Molecular underpinnings of prefrontal cortex development in rodents provide insights into the etiology of neurodevelopmental disorders

D Schubert¹, GJM Martens² and SM Kolk²

The prefrontal cortex (PFC), seat of the highest-order cognitive functions, constitutes a conglomerate of highly specialized brain areas and has been implicated to have a role in the onset and installation of various neurodevelopmental disorders. The development of a properly functioning PFC is directed by transcription factors, guidance cues and other regulatory molecules and requires the intricate and temporal orchestration of a number of developmental processes. Disturbance or failure of any of these processes causing neurodevelopmental abnormalities within the PFC may contribute to several of the cognitive deficits seen in patients with neurodevelopmental disorders. In this review, we elaborate on the specific processes underlying prefrontal development, such as induction and patterning of the prefrontal area, proliferation, migration and axonal guidance of medial prefrontal progenitors, and their eventual efferent and afferent connections. We furthermore integrate for the first time the available knowledge from genome-wide studies that have revealed genes linked to neurodevelopmental disorders with experimental molecular evidence in rodents. The integrated data suggest that the pathogenic variants in the neurodevelopmental disorder-associated genes induce prefrontal cytoarchitectonal impairments. This enhances our understanding of the molecular mechanisms of prefrontal (mis)development underlying the four major neurodevelopmental disorders in humans, that is, intellectual disability, autism spectrum disorders, attention deficit hyperactivity disorder and schizophrenia, and may thus provide clues for the development of novel therapies.

Molecular Psychiatry (2015) 20, 795–809; doi:10.1038/mp.2014.147; published online 2 December 2014

THE PREFRONTAL CORTEX IN NEURODEVELOPMENTAL DISORDERS

Neurodevelopmental disorders affect a large percentage of the population worldwide. Although the available drugs can alleviate some of the symptoms associated with these disorders, they are not curative and adverse drug reactions are often observed. In addition, many neurodevelopmental disorder-associated symptoms, especially cognitive symptoms, still cannot be treated effectively. To improve the prognosis of a given neurodevelopmental disorder, the effectiveness of existing therapies and the potential for finding new treatment strategies, detailed knowledge of the development and pathophysiology of the disorders is mandatory.¹,² Neurodevelopmental disorders such as intellectual disability (ID), autism spectrum disorders (ASDs), attention deficit (hyperactivity) disorder (AD(H)D) and schizophrenia share particular cytoarchitectonical, connectional and functional features suggesting a similar neurodevelopmental origin. Unfortunately, for the most part, detailed molecular studies of developmental events within brain areas that are involved in the etiology of these neurodevelopmental disorders are still lacking.

A wealth of data indicates that the prefrontal cortex (PFC) contributes to the cognitive deficits or endophenotypes of many, if not all, neurodevelopmental disorders.³–¹² As a conglomerate of individually unique subareas, the PFC has a key role in the execution of higher-order cognitive functions, for example, language comprehension and cognitive functions involved in decision making such as planning and reasoning.¹³–¹⁶ In this respect, the different subareas within the PFC mediate various processes including response inhibition, working memory, attention or autonomic control.¹⁷–²⁰ Furthermore, the medial regions of the PFC, the mPFC, such as the infralimbic, prelimbic and cingulated areas, have a role in the cognitive deficits of many neurodevelopmental disorders.⁷,¹¹

The main neurodevelopmental disorders—ID, ASDs, AD(H)D and schizophrenia—have a complex etiology involving a large number of genes and environmental factors that also affect prefrontal brain regions, including those of the mPFC. Although multiple genes have been found to be associated with each of these disorders, the actual function and involvement of individual genes in the developmental aspects of mPFC formation in particular are largely unknown. Abnormalities in the expression of these genes often lead to impaired or deviant functioning of several brain structures, including the mPFC, affecting behavior as previously shown in animal studies.⁵⁷,²²
In the following, we will give an overview of the main neurodevelopmental disorders with a particular focus on the defects in the development of the mPFC, bearing in mind that areas other than the mPFC may also contribute to the etiology of the disorders.

ID
The diagnostic category mental retardation groups a number of syndromes with severe ID that are associated with chromosomal abnormalities such as Down Syndrome (trisomy of chromosome 21), Prader–Willi and Angelman Syndromes, Williams–Beuren Syndrome, Smith–Magenis Syndrome, DiGeorge Syndrome and monosomy of chromosome 1p36.1.23–26 Other ID syndromes show mild-to-moderate rate phenotypes and are associated with mutations, small insertions/deletions or copy number variations affecting a single gene, for example, fragile X syndrome, caused by a mutation in the FMR1 gene27,28 and Kleeefstra syndrome, caused by a functional loss of the EHMT1 gene.29 Most ID syndromes are associated with development deficits in general, including distorted development of the mPFC.30,32,36 In this respect, during the development of the mPFC of ID patients, molecular/cellular defects have been shown to occur in (a) the proliferation of neuronal progenitor cells,31,32 (b) migration of cortical neurons33–35 and (c) synaptogenesis.36

ASDs
The ASDs include autism, Asperger’s syndrome and ‘preservative developmental disorder not otherwise specified’ Diagnostic and Statistical Manual of Mental Disorders-5th edition (DSM-V). They constitute a group of wide-ranging neurodevelopmental disorders that are characterized by variable impairments in core symptom domains, that is, reciprocal social interaction, (verbal and nonverbal) communication, and restricted, repetitive and stereotype patterns of behavior, interests and activities.40–43 Although many of these behavioral impairments are driven by deficits in basal ganglia and amygdala functioning, cognitive dysfunctions such as memory deficits and deficits in social interaction and perception are integrated by the mPFC.44 The neurodevelopmental basis underlying the defects in language and speech, which are often part of the diagnosis in ASDs relates to abnormalities in fronto-striatal functioning.45–49 Regarding the development of the mPFC of ASD patients, molecular/cellular defects have been reported to occur in (a) the proliferation of neuronal progenitor cells,50,51 resulting in macrocephalic and minicolumn pathology in several brain areas including the PFC,50,40,42,52–54 (b) migration and differentiation of GABAergic parvalbumin+ (PV+) interneurons toward the PFC,55,56 (c) axon guidance, as there seems to be a disconnection of long-distance axonal pathways57,58 and (d) synaptogenesis, particularly of GABAergic synapses.59–61 Deficits in integration and early information processing can be explained by hyperconnectivity combined with slower synapses.62 Furthermore, there is evidence for amplified activation and density of microglia in the PFC of ASD patients.57,63,64

AD(H)D
Inattention, hyperactivity/impulsivity and motivational/emotional dysregulation are the core symptom domains in AD(H)D. In AD(H)D patients, the mPFC-directed cognitive functions are affected and frequently of early onset.65–67 A delay in cortical maturation specifically in the most prefrontal areas and its connections to other brain areas has often been observed68 and there is increasing evidence that glutamate signaling is affected.69 During development, the PFC of patients with AD(H)D shows molecular/cellular defects in (a) the white matter, suggesting axon guidance deficits70–72 (b) dopaminergic and noradrenergic connectivity with the cerebellum and striatum56,67,73–76 and (c) synaptogenesis influencing the electrophysiological properties and functioning of PFC neurons.77–79

Schizophrenia
Schizophrenia is thought to affect mainly (social) cognition, but it usually is also associated with chronic problems of behavioral and emotional regulation.80 Schizophrenia is characterized by a breakdown of thought processes manifested as delusions and hallucinations (positive symptoms) and by poor emotional responsiveness, and disorganized thinking and speech (negative symptoms). People with schizophrenia are likely to have comorbidities such as major depression and anxiety disorders. Furthermore, working and long-term memory, attention, executive functioning and speed of processing are often affected.80 All of these symptoms can at least to some extent be linked to (impaired) PFC functioning.81–84 During development of the mPFC in schizophrenia patients, molecular/cellular defects may occur in the (a) proliferation of neuronal progenitor cells, as reflected by the observed severely decreased gray-matter volume,85 as well as of GABAergic PV+ interneurons,86–87 (b) postnatal pruning of dendritic trees and synapse loss,88–91 (c) general connectivity of various neurotransmitter systems such as the glutamate, GABA and dopamine systems together with a reduced connectivity with other cortical areas.92–99

RODENT MODELS OF NEURODEVELOPMENTAL DISORDERS
Before one can start to develop better and more target-specific therapies for patients with neurodevelopmental disorders, it is necessary to first unravel elementary processes of brain development in adequate animal models and to understand subsequent developmental processes in those areas associated with the endophenotypes of neurodevelopmental disorders. In this way, fundamental hypotheses can be created and tested in relation to the etiology of these disorders. Such parallel approaches are crucial to eventually design optimal treatment strategies.

As mentioned before, although the PFC is often referred to as a single brain region, many subdivisions into distinct areas can be made, each of which possesses its own specific cytoarchitecture, cytochemistry, connectivity and functional properties. Defining these areas across species suffers from the fact that large interspecies differences exist in the layering per area, fueling the debate on whether or not rodents possess a region equivalent to the human PFC as they lack a granular zone in this area.100,101 However, it should be noted that the formation of the general laminar pattern in the PFC shows a relation with phylogenesis: in ‘higher’ mammalian species, such as primates and humans, PFC regions can be granular, that is, they possess a granular layer IV, as well as an agranular layer. The ‘lower’ the species, the smaller the proportion of granular PFC regions (for reviews, see refs 100,101). Thus the concept of homologous structures with similar functions may apply.

