Quasilinear Schrödinger equations with concave and convex nonlinearities

Shibo Liu · Li-Feng Yin

Received: 1 November 2022 / Accepted: 5 January 2023 / Published online: 3 February 2023
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract
In this paper, we consider the following quasilinear Schrödinger equation

$$-\Delta u - u \Delta (u^2) = k(x) |u|^{q-2} u - h(x) |u|^{s-2} u, \quad u \in D^{1,2}(\mathbb{R}^N),$$

where $1 < q < 2 < s < \infty$. Unlike most results in the literature, the exponent s here is allowed to be supercritical $s > 2 \cdot 2^*$. By taking advantage of geometric properties of a nonlinear transformation f and a variant of Clark’s theorem, we get a sequence of solutions with negative energy in a space smaller than $D^{1,2}(\mathbb{R}^N)$. Nonnegative solution at negative energy level is also obtained.

1 Introduction

In this paper we consider quasilinear stationary Schrödinger equations of the form

$$\begin{cases}
-\Delta u - u \Delta (u^2) = k(x) |u|^{q-2} u - h(x) |u|^{s-2} u, \\
u \in D^{1,2}(\mathbb{R}^N),
\end{cases}$$

(1.1)

where $1 < q < 2 < s < \infty$. This kind of equations arise when we are looking for standing waves $\psi(t, x) = e^{-i\omega t} u(x)$ for the time dependent quasilinear Schrödinger equation

$$i \psi_t = -\Delta \psi - \psi \Delta (|\psi|^2) - \tilde{g}(x, |\psi|^2) \psi, \quad (t, x) \in \mathbb{R} \times \mathbb{R}^N.$$

Quasilinear Schrödinger equations have captured great interest in the last two decades because they model several important physical phenomena including superfluid film in plasma...
physics, self-trapped electrons in quadratic or hexagonal lattices, see [1, 2] and references therein for more details.

The problem (1.1) possesses a variational structure. Formally, it is the Euler–Lagrange equation of the functional

\[
J(u) = \frac{1}{2} \int (1 + 2u^2) |\nabla u|^2 - \frac{1}{q} \int k |u|^q + \frac{1}{s} \int h |u|^s,
\]

where from now on all integrals are taken over \(\mathbb{R}^N\) unless stated explicitly. However, \(J\) can only be defined on a proper subset of \(D^{1,2} (\mathbb{R}^N)\), hence the standard variational methods could not be applied. To overcome this difficulty, Liu et al. [3] and Colin–Jeanjean [4] introduced a nonlinear transformation \(f\) which converts the quasilinear problem into a semilinear one, and enables us to work with a \(C^1\)-functional

\[
\Phi(v) = J(f(v)) = \frac{1}{2} \int |\nabla v|^2 - \frac{1}{q} \int k |f(v)|^q + \frac{1}{s} \int h |f(v)|^s
\]

defined on the whole Sobolev space. Since then, many results about quasilinear Schrödinger equations appear, mainly for 4-superlinear nonlinearities, see [5–8].

In this paper, we study quasilinear Schrödinger equations whose nonlinearity is a combination of concave and convex terms. Elliptic boundary value problems involving concave and convex terms have attracted great attention since the pioneering work of Ambrosetti–Brezis–Cerami [9] and Bartsch–Willem [10] on semilinear problems on bounded domain. However, relatively less have been done for quasilinear Schrödinger equations. It seems that do Ó and Severo [11] is the first work in this direction, see [12] for a more recent result. To apply variational methods, in [11, 12] and most papers on quasilinear Schrödinger equations, the nonlinearity \(g(x, u)\) can at most grow critically, that is

\[
|g(x, u)| \leq C (1 + |u|^{2* - 2})^2,
\]

here \(2^* = 2N/(N - 2)\) is the critical Sobolev exponent. It was pointed out in [3, Remark 3.13] that the exponent \(2 \cdot 2^*\) behaves like a critical exponent for (1.1). The nonlinearities in the above mentioned papers on quasilinear Schrödinger equations are subcritical. For the critical case, one can consult [13–15] and references therein.

On the contrary, in our problem (1.1), no restriction on the power \(s\) is imposed: \(s\) can be greater than \(2 \cdot 2^*\), in this case the nonlinear term \(h(x) |u|^{s - 2} u\) is supercritical. There are also a few papers about supercritical problems, see e.g. [16, 17]. To study supercritical problems, one applies variational methods to get solutions of the subcritical problem obtained by modifying \(g(x, u)\) for \(|u|\) large, then perform \(L^\infty\)-estimate to show that the solutions for the truncated problem have small \(L^\infty\)-norm, therefore they are solutions of the original problem. We can see that \(L^\infty\)-estimate is a crucial step for this approach. Our approach for getting solutions of (1.1) does not require truncation and \(L^\infty\)-estimate.

Removing the quasilinear term \(u \Delta (u^2)\) from (1.1), our equation reduces to a semilinear elliptic equation on \(\mathbb{R}^N\), which was studied by Tonkes [18]. However, in [18] \(s \leq 2^*\) is still required. The result of Tonkes [18] was extended by Liu–Li [19], where a corresponding \(p\)-Laplacian problem is considered, and \(s\) can be greater than the critical Sobolev exponent \(p^*\). Naturally, our strategy to study the supercritical quasilinear problem (1.1) is motivated by Liu and Li [19]. However, due to the above mentioned nonlinear transformation \(f\), more delicate analysis is needed. We will see that the geometric properties of \(f\) play an essential role in our investigation.
To state our result, for $p \in (1, \infty)$ we denote

$$p_0 = \frac{2N}{2N - p(N - 2)}, \quad p' = \frac{p}{p - 1}.$$

Note that p' is the Hölder conjugate exponent of p.

