RESEARCH PAPER

Isolation and characterization of GtMYBP3 and GtMYBP4, orthologues of R2R3-MYB transcription factors that regulate early flavonoid biosynthesis, in gentian flowers

Takashi Nakatsuka, Misa Saito, Eri Yamada, Kohei Fujita, Yuko Kakizaki and Masahiro Nishihara

Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate 024-0003, Japan

* To whom correspondence should be addressed. E-mail: mnishiha@ibrc.or.jp

Received 10 July 2012; Revised 20 September 2012; Accepted 8 October 2012

Abstract

Flavonoids are one of the major plant pigments for flower colour. Not only coloured anthocyanins, but also co-pigment flavones or flavonols, accumulate in flowers. To study the regulation of early flavonoid biosynthesis, two R2R3-MYB transcription factors, GtMYBP3 and GtMYBP4, were identified from the petals of Japanese gentian (*Gentiana triflora*). Phylogenetic analysis showed that these two proteins belong to the subgroup 7 clade (flavonol-specific MYB), which includes *Arabidopsis* AtMYB12, grapevine VvMYBF1, and tomato SIMYB12. GtMYBP3 and GtMYBP4 transcripts were detected specifically in young petals and correlated with the profiles of flavone accumulation. Transient expression assays showed that GtMYBP3 and GtMYBP4 enhanced the promoter activities of early biosynthetic genes, including flavone synthase II (*FNSII*) and flavonoid 3′-hydroxylase (*F3′H*), but not the late biosynthetic gene, flavonoid 3′,5′-hydroxylase (*F3′5′H*). GtMYBP3 also enhanced the promoter activity of the chalcone synthase (*CHS*) gene. In transgenic *Arabidopsis*, overexpression of GtMYBP3 and GtMYBP4 activated the expression of endogenous flavonol biosynthesis genes and led to increased flavonol accumulation in seedlings. In transgenic tobacco petals, overexpression of GtMYBP3 and GtMYBP4 caused decreased anthocyanin levels, resulting in pale flower colours. GtMYBP4-expressing transgenic tobacco flowers also showed increased flavonols. As far as is known, this is the first functional characterization of R2R3-MYB transcription factors regulating early flavonoid biosynthesis in petals.

Key words: Early flavonoid biosynthesis, flavone, flower colour, Japanese gentian, R2R3-MYB, transcription factor.

Introduction

Natural flower pigments generally consist of complex secondary metabolites, such as flavonoids, carotenoids, and betalains, depending on the plant species. Flavonoids are the most characterized secondary metabolites in higher plants and have various biological functions, such as flower pigmentation, pollen fertility, plant–microbe interaction, and protection from UV radiation (reviewed in Mol et al., 1998). Determination of the flavonoid biosynthetic pathway is of great interest to plant scientists and many structural genes involved in flavonoid biosynthesis have been cloned and studied in maize kernels (*Zea mays*), petunia flowers (*Petunia hybrida*), snapdragon flowers (*Antirrhinum majus*), and in *Arabidopsis* seed coats (*Arabidopsis thaliana*) (Fig. 1; Holton and Cornish, 1995; Mol et al., 1998; Winkel, 2006).

Japanese endemic gentian plants (*Gentiana triflora*) have brilliant blue flowers and are popular floricultural plants in Japan (Nishihara et al., 2008). The petals of Japanese gentian accumulate a poyacylated anthocyanin, termed gentiodelphin (delphinidin 3-O-glucoside-5,3′-O-cafeoylglyceroside), and flavone derivatives (Goto et al., 1982; Yoshida et al., 2000; Nakatsuka et al., 2005). The structural genes involved in the gentiodelphin and flavone biosynthetic pathways have been isolated...
and characterized (Tanaka et al., 1996; Kobayashi et al., 1998; Nakatsuka et al., 2005, 2008a). Thus, the blue pigmentation and its development have been extensively studied in Japanese gentian (Yoshida et al., 2009).

In flavonoid biosynthesis, two clusters of co-regulated structural genes can generally be distinguished: early biosynthetic genes, which are involved in the synthesis of flavones, flavonols, and phlobaphenes; and late biosynthetic genes, which are involved in proanthocyanin and anthocyanin biosynthesis (Fig. 1; Mol et al., 1998; Quattrocchio et al., 2006; Gonzalez et al., 2008). Transcription factors for the anthocyanin and proanthocyanin biosynthetic pathways are mainly members of the R2R3-MYB, basic helix–loop–helix (bHLH), and WD40 repeats (WDR) protein families. Complexes of these transcription factors regulate the expression of structural genes in the late biosynthetic pathway (Broun, 2005; Koes et al., 2005). In maize, C1 (R2R3-MYB) requires interaction with R (bHLH) to activate anthocyanin biosynthesis (Lloyd et al., 1992). In petunia flowers, AN2 (R2R3-MYB) interacts with two distinct bHLH factors, JAF13 or AN1, both of which share a high sequence similarity with the maize R and snapdragon DELILA proteins (Spelt et al., 2000). PAP1/PAP2 are also C1 homologues in Arabidopsis and are involved in proanthocyanin accumulation in seed coats (Borevitz et al., 2000). In gentian, GtMYB3 interacts with GtBHLH1, and the complex of these two proteins activates the expression of flavonoid 3′,5′-hydroxylase (F3′5′H) and anthocyanin 5,3′-aromatic acyltransferase (5,3′AT) genes, which belong to the late flavonoid biosynthetic pathway (Nakatsuka et al., 2008b). However, the GtMYB3/GtBHLH1 complex could not activate the expression of the chalcone synthase (CHS) gene, which belongs to the early biosynthetic pathway. Thus, the activation of many R2R3-MYB proteins regulating flavonoid biosynthetic pathways depends on an interaction with bHLH proteins. R2R3-MYB proteins that interact with bHLH proteins share a common motif in the N-terminal R3 repeat (Grotewold et al., 2000). However, the transcription factors regulating early flavonoid biosynthesis in gentian flowers remain unknown.

