Novel Numerical Spiking Neural P Systems with a Variable Consumption Strategy

Xiu Yin 1, Xiyu Liu 1,*, Minghe Sun 2 and Qianqian Ren 1

Abstract: A novel variant of NSN P systems, called numerical spiking neural P systems with a variable consumption strategy (NSNVC P systems), is proposed. Like the spiking rules consuming spikes in spiking neural P systems, NSNVC P systems introduce a variable consumption strategy by modifying the form of the production functions used in NSN P systems. Similar to the delay feature of the spiking rules, NSNVC P systems introduce a postponement feature into the production functions. The execution of the production functions in NSNVC P systems is controlled by two, i.e., polarization and threshold, conditions. Multiple synaptic channels are used to transmit the charges and the production values in NSNVC P systems. The proposed NSNVC P systems are a type of distributed parallel computing models with a directed graphical structure. The Turing universality of the proposed NSNVC P systems is proved as number generating/accepting devices. Detailed descriptions are provided for NSNVC P systems as number generating/accepting devices. In addition, a universal NSNVC P system with 66 neurons is constructed as a function computing device.

Keywords: membrane computing; numerical spiking neural P systems; variable consumption strategy; postponement features; Turing universality

1. Introduction

Membrane computing is a class of distributed parallel-computing models introduced by Păun [1], which is inspired by the structure and function of living cells and their cooperation in tissues, organs, and biological neural networks. These computing models are called P systems or membrane systems [2]. There are three main types of P systems, i.e., cell-like P systems, tissue-like P systems and neural-like P systems. Specifically, the cell-like P systems were proposed based on the hierarchical structure of biological membranes in cells, the tissue-like P systems were abstracted from the communication and cooperation of cells in biological tissues, and the neural-like P systems were inspired by the facts that neurons communicate with each other by firing short electrical impulses or spikes.

Spiking neural P (SN P) systems, proposed by Ionescu et al. [3], are a main form of neural-like P systems. A SN P system consists of a network of neurons connected together in a directed graph and can be regarded as the third generation of neural network models. In the past few years, many variants of SN P systems have been proposed and studied as being inspired by various biological activities and/or by combining methods and ideas in computer science and mathematics. SN P systems with astrocytes, having excitatory and inhibitory influences on synapses, were discussed by Păun [4] and Pan et al. [5]. SN P systems with anti-spikes were constructed by Pan and Păun [6] with anti-spikes abstracted from inhibitory impulses that participate in spiking and forgetting rules and annihilate spikes when they are in the same neuron. Motivated by the biological phenomenon that each neuron has a positive or negative charge, SN P systems with polarizations are established by Wu et al. [7]. SN P systems with rules on synapses were proposed...
by Song et al. [8], which is different from most P systems where the rules are located in neurons. Considering the biological fact that a synapse has one or more chemical channels, Peng et al. [9] and Song et al. [10] studied SN P systems with multiple channels. Wang et al. [11] and Zeng et al. [12] proposed SN P systems with weights and thresholds, respectively. Recently, coupled neural P systems [13] and dynamic threshold neural P systems [14] have also been proposed one after another. Most SN P systems are synchronous under the control of a global clock, but many SN P systems are asynchronous [15–17]. Many variants of SN P systems have been proven to be Turing universal as number generating/accepting devices [18–20], language generating devices [21,22], and function computing devices [23–25].

In SN P systems with polarizations (PSN P systems) [7], the polarization associated with neurons can also control the firing of the spiking rules. Hence, the regular expressions are no longer the only conditions controlling the firing of the spiking rules. Three types of polarizations, i.e., positive, neutral, and negative, corresponding to three kinds of electrical charges, i.e., $+$, 0 and $-$, respectively, exist in PSN P systems. Specifically, each neuron contains an initial charge and each spiking rule also has a charge. A rule can apply only when the charge of the rule is the same as the charge of the neuron where the rule is located.

Different from the above P systems, numerical P (NP) systems are another special type of P systems [26], having a similar architecture to those of many cell-like P systems. NP systems are composed of hierarchically arranged membranes and compartments formed by adjacent membranes. Numerical variables are configured in the compartment instead of being treated as multisets of chemical objects as used in most P systems. The variables evolve through programs consisting of production functions and repartition protocols, which is fundamentally different from most P systems that use multiset rewriting rules to evolve. In order to more effectively control the application of the programs, many variants of NP systems, such as enzymatic NP systems [27], NP systems with production thresholds [28], and NP systems with Boolean conditions [29] have been proposed.

These biologically inspired P systems have both advantages and disadvantages for solving real-world problems. Most P systems are distributed parallel computing models, in which each neuron can act as an independent processor, and neurons communicate through the spikes represented by unique symbols. The evolution rules in the P systems are usually applied non-deterministically and in maximally parallel, i.e., the order in which the rules are applied is random and all possible rules must be performed in each step of the computation. Therefore, the P systems have the characteristics of simple representation of knowledge, non-determinism, and parallelism. These advantages make them very attractive for solving real-world problems such as image processing [30–32], robots [33,34], fault detection [35–37] and data clustering [38–40]. Under the control of a global clock, the application of rules in the P systems is synchronized. However, from a computational point of view, the synchronization of the process leads to higher costs. SN P systems and their variants encode information through spikes in neurons and neurons can only fire when the number of spikes reaches a certain value, which makes these systems discrete computing models. However, practical applications involve numerical representation of information and require precise and quantitative modeling of data. Therefore, it is difficult for these systems to solve these practical problems. In order to overcome this difficulty, Wu et al. [41] proposed numerical spiking neural P (NSN P) systems by introducing numerical variables and production functions used in NP systems into SN P systems. In this way, NSN P systems are equipped with numerical capabilities, making them more capable of solving real-world problems.

A novel variant of NSN P systems, called numerical spiking neural P systems with a variable consumption strategy (NSNVC P systems), is proposed in this study. The Turing universality of NSNVC P systems is investigated as number generating/accepting devices. Moreover, a universal NSNVC P system with 66 neurons is also constructed as a function computing device. NSN P systems use continuous production functions to replace the usual spiking rules. After the execution of a production function, the values of the variables
involved in the production function will all return to 0 in NSN P systems. The variable resetting may cut down the controlling ability and the operating efficiency of NSN P systems. In addition, NSN P systems lose the firing feature of SN P systems and the real biological systems. Hence, it is necessary and feasible for NSNVC P systems to make improvements. In order to regain the firing feature, each production function is assigned a threshold in NSNVC P systems. Considering that polarizations can control the firing of spiking rules, NSNVC P systems use polarizations and threshold to simultaneously control the execution of the production functions. As in NSN P systems, NSNVC P systems also use multiple synaptic channels to transmit the charges and production values to other neurons.

Compared with NSN P systems, the improvements in NSNVC P systems are as follows.

1. By modifying the form of the production functions, NSNVC P systems adopt a new variable consumption strategy, in which the values of the variables involved will have a prescribed consumption rate without all being set to 0 after a production function execution.
2. In addition to assigning a threshold to each production function to control the firing of the neurons, polarizations of the neurons, where the production functions are located, are also used to control production function executions in NSNVC P systems. Therefore, both the polarization and the threshold can control the execution of a production function.
3. The proposed NSNVC P systems also introduce postponement features and multiple synaptic channels to reduce the complexity and the number of computing units, i.e., neurons, of the systems.

Some variants of P systems with their abbreviations and full names cited in this work are listed in Table 1. Comparisons of performances of the proposed NSNVC P systems with some of these variants of P systems listed in Table 1 are given in Section 5.

System	Full Name
SNP systems [3]	Spiking neural P systems
PSN P systems [7]	Spiking neural P systems with polarizations
SNP-MC systems [17]	Small universal asynchronous spiking neural P systems with multiple channels
NP systems [37]	Numerical P systems
NSN P systems [41]	Numerical spiking neural P systems
SNP-IR systems [42]	Spiking neural P systems with inhibitory rules
PASN P systems [43]	Simplified and yet Turing universal spiking neural P systems with polarizations optimized by anti-spikes
PSNR P systems [44]	Spiking neural P systems with polarizations and rules on synapses

The main motivation of this work is to design NSNVC P systems to improve the computation performance of NSN P systems. In NSNVC P systems, a new variable consumption strategy is proposed, which not only improves the computation mechanism, but also increases the controlling ability of NSN P systems. In addition, the improvement in the computation performance of NSN P systems will be investigated when both polarization and threshold are used to control the execution of the production functions. The improvement in computation performance of NSN P systems is made by enhancing their controlling ability, improving their operating efficiency, and reducing the number of neurons used. As a result, the new variant of NSN P systems, i.e., the NSNVC P systems, is expected to be more suitable for solving real-world problems.

The rest of this paper is organized as follows. A formal definition and an illustrative example of NSNVC P systems are presented in Section 2. The proof of the universality of NSNVC P systems as number accepting/generating devices is given in Section 3. Section 4
investigates the universality of NSNVC P systems as function computing devices. Section 5 draws conclusions and outlines future research directions.

