Deep Optimisation: Solving Combinatorial Optimisation Problems using Deep Neural Networks

J.R. Caldwell, R.A Watson and C. Thies
Agents, Interaction and Complexity
University of Southampton
SO17 1BJ, U.K.

J.D. Knowles
School of Computer Science
University of Birmingham
B15 2TT, U.K.

Abstract

Deep Optimisation (DO) combines evolutionary search with Deep Neural Networks (DNNs) in a novel way - not for optimising a learning algorithm, but for finding a solution to an optimisation problem. Deep learning has been successfully applied to classification, regression, decision and generative tasks and in this paper we extend its application to solving optimisation problems. Model Building Optimisation Algorithms (MBOAs), a branch of evolutionary algorithms, have been successful in combining machine learning methods and evolutionary search but, until now, they have not utilised DNNs. DO is the first algorithm to use a DNN to learn and exploit the problem structure to adapt the variation operator (changing the neighbourhood structure of the search process). We demonstrate the performance of DO using two theoretical optimisation problems within the MAXSAT class. The Hierarchical Transformation Optimisation Problem (HTOP) has controllable deep structure that provides a clear evaluation of how DO works and why using a layerwise technique is essential for learning and exploiting problem structure. The Parity Modular Constraint Problem (MCparity) is a simplistic example of a problem containing higher-order dependencies (greater than pairwise) which DO can solve and state of the art MBOAs cannot. Further, we show that DO can exploit deep structure in TSP instances. Together these results show that there exists problems that DO can find and exploit deep problem structure that other algorithms cannot. Making this connection between DNNs and optimisation allows for the utilisation of advanced tools applicable to DNNs that current MBOAs are unable to use.

Introduction

Combinatorial optimisation (CO) is the task of searching for a solution from a finite collection of possible candidate solutions that maximises the objective function. Put differently, the task is to reduce the large finite collection of possible solutions to a single (or small number of) optimal solution(s). In some cases, CO problems require methods that either have a bias to the problem structure or can learn the problem structure during the optimisation process such that it can be exploited. This hidden problem structure is caused by variable correlations and variable decompositions (building-blocks/modules (Goldberg 1989, Holland 1992)) and is, generally, unknown. The hidden structure can contain a multitude of characteristics such as near-separable decomposition, hierarchy, overlapping linkage and, as this paper shows, deep structure.

Deep learning (DL) is tasked with learning high-order representations (features) of a data-set that construct an output to satisfy the learning objective. The higher-order features are constructed from a sub-set of units from the layer below. DL performs this recursively, reducing the dimensionality of the visible space and generating an organised hierarchical structure. Deep Neural Networks (DNNs) are capable of learning complex high-order features from unlabelled data. Evolutionary search has been used in conjunction with DNNs, namely to decide on network topological features (number of hidden layers, nodes per a layer etc) (Stanley and Miikkulainen 2002) and for evolving weights of a DNN (Such et al. 2017) (neuro-evolution). However, DO is different; whereas previous methods use optimisers to improve the performance of a learning algorithm, DO is the reverse - it uses learning to improve the performance of an optimisation algorithm (‘learning how to optimise, not optimising how to learn’).

In CO it is a common intuition that solutions to small sub-problems can be combined together to solve larger sub-problems, and that this can proceed through multiple levels until the whole problem is solved. However, in practice, this is difficult to achieve (without expert domain knowledge) because the problem structure necessary for such problem decomposition is generally unknown. In learning, it is a common intuition that concepts can be learned by combining low-level features to discover higher-level features, and that this can proceed through multiple levels until the high-level concepts are found. DO brings these two together so that multi-level learning can discover multi-level problem structure automatically.

Model-Building Optimisation Algorithms (MBOAs), also known as Estimation of Distribution Algorithm’s (EDAs) (Hauschild and Pelikan 2011) are black-box solvers, inspired by biological evolutionary processes, that solve CO problems by using machine learning techniques to learn and exploit the hidden problem structure. MBOAs work by learning correlations present in a sample of fit candidate solutions and construct a model that captures the multivariate correlations which, if learnt successfully, represents the hidden problem structure. They then proceed to generate new candidate solutions by exploiting this learnt infor-
mation enabling them to find solutions that are otherwise pathologically difficult to find. It is the ability of MBOAs to exploit the hidden structure that has brought their success to solving optimisation problems (Aickelin, Burke, and Lübbecke 2007; Santana, Larrañaga, and Lozano 2008; Pelikan 2005; Goldman and Punch 2014; Thierens 2010). Models used in MBOAs include Bayesian Networks (Pelikan, Goldberg, and Cantú-Paz 1999; Pelikan 2005), Dependency Matrices (Hsu and Yu 2015), and Linkage Trees (Thierens 2010; Goldman and Punch 2014).

