Theoretical studies of carbon isotopic fractionation in reactions of C with C₂: dynamics, kinetics, and isotopologue equilibria

C. M. R. Rocha and H. Linnartz

Laboratory for Astrophysics, Leiden Observatory, Leiden University, PO Box 9513, 2300 RA Leiden, The Netherlands
e-mail: romerorocha@strw.leidenuniv.nl

Received 9 December 2020 / Accepted 22 January 2021

ABSTRACT

Context. Our current understanding of interstellar carbon fractionation hinges on the interpretation of astrochemical kinetic models. Yet, the various reactions included carry large uncertainties in their (estimated) rate coefficients, notably those involving C with C₂.

Aims. We aim to supply theoretical thermal rate coefficients as a function of the temperature for the gas-phase isotope-exchange reactions \(^{13}\text{C} + {^{12}\text{C}}_2(X^2\Sigma^+_g, a\Pi_u) \leftrightarrow {^{12}\text{C}} + {^{13}\text{C}}_2(X^2\Sigma^+_g, a\Pi_u) \) and \(^{13}\text{C} + {^{12}\text{C}}_2(X'^3\Pi_u,a\Pi_u) \leftrightarrow {^{12}\text{C}} + {^{13}\text{C}}_2(X'^3\Pi_u,a\Pi_u) \). These forms can further be introduced in astrochemical networks. Apart from the proper kinetic attributes, we also provide equilibrium parameters Arrhenius-Kooij formulas are provided that readily interpolate and extrapolate the associated forward and backward rates.

Methods. By relying on the large masses of the atoms involved, we employ a variation of the quasi-classical trajectory method, with the previously obtained (mass-independent) potential energy surfaces of C₂ dictating the forces between the colliding partners.

Results. The calculated rate coefficients within the range of \(25 \leq T/K \leq 500\) show a positive temperature dependence and are markedly different from previous theoretical estimates. While the forward reactions are fast and inherently exothermic owing to the lower zero-point energy content of the products, the reverse processes have temperature thresholds. For each reaction considered, analytic three-parameter Arrhenius-Kooij formulas are provided that readily interpolate and extrapolate the associated forward and backward rates. These forms can further be introduced in astrochemical networks. Apart from the proper kinetic attributes, we also provide equilibrium constants for these processes, confirming their prominence in the overall C fractionation chemistry. In this respect, the \(^{13}\text{C}+{^{12}\text{C}}_2(X^2\Sigma^+_g)\) and \(^{13}\text{C}+{^{12}\text{C}}_2(a\Pi_u)\) reactions are found to be particularly conspicuous, notably at the typical temperatures of dense molecular clouds. For these reactions and considering both equilibrium and time-dependent chemistry, theoretical \(^{13}\text{C}/^{12}\text{C}\) ratios as a function of the gas kinetic temperature are also derived and shown to be consistent with available model chemistry and observational data on C₂.

Key words. molecular processes – molecular data – ISM: molecules – astrochemistry – ISM: clouds – ISM: abundances

1. Introduction

Observations of isotopic abundance ratios in interstellar molecules provide an avenue for tracking Galactic chemical evolution, from stellar nucleosynthesis to dense cloud formation and processing of the ejected material to new stars and planetary systems created therefrom (Wilson 1999). For example, the seemingly incompatible elemental \(^{12}\text{C}/^{13}\text{C}\) ratios found in the local interstellar medium (ISM; \(\sim 68\) as inferred from CN: Milam et al. 2005; CO: Langer 1992, H₂CO: Langer 1992 and CH⁺; Wilson 1999) and in the Solar System (\(\sim 89\)) might be indicative of \(^{13}\text{C}\) enrichment of the ISM by asymptotic giant branch (AGB) stars since the formation of the Sun (Milam et al. 2005).

Apart from the intrinsic variations with galactocentric distance and time (Wilson 1999; Milam et al. 2005; Langer 1992), isotopic abundance ratios as measured in molecules are also important tracers of local environment effects. Interstellar species often show relative abundances of particular isotopologs that may significantly differ from those inherent in the gas owing to peculiarities in their chemistry (Furuya et al. 2011). In cold dense cloud cores, with typical temperatures \((T) \approx 10\ \text{K}\) and visual extinctions \((A_V) \approx 10\ \text{mag}\), this so-called isotopic fractionation (Langer et al. 1984; Terzieva & Herbst 2000; Furuya et al. 2011; Liszt & Ziurys 2012; Roueff et al. 2015; Furuya & Aikawa 2018; Loison et al. 2018, 2019, 2020; Colzi et al. 2020) has long been recognized and mainly attributed to gas-phase isotope-exchange reactions (Dalgaro & Black 1976; Watson et al. 1976). Given the very low collision energies in dense clouds, it becomes clear that the most efficient fractionation pathways therein must involve exothermic reactions for which the salient features of the potential energy surfaces (PESs; Rocha 2019) are basins rather than barriers (Henchen & Paulson 1989). Indeed, chemical fractionation via barrierless ion–molecule or neutral–neutral reactions is mostly driven by the small zero-point energy (ZPE) differences between reactants and products of isotopically distinct species (Mladenovic & Roueff 2014, 2017); the role of isotope-selective gas–grain interactions and photodissociation in also altering fractionation ratios is discussed elsewhere (e.g., Furuya et al. 2011; Furuya & Aikawa 2018; Loison et al. 2018; Visser et al. 2009).

With regard to carbon isotopic fractionation, Watson et al. (1976) first pointed out the relevance of the reaction

\[
{^{13}\text{C}}^+ + {^{12}\text{CO}} \rightarrow {^{13}\text{CO}} + {^{12}\text{C}}^+ + \Delta E^{(1)}_{\text{ZPE}},
\]

which is particularly efficient at low \(T\); \(k_1/k_1 \approx 33\) at \(10\ \text{K}\) and \(\Delta E^{(1)}_{\text{ZPE}}\); the ZPE difference among \(^{12}\text{CO}\) and \(^{13}\text{CO}\) is \(\approx 35\ \text{K}\) (Watson et al. 1976; Smith & Adams 1980; Langer et al. 1984). As first noted by Langer et al. (1984) reaction (1), on one hand, enhances the amount of \(^{13}\text{C}\) locked up in CO (and in species directly formed from it), and on the other hand makes \(^{13}\text{C}\) less available to react with other C-bearing species, decreasing their \(^{13}\text{C}\) content. Because CO is by far the largest repository of gas-phase carbon (at least in oxygen-rich dense clouds Langer et al. 1984), the above scenario led to the suggestion that \(^{12}\text{CO}/^{13}\text{C}\) values as measured from CO serve as a lower
limit to the “true” elemental [12C/13C] ratio gradient throughout the Galaxy, while those inferred from other species like H$_2$CO reflect an upper range (Wilson 1999; Langer 1992).

