Therapeutic drug monitoring in patients on biologics: lessons from gastroenterology

Konstantinos Papamichael and Adam S. Cheifetz

Purpose of review
To give an overview on the role of therapeutic drug monitoring (TDM) of biologics in patients with inflammatory bowel disease (IBD).

Recent findings
Numerous prospective exposure–response relationship studies and post-hoc analyses of randomized controlled trials show a positive correlation between biologic drug concentrations and favorable clinical outcomes in IBD. These studies also demonstrate that higher drug concentrations appear to be needed to achieve more stringent objective therapeutic outcomes. Reactive TDM rationalizes the management of primary nonresponse and secondary loss of response to antitumor necrosis factor (anti-TNF) therapy and is more cost-effective when compared with empiric dose optimization. Furthermore, recent data suggest that proactive TDM, with the goal of targeting a threshold drug concentration, is associated with better therapeutic outcomes when compared with empiric dose escalation and/or reactive TDM of infliximab or adalimumab. Finally, proactive TDM can also efficiently guide infliximab de-escalation or discontinuation in patients with IBD in remission.

Summary
Reactive TDM is currently considered as standard of care, whereas proactive TDM is emerging as a new therapeutic strategy for better optimizing anti-TNF therapy in IBD. However, more data from prospective studies are needed before a wide implementation of TDM-based algorithms in real life clinical practice for newer biologics.

Keywords
antitumor necrosis factor therapy, biologics, immunogenicity, inflammatory bowel disease, psoriasis, rheumatoid arthritis, therapeutic drug monitoring, ustekinumab, vedolizumab

INTRODUCTION
Biologic therapies are very effective for treating moderate to severe inflammatory bowel diseases (IBD), namely Crohn’s disease and ulcerative colitis. These agents include the tumor necrosis factor inhibitors infliximab, adalimumab, certolizumab pegol and golimumab, the antiintegrin inhibitors vedolizumab and natalizumab, and the IL-12/23 p40 inhibitor ustekinumab [1,2]. On the contrary, not all patients respond to induction therapy, and many others lose response over time [3,4]. Therapeutic drug monitoring (TDM) helps to explain these negative therapeutic outcomes can be attributed to either pharmacokinetic issues, characterized by low drug concentrations with or without the development of antidrug antibodies (ADA), or a mechanistic failure in patients with adequate drug concentrations [5].

Numerous prospective exposure–response relationship studies and post-hoc analyses of randomized controlled trials (RCTs) show a positive correlation between biologic drug concentrations and favorable clinical outcomes in IBD [6–17,18*–20*,21–37,38*,39,40,41*]. These studies in IBD also suggest that higher drug concentrations are required
to achieve more stringent objective therapeutic outcomes (from clinical response to histologic remission) [42,43]. On the other hand, low drug concentrations predispose to ADA formation and treatment failure [44–46].

Reactive TDM is defined as the evaluation of drug concentration and ADA levels in the setting of primary nonresponse or secondary loss of response (LOR) to a biologic agent. The use of reactive TDM has rationalized the management of these unwanted clinical outcomes [47–49] and is more cost-effective when compared with empiric dose escalation [50–52] (Fig. 1). Patients who will benefit from more drug (low drug concentrations) are given it, and those patients who will benefit from another therapy (adequate drug concentrations or high ADA) are switched. Proactive TDM is defined as the evaluation of trough concentration and ADA levels with the goal of optimizing biological therapy to achieve a threshold drug concentration. Recent data suggest that proactive TDM is associated with better therapeutic outcomes when compared with empiric dose optimization and/or reactive TDM of antitumor necrosis factor (anti-TNF) therapy in IBD [53–56,57**,58,59]. Proactive TDM can also effectively guide infliximab de-escalation [60,61] or discontinuation [15,62–64] in patients with IBD in remission TDM (Fig. 2). However, there are perceived knowledge gaps regarding the role of TDM that have hampered the wide implementation of TDM-based algorithms in real-life clinical practice, as reflected also in some of the current guidelines and recommendations (Table 1) [65–70].

The goal of this review is to provide the most up to date information regarding the role of TDM for optimizing biologic therapy in IBD.

EXPOSURE–OUTCOMES RELATIONSHIP STUDIES
Numerous exposure–outcomes relationship studies demonstrate that higher biologic drug concentrations, during both induction and maintenance

FIGURE 1. Definition and role of reactive therapeutic drug monitoring of anti-tumor necrosis factor therapy in inflammatory bowel disease. LOR, loss of response; PNR, primary nonresponse; TDM, therapeutic drug monitoring; TNF, tumor necrosis factor.
therapy, are associated with better therapeutic outcomes in both Crohn’s disease and ulcerative colitis [6–17,18*,20*,21–37,38*,39,40,41*]. Drug thresholds to target may vary depending on the IBD phenotype, investigated therapeutic outcome and type of TDM assay used; and typically, higher concentrations are associated with more stringent outcomes [31,42,43,71,72]. These studies include adult populations as well as pediatrics (Table 2) [7–17]. Furthermore, though not discussed here, there are several exposure–response studies in other immune-mediated inflammatory diseases, such as rheumatoid arthritis, ankylosing spondylitis and psoriasis [35]. Though most of the data relates to anti-TNF therapies, all therapies have been shown to have positive exposure–outcome relationships. We have chosen to highlight only a few of the more recent studies.

