Molecular Links between Alcohol and Tobacco Induced DNA Damage, Gene Polymorphisms and Patho-physiological Consequences: A Systematic Review of Hepatic Carcinogenesis

Abdul Anvesh Mansoori, Subodh Kumar Jain*

Abstract

Chronic alcohol and tobacco abuse plays a crucial role in the development of different liver associated disorders. Intake promotes the generation of reactive oxygen species within hepatic cells exposing their DNA to continuous oxidative stress which finally leads to DNA damage. However in response to such damage an entangled protective repair machinery comprising different repair proteins like ATM, ATR, H2AX, MRN complex becomes activated. Under abnormal conditions the excessive reactive oxygen species generation results in genetic predisposition of various genes (as ADH, ALDH, CYP2E1, GSTT1, GSTP1 and GSTM1) involved in xenobiotic metabolic pathways, associated with susceptibility to different liver related diseases such as fibrosis, cirrhosis and hepatocellular carcinoma. There is increasing evidence that the inflammatory process is inherently associated with many different cancer types, including hepatocellular carcinomas. The generated reactive oxygen species can also activate or repress epigenetic elements such as chromatin remodeling, non-coding RNAs (micro-RNAs), DNA (de) methylation and histone modification that affect gene expression, hence leading to various disorders. The present review provides comprehensive knowledge of different molecular mechanisms involved in gene polymorphism and their possible association with alcohol and tobacco consumption. The article also showcases the necessity of identifying novel diagnostic biomarkers for early cancer risk assessment among alcohol and tobacco users.

Keywords: Chronic alcohol consumption - reactive oxygen species - DNA damage - inflammatory cytokines

Introduction

The graph of Gastrointestinal (GI) tract malignancies increasing day by day in the world and are increasingly reported in the Indian subcontinent (Ferlay et al., 2010). In the last 5 years, about 1 million new cases of cancers were registered in India reported by International Agency for Research on Cancer (Park et al., 2008; Jemal et al., 2011). The most widespread form of GI cancer in India is of liver origin, which accounts for about 3% of the total cancer deaths. Out of the total diagnosed cases, 20144 incidences were of liver cancers only. (Bhargava et al., 2012; Bray et al., 2012). Liver carcinoma, an extremely severe condition with underprivileged diagnosis and poor survival is most widespread in central Indian population (Ferlay et al., 2010; Bray et al., 2012). The epidemiological statistics signifies the global rise in the Liver cancer cases particularly in a developing country like India. Alcohol, mainly ethanol, is by far the most abused drug for centuries globally. The types of alcohol consumed in alcoholic beverages include wine, spirits, liquors, beers and as traditional brew especially in developing countries (Al-Azri et al., 2014). According to the WHO 2014 report, around 30% of the total population of India consumed alcohol in the year 2010. About 93% of alcohol was consumed in the form of spirits, followed by beer with 7% and less than 1% of the population consumed wine (WHO, 2014). In addition to alcohol, tobacco is also included in carcinogen that causes dysfunction of various genes as well as enzymes involved in detoxification of alcohol and nicotine, consequences in generating various types of liver related diseases (LRD) such as fibrosis, alcoholic hepatitis, cirrhosis, hepatocellular carcinoma (HCC) (Koh et al., 2011; Su et al., 2013).

Epidemiologic studies of the last decades have unequivocally acknowledged chronic alcohol consumption as an important risk factor for the development of various types of cancers, including cancers of the organs and tissues of the respiratory tract and the upper digestive tract (i.e. upper aerodigestive tract), liver, colon or rectum (i.e. upper aerodigestive tract).
alcohol, or more than five to six drinks per day), especially combined with smoking, enhances the risk of developing these cancers by a factor of 50 or more, depending on the population studied (Tong et al., 2014). But some people develop cancer even at relative moderate daily alcohol consumption. These observations suggest that a genetic predisposition may influence cancer risk. At least part of this genetic predisposition may be related to alcohol metabolism because the rate of alcohol metabolism is genetically determined.

According to meta-analysis of sub-population 85%-90% of primary liver cirrhosis causes cancers (El-Serag and Rudolph, 2007) accounting for 3.5% and 7.5% of all cancers among women and men, respectively (Poustchi et al., 2010; Tong et al., 2014) and accounts for half a million deaths per year (Kirk et al., 2006). Multiple nontoxic factors have been concerned with the development of liver cancer include iron overload syndromes, alcohol use, tobacco, oral contraceptive, aflatoxin, pesticides exposure and betel quid chewing, a prevalent habit in the developing world (Gao et al., 2012; Hamed and Ali, 2013; Arora et al., 2015).

Alcohol metabolism through xenobiotics

A Cancer Preventive Pathway: The xenobiotic-metabolizing machinery contains two main types of enzymes: Phase I - mediating oxidative metabolism, and Phase II - conjugating enzymes. Many compounds are transformed to reactive electrophilic metabolites (i.e. ROS) by the oxidative Phase I enzymes, which are mainly alcohol dehydrogenase (ADH), aldehyde dehydrogenase (ALDH) and cytochrome P-450 enzymes (CYPs). Phase II conjugating enzymes, such as glutathione-S-transferase (GST), act usually as inactivating enzymes that inactivate carcinogens (Zakhari, 2013, Yamada et al., 2014).

Ethanol is metabolized by various enzymes including the ADH enzyme isoforms, ALDH and cytochrome P450 enzyme system. CYP2E1 produces reactive oxygen species (ROS), which increase the risk of tissue damage especially to the liver hepatocytes. ROS includes hydroxethyl, superoxide anion, hydroxyl radicals and number of free radicals (Zakhari, 2013). CYP2E1 which exacerbates some of the toxic effects of acetaldehyde, leads to a harmful condition called oxidative stress in the cells that is characterized by excess levels of ROS (shown in Figure 1). Glutathione-S-transferases (GSTs) are a multi-gene family of phase-II metabolic enzymes. The conjugation of reduced glutathione is catalyzed by GSTs enzymes with a variety of endogenous and exogenous electrophilic compounds, including several potentially toxic carcinogens and chemotherapeutic drugs (Yamada et al., 2014), thereby reducing the reactivity of the compounds by making them water soluble and favouring their elimination from the body.

In the body, particularly in the liver cells xenobiotic pathways engender a number of potentially harmful by-products that cause deleterious possessions on the body tissues and organs. Acetaldehyde, a reactive metabolite of ethanol, binds to nucleic acids, proteins such as enzymes, microsomal proteins and microtubules (Gupta et al., 2014). The generated ROS can also activate or repress the epigenetic mechanisms such as chromatin remodeling, non-coding RNAs (microRNAs), DNA (de) methylation and histone modification that affect gene expression, hence leading to causes various liver diseases and many other disorders (Day and Sweatt, 2011; Gao et al., 2012). It damages DNA leading to chromosome-breakage disease that causes developmental defects, sterility, bone-marrow failure and a highly elevated risk of cancer and other body defects (Nourazarian et al., 2014; Orsetti et al., 2014).

