Marine-Derived Fungi: A Promising Source of Halo Tolerant Biological Control Agents against Plant Pathogenic Fungi

Tanaporn Chalearmsrimuang, Siti Izera Ismail, Norida Mazlan, Supaporn Suasa-ard and Tida Dethoup

Abstract

In this study, twenty marine-derived fungi were evaluated for their antagonistic activities against 10 economically important plant pathogenic fungi and investigated for their halo tolerance on potato dextrose agar (PDA) amended with 1%-25% NaCl. The results of dual culture tests showed that the marine *Trichoderma* species, *T. asperellum* and *T. harzianum* exhibited higher antagonistic effects against all plant pathogens than the other tested fungi, causing percentages of mycelial growth inhibition ranging from 59.31-100%. The results of dilution plate assays revealed that crude extracts of marine-derived fungi in the genera *Emericella*, *Myrothecium*, *Neocosmospora*, *Penicillium* and *Talaromyces* displayed great antifungal activity against plant pathogenic fungi at a low concentration of 1 g/l. However, the crude extract of *Myrothecium verrucaria* showed the best antifungal activity: more than 52% inhibition of five of the tested species of plant pathogenic fungi and complete mycelial growth inhibition of *Bipolaris oryzae* and *Lasiodiplodia theobromae* at 1 g/l. All of the tested marine-derived fungi were tolerant to NaCl at concentrations up to 7%. These results revealed marine-derived fungi possess exploitable antagonistic activities against plant pathogenic fungi through antibiosis, competition for nutrients and space and halo tolerance. Moreover, the results from this study showed their potential as novel BCAs for supporting crop production under climatic changes in the future.

Keywords: Antagonistic activities; marine fungi; plant pathogens; halo tolerant fungi.
INTRODUCTION

The disadvantages of commercial synthetic fungicides in both organic and conventional farming have led to attempts to find new strategies for controlling plant diseases1,2. Biological control agents are currently held to be a very promising strategy for plant disease management due to their being eco-friendly and non-toxic to consumers and farmers3,4. Finding novel BCAs is required to combat plant disease outbreaks and overcome plant pathogen resistance to fungicides. The search for promising BCAs has mostly been conducted by screening terrestrial, endophytic, entomopathogenic microbes while studies of antagonistic microbes from marine environments are still limited. Marine invertebrates present a rich source of bioactive metabolites5,6. Moreover, they are also the major hosts of symbiotic microorganisms such as actinomycetes, bacteria and fungi7,8. Marine-derived fungi are often associated with marine organisms and substrata such as sponges, corals, tunicates, higher algae, sea grasses, mangroves, molluscs, woody substrates and drift wood9,10.

In our ongoing search for bioactive compounds from marine-derived fungi, we isolated a number of fungi from sponges, corals and sea fans, among which was a novel fungal species recently reported11. Several novel metabolites and the antimicrobial activity of marine-derived fungi isolated from marine invertebrates collected from Thai waters against human and plant pathogens have been reported by our group12-15. Fungi isolated from marine environments, particularly from sponges, have shown great potential as important sources of pharmacologically active metabolites and biological activities which have great potential for the development of new drugs as well as new agrochemical substances16-18. They have also been reported to be more important producers of novel natural products and bioactive compounds than other microorganisms19-23.

These new bioactive compounds are attracting researchers to attempt to isolate fungi from marine environments. These fungi have previously been isolated from soils and plants in different locations and climates. To date, studies of diversity in marine organisms have led to the isolation of hundreds of fungal species belonging to Ascomycetes, Deuteromycetes, Zygomycetes and Mitosporic fungi24-28. Most of them were previously reported as terrestrial fungi, and they were able to grow on media both with and without the addition of seawater11,16. The fungi and the marine invertebrate, plant relationship is still unclear; however, sponge derived fungi have classified into three groups: sponge-generalists, sponge-associates and sponge-specialists27,29.

In our previous study, we reported the in vitro antifungal activity of five marine-derived fungi against 10 economically important plant pathogens. Among these, the extract of \textit{Talaromyces trachysporus} isolated from the marine sponge \textit{Clathria reinwardtii} had great mycelial growth inhibition capability on \textit{Pythium aphanidermatum} even at the low concentration of \textit{IC}\textsubscript{50} 100 ppm10. Besides this, other researchers have investigated the antibacterial and antifungal properties of marine-derived fungi against plant pathogens30-32. For example, several \textit{Trichoderma} spp. were isolated from the Mediterranean sponge, \textit{Psammocinia} sp., and were evaluated for their antagonistic activity against three plant pathogenic fungi, \textit{Botrytis cinerea}, \textit{Rhizoctonia solani} and \textit{Alternaria alternata}. The results showed that all the tested fungi extracts displayed antagonistic activity in dual plate assays. \textit{T. atroviride} and \textit{T. asperelloides} effectively reduced the incidence of \textit{R. solani} damping-off disease of beans and also induced defense responses in cucumber seedlings against \textit{Pseudomonas syringae pv. lachrimans}33.

These data showed that marine-derived fungi, and especially marine sponge-associated fungi, are a promising source of antagonist microbes which may be useful in developing as novel BCAs to control plant diseases. However, their antimicrobial properties were mostly demonstrated for pharmaceutical purposes; thus, the evaluation of antagonistic activity against plant pathogens in this study may provide more information concerning the value and potential of marine-derived fungi in crop protection. The purpose of this study was to evaluate the antagonistic activities and halo tolerance of twenty selected marine-derived fungi collected from Thai waters against ten plant pathogenic fungi \textit{in vitro}.

MATERIALS AND METHODS

Sponge samples

The marine sponge samples were collected from coral reefs at two locations in Thailand: Samaesan Island, Chonburi Province in Eastern Thailand and Similan Island, Phang Nga Province, in Southern Thailand, by scuba-diving at a depth of 10-15 meters during 2011-2016 (Table 1). The samples were placed in plastic bags containing natural seawater and were stored in ice and in a refrigerator for later analysis.

Isolation of fungi from marine sponges

The sponge sample tissues were washed three times with sterilized sea water and cut into pieces of 0.5 x 0.5 cm under aseptic conditions. Five pieces of each marine sponge were placed on a Petri dish plate containing 15 mL malt extract agar (MEA) medium mixed with 70% sea water and 0.003% streptomycin sulphate, and then incubated at room temperature for 7 days. Hyphal tips emerging from sponge pieces were cut and transferred to MEA slants for further identification. The pure cultures were maintained at the Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand under the code KUFA.

