John Ellipsoid and the Center of Mass of a Convex Body

Han Huang

Abstract It is natural to ask whether the center of mass of a convex body $K \subset \mathbb{R}^n$ lies in its John ellipsoid B_K, i.e., in the maximal volume ellipsoid contained in K. This question is relevant to the efficiency of many algorithms for convex bodies. In this paper, we obtain an unexpected negative result. There exists a convex body $K \subset \mathbb{R}^n$ such that its center of mass does not lie in the John ellipsoid B_K inflated $(1 - C \sqrt{\log(n)/n})n$ times about the center of B_K. Moreover, there exists a polytope $P \subset \mathbb{R}^n$ with $O(n^2)$ facets whose center of mass is not contained in the John ellipsoid B_P inflated $O\left(\frac{n}{\log(n)}\right)$ times about the center of B_P.

Keywords John’s position · Convex geometry · Roundness

1 Introduction

Recall that the John ellipsoid B_K of a convex body $K \subset \mathbb{R}^n$ is the maximal volume ellipsoid contained in K. A natural question asked by S. Vempala is whether the center of mass of K lies in a small dilation of its John ellipsoid. The importance of this question stems from its relation to the efficiency of algorithms for convex bodies. The efficiency of many such algorithms depends on the “roundness” of the body. This can be measured in two ways:
(1) the traditional way, as the ratio of the radii of the circumscribed to the inscribed ball;
(2) as the ratio of the radii of the smallest ball that contains the most points (say 1/2 of the volume) to the inscribed ball.

For instance, the complexity of sampling algorithms grows quadratically with the latter ratio. Thus, a common pre-processing step is to find a good rounding—in other words, find an ellipsoid for which this ratio is reasonably small and then map it to the unit ball using an affine transformation. This can be done in a randomized polynomial time algorithm by estimating the inertia ellipsoid (defined by the covariance matrix of a uniform random point from \(K \)), wherein complexity depends logarithmically on the initial ratio of the radii, but as a large degree polynomial on the dimension. The other possible candidate is the John ellipsoid. This ellipsoid is difficult to construct in general, but for explicit polytopes, a simple iterative algorithm identifies the inscribed ellipsoid of the maximal volume quite efficiently. This algorithm was developed by Khachiyan [5]. Recently, Lee and Sidford have provided a faster algorithm [7]. In contrast to the inertia ellipsoid, whose construction requires sampling, the John ellipsoid is constructed deterministically. The John ellipsoid can be used to reduce the ratio (1) but it can be as large as \(n \), which is the dimension of the body. On the other hand, the inertia ellipsoid yields the bound \(O(\sqrt{n}) \) for the ratio (2). This raises a question: Does the John ellipsoid also provide a good bound for the ratio (2)? In other words, one can write it as the following conjecture:

Conjecture 1.1 For any convex body \(K \) in \(\mathbb{R}^n \), the John ellipsoid of \(K \) scaled by a factor of \(O(\sqrt{n}) \) about the ellipsoid’s center will contain at least half of the volume of \(K \).

This can be formulated in terms of the center of mass. We will show in Sect. 4 that Conjecture 1.1 is equivalent to the following conjecture:

Conjecture 1.2 For any convex body \(K \) in \(\mathbb{R}^n \), the John ellipsoid of \(K \) scaled by a factor of \(O(\sqrt{n}) \) about the ellipsoid’s center will contain the center of mass of \(K \).

The main result of this paper is:

Theorem 1.3 For a sufficiently large \(n \in \mathbb{N} \),

(1) There exists a convex body \(K \subset \mathbb{R}^n \) such that its center of mass does not lie in the John ellipsoid scaled by a factor of \((1 - C_0 \sqrt{\log(n)/n})^n \) about the ellipsoid’s center, where \(C_0 > 0 \) is a universal constant.

(2) There exists a polytope \(P \subset \mathbb{R}^n \) with \(O(n^2) \) facets such that its center of mass does not lie in the John ellipsoid scaled by a factor of \(C_1 n^{1/\log(n)} \) about the ellipsoid’s center, where \(C_1 > 0 \) is a universal constant.

Remark It is well known that for any convex body \(K \subset \mathbb{R}^n \), the John ellipsoid of \(K \) scaled by a factor \(n \) about the ellipsoid’s center contains the original body \(K \) [4].

Thus, the example in Theorem 1.3 (1) is asymptotically optimal in the sense that

\[
\lim_{n \to +\infty} \left(1 - C_0 \sqrt{\log(n)/n}\right)^n = 1.
\]

\(\circ \) Springer
A consequence of this theorem is the following:

Corollary 1.4 For a sufficiently large \(n \in \mathbb{N} \),

1. There exists a convex body \(K \subset \mathbb{R}^n \) such that the center of its John ellipsoid \(B_K \) is \(\vec{0} \) and
 \[
 \text{vol} \left(\left(1 - C_0' \sqrt{\frac{\log(n)}{n}} \right) nB_K \cap K \right) \leq \frac{1}{2} \text{vol}(K),
 \]
 where \(C_0' > 0 \) is a universal constant.

2. There exists a polytope \(P \subset \mathbb{R}^n \) with \(O(n^2) \) facets such that the center of its John ellipsoid \(B_P \) is \(\vec{0} \) and
 \[
 \text{vol} \left(C_1' \frac{n}{\log(n)} B_P \cap P \right) \leq \frac{1}{2} \text{vol}(P),
 \]
 where \(C_1' > 0 \) is a universal constant.

Thus, Conjectures 1.1 and 1.2 are not true due to Theorem 1.3 and Corollary 1.4. In particular, both conjectures will not hold even if one restricts the collection of convex bodies to polytopes with \(O(n^2) \) facets.

This paper is structured as follows. Section 2 examines the notation and necessary background for the proof of the main theorem. The proof of the main theorem is presented in Sect. 3. Corollary 1.4 and the relation between Conjectures 1.1 and 1.2 are examined in Sect. 4.

2 Notations and Preliminaries

Let \(B_2^n \) denote the unit Euclidean ball in \(\mathbb{R}^n \) and \(| \cdot | \) denote the Euclidean norm. Let \(\{e_i\}_{i=1}^n \) be the standard orthonormal basis for \(\mathbb{R}^n \). For any \(x \in \mathbb{R}^n \), let \(x_i \) denote its \(i \)-th coefficient.

A subset of \(\mathbb{R}^n \) is called a convex body if it is a convex, compact set that has a non-empty interior. For a subset \(A \subset \mathbb{R}^n \), let \(1_A \) denote the indicator function of \(A \). Moreover, we let \(A^c \) denote the complement of \(A \), which contains points of \(\mathbb{R}^n \) not in \(A \).

For a convex body \(K \subset \mathbb{R}^n \), \(\text{vol}(K) := \int_{\mathbb{R}^n} 1_K(x) \, dx \), where the integral is the standard Lebesgue integration on \(\mathbb{R}^n \).

An ellipsoid \(B_K \) is the John’s ellipsoid of \(K \) if \(B_K \subset K \); for any other ellipsoid \(\mathcal{E} \subset K \), \(\text{vol}(B_K) \geq \text{vol}(\mathcal{E}) \). It is known that \(B_K \) exists and is unique [4].

A convex body \(K \) is in John’s position if the John ellipsoid of \(K \) is \(B_2^n \). For any convex body \(K \subset \mathbb{R}^n \), there exists an affine transformation \(T \) such that \(TK \) is in John’s position.