Molecular Regulation of Tobacco Metabolism & Cancer Prevention

Tobacco exposure while smoking includes major classes of carcinogetic compounds such as polycyclic aromatic hydrocarbons (PAHs), aromatic amines, nitrosamines, and heterocyclic amines (HCAs); these carcinogetic compounds can enter the alimentary tract or the circulatory systems (Senthilkumar and Thirumurugan, 2012). These carcinogetic compounds are then catalized by CYPs (CYP1A1, CYP1A2, CYP2E1, CYP2A6), leading to DNA-adduct formation or by GSTs (GSTM1, GSTT1, GSTP1) leading to excretion (Koh et al., 2011; Gao et al., 2014).

Nicotine contents of the tobacco leaves can be absorbed in body tissues including skin, respiratory epithelium, and mucous membrane of the mouth. The carcinogetic potential of tobacco is well-known. Exposure of Nicotine leads to the activation of nicotinic acetylcholine receptors (nAChRs) and may contribute to cancer succession (shown in Figure 1); coupled with the fact that as tumors development there is an increased expression of nAChRs, further representing the connection of this pathway during carcinogenesis (Russo et al., 2012; de Menezes et al., 2013; Kar, 2014). Heavy drinking (i.e. consumption of more than 80 g alcohol, or more than five to six drinks per day), especially combined with smoking, enhances the risk of developing these cancers by a factor of 50 or more, depending on the population studied (Tong et al., 2014). But some people develop cancer even at relative moderate daily alcohol consumption. These observations suggest that a genetic predisposition may influence cancer risk. At least part of this genetic predisposition may be related to alcohol metabolism because the rate of alcohol metabolism is genetically determined.
Senthilkumar and Thirumurugan, 2012). Nitrosamines, such as nicotine-derived nitrosamine ketone (NNK), are high affinity ligands for the nAChR. signaling and have been shown to enhance intracellular ROS levels in liver cells (Ye et al., 2004).

Identifying diverse form of Tobacco Exposures

The exposures of Tobacco are of diverse forms. Some people smoked tobacco in the form of cigarette or Bidi, while other chewed in the form of gutka.

Cigarette Smoke (CS): CS contains p-benzoquinone (p-BQ) which is derived from p-benzosemiquinone (p-BSQ), produces ROS that is accompanied by inflammation and apoptosis (Panda and Chatterjee, 2007, Banerjee et al., 2008). ROS produced by p-BQ is a redox cycling agent that leading to oxidative damage (Margaret et al., 2011). Since CYP2E1 induction is associated with ROS generation and lipid peroxidation, this may be a mechanism whereby tobacco smoke may contribute to HCC. Several studies have suggested that tobacco smoking is a significant risk factor for the development of HCC (Lee et al., 2009; Zygogianni et al., 2011; Purohit et al., 2013). Gajalakshmi and Kanimozhi, (2015) has done a case control study that showed a synergistic interaction between heavy alcohol consumption and tobacco smoking in the progression of HCC.

Tobacco and Gutkha Chewer: About forty percent of the tobacco consumed in India is in the smokeless form such as Pan, Pan masala, Zarda and Gutkha (Gajalakshmi and Kanimozhi, 2015). Almost 70-80 percent of gutkha contains some specific alkaloids named arecoline present in areca nut. According to International Agency for Research on Cancer (IARC 2004), areca nut chewing has been classified to be carcinogenic. Patel et al., (2009) studied harmful effects of tobacco chewing in later stages which induces chronic inflammation in liver that causes cancer.

Cancer Induced by Alcohol Consumption and Tobacco Exposure

Generated ROS and adds formation causes structural and functional alternations to DNA that causes cell cycle arrest or apoptosis. This damage severely affects the gene function, such as replication and transcription, and plays a major role in age-related diseases and cancer (Goldar et al., 2015). Continuous oxidative stress induced production of various cytokines, activation of immune cells and finally results in inflammation that become chronic in later stage (shown in Figure 2).

Cellular Responses

Upshot of Cancer: DNA damage generate a cellular response which is a complex process that includes detection of the DNA damage, activation of signaling pathways including cell cycle checkpoints, and repair of the damage (Niida and Nakanishi, 2006; Seitz and Mueller, 2015). A complex and entangled network of DNA damage response (DDR) mechanisms act as cellular defence against DNA injuries and are able to remove the vast majority of injuries from the genome (Shin et al., 2008; Areeshi, 2013). Each DNA repair mechanism work with chromosome integrity in healthy tobacco chewers and found a significant increase in frequency of genetic toxicity in cell (as DNA damage, chromosomal aberration (CA), sister chromatid exchanges, micronucleated cells (SCE) etc. of chewers over controls. A large number of studies related to genotoxic effects of pan masala (Gandhi and Kaur, 2000; Fareed et al., 2011) and gutkha (Jyoti et al., 2011; Chadha and Yadav, 2011) has been reported in literature.

Tobacco Dust Inhale by Bidi Roller: Bidi (the Indian equivalent of a cheap cigarette) rolling is a common cottage industry in India. The bidi rollers are from low socio-economic strata and often work in ill-ventilated confined environments in their dwellings. So they inhale a lot of tobacco dust which leads to many systemic diseases and this is also harmful for the integrity of their chromosomes and DNA (Umadevi et al., 2003, Shukla et al., 2011). Bidi rollers (mostly women) are exposed to tobacco constituents mainly nicotine through the cutaneous route or through inhalation of tobacco dust (Poonam et al., 2010). The amount of tobacco dust may be having cumulative effects on their genetic material with the years of exposure and will cause oxidative damage on lipid, protein, carbohydrate, and nucleic acid molecules (Margaret et al., 2011, Sundaramoorthy et al., 2013). Among the most exploited working groups in the country are Bidi rollers and Tendu pluckers comprising women and children earning bare minimum wages and pathetic to access healthcare facilities (Karabi and Bhavana, 2010). Khanna et al. (2014) investigated that bidi rollers seem to be facing the occupational hazard of genotoxicity due to handling bidi tobacco and inhalation of tobacco dust. They should be advised to work under well-ventilated conditions. In this study the selected bidi rollers and controls were neither smoker nor did they indulge in tobacco chewing.
its own damage specificity. The biological significance of a functional DDR for human health is clearly illustrated by the severe outcomes of inherited defects in DDR factors resulting in various diseases (Shin et al., 2008; Hoeijmakers, 2009).

MRN Complex Association: The MRN complex, whose core comprises of Mre11, RAD50 and NBS1 proteins and is involved in the initial processing of DNA double-strands breaks (DSBS) due to its nuclease activity and DNA binding capability (Uziel et al., 2003). This complex acts as a break sensor and recruits the protein kinase, ataxia telangiectasia mutated (ATM), to DSBS sites, facilitating the subsequent processes DNA repair (Lavin, 2007; Lee and Paull, 2007).

The MRN complex adheres to the sites of DSBS instantly following their induction, and this process is independent of ATM (Mirzoeva and Petriani, 2001). It enhances the accumulation of ATM at these sites. NBS1 is important for regulation of the Mre11 complex, influencing DNA binding as well as Mre11 nuclease activity. The activities of the MRN complex are in the very early stage of the DSBS response, between damage induction and ATM activation (Stracker et al., 2011).

