Alterations in common marmoset gut microbiome associated with duodenal strictures

Alexander Sheh1,5*, Stephen C. Artim1,4,5, Monika A. Burns1, Jose Arturo Molina-Mora2, Mary Anne Lee1,3, JoAnn Dzink-Fox1, Sureshkumar Muthupalani1 & James G. Fox1

Chronic gastrointestinal (GI) diseases are the most common diseases in captive common marmosets (Callithrix jacchus). Despite standardized housing, diet and husbandry, a recently described gastrointestinal syndrome characterized by duodenal ulcers and strictures was observed in a subset of marmosets sourced from the New England Primate Research Center. As changes in the gut microbiome have been associated with GI diseases, the gut microbiome of 52 healthy, non-stricture marmosets (153 samples) were compared to the gut microbiome of 21 captive marmosets diagnosed with a duodenal ulcer/stricture (57 samples). No significant changes were observed using alpha diversity metrics, and while the community structure was significantly different when comparing beta diversity between healthy and stricture cases, the results were inconclusive due to differences observed in the dispersion of both datasets. Differences in the abundance of individual taxa using ANCOM, as stricture-associated dysbiosis was characterized by Anaerobiospirillum loss and Clostridium perfringens increases. To identify microbial and serum biomarkers that could help classify stricture cases, we developed models using machine learning algorithms (random forest, classification and regression trees, support vector machines and k-nearest neighbors) to classify microbiome, serum chemistry or complete blood count (CBC) data. Random forest (RF) models were the most accurate models and correctly classified strictures using either 9 ASVs (amplicon sequence variants), 4 serum chemistry tests or 6 CBC tests. Based on the RF model and ANCOM results, C. perfringens was identified as a potential causative agent associated with the development of strictures. Clostridium perfringens was also isolated by microbiological culture in 4 of 9 duodenum samples from marmosets with histologically confirmed strictures. Due to the enrichment of C. perfringens in situ, we analyzed frozen duodenal tissues using both 16S microbiome profiling and RNAseq. Microbiome analysis of the duodenal tissues of 29 marmosets from the MIT colony confirmed an increased abundance of Clostridium in stricture cases. Comparison of the duodenal gene expression from stricture and non-stricture marmosets found enrichment of genes associated with intestinal absorption, and lipid metabolism, localization, and transport in stricture cases. Using machine learning, we identified increased abundance of C. perfringens, as a potential causative agent of GI disease and intestinal strictures in marmosets.

In captive common marmosets, gastrointestinal (GI) diseases are the most common and widespread clinical finding1. Inflammatory bowel disease (IBD) prevalence is reported to be as high as 28–60% in captive marmosets and presents with diarrhea, weight loss, enteritis, muscle atrophy, alopecia, hypoproteinemia, anemia, elevated liver enzymes, failure to thrive and mortality1. In addition to IBD, a novel GI disease has been described in young adult to adult marmosets characterized by duodenal dilation or stricture near the major duodenal papilla1-6. Clinical signs, such as diarrhea, weight loss, or poor weight gain, resemble IBD but increased vomiting is also observed. This syndrome was associated with hypoalbuminemia, hypoglobulinemia, hypoproteinemia, hypocalcemia (total), elevated alkaline phosphatase, anemia, and in some cases, leukocytosis6. Histologically, duodenal mucosal ulcerations with associated chronic-active granulocytic and lympho-histiocytic inflammation...
were observed. Thus far only two institutions have reported this disease characterized by duodenal dilation amongst captive marmosets. This duodenal syndrome was found in 21.9% of necropsy cases in a Japanese institution. Within our institution, we observed a 13% prevalence of stricture cases during this 2 year study. However, 91.3% of cases (21 of 23 cases) within our colony were observed in marmosets sourced from the former New England Primate Resource Center, yielding a 26% prevalence when only considering marmosets from this source (MITNE). In this study, we investigated the changes observed in the gut microbiome of MITNE marmosets that could be associated with the development of duodenal strictures.

The human GI tract harbors trillions of microorganisms from at least 400 species that compose the intestinal microbiota. In healthy individuals, the microbiome influences many physiological functions such as extracting nutrients, maintaining the gut mucosal barrier, training immune cells and protecting against pathogens. Dysbiosis occurs due to loss of beneficial microbes, expansion of pathobionts (opportunistic microbes), or reduction of microbial diversity. Dysbiosis has been associated with human diseases, including IBD, irritable bowel syndrome, obesity, psoriasis, rheumatoid arthritis, autism spectrum disorders, and *Clostridioles difficile* infection. As the microbiome has been associated with human GI diseases, factors affecting the microbiome in non-human primates (NHP) are being explored, such as species, social structure, environment and diet.

Captive and diets fed to captive marmosets have been associated with microbial diversity loss, shifts in the *Firmicutes:Bacteroidetes* ratio, and increased GI disease and mortality. Dietary specialists, such as marmosets, are more susceptible to captivity-associated dietary changes. Marmosets are exudiviore that consume large amounts of indigestible oligosaccharides from tree gums and may harbor specific gut microbes dedicated to carbohydrate metabolism. Currently, few reports on the marmoset microbiome are available. We recently published a longitudinal marmoset microbiome study examining both healthy marmosets and marmosets presenting clinically with IBD which surveyed 503 samples from 140 marmosets from four different sources. Interestingly, even after months of years of husbandry at MIT, the most notable differences in the microbiome were based on the animals’ source, while marmoset age or sex had little to no effect in the microbiome.

In this study, we compared the microbiome of 21 marmosets diagnosed with duodenal ulcer/strictures with the microbiome of 52 healthy, non-stricture marmosets imported from the same source [New England Primate Research Center (NEPRC)] and maintained at the MIT colony (MITNE). “Stricture” animals were defined as marmosets that had or developed strictures based on clinical and histological assessments while “non-stricture” individuals were not clinically diagnosed with strictures and were not receiving chronic drug treatments during the study period. Healthy, non-stricture MITNE marmosets were included in our prior publication comparing the microbiome of MITNE marmosets imported from different sources. The current study evaluated fecal and rectal swab samples collected over a 2 year period during physical examinations or necropsies. Serum chemistry and complete blood count (CBC) samples from both healthy marmosets and marmosets diagnosed with duodenal ulcer/strictures from the MITNE colony were routinely collected once a year during physical examinations or during necropsies within the same 2 year period. We identified changes in both microbial communities and blood parameters that may serve as marmoset biomarkers for strictures and propose that marmosets may be useful animal models to study *Clostridium*-driven GI disorders, such as duodenal strictures.

