Dynamics of coreless vortices and rotation-induced dissipation peak in superfluid films on rotating porous substrates

S. K. Nemirovskii1 and E. B. Sonin2

1Institute of Thermophysics, Lavrentyev Ave., 1, 630090, Novosibirsk, Russia
2Racah Institute of Physics, Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel

(Dated: February 5, 2008)

We analyze dynamics of 3D coreless vortices in superfluid films covering porous substrates. The 3D vortex dynamics is derived from the 2D dynamics of the film. The motion of 3D vortex is a sequence of jumps between neighboring substrate cells, which can be described, nevertheless, in terms of quasi-continuous motion with average vortex velocity. The vortex velocity is derived from the dissociation rate of vortex-antivortex pairs in a 2D film, which was developed in the past on the basis of the Kosterlitz-Thouless theory. The theory explains the rotation-induced dissipation peak in torsion-oscillator experiments on 4He films on rotating porous substrates and can be used in the analysis of other phenomena related to vortex motion in films on porous substrates.

PACS-numbers: 67.40.Vs, 67.57.Fg, 67.70.+n, 67.40.Rp

I. INTRODUCTION

Superfluid 4He films adsorbed in porous media is an actual topic in physics of superfluidity1. Studying of this system gives a unique possibility to investigate the interplay between 2D and 3D physics, especially the character of the transition to the superfluid state. On one side, torsion-oscillator experiments reveal the dissipation peak near the temperature of the superfluid onset T_c, which is predicted by the dynamical theory of vortex-antivortex pairs 2 based on the Kosterlitz-Thouless theory for 2D films 3. On another side, they found that in films on porous substrates the superfluid density critical index $\sim 2/3$ 4 of the 3D system and the sharp cusp of the specific heat 4 at T_c are similar to those near the λ transition of the bulk 4He.

An important insight into physics of superfluid films in porous media is provided by torsion-oscillator experiments with rotating substrates. The porous substrate is usually modeled with a “jungle gym” structure 5, 6, 7, 8: a 3D cubic lattice of intersecting cylinders of diameter a with period l (Fig.1). Multiple connectivity of superfluid films in porous media allows a variety of vortex configurations, and probably most important from them is a coreless, or pore 3D vortex, which is just a flow around the vortex pores having nonzero circulation. Due to the presence of a new type of topological defects, one could expect an essential difference in the response between the plane film and the porous-medium film under rotation. This expectation was confirmed by torsional-oscillator experiments, which revealed a rotation-induced peak in dissipation (inverse quality factor) as a function of temperature. The additional peak was shifted from the stationary (static) peak that was observed without rotation 9, 10. Double-peak structure essentially differs from the case of the plane film, where the only effect of rotation was to broaden the stationary peak 11, 12.

A semi-empirical interpretation of the rotation-induced dissipation peak was suggested in Ref. 10. It is clear that the rotation can affect dissipation via rotation contribution to the velocity field. So it is a nonlinear correction to the response. Instead of the derivation of such a correction from the theory, the authors of Ref. 10 used the data on the nonlinear response taken from the independent experiment on large-amplitude torsion-oscillations. This provided a qualitative explanation of the rotation peak, and even of some quantitative features of it, but could not pretend to be a full theory of the effect. The present work suggests really a theory of the rotation peak deriving the parameters of the peak from the parameters of the film and the substrate. The key role in our scenario is played by the 3D coreless vortices. We derived dynamics of these vortices from dynamics of 2D films adsorbed in porous media. It was suggested 10 that motion of the coreless 3D vortices occurs in a creeping manner by jumping from cell to cell. These jumps are related to dissociation of the vortex-antivortex pair on one side of a rod separating different pores, with subsequent annihilation of the pair on another side of a rod. The result of the jump is a shift of velocity circulation to a neighboring pore. Though our analysis was focused on application to the torsion-oscillator experiments, it is valid for description 3D vortex motion in many other cases, at least in those, where the vortex moves to distances much larger than the average period of the substrate structure. An important example is steady vortex motion in zero-frequency experiments.

