Protamines from liverwort are produced by posttranslational cleavage and C-terminal di-aminopropanelation of several male germ–specific H1 histones

Robert Anthony D'Ippolito 1, Naoki Miamino 2, Ciro Rivera-Casas 3, Manjinder S. Cheema 4, Dina L. Bai 1, Harold E. Kasinsky 5, Jeffrey Shabanowitz 1, Jose M. Eirin-Lopez 3, Takashi Ueda 2,6, Donald F. Hunt 1,7 and Juan Ausiö 4,*

1Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA

2Division of Cellular Dynamics, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585 Japan

3Environmental Epigenetics Group, Department of Biological Sciences, Florida International University, North Miami, FL 33181, USA

4Department of Biochemistry and Microbiology, University of Victoria, Victoria BC V8W 3P6, Canada

5Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada

6The Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, 444-8585 Japan

7Department of Pathology, University of Virginia. Charlottesville, VA 22903, USA

*To whom all correspondence should be addressed:

Department of Biochemistry and Microbiology
Petch building 260
University of Victoria
Victoria, BC,
Canada V8W 3P6
Ph: 1 250-721 8863
Fax: 1 250-721 8855
Email: jausio@uvic.ca

Running title: Marchantia protamines and its post-translational cleavage.
Keywords: histone, mass spectroscopy, electron microscopy, chromatography, protein, protamine, molecular evolution, posttranslational modification, chromatin, spermiogenesis
Abstract

Protamines are small, highly specialized, arginine-rich, intrinsically disordered chromosomal proteins that replace histones during spermiogenesis in many organisms. Previous evidence supports the notion that, in the animal kingdom, these proteins have evolved from a primitive replication-independent histone H1 involved in terminal cell differentiation. Nevertheless, a direct connection between the two families of chromatin proteins is missing. Here, we primarily used electron transfer dissociation (ETD) mass MS-based analyses, revealing that the protamines in the sperm of the liverwort *Marchantia polymorpha* result from post-translational cleavage of three precursor H1 histones. Moreover, we show that the mature protamines are further post-translationally modified by di-aminopropanelation, and previous studies have reported that they condense sperm chromatin through a process consisting of liquid phase assembly likely involving spinodal decomposition. Taken together, our results reveal that the interesting evolutionary ancestry of protamines begins with histone H1 in both the animal and plant kingdoms.
Introduction

Protamines are a group of highly specialized chromosomal sperm nuclear basic proteins (SNBPs) that are present in many organisms (1-4). They replace histones during the last stages of male germ terminal differentiation of spermiogenesis (5). They are small (25-100 amino acids) highly arginine-rich proteins (6,7) that belong to the broad family of intrinsically disordered proteins (IDPs) (8). Despite their disorganized structure in solution, protamines from both chordate and non-chordate organisms are able to adopt secondary structure in the presence of helicogenic buffers (9) and upon binding to DNA in sperm (10). The functional role of these proteins appears to be multifaceted (11), but their ultimate biological significance is not yet properly understood. In addition to tightly compacting the sperm genome and protecting against DNA damage (11,12) during its exit from the body, protamines may also assist in erasing the somatic epigenetic contribution of histones. Protamines are sporadically but non-randomly distributed (13,14) throughout the animal and plant kingdoms (3). Fish are a good example of this (13,15). While the species and families of some orders contain only protamines (P-type), other orders’ sperm might contain different SNBP types such as histones (H-type) or protamine-like (PL-type) proteins (4,16).

Despite the heterogeneity in SNBP types, the PL-type, in addition to their highly basic amino acid (K/R) composition, contain a distinctive winged helix domain (WHD) which is evolutionarily related to the distinctive WHD of somatic linker H1 histones (17). Also, in those organisms that retain the full histone complement in their sperm like echinoderms or zebra fish,
they either contain an unusually long sperm-specific histone H1 (18), or elevated levels of histone H1 (19) which in both instances assist in maintaining a highly compacted chromatin organization.

Therefore, a structural (20) and evolutionary (16) role of the histone H1 family of chromosomal proteins (21) in shaping sperm chromatin organization is not surprising. However, although a connection between protamines (lacking the WHD) and histone H1 has been demonstrated, and organisms possessing a mixture of related PL-type and protamines have been described (22,23), this is the first observation of the exclusive presence of histone H1-ontogenically related protamines. The results described below conclusively show that in Marchantia, post-translational processing of three highly specialized H1 histones of the PL type, which are expressed in antheridiophores, give rise to the protamines that are found in the sperm of this organism.
Results

Initial evidence for the presence of protamines in *M. polymorpha* sperm. The first evidence of protamines in *M. polymorpha* comes from a study published in 1978 by Wanda Reynolds and Stephen Wolfe (24). Figure 1D of that paper shows an acetic acid urea PAGE depicting a pattern of four small molecular mass proteins that is almost identical to that shown in Fig. 1a-1. In both instances, the electrophoretic pattern is characterized by the complete absence of histones and as it was initially concluded: “…histones are completely lost and replaced by proteins…resembling animal protamines.” (24) Coarse electrophoretic fractionation of these proteins revealed a composition enriched in basic amino acids which was also important in reaching this conclusion. In a subsequent paper, the same authors extended their study to a broader spectrum of plants including algae, bryophytes, and ferns, for which representative species containing protamines were also identified.

Figure 1 shows the electrophoretic pattern observed in the sperm of *M. polymorpha* SNBPs in comparison to those of some representative non-chordate and chordate animals. The amino acid sequence of the protamines from these organisms is arginine-rich (Fig. 1b) and in the non-chordate organisms a marine worm, *Chaetopterus variopedatus* (23) (lane 4) and a tunicate, *Styela montereyensis* (22) (lane 5), a WHD-containing PL structurally related to chordates exists (P1 in Fig 2a, lanes 4 and 6). The high electrophoretic mobility of *M. polymorpha* SNBPs resembles that of the small protamines present in salmon sperm (Fig 1a-2). A very similar arginine-rich composition is observed in protamines of other non-chordate and chordate organisms which, like in salmon, exclusively contain P-type SNBPs in their sperm (4,7,25).
The *Marchantia* genome and male transcriptome indicate a relation of its sperm protamines to histone H1. In 2014, we used SNBPs isolated from *M. polymorpha* sperm and Edman degradation N-terminal amino acid sequencing to publish a partial amino acid sequence corresponding to protamine P5 (26) (Fig. 1a, lane 1). This sequence information was more recently used to identify a histone H1 gene of the SNBP PL-type (termed MpPRM) from the analysis of the male gametogenesis transcriptome of this organism and which is expressed during spermiogenesis (27). The protein contains the characteristic histone H1 WHD (Fig. 2a, PL-1 and Fig. 2b) in addition to several arginine-rich clusters at its C-terminal end.

