Original

Biomechanical Analysis of Poly Lactic-co-glycolic Acid Catheter Combined with Bone Marrow Mesenchymal Stem Cells and Extracellular Matrix Transplantation for Long Sciatic Nerve Defect Repair

Chengdong Piao¹, Zhengwei Li², Jie Ding³ and Zhigang Qin⁴

¹Department of Orthopedics, the Second Hospital of Jilin University, Changchun, China
²Department of Stomatology, the Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, China
³Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China

Correspondence to: Dr. Zhigang Qin, Department of Neurosurgery, China-Japan Friendship Hospital, Jilin University, No.126 Xiantai Avenue, Changchun 130031, Jilin Province, China; Tel: +86 431 88706136; Fax: +86 431 88706136; E-mail: doczhigangqin@126.com

(Accepted for publication, September 11, 2018)

Abstract: We aimed to study the biomechanical characteristics of sciatic nerve after transplantation with poly lactic-co-glycolic acid (PLGA) catheter combined with bone marrow mesenchymal stem cells (BMMSCs) and extracellular matrix (ECM) gel in rabbit model of sciatic nerve injury, so as to provide biomechanics and other basis for the clinical practice. The rabbit sciatic nerve injury model was used in this study. The rabbits with sciatic nerve injury received autologous nerve transplantation (ANT), PLGA catheter combined with BMMSCs transplantation and PLGA catheter combined with BMMSCs and ECM gel transplantation respectively and then correspondingly grouped into ANT group, PCBT group and PCBET group. Twenty-four weeks later, the sciatic nerves in each group were used for electrophysiological examination, histomorphological observation and tensile mechanical properties test. Amplitude (AMP) and motor nerve conduction velocity (MNCV) values of the sciatic nerves in PCBET group were remarkably higher than those in the PCBT group and ANT group with statistical significance (P<0.05). The tensile elastic limit stress, elastic limit strain, maximum stress and strain in PCBET group were all larger than those in the PCBT group and ANT group with a significant difference (P<0.05). PLGA catheter combined with BMMSCs or PLGA catheter combined with BMMSCs and ECM gel can restore the elasticity and toughness of the injured sciatic nerve at some extent, and has obvious recovery effect on the function of the injured sciatic nerves.

Key words: Sciatic nerve defect, Autologous nerve graft, Jointgraft, Mechanical properties

Introduction

Tissue engineering brings new hope for obtaining tissue and graft through surgical operations¹. Polyactic acid (PLA), polyglycolic acid (PGA) and their copolymers (PLGA) are a class of materials most widely researched and applied in tissue engineering at present². The scholars have made a large number of researches on the peripheral nerve injury by PLGA catheter transplantation and so on³-⁵. Huang et al⁶ used lamin-modified PLGA film to repair the injured peripheral nerve and found that as a core of the extracellular matrix protein, lamin can significantly improve the adhesion and affinity of the Schwann cells, which is conducive to the peripheral nerve regeneration. Moore et al⁷ processed PLGA into multipass nerve scaffold and implanted the multipass nerve scaffold combined with the Schwann cells into the rat transverse spinal cord. 30 days later, the spinal cord axons regenerated.

