ON HODGE-RIEMANN COHOMOLOGY CLASSES

JULIUS ROSS AND MATEI TOMA

ABSTRACT. We prove that Schur classes of nef vector bundles are limits of classes that have a property analogous to the Hodge-Riemann bilinear relations. We give a number of applications, including (1) new log-concavity statements about characteristic classes of nef vector bundles (2) log-concavity statements about Schur and related polynomials (3) another proof that normalized Schur polynomials are Lorentzian.

1. INTRODUCTION

Since the dawn of time, human beings have asked some fundamental questions: who are we? why are we here? is there life after death? Unable to answer any of these, in this paper we will consider cohomology classes on a compact projective manifold that have a property analogous to the Hard-Lefschetz Theorem and Hodge-Riemann bilinear relations.

To state our results let X be a projective manifold of dimension $d \geq 2$. We say that a cohomology class $\Omega \in H^{d-2,d-2}(X; \mathbb{R})$ has the Hodge-Riemann property if the intersection form

$$Q_\Omega(\alpha, \alpha') := \int_X \alpha \Omega \alpha'$$

for $\alpha, \alpha' \in H^{1,1}(X; \mathbb{R})$ has signature $(+, -, - , \ldots, -)$. We write

$$HR(X) = \{ \Omega \text{ with the Hodge Riemann property} \}$$

and $\overline{HR}(X)$ for its closure.

This definition is made in light of the fact that the classical Hodge-Riemann bilinear relations say precisely that if L is an ample line bundle on X, then $c_1(L)^{d-2}$ is in $HR(X)$. A natural question, initiated by Gromov, is if there are other cohomology classes that have this property, and our first result answers this in terms of certain characteristic classes of vector bundles.

Theorem (⊆ Theorem 7.2). Let E be a nef vector bundle on X and λ be a partition of $d - 2$. Then the Schur class $s_\lambda(E)$ lies in $\overline{HR}(X)$.

In fact we can do better; for each i define the derived Schur polynomials $s^{(i)}_\lambda$ by requiring that

$$s_\lambda(x_1 + t, \ldots, x_e + t) = \sum_{i=0}^{\lambda} s^{(i)}_\lambda(x_1, \ldots, x_e)t^i.$$

Theorem (⊆ Theorem 7.2). Let E be a nef vector bundle on X and λ be a partition of $d - 2 + i$. Then the derived Schur class $s^{(i)}_\lambda(E)$ lies in $\overline{HR}(X)$.

Date: June 22, 2021.

Key words and phrases. 14C17, 14J60, 32J27, 52A40.
We prove moreover:

- Analogous statements hold for monomials of derived Schur classes of possibly different nef vector bundles (Theorem 7.4).
- If E is perturbed by adding a sufficiently small ample class, then $s_\lambda(E)$ lies in $\text{HR}(X)$ (rather than in just the closure) (Remark 7.3).
- The above holds even in the setting of compact Kähler manifolds, where nefness of E is taken in the metric sense following Demailly-Peternell-Schneider (Theorem 8.3).

Our above result is interesting even in the case that $E = \oplus_{i=1}^e L_i$ is a direct sum of ample line bundles, from which we deduce that the Schur polynomial $s_\lambda(c_1(L_1), \ldots, c_1(L_e))$ lies in $\text{HR}(X)$ (rather than in just the closure) (Remark 7.3).

As already noted, the classical Hodge-Riemann bilinear relations tell us that the classes $c_1(L_1)^2$ and $c_1(L_2)^2$ both lie in $\text{HR}(X)$, and it was proved by Gromov [11] that the mixed term $c_1(L_1)c_1(L_2)$ also lies in $\text{HR}(X)$. However in general having the Hodge-Riemann property is not preserved under taking convex combinations, and thus (1.1) is new.

From these considerations it is natural to ask which universal combinations of characteristic classes of ample (resp. nef) vector bundles lie in $\text{HR}(X)$ (resp. $\overline{\text{HR}}(X)$). Although we do not know the full answer to this, the following is a contribution in this direction.

Theorem (⊆ Theorem 9.3). Let E be a nef vector bundle on a projective manifold of dimension d, and λ be a partition of $d - 2$. Suppose μ_0, \ldots, μ_{d-2} is a Pólya frequency sequence of non-negative real numbers. Then the combination

$$ \sum_{i=0}^{d-2} \mu_i s_\lambda^{(i)}(E)c_1(E)^i $$

lies in $\overline{\text{HR}}(X)$.

As an application of these results we are able to give various new inequalities between characteristic classes of nef vector bundles. Continuing to assume X is projective of dimension d, let λ and μ be partitions of length $|\lambda|$ and $|\mu|$ respectively and assume $|\lambda| + |\mu| \geq d$.

Theorem (= Theorem 10.5). Assume E, F are nef vector bundles on X. Then the sequence

$$ i \mapsto \int_X s_\lambda^{(|\lambda|+|\mu|-d-i)}(E)s_\mu^{(i)}(F) $$

is log-concave.

As a particular case, we get that if E is a nef vector bundle and λ a partition of d, then

$$ j \mapsto \int_X s_\lambda^{(j)}(E)c_1(E)^j $$
is log-concave, which as a special case says the map
\[i \mapsto \int_X c_1(E)c_1(E)^{d-i} \]
is also log-concave. One should think of these statements as higher-rank analogs of the Khovanskii-Tessier inequalities. We even get combinatorial applications of this, such as the following:

Corollary (= Corollary 10.10). Let \(\lambda \) and \(\mu \) be partitions, and let \(d \) be an integer with \(d \leq |\lambda| + |\mu| \). Assume \(x_1, \ldots, x_e, y_1, \ldots, y_f \in \mathbb{R}_{\geq 0} \). Then the sequence
\[i \mapsto s^{(|\lambda|+|\mu|)-d+i}(x_1, \ldots, x_e)s^{(i)}(y_1, \ldots, y_f) \]
is log concave.

Corollary (= Corollary 10.12). Let \(\lambda \) be a partition and \(x_1, \ldots, x_e \in \mathbb{R}_{\geq 0} \). Then the sequence
\[i \mapsto s^{(i)}(x_1, \ldots, x_e) \]
is log-concave.

This last statement has been known for a long time for the partition \(\lambda = (e) \), for then the derived Schur polynomials become the elementary symmetric polynomials \(c_e \) (see Example 3.2). Then more is true namely, \(i \mapsto c_i(x_1, \ldots, x_e) \) is ultra-log concave - a result which is due to Newton [17] (see, for example, [5, Chap. 11] for a modern treatment).

As a final application we show how knowing that Schur classes of nef bundles lie in \(\text{HR}(X) \) gives another proof of a result of Huh-Matherne-Mészáros-Dizier [12] that the normalized Schur polynomials are Lorentzian.

1.1. **Comparison with previous work**: There is some overlap between Theorem 7.2 and our original work on the subject in [20]. A principal difference is that in [20] we show that derived Schur classes of ample bundles have the Hodge-Riemann property, whereas here we settle in merely showing these classes are limits of classes with this property. So even though logically many of our results follow from [20], the proofs we give here are simpler and substantially shorter. In fact, our account here does not depend on any of the parts of [20] and is self-contained relying only on a few standard techniques in the field (as contained say in [15]). The main tools we use are the Bloch-Gieseker theorem, and the cone classes of Fulton-Lazarsfeld that express Schur classes as pushforwards of certain Chern classes (which builds on the determinantal formula of Kempf-Laksov [13]). The material on the non-projective case in §8, on convex combinations in §9 and on inequalities in §10 is all new.

We refer the reader to [20] for a survey of other works concerning Hodge-Riemann classes. Although there are many places in which log-convexity and Schur polynomials meet (e.g. [4, 9, 12, 14, 18, 19]) we are not aware of any previous inequalities that cover precisely those studied here.

1.2. **Organization of the paper**: §2, §3 and §4 contain preliminary material on Schur polynomials, derived Schur polynomials and cone classes. We also include in §3 a self-contained proof of a theorem of Fulton-Lazarsfeld concerning positivity of (derived) Schur polynomials. The main theorems about derived Schur classes having the Hodge-Riemann property is proved in §7, and in §8 we explain how this extends to the non-projective case. In §9 we consider convex combinations of Hodge-Riemann classes, and in §10 we give our application to inequalities and our proof that normalized Schur polynomials are Lorentzian.
1.3. **Acknowledgments:** The first author thanks Ivan Cheltsov and Jinhun Park for their hospitality in Pohang and for the opportunity to present this work at the Moscow-Shanghai-Pohang Birational Geometry, Kähler-Einstein Metrics and Degenerations conference. The first author is supported by NSF grants DMS-1707661 and DMS1749447.

2. **Notation and Convention**

We work throughout over the complex numbers. For the majority of the paper we will take X to be a projective manifold (which we always assume is connected), and E a vector bundle (which we always assume to be algebraic). Given such a vector bundle E we denote by $\pi : \mathbb{P}(E) \to X$ the space of one-dimensional quotients of E, and by $\pi : \mathbb{P}_{sub}(E) \to X$ the space of one-dimensional subspaces of E. We say that a vector bundle E is ample (resp. nef) if the hyperplane bundle $\mathcal{O}_{\mathbb{P}(E)}(1)$ on $\mathbb{P}(E)$ is ample (resp. nef).

We will make use of the formalism of \mathbb{Q}-twisted bundles (see [15, Section 6.2, 8.1.A], [16, p457]). Given a vector bundle E on X of rank e and an element $\delta \in N^1(X)_\mathbb{Q}$ the \mathbb{Q}-twisted bundle denoted $E(\delta)$ is a formal object understood to have Chern classes defined by the rule

$$c_p(E(\delta)) := \sum_{k=0}^{p} \binom{e-k}{p-k} c_k(E)\delta^{p-k} \text{ for } 0 \leq p \leq e. \quad (2.1)$$

Here and henceforth we abuse notation and write δ also for its image under $N^1(X)_\mathbb{Q} \to H^2(X; \mathbb{Q})$, so the above intersection is taking place in the cohomology ring $H^*(X)$.

By the rank of $E(\delta)$ we mean the rank of E. The above definition is made so if $\delta = c_1(L)$ for a line bundle L on X then

$$c_p(E(c_1(L))) = c_p(E \otimes L).$$

If E has Chern roots given by x_1, \ldots, x_e then $E(\delta)$ is understood to have Chern roots $x_1 + \delta, \ldots, x_e + \delta$. The twist of an \mathbb{Q}-twisted bundle is given by the rule $E(\delta)(\delta') = E(\delta + \delta')$. That (2.1) continues to hold when E is an \mathbb{Q}-twisted bundle is an elementary calculation - for convenience of the reader, we omit the proof.

