Design, synthesis, in silico and in vitro antimicrobial screenings of novel 1,2,4-triazoles carrying 1,2,3-triazole scaffold with lipophilic side chain tether

Mohamed Reda Aouad1,2*, Mariem Mohammed Mayaba1, Arshi Naqvi1, Sanaa K. Bardaweel3, Fawzia Faleh Al-blewi1, Mouslim Messali1 and Nadjet Rezki1,2*

Abstract

Background: 1,2,4-Triazoles and 1,2,3-triazoles have gained significant importance in medicinal chemistry. Results: This study describes a green, efficient and quick solvent free click synthesis of new 1,2,3-triazole-4,5-diesters carrying a lipophilic side chain via 1,3-dipolar cycloaddition of diethylacetylene dicarboxylate with different surfactant azides. Further structural modifications of the resulting 1,2,3-triazole diesters to their corresponding 1,2,4-triazole-3-thiones via multi-step synthesis has been also investigated. The structures of the newly designed triazoles have been elucidated based on their analytical and spectral data. These compounds were evaluated for their antimicrobial activities. Relative to the standard antimicrobial agents, derivatives of 1,2,3-triazole-bis-4-amino-1,2,4-triazole-3-thiones were the most potent antimicrobial agents with compound 7d demonstrating comparable antibacterial and antifungal activities against all tested microorganisms. Further, the selected compounds were studied for docking using the enzyme, Glucosamine-6-phosphate synthase.

Conclusions: The in silico study reveals that all the synthesized compounds had shown good binding energy toward the target protein ranging from -10.49 to -5.72kJ mol^{-1} and have good affinity toward the active pocket, thus, they may be considered as good inhibitors of GlcN-6-P synthase.

Keywords: Click chemistry, 1,2,3-triazole-1,2,4-triazole hybrids, Lipophilic side chain, Antimicrobial activity, Molecular docking

Background

The synthesis of 1,2,4-triazoles has become one of the most hot and popular topic in modern heterocyclic chemistry due to their various uses. In fact, 1,2,4-triazoles have gained considerable importance in medicinal chemistry due to their potential antimicrobial [1], anticancer [2], antitubercular [3], anticonvulsant [4] and anti-inflammatory [5] properties. In addition, several well know antifungal drugs including Fluotrimazole, Ribavirine, Fluconazole, Estazolam, Alprazolam and Loreclezole [6,7] were found to possess the 1,2,4-triazole moiety in their structures.

The 1,2,3-triazole nucleus has been also recognized as a fascinating scaffold in drug design due to its incorporation into many chemotherapeutic drug molecules as antibacterial [8], anticancer [9], antifungal [10], antiviral [11] and antimalarial [12], antimycobacterial [13] agents.

Surfactants are widely studied by researchers due to their promising chemical, industrial and biological applications. Surfactants are associated with diverse biological properties such as antimicrobial [14], anti-inflammatory [15], antiviral [16], anticancer [17], antioxidant [18] and analgesic [19] activities.
Recent research in drug discovery aimed to introduce the 1,2,3-triazole moiety as a connecting unit to link together two or more pharmacophores for the design of novel bioactive molecules. Thus, it was hypothesized that the chemical combination of 1,2,4-triazole, 1,2,3-triazole and surfactants side chain in one scaffold may prove to be a breakthrough for chemical and biological activity as continuation of our effort in the designing of novel polyheterocyclic bioactive molecules [20–24].

In modern drug designing, molecular docking is routinely used for understanding drug-receptor interaction. Molecular docking provides useful information about drug receptor interactions and is frequently used to predict the binding orientation of small molecule drug candidates to their protein targets in order to predict the affinity and activity of the small molecule [25]. When designing novel antimicrobial agents, enzymes involved in the biosynthesis of microbial cell walls are generally good targets. In this regard, the enzyme glucosamine-6-phosphate synthase (GlmS, GlcN-6-P synthase, l-glutamine: d-fructose-6P amido-transferase, EC 2.6.1.16) is particularly attractive [26]. It is involved in the first step of the formation of the core amino-sugar, N-acetyl Glucosamine which is an essential building block of bacterial and fungal cell walls [27, 28]. Accordingly, GlcN-6-P serves as a promising target for antibacterial and anti-fungal drug discovery. Structural differences between prokaryotic and human enzymes may be exploited to design specific inhibitors, which may serve as prototypes of anti-fungal and anti-bacterial drugs [28]. Triazole type units have been reported to be good inhibitors of GlcN-6-P synthase [29–31]. Moreover, ciprofloxacin, the standard drug used for in vitro screenings in our studies, has been reported to be a good inhibitor of GlcN-6-P synthase [31–34]. Therefore, it was thought worthwhile to select GlcN-6-P synthase as the target for the synthesized triazole compounds.

Results and discussion
Chemistry
An optimized eco-friendly click procedure has been previously developed in our laboratory for the construction of a series of novel 4,5-disubstituted 1,2,3-triazoles via 1,3-dipolar cycloaddition of dimethylacetylene dicarboxylate with different aromatic azides under solvent-free conditions. Thus, it was hypothesized that the chemical combination of 1,2,4-triazole, 1,2,3-triazole and surfactants side chain in one scaffold may prove to be a breakthrough for chemical and biological activity as continuation of our effort in the designing of novel polyheterocyclic bioactive molecules [20–24].

In modern drug designing, molecular docking is routinely used for understanding drug-receptor interaction. Molecular docking provides useful information about drug receptor interactions and is frequently used to predict the binding orientation of small molecule drug candidates to their protein targets in order to predict the affinity and activity of the small molecule [25]. When designing novel antimicrobial agents, enzymes involved in the biosynthesis of microbial cell walls are generally good targets. In this regard, the enzyme glucosamine-6-phosphate synthase (GlmS, GlcN-6-P synthase, l-glutamine: d-fructose-6P amido-transferase, EC 2.6.1.16) is particularly attractive [26]. It is involved in the first step of the formation of the core amino-sugar, N-acetyl Glucosamine which is an essential building block of bacterial and fungal cell walls [27, 28]. Accordingly, GlcN-6-P serves as a promising target for antibacterial and anti-fungal drug discovery. Structural differences between prokaryotic and human enzymes may be exploited to design specific inhibitors, which may serve as prototypes of anti-fungal and anti-bacterial drugs [28]. Triazole type units have been reported to be good inhibitors of GlcN-6-P synthase [29–31]. Moreover, ciprofloxacin, the standard drug used for in vitro screenings in our studies, has been reported to be a good inhibitor of GlcN-6-P synthase [31–34]. Therefore, it was thought worthwhile to select GlcN-6-P synthase as the target for the synthesized triazole compounds.

Results and discussion
Chemistry
An optimized eco-friendly click procedure has been previously developed in our laboratory for the construction of a series of novel 4,5-disubstituted 1,2,3-triazoles via 1,3-dipolar cycloaddition of dimethylacetylene dicarboxylate with different aromatic azides under solvent-free conditions. Thus, it was hypothesized that the chemical combination of 1,2,4-triazole, 1,2,3-triazole and surfactants side chain in one scaffold may prove to be a breakthrough for chemical and biological activity as continuation of our effort in the designing of novel polyheterocyclic bioactive molecules [20–24].

In modern drug designing, molecular docking is routinely used for understanding drug-receptor interaction. Molecular docking provides useful information about drug receptor interactions and is frequently used to predict the binding orientation of small molecule drug candidates to their protein targets in order to predict the affinity and activity of the small molecule [25]. When designing novel antimicrobial agents, enzymes involved in the biosynthesis of microbial cell walls are generally good targets. In this regard, the enzyme glucosamine-6-phosphate synthase (GlmS, GlcN-6-P synthase, l-glutamine: d-fructose-6P amido-transferase, EC 2.6.1.16) is particularly attractive [26]. It is involved in the first step of the formation of the core amino-sugar, N-acetyl Glucosamine which is an essential building block of bacterial and fungal cell walls [27, 28]. Accordingly, GlcN-6-P serves as a promising target for antibacterial and anti-fungal drug discovery. Structural differences between prokaryotic and human enzymes may be exploited to design specific inhibitors, which may serve as prototypes of anti-fungal and anti-bacterial drugs [28]. Triazole type units have been reported to be good inhibitors of GlcN-6-P synthase [29–31]. Moreover, ciprofloxacin, the standard drug used for in vitro screenings in our studies, has been reported to be a good inhibitor of GlcN-6-P synthase [31–34]. Therefore, it was thought worthwhile to select GlcN-6-P synthase as the target for the synthesized triazole compounds.

