Does Spinal Fusion and Scoliosis Correction Improve Activity and Participation for Children With GMFCS level 4 and 5 Cerebral Palsy?

Mathew David Sewell, FRCS, Charlie Wallace, MRCS, Francesc Malagelada, MRCS, Alex Gibson, FRCS, Hilali Noordeen, FRCS, Stewart Tucker, FRCS, Sean Molloy, FRCS, and Jan Lehovsky, FRCS

Abstract: Spinal fusion is used to treat scoliosis in children with cerebral palsy (CP). Following intervention, the WHO considers activity and participation should be assessed to guide intervention and assess the effects. This study assesses whether spinal fusion for scoliosis improves activity and participation for children with severe CP.

Retrospective cohort study of 70 children (39M:31F) with GMFCS level 4/5 CP and significant scoliosis. Thirty-six underwent observational and/or brace treatment as the sole treatment for their scoliosis, and 34 underwent surgery. Children in the operative group were older and had worse scoliosis than those in the observational group. Questionnaire and radiographic data were recorded over a 2-year period. The ASKP was used to measure activity and participation.

In the observational group, Cobb angle and pelvic obliquity increased from 51° (40–90) and 10° (0–30) to 70° (43–111) and 14° (0–37). Mean ASKP decreased from 16.3 (1–38) to 14.2 (1–36). In the operative group, Cobb angle and pelvic obliquity decreased from 81° (50–131) and 14° (1–35) to 38° (10–76) and 9° (0–24). Mean ASKP increased from 10.5 (0–29) to 15.9 (3–38). Spinal-related pain correlated most with change in activity and participation in both groups. There was no difference in mobility, GMFCS level, feeding or communication in either group before and after treatment.

In children with significant scoliosis and CP classified within GMFCS levels 4 and 5, spinal fusion was associated with an improvement in activity and participation, whereas nonoperative treatment was associated with a small reduction. Pain should be carefully assessed to guide intervention.

(INTRODUCTION)

Cerebral palsy (CP) describes a group of permanent disorders of the development of movement and posture, causing activity limitation, that are attributed to nonprogressive disturbances that occurred in the developing fetal or infant brain. The motor disorders of CP are often accompanied by secondary musculoskeletal problems. Worldwide CP is the commonest cause of motor disability in childhood with an incidence 2 to 3 per 1000 live births and presents a wide spectrum of severity. The Gross Motor Function Classification System (GMFCS) groups children into 1 of 5 levels based on their ability to mobilize and reflects overall gross motor skills and severity of motor impairment. There is a linear relationship between the scoliosis risk and the GMFCS level; children within GMFCS levels 1 to 2 have very low risk, 3 intermediate, and 4 to 5, very high risk. Scoliosis occurs in 50% of children with GMFCS levels 4 or 5 CP. The scoliotic curve is also more severe in these children, and more likely to progress. Severe scoliosis produces pelvic obliquity affecting the sitting ability of children. Secondly this may cause pain, pressure sores, and difficulty with hygiene. Many children undergo spinal fusion to correct the deformity and prevent progression. This is a major, life-threatening intervention; therefore, there is an imperative to evaluate this intervention using outcomes that are more meaningful to patients and their carers.

The World Health Organization’s (WHO) International Classification of Functioning, Disability, and Health (ICF) has redefined the way disability is viewed for children with impairments. There is less focus on actual impairments, and more on their impact for involvement in life situations, which is defined as “participation.” In the absence of a cure, optimizing quality of life (QoL) and activity and participation are now considered some of the more important outcome measures for children with complex neuromuscularity. Children with CP have lower participation than children in the general population, and those with more impairments have lower participation than those with fewer impairments. Participation differs from QoL, which is less influenced by the type and severity of impairments, and is similar between children with CP and the general population. The WHO recommend both should be assessed for children with CP to guide intervention and assess the effects.

The aim of spinal fusion for children with GMFCS level 4/5 CP is to restore trunk alignment, prevent deterioration in respiratory function, alleviate pain caused by impingement of the ribs against the iliac crest on the concave side of the curve, improve personal hygiene, and provide better sitting tolerance in the wheelchair. Systematic review data have shown minimal evidence exists to advise parents about QoL changes, and there are no reports on the effects of spinal fusion on activity and participation. Furthermore most studies group all children with CP into the same category and do not differentiate between...
GMFCS levels, which fails to acknowledge the wide spectrum of severity. In this study we report outcome of scoliosis treatment for children with severe forms of CP (classified within GMFCS levels 4/5), with particular focus on activity and participation, and investigate factors that affect this.

