Adaptive and maladaptive expression plasticity underlying herbicide resistance in an agricultural weed

Emily B. Josephs, Megan L. Van Etten, Alex Harkess, Adrian Platts, and Regina S. Baucom

1 Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
2 Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, Michigan 48824
3 E-mail: josep993@msu.edu
4 Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109
5 Biology Department, Pennsylvania State University, Dunmore, Pennsylvania 18512
6 Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, Alabama 36849
7 HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806
8 E-mail: rsbaucom@umich.edu

Plastic phenotypic responses to environmental change are common, yet we lack a clear understanding of the fitness consequences of these plastic responses. Here, we use the evolution of herbicide resistance in the common morning glory (Ipomoea purpurea) as a model for understanding the relative importance of adaptive and maladaptive gene expression responses to herbicide. Specifically, we compare leaf gene expression changes caused by herbicide to the expression changes that evolve in response to artificial selection for herbicide resistance. We identify a number of genes that show plastic and evolved responses to herbicide and find that for the majority of genes with both plastic and evolved responses, plastic responses appear to be adaptive. We also find that selection for herbicide response increases gene expression plasticity. Overall, these results show the importance of adaptive plasticity for herbicide resistance in a common weed and that expression changes in response to strong environmental change can be adaptive.

Impact Summary

Determining the fitness consequences of plastic responses is crucial for predicting response to selection (Reed et al. 2010), understanding the maintenance of variation for phenotypes (Josephs 2018), and breeding plants for new, challenging environments (Gage et al. 2017; Kusmec et al. 2018). Theoretical and empirical evidence show that environments that fluctuate predictably in such a way that there is no optimum phenotype across time will favor adaptive plasticity (Ghalambor et al. 2007; Leung et al. 2020). Plastic responses that reduce fitness, or “maladaptive plasticity,” can occur when stressful environments overwhelm organisms’ ability to maintain fitness (Ghalambor et al. 2007) or new environments expose cryptic variation, although cryptic variation can also be beneficial (Paaby and Rockman 2014). The presence of adaptive plasticity can allow populations to persist in the
face of stressful conditions, (Price et al. 2003) and either reduce the strength of selection by masking additive genetic variation or contribute to adaptation in novel environments (Chevin and Lande 2010). Whether or not adaptive plasticity will facilitate or constrain genetic responses to selection depends on how close the plastic response gets individuals to the optimum phenotype (Ghalambor et al. 2007). However, despite the clear importance of disentangling adaptive from maladaptive plasticity, we lack a clear view of how the plastic responses affect fitness (Ghalambor et al. 2007; Schlichting 1986; Bradshaw 1965; Via et al. 1995). In particular, despite hypotheses and evidence that gene expression changes underlie many plastic responses in traditional phenotypes, the fitness consequences of gene expression plasticity are unknown (Hodgins-Davis and Townsend 2009; Lovell et al. 2016).

A number of approaches have been used to describe the fitness consequences of plasticity. For example, some studies have measured fitness in organisms where a specific plastic response has or has not been induced to evaluate whether the plastic response increases fitness in the environments that induce it (Dudley and Schmitt 1996; Schmitt et al. 1999). However, many plastic responses, including expression level, are not amenable to these types of manipulations. An alternative approach to understanding the fitness consequences of plasticity is comparing the fitness of genetically distinct individuals that exhibit different levels of plasticity, if there is natural genetic variation for plasticity (Wagner and Mitchell-Olds 2018; Weis and Gorman 1990; Baythavong and Stanton 2010; Stinchcombe et al. 2004; Scheiner and Callahan 1999). In this study, we focus on an alternative approach that allows us to specifically investigate gene expression variation, since it is a crucial component of plastic responses.

Here, we determine whether plastic changes in gene expression are adaptive or maladaptive by comparing plastic expression changes elicited by an environment with the expression changes that evolve during adaptation to that environment. If plasticity is adaptive and increases fitness in the new environment, the direction of plastic responses is expected to match the direction of evolved responses. Alternatively, if plasticity is maladaptive, we expect plastic responses to be opposite that of adaptive responses. Previous applications of this approach have found that plastic expression changes tend to be maladaptive in guppy brain expression response to predation environments (Ghalambor et al. 2015) and Drosophila gene expression responses to diet (Huang and Agrawal 2016). An analysis of the previously mentioned guppy study along with studies from Escherichia coli and yeast also found a preponderance of maladaptive expression plasticity (Ho and Zhang 2018; Ho and Zhang 2019). Strikingly, this approach has not been widely applied beyond these few studies.

