Convenient Multiple Directions of Stratification

Benjamin Jourdain, Bernard Lapeyre, Piergiacomo Sabino

Abstract

This paper investigates the use of multiple directions of stratification as a variance reduction technique for Monte Carlo simulations of path-dependent options driven by Gaussian vectors. The precision of the method depends on the choice of the directions of stratification and the allocation rule within each strata. Several choices have been proposed but, even if they provide variance reduction, their implementation is computationally intensive and not applicable to realistic payoffs, in particular not to Asian options with barrier. Moreover, all these previously published methods employ orthogonal directions for multiple stratification. In this work we investigate the use of algorithms producing convenient directions, generally non-orthogonal, combining a lower computational cost with a comparable variance reduction. In addition, we study the accuracy of optimal allocation in terms of variance reduction compared to the Latin Hypercube Sampling. We consider the directions obtained by the Linear Transformation and the Principal Component Analysis. We introduce a new procedure based on the Linear Approximation of the explained variance of the payoff using the law of total variance. In addition, we exhibit a novel algorithm that permits to correctly generate normal vectors stratified along non-orthogonal directions. Finally, we illustrate the efficiency of these algorithms in the computation of the price of different path-dependent options with and without barriers in the Black-Scholes and in the Cox-Ingersoll-Ross markets.

Keywords. Monte Carlo methods, variance reduction, stratification methods.

1 Introduction

The main purpose of Monte Carlo (MC) simulations is to compute integrals numerically. It is frequently the only alternative for solving problems in applied sciences and notably for financial applications. The pricing of derivative contracts and value-at-risk calculations for risk-management purposes typically require numerical simulations. However, the MC method for high-dimensional problems is a demanding computational task and a considerable number of studies have been devoted to increase its efficiency via variance reduction techniques. This paper investigates the use of multiple directions of stratification as a variance reduction technique for MC simulations of path-dependent options driven by high-dimensional Gaussian vectors. The precision of the method depends on the choice of the partitions of the space and the allocation of the number of samples within each strata. Usually, the strata are polyhedrons delimited by hyperplanes orthogonal to a few direction vectors. Several choices have been proposed: Glasserman et al. [8] select the directions for the stratification of linear projections based on the quadratic approximation of the integrand or payoff function. In contrast, Etoré et al. [4] find the directions by adaptive techniques. These two approaches provide a high variance reduction but their implementation can be computationally intensive and the former one cannot be applied to more realistic payoff functions such as Asian options with barrier at each time step. Moreover, these two methods suppose orthogonal directions for multiple stratification. In this work, we investigate the use of algorithms producing convenient directions, generally non-orthogonal, combining a lower computational cost with a variance reduction that is comparable to the above mentioned methods. In addition, we study the accuracy of optimal allocation, combined with the above stratification
techniques, in terms of variance reduction, compared to “fixed” allocation procedures such as Latin Hypercube Sampling (LHS). We consider the directions produced by the Linear Transformation (LT) decomposition introduced by Imai and Tan[9] and the Principal Component Analysis (PCA). Moreover, we propose a new procedure based on the Linear Approximation (LA) of the “explained” variance of the payoff function by the use of the law of total variance. Notably, we design a novel algorithm that permits to correctly generate multivariate normal random vectors stratified along non-orthogonal directions. We illustrate the efficiency of the proposed algorithms and their combination for the computation of the price of different path-dependent options with and without barriers in the Black-Scholes (BS) and in the Cox-Ingersoll-Ross (CIR) models. In the former dynamics, it turns out that the LA and the LT approaches return the same first order direction while this vector is almost parallel to the one obtained by the GHS technique even in the case of Asian options with a barrier at expiry. This justifies the application and the good performance of the LA (and LT) if the barrier is at each monitoring time. Consequently, the approaches return the same variance reduction and the LA (LT) is easier to implement and has a lower computational cost. We repeat our numerical investigation in the CIR framework where we find explicit solutions for the LT and LA directions. In order to find a further direction, we compute the first principal component of the sampled covariance matrix of the price process obtained by a MC estimation via a pilot run. In both BS and CIR dynamics, LT and LA return remarkable variance reduction with a low computational cost. We also show that in some setting the stratification along multiple directions can be more efficient than stratifying along a single one. In particular, the combination of the LA (LT) direction and a non-orthogonal direction, notably the first principal component, can even outperform the variance reduction of two orthogonal directions in the case of barrier options. Finally, as far as the allocation of the samples is concerned, in any case the LHS displays a considerable higher computational time and has always a lower variance reduction as compared to the use of a convenient direction of stratification with optimal allocation.

The paper is organized as follows. Section 2 reviews the main ideas of stratification and the motivations of this study. Section 3 presents the new algorithm that permits the stratification along non-orthogonal directions. Section 4 discusses the use of convenient stratification directions and in particular, contains the presentation of the LT decomposition and the introduction of the LA procedure. In Section 5 we explain the financial applications and find the explicit solutions for the LA and the LT methods both for the BS and the CIR dynamics. In Section 6 the variance reductions and the computational costs of the proposed technique are illustrated by numerical experiments. Finally, Section 7 concludes the paper by summarizing the most important findings.

2 Stratified Sampling and Linear Projections

Stratified Sampling is a general variance reduction technique that consists of drawing the observations from specific partitions of the sample space. More specifically, suppose we want to compute by MC simulations an expectation of the form \(E[g(Y)] \) where \(g : \mathbb{R}^d \rightarrow \mathbb{R} \) is a Borel function and \(Y \) is a \(\mathbb{R}^d \)-valued random vector with the assumption that \(E[g(Y)^2] < \infty \). Consider a stratification variable \(X \) and let \(A_1, \ldots, A_K \) be disjoint subsets of the real line for which \(P \left(\bigcup_{k=1}^K \{ X \in A_k \} \right) = 1. \) Then

\[
E[g(Y)] = \sum_{k=1}^K E[g(Y)|X \in A_k]P(X \in A_k) = \sum_{k=1}^K E[g(Y)|X \in A_k]p_k
\]

where \(p_k = P(X \in A_k) \), \(k = 1, \ldots, K \). The stratified estimator with \(N_S \) draws is defined as:

\[
\sum_{k=1}^K p_k \frac{1}{n_k} \sum_{j=1}^{n_k} g(Y_{kj}) = \frac{1}{N_S} \sum_{k=1}^K p_k \frac{n_k}{q_k} \sum_{j=1}^{n_k} g(Y_{kj}),
\]

where \(n_k \) are the number allocations in the \(k \)-th stratum and \(q_k = n_k/N_S \) is their fraction in the \(k \)-th stratum and \(Y_{kj} \) are independent draws from the conditional distribution of \(Y \) given \(X \in A_k \). Its variance is given by \(\sum_{k=1}^K p_k^2 \sigma_k^2/n_k \) where \(\sigma_k \) is the conditional variance of \(g(Y) \) given \(X \in A_k \). This estimator may be more efficient than the usual MC sample mean estimator of a random sample of size \(N_S \). The potential higher efficiency of the former estimator critically depends on
the allocation rule and the choice of the partition of the sample space. The optimal allocation rule is the one that minimizes the variance of the stratified sampling estimator given the partition of the state space and the constraint \(\sum_{k=1}^{K} q_k = 1 \). It is given by:

\[
q_k = \frac{p_k \sigma_k}{\sum_{k=1}^{K} p_k \sigma_k}.
\]

(3)

The probabilities \(p_k \) are known whereas generally the conditional variances are not known. They can be estimated in a pilot run and then used in a second stage to determine the stratified estimator. This is not the optimal procedure and more sophisticated techniques can be employed, see for example Etoré and Jourdain [5].

We focus our attention on MC simulation driven by high-dimensional Gaussian vectors that are of particular interest in financial applications. As such, we consider in the following only normal random variables.

2.1 Stratifying Linear Projections: 1-dimensional Setting

We begin with a general description of stratifying a linear projection of a Gaussian random vector. Suppose \(Z \) is a \(d \)-dimensional centered Gaussian random vector, \(Z \sim \mathcal{N}(0, \Sigma_Z) \) and then consider the stratification variable \(X \) as the linear projection of \(Z \) over a fixed direction \(\mathbf{v} \in \mathbb{R}^d \), \(X = \mathbf{v} \cdot Z \). \(X \) is also Gaussian with variance \(\mathbf{v} \cdot \Sigma_Z \mathbf{v} \). This choice permits to partition the sample space \(\mathbb{R}^d \) into strata defined by

\[
S_{k,v} = \left\{ \mathbf{x} \in \mathbb{R}^d, \mathbf{x} \cdot \mathbf{v} \in A_k \right\}.
\]

(4)

Due to the Gaussian structure of the random variables we can generate \(Z \) stratified along the direction \(\mathbf{v} \) in the following way. Consider a general Gaussian random vector \(Y = (Y_1, Y_2) \):

\[
Y = (Y_1, Y_2) \sim \mathcal{N}\left(\begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}, \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix} \right)
\]

and denote \(\mathcal{L}(Y_1 | Y_2 = x) \) the law of \(Y_1 \) given \(Y_2 = x \), it is possible to prove (see for instance Glasserman [7]) that

\[
\mathcal{L}(Y_1 | Y_2 = x) = \mathcal{N}\left(\mu_1 + \Sigma_{12} \Sigma_{22}^{-1}(x - \mu_2), \Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21} \right).
\]