Maize P1 (ZmP1) is an R2R3-MYB that is active without binding a bHLH protein. ZmP1 controls a subset of genes for 3-deoxyflavonoids and phlobaphene biosyntheses in kernel pericarp and cob tissue (Grotewold et al., 1994). A transient expression assay using a maize cell suspension demonstrated that P1 can activate the transcription of the flavanone reductase gene (AI, FNR) but cannot activate the flavonoid 3-O-glycosyltransferase gene (Bz1, 3GT). Genetic analysis also showed that the ZmP1 locus coincides with a major quantitative trait locus determining the levels of maysin, a C-glycosyl flavone (Byrne et al., 1996; Zhang et al., 2003; Coccia et al., 2005). In Arabidopsis, AtMYB12/PFG2, AtMYB11/PFG1, and AtMYB111/PFG3, which share amino acid sequence similarity with ZmP1, regulate individual flavonol accumulation in different organs of developing seedlings (Mehrtens et al., 2005; Stracke et al., 2007). They activate the expression of CHS, chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), flavonol synthase (FLS), and flavonoid 3′-hydroxylase (F3′H), but do not influence the expression of dihydroflavonol 4-reductase (DFR). In grapevine, the expression of VvMYB1 correlated with flavonol accumulation and the expression of VvFLS (Czemmel et al., 2009). In addition, deficiency of SIMYB12, the tomato orthologue of AtMYB12, resulted in pink fruit lacking the ripening-dependent accumulation of the yellow flavonol naringenin chalcone in the fruit peel (Ballester et al., 2010). These R2R3-MYBs were classified into subgroup 7 (Dubos et al., 2010) and activated specific gene sets of the early flavonoid biosynthetic pathway (Stracke et al., 2007). However, in spite of the demonstrated accumulation of early flavonoid biosynthetic metabolites, such as flavonol and flavone, no transcription factors regulating the early steps of flavonoid biosynthesis have been identified in the petals of floricultural plants.

In the present study, two P1 orthologues, GtMYBP3 and GtMYBP4, were isolated and characterized in Japanese gentian. The expression profiles of both genes correlated with flavone accumulation in petals and activated the expression of CHS, flavone synthase II (FNSII), and F3′H, belonging to early flavonoid biosynthetic pathway. Functional analyses of GtMYBP3 and GtMYBP4 were performed in transgenic Arabidopsis and tobacco plants. The results strongly suggested that both GtMYBP3 and GtMYBP4 regulate the early steps of the flavonoid biosynthetic pathway.

Fig. 1. Flavonoid biosynthetic pathway in higher plants. 4CL, 4-coumarate:CoA ligase; ANS, anthocyanidin synthase; AT, anthocyanin acyltransferase; C4H, cinnamate 4-hydroxylase; CHI, chalcone isomerase; CHS, chalcone synthase; DFR, dihydroflavonol 4-reductase; F3′5′H, flavonoid 3′,5′-hydroxylase; F3′H, flavonoid 3′-hydroxylase; F3H, flavanone 3-hydroxylase; FLS, flavonol synthase; FNR, flavanone reductase; FNS, flavone synthase; GST, glutathione S-transferase; GT, anthocyanin O-glucosyltransferase; PAL, phenylalanine ammonia lyase.
pathway. This is the first report to investigate the function of P1 orthologues in floral organs.

Materials and methods

Plant materials

Japanese gentian (G. triflora cv. Maciry) plants were grown in the fields of the Iwate Agricultural Research Center (Iwate prefecture, Japan). The developmental stages of petal samples were defined as described by Nakatsuka et al. (2005).

Isolation of gentian R2R3-MYB transcription factors

Total RNA was isolated from petals at flower developmental stages 1–3. cDNA was synthesized using a Takara RNA PCR kit (AMV) version 3.0 (Takara-bio, Ohtsu, Japan). Degenerate primers were designed from the conserved DNA-binding domain of R2R3-MYB proteins controlling flavonoid biosynthesis from other plant species (Supplementary Table S1, available at JXB online). Other degenerate primers (pMybU and pMybL; Rabinowicz et al., 1999) were also used. Reaction conditions consisted of pre-heating at 94 °C for 90 s; 40 cycles of 94 °C for 20 s, 50 °C for 40 s, and 72 °C for 1 min; and extension at 72 °C for 10 min. Amplified fragments of approximately 180 bp were subcloned into the pCR4 TA TOPO cloning vector (Invitrogen, Carlsbad, CA, USA) and sequenced using a Big-Dye terminal cycle sequencing kit version 1.1 and an ABI PRISM 3130 DNA sequencer (Applied Biosystems, Foster City, CA, USA). Nucleotide sequences were conceptually translated into amino acid sequences using GENETYX-MAC version 12 (GENETYX, Tokyo, Japan) and compared using the BLAST network service from the National Center for Biotechnology Information (NCBI). A phylogenetic tree was constructed using MEGA version 4 (Tamura et al., 2007).

To obtain full-length cDNAs of GmMYBP3 and GmMYBP4, 3’- and 5’-rapid amplification of cDNA ends (RACE) was performed using a GeneRacer kit (Invitrogen). cDNA was synthesized from total RNA after removal of poly(A)+ tailing. The 5′-untranslated regions of gentian GtFNSII and GtF3′H were identified by inverse PCR, using primers shown in Supplementary Table S1 and as described by Nakatsuka et al. (2008b). Amplified fragments of about 1.8 kb for GtFNSII and 1.6 kb for GtF3′H were subcloned and sequenced as described above. Reporter vectors were constructed to contain the firefly luciferase (LUC) gene under the control of the gentian GtFNSII (accession number AB733018) or GtF3′H (AB733017) promoters. GtCHSpro-LUC and GtF3′5′Ipro-LUC constructs (Nakatsuka et al., 2008b) were also used.

Vector construct and production of stable Arabidopsis and tobacco transformants

p35Spro-GmMYBP3 and p35Spro-GmMYBP4 was inserted into binary vectors, pSKan5SGUS (kanamycin resistance) and pSMABR35S-sGFP (Mishiba et al., 2010), to produce pSKan-35Spro-GmMYBP3 and pSMABR-35Spro-GmMYBP4, respectively. The constructs were then transformed into Agrobacterium tumefaciens EHA101. A. thaliana ecotype col-1 was transformed by floral dip method, as described by Clough and Bent (1998). Positive transformants were selected on germination medium supplemented with 50 mg l−1 kanamycin or 6 mg l−1 bialaphos, and then T1 seeds were obtained following self-pollination.

Results

Cloning of P1 orthologues from gentian flowers

Degenerate PCR was used to isolate R2R3-MYB transcription factor genes from gentian flowers. More than 200 clones were

Flavonoid analysis in transgenic Arabidopsis and tobacco plants

The flavonol accumulation in T2 transgenic Arabidopsis seedlings was visualized by diphenylboric acid 2-aminoethyl ester (DPBA), as described by Stracke et al. (2007). Five-day-old seedlings grown on germination medium with 3 mg l−1 norflurazon were stained by 0.25% (w/v) DPBA. Fluorescence images were visualized under UV light on a stereoscopic microscope (Olympus, Tokyo, Japan). The amount of anthocyanin and flavonol pigments in petals of transgenic tobacco plants were measured as described by Nakatsuka et al. (2007).