Results and discussion
Chemistry
An optimized eco-friendly click procedure has been previously developed in our laboratory for the construction of a series of novel 4,5-disubstituted 1,2,3-triazoles via 1,3-dipolar cycloaddition of dimethylacetylene dicarboxylate with different aromatic azides under solvent-free conditions. Thus, it was hypothesized that the chemical combination of 1,2,4-triazole, 1,2,3-triazole and surfactants side chain in one scaffold may prove to be a breakthrough for chemical and biological activity as continuation of our effort in the designing of novel polyheterocyclic bioactive molecules [20–24].

In modern drug designing, molecular docking is routinely used for understanding drug-receptor interaction. Molecular docking provides useful information about drug receptor interactions and is frequently used to predict the binding orientation of small molecule drug candidates to their protein targets in order to predict the affinity and activity of the small molecule [25]. When designing novel antimicrobial agents, enzymes involved in the biosynthesis of microbial cell walls are generally good targets. In this regard, the enzyme glucosamine-6-phosphate synthase (GlmS, GlcN-6-P synthase, l-glutamine: d-fructose-6P amido-transferase, EC 2.6.1.16) is particularly attractive [26]. It is involved in the first step of the formation of the core amino-sugar, N-acetyl Glucosamine which is an essential building block of bacterial and fungal cell walls [27, 28]. Accordingly, GlcN-6-P serves as a promising target for antibacterial and anti-fungal drug discovery. Structural differences between prokaryotic and human enzymes may be exploited to design specific inhibitors, which may serve as prototypes of anti-fungal and anti-bacterial drugs [28]. Triazole type units have been reported to be good inhibitors of GlcN-6-P synthase [29–31]. Moreover, ciprofloxacin, the standard drug used for in vitro screenings in our studies, has been reported to be a good inhibitor of GlcN-6-P synthase [31–34]. Therefore, it was thought worthwhile to select GlcN-6-P synthase as the target for the synthesized triazole compounds.
subjected to intramolecular ring closure, in the presence of hydrazine hydrate under reflux for 6 h, to afford 80–84% yields of the desired 4-amino-1,2,4-triazole-3-thiones 7a–d.

The newly synthesized compounds were fully characterized based on their IR, ¹H NMR and ¹³C NMR spectra. The IR spectra of the 1,2,3-triazole di-esters 3a–d revealed the presence of strong absorption bands at 1738–1745 cm⁻¹ assigned to the ester C=O groups. The ¹H NMR spectrum of compound 3c showed a quartet at δH 4.27–4.32 ppm and a multiplet at δH 4.40–4.48 ppm characteristic for the two non-equivalent ester methylene groups. The two ester methyl protons were recorded as a triplet integrated for six protons at δH 1.41 ppm. The proton spectral analysis also showed the surfactant proton signals on their appropriate aliphatic region (see “Experimental”). Its ¹³C NMR spectrum revealed no signals on the sp-carbon regions confirming the success of the cycloaddition reaction, and two characteristic signals appeared at δC 158.72 and 160.33 ppm attributed to
the two ester carbonyl carbons (C=O). The surfactant side chain carbons appeared in their expected aliphatic region.

The success of the hydrazinolysis reaction was confirmed by the spectral data analysis of the diacid hydrazides 4a–d. Their IR spectra showed characteristic NH and NH2 bands of the hydrazide functionalities near 3246–3367 cm\(^{-1}\). The \(^1\)H NMR spectrum of the diacid hydrazide 4b was taken as example to confirm the success of the reaction. It showed the disappearance of the ethyl ester protons (CH\(_2\)CH\(_3\)) and the appearance of new multiplet at \(\delta_H 4.74–4.79\) ppm assignable to the NH\(_2\) and NCH\(_2\) groups. The two non-equivalent NH amide protons were assigned to two singlets at \(\delta_H 10.42\) and 11.83 ppm. The \(^13\)C NMR spectrum also confirmed the success of the hydrazinolysis reaction through, first the absence of the two ethoxy signals from their chemical shift regions, second the appearance of the two carbonyl hydrazide moieties at lower frequencies (\(\delta_C 155.46\) and 159.23 ppm) compared to their ester precursors (\(\delta_C 158.72\) and 160.33 ppm).

The IR spectra of the thiosemicarbazides 5a–d revealed the presence of the thiocarbonyl groups (C=S) by the appearance of new absorption bands at 1289–1298 cm\(^{-1}\). The \(^1\)H NMR spectrum of compound 5a was characterized by the disappearance of the NH\(_2\) signals and appearance of ten aromatic protons of the two phenyl rings at \(\delta_H 7.12–7.74\) ppm, confirmed the success of the condensation reaction. The two NH-protons bonded to the two phenyl groups appeared as two singlets at \(\delta_H 9.64\) and 9.67 ppm. The \(^1\)H NMR also showed four singlets at \(\delta_H 7.49\) ppm. In the \(^13\)C NMR spectrum of compound 5a, the presence of signals at \(\delta_C 124.04–138.90\) ppm and the presence of two characteristic signals at \(\delta_C 180.18\) and 181.07 ppm attributed to the two thiocarbonyl groups (C=S). Additionally, the spectrum revealed the aliphatic carbons for the surfactant side chain on their expected chemical shifts.

In the IR spectra of compounds 6a–d, the absence of the carbonyl (C=O) and thiocarbonyl (C=S) absorption bands and the presence of new absorption band near 1608–1615 cm\(^{-1}\) characteristic for the C=N groups confirmed the success of the intramolecular ring closure to form 1,2,4-triazole-3-thione. In addition, the exhibited chemical shifts obtained from their \(^1\)H NMR, \(^13\)C NMR and spectra were all supported the proposed structures of 6a–d. The \(^1\)H NMR spectrum of compound 6d revealed the appearance of a diagnostic broad singlet at \(\delta_C 10.60\) ppm assignable to the NH\(_3\)'s of the thione isomer.

The phenyl protons resonated as a multiplet at \(\delta_H 7.02–7.49\) ppm. In the \(^13\)C NMR spectrum of compound 6d, the C=S signals appeared at 187.84 ppm confirming the predominance of the thione isomer. Furthermore, the aromatic carbons and the surfactant side chain carbons were observed on their appropriate chemical shifts.

The structures of the aminotriazoles 7a–d have been also deduced from their elemental and spectral data. In their IR spectra, the presence of strong absorption bands at 1288–1296 and 3275–3380 cm\(^{-1}\) attributed to the C=S, NH and NH\(_2\) functional groups confirmed the formation of the 1,2,4-triazole ring. The \(^1\)H-NMR analysis revealed the presence of two diagnostic singlets at \(\delta_H 5.19–5.27\) ppm (NH\(_2\)) and 9.21–9.31 ppm (NH), confirming the presence of the triazole ring in its thione form. In their \(^13\)C-NMR spectra, the presence of signals at \(\delta_C 187.60–187.68\) ppm attributed to the thiocarbonyl carbons (C=S), which were not observed on their corresponding starting hydrazides 4a–d is another support for the predominance of the thione form.

