Induction of temperate cyanophage AS-1 by heavy metal – copper

Lee H Lee*1, Doris Lui1, Patricia J Platner1, Shi-Fang Hsu1, Tin-Chun Chu1,2, John J Gaynor1, Quinn C Vega1 and Bonnie K Lustigman1

Address: 1Department of Biology & Molecular Biology, Montclair State University, Montclair, NJ 07043, USA and 2Department of Health Informatics, University of Medicine and Dentistry of New Jersey, Newark, NJ 07107, USA

Email: Lee H Lee* - leel@mail.montclair.edu; Doris Lui - luid1@mail.montclair.edu; Patricia J Platner - platnerp@mail.montclair.edu; Shi-Fang Hsu - hsys1@mail.montclair.edu; Tin-Chun Chu - chuti@umdnj.edu; John J Gaynor - gaynorj@mail.montclair.edu; Quinn C Vega - veaqj@mail.montclair.edu; Bonnie K Lustigman - lustigmanb@mail.montclair.edu

* Corresponding author

Abstract

Background: It has been reported that some marine cyanophage are temperate and can be induced from a lysogenic phase to a lytic phase by different agents such as heavy metals. However, to date no significant reports have focused on the temperate nature of freshwater cyanophage/cyanobacteria. Previous experiments with cyanophage AS-1 and cyanobacteria *Anacystis nidulans* have provided some evidence that AS-1 may have a lysogenic life cycle in addition to the characterized lytic cycle.

Results: In this study, the possible temperate *A. nidulans* was treated with different concentrations of heavy metal-copper. CuSO4 with concentrations of 3.1 × 10⁻³ M, 3.1 × 10⁻⁴ M, 3.1 × 10⁻⁵ M and 3.1 × 10⁻⁶ M were used to detect the induction of AS-1 from *A. nidulans*. The population of the host, unicellular cyanobacteria *Anacystis nidulans*, was monitored by direct count and turbidity while the amount of virus produced was derived from plaque forming units (PFU) by a direct plating method. The ratio of AS-1 release from *A. nidulans* was also determined. From these results it appears that AS-1 lysogenic phage can be induced by copper at concentrations from 3.1 × 10⁻⁶ M to 3.1 × 10⁻⁴ M. Maximal phage induction occurred at 6 hours after addition of copper, with an optimal concentration of 3.1 × 10⁻⁴ M.

Conclusion: Cu²⁺ is a significant inducer for lysogenic cyanobacterial cells and consequently would be a potential control agent in the cyanobacteria population in fresh water ecosystems.
populations, affecting primary productivity, increasing water quality and may have a profound influence on global biogeochemical cycles [13,14]. Although the interaction between a cyanophage and its host organism is important in maintaining water quality in freshwater systems, little is known about how viruses regulate microbial mortality in natural waters. Recently, it was found that lysogenic infection was common in marine Synechococcus sp. [15]. Cyanophage infecting a single strain of marine Synechococcus sp. can reach 10^3 to 10^5 per ml in seawater [14,16-18]. Suttle and Chan [17] have estimated that between 5–15% of marine Synechococcus cells were lysed by cyanophage daily. The discovery of a high abundance of viral particles (ca. 10^7 per ml) in natural waters [19,20] initiated the research on the ecological impact of the viral infection and lysis of marine microbes. They also provided evidence that viruses can affect microbial populations by either going through a lytic cycle, causing destruction of the host cell, or maintaining a lysogenic stage, in which the viral genome is inserted and maintained as the prophage in its host cell [18]. There was also evidence to suggest that seasonal changes can cause the prophage to enter a lytic cycle thus leading to the disappearance of algae blooms [21-23]. Lysogeny can also be induced to a lytic cycle by pollutants [24].

