Relativistic force-free electrodynamic simulations of neutron star magnetospheres

Jonathan C. McKinney*

Institute for Theory and Computation, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS 51, Cambridge, MA 02138, USA

Accepted 2006 January 18; Received 2006 January 18; in original form 2005 December 8

ABSTRACT

The luminosity and structure of neutron star magnetospheres are crucial to our understanding of pulsar and plerion emission. A solution found using the force-free approximation would be an interesting standard with which any model with more physics could be compared. Prior quasi-analytic force-free solutions may not be stable, while prior time-dependent magnetohydrodynamic models used unphysical model parameters. We use a time-dependent relativistic force-free electrodynamics code with no free parameters to find a unique stationary solution for the axisymmetric rotating pulsar magnetosphere in a Minkowski space–time in the case of no surface currents on the star. The solution is similar to the force-free quasi-analytic solution found in 1999 by Contopoulos, Kazanas & Fendt and the numerical magnetohydrodynamic solution found in 2006 by Komissarov. The magnetosphere structure and the usefulness of the classical y-point in the general dissipative regime are discussed. The pulsar luminosity is found to be $L \approx 0.99 \pm 0.01 \mu^2 \Omega^4 / c^3$ for a dipole moment $\mu$ and stellar angular frequency $\Omega$. 

Key words: relativity – stars: pulsars: general – stars: winds, outflows.

1 INTRODUCTION

Neutron star magnetospheres are suspected to have large regions of space that are nearly force-free (Goldreich & Julian 1969; Ruderman & Sutherland 1975). Self-consistent quasi-analytic solutions exist that describe the force-free (and some magnetohydrodynamic) parts of the environment of such systems (see e.g. Contopoulos et al. 1999; Goodwin et al. 2004; Gruzinov 2005). Quasi-analytic methods cannot test the stability of their solutions and there is little hope to study the general non-aligned rotator.

Recently, Spitkovsky (2004) and Komissarov (2006) used a time-dependent numerical code to directly integrate the force-free and MHD equations of motion. Komissarov (2006) considered their force-free solution unphysical due to the uncontrolled fast reconnection in the current sheet that led to closed field lines far beyond the light cylinder. The MHD model of Komissarov (2006) had no such defect, but they were forced to introduce unphysical evolution equations and parameters (see their section 4.2) in order to avoid numerical errors and strong unphysical features. They found a stationary MHD solution that may be unique, but they were uncertain whether their solution depended upon the unphysical model parameters.

We investigate axisymmetric neutron star magnetospheres by integrating the force-free equations of motion using a newly developed general relativistic force-free electrodynamics (GRFFE) extension (McKinney 2005d) to a general relativistic magnetohydrodynamics (GRMHD) code called HARM(Gammie, McKinney & Gábor Tóth 2003). The original GRMHD code has been successfully used to study GRMHD models of accretion flows, winds, and jets (Gammie et al. 2003; Gammie, Shapiro & McKinney 2004; McKinney & Gammie 2004; McKinney 2005a,b,c). The GRFFE formulation is a simple extension of HARM, so all the code developed for HARM is immediately useful and has identical convergence properties to the GRMHD version. We have shown that our GRFFE formulation is at least as accurate as the GRFFE formulation by Komissarov (2002, 2004) (McKinney 2005d). Parabolic spatial interpolation and fourth-order Runge–Kutta temporal integration are used to improve accuracy. Compared to that of Komissarov (2006), our force-free scheme is improved by significantly lowering the dissipation rate in current sheets by forcing numerically-induced velocities into current sheets to vanish. This eliminates all the difficulties encountered by Komissarov (2006).

Section 2 discusses the solution of the neutron star magnetosphere. Section 3 summarizes the results of the paper. The notation follows that of Misner et al. (1973) and the signature of the metric is $–+++$. Tensor components are given in a coordinate basis. The components of the tensors of interest are given by $F^{\mu\nu}$ for the Faraday tensor, $T^{\mu\nu}$ for the dual of the Faraday, and $T^{\mu\nu}$ for the stress-energy tensor. The field angular frequency is $\Omega \equiv \Omega / \Psi$. The poloidal magnetospheric structure is defined by the $\phi$-component of the vector potential ($A_{\phi} \equiv \Psi$). The current system is defined by the current density ($J$) and the polar enclosed current ($B_{\phi} \equiv B_{\phi}^\mu \approx F_{\mu\phi}$).