Antimicrobial evaluation

Antimicrobial activities of the newly synthesized compounds were evaluated against a panel of pathogenic microorganisms including Gram-positive bacteria, Gram-negative bacteria, and fungi. Antimicrobial activities were expressed as the Minimum Inhibitory Concentration (MIC) that is defined as the least concentration of the examined compound resulted in more than 80% growth inhibition of the microorganism [35, 36]. *Bacillus cereus*, *Enterococcus faecalis* and *Staphylococcus aureus* were used as model microorganisms representing Gram positive bacteria while *Proteus mirabilis*, *Escherichia coli* and *Pseudomonas aeruginosa* were used as representative of the Gram negative bacteria. On the other hand, *Candida albicans* and *Aspergillus brasilensis* were chosen to study the antifungal activities of the synthesized compounds under examination (Table 1).

Antibacterial and antifungal screening revealed that some of the examined compounds demonstrated fair to excellent antimicrobial activities relative to Ciprofloxacin and Fluconazole; standard potent antibacterial and antifungal, respectively. Among the studied compounds, 7a–d emerged as the most potent antimicrobial agents relative to the standards, with MIC ranges between 1 and 32 µg/mL against Gram positive bacteria, 1–64 µg/mL against Gram negative bacteria and 1–16 µg/mL against fungi. Compared to Ciprofloxacin, compound 5,5’-(1-hexadecyl-1H-1,2,3-triazole-4,5-diyl)bisis(4-amino-1,2,4-triazole-5(H)-thione) (7d) appears to exert similar or more potent antibacterial activities against all bacterial species tested. Likewise, compound 7d demonstrates a comparable antifungal activity to that of the
potent standard Fluconazole. Interestingly, increasing the carbon chain length substitution on the 1,2,3-triazole moiety of the 1,2,3-triazole-bis-4-amino-1,2,4-triazole-3-thiones 7a–d resulted in 2–16-folds improvement of the antimicrobial activity.

Interestingly, 1,2,3-triazole-4,5-diyl)bis(4-phenyl-2,4-dihydro-1,2,4-triazole-3-thione derivatives 6a–d revealed similar trend of activity to that associated with the 1,2,3-triazole bis-4-amino-1,2,4-triazole-3-thione derivatives 7a–d indicating an improved antimicrobial activity of the 1,2,4 triazole moiety. MIC ranges between 4 and 64 µg/mL against Gram positive bacteria, 4–128 µg/mL against Gram negative bacteria, and 2–64 µg/mL against fungi. Nonetheless, 1,2,3-triazole derivatives with the triazole bis-4-amino-1,2,4-triazole-3-thiones substitution 7a–d appears to have superior antimicrobial activities over the 1,2,3-triazole-4,5-diyl)bis (4-phenyl-2,4-dihydro-1,2,4-triazole-3-thione derivatives 6a–d suggesting a balanced hydrophylicity/hydrophobicity ratio that results in a better penetration though microorganisms’ cellular membranes; hence, augmented activities. Similarly, increasing carbon chain length of the 1,2,3-triazole moiety enhanced the effectiveness of the 1,2,3-triazole-bis-1,2,4-triazole-3-thione derivatives 6a–d.

On the other hand, 1,2,3-triazole bis-acid thiosemicarbazide derivatives 5a–d yielded intermediate antibacterial and antifungal activities relative to both standards, Ciprofloxacin and Fluconazole. MIC ranges between 8 and 128 µg/mL against Gram positive bacteria, 8–256 µg/mL against Gram negative bacteria, and 16–128 µg/mL against fungi. The diminished activity is probably due to the loss of the 1,2,4-triazole moiety. Structural activity relationship suggests that extending the N-1 alkyl substitution from the decyl to hexadecyl chain will enhance the antimicrobial activity by fourfolds. Whereas 1-hexadecyl-1,2,3-triazole-4,5-diyl)-bis(4-N-phenylacid thiosemicarbazide (5d) demonstrates a promising activity, relative to 5a, 5b, and 5c, against the examined strains,
it is still less efficient as antimicrobial than the 1,2,4-triazole derivatives.

In view of that, 1,2,3-triazole-4,5-diesters 3a–d and 1,2,3-triazole diacid hydrazides 4a–d were evidently less efficient to exert comparable antimicrobial activities to the previously observed activities associated with the substituted 1,2,4-triazole derivatives. Remarkably, 1,2,3-triazole-4,5-diesters 3a–d exhibited the least efficient antimicrobial activities against all microorganisms with MIC values ranging from 64 to 512 µg/mL against Gram positive bacteria and Gram negative bacteria, and 128–512 µg/mL against fungi. Diethyl-(1-decyl-1,2,3-triazole-4,5-dyl)diformate (3a) appears to have the least potency as an antifungal agent relative to Fluconazole. Chain extension of the N-1 alkyl substitution yielded twofolds enhancement in the antifungal activity and two to fourfolds enhancement in the antibacterial activity.

1,2,3-Triazole diacid hydrazide derivatives 4a–d show a better activity than 1,2,3-triazole-4,5-diesters 3a–d with MIC ranging from 32 to 256 µg/mL against Gram positive bacteria, 16–256 µg/mL against Gram negative bacteria, and 32–256 µg/mL against fungi. Analogously, increasing the hydrophobicity at the N-1 position of the 1,2,3-triazole will most likely facilitate a better cellular membrane penetration and consequently an enhanced antimicrobial activity.

Consistent with previous reports [20], and on the basis of the observed MIC values for the examined compounds, it was concluded that 1,2,4-triazole derivatives with elongated chain substitution at the 1,2,3-triazole N-1 position likely exhibit enhanced antibacterial and antifungal activities over analogous 1,2,4-triazole derivatives.

In-silico screenings (molecular docking)

In correlation to in vitro antimicrobial activity, it was thought worthy to perform molecular docking studies, hence screening the compounds, inculcating both in silico and in vitro results. The amino sugars are the significant building blocks of polysaccharides found in the cell wall of most human pathogenic microorganisms. Therefore not surprising that a number of GlcN-6-P synthase inhibitors of natural or synthetic origin display bactericidal or fungicidal properties [37]. Considering GlcN-6-P synthase as the target receptor, comparative and automated docking studies with newly synthesized candidate lead compounds was performed to determine the best in silico conformation. The molecular docking of the synthesized compounds with GlcN-6-P synthase revealed that all tested compounds have shown the bonding with one or the other amino acids in the active pockets. Figure 1 shows the docked images of selected candidate ligands including the considered standard drug i.e. Ciprofloxacin. Table 2 shows the binding energy and inhibition constant of the tested compounds including the standard. In-silico studies revealed all the synthesized molecules showed good binding energy toward the target protein ranging from −5.72 to −10.49 kJ mol⁻¹.

Experimental

General chemistry

Melting points were recorded on a Stuart Scientific SMP1 apparatus and are uncorrected. The IR spectra were measured using an FTIR-8400 s-Fourier transform infrared spectrophotometer-Shimadzu. The NMR spectra were determined on Advance Bruker NMR spectrometer at 400 MHz with TMS as internal standard. The ESI mass spectra were measured by a Finnigan LCQ spectrometer.

Synthesis and characterization of 1,2,3-triazole di-esters 3a–d

Diethyl acetylenedicarboxylate 1 (15 mmol) and the appropriate surfactant azide 2a–d (20 mmol) were heated on a water bath for 3 min. The reaction mixture was cooled and then ether was added to precipitate the product. The solid was filtered and washed with hexane.

