New Exponential Stability Criteria for Certain Neutral Integro-Differential Equations

Melek Gözen

Erciş Management Faculty, Van Yüzüncü Yıl University 65080, Van – Turkey

Geliş / Received: 25/10/2019, Kabul / Accepted: 21/02/2020

Abstract

In this work, the exponential stability of zero solution of some neutral integro-differential equations of the first order (NIDE) with discrete and distributed time-varying delays is discussed. A new result that has sufficient conditions on the exponential stability of zero solution is proved by aid a new Lyapunov-Krasovskii functional, the Leibniz-Newton formula and a matrix inequality. The result of this paper extends and improves some former results on the topic in the literature.

Keywords: Neutral differential equation, first order, exponential stability, time-varying delay, the direct method of Lyapunov

1. Introduction

It is known that neutral differential equations are retarded systems that often appear in many various scientific areas such as physics, biology, chemistry, biophysics, mechanics, aerodynamics, economy, atomic energy, control theory, information theory, population dynamics, electrodynamics of complex media and so on. Therefore, qualitative behaviors of solutions NIDEs, stability, boundedness, convergence, instability, integrability, globally existence of solutions, etc., have been extensively investigated in the literature by this time. For a comprehensive treatment of these qualitative properties of solutions of NIDEs and some applications, we refer the readers to the papers or books of Hale et al (1993), Boyd et al (1994), Agarwal and Grace (2000), El-Morshedy and Gopalsamy (2000), Fridman (2001), Fridman (2002), Gu et al (2003), Park (2004), Kwon and Park (2006), Sun and Wang (2006), Kwon and Park (2008), Park and Kwon (2008), Deng et al (2009), Liao et al (2009), Li

*Corresponding Author: melekozen2013@gmail.com
(2009), Nam and Phat (2009), Rojsiraphisal and Niamsup (2010), Chen et al (2011), Chen and Huabion (2012), Tuńc and Altun (2012), Tuńc (2013), Pinjai and Mukdasai (2013), Li and Fu (2013), Keadnarmol et al (2014), Chatbupapan et al (2016), Gözen and Tuńc (2017a and b), Tuńc and Mohammed (2017), Gözen and Tuńc (2018), Tuńc and Tuńc (2018), Hristova and Tuńc (2019), Slyn’ko and Tuńc (2019) and the references can be found in these sources.

In a particular case, we should mention the following related paper on the qualitative behaviors of the solutions of NIDEs.
Chatbupapan et al (2006) considered a scalar NIDE with mixed interval time varying delays:

\[
\frac{d}{dt}\{x(t) + px(t - \tau(t))\} = -ax(t) + b\tanh x(t - \sigma(t)) + c \int_{t-\rho(t)}^{\cdot} x(s)ds, \; t \geq 0. \tag{1.1}
\]

Chatbupapan et al. (2006) discussed the delay-dependent exponential stability of solutions of NIDE (1.1). Based on a class of Lyapunov-Krasovskii functionals, a model transformation, the decomposition technique of constant coefficients, the Leibniz-Newton formula and linear matrix inequality (LMI), sufficient conditions are established to guarantee the exponentially stability of the zero of NIDE (1.1) by Chatbupapan et al. (2006)

In addition, in this paper a few numerical examples are given to illustrate the effectiveness and applicability of the established conditions.

Motivated by the results of Chatbupapan et al. (2006) and the above mentioned works, we consider the following scalar NIDE with variable delays of the form

\[
\frac{d}{dt}\{x(t) + px(t - \tau(t))\} \\
= -h(x) + b(t)\tanh x(t - \sigma(t)) + \int_{t-\rho(t)}^{\cdot} C(t,s)x(s)ds, \tag{1.2}
\]

where \(t \in \mathbb{R}^+ \), \(\mathbb{R}^+ = [0,\infty) \), \(b(t) \) is positive continuous function, \(C(t,s) \) is a continuous function for \(0 \leq s \leq t < \infty \) such that

\[
|C(t,s)| < 1, \quad p \text{ is a real constant with } |p| < 1, \quad \tau(t), \; \sigma(t) \text{ and } \rho(t) \text{ are continuously differentiable functions such that}
\]

\[
0 \leq \tau_1 \leq \tau(t) \leq \tau_2, \quad \dot{\tau}(t) \leq \tau_d < \infty,
\]

\[
0 \leq \sigma_1 \leq \sigma(t) \leq \sigma_2, \quad \dot{\sigma}(t) \leq \sigma_d < \infty,
\]

\[
0 \leq \rho_1 \leq \rho(t) \leq \rho_2,
\]

where \(\tau_1, \tau_2, \sigma_1, \sigma_2, \rho_1, \rho_2, \tau_d \) and \(\sigma_d \) are given positive real constants.

Let

\[
h_i(x) = \begin{cases}
 h(x), & x \neq 0, \\
 h'(0), & x = 0,
\end{cases}
\]

such that

\[
h'(x) \geq 1, \quad x \neq 0.
\]

For each solution \(x(t) \) of (1.2), we assume the initial condition

\[
x_0(t) = \phi(t), \quad t \in [-w,0],
\]

where \(\phi \in C([-w,0],\mathbb{R}) \) and

\[
w = \max\{\tau_2,\sigma_2,\rho_2\}.
\]

In this paper, we prove an exponential stability theorem, which included sufficient conditions, such that the zero solution of NIDE (1.2) is exponential stability. To prove that theorem we benefit from the Lyapunov second method. For this define a new Lyapunov functional such that it is positive definite and its derivative along the solutions of NIDE (1.2) is negative definite. By this work, our aim is extend and improve some results related in the literature.

Definition 1.1 (Kwon and Park (2006)). The zero solution of equation (1.2) is exponentially stable, if there exist positive constants \(\alpha, \beta \) such that, for each \(\phi(t) \in C([-w,0],\mathbb{R}) \), the solution \(x(t,\phi) \) of equation NIDE (1.2) satisfies

\[
\|x(t,\phi)\| \leq \beta \|\phi\|e^{-\alpha t}, \quad t \geq 0.
\]
Lemma 1.1 (Gu et al. (2003), [Jensen’s inequality]). For any symmetric positive definite matrix Q, positive real number h and vector function $\dot{x}(t):[-h,0] \rightarrow \mathbb{R}^n$ the following integral is well defined

$$-h \int_0^h \dot{x}^T (s + t) Q \dot{x}(s + t) ds \\
\leq - \left(\int_{-h}^0 \dot{x}(s + t) ds \right)^T Q \left(\int_{-h}^0 \dot{x}(s + t) ds \right).$$

Lemma 1.2 (Gu et al. (2003)). For any constant symmetric positive definite matrix $Q \in \mathbb{R}^{n \times n}$, $h(t)$ a discrete time-varying delay with $0 < h_1 \leq h(t) \leq h_2$, the vector function $w: [-h_2,0] \rightarrow \mathbb{R}^n$ such that the integrations concerned are well defined, we have

$$[h_2 - h_1] \int_{-h_2}^{h_2} w^T(s)Qw(s)ds \\
\leq - \int_{-h_1}^{h_1} w^T(s)Q \int_{-h_1}^{h_1} w(s)ds \\
- \int_{-h_2}^{h_2} w^T(s)Q \int_{-h_2}^{h_2} w(s)ds.$$

where $h_1, h_2 \in R$.