Ever since the postulation of reaction (1) as the main C fractionation route in strongly shielded regions (Watson et al. 1976), a notable contrast has emerged between the above general predictions (by chemistry models) of the strong 13C depletion in C-containing molecules (Langer et al. 1984) and the general absence of this observable effect in surveys conducted, for example, in abundant species such as CS (Liszt & Ziurys 2012), CN (Milam et al. 2005), C$_2$ (Hamano et al. 2019), CCS (Sakai et al. 2007), HNC (Liszt & Ziurys 2012), C$_3$ (Giesen et al. 2020), and HC$_3$N (Takano et al. 1998) that are not formed directly from CO and whose 12C/13C ratios thus inferred are in agreement with (or even lower than) the gas elemental values. Such a conflict therefore opened up new avenues for the possibility of an overall 13C enrichment in species other than CO, and led to the proposition of alternative isotope-exchange reactions (e.g., 13C+CN: Langer 1992; Roueff et al. 2015, 13CO+HCO$^+$: Smith & Adams 1980; Mladenovic & Roueff 2017, 12C+C$_2$: Roueff et al. 2015, and 13C+C$_2$: Giesen et al. 2020; Colzi et al. 2020; Loison et al. 2020) and novel formation pathways (Takano et al. 1998; Sakai et al. 2007; Furuya et al. 2011) deemed to contribute to the 13C fractionation chemistry.

Despite previous assessments (Woods & Willacy 2009; Furuya et al. 2011; Roueff et al. 2015; Colzi et al. 2020; Loison et al. 2020), validation of this hypothesis is often hindered by a lack of accurate experimental and/or theoretical rate coefficients for some of these reactions (Furuya et al. 2011; Woods & Willacy 2009).

In this work, we provide such values for the gas-phase reactions

\[^{13}C + ^{12}C_2(X^1Σ_g^+) \rightarrow ^{12}C^{13}C(X^1Σ_g^+) + ^{12}C + ΔE_{ZPE}^{(2)}, \]

\[^{13}C + ^{12}^{12}C(X^1Σ_g^+) \rightarrow ^{12}C^{13}C(X^1Σ_g^+) + ^{12}C + ΔE_{ZPE}^{(3)}, \]

\[^{13}C + ^{12}C_2(a^3Π_u) \rightarrow ^{12}C^{13}C(a^3Π_u) + ^{12}C + ΔE_{ZPE}^{(4)}, \]

and

\[^{13}C + ^{13}^{12}C(a^3Π_u) \rightarrow ^{13}C^{13}C(a^3Π_u) + ^{12}C + ΔE_{ZPE}^{(5)}, \]

by means of a theoretical approach (see below). The motivation here is primarily grounded in the prevalence of C$_2$, the smallest pure carbon cluster, throughout the ISM; it has been detected (via its Phillips (1Π_u→$^1Σ_u^+$) and Swan (3Π_u→3Π_u) bands) in a myriad of astronomical sources (Babb et al. 2019), including diffuse (Souza & Lutz 1977; Snow & McCaill 2006), translucent (Hamano et al. 2019), and dense molecular clouds (Hobs et al. 1983) and is known to be the primary reservoir of gas-phase carbon in oxygen-poor regions (Souza & Lutz 1977). Besides being key for probing the physical conditions of interstellar clouds (Snow & McCaill 2006), C$_2$, together with C13, is thought to be the fundamental building block in the formation chemistry of larger hydrogen-deficient C-bearing species (Ehrenfreud & Charnley 2000; Kaiser 2002; Gu et al. 2006), and therefore plays an active role in their 13C enrichment. From a top-down perspective, C$_2$ radicals are also important units arising from the (photo)fragmentation of polycyclic aromatic hydrocarbons (PAHs) and fullerenes. In a number of experimental studies it was shown that PAHs, once fully dehydrogenated, fragment through sequential C$_2$-losses (see, e.g., Zhen et al. 2014). This is fully consistent with the general picture that some of the diffuse interstellar band (DIB) carriers, notably those responsible for the so-called C1 DIBs (Thorburn et al. 2003; Elyajouri et al. 2018), might be related to PAH cations and their derivatives upon photoprocessing.

As for the calculation of both forward and reverse rate coefficients of reactions (2)–(5), we herein employ the quasi-classical trajectory (QCT) method (Truhlar & Buckermannon 1979; Peslherbe et al. 1999), with the previously obtained (nuclear-mass-independent) global PESs of C$_3(A'')$ (Rocha & Varandas 2019) and C$_3(A'')$ (Rocha & Varandas 2018) dictating the interactions between the involved nuclei (see Sect. 2). From the calculated rate coefficients as a function of T, equilibrium constants for these processes are also provided and their possible impact on the overall C isotopic fractionation chemistry is briefly discussed.