A post-hoc analysis of the ACT-1 and 2 (A Safety and Efficacy Study for Infliximab in Patients with Active Ulcerative Colitis) RCTs showed that infliximab concentrations at least 18.6 µg/ml at week 2 and at least 10.6 µg/ml at week 6 were associated with an endoscopic improvement at week 8 [18*]. A post-hoc analysis of the TAILORIX (Drug-concentration vs. Symptom-driven Dose Adaptation of Infliximab in patients with active Crohn’s disease) RCT identified an infliximab threshold of 23.1 µg/ml at week 2 and 10 µg/mL at week 6 discriminating patients with early endoscopic remission at week 12 [19*]. The prospective PANTS (personalized anti-TNF therapy in Crohn’s disease) study showed that the optimal week 14 drug concentrations associated with remission at both week 14 and week 54 were 7 mg/l for infliximab and 12 mg/l for adalimumab [20*]. A recent prospective study showed that a vedolizumab trough concentration cutoff of 16.55 µg/ml at week 14 predicted drug persistence within the first year of therapy [40]. The VISIBLE 1 (Efficacy and Safety of Vedolizumab Subcutaneously as Maintenance Therapy in Ulcerative Colitis) RCT showed that the proportion of patients receiving vedolizumab subcutaneously for maintenance who achieved clinical remission increased with increasing vedolizumab exposure from 50% (quartile 1) to 83% (quartile 4). Similarly, the proportion of patients with endoscopic improvement increased with increasing exposure from 50% (quartile 1) to 89% (quartile 4) [41*]. The prospective multicenter LOVE-Crohn’s disease (LOw countries VEdolizumab in Crohn’s disease) study, including 110 patients with active Crohn’s disease who received open-label vedolizumab (300 mg) infusions at weeks 0, 2 and 6, and every 8 weeks thereafter through week 52, showed that serum concentrations of vedolizumab more than 10 µg/ml at week 22 were associated with endoscopic remission at week 26 [39]. A recent systemic review and meta-analysis showed that in patients with ulcerative colitis, week 6 vedolizumab trough concentrations at least 18.5–20.8 µg/ml, and maintenance trough concentrations at least 9–12.6 µg/ml were associated with favorable clinical outcomes.

FIGURE 2. Definition and role of proactive therapeutic drug monitoring of anti-tumor necrosis factor therapy in inflammatory bowel disease. TDM, therapeutic drug monitoring; TNF, tumor necrosis factor.
Table 1. Current recommendations and guidelines from medical societies/organizations as well as expert groups

Medical society/organization or expert group	Method	Reactive TDM	Proactive TDM	Ref.
AGA	GRADE	In adults with active IBD treated with anti-TNF agents reactive TDM to guide treatment changes is suggested. (conditional recommendation, very low quality of evidence)	In adult patients with quiescent IBD treated with anti-TNF agents, no recommendation regarding the use of routine proactive TDM is made. (knowledge gap)	[65]
BSG	GRADE	Treatment options for failure of initial anti-TNF therapy (increase dose, shorten dosage interval, switch to alternative anti-TNF, or switch to different drug class) may be informed by the clinical context and by measurement of serum drug and ADA concentrations. (Weak recommendation, low-quality evidence). Patients with LOR to anti-TNF therapy may have serum drug and ADA concentrations measured to inform appropriate changes in treatment. (Weak recommendation, moderate-quality evidence)	All IBD patients should be reviewed 2–4 weeks after completing loading doses of anti-TNF therapy to assess response and optimize maintenance dosing based on clinical response and measures such as serum drug and ADA concentrations, blood inflammatory markers, fecal biomarkers or endoscopy. (Good practice recommendation)	[66]
ECCO	GRADE	In CD patients who have lost response to an anti-TNF agent, there is currently insufficient evidence to recommend for or against the use of reactive TDM to improve clinical outcomes. (Weak recommendation, low-quality evidence)	In CD patients in clinical remission under anti-TNF treatment, there is currently insufficient evidence to recommend for or against the use of proactive TDM to improve clinical outcomes as compared with routine care. (Weak recommendation, moderate-quality evidence)	[67]
Australian IBD, consensus working group	Modified Delphi	TDM should be performed in patients with secondary loss-of-response to guide clinical decision-making	In patients in clinical remission following anti-TNF therapy induction, TDM should be considered to guide management. TDM should be considered periodically in patients in clinical remission if the results are likely to impact management	[68]
CAG	GRADE	In patients with CD who have a suboptimal clinical response to anti-TNF induction therapy or LOR to maintenance therapy, we suggest regimen intensification informed by TDM. (Conditional recommendation, very low quality evidence)	N/A	[69]
BRIDGe	Modified Delphi	It is appropriate to order drug/antibody concentration testing for all anti-TNFs in patients with confirmed LOR. It is appropriate to order drug/antibody concentration testing of anti-TNFs at the end of induction in PNRs	It is appropriate to order drug/antibody concentration testing at least once during maintenance for patients on all anti-TNFs. It is appropriate to order drug/antibody concentration testing in responders at the end of induction for all anti-TNFs	[42]
ACG	GRADE	In patients with moderately to severely active UC who are responders to anti-TNF therapy and now losing response, we suggest measuring serum drug levels and ADA (if there is not a therapeutic level) to assess the reason for LOR. (Conditional recommendation, very low quality of evidence)	N/A	[70]