In Sec.13 we describe how dynamics of 3D coreless vortices is connected with dynamics of 2D films covering the substrate. This provides a bridge between the effective-continuous-medium 3D description and dynamics of 2D films. Section13 reviews the theory of dissociation of vortex-antivortex pairs on the basis of the Kosterlitz-Thouless theory. In Sec.14 the pair-dissociation rate is analyzed near the critical temperature, where there is an analytical solution of Kosterlitz’s recursion equations. The theory is applied to the analysis of the torsion-oscillation experiments in Sec.15.
II. CORELESS VORTICES: FROM 2D TO 3D VORTEX DYNAMICS

In a continuous medium a vortex is a topological defect with nonzero circulation around the vortex axis. There is an area around the vortex line with a suppressed order parameter, which is called vortex core. But topology of a porous medium allows circulation of superfluid velocity around a pore without suppression of the order parameter anywhere inside the superfluid film. This leads to the concept of a coreless vortex. The vortex “line” in this case is not a line at all; this is a chain of the jungle gym structure cells with nonzero circulation around them. Schematically the coreless vortex is depicted in Fig. 1. This coreless structure of a vortex rules out usual type of vortex motion in a continuous medium simply because the coreless vortex has no continuous coordinate: its position is discrete and is determined by a cell with nonzero circulation around it. The only way for the vortex to move is to jump from cell to cell. They call such a type of vortex motion vortex creep. But any jump is in fact a process in time (whatever short) during which the vortex line inevitably crosses a rod covered by a superfluid film. So during the jump the “coreless” vortex does have cores: at the place where it enters the rod and at the place where it comes out from the rod (Fig. 1). These two cores together form a 2D vortex-antivortex pair, which should grow, dissociate, and eventually annihilate on the other side of the rod. This process lead to a discrete shift of the vortex line to a neighboring cell. For better illustration a two-dimensional picture of this process is shown in Fig. 2. It shows two cells: upper (u) and lower (l). Before the process (Fig. 2a) there is circulation $\kappa = h/m_{He}$ around the lower cell as shown in the figure. Provided that there is no other coreless vortices nearby, the same circulation exists around any path inclusive of the cell (l) as shown for the path around the both two cells. The transient process of the “jump” from the cell (l) to the cell (u) is shown in Fig. 2b. The vortex-antivortex pair is present in the film between two pores. This makes circulation around any of the two cells undefined: it depends on whether the path goes outside or inside the pair. Only circulation around the two cells together remains equal to κ. Figure 2c shows the state after the process: the coreless vortex is now located in cell (u). Though this scenario is shown in the plane picture, it is directly applicable to the 3D jungle gym structure with the 2D vortex and antivortex moving around a cylindric rod. In reality creation and dissociation of vortex-antivortex pairs is a stochastic process, which is determined by the average dissociation rate $R(T, v_s)$ (number of dissociation events per second and per unit area of a film), which depends on temperature T and, most important for us, on average superfluid velocity v_s in the film. In our case the superfluid velocity field consists of two parts: $v_s = v_c + V_s$, where v_c originates from a circular flow around the vortex line at rest and V_s is a transport superfluid velocity with respect to a moving substrate. In Fig. 2 the velocity V_s is directed along the axis x. So it it is added to the circular velocity v_c above the cell with circulation κ and is subtracted from v_c below this cell. Therefore the jumps of the vortex line up and down are unbalanced and result in some average drift (creep) of the vortex line up the picture in Fig. 1. This jump-like process can, nevertheless, be described with an average vortex velocity determined as

$$V_L = Al(R(v_c + V_s, T) - R(v_c - V_s, T)) \approx 2Al \frac{\partial R}{\partial v_s} V_s,$$

where l is the period of the jungle gym structure, and A is the area of the rod separating neighboring pores. According to this scenario of vortex motion the vortex velocity V_L is strictly normal to the velocity V_s.

