Periodic geodesics on translation surfaces

Yaroslav Vorobets

July 15, 2003

1 Introduction

Let M be a compact connected oriented surface. The surface M is called a translation surface if it is equipped with a translation structure, that is, an atlas of charts such that all transition functions are translations in \mathbb{R}^2. It is assumed that the chart domains cover all surface M except for finitely many points called singular. The translation structure induces the structure of a smooth manifold, a flat Riemannian metric, and a Borel measure on the surface M punctured at the singular points. We require that the metric has a cone type singularity at each singular point; then the area of the surface is finite. The cone angle is of the form $2\pi m$, where m is an integer called the multiplicity of the singular point. A singular point of multiplicity 1 is called removable; it is rather a marked point than a true singularity of the metric.

Furthermore, the translation structure allows us to identify the tangent space at any non-singular point $x \in M$ with the Euclidean space \mathbb{R}^2. In particular, the unit tangent space at any point is identified with the unit circle $S^1 = \{ v \in \mathbb{R}^2 : |v| = 1 \}$. The velocity is an integral of the geodesic flow with respect to this identification. Thus each oriented geodesic has a direction, which is a uniquely determined vector in S^1. The direction of an unoriented geodesic is determined up to multiplying by ± 1.

Suppose X is a Riemann surface (one-dimensional complex manifold) homeomorphic to the surface M. Any nonzero Abelian differential on X defines a translation structure on M. The zeroes of the differential are singular points of the translation structure, namely, a zero of order k is a singular point of multiplicity $k + 1$. Every translation structure without removable singular points can be obtained this way.

Any geodesic joining a nonsingular point to itself is periodic (or closed). We regard periodic geodesics as simple closed unoriented curves. Any periodic geodesic is included in a family of freely homotopic periodic geodesics of the same length and direction. The geodesics of the family fill an open connected domain. Unless the translation surface is a torus without singular points, this domain is an annulus. We call it a cylinder of periodic geodesics (or simply a periodic cylinder). A periodic cylinder is bounded by geodesic segments of the same direction with endpoints at singular points. Such segments are called saddle connections.

The fundamental results on periodic geodesics of translation surfaces were obtained by Howard Masur in papers [M2], [M3], [M4]. These results can be summarized as follows.

Theorem 1.1 (Masur) Let M be a translation surface without removable singular points.

(a) There exists a periodic geodesic on M of length at most $\alpha \sqrt{S}$, where S is the area of M and $\alpha > 0$ is a constant depending only on the genus of M.

(b) The directions of periodic geodesics of M are dense in S^1.

(c) Let $N_1(M,T)$ denote the number of periodic cylinders of M of length at most $T > 0$. Then there exist $0 < c_1(M) < c_2(M) < \infty$ such that

$$c_1(M) \leq N_1(M,T)/T^2 \leq c_2(M)$$

for T sufficiently large.

The main goal of the present paper is to prove effective versions of statements (a) and (c) of Theorem 1.1 and to generalize statement (b). In addition, we establish some properties of periodic geodesics on generic translation surfaces.

Throughout the paper we consider translation surfaces that have at least one singular point. There is no loss of generality as we can declare an arbitrary nonsingular point to be a removable singular point.

Our first result is an effective version of Theorem 1.1(a).

Theorem 1.2 Let m be the sum of multiplicities of singular points of a translation surface M, and S be the area of M. Then there exists a periodic geodesic on M of length at most $\alpha_m \sqrt{S}$, where \(\alpha_m = (8m)^{2^{m-1}} \).

It should be admitted that the proof of Theorem 1.1(a) given by Smillie in the survey [S] can be further developed to obtain an effective estimate of the constant α (unlike the proofs given in [M2] and [MT]). The techniques used below to prove Theorem 1.2 are very similar to those used in [S].

The periodic geodesic provided by Theorem 1.2 belongs to a cylinder of parallel periodic geodesics of the same length. Although the length of this cylinder is bounded, its width, in general, may be arbitrarily small. Nevertheless it is possible to find a periodic cylinder whose area is not very small compared to the area of the whole surface.

Theorem 1.3 Let m be the sum of multiplicities of singular points of a translation surface M, and S be the area of M. Then there exists a cylinder of periodic geodesics of length at most $\beta_m \sqrt{S}$, where $\beta_m = 2^{2^m}$, and of area at least S/m.

The following theorem shows, in particular, that almost every point of a translation surface lies on a periodic geodesic.

Theorem 1.4 Let m be the sum of multiplicities of singular points of a translation surface M, and S be the area of M. For any $\delta \in (0,1)$ there exist pairwise disjoint periodic cylinders $\Lambda_1, \ldots, \Lambda_k$ of length at most $(8m\delta^{-1})^{2^{m-1}} \sqrt{S}$ such that the area of the union $\Lambda_1 \cup \ldots \cup \Lambda_k$ is at least $(1 - \delta)S$.

The group $\text{SL}(2,\mathbb{R})$ acts on the set of translation structures on a given surface by postcomposition of the chart maps with linear transformations from $\text{SL}(2,\mathbb{R})$. This action preserves singular points along with their multiplicities, geodesics, and the measure induced by translation structure. It does not preserve directions and lengths of geodesic segments however. This observation allows one to derive statement (b) of Theorem 1.1 from statement (a). In the same way Theorem 1.3 leads to the following result.
Theorem 1.5 Let m be the sum of multiplicities of singular points of a translation surface M, and S be the area of M. Then the directions of periodic cylinders of area at least S/m are dense in S^1.

A plane polygon is called rational if the angle between any two of its sides is a rational multiple of π. A construction of Zemlyakov and Katok \cite{ZK} associates to any rational polygon Q a translation surface M so that the study of the billiard flow in Q can be reduced to the study of the geodesic flow on M. In view of this construction, Theorem 1.1(b) implies that directions of periodic billiard orbits in Q are dense in the set of all directions. Boshernitzan, Galperin, Krüger, and Troubetzkoy \cite{BGKT} strengthened this result.

Theorem 1.6 \cite{BGKT} For any rational polygon Q, the periodic points of the billiard flow in Q are dense in the phase space of the flow. Moreover, there exists a dense G_δ-set $Q_0 \subset Q$ such that for every point $x \in Q_0$ the directions of periodic billiard orbits starting at x form a dense subset of S^1.

An analogous result for translation surfaces—periodic points of the geodesic flow are dense in the phase space of the flow—can be obtained in the same way (cf. \cite{MT}). In this paper we prove a further strengthening of Theorem 1.1(b).

Theorem 1.7 (a) For any translation surface M, there exists a G_δ-set $M_0 \subset M$ of full measure such that for every point $x \in M_0$ the directions of periodic geodesics passing through x form a dense subset of S^1.

(b) For any rational polygon Q, there exists a G_δ-subset $Q_0 \subset Q$ of full measure such that for every point $x \in Q_0$ the directions of periodic billiard orbits starting at x form a dense subset of S^1.

The next result is an effective version of Theorem 1.1(c).

Theorem 1.8 Let M be a translation surface. Denote by $N_1(M, T)$ the number of cylinders of periodic geodesics on M of length at most $T > 0$. By $N_2(M, T)$ denote the sum of areas of these cylinders. Then

$$\left((600m)^{2m}\right)^{-1} s^2 S^{-2}T^2 \leq N_2(M, T)/S \leq N_1(M, T) \leq (400m)^{2m} s^{-2}T^2$$

for any $T \geq 2^{2m} \sqrt{S}$, where S is the area of M, m is the sum of multiplicities of singular points of M, and s is the length of the shortest saddle connection of M.

Let M be a compact connected oriented surface of genus $p \geq 1$. For any integer $n \geq 1$ let $\mathcal{M}(p, n)$ denote the set of equivalence classes of isomorphic translation structures on M with n singular points (of arbitrary multiplicity). A point of $\mathcal{M}(p, n)$ is a translation structure considered up to isomorphism. There is a natural topology on $\mathcal{M}(p, n)$, which is the topology of a locally compact metric space. By $\mathcal{M}_1(p, n)$ denote the subspace of $\mathcal{M}(p, n)$ corresponding to translation structures of area 1. The subspace $\mathcal{M}_1(p, n)$ is endowed with a natural Borel measure μ_0, which is finite (see Section 6 for details). In general, the space $\mathcal{M}_1(p, n)$ is not connected but the number of its connected components is finite. Let \mathcal{C} denote one of the connected components.
For any translation structure ω and any $T > 0$ let $N_1(\omega, T)$ denote the number of periodic cylinders of ω of length at most T. By $N_2(\omega, T)$ denote the sum of areas of these cylinders. The numbers $N_1(\omega, T)$ and $N_2(\omega, T)$ do not change if we replace the translation structure ω by an isomorphic one.

Theorem 1.9 For μ_0-a.e. $\omega \in \mathcal{C}$,

$$\lim_{T \to \infty} \frac{N_1(\omega, T)}{T^2} = c_1(\mathcal{C}), \quad \lim_{T \to \infty} \frac{N_2(\omega, T)}{T^2} = c_2(\mathcal{C}),$$

where $c_1(\mathcal{C})$ and $c_2(\mathcal{C})$ are positive constants depending only on the component \mathcal{C}.

The first asymptotics in Theorem 1.9 was proved by Eskin and Masur [EM]. The second asymptotics is obtained by applying results of [EM].

The ratio $c_2(\mathcal{C})/c_1(\mathcal{C})$ may be regarded as the mean area of a periodic cylinder of a generic area 1 translation structure $\omega \in \mathcal{C}$. It appears that $c_2(\mathcal{C})/c_1(\mathcal{C}) = 1/m_C$, where $m_C = 2p - 2 + n$ is the sum of multiplicities of singular points for translation structures in \mathcal{C} (this will be proved in a subsequent paper).

Let $Y \to \mathcal{C}$ be the fiber bundle over \mathcal{C} such that the fiber over a point $\omega \in \mathcal{C}$ is the surface M with the translation structure ω. A point of Y can be viewed as a pair (ω, x), where ω is a representative of an equivalence class $\tilde{\omega} \in \mathcal{C}$ and $x \in M$ (the point x depends on the choice of $\omega \in \tilde{\omega}$). The fiber bundle Y carries a natural finite measure μ_1 that is the measure μ_0 on the base \mathcal{C} and is the measure induced by translation structure on the fiber. Denote by $N_3(\omega, x, T)$ the number of periodic geodesics of a translation structure ω of length at most T that pass through a point x. This number does not change if we replace the pair (ω, x) by another representative of a point in Y.

Theorem 1.10 For μ_1-a.e. $(\omega, x) \in Y$,

$$\lim_{T \to \infty} \frac{N_3(\omega, x, T)}{T^2} = c_2(\mathcal{C}),$$

where the constant $c_2(\mathcal{C})$ is the same as in Theorem 1.9.

The paper is organized as follows. Section 2 contains definitions, notation, and preliminaries. The results on existence of periodic geodesics (Theorems 1.2, 1.3, and 1.4) are obtained in Section 3. The results on density of directions of periodic geodesics (Theorems 1.5 and 1.7) are obtained in Section 4. Section 5 is devoted to the proof of Theorem 1.8. In the final Section 6 moduli spaces of translation structures are considered.

2 Preliminaries

Let M be a compact connected oriented surface. A translation structure on M is an atlas of coordinate charts $\omega = \{(U_\alpha, f_\alpha)\}_{\alpha \in \mathcal{A}}$, where U_α is a domain in M and f_α is a homeomorphism of U_α onto a domain in \mathbb{R}^2, such that:

- all transition functions are translations in \mathbb{R}^2;
- chart domains U_α, $\alpha \in \mathcal{A}$, cover all surface M except for finitely many points (called singular points);
the atlas ω is maximal relative to the two preceding conditions;
- a punctured neighborhood of any singular point covers a punctured neighborhood of a point in \mathbb{R}^2 via an m-to-1 map which is a translation in coordinates of the atlas ω; the number m is called the multiplicity of the singular point.

