Integrated bioinformatics analysis reveals ASPM and CENPF with prognostic value in lung cancer

jinghang li
the first affiliated hospital of Nanjing medical university

Jing Zhang
the first affiliated hospital of Nanjing medical university

Lin Huang
the first affiliated hospital of Nanjing medical university

Min Jin
the first affiliated hospital of Nanjing medical university

Sheng Zhao (✉ zhaosheng0824@njmu.edu.cn)
https://orcid.org/0000-0002-4602-1806

Research article

Keywords: Lung cancer; bioinformatical analysis; candidate gene identification; genetic alteration; network analysis

Posted Date: August 21st, 2019

DOI: https://doi.org/10.21203/rs.2.13321/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Lung cancer (LC) is the most frequent type of cancer in the world. But the mechanism of LC is still largely unknown. In this study, we analyzed three lung cancer gene expression microarray of different pathologic types to explore the potential candidate genes in LC by Integrated bioinformatical methods. 459 overlapped differentially expressed genes (DEGs) were explored in three GEO gene expression profile from different pathologic types of lung cancer and function annotation were analyzed. Biological process of the DEGs was enriched in regulation of vasculature development and angiogenesis. The significant molecular function of the DEGs was TGF-β receptor activity. The most significant Reactome pathway of DEGs was cell cycle and extracellular matrix organization pathway. The PPI network of the DEGs was constructed and 23 candidate hub genes were established in the network. Kaplan-Meier survival analysis show 21 genes were confirmed to associated with the prognosis of LC. The genetic alterations analysis of these genes by using cBioPortal shown ASPM has the highest genetic alteration rate of 9% in main pathological types of 3191 LC patients, and CENPF has the second highest alteration rate of 6%. ASPM and CENPF also have a significant co-occurrence relationship in LC, and they both participate in the regulation of cell cycle. In the TF -miRNA-gene network of 21 genes shown CENPF have the most significant value in the network and the most relevant TF are NFYA, E2F1 and MYC. In conclusion, this study explored several key genes about LC and analyzed potential TF of those genes, provides possible therapeutic targets and biomarker for further clinical application.

Background

Lung cancer(LC), one of the highest incidence malignant tumors worldwide, is one of the leading cause of cancer-associated mortality in the world(1). The general mortality of LC was increasing rapidly recent years, from 3.5 million in 1990 to 4.2 million in 2015(2). Due to the difficulties in early diagnosis for LC and lack of effective medical therapy, the improvement of long-term survival rate of LC patients is still too slow(1). The occurrence and progression of lung cancer, like most type of human tumors, is identified as a heterogeneous progress, numerous factors such as environmental factors like air pollution, bad living habits like smoking and genetic factors are all important causes of lung cancer(3, 4). The abnormal expression and alteration of genes is vital to the development of LC(5, 6), and therapy aim at genetic alteration improved the survival of terminal lung cancer patients in recent years(7, 8). Thus, it is very important to find the key genes and explore the precise mechanisms of lung cancer, and this may be helpful for provide biomarker for early diagnosis of LC and find novel therapeutic target for lung cancer.

The rapid progress in gene-expression microarray and bioinformatics have promoted the discovery of key genes and underlying molecular mechanisms in human diseases especially in tumors(9-11). In recent years, numerous microarray studies of LC have been carried out and produced a large amount of chip data which mainly instore in public database like Gene Expression Omnibus database(GEO) and The Cancer Genome Atlas (TCGA). Most microarray studies of LC are single cohort study and have small sample size, and not performed according to the pathological type of lung tumor. All these effect cause a poor reliability of the results. However, using integrated bioinformatics methods to integrate different
studies, increasing the sample size and analyzing microarray data according to the pathological type of lung tumor might reduce these disadvantages.