(6)

where we assume that \(\Sigma_{22} \) is invertible. Adapting the above result for \(Z \) given \(X = \mathbf{v} \cdot Z \) and \(\text{Var}[X] = \mathbf{v} \cdot \Sigma_Z \mathbf{v} = 1 \) we have

\[
\mathcal{L}(Z | X = x) = \mathcal{N}\left(\begin{pmatrix} \Sigma_Z \mathbf{v} \\ \mathbf{v} \cdot \Sigma_Z \end{pmatrix} \mathbf{x}, \Sigma_Z - \mathbf{v} \Sigma_Z \mathbf{v}^T \right) = \mathcal{N}\left(\Sigma_Z \mathbf{v} \mathbf{x}, \Sigma_Z - \Sigma_Z \mathbf{v} \mathbf{v}^T \Sigma_Z \right).
\]

(7)

If we consider \(\Sigma_Z = I_d \) the above equation becomes:

\[
\mathcal{L}(Z | X = x) = \mathcal{N}\left(\mathbf{v} \mathbf{x}, I_d - \mathbf{v} \mathbf{v}^T \right).
\]

(8)

The conditional covariance matrix \(D = I_d - \mathbf{v} \mathbf{v}^T \mathbf{v} \) does not depend on \(x \) and since \(D \) is an orthogonal projection matrix, we have \(DD^T = D \). Due to this result, we do not need to compute the Cholesky (or a general square-root) matrix of \(D \) to sample from the conditional distribution of \(Z \) given \(X \). These observations give an easy and simple algorithm to generate \(K \) samples of \(Z \) stratified along the direction \(\mathbf{v} \).

Suppose now that \(A_k \) is the interval between the quantiles of order \(\frac{k-1}{K} \) and of order \(\frac{k}{K} \) of the standard normal distribution. We can sample from \(Z \) given \(Z \cdot \mathbf{v} \in A_k \) in the following steps:

1. generate \(U \sim \mathcal{U}([0,1]) \).
2. Set \(V = \frac{U - 1}{K} \) and \(X = \Phi^{-1}(V) \), with \(\Phi \) the inverse of the cumulative normal distribution.
3. Generate \(Z' \sim \mathcal{N}(0, I_d) \) independent on \(U \).
4. Set \(\mathbf{v}X + (I - \mathbf{v} \mathbf{v}^T) Z' \).

We suggest to implement the last term in the last step as \(Z' - \mathbf{v}(\mathbf{v} \cdot Z') \) which requires \(O(d) \) operation rather than \(O(d^2) \).
2.2 Stratifying Linear Projections: Multidimensional Setting

We start with the case of orthogonal directions and consider a matrix \(V \in \mathbb{R}^{d \times d'} \), where now we should stratify the marginals of the random vector \(X \). Following the notation introduced above we have:

\[
X = V^T Z
\]

where now \(X \) is \(d' \) dimensional. Moreover,

\[
\left(\begin{array}{c} Z \\ X \end{array} \right) \sim \mathcal{N} \left(\left(\begin{array}{c} 0 \\ 0 \end{array} \right), \left(\begin{array}{cc} \Sigma_Z & \Sigma_Z V \\ V^T \Sigma_Z & V^T \Sigma_Z V \end{array} \right) \right)
\]

Consequently

\[
\mathcal{L}(Z|X = x) = \mathcal{N} \left(\Sigma_Z V \left(V^T \Sigma_Z V \right)^{-1} x, \Sigma_Z - \Sigma_Z V \left(V^T \Sigma_Z V \right)^{-1} V^T \Sigma_Z \right)
\]

where we assume that \(V^T \Sigma_Z V \) is invertible. In the case \(\Sigma_Z = I_d \) we have

\[
\mathcal{L}(Z|X = x) = \mathcal{N} \left(V \left(V^T V \right)^{-1} x, I_d - V \left(V^T V \right)^{-1} V^T \right)
\]

Hence, if we adopt orthogonal directions \(V^T V = I_{d'} \) the algorithm to stratify \(Z \) given \(X = V^T Z \) is a simple multidimensional version of the algorithm illustrated before where now we should stratify the \(d' \) dimensional hypercube \([0,1]^{d'}\). Suppose, for example, that we stratify the \(j \)-th coordinate of the hypercube, \(j = 1, \ldots, d' \), into \(K_j \) intervals of equal length so that we have a total number of \(K_1 \times \cdots \times K_{d'} \) equiprobable strata. In this multidimensional setting we can sample from \(Z \) given \(X = V^T Z \in A_k \), where \(A_k = \prod_{j=1}^{d'} \Phi \left(\left[\frac{k_{j-1}}{K_j}, \frac{k_j}{K_j} \right] \right) \), in the following steps:

1. generate \(U = (U_1, \ldots, U_{d'}) \) with independent components each of law \(\mathcal{U}([0,1]) \).
2. Set \(V_j = \frac{k_j - U_j}{k_j} \) with \(j \in \{1, \ldots, d'\} \) and \(k_j \in \{1, \ldots, K_j\} \).
3. Set \(X = (X_1, \ldots, X_{d'}) \), \(X_j = \Phi^{-1}(V_j) \).
4. Generate \(Z' \sim \mathcal{N}(0, I_d) \) independent of \(U \).
5. Set \(VX + (I_d - VV^T)Z' \).

We now investigate the possibility to stratify over different directions that can be non-orthogonal either. When the directions are not orthogonal the components of \(X \) are not independent since \(\text{Var}[X] = VV^T \neq I_d \) and the previous multidimensional algorithm cannot be adopted anymore. A first way to approach this problem may be to assume \(X \sim C_X \varepsilon \) with \(\varepsilon \sim \mathcal{N}(0, I_{d'}) \) independent on \(Z \) and \(C_X \in \mathbb{R}^{d' \times d'} \) such that \(\text{Var}[X] = C_X C_X^T \), and use the following slight modification of the above algorithm.

1. generate \(U = (U_1, \ldots, U_{d'}) \) with independent components each of law \(\mathcal{U}([0,1]) \).
2. Set \(V_j = \frac{k_j - U_j}{k_j} \) with \(j \in \{1, \ldots, d'\} \) and \(k_j \in \{1, \ldots, K_j\} \).
3. Set \(\varepsilon = (\varepsilon_1, \ldots, \varepsilon_{d'}), \varepsilon_j = \Phi^{-1}(V_j) \).
4. Generate \(Z' \sim \mathcal{N}(0, I_d) \) independent of \(U \).
5. Set \(V(C_X)^{-1}\varepsilon + (I_d - V(V^T V)^{-1} V^T)Z' \).

However, although mathematically correct, this algorithm stratifies the marginals of the random vector \(\varepsilon \) that has independent components. This construction does not consider the fact that the marginals of \(X \) are not independent and the introduction of the dependence can affect this partial stratification in complicated ways (see Glasserman [7]).
3 Stratification along non-orthogonal directions

In this section we show how to generate multivariate normal random vectors, $Z \sim \mathcal{N}(0, I_d)$, stratified along non-orthogonal directions. We prove the following proposition:

Proposition 1. Let $B_1 = \{e_1, \ldots, e_{d'}\}$ be a set of linearly independent vectors in $\mathbb{R}^{d'}$, $d' \leq d$, such that $\|e_i\| = 1$, $i = 1, \ldots, d'$, let $B' = \{f'_1, \ldots, f'_{d'}\}$ be the set of orthogonal vectors produced the Gram-Schmidt procedure: $f'_i = e_i - \frac{\sum_{j=1}^{i-1} (e_i \cdot f'_j) f'_j}{\|f'_i\|^2}$. Finally consider $B_2 = \{f_i = \frac{f'_i}{\|f'_i\|}, i = 1, \ldots, d'\}$ the orthonormal version of B' and let F be the $d \times d'$ matrix whose i-th column is f_i.

Suppose $g : \mathbb{R}^d \to \mathbb{R}$ such that $\mathbb{E}[g^2(Z)] < +\infty$ and consider two vectors in $\mathbb{R}^{d'}$, $a^\pm = \{a^+_1, \ldots, a^+_d\}$, such that $a^-_i < a^+_i$, $\forall i = 1, \ldots, d'$. We have

\[
\mathbb{E}[g(Z) \mid a^-_i \leq Z \cdot e_i \leq a^+_i, i = 1, \ldots, d'] = \mathbb{E}\left[g\left(I - FF^T\right) Z\right]
\]

\[
+ \sum_{m=1}^{d'} f_m \Phi^{-1} \left(\Phi\left(\tilde{a}^+_m \left(U^{(m-1)}\right)\right) + U_m \left(\Phi\left(\tilde{a}^-_m \left(U^{(m-1)}\right)\right) - \Phi\left(\tilde{a}^-_m \left(U^{(m-1)}\right)\right)\right)\right) \times \prod_{m=1}^{d'} \frac{\Phi\left(\tilde{a}^-_m \left(U^{(m-1)}\right)\right) - \Phi\left(\tilde{a}^-_m \left(U^{(m-1)}\right)\right)}{\mathbb{P}\left(a^-_i \leq Z \cdot e_i \leq a^+_i, i = 1, \ldots, d'\right)}
\]

where

\[
\tilde{a}^+_i \left(U^{(i-1)}\right) = \frac{a^+_i - \sum_{j=1}^{i-1} e_i \cdot f_j \Phi^{-1} \left(\Phi\left(\tilde{a}^-_j \left(U^{(j-1)}\right)\right) + U_j \left(\Phi\left(\tilde{a}^+_j \left(U^{(j-1)}\right)\right) - \Phi\left(\tilde{a}^-_j \left(U^{(j-1)}\right)\right)\right)\right)}{\|f'_i\|}
\]

with the notation, $U^{(j)} = (U_1, \ldots, U_j), j = 1, \ldots, n$ and $U_1, \ldots, U_{d'}$ i.i.d. uniformly distributed random variables, all independent on Z; we assume $U_0 = 0$ and $\tilde{a}^+_1 = a^+_1$.

