Emerging Applications of Artificial Intelligence in Structural Engineering and Construction Industry

Yaman Hooda¹,², Preeti Kuhar¹, Kaushal Sharma¹,³ and Neeraj Kumar Verma¹
¹ Assistant Professor, Department of Civil Engineering, Faculty of Engineering and Technology, SGT University, Gurugram, Haryana, India.
² Research Scholar, Department of Civil Engineering, Faculty of Engineering and Technology, Delhi Technological University, New Delhi, India.
³ Research Scholar, Department of Civil Engineering, Faculty of Engineering and Technology, SGT University, Gurugram, Haryana, India.

E-mail: yamanhooda@gmail.com

Abstract. With the beaming concept of Construction 4.0, the disciplines of structural engineering and construction industry needs an advancement for the data collection, interpretation and analysis. Augmented Intelligence and its various disciplines find an impressive application in the field of civil engineering for data requisition, management and performance. This study focuses on how AI and its various principles can be blended with the emerging areas of structural engineering, and how it is shaping the construction industry by employing in the major areas of monitoring of structural health, assessment of damages and construction management.

1. Introduction
Artificial Intelligence or Augmented Intelligence is a technological revolution which allows the machines to work intelligent in a most efficient way. Artificial Intelligence is a way to encompasses the capabilities of human beings such that they can accomplish the tasks which neither humans nor machines can do individually. With the availability of the power of internet, we can access any information in lesser duration of time. Also, with the principles of Internet of Things (IoT) and Distributed Computing, an enormous amount of data can be collected and used in a particular application area. With the help of Augmented Intelligence, the structured information is available at the fingerprints of the user and thus, helps them in making the righteous decision with the background of data with solid evidences. AI works on the fundamental of the knowledge that is provided to them by the human beings by different means and examples. The humans deliver machines a skill to study the various examples and thus, generate the machine learning representatives based upon the inputs and anticipated outputs. The above process can be done in three different ways, i.e., by three types of learnings including: Unsupervised Learning, Supervised Learning and Reinforcement Learning. Also, AI can be defined in four different ways on the basis of its dimensions and application areas as Weak AI, Applied AI, Generalized AI and Super AI. Narrow or Weak AI is that type of AI which is only applied to a definite domain, the application areas include Intelligent Spam Filters, Self-driven cars, virtual assistant and many more. Applied AI is the one which ca perform definite tasks, make their decisions by considering the planned and automated algorithms and statistics. This type of AI doesn’t learn new algorithms to perform their tasks. Generalised AI, or sometimes known as Strong AI, is the type of AI which can function and perform a great diversity of individual or inter-related tasks. This type of AI is capable to learn new algorithms to perform and find the solution of the emerging innovative problems. Generalised AI can perform the mentioned tasks by instructing on its own the latest strategies. It is considered to be a mixture of many...
strategic disciplines of AI, which learn from experience and thus, is able to perform at a human level of intelligence. Conscious AI or Super AI, is that branch of AI which interact directly with the human – level consciousness. Since, the correct definition of the consciousness is yet to be coined, the Conscious AI will be considered as a futuristic AI.

The application of AI has been increasing as the technology advances and having a lot of dimensions. The first dimension includes the steps and procedures to make machines understand and do the appropriate act as human beings does. The second dimension is all about the sensory and cognitive capabilities of the machines, including the speech recognition and image processing, based on a particular pattern acknowledgement. And the third dimension consists of creating those innovative technologies which can replace what human beings can do. AI is not only related to the field of computer sciences; it is based on the principles of other scientific disciplines also. The area of Electrical Engineering and Computer Science Engineering focuses on the implementation of AI in hardware and software respectively. The disciplines of Statistics and Mathematics is used is the determination of the viable models and in the measurement of performance. Because of the fact that AI is programmed on the ability and the way brain works, the areas of Linguistics and Psychology plays an important role in the understating of working of AI. The ethical consideration was guided by principles of philosophy. The applications of AI are used worldwide on everyday basis, from one domain to another, having a huge impact on the lives of human beings as well as on the society in various meaningful and expressive ways.

