INDEX 1 COVERS OF LOG
TERMINAL SURFACE SINGULARITIES

YUJIRO KAWAMATA

ABSTRACT. We shall investigate index 1 covers of 2-dimensional log terminal singularities. The main result is that the index 1 cover is canonical if the characteristic of the base field is different from 2 or 3. We also give some counterexamples in the case of characteristic 2 or 3. By using this result, we correct an error in [K2].

1. Introduction

We fix an algebraically closed field \(k \) and let \(p \) be its characteristic. Let \(S \) be a normal surface over \(k \), let \(P \) be a closed point of \(S \), and let \(D \) be an effective and reduced Weil divisor on \(S \) through \(P \). We consider the germ of the pair \((S, D)\) at \(P \). Let \(\mu : S' \to S \) be an embedded resolution of the singularity for the pair \((S, D)\). The numerical pull-back \(\mu^*(K_S + D) \) is defined as a \(\mathbb{Q} \)-divisor on \(S' \) such that the equality \((\mu^*(K_S + D)) \cdot C = (K_S + D) \cdot \mu^*C \) holds for any curve \(C \) on \(S' \). We write \(\mu^*(K_S + D) = K_{S'} + D' + E \) for a \(\mathbb{Q} \)-divisor \(E \) on \(S' \), where \(D' = \mu_1^{-1}D \) is the strict transform of \(D \). The pair \((S, D)\) is said to be log terminal at \(P \) if the coefficients of \(E \) are strictly less than 1. It is called canonical if the coefficients of \(E \) are non-positive. \(S \) is said to be canonical or log terminal if \((S, 0)\) is so (cf. [KMM]).

The index \(r \) of the pair \((S, D)\) is the smallest positive integer such that \(r(K_S + D) \) is a Cartier divisor. Let \(\theta_0 \) and \(\theta \) be non-zero sections of \(\mathcal{O}_S(K_S + D) \) and \(\mathcal{O}_S(r(K_S + D)) \), respectively. Assume that \(\theta \) generates \(\mathcal{O}_S(r(K_S + D)) \). Let \(L \) be the rational function field of \(S \), and write \(\theta = \alpha \theta_0^\beta \) for \(\alpha \in L \). The normalization \(\pi : T \to S \) of \(S \) in the field extension \(L(\alpha^{1/r}) \) is called the index 1 cover of \(S \) associated to the section \(\theta \). We note that the index 1 cover depends on the choice of \(\theta \). The index 1 cover is called the log canonical cover in [KMM], but its construction is not canonical at all, and in order to avoid a confusion, we use instead this terminology.

If \(p \) does not divide the degree \(r \) of the morphism \(\pi \), then \(\pi \) is etale over \(S \setminus \{P\} \), and the pair \((T, D_T)\) for \(D_T = \pi^*D \) is known to be canonical (cf. [KMM]). But if \(p \) divides \(r \), then \(\pi \) is inseparable, and the situation is totally different. The following is the main result of this paper.

Theorem 1. Let \(S \) be a normal surface over an algebraically closed field \(k \) of characteristic \(p \neq 2, 3 \), \(D \) a reduced curve, and \(P \) a closed point such that the pair \((S, D)\) is log terminal of index \(r \) at \(P \). Let \(\theta \) be a nowhere vanishing section of \(\mathcal{O}_S(r(K_S + D)) \), and \(\pi : T \to S \) the index 1 cover associated to \(\theta \). Set \(D_T = \pi^*D \)

1991 Mathematics Subject Classification. 14 E 22, 14 E 35, 14 J 17.
Key words and phrases. log terminal singularity, canonical singularity, index 1 cover.
and $Q = \pi^{-1}(P)$. If θ is chosen to be general enough, then (T, D_T) is canonical at Q.

We have counterexamples in the case of characteristic 2 or 3 (Example 5). By using the above result, we shall correct an error in [K2] in §3. We would like to thank Professor K. Matsuki for pointing out this error.

2. Proof of Theorem 1

We keep the notation of the introduction.

Lemma 2. Assume that a pair (S, D) is log terminal at a point P. Then (S, P) is a rational singularity.

Proof. Since S is also log terminal, we may assume that $D = 0$. Let $\mu : S' \to S$ be the minimal resolution and write $\mu^*K_S = K_{S'} + E$ for a \mathbb{Q}-divisor E. Let Z be the fundamental cycle. Since the coefficients of E are non-negative and less than 1, the divisor $Z - E$ is effective and its support is the whole exceptional locus of μ. Hence $(Z^2) + (Z \cdot K_{S'}) = (Z \cdot (Z - E)) < 0$.