The more recent availability of the *M. polymorpha* genome (28) has allowed us to identify two additional arginine-rich PL proteins also containing a WHD (Fig. 2a, PL-2/PL-3). The phylogenetic relationship of these three PL proteins and their evolutionary connection to other *M. polymorpha* histone H1s as well as to animal PLs is shown in Fig. 2c. The PLs identified in this way are mainly expressed in antheridiophores (the *M. polymorpha* male sex organ), in contrast to the histone H1 counterparts which are more similarly expressed in both antheridiophores and sporophytes (Fig. 2d).

Determination of the amino acid sequence of *M. polymorpha* SNBPs provides evidence for their PL origin. The sequences for the rest of the *M. polymorpha* SNBPs (P1-P4 in Fig. 1a) were determined using HPLC-coupled MS. The HPLC fractionated proteins were fragmented using electron transfer dissociation (ETD) and collisionally activated dissociation (CAD) (29-31) (Fig. 3a-e, see also Table 1). The sequences obtained (see Table 1), primarily using ETD,
confirmed the arginine-rich protamine nature of these proteins and they revealed their structural relation to the three PL proteins which were bioinformatically identified in the previous section. These results conclusively show that *M. polymorpha* SNBPs are the post-translational cleavage products of three independent, histone-H1 related, protamine-like precursors.

The *M. polymorpha* protamines are di-aminopropanelated at their C-termini. Interestingly, in multiple ETD MS² scans, a c-ion series could be deduced that covered the majority of the protein. However, there was a strong ion at 215.1740 m/z (z=1) present in multiple species denoted by the star in Figure 3a. From this ion, a series of amino acids was determined which complemented the c-ion series. Therefore, the ion at 215.1740 m/z must be a \(z^+ \) ion. Based on the sequence deduced from the c-ion series, the database BLAST search provided the protein from which the observed species originated as well as the final residue in the protein. This ion corresponded to an arginine with an unknown modification of 56.0740 Da greater than an unmodified arginine. This unknown modification was also observed on C-terminal lysines.

A theoretical elemental composition was calculated to assist in the determination of the modification present on the \(z^+ \) ion. The molecular formula \(\text{C}_9\text{H}_{21}\text{N}_5\text{O} \) was determined to be the closest combination based on ppm error. Interestingly, there was only one oxygen atom present in the theoretical composition. This would place the modification on the C-terminus since an unmodified C-terminus would have two oxygens. After accounting for the arginine side chain (\(\text{C}_4\text{H}_{11}\text{N}_3 \)) and the protein backbone (\(\text{C}_2\text{HO} \)), the elements \(\text{C}_3\text{H}_9\text{N}_2 \) remain.
To determine the structure of the modification, the ion at 215.1740 m/z was first formed by ETD and then re-isolated for fragmentation by high-energy collisional dissociation (HCD) to give the MS³ scan shown in Figure 3d. Due to the guanidino group present on the arginine side chain, the charge should be stabilized within this group. Therefore, the structure can be determined from additions to the arginine side chain. As shown in Figure 3d, the ions present confirm the structure shown in Figure 3e. All identified protamines contained this modification. The modification was absent in other observed proteins from *Marchantia* (results not shown), indicating that this modification is specific to protamines.

Chromatin organization during *M. polymorpha* spermiogenesis. Organisms where SNBPs of the protamine type undergo a post-translational processing involving extensive protein cleavage, often exhibit a characteristic nuclear organization during this process. A transition from lamello-fibrillar chromatin organization to a complete electron dense highly compacted organization in their mature sperm is observed (7). Such a transition has been observed both in internally fertilizing invertebrate (26,32) and vertebrate organisms (33-35).

Figure 4 shows an electron microscope image of spermatids in developing *M. polymorpha* antheridia (36) (the haploid structure producing male gametes). These spermatids have been shown to contain PL-1-type protamines until the late stages of spermiogenesis (27). As can be seen in this figure, chromatin adopts a distinct fibrillar organization with dispersed uniform fibers of 24 ± 3 nm thickness. The fibers appear clearly dispersed and further coalesce into a uniform, highly condensed electron dense opaque nucleus in the mature sperm (37). This type of chromatin organization has also been observed in the liverwort Bryophyte *Blasia pusilla* (26).
The peculiar transitional chromatin organization before complete condensation observed in these organisms has been proposed to be mediated by a liquid-liquid phase separation by spinodal decomposition (26). The process is framed on a physicochemical model which involves “kinetic, equilibrium and structural aspects of a system in route to equilibrium”. In it, the less electron dense nucleoplasm and the chromatin appear to be continuous rather than one disperse and one continuous phase (7).
Discussion

Protamines in plants. The occurrence of protamines in the sperm of Marchantia may have broader implications for the overall evolution of SNBPs. As pointed out in early work, the shift to the convergent presence of SNBPs in the sperm of both plants and animals might have involved selection pressure to reduce sperm nucleus weight and volume for a swimming male gamete (24) in internally fertilizing organisms. Indeed, protamines appear to be present in more primitive lower plants with motile sperm and are much less ubiquitous in the male nuclei of the pollen grain (3). In this regard, it is interesting that while in animals protamines may be present in both internal and external fertilizers, the last type of fertilization represents an SNBP evolutionary bottleneck. Once organisms from a clade have acquired this fertilization mode, there is no return to the histone or PL SNBP types (38,39). Moreover, evolutionarily driven interspecific changes in the regulation of protamine genes and amino acid sequence in mice and mammals has been shown to confer inter-specific sperm competition (fertility) advantage (40-43). Thus, in addition to providing genome compaction/protection against DNA damage and somatic histone epigenetic clearance (6,11), protamines might have evolved to fine tune the structural chromatin features of the nucleus (44). These changes optimize swimming potential of internal fertilizers, not only in the animal kingdom, but also in plant internal fertilizers such as in the case of bryophytes including liverworts, mosses, and hornworts (45).

Protamines and histone H1. Figure 5 summarizes the relationship between the SNBPs of M. polymorpha (Fig. 1 a-1) and their histone-H1 related PL precursors. Once more, these results emphasize the evolutionary relatedness of protamines to histone H1, not only in animals (4,16),
but also in plants (Fig. 2c). While protamines are the only SNBPs found in *M. polymorpha* mature sperm, their PL histone H1-related precursors are present in the spermatids in the early stages of spermiogenesis (27). Moreover, *M. polymorpha* protamines present in the final sperm are the product of post-translation cleavage of their precursors (Fig. 5b).

Post-translational cleavage of protamine precursors is quite a general occurrence both in protostome and deuterostome species which appears to be independent of their histone H1 origin, and it also appears to have been the product of evolutionary convergence (46). For instance, the protamines of cephalopods [*Sepia officinalis* (cuttlefish) (47)/ *Loligo opalescens* (squid) (46)] and the protamine P2 in mammals (mouse (48) and human (49)) are the products of a gene encoding a protein with an N-terminal leading domain consisting of a mixture of neutral/polar amino acids and a highly arginine-rich C-terminal end. The N-terminal leading sequence is gradually removed during the late stages of spermiogenesis following DNA binding (6,48), and hence it is hypothesized to play an important role in proper chromatin deposition and condensation.