Characterization of diethyl 1-decyl-1H-1,2,3-triazole-4,5-dicarboxylate (3a) It was obtained in 98% (hygroscopic), IR (KBr): 1742 (C=O), 1572 (C=C) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δH = 0.86 (t, 3H, J = 8 Hz, CH₃), 1.22–1.27 (m, 14H, 7 × CH₂), 1.40 (t, 6H, J = 8 Hz, 2 × OCH₂CH₂), 1.77–1.82 (m, 2H, NCH₂CH₂), 3.37 (dd, 1H, J = 4 Hz, 8 Hz, NCH₂), 4.23–4.30 (q, 1H, J = 4 Hz, 8 Hz, OCH₂CH₂), 4.41–4.47 (m, 3H, OCH₂CH₂), 4.70 (t, 1H, J = 8 Hz, NCH₃). ¹³C NMR (100 MHz, CDCl₃): δC = 13.95 (CH₃), 14.12, 14.22 (OCH₂CH₂), 22.84, 26.54, 28.30, 28.79, 29.24, 29.63, 29.84, 29.99, 30.54, 32.71, 33.65 (CH₂), 50.97 (NCH₂), 61.80, 62.87 (2 × OCH₂CH₂), 129.46, 140.14, 151.98, 158.35, 160.87 (C=C, C=O). Anal. Calcd. for C₁₈H₃₁N₃O₄: C, 61.17; H, 8.84; N, 11.89. Found: C, 61.29; H, 8.79; N, 11.80. ESI MS (m/z): 354.23 [M+H]⁺.

Characterization of diethyl 1-dodecyl-1H-1,2,3-triazole-4,5-dicarboxylate (3b) It was obtained in 97% (hygroscopic), IR (KBr): 1745 (C=O), 1572 (C=C) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δH = 0.85 (t, 3H, J = 8 Hz, CH₃), 1.20–1.26 (m, 18H, 9 × CH₂), 1.43 (t, 6H, J = 8 Hz, 2 × OCH₂CH₂), 1.75–1.80 (m, 2H, NCH₂CH₂), 3.44 (dd, 1H, J = 4 Hz, 8 Hz, NCH₂), 4.20–4.28 (q, 1H, J = 4 Hz, 8 Hz, OCH₂CH₂), 4.35–4.42 (m, 3H, OCH₂CH₂), 4.71 (t, 1H, J = 8 Hz, NCH₃). ¹³C NMR (100 MHz, CDCl₃): δC = 13.90 (CH₃), 14.19, 14.28 (OCH₂CH₂), 22.80, 26.59, 26.77, 28.46, 28.80, 29.07, 29.26, 29.80, 29.92, 30.22, 30.64, 32.83, 33.83 (CH₂), 50.85 (NCH₂), 61.73, 62.65 (2 × OCH₂CH₂), 129.44, 140.28, 151.83, 158.40, 160.95.
Characterization of diethyl 1-tetradecyl-1H-1,2,3-triazole-4,5-dicarboxylate (3c) It was obtained in 96% (hygroscopic). IR (KBr): 1738 (C=O), 1580 (C=C) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δH = 0.88 (t, 3H, J = 8 Hz, CH₃), 1.26–1.33 (m, 22H, 11 × CH₂), 1.41 (t, 6H, J = 8 Hz, 2 × OCH₂CH₃), 1.81–1.91 (m, 2H, NCH₂CH₂), 3.41 (dd, 1H, J = 4 Hz, 8 Hz, NCH₂), 4.27–4.32 (q, 1H, J = 4 Hz, 8 Hz, OCH₂CH₃), 4.40–4.48 (m, 3H, OCH₂CH₃), 4.58 (t, 1H, J = 8 Hz, NCH₂). ¹³C NMR (100 MHz, CDCl₃): δC = 13.95 (CH₃), 14.12, 14.22 (OCH₂CH₃), 22.73, 26.39, 28.24, 28.38, 28.99, 29.40, 29.50, 29.53, 29.60, 29.64, 29.68, 30.29, 31.97, 32.91, 33.90 (CH₂), 50.55 (NCH₂), 61.78, 62.98 (2 × OCH₂CH₃), 129.97, 140.22, 151.79, 158.72, 160.33 (C=C, C=O). Anal. Calcd. For C₂₀H₃₅N₃O₄: C, 62.96; H, 9.25; N, 11.01. Found: C, 62.88; H, 9.32; N, 11.12. ESI MS (m/z): 382.26 [M+H]+.

Characterization of diethyl 1-hexadecyl-1H-1,2,3-triazole-4,5-dicarboxylate (3d) It was obtained in 95% (hygroscopic). IR (KBr): 1740 (C=O), 1575 (C=C) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δH = 0.85 (t, 3H, J = 8 Hz, CH₃), 1.23–1.34 (m, 26H, 13 × CH₂), 1.49 (t, 6H, J = 8 Hz, 2 × OCH₂CH₃), 1.84–1.90 (m, 2H, NCH₂CH₃), 3.50 (dd, 1H, J = 4 Hz, 8 Hz, NCH₂), 4.23–4.30 (q, 1H, J = 4 Hz,
Table 2 Molecular docking results of the target compounds

Compound no.	Minimum binding energy (kcal/mol)	Estimated inhibition constant, $K_i = \mu M$ (micromolar), nM (nanomolar)
3a	-6.35	21.99 μM
3b	-5.72	63.71 μM
3c	-6.85	9.46 μM
3d	-6.61	4.20 μM
4a	-8.03	1.30 μM
4b	-7.67	2.40 μM
4c	-7.55	2.94 μM
4d	-6.88	9.04 μM
5a	-9.31	150.86 nM
5b	-7.92	1.57 μM
5c	-6.33	22.73 μM
5d	-6.27	25.31 μM
6a	-9.24	167.77 nM
6b	-9.77	69.47 nM
6c	-10.33	26.60 nM
6d	-10.49	20.57 nM
7a	-8.86	320.85 nM
7b	-9.27	159.60 nM
7c	-9.30	151.56 nM
7d	-9.23	170.12 nM
Ciprofloxacin	-6.28	24.97 μM

Synthesis and characterization of 1,2,3-triazole di-acid hydrazides 4a–d

A mixture of compound 3a–d (10 mmol) and hydrazine hydrate (20 mmol) in ethanol (50 mL) was stirred for 5–15 min at rt. Ethanol was removed under reduced pressure, and the product formed was recrystallized from ethanol to give the titled compounds 4a–d.

Characterization of 1-decyl-1H-1,2,3-triazole-4,5-dicarbonylhydrazide (4a) It was obtained in 91% as colorless crystals, mp: 125–126 °C. IR (KBr): 3273–3367 (NH, NH$_2$), 1690 (C=O), 1565 (C=C) cm$^{-1}$. 1H NMR (400 MHz, DMSO-d_6): $\delta_H = 0.85$ (t, 3H, J = 8 Hz, CH$_3$), 1.23 (bs, 14H, $7 \times$ CH$_2$), 1.78–1.82 (m, 2H, NCH$_2$CH$_2$), 4.73–4.78 (m, 6H, NCH$_2$), 2 \times NH$_2$, 10.42 (s, 1H, NH), 11.84 (s, 1H, NH). 13C NMR (100 MHz, DMSO-d_6): $\delta_C = 13.90$ (CH$_3$), 22.06, 25.76, 28.36, 28.62, 28.82, 29.80, 31.23 (CH$_2$), 50.32 (NCH$_2$), 129.42, 137.82, 155.46, 159.22 (C=C, C=O). Anal. Calcd. For C$_{18}$H$_{35}$N$_7$O$_2$: C, 51.67; H, 8.36; N, 30.13. Found: C, 51.81; H, 8.32; N, 30.21. ESI MS (m/z): 326.22 [M+H]$^+$.

Characterization of 1-dodecyl-1H-1,2,3-triazole-4,5-dicarbonylhydrazide (4b) It was obtained in 90% as colorless crystals, mp: 115–116 °C. IR (KBr): 3254–3365 (NH, NH$_2$), 1694 (C=O), 1579 (C=C) cm$^{-1}$. 1H NMR (400 MHz, DMSO-d_6): $\delta_H = 0.85$ (t, 3H, J = 8 Hz, CH$_3$), 1.23 (bs, 18H, $9 \times$ CH$_3$), 1.78–1.81 (m, 2H, NCH$_2$CH$_2$), 4.74–4.79 (m, 2H, NCH$_2$), 2 \times NH$_2$, 10.42 (s, 1H, NH), 11.83 (s, 1H, NH). 13C NMR (100 MHz, DMSO-d_6): $\delta_C = 13.91$ (CH$_3$), 22.06, 25.77, 28.37, 28.67, 28.82, 28.89, 28.96, 28.97, 29.81, 31.25 (CH$_2$), 50.32 (NCH$_2$), 129.43, 137.82, 155.46, 159.23 (C=C, C=O). Anal. Calcd. For C$_{18}$H$_{35}$N$_7$O$_2$: C, 54.37; H, 8.84; N, 27.74. Found: C, 54.41; H, 8.74; N, 27.80. ESI MS (m/z): 354.25 [M+H]$^+$.

