COVID-19 and hemolysis, elevated liver enzymes and thrombocytopenia syndrome in pregnant women - association or causation?

Prashant Nasa, Deven Juneja, Ravi Jain, Ruchi Nasa

Abstract

Pregnant women are among the high-risk population for severe coronavirus disease 2019 (COVID-19) with unfavorable peripartum outcomes and increased incidence of preterm births. Hemolysis, the elevation of liver enzymes, and low platelet count (HELLP) syndrome and severe preeclampsia are among the leading causes of maternal mortality. Evidence supports a higher odd of pre-eclampsia in women with COVID-19, given overlapping pathophysiology. Involvement of angiotensin-converting enzyme 2 receptors by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) for the entry to the host cells and its downregulation cause dysregulation of the renin-angiotensin-aldosterone system. The overexpression of Angiotensin II mediated via p38 Mitogen-Activated Protein Kinase pathways can cause vasoconstriction and uninhibited platelet aggregation, which may be another common link between COVID-19 and HELLP syndrome. On PubMed search from January 1, 2020, to July 30, 2022, we found 18 studies on SARS-COV-2 infection with HELLP Syndrome. Most of these studies are case reports or series, did not perform histopathology analysis of the placenta, or measured biomarkers linked to pre-eclampsia/HELLP syndrome. Hence, the relationship between SARS-CoV-2 infection and HELLP syndrome is inconclusive.
in these studies. We intend to perform a mini-review of the published literature on HELLP syndrome and COVID-19 to test the hypothesis on association vs causation, and gaps in the current evidence and propose an area of future research.

Key Words: SARS-CoV-2; Preeclampsia; Hypertension; Pregnancy-induced; Liver dysfunction; Pregnancy-induced

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Observational studies showed an increased prevalence of preeclampsia and hemolysis, elevated liver enzymes and low platelet (HELLP) syndrome in pregnant women with coronavirus disease 2019 (COVID-19). Despite a possible pathophysiology linkage between COVID-19 and HELLP syndrome, the evidence on temporality to prove a causal association between infection with severe acute respiratory syndrome coronavirus 2 and HELLP syndrome is lacking.

Citation: Nasa P, Juneja D, Jain R, Nasa R. COVID-19 and hemolysis, elevated liver enzymes and thrombocytopenia syndrome in pregnant women - association or causation? *World J Virol* 2022; 11(5): 310-320

URL: https://www.wjgnet.com/2220-3249/full/v11/i5/310.htm

DOI: https://dx.doi.org/10.5501/wjv.v11.i5.310

INTRODUCTION

With immense knowledge on the pathogenesis of coronavirus disease 2019 (COVID-19), the viral-host immune interaction plays a critical role in multi-system presentation of the disease. Most of the patients, infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), develop a non-severe illness. However, those patients with specific comorbidities are predisposed to advanced stages of severe COVID-19 infection. Some of the prevalently-reported comorbidities are as follows; age above 75 years, male gender, pre-existing cardiovascular disease, chronic lung, kidney or liver disease, sickle cell disease, diabetes, active cancer, severe obesity and pregnancy\[1,2\]. The risk factors that aggravate the development of severe COVID-19 among pregnant women include obesity, smoking history, pre-eclampsia and diabetes mellitus\[3\]. Though pregnancy, per se, does not increase the susceptibility to SARS-CoV-2 infection, pregnant women are highly prone to developing severe illnesses with SARS-CoV-2 infection compared to non-pregnant women. Further, they are also associated with adverse pregnancy and perinatal outcomes\[4\].

Hemolysis, Elevated Liver enzymes and Low Platelets (HELLP) syndrome is an uncommon yet deadly complication that is associated with severe pre-eclampsia. Early diagnosis and termination of pregnancy only have been proved to be effective in treating HELLP syndrome\[5\]. A meta-analysis, conducted recently, inferred that COVID-19 infected women recorded high levels of pre-eclampsia and HELLP syndrome odds\[6\]. However, abnormal liver enzymes, thrombocytopenia and hemolysis are not only associated with HELLP syndrome, but are observed in many of the critically-ill patients, as a component of multi-organ dysfunction. This phenomenon occurs especially in case of certain infectious diseases and other pregnancy-related liver disorders, for instance, acute fatty liver of pregnancy\[7\]. Substantial evidence infers that some of the viral infections, for instance SARS-CoV-2, tend to mimic HELLP syndrome among women during pregnancy\[8,9\].

Hence, the overlapping laboratory features of SARS-CoV-2 infection and HELLP syndrome may increase the possibilities of misdiagnosis than a causal association. The current review discusses about the pathogenetic linkage between COVID-19 and HELLP syndrome, reviews the evidences available on association or causation between the variables and proposes novel suggestions for future research.

PATHOGENESIS OF PRE-ECLAMPSIA AND HELLP SYNDROME

Pre-eclampsia is a multi-system disorder characterized by *de novo* hypertension that occurs after 20 wk of gestation. Recently, the International Society for the Study of Hypertension in Pregnancy provided a new definition for pre-eclampsia as given herewith; new onset of hypertension (systolic > 140 mmHg and diastolic > 90 mmHg) accompanied by at least one feature as listed below and is developed either at or after 20 wk of gestation: (1) Proteinuria; (2) Maternal organ dysfunction (like liver, kidney, neurological and haematological); and (3) Evidence of uteroplacental dysfunctions like fetal growth restriction or abnormal Doppler waveform findings of uteroplacental blood flow or stillbirth\[10\].
The exact pathogenesis of pre-eclampsia remains uncertain. However, the termination of pregnancy by removing the placenta seems to be an effective therapeutic measure. This method confirms the importance of placenta in the pathophysiology of pre-eclampsia. Two pathogenic phenotypes are established such as early and late pre-eclampsia. The major cause of early pre-eclampsia is placental in nature whereas the late pre-eclampsia is a result of interactions that occur between placental senescence and other factors such as genetics, obesity and nutrition or environmental factors. The oxidative stress upon syncytiotrophoblast, a cell that covers the placental villi on the maternal side, plays a crucial role by getting released into maternal circulation factors like inflammatory cytokines, cell-free fetal DNA, exosomes, and anti-angiogenic agents. This results in the endothelial dysfunction and hypertensive syndrome[11].