A translation surface is a compact connected oriented surface equipped with a translation structure.

The translation structures are also (and probably better) known as “orientable flat structures” or “admissible positive F-structures”.

Let M be a translation surface and ω be the translation structure of M. Each translation of the plane \mathbb{R}^2 is a smooth map preserving orientation, Euclidean metric and Lebesgue measure on \mathbb{R}^2. Hence the translation structure ω induces a smooth structure, an orientation, a flat Riemannian metric, and a finite Borel measure on the surface M punctured at the singular points of ω. Each singular point of ω is a cone type singularity of the metric. The cone angle is equal to $2\pi m$, where m is the multiplicity of the singular point. Any geodesic of the metric is a straight line in coordinates of the atlas ω. A geodesic hitting a singular point is considered to be singular, its further continuation is undefined. Almost every element of the tangent bundle gives rise to a nonsingular geodesic.

The translation structure ω allows us to identify the tangent space at any nonsingular point $x \in M$ with the Euclidean space \mathbb{R}^2. In particular, the unit tangent space at any point is identified with the unit circle $S^1 = \{v \in \mathbb{R}^2 : |v| = 1\}$. The velocity is an integral of the geodesic flow with respect to this identification. Thus each oriented geodesic is assigned a direction $v \in S^1$. The direction of an unoriented geodesic is determined up to multiplying by ± 1. For any $v \in S^1$, let M_v denote the invariant surface of the phase space of the geodesic flow corresponding to the movement with velocity v. Clearly, the restriction of the geodesic flow to M_v can be regarded as a flow on the surface M. This flow is called the directional flow in direction v. If a point $x \in M$ is singular or at least one of geodesics starting at x in the directions $\pm v$ hits a singular point, then the directional flow is only partially defined at the point x. The directional flow is fully defined on a subset of full measure (depending on v) and preserves the measure on M.

A singular point of multiplicity 1 is called removable. If $x \in M$ is a removable singular point of the translation structure ω, then there exists a translation structure $\omega_+ \supset \omega$ such that x is not a singular point of ω_+. On the other hand, let x be a nonsingular point of M. Suppose ω_- is the set of charts $(U_\alpha, f_\alpha) \in \omega$ such that $x \notin U_\alpha$. Then ω_- is a translation structure on M and x is a removable singular point of $\omega_-).

Let p be the genus of a translation surface M, k be the number of singular points of M, and m be the sum of multiplicities of the singular points. Then $m = 2p - 2 + k$. It follows that there are no translation structures on the sphere, a translation torus can have only removable singular points, and a translation surface of genus $p > 1$ has at least one nonremovable singular point.

Suppose X is a complex structure on a compact connected oriented surface M. Let q be a nonzero Abelian differential (holomorphic 1-form) on X. A chart (U, z), where U is a domain in M and z is a homeomorphism of U onto a domain in \mathbb{C}, is called a natural parameter of the differential q if $q = dz$ in U with respect to the complex structure X. Let ω denote the atlas of all natural parameters of q. The natural identification of \mathbb{C} with \mathbb{R}^2 allows us to consider ω as an atlas of charts ranging in \mathbb{R}^2. It is easy to observe that ω is a translation structure on M. The singular points of ω are the zeroes of the differential q, namely, a zero of order n
is a singular point of multiplicity \(n + 1 \). Each translation structure on \(M \) without removable singular points can be obtained by this construction.

Another way to construct translation surfaces is to glue them from polygons. Let \(Q_1, \ldots, Q_n \) be disjoint plane polygons. The natural orientation of \(\mathbb{R}^2 \) induces an orientation of the boundary of every polygon. Suppose all sides of the polygons \(Q_1, \ldots, Q_n \) are grouped in pairs such that two sides in each pair are of the same length and direction, and of opposite orientations. Glue the sides in each pair by translation. Then the union of the polygons \(Q_1, \ldots, Q_n \) becomes a surface \(M \). By construction, the surface \(M \) is compact and oriented. Suppose \(M \) is connected (if it is not, then we should apply the construction to a smaller set of polygons). The restrictions of the identity map on \(\mathbb{R}^2 \) to the interiors of the polygons \(Q_1, \ldots, Q_n \) can be regarded as charts of \(M \). This finite collection of charts extends to a translation structure \(\omega \) on \(M \). The translation structure \(\omega \) is uniquely determined if we require that the set of singular points of \(\omega \) be the set of points corresponding to vertices of the polygons \(Q_1, \ldots, Q_n \).

A particular case of the latter construction is the so-called Zemlyakov-Katok construction, which descends from the paper [ZK]. Let \(Q \) be a plane polygon. Let \(s_1, \ldots, s_n \) be sides of \(Q \). For any \(i, 1 \leq i \leq n \), let \(\tilde{r}_i \) denote the reflection of the plane in the side \(s_i \) and \(r_i \) denote the linear part of \(\tilde{r}_i \). By \(G(\omega) \) denote the subgroup of \(O(2) \) generated by the reflections \(r_1, \ldots, r_n \). The polygon \(Q \) is called rational if the group \(G(\omega) \) is finite. All angles of a rational polygon are rational multiples of \(\pi \). This property is equivalent to being rational provided the polygon is simply connected. Suppose the polygon \(Q \) is rational. Let \(Q_g, g \in G(\omega) \), be disjoint polygons such that for any \(g \in G(\omega) \) there exists an isometry \(R_g : Q_g \to Q \) with linear part \(g \). Now for any \(i \in \{1, \ldots, n\} \) and any \(g \in G(\omega) \) glue the side \(R_{g^{-1}}s_i \) of the polygon \(Q_g \) to the side \(R_{g^{n_i}}s_i \) of the polygon \(Q_{g^{n_i}} \) by translation. This transforms the union of polygons \(Q_1, \ldots, Q_n \) into a compact connected oriented surface \(M \). Observe that the collection of isometries \(R_g, g \in G(\omega) \), gives rise to a continuous map \(f_Q : M \to Q \). The surface \(M \) is endowed with a translation structure \(\omega \) as described above. Singular points of \(\omega \) correspond to vertices of the polygon \(Q \). Namely, the vertex of any angle of the form \(2 \pi n_1/n_2 \), where \(n_1 \) and \(n_2 \) are coprime integers, gives rise to \(N/n_2 \) singular points of multiplicity \(n_1 \), where \(N \) is the cardinality of the group \(G(\omega) \).

The Zemlyakov-Katok construction is crucial for the study of the billiard flow in rational polygons. The billiard flow in a polygon \(Q \) is a dynamical system that describes a point-like mass moving freely within the polygon \(Q \) subject to elastic reflections in the boundary of \(Q \). A billiard orbit in \(Q \) is a broken line changing its direction at interior points of the sides of \(Q \) according to the law “the angle of incidence is equal to the angle of reflection”. A billiard orbit hitting a vertex of the polygon \(Q \) is supposed to stop at this vertex. A billiard orbit starting at a point \(x \in Q \) in a direction \(v \in S^1 \) is periodic if it returns eventually to the point \(x \) in the direction \(v \). Suppose \(Q \) is a rational polygon. Let \(M \) be the translation surface associated to \(Q \). Let \(f_Q : M \to Q \) be the continuous map introduced above. It is easy to see that \(f_Q \) maps any geodesic on the surface \(M \) onto a billiard orbit in \(Q \). Conversely, any billiard orbit in \(Q \) is the image of a (not uniquely determined) geodesic on \(M \). By construction, there exists a domain \(D \subset M \) such that \(f_Q \) maps the domain \(D \) isometrically onto the interior of the polygon \(Q \) and, moreover, the chart \((D, f_Q|D)\) is an element of the translation structure of \(M \). If \(L \) is a geodesic starting at a point \(x \in D \) in a direction \(v \in S^1 \), then \(f_Q(L) \) is the billiard orbit in \(Q \) starting at the point \(f_Q(x) \) in the same direction.

Let \(M \) be a translation surface. A domain \(U \subset M \) containing no singular points is called a triangle (a polygon, an \(n \)-gon) if it is isometric to the interior of a triangle (resp. a polygon,
an \(n \)-gon) in the plane \(\mathbb{R}^2 \). Suppose \(h : U \to P \subset \mathbb{R}^2 \) is a corresponding isometry. The inverse map \(h^{-1} : P \to U \) can be extended to a continuous map of the closure of \(P \) to \(M \). The images of sides and vertices of the polygon \(P \) under this extension are called \emph{sides} and \emph{vertices} of \(U \).

Every side of \(U \) is either a geodesic segment or a union of several parallel segments separated by singular points. Note that the number of vertices of the \(n \)-gon \(U \) may be less than \(n \). A \emph{triangulation} of the translation surface \(M \) is its partition into a finite number of triangles.

A \emph{saddle connection} is a geodesic segment joining two singular points or a singular point to itself and having no singular points in its interior (note that singular points are saddles for directional flows). Two saddle connections of a translation surface are said to be \emph{disjoint} if they have no common interior points (common endpoints are allowed). Three saddle connections are pairwise disjoint whenever they are sides of a triangle. For any \(T > 0 \) there are only finitely many saddle connections of length at most \(T \). In particular, there exists the shortest saddle connection (probably not unique).

The following proposition is well known (see, e.g. [MT], [Vo]).

Proposition 2.1 (a) Any collection of pairwise disjoint saddle connections can be extended to a maximal collection.

(b) Any maximal collection of pairwise disjoint saddle connections forms a triangulation of the surface \(M \) such that all sides of each triangle are saddle connections.

(c) For any maximal collection, the number of saddle connections is equal to \(3m \), and the number of triangles in the corresponding triangulation is equal to \(2m \), where \(m \) is the sum of multiplicities of singular points.

Any geodesic joining a nonsingular point to itself is called \emph{periodic} (or \emph{closed}); such a geodesic is a periodic orbit of a directional flow. We only consider \emph{primitive} periodic geodesics, that is, the period of the geodesic is its length. Also, we regard periodic geodesics as unoriented curves. If a geodesic starting at a point \(x \in M \) is periodic, then all geodesics starting at nearby points in the same direction are also periodic. Actually, each periodic geodesic belongs to a family of freely homotopic periodic geodesics of the same length and direction. If \(M \) is a torus without singular points, then this family fills the whole surface \(M \). Otherwise the family fills a domain homeomorphic to an annulus. This domain is called a \emph{cylinder} of periodic geodesics (or simply a \emph{periodic cylinder}) since it is isometric to a cylinder \(\mathbb{R}/\mathbb{Z} \times (0, w) \), where \(l, w > 0 \). The numbers \(l \) and \(w \) are called the length and the width of the periodic cylinder. The cylinder is bounded by saddle connections of the same direction.

Let \(\omega = \{(U_{\alpha}, f_{\alpha})\}_{\alpha \in A} \) be a translation structure on the surface \(M \). For any linear operator \(a \in \text{SL}(2, \mathbb{R}) \) the atlas \(\{(U_{\alpha}, a_{\alpha}f_{\alpha})\}_{\alpha \in A} \) is also a translation structure on \(M \). We denote this structure by \(a\omega \). Clearly, \((a_1a_2)\omega = a_1(a_2\omega) \) for any \(a_1, a_2 \in \text{SL}(2, \mathbb{R}) \) so we have an action of the group \(\text{SL}(2, \mathbb{R}) \) on the set of translation structures on \(M \). The translation structures \(\omega \) and \(a\omega \) share the same singular points of the same multiplicities and the same geodesics. In addition, they induce the same measure on the surface \(M \).

