ON SOME INEQUALITIES FOR s-LOGARITHMICALLY
CONVEX FUNCTIONS IN THE SECOND SENSE VIA
FRACTIONAL INTEGRALS

HAVVA KAVURMACI AND MEVLÜT TUNC

ABSTRACT. In this paper, we establish some new Hadamard type inequalities
for s-logarithmically convex functions in the second sense via fractional inte-
grals by using Lemma 1 which has been proved by Sarıkaya et al. in the paper [3].

1. INTRODUCTION

The following result is well known in the literature as Hadamard’s inequality [1].

Theorem 1. Let $f : I \subset \mathbb{R} \to \mathbb{R}$ be a convex function on the interval I of real
numbers and $a, b \in I$ with $a < b$. Then

\begin{equation}
 f\left(\frac{a + b}{2}\right) \leq \frac{1}{b - a} \int_{a}^{b} f(x) \, dx \leq \frac{f(a) + f(b)}{2}
\end{equation}

The following definitions is well known in the literature:

Definition 1. A function $f : I \to \mathbb{R}, \emptyset \neq I \subseteq \mathbb{R}$, where I is a convex set, is said
to be convex on I if inequality

$f((tx + (1 - t)y) \leq tf(x) + (1 - t)f(y)$

holds for all $x, y \in I$ and $t \in [0, 1]$.

In [2], Akdemir and Tunç were introduced the class of s-logarithmically convex
functions in the first and second sense as the following:

Definition 2. A function $f : I \subset \mathbb{R}_0 \to \mathbb{R}_+$ is said to be s-logarithmically convex
in the first sense if

\begin{equation}
 f(\alpha x + \beta y) \leq [f(x)]^{\alpha^s} [f(y)]^{\beta^s}
\end{equation}

for some $s \in (0, 1]$, where $x, y \in I$ and $\alpha^s + \beta^s = 1$.

Definition 3. A function $f : I \subset \mathbb{R}_0 \to \mathbb{R}_+$ is said to be s-logarithmically convex
in the second sense if

\begin{equation}
 f(tx + (1 - t)y) \leq [f(x)]^{t^s} [f(y)]^{(1 - t)^s}
\end{equation}

for some $s \in (0, 1]$, where $x, y \in I$ and $t \in [0, 1]$.

2000 Mathematics Subject Classification. 26D10, 26A15, 26A16, 26A51.
Key words and phrases. Hadamard’s inequality, s-geometrically convex functions.
2. HA VVA KAVURMACI AND MEVLU'T TUNC

Clearly, when taking $s = 1$ in Definition 2 or Definition 3, then f becomes the standard logarithmically convex function on I.

Definition 4. Let $f \in L^1[a,b]$. The Riemann-Liouville integrals $J_{a^+}^\alpha f$ and $J_{b^-}^\alpha f$ of order $\alpha > 0$ with $a \geq 0$ are defined by

\[J_{a^+}^\alpha f(x) = \frac{1}{\Gamma(\alpha)} \int_a^x (x-t)^{\alpha-1} f(t) \, dt, \quad x > a \]

and

\[J_{b^-}^\alpha f(x) = \frac{1}{\Gamma(\alpha)} \int_x^b (t-x)^{\alpha-1} f(t) \, dt, \quad x < b \]

respectively where $\Gamma(\alpha) = \int_0^\infty e^{-u} u^{\alpha-1} \, du$. Here is $J_{a^+}^\alpha f(x) = J_{b^-}^\alpha f(x) = f(x)$.

In the case of $\alpha = 1$, the fractional integral reduces to the classical integral. For some recent results connected with fractional integral inequalities see [3]–[11]. In [3], Sarıkaya et. al. proved the following results for fractional integrals.

