Exercise-associated Muscle Cramps in Runners: A Review

Ali Fattahi1, *Mahboobeh Dehnavi1, Leila Hamzeh1

1. Department of Sports Biomechanics, Faculty of Physical Education and Sports Science, Central Tehran Branch, Islamic Azad University, Tehran, Iran.

Extended Abstract

1. Introduction

Prevalence of Exercise-associated muscle cramp (EAMC) has been reported in different studies and groups of athletes [1-5]. One of these groups is runners [6, 7]. Due to the fact that a lot of muscles are used during running and the amount of energy consumed in these runners is high, and considering that no review study was not found that addressed the causes of EAMC in runners, this review study aims to investigate EAMC in runners to determine the cause and general nature of EAMC in this sport to provide more complete and better information for interventions and future studies on EAMC in runners. As a result, it can help prevent, treat and reduce its occurrence.

2. Methods

A search was conducted for studies on EAMC in runners published in Persian or English from 1997 to 2021 in MEDLINE/PubMed, EMBASE/SCOPUS, LILACS, CINAHL, CENTRAL, Web of Science, PEDro, Google Scholar as well as MAGIRAN, IranDoc, IranMedex, MedLib using MeSH Keywords. The reference section of the studies were also checked to find more studies. Finally, 15 eligible papers on EAMC in runners were reviewed and findings were reported.

Results: Several factors were found to be effective in EAMC among runners, including dehydration, electrolyte deficit, cold, long training or competition period, increased body temperature during training or competition, history of injury or muscle cramp, increased training intensity in short time, and dietary restrictions.

Conclusion: The cause of EAMC in runners seems to be multifactorial.

Keywords: Muscle cramp, Training, Athletes, Runners

* Corresponding Author:
Mahboobeh Dehnavi, PhD.
Address: Department of Sports Biomechanics, Faculty of Physical Education and Sports Science, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
Tel: +98 (935) 3954320
E-mail: mahboobeh.dehnavi@gmail.com
Table 1. Specifications of reviewed studies on EAMC in runners

Author(s)	Title	Study Design	Running Type	Findings
Hanson et al. [39]	Potential nutrition contributions to exercise-associated muscle cramping in four recreational half-marathons: A case series	Case series	Half-marathon	The observed case of EAMC does not appear to be entirely inconsistent with the traditional dehydration/ electrolyte loss theory.
Fredericson et al. [40]	Disabling foot cramping in a runner secondary to paramyotonia congenita: A case report	Case report	Endurance running	The runner had cramping in left foot. His symptoms developed insidiously after about 20 minutes of exercise. The more he continued to run, the more the symptoms were aggravated. This symptom was easily provoked when he was exposed to cold temperature.
Caselli et al. [41]	Lower extremity injuries at the New York City marathon	Cross-sectional	Marathon	Their results indicated that muscle cramps was one of the most common injuries occurring in marathon runners. An inverse relationship was observed between the number of miles trained per week and the number of injuries
Ferreira et al. [42]	Hydration practices of runners during training vs competition	Cross-sectional	-	A significant difference was observed for reported hydration practices between training and competitions. 41% of runners in competitions and 54% in training had inadequate hydration habits. Runners were not able to transfer their knowledge about proper hydration during both training and competition practices.
Hawes et al. [43]	Exertional heat illness in half marathon runners: experiences of the Great North Run	Cross-sectional	Half marathon	As the exercise intensity increased and the body temperature rose above 41 degrees, the athletes were more likely to fall. Under these conditions, during cooling and recovery, muscle cramps occurred in runners.
Martínez-Navarro et al. [44]	Muscle cramping in the marathon: dehydration and electrolyte depletion vs. muscle damage	Cross-sectional	Marathon	Runners who suffered EAMC did not exhibit a greater degree of dehydration and electrolyte depletion after the marathon but displayed significantly higher concentrations of muscle damage biomarkers.
Hoffman et al. [45]	Muscle cramping during a 161-km ultramarathon: Comparison of characteristics of those with and without cramping	Observational	Ultramarathon	Muscle cramping is most common in those with a prior history of cramping and greater muscle damage during an ultramarathon, suggesting an association with relative muscular demand. Impaired fluid and sodium balance did not appear to be an etiology of muscle cramping during an ultramarathon.
Schwellnus et al. [46]	Increased running speed and previous cramps rather than dehydration or serum sodium changes predict exercise-associated muscle cramping: A prospective cohort study in 210 Ironman triathletes	Prospective cohort	Triathletes	The results from this study add to the evidence that dehydration and altered serum electrolyte balance are not causes for EAMC. Rather, endurance runners competing at a fast pace, which suggests that they exercise at a high intensity, are at risk for EAMC.
Schwabe et al. [47]	Medical complications and deaths in 21 and 56 km road race runners: A 4-year prospective study in 65 865 runners—SAFER study I	Prospective cohort	Marathon	The incidence of medical complications was higher in 56 km runners but sudden cardiac deaths only occurred in 21 km runners.
Parnell et al. [48]	Dietary restrictions in endurance runners to mitigate exercise-induced gastrointestinal symptoms	Cross-sectional	Endurance running	Abdominal cramping was directly related to dietary restrictions. The prevalence of these cramping was higher in younger athletes, especially females, which may explain their propensity to avoid foods.
or ultrarunning or athletes or athletic performance, exercise or endurance exercise, water-electrolyte imbalance, electrolytes or dehydration or sports nutrition or hydration. After finding articles, first their title and abstracts and then their contents were read. If they met the inclusion criteria, they would be used in the review. Inclusion criteria were: Being published in Persian or English, studies on EAMC in runners, and availability of fulltexts.