*E-mail: jmckinney@cfa.harvard.edu

© 2006 The Author. Journal compilation © 2006 RAS
The electromagnetic luminosity is \( L \equiv -2\pi \int d\phi T_r r^2 \sin \theta \). See Gammie et al. (2003), McKinney & Gammie (2004) and McKinney (2005d) for details.

2 NEUTRON STAR MAGNETOSPHERE

Here the implementation details and the solution to the neutron star magnetosphere are discussed. It is most useful to the community if a similar model to that chosen by Komissarov (2006) is studied and compared. This will show that one can study pulsar magnetospheres in the force-free limit using time-dependent numerical models. Despite the unphysical parameters introduced by Komissarov (2006), our solutions are similar.

The only additional note is that we and Komissarov choose a solution with no surface currents on the stellar surface as a result of the choice of relaxed boundary conditions that we both make. This corresponds to, e.g., a neutron star with a crust in shear equilibrium (see e.g. Ruderman, Zhu & Chen 1998). Other boundary conditions may lead to other solutions.

2.1 Initial and boundary conditions

As in Komissarov (2006), the magnetic field is approximated as an aligned dipolar field and the space–time is approximated as Minkowski. The poloidal field at \( t = 0 \) (and for all time for \( B^r \)) is set to be the perfect dipole, with

\[
A_\phi = \frac{B_{\text{pole}}}{2r} R_\star^3 \sin^2 \theta = \frac{\mu}{r} \sin^2 \theta, \tag{1}
\]

where the magnetic dipole moment is \( \mu = B_{\text{pole}} R_\star^3 / 2 \) for a polar magnetic field strength \( B_{\text{pole}} \) and stellar radius \( R_\star \).

As in Komissarov (2006), the initial conditions are arbitrarily chosen to have a velocity of \( v^\phi = 0 \) and \( B^\phi = 0 \), and the proceeding violent non-stationary evolution eventually relaxes to a steady-state solution. Thus, any solution found must be a stable solution. As in Komissarov (2006), the model is evolved for 55 light cylinder times.

A steady-state solution with no discontinuities or surface currents on the stellar surface is found by choosing boundary conditions determined by an analysis of the Grad-Shafranov equation (see e.g. Bogovalov 1997, Beskin 1997). One is required to specify two constraints and to fix the magnetic field component perpendicular to the star. As in Komissarov (2006), \( E_\phi = F_{\phi\phi} = 0 \), \( \Omega_F = \Omega_\star \) and \( B^r \) are fixed in time, where \( \Omega_\star \) is the stellar angular velocity. This assumes the particle acceleration gap is negligible, which is not generally true (see e.g. Mestel & Shibata 1994). The velocity obeys the frozen-in conditions (see equation 46 in McKinney 2005d) in steady-state and axisymmetry.

Komissarov (2006) set the radius of the star to be \( R_\star = 0.1 R_c \), where \( R_c = c / \Omega_F = c / \Omega_\star \) is the light cylinder. For \( R_\star = 10 \) km, this means they chose a spin period of \( \tau \approx 2.1 \) ms or \( \Omega_\star \approx 0.0207 \) c/GM for a neutron star with \( M = 1.44 \) M\(_\odot\). We choose a similar frequency of \( \Omega_\star \approx 0.0216c / \text{GM} \) such that the light cylinder is at \( R_l = 46.3 \text{GM} / c^2 \).

In practice, \( B^r \) and \( \Omega_F = \Omega_\star \) are fixed, while \( B^\phi \) and \( \Omega_\phi \) are parabolically extrapolated into the neutron star surface from the computational domain. For a stationary, axisymmetric force-free solution, one can show that the field geometry completely determines the velocity (see equation 47 in McKinney 2005d). For arbitrary field components \( B^\phi \), this prescription for \( v^\phi \) always leads to a time-like velocity within the light ‘cylinders’ (McKinney 2005d).

The polar axis boundary condition is such that the perpendicular fluxes vanish. The outer boundary condition is obtained by extrapolating the field into the boundary zones and setting the velocity as described above, although the outer boundary is chosen to be far away to avoid reflections back on to the solution. In the event that there is a flux from the outer boundary into the computational grid, that flux is set to zero.

2.2 Coordinates

The computation is performed on a set of uniform rectangular coordinates described by the vector field \( x^{(\alpha)} \), where each uniform coordinate is arbitrarily mapped to e.g., t, r, \( \theta, \phi \) in spherical polar coordinates. Apart from the ability of the code to avoid significant numerical dissipation, the ability to choose an arbitrary \( \theta \) grid is crucial to obtain an accurate solution around the equatorial current sheet.

