EXTENSION FORMULAS AND DEFORMATION INVARIANCE OF HODGE NUMBERS

QUANTING ZHAO AND SHENG RAO

Abstract. We introduce a canonical isomorphism from the space of pure-type complex differential forms on a compact complex manifold to the one on its infinitesimal deformations. By use of this map, we generalize an extension formula in a recent work of K. Liu, X. Yang and the second author. As a direct corollary of the extension formulas, we prove several deformation invariance theorems for Hodge numbers on some certain classes of complex manifolds, without use of Fröhlicher inequality or the topological invariance of Betti numbers.

1. Introduction and main results

This paper is to study the deformation invariance of Hodge numbers and we use an iteration method to construct explicit extension of Dolbeault cohomology classes.

Let $\pi : X \rightarrow \Delta$ be a holomorphic family of n-dimensional compact complex manifolds with the central fiber $\pi^{-1}(0) = X_0$ and its infinitesimal deformations $\pi^{-1}(t) = X_t$, where Δ is a small disk in \mathbb{C} for simplicity. Then there exists a transversely holomorphic trivialization $F_\sigma : X_{\sigma} \rightarrow X_0 \times \Delta$ (cf. [21, Proposition 9.5] and [3, Appendix A]), which gives us the Kuranishi data $\varphi(t)$ (or φ), depending holomorphically on t, with the integrability

$$ \partial \varphi(t) = \frac{1}{2} [\varphi(t), \varphi(t)].$$

Fix an open coordinate covering $\{ U : (w^i, t) \in U^\alpha \}$ of X, with a restricted covering $\{ U_0 : z_j^\alpha \in U^\alpha_0 : U^\alpha \cap X_0, U^\alpha \cap X_t \}$ of X_0. As we focus on one coordinate chart, the superscript α is suppressed. As in [3, 10, 9], the operator $e^{i\varphi}$ is defined by

$$ e^{i\varphi} = \sum_{k=0}^{\infty} \frac{1}{k!} i_k^{e\varphi},$$

where $i_k^{e\varphi}$ denotes k times of the contraction operator $i_\varphi = \varphi, \varphi$ and $e^{i\varphi}$ is similarly defined. It is known that $\{ e^{i\varphi} (dz^i) \}_i$ and $\{ e^{i\varphi} (dz^j) \}_j$ are the local bases of $T_{X_t}^{(1,0)}$ and $T_{X_t}^{(0,1)}$, respectively. Inspired by these, we introduce:

Definition 1.1. A canonical map between $A^{p,q}(X_0)$ and $A^{p,q}(X_t)$ is defined as:

$$ e^{i\varphi}_{\pi^\sigma} : A^{p,q}(X_0) \rightarrow A^{p,q}(X_t),$$

$$ \omega \mapsto e^{i\varphi}_{\pi^\sigma} (\omega),$$

where

$$ e^{i\varphi}_{\pi^\sigma} (\omega) = \sum_{i_1, \ldots, i_p, j_1, \ldots, j_q} \frac{1}{p!q!} \omega_{i_1, \ldots, i_p, j_1, \ldots, j_q} (z) \left(e^{i\varphi} (dz^{i_1} \wedge \cdots \wedge dz^{i_p}) \right) \wedge \left(e^{i\varphi} (dz^{j_1} \wedge \cdots \wedge dz^{j_q}) \right).$$

Date: September 30, 2019.

2010 Mathematics Subject Classification. Primary 32G05; Secondary 13D10, 14D15, 53C55.

Key words and phrases. Deformations of complex structures; Deformations and infinitesimal methods, Formal methods; deformations, Hermitian and Kählerian manifolds.