ACG, American College of Gastroenterology; ADA, antidrug antibodies; AGA, American Gastroenterological Association; anti-TNF, antitumor necrosis factor; BRIDGe, Building Research iBD Globally; BSG, British Society of Gastroenterology; CAG, Canadian Association of Gastroenterology; CD, Crohn’s disease; ECCO, European Crohn’s and colitis organization; GRADE, Grading of Recommendations Assessment, Development and Evaluation; IBD, inflammatory bowel disease; LOR, loss of response; N/A, not applicable; PNRs, primary nonresponders; TDM, therapeutic drug monitoring; TNF, tumor necrosis factor; UC, ulcerative colitis.
In addition, a recent post-hoc analysis of the UNIFI (A Study to Evaluate the Safety and Efficacy of Ustekinumab Induction and Maintenance Therapy in Participants With Moderately to Severely Active Ulcerative Colitis) RCT identified a target concentration threshold at least 3.7 mg/ml at week 8 for achievement of clinical response at week 8 and a target concentration threshold at least 1.3 mg/ml for clinical remission at week 44 [38].

REACTIVE THERAPEUTIC DRUG MONITORING

Reactive TDM has rationalized the management of LOR to anti-TNF therapy in IBD. It can stratify patients with subtherapeutic drug concentrations who will respond to dose escalation from those patients who already have enough drug exposure and would benefit from an alternative mechanism of medication from those patients with high ADA that cannot be overcome with dose optimization [47–49]. Yanai et al. [47] showed that at the time of LOR, infliximab concentrations more than 3.8 μg/ml and adalimumab concentrations and more than 4.5 μg/ml identify patients who probably have a mechanistic failure and benefit more from changing out-of-class than dose escalation or switching within drug class. Furthermore, Roblin et al. [49] showed that adalimumab concentrations more than 4.9 μg/ml are associated with failure to a second anti-TNF, thus helping to identify patients likely failing adalimumab due to pharmacodynamic issues who would benefit from a nonanti-TNF agent. In addition, several studies have demonstrated that reactive TDM is more cost-effective [50–52] and is associated with higher rates of endoscopic remission when compared with empiric infliximab dose optimization [73]. Thus, we recommend reactive TDM in patients who develop LOR to anti-TNF therapy. A suggested reactive TDM-based algorithm for optimizing infliximab therapy in IBD is depicted in Fig. 3. As adequate drug concentrations suggest a loss mechanistic effect, in practice we do not abandon infliximab or adalimumab unless drug concentrations are greater than 10–15 μg/ml.

A recent RCT, showed that patients with LOR and antibodies to a first anti-TNF benefit from the use of azathioprine in combination with the second anti-TNF. In these patients the addition of azathioprine was associated with a significant reduction in the risk of developing ADA, low drug concentrations and LOR to a second anti-TNF [74]. Thus, if patients develop ADA to one anti-TNF, the addition on an immunomodulator (IMM) (or proactive TDM) should be recommended with the use of a second anti-TNF. This becomes even more clinically relevant in patients with a genetic predisposition for developing ADA [75]. Though the data for reactive

Table 2. Exposure–outcome relationship data of infliximab in pediatric IBD

IBD type	Treatment time point	Threshold (μg/ml)	Therapeutic outcome and time point	TDM assay	Ref.
CD	Induction (w2)	>9.2	Clinical remission (w14)	ELISA	[7]
CD	Induction (w2)	>26.7	Clinical response (w14)	ELISA	[8]
CD	Induction (w6)	>2.2	Drug retention beyond one year of treatment	ELISA	[7]
CD	Induction (w6)	≥18	CRP < 0.5 mg/dl	ELISA	[8]
CD	Induction (w6)	≥15.9	Clinical response (w14)	ELISA	[8]
CD	Induction (w6)	>8.3	Clinical remission (w14)	ELISA	[9]
CD	Induction (w6)	>9.8	CRP < 0.5 mg/dl	ELISA	[10]
CD	Postinduction (w10)	≥9.1	Drug retention (w52)	HMSA	[11]
CD	Postinduction (w14)	>12.7	Fistula response (w24)	ELISA	[12]
CD/UC	Postinduction (w14)	>5.5	Clinical remission (w54)	HMSA	[13]
CD/UC	Postinduction (w14)	>2	ESR < 18 mm/h	ELISA	[10]
CD/UC	Postinduction (w14)	>3.1	Sustained clinical remission	ELISA	[14]
CD	Maintenance	≥2.5	Relapse after drug withdrawal for remission	ELISA	[15]
CD	Maintenance	>4.9	Biochemical remission	ELISA	[16]
CD	Maintenance	>5	Mucosal healing	ELISA	[16]
CD/UC	Maintenance	>5.4	Endoscopic remission	ELISA	[17]
CD/UC	Maintenance	>1.6	ESR < 18 mm/h	ELISA	[10]

CD, Crohn’s disease; CRP, C-reactive protein; FC, fecal calprotectin; HMSA, homogeneous mobility shift assay; IBD, inflammatory bowel disease; TDM, therapeutic drug monitoring; UC, ulcerative colitis; w, week.
TDM for new biologics is only theoretical at this time, though based on exposure–response studies, makes sense.

