RESEARCH ARTICLE

Retention in HIV care during the 3 years following release from incarceration: A cohort study

Kelsey B. Loeliger¹,2, Jaimie P. Meyer¹*, Mayur M. Desai³, Maria M. Ciarleglio¹, Colleen Gallagher⁵, Frederick L. Altice¹,2,6

1 AIDS Program, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut, United States of America, 2 Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America, 3 Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, Connecticut, United States of America, 4 Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, United States of America, 5 Health and Addiction Services Quality Improvement Program, Connecticut Department of Correction, Wethersfield, Connecticut, United States of America, 6 Centre of Excellence in Research in AIDS, University of Malaya, Kuala Lumpur, Malaysia

* jaimie.meyer@yale.edu

Abstract

Background

Sustained retention in HIV care (RIC) and viral suppression (VS) are central to US national HIV prevention strategies, but have not been comprehensively assessed in criminal justice (CJ) populations with known health disparities. The purpose of this study is to identify predictors of RIC and VS following release from prison or jail.

Methods and findings

This is a retrospective cohort study of all adult people living with HIV (PLWH) incarcerated in Connecticut, US, during the period January 1, 2007, to December 31, 2011, and observed through December 31, 2014 (n = 1,094). Most cohort participants were unmarried (83.7%) men (77.0%) who were black or Hispanic (78.1%) and acquired HIV from injection drug use (72.6%). Prison-based pharmacy and custody databases were linked with community HIV surveillance monitoring and case management databases. Post-release RIC declined steadily over 3 years of follow-up (67.2% retained for year 1, 51.3% retained for years 1–2, and 42.5% retained for years 1–3). Compared with individuals who were not re-incarcerated, individuals who were re-incarcerated were more likely to meet RIC criteria (48% versus 34%; p < 0.001) but less likely to have VS (72% versus 81%; p = 0.048). Using multivariable logistic regression models (individual-level analysis for 1,001 individuals after excluding 93 deaths), both sustained RIC and VS at 3 years post-release were independently associated with older age (RIC: adjusted odds ratio [AOR] = 1.61, 95% CI = 1.22–2.12; VS: AOR = 1.37, 95% CI = 1.06–1.78), having health insurance (RIC: AOR = 2.15, 95% CI = 1.60–2.89; VS: AOR = 2.01, 95% CI = 1.53–2.64), and receiving an increased number of transitional case management visits. The same factors were significant when we
assessed RIC and VS outcomes in each 6-month period using generalized estimating equations (for 1,094 individuals contributing 6,227 6-month periods prior to death or censoring). Additionally, receipt of antiretroviral therapy during incarceration (RIC: AOR = 1.33, 95% CI 1.07–1.65; VS: AOR = 1.91, 95% CI = 1.56–2.34), early linkage to care post-release (RIC: AOR = 2.64, 95% CI = 2.03–3.43; VS: AOR = 1.79; 95% CI = 1.45–2.21), and absolute time and proportion of follow-up time spent re-incarcerated were highly correlated with better treatment outcomes. Limited data were available on changes over time in injection drug use or other substance use disorders, psychiatric disorders, or housing status.

Conclusions
In a large cohort of CJ-involved PLWH with a 3-year post-release evaluation, RIC diminished significantly over time, but was associated with HIV care during incarceration, health insurance, case management services, and early linkage to care post-release. While reincarceration and conditional release provide opportunities to engage in care, reducing recidivism and supporting community-based RIC efforts are key to improving longitudinal treatment outcomes among CJ-involved PLWH.

Author summary

Why was this study done?

- HIV prevention and treatment strategies aim to reduce HIV-related morbidity, mortality, and transmission by retaining people with HIV in care and sustaining them on antiretroviral treatment to achieve viral suppression (VS).

- Few prior studies had described long-term retention in HIV care (RIC) or VS for people incarcerated in prisons or jails and transitioning to communities. In fact, incarceration periods are often excluded from studies of RIC. This is an important knowledge gap because HIV and incarceration are overlapping epidemics that disproportionately affect people who are already marginalized by homelessness, substance use and psychiatric disorders, and socioeconomic status.

What did the researchers do and find?

- We merged statewide databases from the Connecticut Department of Correction and Connecticut Department of Public Health on all people living with HIV who were released from prisons or jails in Connecticut, US, between 2007 and 2011. We followed each individual in this cohort for 3 years after release from prison/jail to examine RIC and VS.

- Among 1,094 individuals included in the study, continuous RIC declined over time (67.2% retained during year 1, 51.3% retained during years 1–2, and 42.5% retained during all 3 years). Compared with individuals who were not re-incarcerated, individuals who were re-incarcerated were more likely to meet RIC criteria (48% versus 34%; p < 0.001) but less likely to have VS (72% versus 81%; p = 0.048).
• Successful RIC and achievement of VS was associated with older age (RIC: adjusted odds ratio [AOR] = 1.61; VS: AOR = 1.37), having health insurance (RIC: AOR = 2.15; VS: AOR = 2.01), being treated for HIV while in prison (RIC: AOR = 1.33; VS: AOR = 1.91), receiving case management services during follow-up (RIC: AOR = 1.79; VS: AOR = 1.31), and early linkage to care in the community following release (RIC: AOR = 2.64; VS: AOR = 1.79). In addition, receiving an increased number of case management visits after release and spending an increased proportion of follow-up time re-incarcerated were correlated with better RIC and VS outcomes.

What do these findings mean?

• Dedicated resources are needed to optimize people’s HIV care while they are in prison and to link them to care following release. Although prior studies suggest that prison provides a temporary window of opportunity to reconnect people to care, sustained retention in care and continuity of care ultimately require keeping people in the community longer and avoiding incarceration.

Introduction

Along the HIV care continuum, retention in HIV care (RIC) is necessary for providing antiretroviral therapy (ART) and achieving viral suppression (VS), which reduces individual morbidity, mortality, and forward transmission [1–4]. Most incident HIV infections in the US are acquired from people living with HIV (PLWH) who are either undiagnosed or diagnosed but not retained in HIV care [5–7]. Poor RIC is associated with minority race/ethnicity, younger age, substance use disorders, and incarceration [8–12], although few studies have assessed longitudinal RIC beyond 6- or 12-month follow-up periods [13–16].

The US has the highest incarceration rate globally (910 per 100,000 adults) [17,18], with one-sixth of the country’s 1.2 million PLWH cycling through prisons or jails annually [19]. Yet incarcerated PLWH are frequently censored or excluded altogether from RIC studies [20]. For PLWH engaged in community-based care, frequent brief incarcerations disrupt care, and undermine ART adherence and VS [21–25]. When healthcare is optimized during incarceration, the highly structured environment can be an opportunity to reengage PLWH in care, initiate ART, and achieve VS, though this is often unsustained after release [26–28].

While several recent studies have elucidated challenges with linkage to community care post-release [29–32], the longitudinal impact of incarceration on continuity of HIV care remains poorly understood. Prior studies of RIC that have included criminal justice (CJ)-involved PLWH have been limited by short follow-up [33–35], exclusion of PLWH re-incarcerated during follow-up [34], recall biases in self-reported incarceration and ART use [9,21,24], reliance on ART prescription refill data [25], and inability to comprehensively link community and CJ data [26,28]. Because RIC is currently defined as having a clinic visit with viral load (VL) assessment at least every 6 months, a window of observation beyond 1 year is needed to better understand RIC [36]. Furthermore, a more nuanced understanding of longitudinal RIC among incarcerated PLWH is important for the development of future policies and interventions to address deficiencies within both CJ and community systems of care.
We therefore assessed 3-year RIC and VS in a large retrospective cohort of incarcerated PLWH. We had hypothesized that having health insurance and successfully linking to care would predict sustained RIC, but did not presuppose how recidivism would impact outcomes. Because we linked all community and CJ data within an integrated CJ system, we were able to examine “real world” outcomes in CJ-involved PLWH, accounting for re-incarcerations during follow-up and HIV-1 RNA levels obtained in both CJ and community settings.

Methods
Setting
The Connecticut Department of Correction (CTDOC) has been described previously [32]. Healthcare within CTDOC is guided by federally monitored clinical protocols requiring VL assessment within 96 hours of arrival, with continued monitoring every 3 months during incarceration. ART is prescribed according to national guidelines, which, at the time of observation, used CD4-based criteria.

Data sources
As previously published [32], we combined comprehensive custody and pharmacy data from the CTDOC with the Connecticut Department of Public Health (CTDPH) Enhanced HIV/AIDS Reporting System (eHARS) surveillance and CAREWare service utilization databases. The eHARS surveillance system is maintained by CTDPH to be >95% complete. In the original data analysis plan, we prespecified linkage to and retention in care as major outcomes of interest (S1 Text).

Study population
There were 1,094 individuals who met the following inclusion criteria (Fig 1): (1) were ≥18 years old with confirmed HIV before release from CTDOC; (2) were included in CTDOC and CTDPH databases; (3) were incarcerated at least once for >24 hours between January 1, 2007, and December 31, 2011; and (4) had ≥3 years of observation data after release (through December 31, 2014). For individuals never re-incarcerated, their only incarceration period was analyzed as their index incarceration. For participants with multiple eligible incarcerations (n = 538), we randomly selected 1 incarceration period to treat as each individual’s index incarceration/release to avoid differentially biasing the sample toward earlier incarceration periods (when fewer resources were available for HIV treatment and care) or later incarceration periods (with less time to observe outcomes or re-incarcerations). Random selection of index incarceration periods is consistent with an approach justified in prior studies of hospital readmissions and avoids inflating the association between re-incarceration during follow-up and the RIC and VS outcomes [37,38]. Subsequent re-incarcerations were recorded as covariates. Individuals entered the cohort starting on the day of index release from a CTDOC facility and were followed for 3 years or until death. For logistic regression models assessing outcomes after 3 years of follow-up, 1,001 PLWH were included, after excluding 93 deaths. For models using generalized estimating equations (GEEs), the full cohort of 1,094 PLWH contributed 6,227 complete 6-month follow-up periods (prior to death).

Data merging
CTDOC databases were securely transferred to the CTDPH, where on-site data managers matched individuals to eHARS and CAREWare databases [32]. CTDOC inmate numbers are routinely reported to the CTDPH by facility nursing supervisors when a new HIV case is
diagnosed in prison or by eHARS managers as part of routine data management. Inmate numbers were thus available for a majority of individuals in CTDPH databases. Rather than solely relying on inmate number, the match was done using the Link Plus probabilistic record linkage program developed by the Centers for Disease Control and Prevention (https://www.cdc.gov/cancer/npcr/tools/registryplus/lp.htm), with confirmatory data points including name, date of birth, race, and sex. The merged dataset was further restricted to PLWH currently living in Connecticut (excluding 97 individuals), then de-identified and securely provided to investigators for analysis (Fig 1).

