Absence of nuclear PAH emission from a compact starburst: the case of the type-2 quasar Mrk 477.

C. Ramos Almeida¹,², D. Esparza-Arredondo¹,², O. González-Martín³, J. García-Bernete⁴, M. Pereira-Santaella⁵,⁶, A. Alonso-Herrero⁷, J. A. Acosta-Pulido¹,², P. S. Bessiere¹,², N. A. Levenson⁸, C. N. Tadhunter⁹, D. Rigopoulou⁴, M. Martínez-Paredes¹⁰, S. Cazzoli¹¹, and B. García-Lorenzo¹,²

¹ Instituto de Astrofísica de Canarias, Calle Vía Láctea, s/n, E-38205, La Laguna, Tenerife, Spain
² Departamento de Astrofísica, Universidad de La Laguna, E-38206, La Laguna, Tenerife, Spain
³ Instituto de Radioastronomía y Astrofísica (IRyA-UNAM), 3-72 (Xangari), 8701, Morelia, Mexico
⁴ Department of Physics, University of Oxford, Oxford OX1 3RH, UK
⁵ Centro de Astrobiología (CSIC-INTA), Ctra. de Arajillo, Km 4, 28850, Torrejón de Ardoz, Madrid, Spain
⁶ Observatorio Astronómico Nacional (OAN-IGN)-Observatorio de Madrid, Alfonso XII, 3, 28014 Madrid, Spain
⁷ Centro de Astrobiología (CAB, CSIC-INTA), ESAC Campus, E-28692, Villanueva de la Cañada, Madrid, Spain
⁸ Space Telescope Science Institute, Baltimore, MD 21218, USA
⁹ Department of Physics & Astronomy, University of Sheffield, S3 7RH Sheffield, UK
¹⁰ Korea Astronomy and Space Science Institute 776, Daedeokdae-ro, Yuseong-gu, Daejeon, Republic of Korea (34055)
¹¹ Instituto de Astrofísica de Andalucía – CSIC, Glorieta de la Astronomía s/n, 18008 Granada, Spain

Received November 7, 2022; accepted November 7, 2022

ABSTRACT

Mrk 477 is the closest type-2 quasar (QSO2), at a distance of 163 Mpc. This makes it an ideal laboratory for studying the interplay between nuclear activity and star formation with a great level of detail and signal-to-noise. In this Letter we present new mid-infrared (mid-IR) imaging and spectroscopic data with an angular resolution of 0.4′′ (~300 pc) obtained with the Gran Telescopio Canarias (GTC) instrument CanariCam. The N-band (8-13 μm) spectrum of the central ~400 pc of the galaxy reveals [S IV]10.51 μm emission, but no 8.6 or 11.3 μm PAH features, which are commonly used as tracers of recent star formation. This is in stark contrast with the presence of a nuclear starburst with age of about 6 Myr and ~300 pc in size, as constrained from ultraviolet HST observations. Considering this, we argue that even the more resilient, neutral molecules that mainly produce the 11.3 μm PAH band are most likely being destroyed in the vicinity of the active nucleus despite the relatively large X-ray column density, of log N_{H}=23.5 cm⁻², and modest X-ray luminosity, of 1.5×10⁴⁵ erg s⁻¹. This highlights the importance of being cautious when using PAH features as star formation tracers in the central region of galaxies to evaluate the impact of active galactic nuclei (AGN) feedback.

Key words. galaxies: active – galaxies: nuclei – galaxies: quasars – galaxies: evolution – ISM: lines and bands

