Applying the Kövári-Sós-Turán Theorem to a Question in Group Theory

Andrea Lucchini

Abstract. Let \(m \leq n \) be positive integers and \(\mathcal{X} \) a class of groups which is closed for subgroups, quotient groups and extensions. Suppose that a finite group \(G \) satisfies the condition that for every two subsets \(M \) and \(N \) of cardinalities \(m \) and \(n \), respectively, there exist \(x \in M \) and \(y \in N \) such that \(\langle x, y \rangle \in \mathcal{X} \). Then either \(G \in \mathcal{X} \) or \(|G| \leq \left(\frac{180}{53} \right)^m (n - 1) \).

Let \(m, n \) be positive integers and \(\mathcal{X} \) be a class of groups. We say that a group \(G \) satisfies the condition \(\mathcal{X}(m, n) \) if for every two subsets \(M \) and \(N \) of cardinalities \(m \) and \(n \), respectively, there exist \(x \in M \) and \(y \in N \) such that \(\langle x, y \rangle \in \mathcal{X} \). If \(G \) satisfies the condition \(\mathcal{X}(m, n) \), then we write \(G \in \mathcal{X}(m, n) \).

In [5] M. Zarrin proposed the following question.

Question 1. Let \(G \) be a finite group and \(G \notin \mathcal{X} \). Does there exist a bound (depending only on \(m \) and \(n \)) for the size of \(G \) if \(G \) satisfies the condition \(\mathcal{X}(m, n) \)?

An affirmative answer is given in [5] for the class of nilpotent groups. In an earlier paper R. Bryce gave a positive solution for the class of supersoluble groups, under the additional condition \(n = m \). In this short note we prove that an affirmative question can be given whenever \(\mathcal{X} \) is a class of finite groups which is closed for subgroups, quotient groups and extensions. Our argument relies on the Kövári-Sós-Turán theorem [3], stating that, if \(m \leq n \) are two positive integers, then a graph with \(t \) vertices and at least \(\left(\frac{(n - 1)^{1/m}2^{1/m} + (m - 1)2}{2} \right) \) edges, contains a copy of the complete bipartite graph \(K_{m,n} \). The crucial observation is the following:

Theorem 1. Let \(\mathcal{X} \) be a class of groups and suppose that there exists a real positive number \(\gamma \) with the following property: if \(\mathcal{X} \) is a finite group and the probability that two randomly chosen elements of \(\mathcal{X} \) generate a group in \(\mathcal{X} \) is greater than \(\gamma \), then \(\mathcal{X} \) is in \(\mathcal{X} \). If \(m \leq n \), then

\[
|G| \leq \left(\frac{2}{1 - \gamma} \right)^m (n - 1)
\]

for any \(G \in \mathcal{X}(m, n) \setminus \mathcal{X} \).

Proof. Let \(G \in \mathcal{X}(m, n) \setminus \mathcal{X} \). Consider the graph \(\Gamma_\mathcal{X}(G) \) whose vertices are the elements of \(G \) and in which two vertices \(x_1 \) and \(x_2 \) are joined by an edge if and only if \(\langle x_1, x_2 \rangle \notin \mathcal{X} \) and let \(\eta \) the number of edges of \(\Gamma_\mathcal{X}(G) \). Since \(G \notin \mathcal{X} \), the probability that two vertices of \(\Gamma_\mathcal{X}(G) \) are joined by an edge is at least \(1 - \gamma \), so we must have

\[
\eta \geq \frac{(1 - \gamma)|G|^2}{2}.
\]
On the other hand, since \(G \in \mathcal{X}(m, n) \), \(\Gamma_X(G) \) cannot contain the complete bipartite graph \(K_{m,n} \) as a subgraph. By the Kövári-Sós-Turán theorem,

\[
\eta \leq \frac{(n-1)^{1/m}|G|^{2-1/m} + (m-1)|G|}{2}
\]

Combining (0.1) and (0.2) we deduce

\[
\left(\frac{n-1}{|G|}\right)^{1/m} + \frac{n-1}{|G|} \geq \left(\frac{n-1}{|G|}\right)^{1/m} + \frac{m-1}{|G|} \geq 1 - \gamma.
\]

We may assume \(|G| \geq n-1 \). This implies \(\left(\frac{n-1}{|G|}\right)^{1/m} \geq \frac{n-1}{|G|} \) and therefore it follows from (0.3) that

\[
\left(\frac{n-1}{|G|}\right)^{1/m} \geq \frac{1 - \gamma}{2}.
\]

This implies

\[
|G| \leq \left(\frac{2}{1 - \gamma}\right)^m (n-1). \quad \Box
\]

Guralnick and Wilson [2], using the classification of the finite simple groups, proved the following result. There exists a real number \(\kappa \), strictly between 0 and 1, with the following property: let \(\mathcal{X} \) be any class of finite groups which is closed for subgroups, quotient groups and extensions, and let \(G \) be a finite group; if the probability that two randomly chosen elements of \(G \) generate a group in \(\mathcal{X} \) is greater than \(\kappa \), then \(G \) is in \(\mathcal{X} \). Combining [2, Proposition 5] with [4, Theorem 1.1], one may deduce that \(\kappa \) can be taken to be \(\frac{47}{90} = \max\left(1 - \frac{53}{90}, \frac{5}{18}\right) \). This allows us to deduce our main result.

Corollary 2. Let \(\mathcal{X} \) be any class of finite groups which is closed for subgroups, quotient groups and extensions, and let \(G \) be a finite group. If \(m \leq n \) are positive integers and \(G \in \mathcal{X}(m, n) \setminus \mathcal{X} \), then \(|G| \leq \left(\frac{180}{35}\right)^m (n-1) \).

With the same argument, combining Theorem 1 with [2, Theorem A] (see also the remark in [2] following the statement of Theorem A), we deduce the following results, the first of which is an improvement of [5, Theorem 3.6].

Corollary 3. Let \(m \leq n \) be positive integers and \(G \) a finite group.

1. If \(\mathcal{X} \) is the class of nilpotent groups and \(G \in \mathcal{X}(m, n) \setminus \mathcal{X} \), then
 \[
 |G| \leq 4^m (n-1).
 \]

2. If \(\mathcal{X} \) is the class of soluble groups and \(G \in \mathcal{X}(m, n) \setminus \mathcal{X} \), then
 \[
 |G| \leq \left(\frac{60}{19}\right)^m (n-1).
 \]

3. If \(\mathcal{X} \) is the class of finite groups of odd order and \(G \in \mathcal{X}(m, n) \setminus \mathcal{X} \), then
 \[
 |G| \leq \left(\frac{8}{3}\right)^m (n-1).
 \]
References

1. R. A. Bryce, Ensuring a finite group is supersoluble, Bull. Austral. Math. Soc. 74 (2006), no. 2, 219–226.
2. R. M. Guralnick and J. S. Wilson, The probability of generating a finite soluble group, Proc. London Math. Soc. (3) 81 (2000), no. 2, 405–427.
3. T. Kvari, V. T. Sós and P. Turán, On a problem of K. Zarankiewicz, Colloq. Math. 3 (1954), 50–57.
4. N. E. Menezes, M. Quick and C. Roney-Dougal, The probability of generating a finite simple group, Israel J. Math. 198 (2013), no. 1, 371392.
5. M. Zarrin, Ensuring a group is weakly nilpotent, Comm. Algebra 40 (2012), no. 12, 4739–4752.

Andrea Lucchini, Università degli Studi di Padova, Dipartimento di Matematica “Tullio Levi-Civita”, Via Trieste 63, 35121 Padova, Italy, email: lucchini@math.unipd.it