Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Introduction

Vaccine-induced immune thrombocytopenia and thrombosis (VITT) syndrome has recently been described after the ChAdOx1 nCoV-19 vaccine (AstraZeneca) [1]. This syndrome is characterized by the occurrence of venous and/or arterial thrombosis, often at atypical sites, with thrombocytopenia and positive anti-PF4 (platelet factor 4) antibodies, in a recent context of vaccination against coronavirus disease 2019 (COVID-19).

We describe here a case of VITT syndrome, which occurred following vaccination with Ad26.COV2.S vaccine (Janssen).

Case report

On August 2, 2021, ten days after receiving a dose of Ad26.COV2.S vaccine (Janssen/Johnson & Johnson), a 57-year-old man was admitted for left hemiplegia. The rest of clinical examination was unremarkable. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) polymerase chain reaction (PCR) testing by nasopharyngeal swab was negative. He has no significant medical history and does not take any long-term treatment. Ischemic stroke, of thromboembolic origin with description of a proximal occlusion of the right internal carotid artery, was confirmed on brain magnetic resonance imaging (MRI).

Initial blood tests were abnormal, including thrombocytopenia at 27 G/L, hepatic cytolysis at 10N and biological disseminated intravascular coagulation (DIC) with fibrinogen < 1 g/L, D-dimer > 128,000 ng/mL and fibrin degradation products (FDPs) > 150 μg/mL. Myelogram was normal.

Arterial Doppler ultrasound of the supra-aortic trunks confirmed a complete thrombosis of the right internal carotid artery. Ultrasound and abdomino-pelvic CT scan revealed partial portal vein thrombosis and right and middle hepatic vein thrombosis. Pain in the left leg prompted the realization of a venous Doppler ultrasound of the lower limbs, finding a distal deep venous thrombosis. Transthoracic echocardiography was normal.

Patient received intravenous acetylsalicylic acid (250 mg/24h) and subcutaneous enoxaparin (100 IU/kg/12h) and was admitted to the intensive care unit.

Neurological examination showed cognitive disorders, hemiparesis of the left upper limb rated at 1/5 and hemiparesis of the left lower limb side at 2/5, with signs of spatial neglect. Because of neurological worsening (appearance of a left homonymous hemianopsia at 48 hours), brain CT scan showed intracranial bleeding leading to stop antithrombotic agent and curative anticoagulation.

VITT syndrome was suspected. Differential diagnostics were ruled out (SARS-CoV-2 infection, others infections, etc.).

A case report of vaccine-induced immune thrombocytopenia and thrombosis syndrome after Ad26.COV2.S vaccine (Janssen/Johnson & Johnson)∗

Keywords SARS-CoV-2; COVID-19; Janssen; Vaccine; VITT syndrome; Thrombosis; Thrombocytopenia

Abbreviations

Abbreviation	Description
COVID	coronavirus disease
DIC	disseminated intravascular coagulation
FDPs	fibrin degradation products
ITP	immune thrombocytopenic purpura

∗ This case has been declared to the French National Pharmacovigilance Database on August 9, 2021 under number SE20212123.
immune thrombocytopenic purpura (ITP), drugs, hypersplenism, genetic disorder, cancer, trauma, surgery, immobilization, thrombotic thrombocytopenic purpura (TTP), thrombophilia). Search for anti-PF4 antibodies and a platelet aggregation test were performed, from which only anti-PF4 antibodies returned positive at 1,181 IU/L (N < 0.5) by ELISA method (Zymutest HIA IgGAM Hyphen), platelet aggregation test returned normal.

The patient received corticosteroids 0.75 mg/kg and intravenous immunoglobulins at 2 g/kg over 2 days, either seven days after the onset of symptoms. Biological parameters improved over the next few days, in particular platelets (Fig. 1) and fibrinogen which returned to normal values in 5 days and liver function tests in 17 days. On day 10, internal carotid artery was re-permeabilized on arterial Doppler ultrasound, and thrombus completely disappeared on the control a month and a half later.

Concomitantly, neurological symptoms began to improve, including hemiplegia, cognitive and ophthalmologic disorders. Follow-up brain scan did not show any new intracranial bleeding. Preventive anticoagulation by subcutaneous enoxaparin 4000 IU/24 h was reinitiated, followed by subcutaneous tinzaparin 175 IU/kg/24 h and later by Apixaban 5 mg/12 h, once the liver function is normal.

