Research Article

Effect of Body Size Change on Off-Center Cervical Point and Face Doses in Patients Undergoing Nasopharyngeal Carcinoma Radiotherapy

Meifang Fang,1 Lu Xu,1 Xianxiang Wu,1 Zhen Cui,1 Zelai He,1 Haoxuan Zhang,1,2 and Hao Jin3

1Department of Radiotherapy, The First Affiliated Hospital of Bengbu Medical College, 287 Changhuai Road, Bengbu, Anhui Province, China
2Basic Medical College of Bengbu Medical College, 287 Changhuai Road, Bengbu, Anhui Province, China
3Department of Hepatobiliary Surgery, The First Affiliated Hospital of Bengbu Medical College, 287 Changhuai Road, Bengbu, Anhui Province, China

Correspondence should be addressed to Hao Jin; 18404038@masu.edu.cn

Received 17 March 2022; Accepted 1 April 2022; Published 25 April 2022

Copyright © 2022 Meifang Fang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Nasopharyngeal carcinoma (NPC) is a clinically multiple malignant tumor. At present, with the increase in the infection rate of Epstein-Barr virus, the incidence of nasopharyngeal carcinoma is also increasing day by day. To explore the effect of body size change on off-center cervical point and face doses in patients with nasopharyngeal carcinoma (NPC) undergoing radiotherapy, in total, 100 patients with NPC from January 2019 to May 2020 in our hospital were selected for retrospective analysis, and they all received intensity-modulated radiation therapy. Bodyweight, horizontal longitudinal diameter of the odontoid process, and longitudinal diameter of the third cervical spine in the last treatment were lower than those in the first treatment, with a statistically significant difference. There was no statistically significant difference in the maximum normal organ irradiation dose to the left eyeball, right eyeball, left crystalline lens, right crystalline lens, and maximum irradiation dose to optic nerve between the last treatment and the first treatment. In the last treatment, the maximum dose to the left parotid gland, right parotid gland, spinal cord, and brain stem was higher than that in the first treatment. The average irradiation dose to the left eye bulb, right eye bulb, left lens, right lens, optic nerve in the last treatment, and that in the first treatment showed no significant difference. The average dose to the left parotid gland, right parotid gland, spinal cord, and brain stem in the last treatment was higher than that in the first treatment. The irradiation dose to the left parotid gland, right parotid gland, spinal cord, and brain stem was significantly negatively correlated with body weight, horizontal longitudinal diameter of the odontoid process, and longitudinal diameter of the third cervical spine. After NPC radiotherapy, the body size of patients can change, which can have different effects on irradiation doses. Therefore, the target area and dose should be corrected during treatment to ensure the efficacy and safety of the treatment.

1. Introduction

Nasopharyngeal carcinoma (NPC) is a type of clinical multiple malignancy, and intensity-modulated radiation therapy (IMRT) is the primary treatment. Precise posture fixation is important to ensure the optimal effect of IMRT, and currently, clinical fixation of the head and neck is mostly performed using a thermoplastic film. However, an error of 3–5 mm in head and neck tumors after fixation with a thermoplastic mask alone was observed [1–3]. Studies have indicated that the head and neck are almost cylindrical, and there is no fixed point between their surface profile...
(especially the neck) and the thermoplastic film. It is difficult to control the rotation error during treatment, and the flexibility of the cervical spine leads to greater accuracy of neck fixation than that of the head [4–6].

Meanwhile, during radiotherapy, the anatomical structure of patients can change with changes in body weight, normal organ morphology, narrowed lymph nodes, and tumor regression, which can affect the accurate implementation of radiotherapy, leading to a deviation between the actual dose distribution in vivo and treatment target, resulting in insufficient irradiation dose to the tumor and unnecessary high-dose radiation to adjacent normal tissue, and thus adversely affecting the effectiveness and safety of treatment [7–9].

Therefore, it is of great importance to determine the effect of body size change and irradiation dose in patients with NPC undergoing radiotherapy, which can guide reasonable clinical position adjustment to ensure the effectiveness of treatment [10]. Based on this, 100 patients with NPC in our hospital were selected for analysis to determine the effect of body size change on off-center cervical point and face doses in patients with NPC undergoing radiotherapy.

2. Methods

2.1. Baseline Data. During 1st January 2019 to 31st May 2020, 127 patients with NPC were admitted in our hospital. After selection by the inclusion and exclusion criteria, 100 patients with NPC were included in current retrospective analysis. Of them, 70 were men and 30 were women. The age of the patients was 23–72 (average, 47.56 ± 16.61) years. The body mass index was 17.6–23.5 (average, 20.46 ± 2.32) kg/m². This study was approved by the ethics committee of our hospital.