To each oriented geodesic segment \(L \) of the translation structure \(\omega \) we associate the vector \(v \in \mathbb{R}^2 \) of the same length and direction. If the segment \(L \) is not oriented, then the vector \(v \) is determined up to reversing its direction. For any \(a \in \text{SL}(2, \mathbb{R}) \) the vector \(av \) is associated to \(L \) with respect to the translation structure \(a\omega \). Given a direction \(v_1 \in \mathbb{S}^1 \), the length of the orthogonal projection of \(v \) on the direction \(v_1 \) is called the \emph{projection} of the segment \(L \) on \(v_1 \) (with respect to \(\omega \)).
3 Existence of periodic geodesics

To prove Theorems 1.2, 1.3, and 1.4, we need the following proposition.

Proposition 3.1 Let M be a translation surface of area S. Suppose L_1, \ldots, L_k ($k \geq 0$) are pairwise disjoint saddle connections of length at most $\sqrt{2S}$. Then at least one of the following possibilities occur:

1) saddle connections L_1, \ldots, L_k partition the surface into finitely many domains such that each domain is either a periodic cylinder of length at most \sqrt{S} or a triangle bounded by three saddle connections;

2) there exists a saddle connection L of length at most $2\sqrt{2S}$ disjoint from L_1, \ldots, L_k.

Proof. First consider the case when a small neighborhood of some singular point x_0 contains an open sector K of angle π that is disjoint from saddle connections L_1, \ldots, L_k. Suppose there exists a geodesic segment J of length at most $\sqrt{2S}$ that goes out of the point x_0 across sector K and ends in a point y which is either a singular point or an interior point of some saddle connection L_j, $1 \leq j \leq k$. We can assume without loss of generality that the interior of the segment J contains no singular point and is disjoint from saddle connections L_1, \ldots, L_k. If y is a singular point, then J is a saddle connection disjoint from L_1, \ldots, L_k, thus condition (2) holds. Suppose y is an interior point of L_j. Let K' be an open sector with vertex at the point x_0 crossed by the segment J. We assume that each geodesic I going out of x_0 across the sector K' intersects L_j before this geodesic hits a singular point or intersects another given saddle connection. This condition holds, for instance, when the angle of the sector K' is small enough. Let I_0 denote the segment of the geodesic I from the point x_0 to the first intersection with L_j. The segments I_0, J, and a subsegment of L_j are sides of a triangle, hence the length of I_0 is less than the sum of lengths of J and L_j, which, in turn, is at most $2\sqrt{2S}$. Without loss of generality it can be assumed that K' is the maximal sector with the above property. By the maximality, both geodesics going out of x_0 along the boundary of K' hit singular points before they intersect any of the given saddle connections. It follows that these geodesics are saddle connections of length at most $2\sqrt{2S}$. By construction, any of the two saddle connections either is disjoint from saddle connections L_1, \ldots, L_k or coincides with one of them. Since the angle of the sector K' is less than π, at least one of the boundary saddle connections crosses the sector K; such a saddle connection is not among L_1, \ldots, L_k. Thus condition (2) holds.

Now suppose that any geodesic segment of length $\sqrt{2S}$ going out of the point x_0 across sector K does not reach a singular point and does not intersect saddle connections L_1, \ldots, L_k. Let I be the geodesic segment of length \sqrt{S} that goes out of the singular point x_0 dividing the sector K into two equal parts. By v denote one of two directions orthogonal to the direction of I. Let $\{F^t\}_{t \in \mathbb{R}}$ be the directional flow in direction v. By I_0 denote the segment I without its endpoints. For any $t > 0$ let D_t denote the set of points of the form $F^t x$, where $x \in I_0$ and $0 < \tau < t$. If t is small enough, then D_t is a rectangle with sides \sqrt{S} and t. Let t_1 be the maximal number with this property. The area of the rectangle D_{t_1} is equal to $t_1 \sqrt{S}$, hence $t_1 \leq \sqrt{S}$. Set $D'_t = D_t \cup F^{t_1} I_0$. Any point $x \in D'_t$ can be joined to the point x_0 by a geodesic segment J_x such that all interior points of J_x are contained in D_{t_1}. The segment J_x crosses the sector K and the length of J_x is at most $\sqrt{t_1^2 + S} \leq 2\sqrt{S}$. It follows that the set D'_{t_1} is disjoint from saddle connections L_1, \ldots, L_k and contains no singular points. Likewise, the set $D'_{-t_1} = \{F^t x \mid x \in I_0, -t_1 \leq t < 0\}$ is also disjoint from L_1, \ldots, L_k and contains no singular...
By construction, at least some of periodic geodesics in \(\Lambda \) do not intersect saddle connections. Let \(D \) intersect the domain contained within a periodic cylinder of length at most \(\pi \). Let \(y_0 \) denote the endpoint of \(I \) different from \(x_0 \). It is easy to see that the set \(I_1 = I_0 \cap F^{t_1} I_0 \) is an open subsegment of \(I_0 \) and \(y_0 \) is an endpoint of \(I_1 \). Suppose that \(I_1 \neq I_0 \). Let \(y \) be an endpoint of \(I_1 \) that is an interior point of \(I \). Obviously, \(F^{-t_1} y \in I \). Since \(y \) is an endpoint of \(I_1 \), it follows that \(F^{-t_1} y = x_0 \). On the other hand, \(F^{-t_1} y \in D^{r-t_1} \). This contradiction proves that \(I_1 = I_0 \). It follows that the set \(D_t \) is a union of periodic geodesics of length \(t_1 \) and of direction \(v \). Therefore \(D_t \) is contained in a periodic cylinder \(\Lambda \) of length \(t_1 \leq \sqrt{S} \). The cylinder \(\Lambda \) contains the sector \(K \).

By construction, at least some of periodic geodesics in \(\Lambda \) do not intersect saddle connections \(L_1, \ldots, L_k \). It follows easily that the whole cylinder is disjoint from \(L_1, \ldots, L_k \).

Now suppose that condition (2) does not hold. We have to show that condition (1) does hold in this case. By the above the saddle connections \(L_1, \ldots, L_k \) divide a small neighborhood of each singular point into sectors of angle at most \(\pi \). Moreover, each sector of angle \(\pi \) is contained within a periodic cylinder of length at most \(\sqrt{S} \) disjoint from \(L_1, \ldots, L_k \). The saddle connections \(L_1, \ldots, L_k \) partition the surface \(M \) into finitely many domains. Let \(D \) be one of these domains. Take a singular point \(x_0 \) at the boundary of \(D \). A small neighborhood of \(x_0 \) intersects the domain \(D \) in one or more sectors of angle at most \(\pi \). Let \(K \) be one of such sectors. If the sector \(K \) is of angle \(\pi \), then it is contained in a periodic cylinder \(\Lambda \) of length at most \(\sqrt{S} \) disjoint from \(L_1, \ldots, L_k \). Clearly, \(\Lambda \subset D \). The lengths of saddle connections bounding the cylinder \(\Lambda \) do not exceed the length of \(\Lambda \). Any of these saddle connections either is disjoint from \(L_1, \ldots, L_k \) or coincides with one of them. Since condition (2) does not hold, all saddle connections bounding \(\Lambda \) are among \(L_1, \ldots, L_k \). This means that \(D = \Lambda \). Now consider the case when the angle of the sector \(K \) is less than \(\pi \). The sector \(K \) is bounded by some saddle connections \(L_i \) and \(L_j \). Let \(T \) be a triangle such that \(T \) contains the sector \(K \), the saddle connection \(L_i \) is a side of \(T \), and a subsegment of \(L_j \) is another side of \(T \). Obviously, \(T \subset D \).

We can assume without loss of generality that \(T \) is the maximal triangle with this property. By \(L_0 \) denote the side of \(T \) different from \(L_i \) and from the subsegment of \(L_j \). Let \(J \) be a geodesic segment that goes out of the point \(x_0 \) across sector \(K \), crosses the triangle \(T \), and ends in a point \(y \in L_0 \). The length of \(J \) is less than the sum of lengths of \(L_i \) and \(L_j \), which, in turn, is at most \(2\sqrt{2S} \). Since condition (2) does not hold, the point \(y \) can not be singular. It follows that the side \(L_0 \) is a single geodesic segment. By the maximality of \(T \), the whole saddle connection \(L_j \) is a side of \(T \). Then \(L_0 \) is a saddle connection. By the triangle inequality, the length of \(L_0 \) is at most \(2\sqrt{2S} \). Hence \(L_0 \) is one of the saddle connections \(L_1, \ldots, L_k \) as otherwise \(L_0 \) is disjoint from \(L_1, \ldots, L_k \). This means that \(D = T \). Thus condition (1) holds.

For any operator \(a \in \text{SL}(2, \mathbb{R}) \), let \(\|a\| \) denote the norm of \(a \) and \(C(a) \) denote the condition number of \(a \):

\[
\|a\| = \max_{v \in \mathbb{R}^2, \|v\|=1} |av|, \quad C(a) = \max(\|a\|, \|a^{-1}\|).
\]

Obviously, \(C(a_1 a_2) \leq C(a_1) C(a_2) \) for any \(a_1, a_2 \in \text{SL}(2, \mathbb{R}) \). Suppose \(L \) is a geodesic segment of a translation structure \(\omega \). Then the lengths of the segment \(L \) with respect to translation structures \(\omega \) and \(\omega \delta \) differ by at most \(C(a) \) times.

Proof of Theorem 1.3. Let \(\delta \in (0, 1) \). Set \(\varepsilon = (8m\delta^{-1})^{-2m^{-1}} \). Note that \(\varepsilon^{2-3m} \leq 1/2 \).

Let \(\omega \) denote the translation structure of the translation surface \(M \). Suppose that a sequence \(L_1, \ldots, L_k \) (\(k \geq 0 \)) of pairwise disjoint saddle connections and a sequence of operators \(a_0, a_1, \ldots, a_k \in \text{SL}(2, \mathbb{R}) \) satisfy the following two conditions: (i) \(C(a_i) \leq (1/\varepsilon)^{1-2^{-i}} \).
for $i = 0, 1, \ldots, k$; and (ii) the length of L_i with respect to the translation structure $a_i \omega$, $1 \leq i \leq j \leq k$, does not exceed $2\sqrt{2S} \varepsilon^{-2^{j-i}}$. Furthermore, suppose there exists a saddle connection L disjoint from L_1, \ldots, L_k and of length at most $2\sqrt{2S}$ with respect to the translation structure $a_k \omega$. Let $v, u \in S^3$ be orthogonal vectors such that v is parallel to the saddle connection L with respect to $a_k \omega$. Define an operator $b \in \text{SL}(2, \mathbb{R})$ by equalities $bv = \varepsilon^{2^{-k-1}}v$, $bu = \varepsilon^{-2^{-k-1}}u$. Further, set $a_{k+1} = ba_k$. Obviously, $C(b) = (1/\varepsilon)^{2^{-k-1}}$, hence $C(a_{k+1}) \leq C(b)C(a_k) \leq (1/\varepsilon)^{2^{-k-1}} \leq (1/\varepsilon)^{2^{-k}}$. The length of the saddle connection L with respect to $a_{k+1} \omega$ is at most $2\sqrt{2S} \varepsilon^{2^{-k}}$, while the length of saddle connections L_1, \ldots, L_k with respect to $a_{k+1} \omega$ is at most $2\sqrt{2S} \varepsilon^{2^{-k}}C(b) = 2\sqrt{2S} \varepsilon^{2^{-k}}$. Thus the sequence of saddle connections L_1, \ldots, L_k, L and the sequence of operators $a_0, a_1, \ldots, a_k, a_{k+1}$ satisfy the conditions (i) and (ii).

