A systematic review of antimalarial medicinal plants in Democratic Republic of the Congo

Butoto Imani Wa RUSAATI1,2
Arusi Patience GENDUSA3
Sung-Hyun JOO1
Joo Won PARK2
Cephas Ndabaga MASUMBUKO4
Gentil Kaboyi IRAGI2
Koto-te-Hyiwa NGBOLUA6
Astrid Matendo FURAHÃ6
Nkulu Kabange ROLLY1,8
Jun Won KANG1

1 School of Forest Sciences
and Land Architecture
College of Agriculture and Life Sciences
Kyungpook National University
Daegu 41566
Republic of Korea

2 Research Centre of Natural Sciences (CRSN/Lwiro)
Department of Biology
DS Bukavu
Democratic Republic of Congo

3 Independent Researcher

4 Official University of Bukavu
Department of Biology
BP 570, Bukavu
Democratic Republic of Congo

5 University of Kinshasa
Department of Biology
BP 127, Kinshasa XI
Democratic Republic of Congo

6 Higher Institute of Rural Development of Bukavu
Department of Environment and Sustainable Development
BP 2849, Bukavu
Democratic Republic of Congo

7 Ministry of Agriculture
National Seed Service (SENASEM)
National Seed Laboratory
BP 904 KIN1, Kinshasa
Democratic Republic of Congo

8 National Institute of Crop Science
Department of Southern Area Crop Science
RDA, Miryang 50424
Republic of Korea

Auteur correspondant /
Corresponding author:
Jun-Won KANG – jwkang15@knu.ac.kr

Photo 1.
Alchornea cordifolia, one of medicinal plants used to treat the symptoms of malaria in Democratic Republic of Congo. Photo Konda et al. (2012).
RÉSUMÉ

Revue systématique des plantes médicinales antipaludiques utilisées en République démocratique du Congo

En République démocratique du Congo (RDC), le paludisme est transmis par un parasite appelé Plasmodium falciparum. Le paludisme représente un problème majeur de santé publique dans ce pays en provoquant la mort de dizaines de milliers de personnes chaque année, en milieu urbain et rural. Des médicaments antipaludiques sont couramment utilisés mais des cas avérés de résistance à ces médicaments représentent un obstacle important à la lutte contre le paludisme. Il est donc impératif d'identifier de nouvelles molécules bioactives pouvant s'y substituer. De nombreuses plantes médicinales ayant des propriétés diverses s’utilisent en RDC pour traiter différentes maladies, dont le paludisme. Le présent article propose une revue systématique des ressources végétales antipaludiques en RDC. Sur la base de 28 articles sur l’ethnomédecine publiés entre 2001 et 2019, un total de 232 plantes ont été identifiées pour le traitement du paludisme. De nombreuses espèces appartiennent aux familles des Fabacées, Astéracées, Euphorbiacées, Rubiacées et Apocynacées. Les espèces dont l’utilisation est citée pour plus de trois provinces comprennent Cymbopogon citratus, Vernonia amygdalina, Rauvolfia vomitoria et Catharanthus roseus. La plupart des espèces identifiées comme plantes antipaludiques sont des essences ligneuses, principalement des phanérophytes. D’autre part, les principaux ingrédients identifiés pour la préparation des remèdes sont les feuilles, utilisées en décoction le plus souvent administrée par voie orale.

Mots-clés : traitement antipaludique, ethnomédecine, plantes médicinales, étude systématique, République démocratique du Congo.

ABSTRACT

A systematic review of antimalarial medicinal plants in Democratic Republic of the Congo

In Democratic Republic of the Congo (DRC), malaria is caused by a parasite called Plasmodium falciparum. Malaria is one of the country’s major public health issues and responsible for the death of tens of thousands of people every year in both rural and urban environments. Antimalarial drugs are commonly used but some recorded cases of drug resistance are a major obstacle to controlling the spread of malaria. It is therefore essential to identify new bioactive molecules as an alternative. Many medicinal plants with different properties have been used as treatments for a variety of diseases in the DRC, including malaria. This study provides a systematic review of antimalarial plant resources in the DRC. From 28 papers on ethnomedicine published between 2001 and 2019, a total of 232 plant species belonging to 67 different plant families and identified in 13 provinces was reported in the treatment of malaria. A large number of these plant species belong to the Fabaceae, Asteraceae, Euphorbiaceae, Rubiaceae, and Apocynaceae families. Species cited in more than three provinces include Cymbopogon citratus, Vernonia amygdalina, Rauvolfia vomitoria and Catharanthus roseus. Most of the species identified as antimalarial plants were tree species, with phanérophytes predominating. In addition, leaves were identified as the main ingredients for preparing remedies, most commonly by decoction administered orally.

Keywords: antimalarial treatment, ethnomedicine, medicinal plants, systematic review, Democratic Republic of the Congo.

RESUMEN

Revisión sistemática de las plantas medicinales antipalúdicas de la República Democrática del Congo

En la República Democrática del Congo (RDC) el paludismo está causado por un parásito llamado Plasmodium falciparum. El paludismo es uno de los principales problemas de salud pública del país y es responsable de la muerte de decenas de miles de personas cada año, tanto en entornos rurales como urbanos. Habitualmente se utilizan fármacos antipalúdicos, aunque se registran casos de resistencia a los medicamentos, que son un obstáculo importante para controlar la propagación de la malaria. Por lo tanto, es esencial identificar nuevas moléculas bioactivas como alternativa. En la RDC se han utilizado muchas plantas medicinales con diferentes propiedades como tratamiento de diversas enfermedades, entre ellas la malaria. Este estudio realiza una revisión sistemática de los recursos vegetales antipalúdicos en la RDC. En 28 artículos sobre etnomedicina publicados entre 2001 y 2019, un total de 232 especies de plantas para el tratamiento de la malaria pertenecientes a 67 familias diferentes se identificaron en 13 provincias. Un gran número de estas especies vegetales pertenecen a las familias Fabaceae, Asteraceae, Euphorbiaceae, Rubiaceae y Apocynaceae. Las especies citadas en más de tres provincias incluyen Cymbopogon citratus, Vernonia amygdalina, Rauvolfia vomitoria y Catharanthus roseus. La mayor parte de las plantas antipalúdicas identificadas son especies arbóreas, con predominio de las fanerófitas. Y las hojas son los principales ingredientes para la preparación de curas, mayoritariamente por decocción administrada por vía oral.

Palabras clave: tratamiento antipalúdico, etnomedicina, plantas medicinales, revisión sistemática, República Democrática del Congo.
Introduction

Malaria, a disease caused by the parasite *Plasmodium falciparum*, is one of the major public health problems in many tropical countries. This disease is spread by mosquitoes (Landis *et al.*, 2009; Messina *et al.*, 2011). According to the World Health Organization (WHO), about 228 million cases and more than 405 thousand deaths related to malaria have occurred in 2018 around the world, with the majority of deaths (93%) found in Africa (WHO, 2019).

In Democratic Republic of the Congo (DRC), reports indicated that, despite the efforts to prevent the spread of malaria, and alleviate its detrimental effects on the people’s health nationwide (Swana *et al.*, 2018), other forms of challenges, such as drug resistance of the pathogen was identified as obstacle to control efficiently the spread of the disease in the sub-Saharan Africa (Alker *et al.*, 2008; Mobula *et al.*, 2009; Mvumbi *et al.*, 2015). To address this situation, there is a strong necessity to identify novel substances or bioactive molecules having the potential to overcome the drug resistance of the *Plasmodium falciparum*, eventually due to the recurrent use of similar molecules. Thus, medicinal plants could serve as an alternative to achieve this goal (Silva *et al.*, 2011; Ntie-Kang *et al.*, 2014), since they are relatively cost-effective and highly accessible (Madureira *et al.*, 2002; Muganga *et al.*, 2010).

The benefit of plants as bio-resources and their potentialities to treat different diseases has traditionally been highlighted by several research (Arshad *et al.*, 2014; Zarei *et al.*, 2017), and it is considered essential for human health care (Asadi-Samani *et al.*, 2013). The worldwide use and distribution of bio-resources enclose a large potential to unveil the undescribed aspects of medicinal plants, yet undiscovered (Balima *et al.*, 2018).

According to the WHO, around 80% of the population living in developing countries rely on traditional medicine for treating diseases (Kamatenesi-Mugisha and Oryem-Origa, 2005; Mahomoodally, 2013). Moreover, the extensive use of traditional medicines in Africa could be associated to the history and culture or customs, and economic environment (Mahomoodally, 2013). Medicinal plants still represent an important source of medical treatment in developing countries (Tabuti *et al.*, 2003).

The Congo Basin region itself is megadiverse in plant species, including medicinal plants (Light *et al.*, 2016). Screening studies for antimalarial medicinal plant species from Cameroon (Betti, 2002; Saotoing *et al.*, 2011; Titanji *et al.*, 2008; Kuete and Efferth, 2010; Betti *et al.*, 2013a), Gabon (Betti *et al.*, 2013b), the Central African Republic (Lakouéténé *et al.*, 2009), Republic of Congo (Mbatchi *et al.*, 2006; Nsonde-Ntandou *et al.*, 2005) and Guinea Equatorial (Gomez Marín and Merino Cristóbal, 1990) have demonstrated the potential of traditional medicinal plants as source of antimalarial substances. Furthermore, the DRC, with about half of the African humid forests, ranks fifth in the world for the diversity of plant species (UNESCO, 2010; Masunda *et al.*, 2019). It is estimated that the flora of the DRC comprises 377 families, 2,196 genera, and over 11,000 species (Mbala, 2003). Many plants species in the DRC have been studied and described for their beneficial impact for treating various diseases in numerous scientific papers. Thus, the purpose of this study is to develop a systematic review of scientific papers on ethnomedicine, particularly on the treatment of malaria.

Methods

Sources of information

Through literature review and data mining, previous published papers related to the field of ethnobotany of medicinal plants in the DRC, were collected during December 2019, using available internet browsers.

The research was extended to the identification of references listed in retrieved articles. The major key words employed during the search, either in French or in English, were: “ethno-medicinal plants in DR of Congo” OR “ethnobotanical study in DR of Congo” OR “ethno pharmacology in DR of Congo” OR “phyto therapy in DR of Congo” OR “herbal treatments in DR of Congo” OR “anti-malaria plants in DR of Congo”. In addition to the published scientific papers on the subjects of interest, all information found to be necessary for the study were included as well, collected from scientific works, such as books, academic theses (Masters and doctorate thesis dissertations), while considering the year of publication, the methodology, or the study language.