Lemma 1. Let $f : [a,b] \to \mathbb{R}$ be a differentiable mapping on (a,b) with $a < b$. If $f' \in L[a,b]$, then the following equality for fractional integrals holds:

\[
\frac{f(a) + f(b)}{2} - \frac{\Gamma(\alpha+1)}{2(b-a)^\alpha} [J_{b^-}^\alpha f(a) + J_{a^+}^\alpha f(b)]
= \frac{b-a}{2} \int_0^1 [(1-t)^\alpha - t^\alpha] f'(ta + (1-t)b) \, dt.
\]

Theorem 2. Let $f : [a,b] \to \mathbb{R}$ be a differentiable mapping on (a,b) with $a < b$. If $|f'|$ is convex on $[a,b]$, then the following inequality for fractional integrals holds:

\[
\left| \frac{f(a) + f(b)}{2} - \frac{\Gamma(\alpha+1)}{2(b-a)^\alpha} [J_{b^-}^\alpha f(a) + J_{a^+}^\alpha f(b)] \right|
= \frac{b-a}{2(\alpha+1)} \left(1 - \frac{1}{2^\alpha} \right) \left[|f'(a)| + |f'(b)| \right].
\]

In the present paper, we will establish several Hermite-Hadamard type inequalities for the class of functions whose derivatives in absolute value are s-logarithmically convex functions in the first and second sense via Riemann-Liouville fractional integral.

2. **HADAMARD TYPE INEQUALITIES FOR S-LOGARITHMICALLY CONVEX FUNCTIONS**

Theorem 3. Let $I \supset [0, \infty)$ be an open interval and $f : I \to (0, \infty)$ is differentiable. If $f' \in L[a,b]$ and $|f'|$ is s-logarithmically convex functions in the second sense on
[a, b] for some fixed $s \in (0, 1]$ and $\mu, \eta > 0$ with $\mu + \eta = 1$, then the following inequality for fractional integrals with $\alpha > 0$ holds:

\[
(2.1) \quad \left| \frac{f(a) + f(b)}{2} - \frac{\Gamma(\alpha + 1)}{2(b - a)^{\alpha}} \left[J_{b^+}^\alpha f(a) + J_{a^+}^\alpha f(b) \right] \right| \leq \frac{b - a}{2} \left\{ \int_{0}^{1/2} \mu [(1 - t)^{\alpha} - t^{\alpha}]^{1/2} dt + \int_{1/2}^{1} \mu [t^{\alpha} - (1 - t)^{\alpha}]^{1/2} dt \right.
\]
\[
+ \eta \times |f'(b)|^{\eta} \psi \left(\begin{array}{c} s \frac{s}{\alpha} \\ \eta \end{array} \right) \right\}
\]

where

\[
(2.2) \quad \Psi(\psi) = \left\{ \begin{array}{ll} \frac{1}{\ln \psi}, & \psi = 1, \\ 0 < \psi < 1 \end{array} \right. \quad \text{and} \quad \psi(u, v) = |f'(a)|^{u} |f'(b)|^{-v}, \quad u, v > 0.
\]

Proof. By Lemma 1 and since $|f'|$ is s-logarithmically convex functions in the second sense on $[a, b]$, we have

\[
\left| \frac{f(a) + f(b)}{2} - \frac{\Gamma(\alpha + 1)}{2(b - a)^{\alpha}} \left[J_{b^+}^\alpha f(a) + J_{a^+}^\alpha f(b) \right] \right| \leq \frac{b - a}{2} \left\{ \int_{0}^{1} \mu [(1 - t)^{\alpha} - t^{\alpha}]^{1/2} |f'(t a + (1 - t) b)| dt \right.
\]
\[
\leq \frac{b - a}{2} \int_{0}^{1} \left[(1 - t)^{\alpha} - t^{\alpha} \right] |f'(a)|^{t^{\alpha}} |f'(b)|^{(1-t)^{\alpha}} dt
\]
\[
\leq \frac{b - a}{2} \left\{ \int_{0}^{1/2} \left[t^{\alpha} - (1 - t)^{\alpha} \right] |f'(a)|^{t^{\alpha}} |f'(b)|^{(1-t)^{\alpha}} dt \right\}
\]
\[
(2.3)
\]

for all $t \in [0, 1]$. Using the well known inequality $mn \leq \mu m^{\frac{\lambda}{\alpha}} + \eta n^{\frac{\lambda}{\eta}}$, on the right side of (2.3), we have

