Chinese Function Tag Labeling*

Weiwei Suna and Zhifang Suib

aDepartment of Computational Linguistics, Saarland University
German Research Center for Artificial Intelligence (DFKI)
Saarbrücken, D-66123, Germany
wsun@coli.uni-saarland.de

bInstitute of Computational Linguistics, Peking University
Key Laboratory of Computational Linguistics, Ministry of Education, China
Beijing, 100871, China
szf@pku.edu.cn

Abstract. Function tag assignment has been studied for English and Spanish. In this paper, we address the question of assigning function tags to parsed sentences in Chinese. We show that good performance for Chinese function tagging can be achieved by using labeling method, extending the work of Blaheta (2004). In this method, the objects being modeled are syntax trees which require some mechanism to convert them into feature vectors. To encode structural information of the complex inputs, we propose a set of new features. Experimental results show that these new features lead to significant improvements.

Keywords: function tagging, function tag labeling

1 Introduction

In the Penn TreeBank, function tags appended to constituent labels are used to indicate additional syntactic or semantic information. Modern statistical parsers such as Collins and Charniak parsers ignore much of functional information, although the training corpora are annotated with this kind of additional information. Nevertheless, there is an increasing interest in enriching the output of parsers with function tags in the last few years. A number of algorithms have been proposed for English and Spanish. But little is known about how these algorithms may perform in many other languages. In this paper we address the question of assigning function tags to parsed sentences in Chinese. To the authors’ knowledge, this is the first attempt to evaluate function tagging approaches on Chinese.

Two function tag assignment approaches have been presented in previous research: parsing approach and labeling approach. In this paper, we focus on the second one. We implement the same function tag labeling system which is proposed by (Blaheta, 2004). The realization of baseline features, such as category clusters, will be discussed. Developing features that capture the right kind of information is crucial to explore function tagging labeling. Although previous work has shown great promise, the features used in previous work have not fully exploited what a syntax tree provides. We propose some new features to convert syntax trees into feature vectors.

We evaluate on both hand-crafted and automatic parsing syntax trees to clarify the performance of models in Chinese function tag labeling. Our system1 shows that good function tagging results

* The work was partially completed while the first author was at Peking University. The first author is funded both by German Academic Exchange Service (DAAD) and German Research Center for Artificial Intelligence (DFKI). This work is partially supported by NSFC Project 60873156, National Social Science Fund (China) 09BYY032, and the Project of Toshiba (China) Co., Ltd. R&D Center. We would like to thank Meng Wang and Zhengyu Niu for their helpful discussion.

Copyright 2009 by Weiwei Sun and Zhifang Sui

1 Source code is available at http://code.google.com/p/chinesefunctiontagging/
for Chinese can be achieved by using labeling method, achieving 94.47 F-measure on gold standard syntax trees and 81.63 F-measure on trees parsed by Charniak parser. Experimental results also show that our new features lead to fairly significant improvements over the baseline.

2 Function Tags in Chinese Penn TreeBank

In the Penn TreeBank, function tags appended to constituent labels are used to indicate additional syntactic or semantic information. Figure 1 shows a simplified tree representation with function labels in Chinese Penn TreeBank (CTB). For example, SBJ marks the surface subject “广西/Guangxi”; this noun phrase is also a proper noun and is thus assigned PN; the preposition phrase “对外/external” is tagged with a DIR label, which indicates the direction role of the predicate “开放/opening”. Table 1 is the complete list of function labels and their brief explanation in CTB (Xue and Xia, 2000). Table 2 is the numbers of each function tag type in CTB 5.0.