Rao is the corresponding author.
and ω is locally written as $\sum_{i_1, \ldots, i_p} \varphi_p \omega_{i_1, \ldots, i_p} z^{i_1} \cdots dz^{i_p} \wedge \cdots \wedge dz^{i_1} \wedge \cdots \wedge d\bar{z}^{j_q}$. It is easy to check that $e^{i\varphi} \omega$ is independent of the choice of local coordinates and is actually a real isomorphism. From the explicit formula of φ (cf. [12, pp. 150]), a careful calculation yields:

Lemma 1.2.

\[
\begin{align*}
dw^\alpha &= \frac{\partial w^\alpha}{\partial \varphi} (e^{i\varphi} (dz^i)) \\
\frac{\partial}{\partial w^\alpha} &= \left((1 - \varphi \bar{\varphi})^{-1} \frac{\partial w^\alpha}{\partial \varphi} \right)^j \frac{\partial}{\partial \varphi} - \left((1 - \varphi \bar{\varphi})^{-1} \varphi \frac{\partial w^\alpha}{\partial \varphi} \right)^j \frac{\partial}{\partial \varphi},
\end{align*}
\]

where $\varphi := \varphi \bar{\varphi}$ and $\varphi \bar{\varphi}$ is similarly defined.

Corollary 1.3. $\frac{\partial w^\alpha}{\partial \varphi} = \left((1 - \varphi \bar{\varphi})^{-1} \right)^j \frac{\partial}{\partial \varphi} - \left((1 - \varphi \bar{\varphi})^{-1} \varphi \right)^j \frac{\partial}{\partial \varphi}.$

Then we get the following useful local formula:

Lemma 1.4.

\[
d (e^{i\varphi} (dz^i)) = \left((1 - \varphi \bar{\varphi})^{-1} \varphi \right)^{\bar{i}} \frac{\partial}{\partial \varphi} (e^{i\varphi} dz^k) \wedge (e^{i\varphi} dz^l)
\]

\[
- \left((1 - \varphi \bar{\varphi})^{-1} \bar{\varphi} \right)^{\bar{i}} \frac{\partial}{\partial \varphi} (e^{i\varphi} dz^k) \wedge (e^{i\varphi} dz^l),
\]

which describes the d-operator under the local frames $\{e^{i\varphi} (dz^i), e^{i\varphi} (dz^i)\}_{i=1}^n$.

Using these, one has:

Proposition 1.5. Let f be a smooth function on X_0. Then

\[
df = e^{i\varphi} \left((1 - \varphi \bar{\varphi})^{-1} \varphi (\partial - \varphi \bar{\varphi}) f + (1 - \varphi \bar{\varphi})^{-1} \varphi (\bar{\varphi} - \varphi \partial) f \right).
\]

Since df can be decomposed into $\partial_t f + \bar{\partial} f$ on X_t, $\bar{\partial} f = e^{i\varphi} \left((1 - \varphi \bar{\varphi})^{-1} \varphi (\partial - \varphi \bar{\varphi}) f \right).$ Thus f is holomorphic with respect to the complex structure of X_t, if and only if

\[
(\bar{\partial} - \varphi \partial) f = 0,
\]

by the invertibility of $(1 - \varphi \bar{\varphi})^{-1} \varphi$. Hence, we reprove this important criterion (cf. [14] and also [12, pp. 151-152]) in the deformation theory.

Then we get two extension formulas on $(p, 0)$ and $(0, q)$-forms.

Proposition 1.6. For $\omega \in A^{p,0}(X_0)$,

\[
d(e^{i\varphi} \omega) = e^{i\varphi} \left((1 - \varphi \bar{\varphi})^{-1} \omega (\bar{\partial} \omega + \bar{\varphi} \partial \omega) + (1 - \varphi \bar{\varphi})^{-1} \omega (\partial \omega + \varphi \bar{\partial} \omega) \right).
\]

Corollary 1.7. For $\omega \in A^{0,q}(X_0)$,

\[
d(e^{i\varphi} \omega) = e^{i\varphi} \left((1 - \varphi \bar{\varphi})^{-1} \omega (\partial \omega + \varphi \bar{\partial} \omega) + (1 - \varphi \bar{\varphi})^{-1} \omega (\bar{\partial} \omega - q \partial \omega) \right).
\]

