Baku Baku Raja Traditional Game Model to Enhance Basic Movement Skills on Elementary Students in Indonesia

Hendriana Sri Rejeki¹,²*, Suhardjana¹, Wawan S. Suherman¹, A. Ardiansyah³, Erif Ahdhianto⁴

¹Department Sport and Science, Yogyakarta State University, Indonesia
²Department of Physical Education, Health and, Recreation, Universitas Tadulako, Indonesia
³Department of Elementary Teacher Education, Institut Agama Islam Negeri Palu, Indonesia
⁴Department of Elementary School Teacher Education, Universitas Nusantara PGRI Kediri, Indonesia

Received June 18, 2020; Revised August 17, 2020; Accepted August 28, 2020

Abstract
Enhancement in basic movement skills is a fundamental need for elementary school students in achieving the goals of physical education. The aim of this study was to produce a traditional game model called Baku Baku Raja to enhance Basic Movement skills on elementary students. Baku Baku Raja traditional game model has been adapted to the aspects of growth and development as well as the characteristics of children at their age, which are packaged through physical activities. This applied research and development method with product development steps by Borg and Gall. The research participants were 3rd-grade elementary school students in Palu, Indonesia. The results showed that the Baku Baku Raja traditional game model is feasible and effective in enhancing basic movement skills on elementary students. The researchers recommend that Baku Baku Raja traditional game model is used as an alternative for educators to optimize the success of student performance on not only psychomotor aspects but also cognitive and affective aspects.

Keywords
Learning Model, Traditional Games, Basic Movement

1. **Introduction**

Physical education has the aim to help students enhance physical fitness and health through the introduction and inculcation of positive attitudes and basic physical abilities and various physical activities. Physical education is a study that analyzes associations. The goal of physical education can be achieved if education is carried out in schools properly [1]. Therefore, physical education provided in schools must conform the curriculum for physical education, sports, and health.

Physical education taught in schools has a very important role, i.e., to provide opportunities for educational participants to be directly involved in various learning experiences systematically—school physical education from time to time [2]. In line with contemporary theory, the relationship between the goals of the definition is more nuanced [3]. Physical education in schools is not just about educating through physical activities. Still, the process of learning about physical education is also used as one of the media to solve movement problems.

Physical education is the school program designed to lead youngsters to a lifetime of physical activity. Physical education sets its quality in guiding youngsters in the process of becoming physically active for a lifetime.
children to lifelong physical activity [4]. The goal of
quality physical education is to guide children in the
process of becoming physically active for a lifetime.
Implementation of physical education in elementary school
is significant because, at that age, a child is in a period of
physical growth and develops movement skills that play an
important role in early formation to become a quality
individual later.

The traditional game in Central Sulawesi is a game that
is done with motion, while in the game, children usually
move to the left, sideways front and back. Baku Baku Raja
traditional game is for children to do during school breaks
and in the afternoon when children gather. The game is
suitable for players is between 7-12 years [5].

Elementary school age is a period that determines the
growth and physical development as well as the movement
that plays an essential role in the formation of quality
individuals in the future. The existing structure and
curriculum of physical education in elementary schools
that currently exist have characteristics that comprise the
necessary technical skills of several sports. The primary
technical skills of this sport can be mastered if the players
have previously mastered basic movement skills. The basic
movement skills in elementary schools can be divided into
several categories, including three types, namely:
locomotor, non-locomotor, and manipulation [6]. One of
the objectives of the implementation of physical education,
sports, and health in elementary schools is to enhance the
ability and basic movement skills [7].

Human’s basic movements are walking, running,
jumping, and throwing [8]. Elementary school students
have possessed this basic form of movement. Running and
jumping are the basic movements that need to be developed
in elementary school. The basic movement has an
important role in learning physical education, especially
sports that require movement of places or weight points
such as sprinting, long jump, high jump, and other sports
[9]. Elementary school students often experience obstacles
or difficulties in participating in physical education
learning that requires basic movement. In general, physical
education learning in schools, including elementary
schools, is based on actual skills or using real equipment.
From the teaching of these skills, it turns out that
elementary school students experience obstacles or
difficulties because, in childhood, the basic ability of
motion has just developed, so that physical education
learning cannot be carried out optimally [10], [11]. For
physical education learning, specifically, basic movement
material to succeed, a conducive environment must be
created, including modifying tools and creating learning
models.

