On the Minimal Uncompletable Word Problem

Gabriele Fici ∗ Elena V. Pribavkina †
Jacques Sakarovitch ‡

April 26, 2010

Abstract

Let S be a finite set of words such that $\text{Fact}(S^*) \neq \Sigma^*$. We deal with the problem of finding bounds on the minimal length of words in $\Sigma^* \setminus \text{Fact}(S^*)$ in terms of the maximal length of words in S.

1 Introduction

A finite set S of (finite) words over an alphabet Σ is said to be complete if $\text{Fact}(S^*)$, the set of factors of S^*, is equal to Σ^*, that is, if every word of Σ^* is a factor of, or can be completed by multiplication on the left and on the right as, a word of S^*.

If S is not complete, $\Sigma^* \setminus \text{Fact}(S^*)$ is not empty and a word in this set of minimal length is called a minimal uncompletable word (with respect to the non-complete set S).

The problem of finding minimal uncompletable words and their length was introduced by Restivo [4], who conjectured that there is a quadratic upper bound for the length of a minimal uncompletable word for S in terms of the maximal length of words in S.

A more general related question of deciding whether a given regular language L satisfies one of the properties $\Sigma^* = \text{Fact}(L)$, $\Sigma^* = \text{Pref}(L)$, $\Sigma^* = \text{Suff}(L)$ has been recently considered by Rampersad et al. in [3], where the computational complexity of the aforesaid problems in case L is represented by a DFA or NFA is studied. In the particular case $L = S^*$ for S being a finite set of words – which is the case that is of interest for us – the authors mention that the complexity of deciding whether or not $\Sigma^* = \text{Fact}(S^*)$ is still an open problem.

In this note, we show by mean of an example that the length of a minimal uncompletable word for a set S whose longest word is of length k seems to grow as $3k^2$ asymptotically and at least gets larger than $2k^2$ for effectively computed values, thus improving on a previous example given by Antonio Restivo [4]. The computations of a minimal uncompletable word for the successive values of k in the parametrized example were made on the Vaucanson platform for computing automata [5]. This result is briefly mentioned in [1].

The previous attempts to studying non-complete sets of words lead us to the following formulation.

\[\text{Abstract}\]

Let S be a finite set of words such that $\text{Fact}(S^*) \neq \Sigma^*$. We deal with the problem of finding bounds on the minimal length of words in $\Sigma^* \setminus \text{Fact}(S^*)$ in terms of the maximal length of words in S.

\[\text{1 Introduction}\]

A finite set S of (finite) words over an alphabet Σ is said to be complete if $\text{Fact}(S^*)$, the set of factors of S^*, is equal to Σ^*, that is, if every word of Σ^* is a factor of, or can be completed by multiplication on the left and on the right as, a word of S^*.

If S is not complete, $\Sigma^* \setminus \text{Fact}(S^*)$ is not empty and a word in this set of minimal length is called a minimal uncompletable word (with respect to the non-complete set S).

The problem of finding minimal uncompletable words and their length was introduced by Restivo [4], who conjectured that there is a quadratic upper bound for the length of a minimal uncompletable word for S in terms of the maximal length of words in S.

A more general related question of deciding whether a given regular language L satisfies one of the properties $\Sigma^* = \text{Fact}(L)$, $\Sigma^* = \text{Pref}(L)$, $\Sigma^* = \text{Suff}(L)$ has been recently considered by Rampersad et al. in [3], where the computational complexity of the aforesaid problems in case L is represented by a DFA or NFA is studied. In the particular case $L = S^*$ for S being a finite set of words – which is the case that is of interest for us – the authors mention that the complexity of deciding whether or not $\Sigma^* = \text{Fact}(S^*)$ is still an open problem.

In this note, we show by mean of an example that the length of a minimal uncompletable word for a set S whose longest word is of length k seems to grow as $3k^2$ asymptotically and at least gets larger than $2k^2$ for effectively computed values, thus improving on a previous example given by Antonio Restivo [4]. The computations of a minimal uncompletable word for the successive values of k in the parametrized example were made on the Vaucanson platform for computing automata [5]. This result is briefly mentioned in [1].

The previous attempts to studying non-complete sets of words lead us to the following formulation.

\[\text{Abstract}\]

Let S be a finite set of words such that $\text{Fact}(S^*) \neq \Sigma^*$. We deal with the problem of finding bounds on the minimal length of words in $\Sigma^* \setminus \text{Fact}(S^*)$ in terms of the maximal length of words in S.

\[\text{1 Introduction}\]

A finite set S of (finite) words over an alphabet Σ is said to be complete if $\text{Fact}(S^*)$, the set of factors of S^*, is equal to Σ^*, that is, if every word of Σ^* is a factor of, or can be completed by multiplication on the left and on the right as, a word of S^*.

If S is not complete, $\Sigma^* \setminus \text{Fact}(S^*)$ is not empty and a word in this set of minimal length is called a minimal uncompletable word (with respect to the non-complete set S).

The problem of finding minimal uncompletable words and their length was introduced by Restivo [4], who conjectured that there is a quadratic upper bound for the length of a minimal uncompletable word for S in terms of the maximal length of words in S.

