TETRAVALENT HALF-ARC-TRANSITIVE GRAPHS OF ORDER $12p$

M. GHASEMI¹, N. MEHDIPOOR² AND A.A. TALEBI³

¹ Department of Mathematics, Urmia University, Urmia 57135, Iran. email: m.ghasemi@urmia.ac.ir
² Department of Mathematics, Mazandaran University, email: nargesmehdipoor@yahoo.com
³ Department of Mathematics, Mazandaran University, email: a.talebi@umz.ac.ir

ABSTRACT. A graph is half-arc-transitive if its automorphism group acts transitively on its vertex set, edge set, but not its arc set. In this paper, we study all tetravalent half-arc-transitive graphs of order $12p$.

1. Introduction

In this study, all graphs considered are assumed to be finite, simple and connected. For a graph X, $V(X)$, $E(X)$, $A(X)$ and $\text{Aut}(X)$ denote its vertex set, edge set, arc set, and full automorphism group, respectively. For $u, v \in V(X)$, $\{u, v\}$ denotes the edge incident to u and v in X, and $N_X(u)$ denotes the neighborhood of u in X, that is, the set of vertices adjacent to u in X.

A graph \tilde{X} is called a covering of a graph X with projection $p : \tilde{X} \rightarrow X$ if there is a surjection $p : V(\tilde{X}) \rightarrow V(X)$ such that $p|_{N_{\tilde{X}}(\tilde{v})} : N_{\tilde{X}}(\tilde{v}) \rightarrow N_X(v)$ is a bijection for any vertex $v \in V(X)$ and $\tilde{v} \in p^{-1}(v)$. A permutation group G on a set Ω is said to be semiregular if the stabilizer G_v of v in G is trivial for each $v \in \Omega$, and is regular if G is transitive, and semiregular. Let K be a subgroup of $\text{Aut}(X)$ such that K is intransitive on $V(X)$. The quotient graph X/K induced by K is defined as the graph such that the set Ω of K-orbits in $V(X)$ is the vertex set of X/K and $B, C \in \Omega$ are adjacent if and only if there exists a $u \in B$ and $v \in C$ such that $\{u, v\} \in E(X)$. A covering \tilde{X} of X with a projection p is said to be regular (or K-covering) if there is a subgroup K of the automorphism group $\text{Aut}({\tilde{X}})$ such that K is semiregular on both $V(\tilde{X})$ and $E(\tilde{X})$ and graph X is isomorphic to the quotient graph \tilde{X}/K, say by h, and the quotient map $\tilde{X} \rightarrow \tilde{X}/K$ is the composition ph of p and h. The group of covering transformations $CT(p)$ of $p : \tilde{X} \rightarrow X$ is the group of all self equivalences of p, that is, of all automorphisms $\tilde{\alpha} \in \text{Aut}(\tilde{X})$ such that $p = \tilde{\alpha}p$. If \tilde{X} is connected, K becomes the covering transformation group.

2010 Mathematics Subject Classification. 05C25; 20B25.

Key words and phrases. Half-arc-transitive graph, Tightly attached, Regular covering projection, Solvable groups.
For a graph X and a subgroup G of $\text{Aut}(X)$, X is said to be G-vertex-transitive, G-edge-transitive or G-arc-transitive if G is transitive on $V(X)$, $E(X)$ or $A(X)$, respectively, and G-arc-regular if G acts regularly on $A(X)$. A graph X is called vertex-transitive, edge-transitive, arc-transitive, or arc-regular if X is $\text{Aut}(X)$-vertex-transitive, $\text{Aut}(X)$-edge-transitive, $\text{Aut}(X)$-arc-transitive, or $\text{Aut}(X)$-arc-regular, respectively. Let X be a tetravalent G-half-arc-transitive graph for a subgroup G of $\text{Aut}(X)$, that is G acts transitively on $V(X)$, $E(X)$, but not $A(X)$. Then under the natural action of G on $V(X) \times V(X)$, G has two orbits on the arc set $A(X)$, say A_1 and A_2, where $A_2 = \{(v, u) | (u, v) \in A_1\}$. Therefore, one may obtain two oriented graphs with the vertex set $V(X)$ and the arc sets A_1 and A_2. Assume that $D_G(X)$ be one of the two oriented graphs. Also in the special case, if $G = \text{Aut}(X)$ then X is said to be 1/2-transitive or half-arc-transitive.

By Tutte [29], each connected vertex-transitive and edge-transitive graph of odd valency is arc-transitive. So half-arc-transitive graphs of odd valency do not exist. Bouwer [5] answered Tutte’s question about existence of half-arc-transitive graphs of even valency. A number of authors later studied the construction of these graphs. See, for example [1, 2, 9, 11, 14, 20, 21, 22, 23, 31, 32, 34]. Let p be a prime. There are no half-arc-transitive graphs of order p, p^2 and $2p$ (see [6, 8]). Feng, Kwak, Wang and Zhou [12] classified the connected tetravalent half-arc-transitive graphs of order $2pq$ for distinct odd primes p and q. The tetravalent half-arc-transitive graphs of order p^5, p^4, $2p^2$, p^3 and $2p^3$ are classified in [7, 13, 33, 37, 38] respectively. Wang et al. [35] studied tetravalent half-arc-transitive graphs of order a product of three primes. In [24], Liu studied tetravalent half-arc-transitive graphs of order p^2q^2 with p, q distinct odd primes. Feng et al. [15] classified the tetravalent half-arc-transitive graphs of order $4p$. In [10] a complete classification of tetravalent half-arc-transitive metacirculants of order 2-powers was given. In [36], a classification of all tetravalent half-arc-transitive graphs of order $8p$ was given. In this paper, we will study tetravalent half-arc-transitive graphs of order $12p$.

