Genomic and transcriptomic alterations in *Leishmania donovani* lines experimentally resistant to antileishmanial drugs

Alberto Rastrojo, Raquel García-Hernández, Paola Vargas, Esther Camacho, Laura Corvo, Francisco Gamarro, José M. Requena

Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain

Instituto de Parasitología y Biomedicina “López-Neyra” (IPBLN-CSIC), Granada, Spain

Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium

ARTICLE INFO

Keywords: *Leishmania donovani*
Genome
Transcriptome
Trivalent antimony
Amphotericin B
Miltefosine
Paromomycin
24-Sterol methyltransferase
D-lactate dehydrogenase
Aminotransferase of branched-chain amino acids

ABSTRACT

Leishmaniasis is a serious medical issue in many countries around the World, but it remains largely neglected in terms of research investment for developing new control and treatment measures. No vaccines exist for human use, and the chemotherapeutic agents currently used are scanty. Furthermore, for some drugs, resistance and treatment failure are increasing to alarming levels. The aim of this work was to identify genomic and transcriptomic alterations associated with experimental resistance against the common drugs used against VL: trivalent antimony (SbIII, S line), amphotericin B (Amb, A line), miltefosine (MII, M line) and paromomycin (PMM, P line). A total of 1006 differentially expressed transcripts were identified in the S line, 379 in the A line, 146 in the M line, and 129 in the P line. Also, changes in ploidy of chromosomes and amplification/deletion of particular regions were observed in the resistant lines regarding the parental one. A series of genes were identified as possible drivers of the resistance phenotype and were validated in both promastigotes and amastigotes from *Leishmania donovani, Leishmania infantum* and *Leishmania major* species. Remarkably, a deletion of the gene LinJ.36.2510 (coding for 24-sterol methyltransferase, SMT) was found to be associated with Amb-resistance in the A line. In the P line, a dramatic overexpression of the transcripts LinJ.27.T1940 and LinJ.27.T1950 that results from a massive amplification of the collinear genes was suggested as one of the mechanisms of PMM resistance. This conclusion was reinforced after transfection experiments in which significant PMM-resistance was generated in WT parasites over-expressing either gene LinJ.27.1940 (coding for a D-lactate dehydrogenase-like protein, D-LDH) or gene LinJ.27.1950 (coding for an aminotransferase of branched-chain amino acids, BCAT). This work allowed to identify new drivers, like SMT, the deletion of which being associated with resistance to Amb, and the tandem D-LDH-BCAT, the amplification of which being related to PMM resistance.

1. Introduction

Leishmaniasis is a complex of diseases caused by protists of the genus *Leishmania*. Many species of this genus are human pathogens and are responsible for different clinical forms of the disease, among others cutaneous (CL), mucosal and visceral leishmaniasis (VL). These infectious diseases are endemic worldwide, in tropical and sub-tropical regions, including also the Mediterranean basin (Dujardin et al., 2008). Recent estimates indicate that there are approximately 0.4 million new VL cases and 1.2 million CL cases every year (Alvar et al., 2012). Moreover, the prevalence of VL co-infection with human immunodeficiency virus (HIV) is increasing, and HIV infection can increase the risk of patients to develop VL, reducing their ability to respond to chemotherapy, and increasing the probability of disease relapse (van Griensven et al., 2014). Unfortunately, there are currently no effective vaccines against this parasite (Singh and Sundar, 2012). Thus, control of leishmaniasis relies primarily on chemotherapy and vector control (Singh et al., 2012). However, available drugs are limited in number, and toxicity together with emerging resistance might further jeopardize their use (Ouellette et al., 2004). Understanding drug resistance is important to protect the few existing compounds, but also for developing new ones (Hefnawy et al., 2017).
Drug resistance phenotype can be the result of different strategies followed by Leishmania (reviewed in (Ouelle et al., 2004)), including: decrease in drug uptake, efflux of drugs, inactivation of drugs (once inside the parasite), loss of drug activation pathways, alteration of drug targets, and finally the parasite may become more proficient in repairing drug damage. In addition, molecular adaptations related to drug resistance may provide some advantages to Leishmania donovani parasites that may be counterintuitive, such as a higher capacity to survive in stress conditions (Garcia-Hernandez et al., 2015), and an increased fitness (Vanaerschot et al., 2014).

Antimonials (Glucantime and Pentostam, SbIII) were the first drugs used for treatment of leishmaniasis, almost eighty years ago and they continue being a standard first-line treatment in many places of the world. However, the appearance of resistant parasites has been described frequently in many endemic regions (Croft et al., 2006; Singh et al., 2012; Hefnawy et al., 2017) and experimental resistance to trivalent antimony (SbIII) or the related metal AsIII in L. tarentolae (Legare et al., 2001). The second ABC protein involved in antimony resistance is PRP1 (ABC7) (Coelho et al., 2003; Leprohon et al., 2009). Recently, two other ABC transporters, ABC4 and ABCG2 (Manzano et al., 2013; Perea et al., 2016), have been involved in antimony resistance in L. major. These ABC transporters confer resistance to antimony due to a significant decrease in drug accumulation as a consequence of an efflux of metals, probably conjugated with thiols. Other mechanisms involved in SbIII resistance in L. donovani include decreased drug uptake through inactivation of AQP1 (aquaglyceroporin) transporter, increased tolerance to oxidative stress through upregulation of antioxidant pathways (increase in thiol levels) (aquaglyceroporin) transporter, increased tolerance to oxidative stress due to a modiﬁcation of the related metal AsIII in L. tarentolae (Legare et al., 2001). The second ABC protein involved in antimony resistance is PRP1 (ABC7) (Coelho et al., 2003; Leprohon et al., 2009). Recently, two other ABC transporters, ABC4 and ABCG2 (Manzano et al., 2013; Perea et al., 2016), have been involved in antimony resistance in L. major. These ABC transporters confer resistance to antimony due to a significant decrease in drug accumulation as a consequence of an efflux of metals, probably conjugated with thiols. Other mechanisms involved in SbIII resistance in L. donovani include decreased drug uptake through inactivation of AQP1 (aquaglyceroporin) transporter, increased tolerance to oxidative stress through upregulation of antioxidant pathways (increase in thiol levels) and modifications in membrane fluidity (Sundar, 2001; Decuyper et al., 2005; Croft et al., 2006; Mittal et al., 2007; Imamura et al., 2016).

In recent years, a few other drugs have been used for treatment of leishmaniasis, including amphotericin B liposome formulation (AmBisome, AmB), oral miltefosine (MIL) and a parenteral formulation of aminosidine (paromomycin, PMM) (reviewed in (Croft et al., 2006; Monge-Maillo and Lopez-Velez, 2013; Sundar and Singh, 2016)). However, resistance was also reported for these drugs: (i) experimental resistance in L. donovani to AmB (Mbongo et al., 1998), MIL (Perez-Victoria et al., 2003b; Seifert et al., 2003) and PMM (Maarouf et al., 1998; Jhingran et al., 2009), and (ii) clinical resistance in L. donovani to AmB (Purkait et al., 2012, 2015) and in L. infantum and L. donovani to MIL (Mondelaers et al., 2016; Srivastava et al., 2017). Molecular mechanisms of AmB resistance of one clinical isolate of L. donovani have been described including an altered membrane composition (decreased ergosterol content) due to a modified expression of the two transcripts coding for the enzyme S-adenosyl-L-methionine: C24-sterol methyltransferase (SMT); the parasites show a decreased AmB affinity and uptake (Purkait et al., 2012). Additionally, the involvement of SMT in AmB susceptibility has been validated in yeast (Koncna et al., 2016). A recent publication has demonstrated that a mutation in the sterol 14-demethylase, another enzyme of the sterol biosynthetic pathway, leads to AmB resistance in Leishmania mexicana (Mwenechanya et al., 2017), supporting the relevance of sterol biosynthetic pathway in AmB susceptibility. Also, the expression of ABCB4 (MRPA, MDR1) transporter was found to be higher in AmB resistant parasites, suggesting a high efflux of AmB (Purkait et al., 2012). In addition, upregulation of thiol metabolism and reduced intracellular thiol levels have been described in clinical isolates of L. donovani resistant to AmB (Purkait et al., 2012; Suman et al., 2016). MIL is the latest and unique oral antileishmanial drug; however, after a decade of use, recent reports indicate a significant decrease in its efficacy against VL (Rijal et al., 2013). Experimental resistance to MIL was easily obtained (Seifert et al., 2003; Perez-Victoria et al., 2003a). L. donovani resistant parasites showed changes in the length and levels of unsaturation of fatty acids, reduction in ergosterol levels (Rakotomanga et al., 2005) and a significant reduction in drug internalization due to mutations in the MIL transporter genes LdMT and/or LdRox3 (Perez-Victoria et al., 2003b; Sanchez-Cañete et al., 2009). Only two clinical isolates with demonstrated MIL resistance have been described, corresponding to L infantum lines isolated from HIV-coinfected patients in France that show a MIL-resistant phenotype due to a frameshift mutation in the MIL transporter gene LdRox3 and/or SNPs in the LdMT gene (Mondelaers et al., 2016). MIL, a natural aminoglycoside antibiotic, has a high promising efficiency against VL and CL. Although rapid development of experimental resistance to PMM in L. donovani and L. infantum has been described (Maarouf et al., 1998; Jhingran et al., 2009; Hendrickx et al., 2015), no clinical resistant isolates to PMM have been reported, probably by its low routine use in the field. An increased membrane fluidity associated with a decreased intracellular PMM accumulation have been described in experimental PMM resistant L. donovani lines (Jhingran et al., 2009; Bhandari et al., 2014). Additionally, an increased expression of ABC transporters (MDR1 and MRPA) and protein phosphatase 2A was observed, together with an increased drug efflux and a greater tolerance of L. donovani parasites to host defense mechanisms including nitrosative, oxidative and complement-mediated stresses (Bhandari et al., 2014).

Next-generation sequencing (NGS) technologies are being used for expediting the untargeted identification of drug resistance markers in many organisms, and also in Leishmania (reviewed in (Leprohon et al., 2015)). In the absence of transcriptional regulation, a common strategy of the parasite is to modulate gene dosage (Requena, 2011; Berg et al., 2013), either locally by gene copy number variation (Inga et al., 1998) and/or by generating episomal ampiclons (Beverley, 1991) or at whole chromosome level through aneuploidy (Stekers et al., 2012; Inamura et al., 2016). Recently, a combination of genome-wide cosmid-based functional screening with NGS, termed as Cosmid Sequencing (Cos-Seq) has been successfully used for identification of drug target and resistance mechanisms in Leishmania (Gazanion et al., 2016). However, this method can only identify gain-of-function and individual loci involved in drug resistance. Drug resistance selection by progressive increase of exposure to the compound followed by NGS of both whole DNA and mRNA remains the most adequate method for identifying multi-loci adaptations in a broad context, including loss-of-function. In present study, this method was applied on a same L. donovani line allowing to study experimental resistance to either SbIII AmB, MIL or PMM, within a same genetic background. Chromosomal reorganizations and substantial changes in gene expression were found to be associated with the different drug resistances. We further validated the contribution of selected drug resistance markers, allowing us to identify drivers of resistance to some drugs currently in use to treat leishmaniasis.