\[
\left| \frac{f(a) + f(b)}{2} - \frac{\Gamma(\alpha + 1)}{2(b - a)^{\alpha}} \left[J_{b^+}^\alpha f(a) + J_{a^+}^\alpha f(b) \right] \right| \leq \frac{b - a}{2} \left\{ \int_{0}^{1/2} \mu [(1 - t)^{\alpha} - t^{\alpha}]^{1/2} dt + \int_{1/2}^{1} \mu [t^{\alpha} - (1 - t)^{\alpha}]^{1/2} \right.
\]
\[
\left. \eta |f'(a)|^{t^{\alpha}} |f'(b)|^{(1-t)^{\alpha}} dt \right\}
\]
\[
= \frac{b - a}{2} \left\{ \int_{0}^{1/2} \mu [(1 - t)^{\alpha} - t^{\alpha}]^{1/2} dt + \int_{1/2}^{1} \mu [t^{\alpha} - (1 - t)^{\alpha}]^{1/2} \right.
\]
\[
\left. \eta |f'(a)|^{t^{\alpha}} |f'(b)|^{(1-t)^{\alpha}} dt \right\}
\]

If $0 < \lambda \leq 1$, $0 < u, v \leq 1$, then

\[
(2.4) \quad \lambda^{uv} \leq \lambda^{uv}.
\]
When \(\psi(u, v) \leq 1 \), by (2.4), we get that
\[
\int_0^1 |f'(a)|^{\frac{\alpha}{\eta}} |f'(b)|^{\frac{(1-\alpha)}{\eta}} dt \leq \int_0^1 |f'(a)|^{\frac{\alpha}{\eta}} |f'(b)|^{\frac{(1-\alpha)}{\eta}} dt = |f'(b)|^{\frac{\alpha}{\eta}} \psi \left(\frac{s}{\eta}, \frac{s}{\eta} \right).
\]

From (2.3) to (2.5), (2.1) holds.

Remark 1. If we take \(\alpha = 1 \), in Theorem 5 then the inequality (2.4) becomes the inequality
\[
\left| \frac{f(a) + f(b)}{2} - \frac{1}{b - a} \int_a^b f(x) dx \right| \leq \frac{b - a}{2} \left[\frac{\mu^2}{\mu + 1} + \eta \times |f'(b)|^{\frac{\alpha}{\eta}} \psi \left(\frac{s}{\eta}, \frac{s}{\eta} \right) \right].
\]

The corresponding version for powers of the absolute value of the first derivative is incorporated in the following result:

Theorem 4. Let \(I \supset [0, \infty) \) be an open interval and \(f : I \to (0, \infty) \) is differentiable. If \(f' \in L[a, b] \) and \(|f'| \) is \(s \)-logarithmically convex functions in the second sense on \([a, b] \) for some fixed \(s \in (0, 1] \) and \(\mu, \eta > 0 \) with \(\mu + \eta = 1 \) and \(p, q > 1 \), then the following inequality holds for fractional integrals with \(\alpha > 0 \):
\[
\int_0^1 |f'(a)|^{\frac{\alpha}{\eta}} |f'(b)|^{\frac{(1-\alpha)}{\eta}} dt \leq \frac{b - a}{2} \left[|f'(b)|^{s} \psi(s, s) \right]^\frac{1}{\alpha}.
\]

where \(1/p + 1/q = 1 \), and \(\psi(u, v) \) is defined as in (2.2).

Proof. By Lemma [1] and since \(|f'| \) is \(s \)-logarithmically convex functions in the second sense on \([a, b] \), we have
\[
\left| \frac{f(a) + f(b)}{2} - \frac{\Gamma(\alpha + 1)}{2(b - a)^{\alpha}} [J_{b-}^a f(a) + J_{a+}^b f(b)] \right| \leq \frac{b - a}{2} \int_0^1 |(1 - t)^{\alpha} - t^{\alpha}| |f'(a)|^{s} |f'(b)|^{(1-t)^s} dt
\]
for all \(t \in [0, 1] \). Using the well known Hölder inequality, on the right side of (2.4) and making the change of variable we have
\[
\left| \frac{f(a) + f(b)}{2} - \frac{\Gamma(\alpha + 1)}{2(b - a)^{\alpha}} [J_{b-}^a f(a) + J_{a+}^b f(b)] \right| \leq \frac{b - a}{2} \left(\int_0^1 |(1 - t)^{\alpha} - t^{\alpha}|^p dt \right)^\frac{1}{p} \left(\int_0^1 |f'(a)|^{q(1-t)^s} |f'(b)|^{q(1-t)^s} dt \right)^\frac{1}{q}.
\]

