COMMUNICATION

OCCURRENCE OF THE *APORRECTODEA CALIGINOSA CALIGINOSA* (SAVIGNY, 1826) (ANNELIDA: CLITELLATA: HAPLOTAXIDA) FROM KASHMIR VALLEY, JAMMU & KASHMIR, INDIA

Ishtiyaq Ahmed Najar, Anisa B. Khan & Abdul Hai

26 November 2020 | Vol. 12 | No. 15 | Pages: 17138–17146
DOI: 10.11609/jott.2947.12.15.17138-17146

For Focus, Scope, Aims, Policies, and Guidelines visit https://threatenedtaxa.org/index.php/JoTT/about/editorialPolicies#custom-0

For Article Submission Guidelines, visit https://threatenedtaxa.org/index.php/JoTT/about/submissions#onlineSubmissions

For Policies against Scientific Misconduct, visit https://threatenedtaxa.org/index.php/JoTT/about/editorialPolicies#custom-2

For reprints, contact <ravi@threatenedtaxa.org>
Occurrence of the *Aporrectodea caliginosa caliginosa* (Savigny, 1826) (Annelida: Clitellata: Haplotaxida) from Kashmir Valley, Jammu & Kashmir, India

Ishtiyaq Ahmed Najar, Anisa B. Khan & Abdul Hai

1 Department of Environmental Sciences, G. D. College, Ganderbal, Jammu and Kashmir 191201, India.
2 Department of Ecology and Environmental Sciences, Pondicherry University, Puducherry 605014, India.
3 Department of Zoology, A.A.A.M. Degree College, Bemina, Jammu and Kashmir 190018, India.

Abstract: The paper describes the earthworm *Aporrectodea caliginosa caliginosa* (Savigny, 1826) of class Clitellata, order Opisthopora and family Lumbricidae, from Kashmir Valley, Jammu & Kashmir, India. Previously the species was recorded from Himachal Pradesh, and in the present study the species is reported from Gulmarg forest within the geographical coordinates of (34.050°N & 74.388°E). During the study the seasonal variation of *A. c. caliginosa* in terms of density and biomass along with the soil physiochemical characteristics were reported. *A. c. caliginosa* showed significant variation in density ($t=3.34$, $p<0.044$) and biomass ($t=3.40$, $p<0.042$) among different seasons, with maximum density (129.6/m2) and biomass (26.90g/m2) during spring, and minimal values of 34.33/m2 and 6.94g/m2 during winter respectively. Soil physiochemical characteristics also varied significantly among seasons.

Keywords: Biomass, density, earthworm, Kashmir Valley, soil physiochemical.
INTRODUCTION

Human activities are causing major shifts in the community composition of biological systems by transporting species across biogeographic barriers (Wardle & Peltzer 2017). Invasion of exotic earthworms is increasing worldwide (Lee 1985; Fragoso et al. 1999), apparently facilitated by global commerce with the importation of soil-containing materials (agricultural and horticultural products) for commercial applications (waste management and land bioremediation). Invasive earthworms are also continuing their expansion into earthworm-free zones (Tiuonov et al. 2006), where they may have large ecological impacts (Bohlen et al. 2004; Frelich et al. 2006).

Globally, 4,400 earthworm species are known (Sinha 2009), most having restricted ranges (Reynolds 1994). Julka et al. (2009), Blakemore (2008), and Julka (2014) reported more than 500 species of earthworms from India, belonging to 10 families and 69 genera (Dash 2012; Kathireswari 2016). In comparison to other Asian countries, earthworms are well studied in India (Bisht et al. 2003; Tripathi & Bhardwaj 2004; Sathianarayanan & Khan 2006; Karmegam & Daniel 2007; Chaudhuri et al. 2008; Goswami & Mondal 2015; Deepthi & Kathireswari 2016; Narayanan et al. 2017, 2019; Rajwar et al. 2018; Lone et al. 2020), while there is paucity of information on the earthworms of the Kashmir Valley aside from the important contributions of Stephenson (1922), Sharma & Kaul (1974), Paliwal & Julka (2005), Najar & Khan (2011a,b,c, 2014), and Mir & Najar (2016). Earthworms play a key role in the improvement of soil, making nutrients available to plants and thus enhancing crop yields (Najar & Khan 2013a,b; Najar 2017).

The first record of earthworms from the Indian subcontinent was provided by Templeton (1844). Subsequently followed by Michaelsen (1907), Stephenson (1922, 1923, 1924, 1925, 1926, 1931), Gates (1940, 1945a,b, 1972a), Julka (1976, 1978, 1981, 1993), Kale & Krishnamoorthy (1978a,b), Julka & Senapati (1987), Bhadouria & Ramakrishnan (1989), Ismail et al. (1990), Bano & Kale (1991), Blanchart & Julka (1997), Chaudhuri & Bhattacharjee (1999), Bhadouria et al. (2000), Bisht et al. (2003), Srivastava et al. (2003), Tripathi & Bhardwaj (2004), Paliwal & Julka (2005), Sathianarayanan & Khan (2006), Karmegam & Daniel (2007), Chaudhuri et al. (2008), Joshi & Aga (2009), Chaudhuri & Bhattacharjee (2011), Chaudhuri & Nath (2011) Verma & Shweta (2011), Najar & Khan (2011a,b,c, 2014), Chaudhuri & Dey (2012), Siddaraju et al. (2013), Dey & Chaudhuri (2013, 2014).

Aporrectodea caliginosa caliginosa is a typical synanthropic species and thrives in pastures, gardens and forests of the temperate zone. Miller et al. (1955) stated its possibility in every type of substrate, even in the poorest sandy soil. In disturbed ecosystems it can displace populations of native worms in a short span of time. According to Bouche’s (1977) ecological characterization, A.c. caliginosa belongs to the endogeic group, living and feeding in the mineral soil layer.