Protamine post-translational processing and sperm chromatin condensation. The post-translational modifications undergone by *M. polymorpha* protamine precursors include cleavage as well as C-terminal di-aminopropanelation (Fig. 5b-c). Di-aminopropane is a product of the oxidation of spermine and spermidine which is catalyzed by the FAD-dependent polyamine oxidases (PAOs) commonly found in monocotyledonous plants (50,51), and which in *A. thaliana* have been shown to participate in polyamine metabolism with important involvement in plant development (50). Upon activation of the arginine alpha carboxyl group in the *M.*
protamine, it can readily acylate 1,3-di-aminopropane to produce the PTM observed here. Of note, oxidation of spermine by diamine oxidase occurs in human seminal plasma and is related to sperm fertility (52,53).

The occurrence of posttranslational modifications (PTMs) in mammalian protamines has been well documented (6) where phosphorylation, acetylation and methylation of different residues has been described (54). Although the functional role of these PTMs is not well understood, serine phosphorylation was initially proposed to regulate the proper interaction of the highly positively charged protamines with DNA hence ensuring a proper chromatin assembly (55-57). In those instances where cleavage of a protamine precursor takes place, like in mammalian protamine P2, phosphorylation does not occur until the initiation of the cleavage process (56).

There is not much information about C-terminal PTMs due mainly to the experimental difficulty of their analysis (58) and hence there is not much information about their functional involvement. However, half of the biologically active peptides and peptide hormones are alpha amidated at their C-termini where the neutralization of the negative charge enhances their hydrophobicity and improves their receptor binding activity (59). In this regard, the role of the carboxy end di-aminopropanelation observed for the first time here in chromosomal proteins remains elusive. The possibility exists that as in the case of phosphorylation, it has an important role in the chromatin transitions undergone during spermiogenesis. In particular, it might play a role during the PL to protamine transition as it might neutralize the negative charge of the carboxyl end which, like in the hormone peptides (59), might otherwise interfere with proper
protamine deposition onto DNA from a complex heterogeneous mixture of very small arginine-rich proteins (Fig. 1 a-1 and Fig. 5c).

Protamine precursor trimming and phosphorylation have been involved in chromatin patterning of the developing spermatid nucleus of those organisms undergoing liquid phase condensation (60) through a process of spinodal decomposition (7,32,61). These events precede the final highly compacted chromatin structure which is characteristic of mature sperm. The protein processing observed in *M. polymorpha* appears to play a similar role as its spermatids exhibit this pattern type (Fig. 4 and Fig. 5d); the intrinsically disordered nature of the proteins (8) involved (histone H1, protamines) play a critical role in this process (10,62-64). This is very similar to the phase separation process recently described for the heterochromatin domain formation by *Drosophila* HP1a (65) and other chromatin subcompartments (66). Indeed, sperm chromatin is a salient example of fully heterochromatinized nuclei.

Paraphrasing the title of the paper reporting the genome of *Marchantia polymorpha* (28), the analysis of its SNBP composition and transitions made possible through the analysis of its genome provides a powerful evolutionary insight that transcends that of plants and has implications for the evolution of these protamines and their conserved chromatin organization encompassing the plant and animal kingdoms.
Methods

Materials

Male accession of *M. polymorpha*, Takaragaike-1 (Tak-1) (67) was grown and induced to sexual reproduction as described in Minamino *et al.* (36)

LCMS grade water and LCMS grade acetonitrile were purchased from VWR. LCMS grade 2-propanol and formic acid were purchased from Fisher. Acetic acid, vasoactive intestinal peptide, and angiotensin I were purchased from Sigma.

Protein extraction. *M. polymorpha* sperm from antheridiophores was resuspended in 100 mM Tris-HCl (pH 7.5), 0.5% Triton X-100 containing 10 µg/ml of Tosyllysine Chloromethyl Ketone (TLCK) buffer (at a ratio of 20 µl/ 1 antheridiophore) and centrifuged at maximum speed in an Eppendorf microfuge. The pellet obtained in this way was homogenized in 0.4 N HCl (at a ratio of 10 µl/ 1 antheridiophore) and homogenized in a small Dounce with ten strokes. The HCl extract was precipitated overnight with six volumes of acetone at -20 °C and the next day it was centrifuged at maximum speed in an Eppendorf microfuge. The protein pellet was washed with acetone at room temperature, centrifuged again under the same conditions and dried in a speedvac. The protein pellet thus obtained was resuspended in water for further use.

Gel electrophoresis. Gel electrophoresis was carried on (5%) acetic acid-(2.5 M) urea (AU) polyacrylamide (15%) gel electrophoresis (PAGE) polymerized using thiourea and hydrogen peroxide (68) as described previously (69).
Genome screening. *M. polymorpha* proteins containing a histone H1 globular domain were retrieved from the *M. polymorpha* Genome Database (http://marchantia.info/ (28)). Gene structure and levels of expression were analyzed using the Genome Browser implemented in this database. Protamine-like (PL) proteins from the mussel *M. californianus* (PL-II*; Acc. number: AAB24707), the surf clam *S. solidissima* (PLIa; Acc. number: AAT45384), the tunicates *S. montereyensis* (P1; Acc. number: AAQ01227) and *C. intestinalis* (PL; Acc. number: XP_002130983), and the fish *Mullus surmuletus* (PL; Acc. number: Q08GK9), as well as histone H1.1 from *Arabidopsis thaliana* (Acc. number: AAF63139) and histones H1 and H5 from the chicken *Gallus gallus* (Acc. numbers: P09987 and AAA48798, respectively) were retrieved from the GenBank database.

Multiple sequence alignments. These were performed using MAFFT v7.310 (70) in the Jalview2 package (71). The evolutionary history of the Winged-Helix globular domains (WHD) was inferred by using the Maximum Likelihood method based on the Le Gascuel model (72) in the software MEGA v7 (73). The bootstrap consensus tree inferred from 1000 replicates is taken to represent the evolutionary history of the taxa analyzed. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1000 replicates) are shown next to the branches (only bootstrap values higher than 80% are shown). A discrete Gamma distribution was used to model evolutionary rate differences among sites (5 categories (+G, parameter = 2.3546)). The analysis involved 13 amino acid sequences. All positions with less than 95% site coverage were eliminated. That is, fewer than 5% alignment gaps, missing data,
and ambiguous bases were allowed at any position. There were a total of 65 positions in the final dataset.

Tertiary structure prediction. The tertiary structures of the globular domains of histone H1 and PL proteins were modeled in the SWISS-MODEL server (74) using the most closely related structure, automatically searched by the software, as a template in each case. The obtained structures were rendered using the PyMOL Molecular Graphics System v1.2r1 (https://pymol.org/2/).

Sample preparation. One µL of the acetone-precipitated protein-HCl extract suspension was diluted 10 fold with 0.1% acetic acid in water. 300 nL of the dilution, corresponding to approximately 0.2% of the total suspension, was pressure-loaded onto a reversed phase column containing 10 cm of 3 µm diameter, 300 Å PLRP-s packing material (Polymer Laboratories) within a 360 µm x 75 µm fused silica capillary integrated with an electrospray tip (75,76). Additionally, 100 fmol of both vasoactive intestinal peptide and angiotensin I were loaded onto the column as internal standards.