We use artificially evolved glyphosate-resistant lineages of the common morning glory, Ipomoea purpurea, as a model for examining the fitness consequences of plastic changes in gene expression. There is a long history of using pesticide resistance evolution as models for adaptation (Ffrench-Constant 2013; Baucom 2019) and the fitness costs of adaptation (Baucom 2019; Bergelson and Purrington 1996; Ffrench-Constant and Bass 2017) but there is a significant gap in our understanding of the role of plasticity in shaping resistance evolution. Resistance to glyphosate (i.e., the active ingredient in the herbicide RoundUp) can involve either “target-site” or “non-target site” mutations (Powles and Yu 2010). In the former case, the genes that are the target of the herbicide contain mutations that lead to resistance whereas in the latter case any other gene that is not the target of the herbicide may be involved (Baucom 2019). Non-target site resistance can be a subset of general plastic responses to abiotic stress and often involves multiple genes (Délye et al. 2013).

The common morning glory provides an excellent study system for examining questions about the role of adaptive versus maladaptive plasticity on the process of herbicide resistance evolution. Natural populations of I. purpurea vary in the level of glyphosate resistance (Kuester et al. 2015), with non-target site herbicide resistance the most likely explanation for resistance in this species (Van Etten et al. 2021). There is strong evidence of fitness costs associated with resistance in I. purpurea, which is consistent with the idea that resistance incurs a trade-off (Van Etten et al. 2016; Debban et al. 2015). However, the specific role of plasticity in resistance evolution in I. purpurea, or any other weedy species is unknown.

In this study, we used seeds from an experimental evolution experiment designed to select for increased herbicide resistance in plants descending from a single population (Debban et al. 2015). Unlike previous studies that used this approach, the population these plants were collected from did occasionally experience the new environment, herbicide treatment, and displayed additive genetic variation for resistance. However, despite the past experience of herbicide, artificial selection for resistance did successfully increase survival in herbicide treatments (Van Etten et al. 2021). We compared leaf transcriptomes of plants from the experimentally evolved resistant lineages and from control, nonevolved lineages that were exposed to glyphosate along with replicates of each selection line that were not treated with the herbicide. We used these transcriptomes to quantify how often plastic expression responses to glyphosate aligned with the expression changes that evolved during selection for resistance. We also investigated whether selection in the herbicide environment favored increased plasticity. Overall, our results demonstrate a preponderance of adaptive gene expression plasticity in response to herbicide and that selection for increased resistance increases plasticity.
Methods

STUDY SYSTEM

Ipomoea purpurea (L.) Roth (Convolvulaceae) is a short-lived annual vine with a relatively rapid generation time (from planted seed to producing seed within six weeks (Baucom et al. 2011)) that is typically found growing on roadsides and in agricultural settings or areas of high disturbance (Baucom and Mauricio 2008). Native to the central highlands of Mexico (Fang et al. 2013), this noxious invasive is found in every state within the United States but it is particularly troublesome in the agricultural fields within the southeast and Midwestern US (Kuester et al. 2015). It has a mixed-mating system (average outcrossing rate = 0.5) with outcrossing rates that vary from highly selfing to highly outcrossing across populations (Kuester et al. 2016).

GENETIC MATERIAL

All plants used in the experiment descended from a single population at the previous site of the University of Georgia Plant Sciences Farm in Oconee, GA in 2000. We haphazardly sampled seeds from 122 maternal individuals at approximately every 1 meter on a transect in this population. The offspring of this sample (Generation 0 or G0) were screened for high or low glyphosate resistance in a greenhouse (Baucom and Mauricio 2008) and the offspring of the top 20% highly resistant lines (24 families) were used to be the parents for two resistant selection lines (12 parents each) and 24 parents were randomly chosen from the whole population to be the parents of two control lines. Individuals from each set of parents were grown up (Generation 1 or G1) and another generation of artificial selection was performed in the resistant selection lines using a “family selection” design by propagating siblings of the individuals in the top 20% of herbicide resistance in the population. Random individuals within each control line were chosen for the next generation to generate Generation 2 or G2 seeds. Another identical round of selection was performed on the G2 individuals to generate G3 progeny. In all crosses, individuals were used as both the pollen and ovule parent. See (Debban et al. 2015) for additional details.

