Five extracellular matrix-associated genes upregulated in oral tongue squamous cell carcinoma: An integrated bioinformatics analysis

PINGPING ZHONG1-4*, LIYA LIU5,6*, ALING SHEN5,6, ZHONGXIN CHEN7, XIAOYAN HU2-4, YICHAO CAI2-4, JIE LIN2-4, BANGYANG WANG2-4, JIESEN LI2-4, YOUQIN CHEN8 and JUN PENG5,6

1Department of Orthodontics, School and Hospital of Stomatology, Fujian Medical University; 2Key Laboratory of Stomatology, Fujian Province University; 3Fujian Biological Materials Engineering and Technology Center of Stomatology; 4Institute of Stomatology, Fujian Medical University, Fuzhou, Fujian 350002; 5Academy of Integrative Medicine; 6Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122; 7West China School of Stomatology Sichuan University, Chengdu, Sichuan 610041, P.R. China; 8Department of Pediatrics, Case Western Reserve University School of Medicine, Rainbow Babies and Children's Hospital, Cleveland, OH 44106, USA

Received November 3, 2018; Accepted July 26, 2019
DOI: 10.3892/ol.2019.10982

Abstract. Despite advancements in treatment regimens, the mortality rate of patients with oral tongue squamous cell carcinoma (OTSCC) is high. In addition, the signaling pathways and oncoproteins involved in OTSCC progression remain largely unknown. Therefore, the aim of the present study was to identify specific prognostic marker for patients at a high risk of developing OTSCC. The present study used four original microarray datasets to identify the key candidate genes involved in OTSCC pathogenesis. Expression profiles of 93 OTSCC tissues and 76 normal tissues from GSE9844, GSE13601, GSE31056 and GSE75538 datasets were investigated. Differentially expressed genes (DEGs) were determined, and gene ontology enrichment and gene interactions were analyzed. The four GSE datasets reported five upregulated and six downregulated DEGs. Five upregulated genes (matrix metalloproteinase 1, 3, 10 and 12 and laminin subunit gamma 2) were localized in the extracellular region of cells and were associated with extracellular matrix disassembly. Furthermore, analysis for The Cancer Genome Atlas database revealed that the aforementioned five upregulated genes were also highly expressed in OTSCC and head and neck squamous cell carcinoma tissues. These results demonstrated that the five upregulated genes may be considered as potential prognostic biomarkers of OTSCC and may serve at understanding OTSCC progression. Upregulated DEGs may therefore represent valuable therapeutic targets to prevent or control OTSCC pathogenesis.

Introduction

Head and neck squamous cell carcinoma (HNSC) is a common cancer worldwide and accounts for >600,000 new cases annually (1). Despite significant advancements in treatments, including reconstructive microvascular free tissue transfer, hyperfractionated radiotherapy and concurrent chemoradiation, the survival rate of patients with HNSC has not sufficiently improved over the last 50 years, with overall survival of ~50%, resulting in increased mortality rates worldwide every year (2). HNSC is a highly complex disease emerging from the oral cavity, tongue, pharynx or larynx (3). Each tumor harbors unique mutations, presents variable clinical outcomes and is associated with specific risk factors (4,5). For example, TP53 inactivation, either through somatic mutation or HPV infection, appears nearly universal in this malignancy (6). The present study particularly focused on one type of HNSC, the oral tongue squamous cell carcinoma (OTSCC), because of its poor diagnosis, high incidence...
rate, aggressive clinical behavior and poor outcome (7-10). A recent study reported a five-year survival rate of 63% for patients with OTSCC in The Netherlands (11). In 2017, nearly 16,400 new cases of tongue cancer were diagnosed and 2,400 tongue cancer-associated mortality cases were recorded in the United States (12). Several prognostic factors for OTSCC exist, including occult node positivity, tumor depth, lymphovascular invasion and perineural invasion (13). Nevertheless, robust and reliable molecular prognostic biomarkers need to be determined in order to identify patients with advanced stages of OTSCC.