It follows that the index r of the pair (S, D) is equal to the smallest positive integer such that rE becomes a divisor.

Let us consider the divisor on S' which is the sum of the exceptional locus of μ and the strict transform of D. Then we can classify the dual graphs of these divisors ([K1, TM]). We note that this classification is purely numerical and characteristic free. For example, the dual graphs for canonical singularities are Dynkin diagrams of type A, D or E. The dual graphs of log terminal singularities are the same as those of quotient singularities in characteristic 0, but they are not necessarily quotient singularities in general.

We assume that $p | r$ from now on. We start the proof of Theorem 1 with the calculation of the log canonical divisor on an index r/p cover of a log terminal singularity of index r. For a 1-form ω on a normal variety S, we denote by $\text{div}_S(\omega)$ the divisorial part of its zero or pole.

Lemma 3. Let S be a normal affine surface, D a reduced curve, P a closed point such that the pair (S, D) is log terminal of index r at P. Assume that $p \neq 2, 3$ and p divides r. Let θ_0 and θ be non-zero sections of $O_S(K_S + D)$ and $O_S(r(K_S + D))$, respectively. Assume that θ is nowhere vanishing, and write $\theta = \alpha \theta_0^l$ for $\alpha \in L$, the rational function field of S. Assume that $\text{div}_S(\alpha) = \text{div}_S(\alpha^l)$ as Weil divisors on S. Let $\pi : \tilde{S} \to S$ be the normalization of S in the field $L = L(\alpha^{1/p})$. Set $\tilde{D} = \pi^*D$ and $\tilde{P} = \pi^{-1}(P)$. Then (\tilde{S}, \tilde{D}) is again log terminal at \tilde{P} of index r/p. Moreover, if $p^2 | r$, then $\text{div}_{\tilde{S}}(\alpha^{1/p}) = \text{div}_{\tilde{S}}(\alpha^{1/p})$ as Weil divisors on \tilde{S}.

Proof. Since $O_S(\pi^*(K_S + D))$ is not invertible, we have $\alpha \notin L^p$, and \tilde{L}/L is a purely inseparable extension of degree p. By [RS, Proposition 2], we have

$$K_{\tilde{S}} = \pi^*(K_S - (1 - 1/p)\text{div}_S(\alpha)).$$

Since $\text{div}_S(\alpha) = \text{div}_S(\alpha) \sim 0$, we have $K_{\tilde{S}} = \pi^* K_S$ by a different choice of the identification. Therefore, $\tilde{\theta} = \alpha^{1/p} \pi^* \theta_0^{l/p}$ is a nowhere vanishing section of $O_{\tilde{S}}(\pi^*(K_{\tilde{S}} + \tilde{D}))$, and the index of the pair (\tilde{S}, \tilde{D}) is r/p.

Let \(\mu : S' \to S \) be a projective birational morphism from a smooth surface, and \(D' = \mu_*(-1)D \) the strict transform of \(D \). Since \((S, D)\) is log terminal, we can write

\[
\mu^*(K_S + D) = K_{S'} + D' + \sum_j a_j C_j
\]

with \(a_j < 1 \) for each irreducible component \(C_j \) of the exceptional locus \(C \) of \(\mu \). By the adjunction, the \(C_j \) are isomorphic to \(\mathbb{P}^1 \), and intersect transversally.

Let \(\pi' : \tilde{S}' \to S' \) be the normalization in \(L \), \(\tilde{\mu} : \tilde{S}' \to \tilde{S} \) the induced birational morphism, and \(\tilde{D}' = \tilde{\mu}_*^{-1}\tilde{D} = \pi'^*D' \). We can write

\[
\tilde{\mu}^*(K_{\tilde{S}} + \tilde{D}) = K_{\tilde{S}'} + \tilde{D}' + \sum_j \tilde{a}_j \tilde{C}_j,
\]

where the \(\tilde{C}_j \) are prime divisors such that \(\pi'(\tilde{C}_j) = C_j \). We know that \(\pi'^*C_0 = \tilde{C}_0 \) or \(p\tilde{C}_0 \). We shall prove that \(\tilde{a}_j < 1 \) for all \(j \) and for any \(\mu \).