In a field trial, G3 plants from the resistant lines had higher survival than control lines after herbicide treatment (Debban et al. 2008) and the offspring of the top 20% highly resistant lines (24 families) were used to be the parents for two resistant selection lines (12 parents each) and 24 parents were randomly chosen from the whole population to be the parents of two control lines. Individuals from each set of parents were grown up (Generation 1 or G1) and another generation of artificial selection was performed in the resistant selection lines using a “family selection” design by propagating siblings of the individuals in the top 20% of herbicide resistance in the population. Random individuals within each control line were chosen for the next generation to generate Generation 2 or G2 seeds. Another identical round of selection was performed on the G2 individuals to generate G3 progeny. In all crosses, individuals were used as both the pollen and ovule parent. See (Debban et al. 2015) for additional details.

EXPERIMENT

We planted 20 replicate seeds from each maternal line into two blocks and two treatments (herbicide vs no herbicide) in a randomized block design in a fenced 1-acre agricultural field at the Matthaei Botanical Gardens (MBGNA) at the University of Michigan in the spring of 2015. There are no natural Ipomoea individuals anywhere on or surrounding MBGNA. Throughout the experiment, we watered plants when needed to prevent wilting. After 6 weeks of growth, we applied 0.84 kg ai/ha glyphosate (slightly higher than 1/2 the suggested field dose of 1.54 kg ai/ha) to the plants in the herbicide treatment with a CO2 sprayer. We used a relatively low level of herbicide to cause stress but avoid killing the plants.

We collected leaf tissue from seeds at two time points post-herbicide application: 8 and 32 hours after spraying. Within each time point, we randomly chose two individuals per family (one replicate individual generated from selfing and one from outcrossing per maternal line) and froze 1–2 young leaves in liquid nitrogen. All tissue at a given time point was collected and frozen within 1 h.

TRANSCRIPTOME DATA GENERATION

We extracted RNA from leaf tissue with Qiagen RNAeasy kits. We individually indexed libraries using the Illumina TRUseq96 indexer mRNA stranded kit. Pooled libraries were run on 7 lanes of 50 bp, single-end sequencing on the Illumina HiSeq 4000 resulting in an average of 28 million reads per individuals.

We aligned single-end (1 × 52nt) adapter-trimmed Illumina RNA-seq reads separately for all samples to the Ipomoea purpurea version 2.0 genome (Gupta et al. 2021) using the splice aware STAR aligner in its basic two-pass mode (Dobin et al. 2013). Genome annotation for STAR was generated using GATK’s CreateSequenceDictionary (version 4, (McKenna et al. 2010)), samtools’ version 1.3 faidx function (Li et al. 2009) and STAR’s genomeGenerate option together with an Augustus-derived GFF3 annotation (Stanke et al. 2008) provided with the version 2.0 assembly. The resulting sorted bam alignment files were used for measuring RNA-seq digital gene expression using the provided GFF3 gene annotation and the featureCounts tool in the SubRead package (Liao et al. 2019).

Homologs in A. thaliana were found based on protein homology (TAIR10 version 20101214, https://www.arabidopsis.org/download_files/Proteins/TAIR10_protein_lists/TAIR10_pep_20101214), with the blastp mode of blastall (NCBI version 2.2.26) used to find the closest matching thaliana protein to each Augustus-predicted Ipomoea purpurea protein sequence with an upper limit p-value for reporting a homolog of 1 × 10^-6.

DIFFERENTIAL EXPRESSION ANALYSIS

We used Edgr’s filterByExpr function with the default settings (minimum 10 counts-per-million per gene) to filter the gene set to 25,534 genes (Chen et al. 2016) We calculated normalization factors that scale each sample by raw library size with Edgr’s
Figure 1. Conceptual figure of the experimental design. This figure shows the breeding scheme that was used to generate the plants used in this study. Plastic expression changes were measured by comparing gene expression in control plants from a control treatment and from the glyphosate treatment. Evolved expression changes were used by comparing control treatment plants from the control and resistance populations.

calcNormFactors function (Anders and Huber 2010; Bullard et al. 2010; Robinson and Oshlack 2010). Read counts were transformed with the voom function in Limma and we used Limma to run linear models that estimated differential expression between samples. (Law et al. 2014; Phipson et al. 2016; Ritchie et al. 2015).