Several thousands of tumor biomarkers have been discovered and are associated with the prognosis of various types of cancer (14). In particular, markers for OTSCC, including microtubule associated scaffold protein 1 and beta-parvin, have attracted much attention due to their crucial role in OTSCC pathogenesis (15). Furthermore, it was demonstrated that downregulation of these markers markedly decreases cancer cell survival (15-19).

Thanks to the rapid development and extensive application of microarrays for gene identification in various types of cancer (20-22), a high number of differentially expressed genes (DEGs) in OTSCC have been identified (13,19). However, the results between studies are inconsistent, which might be due to the variability of tissue samples used. In addition, no reliable biomarkers for OTSCC have been established. Subsequently, the combination of bioinformatics methods and expression profiling techniques may represent a novel approach to resolve these problems. The present study used four microarray datasets [GSE9844 (3), GSE13601 (23), GSE31056 (24), and GSE75538 (25)] from the National Center for Biotechnology Information (NCBI)-Gene Expression Omnibus (GEO) database and an mRNA sequencing (mRNA-seq) dataset from The Cancer Genome Atlas (TCGA). DEGs were filtered using the GEO2R tool according to conventional data processing standards, and gene ontology (GO) enrichment analysis was performed to screen for DEGs using The Database for Annotation, Visualization and Integrated Discovery (DAVID).

Expression levels of DEGs in samples from TCGA were assessed using Gene Expression Profiling Interactive Analysis (GEPIA), and corrections were applied for DEGs in samples from TCGA-HNSC using cBioPortal to identify potential oncogenes in OTSCC. The identified DEGs and their associated pathways may be considered as robust and reliable tumor biomarkers for OTSCC and serve as precise therapeutic targets for the prevention of OTSCC progression at early stages.

Materials and methods

GEO datasets. GEO (https://www.ncbi.nlm.nih.gov/gds) is a public repository at NCBI for storing high-throughput gene expression data (26). The gene expression profiles of GSE9844, GSE13601, GSE31056, and GSE75538 were selected from the GEO database (http://www.ncbi.nlm.nih.gov/geo/). GSE9844 included 26 OTSCC and 12 normal tissues, GSE13601 included 31 OTSCC and 26 normal tissues, GSE31056 included 22 OTSCC and 24 normal tissues, and GSE75538 included 14 OTSCC and 14 normal tissues.

Identification of DEGs. GEO2R (https://www.ncbi.nlm.nih.gov/geo/geo2r/) was used to detect DEGs between OTSCC and normal tissue samples (27). Adjusted P-values <0.01 and log fold change (FC)>2 were set as cutoffs. Co-expressed DEGs that were downregulated or upregulated in the two sets of gene expression profiles were identified using Venn diagrams (http://bioinformatics.psb.ugent.be/webtools/Venn/).

GO enrichment analysis of DEGs. Usually, genes and their products are annotated to identify characteristic biological function and processes of a high-throughput genome or transcriptome (28). DAVID (https://david.ncifcrf.gov/) is a web-based bioinformatics resource for gene annotation and visualization with an integrated discovery function. It is therefore useful for determining gene biological attributes (29). P<0.01 and the Benjamini corrected P<0.01 (30) were set as the cutoff. Sequential pathways, molecular and cellular components and biological functions of DEGs could be visualized by using DAVID (https://david.ncifcrf.gov/).

Comparison of gene expression in patients with OTSCC. The mRNA-seq data of the five OTSCC genes of interest from HNSC samples were obtained from the TCGA database.

Table I. Characteristics of 147 patients with tongue tumor from The Cancer Genome Atlas database.