Let us compare the relation (1) with the general relation connecting the vortex velocity of the vortex line with the
FIG. 2: Vortex creep. The superfluid moves with velocity \mathbf{V}_s along the axis x, and the vortex creeps along the axis y. (a) The state before the jump. There is circulation κ around the lower cell (l) as it is shown in picture. The same circulation exists around any path inclusive cell (l). The circulation around two cells (l) and (u) is shown. The coreless vortex is located at the cell (l). (b) The vortex on the way between cells (l) and (u). There is the vortex-antivortex pair (VAP) in the film. Circulations around the paths inclusive only of cell (l) or (u) are not defined, while for the path around the two cells circulation is equal to κ as before. (c) The state after the jump. The coreless vortex is located at the cell (u). No circulation around the cell (l) anymore, but there is circulation around the cell (u), or around the two of them.

normal and the superfluid velocities \[13\]:

$$\mathbf{V}_L = \mathbf{V}_s + \alpha \hat{z} \times (\mathbf{V}_n - \mathbf{V}_s) - \alpha'(\mathbf{V}_n - \mathbf{V}_s).$$ \(2\)

In the problem under consideration we can assume that the normal component is clamped to the porous-glass substrate oscillating with the velocity \mathbf{V}_g. So their velocities coincide: $\mathbf{V}_n = \mathbf{V}_g$. In fact equation (1) is written for the system moving with the substrate, where $\mathbf{V}_n = \mathbf{V}_g = 0$. Eventually Eqs. (1) and (2) agree if $\alpha = 2Al \frac{\partial R}{\partial v_s}$, $\alpha' = -1$. \(3\)

Note that the condition $1 + \alpha' = 0$ providing that vortices move normally to the superfluid motion means the absence of the “effective” Magnus force \[14\], which is defined as the term $\alpha [\hat{z} \times \mathbf{V}_L]$ is the balance of forces on the vortex. In superconductors this leads to the total absence of the Hall effect. Absence of the effective Magnus force is typical for lattice systems \[15\], in contrast to uniform continuous media with Galilean invariance. The crossover between these two cases was recently studied by numerically solving the Gross-Pitaevskii equation \[16\].

So we have demonstrated that the creep of coreless vortices, which is realized via sequences of discrete jumps from cell to cell, can be described in the terms usually used for 3D vortices moving in a continuous medium. Still the parameters of this 3D “effective-medium” description must be determined within the theory of 2D films covering the multi-connected substrate. The crucial parameter to be determined is the derivative dR/dv_s of the dissociation rate R.

III. RATE OF PAIR DISSOCIATION

The thermally activated dissociation of vortex-antivortex pair was analyzed by Ambegaokar et al. \[2\] (see also references to later works in Ref. \[17\]) on the basis of the Kosterlitz-Thouless theory. They considered superfluid films on plane substrates, while in our case films cover cylindrical surfaces. But as we shall see below, the relevant scale (size of the pair at the saddle point) is small compared to the substrate curvature and the curvature may be ignored.

The pair dissociation is accompanied by overcoming the potential barrier. The barrier corresponds to the saddle point of the vortex-pair energy as a function of the radius-vector \mathbf{r} connecting vortex with antivortex,

$$U(\mathbf{r}, \mathbf{v}_s) = \frac{\rho_s \kappa^2}{2\pi} \int_{r_0}^{r} \frac{d^2 \mathbf{r}}{\epsilon(r) r} - \rho_s \kappa \mathbf{r} \cdot (\mathbf{v}_s \times \hat{z}).$$ \(4\)
Here ρ_{s0} is the bare superfluid density, $\hat{\epsilon}$ is Kosterlitz’s static scale-dependent dielectric constant determined from the integral equation

$$\frac{1}{\hat{\epsilon}(r)} - 1 = -\frac{\pi \rho_{s0} \kappa^2}{4} y_0^2 \int_{r_0}^{\infty} \frac{dr}{r^3} \frac{r^3}{r_0^3} \exp\left[\frac{-\rho_{s0} \kappa^2}{2\pi T} \int_{r_0}^{r} \frac{dr}{\epsilon(r)r}\right],$$ \tag{5}

