CASE REPORT

Surgery-first for a patient with mild hemifacial microsomia: A case report and review of literature

Ji-Yu Song, Hua Yang, Xi He, Shuang Gao, Guo-Min Wu, Min Hu, Yi Zhang

Abstract

BACKGROUND

Hemifacial microsomia (HFM) is the second most common craniofacial congenital anomaly following cleft lip and palate. Because of the various phenotypic spectra and the severity of the deformity, a wide range of treatment approaches have been proposed. Recently, the surgery-first approach (SFA) was introduced to treat mild to moderate HFM, and it yielded a balanced facial appearance. The SFA not only promotes rapid improvement in facial aesthetics but also considerably reduces the overall treatment time.

CASE SUMMARY

A female patient, aged 25 years old, sought orthodontic treatment with the chief complaint of dental and facial asymmetry. After a comprehensive physical examination and imaging analysis were performed, the patient was diagnosed with mild HFM that was primarily attributed to unilateral abnormal development of the maxilla-mandibular. The SFA was carried out to correct the skeletal deformity. The palatal suture was used as the midline of the maxilla in the surgical plan to center the maxilla, and the chin was also properly positioned to obtain a relatively symmetrical facial appearance. Four weeks after the surgery, the patient was referred for postsurgical orthodontics to decompensate the
Hemifacial microsomia; Skeletal deformity; Surgery-first approach;
Core Tip: Hemifacial microsomia (HFM) is the second most common craniofacial congenital anomaly following cleft lip and palate. Recently, the surgery-first approach (SFA) was introduced to treat mild to moderate HFM, promote rapid improvement in facial aesthetics and reduce the overall treatment time. When presurgical orthodontics information on the underlying skeletal deformity is not available, careful treatment planning and strong collaborations between skilled orthodontists and surgeons are needed to predict accurately surgical skeletal movement and postsurgical tooth movement after SFA. This case report presents a successful SFA in a patient with mild HFM. The treatment outcome confirmed a balanced facial appearance.

CONCLUSION
Mild HFM can be corrected by SFA, which not only promotes rapid improvement in facial aesthetics but also considerably reduces the overall treatment time.

Key Words: Hemifacial microsomia; Skeletal deformity; Surgery-first approach; Orthodontics; Orthognathics; Case report

©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.

INTRODUCTION
Hemifacial microsomia (HFM) is the second most common craniofacial congenital anomaly following cleft lip and palate. It is characterized by a developmental defect in any structure of the first and second pharyngeal arch leading to predominantly asymmetric hypoplasia of their derivatives, characterized by unilateral maxilla-mandibular hypoplasia and facial asymmetry. In addition to maxilla-mandibular anomalies, this condition also involves underdevelopment of the ear, zygoma, temporal bone and the associated musculature and soft tissues. Hemifacial microsomia (HFM) is the second most common craniofacial congenital anomaly following cleft lip and palate. Without presurgical orthodontics (SFA) was introduced to treat mild to moderate HFM, promote rapid improvement in facial aesthetics and reduce the overall treatment time. When presurgical orthodontics information on the underlying skeletal deformity is not available, careful treatment planning and strong collaborations between skilled orthodontists and surgeons are needed to predict accurately surgical skeletal movement and postsurgical tooth movement after SFA. This case report presents a successful SFA in a patient with mild HFM. The treatment outcome confirmed a balanced facial appearance.

Core Tip: Hemifacial microsomia (HFM) is the second most common craniofacial congenital anomaly following cleft lip and palate. Recently, the surgery-first approach (SFA) was introduced to treat mild to moderate HFM, promote rapid improvement in facial aesthetics and reduce the overall treatment time. When presurgical orthodontics information on the underlying skeletal deformity is not available, careful treatment planning and strong collaborations between skilled orthodontists and surgeons are needed to predict accurately surgical skeletal movement and postsurgical tooth movement after SFA. This case report presents a successful SFA in a patient with mild HFM. The treatment outcome confirmed a balanced facial appearance.