Theorem 1.1 Assume that

\((k)\) \(k \in L^{q_0}(\mathbb{R}^N) \cap L^\infty(\mathbb{R}^N), k \geq 0, k \neq 0,\)
\(\)\(\) \(\)\(\)
\((h)\) \(h \in L^1(\mathbb{R}^N) \cap L^\infty(\mathbb{R}^N), h \geq 0\)
\(\)\(\)\(\)\(\)
are satisfied, then the problem \((1.1)\) has a sequence of solutions \(\{u_n\}\) such that the energy \(J(u_n) < 0\) and \(J(u_n) \to 0\) as \(n \to \infty\).

Theorem 1.2 Under the assumptions \((k)\) and \((h)\), the problem \((1.1)\) has a nonegative solution \(u\) such that \(J(u) < 0\).

Remark 1.3 Our Theorem 1.2 is closely related to Miyagaki and Moreira [20], where for \(4 \leq q < s < \infty\), the following problem

$$-\Delta u - \Delta (u^2) = \lambda u + k(x) |u|^{q-2} u - h(x) |u|^{s-2} u, \quad u \in H^1_0(\Omega)$$

on a bounded domain \(\Omega\) is considered; for \(\lambda \in (\lambda^*, \bar{\lambda})\), a nonnegative solution (at negative energy level) is obtained by the Ekeland variational principle and the sub-super solution method.

The paper is organized as follows. In Sect. 2 we review the definition of the transformation \(f\) and present some of its properties which are needed in this paper. Since the exponent \(s\) in \((1.1)\) can be greater than the critical Sobolev exponent \(2 \cdot 2^*\), instead of the usual Sobolev spaces \(H^1(\mathbb{R}^N)\) or \(D^{1,2}(\mathbb{R}^N)\), we introduce a new space \(E\) as the foundation of our functional framework. In Sect. 3 we investigate the geometry and compactness of our energy functional \(\Phi: E \to \mathbb{R}\) and prove our theorems via minimization argument and a variant of Clark’s theorem proved in [21].

2 Variational framework

Following Colin and Jeanjean [4] and Liu et al. [3], we make the change of variables by \(u = f(v)\), where \(f\) is an odd function defined by

$$f'(t) = \frac{1}{\sqrt{1 + 2f^2(t)}}, \quad f(0) = 0$$

on \([0, +\infty)\). The proof of the following proposition can be found in [4, 22] [some of them are obvious from \((2.1)\)].

Proposition 2.1 The function \(f\) possesses the following properties:

1. \(f \in C^\infty(\mathbb{R})\) is strictly increasing, therefore is invertible.
2. \(|f(t)| \leq |t|, \quad f'(0) = 1, \quad |f'(t)| \leq 1\) for all \(t \in \mathbb{R}\).
3. \(\left| f(t)f'(t) \right| \leq 1, \quad |f(t)| \leq 2^{1/4} |t|^{1/2}\).
4. There exists a positive constant \(\mu\) such that

$$|f(t)| \geq \mu |t| \text{ for } |t| \leq 1, \quad |f(t)| \geq \mu |t|^{1/2} \text{ for } |t| \geq 1.$$

\(\square\) Springer
5. For all \(t \in \mathbb{R} \) we have \(f^2(t) \geq f(t) f'(t) t \geq \frac{1}{2} f^2(t) \).

Motivated by Liu and Li [19], let \(E \) be the completion of \(C_0^\infty(\mathbb{R}^N) \) under the norm
\[
\|v\| = \|v\|_D + \|h^{2/s} v\|_{s/2} = \left(\int |\nabla v|^2 \right)^{1/2} + \left(\int h |v|^{s/2} \right)^{2/s},
\]
where \(\|\cdot\|_D \) and \(\|\cdot\|_p \) are the standard \(D^{1,2} \)-norm and \(L^p \)-norm \((p \in [1, \infty])\), respectively. Note that if following Liu and Li [19] directly, one may tend to define the norm as
\[
\|v\| = \|v\|_D + |h^{1/s} v|.
\]
Our definition (2.3) takes the structure of (1.1) and the growth property \(|f(t)| \leq c |t|^{1/2} \) of \(f' \) into account. It turns out that this is the correct choice.

Remark 2.2 When \(h \equiv 0 \), our space \(E \) reduces to the standard Sobolev space \(D^{1,2}(\mathbb{R}^N) \).

To present the variational framework for our argument, we need the following lemma.

Lemma 2.3 If \(\phi \in C_0^\infty(\mathbb{R}^N) \), then
\[
\xi = \frac{\phi}{f'(v)} = \sqrt{1 + 2 f^2(v) \phi}
\]
belongs to \(E \).

