Memristive and Tunneling Effects in 3D Interconnected Silver Nanowires

Chloé Chopin,* Simon de Wergifosse, Nicolas Marchal, Pascal Van Velthem, Luc Piraux, and Flavio Abreu Araujo

ABSTRACT: A network of silver nanowires (Ag-NWs) is grown by electrodeposition in a nanoporous membrane with interconnected nanopores. This bottom-up approach fabrication method gives a conducting network with a 3D architecture and a high density of Ag-NWs. The network is then functionalized during the etching process, which leads to a high initial resistance as well as memristive behavior. The latter is expected to arise from the creation and the destruction of conducting silver filaments in the functionalized Ag-NW network. Moreover, after several cycles of measurement, the resistance of the network switches from a high-resistance regime in the GΩ range with tunnel conduction to a low-resistance regime presenting negative differential resistance in the kΩ range.

1. INTRODUCTION

Memristors were theorized by Chua in 1971 and are described as the missing component linking charge and flux.1 In 2008, Strukov et al.2 showed that some nanodevices exhibiting a nonlinear hysteretic I–V curve are in fact memristive devices. This phenomenon was previously observed in memory based on resistive switching.3 Resistive switching arises from different phenomena,3,4 including the formation and destruction of conductive filaments (CFs) from the migration of metallic ions of Cu or Ag, for example.5,6 The formation of CF arises in a variety of structures, like atomic switches, which can be integrated in a crossbar structure, or nanowire (NW) networks,7 where more than one interconnection between NWs can be achieved. Several materials7 can be used to fabricate the NWs, including Cu, Ni, Ti, or Ag. NWs composed of silver can be used for transparent electronics8 and have a low electrical resistivity.9

Several fabrication processes are used to fabricate Ag-NW networks, like growing Ag-NWs from Cu seeds10 or with a polyol synthesis11 and a polyvinylpyrrolidone (PVP) coating12–15 (more fabrication processes are detailed in this review). PVP coated Ag-NWs can exhibit different densities of Ag-NWs in the sample16 as well as a larger resistance because of the PVP coating.12 Several post-treatments can be used to increase the connections between Ag-NWs, including thermal annealing, mechanical pressing, and other techniques.9,12 On the contrary, one can use post-treatments to increase the resistance of the network and create opportunities for the creation of Ag CFs so that the network exhibits memristive behavior. It can be done either thanks to the encapsulation of the Ag NWs in an insulating shell like PVP,12,14–16 where conductive filaments grow across the PVP insulating layer,15 or by fragmenting the Ag-NWs with UV/ozone irradiation, followed by annealing.13

In this work, we propose a memristive device made of three-dimensional (3D) interconnected Ag-NWs. Those are deposited inside a nanoporous membrane, which allows a bottom-up fabrication of a random but ordered NW network with a high number of interconnections.7 The Ag-NWs are then weakened during the etching step in order to have memristive properties.

2. EXPERIMENTAL SECTION

2.1. Electrochemical Deposition. Electrochemical deposition in an ion track nanoporous polycarbonate (PC) membrane was employed to produce 3D interconnected Ag-NWs, as shown schematically in Figure 1a. The nanoporous PC membrane with interconnected nanopores was fabricated by exposing a 25 μm thick PC film to a two-step irradiation
process. The topology of the membrane was defined by exposing the film to a first irradiation step at two fixed angles of \(-25^\circ\) and \(+25^\circ\) with respect to the normal axis of the film plane. In practice, the angles are between \(20^\circ\) and \(25^\circ\). After the PC film was rotated in the plane by \(90^\circ\), the second irradiation step took place at the same fixed angular irradiation flux to finally form a 3D nanoporous network. The diameter of the latent tracks was enlarged by following a previously reported protocol\(^1\)\(^8\) to obtain a membrane with an average pore diameter of \(30\, \text{nm}\) and a volumetric porosity of about \(0.4\%\). Next, the PC templates were coated on one side using an e-beam evaporator with a metallic Cr (3 nm)/Au (250 nm) bilayer to serve as a cathode during the electrochemical deposition. The Ag-NWs were fabricated by electrodeposition using a silver cyanide-based commercial electrolyte (Silver-Bright-100, Metakem GmbH) in a two-electrode configuration at room temperature by applying a constant potential of \(-1.5\, \text{V}\) versus a double-junction Ag/AgCl reference electrode and a platinum strip used as a counter electrode. The reaction is as follows:

\[
\text{Ag(SCN)}_2^- (aq) + e^- \rightleftharpoons \text{Ag(s)} + 3\text{SCN}^- (aq)
\]

After the silver electrodeposition process, the network thickness \(t\) is approximately \(24\, \mu\text{m}\). A schematic view of the sample is presented in Figure 1a.

2.2. Ag-NW Network Imaging. The morphology of the interconnected Ag-NW network was characterized using a field-emission scanning electron microscope (FE-SEM). For the electron microscopy analysis, the PC template was removed by chemical dissolution using dichloromethane from Sigma-Aldrich. As the network density is low, the network collapses once the membrane is completely removed, as shown on the SEM image in Figure 1b. A scheme of the Ag-NWs encapsulated in the membrane with the Au cathode is presented in Figure 2a, the inset of which shows a closer and tilted view of SEM image of the 3D interconnected Ag-NW network. As it can be seen, the Ag-NW network has a complex interconnected structure.

The 3D structure presents a high number of interconnections with the possibility of recurrent connections, with the advantages of NWs with a regular diameter and length. The number of interconnections is estimated numerically as \(5.5 \times 10^8 \pm 1.0 \times 10^8\) interconnections per mm\(^3\). For the network thickness, the density is around \(10^7\) interconnections per mm\(^2\), which is one order of magnitude greater than a recent structure.

\(^1\) It is interesting to note that the interconnections between Ag NWs share different portions of volume from none (i.e., no crossing) to complete crossing, as shown in Figure 1a.

2.3. Etching Process. During the etching process, the cathode is partially removed to create a two-electrode device for electrical measurements.\(^2\)\(^0\) This process is calibrated with respect to the metallic bilayer thickness. After the complete etching of the cathode between the contact pads, the sample exhibits a ohmic resistance of \(7.6\, \Omega\). To trigger memristive behavior, the etching time is further increased.

Although the impact of the plasma etching step on the degradation of the nanowire network is not completely clear, it...
results in a very noticeable increase in the temperature of the nanocomposite system during this step. As the thermal expansion of the PC membrane is much higher than that of the silver nanowires (on the order of 10^{-5} K^{-1}), and the volume fraction occupied by the Ag-NWs is on the order of 0.4%, this could result in high internal stresses, leading to ruptures within the NW network and the creation of insulating domains. This hypothesis is supported by the significant increase in resistance (from several GΩ to several Ω) and by the appearance of tunneling at high etching times. The damages are represented as gaps in Figure 2.

This two-step fabrication process allows the production of NWs below the lithography limit with numerous interconnections, a complexity beyond crossbar architecture, and also provides an easy scaling-up of the system by simply increasing its surface. As the Ag-NWs are already interconnected, the membrane is not dissolved at the end of the fabrication. Thus, the network has enhanced solidity, is flexible, and protected against oxidation.

2.4. Electrical Characterization. The measured sample was about 5 mm long and 1 mm wide, and the electrical contacts were directly made by silver paint. The I−V curves of the Ag-NWs were obtained using a Keithley 617 electrometer. All measurements are made at room temperature, and tests were made to discard any electrical conduction via the PC membrane to ensure complete conduction through the Ag-NWs and their interconnections only.