Figure 1. Emerging AI Branches in Structural Engineering and Construction Industry.

Considering the various disciplines of AI such as Deep Learning, Pattern Recognition, Machine Learning, Fuzzy Logics, Swarm Optimization, Decision Trees and Evolutionary Computation; all can find their applications in the areas of construction industry structural engineering. Figure 1 shows the
increasing trends of the various disciplines of AI in the field of construction industry and structural engineering over the past decade. The main objective of PR or Pattern Recognition is the classification of the objects into different categories, classes or groups. The main reason behind the classification may depend on the application area, may consists of signals, speech, images, and so on [1,2]. The features in PR are signified by as a set of characteristics. Outcomings from the Statistical Decision Theory are used to produce the decisive boundaries among the pattern classes. Deep Learning, considering a branch of Machine Learning, I basically made up of several networks, made up of either unlabelled data or unstructured data. It is built in the principles of Deep Neural Networks. DL designs consists of Recurrent Neural Networks (RNN) and Convolutional Neural Network (CNN). CNN architectures is considered to be most useful in the application areas of Construction industry and structural engineering. The principle of CNN is inspired by the visual cortex of animals [3]. This technique has been used in computer science and engineering for the purpose of image recognition [4 – 9]. Due to the presence of sporadically connected neurons, CNNs are more capable in the process of capture the 2D topology of pixels than standard neural networks.

2. Application areas of AI in Civil Engineering:

With the advancement in the technology and considering the principles of Construction 4.0 and Industry 4.0, Augmented Intelligence (AI) plays an important role in the various sub – disciplines of Civil Engineering. Some of the most important applications includes:

2.1. Structural Health Monitoring (SHM):

Structural Health Monitoring or commonly known as SHM is defined as the process of executing a detection of damage and characterization approach for the engineered building and structures. It basically involves the process of Statistical Models Development, Data Feature Extraction, Operational Evaluation and Health monitoring. The objectives of SHM includes Assessment of post-earthquake structural integrity, monitoring of structures affected by external factors, decline in construction and growth in maintenance needs, the move towards performance-based design philosophy, Performance enhancement of an existing structure and Feedback loop to improve future design based on experience.

With the help of AI, many sensors and dampers are been designed and installed in the structures to perform the above stated objectives. In SHM, the approach used is known as a model – driven approach, which emphasis on the numerical modelling of a particular structure, on the basis of finite element modelling (FEM), which develop the relation between the discrepancies measured and the generation of model data for the purpose of detection of damage in a particular structure. With making the comparison between the model formed and measured data, the damage in a structure can be detected.

Sensors plays a vital role in the process in the collection of the data. The data – driven approach is worthy when 1. The structure is complicated to model because of its physical characteristic and 2. The data is huge. While considering the concept of Machine Learning in SHM, it deals with producing information form the earlier experiences, getting to know about the parameters of the model and then concentrating on forecasting latest and new data for input. The various learning schemes such as Unsupervised and Supervised Learning, have been used in the various applications of SHM. The algorithms include Artificial Neural Networks (ANN) [9], K – Nearest Neighbour Method (K – NN) [10] and Support Vector Machine [11].

Freshly, SHM community had adopted a new variety of Machine Learning Methods, which is known as Singular Value Decomposition and Low – Rank Matrix Decomposition. This class of ML is having the capability in dealing with incomplete and sparse data. A data matrix is used to represent the measurements of a structural response from the mounted sensors. Latest mathematical tools such as low – rank matrix decomposition and sparse representation are used to process the measurements for a structure with irregular data. The information shared [12] focused on how the application of statistical Methods and Low – Rank Matrix Decomposition is useful in the structural health monitoring and identification of the localised damage for plate structures. Nagarajaiah [11] offered a new model for the purpose of damage detection, which based on the low – rank data structures and modelling of the
structure. This method is widely used in the dynamics of the structure and also in the application areas which are related to data sensing, data and structural monitoring, and structural management. Yang et al. [13,14] worked on the decomposition of the low – rank matrix, in conjunction with the methods of norm minimization to get the responses of vibrations which occurred due to wind loading and seismic loading in cable – stayed bridges and stell tower. The study conducted by Mondoro et al. [15] showcased an ideology to determine the strategies regarding optimum risk – management. They considered these strategies only in case of bridges, in which all the uncertainties were associated with failure outcomes of the bridge under hurricanes and loading of the moving traffic, socially, economically and environmentally. Chatterjee et. al. [16] used an algorithm for the purpose of calibration of an ANN – Model to restrict the maximum as well as RMS error of the network.

