Surgical management of epilepsy

Nathalie Jette MD MSc, Aylin Y. Reid MD PhD, Samuel Wiebe MD MSc

See related commentary on page 973 and at www.cmaj.ca/lookup/doi/10.1503/cmaj.121291

Epilepsy is the second most commonly reported neurologic condition worldwide and affects people of both sexes and of all ages and socioeconomic statuses. It is a frequent reason for consultation in primary care, and 80% of epilepsy costs are attributed to patients with drug-resistant epilepsy. Patients for whom medical treatment fails may be candidates for surgical intervention.

The modern era of epilepsy surgery began in England in the late 1800s, with a focus on neocortical resection. In the 1940s, Jasper and Penfield began performing mesial temporal lobe resections at the Montreal Neurological Institute; this is now the most commonly performed surgery for treatment of epilepsy. However, epilepsy surgery remains underutilized. For example, a recent report from the Ontario Health Technology Advisory Committee estimated that 2% of Ontario patients eligible for such surgery actually received it. We review the indications for and the benefits and risks of surgical interventions for epilepsy based on evidence from randomized controlled trials, cohort studies and case series (Box 1).

What are the limitations of medical therapy for epilepsy?

The natural history of epilepsy in those taking antiepileptic drugs has been explored in several long-term, population-based cohort studies. The probability of achieving one-year freedom from seizures after trying two to three drugs is between 63% and 79% (95% CI 53%–81%). However, as many as 68% (95% CI 65%–70%) of patients with focal epilepsy are resistant to drug therapy, which means that adequate trials of medical therapy with two “tolerated, appropriately chosen and used antiepileptic drug schedules have failed to achieve sustained seizure freedom.” “Adequate” implies appropriate drug treatment of sufficient strength whether as monotherapy or in combination). Failure of two or more antiepileptic drugs to sustain freedom from seizures is associated with a poor prognosis. Patients are unlikely to respond to additional drug treatment. Only 3%–5% of such patients per year eventually achieve seizure remission periods of one year with further antiepileptic drug therapy, and seizures recur in 71%–80% of these patients. A recent review of the impact of epilepsy showed that uncontrolled epilepsy is not only costly but is also associated with adverse cognitive effects, poor quality of life and increased mortality.

Which surgical procedures are available to treat epilepsy?

Whether seizures are focal or generalized determines the type of surgical procedure. Complete resection of the epileptogenic focus leads to the best results — that is, freedom from seizures. For patients in whom resection of the epileptogenic zone is impossible because it overlaps with eloquent cortex that would result in neurologic deficits, nonresective procedures may be indicated. These less commonly performed procedures include corpus callosotomy and vagus nerve stimulation. These are generally less effective than complete removal of the epileptogenic zone. Surgical interventions for patients with epilepsy can be grouped into three main categories.

Surgical resection or disconnection

For patients who experience seizures with focal or regional onset, surgical resection is the optimal procedure. This is the most common surgical inter-

Key points

- Patients who continue to have seizures despite appropriate trials of two antiepileptic drugs are unlikely to ever achieve sustained freedom from seizures with medical therapy.
- Surgical resection of the epileptogenic focus in carefully selected patients is highly effective, has durable effects and is cost-effective.
- Major complications of epilepsy surgery are infrequent and usually temporary but may rarely include dysphasia, memory decline and hemiparesis.
- Epilepsy surgery should be considered for patients with drug-resistant epilepsy and disabling seizures.
- Although best results are seen for focal epilepsy, surgery can also be considered for patients without a clear lesion on neuroimaging and those with generalized epilepsy.

© 2014 Canadian Medical Association or its licensors
Box 1: Evidence for this review

A systematic review of studies indexed in MEDLINE, Embase and the Cochrane Database had previously been completed by members of our team as part of an appropriateness study of epilepsy surgery (see www.epilepsycases.com) to identify all epilepsy surgery-related articles published before 2008. The search strategy included text words and subject headings of variations of the terms: epilepsy and surgery AND incidence, predictors, prognosis, course, outcome, mortality, SUDEP (sudden unexplained death in epilepsy), survival, psychology, quality of life, memory, seizure, utilization, cost, efficacy, effectiveness, complications AND randomized controlled trial or double blind or placebo controlled or drug therapy or therapeutic or cohort study or case control or clinical trial or random allocation or case series or decision analysis or economic or risk or odds ratio or relative risk. All studies included in this review were hand-searched for citations of relevance. To identify studies published after January 2008, we searched MEDLINE and the Cochrane Database (up to June 26, 2012), applying search parameters described above to identify pertinent English-language articles. Abstracts (n = 2269) were reviewed by one study author (N.J.) to identify relevant full-text articles.