3. Results

The search in online databases yielded 326 articles. By reviewing their reference sections, 5 more articles were yielded. After removing duplicates, 241 were identified for review. After reviewing their titles and abstracts, 202 were deleted and 39 remained for reading their fulltexts. Finally, 15 eligible articles were selected and their results were reported (Table 1).

4. Discussion and Conclusion

The purpose of this study was to investigate EAMC in runners. Studies have reported a variety of information on EAMC in runners. Studies showed that the causes of EAMC are: dehydration and electrolyte deficiency, cold, prolonged training or competition, increased body temperature during training or competition, history of muscle injuries and cramps in the past, increased intensity of training in a short time, and dietary restrictions. Therefore, in order to reduce the occurrence EAMC in runners, it is necessary to consider these factors and study them in detail.

Ethical Considerations

Compliance with ethical guidelines

There were no ethical considerations to be considered in this research.
Funding

This research did not receive any grant from funding agencies in the public, commercial, or profit-non sectors.

Authors’ contributions

All authors equally contributed to preparing this article.

Conflicts of interest

The authors declared no conflict of interest.
This Page Intentionally Left Blank
مقاله موری:
کرامپ عضلانی ناشی از ورزش در دونده‌ها: مروری بر مطالعات

در ادامه، کرامپ عضلانی ناشی از ورزش به عنوان انقباضات دردناک، متناوب و غیرارادی عضله اسکلتی تعریف می‌شود که پس از ورزش در هنگام یا بلافاصله بعد از ورزش و در افراد سالم اتفاق می‌گیرد. این شرایط عموماً در ورزشکاران ورزشی حادثه می‌گردد. شدت کرامپ عضلانی می‌تواند از ناراحتی و گرفتاری تا درد شدید و ناتوانی باشد که حرکت را محدود می‌کند، اما به‌طور کلی بدون هیچ مداخله، بعد از توجه بهبود می‌یابد. با وجود این، نیازی ضروری برای فهمیدن علل ایجاد کرامپ و فرایند‌های فیزیولوژیکی آن وجود دارد.

در اوایل تحقیقات روی کرامپ عضلانی، این پدیده را کرامپ و فیزیولوژیکی نامیده که وقوع کرامپ عضلانی ناشی از گرمایی، اما مشخصه‌ای خاصی از گرمایی نداشت. مطالعاتی که در شرایط سرد صورت گرفته است نشان دادند که گروهی از کرامپ‌هایی که در صورت مادر به علت تعادل آب و الکترولیت ویژه‌ترین‌تر است. این مطالعات نشان دادند که کمبود آب و الکترولیت بدن (تعادل آب و نمک) نیز منجر به ایجاد کرامپ عضلانی می‌شود.

در این مقاله مروری بر مطالعات در مورد کرامپ عضلانی ناشی از ورزش در دونده‌ها انجام شد. این مطالعات نشان دادند که علت وقوع کرامپ عضلانی در دونده‌ها چند عامل باشد. مطالعات علت وقوع کرامپ عضلانی ناشی از ورزش در دونده‌ها را به‌دست‌آورده‌اند که شامل دهیدراسی و نقص الکترولیت، سرما، طولانی شدن مدت تمرین یا مسابقه، افزایش دمای بدن هنگام تمرین یا مسابقه، سابقه آسیب دیدگی و کرامپ عضلانی در گذشته، افزایش شدت تمرین در مدت زمان کوتاه و محدودیت‌های غذایی می‌باشد.

کلمات کلیدی: کرامپ عضلانی، دونده، تمرین، ورزشکار

نمونه کاربردی:
با این حال بدون چیزی مداخله‌ای به‌دست می‌یابد [14-16]. یکی از علل اصلی مربوط به تغییرات متابولیک متابولیک‌سنجی و فیزیولوژیکی آن وجود دارد. در اولین این مطالعات روی کرامپ عضلانی این پدیده را کرامپ عضلانی ناشی از گرمایی فرض کردند [21-23]. این مشخصات شباهتی که در شرایط سرد صورت گرفته است نشان دادند که گروهی از کرامپ‌هایی که در صورت مادر به علت تعادل آب و الکترولیت ویژه‌ترین‌تر است. این مطالعات نشان دادند که کمبود آب و الکترولیت بدن (تعادل آب و نمک) نیز منجر به ایجاد کرامپ عضلانی می‌شود [22-26].
روش‌شناسی

مطالعات با جستجوی هشت پایگاه فارسی و انگلیسی شامل پایگاه‌های MEDLINE/PubMed، EMBASE/SCOPUS، LILACS، CENTRAL، CINAHL (Cochrane Central Register of Controlled Trials) و Web of Science، PEDro، Google Scholar و SID انجام شد.