Analysis

The following ethnomedicinal information were collected from the literature: (i) plant organs used: leaves, stem, stem bark, root, root bark, flowers, fruits, seeds or grain, whole plant, upper (aboveground) part, underground part;
Results

Selected antimalarial related studies

In the perspective of using only studies providing useful data and information related to the use of medicinal plants as a treatment for malaria, an initial selection was performed. As a result, all studies with no relevant data on antimalarial plants were discarded, and only 41 full-text studies were evaluated in order to verify the evidence of the antimalarial plants. In addition, another 13 studies falling either into the category of review article or in vitro studies were excluded. Consequently, after the screening and selection process, 28 publications and academic reports (Masters and Doctorate Theses) were retained for further investigations (figure 1). Of this number, the earliest article was published in 2001 but about 92.9% of the publications were released between 2010-2019. Studies were conducted on 13 different provinces in the DRC as illustrated in figure 2. Moreover, the majority of plant species (185 species, 79.7%) was reported to be used in at least one province, and 27 species (11.6%) were listed in at least two provinces (table I). Meanwhile, 20 species (8.6%) were mentioned in more than two provinces. An illustration of the top 20 plant species widely distributed across the country (used in more than 2 provinces) is given in table II.

Figure 1.
Flowchart of the major steps for the selection of relevant publications.

Data mining and inventory of available publications online

Selected relevant publications (n=28)

137 publications identified using Keywords

Studies not related to antimalaria (n=97) and in vitro or review papers (n=13) were excluded

Articles, Books, Masters and PhD theses

Selected antimalarial related studies

Selected relevant publications (n=28)

(ii) mode of preparation: decoction, maceration, infusion, grinding, expression, extorsion, incineration, ash, etc.; (iii) way of administration: oral, enema, inhalation, bath, friction, chewing, tattoo, instillation; and (iv) the geographical location of the study. In the case of unavailability of data in one of the above groups, the corresponding field was marked “NR (not referenced)”. The dataset was taxonomically standardized (synonym and misspelling) and updated following guidelines in the online websites: the plant list1 or/and African plant database2. The Angiosperm Phylogeny Group (APG III) was used to revise and update the family names (APG, 2009). The antimalarial plants species were characterized by morphology types: tree, shrub, sub-shrub, liana, herb. The life-form analysis focused on 223 species and was based on Raunkiaer’s system: Phanerophytes, Chamæphytes, Hemicrypto phytes, Geophytes or Cryptophytes, Thero phytes, Aerophytes and Epiphytes.

The conservation status of each anti-malaria species was determined by the IUCN red list of threatened species (IUCN, 2019) and includes: Not Evaluated (NE), Data Deficient (DD), Least concern (LC), Near threatened (NT), Vulnerable (VU), Endangered (EN), Critically endangered (CR), Extinct in the Wild (EW) and Extinct (EX).

1 http://www.theplantlist.org
2 http://www.ville-ge.ch

Figure 2.
Map of the spatial distribution of studies related to antimalaria treatment using plant species in the Democratic Republic of Congo. The highlighted zones on the map indicate the studies area related to antimalaria treatment using medicinal plants species. The color scheme in the legend shows the number of studies in each province.
Diversity and morphology of antimalarial plants

A total of 232 species of medicinal plants, distributed in 181 genera, and belonging to 67 families were mentioned as being involved in the treatment of malaria in different parts of the DRC (figure 2; table III). Among these families, about 82% are dicots, and nearly 14% are monocots, and only 3% are gymnosperms and pteridophytes. The dicotyledonous group is represented by 55 families and 169 genera, while the monocotyledonous group is represented by 10 families and 10 genera. The investigation on the life-form of the antimalarial plants showed that Phanerophytes represent 68.3% of the species cited, followed by Therophytes (13.4%), Chamæphytes (12.9%), Geophytes (4.5%), and Hemycryptophytes (0.9%) (table III). Regarding the morphological type, figure 3 shows that woody plants (66.8%) were the dominant type (trees: 38.8%, shrubs: 16.8%, sub-shrub: 3.02%, and liana: 8.2%). About half of the reported antimalarial plant species across the country (48.3%) belong to the following families: Fabaceae (30 species), Asteraceae (27 species), Rubiaceae (15 species), Euphorbiaceae (14 species), Apocynaceae (10 species), Annonaceae (8 species) and Meliaceae (8 species). Around 49.2% of the families contributed with only one species to the antimalarial plant species, while 145 genera are represented by a single antimalarial plant species. Euphorbia and Strychnos were represented by 4 plant species each. In addition to Euphorbia and Strychnos, Acacia, Afro-momum, Aloe, Chapadoum, Combretum, Dalbergia, Ficus, Lansophila, Morinda, Senna and Ziziphus have 3 species each (appendix 1).

Table I.
Level of antimalarial plants richness within each province.

Provinces	1	2	3	4	5	6	7	8	9	10	11	12	13
Species richness	103	80	50	28	17	16	3	2	1	1	1	1	1
Specific species in the province	82	48	17	19	9	7	1	0	1	0	1	0	0
Species shared by other provinces	21	32	33	9	8	9	2	2	0	1	0	1	1

Provinces: 1: Haut-Katanga, 2: Sud-Kivu, 3: Nord-Kivu, 4: Kinshasa, 5: Kongo-Central, 6: Equateur, 7: Ituri, 8: Kwango, 9: Tshopo, 10: Sud-Ubangi, 11: Lualaba, 12: Sankuru, 13: Maniema.

Table II.
List of the most distributed antimalarial plants.

Species	Number of provinces	Provinces
Senna occidentalis	5	1,2,3,5,6
Cymbopogon citratus	5	1,2,3,4
Vernonia amygdalina	4	1,2,3
Rauvolfia vomitoria	4	1,3,4,6
Catharanthus roseus	4	1,2,3,5
Carica papaya	3	2,3
Bidens pilosa	3	1,2,3
Alstonia boonei	3	1,2,3,4
Arachis hypogaea	3	1,2,3,4,5
Citrus limon	3	1,2,3
Erythrina abyssinica	3	1,2,3
Eucalyptus globulus	3	1,2,3
Harungana madagascariensis	3	1,2,3
Jatropha curcas	3	1,2,3
Lantana camara	3	1,2,3
Morinda morindoides	3	1,2,3
Persea americana	3	1,2,3
Physalis peruviana	3	1,2,3
Psidium guajava	3	1,2,3
Tithonia diversifolia	3	1,2,3

Provinces: 1: Haut-Katanga, 2: Sud-Kivu, 3: Nord-Kivu, 4: Kinshasa, 5: Kongo-Central, 6: Equateur, 7: Ituri, 8: Kwango, 9: Tshopo, 10: Sud-Ubangi, 11: Lualaba, 12: Sankuru, 13: Maniema.

Parts used, mode of preparation, and route of administration

The utilization of plant parts and their mode of preparation is subjected to their accessibility and the knowledge of indigenous people (Umair et al., 2019). The results of the analysis of the plant parts used show that the leaves were the most used parts of plant by traditional healers, which accounted for about 60% of the total parts of plants used, followed by roots (32.7%), and stems/bark (22.4%). A few plants were harvested for their fruits or seeds/grains (6.5%) or used whole (5.2%). In 3.4% of cases, the parts of the plant used were not referenced (figure 4).
Sixteen methods were used to prepare plant materials. Among these, the majority used decoction (169 reported), followed by maceration (48), infusion (27), grinding and sap (4 each), powder (3) expression, extraction, and spray (2 each); chewing, ash, incineration, milling, paste, pounding, and leaves roasted in palm oil (1 each); and 19 were not referenced (NR) (figure 5).

The majority (156) of antimalarial remedies were taken orally, followed by enema/anal/suppository (12), bath, inhalation, and instillation (7 each). In rare instances, treatment was administered by rubbing leaves all over the body (2) and by tattoo (1). Sixty-five reports failed to indicate the mode of administration of the plant medicines.

Threat status

The unsustainable exploitation of plant species has resulted in a high vulnerability for certain species (Raj *et al.*, 2018). It was found that 49 plant species used as a remedy for treating malaria in the DRC were reported in the IUCN's Red List (table IV). According to the IUCN list, one species was classified as “data deficient”, 43 as “least concern”, three as “vulnerable”, one as “near threatened”, and one as “critically endangered”. The other species were not included yet in the list. The international trade in a few of the species studied is also banned by the CITES treaty: *Aloe christianii*, *Aloe dawei*, *Dalbergia boehmii*, *Dalbergia chapelieri*, *Dalbergia nitidula*, *Euphorbia ingens*, *Euphorbia tirucalli*, and *Prunus africana*.

3 www.cites.org
Discussion

Two hundred thirty-two medicinal plants associated with the treatment of malaria in DRC that distributed across 181 genera and 67 families were identified. From these families, Fabaceae, Asteraceae, Euphorbiaceae, and Rubiaceae had the highest number of antimalarial plants species. These findings are similar to those obtained by Asase et al. (2010), Traore et al. (2013), and Taek et al. (2018) who reported that the Fabaceae had a high number of antimalarial plants species compared to other families. In a converse approach, Iyamah and Idu (2015) indicated that Fabaceae counts the highest number of antimalarial plants in Southern Nigeria, followed by Asteraceae. The predominance of medicinal plants from Fabaceae, Asteraceae ad Rubiaceae is due to the highest number of species disseminated throughout the DRC (Bakwaye et al., 2013).

Similar to observations from other countries (Adekunle, 2008; Tabuti, 2008; Kodi et al., 2017), woody plants constituted the largest source of antimalarial medicinal plants. From an ecological perspective, the life-forms profile of the plant allows a better appreciation of ecological conditions in which they live (Kami Kanda et al., 2019). The high percentage of phanerophytes in antimalarial plants could be due to permanence of those plants throughout year (Mamadou et al., 2019). The predominance of woody species and phanerophytes shows a forest physiognomy (Kikufi and Lukoki, 2008; Masha-rabu et al., 2010).

Table IV.
The conservation status of some medicinal plants used to treat malaria in the Democratic Republic of Congo.