Remark 1. The above result requires the computation of the joint probability $\mathbb{P}\left(a^-_i \leq Z \cdot e_i \leq a^+_i, i = 1, \ldots, d'\right)$ where the random variables $Z \cdot e_i, i = 1, \ldots, d'$ are not independent; in contrast, this term is not necessary for the estimation of $\mathbb{E}[g(Z)]$. Indeed, suppose K strata, by conditioning we have:

\[
\mathbb{E}[g(Z)] = \sum_{k=1}^{K} \mathbb{E}[g(Z) \mid Z \in k\text{-th stratum}] \mathbb{P}(Z \in k\text{-th stratum}),
\]

then plugging in the conditional expectation the result of equation (13) the probabilities at the numerator and at the denominator simplify out.

Proof. For simplicity we suppose $d' = 2$, the Gram-Schmidt procedure returns $f'_1 = f_1 = e_1$, $f'_2 = e_2 - (e_1 \cdot e_2)e_1$ and $f_2 = \frac{f'_2}{\|f'_2\|}$. It follows that

\[
\mathbb{E}\left[g(Z) \mid a^-_1 \leq Z \cdot e_1 \leq a^+_1, a^-_2 \leq Z \cdot e_2 \leq a^+_2\right] = \mathbb{E}\left[g(Z) \mid a^-_1 - (e_1 \cdot e_2)e_1 \leq Z \cdot f_1 \leq a^+_1 - (e_1 \cdot e_2)e_1, a^-_2 \leq Z \cdot f_2 \leq a^+_2 - (e_1 \cdot e_2)e_1Z\right].
\]

Based on the results of the Section 2 and the properties of the conditional expectation, the previous expression equals:

\[
\mathbb{E}\left[g\left(Z + f_1 \left(\Phi(a^-_1) + U_1 \left(\Phi(a^+_1) - \Phi(a^-_1)\right)\right) - f_1 \cdot Z\right)\right] \mathbb{I}_{a^+_1 \leq f_1 \leq a^-_1, a^-_2 \leq Z \cdot f_2 \leq a^+_2 - (e_1 \cdot e_2)e_1Z}
\]

where

\[
C = \frac{\Phi(a^+_1) - \Phi(a^-_1)}{\mathbb{P}\left(a^-_1 \leq Z \cdot e_1 \leq a^+_1, a^-_2 \leq Z \cdot e_2 \leq a^+_2\right)}
\]
The expected value is then:

\[
\int_0^1 E \left[g \left(\mathbf{Z} + f_1 \left(\Phi^{-1} (\Phi(a_1^+) + u_1 (\Phi(a_1^+) - \Phi(a_1^-))) - f_1 \cdot \mathbf{Z} \right) + f_2 \left(\Phi^{-1} (\Phi(a_2^- (u_1)) + U_2 (\Phi(a_2^- (u_1)) - \Phi(a_2^- (u_1)))) - f_2 \cdot \mathbf{Z} \right) \right] \right] du_1 \\
= \int_0^1 E \left[g \left(\mathbf{Z} + f_1 \left(\Phi^{-1} (\Phi(a_1^+) + u_1 (\Phi(a_1^+) - \Phi(a_1^-))) - f_1 \cdot \mathbf{Z} \right) \right] + f_2 \left(\Phi^{-1} (\Phi(a_2^- (u_1)) + U_2 (\Phi(a_2^- (u_1)) - \Phi(a_2^- (u_1)))) - f_2 \cdot \mathbf{Z} \right) \right] du_1 \\
= E \left[g \left(\mathbf{Z} + f_1 \left(\Phi^{-1} (\Phi(a_1^-) + U_1 (\Phi(a_1^-) - \Phi(a_1^-))) - f_1 \cdot \mathbf{Z} \right) \right] \right] + f_2 \left(\Phi^{-1} (\Phi(a_2^- (U_1)) + U_2 (\Phi(a_2^- (U_1)) - \Phi(a_2^- (U_1)))) - f_2 \cdot \mathbf{Z} \right) \right] \right] du_1 \\
= (\Phi(a_2^- (U_1)) - \Phi(a_2^- (U_1))))
\]

Rearranging the terms in \(\mathbf{Z} \) we get equation (13) for \(d' = 2 \). The result for \(d' \) direction is obtained iterating the steps above.

4 Convenient Directions

Given an allocation rule, the crucial point in the stratification of linear projections is the choice of the directions of stratification. Indeed, stratified sampling eliminates the sampling variability across strata without affecting the sampling variability within strata. Good directions are characterized by their higher capacity to dissect the state space into strata where the integrand function is nearly constant. In the following we describe the approaches that we adopt in order to find the directions of stratification.

4.1 Principal Component Directions

Suppose we want to find the singled-factor approximation of a \(d \)-dimensional Gaussian random vector \(\mathbf{X} \sim \mathcal{N}(0, \Sigma) \) that maximizes the variance of \(\mathbf{v} \cdot \mathbf{X} \). This is equivalent to the following optimization problem:

\[
\arg \max_{\norm{\mathbf{v}} = 1} \mathbf{v} \cdot \Sigma \mathbf{v}
\]

(17)

Suppose \(\lambda_1 \geq \cdots \geq \lambda_d \) represent the eigenvalues of \(\Sigma \) in increasing order, and \(\mathbf{e}_1, \ldots, \mathbf{e}_d \) their associated eigenvectors, then the optimization above is solved by \(\mathbf{v}^* = \mathbf{e}_1 \) an eigenvector associated to the largest eigenvalue \(\lambda_1 \).

As \(\mathbf{e}_1 \) produces the linear combination \(\mathbf{e}_1 \cdot \mathbf{X} \) that best captures the variability of the components of \(\mathbf{X} \). We may choose this vector as the first direction of stratification. In the case we would consider multiple stratification, we can iterate the optimization above. This means that we would consider \(\mathbf{e}_j, j = 1, \ldots, d \), associated to the \(j \)-th eigenvalue, as the \(j \)-th direction of stratification. Indeed, in the statistical literature, the linear combinations \(\mathbf{e}_j \cdot \mathbf{X} \), \(j = 1, \ldots, d \), are called the principal components of \(\mathbf{X} \). The variance explained by the first \(k \leq d \) principal components is the ratio:

\[
\frac{\sum_{j=1}^k \lambda_j}{\sum_{j=1}^d \lambda_j}
\]

Finally, we note that this procedure based on the PCA only produces orthogonal directions.

4.2 Law of Total Variance and GHS Directions

In this section we illustrate the law of total variance and we briefly describe the strategy to select optimal directions illustrated in Glasserman et al. [8]. Given two random vectors \(\mathbf{X}_1 \) and \(\mathbf{X}_2 \) of
dimension \(d_1\) and \(d_2\), respectively, and a function \(g : \mathbb{R}^{d_1} \to \mathbb{R}\), if \(\mathbb{E}[g(X)^2] < \infty\), the law of total variance reads as:

\[
\text{Var}[g(X_1)] = \mathbb{E}[\text{Var}[g(X_1)|X_2]] + \mathbb{V}ar[\mathbb{E}[g(X_1)|X_2]].
\] (18)

Usually, in the context of linear model, the two terms are known as the “unexplained” and the “explained” components of the variance, respectively. In our case, \(X_1\) is a standard normal random vector \(Z\) and \(X_2 = v \cdot Z\) where \(v \in \mathbb{R}^d\). It is well known that stratification eliminates the “explained” component up to terms with order \(o(1/N)\), where \(N\) is the total number of draws (see for instance Lemma 4.1 in Glasserman et al. [8]). Hence, a good direction candidate is the one that maximizes the “explained” component of the variance or minimizes the “unexplained” part.

Such an optimal direction is then the solution of the following optimization problem:

\[
v^* = \arg \min_{v \in \mathbb{R}^d, \|v\|=1} \int_{\mathbb{R}^d} \text{Var}(g(Z)|v \cdot Z = x) p_X(x) dx,
\] (19)

where \(p_X\) is the density of \(X = v \cdot Z\).

The approach proposed in Glasserman et al. [8] is to adopt directions that are optimal for the quadratic approximation of the logarithm of the integrand function. Glasserman et al. [8] considered \(g(z) = \exp\left(\frac{1}{2}z \cdot Bz\right)\) with \(B\) non-singular symmetric matrix whose eigenvalues \(\lambda_1, \ldots, \lambda_d\) are all less than 1/2. Now number the eigenvalues and eigenvectors of the matrix \(B\) so that

\[
\left(\frac{\lambda_1}{1-\lambda_1}\right)^2 \geq \left(\frac{\lambda_2}{1-\lambda_2}\right)^2 \geq \left(\frac{\lambda_d}{1-\lambda_d}\right)^2.
\] (20)

Glasserman et al. [8] proved that the optimal direction \(v^*\) is the eigenvector \(e_1\) of the matrix \(B\) associated with the eigenvalue \(\lambda_1\). When one considers multiple stratification, the \(j\)-th optimal direction is the eigenvector \(e_j\) associated with the eigenvalue \(\lambda_j\). Since the directions are the eigenvectors of the matrix \(B\), the GHS approach only produces orthogonal directions.