Although extensive research has been done on the interaction between cyanophage and cyanobacteria in marine systems, there are no significant reports that have focused on freshwater cyanophage/cyanobacteria interactions. The possibility of temperate AS-1 and lysogenic A. nidulans was suggested by Bisen et al [25], but there was no direct

Figure 1

The growth curve of AN-T and CuSO$_4$ treated AN-T. The AN-T growth curves with addition of different concentrations of CuSO$_4$ at day 4, and no CuSO$_4$ added as the control. A. Control and CuSO$_4$ 3.1 x 10^{-3} M; B. Control and 3.1 x 10^{-4} M; C. Control and 3.1 x 10^{-5} M; D. Control and 3.1 x 10^{-6} M. □ O.D. (Control); ■ Cell no./ml x 10^7 (Control); ○ O.D. (Treated); ● Cell no./ml x 10^7 (Treated).
evidence provided. It has been reported that UV, mitomycin C and heavy metals such as copper, cadmium can induce the release of cyanophage in marine water [22,26]. In this study, different concentrations of copper sulfate were used to study a possible AS-1 lysogenic life cycle in addition to the previously characterized lytic cycle. Addition of copper sulfate led to a significant increase in phage production, a characteristic of an organism with a lysogenic life cycle. The study of lytic induction from temperate \textit{A. nidulans} can provide a good model for studying the interaction between cyanophage and cyanobacteria in freshwater ecosystems.

Results and discussion

In order to determine if heavy metals could cause induction of AS-1 from temperate \textit{A. nidulans} (AN-T), CuSO$_4$ was added at concentrations of 3.1 × 10$^{-3}$ M, 3.1 × 10$^{-4}$ M, 3.1 × 10$^{-5}$ M and 3.1 × 10$^{-6}$ M at day 4 post innoculation, the exponential growth stage of the culture. Growth of AN-T was severely inhibited at concentrations of 3.1 × 10$^{-3}$ M and 3.1 × 10$^{-4}$ M. Growth was affected to a certain extent in 3.1 × 10$^{-5}$ M of CuSO$_4$; growth rate in 3.1 × 10$^{-6}$ M CuSO$_4$ was very similar to the control (Figure 1).

As results seen in marine cyanobacteria, there is consistent release of virus throughout the lysogenic cycle in the normal AS-1/A. \textit{nidulans} infective system. The viral release was monitored by plaque forming units (PFUs). The representative pictures of the plaque forming units (PFU) after CuSO$_4$ induction were obtained from different treated conditions and illustrated as no plaques and the proper number of plaques as showed in Figure 2. The results of AS-1 PFU study, showed that 6 hours after copper induction, 353.00 ± 32.57 PFUs were observed from the control, 483.00 ± 18.39 PFUs were observed from 3.1 × 10$^{-4}$ M of CuSO$_4$; 416.00 ± 8.49 PFUs were formed from 3.1 × 10$^{-5}$ M of CuSO$_4$, 480.00 ± 25.46 PFUs were formed from 3.1 × 10$^{-6}$ M of CuSO$_4$. 24 hours after induction, 372.00 ± 16.97, 160.00 ± 11.31, 345.00 ± 18.39 and 526.00 ± 19.80 PFUs were formed compared to the control, 3.1 × 10$^{-4}$ M, 3.1 × 10$^{-5}$ M and 3.1 × 10$^{-6}$ M of CuSO$_4$ respectively. 48 hours after induction, 479.00 ± 36.77, 57.00 ± 9.90, 483.00 ± 9.90 and 614.00 ± 5.66 PFUs were formed for the control, 3.1 × 10$^{-4}$ M, 3.1 × 10$^{-5}$ M and 3.1 × 10$^{-6}$ M of CuSO$_4$ induction respectively.

PFUs per 106 \textit{A. nidulans} was also calculated, 6 hours after induction, they were 13.57 ± 0.23, 27.44 ± 1.16, 24.83 ± 1.58, and 39.18 ± 0.41 respectively for the control, 3.1 × 10$^{-4}$ M, 3.1 × 10$^{-5}$ M and 3.1 × 10$^{-6}$ M of CuSO$_4$. 24 hours after induction, they were 18.37 ± 2.47, 14.29 ± 0.44, 21.30 ± 1.24 and 29.06 ± 0.50 respectively for the control, 3.1 × 10$^{-4}$ M, 3.1 × 10$^{-5}$ M and 3.1 × 10$^{-6}$ M of CuSO$_4$. 48 hours after induction, they were 13.42 ± 0.65, 4.67 ± 0.70, 25.76 ± 0.93 and 24.14 ± 0.21 respectively for the control, 3.1 × 10$^{-4}$ M, 3.1 × 10$^{-5}$ M and 3.1 × 10$^{-6}$ M of CuSO$_4$.