r_0 is the core radius of the 2D vortex, $y_0 = e^{-E_0/T}$, and E_0 is the energy of the vortex core. The dielectric constant $\hat{\epsilon}(r)$ takes into account screening of interaction between a vortex and an antivortex at distance r by pairs of smaller size. In the limit $r \to \infty$ the dielectric constant determines the ratio of the bare and the renormalized superfluid densities: $\rho_s = \rho_{s0}/\hat{\epsilon}(\infty)$.

The integral equation (5) can be reduced to Kosterlitz’s recursion equations:

$$\frac{dK(l)}{dl} = -4\pi^3 y^2 K^2, \quad \frac{dy^2(l)}{dl} = (4 - 2\pi K)y^2.$$ \tag{6}

Here $l = \ln(r/r_0)$, the dielectric constant is replaced by the ratio $\hat{\epsilon}(l) = K(0)/K(l)$, where $K(0) = \rho_{s0} \kappa^2/4\pi^2 k_B T$ is the bare Kosterlitz – Thouless coupling constant related to the bare superfluid density ρ_{s0}, and

$$y(l) = y_0 \exp\left[2l - \pi \int_0^l K(l')dl'\right]$$ \tag{7}

is the rescaled activity.

Solving the Fokker-Planck equation for the distribution of vortex-antivortex pairs, Ambegaokar et al. \cite{2} obtained the following expression for the dissociation rate [see Eq. (4.6) in their article]

$$R = \frac{2D}{r_s} y^2(l_s) \exp(2\pi K(l_s)).$$ \tag{8}

Here D is the vortex diffusion coefficient, r_s is the saddle-point value of the pair size r, and $l_s = r_s/r_0$ is its logarithm. The saddle point for the effective potential \cite{1} is reached when r is perpendicular to v_s and r_s satisfies the condition

$$\frac{\kappa}{2\pi \hat{\epsilon}(r_s)r_s} = \frac{\kappa K(0)}{2\pi K(l_s)r_s} = v_s.$$ \tag{9}

If the velocity v_s is small the values of l_s and r_s are large, and this condition yields that

$$r_s = \frac{\kappa K(0)}{2\pi K(\infty) v_s}.$$ \tag{10}

In order to find the mutual friction parameter α from Eq. (3), we need the derivative of the dissociation rate with respect to the velocity v_s. Using Eqs. (6) and (8) we obtain:

$$\frac{dR}{dv_s} = \frac{8\pi^2 D K(0)}{\kappa v_s^2} y^2(l_s) \exp[2\pi K(l_s)].$$ \tag{11}

In summary, Eqs (1), (3) and (11) show how the creep motion of the coreless vortices in a porous medium is described in terms of parameters determining motion of 3D quantum vortices in continuous media. This description can be used for various problems related to vortex motion in porous media.

IV. PAIR DISSOCIATION NEAR THE CRITICAL POINT

For understanding the nature of the rotation dissipation peak we need to study the temperature dependence of the dissociation rate at temperatures close to the critical one. At these temperatures Kosterlitz’s recursion equations have an analytical solution \cite{2}. One can introduce a small $x(l) = \pi[K(l) - K_c(\infty)]$, where $K_c(l)$ yields values of $K(l)$ at the critical point and at $l \to \infty$, $K_c(\infty) = 2/\pi$. Then the recursion relations can be written as

$$\frac{dx(l)}{dl} = -(4\pi y)^2, \quad \frac{dy^2(l)}{dl} = -2xy^2.$$ \tag{12}
Their solution is

\[x(l) = x_\infty \coth \left(x_\infty l + \coth^{-1} \frac{x_0}{x_\infty} \right) = x_\infty \frac{x_0 \cosh(x_\infty l) + x_\infty \sinh(x_\infty l)}{x_0 \sinh(x_\infty l) + x_\infty \cosh(x_\infty l)}, \tag{13} \]

\[4\pi y(l) = x_\infty \text{csch} \left(x_\infty l + \coth^{-1} \frac{x_0}{x_\infty} \right) = \frac{4\pi y_0 x_\infty}{x_0 \sinh(x_\infty l) + x_\infty \cosh(x_\infty l)}. \tag{14} \]