Seven days after initiation of treatment, neurological examination improved, with hemiparesis of the left upper limb rated at 3/5 and hemiparesis of the left lower limb rated at 4/5.

Two months after the onset of symptoms, neurological examination objectified hemiparesis of the left upper limb rated at 4/5 and hemiparesis of the left lower limb rated at 4/5.

Four months after the onset of symptoms, patient can walk a short distance with a cane.

Discussion

According to us, this is the first case of VITT syndrome reported to the French Regional Pharmacovigilance Centers in France for the Ad26.COV2.S vaccine (Janssen/Johnson & Johnson). A declaration to the French National Pharmacovigilance Database was made on August 9, 2021 and was registered under number SE20212123. Causality relationship between Ad26.COV2.S vaccine (Janssen/Johnson & Johnson) and VITT syndrome was assessed as “likely” (I3, C2S3) with the French pharmacovigilance causality [2].

The latest report of pharmacovigilance of ChAdOx1 nCoV-19 (AstraZeneca) on November 25, 2021 described 29 cases of confirmed VITT in France vs 4 cases for the Ad26.COV2.S vaccine (Janssen/Johnson & Johnson) [3].

The diagnosis of VITT is definite according to the consensus of the UK Haematology Expert Group [4] with a delay of onset of symptoms of 10 days after vaccination, multiple thrombosis even if the sites described are not the most frequent, biological assessment with a major DIC (D-dimer >4000 ng/mL, platelets at 27 G/L) having been resolved few days after initiation of immunoglobulins and corticosteroids and positive anti-PF4 antibodies ELISA assay.

Our research in the literature found several studies concerning mainly ChAdOx1 nCoV-19 (AstraZeneca) on this syndrome in the United States and in Europe in particular in the United Kingdom, in Denmark, in Norway, in Austria and in Germany. Locations described as being the most frequent were cerebral veins, pulmonary arteries and multiple sites [4]. Although similar, there are differences between VITT syndrome induced by ChAdOx1 nCoV-19 (AstraZeneca) and Ad26.COV2.S vaccine (Janssen/Johnson & Johnson): in particular median time to onset of, respectively, 10- and 16-days post-vaccination and lower D-dimer levels in Ad26.COV2.S vaccine recipients [5]. There would also be more intracerebral hemorrhages after Ad26.COV2.S administration (Janssen/Johnson & Johnson) [5]. These differences are important to consider in the diagnostic process of VITT syndrome. Incidence was around 1/50,000-100,000 for both vaccines [4,6] but there is a higher incidence of ChAdOx1 nCoV-19 (AstraZeneca) in the United Kingdom, a country where this vaccine was mainly used, unlike in the United States where Ad26.COV2.S vaccine (Janssen/Johnson & Johnson) is the majority. The fact that the incidence of occurrence of VITT syndrome is lower in recipients of Ad26.COV2.S vaccine (Janssen/Johnson & Johnson) may be explained by the later release and by less use than other vaccines.

Treatments were variable and mainly included corticosteroids and intravenous immunoglobulins. Other treatments have been tested, specifically rituximab (anti-CD20) and eculizumab (anti factor C5) [7], the principle remaining of slowing down immune response [7]. It was not recommended to have recourse to platelet transfusions except to cover any possible procedures, as this would promote aggravation of thrombosis [4,8].

Mortality reported in the literature varied from 23% to 72% depending on the existence of or not of intracranial bleeding and thrombocytopenia < 30 G/L [4,5], and also associated with early diagnosis and rapid initiation of appropriate treatment. A predictive mortality score has been developed: the FAPIC score [9]. It includes fibrinogen (<1,5 g/L), age (≤60 years), platelet count (<25 G/L), intracerebral hemorrhage and cerebral venous thrombosis, and can be used to predict mortality of VITT syndrome [9].

In our patient’s case, platelets normalized quickly after initiation of treatment. Due to the description of a non-heparin-dependent pathophysiological mechanism [8], we anticoagulated the patient with heparin treatment, and this did not cause a significant drop in platelets, which remained at a normal level.