PROACTIVE THERAPEUTIC DRUG MONITORING

Proactive TDM for optimizing medications is not a new concept. It has been used for cyclosporine and tacrolimus in treating ulcerative colitis and in solid organ transplantation as well as with various antibiotics (gentamycin and vancomycin). The goal of proactive TDM is to improve response rates and prevent secondary LOR by targeting drug concentrations which are considered to be in the optimal therapeutic range. Proactive TDM of anti-TNF therapy has been associated with better therapeutic outcomes when compared with empiric dose escalation and/or reactive TDM in IBD including a lower risk of relapse, improved clinical remission rates, higher rates of mucosal healing as well as less treatment failure, need for IBD-related surgery or hospitalization, risk of ADA and serious infusion reactions [53–56,57**,58,59]. Most recently, the PAILOT (Paediatric Crohn’s disease Adalimumab-Level-based Optimisation Treatment) RCT randomized 80 biological-naive children with luminal Crohn’s disease who responded to adalimumab induction therapy to proactive TDM or reactive TDM. This study met its primary endpoint and showed that the steroid-free clinical remission rate at week 72 was higher in children undergoing proactive compared with those undergoing reactive TDM [32 (82%) vs. 19 (46%), \(P < 0.001\), respectively] [57**]. Furthermore, the proactive TDM group had a higher rate of the stringent composite remission (defined as corticosteroid-free clinical remission, C-reactive protein \(\leq 0.5\) mg/dl and fecal calprotectin \(\leq 150\) mg/g) throughout week 8–72 when compared with those undergoing reactive TDM [16/38 (42%) vs. 5/40 (12%), \(P = 0.003\), respectively] [57**]. Significantly, in this study 90% of the proactive group required dose-optimization compared with almost 60% of the reactive group. Furthermore, a recent 3-year prospective observational study showed that proactive TDM compared with empirical dosing is associated with a significant reduction in the risk of treatment failure [hazard ratio: 0.51, 95% confidence interval (CI): 0.27–0.92; \(P = 0.037\)], IBD-related surgery (hazard ratio: 0.14, 95% CI: 0.03–0.65; \(P = 0.012\)) and hospitalization (hazard ratio: 0.38, 95% CI: 0.17–0.87; \(P = 0.022\)) [58].

Proactive TDM can also be applied to better guide biologic withdrawal or de-escalation in patients in remission [60–63]. A recent observational study showed that in IBD patients in clinical remission infliximab de-escalation based on TDM (when infliximab concentrations at the time of

FIGURE 3. Reactive therapeutic drug monitoring-based algorithm for optimizing infliximab therapy in inflammatory bowel disease. ATI, antibodies to infliximab; TDM, therapeutic drug monitoring.
de-escalation were >7 μg/ml) was associated with less relapse compared with only clinically based infliximab de-escalation [60]. In our clinical practice, dose de-escalation is typically performed patients in stable clinical remission with an infliximab concentration more than 15 μg/ml. Following dose de-escalation, patients should continue to be followed with proactive TDM to maintain adequate infliximab concentrations and avoid relapse [61].

Proactive TDM can also be used to support the concept of ‘optimized monotherapy’ instead of using combination anti-TNF therapy with an IMM (thiopurines or methotrexate) which poses a risk for serious and opportunistic infections and lymphoma [76]. Two recent observational studies showed that proactive TDM-based infliximab monotherapy is as effective as infliximab combination therapy with an IMM [77,78]. This concept is further reinforced by a recent post-hoc analysis of the SONIC (Study of Biologic and IMM Naive Patients in Crohn Disease) RCT which demonstrated that patients stratified by infliximab concentration quartiles have comparable outcomes regardless of concomitant azathioprine [79]. In our clinical practice, we perform proactive TDM, typically optimized monotherapy, with infliximab and adalimumab. For infliximab our goal threshold is typically 5–10 μg/ml, but in certain scenarios may be as high as 15 for infliximab. For adalimumab, our goal threshold is typically more than 10 μg/ml. If not performing optimized mono-

therapy with anti-TNF, patients with IBD should be on a concomitant IMM to decrease ADA and improve outcomes.

However, before a wide implementation of TDM-based algorithms in real life clinical practice, several knowledge gaps need to be addressed, including when to measure biologic drug concentrations (peak vs. intermediate vs. trough; induction vs. postinduction concentrations) and what are the optimal drug concentrations to target (depending on the therapeutic outcome, IMM phenotype and type of TDM assay used). Moreover, the detection, quantification and interpretation of ADA can be challenging depending largely on the analytical properties of the assay used [80]. For example the previously established cutoff of 8 μg/ml with the first-generation ELISA seems to correspond to the cutoff of 374 ng/ml with the second-generation ELISA and a cutoff of 119 ng/ml in the ready-to-

use ELISA kit [81]. In addition, more data from well designed prospective studies and RCTs are also needed. For example, the NOR-DRUM (NORwegian DRUg Monitoring) randomized, open, controlled, parallel-group, comparative, multicentre, national, superiority, phase IV study will aim to assess the effectiveness of TDM in patients with rheumatoid arthritis, psoriatic arthritis, spondyloarthritis, ulcerative colitis, Crohn’s disease and psoriasis. Participants will be randomized 1:1 to either TDM of infliximab (intervention group) or to standard treatment with infliximab without TDM (control group) [82]. Finally, future perspectives to better optimize TDM include the incorporation of pharmacokinetic dashboard models and the use of rapid point of care assays for an early drug optimization [83,84].