ATM (Ataxia-Telangiectasia Mutated)

An important protein play a crucial role in the cellular response to DNA damage is the ataxia telangiectasia mutated (ATM) protein. Conformational changes occur due to DSBS in the ATM protein that stimulates the kinase to phosphorylate Ser1981 by intermolecular autophosphorylation (Shiloh, 2003; Farooqi et al., 2014). After activation, the phosphorylated ATM monomers accumulates at the DNA damage sites and phosphorylates a number of proteins involved in cell cycle checkpoint control, apoptotic responses and DNA repair, including p53, H2AX, Rad17, Nbs1 as well as itself (Shiloh, 2006; Farooqi et al., 2014).

ATM kinase activity is also governed by binding to MRE11 that enhances its ability to phosphorylate itself. A recent study also evidence that autophosphorylation at serine 1981 is essential for monomerization and chromatin association of ATM (Berkovich et al., 2007). Phosphorylation of these and other substrates by ATM initiates cell-cycle arrest at G1/S, intra-S and G2/M checkpoints and also promotes DNA repair (Lavin and Kozlov, 2007). ATM is also known as the caretaker of the genome in humans and act as a central mediator of responses to DNA DSBS in cells. Mutations in ATM cause genomic instability syndrome termed ataxia telangiectesia, a rare autosomal recessive disease characterized by immunodeficiency, genome instability and predisposition to cancer in humans (Niida and Nakanishi, 2006; Chaudhary et al., 2013).

ATR (Ataxia-Telangiectasia Rad 3-related)

Like ATM, ATR kinase activity is responsible for phosphorylation of substrates but its functions may be largely dependent on its subcellular localization. ATR exists in a stable complex with ATR-interacting protein (ATRIP) in human cell, a potential regulatory partner (Unsal-Kacmaz and Sancar, 2004). ATRIP protein that is phosphorylated by ATR, determines ATR expression, and is a critical component of the DNA damage checkpoint pathway. ATR and ATRIP both confine to intra-nuclear foci after DNA damage or inhibition of replication (Wu et al., 2014).

Once ATR is activated then it is translocated to DNA replication foci where activated ATR phosphorylates Chk1, initiating a signal transduction cascade that finally results in cell cycle arrest. Therefore, ATR appears to be a multi-functional kinase that regulates several distinct events from S phase to M phase. Another function of ATR is thought to function in unperturbed DNA replication after activating the DNA damage checkpoint (Chaudhary et al., 2013). ATR is considered as a second checkpoint-activating kinase, after ATM, which is activated by double strand breaks in DNA or chromatin disruption (Ohashi et al., 2014).

\[\gamma \text{H2AX (Histone H2A Isoform \(\gamma\) Protein)} \]

Phosphorylated H2AX is also known as \(\gamma\)-H2AX. Falck et al. (2005) evicted that at the sites of DNA-DSBS, DDR mechanism responsible for the phosphorylation of the histone variant H2AX by all three phosphoinositide 3-kinases (PIKs)-ATM, ATR and DNA-PK (DNA-dependent protein kinase) (Sharma et al., 2015). The phosphorylation of H2AX at C-terminal Serine residues (Ser136 and Ser139) is a relatively early event immediately occurs after DNA damage. \(\gamma\)-H2AX is also responsible for MRN complex binding and ATM activation (Fernandez-Capetillo et al., 2004). It also promote efficient repair (Hu et al., 2015) by facilitating the accumulation of components of DNA repair, including NBS1/Mre11/RAD50 and 53BP1 at damage loci to ensure proper cell cycle arrest or DNA repair.

After DNA DSBS damage, \(\gamma\)-H2AX is mainly mediated by ATM, evoking that H2AX is a downstream mediator of ATM function (Guo et al., 2015). But H2AX is also essential for the recruitment of 53BP1 to sites of DNA DSBS damage, and 53BP1 appears to be an upstream activator of ATM (Hu et al., 2015). Therefore, it remains a question whether H2AX plays any role in activating ATM after DNA DSBS damage.

p53 Binding Protein

The p53 tumor suppressor protein is also known as guardian of the genome, integrates various physiological signals in mammalian cells (Charni et al., 2014). In reverberation to DNA damage, p53 becomes functionally operative and take action either a transient cell cycle arrest, cell death (apoptosis) or permanent cell cycle arrest (cellular senescence). Both apoptosis and cellular senescence are robust tumor suppressor mechanisms that irreversibly forestall damaged cells from undergoing neoplastic transformation (Rodier et al., 2007; Callen et al., 2013). The amount p53 protein and its transcriptional activity is determined by post-translational modification, such as phosphorylation, sumoylation, neddation and acetylation (Charni et al., 2014).

DNA damage causes phosphorylation of p53 at several sites in its transactivation domain, including at Ser15 and Ser20. Activated ATM and ATR phosphorylate p53
proteins at Ser15 residue, resulting in p53 stabilization (Choi et al., 2012; Callen et al., 2013). Various recent studies reported that 53BP1 has been implicated in DNA damage responses and plays a central to both the S and G2 checkpoints and also responsible for G1 arrest after encounter of DNA damages. The main transcriptional target of p53 is the p21 Cdk inhibitor (p21CKI), which inhibits cyclin E-Cdk2 activity, thereby inhibiting G1/S transition (Lee et al., 2014; Malakar et al., 2014). However, accentuated apoptosis may ultimately lead to liver pathologies, primarily steatosis, which can advance into a more severe disease such as steatohepatitis, fibrosis, and cirrhosis (Charni et al., 2014).

Patho-Physiological Responses

Causes Cancer progression: Diverse population-based studies suggested that individuals who are prone to chronic inflammatory disorders in liver have an increased risk of liver related diseases development (Gao and Bataller, 2011). In response to a varied range of cellular stresses cytokines are released including infection, inflammation, and carcinogen-induced injury. Host responses that are stimulated by cytokines aimed at controlling cellular stress and minimizing cellular damage (Chung and Lim, 2015). An injury which fails to resolve can elicit excessive immune cell infiltration and lead to persistent cytokine production. Therefore, the host response to stress provokes changes in cytokine expression, which can impact several stages of cancer formation and progression.

Nuclear Factor-κB (NF-κB)

In the past decade, a number of inflammatory mediators have been shown to contribute to the progression of CLD, many of which are either targets or activators of nuclear factor-κB (NF-κB). NF-κB is maintained in an inactivated or resting state by the inhibitory kappa B (IKB) in the cytoplasm. After the phosphorylation of IκB by inhibitor kappa kinase (IKK), NF-κB is activated and free to translocate the nucleus where it can perform its function (Chen et al., 2013; Kitaoka et al., 2003). Various recent studies reviewed that cytokines play crucial role in liver carcinoma (Talaat et al., 2012; Cen and Wu, 2013).