Characteristics	Patient number	Percentage
Sex		
Female	46	31.29
Male	101	68.71
Age at diagnosis, years		
Mean	58.60±12.71	
<40	10	6.80
40-49	20	13.61
50-59	38	25.85
60-69	53	36.05
70-79	21	14.29
>80	4	2.72
Tumor pathological stage		
T1-T2	70	47.62
T3-T4	72	48.98
Nodal pathological stage		
N0-N1	72	48.98
N2-N4	70	47.62
Smoking history		
Yes	98	66.67
No/Never	47	31.97
Unknown	2	1.36
Alcohol history		
Yes	99	67.35
No/Never	44	29.93
Unknown	4	2.72
Primary lymph node		
Yes	128	87.07
No	9	6.12
(https://cancergenome.nih.gov/) (31). In addition, clinical data of OTSCC were downloaded using TCGA assembler (Table I). mRNA-seq data of 147 OTSCC tissues and 15 adjacent normal tongue tissues were obtained on an Illumina HiSeq RNASeq platform (32). Since the TCGA dataset was developed as a community resource project, no additional approval was required for this study from Fujian Medical University. The present study complied with the TCGA publication guidelines and data access policies (33).

Analysis of gene expression patterns in all tumors from TCGA through GEPIA. The expression patterns of the five genes of interest in various types of cancers and normal tissues were determined using GEPIA (http://gepia.cancer-pku.cn) (34). The program was used to analyze RNA sequencing data of 33 types of cancer (including adrenocortical carcinoma, bladder urothelial carcinoma, breast invasive carcinoma (BRCa), cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), cholangiocarcinoma (CHOL), colon adenocarcinoma (COaD), lymphoid neoplasm diffuse large B-cell lymphoma, esophageal carcinoma (ESCA), glioblastoma multiforme, head and neck squamous cell carcinoma (HNSC), kidney chromophobe (KICH), kidney renal clear cell carcinoma, kidney renal papillary cell carcinoma, acute myeloid leukemia, brain lower grade glioma, liver hepatocellular carcinoma, lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), mesothelioma, ovarian serous cystadenocarcinoma, pancreatic adenocarcinoma, pheochromocytoma and paraganglioma, prostate adenocarcinoma, rectum adenocarcinoma (READ), sarcoma, skin cutaneous melanoma, stomach adenocarcinoma (STAD), testicular germ cell tumor, thyroid carcinoma, thymoma, uterine corpus endometrial carcinoma, uterine carcinosarcoma, uveal melanoma) and adjacent normal samples from TCGA following the standard processing pipeline. P-value <0.01 and |logFC|>2 were set as cutoffs. Box plots were generated to visualize the associations.

Correlations among gene expression in HNSC samples from TCGA through cbioPortal. The correlations between expression patterns of the genes of interest in cancer tissues from TCGA-HNSC dataset were analyzed using Pearson and Spearman correlation coefficient via cbioPortal (http://www.cbioportal.org) (35-36).

Statistical analysis. Statistical analyses were performed using Graphpad Prism 5.0 (GraphPad Software, Inc.). Mann-Whitney U test was performed to compare gene expression between tumor and adjacent normal tissues. A two-tailed P-value <0.01 was considered statistically significant.

Results

Some biomarkers distinguished OTSCC tissues from normal tissues. Four GEO datasets (GSE9844, GSE13601, GSE31056, and GSE75538) were imported into the GEO2R analysis tool. Based on DEGs between OTSCC and normal tissues, five upregulated genes [matrix metalloproteinases 1, 3, 10 and 12 (MMP1, MMP3, MMP10 and MMP12)] and laminin subunit gamma 2 (LAMC2)] (Fig. 1A) and six downregulated genes (dermatopontin, cartilage intermediate layer protein, keratin 4, ATP binding cassette subfamily A member 8, alcohol dehydrogenase 1B and protein phosphatase 1 regulatory
Figure 1. Venn diagram of (A) upregulated and (B) downregulated DEGs in four GEO datasets (GSE9844, GSE13601, GSE31056 and GSE75538). Each colored area represents the number of DEGs in one corresponding dataset. The cross-areas indicated altered DEGs. DEGs were identified using Mann-Whitney U test and statistically significant DEGs were defined for P<0.01 and (A) log FC>2 (A) or (B) log FC<−2 as cutoffs. DEGs, differentially expressed genes.