CONCLUSION

Many studies show the positive correlation of drug concentrations and outcomes. Currently, reactive TDM is considered the standard of care, whereas proactive TDM is emerging as a new therapeutic strategy for better optimizing anti-TNF therapy in IBD. However, more data from prospective studies are needed before a wide implementation of TDM-based algorithms in real life clinical practice for newer biologics.

Acknowledgements

None.

Financial support and sponsorship

K.P. is supported by Ruth L. Kirschstein NRSA Institutional Research Training Grant ST32DK007760-18 from National Institutes of Health (NIH).

Conflicts of interest

K.P. received a lecture fee from Mitsubishi Tanabe Pharma. A.S.C.: received a consultancy fee from Janssen, Abbvie, Takeda, Pfizer, Samsung, Arena, Baceaim, EMD Serono, Arsanis, Grifols, Prometheus; and research support from Inform Diagnostics. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the article apart from those disclosed.

REFERENCES AND RECOMMENDED READING

Papers of particular interest, published within the annual period of review, have been highlighted as:

- of special interest
- of outstanding interest

1. Katsanos KH, Papamichael K, Feuerstein JD, et al. Biological therapies in inflammatory bowel disease: beyond anti-TNF therapies. Clin Immunol 2019; 206:9–14.

2. Papamichael K, Lin S, Moore M, et al. Infliximab in inflammatory bowel disease. Ther Adv Chronic Dis 2019; 10:2040622319838443.

3. Sparrow MP, Papamichael K, Ward MG, et al. Therapeutic drug monitoring of biologics during induction to prevent primary non-response. J Crohns Colitis 2019; doi: 10.1093/ecco-jcc/jjz162. [Epub ahead of print]

4. Fine S, Papamichael K, Cheifetz AS. Ecology and management of lack or loss of response to anti-tumor necrosis factor therapy in patients with inflammatory bowel disease. Gastroenterol Hepatol 2019; 15:656–665.
Spondyloarthropathies