Pairs of sequences satisfying conditions (i) and (ii) do exist, for example, the empty sequence of saddle connections and the sequence consisting of one operator $a_0 = 1$. By Proposition 2.1, the number of pairwise disjoint saddle connections can not exceed $3m$. Therefore there exists a pair of sequences L_1, \ldots, L_k and a_0, a_1, \ldots, a_k satisfying conditions (i) and (ii) with maximal possible k. The lengths of the saddle connections L_1, \ldots, L_k with respect to $a_k \omega$ are at most $2\sqrt{2S} \varepsilon^{2^{-k}} \leq 2\sqrt{2S} \varepsilon^{2^{-3m}} \leq \sqrt{S}$, thus Proposition 3.1 applies. By the maximality of k, there is no saddle connection disjoint from L_1, \ldots, L_k and of length at most $2\sqrt{2S}$ with respect to the translation structure $a_k \omega$. Thus the saddle connections L_1, \ldots, L_k partition the surface M into finitely many domains such that each domain is either a periodic cylinder of length at most \sqrt{S} with respect to $a_k \omega$ or a triangle bounded by three saddle connections. Any triangle in this partition is of area at most $\frac{1}{8}(2\sqrt{2S} \varepsilon^{2^{-k}})^2$ with respect to both $a_k \omega$ and ω. It follows from Proposition 2.1 that there are at most $2m$ triangles in the partition. Hence the union of these triangles is of area at most

$$m(2\sqrt{2S} \varepsilon^{2^{-k}})^2 \leq m(2\sqrt{2S} \varepsilon^{2^{-3m}})^2 = \delta S.$$

Then the union of all periodic cylinders in the partition is of area at least $(1 - \delta)S$. It remains to observe that the length of each periodic cylinder with respect to the translation structure ω is at most $C(a_k)\sqrt{S} \leq (1/\varepsilon)^{1-2^{-k}}\sqrt{S} < \varepsilon^{-1}\sqrt{S} = (8m\delta^{-1})^{2^{3m-1}}\sqrt{S}$.

Proof of Theorem 1.2. By Theorem 1.1 for any $\delta \in (0, 1)$ the translation surface M admits a periodic geodesic of length at most $(8m\delta^{-1})^{2^{3m-1}}\sqrt{S}$. For any $T > 0$ the number of periodic cylinders of length at most T is finite, therefore there exists a shortest periodic geodesic. Let l denote its length. Since $l \leq (8m\delta^{-1})^{2^{3m-1}}\sqrt{S}$ for any $\delta \in (0, 1)$, we have $l \leq (8m)^{2^{3m-1}}\sqrt{S}$.

Proof of Theorem 1.3. In the case $m = 1$ the translation surface M is a torus with one removable singular point. Here every cylinder of periodic geodesics fills the whole surface (up to the boundary saddle connection). As $a_1 = 8^{2^2} = 2^{12} < 2^{2^2} = \beta_1$, the theorem follows from Theorem 1.2 in this case.

Consider the case $m \geq 2$. By Theorem 1.4 there exist pairwise disjoint periodic cylinders $\Lambda_1, \ldots, \Lambda_k$ of length at most $(8m^2)^{2^{3m-1}}\sqrt{S}$ such that the area of the union $\Lambda_1 \cup \ldots \cup \Lambda_k$ is at least $(1 - 1/m)S$. Each cylinder Λ_i can be triangulated by pairwise disjoint saddle connections. The number of triangles in any triangulation is at least 2. If we require that each side of any triangle is a saddle connection (not a union of several saddle connections), then the number of triangles is equal to the number of saddle connections bounding Λ_i, where saddle connections bounding Λ_i from both sides should be counted twice. All saddle connections used in triangulation of the
cylinders $\Lambda_1, \ldots, \Lambda_k$ are pairwise disjoint since the cylinders are disjoint. By Proposition 2.1, we can add several saddle connections to obtain a partition of the surface M into $2m$ triangles bounded by disjoint saddle connections. It follows easily that the number k of cylinders is at most m. Moreover, if $k = m$ then the closure of the union $\Lambda_1 \cup \ldots \cup \Lambda_k$ is the whole surface M. In the latter case at least one of the cylinders $\Lambda_1, \ldots, \Lambda_k$ is of area not less than S/m. In the case $k < m$ one of the cylinders is of area not less than $(1 - 1/m)S/k \geq (1 - 1/m)S/(m-1) = S/m$.

To complete the proof, it remains to show that $(8m^2)^{2^{3m-1}} \leq \beta_m$. It is easy to observe that $8m^2 \leq 2^{2m+1}$ and $2m + 1 < 2^{m+1}$ for any integer $m \geq 1$. Hence, $(8m^2)^{2^{3m-1}} \leq 2^{(2m+1)2^{3m-1}} < 2^{2^{2m}} = \beta_m$.

4 Density of directions of periodic geodesics

In this section we prove Theorems 1.5 and 1.7. They are derived from Theorems 1.3 and 1.4, respectively.

Proof of Theorem 1.5 Let ω denote the translation structure of the translation surface M. We have to show that for any direction $v \in S^1$ and any $\varepsilon > 0$ there exists a periodic cylinder of ω of area at least S/m such that the angle between v and the direction of the cylinder is less than ε.

Let $u \in S^1$ be a direction orthogonal to v. For any $\lambda > 1$ define an operator $a_\lambda \in \text{SL}(2, \mathbb{R})$ by equalities $a_\lambda v = \lambda^{-1}v$, $a_\lambda u = \lambda u$. The sum of multiplicities of singular points of the translation structure $a_\lambda \omega$ is equal to m and the area of the surface M with respect to $a_\lambda \omega$ is equal to S. By Theorem 1.3 there exists a periodic cylinder Λ_λ of area at least S/m such that the length of Λ_λ with respect to $a_\lambda \omega$ is at most $l = 2^{2^m} \sqrt{S}$. Let h_λ and w_λ be projections of a periodic geodesic from the cylinder Λ_λ on the directions v and u (with respect to the translation structure ω). Further, let φ_λ be the angle between v and the direction of Λ_λ, where the direction of the cylinder is chosen so that $0 \leq \varphi_\lambda \leq \pi/2$. Obviously, $h_\lambda < \lambda l$, $w_\lambda < \lambda^{-1}l$. Let s denote the length of the shortest saddle connection of ω. Assuming λ is large enough, we have $w_\lambda \leq s/\sqrt{2}$. Since the length of the cylinder Λ_λ, which is equal to $\sqrt{h_\lambda^2 + w_\lambda^2}$, is not less than s, it follows that $h_\lambda \geq s/\sqrt{2}$. Then $\varphi_\lambda \leq \tan \varphi_\lambda = w_\lambda/h_\lambda \leq \lambda^{-1}l \sqrt{2}/s$, which tends to zero as λ goes to infinity.

Proof of Theorem 1.7 Let M be a translation surface. Take a nonempty open subset U of the circle S^1. Let P_U denote the set of points $x \in M$ lying on periodic geodesics with directions in the set U. The set P_U is open. Let us show that this set is of full measure. Take a vector $v \in U$. Choose $\varepsilon > 0$ such that a direction $v' \in S^1$ belongs to U whenever the angle between v' and v is less than ε. Further, choose some $\delta \in (0, 1)$. Let $u \in S^1$ be a direction orthogonal to v. For any $\lambda > 1$ define an operator $a_\lambda \in \text{SL}(2, \mathbb{R})$ by equalities $a_\lambda v = \lambda^{-1}v$, $a_\lambda u = \lambda u$. Let ω denote the translation structure of M, m denote the sum of multiplicities of singular points of M, and S denote the area of M. By Theorem 1.4 there exist pairwise disjoint periodic cylinders $\Lambda_1, \ldots, \Lambda_k$ such that the length of every cylinder with respect to the translation structure $a_\lambda \omega$ is at most $l_\delta = (8m\delta^{-1})^{2^{3m-1}} \sqrt{S}$ and the area of the union $\Lambda_1 \cup \ldots \cup \Lambda_k$ is at least $(1 - \delta)S$ (with respect to both $a_\lambda \omega$ and ω). Take some cylinder Λ_i. Let h and w be projections of a periodic geodesic from the cylinder Λ_i on the directions v and u (with respect to the translation structure ω). Further, let φ be the angle between v and the direction of Λ_i ($0 \leq \varphi \leq \pi/2$). Obviously, $h \leq \lambda l_\delta$, $w \leq \lambda^{-1}l_\delta$. Let s denote the length of the shortest saddle
connection of ω. The length of the cylinder Λ_i is not less than s. If $\lambda \geq l_\delta \sqrt{2}/s$, then $w \leq s/\sqrt{2}$, hence $h \geq s/\sqrt{2}$. It follows that $\varphi \leq \tan \varphi = w/h \leq \lambda^{-1}l_\delta \sqrt{2}/s$. If, moreover, $\lambda > \epsilon^{-1}l_\delta \sqrt{2}/s$, then $\varphi < \epsilon$ and the direction of the cylinder Λ_i is in the set U. Thus the cylinders $\Lambda_1, \ldots, \Lambda_k$ are contained in the set P_U provided λ is sufficiently large. Then the area of P_U is at least $(1 - \delta)S$. As δ can be chosen arbitrarily small, the area of P_U is equal to S.

Choose a sequence U_1, U_2, \ldots of nonempty open subsets of the circle S^1 such that any other nonempty open subset of S^1 contains some U_i. By the above the sets P_{U_i}, P_{U_2}, \ldots are open sets of full measure. Hence the set $P_\infty = \cap_{i=1}^\infty P_{U_i}$ is a G_δ-subset of full measure of the surface M. Take a point $x \in P_\infty$. For any positive integer i there exists a direction $v_i \in U_i$ that is the direction of a periodic geodesic passing through x. By construction, the sequence v_1, v_2, \ldots is dense in S^1. The first statement of the theorem is proved.

To derive statement (b) of Theorem 5.1 from statement (a), we only need to recall the Zemlyakov-Katok construction (see Section 2). Let Q be a rational polygon and M be the translation surface associated to Q. By construction, there is a continuous map $f : M \to Q$ and a domain $D \subset M$ containing no singular points such that f maps the domain D isometrically onto the interior of the polygon Q. Moreover, if L is a geodesic passing through a point $x \in D$ in a direction $v \in S^1$, then $f(L)$ is the billiard orbit in Q starting at the point $f(x)$ in the direction v. The billiard orbit $f(L)$ is periodic if and only if the geodesic L is periodic. By the above there exists a G_δ-set $M_0 \subset M$ of full measure such that for any $x \in M_0$ the directions of periodic geodesics passing through x are dense in S^1. Then the set $Q_0 = f(D \cap M_0)$ is a G_δ-subset of the polygon Q and the area of Q_0 is equal to the area of Q. For any point $x \in Q_0$ the directions of periodic billiard orbits in Q starting at x are dense in S^1.

5 Lower quadratic estimates

Let M be a translation surface. In this section we obtain effective estimates of the growth functions $N_1(M, \cdot)$ and $N_2(M, \cdot)$, where $N_1(M, T)$ is the number of cylinders of periodic geodesics of length at most T and $N_2(M, T)$ is the sum of areas of those cylinders. Throughout the section m denotes the sum of multiplicities of singular points of the translation surface M ($m \geq 1$), S denotes the area of M, and s denotes the length of the shortest saddle connection of M.

For any $T > 0$ let $N_0(M, T)$ denote the number of saddle connection of M of length at most T. An effective upper estimate of this number was obtained in [Vo].