Gulmarg is located in the Pir Pinjal range of the Himalayan Mountains of Kashmir Valley (Jammu & Kashmir) India. It is at a distance of 52km from Srinagar, the capital of Jammu & Kashmir to its southwest, at an altitude of 2,450m (Fig. 1). It is famous for retaining the earthworms of Kashmir Valley to its southwest, at an altitude of 2,450m (Fig. 1). It is famous for retaining several rare and endangered species with a rich and varied avifauna. The area holds a rich cover of vegetation, the dominant forest consisting of conifers, which account for over 90%. The principal species are Cedrus Deodara, Abies Pindrow, and Pinus wallichiana. The dominant tree species at the site is P. wallichiana with a rich ground cover comprising of Leucanthem vulgare, Cyanodon dactylon, and Trifolium repens.

MATERIALS AND METHODS

Earthworm and soil sampling

Earthworm samples were collected by digging soil monolith (25 x 25 x 30 cm) and hand sorting. Worms were sorted into clitellates, non-clitellates (>4cm, without clitellum but have genital markings) and juveniles (<4cm, lack of genital marking, tumescences and clitellum) following Zorn et al. (2005), preserved in 4% formalin and sent to Zoological Survey of India (ZSI), Kolkata for taxonomic identification. The specimens were deposited in the Museum, Department of Ecology and Environmental Sciences, Pondicherry Central University, (DEES-A: 03/2009) housed in Kalapet, Puducherry, India.

Soil analysis

Composite soil samples comprising of three subsamples were analyzed using standard protocols. Soil temperature measured by soil thermometer and soil moisture by gravimetric method (Gupta 1999); pH, electrical conductivity (EC) and organic nitrogen (ON) by micro Kjeldahl method (Jackson 1973); soil texture by the international pipette method (Gee & Bauder 1986); organic carbon (OC) by Walkley & Black (1934).
Data analyses
Data sets were subjected to t-test in order to determine differences among the parameters. Statistical analyses and graphical presentations were performed using SPSS statistical software (Version 16) and PAST statistical software (Version 1.93).

RESULTS AND DISCUSSION

Aporrectodea caliginosa species complex includes three species, *A. caliginosa* s.s. (Savigny, 1826), *A. trapezoides* (Duges, 1828), and *A. nocturna* (Evans, 1946) and one subspecies, *A. c. tuberculata* (Eisen, 1874), although this view has been challenged several times. Because of their similarity, the taxonomic status of the taxa within *A. caliginosa* species complex is a matter of debate for more than a century. Based on morphological data, *A. caliginosa* s.s., *A. trapezoides*, and *A. nocturna* were initially described as distinct species, whereas *A. tuberculata* was described as a subspecies of *A. caliginosa*. Michaelsen (1900) noticed that some of these taxa were closely related and included them in a species complex, but he suggested that they belong to a single species with two subspecies: *A. caliginosa caliginosa* and *A. c. trapezoides* and considered the other taxa as synonymous to *A. caliginosa*. Omodeo (1952) and Casellato (1987) considered *A. trapezoides* as the polyploid variety of *A. caliginosa* s.s. Gates (1972b) disagreed with Michaelsen (1900) and separated them into four distinct species [*A. caliginosa* s.s. (namely, *A. turgida* Eisen 1874), *A. tuberculata*, *A. trapezoides*, and *A. nocturna*]. The same year, however, Bouche (1972) split them into two species and placed them into a different genus, *Nicodrilus caliginosus* (*A. caliginosa*) and *N. nocturnus* (*A. nocturna*), with the former species composed of three subspecies: *N. c. caliginosus* (*A. c. caliginosus*), *N. c. alternisetosus* (*A. tuberculata*) and *N. c. meridionalis* (*A. trapezoides*). Finally, almost a century after Michaelsen's study, Briones (1996) resurrected his initial proposal suggesting that the *A. caliginosa* species complex is composed of one species with two subspecies - *A. caliginosa caliginosa* and *A. c. trapezoides* (Pérez-Losada et al. 2009). Paliwal & Julka (2005) in the checklist of earthworms of western Himalaya reported *A. c. caliginosa* species from Himachal Pradesh.

Its diagnosis is summarized in Image 1 comprising: length 60–160 mm; diameter 4–6 mm. segments 104–
248. Colour variable in life, grey, flesh-colour, brown, yellowish, slate-blue, but never purple. Prostomium epilobous 1/3, tongue cut off behind. Dorsal pores from 9/10 or less often 8/9. Setae closely paired, the lateral especially closely; aa greater than bc; dd=half the circumference or somewhat less. Clitellum saddle shaped, xxvi, xxvii, or xxviii to xxxiv or xxxv (= 7–10). Tubercles of puberty two pairs on xxxi and xxxiii. Male pores in transverse slits, on usually much elevated glandular areas, which take up xiv-xvi. Spermathecal pores two pairs, in 9/10 and 10/11, on cd. Setae ab of ix, x, and xi usually on broad papillae, transformed into genital setae, grooved, somewhat longer and thinner than the normal setae, slightly curved. Septa 5/6–9/10 thickened, 7/8 most so. Seminal vesicles of ix and x small (Stephensen 1923).

The natural rate of dispersal of an established earthworm population is relatively slow and is of rate of 5–10 m/year (Lee 1985; Marinissen & van den Bosch 1992; Dymond et al. 1997; Hale et al. 2005). Thus, anthropochorous dispersion has likely played a key role in the spreading of earthworm populations across different geographical regions. According to Hendrix (2006) there is mounting evidence that exotic earthworm invasions are increasing worldwide, sometimes with significant effects on soil processes and plant communities. At least 100 earthworm species have distributions beyond their places of origin (Lee 1985; Fragoso et al. 1999). Earthworm introductions to new geographical areas appear to be facilitated by global commerce, both inadvertently with the importation of soil-containing materials (agricultural and horticultural products) and intentionally for use in commercial applications (waste management and land bioremediation).