We now investigate the exponential stability of zero solution of NIDE (1.2). It is clear that

$$0 = x(t) - x(t - \tau(t)) - \int_{t-\tau(t)}^{t} \dot{x}(s)ds$$

(1.3)

and

$$0 = x(t) - x(t - \gamma \tau(t)) - \int_{t-\gamma \tau(t)}^{t} \dot{x}(s)ds,$$

(1.4)

where γ is a given positive real constant. Then, we have

$$0 = r_1 x(t) - r_1 x(t - \tau(t)) - r_1 \int_{t-\tau(t)}^{t} \dot{x}(s)ds$$

(1.5)

and

$$0 = r_2 x(t) - r_2 x(t - \gamma \tau(t)) - r_2 \int_{t-\gamma \tau(t)}^{t} \dot{x}(s)ds,$$

(1.6)

where $r_1, r_2 \in R$ will be chosen later. By equalities (1.3)-(1.6), NIDE (1.2) can be written as the following form

$$\frac{d}{dt} \left[p_1 x(t) + p_2 x(t - \tau(t)) + x(t - \gamma \tau(t)) \right] \\
+ \int_{t-\tau(t)}^{t} \dot{x}(s)ds - p_1 \int_{t-\tau(t)}^{t} \dot{x}(s)ds \\
= - (a_1 - r_1 - r_2) h(x(t)) - (a_2 + r_1) h(x(t - \tau(t))) \\
- (a_2 + r_1) \int_{t-\tau(t)}^{t} (h(x(s)))' ds - r_2 h(x(t - \gamma \tau(t))) \\
- r_2 \int_{t-\gamma \tau(t)}^{t} (h(x(s)))' ds + b(t) \tanh x(t - \sigma(t)) \\
+ \int_{t-p(t)}^{t} C(t,s)x(s)ds.$$

(1.7)

Let

$$D(t) = p_1 x(t) + p_2 x(t - \tau(t)) + x(t - \gamma \tau(t))$$

$$+ \int_{t-\tau(t)}^{t} \dot{x}(s)ds - p_1 \int_{t-\tau(t)}^{t} \dot{x}(s)ds.$$

Hence, it follows from (1.7) that

$$\dot{D}(t) = - (a_1 - r_1 - r_2) h(x(t)) - (a_2 + r_1) h(x(t - \tau(t)))$$

$$- (a_2 + r_1) \int_{t-\tau(t)}^{t} (h(x(s)))' ds$$

$$- r_2 h(x(t - \gamma \tau(t)))$$

$$- r_2 \int_{t-\gamma \tau(t)}^{t} (h(x(s)))' ds + b(t) \tanh x(t - \sigma(t))$$

$$+ \int_{t-p(t)}^{t} C(t,s)x(s)ds.$$

(1.8)

2. Material and Method

We first present some notations, which are needed later.

Let

$$\Sigma = \{\Omega_{i,j}\}_{i \leq 25} \quad (i,j = 1,2,...,25),$$

(2.1)

