Machine Learning-Based Predictive the Forecasting of Short Term Wind Speed

Yoganand Selvaraj1, P Sathyanathan2*, V. Ilango3, D. Santhosha4

1Department of Computer Science and Engineering, Madras Institute of Technology, Chennai, Tamil Nadu, India
2Department of Electrical and Electronics Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, Tamil Nadu, India
3Department of Computer Application, CMR Institute of Technology, Bengaluru, Karnataka, India
4Department of Electrical and Electronics Engineering, Channabasaveshwara Institute of Technology, Tumkur, Karnataka, India
Email: *sathyanathanp@veltech.edu.in

Abstract. As a possible emerging technology for electricity generation, wind power is rapidly evolving world's mainstream influence. However, the inherent spontaneous wind instability poses great obstacles to stable grid usage and power supply stability. One way of efficiently addressing the wind instability problem is to enhance accurate wind velocity forecasts. However, the intrinsic regularity of wind speed data cannot be for the bulk of the wind speed estimation method. Therefore, this paper introduces machine learning (ML) based genetic algorithm (GA) and the Short-term Wind Speed Prediction Model, which can effectively improve wind speed prediction accuracy. The work of study will help evaluate the power grid risks adequately. The appropriate electricity system divisions are expected to create a realistic generation schedule, minimize cost effectively, and significantly encourage green-energy growth.

Keywords: Renewable energy, wind speed prediction, genetic algorithm.

1. Introduction
Energy is an essential basis for the national economy's growth. The country's prosperity relies on energy regulation. It would have a positive impact on the sustainability and growth of human civilization in order to produce and use resources efficiently. Fossil oil supplies are now substantially declining the unsustainable consumptions of fossil fuels such as coal, natural oil, gas, etc., have increased seriously, and pollution has improved [1-3]. Wind energy can be used to solve climate change, energy supply & consumption concerns, as a clean and green energy source. A classified system is a machine learning system which learns basic string rules in a syntactically arbitrary way to direct its output.

Generation of electricity has further intensified human society's progress to the modern age of electricity as a new generating technology for renewable and has been a significant contributor worldwide. The Global Wind Energy Council has released the results. To ensure and secure operation of the power grid and at the same time to improve and adapt the wind power preparation strategy realistic using large-scale wind turbines, the wind power must be correctly predicted [4-7]. It would also help to lower the cost of wind power while improving the sustainability of the industry. Much
research on wind energy production focuses on improving wind speed and methods of estimation of strength. The basis is the prediction of wind speed job, and the other element is even. However, the power grid demand issue is rising daily, with installed energy's continuous growth [8-10]. Due to the low utilization of power networks, the wind is lowered, and energy is limited. Wind energy mechanism has caused major economic damages to wind power firms.

Several variables influence wind speed composition. A wind speed series with high random variance further leads to wind power volatility hampers wind power incorporation and has a detrimental effect on wind speed forecasts [11-12]. The higher is the variance, the less the statistical precision. The wind speed series must also first be standardized before predicting wind speed.

One of the most popular analytical techniques for clusters is their hierarchical system. The degree of varableness and the distance between them is the criterion for identifying this system and their determination, respectively [13-17]. The most popular methods for measuring the distance are the shortest form of distance, longest length method, average class method, central gravity method, a mid-range method, and the sum of the square method of divergence. In this article, the way the squares are summed up is used for the distance estimation of variables.

2. Methods

The wide range of computational computation techniques, using natural evolutionary processes and genetic recombination, are called genetic algorithms. They can be found in growing fields of implementation due to their flexibility. GAs is especially useful in the quaint-optimal quest for an estimated global minimum in a multi-mode, high-size region. In comparison to the most organized approaches, discontinuous and un-differentiable functions can easily be treated. A stochastic optimization algorithm is suggested in 1975 by American professor J. Holland by learning from the genetic process of the "fittest survival" in the biological universe. In a biological growth, the code string generated by the optimized variable is represented. Process and future generation are created by the selection, crossover, mutation, and other operations. The person's fitness value in the community shall be continually enhanced until a certain completion requirement has been reached. The genetic flow map demonstrates in fig. 1.

![Figure 1: The flow chart of the genetic algorithm](image)

Secondly, they are important in the algorithms of the reinforcement learning system. The determination of the learning system performance is accomplished from the fitness and single number. It is used broadly in situations that having performance is a measurement for the information. Finally, GA depends on the population, which does not an entity of single but a group. The prime example of this system is multi-agent learning systems.
A classifier system consists of three main components: 1) rules and messages system 2) apportionment of credit system 3) genetic algorithm. The GA based cycle is shown in fig. 2. For three reasons, the GA is majorly essential in machine learning. Firstly, genetic algorithms are discrete spaces. It will be used to cellular automata systems, rule sets, neural networks, etc.