Figure 2

PFU from CuSO$_4$ induction. Plaque Forming Unit (PFU) from AN-T after the CuSO$_4$ induction; a) no plaques, b) proper numbers of PFUs for counting.

Page 3 of 7

(page number not for citation purposes)
The comparison of the treated AN-T with the control was summarized in Table 1. In the concentration of 3.1×10^{-4} M, the PFUs were obvious at 6 hours after addition of copper; it induced $1.37 \pm 0.08 (483.00 \pm 18.39 / 353.00 \pm 32.57)$ times the control. At 24 hours and 48 hours after addition of copper, the PFUs were significantly reduced, with only $0.43 \pm 0.01 (160.00 \pm 11.31 / 372.00 \pm 16.97)$ times and $0.12 \pm 0.01 (57.00 \pm 9.90 / 479.00 \pm 36.77)$ times of the control. The PFU per 10^6 *A. nidulans* with copper of 3.1×10^{-4} M was $2.00 (27.44/13.57), 0.78 (14.29/18.37)$ and $0.35 (4.67/13.42)$ times of the control at 6, 24 and 48 hours respectively. With concentrations of 3.1×10^{-5} M, PFUs were 1.18 ± 0.09 times ($416.00 \pm 8.49 / 353.00 \pm 32.57$), 0.93 ± 0.01 times ($345.00 \pm 18.39 / 372.00 \pm 16.97$) and 1.01 ± 0.06 times ($483.00 \pm 9.90 / 479.00 \pm 36.77$) of the control at 6, 24 and 48 hours respectively after the addition of copper. The PFU per 10^6 *A. nidulans* with copper of 3.1×10^{-5} M was $1.80 (24.83/13.57), 1.20 (21.30/18.33)$ and $2.00 (225.76/13.42)$ times of the control at 6, 24 and 48 hours respectively after the addition of copper. With a concentration of 3.1×10^{-6} M, the number of PFUs was 1.40 ± 0.06 times ($480.00 \pm 25.46 / 353.00 \pm 32.57$), 1.40 ± 0.01 times ($526.00 \pm 19.80 / 372.00 \pm 16.67$) and 1.28 ± 0.09 times ($614.00 \pm 9.90 / 479.00 \pm 36.77$) of the control at 6, 24 and 48 hours respectively.

CuSO$_4$	Control (No CuSO$_4$ added)			
Time after induction (hrs)	0	6	24	48
OD$_{750}$ nm	0.32 ± 0.03	0.39 ± 0.06	0.45 ± 0.03	0.56 ± 0.08
Cell numbers (10^7)	3.60 ± 0.28	2.60 ± 0.27	2.06 ± 0.36	2.57 ± 0.10
Plaque Forming Unit (PFU)	ND	353.00 ± 32.57	372.00 ± 16.97	479.00 ± 36.77
PFU per 10^6 *A. nidulans*	ND	13.57 ± 0.23	18.37 ± 2.47	13.42 ± 0.65

CuSO$_4$	3.1×10^{-4} M CuSO$_4$			
Time after induction (hrs)	0	6	24	48
OD$_{750}$ nm	0.32 ± 0.03	0.44 ± 0.05	0.34 ± 0.01	0.36 ± 0.03
Cell numbers (10^7)	3.60 ± 0.29	1.76 ± 0.14	1.12 ± 0.11	1.22 ± 0.03
Plaque Forming Unit (PFU)	ND	483.00 ± 18.39	160.00 ± 11.31	57.00 ± 9.90
PFU per 10^6 *A. nidulans*	ND	27.44 ± 1.16	14.29 ± 0.44	4.67 ± 0.70
PFUs change rate for treatment/control	ND	1.37 ± 0.08	0.43 ± 0.01	0.12 ± 0.01
PFU per 10^6 *A. nidulans* treated/control	ND	2.00	0.78	0.35
PIR (%)	ND	102.20 ± 5.19	-22.20 ± 12.60	-65.20 ± 3.65