There are many theories regarding the dispersal of earthworms. Medium to long range dispersal is attributable to earthworms escaping to the soil surface after heavy rains, followed by wash-off of cocoons and earthworms, and eventual further transport by streams. Birds also import earthworm cocoons to new areas through mud on their feet (Eijsackers 2011). Lee (1985) and Schwert (1980) also attributed cocoon dispersal partly to avian phoresy. Earthworms have been recently introduced to the South Sea islands Gough and Marion, probably by birds, although human transport seems to have the greatest impact (Lee 1985; James & Hendrix 2004).

Humans play a dominant role in earthworm introduction and redistribution by transporting soil and plant materials (Eijsackers 2011). Plisko (2001) observed that the distribution of exotic species exhibited proximity to urban and agricultural areas, in addition to dispersal through plant material and adhering soil. Proulx (2003) and Hale & Host (2005) found a relationship between dispersal and an anthropogenic index. Holdsworth et al. (2007) found a relationship between earthworm distribution and distance to roads, whereas Cameron & Bayne (2009) correlated the distribution of exotic earthworm species with road age and reported transportation as the most important distribution factors.

According to Julka (1988), earthworms in India have been introduced to new areas by man and other agencies with the importation of soil-containing materials (plants, agricultural and horticultural products), and species colonize successfully due to their inherent ability to withstand disturbance and interference. Gonzalez et al. (2006) reported the reproductive biology of species as an important characteristic in successful establishment. Further, high fecundity, short incubation periods and high hatching success are also likely adaptive strategies that enable survival of drastic environmental changes (Bhattacharjee & Chaudhuri 2002). Environmental
Figure 3. Soil physicochemical characteristics of the earthworm collection site.
plasticity and ability to aestivate appear to make some earthworms particularly successful as invaders (Fragoso et al. 1999; James & Hendrix 2004). According to Bengtson et al. (1979), the aestivation capability of *A. caliginosa* makes it a successful colonizer during adverse drought conditions and able to tolerate a wide range of soil moisture (35–65 %; Zorn et al. 2008) and pH (3.7–8.5). Further biological traits of *Aporrectodea* sp. such as tolerance to varying environmental conditions, rapid growth, and ability to live under a wide range of land uses and soils (Winsome et al. 2006), could give it a competitive advantage to successfully establish and dominate in different pedoecosystems.

The population size and species composition of earthworm communities is dependent upon soil texture, pH, moisture, and the palatability and quantity of litter (Lavelle 1997; Bohlen et al. 2004). *A. c. caliginosa* exhibited significant variation in population density \((r=3.34, p<0.044)\) and biomass \((r=3.40, p<0.042)\) among different seasons is shown in Figure 2. Population density varied from 34.33/m² to 129.6/m² during winter and spring respectively. The biomass also ranged from 6.94g/m² during winter to 26.90g/m² during spring. Population density was minimum during winter which is attributed to low temperature which causes delay in hatching of cocoons (Timmerman et al. 2006). Najar & Khan (2011a) also reported that earthworms were most abundant during spring and attributed it to the optimum moisture and temperature conditions. Complete cessation of cocoon production was observed by Nair & Bennour (1997) during summer in *A. caliginosa* due to high temperature.

A variety of environmental factors such as soil texture, soil moisture,
\(\text{pH}\), temperature, organic content have been suggested as determinants for the distribution and abundance of earthworms (Bisht et al. 2003). Soil characteristics of the site are given in Figure 3. *A. c. caliginosa* was found within the pH range of 5.73 ± 0.09 to 5.99 ± 0.21. EC exhibited a value between 0.11 ± 0.01 to 0.17 ± 0.01 mS/m and varied significantly among the seasons \((r = 10.40, p < 0.002)\). Moisture showed significant variation \((t=12.64, p<0.001)\) among the seasons and ranged from 22.5±0.84 % to 31.4±3.52 %. Soil temperature was recorded 4.66±1.54 to 14.33±1.83 °C and exhibited significant variation \((t=4.36, p<0.022)\) among the seasons during the study period. Organic nitrogen varied significantly \((t=4.00, p<0.028)\) over the period and showed a range of 0.42 ± 0.08 to 1.26 ± 0.16 g/kg. Organic carbon significantly varied \((t=15.72, p<0.001)\) with seasonal changes and ranged from 9.1±0.34 to 12.3±0.70 g/kg. The soil comprises 7.33% clay, 36.24% sand and 56.40% silt represented by silt loam class of soil texture Figure 4. According to Edwards, (2004) majority of the temperate earthworm species are found within the pH range 5.0 to 7.4 and *A. caliginosa* was reported at a pH range of 5.2 to 5.4 (Edwards & Lofty 1972). According to Nair & Bennour (1997) *A. caliginosa* can tolerate a wide range of temperature fluctuations and can be one of the reasons for its dominance in Benghazi soils (Libya). *A. caliginosa* is one of the most abundant earthworm species on agricultural lands in the temperate zone (Perez-Losada et al. 2009) and is found on all continents (except Antarctica) in agricultural and native ecosystems (Michaelsen 1903; Paoletti 1999; Baker et al. 2006; Hendrix et al. 2008; Blakemore 2009; Shekhovtsov et al. 2015). It is generally accepted that *A. caliginosa* is an European species that has been dispersed by means of human mediated transport to other parts of the world (Paoletti 1999) and in Russia, it is believed to displace native earthworms in some locations and to continue its eastward and northward expansion (Striganova & Porjadina 2005; Tiunov et al. 2006).

Overall, the pattern of earthworm invasion closely resembles the “jump dispersal” model of Shigesada et al. (1995). There is a probability of colonization of distant localities which may be directly dependent on the availability of dispersal opportunities from the source and the time since initial colonization (MacIsaac et al. 2001).
CONCLUSION

A. c. caliginosa is an addition to the checklist of earthworms from Kashmir Valley, Jammu & Kashmir, India. It’s biological characteristics and tolerance to varying environmental conditions helps them to encounter competitive challenges and make them successful to establish in new areas.