2. Methods

2.1. Potential energy surfaces

The global adiabatic mass-independent PESs of ground-state C$_3(A'')$ and C$_3(A'')$ used here in the QCT calculations are depicted in Figs. 1 and 2. They were obtained by performing electronic structure calculations for a sufficient number of (fixed) nuclear configurations whose energies were then modeled by physically motivated many-body expansion forms (Rocha & Varandas 2018, 2019). To obtain a balanced and accurate description of both valence and long-range features of the potentials, ab initio calculations were carried out at the multireference configuration interaction [MRCI(ξQ)] level of theory (Szalay et al. 2012), with the final total energies subsequently extrapolated to the complete (one-electron) basis set limit (Varandas 2018) prior to the fitting procedure. For the single PES, Rocha & Varandas (2018) improved the spectroscopy near its linear minima |$-C_3(X^1Σ_g^+)\rangle$ by morphing this global form with an accurate Taylor-series expansion taken from Schröder & Sebald (2016). In this spirit and to partially account for the incompleteness of the N-electron basis and other minor effects, both global PESs used
The quasi-classical trajectory (QCT) method employed in this work has been extensively described in the literature (Truhlar & Muckerman 1979; Peslherbe et al. 1999). Using a locally modified version of the VENUS96C code (Hase et al. 1996), batches of 10⁴ trajectories were run for the ground adiabatic \(^1\text{A}' \) and \(^3\text{A}' \) PESs of \(\text{C}_3 \) separately; non-adiabatic (Tully & Preston 1971; Voronin et al. 1998; Galvão et al. 2012) and spin-forbidden (Tachikawa et al. 1995; Galvão et al. 2013) transitions were not taken into account. Cross-sections and rate constants for the envisaged (forward and reverse) isotope-exchange reactions (Eqs. (2)–(5)) were obtained for fixed Ts by randomly sampling (Peslherbe et al. 1999) the orientation of the reactants; atom-diatom relative translational energy; the ro-vibrational state of the reactant dicarbon; and impact parameter (b). The integration of the Hamilton’s equations of motion employed a time-step of 0.1 fs such as to warrants conservation of the total energy to better than 10⁻⁴ hartree (\(E_o \)). Reactants were initially separated by 12 \(a_0 \), with a maximum value of the b (\(b_{\text{max}} \)) optimized by trial and error for each T and PES; see Tables A1–A3. Figure 2 shows sample reactive trajectories for reactions (2) and (4).

For a given \(T \), (averaged) reaction cross-sections were then obtained as (Peslherbe et al. 1999)

\[
\langle \sigma_r(T) \rangle = \pi \hbar^2 \frac{N_r}{N},
\]

where \(N_r \) is the number of reactive trajectories out of a total of \(N \) that were run. To account in an approximate way for the deficiency of classical mechanics in conserving the quantum mechanical ZPE, we herein follow Nyman & Davidsson (1990) and Varandas (1993) and consider in the statistical analysis only trajectories that show enough vibrational energy to reach the ZPE of the products or the reformed reactants (Table 1); no ZPE constraints were a priori imposed on the \(\text{C}_3 \) intermediate complexes (Table 2) (Truhlar 1979).

Assuming that the translational and internal degrees of freedom are at equilibrium, that is, the velocity distributions are Maxwellian and the reactants quantum numbers are determined from Boltzmann distributions, the thermal rate coefficients of reactions (2)–(5) were calculated as (Peslherbe et al. 1999)

\[
k(T) = g_s(T) \left(\frac{8kT}{\pi\mu_{C_2}} \right)^{1/2} \langle \sigma_r(T) \rangle,
\]

where

\[
g_s(T) = \prod_{\text{products}} \text{Rate coefficients for the different product states}
\]

The calculation of the rate coefficients for the different product states is a non-trivial task, and various methods have been proposed in the literature. One of the most widely used methods is the quasi-classical trajectory (QCT) method, which is based on the assumption that the reaction dynamics can be described by classical mechanics. The QCT method is particularly useful for systems with a large number of degrees of freedom, as it does not require the calculation of the full quantum mechanical wave function.

The QCT method is based on the assumption that the reaction dynamics can be described by classical mechanics. The QCT method is particularly useful for systems with a large number of degrees of freedom, as it does not require the calculation of the full quantum mechanical wave function. However, the QCT method has several limitations, such as the assumption of classical mechanics, which is not always valid, and the assumption of a locally modified version of the VENUS96C code, which may not be accurate for all systems.

In conclusion, the QCT method is a powerful tool for the calculation of reaction rate coefficients in the gas phase. However, it is important to keep in mind the limitations of the method and to use it with caution. Further research is needed to improve the accuracy of the QCT method and to develop new methods for the calculation of reaction rate coefficients in the gas phase.
with the estimated standard deviation (68.2% error) given by
\[\Delta \sigma = 1.4993 \text{ cm}^{-1} \] for the populations of the \(^3\Pi_0 \) and \(^3\Sigma_g^+ \) states (Wilhelmsson & Nyman 1992; Russell & Manolopoulos 1999); for simplicity, no temperature dependence was priori included into the corresponding partition function, that is, \(Q_T(\Delta C) = 3 \) in Eq. (8) (Wilhelmsson & Nyman 1992). The remaining six states correlate with two other excited triplet PESs and are regarded as nonreactive. Such a scenario becomes even more intricate in the case of \(^3\Pi_0 \) and \(^3\Sigma_g^+ \) states. Their asymptotic interaction gives rise to 18 (6 singlet, 6 triplet and 6 quintet) electronic states, correlating to a total of 54 spin-orbit levels (Eqs. (8)–(10)). This undoubtedly makes the determination of the appropriate adiabatic correlations, and hence \(Q_T(\Delta C) \) in Eq. (8), a nontrivial task. Due to lack of experimental and further theoretical evidence, we herein simply choose to correlate the ground-state PES of \(C_2 \) to the lowest spin-orbit states of its fragments (i.e. to the lowest \(A^e \) component of \(^3\Pi_0 \) + \(^3\Sigma_g^+ \)); Andersson et al. 2003; Abrahamsson et al. 2008), which means that this surface is the only one available for reaction among all 54 \(Q_T(\Delta C) = 3 \) in Eq. (8). We note that while the above surmises are the most appealing a priori, they may introduce, together with the single-surface ansatz (7) (Graff & Wagner 1990), additional approximations in the calculated rate coefficients; however, these can only be assessed once experimental kinetics data become available. In this respect, we note & Wagner 1990), additional approximations in the calculated rate coefficients; however, these can only be assessed once experimental kinetics data become available. In this respect, we note

Table 1. Spectroscopic properties (in cm\(^{-1}\)) of the reactant and product diatomics (of reactions (2)--(5)) correlating with the global singlet and triplet PESs of \(C_2 \).