In this study, we selected three original human lung cancer microarray datasets from GEO, GSE74706 including 10 LAC lung tissues, 8 LSCC lung tissues and 18 normal lung tissues, GSE60052 including 79 SCLC lung tissues and 7 normal control lung tissues, GSE19804 including 60 normal control lung tissues and 60 lung cancer tissues. Then we analyzed DEGs by using online tools GEOR2 and BioJupies (12) according to the pathological type of lung tumor, and identified overlapped DEGs in all three pathological type, and then performed GO term and pathway enrichment analysis, and explored key candidate genes in the PPI network by using Cytoscape software. We further performed Kaplan-Meier survival analysis of the hub genes use online tool Kaplan-Meier Plotter (http://kmplot.com/analysis/). Then we used The cBioPortal for Cancer Genomics (http://www.cbioportal.org/)(13) to explore the genetic alterations and co-occurrence of the hub genes in LC patients. And finally TF-miRNA-gene network was constructed by NetworkAnalyst (https://www.networkanalyst.ca/)(14) to explore potential regulatory mechanism of these genes.

Results

1. **Identification of DEGs in Different Pathologic Types of LC**

We screened 1328 DEGs of lung cancer from GSE19804, 4189 DEGs of LAC and 5764 DEGs of LSCC from GSE74706, 3368 DEGs of SCLC from GSE60052, with cut-off criterion of adjust P value \(< 0.05 \) and \(|\log FC| \geq 1\). And 459 overlapped DEGs were obtained (Figure 1).

2. **Functional Annotation and Pathways Enrichment of DEGs**

Gene Ontology analysis and Reactome pathway analysis of DEGs were performed by Enrichr. In the Gene Ontology analysis the DEGs were enriched into three groups, including biological process, molecular function and cellular component (Figure 2). In the biological process group, the DEGs mainly enriched in positive regulation of vasculature development, regulation of angiogenesis, positive regulation of angiogenesis. In the molecular function group, the DEGs mainly enriched in transforming growth factor beta-activated receptor activity, transmembrane receptor protein serine/threonine kinase activity, protein homodimerization activity, integrin binding, transforming growth factor beta binding, histone kinase activity, amyloid-beta binding, BMP receptor activity, endopeptidase inhibitor activity, kinase binding. In the cellular component group, the DEGs mainly enriched in condensed nuclear chromosome, centromeric region, amellar body, integral component of plasma membrane, condensed chromosome kinetochore, condensed nuclear chromosome kinetochore, spindle, G-protein coupled receptor dimeric complex, platelet alpha granule, membrane raft, condensed chromosome, centromeric region. In the Reactome pathway analysis, the most significant pathway was Cell Cycle and Mitotic, Cell Cycle and Hemostasis, Platelet degranulation, Extracellular matrix organization, signaling by Rho GTPases, Response to elevated platelet cytosolic Ca2, Mitotic Prometaphase.
3. PPI Network Construction and Key Candidate Genes Screening

All the 459 DEGs were filtered into the PPI network (Figure 3). We used two kinds of topological algorithms (Degree, MCC) to calculate the top-scoring 25 nodes (Figure 4A-B, Table 1A-B), and we selected 23 overlapped nodes (CDK1, CDC20, AURKA, UBE2C, CCNA2, KIF11, MKI67, BUB1B, TOP2A, PBK, MAD2L1, TPX2, BIRC5, ASPM, RRM2, BUB1, DLGAP5, TTK, KIF2C, NUSAP1, NCAPG, CENPF, MELK) in the network as the candidate genes for further study (Figure 4C).