CuSO$_4$	3.1×10^{-5} M CuSO$_4$			
Time after induction (hrs)	0	6	24	48
OD$_{750}$ nm	0.32 ± 0.03	0.36 ± 0.03	0.41 ± 0.04	0.49 ± 0.01
Cell numbers (10^7)	3.60 ± 0.28	1.68 ± 0.14	1.62 ± 0.01	1.875 ± 0.11
Plaque Forming Unit (PFU)	ND	416.00 ± 8.49	345.00 ± 18.39	483.00 ± 9.90
PFU per 10^6 *A. nidulans*	ND	24.83 ± 1.58	21.30 ± 1.24	25.76 ± 0.93
PFUs change rate for treatment/control	ND	1.18 ± 0.09	0.93 ± 0.01	1.01 ± 0.06
PFU per 10^6 *A. nidulans* treated/control	ND	1.80	1.20	2.00
PIR (%)	ND	82.98 ± 8.61	15.95 ± 8.79	91.95 ± 17.32

CuSO$_4$	3.1×10^{-6} M CuSO$_4$			
Time after induction (hrs)	0	6	24	48
OD$_{750}$ nm	0.32 ± 0.03	0.38 ± 0.09	0.44 ± 0.04	0.56 ± 0.01
Cell numbers (10^7)	3.60 ± 0.28	1.23 ± 0.08	1.81 ± 0.10	2.66 ± 0.13
Plaque Forming Unit (PFU)	ND	480.00 ± 25.46	526.00 ± 19.80	614.00 ± 5.66
PFU per 10^6 *A. nidulans*	ND	39.18 ± 0.41	29.06 ± 0.50	24.14 ± 0.21
PFUs change rate for treatment/control	ND	1.40 ± 0.06	1.41 ± 0.01	1.28 ± 0.09
PFU per 10^6 *A. nidulans* treated/control	ND	3.00	1.60	1.80
PIR (%)	ND	188.37 ± 1.80	58.19 ± 14.00	79.88 ± 10.68

PIR – Percentage of Increase of Release. ND – Not Detectable.
5.66 / 479.00 ± 36.77) of the control at 6, 24 and 48 hours respectively after the addition of copper. The PFU per 10^6 A. nidulans with copper of 3.1 × 10^-6 M was 3.00 (39.18/13.57), 1.60 (29.06/18.37) and 1.80 (24.14/13.42) times of the control at 6, 24 and 48 hours respectively after the addition of copper. Concentrations of 3.1 × 10^-3 M may be too high to be inducers for releasing of temperate cyano-phage AS-1 (Figure 1). This concentration of copper may be toxic for the growth of the cells and induce lethality through different mechanisms (4).

From this study, the Percentage of Increase of Release (PIR) was also calculated for different conditions. The results indicated that 6 hours after addition of copper, 102.20 ± 5.19 %, 82.98 ± 8.61 % and 188.37 ± 1.80 % of increase of release were observed at 3.1 × 10^-4M, 3.1 × 10^-5 M and 3.1 × 10^-6 M of CuSO_4 respectively. 24 hours after the addition of copper, the induction efficiency was not of major consequence with 3.1 × 10^-4 M of CuSO_4. The PIR was negative with a value of -22.20 ± 12.60 %. The PIR was 15.95 ± 8.79 % and 58.19 ± 14.00 % at 3.1 × 10^-5 M and 3.1 × 10^-6 M of CuSO_4 respectively. 48 hours after addition of copper, the PIR for 3.1 × 10^-4 M of CuSO_4 was -65.20 ± 3.65 %. The PIR was 91.95 ± 17.32 % and 79.88 ± 10.68 % at 3.1 × 10^-5 M and 3.1 × 10^-6 M of CuSO_4 respectively (Figure 3).

While there is no clear evidence to explain why induction decreases over time, it is possible that either the phage/host interaction stabilizes after the initial stress or the toxic effect of heavy metal on the host causes a disruption in phage production.

Although the heavy metal induction rates varied depending on the concentrations of the heavy metal, the overall induction of copper compared to control is clear. The results suggest that Cu^{2+} is a significant inducer for temperate AS-1 released from AN-T. The results correlated well with the study of induction for marine cyanobacterial lysogen although AS-1 release rate and induction rate by copper were much lower than the marine cyanophage/cyanobacterial lysogen studies [14,21,26]. Further study with other reported inducers mitomycin C and UV was also carried out to compare the PIR of both mitomycin C and UV with copper studies. The maximum PIR for different factors are showed in table 2. It is indicated that copper, UV and mitomycin C are able to induce the release of phage with PIR of 188.37 ± 1.80, 154.38 ± 15.00, and 162.86 ± 4.00 respectively.