Therapeutic devices

Randomized controlled trials of electrical stimulation of peripheral nerves, in particular vagus nerve stimulation, and stimulation of brain cortex or deep brain nuclei for the treatment of epilepsy have been undertaken. Stimulation procedures show a modest benefit in seizure frequency and are often reserved for patients who cannot undergo resective epilepsy surgery.

What investigations should precede epilepsy surgery?

For all types of epilepsy surgery, careful clinical evaluation is required to determine the extent and location of the seizure focus and the function of the involved area of the brain. This usually requires detailed assessment by epilepsy specialists, MRI of the brain using protocols that are more sensitive to detect relevant abnormalities, video EEG monitoring to record typical seizures, and neuropsychological assessment of baseline cognitive function. In recent years, novel functional imaging (e.g., functional MRI, PET, SPECT, functional connectivity) and neurophysiological diagnostic modalities (e.g., detection of high-frequency oscillations or assessment of neuronal connectivity using intracranial EEG recording, magnetoencephalography) have greatly enhanced presurgical planning by increasing the likelihood of identifying lesions not seen on MRI of the patient’s brain. However, the effectiveness of these novel diagnostic tools for surgical decision-making has not been well studied and their accuracy for use in planning epilepsy surgery remains to be determined.

What are the benefits of epilepsy surgery?

Cohort studies and RCTs (Table 1) consistently show that, in focal drug-resistant epilepsy, resective brain surgery results in seizure freedom for about 57% of patients who undergo neocortical resections and for 70% of those who undergo anteromesial resections.
temporal resections, compared with 5%–8% of patients receiving optimum medical therapy. The number of patients needed to be treated with surgery for one additional patient to become seizure free is two. In a recent RCT comparing medical therapy to early surgery in patients with temporal lobe epilepsy, 73% of patients in the surgical group became seizure free during the second year of follow-up, compared with 0% in the medical group. A meta-analysis of one RCT and 19 observational studies comparing surgery with medical therapy found an absolute risk reduction of 42% (95% CI 32%–51%) for any seizure recurrence in patients who underwent surgery. Similar surgical outcomes have been reported in cohort studies involving older patients. A recent observational study involving children under three years of age found that 48% were seizure-free after surgery and that seizures decreased by more than 75% in an additional 38% of patients.

Although resective surgeries have been shown to provide the most benefit, other procedures can also reduce the frequency of seizures. Corpus callosotomy has been shown in cohort studies to

Table 1: Summary of randomized controlled trials of temporal lobe epilepsy surgery

No. of patients	Wirbel et al.	Engel et al.
Study setting	Single centre, tertiary care	Multicentre, tertiary care
Patient population	Drug-resistant temporal lobe epilepsy	Drug resistant temporal lobe epilepsy for ≤ 2 yr
Duration of follow-up	1 yr	2 yr
Primary outcome and results	Freedom from seizures that impair awareness of self and surroundings (cumulative proportion of patients seizure-free at one year, p < 0.001*): surgical group: 58% (64% excluding those who did not undergo surgery); medical group: 8%	Freedom from disabling seizures: number of seizure-free patients at 2 yr (OR = 95% CI 11.8 to ∞, p < 0.001; surgical group: 11/15; medical group: 0/23
Secondary outcomes and results	Frequency and severity of seizures (free of all seizures, p < 0.001*): surgical group: 38% (42% excluding those who did not undergo surgery); medical group: 3%	Quality of life (QOLIE-89), mean improvement (intention-to-treat; p = 0.08): surgical group: 12.6; medical group: 4.0
Number needed to treat	Freedom from seizures impairing awareness: 2 (95% CI 1.5–3) Freedom from all seizures: 3 (95% CI 2–5)	2 (95% CI 1.1 – 2.3)