2.2. Modular Construction Decision Making:
Neuro – Modex – Neural Network System for Modular Construction Decision Making helps in the process of decision making to choose either a conventional model or to go for some modification to the existing model for a particular project. This decision-making system works on some decision – making attributes, which depends on basic five disciplines: 1. Risk management in Project, 2. Characteristics of Project, 3. Availability of Labour, 4. Relation between Environment and Organisation, and 5. Location of Project. The neural network for making this particular model is created by collecting data from various construction and engineering industries, and also from some of the environmental – related industries.

2.3. Construction Management System:
Construction Management System consists the management of the construction project from the very first step of designing to the last step of handing over to the client. The initial model – designing plays an important role in the process of fusion of a finally acceptable result. The application of neural network forecasts a better design at the initial stage, which includes some various significant fields in construction industry such as calculation and determination of concrete mix grade, load calculations, determination of the tensile reinforcement and depth of the beam, and calculation of moment capacity. Artificial Intelligence finds its application for generation of plans in different stages of project, including the explanation of the actions used in the project management with their pros and cons, and how to determine and use the emerging actions into the project plan. With Construction 4.0, the application of Robotics has been started in the execution phase of the construction industry in various machineries related to work with concrete making, plastering, transportation of materials and with the latest, safety of the labours at the construction site. The application of Machine Learning used in the concrete production at the batching plant at construction site. After determining the various constituents of grade of the concrete used for a particular work, we just need to enter the values and the concrete of that mix is just made within a fraction of minutes. The application of AI is being vastly used in the determination of weak structural link in any structure. With the advancement in the technological software as well as the input methods in different mathematical software, the structure can be easily analysed and then we can predict that whether the structure is safe to withstand the hazardous effects of high intensity wind loads, seismic loading and impact loading as per the latest Indian Codal Provisions, issued by Bureau of Indian Standards (BIS). After performing the analysis, if the structure tends to fail or any structural member comes out to be a “weak” member, then we provide necessary rehabilitation or retrofitting techniques so as for the seismic strengthening of the structural element or structure.

In consideration with the management of the various activities at the construction site, again disciplines of AI play an important role for keeping the track on the same. With the application of ANN in the management related technical platforms, one can easily track down the progress of the project on daily, weekly, monthly or yearly basis. Also, with such applications, one can track down the location of the labours on the construction site by putting a GPS – chip in safety jacket or helmets of the labours. This will be helpful in gathering data regarding the presence of labours on the construction site, the movement of the labours on the construction site and if any causality happens, one can easily reach to the injured labour with the help of these chips inserted in their uniform.
Table 1. Domain Disciplines of AI in Structural Engineering and Construction Management.