2.2. Selection Criteria

2.2.1. Inclusion Criteria. The inclusion criteria were as follows: patients (1) who were diagnosed through pathological examination, (2) with Karnofsky Performance Scale score > 70 points, (3) with early-stage NPC (T₁ < T₂N₀M₀); (4) who underwent IMRT, and (5) who had good tolerance and could fully tolerate IMRT.

2.2.2. Exclusion Criteria. The exclusion criteria were as follows: patients (1) with other benign and malignant tumors; (2) with kidney liver and other organ lesions; (3) who had speech communication disorders, hearing disorders, and mental system lesions; and (4) who had poor compliance and could not cooperate with the investigation.

2.3. Methods

2.3.1. Analog Location of Computed Tomography Scan. Patients laid flat on a two-dimensional simulated positioning bed (Siemens), fixed by face and neck combined with a thermoplastic film neck and a shoulder mask. After cooling the mask, the corresponding isocenter layer was selected according to the requirements of IMRT and marked on both sides of the mask by a three-dimensional laser positioning lamp, and spiral computed tomography (CT) was used for enhanced scanning (approximately 2 cm from the head and neck to the subclavicular head) with a layer thickness of 2.5 mm. The obtained location-based CT images were transmitted to the NOMOS CORVUS 6.2 treatment planning system through the network, and a simulated location-based CT scan was performed again at the last treatment. All the operations were performed by the same personnel.

2.3.2. Target Delineation and Prescription Dose. Target delineation is as follows: the tumor target area (gross tumor volume) was delineated according to the CT images, including the primary tumor lesion and metastatic lymph nodes in the neck and pharynx. The clinical target areas (clinical target volume [CTV]) included the maxillary sinus, pterygopatine fossa, parapharyngeal space, skull base, nasopharynx, high-risk lymphatic drainage area, and cervical lymph node prophylactic irradiation area. The planned target area (planning target volume [PTV]) was released approximately 3–5 mm based on the CTV. Regarding the prescription dose, all patients underwent radical radiotherapy, and the whole neck, nasopharynx, and supraclavicular region were treated with 9-field IMRT. According to the prescribed target dose of PTV, the dose to the supraclavicular region of the lower neck was 54–60 Gy, the dose to the clinical target region of the nasopharynx and upper neck was 60–66 Gy, and the dose to the tumor target region was 68–78 Gy. A total of 33 treatments were performed five times per week.

2.3.3. Normal Organ Delineation and Dose Limitation. Normal organs, including the spinal cord, brain stem, temporomandibular joint, parotid gland, pituitary gland, optic chiasm, optic nerve, lens, and eyeball, were outlined layer-by-layer on cross-sectional CT scan images. The dose to the 50% volume of the parotid gland should be ≤ 35 Gy, optic nerve ≤ 54 Gy, optic chiasm ≤ 54 Gy, pituitary gland ≤ 45 Gy, temporal lobe ≤ 60 Gy, brain stem ≤ 54 Gy, and spinal cord ≤ 45 Gy. The doses to the eyeball and crystal should be reduced as much as possible.

2.3.4. Bodyweight and Peripheral Contour. In the first and last treatments, the peripheral profile was mainly the horizontal longitudinal diameter of the odontoid process and the longitudinal diameter of the third cervical spine.

2.4. Observation Indexes. (1) Bodyweight, horizontal longitudinal diameter of the odontoid process, and longitudinal diameter of the third cervical spine at the first and last treatments were assessed. (2) The maximum irradiation dose to the normal organs during the first and last treatments was calculated. (3) The average irradiation dose to the normal organs during the first and last treatments was calculated. (4) The correlation between normal organ irradiation dose and body shape (bodyweight, horizontal longitudinal diameter of the odontoid process, longitudinal diameter of the third cervical spine) was statistically analyzed.

2.5. Statistical Methods. The Statistical Package for the Social Sciences version 22.0 (SPSS Inc., Armonk, New York, USA) was used for data analysis. Measurement data were expressed by (x ± s) and t-test, and enumeration data were
expressed by n (%) and χ² test. Spearman analysis was used to perform correlation analysis between normal organ irradiation dose and body weight, horizontal longitudinal diameter of the odontoid process, and longitudinal diameter of the third cervical spine. The one-tailed P value less than 0.05 indicated statistically significant differences.

