Environmental Research Letters

LETTER

Particulate matter concentration mapping from MODIS satellite data: a Vietnamese case study

Thanh T N Nguyen, Hung Q Bui, Ha V Pham, Hung V Luu, Chuc D Man, Hai N Pham, Ha T Le and Thuy T Nguyen

University of Engineering and Technology (UET), Vietnam National University Ha Noi (VNU). Building E3, 144 Xuan Thuy Str., Cau Giay Dist., Ha Noi, Vietnam

E-mail: thanhntn@vnu.edu.vn

Keywords: particulate matter concentration, aerosol optical thickness, MODIS, Vietnam, multiple linear regression

Abstract

Particulate Matter (PM) pollution is one of the most important air quality concerns in Vietnam. In this study, we integrate ground-based measurements, meteorological and satellite data to map temporal PM concentrations at a 10 × 10 km grid for the entire of Vietnam. We specifically used MODIS Aqua and Terra data and developed statistically-significant regression models to map and extend the ground-based PM concentrations. We validated our models over diverse geographic provinces i.e., North East, Red River Delta, North Central Coast and South Central Coast in Vietnam. Validation suggested good results for satellite-derived PM$_{2.5}$ data compared to ground-based PM$_{2.5}$ ($n = 285$, $r^2 = 0.411$, RMSE = 20.299 μg m$^{-3}$ and RE = 39.789%). Further, validation of satellite-derived PM$_{2.5}$ on two independent datasets for North East and South Central Coast suggested similar results ($n = 40$, $r^2 = 0.455$, RMSE = 21.512 μg m$^{-3}$, RE = 45.236% and $n = 45$, $r^2 = 0.444$, RMSE = 8.551 μg m$^{-3}$, RE = 46.446% respectively). Also, our satellite-derived PM$_{2.5}$ maps were able to replicate seasonal and spatial trends of ground-based measurements in four different regions. Our results highlight the potential use of MODIS datasets for PM estimation at a regional scale in Vietnam. However, model limitation in capturing maximal or minimal PM$_{2.5}$ peaks needs further investigations on ground data, atmospheric conditions and physical aspects.

1. Introduction

Asia is fast developing due to industrialization and urbanization. Together with the development, air pollution concerns on human health are also increasing (MacNee and Donaldson 2003, Atkinson et al 2012, Krzyzanowski et al 2014). PM$_{2.5-10}$ consists mainly of crustal particles mechanically generated from agriculture, mining, construction, road traffic, and related sources, as well as particles of biological origin. Particulate matter with diameter less than 2.5 μm (PM$_{2.5}$) consists mainly of combustion particles from motor vehicles and the burning of coal, fuel oil, and wood, but also contains some crustal particles from finely pulverized road dust and soils (Laden et al 2000). In several cities of Asia including Vietnam, the pollution levels exceed the World Health Organization (2006) Guideline values. In particular, exposure to PM$_{2.5}$ may lead to human respiratory diseases and even mortality (Pope et al 2009, Fann et al 2012, Kloog et al 2013).

Specific to Vietnam, a recent report from the Environmental Performance Index (EPI) suggests that the quality of the environment in Vietnam has steadily dropped compared to other nations (EPI 2014). As per the EPI report, in the general environmental index, Vietnam is ranked 136 out of 178. Further, air quality in Vietnam is lagging with a rank of 170 and it is forecasted to worsen in the near future (EPI 2014). Of the different pollutants in Vietnam, particulate matter pollution is serious because of rapid growth of industrial activities, traffic operations and forest/agricultural fires (Le et al 2014). Also, a recent National Environmental Report on air environment (Vietnam Environment Administration 2013) for Vietnam suggests that dust pollution based on total suspended particle (TSP), PM$_{10}$, PM$_{2.5}$ and PM$_{1.0}$ surpassed national standards in several cities with impacts on human health. Thus, continuous mapping and monitoring of PM in different regions of Vietnam gain significance.
PM$_{2.5}$ measurements through ground based stations although measure the concentrations with high level of accuracy and frequency, they are of limited geographic coverage in Vietnam. Also, point measurements from ground based monitoring stations are not necessarily representative of regional concentrations and regional variability is difficult to assess from point measurements alone (van Donkelaar et al. 2010). Recent studies suggest the potential use of satellite remote sensing technologies for mapping and monitoring of pollutants and relating them to ground sources (Badarinath et al. 2009, Monks and Bierelle 2011, Kharol et al. 2012, Vadrevu et al. 2014). Specific to PM, the use of satellite instruments to estimate surface PM concentration is considered as an effective way to extend point based measurements to wide spatial scales (Duncan et al. 2014). Satellite-derived PM maps are gradually becoming basic layers for air quality, human health and disaster management (Anderson et al. 2012, van Donkelaar et al. 2011).