We conducted the following comparisons for differential expression:

1. Identifying genes with plastic responses by comparing non-selected control lines in herbicide spray (n = 16) to non-selected control lines not sprayed with herbicide (n = 15). This comparison identifies plasticity in the original population before selection but note that these lines were grown in lab conditions for three generations, so drift or lab selection could affect our observations of plasticity. We also conducted these comparisons within the two timepoints tested, so we compared leaves collected 8 hours after spray (n = 8) to leaves from unsprayed plants collected at the same time (n = 8) and leaves collected 32 hours after spray (n = 8) to leaves from unsprayed plants collected at the same time (n = 7).

2. Identifying genes with evolved responses after selection for herbicide resistance by comparing resistance selection lines not sprayed (n = 15) to original lines not sprayed (n = 15).

3. Identifying genes with evolved expression responses in the herbicide environment after selection for herbicide resistance by comparing resistance selection lines in spray conditions (n = 15) to original lines in spray conditions (n = 15).

We conducted GO enrichment with PANTHER on pantherdb.org (Mi et al. 2019) using the Fisher’s exact test with a false discovery rate analysis. We compared genes that had increased expression in herbicide (3,789 annotated genes) or decreased expression (N annotated genes) to all expressed genes from the sample (12,702 annotated genes).

Results

PLASTIC AND EVOLVED EXPRESSION RESPONSES TO HERBICIDE

We measured plastic responses to herbicide in control plants that had not been artificially selected for herbicide resistance (Figure 1). Morning glory leaf gene expression responded plastically to herbicide, both 8 and 32 h after herbicide application. Out of the 27,037 genes tested, 3,519 genes had higher expression and 2841 genes had lower expression 8 hours after spray (FDR < 0.1) and 5732 genes had higher expression and 5285 genes had lower expression 32 h after spray (FDR < 0.1). The log fold change of expression changes caused by spray was correlated across the 8 and 32 h measurements (cor coeff = 0.614, p < 0.001, Figure S1). There were only 137 genes with significant (FDR < 0.1) plastic responses to spray at both time points where the direction of response differed between the 8 and 32 h time points. Because of the similarity of response at 8 and 32 hours after spray, we pooled data for future analyses.

When data from both time points were pooled to estimate plastic responses to spray in general, 5734 genes had lower expression in response to pesticide spray and 6171 had increased expression in response to spray (FDR < 0.1, Figure 2). Genes with increased expression after spray were enriched for a number of GO biological processes at FDR < 0.01, including a number of terms related to abiotic and biotic interactions (Table S1). In contrast, genes with reduced expression after spray were enriched for GO terms related to photosynthesis (Table S2).

Gene expression in I. purpurea leaves responded to selection for resistance (Figure 2). After three generations of selection
for herbicide resistance, 166 genes showed decreased expression and 133 genes showed increased expression (FDR < 0.1, Figure 2A). These genes were not significantly enriched for any GO terms.

THE PREVALENCE OF ADAPTIVE AND MALADAPTIVE PLASTICITY

There were 94 genes that had both significant plastic responses to spray and evolved responses to selection for resistance in unsprayed conditions (FDR < 0.1). Within these 94 genes, 68 had plastic responses in the same direction as evolved responses, consistent with adaptive plasticity (Binomial \(p = 1.7 \times 10^{-5} \), Figure 2B). Overall, with the majority of genes showing plastic responses in the same direction as evolved responses, these results show that more of the expression responses in response to herbicide are adaptive than maladaptive. We only looked at selection in non-sprayed conditions to avoid confounding selective response and plasticity (Mallard et al. 2018).

The pattern of adaptive plasticity was also evident for gene expression in samples collected at 8 hours after spray, where 44 out of 56 genes with plastic and evolved responses showed adaptive plasticity (binomial \(p = 2 \times 10^{-5} \)), and marginally significant at 32 hours after spray, where 44 of 71 genes with significant adaptive and plastic responses exhibited adaptive plasticity (binomial \(p = 0.057 \), Fig. S2A and B). While there were more genes that showed evidence of either maladaptive or adaptive plasticity 32 hours after spray, the directionality of the response was broadly consistent, with only one of the genes changing direction from adaptive after 8 hours to maladaptive after 32 hours.