By [RS, Proposition 2] again, we have

\[
K_{\tilde{S}'} = \pi'^*(K_{S'} - (1 - 1/p)\text{div}_{S'}(d\alpha)).
\]

Since \(\mu^*\text{div}_S(\alpha) = \text{div}_{S'}(\alpha) \), we have

\[
\sum_j \tilde{a}_j \tilde{C}_j = \pi'^*(\sum_j a_j C_j - (1 - 1/p)(\text{div}_{S'}(\alpha) - \text{div}_{S'}(d\alpha))).
\]

Let \(G = \text{div}_S(\theta_0) \), and \(G' = \mu_*^{-1}G \) its strict transform. Then we can write

\[
\text{div}_{S'}(\alpha) + rG' = \sum_j m_j C_j
\]

\[
\text{div}_{S'}(d\alpha) + rG' = \sum_j m'_j C_j
\]

for some \(m_j, m'_j \in \mathbb{Z} \). Thus

\[
\tilde{a}_j \tilde{C}_j = (a_j - (1 - 1/p)(m_j - m'_j))\pi'^*C_j.
\]

Since \(G \sim K_{\tilde{S}} + D \), there exists a divisor \(F \) supported on \(C \) such that \(F + G' \sim K_{\tilde{S}'} + D' \). Then \(\text{div}_{S'}(\alpha) + rF + rG' + \sum_j a_j rC_j \) is numerically trivial, hence \(m_j + a_j r \equiv 0 \pmod{r} \).

Let us fix an irreducible component of \(C \), say \(C_0 \). We consider 2 cases (we shall prove later that these are the only cases provided that \(p \neq 2, 3 \):

Case 1. We assume that \(p \) does not divide \(m_0 \).

We take a general closed point \(P' \) on \(C_0 \). Let \((x, y)\) be local coordinates such that \(C_0 = \text{div}(x) \) near \(P' \). We can write \(\alpha = u x^{m_0} \) near \(P' \) such that \(u(P') \neq 0 \). Then we have \(d\alpha = x^{m_0 - 1}(m_0 u dx + x du) \), hence \(m'_0 = m_0 - 1 \). Since \(p \) does not divide \(m_0 \), there are integers \(s, t \) such that \(ps + m_0 t = 1 \). Then \(\text{div}_{S'}(x^{ps} \alpha^t) = C_0 \) near \(P' \), hence \(\pi'^*C_0 = p\tilde{C}_0 \) with \(\text{div}_{\tilde{S}'}(x^{s} \alpha^{t/p}) = \tilde{C}_0 \) near \(\tilde{P}' = \pi'^{-1}(P') \). Therefore,

\[
\tilde{a}_j \tilde{C}_j = (a_j - (1 - 1/p)(m_j - m'_j))\pi'^*C_j.
\]
Case 2. We assume that \(p|m_0 \). In this case, we assume in addition that \(C_0 \) intersects at most 2 other components of \(C \), say \(C_1 \) and \(C_2 \) (\(C_2 \) may not exist). Moreover, we assume that \(p \) does not divide \(m_1 \).

Since \(m_1 + m_2 \equiv ra_1 + ra_2 \equiv 0 \pmod{p} \), \(C_2 \) necessarily exists and \(p \) does not divide \(m_2 \). Let \(P' \) be an arbitrary closed point on \(C_0 \) except \(P'_i = C_0 \cap C_i \) for \(i = 1, 2 \), and \((x, y)\) local coordinates such that \(C_0 = \text{div}(x) \) near \(P' \). We can write \(\alpha = uv^px^mdu \) near \(P' \) in such a way that \(u_0 = u|_{C_0} \) is a rational function on \(C_0 \) such that \(\text{div}_{C_0}(u_0) = m_1P'_1 + m_2P'_2 + pQ' \) for some divisor \(Q' \) on \(C_0 \) whose support does not contain \(P' \). Since the \(m_i \) are not divisible by \(p \), we have \(du_0 \neq 0 \). Thus \(\deg(du_0) = -2 \), and we have \(\text{div}_{C_0}(du_0) = (m_1 - 1)P'_1 + (m_2 - 1)P'_2 + pQ' \). Therefore, \(du_0 \) does not vanish at \(P' \). Since \(d\alpha = v^p x^m du \) near \(P' \), we have \(m'_0 = m_0 \). Moreover, \(u_0 - u_0(P') \) gives a local coordinate of \(C_0 \) at \(P' \). Hence \((\pi^*x, \pi^*(u - u(P'))^{1/p}) \) give local coordinates at \(\tilde{P}' = \pi^{-1}(P') \). Thus \(\pi^*C_0 \) is reduced, and \(\tilde{S}' \) is smooth at \(\tilde{P}' \). In particular, \(\pi^*C_0 = \tilde{C}_0 \) and \(\tilde{a}_0 = a_0 < 1 \).