If a convex body \(K \) contains \(\vec{0} \), we can define its radial function \(\rho : S^{n-1} \to \mathbb{R}_+ \) by

\[
\forall \theta \in S^{n-1}, \quad \rho(\theta) = \max \{ t > 0 : t\theta \in K \}.
\]

The center of mass of a convex body \(K \) is defined by \(x_K := \frac{1}{\text{vol}(K)} \int_K x \, dx \).
Let σ_{n-1} denote the normalized Haar measure on S^{n-1}. An absolutely continuous measure μ with density function $\frac{d\mu(x)}{dx} = f(x)$ on \mathbb{R}^n is called log-concave if, for any $\lambda \in (0, 1)$ and $x, y \in \mathbb{R}^n$, we have

\[f(\lambda x + (1 - \lambda)y) \geq f(x)^\lambda f(y)^{1-\lambda}. \tag{1} \]

In this paper, we are interested in a specific class of log-concave measures: For any convex body K, the probability uniformly distributed in K, $\frac{1}{\text{vol}(K)} \, dx$, is a log-concave probability measure. This is due to the fact that indicator functions of convex sets automatically satisfy inequality (1).

For matrices, let $\text{Tr}(M)$ denote the trace of a square matrix M and I_n denote the identity matrix on \mathbb{R}^n.

Let \mathbb{P} denote the probability and \mathbb{E} denote the expectation. For the standard definition of terms in probability, we refer to Çinlar’s book [2].

2.1 John’s Decomposition

Let $K \subset \mathbb{R}^n$ be a convex body in John’s position. A point $u \in \mathbb{R}^n$ is a contact point of K and B_2^n if $u \in \partial K \cap \partial B_2^n$. A classical theorem of F. John provides a decomposition of identity in terms of contact points [1, p. 52].

Theorem 2.1 Let K be a convex body in \mathbb{R}^n that contains B_2^n. Then, K is in John’s position if and only if there exist contact points u_1, \ldots, u_m and $c_1, \ldots, c_m > 0$ such that

1. $\sum_{i=1}^{m} c_i u_i \otimes u_i = I_n$, and
2. $\sum_{i=1}^{m} c_i u_i = 0$.

Therefore, we can check from its contact points whether a convex body is in John’s position.

2.2 Measure Concentration on S^{n-1}

Below we include two measure concentration inequalities on S^{n-1}. The first inequality is the upper bound for the measure of a spherical cap (see, e.g., [1, p. 86]):

Proposition 2.2 Let $A_t = \{\theta \in S^{n-1} : \theta_1 > t\}$, then $\sigma_{n-1}(A_t) \leq 2 \exp(-C_3 t^2 n)$ where $C_3 > 0$ is a universal constant.

The second inequality is the concentration inequality for Lipschitz continuous functions on the sphere (see, e.g., [8]):

Theorem 2.3 (Measure Concentration on S^{n-1}) Let $f : S^{n-1} \to \mathbb{R}$ be a Lipschitz continuous function with Lipschitz constant b. Then, for every $t > 0$,

\[\sigma_{n-1}\left(\{x \in S^{n-1} : |f(x) - \mathbb{E}(f)| \geq bt\}\right) \leq 4 \exp\left(- C_4 t^2 n \right), \]

where $C_4 > 0$ is a universal constant.
2.3 Measure Concentration for Log-Concave Probability Measures

We include Borell’s theorem [1, p. 30] and its application on comparison of moments [1, p. 115]:

Theorem 2.4 Let \mathbb{P} be the probability that is uniformly distributed in a convex body K. Let U be a closed, convex and symmetric set wherein $\mathbb{P}(U) = \delta > 1/2$. Then, for any $t > 1$, we have

$$\mathbb{P}((tU)^c) \leq \delta \left(\frac{1 - \delta}{\delta} \right)^{(t+1)/2}. $$

Theorem 2.5 Let μ be a non-degenerate log-concave probability measure on \mathbb{R}^n. Suppose $f : \mathbb{R}^n \to \mathbb{R}$ is a seminorm. In other words, f satisfies $f(rx) = |r| f(x)$ and $f(x + y) \leq f(x) + g(x)$ for all $x, y \in \mathbb{R}^n$ and all scalars r. Then, for any $q > p \geq 1$, we have

$$\left(\mathbb{E} |f|^p \right)^{1/p} \leq \left(\mathbb{E} |f|^q \right)^{1/q} \leq C_5 \frac{q}{p} \left(\mathbb{E} |f|^p \right)^{1/p},$$

where $C_5 > 0$ is some universal constant.

In the end, we recall one more theorem about log-concave probability measures (Corollary 1 in [6]):

Theorem 2.6 For each $0 < b < 1$ there exists a constant C_b such that for every log-concave probability measure μ and every measurable convex symmetric set U with $\mu(U) = b$ we have

$$\mu(tU) \leq C_b t \mu(U) \quad \text{for } t \in [0, 1].$$

3 Proof of the Main Theorem

Since the result of Theorem 1.3 is not affected by applying an affine transformation on K or P, Theorem 1.3 can be rephrased as follows:

Theorem 3.1 For a sufficiently large $n \in \mathbb{N},$

1. There exists a convex body $K \subset \mathbb{R}^n$ in John’s position such that $|x_K| \geq 1 - C_0 \sqrt{\log(n)/n}$ where $C_0 > 0$ is a universal constant.
2. There exists a convex polytope $P \subset \mathbb{R}^n$ in John’s position with $O(n^2)$ facets such that $|x_P| \geq C_1 \frac{n}{\log(n)}$ where $C_1 > 0$ is a universal constant.

We write points in the form $x = (y, t)$ where $y \in \mathbb{R}^{n-1}$ corresponds to $\{e_i\}_{i=1}^{n-1}$ and $t \in \mathbb{R}$ corresponds to e_n. For a convex body K, we write $x_K := (y_K, t_K)$. Observe that, for $R > 0,$
\[t_K - R \geq 0 \iff \frac{1}{\text{vol}(K)} \int_K (t - R) \, dx \geq 0 \iff \int_K (t - R) \, dx \geq 0. \]

Also, for a convex body \(K \subset \mathbb{R}^n \), let \(K_t := \{ y \in \mathbb{R}^{n-1} : (y, t) \in K \} \), which is a slice of the convex body \(K \). Let \([a_K, b_K]\) be the orthogonal projection of \(K \) to the span of \(e_n \).

Assuming \(\tilde{0} \in K_t \) for all \(t \in [a_K, b_K] \), let \(\rho_K(\cdot, t) \) denote the radial function of \(K_t \) as a convex body in \(\mathbb{R}^{n-1} \). Then

\[\int_K (t - R) \, dx = \int_{a_K}^{b_K} (t - R) \int_{K_t} dy \, dt = \int_{a_K}^{b_K} (t - R)(n - 1) \kappa_{n-1} \int_{S^{n-2}} \int_0^{\rho_K(\theta, t)} r^{n-2} \, dr \, d\sigma_{n-2}(\theta) \, dt = \kappa_{n-1} \int_{S^{n-2}} \int_{a_K}^{b_K} \rho_K(\theta, t)^{n-1} (t - R) \, dt \, d\sigma_{n-2}(\theta), \]

where \(\kappa_n \) denotes the volume of \(B_n^2 \). With \(|x_K| \geq |t_K| \), we conclude that

\[\int_{S^{n-2}} \int_{a_K}^{b_K} \rho_K(\theta, t)^{n-1} (t - R) \, dt \, d\sigma_{n-2}(\theta) \geq 0 \implies |x_K| \geq R. \quad (2) \]

Before moving on to the proof of the main theorem, we examine two simple convex bodies in \(\mathbb{R}^n \). Let \(\tilde{0} \in B \subset \mathbb{R}^{n-1} \) be an \((n - 1)\)-dimensional convex body. We define \(B_1, B_2 \subset \mathbb{R}^n \) as

\begin{align*}
B_1 := \{ (y, t) \in \mathbb{R}^n : y \in B \text{ and } t \in [0, n + 1] \}, \quad \text{and} \\
B_2 := \{ (y, t) \in \mathbb{R}^n : y = \frac{t}{n + 1} B \text{ and } t \in [0, n + 1] \}.
\end{align*}

In other words, \(B_1 \) is a cylinder and \(B_2 \) is a cone. Both of them have the same base \(B \) and height \(n + 1 \). We have \(t_{B_1} = (n + 1)/2 \).