3. RESULTS AND DISCUSSION

3.1. High-Resistance Regime. An I−V cycle is repeated several times with a voltage ramp increasing from 0 to 100 V before decreasing back to 0 V with a time step of 1 V/s (see Figure 3). The data are denoised thanks to a digital wavelet transform, and the same offset is added to each sweep to ensure a positive current. Four consecutive cycles are plotted in Figure 3. For each cycle, there is a local minimum resistance. These values are 8.40 ± 0.02, 7.13 ± 0.06, 4.86 ± 0.04, and 2.73 ± 0.03 GΩ. One can notice that the local minimum resistance decreases with each consecutive cycle. Even with a voltage ramp reaching a high voltage (100 V), as the current flowing in the device is in the nA range, the maximal power reached for each sweep is respectively 1.12, 1.37, 1.70, and 2.90 μW. This device is then resilient to high input voltage with a moderate power consumption.

One can see the typical behavior of a memristive system for all measurements. Similar results were obtain in bulk silver nanowire-polystyrene composites with an applied voltage ramp up to 160 V and with a PVP-coated Ag-NW network for a threshold voltage below 2 V. The memristive behavior is expected to arise from the creation of field-induced Ag CF when the voltage increases in the gaps created during the plasma etching. The formation of the CF filaments is volatile, as the conductivity of the sample decreases when the voltage decreases as well. The destruction of some CF filaments might come from thermal effect due to Joule heating or from other phenomena like Rayleigh instability to minimize the system energy or the Gibbs–Thomson effect due to surface diffusion.

3.2. Tunneling Effect. For the first sweep, a change in conduction occurs when a threshold voltage Vth is exceeded, which leads to a strong current increase. Below this threshold, the increase of the current I with the voltage V is much smaller. This can be explained by the switching between direct tunneling at low voltage and field emission at high voltage as a Fowler–Nordheim plot suggests (see Figure 4b). Similar results have been reported with another type of Ag-NW network. We suppose that the tunnel conduction arises when nanowires are separated by an empty zone or gap acting like an insulating barrier, which appears during the etching of the cathode.
In order to have an estimation of the switching zone between these two regimes, a linear fitting is performed on a selection of data for both field emission and direct tunneling (respectively “fit 1” and “fit 2” in Figure 4). For the field emission, a linear dependence is shown when \(\ln(I/V^2)\) is plotted as a function of \(1/V\) as it appears in Figure 4c. The direct tunneling exhibits a linear dependence when \(\ln(I/V^2)\) is plotted as a function of \(1/V\), as shown in Figure 4d. An error is extracted from “fit 1” (respectively “fit 2”), and the switching limits are determined as the first (respectively last) value outside the fitting error range. The error of “fit 2” is small and is hardly visible in Figure 4d. These two switching limits are 12 and 60 V for the direct tunneling and field emission, respectively. The switching of the tunneling conduction arises from a change of the tunneling barrier shape from a rectangular barrier to a triangular barrier,\(^{30}\) which enhances the probability of tunneling.

3.3. Low-Resistance Regime

We measured this sample with \(I–V\) cycles six times before its resistance dropped to the \(\text{M}\) range and below. This new regime is called the low-resistance regime (LR) due to the decrease of the minimum resistance by a factor of about 47 000. After several repeated \(I–V\) cycles, we suppose that some filaments present an extended lifetime, leading to a strong decrease of the resistance. A similar behavior was reported by Avizienis et al.\(^{10}\)

Several measurements are made in the low-resistance regime, and two consecutive \(I–V\) cycles are reported in Figure 5. The data are denoised in two steps. First, outliers above 200 \(\mu\)A are suppressed and replaced thanks to an interpolation. Then, the data are denoised with a digital wavelet transform.\(^{24}\)

As seen in Figure 5, different memristive behavior is observed compared to that in the high resistance regime, and a negative differential resistance\(^{31–34}\) is observed. Additionally, between +5 and −5 V, diode-like behavior is noticed; further studies with a smaller voltage step would be needed to draw a conclusion on this phenomenon.