Conclusion

As of 10 November 2021, there have been more than 7 billion doses of vaccine worldwide and currently available vaccines have been extensively tested in clinical trials and their efficacy and safety is well established. Common vaccine-related side effects are fever, myalgia, arthralgia and headache [8]. Occurrence of serious adverse events attributable to the vaccine therefore remains difficult to interpret. VITT syndrome has only been reported very few times in the literature [1,4,6,8–10], around 474 cases for the ChAdOx1 nCoV-19 in European Union and United Kingdom on October 9, 2021, and 28 cases for the Ad26.COV2.S vaccine in USA on July 19, 2021. Risk-benefit ratio remains in favor of vaccination, in particular since SARS-CoV-2 infection is more thrombogenic than vaccination [6].
Link between occurrence of VITT syndrome and adenovirus-vector-based SARS-CoV-2 vaccines is increasingly established, but this event remains rare and it therefore appears essential to identify the VITT syndrome early on: implementation of rapid treatment allows almost immediate clinical improvement and would therefore reduce mortality of this extremely serious adverse event.

Disclosure of interest

The authors declare that they have no competing interest.

References

[1] Greinacher A, Thiele T, Warkentin TE, Weisser K, Kyrle PA, Eichinger S. Thrombotic thrombocytopenia after ChAdOx1 nCoV-19 vaccination. N Engl J Med 2021;384:2092–101.
[2] Moore N, Berdai D, Blin P, Droz C. Pharmacovigilance — The next chapter. Therapies 2019;74:557–67.
[3] Agence nationale de sécurité du médicament (ANSM). Point de situation sur la surveillance des vaccins contre la Covid-19 — Période du 12/11/2021 au 25/11/2021; 2021. https://ansm.sante.fr/actualites/point-de-situation-sur-la-surveillance-des-vaccins-contre-la-covid-19-periode-du-12-11-2021-au-25-11-2021. [Accessed 21 January 2021].
[4] Pavord S, Scully M, Hunt BJ, Lester W, Bagot C, Craven B, et al. Clinical features of vaccine-induced immune thrombocytopenia and thrombosis. N Engl J Med 2021;385:1680–9.
[5] Hwang J, Lee SB, Lee SW, Lee MH, Koyanagi A, Jacob L, et al. Comparison of vaccine-induced thrombotic events between ChAdOx1 nCoV-19 and Ad26.COV2.S vaccines. J Autoimmun 2021;122:102681.
[6] Hippsley-Cox J, Patone M, Mei XW, Saatci D, Dixon S, Khunti K, et al. Risk of thrombocytopenia and thromboembolism after covid-19 vaccination and SARS-CoV-2 positive testing: self-controlled case series study. BMJ 2021;374:n1931.
[7] Warkentin TE. High-dose intravenous immunoglobulin for the treatment and prevention of heparin-induced thrombocytopenia: a review. Expert Rev Hematol 2019;12:685–98.

[8] Scully M, Singh D, Lown R, Poles A, Solomon T, Levi M, et al. Pathologic antibodies to platelet factor 4 after ChAdOx1 nCoV-19 vaccination. N Engl J Med 2021;384:2202–11.
[9] Hwang J, Park SH, Lee SW, Lee SB, Lee MH, Jeong GH, et al. Predictors of mortality in thrombotic thrombocytopenia after adenoviral COVID-19 vaccination: the FAPIC score. Eur Heart J 2021;42:4053–63.
[10] Muir K-L, Kallam A, Koepsell SA, Gundabolu K. Thrombotic thrombocytopenia after Ad26.COV2.S vaccination. N Engl J Med 2021;384:1964–5.

Maxime Castana, b, Marlène Damin-Pernikb, Guillaume Thiéryc, Dominique Pagec, David M. Smadjaa, b, Laurent Bertolettia, b, c
a Service d’accueil des urgences, CHU de St-Étienne, 42055 Saint-Étienne, France
b Centre régional de pharmacovigilance, CHU de St-Étienne, 42055 Saint-Étienne, France
c Service de médecine intensive et réanimation, CHU de St-Étienne, 42055 Saint-Étienne, France

d Université Jean Monnet, 42055 St-Étienne, France

e Inserm U1290, Research on Healthcare Performance RESHAPE, Université Claude Bernard Lyon 1, France

f Inserm, Innovative therapies in haemostasis, université de Paris, 75006 Paris, France

g Hematology department, European Georges-Pompidou hospital, AP–HP, 75015 Paris, France

h Service de médecine vasculaire et thérapeutique, CHU de St-Étienne, 42055 Saint-Étienne, France