2. Preliminaries

Let X be a graph and K be a finite group. By a^{-1} we mean the reverse arc to an arc a. A voltage assignment (or K-voltage assignment) of X is a function $\xi : A(X) \to K$ with the property that $\xi(a^{-1}) = \xi(a)^{-1}$ for each arc $a \in A(X)$. The values of ξ are called voltages, and K is the voltage group. The graph $X \times_\xi K$ derived from a voltage assignment $\xi : A(X) \to K$ has vertex set $V(X) \times K$ and edge set $E(X) \times K$, so that an edge (e, g) of $X \times K$ joins a vertex (u, g) to $(v, \xi((a)g))$ for $a = (u, v) \in A(X)$ and $g \in K$, where $e = \{u, v\}$. Clearly, the derived graph $X \times_\xi K$ is a covering of X with the first coordinate projection $p : X \times_\xi K \to X$, which is called the natural projection. By defining $(u, g)^2 = (u, g'g)$ for any $g \in K$ and $(u, g') \in V(X \times_\xi K)$, K becomes a subgroup of $\text{Aut}(X \times_\xi K)$ which acts semiregularly on $V(X \times_\xi K)$. Therefore, $X \times_\xi K$ can be viewed as a K-covering. For each $u \in V(X)$ and $\{u, v\} \in E(X)$, the vertex set
\{(u, g) | g \in K\} \) is the fibre of \(u \) and the edge set \(\{(u, g)(v, \xi(a)g) | g \in K\} \) is the fibre of \(\{u, v\} \), where \(a = (u, v) \). The group \(K \) of automorphisms of \(X \) fixing every fibre setwise is called the covering transformation group. Conversely, each regular covering \(\tilde{X} \) of \(X \) with a covering transformation group \(\tilde{K} \) can be derived from a \(K \)-voltage assignment. Given a spanning tree \(T \) of the graph \(X \), a voltage assignment \(\xi \) is said to be \(T \)-reduced if the voltages on the tree arcs are the identity. Gross and Tucker in [18] showed that every regular covering \(\tilde{X} \) of a graph \(X \) can be derived from a \(T \)-reduced voltage assignment \(\tilde{X} \) with respect to an arbitrary fixed spanning tree \(T \) of \(X \).

Let \(\tilde{X} \) be a \(K \)-covering of \(X \) with a projection \(p \). If \(\alpha \in \text{Aut}(X) \) and \(\tilde{\alpha} \in \text{Aut}(\tilde{X}) \) satisfy \(\tilde{\alpha}p = p\alpha \), we call \(\tilde{\alpha} \) a lift of \(\alpha \), and \(\alpha \) the projection of \(\tilde{\alpha} \). The lifts and projections of such subgroups are of course subgroups in \(\text{Aut}(\tilde{X}) \) and \(\text{Aut}(X) \), respectively.

Let \(G \) be a group, and let \(S \subseteq G \) be a set of group elements such that the identity element \(1 \) not in \(S \). The Cayley graph associated with \((G, S) \) is defined as the graph having one vertex associated with each group element, edges \((g, h)\) whenever \(hg^{-1} \in S \). The Cayley graph \(X \) is denoted by \(\text{Cay}(G, S) \). In graph theory, the lexicographic product or (graph) composition \(G[H] \) of graphs \(G \) and \(H \) is a graph such that the vertex set of \(G[H] \) is the cartesian product \(V(G) \times V(H) \); and any two vertices \((x, y)\) and \((v, w)\) are adjacent in \(G[H] \) if and only if either \(x \) is adjacent with \(v \) in \(G \) or \(v = x \) and \(w \) is adjacent with \(y \) in \(H \). Clearly, if \(G \) and \(H \) are arc-transitive then \(G[H] \) is arc-transitive.

Let \(X \) be a tetravalent \(G \)-half-arc-transitive graph for some \(G \leq \text{Aut}(X) \). Then no element of \(G \) can interchange a pair of adjacent vertices in \(X \). By [19], there is no half-arc-transitive graph with less than 27 vertices. Half-arc-transitive graphs have even valencies. An even length cycle \(C \) in \(X \) is a \(G \)-alternating cycle if every other vertex of \(C \) is the head and every other vertex of \(C \) is the tail of its two incident edges in \(D_G(X) \). All \(G \)-alternating cycles in \(X \) have the same length. The radius of graph is half of the length of an alternating cycle. Any two adjacent \(G \)-alternating cycles in \(X \) intersect in the same number of vertices, called the \(G \)-attachment number of \(X \). The intersection of two adjacent \(G \)-alternating cycles is called a \(G \)-attachment set. We say that \(X \) is tightly attached if the attachment number of \(X \) equal with its radius.

Now we introduce graph \(X(r; m, n) \) and a result due to Marušič.

Suppose that \(m \geq 3 \) be an integer, \(n \geq 3 \) an odd integer and let \(r \in \mathbb{Z}_n^\ast \) satisfy \(r^m = \pm 1 \). The graph \(X(r; m, n) \) is defined to have vertex set \(V = \{u_i^j | i \in \mathbb{Z}_m, j \in \mathbb{Z}_n\} \) and edge set \(E = \{u_i^j, u_i^{j \pm r_i} | i \in \mathbb{Z}_m, j \in \mathbb{Z}_n\} \).