3. Results

3.1. Bodyweight, Horizontal Longitudinal Diameter of the Odontoid Process, and Longitudinal Diameter of the Third Cervical Spine.

Bodyweight (53.04 ± 6.11 kg), horizontal longitudinal diameter of the odontoid process (88.32 ± 1.35 mm), and longitudinal diameter of the third cervical spine (75.69 ± 3.88 mm) in the first treatment were lower than those in the first treatment (59.64 ± 5.70 kg, 90.68 ± 2.10 mm, and 80.69 ± 4.05 mm, respectively), and the difference was statistically significant (P < 0.05) (Table 1).

3.2. The Maximum Normal Organ Irradiation Dose of the First and Last Treatments.

Between the first and last treatments, no significant differences were observed in the maximum normal organ irradiation dose to the left eyeball, right eyeball, left crystalline lens, right crystalline lens, and maximum irradiation dose to the optic nerve (P > 0.05). In the last treatment, the maximum dose to the left parotid gland (66.38 ± 3.14 Gy), right parotid gland (66.83 ± 3.01 Gy), spinal cord (44.71 ± 2.13 Gy), and brain stem (49.30 ± 3.29 Gy) was higher than that in the first treatment (63.93 ± 2.69 Gy, 64.10 ± 2.30 Gy, 2.12 ± 2.25 Gy, and 46.71 ± 3.88 Gy, respectively) (P < 0.05) (Table 2).

3.3. The Average Irradiation Dose of Normal Organs in the First and Last Treatments.

The average irradiation dose to the left eye bulb (7.71 ± 2.02 Gy), right eye bulb (7.69 ± 1.63 Gy), left lens (4.10 ± 0.69 Gy), right lens (4.49 ± 0.86 Gy), optic nerve (26.54 ± 3.53 Gy) in the last treatment, and that in the first treatment (7.59 ± 2.11 Gy, 7.38 ± 1.79 Gy, 4.04 ± 0.73 Gy, 4.37 ± 0.91 Gy, and 25.60 ± 4.30 Gy, respectively) had no significant difference (P > 0.05). The average dose to the left parotid gland (34.49 ± 2.41 Gy), right parotid gland (33.81 ± 3.50 Gy), spinal cord (27.54 ± 2.98 Gy), and brain stem (36.64 ± 2.34 Gy) in the last treatment was higher than that in the first treatment (32.36 ± 2.62 Gy, 30.75 ± 3.19 Gy, 5.35 ± 3.04 Gy, and 34.06 ± 2.51 Gy, respectively) (P < 0.05) (Table 3).

3.4. The Analysis of Irradiation Dose and Body Size Change.

The irradiation dose to the left parotid gland, right parotid gland, spinal cord, and brain stem was significantly negatively correlated with bodyweight, horizontal longitudinal diameter of the odontoid process, and longitudinal diameter of the cervical spine (P < 0.05) (Table 4).
Time	Left eyeball	Right eyeball	Left crystalline lens	Right crystalline lens	Optic nerve	Left parotid gland	Right parotid gland	Spinal	Brain stem
Last treatment	24.21 ± 3.63	23.38 ± 5.05	5.23 ± 0.69	5.51 ± 0.97	51.79 ± 9.06	66.38 ± 3.14	66.83 ± 3.01	44.71	49.30 ± 3.29
First treatment	24.11 ± 4.04	22.97 ± 4.69	5.15 ± 0.73	5.34 ± 1.10	50.37 ± 8.22	63.93 ± 2.69	64.10 ± 2.30	42.12	46.71 ± 3.88
t value	0.184	0.594	0.796	1.159	1.161	5.925	7.107	8.359	5.091
P value	0.854	0.553	0.427	0.248	0.247	0.000	0.000	0.000	0.000

Table 2: Maximum normal organ irradiation dose of the first and last treatments (Gy, $\bar{x} \pm s$, $n = 100$).
Table 3: Comparison of average irradiation dose of normal organs between the first and last treatments (Gy, $\bar{x} \pm s$, $n = 100$).