Domain Application	Disciplines of Structural Engineering	Method and Application of AI used	Reference No
	Bridge Structure	Autoregressive models	17, 18
	Steel Frame Storey Structure	ANN with Bayesian method	19, 20
	Structure with steel beam	Mahalanobis distance-based function	21
	RCC Frame Structure	Artificial Neural Network	22
	Steel Structure made – up for Rail – Road Network	Mahalanobis squared distance	23
	RCC Frame structure	Analysis considering the concepts of Robust Regression and Principal component analysis	24
Structural Health Monitoring	Bridge Superstructure	Pattern Recognition Approach	25
	Bridge – Suspension Type Bridge	ANN with concepts of Regression Tree, Random Forest and Support Vector Regression	26
	Gusset Plate Designing and Analysis for Bridge	Probabilistic neural networks & Bayesian approach	27
	Plate structures	2DLDA and 2DPCA	28 – 30
	Analysis of a Stadium Structure	Principal Component Analysis considering Autoregressive Modelling	31
	Metallic structures	Adaboost machine learning	32
	Concrete structural components	SVM	33
	Pipes (made up of steel)	Adaptive Boosting and SVM	34
	Meshed RCC structure	ANN	35
	Transportable – Type Bridge	Robust Regression Analysis	36, 37
	Cable – Stayed Bridge	Sparse Recovery with L – 1 Mechanism	14
	Steel Frame Building	Pattern Recognition Approach	38, 39
	3 – storeyed frame structure	Vector Quantisation in Machine Learning	40, 41
	PSC flexural members	Pattern Recognition Approach with Euclidean and Mahalanobis functions	42, 43
	Space Truss and Bridge Slab	Pattern Recognition Approach with an Auto - Regressive Modelling	44
	Plate with one end fixed and another end free	Multi – Layered ANN	45
	Superstructure of bridge	Symbolic Data Clustering with PCA	46
	Plate structures	Multi – Layered ANN	47
	3 – storeyed frame structure	ANN	48
	Grid Steel Frame Structure	Principles of ANN with SOM	49
	Transmission Towers	PCA – Principal Component Analysis	50
2.4. SHM System with IoT:
One of the chief concerns in the structural and construction industry is the property of durability of the structures. With the latest revisions in the Indian Standard Codal Provisions regarding new clauses and guidelines in the concrete production, calculation of wind loads and seismic vulnerability, the existing structures must be checked and analysed as per the latest revision provisions. This particular situation makes the construction industry to shift towards the concept and skills under Internet of Things. [75]. The concept of IoT finds application in the structural monitoring. This concept focuses on the enhancing the machine – to – machine communication with the help of integrated sensors, with main aim of efficiently and effectively monitoring of devices. Smart devices are used for the purpose of collection of data, transmission of information, processing information collaboratively using the techniques of cloud computing. In continuation, the concepts of Machine Learning and IoT can be combinedly used for SHM [76 – 78]. On contrary, one of the vital questions arises while performing SHM of the structures, commonly bridges, it is not so easy to timely monitor the sensors mounted as well as to compare the fresh readings with the previous data. Thus, it is a challenging job to monitor all the installed sensors, which are also may be geographically located at a certain distant from one another. Therefore, a new technology must be needed for this application in such a manner that it binds the sensors, such that the recordings from all the mounted sensors can be recorded at one single time. Furthermore, it is a must task to connect all the information which are received through the sensors via internet. For the same purpose, some of the discipline of AI and IoT can be effectively combined and
used. The data from the various sensors placed on a long – span bridge can be obtained by the means of IoT and then with the help of ML, one can do further structural analysis and explanation. With IoT, Structural Health Assessment provides an accurate, time – saving, economic and efficient solution. The blend of the application and concepts of IoT, SHM and Cloud Computing, a powerful database can be generated and analysed in comparison to the traditional way of performing structural health assessment. Moreover, the platform of cloud computing gives an advantage to the SHM system to stock the data and use them for the development and usage of the smart monitoring devices. The “health” status of the structure is sent to the server, and then the data is stored, can be remotely monitored with the help of mobile devices and can be interpreted with the help of ML.

2.5. Smart Cities with IoT:
With the beaming expansion of the industry focusing on the idea and application of smart cities in various engineering disciplines, IoT plays an important role for more research application [79 – 82]. The concept of smart cities comes with an idea of making better usage of services for the common public and simultaneously reduction in the operational costs. Thus, it can be considered as a discipline which focuses on the usage of the resources available efficiently and effectively. This particular agenda can be only achieved by proper instalment and data collection through the wireless sensors which can be installed at various places in a city. With the application of IoT with the concept of smart cities, the sensors are used for the data collection, interpretation and categorization. [83, 84].