Proof Take \(R > 0 \) such that \(\text{supp} \phi \subset B_R \), where \(B_R \) is the \(R \)-ball in \(\mathbb{R}^N \). Since
\[
(1 + 2 f^2(v))^{s/4} \leq C (1 + |v|^{s/2}),
\]
we have
\[
\left| \int h |\xi|^{s/2} \right| = \left| \int h (1 + 2 f^2(v))^{s/4} |\phi|^{s/2} \right|
\leq C |\phi|^{s/2} \int h (1 + |v|^{s/2})
\leq C |\phi|^{s/2} \left(|h|_1 + \int h |v|^{s/2} \right) < \infty. \quad (2.5)
\]
Now we estimate the \(D^{1,2} \)-norm of \(\xi \). Because \(v \in D^{1,2}(\mathbb{R}^N) \), we have \(v \in L^2_{\text{loc}}(\mathbb{R}^N) \), therefore
\[
\int |\nabla \xi|^2 \leq \int_{B_R} \left| (1 + 2 f^2(v))^{1/2} \nabla \phi + \frac{2 f(v) f'(v) \phi}{\sqrt{1 + 2 f^2(v)}} \nabla v \right|^2
\leq \int_{B_R} \left((1 + 2 v^2) |\nabla \phi|^2 + 4 |v| |\phi| |\nabla \phi| |\nabla v| + 4 \phi^2 |\nabla v|^2 \right)
\leq m \int_{B_R} \left((1 + 2 v^2) + 4 |v| |\nabla v| + 4 |\nabla v|^2 \right) < \infty,
\]
where \(m = (|\phi|_\infty + |\nabla \phi|_\infty)^2 \). Combining (2.5) and (2.6) we see that \(\xi \in E \). \(\square \)
By the growth properties of \(f \), it is easy to see that under our assumptions on \(k \) and \(h \), the functional

\[
\Phi(v) = J(f(v)) = \frac{1}{2} \int |\nabla v|^2 - \frac{1}{q} \int k |f(v)|^q + \frac{1}{s} \int h |f(v)|^s
\]

is well defined and of class \(C^1 \) on the Banach space \(E \), with derivative given by

\[
\langle \Phi'(v), \xi \rangle = \int \nabla v \cdot \nabla \xi - \int k |f(v)|^{q-2} f(v) f'(v) \xi + \int h |f(v)|^{s-2} f(v) f'(v) \xi
\]

for \(v, \xi \in E \). Moreover, if \(v \) is a critical point of \(\Phi : E \rightarrow \mathbb{R} \), by Lemma 2.3 for \(\phi \in C^\infty_0(\mathbb{R}^N) \) we have \(\xi = \phi/f'(v) \in E \). Hence \(\langle \Phi'(v), \xi \rangle = 0 \) and from which let \(u = f(v) \), by standard computation we get

\[
0 = \frac{d}{dr} \bigg|_{r=0} J(u + t\phi),
\]

which means that \(u \) is a weak solution of the problem (1.1). Therefore, to prove our theorems it suffices to find critical points of \(\Phi : E \rightarrow \mathbb{R} \). This is the task of the next section.

The following proposition justifies our effort to find solutions of (1.1) at negative energy levels.

Proposition 2.4 Suppose \(s \geq 4 \). If \(v \in E \) is a critical point of \(\Phi \), then \(\Phi(v) \leq 0 \).

Proof Let \(c = \Phi(v) \), that is

\[
2c = \int |\nabla v|^2 - \frac{2}{q} \int k |f(v)|^q + \frac{2}{s} \int h |f(v)|^s. \tag{2.7}
\]

Testing \(\Phi'(v) \) by \(v \), we have

\[
0 = \langle \Phi'(v), v \rangle = \int |\nabla v|^2 - \int k |f(v)|^{q-2} f(v) f'(v) v + \int h |f(v)|^{s-2} f(v) f'(v) v. \tag{2.8}
\]

Since \(q < 2, s \geq 4 \), from (2.7), (2.8) and Proposition 2.1(5), we obtain

\[
2c = \int k |f(v)|^{q-2} \left[f(v) f'(v) v - \frac{2}{q} f^2(v) \right] + \int h |f(v)|^{s-2} \left[\frac{2}{s} f^2(v) - f(v) f'(v) v \right] \leq 0,
\]

as desired. \(\square \)

Remark 2.5 The idea of Liu and Li [19], which in turn was inspired by an unpublished preprint [23], has also been employed in [24], where a supercritical Schrödinger–Poisson system

\[
\begin{align*}
-\Delta u + a(x) u + \phi u &= k(x) |u|^{q-2} u - h(x) |u|^{s-2} u & x \in \mathbb{R}^3, \\
-\Delta \phi &= u^2, & \lim_{|x| \to \infty} \phi(x) = 0 & x \in \mathbb{R}^3
\end{align*}
\]

is studied. In [19, 23, 24] no nonlinear transformation like \(f \) is involved, therefore our work is not a trivial application of the idea in these papers.
3 Proof of Theorems 1.1 and 1.2

In this section, we will show that, under our assumptions, \(\Phi : E \to \mathbb{R} \) is coercive and satisfies the Palais–Smale condition, then prove our theorems by minimization method and a variant of the classical Clark’s theorem.

Lemma 3.1 \(\Phi : E \to \mathbb{R} \) is coercive.

Proof Let \(\ell \) be the norm of the embedding \(D^{1,2} (\mathbb{R}^N) \hookrightarrow L^{2^*} (\mathbb{R}^N) \). Since \(q q_0 = 2^* \), for \(v \in E \) we have

\[
\int k |v|^q \leq |k|_{q_0} |v|^q \bigg|_{q_0} = \frac{|k|_{q_0}}{2} |v|_{q_0}^q \leq \ell^q |k|_{q_0} \|v\|^q_D .
\]

(3.1)

If \(\Phi \) is not coercive, there is a sequence \(\{v_n\} \) in \(E \) such that sup \(\Phi(v_n) < +\infty \) and

\[
\|v_n\| = \|v_n\|_D + |h^{2/s} v_n|_{2/s} \to +\infty .
\]

(3.2)