2. NSNVC P Systems

A formal definition of the proposed NSNVC P systems is presented and notations used in NSNVC P systems are defined in this section. An example is then given to facilitate the understanding of the proposed NSNVC P systems. The set of natural numbers, the set of positive integers, and the set of integers are represented by \(N \), \(N^+ \) and \(Z \), respectively.

2.1. The Definition of NSNVC P Systems

A NSNVC P system composed of \(m \) neurons is represented by the tuple \(\Pi = (L, \sigma_1, \sigma_2, \ldots, \sigma_m, \text{syn, in, out}) \), where:

1. \(L \subseteq N^+ \) represents the set of channel labels.
2. \(\sigma_1, \sigma_2, \ldots, \sigma_m \) represents \(m \) neurons with the form \(\sigma_i = (a_i, L_i, \text{Var}_i, \text{Prf}_i, \text{Var}_i(0)) \), for \(1 \leq i \leq m \). The specifics of a neuron are given below.
 a. \(a_i \in \{+, 0, -\} \) refers to the initial charge of neuron \(\sigma_i \), where +, 0 and − indicate the positive, neutral and negative polarizations, respectively.
 b. \(L_i \subseteq L \) is a finite set of channel labels of neuron \(\sigma_i \), indicating its synaptic channels. A synaptic channel of neuron \(\sigma_i \) may involve one or more synapses connecting neuron \(\sigma_i \) to other neurons and a synapse may be involved in a number of synaptic channels.
 c. \(\text{Var}_i = \{x_{q,i} \mid 1 \leq q \leq k_i\} \) is the set of variables in neuron \(\sigma_i \).
 d. \(\text{Var}_i(0) = \{x_{q,i}(0) \mid x_{q,i}(0) \in Z, 1 \leq q \leq k_i\} \) is the set of initial values of the variables in neuron \(\sigma_i \).
 e. \(\text{Prf}_i \) represents a finite set of production functions associated with neuron \(\sigma_i \). The form of a production function is \(\alpha / f_{h,i}(x_{l,j}, \ldots, x_{k,i})|^{C_h}_T \beta; d; (l) \), where \(\alpha, \beta \in \{+, 0, -\} \); \(l \) is the channel label indicating the synaptic channel of neuron \(\sigma_i \) associated with the function; \(1 \leq h \leq |\text{Prf}_i| \) is used to distinguish the production functions contained in neuron \(\sigma_i \); \(C_h \in N \) is the consumption rate of the variables when the production function \(f_{h,i} \) executes; \(T_h \in N^+ \) refers to the threshold at which the production function can execute; and \(d \geq 0 \) indicates the postponement future of the production function. If \(d = 0 \), the form of production function is simplified to \(\alpha / f_{h,i}(x_{l,j}, \ldots, x_{k,i})|^{C_h}_T \beta; (l) \).
3. \(\text{syn} = \{(i, j, l) \mid i \neq j \text{ is the set of synapses among the } m \text{ neurons with their channel labels, where } (i, j, l) \in \text{syn} \text{ means that neuron } \sigma_i \text{ connects to neuron } \sigma_j \text{ via synaptic channel } l \}. \) If a synapse connects from neuron \(\sigma_i \) to neuron \(\sigma_j \), neuron \(\sigma_i \) is called a presynaptic neuron of neuron \(\sigma_j \) and neuron \(\sigma_j \) is called a postsynaptic neuron of neuron \(\sigma_i \).
4. \(\text{in} \) indicates the input neuron.
5. \(\text{out} \) indicates the output neuron.

Numerical variables in NSNVC P systems are represented by \(x \) with subscripts. Specifically, the first subscript of a variable indicates the order of the variable among all the variables in the same neuron, and the second subscript is the label of the neuron. For example, variable \(x_{q,i} \) represents variable \(q \) in neuron \(\sigma_i \). The value of variable \(x_{q,i} \) at time \(t \) is expressed as \(x_{q,i}(t) \) for \(1 \leq q \leq k_i \) and \(1 \leq i \leq m \). Usually, the values of the variables are real numbers. This work restricts the values of the variables to an interval of integers in order to simplify the computation, although NSNVC P systems have the computational capability of processing real numbers. The subscripts of the production functions are used in the same ways as those of the numerical variables, e.g., production function \(f_{h,i} \) represents function \(h \) in neuron \(\sigma_i \). In fact, production functions can be any mathematical functions. However, NSNVC P systems are able to achieve the same capabilities as Turing machines under the condition of only using linear functions.
Two forms of, i.e., non-threshold $f_{h,i}(x_{1,j}, \ldots, x_{k,i})$ and threshold $f_{h,i}(x_{1,j}, \ldots, x_{k,i})|_{T_{h,i}}$, production functions exist in NSN P systems. When $T_{h} \leq \min(x_{1,j}(t), \ldots, x_{k,i}(t))$, the threshold production function $f_{h,i}(x_{1,j}, \ldots, x_{k,i})|_{T_{h,i}}$ can execute, i.e., the neuron where the production function $f_{h,i}(x_{1,j}, \ldots, x_{k,i})|_{T_{h,i}}$ is located can fire. However, the neuron where the non-threshold production function $f_{h,i}(x_{1,j}, \ldots, x_{k,i})$ is located lost the firing feature. In addition, the values of all variables involved in the production function, whether threshold or non-threshold, will be reset to 0 immediately after the function execution.

The execution of production functions in NSNVC P systems will be described below. At time t, the execution of a production function $a / f_{h,i}(x_{1,j}, \ldots, x_{k,i})|_{T_{h,i}}; \beta; d; (l)$ in neuron σ_i can be roughly divided into three, i.e., comparison, production and distribution, stages.

1. **Comparison stage**: Only when neuron σ_i contains just charge a and the current values of the variables $x_{1,j}(t), \ldots, x_{k,i}(t)$ involved in the production function are all equal to the threshold $T_{h,i}$, i.e., $x_{1,j}(t) = \cdots = x_{k,i}(t) = T_{h,i}$, the production function $a / f_{h,i}(x_{1,j}, \ldots, x_{k,i})|_{T_{h,i}}; \beta; d; (l)$ can apply. Otherwise, the production function cannot apply.

2. **Production stage**: If production function $a / f_{h,i}(x_{1,j}, \ldots, x_{k,i})|_{T_{h,i}}; \beta; d; (l)$ can be applied at time t, then its production value $prv_{h,i}(t) = f_{h,i}(x_{1,j}, \ldots, x_{k,i})$ is calculated based on the current values of the variables $x_{1,j}(t), \ldots, x_{k,i}(t)$.

3. **Distribution stage**: The distribution of the production value $prv_{h,i}(t)$ and a charge β is based on the repartition protocol, which is stated in the following. The production value $prv_{h,i}(t)$ and the charge β are transmitted to all postsynaptic neurons σ_j of neuron σ_i through synaptic channel l at time $t + d$. If $d = 0$, the transmission happens immediately at time t. If $d \geq 1$, then neuron σ_i is dormant, i.e., cannot fire nor receive new production values, at time t, $t + 1$, \ldots, $t + d - 1$. At time $t + d$, neuron σ_i becomes active again and the transmission occurs. In particular, the value received by neuron σ_i will be immediately passed to its variables, which will increase or decrease the values of the variables.

Based on the variable consumption strategy, after the execution of production function $a / f_{h,i}(x_{1,j}, \ldots, x_{k,i})|_{T_{h,i}}; \beta; d; (l)$, all variables involved will “consume” a value of C_h, while the variables not involved will keep their current values. Moreover, the condition $C_h \leq \min(x_{1,j}(t), \ldots, x_{k,i}(t))$ must be satisfied before the execution of the production function. If neuron σ_i receives several production values at time t, $prv(t)$ will be the sum of all these production values. Then, the value of variable $x_{q,j}$ in neuron σ_i at time $t + 1$ is updated according to (1) in the following:

$$x_{q,j}(t + 1) = \begin{cases}
prv(t) + x_{q,j}(t) - C_h, & \text{if } x_{q,j} \text{ is involved in } f_{h,i} \\
prv(t) + x_{q,j}(t), & \text{if } x_{q,j} \text{ is not involved in } f_{h,i}
\end{cases}$$

At the same time, neuron σ_i also receives the charges delivered by all its presynaptic neurons. The charge calculation rules are as follows:

- Multiple positive, neutral and negative charges will degenerate to a single charge of the same kind.
- A positive charge plus a negative charge will produce a neutral charge.
- A positive or negative charge will not change after a neutral charge is added to it.

In NSNVC P systems, at most one production function can execute in a single neuron at each time moment, and all neurons in system Π work in parallel. At a certain time moment, when more than one production function can satisfy the condition to execute in a neuron, one production function in the neuron will be chosen non-deterministically to apply.

A configuration of system Π is represented by the polarizations of all neurons and the current values of all the variables contained therein. At time t, the configuration of system Π is represented by a vector $C_t = ([a_1, x_{1,1}(t), \ldots, x_{k_1,1}(t)], \ldots, [a_m, x_{1,m}(t), \ldots, x_{k_m,1}(t)])$.
where \(a_i \in \{+, 0, -\} \) indicates the charge of neuron \(\sigma_i \), and \(x_{q,i}(t) \in Z \) is the current value of \(x_{q,i} \), for \(1 \leq q \leq k_i \) and \(1 \leq i \leq m \). Therefore, the initial configuration of the system is \(C_0 = ([a_1, x_{1,1}(0), \ldots, x_{k_1,1}(0)], \ldots, [a_m, x_{1,m}(0), \ldots, x_{k_m,1}(0)]) \).