The model is used for two tasks in MBOAs: 1) To learn, unsupervised, correlations between variables as to form higher-orders of organisation reducing the dimensionality of the solution space from combinations of individual variables to combinations of module solutions (features). 2) To generate or modify new candidate solutions in a way that exploits this learnt information. Thus far, the models used in MBOAs are simplistic in comparison to the state of the art models used by the machine learning community. We believe DNNs contain all the necessary characteristics required for solving CO problems and fit naturally as the model role in MBOAs.

How the learnt information is exploited has a profound effect on the algorithms performance. One approach is to directly sample from the model, i.e. generating complete solutions before applying a selection pressure that filters out which complete solutions are better than others (Pelikan, Goldberg, and Cantú-Paz 1999). This effectively conserves correlated variables during future search. A second approach is to use model-informed variation where selection is applied directly after a partial change is made to the solution. This results in an adaptation of the variation operator from substituting single variables to substituting module solutions (Watson, Mills, and Buckley 2011; Cox and Watson 2014; Mills, Jansen, and Watson 2014; Thierens 2010). DO utilises a model-informed approach as this has been shown to solve optimisation problems that algorithms generating complete solutions from the model cannot (Caldwell and Watson 2017).

The application of neural networks to solving optimisation problems has an esteemed history (Hopfield and Tank 1985). Learning heuristics to generalise over a set of CO instances (Khalil et al. 2017; Bello et al. 2016; Zhang and Dietterich 2000) and adapting the learning function to bias future search (Hopfield and Tank 1985; Boyan and Moore 2000) are popular approaches. DO is different as it uses a DNN to recursively adapt the variation applied. The use of an autoencoder in MBOAs has been attempted (Probst 2015; Churchill, Sigta, and Fernando 2014), however they limit the autoencoder to a single hidden layer and use the model to generate complete candidate solutions rather than using model-informed variation. DO is the first algorithm to use a deep multi-layered feed-forward neural network to solve CO problems within the framework of MBOAs.

The focus of this paper is to introduce the concept of DO to show how DNNs can be extended to the field of MBOAs. By making this connection we open the opportunity to use the advanced DL tools that have a well-developed conceptual understanding but are not currently applicable to CO and MBOAs. We use two theoretical MAXSAT problems to demonstrate the performance of DO. The Hierarchical Transformation Optimisation Problem (HTOP) contains controllable deep structure that provides clear evaluation of DO during the optimisation process. Additionally, HTOP provides clear evidence that DO is performing as theorised - specifically with regards to the rescaling of the variation operator and the essential requirement for using a layerwise technique. The Parity Modular Constraint optimisation problem (MCparity) contains structure with greater than pairwise dependencies and is a simplistic example of how DO can solve problems that current state of the art MBOAs cannot. Finally, DO is used to solve benchmark instances of the Travelling Salesman Problem (TSP) to demonstrate the applicability to CO problems containing characteristics such as non-binary representations and in-feasible solutions. Comparison is made with three heuristic methods in which DOs performance is better.

The Deep Optimisation Algorithm

Algorithm 1: Deep Optimisation
Initialise Model:
while Optimising Model do
Reset Solution;
while Optimising Solution do
Perform model-informed variation to solution;
Calculate fitness change to solution;
if Deleterious fitness change then
Reject change to solution;
else
Keep change to solution;
Update the model using optimised solution as a training example.

The Deep Optimisation algorithm is presented in Algorithm 1. The algorithm consists of two optimisation cycles, a solution optimisation cycle and model optimisation cycle, inter-locked in a two-way relationship. The relationship between these two cycles can be understood as a meta-heuristic method where the solution optimiser (heuristic method) is influenced by the model (external control). The solution optimisation cycle is an iterative procedure that produces a locally optimal solution using model-informed variation. The model optimisation cycle is an iterative procedure that updates the connection weights of a neural network to satisfy the learning objective.