Results

Effects of Duodenal strictures on microbiome of MITNE marmosets. Of the 23 stricture cases identified at MIT during the study period, 21 marmosets belonged to the MITNE cohort, which had an estimated prevalence of 26% for this disease. This study focused on comparing biomarkers over a 2 year period collected from MITNE animals that were clinically or histologically diagnosed with strictures against healthy, non-stricture marmosets from the same source. Marmosets included in this study were housed in a single building, kept isolated from marmosets from other sources for the duration of the 2 year study, and provided standardized diet, husbandry and veterinary care. In our analysis, the gut microbiome of healthy MITNE marmosets was characterized by high abundance of *Bacteroides*, followed by *Prevotella 9* and *Anaerobiospirillum*. We then compared the samples from the 52 non-stricture MITNE marmosets with samples from 21 MITNE marmosets diagnosed with strictures (Fig. 1, Table 1). The analysis identified 601 ASVs that could be collapsed into 128 genera with 47 genera accounting for 99% of total reads. Stricture marmosets had markedly different microbiomes compared to non-stricture animals. On average, a 32% decrease in *Bacteroides* was observed in stricture cases (35.8 ± 1.2%, mean ± standard error) abundance in non-stricture vs. 24.5 ± 2.0% in stricture). This decrease in *Bacteroides*, decreased the *Bacteroides:Prevotella 9* ratio from 3.1 in non-stricture to 1.4 in stricture. *Anaerobiospirillum*, the second most abundant genus in non-stricture marmosats (13.2 ± 0.7%), decreased to 4.6 ± 1.2% in stricture cases. The decreased abundance in these genera was compensated by a 50% increase in *Megamonas* that was observed in stricture cases (6.5 ± 0.4% in non-stricture vs. 9.4 ± 1.0% in stricture) (Fig. 1). Analysis of Composition of Microbiomes (ANCOM), a log-ratio based statistical method that accounts for the compositional nature of microbiome data in differential abundance analysis between groups, was used to compare the two cohorts at the genus level. At this taxonomic level, ANCOM highlighted the decrease in *Anaerobiospirillum* observed in stricture cases and identified *Clostridium sensu stricito 1* as differentially expressed due to an increase in relative abundance observed in marmosets with stricture. Despite changes in microbial composition, no changes in alpha diversity were observed using multiple metrics (Chao1, Pielou’s Evenness, Observed OTUs and Shannon). However, 91.3% of cases (21 of 23 cases) within our colony were observed in marmosets sourced from the former New England Primate Resource Center, yielding a 26% prevalence when only considering marmosets from this source (MITNE). In this study, we investigated the changes observed in the gut microbiome of MITNE marmosets that could be associated with the development of duodenal strictures.

Using Principal Coordinate Analysis (PCoA) of Weighted UniFrac distances, 54.86% of variance was accounted for by 3 axes, with separation between stricture and healthy, non-stricture animals observed along the 2nd axis (Fig. 2). Using PERMANOVA (PERmutational Multivariate Analysis Of Variance), a significant difference between the centroids of the healthy sample cluster and the stricture sample cluster was observed (PERMANOVA, $P < 0.001$ with F-statistic of 15.96), but beta-dispersion was also significantly different between
clusters, implying that the spread of each cluster was different and could account for the difference observed between the centroids (beta-dispersion, \(P < 0.001 \)) (Fig. 2).

Identification of microbial and serum biomarkers of duodenal strictures using machine learning. To identify potential microbial biomarkers associated with duodenal strictures, the microbiome data was analyzed using four machine learning algorithms (random forest (RF), support vector machines (SVM), classification and regression trees (CART) and k-nearest neighbor (KNN)) to determine the most accurate models for stricture classification based on marmoset microbiome profiles. For each algorithm, a subset of the dataset was used to train the model (training set) by providing the microbiome profile and the classification of the sample as a stricture or non-stricture sample. The remaining data was reserved to test the model’s accuracy (testing set). After the model was generated using the training set, the microbiome data from the testing set was provided to the model without the sample’s classifications. The model generated predictions based on the

Table 1. Description of microbiome sample demographics of MITNE. *Number of animals not reported as samples were collected over 2 year period and animals spanned multiple age groups. **Fecal and Rectal Swabs were often collected from the same animal, so number of animals will be higher.
ally considered pathogenic and indicative of less healthy and less diverse microbiota. Using the representative species:

- C. kluyveri
- C. acetobutylicum
- C. novyi
- C. perfringens
- C. beijerinckii

Figure 2. Weighted UniFrac PCoA plot depicting the top three principal components (PC) with (A) PC1 vs. PC2 and (B) PC2 vs. PC3. Clustering of microbiome profiles based on stricture status is observed with PC2 defining separation of healthy marmosets and stricture cases. However, beta-dispersion of both healthy and stricture cohorts is significantly different, implying differences in the variance observed in the two cohorts.