مطالعاتی با کلمات مهم و مرتبط با موضوع کرامپ عضلانی در دوندگان و مقایسه با سایر مطالعات انجام شد. مقالاتی که اطلاعات واقعی و تجزیه‌ای در مورد سیستم عصبی مرکزی و محیطی و علل وقوع کرامپ عضلانی در دوندگان را نشان می‌دادند، به صورت متن کامل فراهم شد.

معیارهای ورود مطالعه: در مرحله اول، غربالگری عنوان و چکیده مطالعات توصیفی با تمرکز بر کرامپ عضلانی در دوندگان انجام شد. مقالات انتشار‌افته به زبان فارسی و انگلیسی بررسی شد. یک دستیار تحقیق به صورت مستقل چکیده‌های مقالات را بررسی کرد.

متون مطالعات با حذف کلید علائم و میان‌بردهای مربوط به نحوه وقوع کرامپ عضلانی در دوندگان، با استفاده از کلیدواژه‌های مربوط به موارد ذکر نشده در مقالات، بررسی شد. مطالعاتی که اطلاعات واقعی و تجزیه‌ای در مورد سیستم عصبی مرکزی و محیطی و علل وقوع کرامپ عضلانی در دوندگان را نشان می‌دادند، به صورت متن کامل فراهم شد.

معیارهای خروج مطالعه: در مرحله دوم، غربالگری کل متن با توجه به بررسی کرامپ عضلانی در دوندگان انجام شد. غربالگری کل متن توسط دو خواننده و مشاور به صورت مشترک و کنار هم به صورت دقیق انجام شد. مطالبی که اطلاعات واقعی و تجزیه‌ای در مورد سیستم عصبی مرکزی و محیطی و علل وقوع کرامپ عضلانی در دوندگان را نشان می‌دادند، به صورت متن کامل فراهم شد.
یک محقق انجام شد. یک محقق ارشد نیز لیست نهایی مقالات انتخاب شده را به اطمینان از اینکه تمام مقالات با هدف تحقیق همروشتا است بررسی کرد. خلاصه اطلاعات توصیفی توسط میزان تحقیق جمع‌آوری شد و توسط محقق ارشد چک شد. از یک جدول نمونه (تصویر شماره ۲۱) برای استخراج اطلاعات جامعه هدف بررسی کردم، ضریب مطالعه در همراه با نتایج آن آغاز استفاده شد.

پژوهشگران خواست مقالات خود را مقالاتی که به جامعه آماری آنها افزوده نشده بودند مقالاتی که در آنها به آسیب‌های غیر از کرامپ عضلانی پرداخته بودند مقالاتی که به بررسی آسیب‌های ورزشی در این افراد پرداخته و به مدهای مطالعاتی که در این فهرست به شرح ذکر شده بودند رفت. بررسی کارایی ضریب تقویت مقالاتی که به صورت مقالاتی که به صورت مروری چاپ شده بودند تایید شد و پرداختند.

روش بررسی کیفیت مقالات PEDro برای بررسی کیفیت مقالات از مقیاس PEDro استفاده شد. این مقیاس یکی از صدا و دریای سه ساله است. برای استفاده در نظر گرفتن مقالات، اکثر مقالات استفاده شده و با توجه به چگونگی ترسیم مقاله، تعداد همه مقاله به بررسی کردن ضریب مطالعه ضریب مطالعه است و اکثر بین پنج تا نشان داده می‌شود.
نتایج حاصل از مطالعاتی که به بررسی کرامپ عضلانی در دونده‌ها پرداخته‌اند.