Tumor Necrosis Factor alpha (TNF-α)

TNF-α is pleiotropic growth factor produced by Kupffer cells and other immune cells in response to chronic inflammation and tissue injury. Pro-inflammatory TNF-alpha is connected with an increase in cell cycle progression and oxidative stress through the formation of 8-oxo-deoxyguanosine, a well-known marker of DNA damage associated with chronic hepatitis in human liver (Wang et al., 2012).

Afshar et al. (2015) studied the effect of chronic alcohol consumption in HCV core-expressing transgenic mice and observed that hepatic expression of TGF-β and TNF-α has been raised. In another study, higher levels of TNF-α was detected in the tissue surrounding tumor (Park et al., 2010; Chung and Lim, 2015). TNF-α polymorphism produces the TNF-α (-308bp) SNP (single nucleotide polymorphisms) in the promoter region of the gene, which includes TNF-α1 (-308G) and TNF-α2 (-308A) alleles, is linked with cancer susceptibility and induced expression of TNF-α (Talaat et al., 2012; Cen and Wu, 2013).

Pro-inflammatory Cytokines

Many scientists and researchers all over the world reviewed that cytokines play crucial role in liver carcinoma (Bei et al., 2014; Chung and Lim, 2015). They suggested that cytokines are concerned in liver development and regeneration but their serum level may also contribute to the potential biomarker for pathogenesis of liver-related diseases such as cirrhosis, fibrosis, hepatitis, cancer etc. (Table 1) caused by chronic consumption of alcohol and tobacco abuses. So, one can explore the correlation between expression of cytokines and the different phases of alcoholic liver disease.

Genetic Polymorphism

Susceptibility to Cancer: Many of the enzymes (such as ADH, ALDH, CYP2E1, GSTM1, GSTT1 and GSTP1) tangled in metabolic xenobiotic pathways have recently been shown to evince genetic polymorphism in the population. ROS and adducts formation is responsible for the predisposition of gene that causes genetic polymorphism (Munaka et al., 2003; Heit et al., 2015).

Cytokine	HCV/HBV	Carcinoma	Other Liver
Interleukin-1β	Bortolami et al., 2008	Kanwal et al., 2011	Kamo et al., 2013
Interleukin 6	Andrade et al., 2013	Yin et al., 2013	Coskun et al., 2004
Interleukin-8	Langhans et al., 2013	Lee et al., 2013	El-Tayeh et al., 2012
Interleukin 10	da Silva et al., 2015	Hsia et al., 2007	Kitaoka et al., 2003
Interleukin 12	Zhu et al., 2015	Lo et al., 2010	Tung et al., 2010
Homozygous deletions of GSTM1 and GSTT1 genes are extensively studied worldwide. GSTP1 polymorphisms are associated with various diseases such as alcoholic pancreatitis, alcoholic cirrhosis, and gastric cancer. In a population-based study done by Zhang et al. (2007), the frequency of GSTM1 and GSTT1 null genotypes were 22.4% and 17.6%, respectively. In India, the frequency of GSTT1 null genotypes is somewhat less in Europeans (13.31%) compared with that of Africans (14-57%) and in Asians (35-48%) (Sobti et al., 2005; Sharma et al., 2012).

Comparison of the frequencies of GST polymorphisms in South Indian population was done by Vettriselvi et al. (2006). They examined that the GSTM1 and GSTT1 null genotype frequencies were found to be 22.4% and 17.6%, respectively. Allelic variants of GSTM1, GSTT1, and GSTP1 have been associated with increased risk of various cancers like colorectal, lung, breast, prostate and others. GSTP1 has been associated with increased risk of various cancers like colorectal, lung, breast, prostate and others. In the study involving patients with precancerous lesions, cancer patients, and age and habit-matched controls have been investigated. Finding shows increased susceptibility to buccal mucosa cancer among individuals carrying these genetic markers. These results support the finding that GSTM1 null genotype is a risk factor to OSCC among Indian tobacco habits; GSTT1 null genotype, however, emerged as a protective factor (Anantharaman et al., 2007; Senthilkumar and Thirumurugan, 2012; Dunna et al., 2013).

Role of Epigenetic Alternations in Cancer Induction

Epigenetic alteration includes assortment of chemical modification at molecular level that involve alteration of the DNA (e.g., methylation) and the histone proteins (e.g., methylation, acetylation, phosphorylation, ubiquitinylation, ADP-ribosylation, and sumoylation) (Curtis et al., 2013). The epigenetic profile of the organism directly depends on varied aspects including age, environment, and exposure to toxins (e.g., alcohol and tobacco) (Feil and Praga, 2012). Oxidative metabolites such as acetaldehyde, acetate, acetyl-CoA, and reactive oxygen species (ROS) are generated through alcohol metabolism under the oxidative pathway can induce tissue-specific epigenetic changes (Shukla and Aroor, 2006; Choudhry and Shukla, 2008; Kang et al., 2015). Ethanol metabolism increases ROS level enhances histone H3 acetylation in hepatocytes (Choudhry et al., 2010) and also increases production of acetyl-CoA significantly, which is used in histone acetylation by histone acetyl transferases (HATs) (Yamashita et al., 2001). Continuous exposure of high dose of alcohol to liver cells noticeably amplifies pro-inflammatory cytokine (such as IL-6 and TNFα) responses and was also associated with increased acetylation of histone H3 and H4 demonstrated by several studies.
studies (Kendrick et al., 2010). Finally alcohol exposure has tissue specific and immunological responses, such as influencing cell recruitment to infect or inflamed tissue, varying cytokines production level, impairing antigen presentation, hampering with phagocytosis, or inducing apoptosis and finally causes cancer.

Conclusions for preventing cancer

Prospective studies have indicated a very strong link between the alcohol consumption and tobacco exposure. This link can be assessed by correlating the activation of DNA damage repair proteins, analysing secretion levels of inflammatory cytokines and status of xenobiotic genes polymorphism. Usually people considered alcohol intake as the major risk factor for the development of liver related disorders. But evidence suggested that both alcohol intake and tobacco exposure equally contribute to liver diseases and also enhances the toxic potency of each other. This review focuses on the DNA damage caused by alcohol and tobacco consumption, risk stratification, professional, educational and public awareness connected with genetic and environmental factors. These are the important components of a new strategic approach to the prevention of alcohol related cirrhosis and cancers.

In recent years, due to advancement in molecular epidemiology, an emerging new field that combines extremely sensitive and specific techniques for detecting early damage associated with cancer, it has been possible to identify risks and thwart adverse health consequences related to environmental exposures by exogenous and endogenous compound. Therefore, this review focuses on the possible relationship between inter-individual differences in gene structure and inducibility of enzymes responsible for xenobiotic metabolism. This information has been used for the evaluation of increased susceptibility for cancer. Furthermore, this review will represent a crucial step to understand the susceptibility to develop cirrhosis and cancer in alcoholics and will be of importance in the social awareness to people and prevention of alcohol related diseases and/or the development of better therapies. It will be also be important to identify new diagnostic biomarkers in future that might allow more straightforward treatment and for identifying high risk individuals at an early stage. Hopefully, this review will implement the researchers and clinicians to foster, explore and authenticate the impacts and underlying mechanisms of DNA damage response (DDR) pathways in liver cirrhosis and cancer.