METHODS

Participants

Between 2007 and 2012, a retrospective cohort study including children with GMFCS level 4 or 5 CP and scoliosis was performed. The diagnosis of CP was based upon clinical features and magnetic resonance imaging. Children were included if they had GMFCS level 4 or 5 CP, were in the age group between 8 and 17, and had a Cobb angle >40°, as this was the curve severity and age that the treating physicians would consider some form of intervention in childhood. The cohort comprised 70 children (39 males and 31 females) with a mean age of 12.9 years (8–17).

Thirty-six underwent seating adaptations and/or brace treatment as the sole treatment for their scoliosis during the study period, and 34 underwent spinal fusion surgery. The indication for surgery was a coronal deviation of the spine >40°, with evidence of progress on sequential radiographs, in a child in whom the parent and surgeon both thought this curvature was contributing to pain or impaired function, hygiene, or social interaction (Fig. 1). Observational management with seating adaptations and/or brace treatment was indicated for all children with a scoliosis >40°, who did not meet these criteria, or were considered unfit for surgery due to anesthetic reasons. In the surgical group, 6 children underwent a 2-stage procedure (anterior release followed 1 week later by an instrumented posterior spinal fusion), and 28 underwent a single stage instrumented posterior spinal fusion. The mean number of fused levels was 14.8 (8–16). Twenty-one had instrumented fixation to the pelvis and 14 did not. Pelvis fixation was indicated when pelvic obliquity was thought to be contributing to worse sitting function in the wheelchair. Demographics and impairment characteristics of children in each group are shown in Table 1. Data from questionnaires administered to caregivers and children, clinic reviews, medical records, and radiographs were used for analysis over a 2-year period. This was a retrospective, observational study and local ethical review classified the study as a service evaluation.

MEASUREMENTS

Activity and Participation Measurement Questionnaire

The performance version of the Activities Scale for Kids (ASKp) questionnaire was used to assess activity and participation. The ASKp comprises 30 items on personal care (3 items), dressing (4 items), locomotion (7 items), standing skills (5 items), other skills (4 items), transfers (5 items), and play (2 items) that are aggregated into 1 overall summary score. The ASKp is a self-report measure designed for children 5 to 15 years old, experiencing limitations in physical activity due to musculoskeletal disorders. The child (or the parent if the child is unable to do so) indicates how often each activity was performed in the last week. The 5 ordinal responses to each item are: ‘‘all of the time,’’ ‘‘most of the time,’’ ‘‘sometimes,’’ ‘‘once in a while,’’ and ‘‘none of the time.’’ The summary score is the average of all completed items multiplied by 25 in order to convert to a score ranging from 0 to 100, where high scores are indicative of greater activity and participation.

The ASKp has been widely used to assess activity and participation in children with CP, and multiple independent reviews have consistently reported the ASKp to have excellent psychometric properties and reliability, and be one of the optimal measures of activity and participation for these children. Parents were asked if their child would be able to understand the questionnaire for self-report. In those children considered not capable of self-report, the parents completed the questionnaire on behalf of their child, either in clinic or while at home. Parent and child-completed questionnaires provide very similar scores. In children who underwent surgery, the ASKp questionnaire was completed preoperatively and at 2 years. In children who did not undergo surgery, the ASKp was completed when the scoliosis was >40°, and 2 years thereafter.

Gross Motor Function and Associated Impairments

Parents provided information about their area of domicile, and about their child’s seizures, feeding, communication, intellect, school type, siblings, and gross motor function. Socio-demographic and impairment characteristics were assessed as these can affect activity and participation outcomes. The gross motor function level was classified according to the GMFCS, which is a reliable and valid instrument. The age-dependant GMFCS groups children into 1 of 5 levels based on their ability to mobilize and reflects overall gross motor skills and severity of motor impairment. Level 1 (walks and climbs stairs, without limitation) represents the highest level of gross motor function and level 5 (unable to walk, severely limited self-mobility) the lowest. Pain was assessed on a 5-point subjective scale: none, very mild, mild, moderate, or severe. This was adapted from the pain severity question on the Child Health Questionnaire and previous studies assessing associations between the pain and the health status in children with CP.