It is known that for \(\alpha, t_1, t_2 \in [0, 1] \),
\[
|t_1^\alpha - t_2^\alpha| \leq |t_1 - t_2|,
\]
therefore
\[
\int_0^1 |(1 - t)^{\alpha} - t^{\alpha}|^p dt \leq \int_0^1 |1 - 2t|^{\alpha p} dt = \frac{1}{\alpha p + 1}.
\]
Since $|f'|$ is s-logarithmically convex functions on $[a,b]$ and $\psi(u,v) \leq 1$, we obtain
\begin{equation}
(2.10) \quad \int_0^1 |f'(a)|^{\gamma s} |f'(b)|^{\gamma(1-t)s} \, dt \leq |f'(b)|^{\gamma s} \psi(sq,sq)
\end{equation}

From (2.8) to (2.10), (2.6) holds. \hfill \Box

A different approach leads to the following result.

Theorem 5. Let $I \supset [0, \infty)$ be an open interval and $f : I \to (0, \infty)$ is differentiable. If $f' \in L[a,b]$ and $|f'|^q$ is s-logarithmically convex functions in the second sense on $[a,b]$ for some fixed $s \in (0,1]$ and $\mu, \eta > 0$ with $\mu + \eta = 1$ and $q \geq 1$, then the following inequality for fractional integrals with $\alpha > 0$ holds:
\begin{equation}
(2.11) \quad \left| \frac{f(a) + f(b)}{2} - \frac{\Gamma(\alpha + 1)}{2(b-a)} \left[J_0^{\alpha} f(a) + J_0^{\alpha} f(b) \right] \right|
\end{equation}

\[\leq \frac{b-a}{2} \left(\frac{2^{1-\alpha} - 1}{\alpha + 1} \right)^{1-\frac{1}{q}} \left(\frac{\mu^2}{\alpha + \mu} + \eta |f'(b)|^{\gamma} \psi \left(\frac{sq}{\eta}, \frac{sq}{\eta}\right) \right)^{\frac{1}{q}} \]

where $\psi(u,v)$ is defined as in (2.2).

Proof. By Lemma 1 and using the well known power mean inequality, we have
\begin{align*}
&\left| \frac{f(a) + f(b)}{2} - \frac{\Gamma(\alpha + 1)}{2(b-a)} \left[J_0^{\alpha} f(a) + J_0^{\alpha} f(b) \right] \right|
\leq \frac{b-a}{2} \int_0^1 |(1-t)^\alpha - t^\alpha| |f'(ta + (1-t)b)| \, dt \\
\leq & \frac{b-a}{2} \left(\int_0^1 |(1-t)^\alpha - t^\alpha| \, dt \right)^{\frac{1}{q}} \left(\int_0^1 |(1-t)^\alpha - t^\alpha| \, dt \right)^{\frac{1}{q}} \left(\int_0^1 |f'(ta + (1-t)b)|^q \, dt \right)^{\frac{1}{q}} \\
\end{align*}

It is easily check that
\[\int_0^1 |(1-t)^\alpha - t^\alpha| \, dt = \frac{2}{\alpha + 1} \left(1 - \frac{1}{2^\alpha} \right). \]

Since $|f'|^q$ is s-logarithmically convex and using the well known inequality $mn \leq \mu m^\frac{1}{\mu} + \eta n^\frac{1}{\eta}$, we obtain
\begin{align*}
\int_0^1 |(1-t)^\alpha - t^\alpha| |f'(ta + (1-t)b)|^q \, dt & \leq \int_0^1 |(1-t)^\alpha - t^\alpha| |f'(a)|^{\gamma s} |f'(b)|^{\gamma(1-t)s} \, dt \\
& \leq \int_0^1 |1-2t|^\alpha |f'(a)|^{\gamma s} |f'(b)|^{\gamma(1-t)s} \, dt \\
& \leq \mu \int_0^1 |1-2t|^\frac{\alpha}{\mu} \, dt + \eta \int_0^1 |f'(a)|^{\frac{\alpha}{\eta}} |f'(b)|^{\frac{\gamma(1-t)s}{\eta}} \, dt.
\end{align*}