1. Introduction

Type-2 quasars (QSO2s) are optically selected active galactic nuclei (AGN) with L_{[OIII]} > 10⁶⁵ L_☉, ~M_{BH} < 23, and showing permitted emission lines with full width at half-maximum (FWHM) < 2000 km s⁻¹; Reyes et al. (2008). They might constitute a key evolutionary phase when the AGN is clearing up gas and dust to eventually shine as an unobscured quasar (Sanders et al. 1988; Hickox et al. 2009). Mrk 477 (SDSS J144038.1+533016, I Zw 92) is the closest QSO2 in the Quasar Feedback (QSOFEED) sample (Ramos Almeida et al. 2022), having a redshift of z=0.037 and a luminosity distance D_L=163 Mpc (scale of 735 pc′′/′). It is indeed the nearest obscured quasar (Villar Martín et al. 2015), showing broad lines in the polarized flux spectrum (Tran et al. 1992). Its [O III] luminosity, of 10⁷⁹⁴ L_☉, corresponds to a bolometric luminosity of 1.3×10⁴⁶ erg s⁻¹ using a correction factor of 3500 (Heckman et al. 2004). A more conservative estimate of L_{bol}=1.8×10⁴⁵ erg s⁻¹ was derived by Trindade Falcão et al. (2021) using the extinction-corrected [O III] luminosity and the correction factor of 454 from Lamastra et al. (2009). The black hole mass and Eddington ratio reported by Kong & Ho (2018) for this QSO2 are log M_{BH}=7.16±0.82 M_☉ and L_{bol}/L_{Edd}=0.41±0.83. The QSO2 is radio-quiet, but it has a 1.4 GHz luminosity of 1.9×10²³ W Hz⁻¹, and 8.4 GHz VLA data at 0.26″ resolution reveal a triple radio source extending ~1.3′′ (~1 kpc) with PA~30–35°. This orientation is the same as that of the [O III] emission observed with HST (Heckman et al. 1997; Fischer et al. 2018), which has a total extent of ~5′′ (3.7 kpc). Data from HST/STIS revealed a compact ionized outflow (r=0.54 kpc), with a maximum velocity of -500 km s⁻¹ (Fischer et al. 2018).

The host galaxy is a spiral of stellar mass log M_*=10.7±0.1 M_☉, calculated from the 2MASS XSC K-band magnitude, as described in Ramos Almeida et al. (2022), with a major axis PA~112° and inclination of 22° (Fischer et al. 2018). It is clearly interacting with a companion galaxy ~36 kpc to the north-east (Villar Martín et al. 2015). On smaller scales, ultraviolet (UV) and optical images obtained with the HST, shown in Fig. 1, reveal a complex nuclear region, of ~0.4″ (~300 pc) in diameter, first reported by Heckman et al. (1997). The inset in the left panel of Fig. 1 shows its three main components: the hot spot, the...
broken-ring, and the small spiral arm. At ~0.6" (440 pc) from the hot spot in the north-east direction, there is an off-nuclear scattering region named “NE mirror” by Kishimoto et al. (2002). These authors analyzed UV imaging polarimetry data and reported that the hot spot radiation is slightly polarized, but not dominated by scattered light, and that there has to be an additional continuum source outside the broad line region to explain the observations. Heckman et al. (1997) used an HST far-UV spectrum of the central 1.74′×1.74′ region to study the underlying stellar populations of this QSO2. This region includes the hot spot, the broken-ring, the small spiral arm, and the NE mirror (see Fig. 1). They reported the detection of Si III λ1417 and C IIIλ11426,1428 photospheric absorption lines, which are strong in late O and early B supergiants. The UV spectrum, in combination with an HST UV continuum image and ground-based optical and near-infrared (near-IR) spectra, revealed the presence of a compact starburst, with an age of ∼6 Myr, a duration of 6 Myr, and solar or twice solar metallicity. The light of this starburst, for which Heckman et al. (1997) calculated a bolometric luminosity of 3.2×10^10 L_⊙ and a mass of 1.1×10^8 M_⊙, dominates the observed continuum from the UV to the near-IR. This is most likely the additional continuum source proposed by Kishimoto et al. (2002) to explain the imaging polarimetry observations. Using HST UV images of the central region in two filters (F275W and F342W), Kishimoto et al. (2002) reported bluer colors in the small spiral arm than in the rest of features shown in the inset of Fig. 1, and claimed that this may well be the location of the starburst.