We shall prove that any irreducible component \(C_0 \) of \(C \) satisfies the assumptions of one of the above two cases. First, we consider the case in which \(\mu = \mu_0 : S' = S'_0 \to S \) coincides with the minimal resolution.

Assuming that \(C_0 \) intersects 3 other components, say \(C_1, C_2, C_3 \), we shall prove that we have Case 1 for \(C_0 \). Assume the contrary that \(p|m_0 \). Then \(p|m_0 \). In the case in which the dual graph for \(S' \) is of type \(D \), we have \((C^2_1) = (C^2_2) = -2 \) after the permutation of the indices. Then we calculate that \(a_1 = a_2 = a_0/2 \). Since \(m_1 + m_2 \equiv 0 \pmod{r} \) and \(p \neq 2 \), we have \(p|m_1 \) and \(p|m_2 \). Since \(p|m_1 + m_2 + m_3 - (C^2_0)m_0 \), we have \(p|m_3 \). Then we have \(p|m_4 \) for an irreducible component \(C_4 \) which intersects \(C_3 \). In this way, we conclude that \(p|m_4 \) for all \(j \). It follows that \(\frac{1}{p}(K_{S'} + D' + \sum_j a_j C_j) \) is a divisor on \(S' \). Since this divisor is numerically trivial and \(S \) is a rational singularity, it is a pull back of a divisor on \(S \), a contradiction with the assumption that \(r \) is the index.

In the case in which the dual graph for \(S' \) is of type \(E \), we have two cases after the permutation of the indices: (i) \((C^2_1) = (C^2_2) = -2 \) and \(C_2 \) intersects another irreducible component \(C_4 \) such that \((C^2_4) = -2 \) while \(C_1 \) does not intersect other components, or (ii) \((C^2_1) = -2 \), \((C^2_2) = -3 \), and \(C_1 \) and \(C_2 \) intersect no other irreducible components. We have \(a_1 = a_0/2 \) and \(a_2 = 2a_0/3 \) in the former case, and \(a_1 = a_0/2 \) and \(a_2 = (a_0 + 1)/3 \) in the latter. Since \(p \neq 2, 3 \), we have \(p|m_1 \) and \(p|m_2 \), and obtain a contradiction as before.

If we assume that \(p|m_0 \), then by the above argument, \(C_0 \) intersects at most 2 other components of \(C \), say \(C_1 \) and \(C_2 \) (\(C_2 \) may not exist). Suppose that \(p|m_1 \). Then \(C_1 \) intersects at most 1 other component, say \(C_3 \), and that \(p|m_3 \). Moreover, if \(C_2 \) exists, then we have also \(p|m_2 \). Then we have \(p|m_j \) for all \(j \) as before, a contradiction. Therefore, we have Case 2 for \(C_0 \).

Next, we consider the general case. Let \(\mu \) and \(j \) be arbitrary. If the center of \(C_j \) on the minimal resolution \(S'_0 \) is a curve, then the above argument showed our assertion. Assume that the center \(Q \) of \(C_j \) on \(S'_0 \) is a point. We have 3 cases: (a) \(Q \) is contained in only one irreducible component \(C_0 \) of \(C \) such that \(p|m_0 \), (b) \(Q \) is contained in only one irreducible component \(C_0 \) of \(C \) such that \(p \nmid m_0 \), (c) \(Q \) is contained in two irreducible components \(C_0 \) and \(C_1 \) of \(C \) such that \(p \nmid m_0 \).

In the case (a), the covering \(S'_0 \) is smooth at the point \(\tilde{Q} \) above \(Q \) by the argument of Case 2, hence we obtain \(\tilde{a}_j < 1 \) after any sequence of blow-ups of \(S'_0 \) above \(Q \).

In the case (b) or (c), we replace \(S' \) by its blow-up at \(Q \), and we obtain again (a).
the exceptional divisors. We have constructed by blowing up suitably a smooth surface and then contracting some of and other intersection numbers are 0. We note that a surface \(S \)

\[\text{dual graph of the exceptional divisors} \]

singularity over an algebraically closed field of characteristic \(C \).