We say that $E(\delta)$ is ample (resp. nef) if the class $c_1(\mathcal{O}_{\mathbb{P}(E)}(1)) + \pi^*\delta$ is ample (resp. nef) on $\mathbb{P}(E)$.

Suppose $p(x_1, \ldots, x_e)$ is a homogeneous symmetric polynomial of degree d' and E is a \mathbb{Q}-twisted vector bundle of rank E on X with Chern roots τ_1, \ldots, τ_e. Then we have the well-defined characteristic class

$$p(E) := p(\tau_1, \ldots, \tau_e) \in H^{d', d'}(X; \mathbb{R}).$$

By abuse of notation we let c_i denote the ith elementary symmetric polynomial, so $c_i(E) \in H^{1+i}(X; \mathbb{R})$ is unambiguously defined as the ith-Chern class of E.

3. **Derived Schur Classes**

By a partition λ of an integer $b \geq 1$ we mean a sequence $0 \leq \lambda_N \leq \cdots \leq \lambda_1$ such that $|\lambda| := \sum_{i} \lambda_i = b$. For such a partition, the Schur polynomial s_{λ} is the symmetric polynomial of degree $|\lambda|$ in $e \geq 1$ variables given by

$$s_{\lambda} = \det \begin{pmatrix} c_{\lambda_1} & c_{\lambda_1+1} & \cdots & c_{\lambda_1+N-1} \\ c_{\lambda_2-1} & c_{\lambda_2} & \cdots & c_{\lambda_2+N-2} \\ \vdots & \vdots & \ddots & \vdots \\ c_{\lambda_N-N+1} & c_{\lambda_N-N+2} & \cdots & c_{\lambda_N} \end{pmatrix}$$

where c_i denotes the i-th elementary symmetric polynomial.
We will have use for the following symmetric polynomials associated to Schur polynomials.

Definition 3.1. [Derived Schur polynomials] Let λ be a partition. For any $e \geq 1$ we define $s^{(i)}_\lambda(x_1, \ldots, x_e)$ for $i = 0, \ldots, |\lambda|$ by requiring that

$$s^{(i)}_\lambda(x_1 + t, \ldots, x_e + t) = \sum_{i=0}^{|\lambda|} s^{(i)}_\lambda(x_1, \ldots, x_e) t^i \text{ for all } t \in \mathbb{R}.$$

In fact $s^{(i)}_\lambda$ depends also on e but we drop that from the notation. By convention we set $s^{(i)}_\lambda = 0$ for $i \notin \{0, \ldots, |\lambda|\}$. For $0 \leq i \leq |\lambda|$, clearly $s^{(i)}_\lambda$ is a homogeneous symmetric polynomial of degree $|\lambda| - i$ and $s^{(0)}_\lambda = s_\lambda$.

Thus for any \mathbb{Q}-twisted vector bundle E of rank e we have classes

$$s^{(i)}_\lambda(E) \in H^{|\lambda| - i, |\lambda| - i}(X; \mathbb{R}),$$

and by construction if $\delta \in N^1(X)_{\mathbb{Q}}$ then

$$s_\lambda(E(\delta)) = \sum_{i=0}^{|\lambda|} s^{(i)}_\lambda(E) \delta^i.$$

Example 3.2 (Chern classes). Consider the partition of $\lambda = (p)$ consisting of just one integer. Then $s_\lambda = c_p$, and from standard properties of Chern classes of a tensor product if $\text{rk } E = e \geq p$ then

$$s^{(i)}_\lambda(E) = \binom{e - p + i}{i} c_{e-i}(E) \text{ for all } 0 \leq i \leq p.$$

Example 3.3 (Derived Schur polynomials of Low degree). We list some of the derived Schur classes of low degree for a bundle E of rank e. First

$$s(1) = c_1, \quad s^{(1)}(1) = e$$

and for $e \geq 2$,

$$s(2,0) = c_2 \quad s^{(1)}(2,0) = (e - 1)c_1 \quad s^{(2)}(2,0) = \binom{e}{2}$$

$$s(1,1) = c_1^2 - c_2 \quad s^{(1)}(1,1) = (e + 1)c_1 \quad s^{(2)}(1,1) = \binom{e + 1}{2}$$

and for $e \geq 3$,

$$s(3,0,0) = c_3 \quad s^{(1)}(3,0,0) = (e - 2)c_2 \quad s^{(2)}(3,0,0) = \binom{e - 1}{2} c_1$$

$$s(2,1,0) = c_1 c_2 - c_3 \quad s^{(1)}(2,1,0) = 2c_2 + (e - 1)c_1^2 \quad s^{(2)}(2,1,0) = (e^2 - 1)c_1$$

$$s(1,1,1) = c_1^3 - 2c_1 c_2 + c_3 \quad s^{(1)}(1,1,1) = (e + 2)(c_1^2 - c_2) \quad s^{(2)}(1,1,1) = \binom{e + 2}{2} c_1$$

$$s^{(3)}(1,1,1) = \binom{e + 2}{3}$$
Example 3.4 (Lowest Degree Derived Schur Classes). Suppose \(e \geq \lambda_1 \). Then we can write the Schur polynomial as a sum of monomials

\[
s_{\lambda}(x_1, \ldots , x_e) = \sum_{|\alpha| = |\lambda|} c_{\alpha} x_1^{\alpha_1} \cdots x_e^{\alpha_e}
\]

where \(c_{\alpha} \geq 0 \) for all \(\alpha \) (in fact the \(c_{\alpha} \) count the number of semistandard Young tableaux of weight \(\alpha \) whose shape is conjugate to \(\lambda \)). Since \(e \geq \lambda_1 \), \(s_{\lambda} \) is not identically zero, so at least one of the \(c_{\alpha} \) is strictly positive. Thus in the expansion

\[
s_{\lambda}(x_1 + t, \ldots , x_e + t) = \sum_{i=0}^{|\lambda|} s_{\lambda}^{(i)}(x_1, \ldots , x_e)t^i
\]

the coefficient in front of \(t^{|\lambda|} \) is strictly positive, i.e. \(s_{\lambda}^{(|\lambda|)} > 0 \).

So, in terms of characteristic classes, if \(E \) has rank at least \(\lambda_1 \) then

\[
s_{\lambda}^{(|\lambda|)}(E) \in H^0(X; \mathbb{R}) = \mathbb{R}
\]

is strictly positive.

4. Cone Classes

We will rely on a construction exploited by Fulton-Lazarsfeld that express Schur classes as the pushforward of Chern classes, and we include a brief description here. Let \(E \) be a vector bundle of rank \(e \) on \(X \) of dimension \(d \) and suppose \(0 \leq \lambda_N \leq \lambda_{N-1} \leq \cdots \leq \lambda_1 \) is a partition of length \(|\lambda| = b \geq 1 \) and \(\lambda_1 \geq e \). Set \(a_i := e + i - \lambda_i \) and fix a vector space \(V \) of dimension \(e + N \).

We set \(F := V^* \otimes E = \text{Hom}(V, E) \) and let \(f + 1 = \text{rk}(F) = e(e + N) \). Then inside \(F \) define

\[
\hat{C} := \{ \sigma \in \text{Hom}(V, E) : \text{dim ker}(\sigma(x)) \cap A_i \geq i \text{ for all } i = 1, \ldots , N \text{ and } x \in X \}
\]

which is a cone in \(F \). Finally set

\[
C = [\hat{C}] \subset \mathbb{P}_{\text{sub}}(F).
\]

Proposition 4.1. \(C \) has codimension \(b \) and dimension \(d + f - b \), has irreducible fibers over \(X \) and is flat over \(X \) (in fact it is locally a product). Moreover if

\[
0 \to \mathcal{O}_{\mathbb{P}_{\text{sub}}(F)}(-1) \to \pi^* F \to U \to 0
\]

is the tautological sequence then

\[
s_{\lambda}(E) = \pi_* c_f(U|_C). \tag{4.2}
\]

Proof. This is described by Fulton-Lazarsfeld in [8]. An account (that is written for the case \(|\lambda| = d\)) can be found in [15 (8.12)] and an account for general \(|\lambda|\) is given in [20 Proposition 5.1] that is based on [7]. We remark that in [20 Proposition 5.1] we made the additional assumption that \(N \geq b \) and \(e \geq 2 \), but have since realized these are not necessary (we used this to ensure that \(f \geq b \), but this actually follows immediately from \(e \geq \lambda_1 \)).

\(\square \)

This extends to \(\mathbb{Q} \)-twisted bundles \(E' = E(\delta) \). Here we identify

\[
P' := \mathbb{P}_{\text{sub}}(F(\delta)) \to X
\]
with $\mathbb{P}_{\text{sub}}(F) \xrightarrow{\pi} X$ but the quotient bundle U on P' is replaced by $U' := U(\pi^*\delta)$. We consider the same cone $[C] \subset P'$. Then (4.2) still holds in the sense that

$$s_\lambda(U') = \pi_\ast c_f(U'|_C).$$

(4.3) To see this, observe that as $\delta \in N^1(X)_\mathbb{Q}$ we have $\delta = \frac{1}{m}c_1(L)$ for some $m \in \mathbb{Z}$ and line bundle L. Then for t divisible by m

$$\pi_\ast c_f(U(\pi^*\delta)) = \pi_\ast c_f(U \otimes \pi^*L^\delta) = s_\lambda(E \otimes L^\delta) = s_\lambda(E(\pi \delta))$$

(4.4) where the second equality uses (4.2). But both sides of (4.4) are polynomials in t, so since this equality holds for infinitely many t it must hold for all $t \in \mathbb{Q}$, in particular when $t = 1$ which gives (4.3).

A key feature we will rely on is that if E' is assumed to be nef then so is U'. For if E' is nef then so is $F' := F(\delta)$ and the formal surjection $F' \rightarrow U'$ coming from (4.1) implies that U' is also nef (see [15] Lemma 6.2.8 for these properties of nef \mathbb{Q}-twisted bundles).

Another extension is to the product of Schur classes of possibly different vector bundles E_1, \ldots, E_p on X. Let $\lambda_1, \ldots, \lambda_p$ be partitions and assume $\text{rk}(E_j) \geq \lambda_j^1$ for $j = 1, \ldots, p$.