Satellite aerosol products, which represent spatial distribution of particles in the vertical direction of the atmosphere, provide a practical solution for PM estimation. Several researchers used aerosol optical depth (AOD) or aerosol optical thickness (AOT) derived from satellite data for PM estimation (Chu et al. 2003, Wang and Christopher 2003, Engel-Cox et al. 2004, Badarinath et al. 2007, Gupta and Christopher 2008, Lee et al. 2011, Pelletier et al. 2007, Schaap et al. 2009, Hirtl et al. 2014, Zha et al. 2010, Ma et al. 2014). Methods for estimating PM vary from linear regression (LR) or multiple linear regression (MLR) to the non-linear regression methods such as artificial neural network (ANN), support vector regression (SVR) and self-organizing map (SOM) (Gupta and Christopher 2009a, 2009b, Yahi et al. 2011, Hirtl et al. 2014). Recently, modelling systems such as GEOS-Chem or CMAQ are also used for relating AOT to PM (Liu et al. 2007a, Liu et al. 2007b, Liu et al. 2007c).

In Vietnam, most of the earlier studies on PM characterization focused on ground measurements (Hien et al. 2002). Within the framework of the Asian regional air pollution research network (AIRPET), PM$_{2.5}$ and PM$_{10}$ were studied by Kim Oanh et al. (2006). Recently the effect of regional meteorology on mass and composition of PM was investigated in Ha Noi during December 2006–February 2007 (Hai and Kim Oanh 2013) and in a mining town in Quang Ninh province (Northern Vietnam) in both dry and wet seasons from 2009 to 2010 (Hang and Kim Oanh 2014). Compared to these studies, relatively few studies focused on using satellite remote sensing data for estimating pollution. For example, air pollution maps at high spatial resolution were estimated directly from SPOT 2, Landsat 5, Landsat 8 data for Quang Ninh and Ha Noi (Luong et al. 2010, Nguyen and Tran 2014). Earlier, our team carried out initial investigations for PM estimation using of satellite aerosol products in Ha Noi and obtained promising results (Nguyen et al. 2014, Lee et al. 2014).

In this study, we use satellite remote sensing for estimating PM for entire Vietnam. We mapped temporal PM$_{2.5}$ concentrations by integrating MODIS satellite data and ground based PM data from December 2010 to September 2014. We also validated our results for four regions.

2. Study area

Vietnam is the easternmost country on the Indochina Peninsula in Southeast Asia. The total area is nearly 332 210 km2 and extends from (8$^\circ$27’ N, 102$^\circ$8’ E) to (23$^\circ$ 23’ N, 109$^\circ$27’ E) with the population of 90.5 million as of 2014. Vietnam is divided into seven climatic regions which are based on summer and winter over northern regions (i.e.: North West—NW, North East—NE, Red River Delta—RRD, North Central Coast—NCC) and rainy and dry seasons to the South (South Central Coast—SCC, Central Highlands—CH and South East—SE). In this study, we applied our model and validated in four different regions i.e., NE, RRD, NCC and SCC (figure 1(a)).

The figures 1(b)–(d) present variation of meteorological parameters for different regions. Over four studied regions, NE and RRD have cold and dry winter from December–February. During summer from June–August, high temperature and rain are observed. Moving to the South, SCC has dry season from February–August and rainy period from September–December with peak rainy month in November. The average annual temperatures have not changed largely (from 25 °C–33 °C in average). However, SCC together with NCC is one of hottest regions in Vietnam during summer time from June–August. NCC is a special case with climate characteristics of both northern and southern regions. NCC has cold weather as NE and RRD during December and February but dry and rainy seasons which shifts one month before in comparison with SCC seasons.

3. Datasets and methodology

3.1. Datasets

MODIS instruments provide near-daily measurements of global coverage. The prefix MOD and MYD are reserved for data from MODIS onboard Terra (AM overpass) and Aqua (PM overpass), respectively. MODIS aerosol products at 10 km (i.e., Optical_Depth_Land_And_Ocean at 0.550 μm of MOD04 in Collection 5.1 and AOD_550_Dark_Target_Deeb–Blue_Combined of MYD04 in Collection 6) and MODIS meteorological products at 5 km (Skin Temperature of MOD07 and MYD07 in Collection 6) from 2009–2014 were investigated to estimate PM$_{2.5}$ maps for Vietnam. Currently, there are seven AERONET ground stations in Vietnam which include Bac_Giang,
Bach_Long_Vy, Bac_Lieu, Nghia_Do, Nha_Trang, Red_River_Delta and Son_La (figure 1(a)). AERONET AOT from 2009–2014 at seven stations were compared to MOD04 and MYD04 AOT for accuracy. The Center for Environmental Monitoring (CEM) at Vietnam Environment Administration (VEA) provides updated PM concentrations together with hourly meteorological parameters (i.e.: temperature, pressure, radiation, wind speed and relative humidity) at stations. The PM data at six CEM stations (Phu Tho, Ha Noi, Hue, Da Nang, Ha Long and Khanh Hoa) were considered from December 2010 to September 2014 (figure 1(a)) but period differed for stations. Data at Phu Tho, Ha Noi, Hue and Da Nang stations were used for modeling while data at Ha Long and Khanh Hoa stations in 2014 were utilized for independent validation process. Further, meteorological data from the National Center for Hydro-Meteorological Forecasting (NCHMF) covering 98 ground stations for temperature, relative humidity and precipitation from 2005–2013 has been used. At each meteorological station, temperature and relative humidity are measured at 13:00 but precipitation at 13:00 and 24:00 every day (Vietnam time zone).