testing set microbiome profiles, which were then compared to the actual sample classifications in the testing set to determine the model's accuracy. The model generation process was carried out iteratively to sample multiple subsets of the data and determine the robustness of the algorithm. Two metrics, accuracy and kappa, are shown for each model in Fig. 3a. Accuracy measures the percentage of correctly classified instances by comparing the clinically diagnosed ground truth data of the testing set with the model's predictions. While kappa also compares the agreement of samples classified by the machine learning model with the ground truth data, it differs from accuracy by accounting the hypothetical probability of random agreements. Kappa values greater than 0.40 reflect moderate or substantial agreement between the model and the ground truth. Comparison of the four classification models shows that RF analysis provided the highest accuracy and kappa values when classifying microbiome profiles into "stricture" or "non-stricture." Focusing on the RF model, we then evaluated the stability of three metrics (accuracy, kappa and F1 scores) to determine the least number of ASVs that maximized the three metrics. F1 score evaluates the model's utility using both precision and recall (or sensitivity). The original analysis using QIIME2 generated a list of 601 ASVs. However, the RF model was able to detect the most important ASVs for classifying samples as "stricture" or "non-stricture." Using a minimum of 4 ASVs, the three metrics in the RF model begin to stabilize, but we selected a 9 ASV model that presented the highest levels of accuracy, F1 and kappa observed with this model (Fig. 3b). The receiver operating characteristic (ROC) curve and area under the curve (AUC) value were calculated for the RF model using the 9 ASVs (Fig. 3c). The ROC curve had an AUC value of 0.82 with an accuracy of 85%, a sensitivity of 100% and a specificity of 45%, demonstrating a strong performance in classifying strictures and non-strictures. To better understand the effects of the 9 ASVs on the system, we identified the bacteria associated by QIIME2 with the ASVs and plotted the relative abundance of each ASV based on their stricture status and determined that 8 of 9 ASVs were indeed significantly different by ANCOM analysis at the ASV level (Fig. 3d). Of these 9 ASVs, 3 Anaerobiospirillum ASVs, as well as Bacteroides and Parabacteroides ASVs, decreased in stricture cases. Increases were observed in ASVs from Bifidobacterium, Clostridium sensu stricto 1, Orribacterium, and Megamonas.

Next, we developed RF models using serum chemistry or CBC data to determine if "stricture" and "non-structure" could be identified using blood analysis (Supp. Table 1). First, we evaluated the serum chemistry parameters needed to optimize accuracy, F1 and kappa, and determined that 4 serum chemistry parameters (total protein, lipase, gamma-glutamyl transferase (GGT) and amylase) classified "stricture" and "non-structure" with 84.8% accuracy, a sensitivity of 76.5%, a specificity of 93.8% and AUC of 0.89 (Fig. 4a,b,g). Total protein and GGT decreased in stricture cases, while pancreatic markers, lipase and amylase, were increased in stricture animals (Fig. 4c). Using CBC data, the RF classifier identified 6 parameters (hematocrit (HCT), hemoglobin (HGB), red blood cell count (RBC), red cell distribution width (RDW), mean corpuscular hemoglobin (MCH) and lymphocyte percentage) that classified strictures with an accuracy of 82.8%, a sensitivity of 89.4%, a specificity of 75% and AUC of 0.83 (Fig. 4d–f). All variables, except RDW, decreased in strictures (Fig. 4g).

Identification of Clostridium species based on sequencing reads. As ANCOM and the RF model highlighted the role of Clostridium sensu stricto 1, we further investigated the species that are encompassed by the Clostridium sensu stricto 1 taxonomy, which included the following Clostridium species: C. tetani, C. botulinum, C. kluyveri, C. acetobutylicum, C. novyi, C. perfringens and C. beijerinckii. These species are generally considered pathogenic and indicative of less healthy and less diverse microbiota. Using the representative sequences assigned to all Clostridium sensu stricto 1 ASVs, we determined that 232,156 (69%) Clostridium sensu stricto 1 reads shared >99% identity over the 370 bp sequence with C. perfringens. Remaining reads matched with C. baratii (19%), C. colicanis (7%) and an unknown Clostridium species (6%). Importantly, ASV256, which
Increased *Clostridium sensu stricto* 1 abundance in the duodenum of stricture cases. As the microbiome analysis of the lower GI identified an increase of the *C. perfringens* ASV and we isolated the putative pathogen from duodenal tissue collected from the stricture site, we analyzed the microbiome using duodenal samples from stricture (n = 17) and non-structure cases (n = 12). *Clostridium sensu stricto* 1 was observed at greater than 1% abundance in 76% of strictures (13/17) but only in 16% of non-stricture cases (2/12). In 8 stricture cases, *Clostridium* was the most abundant genus with abundances ranging from 37 to 87%. Interestingly, one non-stricture sample with 30% abundance of *Clostridium sensu stricto* 1 had duodenal pathology characterized by mild duodenal mucosal congestion (Fig. 3e).

Effects of GI disease on gene expression of the small intestine. We tested whether strictures significantly altered marmoset transcriptomic profiles using RNA sequencing (RNAseq) on samples from non-structure (n = 3) or stricture (n = 3) marmosets. Marmosets with strictures presented with gross thickening, duodenal stricture or ulceration (0.5–1 cm aboral to the major duodenal papilla). Duodenal tissue evaluated was immediately distal to the lesion (“stricture”) or in an equivalent anatomic region in IBD animals (“non-stricture”). However, IBD animals that served as non-stricture controls presented with thickened intestines that were grossly observed, and a diagnosis of duodenitis was noted. Comparing stricture and non-stricture duodenums, we identified 1,183 differentially expressed genes (DEG) (FDR < 0.05) (Fig. 5a, Supp. Table 2). To perform Gene
ontology (GO) analysis, marmoset genes with official names were matched to Homo sapiens genes to retrieve Entrez IDs with associated GO categories. Analysis of this gene subset identified 903 DEGs with GO annotations. The top 15 biological processes (BP) with significant enrichment are listed in Table 2 (complete list Supp. Table 3). Stricture samples enriched BP sets involved with intestinal absorption, and lipid metabolism, localization, and transport (Fig. 5b, Supp. Fig. 1a). Stricture upregulated genes encompassed cholesterol-associated genes including apolipoproteins (APOB, APOA1 and APOA4), transport genes (ABCG5, ABCG8, GRAMD1B, and STARD3), metabolic genes (DGAT1, CYP11A1, and CYP27A1) and binding/absorption genes (SOAT2, NPC1L1 and SCARB1) (Supp. Table 2). Other lipid-associated genes upregulated by stricture included genes associated with fatty acid binding proteins (FABP1 and FABP2), peroxisomes (PPARA, ABCD1, ACAA1 and EPHX2), ketogenesis (HMGCS2) and lipid synthesis (GPAM, SREBF1, SCAP, and ACACB). Enriched cellular membrane GO sets shared these lipid-associated genes due to functional overlap (Supp. Table 3, Supp. Fig.1). Interestingly, immunity-associated genes were more highly expressed in non-stricture duodenums (Fig. 5b, Supp. Fig. 2), possibly due to enteritis observed in IBD marmosets. These genes included antimicrobial responses (LCN2, LYZ, MUC20), toll-like receptors (TLR2 and TLR4), superoxide-generating NADPH oxidase activity (NOX1 and DUOX2), killer cell lectin-like receptor genes (KLRB1, KLRC1, KLRD1, and KLRF1), and chemokine activity and receptor binding (CXCL1, CXCL10, TFF2 and PF4) (Supp. Table 2b). The transcriptional profile implies the activity of natural killer (NK) cells, neutrophils and MHC class I protein complex binding.