We consider again the corresponding cones C_i that sit inside $F_i := \text{Hom}(V_i, E_i)$ for some vector space V_i. We may consider the fiber product $C := C_1 \times_X C_2 \times_X \cdots \times_X C_p$ inside $\bigoplus_j \text{Hom}(V_i, E_i) := F$ and its projectivization $[C] \subset \mathbb{P}_{\text{sub}}(F)$. Then, using that each C_i is flat over X, if U is the tautological vector bundle on $\mathbb{P}_{\text{sub}}(F)$ of rank f we have

$$\pi_\ast c_f(U|_C) = \prod_j s_{\lambda_i}(E_j)$$

(see [15] 8.1.19, [8] Sec 3c).

5. FULTON-LAZARDSFELD POSITIVITY

Using the cone construction we quickly get the following positivity statement, which is essentially a weak version of a result of Fulton-Lazarsfeld [8]. For the reader’s convenience we include the short proof here.

Proposition 5.1. Let X be smooth and projective of dimension d, λ be a partition of length $d + i$ for some $i \geq 0$ and E be an \mathbb{Q}-twisted nef vector bundle. Then $\int_X s_\lambda(E) \geq 0$.

Proof. We first claim that if E is a nef \mathbb{Q}-twisted bundle of rank d on an irreducible projective variety X of dimension d then $\int_X c_d(E) \geq 0$. By taking a resolution we may assume X is smooth. Let h be an ample class on X. By the Bloch-Gieseker Theorem [2] we have $\int_X c_d(E(th)) \neq 0$ for all $t > 0$ since $E(th)$ is ample (here we allow t to be irrational extending the notation in the obvious way, and observe that although the original Bloch Gieseker result is not stated for twisted bundles the same proof works in this setting, see [15] p113 or [8]). Expanding this as a polynomial in t this gives

$$0 \neq \int_X c_d(E(t) + tc_{d-1}(E))h + \cdots + t^d h^d$$

for all $t \in \mathbb{R}_{>0}$.

Clearly this polynomial is strictly positive for $t \gg 0$, and hence since it is nowhere-vanishing, is strictly positive for all $t > 0$. In particular $\int_X c_d(E) \geq 0$ as claimed.

To prove the Proposition, we may assume $e := \text{rk}(E) \geq \lambda_1$ else $s_\lambda(E) = 0$ and the statement is trivial. When $|\lambda| = d$, (4.3) gives a map $\pi : C \rightarrow X$ from an irreducible variety C of dimension n and a nef \mathbb{Q}-twisted bundle U of rank n so that $\pi_\ast c_n(U) = s_\lambda(E)$. So by the previous paragraph $\int_X s_\lambda(E) = \int_C c_n(U) \geq 0$.

Finally suppose \(i \geq 0 \) and \(|\lambda| = d + i \). Set \(\hat{X} = X \times \mathbb{P}^i \) and \(\tau = c_1(O_{\mathbb{P}^i}(1)) \). Since \(|\lambda| = \dim(\hat{X}) \) we have

\[
0 \leq \int_{\hat{X}} s_\lambda(E(\tau)) = \int_{\hat{X}} \sum_{j=0}^{d+i} s^{(i)}(E) \tau^j = \int_X s_\lambda(E) \int_{\mathbb{P}^i} \tau^i = \int_X s_\lambda^{(i)}(E).
\]

Corollary 5.2. Let \(X \) be smooth and projective of dimension \(d \), \(\lambda \) be a partition of length \(d + i - 2 \), let \(E \) be a nef \(\mathbb{Q} \)-twisted bundle of rank \(\geq \lambda_1 \) and \(h \) be an ample class on \(X \). Then \(\int_X s_\lambda^{(i)}(E)h^2 \geq 0 \).

Proof. Rescale so \(h \) is very ample, and apply the previous theorem to the restriction of \(E \) to the intersection of two general elements in the linear series defined by \(h \).

Remark 5.3 (Derived Schur Polynomials are Numerically Positive). If \(|\lambda| = d + i \) then by taking a resolution of singularities, we have \(\int_X s_\lambda^{(i)}(E) \geq 0 \) for all nef vector bundles \(E \) on any irreducible projective variety \(X \) of dimension \(d \). That is, \(s_\lambda^{(i)} \) is a numerically positive polynomial in the sense of Fulton-Lazarsfeld, and hence by their main result [8, Theorem I] we deduce \(s_\lambda^{(i)} \) can be written as a non-negative linear combination of the Schur polynomials \(\{s_\mu : |\mu| = d \} \). This answers a question of Xiao [21, p10].

Remark 5.4 (Monomials of Derived Schur Classes). It is easy to extend this to monomials of derived Schur polynomials. That is, if \(E_1, \ldots, E_p \) are nef bundles on \(X \) and \(\lambda^1, \ldots, \lambda^p \) are partitions such that \(\sum_j |\lambda^j| = d \) then

\[
\int_X \prod_j s_{\lambda^j}(E_j) \geq 0.
\]

We simply repeat the proof of Proposition 5.1 using (4.5) in place of (4.3). For the derived case suppose we also have integers \(i_1, \ldots, i_p \) and that our partitions are such that \(\sum_j |\lambda^{(j)}| - i_j = d \). Then

\[
\int_X \prod_j s^{(i_j)}(E_j) \geq 0.
\]

To see this consider the product \(\hat{X} := X \times \prod_j \mathbb{P}^{i_j} \) and let \(\tau_j \) be the pullback of the hyperplane class in \(\mathbb{P}^{i_j} \) to \(\hat{X} \). Then (5.1) applies to the class \(\prod_j s_{\lambda^j}(E_j(\tau_j)) \). Expanding this as a symmetric polynomial in the \(\tau_j \) the coefficient of \(\prod_j \tau_j^{i_j} \) is precisely \(\prod_j s^{(i_j)}(E_j) \) so (5.2) follows. The analog of Corollary 5.2 also holds for monomials of derived Schur polynomials.

6. **Hodge-Riemann Classes**

Let \(X \) be a projective smooth variety dimension \(d \) and let \(\Omega \in H^{d-2,d-2}(X; \mathbb{R}) \). This defines an intersection form

\[
Q_\Omega(\alpha, \alpha') = \int_X \alpha \Omega \alpha' \quad \text{for } \alpha, \alpha' \in H^{1,1}(X; \mathbb{R}).
\]

Definition 6.1 (Hodge-Riemann Property). We say that a bilinear form \(Q \) on a finite dimensional vector space has the **Hodge-Riemann property** if \(Q \) is non-degenerate and has
precisely one positive eigenvalue. We say that \(\Omega \in H^{d-2,d-2}(X; \mathbb{R}) \) has the Hodge-Riemann property if \(Q_{\Omega} \) does, and denote by \(\text{HR}(X) \) denote the set of all \(\Omega \) with this property.

Definition 6.2 (Weak Hodge-Riemann Property). A bilinear form \(Q \) on a finite dimensional vector space is said to have the weak Hodge-Riemann property if it is a limit of bilinear forms that have the Hodge-Riemann property. We say that \(\Omega \) has the weak Hodge-Riemann property if \(Q_{\Omega} \) does, and denotes by \(\text{HR}_w(X) \) the set of \(\Omega \) with this property.

So \(Q \) has the weak Hodge-Riemann property if and only if if has one eigenvalue that is non-negative, and all the others are non-positive. Clearly

\[
\text{HR}(X) \subset \text{HR}_w(X)
\]

but we do not claim these are equal (the issue being that in principle \(Q_{\Omega} \) could be the limit of bilinear forms with the Hodge-Riemann property that do not come from classes in \(H^{d-2,d-2}(X; \mathbb{R}) \)). If \(h \) is ample then by the classical Hodge-Riemann bilinear relations \(h^{d-2} \in \text{HR}(X) \), and so \(\text{HR}_w(X) \) is a non-empty closed cone inside \(H^{d-2,d-2}(X; \mathbb{R}) \).

It is convenient to work with \(\text{HR}_w(X) \) as it behaves well with respect to pullbacks and pushforwards. This is captured by the following simple piece of linear algebra.

Lemma 6.3. Let \(f : V \rightarrow W \) be a linear map of vector spaces and \(Q_V \) and \(Q_W \) be bilinear forms on \(V \) and \(W \) respectively such that

\[
Q_W(f(v), f(v')) = Q_V(v, v') \quad \text{for all } v, v' \in V.
\]

Suppose that \(Q_W \) has the weak Hodge-Riemann property and there is a \(v_0 \in V \setminus \{0\} \) with \(Q_V(v_0, v_0) \geq 0 \). Then \(Q_V \) has the weak Hodge-Riemann property.

Proof. Let \(N = \ker(f) \). Then \(N \) is orthogonal to all of \(V \) with respect to \(Q_V \). The signature on a complementary subspace to \(N \) is induced by \(Q_W \). Thus \(Q_V \) can only be negative semi-definite, or have the weak Hodge-Riemann property, and the assumption that \(Q_V(v_0, v_0) \geq 0 \) means it is the latter case that occurs. \(\square\)

Lemma 6.4 (Pullbacks). Let \(\pi : X' \rightarrow X \) be a surjective map between smooth varieties of dimension \(d \). Let \(\Omega \in H^{d-2,d-2}(X, \mathbb{R}) \) and suppose there is an \(h \in H^{1,1}(X; \mathbb{R}) \setminus \{0\} \) with \(\int_X h^2 \geq 0 \) and that \(\pi^* \Omega \in \text{HR}_w(X') \). Then \(\Omega \in \text{HR}_w(X) \).

Proof. This follows from Lemma 6.3 applied to \(\pi^* : H^{1,1}(X; \mathbb{R}) \rightarrow H^{1,1}(X'; \mathbb{R}) \) since \(\int_{X'} \pi^*(\Omega \alpha') = \deg(\pi) \int_X \Omega \alpha' = \deg(\pi) Q_{\pi^* \Omega}(\alpha, \alpha'). \) \(\square\)

Lemma 6.5 (Pushforwards). Let \(\pi : X' \rightarrow X \) be a surjective map between smooth varieties. Let \(\Omega' \in \text{HR}_w(X') \) and suppose there is an \(h \in H^{1,1}(X; \mathbb{R}) \setminus \{0\} \) with \(\int_{X'} (\pi_* \Omega') h^2 \geq 0 \). Then \(\pi_* \Omega' \in \text{HR}_w(X) \).