Chromatography and Mass Spectrometry. An Agilent Technologies (Palo Alto, CA) 1100 Series binary HPLC system coupled to a Thermo Scientific Orbitrap Fusion Tribrid mass spectrometer (San Jose, CA) operating in standard pressure mode was used to characterize the proteins in the sample (77). Proteins that were unable to retain on column due to high hydrophilicity were identified using an isocratic elution at 100% solvent A (0.3% formic acid in water) for 25 minutes at a flow rate of ~50 nL/min. Following the identification of proteins not
retained on column, the column was washed with solvent A for an additional 25 minutes at ~100 nL/min to remove any additional salts. The remaining proteins were then eluted using a gradient of 0-10-30-70-100% solvent B (72% ACN, 18% IPA, 10% water, and 0.3% formic acid) in 0-10-20-30-35 minutes at a flow rate of ~100 nL/min.

Proteins were selected for fragmentation based on a 60,000 resolution Orbitrap MS1 scan. Using top speed mode with a 3 s cycle time, proteins with a charge state of 4 and higher were isolated by the quadrupole with a width of 1.5 m/z and fragmented by electron transfer dissociation (ETD) and collisionally activated dissociation (CAD) (29-31). All MS2 scans were analyzed in the Orbitrap at 60,000 resolution with an AGC target of 2.0e5 and a maximum injection time of 100 ms. ETD was performed on ions with m/z 300-700 using calibrated reaction times (78,79). CAD was performed on ions with m/z 400-1500 at 30% normalized collision energy (NCE). Ions were placed on an exclusion list for 30 s after 3 scans in 30 seconds. For only the isocratic identification, all scans included an in-source dissociation energy of 40 to break up any adducts that may be present due to the acetone precipitation.

Determination of C-terminal Di-aminopropanelation by MS3. A targeted MS3 method was used to determine the structure of the z1+• ion present in many species since it did not correspond to a known amino acid (80,81). First, the precursor mass of 439.18 m/z (z=9) was isolated with the quadrupole at a width of 1.5 m/z, an AGC target of 5.0e5, and a maximum injection time of 300 ms. These ions were then fragmented by ETD using 2.0e5 reagent ions and a reaction time of 12 ms. The fragment ion at 215.174 m/z (z=1) was then isolated with a width of 1.5 m/z and fragmented by higher-energy collisional dissociation (HCD) using 30% HCD collisional energy.
The resulting fragment ions were analyzed in the Orbitrap at 60,000 resolution and a scan range of 50-220 m/z.

MS data analysis. The data files were manually inspected for species present. All fragmentation scans from the major species were manually de novo sequenced by averaging all MS² scans under the peak using Qual Browser version 4.0.27.10 (Thermo Scientific). Sequenced proteins were identified by using the NCBI Protein Blast Non-redundant protein sequences database (as of 03/22/2019) against *M. polymorpha* (82,83).

Electron microscopy. Electron microscopy was carried out as described in (36). Briefly, *M. polymorpha* antheridia were fixed overnight with paraformaldehyde (2%) and glutaraldehyde (2%) in 0.05 M cacodylate buffer (pH 7.4) at 4°C. The samples were next washed three times with cacodylate buffer and post-fixed with osmium tetroxide (2%) in the same buffer for three hours at 4°C. The samples were dehydrated by rinsing them for 30 minutes with increasing concentrations (50, 70 and 90%) of ethanol at 4°C and this was repeated four times with 100% ethanol at room temperature. The samples were finally left overnight at room temperature in 100% ethanol. The samples were subsequently embedded twice in propylene oxide (PO) for 30 minutes and then transferred to a 70:30 mixture of PO and Quetol-651 resin (Nisshin EM Co.) for one hour. After evaporation of PO, the samples were transferred to 100% resin and polymerization allowed to proceed for 48 hours at 60°C. Ultra-thin sections were stained with 2% uranyl acetate and lead stain solution (Sigma-Aldrich) visualized on a JEM1400 Plus (Jeol Ltd.) transmission electron microscope.
Acknowledgements

This paper was supported by Natural Science and Engineering Research Council of Canada (NSERC) (Grant RGPIN-2017-04162) to JA and National Institute of Health (NIH) (Grant GMO37537) to DFH. This work was also supported by the Model Plant Facility, NIBB BioResource Center. C R-C was supported by funds provided by the Fundación Ramón Areces (Spain). We also would like to thank Katrina V. Good for carefully proofreading the manuscript.

Data Availability

Mass spectrometry raw files are available at chorusproject.org (project ID: 1598). Annotated ETD spectra of identified protamines can be found in the supplemental material.

Supplemental Material

This article contains Supplemental Tables S1-2 and Figures S1-2.

Author contributions

JA conceived the study and wrote the paper, RAD, DLB and JS performed and designed the MS experiments, NM collected the antheridia and performed the EM work, CR-C, performed the phylogenetic and bioinformatics analyses, MSC performed protein extractions and biochemical characterization, DFH, RAD, HK, JME-L and TU, contributed to the writing and discussion of specific sections of the manuscript.

Competing interests Authors declare no competing financial interests.
Running title: Marchantia protamines and its post-translational cleavage.

