G_2-HOLONOMY METRICS CONNECTED WITH A 3-SASAKIAN MANIFOLD

BAZAIKIN YA. V. AND MALKOVICH E. G.

Abstract. We construct complete noncompact Riemannian metrics with \(G_2 \)-holonomy on noncompact orbifolds that are \(\mathbb{R}^3 \)-bundles with the twistor space \(Z \) as a spherical fiber.

1. Introduction

This article addressing \(G_2 \)-holonomy metrics is a natural continuation of the study of \(\text{Spin}(7) \)-holonomy metrics which was started in [1]. We consider an arbitrary 7-dimensional compact 3-Sasakian manifold \(M \) and discuss the existence of a smooth resolution of the conic metric over the twistor space \(Z \) associated with \(M \).

Briefly speaking, a manifold \(M \) is 3-Sasakian if and only if the standard metric on the cone over \(M \) is hyper-Kahler. Each manifold of this kind \(M \) is closely related to the twistor space \(Z \) which is an orbifold with a Kahler–Einstein metric. We consider the metrics that are natural resolutions of the standard conic metric over \(Z \):

\[
\bar{g} = dt^2 + A(t)^2(\eta_2^2 + \eta_3^2) + B(t)^2(\eta_4^2 + \eta_5^2) + C(t)^2(\eta_6^2 + \eta_7^2),
\]

where \(\eta_2 \) and \(\eta_3 \) are the characteristic 1-forms of \(M \), \(\eta_4, \eta_5, \eta_6, \) and \(\eta_7 \) are the forms that annul the 3-Sasakian foliation on \(M \), and \(A, B, \) and \(C \) are real functions.

One of the main results of the article is the construction (in the case when \(M/SU(2) \) is Kahler) of a \(G_2 \)-structure which is parallel with respect to (**) if and only if the following system of ordinary differential equations is satisfied:

\[
\begin{align*}
A' &= \frac{2A^2 - B^2 - C^2}{B^2 - C^2 - 2A^2}, \\
B' &= \frac{C^2 - 2A^2 - B^2}{A^2 - B^2}, \\
C' &= \frac{C^2 - 2A^2 - B^2}{A^2 - B^2}.
\end{align*}
\]

In case (**) we thus see that (**) has holonomy \(G_2 \); hence, (**) is Ricci-flat. The system of equations (**) was previously obtained in [2] in the particular case \(M = SU(3)/S^1 \).

For a solution to (**) to be defined on some orbifold or manifold, some additional boundary conditions are required at \(t_0 \) that we will state them later. These conditions cannot be satisfied unless \(B = C \), which leads us to the functions that give rise to the solutions found originally in [3] when \(M = S^7 \) and \(M = SU(3)/S^1 \). If \(B = C \) then (**) is defined on the total space of an \(\mathbb{R}^3 \)-bundle \(N \) over a quaternionic-Kahler orbifold \(O \). In general, \(N \) is an orbifold except in the event that \(M = S^7 \) and \(M = SU(3)/S^1 \). Note that it is unnecessary for \(O \) to be Kahler in case \(B = C \).
2. Construction of a Parallel G_2-Structure

The definition of 3-Sasakian manifolds, their basic properties, and further references can be found in [1]. We mainly take our notation from [1].

Let M be a 7-dimensional compact 3-Sasakian manifold with characteristic fields ξ^1, ξ^2, and ξ^3 and characteristic 1-forms η_1, η_2, and η_3. Consider the principal bundle $\pi: \tilde{M} \to \mathcal{O}$ with the structure group $Sp(1) \times SO(3)$ over the quaternionic-Kahler orbifold \mathcal{O} associated with M. We are interested in the special case when \mathcal{O} additionally possesses a Kahler structure.

The field ξ^1 generates a locally free action of the circle S^1 on M, and the metric on the twistor space $Z = M/S^1$ is a Kahler–Einstein metric. It is obvious that Z is topologically a bundle over \mathcal{O} with fiber $S^2 = Sp(1)/S^1$ (or $S^2 = SO(3)/S^1$) associated with π. Consider the obvious action of $SO(3)$ on \mathbb{R}^3. The two-fold cover $Sp(1) \to SO(3)$ determines the action of $Sp(1)$ on \mathbb{R}^3, too. Now, let \tilde{N} be a bundle over \mathcal{O} with fiber \mathbb{R}^3 associated with π. It is easy to see that \mathcal{O} is embedded in \tilde{N} as the zero section, and Z is embedded in \tilde{N} as a spherical section. The space $\tilde{N}\setminus\mathcal{O}$ is diffeomorphic to the product $Z \times (0, \infty)$. Note that \tilde{N} can be assumed to be the projectivization of the bundle $\mathcal{M}_1 \to \mathcal{O}$ of [1]. In general, \tilde{N} is a 7-dimensional orbifold; however, if M is a regular 3-Sasakian space then \tilde{N} is a 7-dimensional manifold.