In this review, we will focus on the rodent mPFC and its structure–function relationships with connected brain areas in the context of neurodevelopmental disorders.102,103 One example of a well-defined rodent model for neurodevelopmental disorders is the apomorphine-susceptible and apomorphine-unsusceptible Wistar rat. The behavioral impairments seen in the apomorphine-susceptible rats resemble features of schizophrenia,104–106 At least part of this phenotype can be attributed to the differences in the mesocorticolimbic projections.107 Furthermore, mouse models are ideally suited to study targeted molecular alterations.108–114 In this way, genetic variants identified through association studies can be tested for their biological function and correlated with cognitive endophenotypes of human neurodevelopmental disorders. However, the traditional
techniques of targeted mutation used in these kinds of model systems are systemic in nature and often result in inducing compensation mechanisms. Cre-Lox and knock-in systems still affect a large part of the brain, but can offer cell-type selective and temporally controlled strategies to achieve targeted mutations at different pre- and postnatal ages. Although in utero electroporation-mediated gene transfer spatially restrict gene repression or genetic rescues to early developmental time-points (app. E10-E17), virally mediated gene transfer can be performed pre- as well as postnatally. Furthermore, intersectional genetics (Flpe/Cre) to selectively mutate genes of interest in overlapping areas between a Cre and a Flpe allele (for example, Dlx5 Flpe and a region-specific Cre to selectively target GABAergic interneurons in a region of interest) increases the spatial selectivity of such approaches. Using these techniques, it is possible to knock down or rescue a particular gene in a specific part of the brain (for example, PFC) and at a specific time during brain development.

By employing various behavioral tasks, it is now possible to specifically test endophenotypes associated with mPFC function in rodent models, such as working memory, conditioned associative learning, attentional set shifting and reversal learning. Consequently, by combining the targeted mutation with specific behavioral tests and instead of having to study a particular disease as a whole, one can now molecularly unravel the individual cognitive endophenotypes. A further advantage of such an approach is that a causal inference can be made between the expression of a particular gene in a specific brain locus and one or more cognitive (end)phenotypes, which is not yet possible in humans.

DEVELOPMENTAL ASPECTS OF PFC FORMATION

The PFC represents the functionally most advanced brain area with the longest period of maturation. This maturation includes proliferation and migration of neurons, growth of dendrites, the formation of neural micro- and macro-circuits through efferent/afferent axonal projections, and the fine-tuning of synaptic contacts and neuronal density steered by experience. This maturation process starts with an initial phase of cell division within an intrinsically specified PFC region, in which specific transcription factors (TFs) have a timing-critical role (Figure 1). Developmental events such as induction, migration and axon guidance are under the control of extrinsic cues and sculpt the identity of frontal areas. Appropriate cognitive behavior is fine-tuned over time by activity-dependent processes including sensory stimuli and social interactions, which in turn leads to pruning and cell death of unused connections. As a result, intricate convergence of connections with various other brain areas occurs, eventually creating the unique identity of the PFC and the subareas it encompasses (Figure 1). Here, the initial focus will be on the early developmental events of the (fore)brain as a whole and the molecules that are relevant during this phase. Although little is known about the early developmental characteristics of the PFC, many early principles and main mechanisms of forebrain compartmentalization and maturation are also applicable to PFC development. Important to keep in mind is the influence of external stimuli (for example, stress, drugs and hormones) that, if excessive, can lead to an altered development of the PFC and its connected areas. Thus, the knowledge about the genes that are involved in the structural and functional development of the (fore)brain and in particular the PFC is important for a better understanding of the molecular mechanisms underlying (disturbed) cognitive functions. Eventually, this knowledge may enable us to therapeutically intervene when this ‘developmental balance’ is shifted toward neuropsychiatric disorder.

Figure 1. Bird’s eye view of developmental events required for prefrontal cortex (PFC) formation. The identity of the PFC is sculpted over time by intrinsic developmental mechanisms such as expansion by proliferation and regional specification by the differential expression of intrinsic factors (e.g., transcription factors), indicated in blue. These intrinsic factors can control genes (transcriptional control) that affect other developmental events such as the expression and release of soluble morphogens, migration of neurons or guidance molecules that direct axons from other brain areas towards the PFC and vice versa to establish appropriate connectivity. These extrinsic factors are depicted in red. Pruning of appropriate connections and neuron death are under the control of external stimuli (green). Induction of (pre)frontal boundaries

The developmental progression of the forebrain starts with regional expansion through division of neuronal progenitor cells in proliferative zones lining the embryonic ventricles of the brain. The most anterior part of the neural tube develops into three primary vesicles even before the posterior section of the tube has formed: the prosencephalon (forebrain), mesencephalon (midbrain) and rhombencephalon (hindbrain). After closure, the neural tube is characterized by a sequence of swellings and constrictions along the anteroposterior axis, some of which subsequently develop into strict boundaries. Except for the specific boundary compartment, the zona limitans intrathalamic a (ZLI), no unique set of boundary markers has been identified for regions of the forebrain and most of the telencephalon develops in an unsegmented way. Anterior of the midbrain–hindbrain border (MHb) or isthmus, the diencephalon consists of three neuromeres (p1–p3) according to the so-called prosomeric model. The more anterior prosomeres (p4–p6) subdivide the secondary prosencephalon (hypothalamus and telencephalon). The boundaries that are created function to arrange and stabilize local signaling centers or ‘organizers’ important for the early patterning of the embryonic brain (Figures
2a and b). Gradually, gradients of soluble morphogens and growth factors (Fgf, BMP, SHH and Wnts)129,130 are secreted from signaling centers and regulate the graded expression of certain intrinsic TFs, a process that is called induction131 (Figures 2a and b).

Fgfs, especially Fgf8, Fgf17 and Fgf18 from the rostral patterning center (also called anterior neural ridge) provide, apart from their role in other areas, positional information on the presumptive prefrontal region along the rostro-caudal axis of the forebrain.132,133 The dorsal patterning center or cortical hem

Figure 2. Molecular stages in the development of the PFC. (a) Schematic representation of the frontal view of a young (E11.5) mouse forebrain showing inductive influences (morphogens such as Fgfs, Wnts, SHH and BMPs; stage I). (b) Sagittal schematic views. These morphogens (stage I) have an effect on regional specification through intrinsic expression of transcription factors (stage II). This combinatorial code will have its effect on the cell-type specification of the major neurotransmitter systems (stage III). The neurotransmitter systems will connect to the PFC, shaping it and establishing the respective neural networks (stage IV). ANR, anterior neural ridge; DA, dopaminergic; DI, diencephalon; MES, mesencephalon; MET, metencephalon; MHB, mid-hindbrain border; NA, noradrenergic; PFC, prefrontal cortex; RPC, rostral patterning center; SHH, sonic hedgehog; Tel, telencephalon; VSC, ventral signaling center; ZL, zona limitans; 5-HT, serotonergic.
secretes Bmp4/Wnt3A, which has a role in medial and dorsal pallium patterning,134–136 but in combination with SHH also steers prefrontal formation (Figures 2a and b). SHH is expressed by the ventral signaling center and regulates Fgf8 expression through the transcriptional repressor Gil3.137–140 Absence of Fgf17 leads to a reduced PFC size and abnormal social behavior.141,142 Thus, Bmp, Wnt and Fgf proteins all work coordinately to pattern the most rostral telencephalon.139,143 Interference with each of the three Fgf receptor subtypes results in reduced numbers of either excitatory or inhibitory neurons, specifically in the prefrontal area and often resulting in altered behavior.144–149

Regional identity of the PFC through intrinsic patterning

The gradients of morphogens and signaling molecules from the early patterning centers impart positional information influencing the expression of intrinsic TFs (Figure 2b). These have a crucial role in the regionalization of the forebrain and correlate with morphologic boundaries, the so-called regional specification underlying the spatio-temporal control of postnatal arealization,131,150–152 The regional identity that is created by the expression of TFs includes the final cell-type specification.153 The inductive signals provided by morphogens and signaling molecules regulate the combinatorial expression of TFs and other regulatory factors, resulting in the generation of specific neuronal subtypes154,155 (Figure 2a and b).

The interaction between extrinsic growth factors and intrinsic TFs during the early developmental events evolves through rostral patterning by the factors Fgf8 and Fgf17 through the Fgf receptors. This Fgf-signaling promotes the expression of the TFs Foxg1, Six3, Sp8, Pax6, Ern (etv5), Er81 (etv1), Nkx2.1 and Pea3, and represses the expression of Coup-tf1 and Emx2 more caudally.131,133,156 Although it is most likely the expression of a combination of multiple TFs that underlies the identity of an area, there are a few individual TFs that are specifically linked to the development of the most rostral part of the cortex. The expression of the TFs Pax6 and Emx2, for example, is known to have a role in cortical identity in general.131,157,158 Yet, very few TFs are specifically expressed in and linked to early PFC development.

During the course of development, distinct neuronal cell types will express a variety of proteins that are involved in migration, targeting (for example, axon guidance) and specific neurotransmitter release. This set of proteins is unique for each cell type, thereby regulating the formation of functional areas.159 The expression of the respective genes (extrinsic genes) is under the control of a distinct combinatorial code of TFs generating neuronal diversity160 (Figure 1 and Figure 2). Other TFs such as Rest4 and Nurr1 display increased expression in the PFC and are involved in various aspects of cognitive behavior.161,162 Although an abundance of genome-wide expression data shows that specific TFs are expressed in later stages of PFC development, their downstream targets and functional relevance are largely unknown.163–166 In fact, the existing data are now congruent with a model in which each neuronal cell type within the PFC (but also other areas) most likely uses an exclusive code of intrinsic genes to control the expression of extrinsic genes. This code is unique to each particular cell type essential for the sequential steps in development. The next level of complexity starts off when extrinsic mechanisms such as migration and afferent input begin to have a role in the development of the prefrontal areas.