Note: CI = confidence interval, OR = odds ratio.
*Intention-to-treat analysis; includes patients who decided not to undergo surgery.
†Range of scores is 0–100, with higher scores indicating better quality of life (minimal clinically important difference for QOLIE-89 is 11).
decrease the number and severity of seizures: five years after surgery about 35% of patients were reported to be free of drop attacks. Randomized controlled trials have shown that vagal nerve stimulation can reduce seizures by 25% on average (95% CI 14%–34%), and RCTs have also shown a net improvement (active minus control) in seizure frequency of 15% (interquartile range 2%–24%) with hippocampal stimulation, 20% \((p = 0.01) \) with recursive cortical stimulation, and 26% \((p = 0.001) \) with stimulation of the anterior thalamus.

Although comparative trials to date have not been designed to assess mortality, a cohort study of patients who received epilepsy surgery found that those who remained seizure-free had mortality rates similar to the general population, while those who had recurrent seizures had a standardized mortality ratio of 4.7. Decision analysis models have shown a five-year (95% CI 2.1–9.2 yr) increase in life expectancy following surgery, as compared with medical therapy. Quality of life has been reported to be improved after epilepsy surgery in 90% of studies assessing this.

Table 2: Frequency of medical complications: overall, by age group and location of resection

Complication	Total; frequency; % (95% confidence interval)				
	Group; frequency				
	Total	Pediatric only	Adults only	Temporal	Extratemporal
Minor medical complications	5.1 (4.5–5.8)	5.7 (4.1–8.0)	4.3 (3.2–5.6)	5.4 (4.6–6.3)	6.1 (4.7–8.0)
Major medical complications	1.5 (1.1–2.1)	4.5 (2.5–8.1)	1.7 (0.8–3.8)	1.6 (1.1–2.4)	1.1 (0.5–2.3)
Infection	3.0 (2.6–3.6)	3.9 (2.5–6.1)	1.9 (1.3–2.7)	3.3 (2.6–4.1)	3.2 (2.2–4.7)
Aseptic meningitis	3.6 (2.6–5.1)	5.8 (3.8–8.8)	3.4 (1.6–7.2)	2.7 (1.6–4.3)	2.9 (0.5–14.5)
Deep vein thrombosis or pulmonary embolus	1.0 (0.6–1.6)	1.9 (0.5–6.7)	0.7 (0.3–1.6)	0.7 (0.4–1.3)	1.6 (0.9–3.1)
Intracranial hematoma	2.5 (2.0–3.2)	4.0 (2.5–6.3)	2.0 (1.3–3.1)	1.5 (1.0–2.3)	3.1 (1.8–5.5)
Pneumonia	0.7 (0.3–1.6)	1.0 (0.2–5.6)	1.5 (0.5–4.2)	0.4 (0.1–1.5)	1.9 (0.3–10.0)
Cerebrospinal fluid leak	8.5 (6.5–11.0)	14.3 (10.3–19.6)	4.3 (1.5–11.9)	5.8 (3.6–9.3)	3.6 (1.4–9.0)
Hydrocephalus	1.0 (0.6–1.8)	2.4 (0.7–8.5)	1.3 (0.4–3.6)	1.4 (0.8–2.4)	0.3 (0.1–1.6)

Adapted with permission from Hader et al.

Table 3: Frequency of neurologic complications: overall, by age group and location of resection