5. Papamichael K, Cheifetz AS. Therapeutic drug monitoring in inflammatory bowel disease: for every patient and every drug? Curr Opin Gastroenterol 2019; doi: 10.1097/MOG.0000000000000536. [Epub ahead of print]
6. Ververidis N, Dreessen E, Papamichael K, Dubinsky M, when, and for whom should we perform therapeutic drug monitoring? Clin Gastroenterol Hepatol 2020; 18:1291–1299.
7. Ungar B, Gidai Y, Yavoor M, et al. Association between infliximab drug and antibody levels and therapy outcome in pediatric inflammatory bowel diseases. J Pediatr Gastroenterol Nutr 2018; 67:507–512.
8. Clarkston W, Tsai YT, Jackson K, et al. Development of infliximab target concentrations during induction in pediatric Crohn disease patients. J Pediatr Gastroenterol Nutr 2019; 69:68–74.
9. Courbette O, Aupiais C, Viala J, et al. Trough levels of infliximab at w6 are predictive of remission at w14 in pediatric Crohn disease. J Pediatr Gastroenterol Nutr 2020; 70:310–317.
10. Choi SY, Kang B, Choe TH. Serum infliximab cutoff trough level values for maintaining hematological remission in pediatric inflammatory bowel disease. Gut Liver 2019; 13:541–548.
11. Stein R, Lee D, Leonard MB, et al. Serum infliximab, antidrug antibodies, and tumor necrosis factor predict sustained response in pediatric Crohn’s disease. Inflamm Bowel Dis 2016; 22:1370–1377.
12. El-Mayary W, Walters TD, Huynh HQ, et al. Higher postinduction infliximab trough levels are associated with healing of fistulating perianal Crohn’s disease in pediatric patients. Inflamm Bowel Dis 2018; 24:1709–1713.
13. Singh N, Rosenthal CJ, Melody GD, et al. Early infliximab trough levels are associated with persistent remission in pediatric patients with inflammatory bowel disease. Inflamm Bowel Dis 2018; 24:1709–1713.
14. Naviglia S, Lacorte D, Lucafö M, et al. Causes of treatment failure in children with inflammatory bowel disease treated with infliximab: a pharmacokinetic study. J Pediatr Gastroenterol Nutr 2019; 68:33–44.
15. Kang B, Choi SY, Choi YO, et al. Subtherapeutic infliximab trough levels and complete mucosal healing are associated with sustained clinical remission after infliximab cessation in pediatric-onset Crohn’s disease patients treated with combined immunosuppressive therapy. J Crohns Colitis 2018; 12: 644–652.
16. Kang B, Choi SY, Choi YO, et al. Infliximab trough levels are associated with mucosal healing during maintenance treatment with infliximab in pediatric Crohn’s disease. J Crohns Colitis 2019; 13:189–197.
17. van Hoeve K, Dreessen E, Hoffman I, et al. Higher infliximab trough levels are associated with better outcome in paediatric patients with inflammatory bowel disease. J Crohns Colitis 2019; 12:1316–1325.
18. Vande Casteele N, Jeeyarajah J, Jarath V, et al. Infliximab exposure–response relationship and thresholds associated with endoscopic healing in patients with ulcerative colitis. Clin Gastroenterol Hepatol 2019; 17:1814–1821.
19. This is a post-hoc analysis of the ACT-1 and 2 (A Safety and Efficacy Study for Ustekinumab Exposure–Outcome analysis in Crohn’s disease only in part explains limited endoscopic remission rates. J Crohns Colitis 2019; 13:864–872.
20. Soufflet N, Bocchiotti G, Roblin X, et al. Concentrations of ustekinumab during induction therapy associate with remission in patients with Crohn’s disease. Gastroenterology 2018; 154:1660–1671.
21. Verstockt B, Dreessen E, Normant M, et al. Ustekinumab exposure–outcome analysis in Crohn’s disease only in part explains limited endoscopic remission rates. J Crohns Colitis 2019; 13:864–872.
22. Verstockt B, Dreessen E, Normant M, et al. Ustekinumab exposure–outcome analysis in Crohn’s disease only in part explains limited endoscopic remission rates. J Crohns Colitis 2019; 13:864–872.
23. Yarur AJ, Kangala V, Stein DJ, et al. Higher infliximab trough levels are associated with perianal fistula healing in patients with Crohn’s disease. Aliment Pharmacol Ther 2017; 45:933–940.
24. Ungaro RC, Yarur A, Jossen J, et al. Higher trough vedolizumab concentrations during maintenance therapy are associated with corticosteroid-free remission in inflammatory bowel disease. J Crohns Colitis 2019; 13: 963–969.
25. Yarur AJ, Brus A, Naik S, et al. Vedolizumab concentrations are associated with long-term endoscopic remission in patients with inflammatory bowel diseases. Dig Dis Sci 2019; 64:1651–1659.
26. Ungar B, Kopylov U, Yavoor M, et al. Association of vedolizumab level, anti-vedolizumab antibodies, and anti-TNF antibodies with relapse in patients with inflammatory bowel disease. Clin Gastroenterol Hepatol 2018; 16:697–705.e7.
27. Papamichael K, Vogelzang E, Lambert J, et al. Therapeutic drug monitoring with biologic agents in immune mediated inflammatory diseases. Expert Rev Clin Immunol 2019; 15:837–848.
28. Feng T, Chen B, Ungar B, et al. Association of infliximab trough levels with mucosal healing in Crohn’s disease: higher drug exposure is required postinduction than during maintenance treatment. Inflamm Bowel Dis 2019; 25:1815–1821.
29. Singh S, Dalul PS, Vande Casteele N, et al. Systematic review with meta-analysis: association between vedolizumab trough concentration and clinical outcomes in patients with inflammatory bowel diseases. Aliment Pharmacol Ther 2019; 50:848–857.
30. Adedokun OK, Xu Z, Marano C, et al. Ustekinumab pharmacokinetics and exposure response in a phase 3 randomized trial of patients with ulcerative colitis: ustekinumab PK and exposure-response in UC. Clin Gastroenterol Hepatol 2019; doi: 10.1016/j.cgh.2019.11.059. [Epub ahead of print]
31. This is a post-hoc analysis of the UNIFI (A Study to Evaluate the Safety and Efficacy of Ustekinumab Induction and Maintenance Therapy in Participants With Moderately to Severely Active Ulcerative Colitis) RCT identifying a target concentration threshold at least 3.7 μg/mL at week 8 for achievement of clinical response at week 8 and a target concentration threshold at least 1.3 μg/mL for clinical remission at week 44.
32. Löwenberg M, Vermeire S, Mostafavi N, et al. Vedolizumab induces endoscopic and histologic remission in patients with Crohn’s disease. Gastroenterology 2019; 157:987–1000.
33. Guidi L, Pugliese D, Tonucci TP, et al. Early vedolizumab trough levels predict treatment persistence over the first year in inflammatory bowel disease. United European Gastroenterol J 2019; 7:1189–1197.
34. Sandborn WJ, Baert F, Danese S, et al. Efficacy and safety of vedolizumab in anti-TNF-naive patients with active luminal Crohn’s disease: a prospective, multicentre, cohort study. Lancet Gastroenterol Hepatol 2019; 4:341–353. The findings of the PANTS (Personalised antitumor necrosis factor (anti-TNF) therapy in Crohn’s disease) is a prospective observational study showing that the optimal week 14 drug concentrations associated with remission at both week 14 and week 54 were 7 mg/l for infliximab and 12 mg/l for adalimumab.
35. Papamichael K, Rakowsky S, Rivera C, et al. Association between serum infliximab trough concentrations during maintenance therapy and biochemistry, endoscopic and histologic remission in Crohn’s disease. Inflamm Bowel Dis 2018; 24:2296–2271.
36. Papamichael K, Rakowsky S, Rivera C, et al. Infliximab trough concentrations during maintenance therapy are associated with endoscopic and histologic healing in ulcerative colitis. Aliment Pharmacol Ther 2017; 47:478–484.
37. Juncadella A, Papamichael K, Vaughn BP, Cheifetz AS. Maintenance adalimumab concentrations are associated with biochemical, endoscopic and histologic remission in inflammatory bowel disease. Dis Dig Sci 2018; 63:3067–3073.
38. Vande Casteele N, Feagan BG, Vermeire S, et al. Exposure–response relationship of certolizumab pegol induction and maintenance therapy in patients with Crohn’s disease. Aliment Pharmacol Ther 2018; 47:229–237.
39. Osterman MT, Rosario M, Lasch K, et al. Vedolizumab exposure levels and clinical outcomes in ulcerative colitis: determining the potential for dose individualisation. Aliment Pharmacol Ther 2018; 49:408–418.
40. Dreessen E, Verstockt B, Bian S, et al. Evidence to support monitoring of vedolizumab trough concentrations in patients with inflammatory bowel diseases. Clin Gastroenterol Hepatol 2018; 16:1937–1946.
41. Pouillon L, Rousseau H, Busby-Verner H, et al. Vedolizumab trough levels and histological healing during maintenance therapy in ulcerative Colitis. J Crohns Colitis 2019; 13:970–975.
42. Adedokun OK, Xu Z, Gaskin C, et al. Pharmacokinetics and exposure response relationships of ustekinumab in patients with Crohn’s disease. Gastroenterology 2018; 154:1660–1671.
43. Verstockt B, Dreessen E, Normant M, et al. Ustekinumab exposure–outcome analysis in Crohn’s disease only in part explains limited endoscopic remission rates. J Crohns Colitis 2019; 13:864–872.
Therapeutic drug monitoring in patients on biologics Papamichael and Cheifetz