Proliferation and migration of PFC neurons

The PFC, like other cortical areas, expands by generating new neurons through (a) symmetric divisions of radial glia cells in the (sub)ventricular zone lining the ventricles.167,168 During this process, reduction of the extrinsic morphogen Fgf8 results in less proliferation and more apoptosis, which ultimately changes the identity of the cortex.152,169,170 In particular Fgf has a determining role in the production of excitatory glutamatergic pyramidal neurons in the most anterior part of the cortex with deletion of the gene resulting in a reduced number of excitatory cortical neurons.171 Many TFs controlling the cell cycle, including cyclinD1, drive prefrontal expansion.39 Some newborn progenitors or intermediate progenitor cells expressing Tbr2 migrate to the subventricular zone to generate neurons. Lack of Tbr2 expression results in reduced cortical surface and thickness.172–175 It is furthermore widely accepted that classical neurotransmitters such as dopamine and serotonin have an early role in controlling the neuron numbers within the PFC.176–178

The differential expression of TFs but also of adhesion and axon guidance molecules reflects a signage map for migrating neurons. The expression patterns are graded along the anterior–posterior and medial–lateral axes of the embryonic brain instructing neurons to establish functionally distinct lamina. During embryogenesis, most brain areas deploy radial migration in multiple waves as their major route to establish laminination within the structure.167,179,180 Radial glia cells, with their cell body within the ventricular zone, send out their glial processes toward the pial surface where they attach to the basal membrane. Newborn neurons that become (excitatory) projection neurons use the glial scaffold to migrate to their final place in the brain by using either somal translocation or locomotion.167,180,181 The ventricular zone generates the deeper layer neurons, including the subplate, layer VI and subsequently layer V projection neurons. Additionally, Cajal–Retzius neurons are generated within the cortical hem and to a lesser extent at other sites in the subpallium and septum. These layer I neurons express Reelin, a large secreted glycoprotein intricately involved in the inside-out laminating patterning of cortical neurons.182,183 At later stages, the subventricular zone gives birth to neurons which migrate radially into the cortical plate past the deep layer neurons and form layers IV, III and II of the PFC, creating an inside-out pattern. Most of the projection neurons (80%) use glutamate as their neurotransmitter projecting to distant cortical and subcortical targets. The basic molecular developmental mechanisms that have been elucidated in rodent studies are in principle similar to those in humans, even though the human brain has gone through a series of additional evolutionary steps, including size, shape and gyriﬁcation modiﬁcations.184–186

Migration of GABAergic interneurons towards the PFC

A small proportion of neurons, which includes the majority of GABAergic (GAD65/67+) interneurons originating from the ganglionic eminences, migrate tangentially to the cortical plate, then radially to reach their target lamina.187 The subpallial interneurons migrate via a lengthy route towards the PFC using directional cues to eventually position themselves between pyramidal projection neurons on which they synapse.167,188 Medial ganglionic eminence-derived interneurons will generate PV and somatostatin interneurons that populate all cortical structures (as well as hippocampus, striatum, amygdala, etc.). These interneurons are speciﬁed in the medial ganglionic eminence by the expression of Nkx2.1 and Lhx6 followed by Sox6 expression as they start migrating. In contrast, caudal ganglionic eminence-derived interneurons encompass all 5-HT3A-expressing interneurons of various morphology and physiology.188 The homeobox TFs Dlx1 and Dlx2 mainly regulate the maturation of GABAergic (inter)neurons within the ganglionic eminences, having the TF Arx as a downstream target.189 However, the combinatorial expression of TFs such as Olig2, Dlx5, Arx, Lhx6, Cux2, Npas1 and MafB deﬁne the various subpopulations of interneurons within the subpallium that end up in the (prefrontal) cortex.190,191 As development progresses, interneurons within the (prefrontal) cortex start to express transporters (GAT-1 and -3), VGAT and components of GABAergic synapses190 making them highly adaptive to the maturing PFC.
Axon guidance, target selection and synapse formation of PFC neurons

The assembly of neuronal circuits during embryonic development relies upon the guidance of growing axons to their synaptic targets. To help them find their synaptic partners, developing axons are tipped with a highly motile sensory structure, the growth cone. Growth cones are instructed to follow predetermined trajectories by heterogeneously distributed guidance molecules in the extracellular environment. Binding of axon guidance molecules to receptor complexes on the growth cone surface initiates intracellular signaling events, which modulate growth cone morphology and directionality through local modifications of the cytoskeleton. Axon guidance molecules can act as attractants or repellents, that is, either directing growth cones toward a specific structure or preventing them from entering inappropriate regions. Furthermore, these cues exist as membrane-associated molecules acting at short ranges or as soluble agents with long-distance effects.191–194 The responses of growing axons to particular cues, however, may change as they grow toward their final targets.176 For example, Semaphorin 3F is such a bidirectional guidance cue that, through binding with Neuropilin-2, initially repels dopaminergic axons from the rostral ventral tegmental area on their way to the mPFC, and later attracts and orients them within the mPFC.176 Changes occurring in pyramidal morphology in terms of expansion of dendritic complexity are specifically apparent in layer III.197–199 Furthermore, during the first four postnatal weeks the local inhibitory interneuron networks in the mPFC undergo an extensive process of maturation, both at the level of intrinsic functional as well as network properties.201,202 Given that inhibitory network activity is thought to contribute to the proper construction of cortical networks, the refinement of synaptic connectivity in inhibitory and excitatory networks leads to developmental plasticity and fine-tuning of complex behavior.

Topographic map formation in PFC connectivity: parcellation versus lamination

As mentioned above, in rodents and other phylogenetically ‘higher’ species, the PFC is not one homogeneous cortical region but is compartmentalized into a number of structurally and functionally distinct prefrontal areas, each of which is thought to possess characteristic input–output profiles. In general, the rodent PFC can be subdivided into medial, lateral and ventral sections. Within the medial portion, the anterior cingulate (Cg), prelimbic (PL) and infralimbic (IL) cortices (Figure 3) and dorsal peduncular cortex can be distinguished from dorsal to ventral.203 The lateral and ventral PFC consists of the orbitofrontal cortex and the agranular insular cortices.204 The different areas of the PFC are connected to various other brain regions through
Gene Involvement in PFC development	ID	ASDs	AD(H)D	Schizophrenia
Induction of prefrontal boundaries	Fgf17 is secreted by the rostral patterning center (RSC) and is involved in the induction of prefrontal boundaries.	Fgf17 knockout mice display deficits in specific social interactions that have been linked to ASDs.	A mutation in SHH was found in two boys with ADHD.	
Fgf17 knockout mice display FGF17. Fgf17 is secreted by the rostral forebrain malformation associated with craniofacial anomalies and MR.				
SHH Shh is secreted by the VSC and regulates the expression of Fgfs, which is involved in the induction of prefrontal boundaries.	Mutations in SHH cause holoprosencephaly, a common forebrain malformation associated with craniofacial anomalies that have been linked to ASDs.	Significantly higher levels of serum SHH protein were found in children with autism.		
Proliferation and migration of PFC neurons	Fgf2 has an important role in the production of glutamatergic pyramidal neurons in the prefrontal cortex.	Fg2 knockout mice show hyperactivity.	Serum FGF2 levels were found to be increased in people with schizophrenia.	
Fgf2 knockout mice show FGF2. Fgf2 has an important role in the production of glutamatergic pyramidal neurons in the prefrontal cortex.				
Fgfr1 is required for the proper number of glutamatergic pyramidal neurons in the frontal cortex.	Dominant or recessive FGFR1 mutations are responsible for Hartsfield syndrome. Dysfunctional Fgfr1 signalling is associated with spontaneous hyperactivity.		FGF1R levels are higher in schizophrenia.	
Fgf2 knockout mice show FGF2. Fgf2 has an important role in the production of glutamatergic pyramidal neurons in the prefrontal cortex.				
FGFR1 mutations in SHH cause holoprosencephaly, a common forebrain malformation associated with craniofacial anomalies and MR.				
Fgf2 knockout mice show FGF2. Fgf2 has an important role in the production of glutamatergic pyramidal neurons in the prefrontal cortex.				
DGX2 Dlx2 controls interneuron migration toward frontal forebrain.	Deletions of DLX2 are associated with MR.	DLX2 shows genetic association with autism.	GAD1 expression is altered in schizophrenia patients and is considered a risk gene.	
GAD1 Gad1 regulates the migration of GABA-ergic interneurons to the PFC.	Gad1 is an ASD susceptibility gene.			
Migration of GABAergic interneurons into the PFC	DLX2 Dlx2 controls interneuron migration toward frontal forebrain.	Deletions of DLX2 are associated with MR.	DLX2 shows genetic association with autism.	
Axon guidance, target selection and synapse formation of PFC neurons	Erbb4 regulates dendritic spine formation and density of PV+ interneurons in the PFC.	ERBB4 is associated with ID.	Numerous studies implicate ERBB4 as schizophrenia risk genes. For reviews, see refs 268,269.	
Erbb4 regulates dendritic spine formation and density of PV+ interneurons in the PFC.				
EIF4E EIF4E has a role in synaptic function, dendritic spine density and synaptic plasticity of PFC neurons.	EIF4E shows genetic association with autism.	Human and animal models carrying the FMR1 mutation display ADHD symptoms.	Reduced levels of FMR1 and mutations of associated genes in schizophrenia patients.	
EIF4E shows genetic association with autism.				
Fmr1 functions in synaptogenesis of dendritic spines of PFC neurons.	Mutations/deletions of FMR1 cause Fragile X Syndrome, most common known hereditary cause of MR/ID and autism. Reviews: refs 28,30,278.	Mutations/deletions of FMR1 cause Fragile X Syndrome, most common known hereditary cause of MR/ID and autism. Reviews: refs 279–281.		
Fmr1 functions in synaptogenesis of dendritic spines of PFC neurons.				
GRID1 Grid1 has a role in synaptogenesis of PFC neurons.	Genetic association and Grid1 knockout mice show autism-like behavior.	Genetic association and Grid1 knockout mice show autism-like behavior.	GRID1 shows genetic association with schizophrenia and gray-matter reduction in patients.	
Nrp2 is involved in regulating axon guidance of PFC neurons.	NRP2 mutations are associated with autism.	NRP2 mutations are associated with autism.	RELN shows genetic association with schizophrenia. Reviews: refs 301–303.	
Nrp2 is involved in regulating axon guidance of PFC neurons.				
RELN Reln is involved in regulating spine density and network formation.	Disruption of RELN is associated with MR.	RELN shows genetic association with autism. Reviews: refs 298–300.	RELN shows genetic association with schizophrenia. Reviews: refs 301–303.	
RELN Reln is involved in regulating spine density and network formation.				
MECP2 McP2 plays a critical role in the regulation of GABAergic transmission and cortical excitability of PFC pyramidal.	MECP2 is associated with MR/ID and especially linked to Rett syndrome. Reviews: refs 305,306.	MECP2 is genetically linked to ASD. Review: ref 309.	De novo mutations of MECP2 found in schizophrenia patients.	
highly organized projections controlling decision-directed behavior.205–207