2. Materials and methods

2.1. Chemicals

Trivalent antimony (SbIII), paromomycin (PMM), amphotericin B (AmB), Triton X-100, paraformaldehyde, MTT [3(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide], rhodamine 123 (Rh123), phorbol 12-myristate 13-acetate (PMA), Trizol (TRI) Reagent, were obtained from Sigma-Aldrich (St. Louis, MO). Miltefosine (MIL) was obtained from Gibco. Nourseothricin was obtained from WernerBio. CellTracker, dichlorodihydrofluorescein diacetate (H_2DCFDA), MitoSOX red, and 4', 6-diamidino-2-phenylindole dihydrochloride (DAPI) were purchased from Invitrogen (Carlsbad, CA). Geneticin G418 Sulphate, L-glutamine, and penicillin/streptomycin were obtained from Zentaris GmbH (Frankfurt am Main, Germany). Hygromycin B (HyB), CellTracker, dichlorodihydrofluorescein diacetate (H_2DCFDA), MitoSOX red, and 4', 6-diamidino-2-phenylindole dihydrochloride (DAPI) were purchased from Invitrogen (Carlsbad, CA). Geneticin G418 Sulphate, L-glutamine, and penicillin/streptomycin were obtained from Gibco. Nourseothricin was obtained from WernerBio. All chemicals were of the highest quality available.
2.2. Leishmania culture conditions

Promastigotes of Leishmania donovani (MHOM/ET/67/HU3 and MHOM/IND/80/Ddb8), Leishmania major (MHOM/JL/80/Friedlin), Leishmania infantum JPCM5 (MCAN/ES/98/LLM-877), and derivative lines used in this study were grown at 28 °C in RPMI 1640-modified medium (Invitrogen) supplemented with 20% heat-inactivated fetal bovine serum (HIFBS, Invitrogen) and stored in cryobanks. Leishmania lines overexpressing D-lactate dehydrogenase-like (D-LDH), branch-chain amino acid aminotransferase (BCAT), protein associated with differentiation (PAD), and sterol 24-c-methyltransferase (SMT) were obtained in this study and grown in the same medium in the presence of 100 μg/ml of HyB. In a previous work (García-Hernández et al., 2012), the lines A, M, P, and S (that are resistant to AmB, MIL, PMM, and SbIII, respectively) were selected in vitro from L. donovani HU3 promastigotes by a stepwise adaptation process till 80 μM SbIII, 0.1 μM AmB, 8 μM MIL, and 20 μM PMM. Wild-type (WT) and resistant lines were grown during 30 passages under drug pressure before proceeding with extraction of both DNA and RNA for NGS sequencing. However, for the rest of purposes, the lines were cultured without drugs just before being subjected to the different assays.

2.3. Isolation of DNA and RNA

Around 4 × 10⁶ promastigotes in the late logarithmic phase were harvested by centrifugation, and the pellet suspended in 1 ml of Trizol (TRI Reagent, Sigma-Aldrich, product No. T9424). Manufacturer’s instructions were followed. Samples were kept at −70 °C for a week before proceeding with the phase separation. After thawing, 0.2 ml of chloroform was added, and the mixtures were shaken vigorously for 15 s. After centrifugation, three phases were observed: a red organic phase (containing protein), an interphase (containing DNA), and a water, and their concentrations were determined using the Nanodrop RNA, respectively. RNA samples were suspended in DEPC-treated aqueous phases were processed separately for isolation of DNA and RNA, respectively. RNA integrity was checked in a bioanalyzer 2100. The DNA samples were also quantified by absorbance at 260 nm using the Nanodrop, and the integrity by electrophoresis in an 0.8% agarose gel.

2.4. Next-generation sequencing

Library preparations (mRNA and DNA) and sequencing were performed by Centro de Análisis Genómico (CNG, Spain). Sequencing was done using Illumina HiSeq 2000 technology. From RNA libraries, paired reads of 75 nucleotides were obtained, whereas 2 × 100 reads were obtained from DNA libraries. Sequence quality metrics were assessed using FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/).

2.5. Mapping of RNA-Seq and DNA-Seq reads to reference genomes

Reads were mapped to the reference genomes (v.9; TriTrypDB.org) of L. infantum (JPCM5 strain (Peacock et al., 2007)) and L. donovani (MHOM/NP/03/BPK282/0; clone BPK282/Oc14 (Downing et al., 2011)) genomes using Bowtie2 with default parameters (Langmead and Salzberg, 2012). This aligner was chosen because the end-to-end mode has a better performance when working with a genome containing a high level of repeated regions such as tandemly repeated genes. Other aligners, by default, trim the reads to try to map as much reads as possible, and consequently produce an over-representation of repeated regions. As percentages of mapped reads were higher against the L. infantum genome than against the L. donovani one, the former was used as reference for subsequent analyses.

2.6. Assignment of RNA-Seq to specific transcripts and determination of differentially expressed transcripts

L. infantum (JPCM5 strain) transcriptome was delineated using RNA-Seq data derived from poly-A enriched RNA of log-phase promastigotes following the procedure described elsewhere (Rastrojo et al., 2013). Afterwards, the HTSeq program (v0.6.1 (Anders et al., 2015)) was used for counting the reads overlapping with the transcripts (mode: intersection-nonempty). These sets of values (3 replicates for each sample) were used for differential expression analysis by the DESeq2 program (v1.8.1 (Love et al., 2014)).

2.7. Chromosome ploidy analysis and determination of chromosomal alterations

The Illumina DNA-Seq reads were aligned to the L. infantum reference genome by Bowtie2 (parameters: --np 0–n–cell L,0,0,02–rdq 0,6–rfg 0,6–mp 6,2–score-min L,0,0,06–no-unal). SAMtools view (Li et al., 2009) (parameters: -Sh -f 2 -F 256) was used to discard multi-hit reads, and an in-house script was used to discard orphan reads. Again, SAMTools view was used to obtain the alignments in standard BAM format and to count the number of reads (parameters: F 0x4). Afterwards, the data in BAM format were analyzed by genomeCoverageBed (BEDTools (Quinlan and Hall, 2010)) using the parameter –d to obtain the read depth per position along each chromosome and the genome. This procedure was repeated for each DNA-Seq sample (WT, S, A, M and P lines). A normalization of coverage values was done taking into account the total number of reads for each sample. In the P line, due to the over-amplification of the genomic region 857320–865727 of chromosome 27, this region was not considered for the calculation of the mean coverage of this chromosome. The somy of each chromosome was calculated with the following formula 2⁵×di/dm (Mondelaers et al., 2016), where di is the median read depth of each chromosome and dm is the median depth of the genome.

For analyzing the read coverage in particular genomic regions, genomeCoverageBed (parameter –d) was again used to obtain the coverage by position in the selected genomic regions. Afterwards, an in-house Perl script was used to smooth read-depth values using over-lapping windows of 5-Kb in length. For comparison between different samples, a further normalization considering the total number of reads was applied. Finally, graphs were generated from the coverage values by the tool plotly included in the R package (https://CRAN.R-project.org). Figure drawing was done using the software Inkscape (https://www.inkscape.org).

2.8. Gene cloning and transfection experiments

DNA fragments coding for D-LDH (LinJ.27.1940), BCAT (LinJ.27.1950), PAD (LinJ.13.1430), and SMT (LinJ.36.2510) were PCR amplified from genomic DNA of the L. donovani HU3 strain using the following primer pairs:

LDH BamHI F 5′-ATATTCCTAGA TACAGGTGT GCGTGCGGTG-3′ for D-LDH; BCA BglII F 5′-ATAGATGCT ATGGTGTGGT GCGACCGCTG-3′ and BCA XbaI R 5′-ATATTTCTAGA AGGCTTACAC TTTAGTACC-3′ for BCAT; PAD BglII F 5′-ATATAGCT ATAGTTGAGA TGCGGAGAA-3′ and PAD XbaI R 5′-ATATTTCTAGA CACATGTTG GTCCGGGAGG-3′ for PAD and, SMT BglII F 5′-ATATTTCTAGA ATGCGCGCCG TGCGGGGCTG-3′ and SMT XbaI R 5′-ATATTTCTAGA CACATGTTG GTCCGGGAGG-3′ for SMT. Restriction sites (in bold) were added for subsequent cloning. The PCR products were subcloned and sequenced into the pLEXSY-hyg2 expression vector (jenabioscience, Jena, Germany) and plRISAT expression vector (from Prof S.M. Beverley, Washington University, USA), to generate the pLEXSY-LDLH, pLEXSY-BCAT, pLEXSY-PAD, pLEXSY-SMT, plRISAT-LD LH, and plRISAT-BCAT constructs, respectively. These plasmids were subsequently used for transfection of Leishmania.
promastigotes by electroperoration in 2-mm gap cuvettes at 450 V and 500 μF (BTX Electro Cell Manipulator 600). Transfectants were selected in medium containing Hyg (100 μg/ml) for pLEXSY-hyg2 or nourseothricin (100 μg/ml) for pIR1SAT. The A line transfected with pLEXSY-hyg2 empty and WT line transfected with pLEXSY-hyg2 empty and co-transfected with both pLEXSY-hyg2 and pIR1SAT empty (controls) were named as A + Lexsy, WT + Lexsy and WT + Lexsy + pIR1SAT, respectively, while WT line transfected with pLEXSY-DLDH, pLEXSY-BCAT and pLEXSY-PAD, and co-transfected with pLEXSY-DLDH + pIR1SAT-BCAT, and pLEXSY-BCAT + pIR1SAT-DLDH were named as WT + D-LDH, WT + BCAT, WT + PAD, WT + DLDH + BCAT, and WT + BCAT + DLDH, respectively. On the other hand, the A line transfected with pLEXSY-SMT was named as A + SMT.

For PCR amplification of the locus expanding genes LINJ36.2510 and LINJ36.2520, the following primers were used: gSMT-Fw, 5′-AACAGTGGTG GCAACCTCC-3′; and gSMT-Rv, 5′-CCGCGGAAG ACC ACCTTAC-3′. As template, 25 ng of genomic DNA from either WT or A lines were employed, and the cycling conditions were: 98 °C for 30 s, followed by 30 cycles of 98 °C for 10 s, 65 °C for 20 s and 72 °C for 3 min, and a final extension step of 10 min at 72 °C. Phusion Hot Start II High Fidelity DNA Polymerase (Thermo Scientific) was used. The 1.6 kb amplicon obtained in the A line was cloned into pNYZ28 vector, using the NZY-blunt PCR cloning kit (NZYtech) following manufacturer's instructions. The sequence of the resulting clone was determined in the Sequencing Unit of Parque Científico de Madrid.

2.9. RT-qPCR gene expression

Total RNA was extracted from the indicated L. donovani lines during the early log phase of growth using the RNeasy Plus Mini Kit (Qiagen). Total RNA (400 ng) was retrotranscribed to cDNA with the qScript cDNA Synthesis Kit (Quanta Biosciences, Inc) following the manufacturer's instructions. The lack of genomic DNA contamination was checked by PCR amplification of RNA samples without prior cDNA synthesis. The specific primer pairs, designed by using the Primer3 software (Untergasser et al., 2007) and used to amplify cDNA, were: 5′-GTGGGCAGTGG TGGAAATGG-3′ and 5′-TGGTGTG TGGTGTGAG-3′ for D-LDH, 5′-GAGCCCGGTA CTACATGCT-3′ and 5′-GCATA GCAGA TGACATGCAC-3′ for BCAT, 5′-CCACAGACAA ACTCCAAAGAT TA-3′ and 5′-CACAGATGGA GGAGAGG-3′ for PAD, 5′-CTGACGATG TTA CGGCAACA-3′ and 5′-GCACACTGC CAGGACCAG-3′ and 5′-CCATGTAGC CAGCAGTC-3′ for GAPDH. Standard curves for each primer pair were generated with 10-fold serial dilutions of L. donovani genomic DNA to determine primer efficiency. Quantitative PCR was performed in a CFX96 cycler (BioRad); each 10 μl reaction was set up containing 5 μl of PerfeCta SYBR Green SuperMix (Quanta Biosciences), 500 nM of each primer and 2 μl of a 1:5 dilution of the synthesized cDNA. All reactions were performed in duplicate and the specificity of the amplified products was verified by melting curve analysis. Gene expression data were normalized to the expression of the reference gene GAPDH, and relative to the control sample, using the CFX Manager software with ΔΔCt method (Livak and Schmittgen, 2001; Pfaffl, 2001).