3.2. Methodology
The methodology for PM$_{2.5}$ estimation over Vietnam from MODIS satellite images is carried out by integrating ground based PM$_{2.5}$ and MODIS data and then using Multiple Linear Regression and universal Kriging techniques. The detail processing steps are illustrated in figure 2.

3.2.1. Data pre-processing and integration
Since satellite and ground datasets have different temporal and spatial characteristics, they need to be integrated for modeling and testing process of PM estimation. Satellite data are first resampled to a grid of 10 km over Vietnam using a bilinear function and integrated using time and location constrains following Ichoku et al (2002). We considered only cloud-free aerosol data pixels which had distances to a ground station within a radius of 25 km but the directed temperature pixel over a ground station because of temperature coarse spatial resolution and lightly variant. Meanwhile, ground measurements are averaged within a temporal window of 60 min coinciding with the satellite overpasses. The optimal thresholds were selected by experiments.
3.2.2. Feature selection
The selection of temporal parameters (i.e. aerosol and meteorological factors from satellite images) for regression model is based on correlation assessment of each factor to PM at ground level. Besides, monthly temperature, relative humidity and precipitation by region using all 98 NCHMF stations are considered for the regression model to characterize climate regions in Vietnam. The use of relative humidity as seasonal indicator is also found in Liu et al. (2007b) and Liu et al. (2007c).

3.2.3. Multiple linear regression
Linear regression or multiple linear regression (MLR) are considered as a common and valid methodology to estimate PM from aerosol and other meteorological factors (Chu et al. 2003, Wang and Christopher 2003, Engel-Cox et al. 2004, Gupta and Christopher 2009b, Schaap et al. 2009, Zha et al. 2010, Lee et al. 2011). In our approach, different MLR models have been applied to estimate PM$_{2.5}$ concentrations from satellite-derived AOT, satellite-derived temperature and monthly and regional indicators (i.e. temperature, relative humidity and precipitation) normalized in range of ($-1, 1$). The least square fitting technique determines MLR coefficients based on the least square errors of a model over a training dataset after that, the Bayesian model average (BMA) technique calculates Bayesian information criterion (BIC) and post probability for each MLR model and selects the best one that minimizes BIC and maximizes posterior probability. Finally, the Cook’s distance (Cook’s D) is applied on the selected models to identify and remove the samples that have significant impacts on the estimated coefficients.

3.2.4. Universal kriging
The universal Kriging is applied on regression PM maps to interpolate values for the entire region that also included areas frequently impacted by clouds. The spatial correlation of PM$_{2.5}$ values is modeled by fitting a spherical variogram to the experimental semi-variance accounting for all valid geo-locations in a PM$_{2.5}$ image. Several models such as Gaussian, spherical, and exponential were tested to fit data. Results suggested the spherical model as the best with the lowest mean square error between the variogram model and experimental data.

After the same, we performed universal Kriging on each MOD and MYD PM$_{2.5}$ image to obtain an interpolated map together with its associated error map.

3.2.5. Evaluation
To evaluate the estimated PM concentration from our approach, we used four statistical indicators i.e., Pearson’s correlation coefficient (R), coefficient of determination (R^2), root mean square error (RMSE) (i.e.: absolute error) and relative error (RE) (i.e.: percentage error). In addition, mean fractional bias (MFB) and mean fractional error (MFE) have been used to assess model performance (Boylan and Russell 2006).
and PM10, respectively. Hien et al (2014) suggested that air temperature is an important determinant for his PM2.5 estimation model in summary, meanwhile inverse correlations of temperature and PM10 were explained as a trend of observing atmospheric dispersion under warm air than cold air masses. The effect on PM at different sizes is similar to the temperature for MOD04 but MYD04 dataset (figure 2(b)). R of 0.527, 0.522 and 0.429 were obtained for MOD04 and 0.617, 0.482 and 0.592 for MYD04 datasets and PM1, PM2.5 and PM10 datasets.

4.2. Satellite-derived aerosol and temperature validation
The MOD04 and MYD AOT at 0.550 μm are compared to AERONET aerosol data at 0.550 μm calculated using log-linear interpolation from two AOT values of two closest channels 0.500 and 0.675 μm (Nguyen et al 2014). The correlation coefficient between MOD04 and MYD04 to AERONET AOT are 0.867 and 0.887, respectively. Figure 4 presents their scatter plots.

We compared MODIS temperature (MOD07 and MYD07 skin temperature) and CEM temperature from December 2010 to September 2014 over four stations (Phu Tho, Ha Noi, Hue, and Da Nang). Satellite data showed strong correlation with CEM temperature (0.878 and 0.799 for MOD07 and MYD07s temperature, respectively). The MOD07 temperature and PM correlation (table 1) was even higher than station temperature and PM data (figure 3).