Complication	Patient groups; Frequency % (95% confidence interval)				
	Total	Pediatric only	Adults only	Temporal	Extratemporal
Minor neurologic complications	10.9 (10.1–11.7)	11.2 (9.5–13.2)	5.5 (4.4–6.8)	11.5 (10.5–12.5)	11.9 (9.9–14.2)
Major neurologic complications	4.7 (4.1–5.3)	5.1 (3.9–6.7)	3.3 (2.4–4.5)	4.1 (3.5–4.8)	6.5 (5.2–8.2)
Minor cranial nerve	2.1 (1.6–2.7)	8.3 (2.3–25.8)	2.3 (1.5–3.7)	2.3 (1.7–3.0)	0.9 (0.4–2.3)
Major cranial nerve	0.4 (0.2–0.9)	2.3 (0.9–5.9)	0 (0–2.5)	0.1 (0–0.5)	2.6 (0.9–7.3)
Minor field	12.9 (11.5–14.5)	6.3 (4.3–9.0)	15.7 (11.0–21.9)	17.9 (15.8–20.2)	7.2 (4.0–12.8)
Major field	2.1 (1.7–2.7)	3.9 (2.2–6.7)	1.4 (0.8–2.5)	2.3 (1.7–3.0)	2.8 (1.9–4.3)
Minor dysphasia	3.7 (3.1–4.3)	2.1 (1.2–3.7)	2.1 (1.4–3.1)	14.0 (3.3–4.8)	3.7 (2.6–5.1)
Major dysphasia	0.8 (0.5–1.3)	0.5 (0.1–3.1)	1.4 (0.7–3.1)	0.9 (0.5–1.5)	1.5 (0.6–3.8)
Minor memory	5.1 (3.9–6.5)	NA	3.2 (1.1–9.0)	5.6 (4.3–7.3)	0 (0–4.5)
Major memory	0.7 (0.4–1.1)	NA	0.6 (0.2–1.8)	0.7 (0.4–1.3)	0 (0–4.5)
Minor hemiparesis	3.3 (2.9–3.9)	6.0 (4.5–8.0)	1.9 (1.2–3.1)	1.8 (1.4–2.4)	7.9 (6.1–10.1)
Major hemiparesis	1.8 (1.5–2.3)	3.3 (2.1–5.0)	1.0 (0.6–1.7)	1.8 (1.4–2.3)	2.3 (1.5–3.5)
Minor psychiatric	5.5 (4.4–6.8)	NA	NA	5.8 (4.6–7.3)	1.6 (0.6–4.7)
Major psychiatric	1.9 (1.1–3.4)	NA	NA	1.9 (1.1–3.4)	NA

Note: NA = not applicable.
Adapted from Hader et al, 2013 with permission.
outcome using various methods and instruments. Systematic reviews have also shown improvements after epilepsy surgery in employment, social function and overall lifestyle.

Economic evaluations performed in Canada and France show that the cost-effectiveness ratio favours epilepsy surgery over medication after the eighth postsurgical year, when surgery becomes more cost-effective than medication because of its ability to avert seizures. A recent economic evaluation found that at a cost of $25,020 per quality-adjusted life year, epilepsy surgery was cost-effective compared with medical therapy.

Surgery can achieve durable seizure control in patients with drug-resistant epilepsy. Sustained freedom from seizures persists for greater than five years in 66% (95% CI 62%–70%) of patients with temporal lobe resections and in 59% (95% CI 59%–62%) with temporal and extratemporal resections. Although a lesion found on MRI is a strong predictor of sustained seizure freedom with surgery, patients without MRI lesions may still achieve substantial rates of seizure freedom with surgery (70% seizure freedom if a lesion is present vs. 43% if no lesion). Meta-analyses of cohort studies and one RCT showed that about 50% (95% CI 45%–55%) of patients who undergo epilepsy surgery are able to decrease their multiple antiepileptic drugs to a single drug and about 22% (95% CI 20%–25%) are able to discontinue all antiepileptic drugs and may be considered “cured” of epilepsy. Short-term gains achieved with surgery in psychosocial function (e.g., improvement in quality of life and psychological well-being) also persist in the long term (e.g., five or more years).

What adverse effects are associated with resective epilepsy surgery?