Measures

Recorded HIV-1 RNA VLs served as the proxy for routine HIV care clinic visits (both in prison/jail and in the community), which has demonstrated validity in multiple other settings.
and is consistent with core indicators for national HIV surveillance [39,40]. Using national RIC guidelines, we defined “sustained 3-year RIC” as having ≥1 VL measured during every 6-month period during the 3-year follow-up period, with ≥60 days between VLS in adjacent periods [36]. Because RIC does not necessarily predict VS and because VL was measured at different frequencies during follow-up, we created a “terminal VS” outcome, defined as having VL < 400 copies/ml measured within the last 6-month period of the 3-year follow-up [1,26]. Using time period as the unit of analysis, additional major outcomes were (1) “RIC over time” (defined as having ≥1 VL measured during a 6-month period) and (2) “VS over time” (defined as having ≥1 VL measured during a 6-month period with the last measured VL being <400 copies/ml). We concluded that the use of a binary outcome in accordance with the standard definitions of RIC would be more appropriate than a survival analysis strategy (which examines time to an event) and would thus provide more clinically meaningful results. PLWH without VL assessments at least every 6 months were defined as being out of care; missing VLS were conservatively assigned VL ≥ 400 copies/ml (non-suppression) by convention [41], which applied to 24.5% (245/1,001) of the individuals and 23.0% (1,432/6,227) of the analyzed 6-month periods in the final multivariable models [42]. VLS were not missing at random, and therefore multiple imputation was not performed. For example, compared to the 756 people with VLS recorded during the last 6-month period of observation, the 245 people with missing VLS were significantly more likely to be uninsured, to have been recently diagnosed with HIV, to have been diagnosed with HIV during index incarceration, to have had fewer re-incarcerations or less time spent re-incarcerated, and to have had fewer case management visits. There were no significant differences between individuals missing and not missing VLS in terms of age, race/ethnicity, or sex. Using the Behavioral Model for Vulnerable Populations framework [43], adapted for CJ populations [44], we examined a broad range of predisposing, enabling/disabling, and need severity factors as potential predictors of RIC and VS over time. Continuous variables that were not normally distributed were categorized or calculated as described below.

Predisposing factors. Predisposing factors included demographic characteristics (sex, race/ethnicity, education level, and marital status), source of HIV transmission, and time since HIV diagnosis. Sex was dichotomized as male/female based on available data; there was no consistent information available on the number of individuals who were transgender, intersex, or gender-nonconforming. Age was dichotomized at the sample median of 45 years. CTDPH databases assessed prior injection drug use (IDU) based on the original HIV risk, and time since HIV diagnosis was calculated by subtracting release date from HIV diagnosis date.

Enabling/Disabling factors. Enabling/disabling factors included year of release, whether HIV was diagnosed during the index incarceration, and health insurance coverage (dichotomous; time-varying in GEE models), which was assessed every 6–12 months in the CAREWare database and dichotomized as yes (public or private insurance) or no (“none”, “unknown”, or “not reported”); if healthcare or social service resources were used without having formal health insurance, persons were designated as uninsured. Using previous criteria, early linkage to care was defined as VL assessment within 14 days after index release [32]. Length of incarceration was calculated using dates and types of movements into and out of facilities and analyzed categorically. Generally, shorter incarcerations (<30 days) corresponded to jail detentions, whereas longer incarcerations (≥365 days) involved prison sentences. Conditions of release were categorized as unsupervised, conditional release (e.g., parole or transitional housing), or release on bond. Because length of incarceration and conditions of release are closely associated, we created 1 multilevel categorical variable. Re-incarceration (recidivism) was defined as spending >24 hours in a CTDOC facility after initial release. To fully explore the potential effect of re-incarceration, we examined it in 4 ways: dichotomous (re-
incarcerated during follow-up or not; time-varying in GEE models), categorical (number of times re-incarcerated during follow-up), total number of days spent in a CTDOC facility during the 3-year follow-up, and percentage of each 6-month period spent in a CTDOC facility (time-varying). Case management visit dates were used to create a dichotomous variable for receipt of case management services during each 6-month period (time-varying) and total number of case management visits over the 3-year follow-up period. CTDOC provides additional psychiatric case management services for those with serious mental illness, but these are not consistently recorded in CAREWare.

Need severity factors. The last VL measured during the index incarceration (within 90 days of release) was used to determine VS status prior to release. ART prescription during incarceration was extracted from pharmacy data and coded dichotomously. Prescribed medications to treat psychiatric disorders (i.e., antipsychotics, antidepressants, or other neuropsychiatric medications), treatment for an opioid use disorder (i.e., medication-assisted therapy with methadone, buprenorphine, or naltrexone as brief supervised withdrawal or maintenance therapy), and treatment of other medical comorbidities were each coded dichotomously. The number of medical conditions other than HIV treated during the incarceration period was summed [44]. As previously described [32], inmates are assigned psychiatric need and addiction severity scores on intake (5-point scale) to determine service programming, with 1–2 (no or low severity), 3 (moderate, requiring treatment), and 4–5 (severe, needing residential or intensive outpatient treatment). Increased psychiatric need was further assessed by combining psychiatric severity score and psychiatric disease treatment to create a 4-category psychiatric need variable (lower severity [score 1–2], untreated; lower severity, treated; higher severity [score 3–5], untreated; higher severity, treated) [32]. Additional information on psychiatric and substance use diagnoses was unavailable.

Statistical analysis

To examine RIC and VS over time, Cochran–Armitage tests for trend were used to compare the proportion of PLWH with RIC or with VS during year 1, years 1–2, and years 1–3. Chi-squared tests were used to compare RIC for re-incarcerated individuals and those who were not re-incarcerated. Among PLWH with RIC, we assessed the proportion with terminal VS using chi-squared tests. Logistic regression was used to model predictors of 3-year sustained RIC and terminal VS. Then, we examined each 6-month period of the 3-year follow-up period for RIC and VS over time using a logit GEE, assuming an autoregressive correlation structure to account for intra-individual correlation. Observations on the same individual were not assumed to be independent; rather, the GEE model allowed us to account for correlated release periods for the same individual and to calculate appropriate standard errors when performing statistical inference. Individuals who died during follow-up were excluded from logistic regression models but could contribute any complete 6-month time periods before death to the GEE models; including the incomplete periods during which PLWH died did not change effect estimates nor model fit.

For model building, relevant variables within the Behavioral Model for Vulnerable Populations with clinical significance or bivariate associations significant at $p < 0.20$ were included in full multivariable models. To minimize the Akaike information criterion and maximize the area under the receiver operating characteristic curve, backward selection was used to generate final parsimonious models, including variables with $p < 0.05$. Sex, race/ethnicity, and recidivism were assessed for significance in parsimonious models a priori. Final logistic regression models were also assessed for fit using Hosmer–Lemeshow goodness-of-fit tests ($p > 0.05$). Based on tolerance, variance inflation factor, and eigenvalue diagnostics, final models did not
have significant multicollinearity. Interactions between race/ethnicity, sex, and recidivism were not found to be statistically significant. Due to small numbers of individuals treated for opioid withdrawal, this variable was only assessed in GEE models. All analyses were performed using SAS version 9.4 (SAS Institute).

Ethics approval
The CTDOC Research Advisory Committee and institutional review boards at Yale University and CTDPH approved all procedures. Participant consent was waived because all data were previously collected and de-identified for analysis.

Results
Sample description
Table 1 summarizes selected characteristics of the included 1,094 PLWH. Half (52.3%) were >45 years old, and most were male (77.0%) and of racial/ethnic minorities (81.8%). Most HIV infections were related to IDU (72.6%) and were not recently diagnosed (96.1%).

Description of retention in care and viral suppression over 3 years
Continuous post-release RIC (i.e., having ≥1 VL measured during every 6-month period, with ≥60 days between VLs in adjacent periods) [36] and VS significantly declined with each additional year of follow-up (Figs 2 and 3, respectively). Excluding deaths (n = 35 in year 1, n = 30 in year 2, and n = 28 in year 3), RIC rates were significantly higher among individuals who were re-incarcerated compared with those who were not within each time frame (Fig 2). Among those retained, however, re-incarcerated individuals were less likely to be virally suppressed than individuals who were not re-incarcerated; this pattern was consistent across all 3 years but statistically significant in year 1 and years 1–3 only.

For all individuals, only re-incarcerated individuals, and only individuals who were not re-incarcerated, there was a statistically significant decline in RIC over time (Cochran–Armitage test 1-way p < 0.001). There was a statistically significant difference in RIC rate between individuals who were re-incarcerated and those who were not across all time points ($\chi^2 p < 0.001$). Among those retained, individuals who were not re-incarcerated had higher VS rates compared to re-incarcerated individuals at the end of year 1 ($\chi^2 p = 0.021$) and year 3 ($\chi^2 p = 0.048$).

Individuals with detectable viral levels during these time frames were considered virally suppressed if their last viral level within the time frame of interest was <400 copies/ml. For both definitions of VS (i.e., VS at the end of every year and at the end of every 6-month period), there was a statistically significant decline in sustained VS over time (Cochran–Armitage test 1-way p < 0.001).

Factors predicting sustained retention in care and VS after 3 years
The 1,001 PLWH who were alive 3 years after release (n = 93 died) were demographically similar to the overall sample, and 41.5% of PLWH met criteria for sustained RIC (Table 2). In the final model, sustained RIC was independently associated with older age (>45 years), having health insurance, being re-incarcerated for >90 days during follow-up, receiving >30 case management visits, and being linked to care or re-incarcerated within 14 days after initial release. VS prior to release was not independently associated with RIC, although not having a VL measured prior to release was negatively associated with RIC.
Table 1. Description of the full sample of 1,094 individuals initially released from prison or jail during 2007–2011.