![Figure 2. Branches of AI in Structural Engineering.](image-url)
Since the data collected from a particular city is vast, it is hard to maintain the record as well as to interpret the same. Also, one city is different from another, having their own specific problems, there is a must need for the development of technological advancements for data collection, classification and interpretation. DL architecture can be used for the collection and interpretation of the data in such situation. The concept of DL is used to train various systems for the purpose of recognition of the pattern for providing a wide variety of networks and also, provide the recognition which may develop due to network performance issues. DL architecture is found to be highly effective in sequential data analysis. Thus, this platform provides a solution to solve the problem related to optimization with respect to smart structures and cities. The belief behind smart city depends on the usage of the sensors to guarantee the safety, sustainability and efficiency of the city’s infrastructures. With the latest development in the field of nanotechnology, self-sensing materials are provided in a city for the purpose of monitoring the condition of the structures in a particular city. Another important emerging technology is Smart Concrete, which is having an ability of making any structure made up of concrete self-sustaining [85–86]. The monitoring of traffic and vulnerability assessment of the structures can be easily done by fabricating the concrete mix with sensors, made up of carbon nanotubes. Another noteworthy example is the development of new approaches for the detection of the corrosion in the concrete structures at very first stage. The reason behind this approach to monitor the concrete condition during its curing phase. The sensors embedded into the concrete also leads to monitor accurately the temperature of the concrete and strength of the concrete during its curing phase. The data regarding the same can be easily stored, and communicated with the help of smartphones through IoT. ML and DL are considered to be the two most application areas of AI for the purpose of data collection and interpretation for the assessment of structure.

3. Conclusion
This study focused on how the different disciplines of AI is useful in various areas of structural engineering and construction industry. It had been noted that to solve the structural problems, relates to health monitoring or damage assessment, the traditional methods are accompanied with the technological advancements in terms of sensors and algorithms for the collection of data, implementation and analysis. Also, whether related to construction management or structural designing and analysis, emerging applications of AI in civil engineering finds a worthy result. The usage of these advancements results in better performance and accuracy.

References
[1] Duda RO, Hart PE, Stork DG. Pattern classification. 2nd ed. New York: Wiley Interscience; 2000.
[2] Theodoridis S, Koutrombas K. Pattern recognition. 4th ed. Elsevier; 2008.
[3] Ciresan DC, Meier U, Masci J, Maia Gambardella L, Schmidhuber J. Flexible, high performance convolutional neural networks for image classification. vol. 22, Barcelona, Spain; 2011. p. 1237.
[4] Zeiler MD, Fergus R. Visualizing and understanding convolutional networks. Springer; 2014. p. 818–33.
[5] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. ArXiv Prepr ArXiv14091556; 2014.
[6] Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, et al. Imagenet large scale visual recognition challenge. Int J Comput Vis 2015; 115:211–52.
[7] Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, et al. Going deeper with convolutions. Cvpr 2015.
[8] He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition 2016:770–8.
[9] Gu J, Wang Z, Kuen J, Ma L, Shahroudy A, Shuai B, et al. Recent advances in convolutional neural networks. Pattern Recognit 2017.
[10] Yan B, Cui Y, Zhang L, Zhang C, Yang Y, Bao Z, et al. Beam structure damage identification based on BP neural network and support vector machine. Math Probl Eng 2014. 2014.
[11] Nagarajaitah S, Yang Y. Modeling and harnessing sparse and low-rank data structure: a new paradigm for structural dynamics, identification, damage detection, and health monitoring. Struct Control Health Monit 2017;24.
[12] Salehi H, Das S, Chakraborty S, Biswas S, Burgueño R. A machine-learning approach for damage detection in aircraft structures using self-powered sensor data. In: Lynch JP, editor; 2017. p. 101680X. doi:http://dx.doi.org/10.1117/12. 2260118.
[13] Yang Y, Sun P, Nagarajaitah S, Bachilo SM, Weisman RB. Full-field, high-spatial-resolution detection of local structural damage from low-resolution random strain field measurements. J Sound Vib 2017; 399:75–85.
[14] Yang Y, Nagarajaiah S. Harnessing data structure for recovery of randomly missing structural vibration responses time.
Chatterjee S, Sarkar S, Hore S, Dey N, Ashour AS, Shi F, et al. Structural failure classification for reinforced concrete buildings using trained neural network based multi-objective genetic algorithm. Struct Eng Mech 2017; 63:429–38.