Species	Status
Autranella congolensis	Critically endangered
Dalbergia chaperi	Near threatened
Lebrunia buchaie, Prunus africana, Pseudospondias microcarpa	Vulnerable
Annona senegalensis, Anickia chlorantha, Azadirachta indica, Bobgunnia madagascariensis, Cassia alata, Cassia sieberiana, Carapa procera, Combretum molle, Combretum zeyheri, Eucalyptus citriodora, Eucalyptus globulus, Euphorbia ingens, Euphorbia tirucalli, Erythrina abyssinica, Ficus exasperate, Ficus thonningii, Harungana madagascariensis, Hymenocardia acida, Isoberlinia angolensis, Isolona hexaloba, Julbernardia paniculata, Melia azedarach, Monodora laurentii, Monodora myristica, Occha schweinfurthiana, Parinari curatellifolia, Parkia zenkeri, Pentaclethra macrophylla, Pericopsis angolensis, Persea americana, Piper capense, Pterocarpus angolensis, Pterocarpus tinctorius, Ranunculus multifidus, Raphia gentiliana, Rauvolfia caffra, Terminalia mollis, Thromandersia hensii, Spathodea campanulata, Syzygium guineense, Xylopia aethiopica, Ziziphus abyssinica, Ziziphus mucronata	Least concern
Mangifera indica	Data deficient

Table V.
The number of species (Ndjele, 1988) and the number of antimalarial plants per family in the terrestrial flora of the Democratic Republic of Congo.

Families	Democratic Republic of Congo	Antimalarial plants	Rank
Fabaceae	893	30	1
Asteraceae	729	27	2
Rubiaceae	674	15	3
Euphorbiaceae	377	14	4
Apocynaceae	187	10	5
Annonaceae	119	8	6
Meliaceae	47	8	6
Lamiaceae	307	6	7
Myrtaceae	31	6	7
Solanaceae	96	6	7
Although several plant parts were used in the Congo, leaves were the most commonly used in malaria treatment. This is similar to other studies from African countries that have demonstrated leaves to be the most frequently used plant part in plant remedies (Saotoing et al., 2011; Adia et al., 2014; Anywar et al., 2016). This contrasts with the findings of Ngarivhume et al. (2015) in Zimbabwe where roots were the most commonly used plant part. The preference for the utilization of leaves is justified by their effortless to collect, to store, and to process, but also, their action in photosynthesis and their bioactive compounds (Kayani et al., 2014; Bibi et al., 2015; Vijayakumar et al., 2015; Amjad et al., 2017; Faruque et al., 2019). Further, cutting leaves is less harmful to the plant development and growth (Alalwan et al., 2019).

It was found in this study that the most commonly used mode of preparation of antimalarial plants was decoction. This affirmation corroborates the reports from the other African countries (Koudouvo et al., 2011; Yetie et al., 2013; Alebie et al., 2017; Ong, 2018) and Asian countries (Bora et al., 2007; Ong et al., 2018). Decoction is largely used because of it is easy to prepare by mixing herbs with water, tea, or soup (Umair et al., 2019).

The primary administration route is oral. These results are consistent with the observations reported by other countries (Bora et al., 2007; Tor-nyiin et al., 2003; Idowu et al., 2010).

Appendix 1 – List of antimalarial plants

Plant family	Botanical name	Morphological type	Life form	Part used	Preparation mode	Used methods	Provinces	References
Acanthaceae	Hygrophiila auriculata (Schumach.) Heine	H	Ch	AP	NR	NR	2	Karhagomba et al. (2013); Manya et al. (2020)
Acanthaceae	Hypoestes triflora (Forssk.) Roem. & Schult.	H	Ch	WP	De	Oral	4	Ngbolua et al. (2014)
Acanthaceae	Thomandrea hensis De Wild. & T. Durand	Sh	Ph	L	De	Oral	2	Manya et al. (2020)
Acanthaceae	Justicia insularis I. Anderson	H	Th	SB	De	Oral	1	Mbuyi et al. (2019)
Acanthaceae	Chenopodium album L.	H	Th	WP	De	Enema	1	Mbuyi et al. (2019)
Acanthaceae	Chenopodium opoufifolium Schrad. ex W.D.J. Koch & Ziz	H	Th	L	De	Oral	2	Manya et al. (2020)
Acanthaceae	Cyathula prostrata (L.) Blume	H	Th	L	De	Oral, noise	6	Konda et al. (2012)
Acanthaceae	Dysphania ambrosioides (L.) Mosyakin& Clements	H	Th	L	De	Oral	2, 3	Kasali et al. (2014a); Kasali et al. (2014b); Manya et al. (2020)
Amaryllidaceae	Allium sativum L.	H	Ge	Bulds	Pounding	NR	2, 3	Kasali et al. (2014a); Kasali et al. (2014b); Manya et al. (2020)
Amaryllidaceae	Allium cepa L.	H	Ge	WP	Inf	Enema	1	Mbuyi et al. (2019)
Anacardiaceae	Pseudospondias microcarpa (A. Rich.) Engl.	T	Ph	L, B	De, Ma	Oral, anal	6	Konda et al. (2012)
Anacardiaceae	Mangifera indica L.	T	Ph	L, BB, SB	De, Ma	Oral	1	Mbuyi et al. (2019)
Anisophylleaceae	Anisophyllela pomifera Engl. & Brenhem	T	Ph	L, R, SB	De, Ma	Oral, enema	1	Chiribagula et al. (2017); Kalonda et al. (2014); Mbuyi et al. (2019)
Annonaceae	Monodora myristica (Gaertn.) Dunal	T	Ph	Fr, Gr	NR	NR	4	Ngbolua et al. (2015)
Annonaceae	Hexaselobus monopetalus (A. Rich.) Engl. & Diels	Sh	Ph	R	De	Oral	1	Mbuyi et al. (2019); Kalonda et al. (2014); Ngbolua et al. (2015); Ngbolua et al. (2016)
Annonaceae	Annona senegalensis Pers.	Sh	Ph	R, SB	NR	Oral	4	Ngbolua et al. (2015); Ngbolua et al. (2016)
Annonaceae	Annickia chlorantha (Oliv. Setten & Mass	T	Ph	SB	De	Oral	4	Ngbolua et al. (2014)
Annonaceae	Isolona hexaloba (Pierre) Engl. & Diels	T	Ph	SB	De	Oral	4	Ngbolua et al. (2014)
Annonaceae	Monodora laurentii De Wild.	T	Ph	SB	De	Oral	4	Ngbolua et al. (2014)

Among the recorded plant species, some have already been studied in vitro by Congolese Scientists, however, the phytochemical study of many antimalarial plant species has not yet been documented in vitro and/or in vivo.

Conclusion

This systematic review of medicinal plants provides a comprehensive insight into the existing antimalarial plants species in the Democratic Republic of the Congo (DRC). The 28 ethnobotanical studies published in the last two decades used in the study, highlighted the diversity of commonly used plant species with pharmacological effects, and their spatial distribution across the DRC (cultures and provinces), and represent an alternative mean for malaria prevention and a remedy for its treatment in the DRC. In addition, plants remain the major therapeutic remedy for malaria. Nevertheless, there are likely more sources of traditional knowledge and articles not published online that may contain precious information in the Phyto pharmacopeia against malaria that could serve as a basis for future studies.

Acknowledgments

The authors are grateful to all of the scholars whose work contributed to this systematic review, and Rusaati B. I. also thanks the Korea Forestry Promotion Institute (KOFPI) for providing his PhD scholarship.
Appendix 1 (continued)