Bone marrow mesenchymal stem cells (BMMSCs), a cluster of adult pluripotent stem cells, are important cell sources for cell therapy and tissue engineering repair at present⁸. The scholars have made a lot of efforts on the treatment of nerve injury using BMMSCs transplantation. Kurwal et al⁹ implanted the BMMSCs isolated from the rat bone marrow into fibrin catheter and used them to repair the 12 mm defect in rat sciatic nerve. The results showed that the curative effect of the fibrin catheter combined with BMMSCs is significantly better than that of simple fibrin catheter group. Zhou et al¹⁰ treated 10 mm defect in rat sciatic nerve using the acellular nerve scaffold combined with BMMSCs and stem cells (SCs), and found that the combination of BMMSCs and SCs had better effect 16 weeks later than single BMMSCs or SCs transplantation. However, the previous studies have never involved the biomechanical properties analysis on the sciatic nerve repaired by PLGA catheter combined with BMMSCs and extracellular matrix gel (ECM) transplantation⁵. The destruction of soft tissues and organs in animals will change their biomechanical properties¹¹,¹². Therefore, we hypothesized that the biomechanical properties of the sciatic nerve group will change after its structure of sciatic nerve is destructed, and the joint transplantation of PLGA catheter, BMMSCs, and ECM will have certain effects on the repair of the damaged tissue structure, and the biomechanical properties of the sciatic nerve will get certain recovery. In view of this, the authors tested the electrophysiology, tensile mechanics, and histomorphology of the sciatic nerves in the animal model with sciatic nerve defect after joint graft of PLGA catheters and BMMSCs or joint graft of PLGA catheters, BMMSCs, and ECM, using biomechanical index to judge the therapeutic effects of PLGA catheter combined with BMMSCs transplantation and PLGA catheter combined with BMMSCs and ECM transplantation on the repair of sciatic nerve.
Preparation of PLGA catheter

Procedures for the preparation of PLGA catheter were described as follows: PLGA and NaCl with mass ratio of 1:9 were dissolved in dichloromethane at a volume ratio of 70:30. NaCl with particle size of 200-300 micron was added as porogen. The mixture was poured into a preset mould with inner diameter 1.6 mm, outer diameter 1.8 mm and length 40 mm. The mixture in the mould was naturally volatilized at room temperature in a fume cupboard. The mould was released to pick out the PLGA and NaCl cylindrical catheter. After dried in a vacuum drying oven at 37 °C for 48 h, the PLGA and NaCl cylindrical catheter was soaked into 800 ml deionized water for 96 hours. During this period, the deionized water was changed every 4 hours. Then the PLGA and NaCl cylindrical catheter was dried in a dry box at 37 °C for 48 hours, followed by disinfection with 36 °C ethylene oxide for 12 hours. Then PLAG catheters were prepared for use. Before the experiment, the PLGA and NaCl catheters were cut into length 30 mm for use by the S-5 aseptic plastic scalpel which was produced by Xuyi Union Hual’an Yikang Medical Products Co., Ltd. (Xuyi, Jiangsu, China). Seventy pieces of NaCl and PLGA catheters were prepared for use.

Preparation of sciatic nerve defect animal model and grouping

The experimental rabbit was fixed on the animal operating table and anesthetized with 6% chloral hydrate (6 ml/kg) by intraperitoneal injection. After successful anesthesia, a midline incision was made on the posterior part of the rabbit left thigh. The left sciatic nerve was exposed and isolated layer by layer. At the 3 mm away from the inferior margin of the piriform muscle, a 30 mm sciatic nerve was excised to prepare the model of 30 mm sciatic nerve defect. Then, the prepared animals were randomly divided into 3 groups: rabbits with sciatic nerve defect treated with autologous nerve transplantation (ANT group, N=20), rabbits with sciatic nerve defect treated with PLGA catheter combined with BMSCs transplantation (PCBT group, N=20), and rabbits with sciatic nerve defect treated with PLGA catheter combined with BMSCs and ECM gel transplantation (PCBET group, N=20).

Materials and Methods

Animals

Sixty healthy female Japanese white rabbits, aged 6 month and weighing 2.2-2.4 kg, were provided by Changchun High-tech Animal Experimental Center (license number: SCXK (Ji) 2003-0004). Rabbits were fed in cages with full grains feed. All rabbits were housed in a circumstance of constant temperature 22-24 °C, relative humidity 54-66%, natural lighting and well ventilated and free to drinking and food. This study was carried out in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. The animal use protocol has been reviewed and approved by the Institutional Animal Care and Use Committee (IACUC) of Jinlin University.

