Discovery and Characterization of Multiple Classes of Human CatSper Blockers

Erick J. Carlson*, Rawle Francis†, Yutong Liu, Ping Li, Maximilian Lyon, Celia M. Santi, Derek J. Hook, Jon E. Hawkinson,* and Gunda I. Georg*
Table of Contents

Figure S1. Representative I_{CatSper} recordings from healthy human sperm in the absence and presence of test compound 3a.
Page 2

Figure S2. Representative I_{CatSper} recordings from healthy human sperm in the absence and presence of test compound 4a.
Page 2

Figure S3. Representative I_{CatSper} recordings from healthy human sperm in the absence and presence of test compound 5f.
Page 3

Figure S4. Representative I_{CatSper} recordings from healthy human sperm in the absence and presence of test compound 6b.
Page 3

Figure S5. Representative I_{CatSper} recordings from healthy human sperm in the absence and presence of test compound 7a.
Page 4

Table S1. Inhibition high potassium/high pH-activation of CatSper by compounds from each hit series
Page 5

Table S2. Reduction of I_{CatSper} current density in human sperm by compounds from series 2 through 7.
Page 6

Purity data
Page 7

NMR spectra
Page 22
Figure S1. Representative I_{CatSper} recordings from healthy human sperm in the absence (red) and presence (purple) of test compound 3a. Baseline signal in high saline (HS) buffer shown in grey. I_{CatSper} currents recorded in cesium divalent free media (CsDVF) elicited by the -80 mV (negative scale) or +80 mV (positive scale) voltage ramp.

Figure S2. Representative I_{CatSper} recordings from healthy human sperm in the absence (red) and presence (purple) of test compound 4a. Baseline signal in high saline (HS) buffer shown in grey. I_{CatSper} currents recorded in CsDVF elicited by the -80 mV (negative scale) or +80 mV (positive scale) voltage ramp.
Figure S3. Representative I_{CatSper} recordings from healthy human sperm in the absence (red) and presence (purple) of test compound 5f. Baseline signal in high HS buffer shown in grey. I_{CatSper} currents recorded in CsDVF elicited by the -80 mV (negative scale) or +80 mV (positive scale) voltage ramp.

Figure S4. Representative I_{CatSper} recordings from healthy human sperm in the absence (red) and presence (purple) of test compound 6b. Baseline signal in high saline (HS) buffer shown in grey. I_{CatSper} currents recorded in CsDVF elicited by the -80 mV (negative scale) or +80 mV (positive scale) voltage ramp.
Figure S5. Representative I_{CatSper} recordings from healthy human sperm in the absence (red) and presence (purple) of test compound 7a. Baseline signal in HS buffer shown in grey. I_{CatSper} currents recorded in CsDVF elicited by the -80 mV (negative scale) or +80 mV (positive scale) voltage ramp.
Table S1. Inhibition of potassium-activation of CatSper by compounds from each hit series

ID	Structure	IC₅₀, µM	ID	Structure	IC₅₀, µM
1a	![Structure1a](image)	9.6	4b	![Structure4b](image)	6.9
1b	![Structure1b](image)	12	5a	![Structure5a](image)	6.3
1c	![Structure1c](image)	59	5d	![Structure5d](image)	33
2a	![Structure2a](image)	12	5k	![Structure5k](image)	18
2d	![Structure2d](image)	12	6b	![Structure6b](image)	5.1
3a	![Structure3a](image)	7.8	7a	![Structure7a](image)	11
4a	![Structure4a](image)	9.2			

CatSper activated by high potassium/high pH buffer. IC₅₀ values calculated from single experiments.
Table S2. Reduction of I_{CaSper} current density in human sperm by compounds from series 2 through 7.

Compound	Current Density (pA/pF)	Inward (–80 mV)	Outward (+80 mV)
CsDVF	-20 ± 3	86 ± 12	
2a	-5.0 ± 0.5	23 ± 4	
3a	-4.0 ± 0.3	3.3 ± 2.9	
4a	-3.4 ± 0.2	15 ± 2.4	
5f	-15 ± 3	35 ± 4	
6b	-2.5 ± 1.1	0.1 ± 1.4	
7a	-1.2 ± 0.4	5.9 ± 1.4	

CsDVF = Cesium divalent free media. Values are the mean ± SEM of at least 3 independent experiments.
Mass Analysis Report

SAMPLE INFORMATION

Sample Name: 1a
Acq Method Set: Col2_50to500_PosOnly

Acquired: 1/28/2022 8:12:07 PM CST
InjVol: 3.00 uL

Channel: 214.0nm@10

RT	Area	% Area	Height	Base Peak (m/z)
1	2.160	116430	96.48	312.13
2	2.261	3612	2.99	312.11
3	3.452	636	0.53	485.29
Sample Name: 2a
Acq Method Set: Col2_50to500_PosOnly
Acquired: 1/28/2022 8:19:07 PM CST
InjVol: 3.00 uL

Channel: 214.0nm@10

RT	Area	% Area	Height	Base Peak (m/z)
1	2.152	0.37	1309	279.13
2	2.219	98.20	288613	341.16
3	2.528	0.21	944	179.14
4	2.583	0.45	1661	358.23
5	2.798	0.76	1555	224.09
SAMPLE INFORMATION

Sample Name: 3a
Acq Method Set: Col2_50to500_PosOnly
Acquired: 1/28/2022 10:27:28 PM CST
InjVol: 7.50 uL

Graph: Channel: 214.0nm@10

RT	Area	% Area	Height	Base Peak (m/z)
1	2.128	0.18	1590	359.24
2	2.197	0.14	1234	312.17
3	2.268	0.01	288	341.24
4	2.430	99.66	1098416	291.23
SAMPLE INFORMATION