The presence of this compact starburst was the main motivation for observing Mrk 477 with the 10.4 Gran Telescopio Canarias (GTC) instrument CanariCam (Telesco et al. 2003; Pacham et al. 2005). This mid-IR camera/spectrograph provides diffraction-limited data, permitting us to obtain spectra of the inner ~400 pc of the QSO2. The UV radiation from the young O and B stars in this starburst should excite polycyclic aromatic hydrocarbon (PAH) features in the mid-IR, which CanariCam can study with unprecedented spatial resolution in a QSO2. PAH features are particularly bright in regions illuminated by UV-bright, early-type stars (e.g., H II regions and reflection nebulae; Peeters et al. 2004), and they are commonly used as tracers of star formation (Genzel et al. 1998; Rigopoulou et al. 1999). Evidence for star formation based on the detection of PAH features has been reported for AGN of different luminosities, from kpc-scales (Zakamska et al. 2008, 2016; Deo et al. 2009; Diamond-Stanic & Rieke 2012) to tens/hundreds of parsecs from the AGN (Sales et al. 2013; Esquej et al. 2014; Esparza-Arredondo et al. 2018; Martínez-Paredes et al. 2019). However, it has also been demonstrated that AGN radiation and/or shocks suppress the short-wavelength features (6.2, 7.7, and 8.6 µm) by modifying the structure of the aromatic molecules or destroying the smallest grains (Smith et al. 2007; Diamond-Stanic & Rieke 2010). On the other hand, the more resilient, larger and neutral molecules that produce the 11.3 and 17 µm features are enhanced in AGN relative to the short-wavelength PAHs (García-Bernete et al. 2022a,b) and they can be still used to determine star formation rates (SFRs) in AGN of bolometric luminosities ≤10^{46} erg s^{-1} (Xie & Ho 2022). Investigating the suitability of PAHs as star formation tracers in the innermost regions of AGN (i.e., the central kpc) is important because that is where we can evaluate the impact of AGN feedback on star formation, given the short timescales of nuclear activity (Hickox et al. 2014). Other star formation tracers such as Hα, [Ne II], the 24 µm flux, and even the far-IR luminosities contain some degree of AGN contamination. PAH features are considered to be “cleaner” probes of recent star formation, although it has been argued that they could also be excited by AGN radiation (Jensen et al. 2017).

Here assume a cosmology with H_0=70 km s^{-1} Mpc^{-1}, Ω_m=0.3, and Ω_Λ=0.7. The measurements from other works discussed here have been converted to it.

2. Observations and data reduction

Mrk 477 was observed on March 5th, 2020, under photometric conditions, with the mid-IR camera/spectrograph CanariCam. This instrument, relocated in 2019 to the folded Cassegrain E focus of the 10.4 Gran Telescopio Canarias (GTC), uses a Raytheon 320×240 Si:As detector which covers a field-of-view (FOV) of 26′×19″ and has a pixel scale of 0.0798″. A chopping–nodding technique was used to remove the time-variable sky background, the thermal emission from the telescope, and
the detector noise. Chopping and nodding throws were 15″, with chop and nod position angles of 90 and 270°, respectively. The observations were done in queue mode, taken as part of programme GTC83-19B (PI: Ramos Almeida). The image observations were taken in the narrow Si-2 filter (λ_c=8.7 μm, Δλ=1.1 μm), and consisted of two exposures of 417 s each, which we combined once reduced to produce a single image of 834 s on-source integration time. The airmass during the imaging observations was 1.1. The point spread function (PSF) standard star HD 128000 was observed after the science target in the same filter for accurately sampling the image quality, and to allow flux calibration. We reduced the data using the REDCAN pipeline (González-Martín et al. 2013) that, in the case of the imaging, performs sky subtraction, stacking of the individual images, rejection of bad frames, and flux calibration.

For the spectroscopic observations, we used the low spectral resolution N-band grating, which has a nominal resolution R = λ/Δλ=175 and covers the spectral range 7.5–13 μm. We used a slit width of 0.52″, oriented with a PA=0° (see Fig. 1). We integrated for 1296 s of total on-source time, split in two exposures of 648 s each, at an airmass of 1.1. Immediately after, we obtained a spectrum of the star HD 128000 to provide flux calibration and telluric and slit-loss corrections. The data reduction with REDCAN consists of sky subtraction, stacking of individual observations, rejection of bad frames, wavelength calibration, trace determination, spectral extraction, flux calibration, and combination into a single spectrum. The spectral extraction can be done either as point source, i.e., using an aperture that increases with wavelength to account for the decreasing angular resolution and performing a slit-loss correction; or as an extended source, in which case a fixed aperture is used and no slit-loss corrections are applied. Here we focus on the nuclear spectrum, extracted as point source (average aperture size of 0.5″–400 pc), but we also consider two additional spectra extracted as extended source, in apertures of 1.28″ and 1.60″ (940 and 1175 pc). The errors are estimated as the sum of the statistical error (i.e., squared root of the number of counts) and 15% of systematic uncertainty associated with the flux calibration (Alonso-Herrero et al. 2016).

