Original Research Article

Assessment of diabetes risk in an adult population using Indian diabetic risk score in urban area of Tamil Nadu

S. Jayakiruthiga1, R. Rajkamal2*, S. Gopalakrishnan3, R. Umadevi4

INTRODUCTION

Epidemiological transitions in India in the 21st century have led to non communicable diseases becoming a major public health problem of growing magnitude. One of the important disease is diabetes, which is considered as a “disease of urbanization”. The International Diabetes Federation (IDF) indicates that the number of people living with diabetes globally is expected to rise from 366 million in 2011 to 552 million by 2030, if no urgent action is taken. Presently, more than three-quarters of the estimated 179 million people with diabetes are in the 40-59 years of age. Hence it is important to screen individuals early to increase the quality of life and delay complications. India has the dubious distinction of being the diabetes capital just next to China having 62.4 million diabetics which is expected to rise to 100 million by 2030. Every fifth diabetic in the world is an Indian. The problem is further compounded by the fact that 66% of...
Indian diabetics are not diagnosed as compared to 50% in Europe and 33% in USA. The diagnosis, treatment and management of complications pose a considerable burden on individual and country as well. The Indian Diabetes Risk Score (IDRS) is a simple, low cost, feasible tool for mass screening programme at the community level developed by Mohan et al has been validated by other researchers. In a country like India, it can prove to be a cost effective tool for screening of diabetes at the community level. The purpose of community based screening for diabetes is to differentiate asymptomatic individuals who are at high risk of Diabetes from individuals at lower risk, so that appropriate preventive strategies can be initiated early. Ideally, screening tests should be rapid, simple, and safe. Since diabetes is an ice-berg disease, most of the subjects remain asymptomatic. Screening for diabetes can identify patients at an early stage of the disease, and identify those who will derive benefit from prevention and early treatment methods. With this background the present study was designed to find out the risk status of Diabetes mellitus using Indian Diabetic Risk score among adult population in urban area of Tamil Nadu.

Objectives:
1. To assess the Type 2 diabetes mellitus risk status of adult population in urban area of Tamil Nadu.
2. To measure the association between sociodemographic factors like age, sex and socioeconomic status with diabetes risk score.

METHODS

A community-based, cross-sectional study was carried out in Anakaputhur in June 2016, which comes under the urban field practice area of Sree Balaji Medical College.

Inclusion criteria

All adult population aged 18 years and above who apparently healthy were included in the study.

Exclusion criteria

Those people who are critically, not willing to participate in the study, known case of any type of DM were excluded from the study.

Data collection methods

In the study area, individuals were interviewed using a structured questionnaire based on IDRS scoring system. Questionnaire captured data regarding sociodemographic details of the study population, modified kuppasamy scale 2017 was used for assessing the socioeconomic status of the study population. Family h/o of DM, Indian diabetes risk score (IDRS). This includes four parameters: age, waist circumference, physical activity and family history. Each parameter has assigned score ranging from 0 to 60 and accordingly the subject was graded as having, no risk, moderate risk or high risk (Table 1). Waist circumference was measured. Interviewer was trained in collecting the details present in IDRS questionnaire before the data collection. Data was collected after getting written informed consent.

Table 1: Indian diabetes risk score.

Particulars	Score
Age [years]	
< 35	0
35-49	20
≥50	30
Abdominal obesity	
Waist <80 cm [female], <90 [male]	0
Waist ≥ 80 – 89 cm [female], ≥ 90– 99 cm [male]	10
Waist ≥90 cm [female], ≥ 100 cm [male]	20
Physical activity	
Vigorous regular exercise or strenuous manual labour at home	0
Moderate regular exercise or moderate physical activity at home or work	10
Mild exercise regular or moderate physical activity at home or work	20
No exercise and sedentary work at home or work	30
Family history	
No family history	0
Either parent diabetic	10
Both parents diabetic	20
Total score:	

Grade

No risk <30: risk of having diabetes is probably low.

If the score is 30-50 the risk of having diabetes is Moderate

If the score is >60, very high risk of having diabetes.

Sample size

Sample size was calculated based on the previous study conducted by Gupta et al in Pondicherry found that the prevalence of risk of diabetes mellitus using IDRS Score among adult population was 51%, with 95% confidence interval and 11% of relative precision. Calculated sample size was 318.

Sampling methods

Participants were recruited using Systematic random sampling.

Total no of houses in the study area- 5296
Sample size = 318

Sampling Interval = Total no of Houses/Sample size = 5296/318 = 16

Every 16th house will be selected for the study and from each selected house one adult will be included in the study, by simple random sampling (Lottery Method).

Data analysis

Data were entered in MS Excel and analyzed by SPSS 20.0 version. Descriptive statistics such as proportions were calculated and 95% CI was calculated appropriately. Chi-square test was used to compare the proportions groups. P < 0.05 was considered as statistically significant.

Ethical considerations

Study was approved by Institutional Ethics Committee of Sree Balaji Medical College. An informed consent was taken from each participant before the data collection.

RESULTS

The present study was conducted in an urban area near Chennai. A total of 351 study subjects were recruited. Table 2 shows the distribution of study subjects according to IDRS score, only 30 (8.5%) study subjects were not at risk of having diabetes, 119 (33.9%) were at moderate risk and 202 (57.6%) were at higher risk of having diabetes. Table 3 shows that there was a statistical significant association of diabetes risk with age (p=0.001). In gender females were at higher risk of diabetes 09 (9.1%), it was not statistically significant (p=0.974). All the participants were found to belong in the following three socioeconomic groups (Upper middle, 96 (27.4%) lower middle, 158 (45.0%) upper lower 97 (24.6%) respectively.

Table 2: Distribution of study subjects according to Indian diabetes risk score (IDRS).