Variable	Full sample n (%)*
Predisposing factors	
Age at time of release	
≤45 years	422 (47.7%)
>45 years	572 (52.3%)
Sex	
Female	252 (23.0%)
Male	842 (77.0%)
Race/ethnicity	
White	198 (18.1%)
Black	452 (41.2%)
Hispanic	404 (36.9%)
Other	41 (3.8%)
Education level	
<High school	508 (46.4%)
≥High school	586 (53.6%)
Marital status	
Not married	887 (83.7%)
Married	173 (16.3%)
Injection-drug-use-related source of HIV transmission	
No	300 (27.4%)
Yes	794 (72.6%)
Time since HIV diagnosis	
≤1 year	43 (3.9%)
>1 year	1,051 (96.1%)
Enabling or disabling factors	
Any health insurance	
No insurance/none reported	478 (43.7%)
Yes	616 (56.3%)
HIV diagnosed during index incarceration	
No	1,072 (98.0%)
Yes	22 (2.0%)
Year of release	
2007–2008	430 (39.3%)
2009–2010	469 (42.8%)
2011	195 (17.8%)
Length of incarceration and conditions of release	
Incarcerated ≤30 days, release without conditions	199 (18.2%)
Incarcerated ≤30 days, conditional or bonded release	144 (13.2%)
Incarcerated 31–364 days, release without conditions	383 (35.0%)
Incarcerated 31–364 days, conditional or bonded release	206 (18.8%)
Incarcerated ≥365 days, release without conditions	71 (6.5%)
Incarcerated ≥365 days, conditional release (none were released on bond)	91 (8.3%)
Number of re-incarcerations	
0	556 (50.8%)
1	274 (25.1%)
2	153 (14.0%)
≥3	111 (10.2%)
Days spent re-incarcerated	
0–6 (<1 week)	567 (51.8%)
7–30	52 (4.8%)
31–90	96 (8.8%)

(Continued)
Table 1. (Continued)

Variable	Full sample n (%)[*] (n = 1,094 individuals)
91–180	171 (15.6%)
181–365	162 (14.8%)
>365	46 (4.2%)
Number of transitional case management visits	
0	599 (54.8%)
1–5	116 (10.6%)
6–14	162 (14.8%)
15–30	115 (10.5%)
>30	102 (9.3%)
Early linkage to care (within 14 days of index release)	
No	836 (76.4%)
Yes	230 (21.0%)
Re-incarcerated within 14 days	28 (2.6%)
Need severity factors	
Prescribed ART during incarceration	
No	458 (41.9%)
Yes	636 (58.1%)
Virally suppressed prior to release[†]	
No	487 (44.5%)
Yes	357 (32.6%)
Viral load not drawn prior to release	250 (22.9%)
Number of medical comorbidities[‡]	
0	677 (61.9%)
1	232 (21.2%)
≥2	185 (16.9%)
Psychiatric need	
Lower severity score, untreated	505 (46.2%)
Lower severity score, treated	53 (4.8%)
Higher severity score, untreated	205 (18.7%)
Higher severity score, treated	331 (30.3%)
Addiction severity score[§]	
1–2	163 (15.2%)
3	708 (66.0%)
4–5	201 (18.8%)
Treated for an opioid use disorder during index incarceration	
No	1,091 (99.7%)
Yes	3 (0.3%)

[*]Numbers listed are n (%) out of the total number of individuals who were initially eligible for analysis (n = 1,094), including those who were found to have died during follow-up (n = 93). Percentages may not sum to 100% due to rounding.

[†]Transgender males (n = 1) were included the male category, and transgender females (n = 2) were included in the female category.

[‡]There were n = 34 individuals with a missing or unreported marital status during their index incarceration.

[§]In 4% of cases, a viral load was drawn within 90 days prior to release, but the viral load value itself was not reported. These cases were included in the “no” viral suppression category because viral suppression could not be confirmed.

[§]Medical comorbidities broadly included gastrointestinal disease, cardiovascular disease, hyperlipidemia, diabetes, other endocrine disease, viral hepatitis C, hematologic disorders, hypercoagulable states, hypertension, immunological and autoimmune conditions, neurological conditions, pregnancy, pulmonary disease, renal failure, and urological conditions including benign prostatic hypertrophy.

[§]There were n = 22 individuals whose addiction severity scores were never assessed during their index incarceration.

https://doi.org/10.1371/journal.pmed.1002667.t001
Overall, 54.4% of individuals demonstrated terminal VS after 3 years of follow-up (Table 2), which was independently associated with age > 45 years, having health insurance, and receiving increased numbers of case management visits. Unlike RIC, VS was not independently associated with the percentage of overall follow-up time spent re-incarcerated. In addition, although VS before release and early linkage to care were not significantly correlated with terminal VS, ART prescribed during incarceration was positively associated with terminal VS.
Factors predicting retention in care and VS over time

The full cohort of 1,094 PLWH contributed 6,227 6-month follow-up periods, with 77.0% of periods meeting the criteria for RIC (Table 3). Independent correlates of RIC per 6-month period were age > 45 years, being diagnosed with HIV > 1 year prior to release, having health insurance, having a short (≤ 30 days) initial incarceration period followed by conditional or bonded release, re-incarceration, increased proportion of follow-up time spent re-incarcerated, receipt of case management services, and early linkage to care post-release. Compared with having a short index incarceration with unconditional release (i.e., “time served”), being
Table 2. Logistic regression model of sustained retention in care and HIV viral suppression.*

Variable	Total n (%)† (n = 1,001 individuals)	Sustained 3-year retention in care	Terminal viral suppression								
	Sustained (%) with retention	Unadjusted model OR (95% CI)	p-Value	Parsimonious adjusted model OR (95% CI)	p-Value	Sustained (%) with viral suppression	Unadjusted model OR (95% CI)	p-Value	Parsimonious adjusted model OR (95% CI)	p-Value	
Predisposing factors											
Age at time of release											
≤45 years	495 (49.5%)	179 (36.2%)	Referent	Referent		243 (49.1%)	Referent		Referent		
>45 years	506 (50.6%)	236 (46.6%)	1.54 (1.20–1.99)	<0.001	1.61 (1.22–2.12)	<0.001	302 (59.7%)	1.54 (1.20–1.97)	<0.001	1.37 (1.06–1.78)	0.018
Sex											
Female	237 (23.7%)	87 (36.7%)	Referent			123 (51.9%)	Referent				
Male	764 (76.3%)	328 (42.9%)	1.30 (0.96–1.75)	0.090		422 (55.2%)	1.14 (0.85–1.53)	0.368			
Race/ethnicity											
White	177 (17.7%)	69 (39.0%)	Referent			102 (57.6%)	Referent				
Black	416 (41.6%)	175 (42.1%)	1.14 (0.79–1.63)	0.485		230 (55.3%)	0.91 (0.64–1.30)	0.600			
Hispanic	371 (36.1%)	154 (41.5%)	1.11 (0.77–1.60)	0.574		194 (52.3%)	0.81 (0.56–1.16)	0.242			
Other	37 (3.7%)	17 (46.0%)	1.33 (0.65–2.72)	0.433		19 (51.4%)	0.78 (0.38–1.58)	0.484			
Education level											
<High school	456 (45.6%)	187 (41.0%)	Referent			236 (51.8%)	Referent				
≥High school	545 (54.5%)	228 (41.8%)	1.04 (0.80–1.33)	0.792		309 (56.7%)	1.22 (0.95–1.57)	0.118			
Marital status											
Not married	814 (84.2%)	344 (42.3%)	Referent			442 (54.3%)	Referent				
Married	153 (15.8%)	62 (40.5%)	0.93 (0.66–1.32)	0.691		87 (56.9%)	1.11 (0.78–1.57)	0.561			
Injection drug use											
No	281 (28.1%)	107 (38.1%)	Referent			148 (52.7%)	Referent				
Yes	720 (71.9%)	308 (42.8%)	1.22 (0.92–1.61)	0.175		397 (55.1%)	1.11 (0.84–1.46)	0.480			
Time since HIV diagnosis											
≤1 year	42 (4.2%)	11 (26.2%)	Referent			16 (38.1%)	Referent				
>1 year	959 (95.8%)	404 (42.1%)	2.05 (1.02–4.13)	0.044		529 (55.2%)	2.00 (1.06–3.78)	0.033			
Enabling or disabling factors											
Any health insurance											
No insurance/none reported	419 (41.9%)	122 (29.1%)	Referent	Referent	175 (41.8%)	Referent	Referent				

(Continued)
Table 2. (Continued)

Variable	Total n (%)† (n = 1,001 individuals)	Sustained 3-year retention in care	Terminal viral suppression									
	Total n (%)‡ with retention	Unadjusted model OR (95% CI)	*p*-Value	Parsimonious adjusted model OR (95% CI)	*p*-Value	Total n (%)‡ with viral suppression	Unadjusted model OR (95% CI)	*p*-Value	Parsimonious adjusted model OR (95% CI)	*p*-Value		
Yes	582 (58.1%)	293 (50.3%)	2.47 (1.89–3.22)	**< 0.001**	2.15 (1.60–2.89)	**< 0.001**	370 (63.6%)	2.43 (1.88–3.15)	**< 0.001**	2.01 (1.53–2.64)	**< 0.001**	
HIV diagnosed during index incarceration												
No	979 (97.8%)	410 (41.9%)	Referent		537 (54.9%)	Referent						
Yes	22 (2.2%)	5 (22.7%)	2.45 (0.90–6.69)	0.081	8 (36.4%)	2.13 (0.88–5.11)	0.092					
Year of release												
2007–2008	382 (38.2%)	136 (35.6%)	Referent		181 (47.4%)	Referent						
2009–2010	432 (43.2%)	185 (42.8%)	1.36 (1.02–1.80)	**0.036**	241 (55.8%)	1.40 (1.06–1.85)	**0.017**					
2011	187 (18.7%)	94 (50.3%)	1.83 (1.28–2.61)	**< 0.001**	123 (65.8%)	2.13 (1.49–3.07)	**< 0.001**					
Length of incarceration and conditions of release												
Incarcerated ≤30 days, release without conditions	175 (17.5%)	71 (40.6%)	Referent		88 (50.3%)	Referent						
Incarcerated ≤30 days, conditional or bonded release	125 (12.5%)	61 (48.8%)	1.40 (0.88–2.22)	0.157	74 (59.2%)	1.43 (0.90–2.28)	0.127					
Incarcerated 31–364 days, release without conditions	353 (35.3%)	138 (39.1%)	0.94 (0.65–1.36)	0.744	185 (52.4%)	1.09 (0.76–1.56)	0.646					
Incarcerated 31–364 days, conditional or bonded release	190 (19.0%)	76 (40.0%)	0.98 (0.64–1.48)	0.912	107 (56.3%)	1.28 (0.84–1.93)	0.249					
Incarcerated ≥365 days, release without conditions	70 (7.0%)	26 (37.1%)	0.87 (0.49–1.53)	0.620	41 (58.6%)	1.40 (0.80–2.45)	0.242					
Incarcerated ≥365 days, conditional release (none were released on bond)	88 (8.8%)	43 (48.9%)	1.40 (0.84–2.34)	0.201	50 (56.8%)	1.30 (0.78–2.18)	0.317					
Number of re-incarcerations												
0	493 (49.3%)	169 (34.3%)	Referent		251 (50.9%)	Referent						
1	250 (25.0%)	101 (40.4%)	1.30 (0.95–1.78)	0.102	142 (56.8%)	1.27 (0.93–1.72)	0.129					
Table 2. (Continued)