Plant family	Botanical name	Morphological type	Life form	Part used	Preparation mode	Used methods	Provinces	References
Asteraceae	Uvaria scabrida Oliv.	L	Ph	SB	De	Oral	4	Ngbolua et al. (2014)
Asteraceae	Xylopia aethiopica (Dunal) A. Rich.	T	Ph	SB	De	Oral	1	Mbuyi et al. (2019)
Apocynaceae	Centella asiatica (L.) Urb.	H	Ch	L, R	Ma	NR	1	Kalonda et al. (2014)
Apiaceae	Stephania ariolacca Hochst.	T	Ph	L, R	De	Oral	1	Mbuyi et al. (2014a)
Apocynaceae	Agrochris incognita (C. Norman) Heywood and Jury	H	Th	NR	NR	Oral	2	Karhagomba et al. (2013)
Apocynaceae	Alstonia boonei De Wild.	T	Ph	B	De	Oral	4, 7, 10	Terashima and Ichikawa (2003); Ngbolua et al. (2014); Mongeke et al. (2018)
Apocynaceae	Mandina whitei (Hook, f.) Skeels	L	Ph	B	NR	Oral	4	Ngbolua et al. (2019)
Apocynaceae	Landalphia kirkii Dyer	L	Ph	L	De, Ma	Oral	1	Chiribagula et al. (2017)
Apocynaceae	Landalphia parvifolia K. Schum.	L	Ph	L	De	Oral	1	Mbuyi et al. (2019)
Apocynaceae	Catharanthus roseus (L.) G. Don	Sch	Ph	L, R	De	Oral	1, 2, 3, 5	Kasali et al. (2014a); Ngbolua et al. (2013a); Kasali et al. (2014b); Mbuyi et al. (2019)
Apocynaceae	Bauhina caffra Sand	T	Ph	L, RB, SB	De	Oral	1	Mbuyi et al. (2019)
Apocynaceae	Bauhina vomitoria Aizel.	Sh	Ph	L, RB, SB	De	Oral	1, 3, 4, 6	Kasali et al. (2014a); Makumbelo et al. (2008); Ilumbe Bayeli (2010); Kasika et al. (2015); Mbuyi et al. (2019)
Apocynaceae	Landalphia congoensis (Stapf) Pichon	L	Ph	L, S	De	Oral	1	Kalonda et al. (2014)
Apocynaceae	Diplorhynchus condylocarpus (Mull. Arg.) Pichon	T	Ph	RB	De	Oral	1	Mbuyi et al. (2019)
Apocynaceae	Picrotima nitrata (Stapf) T. Durand & H. Durand	T	Ph	Se	Cheewing	Oral	4	Ngbolua et al. (2014)
Arecaceae	Amorphophallus congoensis N.E. Br.	H	Ge	Tubers	NR	Oral	2	Chifundera (2001)
Arecaceae	Raphia sudanica A. Chev.	Sh	Ph	L	De	Oral	5	Nzuki (2016)
Arecaceae	Raphia gentiliana De Wild.	T	Ph	NR	De	Oral	5	Nzuki (2016)
Aristolochiaceae	Aristolochia hookii De Wild.	H	Ch	RB	De	Oral	1	Mbuyi et al. (2019)
Aristolochiaceae	Aristolochia sp.	H	Ph	Se	De	Oral	3	Kasali et al. (2014a)
Asphodelaceae	Aloe sp.	H	Ge	AP	De	Oral	2	Kasali et al. (2014b)
Asphodelaceae	Aloe buettneri A. Berger	H	Ge	L sap	Friction	5	Nzuki (2016)	
Asphodelaceae	Aloe dawei A. Berger	H	Ge	L	De	Oral	3	Kasali et al. (2014a)
Asphodelaceae	Aloe christianii Reynolds	H	Ge	L, R	De	Oral	1	Mbuyi et al. (2019)
Asteraceae	Conyza sumatrensis (S.F. Blake) Pruski & G. Sancho	H	Ch	L	De	Oral	3	Kasali et al. (2014a); Kasika et al. (2015)
Asteraceae	Croosopheleum monchoosum (S. Moore) Milme-Redh	H	Ch	L	De, Ma, Ash	Oral	2, 3	Kasali et al. (2014a); Manya et al. (2020)
Asteraceae	Mikania cordata (Burm. f) B.L. Rob.	L	Ch	L	De	Oral	3	Kasali et al. (2014a)
Asteraceae	Tithonia diversifolia (Hemsl.) A. Cray.	Shh	Ch	L, R	De, Ma	Oral, enema	1, 2, 3	Kasali et al. (2014a); Kasali et al. (2014b); Mbuyi et al. (2019)
Asteraceae	Dichrocephala integrifolia (L. f) O. Ktze.	H	Hc	NR	NR	Hit a patient	3, 7	Kasali et al. (2015); Terashima and Ichikawa (2003)
Asteraceae	Chamaemelum nobile (L.) All.	H	Ph	Fl	Inf	NR	2	Kasali et al. (2014b)
Asteraceae	Achilles millefolium L.	H	Ph	L	De	Oral	3	Kasali et al. (2014a)
Asteraceae	Artemisia annua L.	H	Ph	L	Inf	Oral	2, 3	Kasali et al. (2014a); Karhagomba et al. (2013); Kasali et al. (2014b); Manya et al. (2020)
Asteraceae	Baccharoides oadoensis (Sch. Bip. ex Walp.) H. Rob.	H	Ph	L	Ma	Enema, oral	1	Mbuyi et al. (2019); Muya et al. (2016)
Asteraceae	Microglossa pyrifolia (Lam.) Kuntze	T	Ph	L	De	NR	3	Kasali et al. (2014a)
Asteraceae	Sambucus conadensis L.	T	Ph	L	De	NR	3	Kasali et al. (2014a)
Asteraceae	Mikania micropera DC.	H	Ph	L sap	Put in eyes	7	Terashima and Ichikawa (2003)	
Asteraceae	Matricaria chamomilla L.	H	Ph	L, Fr	De, Inf	Oral	2, 3	Kasali et al. (2014a); Kasali et al. (2014b)
Asteraceae	Vernonia amygdalina Del.	Sh	Ph	L, R	De, Inf	Oral	1, 2, 3, 5	Kasali et al. (2014a); Karhagomba et al. (2013); Ngbolua et al. (2013b); Kasali et al. (2014b); Ngbolua et al. (2014); Manya et al. (2020); Kalonda et al. (2014)
Asteraceae	Acanthospermum globaratum (DC.) Wild	H	Th	L	De	Oral	2	Manya et al. (2020)
Asteraceae	Ageratum conyzoides (L.) L.	H	Th	L	De	NR	2, 3	Kasali et al. (2014a); Kasali et al. (2014b)
Appendix 1 (continued)

Plant family	Botanical name	Morphological type	Life form	Part used	Preparation mode	Used methods	Provinces	References
Asteraceae	Bidens pilosa L.	H	Th	L	De	Oral	1, 2, 3	Kasali et al. (2014a); Kasika et al. (2014); Kasali et al. (2014b); Mbuyi et al. (2019); Manya et al. (2020); Kalonda et al. (2014)
Asteraceae	Cyanthillium cinereum (L.) H. Rob.	H	Th	L	Ma	Oral	1	Mbuyi et al. (2019)
Asteraceae	Synedrella nodiflora (L.) Gaertn.	H	Th	L	De	Oral	2	Manya et al. (2020)
Asteraceae	Artemisia sp.	H	Th	WP	De	NR	5	Ngbolua et al. (2013a)
Asteraceae	Aspilia kotschyi (Sch. Bip. ex Hochst.) Oliv.	H	Th	WP	De	Oral	2	Manya et al. (2020)
Asteraceae	Bidens oligoflora (Klatt) Wild	H	Th	WP	De	Oral	2	Manya et al. (2020)
Asteraceae	Cassospermum microdontum (DC.) S. Moore	H	Th	WP	De	Oral	2	Manya et al. (2020)
Asteraceae	Polydora serratifolia (DC.) H. Rob.	H	Th	WP	De	Oral	2	Manya et al. (2020)
Asteraceae	Porphyrostemma chevalieri (O. Hoffm.) Hutch. & Dalziel	H	L		De	Oral	2	Manya et al. (2020)
Asteraceae	Anisopappus chinesis Hook & Arn.	H	WP		NR	NR	11	Lusakibanza (2012)
Bignoniaceae	Spathodea campanulata P. Beauv.	T	Ph	L	De, Inf	Oral	2	Manya et al. (2020)
Bignoniaceae	Newbouldia laevis (P. Beauv.) Seem.	T	Ph	R	Ma	NR	4	Makumbelo et al. (2008)
Boraginaceae	Cyanospermum lanceolatum Forssk.	H	Th		L	De	3	Kasali et al. (2014a)
Bromeliaceae	Ananas comosus (L.) Merr.	H	Ch	L, Fr	Exp, ext	NR	2, 3	Kasali et al. (2014a); Kasali et al. (2014b)
Caricaceae	Carica papaya L.	T	Ph	L, R, Fl	De, Inf, Ma	Oral	1, 2, 3	Kasali et al. (2014a); Kasika et al. (2015); Kasali et al. (2014b); Mbuyi et al. (2019); Manya et al. (2020); Ilumbe Bayeli (2010); Muya et al. (2014); Kalonda et al. (2014)
Chrysobalanaceae	Parinari curatellifolia Planch. ex Benth.	T	Ph	R	De	Oral	1	Mbuyi et al. (2019)
Clusiaceae	Garcinia huillensis Welw.	T	Ph	L, RB	De	Oral	2	Manya et al. (2020)
Clusiaceae	Leubrunia buchae Staner	T	Ph	NR	NR	NR	2	Mangambu et al. (2015b)
Clusiaceae	Garcinia kola Heckel	T	Ph	SB, Fr	De	Chewing, oral	4, 6	Ngbolua et al. (2015); Ngbolua et al. (2016); Ngbolua et al. (2019); Ilumbe Bayeli (2010)
Combretaceae	Combretum hauvilevileanum De Wild.	Sh	Ph	L, S, SB	De	Oral	1	Mbuyi et al. (2019)
Combretaceae	Combretum zeyheri Sond.	T	Ph	L, S, SB	De	Oral	1	Mbuyi et al. (2019)
Combretaceae	Combretum molle R. Br. ex G. Don	T	Ph	L, S, SB	De	Oral	2	Manya et al. (2020)
Combretaceae	Terminalia mossch M.A. Lawson	T	Ph	L, SB	De	Oral	1	Mbuyi et al. (2019)
Commelinaceae	Tradescantia zebrina Bosse	H	Ch	L, Fr	De	NR	3	Kasali et al. (2014a)
Convolvulaceae	Ipomoea indica (Burm.) Merr.	H	Ch	WP	De	Oral	2	Manya et al. (2020)
Crassulaceae	Kalanchoe crenata (Andrews) Haw.	H	Ch	L	De	Sap, oral, instillation	2	Manya et al. (2020)
Cucurbitaceae	Doreysia africana Hook. f.	L	Ph	WP	De	Oral	2	Chilundera (2001)
Cucurbitaceae	Momordica foetida Schumach.	H	Th	L	ext	NR	2	Kasali et al. (2014b)
Cucurbitaceae	Cupressus lusitanica Mill.	T	Ph	L	De	Inf	2, 3	Kasali et al. (2014a); Kasali et al. (2014b)
Ebenaceae	Diospyros mespiliformis Hochst. ex A. DC.	T	Ph	R	Ma	Oral	1	Mbuyi et al. (2019)
Euphorbiaceae	Acalypha brachiata Krauss	Sh	Hc	L	De	Oral	1	Mbayo et al. (2016)
Euphorbiaceae	Croton sp.	T	Ph	B	De	NR	3	Kasali et al. (2014a)
Euphorbiaceae	Acalypha homblei De Wild.	H	Ph	L	De	Oral	2	Manya et al. (2020)
Euphorbiaceae	Alchornea cordifolia (Schumach. & Thonn.) Müll.Arg.	Sh	Ph	L	De	Oral	6	Konda et al. (2012)
Euphorbiaceae	Ricinus communis L.	Sh	Ph	L	Ma, Bath	Oral	1	Mbuyi et al. (2019)
Euphorbiaceae	Antidesma venosum E. Mey. ex Tul.	T	Ph	L, R, RB	De, Inf	Oral	1, 2	Mbuyi et al. (2019); Mbayo et al. (2016); Manya et al. (2019); Kalonda et al. (2014)
Euphorbiaceae	Maprouneea africana Müll. Arg.	T	Ph	L, RB	De	Oral	2	Manya et al. (2020)
Euphorbiaceae	Jatropha curcas L.	Sh	Ph	L, SB	De	Rub the leaves on the body, oral	1, 5, 8	Ndombe et al. (2016); Mbuyi et al. (2019); Mbayo et al. (2016); Nzuki (2016)
Euphorbiaceae	Phyllanthus muellerianus (Kuntze) Exell.	Sh	Ph	L, SB	De, Ma, Gri	Oral, fomentation	1	Chiribagula et al. (2017); Mbuyi et al. (2019); Mbayo et al. (2016)
Euphorbiaceae	Manihot esculenta L.	Sh	Ph	NR	NR	NR	5	Nzuki (2016)
Euphorbiaceae	Euphorbia enges L. Mey. ex Boiss.	T	Ph	R	Ma	Oral	1	Mbuyi et al. (2019)
Appendix 1 (continued)