A recent systematic review including 73 observational studies, two RCTs and a large population-based cohort study found that surgery had a low overall rate of complications (5%–11%) and that most complications were reversible. A summary of possible minor and major medical and neurologic complications associated with focal resective surgery are presented in Table 2 and Table 3. Perioperative mortality is uncommon (0.6% in the above systematic review), and no deaths were reported in the surgical groups of the RCTs of temporal lobe epilepsy.

| Table 4: Predictors of adverse events associated with epilepsy surgery |
|---------------------------------|-----------------|----------------|
| **Adverse event** | **Predictor** | **Risk, %** |
| Intracranial hematoma | Extratemporal v. temporal resection | 3.1 v. 1.5 |
| Hydrocephalus | Children v. adults | 2.4 v. 1.3 |
| Minor visual field defect | Temporal v. extratemporal resection | 17.9 v. 7.2 |
| Minor or temporary hemiparesis | Extra-temporal v. temporal resection | 7.9 v. 1.8 |
| Verbal memory decline | Left-sided v. right-sided surgery | 44 v. 20 |

Table 5: Which patients should be referred to a comprehensive epilepsy program for an epilepsy surgery evaluation?
Indication
Any child or adult who meets the definition of drug-resistant epilepsy and has disabling seizures
Children or adults with complex syndromes or requiring complex surgeries
Children or adults with epilepsies that cannot be clearly assigned to a known electroclinical syndrome but with stereotyped or lateralized seizures or focal findings
Children with an MRI lesion amenable to surgical removal regardless of seizure status

Modified with permission from Wiebe and Jette.
surgery (Table 1). Interestingly, the overall risk of major complication associated with epilepsy surgery is similar to that reported in large RCTs of carotid endarterectomy (6%).

It is difficult to identify statistically robust predictors of adverse events associated with epilepsy surgery because complications are infrequent. In Table 4, we provide examples of complications that are twice as likely or more to occur in certain populations or with particular types of resections, including some of the neuropsychological complications. Fortunately, the risk of memory decline is low in children (5%).

For a more detailed discussion about the neuropsychological outcomes after epilepsy surgery, please see a recent systematic review by Sherman and colleagues. Importantly, cohort studies show that quality of life improves if patients become seizure-free following surgery, regardless of neuropsychological outcomes.

Who should be considered for epilepsy surgery?

According to evidence-based guidelines, the first indication for epilepsy surgery in all age groups is resistance to antiepileptic drugs (Table 5). An evidence-based consensus definition of drug-resistant epilepsy was recently published and is recommended in the selection of patients for surgical evaluation. Also, consideration for surgery requires that the seizures must be disabling, regardless of whether or not the seizures are associated with impaired awareness.

There are no RCTs of epilepsy surgery involving children. As such, indications in the pediatric group come from experts of the International League Against Epilepsy Subcommission for Pediatric Epilepsy Surgery, which are based on evidence from surgical case series (Table 5). They recommend surgical evaluation for children with complex epilepsy syndromes, those who require complex surgery, or those for whom a definite electroclinical syndrome has not been confirmed but who have stereotyped or lateralized seizures or focal findings. All children with an MRI lesion amenable to surgical removal and all children less than three years old should undergo surgical evaluation, regardless of the response to medical treatment, because such children are more likely to experience a relapse or epileptic encephalopathy.

There are no evidence-based contraindications to epilepsy surgery, although the existence of a severe active psychiatric condition (e.g., active psychosis) or medical comorbidities precluding surgery are generally accepted as contraindications. However, surgery should be considered in such individuals with drug-resistant epilepsy if these conditions resolve. Failure to identify an epileptic focus after a complete surgical evaluation by an epilepsy specialist is usually a contraindication to surgery, except for patients with drop attacks. Corpus callosotomy may be beneficial in reducing the frequency of drop attacks.

Timely consideration of epilepsy surgery is important, although the exact time when a patient should be referred is still uncertain. Although there are no RCTs comparing outcomes among patients who undergo surgery early in the course of their illness compared with those who undergo late surgery, a recent RCT has shown that surgery within two years of the...
development of drug-resistant epilepsy is superior to medical therapy.54 Longitudinal studies confirm that an earlier age at surgery and a shorter duration of epilepsy are associated with better neuropsychiatric and psychosocial outcomes.47 Timely intervention is especially important in children to avoid the development of persistent psychosocial and cognitive difficulties later in life.46 In general, patients for whom two or more antiepileptic drugs fail are unlikely to ever achieve sustained seizure freedom with additional drug trials.5,10,11 Thus, waiting for spontaneous remission is not justified.