In addition to the GTC/CanariCam observations, we retrieved a Spitzer spectrum of Mrk 477 from CASSIS (AORkey: 17643008), obtained with the Infrared Spectrograph (IRS). The observations were done on June 30th, 2006 (PI: G. Rieke, program ID: 30443), using the Short-Low (SL) and Long-Low (LL) spectrograph modules, which cover the wavelength range 5.3–38 μm with a spectral resolution of R = λ/Δλ ~60–130. The SL1 and SL2 slits have widths of 3.6 and 3.7″ (2.7 kpc) and they were oriented with a PA=49° (see Fig. 1). The LL slits have widths of 10.5 and 10.7″ (7.8 kpc), and PA=35°. CASSIS identified Mrk 477 as point-like and therefore, optimal extraction produces the best flux-calibrated spectrum. Finally, we retrieved Spitzer IRAC images in the 5.8 and 8 μm arrays (IRAC3 and IRAC4) from the same program using the Spitzer Heritage Archive (SHA). The data were taken on July 6th, 2006, and the nominal PSF values in IRAC3 and IRAC4 are 1.88″ and 1.98″.

3. Results

3.1. Mid-IR continuum

Using the CanariCam Si-2 images, we measured an angular resolution of 0.39″ (290 pc) from the FWHM of the PSF star. Mrk 477 is unresolved in the mid-IR, since we measure FWHMs of 0.38 and 0.41″ in the individual images, and 0.40″ in the combined image (295 pc).

In Fig. 2 we show the CanariCam nuclear spectrum of Mrk 477. There is good agreement between the flux calibration of the nuclear spectrum and the 8.7 μm flux obtained from the image in the Si-2 filter (green dot in Fig. 2), which is 49±5 mJy. This is expected considering the excellent conditions during the observations (seeing size and stability and photometric night). The continuum shows a positive slope, going from ~35 mJy at 8 μm to ~130 mJy at 12.5 μm. This continuum shape resembles those of Seyfert 2 galaxies with shallow silicate absorption features (Alonso-Herrero et al. 2014; Ramos Almeida et al. 2014). Shallow silicate absorption is generally observed in IRS spectra of QSO2s, with S_9.7 values ranging from 0 to -0.5 (Zakamska et al. 2008). For Mrk 477, Zakamska et al. (2016) reported S_9.7=-0.31, as measured from the IRS spectrum.

From Fig. 2, the excellent match between the continua of the IRS and CanariCam spectra from ~10 μm redwards is evident, and the slightly different spectral shape at λ<10 μm is due to the presence of broad 7.7 and 8.6 μm PAH features in the IRS spectrum. This similarity in continuum shape is in principle unexpected considering the different spatial scales probed by the two spectra (inner 400 pc versus 2.7 kpc), but Mrk 477 is compact in the mid-IR, as measured from the CanariCam and IRAC images. The FWHM that we measure in the IRAC 5.8 and 8 μm images, of 1.85″ and 2.02″, are much smaller than the slit widths of the SL IRS module and the IRS PSF in the blue filter (~15 μm), which is 3.8″. The compactness of the mid-IR emission explains the excellent agreement between the IRAC and WISE photometry and the IRS spectrum, of ≤5% (see Fig. 2), even when large apertures are considered (up to 5.8″ in the case of IRAC 5.8 and 8 μm, and 22″ for WISE 12 μm). The IRAC and WISE fluxes were retrieved from the NASA/IPAC Infrared Science Archive (IRSA; Caltech/JPL), and the associated uncertainties are smaller than the 5% error bars plotted in Fig. 2. Considering this, and the similarity between the CanariCam spectrum and those of Seyfert 2 galaxies with shallow absorption (e.g., NGC 3081; Ramos Almeida et al. 2014), we conclude that the bulk of the mid-IR emission in Mrk 477 must be dominated by the AGN continuum. This was already noted by Heckman et al. (1997), based on the shape of the IR spectral energy distribution (SED). Dust heated by star formation is usually at lower temperatures and produces steeper slopes in the mid-IR (Hernán-Caballero & Hatziminaoglou 2011). Indeed, if we decompose the IRS spectrum using a linear combination of empirical templates, we find 93% of AGN contribution to the 5–22 μm continuum (see Appendix A).