We claim that \(\{v_n\} \) is bounded in \(D^{1,2}(\mathbb{R}^N) \). Otherwise along a subsequence we have \(\|v_n\|_D \to \infty \), using (3.1) and noting \(q < 2 \) we have

\[
\Phi(v_n) \geq \frac{1}{2} \int |\nabla v_n|^2 - \frac{1}{q} \int k |v_n|^q + \frac{1}{s} \int h |f(v_n)|^s
\]

\[
\geq \frac{1}{2} \|v_n\|_D^2 - \frac{1}{q} \ell^q |k|_{q_0} \|v_n\|_D^q + \frac{1}{s} \int h |f(v_n)|^s
\]

\[
\geq \frac{1}{2} \|v_n\|_D^2 - \frac{1}{q} \ell^q |k|_{q_0} \|v_n\|_D^q \to +\infty ,
\]

contradicting sup \(\Phi(v_n) < +\infty \). Therefore sup \(\|v_n\|_D < \infty \) and from (3.2) we have

\[
\int h |v_n|^{2/s} = |h^{2/s} v_n|_{2/s} \to +\infty .
\]

Using (2.2) we get

\[
\int h |f(v_n)|^s = \int_{|v_n| \leq 1} h |f(v_n)|^s + \int_{|v_n| > 1} h |f(v_n)|^s
\]

\[
\geq \mu \int_{|v_n| > 1} h |v_n|^{s/2} = \mu \int h |v_n|^{2/s} - \mu \int_{|v_n| \leq 1} h |v_n|^{2/s}
\]

\[
\geq \mu \int h |v_n|^{2/2} - \mu |h|_1 \to +\infty .
\]

Since \(q < 2 \), we end up at a contradiction:

\[
\Phi(v_n) \geq \frac{1}{2} \|v_n\|_D^2 - \frac{1}{q} \ell^q |k|_{q_0} \|v_n\|_D^q
\]

\[
+ \frac{1}{s} \int h |f(v_n)|^s \to +\infty .
\]

The proof is completed. \(\square \)

Lemma 3.2 Given \(a \in \mathbb{R} \), the function \(\eta : \mathbb{R} \to \mathbb{R} \), \(\eta(t) = |f(t)|^s \), is convex. Hence for \(\alpha, \beta \in \mathbb{R} \) we have

\[
|f(\alpha)|^s \leq |f(\beta)|^s + s |f(\alpha)|^{s-2} f(\alpha) f'(\alpha) (\alpha - \beta) .
\]

(3.3)
Proof Obviously \(\eta \) is smooth and even. For \(t \geq 0 \), because \(s > 2 \), using (2.1) we have

\[
\eta' = s f^{s-1} f' = \frac{s f^{s-1}}{\sqrt{1 + f^2}},
\]

\[
\frac{\eta''}{s} = \left(\frac{f^{s-1}}{\sqrt{1 + f^2}}\right)'
\]

\[
= \frac{(s - 1) f^{s-2} f' \sqrt{1 + f^2} - f^{s-1} f f'}{1 + f^2}
\]

\[
= \frac{(s - 2) f^s f' + (s - 1) f^{s-2} f'}{(1 + f^2)^{3/2}} \geq 0.
\]

Because \(\eta'' \) is also even, we see that \(\eta''(t) \geq 0 \) for all \(t \in \mathbb{R} \), and \(\eta \) is convex. \(\square \)

Lemma 3.3 \(\Phi \) satisfies the Palais–Smale condition.

Proof Let \(\{v_n\} \subset E \) be a \((PS)\) sequence. Lemma 3.2 implies that \(\{v_n\} \) is bounded. Thus \(\{v_n\} \) and \(\{h^{2/s} v_n\} \) are bounded in \(D^{1,2}(\mathbb{R}^N) \) and \(L^{s/2}(\mathbb{R}^N) \), respectively. Up to a subsequence we have

\[
v_n \rightharpoonup v \text{ in } D^{1,2}(\mathbb{R}^N), \quad h^{2/s} v_n \rightharpoonup h^{2/s} v \text{ in } L^{s/2}(\mathbb{R}^N).
\]

(3.4)

From this it is clear that \(v \in E \). Moreover, according to [25, Lemma 1], our condition \((k)\) implies that the functional

\[
\psi : D^{1,2}(\mathbb{R}^N) \to \mathbb{R}, \quad \psi(v) = \int k |v|^q
\]

(3.5)

is weakly continuous on \(D^{1,2}(\mathbb{R}^N) \), thus

\[
\int k |v_n - v|^q \to 0.
\]

(3.6)

Firstly we want to show

\[
\langle \Phi'(v), v_n - v \rangle \to 0.
\]

(3.7)

Since we don’t know whether our space \(E \) is reflexive, we could not get \(v_n \rightharpoonup v \) in \(E \) and deduce (3.7). Therefore we adapt the following argument.

Because \(|f(t)| \leq |t| \) and \(|f'(t)| \leq 1 \) (see Proposition 2.1), using Hölder inequality and (3.6) we get

\[
\left| \int k |f(v)|^{q-2} f(v) f'(v) (v_n - v) \right| \leq \int k |v|^{q-1} |v_n - v|
\]

\[
\leq \left(\int k |v_n - v|^q \right)^{1/q} \left(\int k |v|^q \right)^{(q-1)/q} \to 0.
\]

(3.8)