Characterization of 1-tetradecyl-1H-1,2,3-triazole-4,5-dicarbonylhydrazide (4c) It was obtained in 88% as colorless crystals, mp: 110–111 °C. IR (KBr): 3267–3356 (NH, NH$_2$), 1686 (C=O), 1569 (C=C) cm$^{-1}$. 1H NMR (400 MHz, CDCl$_3$): $\delta_H = 0.89$ (t, 3H, J = 8 Hz, CH$_3$), 1.26–1.35 (m, 22H, $11 \times$ CH$_3$), 1.88–1.96 (m, 2H, NCH$_2$CH$_2$), 4.19 (bs, 4H, 2 \times NH$_2$), 4.93 (dd, 2H, J = 4 Hz, 8 Hz, NCH$_2$), 7.28 (s, 1H, NH), 12.06 (s, 1H, NH). 13C NMR (100 MHz, CDCl$_3$): $\delta_C = 14.06$ (CH$_3$), 22.64, 26.47, 29.02, 29.31, 29.41, 29.49, 29.57, 29.61, 29.64, 30.52, 31.88 (CH$_3$), 51.80 (NCH$_2$), 129.36, 137.31, 156.73, 161.87 (C=C, C=O). Anal. Calcd. For C$_{24}$H$_{53}$N$_7$O$_2$: C, 56.67; H, 9.25; N, 25.70. Found: C, 56.80; H, 9.30; N, 25.77. ESI MS (m/z): 382.28 [M+H]$^+$.

Characterization of 1-hexadecyl-1H-1,2,3-triazole-4,5-dicarbonylhydrazide (4d) It was obtained in 85% as colorless crystals, mp: 103–104 °C. IR (KBr): 3246–3361 (NH, NH$_2$), 1697 (C=O), 1575 (C=C) cm$^{-1}$. 1H NMR (400 MHz, CDCl$_3$): $\delta_H = 0.87$ (t, 3H, J = 8 Hz, CH$_3$), 1.25–1.37 (m, 26H, $13 \times$ CH$_3$), 1.86–1.92 (m, 2H, NCH$_2$CH$_2$), 4.21 (bs, 4H, 2 \times NH$_2$), 4.90 (dd, 2H, J = 4 Hz, 8 Hz, NCH$_2$), 7.24 (s, 1H, NH), 12.11 (s, 1H, NH). 13C NMR (100 MHz, CDCl$_3$): $\delta_C = 14.09$ (CH$_3$), 22.69, 26.73, 29.23, 29.57, 29.70, 29.98, 30.34, 30.46, 30.59, 30.72, 31.64, 31.93 (CH$_3$), 51.76 (NCH$_2$), 129.56, 137.49, 156.97, 159.55 (C=C, C=O). Anal. Calcd. For C$_{28}$H$_{59}$N$_7$O$_2$: C, 58.65; H, 9.60; N, 23.94. Found: C, 58.74; H, 9.66; N, 23.89. ESI MS (m/z): 410.31 [M+H]$^+$.

Synthesis and characterization of 1,2,3-triazole bis-acid thiosemicarbazides 5a–d

A mixture of compound 4a–d (10 mmol) and phenyl isothiocyanate (20 mmol) in ethanol (50 ml) was refluxed for 6 h. The solution was cooled and a white solid appeared. The obtained precipitate was filtered and recrystallized from ethanol to give the titled compounds 5a–d.

Characterization of 2,2′-(1-decyl-1H-1,2,3-triazole-4,5-dicarbonyl)bis(N-phenylhydrazine-carbothioamide) (5a)

Characterization of 2,2′-(1-hexadecyl-1H-1,2,3-triazole-4,5-dicarbonyl)bis(N-phenylhydrazine-carbothioamide) (5d)

Synthesis and characterization of 1,2,3-triazole bis-1,2,4-triazole-3-thiones 6a–d

A mixture of compound 5a–d (10 mmol) and 10% aqueous sodium hydroxide solution (200 mL) was refluxed for 6 h. The mixture was then cooled to room temperature and filtered. The filtrate was acidified by the addition of hydrochloric acid. The resulting solid was collected by filtration, washed with water and recrystallized from ethanol to give compound 6a–d.

Characterization of 5,5′-(1-decyl-1H-1,2,3-triazole-4,5-diyldiis(4-phenyl-2,4-dihydro-1,2,4-triazole-3-thione) (6a)

It was obtained in 80% as colorless crystals, mp: 220–221 °C. IR (KBr): 3345 (NH), 1615 (C=N), 1570 (C=C), 1295 (C=S) cm⁻¹. ¹H-NMR (400 MHz, CDCl₃): δH = 0.87–0.91 (m, 3H, CH₃), 1.27–1.43 (m, 14H, 7 × CH₂), 1.80–1.85 (m, 2H, NCH₂CH₃), 4.22–4.26 (m, 2H, NCH₂), 7.10–7.46 (m, 10H, Ar–H), 9.08 (bs, 2H, 2 × NH). ¹³C NMR (100 MHz, CDCl₃): δC = 14.10 (CH₃), 15.21, 22.63, 26.22, 26.37, 28.85, 29.24, 29.31, 29.44, 29.93 (CH₃), 31.83 (NCH₂), 118.14, 121.72, 125.35, 127.78, 128.42, 128.97, 129.66, 137.31, 141.95, 188.58 (Ar–C, C≡N, C=S). Anal. Calcld. For C₃₇H₂₉N₇O₅S₇: C, 58.96; H, 6.96; N, 19.34. Found: C, 58.85; H, 6.85; N, 19.41. ESI MS (m/z): 652.31 [M+H]⁺.

Synthesis and characterization of 1,2,3-triazole bis-1,2,4,5-diacetyl-1,2,3-triazole-4,5-diyldiis(4-phenyl-2,4-dihydro-1,2,4-triazole-3-thione) (6a)

It was obtained in 80% as colorless crystals, mp: 220–221 °C. IR (KBr): 3345 (NH), 1615 (C=N), 1570 (C=C), 1295 (C=S) cm⁻¹. ¹H-NMR (400 MHz, CDCl₃): δH = 0.87–0.91 (m, 3H, CH₃), 1.27–1.43 (m, 14H, 7 × CH₂), 1.80–1.85 (m, 2H, NCH₂CH₃), 4.22–4.26 (m, 2H, NCH₂), 7.10–7.46 (m, 10H, Ar–H), 9.08 (bs, 2H, 2 × NH). ¹³C NMR (100 MHz, CDCl₃): δC = 14.10 (CH₃), 15.21, 22.63, 26.22, 26.37, 28.85, 29.24, 29.31, 29.44, 29.93 (CH₃), 31.83 (NCH₂), 118.14, 121.72, 125.35, 127.78, 128.42, 128.97, 129.66, 137.31, 141.95, 188.58 (Ar–C, C≡N, C=S). Anal. Calcld. For C₃₇H₂₉N₇O₅S₇: C, 58.96; H, 6.96; N, 19.34. Found: C, 58.85; H, 6.85; N, 19.41. ESI MS (m/z): 652.31 [M+H]⁺.
Characterization of 5,5′-(1-dodecyl-1H-1,2,3-triazole-4,5-diyl)bis(4-phenyl-2,4-dihydro-1,2,4-triazole-3-thione) (6b) It was obtained in 84% as colorless crystals, mp: 229–230 °C. IR (KBr): 3332 (NH), 1608 (C=–N), 1578 (C=–C), 1291 (C=–S) cm⁻¹. ¹H-NMR (400 MHz, CDCl₃): δ_H = 0.88 (t, 3H, J = 8 Hz, CH₃), 1.28–1.45 (m, 18H, 9 × CH₂), 1.81–1.88 (m, 2H, NCH₂CH₂), 4.20–4.28 (m, 2H, NCH₂), 7.05–7.40 (m, 10H, Ar–H), 9.15 (bs, 2H, 2 × NH). ¹³C NMR (100 MHz, CDCl₃): δ_C = 14.08 (CH₃), 15.25, 22.78, 22.90, 26.31, 26.56, 28.80, 29.05, 29.29, 29.58, 29.73, 29.99, 30.23 (CH₃), 31.97 (NCH₂), 118.19, 121.46, 125.74, 127.69, 128.39, 128.87, 129.74, 137.47, 141.47, 187.70 (Ar–C, C=–N, C=–S). Anal. Calcd. For C₃₄H₄₅N₉S₂: C, 63.42; H, 7.04; N, 19.58. Found: C, 61.18; H, 6.43; N, 21.40. ESI MS (m/z): 588.26 [M+H]⁺.