Figure 1 outlines our suggested approach to the care of patients with newly diagnosed epilepsy, including when to refer to an epilepsy program. Clinical decision tools are also emerging to guide clinicians in identifying patients who may benefit from an epilepsy surgery evaluation (Box 2).32,68

Unanswered questions

Despite evidence from RCTs and clinical practice guidelines recommending epilepsy surgery, patients are not referred for surgery evaluation at the expected rates.49 Greater understanding is needed regarding barriers to epilepsy surgery, and knowledge-transfer efforts are needed to inform clinicians and patients about the relative effectiveness of antiepileptic drugs and epilepsy surgery.

Ways to improve the present surgical success rate of 60\%-70\% are needed. Larger resections seem more effective, but smaller resections may be associated with less morbidity. Potential advantages and disadvantages of minimally invasive surgical procedures need to be evaluated. New techniques are needed to better characterize the areas of the brain where seizures originate. Although great strides have been made in the surgical evaluation and care of patients with epilepsy, ongoing research is warranted to answer these questions and further improve outcomes for patients with epilepsy.

References

1. Prilipko L, Saxena S. Atlas: Country resources for neurological disorders 2004. Geneva (Switzerland): World Health Organization; 2004.

2. Begley CE, Famulari M, Anners JG, et al. The cost of epilepsy in the United States: an estimate from population-based clinical and survey data. Epilepsia 2000;41:551-2.

3. Feindel W, Leblanc R, de Almeida AN. Epilepsy surgery: historical highlights 1909-2009. Epilepsia 2009;50(Suppl 1):131-51.

4. Ontario Health Technology Advisory Committee. OHTAC recommendation: care for drug-refractory epilepsy in Ontario. Toronto: Health Quality Ontario; 2012.

5. Kwan P, Brodie MJ. Early identification of refractory epilepsy. N Engl J Med 2000;342:314-9.

6. Schiller Y, Najjar Y. Quantifying the response to antiepileptic drugs: effect of past treatment history. Neurology 2008;70:54-65.

7. Berg AT, Levy SR, Testa FM, et al. Remission of epilepsy after two drug failures in children: a prospective study. Ann Neurol 2009; 65:510-9.

8. Sillangiai M, Schmidt D. Natural history of treated childhood-onset epilepsy: prospective, long-term population-based study. Brain 2006;129(Pt 3):617-624.

9. Semah F, Picot MC, Adam C, et al. Is the underlying cause of epilepsy a major prognostic factor for recurrence? Neurology 1998;51:1256-62.

10. Kwan P, Arzimanoglou A, Berg AT, et al. Definition of drug resistant epilepsy: consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies. Epilepsia 2010;51:1069-77.

11. Brodie MJ, Barry SJ, Bamagous GA, et al. Patterns of treatment response in newly diagnosed epilepsy. Neurology 2012;78:1548-54.

12. Callaghan BC, Anand K, Hesdorffer D, et al. Likelihood of seizure remission in an adult population with refractory epilepsy. Ann Neurol 2007;62:382-9.

13. Kerr MP. The impact of epilepsy on patients’ lives. Acta Neurol Scand Suppl 2012;194:1-9.

14. Wiebe S, Blume WT, Girvin JP, et al. A randomized, controlled trial of surgery for temporal-lobe epilepsy. N Engl J Med 2001; 345:311-8.

15. Engel J Jr, McDermott MP, Wiebe S, et al. Early surgical therapy for drug-resistant temporal lobe epilepsy: a randomized trial. JAMA 2012;307:922-30.

16. Malikova H, Liscak R, Vojtech Z, et al. Stereotactic radiofrequency amygdalohippocampectomy: Does reduction of entorhinal and perirhinal cortices influence good clinical seizure outcome? Epilepsia 2011;52:932-40.

17. Quigg M, Rolston J, Barbaro NM. Radiosurgery for epilepsy: clinical experience and potential antiepileptic mechanisms. Epilepsia 2012;53:7-15.

18. Tecoma ES, Iragui VJ. Vagus nerve stimulation use and effect in epilepsy: What have we learned? Epilepsy Behav 2006;8:127-36.