A more general related question of deciding whether a given regular language L satisfies one of the properties $\Sigma^* = \text{Fact}(L)$, $\Sigma^* = \text{Pref}(L)$, $\Sigma^* = \text{Suff}(L)$ has been recently considered by Rampersad et al. in [3], where the computational complexity of the aforesaid problems in case L is represented by a DFA or NFA is studied. In the particular case $L = S^*$ for S being a finite set of words – which is the case that is of interest for us – the authors mention that the complexity of deciding whether or not $\Sigma^* = \text{Fact}(S^*)$ is still an open problem.

In this note, we show by mean of an example that the length of a minimal uncompletable word for a set S whose longest word is of length k seems to grow as $3k^2$ asymptotically and at least gets larger than $2k^2$ for effectively computed values, thus improving on a previous example given by Antonio Restivo [4]. The computations of a minimal uncompletable word for the successive values of k in the parametrized example were made on the Vaucanson platform for computing automata [5]. This result is briefly mentioned in [1].

The previous attempts to studying non-complete sets of words lead us to the following formulation.
Let $S \subseteq \Sigma^*$ and denote by

$$uwl(S) = \begin{cases}
\min\{|x| : x \in \Sigma^* \setminus \text{Fact}(S^*)\} & \text{if } \Sigma^* \setminus \text{Fact}(S^*) \neq 0, \\
0 & \text{otherwise}
\end{cases}$$

and by

$$UWL(k, \sigma) = \max\{uwl(S) : S \subseteq \Sigma^{\leq k}, |\Sigma| = \sigma\}$$

In fact we shall be interested by the case of binary alphabet, and we write $UWL(k) = UWL(k, 2)$. The problem is to find upper and lower bounds for $UWL(k)$.

2 Bounds on the length of minimal uncompletable words

Proposition 2.1. [4] Let k be an integer and let S be a finite set of words whose maximal length is k and such that there exists a word u of length k with the property that no element of S is a factor of u. Then S is non-complete and the word

$$w = (ua)^{k-1}u$$

with $a \in \Sigma$ is an uncompletable word for S.

A direct consequence of this statement is then

Corollary 2.2. [4] For any integer $k \geq 2$ and any word u in Σ^k, the set $S = \Sigma^k \setminus \{u\}$ is non-complete.

Actually, if $S = \Sigma^k \setminus \{u\}$ and u is an unbordered word, it can be proved that the uncompletable word from Proposition 2.1 is also the shortest such word:

Proposition 2.3. [2] For any integer $k \geq 2$ and any unbordered word $u \in \Sigma^k$, a shortest uncompletable word of $S = \Sigma^* \setminus \{u\}$ has length $k^2 + k - 1$.

Corollary 2.4. For any $k \geq 2$ we have $UWL(k) \geq k^2 + k - 1$.

Of course, if S contained in Σ^* is non-complete and if $S \cup T$ is also contained in Σ^* and non-complete, any uncompletable word for $S \cup T$ is uncompletable for S and $uwl(S \cup T) \geq uwl(S)$.

The “game” is thus to start from a set S of the form $\Sigma^* \setminus \{u\}$ and to find a subset T of words of length shorter than k such that $S \cup T$ remains non-complete and the length of minimal uncompletable words increases as much as possible. This is the way that the bound $k^2 + k - 1$ was already improved in [4]:

Example 1. Let $k = 4$ and let

$$S_4 = \Sigma^4 \setminus \{aabb\} \cup \{ab, ba, aba, baa, bab, bba\}$$

Then

$$w = (aabb)aaa(aabb)baa(aabb)bba(aabb)$$

is a minimal uncompletable word for S_4.

2
Note that in this example the shortest uncompletable word maintains the structure $uv_1uv_2\cdots uv_{k-1}u$ of the uncompletable word from Proposition\ref{prop:2.1} but the intermediate words v_1 this time have length $k-1$. This example led Restivo to conjecture that $UWL(k) \leq 2k^2$. More precisely:

Conjecture. [4] If S is a non-complete set and k is the maximal length of words in S, there exists an uncompletable word of length at most $2k^2$. Moreover this word is of the form $uv_1uv_2\cdots uv_{k-1}u$, where u is the suitable word of length k and $v_1, v_2, \ldots, v_{k-1}$ are words of length less than or equal to k.

Example 2. Let $k > 4$ and let

$$S_k = \Sigma^k \setminus \{a^{k-2}bb\} \cup \Sigma ba^{k-4} \cup \Sigma ba \cup J_k$$

where $J_k = \bigcup_{i=1}^{k-3}(ba^i \Sigma \cup a^ib)$. We computed that for $5 \leq k \leq 12$ the word

$$w = (a^{k-2}bb)a^{k-1}(a^{k-2}bb)ba^{k-2}(a^{k-2}bb)ba^{k-3}(a^{k-2}bb)$$

is a minimal uncompletable word for S_k. Thus $UWL(k) \geq 2k^2 - 2k + 1$ for $5 \leq k \leq 12$. Using a similar technique as in [2], it can be proved that this word is uncompletable for each $k \geq 5$, but we are not aware whether this word is minimal uncompletable for $k > 12$.