3.2. Mid-IR emission lines

In the spectral range shown in Fig. 2, the IRS spectrum shows [S IV]λ10.51 μm, [Ar III]λ48.99 μm, [Ne VI]λ17.65 μm, and [Ar II]λ6.99 μm, as well as the PAH features at 6.2, 7.7, 8.6, and 11.3 μm. These PAH bands were studied in Deo et al. (2009) and the authors reported a deficit of 6.2 and 7.7 μm emission in Mrk 477 as compared to the 11.3 and 17 μm bands, once they subtracted a starburst template from the IRS spectrum. Shock models may be responsible for the unusual PAH band ratios seen over large scales in Mrk 477, since they induce a rapid increase in temperature and density that affects the chemical and physical properties of both the gas and solid phases of the ISM (Rigopoulou et al. 2021).

In contrast with the IRS spectrum, we do not see any evidence of PAH emission in the nuclear CanariCam spectrum. In particular, we do not detect the 11.3 μm PAH feature, which is mainly produced by larger and thus more resilient neutral molecules that can survive in the inner tens or hundreds of pc...
of nearby Seyfert galaxies and PG-quasars (Esquej et al. 2014; Martínez-Paredes et al. 2019). The only spectral features detected in the nuclear CanariCam spectrum are the shallow 10 µm silicate absorption band and the [S IV] 10.51 µm emission line (IP=47 eV). This emission line is clearly detected both in the CanariCam and IRS spectra, with practically the same luminosity and equivalent width (EW; see Table 1). This indicates that, whilst the continuum and the [S IV] emission are mostly nuclear (<400 pc; i.e., the region including the hot spot, broken ring, spiral arm, and part of the NE mirror, as shown in Fig. 1), the PAH emission detected in the IRS spectrum is coming from exposed photodissociation regions (PDRs), reflection nebulae and/or H II regions on larger scales. We do not detect PAH emission in the CanariCam spectra extracted in apertures of 1.26′′×0.95′′ at 5.8 µm and 1.30′′×1.15′′ at 8 µm. The slightly more extended emission that we detect at 8 µm (IRAC4), might be coming from the PAH features lying within this filter, shown in Fig. 2, since the 5.8 µm filter (IRAC3) does not contain any of the strong PAH features.

Further evidence for this scenario comes from the sizes measured from the IRAC3 and IRAC4 images. By fitting a 2D Gaussian convolved with the IRAC PSF in each filter, we derived FWHM sizes of 1.26′′×0.95′′ at 5.8 µm and 1.30′′×1.15′′ at 8 µm. The slightly more extended emission that we detect at 8 µm (IRAC4), might be coming from the PAH features lying within this filter, shown in Fig. 2, since the 5.8 µm filter (IRAC3) does not contain any of the strong PAH features.

4. Discussion

In another AGN, the lack of 11.3 µm PAH emission in the nuclear spectrum could be interpreted as evidence for AGN feedback quenching star formation, but in Mrk 477 we know from the detailed analysis presented in Heckman et al. (1997) that this is not the case. PAH emission should be being produced by the O and B stars in the nuclear starburst. On this basis, we estimate upper limits for the 11.3 µm luminosity at 2σ significance, as in Esquej et al. (2014), and from them we measure SFRs<0.5 M⊙ yr⁻¹ (see Table 1). This upper limit needs to be compared with the SFR that we would expect from the starburst. To do so, we used Starburst99 (v7.0.1; Leitherer et al. 1999) to model a instantaneous burst of star formation of mass, age, and duration of 1.1×10⁶ M⊙, 6 Myr, and ~1 Myr, following Heckman et al. (1997), as well as a continuous SFR of 1 M⊙ yr⁻¹. We then integrated the UV luminosity of the two models between 915 and 1400 Å, which is the UV radiation that excites the PAH features (Li & Draine 2001), and we find

\[L_{\text{burst}}^{915-1400 \text{ Å}} = 6.8 \times L_{915-1400 \text{ Å}}^{1} \]

Thus, the nuclear starburst has an UV radiation equivalent to that of a continuous SFR=6.8 M⊙ yr⁻¹. This SFR is of the same order as that derived from stellar population modelling of the optical SDSS spectrum (3″ diameter; SFR=10 M⊙ yr⁻¹ using Salpeter IMF; Bessiere et al., in prep.). This is expected, since the model of the optical spectrum includes a young stellar population consistent with the results reported by Heckman et al. (1997). This continuous SFR of 6.8 M⊙ yr⁻¹ corresponds to a 11.3 µm luminosity of 2.7×10⁻¹² erg s⁻¹, following Eq. 12 in Shipley et al. (2016), which is more than ten times higher than the upper limits that we measure from the CanariCam spectra (see Table 1). Therefore, the most likely explanation for the
lack of PAH emission is that even the larger molecules are being destroyed by the quasar radiation and/or shocks. Indeed, recent results based on JWST MIRI/MRS observations of three nearby Seyfert galaxies provided evidence that nuclear activity has a significant impact on the ionisation state and size of the PAH grains on nuclear scales (García-Bernete et al. 2022a).