The following voltage cycle is applied to the sample: 0 V \(\rightarrow\) 50 V (\(V_{\text{stop}}\)) \(\rightarrow\) 0 V \(\rightarrow\) −50 V (\(−V_{\text{stop}}\)) \(\rightarrow\) 0 V. First, the current increases with the voltage up to a peak voltage \(V_{p1}\) of 16 and 26 V for the first and second sweep, respectively. Then, there is a negative differential resistance when the current decreases whereas the voltage increases from \(V_{p1}\) up to \(V_{\text{stop}}\) and when the current increases whereas the voltage decreases between \(V_{\text{stop}}\) and a second peak voltage \(V_{p2}\) (14 and 20 V for the first and second sweep, respectively). Finally, from \(V_{p2}\) to 0 V, the current decreases with the voltage. A symmetrical curve is observed during the second part of the voltage cycle with \(V_{p1}\) and \(V_{p2}\), which are equal to −20 and −17 V for the first sweep and −24 and −19 V for the second sweep. Similar differential negative resistances were observed in porous silicon\(^{35}\) with \(V_{p1} = 7.5\) V, \(V_{p2} = 6.0\) V, and \(V_{\text{stop}} = 20\) V. Additionally, multilevel unipolar resistive switching was measured in the Ag/SiO\(_2\)/Pt structure\(^{35}\) with \(V_{p1} = −0.6\) V and \(V_{\text{stop}}\) between −1 and −4 V.

During the first part of the sweep, a local maximum and two local minima of resistance are reached. The corresponding resistances are given in Table 1 before being averaged. The resulting averaged minimum resistance is \(R_{\text{LR min,bwd}} = 0.163 \pm 0.021\) MΩ and the averaged maximum resistance is \(R_{\text{LR max,bwd}} = 0.965 \pm 0.083\) MΩ, leading to a factor of six between the minimum and the maximum averaged resistance in the first-half of the sweeps. Similar results were obtained in the second half of the sweeps with \(R_{\text{LR min}} = 0.156 \pm 0.046\) MΩ and \(R_{\text{LR max}} = 0.862 \pm 0.123\) MΩ. In this low-resistance regime, the minimum resistances are in the kΩ range, with a voltage threshold in the order of 2 V. The \(R_{\text{LR max}}/R_{\text{LR min}}\) ratio and the voltage threshold are respectively smaller and larger than those in previous studies.\(^{28,35}\) However, the device has an adjustable 3D structure that could be optimized to both increase the \(R_{\text{LR max}}/R_{\text{LR min}}\) ratio and decrease the voltage threshold by varying the thickness of the network, the NW density, and the NW diameter or by optimizing the etching process.

4. CONCLUSION

In conclusion, we reported a 3D interconnected Ag-NW network with a simple, low-cost, and reliable two-step fabrication process comprised of a template-assisted electrodeposition and an etching process that leads to a highly and randomly interconnected network. The etching process has a double function, as it both damages the Ag NWs, giving rise to memristive properties to the 3D interconnected Ag-NW network, and defines electrode pads for electrical connection. In the future, the etching pattern will be tuned from a basic two-electrode design to a more elaborate pattern with numerous input/output pads. The resulting NWs are highly ordered and encapsulated in a 3D nanoporous polymer film. The 3D architecture allows \(5.5 \pm 1.0 \times 10^7\) interconnections per mm\(^3\) with an increased complexity, as the interconnections are random with a variety of crossing types. The number of interconnection can be easily adapted by adjusting the NW diameter as well as the membrane porosity. Two resistance regimes are measured with different resistance ranges: in the

![Figure 5. I – V cycles for two consecutive measurements in the low-resistance regime.](image)

Table 1. Minimum and Maximum Resistances in the Low-Resistance Regime and Their Associated Voltages during the First Half of the Sweeps

	sweep 1-LR	sweep 2-LR
\(R_{\text{LR min,bwd}}\)	0.150 MΩ at 13 V	0.168 MΩ at 15 V
\(R_{\text{LR max,bwd}}\)	1.007 MΩ at 50 V	0.923 MΩ at 50 V
\(R_{\text{LR min}}\)	0.157 MΩ at 10 V	0.178 MΩ at 9 V