Cheung A, Cabrera C, Sarabandi P, Nair K, Kiremidjian A, Wenzel H. The application of statistical pattern recognition methods for damage detection to field data. Smart Mater Struct 2008; 17:065023.

André J, Kiremidjian A, Liao Y, Georgakis CT. Structural health monitoring approach for detecting ice accretion on bridge cables using the autoregressive model. Taylor & Francis; 2016. 431–431.

Lam HF, Ng CT. The selection of pattern features for structural damage detection using an extended Bayesian ANN algorithm. Eng Struct 2008; 30:2762–70.

Ng C-T. Application of Bayesian-designed artificial neural networks in Phase II structural health monitoring benchmark studies. Aust J Struct Eng 2014; 15:27–36.

Gul M, Catbas FN. Statistical pattern recognition for structural health monitoring using time series modeling: Theory and experimental verifications. Mech Syst Signal Process 2009; 23:2192–204.

De Lautour OR, Omenzetter P. Prediction of seismic-induced structural damage using artificial neural networks. Eng Struct 2009; 31:600–6.

Park S, Innan DJ, Yan C-B. An outlier analysis of MFC-based impedance sensing data for wireless structural health monitoring of railroad tracks. Eng Struct 2008; 30:2792–9.

Posenato D, Kripakanar P, Inaudi D, Smith IF. Methodologies for model-free data interpretation of civil engineering structures. Comput Struct 2010; 88:467–82.

Noman AS, Deeba F, Bagchi A. Health monitoring of structures using statistical pattern recognition techniques. J Perform Constr Facil 2012; 27:75–84.

Laor Y, Trinh TN, Smith IF, Brownjohn JM. Methodologies for predicting natural frequency variation of a suspension bridge. Eng Struct 2014; 80:211–21.

Alavi AH, Hasni H, Lajenf N, Chatti K, Faridazar F. An intelligent structural damage detection approach based on self-powered wireless sensor data. Autom Constr 2016; 62:24–44.

Salehi H, Das S, Chakrabarty S, Biswas S, Burgueño R. Structural assessment and damage identification algorithms using binary data. American Society of Mechanical Engineers 2015. p. V002T05A011-V002T05A011.

Salehi H, Burgueño R, Das S, Biswas S, Chakrabarty S. Structural health monitoring from discrete binary data through pattern recognition. Insights Innov Struct Eng Mech Comput 2016:1840–5.

Salehi H, Das S, Chakrabarty S, Biswas S, Burgueño R. Structural damage identification using image-pattern recognition on event-based binary data generated from self-powered sensor networks. Struct Control Health Monit 2018. http://dx.doi.org/10.1002/stc.2135. e2135.

Datteau A, Lucif F. Statistical pattern recognition approach for long-time monitoring of the G. Meazza stadium by means of AR models and PCA. Eng Struct 2017; 153:317–33.

Kim D, Phuhen M. Damage classification using Adaboost machine learning for structural health monitoring. vol. 7981, International Society for Optics and Photonics; 2011. p. 79812A.

Son H, Kim C, Kim C. Automated color model-based concrete detection in construction-site images by using machine learning algorithms. J Comput Civ Eng 2011; 26:421–33.

Ying Y, Garrett Jr JH, Oppenheim IJ, Soibelman L, Harley JB, Shi J, et al. Toward data-driven structural health monitoring: application of machine learning and signal processing to damage detection. J Comput Civ Eng 2012; 27:665–80.

Butcher JB, Day CR, Austin JC, Haycock PW, Verstraeten D, Schrauwen B. Defect detection in reinforced concrete using random neural architectures: Defect detection in reinforced concrete using random neural architectures. Comput-Aided Civ Infrastruct Eng 2014; 29:191–207. http://dx.doi.org/10.1111/mice.12039.

Malekzadeh M, Catbas FN. A machine learning framework for automated functionality monitoring of movable bridges. Dyn Civ Struct 2016; 2:57–63. Springer.

Catbas FN, Malekzadeh M. A machine learning-based algorithm for processing massive data collected from the mechanical components of movable bridges. Autom Constr 2016; 72:269–78.