Since \(|f(t) f'(t)| \leq 1 \) and \(|f(t)| \leq 2^{1/4} |t|^{1/2} \), noting \((s/2)' = s/(s - 2) \) we have

\[
\int |h^{1-2/s} |f(v)|^{s-2} f(v) f'(v)|^{(s/2)'} \leq \int h (|f(v)|^{s/2})^{s/(s-2)}
\]

\[
= \int h |f(v)|^s \leq 2^{s/4} \int h |v|^{s/2} < \infty,
\]
that is \(h^{1-2/s} |f(v)|^{s-2} f(v) f'(v) \in L^{(s/2)'}(\mathbb{R}^N) \). Using \(h^{2/s}v_n \to h^{2/s}v \) in \(L^{s/2}(\mathbb{R}^N) \) we get

\[
\int h |f(v)|^{s-2} f(v) f'(v) (v_n - v) = \int h^{2/s} (v_n - v) \cdot h^{1-2/s} |f(v)|^{s-2} f(v) f'(v) \to 0. \tag{3.9}
\]

Combining (3.9) with (3.4) and (3.8) we get

\[
\langle \Phi'(v), v_n - v \rangle = \int \nabla v \cdot \nabla (v_n - v) - \int k |f(v)|^{q-2} f(v) f'(v) (v_n - v) + \int h |f(v)|^{s-2} f(v) f'(v) (v_n - v) \to 0,
\]

our claim (3.7) follows.

Next, using \(|f(t)| \leq |t| \) and \(|f'(t)| \leq 1 \) again, for

\[
\Omega_n := |f(v_n)|^{q-2} f(v_n) f'(v_n) - |f(v)|^{q-2} f(v) f'(v),
\]

we have

\[
|\Omega_n| \leq |f(v_n)|^{q-1} + |f(v)|^{q-1} \leq |v_n|^{q-1} + |v|^{q-1}.
\]

Since \(\{k^{1/q}v_n\} \) is bounded in \(L^q(\mathbb{R}^N) \),

\[
\left| \int k |\Omega_n|^q \right| \leq 2^q \left(\int k (|v_n|^q + |v|^q) \right) \leq 2^{q+1} \sup_n |k^{1/q}v_n|^q =: M < \infty.
\]

Thus using Hölder inequality and (3.6) we deduce

\[
\left| \int k (|f(v_n)|^{q-2} f(v_n) f'(v_n) - |f(v)|^{q-2} f(v) f'(v)) (v_n - v) \right|
\leq \int k^{1/q} |v_n - v| \cdot k^{1/q} |\Omega_n|
\leq \left(\int k |v_n - v|^q \right)^{1/q} \left(\int k |\Omega_n|^q \right)^{1/q'}
\leq M^{1/q'} \left(\int k |v_n - v|^q \right)^{1/q} \to 0. \tag{3.10}
\]

On the other hand, noting that the function

\[
t \mapsto s |f(t)|^{s-2} f(t) f'(t)
\]

is increasing (it is the derivative of the convex function \(\eta \) given in Lemma 3.2), we get

\[
H_n := \int h \left(|f(v_n)|^{s-2} f(v_n) f'(v_n) - |f(v)|^{s-2} f(v) f'(v) \right) (v_n - v) \geq 0.
\]
Now, using \((3.7)\) and \((3.10)\) we get
\[
o(1) = \langle \Phi'(v_n) - \Phi'(v), v_n - v \rangle
\]
\[
= \int |\nabla (v_n - v)|^2
\]
\[
- \int k \left(|f(v_n)|^{q-2} f(v_n) f'(v_n) - |f(v)|^{q-2} f(v) f'(v) \right) (v_n - v)
\]
\[
+ \int h \left(|f(v_n)|^{s-2} f(v_n) f'(v_n) - |f(v)|^{s-2} f(v) f'(v) \right) (v_n - v)
\]
\[
= \int |\nabla (v_n - v)|^2 + H_n + o(1). \tag{3.11}
\]
Consequently, noting \(H_n \geq 0\) we deduce
\[v_n \to v \text{ in } D^{1,2}(\mathbb{R}^N), H_n \to 0.\tag{3.12}\]
Since \(H_n \to 0\), from \((3.9)\) we have
\[
\int h |f(v_n)|^{s-2} f(v_n) f'(v_n) (v_n - v) \to 0.
\]
Replacing \(\alpha\) and \(\beta\) in \((3.3)\) with \(v_n\) and \(v\) respectively, we get
\[
\lim_{n \to \infty} \int h |f(v_n)|^s \leq \int h |f(v)|^s + s \lim_{n \to \infty} \int h |f(v_n)|^{s-2} f(v_n) f'(v_n) (v_n - v)
\]
\[
= \int h |f(v)|^s.
\]
Combining this with the easy consequence
\[
\int h |f(v)|^s \leq \lim_{n \to \infty} \int h |f(v_n)|^s
\]
of \(v_n \to v\) a.e. in \(\mathbb{R}^N\) and Fatou’s lemma, we get
\[
\int h |f(v_n)|^s \to \int h |f(v)|^s. \tag{3.13}
\]
Now, noting the following consequence of \((2.2)\):
\[
h |v_n|^{s/2} \leq h + \frac{1}{\mu^3} h |f(v_n)|^s
\]
and \(h |v_n|^{s/2} \to h |v|^{s/2}\) a.e. in \(\mathbb{R}^N\), by the generalized Lebesgue dominating theorem (see Proposition 3.4 below) and \((3.13)\) we get
\[
\int h |v_n|^{s/2} \to \int h |v|^{s/2}.
\]
That is to say \(|h^{2/s} v_n|^{s/2} \to |h^{2/s} v|^{s/2}\). But \(h^{2/s} v_n \to h^{2/s} v\) in \(L^{s/2}(\mathbb{R}^N)\), we deduce \(h^{2/s} v_n \to h^{2/s} v\) in \(L^{s/2}(\mathbb{R}^N)\). Combining this with \((3.12)\) we get
\[
\|v_n - v\| = \left(\int |\nabla (v_n - v)|^2 \right)^{1/2} + \left(\int h |v_n - v|^{s/2} \right)^{2/s}
\]
\[
= \|v_n - v\|_D + |h^{2/s} v_n - h^{2/s} v|_{s/2} \to 0.
\]
Thus \(v_n \to v\) in \(E\). \[
\square
\]
For the reader’s convenience, we quote the generalized Lebesgue dominating theorem as follow.