Table 1A

Rank	Name	Score
1	CDK1	69
2	CDC20	64
3	AURKA	63
4	UBE2C	62
4	CCNA2	62
4	KIF11	62
4	EZH2	62
8	MKI67	60
9	BUB1B	59
9	TOP2A	59
9	PBK	59
12	MAD2L1	58
12	TPX2	58
12	BIRC5	58
12	ASPM	58
12	RRM2	58
17	BUB1	57
17	DLGAP5	57
17	TTK	57
17	KIF2C	57
17	NUSAP1	57
17	CDKN3	57
23	NCAPG	56
23	CENPF	56
23	MELK	56

Table 1B
Top 25 in network string_interactions.tsv ranked by MCC method

Rank	Name	Score
1	CDC20	3.75E+45
1	UBE2C	3.75E+45
1	MAD2L1	3.75E+45
1	CCNA2	3.75E+45
1	BUB1	3.75E+45
1	BUB1B	3.75E+45
1	CDK1	3.75E+45
1	TPX2	3.75E+45
1	AURKA	3.75E+45
1	KIF11	3.75E+45
1	DLGAP5	3.75E+45
1	NCAPG	3.75E+45
1	TTK	3.75E+45
1	TOP2A	3.75E+45
1	NUSAP1	3.75E+45
1	PBK	3.75E+45
1	ASPM	3.75E+45
1	RRM2	3.75E+45
1	MELK	3.75E+45
20	KIF2C	3.75E+45
20	CENPF	3.75E+45
22	BIRC5	3.75E+45
23	MKI67	3.75E+45
24	PRC1	3.75E+45
25	FANCI	3.75E+45

4. Kaplan-Meier Survival Analysis of the Candidate Genes

We further performed Kaplan-Meier survival analysis of these candidate genes in 2437 lung cancer patients by using online tool Kaplan-Meier Plotter. And discovered 21 genes (ASPM AURKA BIRC5 BUB1 CCNA CDC20 CENPF CT84 CT96 DLGAP5 KIF2C KIF11 MAD2L1 MEIK MK167 NCAPG RRM2 SSK1 TOP2A TPX2 UBE2C) have significant association with the prognosis of lung cancer in this analysis (Figure 5).

5. The Genetic Alteration Analysis of Candidate Genes in LC patients

We examine the genetic alterations of these 21 genes by using cBioPortal. The result shown 19 genes have genetic alterations in the main pathological type of lung tumor (Figure 6), and amongst these genes ASPM has the highest genetic alteration rate of 9% in 3191 LC patients, and CENPF has the second highest alteration rate of 6%. ASPM and CENPF also have a significant co-occurrence relationship in LC (Table 2).

Table 2 Co-occurrence relationship of the 19 candidate genes
Table 1: Log2 Odds Ratio and p-Value

A	B	Log2 Odds Ratio	p-Value	q-Value	Tendency
ASPM	CENPF	>3	<0.001	<0.001	Co-occurrence
TPX2	UBE2C	>3	<0.001	<0.001	Co-occurrence
CDC20	KIF2C	>3	<0.001	<0.001	Co-occurrence
AURKA	UBE2C	>3	<0.001	<0.001	Co-occurrence
AURKA	TPX2	2.995	<0.001	<0.001	Co-occurrence
ASPM	CDC20	2.312	<0.001	<0.001	Co-occurrence
ASPM	KIF2C	2.192	<0.001	<0.001	Co-occurrence
ASPM	BIRC5	1.858	<0.001	0.003	Co-occurrence
RRM2	BUB1B	>3	<0.001	0.007	Co-occurrence
ASPM	BUB1B	1.641	<0.001	0.008	Co-occurrence
PBK	BUB1B	2.163	<0.001	0.015	Co-occurrence
CENPF	TTK	1.585	0.001	0.016	Co-occurrence
CENPF	TPX2	1.44	0.001	0.016	Co-occurrence
ASPM	KIF11	2.036	0.001	0.016	Co-occurrence
CENPF	RRM2	2.308	0.001	0.016	Co-occurrence
PBK	TTK	1.838	0.002	0.021	Co-occurrence
BUB1	CENPF	1.863	0.002	0.021	Co-occurrence
ASPM	TPX2	1.163	0.002	0.022	Co-occurrence
BIRC5	KIF11	>3	0.002	0.022	Co-occurrence
PBK	UBE2C	2.404	0.004	0.037	Co-occurrence
CCNA2	MAD2L1	>3	0.005	0.037	Co-occurrence
RRM2	TPX2	2.386	0.005	0.037	Co-occurrence
ASPM	RRM2	1.799	0.006	0.042	Co-occurrence

6. Transcription Factor(TF) -miRNA-Gene Network of the Candidate Genes

In the TF -miRNA-gene network of 21 genes, CENPF have the most significant value in the network, and the most relevant TF are NFYA, E2F1 and MYC(Figure 7). There were no significant miRNA associated with these genes in the network.