Preparation of PLGA catheter

PLGA (Changchun Sinobiomaterials Co. Ltd., Changchun, Jilin, China) was dissolved in dichloromethane at a volume ratio of 70:30. NaCl with particle size of 200-300 micron was added as porogen (the mass ratio of PLGA and NaCl was 1:9) and mixed. The mixture was poured into a preset mould with inner diameter 1.6 mm, outer diameter 1.8 mm and length 40 mm. The mixture in the mould was naturally volatilized at room temperature in a fume cupboard. 96 hours later, the mold was released to pick out the PLGA and NaCl cylindrical catheter. After dried in a vacuum drying oven at 37 °C for 48 h, the PLGA and NaCl cylindrical catheter was soaked into 800 ml deionized water for 96 hours. During this period, the deionized water was changed every 4 hours. Then the PLGA and NaCl cylindrical catheter was dried in a dry box at 37 °C for 48 hours, followed by disinfection with 36 °C ethylene oxide for 12 hours. Then PLAG catheters were prepared for use. Before the experiment, the PLGA and NaCl catheters were cut into length 30 mm for use by the S-5 aseptic plastic scalpel which was produced by Xuyi Union Hual’an Yikang Medical Products Co., Ltd. (Xuyi, Jiangsu, China). Seventy pieces of NaCl and PLGA catheters were prepared for use.

Preparation of sciatic nerve defect animal model and grouping

The experimental rabbit was fixed on the animal operating table and anesthetized with 6% chloral hydrate (6 ml/kg) by intraperitoneal injection. After successful anesthesia, a midline incision was made on the posterior part of the rabbit left thigh. The left sciatic nerve was exposed and isolated layer by layer. At the 3 mm away from the inferior margin of the piriform muscle, a 30 mm sciatic nerve was excised to prepare the model of 30 mm sciatic nerve defect. Then, the prepared animals were randomly divided into 3 groups: rabbits with sciatic nerve defect treated with autologous nerve transplantation (ANT group, N=20), rabbits with sciatic nerve defect treated with PLGA catheter combined with BMSCs transplantation (PCBT group, N=20), and rabbits with sciatic nerve defect treated with PLGA catheter combined with BMSCs and ECM gel transplantation (PCBET group, N=20).

Treatments

Rabbits in the ANT group were treated with autologous nerve transplantation. Under XT-X-6A surgical microscope (Zhenjiang Xintian Medical Instrument Co. Ltd., China), the autologous sciatic nerve cut off from the rabbit was implanted back into the sciatic nerve by suturing the epineurium of the ends using 9-0 noninvasive suture line (Qingdao Nike Medical Material Co. Ltd., China). Each end was sutured by four punctures (Fig. 1A), and then the muscles and skin were closed.

Rabbits in the PCBT group were treated with PLGA catheter combined with BMSCs transplantation. BMSCs were produced by Shanghai Yanyi Biotech Co. Ltd. (Shanghai, China). The BMSCs were cultured and subcultured in strict accordance with the instructions provided by the manufacturer. When the cells grew to 90% confluence, they were passaged at a density of 2×10^4/cm^2 at a circumference of 95% air and 5% CO_2 at 37 °C after digestion by 0.05% trypsin. Cells were passaged every 5 days at a ratio of 1:2. The medium was changed every 3 days. The shape of rabbit BMSCs was fibroblast-like in the early stage. We also found that there were several cell components in bone marrow. In addition to the differentiated cells such as stroma cells, there were also two kinds of pluripotent stem cells, hematopoietic stem cells and mesenchymal stem cells. Those with the phenotype of bone marrow mesenchymal stem cells were used in this study. Under the surgical microscope, the broken nerve ends were inserted into the both ends of the 30 mm PLGA nerve catheter, respectively. Then the epineurium and the PLGA nerve catheter wall were fixed with 9-0 noninvasive suture line (Qingdao Nike Medical Material Co., Ltd.) and sutured by four punctures at both ends. Then 1×10^9 cells/l BMSCs at the fifth generation grown in a 5% CO_2 saturated humidity incubator at 37 °C were injected into the PLGA nerve catheter using a micro injector (Fig. 1B). After that, the muscles and skin were closed.