When the logarithm of the integrand function is not quadratic, one could evaluate its Hessian at the certain point. Glasserman et al. [8] proposed to calculate the Hessian at a point used for an importance sampling procedure. This last operation might be really computationally expansive, in particular if \(d\) is large. It depends on a non-convex optimization procedure and cannot always be easily applied to realistic situations arising in finance. In addition, in financial applications, payoff functions (integrand functions) are far to be quadratic. In contrast, Etoré et al. [4] found the directions by adaptive techniques that in some cases outperform the above approach. However, the numerical procedure still remains computationally intensive. These drawbacks motivate our study where our main purpose is to investigate convenient multiple stratification directions that provide comparable variance reductions with a notable advantage from the computational point of view.

4.3 Linear Approximations

In this section we describe a different approach, that we name Linear Approximation (LA), in order to find convenient directions for the stratification of linear projections.

Suppose \(g \in C^1\), this approach is based on a linear approximation of the function \(g\) that leads to an approximation of the “unexplained” component of the variance. Then, we can approximate the optimization problem (15) as:

\[
\int_{\mathbb{R}^d} \nabla g(0) \cdot \text{Var}\left[Z\big|Z \cdot v = x\right] \nabla g(0) p_X(x) dx,
\] (21)

where we also use the approximation \(\nabla g(\mathbb{E}[Z|Z \cdot v = x]) \approx \nabla g(\mathbb{E}[Z])\), that is we evaluate the gradient at the expected value of \(Z\) (zero for each component) instead of its conditional one. The solution of the optimization problem (21) is given by the following proposition:
Proposition 2. The optimal direction \mathbf{v}^* of the optimization problem (21) is:

$$\mathbf{v}^* = \pm \frac{\nabla g(0)}{\|\nabla g(0)\|}$$

(22)

Proof. Developing equation (21) we get:

$$\int_{\mathbb{R}^d} \nabla g(0) \cdot \text{Var} \left[Z \middle| X = x \right] \nabla g(0) p_X(x) dx = \int_{\mathbb{R}^d} \nabla g(0) \cdot (I - \mathbf{v}^T \mathbf{v}) \nabla g(0) p_X(x) dx = \|\nabla g(0)\|^2 - \nabla g(0) \cdot \mathbf{v}^T \mathbf{v} \nabla g(0).$$

(23)

The minimization problem is equivalent to maximize the second term that can be written as $\langle \nabla g(0) \cdot \mathbf{v} \rangle^2$. The maximum of this dot product is attained when the two vectors are parallel. The optimal direction is then obtained by normalization.

Multiple directions in the LA procedure can be produced calculating the gradient at different points. For example, we might iteratively consider $Z_2 = \nabla g(\nabla g(0)), \ldots, Z_{d'} = \nabla g(\nabla g(Z_{d'-1}))$ in order to capture higher order components. We remark that the LA approach does provide non-orthogonal directions.

4.4 Linear Transformations

The LT procedure, proposed by Imai and Tan [5], is originally conceived to enhance the accuracy of simulation techniques that employ low-discrepancy sequences also known as Quasi-Monte Carlo (QMC) methods. Indeed, given $Z \sim \mathcal{N}(0, I_d)$, the variance of the MC estimation of the expected value $E[g(Z)]$ does not change if we replace Z by $A\varepsilon$ where $\varepsilon \sim \mathcal{N}(0, I_d)$ and A is a $d \times d$ orthogonal matrix, $AA^T = I_d$, while the choice of A can deeply affect the accuracy of QMC simulations (see for instance Papageorgiou [12]). The Imai and Tan’s choice is such that A minimizes the effective dimension in the truncation sense defined in Caflisch et al. [3] of the integrand function. In our context, the columns of A will be chosen as the orthogonal directions of stratification.

We briefly describe the LT algorithm. Consider a d dimensional normal random vector $T \sim \mathcal{N}(\mu; \Sigma)$, a vector $\mathbf{w} = (w_1, \ldots, w_d) \in \mathbb{R}^d$ and let $f(T) = \sum_{i=1}^d w_i T_i$ be a linear combination of T. Let C be such that $\Sigma = CC^T$ and assume $\varepsilon \sim \mathcal{N}(0, I_d)$ with $T \overset{d}{=} Ce$. The LT approach considers C as $C = C^{LT} = C^CH$, with C^H the Cholesky decomposition of Σ. Then, in the linear case, we can define:

$$g^A(\varepsilon) := f(C^H A \varepsilon) = \sum_{k=1}^d a_k \varepsilon_k + \mu \cdot \mathbf{w},$$

(24)

where $a_k = C_k^T \cdot \mathbf{w} = A_k \cdot \mathbf{B}$, $k = 1, \ldots, d$ and $\mathbf{B} = (C^H)^T \mathbf{w}$ while C_k and A_k are the k-th columns of the matrix C and A, respectively. In the linear case, setting

$$A_{1}^* = \pm \frac{\mathbf{B}}{\|\mathbf{B}\|},$$

(25)

with arbitrary remaining columns with the only constrain that $AA^T = I_d$, leads to the following expression:

$$g^A(\varepsilon) = \mu \cdot \mathbf{w} \pm \|\mathbf{B}\| \varepsilon_1.$$

(26)

This is equivalent to reduce the effective dimension in the truncation sense to 1 and this means to maximize the variance of the first component ε_1.

In a non-linear framework, we can use the LT construction, which relies on the first order Taylor expansion of g^A:

$$g^A(\varepsilon) \approx g^A(\hat{\varepsilon}) + \sum_{i=1}^d \frac{\partial g^A(\hat{\varepsilon})}{\partial \varepsilon_i} \Delta \varepsilon_i.$$

(27)
The approximated function is linear in the standard normal random vector \(\Delta \epsilon \sim \mathcal{N}(0, I_d) \) and we can rely on the considerations above. The first column of the matrix \(A^* \) is then:

\[
A_1^* = \arg \max_{A_1 \in \mathbb{R}^d} \left(\frac{\partial g^{A}(\hat{\epsilon})}{\partial \epsilon_1} \right)^2
\]

(28)

Since we have already maximized the variance contribution for \(\left(\frac{\partial g^{A}(\epsilon)}{\partial \epsilon_1} \right)^2 \), in order to improve the method using adequate columns we might consider the expansion of \(g \) about \(d - 1 \) different points. More precisely Imai and Tan \[9\] propose to maximize:

\[
A_{k}^* = \arg \max_{A_k \in \mathbb{R}^d} \left(\frac{\partial g^{A}(\hat{\epsilon}_k)}{\partial \epsilon_k} \right)^2
\]

(29)

subject to \(\|A_{k}^*\| = 1 \) and \(A_j^* \cdot A_{k}^* = 0, j = 1, \ldots, k-1, k \leq d \).

Although equation \(25\) provides an easy solution at each step, the correct procedure requires that the column vector \(A_{k}^* \) is orthogonal to all the previous (and future) columns. Imai and Tan \[9\] propose to choose \(\hat{\epsilon} = \hat{\epsilon}_1 = \mathbb{E}[\epsilon] = 0, \hat{\epsilon}_2 = (1, 0, \ldots, 0), \ldots \hat{\epsilon}_k = (1, 1, 1, \ldots, 0, \ldots, 0) \), where the \(k \)-th point has \(k - 1 \) leading ones. Sabino \[16\] illustrated an economic and convenient implementation of the LT algorithm by an iterative QR decomposition that we will use to find the directions of stratification. This method is computationally more expensive than the LA and it is not clear if it admits a solution when the sequence of expansion points is different from the one described above.

5 Financial Applications

In this section we illustrate how to calculate the convenient directions introduced above in the context of option pricing. We consider two price-dynamics:

• BS dynamics for \(M \) risky assets with constant volatilities:

\[
dS_i(t) = rS_i(t) \, dt + \sigma_i S_i(t) \, dW_i(t), \quad S_i(0) = S_{i0}, \quad i = 1, \ldots, M, \tag{30}
\]

\(S_i(t) \) denotes the \(i \)-th asset price at time \(t \), \(\sigma_i \) represents the volatility of the \(i \)-th asset return, \(r \) is the risk-free rate, and \(W(t) = (W_1(t), \ldots, W_M(t)) \) is a \(M \)-dimensional Brownian motion such that \(dW_i(t)dW_k(t) = \rho_{ik} dt, i, k = 1, \ldots, M \). When \(M = 1 \) we simply denote \(S(t) = S_1(t) \).

• CIR dynamics:

\[
dS(t) = a(\mu - S(t)) dt + \sigma \sqrt{S(t)} dW(t), \quad S(0) = S_0, \tag{31}
\]

with \(S_0, a, \mu, \sigma \) positive constants. We impose the condition \(2a\mu > \sigma^2 \) in order to ensure that \(S(t) \) remains positive.

Applying the risk-neutral pricing formula (see Lamberton and Lapeyre [124]), the calculation of the price at time \(t \) of any European derivative contract with maturity date \(T \) boils down to the evaluation of an (discounted) expectation:

\[
a(t) = \exp \left(-r(T-t) \right) \mathbb{E} \left[\psi \bigg| \mathcal{F}_t \right], \tag{32}
\]

the expectation is under the risk-neutral probability measure and \(\psi \) is a generic \(\mathcal{F}_T \)-measurable variable that determines the payoff of the contract.