Table 1: Chinese Penn TreeBank Function Tags

Syntactic Label	Semantic Label
IO	indirect object
OBJ	direct object
EXT	extent
FOC	focus
PRD	predicate
SBJ	surface subject
TPC	topicaized
PP-DIR	direction
PN	proper nouns
SHORT	short form
TTL	title
WH	Wh-phrase

Miscellaneous Label	Semantic Label
APP	appositive
HLN	headline
PN	proper nouns
SHORT	short form
TTL	title
WH	Wh-phrase

Clause Type	Discrepancy Label
IMP	imperative
Q	question

Current statistical parsers do not use functional information because performance of the parser usually decreases considerably, since a more complex task is being solved. Despite its importance, functional information, hence, is usually ignored in statistical parsing work. Nevertheless,
there has been some work concentrating on the function tag assignment tasks. In this paper, we concentrate on this task in Chinese.

Table 2: Numbers of Function Tags. In CTB, empty category can also hold function tag. For each tag type, the first number is without empty category and the second one is within empty category.

Syntactic Label	Semantic Label
IO	BNF
OBJ	CND
EXT	DIR
FOC	J*
PRD	LGS
SBJ	LOC
TPC	MNR
APP	PRP
HLN	TMP
PN	VOC
SHORT*	IMP
TTL	Q
WH	ADV

Miscellaneous Label
APP
HLN
PN
SHORT*
TTL
WH

Clause Type
IMP*
Q

Discrepancy Type
ADV

3 Method

3.1 Previous Work

There are two main kinds of function assignment methods, which we call parsing method and labeling method. Parsing methods integrate function tag assignment into the parsing process (Gabbard et al., 2006; Merlo and Musillo, 2005), whereas labeling approaches take syntactic parsing as pre-processing and label function tags or NULL tag (which indicates the given constituent does not represent any function tags) to each syntax tree node. (Blaheta, 2004; Jijkoun and de Rijke, 2004; Chrupała and van Genabith, 2006).

Gabbard et al. (2006) modify Collins parser’ model 2 to allow it to produce function tags without decreasing the parsing performance. In the original model function tags is deleted after being used to identify and mark arguments. Collins parser use function tags as part of the heuristics for doing so. A following pre-processing step then deletes the orininal function tags. In Gabbard et al.’s approach, the parser retains the function tags after using them for argument identification, and therefore includes them in all the parameter classes. Merlo and Musillo (2005) extend a Simple Synchrony Network (SSN) parser to produce richer output annotated with function tags. The main idea of their modification is to split some part-of-speech tags into tags marked with semantic function labels. Their functional parser reaches state-of-the-art results both in parsing and in function tag assignment (Merlo and Musillo, 2005).

3.2 Labeling Method in This Paper

A parsing task combining function tags and general categories is more complex than simple parsing. A majority of categories are respectively divided into several correlicated ones. For example, category IP in Figure 1 is divided into IP-HLN and IP-TPC. One obstacle to parsing methods is the sparse problem caused by this sub-categorizing process. This will be more severe for CTB since there are much less sentences than the English TreeBank.

In this paper, we implement a labeling method for Chinese function tagging, following (Blaheta, 2004). This approach takes function tagging as classification tasks. Given a syntax tree, our
system extracts a variety of features to represent every non-terminal node; probability (or distance to the separating hyperplane) for each possible function tag is then computed from the features. According to the labeling guideline of CTB (Xue and Xia, 2000), function tags can be divided into five categories. Table 1 shows the complete list of function labels. In English TreeBank, a constituent can be tagged with multiple tags, but never with two tags from the same category. In CTB, however, though a constituent cannot be labeled with two tags from each syntactic, semantic and clause category, it can be assigned more than one tag from miscellaneous labels. So we can take syntactic and semantic label tagging as two multi-category classification subtasks, and other function labels as binary classification subtasks. Table 2 shows the numbers of each function tag type. Tags VOC, II, SHORT and IMP are extremely sparse in CTB 5.0 (no more than 60 instances for each one). It is impossible to learn them for most machine learning algorithms, so we exclude them in our experiments. In summary, our system consists of several classifiers for:

- syntactic function tag labeling;
- semantic function tag labeling;
- other 7 binary classification subtasks.