Plant family	Botanical name	Morphological type	Life form	Part used	Preparation mode	Used methods	Provinces	References
Euphorbiaceae	Euphorbia tirucalli L.	T	Ph	R	Ma	Oral	1	Mbuyi et al. (2019); Muya et al. (2014)
Euphorbiaceae	Euphorbia hirta L.	H	Th	R	Ma	Oral	1	Mbuyi et al. (2019)
Euphorbiaceae	Euphorbia parviflora L.	H	AP	Ma (oil)	NR	2	Kasali et al. (2014b)	
Fabaceae	Indigofera arrecta Hochst. ex A. Rich.	H	Ch	L	Inf	NR	2	Kasali et al. (2014b)
Fabaceae	Hylodesmium repandum (Vahl) O. Hassi & R.R. Mill	Ssh	Ch	L, FL	De, Inf	Oral	2	Manya et al. (2020)
Fabaceae	Dialium angolense Oliv.	T	Ph	L	De	Oral	2	Manya et al. (2020)
Fabaceae	Julbernardia paniculata (Benth.) Traupin	T	Ph	L	De, Inf	Oral	2	Manya et al. (2020)
Fabaceae	Parkia bicolor A. Chev.	T	Ph	L	De	Oral	1	Mbuyi et al. (2019)
Fabaceae	Senna spectabilis (DC.) H.S. Irwin & Barneby	H	Ph	L	De	NR	2	Kasali et al. (2014b)
Fabaceae	Bobgunnia madagascariensis (Desv.) J.H. Kirkbr. and Wiersema	T	Ph	L, R	De, Ma, Spray	Oral, bath	1	Chiribagula et al. (2017); Mbuyi et al. (2019)
Fabaceae	Dalbergia nitidula Baker	Sh	Ph	L, R	De	NR	1	Kalonda et al. (2014)
Fabaceae	Bauhinia reticulata DC.	T	Ph	L, R, SB	De, Ma	Oral	1, 4	Mbuyi et al. (2019); Ngbolua et al. (2014); Muya et al. (2014)
Fabaceae	Pterocarpus angolensis DC.	T	Ph	L, R, SB	De	Oral	1	Chiribagula et al. (2017)
Fabaceae	Pterocarpus linstianus Welw.	T	Ph	L, R, SB	De	Oral	1	Mbuyi et al. (2019)
Fabaceae	Senna occidentalis (L.) Link	Ssh	Ph	L, R, SB	De, Ma	Oral	1, 2, 3, 5, 6	Manya et al. (2020); Nzuji (2016); Konda et al. (2012); Kasali et al. (2014a); Kasali et al. (2014b); Chiribagula et al. (2017); Mbuyi et al. (2019)
Fabaceae	Cajanus cajan (L.) Mill sp.	Sh	Ph	L, R, SB, Gr	Milling and maceration	Oral, instillation	1	Chiribagula et al. (2017); Mbuyi et al. (2019); Muya et al. (2014)
Fabaceae	Isoberlinia angolensis (Welw. ex Benth.) Hoyle & Brenan	T	Ph	L, RB	De	Oral	2	Manya et al. (2020)
Fabaceae	Acacia polyacantha Willd.	T	Ph	L, RB, SB	De, Inf, Ma	Oral	1	Chiribagula et al. (2017); Mbuyi et al. (2019); Muya et al. (2014)
Fabaceae	Cassia sieberiana L.	T	Ph	L, R	De	Oral	1	Mbuyi et al. (2019)
Fabaceae	Dalbergia boehmiil Taub.	T	Ph	L, SB	De, Ma	Oral	1	Mbuyi et al. (2019); Kalonda et al. (2014); Manya et al. (2020)
Fabaceae	Acacia buchananii Harms	T	Ph	R	De, Ma	Enema	1	Mbuyi et al. (2019)
Fabaceae	Acacia karroo Hayne	Sh	Ph	R	De, Ma	Enema	1	Mbuyi et al. (2019)
Fabaceae	Amblygonocarpus andongensis (Oliv.) Exell & Torre	T	Ph	R	De	Oral	1	Mbuyi et al. (2019)
Fabaceae	Entada abyssinica A. Rich.	Sh	Ph	R	Spray	Instillation (ear, nose)	1	Chiribagula et al. (2017); Mbuyi et al. (2019)
Fabaceae	Pericapsis angolensis (Baker) Meeuw.	T	Ph	R	De, Ma	Oral	1	Mbuyi et al. (2019)
Fabaceae	Senna alata (L.) Roxb.	T	Ph	R	De	Oral	1	Mbuyi et al. (2019)
Fabaceae	Erythrina abyssinica DC.	T	Ph	R, B, Fr	De, Inf, Ma	Oral, enema	1, 2, 3	Kasali et al. (2014a); Kasali et al. (2014b); Mbuyi et al. (2019)
Fabaceae	Albizia adianthifolia (Schum.) W.E. Wright	T	Ph	RB	De	Oral, fumigation, bath	1	Chiribagula et al. (2017); Mbuyi et al. (2019)
Fabaceae	Pentaclethra macrophylla Benth.	T	Ph	RB	De	Oral	4	Ngbolua et al. (2014)
Fabaceae	Bauhinia thomningii Schum.	T	Ph	RB, SB	De, Ma	Oral	1	Mbuyi et al. (2019); Muya et al. (2014)
Fabaceae	Dalbergia chapelleri Baill.	Sh	Ph	S	Inf	Oral	2	Manya et al. (2020)
Fabaceae	Arachis hypogaea L.	H	Th	Se	Paste	NR	2, 3, 5	Kasali et al. (2014a); Kasali et al. (2014b); Nzuji (2016)
Fabaceae	Doroogmosia giorgii De Wild.	Ssh	L, R, SB	De	Oral	1	Mbuyi et al. (2019)	
Fabaceae	Baphia caparridifolia Baker	L	Sh	L, SB	De	Oral	1	Mbuyi et al. (2019)
Fabaceae	Rhynchosia insignis (O. Hoffm.) R.E. Fr.	H	R	Z	Ma	Oral	1	Muya et al. (2014)
Hypericaceae	Psorospermum aarymbiferum Hochr.	Sh	Ph	L	Inf	Oral	2	Manya et al. (2020)
Hypericaceae	Harungana madagascariensis Lam. ex Poir.	T	Ph	L, R, SB	De	Oral	1, 2, 6	Kasali et al. (2014b); Muya et al. (2014); Konda et al. (2012); Mbuyi et al. (2019)
Icacinaceae	Pyreocranthha staudtii (Engl.) Engl.	L	Ph	L	De	Oral	6	Ilumbe Bayeli (2010)
Lamiaceae	Kallaharia unicinata (Schinz) Moldenke	Sh	Ch	L	De	Oral	1	Mbuyi et al. (2019)
Lamiaceae	Ocimum gratissimum L.	Ssh	Ch	L	De, Inf, Ma, Gri	Poultice, oral, enema, bath	1	Chiribagula et al. (2017); Manya et al. (2020)
Lamiaceae	Tetradenia riparia (Hochst.) Codd	T	Ph	L	Exp	NR	2, 3	Kasali et al. (2014a); Kasali et al. (2014b)
Appendix 1 (continued)