A transition of system \(\Pi \) is defined as an update from one configuration to another, i.e., \(C_t \Rightarrow C_{t+1} \). This transition is realized by the system by applying production functions in parallel. Starting from the initial configuration \(C_0 \), a series of finite or infinite transitions of system \(\Pi \), i.e., \(C_0 \Rightarrow C_1 \Rightarrow \cdots \Rightarrow C_s \) with \(s \in N \), is called a system calculation. When system \(\Pi \) progresses to a configuration where no production functions can apply, the system halts and the calculation terminates.

A NSNVC P system \(\Pi \) can be used as a number generating device, also called a number generator, and can generate a number \(n \). In this case, the output neuron \(\sigma_{\text{out}} \) is used to output the computation result. The number generated by system \(\Pi \) is related to the moments when the output neuron \(\sigma_{\text{out}} \) fires. Specifically, if \(t_1 \) and \(t_2 \) are the first two time moments when the output neuron emits a nonzero value to the environment, then the time interval \(t_2 - t_1 \) is defined as the computation result, i.e., the number generated by system \(\Pi \). In this way, the entire system needs a global clock to pace the time for all neurons, and system \(\Pi \) is assumed to start working at time \(t = 1 \). All computation results produced by system \(\Pi \) are represented by \(N_{\text{acc}}(\Pi) \), where the subscript 2 represents the interval between the first two time moments when the output neuron fires.

A NSNVC P system \(\Pi \) can also be used as a number accepting device, also called a number acceptor. In this case, the input neuron \(\sigma_{\text{in}} \) is used to introduce numbers into the system. The output neuron is removed from the system when it is used as a number accepting device. The number \(n \in N^+ \) introduced into the system is encoded by the time interval between the first two time moments when the input neuron fires. When the system computation stops, the number \(n \) is accepted by the system. The set of all numbers accepted by system \(\Pi \) is represented by \(N_{\text{acc}}(\Pi) \).

The family of all sets of numbers generated/accepted by NSNVC P systems is represented by \(N_{\eta}^{chp} \text{NSNP}(\text{poly}^\lambda(r)) \), where \(\eta \in \{2, \text{acc}\} \), \(chp \) indicates that the system uses at most \(p \) charges, and \(\text{poly}^\lambda(r) \) indicates that each production function is a polynomial with a degree of at most \(\lambda \geq 0 \) and with at most \(r \geq 0 \) variables.

2.2. An Illustrative Example

The example system \(\Pi_{ex} \) shown in Figure 1 is used to clarify the components, the definitions, and the functions of NSNVC P systems. System \(\Pi_{ex} \) consists of four neurons \(\sigma_1, \sigma_2, \sigma_3 \) and \(\sigma_{\text{out}} \), represented by four rectangles and labeled with 1, 2, 3, and \(\text{out} \), respectively. Each neuron contains one or more production functions and a list, where the first item in the list is the initial charge of the neuron, and the other items are the variables with the initial values in parentheses. A neuron may contain multiple variables. The output neuron \(\sigma_{\text{out}} \) is used to transmit calculation results to the environment. A synapse is represented by an arrow connecting two neurons. A synaptic channel of a neuron is represented by the channel label marked on one or more synapses connecting from the neuron to other neurons.
Figure 1. An example NSNVC P system Π_{ex}.

Apparently, the initial configuration of system Π_{ex} is $C_0 = \{[x_1, x_{1,1}(0)]_1; \sigma \}, [x_2, x_{2,2}(0)]_1; [x_3, x_{3,3}(0)]_1; [x_4, x_{4,4}(0)]_1 = ([+2,0],[0,1],[0,0],[+1])$. Since neuron σ_1 contains the initial charge $+$ and the initial value of variable $x_{1,1}$ is equal to the threshold 2, the production function $+/f_{1,1} = x_{1,1} - 1\frac{1}{2}; +; (1)$ can be enabled. At time $t = 1$, without a postponement feature, i.e., $d = 0$, production function $+/f_{1,1} = x_{1,1} - 1\frac{1}{2}; +; (1)$ executes and neuron σ_1 immediately transmits a value of 1 and a positive charge to neurons σ_2 and σ_3 via synaptic channel (1). According to the variable consumption strategy, the value of variable $x_{1,1}$ will decrease by 1 after production function $+/f_{1,1} = x_{1,1} - 1\frac{1}{2}; +; (1)$ executes. Similarly, production function $+/f_{1,\text{out}} = x_{1,\text{out}}; 1; 0; (1)$ in output neuron σ_{out} also meets the execution condition at time $t = 1$, so that output neuron σ_{out} sends the first nonzero value of 1 to the environment and the value of variable $x_{1,\text{out}}$ becomes 0. However, neurons σ_2 and σ_3 cannot fire because their functions do not satisfy their execution conditions.

Due to the firing of neuron σ_1, neurons σ_2 and σ_3 both receive a positive charge and the values of variables $x_{1,2}$, $x_{2,2}$ and $x_{3,1}$ all increase by 1. Therefore, the configuration of system Π_{ex} at time $t = 1$ becomes $C_1 = \{([+1]_1; [+2,2], [+1,1], [+0])_1\}$. Accordingly, production function $+/f_{1,2} = x_{1,2} + x_{2,2} - 3\frac{1}{2}; +; (1)$ of neuron σ_2 satisfies the execution condition and neuron σ_2 sends a value of 1 and a neutral charge to neurons σ_{out} and σ_1 via synaptic channel (1) at time $t = 2$. From the charge calculation rules, the transmission of neutral charges does not have any effect on the polarization of the postsynaptic neurons. Therefore, the polarizations of neurons σ_{out} and σ_1 do not change but the values of variables $x_{1,1}$ and $x_{1,\text{out}}$ increase by 1.

The two production functions $+/f_{1,3} = -x_{1,3}; 1; 0; (1)$ and $+/f_{2,3} = -x_{1,3}; 1; 0; (1)$ of neuron σ_3 also satisfy their execution conditions at time $t = 2$, but only one of them will be selected non-deterministically for application. Assuming production function $+/f_{1,3} = -x_{1,3}; 1; 0; (1)$ is selected, neuron σ_3 sends a value of $-$1 and a neutral charge to neuron σ_{out} via synaptic channel (1). Since neurons σ_2 and σ_3 send values of 1 and $-$1, respectively, to neuron σ_{out} at the same time, the value of variable $x_{1,\text{out}}$ in neuron σ_{out} does not change. Therefore, neuron σ_{out} will not fire. The configuration of system Π_{ex} at time $t = 2$ becomes $C_2 = \{([+2,2], [+1,1], [+0], [+0])_1\}$. At time $t = 3$, only production function $+/f_{1,1} = x_{1,1} - 1\frac{1}{2}; +; (1)$ in neuron σ_1 meets the execution condition, so that neuron σ_1 sends a positive charge and a value of 1 to neurons σ_2 and σ_3. As a result of this transmission, only the values of the variables change. Thus, the configuration of system Π_{ex} at time $t = 3$ becomes $C_3 = \{([+1,1], [+2,2], [+1,1], [+0])_1\}$. Obviously, the configuration of system Π_{ex} at time $t = 3$ is the same as that at time $t = 1$. If the production function $+/f_{1,3} = -x_{1,3}; 1; 0; (1)$ in neuron σ_3 continues to execute, system Π_{ex} will loop between these two configurations indefinitely.
Suppose production function $+ f_{2,3} = -x_{1,3}[1]; 0; 1$; (2) in neuron σ_3 is chosen to execute at time $t = 2t' + 2$ for $t' \in N$. However, since production function $+ f_{2,3} = -x_{1,3}[1]; 0; 1$; (2) needs to postpone the execution for a time span of $d = 1$, it will execute at time $t = 2t' + 3$. Thus, the configuration of system Π_{ex} at time $t = 2t' + 2$ becomes $C_{2t'+2} = ([+2],[+1,1],[+1],[+1])$. At time $t = 2t' + 3$, neuron σ_{out} fires and sends the second nonzero value to the environment. At the same time, production functions in neurons σ_1 and σ_3 also satisfy their execution conditions. Therefore, neuron σ_3 sends a neutral charge and a value of -1 to neurons σ_2, σ_3 and σ_{out} via synaptic channel (2), and neuron σ_1 transmits a positive charge and a value of 1 to neurons σ_2 and σ_3 via synaptic channel (1). Thus, the configuration of system Π_{ex} at time $t = 2t' + 3$ becomes $C_{2t'+3} = ([+0],[+1,1],[+1],[+1],[+,-1])$.

At time $t = 2t' + 4$, neuron σ_3 faces two choices again, but neuron σ_{out} will not fire no matter which production function is applied. The final configuration of system Π_{ex} becomes $C_{2t'+4} = ([+0],[+1,1],[+0],[+,-2])$ if production function $+ f_{1,3} = -x_{1,3}[1]; 0$; (1) is selected, or becomes $C_{2t'+5} = ([+,-1],[+0,0],[+0],[+,-2])$ if production function $+ f_{2,3} = -x_{1,3}[1]; 0; 1$; (2) is selected.