1 Inserm, UMR1059, équipe dysfonction vasculaire et hémostase, université Jean-Monnet, 42055 Saint-Étienne, France

1 Inserm, CIC-1408, CHU de Saint-Étienne, 42055 Saint-Étienne, France
An excessive catecholamine release responsible for Takotsubo syndrome stress cardiomyopathy has been proposed to explain acute heart failure following methadone poisoning [2,3]. Here, we describe a patient with multiple organ dysfunction syndrome complicating refractory cardiogenic shock caused by massive methadone intoxication without typical electrocardiogram (ECG) changes and/or echocardiography abnormalities and in whom a veno-venoarterial extracorporeal membrane oxygenation (VAV-ECMO) was required.

Case history

A 39-year-old man with a history of drug addiction, but free from drug use for 7 years, was found comatose by his family. Paramedics found him to be hypotensive, hypopnoeic, hypoglycaemic (0.56 g L\(^{-1}\)), hypothermic and cyanotic. He had miosis and empty methadone blisters were found nearby him (total dose of 1820 mg). He received 0.4 mg of Naloxone and his Glasgow score increased from 3 to 11 with acute agitation. After tracheal intubation, norepinephrine and epinephrine were given intravenously. Upon arrival in hospital, the blood gas showed pH 7.13, PaCO\(_2\) 61 mmHg, PaO\(_2\) 63 mmHg, SaO\(_2\) 96%, lactates 6.0 mmol L\(^{-1}\). Chest X-ray revealed bilateral acute pulmonary oedema (Fig. 1A). Transthoracic echocardiography showed biventricular failure and peripheral perfusion was absent. Tricuspid annular plane systolic excursion (TAPSE) was 6 cm. ECG revealed sinus tachycardia at 120 bpm with PR 160 ms, QRS 96 ms, QTC 369 ms, and upright and peaked P waves in leads II and III favouring a "P-pulmonale" wave. In the next few hours, the patient exhibited severe cardiogenic shock (refractory hypotension, hyperlactatemia 8.3 mmol L\(^{-1}\) and cardiac index under 2 L min\(^{-1}\) m\(^{-2}\)) while the dose of epinephrine was increased to 2.1 \(\mu\) g kg\(^{-1}\) min\(^{-1}\). After a skin disinfection, a 19 Fr cannula (Maquet Getinge, Gothenburg, Sweden) was introduced in the left common femoral artery, a 21 Fr venous cannula in the left femoral vein and a distal reperfusion for his leg in the superficial femoral artery. Because the patient suffered from severe hypoxemia, a 15 Fr cannula was introduced in his right internal jugular (RIJ) vein to ensure a precordial oxygenation and limit the Arlequin syndrome. The extracorporeal membrane oxygenation (ECMO) blood flow was started at 5 L min\(^{-1}\) while the RIJ line was partially clamped to limit its flow to 1 L min\(^{-1}\). His theoretical cardiac output had been set at 3 L min\(^{-1}\) m\(^{-2}\) for a patient of 166 cm, 75 kg (corporal area 1.83 m\(^2\)). The blood flow and FiO\(_2\) to the RIJ cannula were set for an inlet saturation above 70% before the pulmonary circulation and PaO\(_2\) in right arterial blood above 95%. The arterial blood-gas obtained from the right radial artery under VAV-ECMO showed pH 7.26, PaCO\(_2\) 31.5 mmHg, PaO\(_2\) 338 mmHg, lactates 12.8 mmol L\(^{-1}\) (maximal lactates). Mechanical ventilation was set at 6 ml kg\(^{-1}\) of IBW x 10 c min, positive end-expiratory pressure (PEEP) 8-10 cmH\(_2\)O, sweep gas on ECMO controlled for normal PaCO\(_2\). On ECMO day 1, epinephrine and norepinephrine infusions were reduced and an intravenous infusion of dobutamine was initiated at 5 \(\mu\) g kg\(^{-1}\) min\(^{-1}\). The LVEF was 15%, VTI 1 cm with intraventricular sludge and an antero-lateral thrombus 1 × 1 cm. An intra-aortic balloon pump was introduced.