Radiographic Measurements

Radiographic data including Cobb angle (measure of coronal plane scoliosis deformity), pelvic obliquity (marker of pelvic position in the coronal plane which is relevant for sitting function), lumbar lordosis between L1 and L5 and thoracic kyphosis between T2 and T12 (measures of sagittal plane deformity) were also recorded. Scoliosis was classified as idiopathic-like (Group 1) or collapsing neuromuscular type (Group 2), according to the criteria of Lonstein and Akbarnia.

Statistical Analysis

The statistical program SPSS version 19 (IBM, US) was used. Pre and post-treatment ASKp scores within the same group were compared using the paired t test for matched data. Pre and post-treatment ASKp scores between groups were compared using the unpaired t test for nonpaired data. Baseline differences between groups were compared using the chi squared test for ordinal data, and Mann–Whitney U for continuous. Pearson correlation was performed at a 2-tailed level to determine significant relationships between variables. We coded responses to ordinal and nonlinear variables (eg mode of communication) into binary outcomes (eg normal speech or difficulty but uses speech versus uses nonspeech for formal communication or no formal communication) for the correlation analysis. The sample was inadequately powered for...
FIGURE 1. Preoperative antero-posterior (A) and lateral (B) radiographs of a 14-year old boy with GMFCS level 4 CP. The child was having difficulty sitting upright and repeated chest infections. Postoperative antero-posterior (C) and lateral (D) radiographs at 2 years following 2-stage posterior spinal fusion with segmental pedicle screw fixation from T2 to pelvis. The child had better sitting posture and suffered fewer chest infections. CP = cerebral palsy, GMFCS = gross motor function classification system.
Demographic and Impairments	Nonoperative Group (n = 36) Number (%)	Operative Group (n = 34) Number (%)
Males:females	19M:17F	20M:14F
Mean age (years with range)	12.1 (8–17)	13.9 (10–17)
Mean weight (kg with range)	38 (19–66)	40 (23–69)
Hip status (no. of hips/no. of children/% of children involved)		
Nonoperated persistently subluxed hip	10/8 (22%)	11/9 (26%)
Previous soft tissue hip surgery alone for subluxation	2/1 (3%)	3/3 (9%)
Previous operated hips with bone procedure	25/16 (44%)	13/10 (29%)
Normal hips	22/11 (31%)	24/12 (35%)
CP subtype		
Unilateral spastic	0 (0%)	0 (0%)
Bilateral spastic	31 (86%)	33 (97%)
Dyshkinetic	4 (11%)	1 (3%)
Ataxic	1 (3%)	0 (%)
Mobility		
Nonwalker	36 (100%)	34 (100%)
Walker	0 (0%)	0 (0%)
Feeding		
No problems	13 (36%)	12 (35%)
Orally with difficulty	14 (39%)	7 (21%)
Gastrostomy tube	9 (25%)	15 (44%)
Communication		
Normal	10 (28%)	7 (21%)
Difficulty but uses speech	6 (17%)	9 (26%)
Uses nonspeech for formal communication	14 (39%)	15 (44%)
No formal communication	6 (17%)	3 (9%)
Intellectual impairment		
None or mild (IQ > 70)	15 (42%)	9 (26%)
Moderate or severe (IQ < 70)	21 (58%)	25 (74%)
Seizures		
No seizures in last 3 years	19 (53%)	16 (47%)
Seizures in last 3 years	17 (47%)	18 (53%)
Bimanual fine motor control		
I (without limitation)	0 (0%)	0 (0%)
II/III (moderate restrictions—both hands limited/needs help with tasks)	12 (33%)	12 (35%)
IV/V (severe restrictions—needs help and adapted equipment/total human assistance)	24 (67%)	22 (65%)
Sociodemographic characteristics		
Schooling	0 (0%)	0 (0%)
Mainstream	0 (0%)	0 (0%)
Mainstream school and visits special unit	0 (0%)	0 (0%)
Special unit in mainstream school	4 (11%)	4 (12%)
Special school	32 (89%)	30 (88%)
Siblings		
None	10 (28%)	15 (44%)
One or more, none disabled	22/61%	16 (47%)
One or more, one or more disabled	4 (11%)	3 (9%)
Domicile		
City	11 (31%)	5 (15%)
Town or suburbs	20 (56%)	23 (68%)
Village or countryside	5 (14%)	6 (18%)
Family structure		
Married or living with partner	27 (75%)	27 (79%)
Single	9 (25%)	7 (21%)
Curve characteristics		
Group 1 curves	2 (6%)	2 (6%)
Group 2 curves	34 (94%)	32 (94%)