Proposition 2.1. [25, Theorem 3.4] A connected tetravalent graph \(X \) is a tightly attached half-arc-transitive graph of odd radius \(n \) if and only if \(X \cong X(r; m, n) \), where \(m \geq 3 \), and \(r \in \mathbb{Z}_n^\ast \) satisfying \(r^m = \pm 1 \), and moreover none of the following conditions is fulfilled:

1. \(r^2 = \pm 1 \);
2. \((r; m, n) = (2; 3, 7)\);
(3) \((r; m, n) = (r; 6, 7k), \) where \(k \geq 1\) is odd, \((7, k) = 1, r^6 = 1,\) and there exists a unique solution \(q \in \{r, -r, r^{-1}, -r^{-1}\}\) of the equation \(x^2 + x - 2 = 0\) such that \(7(q - 1) = 0\) and \(q \equiv 5 \pmod{7}\).

The following is the main result of the paper tetravalent half-transitive graphs of order \(4p\).

Proposition 2.2. [[15], Theorem 3.3] Let \(p\) be a prime and \(X\) a tetravalent graph of order \(4p\). Then, \(X\) is half-transitive if and only if \(p \equiv 1 \pmod{8}\) and \(X \cong X(r; 4, p)\) (denote by \(X(4, p)\) the graph \(X(r; 4, p)\)).

Now we express an observations about tetravalent half-arc-transitive graphs.

Proposition 2.3. [[26], Lemma 3.5] Let \(X\) be a connected tetravalent \(G\)-half-arc-transitive graph for some \(G \leq \text{Aut}(X)\), and let \(\Delta\) be a \(G\)-attachment set of \(X\). If \(|\Delta| \geq 3\), then the vertex-stabilizer of \(v \in V(X)\) in \(G\) is of order \(2\).

Proposition 2.4. [17] A non-abelian simple group whose order has at most three prime divisors is isomorphic to one of the following groups:

\[
\text{A}_5, \text{A}_6, \text{PSL}(2, 7), \text{PSL}(2, 8), \text{PSL}(2, 17), \text{PSL}(3, 3), \text{PSU}(3, 3), \text{PSU}(4, 2),
\]

whose orders are \(2^2 \cdot 3 \cdot 5, 2^3 \cdot 3^2 \cdot 5, 2^3 \cdot 3 \cdot 7, 2^4 \cdot 3^2 \cdot 7, 2^4 \cdot 3^3 \cdot 13, 2^5 \cdot 3^3 \cdot 7, 2^6 \cdot 3^4 \cdot 5\), respectively.

The following result is extracted from [[4], Theorem 1].

Proposition 2.5. Let \(X\) be a tetravalent arc-transitive graph of order \(2pq\) where \(p\) and \(q\) are odd and distinct primes. Then one of the following holds:

(1) \(X\) is arc-regular and appears in [39];
(2) \(X\) is isomorphic to the lexicographic product \(C_{pq}[2K_1]\) of the cycle \(C_{pq}\) and the edgeless graph on two vertices \(2K_1\).

In the following, we describe the structure of the graphs required in this paper [[27], [28], [40]].

The Rose Window graph \(R_6(5, 4)\) is a tetravalent graph with 12 vertices. Its vertex set is \(\{S_i, Q_i | i \in Z_6\}\). The graph has four kinds of edges: kind of edges: \(S_iS_{i+1}\) (rim edges), \(S_iQ_i\) (inspoke edges), \(S_{i+5}Q_i\) (outspoke edges) and \(Q_iQ_{i+4}\) (hub edges). \(|\text{Aut}(R_6(5, 4))| = 48\). Fig 1 shows \(R_6(5, 4)\).

A general Wreath graph \(W(6, 2)\) has 12 vertices and it is regular of valency 4. Its vertex set is \(\{E_i, F_i | i \in Z_6\}\), where \(E_i = (i, 0)\) and \(F_i = (i, 1)\). Its edges are \(\{E_i, E_{i+1}\}, \{E_i, F_{i+1}\}, \{F_i, E_{i+1}\}\) and \(\{F_i, F_{i+1}\}\). \(|\text{Aut}(W(6, 2))| = 768\). See Fig 2.
The graph $C(2; p, 2)$ was first defined by Praeger and Xu [28, Definition 2.1 (b)]. Let p be an odd prime. The graph $C(2; p, 2)$ has vertex set $\mathbb{Z}_p \times (\mathbb{Z}_2 \times \mathbb{Z}_2)$ and its edges are defined by \{$(i, (x, y)), (i + 1, (y, z))$\} $\in E(C(2; p, 2))$ for all $i \in \mathbb{Z}_p$ and $x, y, z \in \mathbb{Z}_2$. Aut($C(2; p, 2)$) $\cong D_{2p} \rtimes \mathbb{Z}_2$.

Let $p \equiv 1 \pmod{4}$, where p is a prime and w is an element of order 4 in \mathbb{Z}_p^*. The graph CA^0_{4p} is Cay($G, \{a, a^{-1}, a^w b, a^{-w} b\}$) and the graph CA^1_{4p} is Cay($G, \{a, a^{-1}, a^w b, a^{-w} b\}$), where $G = \langle a > \times < b > \cong \mathbb{Z}_{2p} \times \mathbb{Z}_2$.

3. Main Results

In this section, we study all tetravalent half-arc-transitive graphs of order $12p$ where p is a prime. To do this, we prove the following results.

Lemma 3.1. Let X be a graph, $G \leq \text{Aut}(X)$, $N \leq G$ and X be N-regular covering of X_N. Then X is G-half-arc-transitive if and only if X_N is G/N-half-arc-transitive.