Let $\{e^i\}, i = 0, 2, 3, \ldots, 7$, be an orthonormal basis of 1-forms on the standard Euclidean space \mathbb{R}^7 (the numeration here is chosen so as to emphasize the connection with the constructions of [1] and to keep the original notation wherever possible). Putting $\Psi_0 = \sum_{ijk} \epsilon_{ijk} e^i \wedge e^j \wedge e^k$, consider the following 3-form Ψ_0 on \mathbb{R}^7:

$$
\Psi_0 = -e^{023} - e^{045} + e^{067} + e^{346} - e^{375} - e^{247} + e^{256}.
$$

A differential 3-form Ψ on an oriented 7-dimensional Riemannian manifold N defines a G_2-structure if, for each $p \in N$, there exists an orientation-preserving isometry $\phi_p : T_pN \to \mathbb{R}^7$ defined in a neighborhood of p such that $\phi_p^* \Psi_0 = \Psi |_p$. In this case the form Ψ defines the unique metric g_Ψ such that $g_\Psi(v, w) = \langle \phi_p v, \phi_p w \rangle$ for $v, w \in T_pN$ [3]. If the form Ψ is parallel ($\nabla \Psi = 0$) then the holonomy group of the Riemannian manifold N lies in G_2. The parallelness of the form Ψ is equivalent to its closeness and co-closeness [3]:

$$
d\Psi = 0, \quad d^* \Psi = 0. \tag{1}
$$

Note that the form $\Psi_0 = e^1 \wedge \Psi_0 - * \Psi_0$, where $*$ is the Hodge operator in \mathbb{R}^7, determines a $Spin(7)$-structure on \mathbb{R}^8 with the orthonormal basis $\{e^i\}_{i=0,1,2,\ldots,7}$.

Locally choose an orthonormal system $\eta_4, \eta_5, \eta_6, \eta_7$ that generates the annihilator of the vertical subbundle \mathcal{V} so that

$$
\omega_1 = 2(\eta_4 \wedge \eta_5 - \eta_6 \wedge \eta_7), \quad \omega_2 = 2(\eta_4 \wedge \eta_6 - \eta_7 \wedge \eta_5), \quad \omega_3 = 2(\eta_4 \wedge \eta_7 - \eta_5 \wedge \eta_6),
$$

where the forms ω_i correspond to the quaternionic-Kahler structure on \mathcal{O}. It is clear that $\eta_2, \eta_3, \ldots, \eta_7$ is an orthonormal basis for \mathcal{M} annulling the one-dimensional
foliation generated by \(\xi^1 \); therefore, we can consider the metric of the following form on \((0, \infty) \times Z\):
\[
\tilde{g} = dt^2 + A(t)^2(\eta_2^2 + \eta_3^2) + B(t)^2(\eta_4^2 + \eta_5^2) + C(t)^2(\eta_6^2 + \eta_7^2).
\] (2)
Here \(A(t) \), \(B(t) \), and \(C(t) \) are defined on the interval \((0, \infty)\).

We suppose that \(\mathcal{O} \) is a Kahler orbifold; therefore, \(\mathcal{O} \) has the closed Kahler form that can be lifted to the horizontal subbundle \(\mathcal{H} \) as a closed form \(\omega \). Without loss of generality we can assume that we locally have
\[
\omega = 2(\eta_4 \wedge \eta_5 + \eta_6 \wedge \eta_7).
\]
If we now put
\[
e^0 = dt, \quad e^i = A\eta_i, \quad i = 2, 3, \quad e^j = B\eta_j, \quad j = 4, 5, \quad e^k = C\eta_k, \quad k = 6, 7,
\]
then the forms \(\Psi_0 \) and \(\ast \Psi_0 \) become
\[
\Psi_1 = -e^{023} - \frac{B^2 + C^2}{4}e^0 \wedge \omega_1 - \frac{B^2 - C^2}{4}e^0 \wedge \omega + \frac{BC}{2}e^3 \wedge \omega_2 - \frac{BC}{2}e^2 \wedge \omega_1,
\]
\[
\Psi_2 = C^2B^2\Omega - \frac{B^2 + C^2}{4}e^{23} \wedge \omega_1 - \frac{B^2 - C^2}{4}e^{23} \wedge \omega + \frac{BC}{2}e^{02} \wedge \omega_2 + \frac{BC}{2}e^{03} \wedge \omega_3,
\]
where \(\Omega = \eta_4 \wedge \eta_5 \wedge \eta_6 \wedge \eta_7 = -\frac{1}{8}\omega_1 \wedge \omega_1 = -\frac{1}{8}\omega_2 \wedge \omega_2 = -\frac{1}{8}\omega_3 \wedge \omega_3. \)