For example, the syntactic function tag classifier may predict that 广西(Guangxi) in Figure 1 is a SBJ whereas the proper noun classifier recognizes that phrase as a PN. Other classifiers, such as HLN predictor, should assign NULL label to this phrase.

4 Features

4.1 Baseline Features

Our baseline system uses features introduced by Blaheta (2004): category, cc-category, head, head POS, alt head, alt head POS, category clusters.

- Category This is the syntactic category (NP, VP, IP, etc.) of the constituent.
- cc-Category If a candidate phrase is comprised of the conjunction of two or more XP, this feature is CCXP.
- Head To extract the syntactic head of a phrase, we use head rules described in (Sun and Jurafsky, 2004). This set of head rules are very popular in Chinese parsing research, such as in (Duan et al., 2007; Zhang and Clark, 2008).
- Head Word POS The part-of-speech of syntactic head.
- Alt Head Word Many kinds of function tags, such as temporals and locatives, occur as prepositional phrases in a sentence, and it is often the case that the head words of those phrase, which are always prepositions, are not very discriminative, for example, “在去年/in the last year”, “在北京/in Beijing”, both share the same head word “在”, but the former is TMP whereas the latter is LOC. Alt Head Word feature is the head of the object of a prepositional phrase (and undefined for other sorts of constituents), which is designed to capture more information of prepositional phrases.
- Alt Head Word POS The part-of-speech of the alt head.
- Category clusters Blaheta manually created a number of category clusters on English. In our labeling system, we present a similar rule on Chinese which is summarized in Table 3.

4.2 New Word-based Features

To improve labeling performance, we propose many other kinds of features containing plentiful information. These features include:
Table 3: Category Clusters

| C1: VCD, VCP, VNV, VP, VPT, VRD, VSB |
| C2: DNP, DP, FW, NN, NP, PN |
| C3: ADVP, DVP, MSP |
| C4: LCP, PP |
| C5: CP, FRAG, IP |
| C6: CLP, QP |
| C7: ADJP |
| C8: LST |
| C9: PP |
| C10: PRN |
| C11: UPC |
| C12: Other categories |

- **Boundary words** Some constituents tend to contain discriminative first and last words, as well as the words surrounding these constituents. We try to use them along with their POS tags, and these features include:
 1. the first word current phrase, its POS tag and word cluster (ifw, ifpos, ifc);
 2. the last word current phrase, its POS tag and word cluster (ilw, ilpos, ilc);
 3. one word before current phrase and its POS tag (ofw, ofpos);
 4. one word after current phrase and its POS tag (olw, olpos).

- **Combining features** We also combine some original features as new features, including:
 1. conjunction (ifw-ilw) of the first and last words;
 2. conjunction (ifpos-ilpos) of the POS tags of the first and last words;
 3. conjunction (ofw-olw) of the outside words;
 4. conjunction (ofpos-olpos) of the POS tags of the outside words.

- **Head words of children** These features include:
 1. Head word (fhw, lhw) of the first and last child;
 2. POS tags of head word (fhpos, lhpos) of the first and last child.

- **Length** (len) The number of words in current phrase.

4.3 New Structural Features

In this task, the objects being modeled are syntax trees which require some mechanism to convert them into feature vectors. Taking syntax trees as inputs, the classifiers should characterize structural properties of syntactic parses, and the design of features to represent syntactic structures requires research effort. We put forward a number of new features to encode the structural information:

- **Rewrite rule** Rewrite rules (rr, prr) expand current phrase and its parent. For prr feature, to distinguish current phrase node and its sisters, we make a symbol to locate the current node. For example, the rr feature for *IP-TPC* in Figure 1 is NP→NP,(VP), and the prr feature is IP→IP,NP,(VP).