We show how to derive the convenient directions of stratification for the following derivative contracts:

1. discretely monitored Asian basket options:

\[
a(t) = \exp \left(-r(T-t) \right) \mathbb{E} \left[\left(\sum_{i=1}^{M} \sum_{j=1}^{N} w_{ij} S_i(t_j) - K_S \right)^+ \bigg| \mathcal{F}_t \right] \quad \text{Option on a Basket} \tag{33}
\]
where \(x^+ = \max(x, 0) \), \(t_1 < t_2 \cdots < t_N = T \) is a time grid, the coefficients \(w_{ij} \) satisfy \(\sum_{ij} w_{ij} = 1 \) and \(K_S \) is the strike price. When \(N = 1 \) and \(M > 0 \) the option is known as basket option while if \(M = 1 \) and \(N > 0 \) it is simply known as Asian option.

2. Asian option with knock-out barrier at expiry \(T \):

\[
a(t) = \exp(-r(T-t)) \mathbb{E} \left[\left(\frac{1}{N} \sum_{j=1}^{N} S(t_j) - K_S \right)^+ \mathbb{1}_{S(T)<B} \right] \tag{34}
\]

where \(B \) represents the value of the barrier.

3. Asian option with knock-out barrier at each monitoring time:

\[
a(t) = \exp(-r(T-t)) \mathbb{E} \left[\left(\frac{1}{N} \sum_{j=1}^{N} S(t_j) - K_S \right)^+ \mathbb{1}_{S(t_j)<B, \forall j=1,...,N} \right] \tag{35}
\]

where \(B \) represents the value of the barrier.

5.1 Linear Transformation in the Black-Scholes Market

Suppose the BS dynamics with constant volatilities and a time grid \(t_1 < t_2 \cdots < t_N = T \), the elements of the autocorrelation matrix \(\Sigma_B \) of the Brownian motion are \((\Sigma_B)_{ij} = \min(t_j, t_n), j, n = 1, \ldots, N \). Moreover, denote \(\Sigma_A \) the a covariance matrix whose elements are \((\Sigma_A)_{im} = \sigma_i^2 \rho_{im} \sigma_m, i, m = 1, \ldots, M \), and consider \(\Sigma_{MN} = \Sigma_B \otimes \Sigma_A \) where \(\otimes \) denotes the Kronecker product. Given \(\epsilon \sim N(0, \Sigma_{MN}) \) and \(C^{LT} = C^{CH}A \) such that \(C^{CH}C^{LT} = \Sigma_{MN} \) and \(AA^T = I_{MN}, \) the payoff of an Asian basket option can written as:

\[
\psi = (g(\epsilon) - K_S)^+ \quad \text{where} \quad g(\epsilon) = \sum_{k=1}^{MN} \exp \left(\mu_k + \sum_{l=1}^{MN} C_{il}^L \epsilon_l \right) \tag{36}
\]

and

\[
\mu_k = \ln(w_{k_1k_2}S_{k_1}(0)) + \left(r - \frac{\sigma_{k_2}^2}{2} \right) t_{k_2} \tag{37}
\]

where the indexes \(k_1 \) and \(k_2 \) are \(k_1 = (k-1) \mod M + 1, k_2 = \lfloor (k-1)/M \rfloor + 1 \), respectively and \(\lfloor x \rfloor \) denotes the greatest integer less than or equal to \(x \).

Since the Asian payoff function is not everywhere differentiable, the LT procedure is applied to its differentiable part \(g \) (or \(g - K_S \)). This is done also for the other barrier-style Asian options, hence we obtain the same directions of stratification for the three types of derivative contracts. Hereafter we detail the adopted procedure:

1. Expand \(g \) up to the first order:

\[
g(\epsilon) \approx g(\hat{\epsilon}) + \sum_{l=1}^{NM} \left(\sum_{i=1}^{NM} \exp \left(\mu_i + \sum_{k=1}^{NM} C_{ik}^{LT} \hat{\epsilon}_k \right) C_{il}^{LT} \right) \Delta \epsilon_l \tag{38}
\]

2. For \(\hat{\epsilon} = 0 \) find the first column of the optimal matrix \(A \):

\[
g(\epsilon) \approx g(0) + \sum_{l=1}^{NM} \left(\sum_{i=1}^{NM} \exp (\mu_i) C_{il}^{LT} \right) \Delta \epsilon_l \tag{39}
\]

Set \(a_l = \left(\sum_{i=1}^{NM} \exp (\mu_i) C_{il}^{LT} \right) = \sum_{m=1}^{NM} \left(\sum_{i=1}^{NM} \exp (\mu_i) C_{im}^{CH} \right) A_{ml} \) and set \(u^{(1)} = (e^{\mu_1}, \ldots, e^{\mu_{NM}})^T \)

and \(B^{(1)} = (C^{CH})^T u^{(1)} \) then the first column is

\[
A^*_1 = \pm \frac{B^{(1)}}{||B^{(1)}||}. \tag{40}
\]
3. The p-th optimal column is found considering the p-th expansion point of the strategy. This results in:

$$g(\epsilon) \approx g(\hat{\epsilon}_p) + \sum_{l=1}^{NM} \left(\sum_{i=1}^{NM} \exp \left(\mu_i + \sum_{k=1}^{p-1} C^*_{ik} \right) C_{il} \right) \Delta \epsilon_l$$

(41)

where $C^*_yk = (C^*_{ik})_v, k < p$ have been already found at the $p-1$ previous steps and A_{p}^{*} must be orthogonal to all the other columns.

Also define $u(p) = \left(\exp \left(\mu_1 + \sum_{k=1}^{p-1} C^*_{ik} \right), \ldots, \exp \left(\mu_{MN} + \sum_{k=1}^{p-1} C^*_{kMNk} \right) \right)^T$ and $B(p) = (C^*)^T u(p)$, then the solution is

$$A_{p}^{*} = \pm \frac{B(p)}{\|B(p)\|}.$$

(42)

We remark that at each time step all the columns must be orthogonalized (see Sabino [15][16]).

5.2 Linear Transformation in the CIR Market

We extend the procedure described in the previous section with the assumption of a CIR dynamics. Consider an equally spaced time-grid whose time step is denoted by Δt, the Euler scheme of the CIR dynamic is:

$$S_j = S_{j-1} + \alpha (\mu - S_{j-1}) \Delta t + \sigma \sqrt{S_{j-1} \Delta t} Z_j, \quad j = 1, \ldots, N,$$

(43)

where Z is a Gaussian vector of N independent standard random variables. The Asian payoff is:

$$\psi = (h(Z) - K_\delta)^+$$

with $h(Z) = \frac{1}{N} \sum_{j=1}^{N} S_j(Z)$.

(44)

As done in the BS setting, we find the LT-based convenient directions of stratification applying the LT technique to the differentiable part of the payoff function of an Asian option (in this dynamics we only consider options on a single asset). This is done also for the other barrier-style Asian options, so that we have the same directions of stratification for the three types derivative contracts. Applying the LT decomposition the Euler scheme becomes

$$S_j = S_{j-1} + \alpha (\mu - S_{j-1}) \Delta t + \sigma \sqrt{S_{j-1} \Delta t} \sum_{m=1}^{N} A_{jm} e_m, \quad j = 1, \ldots, N,$$

(45)

the computation of the first direction of LT decomposition consists in the following steps:

1. Compute the partial derivatives $\frac{\partial S_j}{\partial \epsilon_1}, j = 1, \ldots, N$:

$$\frac{\partial S_j(0)}{\partial \epsilon_1} = \left\{ \left[1 - \alpha \Delta t + \frac{\sigma^2}{2} \sum_{m=1}^{N} A_{jm} e_m \right] \frac{\partial S_{j-1}}{\partial \epsilon_1} + \sigma \sqrt{\Delta t S_{j-1}} A_{j1} \right\}_|_{\epsilon = 0}.$$

(46)

Now denote $p_j^{(1)} = \frac{\partial S_j(0)}{\partial \epsilon_1}, a_{j-1}^{(1)} = \left[1 - \alpha \Delta t + \frac{\sigma^2}{2} \sum_{m=1}^{N} A_{jm} e_m \right]_|_{\epsilon = 0}$ and $\beta_{j-1}^{(1)} = \sigma \sqrt{\Delta t S_{j-1}(0)}$, we have

$$p_j^{(1)} = p_j^{(1)} a_{j-1}^{(1)} + \beta_{j-1}^{(1)} A_{j1}.$$

(47)

Remark 2. The third term in $a^{(1)}$ is zero, nevertheless we show its expression because the results below still hold when we compute the vector $a^{(1)}$ of parameters in the l-th step, where we consider $\epsilon_l = (1, 1, \ldots, 1, 0, \ldots, 0), l = 1, \ldots, N$.

Proposition 3. The solution of the recurrence equation (47) is a linear combination of the rows of A:

$$p_j^{(1)} = \sum_{m=1}^{i} w_m^{(1)}(j) A_{m1}, \quad j = 1, \ldots, N,$$

(48)
where the components of vector $\mathbf{w}^{(1)}(j)$, that depends on j, are:

$$w^{(1)}_m(j) = \beta^{(1)}_{m-1} \prod_{i=m}^{j-1} \alpha^{(1)}_i.$$

(49)

The superscripts indicate the number of the direction under consideration and the proof can be obtained by iteration.

Remark 3. Note that $w^{(1)}_j(j) = \beta^{(1)}_{j-1}$ with the assumption that $\prod_{i \in \mathcal{O}} \alpha^{(1)}_j = 1$ and $w^{(1)}_m(j+1) = \alpha^{(1)}_j w^{(1)}_m(j)$, $\forall j, m$.