For \(t_{B_2} \), using the fact that \(B_2 \) is a cone, we have

\[t_{B_2} = \langle x_{B_2}, e_n \rangle = \frac{1}{\text{vol}(B_2)} \int_{B_2} t \, dx = \frac{n}{(n + 1)\text{vol}(B)} \int_0^{n+1} \text{vol}(B) \left(\frac{t}{n + 1} \right)^{n-1} t \, dt = n. \]

Comparing these two examples, we see that \(x_{B_2} \) is much closer to its base. For the same reason, the convex hull of \(B_2^n \) and \(ne_n \), which is in John’s position, has a center of mass that lies in \(B_2^n \), because its shape is similar to that of a cone.
We will construct examples in Theorem 3.1 as the intersection of two convex bodies, $Q \cap L$. Q and L will satisfy the following:

1. Q is in John’s position. L contains B_n^2. Thus, $Q \cap L$ is also in John’s position.
2. L will be a cone (or a cylinder) with the property that $Q \cap L$ and L have a similar shape. Therefore, $x_{Q \cap L}$ behaves like the center of mass of a cone (or a cylinder).

3.1 Construction of Q

The following proposition is related to the contact points decomposition of the identity:

Proposition 3.2 Let u_1, \ldots, u_m be unit vectors in $\mathbb{R}^{n-1} = \text{span}\{e_1, \ldots, e_{n-1}\} \subset \mathbb{R}^n$, and $c_1, \ldots, c_m > 0$ be some positive numbers such that

$$\sum_{i=1}^{m} c_i u_i \otimes u_i = I_{n-1} \quad \text{and} \quad \sum_{i=1}^{m} c_i u_i = \vec{0}.$$

Set $v_i = (\sqrt{1 - \frac{1}{n^2}} u_i, \frac{1}{n}) \in \mathbb{R}^n$ for $i = 1, \ldots, m$ and $v_0 = (\vec{0}, -1)$. With $c'_i = \frac{c_i}{1 - 1/n^2}$ and $c'_0 = \frac{n}{n+1}$, we obtain

$$\sum_{i=0}^{m} c'_i v_i \otimes v_i = I_n, \quad \text{and} \quad \sum_{i=0}^{m} c'_i v_i = \vec{0}.$$

Proof From the definition of v_i, we have

$$v_i \otimes v_i = \frac{1}{n^2} e_n \otimes e_n + \frac{1}{n} \sqrt{1 - \frac{1}{n^2}} (e_n \otimes u_i + u_i \otimes e_n) + \left(1 - \frac{1}{n^2}\right) u_i \otimes u_i.$$

We know that $n - 1 = \text{Tr}(I_{n-1}) = \text{Tr}(\sum_{i=1}^{m} c_i u_i \otimes u_i) = \sum_{i=1}^{m} c_i$. Thus, we have

$$\sum_{i=0}^{m} c_i v_i \otimes v_i = \frac{n - 1}{n^2} e_n \otimes e_n + \left(1 - \frac{1}{n^2}\right) I_{n-1}.$$

where we use the fact that $\sum_{i=1}^{m} c_i = n - 1$ and $\sum_{i=1}^{m} c_i u_i = \vec{0}$. Now let $c'_i = \frac{c_i}{1 - 1/n^2} = \frac{n^2 c_i}{n^2 - 1}$ for $i = 1, \ldots, m$ and $c'_0 = \frac{n}{n+1}$. We then have

$$\sum_{i=1}^{m} c'_i v_i \otimes v_i + c'_0 (-e_n) \otimes (-e_n) = \frac{n - 1}{n^2 - 1} e_n \otimes e_n + I_{n-1} + \frac{n}{n + 1} e_n \otimes e_n = I_n.$$

\square Springer
Also,
\[\sum_{i=1}^{m} c'_i v_i - c'_0 e_n = \left(\frac{n-1}{n} \frac{n^2}{n^2-1} - \frac{n}{n+1} \right) e_n = \vec{0}. \]

The points \(\{u_j\}_{j=1}^{2(n-1)} = \{ \pm e_i \}_{i=1}^{n-1} \) with \(c_j = \frac{1}{2} \) satisfy the assumption of Proposition 3.2. We set
\[
A := \left\{ \left(\pm \sqrt{1 - \frac{1}{n^2}} e_i, \frac{1}{n} \right) \right\}_{i=1}^{n-1} \cup \{ (\vec{0}, -1) \}
\]
and
\[
Q := \{ x \in \mathbb{R}^n : \forall u \in A \langle x, u \rangle \leq 1 \}.
\]
The set \(A \) is the collection of contact points of \(Q \). By Proposition 3.2 and Theorem 2.1, \(Q \) is in John’s position.

Let \(B^{n-1}_\infty := \{ y \in \mathbb{R}^{n-1} : \forall i = 1, 2, \ldots, n-1 \ |\langle y, e_i \rangle| \leq 1 \} \) be the unit cube in \(\mathbb{R}^{n-1} \).

\[
Q = \{ x \in \mathbb{R}^n : \forall u \in A \langle x, u \rangle \leq 1 \} = \left\{ (y, t) \in \mathbb{R}^n : y \in \frac{n-t}{\sqrt{n^2-1}} B^{n-1}_\infty \text{ and } t \in [-1, n] \right\}.
\]

\(Q \) is in John’s position and it is a cone with base \(\frac{n+1}{\sqrt{n^2-1}} B^{n-1}_\infty \) and height \(n+1 \). Thus, \(Q_t \) is \(\frac{n-t}{\sqrt{n^2-1}} B^{n-1}_\infty \) for \(t \in [-1, n] \). Since the radial function of \(B^{n-1}_\infty \) is \(\rho_{B^{n-1}_\infty}(\theta) = 1/\max \{ |\langle \theta, e_i \rangle| \}_{i=1}^{n-1} \). We have
\[
\rho_Q(\theta, t) = \frac{1}{\max \{ |\langle \theta, e_i \rangle| \}_{i=1}^{n-1}} \frac{n-t}{\sqrt{n^2-1}}.
\]

3.2 Proof of Theorem 3.1 (1)

We define
\[
L := \left\{ (y, t) \in \mathbb{R}^n : y \in \left(2 + \frac{t}{n} \right) B^{n-1}_2 \text{ and } t \in [-1, n] \right\}.
\]

In particular, \(L_t \) is equal to \((2 + \frac{t}{n}) B^{n-1}_2 \) and the radial function is \(\rho_L(\theta, t) = 2 + \frac{t}{n} \).
Fix \(R_0 = n - \frac{C_0}{2} \sqrt{\log(n)/n} \) for some \(C_0 > 0 \) that will be determined later. Then, we have \(\rho_L(\theta, R_0) = 3 - \frac{C_0}{2} \sqrt{\log(n)/n} \). By (3),

\[
\rho_Q(\theta, R_0) = \frac{1}{\max\{||\langle \theta, e_i \rangle||\}_{i=1}^{n-1}} \frac{C_0 \sqrt{\log(n)/n}}{2} \frac{n-1}{\sqrt{n^2 - 1}}.
\]

We split \(S^{n-2} \) into two components by defining

\[
O_1 := \{ \theta \in S^{n-2} : \rho_Q(\theta, R_0) \leq \rho_L(\theta, R_0) \}.
\]

For a sufficiently large \(n \), we have

\[
O_1 = \left\{ \theta \in S^{n-2} : \frac{1}{3 - \frac{C_0}{2} \sqrt{\log(n)/n}} \frac{C_0 \sqrt{\log(n)/n}}{2} \frac{n-1}{\sqrt{n^2 - 1}} \leq \max\{||\langle \theta, e_i \rangle||\}_{i=1}^{n-1} \right\}
\subset \left\{ \theta \in S^{n-2} : \frac{C_0 \sqrt{\log(n)/n}}{6} \frac{n-1}{\sqrt{n^2 - 1}} \leq \max\{||\langle \theta, e_i \rangle||\}_{i=1}^{n-1} \right\}
\subset \bigcup_{i=1}^{n-1} \left\{ \theta \in S^{n-2} : \frac{C_0 \sqrt{\log(n)/n}}{6} \frac{n-1}{\sqrt{n^2 - 1}} \leq ||\langle \theta, e_i \rangle|| \right\}.
\]