CP = cerebral palsy, IQ = intelligence quotient.
Factors Affecting Activity and Participation

A multivariate analysis with controlling for confounding variables. A P value < 0.05 was considered significant.

RESULTS

Baseline Differences Between Groups

At the start of the study, children in the operative group were older (P < 0.05), had more spinal-related pain (P < 0.05), worse ASK scores (P = 0.003), and Cobb angles (P < 0.001) than those in the observational group. There was no statistical difference in the GMFCS level (P = 0.27), feeding (P = 0.15), communication (P = 0.51), seizures (P = 0.82), intellectual impairment (P = 0.18), CP sub-type (P = 0.25), or weight (P = 0.49).

Activity and Participation

The ASKp improved in all children who underwent surgery (P < 0.01) (Table 2). This was mainly due to improved sitting balance and less pain following the surgery. In the nonoperative group, 28 of the 36 children reported a reduction in the ASKp at 2 years (P < 0.01).

Factors Affecting Activity and Participation

In the operative group, change in pain from moderate or severe to mild or none strongly correlated with a greater improvement between pre- and postoperative ASKp scores (r = 0.840, P < 0.001). There was no significant correlation between incidence of postoperative complications (r = -0.120, P = 0.50), fusion to the pelvis (r = 0.085, P = 0.63), postoperative Cobb angle (r = 0.19, P = 0.29), change in Cobb angle (r = 0.10, P = 0.67), thoracic kyphosis (r = 0.003, P = 0.99), pelvic obliquity (r = -0.02, P = 0.93), GMFCS level (r = -0.25, P = 0.16), mode of communication (r = 0.18, P = 0.32), or presence of persistent hip dislocation (r = 0.17, P = 0.33), and mean improvement in pre- and postoperative ASKp scores.

In the operative group, although the GMFCS level did not correlate with mean difference in pre- and postoperative ASK scores, the GMFCS level did correlate with ASK scores at the start of the study (r = -0.73, P < 0.001) and at 2 years (r = -0.75, P < 0.001). Children with GMFCS level 4 function had better ASKp scores than those with GMFCS level 5 function throughout the study (P < 0.05).

In the observational group, change in pain from none or mild to moderate or severe demonstrated a weak correlation with greater reduction between mean pre- and postoperative ASKp scores (r = -0.306, P = 0.069), without statistical significance. The GMFCS level did not correlate with mean difference in ASK scores (r = 0.13, P = 0.44); however GMFCS levels did correlate with ASK scores at the start of the study (r = -0.49, P = 0.003) and end (r = -0.41, P = 0.01). Children with GMFCS level 4 function had better ASKp scores than those with GMFCS level 5 function throughout the study (P < 0.05).

Changes in Pain, Associated Impairments, and Radiographic Measurements

There was a reduction in the number of children experiencing pain in the operative group. There was an increase in the number of children experiencing pain in the nonoperative group. Pain was attributed to worse sitting balance in the nonoperative group. There was no difference in mobility,
before and after treatment. Changes in radiographic parameters GMFCS level, feeding, or communication in either group were not comparable even though relatively strict inclusion criteria were present in a representative population of children with CP classified within GMFCS levels 4 and 5 was associated with an improvement in activity and participation and decrease in spinal-related pain, whereas nonoperative treatment was associated with a small reduction in activity and participation and increase in pain. Spinal-related pain was the factor that correlated most with change in activity and participation in both groups. Surgery was not associated with a change in mobility, GMFCS level, feeding, or communication. Persistent hip dislocation or pelvic fusion did not correlate with improvement in activity and participation in the surgical group.