2. Denote $\tilde{h}(\epsilon) = h(Z) = h(A\epsilon)$ then

$$\frac{\partial \tilde{h}(0)}{\partial \epsilon_1} = \frac{1}{N} \sum_{j=1}^{N} p^{(1)}_j.$$

(50)

Corollary 1. $\frac{\partial \tilde{h}}{\partial \epsilon_1}|_{\epsilon_1=0}$ in equation (50) is a linear combination of the rows of A:

$$\sum_{j=1}^{N} p^{(1)}_j = \sum_{j=1}^{N} t^{(1)}_j A\epsilon_1, \quad \forall N \in \mathbb{N},$$

(51)

where

$$t^{(1)}_j = \beta^{(1)}_{j-1} \left(1 + \sum_{i=j}^{N-1} \prod_{i=j}^{l} \alpha^{(1)}_i\right).$$

(52)

As for Proposition 3, the proof can be obtained by iteration.

Remark 4. $t^{(1)}_N = \beta^{(1)}_{N-1} = w^{(1)}_N(N)$.

3. The first optimal direction is established by the following theorem.

Theorem 1. The first column of the matrix A, solution of the LT optimization problem, in the case of Asian options assuming the Euler discretization of the CIR model is:

$$A^{1*} = \frac{t^{(1)}}{\|t^{(1)}\|}.$$

(53)

with t being the vector defined in Corollary 1

Proof. Knowing that the scalar product $t^{(1)} \cdot A^{1*}$ attains the maximum when the two vectors are parallel, we can conclude that the optimal A^{1*} is proportional to $t^{(1)}$. After normalization the optimum solution is given by equation (53).

Remark 5. We observe that, if $Z = 0$, after some algebra, the Euler discretization is simply

$$S_j - \mu = (1 - \alpha \Delta t) (S_{j-1} - \mu)$$

(54)

then

$$S_j = (1 - \alpha \Delta t)^j (S_0 - \mu) + \mu$$

(55)

We use the results of this remark to simplify the computational cost to find the first direction of stratification.

4. In order to compute the remaining optimal columns we need to repeat the procedure illustrated in steps 1 to step 3. As far as the calculation of the l-th column is concerned, one needs to evaluate $\frac{\partial S(l)}{\partial \epsilon_l}$ and accordingly the quantities $p^{(l)}_j, \alpha^{(l)}_j, \beta^{(l)}_j$, $\forall j$, and the components of the vectors $\mathbf{w}^{(l)}$ and $t^{(l)}$. All the results in Proposition 3, Corollary 1 and Theorem 1 remain valid while now considering the quantities with superscripts l. The orthogonal directions LT are then obtained by orthogonalization.
5.3 Linear Approximation in the Black-Scholes Market

Hereafter we describe how to find the directions of the LA technique in the case of a BS dynamics. Since the payoff function is not differentiable, as for the LT method we consider only the differentiable part \(g - K_5 \). The gradient has components:

\[
\frac{\partial g(e)}{\partial e_m} = \sum_{k=1}^{MN} C_{km} \exp \left\{ \mu_k + \sum_{l=1}^{MN} C_{kl} \epsilon_l \right\},
\]

then,

\[
\nabla g(0) = \begin{bmatrix}
\sum_{k=1}^{MN} C_{k1} e^{\mu_1} \\
\vdots \\
\sum_{k=1}^{MN} C_{kMN} e^{\mu_{MN}}
\end{bmatrix}
\]

and in general \(\nabla g(\hat{\mathbf{E}}) = \begin{bmatrix}
\sum_{k=1}^{MN} C_{k1} e^{\mu_1 + \hat{\epsilon}_1} \\
\vdots \\
\sum_{k=1}^{MN} C_{kMN} e^{\mu_{MN} + \hat{\epsilon}_{MN}}
\end{bmatrix}. \) (56)

In the above derivation we assume that \(C = C^\text{CH} \) since we do not need to introduce any orthogonal matrix and the Cholesky decomposition of the autocorrelation matrix of a Brownian motion is explicitly known. It turns out that the LT and the LA methods return the same first order direction. Nevertheless, the latter approach can produce different directions changing the value at which the gradient is calculated. In contrast, the LT procedure admits solution only assuming the starting points strategy described above. Hence, the LA is more flexible and in particular the new algorithm does not require an incremental QR decomposition to find the new directions. Indeed, if we would look for orthogonal directions a unique orthogonalization would be required; consequently, the LA computational cost is much lower. Moreover, the mathematical derivation is simpler.

5.4 Linear Approximation in the CIR Market

We now illustrate how to apply the new LT approach for the derivative contracts above in CIR dynamics. Consider the Euler discretization scheme in equation (13) and compute the following partial derivatives for \(j, l = 1, \ldots, N \):

\[
\frac{\partial S_j}{\partial Z_l} = \left[1 - \alpha \Delta t + \frac{\sigma}{2} \sqrt{\frac{\Delta t}{S_{j-1}}} \right] \frac{\partial S_{j-1}}{\partial Z_l} + \sigma \sqrt{\Delta t S_{j-1}} \delta_{jl},
\]

then

\[
\frac{\partial S_j(0)}{\partial Z_l} = (1 - \alpha \Delta t) \frac{\partial S_{j-1}(0)}{\partial Z_l} + \sigma \sqrt{\Delta t S_{j-1}(0)} \delta_{jl}, \quad (57)
\]

and the gradient is

\[
\nabla S_j(0) = \begin{bmatrix}
(1 - \alpha \Delta t)^{j-1} \sigma \sqrt{\Delta t S_0} \\
(1 - \alpha \Delta t)^{j-2} \sigma \sqrt{\Delta t S_1(0)} \\
\vdots \\
(1 - \alpha \Delta t) \sigma \sqrt{\Delta t S_{j-2}(0)} \\
\sigma \sqrt{\Delta t S_{j-1}(0)} \\
0 \\
\vdots \\
0
\end{bmatrix}. \quad (58)
\]

Due to Proposition 2 the LA first optimal direction is given by the normalized sum of \(\nabla S_j(0) \), \(j = 1, \ldots, N \). Further directions are obtained by iterating this procedure with a starting points rule. Alternatively, we can choose the evaluation points as in the LT strategy or the components of the \(l \)-th direction for the starting point of the gradient for the \(l + 1 \)-direction.
6 Numerical Illustrations

We now illustrate the results developed in the previous sections through examples and numerical experiments. As mentioned before, we consider the BS and the CIR dynamics and different exotic path-dependent options. All the numerical procedures have been implemented in MATLAB on a computer with Intel Pentium M, 1.60 GHz, 1 GB RAM. In the numerical illustrations we consider $K = 1000$ strata and $N_S = 2 \times 10^6$ total number of scenarios so that for orthogonal directions we have a constant allocation rule (which, in this case, coincides the proportional rule as the strata are equiprobable) with 2000 random draws in each stratum (const in the tables). When we consider non-orthogonal directions the constant allocation rule is not proportional anymore since the strata are not equiprobable. For the optimal allocation rule (opt), the standard deviations have been computed by a first pilot run and then they have been used in a second stage to determine the stratified estimator.

We report the estimated variances and the total computational times with constant and optimal allocation. We compare the variances employing the directions of stratification returned by GHS (see Glasserman et al. [8]), LT, LA, the PCA and their combination. Note that the GHS procedure requires the calculation of an importance sampling direction that is a computationally demanding task. In our experiments we report the variances due to the stratification only in order to compare the relative efficiency of the pure stratification methods. As far as the PCA directions are concerned, they consist of the eigenvectors associated to the highest eigenvalues of the autocorrelation matrix of the multi-dimensional Brownian motion that drives the BS dynamics. In contrast, since the CIR dynamics is not Gaussian, in a first pilot run with a 2000-sample we compute the MC estimation of the autocorrelation matrix of the price dynamics and then calculate its eigenvectors and values. We employ a Euler scheme that always takes the positive value of the square-root term because it was shown that this exhibits the smallest discretization bias among Euler CIR-discretizations (see Andersen [12]). Even if this dynamics is not normal, the i-th step price, given the $i-1$-th one, is normal and this can justify the use of the PCA in the CIR dynamics. We consider the multiple combination of two directions of stratification. Our algorithm and considerations are also applicable to additional directions but, due to the so called curse of dimensionality, this would require a higher number of strata and hence a higher number of total samples that would considerably increase the computational burden. Finally, we compare these stratified estimators to LHS-based estimators (see Owen [13] or Stein [17] for more on this topic). Stein [17] proved that LHS eliminates the variance of the additive part of the integrand (payoff) function and hence produces an important variance reduction when coupled with LA or LT. Unfortunately, it is difficult to numerically compute the asymptotic variance in the central limit theorem for the LHS estimator. LHS is characterized by a fixed multiple allocation rule that has a high computational cost. Our purpose is to compare this very high-dimensional allocation rule to one with a lower dimension where we can adopt optimal allocation. In addition, the expectation of interest $\mathbb{E}[\psi(Z)]$ is equal to $\mathbb{E}[\psi(OZ)]$ where O is a general orthogonal matrix. In a standard MC simulation the variance of the two estimators does not depend on O but in contrast, the accuracy of LHS-based estimators critically depend on the choice of O. Our simulations adopt the orthogonal matrix produced by the LT decomposition that has been shown to be an efficient choice (see Sabino [16]).