Another possibility could be that the nuclear starburst is extremely obscured and therefore, the PAH-emitting regions are buried inside optically thick layers of dust. We discard this scenario because the intrinsic extinction measured at 2150 Å is 0.9 ± 0.3 mag (Heckman et al. 1997), and the silicate feature detected in the CanariCam spectrum is weak. Dilution by the strong AGN continuum (Alonso-Herrero et al. 2014) could potentially explain the lack of nuclear PAH emission. However, considering the expected PAH luminosity that we estimate from the starburst and the 2σ upper limits that we measure from the adjacent mid-IR continuum, we favour PAH destruction over dilution to explain the lack of 11.3 µm emission in the nuclear spectrum.

To further explore potential destruction of PAHs molecules in Mrk 477, we need measurements of its X-ray luminosity and column density. This QSO2 was proposed as a Compton-thick candidate by Bassani et al. (1999) and Shu et al. (2007), but more recently, using data from NuSTAR and XMM-Newton, Marchesi et al. (2018) reported a column density of $N_H = (3.2 ± 0.4) \times 10^{23}$ cm$^{-2}$ and an intrinsic 2-10 keV luminosity of $(1.54 ± 0.05) \times 10^{43}$ erg s$^{-1}$. Using a bolometric correction factor of 20, this corresponds to $L_{bol} = 3.1 \times 10^{44}$ erg s$^{-1}$, which is much lower than those estimated from the [O III] luminosity (see Section 1). Using a correction factor of 70, more appropriate for very obscured AGN (Marinucci et al. 2012), yields to $L_{bol} = 1.1 \times 10^{45}$ erg s$^{-1}$, which is in better agreement with the bolometric luminosity estimated from the extinction-corrected [O III] luminosity $(1.8 \times 10^{45}$ erg s$^{-1}$; Trindade Falcão et al. 2021).

At the X-ray luminosity of Mrk 477, according to the theoretical predictions from Voit (1992) and Miles et al. (1994), the neutral molecules responsible for the 11.3 µm PAH feature should be shielded from AGN radiation up to distances as close as 150 pc from the AGN when $N_H \geq 10^{23}$ cm$^{-2}$ (see Fig. 13 in Alonso-Herrero et al. 2014). However, more recent predictions by Monfredini et al. (2019), based on experimental mass spectrometry, showed that even considering X-ray optical depths typical of the dusty torus, the molecules’ half-lives are not long enough to account for PAH detection in AGN. From an observational point of view, Martínez-Paredes et al. (2019) reported the detection of 11.3 µm features in ground-based N-band spectra of 5 out of 13 PG-quasars at z <0.1 with X-ray luminosities ranging from 2×10^{43} to 5×10^{44} erg s$^{-1}$. The spatial scales probed by their nuclear spectra are the inner 700 pc or less, showing that in some cases it is possible to shield the neutral molecules at these high AGN luminosities. Nevertheless, having a high column density does not necessarily imply that 11.3 µm emission is detected in the nuclear region, as shown by Alonso-Herrero et al. (2020) using mid-IR and sub-millimeter observations of nearby AGN. New models and targeted high angular resolution spectroscopic observations are clearly required for a better understanding of the diversity of PAH line ratios observed in AGN of different luminosities and obscuration levels.

Mrk 477 is a perfect laboratory for studying the reliability of PAHs as star formation tracers as a function of distance from the active nucleus. It is a luminous AGN with a high hydrogen column density, co-existing with a nuclear starburst of ~300 pc in size, age of 6 Myr, and mass of 1.1×10^{10} M_{\odot}. This starburst dominates the continuum emission from the UV to the near-IR, but does not show detectable PAH emission in the mid-IR nuclear spectrum (~400 pc). This implies that the nuclear molecules responsible for the 11.3 µm emission are most likely being destroyed by AGN radiation and/or shocks. On the other hand, the PAH features that we detect in the IRS spectrum should come from extended regions beyond the central 400 pc. This study, that has been possible thanks to the good angular resolution and excellent observing conditions of the mid-IR GTC/CanariCam data, can be improved, in terms of sensitivity and wavelength coverage, with the integral field mode capabilities of the JWST.