Figure 2. Expression levels of (a) MMP1, (B) LAMC2, (C) MMP3, (D) MMP10 and (E) MMP12 in oral tongue squamous cell carcinoma and normal tissues based on TCGA database. *P<0.01. LAMC2, laminin subunit gamma 2; MMP1, 3, 10 and 12, matrix metalloproteinase 1, 3, 10 and 12; N, normal tissue; T, cancer tissue.
subunit 3C) (Fig. 1B) were highlighted in all four datasets. Whether the five upregulated genes could be considered as potential biomarkers for distinguishing OTSCC tissues from normal tissues was therefore assessed.

GO function enrichment analysis. GO enrichment analysis was performed using DAVID tool. The five specific upregulated genes MMP1, LAMC2, MMP3, MMP10 and MMP12 were uploaded into the DAVID software. GO results indicated that these genes were specifically involved in certain biological processes, including ‘extracellular matrix disassembly’, ‘collagen catabolism’ and ‘proteolysis’. Furthermore, with regards to the molecular function, the products of these five genes mainly comprised metalloendopeptidases, serine-type endopeptidases, calcium ion binders and zinc ion binders. Similarly, GO cell component analysis revealed that the proteins encoded by these genes were significantly enriched for functions associated with the proteanaceus extracellular matrix and extracellular region (P<0.01, Table II).

Gene expression of MMP1, LAMC2, MMP3, MMP10 and MMP12 in OTSCC samples from TCGA. TCGA database was used to analyze the expression levels of the five genes of interest in OTSCC and adjacent normal tissues. The results demonstrated that the expression levels of MMP1, LAMC2, MMP3, MMP10 and MMP12 were significantly upregulated in OTSCC tissues compared with adjacent normal tissues (Fig. 2).

Gene expression of MMP1, LAMC2, MMP3, MMP10 and MMP12 in OTSCC samples from TCGA. TCGA database was used to analyze the expression levels of the five genes of interest in OTSCC and adjacent normal tissues. The results demonstrated that the expression levels of MMP1, LAMC2, MMP3, MMP10 and MMP12 were significantly upregulated in OTSCC tissues compared with adjacent normal tissues (Fig. 2).

Gene expression of MMP1, LAMC2, MMP3, MMP10 and MMP12 in OTSCC samples from TCGA. TCGA database was used to analyze the expression levels of the five genes of interest in OTSCC and adjacent normal tissues. The results demonstrated that the expression levels of MMP1, LAMC2, MMP3, MMP10 and MMP12 were significantly upregulated in OTSCC tissues compared with adjacent normal tissues (Fig. 2).

Gene expression of MMP1, LAMC2, MMP3, MMP10 and MMP12 in OTSCC samples from TCGA. TCGA database was used to analyze the expression levels of the five genes of interest in OTSCC and adjacent normal tissues. The results demonstrated that the expression levels of MMP1, LAMC2, MMP3, MMP10 and MMP12 were significantly upregulated in OTSCC tissues compared with adjacent normal tissues (Fig. 2).
ESCA, HNSC, and READ (Fig. 3C). MMP10 expression was significantly upregulated in ESCA, HNSC and LUSC (Fig. 3D). In addition, MMP12 was upregulated in CESC, ESCA, HNSC, LUAD, LUSC and STAD, whereas it was downregulated in pancreatic adenocarcinoma (Fig. 3E). Overall, the expression level of MMP1, LAMC2, MMP3, MMP10 and MMP12 was significantly upregulated in HNSC tissues.

Correlations among genes expression in samples from the TCGA-HNSC database. To select the five genes of interest for further investigation, the correlations between gene expression patterns in samples from TCGA were analyzed using cBioPortal (35-36). The results demonstrated that MMP1 expression level was positively correlated with LAMC2 (Fig. 4A), MMP3 (Fig. 4B) and MMP10 (Fig. 4C) expression levels. In addition, LAMC2 expression level was positively correlated with MMP10 expression level (Fig. 4D).

Pearson correlation coefficients ranged from 0.33 to 0.69, and Spearman correlation coefficients ranged from 0.55 to 0.83. All together, these results suggested that MMP1, LAMC2, MMP3 and MMP10 expression levels were positively correlated in HNSC tissues.