where Ω is a symmetric matrix, that is,

$$\Omega_{i,j} = \Omega_{j,i},$$

and

121
\[\Omega_{(1,1)} = 2k_1 \alpha - 2q_1, \]
\[\Omega_{(1,2)} = q_1 p_1 - q_2 - k_1 (r_1 + r_2 - a_t) h(x(t)), \]
\[\Omega_{(1,3)} = q_1 p_2 - q_3 - k_3 (r_1 + a_t) h(x(t - \tau(t))), \]
\[\Omega_{(1,4)} = -q_1 p_1 - q_4 - k_4 (r_1 + a_2), \]
\[\Omega_{(1,5)} = q_1 - q_5 - k_5 r_1 h(x(t - \gamma r(t))), \]
\[\Omega_{(1,6)} = q_1 - q_6 - k_6 r_2, \]
\[\Omega_{(2,1)} = \Omega_{(2,1)} = \Omega_{(2,1)} = \Omega_{(2,1)} = \Omega_{(2,1)} = 0, \]
\[\Omega_{(2,2)} = k_2 b(t), \]
\[\Omega_{(2,3)} = 2q_2 p_1 + k_2 + k_1 + k_4 + k_5 + k_5 \tau_2^2, \]
\[+ k_5 \gamma_2^2 \tau_2^2 + k_3 + k_5 \gamma_3^2 \]
\[+ w_3 \tau_3^2 + w_6 \gamma_3^2 \tau_3^2 + w_7 (\tau_2 - \tau_1)^2 \]
\[+ w_8 \gamma_2^2 (\tau_2 - \tau_1)^2 + w_9 (\sigma_2 - \sigma_1)^2 \]
\[+ w_{10} (\sigma_2 - \sigma_1)^2 + k_{10} + w_{12}^2 + w_5 \sigma_1^2, \]
\[\Omega_{(2,8)} = \Omega_{(2,9)} = \Omega_{(2,10)} = 0, \]
\[\Omega_{(2,11)} = \Omega_{(2,12)} = 0, \]
\[\Omega_{(2,13)} = -q_3 a_1 h(x(t)), \]
\[\Omega_{(2,14)} = \Omega_{(2,15)} = \Omega_{(2,16)} = 0, \]
\[\Omega_{(2,17)} = \Omega_{(2,18)} = \Omega_{(2,19)} = 0, \]
\[\Omega_{(2,20)} = \Omega_{(2,21)} = \Omega_{(2,22)} = 0, \]
\[\Omega_{(2,23)} = \Omega_{(2,24)} = \Omega_{(2,25)} = 0, \]
\[\Omega_{(3,3)} = 2q_3 p_2 - k_6 e^{-2\tau_2} + k_3 \tau_d, \]
\[\Omega_{(3,4)} = -q_3 p_1 + q_4 p_2, \]
\[\Omega_{(3,5)} = q_3 + q_3 p_2, \]
\[\Omega_{(3,6)} = q_4 + q_4 p_2, \]
\[\Omega_{(3,7)} = \Omega_{(3,8)} = \Omega_{(3,9)} = 0, \]
\[\Omega_{(3,10)} = \Omega_{(3,11)} = \Omega_{(3,12)} = 0, \]
\[\Omega_{(3,13)} = -q_2 a_2 h(x(t - \tau(t))), \]
\[\Omega_{(3,14)} = \Omega_{(3,15)} = \Omega_{(3,16)} = 0, \]
\[\Omega_{(3,17)} = \Omega_{(3,18)} = \Omega_{(3,19)} = 0, \]
\[\Omega_{(3,20)} = \Omega_{(3,21)} = \Omega_{(3,22)} = 0, \]
\[\Omega_{(3,23)} = \Omega_{(3,24)} = \Omega_{(3,25)} = 0, \]
\[\Omega_{(3,26)} = -q_4 p_1, \]
\[\Omega_{(4,5)} = q_4 - q_5 p_1, \]
\[\Omega_{(4,6)} = q_4 - q_6 p_1, \]
\[\Omega_{(4,7)} = \Omega_{(4,8)} = \Omega_{(4,9)} = 0, \]
\[\Omega_{(4,10)} = \Omega_{(4,11)} = \Omega_{(4,12)} = 0, \]
\[\Omega_{(4,13)} = -q_5 a_2, \]
\[\Omega_{(4,14)} = \Omega_{(4,15)} = \Omega_{(4,16)} = 0, \]
\[\Omega_{(4,17)} = \Omega_{(4,18)} = \Omega_{(4,19)} = 0, \]
\[\Omega_{(4,20)} = \Omega_{(4,21)} = \Omega_{(4,22)} = 0, \]
\[\Omega_{(4,23)} = \Omega_{(4,24)} = \Omega_{(4,25)} = 0, \]
\[\Omega_{(5,5)} = 2q_5 - k_5 e^{-2\gamma r}, \]
\[\Omega_{(5,7)} = \Omega_{(5,8)} = \Omega_{(5,9)} = 0, \]
\[\Omega_{(5,10)} = \Omega_{(5,11)} = \Omega_{(5,12)} = 0, \]
\[\Omega_{(5,13)} = \Omega_{(5,14)} = \Omega_{(5,15)} = \Omega_{(5,16)} = 0, \]
\[\Omega_{(5,17)} = \Omega_{(5,18)} = \Omega_{(5,19)} = 0, \]
\[\Omega_{(5,20)} = \Omega_{(5,21)} = \Omega_{(5,22)} = 0, \]
\[\Omega_{(5,23)} = \Omega_{(5,24)} = \Omega_{(5,25)} = 0, \]
\[\Omega_{(6,6)} = 2q_6, \]
\[\Omega_{(6,7)} = \Omega_{(6,8)} = \Omega_{(6,9)} = 0, \]
\[\Omega_{(6,10)} = \Omega_{(6,11)} = \Omega_{(6,12)} = 0, \]
\[\Omega_{(6,13)} = \Omega_{(6,14)} = \Omega_{(6,15)} = \Omega_{(6,16)} = 0, \]
\[\Omega_{(6,17)} = \Omega_{(6,18)} = \Omega_{(6,19)} = 0, \]
\[\Omega_{(6,20)} = \Omega_{(6,21)} = \Omega_{(6,22)} = 0, \]
\[\Omega_{(6,23)} = \Omega_{(6,24)} = \Omega_{(6,25)} = 0, \]
\[\Omega_{(7,7)} = -(k_2 + w_3) e^{-2\gamma r}, \]
\[\Omega_{(7,8)} = \Omega_{(7,9)} = 0, \]
\[\Omega_{(7,10)} = \Omega_{(7,11)} = \Omega_{(7,12)} = 0, \]
\[\Omega_{(7,13)} = \Omega_{(7,14)} = \Omega_{(7,15)} = \Omega_{(7,16)} = 0, \]
\[\Omega_{(7,17)} = \Omega_{(7,18)} = \Omega_{(7,19)} = 0, \]
\[\Omega_{(7,20)} = \Omega_{(7,21)} = \Omega_{(7,22)} = 0, \]
\[\Omega_{(7,23)} = \Omega_{(7,24)} = \Omega_{(7,25)} = 0, \]
\[\Omega_{(8,8)} = -k_6 e^{-2\gamma r}, \]
\[\Omega_{(8,9)} = \Omega_{(8,10)} = \Omega_{(8,11)} = 0, \]
\[\Omega_{(8,12)} = \Omega_{(8,13)} = \Omega_{(8,14)} = 0, \]
\[\Omega_{(8,15)} = \Omega_{(8,16)} = \Omega_{(8,17)} = 0, \]
\[\Omega_{(8,18)} = \Omega_{(8,19)} = \Omega_{(8,20)} = 0, \]
\[\Omega_{(8,21)} = \Omega_{(8,22)} = \Omega_{(8,23)} = \Omega_{(8,24)} = \Omega_{(8,25)} = 0, \]
\[\Omega_{(9,9)} = -(k_1 + w_1) e^{-2\gamma r}, \]
\[\Omega_{(9,10)} = \Omega_{(9,11)} = \Omega_{(9,12)} = 0, \]
\[\Omega_{(9,13)} = \Omega_{(9,14)} = \Omega_{(9,15)} = 0, \]
\[\Omega_{(9,16)} = \Omega_{(9,17)} = \Omega_{(9,18)} = 0, \]
\[\Omega_{(9,19)} = \Omega_{(9,20)} = \Omega_{(9,21)} = 0, \]
\[\Omega_{(9,22)} = \Omega_{(9,23)} = \Omega_{(9,24)} = \Omega_{(9,25)} = 0, \]
\[\Omega_{(9,26)} = -k_2 e^{-2\gamma r}, \]
\[\Omega_{(10,10)} = \Omega_{(10,11)} = \Omega_{(10,12)} = \Omega_{(10,13)} = 0, \]

New Exponential Stability Criteria for Certain Neutral Integro-Differential Equations
New Exponential Stability Criteria for Certain Neutral Integro-Differential Equations