Quantitative real-time PCR in transgenic Arabidopsis and tobacco plants

Total RNA was isolated from the seedlings of transgenic Arabidopsis after germination for 7 days using an RNaseasy Plant Mini kit (Qiagen, Venlo, The Netherlands). Total RNA of transgenic tobacco was also isolated from their petals at floral developmental stage 3 using a FastRNA Green kit (Q-Bio gene, Irvine, CA, USA). Quantitative real-time PCR (qRT-PCR) was performed on a StepOne plus (Applied Biosystem) using SYBR GreenER qPCR Super Mix (Invitrogen). cDNA was synthesized from total RNA after removal of genomic DNA using PrimeScript RT reagent kit with gDNA eraser (Takara-bio), according to the manufacturer’s instructions. Reaction mixtures (10 µl) included the following components: 1× master mix, 0.2 µM of each primer (Supplementary Table S2) and 1 µl cDNA. Cycle conditions were 95 °C for 20 s and then 40 cycles of 95 °C for 1 s and 60 °C for 20 s. The expression levels of each gene were calibrated by the expression of actin (AtACT, Arabidopsis) or ubiquitin (NtUBQ, tobacco) genes.

 Encyclopedia of Life Sciences 6507

Early flavonoid biosynthesis in gentian flowers | 6507
classified into 24 groups based on a similarity search. Among them, the deduced amino acid sequences of two clones exhibited high similarities with ZmP1 and AtMYB12. Full-length cDNAs for these two clones were determined using 5′/3′ RACE techniques and designated GtMYBP3 and GtMYBP4.

Phylogenetic analysis showed that GtMYBP3 and GtMYBP4 belonged to P1/subgroup 7 (Fig. 2). The GtMYBP3 cDNA (accession no. AB733016) was 1474 bp in length and encoded a protein of 329 amino acid residues, whereas the GtMYBP4 cDNA (accession no. AB289446) was 1303 bp encoded a 376 amino acid protein. The deduced amino acid sequence of GtMYBP3 was 79.8% identical to that of GtMYBP4 in the R2R3-MYB DNA-binding domain, and 43.5% identical overall (Supplementary Fig. S1). GtMYBP3 was 84.6, 89.4, and 83.7% identical to Arabidopsis AtMYB12, grape VvMYBF1, and maize ZmP1, respectively, whereas GtMYBP4 was 78.8, 80.8, and 79.8% identical to those three genes, respectively. Although the sequence similarity between R2R3-MYB proteins is generally restricted to the N-terminus, the SG7 motif (GRTxRSxMK; Stracke et al., 2001) and the SG7-2 motif ([W/x][L/x]LS; Czemmel et al., 2009) are characteristic of R2R3-MYB proteins regulating flavonol biosynthesis. Both SG7 motifs were partially conserved in GtMYBP3 and GtMYBP4. GtMYBP3 and GtMYBP4 shared 56% identity (five out of nine amino acid residues) with the SG7-1 motif and 75% (3/4) and 50% (2/4) identity with the SG7-2 motif, respectively (Supplementary Fig. S1).

Expression profiles of GtMYBP3 and GtMYBP4 transcripts in gentian

To reveal the temporal and spatial expression of GtMYBP3 and GtMYBP4 in gentian plants, northern blot analysis was performed using total RNA isolated from petals (at four developmental stages), leaves, and stems (Fig. 3). GtMYBP3 and GtMYBP4 transcripts were detected at the early flower development stages prior to pigmentation, but disappeared during later stages.
flower pigmented stages. Therefore, GtMYBP3 and GtMYBP4 would not be expected to regulate anthocyanin accumulation in gentian flowers. They could not be detected in vegetative tissues, such as leaves and stems. These expression profiles coincide with the accumulation profiles of flavones, which are abundantly present in young flower petals. The expression of GtFNSII and GtF3’H genes, which are involved in flavone biosynthesis, were also detected at early flower developmental stages (Nakatsuka et al., 2005). Therefore, the temporal and spatial profiles of GtMYBP3 and GtMYBP4 transcripts correlated with those of flavone biosynthesis.

Protein–protein interactions between GtMYBs and GtBHLH1

To investigate protein–protein interactions, this study employed a yeast two-hybrid system. A preliminary experiment showed that GAL4 DNA-binding domain-fused GtMYBs all led to false-positive results; therefore, the interaction among GtMYB proteins could not be revealed in this study. GtBHLH1, a transcription factor regulating the anthocyanin biosynthetic pathway, interacted with GtMYB3 (Supplementary Fig. S2). However, neither GtMYBP3 nor GtMYBP4 interacted with GtBHLH1 in this study (Supplementary Fig. S2). Therefore, it was assumed that the activities of GtMYBP3 and GtMYBP4 were independent of the bHLH co-activator, as well as ZmP1.

Activation ability of GtMYBP3 and GtMYBP4 on promoters of flavonoid-biosynthetic genes by transient expression assay

To gain an insight into the activation ability of GtMYBP3 and GtMYBP4 on flavonoid biosynthesis, a transient expression assay in protoplasts of cultured Arabidopsis T87 suspension cells was used. About 1 kb of the 5’-upstream sequences of GtCHS (Kobayashi et al., 1998), GtF3’5’H (Nakatsuka et al., 2008b), GtFNSII, and GtF3’H were isolated from the gentian genome and connected to a reporter firefly luciferase (LUC) gene.

Early flavonoid biosynthesis in gentian flowers | 6509

GtCHSpro, GtFNSIIpro, and GtF3’5’Hpro contained the binding sequences of vertebrate MYB protein C(T/G(ACC)/G, black box), a P-recognition element (CC(T/G)ACC, diagonal box; Grotewold et al., 1994), and an ACGT-containing element (CACGT; Hartmann et al., 1998), as shown in Fig. 4A. By contrast, GtF3’5’Hpro contained the vertebrate MYB protein P-recognition element, but not the ACGT-containing element (Nakatsuka et al., 2008b).

GtMYBP3 had about 2-, 5-, and 120-fold activation ability on GtCHS, GtFNSII and GtF3’3’H promoters, respectively, compared with the vector control (Fig. 4B). Similarly, GtMYBP4 also enhanced GtFNSII and GtF3’3’H promoter activity, but its ability was weaker than GtMYBP3. Conversely, neither GtMYBP3 nor GtMYBP4 could induce GtF3’5’H promoter activity. No synergistic effect of GtMYBP3 and GtMYBP4 was observed in the transient expression analysis (Supplementary Fig. S3).

GtMYBP3 and GtMYBP4 overexpression in transgenic Arabidopsis plants

To confirm whether the GtMYBP3 and GtMYBP4 genes can regulate early flavonoid biosynthesis in planta, this study produced transgenic Arabidopsis plants expressing GtMYBP3 and GtMYBP4 under the control of a constitutive CaMV35S promoter.