7. Function and Pathway Analysis of ASPM and CENPF

The PPI network of ASPM shown ASPM and CENPF had significant interaction(Figure 8), and the related function and pathway of these two genes were both enriched in cell cycle(Supplementary Tables.1-4).

Discussion

Even though there was a great progress in targeted therapy and immunotherapy for lung cancers, the overall mortality of lung cancer is still high. It is critical to early diagnosis and treatment for lung cancer. And it is important to seeking for novel therapy targets and biomarkers for the prevention, diagnose and treatment of lung cancer. Bioinformatic analysis and microarray expression profiling analysis is considered as a powerful, comprehensive and accurate method to discover novel diagnosis markers or therapeutic targets for various diseases, particularly for cancers.
In this study, we integrated three lung cancer profile datasets from GEO database, and analyzed the data according to the pathologic types of lung cancer. And identified 459 overlapped DEGs in three main pathologic types of lung cancer, including LAC, LSCC and SCLC. GO term enrichment analysis was performed for annotating DEGs and the result demonstrated that the significant biological process related to cancer was regulation of vasculature development and angiogenesis. Angiogenesis is essential for tumor growth and metastasis, and play an important role in the control of cancer progression. Angiogenesis has been validated as an effective therapeutic target in several kinds of tumors including lung cancers through randomized controlled clinical trials, and one of these effective drug is vascular endothelial growth factor (VEGF) pathway inhibitors(15, 16).

The significant molecular function of the DEGs was TGF-β receptor activity. The TGF-β pathway is important for the genesis and development of tumor. In the initiation stage of cancer development, TGF-β acts as a potential tumor suppressor and play a critical role in inhibiting the genesis of tumor by suppressing the proliferation of tumor epithelial cells. As in the stage of tumor progresses, TGF-β transfer into a tumor promoter and participates in the process of cancer progress by promoting the proliferation, invasion and metastasis of cancer cells and also vital for keeping the potentiality of cancer stem cell(17, 18).

In the Reactome pathway analysis, the most significant pathway of DEGs was cell cycle and extracellular matrix organization pathway. Cell cycle is a fundamental process of cell life, which controls the growth and proliferation of cell. Abnormal cell cycle is strongly associated with cell carcinogenesis. Cyclin-dependent kinases(Cdks), a key factors that regulate the cell cycle, is crucial in cell cycle, and is an ideal therapy target in tumor(19). Extracellular matrix (ECM) is an important tissue barrier to prevent tumor metastasis. The key components of ECM, fibronectin and laminin, are connected to the surface membrane integrin receptor of cancer cell, and also determines the shape of cancer cell and controls the differentiation and migration of cancer cell(20).

The PPI network of DEGs were constructed and 23 key candidate genes were identified, and 21 genes have significant association with the prognosis of lung cancer. Amongst these genes, ASPM had the highest genetic alteration rate of 9% in 3191 LC patients of three main pathological types, and CENPF has the second highest alteration rate of 6%. Data shown that ASPM and CENPF had a significant co-occurrence relationship in LC and these two genes have an interaction in the PPI network, the related function and pathway of these two genes are both enriched in cell cycle. The main genetic alteration of ASPM and CENPF was amplification and missense mutation. ASPM encode centrosomal protein and play a critical role in regulating proliferative divisions of neuroepithelial cells and neurogenesis, and participates in malignant progression of many kind of tumors(21, 22). The overexpression of ASPM had been proved to be related with the pathological staging and poor prognosis in liver cancer patients, pancreatic cancer, ovarian cancer and glioblastoma(23-25).

