Dr. Zhedong Zhang received his B.S. from Shenzhen University in 2009 and Ph.D. degree in physics from the State University of New York at Stony Brook in 2016. During 2016-2017, he worked as postdoctoral researcher in the Department of Chemistry at University of California Irvine. Since 2017, he has been working as the Robert A. Welch postdoctoral fellow in the Institute for Quantum Science and Engineering at Texas A&M University. He joined the Department of Physics at City University of Hong Kong in 2020 as an Assistant Professor.

Dr. Zhang’s research interest mainly focuses on two fields: (1) nonlinear optical spectroscopy and (2) quantum thermodynamics for nanomaterials. The first one is to develop the time- and spatial-resolved nonlinear spectroscopies (e.g., using X-ray and quantum properties of light) to study the molecular relaxation and radiative processes. The second one aims at the nonequilibrium thermodynamics of mesoscopic systems, transiting from the microscopic to larger scales. He has about 25 professional publications on high-profile journals, e.g., Phys. Rev. Lett., Optica, J. Phys. Chem. Lett., Phys. Rev. A and Phys. Rev. B.
Multidimensional Coherent Spectroscopy of Molecular Polaritons: Langevin Approach
Zhang, Z., Nie, X., Lei, D. & Mukamel, S., 10 Mar 2023, In: Physical Review Letters. 130, 10, 103001.Scopus citations: 8

Quantum statistical theory for an exciton-polariton condensate: Fluctuations and coherence
Zhang, Z., Zhao, S. & Lei, D., Dec 2022, In: Physical Review B: covering condensed matter and materials physics. 106, 22 , L220306.Scopus citations: 3

Plasmonic Nanocavity Induced Coupling and Boost of Dark Excitons in Monolayer WSe₂ at Room Temperature
Lo, T. W., Chen, X., Zhang, Z., Zhang, Q., Leung, C. W., Zayats, A. V. & Lei, D., 9 Mar 2022, In: Nano Letters. 22, 5, p. 1915-1921Scopus citations: 35

Entangled photons enabled time-frequency-resolved coherent Raman spectroscopy and applications to electronic coherences at femtosecond scale
Zhang, Z., Peng, T., Nie, X., Agarwal, G. S. & Scully, M. O., 2022, In: Light: Science and Applications. 11, 274.Scopus citations: 62

Quantum fluctuation-dissipation theorem far from equilibrium
Zhang, Z., Wang, X. & Wang, J., 15 Aug 2021, In: Physical Review B. 104, 8, 085439.Scopus citations: 3

On the thermodynamics of the difference between energy transfer rate and heat engine efficiency
Dong, H., Ghosh, A., Kim, M. B., Li, S., Svidzinsky, A. A., Zhang, Z., Kurizki, G., & 1 othersScully, M. O., Jun 2021, In: European Physical Journal: Special Topics. 230, 4, p. 867-871Scopus citations: 2

Coherent control of the multiple wavelength lasing of N₂⁺: coherence transfer and beyond
ZHANG, X., LU, Q., ZHANG, Z., FAN, Z., ZHOU, D., LIANG, Q., YUAN, L., & 3 othersZHUANG, S., DORFMAN, K. & LIU, Y., 20 May 2021, In: Optica. 8, 5, p. 668-673Scopus citations: 25

Excitation-energy transfer under strong laser drive
Wang, X., Zhang, Z. & Wang, J., Jan 2021, In: Physical Review A. 103, 1, 013516.Scopus citations: 7

Understanding the Seeding Pulse-Induced Optical Amplification in N₂⁺ Pumped by 800 NM Femtosecond Laser Pulses
Fan, Z., Zhang, X., Lu, Q., Luo, Y., Liang, Q., Yuan, L., Zhang, Z., & 1 othersLiu, Y., Dec 2020, In: Photonics. 7, 4, 99. Scopus citations: 2

Nonlinear spin currents
Nair, J. M. P., Zhang, Z., Scully, M. O. & Agarwal, G. S., 1 Sept 2020, In: Physical Review B. 102, 10, 104415.Scopus citations: 23

Comments on "Enhancement of the Raman Effect by Infrared Pumping"
Yi, Z., ZHANG, Z., Sokolov, A. V. & Yakovlev, V. V., 17 Apr 2020, In: Physical Review Letters. 124, 15, 159401.Scopus citations: 1

Roadmap on quantum light spectroscopy
Mukamel, S., Freyberger, M., Schleich, W., Bellini, M., Zavatta, A., Leuchs, G., Silberhorn, C., & 27 othersBoyd, R. W., Sánchez-Soto, L. L., Stefanov, A., Barbieri, M., Paterova, A., Krivitsky, L., Shwartz, S., Tamasaku, K., Dorfman, K., Schlawin, F., Sandoghdar, V., Raymer, M., Marcus, A., Varnavski, O., Goodson III, T., Zhou, Z., Shi, B., Asban, S., Scully, M., Agarwal, G., Peng, T., Sokolov, A. V., Zhang, Z., Zubairy, M. S., Vartanyants, I. A., del Valle, E. & Laussy, F., Apr 2020, In: Journal of Physics B: Atomic, Molecular and Optical Physics. 53, 7, 072002.Scopus citations: 121