4.3. Predictor variables and model selection
The BMA technique suggests five and four regression models for MOD and MYD dataset, respectively (see table 2). Each regression model with different variables (i.e.: MODIS derived aerosol—AOT, MODIS derived temperature—Temp, regional monthly temperature/relative humidity/Precipitation—Tempmr, RHmr, Precmr) is evaluated using r² and posterior probability of model correction. The best regression models are MOD #1 and MYD #1 which use satellite-derived aerosol (AOT) and monthly and regional temperature (Tempmr) as predictor variables and then, gain high r² and highest posterior probability. The low r² for MYD models can be explained by outliers in the MYD dataset. Therefore, Cook’s distance using 4/(n-p-1)

\[
\text{MFB} = \frac{2}{N} \sum_{i=1}^{N} \frac{(M_i - O_i)}{(M_i + O_i)} \times 100
\]

where \(N\) is number of samples, \(M_i\) and \(O_i\) are modeled and observed PM mass concentration, respectively. In the above equation, goal is the level of accuracy close to the best estimation and criteria is the level of accuracy acceptable for standard modeling purposes.

4. Experiments and results
4.1. Meteorological and satellite data correlations with PM
The impact of meteorological variations, i.e., temperature (Temp), pressure (Pres), radiation (Rad), wind speed (Wsp) and relative humidity (RH) and satellite-derived aerosol (MOD04 and MYD04) on PM of 1, 2.5 and 10 μm diameters has been evaluated. The results clearly identify the influence of temperature and aerosol parameters on PM concentrations (see figure 3). Results in figure 3(a) suggested stronger influence of temperature on PM than pressure, radiation, wind speed and relative humidity and the relationship gradually decreasing from PM1, PM2.5 to PM10. Correlation coefficient (R) of temperature with PM are -0.561, -0.509 and -0.366 for PM1, PM2.5 and PM10, respectively. Hien et al (2002) has been confirmed that air temperature is an important determinant for his PM2.5 estimation model in summer, meanwhile inverse correlations of temperature and PM2.5 were explained as a trend of observing atmospheric dispersion under warm air than cold air.

\[
\text{PM} \leq \pm 30\% \text{ (goal)}
\]

\[
\text{PM} \leq \pm 60\% \text{ (criteria)}
\]
threshold is applied on MOD and MYD datasets for MOD\#1 and MYD\#1 regression models to remove outliers. The final MOD and MYD regression models are as follows:

\[PM_{2.5}^{\text{MOD}} = 21.444 \times AOT_{t-MOD} - 26.984 \times \text{Temp}_{\text{mr}} + 25.287 \]

\[PM_{2.5}^{\text{MYD}} = 27.401 \times AOT_{t-MYD} - 18.993 \times \text{Temp}_{\text{mr}} + 18.993 \]

in which PM2.5_MOD and PM2.5_MYD are PM2.5 estimated from MOD and MYD models, AOT_MOD and AOT_MYD are MOD04 and MYD04 AOT, Temp_mr is mean monthly temperature for each region.

Table 3 presents regression results of the MOD and MYD regression models. Results suggested \(r^2 \) and RE of 0.602 and 33.348% for MOD data and 0.577 and 53.353% for MYD data. Figure 5 shows scatter plots of fitted PM2.5 mass concentrations with ground based PM data from CEM stations. The above results are comparable to the other results found in literature. For example, Gupta and Christopher 2009a, 2009b achieved \(r^2 \) of 0.462 and 0.547 for hour PM2.5 estimation from MODIS AOT and meteorological factors using multiple linear regression and neural network techniques over southeastern US. Liu et al (2007b) predicted daily PM2.5 from MODIS AOT, high RH season in Eastern and Western US with adjusted \(r^2 \) of 0.42 and 0.21, respectively. Without meteorological data, Lee et al (2011) calculated daily PM2.5 directly from MODIS AOT with \(r^2 \) varying from 0.12–0.88 using linear regression and 0.82–1.00 using mixed effect models in New England region.

Table 1. Correlation Coefficient between MOD07 and MYD07 temperature with CEM temperature.

	MOD07 Temp	MYD07 Temp
# Samples	722	1142
CEM Temp	0.878	0.799
CEM PM1	-0.617	-0.529
CEM PM2.5	-0.605	-0.477
CEM PM10	-0.495	-0.408

Table 2. Regression model selection for MOD and MYD dataset using BMA techniques. Five and four regression models with corresponding coefficients, \(r^2 \) values and post probabilities are suggested for MOD and MYD, respectively. MOD\#1 and MYD\#1 are the best models which use satellite-derived AOT and monthly and regional temperature as variables of PM2.5 concentration and maximize model’s posterior probability.

Table 3. Regression results of the MOD and MYD regression models.