Proof. This follows from Lemma 6.3 applied to \(\pi^* : H^{1,1}(X; \mathbb{R}) \rightarrow H^{1,1}(X'; \mathbb{R}) \) since from the projection formula,

\[
Q_{\Omega}(\pi^* \alpha, \pi^* \alpha') = \int_{X'} \Omega' (\pi^* \alpha)(\pi^* \alpha') = \int_X \pi_* \Omega' \alpha \alpha' = Q_{\pi_* \Omega} (\alpha, \alpha').
\]

\(\square\)

We will need the following variant that allows for an intermediate space that might not be smooth.
Lemma 6.6. Let X, Y, Z be irreducible projective varieties with morphisms $Z \xrightarrow{\sigma} Y \xrightarrow{\tau} X$ and assume that Z and X are smooth. Let $d = \dim X$ and assume Z and Y are of the same dimension n and that σ is surjective. Let $\Omega \in H^{2n-4}(Y; \mathbb{R})$ be such that $\Omega' := \pi_*\Omega \in H^{d-2,d-2}(X; \mathbb{R})$. Assume

1. $\sigma^*\Omega \in \text{HR}_w(Z)$.
2. There exists an $h \in H^{1,1}(X; \mathbb{R}) \setminus \{0\}$ such that $\int_X (\pi_*\Omega)h^2 \geq 0$.

Then $\pi_*\Omega \in \text{HR}_w(X)$.

Proof. Let $p = \pi \circ \sigma : Z \to X$. By the projection formula

$$Q_{\pi\ast}(p^*\alpha, p^*\alpha') = \int_Z \sigma^*\Omega p^*\alpha p^*\alpha' = \int_Z \sigma^*\Omega \sigma^*\alpha \sigma^*\alpha' = \deg(\sigma) \int_Y \Omega \pi^*\alpha \pi^*\alpha' = \deg(\sigma) \int_Z (\pi_*\Omega) \alpha \alpha' = \deg(\sigma) Q_{\pi\ast}(\alpha, \alpha').$$

Thus the result follows from Lemma 6.3 applied to $p^* : H^{1,1}(X; \mathbb{R}) \to H^{1,1}(Z; \mathbb{R})$. \hfill \square

7. **Schur Classes are in HR**

Lemma 7.1. Let X be a smooth projective manifold of dimension $d \geq 4$, and E be a nef \mathbb{Q}-twisted bundle of rank $d - 2$. Then $c_{d-2}(E) \in \text{HR}_w(X)$.

Proof. This is exactly as in [20, Proposition 3.1]. First assume that E is ample and X is smooth. By a consequence of the Bloch-Gieseker Theorem for all $t \in \mathbb{R}_{\geq 0}$ the intersection form

$$Q_t(\alpha) := \int_X \alpha c_{d-2}(E(\theta t)) \alpha$$

is non-degenerate (we remark that we are allowing possibly irrational t here, and hence $c_{d-2}(E(\theta t))$ is to be understood as being defined as in (2.1)). Now for small t we have

$$c_{d-2}(E(\theta t)) = t^{d-2} h^{d-2} + O(t^{d-3}).$$

Observe that for an intersection form Q, having signature $(+, - \ldots, -)$ is invariant under multiplying Q by a positive multiple, and is an open condition as Q varies continuously. Thus since we know that h^{d-2} has the Hodge-Riemann property, the intersection form $(\alpha, \beta) \mapsto \int_X \alpha h^{d-2} \beta$ has signature $(+, - \ldots, -)$, and hence so does Q_t for t sufficiently large. But Q_t is non-degenerate for all $t \geq 0$, and hence Q_t must have this same signature for all $t \geq 0$. Thus $c_{d-2}(E) \in \text{HR}(X)$.

Since any \mathbb{Q}-twisted nef bundle E can be approximated by an \mathbb{Q}-twisted ample vector bundle we deduce that $c_{d-2}(E) \in \text{HR}(X) \subset \text{HR}_w(X)$. \hfill \square

Theorem 7.2 (Derived Schur Classes are in HR). Let X be smooth and projective of dimension $d \geq 2$, let λ be a partition of length $d + i - 2$ and let E be a \mathbb{Q}-twisted nef vector bundle on X. Then

$$s^{(i)}(\lambda)(E) \in \text{HR}(X).$$

Proof. The statement is trivial unless $e := \text{rk}(E) \geq \lambda_1$ and $d \geq 2$ which we assume is the case. When $d = 3$, $s^{(i)}(\lambda)$ is a positive multiple of c_1 and the result we want follows from the classical Hodge-Riemann bilinear relations. So we can assume from now on that $d \geq 4$.

Fix an ample class h on X. We first prove that $s_{\lambda}(E) \in \text{HR}_w(X)$. Consider the case $i = 0$ so $|\lambda| = d - 2$. By Corollary 5.2 $\int_X s_{\lambda}(E) h^2 \geq 0$. Also, the cone construction
described in [4] (particularly (4.3)) gives an irreducible variety \(\pi : C \to X \) of dimension \(n \) and a nef \(\mathbb{Q} \)-twisted vector bundle \(U \) of rank \(n - 2 \) such that
\[
\pi_*c_{n-2}(U) = s_\lambda(E).
\]

Since \(C \) is irreducible we can take a resolution of singularities \(\sigma : C' \to C \). Then \(\sigma^*U \) is also nef, and Lemma 7.1 gives \(c_{n-2}(\sigma^*U) \in \text{HR}_w(C') \). Thus Lemma 6.6 implies \(s_\lambda(\sigma^*E) \in \text{HR}_w(X) \).

Consider next the case \(i \geq 1 \), so \(|\lambda| = d+i-2\). Again by Corollary 5.2, \(\int_X s_\lambda^{(i)}(E)h^2 \geq 0 \). Consider the product \(\hat{X} \times X \times \mathbb{P}^1 \) and set \(\tau = c_1(O_{\mathbb{P}^1}(1)) \). Suppressing pullback notation, the \(\mathbb{Q} \)-twisted bundle \(E(\tau) \) on \(\hat{X} \) is nef, so by the previous paragraph \(s_\lambda(E(\tau)) \in \text{HR}_w(\hat{X}) \).

Thus by Lemma 6.5 we get also \(s_\lambda^{(i)}(E) \in \text{HR}_w(X) \).

To complete the proof define
\[
\Omega_t = s_\lambda^{(i)}(E(th)) \quad \text{for} \quad t \in \mathbb{Q}_{\geq 0}
\]
and
\[
f(t) = \det(Q_{\Omega_t}).
\]

Note that the leading term of \(\Omega_t \) is a positive multiple of \(h^{d-2} \) (this is Example 3.4 and it is here we use that \(\epsilon \geq \lambda_1 \)). In particular, for \(t \) sufficiently large \(Q_{\Omega_t} \) is non-degenerate (in fact it has the Hodge-Riemann property). Thus \(f \) is not identically zero, and since it is a polynomial in \(t \) this implies \(f(t) \neq 0 \) for all but finitely many \(t \). Thus there is an \(\epsilon > 0 \) so that \(f(t) \neq 0 \) for rational \(0 < t < \epsilon \) and we henceforth consider only \(t \) in this range. Then \(Q_{\Omega_t} \) is non-degenerate, and as \(Q_{\Omega_t}(h,h) \geq 0 \) it cannot be negative definite. The previous paragraph gives \(\Omega_t \in \text{HR}_w \), so we must actually have \(\Omega_t \in \text{HR}(X) \) for small \(t \in \mathbb{Q}_{\geq 0} \). Thus \(\Omega_0 = s_\lambda^{(i)}(E) \in \text{HR}(X) \) as claimed. \(\square \)

Remark 7.3. Note the above proof gives more, namely that if \(h \) is an ample class and \(E \) is nef and \(\lambda_1 \leq \text{rk}(E) \) we have
\[
\Omega_t \in \text{HR}(X) \quad \text{for all but possibly finitely many} \quad t \in \mathbb{Q}_{\geq 0}.
\]

As mentioned in the introduction, the main result of [20] says more namely that if \(E \) is ample of rank at least \(\lambda_1 \) then \(s_\lambda^{(i)}(E) \in \text{HR}(X) \), but the proof of that statement is significantly harder.

Theorem 7.4 (Monomials of Schur Classes are in \(\text{HR} \)). Let \(X \) be smooth and projective of dimension \(d \) and \(E_1, \ldots, E_p \) be nef vector bundles on \(X \). Let \(\lambda^1, \ldots, \lambda^p \) be partitions such that
\[
\sum_i |\lambda^i| = d - 2.
\]

Then the monomial of Schur polynomials
\[
\prod_i s_{\lambda^i}(E_i)
\]
lies in $\mathbb{HR}(X)$.

Proof. The proof is similar to what has already been said, so we merely sketch the details. Set $\Omega = \prod_i s_X(E_i)$. Then (4.5) gives a map $\pi : C \to X$ from an irreducible variety of dimension n and nef bundle bundle U on C so $\pi_* c_{n-2}(U) = \Omega$. A small modification of the proof of Proposition 5.1 and Corollary 5.2 means that if h is ample $\int_X \Omega h^2 \geq 0$.

Consider

$$\Omega_t := \pi_* c_{n-2}(U(t \pi^* h))$$

and take a resolution $\sigma : C' \to C$. Then $\sigma^* U(\pi^* h)$ remains nef, so Lemma 6.6 implies $\Omega_t \in \mathbb{HR}_w(X)$.

Now we can equally apply this construction replacing each E_i with $E_i \otimes O(th)$ for $t \in \mathbb{N}$ (which one can check does not change $\pi : C \to X$) giving

$$\pi_* c_{n-2}(U(th)) = \prod_i s_X(E_i(th))$$

for $t \in \mathbb{N}$.

In particular applying Example 3.4 to each factor on the right hand side, the highest power of t is a positive multiple of h^{d-2}. Thus for almost all $t \in \mathbb{Q}_{>0}$ we have Q_{Ω_t} is non-degenerate, and so in fact $Q_{\Omega_t} \in \mathbb{HR}(X)$. Taking the limit as $t \to 0$ gives the result we want. \qed

8. The Kähler case

The main place in which projectivity has been used so far is in the application of the Bloch-Gieseker theorem, and here we explain how this projectivity assumption can be relaxed. Following Demailly-Peternell-Schneider [6] we say a line bundle L on a compact Kähler manifold X is nef if for all $\epsilon > 0$ and all Kähler forms ω on X there exists a hermitian metric h on L with curvature $dd^c \log h \geq -\epsilon \omega$. We say that a vector bundle E on X is nef if the hyperplane bundle $\mathcal{O}(E)(1)$ is nef.