2.10. Drug susceptibility in promastigotes and intracellular amastigotes of Leishmania lines

The susceptibility of Leishmania promastigotes to ShH, AmB, PPM, gentamicin, and nourseothricin was determined using the MTT colorimetric assay, after incubation for 72 h at 28 °C in the presence of increasing concentrations of the drug, as described previously (Kennedy et al., 2001). In this way, it was determined the 50% effective concentration (EC50), which is the concentration of drug that decreases the rate of cell growth by 50%, whereas the resistance index (RI) was calculated by dividing the EC50 for each resistant line or lines overexpressing D-LDH, BCAT, PAD or SMT, by that for the corresponding Leishmania control line (WT for A, P and S lines, and WT + Lexsy or A + Lexsy for the transfected lines).

To determine the susceptibility of intracellular Leishmania amastigotes to PPM, macrophage-differentiated-THP-1 cells were used. THP-1 cells were plated at a density of 3 × 10⁵ macrophages/well in RPMI 1640 medium supplemented with 10% FBS, 2 mM glutamate, penicillin (100 U/ml), and streptomycin (100 mg/ml) in 24-well tissue culture chamber slides, and differentiated to macrophages with 20 ng/ml of PMA treatment for 48 h followed by 24 h of culture in fresh medium (Gomez-Perez et al., 2014). Late-stage promastigotes from L. donovani lines were used to infect macrophages at a macrophage/parasite ratio of 1:10. Twenty-four h after infection at 35 °C and 5% CO2, extracellular parasites were removed by washing with phosphate buffered saline (PBS; 1.2 mM KH2PO4, 8.1 mM Na2HPO4, 130 mM NaCl, and 2.6 mM KCl, pH 7). Infected macrophage cultures were maintained in RPMI 1640 medium plus 10% FBS at 37 °C with 5% CO2 at different PPM concentrations for 72 h. Afterwards, macrophages were fixed for 30 min at 4 °C with 2.5% paraformaldehyde in PBS and permeabilized with 0.1% Triton X-100 in PBS for 30 min. Intracellular parasites were detected by nuclear staining with Prolong Gold antifade reagent plus DAPI (Invitrogen). Drug activity was determined from the percentage of infected cells and the number of amastigotes per cell in drug-treated versus non-treated cultures (Seifert et al., 2007).

2.11. Measurement of mitochondrial membrane potential (ΔΨm) in Leishmania lines

ΔΨm was measured by flow cytometry using Rh123 accumulation as described previously (Garcia-Hernandez et al., 2012). Depolarization of ΔΨm is indicated by a reduced accumulation of the dye. Parasites (10⁶ promastigotes/ml) were washed twice with PBS and incubated in HBS buffer (21 mM HEPES, 0.7 mM Na2HPO4, 137 mM NaCl, 5 mM KCl, and 6 mM glucose, pH 7) with 0.5 μM Rh123 for 15 min at 28 °C. Then they were washed twice with PBS, resuspended in PBS, and analyzed by flow cytometry in a FACScan flow cytometer (Becton-Dickinson, San Jose, CA) equipped with an argon laser operating at 488 nm. Fluorescence emission between 515 and 545 nm was quantified using the Cell Quest software.

2.12. Measurement of reactive oxygen species (ROS) production

The generation of intracellular ROS was measured using the cell-permeable nonfluorescent probes dichlorodihydrofluorescein diacetate (H2DCFDA) and MitoSOX red, as described previously (Berg et al., 2015). Briefly, parasites (10⁷/ml) of the different L. donovani HU3 lines were washed twice with PBS, and either directly analyzed (control untreated) or further incubated in PBS for 2 h at 28 °C (nutritional stress) before analyzing. Next, the promastigotes were incubated in the same buffer supplemented with 4 μM H2DCFDA or 5 μM of MitoSOX for 30 min at 28 °C. The fluorescent dichlorofluorescein (DCF) product obtained after esterase cleavage and oxidation was measured by flow cytometry using a FACScan flow cytometer (Becton-Dickinson, San Jose).

2.13. Statistical analysis

Statistical comparisons between groups were performed using Student's t-test. Differences were considered significant at a level of p < 0.05. Also, when it cannot be assumed that data followed a normal distribution, the non-parametric Wilcoxon–Mann–Whitney test was used. A value of p < 0.05 was considered statistically significant.

2.14. Accession numbers

RNA and DNA sequencing data have been deposited in the European
3. Results and discussion

3.1. Experimental design, global transcriptomics changes and chromosomal alterations

In a previous work using a step-wise adaptation process (García-Hernandez et al., 2012), we established lines derived from *L. donovani* (HU3 strain) with increased resistance to the four clinically relevant antileishmanial drugs for VL: SbIII, Amb, MIL and PMM. Since the establishment of the different lines (García-Hernandez et al., 2012), they were stored in cryobanks. For this study, the lines were thawed and grown in the presence of the appropriate drug concentrations during 30 passages before proceeding with nucleic acids extraction. For each passage, promastigote cultures were diluted in fresh medium at 1 × 10⁶ parasites/ml and grown for 4 days until the cultures arose the stationary phase (cell density: 3–3.5 × 10⁷ parasites/ml). The concentrations of drugs used during culturing of the resistant lines were: 80 μM SbIII (line S), 0.1 μM Amb (line A), 8 μM MIL (line M) and 20 μM PMM (line P). All resistant lines present a similar growth curves to the parental strain HU3 (WT), supporting that drug pressure was not affecting the viability of parasites (García-Hernandez et al., 2012).

Three independent biological replicates of each resistant line and the WT strain, each originating from a separate growth, were processed for RNA and DNA isolation. Illumina RNA-Seq data were independently carried out for replicate one from WT strain and the four resistant lines (S, A, M and P). A total of 1006 differentially expressed transcripts were identified in the S line, 379 in the A line, 146 in the M line, and 129 in the P line. A detailed list of the transcripts differentially expressed in each one of the resistant lines is provided in the Supplementary File 1. When the FC differences between the resistant lines and the reference strain is fixed as 2 or above (Fig. 1), the numbers of differentially expressed transcripts decrease substantially: 194 in the S line, 68 in the A line, 18 in the M line and 13 in the P line. Most differentially expressed transcripts corresponded to transcript upregulated in the resistant lines regarding the WT line. Venn diagrams with the numbers of transcripts having significantly altered levels (either up- or down-regulated) showed the existence of a remarkable number of concurring transcripts when the A and S lines are compared, particularly among the up-regulated transcripts: 38 out of the 64 transcripts up-regulated in the A line were found up-regulated also in the S line. However, as discussed below, many of coincidental data might be derived from somy changes for particular chromosomes observed in these resistant lines regarding the parental strain. In fact, when Euclidean distance heatmap analyses were used to visualize the relationship between samples based on the relative expression of all the transcripts (Fig. 1B), a clear separation among the different lines was observed; in particular, the lines S and A are clearly separated.

On the other hand, we used alignments of Illumina genomic reads against the reference *L. infantum* genome to assess differences in chromosomal copy number among the different resistant lines and the WT strain (Fig. 2). After normalization, taking into account the total number of reads obtained for each line (see Materials and Methods for further details), the median read depth (coverage) of the chromosomal set for each line was considered as the diploid status (solid line in Fig. 2). In all cases (WT and resistant lines), chromosome 31 showed the greatest reads coverage, and the data suggested that this chromosome would be pentasomic in all samples here studied. It has been reported previously that this chromosome is at least tetrasomic in *L. major* (Akopyants et al., 2009) and other *Leishmania* species (Imamura et al., 2016). Furthermore, chromosome copy number variations compared to the WT somy were observed in the different resistant lines. Thus, in the S line, two extra copies for the chromosomes 1 and an extra copy for chromosome 29 were observed, whereas the somy of chromosome 23 decreased from three (WT) to two (or lower) in the S line (Fig. 2A–B). In the A line, the copy number of chromosome 29 was found to be one-fold higher than that in the WT strain (Fig. 2C). In the M line, the chromosome 5 achieved the status of pentasomic, even though this chromosome is at least trisomic in the WT strain (Fig. 2D). Finally, in the P line the somy for chromosomes 5 and 8 was found to be one-fold higher than in the WT strain (Fig. 2E). With the exception of chromosome 29, whose amplification was found to be partial (see below), the amplification of the other chromosomes seemed to be total as the read depth coverage was even along the whole molecules.

Table 1

Sample	Number of readsa	Aligned vs LdBPKb	Aligned vs LinPCDb
DNA_HU3_wt_1	16,858,148	94.97	95.92
DNA_HU3_A_1	23,474,747	94.89	95.94
DNA_HU3_M_1	15,473,695	94.87	95.79
DNA_HU3_P_1	19,785,684	94.87	95.84
RNA_HU3_S_1	18,837,447	95.12	96.14
RNA_HU3_wt_2	18,573,421	94.90	95.86
RNA_HU3_A_2	16,205,678	94.38	95.39
RNA_HU3_M_2	18,979,494	94.93	95.86
RNA_HU3_P_2	19,885,687	94.96	95.91
RNA_HU3_S_2	17,406,090	94.77	95.76
RNA_HU3_wt_3	19,274,987	95.22	96.18
RNA_HU3_A_3	18,511,557	94.94	95.97
RNA_HU3_M_3	19,042,397	95.11	96.03
RNA_HU3_P_3	21,501,077	94.91	95.87
RNA_HU3_S_3	19,868,776	95.12	96.12
DNA_HU3_wt_1	16,980,871	66.70	68.92
DNA_HU3_A_1	15,550,019	58.82	61.05
DNA_HU3_M_1	13,465,664	61.04	63.37
DNA_HU3_P_1	13,562,465	60.76	62.87
DNA_HU3_S_1	13,026,200	68.89	71.29

a The size of reads were: 2 × 76 bp for RNA samples and 2 × 101 bp for DNA ones.
b Reference genomes for *L. donovani* (strain BPK282A1) and *L. infantum* (strain JPCM5) were retrieved from TriTrypDB database (www.tritrypdb.org, release 9.0).

c Reference genome (Downing et al., 2011), and therefore a larger number of reads mapped to the *L. infantum* reference genome. Additionally, the transcriptome of *L. infantum* has been delineated (version 1; http://leish-esp.cbm.uam.es/l_infantum_downloads.html). Hence, we decided to use the *L. infantum* JPCM5 genome as the reference for the subsequent analyses.

RNA-Seq reads mapping to the *L. infantum* reference genome were assigned to *L. infantum* transcripts and quantified using HTseq (0.6.1 (Anders et al., 2015)) and the data analyzed by DESeq2 (Love et al., 2014) as detailed in Methods section. Transcripts showing a q-value < 0.01 and FC differences higher than 1.5 regarding the WT line were categorized as differentially expressed for each one of the drug-resistant lines (S, A, M and P). A total of 1006 differentially expressed transcripts were identified in the S line, 379 in the A line, 146 in the M line, and 129 in the P line. A detailed list of the transcripts differentially expressed in each one of the resistant lines is provided in the Supplementary File 1.
Leishmania. Results support the existence of many cellular targets for these drugs, and a variety of mechanisms of resistance. Thus, several metabolic pathways and membrane transporters have been implicated in the resistance phenotype to antimonials (Laftite et al., 2016b). In agreement with this broad spectrum of responses elicited by this drug, our study showed a tremendous alteration at the transcriptomic level in the S line. Thus, the levels of 194 transcripts were found to be significantly altered (with FC higher than 2) in the resistant line regarding the parental L. donovani HU3 strain (Fig. 1). Nevertheless, it is likely that a fraction of these changes are the result of the chromosomal alterations observed in the resistant line (Fig. 2).

Active efflux of the drug has been suggested as a resistance mechanism to antimonials (Dey et al., 1994). In this regards, it is noteworthy the up-regulation in the S line of two transcripts (LinJ.31.T3190 and LinJ.28.T2050) that are annotated as coding for putative transporters for iron/zinc and zinc, respectively (Table 2). Another up-regulated transcript coding also for a transporter was LinJ.06.T1320, which encodes for a pteridine transporter.