References

1. Bloch, D. P. (1969) A catalog of sperm histones. Genetics 61, Suppl:93-111
2. Bloch, D. P. (1976) Histones of sperm, Plenum Press, New York
3. Kasinsky, H. E. (1989) Specificity and distribution of sperm basic proteins, CRC Press Inc., Boca Raton, FL
4. Ausiò, J. (1999) Histone H1 and evolution of sperm nuclear basic proteins. J Biol Chem 274, 31115-31118
5. Oliva, R., and Dixon, G. H. (1991) Vertebrate protamine genes and the histone-to-protamine replacement reaction. Prog Nucleic Acid Res Mol Biol 40, 25-94
6. Balhorn, R. (2007) The protamine family of sperm nuclear proteins. Genome biology 8, 227
7. Kasinsky, H. E., Eirin-Lopez, J. M., and Ausio, J. (2012) Protamines: structural complexity, evolution and chromatin patterning. Protein and peptide letters 18, 755-771
8. Dunker, A. K., Lawson, J. D., Brown, C. J., Williams, R. M., Romero, P., Oh, J. S., Oldfield, C. J., Campen, A. M., Ratliff, C. M., Hipps, K. W., Ausiò, J., Nissen, M. S., Reeves, R., Kang, C., Kissinger, C. R., Bailey, R. W., Griswold, M. D., Chiu, W., Garner, E. C., and Obradovic, Z. (2001) Intrinsically disordered protein. J Mol Graph Model 19, 26-59
9. Verdaguer, N., Perello, M., Palau, J., and Subirana, J. A. (1993) Helical structure of basic proteins from spermatozoa. Comparison with model peptides. Eur J Biochem 214, 879-887
10. Roque, A., Ponte, I., and Suau, P. (2012) Secondary structure of protamine in sperm nuclei: an infrared spectroscopy study. BMC structural biology 11, 14
11. Oliva, R. (2006) Protamines and male infertility. Hum Reprod Update 12, 417-435
12. Bao, J., and Bedford, M. T. (2016) Epigenetic regulation of the histone-to-protamine transition during spermiogenesis. Reproduction 151, R55-70
13. Saperas, N., Lloris, D., and Chiva, M. (1993) Sporadic appearance of histones, histone-like proteins and protamines in sperm chromatin of bony fish. Journal of Experimental Zoology 265, 575-586.
14. Saperas, N., Ausiò, J., Lloris, D., and Chiva, M. (1994) On the evolution of protamines in bony fish: alternatives to the "retroviral horizontal transmission" hypothesis. J Mol Evol 39, 282-295
15. Herraez, M. P., Ausiò, J., Devaux, A., Gonzalez-Rojo, S., Fernandez-Diez, C., Bony, S., Saperas, N., and Robles, V. (2017) Paternal contribution to development. Sperm genetic damage and repair in fish. Aquaculture 472, 45-59
16. Eirin-Lopez, J. M., and Ausio, J. (2009) Origin and evolution of chromosomal sperm proteins. Bioessays 31, 1062-1070
17. Cheema, M. S., and Ausio, J. (2015) The Structural Determinants behind the Epigenetic Role of Histone Variants. Genes (Basel) 6, 685-713
18. Poccia, D. L., and Green, G. R. (1992) Packaging and unpackaging the sea urchin sperm genome. Trends Biochem Sci 17, 223-227
19. Wu, S. F., Zhang, H., and Cairns, B. R. (2011) Genes for embryo development are packaged in blocks of multivalent chromatin in zebrafish sperm. Genome Res 21, 578-589
20. Lewis, J. D., and Ausiò, J. (2002) Protamine-like proteins: evidence for a novel chromatin structure. *Biochem Cell Biol* **80**, 353-361
21. Cole, R. D. (1984) A minireview of microheterogeneity in H1 histone and its possible significance. *Anal Biochem* **136**, 24-30
22. Lewis, J. D., Saperas, N., Song, Y., Zamora, M. J., Chiva, M., and Ausio, J. (2004) Histone H1 and the origin of protamines. *Proc Natl Acad Sci U S A* **101**, 4148-4152
23. Fioretti, F. M., Febratio, F., Carbone, A., Branno, M., Carratore, V., Fucci, L., Ausio, J., and Piscopo, M. (2012) A sperm nuclear basic protein from the sperm of the marine worm Chaetopterus variopedatus with sequence similarity to the arginine-rich C-termini of chordate protamine-likes. *DNA Cell Biol* **31**, 1392-1402
24. Reynolds, W. F., and Wolfe, S. L. (1978) Changes in basic proteins during sperm maturation in a plant, Marchantia polymorpha. *Exp Cell Res* **116**, 269-273
25. Lewis, J. D., Song, Y., de Jong, M. E., Bagha, S. M., and Ausio, J. (2003) A walk though vertebrate and invertebrate protamines. *Chromosoma* **111**, 473-482
26. Kasinsky, H. E., Ellis, S., Martens, G., and Ausio, J. (2014) Dynamic aspects of spermiogenic chromatin condensation patterning by phase separation during the histone-to-protamine transition in charalean algae and relation to bryophytes. *Tissue & Cell* **46**, 415-432
27. Higo, A., Niwa, M., Yamato, K. T., Yamada, L., Sawada, H., Sakamoto, T., Kurata, T., Shirakawa, M., Endo, M., Shigenobu, S., Yamaguchi, K., Ishizaki, K., Nishihama, R., Kohchi, T., and Araki, T. (2016) Transcriptional Framework of Male Gametogenesis in the Liverwort Marchantia polymorpha. *Plant Cell Physiol* **57**, 325-338
28. Bowman, J. L., Kohchi, T., Yamato, K. T., Jenkins, J., Shu, S., Ishizaki, K., Yamaoka, S., Nishihama, R., Nakamura, Y., Berger, F., Adam, C., Aki, S. S., Althoff, F., Araki, T., Arteaga-Vazquez, M. A., Balasubramanian, S., Barry, K., Bauer, D., Boehm, C. R., Briginshaw, L., Caballero-Perez, J., Catarino, B., Chen, F., Chiyoda, S., Chovatia, M., Davies, K. M., Delmans, M., Demura, T., Dierschke, T., Dolan, L., Dorantes-Acosta, A. E., Eklund, D. M., Florent, S. N., Flores-Sandoval, E., Fujiyama, A., Fukuzawa, H., Galik, B., Grimanesi, D., Grimwood, J., Grossniklaus, U., Hamada, T., Haseloff, J., Hetherington, A. J., Higo, A., Hirakawa, Y., Hundley, H. N., Ikeda, Y., Inoue, K., Inoue, S. I., Ishida, S., Jia, Q., Kakita, M., Kanazawa, T., Kawai, Y., Kawashima, T., Kennedy, M., Kinoze, K., Kinosita, T., Kohara, Y., Koide, E., Komatsu, K., Kopischke, S., Kubo, M., Kyozuka, J., Lagercrantz, U., Lin, S. S., Lindquist, E., Lipzen, A. M., Lu, C. W., De Luna, E., Martienssen, R. A., Minami, R., Mizutani, M., Mizutani, M., Mochizuki, N., Monte, I., Mosher, R., Nagasaki, H., Nakagami, H., Naramoto, S., Nishitani, K., Ohtani, M., Okamoto, T., Okumura, M., Phillips, J., Pollak, B., Reinders, A., Rovekamp, M., Sano, R., Sawa, S., Schmid, M. W., Shirakawa, M., Solano, R., Spunde, A., Sugisugu, N., Sugano, S., Sugiyama, A., Sun, R., Suzuki, Y., Takenaka, M., Takezawa, D., Tomogane, H., Tsuzuki, M., Ueda, T., Umeda, M., Ward, J. M., Watanabe, Y., Yazaki, K., Yokoyama, R., Yoshitake, Y., Yotsui, I., Zachgo, S., and Schmutz, J. (2017) Insights into Land Plant Evolution Garnered from the Marchantia polymorpha Genome. *Cell* **171**, 287-304 e215
29. Syka, J. E., Coon, J. J., Schroeder, M. J., Shabanowitz, J., and Hunt, D. F. (2004) Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. *Proc Natl Acad Sci U S A* **101**, 9528-9533
30. Earley, L., Anderson, L. C., Bai, D. L., Mullen, C., Syka, J. E., English, A. M., Dunyach, J. J., Stafford, G. C., Jr., Shabanowitz, J., Hunt, D. F., and Compton, P. D. (2013) Front-end electron transfer dissociation: a new ionization source. *Anal Chem* **85**, 8385-8390

31. Anderson, L. C., English, A. M., Wang, W., Bai, D. L., Shabanowitz, J., and Hunt, D. F. (2015) Protein derivatization and sequential ion/ion reactions to enhance sequence coverage produced by electron transfer dissociation mass spectrometry. *Int J Mass Spectrom* **377**, 617-624