For the rest of this section let (X, ω) be a compact Kähler manifold of dimension d. Given a vector bundle E and $\delta \in H^{1,1}(X; \mathbb{R})$ we can consider the \mathbb{R}-twisted bundle $E(\delta)$ whose Chern classes are defined just as in the case of \mathbb{Q}-twists in the projective case. We identify $\mathbb{P}(E(\delta))$ with $\mathbb{P}(E)$, and say that $E(\delta)$ is nef if for any Kähler metric ω' on $\mathbb{P}(E)$, any $\epsilon > 0$, and any closed $(1, 1)$ form δ' on X such that $[\delta'] = \delta$, there exists a hermitian metric h on $\mathcal{O}(E(\delta))$ such that

$$dd^c \log h + \pi^* \delta' \geq -\epsilon \omega'.$$

We refer the reader to [6] for the fundamental properties of nef bundles on compact Kähler manifolds, in particular to the statement that a quotient of a nef bundle is again nef, and the direct sum of two nef bundles is again nef (and each of these statements extend to the case of \mathbb{R}-twisted nef bundles with minor modifications of the proofs involved).

Theorem 8.1 (Bloch-Gieseker for Kähler Manifolds). Let E be a nef \mathbb{R}-twisted vector bundle of rank $e \leq d$ and $t > 0$. Let $e + j \leq d$ and consider

$$\Omega := c_e(E\langle t \omega \rangle) \wedge \omega^j.$$

Then then map

$$H^{d-e-j}(X) \xrightarrow{\Delta} H^{d+e+j}(X)$$

is an isomorphism.
Proof. Write $E = E'(\delta)$ where E' is a genuine vector bundle. Fix $t > 0$ and set $E_t := E'(t\omega) = E'(\delta + t\omega)$. Set $\pi : \mathbb{P}(E') \to X$ and define $\zeta' = c_1(\mathcal{O}_{\mathbb{P}(E')}(1))$ and $\zeta := \zeta' + \pi^*(\delta + t[\omega])$. Then the property of ω so by construction we claim that ζ is a Kähler class. Given this for now, the Hard-Lefschetz property for ζ then gives $b\omega^j = 0$ and hence $aw = \pi_*(b\omega^j) = 0$ and hence $a = 0$ by the Hard-Lefschetz property of ω^j.

It remains to show that ζ is Kähler, and the following is essentially what is described in [1] proof of Theorem 1.12. Fix ω' a Kähler metric on $\mathbb{P}(E')$, and fix a hermitian metric on E' which induces a hermitian metric \hat{h} on $\mathcal{O}_{\mathbb{P}(E')}(1)$. Then $dd^c \log \hat{h}$ is strictly positive in the fiber directions, so there is a constant $C > 0$ with

$$dd^c \log \hat{h} + C\pi^*\omega \geq C^{-1}\omega'.$$

Let δ' be a closed $(1,1)$-form on X with $[\delta'] = \delta$, and choose $\epsilon > 0$ sufficiently small that $(t - C^2\epsilon)\omega + C\epsilon\delta' > 0$. Then as E is assumed to be nef there is a hermitian metric \hat{h} on $\mathcal{O}_{\mathbb{P}(E')}(1)$ such that $dd^c \log \hat{h} + \pi^*\delta' \geq -\omega'$.

Then the class $\zeta = c_1(\mathcal{O}_{\mathbb{P}(E')}(1)) + \pi^*[\delta + t\omega]$ is represented by the form

$$(1 - C\epsilon)dd^c \log \hat{h} + C\epsilon dd^c \log \hat{h} + \pi^*\delta' + t\omega)$$

which is bounded from below by

$$\begin{align*}
(1 - C\epsilon)(-\epsilon\omega' - \pi^*\delta') + C\epsilon(C^{-1}\omega' - C\pi^*\omega) + \pi^*(t\omega + \delta') \\
= C\epsilon^2\omega' + (t - C^2\epsilon)\pi^*\omega + C\epsilon\pi^*\delta' \\
\geq C\epsilon^2\omega' > 0.
\end{align*}$$

Thus ζ is a Kähler class as claimed. \hfill \Box

Corollary 8.2. Let E be a nef \mathbb{R}-twisted vector bundle of rank $e \leq d$ and $j = d - e$. Then

$$\int_X c_e(E)\omega^j \geq 0$$

Proof. Let $f(t) = \int_X c_e(E'(t\omega))\omega^j$. The Bloch-Gieseker theorem implies $f(t) \neq 0$ for all $t > 0$, and since it is clearly positive for $t \gg 0$ f is not identically zero. Since f is polynomial in t we get $f(t) > 0$ for $t > 0$ sufficiently small, which proves the statement. \hfill \Box

From here almost all the results in this paper extend to the Kähler case, and the proofs have only trivial modifications. We state only one and leave the rest to the reader.

Theorem 8.3 (Derived Schur classes of nef vector bundles on Kähler manifolds are in \overline{HR}). Let X be a compact Kähler manifold of dimension $d \geq 2$, let λ be a partition of length $d + i - 2$ and let E be an \mathbb{R}-twisted nef vector bundle on X. Then

$$s^{(i)}_\lambda(E) \in \overline{HR}(X).$$
9. Combinations of Derived Schur Classes

An interesting feature of the Hodge-Riemann property for bilinear forms is that it generally is not preserved by taking convex combinations, and so there is no reason to expect that a convex combination of classes with the Hodge-Riemann property again has the Hodge-Riemann property. In fact this is true even for combinations of Schur classes of an ample vector bundle as the following example shows.

Example 9.1 ([20 Section 9.2]). Let \(X = \mathbb{P}^2 \times \mathbb{P}^3 \) Then \(N^1(X) \) is two-dimensional, with generators \(a, b \) that satisfy \(a^3 = 0, a^2b^3 = 1 \). Set \(\mathcal{O}_X(a, b) = \mathcal{O}_{\mathbb{P}^2}(a) \boxtimes \mathcal{O}_{\mathbb{P}^3}(b) \) and consider the nef vector bundle

\[
E = \mathcal{O}(1, 0) \oplus \mathcal{O}(1, 0) \oplus \mathcal{O}(0, 1).
\]

One computes that the form

\[
(1 - t)c_3(E) + ts_{(1,1,1)}(E)
\]

gives an intersection form on \(N^1(X) \) with matrix

\[
Q_t := \begin{pmatrix} t & 2t \\ 2t & 1 + 2t \end{pmatrix}.
\]

For \(t \in (0, 1/2) \) the matrix \(Q_t \) has two strictly positive eigenvalues. Thus fixing \(t \in (0, 1/2) \), any small perturbation of \(E \) by an ample class gives an ample \(\mathbb{Q} \)-twisted bundle \(E' \) so that \((1 - t)c_3(E') + ts_{(1,1,1)}(E') \) does not have the Hodge-Riemann property.

Given this it is interesting to ask if there are particular convex combinations of (derived) Schur classes that do retain the Hodge-Riemann property. To state one such result we need the following definition, for which we recall a matrix is said to be totally positive if all its minors have non-negative determinant.

Definition 9.2 (Pólya Frequency Sequence). Let \(\mu_0, \ldots, \mu_N \) be non-negative numbers, and set \(\mu_i = 0 \) for \(i < 0 \). We say \(\mu_0, \ldots, \mu_N \) is a Pólya frequency sequence if the matrix

\[
\mu := (\mu_{i-j})_{i,j=0}^N
\]

is totally positive.

Theorem 9.3. Suppose that \(X \) has dimension \(d \geq 4 \) that \(h \) is an nef class on \(X \) and \(E \) is a nef vector bundle. Let \(|\lambda| = d - 2 \) and \(\mu_0, \ldots, \mu_{d-2} \) be a Pólya frequency sequence. Then the class

\[
\sum_{i=0}^{d-2} \mu_is_{(i)}(E)h^i
\]

lies in \(\overline{HR}(X) \).

Theorem 9.3 follows quickly from the following statement, for which we recall \(c_i \) denotes the \(i \)-th elementary symmetric polynomial.

Proposition 9.4. Suppose that \(X \) has dimension \(d \geq 4 \) and \(E \) is a nef vector bundle. Let \(\lambda \) be a partition of \(d - 2 \). Let \(D_1, \ldots, D_q \) be ample \(\mathbb{Q} \)-divisors on \(X \) for some \(q \geq 1 \). Then for any \(t_1, \ldots, t_q \in \mathbb{Q}_{>0} \) the class

\[
\sum_{i=0}^{d-2} s_{(i)}(E)c_i(t_1D_1, \ldots, t_qD_q)
\]

lies in \(\overline{HR}(X) \).
Proof of Theorem 9.3} If all the μ_i vanish the statement is trivial, so we assume this is not the case. From the Aissen-Schoenberg-Whitney Theorem \cite{1}, the assumption that μ_i is a Pólya frequency sequence implies that the generating function

$$\sum_{i=0}^{d-2} \mu_iz^i$$

has only real roots, and since each μ_i is non-negative these roots are then necessarily non-positive. Writing these roots as $\{ -t_j \}$ for $t_j \in \mathbb{R}_{\geq 0}$ means

$$\sum_{i=0}^{d-2} \mu_iz^i = \kappa \prod_{j=0}^{N} (z + t_j)$$

where $\kappa > 0$ which implies

$$\mu_i = \kappa c_i(t_1, \ldots, t_N)$$

for all i. \\
Now for each j let $t_j^{(n)} \in \mathbb{Q}_{\geq 0}$ tend to t_j as $n \to \infty$. Fix an ample divisor h'' and consider the class $h' := h + \frac{1}{n}h''$. Proposition 9.4 (applied with $q = N$ and $D_1 = \cdots = D_q = h'$) implies

$$\sum_{i=0}^{d-2} s^{(i)}_\lambda (E)c_i(t_1^{(n)}, \ldots, t_N^{(n)})(h')^i$$

lies in $\text{H}^*(X)$. Taking the limit as $n \to \infty$ gives the statement we want. \hfill \Box

Proof of Proposition 9.4} Set

$$\Omega := \Omega(D_1, \ldots, D_p) := \sum_{i=0}^{d-2} s^{(i)}_\lambda (E)c_i(D_1, \ldots, D_p).$$

Without loss of generality we may assume all the D_i are integral and very ample. Write $t_j = r_j/s$ for some positive integers r_j and s. By an iterated application of the Bloch-Gieseker covering construction, we find a finite $u : Y \to X$ and line bundles η_j on X' such that that $\eta_j^{\otimes s} = u^*\mathcal{O}(D_j)$. Thus

$$r_jc_1(\eta_j) = t_ju^*D_j.$$ \\
Set $E' = u^*E$. Consider the cone construction for E' as described in §4 That is, there is a surjective $\pi : C \to Y$ from an irreducible variety C of dimension n, and a nef vector bundle U on C' of rank $n-2$ such that $\pi_*c_{n-2}(U) = s_\lambda(E')$. In fact more is true namely;

Lemma 9.5.

$$\pi_*c_{n-2-i}(U|_C) = s^{(i)}_\lambda (E') \text{ for } 0 \leq i \leq |\lambda|. \tag{9.2}$$