To explore potential underlying mechanism of the candidate hub genes, we constructed TF-miRNA-gene network of 21 genes, and the result shown CENPF had the most significant value in the network. CENPF
(centromere protein F), which mainly expressed in the G2/M cell cycle phase, is an important protein for cell cycle regulation by recruiting the checkpoint proteins like Mad1 and BubR1, resulting in a consistent response of checkpoint. CENPF has been identified as a key gene in several cancers especially in prostate cancer(26). CENPF have been reported as critical regulator of the COUP-TFI-FOXM1-CENPF axis in human prostate cancer, which was activated in the progress of metastasis and resulted in a poor prognosis in prostate cancer(27). Decrease the activity of CENPF can remarkably inhibit tumorigenesis in prostate cancer mouse models(28). Even so ASPM and CENPF have been proved as a master regulator in several cancers, but there are rare reports about that ASPM and CENPF are associated with lung cancer, here we find that ASPM and CENPF are poor prognostic factors of lung cancer and both have high genetic alteration rate in the main pathological types of lung cancer. This result indicate that ASPM and CENPF may be potential therapy targets or biomarkers of lung cancer.

TF -miRNA-gene network revealed the most relevant TF are NFYA, E2F1 and MYC, and CENPF was the central node in the network, and the association between CENPF and these TFs are rarely been reported. E2F1 and MYC play important role in cell cycle progression and cell apoptosis and associated with the progress of several tumors(26, 29), these means E2F1 and MYC may interact with CENPF and participate in the tumorigenesis by regulating the cell cycle.

Conclusion

In this study we identified ASPM and CENPF as key genes in three main pathologic types of main pathological types of lung cancer, including LAC, LSCC and SCLC and these two genes may become potential therapy targets or biomarkers of lung cancer. At the same time, there are several limitations about our study. The main limitation is that the results of our study is obtained from microarray data and public databases through bioinformatic analysis, and can't provide real information on gene expression level, protein activity and genetic alteration, multicenter and large sample follow-up studies are necessary to verify our results.

Materials And Methods

1. The Information of Microarray Data and Identification of DEGs

Lung cancer and normal lung tissues gene expression profile of GSE74706, including 10 LAC lung tissues, 8 LSCC lung tissues and 18 normal lung tissues, GSE60052, including 79 SCLC lung tissues and 7 normal control lung tissues, GSE19804, including 60 normal control lung tissues and 60 lung cancer tissues were obtained from NCBI-GEO. We analyzed the data according to the pathologic types of lung cancer. The data analysis of GSE74706 and GSE19804 was used GEOR2, an online tools of GEO. The data analysis of GSE60052 was used BioJupies (https://amp.pharm.mssm.edu/biojupies/) (12), an online analysis tools of GEO RNA-seq Data. The criteria of DEGs was adjust P value ≤ 0.05 and |logFC| ≥ 1. We explored overlapped genes in different lung cancer pathologic types.
2. Functional Annotation and PPI Network of DEGs

Gene Ontology analysis and Reactome pathway analysis of DEGs were performed by Enrichr (http://amp.pharm.mssm.edu/Enrichr/) (30), and the cut-off criterion was P value \leq 0.05. The PPI network of the DEGs was constructed by using STRING (http://string-db.org) (31) with the threshold of confidence score >0.4. We visualized the PPI network by using Cytoscape software platform (32).

3. Key Candidate Genes Screening

In the PPI network, we calculated the degree of connectivity of each node by using cytoHubba, a APP of Cytoscape software platform. To add credibility to the results, we used two kinds of topological algorithms (MCC, Degree) to calculate the top-scoring 25 nodes, and choose overlapped nodes in both algorithms method as hub genes for further study.