SPECIFIC GENES SHOWING ADAPTIVE AND MALADAPTIVE PLASTICITY FOR EXPRESSION

It was possible to annotate 41 of the 68 genes with evidence of adaptive plasticity based on homology to *Arabidopsis thaliana* (Table S3). Potential genes of interest included the homolog of ATR7, which is associated with oxidative stress tolerance (Sujeeth et al. 2020), and PRL1, which is associated with growth and immunity (Zhang et al. 2014). However, many genes identified as having adaptive plasticity did not have homologs with obvious links to processes important for herbicide or other stress responses (Table S3).

We were able to identify homologs from *A. thaliana* for 24 of the 26 genes with evidence of maladaptive plasticity. Many of the genes that show increased plastic expression during spray but decreased expression after selection for resistance were homologs of three *A. thaliana* leucine-rich repeat protein kinase family proteins (Figure 3, Table S3). Leucine-rich repeat protein kinases are often involved in responses to stress (Shiu and Bleecker 2001; Van der Does et al. 2017; Zhao et al. 2018; Belkhadir et al. 2014). Many of these genes were located near each other in the *I. purpurea* reference genome, suggesting that they are recent tandem duplicates. The observed patterns of expression changes suggest that selection for herbicide resistance reduced the expression of these genes, providing a potential future path for understanding the mechanisms of adaptation to herbicides.
Figure 3. (A) The number of genes showing plastic expression differences in response to herbicide at FDR <0.1 in control and selected lines (B) A histogram of gene expression responses to herbicide, measured as the absolute value of the log₂-fold change of expression measured with and without herbicide. C) Plastic expression in control lines and lines selected for resistance. Response is shown on a log₂ scale and the x = y line is plotted with a dashed black line. Points are colored by whether they show a significant plastic response to spray in resistant and control lines. Genes without a significant response in either set of lines are not shown.

SELECTION FOR HERBICIDE RESISTANCE INCREASES PLASTICITY

If the plastic expression changes that occur in response to spray are adaptive, selection for increased herbicide resistance should increase the extent and magnitude of expression changes in response to herbicide. Consistent with this prediction, more genes had plastic expression responses to herbicide after selection for resistance compared to control lines (FDR < 0.1, Figure 3A). Similarly, 59% of all genes studied had a greater expression response to herbicide after selection for resistance than in control lines (Figure 3B). However, across all genes, plastic responses to selection were correlated in control and resistant lines, suggesting that selection for resistance did not drastically alter patterns of plasticity (Figure 3C, Figure S3).

Discussion

Here, we have shown that the gene expression plasticity of *Ipomoea purpurea* after glyphosate application shows patterns consistent with being adaptive. The plastic gene expression changes we identified generally align in the same direction as evolved changes after artificial selection for increased herbicide resistance. These results differ from those of other systems, where maladaptive gene expression plasticity appears to be more common (Ghalambor et al. 2015; Huang and Agrawal 2016; Ho and Zhang 2018; Ho and Zhang 2019). There are a number of potential explanations for this difference. First, the population studied here may exist in a set of conditions where plasticity is predicted to be adaptive (Reed et al. 2010; Price et al. 2003; Sultan and Spencer 2002; Scheiner 1993). For example, the ancestors of the lines used in this study were collected in 2000, after experiencing intermittent glyphosate application for at least 8 years (Baum and Mauricio 2004), so fluctuating selection from herbicide use may have selected for plastic responses to herbicide. In addition, tolerance and resistance to glyphosate were present in *I. purpurea* before the use of glyphosate, suggesting that these plastic traits may be pleiotropic with plastic responses to other stresses (Baum and Mauricio 2010). While in agricultural settings, herbicide is generally applied once per generation, the timing of application could vary year-by-year relative to weed developmental timing. If the physiological effects of herbicide differ across development, this treatment could contribute to fluctuating selection, a process that can select for adaptive plasticity (Ghalambor et al. 2007).

There are a number of potential consequences of widespread adaptive plasticity. Adaptive plasticity could facilitate adaptation to new conditions by allowing populations to persist long enough for adaptation to occur but it could also hinder local adaptation by masking genetic variation from selection (Ghalambor et al. 2007). Which process occurs depends on how close the plastic response is to the phenotypic optimum (Ghalambor et al. 2007;
In summary, we have shown that *I. purpurea* gene expression responds plastically to herbicide application and evolutionarily to selection for resistance. Crucially, plastic expression responses generally go in the same direction as evolved responses, consistent with the idea that this plasticity is adaptive. We also showed that consistent selection for resistance can increase plasticity, suggesting plasticity is a key component of herbicide resistance in *I. purpurea*. All together, this work demonstrates the importance of adaptive plasticity for the evolution of resistance to environmental stressors.