6.1 Asian Options in the Black-Scholes Market

Our first example is the pricing of arithmetic Asian options on a single risky security defined by equation (33) with $M = 1$. For simplicity we assume that the time grid is regular with time steps $t_i = i \Delta t, i = 1, \ldots, N$. This permits a simple derivation of the PCA and the Cholesky decomposition of the autocorrelation matrix of the Brownian motion (see Åkesson and Lehoczky [11]). Table 1(a) reports the input parameters used in the simulation with different moneyness of the options. We remind that in this setting LT and LA provide the same first order direction. Tables 5-7 report the numerical results obtained and the total computational times: all the procedures return unbiased estimates of the option prices while giving remarkably different variances. All the stratified techniques give a variance reduction that is particularly remarkable with the GHS and the LA (LT) methods. The PCA orthogonal directions (one dimensional and two dimensional) give a modest effect also taking into account the computational times. The main observation is that GHS and LA
Table 1: Input Parameters in the BS dynamics

	Arithmetic Asian Options	Arithmetic Asian Barrier Options
S_0	K_S	S_0
50	45, 50, 55	50
N	64	K_S
r	0.05	50, 70, 80
σ	0.3	B
T	1	16

Table 2: Angles between the Stratifying Directions in degrees

(a) Arithmetic Asian Options

	$K_S = 45$	$K_S = 50$	$K_S = 55$
LA-GHS	1.35	1.04	1.74
LA-PCA	54.62	52.73	51.60
GHS-PCA	56.60	53.83	53.30

(b) Arithmetic Asian Barrier Options

	$B = 60$	$B = 70$	$B = 80$
LA-GHS	0.37	0.37	0.75
LA-PCA	51.95	51.95	51.89
GHS-PCA	51.67	51.67	51.10

LT) show the same computational cost and the same variance reduction. Both LA and GHS give a remarkable variance reduction, of a factor of more than 100 in the case of constant allocation and of several hundreds in the case of optimal allocation. However, given the parameters in Table 1(a), we stress the fact that the computational time required for the calculation of the direction is really a small part of the total time requested for all the proposed procedures. In contrast, with a really high problem dimension (i.e. a dimension 1000 typical in financial applications), the solution of the GHS optimization problem becomes a hard task depending on the starting guess and its computational burden has a relevant influence. In contrast, the LA (LT) algorithm consists in a simple vector $O(N)$ calculation that is feasible even in high-dimensional problems. Table 2(a) reports the angles (in degrees) between the discussed directions. The GHS and LA directions are almost parallel meaning that the GHS algorithm is not so sensitive to the moneyness and this justifies the equal performance in terms of variance reduction of the LA method. As mentioned before, the PCA direction does not furnish a relevant variance direction and hence the non-orthogonal 2-dimensional stratification that employs such a direction always returns a lower accuracy than the GHS or LA methods. Moreover, the orthogonal GHS or LA bi-dimensional stratifications give variance reductions that are about 4 times lower than the corresponding one-dimensional ones. We remind that the two settings have the same number of strata so that we can conclude that the second order direction has a lower impact on the variance reduction and, with these directions of stratification, it is more efficient to employ a stratified MC estimator with a single direction. We conclude the study for the simple Asian options with the comparison between the accuracies of the LHS and the stratified sampling with a single direction. We illustrate that the LHS never outperforms the optimal allocation. Indeed, the LHS-based variance is at least two times the variance obtained with the stratified estimator with optimal allocation. Moreover, the computational cost is a lot higher, almost twice as high as the times needed for the optimal allocation. All these arguments strongly favor the use of convenient directions with optimal allocation.

We modify the Asian option example by adding a knock-out barrier at expiration T or at each sampling date so that the option pays nothing if the asset price is above the barrier. Due to the discontinuous payoff of barrier options, the GHS optimization problem is a demanding task especially when the barrier is at each time step (indeed Glasserman et al. [8] did not elaborate this possibility). In contrast, the LA (LT) focuses only the continuous part of the payoff function. Table 1(b) reports the input parameters used in the simulation with different moneyness and barriers. The values of the barriers should be larger than the strike prices but not too high otherwise the pricing problem would almost boil down into the case without barrier. Also for barrier options
Table 3: Input Parameters and Angles between Directions of Stratification for Basket Options.

(a) Input Parameters.

M	S₀	ρ	r	σ	T
40	Linear 20-60	0.5	0.05	Linear 0.1 – 0.4	1

(b) Angles in degrees

	K₅ = 30	K₅ = 40	K₅ = 50
LA-GHS	2.76	3.11	2.52
LA-PCA	64.74	65.04	65.19
GHS-PCA	62.29	62.02	62.47

(barrier at expiry), we notice that GHS and LA give directions of stratification that are almost parallel as illustrated in Table 2(b). This justifies the approximation of the LA method and its use for stratified MC to price the two types of barrier options. In addition, the GHS algorithm is not applicable to Asian options with a complete barrier. Different approaches should be employed in order to improve the stratification efficiency for barrier-style options, as suggested in Etoré et al. [4], but these are nevertheless computationally expensive and use orthogonal directions. The stratified MC does not return variances as low as for plain Asian options, especially when the barrier is close to the strike price. For example, the case of Asian options with barrier B = 80 (both at expiry and at each sampling date) and with strike K₅ = 55 displays a variance reduction of several hundreds with a computational time that ranges between 22% and 55% higher than the standard MC. However, when the barrier and the strike price are K₅ = 50 and B = 60, respectively, the variance reduction is lower with an extra effort ranging from 22% and 50% with respect to the standard MC.

The numerical simulation of the prices of Asian basket options with a barrier close to the strike price, both at expiry and at all the monitoring times, shows that stratifying along multiple directions can be worthwhile. Indeed, if K₅ = 50 and B = 60, the multiple stratification enhances the accuracy of the estimation compared to the use of a single direction. In particular, the highest variance reduction is achieved with the choice of non-orthogonal directions (LA-PCA) with optimal allocation. In this setting the variance reduction is of an order 100, with barrier at expiry, or 40, with barrier at each monitoring time, and is several times higher compared to the other setting of stratification.

Finally, even for Asian barrier options the LHS never outperforms the technique that displays the smallest variance with optimal allocation. These considerations suggest that the use of multiple non-orthogonal directions can be worthwhile. However, finding many different multiple directions is not a simple task.

6.2 Basket Options in the Black-Scholes Market

In this example the stratification estimator once more improves the accuracy of the standard MC method. Indeed, in the BS market, the financial features of basket options are almost the same as those of arithmetic Asian options. The main difference between the two is that for Asian options the Gaussian variables are correlated by the autocovariance matrix of a single Brownian motion while for basket options the dependence is measured by the covariance matrix among the asset returns. In addition, both payoffs contain a (weighted) average of the exponential of a Gaussian random vector. Table 8 shows that for all the considered exercise prices, the stratification using the LA (LT) with and without optimal allocation has a remarkable variance reduction comparable to the one given by the GHS algorithm with the same computational considerations as in the Asian option example. Indeed, these two directions are almost parallel (see Table 3(b)). The PCA-based direction has again a modest effect in terms of variance reduction and the stratification over a single linear projection produces a better accuracy than the one that exploits two directions. Finally, the LHS estimator neither achieves a higher variance reduction than the stratified estimator with a single LA direction with optimal allocation nor does it require a lower computational effort.

6.3 Asian Options in the CIR Market

As a last example we consider arithmetic Asian options on a single asset in a CIR dynamics whose depicted parameters (in Table 4(a)) are chosen in order to ensure positive prices (2αµ > σ²). In this
Table 4: Input Parameters and Angles between Directions of Stratification in the CIR dynamics.

(a) Input Parameters

S_0	N	r	α	μ	σ	T
100	64	0.05	1.5	1	0.8	1

(b) Angles in degrees for Asian Options

$K_S = 90$	$K_S = 100$	$K_S = 110$	
LA-LT	1.00	1.00	
LA-PCA	43.72	43.72	
LT-PCA	44.24	41.52	41.53

setting the LA method and the LT decomposition do not provide the same stratification direction and the GHS algorithm is really difficult to apply. However, as illustrated in Table 4, the directions returned by the LT and LA are almost parallel. In any case the derivation of the LA solution and its implementation are much easier. Since the CIR model is neither a Gaussian nor a lognormal process, the PCA decomposition is not applicable. However, in order to obtain a further direction we estimate a PCA-like direction as explained at the beginning of this section. Tables 9-11 show that both the LA and LT algorithms give remarkable variance reductions. The best accuracies are obtained with the stratification along a single direction which attains a reduction of an order of several hundreds, both with a constant and optimal allocation rule. The extra cost for the computational time is only 20%. As in the BS setting, the PCA approach is less efficient and requires a higher computational cost due to calculation of the sampled autocovariance matrix of the price process. Also in this situation the solution employing two orthogonal or non-orthogonal directions provides a variance reduction. Unfortunately, this choice never provides an accuracy as precise as the one obtained by a single direction. Moreover, the use of the fixed LHS-allocation rule never enhances the accuracy of the simulation more than the best low-dimensional stratification method with optimal allocation.

As in the BS example, we add a knock-out barrier at expiry or at each monitoring time. For this latter option we must chose a barrier level that is much higher than the strike price. Indeed, due to the high variability of the CIR dynamics, with a low barrier value the option would easily knock-out producing a zero-valued price.

As already mentioned, in the example of barrier options we adopt the same convenient directions of stratification that we would consider without the barrier since the LA and LT approaches do not take into account the non-differentiable part of the payoff. Tables 6 and 7 illustrate the results of this numerical investigation. The variance reduction is not as efficient as the case without barrier but in contrast, the use of multiple directions improves the efficiency of the simulation without highly influencing the computational cost. In addition, the combination of non-orthogonal directions can achieve a better variance reduction. Indeed, the combination of LA-PCA directions (LT and LA are almost parallel) returns a variance that ranges from 10 to 30 times lower than that with standard Monte Carlo. Moreover, this estimated variance is always at least equal, for $K_S = 100$, $B = 170$ with barrier at each monitoring time, or lower than the variance obtained with different combinations of stratifying directions and barrier levels.