Time	Left eyeball	Right eyeball	Left crystalline lens	Right crystalline lens	Optic nerve	Left parotid gland	Right parotid gland	Spinal	Brain stem
Last treatment	7.71 ± 2.02	7.69 ± 1.63	4.10 ± 0.69	4.49 ± 0.86	26.54 ± 3.53	34.49 ± 2.41	33.81 ± 3.50	27.54 ± 2.98	36.64 ± 2.34
First treatment	7.59 ± 2.11	7.38 ± 1.79	4.04 ± 0.73	4.37 ± 0.91	25.60 ± 4.30	32.36 ± 2.62	30.75 ± 3.19	25.35 ± 3.04	34.06 ± 2.51
t value	0.411	1.280	0.597	0.958	1.690	5.983	6.462	5.144	7.518
P value	0.682	0.202	0.551	0.339	0.093	0.000	0.000	0.000	0.000
of body shape change on radiation dose. The results of this study showed that bodyweight, horizontal longitudinal diameter of the odontoid process, and longitudinal diameter of the third cervical spine were lower in the last treatment compared with those in the first treatment, suggesting that IMRT can reduce the bodyweight and horizontal longitudinal diameter of the odontoid process in patients with NPC, resulting in body shape changes. The irradiation dose to the left parotid gland and the average dose to the right parotid gland, spinal cord, and brain stem were higher in the left parotid gland and the average dose to the right parotid gland, spinal cord, and brain stem were higher in the last treatment than those in the first treatment. There was a significant negative correlation between the longitudinal diameter and weight, dente processes level, and longitudinal diameter of the third cervical spine (\(P < 0.05 \)), verifying that body size change caused by IMRT can have an evident effect on the irradiation dose to normal organs in patients with NPC, that is, increased irradiation dose and risk of damage to normal organs, thus affecting the treatment safety. This may be because patients may experience edema of the skin, mucous membrane, and neck and bump, subsidizing the nose and pharynx, affecting the eating pattern during radiation treatment, and changing the body weight and outer contour. The reason for the increase in the irradiation dose to the brain stem may be that the body positioning error and the distance between the target and brain stem may be changed due to the decrease in body weight, which may lead to a change in the irradiation dose, and the parotid gland, brain stem, and spinal cord are organs that need to be protected during IMRT, mainly because the brain stem and spinal cord are important organs of the central nervous system of the human body and are considered tandem tissue organs. If the brain stem and spinal cord are damaged, serious complications, such as gait instability, limb numbness, memory loss, and paralysis, may occur. Therefore, it is believed that if the body shape of patients with NPC changes during IMRT, the treatment target should be redelineated. Therefore, the body shape of patients with NPC should be monitored weekly to preliminarily evaluate whether it is necessary to adjust the treatment plan according to changes in body shape. In addition, in clinical practice, effective nutritional support can also be provided in the course of IMRT treatment to patients with NPC through nasal feeding to reduce body shape changes to reduce the changes in the radiation dose to the brain stem, spinal cord, and parotid gland caused by body shape changes and to effectively protect the brain stem, spinal cord, and other organs at risk and ensure the safety of treatment.

In conclusion, after radiotherapy, the body size of patients with NPC can change, which can have different effects on the doses of irradiation. Therefore, the target area and dose should be corrected during treatment to ensure the efficacy and safety of the treatment.

Data Availability

All data was included in the manuscript.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This study was supported by the Natural Science Research Project of Anhui Universities in 2020 (Key Project) No. KJ2020A0553.

References

1. L. Chen, Y. L. Peng, S. Y. Gu et al., “Dosimetric effects of head and neck immobilization devices on multi-field intensity modulated radiation therapy for nasopharyngeal carcinoma,” *Journal of Cancer*, vol. 9, no. 14, pp. 2443–2450, 2018.

2. F. Liu, T. Luo, T. Jin et al., “Advantages of using reduced-volume intensity modulated radiation therapy for the treatment of nasopharyngeal carcinoma: a retrospective paired study,” *BMC Cancer*, vol. 19, no. 1, p. 554, 2019.

3. T. Z. Yuan, Z. J. Zhan, and C. N. Qian, “New frontiers in proton therapy: applications in cancers,” *Cancer Commun (Lond)*, vol. 39, no. 1, p. 61, 2019.

4. Q. Guo, Y. Zheng, J. Lin et al., “Modified reduced-volume intensity-modulated radiation therapy in non-metastatic nasopharyngeal carcinoma: a prospective observation series,” *Radiotherapy and Oncology*, vol. 156, pp. 251–257, 2021.

5. M. Zhuang, T. Zhang, Z. Chen et al., “Advanced nasopharyngeal carcinoma radiotherapy with volumetric modulated arcs and the potential role of flattening filter-free beams,” *Radiation Oncology*, vol. 8, no. 1, p. 120, 2013.