Source	\(T_c \) (a)	\(R_e \)	\(\omega_e \)	\(\omega_{2s_e} \)	\(\omega_{2p_e} \)	\(B_e \)	\(\alpha_e \)	\(E_{ZPE} \)	
\(^{12}\text{C}_2(X\ ^1\Sigma_g^+)\)	\(^{12}\text{C}_2(3\Pi^e)\) PES	0.0	2.348	1855.5	13.5624	−0.1655	1.8203	0.0214	924.1
\(^{13}\text{C}_2(X\ ^1\Sigma_g^+)\)	\(^{13}\text{C}_2(3\Pi^e)\) PES	0.0	2.348	1850.0	13.5701	−0.1275	1.8200	0.0179	924.1
\(^{13}\text{C}^{12}\text{C}(X\ ^1\Sigma_g^+)\)	\(^{13}\text{C}^{12}\text{C}(3\Pi^e)\) PES	0.0	2.348	1819.5	13.1000	−0.1480	1.7503	0.0210	906.2
\(^{13}\text{C}^{13}\text{C}(X\ ^1\Sigma_g^+)\)	\(^{13}\text{C}^{13}\text{C}(3\Pi^e)\) PES	0.0	2.348	1818.9	13.0466	−0.1202	1.7498	0.0169	906.2

Notes. *(a)*Energies given with respect to the corresponding ground electronic states of each isotopologue. *(b)*Data from Amiot (1983), Brooke et al. (2013), Ram et al. (2014), and Chen et al. (2015). *(c)*Experimental spectroscopic constants calculated from \(^{13}\text{C}_2(X\ ^1\Sigma_g^+)\) data and isotopic relationships (see, e.g., Ram et al. 2014).
Table 3. Exothermicities (in cm$^{-1}$ unless otherwise stated) of reactions (2)–(5) based on the data shown in Table 1.

Source	Reaction #			
	(2)	(3)	(4)	(5)
This work	17.9 (25.8 K)	18.3 (26.3 K)	15.9 (22.9 K)	16.3 (23.5 K)
Others	18.0 (25.9 K)	18.3 (26.4 K)	15.9 (22.9 K)	16.3 (23.5 K)
Exp.	17.9 (25.8 K)	18.4 (26.5 K)	15.9 (23.0 K)	16.0 (23.0 K)

Notes. (a,b)This assumes that the reactions proceed in the ground-rovibrational states of both the reactants and products. (a,b)The corresponding zero point energies in K, ΔE_{ZPE}, are also given in parenthesis. (a,b)Data from Colzi et al. (2020). (a,b)Experimental estimates using the data from Table 1.

3. Results and discussion

Figure 3 shows the calculated forward and backward rate coefficients for the gas-phase isotope-exchange reactions (2)–(5) within the temperature range of 25 $\leq T/K \leq$ 500. Also shown for comparison are the corresponding QCT rates obtained for the $^{12}\text{C} + ^{12}\text{C}(X^1\Sigma_g^+)$ \rightarrow $^{12}\text{C}_2(X^1\Sigma_g^+) + ^{12}\text{C},$ and $^{12}\text{C} + ^{12}\text{C}_2(a^3\Pi_u) \rightarrow ^{12}\text{C}_2(a^3\Pi_u) + ^{12}\text{C},$ atom-exchange reactions and available results from the literature (Roueff et al. 2015; Colzi et al. 2020; Westley 1980); Tables A.1–A.3 gather all the numerical values. To further explore the temperature dependence of k, we have considered the popular Arrhenius-Kooij formula (Laidler 1984)

$$k(T) = A \left(\frac{T}{298.15} \right)^B \exp \left(-\frac{C}{T} \right),$$

where A, B, and C are parameters to be adjusted to the QCT data; they are numerically defined in Table 4, with the final fitted forms also plotted in Fig. 3. We note that, in the least-squares fitting procedure, the nonlinear parameters C were allowed to float freely from their initial values, and therefore slightly deviate from the expected ΔE_{ZPE} values in Table 3. Physically, this is consistent with the presence of rotationally excited reactant and

Notes. $^{(a)}$See Rocha & Varandas (2018, 2019) for the definition of the vibrational modes and to assess the corresponding values for the main isotopologues. $^{(a)}$Data from Krieg et al. (2013) and Breier et al. (2016). $^{(a)}$Data from Tokaryk & Civiš (1995).
product C₂ species (Mladenović & Roueff 2014). Suffice it to say that, due to the homonuclear nature of the $^{12/13}\text{C}_2(X^1\Sigma^+_g)$ reactant molecules, only even rotational quantum numbers J were considered in the trajectory samplings; for the $^{13}\text{C}_2$ species, the corresponding Boltzmann distributions include both odd and even J values.

As shown in Fig. 3, the calculated thermal rate constants for the C+C₂ reactions increase as a function of temperature, revealing a positive T dependence. As previously noted (Sect. 2.1), this stems from the fact that, at higher T, not only are the (head-on collinear) MEPs sampled by the reactive trajectories but also other regions of the PESs become energetically accessible (e.g., bimolecular side-on encounters at high collision energies), increasing reaction probabilities. A similar temperature-dependent profile ($k \propto T^{0.5}$) was found experimentally for the barrierless N+C₂ reaction (Loison et al. 2014). As expected, all these processes evolve via long-lived trajectories, with the strongly bound energized complexes spanning large sections of the molecular PESs; see Fig. 2. Figure 3 shows that the forward exothermic reactions (2)–(5) are fast with the calculated rate constants varying from 10^{-12} up to 10^{-10} cm3 molecule$^{-1}$ s$^{-1}$ within the temperature interval considered. At $T=10$ K, Eq. (13) predicts k_2, k_3, k_4, k_5 to be 1.5×10^{-11}, 7.6×10^{-12}, 1.4×10^{-12}, and 6.8×10^{-13} cm3 molecule$^{-1}$ s$^{-1}$, respectively; these values

Table 4. Parameters of Eq. (13) for the forward and reverse rate coefficients of reactions (2)–(5), (11), and (12).

Rate constant	Parameter$^{(a)}$	A	B	C
k_2	1.0824 (-10)	5.7905 (-1)	0	
k_3	5.3988 (-11)	6.3165 (-1)	2.6963 (+1)	
k_4	5.4118 (-11)	5.7905 (-1)	0	
k_5	1.0835 (-10)	5.7742 (-1)	2.6560 (+1)	
k_6	7.6852 (-12)	5.1035 (-1)	0	
k_7	3.8553 (-12)	5.4722 (-1)	2.3706 (+1)	
k_8	3.8426 (-12)	5.1035 (-1)	0	
k_9	7.6919 (-12)	5.0770 (-1)	2.3850 (+1)	
k_{10}	1.1078 (-10)	6.0149 (-1)	0	
k_{11}	7.9168 (-12)	5.3256 (-1)	0	

Notes. $^{(a)}x(y)$ represents $x \times 10^y$. A is in cm3 molecule$^{-1}$ s$^{-1}$, B unitless and C is in K.