Discussion

GI diseases are the most prevalent clinical disease in captive common marmosets\(^1,2,26\), but the role of the microbiome is largely unknown. Recent literature demonstrates that housing in captive environments affects NHP microbiome composition, reduces alpha diversity, and alters host responses to disease\(^11,14,27\). In captivity, NHP microbiomes lose distinctive, wild microbiota and become dominated by *Prevotella* and *Bacteroides*, the most abundant genera in the modern human gut microbiome\(^8,11,28\). In the largest marmoset microbiome study to date, our previous report supported the hypothesis that captivity humanizes the primate microbiome, as *Bacteroides* and *Prevotella* were the most abundant genera with levels similar to those observed in human feces\(^2,22,28\). Within the MIT colony, NEPRC marmosets had the highest relative abundance of *Bacteroides* compared to the other marmoset sources\(^22\). MIT\(^30\) marmosets had the highest *Bacteroidaceae* abundance (17%), and were most susceptible to strictures, a novel GI disease in marmosets\(^6,7\). This duodenal syndrome was found in 21.9% of necropsy cases in a Japanese institution\(^4\), while MIT\(^30\) marmosets had a 26% prevalence. Clinical signs include vomiting, bloating, weight loss and palpable thickening of the duodenum.

![Figure 4](https://www.nature.com/scientificreports/)
that can be visualized through radiography and ultrasound. As strictures were most prevalent in the NEPRC-sourced colony, we compared microbiome samples from 21 NEPRC-sourced marmosets that developed strictures with samples from 52 non-strictures, NEPRC-sourced marmosets. While captivity increases susceptibility to GI disease in marmosets, the comparison of marmosets from a single-source and maintained within a single institution helps normalize the effects of stress and diet, which can affect the microbiome. Stricture-associated dysbiosis featured shifts in the relative abundance of *Bacteroides*, *Anaerobiospirillum* and *Megamonas* (Fig. 1), but commonly used analyses, such as alpha and beta diversity, showed no significant changes or inconclusive results, respectively.

In order to gain further insights into the role of the microbiome in duodenal strictures, we used machine learning to identify ASVs of importance that could help generate testable hypotheses. Our analysis utilized four classifiers: RF, SVM, CART and KNN, which usually outperform traditional supervised classifiers. Due to inherent differences in each algorithm, we benchmarked the methods to help identify the correct algorithm for classification of strictures and non-strictures given our dataset, and avoid the potential for bias and overfitting that exists when only a single algorithm is evaluated. After evaluating the performance of the four methods, we found that random forest models had the best performance based on both accuracy and kappa metrics. In our RF model of the microbiome data, the model was optimized with 9 of the 601 ASVs generated in the QIIME2 workflow. Model stability observed with only a small portion of the data is desirable as selection of relevant features from noisy data, that is dimensionality reduction, is one of the main tasks in machine learning. After reaching the optimal number of ASVs, the inclusion of other ASVs to the model adds redundant data, and eventually noisy data, without a significant improvement in model performance. As data from only 9 ASVs is required to correctly differentiate the stricture and non-strictures samples, these ASVs represent candidate biomarkers of the two states, which streamlines hypothesis generation and testing. Both our ANCOM analysis and RF model

Figure 5. (A) Differentially expressed genes (DEG) (FDR < 0.05) in the duodenum of non-strictures and strictures cases. (B) Gene ontology (GO) sets enriched in strictures cases show upregulation of lipid metabolism, transport and localization. Non-strictures cases have enrichment of immune processes, possibly due to underlying pathology in necropsied animals with non-strictures diseases.
highlighted the importance of decreases in Anaerobiospirillum and increases in Clostridium sensu stricto 1 in stricture cases. The consensus between two different analyses led us to further investigate Anaerobiospirillum and Clostridium sensu stricto 1. While Anaerobiospirillum has been previously reported in healthy marmosets, dogs, and cats\cite{38,39}, these bacteria may cause GI disease in humans\cite{38}. However, Anaerobiospirillum was present in high abundance in our healthy marmosets, and reduced levels were seen in stricture cases.

Using both microbial culture and sequence analysis, we determined that \textit{C. perfringens} was observed at higher levels in the duodenal lesions of diseased animals. \textit{C. perfringens} is a known GI pathogen that can encode multiple toxins (alpha, beta, epsilon, iota, perfringolysin O, and enterotoxin)\cite{24}. In marmosets and other NHP, higher levels in the duodenal lesions of diseased animals. \textit{C. perfringens} is a necrotizing inflammation of the small intestine that can cause gas gangrene and gastric dilatation syndrome\cite{40–42}. Of note, \textit{C. perfringens}-induced gas gangrene was reported in the Japanese vivarium that first reported duodenal strictures in captive marmosets\cite{40}.

In the United Kingdom, \textit{C. perfringens} is one of the top 5 causes of foodborne death\cite{43}, and has been linked to diarrhea, \textit{Clostridial} necrotizing enteritis (CNE), necrotizing enterocolitis (NEC), ulcerative colitis (UC) and enterotoxemia in humans and other mammals\cite{24,44}. CNE is a necrotizing inflammation of the small intestine that can induce mild diarrhea or severe abdominal pain, vomiting and ulcers\cite{24}. NEC predominantly affects infants due to intestinal immaturity or dysbiosis\cite{24,44}. While these symptoms match the clinical presentation of duodenal strictures in marmosets, they are non-specific. However, both small and large intestinal strictures developed in 11–29.5% of NEC infants and could occur up to 20 months post-NEC diagnosis\cite{45,46}. Based on the site of \textit{C. perfringens} infection at the junction of the duodenum and the common bile duct, we hypothesize that bile acid (BA) deregulation due to dysbiosis or antibiotic treatment may have facilitated \textit{C. perfringens} infection. Antibiotic usage in infants has been linked with increased NEC risk\cite{47}, and antibiotics are commonly prescribed to treat NHP GI diseases. Furthermore, \textit{C. perfringens} was overrepresented in dogs with chronic enteropathy, an IBD-like disease, and bacterial abundance was regulated by secondary BAs (deoxycholic acid and lithocholic acid) that are produced by gut bacteria\cite{40,47}. Due to its status as a known pathogen and presence in the site of injury, we propose that \textit{C. perfringens} is a potential causative agent of duodenal disease in marmosets.