It is now obvious that \(\Psi_1 \) and \(\Psi_2 \) are defined globally and independently of the local choice of \(\eta_i \); consequently, they uniquely define the metric \(\tilde{g} \) given locally by (2). Then the condition (1) that the holonomy group lies in \(G_2 \) is equivalent to the equation
\[
d\Psi_1 = d\Psi_2 = 0. \tag{3}
\]

Theorem. If \(\mathcal{O} \) possesses a Kahler structure then (2) on \(\mathcal{N} \) is a smooth metric with holonomy \(G_2 \) given by the form \(\Psi_1 \) if and only if the functions \(A \), \(B \), and \(C \) defined on the interval \([t_0, \infty)\) satisfy the system of ordinary differential equations
\[
A' = \frac{2A^2 - B^2 - C^2}{BC}, \quad B' = \frac{B^2 - C^2 - 2A^2}{CA}, \quad C' = \frac{C^2 - 2A^2 - B^2}{AB} \tag{4}
\]
with the initial conditions
1. \(A(0) = 0 \) and \(|A'(0)| = 2; \)
2. \(B(0), C(0) \neq 0 \), and \(B'(0) = C'(0) = 0; \)
3. the functions \(A \), \(B \), and \(C \) have fixed sign on the interval \((t_0, \infty)\).

Proof.
In [1] the following relations were obtained, closing the algebra of forms:
\[
de e^0 = 0,
\]
\[
de e^i = \frac{A'_i}{A_i}e^0 \wedge e^i + A_i \omega_i - \frac{2A_i}{A_{i+1}A_{i+2}}e^{i+1} \wedge e^{i+2}, \quad i = 1, 2, 3 \mod 3,
\]
\[
d \omega_i = \frac{2}{A_{i+1}}\omega_{i+1} \wedge e^{i+2} - \frac{2}{A_{i+2}}e^{i+1} \wedge \omega_{i+2}, \quad i = 1, 2, 3 \mod 3.
\]
By adding the relation \(d\omega = 0 \) and carrying out some calculations to be omitted here, we obtain the sought system.

The smoothness conditions for the metric at \(t_0 \) are proven by analogy with the case of holonomy \(Spin(7) \) which was elaborated in [1]. We only note that, taking
the quotient of the unit sphere S^3 by the Hopf action of the circle, we obtain the sphere of radius $1/2$, which explains the condition $|A'(0)| = 2$.

In case $B = C$ the system reduces to the pair of equations
\[A' = 2 \left(\frac{A^2}{B^2} - 1 \right), \quad B' = -2 \frac{A}{B} \]
whose solution gives the metric
\[\bar{g} = \frac{dr^2}{1 - r_0^2/r^4} + r^2 \left(1 - \frac{r_0^4}{r^4} \right) \left(\eta_2^2 + \eta_3^2 \right) + 2r^2 \left(\eta_1^2 + \eta_2^2 + \eta_3^2 + \eta_4^2 \right). \]
The regularity conditions hold. This smooth metric was originally found in [3] in the event that $M = SU(3)/S^1$ and $M = S^7$ (observe that we need not require O to be Kahler when $B = C$).

In the general case $B \neq C$ system (4) can also be integrated [2]. However, the resulting solutions do not enjoy the regularity conditions.

3. Examples

Some interesting family of examples arises when we consider the 7-dimensional biquotients of the Lie group $SU(3)$ as 3-Sasakian manifolds. Namely, let p_1, p_2, and p_3 be pairwise coprime positive integers. Consider the following action of S^1 on the Lie group $SU(3)$:
\[z \in S^1: A \mapsto \text{diag}(z^{p_1}, z^{p_2}, z^{p_3}) \cdot A \cdot \text{diag}(1, 1, z^{-p_1-p_2-p_3}). \]
This action is free; moreover, it was demonstrated in [4] that there is a 3-Sasakian structure on the orbit space $S = S_{p_1,p_2,p_3}$. Moreover, the action of $SU(2)$ on $SU(3)$ by right translations
\[B \in SU(2): A \mapsto A \cdot \begin{pmatrix} B & 0 \\ 0 & 1 \end{pmatrix} \]
commutes with the action of S^1 and can be pushed forward to the orbit space S. The corresponding Killing fields will be the characteristic fields ξ_i on S. Therefore, the corresponding twistor space $Z = Z_{p_1,p_2,p_3}$ is the orbit space of the following action of the torus T^2 on $SU(3)$:
\[(z, u) \in T^2: A \mapsto \text{diag}(z^{p_1}, z^{p_2}, z^{p_3}) \cdot A \cdot \text{diag}(u, u^{-1}, z^{-p_1-p_2-p_3}). \quad (5) \]