Plant family	Botanical name	Morphological type	Life form	Part used	Preparation mode	Used methods	Provinces	References
Lamiaceae	Vitex madiensis Oliv.	Sh	Ph	L	De	Oral, spray on the body	1	Mbuyi et al. (2019); Kalonda et al. (2014)
Lamiaceae	Mentha piperita L.	H	Th	L	De	NR	2, 3	Kasali et al. (2014a); Kasali et al. (2014b)
Lamiaceae	Ocimum americanum L.	H	Th	L, RB	Grit	Rub the leaves all over the body	1	Mbuyi et al. (2019)
Lamiaceae	Leucas martincensis (Jacq.) R. Br.	H	Th	L, S	De	NR	3	Kasali et al. (2014a)
Lauraceae	Persea americana Mill.	T	Ph	L, Fr	De	Oral	2, 3, 6	Kasali et al. (2014a); Kasali et al. (2014b); Ilumbe Bayeli (2010)
Loganiaceae	Strychnos cocculoides Baker	Sh	Ph	RB	De	Oral	1	Mbuyi et al. (2019); Kalonda et al. (2014)
Loganiaceae	Strychnos icaja Baill.	L	Ph	RB	NR	NR	6	Lusakibanza Manzo (2012)
Loganiaceae	Strychnos potatorum L. f.	T	Ph	RB	De, powder	Oral, instillation (eyes, noise)	1	Mbuyi et al. (2019)
Loganiaceae	Strychnos spinosa Lam.	T	Ph	RB	De, powder	Oral, instillation (eyes, noise)	1	Mbuyi et al. (2019)
Lycopodiaceae	Lycopodium clavatum L.	H	Ch	NR	NR	NR	2	Mangambu et al. (2012)
Malvaceae	Sida acuta Burm. f.	Ssh	Ch	NR	NR	NR	3	Kasika et al. (2015)
Melastomataceae	Memecylon flavivirens Baker	Sh	Ph	L, R	Ma	Oral	1	Mbuyi et al. (2019)
Meliaceae	Ekebergia benguelensis Welw. ex C. DC.	T	Ph	L	De	NR	1	Kalonda et al. (2014)
Meliaceae	Melia azedarach L.	T	Ph	L	NR	NR	2, 13	Karhogomba et al. (2013); Kasali et al. (2014b); Lusakibanza (2012)
Meliaceae	Azadirachta indica A. Juss.	T	Ph	L, RB, SB	De, Ma	Oral	1, 3	Kasali et al. (2014a); Chiribagua et al. (2017); Mbuyi et al. (2019)
Meliaceae	Entandrophragma palustre Staner	T	Ph	SB	De	Oral	4, 12	Ngbolua et al. (2014); Lusakibanza (2012)
Meliaceae	Khaya nyasica Stapf ex Baker f.	T	Ph	SB	De	Oral	1, 3	Kasika et al. (2015); Mbuyi et al. (2019); Muya et al. (2014); Ilumbe Bayeli (2010)
Menispermaceae	Cissampelos ovairiensis P. Beauv. ex DC.	L	Ph	EP	De	Chewing, oral	6	
Menispermaceae	Triclisia dictyophylla Diels	L	Ph	L	De	Oral	4	Ngbolua et al. (2014)
Menispermaceae	Stephanisia abyssinica (Quart. - Dill. & A. Rich.) Walp.	L	Ph	L, R, SB	De	Ekema	1	Mbuyi et al. (2019)
Menispermaceae	Peniathus langifolius Miers	Sh	Ph	RB	De	Oral	4	Ngbolua et al. (2014)
Moraceae	Ficus exasperata Vahli	T	Ph	L	Ma	Oral	2	Manya et al. (2020)
Moraceae	Ficus thonningii Blume	T	Ph	L, RB	De	Oral	1	Mbuyi et al. (2019)
Moraceae	Ficus sur Forsik.	Sh	Ph	L, RB, SB	De	Oral	1	Mbuyi et al. (2019)
Musaceae	Musa x paradisiaca L.	H	Ph	L	Leaves roasted in palm oil	Oral	1	Mbuyi et al. (2019)
Myristicaceae	Pycnanthus marchalianus Ghesq.	T	Ph	SB	De	Oral	6	Ilumbe Bayeli (2010)
Myrtaceae	Callistemon speciosus (Simos) Sweet	T	Ph	L	De	Oral	3	Kasali et al. (2014a)
Myrtaceae	Corymbia citriodora (Hook.) K.D. Hill & L.A.S. Johnson	T	Ph	L	De	Oral, inhalation	1	Mbuyi et al. (2019)
Myrtaceae	Eucalyptus globulus Labill.	T	Ph	L	De	Inhalation, oral	1, 2, 3	Kasali et al. (2014a); Kasali et al. (2014b); Mbuyi et al. (2019)
Myrtaceae	Psidium guajava L.	T	Ph	L	De	Oral	1, 2, 3	Kasali et al. (2014a); Kasali et al. (2014b); Mbuyi et al. (2019)
Myrtaceae	Syzygium guineense (Willd.) DC.	T	Ph	L, RB, SB	De	Oral	1, 3	Kasali et al. (2014a); Mbuyi et al. (2019)
Myrtaceae	Eucalyptus sp.	T	Ph	S	Inf	NR	3	Kasali et al. (2014a)
Nyctaginaceae	Mirabilis jalapa L.	Sh	Ch	L	De	NR	2	Kasali et al. (2014b)
Ochnaceae	Ochna schweinfurthiana F. Hoffm.	Sh	Ph	L, R	De, Ma	Oral	1, 2	Mbuyi et al. (2019); Manya et al. (2020)
Oleaceae	Schrebera trichoclad Zehl.	Sh	Ph	L, S	De, Ma	NR	1	Kalonda et al. (2014)
Passiifloraceae	Passiflora edulis Sims	L	Ch	L	De	NR	3	Kasali et al. (2014a)
Passifloraceae	Passiflora foetida L.	H	Th	L	Inf	NR	2	Kasali et al. (2014b)
Pentadiplandraceae	Pentadiplandra brazeaena Baill.	Sh	Ph	R, S	De	Oral	6, 8	Ilumbe Bayeli (2010); Ndome et al. (2016)
Plant family	Botanical name	Morphological type	Life form	Part used	Preparation mode	Used methods	Provinces	References
--------------	----------------	--------------------	-----------	-----------	------------------	-------------	-----------	------------
Phyllanthaceae	Hymenocardia acida Tul.	Sh	Ph	L	De	Oral, inhalation, bath	1	Mbuyi et al. (2019)
Phytolaccaceae	Phytolaca dodendrocarpa L’Hér.	Sh gr	Ch	R	De	Oral, bath	2	Kasali et al. (2014b)
Picrodendraceae	Oldfieldia doxyphylla (Welw. ex Oliv.) J. Léonard	T	Ph	RB, SB	De	Oral	1	Mbayo et al. (2016)
Piperaceae	Piper guineense Schum. and Thonn.	L	Ph	L, Se	De	Oral	2, 6	Kasali et al. (2014b); Illumbe Bayeli (2010)
Piperaceae	Piper nigrum L.	L	Th	L	NR	NR	4	Ngbolua et al. (2015)
Piperaceae	Piper capense L. f.	Sh	Th	NR	NR	NR	2, 3	Karrhagomba et al. (2013); Kasika et al. (2015)
Plantaginaceae	Plantago palmata Hook. f.	H	Ph	L	De	Oral	2	Kasali et al. (2014b); Manya et al. (2020)
Poaceae	Cymbopogon densiflorus (Steud.) Stapf	H	Ch	AP	De, Inf, Ma	Inhalation, oral	1	Mbuyi et al. (2019); Muya et al. (2014)
Poaceae	Cymbopogon citratus (DC.) Stapf	H	Th	L	De, Inf	Oral, inhalation, friction	1, 2, 3, 4, 5	Ngbolua et al. (2016); Ngbolua et al. (2019); Mbuyi et al. (2019); Kasali et al. (2014a); Kasali et al. (2014b); Nzuki (2016)
Polygalaceae	Securidaca longipedunculata Fresen.	T	Ph	L, SB	De	Inhalation, oral	1	Mbuyi et al. (2019); Muya et al. (2014)
Proteaceae	Faurea rochetaiana (A. Rich.) Chiov. ex Pic. Ser.	T	Ph	SB	L, Ma	Oral	1	Mbuyi et al. (2019)
Ranunculaceae	Ranunculus multiflorus Forssk.	H	Ph	L	De	NR	3	Kasali et al. (2014a)
Rhamnaceae	Ziziphus abyssinica Hochst. ex A. Rich.	Sh	Ph	R	Ma	Oral	1	Mbuyi et al. (2019)
Rhamnaceae	Ziziphus mucronata Wild.	T	Ph	R	Ma	Oral	1	Mbuyi et al. (2019)
Rhamnaceae	Ziziphus resinosas Hochst. ex A. Rich.	T	Ph	R	De, Ma	Oral	1	Chiribagua et al. (2017)
Rosaceae	Prunus africana (Hook. f) Kalkman	T	Ph	B	NR	NR	2	Mangambu et al. (2015a)
Rosaceae	Rubus rigidus Sm.	L	Ph	L	De	NR	3	Kasali et al. (2014a)
Rubiaceae	Fodogielia stigmatoloba (K. Schum.) Robyns	H	Ch	L	De	Oral	2	Manya et al. (2020)
Rubiaceae	Otophora pasciflora Baker	H	Ch	L	Ma	Oral	2	Chifundera (2001)
Rubiaceae	Spermacoce princeae (K. Schum.) Verdc.	H	Ch	L	De, Sap	Instillation	2	Manya et al. (2020)
Rubiaceae	Cinchona calisaya Wedd.	T	Ph	B	De	NR	2, 3	Kasali et al. (2014a); Kasali et al. (2014b)
Rubiaceae	Leptacina benguelensis (Welw. ex Benth & Hook. f.) R.D. Good.	T	Ph	L	De	Oral	4	Ngbolua et al. (2014)
Rubiaceae	Morinda longiflora G. Don	climbing shrub	Ph	L	De	NR	4	Makumbelo et al. (2008)
Rubiaceae	Morinda morindoides (Baker) Milne-Redh.	L	Ph	L	De	Oral, chewing	4, 5, 6	Ngbolua et al. (2013b); Ngbolua et al. (2016); Ngbolua et al. (2019); Ngbolua et al. (2014); Illumbe Bayeli (2010)
Rubiaceae	Rothmannia engleriana (K. Schum.) Kea	T	Ph	L, RB	De, Ma	Oral	2	Manya et al. (2020)
Rubiaceae	Cinchona officinalis L.	T	Ph	L, SB	De	Oral	2	Manya et al. (2020)
Rubiaceae	Morinda lucida Bentham.	Sh	Ph	L, UP	De	Oral, friction	4, 5	Ngbolua et al. (2019); Nzuki (2016)
Rubiaceae	Gardenia ternifolia Schumach. & Thonn.	Sh	Ph	R	De	Oral	1	Mbuyi et al. (2019)
Rubiaceae	Hymenodictyon floribundum (Hochs. & Steud.) B.L. Robyns	Sh	Ph	R	De	NR	1	Kalonda et al. (2014)
Rubiaceae	Sarcopetalus latifolius (Sm.) E.A. Bruce	Sh	Ph	R	De	NR	5	Ngbolua et al. (2013a)
Rubiaceae	Crossospermyx febrifuga (Afzel. ex G. Don) Bentham.	T	Ph	SB	De	Oral	1	Mbuyi et al. (2019); Kalonda et al. (2014)
Rubiaceae	Nauclea diderrichii (De Wild.) Merr.	Sh	Ph	SB	De	Oral	4	Ngbolua et al. (2014)
Rutaceae	Citrus aurantium L.	T	Ph	Fr	Ma	NR	2	Kasali et al. (2014b)
Rutaceae	Citrus limon (L.) Osbeck	T	Ph	L	De	Oral	1, 2, 3	Kasali et al. (2014a); Kasali et al. (2014b); Mbuyi et al. (2019)
Rutaceae	Citrus medica L.	T	Ph	L	Inf	Bath	9	Mbula et al. (2015)
Sapindaceae	Zanha africana (Radlik.) Exell	T	Ph	RB	Inc	Tatoo	1	Mbuyi et al. (2019)
Sapotaceae	Autranella congoensis (De Wild.) A. Chev.	T	Ph	SB	De	Oral	4	Ngbolua et al. (2014)
### Plant family	Botanical name	Morphological type	Life form	Part used	Preparation mode	Used methods	Provinces	References
Simaroubaceae | Quassia Africana (Baill.) Baill. | T | Ph | L, R | NR | Oral | 4 | Ngbolua et al. (2015); Ngbolua et al. (2016)
Solaneae | Solanum sisymbriifolium Lam. | H | Ch | Fr | Inf | Oral/reactively applied | 2 | Chilundera (2001)
Solaneae | Capsicum annumum L. | T | Ch | L | Ma, Inf | NR | 1 | Kalonda et al. (2014)
Solanaeae | Solanum incanum L. | H | Ch | R | De, Ma | Enema | 1 | Mbuyi et al. (2019)
Necotiana tabacum L. | H | Th | L | Gr | Noise | 1 | Mbuyi et al. (2019)
Solaneae | Physalis peruviana L. | H | Th | L, R | De, Inf | Oral | 1, 2, 3 | Kasali et al. (2014a); Kasali et al. (2014b); Mbuyi et al. (2019); Manya et al. (2020)
Solaneae | Physalis angulata L. | H | Th | WP | NR | NR | 5 | Usakabiana Mambo (2012)
Zingeraceae | Tropaeolum majus L. | H | Ch | L | De | Inf | Oral | 2, 3 | Kasali et al. (2014a); Kasali et al. (2014b); Mbuyi et al. (2019); Manya et al. (2020)
Verbenaceae | Lantana camara L. | Sh | Ph | L | De, Inf | Inhalation, oral | 1, 2, 3 | Kasali et al. (2014a); Kasali et al. (2014b); Mbuyi et al. (2019); Manya et al. (2020)
Verbenaceae | Lippia multiflora Moldenke | H | L | De | Oral | 5 | Nzuki (2016)
Zingeraceae | Curcuma longa L. | H | Ge | L | Ma | Oral | 5 | Nzuki (2016)
Zingeraceae | Aframomum melégueta K. Schum. | H | Ge | L, R | De | Oral | 1 | Mbuyi et al. (2019)
Zingeraceae | Aframomum alboviolaceum (Ridl.) K. Schum. | H | Ge | L, Fr | Ma | Oral | 4, 6 | Ngbolua et al. (2016); Ngbolua et al. (2019); Illumbe Bayeli (2010)
Zingeraceae | Aframomum laurentii (De Wild. & T. Durand) K. Schum. | H | Ph | L | De, Inf | Powder | Oral, topical application | 2 | Manya et al. (2020)