Rabbits in the PCBET group were treated with PLGA catheter combined with BMSCs and ECM gel transplantation. The extracellular Matrix Gel was produced by BD (California, USA). Under the surgical microscope, the broken ends of the sciatic nerve were inserted into the both ends of the 30 mm PLGA nerve catheter, respectively. Then the...
epineurium and the PLGA nerve conduit wall were fixed and sutured with 9-0 noninvasive suture line (Qingdao Nike Medical Material Co., Ltd.) by four punctures at both ends. The fifth generation of rabbit BMSCs (1×10^6 cells/l) grown in a 5% CO₂ saturated humidity incubator at 37 °C and extracellular matrix gel (1×10^5) was applied to the specimen at a speed of 5 mm/min. In order to maintain the humidity of the specimen during the test, the normal saline was sprayed continuously to the sciatic nerve specimen. After the test, the nerve specimen was clamped in the soft tissue holder, and a tensile load was applied to the specimen at a speed of 5 mm/min. In order to maintain the humidity of the specimen during the test, the normal saline was sprayed continuously to the sciatic nerve specimen. After the test, the computer automatically output the elastic limit strain, the maximum strain, the elastic limit stress, the maximum stress, the maximum load, and stress-strain curves.

Electrophysiological test of sciatic nerve

At 24 weeks after operation, electrophysiological test was carried out on the sciatic nerve of the experimental side (left) of each rabbit using NIM-Neuro Type 2 electromyograph (Medtronic Company, Minneapolis, Minnesota, USA). Rabbits were anesthetized with 10% chloral hydrate (10 ml/kg) by intraperitoneal injection. After the surgical field was disinfected, the rabbit was on prone position to expose the left and right sciatic nerve branches (D) respectively to induce two action potentials. The co-core needle electrode was punctured into the soleus muscle (M) as a recording electrode, while the grounding wire was fixed on the edge of the wounded skin with an alligator clips. An 80 mA current was used on the parallel stimulating electrodes which were put on the proximal anastomotic stoma of the ischial tuberosity level (P) and the distal anastomotic stoma of the sciatic nerve branches (D) to induce two action potentials. From the electrophysiological results of each nerve, the measurement data were expressed as mean±standard deviation (SD) and analyzed using SPSS16.0 software package (SPSS, Chicago, IL, USA). The difference of data between groups was analyzed using one-way ANOVA and Scheffe method. P<0.05 was regarded as significant difference. The formula of stress-strain functional relation of each group to serve as the normal control group. All nerve specimens were kept in physiological saline for use.

Tensile test

MODEL55100 type automatically controlled electronic universal test machine produced by Changchun Test Machine Institute Group (Changchun, Jilin, China) was used in this study for the tensile test. The universal test machine was equipped with a temperature adjustable thermostat which could be adjusted from -30 °C to 250 °C. CGA-5 type microscope produced by Changchun the Third Optical Instrument Factory (Changchun, Jilin, China) was employed to measure the length and diameter of sciatic nerve. The initial length and diameter of the sciatic nerve specimens in the control group, the ANT group, the PCBT group and the PCBET group were all 20 mm and 1.52-1.55 mm, respectively. According to the method described in the literature, each sciatic nerve specimen was clamped in the soft tissue holder, and a tensile load was applied to the specimen at a speed of 5 mm/min. In order to maintain the humidity of the specimen during the test, the normal saline was sprayed continuously to the sciatic nerve specimen. After the test, the computer automatically output the elastic limit strain, the maximum strain, the elastic limit stress, the maximum stress, the elastic limit load, the maximum load and stress-strain curves.

Observation of tissue morphology

One sciatic nerve specimen from each group was randomly selected from each group to make frozen sections. Prepared sections were treated by routine manners and stained with hematoxylin and eosin (H&E). After staining, sections were dehydrated through increasing concentrations of ethanol and xylene. The specimens were observed by light microscope (BX51, Olympus, Tokyo, Japan) to find the change of the transect of nerve, including axons, nerve cells, myelin sheath, and nerve base-membrane.