Citation: Song JY, Yang H, He X, Gao S, Wu GM, Hu M, Zhang Y. Surgery-first for a patient with mild hemifacial microsomia: A case report and review of literature. World J Clin Cases 2021; 9(1): 148-162
URL: https://www.wjgnet.com/2307-8960/full/v9/i1/148.htm
DOI: https://dx.doi.org/10.12998/wjcc.v9.i1.148
require careful treatment planning and strong collaborations between skilled orthodontists and surgeons to predict accurately the surgical skeletal movement and postsurgical tooth movement.

This case report presents a successful SFA with the combination of temporary miniscrew anchorage devices performed in a patient with mild HFM.

CASE PRESENTATION

Chief complaints
A female patient, aged 25 years old, sought orthodontic treatment with the chief complaint of dental and facial asymmetry (Figures 1 and 2).

History of present illness
She had no systemic diseases.

History of past illness
She had an aesthetic injection in her right chin and no other significant medical histories and denied a genetic history.

Personal and family history
She had no family history.

Physical examination
Pretreatment frontal face evaluation showed an asymmetrical face with the right side larger than the left, the chin shifted to the left, and pronounced inclination of the occlusal plane. The two pupils were also not on the same horizontal line (Figure 1). The intraoral examination showed a more than full-cusp class III molar relationship and crossbites in the left posterior region (Figure 2). The maxillary right second molar was congenitally missing, and the right second mandibular molar had a serious defect in the dental hard tissues. The maxillary midline was diverted to the right by 4 mm, the mandibular midline was shifted to the left by 6 mm, and there was a marked inclination of the maxillary occlusal plane.

Laboratory examinations
The analysis of study casts showed an overjet of -0.15 to 2.48 mm and crowding in the maxillary and mandibular anterior (Table 1, Figure 3A). The anterior Bolton index was 83%, and the overall Bolton index was 96% (17 was absent, Table 1).

Imaging examinations
The panoramic radiograph indicated the absence of tooth 17 and mild alveolar absorption in the whole dentition (Figure 4). The lateral cephalometric analysis indicated a skeletal class III relationship (ANB, 1.9°; Wits appraisal, -5.7°) (Figure 4A, Table 2). Ricketts’ frontal cephalometric analysis (Table 3) showed skeletal asymmetry of the mandible and mandibular dental asymmetry (Figure 4B). The functional examination showed no signs of temporomandibular joint (TMJ) disorder, but the mandible deflected to the left when the jaw was opened (Figure 5). The cone beam computed tomography (CBCT) image analysis of facial asymmetry (Figure 6) showed that both the frontal and lateral ramal inclinations and the mandibular body length were larger on the right side than on the left side, which contributed to the mandibular deviation toward the left (Figure 4B). Not only was mandible asymmetry present, but the bilateral orbital, zygomatic and maxilla were also asymmetrically developed. There were no obvious symptoms in her ear.

MULTIDISCIPLINARY EXPERT CONSULTATION

Zhang Y, PhD, Lecturer, Department of Orthodontics, Hospital of Stomatolgy, Jilin University

Considering the severely inclined occlusal plane and facial asymmetry, combined orthodontic-orthognathic treatment was a valid approach to achieve an ideal treatment outcome.

Conventional orthodontic-orthognathic treatment includes three phases: (1)
Presurgical orthodontics to decompensate the dentition to increase the magnitude of surgical correction; (2) Orthognathic surgery to correct the skeletal deformity; and (3) Postsurgical orthodontics to finish and detail the occlusion. However, one drawback is that the time-consuming presurgical orthodontic treatment typically worsens the facial appearance and exacerbates the malocclusion, which does not resolve the patient’s chief complaint.