- **Combining Categories** Conjunction (c-pc) of the categories of current phrase and its parent. Conjunction (c-pc-gpc) of the categories of current phrase and its parent and grandparent. Conjunction (lc-rc) of the categories of the two siblings. For example, the lc-rc feature of “成绩/achievement” in Figure 1 is IP-VP.

- **POS chain** The sequential containers (pos-c) of each word’s POS. Single character POS chain (spos-c): each POS in a POS chain is clustered to a category defined by its first character. For *IP-TPC*, these feature are NR-P-NN-VV and N-P-N-V.
Table 4: Effect of each feature on the function tag classification when added to the baseline.

Feature	Overall	Syntactic	Semantic
Baseline	86.33	94.95	75.82
+ifw	**87.70**	95.25	**78.24**
+ifpos	**87.82**	95.15	77.22
+ifc	**87.12**	95.13	76.49
+ilw	**87.63**	94.86	**81.87**
+ilpos	**87.24**	95.15	**78.48**
+ilc	**87.52**	94.89	**81.10**
+ofw	86.24	95.06	76.17
+ofpos	**86.43**	94.87	76.98
+olw	**86.84**	95.07	**78.55**
+olpos	**86.55**	95.03	76.84
+ifw-ilw	**87.88**	95.03	**81.26**
+ifpos-ilpos	**88.85**	95.26	**80.22**
+ofw-olw	**86.68**	95.23	77.23
+ofpos-olpos	**86.43**	94.96	76.55
+fhw	**89.24**	**95.33**	**78.23**
+fhpos	**88.89**	**95.41**	**77.92**
+hvw	**86.68**	94.94	**78.09**
+hpos	**86.72**	94.92	**80.95**
+len	**87.07**	94.98	76.82
+rr	**90.40**	**95.39**	**78.79**
+prr	**88.42**	**96.87**	**78.38**
+c-pc	86.56	94.97	75.95
+c-pc-gpc	86.81	95.08	76.92
+lc-rc	86.51	94.89	**77.36**
+pos-c	**88.80**	94.83	**80.32**
+pos-s	**87.74**	94.86	**78.02**
+cct-c	**89.86**	94.73	**79.00**
+cct-w	**87.78**	94.98	**78.34**
+htr	**89.06**	95.06	**77.69**

- **Head Trace** (htr) The sequential container of the head down upon the phrase. For example, the head word of *IP-IPC* is “开放/opening”; therefore this feature of *IP-TPC* is *IP*↓*VP*↓*VP*↓*VV*. This feature is very similar to etree feature in TAG grammar (Liu and Sarkar, 2007).

- **C-commander thread of the head** C-commander\(^2\) thread features, raised by (Sun et al., 2008), are sequential containers of constituents which C-command the head word of the constituent. We design two C-commander threads:
 1. all items in the thread are categories of the C-commanders (cct-c);
 2. using the word content to occupy the head position (cct-w).

For instance, in Figure 1, the noun phrase “广西/Guangxi” and the preposition phrase “对外/opening” are two left c-commanders of the head “开放/opening”, so the cct-w feature for *IP-TPC* is *NP*←*PP*←开放.

\(^2\) C-command is a concept in X-bar syntax theory. Assuming \(\alpha\) and \(\beta\) are two nodes in a syntax tree: \(\alpha\) C-commands \(\beta\) means every parent of \(\alpha\) is ancestor of \(\beta\).
5 Experiments and Analysis

5.1 Experimental Setting

CTB contains comprehensive functional information, and CTB 5.0 is used in our experiments. There are 890 files and 18807 sentences in CTB 5.0. In our experiments, we divided these files into three parts:

- files from chtb.021 to chtb.1100 are used as training set;
- files from chtb.1101 to chtb.1130 as development set;
- files from chtb.001 to chtb.020, and chtb.1131 to chtb.1151 as test set.

In addition, all empty categories are excluded. There are 14853, 1853, 1974 sentences in each data set.