Input connectivity of the mPFC. In terms of the afferent connectivity of the mPFC, a comprehensive and detailed comparison of area-specific input connectivity is still lacking. The mPFC is known to receive long ascending projections from the ventral hippocampus,208,209 from cholinergic neurons of the basal forebrain,176 from dopaminergic neurons of the rostral part of the medial ventral tegmental area176,212,213 and from serotonergic/cholinergic neurons of the brainstem along a highly defined trajectory.214,215 Functionally, the connection with the ventral hippocampus is thought to be of particular importance for the functioning of the mPFC during cognitive tasks.216,217 The cholinergic and dopaminergic systems are considered to modulate mPFC activity and attentional performance.218,219 Interestingly, the dopaminergic projections from the ventral tegmental area show strong laminar and cell-type specificity. They form dense contacts exclusively with interneurons in layers V and VI,216,217,220,221 while for example projections from limbic and thalamic regions innervate both interneurons and pyramidal cells throughout layers II–VI.222–224 Furthermore, connections of the mPFC with both the basolateral amygdala220,225 and the striatum are implicated in motivated behavior.226,227 Interestingly, the long-range connections originating from the basolateral amygdala have been shown to not only be layer- but also cell-type specific. Neurons in the basolateral amygdala preferentially target layer II pyramidal neurons in the mPFC, such as PL and amygdala, with which they can form reciprocal connections.225,228

Output connectivity of the mPFC. As in other cortical areas, the long-range efferent connections of the mPFC are mediated by excitatory projection neurons, that is, glutamatergic pyramidal cells. Depending on the PFC area, the pyramidal cells project to many structures such as the basal forebrain, olfactory and cortical structures, amygdala, striatum, (hypo)thalamus and the brainstem.204,215,225,226,229 In addition, prefrontal pyramidal neurons project to various subcortical areas thereby modulating dopaminergic, adrenergic, cholinergic and serotonergic projection systems.101,204 The targets of the projection neurons show distinct layer specificity. Layer III pyramidal neurons connect the mPFC mainly to other cortical areas, whereas layers V and VI pyramidal cells project primarily to subcortical targets.230,231 Furthermore, there is evidence for layer specificity of projections onto individual subcompartments of single brain structures. In terms of the nucleus accumbens, mPFC layer II pyramidal neurons preferentially innervate the core region, whereas neurons of deep layers V and VI innervate the core as well as the shell region.232

In contrast to the input connectivity, there is ample data demonstrating that the output connectivity properties of the mPFC are area dependent, which supports the notion that prefrontal areas are involved in modulating various aspects of cognitive behavior.233 The PFC is not only in rodents but also in a number of other species.220,229,230 The dorsoventral areas of the PFC establish connections with the sensorimotor and association cortex, which are lacking in the ventral parts of the PFC. The ventral parts, however, establish relatively strong connections with the amygdaloid complex and limbic association cortices. Furthermore, the IL has been shown to mainly project to autonomic/visceral related sites, supporting its role in visceromotor activity,204 whereas the PL primarily innervates limbic sites that are thought to affect cognition.

FUTURE TRANSLATIONAL AVENUES OF RESEARCH

In summary, substantial progress has been made in the past decades toward understanding the etiology of neurodevelop-
mental disorders at the molecular, cellular and systems levels. Nevertheless, we have only just begun to thoroughly study the development of a conglomerate of specific brain areas that as a group define the PFC and that are involved in the etiology of these disorders. In this context, it is remarkable that the exact molecular orchestration of the development of the PFC is still largely unknown. What are the molecular mechanisms that create a correctly parcellated and layered PFC? How are the extensive and highly specific interactions between various signaling pathways that are connecting the individual areas fine-tuned and how can we manipulate these? We are also only beginning to shed light on the large variety of neuronal cells and their integration in prefrontal local and global networks, letting alone that we would know all the molecules that guide their differentiation and projections.

To test targeted molecular variations, rodents have emerged as an excellent model. Animal models and functional assays are invaluable as it comes to decipher the exact functions of the large number of genes that are involved in the various aspects of PFC development, that is, induction of prefrontal boundaries, intrinsic patterning of the PFC, proliferation and migration of (pyramidal) PFC neurons, migration of GABAergic interneurons toward the PFC, axon guidance, target selection and synapse formation of PFC neurons, and PFC connectivity formation. Slowly, the view is emerging that some of these genes are identical to the susceptibility genes of neurodevelopmental disorders (Table 1). However, up to now only a few of the genes could be directly linked to one or more of the developmental events within the PFC as well as one or more of the four major neurodevelopmental disorders, that is, ID, ASDs, AD(H)D and/or schizophrenia.

Especially the availability of in utero electroporation-mediated gene transfer and other genetic approaches and hence the possibility to locally knock down or rescue particular genes will hopefully enable us to unravel the exact orchestration of brain areas such as those within the PFC in the near future. Such knowledge will assist in developing early intervention approaches by altering the susceptibility genes at a particular time and place, such that we deviate from the predetermined developmental path, even before the onset of the neurodevelopmental disorder(s) in question. Considering that individual susceptibility genes of neurodevelopmental disorders have often been found to be associated with multiple disorders, we can assume that several disorders share a common neurodevelopmental origin. It will be a challenge to dissect the individual genetic (and possibly even epigenetic) contributions to a disorder by using functional studies combined with behavioral tasks. For example, gene-environment interactions are crucial to distinguish between risk and vulnerability.

It is to be expected that in the coming years many more genes regulating developmental processes in the PFC and other brain structures will be linked to neurodevelopmental disorders and vice versa. Animal models, in which we can specifically alter gene expression in the PFC, can be instrumental for the understanding of the aetopathological aspects of the disorder(s), as we can manipulate the early experiences that will eventually lead to defects in brain maturation and behavior. In order to move toward better and more preventive treatment of the neurodevelopmental disorders, bridges need to be built between disciplines such as combining genetic analyses of patients suffering from neurodevelopmental disorders with structural and functional brain imaging and in-depth molecular in vitro and in vivo approaches with cell and animal models. Exploring the molecular and cellular aspects during the progression of the disease process in animal models will clarify the pathological mechanisms, which in turn may provide clues to develop novel treatments for these disorders. The earlier during life and the more personalized the treatment strategies are applied, the better, alleviating symptoms at an early stage and reducing medical costs dramatically.

ACKNOWLEDGMENTS

This work was supported by grants from the Donders Centre for Neuroscience, Radboud University Nijmegen (DS, SMK). The authors thank Prof B. Franke, Dr W. Scheenen, Prof H. van Bokhoven and Prof A. Kriegstein for critically reviewing the manuscript and the anonymous reviewers for their comments. Also, we apologize for those primary works not referenced here due to space limitations.

REFERENCES

1. Patel V, Boyce N, Collins PY, Saxena S, Horton R. A renewed agenda for global mental health. Lancet 2011; 378: 1441–1442.
2. Belfer ML. Child and adolescent mental disorders: the magnitude of the problem across the globe. J Child Psychol Psychiatry 2008; 49: 226–236.
3. Mitchell SR, Reiss AL, Tatsuoka DH, Ikuta I, Kazmerski DB, Botti JA et al. Neuro-anatomic alterations and social and communication deficits in monozygotic twins discordant for autism disorder. Am J Psychiatry 2009; 166: 917–925.
4. Benton ME, Dickey CC, Frumin M, McCrory RW. A review of MRI findings in schizophrenia. Schizophr Res 2001; 49: 1–52.
5. Lesh TA, Niendam TA, Minzenberg MJ, Carter CS. Cognitive control deficits in schizophrenia: mechanisms and meaning. Neuropsychopharmacology 2011; 36: 316–338.
6. Casanova MF. Functional and anatomical aspects of prefrontal pathology in schizophrenia. Schizophrenia bulletin 1997; 23: 517–519.
7. Arnsen AF. Stress signalling pathways that impair prefrontal cortex structure and function. Nat Rev 2009; 10: 410–422.
8. Arnsen AF. Prefrontal cortical network connections: key site of vulnerability in stress and schizophrenia. Int J Dev Neurosci 2009: 215–223.
9. Collins PT, Patel V, Joest S, March D, Insel TR, Daar AS et al. Grand challenges in global mental health. Nature 2011; 475: 27–30.
10. Kendler KS, Neale MC. Endophenotype: a conceptual analysis. Mol Psychiatry 2010; 15: 789–797.
11. Gamo NJ, Arnsen AF. Molecular modulation of prefrontal cortex: rational development of treatments for psychiatric disorders. Behav Neurosci 2012; 125: 282–296.
12. Lewis DA, Curley AA, Glauser JR, Volk DW. Cortical parvalbumin interneurons and cognitive dysfunction in schizophrenia. Trends Neurosci 2012; 35: 57–67.
13. Thompson-Schill SL, Bedny M, Goldberg RD. The frontal lobes and the regulation of mental activity. Curr Opin Neurobiol 2005; 15: 219–224.
14. Egner T, Hirsch J. Cognitive control mechanisms resolve conflict through cortical amplification of task-relevant information. Nat Neurosci 2005; 8: 1784–1790.
15. Etkin A, Egner T, Peraza DM, Kandel ER, Hirsch J. Resolving emotional conflict: a role for the rostral anterior cingulate cortex in modulating activity in the amygdala. Neurolon 2006; 51: 871–882.
16. Miller ER. The prefrontal cortex and cognitive control. Nat Rev 2000; 1: 59–65.
17. Miller EK, Cohen JD. An integrative theory of prefrontal cortex function. Ann Rev Neurosci 2001; 24: 167–202.
18. Summerfield C, Egner T, Greene M, Koechlin E, Mangels J, Hirsch J. Predictive coding for forthcoming perception in the frontal cortex. Science 2006; 314: 1331–1334.
19. Duncan J. An adaptive coding model of neural network in prefrontal cortex. Nat Rev 2001; 2: 820–829.
20. Mansouri FA, Tanaka K, Buckley MJ. Conflict-induced behavioural adjustment: a clue to the executive functions of the prefrontal cortex. Nat Rev 2009: 10: 141–102.
21. Niwa M, Kamiya A, Muri R, Kubo K, Gruber AJ, Tomita K et al. Knockdown of DISC1 by in utero gene transfer disturbs postnatal dopaminergic maturation in the frontal cortex and leads to adult behavioral deficits. Neurolon 2010; 65: 480–489.
22. Loos M, Muller T, Gouwdenberg Y, Wijnands R, van der Loo RJ, Birchmeer C et al. Neuregulin-3 in the mouse medial prefrontal cortex regulates impulsive action. Biol Psychiatry 2014; 76: 648–655.
23. Antonarakis SE, Lyle R, Dermietzakis ET, Reymond A, Deutsch S. Chromosome 21 and down syndrome: from genomics to pathophysiology. Nat Rev Genet 2004; 5: 725–738.
24. Contestabile A, Benfenati F, Gasparini L. Communication breaks-down: from neurodevelopment defects to cognitive disabilities in Down syndrome. Prog Neurol Biol 2010; 91: 1–22.
25. van Bokhoven H. Genetic and epigenetic networks in intellectual disabilities. Annu Rev Genet 2011; 45: 81–104.
26. Chey J, Mandal JL. Monogenic causes of X-linked mental retardation. Nat Rev Genet. 2001; 2: 669–680.
Molecular Psychiatry (2015), 795 – 809