Oxidative stress occurs as a result of either uteroplacental hypoperfusion from the defective remodelling of uterine spiral arteries (i.e., early pre-eclampsia) or due to a mismatch between supply and demand in maternal perfusion and placental or foetus requirements (i.e., late pre-eclampsia). Placental stress results in the dysfunction of vascular endothelium which in turn releases the placental factors that cause systemic manifestations of pre-eclampsia. The pathways proposed earlier for the above discussed phenomenon include an increased release of pro-inflammatory cytokines, cell-free fetal DNA, p38 Mitogen-Activated Protein Kinase (MAPK), placental apoptotic debris, soluble receptor for Vascular Endothelial Growth Factor, and soluble fms like tyrosine kinase (sFlt-1)/Placental Growth Factor (PIGF) ratio (Figure 1)[11,12].

The role played by Renin-Angiotensin-Aldosterone System (RAAS) in placenta homeostasis is crucial since it regulates the proliferation of trophoblasts, angiogenesis and blood flow. When RAAS is not regulated, it creates an imbalance of vasoactive peptides due to high production of angiotensin II (ATII) and low vasodilatory angiotensin 1-7. ATII is a pro-inflammatory, pro-thrombotic element that induces vascular constriction, endothelial injury and vascular smooth cell proliferation which altogether contribute to pre-eclampsia[13]. Recent evidence suggests that ATII actions are mediated through the MAPK pathway. MAPK is a cellular signaling pathway existing in three forms, p38 MAPK, extracellular signal-regulated kinase, and Janus kinase. p38 MAPK critical component in immune functions as well as stress response pathways, mediates the cellular response to pathogenic microbes, pro-inflammatory cytokines and environmental stress (oxidative stress). p38 MAPK can be stimulated by intracellular oxidative stress, with exact function unknown. Available evidence supports p38 MAPK is linked to normal embryonic development and maintaining parturition, and premature activation, or overexpression may lead to adverse perinatal and pregnancy outcomes[14]. The upregulated p38 MAPK pathway is linked with increased pro-inflammatory cytokines like NF-kB, Tumour Necrosis Factor (TNF)-α, interleukin (IL)-6 and IL-1β, and COX-2. The activation of NF-kB with p38 MAPK overexpression is found in various tissues, but in uterine tissue, its role is unclear. On the other hand, Angiotensin 1-7 is vasodilatory, attenuate this inflammation, atrophy, and fibrosis by simulating the Mas receptor. Hence, the dysregulation of RASS and high ATII levels lead to uninhibited feedback loop to p38 MAPK pathway which in turn causes untamed inflammation observed in pre-eclampsia[15,16].

The association between pre-eclampsia and HELLP syndrome is unclear. According to a few experts, HELLP syndrome is nothing but an extended manifestation of severe pre-eclampsia. However, a few others argue that HELLP syndrome is an independent entity since it exists without the classical features of pre-eclampsia like proteinuria and oedema. A few resemblances exist between the pathogenesis of pre-eclampsia and HELLP syndrome such as endothelial dysfunction, platelet aggregation and consumption, vasospasm, and end-organ ischemia. However, immune dysregulation with maternal immunological intolerance to fetal tissues is considered as a prominent pathway in HELLP syndrome. This immunological maladaptation has been proved in literature via the high levels of fetal mRNA and HLA-DR in the blood of women with HELLP syndrome, who was compared with women with pre-eclampsia[16,17]. One of the recent studies demonstrated that those patients with HELLP syndrome, had a high titer of agonist antibodies to Type I ATII receptor (AT1r-AA), when compared with patients with pre-eclampsia. The agonist antibodies can simulate the ATII effect upon the receptor[18].

Women with HELLP syndrome possess high levels of other types of anti-angiogenesis factors such as endoglin and Fas ligand than the women with pre-eclampsia. These two factors are responsible for vascular endothelial injury and intense inflammation in HELLP syndrome. The role played by p38 MAPK pathway, in the pathogenesis of HELLP syndrome, is hypothesized to be an angiogenic response for environmental hypoxia. The elevated serum levels of p38 MAPK increase the serum vascular permeability and it has the potential to aggravate edema in different tissues including the brain. A recent study that compared the serum levels of p38 MAPK among patients with HELLP syndrome and pre-eclampsia found that the serum levels were significantly higher in HELLP syndrome patients than their counterpart. The authors also recommended to use serum p38 MAPK in the diagnosis of HELLP syndrome[19]. As per the literature, patients with HELLP syndrome exhibit high serum levels of p38 MAPK and low expression in placental p38 MAPK[20,21]. The future researchers must explore this relationship which may shed more insights about the role played by p38 MAPK in the pathophysiology of HELLP syndrome. Furthermore, the activation of immune complexes, C4b2a-complement pathway, anaphylatoxins like C3a and C5a and the release of inflammatory cytokines, TNF-α and active von Willebrand factor from leucocytes, macrophages and platelets also cause endothelial injury. In turn, endothelial injury contributes to multiple activities such as hemolysis, platelet aggregation and...
Figure 1 Pathogenesis of hemolysis, elevated liver enzymes and low platelet syndrome. Placenta ischemia is central mechanism which is suspected to play a central role in hemolysis, elevated liver enzymes and low platelet (HELLP) syndrome. Abnormal trophoblast implantation and remodelling of uterine arteries along with genetic, environmental, nutritional, or maternal risk factors cause uteroplacental perfusion mismatch. Various pathways proposed for systemic manifestations of HELLP syndrome include, releases of inflammatory cytokines, endothelial dysfunction, release of cell-free fetal DNA, imbalance of soluble fms-like tyrosine kinase to placental growth factor ratio (sFLT/PIGF ratio). HELLP: Hemolysis, elevated liver enzymes and low platelet; ATII: Angiotensin II; HIF: Hypoxia inducible factor 1 alpha; RAAS: Renin angiotensin aldosterone system; sFlt/PlGF: Soluble fms-like tyrosine kinase and platelet growth factor ratio; ↑: Increased.