Sketch Proof. Formally this is clear: for if $\delta' \in H^{1,1}(X; \mathbb{R})$ then $c_{n-2}(U|^{\pi^*\delta'}) = \sum c_{n-2-i}(U)(\pi^*\delta')^i$ and pushing this forward to X gives a polynomial in δ' of classes on X whose coefficients are the derived Schur classes $s^{(i)}_\lambda (E')$. For a full proof we refer the reader to \cite{20, Proposition 5.2}. \hfill \Box

Continuing with the proof of the Proposition, set

$$F = \bigoplus_{i=1}^{p} \eta_i^{\otimes r_i}$$

so

$$c_j(F) = c_j(r_1c_1(\eta_1), \cdots, r_pc_1(\eta_p)) = u^* c_j(t_1D_1, \ldots, t_pD_p).$$
Then on C' the bundle
\[\tilde{U} := U \oplus \pi^* F \]
is nef. Take a resolution $\sigma : C \to C'$, the vector bundle $\sigma^* U$ remains nef and so using Theorem 7.2 and Lemma 6.6
\[\pi_* c_{n-2}(\tilde{U}) \in \text{HR}_w(Y) \]
But
\[\pi_* c_{n-2}(\tilde{U}) = \pi_* (c_{n-2}(U) + c_{n-3}(U) \pi^* c_1(F) + \cdots + c_{n-d}(U) \pi^* c_d(F)) \]
\[= s_\lambda(E') + s^{(1)}_\lambda(E') c_1(F) + \cdots + s^{(d-2)}_\lambda(E') c_{d-2}(F) \]
\[= u^* \Omega. \]
So by Lemma 6.4 applied to $u : Y \to X$ we conclude that $\Omega \in \text{HR}_w(X)$.

To show that in fact $\Omega \in \text{HR}(X)$ we consider the effect of replacing each D_i with $D_i + t h$. Let $\Omega_t := \Omega(D_1 + t h, \ldots, D_p + t h)$ which is a polynomial in t whose t^{d-2} term is some positive multiple of h^{d-2}. Setting $f(t) = \det(Q_{\Omega_t})$ we conclude exactly as in the end of the proof of Theorem 7.2 that $\Omega_t \in \text{HR}(X)$ for $t \in \mathbb{Q}_+$ sufficiently small, and thus $\Omega \in \text{HR}(X)$ as required.

Question 9.6. Suppose that μ_1, \ldots, μ_{d-2} is a Pólya frequency sequence with each μ_i strictly positive, and that h and E are ample. Is it then the case that the class in (9.1) is actually in $\text{HR}(X)$? The difficulty here is that to follow the proof we have given above one needs to address the possibility that some of the t_j are irrational.

10. **Inequalities**

10.1. **Hodge-Index Type inequalities.** The simplest and most fundamental inequality obtained from the Hodge-Riemann property is the Hodge-index inequality.

Theorem 10.1 (Hodge-Index Theorem). Let X be a manifold of dimension d and $\Omega \in \text{HR}_w(X)$. If $\beta \in H^{1,1}(X)$ is such that $\int_X \beta^2 \Omega \geq 0$ then for any $\alpha \in H^{1,1}(X)$ it holds that
\[\int_X \alpha^2 \Omega \int_X \beta^2 \Omega \leq \left(\int_X \alpha \beta \Omega \right)^2 \]
(10.1)
Moreover if $\Omega \in \text{HR}(X)$ and $\int_X \beta^2 \Omega > 0$ then equality holds in (10.1) if and only if α and β are proportional.

Proof. The statement is about symmetric bilinear forms with the given signature and its proof is standard. Indeed, the case when $\int_X \beta^2 \Omega = 0$ is trivial and the case when the intersection form is nondegenerate and $\int_X \beta^2 \Omega > 0$ is classical. Finally, the case when the intersection form is degenerate and $\int_X \beta^2 \Omega > 0$ reduces itself to the previous one by modding out the kernel of the intersection form.

In particular (namely Theorem 7.2) the inequality (10.1) applies whenever λ is a partition of $d - 2$, E is a nef \mathbb{Q}-twisted bundle on X and β is nef. We now prove a variant of this that gives additional information.

Theorem 10.2. Let X be a projective manifold of dimension $d \geq 4$ and let E be a \mathbb{Q}-twisted nef vector bundle and $h \in H^{1,1}(X; \mathbb{R})$ be nef. Also let λ be a partition of length $|\lambda| = d - 1$. Then for all $\alpha \in H^{1,1}(X; \mathbb{R})$,
\[\int_X \alpha^2 s^{(1)}_{\lambda}(E) \int_X h s_{\lambda}(E) \leq 2 \int_X \alpha h s^{(1)}_{\lambda}(E) \int_X \alpha s_{\lambda}(E) \]
(10.2)
Remarks 10.3. (1) In the case that $\lambda = (d - 1)$ and $\text{rk}(E) = d - 1$ the inequality (10.2) becomes
\[
\int_X \alpha^2 c_{d-2}(E) \int_X h c_{d-1}(E) \leq 2 \int_X \alpha h c_{d-2}(E) \int_X c_{d-1}(E).
\]
(10.3)
This was previously proved in [20] Theorem 8.2. In fact (10.3) was shown to hold for all nef vector bundles of rank at least $d - 1$ and if E, h are assumed ample then equality holds in (10.3) if and only if $\alpha = 0$. We imagine a similar statement holds in the context of Theorem 10.2.

(2) Assume in the setting of Theorem 10.2 that $\int_X s_\lambda(E) h > 0$ and let W be the kernel of the map $H^{1,1}(X) \to \mathbb{R}$ given by $\alpha \mapsto \int_X \alpha s_\lambda(E)$. Then W has codimension 1, and (10.2) says that the intersection form $Q_{s_\lambda(E)}$ is negative semidefinite on the codimension one subspace
\[
\{ \alpha \in H^{1,1}(X) : \int_X \alpha s_\lambda^{(1)}(E) = 0 \}.
\]
This is different information to the Hodge-Index inequality which is essentially a reformulation of the fact that this intersection form is negative semidefinite on the orthogonal complement of h.

(3) The inequality (10.2) generalizes to any homogeneous symmetric polynomial p in e variables with the property that $p(E) \in \overline{\text{HR}}(X)$ for all \mathbb{Q}-twisted nef vector bundles E of rank e (with the obvious definition for the derived polynomials $p^{(i)}$).

Proof of Theorem 10.2. If $e := \text{rk}(E) < \lambda_1$ the statement is trivial, so we assume $e \geq \lambda_1$. We start with some reductions. By continuity, it is sufficient to prove this under the additional assumption that h is ample. Also replacing E with $E(\ell h)$ for $\ell \in \mathbb{Q}_{>0}$ sufficiently small we may assume that $\int_X s_\lambda(E) h > 0$.

Now set $X = \mathbb{P}^1 \times X$ and $E = E \boxtimes \mathcal{O}_{\mathbb{P}^1}(1)$. Observe E is nef on \mathbb{P}^1 and $|\lambda| = \dim(\mathbb{P}^1) - 2$. So Theorem 7.2 implies
\[
s_\lambda(E) \in \overline{\text{HR}}(\mathbb{P}^1) \boxtimes \overline{\text{HR}}(X).
\]

Let $\alpha \in H^{1,1}(X; \mathbb{R})$ and denote by τ the hyperplane class on \mathbb{P}^1. Also to ease notation define
\[
\Omega := s_\lambda(E) \in H^{d-1,d-1}(X; \mathbb{R}) \text{ and } \Omega' := s_\lambda^{(1)}(E) \in H^{d-2,d-2}(X; \mathbb{R})
\]
so $s_\lambda(E) = \Omega + \Omega'\tau$.

Now define
\[
\hat{\alpha} := \alpha - \kappa \tau \text{ where } \kappa := \frac{\int_X \alpha \Omega' h}{\int_X \Omega h}
\]
so
\[
\hat{\alpha} s_\lambda(E) h = \hat{\alpha}(\Omega + \tau \Omega') h = 0.
\]

Also observe
\[
\int_X s_\lambda(E)^2 h^2 = \int_X \Omega'^2 h^2 > 0
\]
so the Hodge-Index inequality applied to $s_\lambda(E)$ yields
\[
0 \geq \int_X \hat{\alpha}^2 s_\lambda(E) = \int_X (\alpha^2 - 2\kappa \alpha \tau) (\Omega + \tau \Omega') = \int_X \alpha^2 \Omega' - 2\kappa \int_X \alpha \Omega.
\]
Rearranging this gives (10.2). \qed
10.2. Khovanskii-Tessier-type inequalities. Let X be smooth and projective of dimension d. Suppose that E, F are vector bundles on X, and let λ and μ be partitions of length $|\lambda|$ and $|\mu|$ respectively, and to avoid trivialities we assume $|\lambda| + |\mu| \geq d$.

Definition 10.4. We say a sequence $(a_i)_{i \in \mathbb{Z}}$ of non-negative real numbers is log concave if
\[a_{i-1}a_{i+1} \leq a_i^2 \text{ for all } i \] (10.4)

We note that for a finite sequence, say $a_i = 0$ for $i < 0$ and for $i > n$, log-concavity is equivalent to (10.4) holding in the range $i = 1, \ldots, n - 1$.

Theorem 10.5. Assume E, F are nef. Then the sequence
\[i \mapsto \int_X s_\lambda^{(|\lambda| + |\mu| - d - i)}(E)s_\mu^{(i)}(F) \] (10.5)
is log-concave

Before giving the proof, some special cases are worth emphasising.

Corollary 10.6. Suppose that $|\lambda| = |\mu| = d$. Then the sequence
\[i \mapsto \int_X s_\mu^{(d-i)}(E)s_\lambda^{(i)}(F) \] is log-concave

Corollary 10.7. Suppose that $|\lambda| = d$ and let h be a nef class on X. Then the sequence
\[i \mapsto \int_X c_i(E)h^{d-i} \] is log-concave. In particular the map
\[i \mapsto \int_X c_i(E)h^{d-i} \] is log-concave.

Proof of Corollary 10.7. By continuity we may assume that h is ample. Let L be a line bundle with $c_1(L) = h$. By rescaling h we may, without loss of generality, assume L is globally generated giving a surjection
\[O^{\oplus f+1} \to L \to 0 \]
for some integer f. Let F^* be the kernel of this surjection. Then F is a vector bundle of rank f that is globally generated and hence nef. Now set $\mu = (f)$, so $s_\mu^{(i)}(F) = c_{f-i}(F) = h^{f-i}$. We now replace i with $f - d + i$ in (10.5) (which is an affine linear transformation so does not affect log-concavity). Note that
\[|\lambda| + |\mu| - d - (f - d + i) = |\lambda| - i, \]
so Theorem 10.5 gives (10.6)

Finally (10.7) follows upon letting $e := \text{rk}(E)$ and putting $\lambda = (e)$ so $s_\lambda^{(i)}(E) = c_{e-i}(E)$ so $s_\lambda^{(|\lambda| - i)}(E) = c_i(E)$.