Example 5.

(1) Let \(\mu : S' \to S \) be the minimal resolution of \(S \) as above can be constructed by blowing up suitably a smooth surface and then contracting some of the exceptional divisors. We have

\[\mu^* K_S = K_{S'} + \frac{1}{2} C_1 + \frac{1}{4} C_2 + \frac{1}{4} C_3 + \frac{1}{2} C_4. \]

\(S \) is a rational triple point and the index \(r = 4 \). Let \(\pi : T \to S' \) and \(\pi_1 : S \to S' \) be the index 1 cover associated to a general section \(\theta \) of \(O_S(4K_S) \), where \(\pi_1 \) and \(\pi_2 \) are purely inseparable morphisms of degree 2. We claim that \(T \) is not log terminal.

Finally, in order to prove the last statement, we claim that

\[p\text{div}_{S}(d\alpha^{1/p}) = \pi^*(\text{div}_S(d\alpha)). \]

We shall check this equality at all but finitely many points on \(S \). As in the proof of [RS, Proposition 2], we may assume that there exist local coordinates \((x, y) \) of the completion of \(S \) at the point \(Q \) such that \((\tilde{x}, \tilde{y}) \) with \(\tilde{x} = \pi^* x \) and \(\tilde{y} = \pi^* y^{1/p} \) give local coordinates of the completion of \(\tilde{S} \) at \(\tilde{Q} = \pi^{-1}(Q) \). We can write \(\alpha = u^r \sum_{i=0}^{p-1} c_i y^i \) for \(u \in L \) and \(c_i \in \hat{L} \), where \(\hat{L} \) is the fraction field of the completed local ring, such that \(\text{div}_{\tilde{S}}(\alpha) = r\text{div}_S(u) \). Since \(\text{div}_S(d\alpha) = \text{div}_S(\alpha) \), we may assume that \(c_1(Q) \neq 0 \). Since

\[d\alpha^{1/p} = u^{r/p} \sum_{i=0}^{p-1} (ic_i \tilde{y}^{i-1}d\tilde{y} + \tilde{y}^idc_i), \]

we have \(p\text{div}_{\tilde{S}}(d\alpha^{1/p}) = r\text{div}_S(u) \).

Proof of Theorem 1. Since \(\theta \) is chosen to be general enough, we deduce that \(\text{div}(d\alpha) = \text{div}(\alpha) \) if we replace \(S \) by a suitable neighborhood of \(P \) by the dimension count argument as in p. 472 of [K2]. We apply Lemma 3 until the index becomes coprime to \(p \), then apply the usual argument to obtain our assertion (cf. [KMM]).

Remark 4. (1) The formula for \(K_{\tilde{S}} \) depends on the choice of \(\alpha^{1/p} \) which generates the field extension \(\tilde{L}/L \). This choice is equivalent to the splitting of a free \(L \)-module \(\tilde{L} \) as

\[\tilde{L} = \bigoplus_{m=0}^{p-1} L\alpha^{m/p}. \]

The construction of index 1 cover as in [K2] uses this kind of splitting explicitly and thus there is a canonical divisor formula.

(2) Lemma 3 is still true in the case of characteristic 2 or 3 if the minimal resolution diagram of \(S \) is of type \(A \).

Example 5. (1) Let \(\mu : S' \to S \) be the minimal resolution of a log terminal singularity over an algebraically closed field of characteristic \(p = 2 \). Assume that the dual graph of the exceptional divisors \(C \) is of type \(D \) as follows: \(C = C_1 + C_2 + C_3 + C_4 \) with \((C_1^2) = (C_2^2) = (C_3^2) = -2, (C_4^2) = -3, (C_1 \cdot C_2) = (C_1 \cdot C_3) = (C_1 \cdot C_4) = 1, \) and other intersection numbers are 0. We note that a surface \(S \) as above can be constructed by blowing up suitably a smooth surface and then contracting some of the exceptional divisors. We have

\[\mu^* K_S = K_{S'} + \frac{1}{2} C_1 + \frac{1}{4} C_2 + \frac{1}{4} C_3 + \frac{1}{2} C_4. \]
Indeed, as in Case 2 in the proof of Lemma 3, since $2|m_1$, we can write $\alpha = uv^2x^m$ near a general closed point P' of C_4 in such a way that $u_4 = u|_{C_4}$ is a rational function on C_4 such that $\text{div}_{C_4}(u_4) = 2Q'$ for some divisor Q' on C_4. Thus $u_4 = v_4^2$ for some rational function v_4 on C_4. It follows that the natural morphism $\tilde{C}_4 \to C_4$ is birational, hence $\pi'^*C_4 = 2\tilde{C}_4$. Since $m_4' \geq m_4$, we have $\tilde{a}_4 \geq 1$. If we denote by b_j the coefficients for K_T in a suitable way, then we deduce that $b_4 \geq 1$ by the same argument as in the proof of Lemma 3.