GO ID	Term	Ont N Up Down	P Up P Down
GO:0010876	Lipid localization	BP 292 14 44	1.08E–02 1.39E–12
GO:0006629	Lipid metabolic process	BP 1097 27 99	4.69E–01 1.02E–11
GO:0008669	Lipid transport	BP 262 13 39	1.05E–02 3.98E–11
GO:0046486	Glycerolipid metabolic process	BP 349 10 45	3.26E–01 1.76E–10
GO:0044281	Small molecule metabolic process	BP 1646 49 128	6.11E–02 1.80E–10
GO:0044255	Cellular lipid metabolic process	BP 842 22 79	3.65E–01 2.81E–10
GO:0006639	Acylglycerol metabolic process	BP 104 4 22	2.38E–01 1.00E–09
GO:0006638	Neutral lipid metabolic process	BP 105 4 22	0.24359141 1.22E–09
GO:0015711	Organic anion transport	BP 364 16 44	0.01443175 2.16E–09
GO:0066811	Ion transport	BP 1196 39 98	0.02879741 2.79E–09
GO:006820	Anion transport	BP 459 19 50	0.01459 6.00E–09
GO:006082	Organic acid metabolic process	BP 923 27 80	0.16158189 8.66E–09
GO:0019752	Carboxylic acid metabolic process	BP 845 27 75	0.07620236 9.78E–09
GO:0010817	Regulation of hormone levels	BP 377 10 43	0.41543649 1.90E–08
GO:0050892	Intestinal absorption	BP 35 0 12	1.20E–08

Table 2. Top gene ontology sets in stricture.
In addition to the role of *C. perfringens*, our serum chemistry and clinical chemistry-based RF models were highly sensitive in accurately classifying strictures. Decreased total protein levels are often observed with GI disease and may indicate poor digestion/absorption. The importance of amylase and lipase in our stricture model is supported by clinical findings of cholecystitis and secondary pancreatitis. Secondary pancreatitis, attributed to extension from duodenal ulcers, was observed in 15 of 17 cases scored. In the CBC-based model, HCT, HGB, RBC, RDW, and MCH relate to red blood cell function and suggested anemia. Anemia, a common finding in marmosets with strictures and IBD, is also a risk factor for NEC in humans. Interestingly, transcriptional analysis of strictures showed enrichment of lipid metabolism and intestinal absorption genes, which may reflect enterocyte damage and is consistent with lipidomic alterations induced by *C. perfringens* alpha-toxin, a phospholipase C. Increased expression of FABP1 and FABP2 was observed. These genes encode for liver and intestinal fatty-acid binding proteins (LFABP and IFABP), respectively, and are often used as biomarkers of GI diseases, including NEC. To our knowledge, correlations of gut FABP2 levels with serum IFABP levels have not been described, but we hypothesize that increased expression might be a compensatory mechanism triggered by enteritis. While increased inflammatory responses were not observed due to the lack of healthy control tissue, based on the *C. perfringens* infection, development of enteritis, anemia and strictures and deregulation of lipid metabolism, we believe marmosets could be developed as a model to investigate the mechanisms of bacterially-driven NEC.

A potential limitation of this study is potential imbalance in the dataset due to the scarcity of stricture samples relative to non-stricture samples. Imbalanced datasets are commonly encountered in machine learning applications as real-world classification problems, such as fraud detection, medical diagnosis, etc., are usually imbalanced. While the 1:3 ratio of stricture to non-stricture samples is not generally considered an imbalanced dataset, the application of our benchmarking strategy to iteratively sample the dataset and assess performance metrics gives us confidence. Another limitation of this study was the inability to ethically obtain age-matched duodenal samples from healthy, MITNE marmosets due to the early onset of the disease. In both analyses involving duodenal tissue, stricture samples were compared to duodenal tissue collected from sex-matched marmosets undergoing non-stricture-related necropsies. Additionally, we excluded non-stricture samples presenting with gross pathology due to other diseases, but we were not able to match the age and source. Previous microbiome studies have found minimal differences in the marmoset microbiome associated with age. We have found that source strongly influences microbiome composition, and while the microbiome may influence host responses, our interest in the RNAseq analysis was to elucidate the transcriptomic response to duodenal strictures. Future studies will focus on addressing small sample size concerns by banking MITNE duodenal tissues for further metagenomics and transcriptomic studies with MITNE stricture cases.

The common marmoset has emerged as useful NHP model for studying human disease as marmosets are small size, are easier to handle, are less costly to maintain than other NHP and mimic human disease. Based on the presentation of bacterially-driven, intestinal inflammation in young adults presenting with no other illness, we propose that marmosets can be a viable model to investigate *C. perfringens*-associated enteritis. Better understanding of these disease profiles, the effects of diet and husbandry, and their inherent robustness to insults and disease will be helpful in promoting animal health, developing better models of human disease and understanding how to modulate microbial communities.

Materials and methods

Ethics statement. All research was conducted under an animal use protocol approved by the MIT Institutional Care and Use Committee (IACUC). The facility where this research was conducted is accredited by the AAALAC International and adheres to principles stated in the Guide for the Care and Use of Laboratory Animals. Methods were carried out in accordance with the ARRIVE guidelines. Animals are cared for by a large staff of highly qualified veterinarians, veterinary technicians, and animal caretakers, who undergo substantial training to ensure only the highest quality animal care and use.