Unfortunately, it is not true in general that $UWL(k) \leq 2k^2$. Indeed, we have

Example 3. Let $k > 6$ and let

$$S'_k = \Sigma^k \setminus \{a^{k-2}bb\} \cup \Sigma ba^{k-4} \cup \Sigma ba \cup b^4 \cup J_k$$

where $J_k = \bigcup_{i=1}^{k-3}(ba^i \Sigma \cup a^ib)$. We computed that, for $7 \leq k \leq 12$,

$$w = (a^{k-2}bb)a^{k-1}(a^{k-2}bb)ba^{k-4}((a^{k-2}bb)ba(a^{k-2}bb)bba^{k-5})a^{k-6}$$

is a minimal uncompletable word for S'_k. Thus $UWL(k) \geq 3k^2 - 9k + 1$ for $7 \leq k \leq 12$.

The set S'_k is obtained from the set S_k considered in Example 2 by adding just the word b^4.

3 On the structure of minimal uncompletable words

Let u be an unbordered word of length k, and $S = \Sigma^k \setminus \{u\}$. Any uncompletable word for S must contain the word u as a factor, and any word that contains an unbordered factor u can be uniquely written under the form

$$w = v_0uv_1uv_2\cdots uv_muv_{m+1}$$

with $v_j \in \Sigma^* \setminus \Sigma^* u \Sigma^*$. Actually, we can say a little bit more on the structure of minimal uncompletable words.
Proposition 3.1. Let \(u \) be an unbordered word of length \(k \) and \(S = \Sigma^k \setminus \{ u \} \). Then \(u \) is both a prefix and a suffix of any minimal uncompletable word for \(S \), that is, any minimal uncompletable word for \(S \) is of the form

\[
w = uv_1uv_2u \cdots v_mu
\]

with \(v_i \in \Sigma^* \setminus \Sigma^* u \Sigma^* \), \(m \geq 1 \).

Proof. Let \(w \) be any minimal uncompletable word for \(S \). Arguing by contradiction, suppose that \(u \) is not a suffix of \(w \). Let \(w = w'x \), with \(x \in \Sigma \). By the minimality of \(w \), we have \(w' \in \text{Fact}(S^*) \), i.e. \(w' \) can be covered by words in \(S \). Since \(S \) does not contain words longer than \(k \), there must exist a prefix \(p \) of \(w' \) such that \(p \in \text{Suff}(S^*) \) and \(|p| > |w'| - k \), i.e. \(|p| \geq |w| - k \). But then \(w \) could be written as \(w = pz \), with \(|z| \leq k \) and \(z \neq u \). This implies that \(w \) could be covered by words of \(S \), which is a contradiction.

In an analogous way one can prove that \(u \) must be a prefix of \(w \).

Note that Proposition 3.1 still holds for non-complete sets of the form \(S = \Sigma^k \setminus \{ u \} \cup T \), for \(u \) an unbordered word of length \(k \) and \(T \) a set of words of length shorter than \(k \).

What about the lengths of factors \(v_i \)'s? In all the examples above each \(v_i \) has length shorter than \(k \). Nevertheless, minimal uncompletable words for which this property is no longer true exist.

Example 4. Let

\[
S_5 = \Sigma^k \setminus \{ a^3bb \} \cup \Sigma ba \Sigma \cup \Sigma ba \cup J_5
\]

where \(J_5 = \bigcup_{i=1}^2 (ba^i \Sigma \cup a^i b) \), the set as in the Example 2 for \(k = 5 \). Then

\[
w = (a^3bb)aaa(a^3bb)baa(a^3bb)bbaba(a^3bb)baa(a^3bb)
\]

is a minimal uncompletable word for \(S_5 \).

Acknowledgements

A part of this research was done in 2006 during the visits of second- and third-named authors to the University of Salerno and was supported by the MIUR project “Formal languages and Automata: Methods, Models and Applications”. The authors are grateful to Jeffrey Shallit for fruitful discussions on the subject at the conference WORDS 2009 and encouraging them to write this note.

References

[1] Jean Berstel, Dominique Perrin, and Christophe Reutenauer. Codes and Automata. Encyclopedia of Mathematics and its Applications 129. Cambridge University Press, 2009.

[2] Elena V. Pribavkina. Slowly synchronizing automata with zero and incomplete sets. CoRR, abs/0907.4576, 2009.
[3] Narad Rampersad, Jeffrey Shallit, and Zhi Xu. The computational complexity of universality problems for prefixes, suffixes, factors, and subwords of regular languages. WORDS 2009. Available at CoRR, arXiv:0907.0159, 2009.

[4] Antonio Restivo. Some remarks on complete subsets of a free monoid. Quaderni de “La Ricerca Scientifica”, CNR Roma, 109:19–25, 1981.

[5] The Vaucanson Project. http://www.lrde.epita.fr/cgi-bin/twiki/view/Vaucanson/.