INTERSECTION COHOMOLOGY OF S^1-ACTIONS ON PSEUDOMANIFOLDS

G. PADILLA

To my wife with love.

Abstract. For any smooth free action of the unit circle S^1 in a manifold M; the Gysin sequence of M is a long exact sequence relating the DeRham cohomologies of M and its orbit space M/S^1. If the action is not free then M/S^1 is not a manifold but a stratified pseudomanifold and there is a Gysin sequence relating the DeRham cohomology of M with the intersection cohomology of M/S^1. In this work we extend the above statements for any stratified pseudomanifold X of length 1, whenever the action of S^1 preserves the local structure. We give a Gysin sequence relating the intersection cohomologies of X and X/S^1 with a third term G, the Gysin term; whose cohomology depends on basic cohomological data of two flavors: global data concerns the Euler class induced by the action, local data relates the Gysin term and the cohomology of the fixed strata with values on a locally trivial presheaf.

Foreword

For an entire version of this article the reader should go better to Indag. Math. Vol. 15 (3), 383–412.

A pseudomanifold is a topological space X with two features. First, there is a closed $\Sigma \subset X$ called the singular part, which is the disjoint union of smooth manifolds. The $X - \Sigma$ is a dense smooth manifold. We call strata the connected components of Σ and $X - \Sigma$; they constitute a locally finite partition of X. The second feature is the local conical behavior of X, the model being a product $U \times c(L)$ of a smooth manifold U with the open cone of a compact smooth manifold L called the link of U. A careful reader will notice that stratified pseudomanifolds with arbitrary length have a richer and more complicated topological structure; in this article we deal with stratified pseudomanifolds of length ≤ 1, which we call just pseudomanifolds.

Between the various ways for defining the intersection (co)homology; the reader can see [6], [8] for a definition in pl-stratified pseudomanifolds; [11], [17], [13] for a definition with sheaves; [15] for an approach with L^2-cohomology; [4] for an exposition in Thom-Mather spaces.

Date: May 9/2002.
1991 Mathematics Subject Classification. 35S35; 55N33.
Key words and phrases. Intersection Cohomology, Stratified Pseudomanifolds.
In this article, we use the DeRham-like definition exposed in [22] where the reader will find a beautiful proof of the DeRham theorem for stratified spaces. We work with differential forms in $X - \Sigma$ and measure their behavior when approaching to Σ, through an auxiliary construction called an unfolding of X. Although X may have many different unfoldings, its intersection cohomology does not depend on any particular choice. This point of view is the dual of the intersection homology defined by King [12], who works with a broader family of perversities. When S^1 acts on X preserving the local structure then the orbit space X/S^1 is again a pseudomanifold with an unfolding.

The well known Gysin sequence of a smooth manifold M with a principal action of S^1 is the long exact sequence

$$\cdots \to H^i(M) \xrightarrow{\bar{f}} H^{i-1}(M/S^1) \xrightarrow{\varepsilon} H^{i+1}(M/S^1) \xrightarrow{\pi^*} H^{i+1}(M) \to \cdots$$

where π^* is induced by the orbit map $\pi : M \to M/S^1$, which is a smooth S^1-principal bundle. The map \bar{f} is induced by the integration along the fibers and the connecting homomorphism ε is the multiplication by the Euler class $\varepsilon \in H^2(M/S^1)$.

When the action of S^1 on M is not free then the base space is not anymore a smooth manifold, but a stratified pseudomanifold M/S^1 whose length depends on the number of orbit types. There is a Gysin sequence of M relating the DeRham cohomology of M with the intersection cohomology of M/S^1

$$\cdots \to H^i(M) \xrightarrow{\bar{f}} H^{i-1}_{\bar{q}, \bar{z}}(M/S^1) \xrightarrow{\varepsilon} H^{i+1}_{\bar{q}}(M/S^1) \xrightarrow{\pi^*} H^{i+1}(M) \to \cdots$$

where \bar{q}, \bar{z} are perversities in M/S^1. The connecting homomorphism is again the multiplication by the Euler class $\varepsilon \in H^2(M/S^1)$. The fixed points’ subspace M^{S^1} is naturally contained in M/S^1. The link of a fixed stratum $S \subset M/S^1$ is always a cohomological complex projective space $[10], [13]$.

In this article we extend the above situation for any pseudomanifold X and any action of S^1 on X preserving the local structure. The orbit map $\pi : X \to X/S^1$ induces a long exact sequence

$$\cdots \to H^i_{\bar{\chi}}(X) \to H^i(\mathcal{G}_{\bar{\chi}}(X)/S^1)) \xrightarrow{\partial} H^{i+1}_{\bar{\chi}}(X/S^1) \xrightarrow{\Sigma} H^{i+1}_{\bar{\chi}}(X) \to \cdots$$

relating the intersection cohomologies of X and X/S^1 with a third term $H^*(\mathcal{G}_{\bar{\chi}}(X)/S^1))$ whose cohomology can be given in terms of local and global basic cohomological data; we call it the Gysin term. The above long exact sequence is the Gysin sequence.

Global data concerns the Euler class $\varepsilon \in H^2_\bar{\chi}(X/S^1)$. For instance, if $\varepsilon = 0$ then $H^*(\mathcal{G}_{\bar{\chi}}(X)/S^1)) = H^*_{\bar{\chi}, \bar{\tau}}(X/S^1)$ where $\bar{\tau}$ is the perversity defined by

$$\bar{\tau}(S) = \begin{cases} 1 & S \text{ a fixed stratum} \\ 0 & \text{else} \end{cases}$$
The connecting homomorphism ∂ of the Gysin sequence depends on the Euler class, though it’s not the multiplication. The Euler class vanishes if and only if there is a foliation on $X - \Sigma$ transverse to the orbits of the action $[18, 23]$.