Fig. 3. Forward and backward thermal rate coefficients and associated error bars for the reactions (a) $^{13}\text{C}(^1P)+^{12}\text{C}_2(X^1\Sigma^+_g) \rightarrow^{13}\text{C}^{12}\text{C}(X^1\Sigma^+_g)+^{13}\text{C}_2(X^1\Sigma^+_g)$ (Eq. (2)), k_2; (b) $^{13}\text{C}(^1P)+^{12}\text{C}_2(X^1\Sigma^+_g) \rightarrow^{13}\text{C}_2(X^1\Sigma^+_g)+^{12}\text{C}(^1P)$ (Eq. (3)), k_3; (c) $^{13}\text{C}(^1P)+^{12}\text{C}_2(a^3\Pi_u) \rightarrow^{13}\text{C}_2(a^3\Pi_u)+^{12}\text{C}(^1P)$ (Eq. (5)), k_{11}; and (d) $^{13}\text{C}(^1P)+^{12}\text{C}_2(a^3\Pi_u) \rightarrow^{13}\text{C}_2(a^3\Pi_u)+^{12}\text{C}(^1P)$ (Eq. (13)) at temperatures up to 600 K. Also shown are the QCT values obtained for the $^{12}\text{C}_2(X^1\Sigma^+_g)+^{12}\text{C}(^1P, \text{CT}3)$ atom-exchange reactions (Eqs. (11) and (12)) and available results from the literature (Roueff et al. 2015; Colzi et al. 2020; Wesley 1980); CT stands for capture theory (Georgievskii & Klippenstein 2005). Solid thick lines show the predicted QCT thermally averaged rates using the Arrhenius-Kooij formula of Eq. (13).
are typical of atom–radical reactions that are currently included in low-temperature astrochemical networks (Smith et al. 2004). The overall reactivity of C2(X1\Sigma_g^+) with ground-state C atoms is about one order of magnitude higher than that of the first excited \(\text{C}_2(a^3\Pi_g) \) state. This is in general agreement with experimental results when the molecular partner is an unsaturated hydrocarbon (Gu et al. 2006; Páramo et al. 2008). We further note that, except for \(T = 200 \text{ K} \) (see Figs. 3a and b), the predicted rates of the isotope-exchange reactions (2) and (3) are in sharp contrast to the theoretically derived \(k \) via simple capture theory (CT; Roueff et al. 2015; Colzi et al. 2020), particularly at low \(T \). Such discrepancies are large enough to suggest that, in addition to long-range interactions, the strongly bound (short-range) parts of the PESs considered here also influence the dynamics of all these reactive processes. One should bear in mind that, although an approximate treatment of the ZPE-leakage (Truhlar 1979) is warranted here (see Sect. 2.2), our QCT approach (like CT; Georgievskii & Klippenstein 2005) neglects, by its own nature, other quantum-mechanical (QM) effects such as tunneling; this is also justifiable on the large masses of the nuclei involved. While such an approximation may be less reliable in the low-temperature limit (Truhlar & Muckerman 1979; Peshherbe et al. 1999), accurate estimates of QM effects unavoidably require exact (nonadiabatic) quantum dynamics calculations which are even more demanding in the case of complex-forming reactions (Guo 2012), and hence are beyond the present scope of this work.

In contrast to the forward reactions, the backward processes in Eqs. (2)–(5) show temperature thresholds (Table 4); these latter are attributed to ZPE differences between reactant and product \(\text{C}_2 \) isotopologs. Due to operation of statistical factors on the kinetics of (2) and (4) (i.e., \(\frac{1}{2} \) for backward and 1 for forward), we recognize from Figs. 3a and c that, in the high-\(T \) limit, the rate coefficients \(k_{2,4} \) are approximately half of \(k_{2,4} \) (Henchen et al. 1981). The contrary is the case for reactions (3) and (5) where statistical factors of 1 for backward and \(\frac{1}{2} \) for the forward processes are operative (Henchen et al. 1981). Therefore, as shown in Figs. 3b and d, \(k_{3,5} \approx 2k_{1,5} \) in the high-\(T \) limit. However, at lower temperatures, the manifestation of the statistical factors on all these rate coefficients is largely masked by the increased influence of such \(T \) thresholds (Henchen et al. 1981).

The (small) effects of the isotope substitution on the overall kinetics (i.e., the kinetic-isotope effect) can primarily be assessed from Figs. 3a and c. By comparing the thermoneutral reactions (11) and (12) with the forward ones in Eqs. (2) and (4), one can see that, given the lower ZPE content of the \(^{13}\text{C}^{12}\text{C} \) product species and the exothermic nature of these latter pair of reactions, abstraction by \(^{13}\text{C}^{12}\text{P} \) is slightly faster than by \(^{12}\text{C}^{12}\text{P} \) at low \(T \). Nevertheless, such an energy defect (\(\Delta E_{\text{ZPE}} \)) becomes less significant in determining reactivity as long as higher internal and collision energies are accessible at higher \(T \). We note that the calculated thermal rate coefficients of reaction (11) are about seven times greater than those reported by Westley (1980).

To quantify the possible impact of reactions (2)–(5) on the overall \(\text{C} \) fractionation chemistry, in Fig. 4 we plot their equilibrium constants \((K) \) as a function of the temperature. These were obtained using both QCT data and the analytic forms in Eq. (13) as

\[
K(T) = \frac{k_f(T)}{k_r(T)} = \frac{[^{12}\text{C}][^{12}\text{C}]}{[^{13}\text{C}][^{12}\text{C}]}.
\]

(14)

where \(k_f \) and \(k_r \) are the forward and reverse rates, with \(R \) and \(P \) identifying the corresponding reactant and product \(\text{C}_2 \) isotopolog. These \(K \) values are also compared with theoretical estimates based on statistical mechanics (Terzieva & Herbst 2000; Mladenović & Roueff 2014, 2017),

\[
K(T) = f_m^{1/2} \frac{Q_{\text{int}}(^{12}\text{C}_2)}{Q_{\text{int}}(^{13}\text{C}_2)} \exp \left(\frac{\Delta E_{\text{ZPE}}}{T} \right),
\]

(15)

where the mass factor \(f_m \) is given by

\[
f_m = \frac{m(12\text{C})m(12\text{C}_2)}{m(13\text{C})m(13\text{C}_2)}.
\]