Proof. Suppose that $N \leq G$ and X is G-half-arc-transitive. Since X is N-regular covering of X_N, it follows that $K = N$ and $G/N \leq \text{Aut}(X_N)$, where K is the kernel of G acting on orbits of N. Let x^N, y^N be two arbitrary vertices of graph X_N. By our assumption there exits $g \in G$ such that $x^g = y$. Now $(x^N)^N_g = (x^g)^N = y^N$. It implies that X_N is G/N-vertex-transitive. Now, suppose that $\{x^N, y^N\}$ and $\{u^N, v^N\}$ are two arbitrary edges of X_N. Without loss of generality, we may suppose that $\{x, y\}$ and $\{u, v\}$ are two edges of X. By our assumption there exits $g \in G$ such that $\{x, y\}^g = \{u, v\}$. Then we may assume that $x^g = u$ and $y^g = v$. Hence $(x^N)^N_g = x^N g = x^{g^N} = u^N$ and $(y^N)^N_g = y^N g = y^{g^N} = v^N$. Then X_N is G/N-edge-transitive. Suppose to contrary that X_N is G/N-arc-transitive. Let (x, y) and (u, v) are two arcs of graph X. Now (x^N, y^N) and (u^N, v^N) are two arcs of graph X_N. By our assumption, there exits $Ng \in G/N$ such that $(x^N, y^N)^N_{g} = (u^N, v^N)$. Therefore $(x^N)^{Ng} = u^N$ and $(y^N)^{N_{g}} = v^N$. Thus $x^{N_{g}} = u^{N}$ and $y^{N_{g}} = v^{N}$. Then $x^g = u$ and $y^g = v^{n'}$ for $n, n' \in N$ and so $(x, y)^g = (u^n, v^{n'})$.

Fig 1. The Rose Window graph $R_6(5, 4)$

Fig 2. The Wreath graph $W(6, 2)$
There exits \(n'' \in N \) such that \((u^n, v^{n''})^{n''} = (u, v) \). Then \((x, y)^{g^{n''}} = (u^n, v^{n''})^{n''} = (u, v) \). Therefore \(X \) is \(G \)-arc-transitive, a contradiction. Then \(X_N \) is \(G/N \)-half-arc-transitive.

Now suppose that \(X_N \) is \(G/N \)-half-arc-transitive. Thus \(G/N \) acts transitively on \(V(X_N) \). Let \(u, v \in V(X) \) and \(u^N, v^N \in V(X_N) \). Then there is \(Ng \in G/N \) such that \((u^N)^Ng = v^N \) and hence, there is \(n' \in N \) such that \(u^g = v^{n'} \) and \(u^{g(n')} = v \). Then since \(g(n')^{-1} \in G \), it implies that \(X \) is vertex-transitive. For any \(\{u, v\}, \{x, y\} \in E(X) \), we have \(\{u^N, v^N\}, \{x^N, y^N\} \in E(X_N) \). Since \(X_N \) is \(G/N \)-edge-transitive, we have \(Ng \in G/N \) such that \(\{u^N, v^N\}^Ng = \{x^N, y^N\} \) and \(\{(u^N)^Ng, (v^N)^Ng\} = \{x^N, y^N\} \). Without loss of generality, we may suppose that \((u^N)^Ng = (u)^Ng = x^N \) and \((v^N)^Ng = (v)^Ng = y^N \).

There exits \(n', n'' \in N \) such that \((u, v)^g = (x^{n'}, y^{n''}) \). Also there exits \(n \in N \) such that \((x^{n'}, y^{n''})^n = \{x, y\} \). Thus we may assume that \((u, v)^g = \{x, y\} \) and so \(X \) is \(G \)-edge-transitive. Similar to the previous, it can be shown that if \(X_N \) is not \(G/N \)-arc-transitive then \(X \) is not \(G \)-arc-transitive. Therefore \(X \) is \(G \)-half-arc-transitive.

The following lemma is basic for the main result.

Lemma 3.2. Let \(X \) be a half-arc-transitive graph, \(p \) is a prime and \(N \trianglelefteq \text{Aut}(X) \), where \(N \cong \mathbb{Z}_p \). If the quotient graph \(X_N \) is a Cayley graph and has the same valency with \(X \) then \(X \) is a \(N \)-regular covering of \(X_N \) and \(X \) is a Cayley graph.

Proof. Let \(N \) be a normal subgroup of \(A := \text{Aut}(X) \) and \(X_N \) be the quotient graph of \(X \) with respect to the orbits of \(N \) on \(V(X) \). Assume that \(K \) is the kernel of \(A \) acting on \(V(X_N) \). The stabilizer \(K_v \) of \(v \in V(X) \) in \(K \) fixes the neighborhood of \(v \) in \(X \). The connectivity of \(X \) implies \(K_v = 1 \) for any \(v \in V(X) \) and hence \(N_v = 1 \). If \(N_{\{\alpha, \beta\}} \neq 1 \) then \(N_{\{\alpha, \beta\}} \neq N \). Since \(X \) is connected, there is a \(\{\beta, \gamma\} \in E(X) \) where \(\beta, \gamma \in V(X) \). Then we have \(g \in A \) such that \(\{\alpha, \beta\} = \{\beta, \gamma\}^g \) because \(X \) is an edge-transitive graph. Hence \(N_{\{\alpha, \beta\}} = N_{\{\beta, \gamma\}} = g^{-1}N_{\{\beta, \gamma\}}g = N_{\{\beta, \gamma\}} \). It is a contradiction and so \(N_{\{\alpha, \beta\}} = 1 \). Therefore \(X \) is a \(\mathbb{Z}_p \)-regular covering of \(X_N \). Now we prove that \(X \) is a Cayley graph. Let \(X_N \cong \text{Cay}(G, S) \), \(X \cong X_N \times \mathbb{Z}_p \) where \(\xi \) is the \(T \)-reduced voltage assignment and \(\tilde{G} \) is a lift of \(G \) such that \(\tilde{\alpha}p = p\alpha \) where \(p : X \to X_N \) is regular covering projection, \(\alpha \in \text{Aut}(X_N) \) and \(\tilde{\alpha} \in A \). For any \((x, k), (y, k') \in V(X) \) where \(k, k' \in \mathbb{Z}_p \) and \(x, y \in V(X_N) \), we have \(\alpha \in \text{Aut}(X_N) \) such that \(x^\alpha = y \). For \(k'' \in \mathbb{Z}_p \), \((x, k)^{\tilde{\alpha}p} = (z, k'')^p = z \) where \((x, k)^\tilde{\alpha} = (z, k'') \). Also \((x, k)^p\alpha = x^\alpha = y \). Then \(y = z \) and hence \((y, k), (y, k'') \in p^{-1}(y) \). Therefore \(\tilde{G} \) is transitive on \(V(X) \). Now, we prove that \(\tilde{G} \) is semiregular. Suppose that \((x, k)^\tilde{\alpha} = (x, k) \). Now, since \(G \) is semiregular and \(\tilde{\alpha}p = p\alpha \), it implies that \(x = (x, k)^{\tilde{\alpha}p} = (x, k)^p\alpha = x^\alpha \). Then \(\alpha = 1 \) and hence \(\tilde{\alpha}p = p \). Therefore \(\tilde{\alpha} \in \text{CT}(p) = \mathbb{Z}_p \) and since \(\text{CT}(p) \) is semiregular, it follows that \(\tilde{\alpha} = 1 \). \(\Box \)