\(^a\)The resistance \(R_{\text{LR min,bwd}}\) is measured in the first part of the first sweep when \(V\) increases from 0 to 50 V, while \(R_{\text{LR min,bwd}}\) is measured in the second part when \(V\) decreases from 50 to 0 V. The maximal resistances were taken at 50 V for clarity.
GΩ range and above for the high-resistance regime and in the MΩ range and below for the low-resistance regime. A tunneling conduction arises in the high-resistance regime, a negative differential resistance is measured in the low-resistance regime, and both regimes exhibit memristive behavior. This device exhibits several complex conduction regimes, and after optimization to decrease the voltage threshold it is anticipated that the low-resistance regime of this device might be useful for memristive applications and even neuromorphic computing, where the high density of interconnections could be exploited to train multiple learning processes on the same device, as numerous pathway are expected to exist in the Ag-NW network.

Author Contributions

Chloé Chopin – Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium; orcid.org/0000-0002-9115-3330; Email: chloé.chopin@uclouvain.be

Corresponding Author

Chloé Chopin – Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium; orcid.org/0000-0002-9115-3330; Email: chloé.chopin@uclouvain.be

AUTHOR INFORMATION

Simon de Wergifosse – Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium; orcid.org/0000-0003-3113-7379

Nicolás Marchal – Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium; orcid.org/0000-0001-8150-7214

Pascal Van Velthem – Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium; orcid.org/0000-0002-9998-5406

Luc Piraux – Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium

Flavio Abreu Araujo – Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium; orcid.org/0000-0001-7157-3197

Complete contact information is available at: https://pubs.acs.org/10.1021/acsomega.2c07171

Author Contributions

F.A.A. and L.P. designed the study. N.M., L.P., and P.V.V. fabricated the samples. F.A.A. conceived and designed the experimental measurement setup and the analysis. F.A.A., C.C., and S.d.W. collected the data and performed the analysis. C.C. wrote the core of the manuscript, and all the other coauthors contributed to it.

Notes

The authors declare no competing financial interest.

Acknowledgments

F.A.A. is a Research Associate of the F.R.S.-FNRS. S.d.W. and N.M. acknowledge the Research Science Foundation of Belgium (F.R.S.-FNRS) for financial support (FRIA grant). The authors would like to thank Dr. E. Ferain and the it4ip Company for supplying polycarbonate membranes.