Marine-derived fungi identification

The identification of the fungi was based on morphological characteristics as observed from the growth pattern, color and texture on MEA. Colony characteristics were examined under a stereoscopic microscope, and microscopic characteristics were thoroughly investigated under light and scanning electron microscopes afterwards. The fungi were further identified by molecular techniques using ITS primers. DNA was extracted from young mycelia following a modified Murray and Thompson method. Universal primer pairs ITS1 and ITS4 were used for ITS gene amplification. The gene sequences of the marine-derived fungi were submitted to the BLAST program for alignment and compared with those of fungal species in the NCBI database (http://www.ncbi.nlm.nih.gov/). Their ITS gene sequences were deposited in GenBank with accession numbers as shown in Table 1.

In vitro antagonistic activity testing of the marine-derived fungi against plant pathogenic fungi by the dual culture method

Twenty marine-derived fungi were selected for testing of their antagonistic activity against ten species of plant pathogenic fungi (Table 2). The marine-derived fungi and plant pathogenic fungi were cultured on separate Petri dish plates containing PDA and incubated at room temperature for 7 days. A mycelial plug of marine-derived fungus and a mycelial plug of plant pathogenic fungus were cut from the colony margin with a sterile steel borer (0.5 cm diam.) and placed on PDA as a dual culture, 7 cm apart. The Petri dish plates of the dual culture assay were incubated at room temperature for 3 days for *Sclerotium rolfsii* and *Rhizoctonia solani*, and for 14 days for the other species. A mycelial plug of each plant pathogenic fungus was placed on a separate PDA plate to serve as a control. The inhibition levels were calculated by using the formula:

$$\text{inhibition level} = \frac{(x-y)}{x} \times 100,$$

where $x =$ the colony radius of the plant pathogenic fungi in the control, and $y =$ the colony radius of the plant pathogenic fungi in the dual culture test. Each treatment was performed with five replicates and repeated three times.

Preparation of the marine-derived fungal extracts

The 20 selected marine-derived fungi were evaluated for their antifungal activity against plant pathogenic fungi (Table 3). These fungi were cultured on separate PDA plates and incubated at room temperature for 7 days. Five mycelial plugs of each fungus were cut from a 7-day-old colony margin and inoculated in 500 ml Erlenmeyer flasks containing potato dextrose broth 200 mL, and then incubated on a rotary shaker at 120 rpm for 7 days for preparing spore suspensions. Twenty-five 1,000 ml Erlenmeyer flasks, each containing 300 g cooked rice, were autoclaved at 121°C for 15 min. and then inoculated with approximately 20 mL of mycelial suspension of each fungus. The inoculated flasks were then incubated at room temperature for 30 days, after which 500 mL of ethyl acetate was added to each flask and macerated for 7 days. The ethyl acetate solutions were filtered through filter paper (Whatman No.1) to give the organic solutions and then evaporated under reduced pressure to obtain a crude ethyl acetate extract of each marine-derived fungus.

In vitro antifungal activity test of marine-derived fungi crude extracts against plant pathogenic fungi

The dilution plate method was used for the evaluation of the *in vitro* antifungal activity
Table 1. Fungi isolated from marine invertebrates used in this study

Marine-derived fungus	KUFA Accession No.	Sponge Location	Location
Arthrinium xenocordella	1018 KY041870	Unidentified marine sponge No. 1	Samaesan Island, Chonburi
Eurotium chevalieri	0464 KY942148	Rhabdermia sp.	Similan Island, Phang Nga
Emericella foveolata	1003 KY041869	Xestospongia testudinaria	Samaesan Island, Chonburi
Emericella nidulans	0031 MF614160	Mycale armata	Samaesan Island, Chonburi
Emericella rugulosa	1002 KY041871	Acanthella sp.	Samaesan Island, Chonburi
Emericella variicolor	0261 MF614163	Xestospongia testudinaria	Samaesan Island, Chonburi
Hamigera avellanea	0450 KY942147	Acanthella sp.	Samaesan Island, Chonburi
Hamigera terricola	0214 KU500029	Xestospongia testudinaria	Samaesan Island, Chonburi
Geosmithia lavendula	0319 KY942145	Stylissa flabelliformis	Samaesan Island, Chonburi
Myrothecium sp.	0192 KY942146	Mycale sp.	Samaesan Island, Chonburi
Neocosmospora vasinfecta var. vasinfecta	1004 KY041868	Mycale sp.	Samaesan Island, Chonburi
Penicillium aculeatum	0201 MF614161	Xestospongia testudinaria	Samaesan Island, Chonburi
Neosartorya fischeri	0107 KY942143	Rhabdermia sp.	Similan Island, Phang Nga
Neosartorya pseudofischeri	0061 KY942144	Hyrtios erecta	Similan Island, Phang Nga
Neosartorya quadricincta	0081 KT201525	Xestospongia testudinaria	Samaesan Island, Chonburi
Neosartorya tsunodae	0052 KT201524	Aka coralliphaga	Similan Island, Phang Nga
Talaromyces tratensis	0091 KT728350	Mycale sp.	Samaesan Island, Chonburi
Talaromyces stipitatus	0207 KU500028	Stylissa flabelliformis	Samaesan Island, Chonburi
Trichoderma-asperellum	0677 KY942142	Mycale sp.	Samaesan Island, Chonburi
Trichoderma-ahrazianum	0689 MF614160	Hyrtios erecta	Similan Island, Phang Nga

 against ten plant pathogenic fungi. One gram of each of the crude ethyl acetate extracts of marine-derived fungi was dissolved in 1 mL dimethyl sulfoxide and serially diluted with sterile distilled water to prepare stock solutions of 100 and 10 g/L concentrations. One mL of each stock solution was added to 9 mL of warm PDA, mixed, and poured into the Petri dishes to obtain final concentrations of 10 and 1 g/L. A mycelial plug of each of the ten plant pathogenic fungi was cut from a 7-day-old colony margin with a sterile steel borer and transferred to a PDA plate containing one of the
concentrations of each crude extract. All the Petri dishes were incubated at room temperature for 14 days. A PDA plate void of the fungal crude extract was used as a control. The inhibition levels were calculated using the formula: \((x-y)/x \times 100\), where \(x\) = the colony radius of the plant pathogenic fungi in the control, and \(y\) = the colony radius of the plant pathogenic fungi in the presence of the tested crude extract. Each treatment was performed with five replications and repeated three times.

Salt tolerance assay

The selected twenty marine-derived fungi were evaluated for their halo tolerance on PDA amended with NaCl (Sigma-Aldrich) concentrations at 1%, 3%, 5%, 7%, 9%, 12%, 15%, 17%, 20% and 25%. A mycelial plug of each marine-derived fungus was placed on the center of a PDA plate containing each NaCl concentration and incubated for 30 days at room temperature. The mycelial growth of each marine-derived fungus was observed and recorded at 21 days as compared with the control (0%). Each treatment was performed with five replications and repeated three times.

Statistical analysis

Due to the non-significant differences between the repeated experiments of each treatment at \(p < 0.05\), data obtained from the repeated experiments were pooled and submitted to analysis of variance (ANOVA), and means were compared by Duncan’s multiple range test \((p < 0.05)\), using the statistical program SPSS version 19 (IBM Corporation, Somers, NY).