In addition to those transcripts shown in Table 2, there are other differentially expressed transcripts that match with data found in previous reports, reinforcing their possible association with resistance to antimonials. Thus, Singh and co-workers demonstrated that over-expression of histone H2A increases resistance of L. donovani parasites to sodium antimony gluconate (SAG) (Singh et al., 2010). In agreement with that finding, we found that one of the H2A-coding transcripts (i.e. LinJ.29.T1870) showed a 2-fold over-expression in the S line. Also, the Salotra’s group showed that over-expression of PSA-2 in L. donovani results in development of resistance to SAG (Bhandari et al., 2013). In agreement, we found that four transcripts coding for PSA-2 (LinJ.12.T0662, LinJ.12.T0665, LinJ.12.T0666, LinJ.12.T0690) were about 2-fold more abundant in the resistant line (see Supplementary File1). Gamma-glutamylcysteine synthetase (\(\gamma\)GCS, encoded by gene GSH1) is the rate-limiting enzyme in the biosynthesis of thiols glutathione and trypanothione in Leishmania, and these thiols are considered to have a critical role in neutralizing the oxidative stress induced by antimonials. In fact, overexpression of the gene GSH1 in Leishmania leads to an increased resistance to arsenite (Grondin et al., 1997). Conversely, Leishmania heterozygous mutants, having only one GSH1-allele, synthesized less glutathione and trypanothione, and consequently showed a significant decreased survival in the presence of SbV compared with control cells (Mukherjee et al., 2009). In a recent article, it was shown that L. guyanensis parasites overexpressing GSH1 presented an increase of 4-fold in SbIII resistance index when compared with the wild-type line (Fonseca et al., 2017). Interestingly, our data showed that transcript LinJ.18.T1660 (encoding for \(\gamma\)GCS) was about 2.5-fold more abundant in the resistant S line than in the WT parasites.

Fig. 1. General analysis of differentially expressed transcripts in the amphotericin B (A), miltefosine (M), paromomycin (P) and antimonial (S) lines. A) Venn diagram showing transcripts down- and up-regulated more than 2-fold in the resistant lines regarding the expression levels found in the parental WT line. The Venn diagram was constructed using the online software Venn diagrams, available at Web site of the Bioinformatics and Evolutionary Genomics group of the University of Gent and the VIB institute (http://bioinformatics.psb.ugent.be/webtools/Venn/). B) Heatmap of a hierarchical clustering analysis based on the data from three individual replicates. Euclidean distances were calculated over log transformed counts using DESeq2 and plotted with pheatmap R package (https://cran.r-project.org). C) Volcano plots build using DESeq2 results. Dots in red represent differentially expressed genes with abs(log2(FC)) > 1 and adjusted p-value (Q value) < 0.01. To avoid calculation errors, we have assigned the minimum adjusted p-value higher than 0 to those transcripts with adjusted p-value equal to 0. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
Furthermore, other transcripts encoding enzymes that are part of the biosynthesis pathway of trypanothione were found to be significantly up-regulated in the resistant line: (i) LinJ.30.T3580, which codes for the S-adenosylmethionine synthetase (METK2), was 1.8-fold more abundant in the S line; (ii) transcript LinJ.31.T0010, encoding for a methionine synthase, was 4.8-fold over-expressed in line S; (iii) transcript LinJ.06.T0890 (dihydrofolate reductase-thymidylate synthase, DHFR-TS) was 2.7-fold more abundant also in the S line; and (iv) transcript LinJ.36.T6670 (methylene-tetrahydrofolate reductase) that showed a 4.9-fold increased level in the S line. Together, these data support the idea that resistance to antimonials may be linked to a general antioxidant response in the parasite. In this regards, there are several studies relating metacyclogenesis (differentiation process essential for infectivity) to antimony resistance. Thus, in *L. donovani*, it was established that the capacity of differentiation to metacyclic forms was significantly higher in antimony-resistant cells (Ouakad et al., 2011). Another work has documented that clinical isolates showing resistance to antimonials attained stationary phase at a higher parasite density, contained a higher amount of metacyclic parasites and had a greater capacity to cause *in vivo* infection in mice compared to the antimonial-sensitive strains (Vanaerschot et al., 2010). Furthermore, it was found that antimonial-resistant parasites cause a significant higher *in vivo* parasite load compared to antimonial-sensitive parasites (Vanaerschot et al., 2011).

Fig. 2. Chromosome copy number variation in *L. donovani* parental line (WT) and the S, A, M and P resistant lines. The somy estimation was done using a 2-loop method (Mondelaers et al., 2016). The median coverage of the genome is shown by a solid line, and it was assigned as 2, taking into account that diploid is considered the major ploidy status in *Leishmania*. The dotted lines indicated the estimated values for other somies. Graphs were generated from the median coverage values by barplot function of R package (https://cran.r-project.org).
Among the top differentially expressed transcripts, it is remarkable the presence of 5 up-regulated transcripts in the S line encoding for members of the amastin family (LinJ.29.T1450, LinJ.29.T3000, LinJ.29.T3010, LinJ.29.T3030, and LinJ.34.T1150). Transcripts encoding amastins were also found to be upregulated in the A and P lines (see below).

On the other hand, among the 30 transcripts showing highest differences in their steady-state levels between the parental and S lines (Table 2), only four were down-regulated in the resistant line. Three of them (Lin.J.35.T2640, Lin.J.36.T5110 and Lin.J.36.T5100) encode for hypothetical proteins without putative function, and the fourth (Lin.J.01.T0850) is annotated as coding for a metalloproteinase. Nevertheless, according to the GeneDB annotation, the latter may be a pseudogenic transcript. However, it is curious that the levels of this transcript (Lin.J.01.T0850) remained 2.8-fold below that found in the WT strain, despite the mutant S line has two-fold more copies of chromosome 1 than the WT strain (Fig. 2B).

The transcript showing the greatest difference in expression was LinJ.13.T1430, whose steady-state level was found to be 17.3-fold higher in the resistant S line than in the parental HU3 strain. The corresponding gene is annotated in the GeneDB database as “protein associated with differentiation” (PAD), because its sequence conservation with PAD1 from T. brucei. This protein, a member of the carboxylate-transporter family, was found to be specifically expressed on the surface of the transmission-competent ‘stumpy-form’ parasites in the bloodstream as a prerequisite to initiate life-cycle development when transmitted to the tsetse fly vector (Dean et al., 2009).

In order to confirm the results obtained by RNA-Seq, the expression of the PAD gene in the S-resistant line was analyzed. For this purpose, total RNA from WT and S-resistant lines was extracted and the levels of expression of PAD gene were determined by RT-qPCR; this analysis showed that the PAD gene was expressed 2.1-fold higher in the S-resistant line than in the WT line (Fig. 3A). It was unexpected to find these differences in the magnitude of the fold change determined for this gene between the RNA-Seq and RT-qPCR methodologies. Finally, we

Fig. 3. Gene expression analysis of PAD, SMT, D-LDH, and BCAT genes in different L. donovani lines. Total RNA of L. donovani WT line, S, A and P resistant lines, and WT + Lexsy, A + Lexsy, WT + PAD, A + SMT, WT + D-LDH, WT + BCAT, WT + D-LDH + BCAT and WT + BCAT + D-LDH transfected lines, was extracted from promastigotes grown at log-phase as described in Materials and Methods. RT-qPCR expression values of the genes in each line were normalized with the expression of GAPDH. The relative expression of each gene was calculated as the fold-change between the resistant lines and the WT line (which was set to 1.0) (A) or transfected lines with PAD, SMT or D-LDH, BCAT, and WT + Lexsy, WT + Lexsy + pIR1SAT or A + Lexsy (set to 1.0) (B), see Material and Methods for further details. Results shown are the means ± SD from two independent experiments. In all cases, significant differences versus the controls were determined using Student’s t-test (p < 0.01).

Table 2

Transcript	Log₂FC (WT/A)	Product¹
LinJ.35.T2640	1.65	hypothetical protein (ubiquitin supergroup?)
LinJ.36.T5110	1.62	hypothetical protein, conserved
LinJ.36.T5100	1.53	hypothetical protein, conserved
LinJ.01.T0850	1.48	peptide dipeptidase (pseudogenic transcript)
LinJ.29.T3030	−1.38	amastin, putative
LinJ.34.T1150	−1.38	amastin-like surface protein, putative
LinJ.36.T4910	−1.40	cytochrome b51, putative
LinJ.29.T2010	−1.41	hypothetical protein, conserved
LinJ.06.T0890	−1.42	dihydrofolate reductase-thymidylate synthase (DHFR-TS)
LinJ.29.T2020	−1.43	hypothetical protein, conserved
LinJ.31.T3190	−1.45	iron/zinc transporter protein-like protein
LinJ.10.T0590	−1.47	hypothetical protein
LinJ.29.T1200	−1.53	A-1 protein, putative
LinJ.30.T2590	−1.55	formate-tetrahydrofolate ligase (FTHS)
LinJ.18.T0430	−1.61	hypothetical protein
LinJ.26.T2600	−1.62	protein kinase, putative
LinJ.29.T1450	−1.62	amastin-like protein
LinJ.29.T1210	−1.79	hypothetical protein, conserved
LinJ.06.T1320	−1.87	pteridine transporter, putative
LinJ.07.T1320	−1.88	peptide methionine sulfonoxide reductase-like, putative
LinJ.29.T1610	−1.95	hypothetical protein, conserved
LinJ.31.T0340	−1.97	hypothetical protein, conserved
LinJ.14.T0470	−1.99	cystathionine beta-lyase-like protein
LinJ.29.T3000	−2.02	amastin, putative
LinJ.31.T0010	−2.27	5-methyltetrahydropteroyltriglutamate-homocysteine S-methyltransferase, putative
LinJ.36.T6670	−2.29	methylene tetrahydrofolate reductase, putative
LinJ.29.T3010	−2.34	amastin, putative
LinJ.29.T0930	−2.40	hypothetical protein, conserved
LinJ.28.T2050	−2.50	zinc transporter, putative
LinJ.13.T1430	−4.11	Protein Associated with Differentiation, putative

² Hypothetical protein: predicted bioinformatically; conserved: predicted protein presents also in Trypanosoma brucei and/or T. cruzi (GeneDB).
found the explanation in the fact that the *L. infantum* genome contains two additional genes coding for PAD (LinJ.11.0660 and LinJ.11.0670) apart from LinJ.13.1430. All three genes are conserved in the *L. donovani* genome. Oligonucleotides derived from the coding region (common to all three genes), whereas RNA-Seq reads are assigned to the individual transcripts derived from loci located at chromosome 29. It is likely that this enrichment in the resistance phenotype observed in the A line arises from amplification of this large region of chromosome 29, as shown also in *L. donovani* promastigotes (Table 3). The resistance index (RI) of the WT + PAD line was found to be only 1.5, significantly lower than the 3.7 RI value obtained for the S-resistant line (A line). In parallel, drug susceptibility of WT, S-resistant, WT + PAD, and WT + Lexsy lines to ShH was determined in *L. donovani* promastigotes (Table 3). The resistance index (RI) of the WT + PAD line was found to be only 1.5, significantly lower than the 3.7 RI value obtained for the S-resistant line (A line).