نویسنده	عنوان مقاله	نوع مطالعه	نوع سرعت	نتایج اصلی
هنسون و همکاران	مشارکت های احتمالی تغذیه‌ای در کرامپ عضلانی مرتبط به ورزش در چهار نیمه ماراتن باز تفریحی: سری موردی	مطالعه سری موردی	نیمه ماراتن	به نظر نمی‌رسد که مورد مشاهده شده کرامپ عضلانی ناشی از ورزش، کاملاً با تئوری سنتی کم آبی / الکترولیت مغایرت داشته باشد.
فردریکسون و همکاران	ناتوان کننده کرامپ پا در یک دونده ثانویه به یک مطالعه موردی	مطالعه موردی	دونده استقامتی	شخص در پای چپ احساس کرامپ و درد داشت، وقتی مدت تمرین به بیست دقیقه می‌رسید، علائم او تشدید می‌شود و هرچند تمرین می‌کرد، علائم را با شدت بیشتری احساس می‌کرد و همچنین تمرین در هوای سرد نیز علائم را دو چندان می‌کرد.
کاسلی و همکاران	آسیب‌های اندام تحتانی در دوندگان ماراتن در شهر نیویورک	مطالعه مقطعی	دونده ماراتن	نتایج این مطالعه نشان داد که کرامپ عضلانی یکی از آسیب‌هایی است که بین دوندگان از شیوع بالایی برخوردار است. علاوه بر این، مشاهده کردند که بین افزایش تعداد کیلومترهای دویدن در هفته با کاهش کرامپ عضلانی همراه است.
فرریرا و همکاران	تمرین مصرف آب دونده‌ها هنگام تمرین در مقابل رقابت	مطالعه مقطعی	نامشخص	تفاوت معنی‌داری بین مصرف آب هنگام تمرین و مسابقه بین دونده‌ها مشاهده شد. درصد در تمرین از مصرف آب کافی غافل بودند. به نظر می‌رسد که دونده‌ها از مصرف آب کافی هنگام تمرین و مسابقه غفلت می‌کنند.
هافمن و همکاران	بیماری گرمای ورزشی در دونده‌های نیمه ماراتن: تجربیات از Great North Run	مطالعه مقطعی	نیمه ماراتن	درجه می‌شد، احتمالاً هنگامی که شدت تمرین بالا می‌رفت و دمای بدن بالا می‌افتاد ورزشکار افزایش پیدا می‌کرد. در این شرایط، هنگام سرد کردن و ریکاوری مجدد صورت می‌گرفتند، کرامپ عضلانی در دونده‌ها اتفاق می‌افتد.
مارتینز و همکاران	کرامپ عضلانی در ماراتن: کمبود آب بدن و کاهش الکترولیت در مقابل آسیب عضلانی	مطالعه مقطعی	ماراتن	دونده‌هایی که از کرامپ عضلانی رنج می‌برند، بعد از ماراتن، میزان بیشتری از کم آبی و کاهش الکترولیت را نشان نمی‌دهند، اما غلظت‌های بیشتری از بیومارکرهای آسیب عضلانی را نشان می‌دهند.
هافمن و همکاران	کرامپ عضلات در طی یک مسابقه فوق ماراتن 161 کیلومتری: مقایسه خصوصیات افراد با یا بدون گرفتگی عضلات	مطالعه مشاهده‌ای	فوق ماراتن	کرامپ عضلات در طی دو فوق ماراتن بیشتر در کسانی اتفاق می‌افتد که سابقه کرامپ عضلات و آسیب دیدگی قبلی دارند و این ارتباط با تقاضای نسبی عضلات ارتباط دارند. به نظر نمی‌رسد که اختلال در تعادل مایعات و سدیم به عنوان یک اتیولوژی در کرامپ عضلات طی دو فوق ماراتن باشد.
شماره	نام نویسنده	عنوان مقاله	نوع مطالعه	نتایج اصلی
-------	--------------	-------------	-------------	--------------
10	شوولنوس و همکاران	افزایش سرعت دویدن و کرامپ‌های قبلی به جای کم آبی	مطالعه کوهورت آینده نگر	یک مطالعه کوهورت آینده نگر در ورزشکار سه گانه نتایج حاصل از این مطالعه به شواهد اضافه می‌کند که کم آبی و تغییر تعادل الکترولیت سرم، دلیلی بر کرامپ عضلانی ناشی از ورزش نیست. در عوض دوندگان استقامتی که با سرعت بالایی رقابت می‌کنند که نشان می‌دهند که آن‌ها با شدت بالا ورزش می‌کنند، در معرض خطر بالایی از کرامپ عضلانی ناشی از ورزش هستند.