(16)
with \(m(X) \) denoting the mass of the species \(X \); \(\Delta E_{ZPE} \) in Eq. (15) is in K. The internal partition function, \(Q_{\text{int}} \), includes only the rovibrational degrees of freedom (no translation and electronic contributions) and is given by the standard expression,

\[
Q_{\text{int}} = g_a b_h \sum_{J} \sum_{v} (2J + 1) e^{-\epsilon_J^v/k_{\text{B}}T},
\]

where \(\epsilon_J^v \) is the diatomic rovibrational energy (with total angular momentum \(J \) and vibrational quantum number \(v \)) measured relative to the corresponding ZPE; this is calculated from the experimentally derived two-body term of the associated \(\Sigma \) PES. In Eq. (17), \(g_a b_h \) accounts for the combined effects of \(\Lambda \)-double and nuclear spin (hyperfine) degeneracy and is defined in Irwin (1987, see Table 3 therein). For comparison, we also plot in Fig. 4 equilibrium constants for reactions (2) and (3) obtained via CT (Roueff et al. 2015; Colzi et al. 2020) and the experimental values of \(^{12}\text{C}^+ + ^{12}\text{CO} \rightarrow ^{13}\text{CO} + ^{12}\text{C}^+ \) taken from Liszt & Ziurys (2012).

The data presented in Fig. 4 clearly indicate that the \(\Sigma \)-isotopic fractionation occurs most efficiently at low temperatures, notably in reactions (2) and (4). Under these conditions virtually all the available \(^{13}\text{C} \) is in the form of \(^{13}\text{CO}^{12}\text{C} \), with only a small fraction being locked up in \(^{13}\text{C}^{12}\text{CO} \). Among \(^{13}\text{C}^{12}\text{CO} \) and \(^{12}\text{CO}^{13}\text{C} \), ground-state \(^{13}\text{C}^{12}\text{C}(^{1}\Sigma^+ \rightarrow ^{3}\Sigma^+) \) appears to be the dominant species owing to the higher exothermicity of reaction (2); see Table 4. Indeed, by extrapolating Eq. (13) in (14) to the typical temperature of dense clouds, \(T = 10 \text{ K} \), we obtain \(K_2 \approx 36, K_4 \approx 24, K_5 \approx 7, \) and \(K_5 \approx 5 \). These former values are quite close to the one predicted for the ion–molecule \(^{13}\text{C}^+ + ^{12}\text{CO} \) reaction (Eq. (1)), \(K_1 \approx 33 \) (Langer et al. 1984). We note that, in the high-\(T \) limit, the equilibrium constants converge to well-defined values: 2 for the isotope-exchange reactions (2) and (4) and \(\frac{1}{2} \) for (3) and (5). Such limits reflect the manifestation of the aforementioned statistical factors in the overall chemical kinetics and become equivalent to ‘symmetry’ (or probability) factors appearing in previous statistical thermodynamic considerations (Terzieva & Herbst 2000). In this regard, we note that the calculated \(K \) values from Eq. (15) represent lower limits to the actual QCT data and are roughly consistent (as expected) with the ones predicted from CT (Roueff et al. 2015; Colzi et al. 2020). We reiterate that, similarly to Eq. (15), CT does not take into account all the details of the molecular PESSs in estimating the macroscopic kinetic and thermodynamic attributes.

4. Astrophysical implications

To further (qualitatively) assess the extent to which the most relevant reactions (2) and (4) influence the net \(^{13}\text{C} \) chemical enrichment in diverse astronomical environments and their possible effects on observational data, we plot in Fig. 5 the expected theoretical \(^{12}\text{C}/^{13}\text{C} \) atomic carbon ratios versus kinetic temperature (\(T_{\text{kin}} \)) as well as those reported by Colzi et al. (2020) towards Cyg OB2 No. 12 and HD 56126. For comparison, we also show the corresponding values obtained from observational surveys on \(C_2 \) isotopologs conducted by Hamano et al. (2019) in the context of translucent clouds (i.e., in the line of sight of Cyg OB2 No. 12) and Bakker & Lambert (1998) towards Cyg OB2 No. 12 and HD 56126. As emphasized by Hamano et al. (2019), their work reports the first marginal detection of \(^{13}\text{C} \) in the ISM. Due to the lack of observational data on \(^{12}\text{C}^2_2/[^{13}\text{C}]^{12}\text{C}_2 \) in molecular clouds, we resort to the \(^{12}\text{C}/^{13}\text{C} \) ratios derived from \(^{13}\text{C}(^{1}\Sigma^+) \) and \(^{12}\text{C}(^{3}\Pi_n) \) using a time-dependent gas-grain chemical model; the model results are also plotted in Fig. 5 for three different simulation timescales. Figure 5 shows that, although the calculated \(^{12}\text{C} \)-to-\(^{13}\text{C} \) ratios depict slightly varying degrees of fractionation depending on whether they are inherited from \(^{13}\text{C}(^{1}\Sigma^+) \) and \(^{12}\text{C}(^{3}\Pi_n) \), the general profiles are both consistent with a \(^{13}\text{C} \)-enhancement at the lower temperatures of interstellar clouds. However, we note that, at even lower \(T_{\text{kin}} \), all \(^{12}\text{C}/^{13}\text{C} \) ratios drop to very small values; this is not necessary true in reality given that interstellar chemistry may unavoidably deviate from thermodynamic equilibrium. To gauge the impact of such a departure from equilibrium on the calculated ratios, we follow Smith & Adams (1980) and impose finite dependence on \(^{12}\text{C}/^{13}\text{C} \) by integrating analytically the corresponding kinetic differential (continuity) equations for \(^{12}\text{C}/^{13}\text{C}(^{1}\Sigma^+) \) and \(^{12}\text{C}/^{13}\text{C}(^{3}\Pi_n) \) (Eq. (2) and (4)). For brevity, the final formulas are not be given here, and we refer the reader to Eqs. (12) and (13) of Smith & Adams (1980) for details. The theoretical \(^{12}\text{C}/^{13}\text{C} \) ratios obtained in this way are shown by the dashed lines in Fig. 5. We note that in solving the corresponding rate equations, we
assume $^{12}\text{C}/^{13}\text{C}$ as terrestrial (as in Eq. (18)) and consider a fixed integration time of 1.6×10^3 yr with a ^{12}C fractional abundance of 1×10^{-5}; these latter parameters are both consistent with an early cloud chemistry (Colzi et al. 2020). On the basis of these assumptions, Fig. 5 reveals a clear mismatch between the calculated early chemistry and equilibrium ^{12}C-^{13}C ratios for $T_{\text{kin}} \leq 30$ K. However, for larger temperatures, reactive equilibrium appears to be promptly reached; see Fig. 5. Moreover, the plotted data from Colzi et al. (2020) indicate that the predicted ratios from chemical kinetics also converge (as expected) to those at equilibrium for longer simulation times. Yet, at 10 K, our theoretical $^{12}\text{C}/^{13}\text{C}$ ratio derived from $C_2(X^1 \Sigma_g^+)$ agrees quite well with the value reported by Colzi et al. (2020) within the 1.6×10^3 yr timescale. As for the observational data, the calculated $^{12}\text{C}/^{13}\text{C}$ ratios show fairly good correlations with those given by Bakker & Lambert (1998) and Hamano et al. (2019). The larger deviations observed towards Cyg OB2 No. 12 (see Fig. 5) provide further evidence that, besides $^{13}\text{C}+\text{C}_2$ chemical fractionation, other competing photo-induced processes and/or secondary reactions are at work in translucent clouds; reportedly, one should also take into account the large uncertainties in the measurements by Hamano et al. (2019). As highlighted by these latter authors, future observations of $^{12}\text{C}^{13}\text{C}$ using higher quality spectra will provide a clear picture on the C_2 carbon isotope ratios in the ISM. Meanwhile, the determination of accurate laboratory and theoretical reaction rate coefficients for the most efficient fractionation pathways like $^{13}\text{C}+\text{C}_2$ and $^{13}\text{C}+\text{C}_3$ (Giesen et al. 2020; Colzi et al. 2020) would be useful for the interpretation of interstellar C fractionation chemistry via astrochemical models (Roueff et al. 2015; Colzi et al. 2020; Loison et al. 2020).