Basic motor skills can be applied in various games,
sports, and physical activities that are carried out daily [12].
Through play activities, it is very appropriate to develop
basic movement skills of children in elementary school,
because basically, the world of children is the world of

2. Methods

2.1. Research Design

This study developed the traditional game model of
Baku Baku Raja to enhance the basic movement skills of
elementary school students. The stages of developing the
game model used research and development method that
are adapted from the steps of Borg and Gall product
development [13].

Figure 1. Research Stages Diagram

Figure 1 explains the three main stages of development
consisting of the pre-development, development, and
post-development stages. In the pre-development stage, the
step taken is a needs analysis. Meanwhile, the development
stage includes product design (initial product development),
design validation, small-scale trials and revisions, and
large-scale trials and revisions. Finally, the
post-development stage includes the final product and
effectiveness testing.
The effectiveness of the test in this study is used to test whether a final game model product that has been produced is feasible and has an advantage in the implementation in the field. The method used in this final product effectiveness test is an experiment.

The type of experiment used is pre-experimenting design, more specifically, a single group design with a pretest-posttest (one group pretest-posttest design) [14]. This type of experiment is carried out to compare conditions after being treated in the form of implementing a game model. The pre-experimental design used is as follows:

Pretest -------- > Treatment -------- > Posttest

Thus, the effectiveness of the use of game models developed in this study was known by analyzing the effect of the treated model. The effect was found out by comparing the results of motor skills before being given treatment with the results of motor skills, before being given treatment with the results after being treated.

2.2. Research Participants

The research participants were 3rd-grade elementary school students in the city of Palu, Indonesia. The purposive sampling technique was used to determine target participants as needed [14]. Research participants for the needs of small-scale trials were conducted at Kawatuna Elementary School, with a total of 33 students. Research participants for the needs of large-scale trials were conducted at Paboya Elementary School and Lasoani Elementary School, with a total of 55 students. Meanwhile, research participants for the needs of effectiveness test were conducted at Tanamodindi Elementary School and Lasoani Elementary School, with a total of 60 students.

2.3. Data Collection Technique

The collection techniques used were different depending on each stage of the development of the game model. Therefore, the instruments used were also different at each stage of development. In the pre-development stage, the instruments used were observation sheets and interview guidelines. The observation sheet had a category of observation, including learning time, teacher skills facilities, and infrastructures. It was used to observe the problems and needs directly. Meanwhile, interview guidelines were used to gather information through conversations with research participants.

In the development stage, the instrument used was a questionnaire and observation sheet—the questionnaire contained 23 items of statements regarding the categories of material content, construction, and language. The questionnaire was applied to assess game models by experts in physical education and practitioners, namely physical education teachers. Meanwhile, the observation sheet was used to determine the activity of basic movement skills during the implementation of the game model, which is also filled in by physical educators and practitioners. The results of validation by experts showed that the questionnaire and observation sheet had a Content Validity Index (CVI), namely 0.965 and 0.921, respectively, with a Content Validity Ratio (CVR) of 0.00, so this questionnaire was declared valid by the expert.

In the post-development stage, the instruments used were the Motor Skills Test (MST) and the questionnaire. The motor skills test was adapted from the Ulrich Test of Gross Motor Development-2 (TGMD-2) [15]. This test consisted of 12 test items that have two sub-variables categories, namely locomotor (run, gallop, hop, leap, horizontal jump, slide) and control objects (striking a stationary ball, stationary dribble, catch, kick, overhand throw and underhand roll). MST had been tested for validity and reliability by using Confirmatory Factor Analysis (CFA). Tests showed that the Goodness-of-Fit Index (GFI) was 0.96 and the Adjusted GFI (AGFI) was 0.95. In addition, the reliability coefficient obtained in the locomotor sub-variable was 0.91 and the control object was 0.85 so that the MST was declared valid and reliable before use [16]. Meanwhile, the questionnaire was used to find out the students' responses after implementing the game model with 10 items of statements on aspects of pleasure, understanding, activity, and interest.

In this study, the implementation of game models in small- and large-scale trials was conducted during two meetings, respectively. The first meeting explained the game model and the second meeting to apply the game model. Meanwhile, in the effectiveness test, the game model is conducted for four meetings. The first and fourth meetings assess basic movement skills before and after the game model is applied, while the second and third meetings to explain and apply the game model, respectively.