3.3. Identification of transcripts differentially expressed in the AmB resistant line (A line)

In the A line, among the differentially expressed transcripts regarding the parental line, 379 transcripts showed differences in the expression levels above 1.5-fold (supplementary file 1), and for 68 of them the FC was higher than 2 (Fig. 1). The top 24 down- and upregulated transcripts are shown in Table 4. Most of them, 20 out of the 24, correspond to transcripts whose levels were increased in the A line. Another striking finding was that 19 of them correspond to the expression of genes located at chromosome 29. Moreover, when all the differentially expressed transcripts are considered, 271 out of the 379 transcripts (71.5%) showing differential expression in the A line derive from loci located at chromosome 29. It is likely that this enrichment in transcripts derived from chromosome 29 is related to the fact that the ploidy of this chromosome in the A line was found to be two-fold higher than of the parental line (Fig. 2C). In particular, as shown in Fig. 4, the amplification observed in the A line affected 2/3 of the chromosome 29, from position 341113 to the end of the chromosome. Remarkably, as shown also in Fig. 4, similar amplification of this large region of chromosome 29 was also observed in S line and in a lower extent in the

Table 3

Drug susceptibility in the different *L. donovani* lines used in this study.

Lines	ShH EC₅₀ μM (RI)	AmB EC₅₀ μM (RI)	PMM EC₅₀ μM (RI)
WT	89.12 ± 9.67^a	0.09 ± 0.01	14.14 ± 2.36
S	331.21 ± 39.08 (3.72)		
A	–	0.23 ± 0.04 (2.64)	
P	–	132.37 ± 8.26 (9.36)	
WT + Lexsy	79.62 ± 12.56 (3.56)		
A + Lexsy	–	0.31 ± 0.02 (3.56)	
WT + PAD	117.96 ± 14.11 (1.48)		
A + SMT	–	0.12 ± 0.03 (1.35)	
WT + D-LDH	–		58.36 ± 3.07 (4.87)
WT + BCAT	–		48.94 ± 4.52 (4.08)
WT + Lexsy + pRSAT	–		
WT + D-LDH + BCAT	–		56.76 ± 6.25 (4.08)
WT + BCAT + D-LDH	–		66.24 ± 3.39 (4.76)

^a Resistance indexes (RI) were calculated by dividing the EC₅₀ for each resistant line, or overexpressing D-LDH, BCAT, PAD or SMT lines, by that for *Leishmania* control line (WT for A, P and S lines, WT + Lexsy or A + Lexsy for the transfected lines, and WT + Lexsy + pRSAT for cotransfected lines).

^b Data are the averages ± SD of EC₅₀ values from six independent experiments. Significant differences versus the controls were determined using Student’s t-test (*p* < 0.005).

^c < Not determined.

Table 4

Top 24 differentially expressed transcripts in the *L. donovani* AmB resistant line (A line).

Transcript	Log2FC (WT/A)	Product
LinJ.36.T2510	2.86	sterol 24-c- methyltransferase, putative
LinJ.36.T5110	1.26	putative hypotetical protein, conserved
LinJ.36.T5100	1.21	putative hypotetical protein, conserved
LinJ.23.T0700	1.13	hypotetical protein, conserved
LinJ.29.T2660	−1.12	hypotetical protein, conserved
LinJ.29.T5550	−1.13	phosphatidylinositol 4- kinase alpha, putative
LinJ.29.T1990	−1.14	hypotetical protein, conserved
LinJ.29.T2820	−1.14	hypotetical protein, conserved
LinJ.29.T1460	−1.15	RNA binding protein, putative
LinJ.29.T1880	−1.15	parafagellar rod protein 1D, putative
LinJ.29.T2950	−1.15	hypotetical protein, conserved
LinJ.29.T2400	−1.16	hypotetical protein
LinJ.26.T6000	−1.17	protein kinase, putative
LinJ.29.T1600	−1.17	hypotetical protein, conserved
LinJ.29.T1020	−1.19	A-1 protein, putative
LinJ.29.T1630	−1.19	hypotetical protein, conserved
LinJ.29.T1890	−1.21	parafagellar rod protein 1D, putative
LinJ.29.T3030	−1.27	amastin, putative
LinJ.29.T2010	−1.30	hypotetical protein, conserved
LinJ.29.T2120	−1.39	hypotetical protein, conserved
LinJ.29.T1450	−1.41	amastin-like protein, putative
LinJ.29.T1610	−1.50	hypotetical protein, conserved
LinJ.29.T3000	−1.77	amastin, putative
LinJ.29.T3010	−2.07	amastin, putative

^a Hypothetical protein: predicted bioinformatically; conserved; predicted protein presents also in *Trypanosoma brucei* and/or *T. cruzi* (GeneDB).
P line. In all three cases, an abrupt change in coverage was mapped in the divergent strand switch region (dSSR) located between genes LinJ.29.0960 and LinJ.29.0970. At present, the molecular mechanism responsible for this partial amplification of this chromosome could not be depicted; the SIDER2 repeated sequences found in the vicinity (Fig. 4B) did not seem to be involved in the rearrangement. However, we found in this dSSR several sequences with potential to conform G-quadruplexes, and given the constraints that these structures impose in DNA replication (Valton and Prioleau, 2016), they may be chromosomal fragile sites. This would explain that the same chromosomal alteration is observed in the three resistant lines (A, S and P; Fig. 4B).

The highest FC between the AmB resistant line and the parental strain corresponded to the transcript LinJ.36.T2510 (Table 4), which is about 7-fold more abundant in WT strain than in the resistant A line. This transcript codes for 24-sterol methyltranferase (SMT), an enzyme that methenylates steroids at the 24 position during ergosterol biosynthesis. Studies in *L. major* has shown that this enzyme is mainly localized in the endoplasmic reticulum (Jimenez-Jimenez et al., 2008). The postulated mode of action for AmB suggests that the compound forms complexes with 24-substituted sterols, such as ergosterol in the cell membrane, and then causes pores which alter ion balance and result in cell death (Croft and Coombs, 2003). Hence, taking into account the specific interaction between AmB and ergosterol, a decrease in the activity of the enzyme SMT in the A line would be a plausible resistance strategy to elude the toxicity of this polyeune antymycotic. Interestingly, in a previous work dealing with the mechanism of AmB resistance in *L. donovani* promastigotes, it was found that the major sterol present in the membrane of resistant parasites was an ergosterol precursor, the cholesta-5, 7, 24-trien-3b-ol and not ergosterol, which is the most abundant sterol present in the membrane of the AmB-sensitive strain; therefore, it was concluded that this AmB-resistant *Leishmania* was defective in C-24 transmethylation of C-27 sterols (Mbongo et al., 1998).

Analysis by whole genome sequencing of the locus *Ld-SMT* in the WT strain and in the A line showed a sharp decrease in coverage in the A line, suggesting a possible gene deletion event in the A resistant line (Fig. 5A). In the genome of *L. infantum*, and other *Leishmania* species, there are two tandemly organized genes (LinJ.36.2510 and LinJ.36.2520) showing an absolute sequence identity in their coding regions, but different in their untranslated regions. Additional experimental evidence of a deletion event occurring in the A line was obtained after PCR amplification of the locus using two oligonucleotides designed to amplify the genomic region containing genes LinJ.36.2510 and LinJ.36.2520. As shown in Fig. 5B, an amplification product of approx. 1.6-kb long was obtained from genomic DNA of the A line, but no when using genomic DNA of the parental strain as template. In contrast, a slight amplification band around 5.5-kb was observed only in the PCR from WT DNA. The latter is the expected size for the amplification product of the complete region according to the *L. infantum* JPCM5 reference genome. After direct sequencing of the 1.6-kb amplification product, specific for the A line, it was confirmed that a deletion event took place in the resistant line leading to the loss of one SMT gene and the intercoding region separating the orthologues to genes LinJ.36.2510 and LinJ.36.2520. Arguably, this deletion was the result of an intrachromosomal homologous recombination event between the coding regions of genes LinJ.36.2510 and LinJ.36.2520. Hence, as a result, the A line would lose the LinJ.36.T2510 transcript, and, predictably, would have a lower expression of SMT enzyme, and the subsequent decrease of ergosterol levels at the parasite cell membranes. In agreement with this hypothesis, a study by Poursahafi et al. (2004) showed the existence in *L. donovani* of two transcripts encoding for SMT, named SCMT A and SCMT B; interestingly, SCMT B was found to be absent in an AmB-resistant *L. donovani* line, selected by stepwise drug pressure. More recently, an *L. donovani* clinical isolate obtained from an AmB-nonresponsive patient was investigated to understand the mechanism of AmB resistance (Purkait et al., 2012). In that study, it was found that the transcript SCMT A was absent in AmB-resistant parasites, but expressed in susceptible parasites.

To validate that SMT genes present altered levels of expression in the AmB-resistant line, as deduced from the RNA-Seq data, total RNA of WT and A lines was extracted and the relative amount of SMT transcripts was analyzed by RT-qPCR. As shown in Fig. 3A, and in Fig. 4. Read coverage along the chromosome 29 in WT and A, S and P resistant lines. The coverage values obtained with genomeCoverageBed (BEDTools) were smoothed by an in-house Perl script that calculates the mean value within overlapping 5-kb windows. Graphs were generated from the coverage values by plotly utility of R package (https://cran.r-project.org). Panel A shows the coverage along the complete chromosome 29, whereas panel B shows the region comprised between the coordinates 322,447 and 390,000 of this chromosome. Green-colored boxes denote ORF (the gene names are indicated), and red boxes correspond to repeated sequences of the SIDER2 family (Requena et al., 2017).
agreement with the RNA-Seq data, the expression levels were 3.9-fold lower in the A line than in the WT line. Next, we asked whether overexpression of SMT in the A line might restore the susceptibility of this line to AmB. For this purpose, the SMT gene was cloned into the pLexsy-hyg2 expression vector, and the construct used to transfect the AmB-resistant line, the resulting line was named A + SMT. In parallel, as control, the AmB-resistant line was transfected with the empty pLexsy-hyg2 vector to create the line A + Lexsy. The results obtained by RT-qPCR showed a 75.2-fold over-expression of SMT gene in the A + SMT line compared to the control (Fig. 3B). Finally, the susceptibility to AmB of WT, A-resistant, A + SMT, and A + Lexsy transfected lines was determined in promastigotes. As shown in Table 3, when the A line over-expressed the SMT gene (A + SMT), it lost the resistance to AmB, showing similar EC50 values for AmB that the WT line (0.12 and 0.09 μM, respectively). On the contrary, the control line (A + Lexsy) maintained the resistance to AmB and exhibited EC50 values for AmB 3.6-fold higher than the WT line. Altogether, these data suggest that the lower SMT expression in the A line respect to the WT strain is directly related to the loss of one SMT gene. Therefore, these results support the use of SMT as a drug resistance marker for AmB resistance. Thus, a PCR based on the amplification of the SMT locus (as depicted in Fig. 3B) might be useful to quickly check SMT deletion events in AmB-resistant, clinical isolates.

On the other hand, the amplification of the most part of chromosome 29, occurring in the A line, suggests that expression of some gene(s) located at this chromosome may be contributing to the phenotype of resistance to AmB. However, the identification of those driver gene(s) is not a simple task, taking into account that 271 transcripts derived from this chromosome show increased levels regarding the expression levels in WT L. donovani HU3 (Supplementary file 1). It is noticeable that among the most upregulated transcripts, three are annotated as coding for amastin (LinJ.29.T3000, LinJ.29.T3010, LinJ.29.T3030) and an additional overexpressed transcript (LinJ.29.T1450) is annotated as an amastin-like protein. Amastin genes were first described in Trypanosoma cruzi because of their specific expression at the amastigote stage of this parasite (Teixeira et al., 1994). Subsequently, these genes were identified in Leishmania, and genomic analysis showed that the amastin repertoire is much larger in Leishmania relative to Trypanosoma spp. (Rochette et al., 2005; Jackson, 2010). Thus, in the genomes of L. major and L. infantum up to 45 amastin genes were identified, comprising the largest gene family reported so far in Leishmania (Rochette et al., 2005). However, it was somewhat remarkable that none of the four genes, identified as upregulated in the A line, was catalogued as coding for amastin in those previous studies. Hence, we analyzed the information regarding these four genes in the GeneDB database. Orthologs to these four genes do not exist in the L. major genome. These genes are highly conserved in sequence each other; thus, the protein encoded by gene LinJ.29.3000 shares 98, 94 and 61% of sequence identity with the proteins encoded by genes LinJ.29.1450, LinJ.29.3010 and LinJ.29.3030, respectively. In contrast, the sequence identity between the LinJ.29.3000-encoded protein and that encoded by gene LinJ.08.0820, a prototypical amastin gene (Rochette et al., 2005), is only 49%. Although the function of amastin is unknown, its structure is typical for a membrane protein, containing four hydrophobic transmembrane domains, interspersed with serine–threonine rich, extracellular domains and probable glycosylation sites (Teixeira et al., 1994; Rochette et al., 2005). Taking into account a possible location of these molecules in the parasite membrane, and given the interaction of AmB with ergosterol, the predominant sterol in the membrane of Leishmania (Croft et al., 2006), it can be postulated that an increased expression of this class of amastins may be hampering the interaction of the drug with the membrane in the Leishmania resistant A line. Studies based on the overexpression of these genes would serve to test this hypothesis.