11	شابو و همکاران	عوارض پزشکی و مرگ و میر در دونده‌های مسابقه‌ای جاده‌ای	مطالعه کوهورت آینده نگر	دوندگان استقامتی کیلومتری 56 و 21 کیلومتری دوندگان استقامتی کیلومتری می‌دويدند، به میزان بیشتری، کرامپ عضلانی در ناحیه شکم با محدودیت‌های غذایی ارتباط مستقیم دارد. همچنین شیوع کرامپ در ورزشکاران جوان، به ویژه در زنان بیشتر است که ممکن است تمایل آن‌ها به اجتناب از غذاها را توضیح دهد.
12	پرنل و همکاران	محدودیت‌های غذایی در دوندگان استقامت برای کاهش علائم گوارشی ناشی از ورزش	مطالعه مقطعی	دوندگان استقامتی کرامپ عضلانی در ناحیه شکم با محدودیت‌های غذایی ارتباط مستقیم دارد. همچنین شیوع کرامپ در ورزشکاران جوان، به ویژه در زنان بیشتر است که ممکن است تمایل آن‌ها به اجتناب از غذاها را توضیح دهد.
13	شوولنوس و همکاران	زمینه بیماری مزمن، استفاده از دارو، سابقه آسیب دیدگی در دویدن و سابقه بیشتر در دویدن از عوامل مستقل مرتبط با کرامپ عضلانی مرتبط با ورزش است: یک مطالعه مقطعی در دوندگان استقامتی	مطالعه مقطعی	ریسک فاکتورهای جدید مرتبط با کرامپ عضلانی ناشی از ورزش در دوندگان استقامتی شامل بیماری‌های مزمن، استفاده از دارو، سابقه آسیب دیدگی در دویدن و سابقه طولانی دویدن هستند.
14	شوولنوس و همکاران	افزایش سرعت دویدن و آسیب عضلانی قبل از مسابقه به عنوان عوامل خطر برای کرامپ عضلانی ناشی از ورزش	کوهورت آینده نگر	ریسک فاکتورهای جدید برای کرامپ عضلانی ناشی از ورزش در دوندگان استقامتی شامل کرامپ عضلانی ناشی از ورزش در گذشته، سرعت دویدن سریع‌تر در مرحله اولیه مسابقه و احتمالاً آسیب عضلانی قبل از مسابقه.
15	هوگرورست و همکاران	شکایات و ارتباطات دستگاه گوارش با مصرف درشت مغزی خود گزارش شده در گروه‌های مستقل (فوق ماراتن) دونده‌های ماراتن که در فاصله‌های مختلف رقابت می‌کنند.	مطالعه مقطعی دوندگان استقامتی	شکایت بالایی از 120 کیلومتری و 60 دونده‌های هر سه مسافت ماراتن، کرامپ عضلانی در اندام تحتانی و ناحیه شکم داشتند. در برخی موارد با افزایش مسافت دویدن، میزان شدت کرامپ عضلانی افزایش می‌یافت. به جز مصرف کربوهیدرات بیشتر کیلومتری، هیچ تفاوتی برای مصرف عناصر مغذی یافت نشد.
16	شوولنوس و همکاران	غلظت الکترولیت سرم و وضعیت هیدراتاسیون با کرامپ‌عضلانی ناشی از ورزش در دونده‌های مسافتی ارتباط ندارد.	مطالعه کوهورت آینده نگر دوندگان استقامتی	هیچ تغییر معنی‌داری از نظر بالینی در غلظت‌های الکترولیت سرم و هیچ تغییری در وضعیت هیدراتاسیون در دونده‌هایی که کرامپ عضلانی ناشی از ورزش دارند و در یک مسابقه با مسافت خیلی طولانی شرکت می‌کنند، وجود ندارد.
17	وردنر و همکاران	مصرف مواد مغذی توسط دوندگان فوق ماراتن: آیا آن‌ها می‌توانند توصیه‌ها را برآورده کنند	مطالعه مقطعی دوندگان استقامتی	به طور کلی، همبستگی متوسط و بیشتر منفی بین مصرف مواد مغذی با کرامپ عضلانی ناحیه شکم مشاهده شد. در طول مسابقه تنوع زیادی در مصرف مواد مغذی پیدا شد، این ممکن است مربوط به شیوع بالای کرامپ عضلانی ناحیه شکم باشد.