Theorem 5.1 ([Vo]) $N_0(M, T) \leq h_m s^{-2} T^2$ for any $T > 0$, where $h_1 = (3 \cdot 2^7)^6$ and $h_m = (400m)^{(2m)^2m}$ for $m \geq 2$.

In the case $m = 1$ the latter estimate can be significantly improved.

Lemma 5.2 Suppose M is a translation torus with a single (removable) singular point. Then $N_0(M, T) \leq 7s^{-2} T^2$ for any $T > 0$. In addition, $s^2 \leq 3S/2$.

Proof. The translation torus M is isometric to a torus $\mathbb{R}^2/(v_1\mathbb{Z} \oplus v_2\mathbb{Z})$, where v_1 and v_2 are linearly independent vectors in \mathbb{R}^2 (we do not require that the isometry preserve directions). Let $\mathcal{L} = v_1\mathbb{Z} \oplus v_2\mathbb{Z}$. By \mathcal{L}_0 denote the set of vectors in \mathcal{L} contained in neither of the lattices $2\mathcal{L}, 3\mathcal{L}, \ldots$. The isometry establishes a one-to-one correspondence between saddle connections.
of M and pairs of vectors $\pm v \in \mathcal{L}_0$. The length of a saddle connection is equal to the length of the corresponding vectors. By H denote the set of points $(y_1, y_2) \in \mathbb{R}^2$ such that either $y_2 > 0$, or $y_2 = 0$ and $y_1 > 0$. Then $N_0(M, T)$ is equal to the number of vectors of length at most T in the set $H \cap \mathcal{L}_0$. Notice that the vectors v_1 and v_2 are not determined in a unique way. Without loss of generality it can be assumed that $v_1 = (0, s)$ and $v_2 = (S/s, y)$, where $0 \leq y < s$. Then $\min(|v_2|, |v_2 - v_1|) \leq \sqrt{(S/s)^2 + (s/2)^2}$. Since $|v| \geq s$ for any nonzero vector $v \in v_1\mathbb{Z} \oplus v_2\mathbb{Z}$, we have $s^2 \leq (S/s)^2 + (s/2)^2$. It follows that $s^2 \leq 2S/\sqrt{3} \leq 3S/2$.

Let i and j be positive integers. The rectangle $P_{i,j} = ((i - 1)/s, iS/s) \times ((j - 1)/s, js) \subset \mathbb{R}^2$ is contained in the halfplane H and contains precisely one element of the lattice \mathcal{L}. Likewise, the rectangle $P_{i,j}^- = [-iS/s, -(i - 1)/s] \times ((j - 1)/s, js)$ is contained in H and contains only one element of \mathcal{L}. Given $T > 0$, let $B_T = \{v \in \mathbb{R}^2 : |v| \leq T\}$. The number of rectangles of the form $P_{i,j}^\pm$ contained in the halfdisc $B_T \cap H$ does not exceed $\pi T^2/(2S)$. For any $k \in \mathbb{Z}$ set $L_k = \{(y_1, y_2) \in H : y_1 = Sk/s\}$. If $k \neq 0$, then the halfline L_k contains at most one element $v \in \mathcal{L}$ such that $v \in B_T$ but the rectangle of the form $P_{i,j}^\pm$ containing v is not contained in B_T. The halfline L_0 contains at most T/s elements of $B_T \cap \mathcal{L}$. Finally, the cardinality of the set $B_T \cap H \cap \mathcal{L}$ is at most $\pi T^2/(2S) + 2sT/S + T/s$. As this cardinality is not less than $N_0(M, T)$, we have $N_0(M, T) \leq \pi T^2/(2S) + 2sT/S + T/s \leq 3\pi s^2T^2/4 + 4s^{-1}T \leq 3S^{-2}T^2 + 4s^{-1}T$. It follows that $N_0(M, T) \leq 7s^{-2}T^2$ for $T \geq s$. If $T < s$, then $N_0(M, T) = 0 < 7s^{-2}T^2$.

The following lemma is an improved version of Theorem 1.3 for translation tori.

Lemma 5.3 Suppose M is a translation torus with $m \geq 1$ singular points. Then there exists a cylinder of periodic geodesics of length at most $2\sqrt{3}$ and of area at least s/m.

Proof. Let ω denote the translation structure of the translation torus M. Let x_1, x_2, \ldots, x_m be the singular points of ω. All singular points are removable. By ω_1 denote the translation structure on M such that $\omega_1 \supset \omega$ and x_1 is the only singular point of ω_1. Let M_1 denote the torus M considered as the translation surface with the translation structure ω_1. Let S be the area of M_1 and s_1 be the length of the shortest saddle connection of M_1. It is easy to observe that $S_1 = S$ and $s_1 \geq s$. The shortest saddle connection of M_1 bounds a periodic cylinder Λ of M_1. The length of Λ is equal to s_1 and the area of Λ is equal to S. By Lemma 5.2, $s_1 \leq \sqrt{3S/2} < 2\sqrt{S}$. The points x_2, \ldots, x_m split the cylinder Λ into several periodic cylinders of the translation surface M. All these cylinders are of length $s_1 \leq 2\sqrt{S}$. The number of the cylinders does not exceed m, hence at least one of them is of area not less than s/m.

Proof of Theorem 1.8. Let M be a translation surface. To each cylinder of periodic geodesics of M we assign a saddle connection bounding the cylinder. The length of the saddle connection does not exceed the length of the cylinder. It is possible that a saddle connection bounds two different periodic cylinders. Nevertheless the assignment can be done so that any saddle connection is assigned to at most one cylinder. It follows that $N_1(M, T) \leq N_0(M, T)$ for any $T > 0$. Thus Theorem 5.1 (in the case $m \geq 2$) and Lemma 5.2 (in the case $m = 1$) imply that $N_1(M, T) \leq (400m)^{(2m)^2/m} s^{-2}T^2$ for any $T > 0$. Besides, the estimate $N_2(M, T)/S \leq N_1(M, T)$ is trivial.

We proceed to the proof of the lower estimate of $N_2(M, T)$. Let $C_0 = \tilde{h}_m s^{-2}$, where $\tilde{h}_1 = 7$ and $\tilde{h}_m = (400m)^{(2m)^2/m}$ for $m \geq 2$. By Theorem 5.1 and Lemma 5.2, $N_1(M, T) \leq N_0(M, T) \leq C_0T^2$ for any $T > 0$. Denote by $\sigma(T)$ the sum of inverse lengths over all cylinders of periodic geodesics of length at most T. Let $T_1 \leq T_2 \leq \ldots \leq T_n \leq \ldots$ be lengths of periodic cylinders
of M in ascending order. It follows from the estimate $N_1(M, T) \leq C_0 T^2$ that $T_n \geq C_0^{-1/2} n^{1/2}$, $n = 1, 2, \ldots$. Therefore,

$$\sigma(T) = \sum_{n : T_n \leq T} T_n^{-1} \leq C_0^{1/2} \sum_{n : T_n \leq T} n^{-1/2} \leq C_0^{1/2} \sum_{n \leq C_0 T^2} n^{-1/2} \leq C_0^{1/2} \int_0^{C_0 T^2} x^{-1/2} \, dx = C_0^{1/2} \cdot 2(C_0 T^2)^{1/2} = 2C_0 T.$$

Set $T_0 = l_m \sqrt{S}$, where $l_1 = l_2 = 2$ and $l_m = 2^{24m}$ for $m \geq 3$. Let Λ be a periodic cylinder and $|\Lambda|$ be the length of Λ. For any $\lambda \geq 1$ let $A_\lambda(\lambda)$ denote the set of directions $v \in S^1$ such that the projection of periodic geodesics from Λ on the direction orthogonal to v is at most $\lambda^{-1} T_0$. Let $v \in A_\lambda(\lambda)$ and φ be the angle between v and the direction of the cylinder Λ ($0 \leq \varphi \leq \pi/2$). Then $\varphi \leq \pi/2 \cdot \sin \varphi \leq \pi/2 \cdot \lambda^{-1} T_0/|\Lambda|$. It follows that

$$\nu(A_\lambda(\lambda)) \leq 4 \cdot \pi/2 \cdot \lambda^{-1} T_0/|\Lambda| = 2\pi \frac{T_0 \lambda^{-1} \cdot |\Lambda|^{-1}},$$

where ν is Lebesgue measure on the circle S^1 normalized so that $\nu(S^1) = 2\pi$.

Take an arbitrary number $T \geq T_0$ and set $\lambda = T/T_0$. Let ω denote the translation structure of the translation surface M. For any direction $v \in S^1$ define an operator $a_{\lambda,v} \in \text{SL}(2, \mathbb{R})$ by equalities $a_{\lambda,v} v = \lambda^{-1} v$, $a_{\lambda,v} u = \lambda u$, where $u \in S^1$ is a vector orthogonal to v. We claim that there exists a periodic cylinder Λ of area at least S/m such that the length of Λ with respect to the translation structure $a_{\lambda,v} \omega$ does not exceed T_0. In the case $m \geq 3$, this follows from Theorem 1.3. In the case $m \leq 2$, the translation surface M is a torus, thus the claim follows from Lemma 5.3. The projection of a geodesic from Λ on the direction u (with respect to the translation structure ω) is at most $\lambda^{-1} T_0$, hence $v \in A_\lambda(\lambda)$. Since $\lambda \geq 1$, the condition number (see Section 3) of the operator $a_{\lambda,v}$ is equal to λ. Therefore, $|\Lambda| \leq \lambda T_0 = T$. It follows that the union of sets $A_\lambda(\lambda)$ over all periodic cylinders Λ of length at most T (with respect to ω) and of area at least S/m is the circle S^1.

Let Σ denote the sum of measures of sets $A_\lambda(\lambda)$, where Λ runs over all periodic cylinders of length at most T and of area at least S/m. Since these sets cover the whole circle S^1, we have $\Sigma \geq 2\pi$. Set $\alpha = (4T_0^4 C_0)^{-1}$. By Theorem 1.3 and Lemma 5.3, the translation structure ω admits a periodic cylinder of length at most T_0, hence $1 \leq N_1(M, T_0) \leq C_0 T_0^2$. In particular, $\alpha \leq 1/4$. The sum Σ can be written as $\Sigma_1 + \Sigma_2$, where Σ_1 is the sum of summands corresponding to the cylinders of length at most αT, and Σ_2 is the sum over cylinders of length greater than αT. It follows from the above estimate of $\nu(A_\lambda(\lambda))$ that

$$\Sigma_1 \leq 2\pi T_0 \lambda^{-1} \cdot \sigma(\alpha T) \leq 2\pi T_0 \lambda^{-1} \cdot 2C_0 \alpha T, \quad \Sigma_2 \leq 2\pi T_0 \lambda^{-1} \cdot (\alpha T)^{-1} N(T),$$

where $N(T)$ is the number of periodic cylinders of length at most T and of area at least S/m. Then

$$2\pi \leq 2\pi T_0 \lambda^{-1} (2C_0 \alpha T + (\alpha T)^{-1} N(T)),$$

thus,

$$N(T) \geq (T_0^{-1} \lambda - 2C_0 \alpha T)(\alpha T) = (8T_0^4 C_0)^{-1} T^2.$$

Consequently,

$$N_2(M, T)/S \geq N(T)/m \geq (8m T_0^4 C_0)^{-1} T^2 = (8m^4 \tilde{h}_m)^{-1} s^2 S^{-2} T^2.$$
To complete the proof, it remains to show that $8ml^4 \tilde{h}_m \leq (600m)^{(2m)^2m}$. If $m = 1$, then $8ml^4 \tilde{h}_m = 7 \cdot 2^7 < 600^4$. If $m = 2$, then $8ml^4 \tilde{h}_m = 2^8 \cdot 800^4 < 1200^4$. In the case $m \geq 3$, we have $(m/2)^{2m} \geq (3/2)^6 > 10$. Then $(2m)^{2m} > 10 \cdot 2^{4m} = 10 \cdot 2^{4m}$. It follows that $(3/2)^{(2m)^2m} > 2^{4m}$. Besides, $2^{4m} > 8m$. Finally,

$$(8ml^4 \tilde{h}_m)^{-(2m)^2m} = (8m)^{-1} \cdot 2^{-4 \cdot 2^{4m}} \cdot (3/2)^{(2m)^2m} >$$

$$(8m)^{-1} \cdot 2^{2^{4m}} > 2^{4m} \cdot 2^{-4} > 2^{4m} > 1.$$

The theorem is proved.