The SFA corrects the skeletal deformity early and is followed by postsurgical orthodontics to decompensate the dentition and stabilize the occlusion. This approach promotes rapid improvement in facial aesthetics and considerably reduces the overall treatment time. When presurgical orthodontics is not performed to decompensate the dentition and identify the true underlying skeletal deformity, incorporating decompensation movements of the dentition into surgical planning requires strong collaborations between skilled orthodontists and surgeons to predict accurately the surgical skeletal movement and postsurgical tooth movement.

Wu GM, Chief Physician, Plastic Aesthetic Center, Hospital of Stomatology, Jilin University

Based on comprehensive examinations and analyses, including cephalometric analysis, dental cast predictions, and surgical simulations on profile images of the patient that were performed on imaging software (Dolphin Imaging and Management Solutions, Chatsworth, CA, United States), it was determined that the treatment plan should include a LeFort 1 osteotomy to advance and move the maxilla clockwise, a bilateral sagittal split ramus osteotomy to create a differential setback and coordination of the maxilla to correct the facial asymmetry and the skeletal deformity and postsurgical orthodontics to obtain a stable occlusion.

FINAL DIAGNOSIS

The patient was diagnosed with the following: (1) Mild HFM that was primarily attributed to unilateral abnormal development of the maxilla and mandible in three dimensions; (2) A congenitally missing tooth (17); (3) Two teeth with microdontia (12 and 22); and (4) Chronic periodontitis.

TREATMENT

After considering the two treatment alternatives (conventional orthodontic-
Orthodontic alignment and leveling of the maxillary and mandibular dental arches orthognathic treatment and the SFA), the authors and the patient decided on the SFA: Two-jaw surgery followed by postsurgical orthodontics for decompensation to achieve a proper incisor inclination and stable occlusion. After the initial phase of the periodontal treatment, preadjusted 0.022-0.028-in brackets (Damon™ Q Standardized Torque, Ormco Corporation, Orange, CA, United States) were directly bonded to all teeth (except 47) 1 wk before surgery, with initial 0.014-in nickel-titanium archwires in both arches. Both orthodontists and surgeons participated in the surgical plan to predict accurately the surgical skeletal movement and postsurgical tooth movement.

It is worth mentioning that we used the palatal suture as the midline of the maxilla to center the maxilla. Then, the maxillary movement was expected to advance by 1.5 mm and drift to the left by 2 mm, leading to 2 mm of impaction on the right side and 2 mm of extrusion on the left side. Although the postsurgery dental midline can divert to the left (without presurgical orthodontics being performed to decompensate the dentition) (Figure 3B), the maxilla was located in the center of the craniofacial area, which contributed the same nasolabial sulcus depth on both sides and a balanced facial appearance. A self-tapping miniscrew (MB105-1.6×11×7.3, Ningbo Cibei Medical Treatment Appliance Co. Ltd., Cixi, China) was placed behind the roots of the maxillary first molar on the labial side in surgery to retract with strong anchorage and to coordinate the midline in postsurgical orthodontics. The mandible was moved back by 3 mm on the left and 9 mm on the right, and the chin was placed in the middle. Considering the asymmetry of the height of the mandibular body and the mandibular angle, curved mandibular angle osteotomy and contour repair of the edge of the mandible were also carried out to correct the skeletal asymmetry. Rigid fixation was used in the maxilla and the mandible without any intermaxillary fixation.

Four weeks after the operation, the patient was referred back to the clinic to begin her postsurgery orthodontic treatment. The postsurgery face evaluation showed a symmetrical facial appearance and a straight profile. The intraoral examination showed a dental class II occlusal relationship with 6 mm of overjet (Figure 7). Orthodontic alignment and leveling of the maxillary and mandibular dental arches