Based on these two, we use the iteration method, initiated by [10] and developed in [17, 18, 9, 11, 23], to achieve two theorems on deformation invariance of Hodge numbers, by constructing explicit extension, without use of Frölicher inequality or the topological invariance of Betti numbers (cf. [6, Section 5.1] and [21, Section 9.3.2]). We need:
Definition 1.8. Define a complex manifold \(X \in \mathcal{E}^{p,q}, \mathcal{D}^{p,q} \) and \(\mathfrak{B}^{p,q} \), if for any \(\overline{\partial} \)-closed \(\partial g \in \mathcal{A}^{p,q}(X) \), the equation
\[
\overline{\partial} x = \partial g
\]
has a solution, a \(\partial \)-closed solution and a \(\partial \)-exact solution, respectively. It is obvious that \(\mathfrak{B}^{p,q} \subset \mathcal{D}^{p,q} \subset \mathcal{E}^{p,q} \) and that \(X \), satisfying the \(\overline{\partial} \partial \)-lemma, lies in \(\mathfrak{B}^{p,q} \).

Set \(h_t^{p,q} = \dim_{\mathbb{C}} H^{p,q}(X_t, \mathbb{C}) \). Then:

Theorem 1.9. For \(1 \leq p \leq n \) and \(X_0 \in \mathcal{D}^{p,1} \cap \mathcal{E}^{p+1,0} \), \(h_t^{p,0} \) are independent of \(t \).

Theorem 1.10. For \(1 \leq q \leq n \) and \(X_0 \in \mathfrak{B}^{1,q} \cap \mathfrak{B}^{q,0} \cap \mathcal{D}^{q+1} \) with all \(1 \leq q' \leq q \), \(h_t^{0,q} \) are independent of \(t \).

By Theorem 1.9 and the standard Hodge theory on compact complex surfaces (such as Section IV.2 of \([2]\)), we obtain:

Corollary 1.11. All the Hodge numbers of a compact complex surface are infinitesimal deformation invariant.

For the jumping phenomenon of Hodge numbers we refer to \([13, 22]\). More generally than Proposition 1.12 and Corollary 1.7 we achieve:

Proposition 1.12. For \(\omega \in \mathcal{A}^{*,*}(X_0) \),
\[
d(e^{i\varphi}|\sigma(\omega)) = \varphi(\overline{\partial}(\overline{\partial}(1 - \varphi))^{-1}) \partial \varphi - \partial (\overline{\partial}(\overline{\partial}(1 - \varphi))^{-1}) \partial \varphi
\]

2. The Ideas of Proofs

We shall describe the main ideas in the proofs of Theorems 1.9 and 1.10 in this section. Throughout this section, \(X_t \) is assumed to be determined by the integrable Kuranishi data \(\varphi(t) = \sum_{k=1}^{\infty} t^k \varphi_k \) with \([11]\). Theorem 1.9 is obtained by Kodaira- Spencer’s upper semi-continuity theorem and the following iteration procedure.

Proposition 2.1. Let \(X_0 \in \mathcal{D}^{p,1} \cap \mathcal{E}^{p+1,0} \). Then for any holomorphic \((p, 0)\)-form \(\sigma_0 \) on \(X_0 \), there exits a power series
\[
\sigma_t = \sigma_0 + \sum_{k=1}^{\infty} t^k \sigma_k \in \mathcal{A}^{p,0}(X_0),
\]
such that \(e^{i\varphi(t)}(\sigma_t) \in \mathcal{A}^{p,0}(X_t) \) is holomorphic with respect to the complex structure on \(X_t \).

Sketch of Proof. By Grauert’s formal function theorem \([3]\), we only need to construct \(\sigma_t \) order by order. Proposition 1.12 yields that the holomorphicity of \(e^{i\varphi(t)}(\sigma_t) \) is equivalent to the resolution of the equation
\[
\overline{\partial} \sigma_t = -\partial(\varphi(t) \sigma_t) + \varphi(t) \partial \sigma_t
\]
by the invertibility of the operators $e^{i\varphi(t)}$ and $(1 - \varphi(t)\varphi(t))^{-1}$. By comparing the coefficients of t^k, it suffices to resolve the system of equations

\[\begin{cases} \overline{\partial}\sigma_0 = 0, \\ \overline{\partial}\sigma_k = -\partial(\sum_{i=1}^k \varphi_i \omega\sigma_{k-i}), & \text{for each } k \geq 1, \\ \partial\sigma_k = 0, & \text{for each } k \geq 0. \end{cases} \tag{2.1} \]