پیش منابع:

1. شوولنوس و همکاران
2. شابو و همکاران
3. پرنل و همکاران
4. شوولنوس و همکاران
5. هوگرورست و همکاران
6. وردنر و همکاران
در راستای نتایج مطالعات، نتایج جدید مطالعه نیز گزارش کرده‌اند که کمی از بدن بدن نیاز کلیوکاتوریال از شارش‌های کرامپ عضلانی ناشی از ورزش در دونده استقامتی هستند، و در مدافعان مختلط محبوب یا پرسی کرامپ عضلانی پرداخته‌اند، مسئله‌های پرسی، دوندگان استقامتی، ماراتن و فوق ماراتن را شامل می‌کند که تماشای دهنده‌ی مسیر دوندگان دچار کرامپ عضلانی ناشی از ورزش می‌شوند. کنترل این مشکل توانایی علیه کرکم ورودیان است. فرم کرامپی.

با بررسی تأثیر مطالعات مشابه، می‌توان به این نتیجه رسید که بیشتر مطالعات روی علت‌های وقوع کرامپ عضلانی پرداخته‌اند و تنها یک مطالعه برای کاهش کرامپ عضلانی، تمرینات کششی را پیشنهاد داده‌اند. در نتیجه می‌توان پی برد که علل وقوع کرامپ عضلانی در دونده استقامتی بسیار متغیر بوده و نتایج مطالعات به عوامل مختلفی رسیده‌اند که باعث وقوع کرامپ عضلانی در این رشته ورزشکاران می‌شود. در برخی موارد نتایج این مطالعات، زیست‌محیطی و دهیدراسیون را یکی از عوامل مهمی در وقوع کرامپ عضلانی در دونده‌ها نشان داده‌اند، در حالی که برخی عوامل علمی‌یابی برای کرامپ عضلانی در دونده‌ها نشان داده‌اند که مصرف سدیم در طی این ورزش‌ها می‌تواند به‌عنوان عامل مهمی در جلوگیری از کرامپ عضلانی ناشی از ورزش در دونده‌ها به‌شمار آید. این نتایج نشان می‌دهد که علل وقوع کرامپ به یک عامل بر نمی‌گردد و افزایش شیوع کرامپ در دونده‌ها می‌تواند چند عاملی باشد و هریک از این عوامل می‌تواند بخشی از علل وقوع کرامپ عضلانی ناشی از ورزش در دونده‌ها را تقویت کند و در نهایت بلافاصله بعد از تمرین یا مسابقه بلافاصله وقوع کرامپ عضلانی ناشی از ورزش در دونده‌ها را باعث کند.

بحث
هدف از مطالعه حاضر بررسی کرامپ عضلانی ناشی از ورزش در دونده‌ها بود. نتایج مطالعات، اطلاعات مختلفی را از کرامپ عضلانی ناشی از ورزش در دونده‌ها گزارش کرده‌اند. مطالعات علت وقوع کرامپ عضلانی ناشی از ورزش در دونده‌ها را دهیدراسیون و نقص الکترولیت، سرما، طولانی شدن مدت تمرین یا مسابقه، افزایش دمای بدن هنگام تمرین یا مسابقه، سابقه آسیب دیدگی و کرامپ عضلانی در گذشته، افزایش شدت تمرین در مدت زمان کوتاه و محدودیت‌های غذایی ذکر کرده‌اند که هریک از این عوامل را بحث و بررسی کنیم.

دهیدراسیون و نقص الکترولیت
نتایج دو مطالعه نشان داد که دهیدراسیون و نقص الکترولیت با کرامپ عضلانی ناشی از ورزش در دونده‌ها مرتبط نیستند.

در راستای نتایج مطالعات، نتایج جدید مطالعه نیز گزارش کرده‌اند که کمی از بدن بدن نیاز کلیوکاتوریال از شارش‌های کرامپ عضلانی ناشی از ورزش در دونده استقامتی هستند، و در مدافعان مختلط محبوب یا پرسی کرامپ عضلانی پرداخته‌اند، مسئله‌های پرسی، دوندگان استقامتی، ماراتن و فوق ماراتن را شامل می‌کند که تماشای دهنده‌ی مسیر دوندگان دچار کرامپ عضلانی ناشی از ورزش می‌شوند. کنترل این مشکل توانایی علیه کرکم ورودیان است. فرم کرامپی.

با بررسی تأثیر مطالعات مشابه، می‌توان به این نتیجه رسید که بیشتر مطالعات روی علت‌های وقوع کرامپ عضلانی پرداخته‌اند و تنها یک مطالعه برای کاهش کرامپ عضلانی، تمرینات کششی را پیشنهاد داده‌اند. در نتیجه می‌توان پی برد که علل وقوع کرامپ عضلانی در دونده استقامتی بسیار متغیر بوده و نتایج مطالعات به عوامل مختلفی رسیده‌اند که باعث وقوع کرامپ عضلانی در این رشته ورزشکاران استقامتی می‌شود. در برخی موارد نتایج این مطالعات، زیست‌محیطی و دهیدراسیون را یکی از عوامل مهمی در وقوع کرامپ عضلانی در دونده‌ها نشان داده‌اند، در حالی که برخی عوامل علمی‌یابی برای کرامپ عضلانی در دونده‌ها نشان داده‌اند که مصرف سدیم در طی این ورزش‌ها می‌تواند به‌عنوان عامل مهمی در جلوگیری از کرامپ عضلانی ناشی از ورزش در دونده‌ها به‌شمار آید. این نتایج نشان می‌دهد که علل وقوع کرامپ به یک عامل بر نمی‌گردد و افزایش شیوع کرامپ در دونده‌ها می‌تواند چند عاملی باشد و هریک از این عوامل می‌تواند بخشی از علل وقوع کرامپ عضلانی ناشی از ورزش در دونده‌ها را تقویت کند و در نهایت بلافاصله بعد از تمرین یا مسابقه بلافاصله وقوع کرامپ عضلانی ناشی از ورزش در دونده‌ها را باعث کند.
در کنار افزایش مدت تمرین و مسابقه و محدودیت غذایی، نتایج سه مطالعه نشان داده که با افزایش مسیر مسابقه و طولانی شدن مدت تمرین می‌تواند احتمال وقوع کرامپ عضلانی را افزایش دهد.