References

Afshar M, Richards S, Mann D, et al (2015). Acute immunomodulatory effects of binge alcohol ingestion. *Alcohol*, 49, 57-64

Al-Azri M, Al-Rasbi K, Al-Hinai M, et al (2014). Awareness of risk factors for cancer among Omani adults—a community based study. *Asian Pac J Cancer Prev*, 15, 5401-6

Anantharaman D, Chaubal PM, Kannan S, et al (2007). Sensitivity to oral cancer by genetic polymorphisms at CYP1A1, GSTM1 and GSTT1 loci among Indians: tobacco exposure as a risk modulator. *Carcinogenesis*, 28, 1455-62

Andrade BB, Hullsiek KH, Boulware DR, et al (2013) Biomarkers of inflammation and coagulation are associated with mortality and hepatitis viruses in persons infected with HIV and hepatitis viruses. *J Infect Dis*, 207, 1379-88

Areeshi MY (2013). Genetic variation in a DNA double strand break repair gene in saudi population: a comparative study with worldwide ethnic groups. *Asian Pac J Cancer Prev*, 14, 7091-4

Arora D, Marya CM, Menon I, et al (2015). Cross sectional survey on association between alcohol, betel- nut, cigarette consumption and health promoting behavior of industrial workers in Ghaziabad. *Asian Pac J Cancer Prev*, 16, 139-44

Banerjee S, Chattopadhyay R, Ghosh A, et al (2008). Cellular and molecular mechanisms of cigarette smoke-induced lung damage and prevention by vitamin C. *J Inflamm*, 5, 21

Bei CH, Bai H, Yu HP, et al (2014). Combined effects of six cytokine gene polymorphisms and SNP-SNP interactions on hepatocellular carcinoma risk in Southern Guangxi, China. *Asian Pac J Cancer Prev*, 15, 6961-7

Bennett WP, Alavanja MCR, Blomeke B, et al (1999). Environmental tobacco smoke, genetic susceptibility, and risk of lung cancer in never-smoking women. *J Natl Cancer Inst*, 91, 2009-14

Berkovich E, Monnat RJ, Kastan MB (2007). Roles of ATM and NBS1 in chromatin structure modulation and DNA double-strand break repair. *Nat Cell Biol*, 9, 683-90

Bhargava A, Mishra D, Banerjee S, et al (2012). Engineered dendritic cells for gastrointestinal tumor immunotherapy; opportunities in translational research. *J Drug Target*, 21, 126-36.

Bortolami M, Kotsafti A, Cardin R, et al (2008). Fas / FasL system, IL-1beta expression and apoptosis in chronic HBV and HCV liver disease. *J Viral Hepat*, 15, 515-22

Bray F, Ren JS, Masuyer E, et al (2012). Global estimates of cancer prevalence for 27 sites in the adult population in 2008. *Int J Cancer*, 2012, 1133-45

Burim RV, Canalle R, Martinelli Ade L, et al (2004). Polymorphisms in glutathione S-transferases GSTM1, GSTT1 and GSTP1 and cytokromes P450 CYP2E1 and CYP1A1 and susceptibility to cirrhosis or pancreatitis in alcoholics. *Mutagenesis*, 19, 291-298

Callen E, Di Virgilio M, Kruhlak MJ, et al (2013). 53BP1 mediates productive and mutagenic DNA repair through distinct phosphoprotein interactions. *Cell*, 153, 1266-80

Cao HX, Li SP, Wu JZ, et al (2010). Alcohol dehydrogenase-2 and aldehyde dehydrogenase-2 genotypes, alcohol drinking and the risk for stomach cancer in Chinese males. *Asian Pac J Cancer Prev*, 11, 1073-7

Cen G, Wu W (2013). Association between tumor necrosis factor-alpha 857C/T polymorphism and gastric cancer: a meta-analysis. *Tumour Biol*, 34, 3383-8

Chadda P, Yadav, JS (2011). Studies on the Genotoxicity of Gutkha. *Genet*, 11, 277-82

Charni M, Rivilin N, Molchadsky A, et al (2014). p53 in liver pathologies-taking the good with the bad. *J Mol Med (Berl)*, 92, 1229-34

Chaudhary P, Sharma R, Sahu M, et al (2013). 4-Hydroxynonenal reduces G2/M phase cell cycle arrest by activation of the ataxia telangictasia mutated and Rad3-related protein (ATR)/checkpoint kinase 1 (Chk1) signaling pathway. *J Biol Chem*, 288, 20532-46

Choi HS, Seo HS, Kim JH, et al (2012). Ethanol extract of Paeonia Suffruticosa Andrews (PSE) induced AGS human gastric cancer cell apoptosis via fas-dependent apoptosis and MDM2-p53 pathways. *J Biomed Sci*, 19, 82

Choudhury M, Park PH, Jackson D, Shukla SD (2010). Evidence for the role of oxidative stress in the acetylation of histone H3 by ethanol in rat hepatocytes. *Alcohol*, 44, 531-40

Asian Pacific Journal of Cancer Prevention, Vol 16, 2015 4809
Abdul Anvesh Mansoori and Subodh Kumar Jain

Choudhury M, Shukla SD (2008). Surrogate alcohols and their metabolites modify histone H3 acetylation: Involvement of histone acetyl transferase and histone deacetylase. Alcohol Clin Exp Res, 32, 829-39

Chung HW, Lim JB (2015). Role of the tumor microenvironment in the pathogenesis of gastric carcinoma. World J Gastroenterol, 20, 1667-80

Cichoz-Lach H, Celinski K, Wojcierowski J, et al (2010). Genetic polymorphism of alcohol-metabolizing enzyme and alcohol dependence in Polish men. Braz J Med Biol Res, 43, 257-61

Coskun U, Bukan N, Sancak B, et al (2004). Serum hepatocyte growth factor and interleukin-6 levels can distinguish patients with primary or metastatic liver tumors from those with benign liver lesions. Neoplasma, 51, 209-13

Cotton SC, Sharp L, Little J, et al (2000). Glutathione S-transferase polymorphisms and colorectal cancer: a HuGE review. Am J Epidemiol, 151, 7-32

Curtis BJ, Zahs A, Kovacs EJ (2013). Epigenetic targets for reversing immune defects caused by alcohol exposure. Alcohol Res, 35, 97-113

da Silva NM, Germano FN, Vidalas-Braz BM, et al (2015). Polymorphisms of IL-10 gene in patients infected with HCV under antiviral treatment in south Brazil. Cytokine, 73, 253-257

Day JJ, Sweat JD (2011). Review of Epigenetic Mechanisms in Cognition. Neuron, 70, 813-29

de Menezes RF, Bergmann A, Thuler LC (2013). Alcohol consumption and risk of cancer: a systematic literature review. Asian Pac J Cancer Prev, 14, 4965-72