\[\Omega_{(10,14)} = \Omega_{(10,15)} = \Omega_{(10,16)} = 0, \]
\[\Omega_{(10,17)} = \Omega_{(10,18)} = \Omega_{(10,19)} = 0, \]
\[\Omega_{(10,20)} = \Omega_{(10,21)} = \Omega_{(10,22)} = 0, \]
\[\Omega_{(10,23)} = \Omega_{(10,24)} = \Omega_{(10,25)} = 0, \]
\[\Omega_{(11,11)} = -k_2 e^{-2\alpha \tau} + k_8 \sigma_d - k_1, \quad \Omega_{(11,12)} = 0, \]
\[\Omega_{(11,13)} = q_7 b(t), \quad \Omega_{(11,14)} = \Omega_{(11,15)} = \Omega_{(11,16)} = 0, \]
\[\Omega_{(11,17)} = \Omega_{(11,18)} = \Omega_{(11,19)} = 0, \]
\[\Omega_{(11,20)} = \Omega_{(11,21)} = \Omega_{(11,22)} = 0, \]
\[\Omega_{(11,23)} = \Omega_{(11,24)} = \Omega_{(11,25)} = 0, \]
\[\Omega_{(12,12)} = -k_8 e^{-2\alpha \tau}, \]
\[\Omega_{(12,13)} = \Omega_{(12,14)} = \Omega_{(12,15)} = \Omega_{(12,16)} = 0, \]
\[\Omega_{(12,17)} = \Omega_{(12,18)} = \Omega_{(12,19)} = 0, \]
\[\Omega_{(12,20)} = \Omega_{(12,21)} = \Omega_{(12,22)} = \Omega_{(12,23)} = 0, \]
\[\Omega_{(12,24)} = \Omega_{(12,25)} = 0, \quad \Omega_{(13,13)} = -2q_7, \]
\[\Omega_{(13,14)} = \Omega_{(13,15)} = \Omega_{(13,16)} = 0, \]
\[\Omega_{(13,17)} = \Omega_{(13,18)} = \Omega_{(13,19)} = 0, \]
\[\Omega_{(13,20)} = \Omega_{(13,21)} = \Omega_{(13,22)} = 0, \]
\[\Omega_{(13,23)} = \Omega_{(13,24)} = 0, \quad \Omega_{(13,25)} = q_7, \]
\[\Omega_{(14,14)} = (w_3 - w_1 e^{-2\alpha \tau}, \quad \Omega_{(14,15)} = \Omega_{(14,16)} = 0, \]
\[\Omega_{(14,17)} = \Omega_{(14,18)} = \Omega_{(14,19)} = \Omega_{(14,20)} = \Omega_{(14,21)} = 0, \]
\[\Omega_{(14,22)} = \Omega_{(14,23)} = \Omega_{(14,24)} = \Omega_{(14,25)} = 0, \]
\[\Omega_{(15,15)} = (w_4 - w_2 e^{-2\alpha \tau}, \quad \Omega_{(15,16)} = 0, \]
\[\Omega_{(15,17)} = \Omega_{(15,18)} = \Omega_{(15,19)} = \Omega_{(15,20)} = 0, \]
\[\Omega_{(15,21)} = \Omega_{(15,22)} = \Omega_{(15,23)} = \Omega_{(15,24)} = \Omega_{(15,25)} = 0, \]
\[\Omega_{(16,16)} = -w_1 e^{-2\alpha \tau}, \]
\[\Omega_{(16,17)} = \Omega_{(16,18)} = \Omega_{(16,19)} = \Omega_{(16,20)} = \Omega_{(16,21)} = 0, \]
\[\Omega_{(16,22)} = \Omega_{(16,23)} = \Omega_{(16,24)} = \Omega_{(16,25)} = 0, \]
\[\Omega_{(17,17)} = -w_2 e^{-2\alpha \tau}, \]
\[\Omega_{(17,18)} = \Omega_{(17,19)} = \Omega_{(17,20)} = \Omega_{(17,21)} = 0, \]
\[\Omega_{(17,22)} = \Omega_{(17,23)} = \Omega_{(17,24)} = \Omega_{(17,25)} = 0, \]
\[\Omega_{(18,18)} = -w_3 e^{-2\alpha \tau}, \]
\[\Omega_{(18,19)} = \Omega_{(18,20)} = \Omega_{(18,21)} = \Omega_{(18,22)} = 0, \]
\[\Omega_{(18,23)} = \Omega_{(18,24)} = \Omega_{(18,25)} = 0, \]
\[\Omega_{(19,19)} = -w_4 e^{-2\alpha \tau}, \]
\[\Omega_{(19,20)} = \Omega_{(19,21)} = \Omega_{(19,22)} = 0, \]
\[\Omega_{(19,23)} = \Omega_{(19,24)} = \Omega_{(19,25)} = 0, \]
\[\Omega_{(20,20)} = -w_5 e^{-2\alpha \tau}, \quad \Omega_{(20,21)} = \Omega_{(20,22)} = 0, \]
\[\Omega_{(20,23)} = \Omega_{(20,24)} = \Omega_{(20,25)} = 0, \]
\[\Omega_{(21,21)} = -w_6 e^{-2\alpha \tau}, \quad \Omega_{(21,22)} = 0, \]
\[\Omega_{(21,23)} = \Omega_{(21,24)} = \Omega_{(21,25)} = 0, \]
\[\Omega_{(22,22)} = -w_7 e^{-2\alpha \tau}, \]
\[\Omega_{(22,23)} = \Omega_{(22,24)} = \Omega_{(22,25)} = 0, \]
\[\Omega_{(23,23)} = -w_8 e^{-2\alpha \tau}, \quad \Omega_{(23,24)} = \Omega_{(23,25)} = 0, \]
\[\Omega_{(24,24)} = -w_9 e^{-2\alpha \tau}, \quad \Omega_{(24,25)} = 0, \]
\[\Omega_{(25,25)} = -w_{10} e^{-2\alpha \gamma}, \quad \sigma_1, \sigma_2, \sigma_d, \tau_1, \tau_2, \tau_d, p_1, p_2, \alpha \]

and \(\gamma \) are positive some real constants.

We now state the exponentially stability result.

Theorem. If there exist positive real constants \(w, k_i, w_i, \) \(i = 1, 2, \ldots, 10 \), such that the following matrix inequality

\[\Sigma = [\Omega_{(i,j)}]_{25 \times 25} < 0 \] (2.2)

holds, then zero solution of NIDE (1.2) is exponentially stable with a decay rate \(\alpha \).

Proof. We define Lyapunov-Krasovskii functional candidate for NIDE (1.8) of the form

\[V(t, x_i) = \sum_{i=1}^{5} V_i(t, x_i), \]

where

\[V_1(t, x_i) = k_1 D^2(t), \]
\[V_2(t, x_i) = k_2 \int_{t-t_2}^{t} e^{2\alpha(s-t)} x^2(s) ds + k_3 \int_{t-t_2}^{t} e^{2\alpha(s-t)} x^2(s) ds \]
\[+ k_4 \int_{t-t_2}^{t} e^{2\alpha(s-t)} x^2(s) ds \]
\[+ k_5 \int_{t-t_2}^{t} e^{2\alpha(s-t)} x^2(s) ds \]
\[+ w_1 \int_{t-t_2}^{t} e^{2\alpha(s-t)} x^2(s) ds \]
\[+ w_2 \int_{t-t_2}^{t} e^{2\alpha(s-t)} x^2(s) ds \]
\[+ w_3 \int_{t-t_2}^{t} e^{2\alpha(s-t)} x^2(s) ds \]
\[+ w_4 \int_{t-t_2}^{t} e^{2\alpha(s-t)} x^2(s) ds \]
\[+ w_5 \int_{t-t_2}^{t} e^{2\alpha(s-t)} x^2(s) ds \]
\[+ w_6 \int_{t-t_2}^{t} e^{2\alpha(s-t)} x^2(s) ds \]
\[+ w_7 \int_{t-t_2}^{t} e^{2\alpha(s-t)} x^2(s) ds \]
\[+ w_8 \int_{t-t_2}^{t} e^{2\alpha(s-t)} x^2(s) ds \]
\[+ w_9 \int_{t-t_2}^{t} e^{2\alpha(s-t)} x^2(s) ds \]
\[+ w_{10} \int_{t-t_2}^{t} e^{2\alpha(s-t)} x^2(s) ds \]