RESULTS

Antagonistic activity of marine-derived fungi

Twenty marine-derived fungi were selected and identified to species based on morphological and ITS gene analysis and their gene sequences were submitted to Genbank (Table 1). Results of their antagonistic activity against the ten plant pathogenic fungi in the dual cultures on PDA plates are shown in Table 2. Seven of these pathogenic fungi belonged to Ascomycetes (Alternaria brassicicola, Bipolaris oryzae, Colletotrichum capsici, C. gloeosporioides, Fusarium oxysporum, Lasiodiplodia theobromae and Pyricularia oryzae), one to Oomycetes (Phytophthora palmivora) and two to Agonomycetes (Rhizoctonia solani and Sclerotium rolfsii).

Trichoderma asperellum (KUFA 0677) and T. harzianum (KUFA 0689) displayed the highest effect against all plant pathogenic fungi, causing more than 60.65% mycelial growth inhibition, and they caused 100% inhibition of C. gloeosporioides and P. palmivora by overgrowing colonies of these pathogens.

Values in a column followed by the same letter are not significantly different at \(p < 0.05\), when analyzed using Duncan’s multiple range test of One-Way ANOVA.

The results on the antagonistic effects of the rest of the selected marine-derived fungi against plant pathogenic fungi belonging to Ascomycetes revealed that ten of the tested fungi displayed potent (> 50% inhibition) antagonistic effect against at least one pathogen belonging to this class. Five fungi, namely A. xenocordella (KUFA1018), E. nidulans(KUFA0031), H. avellanea (KUFA0450), N. vasinfecta var. vasinfecta (KUFA1004) and T. stipitatus (KUFA0207) exhibited effective mycelial growth inhibition against A. brassicicola, C. capsici and P. oryzae with values ranging from 50.37 to 66.30%. Meanwhile, E. nidulans (KUFA0031), N. fischeri (KUFA0107) and N. pseudofischeri (KUFA0061) also displayed potent antagonistic effect against B. oryzae, causing 62-68% mycelial growth inhibition.

Moreover, A. xenocordella (KUFA1018) and N. pseudofischeri (KUFA0061) showed a moderate inhibitory effect, causing 54-55% mycelial growth inhibition of F. oxysporum. Additionally, E. nidulans (KUFA0031) and M. verrucaria (KUFA0192) showed effective action against the mycelial growth of L. theobromae, with inhibition values of 60-64%.

Besides Trichoderma species, the other marine-derived fungi showed a weak effect, causing mycelial growth inhibition of P. palmivora with a value lower than 50%, and only E. nidulans (KUFA0031) exhibited a potent antagonistic effect against R. solani and S. rolfsii, causing mycelial growth inhibitions of 60.37 and 55.57%, respectively. Interestingly, six out of the twenty marine-derived fungi showed antagonistic activity against the tested plant pathogenic fungi by forming zones of inhibition although they caused mycelial growth inhibition lower than 50%. T. tratensis (KUFA0091) displayed the
Marine-derived fungus	AB*	BO	CG	CC	FO	LT	PP	PO	RS	SR
Alternaria brassicicola	65.19d	42.59ij	45.93c	57.41e	54.81c	29.63g	39.26e	62.59d	0l	11.11f-h
Bipolaris oryzae	49.17i	44.17i	37.41gh	50.74f	43.70ef	01	36.67f	48.06g	0l	3.70hi
Colletotrichum capsici	55.57g	68.89c	44.44cd	51.85f	40.21h	64.8a1	39.44e	56.67e	60.37b	55.57a
C. gloeosporiodes	44.44jk	39.26i	37.78gh	39.30i	36.34ij	01	29.26h	47.41g	0l	19.26d-f
Fusarium oxysporum	58.89f	51.48g	36.66h	43.70h	37.40i	01	44.44e	42.97i	19.4h4	22.2d2
Lasiodiplodia theobromae	45.00jk	32.56m	22.78j	31.11k	30.5g6	21.74j	39.22j	31.89f	22.2d2	
Phytophthora palmivora	64.44d	54.82f	48.89b	58.52de	42.96fg	34.74f	41.85d	66.30c	14.82i	11.11f-h
Pyricularia oryzae	49.74hi	46.67h	45.18c	44.81h	44.44ef	23.31i	27.22i	45.13h	01	12.17e-g
Rhizoctonia oryzae	48.89i	39.22l	37.78gh	35.21j	35.22j	41.11c	41.48d	38.85j	32.47f	0i
Sclerotium rolfsii	48.80l	46.67h	45.18b	50.37f	45.18e	26.30h	29.63h	54.44f	27.76j	22.2d
Alternaria brassicicola var. *vasinfecta*	48.11i	43.28i	33.14i	35.09j	37.00i	15.62k	34.74g	29.87l	10.31k	0i
Bipolaris oryzae	43.33k	62.59d	40.37f	60.00d	44.41ef	22.08i	41.85d	45.64h	28.51g	0i
Colletotrichum capsici	67.03c	60.91e	45.58c	47.63g	55.18c	42.37c	48.69b	47.81g	37.03e	47.19b
C. gloeosporiodes	68.52c	40.74kl	42.92de	58.52de	42.59fg	19.26j	43.70c	56.30c	40.37d	35.93c
Fusarium oxysporum	45.57j	41.32jk	36.07h	39.58i	41.38gh	20.11j	40.36de	35.67k	12.36j	10.87f-h
Lasiodiplodia theobromae	51.11h	41.11jk	38.89fj	40.00i	42.59f	37.03e	36.67f	42.96i	0l	15.92d-f
Phytophthora palmivora	62.51e	47.39h	48.05b	65.24c	49.20d	39.07d	48.26b	61.22d	32.0f7	20.14de
Pyricularia oryzae	83.33a	95.68a	100a	80.00b	72.96b	60.65b	100a	81.15b	71.0a0	61.48a
Rhizoctonia oryzae	80.25b	92.37b	100a	92.11a	81.12a	59.31b	100a	90.35a	70.25a	68.32a

AB = Alternaria brassicicola, BO = Bipolaris oryzae, CC = Colletotrichum capsici, CG = C. gloeosporiodes, FO = Fusarium oxysporum, LT = Lasiodiplodia theobromae, PP = Phytophthora palmivora, PO = Pyricularia oryzae, RO = Rhizoctonia oryzae, SR = Sclerotium rolfsii
strongest activity with formation of the widest zone of inhibition, 1.2 to 2.2 cm in width, against *A. brassicicola, B. oryzae, L. theobromae* and *P. palmivora*. In addition, *A. xenocordella, E. rugulosa* (KUFA1002), *E. foveolata* (KUFA1003), *N. vasinfecta var. vasinfecta* (KUFA1004) and *N. pseudofischeri* (KUFA0061) showed antagonistic activity by forming zones of inhibition 0.5-1.2 cm in width against some plant pathogenic fungi belonging to Ascomycetes (Fig. 1).