6 Moduli spaces of translation structures

In this section we consider moduli spaces of translation structures on a given surface and properties of periodic geodesics of a generic translation structure.

Let M, M' be translation surfaces, and ω, ω' be their translation structures. An orientation-preserving homeomorphism $f : M \to M'$ is called an isomorphism of the translation surfaces if f maps the set of singular points of M onto the set of singular points of M' and f is a translation in local coordinates of the atlases ω and ω'. The translation structures ω and ω' are called isomorphic if there is an isomorphism $f : M \to M'$. If the isomorphism can be chosen isotopic to the identity, then the structures ω and ω' are called isotopic. A homeomorphism $f : M \to M'$ is said to be piecewise affine if there exists a triangulation of the translation surface M such that f is affine on every triangle of the triangulation in local coordinates of the atlases ω and ω'. The linear parts a_1, \ldots, a_k of restrictions of f to the triangles are uniquely determined. Set $b(f) = \max(||a_1 - 1||, \ldots, ||a_k - 1||)$. Clearly, $b(f) = 0$ if and only if f is an isomorphism of translation surfaces.

Given positive integers p and n, let M_p be a compact connected oriented surface of genus p and Z_n be a subset of M_p of cardinality n. Denote by $\Omega(p, n)$ the set of translation structures on M_p such that Z_n is the set of singular points. By $\tilde{\mathcal{M}}(p, n)$ denote the set of equivalence classes of isomorphic translation structures in $\Omega(p, n)$, and by $\mathcal{M}(p, n)$ denote the set of equivalence classes of isomorphic translation structures in $\Omega(p, n)$. Both sets $\tilde{\mathcal{M}}(p, n)$ and $\mathcal{M}(p, n)$ can serve as moduli spaces of translation structures on M_p with n singular points.

Given a translation structure $\omega = \{(U_\alpha, \phi_\alpha)\}_{\alpha \in \mathcal{A}}$ on M_p and a homeomorphism $f : M_p \to M_p$, the atlas $\omega f = \{(f^{-1}(U_\alpha), \phi_\alpha f)\}_{\alpha \in \mathcal{A}}$ is a translation structure on M_p isomorphic to ω. Let $H(p, n)$ denote the group of orientation-preserving homeomorphisms of the surface M_p leaving invariant the set Z_n. By $H_0(p, n)$ denote the subgroup of $H(p, n)$ consisting of homeomorphisms isotopic to the identity. For any $\omega \in \Omega(p, n)$ and $f \in H(p, n)$, the translation structure ωf belongs to $\Omega(p, n)$. The map $H(p, n) \times \Omega(p, n) \ni (f, \omega) \mapsto \omega f^{-1}$ defines an action of the group $H(p, n)$ on the set $\Omega(p, n)$. By definition, $\tilde{\mathcal{M}}(p, n) = \Omega(p, n)/H_0(p, n)$ and $\mathcal{M}(p, n) = \Omega(p, n)/H(p, n)$. The modular group $\text{Mod}(p, n) = H(p, n)/H_0(p, n)$ acts naturally on the set $\tilde{\mathcal{M}}(p, n)$ and $\mathcal{M}(p, n) = \tilde{\mathcal{M}}(p, n)/\text{Mod}(p, n)$. Further, the group $\text{SL}(2, \mathbb{R})$ acts on the set $\Omega(p, n)$ as defined in Section 4. Obviously, this action commutes with the action of $H(p, n)$. Therefore the action of $\text{SL}(2, \mathbb{R})$ descends to actions on the spaces $\tilde{\mathcal{M}}(p, n)$ and $\mathcal{M}(p, n)$. The action of the group $\text{SL}(2, \mathbb{R})$ on $\tilde{\mathcal{M}}(p, n)$ commutes with the action of $\text{Mod}(p, n)$.

For any $\omega \in \Omega(p, n)$, let $M_p(\omega)$ denote the surface M_p considered as the translation surface with the translation structure ω. Suppose $\omega \in \Omega(p, n)$ and $\varepsilon > 0$. By definition, a translation
structure $\omega' \in \Omega(p, n)$ belongs to the set $W(\omega, \varepsilon)$ if there exists a piecewise affine map $f : M_p(\omega) \to M_p(\omega')$ such that $b(f) < \varepsilon$ and $f \in H(p, n)$. Further, $\omega' \in \tilde{W}(\omega, \varepsilon)$ if the map f can be chosen in $H_0(p, n)$. The collection of sets $W(\omega, \varepsilon)$, where $\omega \in \Omega(p, n)$ and $\varepsilon > 0$, generates a topology W on $\Omega(p, n)$. The collection of sets $\tilde{W}(\omega, \varepsilon)$ generates a stronger topology \tilde{W}. The topology \tilde{W} descends to a Hausdorff topology on $\mathcal{M}(p, n)$, while the topology W descends to a Hausdorff topology on $\mathcal{M}(p, n)$. It can be shown that the topologies on $\tilde{M}(p, n)$ and $\mathcal{M}(p, n)$ are topologies of locally compact metric spaces. The group $\text{SL}(2, \mathbb{R})$ acts on the spaces $\tilde{M}(p, n)$ and $\mathcal{M}(p, n)$ by homeomorphisms. The action of $\text{Mod}(p, n)$ on $\mathcal{M}(p, n)$ is also by homeomorphisms, besides, this action is properly discontinuous.

Let $\gamma : [0, 1] \to M_p$ be a continuous curve. For any $\omega \in \Omega(p, n)$ there exists a continuous curve $\gamma_\omega : [0, 1] \to \mathbb{R}^2$ such that γ is a translation of γ_ω in coordinates of the atlas ω. The curve γ_ω is determined up to translation. The vector $\gamma_\omega(1) - \gamma_\omega(0)$ is called the holonomy of the curve γ with respect to translation structure ω and is denoted by $\text{hol}_\omega(\gamma)$. If γ is a geodesic segment of ω, then the vector $\text{hol}_\omega(\gamma)$ is of the same length and direction as γ. The holonomy $\text{hol}_\omega(\gamma)$ does not change if we replace the curve γ by a homologous one or replace the translation structure ω by an isotopic one. In particular, the map hol_ω is well-defined for $\omega \in \mathcal{M}(p, n)$. Also, the map hol_ω extends to a map of the relative homology group $H_1(M_p, Z_n; \mathbb{Z})$ that is an element of the relative cohomology group $H^1(M_p, Z_n; \mathbb{R})$.

Suppose $\Gamma = (\gamma_1, \ldots, \gamma_N)$ is an ordered basis of the group $H_1(M_p, Z_n; \mathbb{Z})$. Note that $N = 2p + n - 1$. Define a map $C_{\Gamma} : \tilde{M}(p, n) \to (\mathbb{R}^2)^N \approx \mathbb{R}^{2N}$ by $C_{\Gamma}(\omega) = (\text{hol}_\omega(\gamma_1), \ldots, \text{hol}_\omega(\gamma_N))$. The map C_{Γ} is a local homeomorphism (see [V2]). For any ordered basis Γ' of $H_1(M_p, Z_n; \mathbb{Z})$ there exists a unique linear operator $g \in \text{GL}(2N, \mathbb{R})$ such that $C_{\Gamma'} = gC_{\Gamma}$. It is easy to observe that $g \in \text{GL}(2N, \mathbb{Z})$. The inverse operator g^{-1} is also in $\text{GL}(2N, \mathbb{Z})$, hence $|\det g| = 1$. Thus the collection of maps of the form C_{Γ} endows the space $\tilde{M}(p, n)$ with the structure of a real analytic $2N$-dimensional manifold along with a volume element. Every element $\phi \in \text{Mod}(p, n)$ induces an automorphism ϕ_* of the group $H_1(M_p, Z_n; \mathbb{Z})$. Clearly, $C_{\Gamma}(\omega \phi) = C_{\Gamma}(\omega)$ for any $\omega \in \tilde{M}(p, n)$, where $\Gamma' = (\phi_*^{-1}\gamma_1, \ldots, \phi_*^{-1}\gamma_N)$. It follows that the action of $\text{Mod}(p, n)$ on the space $\tilde{M}(p, n)$ is analytic and preserves the volume element. Further, $C_{\Gamma}(g\omega) = (g \text{hol}_\omega(\gamma_1), \ldots, g \text{hol}_\omega(\gamma_N))$ for any $g \in \text{SL}(2, \mathbb{R})$ and $\omega \in \tilde{M}(p, n)$, hence the action of $\text{SL}(2, \mathbb{R})$ on $\tilde{M}(p, n)$ is also real analytic and also preserves the volume element.

For any $\omega \in \tilde{M}(p, n)$, let $a(\omega)$ denote the area of the surface M_p with respect to translation structures in the isotopy class ω. It is easy to see that $a(\omega)$ is a quadratic form of the vector $C_{\Gamma}(\omega)$. Therefore the set $\tilde{M}_1(p, n) = a^{-1}(1)$ is a real analytic submanifold of $\tilde{M}(p, n)$ of codimension 1. This submanifold is invariant under the actions of $\text{Mod}(p, n)$ and $\text{SL}(2, \mathbb{R})$. The volume element on $\tilde{M}(p, n)$ induces a volume element on $\tilde{M}_1(p, n)$. By $\tilde{\mu}_0$ denote the corresponding Borel measure on $\tilde{M}_1(p, n)$. Let $\pi_0 : \tilde{M}(p, n) \to \mathcal{M}(p, n)$ be the natural projection. The set $\mathcal{M}_1(p, n) = \pi_0(\tilde{M}_1(p, n))$ is a topological subspace of $\mathcal{M}(p, n)$ invariant under the action of $\text{SL}(2, \mathbb{R})$. It can be shown that the number of connected components of $\mathcal{M}_1(p, n)$ is at most finite. Since the action of the group $\text{Mod}(p, n)$ on $\tilde{M}_1(p, n)$ is properly discontinuous, there exists a unique Borel measure μ_0 on $\mathcal{M}_1(p, n)$ such that $\mu_0(\pi_0(U)) = \tilde{\mu}_0(U)$ whenever the set $U \subset \tilde{M}_1(p, n)$ is Borel and π_0 is injective on U. The measure μ_0 is invariant under the action of $\text{SL}(2, \mathbb{R})$. In addition, the measure μ_0 is finite (see [M1], [V2]).