Statistical analysis

The measurement data were expressed as mean±standard deviation (SD) and analyzed using SPSS16.0 software package (SPSS, Chicago, IL, USA). The difference of data between groups was analyzed using one-way ANOVA and Scheffe method. P<0.05 was regarded as significant difference. The formula of stress-strain functional relation of each group was established by mathematical regression analysis.
Results

Electrophysiological results

The electrophysiological results of the sciatic nerve in each group were shown in Table 1. The electrophysiological test showed that the AMP and MNCV values of the sciatic nerve in the ANT, PCBT and PCBET groups were significantly lower than those in the control group ($P<0.05$). However, the AMP and MNCV values of the sciatic nerve in the PCBET group were both markedly higher than those in the ANT and PCBT groups with significant difference ($P<0.05$). In addition, the AMP and MNCV values of the sciatic nerve in the PCBT group were also notably higher than those in the ANT group ($P<0.05$).

Tensile results of the sciatic nerve specimens

The tensile results of the rabbit sciatic nerve specimens in each group were shown in Table 2. The maximum load, maximum stress, elastic limit strain, elastic limit load and elastic limit stress of group PCBT and PCBET group were greater than those of group ANT ($P<0.05$), but the maximum strain of ANT group was not significantly different from that of group PCBT and PCBET group ($P>0.05$).

The stress-strain curve of the sciatic nerve specimens

The stress-strain curves of the sciatic nerves in all the four groups were shown in Fig. 2. According to Fig. 2, the stress-strain curve of the control group was almost exponential when the strain of the sciatic nerve rose from 0 to 16.2% and approximately linear when the strain rose from 16.3% to 40.6%. However, when the strain was increased from 40.7% to 76.2%, the deformation of the sciatic nerve in the control group increased greatly and the nearly no loading capacity of the specimen left which tended to be damaged. In the ANT group, the stress-strain curve was basically exponential when the sciatic nerve strain was increased from 0 to 9.2% and approximately linear when the strain was increased from 9.3% to 32.7%. But when the strain rose from 32.8% to

Table 2 The tensile test results of the rabbit sciatic nerve in each group ($n=20$).

Groups	Maximum load (N)	Maximum stress (MPa)	Maximum strain (%)	Elastic limit strain (%)	Elastic limit load (N)	Elastic limit stress (MPa)
Control	5.99±0.21d	2.88±0.12d	76.2±1.26d	40.6±1.16d	2.74±0.13d	1.31±0.06d
ANT	5.13±0.06a	2.44±0.03a	67.8±0.66a	32.7±0.71a	2.38±0.12a	1.18±0.06a
PCBT	5.25±0.07b	2.51±0.03b	66.4±0.83b	33.2±0.92b	2.52±0.09b	1.24±0.04b
PCBET	5.32±0.11c	2.59±0.04c	67.4±0.69c	34.9±1.24c	2.62±0.09c	1.29±0.04c

Note: Data are shown as mean±SD. $^aP<0.05$, vs. PCBT group and PCBET group; $^bP<0.05$, vs. PCBT group and PCBET group; $^cP<0.05$, vs. PCBT group and PCBET group; $^dP<0.05$, vs. control group.

Figure 3. The cross-section of rabbit sciatic nerves observed under a light microscope (HE staining). Scale bar = 100. A: A representative of the rabbit sciatic nerves in the control group; B: A representative of the rabbit sciatic nerves in the ANT group; C: A representative of the rabbit sciatic nerves in the PCBET group; D: A representative of the rabbit sciatic nerves in the PCBT group.
67.8%, the specimen had large deformation with extremely low bearing capacity and tended to be destroyed. When the strain of the sciatic nerve in the PCBT group was increased from 0 to 9.7%, the stress-strain curve basically had an exponential relationship, but it was similar to the linear functional relation when the strain increased from 9.8% to 33.1%. When the strain was increased from 33.4% to 66.4%, the specimens in the PCBT group had great deformation with very low bearing capacity which led to the specimens to be destroyed. The stress-strain curve of the PCBT group was almost exponential as the sciatic nerve strain was increased from 0 to 11.4% and approximately linear as the strain was increased from 11.5% to 34.9%. In the PCBT group, the sciatic nerve specimens had large deformation and extremely low bearing capacity when the strain was elevated from 35% to 67.4%, which led to the specimens almost destroyed.