4. Kaplan-Meier Survival Analysis of the Candidate Genes

We performed Kaplan-Meier survival analysis of the hub genes by using Kaplan-Meier Plotter (http://kmplot.com/analysis/), which contain survival data of 2437 lung cancer patients. The criteria was log-rank P value ≤ 0.05. The genes who had a significant association with the prognosis of LC were selected for further study.

5. The Genetic Alteration Analysis of Candidate Genes in LC patients

We used The cBioPortal for Cancer Genomics (http://www.cbioportal.org/) (13) to explore the genetic alterations and co-occurrence of the hub genes in LC patients. We choose five study about LC including 3246 LC samples totally.

6. Transcription Factor (TF)-miRNA-Gene Network of the Candidate Genes

TF-miRNA-gene network was constructed by NetworkAnalyst (https://www.networkanalyst.ca/) (14) to explore potential regulatory mechanism of these genes.

7. Function and Pathway Analysis of ASPM and CENPF

The PPI network of ASPM and CENPF was constructed by using STRING and Gene Ontology analysis and KEGG pathway analysis of ASPM and CENPF associated genes were performed in STRING.

Abbreviations

LC, lung cancer;
LSCC, Lung squamous cell carcinoma;
SCLC, small cell lung cancer;
Declarations

Acknowledgements

We wish to thank Dr. Chunlei zhou (Department of Pathology, Children's Hospital of Nanjing Medical University) for the manuscript review and literature support. We wish to thank Mr. Jing Zhang (Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University) for the help with bioinformatics analysis.

Availability of data and materials

The datasets produced in current study is available from the corresponding author on reasonable request.

Authors’ contributions

Sheng Zhao designed the study and coordination of the study. Jinghang Li analyzed the data and edited the manuscript. Jing Zhang help to analyzed the data and revise the manuscript. All authors read and approved the final manuscript.

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Competing interests

The authors declare that they have no competing interests.

References

1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians. 2018;68(6):394-424.
2. Cohen AJ, Brauer M, Burnett R, Anderson HR, Frostad J, Estep K, et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. Lancet. 2017;389(10082):1907-18.

3. Aran V, Victorino AP, Thuler LC, Ferreira CG. Colorectal Cancer: Epidemiology, Disease Mechanisms and Interventions to Reduce Onset and Mortality. Clinical colorectal cancer. 2016;15(3):195-203.

4. Frusch N, Bosquee L, Louis R. [Lung cancer. Epidemiology and etiologic factors]. Revue medicale de Liege. 2007;62(9):548-53.

5. Schwartz AG, Prysak GM, Bock CH, Cote ML. The molecular epidemiology of lung cancer. Carcinogenesis. 2007;28(3):507-18.

6. Fang S, Wang Z. EGFR mutations as a prognostic and predictive marker in non-small-cell lung cancer. Drug design, development and therapy. 2014;8:1595-611.

7. Sequist LV, Soria JC, Goldman JW, Wakelee HA, Gadgeel SM, Varga A, et al. Rociletinib in EGFR-mutated non-small-cell lung cancer. The New England journal of medicine. 2015;372(18):1700-9.

8. Cappuzzo F, Bemis L, Varella-Garcia M. HER2 mutation and response to trastuzumab therapy in non-small-cell lung cancer. The New England journal of medicine. 2006;354(24):2619-21.

9. Urabe F, Matsuzaki J, Yamamoto Y, Kimura T, Hara T, Ichikawa M, et al. Large-scale Circulating microRNA Profiling for the Liquid Biopsy of Prostate Cancer. Clinical cancer research : an official journal of the American Association for Cancer Research. 2019.

10. Gordian E, Welsh EA, Gimbrone N, Siegel EM, Shibata D, Creelan BC, et al. Transforming growth factor beta-induced epithelial-to-mesenchymal signature predicts metastasis-free survival in non-small cell lung cancer. Oncotarget. 2019;10(8):810-24.