The maps $H(p, n) \times \Omega(p, n) \times M_p \ni (f, \omega, x) \mapsto (\omega f^{-1}, f(x))$ and $\text{SL}(2, \mathbb{R}) \times \Omega(p, n) \times M_p \ni (g, \omega, x) \mapsto (g\omega, x)$ define commuting actions of the groups $H(p, n)$ and $\text{SL}(2, \mathbb{R})$ on the set.
$\Omega(p,n) \times M_p$. Set $\tilde{\mathcal{Y}}(p,n) = (\Omega(p,n) \times M_p)/H_0(p,n)$ and $\mathcal{Y}(p,n) = (\Omega(p,n) \times M_p)/H(p,n)$. The topologies \mathcal{W} and \mathcal{W} on the set $\Omega(p,n)$ give rise to topologies \mathcal{W}_1 and \mathcal{W}_1 on $\Omega(p,n) \times M_p$. The topologies \mathcal{W}_1 and \mathcal{W}_1 descend to Hausdorff topologies on $\tilde{\mathcal{Y}}(p,n)$ and $\mathcal{Y}(p,n)$, respectively. Let $p_0 : \tilde{\mathcal{Y}}(p,n) \to \mathcal{M}(p,n)$ and $p_0 : \mathcal{Y}(p,n) \to \mathcal{M}(p,n)$ be the natural projections. The group $\text{SL}(2, \mathbb{R})$ acts on the spaces $\tilde{\mathcal{Y}}(p,n)$ and $\mathcal{Y}(p,n)$ by homeomorphisms. The subspaces $\tilde{\mathcal{Y}}_1(p,n) = p_0^{-1}(\mathcal{M}_1(p,n))$ and $\mathcal{Y}_1(p,n) = p_0^{-1}(\mathcal{M}_1(p,n))$ are invariant under these actions.

Let $\tilde{\omega} \in \mathcal{M}(p,n)$. Take a translation structure ω in the isotopy class $\tilde{\omega}$. Fix a triangulation τ of the surface M_p by pairwise disjoint saddle connections of ω. By definition, a translation structure $\omega' \in \Omega(p,n)$ belongs to the set $X(\omega, \tau)$ if there exists a piecewise affine map $f : M_p(\omega) \to M_p(\omega')$ such that $f \in H_0(p,n)$ and f is affine on every triangle of τ. Let $\tilde{X}(\omega, \tau)$ denote the set of isotopy classes $\tilde{\omega}' \in \mathcal{M}(p,n)$ that have representatives in $X(\omega, \tau)$. The set $\tilde{X}(\omega, \tau)$ is open and each $\tilde{\omega}' \in \tilde{X}(\omega, \tau)$ has precisely one representative in $X(\omega, \tau)$. Hence each $\eta \in p_0^{-1}(\tilde{X}(\omega, \tau))$ has precisely one representative in $X(\omega, \tau) \times M_p$. This gives rise to a map $F_{\omega, \tau} : \tilde{\mathcal{Y}}_0^{-1}(\tilde{X}(\omega, \tau)) \to M_p$, which is continuous. The map $\tilde{p}_0^{-1}(\tilde{X}(\omega, \tau)) \ni \eta \mapsto (\tilde{p}_0(\eta), F_{\omega, \tau}(\eta))$ is a homeomorphism of $\tilde{p}_0^{-1}(\tilde{X}(\omega, \tau))$ onto $\tilde{X}(\omega, \tau) \times M_p$. It follows that the space $\tilde{\mathcal{Y}}(p,n)$ is a fiber bundle over $\mathcal{M}(p,n)$ with the fiber M_p.

For any $\omega \in \mathcal{M}(p,n)$ the following conditions are equivalent: (i) translation structures in the isomorphy class ω have no automorphisms different from the identity; (ii) for any $\tilde{\omega} \in \pi_0^{-1}(\omega)$ the restriction of the projection π_0 to some neighborhood of $\tilde{\omega}$ is a homeomorphism. Let U_0 be the open set of $\omega \in \mathcal{M}(p,n)$ satisfying these conditions. The preimage $p_0^{-1}(U_0) \subset \mathcal{Y}(p,n)$ is a fiber bundle over U_0 with the fiber M_p. Suppose $\omega \in \mathcal{M}(p,n) \setminus U_0$ and $\omega_0 \in \omega$; then $p_0^{-1}(\omega)$ is homeomorphic to $M_p/\text{Aut}(\omega_0)$, where $\text{Aut}(\omega_0)$ is the group of automorphisms of the translation structure ω_0. Since U_0 is an open dense subset of full measure of $\mathcal{M}(p,n)$, we consider $\mathcal{Y}(p,n)$ as a fiber bundle over $\mathcal{M}(p,n)$ with the fiber M_p (even though some fibers may be not homeomorphic to M_p).

For any $\omega \in \Omega(p,n)$, let ξ_{ω} denote the Borel measure on M_p induced by the translation structure ω. Let $\tilde{\omega}$ be the isotopy class of ω. The map $h_\omega : M_p \to \tilde{p}_0^{-1}(\tilde{\omega})$ defined by the relation $(\omega, x) \in h_\omega(x), x \in M_p$, is a homeomorphism. The measure $\nu_{\tilde{\omega}} = \xi_{\omega} h_\omega^{-1}$ on the fiber $\tilde{p}_0^{-1}(\tilde{\omega})$ does not depend on the choice of $\omega \in \tilde{\omega}$. Likewise, for any $\tilde{\omega} \in \mathcal{M}(p,n)$ the measures on M_p induced by translation structures in the isomorphy class $\tilde{\omega}$ define a Borel measure $\nu_{\tilde{\omega}}$ on $\tilde{p}_0^{-1}(\tilde{\omega})$ (even if the fiber $\tilde{p}_0^{-1}(\tilde{\omega})$ is not homeomorphic to M_p). The space $\tilde{\mathcal{Y}}_1(p,n)$, which is a fiber bundle over $\mathcal{M}_1(p,n)$ with the fiber M_p, carries a natural measure $\tilde{\mu}_0$ that is the measure $\tilde{\mu}_0$ on the base $\mathcal{M}_1(p,n)$ and is the measure $\tilde{\mu}_0$ on the fiber $\tilde{p}_0^{-1}(\tilde{\omega})$. In other words, $d\tilde{\mu}_0(\eta) = d\tilde{\nu}_{\tilde{\omega}}(\eta) d\tilde{\mu}_0(\tilde{\omega})$. Similarly, the space $\mathcal{Y}_1(p,n)$ carries a natural measure μ_1 such that $d\mu_1(\eta) = d\nu_{\omega}(\eta) d\mu_0(\tilde{\omega})$. The measures $\tilde{\mu}_0$ and μ_1 are invariant under the actions of the group $\text{SL}(2, \mathbb{R})$ on the spaces $\tilde{\mathcal{Y}}_1(p,n)$ and $\mathcal{Y}_1(p,n)$, respectively. Let $\pi_1 : \tilde{\mathcal{Y}}(p,n) \to \mathcal{Y}(p,n)$ be the natural projection. Then $\mu_1(\pi_1(U)) = \tilde{\mu}_0(U)$ for any Borel set $U \subset \mathcal{Y}_1(p,n)$ such that π_1 is injective on U.

We proceed to the proof of Theorems 12 and 11. In what follows constructions and results of the papers of Veech [V3] and of Eskin and Masur [EM] are used extensively. The proof relies on Theorem 6.2 formulated below. The formulation requires additional definitions and notation.

Let V denote a pair of sequences v_1, v_2, \ldots and w_1, w_2, \ldots, where elements of the first sequence are nonzero vectors in \mathbb{R}^2 and elements of the second sequence are positive numbers.
The number \(w_k \) is called the \textit{weight} of the vector \(v_k \). It is assumed that the sequence of vectors tends to infinity or is finite, and the sequence of weights is bounded. By \(\mathcal{V} \) denote the set of all such pairs. Two pairs \(V_1, V_2 \in \mathcal{V} \) are considered to be equal if one of them can be obtained from the other by reordering its vectors along with the corresponding reorder of weights. The group \(\text{SL}(2,\mathbb{R}) \) acts on the set \(\mathcal{V} \) by the natural action on vectors and the trivial action on weights. To each pair \(V \in \mathcal{V} \) we assign a linear functional \(\Phi[V] \) on the space \(\mathcal{C} \mathcal{C}(\mathbb{R}^2) \) of continuous compactly supported functions on \(\mathbb{R}^2 \); the functional is defined by the relation \(\Phi[V](f) = \sum_{k=1}^{\infty} w_k f(v_k) \). Note that two elements \(V_1, V_2 \in \mathcal{V} \) are equal if and only if \(\Phi[V_1] = \Phi[V_2] \). Furthermore, for any \(T > 0 \) set \(N_V(T) = \sum_{k:|v_k| \leq T} w_k \). The function \(N_V \) is called the \textit{growth function} of \(V \).

Let \(\mathcal{M} \) be a locally compact metric space endowed with a finite Borel measure \(\mu \). Suppose the group \(\text{SL}(2,\mathbb{R}) \) acts on the space \(\mathcal{M} \) by homeomorphisms. We assume that the measure \(\mu \) is invariant under this action and the action is \textit{ergodic}, that is, any measurable subset of \(\mathcal{M} \) invariant under the action is of zero or full measure. Let \(V \) be a map of the space \(\mathcal{M} \) to \(\mathcal{V} \). The map \(V \) is supposed to satisfy the following conditions:

1. (0) for any \(f \in \mathcal{C}(\mathbb{R}^2) \) the function \(\mathcal{M} \ni \omega \mapsto \Phi[V(\omega)](f) \) is Borel;
2. (A) the map \(V \) intertwines the actions of the group \(\text{SL}(2,\mathbb{R}) \) on the spaces \(\mathcal{M} \) and \(\mathcal{V} \), that is, \(V(g\omega) = gV(\omega) \) for any \(g \in \text{SL}(2,\mathbb{R}) \) and any \(\omega \in \mathcal{M} \);
3. (B) for any \(\omega \in \mathcal{M} \) there exists a constant \(c = c(\omega) > 0 \) such that \(N_{V(\omega)}(T) \leq cT^2 \) for \(T > 1 \); the constant \(c \) can be chosen uniformly as \(\omega \) varies over a compact subset of \(\mathcal{M} \);
4. (C) there exist positive constants \(T_0 \) and \(\varepsilon \) such that the function \(\omega \mapsto N_{V(\omega)}(T_0) \) belongs to the space \(L^{1+\varepsilon}(\mathcal{M},\mu) \).

\textbf{Theorem 6.1} Suppose a map \(\mathcal{M} \ni \omega \mapsto V(\omega) \in \mathcal{V} \) satisfies conditions (0), (A), (B), and (C). Then (a) for any \(f \in \mathcal{C}(\mathbb{R}^2) \) the function \(\mathcal{M} \ni \omega \mapsto \Phi[V(\omega)](f) \) is integrable and

\[
\frac{1}{\mu(\mathcal{M})} \int_{\mathcal{M}} \Phi[V(\omega)](f) \, d\mu(\omega) = c_V \int_{\mathbb{R}^2} f(x) \, dx,
\]

where \(c_V \) is a nonnegative constant;

(b) for \(\mu \)-almost every \(\omega \in \mathcal{M} \) one has

\[
\lim_{T \to \infty} \frac{N_{V(\omega)}(T)}{T^2} = \pi c_V.
\]

The first statement of Theorem 6.1 was proved by Veech [V3]. He also proved that

\[
\lim_{T \to \infty} \int_{\mathcal{M}} \left| \frac{N_{V(\omega)}(T)}{T^2} - \pi c_V \right| \, d\mu(\omega) = 0.
\]

The second statement was proved by Eskin and Masur [EM].