By $X_0 \in \mathcal{E}^{p+1,0}$, the equation $\overline{\partial}x = \partial\sigma_0$ has solutions, which implies $\partial\sigma_0 = 0$ by type consideration. Let’s resolve \((2.1)\) inductively. Since $X_0 \in \mathcal{D}^{p,1}$, our task is to verify

\[\overline{\partial}\partial(\sum_{i=1}^k \varphi_i \omega\sigma_{k-i}) = 0 \]

for $k \geq 1$. Set $\eta_k = -\partial(\sum_{i=1}^k \varphi_i \omega\sigma_{k-i})$ for simplicity. For $k = 1$, one has

\[\overline{\partial}\eta_1 = -\overline{\partial}(\partial(\varphi_1 \omega\sigma_0)) = \partial(\overline{\partial}(\varphi_1 \omega\sigma_0) + \varphi_1 \partial\sigma_0) = 0, \]

since $\overline{\partial}\varphi_1 = 0$ by \((1.1)\) and $\overline{\partial}\sigma_0 = 0$. Thus σ_1 is got by $X_0 \in \mathcal{D}^{p,1}$. By induction, we assume that \((2.1)\) is solved for all $k \leq l$ and thus have $\partial\sigma_k = 0$ for $0 \leq k \leq l$. By $X_0 \in \mathcal{D}^{p,1}$, we only need to show $\overline{\partial}\eta_{l+1} = 0$. We resort to a useful commutative formula (cf. [19 20 11 4 3 7 8 9]) on a complex manifold X. For $\phi, \psi \in A^{p,1}(X, T_X^{1,0})$ and $\alpha \in A^{*,*}(X)$,

\[[\phi, \psi] \omega\alpha = -\partial(\psi \omega(\phi \omega\alpha)) - \psi \omega(\phi \omega\partial\alpha) + \phi \omega(\psi \omega\alpha) + \psi \omega(\phi \omega\alpha). \]

Hence, by this formula and \((1.1)\), one has

\[\overline{\partial}\eta_{l+1} = \partial \left(\sum_{j=2}^{l+1} \overline{\partial}\varphi_j \omega\sigma_{l+1-j} + \sum_{i=1}^{l+1} \varphi_i \omega\partial\sigma_{l+1-i} \right) \]

\[= \partial \left(\sum_{i=1}^{l+1} \varphi_i \omega\partial\sigma_{l+1-i} \right) \]

\[= 0. \]

The proof of Theorem \([1.10]\) is a bit different from that of Theorem \([1.9]\) and we need:

Lemma 2.2 ([15], Lemma 3.1). Each Dolbeault class $[\alpha]$ of type (p, q) on a complex manifold $X \in \mathfrak{B}^{p+1,q}$ can be represented by a d-closed (p, q)-form γ_α.

Lemma 2.3. Let γ_{a_1} and γ_{a_2} be two d-closed representatives of the same Dolbeault class $[\alpha_1] = [\alpha_2]$ as in the above lemma on $X \in \mathcal{E}^{q,0} \cap \mathfrak{B}^{1,q}$. Then $\gamma_{a_1} = \gamma_{a_2}$.
Proof. From \(\gamma_{\alpha_i} = \alpha_i + \overline{\partial} \beta_{\alpha_i}, \) \(i = 1, 2, \) there exists some \(\beta \in A^{0,q-1}(X) \) such that
\[
\gamma_{\alpha_2} - \gamma_{\alpha_1} = \overline{\partial} \beta.
\]
Since \(\gamma_{\alpha_1}, \gamma_{\alpha_2} \) are \(d \)-closed, we have \(\overline{\partial} \overline{\partial} \beta = 0. \) Hence, by \(X \in \mathcal{E}^{0,0} \), the equation
\[
\overline{\partial} x = \overline{\partial} \beta
\]
has solutions. From type consideration, \(\overline{\partial} \beta = 0 \), which implies \(\gamma_{\alpha_1} = \gamma_{\alpha_2}. \) \(\square \)