Here \(x_0 = x(0) \) and \(x_\infty = x(\infty) \). The solution satisfies the condition

\[x_\infty^2 = x(l)^2 - (4\pi y(l))^2 = x_0^2 - (4\pi y_0)^2. \tag{15} \]

At the critical point \(x_\infty = 0 \) and Eqs. (13) and (14) become

\[x_c(l) \approx \frac{x_0}{1 + x_0 l}, \quad 4\pi y_c(l) \approx \frac{x_0}{1 + x_0 l}. \]

According to Eq. (15), at the critical point the parameters \(x_0 \) and \(y_0 \) satisfy the relation

\[x_0 c = \pi \left[K_c(0) - \frac{2}{\pi} \right] = (4\pi y_0 c)^2. \tag{16} \]

As usually assumed in the 2D vortex dynamics, the bare superfluid density does not vary near the critical point. Then, since \(K(0) \propto 1/T \) and \(y_0 = e^{-E_0/T} \), their dependence on the relative temperature \(t = (T_c - T)/T_c \) is

\[K(0) \approx K_c(0)(1 + t), \quad y_0 \approx y_0 c \left(1 - \frac{E_0}{T_c} t \right). \tag{17} \]

Then Eq. (15) yields that at \(t > 0 \) \(x_\infty \approx 2b\sqrt{t} \) with

\[b = 16\pi e^{-E_0/T} (1 + 2\pi(1 + E_0/T_c)e^{-E_0/T_c}). \]

This leads to the square-root cusp

\[\rho_s(T) = \rho_s(T_c)(1 + b\sqrt{t}) \tag{18} \]

in the critical behavior of the renormalized superfluid density, which was revealed by Nelson and Kosterlitz \[18\] with numerical calculations.

Using all these relations together with the assumption that \(v_s \) so low that at the saddle point \(l_s \gg x_{0c} \), we obtain linear dependence of the dissociation rate on \(t \):

\[\frac{dR}{ds} = \frac{DK_c(0)}{2\kappa r_s^2 l_s^2} e^4 (1 - \gamma t), \tag{19} \]

where

\[\gamma = 2b^2 l_s + \frac{4b^2}{3} - 1. \]

V. TORSIONAL OSCILLATIONS OF ROTATING POROUS SUBSTRATE AND COMPARISON WITH THE OBSERVED ROTATION DISSIPATION PEAK

Let us now apply the theory to oscillatory motion of the substrate superimposed on its steady rotation with the angular velocity \(\Omega \). So the substrate velocity field is \(\Omega \times r \) \(+ V_g \). Only the oscillatory component \(V_g \propto e^{-i\omega t} \) is important for us. Using the Euler equation

\[\frac{\partial V_s}{\partial t} + [2\Omega \times V_L] = -\nabla \mu \tag{20} \]

and Eq. (2) with \(\alpha' = -1 \) one obtains for an oscillatory components of the velocities (the chemical potential \(\mu \) is not relevant for the azimuthal motion):

\[V_s = \frac{2\Omega \alpha}{i\omega + 2\Omega \alpha} V_g. \tag{21} \]
This relation determines the drag of the superfluid component by the oscillating substrate. Analyzing now the balance of forces for the torsional resonator, as was done many times in the past, one obtains the following contribution to the inverse quality factor of the torsion oscillator for the slow rotation $\Omega \alpha \ll \omega$:

$$\Delta Q^{-1} = \frac{V \rho_{s3} 2\Omega \alpha}{M} \frac{\omega}{\omega},$$ \hspace{1cm} (22)

where M is the total mass of the torsional oscillator, V is the total 3D volume (including pores), and ρ_{s3} is the effective 3D superfluid mass density in the porous-glass substrate of the volume V, which is connected with the 2D superfluid density ρ_s of the film by the relation

$$\rho_{s3} = \frac{\rho_s}{V}.$$ \hspace{1cm} (23)