Animals. Common marmosets (*Callithrix jacchus*) were housed at the Massachusetts Institute of Technology in Cambridge, MA, and were originally imported from the New England Primate Research Center (NEPRC) in 2014. This source is referred to as MITNE. All animals were housed in pairs or family groups within one vivarium at MIT, an AAALAC International accredited facility. This study included 32 male and 41 female marmosets. Of the 52 healthy (non-progression) animals, 28 were female and 24 were male, while in the stricture (progressor) cohort, 13 were female and 8 were male (Table 1). Samples from non-stricture marmosets were collected from marmosets ranging between 0.31 and 13.01 years of age, while samples from stricture animals were collected from marmosets aged 0.86–6.08 years of age. The animal holding room temperature was maintained at 74.0 +/−2°F with a relative humidity of 30–70%. The light cycle was maintained at a 12:12 h light:dark cycle. Marmosets were housed in cages composed of stainless-steel bars and polycarbonate perches with the following dimensions: 30" W × 32" D × 67" H. Each cage had a nest box made of polycarbonate attached the outside of the cage. Other cage furniture present in the cages included hammocks, hanging toys, and manzanita wood branches. Foraging enrichment in the form of dried acacia gum-filled branches and forage board were provided weekly. Cages were spot-cleaned daily and removed for sanitation on a biweekly rotation.

All animals received a base chow diet of biscuits (Teklad New World Primate Diet 8794). Initially, biscuits were soaked in water for at least 20 min, but the practice was then changed to a pour-on/pour-off soak only. About halfway through the 2 year period encompassing this study, biscuit prep protocol reverted to the original practice of a 20 min soak to alleviate any concerns that soaking duration could be contributing to the development of duodenal ulcers. In addition to the base chow, a cafeteria-style supplemental offering of fruits (e.g. bananas, blueberries, mangoes, apples and grapes), vegetables (e.g. carrots, vegetable blend), acacia gum,
and additional protein sources including hard-boiled eggs, mealworms, cottage cheese or ZuPreem (Premium Nutritional Products, Inc., Mission, KS).

On a semiannual basis, preventative health physical exams were performed on all colony animals. Rectal swabs and fecal samples were collected and screened for potentially pathogenic bacteria (including *Salmonella* spp., *Shigella* spp, beta-hemolytic *E.coli, Klebsiella* spp., and *Campylobacter* spp.) and parasites (including *Enteroitiis* spp., *Entamoeba* spp., *Giardia* spp., *Tienia* spp., and *Cryptosporidium* spp.). Additional fecal and rectal swab samples were collected between 2016 and 2018 for microbiome analysis. Intradural testing for *Mycobacterium tuberculosis* was performed semiannually as well. All animals derived from progenitor stock were negative for squirrel monkey cytomegalovirus, *Saimiriine herpesvirus 1, Saimiriine herpesvirus 2*, and measles virus. Complete blood count and serum chemistry analysis were performed on an annual basis and during diagnostic workup of clinical cases. Hematology analysis was performed by the MIT DCM diagnostic laboratory using a HemaVet 950 veterinary hematology analyzer (Drew Scientific, Oxford, CT). Serum chemistry analysis was performed by Idexx Laboratories (Westbrook, ME). Serum chemistry and complete blood counts data were collected from the clinical records from the MIT colony. Investigators collecting samples were aware of health status, but investigators processing samples were blinded.

Bacterial culture methods. Duodenal tissue and duodenal contents collected from MIT common marmosets during necropsies performed by clinical veterinarians and veterinary pathologists were evaluated. Representative sections of major organs were collected, fixed in 10% neutral buffered formalin, embedded in paraffin, sectioned at 5 μm, and stained using hematoxylin and eosin (HE) for scoring by a boarded veterinary pathologist. Samples were flash frozen in vials containing Brucella broth in 20% glycerol and frozen at −80 °C. Samples from stricture and non-stricture cases were selected. The tissues were thawed in an anaerobic atmosphere (10% CO₂, 10% H₂, 80% N₂), and were homogenized with freeze medium with tissue grinders. The homogenate was divided into the following aliquots. For aerobic culture, the homogenates were plated onto chocolate agar, blood agar, MacConkey agar, and Brucella Broth medium containing 10% FCS. The plates were incubated at 37 °C in 5% CO₂ for 24–48 h. For anaerobic culture, the homogenates were plated onto pre-reduced Brucella Blood Agar plates (BBL) and inoculated into thio glycollate broth. The cultures were incubated at 37 °C in an anaerobic chamber (Coy Lab Products) with mixed gas (10% CO₂, 10% H₂, 80% N₂) for 48 h. For micro-aerobic culture to detect the growth of *Helicobacter* spp., the homogenates were plated onto selective antibiotic-impregnated plates (50 μg/ml amphotericin B, 100 μg/ml vancomycin, 3.3 μg/ml polymyxin B, 200 μg/ml bacitracin, and 10.7 μg/ml nalidixic acid) and Brucella Blood Agar plates after passing through 0.65 μm syringe filter. The plates were placed into a vented jar filled with mixed gas (10% CO₂, 10% H₂, 80% N₂) and incubated at 37 °C for up to 3 weeks. The plates were checked every 2–3 days for growth. Aliquots of the homogenates were also used for DNA extraction using the High Pure PCR Template Preparation kit (Roche Molecular Biochemicals). Bacterial DNA was then subjected to 16S rRNA gene sequence analysis using conserved primers 9F and 1541R to target the V4 and V5 regions of bacterial 16S rRNA fused to Illumina adaptors and barcode sequences as described previously. Individual samples were barcoded and pooled to construct the sequencing library, followed by sequencing with an Illumina MiSeq instrument to generate pair-ended 300 × 300 reads. Sequencing quality was inspected using FastQC. Reads were processed using QIIME 2–2018.6 within analyser 3500 (Applied Biosystems).