5. Summary

In the present work, we provide accurate theoretical reaction rate coefficients as a function of the temperature for all possible isotope-exchange reactions of C with $C_2(X^1 \Sigma_g^+, a^1 \Pi_g)$. To this end, we used the quasi-classical trajectory method, with the previously obtained (mass-independent) PESs of $C_2(1^3A^+, 1^1A)$ providing the required forces between the colliding partners. The calculated rate coefficients within the range of $25 \leq T/K \leq 500$ exhibit a positive temperature dependence and our results show a behavior that clearly differs from previous theoretical estimates based on simple capture theory (Roueff et al. 2015; Colzi et al. 2020). This suggests that, in addition to long-range interactions, the strongly bound (short-range) parts of the underlying PESs also influence the dynamics of the reactive processes. For each reaction considered, analytic three-parameter Arrhenius-Jouyformulas are derived that readily interpolate and extrapolate the associated forward and reverse rates. To quantify their possible impact on the interstellar C isotopic chemistry, equilibrium constants of all such processes are evaluated from the calculated kinetics data, unraveling their increased efficiency into ^{13}C incorporation at low T. For the most relevant reactions and assuming both equilibrium and time-dependent conditions, theoretical $^{12}\text{C}^{13}\text{C}$ atomic carbon ratios as a function of the gas kinetic temperature are also reported and compared with available model chemistry and observational data on C_2. Despite some previous claims (Bakker & Lambert 1998), the present theoretical results strongly support the suggestion made by other authors (Roueff et al. 2015; Colzi et al. 2020) that the C + C_2 reactions (particularly (2) and (4)) may act as important routes in the overall C-fractionation chemistry, notably in low-temperature C-rich environments. Besides providing key input data for astrochemical models of cold dense clouds (Furuya et al. 2011; Roueff et al. 2015; Colzi et al. 2020; Loison et al. 2020), the calculated rate constants over such a broad T range may also fulfill the needs of models of photo-dissociation regions (Röllig & Ossenkopf 2013), translucent clouds (Hamano et al. 2019), protoplanetary disks (Woods & Willacy 2009), and circumstellar envelopes of evolved C-stars (Bakker & Lambert 1998). Apart from its astrophysical implications, this work is expected to provide safe grounds on which to base future methodological developments toward the calculation of theoretical rate constants of astrochemically relevant isotope-exchange reactions without resorting to (and avoid the burden of) quantum dynamics, while still recovering all intrinsic details of the interacting potentials between the colliding particles.

Acknowledgements. This work has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No 894321.

References

Abrahamsson, E., Andersson, S., Markovic, N., & Nyman, G. 2008, Phys. Chem. Chem. Phys., 10, 4465
Amiot, C. 1983, ApJS, 52, 329
Andersson, S., Markovic, N., & Nyman, G. 2003, J. Phys. Chem. A, 107, 5439
Bab, J. F., Smyth, R. T., & McLaughlin, B. M. 2019, ApJ, 876, 38
Bakker, E. J., & Lambert, D. L. 1998, ApJ, 508, 387
Breier, A. A., Büchting, T., Schnierer, R., et al., 2016, J. Chem. Phys., 145, 234302
Brooke, J. S., Bernath, P. F., Schmidt, T. W., & Bacsky, G. B. 2013, J. Quant. Spectr. Radi Transf., 124, 11
Chen, W., Kagawuchi, K., Bernath, P. F., & Tang, J. 2015, J. Chem. Phys., 142, 064310
Colzi, L., Sipilä, O., Roueff, E., Caselli, P., & Fontani, F. 2020, A&A, 640, A51
Dalgarno, A., & Black, J. H. 1976, Rep. Prog. Phys., 39, 573
Ehrenfreund, P., & Charnley, S. B. 2000, ARA&A, 38, 427
Elyajouri, M., Lallemand, R., Cox, N. L. J., et al., 2018, A&A, 616, A143
Fu, X., Guo, X., Zhang, F., Mebel, A. M., & Kaiser, R. I. 2006, Faraday Discuss., 137, 22A515
Galvão, B. R. L., Caridade, P. J. S. B., & Varruanda, A. J. C. 2012, J. Chem. Phys., 137, 22A515
Galvão, B. R. L., Varruanda, A. J. C., Braga, J., & Belchior, J. C. 2013, J. Phys. Chem. Lett., 4, 2292
Georgievskii, Y., & Klappenstein, S. I. 2005, J. Chem. Phys., 122, 194103
Giesen, T. F., Mookerjea, B., Fuchs, G. W., et al., 2020, A&A, 633, A120
Graf, M. M., & Wagner, A. F. 1990, J. Chem. Phys., 92, 2423
Gu, X., Guo, Y., Zhang, F., Mebel, A. M., & Kaiser, R. I. 2006, Faraday Discuss., 137, 22A515
Hobbs, L. M., Black, J. H., & van Dishoeck, E. F. 1983, ApJ, 271, L95
Irwin, A. W. 1987, A&A, 182, 348
Kaiser, R. I. 2002, Chem. Rev., 102, 1309
Krieg, J., Lutter, V., Endres, C. P., et al., 2013, J. Phys. Chem. A, 117, 3332
Laidler, K. J. 1984, J. Chem. Educ., 61, 494
Langer, W. D. 1992, IAU Symp., 150, 193
Langer, W. D., Graedel, T. E., Freking, M. A., & Armentrout, P. B. 1984, ApJ, 277, 581
Lichten, H. S., & Zirius, L. M. 2012, ApJ, 747, 55
Loison, J.-C., Hu, X., Han, S., et al., 2014, Phys. Chem. Chem. Phys., 16, 14212
Loison, J.-C., Wakelam, V., Gratier, P., & Hickson, K. M. 2018, MNRAS, 484, 2747
Loison, J.-C., Wakelam, V., Gratier, P., et al., 2019, MNRAS, 485, 5777
Loison, J.-C., Wakelam, V., Gratier, P., & Hickson, K. M. 2020, MNRAS, 498, 4663
Milan, S. N., Savage, C., Brewster, M. A., Zirius, L. M., & Wyckoff, S. 2005, ApJ, 634, 1126
Mladenović, M., & Roueff, E. 2014, A&A, 566, A144
Mladenović, M., & Roueff, E. 2017, A&A, 605, A22
Muckerman, J. T., & Newton, M. D. 1972, J. Chem. Phys., 56, 3919
Nyman, G., & Davidsson, J. 1990, J. Chem. Phys., 92, 2415