2.4. Data Analysis

The data analyzed in this study consisted of qualitative data and quantitative data. The qualitative data were in the form of descriptive data obtained from the pre-development and development stages. This datum is in the form of descriptive words or sentences obtained from observations, interviews, and suggestions or input from the validators. This qualitative datum is analyzed by organizing data, describing it into units, synthesizing, arranging into patterns, choosing which are important and which will be studied, and making conclusions that can be conveyed to others [17].

Meanwhile, quantitative data were in the form of numerical data obtained from the development and post-development stages. This datum was obtained from questionnaires and MST. Data obtained from
questionnaires were analyzed based on the categorization of the feasibility of the model, according to Azwar [18] (See Table 1).

Formula	Interval	Category
$X < (\mu - 1,0\sigma)$	$X < 7.7$	Less
$(\mu - 1,0\sigma) \leq X < (\mu - 1,0\sigma) + 7.7$	$7.7 \leq X < 15.3$	Fair
$(\mu - 1,0\sigma) + 7.7 \leq X$	$15.3 \leq X$	Good

Information:
$X = \text{Number of Participant Scores}$
$\mu = \text{Ideal Mean}$
$\sigma = \text{Number of items} \times \text{standard ideal division}$
$\sigma = \frac{1}{6} \left(\text{number of items} \times \text{highest score} - \text{number of items} \times \text{lowest score} \right)$

On the other hand, data obtained from the administration of MST were analyzed by descriptive statistics and inferential statistics. Descriptive analysis was done by calculating the mean score and the score of students' motor skills gain before and after the game model was applied. Meanwhile, the inferential analysis was conducted using a t-test at the significance level of 5 percent. This test was intended to analyze the effectiveness of the implementation of the developed game model to students' motor skills.

In addition, data obtained from the administration of MST were tested for pre-requisites using tests of normality and homogeneity. The normality test was performed on the pretest data using the Chi-Square formula through SPSS 16.0 for Windows. Data were said to have normal distribution if significance > 0.05. Conversely, if the significance < 0.05, then the sample data were not normally distributed. Homogeneity tests were performed on pretest data in the control group and the experimental group. The homogeneity test calculation was also through the SPSS 16.0 for Windows program. The sample data were said to be homogeneous if the acquisition of significance > 0.05. On the contrary, if the significance was < 0.05, then the sample, data would be said as not homogeneous [14].

3. Results and Discussion

3.1. Pre-development Stage

3.1.1. Need Analysis

Based on the results of the analysis conducted in elementary schools, the following problems were obtained: (1) The form of basic movement learning for walking, running, jumping and throwing was less varied or monotonous; (2) The teacher was still confused in providing a form of game learning for grade III students with hours physical education, sports, and health learning that is long enough, which is 4 x 35 minutes; (3) The learning process was less effective in the use of time, which meant the learning process was not used optimally. This condition is proven by the excessive rest time used by students rather than doing the task of movement; (4) The compliance with the Learning Implementation Plan that teachers have made with the reality of practice; (5) Teacher creativity that has not been maximized, such as modifying tools used to support varied implementation games; (6) The ability of students to do basic movements was not optimal; (7) Students were less enthusiastic and lazy to follow the learning process and difficult to manage because the learning provided was less varied and monotonous.

Based on the needs analysis above, there must be a form of a game model with basic movement material that can accommodate the needs in the field, especially for physical education teachers based on the applicable curriculum objectives. The focus of development objectives includes (1) cognitive aspects seen from students' understanding of the rules of the game and the direction of the teacher, (2) affective aspects seen from students' social behavior such as responsibility, cooperation, and honesty, (3) psychomotor aspects that are seen from basic movement skills in the form of locomotor motion, non-locomotor motion, and manipulative movements.

3.2. Development Stage

3.2.1. Initial Product Design

The design of the game model developed includes aspects consisting of game illustration, preparation, equipment, game time, players, assessment, evaluation, and game procedure play [11].

![Baku Baku Raja Game Illustration](image)
The preparation aspects include preparing the playing field with a size of 6x10 meters (or a size adapted to the existing schoolyard) and preparing game equipment. The equipment prepared consisted of 1 piece of bracelet, two sticks as a goal post, ribbon, whistle, chalk, and meter. The time of the game is divided into two rounds with 15 minutes/round. Place exchanges take place in round II. Meanwhile, the players consist of 2 teams facing each other with the number of players adjusted to the size of the field, and one of the players each team being a stick/wicketkeeper and the other players play a role as an attacker.