16S microbiome profiling. Fecal DNA was extracted using the DNeasy PowerLyzer PowerSoil Kit, and DNA was amplified using universal primers of F515T (GTGTCAGCMGCCGCGGTAA) and R926 (CCG YCA ATT YMT TTTGATCAG) to target the V4 and V5 regions of bacterial 16S rRNA fused to Illumina adaptors and barcode sequences as described previously. Individual samples were barcoded and pooled to construct the sequencing library, followed by sequencing with an Illumina MiSeq instrument to generate pair-ended 300 × 300 reads. Sequencing quality was inspected using FastQC. Reads were processed using QIIME 2–2018.6 within the MicrobiomeHelper v. 2.3.0 virtual box. Briefly, primer sequences were trimmed using the cutadapt plugin and denoising reads into amplicon sequence variants (ASV) using DADA2. Samples with fewer than 7500 reads were excluded. ASVs present in fewer than 3 samples and with less than 24 counts were also excluded. Taxonomic classification was assigned using the custom 16S V4/V5 region classifier based on the SILVA 132 database (SSU Ref NR 99). Following initial quality control, 601 ASVs proceeded to further analysis in the fecal microbiome analysis. Phylogenetic trees, composition, alpha rarefaction, beta diversity metrics and ANCOM (Analysis of Classification of Microbiome) were evaluated using built-in QIIME2 functions, Microsoft Excel and R (v 3.6.3 at http://www.R-project.org/) were used to perform statistical analyses and graphically represent data. Duodenal tissue samples flash frozen in liquid nitrogen were obtained from necropsies performed by clinical veterinarians and veterinary pathologists on 29 marmosets. Duodenal stricture samples were obtained from 7 males and 10 females ranging from 1.71 to 8.44 years of age. Non-stricture duodenal samples were obtained from 7 males and 5 females ranging from 1.82 to 10.4 years of age. Necropsy samples were collected from MIT (n = 18) and two additional MIT sources (n = 11). Tissues were processed as described above for fecal samples to determine the relative abundance of *Clostridium sensu stricto* I in the duodenum. Additionally, R libraries phyloseq, ggplot2 (2.2.1), caret, vegan, pROC, and gtools were used to model microbiome data. 6 samples (5 rectal swabs and 1 fecal sample) were excluded from microbiome analysis due to poor sampling characterized by low quantities of visible fecal matter and a microbiome dominated by a single species (e.g. *Helicobacter*) that was discordant from samples from the same individual. We analyzed the *Bacteroides*/Prevotella abundance ratio by taking the ratio of the averaged *Bacteroides* abundance and the averaged *Prevotella* abundance.
Machine learning. Machine learning analysis was performed following the approach of our previous work using a strategy to benchmark classifiers to identify the most suitable method for each particular dataset. Data from the microbiome, serum chemistries and complete blood counts were utilized to train classifiers. To minimize the stress caused by handling and sampling, banked samples collected during physical examinations were utilized. As testing needs varied for each exam, paired blood and microbiome samples were not available at every time point. Due to this limitation, we generated three independent models for the microbiome, serum chemistries and CBC data.

Data was normalized using min–max normalization. The data was then split using a single partition method and the classifiers were trained on 80% of the samples (training) and the discovered signatures were used to predict the populations on the remaining 20% of samples (testing) using the four machine learning approaches: support vector machines (SVM), random forest (RF), K-nearest neighbor (KNN), and Classification and Regression Trees (CART). A R script using the function in the Caret package utilized default parameters for training with cross-validation. The variable importance metric was calculated using the varImp function, which associated a specific value for each parameter. To evaluate the contribution of each parameter, the script ranked the parameters and calculated the variable importance starting with the ranked parameters with the highest score. This process was processed iteratively adding ranked parameters and recalculating the metrics with each subsequent addition until all ranked genes were evaluated. Metrics included accuracy (correct classification percentage), kappa value (inter-rater classification agreement), sensitivity, specificity, precision, recall, prevalence, and F1 score (harmonic average of the precision and recall). Based on the contribution of each parameter, we selected a K value of top parameters based on the following criteria: (1) the stability of the metrics (priority for accuracy, kappa, and F1) when the increment of ranked genes was done, and (2) minimum number K of parameters as possible. After the selection of the K value, ROC (Receiver-operating characteristic) curve and AUC (Area under the curve) value were calculated for each algorithm.

RNAseq. Tissues were collected from the duodenum from marmosets with either stricture or IBD during necropsies performed by clinical veterinarians and veterinary pathologists. The three stricture marmosets were female sourced from the MITNE and aged 1.9, 2.7, and 2.9 years old (average 2.5 ± 0.4). The stricture duodenal necropsies performed by clinical veterinarians and veterinary pathologists. The three stricture marmosets were calculated for each algorithm.

The selection of the K value, ROC (Receiver-operating characteristic) curve and AUC (Area under the curve) value were calculated for each algorithm.

Data availability

RNAseq data is available under NCBI GEO Accession Number GSE156839. Microbiome data is available under NCBI BioProject PRJNA659472.

Code availability

R scripts utilized to analyze data and generate figures are available at https://github.com/sheh-dcm/cj_micobiome.

Received: 7 October 2021; Accepted: 21 March 2022

Published online: 28 March 2022

References

1. Ludlage, E. & Mansfield, K. Clinical care and diseases of the common marmoset (Callithrix jaccus). Comp. Med. 53, 369–382 (2003).
2. David, J. M., Dick, E. J. & Hubbard, G. B. Spontaneous pathology of the common marmoset (Callithrix jaccus) and tamarins (Saguinus oedipus, Saguinus mystax). J. Med. Primatol. 38(5), 347–359. https://doi.org/10.1111/j.1600-0684.2009.00362.x (2009).
42. Meier, T. R., Myers, D. D., Eaton, K. A., Ko, M. H. & Hankenson, F. C. Gangrenous Clostridium perfringens infection and subsequent wound management in a Rhesus Macaque (Macaca mulatta). J. Am. Assoc. Lab. Anim. Sci. 46(4), 68–73 (2017).

43. Holland, D., Thomson, L., Mahmoudzadeh, N. & Khaled, A. Estimating deaths from foodborne disease in the UK for 11 key pathogens. BMJ Open Gastroenterol. 7(1), e000377. https://doi.org/10.1136/bmjgast-2020-000377 (2020).

44. De La Cochetière, M. F. et al. Early intestinal bacterial colonization and necrotizing enterocolitis in premature infants: The putative role of Clostridium. Pediatr. Res. 56(3), 366–370. https://doi.org/10.1203/01.PDR.0000134251.45876.65 (2004).

45. Janik, J. S., Ein, S. H. & Mancer, K. Intestinal strictures after necrotizing enterocolitis. J. Pediatr. Surg. 16(4), 438–443. https://doi.org/10.1002/0000-3468(81008000-4 (1981).

46. Phad, N., Trivedi, A., Todd, D. & Lakkundi, A. Intestinal strictures post-necrotising enterocolitis: Clinical profile and risk factors. J. Neonatol. Surg. 3(4), 44. https://doi.org/10.21699/nj.v3i1.184 (2014).