Due to Proposition 2.2, the measure of \(O_1 \) can be bounded:

\[
\sigma_{n-2}(O_1) \leq 4n \exp \left(-\frac{1}{36} C_3 C_0^2 \frac{n(n-1)}{n^2 - 1} \log(n) \right) \leq 4 \exp \left(\left(1 - \frac{1}{36} \frac{n}{n+1} C_3 C_0^2 \right) \log(n) \right).
\]

By setting \(C_0 := \sqrt{\frac{144}{C_3}} \), for a sufficiently large \(n \), we have

\[
\sigma_{n-2}(O_1) \leq 4 \exp(-\log(n)) \leq \frac{1}{2}.
\]

Moreover, \(\rho_L(\theta, t) \) is increasing with respect to \(t \in [-1, n] \), while \(\rho_Q(\theta, t) \) is decreasing with respect to \(t \in [-1, n] \). We may conclude that

\[
\forall \theta \in O_1, \quad \rho_Q(\theta, t) \geq \rho_L(\theta, t) \text{ for } t \in [-1, R_0].
\]

We define \(K \) to be the intersection of \(Q \) and \(L \), \(K = Q \cap L \). Then, we have \(K_t = Q_t \cap L_t \) and thus \(\rho_K(\theta, t) = \min\{\rho_Q(\theta, t), \rho_L(\theta, t)\} \).

By (2), it is sufficient to prove

\[
\int_{S^n-1} \int_{-1}^{n} \rho_K(\theta, t)^{n-1}(t - R) dt \, d\sigma_{n-2}(\theta) \geq 0,
\]

(7)
with $R = n - C_0 \sqrt{\log(n)n}$. For the inner integral in (7):

$$
\int_{-1}^{R} \rho_K(\theta, t)^{n-1}(t - R) \, dt \geq \int_{-1}^{R_0} \rho_K(\theta, t)^{n-1}(t - R) \, dt
$$

$$
= -\int_{-1}^{R} \rho_K(\theta, t)^{n-1}(R - t) \, dt
$$

$$
+ \int_{R}^{R_0} \rho_K(\theta, t)^{n-1}(t - R) \, dt.
$$

For the first component, with $\rho_K(\theta, t) \leq \rho_L(\theta, t) = 2 + \frac{t}{n}$, we have

$$
\int_{-1}^{R} \rho_K(\theta, t)^{n-1}(R - t) \, dt \leq \int_{-1}^{R} \left(2 + \frac{t}{n}\right)^{n-1}(R - t) \, dt.
$$

The integral on the right-hand is computable via integration by parts:

$$
\int_{-1}^{R} \left(2 + \frac{t}{n}\right)^{n-1}(R - t) \, dt = \left(2 + \frac{t}{n}\right)^n(R - t) \bigg|_{-1}^{R} + \int_{-1}^{R} \left(2 + \frac{t}{n}\right)^n \, dt
$$

$$
= -\left(2 - \frac{1}{n}\right)^n(R + 1) + \frac{n}{n + 1} \left(2 + \frac{R}{n}\right)^{n+1} - \frac{n}{n + 1} \left(2 - \frac{1}{n}\right)^{n+1}
$$

$$
\leq \frac{n}{n + 1} \left(2 + \frac{R}{n}\right)^{n+1}.
$$

Thus,

$$
\int_{-1}^{R} \rho_K(\theta, t)^{n-1}(R - t) \, dt \leq \frac{n}{n + 1} \left(2 + \frac{R}{n}\right)^{n+1}. \quad (8)
$$

For $\theta \in O_1^c$, due to (6) we have $\rho_K(\theta, t) = \rho_L(\theta, t) = (2 + \frac{t}{n})$ for $t \in [-1, R_0]$. Thus, we have the equality when $\theta \in O_1^c$:

$$
\int_{R}^{R_0} \rho_K(\theta, t)^{n-1}(t - R) \, dt = \int_{R}^{R_0} \rho_L(\theta, t)^{n-1}(t - R) \, dt.
$$

Again, the integral on the right-hand is computable:

$$
\int_{R}^{R_0} \left(2 + \frac{t}{n}\right)^{n-1}(t - R) \, dt
$$

$$
= \left(2 + \frac{t}{n}\right)^n(t - R) \bigg|_{R}^{R_0} - \int_{R}^{R_0} \left(2 + \frac{t}{n}\right)^n \, dt
$$

$$
= \left(2 + \frac{R_0}{n}\right)^n(R_0 - R) - \frac{n}{n + 1} \left(2 + \frac{R_0}{n}\right)^{n+1} + \frac{n}{n + 1} \left(2 + \frac{R}{n}\right)^{n+1}.
$$
The order of $R_0 - R$ is $O(\sqrt{\log(n)n})$ and $\frac{n}{n+1}(2 + \frac{R_0}{n})$ is of order $O(1)$. Thus, the first term in the last inequality dominates the remaining terms. Hence, for large n, the previous equality can be bounded:

$$
\left(2 + \frac{R_0}{n}\right)^n (R_0 - R) - \frac{n}{n+1} \left(2 + \frac{R_0}{n}\right)^{n+1} + \frac{n}{n+1} \left(2 + \frac{R}{n}\right)^{n+1} \geq \frac{1}{2} \left(2 + \frac{R_0}{n}\right)^n (R_0 - R).
$$

We conclude that, for any $\theta \in O_1^c$,

$$
\int_{R_0}^{R} \rho_K(\theta, t)^{n-1}(t - R) \, dt \geq \frac{1}{2} \left(2 + \frac{R_0}{n}\right)^n (R_0 - R). \tag{9}
$$

Now we can derive the main inequality (7). First, we split the integral:

$$
\int_{S^{n-1}} \int_{-1}^{n} \rho_K(\theta, t)^{n-1}(t - R) \, dt \, d\sigma_{n-2}(\theta)
= \int_{S^{n-1}} \int_{-1}^{R} \rho_K(\theta, t)^{n-1}(t - R) \, dt \, d\sigma_{n-2}(\theta)
+ \int_{S^{n-1}} \int_{R}^{R_0} \rho_K(\theta, t)^{n-1}(t - R) \, dt \, d\sigma_{n-2}(\theta)
+ \int_{S^{n-1}} \int_{R_0}^{n} \rho_K(\theta, t)^{n-1}(t - R) \, dt \, d\sigma_{n-2}(\theta).
$$

By (8), the first summand satisfies

$$
\int_{S^{n-1}} \int_{-1}^{R} \rho_K(\theta, t)^{n-1}(t - R) \, dt \, d\sigma_{n-2}(\theta) \geq -\frac{n}{n+1} \left(2 + \frac{R}{n}\right)^{n+1}.
$$

According to (9) and (5), the second summand satisfies

$$
\int_{S^{n-1}} \int_{R}^{R_0} \rho_K(\theta, t)^{n-1}(t - R) \, dt \, d\sigma_{n-2}(\theta)
\geq \int_{O_1^c} \int_{R}^{R_0} \rho_K(\theta, t)^{n-1}(t - R) \, dt \, d\sigma_{n-2}(\theta)
\geq \frac{1}{4} \left(2 + \frac{R_0}{n}\right)^n (R_0 - R).
$$
Noticing that the third summand is non-negative, we conclude that
\[
\int_{S^{n-1}} \int_{-1}^{1} \rho_K(\theta, t)(t - R) \, dt \, d\sigma_{n-2}(\theta)
\geq - \frac{n}{n+1} \left(2 + \frac{R}{n} \right)^{n+1} + \frac{1}{4} \left(2 + \frac{R_0}{n} \right)^n (R_0 - R).
\]

With \((R_0 - R)\) of order \(O(\sqrt{\log(n)n})\), \(2 + \frac{R}{n} = O(1)\) and \((2 + \frac{R_0}{n})^n > (2 + \frac{R}{n})^n\), we get
\[
- \frac{n}{n+1} \left(2 + \frac{R}{n} \right)^{n+1} + \frac{1}{4} \left(2 + \frac{R_0}{n} \right)^n (R_0 - R) > 0
\]
for a sufficiently large \(n\). Hence,
\[
\int_{S^{n-1}} \int_{-1}^{1} \rho_K(\theta, t)(t - R) \, dt \, d\sigma_{n-2}(\theta) > 0.
\]
We conclude from (2) that
\[
|x_K| > R = n - C_0 \sqrt{\log(n)n} = \left(1 - C_0 \sqrt{\frac{\log(n)}{n}} \right)n.
\]

3.3 Proof of Theorem 3.1 (2)

To construct the polytope \(P\) of Theorem 3.1 (2) we define a cylinder \(L_2\), which is the intersection of \(O(n^2)\) number of half spaces and set \(P := Q \cap L_2\), where \(Q\) is the same as above.