Morphological observation of the sciatic nerve specimens

The sciatic nerve specimens of each group were also used for the histopathological examination. The histopathological examination revealed that the rabbit sciatic nerve fibers in normal control group arranged orderly and the contents of nerve fiber such as axon had clear form; in addition, the axons were surrounded by myelin sheath (Fig. 3A). In the ANT group, fiber axons were observed beside the Schwann cells in the rabbit sciatic nerve, and a large number of early myelination was visible at the distal end (Fig. 3B). The sciatic nerve had a good myelinization in the PCBT group; good nerve regeneration and orderly arrangements of the nerve fibers were also observed (Fig. 3C). The sciatic nerve regeneration was fairly complete in the PCBT group, with a good myelinization; the nerve fibers were arranged orderly (Fig. 3D).

Discussion

Electrophysiological index is one of the important methods to judge the recovery effect of peripheral nerve injury in human or animals. In this study, the electrophysiological test on the rabbit sciatic nerves in each group showed that the MNCV and AMP values in the rabbits with sciatic nerve injury receiving PLGA catheter combined with BMMSCs and ECM transplantation (PCBT group) were notably higher than those in the rabbits receiving autograft nerve transplantation (ANT group) or receiving PLGA catheter combined with BMMSCs transplantation (PCBT group) with significant difference \(P<0.05 \), suggesting that the injured sciatic nerve treated with PLGA catheter combined with BMMSCs and ECM transplantation got functional recovery to some extent.

Optical microscope observation on the microstructure of the sciatic nerves after transplantation repair is an important way to compare the recovery effects of various transplanting anastomoses on repairing the sciatic nerve injury. In this study, we found the sciatic nerve regeneration in the PCBT group was complete and the myelination was well, the nerve fibers arranged orderly prompting that PLGA catheter combined with BMMSCs and ECM transplantation is conducive to the recovery of the injured animal nerve fibers such as sciatic nerve fiber. Although Bodian and Kluever-barrera double staining was not conducted in this study, HE stain of the sciatic nerve was enough to show that receiving PLGA catheter combined with BMMSCs and ECM transplantation were effective to repair the injured sciatic nerve.

From the stress-strain curves of the sciatic nerves, we found that the stress-strain curve of the sciatic nerve specimens was basically in an exponential functional relation at the beginning tensile stress, and then became similar to the linear relationship with the increase of the tensile stress, followed by an approximately exponential functional relation again as the tensile stress was further increased. With the continuously increase of the stress, the stress-strain curves began to have a greater slope with nonlinear change, the sciatic nerve fiber was extended, stretched, until destruction. The elastic limit strain, maximum stress and strain of the rabbit sciatic nerve in the PCBT and PCBCT groups were larger than those in the ANT group, indicating that PLGA catheter combined with BMMSCs and ECM transplantation improved the elasticity and strength of animal sciatic nerve in the sciatic nerve injury model. The improved elasticity of the sciatic nerve is conducive to resist deformation and external force and conducive to the repair and regeneration of the injured sciatic nerve. It is believed that the nerve fiber arrangement is disrupted in the sciatic nerve defect rabbit model and the nerve fibers are also damaged, which decreases the tensile mechanical properties. The injured sciatic nerves in the sciatic nerve defect rabbit model were repaired after the treatment with PLGA catheter combined with BMMSCs transplantation or PLGA catheter combined with BMMSCs and ECM transplantation, so the mechanical properties of the sciatic nerves were also restored.