Finally, as in all examples, the LHS sampling coupled with LT does not provide a convenient alternative to stratification over few directions with optimal allocation.

7 Concluding Remarks and Future Perspectives

In this paper we have investigated the use of convenient multidimensional directions of stratification in order to enhance the accuracy of Monte Carlo methods. We have discussed directions of stratification that are easy to derive and display variance reductions that are comparable to those introduced by Glasserman et al. [8]. These solutions do not require a complex calculation and can be applied in really high-dimensional problems without an extra cost. In contrast, the use of the Glasserman et al. [8] or Etoré et al. [14] methods risk to be computationally unfeasible and are based only on orthogonal directions. Indeed, the LT and the LA directions are computed under convenient approximations that lead to simple matrix operations and vector norms. Moreover, we have proved an algorithm that allows to correctly generate Gaussian vectors stratified along non-orthogonal directions. Our numerical experiments demonstrate that the proposed convenient
directions return remarkable variance reductions both in BS, where the proposed techniques display the same variance reduction as those given by GHS, and in the CIR dynamics. In particular, the use of multiple non-orthogonal directions can be worthwhile for barrier style options. Moreover, in this work we show that the use of a few convenient directions of stratification with optimal allocation always outperform LHS (even in its LT-enhanced form) especially in terms of computational burden. A natural extension would be the combination with importance sampling procedures like the Robust Adaptive Technique recently proposed by Jourdain and Lelong [10] for Gaussian random vectors. In addition, due to its simple derivation and its affinity with the Fox’s greedy rule (see Fox [6]), it would be interesting to investigate how to apply the LA procedure to derive a Quasi-Monte Carlo version of discretization schemes for stochastic volatility models like those proposed by Andersen [2] and Jourdain and Sbai [11].
Table 5: Results for Arithmetic Asian Options in the BS dynamics.

Price	1 Dir	2 dirs																	
	MC	GHS	PCA	MC	GHS	PCA	MC	GHS-PCA	LA-PCA	LHS									
	const	opt	const	opt	const	opt	const	opt	const	opt									
$K_S = 45$	7.02	var 5.59	0.32	0.06	0.31	0.06	15.46	11.4	1.74	0.61	0.94	0.16	10.08	8.66	0.12	0.21	8.32	0.19	0.06
$K_S = 50$	4.02	var 36.96	0.28	0.04	0.31	0.05	20.94	16.18	0.95	0.2	0.94	0.12	7.77	6.18	9.47	0.21	9.21	0.2	0.06
$K_S = 55$	2.06	var 20.32	0.3	0.02	0.31	0.03	10.52	7.75	1.06	0.28	0.93	0.09	7.54	3.86	7.4	0.13	7.49	0.13	0.06

Table 6: Results for Arithmetic Asian Options with a Barrier at Expiry in the BS dynamics.

Price	1 Dir	2 dirs																	
	MC	GHS	PCA	MC	GHS	PCA	MC	GHS-PCA	LA-PCA	LHS									
	const	opt	const	opt	const	opt	const	opt	const	opt									
$B = 60$	1.38	var 2.99	1.13	0.3	1.13	0.31	2.99	2.99	0.54	0.23	0.83	0.19	1.24	0.93	0.33	0.02	0.32	0.02	1.02
$K_S = 50$	1.9	var 4.8	0.13	0.01	0.13	0.01	4.77	4.77	0.3	0.16	0.15	0.02	1.28	0.99	0.41	0.02	0.68	0.02	0.13
$K_S = 55$	0.19	var 0.49	0.04	0.00074	0.04	0.00082	0.48	0.48	0.04	0.035	0.06	0.0039	0.22	0.06	0.17	0.0038	0.16	0.0039	0.04
$B = 80$	0.2	var 0.55	0.00016	0.00026	0.0168	0.00058	0.55	0.54	0.05	0.039	0.06	0.0038	0.22	0.06	0.18	0.0048	0.17	0.0048	0.018

Table 7: Results for Arithmetic Asian Options with a Complete Barrier in the BS dynamics.

Price	1 Dir	2 dirs											
	MC	LA	PCA	MC	LA	PCA	MC	LA-PCA	LHS				
	const	opt	const	opt	const	opt	const	opt	const	opt			
$K_S = 50$	1.22	var 2.42	0.85	0.23	2.42	2.39	0.54	0.12	1.23	0.92	0.53	0.07	0.77
$B = 60$	1.89	var 4.76	0.14	0.0047	4.75	4.75	0.16	0.02	1.29	1.07	1.52	0.02	0.15
$K_S = 55$	0.19	var 0.47	0.041	0.00059	0.47	0.46	0.06	0.0038	0.22	0.06	0.14	0.0036	0.04
$B = 80$	0.2	var 0.55	0.0015	0.00059	0.55	0.53	0.05	0.0038	0.22	0.06	0.056	0.0048	0.002

Table 8: Results for Basket Options in the BS dynamics.

Price	1 Dir	2 dirs																	
	MC	GHS	PCA	MC	GHS	PCA	MC	GHS-PCA	LA-PCA	LHS									
	const	opt	const	opt	const	opt	const	opt	const	opt									
$K_S = 30$	11.58	var 61.77	0.09	0.06	0.1	0.06	31.54	21.63	0.93	0.29	0.91	0.25427	21.17	18.34	6.33	0.24	5.27	0.25406	0.06
$K_S = 40$	4.15	var 35.21	0.03	0.04	0.08	0.04	24.91	17.74	0.84	0.15	0.86	0.15	19.1	16.71	3.9	0.12	3.69	0.13214	0.1
$K_S = 50$	0.93	var 8.92	0.04	0.004	0.05	0.005	3.92	3.88	0.8	0.06	0.81287	0.06	3.05	2.18	2.87	0.04	2.55	0.05	0.08
Table 9: Results for Asian Options in the CIR dynamics.

Price	1 Dir	2 dirs
1.563	MC	1
	const	opt
		PCA

Table 10: Results for Arithmetic Asian Options with a Barrier at Expiry in the CIR dynamics.

Price	1 Dir	2 dirs
1.563	MC	1
	const	opt
		PCA

Table 11: Results for Arithmetic Asian Options with a Complete Barrier in the CIR dynamics.

Price	1 Dir	2 dirs
1.563	MC	1
	const	opt
		PCA

Note: The tables above represent results for various option pricing scenarios with different parameters and dynamics.
References

[1] F. Åkesson and J.P. Lehoczky. Discrete Eigenfunction Expansion of Multi-Dimensional Brownian Motion and the Ornstein-Uhlenbeck Process. Technical Report, 1998.

[2] L. Andersen. Efficient Simulation of the Heston Stochastic Volatility Model. Available in www.ssrn.com, 2007.

[3] R. Caflisch, W. Morokoff, and A. Owen. Valuation of Mortgage-backed Securities Using Brownian Bridges to Reduce Effective Dimension. *Journal of Computational Finance*, pages 27–46, 1997.

[4] P. Etoré, G. Fort, B. Jourdain, and E. Moulines. On Adaptive Stratification. Forthcoming in Annals of Operations Research.

[5] P. Etoré and B. Jourdain. Adaptive Optimal Allocation in Stratified Sampling Methods. Forthcoming in *Methodology and Computing in Applied Probability*.

[6] B.L. Fox. *Strategies for Quasi-Monte Carlo*. Kluwer Academic Publishers, 1999.

[7] P. Glasserman. *Monte Carlo Methods in Financial Engineering*. Springer-Verlag New York, 2004.

[8] P. Glasserman, P. Heidelberger, and P. Shahabuddin. Asymptotically Optimal Importance Sampling and Stratification for Pricing Path-dependent Options. *Mathematical Finance*, pages 117–152, 1999.

[9] J. Imai and K.S. Tan. A General Dimension Reduction Technique for Derivative Pricing. *Journal of Computational Finance*, pages 129–155, 2006.

[10] B. Jourdain and J. Lelong. Robust Adaptive Importance Sampling for Normal Random Vectors. *Annals of Applied Probability*, pages 1687–1718, 2009.

[11] B. Jourdain and M. Sbai. High Order Discretization Schemes for Stochastic Volatility Models. Preprint arXiv 0908-1926, 2009.

[12] D. Lamberton and B. Lapeyre. *Introduction to Stochastic Calculus Applied to Finance*. Chapman & Hall, 1996.

[13] A. Owen. A Central Limit Theorem for Latin Hypercube Sampling. *Journal of the Royal Statistical Society*, pages 541–551, 1992. Series B (Methodological).

[14] A. Papageorgiou. The Brownian Bridge Does Not Offer a Consistent Advantage in Quasi-Monte Carlo Integration. *Journal of Complexity*, 18:171–186, 2002.

[15] P. Sabino. Efficient Quasi-Monte Simulations for Pricing High-dimensional Path-dependent Options. *Decision in Economics and Finance*, 32(1):48–65, 2009.

[16] P. Sabino. Implementing Quasi-Monte Carlo Simulations with Linear Transformations. *Computational Management Science*, in press, 2009.

[17] M. Stein. Large Sample Properties of Simulations Using Latin Hypercube Sampling. *Technometrics*, pages 143–151, 1987.