Model	Intercept	AOT_t	Temp_mr	RH_mr	Prec_mr
MOD	27.063	27.839	-36.645	-7.933	12.761
MYD	20.591	29.449	-18.266	-9.966	-2.898

The above results are comparable to the other results found in literature. For example, Gupta and Christopher 2009a, 2009b achieved \(r^2 \) of 0.462 and 0.547 for hour PM2.5 estimation from MODIS AOT and meteorological factors using multiple linear regression and neural network techniques over southeastern US. Liu et al (2007b) predicted daily PM2.5 from MODIS AOT, high RH season in Eastern and Western US with adjusted \(r^2 \) of 0.42 and 0.21, respectively. Without meteorological data, Lee et al (2011) calculated daily PM2.5 directly from MODIS AOT with \(r^2 \) varying from 0.12–0.88 using linear regression and 0.82–1.00 using mixed effect models in New England region.
4.4. Interpolation model
We carried out a 3-fold cross-validation using all valid pixels for each image. Interpolated PM2.5 values are compared with regression PM2.5 values to evaluate Kriging performance (Table 4). For interpolation model, r^2 and RE is 0.935 and 3.703% on average of total 128 datasets, which suggests robustness of our approach.

5. Validation
5.1. Overall assessment
Validation is carried out using 85 MOD and 43 MYD PM2.5 images from December 2010 to September 2014. First, we projected each MODIS image on the Vietnamese grid of 10 km to create a PM2.5 map using the regression model. Because percentage of available data (30%) in each image is limited, the data has been interpolated from valid cells. We extracted PM2.5 over four CEM automatic ground stations (i.e.: Phu Tho, Ha Noi, Hue and Da Nang) which are representative of four regions NE, RRD, NCC and SCC, respectively and compared them with ground PM2.5. Table 5 shows different results of MOD and MYD model performance in which MOD model is slightly dominant. Satellite derived PM2.5 have moderate correlation and error to ground-based PM2.5 ($r^2 = 0.427$ and RE = 39.957%) for MOD dataset but lower correlation and error ($r^2 = 0.337$ and RE = 39.459%) for MYD dataset. Both model performances meet the goals proposed by (Boylan and Russell 2006) for MFB ($\leq 30\%$) and MFE ($\leq 50\%$). Figure 6 shows satellite-derived PM2.5 versus ground measured PM2.5 at Phu Tho, Ha Noi, Hue and Da Nang stations. Satellite-derived PM2.5 was able to replicate average of ground PM2.5 spatially.
patterns, however limited in capturing maximal or minimal peaks. We also analyzed results for different locations (Table 6). Satellite-derived PM$_{2.5}$ at Phu Tho station has the best correlation ($r^2 = 0.412$ and RE = 39.693%) in comparison with ground-based PM$_{2.5}$. At Ha Noi station, predicted PM$_{2.5}$ has low quality with $r^2 = 0.158$ and RE = 36.195% mainly due to large variations in the Ha Noi dataset. Large error was observed at Da Nang station (RE = 45.656% and $r^2 = 0.281$) while moderate results were obtained for Hue station (RE = 32.747% and $r^2 = 0.300$). MFBs show that PM$_{2.5}$ is underestimated in Phu Tho, Ha Noi, and Hue datasets but overestimated in the Da Nang dataset. However, four station’s MFBs and MFEs still meet the goals. We attribute the errors to geolocation. For example, all CEM stations are located closely to roads whereas satellites signals represent an average of 10 km leading to high errors on satellite-derived PM$_{2.5}$.

5.2. Independent validation

We used Ha Long and Khanh Hoa stations for independent validation. They are located in the NE and SCC regions respectively. Ha Long is in Quang Ninh which is a mountainous and coastal province with four distinct seasons and dominated by tourism and coal mining (90 percent of coal output of Vietnam). Khanh Hoa is mostly mountainous and coastal with two distinct seasons (i.e. rainy season from September to December and dry season on other months). It has strong industry and services and a small agriculture sector.

Table 6 shows the high correlation for both station datasets ($r^2 = 0.455$ and 0.444 for Ha Long and Khanh Hoa respectively). RMSEs are 21.512 μg m$^{-3}$ and 8.551 μg m$^{-3}$ for Ha Long and Khanh Hoa datasets but corresponding REs are nearly the same (45.236% and 46.446%). Our models could estimate PM$_{2.5}$ quite well in Khanh Hoa (slope = 0.609) but underestimated PM$_{2.5}$ in the Ha Long (slope = 0.271) which can be explained by appearance of big PM$_{2.5}$ values ($\geq 90 \mu$g m$^{-3}$) in January at Ha Long station, although MFBs and MFEs still meet the goals. Figure 7 shows satellite-derived PM$_{2.5}$ values versus observed PM$_{2.5}$ at Ha Long and Khanh Hoa stations. Time-series patterns are matched well in the Khanh Hoa dataset.

Table 5. Overall validation of satellite-derived PM$_{2.5}$ maps over Phu Tho, Ha Noi, Hue and Da Nang in NE, RRD, NCC and SCC regions, respectively. Results are separated by MOD and MYD datasets and accumulated in total.

#Images	#Samples	r^2	RMSE (μg m$^{-3}$)	RE (%)	MFB (%)	MFE (%)	
MOD	85	189	0.427	21.709	39.957	0.491	34.954
MYD	43	96	0.337	17.188	39.458	3.639	34.799
Total	128	285	0.411	20.299	39.789	1.552	34.902

Table 6. Satellite-derived PM$_{2.5}$ is validated with ground-based PM$_{2.5}$ by station.