Conventional pre-eclampsia screening includes a periodic assessment and an early detection of hypertension and proteinuria. But, the precision of pre-eclampsia screening has increased tremendously, thanks to the measurement of circulating biomarkers and Doppler assessment of uteroplacental circulation. sFlt-1/PlGF ratio is a potential and a highly-accurate marker that can be used in the prediction of pre-eclampsia and fetal growth restriction[22]. In the prediction of early pre-eclampsia and the complications associated with it, a combination of multiple factors such as demographic risk factors with periodic blood pressure measurement, doppler assessment of uterine artery and the measurements of biomarkers is found to be highly accurate[23].

PATHOGENESIS OF COVID-19

The internalization of SARS-CoV-2, within the host cell, occurs by binding the S-spike protein of the virus with Angiotensin-Converting-Enzyme 2 (ACE2) present on the cell surface and is supplemented by Transmembrane Serine Protease 2 (TMPRSS2) on the host cell. Though ACE2 is found in multiple tissues, it is predominantly expressed in lung and heart tissues. This phenomenon may explain the high incidence of acute respiratory distress syndrome and myocarditis among patients with COVID-19 and the primary cause behind the high mortality rate. ACE2 is an integral part of RAAS and is directly associated in the conversion of ATII to Angiotensin 1-7. Like SARS-CoV, when SARS-CoV-2 interacts with ACE2 receptor, the receptor gets downregulated, thus potentiating RAAS and ATII. All three MAPK pathways are involved in the pathogenesis of COVID-19. The interaction between SARS-CoV-2 and ACE2, like many other viruses, is associated with upregulation of p38 MAPK through the interaction with ACE2 receptors and its direct activation[16,24]. The upregulated ATII through its effect on ATII Type 1 receptor causes an intense vasoconstriction and inflammation. As discussed earlier, the effect of ATII in heart and lung tissues are mediated by p38 MAPK pathway. The crosstalk between p38 MAPK and NF-κB is also found to be involved in the pathophysiology of COVID-19. SARS-CoV and SARS-CoV-2 infection activates p38 MAPK pathway and induces phosphorylation of various downstream proteins involved in the transcription of various inflammatory cytokines. The upregulation of p38 MAPK is linked with excessive vasoconstriction, production of pro-inflammatory cytokines such as IL6, TNF-α and IL-1β. Hence, an unrestrained p38 MAPK results in hyperinflammation, vasoconstriction...
Figure 2 Pathogenesis of coronavirus disease 2019. Severe acute respiratory syndrome coronavirus 2 entry into the host cell is mediated through its binding with angiotensin converting enzyme 2 receptor and transmembrane serine protease 2 enzyme. The pathogenetic pathways include direct cytotoxicity, endotheliitis, (endothelial damage), dysregulated host-immune response and renin-angiotensin aldosterone system. Respiratory system is the primary target organ, but other systems are involved either with direct invasion or in response of systemic dysregulated immune response. SARS-CoV-2: Severe acute respiratory syndrome coronavirus 2; ACE2: Angiotensin converting enzyme 2; TMPRSS2: Transmembrane serine protease 2; RAAS: Renin angiotensin aldosterone system; ACS: Acute coronary syndrome; AKI: Acute kidney injury.

and thrombosis, a hallmark of COVID-19 (Figure 2)[16]. Recently, various agents like emetine, chelerythrine and papaverine regulating the p38 MAPK signaling pathway are found to have therapeutic potential in the management of COVID-19[25-27].

The role played by virus-host immune interplays is crucial in the pathogenesis of COVID-19. Various pro-inflammatory cytokines like IL-6, IL-10, TNF-α, granulocyte-colony stimulating factors and monocyte chemoattract protein 1 mediate lungs and other systemic manifestations of SARS-CoV-2 infection. Though respiratory system is the primary target site of SARS-CoV-2 infection, COVID-19 can be characterized as a multi-system disease that affects heart, kidneys, brain, liver, gastrointestinal and haematological systems and skin (Figure 2)[28].

COVID-19 patients generally exhibit different biochemical manifestations of pre-eclampsia and HELLP syndrome such as thrombocytopenia, raised liver enzymes, proteinuria, coagulopathy, acute kidney injury, and increased lactate dehydrogenase[8,29]. Mild thrombocytopenia (the count of platelets stands at 100-150 × 10^9/L) is observed among 20%-36% patients with COVID-19 whereas severe thrombocytopenia (< 50 × 10^9/L) is uncommon[30].

EVIDENCE ON COVID-19 AND HELLP SYNDROME

A total of 11 studies was found by the authors when PubMed database was mined using the following keywords; “COVID-19” OR “SARS-CoV-2” AND “HELLP syndrome” between 01st January 2020 to 30th July 2022. When a broader keyword i.e., “HELLP syndrome” was used within the same period, a total of 361 studies was found. Out of the total studies filtered, 18 studies were finalized and critically analyzed after excluding non-COVID-19 studies and non-English literature (Table 1)[6,31-47].

Inference from the evidence

Out of the 18 studies considered for final analysis, 13 were case reports or series in which 23 patients were included[31-38,40,42,44,45,47]. Maternal and fetal mortality rates were 8.6% (2) and 21.7% (5) respectively, with the development of severe COVID-19 in three patients. Mendoza et al[31] authored a case series in which five patients were suspected with pre-eclampsia and HELLP syndrome whereas
Multiple pregnancy (dichorionic twins) with 28, 38, 24, 29, 1, 36, 28.

Primigravida, emergency caesarean for 1.

Underwent emergency caesarean. Both babies survived.