Figure 2 shows the configuration dynamics of system Π_{ex}. Each configuration in turn involves variables in neurons σ_1, σ_2, σ_3 and σ_{out}. The number generated by system Π_{ex} is the time interval between the first two time moments when the output neuron σ_{out} sends non-zero values to the environment, i.e., $(2t' + 3) - 1 = 2t' + 2$, with $t' \in N$. In other words, system Π_{ex} can generate even numbers other than 0. Hence, system Π_{ex} can be used as a number generating device.

![Figure 2. Configuration dynamics of system Π_{ex}.](image-url)

3. Turing Universality of NSNVC P Systems as Number Generating/Accepting Devices

The focus of this section is on the computation power of NSNVC P systems as number generating/accepting devices. Specifically, the Turing universality of NSNVC P systems is proved as number generators and number acceptors by simulating register machines, i.e., NSNVC P systems can generate/accept all recursively enumerable sets of numbers. The family of all recursively enumerable sets of numbers is represented by NRE.

A register machine is usually represented as a five-tuple $M = (m, H, l_0, l_1, I)$, where:

1. m is the number of registers.
2. H represents a limited set of instruction labels.
3. $l_0, l_1 \in H$ correspond to the START and HALT instruction labels, respectively.
4. I is a set of labeled instructions. The instructions in I have the following three forms:
 (a) ADD instructions $l_i : (ADD(r), l_j, l_k)$, whose function is to add 1 to the value in register r, and move non-deterministically to one of the instructions with labels l_j and l_k;
When all the registers are empty, machine \(NRE \) starts the simulation of the HALT instruction \(h \) whose function is to terminate the operation of the register machine.

3.1. NSNVC P Systems as Number Generating Devices

The register machine \(M \) can generate a set of numbers \(N(M) \) in the generating mode. When all the registers are empty, machine \(M \) continuously executes a series of instructions starting from the initial instruction \(l_0 \). When \(M \) reaches the HALT instruction, the number stored in the first register is considered to be the number generated by \(M \). In addition, it is well known that register machines can characterize the \(NRE \) family.

Theorem 1. \(N_{ch}^2 \text{NSNVC P}(\text{poly}^1(1)) = NRE. \)

Proof. Based on the characterization of \(NRE \), the proof of the inclusion \(NRE \subseteq N_{ch}^2 \text{NSNVC P}(\text{poly}^1(1)) \) can be obtained by simulating nondeterministic register machines running in the generating mode, while the converse inclusion is achieved by the Turing-Church thesis [41]. \(\square \)

A NSNVC P system \(\Pi_1 \) is constructed to simulate the register machine \(M \). Generally, register 1 is used as an output register, and the number that it stores is never decremented during the computation. Specifically, system \(\Pi_1 \) contains three types of modules, i.e., an ADD module to simulate the ADD instruction, a SUB module to simulate the SUB instruction, and a FIN module to output the computation result.

Considering that each production function of any neuron in system \(\Pi_1 \) is only related to one variable, the first index of the variables is omitted and only the second index identifying the neuron housing the variable is retained. For example, the variable \(x_{1,j} \) in neuron \(\sigma_i \) is simplified to \(x_j \). Similarly, when a neuron contains only one production function, its first index will also be omitted. Although the value of a variable \(x_j \) changes dynamically, it is always an integer during the entire computation process of system \(\Pi_1 \), i.e., \(x_j(t) \in Z \) with \(t \in N \). In addition, all production functions in system \(\Pi_1 \) are polynomial functions.

In order to simulate \(M \) correctly, there is a correspondence between the elements, i.e., the neurons, of system \(\Pi_1 \) and the elements, i.e., the registers and the instructions, of \(M \). Each register \(r \) of \(M \) corresponds to a neuron \(\sigma_r \) in system \(\Pi_1 \). If register \(r \) stores a number \(n \geq 0 \), then the value of variable \(x_i \) in neuron \(\sigma_r \) is \(-3n \). Each labeled instruction is also associated with a neuron, e.g., an instruction with label \(l \) is related to a unique neuron \(\sigma_l \). Moreover, some auxiliary neurons are also introduced into system \(\Pi_1 \).

The values of all the variables are 0 in the initial configuration of system \(\Pi_1 \). System \(\Pi_1 \) starts the simulation of \(M \) when variable \(x_{b0} \) in neuron \(\sigma_{b0} \) is assigned a value of 4. Similarly, the ADD module and the SUB module will simulate the corresponding instructions \(l_{1}: (ADD(r),l_j,l_k) \) and \(l_{1}: (SUB(r),l_j,l_k) \), respectively, once the value of variable \(x_i \) in neuron \(\sigma_i \) is equal to 4 in the simulation process. System \(\Pi_1 \) starts to simulate the HALT instruction \(h_{kl} : HALT \) and the entire simulation terminates when variable \(x_{b0} \) in neuron \(\sigma_{b0} \) receives a value of 4 at any time moment. Then the FIN module is activated to output the computation results.

To better clarify the whole process of using system \(\Pi_1 \) to simulate \(M \), the ADD, SUB, and FIN modules are shown step by step to simulate the relevant instructions of \(M \).

3.1.1. Module ADD—Simulating an ADD Instruction

Figure 3 displays the architecture of the ADD module and the state of the neurons it contains. When neuron \(\sigma_{l_i} \) receives a value of 4 at a certain time moment \(t = t' \), system \(\Pi_1 \) then starts simulating the ADD instruction \(l_{1}: (ADD(r),l_j,l_k) \). At this moment, the
values of all the variables except \(x_t \) in neuron \(\sigma_t \) are all 0. The configuration of system \(\Pi_1 \) at time \(t = t' \) is \(\mathcal{C}_t = ([0, 4], [0, -3n], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0]) \), which involves neurons \(\sigma_{i1}, \sigma_{r1}, \sigma_{i2}, \sigma_{r2}, \sigma_{i3}, \text{ and } \sigma_{i4} \).

At time \(t = t' + 1 \), both production functions \(0/f_{3_{i1}} = \frac{1}{4}x_t; (+1) \) and \(0/f_{2_{i1}} = 1 - x_t; 0; 1; (2) \) can execute. Because production function \(0/f_{2_{i1}} = 1 - x_t; 0; 1; (2) \) has a postponement feature, production function \(0/f_{3_{i1}} = \frac{1}{4}x_t; (+1) \) will execute first. Thus, neuron \(\sigma_{i1} \) fires to transmit a positive charge and a value of 1 to neuron \(\sigma_{r1} \) via synaptic channel \((1) \). After production function \(0/f_{3_{i1}} = \frac{1}{4}x_t; (+1) \) executes, the value of variable \(x_t \) will decrease by 1 according to the variable consumption strategy. Thus, the configuration of system \(\Pi_1 \) at time \(t = t' + 1 \) becomes \(\mathcal{C}_{t' + 1} = ([0, 3], [0, -3n], [+1], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0]) \).

After a one-step delay, i.e., at time \(t = t' + 2 \), production function \(0/f_{2_{i1}} = 1 - x_t; 0; 1; (2) \) executes and neuron \(\sigma_{i1} \) transmits a neutral charge and a value of \(-3\) to neuron \(\sigma_{i2} \) via synaptic channel \((2) \), indicating that system \(\Pi_1 \) has completed the operation of adding 1 to the value stored in register \(r \). According to the charge calculation rules, the neutral charge has no effect on the polarization of a neuron, so that the descriptions of the neutral charges will be omitted below. Meanwhile, neuron \(\sigma_{i2} \) fires by executing one of the production functions \(+/f_{1_{i1}} = x_t; (+1) \) and \(+/f_{2_{i1}} = x_t; 0; 0; (2) \) non-deterministically.

1. If production function \(+/f_{1_{i1}} = x_t; (+1) \) is selected for execution at time \(t = t' + 2 \), then neuron \(\sigma_{i2} \) sends a positive charge and a value of 1 to neuron \(\sigma_{s2} \). As a result, the polarization of neuron \(\sigma_{s2} \) becomes positive and variable \(x_t \) gets a value of 1. Therefore, the configuration of system \(\Pi_1 \) at time \(t = t' + 2 \) becomes \(\mathcal{C}_{t' + 2} = ([0, 0], [0, 3 - 3n], [+1], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0]). \) At time \(t = t' + 3 \), production function \(+/f_{2_{i1}} = 4x_t; 0; (1) \) satisfies the execution condition, so that neuron \(\sigma_{i2} \) transmits a value of 4 to neuron \(\sigma_{i4} \), causing system \(\Pi_1 \) to start simulating the instruction with label \(l_1 \) in \(M \).