19. Tellez-Zenteno JF, Wiebe S. Hippocampal stimulation in the treatment of epilepsy. Neurosurg Clin N Am 2011;22:465-75.

20. Morrell MJ. Responsive cortical stimulation for the treatment of medically intractable partial epilepsy. Neurology 2011;77:1295-304.

21. Fisher R, Salanova V, Witt T, et al. Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy. Epilepsia 2010;51:899-908.

22. Velez-Ruiz NJ, Klein JP. Neuroimaging in the evaluation of epilepsy. Semin Neurol 2012;32:361-73.

23. Burch J, Marson A, Beyer F, et al. Dilemmas in the interpretation of diagnostic accuracy studies on presurgical workup for epilepsy surgery. Epilepsia 2012;53:1294-302.
24. Wiebe S, Matijevic S, Eliazzawi M, et al. Clinically important change in quality of life in epilepsy. J Neurol Neurosurg Psychiatry 2002;73:116-20.
25. Engel J Jr, Wiebe S, French J, et al. Practice parameter: temporal lobe and localized neocortical resections for epilepsy: report of the Quality Standards Subcommittee of the American Academy of Neurology, in association with the American Epilepsy Society and the American Association of Neurological Surgeons. Neurology 2003;60:538-47.
26. Spencer SS, Berg AT, Vickrey BG, et al. Initial outcomes in the Multicenter Study of Epilepsy Surgery. Neurology 2003;61:1680-5.
27. Schmidt D, Stavem K. Long-term seizure outcome of surgery versus no surgery for drug-resistant partial epilepsy: a review of controlled studies. Epilepsia 2009;50:1301-9.
28. Murphy M, Smith PD, Wood M, et al. Surgery for temporal lobe epilepsy associated with mesial temporal sclerosis in the older patient: a long-term follow-up. Epilepsia 2010;51:1024-9.
29. Dunkley C, Kung J, Scott RC, et al. Epilepsy surgery in children under 3 years. Epilepsy Res 2011;93:96-106.
30. Téllez-Zenteno JF, Dhar R, Wiebe S. Long-term seizure outcomes following epilepsy surgery: A systematic review and meta-analysis. Brain 2005;128:1188-98.
31. Sperling MR, Feldman H, Kimman J, et al. Seizure control and mortality in epilepsy. Ann Neurol 1999;46:45-50.
32. Choi H, Sell RL, Lemert L, et al. Epilepsy surgery for pharmacoresistant temporal lobe epilepsy: a decision analysis. JAMA 2008;300:2497-505.
33. Wiebe S, Jette N. Epilepsy surgery utilization: Who, when, where, and why? Curr Opin Neurol 2012;25:187-93.
34. Hamiwka LD, Macrodimitri S, Téllez-Zenteno J, et al. Social outcomes after temporal or extra-temporal epilepsy surgery: a systematic review. Epilepsia 2011;52:870-9.
35. Wiebe S, Gafni A, Blume WT, et al. An economic evaluation of surgery for temporal lobe epilepsy. J Epilepsy 1995;8:227-35.
36. Ponsot C, Mezière D, Kahane P, et al. Cost-effectiveness of epilepsy surgery in a cohort of patients with medically intractable partial epilepsy—preliminary results [article in French]. Rev Neurol (Paris) 2004;160 Spec No 1:53S54-367.
37. Bowen JM, Snod DC, Chandra K, et al. Epilepsy care in Ontario: an economic analysis of increasing access to epilepsy surgery. Ont Health Technol Assess Ser 2012;12:1-41.
38. Téllez-Zenteno JF, Hernández Ronquillo L, Moen-Afdari F, et al. Surgical outcomes in lesional and non-lesional epilepsy: a systematic review and meta-analysis. Epilepsy Res 2010;90:310-8.
39. Téllez-Zenteno JF, Dhar R, Hernández Ronquillo L, et al. Long-term outcomes in epilepsy surgery: antiepileptic drugs, mortality, cognitive and psychosocial aspects. Brain 2007;130:334-345.
40. Spencer SS, Berg AT, Vickrey BG, et al. Health-related quality of life over time since resective epilepsy surgery. Ann Neurol 2007;62:327-34.