Main results

Mean: 29 yr, 7 mo

Conclusion

PE like clinical features can develop with severe COVID-19. It can be distinguished from true PE by sFlt-1/PlGF, LDH and UIAPI measurement.

There is a possible synergism between the pathophysiology of COVID-19 and PE/HELLP syndrome.

Severe COVID-19 can mimic PE and HELLP syndrome. Pregnancy can be continued in absence of complications with strict surveillance.

Severe SARS-CoV-2 infection may be a risk factor for hypertensive disorders of pregnancy.

Possible association of HELLP syndrome and COVID-19 was proposed.

SARS-CoV-2 infection, can predispose pregnant female to a greater severity of PE, irrespective of the severity of respiratory symptoms.

Association between COVID-19 and HELLP syndrome cannot be concluded but deliver and methylprednisolone caused improvement in the condition.

COVID-19 in pregnant women can resemble PE and with possible CNS involvement.

No significant difference was observed in adverse pregnancy outcomes such as PE, preterm birth, and foetal growth restriction, gestational diabetes mellitus and HELLP syndrome according to the gestational age.

In large US cohort of women admitted for childbirth during the pandemic, patients with COVID-19 had higher risk of in-hospital mortality, pre-eclampsia, VTE and HELLP syndrome.
Bhardwaj et al [42], 2022	Case report	33, 36	1	Underwent caesarean delivery. Both mother and foetus survived	COVID-19 and HELLP overlap and associations are puzzling to clinicians
Conde-Agudelo et al [6], 2022	Meta-analysis of observational studies	28 studies, 790954 patients including One study for HELLP syndrome	SARS-CoV-2 infection during pregnancy was associated with significant increase in the odds ratio of PE (1.58, 95%CI 1.39-1.8), severe PE (1.76, 95%CI 1.18-2.63), eclampsia (1.97, 95%CI 1.01-3.84) and HELLP syndrome (2.76, 95%CI 1.48-2.97)	SARS-CoV-2 infection during pregnancy is associated with significantly higher odds of PE and HELLP syndrome. Authors proposed a synergism in the pathophysiology of COVID-19 and HELLP Syndrome.	
Madaan et al [43], 2022	Case series	Case 1: 32, 34 Case 2: 29, 37 Case 3: 26, 39	All three cases had HELLP syndrome and ground glassing opacities on HRCT with RT-PCR positive for SARS-COV-2. Case 1: Severe COVID-19, mother survived, baby still born by caesarean section. Case 2: Patient developed eclampsia and required mechanical ventilation, died on day 8, baby delivered vaginally Case 3: Patient survived and discharged day 15, baby delivered alive by caesarean section due to transverse lie	Authors proposed a synergism in the pathophysiology of COVID-19 and HELLP Syndrome.	
Takahashi et al [44], 2022	Case report	27, 37	1	Underwent caesarean delivery for infection control measures. Postpartum HELLP syndrome. Both mother and foetus survived	Overlap of clinical features with COVID-19 and HELLP syndrome is plausible explanation
Guida et al [45], 2022	Nested case-control analysis	203 women with COVID-19, including 21 with PE and 2 HELLP syndrome	There was no difference in the rate of PE and HELLP syndrome in women with or without COVID-19. However, imminent eclampsia was more frequent complication and overall maternal perinatal outcomes were worse with patients with PE and COVID-19	Prevalence of PE among women with COVID-19 was around 10%. Chronic hypertension and obesity were more likely associated with PE. High caesarean rate and NICU admissions due to prematurity in women with COVID-19	
Snelgrove et al [46], 2022	Retrospective cohort study	157779 patients during the pandemic compared to 563859 patients delivered between March 2015-September 2019 (historical group)	There was no difference in the rate of PE/HELLP (879, 0.6%) syndrome and severe maternal morbidity (SMM) between the pandemic and historical group (3119, 0.6%). No difference between primiparous and multiparous on severe maternal morbidity and risk of PE/HELLP syndrome. Maternal age, rurality, preexisting comorbidities and use of artificial reproduction therapy were associated with increased risk of PE/HELLP syndrome	Changes in obstetrical care during the pandemic have not increased the risk the PE/HELLP syndrome and adverse maternal outcomes	
Arslan [47], 2022	Case report	30, 32	1	Mutigravida pregnancy, emergency Caeserian delivery. Foetus tested positive for SARS-CoV-2 and died 5 d after delivery. Mother had severe COVID-19, required invasive mechanical ventilation and died, 10 d after delivery	Severe COVID-19 as etiological cause of HELLP syndrome is presumptive

COVID-19: Coronavirus disease 2019; SARS-CoV-2: Severe acute respiratory syndrome coronavirus 2; HELLP: Hemolysis, elevated liver enzymes, low platelet count; PE: Pre-eclampsia; LDH: Lactate dehydrogenase; HRCT: High-resolution computed tomography; OR: Odds ratio; CI: Confidence intervals; ARDS: Acute respiratory distress syndrome; NICU: Neonatal intensive care unit; IVF: In vitro fertilization.

only one had actual pre-eclampsia features based on the Doppler assessment of uterine artery pulsatility index, sFlt-1/PIGF ratio and lactate dehydrogenase. However, another case report failed to find the elevated sFlt-1/PIGF ratio in a patient who exhibited the biochemical features of HELLP syndrome. The patient was managed conservatively and her biochemical abnormalities were resolved spontaneously while the patient achieved a good perinatal outcome[33]. Most of the studies confirmed the existence of a linkage between HELLP syndrome and COVID-19. However, the inference from individual cases without a case-control remains highly biased. Two retrospective cohort studies, in which women with and without COVID-19 were compared, reported conflicting results on the increased incidence of HELLP syndrome with COVID-19[41,46]. In a population-based study authored by Snelgrove JW et al [46], no increased incidence of pre-eclampsia and HELLP syndrome was observed among women infected with SARS-CoV-2 compared to historical controls. On the other hand, in a large registry developed upon hospitalized women for childbirth in the United States, highly-adjusted odds of pre-eclampsia [1.21, 95% confidence interval (CI) 1.11-1.33] and HELLP syndrome (1.96, 95%CI 1.36-2.81) were found in pregnant women with COVID-19 compared to those without COVID-19, during the same duration[41]. A recent meta-analysis, in which 28 studies were included which covered a total of 790954
pregnant women, reported a significantly-high risk of pre-eclampsia (pooled odd ratio (OR) 1.62, 95%CI 1.45-1.82, $P < 0.00001$; 26 studies) with SARS-CoV-2 infection compared to non-infected individuals [6]. A single study outcomes from Jering et al [41], reported highly-unadjusted odds of HELLP syndrome (2.10, 95%CI 1.48-2.97), in pregnant women with SARS-CoV-2 infection.