The radial coordinate is chosen to be

\[
r = R_0 + e^{(1)}, \tag{2}
\]

where \( R_0 \) is chosen to concentrate the grid zones toward the surface (as \( R_0 \) is increased from 0 to \( R_\star \)). An inner radius of \( R_{\text{in}} = R_\star \), an outer radius of \( R_{\text{out}} = 2315 \text{GM} / c^2 \) (50 light cylinders as in Komissarov 2006), and \( R_0 = 0.903 R_\star \) are used.

The \( \theta \) coordinate is chosen to be

\[
\theta = \pi x^{(2)} + \frac{1}{2} [1 - h(r)] \sin[2\pi x^{(2)}], \tag{3}
\]

where \( x^{(2)} \) labels an arbitrary uniform coordinate and \( h(r) \) is used to concentrate grid zones toward or away from the equator. The wide dead zone in inner-radial regions and the current sheet in outer-radial regions are both resolved using

\[
h(r) = \left[ \frac{1}{2} + \frac{1}{\pi} \tan\left(\frac{r - r_s}{r_0}\right) \right] (h_{\text{outer}} - h_{\text{inner}}) + h_{\text{inner}}, \tag{4}
\]

where \( h_{\text{inner}} = 1.8, h_{\text{outer}} = 0.05h_{\text{inner}}, r_0 = 5\text{GM} / c^2 \) and \( r_s = 15\text{GM} / c^2 \).

Different resolutions were chosen to test convergence. In terms of radial versus \( \theta \)-resolution, we used \( 64 \times 64, 80 \times 64, 80 \times 128, 80 \times 256, 80 \times 128, 160 \times 128 \) and \( 160 \times 256 \), and finally for the fiducial model we used \( 480 \times 256 \) to reach a similar resolution of Komissarov (2006), who used \( 496 \times 244 \) for their final resolution. We find that all quantities have converged to within 1–5 per cent at our highest resolution, where the exact percentage depends on the quantity.

2.3 Magnetosphere solution

First, the code is checked that the solution reaches a steady-state. The solution does reach a well-defined steady-state by about \( \tau \sim 1000 \text{GM} / c^4 \), or after about 20 light cylinder light-crossing times, out to about \( r \sim 1000 \text{GM} / c^4 \) for all of the domain except within the equatorial current sheet. The part of the equatorial current sheet that connects to the closed zone undergoes slow, small-amplitude oscillations. The frequency of these oscillations is proportional to the reconnection rate allowed by our dissipation model, while the amplitude is inversely proportional to the reconnection rate. Based upon the timing of the oscillations, the fiducial model has a reconnection period of \( \sim 10 \) ms near the light cylinder. In the limit of an unlimited dissipation rate, there are no oscillations and the magnetosphere has a larger closed zone that extends somewhat beyond the light cylinder, similar to Komissarov (2006).

Secondly, the code is checked for proper integration. Since the neutron star has \( \Omega_\star = \Omega_F \) over the entire surface, then in axisymmetry and for a stationary flow, \( \Omega_F \) should be the same for all field...
Figure 1. The upper two lines show the value of $\Omega_f/\Omega_*$ as a function of $\theta$ for $r = 0.2R_L$ (solid line) and $r = 0.7R_L$ (dashed line) for 64 $\theta$ zones and 80 radial zones. Lower lines show $\Omega_f/\Omega_* = 0.2$ for 256 $\theta$ zones and 480 radial zones. This figure is directly comparable to lower panels in fig. 6 of Komissarov (2006).

Figure 2. Flux function $A_\theta$ in a box of size $3R_L \times 3R_L$ ($R_L$ is light cylinder), as in fig. 3 (upper left-hand panel) of Komissarov (2006). There are 80 contours from $A_\theta = 0$ (polar axis) to $A_\theta = \mu/R_*/9.57\mu\Omega_*/c$ (equator on star). A single thick solid contour has been added for the closed field line that touches the theoretical light cylinder. The vertical solid line is the theoretical light cylinder $R_L$.