It is easily check that
\[\mu \int_0^1 |1-2t|^\frac{\alpha}{\mu} \, dt = \mu \frac{1}{\frac{\alpha}{\mu} + 1} = \frac{\mu^2}{\alpha + \mu}. \]
Afterwards, when $\psi(u, v) \leq 1$, by (2.4), we get that

\[
\int_0^1 |f'(a)|^{\frac{\alpha t}{\alpha + 1}} |f'(b)|^{\frac{\alpha (1-t)}{\alpha + 1}} dt \leq \int_0^1 |f'(a)|^{\frac{\alpha t}{\alpha + 1}} |f'(b)|^{\frac{\alpha (1-t)}{\alpha + 1}} dt = |f'(b)|^{\frac{\alpha}{\alpha + 1}} \psi \left(\frac{sq}{\eta}, \frac{sq}{\eta} \right).
\]

Therefore

\[
\left| \frac{f(a) + f(b)}{2} - \frac{\Gamma(\alpha + 1)}{2(b-a)^{\alpha + 1}} \left[J_0^\alpha f(a) + J_0^\alpha f(b) \right] \right| \leq \frac{b - a}{2} \left(1 - \frac{1}{\alpha + 1} \right)^{1-\frac{1}{\alpha + 1}} \left(\mu \int_0^1 |1 - 2t|^{\frac{\mu}{\alpha + 1}} dt + \eta \int_0^1 |f'(a)|^{\frac{\alpha t}{\alpha + 1}} |f'(b)|^{\frac{\alpha (1-t)}{\alpha + 1}} dt \right)^{\alpha \mu + \eta} \psi \left(\frac{sq}{\eta}, \frac{sq}{\eta} \right)
\]

which completes the proof. \qed

References

[1] J. Hadamard: Étude sur les propriétés des fonctions entières et en particulier d’une fonction considérée par Riemann, J. Math Pures Appl., 58, (1893) 171–215.

[2] A. O. Akdemir and M. Tunç: On some integral inequalities for s-logarithmically convex functions, submitted.

[3] Sarıkaya, M. Z., Set, E., Yaldız, H. and Başak, N.: Hermite-Hadamard’s inequalities for fractional integrals and related fractional inequalities, Mathematical and Computer Modelling, In Press.

[4] Belarbi, S. and Dahmani, Z.: On some new fractional integral inequalities, J. Ineq. Pure and Appl. Math., 10(3), Art. 86 (2009).

[5] Dahmani, Z.: New inequalities in fractional integrals, International Journal of Nonlinear Science, 9(4), 493–497 (2010).

[6] Dahmani, Z.: On Minkowski and Hermite-Hadamard integral inequalities via fractional integration, Ann. Funct. Anal. 1(1), 51–58 (2010).

[7] Dahmani, Z., Tabharit, L. and Taf, S.: Some fractional integral inequalities, Nonl. Sci. Lett. A., 1(2), 155–160 (2010).

[8] Dahmani, Z., Tabharit, L. and Taf, S.: New generalizations of Grüss inequality using Riemann-Liouville fractional integrals, Bull. Math. Anal. Appl., 2(3), 93–99 (2010).

[9] Özdemir, M.E., Kavurmacı, H. and Avci, M.: New inequalities of Ostrowski type for mappings whose derivatives are (α, m)-convex via fractional integrals, RGMIA Research Report Collection, 15, Article 10, 2012.

[10] Özdemir, M.E., Kavurmacı, H. and Yıldız, Ç.: Fractional integral inequalities via s-convex functions, arXiv:1201.4915v1 [math.CA] 24 Jan 2012.

[11] Özdemir, M.E., Dragomir, S. S. and Yıldız, Ç.: The Hadamard inequality for convex function via fractional integrals, RGMIA Volume 15, art.14, 2012.

AĞRI İbrahim Çeçen University, Faculty of Science and Arts, Department of Mathematics, AĞRI, Turkey.

E-mail address: hkavurmaci@agri.edu.tr

KILIS 7 Aralık University, Faculty of Science and Arts, Department of Mathematics, Kilis, 79000, Turkey.

E-mail address: mevluttunc@kilis.edu.tr