This was an observational study tracking a younger group of children with CP and significant scoliosis as their scoliosis worsened during childhood, and an older group with more severe scoliosis who underwent spinal fusion. Groups were not comparable even though relatively strict inclusion criteria were used. Children in the operative group had worse Cobb angles more likely to have spinal-related pain and were a mean 1.8 years older than children in the nonoperative group. They also had worse ASKp scores at the start of the study. It is likely that these systematic differences between groups explain why the most significant changes were observed in these variables (Cobb angle, pain, ASKp score) following intervention. Children in the observational group, despite deteriorating in these parameters over the course of the study, did not deteriorate to the same levels as observed in the operative group. All included children in the study had the magnitude of scoliosis to indicate surgery; however the indication for surgery was a joint decision between surgeon and caregiver and the views of the caregiver were the most important when deciding to proceed with surgery. This was primarily based on the presence of spinal-related pain or impaired function, hygiene, or social interaction. We did not identify any significant difference between groups with respect to baseline impairments, although it is important to note that children in the operative group had worse feeding ability than those in the nonoperative group. We did not analyze how weight changed during the treatment period, but this could be relevant to account for change in ASKp scores.

There are no studies reporting changes in activity and participation following scoliosis treatment for children with CP. The optimal way to measure activity and participation in children with complex disability is still being debated, and no single measure adequately addresses all aspects of the WHO ICF.6,16,15,19–22 In children with CP, systematic review evidence has shown that the ASKp has the most robust psychometric properties for activity, with other tools requiring further confirmation of validity (measures what it intends to do), reliability (consistent and free from error), and responsiveness.14 However, the ASKp still requires further examination of responsiveness,14 and in the author’s opinion, particularly its application and responsiveness in the more severely impaired children (GMFCS 5). Alternative measures that may be considered for future studies include the Children’s Assessment of Participation and Enjoyment (CAPE),20 the lifestyle assessment questionnaire (LAQ-CP),21 and the participation and environment measure for children and youth (PEM-CY).22

Children in our study had significant gross motor function impairment with low baseline ASKp scores, worse than would be present in a representative population of children with GMFCS level 4/5 CP without scoliosis.23 This may have undervalued the true benefit surgery conferred these children, as we only found a small improvement in the mean ASKp following surgery (5.4 points), although this represents a 50% improvement when compared to the mean baseline preoperative score. When compared to historical controls,23 children with scoliosis and GMFCS level 4/5 CP in this study had lower activity and participation scores than those with GMFCS level 4/5 CP and no scoliosis.

In the operative group, change in pain from moderate or severe to mild or none strongly correlated with greater improvement in ASKp scores. In the observational group, development of moderate or severe pain weakly correlated with a greater reduction in ASKp scores. This latter statistic did not reach significance, which likely represents type 2 error. Pain is therefore an important factor that affects activity and participation in children with CP and scoliosis and should be carefully assessed. This finding is similar to previous multicentre cross-sectional

TABLE 3. Radiographic Outcomes

Radiographic Parameter	Nonoperative Group (n = 36) (Mean Angle With Range)	Operative Group (n = 34) (Mean Angle With Range)
Initial Cobb angle	51 (40–90)	81 (50–131)
Cobb angle at 2 years	70 (43–111)	38 (10–76)
Initial pelvic obliquity	10 (0–30)	14 (1–35)
Pelvic obliquity at 2 years	14 (0–37)	9 (0–24)
Initial thoracic kyphosis	41 (20–66)	46 (10–85)
Thoracic kyphosis at 2 years	44 (14–74)	39 (10–78)
Initial lumbar lordosis	35 (5–60)	41 (13–81)
Lumbar lordosis at 2 years	39 (3–72)	42 (8–75)

Complications in the Operative Group

Six children developed wound infections (18%) requiring intravenous antibiotics; 2 required additional surgical debridement for infection control. Five developed chest infections (15%) requiring intravenous antibiotics and respiratory support. Two developed pneumothoraces, which resolved. One child, who had previously undergone open reduction and proximal femoral osteotomy for a dislocated hip, developed recurrent dislocation at 1 year. The incidence of complications did not correlate with mean change in ASKp scores ($r = -0.120$, $P = 0.50$).