Station	#Samples	r^2	RMSE (μg m$^{-3}$)	RE (%)	MFB (%)	MFE (%)
Phu Tho	68	0.412	26.146	39.693	-7.047	36.274
Ha Noi	52	0.158	26.448	36.195	-14.485	38.269
Hue	60	0.300	19.786	32.747	-9.323	33.038
Da Nang	105	0.281	10.276	45.656	21.276	33.410

Table 7. Independent validation of satellite-derived PM$_{2.5}$ and ground-based PM$_{2.5}$ at Ha Long and Khanh Hoa stations.

Station	#Samples	r^2	RMSE (μg m$^{-3}$)	RE (%)	MFB (%)	MFE (%)
Ha Long	40	0.455	21.512	45.236	-2.975	38.695
Khanh Hoa	45	0.444	8.351	46.446	25.988	33.960
5.3. Seasonal and spatial trends

Figure 8 presents monthly PM$_{2.5}$ concentrations in NE, RRD, NCC and SCC representative of Phu Tho—Ha Long, Ha Noi, Hue, Da Nang—Khanh Hoa stations. Figures 9 and 10 are corresponding monthly PM$_{2.5}$ maps averaged from several individual maps (table 8). Regarding ground measurements, two stations in the same region has same data trends (i.e., Phu Tho, Ha Long in NE (figure 8(a)) and Da Nang, Khanh Hoa in NCC (figure 8(d)) which show consistence of PM$_{2.5}$ concentrations over region.

During winter in December and January, PM$_{2.5}$ concentration is high in NE and RRD. It can be explained by influence of the high pressure concuring with NE monsoon and cold weather, which leads to poor atmospheric dispersion and therefore, enhances a high buildup of air pollutants (Kim Oanh et al 2006, Hoang et al 2014). Air pollution is more serious in NE than RRD during this season, especially in industrial provinces including Phu Tho, Thai Nguyen, Bac Giang and Quang Ninh. Local air pollution sources in the NE region are coal mining and thermal power in Quang Ninh, steel factories (account for 2857% of Vietnam as of 2009) and cement production in Thai Nguyen and Phu Tho, agriculture activities and long-range transport pollution from China by NE monsoon during winter (Vietnam Environment Administration 2013, 2014). Meanwhile, air pollution sources in RRD are more complicated since they are often from steel production (account for 4372% of Vietnam as of 2009), cement production in Ha Nam, crafts villages in Ninh Binh, Bac Ninh, Hung Yen, Nam Dinh and Hanoi, agriculture, transportation, construction and domestic activities (Vietnam Environment Administration 2013, 2014). Otherwise, during the summer from May to August, PM$_{2.5}$
concentration is less in NE than in RRD. However, in both regions, level of PM$_{2.5}$ is lower in this period than in winter due to summer rains. Considering PM$_{2.5}$ satellite maps in NE and RRD (figure 8), similar trends in winter and summer can be observed.

SCC with rainy and dry seasons has low PM$_{2.5}$ concentration level and no seasonal trend which is confirmed by Da Nang, Khanh Hoa station measurements (figure 8(d)), PM$_{2.5}$ maps (figure 10) and the previous study (Vietnam Environment Administration 2013).

NCC is a special case with two seasons as SCC (i.e., dry season from March to August and rainy season from August to the next January) but cold and still effected by very strong NE monsoon from the South during rainy season. As presented in figures 8(c) and 10, the seasonal pattern in NCC is more similar to NE and RRD than SCC. The significantly cold months are from December to January. Due to low temperature and precipitation, NCC climate be similar to NE and RRD’s ones during these months.

Over four regions, PM$_{2.5}$ concentrations decrease from the South to the North. In addition, stronger PM$_{2.5}$ is observed in March especially in NE and RRD and we attribute the same to vegetation fires, especially agricultural residue burning (Le et al 2014). More data is needed to substantiate the causative factors of particulate pollution. In conclusion, satellite-derived PM2.5 maps were able to replicate seasonal and spatial trends of ground-based measurements in four different regions. Results highlight the potential use of MODIS datasets for PM estimation at a regional scale in Vietnam.
6. Conclusion

In this study, we developed an approach for temporal particulate matter concentration mapping over Vietnam using MODIS satellite images. PM$_{2.5}$ maps from December 2010 to September 2014 at a 10 km spatial resolution were developed through integrating ground based PM and MODIS data using multiple linear regression and universal Kriging techniques. Data representing four climatology regions in Vietnam i.e., North East, Red River Delta, North Central Coast and South Central Coast are used for modeling and
validation. Validation on satellite derived PM$_{2.5}$ data sets showed significant results in comparison with ground-based measurements. In addition, validation on two independent datasets (i.e.: Ha Long in North East and Khanh Hoa in South Central Coast region) showed similar results suggesting spatial stability and robustness of our methodology. Seasonal trends of PM$_{2.5}$ concentration over NE, RRD, NCC and SCC regions showed consistency between ground stations and satellite-derived PM$_{2.5}$ maps. Over four regions, PM$_{2.5}$ concentrations decreased from the South to the North and we attribute the patterns to regional climatology. Further, limitation in capturing maximal and minimal PM$_{2.5}$ peaks is being addressed. More concerning on ground data, atmospheric conditions and physical aspects for regression model should be done to improve model performance.