11. Roth A, Boulay K, Gross M, Polycarpou-Schwarz M, Mallette FA, Regnier M, et al. Restoring LINC00673 expression triggers cellular senescence in lung cancer. RNA biology. 2018.

12. Torre D, Lachmann A, Ma'ayan A. BioJupies: Automated Generation of Interactive Notebooks for RNA-Seq Data Analysis in the Cloud. Cell systems. 2018;7(5):556-61.e3.

13. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer discovery. 2012;2(5):401-4.

14. Xia J, Gill EE, Hancock RE. NetworkAnalyst for statistical, visual and network-based meta-analysis of gene expression data. Nature protocols. 2015;10(6):823-44.

15. Liotta LA, Steeg PS, Stetler-Stevenson WG. Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell. 1991;64(2):327-36.

16. Folkman J., . The role of angiogenesis in tumor growth. Seminars in Oncology. 2002;29(6):15-8.

17. Drabsch Y, ten Dijke P. TGF-beta signalling and its role in cancer progression and metastasis. Cancer metastasis reviews. 2012;31(3-4):553-68.

18. Papageorgis P. TGFbeta Signaling in Tumor Initiation, Epithelial-to-Mesenchymal Transition, and Metastasis. Journal of oncology. 2015;2015:587193.
19. Cicenas J, Kalyan K, Sorokinas A, Jatulyte A, Valiunas D, Kaupinis A, et al. Highlights of the Latest Advances in Research on CDK Inhibitors. Cancers. 2014;6(4):2224-42.

20. Berrier AL, Yamada KM. Cell-matrix adhesion. Journal of cellular physiology. 2007;213(3):565-73.

21. Zhong X, Liu L, Zhao A, Pfeifer GP, Xu X. The abnormal spindle-like, microcephaly-associated (ASPM) gene encodes a centrosomal protein. Cell cycle (Georgetown, Tex). 2005;4(9):1227-9.

22. Bikeye SN, Colin C, Marie Y, Vampouille R, Ravassard P, Rousseau A, et al. ASPM-associated stem cell proliferation is involved in malignant progression of gliomas and constitutes an attractive therapeutic target. Cancer cell international. 2010;10:1.

23. Satow R, Shitashige M, Kanai Y, Takeshita F, Ojima H, Jigami T, et al. Combined functional genome survey of therapeutic targets for hepatocellular carcinoma. Clinical cancer research : an official journal of the American Association for Cancer Research. 2010;16(9):2518-28.

24. Wang WY, Hsu CC, Wang TY, Li CR, Hou YC, Chu JM, et al. A gene expression signature of epithelial tubulogenesis and a role for ASPM in pancreatic tumor progression. Gastroenterology. 2013;145(5):1110-20.

25. Horvath S, Zhang B, Carlson M, Lu KV, Zhu S, Felciano RM, et al. Analysis of oncogenic signaling networks in glioblastoma identifies ASPM as a molecular target. Proceedings of the National Academy of Sciences of the United States of America. 2006;103(46):17402-7.

26. Aytes A, Mitrofanova A, Lefebvre C, Alvarez MJ, Castillo-Martin M, Zheng T, et al. Cross-species regulatory network analysis identifies a synergistic interaction between FOXM1 and CENPF that drives prostate cancer malignancy. Cancer cell. 2014;25(5):638-51.

27. Lin SC, Kao CY, Lee HJ, Creighton CJ, Ittmann MM, Tsai SJ, et al. Dysregulation of miRNAs-COUP-TFII-FOXM1-CENPF axis contributes to the metastasis of prostate cancer. Nature communications. 2016;7:11418.

28. Mitrofanova A, Aytes A, Zou M, Shen MM, Abate-Shen C, Califano A. Predicting Drug Response in Human Prostate Cancer from Preclinical Analysis of In Vivo Mouse Models. Cell reports. 2015;12(12):2060-71.