Fatemih SH, Halt AR, Stary JM, Kanodia R, Schulz SC, Realmuto GR. Glutamic acid decarboxylase 65 and 67 kDa proteins are reduced in autistic parietal and cerebellar cortices. Biol Psychiatry 2002; 52: 805–810.

Zhang ZW, Zak JD, Liu H. MeCP2 is required for normal development of GABAergic circuits in the thalamus. J Neurophysiol 2010; 103: 2470–2481.

Zikopoulos B, Barbas H. Changes in prefrontal areas may disrupt the network in autism. J Neurosci. 2010; 30: 14595–14609.

Zikopoulos B, Barbas H. Altered neural connectivity in excitatory and inhibitory cortical circuits in autism. Front Hum Neurosci 2013; 7: 609.

Medrithan L, Tantalaki E, Aramuni G, Sargsyan V, Dudanova I, Missler M et al. Early defects of GABAergic synapses in the brain stem of a MeCP2 mouse model of Rett syndrome. J Neurophysiol 2008; 99: 112–121.

Rudolfi K, Hammerschmidt K, Boretius S, Voraquez F, El-Kordi A, Ronnenberg A et al. Neurologin-3-deficient mice: a model of a monogenic heritable form of autism with an olfactory deficit. Genes Brain Behav 2009; 8: 416–425.

Santini E, Huyhn TN, MacAskill AF, Carter AG, Pierre P, Ruggero D et al. Exaggerated translation causes synaptic and behavioural aberrations associated with autism. Nature 2013; 493: 411–415.

Testa-Silva G, Loebel A, Giugliano M, de Kock CP, Mansvelder HD, Meredith RM. Hyperconnectivity and slow synapses during early development of medial prefrontal cortex in a mouse model for mental retardation and autism. Cereb Cortex. 2012; 22: 1333–1342.

Morgan JT, Chana G, Pardo CA, Achim C, Semendeferi K, Buckley J et al. Microglial activation and increased microglial density observed in the dorsolateral prefrontal cortex in autism. Biol Psychiatry 2010; 68: 368–376.

Morgan JT, Chana G, Abrahams BS, Semendeferi K, Courchesne E, Everall IP. Abnormal microglial-neuronal spatial organization in the dorsolateral prefrontal cortex in autism. Brain Res. 2012; 1456: 72–81.

Biederman J. Attention-deficit/hyperactivity disorder: a selective overview. Biol Psychiatry 2005; 57: 1215–1220.

Liston C, Malter Cohen M, Teslovich T, Leverson D, Casey BJ. Atypical prefrontal connectivity in attention-deficit/hyperactivity disorder: pathway to disease or pathological end point? Biol Psychiatry 2011; 69: 1168–1177.

Brennan AR, Arinstein AF. Neuronal mechanisms underlying attention deficit hyperactivity disorder: the influence of arousal on prefrontal cortical function. Ann NY Acad Sci. 2008; 1129: 236–245.

Shaw P, Eckstrand K, Sharp W, Blumenthal J, Lerch JP, Greenstein D et al. Attention-deficit/hyperactivity disorder is characterized by a delay in cortical maturation. Proc Natl Acad Sci USA. 2007; 104: 1964–1965.

Maltezos S, Horder J, Coghlan S, Skirrow C, O’Gorman R, Lavender TJ et al. Glutamate/glutamine and neuronal integrity in adults with ADHD: a proton MRS study. Transl Psychiatry 2014; 4: e173.

D’Agati E, Casarelli L, Fitzariti MB, Pasini A. Overflow movements and white matter abnormalities in ADHD. Prog Neuropsychopharmacol Biol Psychiatry 2010; 34: 441–445.

Xia S, Li X, Kimball AE, Kelly MS, Lesser I, Branch C. Thalamic shape and connectivity abnormalities in children with attention-deficit/hyperactivity disorder. J Neuropsychiatry Clin Neurosci. 2011; 23: 12060–12065.

Hart H, Marquand AF, Smith A, Cubillo A, Simmons A, Brammer M et al. Predictive neurofunctional markers of attention-deficit/hyperactivity disorder based on pattern classification of temporal processing. J Am Acad Child Adolesc Psychiatry 2014; 53: 569–798, e1.

Arinstein AF. Fundamentals of attention-deficit/hyperactivity disorder: circuits and pathways. J Clin Psychiatry. 2006; 67(Suppl B): 7–12.

Rommelse NN, Geurts HM, Franke B, Buitelaar JK, Hartman CA. A review on cognitive and brain endophenotypes that may be common in autism spectrum disorder and attention-deficit/hyperactivity disorder and facilitate the search for pleiotropic genes. Neurosci Biobehav Rev 2011; 35: 1363–1396.

Leo D, Sorrentino E, Volpichelli F, Eyman M, Greco D, Viggiano D et al. Altered midbrain dopaminergic neurotransmission during development in an animal model of ADHD. Neurosci Biobehav Rev 2003; 27: 661–669.

Miller EM, Pomerleau F, Huettl P, Gerhardt GA, Glaser PE. Aberrant glutamate signaling in the prefrontal cortex and striatum of the spontaneously hyperactive rat model of attention-deficit/hyperactivity disorder. Psychopharmacology 2014; 231: 3019–3029.

Fossella JA, Sommer T, Fan J, Piff D, Posner ML. Synaptogenesis and heritable aspects of executive attention. Ment Retard Dev Disabil Res Rev 2003; 9: 178–183.

Kenar AN, Ay OI, Herken H, Erdal ME. Association of VAMP-2 and Syntaxin 1A genes with adult attention deficit hyperactivity disorder. Psychiatry Investig 2014; 11: 76–83.

Hawi Z, Matthews N, Wagner J, Wallace RH, Butler TJ, Vance A et al. DNA variation in the SNAP25 gene confers risk to ADHD and is associated with reduced expression in prefrontal cortex. PLoS One 2013; 8: e60274.

McCarthy SE, McCombe WR, Corvin A. Unlocking the treasure trove: from genes to schizophrenia biology. Schizophr Bull 2014; 40: 492–496.
Lewis DA, Cruz D, Eggan S, Erickson S. Postnatal development of prefrontal inhibitory circuits and the pathophysiology of cognitive dysfunction in schizophrenia. Ann NY Acad Sci. 2004; 1021: 64–76.

Connor CM, Guo Y, Akbarian S. Cingulate white matter neurons in schizophrenia and bipolar disorder. Biol Psychiatry. 2009; 66: 486–493.

Beneyto M, Lewis DA. Insights into the neurodevelopmental origin of schizophrenia from postmortem studies of prefrontal cortical circuitry. J Int Dev Neurosci. 2011; 29: 295–304.

Armsén AF. Prefrontal cortical network connections: key site of vulnerability in stress and schizophrenia. Int J Dev Neurosci. 2011; 29: 215–223.

Zierhut KC, Schulte-Kemna A, Kaufmann J, Steiner J, Borges T, Schiltz K. Distinct structural alterations independently contributing to working memory deficits and symptomatology in paranoid schizophrenia. Cortex. 2012; 49: 1063–1072.

Arnold SE, Talbot K, Hahn CG. Neurodevelopment, neuroplasticity, and new treatments for schizophrenia. Prog Brain Res. 2008; 179: 319–345.

Bernstein HG, Smalla KH, Durrschmidt D, Keilhoff G, Dobrowolny H, Steiner J. Gene dosage effect on gamma-secretase component Aph-1b in a rat model for neurodevelopmental disorders. Curr Genomics. 2008; 9: 107–117.

Connor CM, Guo Y, Akbarian S. Cingulate white matter neurons in schizophrenia and bipolar disorder. Biol Psychiatry. 2009; 66: 486–493.