3. Results
The performance of the device was checked during a simulated-real match, and the findings were intriguing. Optimum Crossover likelihood parameters equal to 0.7 have been used in the genetic system and 10-3 for mutation probability. For the best optimization of the solution, energy conservation is carried out using the genetic algorithm. The strategy suggested is directed at the lowest pain. The wind speed observation predictions are shown in fig. 3, and the different models-based prediction results are illustrated in fig. 4. Wind velocity data will record the order and the scale of wind speed data as a group with a nonlinear time series, suggesting complex wind speed characteristics. The wind speed does not just shift clearly; however, the seasons have changed due to the occasional sunrise and sunset shift.

![Figure 2: GA based cycle Diagram](image)

![Figure 3: Wind Speed Prediction observations](image)
4. Conclusion
Energy is the primary driving force for human society's progress and the global economy's expansion. The enlargement the global energy situation is getting increasingly serious in terms of oil consumption and the sharp decline in the fossil energy reserves. The spontaneous intrinsic variation in wind power renders wind power unregulated, that further impacts the safety of power grid activity and prevents the extensive incorporation of wind energy into the grid wind electricity. Through studying historical data and subsequently modeling the elements in variation of various dimensions via the GA model, which certainly will enhance the precision of wind speed predictions, provide optimal conditions for large-scale wind energy network connections and then protect the production of new energy, this study enables the models to completely leverage the variety legislation.

References
[1] Demolli, H., Dokuz, A. S., Ecemis, A., & Gokcek, M. (2019). Wind power forecasting based on daily wind speed data using machine learning algorithms. *Energy Conversion and Management*, 198, 111823.
[2] Li, R., & Jin, Y. (2018, October). A wind speed interval prediction system based on multi-objective optimization for machine learning method. *Applied energy*, 228, 2207-2220.
[3] Senthil, K. P. (2019). Improved prediction of wind speed using machine learning. *EAI Endorsed Transactions on Energy Web*, 6(23).
[4] Wang, L., Li, X., & Bai, Y. (2018). Short-term wind speed prediction using an extreme learning machine model with error correction. *Energy Conversion and Management*, 162, 239-250.
[5] Akilandeswari, A. (2014). A Multiplier-Less Lifting Scheme Based DWT Structure. *Computers and Software*, 203.
[6] Balarengadurai, C., & Prasad, R. B. 2020. Confined Home Automation System Using Smartphone Based On Hybrid Module. *International Journal of Scientific & Technology Research*, 9(3), 770-73.
[7] Manimegalai, C. T., Gauni, S., & Kalimuthu, K. (2017). Smart traffic management using a building integrated photovoltaic (BIPV) powered Li-Fi system on IoT. *Electronic Government, an International Journal*, 13(2), 168-181.
[8] Balamurugan, M., Anand, M. S., Kumar, D. S., & Devi, A. S. (2018). Anonymous Location-Support and Self-Reliance Routing Protocol For Manet. *SCOPUS IJPHRD CITATION SCORE*, 9(2), 323.

[9] Sivagami, A. (2019). Multi-Sensor Approach in Structural Health Monitoring of Buildings. *Indian Journal of Public Health Research & Development*, 10(11).

[10] Balaji, V., Umapathy, N., Duraisamy, V., Umapathy, K., Venkatesan, P., & Saravanakumar, S. (2015). Enhancing Varying Overhead AD HOC On-Demand Distance Vector with Artificial Ants. *Jurnal Teknologi*, 77(28).

[11] Balaji, N., Vijayalakshmi, S., Durgadevi, K., Mohanraj, K., & Mangayarkarasi, T. (2019). FPGA implementation of smart water quality monitoring system. *International Journal of Innovative Technology and Exploring Engineering*, 8(11), 3136-3139.

[12] Wang, S., Janabi, A., & Wang, B. (2020, October). Generalized Optimal SVPWM for the Switched-Capacitor Voltage Boost Converter, ECCE, (pp. 2708-2711). IEEE.

[13] Gibbons MS, Gilbert CL, Deshpande MS, inventors; Lear Corp, assignee. Methodology of maximizing charging power transfer for an electric vehicle when ac voltage sags. United States patent application US 15/801,772. 2019 May 2.

[14] Anitha, S., Keerthana, A., Kaviya, S, and JayaRajan, R., 2017. QUADRIPLEGIC AMBULATING ADDENDUM. *International Journal of MC Square Scientific Research*, 9(2), pp.15-23.

[15] Anjana, R. (2019, Feb). Fuzzy and PI Based Speed Control of BLDC Motor using Bidirectional Converter for Electric Vehicle Application. *Trends in Electrical Engineering*, 8(3), 35-45.

[16] Yadav, D., Parekh, U., Patel, K., Parmar, R., & Prakash, M. (2019). Application of Modified Three Phase Conduction Method to Minimize Torque Ripple in BLDC Motor. *IJRAR*, vol. 6(1), 155-156.

[17] Rajkumar, S., Sundaram, C. S., Sedhuraman, K., & Muruganandhan, D. (2019, March). Performance Analysis of Hub BLDC Motor Using Finite Element Analysis. In 2019 *ICSCAN*, (pp. 1-5). IEEE.