Among other transcripts also showing increased levels in the A line regarding the WT strain is LinJ.29.T1250 (see supplementary file 1), which codes for tryptaredoxin 1 (TXN1). Interestingly, in a recent study, the protein expression levels of this antioxidant molecule was found to be 2–3 fold higher in AmB resistant isolates as compared to sensitive strains of L. donovani (Suman et al., 2016). Thus, our data reinforce the hypothesis that over-expression of TXN1 might be linked to AmB resistance.

3.4. Transcripts differentially expressed in a MIL resistant line (M line)

Eighteen transcripts were found to have above 2-fold expression differences between the M line and the parental parasites (Fig. 1), and Table 5 shows those having annotated genes. Remarkably, most of them are transcripts that result downregulated in the M parasites. MIL resistance mechanisms in Leishmania spp. are associated with a decrease in intracellular drug accumulation due to the defective inward transport of MIL (Perez-Victoria et al., 2003b, 2006b; Sanchez-Cañete et al., 2009; Mondelaers et al., 2016) and the overexpression of a P-glycoprotein MDRI (ABCBC4), which is responsible for drug efflux (Perez-Victoria et al., 2001, 2006a). Additionally, a member of the ABC subfamily G transporter, LiABCG4, has been found to confer moderate (2-fold) resistance to MIL; this protein has been involved in the outward transport of phosphatidylcholine analogues from the cytoplasmic to the exoplasmic leaflet of the parasite membrane (Castany-Suñol et al., 2007). More recently, a Leishmania protein of unknown function,
Table 5
Protein-coding transcripts that are differentially expressed in the L. donovani miltefosine resistant line (M line).

Transcript	Log2FC (WT/ A)	Product^a
LinJ.17.T0690	1.84	hypothetical protein
LinJ.26.T2600	1.75	protein kinase, putative
LinJ.14.T0180	1.58	carboxypeptidase, putative,
LinJ.31.T0370	1.41	amino acid transporter AAT1.4
LinJ.17.T0990	1.29	META1
LinJ.23.T1230	1.27	small hydrophilic endoplasmic reticulum-associated protein (SHERP)
LinJ.32.T3810	1.21	3-hydroxyisobutyryl-coenzyme a hydratase-like protein
LinJ.20.T1370	1.17	kinase-like protein
LinJ.07.T0910	1.13	flavoprotein subunit-like protein
LinJ.28.T1070	1.13	P27 protein (P27)
LinJ.10.T0380	1.00	folate/bioprotein transporter, putative
LinJ.33.T1860	−0.06	OTT_1508-like deaminase, putative
LinJ.08.T0180	−1.19	hypothetical protein

^a Hypothetical protein: predicted bioinformatically; conserved: predicted protein presents also in Trypanosoma brucei and/or T. cruzi (GeneDB).

Table 6
Protein-coding transcripts that are differentially expressed in the L. donovani paromomycin-resistant line (P line).

Transcript	Log2FC (WT/ A)	Product^a
LinJ.07.T0910	1.06	flavoprotein subunit-like protein
LinJ.29.T1600	−1.00	hypothetical protein, conserved
LinJ.29.T1450	−1.06	amastin-like protein
LinJ.13.T1430	−1.07	Protein Associated with Differentiation, putative
LinJ.29.T0930	−1.24	hypothetical protein, conserved
LinJ.31.T3190	−1.37	iron/zinc transporter protein-like protein (LIT1)
LinJ.29.T3000	−1.79	amastin, putative
LinJ.27.T1950	−4.98	branched-chain amino acid aminotransferase, putative
LinJ.27.T1940	−5.77	D-lactate dehydrogenase-like protein, putative

^a Hypothetical protein: predicted bioinformatically; conserved: predicted protein presents also in Trypanosoma brucei and/or T. cruzi (GeneDB).
transcripts are D-lactate dehydrogenase-like protein (D-LDH) and an aminotransferase of branched-chain amino acids (BCAT), respectively. More strikingly, genomic DNA coverage revealed that the region encoding for both transcripts, which are collinear, was over-replicated about 150-fold in the PMM-resistant line (Fig. 6). At present, we have not investigated about the nature of this amplicon, whether intra- or extra-chromosomal, but the presence of 2 direct repeats of 424-nucleotides in length that are located in the intergenic region (Fig. 6B) is noteworthy. The genome of *Leishmania* contains a significant number (around 2000) of repeated DNA sequences (Ubeda et al., 2014), which are dispersed throughout the genome. Nevertheless, we could not achieve similar expression levels to the WT line did not produce a synergistic effect, obtaining values of EC50 to PMM in the same range of single overexpression of either D-LDH or BCAT (Table 3). Nevertheless, we could not achieve similar expression levels to the single overexpression of BCAT gene despite using different plasmids and after 13 passages with 100 μg/ml of nourseothricin or Hyg (Fig. 3B).

To gain greater understanding on the molecular basis linking the overexpression of D-LDH and BCAT genes to PMM resistance, we analyzed the resistance of both the P line and the transfected parasites with D-LDH and BCAT to other aminoglycosidic antibiotics such as geneticin. Aminoglycosides susceptibility in *L. donovani* lines.

Table 7

Lines	PMM EC50 μM (RI)	Geneticin EC50 μg/ml (RI)	Nourseothricin EC50 μg/ml (RI)
WT	12.18 ± 1.31	0.44 ± 0.09	9.26 ± 1.52
P	122.76 ± 7.32 (10.08)	5.34 ± 0.81 (12.14)	32.81 ± 4.16 (3.54)
WT + Lexsy	13.14 ± 1.28	0.42 ± 0.09	8.13 ± 0.59
WT + D-LDH	62.15 ± 4.07 (4.73)	2.36 ± 0.23 (5.62)	15.51 ± 1.52 (1.91)
WT + BCAT	48.79 ± 4.80 (3.71)	1.88 ± 0.20 (4.48)	16.81 ± 1.77 (2.07)

* Resistance indexes (RI) were calculated by dividing the EC50 for P line, or overexpressing D-LDH or BCAT lines by that for *Leishmania* control line (WT for P, and WT + Lexsy for WT + D-LDH and WT + BCAT).

* Data are the averages ± SD of EC50 values from six independent experiments for three independent transfections. Significant differences versus the controls were determined using Student’s t-test (p < 0.001).
amastigotes over-expressing D-LDH or BCAT genes showed statistically significant differences in RI values in regard to the control ones (Table 9). Overall, these results suggest that D-LDH and BCAT genes can contribute to the resistance phenotype to PMM in other Leishmania species, although apparently to a lesser extent than in L. donovani HU3, probably due to their different genetic background.

In addition, we analyzed the stability of resistance to PMM after removal of the drug pressure. After 2, 3, and 4 months of culturing the P line in absence of PMM, the EC50 values were determined. As shown in Fig. 7A, the EC50 values significantly decreased from the initial EC50 value of the P line (132.4 μM) to 89.2, 70.4, and 65.1 μM, after growing the P line in absence of PMM during 2, 3 and 4 months, respectively. In parallel, the levels of expression of D-LDH and BCAT genes were determined by RT-qPCR at the same times of drug removal (Fig. 7B). These data showed that the expression of D-LDH gene decreased to 54.9, 41.5, and 25.3% of the initial value, whereas the expression of BCAT gene decreased to 65.9, 43.6, and 51.7%, in the P line grown 2, 3 and 4 months without drug pressure (Fig. 7B). Therefore, we can conclude the existence of a direct relationship between PMM resistance and expression levels of these genes in L. donovani HU3, supporting further the involvement of D-LDH and BCAT genes in the resistance to PMM in Leishmania.

It is known that PMM interferes with mitochondrial activity, disrupting the ΔΨm; even though it has been proposed that this drug would be acting at a metabolic level upstream of the respiratory chain (Maarouf et al., 1997; Jhingran et al., 2009). Our results showed that the PMM-resistant line analyzed in this study presents a low accumulation of Rh123 (Fig. 8), indicating that this line also presents a diminished ΔΨm, as described for other experimental PMM resistant parasites (Jhingran et al., 2009). Considering that D-LDH and BCAT would be involved in metabolic pathways to obtaining energy (Opperdoes and Coombs, 2007), it was determined whether the over-expression of either D-LDH or BCAT might affect the ΔΨm by interfering with metabolic processes leading to mitochondrial ATP synthesis. As depicted in Fig. 8, no depolarization was observed in promastigotes over-expressing D-LDH (WT + D-LDH line). However, promastigotes that over-expressed BCAT (WT + BCAT line), similar to the PMM-resistant promastigotes (P line), showed a significant decrease in the ΔΨm with respect to the control (WT + Lexsy line) (Fig. 8). The same behavior was observed when promastigotes were exposed to PBS for 2 h (Fig. 8), as an inducer of mitochondrial stress. As described, nutritional starvation induces autophagy in Leishmania (Besteiro et al., 2006); being autophagy required for the maintenance of mitochondrial homeostasis (Williams et al., 2013). In conclusion, this finding would suggest that the alteration of ΔΨm may be a consequence of a direct interference of the BCAT activity with oxidative phosphorylation in the Leishmania mitochondrion. Enzymes for the degradation of branched-chain amino acids are predicted to localize into the mitochondrion (Afanador et al., 2014). Thus, it is plausible that the aberrant

antibiotics, and that the putative over-expression of enzymes D-LDH and BCAT may be contributing to the chemical modification of these molecules. Nevertheless, other metabolic possibilities exist and they were further explored (see below).

Firstly, it was analyzed if the resistance observed in promastigote forms was also maintained in intracellular amastigotes obtained after infection of THP-1 cells with the different promastigote lines (Table 8). The results showed that the resistance to PMM in intracellular amastigotes was maintained; with RI values of 2.9 and 2.4 for WT + D-LDH and WT + BCAT transfected lines, respectively, whereas the RI for P line was 4.1 (Table 8). These values were 2.78 and 2.79 to the WT + D-LDH + BCAT and WT + BCAT + D-LDH lines, respectively, when the co-transfection with both D-LDH and BCAT genes were done. These results demonstrate that the resistance phenotype to PMM in the amastigote stage of the L. donovani P line would be due in part to the over-expression of D-LDH and BCAT.