2. If production function \(+/f_{2_{i1}} = x_t; 0; 0; (2) \) is selected for execution at time \(t = t' + 2 \), neuron \(\sigma_{i1} \) sends a value of 1 to neuron \(\sigma_{i4} \). Therefore, the configuration of system \(\Pi_1 \) at time \(t = t' + 2 \) becomes \(\mathcal{C}_{t' + 2} = ([0, 0], [0, 3 - 3n], [+1], [0, 0], [0, 0], [0, 0], [0, 0]). \)
At time \(t = t' + 3 \), neuron \(\sigma_{l_3} \) transmits a value of 4 to neuron \(\sigma_{l_4} \), causing system \(\Pi_1 \) to start simulating the instruction with label \(l_k \) in \(M \).

As described above, the ADD module shown in Figure 3 can correctly simulate the ADD instruction \(l_1 : (ADD(r), l_j, l_k) \) of \(M \). Specifically, system \(\Pi_1 \) is activated when variable \(x_{l_1} \) receives the value of 4, and then 1 is added to the value stored in register \(r \). Subsequently, an instruction, \(l_j \) or \(l_k \), is selected non-deterministically for simulation.

3.1.2. Module SUB—Simulating an SUB Instruction \(l_1 : (SUB(r), l_j, l_k) \)

Figure 4 displays the architecture of the SUB module and the state of the neurons it contains. Suppose system \(\Pi_1 \) starts to simulate the SUB instruction \(l_1 : (SUB(r), l_j, l_k) \) at a certain time moment \(t = t' \) after variable \(x_{l_1} \) of neuron \(\sigma_{l_1} \) has received a value of 4. Thus, production functions \(0/f_{1,l_1} = x_{l_1} - 1_{l_1}^{3}; 0; 1 \) and \(0/f_{1,l_1} = x_{l_1} - 1_{l_1}^{3}; 0; 1; 2 \) satisfy the application condition. Production function \(0/f_{1,l_1} = x_{l_1} - 1_{l_1}^{3}; 0; 1 \) executes first and neuron \(\sigma_{l_1} \) sends a value of 3 to neuron \(\sigma_{r} \), indicating that system \(\Pi_1 \) has completed the operation of subtracting 1 from the value stored in register \(r \). The following two situations will occur for neuron \(\sigma_{r} \).

1. One situation is that the value of variable \(x_r \), i.e., the number stored in register \(r \), is 0 at time \(t = t' \). Production function \(0/f_{r} = x_{r} - 2_{r}^{3}; 0; 1 \) satisfies the threshold condition after variable \(x_r \) receives a value of 3. At time \(t = t' + 1 \), with the execution of this production function, neuron \(\sigma_r \) transmits a positive charge and a value of 1 to neurons \(\sigma_{l_1} \) and \(\sigma_{l_2} \), respectively. Since production function \(0/f_{2,l_1} = x_{l_1} - 1_{l_1}^{3}; 0; 1 \) has a postponement feature, neuron \(\sigma_{l_1} \) sends a value of 3 to neuron \(\sigma_{l_2} \) at time \(t = t' + 1 \). After production functions \(0/f_{r} = x_{r} - 2_{r}^{3}; 0; 1 \) and \(0/f_{l_2,l_1} = x_{l_1} - 1_{l_1}^{3}; 0; 1 \) execute, the polarization of neuron \(\sigma_{l_2} \) becomes positive, and the value of variable \(x_{l_1} \) becomes 4. Therefore, production function \(+/f_{2,l_1} = x_{l_1} + 3_{l_1}^{3}; 0; 1 \) executes at time \(t = t' + 2 \). Then, neuron \(\sigma_{l_1} \) transmits a value of 7 to neuron \(\sigma_{l_2} \) via synaptic channel (2). Consequently, the polarization of neuron \(\sigma_{l_2} \) becomes positive and the value of variable \(x_{l_2} \) accumulates to 8, causing neuron \(\sigma_{l_2} \) to transmit a value of 4 to neuron \(\sigma_{l_3} \). Since neuron \(\sigma_{l_3} \) receives a value of 4, system \(\Pi_1 \) starts to simulate instruction \(l_k \).
2. The other situation is that the value of variable x_r is $-3n$ with $n \in N^+$ at time $t = t'$, i.e., the value stored in register r is greater than 0. After getting a value of 3 from neuron σ_r, the value of variable x_r becomes $3 - 3n$, which does not satisfy the threshold condition of production function $0/f_r = x_r - 2\frac{3}{3} + ; (1)$. Thus, neuron σ_r will not fire at time $t = t' + 1$. However, due to the execution of production function $0/f_{1j} = x_{j1} - 1\frac{3}{3} + ; (2)$, variable x_{j1} receives a value of 3 from neuron σ_{j1} at time $t = t' + 1$, causing production function $0/f_{1j} = x_{j1} + 1\frac{3}{3} + ; (1)$ to execute at time $t = t' + 2$. Ultimately neuron σ_{j1} receives a value of 4 from neuron σ_{r1}, leading system Π_1 to start simulating instruction l_j.

Consequently, the SUB module can simulate the SUB instruction $l_i : (\text{SUB}(r), l_j, l_h)$ correctly. Specifically, system Π_1 is activated when variable x_{j1} receives the value of 4, then 1 is subtracted from the value stored in register r, and finally an instruction, l_j or l_k, is selected non-deterministically for simulation according to the value contained in register r.

3.1.3. Module FIN—Simulating a HALT Instruction $l_h : \text{HALT}$

Figure 5 shows the architecture of the FIN module. At time $t = t'$, the FIN module is activated after variable x_{j1} receives a value of 4. This step also indicates that system Π_1 has reached the HALT instruction $l_h : \text{HALT}$, i.e., the simulation of register machine M has completed.

![Figure 5. The FIN module in system Π_1.](image)

Assuming the value of variable x_1 in neuron σ_1 is $-3n$ with $n \in N^+$ at time $t = t'$, meaning that a number n is stored in register 1. At time $t = t' + 1$, due to the execution of production function $0/f_{b1} = x_{b1} - 1\frac{3}{3} + ; (1)$, both variables x_{out} and x_{h1} get a value of 3. At the next time moment $t = t' + 2$, both production functions $0/f_{1, out} = x_{out} + 3\frac{3}{3} + ; (1)$ and $0/f_{1, h1} = x_{h1} + 0\frac{3}{3} + ; (1)$ can apply. With the execution of production function $0/f_{1, h1} = x_{h1} + 0\frac{3}{3} + ; (1)$, variable x_1 gets a value of 3, indicating that 1 is subtracted from the number stored in register 1. Because production function $0/f_{1, out} = x_{out} + 3\frac{3}{3} + ; (1)$ needs to postpone by three steps to execute, neuron σ_{out} emits the first nonzero value of 3 to the environment at time $t = t' + 4$. Since the consumption rate of variable x_{h1} is 0, i.e., the value of variable x_{h1} is still 3 at time $t = t' + 3$, production function $0/f_{1, h1} = x_{h1} + 0\frac{3}{3} + ; (1)$ in neuron σ_{h1} can continue to execute until time $t = t' + n + 2$.

From time $t = t' + 2$ to time $t = t' + n + 2$, variable x_1 gets a total value of $3n + 3$. Therefore, the value of variable x_1 at time $t = t' + n + 2$ is 3, which is equal to the threshold of production function $0/f_1 = 1 - x_1 + 3\frac{3}{3} + ; (1)$. With the execution of production
function $0/f_1 = 1 - x_1^{\frac{3}{4}}; +; (1)$, a value of -2 and a positive charge are transmitted to neuron σ_{in}. Thus, production function $+/f_{2, in} = x_{in} + 3[x_1^{\frac{3}{4}}; +; (1)$ is activated at time $t = t' + n + 3$. Since the polarization of neuron σ_{out} becomes positive and variable x_{out} gets a value of 4, production function $0/f_{2, out} = x_{out} - 1|x_1^{\frac{3}{4}}; 0; (2)$ executes and neuron σ_{out} emits the second nonzero value of 3 into the environment via synaptic channel (2) at time $t = t' + n + 4$. Production function $0/f_1 = 1 - x_1^{\frac{3}{4}}; +; (1)$ in neuron σ_{1} can also execute at time $t = t' + n + 3$, leading the value of variable $x_{h_{1}}$ to become -2. At this point, the system runs to the final configuration because the values of the variables in the neurons no longer satisfy the conditions for the production functions to execute.

From the above discussions, the time interval between the two firings of the output neuron is $(t + n + 4) - (t + 4) = n$, which is exactly the same as the number stored in register 1. As specified in the definition, the computation result of system Π_1 is equal to n.

Through the discussions of the operating mechanism of the ADD, SUB, and FIN modules, system Π_1 is verified to simulate register machine M correctly in its generating mode, i.e., $N_2(\Pi_1) = N(M)$. In addition, system Π_1 uses only two types of, i.e., neutral and positive, polarizations, and all production functions are linear with at most one variable. Accordingly, $N_{\text{acc}}^\text{ch2}NSNVC P(poly(I(1))) = NRE$ holds.