Acknowledgments

This research was possible due to financial support of research projects QG TD, 13.27 ‘Air pollution monitoring and warning system’ and QGTD, 13.26 ‘Forest fire information system’ from Vietnam National University, Ha Noi. We are grateful to Center for Environmental Monitoring (CEM), Vietnam Environment Administration (VEA) for PM mass concentration data and National Center for Hydro-Meteorological Forecasting (NCHMF), National Hydro-Meteorological Service (HMS), Ministry of Natural Resources and Environment (MONRE) for meteorological datasets. We would like to thank MODIS and AERONET PI(s) for free data sharing.

References

Anderson H R et al 2012 Satellite-based estimates of ambient air pollution and global variations in childhood asthma prevalence Environ. Health Perspect. 120 1333–9
Atkinson R W, Cohen A, Mehta S and Anderson H R 2012 Systematic review and meta-analysis of epidemiological time series studies on outdoor air pollution and health in Asia Air Quality, Atmosphere & Health 5 383–91
Badarinath K V S et al 2007 Multiyear ground-based and satellite observations of aerosol properties over a tropical urban area in India Atmospheric Science Letters 8 7–13
Badarinath K V S et al 2009 Analysis of aerosol and carbon monoxide characteristics over Arabian Sea during crop residue burning period in the Indo-Gangetic plains using multi-satellite remote sensing datasets Atmospheric and Solar-Terrestrial Physics 71 1267–76
Boylan J W and Russel A G 2006 PM and light extinction model performance metrics, goals, and criteria for three-dimensional air quality models Atmos. Environ. 40 13
Chu D A et al 2003 Global monitoring of air pollution over land from the Earth observing system-terra moderate resolution imaging spectroradiometer (MODIS) J. Geophys. Res. 108 4661
Duncan B N et al 2014 Satellite data of atmospheric pollution for US air quality applications: examples of applications, summary of data end-user resources, answers to FAQs, and common mistakes to avoid Atmos. Environ. 94 647–62
Engel-Cox J A, Hollohan C H, Coutant B W and Hoff R M 2004 Qualitative and quantitative evaluation of MODIS satellite sensor data for regional and urban scale air quality Atmos. Environ. 38 2495–509
EPI 2014 (http://epi.yale.edu/epi)
Fann N, Amy D L, Susan C A, Karen W, David R and Bryan J H 2012 Estimating the national public health burden associated with exposure to ambient PM$_{2.5}$ and ozone Risk Anal. 32 81–95
Gupta P and Christopher S A 2008 Seven year particulate matter air quality assessment from surface and satellite measurements Atmos. Chem. Phys. 8 3311–24
Gupta P and Christopher S A 2009a Particulate matter air quality assessment using integrated surface, satellite, and meteorological products: a neural network approach J. Geophys. Res. 114 D20205
Gupta P and Christopher S A 2009b Particulate matter air quality assessment using integrated surface, satellite, and meteorological products: Multiple regression approach J. Geophys. Res. 114 D14205
Hai C D and Kim Oanh N T 2013 Effects of local, regional meteorology and emission sources on mass and compositions of particulate matter in Ha Noi Atmos. Environ. 78 103–12
Hang N T and Kim Oanh N T 2014 Chemical characterization and sources apportionment offine particulate pollution in a mining town of Vietnam Atmos. Res. 145–6 214–25
Hien P D, Bac V T, Tham H C, Nhan D D and Vinh L D 2002 Influence of meteorological conditions on PM$_{2.5}$ and PM$_{2.5–10}$ concentrations during the monsoon season in Ha Noi, Vietnam Atmos. Environ. 3473–84 3473–84
Hiril M, Mantovani S, Kruger B C, Triebnig G and Flandorfer C 2014 Improvement of air quality forecasts with satellite and ground based particulate matter observations Atmos. Environ. 84 20–7
Hoang X C, Nghiern T D, Nguyen H P and Kim Oanh N T 2014 Air quality management in Hanoi City, Vietnam Improving air quality in Asian developing countries Compilation Res. Findings p 113–31
Ichoku C, Chu D A, Mattoo S and Kaufman Y J 2002 A spatio-temporal approach for global validation and analysis of MODIS aerosol products Geophys. Res. Lett. 29 1616
Kharol S K et al 2012 Black carbon aerosol variations over Patiala city, Punjab, India—a study during agriculture crop residue burning period using ground measurements and satellite data Atmospheric and Solar-Terrestrial Physics 84 45–51
Kim Oanh N T et al 2006 Particulate air pollution in six Asian cities: spatial and temporal distributions, and associated sources Atmos. Environ. 40 1367–80
Klooog I, Ridgway B, Koutrakis P, Coull B A and Schwartz J D 2013 Long- and short-term exposure to PM$_{2.5}$ and mortality: using novel exposure models Epidemiology 24 555–61