Antifungal activity of marine-derived fungi

The result of testing the antifungal activity of marine-derived fungi was as follows:

- **Fig. 1.** Antagonistic effects of marine-derived fungi (left) on plant pathogenic fungi (right) in dual cultures on PDA plates.

 A. *Talaromyces tratensis* KUFA0091 vs *A. brassicicola* (A1), *B. oryzae* (A2), *L. theobromae* (A3), *P. palmivora* (A4)
 B. *Emericella rugulosa* KUFA1002 vs *A. brassicicola* (B1), *C. gloeosporiodes* (B2), *F. oxysporum* (B3), *P. oryzae* (B4) *C. Neocosmospora vasinfecta var. vasinfecta* KUFA1004 vs *A. brassicicola* (C1), *C. capsici* (C2), *C. gloeosporiodes* (C3), *F. oxysporum* (C4) *D. Arthrinium xenocordella* KUFA1018 vs *A. brassicicola* (D1), *C. capsici* (D2), *C. gloeosporiodes* (D3), *F. oxysporum* (D4) *E. Trichoderma harzianum* KUFA0677 vs *A. brassicicola* (E1), *P. palmivora* (E2), *P. oryzae* (E3), *R. oryzae* (E4)
activity of marine-derived fungi crude ethyl acetate extracts against the ten plant pathogenic fungi revealed that the crude extracts displayed increased effect against plant pathogens when the concentration increased (Table 3). At the highest dose tested, 10 g/L, all fungal extracts except *E. chevalieri* (KUFA0464), *G. lavendula* (KUFA0319), and *N. pseudofischeri* (KUFA0061)

Table 3. Antifungal effects of marine-derived fungal extracts on ten plant pathogenic fungi by using the dilution method.

Marine-derived fungal extract	% Mycelial growth inhibition at different concentrations (g/L)									
	AB*	BO	CC	CG	FO					
	10 1	10 1	10 1	10 1	10 1					
Arthrinium xenocordella	100a	37.78n	100a	38.52o	100a	15k	40j	0u	54.72i	0r
Emericella foveolata	100a	28.61p	100a	49.44j	100a	17.22k	55h	31.67lm	100a	16.94p
Emericella nidulans	44.44lm	21.11u	36.66p	0x	51.67e	18.61k	32.22klm	11.11p	17.40p	0r
Emericella rugulosa	75.50de	63.06i	100a	55.28i	100a	0m	100a	34.72k	100a	25o
Emericella variecolor	100a	78.14d	100a	0x	100a	72.77d	100a	78.88d	100a	83.70c
Eurotium chevalieri	35.17o	0s	29.18s	11.76w	24.22j	15.76k	30.25lm	12.31op	37.14m	10.32q
Hamigera avellanea	66.66h	43.33lm	63.04j	23.70t	100a	23.70j	100a	30m	66.66e	35.25m
Hamigera terricola	60.12j	0s	60.45h	35.47qr	100a	30.04j	72.59e	39.25j	74.10d	45.32k
Geosmithia lavendula	54.10k	0s	71.42e	0x	74.12d	14.36k	68.21f	0u	57.84fh	31.22n
Myrothecium verrucaria	100a	44.41lm	100a	100a	100a	72.72d	100a	73.70e	100a	87.77b
Neocosmospora vasinfecta var.	78.89d	67.78h	42.78l	44.72k	100a	46.94f	68.33f	45.22i	49.72j	38.06m
Penicillium aculeatum	82.14c	24.11q	35.36qr	0x	87.61b	48.30ef	84.64c	32.56klm	58.97f	0r
Neosartorya fischeri	100a	42.32m	100a	0x	100a	18.50k	100a	20.20n	100a	35.25m
Neosartorya pseudofischeri	75.50e	45.43l	80c	40.75m	82.94c	35.47h	95.50b	20.59n	55.41hi	10.50q
Neosartorya quadricincta	35.51on	0s	21.18u	0x	5.73i	0m	0u	0u	15.32p	0r
Neosartorya tsunodae	100a	26.67p	65.83f	34.17r	100a	16.39k	100a	14.44o	36.39m	0r
Talaromyces tratensis	100a	37.78n	100a	55.92i	100a	18.61k	100a	4.44q	100a	7.50u
Talaromyces stipitus	28.33p	5.56r	87.78b	40.02m	45f	4.17lm	38.33j	0u	30.83n	0r
Trichoderma asperellum	88.89b	0s	77.22d	44.44k	80.28c	0m	32.96kl	0u	41.11l	6.94u
Trichoderma harzianum	70.48f	20.17u	65.42f	14.37v	100a	15k	45.87i	0u	31.89n	0r
Marine-derived fungal extract	LT 10	PP 10	PO 10	RS 10	SR 10					
------------------------------	------	------	------	------	------					
Arthrinium xenocordella	100a	0j	100a	0j	100a					
Emericella foveolata	100a	0j	100a	0j	100a					
Emericella nidulans	100a	0j	100a	0j	100a					
Emericella rugulosa	100a	0j	100a	0j	100a					
Emericella variecolor	100a	0j	100a	0j	100a					
Eurotium chevalieri	100a	0j	100a	0j	100a					
Hamigerella avellanea	100a	0j	100a	0j	100a					
Hamigerella terricola	100a	0j	100a	0j	100a					
Geosmithia lavendula	100a	0j	100a	0j	100a					
Myrothecium verrucaria	100a	0j	100a	0j	100a					
Neocosmospora vasinfecta	100a	0j	100a	0j	100a					
Penicillium aculeatum	100a	0j	100a	0j	100a					
Neosartorya fischeri	100a	0j	100a	0j	100a					
Neosartorya pseudofischeri	100a	0j	100a	0j	100a					
Neosartorya quadricincta	100a	0j	100a	0j	100a					
Neosartorya tsundae	100a	0j	100a	0j	100a					
Talaromyces tratenis	100a	0j	100a	0j	100a					
Talaromyces stipitatus	100a	0j	100a	0j	100a					
Trichoderma asperellum	100a	0j	100a	0j	100a					
Trichoderma harzianum	100a	0j	100a	0j	100a					

*AB = Alternaria brassicicola, BO = Bipolaris oryzae, CC = Colletotrichum capsici, CG = C. gloeosporioides, FO= Fusarium oxysporum, LT = Lasiodiplodia theobromae, PP = Phytophthora palmivora, PO = Pyricularia oryzae, RO = Rhizoctonia oryzae, SR = Sclerotium rolfsii
extracts exhibited 100% mycelial growth inhibition of at least two of the plant pathogens tested. *M. verrucaria* (KUFA0192) crude extract displayed the greatest antifungal activity, causing 100% inhibition against all tested plant pathogens at 10 g/L and also complete inhibition of *B. oryzae* and *L. theobromae* mycelial growth at 1 g/L.