Let \(\{\epsilon_n\}\) be a decreasing sequence. Later we will specify \(\epsilon_n\), but for now we assume that
\[
\frac{10}{n} < \epsilon_n < 1, \quad (10)
\]
and
\[
\lim_{n \to +\infty} \epsilon_n = 0. \quad (11)
\]

Let
\[
A' := \{ \pm(1 - \epsilon_n)e_i \pm \sqrt{1 - (1 - \epsilon_n)^2}e_j \}_{i, j < n, i \neq j},
\]
and
\[
L_2 := \{ (y, t) \in \mathbb{R}^n : \langle y, u \rangle \leq 1 \ \forall u \in A' \ \text{and} \ t \in [-1, n] \}.
\]
We have $|A'| = 4n(n - 1)$ and L_2 is a cylinder with

$$L_{2,t} = \{ y \in \mathbb{R}^{n-1} : \langle y, u \rangle \leq 1 \ \forall u \in A' \}$$

for $t \in [-1, n]$. Let $P = Q \cap L_2$. Since $B^n_2 \subseteq L_2$ and Q is in John’s position, P is in John’s position as well. Following the same approach from the proof of Theorem 3.1 (1), we want to show that

$$\int_{S^{n-2}} \int_{-1}^{n} \rho_P(\theta, t)^{n-1} \left(t - \frac{1}{5} \epsilon_n n \right) dt d\sigma_{n-2}(\theta) > 0. \quad (12)$$

Then, we can conclude $|x_P| > \frac{1}{5} \epsilon_n n$.

For convenience, let $Q' := Q_{\epsilon_n n}$ and $L' := L_{2, \epsilon_n n}$. Also, let $\rho_{Q'}(\cdot) := \rho_Q(\cdot, \epsilon_n n)$ and $\rho_{L'}(\cdot) := \rho_{L_2}(\cdot, \epsilon_n n)$. We will show that for the majority of $\theta \in S^{n-2}$, $\rho_P(\theta, t) = \rho_{L_2}(\theta, t)$ for $t \in [-1, \epsilon_n n]$. In the case that $\rho_P(\theta, t) \neq \rho_{L_2}(\theta, t)$ for some t in $[-1, \epsilon_n n]$, $\rho_P(\theta, t)$ will be nicely bounded.

Proposition 3.3 With the notation above, let

$$O_2 := \{ \theta \in S^{n-2} : \rho_{Q'}(\theta) \leq \rho_{L'}(\theta) \}.$$

For a sufficiently large n, we have

1. $\forall \theta \in O_2$, $\rho_{Q'}(\theta) \leq 2\sqrt{\epsilon_n n}$.
2. $\sigma_{n-2}(O_2) \leq 4n \exp(-\frac{C_6}{\epsilon_n})$, where $C_6 > 0$ is a universal constant.

Proof Let $y \in \partial Q' \cap L'$. Since $Q' = Q_{\epsilon_n} = (1 - \epsilon_n) \frac{n}{\sqrt{n^2 - 1}} B^n_{\infty} - \epsilon_n$, there exists i such that $|y_i| = (1 - \epsilon_n) \frac{n}{\sqrt{n^2 - 1}} = \rho_Q^{\frac{\frac{y}{|y|}}{|y|}}$. Following the conditions from the definition of L', we have, for $j \neq i$,

$$(1 - \epsilon_n)|y_i| + \sqrt{1 - (1 - \epsilon_n)^2}|y_j| \leq 1 \implies \sqrt{1 - (1 - \epsilon_n)^2}|y_j| \leq 1 - (1 - \epsilon_n)^2 \implies |y_j| \leq \sqrt{1 - (1 - \epsilon_n)^2},$$

where for the second inequality we use $\frac{n}{\sqrt{n^2 - 1}} \geq 1$.

We may conclude that $y \in \partial Q' \cap L'$ implies

$$|y| \leq \sqrt{(n - 2)(1 - (1 - \epsilon_n)^2) + (1 - \epsilon_n)^2 \frac{n^2}{n^2 - 1}}. \quad (13)$$
By (10) and (11), we have $0 < (1 - (1 - \varepsilon_n)^2) = 2\varepsilon_n - \varepsilon_n^2 \leq 2\varepsilon_n$ and $n\varepsilon_n > 1$. Hence, (13) becomes

$$|y| \leq \sqrt{(n - 2)(1 - (1 - \varepsilon_n)^2) + (1 - \varepsilon_n)^2 \frac{n^2}{n^2 - 1}} \leq \sqrt{2\varepsilon_n n + 2} \leq 2\sqrt{\varepsilon_n n}.$$

For $\theta \in O_2$, we have $\rho_{Q}(\theta) \in \partial Q' \cap L'$. Thus, we finish the proof of the first claim.

For the second claim, let $\theta \in O_2$. There exists i such that $|\langle \rho_{Q'}(\theta)\rangle_i| = (1 - \varepsilon_n)\frac{n}{\sqrt{n^2 - 1}}$. By (11), $(1 - \varepsilon_n)\frac{n}{\sqrt{n^2 - 1}} > \frac{1}{2}$ for large n.

Together with $\rho_{Q'}(\theta) \leq 2\sqrt{\varepsilon_n n}$,

$$|\theta_i| = \frac{(1 - \varepsilon_n)n/\sqrt{n^2 - 1}}{\rho_{Q'}(\theta)} \geq \frac{1}{2\rho_{Q'}(\theta)} \geq \frac{1}{4\sqrt{\varepsilon_n n}}. \quad (14)$$

Thus, inequality (14) leads to the following inclusion:

$$O_2 \subset \bigcup_{i=1}^{n-1} \left\{ \theta \in S^{n-2} : |\theta_i| \geq \frac{1}{4\sqrt{\varepsilon_n n}} \right\}.$$

By Proposition 2.2,

$$\sigma_{n-2}\left(\left\{ \theta : |\theta_i| \geq \frac{1}{4\sqrt{\varepsilon_n n}} \right\} \right) \leq 4 \exp\left(-\frac{C_3}{16\varepsilon_n} \frac{n - 1}{n} \right) \leq 4 \exp\left(-\frac{C_6}{\varepsilon_n} \right).$$

Therefore, using the union bound, we conclude that

$$\sigma_{n-2}(O_2) \leq 4n \exp\left(-\frac{C_6}{\varepsilon_n} \right). \quad \Box$$

Proposition 3.4 With the notation above, there exists a constant $C_7 > 0$ such that if the sequence $\{\varepsilon_n\}$ satisfies $\frac{C_7}{\log(n)} > \varepsilon_n$ for a large sufficiently n, then

$$\sigma_{n-2}\left(\left\{ \theta : \rho_{L'}(\theta) \leq 5\sqrt{\varepsilon_n n} \right\} \right) \leq 4 \exp\left(-\frac{C_8}{\varepsilon_n} \right).$$

where $C_8 > 0$ is a universal constant.