ACKNOWLEDGMENTS

We thank Jim Leebens-Mack for help with assembly and annotation of the *I. purpurea* reference genome, McKena Lipham and Maya Wilson Brown for research assistance, and Yuheng Huang, Matt Osmond, John Stinchcombe, Sophie Buysse, the Whitehead lab, and two anonymous reviewers for helpful suggestions. This work was funded by Michigan State University, the University of Michigan, and USDA NIFA grants 24892 & 28497 to RSB.

CONFLICTS OF INTEREST

The authors declare no conflict of interest.

DATA ARCHIVING

The data that support the findings of this study are openly available at the Sequence Read Archive, project number PRJNA515629. All code used in the analysis is available at https://github.com/emjosephs/morning-glory and archived at https://doi.org/10.5281/zenodo.4783595.

LITERATURE CITED

An, J., X. Shen, Q. Ma, C. Yang, S. Liu, and Y. Chen. 2014. Transcriptome profiling to discover putative genes associated with paraquat resistance in goosegrass (*Eleusine indica* L.). PLoS One 9:e99940.

Anders, S., and W. Huber. 2010. Differential expression analysis for sequence count data. Genome. Biol 11:R106.

Baucom, R. S. 2019. Evolutionary and ecological insights from herbicide-resistant weeds: what have we learned about plant adaptation, and what is left to uncover? New. Phytol 223:68–82.

Baucom, R. S., S. M. Chang, J. M. Kniskern, M. D. Rausher, and J. R. Stinchcombe. 2011. Morning glory as a powerful model in ecological genomics: tracing adaptation through both natural and artificial selection. Heredity 107:377–385.

Baucom, R. S., and R. Mauricio. 2004. Fitness costs and benefits of novel herbicide tolerance in a noxious weed. Proc. Natl. Acad. Sci. 101:13386–13390.

Baucom, R. S., and R. Mauricio. 2008. The evolution of novel herbicide tolerance in a noxious weed: the geographic mosaic of selection. Evol. Ecol Available: https://link.springer.com/content/pdf/10.1007/s10682-007-9160-1.pdf

Baucom, R. S., and R. Mauricio. 2008. Constraints on the evolution of tolerance to herbicide in the common morning glory: resistance and tolerance are mutually exclusive. Evolution. 62:2842–2854.

Baythavong, B. S., and M. L. Stanton. 2010. Characterizing selection on phenotypic plasticity in response to natural environmental heterogeneity. Evolution. 64:2904–2920.
Belkhadir, Y., L. Yang, J. Hetzel, J. L. Dangl, and J. Chory. 2014. The growth-defense pivot: crisis management in plants mediated by LRR-RK surface receptors. Trends. Biochem. Sci 39:447–456.

Bergerelson, J., and C. B. Purrington. 1996. Surveying Patterns in the Cost of Resistance in Plants. Am. Nat 148:536–558.

Bradshaw, A. D. 1965. Evolutionary significance of phenotypic plasticity in plants. Adv. Genet 13:115–155.

Bullard, J. H., E. Purdom, K. D. Hansen, and S. Dudoit. 2010. Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. BMC Bioinformatics 11:94.

Chen, Y., A. T. L. Lun, and G. K. Smyth. 2016. From reads to genes to pathways: differential expression analysis of RNA-Seq experiments using Rsubread and the edgeR quasi-likelihood pipeline. F1000Res 5:1438.

Chevin, L. M., and R. Lande. 2010. When do adaptive plasticity and genetic evolution prevent extinction of a density-regulated population? Evolution 64:1143–1150.

Debban, C. L., S. Okum, K. E. Pieper, A. Wilson, and R. S. Baucom. 2015. An examination of fitness costs of glyphosate resistance in the common morning glory, Ipomoea purpurea. Ecol. Evol 5:5284–5294.

Delye, C., M. Jasieniuk, and V. Le Corre. 2013. Deciphering the evolution of herbicide resistance in weeds. Trends. Genet 29:649–658.

Dobin, A., C. A. Davis, F. Schlesinger, J. Drenkow, C. Zaleski, S. Jha, et al. 2013. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21.

Dudley, S. A., and J. Schmitt. 1996. Testing the Adaptive Plasticity Hypothesis: density-Dependent Selection on Manipulated Stem Length in Impatiens capensis. Am. Nat 147:445–465.