Pathophysiology linkage between COVID-19 and HELLP syndrome

Recent evidences confirm the worst clinical outcomes for pregnant women with COVID-19 in terms of high incidence of pre-eclampsia, preterm birth and the need for caesarean delivery [48,49].

ACE2 receptors and TMPRSS2, which are required for the entry of SARS-CoV-2 into human cells, are expressed in placental components including villous cytotrophoblasts, syncytiotrophoblasts and extravillous trophoblasts [50]. This makes the placenta, predisposed to SARS-CoV-2 infection. When S-spike protein of SARS-CoV-2 binds with ACE2 receptor, it results in the downregulation of the receptor, dysfunction of RAAS and triggering of local placental inflammation. Further, ATII type I-receptor and sFlt-1 are also heavily produced from the infected placenta. The increased serum levels of AT1r-AA, found in cases of SARS-CoV-2 infection, can be observed in pre-eclampsia and HELLP syndrome too [7].

Some evidence supports the presence of high levels of placental ACE2 in women with COVID-19. This may explain the increased association between pre-eclampsia and preterm birth [31]. Another study showed that ACE2 receptors and the expression of protease are dependent upon each other during gestational age. The increased levels of expression is prevalent during the first trimester compared to the rest of the trimesters in pregnancy [52]. In a molecular linkage study by Beys-da-Silva et al [53], SARS-CoV-2 infection was found to interact with multiple pathways that are involved in pre-eclampsia and HELLP syndrome pathogenesis like upregulation of sFlt-1 and endoglin, angiogenesis, the balance between vasoconstrictive peptides and nitric oxide modulators, hypoxia and inflammation and prothrombotic-related molecules.

There exist a few similarities in the pathophysiology of COVID-19 and HELLP syndrome. The interaction between ATII and p38 MAPK is a plausible linkage among COVID-19, preclampsia and HELLP (Figure 3) [16]. The upregulation of p38 MAPK pathway is also linked with endothelial injury which in turn causes platelet aggregation and arterial thrombosis. This scenario reveals the systemic manifestations of COVID-19 like thrombocytopenia and raised liver enzymes [54]. However, it is still unclear whether the above-discussed biochemical abnormalities are manifestations of COVID-19 or HELLP syndrome. There is a lack of temporal studies in this domain that can establish a causal relationship between COVID-19 and HELLP syndrome. The studies conducted earlier that can prove that exposure occurred before the outcome (HELLP syndrome) establishing the temporality are missing. So, it is crucial to identify the causal association since immediate termination of the pregnancy is the only successful treatment used for HELLP syndrome, a predominant placental pathology, so far.
However, an expectant and a watchful continuation of pregnancy with better perinatal outcomes may be considered in selected cases of COVID-19[33].

Future studies should explore this linkage using the principle of temporality and circulatory biomarkers like serum p38 MAPK, sFlt-1/PIGF ratio and/or doppler assessment of uteroplacental hypoxia to identify any causal association between COVID-19 and HELLP syndrome.

CONCLUSION

There exists an association among SARS-CoV-2 infection during pregnancy, pre-eclampsia and HELLP syndrome. Evidence accepts the plausible overlap in the pathogenesis of COVID-19 and HELLP syndrome through ACE2 and RAAS dysregulation that involve ATII and p38 MAPK pathways. However, no prospective studies are available based on screening biomarkers and temporality to prove the causal relationship in this domain. Future studies should establish a temporal relationship between SARS-CoV-2 infection and the development of HELLP syndrome including circulatory biomarkers and tissue or radiological documentation of uteroplacental insufficiency.

FOOTNOTES

Author contributions: Nasa P conceptualized and designed the article; Nasa P, Juneja D, Jain R, and Nasa R performed acquisition of data, analysis and interpretation of data, and drafted the article; Juneja D and Jain R revised the article; all authors have read and approve the final manuscript.

Conflict-of-interest statement: Prashant Nasa declared to be on the advisory board of Edwards life sciences. Other authors do not declare any conflict of interest.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: United Arab Emirates

ORCID number: Prashant Nasa 0000-0003-1948-4060; Deven Juneja 0000-0002-8841-5678; Ravi Jain 0000-0001-9260-479X; Ruchi Nasa 0000-0002-4817-6983.

S-Editor: Wang LL
L-Editor: A
P-Editor: Wang LL

REFERENCES

1 Gao YD, Ding M, Dong X, Zhang JJ, Kursat Azkur A, Azkur D, Gan H, Sun YL, Fu W, Li W, Liang HL, Cao YY, Yan Q, Cao C, Gao HY, Brüggen MC, van de Veen W, Sokolowska M, Akdis M, Akdis CA. Risk factors for severe and critically ill COVID-19 patients: A review. Allergy 2021; 76: 428-445 [PMID: 33185910 DOI: 10.1111/all.14657]

2 Booth A, Reed AB, Ponzo S, Yassaee A, Aral M, Plans D, Labrique A, Mohan D. Population risk factors for severe disease and mortality in COVID-19: A global systematic review and meta-analysis. PLoS One 2021; 16: e0247461 [PMID: 33661992 DOI: 10.1371/journal.pone.0247461]