By [27], all tetravalent half-arc-transitive graphs of order \(12p \) where \(p \leq 53 \) is a prime, are classified. Then in the following, we may assume that \(p > 53 \).
Lemma 3.3. Let X be a tetravalent half-arc-transitive graph of order $12p$, where p is a prime. Then $\text{Aut}(X)$ has a normal Sylow p-subgroup or X is \mathbb{Z}_3-regular covering of $C(2; p, 2)$ or $C_{2p}[2K_1]$.

Proof. Let X be a tetravalent half-arc-transitive graph of order $12p$ where p is a prime. Let $A := \text{Aut}(X)$. Since the stabilizer A_v of $v \in V(X)$ is a 2-group, we have $|A| = 2^{m+2}.3.p$, for some nonnegative integer m. Suppose to the contrary that A has no normal Sylow p-subgroups. Let N be a minimal normal subgroup of A. We claim that N is solvable. Otherwise, by Proposition 2.4 and since $p > 53$, we get a contradiction. Then N is solvable and hence it is an elementary abelian 2-, 3- or p-group.

Case I: N is a 2-group.

Let X_N be the quotient graph of X corresponding to the orbits of N on $V(X)$. Then $|V(X_N)| = 6p$ or $3p$.

Subcase 1: $|V(X_N)| = 6p$.

Since X is edge-transitive, X_N has valency 2 or 4. Suppose that X_N has valency 2. Then $X \cong C_{6p}[2K_1]$, which is arc-transitive. It is a contradiction. Assume now that X_N has valency 4. If X_N is half-arc-transitive then by [[12], Theorem 4.1], $|\text{Aut}(X_N)| = 2^2.3.p$. Let K be the kernel of A acting on $V(X_N)$. Since K fixes each orbit of N, the stabilizer $K_v = 1$ for any $v \in V(X)$. Then $|N| = |K|$. On the other hand $A/K \leq \text{Aut}(X_N)$. Since A/K acts transitively on $V(X_N)$ and $E(X_N)$, $|A| = 24p$. Then $1 + np | 24$. Since $p > 53$ then $P \leq A$, a contradiction. Now, suppose that X_N is arc-transitive. Let X_N has valency 4. By Proposition 2.5, if X_N is arc-regular then $|\text{Aut}(X_N)| = 24p$. By lemma 3.1, A/K is half-arc-transitive and hence $|A| = 24p$. Then $P \leq A$ because $p > 53$. It is a contradiction. If X_N not be arc-regular then by Proposition 2.5, $Y = X_N \cong C_{3p}[2K_1]$ and $B = \text{Aut}(Y)$, $|B| = 2^{3p+1}.3.p$. Assume that M is a minimal normal subgroup of B. By the same argument as in the first paragraph, M is solvable and hence it is an elementary abelian 2-, 3- or p-group. First, assume that M is a 2-group and Y_M is the quotient graph of Y corresponding to the orbits of M on $V(Y)$. The quotient graph Y_M has order $3p$ and valency 2 or 4. If Y_M has valency 4 then $M_v = 1$ for $v \in V(Y)$. Assume that K_1 be the kernel of B acting on $V(Y_M)$. Hence $|K_1| = |M|$. Thus $B/K_1 \leq \text{Aut}(Y_M)$. It is a contradiction because $|\text{Aut}(Y_M)| = 12p$ by [[30], Theorem 5]. If Y_M has valency 2 then $Y_M \cong C_{3p}$ and $\text{Aut}(Y_M) \cong D_{6p}$. Since $|K_1| \leq 2$, we have $|B| \leq 12p$. We get a contradiction because $p > 53$. Now, suppose that M be a 3-group. Then $|V(Y_M)| = 2p$. Since $M_v = 1$ for $v \in V(Y)$ by using [[16], Theorem 1.1(4)], Y_M has valency 4. By [[6], Table 1], $Y_M \cong G(2, p, r)$ or $G(2p, r)$. Then $|K_1| = |M|$ and hence $B/K_1 \leq \text{Aut}(Y_M)$. It is a contradiction because $|\text{Aut}(Y_M)| = 2^{p+1}.p$ or $8p$ and $p > 53$. Let M be a p-group. Then $|Y_M| = 6$. Since $M_v \leq M$ we have $|M_v| = 1$. By [[16], Theorem 1.1(4)], Y_M has valency 4. By [[27], $|\text{Aut}(Y_M)| = 48$. Hence $B/K_1 \leq \text{Aut}(Y_M)$. It is a contradiction.