DO uses the deep learning Autoencoder model (AE) due to its ability to learn higher-order features from unlabelled data. The encoder and decoder network are updated during training. Only the decoder network is used for generating reconstructions from the hidden layer. DO uses an online learning approach where the learning rate controls the ratio between the exploration and exploitation of the search space.

Model Optimisation Cycle

The AE uses an encoder (W) and decoder network ($W’$). The encoder network performs a transformation from the
visible units, \(X \), to hidden units \(H_1 \) using a non-linear activation function \(f \) on the sum of the weighted inputs:
\[
H_1(X) = f(W_1X + b_1),
\]
where \(W \) and \(b \) are the connection weights and bias respectively. The decoder network generates a reconstruction of the visible units, \(X_r \), from the hidden units:
\[
X_r(H_1) = f(W'_1H_1 + b_1)
\]
where \(W' \) is the transpose of the encoder weights. The backpropagation algorithm is used to train the network using a mean squared error of the reconstruction \(X_r \) and input \(X \).

A deep AE consist of multiple hidden layers with the encoder performing a transformation from \(H_{n-1} \) to \(H_n \) defined by
\[
H_n(H_{n-1}) = f(W_nH_{n-1} + b_n)
\]
and the decoder reconstructing \(H_{(n-1)} \) defined by
\[
H_{(n-1)}(H_n) = f(W'_nH_n + b_{rn}).
\]
DO utilises a layer-wise approach for both training and generating samples. Initially the AE has a single hidden layer and is trained on solutions developed using the naive local search operator. The network then transitions such that the AE consist of two hidden layers and variation is informed by the first layer whilst training updates all connection weights. By constructing a network with less hidden units than visible units creates a regularisation pressure to learn a compression of the training data. At each hidden level, an optimised model will contain a meaningful compression of the lower level relating to higher-orders of organisation. Our experiments show the significance of using a layer-wise approach in comparison to an end-to-end network approach. We employ the notation \(DO^n \) to differentiate between the number of hidden layers used in the AE.

Solution Optimisation Cycle

The solution optimisation cycle produces locally optimal solutions as guided by model-informed variation. Specifically, a candidate solution \(X \) is initialised from a random uniform distribution. A random variation is applied to the candidate solution, forming \(X' \), if the variation has caused a beneficial fitness change, or no change to the fitness, the variation is kept, \(X = X' \), otherwise the variation is rejected. This procedure is repeated until no further improvements. By repeatedly resetting a candidate solution ensures the training data has sufficiently good coverage of the solution space.

A model-informed variation is generated by performing a bit-substitution to the hidden layer activations at layer \(n \), forming \(H'_n \). \(H'_n \) is then decoded to the solution level using the trained decoder network forming \(X' \). The solution optimisation cycle continues as before where the fitness of \(X' \) is determined and if there is a fitness benefit, or no change to the fitness, when compared to \(X \), \(H_n = H'_n \) and \(X = X' \), otherwise the change is rejected. A decoded variation made to the hidden layer causes a change to the solution level that exploits the learnt problem structure. Concretely, module-substitutions are constructed by performing bit-substitutions to the hidden layer and decoding to the solution level. At a solution reset, it is important that \(H_n \) is an accurate mapping for the current solution state. Therefore the hidden layer \(H_n \) is reset using a random distribution \(U[-1, 1] \). It is then decoded to the solution level \(X \) to construct an initial candidate solution. The output of the autoencoder is continuous between the activation values and therefore requires interpreting to a solution. For MAXSAT, DO uses a determin-
applied variation but the solution optimisation cycle provides feedback to the model optimiser. Specifically, correctly learnt features will cause beneficial changes to a solution during optimisation, and therefore will be repeatedly accepted during the solution optimisation cycle and thus repeatedly presented to the model during training, reinforcing the learnt correlations. In contrast, incorrectly learnt features will cause deleterious fitness changes and therefore will not be accepted and thus not present in the training data.

Performance Analysis of Deep Optimisation

Two theoretical CO problems within the MAXSAT class are specifically designed to demonstrate how DO works and show that DO can solve problems containing high-order dependencies that state of the art MBOA’s cannot.