Variable	Total n (%) † (n = 1,001 individuals)	Sustained 3-year retention in care	Terminal viral suppression			
	Row n (%) with retention	Unadjusted model OR (95% CI) p-Value	Parsimonious adjusted model OR (95% CI) p-Value	Row n (%) with viral suppression	Unadjusted model OR (95% CI) p-Value	Parsimonious adjusted model OR (95% CI) p-Value
2	147 (14.7%)	2.42 (1.66–3.52)	<0.001	86 (58.5%)	1.36 (0.94–1.97)	0.106
≥3	111 (11.1%)	2.52 (1.66–3.83)	<0.001	66 (59.5%)	1.41 (0.93–2.15)	0.104
Days spent re-incarcerated						
0–6 (<1 week)	502 (50.2%)	Referent	Referent	254 (50.6%)	Referent	
7–30	46 (4.6%)	1.14 (0.61–2.12)	0.693	26 (56.5%)	1.27 (0.69–2.33)	0.443
31–90	89 (8.9%)	1.38 (0.87–2.18)	0.173	49 (55.1%)	1.20 (0.76–1.88)	0.438
91–180	163 (16.3%)	1.73 (1.21–2.48)	0.003	95 (58.3%)	1.36 (0.95–1.95)	0.088
181–365	155 (15.5%)	2.07 (1.43–2.98)	<0.001	89 (57.4%)	1.32 (0.92–1.89)	0.138
>365	46 (4.6%)	4.91 (2.52–9.58)	<0.001	32 (69.6%)	2.23 (1.16–4.28)	0.016
Number of transitional care management visits						
0	532 (53.2%)	183 (34.1%)	Referent	254 (47.7%)	Referent	Referent
1–5	110 (11.0%)	1.09 (0.71–1.67)	0.694	72 (65.5%)	2.07 (1.35–3.18)	<0.001
6–14	150 (15.0%)	1.81 (1.25–2.61)	0.002	87 (58.0%)	1.51 (1.05–2.18)	0.027
15–30	111 (11.1%)	1.81 (1.20–2.73)	0.005	61 (55.0%)	1.34 (0.89–2.01)	0.168
>30	98 (9.8%)	3.76 (2.38–5.92)	<0.001	71 (72.5%)	2.88 (1.79–4.63)	<0.001
Early linkage to care (within 14 days of index release)						
No	774 (77.3%)	281 (36.3%)	Referent	408 (52.7%)	Referent	
Yes	205 (20.5%)	2.48 (1.81–3.39)	<0.001	125 (61.0%)	1.40 (1.02–1.92)	0.035
Re-incarcerated within 14 days	22 (2.2%)	3.07 (1.27–7.41)	0.013	12 (54.6%)	1.08 (0.46–2.52)	0.865
Need severity factors						
Prescribed ART during incarceration						
No	415 (41.5%)	147 (35.4%)	Referent	191 (46.0%)	Referent	Referent
Yes	586 (58.5%)	268 (45.7%)	1.54 (1.19–1.99)	354 (60.4%)	1.79 (1.39–2.31)	<0.001

(Continued)
Table 2. (Continued)

Variable	Total n (%)† (n = 1,001 individuals)	Sustained 3-year retention in care	Terminal viral suppression						
	Total n (%)† (n = 1,001 individuals)	Unadjusted model OR (95% CI) p-Value	Parsimonious adjusted model OR (95% CI) p-Value	Total n (%)† with viral suppression	Unadjusted model OR (95% CI) p-Value	Parsimonious adjusted model OR (95% CI) p-Value			
Virally suppressed prior to release									
No	439 (43.9%)	186 (42.4%)	Referent	Referent	220 (50.1%)	Referent			
Yes	333 (33.3%)	150 (45.1%)	1.12 (0.84–1.49)	0.458	0.92 (0.67–1.26)	0.616	209 (62.8%)	1.68 (1.26–2.24)	<0.001
Viral load not drawn prior to release									
229 (22.9%)	79 (34.5%)	0.72 (0.51–1.00)	0.049	0.65 (0.45–0.93)	0.020	116 (50.7%)	1.02 (0.74–1.41)	0.894	
Number of medical comorbidities									
0	626 (62.5%)	237 (37.9%)	Referent		320 (51.1%)	Referent			
1	215 (21.5%)	97 (45.1%)	1.35 (0.99–1.85)	0.061		132 (61.4%)	1.52 (1.11–2.09)	0.009	
≥2	160 (16.0%)	81 (50.6%)	1.68 (1.19–2.39)	0.004		93 (58.1%)	1.33 (0.93–1.89)	0.114	
Psychiatric need									
Lower severity score, untreated									
457 (45.7%)	181 (39.6%)	Referent		234 (51.2%)	Referent				
Lower severity score, treated									
50 (5.0%)	21 (42.0%)	1.10 (0.61–2.00)	0.743	35 (70.0%)	2.22 (1.18–4.18)	0.371			
Higher severity score, untreated									
187 (18.7%)	75 (40.1%)	1.02 (0.72–1.45)	0.906	103 (55.1%)	1.17 (0.83–1.64)	0.013			
Higher severity score, treated									
307 (30.7%)	138 (45.0%)	1.25 (0.93–1.67)	0.142	173 (56.4%)	1.23 (0.92–1.65)	0.162			
Addiction severity score**									
1–2	158 (16.1%)	52 (32.9%)	Referent		78 (49.4%)	Referent			
3	644 (66.7%)	274 (42.6%)	1.51 (1.05–2.18)	0.028		359 (55.8%)	1.29 (0.91–1.83)	0.150	
4–5	179 (18.3%)	78 (43.6%)	1.57 (1.01–2.46)	0.045		96 (53.6%)	1.19 (0.77–1.82)	0.435	

p-Values in bold are statistically significant (< 0.05).
†Sample is restricted to individuals who were alive at the end of the 3-year follow-up period; there were 93 deaths, resulting in 1,001 individuals eligible for analysis, among whom 41.5% (415/1,001) were retained in care continuously for 3 years and 54.4% (545/1,001) had a viral load < 400 copies/ml at the end of the 3 years.
‡Numbers listed are n (%) out of the total number of individuals (n = 1,001). Percentages may not sum to 100% due to rounding.
§Numbers listed are the row n (%) of individuals who experienced the outcome of sustained retention in care. Percentages should not be expected to sum to 100%.
∥Numbers listed are the row n (%) of individuals who experienced the outcome of viral suppression after 3 years of follow-up. Percentages should not be expected to sum to 100%.
Transgender males (n = 1) were included the male category, and transgender females (n = 2) were included in the female category.
*Incarceration periods for individuals with missing/unreported marital status (n = 34) were excluded from the bivariate analysis, such that the total n = 1,025.
**Incarceration periods where the addiction severity score was never assessed (n = 20) were excluded from the bivariate analysis, such that the total n = 1,039.
OR, odds ratio.

https://doi.org/10.1371/journal.pmed.1002667.t002
incarcerated for ≥1 year with unconditional release was associated with significantly poorer RIC. RIC was also significantly less likely during the final 6-month follow-up period after the index release. Regarding need severity factors, receiving ART and being treated for a medical comorbidity during incarceration were positively associated with RIC, while no VL obtained before release was negatively associated with RIC.

VS was reported in 50.9% of the eligible 6-month periods (Table 3). In GEE models, independent correlates of VS per 6-month period were age > 45 years, IDU-related transmission risk, having health insurance, having a short index incarceration period (≤30 days) followed by conditional or bonded release, increased percentage of follow-up time spent re-incarcerated, receipt of case management services, and early linkage to care. Unlike for RIC, disabling factors for VS were re-incarceration and a medium length of incarceration (31–364 days) followed by unconditional release. VS was also significantly better for more contemporary releases and during the final 6-month follow-up period after the index release. Receipt of ART, VS, and untreated high psychiatric need during incarceration were need severity factors each positively associated with VS over time.

Discussion

To our knowledge, this is one of the longest assessments of RIC and VS in a large cohort of individuals with HIV released from prison or jail. Despite HIV being a chronic condition that requires lifelong treatment, prior longitudinal RIC studies in the general population have not accounted for the complex impact of incarceration and the unique vulnerabilities it represents for many PLWH [8,11,14–16]. By comprehensively linking multiple CJ and community-based data sources, we were able to follow all CJ-involved PLWH statewide, including those re-incarcerated. We identified major correlates of optimal HIV treatment outcomes and found that the impact of re-incarceration is complex and dependent on time spent in facilities and conditions of release. These findings offer new insights into potential strategies to improve RIC and VS in CJ-involved PLWH.

Rates of sustained RIC and VS significantly declined over time, with re-incarcerated individuals demonstrating higher RIC rates than individuals who were not re-incarcerated, across all 3 years. Re-incarceration likely represents “forced” reengagement in care, but was not necessarily associated with VS itself. Rather, the length of time one spent in correctional facilities was associated with RIC and VS per 6-month interval and over the 3 years of observation. These findings speak not only to the potential for incarceration to facilitate reengagement in HIV care within a structured setting that can provide appropriate care and resources [21,25,26], but also to the potential for re-incarceration to interrupt HIV care. Re-incarceration itself was associated with worse VS outcomes, which is consistent with literature showing an association between incarceration, ART non-adherence, and virological failure [21,24,25]. Short-term benefits gained during incarceration appear to be outweighed by the long-term harm incarceration inflicts on physical and mental health, especially after release [45].

Individuals who were not re-incarcerated and who demonstrated RIC in the community had significantly higher VS rates compared with re-incarcerated individuals, underscoring the importance of better supporting community-based RIC through expanded enabling resources like case management and health insurance and minimizing recidivism, which is disruptive both medically and socially [46,47]. This finding is consistent with that from a recent study in North Carolina and Rhode Island showing that PLWH released from prison and retained in community care (without being re-incarcerated) had similar VS rates to PLWH continuously engaged in community care [48]. Sentencing policies, particularly for drug-related or nonviolent offenses, should be modified to encourage community-based CJ rehabilitation and
Table 3. Binomial generalized estimating equations of retention in care and viral suppression per 6-month follow-up period.*