- **Sample Name:** 4a
- **Acq Method Set:** Col2_50to500_PosOnly
- **Acquired:** 1/28/2022 10:34:35 PM CST
- **InjVol:** 7.50 uL

```
| RT    | Area  | % Area | Height | Base Peak (m/z) |
|-------|-------|--------|--------|----------------|
| 1     | 2.962 | 8491   | 1.91   | 221.12         |
| 2     | 3.024 | 432574 | 97.18  | 418.17         |
| 3     | 3.187 | 4053   | 0.91   | 279.14         |
```

Channel: 214.0nm@10
Mass Analysis Report

Sample Information

Sample Name: 5f
Acq Method Set: Col2_50to500_PosOnly
Acquired: 1/28/2022 10:41:39 PM CST
InjVol: 7.50 uL

RT	Area	% Area	Height	Base Peak (m/z)
1	2.267	4324	0.64	365.28
2	2.431	674377	99.36	445.12
SAMPLE INFORMATION

Sample Name:	6b
Acq Method Set:	Col2_50to500_PosOnly
Acquired:	1/28/2022 8:47:06 PM CST
InjVol:	3.00 uL

![Graph](chart.png)

Channel: 214.0nm@10

RT	Area	% Area	Height	Base Peak (m/z)
1	2.212	261797	91.79	123446 368.19
2	2.387	12417	4.35	5882 382.20
3	2.438	1349	0.47	759 368.19
4	2.568	2820	0.99	2823 396.19
5	2.587	6844	2.40	3792 396.21
Peak #1

Peak #2

Peak #3

Peak #4

Peak #5
LCMS Analysis Report

Acquired by: System Administrator
Sample Name: YTL-12-6-2-1
Injection Volume: 1
Data File: YTL-12-6-2-1.lcd
Method File: ACN-Water-0.05%TFA-5%B-1.5-3.0MIN(90-900).lcm
Date Acquired: 2022/2/22 17:24:34
Comment: Mobile phaseA:water/0.05%TFA
Mobile phaseB:ACN/0.05%TFA

 Instrument Name: Shimadzu LCMS-2020
<<Pump>>
Mode: Binary gradient
Pump A: LC-20ADXR
Pump B: LC-20ADXR
Total Flow: 1.5000 mL/min
B Conc.: 5.0 %

<<Oven>>
Oven Temperature: 40 C

<<PDA>>
PDA Model: SPD-M20A
Lamp: D2
Start Wavelength: 190 nm
End Wavelength: 400 nm

<<Column>>
Column Name: HALO C18
Length: 30 mm
Internal Diameter: 3.0 mm

<<Interface>>
Interface: ESI
DL Temperature: 250 C
Nebulizing Gas Flow: 1.50 L/min
Heat Block: 250 C
Drying Gas: On

<<MS Parameter>>
Initial Valve Position: -
Start Time: 0.00 min
End Time: 2.85 min
Start m/z: 90.00
End m/z: 900.00
Scan Speed: 3000 u/sec

<<LC Time Program>>
Time Module Command Value
0.01 Pumps B.Conc 5
2.00 Pumps B.Conc 100
2.70 Pumps B.Conc 100
2.75 Pumps B.Conc 5
3.00 Controller Stop -
Retention time: 0.781

Spectrum Mode: Single 0.781(163) Base Peak: 218.80(2647371)
BG Mode: Averaged 0.431-1.301(93-267) Segment 1 - Event 1
Parameter	Value
ppm	0.00 Hz
GB	1024
LB	0.00 Hz
SSB	QSINE
WDW	400.130000 MHz
SF	400.1319 MHz
FIQ1	400.131885 MHz
PL1W	18.64416504 W
PL1	-3.00 dB
PL1W	18.64416504 W
PL1	-3.00 dB
AQ	0.3686900 sec
RG	203
DN	180.000 usec
DE	6.50 usec
TE	298.0 K
D0	0.00015976 sec
D1	1.88203502 sec
D8	0.300036000 sec
IN0	0.00036000 sec
GB	1024
LB	0.00 Hz
SSB	QSINE
WDW	400.130000 MHz
SF	400.1319 MHz
FIQ1	400.131885 MHz
PL1W	18.64416504 W
PL1	-3.00 dB
AQ	0.3686900 sec
RG	203
DN	180.000 usec
DE	6.50 usec
TE	298.0 K
D0	0.00015976 sec
D1	1.88203502 sec
D8	0.300036000 sec
IN0	0.00036000 sec
GB	1024
LB	0.00 Hz
SSB	QSINE
WDW	400.130000 MHz
SF	400.1319 MHz
FIQ1	400.131885 MHz
PL1W	18.64416504 W
PL1	-3.00 dB
AQ	0.3686900 sec
RG	203
DN	180.000 usec
DE	6.50 usec
TE	298.0 K
D0	0.00015976 sec
D1	1.88203502 sec
D8	0.300036000 sec
IN0	0.00036000 sec

--- CHANNEL f1 ---

Parameter	Value
NUC1	1H
P1	15.90 usec
PL1	-3.00 dB
PL1W	18.64416504 W
SF01	400.1318852 MHz
ND0	1
TD	256
SF01	400.1319 MHz
FIDRES	10.856695 Hz
SW	6.942 ppm
FnMODE	States−TPPI
SI	1024
SF	400.130000 MHz
MDW	QSINE
SSB	2
LB	0.00 Hz
GB	0
PC	1.00
SI	1024
MC2	States−TPPI
SF	400.130000 MHz
MDW	QSINE
SSB	2
LB	0.00 Hz
GB	0