Table 2 Cephalometric analysis at pretreatment and posttreatment

	Pretreatment	Posttreatment	Norm ± SD
Skeletal			
SNA (°)	86.6	86.9	82.0 ± 3.5
SNB (°)	84.7	83.0	80.9 ± 3.4
ANB (°)	1.9	3.9	1.6 ± 1.5
Pog-NB (mm)	0.9	2.0	3.0 ± 1.7
FMA (°)	23.0	35.7	22.9 ± 4.5
Wits (°)	-5.7	-3.8	-1.0 ± 1.0
S-Go/N-Me	69	65.8	65.0 ± 4.0
Y-Axis (°)	65.5	67.1	67.0 ± 5.5
MP-SN (°)	30.8	35.7	33.0 ± 6.0
Dental			
U1-NA (mm)	2.8	2.7	4.3 ± 2.7
U1-NA (°)	17.2	17.4	22.8 ± 5.7
L1-NB (mm)	3.8	5.2	4.0 ± 1.8
L1-NB (°)	21.7	35	25.3 ± 6.0
U1-SN (°)	103.8	102.4	103.1 ± 5.5
IMPA (°)	86.2	96.3	95.0 ± 7.0
FMIA (°)	70.8	56.2	65.7 ± 8.5

S: Sella; N: Nasion; A: A-point; B: B point; SNA: Sella-nasion-A point; SNB: Sella-nasion-B point; ANB: A point-nasion-B point; FMA: Angle between mandibular plane and Frankfort horizontal plane; MP-SN: Angle between mandibular plane and sella-nasion plane; NA: Nasion-A point plane; NB: Nasion-B point plane; IMPA: Lower incisor mandibular plane angle; FMIA: Lower incisor Frankfort horizontal plane angle; SD: Standard deviation.
Table 3 Frontal cephalometric analysis at pretreatment and posttreatment

	Pretreatment	Posttreatment	Norm ± SD
Maxillo-Mandibular relationships			
Frontal convexity, left (mm)	16.9	13.9	11.9 ± 2.5
Frontal convexity, right (mm)	11.1	12.0	11.9 ± 2.5
Maxillo-Mandi Midline (mm)	-14.3	0.7	0.0 ± 2.0
Skeletal/Dental			
Occlusal plane tilt	-4.9	-0.4	0.0 ± 2.0
Molar to jaw, left (mm)	10.3	11.0	13.1 ± 1.7
Molar to jaw, right (mm)	8.0	11.2	13.1 ± 1.7
Denture to jaw midline (mm)	-1.5	0.2	0.0 ± 1.5
Deep skeletal structure			
Maxillary width (mm)	62.3	62.4	64.1 ± 3.0
Mandibular width (mm)	85.6	81.3	81.3 ± 3.0
Facial width (mm)	129.0	128.8	124.7 ± 3.0

SD: Standard deviation.

Figure 1 Pretreatment facial photographs.

were performed with 0.014-in, 0.016-in, 0.016-0.022-in and 0.018-0.025-in superelastic NiTi wires. To expand the upper arch and coordinate with the lower arch, the inclinations of the posterior maxillary teeth, especially on the right side, were corrected by individual twists in the stainless-steel arches (lingual root torque) to allow the teeth to be properly positioned relative to the jaws. We used 0.019-0.025-in stainless steel wires for finishing and detailing (Figure 8). All brackets and miniscrews were debonded and removed at 20 mo, and the patient was referred to restore 36 and 47. Considering the patient’s lightly tetracycline stained teeth and the abnormal maxillary lateral incisor, she was also referred for aesthetic restoration with ceramic veneer in the
maxilla and mandibular anterior region. Hawley retainers were designed to prevent
the recurrence of the deformity.