32. Harrison, L. G., Kasinsky, H. E., Ribes, E., and Chiva, M. (2005) Possible mechanisms for early and intermediate stages of sperm chromatin condensation patterning involving phase separation dynamics. *J Exp Zool A Comp Exp Biol* **303**, 76-92

33. Gusse, M., and Chevaillier, P. (1978) [Ultrastructural and chemical study of the chromatin during spermiogenesis of the fish Scyliorhinus caniculus (L.) (author's transl)]. *Cytobiologie* **16**, 421-443

34. Gusse, M., and Chevaillier, P. (1980) Molecular structure of chromatin during sperm differentiation of the dogfish Scyliorhinus caniculus (L.). *Chromosoma* **77**, 57-68

35. Gusse, M., and Chevaillier, P. (1981) Microelectrophoretic analysis of basic protein changes during spermiogenesis in the dogfish Scyliorhinus caniculus (L). *Exp Cell Res* **136**, 391-397

36. Minamino, N., Kanazawa, T., Nishihama, R., Yamato, K. T., Ishizaki, K., Kohchi, T., Nakano, A., and Ueda, T. (2017) Dynamic reorganization of the endomembrane system during spermatogenesis in Marchantia polymorpha. *J Plant Res* **130**, 433-441

37. Kreitner, G. L. (1977) Transformation of the nucleus in Marchantia spermatids: morphogenesis. *American Journal of Botany* **64**, 464-475

38. Kasinsky, H. E., Mann, M., Huang, S. Y., Fabre, L., Coyle, B., and Byrd, E. W., Jr. (1987) On the diversity of sperm basic proteins in the vertebrates: V. Cytochemical and amino acid analysis in Squamata, Testudines, and Crocodylia. *J Exp Zool* **243**, 137-151

39. Kasinsky, H. E. (1995) *Evolution and origins of sperm basic proteins*, Memoires du Museum d'Histoire Naturelle, Paris

40. Martin-Coello, J., Dopazo, H., Arbiza, L., Ausio, J., Roldan, E. R., and Gomendio, M. (2009) Sexual selection drives weak positive selection in protamine genes and high promoter divergence, enhancing sperm competitiveness. *Proc Biol Sci* **276**, 2427-2436

41. Martin-Coello, J., Roldan, E. R. S., Ausi, J., and Gomendio, M. (2006) Differences between rodent species in levels of sperm competition are associated with protamine ratios. *10th International Symposium on Spermatology*, Poster P1-16

42. Ausio, J., Eirin-Lopez, J. M., and Frehlick, L. J. (2007) Evolution of vertebrate chromosomal sperm proteins: implications for fertility and sperm competition. *Society of Reproduction and Fertility supplement* **65**, 63-79

43. Luke, L., Tourmente, M., and Roldan, E. R. (2016) Sexual Selection of Protamine 1 in Mammals. *Mol Biol Evol* **33**, 174-184

44. Stephens, A. D., Banigan, E. J., and Marko, J. F. (2019) Chromatin's physical properties shape the nucleus and its functions. *Curr Opin Cell Biol* **58**, 76-84

45. Niklas, K. J. (1997) *The Evolutionary Biology of Plants*, The University of Chicago Press, Chicago, IL

46. Lewis, J. D., de Jong, M. E., Bagha, S. M., Tang, A., Gilly, W. F., and Ausi, J. (2004) All roads lead to arginine: The squid protamine gene. *J Mol Evol* **58**, 673-680
47. Wouters_Tyrou, D., Martin_Ponthieu, A., Ledoux_Andula, N., Kouach, M., Jaquinod, M., Subirana, J. A., and Sautiere, P. (1995) Squid spermiogenesis: molecular characterization of testis-specific pro-protamines. *Biochem J* **309** (Pt 2), 529-534

48. Elsevier, S. M., Noiran, J., and Carre-Eusebe, D. (1991) Processing of the precursor of protamine P2 in mouse. Identification of intermediates by their insolubility in the presence of sodium dodecyl sulfate. *Eur J Biochem* **196**, 167-175

49. Martinage, A., Arkhis, A., Alimi, E., Sautiere, P., and Chevaillier, P. (1990) Molecular characterization of nuclear basic protein HP11, a putative precursor of human sperm protamines HP2 and HP3. *Eur J Biochem* **191**, 449-451

50. Fincato, P., Moschou, P. N., Spedaletti, V., Tavazza, R., Angelini, R., Federico, R., Roubelakis-Angelakis, K. A., and Tavladoraki, P. (2011) Functional diversity inside the Arabidopsis polyamine oxidase gene family. *J Exp Bot* **62**, 1155-1168

51. Paschalidis, K. A., and Roubelakis-Angelakis, K. A. (2005) Sites and regulation of polyamine catabolism in the tobacco plant. Correlations with cell division/expansion, cell cycle progression, and vascular development. *Plant Physiol* **138**, 2174-2184

52. Hollita, E., Pulkkinen, P., Elfving, K., and Janne, J. (1975) Oxidation of polyamines by diamine oxidase from human seminal plasma. *Biochem J* **145**, 373-378

53. Maayan, R., Zukerman, Z., and Shohat, B. (1995) Oxidation of polyamines in human seminal plasma: a possible role in immunological infertility. *Archives of andrology* **34**, 95-99

54. Brunner, A. M., Nanni, P., and Mansuy, I. M. (2014) Epigenetic marking of sperm by post-translational modification of histones and protamines. *Epigenetics & chromatin* **7**, 2

55. Louie, A. J., and Dixon, G. H. (1972) Kinetics of enzymatic modification of the protamines and a proposal for their binding to chromatin. *J Biol Chem* **247**, 7962-7968

56. Green, G. R., Balhorn, R., Poccia, D. L., and Hecht, N. B. (1994) Synthesis and processing of mammalian protamines and transition proteins. *Mol Reprod Dev* **37**, 255-263

57. Kennedy, B. P., and Davies, P. L. (1981) Phosphorylation of a group of high molecular weight basic nuclear proteins during spermatogenesis in the winter flounder. *J Biol Chem* **256**, 9254-9259

58. Marino, G., Eckhard, U., and Overall, C. M. (2015) Protein Termini and Their Modifications Revealed by Positional Proteomics. *ACS Chem Biol* **10**, 1754-1764

59. Prigge, S. T., Mains, R. E., Eipper, B. A., and Amzel, L. M. (2000) New insights into copper monooxygenases and peptide amidation: structure, mechanism and function. *Cell Mol Life Sci* **57**, 1236-1259

60. Shin, Y., and Brangwynne, C. P. (2017) Liquid phase condensation in cell physiology and disease. *Science* **357**

61. Martens, G., Humphrey, E. C., Harrison, L. G., Silva-Moreno, B., Ausio, J., and Kasinsky, H. E. (2009) High-pressure freezing of spermiogenic nuclei supports a dynamic chromatin model for the histone-to-protamine transition. *J Cell Biochem* **108**, 1399-1409

62. Watson, M., and Stott, K. (2019) Disordered domains in chromatin-binding proteins. *Essays in biochemistry* **63**, 147-156

63. Borgia, A., Borgia, M. B., Bugge, K., Kissling, V. M., Heidarsson, P. O., Fernandes, C. B., Sottini, A., Soranno, A., Buholzer, K. J., Nettels, D., Kragelund, B. B., Best, R. B.,
Marchantia protamines and its post-translational cleavage.