Figure 3. Flux function $A_\theta$ for zoomed-in region of Fig. 2 around light cylinder. There are 80 contours from $A_\theta = 1.09\mu\Omega_*/c$ to $A_\theta = 1.80\mu\Omega_*/c$. The right-hand vertical line represents the theoretical light cylinder. The left-hand vertical line points to the field kink point at the equator.
between the field line and equator at the kink. This is similar to the solution found by Gruzinov (2005). As they found, we find that this result is independent of $\Omega_*$ since the solution is smooth through the surface. For the model being presented, the intersection of the kinked field line with the stellar surface is at $\theta_{kink} \approx 70^\circ$ between a horizontal line and the field line at the stellar surface. The kink intersects the equator at

$$r_{kink} \approx 43.08 \pm 0.05 GM/c^2 = 0.931 \pm 0.001 R_L,$$

which is quite close to the value of $kink$ field line with the stellar surface is at $\theta_{kink} \approx 70^\circ$ between a horizontal line and the field line at the stellar surface. The kink intersects the equator at $A_\theta \approx \Psi_{kink} = 1.35 \pm 0.01 \mu\Omega_*/c$, which is quite close to the value of $\Psi_{kink} = 1.36 \mu\Omega_*/c$ given by Contopoulos et al. (1999) and to the value of $\Psi_{yp} = 1.375 \pm 0.005 \mu\Omega_*/c$ given by Komissarov (2006). That the solution kinks before the theoretical light cylinder could be due to the lack of a perfect dipole (due to the light cylinder being close to the stellar surface), the remaining dissipation in the model, or it could be intrinsic to our stable model. A comparison of the numerical dissipative $y$-point and the theoretical dissipationless $y$-point (see e.g. Uzdensky 2003) is left for future work.

The first kinked field line appears around $r \approx 0.9 R_L$ in the fiducial model of Komissarov (2006), and this agrees with our results. Since the nature of the dissipation is quite different in each code, this suggests that our similarly chosen $\Omega_*$ and so the lack of a perfect dipole (rather than dissipation), is the reason why the first kinked field line appears inside the theoretical light cylinder. Otherwise, perhaps it is intrinsic to any stable solution.

Secondly, in Komissarov (2006) they define the ‘$y$-point’ value of the vector potential to be at the theoretical light cylinder when $\theta = \pi/2$, which we find to be

$$A_\theta |_{RL} \equiv \Psi_{\text{light}} = 1.27 \pm 0.01 \mu\Omega_*/c,$$

which is quite close to the value of $\Psi_{\text{separatrix}} \approx 1.27 \mu\Omega_*/c$ given by Gruzinov (2005) and similar to $\Psi_{\text{open}} = 1.265 \pm 0.005 \mu\Omega_*/c$ given by Komissarov (2006). Notice that the value of the $y$-point value by Komissarov (2006) is their $\Psi_{yp}$, which we defined as $\Psi_{\text{light}}$. One should compare our $\Psi_{\text{light}}$ to their $\Psi_{yp}$, which are the same measurement. However, while they get 1.37, we get 1.27 in units of $c = \Omega_*= \mu = 1$.

Thirdly, as in Komissarov (2006), the vector potential value continues to drop along the equator until $r > 5 R_L$ where their value just oscillates around $\Psi_{\text{open}} \approx 1.265 \pm 0.005 \mu\Omega_*/c$. We find that such a measurement gives

$$A_\theta |_{\text{open}} \equiv \Psi_{\text{open}} = 1.226 \pm 0.005 \mu\Omega_*/c,$$

which is quite close to the value of $\Psi_{\text{open}} = 1.23 \mu\Omega_*/c$ given in Contopoulos (2005), close to $\Psi_{\text{open}} = 1.23 \mu\Omega_*/c$ given by Timokhin (2005a,b), and slightly different than the value given by Komissarov (2006). That the value given by Komissarov (2006) is larger means they have more open flux. Thus, one expects their luminosity to be larger, which is the case.

Of significant interest is the luminosity coefficient of the dipolar approximation. We find that the luminosity is

$$L \approx 0.99 \pm 0.01 \mu^2\Omega_*/c^2$$

This result for $L$ agrees with the result by Gruzinov (2005) and Timokhin (2005a,b), despite the detailed differences in the location of the kink-point, $y$-point, or the amount of open flux versus closed flux. Since energy is explicitly conserved in our numerical method, the energy flux through each radius follows this same formula for the entire region that has reached a steady-state and does not violate force-free, unlike in Komissarov (2006) where energy is not explicitly conserved. Note that for a lower resolution model, e.g. 160 radial zones by 128 $\theta$ zones, that $L \approx 1.10 \pm 0.05$ in units with $\mu = \Omega_*= c = 1$, which is quite similar to the result by Komissarov (2006). Given that our code with 64 $\theta$ zones generated less error in $\Omega_*$ than even their model with 244 $\theta$ zones, then it is likely that their solution with $496 \times 244$ radial versus $\theta$ zones is simply not as converged as our solution with $480 \times 256$ zones. However, the agreement between our force-free model and their ideal MHD model is impressive given the many physical parameters they had to introduce to keep the solution realistic and the code stable (see their Section 4.2).