OUTCOME AND FOLLOW-UP

The posttreatment photographs of the patient confirmed good aesthetic and occlusal
results (Figures 9 and 10). The cephalometric analysis (Figure 11, Tables 2 and 3) and
the superimposition (Figure 12) showed significant improvement in the soft and hard
tissues. The panoramic radiograph confirmed parallel root positioning (Figure 11C).
The facial asymmetry analysis performed by CBCT showed that both the source and
magnitude of the deviations were corrected (Figure 6). The CBCT image of the TMJ
showed no significant change in the condylar region after treatment (Figure 5).
DISCUSSION

HFM is a complex form of dysmorphogenesis with a wide range of clinical presentations in terms of severity\(^4\). Although the exact etiology of HFM has not yet been determined, Kearns et al\(^5\) hypothesized that abnormal mandibular growth is the earliest skeletal manifestation and plays a vital role in progressive deformity. When mandibular growth is restricted, vertical growth of the midface also diminishes, causing a tilted maxillary occlusal plane and asymmetry of the zygomatic and orbital regions. The Pruzansky-Kaban classification includes three mandibular types that are
distinguished based on the degree of mandibular hypoplasia and the positions of the TMJ and glenoid fossa: Type I (normally shaped but small in size), type II (hypoplastic or malformed, and sometimes malpositioned) and type III (the TMJ, ramus, and glenoid fossa are absent)[15-17]. For mild and moderate HFM adult patients, the aim of treatment is to correct the asymmetries in both the maxilla and the mandible. Combined orthodontic-orthognathic treatment was the approach used to achieve the above objectives. Recently, the SFA was introduced to overcome some of the limitations of conventional orthodontic-orthognathic treatment for mild to moderate HFM. It is well documented that HMF patients typically suffer from low confidence and even self-contempt[18,19]. Some of them are eager to improve their facial aesthetics and want to prevent the progressive deterioration of their facial appearance that can occur with presurgical orthodontics. A meta-analysis on the impact of the SFA indicated that SFA can immediately and persistently contribute to better oral health-related quality of life in patients with dentofacial deformities[20]. The SFA not only promotes rapid improvement in facial appearance but also considerably reduces the overall treatment time by eliminating the time-consuming presurgical orthodontic stage and facilitating tooth movement after surgery. The phenomenon of increased mobility of the teeth after orthognathic surgery has been attributed to the regional acceleratory phenomenon (RAP).

The RAP is a physiologic process that involves a decrease in regional bone density and accelerated bone turnover, causing fast tissue reorganization and healing[21]. Several mechanisms have been proposed for the osteopenic effect in the RAP[22-24]. Liou et al[23] demonstrated that the level of serum C-terminal telopeptide of type I collagen (a candidate marker to detect the activities of osteoclasts) significantly increased in the first week to the third month postoperatively and that the serum alkaline phosphatase (an enzyme for bone formation and associated with osteoblasts) increased in the first to fourth month postoperatively, which indicated a transient burst of bone remodeling and turnover activities after orthognathic surgery. The SFA takes advantage of this 3-4 mo golden window for the most time-consuming stage: Alignment, leveling and decompensation, thus considerably reducing the overall treatment time[13].

Although the SFA provides several positive aspects, developing accurate designs of skeletal movement and incorporating decompensation movements of the dentition into surgical planning are the keys to successful treatment. Previous studies have suggested that the correction of mandibular asymmetry is the key to the treatment of...
Figure 7 Facial and intraoral photographs at the first visit after surgery.

However, maxilla asymmetry (the difference between the two sides of maxilla height and the deviation of middle palatal suture) is also related to the inclination of the occlusal plane and the difference in the nasolabial sulcus depth on both sides. Thus, the correction of the maxillary deviation is also important for patients with skeletal asymmetry, especially for HFM patients who have complex three-dimensional craniomaxillary deformities. For the patient in our study, we used the palatal suture as the midline of the maxilla to center the maxilla. Considering the deviation in the palatal suture, we shifted the maxilla to the left by 2 mm to align the middle palatal suture with the midline of the craniofacial suture, which may contribute the same nasolabial sulcus depth on both sides and a balanced facial appearance. Shifting of the maxilla may make the central upper dental midline move to the left, which is due to a lack of presurgical orthodontic decompensation to align the midlines of the upper dentition and the maxilla. Then, a miniscrew was placed behind the roots of the maxillary first molar on the labial side to retract with strong anchorage and to align the midlines in postsurgical orthodontics. The CBCT image analysis of facial asymmetry showed that the height of the right maxilla is higher than that of the left maxilla. We created impaction by 2 mm on the right side and extrusion by 2 mm on the left side to correct the inclination of the occlusal plane. The movement of the mandible was also planned according to the CBCT analysis of facial asymmetry to correct the skeletal deformity and to obtain a balanced facial appearance.