Conclusion
These results suggest that AS-1 lysogenic phage can be induced by copper with a concentration range from 3.1 × 10^-6 M to 3.1 × 10^-4 M. The best condition for phage induction occurred at 6 hours after addition of all these concentrations. Copper concentrations of 3.1 × 10^-6 M showed the highest level of viral induction. Cu^{2+} is an important inducer for lysogenic cyanobacterial cells and consequently could be a potential trigger in the cyanobacteria population in freshwater aquatic environments.

Methods

1. **Maintenance of cultures of anacystis nidulans and AS-1**

 Anacystis nidulans was obtained from Dr. R. McGowan, Brooklyn College, N.Y. The culture was inoculated aseptically in a 250 ml Erlenmeyer flask with 100 ml Mauro’s Modified Medium (3 M medium) at pH 7.9 [27]. The culture was grown in ambient temperature, with constant fluorescent light and continuous agitation at 100 rpm. Cell growth was monitored by direct cell count using a hemacytometer and turbidity studied using a Baush & Lomb Spectronic 20 at OD750 nm [13]. The cultures of A. nidulans were checked periodically for bacteria contamination by plating 100 µl of the culture on nutrient agar plates and observing after a 2 to 3 day incubation period. The stock cultures were maintained on 3 M agar plates and slants that were made with 3 M medium containing 2 % agar.

 2. Cultures, maintenance and titering of cyanophage AS-1

 AS-1 was cultured aseptically in 250 ml Erlenmeyer flasks containing exponentially growing *Anacystis nidulans*. Sterile NaCl was added to the infected culture at a final concentration of 0.1 M. The flasks were gently shaken for 1 hour at room temperature to facilitate adsorption of the virus to the surface of the cell. The infected cultures were then incubated at room temperature under continuous cool-white fluorescent light. The growth of AS-1 was mon-
Table 2: Maximum percentage of increase of release (PIR) of copper, mitomycin C and UV. Comparison of maximum PIR of copper, mitomycin C and UV at different conditions is shown.

Factor	Conditions	Percentage of Increase of Release (PIR)
CuSO₄	3.1 × 10⁻⁴ M at 6 hours of induction	188.37 ± 2.00
UV	Exposure for 2.5 minutes	154.38 ± 15.00
Mitomycin C	0.5 µg/ml at 6 hours of induction	162.86 ± 4.00

II. Copper induction

Five ml of AN-T were inoculated respectively into 5 flasks containing 95 ml of 3 M medium to achieve a concentration of 1.0 × 10⁷ cells/ml. The cultures were grown for 4 days to reach exponential growth stage. Copper was then added to the cultures respectively using the following concentrations: CuSO₄ 3.1 × 10⁻³ M, 3.1 × 10⁻⁴ M, 3.1 × 10⁻⁵ M, and 3.1 × 10⁻⁶ M; a culture with no heavy metal was added to the cell pellet and mixed well. Melted 1% 3 M soft agar (1 ml) was added to the mixture and vortexed. The mixture was then poured onto pre-warmed 2% 3 M agar plates. After the agar solidified, the plate was placed under continuous "cool-white" fluorescent light for 5–7 days until the plaques (clear zone) were formed and counted.