3.2. NSNVC P Systems as Number Accepting Devices

When used as a number accepting device, a NSNVC P system Π can accept a number n. In this situation, the function of the input neuron σ_{in} is to accept values from the external environment. Initially, the number n to be computed is accepted by system Π in the form $40^{n-1}4$, where 4 and 0 are the values introduced into the system. Specifically, assuming that input variable x_{in} receives a value of 4 at time $t = t_1$ and $t = t_2$ respectively, the time interval between $t = t_1$ and $t = t_2$, i.e., $n = t_2 - t_1$ is defined as the number accepted by system Π. Afterwards, the number n is processed by a series of instructions. When it runs to the final configuration, system Π is considered to have accepted the number n.

Theorem 2. $N_{\text{acc}}^\text{ch2}NSNVC P(poly(I(1))) = NRE$.

Proof. The proof of the inclusion $NRE \subseteq N_{\text{acc}}^\text{ch2}NSNVC P(poly(I(1)))$ is verified by simulating deterministic register machines working in the accepting mode, while the converse inclusion is directly confirmed by the Turing-Church thesis [41]. □

The form of a deterministic register machine is $M' = (\overline{\text{m}}, H, l_0, b_1, I)$. Each element of M' has the same meaning as that of the corresponding element of the non-deterministic register machine M working in the generating mode. The only difference between M' and M is in the form of the ADD instructions. The ADD instructions in M' are defined as a deterministic form $l_1 : (\text{ADD}(r), l_1)$. In addition, the set consisting of all the numbers accepted by M' is represented by $N_{\text{acc}}(M)$.

A NSNVC P system Π_2 is designed to simulate machine M' with a similar structure to that of system Π_1 in the generating mode. Especially, system Π_2 consists of a deterministic ADD module, a SUB module, and an INPUT module. The INPUT module is used to introduce numbers to be processed into system Π_2. The functions of the other two modules remain the same as those in system Π_1.

The architecture of the INPUT module is shown in Figure 6. In the initial configuration, the values of all the variables in system Π_2 are 0. The input variable x_{in} is assumed to have a value of 4 at time $t = t'$, so that production function $0/f_{1, in} = x_{in}[^0|_4; +; (1)$ satisfies the execution condition. Consequently, neuron σ_{in} sends a positive charge and a value of 4 to neuron σ_{out} via synaptic channel (1). Because the consumption rate of variable x_{in} is 0, the value of variable x_{in} is still 4 at time $t = t' + 1$. Therefore, production function $0/f_{1, in} = x_{in}[^0|_4; +; (1)$ will continue to execute at each subsequent time moment until variable x_{in} again has a value of 4.
At time $t = t' + 1$, neuron σ_{in} executes production function $+ / f_{in1} = 1 - x_{in1}; 0$; (1) and transmits a value of -3 to neuron σ_1, simulating the addition of 1 to the number stored in register 1. Simultaneously, variable x_{in1} receives a value of 4 from neuron σ_{in}. Accordingly, neuron σ_{in} will send a value of -3 to neuron σ_1 at time $t = t' + 2$ again. In fact, neuron σ_1 receives a value of -3 at every step from time $t = t' + 2$ to time $t = t' + n + 1$. Thus, variable x_1 gets a total value of $-3n$, i.e., register 1 stores the number n.

At time $t = t' + n$, the value of variable x_{in} becomes 8 because it receives another value of 4 from the external environment. In this way, production function $+ / f_{2,in} = 1 - x_{in} [a]; 0$; (2) of neuron σ_{in} can execute. Consequently, neuron σ_{in} sends a value of 4 to neuron σ_0 via synaptic channel (2), indicating that system Π_2 is about to simulate instruction l_0 of machine M'.

The configuration dynamics of the INPUT module is shown in Figure 7. The configuration at each time moment involves variables $x_{int}, x_{int'}, x_1$ and x_{l_0} in that order.

The deterministic ADD module, illustrated in Figure 8, is used to simulate a deterministic ADD instruction $l_1: (ADD(r), l_1)$. The simulation starts when neuron σ_1 receives a value of 4. Suppose that neuron σ_1 receives a value of 4 at time $t = t'$, then production function $+ / f_{1,l_1} = x_{l_1} [a]; 0$; (1) executes and neuron σ_1 sends a value of 4 to neuron σ_0 via synaptic channel (1). Since the consumption rate of variable x_{l_1} is 1, production function $+ / f_{2,l_1} = x_{l_1} [a]; 0$; (2) meets the application conditions. Consequently, register r receives a value of 3 at time $t = t' + 2$. So far, system Π_2 has completed the simulation of instruction l_1 and finished the operation of adding 1 to the number stored in register r.

Moreover, the SUB module in system Π_2 is exactly the same as that in system Π_1. System Π_2 does not have a FIN module, but has neuron σ_{l_0}. System Π_2 has completed the simulation of M' if variable x_{l_0} in neuron σ_{l_0} gets a value of 4 at any point of time. At this time point, system Π_2 has reached the HALT instruction and has accepted the number n.

The above discussions show that system Π_2 working in the accepting mode can successfully simulate M', i.e., $N_{acc}(\Pi_2) = N_{acc}(M')$. In addition, the structures of the three modules show that all the production functions are linear each with at most one variable and the neurons have only two types of, i.e., neutral and positive, polarizations in system Π_2. Consequently, $N_{acc}^{NSNVC} P(poly^1(1)) = NRE$ holds.
The simulation starts when the environment enters the system. Since the consumption rate of variable \(0,4,0,3,2,0,0\) at time \(t = t' + 1\) is 1, the first value of 4 from the environment enters the system at time \(t = t' + 1\) (the first value of 4 from the environment enters the system). At time \(t = t' + 2\), the second value of 4 from the environment enters the system at time \(t = t' + n\) (the second value of 4 from the environment enters the system). At time \(t = t' + n - 1\), the first value of 4 is reached. Assume \(\varphi_0, \varphi_1, \ldots\) is a fixed admissible enumeration of a unary partially recursive function. If a recursive function \(f\) satisfies \(\varphi_x(y) = M_u(f(x), y)\) for natural numbers \(x\) and \(y\), then the register machine is considered universal.

Korec [45] introduced a small universal register machine \(M_u = (8, H, l_0, l_h, I)\) for function computing, as illustrated in Figure 9. The register machine \(M_u\) consists of 23 instructions and 8 registers numbered from 0 to 7. Initially, two arguments \(f(x)\) and \(y\) are introduced into registers 1 and 2, respectively, which enable machine \(M_u\) to compute any \(\varphi_x(y)\). Moreover, when the computation of \(M_u\) halts, the number stored in register 0

\[0,4,0,3,2,0,0\] at time \(t = t' + 1\) (the first value of 4 from the environment enters the system)

\[0,8,0,3(2-n),0,0\] at time \(t = t' + n - 1\)

\[0,0,0,0,0,0,0,4\] at time \(t = t' + n + 1\)

Figure 7. Configuration dynamics of the INPUT module.

Figure 8. The deterministic ADD module in system \(\Pi_2\).

4. Turing Universality of NSNVC P Systems for Computing Functions

The lower limit on the number of neurons needed in a NSNVC P system as a universal function computing device is discussed in this section. In order to compute function \(f : N^k \rightarrow N\), a register machine \(M_c = (\overline{m}, H, l_0, l_h, I)\) works as follows. First, generally registers 1 to \(k\) of machine \(M_c\) store the values of the \(k\) arguments, and all other registers are empty. Then, machine \(M_c\) starts a computation by executing the instruction labeled \(l_0\), and executes a series of instructions to continue the computation. Finally, the value of function \(f\) computed by \(M_c\) is stored in another specific register \(r_1\) when the HALT instruction \(l_h\) is reached. Assume \(\varphi_0, \varphi_1, \ldots\) is a fixed admissible enumeration of a unary partially recursive function. If a recursive function \(f\) satisfies \(\varphi_x(y) = M_u(f(x), y)\) for natural numbers \(x\) and \(y\), then the register machine is considered universal.

Korec [45] introduced a small universal register machine \(M_u = (8, H, l_0, l_h, I)\) for function computing, as illustrated in Figure 9. The register machine \(M_u\) consists of 23 instructions and 8 registers numbered from 0 to 7. Initially, two arguments \(f(x)\) and \(y\) are introduced into registers 1 and 2, respectively, which enable machine \(M_u\) to compute any \(\varphi_x(y)\). Moreover, when the computation of \(M_u\) halts, the number stored in register 0
is the computation result of function $\varphi_x(y)$. A NSNVC P system is designed to simulate machine M_u. For this purpose, M_u is modified as follows. A new register 8 is added, and the original HALT instruction is replaced by three instructions $l_{22} : (SUB(0), l_{23}, l_4)$, $l_{23} : (ADD(8), l_{22})$ and $l_4 : HALT$. In this way, the calculation result is stored in register 8. The modified register machine is represented by M'_u, which consists of 9 registers, labeled from 0 to 8, and 25 instructions, including 14 SUB instructions, 10 ADD instructions and 1 HALT instruction.

l_0	l_1	l_2	l_3	l_4	l_5	l_6	l_7	l_8	l_9				
$(SUB(1), l_1, l_0)$	$(ADD(7), l_1)$	$(ADD(6), l_3)$	$(SUB(5), l_4, l_3)$	$(ADD(6), l_4)$	$(ADD(5), l_5)$	$(SUB(7), l_6, l_4)$	$(ADD(4), l_6)$	$(SUB(6), l_7, l_5)$	$(ADD(3), l_7, l_6)$	$(ADD(2), l_8)$	$(SUB(4), l_9, l_8)$	$(ADD(0), l_9)$	$HALT$

Figure 9. The universal register machine M_u.