Wright, P. E., and Dyson, H. J. (2015) Intrinsically disordered proteins in cellular signalling and regulation. Nat Rev Mol Cell Biol 16, 18-29

Strom, A. R., Emelyanov, A. V., Mir, M., Fyodorov, D. V., Darzacq, X., and Karpen, G. H. (2017) Phase separation drives heterochromatin domain formation. Nature 547, 241-245

Erdel, F., and Rippe, K. (2018) Formation of Chromatin Subcompartments by Phase Separation. Biophys J 114, 2262-2270

Ishizaki, K., Chiyoda, S., Yamato, K. T., and Kohchi, T. (2008) Agrobacterium-mediated transformation of the haploid liverwort Marchantia polymorpha L., an emerging model for plant biology. Plant Cell Physiol 49, 1084-1091

Hurley, C. K. (1977) Electrophoresis of histones: a modified Panyim and Chalkley system for slab gels. Anal Biochem 80, 624-626

Ausió, J. (1992) Presence of a highly specific histone H1-like protein in the chromatin of the sperm of the bivalve mollusks. Mol Cell Biochem 115, 163-172

Katoh, K., and Standley, D. M. (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30, 772-780

Waterhouse, A. M., Procter, J. B., Martin, D. M., Clamp, M., and Barton, G. J. (2009) Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25, 1189-1191

Le, S. Q., and Gascuel, O. (2008) An improved general amino acid replacement matrix. Mol Biol Evol 25, 1307-1320

Kumar, S., Stecher, G., and Tamura, K. (2016) MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol 33, 1870-1874

Biasini, M., Bienert, S., Waterhouse, A., Arnold, K., Studer, G., Schmidt, T., Kiefer, F., Gallo Cassarino, T., Bertoni, M., Bordoli, L., and Schwede, T. (2014) SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 42, W252-258

Martin, S. E., Shabanowitz, J., Hunt, D. F., and Marto, J. A. (2000) Subfemtomole MS and MS/MS peptide sequence analysis using nano-HPLC micro-ESI fourier transform ion cyclotron resonance mass spectrometry. Anal Chem 72, 4266-4274

Udeshi, N. D., Compton, P. D., Shabanowitz, J., Hunt, D. F., and Rose, K. L. (2008) Methods for analyzing peptides and proteins on a chromatographic timescale by electron-transfer dissociation mass spectrometry. Nature protocols 3, 1709-1717

Senko, M. W., Remes, P. M., Canterbury, J. D., Mathur, R., Song, Q., Eliuk, S. M., Mullen, C., Earley, L., Hardman, M., Blethow, J. D., Bui, H., Specht, A., Lange, O., Denisov, E., Makarov, A., Hornig, S., and Zabrousakov, V. (2013) Novel parallelized quadrupole/linear ion trap/Orbitrap tridib mass spectrometer improving proteome coverage and peptide identification rates. Anal Chem 85, 11710-11714

Compton, P. D., Strukl, J. V., Bai, D. L., Shabanowitz, J., and Hunt, D. F. (2012) Optimization of electron transfer dissociation via informed selection of reagents and operating parameters. Anal Chem 84, 1781-1785

Rose, C. M., Rush, M. J., Riley, N. M., Merrill, A. E., Kwiecien, N. W., Holden, D. D., Mullen, C., Westphall, M. S., and Coon, J. J. (2015) A calibration routine for efficient ETD in large-scale proteomics. J Am Soc Mass Spectrom 26, 1848-1857
Running title: Marchantia protamines and its post-translational cleavage.

80. Olsen, J. V., and Mann, M. (2004) Improved peptide identification in proteomics by two consecutive stages of mass spectrometric fragmentation. *Proc Natl Acad Sci U S A* **101**, 13417-13422
81. Macek, B., Waanders, L. F., Olsen, J. V., and Mann, M. (2006) Top-down protein sequencing and MS3 on a hybrid linear quadrupole ion trap-orbitrap mass spectrometer. *Mol Cell Proteomics* **5**, 949-958
82. Boratyn, G. M., Camacho, C., Cooper, P. S., Coulouris, G., Fong, A., Ma, N., Madden, T. L., Matten, W. T., McGinnis, S. D., Merezhuk, Y., Raytselis, Y., Sayers, E. W., Tao, T., Ye, J., and Zaretskaya, I. (2013) BLAST: a more efficient report with usability improvements. *Nucleic Acids Res* **41**, W29-33
83. Johnson, M., Zaretskaya, I., Raytselis, Y., Merezhuk, Y., McGinnis, S., and Madden, T. L. (2008) NCBI BLAST: a better web interface. *Nucleic Acids Res* **36**, W5-9
84. Hoffmann, J. A., Chance, R. E., and Johnson, M. G. (1990) Purification and analysis of the major components of chum salmon protamine contained in insulin formulations using high-performance liquid chromatography. *Protein Expr Purif* **1**, 127-133
85. Carlos, S., Hunt, D. F., Rocchini, C., Arnott, D. P., and Ausió, J. (1993) Post-translational cleavage of a histone H1-like protein in the sperm of Mytilus. *J Biol Chem* **268**, 195-199
86. Carlos, S., Jutglar, L., Borrell, I., Hunt, D. F., and Ausió, J. (1993) Sequence and characterization of a sperm-specific histone H1-like protein of Mytilus californianus. *J Biol Chem* **268**, 185-194
87. Lewis, J. D., McParland, R., and Ausio, J. (2004) PL-I of Spisula solidissima, a highly elongated sperm-specific histone H1. *Biochemistry* **43**, 7766-7775
88. Saperas, N., Chiva, M., Casas, M. T., Campos, J. L., Eirin-Lopez, J. M., Frehlick, L. J., Prieto, C., Subirana, J. A., and Ausio, J. (2006) A unique vertebrate histone H1-related protamine-like protein results in an unusual sperm chromatin organization. *Febs J* **273**, 4548-4561
89. Marian, C. O., Bordoli, S. J., Goltz, M., Santarella, R. A., Jackson, L. P., Danilevskaya, O., Beckstette, M., Meeley, R., and Bass, H. W. (2003) The maize Single myb histone 1 gene, Smh1, belongs to a novel gene family and encodes a protein that binds telomere DNA repeats in vitro. *Plant Physiol* **133**, 1336-1350
Figure Legends

Fig 1. Comparison of the protamines of the liverwort *M. polymorpha* to other non-chordate and chordate protamines. **a** electrophoresis (acetic acid urea-PAGE) of the SNBPs from: *M. polymorpha* (26) (lane 1); *Oncorhynchus keta* [chum salmon, salmine (SL)] (84) (lane 2); *Mytilus californianus* (California mussel) used as a marker (85,86) (lanes 3,6); *Chaetopterus variopedatus* (parchment worm) (23) (lane 4) and *Styela montereyensis* (Monterey stalked tunicate) (22) (lane 5). **b** amino acid sequences of the *O. keta* salmine (SL1-4) protamines (84) and the P2 protamine of *Styela plicata* (sea squirt) (22).