How Deep Optimisation Works

The Hierarchical Transformation Optimisation Problem (HTOP) is formed within the MAXSAT class where there objective is to find a solution that satisfies the maximum number of constraints imposed on the problem. HTOP is a consistent constraint problem and has four global optima. HTOP is specifically designed to provide clarity on how DO works with specific regards to the process of rescaling the variation operator to higher-order features and the necessity for a DNN to use a layerwise procedure. HTOP is inspired by Watson’s Hierarchical If and only If (HIFF) problem (Watson, Hornby, and Pollack 1998) and uses the same recursive construction with an adaptation to cause deep structure. The generalised hierarchical construction is summarised here. The solution state to the problem is \(x = \{x_1, \ldots, x_i, \ldots, x_N\} \), where \(x_i \in \{0, 1\} \) and \(N \) is the size of the problem. \(p \) represents the number of levels in the hierarchy and \(N_p \) represents the number of building-blocks of length \(L_p \) at each hierarchical level. Each block containing \(k \) variables is converted into a low-dimensional representation of length \(L_p / R \) by a transformation function \(t \), where \(R \) is the ratio of reduced dimensionality creating a new higher-order string \(\{V_1^{p+1}, \ldots, V_{N_p L_p}^{p+1}\} \). In what follows \(k = 4 \) and \(R = 2 \) using the transformation function detailed in Table 1 where a solution to a module is a one-hot bit string.

The transformation function is derived from a machine learning benchmark named the 424 encoder problem (Ackley, Hinton, and Sejnowski 1985). Learning the structure is not trivial and cannot be well approximated by pairwise associations unlike for HIFF. The transformation is applied recursively constructing deep constraint where at each level of hierarchy a one-hot coding is required to be learnt. The null variable is used to ensure that a fitness benefit at the higher level can only be achieved by satisfying all lower level transformations beneath it.

HTOP is pathologically difficult for a bit-substitution hill climber. Satisfying a depth 2 constraint requires coordination of module transformations such that the transformed representations of two modules below construct a one-hot solution, e.g. Module 1 transformation = 01 (\(X = 0100\)) and Module 2 transformation = 00 (\(X = 1000\)). A bit-substitution operation is unable to change a module solution without causing a deleterious fitness change. Therefore a higher-order variation is required that performs substitutions of module solutions. This recursive and hierarchical construction requires the solver to successively rescale the search operator to higher-orders of organisation.

A HTOP instance of size 32 (HTOP\(_{32}\)) is used to demonstrate how DO successfully learns, represents and exploits the deep structure. Further, we show the performance difference between DO\(^0\) (a bit-substitution restart hill-climbing algorithm), DO\(^1\) (a restart hill-climber using a shallow network) and DO\(^3\) (a restart hill-climber using a deep network). The algorithms use 320 steps to optimise a solution and produce a total of 2000 solutions. Figure 1 presents the solution fitness after each solution optimisation cycle.

DO\(^0\) is unable to find a globally optimal solution. It sim-

a b c d	\(t(a, b, c, d) \)	\(f(a, b, c, d) \)
1 0 0 0	0 0	1
0 1 0 0	0 1	1
0 0 1 0	1 0	1
0 0 0 1	1 1	1
Otherwise	-	0

Table 1: HTOP transformation \(t \), and fitness function \(f \).
Figure 3: Deep representations are consistently better performing than shallow ones, and incremental addition of layers is better than end-to-end learning.

Table 2: Example solutions to MC\textsubscript{parity}. A global optima is a solution with all modules containing the same parity answer.

Module	Written Module	Between Module	Total Fitness
1000	0100 1101	1101	4.0008
1000	1000 1101	4x1 = 4	4.0010
1000	1000 1000	4x1 = 4	4.0016

The Parity Modular Constraint optimisation problem (MC\textsubscript{parity}) is an adaptation of the Modular Constraint Problem \cite{Watson2011} where module solutions are odd parity bit-strings. A problem of size N is divided into m modules each of size n. There are $n/2$ sub-solutions per a module and each of the sub-solutions is assigned a type. A fitness point is awarded, for a module, if a module contains an odd parity solution, otherwise no point. A global solution is one where all modules in the problem contain the same parity solution ($n/2$ global optima). The between module fitness is the summation of the squared count of each module solution type present in the whole solution. The fitness function is provided in Equation 1 and examples of a solutions fitness is presented in Table 2. For the scaling analysis performed here we use $n = 4$.