Theorem 3. There is a Turing universal NSNVC P System with 66 neurons to be used as a function computing device.

Proof. A NSNVC P system Π_3 is designed to simulate the computation functions of register machine M'_u. System Π_3 is composed of an INPUT module, an OUTPUT module, 10 ADD modules, and 14 SUB modules. The ADD modules adopt a deterministic form. Assume that the values of all the variables in system Π_3 are 0 initially. A correspondence exists between the elements, i.e., the registers and instructions, of M'_u and the elements, i.e., the neurons, of system Π_3. □

The INPUT module of system Π_3 is shown in Figure 10. The function of this module is to introduce two natural numbers $3f(x)$ and $3y$ into neurons σ_1 and σ_2, respectively, through the sequence in the form $40^{f(x)-1}40^{y-1}4$, where 4 and 0 are the values introduced into the system. The configuration dynamics of the INPUT module is shown in Figure 11. Each configuration involves neurons $\sigma_{in1}, \sigma_{in2}, \sigma_1, \sigma_2$ and σ_0 in that order.

The input neuron σ_{in} is used to read the sequence $40^{f(x)-1}40^{y-1}4$. Assuming that input variable x_{in} gets a value of 4 at time $t = t_1$, then production function $f_1, in = x_{in}^{[0]} + ; (1)$ executes and neuron σ_{in} transmits a positive charge and a value of 4 to neuron σ_{in1}. At time $t = t_1 + 1$, production function $f_{in1} = 1 - x_{in1}^{[4]}; 0 ; (1)$ in neuron σ_{in1} satisfies the execution condition and neuron σ_{in1} sends a value of -3 to neuron σ_1. As a result, the value stored in neuron σ_1 increases by 1. In addition, since the value of variable x_{in} will not be consumed after production function $f_1, in = x_{in}^{[0]} + ; (1)$ executes, neuron σ_{in} sends the value of 4 to neuron σ_{in2} at each time moment after time $t = t_1$. This process continues until neuron σ_{in} receives a value of 4 again. Therefore, from time $t = t_1 + 2$ to time $t = t_1 + f(x) + 1$, neuron σ_1 receives a total value of $-3f(x)$ from neuron σ_{in1}, i.e., the number stored in register 1 is $f(x)$.

...
Figure 10. The INPUT module in system Π_3.

\[
\begin{align*}
\text{in}_{1} & \quad \left[+x_{\text{in}}(0)\right] \quad +f_{\text{in}} = 1-x_{\text{in}}; (1) \\
\text{in}_{2} & \quad \left[+x_{\text{in}}(0)\right] \quad +f_{\text{in}} = 1-x_{\text{in}}; (0)(1) \\
& \quad 1 \\
& \quad 2 \\
\text{out} & \quad \\
\end{align*}
\]

Figure 11. Configuration dynamics of the INPUT module in system Π_3.

Suppose the input neuron σ_{in} receives a value of 4 again and the value of variable x_{in} accumulates to 8 at time $t = t_2$ (in fact, $t_2 = t_1 + f(x)$). Production function $0/f_{\text{in}} = \frac{1}{2}x_{\text{in}} + \frac{1}{2}; (2)$ executes and neuron σ_{in} sends a value of 4 to neuron σ_{in} via synaptic channel (2). At time $t = t_2 + 1$, with the execution of production func-
tion \(+ f_{in2} = 1 - x_{in2} \) sends a value of \(-3\) to neuron \(c_2 \) for the first time. Similarly, because the accumulated value received by neuron \(c_2 \) from neuron \(c_{in2} \) is \(3y \) from time \(t = t_2 + 2 \) to time \(t = t_2 + y + 1 \), the number stored in register 2 is \(y \).

The value of variable \(x_{in} \) becomes 12 after neuron \(c_{in} \) receives the value of 4 for the third time at time \(t = t_3 \), (in fact, \(t_3 = t_2 + y \)). When production function \(0/f_{3, in} = 3x_{in}/2, 0; 3 \) executes, variable \(x_0 \) gets a value of 4, causing system \(\Pi_3 \) to start the simulation of the initial instruction \(l_0 \).

Thereafter, no production function can be applied and system \(\Pi_3 \) starts to use the ADD and SUB modules to simulate machine \(M' \). All the ADD instructions in machine \(M' \) are of the form \(l_i : (ADD(r), l_j) \) as shown in Figure 9. Therefore, the deterministic ADD module in the number accepting device system \(\Pi_2 \), as shown in Figure 8, can be used to simulate these instructions. Moreover, the SUB module shown in Figure 4 is used to simulate the SUB instructions \(l_i : (SUB(r), l_j, l_k) \). Hence, the discussions of the ADD and SUB modules are not repeated. The OUTPUT module is constructed by modifying the FIN module shown in Figure 4. Specifically, neuron \(c_1 \) in the FIN module shown in Figure 4 is replaced by neuron \(c_5 \) in the OUTPUT module. The process of NSNVC P system \(\Pi_3 \) simulating register machine \(M' \) is illustrated in Figure 12.

![Figure 12. An illustration of using NSNVC P system \(\Pi_3 \) to simulate \(M' \)](image)

Through the above discussion, NSNVC P system \(\Pi_3 \) can correctly simulate register machine \(M' \). The system contains 66 neurons in total, and has the following details for the neurons:

- 25 neurons associated with 25 instruction labels;
- 9 neurons associated with 9 registers;
- 2 × 14 auxiliary neurons for 14 SUB modules;
- 3 neurons in the INPUT module;
- 2 neurons in the OUTPUT module.

In fact, some optimization techniques such as combining some consecutive ADD and/or SUB instructions can further decrease the number of neurons. Neuron \(c_{21} \) in system \(\Pi_3 \) can be omitted by combining consecutive instructions \(l_{17} : (ADD(2), l_{21}) \) and \(l_{21} : (ADD(3), l_{18}) \). The combined instructions can be simulated with the ADD-ADD module shown in Figure 13. Because the value required to start the simulation of an instruction is inconsistent with the value required for a register to add or subtract 1, the combined ADD and/or SUB instructions will not be further discussed in this work. Therefore, a universal NSNVC P system requiring only 66 neurons is obtained as a function computing device.
A new variant of NSN P systems, called NSNVC P systems, is proposed by improving the NSN P systems. The improvements are the proposed variable consumption strategy, the use of polarization and threshold, the postponement features of the production functions, and the use of multiple synaptic channels. By simulating register machines, the computational completeness of NSNVC P systems as number generating/accepting devices is proved. Furthermore, a universal NSNVC P system with 66 neurons is constructed to compute Turing computable functions.

The new variable consumption strategy makes NSNVC P systems more flexible and practical. Different from NSN P systems, each production function in NSNVC P systems is assigned a threshold and a polarization. A production function must simultaneously satisfy the threshold and polarization conditions to execute. It is precisely because of these two conditions, NSNVC P systems achieved Turing universality by using only positive and
neutral polarizations. These two conditions do not inhibit the operation, but complement each other and enhance the controlling ability of NSNVC P systems.

The introduction of multiple synaptic channels has contributed to the flexibility of operations of NSNVC P systems. This is particularly evident in the INPUT module shown in Figure 9. The postponement feature assigned to production functions also plays an important role in NSNVC P systems. For example, if production function \(0 / f_{\text{fin}} = x_{\text{out}} \) \([3] \); 0; 3 (1) of neuron \(\sigma_{\text{fin}} \) in the FIN module does not have the postponement feature, neuron \(\sigma_{\text{fin}} \) will need more production functions, or the FIN module will need more neurons, to achieve the same result.

The universality of NSNVC P systems is studied in this work, and further works are needed to use NSNVC P systems to solve some specific real-world problems. By introducing polarizations, multiple synaptic channels, the variable consumption strategy and the postponement feature, the dimension of the coded information in NSNVC P systems increases. Therefore, NSNVC P systems are more suitable for solving practical problems, such as image processing, fault diagnosis, and robots, which requires more ways for information representation.