علاوه بر این، ثابت شده است که کبد عضلانی اسکلتی ناشی از ورزش با بیماری‌های قلبی عروقی، متابولیک، بیماری‌های سیستم عصبی محیطی و مرکزی، و سیستمیکی دیگر همچون بیماری‌های کلیوی که میزان تنظیم مایعات و الکترولیت را دچار اختلال می‌کند، همیشه باعث افزایش وقوع کرامپ عضلانی در دونده‌ها می‌شود.

علاوه بر این، ثابت شده که با افزایش مدت تمرین و مسابقه، میزان کربوهیدرات مصرف کم می‌شود که باعث گرم شدن بدن می‌شود.

در نهایت، می‌توان به نتیجه رسید که افزایش مدت تمرین و مسابقه و محدودیت غذایی می‌تواند باعث افزایش وقوع کرامپ عضلانی در دونده‌ها شود.
Schwelle K, Schwellnus M, Derman W, Swanevelder S, Jordaan E. Cramps in swimming. . . What is the cause? [Internet]. 2014 [Updated 2014 November 15]. Available from: https://www.zwemza.com/?p=17753

Schwein M, Schwellnus MP, Allie S, Derman W, Collins M. Increased running speed and pre-race muscle damage as risk factors for exercise-associated muscle cramps in a 56 km ultra-marathon: A prospective cohort study. Br J Sports Med. 2011; 45(14):1132-6. [DOI:10.1136/bjsports.2010.082677] [PMID] [PMCID]

Hoogervorst D, van der Burg N, Versteegen JJ, Lambrechtse KJ, Redegeld MJ, Cornelissen LA, et al. Gastrointestinal complaints and correlations with self-reported macronutrient intake in independent groups of (ultra) marathon runners competing at different distances. Sports. 2019; 7(6):140. [DOI:10.3390/sports7060140] [PMID] [PMCID]

Schwullus MP, Nicol J, Laubacher R, Noakes TD. Serum electrolyte concentrations and hydration status are not associated with Exercise-Associated Muscle Cramping (EAMC) in distance runners. Br J Sports Med. 2004; 38(4):488-92. [DOI:10.1136/bjsmedicine.2003.070271] [PMID] [PMCID]

Wardenaar FC, Dijkhuizen R, Ceelen IM, Jonk E, de Vries JHM, Wilt- kamp RF, et al. Nutrient intake by ultramarathon runners: Can they meet recommendations? Int J Nutr Exerc Metab. 2015; 25(4):375-86. [DOI:10.1123/ijsnem.2014-0199] [PMID]

Miller KC, Knight KL. Electrical stimulation cramp threshold frequency correlateswell with the occurrence of skeletal muscle cramps. Muscle Nerve. 2009; 39(3):364-8. [DOI:10.1002/mus.21170] [PMID]

Sulzer NJ, Schwullus MP, Noakes TD. Serum electrolytes in Ironman triathletes with exercise-associated muscle cramping. Med Sci Sports Exerc. 2005; 37(7):1081-5. [DOI:10.1249/01.mss.0000169723.79558.cf] [PMID]

Stone MB, Edwards JE, Stemmans CL, Ingersoll CD, Palmieri RM, Krause BA. Certified athletic trainers’ perceptions of exercise-associated muscle cramps. J Sport Rehabil. 2003; 12(4):333-42. [DOI:10.1123/jsr.12.4.333]

McCubbin AJ, Cox GR, Costa RJS. Sodium intake beliefs, information sources, and intended practices of endurance athletes before and during exercise. Int J Nutr Exerc Metab. 2019; 29(4):371-81. [DOI:10.1123/ijsnem.2018-0270] [PMID]

Braulick KW, Miller KC, Albrecht JM, Tucker JM, Deal JE. Significant and serious dehydration does not affect skeletal muscle cramp threshold frequency. Br J Sports Med. 2013; 47(11):710-4. [DOI:10.1136/bjsports-2012-091501] [PMID]

Jung AP, Bishop PA, Al-Nawwas A, Dale RB. Influence of hydration and electrolyte supplementation on incidence and time to onset of exercise-associated muscle cramps. J Athl Train. 2005; 40(2):71-5. [PMID] [PMCID]

Shang G, Collins M, Schwullus MP. Factors associated with a self-reported history of exercise-associated muscle cramps in Ironman triathletes: A case-control study. Clin J Sport Med. 2011; 21(3):204-10. [DOI:10.1097/jsm.0b013e31820bcbfd] [PMID]

O’Connell KO, Posthumus M, Schwellnus MP, Collins M. Collagen genes and exercise-associated muscle cramping. Clin J Sport Med. 2011; 21(3):204-10. [DOI:10.1097/jsm.0b013e31820bcbfd] [PMID]

MacSearraigh ET, Kalimeyer JC, Schiff HB. Acute renal failure in marathon runners. Nephron. 1979; 24(5):236-40. [DOI:10.1159/000181723] [PMID]