Proof of Theorem 10.5. The first thing to note is that all the quantities in (10.5) are non-negative (see Remark 5.4). Also, we may as well assume $\text{rk}(E) \geq \lambda_1$ and $\text{rk}(F) \geq \mu_1$ else the statement is trivial.

Set
\[j = |\lambda| + |\mu| - d - i \]
Proof. By continuity we may assume the is log-concave. We observe that \(a_i = 0 \) if either \(i \) or \(j \) are negative, or \(i > |\mu| \) or \(j > |\lambda| \). Thus the range of interest is
\[
\hat{\xi} := \max\{0, |\mu| - d\} \leq i \leq \min\{|\mu|, |\lambda| + |\mu| - d\} =: \overline{\xi}.
\]
Fix such an \(i \) in this range and consider
\[
\hat{X} = X \times \mathbb{P}^{j+1} \times \mathbb{P}^{i+1}.
\]
Let \(\tau_1 \) be the pullback of the hyperplane class on \(\mathbb{P}^{j+1} \) and \(\tau_2 \) the pullback of the hyperplane class on \(\mathbb{P}^{i+1} \) and consider
\[
\Omega = s_\lambda(E(\tau_1)) \cdot s_\mu(F(\tau_2)).
\]
Observe that by construction \(|\lambda| + |\mu| = d + i + j = \dim \hat{X} - 2 =: \hat{d} - 2 \). Expanding \(\Omega \) as a polynomial in \(\tau_1, \tau_2 \) one sees that the coefficient of \(\tau_1^i \tau_2^j \) is precisely \(s_\lambda^{(j)} s_\mu^{(i)} \). Thus
\[
\int_{\hat{X}} \Omega \tau_1 \tau_2 = \int_X s_\lambda^{(j)}(\tau_1) \int_{\mathbb{P}^{j+1}} \tau_1^{j+1} \int_{\mathbb{P}^{i+1}} \tau_2^{i+1} = \int_X s_\lambda^{(j)} s_\mu^{(i)} = a_i.
\]
Similarly \(\int_{\hat{X}} \Omega \tau_1^2 = a_{i-1} \) and \(\int_{\hat{X}} \Omega \tau_2^2 = a_{i+1} \).

Now, since \(E(\tau_1) \) and \(F(\tau_2) \) are nef on \(\hat{X} \) we know from Theorem 7.4 that \(\Omega \in \overline{HR}(\hat{X}) \). Thus the Hodge-Index inequality (10.1) applies with respect to the classes \(\tau_1, \tau_2 \) which is
\[
\int_{\hat{X}} \Omega \tau_1^2 \int_{\hat{X}} \Omega \tau_2^2 \leq \left(\int_{\hat{X}} \Omega \tau_1 \tau_2 \right)^2
\]
giving the log-concavity we wanted. \(\square \)

Remark 10.8. In [20] we gave a slightly different proof of (10.6) which gave more, namely that if \(X \) is smooth and \(E \) and \(h \) are ample then the map in question is strictly log-concave.
We expect that an analogous improvement can be made to Theorem 10.5 but it is not clear how this can be proved using the methods we have given here, since the bundle \(F \) constructed in the above proof is only nef.

Question 10.9. Is there a natural statement along the lines of Theorem 10.5 that applies to three or more nef vector bundles? For instance perhaps it is possible to package characteristic numbers into a homogeneous polynomial that can be shown to be Lorentzian in the sense of Brändén-Huh [3].

Corollary 10.10. Let \(\lambda \) and \(\mu \) be partitions, and let \(d \) be an integer with \(d \leq |\lambda| + |\mu| \).
Assume \(x_1, \ldots, x_e, y_1, \ldots, y_f \in \mathbb{R}_{\geq 0} \). Then the sequence
\[
i \mapsto s_\lambda^{(|\lambda|+|\mu|-d+i)}(x_1, \ldots, x_e) s_\mu^{(i)}(y_1, \ldots, y_f)
\]
is log concave.

Proof. By continuity we may assume the \(x_i \) and \(y_i \) are rational. Furthermore, by clearing denominators, we may suppose they all lie in \(\mathbb{N} \). Then take \(X = \mathbb{P}^d \) and \(E = \bigoplus_{i=1}^e \mathcal{O}_{\mathbb{P}^d}(x_i) \) and \(F = \bigoplus_{i=1}^f \mathcal{O}_{\mathbb{P}^d}(y_i) \). Then for any symmetric polynomial \(p \) of degree \(\delta \) we have \(p(E) = p(x_1, \ldots, x_e) \tau_1^\delta \) and similarly for \(F \). Thus what we want follows from Theorem 10.5. \(\square \)
Putting \(e = f \) we can consider
\[u_i := \lambda^{(\lambda+x-1)/2} \sum_{\mu} \sum_{\lambda} \frac{\lambda^{\mu} \mu!}{\lambda^{\mu}} \]
as a polynomial in \(x_1, \ldots, x_e \). Still assuming \(d \leq |\lambda| + |\mu| \), Corollary 10.10 says that
\[(u_i^2 - u_{i+1}u_{i-1})(x_1, \ldots, x_e) \geq 0 \]
for any \(x_1, \ldots, x_e \in \mathbb{R}_{\geq 0} \).

Question 10.11. Is \(u_i^2 - u_{i+1}u_{i-1} \) monomial-positive (i.e. a sum of monomials with all non-negative coefficients)?

Corollary 10.12. Let \(\lambda \) be a partition and \(x_1, \ldots, x_e \in \mathbb{R}_{\geq 0} \). Then the sequence
\[i \mapsto s^{(i)}_\lambda(x_1, \ldots, x_e) \]
is log-concave.

Proof. By continuity we may assume \(\lambda \in \mathbb{Q}_{\geq 0} \), and then by clearing denominators that they are all in \(\mathbb{N} \). Set \(d = |\lambda| \) and \(X = \mathbb{P}^d \) and \(E = \sum_{j=1}^e \mathcal{O}_\mathbb{P}^{x_j}(x_i) \) and \(h = c_1(E) \) which are both ample. Then for any symmetric polynomial \(p \) of degree \(d \) in \(e \) variables we have
\[\int_X p(E) = p(x_1, \ldots, x_e) \].
Thus Corollary 10.10 tells us that the map
\[i \mapsto s^{(d-i)}_\lambda(x_1, \ldots, x_e)(x_1 + \cdots + x_e)^{d-i} \]
is log-concave. That is \(a_{i-1}a_{i+1} \leq a_i^2 \), and dividing both sides of this inequality by \((x_1 + \cdots + x_e)^{2d-2i}\) gives that \(i \mapsto s^{(d-i)}_\lambda(x_1, \ldots, x_e) \) is log-concave. Replacing \(d - i \) with \(i \) does not change the log-concavity, so we are done.

Question 10.13. Do Corollary 10.10 or Corollary 10.12 have a purely combinatorial proof?

10.3. **Lorentzian Property of Schur polynomials.** We end with a discussion on how our results relate to those of Huh-Matherne-Mészáros-Dizier [12]. To do so we need some definitions that come from [3]. A symmetric homogeneous polynomial \(p(x_1, \ldots, x_e) \) of degree \(d \) is said to be strictly Lorentzian if all the coefficients of \(p \) are positive and for any \(\alpha \in \mathbb{N}^e \) with \(\sum_j \alpha_j = d - 2 \) we have
\[\frac{\partial \alpha p}{\partial x^\alpha} \]
has signature \((+, -, \ldots, -)\).

We say \(p \) is Lorentzian if it is the limit of strictly Lorentzian polynomials.

Any homogeneous polynomial \(p \) of degree \(d \) can be written as \(p = \sum_{\mu} a_{\mu}x^\mu \) where the sum is over \(\mu \in \mathbb{Z}_{\geq 0}^e \) with \(\sum_j \mu_j = d \). We write \(|p|_\mu := a_{\mu} \) for the coefficient of \(x^\mu \). The normalization of \(p \) is defined by
\[N(p) := \sum_{\mu} \frac{a_{\mu}}{\mu!} x^\mu. \]

Theorem 10.14 (Huh-Matherne-Mészáros-Dizier [12 Theorem 3]). The normalized Schur polynomials \(N(s_\lambda) \) are Lorentzian.

Our proof needs a preparatory statement. For this we set
\[t_j(x_1, \ldots, x_e) = x_j \text{ for each } j = 1, \ldots, e. \]

Lemma 10.15. Let \(p(x_1, \ldots, x_e) \) be a homogeneous polynomial of degree \(d \), let \(e' \) be any integer satisfying \(e' \geq \max_{1 \leq j \leq e} \deg_{x_j}(p) \), where \(\deg_{x_j}(p) \) is the degree of \(p \) with respect to the indeterminate \(x_j \), and set
\[q(x_1, \ldots, x_e) := x_1^{e'} \cdots x_e^{e'} p(x_1^{-1}, \ldots, x_e^{-1}). \]
Let \(\alpha \in \mathbb{Z}_{\geq 0} \) with \(\sum_j \alpha_j = d - 2 \) and set \(\beta_j := e' - \alpha_j \). Then

\[
\frac{\partial^\alpha}{\partial x^\alpha} N(p) = \frac{1}{2} \sum_{1 \leq i,j \leq e} |q_{i,j}| \beta_i x_i x_j.
\]

Proof. For \(1 \leq i \leq e \) set \(\delta_i = (0, \ldots, 0, 1, 0, \ldots, 0) \in \mathbb{Z}^e \) with 1 at the \(i \)-th position. Then if \(p \) is written as \(p = \sum_{\mu} a_{\mu} x^\mu \), we get

\[
\frac{\partial^\alpha}{\partial x^\alpha} N(p) = \frac{1}{2} \sum_{1 \leq i,j \leq e} a_{\alpha+\delta_i+\delta_j} x_i x_j = \frac{1}{2} \sum_{1 \leq i,j \leq e} |q_{i,j}| \beta_i x_i x_j,
\]
as one can check by expanding \(p \) in monomials. \(\square \)

Proof of Theorem 10.14 Take a partition \(\lambda = (\lambda_1, \ldots, \lambda_N) \) of \(d := |\lambda| \) with \(0 \leq \lambda_N \leq \cdots \leq \lambda_1 \) and assume \(\lambda_1 \leq e \) else the statement is trivial. Then \(d \) is the degree of \(s_\lambda(x_1, \ldots, x_e) \). Note that by adding zero members to the partition \(\lambda \) we may increase \(N \) without changing the value of \(s_\lambda \). We may therefore suppose that in our case \(N \geq e \).