Fig. 4 shows the large-scale structure of the field at the final time of $55 R_L/c$ out to $30 R_L$. There are 40 contours from $A_\theta = 0$ to $A_\theta = 1.41 \mu\Omega_*/c$. The field is essentially monopolar. This is similar to Komissarov (2006), although a reconnection event and plasmoid motion disrupts their field at $r \sim 23 R_L$.

A contour plot of the pulsar current function $B_{\phi}$ shows that the quantity follows field lines and has a significant current increase across the separatrix. A plot of the current structure agrees with the classical model of pulsar current closure and with Komissarov (2006). To gain quantitative insight, Fig. 5 shows the pulsar current function versus the pulsar flux function, which is a similar plot to fig. 4 in Komissarov (2006). We find that

$$\Psi_{\text{max}} = 1.07 \mu\Omega_*/c \quad \text{at} \quad B_{\phi} = \pm 1.05 \mu\Omega_*/c^2$$

when $r = 1.1 R_L$. This is similar to the distribution shown by Contopoulos et al. (1999) and is also similar to fig. 4 in Komissarov (2006).

3 CONCLUSIONS

A stationary force-free solution is found for the neutron star magnetosphere with a dipolar surface field in Minkowski space–time
with no stellar surface current. The luminosity follows the standard dipolar luminosity with a coefficient determined accurately to be $k = 0.99 \pm 0.01$.

The difficulties encountered by Komissarov (2006) in the force-free regime were avoided, and the unphysical parameters they introduced in the MHD regime were avoided. Their MHD solution is similar to our force-free solution, which suggests that the solution Komissarov and we find is accurate, stable, and may be unique.

ACKNOWLEDGMENTS

This research was supported by NASA-Astrophysics Theory Program grant NAG5-10780 and a Harvard CfA Institute for Theory and Computation fellowship. I thank Serguei Komissarov and Dmitri Uzdensky for useful comments. Similar work by Anatoly Spitkovsky is in progress.

REFERENCES

Beskin V. S., 1997, Uspekhi Fizicheskikh Nauk, 40, 659
Bogovalov S. V., 1997, A&A, 323, 634
Contopoulos I., 2005, A&A, 442, 579
Contopoulos I., Kazanas D., Pudritz R. E., 1999, ApJ, 511, 351
Gammie C. F., McKinney J. C., Gabor T., 2003, ApJ, 589, 444
Gammie C. F., Shapiro S. L., McKinney J. C., 2004, ApJ, 602, 312
Goldreich P., Julian W. H., 1969, ApJ, 157, 869
Goodwin S. P., Mestel L., Wright G. A. E., 2004, MNRAS, 349, 213
Gruzinov A., 2005, Phys. Rev. Lett., 94, 021101
Komissarov S. S., 2002, MNRAS, 336, 759
Komissarov S. S., 2004, MNRAS, 350, 427
Komissarov S. S., 2006, MNRAS, 367, 19
McKinney J. C., 2003a, ApJ, 603, L5
McKinney J. C., 2003b, ApJ, submitted (astro-ph/0306369)
McKinney J. C., 2003c, ApJ, submitted (astro-ph/0306368)
McKinney J. C., 2006, MNRAS, in press (doi:10.1111/j.1365-2966.2005.0987.x) (astro-ph/0601410)
McKinney J. C., Gammie C. F., 2004, ApJ, 611, 977
Mestel L., Shibata S., 1994, MNRAS, 271, 621
Misner C. W., Thorne K. S., Wheeler J. A., 1973, Gravitation. W. H. Freeman and Co., San Francisco
Ruderman M. A., Sutherland P. G., 1975, ApJ, 196, 51
Ruderman M. A., Sutherland P. G., 1975, ApJ, 196, 51
Spitkovsky A., 2004, in Camilo, Gaensler B. M., eds, Proc. IAU Symp. 218, Young Neutron Stars and their Environments. Cambridge Univ. Press, Cambridge, p. 357
Timokhin A. N., 2005a, in Bulik T., Rudak B., Madejski G., eds, AIP Conf. Proc. Vol. 801, Astrophysical Sources of High Energy Particles and Radiation. Am. Inst. Phys., New York, p. 330
Timokhin A. N., 2005b, MNRAS, submitted (astro-ph/0511817)
Uzdensky D. A., 2003, ApJ, 598, 446

This paper has been typeset from a \TeX/LaTeX file prepared by the author.