REFERENCES

(1) Chua, L. Memristor—the missing circuit element. IEEE Transactions on circuit theory 1971, 18, 507–519.
(2) Strukov, D. B.; Snider, G. S.; Stewart, D. R.; Williams, R. S. missing memristor found. nature 2008, 453, 80–83.
(3) Waser, R.; Aono, M. Nanoionics-based resistive switching memories. In Nanoscience and Technology: A Collection of Reviews from Nature Journals: Rodger, E., Ed.; World Scientific, 2010; pp158–165. DOI: 10.1142/9789814287005_0016. (4) Sava, A. Resistive switching in transition metal oxides. Mater. Today 2008, 11, 28–36.
(5) Banno, N.; Sakamoto, T.; Hasegawa, T.; Terabe, K.; Aono, M. Effect of ion diffusion on switching voltage of solid-electrolyte nanometer switch. Japanese journal of applied physics 2006, 45, 3666.
(6) Terabe, K.; Hasegawa, T.; Nakayama, T.; Aono, M. Quantized conductance atomic switch. Nature 2005, 433, 47–50.
(7) Milano, G.; Porro, S.; Valov, I.; Ricciardi, C. Recent developments and perspectives for memristive devices based on metal oxide nanowires. Advanced Electronic Materials 2019, 5, 1800909.
(8) Hu, L.; Kim, H. S.; Lee, J.-Y.; Peumans, P.; Cui, Y. Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano 2010, 4, 2955–2963.
(9) Bellew, A. T.; Manning, H. G.; Comes da Rocha, C.; Ferreira, M. S.; Boland, J. J. Resistance of single Ag nanowire junctions and their role in the conductivity of nanowire networks. ACS Nano 2015, 9, 11422–11429.
(10) Avizienis, A. V.; Sillin, H. O.; Martin-Olmos, C.; Shieh, H. H.; Aono, M.; Stieg, A. Z.; Gimzewski, J. K. Neuromorphic atomic switch networks. PLoS One 2012, 7, e42772.
(11) Coskun, S.; Aksoy, B.; Uralan, H. E. Polyol synthesis of silver nanowires: an extensive parametric study. Cryst. Growth Des. 2011, 11, 4963–4969.
(12) Du, H.; Wan, T.; Qu, B.; Cao, F.; Lin, Q.; Chen, N.; Lin, X.; Chu, D. Engineering silver nanowire networks: from transparent electrodes to resistive switching devices. ACS Appl. Mater. Interfaces 2017, 9, 20762–20770.
(13) Wan, T.; Pan, Y.; Du, H.; Qu, B.; Yi, J.; Chu, D. Threshold switching induced by controllable fragmentation in silver nanowire networks. ACS Appl. Mater. Interfaces 2018, 10, 2716–2724.
(14) Diaz-Alvarez, A.; Higuchi, R.; Sanz-Leon, P.; Marcus, I.; Shingaya, Y.; Stieg, A. Z.; Gimzewski, J. K.; Kuncic, Z.; Nakayama, T. Emergent dynamics of neuromorphic nanowire networks. Sci. Rep. 2019, 9, 1–13.
(15) Milano, G.; Pedretti, G.; Montano, K.; Ricci, S.; Hashemkhani, S.; Boarino, L.; Ielmini, D.; Ricciardi, C. In-materia reservoir computing with a fully memristive architecture based on self-organizing nanowire networks. Nat. Mater. 2022, 21, 195–202.
(16) Diaz Schneider, J. I.; Angelomé, P. C.; Granja, L. P.; Quinteros, C. P.; Levy, P. E.; Martinez, E. D. Resistive Switching of Self-Assembled Silver Nanowire Networks Governed by Environmental Conditions. Advanced Electronic Materials 2022, 8, 2200631.
(17) Rauber, M.; Alber, I.; Müller, S.; Neumann, R.; Picht, O.; Roth, C.; Schönkel, A.; Toimil-Molares, M. E.; Ensinger, W. Highly-ordered supportless three-dimensional nanowire networks with tunable complexity and interwire connectivity for device integration. Nano Lett. 2011, 11, 2304–2310.
(18) Ferain, E.; Legras, R. Track-etch templates designed for micro- and nanofabrication. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2003, 208, 115–122.
(19) Milano, G.; Pedretti, G.; Fretto, M.; Boarino, L.; Benfenati, F.; Ielmini, D.; Valov, I.; Ricciardi, C. Brain-inspired structural plasticity through reweighting and rewiring in multi-terminal self-organizing memristive nanowire networks. Advanced Intelligent Systems 2020, 2, 2000096.
(20) da Câmarra Santa Clara Gomes, T.; Abreu Araujo, F.; Piraux, L. Making flexible spin caloritronic devices with interconnected nanowire networks. Science advances 2019, 5, eava2782.
(21) Escher, U.; Wöller, E.; Hegenbarth, E. Thermal Expansion of High-Tc Superconducting Ceramics and Polycarbonate. In Advances in Cryogenic Engineering Materials; Reed, R. P., Fickett, F. R., Summers, L. T., Stieg, M., Eds.; Springer, 1994; pp 125–129. DOI: 10.1007/978-1-4757-9053-5_17.