Krzysanowski M, Apte J S, Bonjour S P, Brauer M, Cohen A J and Pruss-Unton A M 2014 Air pollution in the mega-cities Current Environ. Health Rep. 1 185–91
Laden F et al 2000 Association of fine particulate matter from different sources with daily mortality in six US cities Environ. Health Persp. 108 941
Le T H, Nguyen T N T, Laskob K, Ilavajhalac S, Vadrevub P K and Justice C 2014 Vegetation fires and air pollution in Vietnam Environ. Pollut. 195 267–75
Lee H J, Liu Y, Coull B A, Schwartz J and Koutrakis P 2011 A novel calibration approach of MODIS AOD data to predict PM$_{2.5}$ concentrations Atmos. Chem. Phys. 11 7991–8002
Liu Y, Franklin M, Kahn R and Koutrakis P 2007a Using aerosol optical thickness to predict ground-level PM$_{2.5}$ concentrations in the St. Louis area: a comparison between MISR and MODIS Remote Sens. Environ. 107 33–44
Liu Y, Koutrakis P, Kahn R, Turquety S and Yantosca R M 2007b Estimating fine particulate matter component concentrations and size distributions using satellite-retrieved fractional aerosol optical depth: 1. A case study Air & Waste Manage. Assoc. 57 1360–9
Liu Y, Koutrakis P, Kahn R, Turquety S and Yantosca R M 2007c Estimating fine particulate matter component concentrations and size distributions using satellite-retrieved fractional
aerosol optical depth: 1. Method development Air & Waste Manage. Assoc. 57 1351–9
Luong C K, Ho T V T, Tran N T and Nguyen L D 2010 Detecting air pollution in Vietnam by optical satellite images The 31st Asian Conf. on Remote Sensing
Ma Z, Hu X, Huang L, Bi J and Liu Y 2014 Estimating ground-level PM$_{2.5}$ in China using satellite remote sensing Environ. Sci. Technol. 48 7436–44
MacNee W and Donaldson K 2003 Mechanism of lung injury caused by PM$_{10}$ and ultrafine particles with special reference to COPD Environ. Sci. Technol. 24 475–815
Monks P S and Beirle S 2011 Applications of satellite observations of tropospheric composition The Remote Sensing of Tropospheric Composition from Space, Physics of Earth and Space Environments ed J P Burrows et al (Berlin, Heidelberg Springer-Verlag)
Nguyen N H and Tran V A 2014 Estimation of PM10 from AOT of satellite Landsat 8 image over Ha Noi city Int. Symp. on Geoinformatics for Spatial Infrastructure Development in Earth and Allied Sciences pp 2014
Nguyen T N T, Ta V C, Le T H and Mantovani S 2014 Particulate matter concentration estimation from satellite aerosol and meteorological parameters, data-driven approaches Knowledge and Systems Engineering 224 351–62
Pelletier B, Santer R and Vidot J 2007 Retrieving of particulate matter from optical measurements: a semiparametric approach J. Geophys. Res. 112 D06208
Pope C A I, Ezzati M and Dockery D W 2009 Fine-particle pollution and life expectancy in the United States The New England J. of Medicine 360 376–86
Schaap M, Apituley A, Timmermans R M A, Koelemeijer R B A and Leeuw G D 2009 Exploring the relation between aerosol optical depth and PM$_{2.5}$ at Cabauw, the Netherlands Atmos. Chem. Phys. 9 909–25
Vadrevu K P et al 2014 Analysis of Southeast Asian pollution episode during June 2013 using satellite remote sensing datasets Environ. Pollut. 195 245–56
van Donkelaar A, Martin R V, Brauer M, Kahn R, Levy R, Verduzzo C and Villeneuve P J 2010 Global estimates of ambient fine particulate matter concentrations from satellite-based aerosol optical depth: development and application Environ. Health Persp. 118 847–55
van Donkelaar A, Martin R V, Levy R, Da Silva A M, Krzyzanowski M, Chubarov N E, Semutnikovag E and Cohen A 2011 Satellite-based estimates of ground-level fine particulate matter during extreme events: a case study of the Moscow fires in 2010 Atmos. Environ. 45 6225–32
Vietnam Environment Administration 2013 National Environmental Report on Air Environment NARENCA
Vietnam Environmental Administration 2014 National Environmental Report on Rural Environment NARENCA
Wang J and Christopher S A 2003 Intercomparison between satellite-derived aerosol optical thickness and PM$_{2.5}$ mass: implication for air quality studies Geophys. Res. Lett. 30 20095
World Health Organization 2006 Working together for health—the World Health Report (http://who.int/whr/2006/whr06_en.pdf)
Yahi H, Santer R, Weill A, Crepon M and Thiria S 2011 Exploratory study for estimating atmospheric low level particle pollution based on vertical integrated optical measurements Atmos. Environ. 45 3891–902
Zha Y, Gao J, Jiang J, Lu H and Huang J 2010 Monitoring of urban air pollution from MODIS aerosol data: effect of meteorological parameters Tellus B 62 109–16