Acknowledgements. Based on observations made with the GTC, installed at the Spanish Observatorio del Roque de los Muchachos of the IAC, on the island of La Palma, CASSIS is a product of the IRS instrument team, supported by NASA and JPL, by the “Programme National de Physique Stellaire” (PNPS) of CNRS/INSU co-funded by CEA and CNES and through the “Programme National Physique et Chimie du Milieu Interstellaire” (PCMI) of CNRS/INSU with INC/INP co-funded by CEA and CNES. CRA acknowledges the hospitality of the Kavli Institute for Cosmology of the University of Cambridge, where this manuscript was written, in August 2023. This work was supported by the Spanish MICINN through the Spanish State Research Agency, under Severo Ochoa Centres of Excellence Programme 2020-2023 (CEX2019-000920-S). CRA and PSB acknowledge support from the projects “Quantifying the impact of quasar feedback on galaxy evolution”, with reference EUR2020-112266, funded by MICINN-AEI/10.13039/50110001033 and the European Union NextGenerationEU/PRTR, and from the Consejería de Economía, Conocimiento y Empleo del Gobierno de Canarias and the European Regional Development Fund (ERDF) under grant “Quasar feedback and molecular gas reservoirs”, with reference ProD2020010105, ACCISI/FEDER, UE. AAH acknowledges financial support from grant PID2021-124665NB-I00 funded by the Spanish Ministry of Science and Innovation, SC acknowledges financial support from the State Agency for Research of the Spanish MCIU through the “Center of Excellence Severo Ochoa” award to the IAA (SEV-2017-0709). We finally thank the referee for his constructive report.
References

