Metallization and Superconductivity of Molecular Crystal BI$_3$ under Pressure

Suzue Onoda and Katsuya Shimizu

KYOKUGEN, Center for Quantum Science and Technology under Extreme Conditions, Osaka University, Toyonaka, Osaka 560-8531, Japan
e-mail: onoda@djebel.mp.es.osaka-u.ac.jp

Abstract. Electrical resistivity measurement of boron triiodide (BI$_3$) have been performed at high pressures up to 70 GPa. At room temperature, the resistivity decreased rapidly with applying pressure. The temperature dependence of electrical resistance indicated metallization of BI$_3$ at 23 GPa. The superconducting transition was found above 27 GPa.

1. Introduction

A structural characteristic of molecular crystals is the difference in strength between the strong intramolecular bonding and the weak intermolecular bonding. Under pressure, this difference brings a variety of structural transitions, metallizations, superconducting transition, and molecular dissociations as a result.

In diatomic molecular crystal I$_2$, it was reported that the insulator-metal transition occurs at around 16 GPa [1], followed by the molecular dissociation at 21 GPa [2]. The superconducting transition of the monatomic iodine was observed at the pressure of about 22 GPa [3]. The pressure-induced metallization has been explained by the band overlap between the valence and the conduction band. In case of molecular crystal SnI$_4$, the metallization and superconducting transition occurs in the amorphous state under pressure [4,5]. It is expected that most of molecular crystals show metallization under pressure. However, the mechanism of metallization and dissociation is still unclear.

At ambient pressure and room temperature, BI$_3$ molecule, which is planar equilateral triangle form, crystallizes into hexagonal structure as illustrated in Figure 1 [6]. Our recent X-ray diffraction study revealed a structural phase transition at 6.9 GPa to new phase, and the molecular seemed to dissociate at the transition pressure [7]. At higher pressure, BI$_3$ crystal gradually became into opaque which may show the tendency of metallization of BI$_3$.

These molecules of I$_2$, SnI$_4$ and BI$_3$, the basic structure of which are formed by iodine, may show a similar metallization under pressure. Comparison of the phenomena under pressure of these similar molecular crystals would make a mechanism of metallization and molecular dissociation in molecular crystals clear.

Figure 1. A unit cell of crystalline BI$_3$. Molecules are layered to c-axis and form crystal.
To investigate the high pressure phenomena of BI$_3$, we performed the electrical resistance measurement at high pressure and low temperature.

2. Experimental
A compact diamond anvil-cell (DAC) was used to produce high pressure at low temperature experiments. We used nonmagnetic stainless steel 310S for a gasket material. Pressure was determined by a ruby fluorescence method at low temperature as well as at room temperature. Al$_2$O$_3$ powder was placed on the surface of gasket for electrical insulation. Since BI$_3$ is extremely hygroscopic, the sample was loaded into the center of the insulated gasket with small ruby chips. The electrical resistance was measured by 4-terminal method with Pt electrodes with typical measuring current of 500 nA. The pressure was applied at room temperature and we used a 3He/4He dilution refrigerator in order to cool DAC down to low temperature of 60 mK.

3. Results and Discussion
The pressure dependence of the electrical resistivity ρ of BI$_3$ measured at room temperature is plotted in Figure 2. At pressure range between 5 and 17 GPa, we observed rapid and continuous decrease of the resistivity. Above 17 GPa, the ρ became almost independent to pressure which may indicate the metallization of BI$_3$. These results show that the metallization occurs at higher pressure than molecular dissociation in case of BI$_3$.

With applying pressure, the color of sample changes from transparent to opaque. Above 20 GPa, the sample became a little luster. To reveal the metallization of BI$_3$, we measured temperature dependence of the electrical resistance above 17 GPa.

The temperature dependence of the relative resistance R/R_{20K} at several pressures in low temperature region is displayed in Figure 3. The negative temperature dependence was observed at 17 and 20 GPa; the characteristic behavior of semiconductor. This behavior was suppressed with applying pressure and disappeared at 23 GPa which shows that the metallization of BI$_3$ occurs at this pressure.
As applying pressure further, we found an abrupt drop in the resistance showing the superconducting transition below 1 K at 27 GPa as shown in Figure.3. The superconducting transition T_c was determined as 0.5 K from the onset of the transition. We observed the positive pressure dependence of the T_c as shown in Figure 4.

![Figure 4](image-url)

Figure 4. T_c versus P diagram for BI_3, I_2 and SnI_4. The arrow indicates the absence of superconductivity of BI_3 down to 35 mK.

Figure 5 shows the magnetic field dependence of the superconducting transition under constant pressure of 33 GPa. The transition temperature shifts lower temperature with applied magnetic field. The critical field H_c is estimated 0.8 T with extrapolation.

![Figure 5](image-url)

Figure 5. The temperature dependence of the relative electric resistance of BI_3 at low temperature under various magnetic field at $P = 33$ GPa.
4. Summary
We performed the electrical resistance measurements of Bi$_3$ under high pressure and low temperature. At room temperature, the resistivity decreases rapidly. By the temperature dependence of the resistance, we determined the metallization pressure of Bi$_3$ is 23 GPa. We also found the superconducting transition at 27 GPa. The positive pressure dependence of the T_c was observed at pressure between 27 and 65 GPa with T_c changing from 0.5 to 1.9 K.

According to the results by X-ray diffraction study, we conclude that the metallization occurs at higher pressure than molecular dissociation in case of Bi$_3$. This differs from the behavior of I$_2$ and SnI$_4$. However, the superconductivity of all three molecular crystals appears for pressures near 25 GPa.

Acknowledgment
This work is supported by the 21st Century COE program (G18) by Japan Society of the Promotion of Science and Grant-in-Aid for Creative Scientific Research (15GS0213), MEXT.

References
[1] B. M. Riggleman, H. G. Drickamer, 1963 J. Chem. Phys. 38, 2721
[2] K. Takemura, S. Minomura, O. Shimomura, Y. Fujii, 1980 Phys. Rev. Lett. 45, 1881
[3] K. Shimizu, N. Tamitani, N. Takeshita, M. Ishizuka, K. Amaya, S. Endo, 1992 J. Phys. Soc. Jpn., 61, 3853
[4] A. L. Chen, P. Y. Yu, M. P. Pasternak, 1991 Phys. Rev. B. 44, 2883
[5] N. Takeshita, S. Kometani, K. Shimizu, K. Amaya, N. Hamaya, S. Endo, 1996 J. Phys. Soc. Jpn., 65, 3400
[6] B. Albert, K. Schmit, 2001 Z. Anorg. Allg. Chem. 627, 809
[7] N. Hamaya, M. Ishizuka, A. Ohmura, 2004 Special Issue Rev. High Press. Sci. Tech. 14 202