Although this problem supports many solutions within each module the smaller fitness benefits of coordinating modules are more rare. By ensuring the module fitness is much more beneficial than the between module fitness ($p \ll 1$) requires the algorithm to perform module substitutions of
odd parity to follow the fitness gradient to coordinate the module solutions without deleterious fitness effects. If an algorithm cannot learn and exploit the high-order structure of the parity modules then finding a global optima will require exponential time with respect to the number of modules in the problem. Conversely, an algorithm that can will easily follow the fitness gradient to correctly coordinate the module solutions and thus scale polynomial with respect to the number of modules in the problem.

Leading MBOAs such as LTGA, P3 and DSMGA use a dependency structure matrix (DSM) and the mutual information metric to capture variable dependencies. They are successful in capturing module structures containing more than 2 variables however it is hypothesised they are unable to correctly capture structure that contains greater than pairwise dependencies between variables. A simple example being parity. A neural network is capable of learning and capturing higher-order dependencies between variables.

For LTGA and DO the parameters are manually adjusted such that all 50 runs produce the global optimum. The results are presented in Figure 4. The data points present the average number of fitness evaluations required to find the global optimum for the 50 independent runs for N < 300 and 10 for N=300 and N=400. For LTGA the population is adjusted manually until a change of 10% would not cause a failure. For DO, from smallest to largest N, the learning rate varied from 0.05 to 0.0015 and transition from 60 to 1000 solutions. The network topology included up to three hidden layers and used a compression of ~ 10% at each layer. P3 is parameterless and required no adjustment. Two implementations are included for LTGA, (Thierens 2010) and (Goldman and Punch 2014). The differences between both LTGA implementations and P3 are interesting and it is hypothesised to be caused by the way in which solutions can be prioritised according to their fitness for constructing the model. More significantly, LTGA and P3 scale exponentially whereas DO scales polynomial (~ \(N^2 \)). To verify that the deep structure of DO is necessary a shallow version of DO is included in the results: DO\(^1\) (limited to a single hidden layer). The scaling appears to be exponential where results could not be achieved for problem instances greater than 108 as the tuning of parameters became extremely sensitive. Whereas with HTOP we can see clearly what the deep structure is that needs to be learnt, in the MC parity problem we can see that high-order dependencies defeat other algorithms but are not a problem for DO.

Solving the Travelling Salesman Problem

In this section we apply DO to solve the travelling salesman problem (TSP). A solution to a TSP is a route that visits all locations once and returns to the starting location. The optimisation problem is to minimise the total travelling cost. We use 6 TSP instances from the TSP library (Reinhelt 2014): 3 symmetric and 3 asymmetric, and compare with three other heuristic methods. Our aim here is to provide an example of how DO can be successfully used to solve CO problems containing characteristics such as non-binary representations and in-feasible solutions. The results that follow do not show DO outperforming state of the art heuristic methods (these problems are not particularly difficult for Lin-Kernighan Helsgaun algorithm (Helsgaun 2000) but they do show that DO can find and exploit deep structure that can be used to solve TSP problems better than shallow methods.

TSP Representation

To apply DO the TSP solution is transformed into a binary representation using a connection matrix \(C \) of size \(N^2 \) where \(C_{ij} \) represents an edge. \(C_{ij} = 1 \) signifies that \(j \) is the next location after \(i \) (the remaining entries are 0). There are a total of \(N \) connections, where each location is only connected to one other location (not itself) to construct a valid tour. The connection matrix is sparse and we found that normalising the data improved training. This is a non-compact representation but it is sufficient for demonstrating DO’s ability for finding and exploiting deep structure.

The output generated by DO is continuous and is interpreted to construct a valid TSP solution. The interpretation is detailed in Algorithm 2. There are two stochastic elements included in the routine. The first element is the starting location from which the tour is then constructed. Choosing a random starting position removes the bias associated with starting at the problem defined starting location. The second element is selecting the next location in the tour. The autoencoder is trained such that positive numbers are connections in a tour. A negative output indicates no connection is made between locations. However, for the case when all locations with a positive connection have been used in the tour then, to ensure a feasible solution, the next location is randomly selected from the set of possible locations available. This ensures that learnt sub-tours (building blocks) are correctly conserved during future search and allows the location of the sub-tour to vary within the complete tour (searching in combinations of learnt building blocks). The construction method resembles the method used by Hopfield and Tank (Hopfield and Tank 1985), but here we use a max function rather than a probabilistic interpretation.
Table 3: DO exploits useful structure in TSP problems to find the global optimum (column 4-5) that is not found by a heuristic method within the same number of trials (columns 6-8) nor found easily within 10000 trials (columns 9-11). Values report percentage difference from the global optimum.

