Structured Uncertainty Prediction Networks

[Dorta et al. CVPR 2018]
Problem: VAEs produce overly smooth output..

• Fails to capture all the **details** in the data
• Factorised Gaussian (e.g. L2 or diagonal loss) deals with the failures by averaging them across pixels (smoothing)
Problems with the diagonal noise model..

- Factorised noise assumption does not hold for **images**
- Seen by sampling from the likelihood (e.g. diagonal Gaussian)...

 reconstruction (mean), diagonal variance

- The random draw does not match the data
What if we use a structured noise model?

- Instead predict a structured covariance matrix (from latent space)
- We can draw samples to compare...

• A random draw captures the statistics of the input data!
Structured uncertainty prediction network

\[p_\theta(x \mid z) = \mathcal{N}(\mu(z), \Sigma_\psi(z)) \]
Tractable via sparse connectivity

- Parameterise the precision matrix $\Sigma^{-1} = LL^T$ for efficiency

$$\min_{\psi} \log \left(|\Sigma_\psi| \right) + (x - \mu)^T (\Sigma_\psi)^{-1} (x - \mu)$$
Long range correlations from sparse precision..
Reconstructions on celebA dataset.

Model	NLL	$- \log p(x \mid z)$
VAE [1]	-5378 ± 931	-6079 ± 936
Ours	-7753 ± 1323	-8386 ± 1339
Reconstruction variation
What about the noisy projection evaluation?

Model	MSE	PSNR	SSIM
DAE	0.005 ± 0.003	28.89 ± 1.69	0.90 ± 0.03
Ours	0.003 ± 0.001	31.38 ± 0.92	0.92 ± 0.02
But what about the noisy projection evaluation..
Limitations

- Lack of proper predictive posterior in the VAE latent space
- Difficult to know where to draw samples from:
Limitations

• Standard NN caveats apply..
 • What happens away from the training data?
 • Constraints on the function?
 • True epistemic uncertainty?

• Likelihood function only works for the category trained on..