REFERENCES

Baker, G.H., R. Brown, K. Butt, P. Curry & J. Scullion (2006). Introduced earthworms in agricultural and reclaimed land: their ecology and influences on soil properties, plant production and other soil biota. Biological Invasions 8: 1301–1316.

Bano, K. & R. Kale (1991). Earthworm fauna of southern Karnataka, India, pp. 627–634. In: Veeresh, G.K., D. Rajagopal & C.A. Virakattam (eds.). Advances in Management and Conversion of Fauna. Oxford and IBH. New Delhi, India.

Bengtson, S.A., A. Nilsson, S. Nordström & S. Rundgren (1979). Loomandina caliginosa caliginosa (Stockholm) 25: 122–132.

Bohlen, P.J., P.M. Groffman, T.J. Fahey, M.C. Fisk, E. Suárez, D. Pelletier (2003). Population dynamics of earthworms (Oligochaeta) in cultivated soil of central Himalayan taral region. Tropical Ecology 44: 221–226.

Blakemore, R.J. (2008). Indian earthworms. In: Blakemore, R.J. (ed.). A Series of Searchable Texts on Earthworm Biodiversity, Ecology and Systematics from Various Regions of the World - Supplemental. [Online: http://www.anellida.net/earthworm].

Blakemore, R.J. (2009). Cosmopolitan earthworms—a global and historical perspective, pp. 257–283. In: Shain, D.H. (ed.). Annelids in Modern Biology. Wiley-Blackwell, Hoboken.

Blanchart, E. & J.M. Julka (1997). Influence of forest distribuances on earthworm (Oligochaeta) communities in the Western Ghats (South India). Soil Biology and Biochemistry 29(3/4): 303–306. https://doi.org/10.1016/S0038-0717(97)00094-6

Bohlen, P.J., P.M. Groffman, T.J. Fahey, M.C. Fisk, E. Suárez, D. Pelletier & R. Fahey (2004). Ecosystem consequences of exotic earthworm invasion of northern temperate forests. Ecosystems 7: 1–12. https://doi.org/10.1007/s10021-003-0126-z

Bouche, M.B. (1972). Lombriciens de France, Écologie et Systématique. INRA, Paris, 671pp.

Bouche, M.B. (1977). Strategies lombriciennes. Biological Bulletin (Stockholm) 25: 122–132.

Briones, M.J.J. (1996). A taxonomic study of the Allolobophora caliginosa complex (Oligochaeta, Lumbricidae): a preliminary study. Canadian Journal of Zoology 74: 240–244.

Cameron, E.K. & E.M. Bayne (2009). Road age and its importance in earthworm invasions of northern boreal forests. Journal of Applied Ecology 46: 28–36. https://doi.org/10.1111/j.1365-2664.2008.01535.x

Cavallini, S. (1987). On polyplody in oligochaetes with particular reference to Lumbricidae, pp. 75–84. In: Pagliari, A.M.B., & P.Omodeo (eds.). Proceedings on International Symposium on Earthworms. Mucchi Editore, Modena.

Chaudhuri, P.S. & A. Dey (2012). Earthworm Communities in the Pineapple (Ananas comosus) and Mixed Fruit Plantations of West Tripura, India. Proceedings of Zoological Society 66: 105–118. https://doi.org/10.1007/s12595-012-0047-y

Chaudhuri, P.S. & G. Bhattacharjee (1999). Earthworm resources of Tripura. Proceedings of National Academy of Sciences India 69(B): 159–170.

Chaudhuri, P.S. & S. Bhattacharjee (2011). Reproductive biology of eight tropical earthworm species of rubber plantations in Tripura, India. Tropical Ecology 52(1): 49–60.

Chaudhuri, P.S. & S. Nath (2011). Community structure of earthworms under rubber plantations and mixed forests in Tripura, India. Journal of Environmental Biology 32: 537–541.

Chaudhuri, P.S., N. Nath & R. Paliwal (2008). Earthworm population of rubber plantations (Hevea brasiliensis) in Tripura, India. Tropical ecology 49: 225–234.

Dash, M.C. (2012). Charles Darwin’s Plough: Tools for Vermitechonology. I.K International, New Delhi, 185pp.

Deepthi, M.P. & P. Kathireswari (2016). Earthworm Diversity and Analysis of Soil Inhabited by Earthworms in the Vatakara area, Kozhikode, Kerala, India. International Journal of Current Microbiology and Applied Science 5(3): 917-925. https://doi.org/10.20525/ijjas.2016.503.106

Dey, A & P.S. Chaudhuri (2013). Ecological studies on earthworm communities of pineapple (Ananas comosus) plantations under monoculture in West Tripura (India). International Journal of Advanced Biosciences 12(1): 17–23.

Dey, A. & P. S. Chaudhuri (2014). Earthworm community structure of pineapple (Ananas comosus) plantations under monoculture and mixed culture in West Tripura, India. Tropical Ecology 55(1): 1–17.

Duges, A. (1828). Recherche sur la circulation, la respiration et la reproduction des Annelides setigeres abranches. Annales Des Sciences Naturelles 15: 284–336.

Dymond, P., S. Scheu & D. Parkinsson (1997). Density and distribution of Dendrobaena octaedra (Lumbricidae) in aspen and pine forests in the Canadian Rocky Mountains (Alberta). Soil Biology and Biochemistry 29: 265-273. https://doi.org/10.1016/S0038-0717(96)00052-1

Edward, C.A. & I.R. Lofty (1972). Biology of Earthworms, Chapman and Hall, London.

Edwards, C.A. (2004). Earthworm Ecology (2nd edition). CRC Press, Boca Raton.

Eljaijacker, H. (2011). Earthworms as colonizers of natural and cultivated soil environments. Applied Soil Ecology 50: 1–13. https://doi.org/10.1016/j.apsoil.2011.07.008

Eisen, G. (1874). New England och Canadas Lumbricider. Ofversigt af Kongl Vetensk Akademiens Forhandl 30: 41–49.