We shall construct a correspondence from \(H^{0,q}(X_0) \) to \(H^{0,q}(X_t) \) by sending \([\alpha] \in H^{0,q}(X_0) \) to \([e^{\sigma(t)}(\gamma_\alpha(t))] \in H^{0,q}(X_t) \), where
\[
\gamma_\alpha(t) = \gamma_\alpha + \sum_{k=1}^{\infty} \gamma_\alpha^k \bar{t}^k \in A^{0,q}(X_0).
\]
Here \(\gamma_\alpha \) is uniquely determined by the Dolbeault class \([\alpha] \) from the above two lemmas. To guarantee that this correspondence can not send a nonzero class in \(H^{0,q}(X_0) \) to a zero class in \(H^{0,q}(X_t) \), one needs \(h_0^{0,q-1} = h_0^{0,q-1}. \) Therefore, for each \(1 \leq q \leq n \), we use induction to reduce Theorem 1.10 to the following proposition with all \(1 \leq q' \leq q \).

Proposition 2.4. Let \(X_0 \in \mathcal{B}^{1,q'} \cap \mathcal{E}^{q',0} \cap \mathcal{D}^{q',1} \). Then for any \(d \)-closed \((0,q') \)-form \(\sigma_0 \) on \(X_0 \), there exits a power series on \(X_0 \)
\[
\sigma_t = \sigma_0 + \sum_{k=1}^{\infty} \bar{t}^k \sigma_k \in A^{0,q'}(X_0)
\]
such that \(e^{\sigma(t)}(\sigma_t) \in A^{0,q'}(X_t) \) is \(\overline{\partial}_t \)-closed with respect to the complex structure on \(X_t \).

Sketch of Proof. By Corollary 1.7, the invertibility of the operators \(e^{\phi(t)} \bar{\nabla} \) yields that the desired \(\overline{\partial}_t \)-closed condition is equivalent to the resolution of the equation
\[
\left((1 - \overline{\varphi(t)} \varphi(t))^{-1} \right. \partial \sigma_t - q \overline{\partial} \sigma_t - \left. \left((1 - \overline{\varphi(t)} \varphi(t))^{-1} \varphi(t) \right) \right) \partial (\partial \sigma_t + \overline{\partial} (\varphi(t) \sigma_t)) = 0.
\]
By comparing the coefficients of \(\bar{t}^k \), it suffices to resolve the system of equations
\[
\begin{align*}
\partial \sigma_t &= 0, \\
\partial \sigma_t + \overline{\partial} (\varphi(t) \sigma_t) &= 0,
\end{align*}
\]
or equivalently, by conjugation,
\[
\begin{align*}
d \sigma_0 &= 0, \\
\overline{\partial} \sigma_k &= -\partial \left(\sum_{i=1}^{k} \varphi_i \overline{\sigma}_{k-i} \right), \quad \text{for each } k \geq 1, \\
\overline{\partial} \sigma_k &= 0, \quad \text{for each } k \geq 1.
\end{align*}
\]
Hence, analogously to the proof of Proposition 2.1, we are able to resolve (2.2) inductively by the assumption on \(X_0 \) and Lemmata 2.2, 2.3. \(\square \)

Acknowledgement: We would like to thank Prof. K. Liu for everything related to this work and our mathematical growth, and also Dr. Jie Tu for many helpful discussions. This work started when the second author was invited by Prof. J.-A. Chen to Taiwan University in May-July 2013 with the support of the National Center for Theoretical Sciences. Rao is also supported by the National Natural Science Foundation of China, No. 11301477 and China Scholarship Council/University of California, Los Angeles Joint Scholarship Program.
References