Quantum entanglement between two magnon modes via Kerr nonlinearity driven far from equilibrium
Zhang, Z., Scully, M. O. & Agarwal, G. S., Sept 2019, In: Physical Review Research. 1, 2, 023021.Scopus citations: 171
Polariton-Assisted Cooperativity of Molecules in Microcavities Monitored by Two-Dimensional Infrared Spectroscopy
Zhang, Z., Wang, K., Yi, Z., Zubairy, M. S., Scully, M. O. & Mukamel, S., 1 Aug 2019, In: Journal of Physical Chemistry Letters. 10, 15, p. 4448-4454 7 p.Scopus citations: 26

Enhanced signals from chiral molecules via molecular coherence
BEGZJAV, T. K., ZHANG, Z., SCULLY, M. O. & AGARWAL, G. S., 13 May 2019, In: Optics Express. 27, 10, p. 13965-13977Scopus citations: 12

Quantum Fluctuations in Fröhlich Condensate of Molecular Vibrations Driven Far From Equilibrium
Zhang, Z., Agarwal, G. S. & Scully, M. O., 19 Apr 2019, In: Physical Review Letters. 122, 15, 158101.Scopus citations: 31

Monitoring polariton dynamics in the LHCII photosynthetic antenna in a microcavity by two-photon coincidence counting
Zhang, Z., Saurabh, P., Dorfman, K. E., Debnath, A. & Mukamel, S., 21 Feb 2018, In: Journal of Chemical Physics. 148, 7 , 074302.Scopus citations: 27

Fluorescence spectroscopy of vibronic polaritons of molecular aggregates in optical microcavities
Zhang, Z. & Mukamel, S., 1 Sept 2017, In: Chemical Physics Letters. 683, p. 653-657Scopus citations: 9

Utilizing Microcavities to Suppress Third-Order Cascades in Fifth-Order Raman Spectra
Zhang, Z., Bennett, K., Chernyak, V. & Mukamel, S., 20 Jul 2017, In: Journal of Physical Chemistry Letters. 8, 14, p. 3387-3391Scopus citations: 10

Nonequilibrium-induced enhancement of dynamical quantum coherence and entanglement of spin arrays
Zhang, Z., Fu, H. & Wang, J., Apr 2017, In: Physical Review B. 95, 14, p. 144306-144314 144306.Scopus citations: 9

Fluctuation-dissipation theorem for nonequilibrium quantum systems
ZHANG, Z., WU, W. & WANG, J., Jul 2016, In: Europhysics Letters. 115, 2, 20004.Scopus citations: 6

Origin of long-lived quantum coherence and excitation dynamics in pigment-protein complexes
Zhang, Z. & Wang, J., 2016, In: Scientific Reports. 6, 37629.Scopus citations: 18

Atom transistor from the point of view of nonequilibrium dynamics
Zhang, Z., Dunjko, V. & Olshanii, M., Dec 2015, In: New Journal of Physics. 17, 12, 125008.Scopus citations: 12

Vibrational and coherence dynamics of molecules
Zhang, Z. & Wang, J., 7 Oct 2015, In: Physical Chemistry Chemical Physics. 17, 37, p. 23754-23760Scopus citations: 5

Monopole Excitations of a Harmonically Trapped One-Dimensional Bose Gas from the Ideal Gas to the Tonks-Girardeau Regime
Choi, S., Dunjko, V., Zhang, Z. D. & Olshanii, M., 11 Sept 2015, In: Physical Review Letters. 115, 11, 115302.Scopus citations: 23

Shape, orientation and magnitude of the curl quantum flux, the coherence and the statistical correlations in energy transport at nonequilibrium steady state
Zhang, Z. & Wang, J., Sept 2015, In: New Journal of Physics. 17, 093021.Scopus citations: 8

Assistance of Molecular Vibrations on Coherent Energy Transfer in Photosynthesis from the View of a Quantum Heat Engine
Zhang, Z. & Wang, J., 2 Apr 2015, In: The Journal of Physical Chemistry B. 119, 13, p. 4662-4667Scopus citations: 13

Landscape, kinetics, paths and statistics of curl flux, coherence, entanglement and energy transfer in non-equilibrium quantum systems
Zhang, Z. & Wang, J., Apr 2015, In: New Journal of Physics. 17, 043053.Scopus citations: 20
Erratum: "Curl flux, coherence, and population landscape of molecular systems: Nonequilibrium quantum steady state, energy (charge) transport, and thermodynamics" [(J. Chem. Phys. 140, 245101 (2014)]
Zhang, Z. & Wang, J., 28 Jul 2014, In: Journal of Chemical Physics. 141, 4, 049901.Scopus citations: 1

Curl flux, coherence, and population landscape of molecular systems: Nonequilibrium quantum steady state, energy (charge) transport, and thermodynamics
Zhang, Z. D. & Wang, J., 28 Jun 2014, In: Journal of Chemical Physics. 140, 24, 245101.Scopus citations: 33

Breakdown of scale invariance in the vicinity of the Tonks-Girardeau limit
Zhang, Z. D., Astrakharchik, G. E., Aveline, D. C., Choi, S., Perrin, H., Bergeman, T. H. & Olshanii, M., Jun 2014, In: Physical Review A. 89, 6, 063616.Scopus citations: 11

Complete controllability of finite quantum systems with twofold energy level degeneracy
Zhang, Z. & Fu, H. C., May 2010, In: Journal of Physics A: Mathematical and Theoretical. 43, 21, 215301.Scopus citations: 3