At present, PLGA is a widely used cell culture scaffold in the field of tissue engineering\(^{(15)}\). BMMSCs are a group of stem cells derived from bone marrow, with multipotent property and the self-renewal ability. They can be induced \textit{in vitro} and \textit{in vivo} to differentiate into neurons cells with glial phenotype\(^{(16)}\). BMMSCs can secrete large amounts of nutrients that are beneficial for the nerve regeneration, myelination and axonal regeneration\(^{(17)}\). Studies have shown that the regulation of Schwann cells proliferation by BMMSCs can promote the nerve regeneration\(^{(18)}\). BMMSCs have convenient source, which can be rapidly proliferated \textit{in vitro}, and have no transplantation rejection nor the ethical problem, thus they have drawn more and more attentions. At low temperature, extracellular matrix gel is in liquid state, which facilitates the BMMSCs to implant and distribute easily and evenly. Extracellular matrix gel includes fibronectin, laminin, type IV collagen and other extracellular matrix components, which can promote the regeneration of nerve\(^{(19)}\). ECM gel is the extracellular matrix component secreted by Engelbrath Holm Swarm tumor cell line\(^{(20)}\), containing collagen, laminin, fibronectin and other ingredients, which is in a liquid state at low temperature, easy to distribute the BMMSCs. When the temperature reaches 37 °C, ECM generally becomes the gel, facilitating BMMSCs to move but not leading the BMMSCs to flow outside. Donzelli et al\(^{(21)}\) confirmed that ECM can promote nerve regeneration and induce the growth of neurite. In this study, we used PLGA catheter combined with BMMSCs, PLGA catheter combined with BMMSCs and ECM transplantation to treat the sciatic nerve injury animal model. The tensile mechanics, morphology and physiological function of the animal sciatic nerves were restored to some extent, which was consistent with the desired results. PLGA catheter combined with BMMSCs and ECM gel transplantation has good repair effect on the injured sciatic nerve in the animal model of sciatic nerve injury.

The characteristics of this study lied in the tensile mechanical properties analysis after the animal model of sciatic nerve injury was treated with autologous nerve transplantation, with PLGA catheters combined with BMMSCs, or with PLGA catheter combined with BMMSCs and ECM gel transplantation; lied in the establishment of the expression of the stress-strain functional relation of each group by the method of mathematical regression analysis. Using mathematical statistical model to analyze the experimental data of the stress and strain can better clarify the mechanical properties of the sciatic nerve in each group, so as to provide a theoretical basis for the pathogenesis of sciatic nerve injury.

Due to the limited sample size of sciatic nerves and the individual
difference of rabbit sciatic nerves, the experimental data might have some discreteness, but it still has certain reference value for the clinical repair of the injured sciatic nerves.

Acknowledgement
This work was supported by the Science and Technology Development Plan of Jilin Province, China (20110492).

Conflict of Interest
The authors declare no conflict of interest.