Proof Let $\| \cdot \|$ be the norm on \mathbb{R}^{n-1} such that L' is the unit ball that corresponds to the norm $\| \cdot \|$. More specifically, for $y \in \mathbb{R}^{n-1}$,

$$\|y\| = \max_{1 \leq i, j < n, i \neq j} \left\{ (1 - \varepsilon_n)|y_i| + \sqrt{1 - (1 - \varepsilon_n)^2}|y_j| \right\}.$$
Let $g = (g_1, g_2, \ldots, g_{n-1})$ be the standard Gaussian random vector in \mathbb{R}^{n-1}. Then,

$$
\mathbb{E} \|g\| = \mathbb{E} \max_{1 \leq i, j < n, i \neq j} \left\{ (1 - \epsilon_n)|g_i| + \sqrt{1 - (1 - \epsilon_n)^2}|g_j| \right\} \leq 2 \mathbb{E} \max_{i=1, \ldots, n-1} |g_i|.
$$

To handle the maximum of Gaussian random variables, we control it by the l_p norm. For $p \geq 1$, using Hölder’s inequality we have

$$
\mathbb{E} \max_{i=1, \ldots, n-1} |g_i| \leq \mathbb{E} \left(\sum_{i=1}^{n-1} |g_i|^p \right)^{1/p} \leq \left(\sum_{i=1}^{n-1} \mathbb{E} |g_i|^p \right)^{1/p}.
$$

A direct computation using the density function of the Gaussian random variable shows that

$$
\mathbb{E} |g_i|^p \leq \left(c \sqrt{p} \right)^p
$$

for some $c > 0$. Taking $p = \log(n)$, we get

$$
\mathbb{E} \max_{i=1, \ldots, n-1} |g_i| \leq \left(\frac{n-1}{\sqrt{n}} \right)^{1/2} \mathbb{E} \left(\sum_{i=1}^{n-1} \mathbb{E} |g_i|^p \right)^{1/p} \leq c' \sqrt{\log(n)}
$$

due to $(n - 1)^{1/\log(n)} \leq e$, where $c' > 0$ is some universal constant. Therefore, we have $\mathbb{E} \|g\| \leq c' \sqrt{\log(n)}$.

Using the standard polar integration, we obtain the following inequality,

$$
\int_{S^{n-2}} \|\theta\| d\sigma_{n-2}(\theta) \leq \frac{c''}{\sqrt{n}} \mathbb{E} \|g\|,
$$

where $c'' > 0$ is a universal constant. Thus, $\mathbb{E}_{\sigma_{n-2}} \|\theta\| \leq c' c'' \sqrt{\frac{\log(n)}{n}}$. Moreover, $\sup_{\theta \in S^{n-2}} \|\theta\| \leq 1$ due to the fact that $B^{n-1}_2 \subset L'$. Therefore, the function $\theta \mapsto \|\theta\|$ is 1-Lipschitz on S^{n-2}. We choose $C_7 > 0$ to be small enough so that $125 \sqrt{\epsilon_n n} > c' c'' \sqrt{\frac{\log(n)}{n}}$. Since $\rho_{L'}(\theta) = \frac{1}{\|\theta\|}$, we have the equality

$$
\left\{ \theta \in S^{n-2} : \rho_{L'}(\theta) \leq 5 \sqrt{\epsilon_n n} \right\} = \left\{ \theta \in S^{n-2} : \|\theta\| \geq \frac{1}{5 \sqrt{\epsilon_n n}} \right\}.
$$

Furthermore, the inequality $\mathbb{E}_{\sigma_{n-2}} \|\theta\| \leq \frac{1}{125 \sqrt{\epsilon_n n}}$ implies

$$
\left\{ \theta \in S^{n-2} : \|\theta\| \geq \frac{1}{5 \sqrt{\epsilon_n n}} \right\} \subset \left\{ \theta \in S^{n-2} : \|\theta\| - \mathbb{E} \|\theta\| > \frac{1}{10 \sqrt{\epsilon_n n}} \right\}.
$$
Together with Theorem 2.3, we may conclude that

$$
s_{n-2}\left(\{\theta \in S^{n-2} : \rho_{L'}(\theta) \leq 5\sqrt{\varepsilon_n}n\}\right)
\leq s_{n-2}\left(\{\theta \in S^{n-2} : \|\theta\| - \mathbb{E}\|\theta\| > \frac{1}{10\sqrt{\varepsilon_n}n}\}\right)
\leq 4\exp\left(-\frac{C_8}{\varepsilon_n}\right),
$$

where we use Theorem 2.3 in the last inequality. \(\square\)

Now we are able to prove Theorem 3.1 (2).

Proof of Theorem 3.1 (2) We want to choose \(\varepsilon_n\) so that

$$s_{n-2}(O_2) < \frac{1}{4}, \quad (15)$$

and

$$s_{n-2}\left(\{\theta \in S^{n-2} : \rho_{L'}(\theta) \leq 5\sqrt{\varepsilon_n}n\}\right) \leq \frac{1}{4}, \quad (16)$$

for a large \(n\).

According to Proposition 3.3, the first condition can be achieved if \(4n \exp\left(-\frac{C_6}{\varepsilon_n}\right) \leq \frac{1}{4}\), which is true if \(\varepsilon_n \leq \frac{C_6}{n^{\log(n)}}\) for large \(n\). Moreover, if \(\varepsilon < \frac{C_7}{n^{\log(n)}}\), then, applying Proposition 3.4 we get

$$s_{n-2}\left(\{\theta \in S^{n-2} : \rho_{L'}(\theta) \leq 5\sqrt{\varepsilon_n}n\}\right) \leq 4\exp\left(-\frac{2C_8}{C_7\log(n)}\right) \leq \frac{1}{4}$$

for large \(n\). Therefore, we set \(\varepsilon_n = \min\{\frac{C_6}{2n^{\log(n)}}, \frac{C_7}{2n^{\log(n)}}\}\) so that (15) and (16) hold. Also, it satisfies our assumptions (10) and (11).

Recall that from (12) our goal is to show that

$$\int_{S^{n-2}}\int_{-1}^{n} \rho_P(\theta, t)^{n-1}\left(t - \frac{1}{5}\varepsilon_n n\right) dt d\sigma_{n-2}(\theta) > 0.$$

Since \(P = Q \cap L_2\),

$$\rho_P(\theta, t) = \min\{\rho_Q(\theta, t), \rho_{L_2}(\theta, t), \rho_{L'}(\theta)\} = \min\{\rho_Q(\theta, t), \rho_{L'}(\theta)\}.$$

We handle the inner integral differently for \(\theta \in O_2\) and \(\theta \notin O_2\).

- In the case that \(\theta \notin O_2\):
 First, we have \(\rho_Q(\theta, \varepsilon_n) \geq \rho_{L_2}(\theta, \varepsilon_n)\). Thus, \(\rho_P(\theta, t) = \rho_{L'}(\theta)\) for \(t \in \)
\([-1, \epsilon_n n]\). This is because \(\rho_{L'}(\theta)\) is a constant and \(\rho_Q(\theta, t)\) is decreasing with respect to \(t\). Thus,

\[
\int_{-1}^{n} \rho_P(\theta, t)^{n-1} \left(t - \frac{1}{5} \epsilon_n n \right) dt \\
\geq \int_{-1}^{\epsilon_n n} \rho_P(\theta, t)^{n-1} \left(t - \frac{1}{5} \epsilon_n n \right) dt \\
= \int_{-1}^{\epsilon_n n} \rho_{L'}(\theta)^{n-1} \left(t - \frac{1}{5} \epsilon_n n \right) dt.
\]

We split the integral in two parts:

\[
\int_{-1}^{\epsilon_n n} \rho_{L'}(\theta)^{n-1} \left(t - \frac{1}{5} \epsilon_n n \right) dt \\
= \int_{-1}^{2\epsilon_n n/5+1} \rho_{L'}(\theta)^{n-1} \left(t - \frac{1}{5} \epsilon_n n \right) dt \\
+ \int_{2\epsilon_n n/5+1}^{\epsilon_n n} \rho_{L'}(\theta)^{n-1} \left(t - \frac{1}{5} \epsilon_n n \right) dt.
\]