Rating the game is based on each bracelet entered into the wicket with a score of one. The team that puts the most goals on the stick is considered as the winner. Meanwhile, the evaluation of the game carried out by the teacher must be to monitor the course of the game and supervise students not to leave the field area.

The game procedure consists of starting with (1) structuring the positions of two teams facing each other before starting; (2) Two players stand in the middle circle of the field facing each other then the referee throws the bracelet up between the two players for grabs; (3) Stick or goal keepers are in the guard area and may not come out and may not be replaced by attacking players; (4) The attacking player passes the bracelet to his friend or puts the bracelet on the goal stick by throwing; (5) The attacking player of each team tries to insert the bracelet into the goal stick; (6) Players who are holding a bracelet may not walk or run, but may only turn around or turn around with one foot as a footstool; (7) Players who do not hold the bracelet may move in any direction; (8) At the time of the game, the opposing player may not seize the bracelet that has been held, the opposing player must only obstruct an obstacle 1 metre away from the bracelet holder; (9) If the bracelet is thrown and there is a struggle, the person who has the right to hold the bracelet is the first person who has succeeded in capturing the bracelet; (10) If the bracelet comes out of the field, then the person who has the right to throw is the opposing player who last touched the bracelet; (11) foul occurs if a player pushes or drops an opponent intentionally. When a foul occurs, the bracelet is held by a team whose players have been violated; (12) violations also occur when the player holding the bracelet is walking or running while carrying the bracelet; (13) Goal occurs if the player succeeds in inserting the bracelet into the goal stick; (14) If there is a goal, then the game starts from the free area and the one holding the bracelet is the team who conceded; (15) The winning team is the team that places the most bracelets on the goal stick.

3.2.2. Design Validation

Experts and screenings further validated the initial design of the game model. Table 2 shows the results of the initial design validation of the game model by the experts.

Intervals	E1	E2	E3	P1
X < 7.7	F	F	F	
7.7 ≤ X < 15.3	0	0	0	
15.3 ≤ X	22	18	22	
Total	22	18	22	
Mean	22			

As seen in the frequency distribution table above, each validator E1 (physical education expert), E2 (motoric expert), and E3 (motoric expert) gave scores of 22, 18, and 22. As a result, the mean score of the three validators was 20.67. Based on the established model eligibility categories, the initial design of the game model was declared good and valid for use [18].

Although the initial design of the game model was stated to be numerically valid, the initial design of the game model that was developed was enhanced based on the suggestions and input of the validators.

3.2.3. Small-scale trials and revisions

After obtaining the validation of the material experts to the initial draft of the game model, and having obtained qualifications worthy of being tested, the initial design of the model was tested on a small scale. The implementation of small-scale trials was recorded on DVD and then observed by validators consisting of experts and practitioners. Small-scale trials were conducted at Kawatuna Elementary School.

Table 4 shows that validator E1 (physical education expert), E2 (motoric expert), E3 (motoric expert), and P1 (physical education teacher) gave scores of 22, 22, 22, and 23, respectively. Hence, the mean score of the four
validators is 22.25. Based on the feasibility of the specified model, it is said that student activities during the implementation of the game model on a small scale are declared good [18].

Table 5. Results of a Small Scale Trial Student Questionnaire

Statements	Total	%
Are you able to do games that are taught?	33	0
Do you understand the rules of the game being taught?	33	0
Do you always obey the rules of the game being taught?	33	0
Is the game easy to do?	31	2
Do you like a tool that is used to play?	33	0
Whether the game can help you to learn the motion base jump?	33	0
Whether the game can help you develop movement skills?	33	0
Have fun games?	33	0
Do you dare to play the game that is taught?	30	3
Do you want to repeat the game being taught?	33	0
Mean score	32.5	0.56

After implementing the game model on a small scale, students were given a questionnaire to find out the students' responses while running the game model. Table 5 shows that students have a response of 98.39% based on the score of the response category [17]. Thus, the students' response was high to game models on a small scale. In other words, during the implementation of the game model on a small scale, students are motivated to move actively and play activities with pleasure. Furthermore, the design of the game model was revised based on the suggestions and input of the validators while observing student activities during the implementation of the game model on a small scale.