49. Robin X, Rinaudo M, Del Tedesco E, et al. Development of an algorithm incorporating pharmacokinetics of adalimumab in inflammatory bowel diseases. Am J Gastroenterol 2014; 109:1250–1256.

50. Steenholt C, Brynskov J, Thomsen OO, et al. Individualised therapy is more cost-effective than dose intensification in patients with Crohn’s disease who lose response to anti-TNF treatment: a randomised, controlled trial. Gut 2014; 63:919–927.

51. Wu Y, Lin B, Thilakanathan C, et al. Therapeutic drug monitoring in inflammatory bowel disease reduces unnecessary use of infliximab with substantial associated cost-savings. Intern Med J 2019; doi: 10.1111/imj.14644. [Epub ahead of print].

52. Guidi L, Pugliese D, Panici Tonucci T, et al. Therapeutic drug monitoring is more cost-effective than a clinically-based approach in the management of loss of response to infliximab in inflammatory bowel disease: an observational multicentre study. J Crohns Colitis 2018; 12:1079–1088.

53. Vande Castelee N, Ferrante M, Van Assche G, et al. Trough concentrations of infliximab guide dosing for patients with inflammatory bowel disease. Gastroenterology 2015; 148:1320–1329.e3.

54. Papamichael K, Vayaravelu RK, Vaughn BP, et al. Proactive infliximab monitoring following reactive testing is associated with better clinical outcomes than reactive testing alone in patients with inflammatory bowel disease. J Crohns Colitis 2018; 12:804–810.

55. Papamichael K, Juncadella A, Wong D, et al. Proactive therapeutic drug monitoring of adalimumab is associated with better long-term outcomes compared to standard of care in patients with inflammatory bowel disease. J Crohns Colitis 2019; 13:976–981.

56. Papamichael K, Chaciu KA, Vajarelou RK, et al. Improved long-term outcomes of patients with inflammatory bowel disease receiving proactive compared with reactive monitoring of serum concentrations of infliximab. Clin Gastroenterol Hepatol 2017; 15:1580–1588.e3.

57. Assa A, Matar M, Turner D, et al. Proactive monitoring of adalimumab trough concentration associated with increased clinical remission in children with Crohn’s disease compared with reactive monitoring. Gastroenterology 2019; 157:985–996.e2.

The PAILOT (Paediatric Crohn’s disease Adalimumab-Level-based Optimisation Treatment) is a RCT showing that steroid-free clinical remission rate at week 72 was higher in the proactive compared to the reactive therapeutic drug monitoring group.

58. Fernandes SR, Bernardo S, Simo R, et al. Proactive infliximab drug monitoring is superior to conventional management in inflammatory bowel disease. Inflamm Bowel Dis 2020; 26:263–270.

59. Sanchez-Hernandez JG, Rembe P, Martin-Suarez A, et al. A three-year prospective study of a multidisciplinary early proactive therapeutic drug monitoring program of infliximab treatments in inflammatory bowel disease. Br J Clin Pharmacol 2020; doi: 10.1111/bcp.14229. [Epub ahead of print].

60. Lucidarme C, Petitcollin A, Brochard C, et al. Predictors of relapse following infliximab des-escalation in patients with inflammatory bowel disease: the value of a strategy based on therapeutic drug monitoring. Aliment Pharmacol Ther 2019; 49:147–154.

61. Petitcollin A, Brochard C, Siproudhis L, et al. Pharmacokinetic parameters of infliximab influence the rate of relapse after des-escalation in adults with inflammatory bowel diseases. Clin Pharmacol Ther 2019; 106:605–615.

62. Papamichael K, Vande Casteele N, Gils A, et al. Long-term outcome of patients with Crohn’s disease who discontinued infliximab therapy upon clinical remission. Clin Gastroenterol Hepatol 2015; 13:1103–1110.

63. Bots SJ, Kuin S, Ponsioen CY, et al. Relapse rates and predictors for relapse in a real-life cohort of IBD patients after discontinuation of anti-TNF therapy. Scand J Gastroenterol 2019; 54:281–288.