Due to the symmetry of the integrand with respect to \(t = \frac{1}{5} \epsilon_n n\), the first summand is 0. For the second summand, we have

\[
\int_{2\epsilon_n n/5+1}^{\epsilon_n n} \rho_{L'}(\theta)^{n-1} \left(t - \frac{1}{5} \epsilon_n n \right) dt \\
\geq \left(\epsilon_n n - \frac{2}{5} \epsilon_n n - 1 \right) \rho_{L'}(\theta)^{n-1} \left(\frac{1}{5} \epsilon_n n + 1 \right) \\
\geq \frac{(\epsilon_n n)^2}{10} \rho_{L'}(\theta)^{n-1},
\]

where in the second to last inequality we used that \(\frac{2}{5} \epsilon_n n + 1 \leq \frac{1}{2} \epsilon_n n\) by (10). We conclude that

\[
\forall \theta \in O_2^C, \int_{-1}^{n} \rho_P(\theta, t)^{n-1} \left(t - \frac{1}{5} \epsilon_n n \right) dt \geq \frac{(\epsilon_n n)^2}{10} \rho_{L'}(\theta)^{n-1}. \tag{17}
\]

- In the case that \(\theta \in O_2^C\):

 From Proposition 3.3, we know that \(\rho_Q(\theta, \epsilon_n n) \leq 2\sqrt{\epsilon_n n}\). Therefore, since \(\rho_Q(\theta, t)\) is linear on \([-1, n]\) and \(\rho_Q(\theta, n) = 0\), we see that for any \(t \in [-1, n]\),

\[
\rho_Q(\theta, t) \leq \frac{n + 1}{n - \epsilon_n n} 2\sqrt{\epsilon_n n} \leq 4\sqrt{\epsilon_n n}.
\]
for a sufficiently large n. We have

$$
\int_{-1}^{n} \rho_p(\theta, t)^{n-1} \left(t - \frac{1}{5} \epsilon_n n \right) dt \geq \int_{-1}^{\epsilon n/5} \rho_p(\theta, t)^{n-1} \left(t - \frac{1}{5} \epsilon_n n \right) dt,
$$

because the integrand is positive for $t > \frac{1}{5} \epsilon n n$. Then, using the estimate of $\rho_Q(\theta, t) \leq 4 \sqrt{\epsilon n n}$,

$$
\int_{-1}^{\epsilon n/5} \rho_p(\theta, t)^{n-1} \left(t - \frac{1}{5} \epsilon_n n \right) dt \geq - \frac{4}{25} (\epsilon_n n)^2 (4 \sqrt{\epsilon n n})^{n-1},
$$

where in the last inequality we used $\frac{1}{5} \epsilon_n n + 1 \leq \frac{2}{3} \epsilon_n n$, which is valid for a large n. Therefore, we have

$$
\forall \theta \in O_2, \int_{-1}^{n} \rho_p(\theta, t)^{n-1} \left(t - \frac{1}{5} \epsilon_n n \right) dt \geq - \frac{4}{25} (\epsilon_n n)^2 (4 \sqrt{\epsilon n n})^{n-1}. \quad (18)
$$

Now we are able to derive the main inequality.

$$
\int_{S^{n-2}} \int_{-1}^{n} \rho_p(\theta, t)^{n-1} \left(t - \frac{1}{5} \epsilon_n n \right) dt d\sigma_{n-2}(\theta) = \int_{O_2} \int_{-1}^{n} \rho_p(\theta, t)^{n-1} \left(t - \frac{1}{5} \epsilon_n n \right) dt d\sigma_{n-2}(\theta) + \int_{O_2^c} \int_{-1}^{n} \rho_p(\theta, t)^{n-1} \left(t - \frac{1}{5} \epsilon_n n \right) dt d\sigma_{n-2}(\theta). \quad (19)
$$

Applying (17), the second summand satisfies

$$
\int_{O_2^c} \int_{-1}^{n} \rho_p(\theta, t)^{n-1} \left(t - \frac{1}{5} \epsilon_n n \right) dt d\sigma_{n-2}(\theta) \geq (\epsilon_n n)^2 \int_{O_2^c} \frac{1}{10} \rho_{L'}(\theta)^{n-1} d\sigma_{n-2}(\theta).
$$

Let $U := \{ \theta : \rho_{L'}(\theta) \geq 5 \sqrt{\epsilon n n} \}$. From (15) and (16) we know that $\sigma_{n-2}(U \cap O_2^c) \geq \frac{1}{2}$ for a large n. Since the integrand is positive,

$$
\int_{O_2^c} \frac{1}{10} \rho_{L'}(\theta)^{n-1} d\sigma_{n-2}(\theta) \geq \int_{U \cap O_2^c} \frac{1}{10} \rho_{L'}(\theta)^{n-1} d\sigma_{n-2}(\theta).
$$
Thus,
\[
\int_{O_2} \int_{-1}^{n-2} \rho P(\theta, t)^{n-1} \left(t - \frac{1}{5} \epsilon n \right) dt \, d\sigma_{n-2}(\theta)
\geq (\epsilon n)^2 \int_{U \cap O_2} \frac{1}{10} \rho_L(\theta)^{n-1} \, d\sigma_{n-2}(\theta)
\geq (\epsilon n)^2 \frac{1}{20} (5\sqrt{\epsilon n})^{n-1}.
\]

For the first summand of (19), we apply (18) and (15) to get
\[
\int_{O_2} \int_{-1}^{n-2} \rho P(\theta, t)^{n-1} \left(t - \frac{1}{5} \epsilon n \right) dt \, d\sigma_{n-2}(\theta)
\geq - (\epsilon n)^2 \sigma_{n-2}(O_2) \frac{4}{25} (4\sqrt{\epsilon n})^{n-1}.
\]

Combining the inequalities for the two summands together we have
\[
\int_{S^{n-2}} \int_{-1}^{n-2} \rho P(\theta, t)^{n-1} \left(t - \frac{1}{5} \epsilon n \right) dt \, d\sigma_{n-2}(\theta)
\geq (\epsilon n)^2 \left[\frac{1}{20} (5\sqrt{\epsilon n})^{n-1} - \frac{1}{25} (4\sqrt{\epsilon n})^{n-1} \right] \geq 0.
\]

Therefore, the center of mass is at least \(C_1 \frac{n}{\log(n)} \) away from \(\vec{0} \), where \(C_1 := \min\{C_6, C_7\} \).

\[\square\]

4 The Relation Between the Conjectures

Let \(K \subset \mathbb{R}^n \) be a convex body in John’s position and \(X \) be a random vector uniformly distributed in \(K \). Let \(M_K \) denote the median of \(|X| \), which is the unique value satisfying
\[\mathbb{P}(|X| \leq M_K) = \frac{1}{2} .\]

Lemma 4.1 Let \(K \subset \mathbb{R}^n \) be a convex body. Let \(X \) be a random vector uniformly distributed in \(K \). Then, the median of \(|X| \). Then, we have
\[
\frac{M_K}{\sqrt{2}} \leq (\mathbb{E}|X|^2)^{1/2} \leq C_9 M_K ,
\]
where \(C_9 > 0 \) is a universal constant.

Proof The first inequality is standard:
\[\mathbb{E}|X|^2 \geq \mathbb{E}(|X|^2 1_{|X| \geq M_K}) \geq \frac{1}{2} M_K^2 .\]
Thus, the first inequality can be obtained by taking square root on both sides.

To prove the second one, let R be the number such that $\mathbb{P}(|X| \leq R) = \frac{2}{3}$. We can apply Theorem 2.4 with $U = RB^n_2$ and $\delta = \frac{2}{3}$ to get

$$\mathbb{P}(|X| > tR) \leq \frac{\sqrt{2}}{3} \frac{2^{-t/2}}{2^{t/2}} \quad \text{for } t > 1.$$

A simple integration shows that

$$\mathbb{E}|X|^2 \leq cR^2,$$

for a universal constant $c > 0$.