Discussion

The American Joint Committee on Cancer has updated the Tumor-Node-Metastasis system for cancer staging system according to diagnostic class, treatment choices and prognosis for OTSCC (37). However, with the development of novel modern therapeutic approaches for cancer, genetic analysis is an outstanding tool for early diagnosis of cancer that can prolong patient survival (38). Previous clinical studies on OTSCC development and progression reported increased incidence and mortality rates due to the lack of knowledge on
determining the underlying pathways in order to develop novel therapeutic strategies for OTSCC.

Acknowledgements

Not applicable.

Funding

The present study was funded by the National Natural Science Foundation of China (grant no. 81673721) and the Natural Science Foundation of Fujian Province (grant no. 2017J0007).

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Authors' contributions

PZ, LL, YC and JP conceived and designed the experiments. BW, JL, YC and JP analyzed TCGA database using DaVID. BW, JL, YC and JP conducted gene ontology analyses using cBioPortal. PZ, LL, YC and JP drafted the manuscript.

Ethics approval and consent to participate

Not applicable.

Patient consent for publication

Not applicable.

Competing interest

The authors declare that they have no competing interests.

References

1. Jemal A, Bray F, Center MM, Ferlay J, Ward E and Forman D: Global cancer statistics. CA Cancer J Clin 61: 69-90, 2011.
2. Ledgerwood LG, Kumar D, Eterovic A, Wick J, Chen K, Zhao H, Tazi L, Manna P, Kerley S, Joshi R, et al: The degree of intratumor mutational heterogeneity varies by primary tumor sub-site. Oncotarget 7: 27185-27198, 2016.
3. Ye H, Yu T, Temam S, Zieber BL, Wang J, Schwartz JL, Mao L, Wang DT and Zhou X: Transcriptomic dissection of tongue squamous cell carcinoma. BMC Genomics 9: 69, 2008.
4. Döbrosy L: Epidemiology of head and neck cancer: Magnitude of the problem. Cancer Metastasis Rev 24: 9-17, 2005.
5. Timár J, Csuka O, Remenár E, Répássy G and Kásler M: The degree of the problem. Cancer Metastasis Rev 24: 9-17, 2005.
6. Stransky N, Eglolf AM, Tward AD, Kostic AD, Cibulsik S, Sivachenko A, Kryukov GV, Lawrence MS, Sougnez C, McKenna A, et al: The mutational landscape of head and neck squamous cell carcinoma. Science 333: 1157-1160, 2011.
7. Patel SC, Carpenter WR, Tyree S, Couch ME, Weissler M, Hackman T, Hayes DN, Shores C and Chera BS: Increasing incidence of oral tongue squamous cell carcinoma in young white women, age 18 to 44 years. J Clin Oncol 29: 1488-1494, 2011.
8. Ng JH, Iyer NG, Tan MH and Edgren G: Changing epidemiology of oral squamous cell carcinoma of the tongue: A global study. Head Neck 39: 297-304, 2017.

9. Kerkelä E and Saarialho-Kere U: Matrix metalloproteinases in tumor progression: Focus on basal and squamous cell skin cancer. Semin Cancer Biol 10: 415‑433, 2000.

10. Zhu Y, Qiu P and Ji Y: TCGa-assembler: Open-source software for retrieving and processing TCGA data. Nat Methods 11: e0174487, 2016.

11. Yang F, Wang X, Gao J, aksoy Ba, Dogrusoz U, Dresdner G, Gross B, Sumer SO, and Weber RS: Prognostic performance of the American Joint Committee on Cancer 8th edition of the TNM staging system in patients with early oral tongue cancer. Head Neck 41: 1270-1276, 2019.

12. Chang Genome Atlas Network: Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature 517: 576-582, 2015.

13. Shen CC, Chen MJ and Chang YM: MMP1 expression is activated by Slug and enhances multi-drug resistance (MDR) in breast cancer. PLoS One 12: e0174487, 2016.