At 1 g/L, the crude extracts of seven marine-derived fungi: *E. nidulans* (KUFA0031), *E. rugulosa* (KUFA1002), *E. variecolor* (KUFA0261),

Table 4. NaCl tolerance of marine-derived fungi

Marine-derived fungus	Mycelial growth of marine-derived fungi on PDA amended with NaCl at different concentrations						
	0%	1%	3%	5%	7%	10%	15%
Arthrinium xenocordella	9	9	9	9	7.2 ± 0.16	.1/	
Emericella foveolata	9	9	9	9	8.4 ± 1.97	7.84 ± 0.21	3.4± 0.22
Emericella nidulans	9	9	9	9	6.2± 0.34	3.52± 0.24	
Emericella rugulosa	9	9	9	9	5.5± 0.11	-	
Emericella variecolor	9	9	9	7.21 ± 0.59	4.25± 0.74	3.43± 0.89	2.3± 0.18
Eurotium chevalieri	2.34 ± 0.24	2.64 ± 0.20	3.28 ± 0.32	3.38 ± 0.18	3.46 ± 0.21	3.14 ± 0.15	3.27 ± 0.20
Hamigera avellanea	9	9	9	9	4.56 ± 0.06	-	
Hamigera terricola	9	9	9	9	5.5 ± 0.25	2.9 ± 0.23	
Geosmithia lavendula	9	9	9	9	7.54 ± 0.04	1.57± 0.03	
Myrothecium verrucaria	9	9	9	6.54 ± 1.12	4.5 ± 0.19	-	
Neocosmospora vasinfecta var. vasinfecta	9	9	9	9	7.5 ± 0.58	4.62 ± 0.29	-
Penicillium aculeatum	9	9	9	9	1.32 ± 0.28	-	
Neosartorya fischeri	9	9	9	9	-		
Neosartorya pseudofischeri	9	9	9	9	-		
Neosartorya quadricincta	9	9	9	9	-		
Neosartorya tsunodae	7.13 ± 0.57	6.58 ± 0.41	5.67 ± 0.27	4.36 ± 0.26	2.07 ± 0.15		
Talaromyces transtensis	-	-	-	-	-		
Talaromyces stipitatus	9	9	9	9	6.5 ± 0.35		
Trichoderma asperellum	9	9	9	9	-		
Trichoderma harzianum	9	9	9	9	5.5± 0.87	-	

1/ No growth was observed.
N. vasinfecta var. vasinfecta (KUFA1004), *N. fischeri* (KUFA0107), *P. aculeatum* (KUFA0201) and *T. tratensis* (KUFA0091) displayed significant antifungal activity against plant pathogenic fungi, causing more than 50% inhibition of at least one plant pathogenic fungus. Among them, *E. variecolor* (KUFA0261) showed great inhibition (72-83%) of the mycelial growth of *A. brassicicola*, *C. capcisi*, *C. gloeosporioides* and *F. oxysporum* whereas *E. rugulosa* (KUFA1002) extract exhibited an antifungal effect on *A. brassicicola*, *B. oryzae* and *P. palmivora* of 55-64% and *E. nidulans* extract caused 55-72% inhibition of *L. theobromae*, *P. palmivora* and *P. oryzae*. Furthermore, *T. tratensis* (KUFA0091) extract displayed promising antifungal effect against the mycelial growth of *B. oryzae* and *P. palmivora* causing 53-55% inhibition at 1 g/L. *P. aculeatum* (KUFA0201) and *N. fischeri* (KUFA0107) extracts exhibited 56 and 54% inhibition of mycelial growth of *P. palmivora* and *S. rolfsii*, respectively.

Values in two columns of each pathogen followed by the same letter are not significantly different at p<0.05, when analyzed using Duncan’s multiple range test of One-Way ANOVA.

Halo tolerance of marine-derived fungi

The result of testing the salt tolerance of marine-derived fungi on PDA amended with NaCl at different concentrations is shown in Table 4. All marine-derived fungi exhibited NaCl tolerance, being able to grow on PDA amended with NaCl up to 7%, but none of them were able to grow on PDA amended with NaCl at 20% and 25%. Five of them showed high tolerance to NaCl, being able to grow slowly on PDA amended with NaCl at 15%, and another six species were able to grow at 10% NaCl concentration. The effects of NaCl on fungal growth observed included inhibition of fungal growth compared with the controls when NaCl’s concentrations were increased except in *E. chevalieri* (KUFA0464). Moreover, the teleomorphic species of *Penicillium* and *Aspergillus* exhibited only the anamorphic state, producing conidiophores without cleistothecial formation.

DISCUSSION

The antagonistic activity of the selected twenty marine-derived fungi against plant pathogenic fungi and their halo tolerance were evaluated. The preliminary results of the dual culture assay showed that among the twenty marine-derived fungi tested, *Trichoderma* species, *T. asperellum* and *T. harzianum* exhibited higher antagonistic effect against all the plant pathogens than the other marine-derived fungi since they caused percentages of mycelial growth inhibition in the range 59.31-100%. Both *Trichoderma* species showed antagonistic effects on plant pathogenic fungi via overgrowing colonies of plant pathogenic fungi. *Trichoderma* species are a common genus in various hosts and are the well-known BCAs which act by means of various mechanisms against plant pathogenic fungi including mycoparasitism and producing cell-wall degrading enzymes and antifungal substances. According to our results, for example, *Trichoderma* strains which were isolated from the Mediterranean sponge, *Psammocinia* sp. collected in Israel showed coiling mycoparasitism on mycelium of *Fusarium equiseti* when tested on PDA dual cultures and *Trichoderma atroviride* and *T. asperelloides* extracts effectively reduced the incidence of *R. solani* damping-off disease of beans and also induced defense responses in cucumber seedlings against *Pseudomonas syringae* pv. *lachrimans*.

It is without a doubt that *Trichoderma* strains are great antagonists and diverse in habitats even in marine environments. Besides, the salt tolerant strains of *Trichoderma* have been investigated for their activity against plant pathogens to develop BCAs applied in crop protection for application in arid and saline soil areas.

In contrast, *Trichoderma* crude extracts showed high antifungal effect on plant pathogens only at the highest concentration, 10 g/L, and they displayed low to medium activity against all the tested plant pathogens at 1 g/L. These results accord with a previously reported of the antifungal effect of an entomopathogenic strain of *Trichoderma atroviride* was lowest against the olive pathogens, *Verticillium dahlia*, *Phytophthora megasperma* and *Phytopthora inundata*.

