Dynamic Modelling of Heart Rate Response Under Different Exercise Intensity

Steven W. Su1,2,3, Weidong Chen*1, Dongdong Liu1, Yi Fang1, Weijun Kuang1, Xiaoxiang Yu1, Tian Guo1, Branko G. Celler3 and Hung T. Nguyen2

1Department of Automation, Shanghai Jiao Tong University, Shanghai, China
2Faculty of Engineering and Information Technology, University of Technology, Sydney, Australia
3Biomedical Systems Lab, School of EE&T, University of New South Wales, Sydney, Australia

Abstract: Heart rate is one of the major indications of human cardiovascular response to exercises. This study investigates human heart rate response dynamics to moderate exercise. A healthy male subject has been asked to walk on a motorised treadmill under a predefined exercise protocol. ECG, body movements, and oxygen saturation (SpO2) have been reliably monitored and recorded by using non-invasive portable sensors. To reduce heart rate variation caused by the influence of various internal or external factors, the designed step response protocol has been repeated three times. Experimental results show that both steady state gain and time constant of heart rate response are not invariant when walking speed is faster than 3 miles/hour, and time constant of offset exercise is noticeably longer than that of onset exercise.

Keywords: Heart rate, treadmill exercise, modelling, nonlinear behaviour, portable sensor, non-invasive measurement.

1. INTRODUCTION

As heart rate can be easily measured by using wireless portable sensors, it has been extensively used to monitor exercise intensity and estimate exercise response of key cardiovascular variables, such as oxygen consumption [1, 2], energy expenditure [3] and cardiac output [4, 5].

The heart rate is a non-stationary signal, and its variation includes indicators of current disease or warnings about impending cardiac diseases [6]. Recently, heart rate has been applied for the assessment of cardiovascular fitness and monitoring of rehabilitation exercise with a focus on cardiovascular abnormality detection [6, 7]. To effectively detect cardiac abnormalities and monitor rehabilitation exercise, an efficient way is to set up models for normal heart rate responses. Then, abnormal response detection can be treated as a fault detection problem. The most commonly used method of fault detection is model based residual analysis [8]. Based on the established models, abnormal responses can be detected by calculating the residual of heart rate response, which can be acquired by comparing the signals, measured by using sensor and estimated by using the model. There are plenty of papers [9, 10] about the analysis of steady state characteristics of heart rate response. Some papers investigate its dynamic characteristics by using linear or nonlinear models [11, 12]. However, few papers investigate the variation of dynamic characteristic (such as time constant) of onsite and offsite walking exercises. For moderate exercise, literatures often assume heart rate dynamics can be described by linear time invariant models. However, in our previous studies, it was observed time constant of heart response to exercise depends on exercise intensity. It is also reported [13-15] that exercise effects can be optimised by regulating heart rate following a predefined exercise protocol. Therefore, it is worthwhile to establish a more accurate dynamical model to enhance the controller design of heart rate regulation. For this purpose, this study investigated the variations of time constant and steady state gain under different exercise intensity. More attention was paid on the difference of transient response of onsite and offsite exercises. We designed a treadmill walking exercise protocol to analyse step response of heart rate. During experiments, ECG, body movement, and oxygen saturation were recorded by using portable non-invasive sensors: Alive ECG monitor, Micro Inertial Measurement Unit (IMU), and Alive Pulse Oximeter. It was confirmed that time constant are not invariant, especially when walking speed is faster than 3 miles/hour. Furthermore, time constant for offsite exercise is normally bigger than that of onset exercises. Steady state gain variation under different exercise intensity has also been visibly observed.

This paper is organised as follows. Section 2 describes the experimental equipments and exercise protocol. Data analysis and modelling results are given in Section 3. Finally, Section 4 gives conclusions.

2. EXPERIMENTAL EQUIPMENTS AND EXERCISE PROTOCOL

2.1. Subject

A healthy male joined the study. Physical characteristics of the subject are shown in Table 1.
2.2. Experimental Procedure

Experiments were performed in the afternoon, and the subject was allowed to have a light meal one hour before the measurements. After walked for about 10 minutes on the treadmill to get acquainted with this kind of exercise, the subject walked at six sets of exercise protocol (see Fig. 1) to test step response. The values of walking speed V_a and V_b were designed to vary exercise intensity and are listed in Table 2. To properly identify time constants for onset and offset exercises, the recorded data should be precisely synchronised. Therefore, time instants t_1, t_2, t_3, and t_4 should be identified and marked accurately. In this study, we applied a Micro Inertial Measurement Unit (Xsens MTi-G IMU) to fulfill this requirement. We compared both attitudes information (roll, pitch, and yaw angles) and acceleration information provided by the Micro IMU. It was observed that acceleration information alone is sufficient to identify these time instants (see Figs. 2, 3).

Table 1. Subject Characteristics

Age (yo)	Height (cm)	Body Mass (kg)
41	178	79

Fig. (1). Experiment protocol.

During experiments, continuous measurements of ECG, body movement, and SpO$_2$ (oxygen saturation) were made by using portable non-invasive sensors. Specifically, ECG

Fig. (2). Accelerations of three axes provided by the Micro IMU.

Fig. (3). Roll, pitch and yaw angles provided by the Micro IMU.
was recorded by using Alive ECG Monitor. Body movement was measured by using the Xsens MTi-G IMU. SpO₂ was monitored by using Alive Pulse Oximeter to guarantee the safety of the subject. The experimental scenario is shown in Fig. (4).