3 Lassi ZS, Ana A, Das JK, Salam RA, Padhani ZA, Irfan O, Bhutta ZA. A systematic review and meta-analysis of data on pregnant women with confirmed COVID-19: Clinical presentation, and pregnancy and perinatal outcomes based on COVID-19 severity. J Glob Health 2021; 11: 05018 [PMID: 34221361 DOI: 10.7189/jogh.11.05018]

4 Allotey J, Stallings E, Bonet M, Yap M, Chatterjee S, Kew T, Debenham L, Llavall AC, Dixit A, Zhou D, Balaji R, Lee SI, Qiu X, Yuan M, Coomar D, Sheikh J, Lawson H, Ansari K, van Wely M, van Leeuwen E, Kostova E, Kunst H, Khalil A, Tiberi S, Brizuela V, Brouet N, Kara E, Kim CR, Thorson A, Oladapo OT, Mofenson L, Zamora J, Thangaratinam S; for PregCOVID-19 Living Systematic Review Consortium. Clinical manifestations, risk factors, and maternal and perinatal outcomes of coronavirus disease 2019 in pregnancy: living systematic review and meta-analysis. BMJ 2020; 370: m3320 [PMID: 32873575 DOI: 10.1136/bmj.m3320]

5 van Lieshout LCEW, Koek GH, Spaanderman MA, van Runnard Heimel PJ. Placenta derived factors involved in the pathogenesis of the liver in the syndrome of haemolysis, elevated liver enzymes and low platelets (HELLP): A review. Pregnancy Hypertens 2019; 18: 42-48 [PMID: 31494464 DOI: 10.1016/j.preghy.2019.08.004]

6 Conde-Agudelo A, Romero R. SARS-CoV-2 infection during pregnancy and risk of preclampsia: a systematic review and meta-analysis. Am J Obstet Gynecol 2022; 226: 68-89.e3 [PMID: 34302772 DOI: 10.1016/j.ajog.2021.07.009]
Ahmed I

ARDS.

Federici L

Ginecol Obstet

Braga LFB

study.

Hidalgo N, Carreras E, Suy A. Pre-eclampsia-like syndrome induced by severe COVID-19: a prospective observational

10.1002/ajh.25774

Infect

Azer SA

Valipour M

induced cytokine production by bronchial epithelial cells.

Griego SD

Hypertension in Pregnancy.

McLaughlin K

based on pathogenesis.

10.1016/j.ejogrb.2012.09.026

(HELLP): a review.

Abildgaard U

19565356

Corradetti A

preeclampsia and HELLP syndrome patients.

Petca A

Sci Rep

Bu S

366 [PMID: 205321548]

DOI: 10.1136/ejgojbr.2012.09.026

Lumbers ER, Delforce SJ, Arthurs AL, Pringle KG. Causes and Consequences of the Dysregulated Maternal Renin-

Angiotensin System in Preeclampsia. Front Endocrinol (Lausanne) 2019; 10: 563 [PMID: 31551925]

DOI: 10.3389/fendo.2019.00563

Sheller-Miller S, Richardson L, Martin L, Jin J, Menon R. Systematic review of p38 mitogen-activated kinase and its functional role in reproductive tissues. Am J Reprod Immunol 2018; 80: e13047. [PMID: 28178469]

DOI: 10.1111/aji.13047

Crowley SD, Rudemiller NP. Immunologic Effects of the Renin-Angiotensin System. J Am Soc Nephrol 2017; 28: 1350-

1361 [PMID: 28151411]

DOI: 10.1681/ASN.20161001066

Grimes JM, Grimes KV. p38 MAPK inhibition: A promising therapeutic approach for COVID-19. J Mol Cell Cardiol

2020; 144: 63-65 [PMID: 32422320] DOI: 10.1016/j.yjmcc.2020.05.007

Bu S, Wang Y, Sun S, Zheng Y, Jin Z, Zhi J. Role and mechanism of AT1-AA in the pathogenesis of HELLP syndrome.

Sci Rep 2018; 8: 279 [PMID: 29321548] DOI: 10.1038/s41598-017-18855-x

Petc A, Miron BC, Pacu I, Dumitrașcu MC, Mehedințu C, Șandru F, Petca RC, Rotar IC. HELLP Syndrome-Holistic

Insight into Pathophysiology. Medicine (Kanusa) 2022; 58 [PMID: 35208649]

DOI: 10.3390/medicina88020236

Efendi L, Chalid MT, Upik AM, Syakib B. Comparison of p38 MAPK, soluble endothelin and endothelin-1 Level in severe preeclampsia and HELLP syndrome patients. Asian Pac J Reprod Res 2019; 8: 83-88 [DOI: 10.4103/2305-0500.254650]

Corradetti A, Saccucci F, Emanuelli M, Vagnoni G, Cecati M, Sartini D, Gianubillo SR, Tranquilli AL. The role of p38alpha mitogen-activated protein kinase gene in the HELLP syndrome. Cell Stress Chaperones 2010; 15: 95-100 [PMID: 19565356]

DOI: 10.1007/s12199-009-0125-x

Abildgaard U, Heimdal K. Pathogenesis of the syndrome of hemolysis, elevated liver enzymes, and low platelet count (HELLP): a review. Eur J Obstet Gynecol Reprod Biol 2013; 166: 117-123 [PMID: 23107053]

DOI: 10.1016/j.ejogrb.2012.09.026

Liu N, Guo YN, Gong LK, Wang BS. Advances in biomarker development and potential application for preeclampsia based on pathogenesis. Eur J Obstet Gynecol Reprod Biol 2021; 9: 100119 [PMID: 33103113]

DOI: 10.1016/j.ejogrb.2021.07.028

McLaughlin K, Zhang J, Lye SJ, Parker JD, Kingdon JC. Phenotypes of Pregnant Women Who Subsequently Develop Hypertension. J Am Heart Assoc 2018; 7 [PMID: 30007936]