The dual partition to \(\lambda \) is defined by

\[\bar{\lambda}_i := e - \lambda_{N-i} \text{ for } i = 1, \ldots, N. \]

so \(\bar{\lambda} = N e - |\lambda| = N e - d \).

Applying the definition

\[
s_\lambda = \det \left(\begin{array}{cccc}
\lambda_1 & \lambda_1 + 1 & \cdots & \lambda_1 + N - 1 \\
\lambda_2 - 1 & \lambda_2 & \cdots & \lambda_2 + N - 2 \\
\vdots & \vdots & \ddots & \vdots \\
\lambda_N - N + 1 & \lambda_N - N + 2 & \cdots & \lambda_N
\end{array} \right)
\]

to

\[x_1^N \cdots x_e^N \cdot \lambda(x_1^{-1}, \ldots, x_e^{-1}) \]

and multiplying each row of the matrix defining

\[s_\lambda(x_1^{-1}, \ldots, x_e^{-1}) \]

with \(x_1 \cdots x_e \), we get

\[
x_1^N \cdots x_e^N \cdot \lambda(x_1^{-1}, \ldots, x_e^{-1}) = \det \left(\begin{array}{cccc}
\lambda_1 - e & \lambda_1 - e - 1 & \cdots & \lambda_1 - e - N + 1 \\
\lambda_2 - e & \lambda_2 - e - 1 & \cdots & \lambda_2 - e - N + 2 \\
\vdots & \vdots & \ddots & \vdots \\
\lambda_N - e - N + 1 & \lambda_N - e - N + 2 & \cdots & \lambda_N - e
\end{array} \right) = s_\lambda(x_1, \ldots, x_e).
\]

Thus

\[s_\lambda(x_1, \ldots, x_e) = x_1^N \cdots x_e^N \cdot \lambda(x_1^{-1}, \ldots, x_e^{-1}) \]

and, equivalently,

\[s_\lambda(x_1, \ldots, x_e) = x_1^N \cdots x_e^N \cdot \lambda(x_1^{-1}, \ldots, x_e^{-1}). \]

It is tempting to now apply Lemma 10.15 but before doing that we introduce a small perturbation. For \(\epsilon > 0 \) set \(\bar{x}_j := x_j + \epsilon \sum_p x_p \) and let

\[q_\epsilon(x_1, \ldots, x_e) := s_\lambda(\bar{x}_1, \ldots, \bar{x}_e) \]

and

\[p_\epsilon(x_1, \ldots, x_e) := x_1^N \cdots x_e^N \cdot q_\epsilon(x_1^{-1}, \ldots, x_e^{-1}), \]
so
\[
q_{\epsilon}(x_1, \ldots, x_e) = x_1^N \cdots x_e^N p_{\epsilon}(x_1^{-1}, \ldots, x_e^{-1}).
\] (10.9)
We will show that \(N(p_{\epsilon}) \) is strictly Lorentzian for small \(\epsilon > 0 \), which completes the proof since \(p_{\epsilon} \) tends to \(s_\lambda \) as \(\epsilon \) tends to zero.

To this end, let \(\alpha \in \mathbb{Z}_{\leq 0}^e \) with \(\sum_j \alpha_j = d - 2 \) and set \(\beta_j := N - \alpha_j \) and
\[
X := \prod_{j=1}^e \mathbb{P}^{\beta_j}.
\]
Let \(\tau_j \) denote the pullback of the hyperplane class on \(\mathbb{P}^{\beta_j} \) to \(X \), and set \(h := \sum_j \tau_j \) which is ample. Next set
\[
E := \bigoplus_{j=1}^e \pi_j^* \mathcal{O}_{\mathbb{P}^{\beta_j}}(1) \quad \text{and} \quad E' := E(\epsilon h).
\]
Then \(E \) is a nef vector bundle on \(X \) and by construction \(\dim X = Ne - d + 2 = |X| + 2 \).

So from Theorem 7.2 we know \(s_\lambda(E) \in \text{HR}(X) \). In fact by Remark 7.3 we actually have \(s_\lambda(E') \in \text{HR}(X) \) for sufficiently small \(\epsilon > 0 \) and we assume henceforth this is the case.

Now by (10.9) and Lemma 10.15
\[
\frac{\partial^{\alpha} q_{\epsilon}}{\partial x^\alpha} N(p_{\epsilon}) = \frac{1}{2} \sum_{1 \leq i,j \leq e} [q_{\epsilon} t_i t_j]_{\beta} x_i x_j
\] (10.10)
and our goal is to show that this has the desired signature. But this is precisely what we already know, since thinking of \(s_\lambda(E') \tau_i \tau_j \) as a homogeneous polynomial in \(\tau_1, \ldots, \tau_e \), integrating over \(X \) picks out precisely the coefficient of \(\tau^\beta \), and as \(E' \) has Chern roots \(\tau_1 + \epsilon h, \ldots, \tau_e + \epsilon h \) this becomes
\[
\int_X s_\lambda(E') \tau_i \tau_j = [q_{\epsilon} t_i t_j]_{\beta}.
\]
Hence the quadratic form in (10.10) is precisely the intersection form \(\frac{1}{2} Q_{s_\lambda(E')} \) on \(H^{1,1}(X) \), which has signature \((+,-,\ldots,-)\) and we are done. \(\square \)

Remark 10.16. There is a lot of overlap between what we have here and the original proof in [12]. For instance we rely here on our Theorem that Schur classes of (certain) ample vector bundles have the Hodge-Riemann property, which in turn relies on the Bloch-Gieseker theorem and thus on the classical Hard-Lefschetz Theorem. On the other hand, [12] relies on the fact that the volume function on a projective variety is Lorentzian, which is a facet of the Hodge-index inequalities (that are a consequence of the Hodge-Riemann bilinear relations).

Also, instead of our cone classes discussed in §4 the authors in [12] use a different aspect of Schur classes that is also a degeneracy locus. Finally we remark the use of the dual partition \(\lambda \) also appears crucially in [12]. Nevertheless there is a slightly different feel to the two proofs, and we leave it to the readers to decide if they consider them “essentially the same” [10].

REFERENCES

[1] Michael Aissen, I. J. Schoenberg, and A. M. Whitney. On the generating functions of totally positive sequences. I. J. Analyse Math., 2:93–103, 1952.
[2] Spencer Bloch and David Gieseker. The positivity of the Chern classes of an ample vector bundle. Invent. Math., 12:112–117, 1971.
[3] Petter Brändén and June Huh. Lorentzian polynomials. Ann. of Math. (2), 192(3):821–891, 2020.
[4] William Y. C. Chen, Larry X. W. Wang, and Arthur L. B. Yang. Schur positivity and the \(q\)-log-convexity of the Narayana polynomials. *J. Algebraic Combin.*, 32(3):303–338, 2010.

[5] Zdravko Cvetkovski. *Inequalities*. Springer, Heidelberg, 2012. Theorems, techniques and selected problems.

[6] Jean-Pierre Demailly, Thomas Peternell, and Michael Schneider. Compact complex manifolds with numerically effective tangent bundles. *J. Algebraic Geom.*, 3(2):295–345, 1994.

[7] William Fulton. *Intersection theory*, volume 2 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer-Verlag, Berlin, second edition, 1998.

[8] William Fulton and Robert Lazarsfeld. Positive polynomials for ample vector bundles. *Ann. of Math.* (2), 118(1):35–60, 1983.

[9] Alice L. L. Gao, Matthew H. Y. Xie, and Arthur L. B. Yang. Schur positivity and log-concavity related to longest increasing subsequences, *Discrete Math.*, 342(9):2570–2578, 2019.

[10] Tim Gowers. When are two proofs essentially the same? https://gowers.wordpress.com/2007/10/04/when-are-two-proofs-essentially-the-same. Accessed: 2021-05-12.

[11] M. Gromov. Convex sets and Kähler manifolds. In *Advances in differential geometry and topology*, pages 1–38. World Sci. Publ., Teaneck, NJ, 1990.

[12] June Huh, Jacob Matherne, Karola Mészáros, and Avery St. Dizier. Logarithmic concavity of Schur and related polynomials, 2019. arXiv:1906.09633.

[13] G. Kempt and D. Laksov. The determinantal formula of Schubert calculus. *Acta Math.*, 132:153–162, 1974.

[14] Thomas Lam, Alexander Postnikov, and Pavlo Pylyavskyy. Schur positivity and Schur log-concavity. *Amer. J. Math.*, 129(6):1611–1622, 2007.

[15] Robert Lazarsfeld. *Positivity in algebraic geometry. II*, volume 49 of Ergebisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer-Verlag, Berlin, 2004.

[16] Yoichi Miyaoka. The Chern classes and Kodaira dimension of a minimal variety. In *Algebraic geometry, Sendai, 1985*, volume 10 of Adv. Stud. Pure Math., pages 449–476. North-Holland, Amsterdam, 1987.

[17] Isaac Newton. *Arithmetica universalis: sive de compositione et resolutione arithmetica liber*. 1707.

[18] Andrei Okounkov. Why would multiplicities be log-concave? In *The orbit method in geometry and physics (Marseille, 2000)*, volume 213 of Progr. Math., pages 329–347. Birkhäuser Boston, Boston, MA, 2003.

[19] Donald St. P. Richards. Log-convexity properties of Schur functions and generalized hypergeometric functions of matrix argument. *Ramanujan J.*, 23(1-3):397–407, 2010.

[20] Julius Ross and Matei Toma. Hodge-Riemann bilinear relations for Schur classes of ample vector bundles, 2019. arXiv:1905.13636, to appear in Ann. Sci. École Norm. Sup.

[21] Jian Xiao. On the positivity of high-degree schur classes of an ample vector bundle, 2020. arXiv:2007.12425.

DEPARTMENT OF MATHEMATICS, STATISTICS, AND COMPUTER SCIENCE, UNIVERSITY OF ILLINOIS AT CHICAGO, 322 SCIENCE AND ENGINEERING OFFICES (M/C 249), 851 S. MORGAN STREET, CHICAGO, IL 60607

Email address: juliusro@uic.edu

UNIVERSITÉ DE LORRAINE, CNRS, IECL, F-54000 NANCY, FRANCE

Email address: matei.toma@univ-lorraine.fr