(2) Let $\mu : S' \to S$ be the minimal resolution of a log terminal singularity over an algebraically closed field of characteristic $p = 3$. Assume that the dual graph of μ is of type E_6 as follows: $C = C_1 + C_2 + C_3 + C_4 + C_5$ with $(C_2^3) = (C_3^2) = (C_4^2) = (C_5^2) = -2$, $C_1 \cdot C_2 = (C_1 \cdot C_3) = (C_3 \cdot C_4) = (C_1 \cdot C_5) = 1$, and other intersection numbers are 0. Then we have

$$\mu'^*K_S = K_{S'} + \frac{2}{3}C_1 + \frac{1}{3}C_2 + \frac{4}{9}C_3 + \frac{2}{9}C_4 + \frac{5}{9}C_5.$$

S is a rational quintuple point and $r = 9$. Let $\pi : T \to \tilde{S} \to S$ be the index 1 cover associated to a general section θ of $O_S(9K_S)$. We claim that T is not log terminal. Indeed, we have $b_2 \geq 1$ as in (1).

3. Correction to [K2]

Kenji Matsuki pointed out that the proof of Theorem 3.1 of [K2] is insufficient because the calculation in the middle of p. 473 is wrong. We shall replace the proof of Theorems 3.1 and 4.1 of [K2] by a different argument and prove them under the additional assumption that the residue characteristic is different from 2 or 3. We note that it is still an open question in the case of characteristic 2 or 3.

Proof of Theorems 3.1 and 4.1 of [K2] in the case $p \neq 2, 3$. We prove Theorem 4.1 by a slightly modified argument. Theorem 3.1 follows a posteriori from Theorem 4.1. We use the notation in Theorem 3.1; let $f : X \to \Delta = \text{Spec} \ A$ be a family satisfying Assumption 1.1. Let p be the characteristic of the residue field at the closed point of Δ. We assume that $p \neq 2, 3$. We take a closed point $P \in X$ of index r. The index 1 cover $\pi : Y \to X$ is constructed by using a general section θ of $O_X(rK_X/\Delta)$ as

$$\pi_*O_Y \cong \bigoplus_{m=0}^{r-1} O_X(-mK_X/\Delta)t^m, \, t^r = \theta.$$

We shall prove that the closed fiber Y_s is canonical or normal crossing, but we do not prove that the singularity of Y is isolated at this point.

First, assume that the closed fiber X_s of X is irreducible. Since $O_X(-mK_X/\Delta) \otimes\otimes O_{X_s} \cong O_{X_s}(-mK_X/s)$ by Assumption 1.1 (6), Y_s is isomorphic to the index 1 cover of X_s constructed by using the restriction of θ to X_s. By Theorem 1, Y_s is canonical. We can prove that its completed local ring at Q is isomorphic to the completion of $A[x_1, x_2, x_3]/(F)$ with $\text{ord}(F_s) \leq 2$ as in the original proof of Theorem 4.1, where the action of μ_r on the coordinates (x_1, x_2, x_3) is given by $x_i \mapsto \zeta^{a_i} \otimes x_i$, $(i = 1, 2, 3)$. Since $O_X(-K_X/\Delta)$ is not invertible, there exists at least 2 coordinates whose weights a_i are coprime to r. Let x_1, \ldots, x_c ($c = 2$ or 3) be such coordinates. Since $\theta = t^r$ never vanishes and the natural homomorphism $O_X(-K_X/\Delta) \otimes\otimes O_{X_s} \to \otimes O_{X_s}$, we have

$$\pi_*O_Y \cong \bigoplus_{m=0}^{r-1} O_X(-mK_X/\Delta)t^m, \, t^r = \theta.$$

We shall prove that the closed fiber Y_s is canonical or normal crossing, but we do not prove that the singularity of Y is isolated at this point.