123
New Exponential Stability Criteria for Certain Neutral Integro-Differential Equations

Calculating the time derivatives of $V(t) = V(t, x_t)$ along solutions of NIDE (1.8), we obtain

$$\dot{V}(t, x_t) = \sum_{i=1}^{5} \dot{V}_i(t, x_t). \quad (2.3) \quad \text{It can be easily shown from } V_i(t, x_t) \text{ and NIDE (1.2) that}$$

$$\dot{V}_1(t, x_t) = 2k_1 D(t) \dot{D}(t)$$

$$= 2k_1 D(t)[- (a_1 - r_1 - r_2) h(x(t))$$

$$- (a_2 + r_1) \int_{t-\tau(t)}^{t} (h(x(s)))' ds$$

$$- r_2 h(x(t - \gamma \tau(t)))$$

$$- b(t) \tanh x(t - \sigma(t))$$

$$+ \int_{t-p(t)}^{t} C(t,s) x(s) ds]$$

$$+ 2q_1 D(t)[-D(t) + p_1 x(t)$$

$$+ p_2 x(t - \tau(t)) + x(t - \gamma \tau(t))$$

$$+ \int_{t-\gamma \tau(t)}^{t} \dot{x}(s) ds - p_1 \int_{t-\gamma \tau(t)}^{t} \dot{x}(s) ds]$$

$$+ 2q_2 x(t)[-D(t) + p_1 x(t)$$

$$+ p_2 x(t - \tau(t)) + x(t - \gamma \tau(t))$$

$$+ \int_{t-\gamma \tau(t)}^{t} \dot{x}(s) ds - p_1 \int_{t-\gamma \tau(t)}^{t} \dot{x}(s) ds]$$

$$+ 2q_3 x(t - \tau(t))[-D(t) + p_1 x(t)$$

$$+ p_2 x(t - \tau(t)) + x(t - \gamma \tau(t))$$

$$+ \int_{t-\gamma \tau(t)}^{t} \dot{x}(s) ds - p_1 \int_{t-\gamma \tau(t)}^{t} \dot{x}(s) ds]$$
\[+ p_2 x(t - \tau(t)) + x(t - \gamma \tau(t)) \]
\[+ \int_{t-\tau(t)}^t \dot{x}(s) ds - p_1 \int_{t-\tau(t)}^t \dot{x}(s) ds \]
\[+ 2q_4 \int_{t-\tau(t)}^t \dot{x}(s) ds \]
\[+ 2q_3 D(t)[\dot{x} - a_1 h(x(t)) - a_2 h(x(t-\tau(t))] \]
\[- a_2 \int_{t-\tau(t)}^t (h(x(s)))' ds + b(t) \tanh x(t - \sigma(t)) \]
\[+ \int_{t-p(t)}^t C(t,s) x(s) ds \]
\[+ 2q_3 D(t)[-D(t) + p_1 x(t) + p_2 x(t - \tau(t))] \]
\[+ x(t - \gamma \tau(t)) + \int_{t-\gamma \tau(t)}^t \dot{x}(s) ds - p_1 \int_{t-\gamma \tau(t)}^t \dot{x}(s) ds \]
\[+ 2q_6 \int_{t-\gamma \tau(t)}^t \dot{x}(s) ds \]
\[+ 2q_4 \int_{t-\gamma \tau(t)}^t \dot{x}(s) ds \]
\[+ 2q_3 x(t - \gamma \tau(t))[-D(t) + p_1 x(t) + p_2 x(t - \tau(t))] \]
\[+ x(t - \gamma \tau(t)) + \int_{t-\gamma \tau(t)}^t \dot{x}(s) ds - p_1 \int_{t-\gamma \tau(t)}^t \dot{x}(s) ds \]
\[+ 2q_6 \int_{t-\gamma \tau(t)}^t \dot{x}(s) ds \]
\[+ 2q_3 x(t - \gamma \tau(t))[-D(t) + p_1 x(t) + p_2 x(t - \tau(t))] \]
\[+ x(t - \gamma \tau(t)) + \int_{t-\gamma \tau(t)}^t \dot{x}(s) ds - p_1 \int_{t-\gamma \tau(t)}^t \dot{x}(s) ds \]
\[+ 2q_6 \int_{t-\gamma \tau(t)}^t \dot{x}(s) ds \]
\[+ 2q_3 x(t - \gamma \tau(t))[-D(t) + p_1 x(t) + p_2 x(t - \tau(t))] \]
\[+ x(t - \gamma \tau(t)) + \int_{t-\gamma \tau(t)}^t \dot{x}(s) ds - p_1 \int_{t-\gamma \tau(t)}^t \dot{x}(s) ds \]
\[+ 2q_6 \int_{t-\gamma \tau(t)}^t \dot{x}(s) ds \]
\[+ 2q_3 x(t - \gamma \tau(t))[-D(t) + p_1 x(t) + p_2 x(t - \tau(t))] \]
\[+ x(t - \gamma \tau(t)) + \int_{t-\gamma \tau(t)}^t \dot{x}(s) ds - p_1 \int_{t-\gamma \tau(t)}^t \dot{x}(s) ds \]
\[+ 2q_6 \int_{t-\gamma \tau(t)}^t \dot{x}(s) ds \]

Hence, in view of the assumptions of the given theorem and the condition \(h'(x) \geq 1, \ x \neq 0, \) we can derive that
\[\dot{V}_1(t,x_t) \leq 2k_1 D(t)[-a_1 r_1 - r_2 h(x(t))] \]
\[- (a_2 + r_1) h_1'(x(t-\tau(t)))x(t-\tau(t)) \]
\[- (a_2 + r_1) \int_{t-\tau(t)}^t \dot{x}(s) ds \]
\[- r_2 h_1'(x(t-\gamma \tau(t)))x(t-\gamma \tau(t)) \]
\[- \int_{t-p(t)}^t C(t,s) x(s) ds \]
\[+ b(t) \tanh x(t - \sigma(t)) \]

and
\[\dot{V}_2(t,x_t) = (k_2 + k_3 + k_4 + k_5 + w_1 + w_2)x^2(t) \]
\[- (k_2 + w_3)e^{-2\alpha(t^2)} x^2(t - \tau_2) \]