Evans, A.C. (1946). A new species of earthworm of the genus Allolobophora. Annals and Magazine of Natural History 11(14): 98–101.

Fragoso, C., P. Lavelle, E. Blanchart, B. Senapati, J. Jimenez, M. de los A. Martinez, Decaens T & J. Tondoh (1999). Earthworm communities of tropical agroecosystems: origin, structure and influences of management practices, pp. 27–55. In: Lavelle, P., L. Brussaard & P. Hendrix (eds.). Earthworm Management in Tropical Agroecosystems. CABI Publishing, New York.

Frelich, L.E., C.M. Hale, S. Scheu, A.R. Holdsworth, L. Heneghan, P.J. Bohlen & P.B. Reich (2006). Earthworm invasion into previously earthworms-free temperate and boreal forests. Biological Invasions 8: 1235–1245. https://doi.org/10.1007/s10530-006-0910-3

Gates, G.E. (1940). Indian earthworms. VIII-XI. Records of Indian Museum 42: 115–143.

Gates, G.E. (1945a). On some Indian Earthworms. II. Journal of Royal Asiatic Society of Bengal 11: 54–91.

Gates, G.E. (1945b). On some Indian earthworms. Proceedings of Indian Academy of Sciences. 21(B): 208–258.
Gates, G.E. (1972a). Burmese earthworms. An introduction to the systematics and biology of megadriid oligochaetes with special reference to Southeast Asia. Transactions of American Philosophical Society 62(7): 1–126.

Gates, G.E. (1972b). Contributions to North American earthworms (Annelida: Oligochaeta). No. 3: towards a revision of the earthworm family Lumbricidae IV. The trapezoideas species group. Bulletin of Tall Timbers Research Station 12: 1–146.

Gee, G.W. & W. Bauder (1986). Principle of the pipette method, pp. 394–396. In: Klute, A. (ed.) Agronomy: Methods of Soil Analysis. Part I: Physical and Mineralogical Methods. American Society of Agronomy: Madison.

Gonzalez, G., C.Y. Huang, X. Zou & C. Rodriguez (2006). Earthworm invasions in the tropics. Biological Invasions 8: 1247–1256. https://doi.org/10.1007/s10530-006-0920-7

Goswami, R. & C.K. Mondal (2015). A study on earthworm population and diversity with special reference to physiochemical parameters in different habitats of south 24 Parganas district in West Bengal. Records of zoological Survey of India 115(1): 31–38.

Gupta, P.K. (1999). Soil, Plant, Water and Fertilizer Analysis. Agro Botanica, Bikaner, India.

Hale, C.M., L.E. Frelich & P.B. Reich (2005). Exotic European earthworm invasion dynamics in northern hardwood forests of Minnesota, USA. Ecological Application 15: 848–860.

Hale, C.M. & G.E. Host (2005). Assessing the impacts of European earthworm invasions in beech-maple hardwood and aspen-fl centre forests of the western Great Lakes region. National Park Service Great Lakes Inventory and Monitoring Report GLXN/2011/11. Duluth, US.

Hendrix, P.F. (2006). Biological invasions belowground - earthworms as invasive species. Biological Invasions 8: 1201–1204.

Hendrix, P.F., M.A. Callaham, J.M. Drake, C.Y. Huang, B.A. Snyder & W. Zhang (2008). Pandora’s box contained bait: the global problem of introduced earthworms. Annual Reviews of Ecology Evolution and Systematics 39: 593–613. https://doi.org/10.1146/annurev.ecolsys.39.110707.173426

Holdsworth, A.R., L.E. Frelich & P.B. Reich (2007). Regional extent of an ecosystem engineer: earthworm invasion in northern hardwood forests. Ecological Application 17: 1666–1677. https://doi.org/10.org/1089/005-2003.1

Ismail, S.A., C. Ramakrishnan & M.M. Anzar (1990). Density and diversity in relation to the distribution of earthworms in Madras. Proceedings of Indian Academy of Sciences (Animal Sciences) 99: 73–78.

Jackson, M.L. (1973). Soil Chemical Analysis. Prentice Hall of India Pvt. Ltd, New Delhi, 181–191pp.

James, S.W. & P.F. Hendrix (2004). Invasion of exotic earthworms into North America and other regions, pp. 75–88. In: Edwards, C.A. (ed.), Earthworm Ecology. 2nd ed. CRC Press, Boca Raton, US.

Joshi, N. & S. Aga (2009). Diversity and distribution of earthworms in a subtropical forest ecosystem in Uttarakhand, India. The Natural History Journal of Chulalongkorn University 9(1): 21–25.

Julka, J.M. (1976). Studies on the earthworm fauna of Orissa (India). II. Megacoelidae, Octochaetidae and Microchaetidae. Mitteilungen aus dem Zoologischen Museum in Berlin 52: 321–329. https://doi.org/10/1023.mzmz.1976052020

Julka, J.M. (1978). Studies on the earthworm fauna of Orissa (India). II. Megacoelidae, Octochaetidae and Microchaetidae. Mitteilungen aus dem Zoologischen Museum in Berlin 54: 185–197.

Julka, J.M. (1981). Taxonomic studies on earthworms collected during the subsansiri expedition in Arunachal Pradesh, India. Records of Zoological Survey of India. Occasional Paper No. 26: 1–37.

Julka, J.M. (1988). The Fauna of India and the Adjacent Countries. Megadrile: Oligochaeta (Earthworms). Haplotaxida: Lumbricina: Megacoelidae: Octochaetidae. Zoological Survey of India Catalogue No. 12: 1–44.

Julka, J.M. (1993). Earthworm resources of India and their utilization in Vermiculture. pp. 51–56. In: Earthworm resources and Vermiculture. Zoological Survey of India, Calcutta, 128pp.