Dunna NR, Vure S, Sailaja K, et al (2014). Deletion of GSTM1 and T1 genes as a risk factor for development of acute leukemia. Asian Pac J Cancer Prev, 14, 2221-4

El-Serag HB, Rudolph KL (2007). Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterol, 132, 2557-76

El-Tayeh SF, Hussein TD, El-Houseini ME, et al (2012). Serological biomarkers of hepatocellular carcinoma in Egyptian patients. Disease Markers, 32, 255-63

Eng MY, Luczak SE, Wall TL (2007). ALDH2, ADH1B and ADH1C Genotypes in Asians: A Literature Review. Alcohol Res Health, 30, 22-26

Falck J, Coates J, Jackson SP (2005). Conserved modes of recruitment of ATM, ATR and NA-PKcs to sites of DNA damage. Nature, 434, 605-11

Farooqi AA, Attar R, Arslan BA, et al (2014). Recently emerging patterns and implications. Asian Pac J Cancer Prev, 15, 208-12

Feil R, Fraga MF (2012). Epigenetics and the environment: H2AX: the histone guardian of the genome. Nature Rev Genetics, 13, 97-109

Ferlay J, Shin HR, Bray F, et al (2010). Cancer Incidence and Mortality Worldwide: IARC Cancer Base No. 10 [Internet]. Lyon, France: International Agency for Research on Cancer; 2010

Ferrandez-Capetillo O, Lee A, Nussenzweig M, et al (2004). Polycomb repressive complexes 1 and 2 mediate hematopoietic stem cell quiescence. Cell, 116, 589-99

Ferrari P, McKay JD, Jenab M, et al (2012). Alcohol dehydrogenase and aldehyde dehydrogenase gene polymorphisms, alcohol intake and the risk of colorectal cancer in the European Prospective Investigation into Cancer and Nutrition study. Eur J Clin Nutr, 66, 1303-8

Freed M, Afzal M, Siddique YH (2011). Micronucleus investigation in buccal mucosa cells among pan masala/gutkha chewers and its relevance for oral cancer. Bio Med, 3, 8-15

Gajalakshmi V, Kanimozhi V (2015). Tobacco chewing and adult mortality: a case-control analysis of 22,000 cases and 429,000 controls, never smoking tobacco and never drinking alcohol, in South India. Asian Pac J Cancer Prev, 16, 1201-6

Gandhi R, Kaur P (2014) Risk factors for hepatocellular carcinoma--current status and perspectives. Asian Pac J Cancer Prev, 13, 743-52

Gao M, Li Y, Xue X, et al (2014). Impact of AhR, CYP1A1 and GSTM1 genetic polymorphisms on TP53 R273G mutations in individuals exposed to polycyclic aromatic hydrocarbons. Asian Pac J Cancer Prev, 15, 2699-705

Gao Y, Cao Y, Tan A, et al (2010). Glutathione S-transferase M1 polymorphism and sporadic colorectal cancer risk: an updating Meta-analysis and HuGE Review of 36 case-control studies. Ann Epidemiol, 20, 108-121

Goldar S, Khaniani MS, Derakhshian SM, Baradaran B (2015). Molecular mechanisms of apoptosis and roles in cancer development and treatment. Asian Pac J Cancer Prev, 16, 2129-44

Gubergits NB, Kishenya MS, Golubova OA (2014). Polymorphism of ethanol metabolism genes in alcoholic chronic pancreatitis. Ter Arkh, 86, 49-55

Guo Z, Pei S, Si T, et al (2015). Expression of the γ-phosphorylated histone H2AX in gastric carcinoma and gastric precancerous lesions. Oncol Lett, 9, 1790-94

Gupta RK, Patel AK, Shah N, et al (2014). Oxidative stress and antioxidants in disease and cancer: a review. Asian Pac J Cancer Prev, 15, 4405-9

Hamed MA, Ali SA (2013). Non-viral factors contributing to hepatocellular carcinoma. World J Hepatol, 5, 311-22

Heit C, Dong H, Chen Y, et al (2015). Transgenic mouse models for alcohol metabolism, toxicity, and cancer. Adv Exp Med Biol, 815, 375-87

Hoeijmakers JH (2009). DNA damage, aging, and cancer. N Engl J Med, 361, 1475-85

HSia CY, Huo TI, Chiang SY, et al (2007). Evaluation of interleukin-6, interleukin-10 and human hepatocyte growth factor as tumor markers for hepatocellular carcinoma. Eur J Surg Oncol, 33, 208-12

Hu JL, Hu SS, Hou XX, et al (2015). Abnormal expression of DNA double-strand breaks related genes, ATM and gammaH2AX, in thyroid carcinoma. Int J Endocrinol, 2015, 136810

IARC (2004) Monographs on the evaluation of the carcinogenic risks to humans, tobacco habits other than smoking; betel quid and areca nut chewing. Lyon: International Agency for Research on Cancer, 85

Jemal A, Bray F, Center MM, et al (2011). Global cancer statistics. CA Cancer J Clin, 61, 69-90

Jyoti S, Afzal M, Siddique YH (2011). Genotoxic effects of pan masala and gutkha: A review. World J Zool, 6, 301-6

Kamo N, Ke B, Ghaffarri AA, et al (2013). ASC/caspase-1/IL-1β signaling triggers inflammatory responses by promoting HMGB1 induction in liver ischemia/reperfusion injury. Hepatol, 58, 351-62

Kang JY, Song SH, Yun J, et al (2015). Identification of long-range epigenetic silencing on chromosome 15q25 and its clinical implication in gastric cancer. Am J Pathol, 185, 666-78

Kar P (2014) Risk factors for hepatocellular carcinoma in India.
Alcohol and Tobacco Induced DNA Damage, Gene Polymorphisms and Patho-physiology of Hepatic Carcinogenesis

Karabi MM, Bhavna MB (2010). Tobacco and poverty research and capacity building: narrative report. organization: voluntary health association of India, New Delhi, India.

Kendrick SF, O’Boyle G, Mann J, et al (2010). Acetate, the key modulator of inflammatory responses in acute alcoholic hepatitis. Hepatol, 51, 1988-97.

Khanna A, Gautam DS, Gokhale M, Jain, S.K. (2014). Tobacco dust induced genotoxicity as an occupational hazard in workers of bidi making cottage industry of central India. Toxicology International, 21, 18-23.

Kirk GD, Bah E, Montesano R (2006). Molecular epidemiology of human liver cancer: insights into etiology, pathogenesis and prevention from The Gambia, West Africa. Carcinogenesis, 27, 2070-82.

Kitaoka S, Shiota G, Kawasaki H (2003). Serum levels of interleukin-10, interleukin-12 and soluble interleukin-2 receptor in chronic liver disease type C. Hepatogastroenterol, 50, 1569-74.

Kiyohara C, Yamamura K, Nakanishi Y (2000). Polymorphism in GSTM1, GSTT1 and GSTP1 and susceptibility to liver cancer in a Japanese population. Asian Pac J Cancer Prev, 1, 293-8.