Chen B, Zang C. Artificial immune pattern recognition for structure damage classification. Comput Struct 2009; 87:1394–407.

Chen B, Zang C. Artificial immune pattern recognition for damage detection in structural health monitoring sensor networks. Int Soc Opt Photonics 2009; 7293:72930K.

Omenzetter P, de Lautour OR. Classification of damage in structural systems using time series analysis and supervised and unsupervised pattern recognition techniques. Int Soc Opt Photonics 2010;7674. 76474AS.

de Lautour OR, Omenzetter P. Nearest neighbor and learning vector quantization classification for damage detection using time series analysis. Struct Control Health Monit 2010; 17:614–31.

Ren W, Lin Y, Fang S. Structural damage detection based on stochastic subspace identification and statistical pattern recognition. I. Theory. Smart Mater Struct 2011; 20:115009.

Lin Y, Ren W, Fang S. Structural damage detection based on stochastic subspace identification and statistical pattern recognition. II. Experimental validation under varying temperature. Smart Mater Struct 2011; 20:115010.

Yao R, Pakzad SN. Autoregressive statistical pattern recognition algorithms for damage detection in civil structures.
Senniappan V, Subramanian J, Papageorgiou EI, Mohan S. Application of fuzzy cognitive maps for crack categorization

Karina CN, Chun P, Okubo K. Tensile strength prediction of corroded steel plates by using machine learning approach.

Motamedi S, Shamshirband S, Hashim R, Petković D, Roy C. Estimating unconfined compressive strength of cockle

Jeon J, Shafieezadeh A, DesRoches R. Statistical models for shear strength of RC beam-column joints using machine-learning techniques. Earthq Eng Struct Dyn 2014; 43:2075–95.

Motamed S, Shamsirband S, Hashim R, Petković D, Roy C. Estimating unconfined compressive strength of cockle shell–cement–sand mixtures using soft computing methodologies. Eng Struct 2015; 98:49–58.

Karina CN, Chun P, Okubo K. Tensile strength prediction of corroded steel plates by using machine learning approach. STEEL Compos Struct 2017; 24:635–41.

Senniapan V, Subramanian J, Papageorgiou EL, Mohan S. Application of fuzzy cognitive maps for crack categorization in columns of reinforced concrete structures. Neural Comput Appl 2017; 28:107–17.

Yang S, Fang CQ, Yuan ZJ. Study on mechanical properties of corroded reinforced concrete using support vector

Chang J, Nagarajaiah S. Quantum-behaved particle swarm optimization-based structural modal parameter identification

Wan H-P, Mao Z, Todd MD, Ren W-X. Analytical uncertainty quantification for modal frequencies with structural

Kim H-J, Park W, Koh H-M, Choo JF. Identification of structural performance of a steel-box girder bridge using machine

Karimi I, Khaji N, Ahmadi M, Morzayee M. System identification of concrete gravity dams using artificial neural networks based on a hybrid finite element–boundary element approach. Eng Struct 2010; 32:3583–91.

Kim H-J, Park W, Koh H-M, Choo JF. Identification of structural performance of a steel-box girder bridge using machine learning technique. Int Assoc Bridge Struct Eng 2013; 99:1313–20.

Kia A, Sensoy S. Classification of earthquake-induced damage for R/C slab column frames using multiclass SVM and its combination with MLP neural network. Math Probl Eng 2014:2014.

Chang J, Nagarajaiah S. Quantum-behaved particle swarm optimization-based structural modal parameter identification under ambient excitation. J Struct Stab Dyn 2016; 16:1550008.

Zhong J, Sato T, Iai S, Hutchinson T. A pattern recognition technique for structural identification using observed vibration signals: Linear case studies. Eng Proced 2008; 30:1439–46.

Zhong J, Sato T, Iai S, Hutchinson T. A pattern recognition technique for structural identification using observed vibration signals: Nonlinear case studies. Eng Struct 2008; 30:1417–23.

Xu C, Yun S, Shu Y. Concrete strength inspection conversion model based on SVM. J Luoyang Inst Techn Nat Sci Ed 2008; 2:025.