5.2 Feature Performance

Table 4 shows the performance of baseline, and the effect each feature has on three tasks: 1) all labels, 2) syntactic labels, and 3) semantic labels, when added individually to the baseline. These results are based on syntactic features extracted from hand-crafted TreeBank parses. Here, maximum entropy model is used for classification. On all the system improvements, we perform a binominal test of significance at p=0.05, and all significant improvements are marked with a *. From this table, we can see that the most effective features are those so called structural features.

5.3 Classifier Performance

Table 5: F-measures for different classifiers.

	Syntactic	Semantic		
	devel.	test	devel.	test
SNoW	96.92	96.60	82.28	84.19
MaxEnt	97.15	96.53	85.74	86.72
SVM	97.44	96.94	85.46	87.19

We experimented with three popular machine learning algorithms: Support Vector Machine classifier (SVM) (Vapnik, 1998), Maximum Entropy classifier (ME) (Berger et al., 1996), and Sparse Network of Winnows (SNoW) (Roth, 1998). For each algorithm we use the same set of features. In terms of SVM, we used TinySVM\(^3\). All SVM classifiers were realized with default parameters. One-Vs-All strategy is used to solve multi-class classification problem. For ME model, we use maxent\(^4\). For SNoW model, we use UIUC SNoW toolkit\(^5\). In training, SNoW’s default parameters are used with the exception of the separator thickness 1.5, the use of average weight vector, and 5 training cycles.

Table 5 shows the classification performance of different classifiers, both on test and development data set. We can see that these three algorithms show a very similar performance on syntactic labels, while SVM outperforms both, scoring 96.94 on F-measure. SVM and ME model perform similarly on semantic labels, and work much better than SNoW.

5.4 Function Tag Labeling Performance

Table 6 shows the overall tagging performance with all features. The syntactic tags which are useful for recognizing arguments get a very high performance. Comparison with baseline performance (in Table 4) indicates that our new features significantly improve this task. Table 7 shows

\(^3\)http://chasen.org/~taku/software/TinySVM/
\(^4\)http://homepages.inf.ed.ac.uk/s0450736/maxent__\{}\toolkit.html
\(^5\)http://l2r.cs.uiuc.edu/~danr/snow.html
Table 6: Overall performance on gold parses.

	P(%)	R(%)	F_{β=1}
Overall	95.68	93.30	94.47
Syntactic labels	97.05	96.82	96.94
Semantic labels	88.57	85.85	87.19

Table 7: Detailed performance on gold parses.

Ext	P(%)	R(%)	F_{β=1}
Foc	82.50	72.79	77.34
Io	70.00	70.00	70.00
obj	100.00	58.62	73.91
prd	97.55	98.98	98.26
sbl	98.04	97.56	97.80
tpc	97.46	98.07	97.76
bnf	100.00	58.62	73.91
cnd	71.70	58.46	64.41
dir	84.42	88.26	86.30
lgs	75.76	83.33	79.37
loc	92.06	81.36	86.38
mnr	81.93	89.45	85.53
prp	92.86	79.59	85.71
tmp	91.59	89.24	90.40
adv	87.39	72.22	79.09
pn	97.94	92.37	95.08
hln	91.93	83.15	87.32
app	95.72	88.54	91.99
q	76.11	55.84	64.42
wh	76.03	76.67	76.35

the detailed labeling performance for all function labels. Some sparse tags cannot be accurately identified, such as Q. The recall, in general, performs worse than precision. This is mainly for that the negative samples (syntactic nodes are not assigned any function label) is much more than the positive sample.

5.5 Using Automatic Parses

The results in former experiments are based on the use of hand-crafted parses. In practical use, of course, automatic parses will not be as accurate. To gauge the tagging performance in realistic situation, in this section, we report experiments on function tag labeling with automatic parsing information. Charniak (Charniak and Johnson, 2005) parser, which is ported to Chinese, are used to produce full parses. The parser is re-trained using the same training and development data in function tagging. Table 8 summarizes the parsing performance of Charniak parser. Table 9 shows the parsing performance and the function tag labeling performance (evaluation metric was described in (Blaheta and Charniak, 2000)).