Julka, J.M. (2014). Diversity and distribution of exotic earthworms (Annelida, Oligochaeta) in India a review, pp. 73–83. In: Chaudhuri, P. & S.M. Singh (ed.), Biology and Ecology of Tropical Earthworms. Discovery Publishing House Pvt. Ltd, New Delhi, 327pp.

Julka, J.M., R. Palwal & P. Kathireswari (2009). Biodiversity of Indian earthworms-an overview, pp. 36–56. In: Edwards, C.A., R. Jayaraaj & I.A. Jayaraaj (eds.). Proceedings of India-US Workshop on Vermitechology in Human Welfare. Rohini Achagam, Coimbatore, Tamil Nadu, India.

Julka, J.M. & B.K. Senapati (1987). Earthworms (Oligochaeta: Annelida) of Orissa. India. Records of the Zoological Survey of India. Miscellaneous Publication. Occasional Paper No. 92: 1–48.

Kale, R.D. & R.V. Krishnamoorthy (1978a). Distribution of earthworms in relation to soil conditions in Bangalore, pp. 63–69. In: Edwards, C.A. & G.K. Veeresh (eds.), Soil Biology and Ecology in India. UAS Tech. Ser. 22, University of Agricultural Sciences, Bangalore.

Kale, R.D. & R.V. Krishnamoorthy (1978b). Distribution and abundance of earthworms in Bangalore. Proceedings of Indian Academy of Sciences 88(B): 23–25.

Karmegam, N. & T. Daniel (2007). Effect of physico-chemical parameters on earthworm abundance: A Quantitative approach. Journal of Applied Sciences Research 3: 1369–1376.

Kathireswari, P. (2016). DNA barcoding of earthworms. In: Science communicators meet (103rd ISCA, Mysore).

Lavelle, P. (1997). Faunal activities and soil processes: adaptive strategies that determine ecosystem function. Advances in Ecological Research 27: 93–132.

Lee, K.E. (1985). Earthworms-their Ecology and Relationships with Soils and Land Use. Academic Press, Sydney.

Lone, A.R., N. Tiwari, S.S. Thakur, O. Pearson, T. Pavlicek & S. Yadav (2020). Exploration of four new Kanthuri sp. of earthworms (Oligochaeta: Megacoelidae) from the North Eastern Region of India using DNA barcoding approach. Journal of Asia-Pacific Biodiversity 13: 268e281. https://doi.org/10.1016/j.japb.2020.02.004

MacIsaac, H.J., A. Igor, I.A. Grigorovich & A. Ricciardi (2001). Reassessment of species invasions concepts: The great lakes basin as a model. Biological Invasions 3: 405–416. https://doi.org/10.1023/A:1015854606465

Marinissen, J.C. Y. F. van den Bosch (1992). Colonization of new habitats by earthworms. Oecologia 91: 371–376. https://doi.org/10.1007/BF00317626

Michaelsen, W. (1900). Das Tierreich 10: Vermes, Oligochaeta. Friedlander and Sohn, Germany, 715pp.

Michaelsen, W. (1903). Die geographische verbreitung der olibogcaeten. Friedlander & Sohn, Berlin, 186pp. https://doi.org/10.5963/bhl.title.11667

Michaelsen, W. (1907). New earthworms from front-India, Ceylon, Burma and the Andaman Islands. Yearbook of the Hamburg Institute of Scientific Institutions, Hamburg 24(2): 143–188.

Miller, R.B., J.D. Stout & K.E. Lee (1955). Biological and chemical changes following scrub burning on a New Zealand hill soil. New Zealand Journal of Science and Technology 37: 290–313.

Mis, T.A. & I.A. Najar (2016). Earthworms of Doodhpathri (Budgam), Jammu and Kashmir, India. International Research Journal of Environmental Sciences 5(12): 33–39.

Nair, A.C. & S.A. Bennour (1997). Thermal reactions of the earthworm Aporrectodea caliginosa (Savigny, 1826) (Oligochaeta: Lumbricidae). Proceedings of Indian National Science Academy 863(182): 53–62.

Naye, G.A. & S.A. Bennour (2000). Coelomous and hatchlings of Aporrectodea caliginosa (Savigny 1826) (Oligochaeta: Lumbricidae) in Benghaz, Libya. Journal of Arid Environments 40: 459–466.

Najar, I.A. & A.B. Khan (2010). Vermicomposting of Azolla pinnata by using earthworm Eisenia fetida. The Bioas 5(2): 239–241.

Najar, I.A. & A.B. Khan (2011a). Earthworm communities of Kashmir Valley, J&K, India. Tropical Ecology 52(1): 151–162.

Najar, I.A. & A.B. Khan (2011b). New record of an earthworm Octolasion cyanum (Savigny, 1826) from Srinagar, Kashmir (J&K). India. Ecology Environment and Conservation 17(3): 1–3.

Najar, I.A. & A.B. Khan (2011c). New record of the earthworm Eisenia caliginosa caliginosa from Kashmir Valley.
Occurrence of Aporrectodea caliginosa caliginosa from Kashmir Valley

Najar et al.

fetida (Savigny, 1826) from Kashmir Valley, Jammu and Kashmir, India. The Biotic 6(1): 143–145.

Najar, I.A. & A.B. Khan (2012). Vermicomposting of fresh water weeds (macrophytes by Eisenia fetida (Savigny, 1826), Aporrectodea caliginosa trapezoides (Duges, 1828) and Aporrectodea rosea rosea (Savigny, 1826). Dynamic Soil Dynamic Plant 8(51): 73–77.

Najar, I.A. & A.B. Khan (2013a). Management of fresh water weeds (macrophytes) by vermicomposting using Eisenia fetida. Environmental Science and Pollution Research 20: 6406–6417. https://doi.org/10.1007/s11356-013-1687-9

Najar, I.A. & A.B. Khan (2013b). Effect of vermicompost on growth and productivity of tomato (Lycopersicon esculentum) under field conditions. Acta Biol Malaysiana 21(1): 12–21.