Chen B-T, Chang T-P, Shih J-Y, Wang J-J. Estimation of exposed temperature for fire-damaged concrete using support vector machine. Comput Mater Sci 2009; 44:913–20.

Bin C, Xueyang G, Guohua L. Prediction of concrete properties based on rough sets and support vector machine method. J Hydrotech Eng 2011; 6:045.

Chang W, Song Z. Prediction of concrete corrosion in sulfuric acid by SVM-based method, In: Proceedings of the Second International Conference on Electronic & Mechanical Engineering and Information Technology (EMEIT), Paris, France; 2012.

Dantas ATA, Leite MB, de Jesus Nagahama K. Prediction of compressive strength of concrete containing construction and demolition waste using artificial neural networks. Constr Build Mater 2013; 38:717–22.

Duan Z-H, Kou S-C, Poon C-S. Prediction of compressive strength of recycled aggregate concrete using artificial neural networks. Constr Build Mater 2013; 40:1200–6.

Cao YF, Wu W, Zhang HL, Pan JM. Prediction of the elastic modulus of self-compacting concrete based on SVM. Trans Tech Publ 2013; 357:1023–6.

Yan K, Xu H, Shen G, Liu P. Prediction of splitting tensile strength from cylinder compressive strength of concrete by support vector machine. Adv Mater Sci Eng 2013; 2013.

Yang S, Fang CQ, Yuan ZJ. Study on mechanical properties of corroded reinforced concrete using support vector machines. Trans Tech Publ 2014; 578:1556–61.

Jeon J, Shafieezadeh A, DesRoches R. Statistical models for shear strength of RC beam-column joints using machine-learning techniques. Earthq Eng Struct Dyn 2014; 43:2075–95.

Motamed S, Shamsirband S, Hashim R, Petković D, Roy C. Estimating unconfined compressive strength of cockle shell–cement–sand mixtures using soft computing methodologies. Eng Struct 2015; 98:49–58.

Karina CN, Chun P, Okubo K. Tensile strength prediction of corroded steel plates by using machine learning approach. STEEL Compos Struct 2017; 24:635–41.
Atzori L, Iera A, Morabito G. The internet of things: A survey. Comput Netw 2010; 54:2787–805.

Abdelgawad A, Yelamarthi K. Structural health monitoring: Internet of things application. IEEE 2016:1–4.

Abdelgawad A, Yelamarthi K. Internet of things (IoT) platform for structure health monitoring. Wirel Commun Mob Comput 2017, 2017.

Tokognon CA, Gao B, Tian GY, Yan Y. Structural health monitoring framework based on Internet of Things: A survey. IEEE Internet Things J 2017; 4:619–35.

Schaffers H, Komninos N, Pallet M, Troub B, Nilsson M, Oliveira A. Smart cities and the future internet: Towards cooperation frameworks for open innovation. Springer 2011:431–46.

Zanella A, Bui N, Castellani A, Vangelista L, Zorzi M. Internet of things for smart cities. IEEE Internet Things J 2014; 1:22–32.

Perera C, Zaslavsky A, Christen P, Georgakopoulos D. Sensing as a service model for smart cities supported by internet of things. Trans Emerg Telecommun Technol 2014; 25:81–93.

Kim T, Ramos C, Mohammed S. Smart city and IoT. Future Gener Comp Sy 2017.

Chin J, Callaghan V, Lam I. Understanding and personalising smart city services using machine learning, the internet-of-things and big data. IEEE; 2017. p. 2050–5.

Han B, Yu X, Ou J. Self-sensing concrete in smart structures. Butterworth Heinemann; 2014.

Konsta-Gdoutos MS, Aza CA. Self-sensing carbon nanotube (CNT) and nanofiber (CNF) cementitious composites for real time damage assessment in smart structures. Cem Concr Compos 2014; 53:162–9.

Gupta S, Gonzalez JG, Loh KJ. Self-sensing concrete enabled by nano-engineered cement-aggregate interfaces. Struct Health Monit 2017; 16:309–23.