Beneyto M, Lewis DA. Insights into the neurodevelopmental origin of schizophrenia from postmortem studies of prefrontal cortical circuitry. J Int Dev Neurosci. 2011; 29: 295–304.

Armsén AF. Prefrontal cortical network connections: key site of vulnerability in stress and schizophrenia. Int J Dev Neurosci. 2011; 29: 215–223.

Zierhut KC, Schulte-Kemna A, Kaufmann J, Steiner J, Borges T, Schiltz K. Distinct structural alterations independently contributing to working memory deficits and symptomatology in paranoid schizophrenia. Cortex. 2012; 49: 1063–1072.

Arnold SE, Talbot K, Hahn CG. Neurodevelopment, neuroplasticity, and new treatments for schizophrenia. Prog Brain Res. 2008; 179: 319–345.

Bernstein HG, Smalla KH, Durrschmidt D, Keilhoff G, Dobrowolny H, Steiner J. Gene dosage effect on gamma-secretase component Aph-1b in a rat model for neurodevelopmental disorders. Curr Genomics. 2008; 9: 107–117.

Connor CM, Guo Y, Akbarian S. Cingulate white matter neurons in schizophrenia and bipolar disorder. Biol Psychiatry. 2009; 66: 486–493.

Beneyto M, Lewis DA. Insights into the neurodevelopmental origin of schizophrenia from postmortem studies of prefrontal cortical circuitry. J Int Dev Neurosci. 2011; 29: 295–304.

Armsén AF. Prefrontal cortical network connections: key site of vulnerability in stress and schizophrenia. Int J Dev Neurosci. 2011; 29: 215–223.

Zierhut KC, Schulte-Kemna A, Kaufmann J, Steiner J, Borges T, Schiltz K. Distinct structural alterations independently contributing to working memory deficits and symptomatology in paranoid schizophrenia. Cortex. 2012; 49: 1063–1072.

Arnold SE, Talbot K, Hahn CG. Neurodevelopment, neuroplasticity, and new treatments for schizophrenia. Prog Brain Res. 2008; 179: 319–345.

Bernstein HG, Smalla KH, Durrschmidt D, Keilhoff G, Dobrowolny H, Steiner J. Gene dosage effect on gamma-secretase component Aph-1b in a rat model for neurodevelopmental disorders. Curr Genomics. 2008; 9: 107–117.

Connor CM, Guo Y, Akbarian S. Cingulate white matter neurons in schizophrenia and bipolar disorder. Biol Psychiatry. 2009; 66: 486–493.

Beneyto M, Lewis DA. Insights into the neurodevelopmental origin of schizophrenia from postmortem studies of prefrontal cortical circuitry. J Int Dev Neurosci. 2011; 29: 295–304.

Armsén AF. Prefrontal cortical network connections: key site of vulnerability in stress and schizophrenia. Int J Dev Neurosci. 2011; 29: 215–223.

Zierhut KC, Schulte-Kemna A, Kaufmann J, Steiner J, Borges T, Schiltz K. Distinct structural alterations independently contributing to working memory deficits and symptomatology in paranoid schizophrenia. Cortex. 2012; 49: 1063–1072.

Arnold SE, Talbot K, Hahn CG. Neurodevelopment, neuroplasticity, and new treatments for schizophrenia. Prog Brain Res. 2008; 179: 319–345.

Bernstein HG, Smalla KH, Durrschmidt D, Keilhoff G, Dobrowolny H, Steiner J. Gene dosage effect on gamma-secretase component Aph-1b in a rat model for neurodevelopmental disorders. Curr Genomics. 2008; 9: 107–117.
806

Rojas P, Joodmardi E, Hong Y, Perlmann T, Ogren SO. Molecular aging in human prefrontal cortex is selective and continuous throughout adult life. *Brain Research* 2005; 5: 459–558.

Zhang YE, Landback P, Vibranovski MD, Long M. Accelerated recruitment of new brain development genes into the human genome. *PLoS Biol* 2011; 9: e1001179.

Kriegstein AR, Noctor SC. Patterns of neuronal migration in the embryonic brain. *Trends Neurosci* 2004; 27: 328–339.

Noctor SC, Flint AC, Weissman TA, Dammernan RS, Kriegstein AR. Neurons derived from radial glial cells establish radial units in neocortex. *Nature* 2001; 410: 914–72.

Storm EE, Garel S, Borello U, Hebert JM, Martinez S, McConnell SK et al. Dose-dependent functions of Fgf8 in regulating telencephalic patterning. *Development* (Cambridge, England) 2006; 133: 183–1844.

Garel S, Huffman KJ, Rubenstein JL. Molecular regionalization of the neocortex is disrupted in Fgf8 hypomorphic mutants. *Development* (Cambridge, England) 2003; 130: 1903–1914.

Raballo R, Rhe J, Lynn-Cook R, Leckman JF, Schwartz ML, Vaccarino FM. Basic fibroblast growth factor (Fgf2) is necessary for cell proliferation and neurogenesis in the developing cerebral cortex. *J Neurosci* 2000; 20: 5012–5023.

Sessa A, Mao CA, Hadjantonakis AK, Klein WH, Broccoli V. Tbr2 directs conversion of radial glia into basal precursors and guides neuronal differentiation by indirect neurogenesis in the developing neocortex. *Neuron* 2008; 60: 56–69.

Sessa A, Mao CA, Colasante G, Nini A, Klein WH, Broccoli V. Tbr2-positive intermediate (basal) neuronal progenitors safeguard cerebral cortex expansion by controlling proliferation of pallial glutamatergic neurons and attraction of subpallial GABAergic interneurons. *J Neurosci* 2010; 30: 5590–5602.

Muller SM, Kiel D, Stevens HE, Rubenstein RL, Marangoni ME, Ohkubo Y et al. Deficiency in inhibitory cortical interneurons associates with hyperactivity in fibroblast growth factor receptor 1 mutant mice. *Biol Psychiatry* 2008; 63: 953–962.

Inglis-Broadgate SL, Thomson RE, Pellicano F, Tartaglia MA, Pontikis CC, Cooper JD et al. Fgf3 regulates brain size by controlling progenitor cell proliferation and apoptosis during embryonic development. *Dev Biol* 2005; 279: 73–85.

Hoch RV, Rubenstein JL. Pleasure S. Genes and signaling events that establish regional patterning of the mammalian forebrain. *Semin Cell Dev Biol* 2009; 20: 378–386.

Sur M, Rubenstein JL. Patterning and plasticity of the cerebral cortex. *Science* (New York, NY) 2005; 310: 805–810.

Mason I. Initiation to end point: the multiple roles of transcriptional codes. *Nat Rev Neurosci* 2004; 5: 309–319.

Schuurmans G, Guillemot F. Molecular mechanisms underpinning cell fate specification in the developing telencephalon. *Curr Opin Neurobiol* 2012; 22: 36–34.

Jessell TM. Neuronal specification in the spinal cord: inductive signals and transcriptional codes. *Nat Rev Genet* 2000; 1: 20–29.

Goridis C, Rohrer H. Specification of catecholaminergic and serotonergic neurons. *Nat Rev* 2003; 2: 531–541.

Hasegawa H, Ashigaki S, Takamatsu M, Suzuki-Migishima R, Ohbayashi N, Itoh N et al. Dose-dependent functions of Fgf8 in regulating telencephalic patterning. *Development* (Cambridge, England) 2006; 133: 183–1844.

Zhang YE, Landback P, Vibranovski MD, Long M. Accelerated recruitment of new brain development genes into the human genome. *PLoS Biol* 2011; 9: e1001179.

Kriegstein AR, Noctor SC. Patterns of neuronal migration in the embryonic brain. *Trends Neurosci* 2004; 27: 328–339.

Noctor SC, Flint AC, Weissman TA, Dammernan RS, Kriegstein AR. Neurons derived from radial glial cells establish radial units in neocortex. *Nature* 2001; 410: 914–920.

Storm EE, Garel S, Borello U, Hebert JM, Martinez S, McConnell SK et al. Dose-dependent functions of Fgf8 in regulating telencephalic patterning. *Development* (Cambridge, England) 2006; 133: 183–1844.

Garel S, Huffman KJ, Rubenstein JL. Molecular regionalization of the neocortex is disrupted in Fgf8 hypomorphic mutants. *Development* (Cambridge, England) 2003; 130: 1903–1914.

Raballo R, Rhe J, Lynn-Cook R, Leckman JF, Schwartz ML, Vaccarino FM. Basic fibroblast growth factor (Fgf2) is necessary for cell proliferation and neurogenesis in the developing cerebral cortex. *J Neurosci* 2000; 20: 5012–5023.

Sessa A, Mao CA, Hadjantonakis AK, Klein WH, Broccoli V. Tbr2 directs conversion of radial glia into basal precursors and guides neuronal differentiation by indirect neurogenesis in the developing neocortex. *Neuron* 2008; 60: 56–69.

Sessa A, Mao CA, Colasante G, Nini A, Klein WH, Broccoli V. Tbr2-positive intermediate (basal) neuronal progenitors safeguard cerebral cortex expansion by controlling proliferation of pallial glutamatergic neurons and attraction of subpallial GABAergic interneurons. *J Neurosci* 2010; 30: 5590–5602.

Muller SM, Kiel D, Stevens HE, Rubenstein RL, Marangoni ME, Ohkubo Y et al. Deficiency in inhibitory cortical interneurons associates with hyperactivity in fibroblast growth factor receptor 1 mutant mice. *Biol Psychiatry* 2008; 63: 953–962.

Inglis-Broadgate SL, Thomson RE, Pellicano F, Tartaglia MA, Pontikis CC, Cooper JD et al. Fgf3 regulates brain size by controlling progenitor cell proliferation and apoptosis during embryonic development. *Dev Biol* 2005; 279: 73–85.