125
\[-k_3(1-\hat{\tau}(t))e^{-2\alpha\tau(t)}x^2(t-\tau(t))\]
\[-k_4+w_4e^{-2\alpha\tau(t)}x^2(t-\gamma\tau(t))\]
\[-k_3(1-\gamma\tau(t))e^{-2\alpha\tau(t)}x^2(t-\gamma\tau(t))\]
\[(w_3-w_1)e^{-2\alpha\tau(t)}x^2(t-\tau(t))\]
\[(w_4-w_2)e^{-2\alpha\tau(t)}x^2(t-\gamma\tau(t))-2\alpha V_2(t)\]
\[\leq (k_2+k_3+k_4+k_3+w_1+w_2)x^2(t)\]
\[-(k_2+w_3)e^{-2\alpha\tau(t)}x^2(t-\tau(t))\]
\[+k_3\gamma\tau_dx^2(t-\gamma\tau(t))\]
\[-k_3e^{-2\alpha\tau(t)}x^2(t-\gamma\tau(t))\]
\[+(w_3-w_1)e^{-2\alpha\tau(t)}x^2(t-\tau(t))\]
\[+(w_4-w_2)e^{-2\alpha\tau(t)}x^2(t-\gamma\tau(t))-2\alpha V_2(t).\]

Obviously, for any scalars \(s \in [t-\tau_2,t]\), and \(s \in [t-\gamma\tau_2,t]\), we can get \(e^{-2\alpha\tau_2} \leq e^{2\alpha(s-\tau)} \leq 1\) and \(e^{-2\alpha\gamma\tau_2} \leq e^{2\alpha(s-\gamma\tau)} \leq 1\), respectively. In view of Lemma 1.1 and Lemma 1.2, the given assumptions, from \(V_j(t,x)\) and NIDE (1.2), it follows that

\[\dot{V}_3(t,x_1) = k_6\tau_2 \int_{t-\tau_2}^t x^2(s)ds - k_6\tau_2 \int_{t-\tau_2}^t e^{2\alpha\tau}x^2(t+s)ds\]
\[+k_7\gamma\tau_2 \int_{t-\tau_2}^t x^2(s)ds\]
\[-k_7\gamma\tau_2 \int_{t-\tau_2}^t e^{2\alpha\tau}x^2(t+s)ds\]
\[+w_5\tau_1 \int_{t-\tau_1}^t x^2(s)ds\]
\[-w_5\tau_1 \int_{t-\tau_1}^t e^{2\alpha\tau}x^2(t+s)ds\]
\[+w_6\gamma\tau_1 \int_{t-\tau_1}^t x^2(s)ds\]
\[-w_6\gamma\tau_1 \int_{t-\tau_1}^t e^{2\alpha\tau}x^2(t+s)ds\]
\[+w_7(\tau_2-\tau_1) \int_{t-\tau_2}^t x^2(s)ds\]
\[-w_7(\tau_2-\tau_1) \int_{t-\tau_2}^t e^{2\alpha\tau}x^2(t+s)ds\]
\[-w_7(\tau_2-\tau_1) \int_{t-\tau_2}^t e^{2\alpha\tau}x^2(t+s)ds - 2\alpha V_3(t)\]
\[\leq k_8(\tau_2) \int_{t-\tau_2}^t x^2(t)ds - k_8 e^{-2\alpha\tau_2} \left(\int_{t-\tau_2}^t x(s)ds \right)^2\]
\[+k_7(\gamma\tau_2) \int_{t-\gamma\tau_2}^t x^2(t)ds - k_7 e^{-2\alpha\gamma\tau_2} \left(\int_{t-\gamma\tau_2}^t x(s)ds \right)^2\]
\[+w_6(\gamma\tau_1) \int_{t-\gamma\tau_1}^t x^2(t)ds - w_6 e^{-2\alpha\gamma\tau_1} \left(\int_{t-\gamma\tau_1}^t x(s)ds \right)^2\]
\[+w_7(\tau_2-\tau_1) \int_{t-\tau_2}^t x^2(t)ds - w_6(\gamma\tau_2-\gamma\tau_1) x^2(t)\]
\[\leq k_8(\tau_2) \int_{t-\tau_2}^t x^2(t)ds - k_8 e^{-2\alpha\tau_2} \left(\int_{t-\tau_2}^t x(s)ds \right)^2\]
\[+k_7(\gamma\tau_2) \int_{t-\gamma\tau_2}^t x^2(t)ds - k_7 e^{-2\alpha\gamma\tau_2} \left(\int_{t-\gamma\tau_2}^t x(s)ds \right)^2\]
\[+w_6(\gamma\tau_1) \int_{t-\gamma\tau_1}^t x^2(t)ds - w_6 e^{-2\alpha\gamma\tau_1} \left(\int_{t-\gamma\tau_1}^t x(s)ds \right)^2\]
\[+w_7(\tau_2-\tau_1) \int_{t-\tau_2}^t x^2(t)ds - w_6(\gamma\tau_2-\gamma\tau_1) x^2(t)\]
\[\leq k_8(\tau_2) x^2(t) - k_8 e^{-2\alpha\tau_2} \left(\int_{t-\tau_2}^t x(s)ds \right)^2\]
\[+k_7(\gamma\tau_2) x^2(t) - k_7 e^{-2\alpha\gamma\tau_2} \left(\int_{t-\gamma\tau_2}^t x(s)ds \right)^2\]
\[+w_6(\gamma\tau_1) x^2(t) - w_6 e^{-2\alpha\gamma\tau_1} \left(\int_{t-\gamma\tau_1}^t x(s)ds \right)^2\]
\[+w_7(\tau_2-\tau_1) x^2(t) - w_6(\gamma\tau_2-\gamma\tau_1) x^2(t)\]
\[\leq k_8(\tau_2) x^2(t) - k_8 e^{-2\alpha\tau_2} \left(\int_{t-\tau_2}^t x(s)ds \right)^2\]
\[+k_7(\gamma\tau_2) x^2(t) - k_7 e^{-2\alpha\gamma\tau_2} \left(\int_{t-\gamma\tau_2}^t x(s)ds \right)^2\]
\[+w_6(\gamma\tau_1) x^2(t) - w_6 e^{-2\alpha\gamma\tau_1} \left(\int_{t-\gamma\tau_1}^t x(s)ds \right)^2\]
\[+w_7(\tau_2-\tau_1) x^2(t) - w_6(\gamma\tau_2-\gamma\tau_1) x^2(t)\]