Both constructs were transformed into Arabidopsis plants using the floral dip method, and two independent T3 lines were produced, respectively. No morphological changes were observed in GtMYBP3- and GtMYBP4-expressing Arabidopsis plants compared with vector control plants (data not shown). Flavonoid accumulation of transgenic Arabidopsis seedlings was visualized with DPBA and imaged by epifluorescence microscopy (Fig. 5). In wild-type and vector control plants, cotyledons showed intense orange fluorescence implying abundant accumulation of flavonol derivatives. Their hypocotyls and roots showed yellow and blue fluorescence implying some flavonol accumulation. However, GtMYBP3- and GtMYBP4-expressing Arabidopsis showed intense orange fluorescence over the entire plant.

In both GtMYBP3- and GtMYBP4-expressing transgenic seedlings, the expression levels of each transgene in clone no. 1 was approximately 2-fold higher than in clone no. 2 (Supplementary Fig. S4A). Among genes involved in phenylpropanoid pathway, the expression levels of AtP AL1 and AtP AL2 were significantly enhanced in transgenic plants. AtP AL1 and AtP AL2 transcripts were upregulated by 1.4–1.8-fold in both GtMYBP3- and GtMYBP4-expressing plants compared with the vector control (Fig. 6). Induction of Arabidopsis 4-coumarate:CoA ligase (At4CL3) expression, which contributes to flavonoid biosynthesis, was observed during overexpression of GtMYBP3 (2.8-fold) and GtMYBP4 (7.3-fold). In GtMYBP3-expressing transgenic seedlings, the expression levels of several genes, including AtPAL4, At4CL2, and At4CL5, were reduced in both lines.

With regard to flavonoid biosynthetic genes, the expression of AtCHS, AtCHI, AtF3H and AtF3’3’H were upregulated by 6.3-, 2.7-, 3.2-, and 3.0-fold, respectively, in GtMYBP3-expressing Arabidopsis plants compared with the vector control. Conversely, the overexpression of GtMYBP4 induced the expression of
AtCHS, AtCHI, and AtFLS transcripts by 6.3-, 4.8-, and 2.9-fold. The AtF3H and AtF3’H genes were also induced in GtMYBP3-expressing Arabidopsis line no. 2. The expression of AtDFR, encoding an enzyme of a later step of the anthocyanin biosynthetic pathway, was suppressed in GtMYBP3-expressing plants, whereas no difference was detected in GtMYBP4-expressing plants. Expression of endogenous flavonol-specific R2R3-MYB genes, including AtMYB12, AtMYB11, and AtMYB111, did not markedly change in GtMYBP3 and GtMYBP4-expressing seedlings (Supplementary Fig. S5). Thus, the overexpression of
T1 seeds were collected after self-pollination. Two independent transgenic lines were grown in a greenhouse, and the construct used for transformation. Over 20 independent transgenic lines were chosen and subjected to further analysis. Thus, to investigate the effect of flavonoid biosynthesis in vegetative tissues. However, flavonoid compositions, including anthocyanin pigments, were difficult to analyse in the floral tissues. Visualized flavonoid accumulation in transgenic Arabidopsis seedlings. Flavonoid staining in wild type (WT), vector control (VC), and transgenic seedlings. Two independent transgenic lines are shown. Norflurazon-bleached seedlings were stained with diphenylboric acid 2-aminoethyl ester and photographed under UV light.

GtMYBP3 and GtMYBP4 in Arabidopsis enhanced or decreased the expression of several genes encoding enzymes of the phenylpropanoid and flavonoid biosynthetic pathways. However, there was a slight difference in the affected gene sets and intensities between GtMYBP3 and GtMYBP4.

GtMYBP3 and GtMYBP4 overexpression in transgenic tobacco plants

As shown above, transgenic Arabidopsis showed clear changes in flavonoid biosynthesis in vegetative tissues. However, flavonoid compositions, including anthocyanin pigments, were difficult to analyse in the floral tissues. Thus, to investigate the effect of GtMYBP3 and GtMYBP4 overexpression on floral flavonoid biosynthesis, this study produced transgenic tobacco plants. The petals of tobacco accumulate flavonol and anthocyanin derivatives (Nakatsuka et al., 2007). Tobacco leaf sections were transformed by A. tumefaciens harbouring the same binary vector construct used for Arabidopsis transformation. Over 20 independent transgenic lines were grown in a greenhouse, and the T1 seeds were collected after self-pollination. Two representative lines for each construct were chosen and subjected to further analysis.

The pigmentation of the petals of GtMYBP3- and GtMYBP4-expressing tobacco plants was decreased compared with the wild type (Fig. 7A). Anthocyanin levels in GtMYBP3-expressing transgenic tobacco petals were 22–46% lower compared with the wild type (Fig. 7B). However, the amounts of flavonol were the same between wild-type and GtMYBP3-expressing plants (Fig. 7C). Anthocyanin levels in GtMYBP4-expressing transgenic tobacco petals were 25–28% lower compared with wild type (Fig. 7B). In addition, the amounts of flavonols were increased by 1.5–2.6-fold in the petals of GtMYBP4-expressing tobacco plants (Fig. 7C) and were inversely correlated with the accumulation levels of anthocyanins. No difference in flavonol and anthocyanin components was observed between any transgenic and wild-type petals by HPLC analysis (data not shown).

The expression of the transgenes were confirmed (Supplementary Fig. S4B). Expression of NtCHS, NtCHI, NtF3′H, and NtFLS was enhanced 2.1-3.5, 6.0- and 5.1-fold in the petals of GtMYBP4-expressing transgenic plants (Fig. 7D). The expression of the NtF3′H gene decreased in GtMYBP4-expressing plants. However, no change was detected in the NtDFR gene, which is involved in late flavonoid biosynthesis. On the other hand, no significant change in expression of flavonoid biosynthetic genes was observed in GtMYBP3-expressing tobacco plants (Fig. 7D).

Discussion

A previous study revealed that two transcription factors, GtMYB3 and GtBHLH1, regulate gentiodelphin biosynthesis in the petals of Japanese gentian (Nakatsuka et al., 2008b). The complex of GtMYB3 and GtBHLH1 proteins activated the expression of genes encoding enzymes involved in the anthocyanin biosynthetic pathway after the GtF3′H gene, but could not induce the transcripts of early flavonoid biosynthetic genes. Recently, some transcription factors controlling early flavonoid biosynthesis, especially flavonol accumulation, have been reported in several plant species, including Arabidopsis seedlings (Mehrtens et al., 2005; Stracke et al., 2007), grapes (Czemmel et al., 2009), and tomatoes (Ballester et al., 2010). However, no transcription factor controlling early flavonoid biosynthesis in the petals has been identified.