S. No	Indian diabetes risk score	no of subjects n=351 (%)
1.	≥60	202 (57.6)
2.	30–50	119 (33.9)
3.	<30	30 (8.5)

Table 3: Association between socio demographic characteristics and diabetes risk score (n=351).

Variables	No risk	Moderate risk	High risk	Total	chi square	P value
Age	Number (%)	Number (%)	Number (%)			
<35 years	188 (74.3)	56 (22.1)	9 (3.6)	253	113.59	0.001
35-50 years	01 (2.7)	30 (81.1)	6 (16.2)	37		
>50 years	14 (23.0)	32 (52.5)	15 (24.6)	61		
Gender						
Male	146 (57.9)	85 (33.7)	21 (8.3)	252	0.053	0.974
Female	57 (57.6)	33 (33.3)	09 (9.1)	99		
Socioeconomic status						
Upper middle	53 (56.4)	34 (34)	9 (9.6)	96	5.089	0.532
Lower middle	91 (57.6)	52 (32.9)	15 (9.5)	158		
Upper lower	59 (60.8)	32 (33.0)	6 (6.2)	97		

DISCUSSION

In this study screening for diabetes was conducted for 351 subjects among adult population 18 years and above in the community. Out of these only 30 (8.5%) were in low risk category, 119 (33.9%) were in moderate risk, 202 (57.6%) were at high risk group as per IDRS. Similar finding was observed in a study conducted by Nandeshwar in Bhopal.7 This shows that a large number (moderate and high risk) of the study subjects had some kind of risk of developing diabetes in future. This is the group where active interventions in the form of counseling, health education are required. The earlier the interventions are started the later will be the onset of disease and its subsequent complications. However a study done by Gupta showed low risk category had a higher no of individuals.8 This difference may be due to the study area being rural where less proportion of study subjects had high risk. In our study a highly significant association was observed between Diabetes risk and age, as the age increases the risk of having diabetes is high (p=0.001). Several other studies have noted similar findings.9-10 Two further studies found a positive association between higher age and undiagnosed diabetes.11-12 In our study, females are at high risk of having diabetes as compared to males, similar to the
present study, Arora et al noted that more high risk cases were women than men in Urban Haryana and there was a statistically significant association.13

ACKNOWLEDGEMENTS

We thank all the other faculty members, paramedical staff of Health Centres, Medical officers for their guidance and support in conducting this study.

Funding: No funding sources
Conflict of interest: None declared
Ethical approval: The study was approved by the Institutional Ethics Committee of Sree Balaji Medical College

REFERENCES

1. Reddy KS. Prevention and control of non-communicable diseases: status and strategies. New Delhi: Indian Council for Research on International Economic Relations; 2003 (Working Paper 104;https://www.syndromic.org/storage/documents/NCDs/NCDStatusIndia2003-SrinathReddy.pdf. Accessed 22 February 2016.
2. Anand K, Shah B, Yadav K. Are the urban poor vulnerable to noncommunicable diseases? A survey of risk factors for non-communicable in urban slums of Faridabad. Natl Med J India. 2007;20(3):115–20.
3. Misra A, Pandey RM, Rama DJ. High prevalence of diabetes, obesity and dyslipidemia in urban slum population in northern India. Int J Obes Relat Metab Disord. 2001;25(11):1722–9.
4. Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27(5):1047–53.
5. Mohan V, Deepa R, Deepa M, Somannavar S, Datta M. A Simplified Indian Diabetes Score for screening for undiagnosed diabetic subjects. J Assoc Physicians India. 2005;53:759–63.
6. Nandeshwar S, Jamra V, Pal DK. Indian diabetes risk score for screening of undiagnosed diabetic subjects of Bhopal city. National J Comm Med. 2010;1:176–77.
7. Gupta SK, Singh Z, Purty AJ. Diabetes Prevalence and its Risk Factors in Rural Area of Tamil Nadu. Indian J Comm Med. 2010;35(3):396–9.
8. Mohan V, Shanbirani CS, Deepa R. Glucose intolerance (diabetes and IGT) in a selected South Indian population with special reference to family history, obesity and lifestyle factors – the Chennai Urban Population Study (CUPS 14). J Assoc Physicians India. 2003;51:771–7.
9. Singh RB, Bajaj S, Niaz MA, Rastogi SS, Moshiri M. Prevalence of type 2 diabetes mellitus and risk of hypertension and coronary artery disease in rural and urban population with low rates of obesity. Int J Cardiol. 1998;66(1):65–72.
10. Menon VU, Kumar KV, Gilchrist A, Sugathan TN, Sundaram KR, Nair V, et al. Prevalence of known and undetected diabetes and associated risk factors in central Kerala – ADEPS. Diabetes Res Clin Pract. 2006;74(3):289–94.
11. Hadaegh F, Bozorgmanesh MR, Ghasemi A, Harati H, Saadat N, Azizi F. High prevalence of undiagnosed diabetes and abnormal glucose tolerance in the Iranian urban population: Tehran lipid and glucose study. BMC Public Health. 2008;8:176.
12. Wang H, Qiu Q, Tan LL, Liu T, Deng XQ, Chen YM, et al. Prevalence and determinants of diabetes and impaired fasting glucose among urban community – dwelling adults in Guangzhou, China. Diabetes Metab. 2009;35(5):378–84.
13. Arora V, Singh MJ, Khanna P, Goyal N, Kumar N, Singh M. Prevalence of diabetes in urban Haryana. Australas Med J. 2010;3(8):488–94.

Cite this article as: Jayakiruthiga S, Rajkamal R, Gopalakrishnan S, Umadevi R. Assessment of diabetes risk in an adult population using indian diabetic risk score in urban area of Tamil Nadu. Int J Community Med Public Health 2018;5:1587-90.