Najar, I.A. & A.B. Khan (2014). Factors Affecting Distribution of Earthworms in Kashmir Valley: A Multivariate Statistical Approach. Proceedings of Zoological Society 67(2): 126–135. https://doi.org/10.1007/s12595-013-0081-4

Narayan S.P., S. Sathamurthi, G. Christopher & J.M. Julka (2017). New species and new records of earthworms of the genus Drawida from Kerala part of the Western Ghats biodiversity hotspot, India (Oligochaeta, Moniliagastriidae). Zoo Keys 691: 1–18. https://doi.org/10.3897/zookeys.691.13174

Narayanan, S.P., S. Sathamurthi, R. Anuja, A.P. Christopher & J.M. Julka (2019). First record of the exotic earthworm Metaphire bahl (Gates, 1945) (Oligochaeta: Megascolecidae) from India. Opuscula Zoologica Budapest 50(1): 99–103.

Omodeo, P. (1952). Carologia dei Lumbricidi. Carylologia 4: 173–178.

Pallival, R. & J.M. Julka (2005). Checklist of earthworms of Western Himalayas, India. Zoos Print Journal 20(9): 1972–1976. https://doi.org/10.11609/JoTT.ZPJ.1195.1972-6

Paletti, M.G. (1999). The role of earthworms for assessment of sustainability and as bioindicators. Agriculture Ecosystems and Environment 74: 133–155.

Pérez-Losada, M., R. Maigualida, M.C. Jonathon & J. Domínguez (2009). Diversity, distribution and nuclear DNA sequences. First record of the exotic earthworm Aporrectodea caliginosa from Kashmir Valley, Jammu and Kashmir, India. The Biotic 6(1): 143–145.

Pérez-Losada, M., R. Maigualida, M.C. Jonathon & J. Domínguez (2009). Diversity, distribution and nuclear DNA sequences. First record of the exotic earthworm Aporrectodea caliginosa from Kashmir Valley, Jammu and Kashmir, India. The Biotic 6(1): 143–145.

Plisko, J.D. (2001). Notes on the occurrence of the introduced earthworm Pontoscolex corethrurus (Muller, 1857) in South Africa (Oligochaeta: Glossoscoloidae). African Invertebrates 42: 323–334.

Proulx, N. (2003). Ecological Risk Assessment of Non-Indigenous Earthworm Species. Prepared for U.S. Fish and Wildlife Service, International Affairs, Division of Scientific Authority by Minnesota Department of Natural Resources: St. Paul, Minnesota, 18pp.

Rajwar, N., S.S. Bhut, V. Singh & J.W. Reynold (2018). Earthworm (Oligochaeta) diversity of Kumaun Himalayas, India with first record of woodland blue worm, Octolasion Cyaneum (Savigny, 1826), (Lumbricidae). Megadrilogica 23(12): 161–171.

Reynolds, J.W. (1994). The distribution of the earthworms (Oligochaeta) of Indiana: a case for the Post Quaternary Introduction Theory of megadriile migration in North America. Megadrilogica 5(3): 13–32.

Sathianarayanan, A. & A.B. Khan (2006). Diversity, distribution and abundance of earthworms in Pondicherry region. Tropical Ecology 47: 139–144.

Savigny, J.C. (1826). Analyse dun Memoir sur les Lombrics par Cuvier. Memoirs of Connecticut Academy of Science Institute France 5: 176–184.

Schwenter, D.P. (1980). Active and passive dispersal of lumbrid earthworms, pp. 182–189. In: Dindal, D.E. (ed.). Soil Biology as Related to Land Use Practices. Proceeding of VIth Soil Zool. Colloq. EPA, Washington, D.C., USA, 891pp.

Sharma, B.D. & T.K. Kaul (1974). Note on the distribution of four genera of earthworms in J & K State. Indian Journal of Animal Research 8: 46.

Shekhovtsov, S.V., E.V. Golovanova & S.E. Peltke (2015). Different dispersal histories of lineages of the earthworm Aporrectodea caliginosa (Lumbricidae, Annelida) in the Palearctic. Biological Invasions 18: 751–761. https://doi.org/10.1007/s10530-015-1045-6

Shigesada, N., K. Kawasaki & Y. Takeda (1995). Modeling stratified diffusions in biological invasions. American Naturalist 146: 229–251.

Siddaraju, M., K.S. Sheepada & M.F. Krishna (2013). Recorded Distribution of Earthworms of the Family Octochaetidae in Dakshina Kannada District, South West Coast, Karnataka. International Journal of Scientific and Research Publications 3(6): 1–8.

Sinha, R.K. (2009). Earthworms: the miracle of nature (Charles Darwin’s unheralded soldiers of mankind and farmer’s friends’). Environmentalist 29: 339–340. https://doi.org/10.1007/s10669-009-9242-4

Srivastava, R., M. Kumar, A.K. Choudhary & M.P. Sinha (2003). Earthworm diversity of Jharkhand State. Nature Environment and Pollution Technology 2(3): 357–362.

Stephensen, J. (1922). Some earthworms from Kashmir, Bombay and other parts of India. Records of the Indian Museum 24: 427–443.

Stephenson, J. (1923). Oligochaeta. The Fauna of British India. Including Ceylon and Burma. Taylor and Francis, London, 518pp.

Stephenson, J. (1924). On some Indian Oligochaeta, with a description of two new genera of Ocnerodrilidae. Records of Indian Museum 26: 317–365.

Stephenson, J. (1925). On some Oligochaeta mainly from Assam, South India and the Andaman Islands. Records of Indian Museum 27: 43–73.

Stephenson, J. (1926). Description of Indian Oligochaeta. Records of Indian Museum 28: 249–268.

Stephenson, J. (1931). Description of Indian Oligochaeta. II. Records of Indian Museum 33: 173–202.

Stirganova, B.R. & N.M. Porjadina (2005). Soil animal population in boreal forests of West-Siberian plain. KMK Scientific Press Ltd, Moscow.