References

Afekunle M. F., 2008. Indigenous uses of plant leaves to treat malaria fever at Omo forest reserve (ORF) Ogun State, Nigeria. Ethiopian Journal of Environmental Studies and Management, 1 (3): 31-35. https://doi.org/10.4314/ejesm.v1i3.4

Adia M. M., Anywar G., Byamukama R., Mugisha M. K., Sekagya M., Kausali P. A., De Jong J., Anywar G., Van’t Klooster C. E. I. A., Byamukama R., Willcox M., Nalukenge R., 2014. Medicinal plants used in malaria treatment by Prometa herbalists in Uganda. Journal of Ethnopharmacology, 155: 580-588. https://doi.org/10.1016/j.jep.2014.05.060

Alalwan T. A., Alkhuzai J. A., Jameel Z., Mandeel Q. A., 2019. Quantitative ethnobotanical study of some medicinal plants used by herbalists in Bahrain. Journal of Herbal Medicine, 17-18: 100278. https://doi.org/10.1016/j.jhm.2019.10.007

Alebie G., Uga B., Woruk A., 2017. Systematic review on traditional medicinal plants used for the treatment of malaria in Ethiopia: trends and perspectives. Malaria Journal, 16: 307. https://doi.org/10.1186/s12936-017-1953-2

Ali A. K., Kabir A. M., Kebere A. H., Assefa A. K., 2016. Descriptive study of plant resources in the context of the ethnomedicinal relevance of indigenous flora: A case study from Toli Peer National Park, Azad Jammu and Kashmir, Pakistan. PLoS ONE, 12 (2): e0171896. https://doi.org/10.1371/journal.pone.0171896

Anywar G., Van’t Klooster C. E. I. A., Byamukama R., Willocx M., Nalumansi P. A., De Jong J., et al., 2016. Medicinal plants used in the treatment and prevention of malaria in Cegere Sub-County, Northern Uganda. Ethnobotany Research and Applications, 14: 505-516. http://dx.doi.org/10.17348/era.14.0.505-516

APG, 2009. An update of the Angiosperm phylogeny group classification for the orders and families of flowering plants: APGIII. Botanical Journal of the Linnean Society, 161: 105-121. https://doi.org/10.1111/j.1095-8339.2009.00996.x

Arshad M., Ahmad M., Ahmed E., Saboor A., Abbas A., Sadiq S., 2014. An ethnobotanical study in Kala Chitta hills of Pothwar region, Pakistan: multinomial logit specification. Journal of Ethnobiology and Ethnomedicine, 10: 13. http://www.ethnobiomed.com/content/10/1/13

Ashadi-Samani M., Rafieian-Kopaei M., Azimi N., 2013. Gundelia: A systematic review of medicinal and molecular perspective. Pakistan Journal of Biological Sciences, 16 (21): 1238-1247. https://doi.org/10.3923/pjbs.2013.1238.1247

Asase A., Akwetey G. A., Achele D. G., 2010. Ethnopharmacological use of herbal remedies for the treatment of malaria in the Dagme West District of Ghana. Journal of Ethnopharmacology, 129: 367-376. https://doi.org/10.1016/j.jep.2010.04.001

Bakwaye F. N., Termote C., Kimbungu K., Van Damme P., 2013. Identification and importance locale des plantes médicinales utilisées dans la région de Mbanda-Ngungu, République démocratique du Congo. Bois et Forêts des Tropiques, 316 (2) : 63-77. https://doi.org/10.19182/bft2013.316.a20531

Balima L. H., Nacoulma B. M. I., Ekue M. R. M., Kouamé F. N., Thiomibiano A., 2018. Use patterns, use values and management of Afelela africana 5m. In Burkina Faso: implications for species domestication and sustainable conservation. Journal of Ethnobiology and Ethnomedicine, 14: 23. https://doi.org/10.1186/s13002-018-0221-z
L'étude floristique et écologique des marais de Masina. Revue Congolaise des Sciences Néerlandaises, 23 (1) : 1-19.

Kikuči A., Lejoly J., Lukofi F., 2017. État actuel de la biodiversité végétale du territoire de Kimvula au sud-ouest de la République Démocratique du Congo. International Journal of Innovation and Applied Studies, 19 (4) : 239-243. https://studylibfr.viewdoc/download?doi=10.1.1.574.8891&rep=rep1&type=pdf

Kodi P., Mwangi E. M., Cheploghi P. K., Kirutiki T. S., 2017. Ethnobotanical survey of antimalarial medicinal plants used in Butembo County, Eastern Uganda. European Journal of Medicinal Plants, 21 (4) : 22-23. https://doi.org/10.1007/s10298-016-0115-2

Kuete V., Efferth T., 2010. Cameroonian medicinal plants: pharmacology and derived natural products. Frontiers in Pharmacology, 1 : 1-19. https://doi.org/10.3389/fphar.2010.00123

Lakouetté D. B. P., Ndolgar G., Berké B., Moyen J.-M., Kosh Komba E., Zinga I., Silla S., et al., 2009. Enquête ethnobotanique des plantes utilisées dans le traitement du paludisme à Bangui. Bulletin de la Société de Pharmacie de Bordeaux, 148 : 123-138. https://studylibfr.viewdoc/download?doi=10.1016/j.jep.2014.08.005

Landis S. H., Lokomba V., Anantch C. V., Atibu J., Ryder R. W., Hartmann K. E., et al., 2009. Impact of maternal malaria and under-nutrition on intrauterine growth restriction: a prospective ultrasound study in Democratic Republic of Congo. Epidemiology and Infection, 137 : 294-304. https://doi.org/10.1017/S0950268808000915

Kasaï F. M., Mahano A. O., Kadima N. J., Mpiana P. T., Ngobolu K. N., Tshibangu T. S. D., 2014a. Ethnopharmacological survey of medicinal plants used against malaria in Bukavu city (D.R. Congo). Journal of Advanced Botany and Zoology, 1 (1) : 1-11.

Kasaï F. M., Mahano A. O., Nyakabwa D. S., Kadima N. J., Misakabu F. M., Tshibangu O. S. T., et al., 2014b. Ethnobotanical survey of medicinal plants used against malaria in Bukavu city (D.R. Congo). European Journal of Medicinal Plants, 4 (2) : 29-44. https://doi.org/10.9734/EIMP/2014/5766

Kasika E. L., Vasombolwa V. K., Lejoly J., 2015. Contribution to the knowledge of plants used by Bantu and Pygmy healers in Beni and Lubero territories (Democratic Republic of Congo). Journal of Plant Studies, 4 (2) : 157-176. https://doi.org/10.5539/jps.v4n2p157

Kayani S., Ahmad M., Zafar M., Sultan S., Khan M. P. Z., Ashraf M. A., et al., 2014. Ethnobotanical uses of medicinal plants for respiratory disorders among the inhabitants of Galilae-Abbotabad, Northern Pakistan. Journal of Ethnomedicine, 156 : 47-60. https://doi.org/10.1016/j.jep.2014.08.005

Kikuči A., Lukoki F., 2008. Étude floristique et écologique des marais de Masina. Revue Congolaise des Sciences Néerlandaises, 23 (1) : 1-19.