Table 6. Expert responses and revisions on a small scale

Experts’ Responses	Revisions
There must be a differentiator for each group A or B.	Group A uses yellow shirts and group B uses blue shirts
In the game the direction of the goal is limited by the line	The direction of the goal is given a white line for the marker
Raw Equipment Raw Raja is made safe and attractive	Goal treatment was made not sharp, so it does not hurt students and is colored so that students are interested

3.2.4. Large scale test trial and revision

The steps taken in carrying out large-scale trials did not differ much from what was done at the time of small-scale trials. The difference only lies in the much higher number of test participants, test sites, and the implementation of expert and practitioner revision results to the game. The participants in the large-scale trial were conducted in Paboya Elementary School and Lasoani Elementary School.

Table 7. Expert judgment on a large scale

Intervals	E1	E2	E3	P1	P2
X < 7.7	0	0	0	0	0
7.7 ≤ X < 15.3	0	0	0	0	0
15.3 ≤ X	23	23	23	23	23
Total	23	23	23	23	23
Mean	23				

Table 7 shows the mean score of the five validators consisting of validator E1 (physical education expert), E2 (motoric expert), E3 (motoric expert), P1 (physical education teacher), and P2 (physical education teacher) is 23. Based on the established model feasibility category, student activity during the implementation of the game model on a large scale was declared good [18].

Table 8. Large-scale trial student questionnaire results

Statements	Total	%
Are you able to do games that are taught?	52	3
Do you understand the rules of the game being taught?	55	0
Do you always obey the rules of the game being taught?	53	2
Do games easy to do?	51	4
Do you like a tool that is used to play?	53	2
Whether the game can help you to learn the motion base jump?	55	0
Whether the game can help you develop movement skills?	55	0
Have fun games?	55	0
Do you dare to play the game that is taught?	52	3
Do you want to repeat the game being taught?	55	0
Mean score	53.6	1.4

After implementing the game model on a large scale, the students were given a questionnaire to determine the students' response while running the game model. Table 8 shows that students have a response of 97.56% based on the score of the response category [17]. Thus, the students' response was high to game models on a large scale. In other words, during the implementation of the game model on a large scale, students are motivated to move actively and play with pleasure. At this stage, the game model design is not enhanced because the design is considered valid based on empirical evidence during the implementation of the game model on a large scale.
3.3. Post-development Stage

3.3.1. Final Product

The final design of the Baku Baku Raja game model is as follows. The preparation aspect includes the preparation of a playing field with a size of 8x15 meters, or it can be adapted to the existing schoolyard and game equipment. The equipment consisted of 1 bracelet measuring 80 cm, 2 sticks as a goal measuring 1.5 m, 20 cm tape, a whistle, chalk, and a tape measure. The game is held in 2 rounds with a duration of 20 minutes/round, and a place is exchanged in the 2nd round. Players are divided into 2 teams that face each other with the number of players according to the size of the field. One of the players in each team becomes the stick/goalkeeper, while the other players act as attackers.

The game evaluation is that each bracelet that goes to the goalpost gets a score of one, and the winning team is determined by the number of goals that enter the goalpost. Meanwhile, the teacher must monitor the course of the game and students should not get out of the field area.

The game procedure consists of: (1) Before the game starts, two groups face each other; (2) At the beginning of the game, two players stand in the middle of the field facing each other, then the referee throws the bracelet up between two players for a fight; (3) Keeper of the stick or goal must be in the area of the guard and must not come out. A stick keeper may not be replaced by an attacking player; (4) the attacking player passes his friend's wristband or throws the goalkeeper bracelet by throwing; (5) The attacking players of each team try to insert the goalpost bracelet; (6) The player holding the bracelet may not walk or run, may only turn or turn with one leg as a support; (7) The player not holding the bracelet may move in any direction; (8) During the game, the opposing player may not seize the bracelet that is already being held, the opposing player may only block the barrier within 1 metre from the bracelet holder; (9) If a bracelet is thrown and the opposing player may only block the barrier within 1 metre from the bracelet holder; (10) If a bracelet leaves the field the right to throw is the opposing player who last touched the bracelet; (11) Violations occur if a player pushes or drops an opponent intentionally; if a violation occurs, the bracelet is held by the team whose player was violated; (12) Violations also occur when the player holding the bracelet is walking or running while carrying the bracelet; (13) Goal occurs if the player succeeds in inserting the goal stick ring; (14) If a goal is scored then the play is started from the free area and the team that is the team conceding the bracelet is the team that is conceded; (15) The winning team is the team that has scored the most number of rings on the goal stick.