References

1. Lee LH, Lustigman B: Effect of aluminum and pH on the growth of Anacystis nidulans. Bull Environ Contam Toxicol 1991, 46:720-726.
2. Lee LH, Lustigman B: Effect of lead and cobalt on the growth of Anacystis nidulans. Bull Environ Contam Toxicol 1992, 48:230-236.
3. Lee LH, Lustigman B: Effect of mercury and cadmium on the growth of Anacystis nidulans. Bull Environ Contam Toxicol 1992, 49:272-278.
4. Lee LH, Lustigman B: Effect of copper on the growth of Anacystis nidulans. Bull Environ Contam Toxicol 1993, 50:600-607.
5. Lee LH, Lustigman B, Dandorf D: Effect of manganese and zinc on the growth of Anacystis nidulans. Bull Environ Contam Toxicol 1994, 53:158-165.
6. Lustigman B, Lee LH, Weiss-Magasic C: Effect of cobalt and pH on the growth of Chlamydomonas reinhardtii. Bull Environ Contam Toxicol 1995, 55:65-72.
7. Lustigman B, Lee LH, Khalil A: Effect of nickel and pH on the growth of Chlorella vulgaris. Bull Environ Contam Toxicol 1995, 55:73-80.
8. Lee LH, Lustigman B: Effect of barium and nickel on the growth of Anacystis nidulans. Bull Environ Contam Toxicol 1996, 56:985-992.
9. Lee LH, Lustigman B, Murray S, Koeps L: Effect of selenium on the growth of the cyanobacterium Anacystis nidulans. Bull Environ Contam Toxicol 1999, 62:591-599.
10. Lee LH, Lustigman B, Murray S: Effect of mercuric chloride and selenium dioxide on the growth of cyanobacteria, Anacystis nidulans. Bull Environ Contam Toxicol 2000, 69:900-907.
11. Mitchell R: Water Pollution Microbiology. Volume I–V. London and NY: John Wiley and Sons; 1972:205-208.
12. Moran JM, Morgan MD, Wiersma JH: Introduction to Environment Sciences. New York: W. H. Freeman and Co; 1983:218-226.
13. Lee LH, Blamire J, McGowan R: DNA metabolism during infection of A. nidulans by the cyanophage AS-1 (I): Characterization of the unique species of DNA. Microbios 1985, 35:111-118.
14. Lu J, Chen F, Hodson RE: Distribution, isolation, host specificity and diversity of cyanophages infecting marine Synechococcus spp. in river estuaries. Appl Environ Microbiol 2001, 67:3285-3290.
15. McDaniel L, Houckin LA, Williamson SJ, Paul LH: Plankton blooms: Lysogenic in marine Synechococcus. Nature 2002, 415:496.
16. Suttle CA, Chan AM: Marine cyanophages infecting oceanic and coastal strains of Synechococcus: abundance, morphology, cross-infectivity and growth characteristics. Mar Ecol Prog Ser 1993, 92:99-109.
17. Suttle CA, Chan AM: Dynamics and distribution of cyanophages and their effect on marine Synechococcus spp. Appl Environ Microbiol 1994, 60:3167-3174.
18. Waterbury JB, Valois FW: Resistance to co-occurring phages enables marine Synechococcus communities to coexist with cyanophage abundant in seawater. Appl Environ Microbiol 1993, 59:3393-3399.
19. Bergh O, Borsheim KY, Bratbak G, Heldal M: High abundance of viruses found in aquatic environments. Nature 1989, 340:467-469.
20. Proctor LM, Furham JA: Viral mortality of marine bacteria and cyanobacteria. Nature (London) 1990, 343:60-62.
21. Paul JH, Jiang SC: Lysogeny and transduction. In Marine microbiology. Methods in microbiology Volume 30. Edited by: Paul JH. London, United Kingdom: Academic Press; 2001:105-125.
22. Williamson SJ, Houchin LA, McDaniel L, Paul JH: Seasonal variation in lysogeny as depicted by prophage induction in Tampa Bay, Florida. Appl Environ Microbiol 2002, 68:4307-4314.
23. Wilson WH, Joint IR, Carr NG, Mann NH: Isolation and molecular characterization of five marine cyanophages propagated on Synechococcus spp. Strain WH7803. Appl Environ Microbiol 1993, 59:3736-3743.
24. Jiang SC, Paul JH: Significance of lysogeny in the marine environment studies with isolates and a model of lysogenic phage production. Microb Ecol 1988, 15:235-243.
25. Bisen PS, Audholia S, Bhatnagar AK: Mutation to resistance for virus AS-1 in the cyanobacterium Anacystis nidulans. Microbiol Lett 1985, 29:7-13.
26. Sode K, Oonari R, Oozeki M: Induction of a temperate marine cyanophage by heavy metal. J Mar Biotechnol 1997, 5:178-180.
27. Meyers J, Kratz WA: Relation between pigment content and photosynthetic characteristics in a blue-green algae. J Gen Physiol 1955, 39:11-22.
28. Lee LH, Cohn G, Blamire J, McGowan R: DNA metabolism during the infection of A. nidulans by cyanophage AS-1 (VI): UV-induced alteration of the AS-1/A. nidulans lytic cycle. Microbiol 1985, 43:245-259.