DOI: 10.1161/JAHA.118.009959

Griego SD, Weston CB, Adams JL, Tal-Singer R, Dillon SB. Role of p38 mitogen-activated protein kinase in rhinovirus-induced cytokinge production by bronchial epithelial cells. J Immunol 2000; 165: 5211-5220 [PMID: 11046054]

DOI: 10.4049/jimmunol.165.9.5211

Valipour M, Irandnejad H, Emamni S. Application of emetine in SARS-CoV-2 treatment: regulation of p38 MAPK signaling pathway for preventing emetine-induced cardiac complications. Cell Cycle 2022; 1-8 [PMID: 35852390]

DOI: 10.13584101.2022.2100575

Valipour M, Zarghi A, Ebrahimbazadeh MA, Irandnejad H. Therapeutic potential of chelerythrine as a multi-purpose adjuvant for the treatment of COVID-19. Cell Cycle 2021; 20: 2321-2336 [PMID: 343585628]

DOI: 10.1080/15384101.2021.1992509

Valipour M, Irandnejad H, Emamni S. Papaverine, a promising therapeutic agent for the treatment of COVID-19 patients with underlying cardiovascular diseases (CVDs). Drug Dev Res 2022; 83: 10.1002/ddr.21961 [PMID: 35706384]

DOI: 10.1002/ddr.21961

Azer SA. COVID-19: pathophysiology, diagnosis, complications and investigational therapeutics. New Microbes New Infect 2020; 37: 100738 [PMID: 32834902]

DOI: 10.1016/j.mnin.2020.100738

Aghbudue C, Basu S. Haematological manifestations of COVID-19: From cytopenia to coagulopathy. Eur J Haematol 2020;

105: 540-546 [PMID: 32663356] DOI: 10.1111/ejh.13491

Fan BE, Chong VCL, Chan SSW, Lim GH, Lim KGE, Tan GB, Mucheli SS, Kuperan P, Ong KH. Hematologic parameters in patients with COVID-19 infection. Am J Hematol 2020; 95: E131-E134 [PMID: 32129508]

DOI: 10.1002/ajh.25774

Mendoza M, Garcia-Ruiz I, Maiz N, Rodo C, Garcia-Manau P, Serrano B, Lopez-Martinez RM, Balcells J, Fernandez-Hidalgo N, Carreras E, Suy A. Pre-eclampsia-like syndrome induced by severe COVID-19: a prospective observational study. BJOG 2020; 127: 1374–1380 [PMID: 32479682]

DOI: 10.1111/1471-0528.16339

Braga LFB, Sass N. Coronavirus 2019, Thrombocytopenia and HELLP Syndrome: Association or Coincidence? Rev Bras Ginecol Obstet 2020; 42: 669-671 [PMID: 33122222] DOI: 10.1590/s0040-1718437

Federici L, Picone O, Dreyfuss D, Sibiuide J. Successful continuation of pregnancy in a patient with COVID-19-related ARDS. BMJ Case Rep 2020; 13 [PMID: 32788159] DOI: 10.3326/1350-e133-19

Ahmed I, Eltaweel N, Antoun L, Rehal A. Severe pre-eclampsia complicated by acute fatty liver disease of pregnancy,
HELLP syndrome and acute kidney injury following SARS-CoV-2 infection. *BMJ Case Rep* 2020; 13 [PMID: 32784239 DOI: 10.1136/bcr-2020-237521]

Ronnie L, Lånsberg JK, Vikhareva O, Hansson SR, Herbst A, Zaigham M. Complicated COVID-19 in pregnancy: a case report with severe liver and coagulation dysfunction promptly improved by delivery. *BMJ Pregnancy Childbirth* 2020; 20: 511 [PMID: 32887569 DOI: 10.1186/s12884-020-03172-8]

Coronado-Arroyo JC, Concepción-Zavaleta M, Zavaleta-Gutiérrez FE, Concepción-Urtega LA. Is COVID-19 a risk factor for severe preeclampsia? *Eur J Obstet Gynecol Reprod Biol* 2021; 256: 502-503 [PMID: 32958322 DOI: 10.1016/j.ejogrb.2020.09.020]

Norooznazhad AH, Nurzadeh M, Darabi MH, Naemi M. Coronavirus disease 2019 (COVID-19) in a pregnant women with treatment resistance thrombocytopenic purpura with and suspicion to HELLP syndrome: a case report. *BMJ Pregnancy Childbirth* 2021; 21: 567 [PMID: 34407793 DOI: 10.1186/s12884-021-04030-x]

Farahani M, Azadi K, Hashemnejad M, Agoussi A, Nirouei M. Ruled out of preeclampsia-like syndrome due to COVID-19: A case study. *Clin Case Rep* 2021; 9: e05195 [PMID: 34934502 DOI: 10.1002/ccr3.5195]

Aydin GA, Ünal S, Özsoy HGT. The effect of gestational age at the time of diagnosis on adverse pregnancy outcomes in women with COVID-19. *J Obstet Gynaecol Res* 2021; 47: 4232-4240 [PMID: 34585464 DOI: 10.1111/jog.15051]

Vaezi M, Mirghafourvand M, Hemmatzadeh S. Characteristics, clinical and laboratory data and outcomes of pregnant women with confirmed SARS-CoV-2 infection admitted to Al-Zahra tertiary referral maternity center in Iran: a case series of 24 patients. *BMJ Pregnancy Childbirth* 2021; 21: 378 [PMID: 34001013 DOI: 10.1186/s12884-021-0376-y]

Jering KS, Claggett BL, Cunningham JW, Rosenthal N, Vardeny O, Greene MF, Solomon SD. Clinical Characteristics and Outcomes of Hospitalized Women Giving Birth With and Without COVID-19. *JAMA Intern Med* 2021; 181: 714-717 [PMID: 33449607 DOI: 10.1001/jamainternmed.2020.9241]