Problem Instance	Type	Number Locations	Performance DO (%)	Avg trials req. for DO	Performance using same trials as DO (%)	Performance using 10000 trials (%)
fr26	Sym	26	0	30	4.6 1.2 0.2	0 0 0
brazil58	Sym	58	0	224	17.0 4.0 0.1	0.9 0 0
st70	Sym	70	0	806	25.8 6.1 0.4	20.9 3.9 0.02
ft70	Asym	36	0	112	1.6 0.3 2.7	0.8 0 1.4
p43	Asym	43	0	393	0.3 0.1 0	0.1 0.02 0
ri70	Asym	70	0	1776	17.1 4.4 26.7	7.2 2.2 23.1

Algorithm 2: Interpretation for TSP Solution

Set Tour[0] = select, uniformly at random, starting position;
Set ValidLocs = all possible TSP Locations;
Remove Tour[0] from ValidLocs;
ConVec = Vector of size N;
i = 1;
repeat
 ConVec = connection vector generated from
 Autoencoder for location Tour[i-1];
 NextLoc = Where(max(ConVec[ValidLocs]));
 if ConVec[NextLoc] > 0 then
 Tour[i] = NextLoc;
 else
 Tour[i] = select, uniformly at random, from
 ValidLocs;
 remove Tour[i] from ValidLocs;
i++;
until ValidLocs empty;
Cycle tour until Tour[0] = defined start location;
Tour[1] = defined start location;

Results

The performance of DO is compared with three local search heuristics: location swap; location insert and 2-opt. The location swap heuristic consists of selecting, at random, two positions in a TSP tour and swapping the locations. The location insert heuristic selects a position in the tour at random, removes the location from the position and inserts it at another random position. The 2-opt heuristic (Croes 1958) involves selecting two edge connections between locations, swapping the connections and reversing the sub-tour between the connections. For our experiments, DO used the location insert heuristic before transition as it produces good training data for both symmetric and asymmetric TSP cases. When performing search in the hidden layer local search is also applied.

The results, averaged over 10 runs, are provided in Table 3. DO solves all TSP instances each time and the number of trials (training examples) are reported in column 5. Columns 6-8 report the percentage difference between the global optimum and the best found solution for a restart hill climber using a heuristic within the trials used by DO to find the global optimum. This demonstrates that DO is exploiting structure as it is able to find the global optimum faster. Note DO used the insert heuristic for all TSP instances, therefore 2-opt can perform better on some small cases as observed. Columns 9-11 report the percentage difference when the heuristic search is allowed 10000 trials. These results further confirm DO is exploiting structure reliably as, especially for the larger instances, the global optimum is not easily found.

Conclusion

DO is the first algorithm to use a DNN to repeatedly redefine the variation operator used to solve CO problems. The experiments show there exist CO problems that DO can solve that state of the art MBOAs cannot. They also show there exists CO problems that a DNN can solve that a shallow neural network cannot and that using a layer-wise method can solve that an end-to-end method cannot. Further, results show that DO can be successfully applied to CO problems containing characteristics including non-binary representations and infeasible solutions. This paper thus expands the use of DNN to be applied to CO problems.

DO provides the opportunity to use the advanced deep learning tools that have been utilised throughout the community for other applications of deep learning and are not available to MBOAs, tools such as dropout, regularisation and different network architectures. These tools application have been shown to improve generalisation in conventional DNN tasks and should therefore also improve the ability to learn problem structure and thus DO’s ability in solving CO problems. The application in DO remains to be investigated. Whether other network architectures (convolution neural networks, deep belief networks, generative adversarial networks) offer capabilities that are useful for solving some kinds of CO problems, e.g. problems with transposable sub-solutions, is also of interest.

References

[Ackley, Hinton, and Sejnowski 1985] Ackley, D. H.; Hinton, G. E.; and Sejnowski, T. J. 1985. A learning algorithm for boltzmann machines. *Cognitive science* 9(1):147–169.
[Ackelin, Burke, and Li 2007] Ackelin, U.; Burke, E. K.; and Li, J. 2007. An estimation of distribution algorithm with intelligent local search for rule-based nurse rostering.
resource-constrained scheduling. *Journal of Artificial Intelligence Research* 1:1–38.