Fig 2. The genome of *M. polymorpha* reveals the presence of three histone H1-related PL proteins. **a** amino acid sequence alignment of the protein regions corresponding to the WHD of *M. polymorpha* PL1-PL3 compared to the amino acid sequences corresponding to the WHD of non-chordate and chordate organisms as well as the WHD of some representative somatic H1 histones including the H5 histone which is in the terminally differentiated erythrocytes of non-mammalian vertebrates. *Mytilus californianus* PL-II* (86), *Spisula solidissima* (surf clam) PL-I (87), *Styela plicata* PL (22), *Ciona intestinalis* (transparent sea squirt)PL (22), *Mullus surmuletus* (striped ret mullet) PL (88). **b** predicted tertiary structure organization of the *M. polymorpha* PL-1 WHD. **c** phylogenetic analysis of the proteins shown in (a). **d** levels of gene expression in antheridiophores (An) and in sporophytes (Sp) of *M. polymorpha* PL1-PL3. In the schematic representation, the boxes indicate exon domains. Smh1: Single *myb* histone 1 (first identified in maize) that binds to telomere DNA repeats in plants (89).
Running title: Marchantia protamines and its post-translational cleavage.

Fig 3. Detection and Fragmentation of the Protamine RRRRRRHHKKGKKKGGRRRRRKR- RGRR* (where * = di-aminopropanelated C-terminus) [this peptide corresponds to amino acids 102-129 of *Marchantia* PL-1 (MpPRM) NCBI accession number BAU71552]. a Precursor ions at 438.07 m/z (z=9) were fragmented by ETD to produce the MS². **Selected abundant ions are labeled (M=precursor mass; 59=mass of guanidinium group).** The peak in red with a star above represents the z₁⁺⁺ ion. b Extracted chromatogram of the protamine. Since the peak elutes for over 10 minutes, multiple MS² scans were averaged to produce the final scan shown in (a). c Sequence coverage by ETD. The cleavages denoted in red depict the c and z’ ions observed giving unambiguous sequence coverage across the length of the protamine. d HCD MS³ fragmentation spectrum of the z₁⁺⁺ ion at 215.1740 m/z (z=1). Proposed structures for the major ions are depicted. e Proposed structure of the z₁⁺ fragment ion.

Fig 4. Electron micrographs of *M. polymorpha* spermatids. a chromatin condensing nucleus (N) exhibiting a shrinking cytoplasm (C). The scale bar is 5 μm. b electron micrograph (greater magnification) of a condensing spermatid showing the characteristic 24 ± 3 nm fibers (arrow heads). The arrows point to autophagosomes. The scale bar is 1 μm.

Fig 5. The protamines of *M. polymorpha* sperm are the posttranslational cleavage products from three protamine-like (PL) histone H1 precursors Pl-1, PL-2 and PL-3. a amino acid sequences of the three PL precursors. The boxes with green borders indicate the WHD which is characteristic of H1 histones. The regions underlined in yellow correspond to the peptides identified in mature sperm. The region of Pl-1 underlined in brown represents the first *M.*
Marchantia protamines and its post-translational cleavage.

polymorpha protamine sequence determined using conventional Edman degradation sequencing (26). b schematic representation of the post-translational cleavage undergone by *M. polymorpha* PLs. Precursor SNBP histone H1-related PLs consisting of an N-terminal (N) winged helix domain (WDH) and an arginine-rich C-terminal domain (C) are post-translationally cleaved (red arrows) into smaller fragments (yellow) and further C-terminally di-aminopropanelated (dark red dots). c amino acid sequence of the protamines (Fig. 1a-1) identified by MS. d schematic representation of the intermediate liquid phase chromatin condensation stage observed in spermatids (Fig. 4).
Running title: Marchantia protamines and its post-translational cleavage.

Table 1: Table of Identified Protamines. (* = di-aminopropanylated C-terminus). The lower part corresponds to protamines of lower abundance. Amino acids in brackets do not contain fragment ions confirming their location. These residues can be interchanged within the brackets.

M+H	Sequence	Protein Name	First AA Residue Number	Last AA Residue Number	NCBI Accession Number
3955.50	RRRRRKSSRRRRRRRRRRRRSKGSRPRRR*	PL-1 (MpPRM)	182	209	BAU71552
3799.41	RRRRRKSSRRRRRRRRRRRSKGSRSPPR*	PL-1 (MpPRM)	182	208	BAU71552
3942.56	RRRRRRHlllGKlGGGrRRRRRRRHRGRRRGRR*	PL-1 (MpPRM)	102	129	BAU71552
3313.16	RRRRRRRRRRRRRRRRRRRRRGRRK*	PL-1 (MpPRM)	146	167	BAU71552
7466.75	RRRRRHRGrkGKlPKHRRRRRRRRRRRGGRRKAcHGRkkkRGG-GrkGkRRRRHRGRR*	PL-3	162	216	PTQ32223
4082.51	RRRRRRRRRRRRRRRRRRRRRRRRGRRRRGRRRGRRK*	PL-2	207	236	PTQ35141
3780.36	RRRRRKSSRRRRRRRRRRRRK[SRSIII]SPRR*	PL-1 (MpPRM)	182	208	BAU71552
4139.33	RRRRRKSRRRRRR[RRTVD]RRRRRRRRRRRRRR	PL-1 (MpPRM)	182	209	BAU71552
4366.65	RRRRRKSRRRRRRRRRRRRSKGRSRPRRRHRSSR	PL-1 (MpPRM)	182	213	BAU71552
7819.01	RRRRRHRGrkGKlPKHRRRRRRRRRRRGGRRKAcHGRkkkRGG-GrkGkRRRRHRGRR[SRSIII]	PL-3	162	220	PTQ32223
Fig 1. D’Ippolito et al. 2019
Fig 2. D’Ippolito et al. 2019
Fig 3. D’Ippolito et al. 2019
Fig 4. D’Ippolito et al. 2019
Fig 5. D’Ippolito et al. 2019
Protamines from liverwort are produced by posttranslational cleavage and C-terminal di-aminopropanelation of several male germ-specific H1 histones

Robert Anthony D’Ippolito, Naoki Minamino, Ciro Rivera-Casas, Manjinder S. Cheema, Dina L. Bai, Harold E. Kasinsky, Jeffrey Shabanowitz, Jose M. Eirin-Lopez, Takashi Ueda, Donald F Hunt and Juan Ausió

J. Biol. Chem. published online September 16, 2019

Access the most updated version of this article at doi: 10.1074/jbc.RA119.010316

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC’s e-mail alerts