Author Contributions: Conceptualization, X.Y. and M.S.; methodology, X.Y.; formal analysis, X.Y.; writing—original draft preparation, X.Y.; writing—review and editing, X.Y. and M.S.; visualization, X.Y.; supervision, M.S., X.L., and Q.R.; funding acquisition, X.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research project was funded by the National Natural Science Foundation of China (61876101, 61802234, 61806114), Social Science Fund Project of Shandong Province, China (16BGLJ06, 11CGLJ22), Natural Science Fund Project of Shandong Province, China (ZR2019QF007), Postdoctoral Project, China (2017M612339, 2018M642695), Humanities and Social Sciences Youth Fund of the Ministry of Education, China (19YJCZH244), and Postdoctoral Special Funding Project, China (2019T120607).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Păun, G. Computing with membranes. J. Comput. Syst. Sci. 2000, 61, 108–143. [CrossRef] [PubMed]
2. Song, T.; Gong, F.; Liu, X. Spiking neural P systems with white hole neurons. IEEE Trans. NanoBiosci. 2016, 15, 666–673. [CrossRef] [PubMed]
3. Ionescu, M.; Păun, G.; Yokomori, T. Spiking neural P systems. Fund. Inform. 2006, 71, 279–308.
4. Păun, G. Spiking neural P systems with astrocyte-like control. J. UCS 2007, 13, 1707–1721.
5. Pan, L.; Wang, J.; Hoogeboom, H. Spiking neural P systems with astrocytes. Neural Comput. 2012, 24, 805–825. [CrossRef] [PubMed]
6. Pan, L.; Păun, G. Spiking neural P systems with anti-spikes. Int. J. Comput. Commun. Control 2009, 4, 273–282. [CrossRef]
7. Wu, T.; Păun, A.; Zhang, Z.; Pan, L. Spiking neural P systems with polarizations. IEEE Trans. Neural Netw. Learn. Syst. 2018, 29, 3349–3360.
8. Song, T.; Pan, L.; Păun, G. Spiking neural P systems with rules on synapses. Theoret. Comput. Sci. 2014, 529, 82–95. [CrossRef]
9. Peng, H.; Yang, J.; Wang, J.; Wang, T.; Sun, Z.; Song, X.; Luo, X.; Huang, X. Spiking neural P systems with multiple channels. Neural Netw. 2017, 95, 66–71. [CrossRef]
10. Song, X.; Wang, J.; Peng, H.; Ning, G.; Sun, Z.; Wang, T.; Yang, F. Spiking neural P systems with multiple channels and anti-spikes. Biosystems 2018, 169, 13–19. [CrossRef]
11. Wang, J.; Hoogeboom, H.; Pan, L.; Păun, G.; Pérez-Jiménez, M. Spiking neural P systems with weights. Neural Comput. 2010, 22, 2615–2646. [CrossRef] [PubMed]
12. Zeng, X.; Zhang, X.; Song, T.; Pan, L. Spiking neural P systems with thresholds. Neural Comput. 2014, 26, 1340–1361. [CrossRef]
13. Peng, H.; Wang, J.; Pérez-Jiménez, M.J.; Riscos-Núñez, A. Dynamic threshold neural P systems. Knowl. Based Syst. 2019, 163, 875–884. [CrossRef]
14. Peng, H.; Wang, J. Coupled Neural P Systems. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 1672–1682. [CrossRef]
15. Cavaliere, M.; Ibarra, O.H.; Păun, G.; Egecioglu, O.; Ionescu, M.; Woodworth, S. Asynchronous spiking neural P systems. Theor. Comput. Sci. 2009, 410, 2352–2364. [CrossRef]
16. Song, T.; Pan, L.; Păun, G. Asynchronous spiking neural P systems with local synchronization. Inf. Sci. 2013, 219, 197–207. [CrossRef]
17. Song, X.; Peng, H.; Wang, J.; Ning, G.; Sun, Z. Small universal asynchronous spiking neural P systems with multiple channels. Neurocomputing 2020, 378, 1–8. [CrossRef]
18. Cabarle, F.G.C.; Adorna, H.N.; Jiang, M.; Zeng, X. Spiking neural P systems with scheduled synapses. IEEE Trans. Nanobiosci. 2017, 16, 792–801. [CrossRef][PubMed]
19. Pan, L.; Paun, G.; Zhang, G.; Neri, F. Spiking neural P systems with communication on request. Int. J. Neural Syst. 2017, 27, 1750042. [CrossRef]
20. Yin, X.; Liu, X. Dynamic Threshold Neural P Systems with Multiple Channels and Inhibitory Rules. Processes 2020, 8, 1281. [CrossRef]
21. Kong, Y.; Zheng, Z.; Liu, Y. On string languages generated by spiking neural P systems with astrocytes. Fundam. Inform. 2015, 136, 231–240. [CrossRef]
22. Zhang, X.; Zeng, X.; Pan, L. On string languages generated by spiking neural P systems with exhaustive use of rules. Nat. Comput. 2008, 7, 535–549. [CrossRef]
23. Cabarle, F.; Adorna, H.; Pérez-Jiménez, M.; Song, T. Spiking neuron P systems with structural plasticity. Neural Comput. Appl. 2015, 26, 1905–1917. [CrossRef]
24. Peng, H.; Chen, R.; Wang, J.; Song, X.; Wang, T.; Yang, F.; Sun, Z. Competitive spiking neural P systems with rules on synapses. IEEE Trans. NanoBiosci. 2017, 16, 888–895. [CrossRef]
25. Ren, Q.; Liu, X.; Sun, M. Turing Universality of Weighted Spiking Neural P Systems with Anti-spikes. Comput. Intell. Neurosci. 2020, 2020, 1–10. [CrossRef]
26. Paun, G.; Paun, R. Membrane computing and economics: Numerical P systems. Fundam. Inform. 2006, 73, 213–227.
27. Zhang, Z.; Su, Y.; Pan, L. The computational power of enzymatic numerical P systems working in the sequential mode. Theor. Comput. Sci. 2018, 724, 3–12. [CrossRef]
28. Pan, L.; Zhang, Z.; Wu, T.; Xu, J. Numerical P systems with production thresholds. Theor. Comput. Sci. 2017, 673, 30–41. [CrossRef]
29. Liu, L.; Yi, W.; Yang, Q.; Peng, H.; Wang, J. Numerical P systems with Boolean condition. Theor. Comput. Sci. 2019, 785, 140–149. [CrossRef]
30. Diaz-Pernil, D.; Peña-Cantillana, F.; Gutiérrez-Naranjo, M.A. A parallel algorithm for skeletonizing images by using spiking neural P systems. Neurocomputing 2013, 115, 81–91. [CrossRef]
31. Xiang, M.; Dan, S.; Ashfaq, K. Image Segmentation and Classification Based on a 2D Distributed Hidden Markov Model. Proc. Int. Soc. Opt. Eng. 2008, 6822, 51.
32. Zhang, G.; Gheorghe, M.; Li, Y. A membrane algorithm with quantum-inspired subalgorithms and its application to image processing. Natural Comput. 2012, 11, 701–717. [CrossRef]
33. Buiu, C.; Vasile, C.; Arsene, O. Development of membrane controllers for mobile robots. Inf. Sci. 2012, 187, 33–51. [CrossRef]
34. Wang, X.; Zhang, G. Design and implementation of membrane controllers for trajectory tracking of nonholonomic wheeled mobile robots. Integr. Comput. Aided Eng. 2016, 23, 15–30. [CrossRef]
35. Xiong, G.; Shi, D.; Zhu, L.; Duan, X. A new approach to fault diagnosis of power systems using fuzzy reasoning spiking neural P systems. Math. Prob. Eng. 2013, 2013, 211–244. [CrossRef]
36. Wang, T.; Zhang, G.; Zhao, J.; He, Z.; Wang, J.; Pérez-Jiménez, M.J. Fault diagnosis of electric power systems based on fuzzy reasoning spiking neural P systems. IEEE Trans. Power Syst. 2014, 30, 1182–1194. [CrossRef]
37. Peng, H.; Wang, J.; Ming, J.; Shi, P.; Pérez-Jiménez, M.J.; Yu, W.; Tao, C. Fault diagnosis of power systems using intuitionistic fuzzy spiking neural P systems. IEEE Trans. Smart Grid. 2018, 9, 4777–4784. [CrossRef]
38. Peng, H.; Wang, J.; Shi, P.; Pérez-Jiménez, M.J.; Riscos-Núñez, A. An extended membrane system with active membrane to solve automatic fuzzy clustering problems. Int. J. Neural Syst. 2015, 26, 1650004. [CrossRef][PubMed]
39. Peng, H.; Shi, P.; Wang, J.; Riscos-Núñez, A.; Pérez-Jiménez, M.J. Multiobjective fuzzy clustering approach based on tissue-like membrane systems. Knowl. Based Syst. 2017, 125, 74–82. [CrossRef]
40. Han, L.; Xiang, L.; Liu, X.; Luan, J. The K-medoids Algorithm with Initial Centers Optimized Based on a P System. J. Inf. Comput. Sci. 2014, 11, 1765–1774. [CrossRef]
41. Wu, T.; Pan, L.; Yu, Q.; Tan, K.C. Numerical Spiking Neural P Systems. IEEE Transact. Neural Netw. Learn. Syst. 2020, 1–15. [CrossRef]
42. Peng, H.; Li, B.; Wang, J. Spiking neural P systems with inhibitory rules. Knowl. Based Syst. 2020, 188, 105064. [CrossRef]
43. Wu, T.; Zhang, T.; Xu, F. Simplified and yet Turing universal spiking neural P systems with polarizations optimized by anti-spikes. Neurocomputing 2020, 414, 255–266. [CrossRef]
44. Jiang, S.; Fan, J.; Liu, Y.; Wang, Y.; Xu, F. Spiking Neural P Systems with Polarizations and Rules on Synapses. Complexity 2020, 2020, 1–12. [CrossRef]
45. Korec, I. Small universal register machines. Theor. Comput. Sci. 1996, 168, 267–301. [CrossRef]