3.3.2. Effectivity Test

The final product from the development is a basic movement game model that can be used in physical education learning models in 3rd grade of elementary school, from the final product game model that has been produced, then the effectiveness test is conducted at Tanamodindi Elementary School and Lasoani.

Table 9. Students' basic movement skills in descriptive statistics

Schools	Mean Pretest	Mean Posttest	Gain
Tanamodindi	50	70	0.40
Lasoani	70	88	0.59

Table 9 shows the mean grade of basic movement ability at Elementary School Tanamodindi for a pretest score of 50 and a posttest score of 70 with a gain score of 0.40. Meanwhile, the mean score of the basic movement ability of Elementary School Lasoani for the pretest score was 70, and the posttest score was 88 with a Gain score of 0.59. Based on the category of model development results, the results of these pretest and posttest were in the medium category [18]. Furthermore, prior to inferential statistical testing, the data are pre-requisite testing through normality and homogeneity tests.

Table 10. Results of the normality test for basic movement skills

Schools	Sig. Score Normality Pretest	Sig. Score Normality Posttest	Sig. Score Homogeneity
Tanamodindi	0.326	0.40	0.236
Lasoani	0.107	0.285	0.569

Table 10 shows the score of pre-requisite testing through the normality test and homogeneity test. The obtained significance score of data normality in Tanamodindi Elementary School at pretest and posttest was 0.326 and 0.400, respectively. Meanwhile, the significance score of data normality at Elementary School Lasoani at pretest and posttest was 0.107 and 0.285, respectively. In addition, the significance score of homogeneity in Elementary School Tanamodindi and Elementary School Lasoani obtained from posttest data was 0.236 and 0.569, respectively. Thus, based on the standard significance test pre-requisite [14]. The data in the form of basic movement abilities obtained from the two schools have been declared normal and homogeneous so that the data obtained from the game model are appropriate for inferential statistical analysis.

Table 11. Students' basic movement skills in inferential statistics

Schools	Mean	t count	Sig.	Diff.	%
Tanamodindi	79.71	-17.37	0.000	11.04	13.5
Lasoani	82.66	-25.30	0.000	10.71	12.9

Table 11 shows the results of inferential statistical tests using the t-test. The test showed that the grades of
Elementary School Tanamodindi and Elementary School Lasoani were -17.37 and -25.30, respectively. The significance of the p-score was <0.005 [14] so that the game model was considered effective for enhancing basic movement skills in elementary school, especially for 3rd-grade.

3.5. Discussion

This study produces a standard Baku Raja traditional game model that is valid or suitable for use in elementary schools, especially at the third-grade level of elementary school. The main findings show that the implementation of the Baku Raja traditional game model is effective in enhancing basic movement skills on elementary students. Similar results of previous studies also show that games developed based on traditional perspectives will be able to effectively enhance student performance success in basic movement skills [11],[1],[19].

The success of student performance in basic movement skills shows that there is optimization in the psychomotor domain of students due to the association of other domains, namely cognitive and affective [9]. Cognitive domain associations are obtained when students obtain information in the form of the Baku Baku Raja traditional game model repeatedly. Meanwhile, the affective domain association is obtained when students do the traditional standard game Raja Baku together, which is cohesiveness and teamwork, as determining factors. This shows the similarity with Evan and Thondrike's sports learning theory that the principle in practicing sports is repetition. The more often the subject matter that is repeated, the more mastered it will be [20].

Another important finding is that the activities and responses of students to the Standard Baku Raja traditional game model are in a good category. In this study, the game model provides flexibility for students in their activities using all basic movement skills. During their activities, students are motivated to be active and play activities happily. Previous studies have shown that activity and response have a positive correlation in the implementation of a traditional game model [11],[21],[19]. Activity and motivation in sports are important for all students because of the associated benefits to physical, social, and psychological health [20],[19]. On the other hand, students' high motivation and activity in sports increase learning performance in cognitive, psychomotor, and affective aspects [20],[5],[10].

4. Conclusions

Based on the results and discussion of research, it can be concluded that Baku Baku Raja traditional game model developed is suitable for use. The implementation of this game model is effective in enhancing basic movement skills on elementary students, especially for 3rd-grade students. In addition, the implementation of the traditional game model has resulted in good student activity and motivation in sporting activities. Enhancing basic movement skills interprets the success of implementing the standard of Raja traditional game models not only in the psychomotor aspects but also in the cognitive and affective elements. Thus, Baku Baku Raja traditional game model developed is highly recommended for educators to enhance students' basic movement skills in elementary schools effectively.