Templet, R. (1844). Description of Megascolex Caerules. Proceedings of Zoological Society of London 12: 89–91.

Timmerman, A., D. Bos, J. Ouwehand & R.G.M. de Goede (2006). Long-term effects of fertilization regime on earthworm abundance in a semi-natural grassland area. Pedobiologia 50: 427–432. https://doi.org/10.1007/s10669-006-9018-4

Tripathi, G. & P. Bhardwaj (2004). Earthworm diversity and habitat preferences in arid regions of Rajasthan. Zoos’ Print Journal 19(7): 1515–1519. https://doi.org/10.11609/JoTT.ZPJ.1074.1515-9

Verma, D. & Swetva (2011). Earthworm resources of Western Himalayan region, India. International Journal of Soil Science 6(2): 128–133. https://doi.org/10.3923/jiss.2011.128.133

Walkley, A. & I.A. Black (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science 34: 29–38. https://doi.org/10.1007/978-1-4614-2865-4_1

Wardle, D.A. & D.A. Peltzer (2017). Impacts of invasive biota in forest ecosystems in an aboveground-belowground context. Biological Invasions 19: 3301–3316. https://doi.org/10.1007/s10530-017-1372-x

Winsome, T., L. Epstein, P.F. Hendrik & W.R. Horwath (2006). Competitive interactions between native and exotic earthworm species influenced by habitat quality in a California grassland. Applied Soil Ecology 32: 38–53. https://doi.org/10.1016/j.apsoil.2005.01.008

Zorn, M.I., C.A.M. van Gestel, E. Morrien, M. Wagenaar & H. Eijsackers (2008). Flooding responses of three earthworm species Allolobophora chlorotica, Aporrectodea caliginosa and Lumbricus rubellus, in a laboratory-controlled environment. Soil Biology and Biochemistry 40: 587–593.

Zorn, M.I., C.A.M. van Gestel & H. Eijisackers (2005). Species-specific earthworm population responses in relation to flooding dynamics in a Dutch floodplain soil. Pedobiologia 49: 189–198. https://doi.org/10.1016/j педobi.2004.08.004
The Journal of Threatened Taxa (JoTT) is dedicated to building evidence for conservation globally by publishing peer-reviewed articles online every month at a reasonably rapid rate at www.threatenedtaxa.org. All articles published in JoTT are registered under Creative Commons Attribution 4.0 International License unless otherwise mentioned. JoTT allows unrestricted use, reproduction, and distribution of articles in any medium by providing adequate credit to the author(s) and the source of publication.

ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print)

November 2020 | Vol. 12 | No. 15 | Pages: 17063–17170
Date of Publication: 26 November 2020 (Online & Print)
DOI: 10.11609/jott.2020.12.15.17063-17170

www.threatenedtaxa.org

Articles

Status of Nahan's Partridge *Ptilopachus nahani* (Dubois, 1905) (Aves: Galliformes: Odontophoridae) in Uganda
– Eric Sande, Sisiria Akoth, Ubaldo Rutazaana & William Olupot, Pp. 17063–17076

Fish diversity in streams/streams of Kalakad-Mundanthurai Tiger Reserve, Tamil Nadu, India
– K. Kannan & J.A. Johnson, Pp. 17077–17092

Gastrointestinal helminth and protozoan infections of wild mammals in four major national parks in Sri Lanka
– Chandima Sarani Sepalage & Rupika Subashini Rajakaruna, Pp. 17093–17104

Review

Appraising carnivore (Mammalia: Carnivora) studies in Bangladesh from 1971 to 2019 bibliographic retrieves: trends, biases, and opportunities
– Muntasir Akash & Tania Zakir, Pp. 17105–17120

Communications

Diversity of scorpions (Arachnida: Scorpiones) in Polonnaruwa Archaeological Reserve, Sri Lanka
– Kumudu B. Wijesooriya, Lakshani S. Weerasekara & Kithsiri B. Ranawana, Pp. 17121–17128

A faunistic survey of tiger beetles (Coleoptera: Carabidae: Cicindelinae) in Chakrashila Wildlife Sanctuary and adjoining riverine ecosystem in Assam, India
– Kushal Choudhury, Chandan Das & Amar Deep Soren, Pp. 17129–17137

Occurrence of the *Aporrectodea caliginosa* caliginosa (Savigny, 1826) (Annelida: Clitellata: Haplotaxida) from Kashmir Valley, Jammu & Kashmir, India
– Ishtiyaq Ahmed Najjar, Anisa B. Khan & Abdul Hai, Pp. 17138–17146

Short Communications

Avian congregation sites in the Gulf of Kachchh, Gujarat, India
– Jigar D. Joshi, Sandeep B. Munjpara, Kinjal Joshi, Harshad Salvi & R.D. Kamboj, Pp. 17147–17152

Checklist of brachyuran mangrove crabs of Kerala, India
– Kurian Mathew Abraham & Apreshig Kohothuthara Prakasan, Pp. 17153–17160

Notes

A new country record of Smooth-backed Gliding Gecko *Gekko lionotum* (Annandale, 1905) (Squamata: Gekkonidae) from Bangladesh
– M. Rashidul Kabir Bhuiyan, M. Fazle Rabbe, Mohammad Firoj Jaman, Ananda Kumar Das & Samiul Mohsanin, Pp. 17161–17164

Amblyomma gervaisii (Ixodida: Ixodidae: Amblyommatida) infestation in a Rat Snake from northwestern Himalayan region: a case study
– Aman D. Moudgil, Ankur Sharma, Adarsh Kumar, Amit Singla & Surender Bansk, Pp. 17165–17167

Parasitic enteritis in the free-ranging Common Myna *Acridotheres tristis* (Aves: Passeriformes: Sturnidae)
– Rakesh Kumar, Aman Dev Moudgil, Sameeksha Koundal, Rajendra Damu Patil & Rajesh Kumar Asrani, Pp. 17168–17170