In this study, two R2R3-MYB transcription factors from the petals of Japanese gentian were identified. GtMYBP3 and GtMYBP4 were classified into P1/subgroup 7 (Fig. 2), which were reported to regulate early flavonoid biosynthesis (Dubos et al., 2010). Arabidopsis R2R3-MYB subgroup 7 contains AtMYB12/PFG2, AtMYB11/PFG1, and AtMYB111/PFG1, and these are known to control flavonol biosynthesis individually in the different organs (Mehrtens et al., 2005; Stracke et al., 2007, 2008a, 2009; Dubos et al., 2010). The deduced amino acid sequence of GtMYBP3 is highly similar to GtMYBP4 in the R2R3-MYB DNA-binding domain (79.8%), suggesting that they might be functionally redundant genes (Fig. 2 and Supplementary Fig. S1). SG7 and SG7-2 motifs are conserved in the C-termini of R3R3-MYBs belonging to subgroup 7 in Arabidopsis and grape-vine (Stracke et al., 2001; Czemmel et al., 2009; Dubos et al., 2010). However, the SG7 or SG7-2 motifs were not conserved in tomato SlMYB12, which has been identified as a flavonol regulator in tomato fruits (Ballester et al., 2010). The SG7 and SG7-2 motifs of GtMYBP3 and GtMYBP4 also had amino acid substitutions at some positions (Supplementary Fig. S1). Therefore, conservation of SG7 motifs in GtMYBP3 and GtMYBP4 might not be so important for regulation of early flavonoid biosynthesis in gentian petals.

GtMYBP3 and GtMYBP4 had similar temporal and spatial expression profiles, expressing strongly during early developmental stages (stages 1 and 2) of flower petals in gentians...
Nakatsuka et al. (Fig. 3). These expression profiles corresponded well with the accumulation profiles of FNSII and F3’H transcripts and flavone derivatives (Nakatsuka et al., 2005). In grapevine, VvMYBF1 transcripts were detected during flowering and in skins of ripening berries and were correlated with the accumulation of flavonol and expression of VvFLS1 (Czemmel et al., 2009).

Fig. 6. Expression analysis of endogenous flavonoid biosynthetic genes in transgenic Arabidopsis. The effects of GtMYBP3 and GtMYBP4 overexpression on endogenous phenylpropanoid and flavonoid biosynthetic genes were investigated using qRT-PCR analyses in vector control (VC) and 5-day-old transgenic seedlings. Two independent transgenic lines shown in Fig. 5 were analysed. Asterisks indicate statistically significant differences between the means for vector control and transgenic lines, as judged by Student’s t-test (*, $P < 0.05$; **, $P < 0.01$).
Fig. 7. Phenotype and flavonoid analysis in transgenic tobacco flowers. (A) Typical flower phenotypes of wild-type (WT) and GtMYBP3- and GtMYBP4-expressing transgenic tobacco plants. Two independent transgenic lines per construct are shown. (B) Anthocyanin concentrations of WT and GtMYBP3- and GtMYBP4-expressing transgenic petals. (C) Flavonol concentrations of WT and GtMYBP3- and GtMYBP4-expressing transgenic petals. (D) Expression analyses of endogenous flavonoid biosynthetic genes in transgenic flowers. The effects of GtMYBP3 and GtMYBP4 overexpression on endogenous flavonoid biosynthetic genes were investigated using qRT-PCR analyses in WT and transgenic petals. Asterisks represent statistically significant differences between the means for wild-type and transgenic lines, as judged by Student’s t-test (*, P < 0.05; **, P < 0.01).
Transient expression in Arabidopsis suspension cells showed that both GtMYBP3 and GtMYBP4 could enhance the promoter activities of gentian GtFNSII and GtF3H, which encode enzymes of the early flavonoid biosynthesis pathway (Fig. 4B). GtMYBP3 also enhanced the promoter activity of gentian GtCHS. However, the promoter activity of GtF3′5′H, encoding an enzyme of the late flavonoid biosynthesis pathway, could not be activated by either GtMYBP3 or GtMYBP4. Nakatsuka et al. (2008b) demonstrated that GtMYB3 and GtbHLH1, which are anthocyanin biosynthetic regulators in gentian flowers, induced promoter activity of GtF3′5′H, but not of GtCHS. These results suggested that GtMYBP3 and GtMYBP4 control the expression of early flavonoid biosynthetic genes, unlike GtMYB3 and GtbHLH1. For the promoters of all early flavonoid biosynthetic genes, the activation intensities of GtMYBP3 were higher than those of GtMYBP4 (Fig. 4B). The GtFNSII promoter was also activated by GtMYBP3 or GtMYBP4 in a transient assay using gentian mesophyll protoplasts, whereas GtCHS was activated by GtMYBP3 only (Supplementary Fig. S6), confirming the results of transient expression assays in Arabidopsis suspension cells (Fig. 5B). The reason for the different activation ability between GtMYBP3 and GtMYBP4 is not yet clearly understood, but it might depend on the different DNA-binding activities on each promoter and/or on interactions with other transcription factor(s) to regulate flavonoid biosynthesis. Two cis-elements, a P-recognition element and an ACGT-containing element, were present in close proximity to the transcription initiation site of the promoters of GtCHS, GtFNSII, and GtF3′H, but not GtF3′5′H (Fig. 4A). The P-recognition element has been identified as a cis-binding site for the maize P1 protein, controlling 3-deoxycoumaroyl phlobaphene and C-glycosyl flavone maysin biosynthesis (Grotewold et al., 1994). Therefore, GtMYBP3 and GtMYBP4 might bind to the P-recognition element and activate the transcription of downstream genes. This is reasonable, because yeast two-hybrid analysis also showed that the GtMYBP3 or GtMYBP4 proteins did not interact with GtbHLH1 (Supplementary Fig. S2). Moreover, ACGT-containing element potentially binds to bZIP transcription factors, which work together with R2R3-MYB in light-inducible pigmentation (Hartmann et al., 2005). Further analysis is necessary to elucidate the functions of GtMYBP3 and GtMYBP4 in relation to other transcription factors, including bZIP.