Table 2. The Values of Walking Speed \(V_a \) and \(V_b \)

	Set 1	Set 2	Set 3	Set 4	Set 5	Set 6
\(V_a \) (m/h)	0.5	1.5	2	2.5	3	3.5
\(V_b \) (m/h)	1.5	2.5	3	3.5	4	4.5

3. DATA ANALYSIS AND DISCUSSIONS

Original signals of IMU, ECG, and SpO2 are shown in Figs. (3, 5, 6), respectively. It is well known that even in the absence of external interference the heart rate can vary substantially over time under the influence of various internal or external factors [13]. As mentioned before, in order to reduce the variance, designed experimental protocol has been repeated three times. Experimental data of these repeated experiments has been synchronised and averaged.

A typical measured heart rate response is shown in Fig. (7). Paper [13] found that heart rate response to exercise can be approximated as first order process from a control application point of view. Therefore, we established first order model for six averaged step response data by using Matlab System Identification Toolbox [16]. The identified time constants and steady state gain are shown in Table 3. Curve fitting results of all six cases are shown in Fig. (8).
Fig. (8). Curve fitting results for onset and offset exercises for all six exercise intensities as listed in Table 3.
Based on the identified steady state gain (k) and time constant (T) as listed in Table 3, we can clearly see that both steady state gain and time constant vary when walking speed Va and Vb change. Furthermore, time constant of offsite exercise are noticeably bigger than those of onsite exercises. However, it should be pointed out that the variant of time constant is not distinctly dependent on walking speed when walking speed is less than 3 miles/hour. Overall, experimental results indicate that heart rate dynamics at onsite and offset exercise exhibited highly nonlinearity when walking speed is higher than 3 miles/hour.

4. CONCLUSION

This study mainly focuses on the analysis of dynamic nonlinear behaviour of heart rate response to treadmill walking exercises. Both steady state gain and time constant under different walking speeds have been identified and analysed by using the data from a healthy middle aged male subject. It was observed that both steady state gain and time constant are not invariant under different walking speeds. Especially, time constant for recovery stage is noticeably longer than that of onsite exercise. In order to verify this conclusion, we are planning to recruit more subjects in the next step of this study. Nonlinear control algorithm will also be developed for the established exercise intensity dependent nonlinear model. We believe that this study has great potential to improve exercise efficiency during treadmill exercises.

ACKNOWLEDGEMENTS

This work is partly supported by the National High-Tech R&D Program of China under grant 2006AA040203.

REFERENCES

[1] Su S, Celler B, Savkin A, et al. Transient and steady state estimation of human oxygen uptake based on noninvasive portable sensor measurements. Med Biol Eng Comput 2009; 47(10): 1111-7.

[2] Fairbarn M, Blackie S, McElvaney N, Wiggs B, Pare P, Pardy R. Prediction of heart rate and oxygen uptake during incremental and maximal exercise in healthy adults. Chest 1994; 105: 1365-9.

[3] Su S, Wang L, Celler B, Ambikairajah E, Savkin A. Estimation of walking energy expenditure by using support vector regression. In: Proceedings of the 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), Shanghai, China 2005; pp. 3526-9.

[4] Astrand P, Cuddy T, Saltin B, Stenberg J. Cardiac output during submaximal and maximal work. J Appl Physiol 1964; 9: 268-74.

[5] Freedman M, Snider G, Brostoff P, Kimmelblot S, Katz L. Effects of training on response of cardiac output to muscular exercise in athletes. J Appl Physiol 1955; 8: 37-47.

[6] Acharya R, Kumar A, Bhat IP, et al. Classification of cardiac abnormalities using heart rate signals. Med Biol Eng Comput 2004; 42(3): 288-93.

[7] Wang L, Su S, Celler B. Time constant of heart rate recovery after low level exercise as a useful measure of cardiovascular fitness. In: Proceedings of the 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), New York, USA, September 2006.

[8] Blanke M, Kinnnaert M, Lunze J, Staroswiecki M. Diagnosis and Fault-Tolerant Control. Berlin: Springer 2003.

[9] Seliger V, Wagner J. Evaluation of heart rate during exercise on a bicycle ergometer. Physiol Bohemoslov 1969; 18: 41.

[10] Chen Y, Lee Y. Effect of combined dynamic and static workload on heart rate recovery cost. Ergonomics 1998; 41(1): 29-38.

[11] Hajek M, Potucek J, Brodan V. Mathematical model of heart rate regulation during exercise. Automatica 1980; 16: 191-5.

[12] Cheng T, Savkin A, Celler B, Su S, Wang L. Nonlinear modelling and control of human heart rate response during exercise with various work load intensities. IEEE Trans Biomed Eng 2008; 55(11): 2499-508.

[13] Su S, Wang L, Celler B, Savkin A, Guo Y. Identification and control for heart rate regulation during treadmill exercise. IEEE Trans Biomed Eng 2007; 54(7): 1238-46.

[14] Cooper R, Fletcher-Shaw T, Robertson R. Model reference adaptive control of heart rate during wheelchair ergometry. IEEE Trans Control Syst Technol 1998; 6(4): 507-14.

[15] Eston R, Rowlands A, Ingleed D. Validity of heart rate, pedometry, accelerometer for predicting the energy cost of children's activities. J Appl Physiol 1998; 84: 362-71.

[16] Liu L. System Identification Toolbox V4.0 for Matlab. 1em plus 0.5em minus 0.4em MA: The MathWorks, Inc., 1995.