29. Yu L, Fang F, Lu S, Li X, Yang Y, Wang Z. IncRNA-HIT promotes cell proliferation of non-small cell lung cancer by association with E2F1. Cancer gene therapy. 2017;24(5):221-6.

30. Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles GV, et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC bioinformatics. 2013;14:128.

31. Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, et al. STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic acids research. 2013;41(Database issue):D808-15.

32. Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics (Oxford, England). 2011;27(3):431-2.

Figures
Figure 1

Venn diagram of overlapped DEGs in GSE74706, GSE60052, GSE19804 dataset according to different pathologic types of lung cancer.

CC	MF
Baseline regulation of vasculature development (GO:0043708)	Transforming growth factor beta-activated receptor activity (GO:0005130)
Regulation of angiogenesis (GO:0045701)	Insulin-like growth factor receptor signaling pathway (GO:0036075)
Baseline regulation of development (GO:0033283)	Protein homodimerization activity (GO:0042694)
Necrotic blood vessel remodeling (GO:0045881)	Inhibition of angiogenesis (GO:0005178)
Regulation of gap junction ion channel activity (GO:0016905)	Transforming growth factor beta binding (GO:0005431)
Mitotic arrest activity (GO:0045759)	Antibiotic resistance (GO:0015429)
Interphase nuclear chromosome, centromeric region (GO:0007076)	Cell cycle, mitotic, Homo sapiens, R-HSA-43278
Nuclear body (GO:0042399)	Cell cycle, Homo sapiens, R-HSA-43877
Integral component of plasma membrane (GO:0030544)	Mitotic platelet aggregation, Homo sapiens, R-HSA-44323
Interphase chromosome kinetochore (GO:0007377)	Platelet degranulation, Homo sapiens, R-HSA-44815
Interphase nuclear chromosome, centromeric region (GO:0007078)	Tumor necrosis factor, Homo sapiens, R-HSA-1474244
Chromosome (GO:0000568)	T cell receptor activation, Homo sapiens, R-HSA-1483115
Alpha receptor (GO:0031907)	Response to external stimulus, Homo sapiens, R-HSA-70005
Antigen (GO:0005127)	Response to growth factor stimulus, Homo sapiens, R-HSA-49827
Interphase chromosome, centromeric region (GO:0000779)	Mitotic sister chromatid cohesion, Homo sapiens, R-HSA-2300257
Interphase chromosome, centromeric region (GO:0000779)	Cell cycle, mitotic, Homo sapiens, R-HSA-70002
Figure 2

Gene Ontology analysis and Reactome pathway analysis of DEGs. biological process(BP) group, molecular function(MF) group, cellular component(CC) group and reactome pathway was analyzed by Enrichr with p < 0.05 as the cut-off criterion. The length of the bar represent the gene number of enrichment.

Figure 3

PPI network of 459 DEGs. The green nodes represent DEGs, the lines between nodes represent the interaction of two nodes.
Figure 4

The hub genes identified from the PPI network. Hub genes was identified by CytoHubba using two kinds of topological algorithms (Degree, MCC) to calculate the top 25 nodes respectively. A. Top 25 hub genes in degree algorithms. B. Top 25 hub genes in MCC algorithms. C. the Venn diagram of 23 overlapping hub genes in both algorithms.
Figure 5

Kaplan–Meier analysis of 23 hub genes in the Kaplan–Meier plotter database about lung cancer patients. Only show the significant 21 hub genes. The red curve represent high expression of the gene. The dark curve represent low expression of the gene.

Figure 6
The genetic alteration analysis of Candidate Genes in 3191 lung cancer patients in the main pathological type of lung tumor. 19 genes have shown genetic alterations in lung cancer.

Figure 7

TF-miRNA-Gene Network of the Candidate Genes. Red nodes represent candidate genes, green square represent TF, blue square represent miRNA. The size of the nodes and squares means the significant degree in the network.
Figure 8

PPI network of ASPM.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- supplement1.pdf