Additionally, we wanted to know whether over-expression of D-LDH or BCAT genes in other Leishmania species/strains also confer resistance to PMM. For this purpose, promastigotes of L. donovani (Dd8 strain), L. major (Friedlin strain), and L. infantum (JPCM5 strain) were transfected with either D-LDH- or BCAT-expressing vectors, and the over-expression of the corresponding transcripts was confirmed by RT-qPCR (data not shown). Afterwards, drug susceptibility of WT, WT + D-LDH, WT + BCAT, and WT + pLexsy (transfection control) lines to PMM was determined in both promastigote and amastigote forms of the different Leishmania species (Table 9). In all cases, both D-LDH- and BCAT-transfected promastigotes of L. donovani Dd8, L. major and L. infantum lines showed higher values of RI than the control promastigote lines (Table 9). Also, the intracellular amastigote forms showed higher RI values than the control lines, even though only the L. donovani Dd8

Promastigotes	Intracellular amastigotes	Promastigotes	Intracellular amastigotes	Promastigotes	Intracellular amastigotes	
WT						
L. donovani Dd8						
EC50 µM (RI)	40.48 ± 4.09***	45.97 ± 5.97	6.60 ± 0.40	15.71 ± 1.52	40.16 ± 4.69	62.19 ± 7.88
WT + D-LDH	79.99 ± 7.20***	63.61 ± 7.36*	16.43 ± 2.01***	18.98 ± 2.62	74.87 ± 9.63***	76.71 ± 9.62
L. major						
EC50 µM (RI)	51.53 ± 2.82***	65.02 ± 6.11**	10.58 ± 0.97**	21.02 ± 2.27	56.17 ± 5.27	65.19 ± 7.12
WT + Lexsy	43.03 ± 4.11	41.52 ± 5.15	8.10 ± 0.40	16.51 ± 1.94	39.68 ± 4.19	63.68 ± 5.23
L. infantum						
EC50 µM (RI)						

a Resistance indexes (RI) were determined from the percentage of infected cells and the number of amastigotes per cell in drug-treated cultures versus non-treated cultures.

b Data are the mean ± SD of EC50 values from four independent experiments. Significant differences versus the controls were determined using Student’s t-test (p < 0.001).

Table 8
Paromomycin susceptibility in intracellular amastigotes of L. donovani lines.

Lines	PMM EC50 µM (RI)**
WT	9.49 ± 1.21
P	38.51 ± 3.83 (4.05)
WT + D-LDH	29.24 ± 3.26 (2.96)
WT + BCAT	24.63 ± 2.64 (2.44)
WT + Lexsy	8.96 ± 1.30
WT + D-LDH + BCAT	36.37 ± 5.81 (2.78)
WT + BCAT + D-LDH	38.47 ± 6.32 (2.94)
WT + pLexsy	13.09 ± 2.61

< 0.01; ***

Table 9
Paromomycin susceptibility of different species of Leishmania transfected with D-LDH and BCAT.
overexpression of BCAT and/or the accumulation of a metabolite produced by this enzyme in the mitochondria could determine a block of the electron transport chain. In contrast, parasites overexpressing D-LDH presented ΔΨm values similar to controls (Fig. 8), suggesting that the activation of glycolytic and methylglyoxal pathways, in which this enzyme is involved (Greig et al., 2009), does not significantly influence the mitochondrial activity.

In addition, since changes on the ΔΨm have been associated with ROS production, which in turn are associated with cell death, it was analyzed whether the overexpression of D-LDH and BCAT could be related to protection of parasites from PBS-induced ROS production. For this purpose, overall intracellular ROS levels were measured using the cell-permeable probe H2DCFDA. The results showed that WT + Lexsy parasites (control) incubated with PBS for 2 h exhibited a marked increase in H2DCFDA fluorescence signal (79.7 versus 9.3 of untreated parasites; Fig. 9A), supporting an increased ROS production upon exposure to nutritional stress induced by PBS. In contrast, when the P line was exposed to PBS a 2.2-fold lower accumulation of the fluorescent probe than in control parasites was observed (Fig. 9A), indicating a lower ROS production and/or a higher antioxidant response in the P line regarding the control line, as expected from a P resistant line (Garcia-Hernandez et al., 2012). Remarkably, levels of ROS in the transfected D-LDH and BCAT Leishmania lines (WT + D-LDH, WT + BCAT, respectively) were very low, and they did not significantly increase when the over-expressing parasites were incubated in PBS (Fig. 9A). Thus, it can be concluded that Leishmania lines overexpressing D-LDH or BCAT generated (or accumulated) lower ROS amounts than control, and also than the P line (Fig. 9A), suggesting that these enzymes, or their metabolites, are involved in metabolic processes that increase the ability of parasites to neutralize the ROS production induced by nutritional stress.

Additionally, considering that the major source of oxidants in eukaryotes is the mitochondria, we repeated the assays but using the MitoSOX red dye, as a probe for measuring mitochondrial ROS levels. As shown in panel B of Fig. 9, incubation of parasites in PBS also induced a marked increase in MitoSOX red fluorescence levels in the control line versus untreated parasites, but not in Leishmania lines overexpressing D-LDH or BCAT (Fig. 9B). Also, P resistant parasites accumulated 1.7-fold less probe than the control line after incubation with PBS (Fig. 9B). The results indicated the ability of D-LDH and BCAT proteins to protect Leishmania parasites against oxidative stress also inside the mitochondria.

All these results suggest that suppression of mitochondrial activity by the action of P (Maarouf et al., 1997) leads to an activation of glycolytic activity as the most likely alternative for the production of cellular ATP (Chawla et al., 2011). It has been reported that Leishmania produce s limited amounts of D-lactate via the methylglyoxal pathway (Darling and Blum, 1988). This pathway functions as an overflow of glycolysis, in which triose-phosphates, formed in the glycolytic pathway, are converted to inorganic phosphate and methylglyoxal. Indeed the methylglyoxal pathway enzymes glyoxalase I (LinJ.35.3060) and II (LinJ.12.0200) are present in L. infantum. The resulting D-lactate would be converted to pyruvate by a D-LDH (LinJ.27.1940). The pyruvate resulting from both the glycolytic and the methylglyoxal pathways may be converted by the enzymes of the TCA cycle into building blocks for biosynthesis or acts as a scavenger of hydrogen peroxide, helping to reduce the oxidative stress. The compromised mitochondrion is likely to be crippled in its capacity for beta-oxidation of fatty acids and therefore must resort to an increase in metabolism of the branched
amino acids, leucine, isoleucine and valine. The BCAT is the first enzyme of this oxidation pathway for all three amino acids. The resulting succinyl-CoA and acetyl-CoA is then converted into necessary building blocks for biosynthesis by the TCA cycle enzymes, or excreted as free acetate with the additional advantage of the formation of an extra molecule of ATP (Van Hellemond et al., 1998). Thus, under the pressure of PMM, overexpression of D-LDH and BCAT may allow for the production of additional energy in the form of ATP to compensate for mitochondrial dysfunction. Consequently, overexpression of D-LDH and BCAT could be considered as new molecular markers of drug resistance to PMM in *Leishmania* that will require future studies of validation in clinical and experimental resistant lines to PMM.

Apart from transcripts for these two enzymes, D-LDH and BCAT, among the differential expression transcripts, we found the transcript encoding for a member of the ABC family transporter (ABCA10; transcript LinJ.29.T0640) was present at higher levels (∼1.8-fold) in the P line (see Supplementary file 1). It is noticeable that this protein was found to be overexpressed in an *L. donovani* line resistant to difluoromethylornithine (Singh et al., 2014), and it may be postulated a role of this transporter in PMM exclusion. In fact, many members of the superfamily of ABC transporters have been found to be involved in drug resistance (see above (Sauvage et al., 2009)). Taking into account that ribosome would be another target for PMM (Fernandez et al., 2011; Zhang et al., 2016), another up-regulated transcript worthy to note was LinJ.03.T0240, coding for a ribosomal protein (L38). Finally, in the P line, similar to that occurring in the S and A lines, transcripts encoding for amastins (LinJ.29.T1450 and LinJ.29.T3000) were found to be up-regulated. These results may be indicating that overexpression of amastin genes in *Leishmania* might lead to an increased parasite fitness against the cellular stresses elicited by drugs.

4. Conclusions

Our study illustrates the battery of molecular adaptations exploited by *Leishmania* to develop drug resistance, including gene over-expression, deletion, SNPs generating stop codons or amplification of sets of genes. This also further validates our approach (selection of drug resistance followed by NGS analysis of whole genome and transcriptome) as it allows the simultaneous identification of gain-of- and loss-of-function. Our study also highlights the power of the method, as it identifies in each line several genes that could be participating to drug resistance and accompanying effects (virulence for instance). Validation of the candidate driver genes is essential and was done here for the strongest candidates, for which largest differences in gene expression were observed. This allowed to identify new drivers, like SMT, the deletion of which being associated with resistance to AmB and the tandem D-LDH-BCAT, the amplification of which being related to PMM resistance. Our results provide highly relevant results for the understanding of drug resistance in *Leishmania*, but also for the design of molecular tools for its monitoring in clinical conditions.

Acknowledgements

We thank Fred Opperdoes for his comments on *Leishmania* energy metabolism. Also, the authors wish to acknowledge Centro de Análisis Genómico (CNAG, Spain) for NGS services. We thanks Steve M. Beverley (Washington University, USA) for providing the pRiSAT vector used throughout this research work. César Poza-Carrión is acknowledged for his contribution to preparation of DNA and RNA samples. Genome sequence data from the Sanger Institute sequencing projects (GeneDB.org) were invaluable for this work and their provision in the public domain is gratefully acknowledged. This work was supported by grants (to B.A. and J.M.R.) from Proyecto del Ministerio de Economía, Industria y Competitividad (SAF2013-47556-R and SAF2017-86965-R, co-financed with FEDER funds), and from ISCIII, proyecto "RD16/0027/0008" Red de Enfermedades Tropicales, Subprograma RETICS del Plan Estatal de I + D + I 2013–2016 and co-financiado FEDER: Una manera de hacer Europa. The CBMOS receives institutional grants from the Fundación Ramón Areces and from the Fundación Banco Santander. Also, this work was supported by the Spanish Grant Proyecto de Excelencia, Junta de Andalucía, Ref. CTS-7282 (to F.G.).

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.ijpddr.2018.04.002.

References

Afanador, G.A., Matthews, K.A., Bartee, D., Giselson, J.E., Walters, M.S., Freel Meyers, C.L., Prigge, S.T., 2014. Redox-dependent lipoylation of mitochondrial proteins in *Plasmodium falciparum*. Mol. Microbiol. 94, 156–171.
Akopyants, N.S., Kimblin, N., Secundino, N., Patrick, R., Peters, N., Lawyer, P., Dobson, D.E., Beverley, S.M., Sacks, D.L., 2009. Demonstration of genetic exchange during cyclical development of *Leishmania* in the sand fly vector. Science 324, 265–268.
Alvar, J., Velez, I.D., Berm, C., Herrera, M., Desjeux, P., Cano, J., Jannin, J., den Boer, M., 2012. Leishmaniasis worldwide and global estimates of its incidence. PLoS One 7 e35671.
Anders, S., Pyl, P.T., Huber, W., 2015. HTSeq-a Python framework to work with high-resolution transcription expression data. Bioinformatics 31, 166–179.
throughput sequencing data. Bioinformatics 31, 166–169.

Berg, M., Garcia-Hernandez, R., Cuypers, B., Vanaerschot, M., Manzano, J.J., Poveda, J.A., Ferragut, J.A., Castany, S., Dujardin, J.C., Gamaro, F., 2015. Experimental resistance to drug combinations in Leishmania donovani: metabolic and phenotypic adaptations. Antimicrob Agents Chemother. 59, 2242–2255.

Berg, M., Manantaet, A., Vanaerschot, M., Van Der Auwersa, G., Dujardin, J.C., 2013. (Post-)Genomic approaches to tackle drug resistance in Leishmania. Parasitology 140, 1492–1505.

Betete, S., Williams, R.A., Morrison, L.S., Coombs, G.H., Mottram, J.C., 2006. Endosome sorting and autophagy are essential for differentiation and virulence of Leishmania major. J. Biol. Chem. 281, 11384–11396.

Beverley, S.M., 1991. Gene amplification in Leishmania. Annu. Rev. Microbiol. 45, 417–444.

Bhandari, V., Kumar, D., Verma, S., Srividya, G., Negi, N.S., Singh, R., Salotra, P., 2013. Bacterial resistance to aminoglycoside antibiotics. Trends Pharmacol. Sci. 34, 39–43.