Duhoux, A., S. Carrère, J. Gouzy, L. Bonin, and C. Delye. 2015. RNA-Seq analysis of rye-grass transcriptomic response to an herbicide inhibiting acetolactate-synthase identifies transcripts linked to non-target-site-based resistance. Plant. Mol. Biol 87:473–487.

Fang, Z., A. M. Gonzales, M. L. Durbin, K. K. T. Meyer, B. H. Miller, K. M. Volz, et al. 2013. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21.

Ffrench-Constant, R. H. 2013. The molecular genetics of insecticide resistance. Genetics 194:807–815.

Ffrench-Constant, R. H., and C. Bass. 2017. Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct. Ecol 21:394–407.

Gupta, S., A. Harkess, A. Soble, M. Van Etten, J. Leebens-Mack, and R. S. Baucom. 2021. Inter-chromosomal linkage disequilibrium and linked fitness cost loci influence the evolution of non-target site herbicide resistance in an agricultural weed. bioRxiv p. 2021.04.04.438381. https://doi.org/10.1101/2021.04.04.438381

Ho, W. C., and J. Zhang. 2018. Evolutionary adaptations to new environments generally reverse plastic phenotypic changes. Nat. Commun 9:350.

Ho, W. C., and J. Zhang. 2019. Genetic gene expression changes during environmental adaptations tend to reverse plastic changes even after the correction for statistical nonindependence. Mol. Biol. Evol https://doi.org/10.1093/molbev/msz002

Hodgins-Davis, A., and J. P. Townsend. 2009. Evolving gene expression: from G to E to G × E. Trends. Ecol. E24:649–658.

Huang, Y., and A. F. Agrawal. 2016. Experimental Evolution of Gene Expression and Plasticity in Alternative Selective Regimes. PLoS. Genet 12:e1006336.

Josephs, E. B. 2018. Determining the evolutionary forces shaping G × E. New Phytol 219:31–36.

Kawekki, T. J., R. E. Lenski, D. Ebert, B. Hollis, I. Olivier, and M. C. Whitlock. 2012. Experimental evolution. Trends. Ecol. E27:547–560.

Kohlhase, D. R., J. A. O’Rourke, M. D. K. Owen, and M. A. Graham. 2019. Using RNA-seq to characterize responses to 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitor herbicide resistance in waterhemp (Amaranthus tuberculatus). BMC Plant. Biol 19:182.

Kuester, A., S. M. Chang, and R. S. Baucom. 2015. The geographic mosaic of herbicide resistance evolution in the common morning glory, Ipomoea purpurea: evidence for resistance hotspots and low genetic differentiation across the landscape. Evol Appl 8:821–833.

Kuester, A., E. Fall, S. M. Chang, and R. Baucom. 2016. Shifts in outcrossing rates and changes to floral traits are associated with the evolution of herbicide resistance in the common morning glory. bioRxiv p. 061689. https://doi.org/10.1101/061689

Kusmec, A., N. de Leon, and P. S. Schnable. 2018. Harnessing Phenotypic Plasticity to Improve Maize Yields. Front. Plant. Sci 9:1377.

Law, C. W., Y. Chen, W. Shi, and G. K. Smyth. 2014. voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome. Biol 15:R29.

Leslie, T., and R. S. Baucom. 2014. De novo assembly and annotation of the transcriptome of the agricultural weed Ipomoea purpurea uncovers gene expression changes associated with herbicide resistance. G3 4:2035–2047.

Leung, C., M. Rescan, D. Grulois, and L. M. Chevin. 2020. Reduced phenotypic plasticity evolves in less predictable environments. Ecol. Lett https://doi.org/10.1111/ele.13598

Li, H., B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, et al. 2009. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25:2078–2079.

Liao, Y., G. K. Smyth, and W. Shi. 2019. The R package Rsubread is easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads. Nucleic. Acids. Res 47:e47.

Lovell, J. T., S. Schwartz, D. B. Lowry, E. V. Shakirov, J. E. Bonnette, X. Weng, et al. 2016. Drought responsive gene expression regulatory divergence between upland and lowland ecotypes of a perennial C4 grass. Genome. Res https://doi.org/10.1101/gr.198135.115

Mallard, F., A. M. Jakšić, and C. Schlötterer. 2018. Contesting the evidence for non-adaptive plasticity. Nature 555:E21–E22.