However, six out of the twenty marine-derived fungi displayed antagonistic effects by forming zones of inhibition against the tested plant pathogenic fungi although the average percentage of their mycelial growth inhibition was lower than 50%. For example, *Talaromyces tratensis* (KUFA 0091) displayed the strongest activity, forming the widest zone of inhibition, 1.2 to 2.2 cm in width,
against *A. brassicicola*, *B. oryzae*, *L. theobromae* and *P. Palmivora* (Fig. 1). Moreover, *E. rugulosa* (KUFA1002), *E. foveolata* (KUFA1003), *N. vasinfecta* var. *vasinfecta* (KUFA1004) and *Neosartorya pseudofischeri* showed antagonistic activity by forming zones of inhibition in the range of 0.5-1.2 cm in width against some phytopathogenic fungi belonging to Ascomycetes (Fig. 1). These findings showed that these marine-derived fungi produced and released antifungal substances which inhibited the growth of the plant pathogenic fungi.

The results of the dilution plate assay confirmed their production of antifungal substances. Crude extracts of eight marine-derived fungi in the genera *Emericella*, *Myrothecium*, *Neocosmospora*, *Penicillium* and *Talaromyces* displayed great antifungal activity against the plant pathogenic fungi at a low concentration of 1 g/L. The crude extract of *M. verrucaria* showed the best antifungal activity, causing more than 52-100% inhibition of five of the tested plant pathogenic fungus species at 1 g/L. This result is in accordance with a previous study which reported that crude ethyl acetate extract of *Myrothecium* sp. associated with the marine sponge, *Axinella* sp., was a potential producer of antifungal compounds against *Sclerotinia sclerotiorum*, a causal agent of stem rot in various crops. Meanwhile, the crude extracts of three *Emericella* species including *E. nidulans*, *E. rugulosa* and *E. variecolor* showed high inhibition of the mycelial growth of eight of the tested plant pathogenic fungi at 1 g/L. Among them, *E. variecolor* extract displayed the greatest inhibition, causing 72-83% inhibition of *A. brassicicola*, *C. capsici*, *C. gloeosporioides* and *F. oxysporum*, whereas *E. rugulosa* extract exhibited antifungal effects on *A. brassicicola*, *B. oryzae* and *P. palmivora* of 55-64%, and *E. nidulans* extract caused 55-72% inhibition of *L. theobromae*, *P. palmivora* and *P. oryzae*. *Emericella* species are common soil fungi and have been reported as antibiosis producers against plant pathogens. For example, crude extracts of soil strains of *E. rugulosa* and *E. nidulans* showed great antifungal effects against *F. oxysporum* f.sp. *lycopersici* and *C. gloeosporioides* with ED₅₀ values 5.98 and 1000 µg/mL, respectively. A few studies reported the antifungal effects of *E. variecolor* extracts on plant pathogens. For instance, crude extracts of soil strains of *E. nidulans*, *E. rugulosa* and *E. variecolor* were evaluated the antifungal activity and they inhibited by 45-63% the mycelial growth of *A. brassicicola*, *Curvularia lunata*, *C. capsici*, *C. gloeosporioides*, *F. oxysporum*, *Helminthosporium* sp., *Pestalotiopsis* sp. and *P. palmivora* in vitro. When compared with our results, the extract of a marine strain of *E. variecolor* displayed higher antifungal activity against plant pathogens than that of the extract obtained from a soil strain, for it exhibited 72-83% inhibition of *A. brassicicola*, *C. capsici*, *C. gloeosporioides* and *F. oxysporum*.

The results in this study also showed that *T. tratensis* crude extract displayed a promising antifungal effect against the mycelial growth of *B. oryzae* and *P. palmivora*, causing 53-55% inhibition at 1 g/L. This is similar to our previous study in which we reported that the crude ethyl acetate extract of *Talaromyces trachyspermus* (KUFA 0021) exhibited the most effective mycelial growth inhibition of *A. brassicicola*, *C. capsici*, *H. maydis*, *Pythium aphanidermatum*, *R. solani* and *S. rolfsii* with IC₅₀ values of 100-186 ppm and displayed total inhibition of mycelial growth on all plant pathogenic fungi at the highest concentration tested, 10 g/L.

The results of this study also reveal that at 1 g/L, *P. aculeatum* and *N. fischeri* extracts exhibited 56 and 54% inhibition of mycelial growth of *P. palmivora* and *S. rolfsii*, respectively. Similar to our findings, Shen et al. reported the antimicrobial activity of marine-derived *Penicillium oxalicum* strain O312F crude extract, which displayed strong antifungal activity against *A. brassicicola* and *F. graminearum*. In addition, the antifungal activity of *Penicillium citrinum* isolated from a marine sponge, *Callyspongia diffusa*, collected in the Gulf of Mannar, on the southeast coast of India. *Penicillium citrinum* crude extract also displayed strong antifungal activity against nine plant pathogenic fungi, including *Alternaria alternata*, *Botrytis cinerea*, *Cercospora theae*, *Fusarium udum*, *F. oxysporum*, *Macrophomina phaseolina*, *Poria hypolateritia*, *Phomopsis theae* and *R. solani*. The result of this study also reveals that *N. vasinfecta* var. *vasinfecta* extract exhibited 52-67% inhibition of mycelial growth of *A. brassicicola* and *P. oryzae* at 1 g/L; however, it is not suitable for development as a BCA since it was reported as a causal agent of soybean stem rot.
The result of testing the halo tolerance of the marine-derived fungi on PDA amended with NaCl at different concentrations showed that all marine-derived fungi exhibited NaCl tolerance, being able to grow on PDA amended with NaCl up to 7%. The tested genera *Eurotium*, *Hamigera* and *Geosmithia* showed higher NaCl tolerance than the other tested fungal genera. There are a few studies of salt tolerance and mechanisms in marine fungi for example; marine isolates of *Trichoderma atroviride* and *T. asperelloides* were reported to tolerate NaCl at 3%\(^{52}\). The thick cell wall and large numbers of vacuoles in marine fungal cells may help these fungi adapt to marine environments\(^{46}\) and the increase of the multifunctional cell-wall proteins hydrophobins may played a key role in salt tolerance in eukaryotes\(^{49}\). Although the tested marine-derived fungi could grow on media amended with NaCl, the effects of NaCl on fungal growth and their sporulation were observed in all except *E. chevalieri* (KUFA0464), which is not surprising because the genus *Eurotium* is a well-known halophilic and/or xerophilic fungi which is often found in salty food and hypersaline areas \(^{50,51}\). These observations corresponded to a previous report which found that NaCl caused abnormal conidiophore production in *Aspergillus* species \(^{52}\).

Climatic changes such as higher temperatures and drought will result in increased soil salinity, which is predicted to affect plant pathogen growth, development and survival rates as well as modify their pathogenicity leading to changes in disease severity on crops \(^{53-54}\). Hence, new BCAs with halo tolerant properties should be urgently sought. In this effort, the results from this preliminary study showed that marine-derived fungi are the promising sources of BCAs for application in crop production in normal and salty soil areas and in arid-zone agriculture as well as in supporting crop production under climatic changes in the future.