DISCUSSION

Preliminary results from this study suggest that spinal fusion for significant scoliosis in children with CP classified as GMFCS levels 4 and 5 improved activity and participation and decreased spinal-related pain, whereas nonoperative treatment was associated with a small reduction in activity and participation and an increase in pain. Spinal-related pain was the factor that correlated most strongly with change in activity and participation in both groups. Surgery was not associated with a change in mobility, GMFCS level, feeding, or communication. Persistent hip dislocation or pelvic fusion did not correlate with improvement in activity and participation in the surgical group.

This was an observational study tracking a younger group of children with CP and significant scoliosis as their scoliosis worsened during childhood, and an older group with more severe scoliosis who underwent spinal fusion. Groups were not comparable even though strictly selected inclusion criteria were used. Children in the operative group had worse Cobb angles more likely to have spinal-related pain than those in the nonoperative group. They also had worse ASKp scores at the start of the study. It is likely that these systematic differences between groups explain why the most significant changes were observed in these variables (Cobb angle, pain, ASKp score) following intervention. Children in the observational group, despite deteriorating in these parameters over the course of the study, did not deteriorate to the same levels as observed in the operative group. All included children in the study had the magnitude of scoliosis to indicate surgery; however, the indication for surgery was a joint decision between surgeon and caregiver and the views of the caregiver were the most important when deciding to proceed with surgery. This was primarily based on the presence of spinal-related pain or impaired function, hygiene, or social interaction. We did not identify any significant difference between groups with respect to baseline impairments, although it is important to note that children in the operative group had worse feeding ability than those in the nonoperative group. We did not analyze how weight changed during the treatment period, but this could be relevant to account for change in ASKp scores.

There are no studies reporting changes in activity and participation following scoliosis treatment for children with CP. The optimal way to measure activity and participation in children with complex disability is still being debated, and no single measure adequately addresses all aspects of the WHO ICF.6,16,15,19–22 In children with CP, systematic review evidence has shown that the ASKp has the most robust psychometric properties for activity, with other tools requiring further confirmation of validity (measures what it intends to do), reliability (consistent and free from error), and responsiveness.14 However, the ASKp still requires further examination of responsiveness,14 and in the author’s opinion, particularly its application and responsiveness in the more severely impaired children (GMFCS 5). Alternative measures that may be considered for future studies include the Children’s Assessment of Participation and Enjoyment (CAPE),20 the lifestyle assessment questionnaire (LAQ-CP),21 and the participation and environment measure for children and youth (PEM-CY).22

Children in our study had significant gross motor function impairment with low baseline ASKp scores, worse than would be present in a representative population of children with GMFCS level 4/5 CP without scoliosis.23 This may have undervalued the true benefit surgery conferred these children, as we only found a small improvement in the mean ASKp following surgery (5.4 points), although this represents a 50% improvement when compared to the mean baseline preoperative score. When compared to historical controls,23 children with scoliosis and GMFCS level 4/5 CP in this study had lower activity and participation scores than those with GMFCS level 4/5 CP and no scoliosis.

In the operative group, change in pain from moderate or severe to mild or none strongly correlated with greater improvement in ASKp scores. In the observational group, development of moderate or severe pain weakly correlated with a greater reduction in ASKp scores. This latter statistic did not reach significance, which likely represents type 2 error. Pain is therefore an important factor that affects activity and participation in children with CP and scoliosis and should be carefully assessed. This finding is similar to previous multicentre cross-sectional
The authors acknowledge the help of Dr E Cooke PhD for help with statistical analysis.

REFERENCES

1. Rosenbaum P, Paneth N, Leviton A, et al. A report: the definition and classification of cerebral palsy April 2006. Dev Med Child Neurol. 2007;49 (s2):8–14.

2. Surman G, Bonellie S, Chalmers J, et al. UKCP: a collaborative network of cerebral palsy registers in the United Kingdom. J Public Health. 2006;28:148–156.

3. Palisano R, Rosenbaum P, Walter S, et al. Development and reliability of a system to classify gross motor function in children with cerebral palsy. Dev Med Child Neurol. 1997;39:214–223.