Overexpression of GtMYBP3 and GtMYBP4 led to flavonol accumulation in transgenic Arabidopsis seedlings (Fig. 5). Overexpression of AtMYB12 also resulted in increased flavonol amounts in Arabidopsis plants (Mehrtens et al., 2005). qRT-PCR analyses of endogenous phenylpropanoid and flavonol biosynthetic genes showed the activated endogenous gene sets differed somewhat between GtMYBP3- and GtMYBP4-expressing Arabidopsis (Fig. 6). The expression levels of three endogenous flavonol-specific transcription factor genes, AtMYB12, AtMYB11, and AtMYB111, were not markedly affected in the transformants and there was no relationship between the expression levels of foreign genes and endogenous genes (Supplementary Figs. S4A and S5); therefore, an indirect effect via activation of endogenous transcription factors was excluded. GtMYBP3 activated the transcripts of AtPAL1, AtPAL2, At4CL3, AtCHS, AtCHI, AtF3H, and AtF3′H, whereas GtMYBP4 enhanced AtPAL1, AtPAL2, At4CL3, AtCHS, AtCHI, and AtFLS transcripts in transgenic Arabidopsis (Fig. 6). Arabidopsis genome comprises four PAL genes (AtPAL1 to AtPAL4), among them AtPAL1 and AtPAL2 have a redundant role in flavonoid biosynthesis (Huang et al., 2010). 4CL also comprises a multigene family, At4CL1, At4CL2, At4CL3, and At4CL5, in Arabidopsis (Ehlting et al., 1999; Costa et al., 2005). It is notable that At4CL3 is likely to participate in the biosynthetic pathway leading to flavonoids, whereas At4CL1 and At4CL2 are probably involved in lignin formation and in the production of additional phenolic compounds other than flavonoids (Ehlting et al., 1999). Therefore, the observed activation of AtPAL1, AtPAL2, and At4CL3 transcripts in transgenic Arabidopsis plants would be reasonable in light of the functions of GtMYBP3 and GtMYBP4. GtMYBP4 induced stronger expression of almost all phenylpropanoid and flavonol biosynthetic genes, except for AtF3′H and AtF3′H, than GtMYBP3 (Fig. 6). AtF3′H was not activated by AtMYB12 or ZmP1 (Mehrtens et al., 2005). The differences in the controlled gene sets between GtMYBP3 and GtMYBP4 might reflect the differences in their C-terminal regions. ZmP1 activates the promoters of AtCHS, AtF3′H, and AtFLS, although AtFLS induction was only 18% of that observed for AtMYB12 (Mehrtens et al., 2005). Thus, the intensity of transcriptional activation for individual flavonol biosynthetic genes seems to be different among P1 orthologues. The suppression of several biosynthetic genes in the GtMYBP3-expressing transgenic Arabidopsis seedlings also suggested that other phenylpropanoid metabolism, such as lignins, organic acids, and proanthocyanidins, were regulated; therefore, detailed analyses are necessary in the future.

To further investigate the functions of GtMYBP3 and GtMYBP4 in flowers, they were expressed in tobacco plants, which are well known for flavonoid biosynthesis in their petals (Nishihara et al., 2005; Nakatsuka et al., 2007, 2008a). The flowers of GtMYBP3- and GtMYBP4-expressing transgenic tobacco plants showed decreased colour intensity (Fig. 7A). The phenotype of GtMYBP4-expressing tobacco flowers arose from increased flavonol and reduced anthocyanin accumulation (Fig. 7B, C). qRT-PCR analysis also confirmed that GtMYBP4 increased the expression levels of four endogenous tobacco genes, CHI, F3′H, and FLS, by 3–6-fold, but did not activate the expression of flavonoid biosynthesis genes, F3H and DFR (Fig. 7D). These results suggested the increased flavonol accumulation resulted from the activation of genes encoding enzymes catalysing the early steps in flavonoid biosynthesis, but not from the suppression of anthocyanin biosynthetic genes in transgenic tobacco plants. The inverse correlation between anthocyanin and flavonol levels in the flowers probably reflects competition between these two branches for flavonoid metabolites (Davies et al., 2003). The overexpression of AtMYB12, a regulator of flavonoid biosynthesis, induced the enhanced expression of NtPAL, NtCHS, NtCHI, and NtFLS and increased flavonol accumulation in tobacco petals (Luo et al., 2008). Therefore, heterologous expression of GtMYBP4 could control the early flavonoid biosynthesis in tobacco plants. Conversely, GtMYBP3-expressing tobacco flowers showed reduced anthocyanin accumulation, but showed no increase in flavonol accumulation (Fig. 7B, C). No significantly different expression levels of flavonol and anthocyanin biosynthetic genes were detected between wild-type and GtMYBP3-expressing plants (Fig. 7D). Arabidopsis AtMYB4
and strawberry FaMYB1, classified into subgroup 4, suppress the expression of cinnamate 4-hydroxylase and anthocyanidin synthase, respectively (Jin et al., 2000; Aharoni et al., 2001). Therefore, GtMYBP3 might affect the expression of genes that were not investigated in this study, such as the phenylpropanoid biosynthetic and flavonoid modification genes, in tobacco petals. Proanthocyanidins (condensed tannins) compounds also derived from the flavonoid biosynthetic pathway, and two key enzymes, anthocyanidin reductase (ANR) and leucoanthocyanidin reductase (LAR), are involved in their biosynthesis (Tanner et al., 2003; Xie et al., 2003). Recently, Han et al. (2012) reported that ectopic expression of apple ANR in tobacco led to downregulation of both CHI and DFR in the flowers, leading to loss of anthocyanin. Similarly, in some cases, metabolic engineering of the flavonoid biosynthetic pathway has been known to induce feedback suppression of endogenous related genes. Therefore, the reduced anthocyanin accumulation in GtMYBP3-expressing tobacco flowers might result from such unexpected regulation of genes encoding phenylpropanoid and flavonoid biosynthetic enzymes, although further metabolic and gene expression analyses are necessary to explain this observation. As shown above, the endogenous gene sets activated by GtMYBP3 and GtMYBP4 were different between transgenic Arabidopsis seedlings and tobacco flowers (Figs. 6 and 7). However, the targeted gene sets of GtMYBP3 and GtMYBP4 mostly overlapped in the early flavonoid biosynthetic genes; therefore, the functions of these two genes were thought to be complementary in gentian flowers. Moreover, the differences in the targeted gene sets among plant hosts (Arabidopsis and tobacco) suggested that full activation of GtMYBP3 and GtMYBP4 transcription factors probably required cofactors, such as bZIP (Hartmann et al., 2005).

Petunia flowers have been extensively studied as models for flavonoid biosynthesis and are proposed as a model showing that early- and late-biosynthetic genes are controlled by two different regulators (Quattrocchio et al., 1993). However, although it has been revealed that AN1/AN2 regulate the expression of anthocyanin biosynthetic genes, no transcription factor involved in the flavonol biosynthetic pathway has been identified. Uniquely, GhMYB1 was isolated from the petals of Gerbera hybrida, but its function has not been characterized (Elomaa et al., 2003). Therefore, GtMYBP3 and GtMYBP4 are the first characterized transcription factors that are involved in the early flavonoid biosynthesis in petal organs. Their identification will advance the understanding of flavonoid biosynthesis in floricultural crops.

Supplementary material

Supplementary data are available at JXB online.

Supplementary Fig. S1. Alignment of P1 orthologue proteins in higher plants.

Supplementary Fig. S2. Yeast two-hybrid analysis to examine the protein–protein interaction between GtMYBs and GtHLH1.

Supplementary Fig. S3. Effect of co-transfection of GtMYBP3 and GtMYBP4 on promoter activities of GtCHS, GtFNSII, and GtF3’H.

Supplementary Fig. S4. Confirmation of the expression of transgenes in transgenic Arabidopsis and tobacco.