In addition to correcting the skeletal deformities, obtaining a balanced soft-tissue appearance is also important in these HFM patients. Previous discussions in the literature regarding facial symmetry are associated with facial attractiveness, and the chin is the most striking feature related to facial asymmetry. Therefore, facial asymmetry is usually defined by the extent of soft-tissue menton deviation from the midsagittal reference midline. Typically, the midsagittal reference midline is defined as a line perpendicular to the pupillary line. However, considering the asymmetrically developed orbital and zygomatic bones in these hemifacial hypoplasia
patients, we cannot completely correct these patients' facial asymmetry. It was difficult to place the chin of this patient in the proper position to attain a symmetrical and balanced facial appearance. For this patient, we used the line between the point of nasion of soft tissue and the point of subnasale as the facial reference midline to locate her chin. Although the soft-tissue menton was not consistent with the line perpendicular to the pupillary line, the final results confirm a relatively symmetrical facial appearance.

CONCLUSION

With collaborations between skilled orthodontists and surgeons, mild HFM can be corrected by the SFA. The SFA promotes rapid improvement in facial aesthetics and considerably reduces the overall treatment time.

It is worth mentioning that we used the palatal suture as the midline of the maxilla in the surgical plan to center the maxilla and obtain a balanced facial appearance.

In these HMF patients with complex dentofacial deformities, placing the chin in the proper position is important for obtaining a relatively symmetrical facial appearance.
Figure 9 Final facial photographs.

Figure 10 Final intraoral photographs.
ACKNOWLEDGEMENTS

I would like to thank the patient for her cooperation during the treatment. Thanks to my colleagues and nursing staff in our hospital.

REFERENCES

1 Werler MM, Starr JR, Cloonan YK, Speltz ML. Hemifacial microsomia: from gestation to childhood. J Craniofac Surg 2009; 20 Suppl 1: 664-669 [PMID: 19218862 DOI: 10.1097/SCS.0b013e318193d5d5]

2 Hartsfield JK. Review of the etiologic heterogeneity of the oculo-auriculo-vertebral spectrum (Hemifacial Microsomia). Orthod Craniofac Res 2007; 10: 121-128 [PMID: 17651128 DOI: 10.1111/j.1601-6343.2007.00391.x]

3 Birgfeld CB, Luquetti DV, Gougoutas AJ, Bartlett SP, Low DW, Sie KC, Evans KN, Heike CL. A
phenotypic assessment tool for craniofacial microsomia. *Plast Reconstr Surg* 2011; 127: 313-320 [PMID: 21200224 DOI: 10.1097/PRS.0b013e3181f95d15]

4 Kaban LB. Mandibular asymmetry and the fourth dimension. *J Craniofac Surg* 2009; 20 Suppl 1: 622-631 [PMID: 19182686 DOI: 10.1097/SCS.0b013e3181f249c]

5 Kearns GJ, Padwa BL, Mulliken JB, Kaban LB. Progression of facial asymmetry in craniofacial microsomia. *Plast Reconstr Surg* 2000; 105: 492-498 [PMID: 10697151 DOI: 10.1097/00006534-200002000-00002]

6 Profitt WR. White RP Jr. Combined surgical-orthodontic treatment: how did it evolve and what are the best practices now? *Am J Orthod Dentofacial Orthop* 2015; 147: S205-S215 [PMID: 25925650 DOI: 10.1016/j.ajo.2015.02.009]