[1] S. Barannikov, M. Kontsevich, Frobenius manifolds and formality of Lie algebras of polyvector fields, Internat. Math. Res. Notices, (1998), no. 4, 201-215.
[2] W. Barth, K. Hulek, C. Peters, A. Van de Ven, Compact complex surfaces, Second edition. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, Vol 4, Springer-Verlag, Berlin, 2004.
[3] H. Clemens, Geometry of formal Kuranishi theory, Advances in Mathematics 198 (2005), 311-365.
[4] R. Friedman, On threefolds with trivial canonical bundle, Complex geometry and Lie theory (Sundance, UT, 1989), Proc. Symp. Pure Math., 53, Amer. Math. Soc., Providence, RI, (1991), 103-134.
[5] H. Grauert, Ein Theorem der analytischen Garbentheorie und die Modulräume komplexer Strukturen, (German). Inst. Hautes Études Sci. Publ. Math. No. 5 (1960), 64 pp.
[6] P. Griffiths, The extension problem for compact submanifolds of complex manifolds. I. The case of a trivial normal bundle, In: Proc. Conf. Complex Analysis 1965 (Minneapolis, 1964), Springer, Berlin, pp. 113-142.
[7] Yi Li, On deformations of generalized complex structures the generalized Calabi-Yau case, arXiv: 0508030v2.
[8] K. Liu, S. Rao, Remarks on the Cartan formula and its applications, Asian. J. Math. Vol. 16, No. 1, March (2012), pp. 157-170.
[9] K. Liu, S. Rao, X. Yang, Quasi-isometry and deformations of Calabi-Yau manifolds, Invent. Math. 199 (2015), no. 2, 423-453.
[10] K. Liu, X. Sun, S.-T. Yau, Recent development on the geometry of the Teichmüller and moduli spaces of Riemann surfaces, Surveys in differential geometry. Vol. XIV. Geometry of Riemann surfaces and their moduli spaces (2009), 221-259.
[11] K. Liu, Q. Zhao, S. Rao, New proofs of the Torelli theorems for Riemann surfaces, arXiv:1207.5697v2.
[12] J. Morrow, K. Kodaira, Complex manifolds, Holt, Rinehart and Winston, Inc., New York-Montreal, Que.-London, (1971).
[13] I. Nakamura, Complex parallelisable manifolds and their small deformations, J. Differential Geometry 10 (1975), 85-112.
[14] A. Newlander, L. Nirenberg, Complex analytic coordinates in almost complex manifolds, Ann. of Math. (2) 65 (1957), 391-404.
[15] D. Popovici, Holomorphic deformations of balanced Calabi-Yau ∂∂̄-manifolds, arXiv:1304.0331.
[16] S. Rao, Q. Zhao, Several special complex structures and their deformation properties, submitted, June 18, 2015.
[17] X. Sun, Deformation of canonical metrics I, Asian J. Math. 16 (2012), no. 1, 141-155.
[18] X. Sun, S.-T. Yau, Deformation of Kähler-Einstein metrics, In: Surveys in geometric analysis and relativity, Adv. Lect. Math. (ALM), 20, Int. Press, Somerville, MA, 2011, 467-489.
[19] G. Tian, Smoothness of the universal deformation space of compact Calabi-Yau manifolds and its Petersson-Weil metric, In: Mathematical aspects of string theory (San Diego, Calif., 1986), Adv. Ser. Math. Phys., 1, World Sci. Publishing, Singapore, (1987), 629-646.
[20] A. Todorov, The Weil-Petersson geometry of the moduli space of SU(n ≥ 3) (Calabi-Yau) manifolds I, Comm. Math. Phys., 126(2) (1989), 325-346.
[21] C. Voisin, Hodge theory and complex algebraic geometry I, Translated from the French original by Leila Schneps. Cambridge Studies in Advanced Mathematics, 76. Cambridge University Press, Cambridge, 2002.
[22] X. Ye, The jumping phenomenon of Hodge numbers, Pacific J. Math. 235 (2008), no. 2, 379-398.
[23] Q. Zhao, S. Rao, Applications of deformation formula of holomorphic one-forms, Pacific J. Math. Vol. 266, No. 1, 2013, 221-255.

School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, China; Center of Mathematical Sciences, Zhejiang University, Hangzhou 310027, China

E-mail address: zhaoquanting@126.com

School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China; Department of Mathematics, University of California at Los Angeles, CA 90095-1555, USA

E-mail address: likeanyone@whu.edu.cn; likeanyone@math.ucla.edu