64. Chapman TP, Gomes CF, Louis E, et al. Des-escalation of immunomodulator and biological therapy in inflammatory bowel disease. Lancet Gastroenterol Hepatol 2020; 5:63–79.

65. Feuerstein JD, Nguyen GC, Kugler SS, et al. American Gastroenterological Association Institute guideline on therapeutic drug monitoring in inflammatory bowel disease. Gastroenterology 2017; 153:827–834.

66. Lamb CA, Kennedy NA, Raine T, et al. British Society of Gastroenterology consensus guidelines on the management of inflammatory bowel disease in adults. Gut 2019; 68:s1–s106.

67. Torres J, Bonovas S, Doherty G, et al. ECCO guidelines on therapeutics in crohn’s disease: medical treatment. J Crohns Colitis 2020; 14:4–22.

68. Mitrev N, Vande Casteele N, Seow CH, et al. Review article: consensus statements on therapeutic drug monitoring of antitumour necrosis factor therapy in inflammatory bowel diseases. Aliment Pharmacol Ther 2017; 46:1037–1053.

69. Mack DR, Benchimol EI, Critch J, et al. Canadian association of gastroenterology clinical practice guideline for the medical management of pediatric luminal Crohn’s disease. Gastroenterology 2019; 157:320–348.

70. Rubin DT, Ananthakrishnan AN, Siegel CA, et al. ACG clinical guideline: ulcerative colitis in adults. Am J Gastroenterol 2019; 114:384–413.

71. Clarke WT, Papamichael K, Castelee NW, et al. Infliximab and adalimumab concentrations may vary between the enzyme-linked immunosorbent assay and the homogeneous mobility shift assay in patients with inflammatory bowel disease: a prospective cross-sectional observational study. Inflamm Bowel Dis 2019; 25:e143–e145.

72. Gibson DJ, Ward MG, Rentisch C, et al. Review article: determination of the therapeutic range for therapeutic drug monitoring of adalimumab and infliximab in patients with inflammatory bowel disease. Aliment Pharmacol Ther 2020; 51:612–628.

73. Kelly OB, Donnell SO, Stempak JM, et al. Therapeutic drug monitoring to guide infliximab dose adjustment is associated with better endoscopic outcomes than clinical decision making alone in active inflammatory bowel disease. Inflamm Bowel Dis 2017; 23:1202–1209.

74. Robin X, Willert N, Boschetti G, et al. Addition of azathioprine to the switch of anti-TNF in patients with IBD in clinical relapse with undetectable anti-TNF trough levels and antidrug antibodies: a prospective randomised trial. Gut 2020; doi: 10.1136/gutjnl-2019-319758. [Epub ahead of print].

The RCT demonstrated that in patients with loss of response to a first anti-TNF due to immunogenicity the use of azathioprine in combination with the second anti-TNF was associated with a significant reduction in the risk of developing antidrug antibodies and low drug concentrations.

75. Sazonov A, Kennedy NA, Moutsianas L, et al. HLA-DQA1*0105 carriage associated with development of antidrug antibodies to infliximab and adalimumab in patients with Crohn’s disease. Gastroenterology 2020; 158:189–199.

76. Papamichael K, Mantzaris GJ, Peyrin-Biroulet L. A safety assessment of antitumor necrosis factor alpha therapy for treatment of Crohn’s disease. Expert Opin Drug Saf 2016; 15:493–501.

77. Lega S, Phan BL, Rosenthal CJ, et al. Proactively optimized infliximab monotherapy is as effective as combination therapy in IBD. Inflamm Bowel Dis 2019; 25:134–141.

78. Drobne D, Kurent T, Golob S, et al. Optimised infliximab monotherapy is as effective as optimised combination therapy, but is associated with higher drug consumption in inflammatory bowel disease. Aliment Pharmacol Ther 2019; 49:880–889.

79. Colombel JF, Aderkouen OJ, Gasink C, et al. Combination therapy with infliximab and azathioprine improves infliximab pharmacokinetic features and efficacy: a post hoc analysis. Clin Gastroenterol Hepatol 2019; 17:1525–1532.e1.

This is a post-hoc analysis of the SONIC (Study of Biologic and Immunomodulator Naive Patients in Crohn Disease) RCT which demonstrated that patients stratified by infliximab concentration quantiles had similar outcomes irrespective of concomitant azathioprine.

80. Vande Castelee N. Assays for measurement of TNF antagonists in practice. Frontline Gastroenterol 2017; 8:236–242.

81. Imbrechts M, Van Stappen T, Compromile G, et al. Anti-infliximab antibodies: How to compare old and new data? J Pharm Biomed Anal 2020; 177:112842.

82. Syversen SW, Grøt GL, Jørgensen KK, et al. Therapeutic drug monitoring of infliximab compared to standard clinical treatment with infliximab: study protocol for a randomised, controlled, open, parallel-group, phase IV study (the NOR-DRUM study). Trials 2020; 21:13.

83. Strik A, Berends S, Moul D, et al. Dashboard driven vs. conventional dosing of infliximab in inflammatory bowel disease patients: the PRECISION trial. J Crohn’s Colitis 2019; 13:5063.

84. Verstockt B, Moors G, Bian S, et al. Influence of early adalimumab serum levels on immunogenicity and long-term outcome of anti-TNF naïve Crohn’s disease patients: the usefulness of rapid testing. Aliment Pharmacol Ther 2018; 48:731–739.