Characterization of 5,5′-(1-tetradecyl-1H-1,2,3-triazole-4,5-diyl)bis(4-phenyl-2,4-dihydro-1,2,4-triazole-3-thione) (6c) It was obtained in 83% as colorless crystals, mp: 238–239 ºC. IR (KBr): 3365 (NH), 1611 (C=–N), 1572 (C=–C), 1297 (C=–S) cm⁻¹. ¹H-NMR (400 MHz, CDCl₃): δ_H = 0.87 (t, 3H, J = 8 Hz, CH₃), 1.26–1.40 (m, 22H, 11 × CH₂), 1.80–1.86 (m, 2H, NCH₂CH₂), 4.22–4.29 (m, 2H, NCH₂), 7.09–7.43 (m, 10H, Ar–H), 9.12 (bs, 2H, 2 × NH). ¹³C NMR (100 MHz, CDCl₃): δ_C = 14.14 (CH₃), 15.26, 22.70, 22.96, 26.36, 26.54, 28.85, 29.09, 29.41, 29.72, 29.79, 29.94, 30.08, 30.38 (CH₂), 31.88 (NCH₂), 118.21, 121.51, 125.79, 127.72, 128.43, 128.84, 129.71, 137.45, 141.49, 188.59 (Ar–C, C=–N, C=–S). Anal. Calcd. For C₃₉H₄₇N₁₁S₂: C, 63.20; H, 6.34; N, 21.45. Found: C, 61.18; H, 6.43; N, 21.40. ESI MS (m/z): 588.26 [M+H]⁺.

Characterization of 5,5′-(1-hexadecyl-1H-1,2,3-triazole-4,5-diyl)bis(4-phenyl-2,4-dihydro-1,2,4-triazole-3-thione) (6d) It was obtained in 85% as colorless crystals, mp: 250–251 ºC. IR (KBr): 3368 (NH), 1610 (C=–N), 1578 (C=–C), 1299 cm⁻¹ (C=–S). ¹H-NMR (400 MHz, DMSO-d₆): δ_H = 0.86 (t, 3H, J = 4 Hz, CH₃), 1.23–1.28 (m, 22H, 11 × CH₂), 1.34–1.44 (m, 4H, 2 × CH₂), 1.84–1.88 (m, 2H, NCH₂CH₂), 4.16 (bs, 2H, 2 × NH), 7.02–7.49 (m, 10H, Ar–H), 10.60 (bs, 2H, 2 × NH). ¹³C NMR (100 MHz, DMSO-d₆): δ_C = 14.63 (CH₃), 22.77, 26.47, 28.00, 29.18, 29.37, 29.59, 29.69 (CH₃), 31.96 (NCH₂), 118.03, 123.22, 129.85, 130.64, 140.49, 187.84 (Ar–C, C=–N, C=–S). Anal. Calcd. For C₄₃H₅₄N₁₂S₂: C, 63.42; H, 7.04; N, 19.58. Found: C, 63.31; H, 7.11; N, 19.66. ESI MS (m/z): 644.32 [M+H]⁺.

Synthesis and characterization of 1,2,3-triazole bis-4-amino-1,2,4-triazole-3-thiones 7a–d

Step 1 Carbon disulfide (30 mmol) was added dropwise to a stirred solution of compound 4a–d (10 mmol) dissolved in absolute ethanol (50 mL) containing potassium hydroxide (30 mmol) at 0 ºC. The stirring was continued for 16 h at ambient temperature, and then diluted with diethyl ether. The obtained precipitate was collected by filtration, washed with diethyl ether, dried to afford the corresponding potassium dithiocarbazolate salt and used without further purification as it was moisture sensitive.

Step 2 Hydrazine hydrate (30 mmol) was added to a solution of the potassium salt (10 mmol) dissolved in water (10 mL). The reaction mixture was then heated under reflux for 6 h. After cooling, the reaction mixture was acidified with HCl. The solid thus formed was collected by filtration, washed with water and recrystallized from ethanol to yield the desired amino-triazole 7a–d.
Characterization of 5,5’-(1-tetradecyl-1H-1,2,3-triazole-4,5-diyl)bis(4-amino-2,4-dihydro-1,2,4-triazole-thione) (7c) It was obtained in 83% as colorless crystals, mp: 251–252 °C. IR (KBr): 3285–3350 (NH), 1620 (C=N), 1578 (C=C), 1290 (C=S) cm⁻¹. ¹H-NMR (400 MHz, CDCl₃): δH = 0.91 (t, 3H, J = 8 Hz, CH₃), 1.28–1.39 (m, 22H, 11 × CH₂), 1.84–1.89 (m, 2H, NCH₂CH₃), 4.24–4.31 (m, 2H, NCH₂), 5.19 (bs, 4H, 2 × NH₂), 7.11–7.41 (m, 10H, Ar–H). ¹³C NMR (100 MHz, CDCl₃): δC = 14.12 (CH₃), 15.23, 22.74, 22.90, 26.39, 26.59, 28.82, 29.04, 29.38, 29.75, 29.84, 29.91, 30.21, 30.32 (CH₃), 31.85 (NCH₂), 129.75, 137.49, 141.46, 187.60 (Ar–C, C=N, C=S). Anal. Calcd. For C₃₂H₄₁N₉S₂: C, 63.42; H, 7.04; N, 19.58. Found: C, 62.36; H, 6.65; N, 20.39. ESI MS (m/z): 616.29 [M+H]⁺.

Characterization of 5,5’-(1-hexadecyl-1H-1,2,3-triazole-4,5-diyl)bis(4-amino-2,4-dihydro-1,2,4-triazole-thione) (7d) It was obtained in 85% as colorless crystals, mp: 275–276 °C. IR (KBr): 3275–3350 (NH), 1615 (C=N), 1580 (C=C), 1296 (C=S) cm⁻¹. ¹H-NMR (400 MHz, CDCl₃): δH = 0.85–0.91 (m, 3H, CH₃), 1.25–1.29 (m, 22H, 11 × CH₂), 1.36–1.43 (m, 4H, 2 × CH₂), 1.85–1.90 (m, 2H, NCH₂CH₃), 4.19 (bs, 2H, NCH₂), 5.27 (bs, 4H, 2 × NH₂), 7.08–7.43 (m, 10H, Ar–H). ¹³C NMR (100 MHz, DMSO-d₆): δC = 14.63 (CH₃), 15.30, 22.70, 22.92, 26.35, 26.62, 28.77, 29.01, 29.42, 29.70, 29.82, 29.95, 30.17, 30.28 (CH₃), 31.90 (NCH₂), 129.70, 137.44, 141.51, 187.68 (Ar–C, C=N, C=S). Anal. Calcd. For C₃₅H₅₆N₉S₂: C, 62.41; H, 6.71; N, 20.47. Found: C, 62.36; H, 6.65; N, 20.39. ESI MS (m/z): 616.29 [M+H]⁺.