\textbf{Proof of Theorems 1.9 and 1.10} Let \(\mathcal{C} \) be a connected component of the space \(\mathcal{M}_1(p,n) \) \((p,n \geq 1)\) and \(Y \) be the component of \(\mathcal{Y}_1(p,n) \) that is a fiber bundle over \(\mathcal{C} \) with respect to the natural projection \(p_0 : \mathcal{Y}_1(p,n) \to \mathcal{M}_1(p,n) \). In what follows we often regard elements of \(\mathcal{M}(p,n) \) and \(\mathcal{M}(p,n) \) as translation structures on \(M_p \), and elements of \(\mathcal{Y}(p,n) \) and \(\mathcal{Y}(p,n) \) as pairs in \(\Omega(p,n) \times M_p \) (although, in fact, all such elements are equivalence classes). We define maps \(V_1 : \mathcal{C} \to \mathcal{V} \), \(V_2 : \mathcal{C} \to \mathcal{V} \), and \(V_3 : Y \to \mathcal{V} \) as follows. For any \(\omega \in \mathcal{C} \) the pairs \(V_1(\omega) \) and \(V_2(\omega) \) share the same sequence of vectors that is the sequence of vectors associated to periodic cylinders of the translation structure \(\omega \). Note that to any periodic cylinder we associate two
vectors of the same length and of opposite directions. Both vectors are supposed to be in the sequence. If a vector is associated to $k > 1$ different periodic cylinders, it is to appear k times in the sequence. All weights of $V_1(\omega)$ are equal to 1. For $V_2(\omega)$, the weight of a vector associated to a periodic cylinder is the area of the cylinder. Further, for any $x \in M_p$ the sequence of vectors of $V_3(\omega, x)$ is defined to be the sequence of vectors associated to periodic geodesics of ω passing through x. All weights of $V_3(\omega, x)$ are equal to 1. By definition, $N_{V_1}(\omega)(T) = 2N_1(\omega, T)$, $N_{V_2}(\omega)(T) = 2N_2(\omega, T)$, and $N_{V_3}(\omega, x)(T) = 2N_3(\omega, x, T)$ for any $T > 0$.

Let us show that the maps V_1, V_2, and V_3 satisfy all hypotheses of Theorem 6.1. First notice that the natural actions of the group $\text{SL}(2, \mathbb{R})$ on the spaces \mathcal{C} and \mathcal{Y} are ergodic. The ergodicity of the action on \mathcal{C} was proved by Veech [V1], and the ergodicity of the action on \mathcal{Y} was proved by Eskin and Masur [EM]. By definition of the actions of $\text{SL}(2, \mathbb{R})$ on the spaces \mathcal{C}, \mathcal{Y}, and \mathcal{V}, the maps V_1, V_2, and V_3 satisfy condition (A).

Let $S(p, n)$ be the set of free holonomy classes of simple closed oriented curves in $M_p \setminus Z_n$. For any $\gamma \in S(p, n)$, the map $\tilde{\mathcal{M}}(p, n) \ni \omega \mapsto \text{hol}_\omega(\gamma) \in \mathbb{R}^2$ is continuous. By $U(\gamma)$ denote the set of translation structures in $\tilde{\mathcal{M}}(p, n)$ that admit a periodic geodesic in the holonomy class γ. By $U_1(\gamma)$ denote the set of pairs $(\omega, x) \in \tilde{\mathcal{Y}}(p, n)$ such that some periodic geodesic of the translation structure ω passing through the point x is in the holonomy class γ. Obviously, the sets $U(\gamma)$ and $U_1(\gamma)$ are open. Given $\omega \in U(\gamma)$, all periodic geodesics of ω that belong to the holonomy class γ form one periodic cylinder. Let $a_\gamma(\omega)$ denote the area of this cylinder. For any $\omega \not\in U(\gamma)$, put $a_\gamma(\omega) = 0$. It is easy to observe that the function a_γ is continuous on $\tilde{\mathcal{M}}(p, n)$. Let $\pi_0 : \tilde{\mathcal{M}}(p, n) \to \mathcal{M}(p, n)$ and $\pi_1 : \tilde{\mathcal{Y}}(p, n) \to \mathcal{Y}(p, n)$ be the canonical projections. Then for any $\omega \in \pi_0^{-1}(\mathcal{C})$, any $\eta \in \pi_1^{-1}(\mathcal{Y})$, and any $f \in C_c(\mathbb{R}^2)$ we have

\[
\Phi[V_1(\pi_0(\omega))](f) = \sum_{\omega \in S(p, n)} \chi_{U(\gamma)}(\omega) f(\text{hol}_\omega(\gamma)),
\]

\[
\Phi[V_2(\pi_0(\omega))](f) = \sum_{\omega \in S(p, n)} a_\gamma(\omega) f(\text{hol}_\omega(\gamma)),
\]

\[
\Phi[V_3(\pi_1(\eta))](f) = \sum_{\eta \in S(p, n)} \chi_{U_1(\gamma)}(\eta) f(\text{hol}_{\pi_0(\eta)}(\gamma)).
\]

All three sums are locally finite. It follows that the functions $\pi_0^{-1}(\mathcal{C}) \ni \omega \mapsto \Phi[V_1(\pi_0(\omega))](f)$ and $\pi_1^{-1}(\mathcal{Y}) \ni \eta \mapsto \Phi[V_3(\pi_1(\eta))](f)$ are Borel, while the function $\pi_0^{-1}(\mathcal{C}) \ni \omega \mapsto \Phi[V_2(\pi_0(\omega))](f)$ is continuous. Then the functions $\mathcal{C} \ni \omega \mapsto \Phi[V_1(\omega)](f)$ and $\mathcal{Y} \ni \eta \mapsto \Phi[V_3(\eta)](f)$ are also Borel and the function $\mathcal{C} \ni \omega \mapsto \Phi[V_2(\omega)](f)$ is also continuous. Thus condition (0) holds for the maps V_1, V_2, and V_3.

For any $\omega \in \mathcal{C}$, let $s(\omega)$ denote the length of the shortest saddle connection of the translation structure ω. The function $\omega \mapsto s(\omega)$ is continuous and bounded on \mathcal{C}. Therefore the upper estimate in Theorem 6.2 implies the map V_1 satisfies condition (B). To verify condition (C), we need the following theorem.

Theorem 6.2 (EM) (1) Given $T > 0$ and $\varepsilon > 0$, there exists a positive constant $C_{T, \varepsilon}$ such that

\[N_1(\omega, T) \leq C_{T, \varepsilon}(s(\omega))^{-1-\varepsilon}\]

for any $\omega \in \mathcal{C}$.

(2) For any $\beta \in [1, 2)$ the function $s^{-\beta}$ belongs to the space $L^1(\mathcal{C}, \mu_0)$.

19
Theorem 6.2 implies that condition (C) holds for the map V_1. Let ω be an arbitrary translation structure in \mathcal{C}. By definition, $N_2(\omega, T) \leq N_1(\omega, T)$ for any $T > 0$, and $N_3(\omega, x, T) \leq N_1(\omega, T)$ for any $x \in M_\omega$ and any $T > 0$. It follows that conditions (B) and (C) are satisfied by the maps V_2 and V_3 whenever these conditions are satisfied by V_1.

Now it follows from Theorem 6.1 that there exist constants $c_1(\mathcal{C}), c_2(\mathcal{C}), c_3(\mathcal{C}) \geq 0$ such that $\lim_{T \to \infty} N_1(\omega, T)/T^2 = c_1(\mathcal{C})$ and $\lim_{T \to \infty} N_2(\omega, T)/T^2 = c_2(\mathcal{C})$ for μ_0-almost every $\omega \in \mathcal{C}$, and $\lim_{T \to \infty} N_3(\omega, x, T)/T^2 = c_3(\mathcal{C})$ for μ_1-almost every $(\omega, x) \in Y$. The positivity of the numbers $c_1(\mathcal{C})$ and $c_2(\mathcal{C})$ follows from the lower estimates in Theorem 1.8. It remains to prove that $c_3(\mathcal{C}) = c_2(\mathcal{C})$. Take a function $f_0 \in C_c(\mathbb{R}^2)$ such that $\int f_0(x) \, dx = 1$. By Theorem 6.1 we have
\[
\frac{1}{\mu_0(\mathcal{C})} \int_{\mathcal{C}} \Phi[V_2(\omega)](f_0) \, d\mu_0(\omega) = 2\pi^{-1}c_2(\mathcal{C}),
\]
\[
\frac{1}{\mu_1(Y)} \int_Y \Phi[V_3(\eta)](f_0) \, d\mu_1(\eta) = 2\pi^{-1}c_3(\mathcal{C}).
\]

For any $\omega \in \mathcal{C}$, let ν_ω denote the Borel measure on the fiber $p_0^{-1}(\omega)$ induced by translation structures in the equivalence class ω. It is easy to observe that
\[
\Phi[V_2(\omega)](f) = \int_{p_0^{-1}(\omega)} \Phi[V_3(\eta)](f) \, d\nu_\omega(\eta)
\]
for any $f \in C_c(\mathbb{R}^2)$. Then
\[
\int_Y \Phi[V_3(\eta)](f_0) \, d\mu_1(\eta) = \int_{\mathcal{C}} \int_{p_0^{-1}(\omega)} \Phi[V_3(\eta)](f_0) \, d\nu_\omega(\eta) \, d\mu_0(\omega) = \int_{\mathcal{C}} \Phi[V_2(\omega)](f_0) \, d\mu_0(\omega),
\]
besides,
\[
\mu_1(Y) = \int_{\mathcal{C}} \nu_\omega(p_0^{-1}(\omega)) \, d\mu_0(\omega) = \mu_0(\mathcal{C}).
\]
Hence, $c_3(\mathcal{C}) = c_2(\mathcal{C})$. The theorems are proved.\[\blacksquare \]

References

[BGKT] M. Boshernitzan, G. Galperin, T. Krüger, S. Troubetzkoy. Periodic billiard orbits are dense in rational polygons. *Trans. of A.M.S.* **350** (1998), no. 9, 3523–3535.

[EM] A. Eskin, H. Masur. Pointwise asymptotic formulas on flat surfaces. *Ergod. Th. & Dynam. Sys.* **21** (2001), no. 2, 443–478.

[M1] H. Masur. Interval exchange transformations and measured foliations. *Ann. of Math.* **115** (1982), no. 1, 169–200.

[M2] H. Masur. Closed trajectories for quadratic differentials with an application to billiards. *Duke Math. J.* **53** (1986), no. 2, 307–314.

[M3] H. Masur. Lower bounds for the number of saddle connections and closed trajectories of a quadratic differential. *Holomorphic functions and moduli*, Vol. I (Berkeley, CA, 1986), 215–228. *Math. Sci. Res. Inst. Publ.*, 10. Springer, New York – Berlin, 1988.
[M4] H. Masur. The growth rate of trajectories of a quadratic differential. Ergod. Th. & Dynam. Sys. 10 (1990), no. 1, 151–176.

[MT] H. Masur, S. Tabachnikov. Rational billiards and flat structures. Handbook of dynamical systems, Vol 1A, 1015–1089. North-Holland, Amsterdam, 2002.

[S] J. Smillie. The dynamics of billiard flows in rational polygons. Dynamical systems, ergodic theory and applications, 360–382. Encyclopaedia of Mathematical Sciences. Mathematical Physics, 100(1). Springer, Berlin, 2000.

[V1] W. A. Veech. The Teichmüller geodesic flow. Ann. of Math. 124 (1986), 441–530.

[V2] W. A. Veech. Moduli spaces of quadratic differentials. J. d’Analyse Math. 55 (1990), 117–171.

[V3] W. A. Veech. Siegel measures. Ann. of Math. 148 (1998), no. 3, 895–944.

[Vo] Ya. B. Vorobets. Ergodicity of billiards in polygons. Mat. Sbornik 188 (1997), no. 3, 65–112. English translation in Sb. Math. 188 (1997), no. 3, 389–434.

[ZK] A. N. Zemlyakov, A. B. Katok. Topological transitivity of billiards in polygons. Mat. Zametki 18 (1975), no. 2, 291–300. English translation in Math. Notes 18 (1975), no. 2, 760–764.