Bhardwaj Y, Chakole V, Singam A, Madaan S. Anesthetic Management in a Post-COVID Hemolysis, Elevated Liver Enzymes, and Low Platelet Count (HELLP) Patient in Rural Central India: A Close Shave. *Cureus* 2022; 14: e24196 [PMID: 36360790 DOI: 10.7759/cureus.24196]

Madaan S, Talwar D, Kumar S, Jaiswal A, Acharya N, Acharya S. HELLP Syndrome and COVID-19: association or accident? *A case series. J Family Med Prim Care* 2021; 11: 802-806 [PMID: 35360752 DOI: 10.4103/jfmpc.jfmpc_1136_21]

Takahashi K, Sato T, Kamide T, Hoshina T, Kanuka H, Kumazawa K, Tanabe Y, Samuel O, Okamoto A. Perinatal management of a pregnant woman with COVID-19: A case report from Japan. *Taiwan J Obstet Gynecol* 2022; 61: 378-381 [PMID: 35536106 DOI: 10.1016/j.tjog.2022.02.033]

Guida JP, Cecatti JG, Souza RT, Pacagnella RC, Ribeiro-do-Valle CC, Luz AG, Lajos GJ, Surita FG, Nobrega GM, Grigio TB, Charles CM, Miele MJ, Ferreira SB, Tedesco RP, Fernandes KG, Martins-Costa SHA, Ramos JGL, Peret FJA, Feitosa FE, Traina E, Cunha-Filho EV, Vettorazzi J, Haddad SM, Andreucci CB, Correa-Junior MD, Mayrink J, Dias MAB, Oliveira LG, Melo-Junior EF, da Luz MGQ, Costa ML; REBRACO Study Group. Preeclampsia among women with COVID-19 during pregnancy and its impact on maternal and perinatal outcomes: Results from a national multicenter study on COVID in Brazil, the REBRACO initiative. *Pregnancy Hypertens* 2022; 28: 168-173 [PMID: 35568019 DOI: 10.1016/j.preghyp.2022.05.005]

Snelgrove JW, Simpson AN, Sutrathar R, Everett K, Liu N, Baxter NN. Preeclampsia and Severe Maternal Morbidity During the COVID-19 Pandemic: A Population-Based Cohort Study in Ontario, Canada. *J Obstet Gynaecol Can* 2022; 44: 777-784 [PMID: 35395419 DOI: 10.1016/j.jogc.2022.03.006]

Ardan E, COVID-19: A Cause of HELLP Syndrome? *Int J Womens Health* 2022; 14: 617-623 [PMID: 35506047 DOI: 10.2147/IJWH.S362877]

Jafari M, Pormohammad A, Sheikh Neshin SA, Ghorbani S, Bose D, Alihmamohadi S, Basirjafari S, Mohammad M, Rasmussen-Ivey C, Razizadeh MH, Nouri-Vaskeh M, Zarei M. Clinical characteristics and outcomes of pregnant women with COVID-19 and comparison with control patients: A systematic review and meta-analysis. *Rev Med Virol* 2021; 31: 1-16 [PMID: 33074484 DOI: 10.1002/rmv.2208]

Gesaka SR, Obimbo MM, Wanyoro A. Coronavirus disease 2019 and the placenta: A literature review. *Placenta* 2022; 126: 209-223 [PMID: 35872511 DOI: 10.1016/j.placenta.2022.07.007]

Verma S, Joshi CS, Silverstein RB, He M, Carter EB, Mysorekar IU. SARS-CoV-2 colonization of maternal and fetal cells of the human placenta promotes alteration of local renin-angiotensin system. *Med (N Y)* 2021; 2: 575-590.e5 [PMID: 33870422 DOI: 10.1016/j.med.2021.04.009]

Lu-Culligan A, Chavan AR, Vijayakumar P, Irshaid L, Courchaine EM, Milano KM, Tang Z, Pope SD, Song E, Vogels CBF, Lu-Culligan WJ, Campbell KH, Casanovas-Massana A, Bermejo S, Toothaker JM, Lee HJ, Liu F, Schulz W, Fournier M, Muener MC, Moore AJ, Yale IMPACT Team, Konnikova L, Neugebauer KM, Ring A, Grubua RD, Ko AI, Morotti R, Guller S, Kliman JH, Iwasaki A, Farhadian SF. Maternal respiratory SARS-CoV-2 infection in pregnancy is associated with a robust inflammatory response at the maternal-fetal interface. *Med (N Y)* 2021; 2: 591-610.e10 [PMID: 33969332 DOI: 10.1016/j.med.2021.04.016]

Blosie E, Zhang J, Ncpu J, Hamada H, Dunk CE, Li S, Imperio GE, Nadeem L, Kibschull M, Lye P, Matthews SG, Lye SJ. Expression of severe acute respiratory syndrome coronavirus 2 cell entry genes, angiotensin-converting enzyme 2 and transmembrane protease serine 2, in the placenta across gestation and at the maternal-fetal interface in pregnancies complicated by preterm birth or preeclampsia. *Am J Obstet Gynecol* 2021; 224: 298.e1-298.e8 [PMID: 32853537 DOI: 10.1016/j.ajog.2020.08.055]

Beys-da-Silva WO, da Rosa RL, Santi L, Tureta EF, Terraciano PB, Guimarães JA, Passos EP, Berger M. The risk of COVID-19 for pregnant women: Evidences of molecular alterations associated with preeclampsia in SARS-CoV-2 infection. *Biochim Biophys Acta Mol Basis Dis* 2021; 1867: 165999 [PMID: 33137411 DOI: 10.1016/j.bbadis.2020.165999]

Chen X, Tao T, Wang H, Zhao H, Lu L, Wu F. Arterial Thrombosis Is Accompanied by Elevated Mitogen-Activated Protein Kinase (MAPK) and Cyclooxygenase-2 (COX-2) Expression via Toll-Like Receptor 4 (TLR-4) Activation by S100A8/A9. *Med Sci Monit* 2018; 24: 7673-7681 [PMID: 30367882 DOI: 10.12659/MSM.909641]