Here A_{tot} is the total area of the film. For the “jungle gym” structure with cell size l and the rod diameter a

$$\frac{A_{tot}}{V} \approx \frac{\pi a}{l^2}.$$ \hspace{1cm} (24)

On the other hand, in the theory of 2D superfluid films starting from Ref. \[2\] they describe the drag of the superfluid component introducing the “dynamical dielectric constant” $\epsilon(\omega)$ (one should not mix it up with Kosterlitz’s static dielectric constant $\tilde{\epsilon}$ introduced in Sec. \[III\]):

$$V_s = \left[1 - \frac{1}{\epsilon(\omega)}\right] V_g.$$ \hspace{1cm} (25)

Then

$$\Delta Q^{-1} = -\frac{V \rho_{s3}}{M} \Im \frac{1}{\epsilon} = -\frac{A_{tot} \rho_s}{M} \Im \frac{1}{\epsilon}$$

with the imaginary part of the inverse dielectric constant equal to

$$\Im \frac{1}{\epsilon} = -\frac{2\Omega \alpha}{\omega} = -\frac{4A\Omega}{\omega} \frac{\partial R}{\partial v_s}.$$ \hspace{1cm} (27)

Substituting Eqs. \[18\] and \[19\] into Eqs. \[26\] and \[27\], we see that the square-root cusp in the superfluid density is crucial for its temperature dependence in the critical area and for existence of the rotation dissipation peak:

$$\Delta Q^{-1} = \frac{4A\Omega}{\omega} \frac{A_{tot}}{M} \rho_s \frac{\partial R}{\partial v_s} = \Delta Q^{-1}(T_c)(1 + b\sqrt{T - \gamma t}).$$ \hspace{1cm} (28)

The factor $\gamma \propto l_c$ is expected to be large, but the the square-root cusp is more essential at small t, and the inverse quality factor has a maximum at $t = b^2/4\gamma^2$ rather close to the critical point.

The linear approximation used for derivation of Eqs. \[13\] and \[14\] is more or less truthful only for $|T - T_c|$ not exceeding 0.005 K. Though the dissipation maximum at $T \approx 0.6234$ K is in this interval (see below), the low temperature side of the dissipation peak is not, and the peak width cannot be determined using the analytical formulas \[13\] and \[14\]. Thus though the analytical expression \[25\] qualitatively explains the observed dissipation peak itself, it is not sufficient for its quantitative description. A more accurate quantitative analysis required numerical calculations.

Let us now gather from Refs. \[9\] and \[10\] all quantitative data needed for comparison with the theory. The porous-glass substrate can be modeled with the jungle-gym structure with the diameter of rods $a \approx 1 \mu m$ and the structure period $l \approx 2.5 \mu m$. Then the circulation velocity around the pore is estimated as $v_s = \kappa/4l \approx 1$ cm/sec. According to Ref. \[10\], the transition temperature is $T_c \approx 0.628$ K. The areal density of superfluid component at the critical temperature (jump of density) can be evaluated from the Kosterlitz-Thouless relation

$$\rho_s = \frac{8\pi k_B T_c}{\kappa^2} = 2.179 \times 10^{-9} \text{ g/cm}^2.$$ \hspace{1cm}

We also need the bare areal superfluid density ρ_{s0}. It can be calculated from dependence of the transition temperature on the thickness: According to Ref. \[9\], the coverage of the substrate is about 33×10^{-10} mol/cm2. Then $\rho_{s0} \approx 1.32 \times 10^{-8}$ g/cm2, and the bare Kosterlitz -Thouless coupling constant $K(0)$ is

$$K(0) = \frac{\rho_{s0} \kappa^2}{4\pi^2 k_B T} \approx 3.8.$$
Quantity b entering relations (13)–(14) can be obtained from the width ~ 0.02 K of the experimental curve describing static dissipation peak of paper [10]. It yields b about 3.6975. Furthermore, the diffusion coefficient is $D = 2.8 \times 10^{-7}$ cm2/s, and the core radius of vortices on film can be estimated as $a_0 \approx 25 \times 10^{-8}$ cm.