Results from this study indicate that some of the marine-derived fungi tested in this study possess antagonistic mechanisms including competition for space and nutrients as well as antibiotic production resulting in inhibition the mycelial growth of plant pathogenic fungi. They also possess halo tolerance which made it possible for them to grow on media amended with 7% NaCl. These data suggested that they are potential BCAs which may be promising alternatives to the use of synthetic fungicides to control plant diseases in normal and salty soil areas and in arid-zone agriculture. However, further studies are needed to identify antifungal substances responsible in inhibiting mycelial growth of plant pathogenic fungi as well as to evaluate their biocontrol potential against plant disease under greenhouse and field conditions.

ACKNOWLEDGEMENTS

The authors wish to thank the Graduate School, Kasetsarts University and the Kasetsart University Research Development Institute (KURDI) for financial support of this project.

CONFLICT OF INTEREST

The authors declare that there is no conflicts of interest.

REFERENCES

1. Naraghi L, Heydari A, Rezaee S, Razavi M. Biocontrol agent *Talaromyces flavus* stimulates the growth of cotton and potato. *J Plant Growth Regul.* 2012; 31:471–77.
2. Bjelajac Z, Mijatovic MD, Kozar V. Review of the uncontrolled use of certain chemicals and their adverse effect on human health and safe environment. *Oxid Commun.* 2015; 38:722–33.
3. Xu X-M, Jeffries P, Pautasso M, Jeger MJ. Combined use of biocontrol agents to manage plant diseases in theory and practice. *Phytopathology.* 2011; 101:1024–31.
4. Sarrocco S, Diquattro S, Avolio F, Cimmino A, Puntoni G, Doveri F, Evidente A, Vannacci G. Bioactive metabolites from new or rare fimicolous fungi with antifungal activity against plant pathogenic fungi. *Eur J Plant Pathol.* 2015; 142:61–71.
5. Mehbub MF, Lei J, Franco C, Zhang W. Marine sponge derived natural products between 2001 and 2010: trends and opportunities for discovery of bioactives. *Mar Drugs.* 2014; 12:4539–77.
6. Hong J-H, Jang S, Heo YM, Min M, Lee H, Lee YM, Lee H, Kim J-J. Investigation of marine-derived fungal diversity and their exploitable biological activities. *Mar Drugs.* 2015; 13:4137–55.
7. Kathiresan K, Balagurunathan R, Selvam MM. Fungicidal activity of marine actinomycetes against phytopathogenic fungi. *Indian J Biotechnol.* 2005; 4:271–76.
8. May Zin WW, Prompanya C, Buttachon S, Kijjoo A. Bioactive secondary metabolites from a Thai collection of soil and marine-derived fungi of the genera *Neosartorya* and *Aspergillus*. *Curr Drug Deliv.* 2016; 13:378–88.
9. Devarajan PT, Suryanarayanan TS, Geetha V.
Endophytic fungi associated with the tropical seagrass *Halophila ovalis* (Hydrocharitaceae). *Indian Journal of Geo-Marine Sciences*. 2002; 31:73–4.

10. Dethoup T, Kumla D, Kijjoa A. Mycocidal activity of crude extracts of marine-derived beneficial fungi against plant pathogenic fungi. *J Biopest*. 2015; 7:107–15.

11. Dethoup T, Gomes NGM, Chaopongpang S, Kijjoa A. Aspergillus similansenis sp. nov. from a marine sponge in Thailand. *Mycotaxon*. 2016; 131:7–15.

12. Gomes NGM, Bessa LJ, Buttachon S, Costa PM, Buurang J, Dethoup T, Silva AMS, Kijjoa A. Antibacterial and antifungal activity of tryptoquinolines and meroditerpenes from marine-derived fungi *Neosartorya paulistensis*, *N. laciniosa*, *N. tsunodae*, and the soil fungi *N. fischeri* and *N. siamensis*. *Mar Drugs*. 2014; 12:822–39.

13. Kumla D, Dethoup T, Buttachon S, Singburaudom N, Silva AMS, Kijjoa A. Spiculisporic acid, a new spiculisporic acid derivatives from the marine-sponge associated fungus *Talaromyces trachyspermus* (KUFA 0021). *Nat Prod Commun*. 2014; 9:1147–50.

14. Butachon S, May Zin WW, Dethoup T, Gales L, Pereira JA, Silva AMS, Kijjoa A. Secondary metabolites from the culture of the marine sponge-associated fungi *Talaromyces tratensis* and *Spoirdesmium cinctiforum*. *Planta Med*. 2016; 82:888–96.

15. Noinart J, Buttachon S, Dethoup T, Gales L, Pereira JA, Urbatzka R, Freitas S, Lee M, Silva AMS, Pinto MMM, Vasconcelos V, Kijjoa A. A new ergosterol analog, a new bis-anthaquinone and anti-obesity activity of anthaquinones from the marine-sponge-associated fungus *Talaromyces stipitatus* KUFA 0207. *Mar Drugs*. 2017; 15:139.

16. Höller J, Wright AD, Matthée GF, König GM, Draeger S, Aust H-J, Schulz B. Fungi from marine sponges: diversity, biological activity and secondary metabolites. *Mycol Res*. 2004; 108:1354–65.

17. Bhadury P, Mohammad BT, Wright PC. The current status of natural products from marine fungi and their potential as anti-infective agents. *J Ind Microbiol Biotechnol*. 2006; 33:325–37.

18. Paz Z, Komen-Zelazowska M, Druzhinina IS, Aveskamp MM, Shnaiderman A, Aluma Y, Carmeli S, Ilan M, Yarden O. Diversity and potential antifungal properties of fungi associated with a Mediterranean sponge. *Fungal Divers*. 2010; 42:17–26.

19. Bugni TS, Ireland CM. Marine-derived fungi: a chemically and biologically diverse group of microorganisms. *Nat Prod Rep*. 2004; 21:143–63.

20. Debbab A, Aly AH, Liu WH, Proksch P. Bioactive compounds from marine bacteria and fungi. *Microbiol Biotechnol*. 2010; 3:544–63.

21. Greve H, Mohamed IE, Pontus A, Kehrhaus S, Gross H, König GM. Fungal metabolites: structural diversity as incentive for anticancer drug development. *Phytochem Rev*. 2010; 9:537–45.

22. Thomas TRA, Kavlekar DP, LokaBharathi PA. Marine drugs from sponge-microbe association. *Mar Drugs*. 2010; 8:1417–68.

23. Debbab A, Aly AH, Proksch P. Endophytes and associated marine derived fungi-ecological and chemical perspectives. *Fungal Divers*. 2012; 5:45–83.