Antimicrobial activity assay

Determination of minimum inhibitory concentration (MIC) was conducted according to the microdilution method [36], as previously described. The newly designed compounds were evaluated for their antimicrobial activity against six pathogenic bacterial strains (Gram-positive: Bacillus cereus (ATCC 10876), Enterococcus faecalis (ATCC 29212) and Staphylococcus aureus (ATCC 29523), Gram-negative: Proteus mirabilis (ATCC 35659), Ershicheria coli (ATCC 25922) and Pseudomonas aeruginosa (ATCC 27853), and two fungal strains (Candida albicans (ATCC 50193) and Aspergillus brasiliensis (ATCC 16404)).

MIC tests were undertaken in 96 flat bottom microtiter plates (TPP, Switzerland). An inoculum size of 1 × 10⁵ CFU mL⁻¹ of each microorganism was inoculated in each microtiter plate well. Test wells were filled with 100 μL nutrient broth and a series of dilutions of each examined compound dissolved in DMSO (1–500 mg mL⁻¹). Positive control wells consisted of the individual microorganism under investigation inoculated in 100 μL nutrient broth while negative control wells contained DMSO at the same concentration present in the test wells.

Plates were incubated for 24 h at 37 °C, with shaking. To evaluate microbial growth, optical densities were measured at 600 nm (OD600) using a Microplate Reader (Palo Alto, CA, USA). The MIC value was designated as the least concentration at which more than 80% of the microbial growth is inhibited. MIC assessment was carried out in triplicates and repeated three times for each microorganism.

In-silico molecular docking studies

The compounds synthesized in the present investigation were subjected for molecular docking studies using Auto Dock (version 4.0) with Lamarckian genetic algorithm [38]. We have considered using Lamarckian genetic algorithm over Monte Carlo simulated annealing and traditional genetic algorithm. The previous method can handle ligands with more degrees of freedom than the Monte Carlo method used in earlier versions of AUTO DOCK. The Lamarckian genetic algorithm is the most efficient, reliable, and successful. AutoDock 4.0, combines energy evaluation through grids of affinity potential employing various search algorithms to find the suitable binding position for a ligand on a given protein. The ligands were drawn in ChemSketch. Energy of molecule was minimized using by PRODRG server [39]. In the present study, the binding site was selected based on the amino acid residues, which are involved in binding with glucosamine-6-phosphate of GlcN-6-P synthase as obtained from Protein Data Bank (http://www.pdb.org/pdb/home/home.do) with the PDB ID 2VF5 which would be considered as the best accurate active region as it is solved by experimental crystallographic data [40]. It was then edited by removing the heteroatoms, adding the C-terminal oxygen, rotating all the torsions during docking. Steepest Descent methods were applied for minimization by considering the default parameters. Polar hydrogen’s were added to ligands using the hydrogen’s module in Autodock tool and thereafter assigning Kollman united atom partial charges. Docking to ligands was carried out with standard docking protocol on the basis a population size of 150 randomly placed individuals; a maximum number of 2.5*10⁷ energy evaluations, a mutation rate of 0.02, a crossover rate of 0.80 and an elitism value of 1. Fifteen independent docking runs were carried out for ligands. The grid was centered at the region including all the 12 amino acid residues (Ala602, Val399, Ala400, Gly301, Thr302, Ser303, Cys300, Gln348, Ser349, Thr352, Ser347 and Lys603). The grid box size was set at 70, 64, and 56 Å for x, y and z respectively, and the grid center was set to 30.59, 15.822 and 3.497 for x, y and z respectively, which covered all the 12 amino acid residues.
in the considered active pocket. The spacing between grid points was 0.375 angstroms. The docking results were interpreted according to the.pdb file. Using the rmsd table created in the.dlg file, we have determined the co-ordinates of the minimum energy run. UCSF chimera was used to visualize the coordinate of the docked protein along with targeted compounds within 6.5 Å region.

Conclusions
A series of novel 1,2,3-triazole-1,2,4-triazole hybrids carrying variant lipophilic side chain were synthesized and screened for antibacterial and antifungal activity. Finally, the synthesized compounds were docked inside the active site of Glucosamine-6-phosphate synthase, the potential target for antimicrobial and antifungal agents and the results of such studies were reported. In-silico studies revealed that all the synthesized compounds 3a, c, d, 4a–d, 5a–c, 6a–d, 7a–d have relatively less binding energy as compared to the standard drug and may be considered as a good inhibitors of GlcN-6-P. The binding energy toward the target protein ranged from — 5.72 to — 10.49 kJ mol⁻¹. The high-ranking binding energy of the synthesized compound, 6d was — 10.49 kcal/mL. Consistent with the in silico studies, all synthesized compounds demonstrated fair to excellent antimicrobial activities relative to standard potent antibacterial and antifungal agents, with remarkably enhanced antimicrobial activities associated with the 1,2,4-triazole derivatives tailoring elongated chain substitution at the 1,2,3-triazole N-1 position.

Authors’ contributions
MRA, NR, and MM gave the concepts of this work. NR, FFA and MMTM, carried out the experimental work and cooperated in the preparation of the manuscript. SKB and AN performed the biological part. MRA, NR and FFA collected data, interpreted the results and prepared the manuscript. All authors discussed the results, wrote and commented on the manuscript. All authors read and approved the final manuscript.

Author details
1 Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia. 2 Department of Chemistry, Faculty of Sciences, University of Sciences and Technology Mohamed Boudiaf, Laboratoire de Chimie et Electrochimie des Complexes Metalliques (LCECM) USTO-MB, P.O. Box 1505, El M’nouar, 31000 Oran, Algeria. 3 Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Jordan, 11942 Amman, Jordan.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 8 May 2017 Accepted: 10 November 2017
Published online: 21 November 2017