Proposition 3.4 Let $f_n, g_n : \Omega \to \mathbb{R}$ be measurable functions over the measurable set Ω, $f_n \to f$ a.e. in Ω, $g_n \to g$ a.e. in Ω, $|f_n| \leq g_n$. Then

$$\int_\Omega |f_n - f| \to 0$$

provided $\int_\Omega g_n \to \int_\Omega g$ and $\int_\Omega g < +\infty$.

Remark 3.5 As is well known, to prove Proposition 3.4 we apply Fatou’s lemma to $F_n := g_n + g - |f_n - f|$.

When $g_n = g$ does not depend on n, Proposition 3.4 reduces to the usual Lebesgue dominating theorem.

Having verified the (PS) condition, we need the following variant of Clark’s theorem (see [26] or [27, Theorem 9.1] for the classical Clark’s theorem) to produce the desired solutions of our problem (1.1).

Proposition 3.6 [21, Lemma 2.4] Let E be a Banach space and $\Phi \in C^1(E, \mathbb{R})$ be an even coercive functional satisfying the (PS) condition and $\Phi(0) = 0$. If for any $n \in \mathbb{N}$, there is an n-dimensional subspace X_n and $\rho_n > 0$ such that

$$\sup_{X_n \cap S_{\rho_n}} \Phi < 0,$$

where $S_r = \{ u \in E \mid \|u\| = r \}$, then Φ has a sequence of critical values $c_n < 0$ satisfying $c_n \to 0$.

Proof of Theorem 1.1 Given $n \in \mathbb{N}$, let X_n be an n-dimensional subspace of X, where X is the set of functions in E which vanish in the zero set of k. Since the norms $\|\cdot\|$ and $|\cdot|_\infty$ are equivalent on X_n, there is $\vartheta > 0$ such that

$$|v|_\infty \leq \vartheta \|v\| \quad \text{for all } v \in X_n.$$

Because $h \in L^1(\mathbb{R}^N)$, we have

$$\left| \int h |v|^{s} \right| \leq |v|_\infty^s \int h \leq \vartheta^s \|v\|^s \|h\|_1 < \infty.$$

Thus we have a well-defined s-homogeneous functional $H : X_n \to \mathbb{R}$,

$$H(v) = \int h |v|^s.$$

Using the Lebesgue dominating theorem, it is easy to see that H is continuous.

Since $f'(0) = 1$, there is $\delta \in (0, 1)$ such that

$$\frac{1}{2} |t| \leq |f(t)| \leq |t|, \quad \text{for } t \in [-\delta, \delta]. \quad (3.14)$$

Because $\dim X_n < \infty$, the compactness of

$$X_n \cap S_1 = \{ v \in X_n \mid \|v\| = 1 \}$$
and \(k \not= 0 \) implies that both

\[
A = \inf_{\varphi \in X_n \cap S_1} \int k |\varphi|^q \quad \text{and} \quad B = \sup_{\varphi \in X_n \cap S_1} H(\varphi) = \sup_{\varphi \in X_n \cap S_1} \int h |\varphi|^s
\]

are finite, \(A > 0, B \geq 0 \). Since the norms \(\| \cdot \| \) and \(| \cdot |_\infty \) on \(X_n \) are equivalent, noting \(q < 2 < s \), we can choose \(\rho_n > 0 \) such that if \(v \in X_n, \| v \| = \rho_n \), then \(|v|_\infty \leq \delta \) and

\[
\theta_n := \frac{1}{2} \rho_n^2 - \frac{A}{2q} \rho_n^q + \frac{B}{s} \rho_n^s < 0.
\]

(3.16)

Now using (3.14) and (3.15), for \(v \in X_n \cap S_{\rho_n} \) we have \(|v|_\infty \leq \delta \) and

\[
\Phi(v) = \frac{1}{2} \int |\nabla v|^2 - \frac{1}{q} \int k |f(v)|^q + \frac{1}{s} \int h |f(v)|^s
\]

\[
\leq \frac{1}{2} \|v\|_D^2 - \frac{1}{2q} \int k |v|^q + \frac{1}{s} \int h |v|^s
\]

\[
\leq \frac{1}{2} \|v\|^2 - \frac{A}{2q} \|v\|^q + \frac{B}{s} \|v\|^s = \theta_n.
\]

(3.17)

From this, using (3.16) it is clear that

\[
\sup_{X_n \cap S_{\rho_n}} \Phi \leq \theta_n < 0.
\]

(3.18)

Since our \(\Phi \) is an even coercive functional satisfying the \((PS)\) condition and \(\Phi(0) = 0 \), applying Proposition 3.6 we know that \(\Phi \) has a sequence of critical points \(\{v_n\} \) such that

\[
J(u_n) = \Phi(v_n) < 0, \quad J(u_n) \to 0,
\]

where \(u_n = f(v_n) \) are the desired solutions of (1.1). \(\square \)

Proof of Theorem 1.2 We know that \(\Phi \) is bounded from below. Since \(\Phi(v_n) = \Phi(|v_n|) \), we may take a minimization sequence \(\{v_n\} \) such that \(v_n \geq 0 \) and

\[
\Phi(v_n) \to c := \inf_E \Phi,
\]

where \(c < 0 \) because from (3.18) we know that \(\Phi \) can take negative values. By Lemma 3.1 we know that \(\{v_n\} \) is bounded in \(D^{1,2}(\mathbb{R}^N) \). Thus we may assume

\[
v_n \rightharpoonup v \text{ in } D^{1,2}(\mathbb{R}^N), \quad v_n \to v \text{ a.e. in } \mathbb{R}^N
\]

for some nonnegative \(v \in E \).