4. Persson-Bunke M, Hagglund G, Lauge-Pedersen H, et al. Scoliosis in a total population of children with cerebral palsy. Spine. 2012;37:E708–E713.

5. Narayanan UG, Fehlings D, Weir S, et al. Initial development and validation of the caregiver priorities and child health index of life with disabilities (CPCHILD). Dev Med Child Neurol. 2006;48:804–812.

6. World Health Organization. World Health Organization classification of functioning, disability and health. Children and youth version. Geneva: WHO; 2007.

7. Dickinson HO, Parkinson KN, Ravens-Sieberer U, et al. Self-reported quality of life of 8–12-year-old children with cerebral palsy: a cross-sectional European study. Lancet. 2007;369:2171–2178.

8. Fauconnier J, Dickinson HO, Beckham E, et al. Participation in life situations of 8–12 year old children with cerebral palsy: cross sectional European study. BMJ. 2009;338:b1458.

9. WHO. The World Health Organization quality of life assessment (WHOQOL) position paper from the World Health Organization. Soc Sci Med. 1995;41:1403–1409.

10. Mercado E, Alman B, Wright JG. Does spinal fusion influence quality of life in neuromuscular scoliosis? Spine. 2007;32 (19S):S120–125.

11. Johnson A. Prevalence and characteristics of children with cerebral palsy in Europe. Dev Med Child Neurol. 2002;44:633–640.

12. Cobb JR. Outline for the study of scoliosis. In: American Academy of Orthopaedic Surgeons, ed. Instructional course lectures. Ann Arbor, MI; JW Edwards, 1948; 261–275.

13. Young NL, Williams JI, Yoshida KK, et al. Measurement properties of the activities scale for kids. J Clin Epidemiology. 2000;53: 125–137.

14. Harvey A, Robin J, Graham HK, et al. A systematic review of measures of activity limitation for children with cerebral palsy. Dev Med Child Neurol. 2008;50:190–198.

15. Morris C, Kurinczuk JJ, Fitzpatrick R, et al. Do the abilities of children with cerebral palsy explain their activities and participation? Dev Med Child Neurol. 2006;48:954–961.

16. Wood E, Rosenbaum P. The Gross Motor Function Classification System for Cerebral Palsy: a study of reliability and stability over time. Dev Med Child Neurol. 2000;42:292–296.

17. Landgraf J, Albetz L, Ware JE. Child Health Questionnaire (CHQ): A User’s Manual, 2nd Edition. Boston, MA: HealthAct, 1999.

18. Lonstein JE, Akbarnia A. Operative treatment of spinal deformities in patients with cerebral palsy or mental retardation. An analysis of one hundred and seven cases. JBI Am. 1983;65:43–55.

19. United Nations. Convention on the Rights of the Child. New York: United Nations; 1989.
20. King G, Law M, King S, et al. Children’s Assessment of Participation and Enjoyment (CAPE) and Preferences for Activities of Children (PAC). San Antonio, TX: Psych Corp; 2004.

21. Mackie PC, Jessen EC, Jarvis SN. The lifestyle assessment questionnaire: an instrument to measure the impact of disability on the lives of children with cerebral palsy and their families. Child Care Health Dev. 1998;24:473–486.

22. Coster W, Bedell G, Law M, et al. Psychometric evaluation of the participation and environment measure for children and youth. Dev Med Child Neurol. 2011;53:1030–1037.

23. Palisano RJ, Copeland WP, Giluppi BE. Performance of physical activities by adolescents with cerebral palsy. Phys Ther. 2007;87:77–87.

24. Parkinson K, Gibson L, Dickinson H, et al. Pain in children with cerebral palsy: a cross-sectional multicentre European study. Acta Paediatr. 2010;99:446–451.

25. Askin GN, Hallett R, Hare N, et al. The outcome of scoliosis surgery in the severely physically handicapped child. An objective and subjective assessment. Spine. 1997;22:44–50.

26. Sewell MD, Eastwood DM, Wimalasundera N. Managing common symptoms of cerebral palsy in children. BMJ. 2014;349:g5474.

27. Sewell MD, Wallace C, Gibson A, et al. A retrospective review to assess whether spinal fusion and scoliosis correction improved activity and participation for children with Angelman syndrome: brief report. Dev Neurorehabil. 2014;30:1–6.