(22) Hu, J.; Cai, W.; Li, C.; Gan, Y.; Chen, L. In-situ x-ray diffraction study of the thermal expansion of silver nanoparticles in ambient air and vacuum. Appl. Phys. Lett. 2005, 86, 151915.

(23) da Cámara Santa Clara Gomes, T.; Marchal, N.; Abreu Araujo, F.; Velázquez Galván, Y.; de la Torre Medina, J.; Piraux, L. Magneto-Transport in Flexible 3D Networks Made of Interconnected Magnetic Nanowires and Nanotubes. Nanomaterials 2021, 11, 221.

(24) Lee, G. R.; Gommers, R.; Waselewski, F.; Wohlfahrt, K.; O’Leary, A. PyWavelets: A Python package for wavelet analysis. Journal of Open Source Software 2019, 4, 1237.

(25) White, S. I.; Vora, P. M.; Kikkawa, J. M.; Winey, K. I. Resistive switching in bulk silver nanowire-polystyrene composites. Adv. Funct. Mater. 2011, 21, 233–240.

(26) Díaz-Alvarez, A.; Higuchi, R.; Li, Q.; Shingaya, Y.; Nakayama, T. Associative routing through neuromorphic nanowire networks. AIP Advances 2020, 10, 025134.

(27) Hsiung, C.-P.; Liao, H.-W.; Gan, J.-Y.; Wu, T.-B.; Hwang, J.-C.; Chen, F.; Tsai, M.-J. Formation and instability of silver nanofilament in Ag-based programmable metallization cells. ACS Nano 2010, 4, 5414–5420.

(28) Wang, Z.; Rao, M.; Midya, R.; Joshi, S.; Jiang, H.; Lin, P.; Song, W.; Asapu, S.; Zhuo, Y.; Li, C.; et al. Threshold switching of Ag or Cu in dielectrics: materials, mechanism, and applications. Adv. Funct. Mater. 2018, 28, 1704862.

(29) Wang, W.; Wang, M.; Ambrosi, E.; Bricalli, A.; Laudato, M.; Sun, Z.; Chen, X.; Ielmini, D. Surface diffusion-limited lifetime of silver and copper nanofilaments in resistive switching devices. Nat. Commun. 2019, 10, 1–9.

(30) Araidai, M.; Tsukada, M. Theoretical calculations of electron transport in molecular junctions: Inflection behavior in Fowler-Nordheim plot and its origin. Phys. Rev. B 2010, 81, 235114.

(31) Hickmott, T. Low-frequency negative resistance in thin anodic oxide films. J. Appl. Phys. 1962, 33, 2669–2682.

(32) Ridley, B. Specific negative resistance in solids. Proc. Phys. Soc. 1963, 82, 954.

(33) Pickett, M. D.; Borghetti, J.; Yang, J. J.; Medeiros-Ribeiro, G.; Williams, R. S. Coexistence of Memristance and Negative Differential Resistance in a Nanoscale Metal-Oxide-Metal System. Adv. Mater. 2011, 23, 1730–1733.

(34) Marin, O.; Toranzos, V.; Urteaga, R.; Comedi, D.; Koropecki, R. R. Negative differential resistance in porous silicon devices at room temperature. Superlattices Microstruct. 2015, 79, 45–53.

(35) Sun, H.; Liu, Q.; Long, S.; Lv, H.; Banerjee, W.; Liu, M. Multilevel unipolar resistive switching with negative differential resistance effect in Ag/SiO2/Pt device. J. Appl. Phys. 2014, 116, 154509.

(36) Kuncic, Z.; Nakayama, T. Neuromorphic nanowire networks: principles, progress and future prospects for neuro-inspired information processing. Advances in Physics: X 2021, 6, 1894234.

(37) Daniels, R.; Mallinson, J.; Heywood, Z.; Bones, P.; Arnold, M.; Brown, S. Reservoir computing with 3D nanowire networks. Neural Networks 2022, 154, 122–130.