Similarly, by using Lemma 1.1, Lemma 1.2, the inequality \(\tanh^2 x(t) \leq x^2(t)\), \(V_4(t,x)\) and NIDE (1.2), we have

\[\dot{V}_4(t,x_1) = k_8 \tanh^2 x(t)\]
New Exponential Stability Criteria for Certain Neutral Integro-Differential Equations

\[-k_s (1 - \hat{\sigma}(t)) e^{-2\alpha \tau(t)} \tanh^2 x(t - \sigma(t)) \leq w_p^2 x^2(t) - w_p e^{-2\alpha \tau} \int_{t-p_t}^t x^2(s) ds \]

\[+ k_s \sigma_2 \int_{-\sigma_2}^0 \tanh^2 x(t) ds \]

\[- k_s \sigma_2 \int_{-\sigma_2}^0 e^{2\alpha \tau} \tanh^2 x(t + s) ds \leq w_p^2 x^2(t) - w_p e^{-2\alpha \tau} \int_{t-p_t}^t x(s) ds \]

\[+ w_g \sigma_1 \int_{-\sigma_1}^0 \tanh^2 x(t) ds \]

\[- w_g \sigma_1 \int_{-\sigma_1}^0 e^{2\alpha \tau \tanh^2 x(t + s) ds \leq w_p^2 x^2(t) - w_p e^{-2\alpha \tau} \int_{t-p_t}^t \int_{t-\tau(t)}^t \hat{x}(s) ds \]

\[- w_{10} (\sigma_2 - \sigma_1) \int_{-\sigma_1}^0 e^{2\alpha \tau \tanh^2 x(t + s) ds \leq w_p^2 x^2(t) - w_p e^{-2\alpha \tau} \int_{t-p_t}^t \int_{t-\tau(t)}^t \hat{x}(s) ds \]

On gathering the above discussion in (2.3), we arrive at

\[\dot{V}_5(t, x_c) = w_p^2 \int_{-p_t}^t (x^2(t) - e^{-2\alpha \tau} x^2(t + s)) ds - 2\alpha V_4(t) \]

\[= w_p^2 x^2(t) - w_p e^{-2\alpha \tau} \int_{t-p_t}^t x(s) ds \]

\[- 2\alpha V_5(t) \]
\[+2q_4 \int_{t-\tau(t)}^t \dot{x}(s) ds \left[-D(t) + p_1 x(t) + p_2 x(t-\tau(t)) \right] \]
\[+ x(t - \gamma \tau(t)) + \int_{t-\tau(t)}^t \dot{x}(s) ds - p_1 \int_{t-\tau(t)}^t \dot{x}(s) ds \]
\[+ 2q_3 x(t - \gamma \tau(t)) \left[-D(t) + p_1 x(t) + p_2 x(t - \tau(t)) \right] \]
\[+ x(t - \gamma \tau(t)) + \int_{t-\tau(t)}^t \dot{x}(s) ds - p_1 \int_{t-\tau(t)}^t \dot{x}(s) ds \]
\[+ 2q_6 \int_{t-\gamma \tau(t)}^t \dot{x}(s) ds \left[-D(t) + p_1 x(t) + p_2 x(t - \tau(t)) \right] \]
\[+ x(t - \gamma \tau(t)) + \int_{t-\gamma \tau(t)}^t \dot{x}(s) ds - p_1 \int_{t-\gamma \tau(t)}^t \dot{x}(s) ds \]
\[+ 2q_8 \dot{D}(t) \left[-\dot{D}(t) - a_h(x(t)) - a_h(x(t-\tau(t)) \right] - a_2 \int_{t-\tau(t)}^t (h(x(s)))' ds + b(t) \tanh(x(t-\sigma(t)) \]
\[+ \int_{t-p(t)}^t C(t,s) x(s) ds + 2\alpha k_1 D^2(t) - 2\alpha V_1(t) \]
\[+ (k_2 + k_3 + k_4 + k_5 + w_1 + w_2) x^2(t) \]
\[- (k_2 + w_1) e^{-2\alpha \tau_2} x^2(t - \tau_2) \]
\[- k_3 e^{-2\alpha \tau_2} x^2(t - \gamma \tau_2) + k_5 \tau_2 x^2(t - \tau_2) \]
\[- (k_4 + w_1) e^{-2\alpha \tau_1} x^2(t - \gamma \tau_1) \]
\[- k_5 e^{-2\alpha \gamma \tau_1} x^2(t - \gamma \tau_1) + k_4 \tau_1 x^2(t - \gamma \tau_1) \]
\[= w_7 e^{-2\alpha \tau_1} \left(\int_{t-\tau_1}^t x(s) ds \right)^2 - w_7 e^{-2\alpha \tau_2} \left(\int_{t-\tau_2}^t x(s) ds \right)^2 \]
\[- w_7 e^{-2\alpha \tau_1} \left(\int_{t-\tau_1}^t x(s) ds \right)^2 \]
\[- w_8 e^{-2\alpha \gamma \tau_1} \left(\int_{t-\gamma \tau_1}^t x(s) ds \right)^2 \]
\[+ k_8 \tanh^2 x(t) - k_8 e^{-2\alpha \tau_2} \tanh^2 x(t - \sigma(t)) \]
\[- k_9 \sigma_d \tanh^2 x(t - \sigma(t)) \]
\[+ k_9 \sigma_d^2 x^2(t) - k_8 e^{-2\alpha \tau_2} \left(\int_{t-\sigma_2}^t \tanh x(s) ds \right)^2 \]
\[+ w_9 \sigma_1^2 x^2(t) - w_9 e^{-2\alpha \sigma_1} \left(\int_{t-\sigma_1}^t \tanh x(s) ds \right)^2 \]
\[+ w_9 \sigma_2^2 x^2(t) - 2\alpha V_4(t) \]
\[+ w_9 e^{-2\alpha \sigma_1} \left(\int_{t-\sigma_1}^t \tanh x(s) ds \right)^2 \]
\[+ k_{10} x^2(t) - k_{10} \tanh^2 x(t) \]
\[- w_10 e^{-2\alpha \tau_1} \left(\int_{t-\gamma \tau_1}^t x(s) ds \right)^2 - 2\alpha V_4(t) \]
\[+ w_10 e^{-2\alpha \sigma_2} \left(\int_{t-\sigma_2}^t \tanh x(s) ds \right)^2 \]
\[- 2\alpha V_4(t) \].

Then, it be followed that
\[\dot{V}(t, x_\tau) + 2\alpha V(t, x_\tau) \leq \xi^T(t) \Sigma \xi(t), \]
where\n\[\xi^T(t) = [D(t), x(t), x(t - \tau(t))], \]
\[\int_{t-\tau(t)}^t \dot{x}(s) ds, x(t - \gamma \tau(t)), \]
\[\int_{t-\gamma \tau(t)}^t \dot{x}(s) ds, x(t - \tau_2), \]
\[\int_{t-\tau_2}^t \dot{x}(s) ds, \tanh x(t - \sigma(t))], \]
\[\int_{t-\sigma_2}^t \dot{x}(s) ds, \tanh x(t - \sigma(t))], \]
\[\int_{t-\sigma_1}^t \dot{x}(s) ds, \tanh x(t - \sigma(t))]. \]

128
The exponential stability of zero solution of a neutral integro-differential equation of first order (NIDE) with discrete and distributed time-varying delays was investigated. A theorem was proved on the exponential stability of the zero solution of the considered NIDE by means of a new defined Lyapunov-Krasovskii functional. Our result improves and includes some results that can be found in the literature.