24. Gao Z, Li B, Zheng C, Wang G. Molecular detection of fungal communities in the Hawaiian marine sponges *Suberites zeteki* and *Mycale armata*. *Appl Environ Microbiol*. 2008; 74:6091–101.

25. Wang G, Li Q, Zhu P. Phylogenetic diversity of cultivable fungi associated with the Hawaiian sponge *Suberites zeteki* and *Gelliodes fibrosa*. *Antonie van Leeuwenhoek*. 2008; 93:163–74.

26. Li Z. Advances in marine microbial symbionts in the China Sea and related pharmaceutical metabolites. *Mar Drugs*. 2009; 7:113–29.

27. Li Q, Wang G. Diversity of fungal isolates from three Hawaiian marine sponges. *Microbiol Res*. 2009; 164:233–41.

28. Ding B, Yin Y, Zhang F, Li Z. Recovery and phylogenetic diversity of culturable fungi associated with marine sponges *Clathrina luteoculcitello* and *Holoxea* sp. in the South China Sea. *Mar Biotechnol.* 2011; 13:713–21.

29. Kohlmeier J, Kohlmeier E. 1979. Marine mycology: the higher fungi. Academic Press, London, England.

30. Rongbian WEI, Fuchao LI, Song R, Song QIN. Comparison of two marine sponge-associated *Penicillium* strains DQ25 and SC10: differences in secondary metabolites and their bioactivities. *Ann Microbiol*. 2009; 59:579–85.

31. Manilal A, Sabarathnam B, Kiran GS, Sujith S, Shakir C, Selvin J. Antagonistic potentials of marine sponge associated fungi *Aspergillus clavatus* MFS15. *Asian Journal of Medical Sciences*. 2010; 2:195–200.

32. Shen S, Li W, Wang J. Antimicrobial and antitumor activities of crude secondary metabolites from a marine fungus *Penicillium oxalicum* 0312F. *Afr J Microbiol Res*. 2014; 8:1480–85.

33. Gal-Hemed I, Atanasova L, Komon-Zelazowska M, Druzhinina IS, Viterbo A, Yarden O. Marine isolates of *Trichoderma* spp. as potential halotolerant agents of biological control for arid-zone agriculture. *Appl Environ Microbiol*. 2011; 77:5100–09.

34. Murray MG, Thompson WF. Rapid isolation of high molecular weight plant DNA. *Nucleic Acids Res*. 1980; 8:4321–25.

35. White TJ, Bruns T, Lee S, Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JI, White TJ (eds.). PCR protocols: a guide to methods and applications. Academic Press, New York, USA.

36. Cai F, Yu G, Wang P, Wei Z, Fu L, Shen Q, Chen W. Harzianolide, a novel plant growth regulator and systemic resistance elicitor of *Trichoderma harzianum*. *Plant Physiol Biochem*. 2013; 73:106–13.

37. Bae S-J, Mohanta TK, Chung JY, Ryu M, Park G, Shim S, Hong S-B, Seo H, Bae D-W, Bae I, Kim J-J, Bae H. Trichoderma metabolites as biological control agents against *Phytophthora* pathogens. *Biol Control*. 2016; 92:128–38.

38. El-Kassas HY, Khairy HM. A trial for biological control of a pathogenic fungus (*Fusarium solani*) by some marine microorganisms. *American-Eurasian J Agric & Environ Sci*. 2009; 5:434–40.

39. Devi P, Wahidulla S, Kamat T, D’Souza L. Screening marine organisms for antimicrobial activity against...
clinical pathogens. *Indian Journal of Geo-Marine Sciences*. 2011; **40**:338–46.

40. Lozano-Tovar MD, Ortiz-Urquiza A, Garrido-Jurado I, Trapero-Casas A, Quesada-Moraga E. Assessment of entomopathogenic fungi and their extracts against a soil-dwelling pest and soil-borne pathogens of olive. *Biol Control*. 2013; **67**:409–20.

41. Xie LW, Jiang SM, Zhu HH, Sun W, Ouyang YC, Dai SK, Li X. Potential inhibitors against *Sclerotinia sclerotiorum*, produced by the fungus *Myrothecium* sp. associated with the marine sponge *Axinella* sp. *Eur J Plant Pathol*. 2008; **122**:571–78.

42. Talubnak C, Soythong K. Biological control of vanilla anthracnose using *Emericella nidulans*. *J Agri Technol*. 2012; **6**:47–55.

43. Sibounnavong P, Charoenporn C, Kanokmedhakul S, Soythong K. Antifungal metabolites from antagonistic fungi used to control tomato wilt fungus *Fusarium oxysporum* Tsp. *lycopersici*. *Afr J Biotechnol*. 2011; **10**:19714–722.

44. Kumsorn W. 2013. Diversity of *Emericella* species from soil and in vitro efficacy against plant pathogenic fungi. M.Sc. thesis, Faculty of Agriculture, Kasetsart University. Bangkok, Thailand.

45. Vasanthabharathi V, JayaLakshmi S. Bioactive potential of symbiotic bacteria and fungi from marine sponges. *Afr J Biotechnol*. 2012; **11**:7500–11.

46. Sun SL, Kim MY, Van K, Lee Y-H, Zhong C, Zhu ZD, Lestari P, Lee Y-W, Lee S-H. First report of *Neocosmospora vasinfecta* var. *vasinfecta* causing soybean stem rot in South Korea. *Plant Dis*. 2014; **98**:1744.

47. Greer AM, Spurlock TN, Coker CM. First report of *Neocosmospora* stem rot of soybean caused by *Neocosmospora vasinfecta* in Arkansas. *Plant Dis*. 2015; **99**:554.

48. Clipson N, Hooley P. Salt tolerance strategies in marine fungi. *Mycologist*. 1995; **9**:3–5.

49. Plemenitaš A, Lenassi M, Konte T, Kejžar A, Zajc J, Gostinčar C, Gunde-Cimerman N. Adaptation to high salt concentrations in halotolerant/ halophilic fungi: a molecular perspective. *Front Microbiol*. 2014; **5**:199.

50. Butinar L, Zalar P, Frisvad JC, Gunde-Cimerman N. The genus *Eurotium*-members of indigenous fungal community in hypersaline waters of salterns. *FEMS Microbiol Ecol*. 2005; **51**:155–66.

51. Hubka V, Kolarík M, Kubátová A, Peterson SW. Taxonomic revision of *Eurotium* and transfer of species to Aspergillus. *Mycologia*. 2013; **105**:912–37.

52. Tresner HD, Hayes JA. Sodium chloride tolerance of terrestrial fungi. *Appl Microbiol*. 1971; **22**:210–13.

53. Chakraborty S, Tiedemann AV, Teng PS. Climate change: potential impact on plant diseases. *Environ Pollut*. 2000; **108**:317–26.

54. Elad Y, Pertot I. Climate change impacts on plant pathogens and plant diseases. *J Crop Improv*. 2014; **28**:99–139.