Variable	Total n (%)	Retention in care over time	Viral suppression over time										
		Row n (%) with retention	Unadjusted model OR (95% CI)	p-Value	Parsimonious adjusted model OR (95% CI)	p-Value	Unadjusted model OR (95% CI)	p-Value	Parsimonious adjusted model OR (95% CI)	p-Value			
Predisposing factors													
Age at time of index release													
≤45 years	3,020 (48.5%)	2,226 (73.7%)	Referent	Referent	1,331 (44.1%)	Referent	Referent	Referent	Referent	Referent			
>45 years	3,207 (51.5%)	2,569 (80.1%)	1.45 (1.20–1.76)	<0.001	1.30 (1.07–1.57)	0.008	1.70 (1.44–2.00)	<0.001	1.44 (1.22–1.71)	<0.001			
Sex													
Female	1,454 (23.4%)	1,125 (77.4%)	Referent		693 (47.7%)	Referent							
Male	4,773 (76.7%)	3,670 (76.9%)	0.98 (0.79–1.21)	0.855	2,474 (51.8%)	1.17 (0.97–1.41)	0.102						
Race/ethnicity													
White	1,111 (17.8%)	849 (76.4%)	Referent		594 (53.5%)	Referent							
Black	2,584 (41.5%)	2,028 (78.5%)	1.13 (0.87–1.45)	0.369	1,315 (50.9%)	0.90 (0.71–1.13)	0.356						
Hispanic	2,299 (36.9%)	1,735 (75.5%)	0.94 (0.72–1.22)	0.617	1,127 (49.0%)	0.82 (0.65–1.04)	0.100						
Other	233 (3.7%)	183 (76.5%)	1.12 (0.65–1.92)	0.680	131 (56.2%)	1.11 (0.72–1.69)	0.644						
Education level													
<High school	2,850 (45.8%)	2,174 (76.3%)	Referent		1,433 (50.3%)	Referent							
≥High school	3,377 (54.2%)	2,621 (77.6%)	1.10 (0.91–1.33)	0.325	1,734 (51.4%)	1.07 (0.91–1.27)	0.411						
Marital status													
Not married	5,048 (83.8%)	3,906 (78.5%)	Referent		2,533 (50.2%)	Referent							
Married	975 (16.2%)	738 (75.7%)	0.89 (0.69–1.16)	0.401	516 (52.9%)	1.10 (0.87–1.39)	0.420						
Injection drug use													
No	1,733 (27.8%)	1,280 (73.9%)	Referent		751 (43.3%)	Referent	Referent	Referent	Referent	Referent			
Yes	4,494 (72.2%)	3,515 (78.2%)	1.27 (1.03–1.56)	0.025	2,416 (53.8%)	1.49 (1.23–1.81)	<0.001	1.31 (1.07–1.60)	0.009				
Time since HIV diagnosis													
≤1 year	253 (4.1%)	155 (61.3%)	Referent		86 (34.0%)	Referent	Referent	Referent	Referent	Referent			
>1 year	5,974 (95.9%)	4,640 (77.7%)	2.22 (1.40–3.53)	<0.001	1.66 (1.05–2.62)	0.029	3.081 (51.6%)	2.13 (1.33–3.42)	0.002				
Enabling or disabling factors													
Health insurance**													
No insurance/none reported	4,267 (68.5%)	3,128 (73.3%)	Referent		1,966 (46.1%)	Referent	Referent	Referent	Referent	Referent			
Table 3. (Continued)

Variable	Total n (%)³ (n = 6,227 6-month periods)	Retention in care over time	Viral suppression over time								
	Row n (%)³ with retention	Unadjusted model OR (95% CI)	p-Value								
		Parsimonious adjusted model OR (95% CI)	p-Value	Row n (%)³ with viral suppression	Unadjusted model OR (95% CI)	p-Value	Parsimonious adjusted model OR (95% CI)	p-Value			
Yes	1,960 (31.5%)	1.667 (85.1%)	1.60 (1.36-1.88)	<0.001	1.61 (1.34-1.94)	1.201 (61.3%)	<0.001	1.41 (1.25-1.60)	<0.001	1.18 (1.02-1.38)	0.028
Length of index incarceration and conditions of index release											
Incarcerated ≤30 days, release without conditions	1,106 (17.8%)	834 (75.4%)	Referent	Referent	519 (46.9%)	Referent	Referent				
Incarcerated ≤30 days, conditional release	78 (1.3%)	67 (85.9%)	2.22 (0.97-5.05)	0.058	2.29 (1.00-5.27)	0.050	52 (66.7%)	2.20 (0.96-5.02)	0.061	2.38 (1.08-5.28)	0.033
Incarcerated ≤30 days, bonded release	712 (11.4%)	573 (80.5%)	1.39 (0.96-2.02)	0.077	1.66 (1.14-2.40)	0.008	384 (53.9%)	1.33 (0.97-1.82)	0.072	1.58 (1.16-2.17)	0.004
Incarcerated ≥364 days, release without conditions	2,201 (35.4%)	1,652 (75.1%)	1.00 (0.75-1.32)	0.979	0.77 (0.58-1.02)	0.068	1,028 (46.7%)	1.03 (0.80-1.31)	0.840	0.76 (0.59-0.97)	0.029
Incarcerated ≥364 days, conditional release	1,062 (17.1%)	825 (77.7%)	1.19 (0.87-1.62)	0.282	0.80 (0.58-1.10)	0.169	572 (53.9%)	1.38 (1.04-1.82)	0.025	0.86 (0.65-1.14)	0.299
Incarcerated ≥364 days, bonded release	116 (1.9%)	92 (79.3%)	1.28 (0.64-2.58)	0.487	0.99 (0.52-1.89)	0.986	50 (43.1%)	0.85 (0.45-1.60)	0.620	0.67 (0.37-1.22)	0.193
Incarcerated ≥365 days, release without conditions	420 (6.7%)	312 (74.3%)	0.95 (0.62-1.44)	0.799	0.55 (0.36-0.84)	0.006	228 (54.3%)	1.38 (0.94-2.01)	0.098	0.69 (0.47-1.02)	0.060
Incarcerated ≥365 days, conditional release (none released on bond)	532 (8.5%)	440 (82.7%)	1.64 (1.09-2.46)	0.018	0.96 (0.62-1.48)	0.863	334 (62.8%)	2.03 (1.43-2.87)	<0.001	1.16 (0.82-1.63)	0.397
Re-incarcerated*											
No	5,325 (85.5%)	3,931 (73.8%)	Referent	Referent	2,696 (50.6%)	Referent	Referent				
Yes	902 (14.5%)	864 (95.8%)	5.24 (4.04-6.79)	<0.001	2.27 (1.44-3.58)	<0.001	471 (52.2%)	0.99 (0.86-1.13)	0.836	0.65 (0.51-0.81)	<0.001
Percent time spent re-incarcerated**											
0%	5,019 (80.6%)	3,653 (72.8%)	Referent	Referent	2,494 (49.7%)	Referent	Referent				
1%–50%	749 (12.0%)	698 (93.2%)	4.35 (3.31-5.71)	<0.001	2.56 (1.67-3.91)	<0.001	367 (49.0%)	0.98 (0.85-1.14)	0.812	1.38 (1.08-1.76)	0.010
51%–100%	459 (7.4%)	444 (96.7%)	8.69 (5.34-14.16)	<0.001	5.39 (3.15-9.22)	<0.001	306 (66.7%)	1.72 (1.40-2.11)	<0.001	2.52 (1.91-3.32)	<0.001

(Continued)
Table 3. (Continued)

Variable	Total n (%)	Retention in care over time	Viral suppression over time								
	(n = 6,227 6-month periods)	Unadjusted model OR (95% CI)	p-Value	Unadjusted model OR (95% CI)	p-Value	Unadjusted model OR (95% CI)	p-Value				
Year of index release											
2007–2008	2,405 (38.6%)	1,777 (73.9%)	Referent	1.049 (43.6%)	Referent	Referent					
2009–2010	2,677 (43.0%)	2,074 (77.5%)	1.24 (1.00–1.52)	**0.046**	1.418 (53.0%)	Referent	<0.001	1.49 (1.24–1.80)	1.04 (0.85–1.27)	0.712	
2011	1,145 (18.4%)	944 (82.5%)	1.65 (1.25–2.16)	<0.001	700 (61.1%)	Referent	<0.001	2.02 (1.60–2.56)	1.60 (1.24–2.06)	**0.003**	
Transitional case management services*											
No	5,126 (82.3%)	3,803 (74.2%)	Referent	Referent	2,489 (48.6%)	Referent	Referent				
Yes	1,101 (17.7%)	992 (90.1%)	2.32 (1.91–2.82)	<0.001	1.79 (1.44–2.22)	<0.001	678 (61.6%)	1.48 (1.28–1.70)	<0.001	1.31 (1.12–1.53)	<0.001
Early linkage to care											
No	4,798 (77.1%)	3,541 (73.8%)	Referent	Referent	2,277 (47.5%)	Referent	Referent				
Yes	1,296 (20.8%)	1,142 (88.1%)	2.77 (2.15–3.57)	<0.001	2.64 (2.03–3.43)	<0.001	824 (63.6%)	1.95 (1.59–2.39)	<0.001	1.79 (1.45–2.21)	<0.001
Re-incarcerated within 14 days without any community viral load	133 (2.1%)	112 (84.2%)	1.91 (0.82–4.47)	0.135	1.57 (0.68–3.63)	0.295	66 (49.6%)	1.07 (0.60–1.91)	0.811	1.05 (0.56–1.98)	0.874
Time since index release*											
0 to < 6 months	1,080 (17.3%)	853 (79.0%)	Referent	Referent	522 (48.3%)	Referent	Referent				
6 to <12 months	1,059 (17.0%)	826 (78.0%)	0.95 (0.80–1.12)	0.519	1.02 (0.85–1.23)	0.802	511 (48.3%)	1.00 (0.89–1.12)	0.978	1.00 (0.87–1.15)	1.000
12 to <18 months	1,039 (16.7%)	796 (76.6%)	0.87 (0.73–1.04)	0.123	0.86 (0.71–1.05)	0.132	519 (50.0%)	1.06 (0.93–1.22)	0.357	1.04 (0.89–1.22)	0.607
18 to <24 months	1,029 (16.5%)	789 (76.7%)	0.87 (0.73–1.05)	0.139	0.88 (0.72–1.08)	0.228	535 (52.0%)	1.15 (1.00–1.33)	**0.058**	1.14 (0.96–1.35)	0.137
24 to <30 months	1,019 (16.4%)	775 (76.1%)	0.84 (0.70–1.01)	0.071	0.84 (0.68–1.04)	0.104	535 (52.5%)	1.18 (1.01–1.36)	**0.032**	1.14 (0.96–1.36)	0.133
30 to 36 months	1,001 (16.1%)	756 (75.5%)	0.83 (0.69–0.99)	**0.038**	0.81 (0.65–0.99)	**0.041**	545 (54.5%)	1.28 (1.10–1.48)	**0.001**	1.26 (1.06–1.49)	**0.010**

Need severity factors

Prescribed ART during index incarceration											
No	2,577 (41.4%)	1,855 (72.0%)	Referent	Referent	994 (38.6%)	Referent	Referent				
Yes	3,650 (58.6%)	2,940 (80.6%)	1.63 (1.35–1.97)	<0.001	1.33 (1.07–1.65)	**0.011**	2,173 (59.5%)	2.46 (2.07–2.91)	<0.001	1.91 (1.56–2.34)	<0.001

(Continued)
Table 3. (Continued)