Local data relates the Gysin term with the fixed strata. In general, there is a second long exact sequence

$$
\cdots \to H^i_{\tau - \chi}(X/\mathbb{S}^1) \to H^i(\mathcal{U}pp_{\tau}(X/\mathbb{S}^1)) \xrightarrow{\partial^i} H^{i+1}(G^\tau_{\tau}(X/\mathbb{S}^1)) \xrightarrow{\iota^i} H^{i+1}_{\tau - \chi}(X/\mathbb{S}^1) \to \cdots
$$

the residual term satisfying

$$
H^*(\mathcal{U}pp_{\tau}(X/\mathbb{S}^1)) = \prod_S H^*(S, \text{Im}(\varepsilon_L))
$$

where S runs over the fixed strata and $H^*(S, \text{Im}(\varepsilon))$ is the cohomology of S with values on a locally trivial constructible presheaf $[8, \text{Im}(\varepsilon_L)]$ with stalk

$$
\mathcal{F} = \text{Im}\{\varepsilon_L : H^{(S)-1}(L/\mathbb{S}^1) \to H^{(S)+1}(L/\mathbb{S}^1)\}
$$

the image of the multiplication by the Euler class $\varepsilon_L \in H^2(L/\mathbb{S}^1)$ of the action on the Link L of S. Since L may not be a sphere, this term could not vanish.

Acknowledgments

I would like to thank some helpful conversations with M. Saralegi and F. Dalmagro, so as the accurate comments of the journal’s referee. While writing this article, I received the financial support of the CDCH-Universidad Central de Venezuela and the Math Department-Euskal Herriko Unibertsitatea, so as and the hospitality of the staff in the Math Department-Université D’Artois.

References

[1] BOREL, A. & SPALTENSTEIN, N. "Sheaf theoretic intersection cohomology (Bern, 1983)" in Intersection Cohomology-Swiss seminars. (Bern, 1983). Progress in Mathematics Vol.50, 47-182. Birkhäuser. Boston (1984).
[2] BREDON, G. Introduction to Compact Transformation Groups. Pure and Applied Mathematics Vol.46. Academic Press. New York (1972).
[3] BOTT, R. & LU T. Differential Forms in Algebraic Topology. Graduate Texts in Mathematics Vol.82. Springer-Verlag. New York-Heidelberg- Berlin (1982).
[4] BRYLINSKI, J.L. Equivariant Intersection Cohomology. Contemporary Math. 132 (1992), 5-32.
[5] DALMAGRO, F. Cohomología de intersección de las acciones tóricas iteradas. Ph.D. Thesis. Universidad Central de Venezuela. Caracas (2003).
[6] GORESKY, M. & MACPHERSON, R. Intersection Homology Theory. Topology 19, 135-162 (1980).
[7] GORESKY, M. & MACPHERSON, R. Intersection Homology II. Invent. Math. 71, 77-129 (1983).
[8] HAEFLIGER, A. "Introduction to piecewise linear intersection homology" (Bern, 1983) in Intersection Cohomology-Swiss seminars. (Bern, 1983). Progress in Mathematics Vol.50, 1-22. Birkhäuser. Boston (1984).
[9] GREUB, W.; HALPERIN, S. & VANSTONE, R. Conexiones, curvatura and cohomology. Pure and Applied Mathematics Vol.47. Academic Press. New York (1972).
[10] HECTOR, G. & SARALEGI, M. Intersection Cohomology of \mathbb{S}^1-actions. Trans. Amer. Math. Soc. 338, 263-288 (1983).
[11] KING, H. Intersection homology and homology of manifolds. Topology 21 (1982), 229-234.
[12] KING, H. Topology invariance of intersection homology without sheaves. Topology Appl. 20 (1985), 149-160.
[13] MACPHEARSON, R. Intersection Homology and Perverse Sheaves. Colloquium Lectures, Annual Meeting of the Amer. Math. Soc. San Francisco (1991).
[14] MASA, X.; MACIAS E. & ALVAREZ J. Analysis and Geometry in Foliated Manifolds. World Scientific. Santiago de Compostela (1994).
[15] NAGASE, M. L^2-cohomology and intersection cohomology of stratified spaces. Duke Math. J. 50, 329-368 (1983).
[16] PADILLA, G. On normal stratified pseudomanifolds. (2002) To appear in Extracta Math.
[17] PFLAUM, M. Analytic and Geometric study of Stratified Spaces. Lecture Notes in Mathematics Vol.1768. Springer. Berlin (2001).
[18] ROYO, J. The Euler Class for Riemannian Flows, C. R. Acad. Sci. Paris, t.332, Serie I, pp. 45–50 (2001).
[19] ROYO, J. The Gysin Sequence for Riemannian Flows, Contemporary Mathematics v.288, pp. 415–419 (2001).
[20] SARALEGI, M. Cohomologie d'Intersection des Actions Toriques Simples. Indag. Math. 33, 389-417 (1996).
[21] SARALEGI, M. A Gysin Sequence for Semifree Actions of S^3. Proc. Amer. Math. Soc. 118, 1335-1345 (1993).
[22] SARALEGI, M. Homological Properties of Stratified Spaces. Illinois J. Math. 38, 47-70 (1994).
[23] SARALEGI, M. The Euler class for flows of isometries. Research Notes in Math. 131, 25-28 (1989).
[24] THOM, R. Ensembles et morphismes stratifiés. Bull. Amer. Math. Soc. 75,240-284 (1969).

Universidad Central de Venezuela- Escuela de Matemática. Caracas 1010.
E-mail address: gabrielp@euler.ciens.ucv.ve