This code is part of Dias, Ades, Welton, Jansen and Sutton (2018) Network Meta-Analysis for Decision Making. This work should be cited whenever the code is used whether in its standard form or adapted.

Normal likelihood, identity link
Trial-level data given as treatment differences
Random effects model for multi-arm trials
model{
 # *** PROGRAM STARTS
 for(i in 1:ns2) {
 # LOOP THROUGH 2-ARM STUDIES
 y[i,2] ~ dnorm(delta[i,2],prec[i,2]) # normal likelihood for 2-arm trials
 # Deviance contribution for trial i
 resdev[i] <- (y[i,2] - delta[i,2])*(y[i,2] - delta[i,2])*prec[i,2]
 }
 for(i in (ns2+1):(ns2+ns3)) {
 # LOOP THROUGH THREE-ARM STUDIES
 for (k in 1:(na[i]-1)) {
 # set variance-covariance matrix
 Sigma[i,j,k] <- V[i]*(1-equals(j,k)) + var[i,k+1]*equals(j,k)
 }
 Omega[i,1:(na[i]-1),1:(na[i]-1)] <- inverse(Sigma[i,]) # Precision matrix
 # multivariate normal likelihood for 3-arm trials
 y[i,2:na[i]] ~ dmnorm(delta[i,2:na[i]],Omega[i,1:(na[i]-1),1:(na[i]-1)])
 # Deviance contribution for trial i
 for (k in 1:(na[i]-1)) {
 # multiply vector & matrix
 ydiff[i,k]<- y[i,(k+1)] - delta[i,(k+1)]
 z[i,k]<- inprod2(Omega[i,k,1:(na[i]-1)], ydiff[i,1:(na[i]-1)])
 resdev[i]<- inprod2(ydiff[i,1:(na[i]-1)], z[i,1:(na[i]-1)])
 }
 }
 for(i in 1:(ns2+ns3)) {
 # LOOP THROUGH ALL STUDIES
 w[i,1] <- 0 # adjustment for multi-arm trials is zero for control arm
 delta[i,1] <- 0 # treatment effect is zero for control arm
 for (k in 2:na[i]) {
 # LOOP THROUGH ARMS
 var[i,k]<- pow(se[i,k],2) # calculate variances
 prec[i,k]<- 1/var[i,k] # set precisions
 }
 for (k in 2:na[i]) {
 # LOOP THROUGH ARMS
 # trial-specific RE distributions
 delta[i,k] ~ dnorm(md[i,k],taud[i,k])
 # mean of random effects distributions, with multi-arm trial correction
 md[i,k]<- d[t[i,k]] - d[t[i,1]] + sw[i,k]
 # precision of random effects distributions (with multi-arm trial correction)
 taud[i,k]<- tau *2*(k-1)/k
 # adjustment, multi-arm RCTs
 w[i,k]<- (delta[i,k] - d[t[i,k]] + d[t[i,1]])
 # cumulative adjustment for multi-arm trials
 sw[i,k]<- sum(w[i,1:k-1])/(k-1)
 }
 }
 totresdev <- sum(resdev[]) # Total Residual Deviance
 d[1]<-0 # treatment effect is zero for reference treatment
 for (k in 2:nt) {
 d[k] ~ dnorm(0,0.0001)
 }
 sd ~ dunif(0,5) # vague prior for between-trial SD
 tau ~ pow(sd,-2) # between-trial precision = (1/between-trial variance)
 # pairwise mean differences for all possible pair-wise comparisons
 for (c in 1:(nt-1)) {
 for (k in (c+1):nt) {
 diff[c,k]<- d[k]-d[c]
 }
 }
for (k in 1:nt) {
 # assumes higher values are "good"
 rk[k] <- nt+1-rank(d[,k])
 # assumes higher values are "bad"
 best[k] <- equals(rk[k],1)
 # calculate probability that treat k is best
 for (h in 1:nt){
 prob[h,k] <- equals(rk[k],h)
 }
}

Provide estimates of treatment effects T[k] on the natural scale
Given a Mean Effect, meanA, for 'standard' treatment A,
with precision (1/variance) precA
A ~ dnorm(meanA,precA)
for (k in 1:nt) { T[k] <- A + d[k] }