations to the SD+CI method.

Tables IV and V show the results of the SD+CI calculations for the energy levels of Lu$^{+}$ and Lu. The results of previous similar calculations for Lu are also shown for comparison.

IV. CONCLUSION

A version of the method of calculations for many-electron atoms which combines configuration interaction with the single-double linearized coupled cluster approach is presented. This version is simpler than previous one but gives results on the same level of accuracy. The accuracy is better than in the widely used CI+MBPT method. It can be further improved with a different choice of the single-electron correlation operator $\hat{\Sigma}$. The best choice for barium is the all-order correlation potential which was widely used before for the neutral atoms and positive ions of these atoms is correlated. Therefore, one can choose an adequate approximation for the ions first before proceeding to neutral atoms. This is very convenient since calculations for ions take much less computer resources. In the end, we have another method with can be widely used for accurate calculations in many
TABLE IV: Excitation energies (cm$^{-1}$) of the lowest states of Lu$^+$ in SD+CI; $\Delta = E_{\text{theor}} - E_{\text{expt}}$.

State	J	SD+CI	Δ	Expt.a
6s2	1S	0	0	0
6s5d	3D	1	11948	11796
		2	12695	12435
		3	14473	14199
6s5p	3Po	0	27657	27264
		1	28891	29406
		2	31238	32918
5d2	3F	2	29751	29751
		3	31238	32918
5d2	3P	0	35673	35652
		1	36574	36557
		2	39202	38574
5d2	1D	2	36563	36098
5d6p	3Fo	2	41789	41224
		3	45575	44918
		4	49359	48733
5d6p	1Do	2	46149	45458
5d6p	3Do	1	46015	45532
		2	47474	46904
		3	49359	48733
5d6p	3Po	0	50505	49963
		1	50616	50049
		2	51884	51201

aRef. [32].

Acknowledgments

The author is grateful to M. G. Kozlov for useful discussions. The work is partly supported by the Australian Research Council.

[1] J. S. M. Ginges and V. V. Flambaum, Phys. Rep. 397, 63 (2004).
[2] V. A. Dzuba and V. V. Flambaum, Int. J. Mod. Phys. E 21, 1230010 (2012).
[3] V. A. Dzuba and V. V. Flambaum, Can. J. Phys. 87, 15 (2009).
[4] V. V. Flambaum and V. A. Dzuba, Can. J. Phys. 87, 25 (2009).
[5] A. Derevianko and H. Katori, Rev. Mod. Phys. 83, 331 (2011).
[6] C. J. Campbell, A. G. Radnaev, A. Kuzmich, V. A. Dzuba, V. V. Flambaum, and A. Derevianko, Phys. Rev. Lett. 108, 120802 (2012).
[7] V. Pershina, Radiochem. Acta 99, 459 (2011).
[8] A. Türl and V. Pershina, Chem. Rev. 113, 1237 (2013).
[9] J. C. Berengut, V. A. Dzuba, V. V. Flambaum, A. Ong, Phys. Rev. A 86, 032517 (2012).
[10] S. A. Blundell, W. R. Johnson, Z. W. Liu, and J. Sapirstein, Phys. Rev. A 40, 2233 (1989).
[11] R. Pal, M. S. Safronova, W. R. Johnson, A. Derevianko, and S. G. Porsev, Phys. Rev. A, 75, 042515 (2007).
[12] E. Eliav, M. J. Villkas, Y. Ishikawa, U. Kaldor, Chem. Phys. 311, 163 (2005).
[13] V. A. Dzuba, V. V. Flambaum, O. P. Sushkov, Phys. Lett. A., 140, 403-497 (1989).
[14] V. A. Dzuba, Phys. Rev. A 78, 042502 (2008).
[15] Yu Zou and C. Froese Fischer, Phys. Rev. Lett. 88, 183001 (2002).
[16] A. Borschevsky, E. Eliav, M. J. Villkas, Y. Ishikawa, U. Kaldor, Phys. Rev. A 75, 042514 (2007).
[17] M. Kallay, H. S. Nataraj, B. K. Sahoo, B. P. Das, and L. Visscher, Phys. Rev. A 83, 030503 (2011).
[18] V. A. Dzuba, V. V. Flambaum, and M. G. Kozlov, Phys. Rev. A, 54, 3948 (1996).
[19] V. A. Dzuba and W. R. Johnson, Phys. Rev. A, 57, 2459 (1998).
[20] E. J. Angstmann, V. A. Dzuba, V. V. Flambaum, Phys. Rev. A, 70, 014102 (2004).
[21] T. H. Dinh, V. A. Dzuba, V. V. Flambaum and J. S. M. Ginges, Phys. Rev. A 78, 054501 (2008).
[22] M. G. Kozlov, S. G. Porsev, W. R. Johnson, Phys. Rev. A 64, 052107 (2001).
[23] M. S. Safronova, M. G. Kozlov, W. R. Johnson, and Dansha Jiang, Phys. Rev. A 80, 012516 (2009).
[24] S. G. Porsev, M. S. Safronova, and M. G. Kozlov, Phys. Rev. Lett. 108, 173001 (2012).
[25] V. A. Dzuba, V. V. Flambaum, G. F. Gribakin, and C. Harabati, Phys. Rev. A 86, 032503 (2012).
[26] S. A. Blundell, W. R. Johnson, and J. Sapirstein, Phys. Rev. A 43, 3407 (1991).
[27] V. A. Dzuba, Phys. Rev. A 88, 042516 (2013).
[28] M. G. Kozlov, Opt. Spectr. 95, 6 (2003).
TABLE V: Excitation energies (cm$^{-1}$) of the lowest states of Lu in SD+CI approximation; comparison with previous work and experiment. $\Delta = E_{\text{theor}} - E_{\text{expt}}$.

State	J	Ref. [35]	This work Energy Δ	Energy Δ	Expt. a
5d2s4 2D	3/2	2014	2123	129	1994
	5/2	18789	18552	147	18505
6s26p 2Po	1/2	3910	3975	-75	4136
	3/2	7228	7367	-109	7476
5d2s6 4Fo	3/2	17723	17502	75	17427
	5/2	18789	18552	147	18505
	7/2	20731	20596	163	20433
	9/2	22911	22786	177	22609
5d26s 4F	3/2	19182	18662	-189	18851
	5/2	19737	19248	-155	19403
	7/2	20578	20095	-152	20247
	9/2	21591	21159	-83	21242
5d2s6 4Do	3/2	20995	20795	33	20762
	5/2	22504	22352	130	22222
	7/2	23795	23665	141	23524
5d2s6 2Do	3/2	22376	22534	410	22125
	5/2	21735	21775	313	21462
5d26s 4P	5/2	23242	23084	282	22802
	1/2	21860	21803	331	21472
	3/2	22849	22671	203	22468
5d2s6 4Po	5/2	24520	24262	153	24109
	3/2	24786	24563	255	24308
	5/2	25774	25524	332	25192
6s27s 2S	1/2		25408	890	24126
5d26s 2D	3/2	25015	25128	-390	24518
	5/2		25162	-549	24711

aRef. [32].