Supplementary Fig. S5. Expression analyses of endogenous flavonol-specific transcription factor genes in transgenic Arabidopsis.

Supplementary Fig. S6. Transient expression assay in gentian mesophyll protoplast.

Supplementary Table. S1. Degenerate PCR, probe, and inverse PCR primers used in this study.

Supplementary Table. S2. Primers used for quantitative RT-PCR analysis.

Acknowledgements

The authors thank Messrs. K. Fujiwara and T. Nakasato, Iwate Agricultural Research Center, for providing the Japanese gentian materials. They also thank Dr. M. Ohme-Takagi (National Institute of Advanced Industrial Technology and Science, Japan) for providing p35Spro-RLUC. The authors are grateful to Mses. A. Kubota and C. Yoshida, Iwate Biotechnology Research Center, for their technical support. This work was financially supported by Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science to T.N. (no. 18789005), M.N. (no. 24380024), and by the Iwate prefectural government.

References

Aharoni A, De Vos CH, Wein M, Sun Z, Greco R, Kroon A, Mol JN, O’Connell AP. 2001. The strawberry FaMYB1 transcription factor suppresses anthocyanin and flavonol accumulation in transgenic tobacco. The Plant Journal 28, 319–332.

Axelos M, Curie C, Mazzolini L, Bardet C, Lescurie B. 1992. A protocol for transient gene expression in Arabidopsis thaliana protoplast isolated from cell suspension cultures. Plant Physiology and Biochemistry 30, 123–128.

Ballester AR, Molthoff J, de Vos R, et al. 2010. Biochemical and molecular analysis of pink tomatoes: deregulated expression of the gene encoding transcription factor SIMYB12 leads to pink tomato fruit color. Plant Physiology 152, 71–84.

Borevitz JO, Xia Y, Blount J, Dixon RA, Lamb C. 2000. Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. The Plant Cell 12, 2383–2394.

Broun P. 2005. Transcriptional control of flavonoid biosynthesis: a complex network of conserved regulators involved in multiple aspects of differentiation in Arabidopsis. Current Opinion in Plant Biology 8, 272–279.

Byrne PF, McMullen MD, Snoek ME, Musket TA, Theuri JM, Widstrom NW, Wiseman BR, Coe EH. 1996. Quantitative trait loci and metabolic pathways: genetic control of the concentration of maysin, a corn earworm resistance factor, in maize silks. Proceedings of the National Academy of Sciences, USA 93, 8820–8825.

Clough SJ, Bent AF. 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal 16, 735–743.
Coccilone SM, Nettleton D, Snook ME, Peterson T. 2005. Transformation of maize with the \(p1 \) transcription factor directs production of silk maysin, a corn earworm resistance factor, in concordance with a hierarchy of floral organ pigmentation. Plant Biotechnology Journal 3, 225–235.

Costa MA, Bedgar DL, Moinuddin SG, et al. 2005. Characterization in vitro and in vivo of the putative multigene 4-coumarate-CoA ligase network in Arabidopsis: syringyl lignin and sinapate/sinapyl alcohol derivative formation. Phytochemistry 66, 2072–2091.

Czernmel S, Strackle R, Weisshaar B, Cordon N, Harris NN, Walker AR, Robinson SP, Bogs J. 2009. The grapevine R2R3-MYB transcription factor VvMYBF1 regulates flavonol synthesis in developing grape berries. Plant Physiology 151, 1513–1530.

Davies KM, Schwinn KE, Deroles SC, Manson DG, Lewis DH, Bloor SJ, Bradley JM. 2003. Enhancing anthocyanin production by altering competition for substrate between flavonol synthase and dihydroflavonol 4-reductase. Euphytica 131, 259–268.

Dubos C, Strackle R, Grotewold E, Weisshaar B, Martin C, Lepiniec L. 2010. MYB transcription factors in Arabidopsis. Trends in Plant Science 15, 573–581.

Ehlting J, Buttner D, Wang Q, Douglas CJ, Somssich IE, Kombrink E. 1999. Three 4-coumarate:coenzyme A ligases in Arabidopsis thaliana represent two evolutionarily divergent classes in angiosperms. The Plant Journal 19, 9–20.

Elomaa P, Uimari A, Mehto M, Albert VA, Laitinen RA, Teeri T. 1999. Three 4-coumarate:coenzyme A ligases in Arabidopsis thaliana represent two evolutionarily divergent classes in angiosperms. The Plant Journal 19, 9–20.

Gonzalez A, Zhao M, Leavitt JM, Lloyd AM. 2008. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. The Plant Journal 53, 814–827.

Goto T, Kondo T, Tamura H, Imagawa H, Iino A, Takeda K. 1982. Structure of gentiodelphin, an acylated anthocyanin isolated from Gentiana makinori, that is stable in dilute aqueous solution. Tetrahedron Letters 23, 3695–3698.

Grotewold E, Drummond BJ, Bowen B, Peterson T. 1994. The myb-homologous \(P \) gene controls phlobaphene pigmentation in maize floral organs by directly activating a flavonoid biosynthetic gene subset. Cell 76, 543–553.

Grotewold E, Sainz MB, Tagliani L, Hernandez JM, Bowen B, Chandler VL. 2000. Identification of the residues in the Myb domain of maize \(C1 \) that specify the interaction with the bHLH cofactor. Proceedings of the National Academy of Sciences, USA 97, 13579–13584.

Han Y, Vimolmangkang S, Soria-Guerra RE, Korban SS. 2012. Introduction of apple \(ANR \) genes into tobacco inhibits expression of both \(CHI \) and \(DFR \) genes in flowers, leading to loss of anthocyanin. Journal of Experimental Botany 63, 2437–2447.

Hartmann U, Sagasser M, Mehrtens F, Strackle R, Weisshaar B. 2005. Differential combinatorial interactions of cis-acting elements recognized by R2R3-MYB, BZIP, and BHLH factors control light-responsive and tissue-specific activation of phenylpropanoid biosynthesis genes. Plant Molecular Biology 57, 155–171.

Hartmann U, Valentine WJ, Christie JM, Hays J, Jenkins GI, Weisshaar B. 1998. Identification of UV/blue light-response elements in the Arabidopsis thaliana chalcone synthase promoter using a homologous protoplast transient expression system. Plant Molecular Biology 36, 741–754.

Holton TA, Cornish EC. 1995. Genetics and biochemistry of anthocyanin biosynthesis. The Plant Cell 7, 1071–1083.

Horsch RB, Fry JE, Hoffmann NL, Eicholtz D, Rogers SG, Fraley RT. 1985. A simple method for transferring genes into plants. Science 227, 1229–1231.

Huang J, Gu M, Lai Z, Fan B, Shi K, Zhou YH, Yu JQ, Chen Z. 2010. Functional analysis of the Arabidopsis PAL gene family in plant growth, development, and response to environmental stress. Plant Physiology 153, 1526–1538.