47. Neu, J. & Pammi, M. Necrotizing enterocolitis: The intestinal microbiome, metabolome and inflammatory mediators. Semin. Fetal Neonatal Med. 23(6), 400–405. https://doi.org/10.1016/j.sfnm.2018.09.001 (2018).

48. Ruldon, J. M., Kang, D. J. & Hylenon, P. B. Bile salt biotransformations by human intestinal bacteria. J. Lipid Res. 47(2), 241–259. https://doi.org/10.1194/jlr.R500013-JLR200 (2006).

49. Wang, S. et al. Diet-induced remission in chronic enteropathy is associated with altered microbial community structure and synthesis of secondary bile acids. Microbiology 17(1), 1–20. https://doi.org/10.1099/000169-09-0734-4 (2019).

50. Patel, R. M. et al. Association of red blood cell transfusion, anemia, and necrotizing enterocolitis in very low-birth-weight infants. JAMA J. Am. Med. Assoc. 319(9), 889–897. https://doi.org/10.1001/jama.2016.1204 (2016).

51. Manni, M. & Valero, J. G. Lipidomic profile of GM95 cell death induced by Clostridium perfringens alpha toxin. Chem. Phys. Lipids 271, 101062. https://doi.org/10.1016/j.chemphyslip.2017.01.002 (2017).

52. Tanha, J., Abdi, Y., Samadi, N., Razzaghi, N. & Asadpour, M. Boosting methods for multi-class imbalanced data classification: An experimental review. J Big Data 7, 1–47. https://doi.org/10.1186/s40537-020-00349-Y/FIGURES/5 (2020).

53. Carrion, R. & Patterson, J. L. An animal model that reflects human disease: the common marmoset (Callithrix jacchus). Curr. Opin. Virol. 2(3), 357. https://doi.org/10.1016/j.covirol.2012.02.007 (2012).

54. Fox, J. G. High-salt diet induces gastric epithelial hyperplasia and parietal cell loss, and enhances helicobacter pylori colonization in C57BL/6 mice. Gastroenterology 117(3), 4823–4828 (1999).

55. Shen, Z. et al. Isolation and characterization of a novel Helicobacter species, Helicobacter jacchi sp. nov., from common marmosets (Callithrix jacchus). J. Med. Microbiol. 64(9), 1063. https://doi.org/10.1099/jmm.000113 (2015).

56. Comeau, A. M., Douglas, G. M. & Langille, M. G. I. Microbiome helper: A custom and streamlined workflow for microbiome research. mSystems 2(1), e00127-e216. https://doi.org/10.1128/mSystems.00127-16 (2017).

57. Andrews, S., Fast, Q. C. A quality control tool for high throughput sequence data. Published 2010. Accessed August 4, 2020. http://www.hbi.victoria.ac.nz/projects/fastqc/.

58. Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37(8), 852–857. https://doi.org/10.1038/s41587-019-0209-9 (2019).

59. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBO J. 17(1), 10. https://doi.org/10.14806/ej.17.1.200 (2011).

60. Yilmaz, P. et al. SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks. Nucleic acids research Oxford academic. Nucleic Acids Res. 42(D1), D643–D648 (2014).

61. Mandal, S. et al. Analysis of composition of microbiomes: A novel method for studying microbial composition. Microb. Ecol. Heal. Dis. https://doi.org/10.3402/mehd.v26.29766 (2015).

62. Lozupone, C., Hamady, M. & Knight, R. UniFrac—an online tool for comparing microbial community diversity in a phylogenetic context. BMC Bioinform. 7(1), 371. https://doi.org/10.1186/1471-2105-7-371 (2006).

63. McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8(4), e61217. https://doi.org/10.1371/journal.pone.0061217 (2013).

64. Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2009).

65. Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 28(5), 1–26. https://doi.org/10.18637/jss.v028.i05 (2008).

66. Okasanen, R. et al. Llamma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 40, 4288–4297. https://doi.org/10.1093/nar/gko42 (2012).

67. Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 47, 2006–2012. https://doi.org/10.1093/nar/gkv007 (2019).

68. Pagés, H., Carlson, M., Falcon, S., Li, N. AnnotationDb: Manipulation of SQLite-based annotations in Bioconductor. R package. Published online (2019).

69. Carlson, M. GO.db: A set of annotation maps describing the entire Gene Ontology. R package. Published online (2019).

70. Alexia, A., Rahmehfusser, J. topGO: Enrichment analysis for gene ontology. R package. Published online (2019).

71. Mark, A., Thompson, R., Afrasiabi, C., Wu, C. mygene: Access MyGene.Info _services. R package version. Published online (2019).

72. Hansen, K. D., Gentry, J., Long, L., et al. ggVennDiagram: A “ggplot2” Implement of Venn Diagram. R package. Published online (2019).

73. Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 47, 2006–2012. https://doi.org/10.1093/nar/gkv007 (2019).

74. Pagés, H., Carlson, M., Falcon, S., Li, N. AnnotationDb: Manipulation of SQLite-based annotations in Bioconductor. R package. Published online (2019).

75. Carlson, M. GO.db: A set of annotation maps describing the entire Gene Ontology. R package. Published online (2019).

76. Alexia, A., Rahmehfusser, J. topGO: Enrichment analysis for gene ontology. R package. Published online (2019).

77. Mark, A., Thompson, R., Afrasiabi, C., Wu, C. mygene: Access MyGene.Info _services. R package version. Published online (2019).

78. Hansen, K. D., Gentry, J., Long, L., et al. ggVennDiagram: A “ggplot2” Implement of Venn Diagram. R package. Published online (2019).

Acknowledgements

This work was supported in part by a grant from the MIT McGovern Institute, NIH Grant T32 OD010978 and by the National Institute of Environmental Health Sciences of the NIH Under Award P30-ES002109.
Author contributions
Conception and design: A.S., S.C.A., M.A.B., S.M., J.G.F. Data acquisition, analysis and interpretation: A.S., S.C.A., M.A.B., J.A.M.M., M.A.L., J.D., S.M. Manuscript: A.S., S.C.A., J.G.F.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41598-022-09268-9.
Correspondence and requests for materials should be addressed to A.S. or J.G.F.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022