Koh WP, Robien K, Wang R, et al (2011). Smoking as an independent risk factor for hepatocellular carcinoma: the Singapore Chinese health study. Br J Cancer, 105, 1430-5.

Kürş S, Bürecer B, Robion-du-Pont S, et al (2007). Combinations of cytochrome P450 gene polymorphisms enhancing the risk for sporadic colorectal cancer related to red meat consumption. Cancer Epidemiol Biomarkers Prev, 16, 1460-67.

Lakkakula S, Maram R, Munirajan AK, et al (2013). Functional Pol/Tsl polymorphisms in the CYP2E1 gene among south Indian populations. Asian Pac J Cancer Prev, 14, 179-82.

Langhans B, Krämer B, Louis M, et al (2013). Intrahepatic IL-8 production for Foxp3 regulatory T cells and fibrogenesis in chronic hepatitis C. J Hepatol, 59, 229-35.

Lavin MF (2007). ATM and the Mre11 complex combine to recognize and signal DNA double-strand breaks. Oncogene, 26, 7749-58.

Lavin MF, Kozlov S (2007). ATM activation and DNA damage response. Cell Cycle, 6, 931-42.

Lee HC, Lee HS, Jung SH, et al (2001). Association between polymorphisms of ethanol metabolizing enzymes and susceptibility to alcoholic cirrhosis in a Korean male population. J Korean Med Sci, 16, 745-50.

Lee HE, Han N, Kim MA, et al (2014). DNA damage response-related proteins in gastric cancer: ATM, Chk2 and p53 expression and their prognostic value. Pathobiol, 81, 25-35.

Lee JH, Paull TT (2007). Activation and regulation of ATM kinase activity in response to DNA double-strand breaks. Oncogene, 26, 7741-48.

Lee KH, Koh SA, Kim JR (2013). Hepatocyte growth factor-mediated gastrin-releasing peptide induces IL-8 expression through Erts-1 in gastric cancer cells. Oncol Res, 20, 393-402.

Lee YC, Cohet C, Yang YC, et al (2009). Meta-analysis of epidemiologic studies on cigarette smoking and liver cancer. Int J Epidemiol, 38, 1497-511.

Liu K, Zhang L, Lin X, et al (2013). Association of GST genetic polymorphisms with the susceptibility to hepatocellular carcinoma (HCC) in Chinese population evaluated by an updated systematic meta-analysis. PLoS One, 8, e57043.

LoCH, Chang CM, Tang SW, et al (2010). Differential antitumor effect of interleukin-12 family cytokines on orthotopic hepatocellular carcinoma. J Gene Med, 12, 423-34.

Malakar M, Devi KR, Phukan RK, et al (2012). Genetic polymorphism of glutathione S-transferases M1 and T1, tobacco habits and risk of stomach cancer in Mizoram, India. Asian Pac J Cancer Prev, 13, 4725-32.

Malakar M, Devi KR, Phukan RK, et al (2014). CYP2E1 genetic polymorphism with dietary, tobacco, alcohol habits, H. pylori infection status and susceptibility to stomach cancer in Mizoram, India. Asian Pac J Cancer Prev, 15, 8815-22.

Malakar M, Devi KR, Phukan RK, et al (2014). p53 codon 72 polymorphism interactions with dietary and tobacco related habits and risk of stomach cancer in Mizoram, India. Asian Pac J Cancer Prev, 15, 717-23.

Mandrekar P, Szabo G (2009). Signalling pathways in alcohol-induced liver inflammation. J Hepatol, 50, 1258-66.

Margaret AL, Syahruddin E, Wanandi SI (2011). Low activity of manganese superoxide dismutase (MnSOD) in blood of lung cancer patients with smoking history: relationship to oxidative stress. Asian Pac J Cancer Prev, 12, 3049-53.

Mirzoeva OK, Petriji NH (2001). DNA damage-dependent nuclear dynamics of the Mre11 complex. Mol Cell Biol, 21, 281-8.

Munaka M, Kohshi K, Kawamoto T, et al (2003). Genetic polymorphisms of tobacco and alcohol-related metabolizing enzymes and the risk of hepatocellular carcinoma. J Cancer Res Clin Oncol, 129, 355-60.

Niida H, Nakanishi M (2006). DNA damage checkpoints in mammals. Mutagenesis, 21, 3-9.

Nourazarian AR, Kangari P, Salmaninejad A (2014). Roles of oxidative stress in the development and progression of breast cancer. Asian Pac J Cancer Prev, 15, 4745-51.

Ohashi E, Takeishi Y, Ueda S, Tsurimoto T (2014). Interaction between Rad9-Hus1-Rad1 and TopBP1 activates ATR-ATRIP and promotes TopBP1 recruitment to sites of UV-damage. DNA Repair (Amst), 21, 1-11.

Orsetti B, Selves J, Bascoul-Mollevi C, et al (2014). Impact of chromosomal instability on colorectal cancer progression and outcome. BMC Cancer, 14, 121.

Panda K, Chatterjee IB (2007). Failure of alpha-tocopherol to prevent cigarette smoke-induce protein oxidation: comparison with other antioxidant vitamins. victor r. editor, encyclopedia of vitamin E. Oxford University Press (CABI), Oxfordshire, UK. Preedy, King’s College, London, UK. Chapter, 63, 883-93.

Park EJ, Lee JH, Yu GY, et al (2010). Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell, 140, 197-208.

Park S, Bae J, Nam BH, Yoo KY (2008). Aetiology of cancer in Asia. Asian Pac J Cancer Prev, 9, 371-80.

Patel BP, Trivedi PJ, Brahmbhatt MM, et al (2009). Micronuclei and chromosomal aberrations in healthy tobacco chewers and controls: A study from Gujrat, India. Arch of Oncol, 17, 1-2.

Poonam P, Khanna A, Jain SK (2010). Evaluation of genotoxicity in Bidi Rollers occupationally exposed to tobacco dust. National J Life Sci, 7, 89-93.

Poustchi H, Sepanlou SG, Esmaill S, Mehrabi N, Ansarymoghadam A (2010). Hepatocellular carcinoma in the world and the Middle East. Middle East J Diges Dis, 2, 31-41.

Purohit V, Rapaka R, Kwon OS, et al (2013). Roles of alcohol and tobacco exposure in the development of hepatocellular carcinoma. Life Sci, 92, 3-9.

Rodier F, Campisi J, Bhaumik D (2007). Two faces of p53: aging and tumor suppression. Nucleic Acids Res, 35, 7475-84.

Rossini A, Rapozo DC, Soares Lima SC, et al (2007). Polymorphisms of GSTT1 and GSTP1, but not of CYP2A6, CYP2E1 or GSTM1, modify the risk for esophageal cancer in a western population. Carcinogenesis, 28, 2537-42.

Russo P, Cardinale A, Margaritara S, Cesario A (2012). Nicotine receptor and tobacco-related cancer. Life Sci, 91, 1087-92.