References

Agarwal, R. P.; Grace, S. R. 2000. ‘Asymptotic stability of certain neutral differential equations’. Math. Comput. Modelling 31, no. 8-9, 9–15.

Boyd, Stephen; El Ghaoui, Laurent; Feron, Eric; Balakrishnan, Venkataramanan, 1994. ‘Linear matrix inequalities in system and control theory’. SIAM Studies in Applied Mathematics, 15. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA.

Chen, Huabin; Meng, Xuejing, 2011. ‘An improved exponential stability criterion for a class of neutral delayed differential equations’. Appl. Math. Lett. 24, no. 11, 1763–1767.

Chen, Huabin, 2012. ‘Some improved criteria on exponential stability of neutral differential equation’. Adv. Difference Equ., 2012:170, 9 pp.

Chatbupapan, Watcharin; Mukdasai, Kanit, 2016. ‘New delay-range-dependent exponential stability criteria for certain neutral differential equations with interval discrete and distributed time-varying delays’. Adv. Difference Equ., Paper No. 324, 18 pp.

Deng, Shaojiang; Liao, Xiaofeng; Guo, Songtao, 2009. ‘Asymptotic stability analysis of certain neutral differential equations: a descriptor system approach’. Math. Comput. Simulation 79, no. 10, 2981–2993.

El-Morshedy, H. A.; Gopalsamy, K., 2000. ‘Nonoscillation, oscillation and convergence of a class of neutral equations’. Lakshmikantham's legacy: a tribute on his 75th birthday. Nonlinear Anal. 40, no. 1-8, Ser. A: Theory Methods, 173–183.

Fridman, E. 2001. ‘New Lyapunov-Krasovskii functionals for stability of linear retarded and neutral type systems’. Systems Control Lett. 43, no. 4, 309–319.

Fridman, Emilia, 2002. ‘Stability of linear descriptor systems with delay: a Lyapunov-
New Exponential Stability Criteria for Certain Neutral Integro-Differential Equations

Based approach’. J. Math. Anal. Appl. 273, no. 1, 24–44.

Gu, Keqin; Kharitonov, Vladimir L.; Chen, Jie, 2003. ‘Stability of time-delay systems’. Control Engineering. Birkhäuser Boston, Inc., Boston, MA.

Gözen, Melek; Tunc, Cemil 2017. ‘On exponential stability of solutions of neutral differential systems with multiple variable delays’. Electron. J. Math. Anal. Appl. 5, no. 1, 17–31.

Gözen, Melek; Tunc, Cemil 2017. ‘A note on the exponential stability of linear systems with variable retardations’. Appl. Math. Inf. Sci. 11, no. 3, 899–906.

Gözen, Melek; Tunc, Cemil 2018. ‘On the exponential stability of a neutral differential equation of first order’. J. Math. Appl. 41, 95–107.

Hale, Jack K.; Verduyn Lunel, Sjoerd M. 1993. ‘Introduction to functional-differential equations’. Applied Mathematical Sciences, 99. Springer-Verlag, New York.

Hristova, Snezhana; Tunc, Cemil 2019. ‘Stability of nonlinear Volterra integro-Differential equations with Caputo fractional derivative and bounded delays’. Electron. J. Differential Equations, Paper No. 30, 11 pp.

Kwon, O. M.; Park, Ju H., 2006. ‘Exponential stability of uncertain dynamic systems including state delay’. Appl. Math. Lett. 19, no. 9, 901-907.

Kwon, O. M.; Park, Ju H., 2008. ‘On improved delay-dependent stability criterion of certain neutral differential equations’. Appl. Math. Comput. 199, no. 1, 385–391.

Keadnarmol, Panuwat; Rojsiraphisal, Thaned, 2014. ‘Globally exponential stability of a certain neutral differential equation with time-varying delays’. Adv. Difference Equ., 32, 10 pp.

Liao, Xiaofeng; Liu, Yanbing; Guo, Songtao; Mai, Huanhuan, 2009. ‘Asymptotic stability of delayed neural networks: a descriptor system approach’. Commun. Nonlinear Sci. Numer. Simul. 14, no. 7, 3120–3133.

Li, Xiaodi 2009. ‘Global exponential stability for a class of neural networks’. Appl. Math. Lett. 22, no. 8, 1235–1239.

Li, Xiaodi; Fu, Xilin, 2013. ‘Effect of leakage time-varying delay on stability of nonlinear differential systems’. J. Franklin Inst. 350, no. 6, 1335–1344.

Nam, P. T.; Phat, V. N. 2009. ‘An improved stability criterion for a class of neutral differential equations’. Appl. Math. Lett. 22, no. 1, 31–35.

Park, J. H. 2004. ‘Delay-dependent criterion for asymptotic stability of a class of neutral equations’. Appl. Math. Lett. 17, no. 10, 1203–1206.

Park, Ju H.; Kwon, O. M., 2008. ‘Stability analysis of certain nonlinear differential equation’. Chaos Solitons Fractals 37, no. 2, 450–453.

Pinjai, Sirada; Mukdasai, Kanit, 2013. ‘New delay-dependent robust exponential stability criteria of LPD neutral systems with mixed time-varying delays and nonlinear perturbations’. J. Appl. Math., Art. ID 268905, 18 pp.

Rojsiraphisal, Thaned; Niamsup, Piyapong 2010. ‘Exponential stability of certain neutral differential equations’. Appl. Math. Comput. 217, no. 8, 3875–3880.

Sun, Yuan Gong; Wang, Long 2006. ‘Note on asymptotic stability of a class of neutral differential equations’. Appl. Math. Lett. 19, no. 9, 949–953.

Slyniko, Vitalii; Tunc, Cemil; 2019. ‘Stability of abstract linear switched impulsive differential equations’. Automatica J. IFAC 107, 433–441.

Tunc, Cemil; Altun, Melek 2012. ‘On the integrability of solutions of non-autonomous
differential equations of second order with multiple variable deviating arguments’. J. Comput. Anal. Appl. 14, no. 5, 899–908.

Tunç, Cemil 2013. ‘Exponential stability to a neutral differential equation of first order with delay’. Ann. Differential Equations 29, no. 3, 253–256.

Tunç, Cemil; Mohammed, Sizar Abid 2017. ‘New results on exponential stability of nonlinear Volterra integro-differential equations with constant time-lag’. Proyecciones 36, no. 4, Tunç, Cemil; Tunç, Osman 2018. ‘New results on the stability, integrability and boundedness in Volterra integro-differential equations’. Bull. Comput. Appl. Math. 6, no. 1, 41–58.