Subcase 2: $|V(X_N)| = 3p$.

Let $|V(X_N)| = 3p$ and X_N has valency 2. Then $X \cong C_{3p}[2K_1]$. This leads to a contradiction. If X_N has valency 4 and it is half-arc-transitive then by [[2], Theorem 2.5],
Case II: N is 3-group.

If $|V(X_N)| = 4p$ and X_N has valency 2, then $X_N \cong C_{4p}$ and hence $\text{Aut}(X_N) \cong D_{8p}$. Since $K = K_vN$ for any $v \in V(X)$ and K acts faithfully on $V(X)$, we have $K \leq S_3$ and hence $K_v \leq 2$. Then $|A| \leq 48p$. Therefore $P \leq A$ because according to assumption $p > 53$. This leads to a contradiction. Now let $|V(X_N)| = 4p$ and X_N has valency 4. Then X_N is arc-transitive or half-arc-transitive. By [[40], Table 1] and Proposition 2.2, $X_N \cong C(2; p, 2)$, $C_{2p}[2K_1]$, CA_{4p}^0, CA_{4p}^1 or $X(4, p)$. Let $X_N \cong C(2; p, 2)$ or $C_{2p}[2K_1]$. Since X_N has valency 4, N acts semiregularly on $V(X)$ and so X is a Z_3-regular covering of $C(2; p, 2)$ or $C_{2p}[2K_1]$. Assume that $Y = X_N \cong CA_{4p}^0$ or CA_{4p}^1 and $B = \text{Aut}(Y)$. Since $|K| = |N|$, we have $A/K \leq B$ and hence $|A| \leq 48p$. Then $P \leq A$. Suppose that $Y = X_N \cong X(4, p)$ and $B = \text{Aut}(Y)$. Since Y is half-arc-transitive, we have $|B| = 2^{m+2}.p$, for some nonnegative integer m. Let M be a minimal normal subgroup of B. Thus M is an elementary abelian 2- or p-group. First, assume that M is a p-group and Y_M be the quotient graph of Y corresponding to the orbits of M on $V(Y)$. Then $|V(Y_M)| = 4$. Since Y is an edge-transitive graph and $M_v = 1$ for $v \in V(Y)$, Y_M has valency 4, a contradiction. Suppose that M is a 2-group. Therefore $|V(Y_M)| = 2p$ or p and Y_M has valency 2 or 4.

Subcase 1: $|V(Y_M)| = 2p$.

If Y_M has valency 2 then $Y \cong C_{2p}[2K_1]$, which is arc-transitive. Since Y is half-arc-transitive, we get a contradiction. Suppose now that Y_M has valency 4. By [[8], Table 1], $Y_M \cong G(2p, 4)$ or $G(2, p, 2)$. Assume that $Y_M \cong G(2p, 4)$. Since $(K_1)_v = 1$, $|B/K_1| \leq 8p$ and hence $|A| \leq 48p$. It is a contradiction because $p > 53$. Suppose that $Y_M \cong G(2, p, 2)$. Let $Z = Y_M \cong G(2, p, 2)$ and $C = \text{Aut}(Z)$. Let H be a minimal normal subgroup of C and let Z_H be the quotient graph of Z with respect to the orbits of H. Since $|C| = 2^{p+1}.p$, H is 2- or p-group. Assume that H is a 2-group. Thus $|Z_H| = p$ and Z_H has valency 2 or 4. By [[6], Theorem 3], $|\text{Aut}(Z_H)| = 2p$ or $4p$. Assume that K_1 be the kernel of C acting on $V(Z_H)$. If Z_H has valency 4 then $|K_1| = |H| = 2$ because $|(K_1)_v| = 1$. Then $C/K_1 \leq 16p$ and hence $2^{p+1} \leq 8p$. We get a contradiction because $p > 53$. If Z_H has valency 2 then $|K_1| \leq 8$ because $|(K_1)_v| \leq 2$. Thus $C/K_1 \leq 16p$ and hence $2^{p+1} \leq 8p$, a contradiction can be obtained. Now, suppose that H is a p-group. Then $|Z_H| = 2$ with valency 2, 4, a contradiction.

Subcase 2: $|V(Y_M)| = p$.

If Y_M has valency 4 then by lemma 3.2, Y is Z_2-regular cover of Y_M and Y is a Cayley graph. But by [[15], $X(4, p)$ is not a Cayley graph, a contradiction. Suppose that Y_M has valency 2 and hence $Y_M \cong C_p$. Assume that K_1 is the kernel of B acting on $V(Y_M)$ and $(K_1)_v = 1$. Then $B/K_1 \leq \text{Aut}(Y_M)$ and so $|B| \leq 8p$. Therefore $|A| \leq 24p$ and hence
TETRAVALENT HALF-ARC-TRANSITIVE GRAPHS OF ORDER 12p