References
1. Vijesh AM, Isloor AM, Shetty P, Sundershan S, Fun HK (2013) New pyrazole derivatives containing 1,2,4-triazoles and benzoazoles as potent anti­microbial and analgesic agents. Eur J Med Chem 62:410–415
2. Ruddaraju RR, Murugulla ACh, Kota R, Tirumalasetty MCBH, Wudayagiri R, Dongabakhumi SH, Marouj R, Baburao K, Parasa LS (2016) Design, synthesis, anticancer, antimicrobial activities and molecular docking studies of theophylline containing acetyl enes and theophylline containing 1,2-triazoles with variant nucleoside derivatives. Eur J Med Chem 123:379–396
3. Krishna KM, Inturi B, Pujar GV, Purohit MN, Vijaykumar GS (2014) Design, synthesis and 3D-QSAR studies of new diphenylamine containing 1,2,4-triazoles as potential antibacterial agents. Eur J Med Chem 84:516–529
4. Plch T, Kaprón B, Luszczyk J, Paneth A, Siwek A, Kolaczkowski M, Zohnier R, Nowak G (2014) Studies on the anticonvulsant activity of 4-alkyl-1,2,4-triazole-3-thiones and their effect on GABAergic system. Eur J Med Chem 86:690–699
5. Abou-Rahma GAA, Abdel-Azz M, Sheih EM, Ali TFS, Muhamed DD, Prusty PS (2014) 1,2,4-Triazole/ oxime hybrids as new strategy for nitric oxide donors: synthesis, anti-inflammatory, ulcerogenicity and antiproliferative activities. Eur J Med Chem 71:185–198
6. The Merck Index & Co. Inc (2001) Whitehouse Station. NJ, USA, p 320
7. The Merck Index & Co. Inc (2001) Whitehouse Station. NJ, USA, p 3757
8. Kant R, Singh V, Nath G, Awasthi SK (2016) Agarwal A Design, synthesis and biological evaluation of ciprofloxacin tethered biv-1,2,3-triazole conjugates as potent antibacterial agents. Eur J Med Chem 124:218–228
9. Yadav P, Lal K, Kumar A, Guru SK, Jaglan S, Bhushan Sh (2017) Green synthesis and anticancer potential of chalcone linked-1,2,3-triazoles. Eur J Med Chem 126:944–953
10. Darandale SN, Mulla NA, Pansare DN, Sangshetti JN, Shinde DB (2013) A novel amalgamation of 1,2,3-triazoles, piperidines and thieno pyridine rings and evaluation of their anti­fungal activity. Eur J Med Chem 65:527–532
11. Glowacka IE, Balzarini J, Wóbrzeźnowski AE (2013) The synthesis, antiviral, cytostatic and cytototoxic evaluation of a new series of acyclonucleotide analogues with a 1,2,3-triazole linker. Eur J Med Chem 70:703–722
12. Deverinder N, Gunjan S, Chhabra S, Singh K, Pasam VR, Shukla SK, Sharma A, Jaiswal S, Singh SK, Kumar Y, Lal I, Trivedi AK, Tripathi R, Tripathi RP (2016) Identification of 8-aminomunal alcohol grafted 1,4,5-trisubstituted-1,2,3-triazoles as potent antimalarial agents. Eur J Med Chem 109:187–198
13. Kumar D, Khare BG, Kidwai S, Tyagi AK, Singh R, Rawat DS (2014) Synthesis of novel 1,2,3-triazole derivatives of isoniazid and their in vitro and in vivo antimycobacterial activity evaluation. Eur J Med Chem 81:301–313
14. Belmessien D, Gozlan Ch, Duclos MCh, Moliner V, Aubry JM, Dumitrescu O, Lina G, Redl A, Duguet N, Lemaire M (2017) Synthesis, surfactant properties and antimicrobial activities of methyl glycopyranoside ethers. Eur J Med Chem 128:98–106
15. Goyal Ch, Ahuja M, Sharma SK (2011) Preparation and evaluation of anti-inflammatory activity of gugulipid-loaded proniosomal gel. Acta Pol Pharm Drug Res 68:147–150
16. Liang Ji, Wei JC, Lee VL, Hsu SH, Lin JJ, Lin YL (2014) Surfactant-modified nanoclay exhibits an antiviral activity with high potency and broad spec­trum. J Virol 88:4218–4228
17. Badawi AM, Mohamed MAS, Mohamed MZ, Khodair MM (2007) Surface and antitumor activity of some novel metal-based catonic surfactants. J Can Res Ther 3:198–206
18. Letelier ME, Rodríguez-Rojas C, Sánchez-Joffré S, Arcaneta-Parks P (2011) Surfactant and antioxidant properties of an extract from Chenopodium quinoa Wild seed coats. J Cereal Sci 53:239–243
19. Willson DF (2015) Aerosolized surfactants, anti-inflammatory drugs, and analgesics. Respir Care 60:774–790
20. Rezki N, Al-Yahyawi AM, Bardaweel SK, Al-Blewii FF, Aouad MR (2015) Synthesis of novel 2,5-disubstituted-1,3,4-thiadiazoles clubbed 1,2,4-triazole,
1,3,4-thiadiazole, 1,3,4-oxadiazole and/or Schiff base as potential antimicrobial and antiproliferative agents. Molecules 20:16048–16067
21. Aouad MR, Messali M, Rezki N, Ali AASh, Lesimple A (2015) Synthesis and characterization of some novel 1,2,4-triazoles, 1,3,4-thiadiazoles and Schiff bases incorporating imidazole moiety as potential antimicrobial agents. Acta pharrn 65:117–132
22. Rezki N (2016) A Green ultrasound synthesis, characterization and antibacterial evaluation of 1,4-disubstituted 1,2,3-triazoles tethering bioactive benzothiazole nucleus. Molecules 21:505–517
23. Aouad MR (2016) Synthesis and antimicrobial screening of novel thioglycosides and acyclonucleoside analogs carrying 1,2,3-triazole and 1,3,4-oxadiazole moieties. Nucleosides Nucleotides Nucleic Acids 35:1–15
24. Aouad MR, Al-Saedi AMH, Ali AA, Rezki N, Messali M (2016) Preparation of novel 3-fluorophenyl triazolothiadiazoles and of triazolothiadiazines. Org Prep Proced Int 48:355–370
25. Vijesh AM, Isloor AM, Telkar S, Arulmoli T, Fun HK (2013) Molecular docking studies of some new imidazole derivatives for antimicrobial properties. Arab J Chem 6:197–204
26. Chmara H, Andruszkiewicz R, Borowski E (1984) Inactivation of glucosamine-6-phosphatesynthesis from Salmonella typhimurium LT2 SL 1027 by N-beta-fumarylcarboxyamido-l-2,3-diamino-propionic acid. Biochem Biophys Res Commun 120:865–872
27. Marshall NJ, Andruszkiewicz R, Gupta S, Milewski S, Payne JW (2003) Structure activity relationships for a series of peptidomimetic antimicrobial produgs containing glutamine analogues. J Antimicrob Chemother 51:821–831
28. Borowski E (2000) Novel approaches in the rational design of antifungal agents of low toxicity. Farmaco 55:206–208
29. Krishna BG, Sanjini BK, Darshanraj CG (2014) Synthesis, characterization, molecular docking and evaluation of antibacterial, antiproliferative, and anti-inflammatory properties of new pyridinyl substituted triazole derivatives. Der Pharma Chemica 6:345–361
30. Rajasekaran A, Sivakumar KK, Sureshkumar K, Manusheer M (2017) Design, synthesis, characterisation and in vitro antimicrobial activity of some hybridized triazole scaffolds. Future J Pharm Sci 3:1–10
31. Satyendra RV, Vishnumurthy KA, Vagdevi HM, Rajesh KP, Manjunatha H, Shrutii A (2012) In vitro antimicrobial and molecular docking of dichloro substituted benzoxazole derivatives. Med Chem Res 21:4193–4199
32. Pradeepa K, Krishna V, Harish BG, Venkatesh Kumar S R, Kumar GK (2012) Antibacterial activity of leaf extract of Delonix elata and molecular docking studies of luteolin. J Biochem Tech 3:5193–5197
33. Krishnaswamy G, Desai NR, Naika RNH, Mahadevan KM, Satyendra RV, Kumar DBA (2016) Design, synthesis, antibacterial, antioxidant activity and molecular docking studies of 6-hydroxybenzofuran derivatives. J Chem Pharm Res 8:19–28
34. Ebrahimipoura SY, Sheikhshoaeia I, Castrob J, Duľek M, Tohidiana Z, Egnierc V, Khaleghi M (2015) Synthesis, spectral characterization, structure studies, molecular docking and antimicrobial evaluation of new dioxidouranium(VI) complexes incorporating tetradentate N$_2$O$_2$ Schiff base ligands. RSC Adv 5:95104–95117
35. European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) (2000) Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by agar dilution. Clin Microbiol Infect 6:509–515
36. National Committee for Clinical Laboratory Standards (2000) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically approved standard M7-AS, 5th edn. Wayne, NCCLS
37. Milewski S (2002) Glucosamine-6-phosphate synthase—the multi-facets enzyme. Biochim Biophys Acta 1597:173–192
38. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew KR, Olson AJ (1998) Automated docking using a lamarckian genetic algorithm and empirical binding free energy function. J Comput Chem 19:1639–1662
39. Schuttelkopf AW, Aalten DM (2004) PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Cryst D60:1355–1363
40. Mouilleron S, Badet-Denisot MA, Golinelli-Pimpaneau B (2008) Ordering of C-terminal loop and glutaminase domains of glucosamine-6-phosphate synthase promotes sugar ring opening and formation of the ammonia channel. J Mol Biol 377(4):1174–1185