Variable	Total n (%)	Retention in care over time	Viral suppression over time														
		Row n (%) with retention	Unadjusted model OR (95% CI)	p-Value	Parsimonious adjusted model OR (95% CI)	p-Value	Row n (%) with viral suppression	Unadjusted model OR (95% CI)	p-Value	Parsimonious adjusted model OR (95% CI)	p-Value						
Virally suppressed prior to index release																	
No	2,744 (44.1%)	2,112 (77.0%)	Referent	Referent	1,190 (43.4%)	Referent											
Yes	2,059 (33.1%)	1,653 (80.3%)	1.23 (0.98–1.54)	0.068	1.302 (63.2%)	2.31 (1.96–2.87)	<0.001	1.94 (1.59–2.37)	<0.001								
Viral load not drawn prior to release	1,424 (22.9%)	1,030 (72.3%)	0.77 (0.61–0.97)	0.029	0.71 (0.56–0.91)	0.006	675 (47.4%)	1.19 (0.96–1.47)	0.117	1.18 (0.95–1.47)	0.130						
Number of medical comorbidities																	
0	3,874 (62.2%)	2,872 (74.1%)	Referent	Referent	1,818 (46.9%)	Referent											
1	1,334 (21.4%)	1,079 (80.9%)	1.49 (1.17–1.90)	0.001	1.29 (1.01–1.66)	0.046	750 (56.2%)	1.48 (1.21–1.83)	<0.001								
≥2	1,019 (16.4%)	844 (82.8%)	1.73 (1.33–2.24)	<0.001	1.29 (0.96–1.74)	0.096	599 (58.8%)	1.64 (1.31–2.07)	<0.001								
Psychiatric need																	
Lower severity score, untreated	2,853 (45.8%)	2,146 (75.2%)	Referent	Referent	1,353 (47.4%)	Referent											
Lower severity score, treated	312 (5.0%)	255 (81.7%)	1.47 (0.97–2.23)	0.069	199 (63.8%)	2.06 (1.38–3.09)	<0.001	1.47 (0.97–2.21)	0.068								
Higher severity score, untreated	1,166 (18.7%)	889 (76.2%)	1.04 (0.80–1.34)	0.772	598 (51.3%)	1.15 (0.91–1.45)	0.233	1.36 (1.07–1.72)	0.011								
Higher severity score, treated	1,896 (30.5%)	1,505 (79.4%)	1.28 (1.02–1.60)	0.035	1,017 (53.6%)	1.31 (1.08–1.59)	0.006	1.07 (0.87–1.31)	0.510								
Addiction severity score during index incarceration																	
1–2	957 (15.7%)	685 (71.6%)	Referent	Referent	425 (44.4%)	Referent											
3	4,030 (66.0%)	3,129 (77.6%)	1.38 (1.07–1.79)	0.013	2,110 (52.4%)	1.38 (1.09–1.75)	0.008										
4–5	1,118 (18.3%)	874 (78.2%)	1.44 (1.05–1.97)	0.024	561 (50.2%)	1.29 (0.96–1.73)	0.091										
Treated for an opioid use disorder during index incarceration																	
No	6,209 (99.7%)	4,779 (77.0%)	Referent	Referent	3,152 (50.8%)	Referent											

(Continued)
Table 3. (Continued)

Variable	Total n (%) †(n = 6,227 6-month periods)	Retention in care over time	Viral suppression over time					
	Row n (%) ‡ with retention	Unadjusted model OR (95% CI)	Parsimonious adjusted model OR (95% CI)	p-Value	Row n (%) ‡ with viral suppression	Unadjusted model OR (95% CI)	Parsimonious adjusted model OR (95% CI)	p-Value
Yes	18 (0.3%)	16 (88.9%)	2.17 (0.35–13.42)	0.405	15 (83.3%)	4.84 (0.71–33.10)	0.108	

p-Values in bold are statistically significant (< 0.05).

†Sample is restricted to 6-month follow-up periods where individuals were alive at the end of the 6-month period. There were 6,227 6-month post-release periods (1,080 individual-based clusters) eligible for analysis, of which there were 4,795 (77.0%) 6-month post-release periods during which at least 1 viral load was drawn (retained in care) and 3,167 (50.9%) 6-month post-release periods in which the last viral level obtained was <400 copies/ml (virologically suppressed).

‡Numbers listed are n (%) out of the total number of 6-month time periods (n = 6,227). Percentages may not sum to 100% due to rounding.

§Numbers listed are the row n (%) of 6-month time periods during which the individual experienced the outcome of retention in care. Percentages should not be expected to sum to 100%.

§Numbers listed are the row n (%) of 6-month time periods during which the individual experienced the outcome of viral suppression. Percentages should not be expected to sum to 100%.

∥Transgender males (n = 1) were included in the male category, and transgender females (n = 2) were included in the female category.

¶Follow-up periods for individuals with missing/unreported marital status (n = 204) were excluded from the bivariate analysis, such that the total n = 6,023.

**Variable refers to the 6-month interval rather than the individual or index incarceration.

††In a sensitivity analysis of probability of viral suppression over time (by Cochran–Armitage test), there was a significant trend toward higher probability of viral suppression with increased time since initial release.

‡‡Follow-up periods where the addiction severity score was never assessed (n = 122) were excluded from the bivariate analysis, such that the total n = 6,105.

OR, odds ratio.

https://doi.org/10.1371/journal.pmed.1002667.t003

engagement in community-based healthcare and to facilitate access to post-release resources like psychiatric and addiction treatment, both of which improve RIC and reduce recidivism [49–54].

Engaging PLWH in the HIV care continuum during and immediately after release significantly impacts longitudinal RIC. PLWH whose VLs were adequately monitored, who were prescribed ART, or who achieved VS before release had better RIC over time. Also, early linkage to care (within 2 weeks) post-release was associated with sustained 3-year RIC as well as RIC and VS over time. Paradoxically, prisons/jails influence longitudinal HIV treatment outcomes, especially when community-based resources are inadequate. Many PLWH likely benefit from CJ-based services as a safety net as long as these services are integrated, continuous, and align health and justice priorities. If jail/prison services are comprehensive and coordinated, jails and prisons can serve as highly effective “patient-centered medical homes” [55]. Despite these opportunities, the uneven and often disjointed care provided in CJ settings and the detrimental medical and social consequences alongside the excessive financial burden associated with mass incarceration in the US favor supporting less costly, integrated community healthcare systems to improve care for PLWH [45,54,56–59].

Having a short index incarceration with subsequent supervised release was associated with increased RIC and VS over time relative to both short and longer incarcerations with unconditional release. PLWH with brief incarcerations may not lose their social and medical community-based ties [60] and consequently, with post-release support from CJ supervision, may better reintegrate back into the community [58]. Conditional release may also facilitate RIC by providing an access point for PLWH to engage in social and medical services, whereas PLWH released on bond may represent a population with greater financial resources or social support that improves their ability to navigate the healthcare system [29].
In randomized trials, transitional case management services for incarcerated PLWH are no better than pre-release discharge planning at improving post-release linkage to care and retention [32,33,61]. Within an integrated prison/jail system, and when targeted to those most in need, case management may require a differentiated service delivery model that caters to PLWH at highest risk for recidivism. Differentiated service delivery is a client-centered approach that simplifies and targets key services (e.g., health insurance and treatment for addiction and psychiatric disorders) needed along the HIV continuum to reduce unnecessary burdens on the health system [33,34,62]. In the absence of such services, multiple stressors and barriers to care can lead to substance use relapse, high-risk behaviors, and suboptimal health-care engagement, such as defaulting from ART, which undermine VS [63–65]. Unlike prior studies, findings here demonstrate that transitional case management is a key enabling factor that is strongly associated with RIC and VS. Despite the important role of case management to facilitate health insurance and community services to improve RIC and VS [32,65], most PLWH (54.8%) did not receive these services, and health insurance coverage remained low (56.3%) over 3 years of follow-up. This indicates an urgent need to expand the provision of case management services both during and after the transition to the community.

When RIC and VS did not significantly improve despite numerous case management visits, it is likely that those PLWH had multiple severe medical and social needs. Thus, the positive effect of case management may be masked by the higher baseline need of those who received these services compared with those who were not targeted to receive case management. Unlike in Connecticut, most states terminate insurance benefits during incarceration [62], with findings here supporting the need to reexamine policies that promote continuation of, reactivation of, or potentially new enrollment into insurance before release.

Unlike previous studies [20,56], IDU transmission risk and high psychiatric need correlated with VS over time. While IDU and psychiatric need were not associated with frequency of transitional case management utilization, such individuals may have received additional psychiatric case management to link and retain them in treatment for psychiatric or substance use disorders, which could have improved VS. Also, some PLWH with an IDU history died early during follow-up, including from drug overdose [66], which limited our ability to clearly assess the role of current or past IDU on longitudinal HIV treatment outcomes.

Other limitations of the study included limited data regarding post-release housing status and psychiatric and substance use disorders. Addiction and psychiatric severity scores were our best indicators for comorbidities that potentially impact RIC in the community. We also could not fully measure brief fluctuations in insurance status.

Strengths of the study included the ability to follow both individuals who were re-incarcerated and those who were not, for an extended period of time, and to account for many factors that changed over time, including health insurance status. Instead of using prescription refill or clinic visit data to approximate RIC and VS, our outcomes were constructed using reliably and systematically reported biological data and used standardized, generalizable, and clinically justifiable definitions of RIC and VS. Defining missing VL data as indicating being out of care and not having VS may have biased findings, but is a standardized analytic convention that provides conservative estimates [40,41,67], given that a very small proportion of PLWH may have moved out of state and not been fully measured despite extensive efforts by CTDPH to cross-check interstate databases. Finally, we minimized typical database linkage challenges through the use of complete databases (aside from psychiatric case management data), reliable variables for individual matching, and CTDPH database managers with considerable experience linking data.

Despite some limitations, this study is, to our knowledge, one of the first to extensively identify correlates of longitudinal RIC and VS for all PLWH in a CJ setting, while simultaneously
describing and accounting for the complex impact of incarceration. RIC decreases markedly after release from prison/jail, but several key factors correlate with improved RIC and VS after release, including provision of HIV care during incarceration, health insurance, case management, and early linkage to care post-release. While re-incarceration and conditional release facilitate engagement in care for some PLWH, our findings strongly indicate that strategies that reduce recidivism and support community-based RIC will yield better treatment outcomes than using re-incarceration as a mechanism to promote RIC in this population. Improving RIC and VS will, however, require policy changes, including expanding health insurance through new enrollments and avoiding suspension; expanding and targeting transitional case management to those at risk for recidivism and poor health outcomes; aligning community supervision (i.e., probation and parole) with healthcare by promoting continued care for HIV, psychiatric disorders, and addiction (which often requires health insurance) to avoid recidivism; and screening for and treating psychiatric and substance use disorders, and continuing these treatments post-release. Such changes in policy will likely positively influence HIV treatment outcomes while diminishing the negative consequences of mass incarceration, especially for racial/ethnic minorities in the US.

Supporting information

S1 Checklist. STROBE checklist.

(DOC)

S1 Table. Characteristics of all 1,094 individuals and their incarceration experiences, stratified based on the frequency of transitional case management services provided during the 3-year follow-up.

(DOCX)

S1 Text. Signed applications for protocol approval from CTDOC and CTDPH, including data on planned analyses.

(PDF)

Acknowledgments

This research was conducted in collaboration with CTDOC and CTDPH. We thank Kathleen Maurer, Patrick Hynes, Cheryl Cepelak, and Heidi Jenkins for assisting with study design, guiding the interpretation of our findings, and fostering the inter-institutional collaborations that made this study possible. We also thank Kirsten Shea, Suzanne Speers, Michael Ostapoff, and Melanie Alvarez for their invaluable assistance with data collection, extraction, and linkage; no compensation was received for these contributions. Finally, we sincerely thank Paula Dellarum for her crucial administrative support.