P ⊆ A because p > 53. Then (K1)v ̸= 1. Let V(YM) = {Ω0, Ω1, Ω2, ..., Ωp−1}. The subgraph induced by any two adjacent orbits is either a cycle of length 8 or a union of two cycles of length 4. Suppose that ⟨Ωi ∪ Ωi+1⟩ is an 8-cycle. Thus K1 acts faithfully on each Ωi and hence (K1)v ∼= Z2. It implies that |K1| = 8. Since M is transitive on each Ωi and (K1)v > 1, all edges in the induced subgraph ⟨Ωi ∪ Ωi+1⟩ have the same direction either from Ωi to Ωi+1 or from Ωi+1 to Ωi in the oriented graph DB(Y). It follows that B/K1 ∼= Zp and |B| ≤ 8p. Since M is transitive on each Ωi and (K1)v > 1, all edges in the induced subgraph ⟨Ωi ∪ Ωi+1⟩ have the same direction either from Ωi to Ωi+1 or from Ωi+1 to Ωi in the oriented graph DB(Y). It follows that B/K1 ∼= Zp and |B| ≤ 8p. Therefore |A| ≤ 24p and hence P ⊆ A because p > 53. Assume that ⟨Ωi ∪ Ωi+1⟩ is a union of two 4-cycles. Let Ωi = {u0, u1, u2, u3} for any i in Zp. Then B has an automorphism α of order p such that for any i in Zp, Ωαi = Ωi+1. Let (ui)ε = uεi+1 for i in Zp and j in Z4. Consider a 4-cycle C in the induced subgraph ⟨Ω0 ∪ Ω1⟩ and let n be the number of edges of C which are in some orbit of α. Then n = 0, 1, or 2. Consequently, the induced subgraph ⟨Ω0 ∪ Ω1⟩ is one of the of the following three cases.

In the Case 1, Y is disconnected, a contradiction. In the Case 2, Y ∼= C2p[2K1]. We get a contradiction because Y ∼= X(4, p). In the Case 3, Y ∼= C(2; p, 2) that is arc-transitive. It is a contradiction because X(4, p) is a half-arc-transitive graph.

![Case 1](image1)

![Case 2](image2)

![Case 3](image3)

Fig 3. The induced subgraph ⟨Ω0 ∪ Ω1⟩.

Case III: N is p-group.

If |N| = p then N is a normal Sylow p-subgroup of A as claimed. □

Theorem 3.4. Let X be a connected tetravalent vertex-transitive and edge-transitive graph of order 12p, where p > 53 is a prime. Then one of the following statements holds:

1. X is half-arc-transitive if and only if X ∼= X(r; 12, p) such that r ∈ Zp satisfying r12 = ±1.
2. X is half-arc-transitive Cayley graph if and only if X ∼= Y ×ξ Zp, where Y = W(6, 2) or R0(5, 4) and ξ : A(Y) → Zp.
3. If X is half-arc-transitive then X ∼= C(2; p, 2) ×ξ Z3, where ξ : A(C(2; p, 2)) → Z3.
(4) if X is half-arc-transitive then X is a Cayley graph and $X \cong C_{2p}[2K_1] \times _\xi \mathbb{Z}_3$, where $\xi : A(C_{2p}[2K_1]) \rightarrow \mathbb{Z}_3$.

Proof. Let X be a tetravalent half-arc-transitive graph of order $12p$ and hence $|A| = 2^{m+2}.3.p$ for some integer $m \geq 0$. By Lemma 3.3, either $P \trianglelefteq A$ or X is a \mathbb{Z}_3-regular covering of $C(2; p, 2)$ or $C_{2p}[2K_1]$. First, suppose that $P \trianglelefteq A$. Now, let X_P be the quotient graph of X corresponding to the orbits of P. Assume that K is the kernel of A acting on $V(X_P)$. Then $V(X_P) = 12$ and X_P has valency 2 or 4. If X_P has valency 2 then $X_P \cong C_{12}$ and hence $\text{Aut}(X_P) \cong D_{24}$. By Proposition 2.3, $A_v \cong \mathbb{Z}_2$ and hence $|A| = 24p$. The attachment number of X is equal to its radius. So X is a tetravalent tightly attached half-arc-transitive graph of odd radius p. By Proposition 2.1, $X \cong X(r; 12, p)$ and $|A| = 24p$. Also, by Proposition 2.1, it is trivial that $X(r; 12, p)$ is tetravalent half-arc-transitive graph of order $12p$. Assume that X_P has valency 4 and X_P is arc-transitive or half-arc-transitive. There is no half-arc-transitive graph of order 12. Suppose that X_P is an arc-transitive graph. By [27], $W(6, 2)$ and $R_6(5, 4)$ are the only two arc-transitive graphs of order 12. These graphs are Cayley graphs by [3]. Since P acts semiregular on $V(X)$ and $E(X)$, by Lemma 3.2, X is a \mathbb{Z}_p-regular covering of X_P and X is a Cayley graph. For convenience, consider the graphs $W(6, 2)$ and $R_6(5, 4)$. By [3], these graphs have half-arc-transitive subgroups. By Lemma 3.1, since X_P is A/P-half-arc-transitive then X is half-arc-transitive. Now suppose that X is half-arc-transitive which is \mathbb{Z}_3-regular covering of X_P. By Lemma 3.3 and Lemma 3.2, the cases (3) and (4) holds.

\square

References

[1] I. Antončič and P. Šparl, *Classification of quartic half-arc-transitive weak metacirculants of girth at most 4*. Discrete Math. 339 (2016), 931-945.

[2] B. Alspach and M.Y. Xu, *1/2-transitive graphs of order $3p$*. J. Algebraic Combin. 3 (1994), 347-355.

[3] R.A. Beezer, *Sage for Linear Algebra A Supplement to a First course in Linear Algebra*. Sage web site http://www.sagemath.org. 2011.

[4] K. Berčič and M. Ghasemi, *Tetravalent arc-transitive graphs of order twice a product of two primes*. Discrete Math. 312 (2012), 3643-3648.

[5] I.Z. Bouwer, *Vertex and edge transitive, but not 1-transitive graphs*. Can. Math. Bull. 13 (1970), 231-237.

[6] C.Y. Chao, *On the classification of symmetric graphs with a prime number of vertices*. Trans. Amer. Math. Soc. 158 (1971), 247-256.

[7] H. Cheng and L. Cui, *Tetravalent half-arc-transitive graphs of order p^5*. Appl. Math. Comput. 332 (2018), 506-518.