6 Conclusion

Function tag assignment has been studied for English and Spanish. In this paper, we address the question of assigning function tags to parsed sentences in Chinese. We describe a Chinese
function tag labeling system and show that good function tagging performance for Chinese can be achieved. A variety of new features are proposed to improve the system. As a process based on syntax trees, structural properties of full syntactic parses should be encoded as classifier’s features. To do this, we introduce a number of structural features to convert syntax structures into flat feature representations. Experiments show that structural information of the inputs are extremely important for function tag labeling, and that our new features characterizing structural information yield significant improvements.

References
Berger, Adam L., Vincent J. Della Pietra, and Stephen A. Della Pietra. 1996. A maximum entropy approach to natural language processing. Comput. Linguist., 22(1).
Blaheta, Don and Eugene Charniak. 2000. Assigning function tags to parsed text. In Proceedings of the First Conference on North American Chapter of the Association for Computational Linguistics.
Blaheta, Don. 2004. Function Tagging. Ph.D. thesis, Brown University, Providence, RI, USA. Adviser-Eugene Charniak.
Charniak, Eugene and Mark Johnson. 2005. Coarse-to-fine n-best parsing and maxent discriminative reranking. In Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics (ACL’05), pages 173–180, Ann Arbor, Michigan, June. Association for Computational Linguistics.
Chrupała, Grzegorz and Josef van Genabith. 2006. Using machine-learning to assign function labels to parser output for Spanish. In Proceedings of the COLING/ACL 2006 Main Conference Poster Sessions.
Duan, Xiangyu, Jun Zhao, and Bo Xu. 2007. Probabilistic models for action-based Chinese dependency parsing. In ECML ’07: Proceedings of the 18th European conference on Machine Learning, pages 559–566, Berlin, Heidelberg. Springer-Verlag.
Gabbard, Ryan, Mitchell Marcus, and Seth Kulick. 2006. Fully parsing the penn treebank. In Proceedings of Human Language Technology Conference of the North American Chapter of the Association of Computational Linguistics.
Jijkoun, Valentin and Maarten de Rijke. 2004. Enriching the output of a parser using memory-based learning. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics.
Liu, Yudong and Anoop Sarkar. 2007. Experimental evaluation of LTAG-based features for semantic role labeling. In Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL), pages 590–599, Prague, Czech Republic, June. Association for Computational Linguistics.

Merlo, Paola and Gabriele Musillo. 2005. Accurate function parsing. In HLT ’05: Proceedings of the Conference on Human Language Technology and Empirical Methods in Natural Language Processing.

Roth, Dan. 1998. Learning to resolve natural language ambiguities: a unified approach. In AAAI ’98/IAAI ’98: Proceedings of the Fifteenth National/Tenth Conference on Artificial Intelligence/Innovative Applications of Artificial Intelligence.

Sun, Honglin and Daniel Jurafsky. 2004. Shallow semantic parsing of Chinese. In Daniel Marcu Susan Dumais and Salim Roukos, editors, HLT-NAACL 2004: Main Proceedings.

Sun, Weiwei, Zhifang Sui, and Haifeng Wang. 2008. Prediction of maximal projection for semantic role labeling. In Proceedings of the 22nd International Conference on Computational Linguistics.

Vapnik, Vladimir N. 1998. Statistical Learning Theory. Wiley-Interscience, September.

Xue, Nianwen and Fei Xia, 2000. The Bracketing Guidelines for the Penn Chinese Treebank.

Zhang, Yue and Stephen Clark. 2008. A tale of two parsers: Investigating and combining graph-based and transition-based dependency parsing. In Proceedings of the 2008 Conference on Empirical Methods in Natural Language Processing, pages 562–571, Honolulu, Hawaii, October. Association for Computational Linguistics.