The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author Contributions

Conceptualization: Kelsey B. Loeliger, Jaimie P. Meyer, Mayur M. Desai, Maria M. Ciarleglio, Colleen Gallagher, Frederick L. Altice.

Data curation: Kelsey B. Loeliger, Jaimie P. Meyer.

Formal analysis: Kelsey B. Loeliger, Jaimie P. Meyer.

Funding acquisition: Kelsey B. Loeliger, Jaimie P. Meyer, Frederick L. Altice.
Investigation: Kelsey B. Loeliger, Jaimie P. Meyer, Frederick L. Altice.

Methodology: Kelsey B. Loeliger, Jaimie P. Meyer, Mayur M. Desai, Maria M. Ciarleglio, Frederick L. Altice.

Project administration: Kelsey B. Loeliger, Jaimie P. Meyer.

Resources: Kelsey B. Loeliger, Jaimie P. Meyer, Colleen Gallagher.

Software: Kelsey B. Loeliger.

Supervision: Jaimie P. Meyer, Mayur M. Desai, Maria M. Ciarleglio, Colleen Gallagher, Frederick L. Altice.

Validation: Kelsey B. Loeliger.

Visualization: Kelsey B. Loeliger.

Writing – original draft: Kelsey B. Loeliger.

Writing – review & editing: Kelsey B. Loeliger, Jaimie P. Meyer, Mayur M. Desai, Maria M. Ciarleglio, Colleen Gallagher, Frederick L. Altice.

References

1. AIDSinfo. Guidelines for the use of antiretroviral agents in HIV-1-infected adults and adolescents. Washington (DC): US Department of Health and Human Services; 2018 [cited 2018 Feb 28]. Available from: https://aidsinfo.nih.gov/contentfiles/glsguidelines/glsguidline_458.pdf.

2. Crawford TN. Poor retention in care one-year after viral suppression: a significant predictor of viral rebound. AIDS Care. 2014; 26(11):1393–9. https://doi.org/10.1080/09540121.2014.920076 PMID: 24848440

3. Mugavero MJ, Westfall AO, Cole SR, Geng EH, Crane HM, Kitahata MM, et al. Beyond core indicators of retention in HIV care: missed clinic visits are independently associated with all-cause mortality. Clin Infect Dis. 2014; 59(10):1471–9. https://doi.org/10.1093/cid/ciu603 PMID: 25091306

4. Tripathi A, Youmans E, Gibson JJ, Duffus WA. The impact of retention in early HIV medical care on viro-immunological parameters and survival: a statewide study. AIDS Res Hum Retroviruses. 2011; 27 (7):751–8. https://doi.org/10.1089/aid.2010.0268 PMID: 21142607

5. Shah M, Perry A, Fisher K, Kapoor S, Grey J, Sharma A, et al. Effect of the US National HIV/AIDS Strategy targets for improved HIV care engagement: a modelling study. Lancet HIV. 2016; 3(3):e140–6. https://doi.org/10.1016/S2352-3018(16)00007-2 PMID: 26939737

6. Skarbinski J, Rosenberg E, Paz-Bailey G, Hall HI, Rose CE, Viall AH, et al. Human immunodeficiency virus transmission at each step of the care continuum in the United States. JAMA Intern Med. 2015; 175 (4):588–96. https://doi.org/10.1001/jamainternmed.2014.8180 PMID: 25789298

7. amfAR. Curbing the HIV epidemic by supporting effective engagement in HIV care. New York: amfAR; 2016 [cited 2018 Sep 7]. Available from: http://www.amfar.org/uploadedFiles/amfarorg/Articles/On_The_Hill2016/DC-2016-Engagement-Policy-Report_081916-October.pdf.

8. Ulett KB, Willig JH, Lin HY, Routman JS, Abroms S, Allison J, et al. The therapeutically implications of timely linkage and early retention in HIV care. AIDS Patient Care STDS. 2009; 23(1):41–9. https://doi.org/10.1089/apc.2008.0132 PMID: 19055408

9. Westergaard RP, Hess T, Astemborski J, Mehta SH, Kirk GD. Longitudinal changes in engagement in care and viral suppression for HIV-infected injection drug users. AIDS. 2013; 27(16):2559–66. https://doi.org/10.1097/QAD.0b013e328363bf2f PMID: 23770493

10. Yehia BR, Rebeiro P, Althoff KN, Agwu AL, Horberg MA, Samji H, et al. Impact of age on retention in care and viral suppression. J Acquir Immune Defic Syndr. 2015; 68(4):413–9. https://doi.org/10.1097/QAI.0000000000000498 PMID: 25559604

11. Rebeiro P, Althoff KN, Buchacz K, Gill J, Horberg M, Krentz H, et al. Retention among North American HIV-infected persons in clinical care, 2000–2008. J Acquir Immune Defic Syndr. 2013; 62(3):356–62. https://doi.org/10.1097/QAI.0b013e318275757a PMID: 23242158

12. Giordano TP, Hartman C, Gifford AL, Backus Li, Morgan RO. Predictors of retention in HIV care among a national cohort of US veterans. HIV Clin Trials. 2009; 10(5):299–305. https://doi.org/10.1310/hct1005-299 PMID: 19906622
13. Rowan SE, Burman WJ, Johnson SC, Connick E, Reirden D, Daniloff E, et al. Engagement-in-care during the first 5 years after HIV diagnosis: data from a cohort of newly HIV-diagnosed individuals in a large US city. AIDS Patient Care STDS. 2014; 28(9):745–82. https://doi.org/10.1089/apc.2013.0340 PMID: 25084559

14. Colasanti J, Kelly J, Pennisi E, Hu YJ, Root C, Hughes D, et al. Continuous retention and viral suppression provide further insights into the HIV care continuum compared to the cross-sectional HIV care cascade. Clin Infect Dis. 2016; 62(5):648–54. https://doi.org/10.1093/cid/cvi41 PMID: 26567263

15. Fleishman JA, Yehia BR, Moore RD, Korthuis PT, Gebo KA. Establishment, retention, and loss to follow-up in outpatient HIV care. J Acquir Immune Defic Syndr. 2012; 60(3):249–59. https://doi.org/10.1097/QAI.0b013e31825b6c96 PMID: 22531758

16. Crepaz N, Tang T, Marks G, Mugavero MJ, Espinoza L, Hall HI. Durable viral suppression and transmission risk potential among persons with diagnosed HIV infection: United States, 2012–2013. Clin Infect Dis. 2016; 63(7):976–83. https://doi.org/10.1093/cid/cwi418 PMID: 27358354

17. Glaze LE, Kaebel D. Correctional populations in the United States, 2013. Washington (DC): Bureau of Justice Statistics; 2014 [cited 2018 Sep7]. Available from: https://www.bjs.gov/content/pub/pdf/cpus13.pdf

18. Dolan K, Wirtz AL, Moazen B, Ndeffo-Mbah M, Galvani A, Kinner SA, et al. Global burden of HIV, viral hepatitis, and tuberculosis in prisoners and detainees. Lancet. 2016; 388(10049):1089–102. https://doi.org/10.1016/S0140-6736(16)30466-4 PMID: 27427453

19. Spaulding AC, Seals RM, Page MJ, Brzozowski AK, Rhodes W, Hammelt TM. HIV/AIDS among inmates of and releases from US correctional facilities, 2006: declining share of epidemic but persistent public health opportunity. PLoS ONE. 2009; 4(11):e7558. https://doi.org/10.1371/journal.pone.0007558 PMID: 19907649

20. Bulsara SM, Wainberg ML, Newton-John TRO. Predictors of adult retention in HIV care: a systematic review. AIDS Behav. 2018; 22(3):752–64. https://doi.org/10.1007/s10461-016-1644-y PMID: 27990582

21. Westergaard RP, Kirk GD, Richesson DR, Galai N, Mehta SH. Incarceration predicts virologic failure for HIV-infected injection drug users receiving antiretroviral therapy. Clin Infect Dis. 2011; 53(7):725–31. https://doi.org/10.1093/cid/cir491 PMID: 21890777

22. Lim S, Harris TG, Nash D, Lennon MC, Thorpe LE. All-cause, drug-related, and HIV-related mortality risk by trajectories of jail incarceration and homelessness among adults in New York City. Am J Epidemiol. 2015; 181(4):261–70. https://doi.org/10.1093/aje/kwu313 PMID: 25660082

23. Pai NP, Estes M, Moodie EE, Reingold AL, Tulsky JP. The impact of antiretroviral therapy in a cohort of HIV infected patients going in and out of the San Francisco county jail. PLoS ONE. 2009; 4(9):e7115. https://doi.org/10.1371/journal.pone.0007115 PMID: 19771176

24. Milloy MJ, Kerr T, Buxton J, Rhodes T, Guillemi S, Hogg R, et al. Dose-response effect of incarceration events on nonadherence to HIV antiretroviral therapy among injection drug users. J Infect Dis. 2011; 203(9):1215–21. https://doi.org/10.1093/infdis/jir032 PMID: 21459814

25. Palepu A, Tyndall MW, Chan K, Wood E, Montaner JS, Hogg RS. Initiating highly active antiretroviral therapy and continuity of HIV care: the impact of incarceration and prison release on adherence and HIV treatment outcomes. Antivir Ther. 2004; 9(5):713–9. PMID: 15535408

26. Meyer JP, Cepeda J, Wu J, Trestman RL, Altice FL, Springer SA. Optimization of human immunodeficiency virus treatment during incarceration: viral suppression at the prison gate. JAMA Intern Med. 2014; 174(5):721–9. https://doi.org/10.1001/jamainternmed.2014.601 PMID: 24687044

27. Milloy MJ, Montaner JS, Wood E. Incarceration of people living with HIV/AIDS: implications for treatment-as-prevention. Curr HIV/AIDS Rep. 2014; 11(3):308–16. https://doi.org/10.1007/s11904-014-0214-z PMID: 24962265

28. Meyer JP, Cepeda J, Springer SA, Wu J, Trestman RL, Altice FL. HIV in people incarcerated in Connecticut prisons and jails: an observational cohort study. Lancet HIV. 2014; 1(2):e77–84. https://doi.org/10.1016/S2352-3018(14)70022-0 PMID: 25473651

29. Baillargeon J, Giordano TP, Rich JD, Wu ZH, Wells K, Pollock BH, et al. Accessing antiretroviral therapy following release from prison. JAMA. 2009; 301(8):846–57. https://doi.org/10.1001/jama.2009.202 PMID: 19244192

30. Baillargeon JG, Giordano TP, Harzke AJ, Baillargeon G, Rich JD, Paar DP. Enrollment in outpatient care among newly released prison inmates with HIV infection. Public Health Rep. 2010; 125(Suppl 1):64–71.