Coelho, A.C., Beverley, S.M., Cotrim, P.C., 2003. Functional genetic identification of PGPA as an intracellular metal-thiol transporter ATPase. J. Biol. Chem. 278, 52904–52912.

Coetzee, J.A., Ferragut, J.A., Castanys, S., Dujardin, J.C., Gamarro, F., 2015. Experimental differentiation signal. Nature 459, 213–217.

Davies, J., Wright, G.D., 1997. Bacterial resistance to aminoglycoside antibiotics. Trends Pharmacol. Sci. 18, 209–214.

Dujardin, J.C., 2005. Gene expression analysis of the mechanism of natural Sb(V) resistance of Leishmania donovani. Mol. Biochem. Parasitol. 141, 137–148.

Dujardin, J.C., 2011. Whole genome sequencing of multiple Leishmania donovani isolates. Eukaryot. Cell 10, 644–651.

Dujardin, J.C., Campino, L., Cañavate, C., Dedet, J.P., Gradoni, L., Soteriadou, K., Kuhls, M., 2006. Evolutionary genomics of epidemic visceral leishmaniasis in the Indian subcontinent. Elite 5, 55–65.

Dujardin, J.C., 2008. Spread of vector-borne diseases and neglected tropical diseases. Emerg. Infect. Dis. 14, 1013–1018.

Fonseca, M.S., Comini, M.A., Resende, B.V., Santi, A.M., Zoboli, A.P., Moreira, D.S., Fernandez, M.M., Algranati, I.D., 2011. Differential expression of recombinant anti-Leishmania antibodies in the goat serum as a diagnostic tool. Parasite 18, 240–248.

Fourmy, D., Recht, M.I., Blanchard, S.C., Puglisi, J.D., 2006. Identification of the A site of a Leishmania infantum gene mediating resistance to rifamycin and SbII. Int. J. Parasitol. 38, 1411–1423.

Fonseca, M.S., Comini, M.A., Resende, B.V., Santi, A.M., Zoboli, A.P., Moreira, D.S., Fernandez, M.M., Malchiodi, E.L., Algranati, I.D., 2011. Differentiation and virulence of Leishmania. Mechanism of amphoterin resistance to drug combinations. PLoS Neglected Trop. Dis. 6 e1974.

Gama, F., De la Fuente, E., Maza, J.A., Ferragut, J.A., Castanys, S., Dujardin, J.C., Gamarro, F., 2011. A novel ATP-binding cassette transporter from Leishmania is involved in transport of phosphatidylincholine analogues and resistance to alkyl-phospholipids. Mol. Microbiol. 84, 1141–1153.

Gambir, M., Bhandari, V., Mukhopadhyay, R., Rosen, B.P., Ouellette, M., 1998. Amino acid substitutions in the ABC transporters of Leishmania donovani followed an evolutionary pressure from the environment and type of host. Mol. Biochem. Parasitol. 94, 397–409.

Gama, F., De la Fuente, E., Maza, J.A., Ferragut, J.A., Castanys, S., Dujardin, J.C., Gamarro, F., 2011. A novel ATP-binding cassette transporter from Leishmania is involved in transport of phosphatidylincholine analogues and resistance to alkyl-phospholipids. Mol. Microbiol. 84, 1141–1153.

Gambir, M., Bhandari, V., Mukhopadhyay, R., Rosen, B.P., Ouellette, M., 1998. Amino acid substitutions in the ABC transporters of Leishmania donovani followed an evolutionary pressure from the environment and type of host. Mol. Biochem. Parasitol. 94, 397–409.

Gambir, M., Bhandari, V., Mukhopadhyay, R., Rosen, B.P., Ouellette, M., 1998. Amino acid substitutions in the ABC transporters of Leishmania donovani followed an evolutionary pressure from the environment and type of host. Mol. Biochem. Parasitol. 94, 397–409.

Gambir, M., Bhandari, V., Mukhopadhyay, R., Rosen, B.P., Ouellette, M., 1998. Amino acid substitutions in the ABC transporters of Leishmania donovani followed an evolutionary pressure from the environment and type of host. Mol. Biochem. Parasitol. 94, 397–409.
Perez-Victoria, F.J., Gamarro, F., Ouellette, M., Castanys, S., 2003b. Functional cloning of
Leishmania donovani resistance to miltefosine transporter. A novel P-type phospholipid translocase from Leishmania parasites. J. Biol. Chem. 278, 49965–49973.

Mukherjee, A., Padmanabhan, P.K., Singh, S., Roy, G., Girard, I., Chatterjee, M., Ouellette, M., Madhubala, R., 2007. Role of ABC transporter MRPA, gamma-glutamylcySTEINE
synthetase and ornithine decarboxylase in natural anti-parasite resistant isolates of Leishmania donovani. J. Antimicrob. Chemother. 59, 204–211.

Mukherjee, A., Roy, G., Guimond, C., Ouellette, M., 2009. The gamma-glutamylcySTEINE
synthetase gene of Leishmania is essential and involved in response to oxidants. Mol. Microbiol. 74, 919–930.

Mukhopadhyay, R., Mukherjee, S., Mukherjee, B., Naskar, K., Mondal, D., Decuyper, S., Oostyn, B., Prapajati, V.K., Sundar, S., Dijardin, J.C., Roy, S., 2011. Characterisation of anti-parasite resistant-Leishmania donovani isolates: biochemical and biological studies and interaction with host cells. Int. J. Parasitol. 41, 1311–1321.

Mwenecancha, R., Kováčová, J., Dickens, N.J., Mudalal, M., Herzyk, P., Vincent, I.M., Weid, S.K., Burgess, K.E., Burchmore, R.J.S., Pountain, A.W., Smith, T.K., Creek, D.J.J., Kim, D.H., Lepeheva, G.L., Barrett, M.P., 2017. Sterol 14o-demethylation
mutation leads to amphotericin B resistance in Leishmania mexicana. PLoS Neglected Trop. Dis. 11 e005649.

Ouakad, M., Vanaerschot, M., Rijal, S., Sundar, S., Speybroeck, N., Kestens, L., Boel, L., De Koning-Hoeksema, B., Dhanoa, M.G., Delaporte, E., 2013. Therapeutic options for visceral leishmaniasis. Drugs 73, 1888–1919.

Perez-Victoria, J.M., Perez-Victoria, F.J., Parodi-Talice, A., Jimenez, I.A., Ravelo, A.G., Ouellette, M., 2009. Alkyl-lysophospholipid resistance in multidrug-resistant Leishmania infantum strains with either natural or acquired resistance through experimental selection of intracellular amastigotes. PLoS One 11 e0154101.

Peacock, C.S., Seeger, K., Harris, D., Murphy, L., Ruiz, J.C., Quail, M.A., Peters, N., Adlem, E., Ormond, D., Rutter, S., Squares, R., Whitehead, S., Rabbinowitsch, E., Arrowsmith, C.H., 2015. Comparative structural analysis of the stage-regulated meta 1 gene. Exp. Parasitol. 92, 158–165.

Pereira, A., Manzano, J.I., Castanys, S., Gamarro, F., 2016. The LABC2G transporter from the Protozoan parasite Leishmania is involved in amphotericin resistance. Antimicrob. Agents Chemother. 60, 4089–4096.

Pereira-Victoria, F.J., Castanys, S., Gamarro, F., 2003a. Leishmania donovani resistance to miltefosine involves a defective inward translocation of the drug. Antimicrob. Agents Chemother. 47, 2397–2403.

Pereira-Victoria, F.J., Gamarro, F., Ouellette, M., Castanys, S., 2003b. Functional cloning of the miltefosine transporter. A novel P-type phospholipid translocase from Leishmania involved in drug resistance. J. Biol. Chem. 278, 49965–49971.

Pereira-Victoria, F.J., Sanchez-Canete, M.P., Seifert, K., Croft, S.L., Castanys, S., Gamarro, F., 2006. Comparative analysis of expression resistance to miltefosine: implications for clinical use. Drug Resist. Updates 9, 26–39.

Pereira-Victoria, F.J., Sanchez-Canete, M.P., Castanys, S., Gamarro, F., 2005b. Phospholipid translocation and miltefosine potency require both L. donovani miltefosine transporter and the new protein LdRos3 in Leishmania parasites. J. Biol. Chem. 281, 23766–23775.

Pereira-Victoria, J.M., Perez-Victoria, F.J., Parodi-Talice, A., Jimenez, I., Ravelo, A.G., Castanys, S., Gamarro, F., 2001. Alkyl-lysophospholipid resistance in multidrug-resistant Leishmania tropica. Antimicrob. Agents Chemother. 45, 1356–1363.

Pourshafie, M., Moradzadeh, R., Arefnasab, A., Rakotomanga, M., Dupuy, C., Ouellee, P.M., 2004. Cloning of S-adenosyl-L-methionine:C-24-Delta-sterol-methyltransferase (ERG6) expression in Leishmania. Front. Biosci. 17, 2069–2076.

Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res. 35, W1041–W1044.

Prunet, B., Sineg, N., Khan, S., Arumugam, T., Ourahmoune, O., Neves, R., 2016. Comparative analysis of the stage-regulated meta 1 gene. Exp. Parasitol. 92, 158–165.

Prunet, B., Sineg, N., Khan, S., Arumugam, T., Ourahmoune, O., Neves, R., 2016. Comparative analysis of the stage-regulated meta 1 gene. Exp. Parasitol. 92, 158–165.

Prunet, B., Sineg, N., Khan, S., Arumugam, T., Ourahmoune, O., Neves, R., 2016. Comparative analysis of the stage-regulated meta 1 gene. Exp. Parasitol. 92, 158–165.

Prunet, B., Sineg, N., Khan, S., Arumugam, T., Ourahmoune, O., Neves, R., 2016. Comparative analysis of the stage-regulated meta 1 gene. Exp. Parasitol. 92, 158–165.
Van Griensven, J., Carrillo, E., Lopez-Velez, R., Lynen, L., Moreno, J., 2014. Leishmaniasis in immunosuppressed individuals. Clin. Microbiol. Infect. 20, 286–299.
Van Hellemond, J.J., Opperdoes, F.R., Tielens, A.G., 1998. Trypanosomatidae produce acetate via a mitochondrial acetate:succinate CoA transferase. Proc. Natl. Acad. Sci. U. S. A. 95, 3036–3041.
Vanaerschot, M., De Doncker, S., Rijal, S., Maes, L., Dujardin, J.C., Decuyper, S., 2011. Antimonial resistance in Leishmania donovani is associated with increased in vivo parasite burden. PLoS One 6 e23120.
Vanaerschot, M., Huijben, S., Van den Broeck, F., Dujardin, J.C., 2014. Drug resistance in vectorborne parasites: multiple actors and scenarios for an evolutionary arms race. FEMS Microbiol. Rev. 38, 41–55.
Van Griensven, J., Carrillo, E., Lopez-Velez, R., Lynen, L., Moreno, J., 2014. Leishmaniasis in immunosuppressed individuals. Clin. Microbiol. Infect. 20, 286–299.
Van Hellemond, J.J., Opperdoes, F.R., Tielens, A.G., 1998. Trypanosomatidae produce acetate via a mitochondrial acetate:succinate CoA transferase. Proc. Natl. Acad. Sci. U. S. A. 95, 3036–3041.
Vanaerschot, M., De Doncker, S., Rijal, S., Maes, L., Dujardin, J.C., Decuyper, S., 2011. Antimonial resistance in Leishmania donovani is associated with increased in vivo parasite burden. PLoS One 6 e23120.
Vanaerschot, M., Huijben, S., Van den Broeck, F., Dujardin, J.C., 2014. Drug resistance in vectorborne parasites: multiple actors and scenarios for an evolutionary arms race. FEMS Microbiol. Rev. 38, 41–55.