First, assume that the closed fiber X_s of X is irreducible. Since $O_X(-mK_X/\Delta) \otimes\otimes O_{X_s} \cong O_{X_s}(-mK_X/s)$ by Assumption 1.1 (6), Y_s is isomorphic to the index 1 cover of X_s constructed by using the restriction of θ to X_s. By Theorem 1, Y_s is canonical. We can prove that its completed local ring at Q is isomorphic to the completion of $A[x_1, x_2, x_3]/(F)$ with $\text{ord}(F_s) \leq 2$ as in the original proof of Theorem 4.1, where the action of μ_r on the coordinates (x_1, x_2, x_3) is given by $x_i \mapsto \zeta^{a_i} \otimes x_i$, $(i = 1, 2, 3)$. Since $O_X(-K_X/\Delta)$ is not invertible, there exists at least 2 coordinates whose weights a_i are coprime to r. Let x_1, \ldots, x_c ($c = 2$ or 3) be such coordinates. Since $\theta = t^r$ never vanishes and the natural homomorphism $O_X(-K_X/\Delta) \otimes\otimes O_{X_s} \to \otimes O_{X_s}$, we have

$$\pi_*O_Y \cong \bigoplus_{m=0}^{r-1} O_X(-mK_X/\Delta)t^m, \, t^r = \theta.$$

We shall prove that the closed fiber Y_s is canonical or normal crossing, but we do not prove that the singularity of Y is isolated at this point.

First, assume that the closed fiber X_s of X is irreducible. Since $O_X(-mK_X/\Delta) \otimes\otimes O_{X_s} \cong O_{X_s}(-mK_X/s)$ by Assumption 1.1 (6), Y_s is isomorphic to the index 1 cover of X_s constructed by using the restriction of θ to X_s. By Theorem 1, Y_s is canonical. We can prove that its completed local ring at Q is isomorphic to the completion of $A[x_1, x_2, x_3]/(F)$ with $\text{ord}(F_s) \leq 2$ as in the original proof of Theorem 4.1, where the action of μ_r on the coordinates (x_1, x_2, x_3) is given by $x_i \mapsto \zeta^{a_i} \otimes x_i$, $(i = 1, 2, 3)$. Since $O_X(-K_X/\Delta)$ is not invertible, there exists at least 2 coordinates whose weights a_i are coprime to r. Let x_1, \ldots, x_c ($c = 2$ or 3) be such coordinates. Since $\theta = t^r$ never vanishes and the natural homomorphism $O_X(-K_X/\Delta) \otimes\otimes O_{X_s} \to \otimes O_{X_s}$, we have

$$\pi_*O_Y \cong \bigoplus_{m=0}^{r-1} O_X(-mK_X/\Delta)t^m, \, t^r = \theta.$$
\(\mathcal{O}_X(-rK_{X/\Delta}) \) is surjective outside \(\{ P \} \), we have \(\{ x_1 = \cdots = x_c = F = 0 \} = \{ Q \} \).

It follows that all the \(a_i \) are coprime to \(r \) and \(F \) contains a term in \(A \). Thus \(F_s \) is \(\mu_r \)-invariant, and \(\text{ord}(F_s) = 2 \). If \(F_s \) contains a term of the form \(x_1 x_2 \), then we are done. If it contains \(x_i^2 \) and there are no other terms of degree 2, then \(r = 2 \). But there is a term of degree 3 in \(F_s \), a contradiction.

Next, assume that \(X_s \) is reducible. Let \(X_{s,i} (1 \leq i \leq d) \) be its irreducible components. Since the \(X_{s,i} \) are \(\mathbb{Q} \)-Cartier divisors and the pairs \((X_{s,i}, D_i)\) for \(D_i = \sum_{j \neq i} X_{s,j} \cap X_{s,i} \) are log terminal, we have \(d = 2 \) or 3. Let \(r_i \) be the indices of the \((X_{s,i}, D_i)\). If \(d = 3 \), then \(r_i = 1 \) for all \(i \), and there are nowhere vanishing sections \(\theta_i \) of \(\mathcal{O}_{X_{s,i}}(K_{X_{s,i}} + D_i) \) which coincide each other on the double locus of \(X_s \) to give a nowhere vanishing section \(\theta_{X_s} \) of \(\mathcal{O}_{X_s}(K_{X_s}) \). Here we used the assumption that \(\mathcal{O}_{X_s}(K_{X_s}) \) has depth 2 at \(P \). Therefore, \(r = 1 \), a contradiction.