7 Luther F, Morris DO, Hart C. Orthodontic preparation for orthognathic surgery: how long does it take and why? *Br J Oral Maxillofac Surg* 2003; 41: 401-406 [PMID: 14614870 DOI: 10.1016/s0266-4356(03)00163-3]

8 O’Brien K, Wright J, Conboy F, Appelbe P, Bearn D, Caldwell S, Harrison J, Hussain J, Lewis D, Littlewood S, Mandall N, Morris T, Murray A, Oskouei M, Rudge S, Sandler T, Thirunavukkarasu B, Walsh T, Turbill E. Prospective, multi-center study of the effectiveness of orthodontic/surgical care in the United Kingdom. *Am J Orthod Dentofacial Orthop* 2009; 135: 709-714 [PMID: 19524829 DOI: 10.1016/j.ajodo.2007.10.043]

9 Hernández-Alfaro F, Gujjar-Martínez R, Peiró-Guijarro MA. Surgery first in orthognathic surgery: what have we learned? *J Oral Maxillofac Surg* 2014; 72: 376-390 [PMID: 24139292 DOI: 10.1016/j.joms.2013.08.013]

10 Villegas C, Uribe F, Sugawara J, Nanda R. Expedited correction of significant dentofacial asymmetry using a “surgery first” approach. *J Clin Orthod* 2010; 44: 97-103; quiz 105 [PMID: 20552809]

11 Liao YF, Chiu YT, Huang CS, Ko EW, Chen YR. Presurgical orthodontics versus no presurgical orthodontic treatment: outcome of surgical-orthodontic correction for skeletal class III open bite. *Plast Reconstr Surg* 2010; 126: 2074-2083 [PMID: 21124147 DOI: 10.1097/PRS.0b013e3181f52710]

12 Nagasaka H, Sugawara J, Kawamura H, Nanda R. “Surgery first” skeletal Class III correction using the Skeletal Anchorage System. *J Craniofac Surg* 2009; 43: 97-105 [PMID: 19275679]

13 Liou EJ, Chen PH, Wang YC, Yu CC, Huang CS, Chen YR. Surgery-first accelerated orthognathic surgery: orthodontic guidelines and setup for model surgery. *J Oral Maxillofac Surg* 2011; 69: 771-780 [PMID: 21257249 DOI: 10.1016/j.joms.2010.11.011]

14 Baek SH, Ahn HW, Kwon YH, Choi JY. Surgery-first approach in skeletal class III malocclusion treated with 2-jaw surgery: evaluation of surgical movement and postoperative orthodontic treatment. *J Craniofac Surg* 2010; 21: 332-338 [PMID: 20186909 DOI: 10.1097/SCS.0b013e3181cf5d4]

15 Horgan JE, Padwa BL, Labrie RA, Mulliken JB. OMENS-Plus: analysis of craniofacial and extracraniofacial anomalies in hemifacial microsomia. *Cleft Palate Craniofac J* 1995; 32: 405-412 [PMID: 7578205 DOI: 10.1597/1545-1569_1995_032_0405_opaoca_2.3.co_2]

16 Kaban LB, Mulliken JB, Murray JE. Three-dimensional approach to analysis and treatment of hemifacial microsomia. *Cleft Palate J* 1981; 18: 90-99 [PMID: 6939510]

17 Kaban LB, Moses MH, Mulliken JB. Surgical correction of hemifacial microsomia in the growing child. *Plast Reconstr Surg* 1988; 82: 9-19 [PMID: 3289066]

18 Lee S, McGrath C, Samman N. Quality of life in patients with dentofacial deformity: a comparison of measurement approaches. *Int J Oral Maxillofac Surg* 2007; 36: 488-492 [PMID: 17339101 DOI: 10.1016/j.ijoms.2007.01.011]

19 Rankin M, Borah GL. Perceived functional impact of abnormal facial appearance. *Plast Reconstr Surg* 2003; 111: 2140-2146; discussion 2147 [PMID: 12794453 DOI: 10.1097/01.PRS.0000060610.63335.0C]