Alonso-Herrero, A., Esquej, P., Roche, P. F., et al. 2016, MNRAS, 455, 563
Alonso-Herrero, A., Pereira-Santaella, M., Rigopoulou, D., et al. 2020, A&A, 639, A43
Alonso-Herrero, A., Ramos Almeida, C., Esquej, P., et al. 2014, MNRAS, 443, 2766
Bassani, L., Dadina, M., Maiolino, R., et al. 1999, ApJS, 121, 473
Deo, R. P., Richards, G. T., Crenshaw, D. M., & Kraemer, S. B. 2009, ApJ, 705, 14
Diamond-Stanic, A. M. & Rieke, G. H. 2010, ApJ, 724, 140
Diamond-Stanic, A. M. & Rieke, G. H. 2012, ApJ, 746, 168
Esparza-Arredondo, D., González-Martín, O., Dultzin, D., et al. 2018, ApJ, 859, 124
Esquej, P., Alonso-Herrero, A., González-Martín, O., et al. 2014, ApJ, 780, 86
Fischer, T. C., Kraemer, S. B., Schmitt, H. R., et al. 2018, ApJ, 856, 102
García-Bernete, I., Rigopoulou, D., Alonso-Herrero, A., et al. 2022a, A&A, 666, L5
García-Bernete, I., Rigopoulou, D., Alonso-Herrero, A., et al. 2022b, MNRAS, 509, 4256
Genzel, R., Lutz, D., Sturm, E., et al. 1998, ApJ, 498, 579
González-Martín, O., Rodríguez-Espinosa, J. M., Díaz-Santos, T., et al. 2013, A&A, 553, A35
Heckman, T. M., González-Delgado, R., Leitherer, C., et al. 1997, ApJ, 482, 114
Heckman, T. M., Kauffmann, G., Brinchmann, J., et al. 2004, ApJ, 613, 109
Hernán-Caballero, A., Alonso-Herrero, A., Hatziminaoglou, E., et al. 2015, ApJ, 803, 109
Hernán-Caballero, A. & Hatziminaoglou, E. 2011, MNRAS, 414, 500
Hickox, R. C., Jones, C., Forman, W. R., et al. 2009, ApJ, 696, 891
Hickox, R. C., Mullaney, J. R., Alexander, D. M., et al. 2014, ApJ, 782, 9
Jensen, J. J., Hong, S. F., Rakhit, S., et al. 2017, MNRAS, 470, 3071
Kishimoto, M., Kay, L. E., Antonucci, R., et al. 2002, ApJ, 567, 790
Kong, M. & Ho, L. C. 2018, ApJ, 859, 116
Lamina, M., Bianchi, S., Matt, G., et al. 2009, A&A, 504, 73
Leitherer, C., Schaerer, D., Goldader, J. D., et al. 1999, ApJS, 123, 3
Li, A. & Draine, B. T. 2001, ApJ, 554, 778
Marchesi, S., Ajello, M., Marcoutili, L., et al. 2018, ApJ, 854, 49
Marinucci, A., Bianchi, S., Nicastro, F., Matt, G., & Goulding, A. D. 2012, ApJ, 748, 130
Martínez-Paredes, M., Aretxaga, I., González-Martín, O., et al. 2019, ApJ, 871, 190
Miles, J. W., Houck, J. R., & Hayward, T. L. 1994, ApJ, 425, L37
Monfredini, T., Quitián-Lara, M. H., Fantuzzi, F., et al. 2019, MNRAS, 488, 451
Packham, C., Telesco, C. M., Hough, J. H., & Fuclas, C. 2005, in Revista Mexicana de Astronomía y Astrofísica Conference Series, Vol. 24, Revista Mexicana de Astronomía y Astrofísica Conference Series, ed. A. M. Hidalgo-Gámez, J. J. González, J. M. Rodríguez Espinosa, & S. Torres-Primit, 7–12
Peeters, E., Spoon, H. W. W., & Tielens, A. G. G. M. 2004, ApJ, 613, 986
Ramos Almeida, C., Alonso-Herrero, A., Levenson, N. A., et al. 2014, MNRAS, 439, 3847
Ramos Almeida, C., Bischetti, M., García-Burillo, S., et al. 2022, A&A, 658, A155
Reyes, R., Zakamska, N. L., Strauss, M. A., et al. 2008, AJ, 136, 2373
Rigopoulou, D., Barale, M., Clary, D. C., et al. 2021, MNRAS, 504, 5287
Rigopoulou, D., Spoon, H. W. W., Genzel, R., et al. 1999, AJ, 118, 2625
Sales, D. A., Pastoriza, M. G., Riffel, R., & Winge, C. 2013, MNRAS, 429, 2634
Sanders, D. B., Soifer, B. T., Elias, J. H., et al. 1988, ApJ, 325, 74
Shipley, H. V., Papovich, C., Rieke, G. H., Brown, M. J. I., & Moustakas, J. 2016, ApJ, 818, 60
Shu, X. W., Wang, J. X., Jiang, P., Fan, L. L., & Wang, T. G. 2007, ApJ, 657, 167
Smith, J. D. T., Draine, B. T., Dale, D. A., et al. 2007, ApJ, 656, 770
Telesco, C. M., Ciardi, D., French, J., et al. 2003, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 4841, Instrument Design and Performance for Optical/Infrared Ground-based Telescopes, ed. M. Iye & A. F. M. Moorwood, 913–922
Tran, H. D., Miller, J. S., & Kay, L. E. 1992, ApJ, 397, 452
Trindade Falcão, A., Kraemer, S. B., Fischer, T. C., et al. 2021, MNRAS, 500, 1491
Villar Martín, M., Bellocchi, E., Stern, J., et al. 2015, MNRAS, 454, 439
Voit, G. M. 1992, MNRAS, 258, 841
Xie, Y. & Ho, L. C. 2022, ApJ, 925, 218
Zakamska, N. L., Gómez, L., Strauss, M. A., & Krolik, J. H. 2008, AJ, 136, 1607
Zakamska, N. L., Lampayan, K., Petric, A., et al. 2016, MNRAS, 455, 4191
Appendix A: Spectral decomposition of the IRS spectrum

We used the DeblendIRS tool (Hernán-Caballero et al. 2015) to decompose the IRS spectrum of Mrk 477, in the range 5–22 µm, in different components. The fit is done using a linear combination of empirical AGN, PAH, and stellar emission templates that minimizes the χ^2. The AGN templates correspond to IRS spectra from CASSIS of different types of active galaxies, the PAH templates to star-forming or starburst galaxies, and the stellar templates to elliptical and S0 galaxies with weak or absent PAH features. From the fit shown in Fig. A.1, we find that the AGN, PAH, and stellar emission contributions to the mid-IR continuum are 93.2%, 5.6%, and 1.2%, respectively.

![Fig. A.1. IRS spectrum of Mrk 477 fitted with a combination of empirical AGN, PAH, and stellar emission templates. The different components are indicated with different colors and symbols, and the residuals from the fit, which produces a $\chi^2=2.876$, are shown as a black solid line at around 0 in flux density.](image-url)