McKenna, A., M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis, A. Kerns, et al. 2010. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome. Res 20:1297–1303.

Mi, H., A. Muruganujan, D. Ebert, X. Huang, and P. D. Thomas. 2019. Panther version 14: more genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic. Acids. Res 47:D419–D426.

Paaby, A. B., and M. V. Rockman. 2014. Cryptic genetic variation: evolution’s hidden substrate. Nat. Rev. Genet 15:247–258.

Phipson, B., S. Lee, I. J. Majewski, W. S. Alexander, and G. K. Smyth. 2016. Robust hyperparameter estimation protects against hypervariable genes and improves power to detect differential expression. Ann. Appl. Stat 10:946–963.

Powles, S. B., and Q. Yu. 2010. Evolution in action: plants resistant to herbicides. Annu. Rev. Plant. Biol 61:317–347.

Price, T. D., A. Qvarnström, and D. E. Irwin. 2003. The role of phenotypic plasticity in driving genetic evolution. Proc. Biol. Sci 270:1433–1440.
Supporting Information

Additional supporting information may be found online in the Supporting Information section at the end of the article.

Figure S1: Plastic responses to herbicide spray 8 and 32 hours after treatment

The x axis shows the log-fold difference in expression in sprayed and unsprayed conditions 8 hours after treatment and the y axis shows the same value 32 hours after treatment. The black dotted line shows a line with a slope of 1 and intercept of 0. The correlation coefficient is 0.616. All genes are shown.

Figure S2: Adaptive and maladaptive expression plasticity at 8 hours (A) and 32 hours (B) after herbicide treatment

In both panels, the x axis shows plastic responses to glyphosate, specifically the log fold change in expression between sprayed and nonsprayed conditions where positive values indicate increased expression in herbicide spray. The y axis shows the log fold difference in expression between lines selected for increased resistance to herbicide and lines that were not selected ('original lines'), where positive values indicate increased expression in the resistance selection lines. Each point represents a gene and all genes where there was both a significant plastic and an evolved response are shown (FDR < 0.1).

Van der Does, D., F. Boutrot, T. Engelsdorf, J. Rhodes, J. F. McKenna, S. Vernhettet, et al. 2017. The Arabidopsis leucine-rich repeat receptor kinase MIK2/LRR-KISS connects cell wall integrity sensing, root growth and response to abiotic and biotic stresses. PLoS Genet 13:e1006832.

Van Etten, M. L., A. Kuester, S. M. Chang, and R. S. Baucom. 2016. Fitness costs of herbicide resistance across natural populations of the common morning glory. Ipomoea purpurea. Evolution. 70:2199–2210.

Van Etten, M. L., A. Soble, and R. S. Baucom. 2021. Variable inbreeding depression may explain associations between the mating system and herbicide resistance in the common morning glory. Mol. Ecol https://doi.org/10.1111/mec.15852

van Gestel, J., and F. J. Weissing. 2018. Is plasticity caused by single genes? Nature 555:E19–E20.

Via, S., R. Gomulkiewicz, G. De Jong, S. M. Scheiner, C. D. Schlichting, and P. H. Van Tienderen. 1995. Adaptive phenotypic plasticity: consensus and controversy. Trends. Ecol. E 10:212–217.

Wagner, M. R., and T. Mitchell-Olde. 2018. Plasticity of plant defense and its evolutionary implications in wild populations of Boehcera stricta. Evolution. 72:1034–1049.

Weis, A. E., and W. L. Gorman. 1990. Measuring Selection on Reaction Norms: an Exploration of the Eurosta-solidagno System. Evolution. 44:820–831.

Wright, A. A., R. Sasidharan, L. Koski, M. Rodriguez-Carres, D. G. Petersson, V. K. Nandula, et al. 2018. Transcriptomic changes in Echinocloa colona in response to treatment with the herbicide imazamox. Planta 247:369–379.

Zhang, S., Y. Liu, and B. Yu. 2014. PRL1, an RNA-binding protein, positively regulates the accumulation of miRNAs and siRNAs in Arabidopsis. Proc Natl Acad. Sci. U. S. A 111:13123–13128.

Zhao, N., W. Li, S. Bai, W. Guo, G. Yuan, F. Wang, et al. 2017. Transcriptional Profiling to Identify Genes Involved in Mesosulfuron-Methyl Resistance in Alopecurus aequalis. Front. Plant. Sci 8:1391.