Hoch RV, Rubenstein JL. Pleasure S. Genes and signaling events that establish regional patterning of the mammalian forebrain. *Semin Cell Dev Biol* 2009; 20: 378–386.

Sur M, Rubenstein JL. Patterning and plasticity of the cerebral cortex. *Science* (New York, NY) 2005; 310: 805–810.

Mason I. Initiation to end point: the multiple roles of fibroblast growth factors in neural development. *Nat Rev* 2007; 8: 583–596.

Schuurmans G, Guillemot F. Molecular mechanisms underpinning cell fate specification in the developing telencephalon. *Curr Opin Neurobiol* 2012; 22: 36–34.

Jessell TM. Neuronal specification in the spinal cord: inductive signals and transcriptional codes. *Nat Rev Genet* 2000; 1: 20–29.

Goridis C, Rohrer H. Specification of catecholaminergic and serotonergic neurons. *Nat Rev* 2003; 2: 531–541.

Hasegawa H, Ashigaki S, Takamatsu M, Suzuki-Migishima R, Ohbayashi N, Itoh N et al. Laminar patterning in the developing neocortex by temporally coordinated fibroblast growth factor signaling. *J Neurosci* 2004; 24: 8711–8719.

Chou SJ, Perez-Garcia CG, Kroll TT, O’Leary DD. Lhx2 specifies regional fate in Emx1 lineage of telencephalic progenitors generating cerebral cortex. *Nat Neurosci* 2009; 12: 1381–1389.

Mangale VS, Hirakawa KE, Satyaki PR, Gokulchandran N, Chikibre S, Subramanian L et al. Lhx2 selector activity specifies cortical identity and suppresses hippocampal organizer fate. *Science* (New York, NY) 2008; 319: 304–309.

Polleux F, Ince-Dunn G, Ghosh A. Transcriptional regulation of vertebrate axon guidance and synapse formation. *Nat Rev* 2007; 8: 331–340.

Flames N, Pla R, Gelman DM, Rubenstein JL, Puelles L, Marin D. Delineation of multiple subpallial progenitor domains by the combinatorial expression of transcriptional codes. *J Neurosci* 2007; 27: 9682–9695.

Uchida S, Sata H, Koyabashi A, Funato H, Hobara T, Otsuki K et al. Early life stress enhances behavioral vulnerability to stress through the activation of REST4-mediated gene transcription in the medial prefrontal cortex of rodents. *J Neurosci* 2010; 30: 15007–15018.

Rojas P, Joodmardi E, Hong Y, Perlmann T, Ogren SO. Adult mice with reduced Nurr1 expression: an animal model for schizophrenia. *Mol Psychiatry* 2007; 12: 756–766.

Johnson MB, Kawasawa YI, Mason CE, Krsnik Z, Coppola G, Bogdanovic D et al. Functional and evolutionary insights into human brain development through global transcriptome analysis. *Neuron* 2009; 62: 494–509.

Yang S, Wang K, Valdarees O, Hannelihi S, Bucan M. Genome-wide expression profiling and bioinformatics analysis of diurnally regulated genes in the mouse prefrontal cortex. *Genome Biol* 2007; 8: R247.
O’Donnell M, Chance RK, Bashaw GJ. Axon growth and guidance: receptor regulation and signal transduction. Annu Rev Neurosci 2009; 32: 383–412.

Dudanova I, Klein R. Integration of guidance cues: parallel signaling and cross-talk. Trends Neurosci 2013; 36: 295–304.

Kiryuishik D, Berezin V, Bock E. Regulators of neurite outgrowth: role of cell adhesion molecules. J Neurosci 2001; 21: 1016:140–154.

Stoya G, Redies C, Schmid-Herlt N. Inversion of layer-specific cadherin expression profiles and maintenance of cytoarchitectonic areas in the allocortex of the reeler mutant mouse. J Comp Neurol 2014.

Lai KO, Ip NY. Synapse development and plasticity: roles of ephrin/Eph receptor signaling. Curr Opin Neurobiol 2009; 19: 275–283.

Tessier CR, Brodie K. Activity-dependent modulation of neural circuit synaptic connectivity. Front Mol Neurosci 2009; 2: 8.

Vanderhaeghen P, Cheng HJ. Guidance molecules in axon pruning and cell death. Cold Spring Harbor Perspect Biol 2010; 2: a001859.

Petanjek Z, Judas M, Kostovic I, Uylings HB. Lifespan alterations of basal dendritic trees of pyramidal neurons in the human prefrontal cortex: a layer-specific pattern. Cereb Cortex 2008; 18: 915–929.

de Almeida J, Jourdian I, Murer MG, Belforte JE. Refinement of neuronal synchronization with gamma oscillations in the medial prefrontal cortex after adolescence. Plos One 2013; 8: e62978.

Yang JM, Zhang J, Yu YQ, Duan S, Li XM. Postnatal development of 2 microcircuits involving fast-spiking interneurons in the mouse prefrontal cortex. Cereb Cortex 2014; 24: 98–109.

Hoover WB, Vertes RP. Anatomical analysis ofafferent projections to the medial prefrontal cortex in the rat. Brain Struct Funct 2007; 214: 129–170.

George O, Koob GF. Individual differences in prefrontal cortex function and the transition from drug use to drug dependence. Neurosci Biobehav Rev 2010; 35: 232–247.

Lisboa SF, Stetcheff MF, Correia FM, Guimaraes FS, Resstel LB. Different role of the ventral medial prefrontal cortex on modulation of innate and associative learned fear. Neuroscience 2010; 171: 750–768.

Diamond A. Biological and social influences on cognitive control processes dependent on prefrontal cortex. Prog Brain Res 2011; 193: 319–335.

Thompson BM, Baratta MV, Biedenkapp JC, Rudy JW, Watkins LR, Maier SF. Activation of the infralimbic cortex in a fear context enhances extinction learning. Learn Mem 2010; 17: 591–599.

Laroch S, Davis S, Jay TM. Plasticity at hippocampal to prefrontal cortex synapses: dual roles in working memory and consolidation. Hippocampus 2000; 10: 438–446.

Little JP, Carter AG. Subcellular synaptic connectivity of layer 2 pyramidal neurons in the medial prefrontal cortex. J Neurosci 2012; 32: 12808–12819.

Golmayo L, Nunez A, Zaborszky L. Electrophysiological evidence for the existence of a posterior cortical-prefrontal-basal forebrain circuitry in modulating sensory responses in visual and somatosensory rat cortical areas. Neuroscience 2003; 119: 597–609.

Henny P, Jones BE. Projections from basal forebrain to prefrontal cortex comprise cholinergic, GABAergic and glutamatergic inputs to pyramidal cells or interneurons. Eur J Neurosci 2008; 27: 654–670.

Hauber W. Dopaminergic innervation in the prefrontal cortex and striatum: temporal and behavioural aspects. Pharmacopsychiatry 43: 532–541.

van Schouwenburg M, Aarts E, Cools R. Dopaminergic modulation of cognitive control: distinct roles for the prefrontal cortex and the basal ganglia. Curr Pharm Des 2010; 16: 2026–2032.

Fitzgerald PJ. A neurochemical yin and yang: does serotonin activate and nor-epinephrine deactivate the prefrontal cortex? Psychopharmacology 2011; 213: 171–182.

Wittveen JS, Middelman A, van Hulten JA, Martens GJ, Homberg JR, Kolk SM. Lack of serotonin reuptake during brain development alters rostral raphe-prefrontal network formation. Front Cell Neurosci 2013; 7: 143.

Goto Y, O’Dannel P. Altered prefrontal cortex-nucleus accumbens information processing in a developmental animal model of schizophrenia. Ann NY Acad Sci 2003; 1003: 398–401.

Goto Y, Grace AA. Limbic and cortical information processing in the nucleus accumbens. Trends Neurosci 2008; 31: 552–558.

Sarter M, Hasselmo ME, Bruno JP, Givers B. Unraveling the attentional functions of cortical cholinergic inputs: interactions between signal-driven and cognitive modulation of signal detection. Brain Res 2005; 1048: 98–111.

Del Arco A, Mora F. Neurotransmitters and prefrontal cortex-limbic system interactions: implications for plasticity and psychiatric disorders. J Neuro Transm 2009; 116: 941–952.

Zhang ZW, Burke MW, Calakos N, Beaulieu JM, Vaucher E. Confocal analysis of cholinergic and dopaminergic inputs onto pyramidal cells in the prefrontal cortex of rodents. Front Neurol 2010; 4: 21.
Elevated ErbB4 mRNA is related to interneuron dysfunction and Glutamate Receptor Delta 1 (GRID1) gene promoter. J Comp Neurol 2014; 522: 3351–3362.

Ting AK, Chen Y, Wen L, Yin DM, Chen S, Tao Y et al. Neuregulin 1 promotes excitatory synapse development and function in GABAergic interneurons. J Neurosci 2011; 31: 15–25.

Hou XJ, Ni KM, Yang JM, Li XM. Neuregulin 1/Erbb4 enhances synchronized oscillations of prefrontal cortex neurons via inhibitory synapses. Neuroscience 2014; 261: 107–117.

Yang JM, Zhang J, Chen XJ, Geng HY, Ye M, Spitzer NC et al. Development of GABA circuitry of fast-spiking basket interneurons in the medial prefrontal cortex of erbB4 mutant mice. J Neurosci 2013; 33: 19724–19733.

Kasauksiene J, Giulaidate Z, Preiksaitiene E, Utkus A, Peciulyte A, Kucinskas V. A new single gene deletion on 2q34; Erbb4 is associated with intellectual disability. Am J Med Genet 2013; 161A: 1487–1490.

Josh D, Fullerton JM, Weickert CS. Elevated Erbb4 mRNA is related to interneuron deficit in prefrontal cortex in schizophrenia. J Psychiatr Res 2014; 53: 125–132.