Since \(h |f(v_n)|^s \to h |f(v)|^s \) a.e. in \(\mathbb{R}^N \), using Fatou’s lemma we get

\[
\int |\nabla v|^2 \leq \liminf_{n \to \infty} \int |\nabla v_n|^2, \quad \int h |f(v)|^s \leq \liminf_{n \to \infty} \int h |f(v_n)|^s.
\]

(3.19)

By the weak continuity of the functional \(\psi \) defined in (3.5), from \(v_n \rightharpoonup v \) in \(D^{1,2}(\mathbb{R}^N) \) we have

\[
\int k |v_n|^q \to \int k |v|^q.
\]

Since \(k |f(v_n)|^q \leq k |v_n|^q \), applying Proposition 3.4 we get
\[
\int |f(v)|^q = \lim_{n \to \infty} \int |f(v_n)|^q.
\]
(3.20)

From (3.19) and (3.20) we get
\[
\Phi(v) = \frac{1}{2} \int |\nabla v|^2 + \frac{1}{s} \int h |f(v)|^s - \frac{1}{q} \int k |f(v)|^q
\]
\[
\leq \lim_{n \to \infty} \left(\frac{1}{2} \int |\nabla v_n|^2 + \frac{1}{s} \int h |f(v_n)|^s - \frac{1}{q} \int k |f(v_n)|^q \right)
\]
\[
= \lim_{n \to \infty} \Phi(v_n) = c.
\]

Therefore \(\Phi(v) = c \) and \(v \) is a nonnegative critical point of \(\Phi \).

Since \(f(t) \) has the same sign as \(t, u = f(v) \) is a nonnegative solution of (1.1) at negative energy level \(J(u) = \Phi(v) = c \). \(\Box \)

Remark 3.7 Under the same assumptions on \(k \) and \(h \), similar results holds for
\[
\begin{cases}
-\Delta u - u \Delta (u^2) = \lambda g(x)u + k(x) |u|^{q-2} u - h(x) |u|^{s-2} u, \\
u \in D^{1,2}(\mathbb{R}^N)
\end{cases}
\]
if \(\lambda \in (\lambda_1^-, \lambda_1^+) \), where \(g \in L^{N/2}(\mathbb{R}^N) \cap L^{\infty}(\mathbb{R}^N) \), \(\lambda_{1}^{\pm} \) are the principle positive/negative eigenvalues of \(-\Delta u = \lambda g(x)u \) on \(D^{1,2}(\mathbb{R}^N) \); see e.g. [28] for discussion about this eigenvalue problem. The reason is that if \(\lambda \in (\lambda_1^-, \lambda_1^+) \) then there is \(\kappa > 0 \) such that
\[
\int |\nabla v|^2 - \lambda \int g f^2(v) \geq \kappa \int |\nabla v|^2,
\]
therefore the additional term \(\int g f^2(v) \) in the functional does not affect the verification of coerciveness. Moreover, similar to the functional \(\psi \) defined in (3.5), the functional \(v \mapsto \int g v^2 \) is also weakly continuous on \(D^{1,2}(\mathbb{R}^N) \); therefore (3.12) remains valid even there is an additional term involving \(g \) in the argument.

Similarly, because of the continuous embedding \(H^1(\mathbb{R}^N) \hookrightarrow D^{1,2}(\mathbb{R}^N) \), replacing the space \(D^{1,2}(\mathbb{R}^N) \) by \(H^1(\mathbb{R}^N) \) in the argument, we can obtain similar results for
\[
\begin{cases}
-\Delta u + V(x)u - u \Delta (u^2) = k(x) |u|^{q-2} u - h(x) |u|^{s-2} u, \\
u \in H^1(\mathbb{R}^N),
\end{cases}
\]
where \(V \) is a positive potential bounded away from 0.

Acknowledgements The authors would like to thank the reviewers for careful reading of the manuscript and for valuable comments and suggestions.

Data Availability Statement The manuscript has no associated data, therefore can be considered that all data needed are available freely.