A142, page 9 of 12
Table A.1. Maximum impact parameters, and thermal rate and equilibrium constants as a function of the temperature of the isotope-exchange reactions (2) and (4).

T/K	b_{max}/Å	k_d/cm3 molecule$^{-1}$ s$^{-1}$	k_d/cm3 molecule$^{-1}$ s$^{-1}$	K_d/unitless
500.00	5.0	1.4581 (−10)a	7.0643 (−11)	2.0641
400.00	5.0	1.2857 (−10)	6.0748 (−11)	2.1164
298.15	5.1	1.0826 (−10)	4.9588 (−11)	2.1831
200.00	5.0	0.8584 (−10)	3.7070 (−11)	2.3156
100.00	5.0	0.5750 (−10)	2.0655 (−11)	2.7842
50.00	4.9	0.3850 (−10)	0.9623 (−11)	4.0008
25.00	4.6	0.2570 (−10)	0.3299 (−11)	7.7902

Table A.2. Maximum impact parameters, and thermal rate and equilibrium constants as a function of the temperature of the isotope-exchange reactions (3) and (5).

T/K	b_{max}/Å	k_d/cm3 molecule$^{-1}$ s$^{-1}$	k_d/cm3 molecule$^{-1}$ s$^{-1}$	K_d/unitless
500.00	5.0	9.9709 (−12)	4.8677 (−12)	2.0484
400.00	5.0	8.9250 (−12)	4.2646 (−12)	2.0928
298.15	5.0	7.7400 (−12)	3.5854 (−12)	2.1588
200.00	5.0	6.3078 (−12)	2.7473 (−12)	2.2960
100.00	5.0	4.3868 (−12)	1.6802 (−12)	2.6109
50.00	4.9	3.0643 (−12)	0.9066 (−12)	3.7999
25.00	4.8	2.1578 (−12)	0.3448 (−12)	6.2581

Notes. a$x$$−$$y$ represents $x \times 10^{-y}$.

Table A.3. Maximum impact parameters, and thermal rate and equilibrium constants as a function of the temperature of the isotope-exchange reactions (3) and (5).

T/K	b_{max}/Å	k_d/cm3 molecule$^{-1}$ s$^{-1}$	k_d/cm3 molecule$^{-1}$ s$^{-1}$	K_d/unitless
500.00	5.3	7.2907 (−11)a	1.3827 (−10)	0.5273
400.00	5.2	6.4284 (−11)	1.2031 (−10)	0.5343
298.15	5.4	5.4131 (−11)	0.9903 (−10)	0.5466
200.00	5.1	4.2920 (−11)	0.2516 (−10)	0.5710
100.00	5.3	2.8747 (−11)	0.4408 (−10)	0.6521
50.00	5.1	1.9250 (−11)	0.2263 (−10)	0.8505
25.00	4.9	1.2850 (−11)	0.0888 (−10)	1.4471

Notes. a$x$$−$$y$ represents $x \times 10^{-y}$.
Table A.3. Maximum impact parameters and thermal rate constants as a function of the temperature for the atom-exchange reactions (11) and (12).

$$^{12}\text{C}({}^3\text{P}) + ^{12}\text{C}_2(X^1\Sigma_g^+) \xrightarrow{\Delta_{11}} ^{12}\text{C}_2(X^1\Sigma_g^+) + ^{12}\text{C}({}^3\text{P})$$

T/K	b_{max}/Å	k_{11}/cm3 molecule$^{-1}$ s$^{-1}$
500.00	4.9	1.5087 (-10) $^{(a)}$
400.00	4.9	1.3202 (-10)
298.15	5.0	1.071 (-10)
200.00	4.9	0.8774 (-10)
100.00	4.9	0.5935 (-10)
50.00	4.8	0.3693 (-10)
25.00	4.7	0.2312 (-10)

$$^{12}\text{C}({}^3\text{P}) + ^{12}\text{C}_2(a^3\Pi_u) \xrightarrow{\Delta_{12}} ^{12}\text{C}_2(a^3\Pi_u) + ^{12}\text{C}({}^3\text{P})$$

T/K	b_{max}/Å	k_{12}/cm3 molecule$^{-1}$ s$^{-1}$
500.00	4.9	1.0344 (-11)
400.00	4.9	0.9228 (-11)
298.15	4.9	0.7942 (-11)
200.00	4.9	0.6456 (-11)
100.00	5.0	0.4514 (-11)
50.00	4.8	0.3015 (-11)
25.00	4.7	0.2012 (-11)

Notes. $^{(a)}x(-y)$ represents $x \times 10^{-y}$.