We consider the case \(d = 2 \). \(\theta \) induces a section \(\theta_{X_s} \) of \(\mathcal{O}_{X_s}(rK_{X_s}) \) and the sections \(\theta_i \) of \(\mathcal{O}_{X_{s,i}}(r(K_{X_{s,i}} + D_i)) \). Thus \(r_i | r \). We write \(r = r' p^f \) and \(r_i = r'_i p^f \) with \((r', p) = 1 \) and \((r'_i, p) = 1 \). We can construct a covering \(\pi' : X' \to X \) of degree \(r' \) by

\[
\pi'_* \mathcal{O}_{X'} \cong \bigoplus_{m=0}^{r'-1} \mathcal{O}_X(-mp^f K_{X/\Delta}) t^m, \quad t' = \theta.
\]

Then \(X'_{s,i} = \pi'^{-1} X_{s,i} \) is a union of \(r'/r'_i \) prime divisors which intersect only at a point \(\pi'^{-1}(P) \). Since \(X'_{s,i} \) supports a Cartier divisor on \(X' \), it follows that \(r' = r'_i \) for \(i = 1, 2 \).

Let \(\theta_0 \) be a section of \(\mathcal{O}_{X_s}(K_{X_s}) \) which does not vanish identically along the double locus \(D \) of \(X_s \). We write \(\theta_{X_s} = \alpha \theta_0^a \) as in Lemma 3. Since \(\theta \) is general, we may assume that \(\alpha_D = \alpha | D \not\subseteq L^p_D \), where \(L_D \) is the rational funtctin field of \(D \). Let \(Y_{s,i} = \pi^{-1}(X_{s,i}) \). We can extend Lemma 3 and apply it to the induced morphism \(\pi_i : Y_{s,i} \to X_{s,i} \) even if \(r_i \) might be smaller than \(r \), because \(L_D(\alpha_D^{1/p^f})/L_D \) is a purely inseparable field extension. Since \(\mathcal{O}_X(-mK_{X/\Delta}) \otimes \mathcal{O}_{Y_{s,i}} \cong \mathcal{O}_X(-m(K_{X_{s,i}} + D_i)) \) on \(Y_{s,i} \setminus \{ P \} \), \(Y_{s,i} \) is smooth possibly except at \(Q \), and \(\pi_i^* D_i \) is a reduced smooth divisor on \(Y_{s,i} \setminus \{ Q \} \). Thus \(Y_{s,i} \setminus \{ Q \} \) is a normal crossing divisor on \(Y \setminus \{ Q \} \). Since \(Y_s \) has depth 2, we conclude that the completed local ring of \(Y \) is isomorphic to the completion of \(A[x_1, x_2, x_3]/(F) \) with \(F_s = x_1 x_2 \) as in the original proof of Theorem 4.1. We may assume that the action of \(\mu_r \) on the coordinates \((x_1, x_2, x_3) \) is given by \(x_i \mapsto \zeta^{a_i} \otimes x_i (i = 1, 2, 3) \), because the ideal \((F_s) \) is preserved by this action. By the same reason as in the case where \(X_s \) is irreducible, all the \(a_i \) are coprime to \(r \) and \(F \) contains a term in \(A \) so that \(F = x_1 x_2 + \tau \). Since the \(X_{s,i} \) are Cartier divisors on \(X \setminus \{ P \} \), so are the \(Y_{s,i} \) on \(Y \setminus \{ Q \} \). Therefore, \(Y \setminus \{ Q \} \) is regular, and \(\tau \) is a generator of the maximal ideal of \(A \).

\[\square \]

References

[K1] Y. Kawamata, *On the classification of non-complete algebraic surfaces*, Lect. Notes Math. 732 (1979), 215–232.

[K2] , *Semistable minimal models of threefolds in positive or mixed characteristic*, J. Alg. Geom. 3 (1994), 463–491.

[KMM] Y. Kawamata, K. Matsuda and K. Matsuki, *Introduction to the minimal model problem*, Adv. St. Pure Math. 10 (1987), 283–360.

[RS] A. N. Rudakov and I. R. Šafarevič, *Inseparable morphisms of algebraic surfaces*, Math. USSR Izv. 10 (1976), 1995–1997.
[TM] S. Tsunoda and M. Miyanishi, *The structure of open algebraic surfaces II*, Progress in Math. 39 (1983), 499–544.

Department of Mathematical Sciences, University of Tokyo, Komaba, Meguro, Tokyo, 153-8914, Japan

E-mail address: kawamata@ms.u-tokyo.ac.jp