Del Pino I, Garcia-Frigola C, Dehohor N, Brotons-Mas JR, Alvarez-Salvado E, Martinez de Lagran M et al. Erbb4 deletion from fast-spiking interneurons causes schizophrenia-like phenotypes. Neuron 2013; 79: 1152–1168.

Buonanno A. The neuregulin signaling pathway and schizophrenia: from genes to synapses and neural circuits. Brain Res Bull 2010; 83: 122–131.

Lang UE, Pulis I, Muller DJ, Strutz-Seebohm N, Gallinat J. Molecular mechanisms of schizophrenia. Cell Physiol Biochem 2007; 20: 687–702.

269

268

267

266

265

264

263

262

261

260

259

258

257

256

255

254

253

252

251

250

249

248

247

246

245

244

243

242

241

240

239

238

237

236

235

234

233

232

231

230

229

228

227

226

225

224

223

222

221

220

219

218

217

216

215

214

213

212

211

210

209

208

207

206

205

204

203

202

201

200

199

198

197

196

195

194

193

192

191

190

189

188

187

186

185

184

183

182

181

180

179

178

177

176

175

174

173

172

171

170

169

168

167

166

165

164

163

162

161

160

159

158

157

156

155

154

153

152

151

150

149

148

147

146

145

144

143

142

141

140

139

138

137

136

135

134

133

132

131

130

129

128

127

126

125

124

123

122

121

120

119

118

117

116

115

114

113

112

111

110

109

108

107

106

105

104

103

102

101

100

99

98

97

96

95

94

93

92

91

90

89

88

87

86

85

84

83

82

81

80

79

78

77

76

75

74

73

72

71

70

69

68

67

66

65

64

63

62

61

60

59

58

57

56

55

54

53

52

51

50

49

48

47

46

45

44

43

42

41

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

© 2015 Macmillan Publishers Limited
Iafrati J, Oprea-Ioanu MJ, Lassalle O, Bouamrane L, Gonzalez-Campo C, Chavis P. Reelin, an extracellular matrix protein linked to early onset psychiatric diseases, drives postnatal development of the prefrontal cortex via GluN2B-NMDARs and the mTOR pathway. *Mol Psychiatry* 2014; 19: 417–426.

Zaki M, Shehab M, El-Aleem AA, Abdel-Salam G, Koehler HB, Ilink Y et al. Identification of a novel recessive RELN mutation using a homozygous balanced reciprocal translocation. *Am J Med Genet* 2007; 143A: 939–944.

Folsom TD, Fatemi SH. The involvement of Reelin in neurodevelopmental disorders. *Neuropsychopharmacology* 2013; 38: 122–135.

Bartlett CW, Ghariani N, Millionig JH, Brzustowicz LM. Three autism candidate genes: a synthesis of human genetic analysis with other disciplines. *Int J Dev Neurosci.* 2003; 23: 221–234.

Fatemi SH. The role of Reelin in pathology of autism. *Mol Psychiatry* 2002; 7: 919–920.

Fatemi SH. Reelin glycoprotein in autism and schizophrenia. *Int Rev Neurobiol.* 2005; 71: 179–187.

Lakatosova S, Ostatnikova D, Reelin and its complex involvement in brain development and function. *Int J Biochem Cell Biol.* 2012; 44: 1501–1504.

Frotscher M. Role for Reelin in stabilizing cortical architecture. *Trends Neurosci.* 2010; 33: 407–414.

Zhang W, Peterson M, Yoon S, Berstein Y et al. De novo mutations in people without Reett syndrome. *J Autism Dev Disord* 2014; 44: 703–711.

Neul JL. The relationship of Rett syndrome and MECP2 disorders to autism. *Dialogues Clin Neurosci* 2012; 14: 253–262.

McCarthy SE, Gillis J, Kramer M, Lihm J, Yoon S, Berstein Y et al. De novo mutations in schizophrenia implicate chromatin remodeling and support a genetic overlap with autism and intellectual disability. *Mol Psychiatry* 2014; 19: 652–658.

Piton A, Gauthier J, Hamdan FF, Lafreniere RG, Yang Y, Hamon M et al. Systematic resequencing of X-chromosome synaptic genes in autism spectrum disorder and schizophrenia. *Mol Psychiatry* 2011; 16: 867–880.

Xu B, Goldman JS, Rymar VV, Forget C, Lo PS, Bull SJ et al. Critical roles for the netrin receptor deleted in colorectal cancer in dopaminergic neuronal precursor migration, axon guidance, and axon arborization. *Neuroscience* 2010; 169: 932–949.

Manit C, Eng C, Polkowski M, Ryan RT, Torres-Berrio A, Lopez JP et al. Dcc orchestrates the development of the prefrontal cortex during adolescence and is altered in psychiatric patients. *Transl Psychiatry* 2013; 3: e338.

Grant A, Fathalli F, Jarvela I, Joobear M, Flores C. Association between schizophrenia and genetic variation in DCC: a case-control study. *Schizophr Res.* 2012; 137: 26–31.

El-Hassar L, Simen AA, Duque A, Patel KD, Kaczmarek LK, Armenetti AF et al. Disrupted in schizophrenia 1 modulates medial prefrontal cortex pyramidal neuron activity through cAMP regulation of transient receptor potential C and small-conductance K channels. * Biol Psychiatry* 2014; 76: 476–485.

Kilpinen H, Ylisauko-Oja T, Hennah W, Palo OM, Vainio T, Vanhala R et al. Association of DISC1 with autism and Asperger syndrome. *Mol Psychiatry* 2008; 13: 187–196.

Zheng F, Wang L, Jia M, Yue W, Ruan Y, Lu T et al. Evidence for association between disrupted-in-Schizophrenia 1 (DISC1) gene polymorphisms and autism in Chinese Han population: a family-based association study. *Behav Brain Funct.* 2011; 7: 14.

Kenny EM, Cormican P, Furlong S, Heron E, Kenny G, Fahey C et al. Excess of rare novel loss-of-function variants in synaptic genes in schizophrenia and autism spectrum disorders. *Mol Psychiatry* 2013; 19: 872–879.

Kalkman HO. A review of the evidence for the canonical Wnt pathway in autism spectrum disorders. *Mol Autism* 2012; 3: 10.

Johansen KK, Halmøy A, Sanchez-Mora C, Ramos-Quiroga JA, Correia B, Haavik J et al. DISC1 in adult ADHD patients: an association study in two European samples. *Am J Med Genet B Neuropsychiatr Genet* 2013; 162B: 227–234.

Narayan S, Nakajima S, Sawa A. DISC1: a key lead in studying cortical development and associated brain disorders. *Neuroscientist* 2013; 19: 451–464.

Hikita T, Gamo NJ, Sawa A. DISC1 as a therapeutic target for mental illnesses. *Expert Opin Ther Targets.* 2012; 16: 1151–1160.

Duff BJ, Mac Richie KA, Moorhead TW, Lawrie SM, Blackwood DH. Human brain imaging studies of DISC1 in schizophrenia, bipolar disorder and depression: a systematic review. *Schizophr Res.* 2013; 147: 1–13.

Drejer JM, Hayashi K, Cui H, Mettlaich GL, Long MA, Marvin M et al. Attention-deficit/hyperactivity phenotype in mice lacking the cyclin-dependent kinase 5 cofactor p53. *Biol Psychiatry.* 2010; 68: 1163–1171.

Ramos-Miguel A, Meana JJ, Garcia-Sevilla JA. Cyclin-dependent kinase-5 and p35/p25 activators in schizophrenia and major depression prefrontal cortex: basal contents and effects of psychotropic medications. *Int J Neuropsychopharmacol.* 2013; 16: 683–689.

Engmann O, Hortobagyi T, Pidisley R, Troakes C, Bernstein HG, Kreutz MR et al. Schizophrenia is associated with dysregulation of a Cdk5 activator that regulates synaptic protein expression and cognition. *Brain* 2011; 134: 2408–2421.

Whitwell JL, Josephs KA, Avula R, Tosakulwong N, Weigand SD, Senjem ML et al. Altered functional connectivity in asymptomatic MAPT subjects: a comparison to bvFTD. *Neurology* 2011; 77: 866–874.

Gregor A, Krumm-Biegel M, Kraus C, Reis A, Zweier C. De novo triplication of the MAPT gene from the recurrent 17q21.31 microdeletion region in a patient with moderate intellectual disability and various minor anomalies. *Am J Med Genet A* 2012; 158A: 1765–1770.

Rovellet-Lecruix A, Campion D. Copy number variations involving the microtubule-associated protein tau in human diseases. *Biochem Soc Trans.* 2012; 40: 672–676.

Sapir T, Frotscher M, Levy T, Mandelkow EM, Reiner O. Tau's role in the developing brain: implications for intellectual disability. *Hum Mol Genet.* 2011; 20: 1681–1692.

Kitsiou-Tzeli S, Frysira H, Giannikou K, Szymik K, Kakourou G et al. Microdeletion and microduplication 17q21.31 plus an additional CNV, in patients with intellectual disability, identified by array-CGH. *Gene* 2012; 492: 319–324.

Runker AE, O'Tuathaigh C, Dunleavy M, Morris DW, Little GE, Corvin AP et al. Mutation of Semaphorin-6A disrupts limbic and cortical connectivity and models neurodevelopmental psychopathology. *PloS One* 2011; 6: e26488.

Bosia M, Angelmetti S, Pirovano A, Ermoli M, Marino E, Bramanti P et al. HTLPPR functional polymorphism in schizophrenia: executive functions versus sustained attention dissociation. *Prog Neuropsychopharmacol Biol Psychiatry* 2010; 34: 81–85.

Lin C, Tang W, Hu J, Gao L, Huang K, Xu Y et al. Haplotypic analysis confirms association of the serotonin transporter (5-HTT) gene with schizophrenia in the Han Chinese population. *Neurosci Lett.* 2009; 453: 210–213.

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/