Now we apply Theorem 2.6 with $b = \frac{2}{3}$ and $U = RB^n_2$ to obtain

$$\mathbb{P}(|X| \leq M_K) = \mathbb{P}(X \in M_K B^n_2) \leq C_{2/3} \frac{M_K}{R} \mathbb{P}(|X| \leq R).$$

Together with $\mathbb{P}(|X| \leq M_K) = \frac{1}{2}$ and $\mathbb{P}(|X| \leq R) = \frac{2}{3}$, we conclude $M_K \geq \frac{3}{C_{2/3}} R$. Therefore, we have

$$M_K \geq \frac{3}{C_{2/3}} R \geq \frac{3}{\sqrt{c} C_{2/3}} (\mathbb{E}|X|^2)^{1/2}. \quad \square$$

We could also relate $\mathbb{E}|X|^2$ and the center of mass of K, x_K, when K is in John’s position.

Lemma 4.2 There exist $C_{10}, C_{11} > 0$ such that, for any convex body $K \subset \mathbb{R}^n$ in John’s position, we have

$$|x_K|^2 \leq \mathbb{E}|X|^2 \leq C_{10}|x_K|^2 + C_{11}n,$$

where X is a random vector uniformly distributed in K.

This result was proved by Fradelizi et al. in [3]. Here we present a different proof.

Proof Since K is in John’s position, there exist $\{u_i\}_{i=1}^m \subset S^{n-1}$ and $\{c_i\}_{i=1}^m$ with $c_i > 0$ such that $\sum_{i=1}^m c_i u_i = 0$ and $\sum_{i=1}^m c_i u_i \otimes u_i = I_n$.

In particular,

$$\mathbb{E}|X|^2 = \mathbb{E} \sum_{i=1}^m c_i (\langle X, u_i \rangle)^2.$$

Also, $|x_K|^2 = \sum_{i=1}^m c_i (\langle x_K, u_i \rangle)^2$.

\(\square\) Springer
Given that \(u_i \) is a contact point of \(K \), we have \(\langle x, u_i \rangle \leq 1 \) for all \(x \in K \). As a consequence, with \(\langle x_K, u_i \rangle = \mathbb{E} \langle X, u_i \rangle \) we have

\[
0 \leq \mathbb{E} |\langle X, u_i \rangle| - |\langle x_K, u_i \rangle| \leq 2.
\]

Here, the first inequality follows from Jensen’s inequality while the second one relies on an elementary observation that for any random variable \(Y \leq 1 \), \(\mathbb{E} |Y| = 2 \mathbb{E} \max\{Y, 0\} - \mathbb{E} Y \leq 2 + |\mathbb{E} Y| \). Thus,

\[
|\langle x_K, u_i \rangle|^2 \leq (\mathbb{E} |\langle X, u_i \rangle|)^2 \leq 3(|\langle x_K, u_i \rangle|^2 + 2).
\]

According to Theorem 2.5, we have

\[
\mathbb{E} |\langle X, u_i \rangle| \leq (\mathbb{E} |\langle X, u_i \rangle|^2)^{1/2} \leq 2C_5 \mathbb{E} |\langle X, u_i \rangle|.
\]

Therefore, we can conclude that

\[
|x_K|^2 \leq \mathbb{E} |X|^2 \leq 12C_5 \left(|x_K|^2 + 2 \sum c_i \right) \leq C |x_K|^2 + C'n,
\]

where the last inequality uses the fact that \(\sum_{i=1}^m c_i = n \).

\[\square \]

Corollary 4.3 Conjectures 1.2 and 1.1 are equivalent.

Proof Let \(K \subset \mathbb{R}^n \) be a convex body. Since the result is invariant under affine transformations, we may assume that \(K \) is in John’s position. Let \(X \) be a random vector uniformly distributed in \(K \) and \(M_K \) be the median of the random variable \(|X| \).

Suppose Conjecture 1.1 is true. There exists a universal constant \(C > 0 \) such that \(|x_K| \leq C \sqrt{n} \). According to Lemmas 4.1 and 4.2,

\[
M_K \leq \sqrt{2} (\mathbb{E} |X|^2)^{1/2} \leq \sqrt{2} \sqrt{C_{10} |x_K|^2 + C_{11} n} \leq \sqrt{2n} \sqrt{C_{10} C^2 + C_{11}}.
\]

This argument is valid for any convex body \(K \); therefore, Conjecture 1.2 is true.

On the other hand, assuming Conjecture 1.2 is valid, there exists a universal constant \(C > 0 \) such that \(M_K \leq C \sqrt{n} \). Again, according to Lemmas 4.1 and 4.2,

\[
|x_K| \leq (\mathbb{E} |X|^2)^{1/2} \leq C_9 M_K \leq C_9 C \sqrt{n}.
\]

Therefore, Conjecture 1.1 is true. \[\square \]

The examples in Corollary 1.4 will be bodies \(K, P \) constructed in Theorem 3.1. For Corollary 1.4 (2), the result will follow by \(|x_P| \leq C_9 M_P \). Corollary 1.4 (1) is a more delicate situation, and so the same argument does not apply. Observe that, for \(R > 0 \),

\[
K \cap R B^m_2 \subset K \cap \{ x \in \mathbb{R}^n : \langle x, e_1 \rangle \leq R \}.
\]
It is sufficient to show a stronger statement:

$$\text{vol}(K \cap \{x \in \mathbb{R}^n : \langle x, e_n \rangle \leq R \}) \leq \text{vol}(K \cap \{x \in \mathbb{R}^n : \langle x, e_1 \rangle > R \})$$

for $R = n - C_0 \sqrt{\log(n)n}$. Adapting the notations from the proof of Theorem 3.1, this is equivalent to show

$$\int_{S^{n-1}} \int_{-1}^{n} \rho_K(\theta, t)^{n-1} \text{sign}(t - R) \, dt \, d\sigma_{n-2} > 0.$$

The proof of this statement is almost identical to the proof of Theorem 3.1(1).

Acknowledgements I thank my advisor, Professor Mark Rudelson, for discussing and providing advice about this problem. I am also thankful Professor Santosh Vempala who identified the problem and explained the corresponding computer science background. Moreover, I would like to express my thanks to the anonymous referee for her/his suggestion on the improvement of the result. The research was partially supported by M. Rudelson’s NSF Grant DMS-1464514, and USAF Grant FA9550-14-1-0009.

References

1. Artstein-Avidan, S., Giannopoulos, A.A., Milman, V.D.: Asymptotic Geometric Analysis. Part I. Mathematical Surveys and Monographs, vol. 202. American Mathematical Society, Providence (2015)
2. Çınlar, E.: Probability and Stochastics. Graduate Texts in Mathematics, vol. 261. Springer, New York (2011)
3. Fradelizi, M., Paouris, G., Schütt, C.: Simplices in the Euclidean ball. Can. Math. Bull. 55(3), 498–508 (2012)
4. John, F.: Extremum problems with inequalities as subsidiary conditions. Studies and Essays Presented to R. Courant on his 60th Birthday, pp. 187–204. Interscience, New York (1948)
5. Khachiyan, L.G.: Rounding of polytopes in the real number model of computation. Math. Oper. Res. 21(2), 307–320 (1996)
6. Latała, R.: On the equivalence between geometric and arithmetic means for log-concave measures. Convex Geometric Analysis. Mathematical Sciences Research Institute Publications, vol. 34, pp. 123–127. Cambridge University Press, Cambridge (1999)
7. Lee, Y.T., Sidford, A.: Efficient inverse maintenance and faster algorithms for linear programming. In: Proceedings of the 56th IEEE Annual Symposium on Foundations of Computer Science (FOCS’15), pp. 18–20. IEEE, Washington, DC (2015)
8. Milman, V.D., Schechtman, G.: Asymptotic theory of finite-dimensional normed spaces. With an appendix by M. Gromov. Lecture Notes in Mathematics, vol. 1200. Springer, Berlin (1986)