We can now find the pair size r_s at the saddle point from Eq. (10): $r_s = 2.98 \times 10^{-5}$ cm. This corresponds to $l_s = \ln(r_s/r_0) = 4.78$. On one hand, these values are large enough in order to justify our assumption of large l_s compared to x_{0c}. On the other hand, we see that $r_s \ll a$, which justifies our consideration of vortex-antivortex unbinding using the theory for plane films.

We also need the value of $A_{tot} \rho_s(T)/M$ in Eq. (20). This is the ratio of the temperature dependent superfluid mass to the mass of the empty cell. According to Ref. [9] it is approximately equal to 10^{-5}. For determination of the temperature dependent superfluid mass $\rho_s(T)$ we have built the extrapolating function using the experimental results obtained from the measuring of the shift of the oscillations period (see Fig. 2 from Ref. [10]).

In order to calculate $K(l, T)$ and $y(l, T)$ numerically we use procedure proposed in Ref. [12] (see Appendix A there). In the temperature interval from T_c to the temperature $T \approx 0.6234$ K corresponding to the dissipation maximum the analytical expressions based on the linear approximation are more or less truthful. But in the low temperature region $T < 0.6234$ K we performed the numerical calculation using the Mathematica program. Following Ref. [12] for any temperature $|T-T_c|$ and corresponding x_0 we choose a value l_0 so that $x_\infty l_0 = \pi/2$. Under this choice both $y(l_0, T)$ and deviation of $K(l_0, T)$ from $2/\pi$ are rather small and the analytical expressions (13) and (14) are still good enough for evaluation of $K(l, T)$ and $y(l, T)$. Further we take $K(l_0, T)$ and $y(l_0, T)$ as initial conditions for numerical integration (with respect to variable l) of the recursive Kosterlitz-Thouless relations (6). In this way we are able to restore $K(l_s, T)$ and $y(l_s, T)$ at saddle point l_s and further to find $\partial R/\partial v_s$ and eventually ΔQ^{-1} in the whole temperature interval $T < T_c$. In Fig. 3 we plot the theoretical $\Delta Q^{-1}(T)$ (dashed line) together with the experimental data of Fukuda et al. (10). The observed rotation induced dissipation peak (the left peak) was scaled by the angular velocity Ω reducing it to the value measured at $\Omega = 6975$. Furthermore, the diffusion coefficient is $D = 2.8 \times 10^{-7}$ in the theory and 2.4×10^{-8} in the experiment (i.e., about 70% from the theoretical value). Keeping in mind that nice agreement in the peak shape and position was achieved without any additional fitting the agreement is really satisfactory. We conclude the quantitative analysis of the torsional-oscillation experiment with the estimation of the creep velocity V_c of the pore vortex using Eq. (11). For $V_c \approx 1$ cm/sec, which is typical in the torsional oscillation experiments, we get $V_c \approx 0.7$ cm/sec. For the frequency $\nu = 477$ Hz in the experiment, this corresponds to vortex displacements about 1.5×10^{-3} cm, which is about 6 structure periods. This looks rather satisfactory for our scenario...
reducing sequences of jumps between neighboring cells to quasi-continuous vortex motion.