[8] Y. Cheng and J. Oxley, *On weakly symmetric graphs of order twice a prime*. J. Combin. Theory Ser. B 42 (2018), 196-211.

[9] M.D.E. Conder and A. Žitnik, *Half-arc-transitive graphs of arbitrary even valency greater than 2*. European J. Combin. 54 (2016), 177-186.
[10] L. Cui and J.X. Zhou, *A classification of tetravalent half-arc-transitive metacirculants of 2-power orders*. J. Applied Mathematics and Computation. 392 (2021), 1-14.

[11] S.F. Du and M.Y. Xu, *Vertex-primitive 1/2-arc-transitive graphs of smallest order*. Commun. Algebra. 27 (1999), 163-171.

[12] Y.Q. Feng, J.H. Kwak, X. Wang and J.X. Zhou, *Tetravalent half-arc-transitive graphs of order 2pq*. J. Algebraic Combin. 33 (2011), 543-553.

[13] Y.Q. Feng, J.H. Kwak, M. Y. Xu and J.X. Zhou, *Tetravalent half-arc-transitive graphs of order p^4*. European J. Combin. 29 (2008), 555-567.

[14] Y.Q. Feng, J.H. Kwak, and C. Zhou, *Constructing even radius tightly attached half-arc-transitive graphs of valency four*. J. Algebraic Combin. 26 (2007), 431-451.

[15] Y.Q. Feng, K.S. Wang, and C. Zhou, *Tetravalent half-transitive graphs of order 4p*. European J. Combin. 28 (2007), 726-733.

[16] A. Gardiner and C.E. Praeger, *On 4-valent symmetric graphs*. European J. Combin. 15 (1994), 375-381.

[17] D. Gorenstein, *Finite Simple Groups*. Plenum, New York (1982).

[18] J.L. Gross and T.W. Tucker, *Generating all graph coverings by permutation voltage assignments*, Discrete Math. 18 (1977), 273-283.

[19] D.F. Holt, *A graph which is edge transitive but not arc transitive*. J. Graph Theory 5 (1981), 201-204.

[20] A. Hujdurović, K. Kutnar, D. Marušić, *Half-arc-transitive group actions with a small number of alternets*. J. Combin. Theory, Ser. A 124 (2014), 114-129.

[21] K. Kutnar, D. Marušić, P. Šparl, *An infinite family of half-arc-transitive graphs with universal reachability relation*. European J. Combin. 31 (2010), 1725-1734.

[22] K. Kutnar, D. Marušić, P. Šparl, R. J. Wang and M. Y. Xu, *Classification of half-arctransitive graphs of order 4p*. European J. Combin. 34 (2013), 1158-1176.

[23] C.H. Li and H.S. Sim, *On half-transitive metacirculant graphs of prime-power order*. J. Combin. Theory Ser. B 81 (2001), 45-57.

[24] H. Liu, B. lou and B. ling, *Tetravalent half-arc-transitive graphs of order p^2q^2*. J. Czechoslovak Mathematical, 69 (144) (2019), 391-401.

[25] D. Marušić, *Half-transitive groups actions on finite graphs of valency 4*. J. Combin. Theory Ser. B 73 (1998), 41-76.

[26] D. Marušić and C.E. Praeger, *Tetravalent graphs admitting half-transitive group action: alternating cycles*. J. Combin. Theory Ser. B 75 (1999), 188-205.

[27] P. Potočnik and S. Wilson, *A Census of edge-transitive tetravalent graphs*, http://jimmie.tcu.edu/~swilson/C4Site/index.html.

[28] C.E. Praeger and M.Y. Xu, *A characterization of a class of symmetric graphs of twice prime valency*. European J. Combin. 10 (1989), 91-102.

[29] W.T. Tutte, *Connectivity in Graphs*. Mathematical Expositions 15, University of Toronto Press, Toronto; Oxford University Press, London, (1966).

[30] R.J. Wang and M.Y. Xu, *A classification of symmetric graphs of order 3p*. J. Combin Theory 58 (1989), 197-216.

[31] R.J. Wang, *Half-transitive graphs of order a product of two distinct primes*. J. Commun. Algebra 22 (1994), 915-927.

[32] X. Wang and Y.Q. Feng, *Half-arc-transitive graphs of order 4p of valency twice a prime*. Ars Math. Contemp. 3 (2010), 151-163.

[33] X. Wang and Y.Q. Feng, *There exists no tetravalent half-arc-transitive graph of order 2p^2*. Discrete Math. 310 (2010), 1721-1724.
34] Y. Wang and Y.Q. Feng, *Half-arc-transitive graphs of prime-cube order of small valencies*. Ars Math. Contemp. 13 (2017), 343-353.

35] X. Wang, Y. Feng, J.X. Zhou, J. Wang and Q. Ma, *Tetravalent half-arc-transitive graphs of order a product of three primes*. Discrete Math. 339 (2016), 1566-1573.

36] X. Wang, J. Wang and Y. Liu, *Tetravalent half-arc-transitive graphs of order 8p*. J. Algebraic Combin. 51 (2019), 237-246.

37] M.Y. Xu, *Half-transitive graphs of prime-cube order*. J. Algebraic Combin. 1 (1992), 275-282.

38] M.M. Zhang and J.X. Zhou, *Tetravalent half-arc-transitive bi-p-metacirculants*. J. Graph Theory 92 (2019), 19-38.

39] J.X. Zhou and Y.Q. Feng, *Tetravalent one-regular graphs of order 2pq*. J. Algebraic Combin. 29 (2009), 457-471.

40] J.X. Zhou, *Tetravalent s-transitive graphs of order 4p*. Discrete Math. 309 (2009), 6081-6086.