Minetto MA, Holobar A, Botter A, Farina D. Origin and development of muscular injuries and being a more experienced runner are independent factors associated with exercise-associated muscle cramping: A cross-sectional study in 15778 distance runners. Clin J Sport Med. 2018; 28(3):289-98. [DOI:10.1097/jsm.0b013e3187f0456] [PMID]

Parisi L, Pirelli F, Amabile G, Valente G, Calrandiello E, Fattapposta F, et al. Muscular cramps: Proposals for a new classification. Acta Neurol Scand. 2003; 107(3):176-86. [DOI:10.1034/j.1600-0404.2003.01289.x] [PMID]
91. Miller TM, Lazer RB. Muscle cramps. Muscle Nerve. 2005; 32(4):431-42. [DOI:10.1002/mus.20341] [PMID]

[66] Mehta SS, Fallon MB. Muscle cramps in liver disease. Clin Gastroenterol Hepatol. 2013; 11(11):1385-91. [DOI:10.1016/j.cgh.2013.03.017] [PMID]

[67] Viljoen CT, van Rensburg DCJ, Verhagen E, van Mechelen W, Tomás R, Schooman M, et al. Epidemiology of injury and illness among trail runners: A systematic review. Sports Med. 2021; 51(5):917-43. [DOI:10.1007/s40279-020-01418-1] [PMID]

[68] Peters HP, van Schelven FW, Verstappen PA, de Boer RW, Bol E, Erich WB, et al. Gastrointestinal problems as a function of carbohydrate supplements and mode of exercise. Med Sci Sports Exerc. 1993; 25(11):1211-24. [DOI:10.1249/00005768-199311000-00003] [PMID]

[69] Ter Steege RWF, Van Der Palen J, Kolkman JJ. Prevalence of gastrointestinal complaints in runners competing in a long-distance run: An internet-based observational study in 1281 subjects. Scand J Gastroenterol. 2008; 43(12):1477-82. [DOI:10.1080/00365520802321170] [PMID]

[70] Stuempfle KJ, Hoffman MD, Weschler LB, Rogers IR, Hew-Butler T. Race diet of finishers and non-finishers in a 100 mile (161 km) mountain footrace. J Am Coll Nutr. 2011; 30(6):529-35. [DOI:10.1080/07315724.2011.10719999] [PMID]

[71] de Oliveira EP, Burini RC, Jeukendrup A. Gastrointestinal complaints during exercise: Prevalence, etiology, and nutritional recommendations. Sports Med. 2014; 44(Suppl 1):79-85. [DOI:10.1007/s40279-014-0153-2] [PMID] [PMCID]

[72] Jeukendrup AE. Training the gut for athletes. Sports Med. 2017; 47(Suppl 1):101-10. [DOI:10.1007/s40279-017-0690-6] [PMID] [PMCID]

[73] Rehrer NJ, van Kemenade M, Meester W, Brouns F, Saris WHM. Gastrointestinal complaints in relation to dietary intake in triathletes. Int J Sport Nutr Exerc Metab. 1992; 2(1):48-59. [DOI:10.1123/ijsn.1992.2.1.48] [PMID]

[74] Abe K. A patient developed painful muscle cramps due to overeating mangos. Case Rep Neurol Med. 2012; 2012:742125. [DOI:10.1155/2012/742125] [PMID] [PMCID]

[75] Ørtenblad N, Westerblad H, Nielsen J. Muscle glycogen stores and fatigue. J Physiol. 2013; 593(18):4405-13. [DOI:10.1113/jphysiol.2013.251629] [PMID] [PMCID]

[76] Jeukendrup A. A step towards personalized sports nutrition: Carbohydrate intake during exercise. Sports Med. 2014; 44(Suppl 1):25-33. [DOI:10.1007/s40279-014-0148-z] [PMID] [PMCID]

[77] Thomas DT, Erdman KA, Burke LM. Position of the Academy of Nutrition and Dietetics, Dietitians of Canada, and the American College of Sports Medicine: Nutrition and athletic performance. J Acad Nutr Diet. 2016; 116(3):501-28. [DOI:10.1016/j.jand.2015.12.006] [PMID]

[78] Burke LM, Jeukendrup AE, Jones AM, Moores M. Contemporary nutrition strategies to optimize performance in distance runners and race walkers. Int J Sport Nutr Exerc Metab. 2019; 29(2):117-29. [DOI:10.1123/ijsnem.2019-0004] [PMID]

[79] Wardenaar FC, Hoogervorst D, Versteegen DJ, van der Burg N, Lambrechtse KJ, Bongers CCWG. Real-time observations of food and fluid timing during a 120 km ultramarathon. Front Nutr. 2018; 5:32. [DOI:10.3389/fnut.2018.00032] [PMID] [PMCID]

[80] Moran ST, Dziedzic CE, Cox GR. Feeding strategies of a female athlete during an ultraendurance running event. Int J Sport Nutr Exerc Metab. 2011; 21(4):347-51. [DOI:10.1123/ijsnem.21.4.347] [PMID]