14. Li H, Zhang H, Li S, Meng X, Wang X, Xu F and Lai M: The cBio cancer genomics portal: a new platform for exploring multi-omics platform data. Int J Hum Genet 14: 17-22, 2017.

15. Mariya T, Hirohashi Y, Torigoe T, Tabuchi Y, asano T, Saijo H, Mandel-Brehm C, Retallack H, Knudsen GM, Yamana A, Hajj-Ali RA, Calabrese LH, Tihan T, Sample HA, Zorn KC, Gorman MP, et al: Exploratory proteomic analysis implicates the alternative complement cascade in primary CNS vasculitis. Neurology 93: e433-e444, 2019.

16. Zhan B, Gao G, Li and Zhang Z: GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res 45: W98-W102, 2017.

17. Cerami E, Gao J, Dogrusoz U, Gross B, Sumer SO, Aksyov BA, Jacobsen A, Byrne CJ, Heuer ML, Larson E, et al: The cBio cancer genomics portal: a new cancer genomics portal: a new platform for exploring multi-omics platform data. Int J Hum Genet 14: 17-22, 2017.

18. Li H, Zhong a, Li S, Meng x, Wang x, xu F and Lai M: The FIVE ExTRaCELLULaR MaTRIx-aSSOCIaTED GENES a S POTENTI aL BIOMaRKERS IN OTSCC.
49. Chung IC, Chen LC, Chung AK, Chao M, Huang HY, Hsueh C, Tsang NM, Chang KP, Liang Y, Li HP and Chang YS: Matrix metalloproteinase 12 is induced by heterogeneous nuclear ribonucleoprotein K and promotes migration and invasion in nasopharyngeal carcinoma. BMC Cancer 14: 348, 2014.

50. Koshikawa N, Moriyama K, Takamura H, Mizushima H, Nagashima Y, Yanoma S and Miyazaki K: Overexpression of laminin gamma 2 chain monomer in invading gastric carcinoma cells. Cancer Res 59: 5596-5601, 1999.

51. Pyke C, Salo S, Rallikjaer E, Romer J, Danø K and Tryggvason K: Laminin-5 is a marker of invading cancer cells in some human carcinomas and is coexpressed with the receptor for urokinase plasminogen activator in budding cancer cells in colon adenocarcinomas. Cancer Res 55: 4132-4139, 1995.

52. Kagesato Y, Mizushima H, Koshikawa N, Kitamura H, Hayashi H, Ogawa N, Tsukuda M and Miyazaki K: Sole expression of laminin gamma 2 chain in invading tumor cells and its association with stromal fibrosis in lung adenocarcinomas. Jpn J Cancer Res 92: 184-192, 2001.

53. Hlubek F, Jung A, Kotzor N, Kirchner T and Brabletz T: Expression of the invasion factor laminin gamma2 in colorectal carcinomas is regulated by beta-catenin. Cancer Res 61: 8089-8093, 2001.

54. Sordat I, Bosman FT, Dorta G, Rousselle P, Aberdam D, Blum AL and Sordat B: Differential expression of laminin-5 subunits and integrin receptors in human colorectal neoplasia. J Pathol 185: 44-52, 1998.

55. Soini Y, Määtä M, Salo S, Tryggvason K and Autio-Harmainen H: Expression of the laminin gamma 2 chain in pancreatic adenocarcinoma. J Pathol 180: 290-294, 1996.

56. Takahashi S, Hasebe T, Oda T, Sasaki S, Kinoshita T, Konishi M, Ochiai T and Ochiai A: Cytoplasmic expression of laminin gamma2 chain correlates with postoperative hepatic metastasis and poor prognosis in patients with pancreatic ductal adenocarcinoma. Cancer 94: 1894-1901, 2002.

57. Yamamoto H, Itoh F, Iku S, Hosokawa M and Imai K: Expression of the gamma(2) chain of laminin-5 at the invasive front is associated with recurrence and poor prognosis in human esophageal squamous cell carcinoma. Clin Cancer Res 7: 896-900, 2001.