References

1. Poppenberg, M., Schmitt, K., Wang, Z.-Q.: On the existence of soliton solutions to quasilinear Schrödinger equations. Calc. Var. Part. Differ. Equ. 14(3), 329–344 (2002). https://doi.org/10.1007/s005260100105
2. Ruiz, D., Siciliano, G.: Existence of ground states for a modified nonlinear Schrödinger equation. Nonlinearity 23(5), 1221–1233 (2010). https://doi.org/10.1088/0951-7715/23/5/011
3. Liu, J.-Q., Wang, Y.-Q., Wang, Z.-Q.: Soliton solutions for quasilinear Schrödinger equations. II. J. Differ. Equ. 187(2), 473–493 (2003). https://doi.org/10.1016/S0022-0396(02)00064-5
4. Colin, M., Jeanjean, L.: Solutions for a quasilinear Schrödinger equation: a dual approach. Nonlinear Anal. 56(2), 213–226 (2004). https://doi.org/10.1016/j.na.2003.09.008
5. Silva, E.A.B., Vieira, G.F.: Quasilinear asymptotically periodic Schrödinger equations with subcritical growth. Nonlinear Anal. 72(6), 2935–2949 (2010). https://doi.org/10.1016/j.na.2009.11.037
6. Zhang, J., Lin, X., Tang, X.: Ground state solutions for a quasilinear Schrödinger equation. Mediterr. J. Math. 14(2), 84–13 (2017). https://doi.org/10.1007/s00009-016-0816-3
7. Liu, S., Zhou, J.: Standing waves for quasilinear Schrödinger equations with indefinite potentials. J. Differ. Equ. 265(9), 3970–3987 (2018). https://doi.org/10.1016/j.jde.2018.05.024
8. Li, Q., Wang, W., Teng, K., Wu, X.: Multiple solutions for a class of quasilinear Schrödinger equation. Math. Nachr. 292(7), 1530–1550 (2019). https://doi.org/10.1002/mana.201700160
9. Ambrossetti, A., Brezis, H., Cerami, G.: Combined effects of concave and convex nonlinearities in some elliptic problems. J. Funct. Anal. 122(2), 519–543 (1994). https://doi.org/10.1006/jfan.1994.1078
10. Bartsch, T., Willeme, M.: On an elliptic equation with concave and convex nonlinearities. Proc. Am. Math. Soc. 123(11), 3555–3561 (1995). https://doi.org/10.2307/2161107
11. do Ó, J.M., Severo, U.: Quasilinear Schrödinger equations involving concave and convex nonlinearities. Commun. Pure Appl. Anal. 8(2), 621–644 (2009). https://doi.org/10.3934/cpaa.2009.8.621
12. Santos, A.V., Santos Júnior, J.R.: Multiple solutions for a generalised Schrödinger problem with “concave-convex” nonlinearities. Z. Angew. Math. Phys. 70(5), 158–19 (2019). https://doi.org/10.1007/s00033-019-1200-5
13. Liu, X., Liu, J., Wang, Z.-Q.: Ground states for quasilinear Schrödinger equations with critical growth. Calc. Var. Part. Differ. Equ. 46(3–4), 641–669 (2013). https://doi.org/10.1007/s00526-012-0497-0
14. Figueiredo, G.M., Ruviaro, R., Oliveira Junior, J.C.: Quasilinear equations involving critical exponent and concave nonlinearity at the origin. Milan J. Math. 88(2), 295–314 (2020). https://doi.org/10.1007/s00032-020-00315-6
15. doÓ, J.M., Gloss, E., Severo, U.: Soliton solutions for a class of quasilinear Schrödinger equations with a positive quasilinear term and critical growth. Proc. Edinb. Math. Soc. (2) 65(1), 279–301 (2022). https://doi.org/10.1017/S001301522000074
16. Figueiredo, G.M., Miyagaki, O.H., Moreira, S.I.: Nonlinear perturbations of a periodic Schrödinger equation with supercritical growth. Z. Angew. Math. Phys. 66(5), 2379–2394 (2015). https://doi.org/10.1007/s00033-015-0525-y
17. Liu, H.: Positive solution for a quasilinear elliptic equation involving critical or supercritical exponent. J. Math. Phys. 57(4), 041506–11 (2016). https://doi.org/10.1063/1.4947109
18. Tonkes, E.: A semilinear elliptic equation with convex and concave nonlinearities. Topol. Methods Nonlinear Anal. 13(2), 251–271 (1999). https://doi.org/10.12775/TMNA.1999.013
19. Liu, S., Li, S.: An elliptic equation with concave and convex nonlinearities. Nonlinear Anal. 53(6), 723–731 (2003). https://doi.org/10.1016/S0362-546X(03)00020-8
20. Miyagaki, O.H., Moreira, S.I.: Nonnegative solution for quasilinear Schrödinger equations that include supercritical exponents with nonlinearities that are indefinite in sign. J. Math. Anal. Appl. 421(1), 643–655 (2015). https://doi.org/10.1016/j.jmaa.2014.06.074
21. Wang, Z.-Q.: Nonlinear boundary value problems with concave nonlinearities near the origin. NoDEA Nonlinear Differ. Equ. Appl. 8(1), 15–33 (2001). https://doi.org/10.1007/PL00001436
22. Chen, Y., Wu, X.: Existence of nontrivial solutions and high energy solutions for a class of quasilinear Schrödinger equations via the dual-perturbation method. Abstr. Appl. Anal. (2013). https://doi.org/10.1155/2013/256324
23. Fan, X., Wang, F.: Multiplicity results for quasilinear elliptic equations with conPicting nonlinearities. Preprint
24. Sun, M., Su, J., Zhao, L.: Infinitely many solutions for a Schrödinger-Poisson system with concave and convex nonlinearities. Discrete Contin. Dyn. Syst. 35(1), 427–440 (2015). https://doi.org/10.3934/dcds.2015.35.427
25. do Ô, J.M.: Solutions to perturbed eigenvalue problems of the p-Laplacian in \mathbb{R}^N. Electron. J. Differ. Equ. 1997(11), 1–15 (1997). https://ejde.math.txstate.edu/Volumes/1997/11/abstr.html
26. Rabinowitz, P.H.: Minimax methods in critical point theory with applications to differential equations. In: CBMS Regional Conference Series in Mathematics, vol. 65, p. 100. Published for the Conference Board of the Mathematical Sciences, Providence. ISSN 0160-7642 (1986)
27. Drábek, P., Huang, Y.X.: Bifurcation problems for the p-Laplacian in \mathbb{R}^N. Trans. Am. Math. Soc. 349(1), 171–188 (1997). https://doi.org/10.1090/S0002-9947-97-01788-1
Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.