Acknowledgments

Author thank to Research and Higher education Ministry of Indonesia for funding support in this study.

REFERENCES

[1] J. A. Kavanagh, J. Issartel, and K. Moran, “Quantifying Cycling as A Foundational Movement Skill in Early Childhood,” J. Sci. Med. Sport, vol. 23, no. 2, pp. 171–175, 2020.
[2] A. Sameroff, “The Transactional Model,” in The transactional Model of Development: How Children and Contexts Shape Each Other, A. Sameroff, Ed. American Psychological Association, 2009, pp. 3–21.
[3] A. J. Elliot, “A Conceptual History of the Achievement Goal Construct,” in Handbook of competence and motivation, A. J. Elliot and C. S. Dweck, Eds. Guilford Publications, 2005, pp. 52–72.
[4] G. Graham, The Disordered Mind: An Introduction to Philosophy of Mind and Mental Illness. Canada: Routledge taylor & Francis Group, 2010.
[5] R. E. Sulistyaningtyas and P. Y. Fauziah, “The Implementation of Traditional Games for Early Childhood Education,” no. July, pp. 5–10, 2019.
[6] W. B. Strong, “Evidence Based Physical Activity for School-Age Youth,” J. Pediatr., vol. 146, pp. 732–737, 2005.
[7] BNSP, Kurikulum Tingkat Satuan Pendidikan. Jakarta: Dirjen, 2006.
[8] A. Syarifuddin and M. Muhadi, Pendidikan Jasmani dan Kesehatan. Jakarta: Depdikbud, 1992.
[9] B. Hands and M. Martin, “Fundamental Movement Skills: Children’s Perspectives,” Australas. J. Early Child., vol. 28, no. 4, pp. 47–52, 2003.
[10] W. S. Suherman, Dapan, Guntur, and N. R. Muktiani, “Development of Traditional Children Play Based Instructional Model to Optimize Development of Kindergarteners’ Fundamental Motor Skill,” Cakrawala Pendidik., vol. 38, no. 2, pp. 356–365, 2019.
[11] M. F. Amir, I. A. Mufarikhah, A. Wahyuni, Nasrun, and H. E. Rudyanto, “Developing ‘Fort Defending’ Game as a Learning Design for Mathematical Literacy Integrated to Primary School Curriculum in Indonesia,” Elem. Educ. Online, vol. 18, no. 3, pp. 1081–1092, 2019.

[12] R. Lutan, Asas-Asas Pendidikan Jasmani. Jakarta: Depdikbud, 2001.

[13] W. R. Borg and M. D. Gall, Educational Research An Introduction. New York: Longman Publisher, 1983.

[14] J. W. Creswell and T. C. Guetterman, Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research, 6th Edition. Boston, United States of America: Pearson Education, 2018.

[15] D. A. Ulrich, Test of Gross Motor Development. Austin, TX: Pro-ed Publishers, 2000.

[16] K. Y. A. Wong and S. Y. Cheung, “Confirmatory Factor Analysis of Test of Gross Motor Development-2,” J. Meas. Phys. Educ. Exerc. Sci., vol. 14, pp. 202–209, 2010.

[17] Sugiyono, Metode Penelitian Kuantitatif, kualitatif dan R & D. Bandung: Alfabeta, 2013.

[18] S. Azwar, Metode Penelitian. Yogyakarta: Pustaka Pelajar, 2003.

[19] K. Gjicali, B. M. Finn, and D. Hebert, “Effects of Belief Generation on Social Exploration, Culturally-Appropriate Actions, and Cross-Cultural Concept Learning in A Game-Based Social Simulation,” Comput. Educ., vol. 156, no. March, p. 103959, 2020.

[20] J. Evans and A. S. Thorndike, Quantum Mechanics at The Crossroads, New Perspectives from History, Philosophy and Physics, The Fronti. Springer, 2010.

[21] J. L. Nietfeld, “Predicting Transfer from A Game-Based Learning Environment,” Comput. Educ., vol. 146, p. 103780, 2020.

[22] A. Johnstone, A. R. Hughes, X. Janssen, and J. J. Reilly, “Pragmatic evaluation of the Go2Play Active Play Intervention on Physical Activity and Fundamental Movement Skills in Children,” Prev. Med. Reports, vol. 7, pp. 58–63, 2017.