Seitz HK, Mueller S (2015). Alcohol and cancer: an overview...
Shukla P, Khanna A, Jain SK (2011). Working condition: A key factor in increasing occupational hazard among bidi rollers: A population health research with respect to DNA damage. *Indian J Occup Environ Med, 15*, 139-41

Senthilkumar KP, Thirumurugan R (2012). Cytogenetic effects in workers occupationally exposed to tobacco dust. *Asian Pac J Cancer Prev, 13*, 5037-42

Sharma A, Pandey A, Sardana S, Sehgal S, Sharma JK (2012). Genetic polymorphisms of GSTM1 and GSTT1 genes in Delhi and comparison with other Indian and Global populations. *Asian Pac J Cancer Prev, 13*, 5647-52

Sharma AK, Bhattacharya S, Khan SA, et al (2015). Dynamic alteration in H3 serine 10 phosphorylation is G1-phase specific during ionization radiation induced DNA damage response in human cells. *Mutat Res, 773*, 83-91

Shen YH, Chen S, Peng YF, et al (2014). Quantitative assessment of the effect of glutathione S-transferase genes GSTM1 and GSTT1 on hepatocellular carcinoma risk. *Tumour Biol, 35*, 4007-15

Shiloh Y (2003). ATM and related protein kinases: safeguarding genome integrity. *Nat Rev Cancer, 3*, 155-68

Shiloh Y (2006). The ATM-mediated DNA-damage response: taking shape. *Trends Biochem Sci, 31*, 402-10

Shin A, Lee KM, Ahn B, et al (2008). Genotype-phenotype relationship between DNA repair gene genetic polymorphisms and DNA repair capacity. *Asian Pac J Cancer Prev, 9*, 501-5

Shukla P, Khanna A, Jain SK (2011). Working condition: A key factor in increasing occupational hazard among bidi rollers: A population health research with respect to DNA damage. *Indian J Occup Environ Med, 15*, 139-41

Su CH, Lin Y, Cai L (2013). Genetic factors, viral infection, other factors and liver cancer: an update on current progress. *Asian Pac J Cancer Prev, 14*, 4953-60

Sundaramoorthy R, Srinivasan V, Gujar J, et al (2013). Clinical, cytogenic and CYP1A1 exon-1 gene mutation analysis of Beedi workers in Vellore region, Tamil Nadu. *Asian Pac J Cancer Prev, 14*, 7555-60

Talaat RM, Esmail AA, Elskaili R, Gurgis AA, Nasr MI (2012). Tumor necrosis factor-alpha -308G/A polymorphism and risk of hepatocellular carcinoma in hepatitis C virus-infected patients. *Chin J Cancer, 31*, 29-35

Tong GX, Liang H, Chai J, et al (2014). Association of risk of gastric cancer and consumption of tobacco, alcohol and tea in the Chinese population. *Asian Pac J Cancer Prev, 15*, 8765-74

Tung KH, Huang YS, Yang KC, et al (2010). Serum Interleukin-12 Levels in Alcoholic Liver Disease. *J Chin Med Assoc, 73*, 67-71

Umadevi B, Swama M, Padmavathi P, Jyothi A, Reddy PP (2003). Cytogenetic effects in workers occupationally exposed to tobacco dust. *Mutat Res, 535*, 147-54

Ussel-Kacmar K, Sancar A (2004). Quaternary structure of ATR and effects of ATRIP and replication protein A on its DNA binding and kinase activities. *Mol Cell Biol, 24*, 1292-1300

Uziel T, Lerenthal Y, Moyal L, (2003). Requirement of the MRN complex for ATM activation by DNA damage. *EMBO J, 22*, 5612-21

Vetriselvi V, Vijayalakshmi K, Paul SD, Venkatachalam P (2006). Genetic variation of GSTM1, GSTT1 and GSTP1 genes in a South Indian population. *Asian Pac J Cancer Prev, 7*, 325-28

Vijayalakshmi K, Vettriselvi V, Krishnan M, et al (2005). Polymorphisms at GSTM1 and GSTP1 gene loci and risk of prostate cancer in a South Indian population. *Asian Pac J Cancer Prev, 6*, 309-14

Wang HJ, Gao B, Zakhari S, et al (2012). Inflammation in alcoholic liver disease. *Annu Rev Nutr, 32*, 343-68

WHO (2014). Global status report on alcohol and health 2014. Publication Data. 2014

Wu CS, Ouyang J, Mori E, et al (2014). SUMOylation of ATRIP potentiates DNA damage signaling by boosting multiple protein interactions in the ATR pathway. *Genes Dev, 28*, 1472-84

Yamada I, Matsuyama Y, Ozaka M, et al (2014). Lack of associations between genetic polymorphisms in GSTM1, GSTT1 and GSTP1 and pancreatic cancer risk: a multi-institutional case-control study in Japan. *Asian Pac J Cancer Prev, 15*, 391-5

Yamashita H, Kaneyuki T, Tagawa K (2001). Production of acetate in the liver and its utilization in peripheral tissues. *Biochimica et Biophysica Acta, 1532*, 79-87

Yao J, Qian CJ, Ye B, et al (2014). Signal transducer and activator of transcription 3 signaling upregulates fascin via nuclear factor-κB in gastric cancer: Implications in cell invasion and migration. *Oncol Lett, 7*, 902-8

Ye YN, Liu ES, Jin SY, et al (2004). The modulating role of nuclear factor-kappa B in the action of alphamicotin acetylcholine receptor and cross-talk between 5-lipoxygenase and cyclooxygenase-2 in colon cancer growth induced by 4-(N-methyl-N-nitrosamino)-1-(3-pyridyl)-1-butanone. *J Pharmacol Exp Ther, 311*, 123-30

Yin Y, Si X, Gao Y, et al (2013). The nuclear factor-κB correlates with increased expression of interleukin-6 and promotes progression of gastric carcinoma. *Oncol Rep, 29*, 34-8

Yu BW, Zhang LQ, Teng XL, et al (2015). Association between the CYP1A1 polymorphisms and hepatocellular carcinoma: a meta-analysis. *Genet Mol Res, 14*, 1076-84

Yu L, Sun L, Jiang YF, et al (2012). Interactions between CYPIA1 polymorphisms and cigarette smoking are associated with the risk of hepatocellular carcinoma: evidence from epidemiological studies. *Mol Biol Rep, 39*, 6641-6

Zakhari S (2013). Bermuda Triangle for the liver: Alcohol, obesity, and viral hepatitis. *J Gastroenterol Hepatol, 28*, 18-25

Zhang FF, Hou L, Terry et al (2007). Genetic polymorphisms in alcohol metabolism, alcohol intake and the risk of stomach cancer in Warsaw, Poland. *Int J Cancer, 121*, 2060-64

Zhang L, Ding Y, Yuan Z, et al (2015). MicroRNA-500 sustains nuclear factor-κB activation and induces gastric cancer cell proliferation and resistance to apoptosis. *Oncotarget, 6*, 2483-95

Zhu B, Wang C, Zhang X, et al (2015). Relationships between interleukin-12B and interleukin-10 gene polymorphisms and hepatitis C in Chinese Han hemodialysis patients. *Ren Fail, 37*, 505-10.