References
1. Cheung HY, Lau KT, Lu TP and Hui D. A critical review on polymer-based bio-engineered materials for scaffold development. Composites Part B: Engineering 38: 291-300, 2007
2. Lu L, Peter SJ, Lyman MD, Lai HL, Leite SM, Tamada JA, Uyama S, Vacanti JP, Langer R and Mikos AG. In vitro and in vivo degradation of porous poly(DL-lactic-co-glycolic acid) foams. Biomaterials 21: 1837-1845, 2001
3. Hoban DB, Howard L and Dowd E. GDNF-secreting mesenchymal stem cells provide localized neuroprotection in an inflammation-driven rat model of Parkinson’s disease. Neuroscience 303: 402-411, 2015
4. Jo H, Jung M, Seo DJ and Park DJ. The effect of rat bone marrow derived mesenchymal stem cells transplantation for restoration of olfactory disorder. Biochem Biophys Res Commun 467: 395-399, 2015
5. García-Pérez MM, Martínez-Rodríguez HG, López-Guerra GG, Soto-Domínguez A, Said-Fernández SL, Morales-Avalos R, Elizondo-Omaña RE, Montes-de-Oca-Luna R, Guzmán-López S, Castillo-Galván ML, Mendoza-Lemus OF and Vilchez-Cavazos F. A modified chemical protocol of decellularization of rat sciatic nerve and its recellularization with mesenchimal differentiated schwann-like cells: morphological and functional assessments. Histol Histopathol 32: 779-792, 2017
6. Huang YC, Huang CC, Huang YY and Chen KS. Surface modification and characterization of chitosan or PLGA membrane with laminin by chemical and oxygen plasma treatment for neural regeneration. J Biomed Mater Res A 82: 842-851, 2007
7. Moore MJ, Friedman JA, Lewellyn EB, Mantila SM, Krych AJ, Ameenuddin S, Knight AM, Lu L, Currier BL, Spinner RJ, Marsh RW, Windebank AJ and Yaszemski MJ. Multiple-channel scaffolds to promote spinal cord axonregeneration. Biomaterials 27: 419-429, 2006
8. Liu W, Cui L and Cao Y. Bone reconstruction with bone marrow stromal cells. Methods Enzymol 420: 362-380, 2006
9. Kurwale NS, Suri V, Srivastava A, Suri A, Mohanti S, Yadav P, Sharma MC and Sarkar C. Role of bone marrow derived pluripotent stem cells in peripheral nerve repair in adult rats: A morphometric evaluation. J Neurosci Rural Pract 6: 152-159, 2015
10. Zhou LN, Zhang JW, Liu XL and Zhou LH. Co-graft of bone marrow stromal cells and schwann cells into acellular nerve scaffold for sciatic nerve regeneration in rats. J Oral Maxillofac Surg 73: 1651-1660, 2015
11. Tilić S, Gay C, Graner F, Marçq P, Molino F and Saramito P. Colloquium: Mechanical formalisms for tissue dynamics. Eur Phys J E Soft Matter 38: 121, 2015
12. Pawlaczyk M, Lelonkiewicz M and Wieczorowski M. Age-dependent biomechanical properties of the skin. Postepy Dermatol Aler-gol 30: 302-306, 2013
13. Zhang ZJ, Li YJ, Liu XG, Huang FX, Liu TJ, Jiang DM, Lv XM and Luo M. Human umbilical cord blood stem cells and brain-de-veloped neurotrophic factor for optic nerve injury: a biomechanical evaluation. Neural Regen Res 10: 1134-1138, 2015
14. Wang Y, Li ZW, Luo M, Li YJ and Zhang KQ. Biological conduits combining bone marrow mesenchymal stem cells and extracellular matrix to treat long-segment sciatic nerve defects. Neural Regen Res 10: 965-971, 2015
15. Kim WS, Vacanti JP, Cima L, Mooney D, Upton J, Puelacher WC and Vacanti CA. Cartilage engineered in predetermined shapes employing cell transplantation on synthetic biodegradable polymers. Plast Reconstr Surg 94: 233-237, 1994
16. Chen X, Wang XD, Chen G, Lin WW, Yao J and Gu XS. Study of in vivo differentiation of rat bone marrow stromal cells into schwann cell-like cells. Microsurgery 26: 111-115, 2006
17. Lin W, Chen X, Wang X, Liu J and Gu X. Adult rat bone marrow stromal cells differentiate into Schwann cell-like cells in vitro. In Vitro Cell Dev Biol Anim 44: 31-40, 2008
18. Shimizu S, Kitada M, Ishikawa H, Itokazu Y, Wakao S and Dezawa M. Peripheral nerve regeneration by the in vitro differentiated-human bone marrow stromal cells with Schwann cell property. Biochem Biophys Res Commun 359: 915-920, 2007
19. Wang J, Ding F, Gu Y, Liu J and Gu X. Bone marrow mesenchymal stem cells promote cell proliferation and neurotrophic function of Schwann cells in vitro and in vivo. Brain Res 1262: 7-15, 2009
20. Orkin RW, Gehrton P, McGoodwin EB, Martin GR, Valentine T and Swam R. A murine tumor producing a matrix of basement mem-brane. J Exp Med 145: 204-220, 1977
21. Donzelli R, Maiuri F, Piscopo GA, de Notaris M, Colella A and Dvitis E. Role of extracellular matrix components in facial nerve re-generation: an experimental study. Neurol Res 28: 794-801, 2006