6. N. Fung, W. M. Hung, C. K. Sze, M. Lee, and W. T. Ng, “Automatic segmentation for adaptive planning in nasopharyngeal carcinoma IMRT: time, geometrical, and dosimetric analysis,” *Medical Dosimetry*, vol. 45, no. 1, pp. 60–65, 2020.

7. W. Z. Sun, D. D. Zhang, Y. L. Peng et al., “Retrospective dosimetry study of intensity-modulated radiation therapy for nasopharyngeal carcinoma: measurement-guided dose
reconstruction and analysis,” *Radiation Oncology*, vol. 13, no. 1, p. 42, 2018.

[8] Y. Zhao, L. Shen, X. Huang et al., “Prognostic analysis of patients with locally advanced nasopharyngeal carcinoma following intensity modulated radiation therapy,” *Oncology Letters*, vol. 15, no. 4, pp. 4445–4450, 2018.

[9] T. Du, J. Xiao, Z. Qiu, and K. Wu, “The effectiveness of intensity-modulated radiation therapy versus 2D-RT for the treatment of nasopharyngeal carcinoma: a systematic review and meta-analysis,” *PLoS One*, vol. 14, no. 7, article e0219611, 2019.

[10] Z. Hu, G. Li, and S. Bai, “Application of new posture fixation device compatible with magnetic resonance simulation positioning in head and neck radiotherapy,” *Zhongguo Yi Liao Qi Xie Za Zhi*, vol. 45, no. 3, pp. 349–354, 2021.

[11] Y. Li, X. Ou, C. Shen, T. Xu, W. Li, and C. Hu, “Patterns of local failures and suggestions for reduction of clinical target volume for nasopharyngeal carcinoma patients without cervical lymph node metastasis,” *Oncotargets and Therapy*, vol. 11, pp. 2545–2555, 2018.

[12] H. Pang, X. Sun, B. Yang, and J. Wu, “A quality control method for intensity-modulated radiation therapy planning based on generalized equivalent uniform dose,” *Journal of Applied Clinical Medical Physics*, vol. 19, no. 3, pp. 276–282, 2018.

[13] X. Q. Liu, W. Luo, S. R. Lin, and M. Z. Liu, “Placement repeatability of individual oral stent used in radiotherapy of nasopharyngeal carcinoma,” *Ai Zheng*, vol. 28, no. 10, pp. 1103–1107, 2009.

[14] T. Lu, X. Xie, Q. Guo et al., “Prognosis of nasopharyngeal carcinoma with insufficient radical dose to the primary site in the intensity-modulated radiotherapy era,” *Head & Neck*, vol. 41, no. 10, pp. 3516–3524, 2019.

[15] S. Zong-Wen, S. Lei, L. Qinglin et al., “Results of the radiation dose of head, body and tail of hippocampus in nasopharyngeal carcinoma patients treated with intensity modulated radiotherapy,” *Scientific Reports*, vol. 8, no. 1, p. 5595, 2018.

[16] J. Liu, K. M. Lyman, Z. Ding, and L. Zhou, “Assessment of the therapeutic accuracy of cone beam computed tomography-guided nasopharyngeal carcinoma radiotherapy,” *Oncology Letters*, vol. 18, no. 2, pp. 1071–1080, 2019.

[17] L. Jiang, C. Huang, Y. Gan et al., “Radiation-induced late dysphagia after intensity-modulated radiotherapy in nasopharyngeal carcinoma patients: a dose-volume effect analysis,” *Scientific Reports*, vol. 8, no. 1, p. 16396, 2018.

[18] W. Wang, H. Yang, Y. Mi et al., “Rules of parotid gland dose variations and shift during intensity modulated radiation therapy for nasopharyngeal carcinoma,” *Radiation Oncology*, vol. 10, no. 1, p. 3, 2015.

[19] S. Takao, S. Tadano, H. Taguchi et al., “Accurate analysis of the change in volume, location, and shape of metastatic cervical lymph nodes during radiotherapy,” *International Journal of Radiation Oncology • Biology • Physics*, vol. 81, no. 3, pp. 871–879, 2011.

[20] S. Bai, G. Li, M. Wang, Q. Jiang, Y. Zhang, and Y. Wei, “Effect of MLC leaf position, collimator rotation angle, and gantry rotation angle errors on intensity-modulated radiotherapy plans for nasopharyngeal carcinoma,” *Medical Dosimetry*, vol. 38, no. 2, pp. 143–147, 2013.