VI. CONCLUSION

We suggested the theory of motion of 3D coreless vortices through a 2D film covering a porous substrate. Dynamics of 3D vortices is derived from dynamics of vortex-antivortex pairs in the 2D film. The 3D vortices move jumping from cell to cell of the substrate structure, but it can be described in terms of the average vortex velocity like vortex motion in continuous media. Frequency of jumps, and vortex velocity correspondingly, is determined by dissociation rate of vortex-antivortex pairs, which is known from dynamics of 2D superfluid films based on the Kosterlitz-Thouless theory. We calculated dissipation intensity and its temperature dependence analytically and numerically. The theory is compared with the experiments on torsional oscillations of 4He superfluid film adsorbed on a rotating porous-glass substrate. We explain the second (rotation-induced) dissipation peak on the temperature dependence, which was revealed in these experiments. Quantitative comparison between theory and experiment looks satisfactory, especially for the shape and the position of the peak.

Though we focused on application of our theory to torsional-oscillation experiments in 4He films on porous-glass substrates, we believe that the theory has a much wider area of possible applications. The concept of quasi-continuous vortex motion in porous media with parameters determined from dynamics of 2D superfluid films should be applicable not only to straight vortices induced by steady rotation. For example, one may apply the theory also to vortex rings and to the vortex tangle if they can be created in porous media. The theory can also be used for the analysis of steady vortex motion in various situations, e.g. in the process of heat transfer.

ACKNOWLEDGMENTS

Authors are grateful to M. Kubota for numerous discussions and providing necessary experimental data. S. K. N. thanks the Racah Institute of Physics of the Hebrew University of Jerusalem for hospitality and support and acknowledges a partial support by the grants N 05-08-01375 and 07-02-01124 of RFBR and the grant NSH-6749.2006.8 of the state support of leading scientific schools by the President of the Russian Federation. .

[1] J. D. Reppy, J. Low Temp. Phys. 87, 205 (1992) and references therein.
[2] V. Ambegaokar, B.I. Halperin, D.R. Nelson, and E.D. Siggia, Phys. Rev. B 21, 1806 (1980).
[3] J. M. Kosterlitz and D. J. Thouless, J. Phys. C6, 1181 (1973).
[4] S.Q. Murphy and J.D. Reppy, Physica B 165, Part 1, 547 (1990).
[5] J. Machta and R. A. Guyer, Phys. Rev. Lett. 60, 2054 (1988); J. Low Temp. Phys. 74, 231 (1989).
[6] T. Minoguchi and Y. Nagaoka, Progr. Theor. Phys. 80, 397 (1988).
[7] G. A. Williams, Phys. Rev. Lett. 82, 1201 (1999); ibid. 68, 2054 (1992).
[8] T. Obata and M. Kubota, Phys. Rev. B 66, 140506 (2002).
[9] M. Fukuda, K. Ooyama, T. Obata, V. Kovacik, and M. Kubota, J. Low Temp. Phys. 113, 417 (1998); ibid. 113, 423 (1998).
[10] M. Fukuda, M.K. Zalalutdinov, V. Kovacik, T. Minoguchi, T. Obata, M. Kubota, and E.B. Sonin, Phys Rev B 71, 212502 (2005).
[11] P. W. Adams and W. I. Glaberson, Phys. Rev. B 35, 4633 (1987).
[12] D. J Bishop and J. D Reppy, Phys. Rev. Lett. 40, 1727 (1978); Phys. Rev. B 22, 5171 (1980).
[13] E.B. Sonin, Rev. Mod. Phys. 59, 87 (1987).
[14] E.B. Sonin, in: Vortices in Unconventional Superconductors and Superfluids, edited by R.P. Huebener, N. Schopohl, and G.E. Volovik, (Springer-Verlag, Berlin, 2002), pp. 119-145.
[15] E.B. Sonin, Phys. Rev. B 55, 485 (1997), sec. V.
[16] Z. Gece and S. Khlebnikov, Phys. Rev. B 72, 054525 (2005).
[17] K. A. Gillis, S. Voltz, and J. M. Mochel, J. Low Temp. Phys. 61, 172 (1985); S. Giorgini and R. M. Bowley, ibid. 102, 171, (1996); R. M. Bowley, A. Kirk, and P. J. King, ibid. 88, 73 (1992).
[18] D. R. Nelson and J. M. Kosterlitz, Phys. Rev. Lett. 39, 1201 (1977).