31. Montague BT, Rosen DL, Sammartino C, Costa M, Gutman R, Solomon L, et al. Systematic assessment of linkage to care for persons with HIV released from corrections facilities using existing datasets. AIDS Patient Care STDS. 2016; 30(2):84–91. https://doi.org/10.1089/apc.2015.0258 PMID: 26836237
32. Loeliger KB, Altice FL, Desai MM, Ciarleglio MM, Gallagher C, Meyer JP. Predictors of linkage to HIV care and viral suppression after release from jails and prisons: a retrospective cohort study. Lancet HIV. 2018; 5(2):e96–106. https://doi.org/10.1016/S2352-3018(17)30209-6 PMID: 29191440

33. Althoff AL, Zeleny AE, Meyer JP, Fu J, Brown SE, Vagenas P, et al. Correlates of retention in HIV care after release from jail: results from a multi-site study. AIDS Behav. 2013; 17(Suppl 2):S156–70. https://doi.org/10.1007/s10461-012-0372-1 PMID: 23161210

34. Spaulding AC, Messina LC, Kim BJ, Chung KW, Lincoln T, Teixeira P, et al. Planning for success predicts virus suppressed: results of a non-controlled, observational study of factors associated with viral suppression among HIV-positive persons following jail release. AIDS Behav. 2013; 17(Suppl 2):S203–11. https://doi.org/10.1007/s10461-012-0341-8 PMID: 23076719

35. Subramanian Y, Khan MN, Berger S, Foisy M, Singh A, Woods D, et al. HIV outcomes at a Canadian remand centre. Int J Prison Health. 2016; 12(3):145–56. https://doi.org/10.1108/IJPH-12-2015-0041 PMID: 27548017

36. Health Resources and Services Administration. HIV/AIDS Bureau performance measures. Rockville (MD): Health Resources and Services Administration; 2015 [cited 2018 Sep 7]. Available from: https://hab.hrsa.gov/sites/default/files/hab/About/clinical-quality-management/coremeasures.pdf,

37. Bratzler DW, Normand SL, Wang Y, O’Donnell WJ, Metzky M, Han LF, et al. An administrative claims model for profiling hospital 30-day mortality rates for pneumonia patients. PLoS ONE. 2011; 6(4): e17401. https://doi.org/10.1371/journal.pone.0017401 PMID: 21532758

38. Lindenauer PK, Bernheim SM, Grady JN, Lin Z, Wang Y, Wang Y, et al. The performance of US hospitals as reflected in risk-standardized 30-day mortality and readmission rates for Medicare beneficiaries with pneumonia. J Hosp Med. 2010; 5(6):E12–8. https://doi.org/10.1002/hm.2065626

39. Hu YW, Kinsler JJ, Sheng Z, Kang T, Bingham T, Frye DM. Using laboratory surveillance data to estimate engagement in care among persons living with HIV in Los Angeles County, 2009. AIDS Patient Care STDs. 2012; 26(8):471–8. https://doi.org/10.1089/apc.2011.0371 PMID: 22731500

40. Cohen SM, Hu X, Sweeney P, Johnson AS, Hall HI. HIV viral suppression among persons with varying levels of engagement in HIV medical care, 19 US jurisdictions. J Acquir Immune Defic Syndr. 2014; 67(5):519–27. https://doi.org/10.1097/QAI.0000000000000349 PMID: 25230292

41. Centers for Disease Control and Prevention. Guidance on community viral load: a family of measures, definitions, and method for calculation. Atlanta: Centers for Disease Control and Prevention; 2011.

42. Committee for Medicinal Products for Human Use. Guideline on missing data in confirmatory clinical trials. London: European Medicines Agency; 2010.

43. Gelberg L, Andersen RM, Leake BD. The Behavioral Model for Vulnerable Populations: application to medical care use and outcomes for homeless people. Health Serv Res. 2000; 34(6):1273–302. PMID: 10654830

44. Chen NE, Meyer JP, Avery AK, Draine J, Flanigan TP, Lincoln T, et al. Adherence to HIV treatment and care among previously homeless jail detainees. AIDS Behav. 2013; 17(8):2654–66. https://doi.org/10.1007/s10461-011-0080-2 PMID: 22065234

45. Wildeman C, Wang EA. Mass incarceration, public health, and widening inequality in the USA. Lancet. 2017; 389(10077):1464–7. https://doi.org/10.1016/S0140-6736(17)30259-3 PMID: 28402828

46. Moreno JD, Harding DJ. Incarceration, prisoner reentry, and communities. Annu Rev Sociol. 2014; 40:411–29. https://doi.org/10.1146/annurev-soc-071811-145511 PMID: 25400321

47. McNeil R, Kerr T, Coleman B, Maher L, Milloy MJ, Small W. Antiretroviral therapy interruption among HIV positive people who use drugs in a setting with a community-wide HIV treatment-as-prevention initiative. AIDS Behav. 2017; 21(2):402–9. https://doi.org/10.1007/s10461-016-1470-2 PMID: 27351192

48. Costa M, Montague BT, Solomon L, Sammartino C, Gutman R, Zibman C, et al. Assessing the effect of recent incarceration in prison on hiv care retention and viral suppression in two states. J Urban Health. 2018; 95(4):499–507. https://doi.org/10.1007/s11524-018-0255-5 PMID: 29717402

49. Wilton G, Stewart LA. Outcomes of offenders with co-occurring substance use disorders and mental disorders. Psychiatr Serv. 2017; 68(7):704–9. https://doi.org/10.1176/appi.ps.201500391 PMID: 28292226

50. Kesten KL, Leavitt-Smith E, Rau DR, Shelton D, Zhang W, Wagner J, et al. Recidivism rates among mentally ill inmates: impact of the Connecticut Offender Reentry Program. J Correct Health Care. 2012; 18(1):20–8. https://doi.org/10.1177/1078345811421117 PMID: 22095006

51. Tracy K, Burton M, Nich C, Rounsville B. Utilizing peer mentorship to engage high recidivism substance-abusing patients in treatment. Am J Drug Alcohol Abuse. 2011; 37(6):525–31. https://doi.org/10.3109/00952990.2011.600385 PMID: 21851202
52. Collins O, Vermeiren R, Vahl P, Markus M, Broekaert E, Doreleijers T. Psychiatric disorder in detained male adolescents as risk factor for serious recidivism. Can J Psychiatry. 2011; 56(1):44–50. https://doi.org/10.1177/070674371035600108 PMID: 21324242

53. Wilson AB, Drainie J, Hadley T, Metraux S, Evans A. Examining the impact of mental illness and substance use on recidivism in a county jail. Int J Law Psychiatry. 2011; 34(4):264–8. https://doi.org/10.1016/j.ijlp.2011.07.004 PMID: 21839518

54. Schmitt J, Warner K, Gupta S. The high budgetary cost of incarceration. Washington (DC): Center for Economic and Policy Research; 2010 [cited 2018 Sep 7]. Available from: http://cepr.net/documents/publications/incarceration-2010-06.pdf.

55. Miller WL. Patient-centered medical home (PCMH) recognition: a time for promoting innovation, not measuring standards. J Am Board Fam Med. 2014; 27(3):309–11. https://doi.org/10.3122/jabfm.2014.03.140079 PMID: 24808107

56. Altice FL, Kamarulzaman A, Soriano VV, Schechter M, Friedland GH. Treatment of medical, psychiatric, and substance-use comorbidities in people infected with HIV who use drugs. Lancet. 2010; 376(9738):367–87. https://doi.org/10.1016/S0140-6736(10)60829-X PMID: 20650518

57. Springer SA, Spaulding AC, Meyer JP, Altice FL. Public health implications for adequate transitional care for HIV-infected prisoners: five essential components. Clin Infect Dis. 2011; 53(5):469–79. https://doi.org/10.1093/cid/cir446 PMID: 21844030

58. Haney C. The psychological impact of incarceration: implications for post-prison adjustment. Washington (DC): US Department of Health and Human Services; 2001.

59. McVay D, Schiraldi V, Ziedenberg J. Treatment or incarceration? National and state findings on the efficacy and cost savings of drug treatment versus imprisonment. Washington (DC): Justice Policy Institute; 2004 [cited 2018 Sep 7]. Available from: http://www.justicepolicy.org/uploads/justicepolicy/documents/04-01_rep_mdttreatmentincarceration_ac-dp.pdf.

60. Desmond M. Disposable ties and the urban poor. Am J Sociol. 2012; 117(5):1295–335. https://doi.org/10.1086/663574

61. Booker CA, Flygare CT, Solomon L, Ball SW, Pustell MR, Bazerman LB, et al. Linkage to HIV care for jail detainees: findings from detention to the first 30 days after release. AIDS Behav. 2013; 17(Suppl 2):S128–36. https://doi.org/10.1007/s10461-012-0354-3 PMID: 23224290

62. FamiliesUSA. Medicaid eligibility for people leaving incarceration is smart policy. Washington (DC): FamiliesUSA; 2016 Jul 12 [cited 2017 Aug 6]. Available from: http://familiesusa.org/sites/default/files/product_documents/ENR_Suspension%20v.%20Termination%20Map%20Infographic_07-12-16.pdf.

63. Luther JB, Reichert ES, Holloway ED, Roth AM, Aalsma MC. An exploration of community reentry needs and services for prisoners: a focus on care to limit return to high-risk behavior. AIDS Patient Care STDS. 2011; 25(8):475–81. https://doi.org/10.1089/apc.2010.0372 PMID: 21663540

64. Haley DF, Golin CE, Farel CE, Wohl DA, Scheyett AM, Garrett JJ, et al. Multilevel challenges to engagement in HIV care after prison release: a theory-informed qualitative study comparing prisoners’ perspectives before and after community reentry. BMC Public Health. 2014; 14:1253. https://doi.org/10.1186/1471-2458-14-1253 PMID: 25491946

65. Yehia BR, Stephens-Shields AJ, Fleishman JA, Berry SA, Agwu AL, Metlay JP, et al. The HIV care continuum: changes over time in retention in care and viral suppression. PLoS ONE. 2015; 10(6):e0129376. https://doi.org/10.1371/journal.pone.0129376 PMID: 26086089

66. Loeliger KB, Altice FL, Ciarleglio MM, Rich KM, Chandra DK, Gallagher C, et al. All-cause mortality among people with HIV released from an integrated system of jails and prisons in Connecticut, USA, 2007-14: a retrospective observational cohort study. Lancet HIV. 2018 Sep 6. pii: S2352-3018(18)30175-9. https://doi.org/10.1016/S2352-3018(18)30175-9 [Epub ahead of print] PMID: 30197101

67. Edelman EJ, Tate JP, Fiellin DA, Brown ST, Bryant K, Gandhi N, et al. Impact of defined clinical population and missing data on temporal trends in HIV viral load estimation within a health care system. HIV Med. 2015; 16(6):346–54. https://doi.org/10.1111/hiv.12219 PMID: 25688937