Jin H, Cominelli E, Bailey P, Parr A, Mehrtens F, Jones J, Tonelli C, Weisshaar B, Martin C. 2000. Transcriptional repression by AtMYB4 controls production of UV-protecting sunscreens in Arabidopsis. The EMBO Journal 19, 6150–6161.

Kobayashi H, Okawa Y, Koika H, Yamamura S. 1998. Flower-specific expression directed by the promoter of a chalcone synthase gene from Gentiana triflora in Petunia hybrida. Plant Science 131, 173–180.

Koes R, Verweij W, Quattrochio F. 2005. Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends in Plant Science 10, 236–242.

Lloyd AM, Walbot V, Davis RW. 1992. Arabidopsis and Nicotiana anthocyanin production activated by maize regulators R and C1. Science 258, 1773–1775.

Luo J, Butelli E, Hill L, Parr A, Niggeweg R, Bailey P, Weisshaar B, Martin C. 2008. AtMYB12 regulates caffeoyl quinic acid and flavonol synthesis in tomato: expression in fruit results in very high levels of both types of polyphenol. The Plant Journal 56, 316–326.

Mehrtens F, Kranz H, Bednarek P, Weisshaar B. 2005. The Arabidopsis transcription factor MYB12 is a flavonol-specific regulator of phenylpropanoid biosynthesis. Plant Physiology 138, 1083–1096.

Mishiba K, Yamasaki S, Nakatsuka T, Abe Y, Daimon H, Oda M, Nishihara M. 2010. Strict de novo methylation of the 35S enhancer sequence in gentian. PLoS One 5, e9670.

Mol J, Grotewold E, Koes R. 1998. How genes paint flowers and seeds. Trends in Plant Science 3, 212–217.

Nakatsuka T, Abe Y, Kakizaki Y, Yamamura S, Nishihara M. 2007. Production of red-flowered plants by genetic engineering of multiple flavonoid biosynthetic genes. Plant Cell Reports 26, 1951–1959.

Nakatsuka T, Haruta KS, Pitaksutheepong C, Abe Y, Kakizaki Y, Yamamoto K, Shimada N, Yamamura S, Nishihara M. 2008b. Identification and characterization of R2R3-MYB and bHLH transcription factors regulating anthocyanin biosynthesis in gentian flowers. Plant and Cell Physiology 49, 1818–1829.

Nakatsuka T, Nishihara M, Mishiba K, Yamamura S. 2005. Temporal expression of flavonoid biosynthesis-related genes regulates flower pigmentation in gentian plants. Plant Science 168, 1309–1318.

Nakatsuka T, Sato K, Takahashi H, Yamamura S, Nishihara M. 2008a. Cloning and characterization of the UDP-glucose:anthocyanin...
5-O-glucosyltransferase gene from blue-flowered gentian. *Journal of Experimental Botany* **59**, 1241–1252.

Nishihara M, Nakatsuka T, Mizutani-Fukuchi M, Tanaka Y, Yamamura S. 2008. Gentians: from gene cloning to molecular breeding. In: A. Jaime, T. da Silva, editors, *Floricultural and ornamental biotechnology V*. UK: Global Science Books, 57–67.

Nishihara M, Nakatsuka T, Yamamura S. 2005. Flavonoid components and flower color change in transgenic tobacco plants by suppression of chalcone isomerase gene. *FEBS Letters* **579**, 6074–6078.

Quattrocchio F, Baudry A, Lepiniec L, Grotewold E. 2006. The regulation of flavonoid biosynthesis. In: E. Grotewold, editor, *The science of flavonoids*. New York: Springer, 97–122.

Quattrocchio F, Wing JF, Leppen H, Mol J, Koes RE. 1993. Regulatory genes controlling anthocyanin pigmentation are functionally conserved among plant species and have distinct sets of target genes. *The Plant Cell* **5**, 1497–1512.

Rabinowicz PD, Braun EL, Wolfe AD, Bowen B, Grotewold E. 1999. Maize R2R3 Myb genes: sequence analysis reveals amplification in the higher plants. *Genetics* **153**, 427–444.

Spelt C, Quattrocchio F, Mol JN, Koes R. 2000. Anthocyanin 1 of petunia encodes a basic helix-loop-helix protein that directly activates transcription of structural anthocyanin genes. *The Plant Cell* **12**, 1619–1632.

Stracke R, Ishihara H, Huep G, Barsch A, Mehrtens F, Niehaus K, Weisshaar B. 2007. Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the *Arabidopsis thaliana* seedling. *The Plant Journal* **50**, 660–677.

Stracke R, Werber M, Weisshaar B. 2001. The R2R3-MYB gene family in *Arabidopsis thaliana*. *Current Opinion in Plant Biology* **4**, 447–456.

Early flavonoid biosynthesis in gentian flowers

Tamura K, Dudley J, Nei M, Kumar S. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. *Molecular Biology and Evolution* **24**, 1596–1599.

Tanaka Y, Yonekura K, Fukuchi-Mizutani M, Fukui Y, Fujiwara H, Ashikari T, Kusumi T. 1996. Molecular and biochemical characterization of three anthocyanin synthetic enzymes from *Gentiana triflora*. *Plant and Cell Physiology* **37**, 711–716.

Tanner GJ, Franci KT, Abrahams S, Watson JM, Larkin PJ, Ashton AR. 2003. Proanthocyanidin biosynthesis in plants. Purification of legume leucoanthocyanidin reductase and molecular cloning of its cDNA. *Journal of Biological Chemistry* **278**, 31647–31656.

Urao T, Yamaguchi-Shinozaki K, Urao S, Shinozaki K. 1993. An *Arabidopsis myb* homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence. *The Plant Cell* **5**, 1529–1539.

Winkel BSJ. 2006. The biosynthesis of flavonoid. In: E. Grotewold, editor, *The science of flavonoids*. New York: Springer, 71–96.

Xie D-Y, Sharma SB, Paiva NL, Ferreira D, Dixon RA. 2003. Role of anthocyanidin reductase, encoded by BANYULS in plant flavonoid biosynthesis. *Science* **299**, 396–399.

Yoshida K, Mori M, Kondo T. 2009. Blue flower color development by anthocyanins: from chemical structure to cell physiology. *Natural Product Reports* **26**, 884–915.

Yoshida K, Toyama Y, Kameda K, Kondo T. 2000. Contribution of each caffeoyl residue of the pigment molecule of gentiodelphin to blue color development. *Phytochemistry* **54**, 85–92.

Zhang P, Wang Y, Zhang J, Maddock S, Snook M, Peterson T. 2003. A maize QTL for silk maysin levels contains duplicated Myb-homologous genes which jointly regulate flavone biosynthesis. *Plant Molecular Biology* **52**, 1–15.