20 Huang X, Cen X, Sun W, Xia K, Yu L, Liu J, Zhao Z. The impact of surgery-first approach on the oral health-related quality of life: a systematic review and meta-analysis. *BMC Oral Health* 2019; 19: 136 [PMID: 31286944 DOI: 10.1186/s12903-019-0842-1]

21 Frost HM. The regional acceleratory phenomenon: a review. *Henry Ford Hosp Med J* 1983; 31: 3-9 [PMID: 6345475]

22 Frost HM. The biology of fracture healing. An overview for clinicians. Part I. *Clin Orthop Relat Res* 1989; (248): 283-293 [PMID: 2680202]

23 Frost HM. The biology of fracture healing. An overview for clinicians. Part II. *Clin Orthop Relat Res* 1989; (248): 294-309 [PMID: 2680203]

24 Liou EJ, Chen PH, Wang YC, Yu CC, Huang CS, Chen YR. Surgery-first accelerated orthognathic surgery: postoperative rapid orthodontic tooth movement. *J Oral Maxillofac Surg* 2011; 69: 781-785 [PMID: 21353934 DOI: 10.1016/j.joms.2010.10.035]

25 Janson GR, Metaxas A, Woodsidge DG, de Freitas MR, Pinzan A. Three-dimensional evaluation of skeletal and dental asymmetries in Class II subdivision mal occlusions. *Am J Orthod Dentofacial Orthop* 2001; 119: 406-418 [PMID: 11298314 DOI: 10.1067/mod.2001.113267]

26 Thiesen G, Padwa BL, Mulliken JB, Kaban LB. Progression of facial asymmetry in craniofacial microsomia. *Plast Reconstr Surg* 2000; 105: 492-498 [PMID: 10697151 DOI: 10.1097/00006534-200002000-00002]

27 Haraguchi S, Takada K, Yasuda Y. Facial asymmetry in subjects with skeletal Class III deformity. *Angle Orthod* 2002; 72: 28-35 [PMID: 11843270 DOI: 10.1043/0003-3219(2002)72072-0028:FAISWS.2.CO.2]

28 Pirttiniemi PM. Associations of mandibular and facial asymmetries--a review. *Am J Orthod
Song JY et al. Hemifacial microsomia

Dentofacial Orthop 1994; 106: 191-200 [PMID: 8059759 DOI: 10.1016/S0889-5406(94)70038-9]

29 Hwang HS, Hwang CH, Lee KH, Kang BC. Maxillofacial 3-dimensional image analysis for the diagnosis of facial asymmetry. Am J Orthod Dentofacial Orthop 2006; 130: 779-785 [PMID: 17169741 DOI: 10.1016/j.ajodo.2005.02.021]

30 Staudt CB, Kiliaridis S. Association between mandibular asymmetry and occlusal asymmetry in young adult males with class III malocclusion. Acta Odontol Scand 2010; 68: 131-140 [PMID: 20085500 DOI: 10.3109/00016350903460182]

31 Hu W, Zhou Y. The compensation of dental arch and teeth in patients with skeletal protrusion and deviation of mandible. Zhonghua Kouqiang Yiye Zazhi 2002; 37: 180-182 [PMID: 12419138]

32 Cavalcanti MG, Rocha SS, Vannier MW. Craniofacial measurements based on 3D-CT volume rendering: implications for clinical applications. Dentomaxillofac Radiol 2004; 33: 170-176 [PMID: 15371317 DOI: 10.1259/dmfr/13603271]

33 Silva BP, Jiménez-Castellanos E, Stanley K, Mahn E, Coachman C, Finkel S. Layperson's perception of axial midline angulation in asymmetric faces. J Esthet Restor Dent 2018; 30: 119-125 [PMID: 29171154 DOI: 10.1111/jerd.12347]