Lemma. The space Z_{p_1,p_2,p_3} is diffeomorphic to the orbit space of $U(3)$ with respect to the following action of T^3:
\[(z, u, v) \in T^3: A \mapsto \text{diag}(z^{-p_2-p_3}, z^{-p_1-p_3}, z^{-p_1-p_2}) \cdot A \cdot \text{diag}(u, v, 1). \quad (6) \]

It suffices to verify that each T^3-orbit in $U(3)$ exactly cuts out an orbit of the T^2-action (5) in $SU(3) \subset U(3)$.

Action (6) makes it possible to describe the topology of Z and, consequently, the topology of N clearly. Here we use the construction of [3]. Consider the submanifold $E = \{(u,[v]) \mid u \perp v\} \subset S^5 \times CP^2$. It is obvious that E is diffeomorphic to $U(3)/S^1 \times S^1$ (the "right" part of (6)) and is the projectivization of the \mathbb{C}^2-bundle
\(\bar{E} = \{(u,v) \mid u \perp v\} \subset S^5 \times \mathbb{C}^3 \) over \(S^5 \). By adding the trivial one-dimensional complex bundle over \(\bar{E} \), we obtain the trivial bundle \(S^5 \times \mathbb{C}^3 \) over \(S^5 \).

The group \(S^1 \) acts from the left by the automorphisms of the vector bundle \(\bar{E} \), and \(\mathcal{Z} = S^1 \backslash \bar{E} \) is the projectivization of the \(\mathbb{C}^2 \)-bundle \(S^1 \backslash \bar{E} \) over the weighted complex projective space \(\mathcal{O} = \mathbb{C}P^2(q_1, q_2, q_3) = S^1 \backslash S^5 \), where \(q_i = (p_{i+1} + p_{i+2})/2 \) for \(p_i \) all odd and \(q_i = (p_{i+1} + p_{i+2})/2 \) otherwise.

The above implies that the bundle \(S^1 \backslash \bar{E} \) is stably equivalent to the bundle \(S^1 \backslash (S^5 \times \mathbb{C}^3) \) over \(\mathcal{O} \). The last bundle splits obviously into the Whitney sum \(\sum_{i=1}^{3} \xi^{q_i} \), where \(\xi \) is an analog of the one-dimensional universal bundle of \(\mathcal{O} \).

Corollary. The twistor space \(\mathcal{Z} \) is diffeomorphic to the projectivization of a two-dimensional complex bundle over \(\mathbb{C}P^2(q_1, q_2, q_3) \) which is stably equivalent to \(\xi^{q_1} \oplus \xi^{q_2} \oplus \xi^{q_3} \).

References

[1] Bazaikin Ya. V. On the new examples of complete noncompact Spin(7)-holonomy metrics. Siberian Math. J. 48(2007). P 778–783

[2] M. Cvetic, G. W. Gibbons, H. Lu, C. N. Pope. Cohomogeneity one manifolds of Spin(7) and G(2) holonomy// Phys. Rev. D. 2002 V. 65, N 10. P 106004.

[3] R. L. Bryant, S. L. Salamon. On the construction of some complete metrics with exceptional holonomy// Duke Math. J. 1989. V. 58, N 3. P. 829–850.

[4] C. P. Boyer, K. Galicki, B. M. Mann. The geometry and topology of 3-Sasakian manifolds. J. reine angrew. Math. 455 (1994), P. 183-220.

[5] A. Gray. Weak holonomy groups. Math. Z. V. 123 (1971). P. 290–300.

[6] J. H. Eschenburg. Inhomogeneous spaces of positive curvature, Diff. Geom. Appl. 2 (1992). P. 123-132.

Ya. V. BAZAIKIN, SOBOLEV INSTITUTE OF MATHEMATICS, NOVOSIBIRSK, RUSSIA

E. G. Malkovich, Novosibirsk State University, Novosibirsk, Russia

E-mail address: bazaikin@math.nsc.ru, malkovich@ngs.ru