Kalonda E. M., Mbayo M., Muhume S. K., Kasereka M., Mulamba J. M., Tshiamba K., Moustsambote J.-M., Nzobadila E. K., Atencia R., 2019. Floristic survey of plants used for treating malaria in a forest–savanna margin in the Butembo, R. D. Congo. Journal of Ethnopharmacology, 233 : 23-29. https://doi.org/10.1016/j.jep.2019.02.0005-3
Mahomoodally M. F., 2013. Traditional medicines in Africa: An appraisal of ten potent African medicinal plants. Evidence-Based Complementary and Alternative Medicine, 2013: 1-14. https://doi.org/10.1155/2013/617459

Makumbelo E., Lukoli L., Paulis J. J. S., Luyindula N., 2008. Stratégie de valorisation des espèces réserves des produits non ligneux de la savane des environs de Kinshasa. II. Enquête ethnothnobotanique (aspects médicinaux). Tropicultura, 26 (3) : 129-134. http://www.tropicultura.org/text/v26n3/129.pdf

Mamadou A. J., Douma S., Inoussa M. M., Moussa S., Mahamane A., Saadou M., 2019. Diversity, life forms, choreography and uses of spontaneous medicinal plants in Niamey and Tillabéry Regions, Niger Republic. Journal of Applied Life Sciences International, 22 (4) : 1-17. https://doi.org/10.9734/jalsi/2019/v22i4/3134

Mangambu M. J. D., Aluma K. J.-Y., Diggelen R. V., Rugendra-Banga R. A. D., Mshangulansu K. F., Chibemba S. A., et al., 2015a. Études ethnobotanique et ethnolinguistique des ressources forestières ligneuses utilisées par la population du couloir écologique du Parc National de Kahuzi-Biega (RD Congo). European Scientific Journal, 11 (15) : 135-162. https://economicscn.com/download/pdf/236412752.pdf

Mangambu M. J. D., Diggelen R. V., Mwanga Mwanga C., Ntshobavuka H., Malaisse F., Robbrecht E., 2012. Étude ethnoptéridologique, évaluation des risques d’extension et stratégies de conservation aux alentours du Parc National de Kahuzi Biega (RD Congo). Geo-Eco-Trop, 36 : 137-158. http://www.geoeotrop.com/uploads/publications/pub_361_09.pdf

Mangambu M. J. D., Kawatsuru M. S., Birashinwa N. R., Habimana N. H., Kavugho C. S., 2016. Antimalarial herbal remedies from the population dwelling the zone submontagnarde du Parc National de Kazinga-Biega (RD Congo). International Journal of Innovation and Applied Studies, 11 (2) : 508-521. http://www.issr-journals.org/links/papers.php?journal=ijia&application=pdf&article=IJIAS-15-094-09

Manya M. H., Keymeulen F., Ngezahayo J., Bakari A. S., Kalonda M. E., 2020. Antimalarial herbal remedies of Bukavu and Uvira areas in DR Congo: An ethnobotanical survey. Journal of Ethnopharmacology, 249 : 112422. https://doi.org/10.1016/j.jep.2019.112422

Masenda T. O., Ntembi J. K., Mangonon M. K., 2018. Contribution to ethnobotanical knowledge of some Uapaca spp. used in traditional medicine in Democratic Republic of Congo and its surroundings (DRC). Mediterranean Journal of Social Sciences, 9 (1) : 469-475. https://doi.org/10.19030/mjss.v9n1.7811

Mbaya K. M., Kalunga M. R., Tshibangu D. S., Mwanda D. M., 2020. Contribution to ethnobotanical knowledge of some Ephedraeaceae used in traditional medicine in Lubumbashi and its surroundings (DRC). Journal of Advanced Botany and Zoology, 2 (4) : 213-228. https://doi.org/10.9734/jabz/2020/v2i4/213

Mbaya K. M., Tshibangu D. S., Mwanda D. M., 2021. Contribution to ethnobotanical knowledge of some Ephedraeaceae used in traditional medicine in Lubumbashi and its surroundings (DRC). Journal of Advanced Botany and Zoology, 2 (3) : 186-196. http://cd.chm-cbd.net/implementati on/centre-de-sureveillance-de-la-biodiversite-csb/botanique/ethnobotanique/ethnobotanical-survey-aphrodisiac-plants-masako-forest-reserve-kisangani-dr-congo

Mbuyi K. S., Kalunga M. R., Kalonda M. E., Cimanga C. C. B., Numbi I. E., Kahumba B. J., et al., 2019. Aperçu ethnothnobotanique de plantes réputées antipaludéennes utilisées dans la ville de Lubumbashi et ses environs, dans le Haut-Katanga en RD Congo. Ethnopharmacology, 61 : 75-84. http://www.ethnopharmacologia.org/wp-content/uploads/2019/07/ ETHNONPHARM-61-Mbuyi.pdf

Messina J. P., Taylor S. M., Meshnick S. R., Linke A. M., Tshefu A. K., Atua B., et al., 2011. Population, behavioural and environmental drivers of malaria prevalence in the Democratic Republic of Congo. Malaria Journal, 10 : 161. https://doi.org/10.1186/1475-2875-10-161

Mobula L., Liliby B., Tshefu A. K., Rosenthal P. J., 2009. Resistance-medi ating Polymorphisms in Plasmodium falciparum infections in Kinshasa, Democratic Republic of the Congo. American Society of Tropical Medicine and Hygiene, 80 (4) : 555-558. https://doi.org/10.4269/ ajtmh.2009.80.555

Mongeke M. M., Ngobula K. N., Bakola R. D., Inkoto C. L., Elikanandi P. N., Moul I. C., 2018. Enquête sur les plantes utilisées en médecine traditionnelle par les Bambenga : Pygmées du secteur de Dongo en République Démocratique du Congo. Revue Marocaine des Sciences Agronomiques et Vétérinaires, 6 (4) : 469-475. http://www.agrimaroc.org/index.php/Actes_IAVH2/article/view/617

Muganga R., Angelot L., Tits M., Frédérick M., 2010. Antiplasmodial and cytotoxic activities of Rwandan medicinal plants used in the treatment of malaria. Journal of Ethnopharmacology, 128 : 52-57. https://doi.org/10.1016/j.jep.2009.12.023

Muya K., Tshoto K., Cicco C. M., Aseho M. M., Kalonji M., Byanga K., et al., 2014. Contribution to ethnobotanical knowledge of some plants utilised against the schistosomosis urogénitale à Lubumbashi et environs. Phytothérapie, 12 : 213-228. https://doi.org/10.1007/s10298-014-0877-z

Nkumu D. M., Kayembe J.-M., Situka Bananza H., Bobanga T. L., Nsib C. N., Nkumu G. L., et al., 2015. Falciparum malaria molecular drug resistance in the Democratic Republic of Congo: a systematic review. Malaria Journal, 14 : 354. https://doi.org/10.1186/s12936-015-0892-z

Ndjela M. B., 1988. Les éléments phytogéographiques endémiques dans la flore vasculaire du Zaïre. Thèse de doctorat, Université libre de Bruxelles, Belgique, 536 p.

Ndome F. M., Ngobula K. N., Masens B. Y. M., Mpiana P. T., 2016. Études ethnobotanique et écologique des plantes utilisées dans le traitement de la stérilité à Kenge et ses environs (Province du Kwango, République Démocratique du Congo). International Journal of Innovation and Scientific Research, 26 (2) : 600-611. http://www.ijiss.journals.org/abstract.php?article=IJISR-16-233-02

Nganvihume T., Van’t Klooster C. I. E. A., De Jong J. T. V. M., Van der Wes-Thuizien J. H., 2015. Medicinal plants used by traditional healers for the treatment of malaria in the Chipinge district in Zimbabwe. Journal of Ethnopharmacology, 159 : 224-237. https://doi.org/10.1016/j.jep.2014.11.011

Ngobula K. N., Benamambote B. M., Mpiana P. T., Mpiana M. D., Meku E., Tshibangu D. S. T., et al., 2013a. Ethnobotanical survey and ecological study of some medicinal plants species traditionally used in the District of Bas-Fleuve (Bas-Congo Province, Democratic Republic of Congo). Research Journal of Chemistry, 1 (2) : 1-10. https://www.researchgate.net/publication/258162541_Ethnobotanical_survey_and_Ecological_Study_of_Some_Medicinal_Plants_spe cies_traditionally_used_in_the_District_of_Bas-Fleuve_Bas-CongoProvince_Democratic_Repub lic_of_Congo

Ngobula K. N., Mudugo V., Mpiana P. T., Malekani M. J., Rafatro H., Ratsin mamanga S. U., et al., 2013b. Evaluation de l’activité antidiélapoïétique et antipaludique de quelques taxons végétaux de la République démocratique du Congo et de Madagascar. Ethnopharmacologie, 50 : 7-12

Ngobula K. N., Inkoto C. L., Mongo N. L., Ashande C. M., Masens Y. B., Mpiana P. T., 2019. Étude ethnobotanique et floristique de quelques plantes médicinales commercialisées à Kinshasa, République Démocratique du Congo. Revue Marocaine des Sciences Agronomiques et Vétérinaires, 7 (3) : 118-128. https://core.ac.uk/download/pdf/230580865.pdf

Ngobula K. N., Mbandja L. B., Munsebi M. J., Ashande C. M., Moke E. L., Asambo S. L., et al., 2015. Études ethnobotanique et écologique des plantes utilisées en médecine traditionnelle dans le District de la Lukunga à Kinshasa (RD du Congo). International Journal of Innovation and Scientific Research, 26 (2) : 612-633. http://www.ijiss.journals.org/abstract.php?article=IJISR-16-233-03
Ngbolua K. N., Mpiana P. T., Mudogo V., Ngombe N. K., Tsibangou D. S. T., Ekutsu E., et al., 2014. Ethno-pharmacological survey and floristical study of some medicinal plants traditionally used to treat infectious and parasitic pathologies in the Democratic Republic of Congo. International Journal of Medicinal Plants, 106: 454-467.

Ngbolua K. N., Miigo S. O., Liyong C. I., Ashande M. C., Tsibangou D. S. T., Zoawe B. G., et al., 2015. Ethno-botanical survey of plant species used in traditional medicine in Kinshasa city (Democratic Republic of the Congo). Tropical Plant Research, 3 (2): 413-427. https://www.tropicalplantresearch.com/archives/2016/vol3issue2/24.pdf

Nsonde-Ndongou F. G., Ndounga M., Ouamba J. M., Gbeassor M., Etou-Ossibi A., Ntoumi F., et al., 2005. Enquête ethnothmbotanique : screening chimique de l’efficacité thérapeutique de quelques plantes utilisées contre le paludisme en médecine traditionnelle à Brazzaville. Phythothérapie, 3: 13-18. https://doi.org/10.1007/s10298-005-0059-0

Ntie-Kang F., Ongnégué P. A., Lifong L. L., Djom C. J., Sippil W., Meva’a Mbaze L., 2014. The potential of anti-malarial compounds derived from African medicinal plants. Part II: A pharmacological evaluation of non-alkaloids and non-terpenoids. Malaria Journal, 13: 81. https://doi.org/10.1186/1475-2875-13-81

Nzuki B. F., 2016. Recherches ethnothmbotaniques sur les plantes médicinales dans la région de Mbamba-Ngungu, RDC. Thèse de doctorat (PhD), Université de Gand, Belgique, 349 p. https://biblio.ugent.be/publication/8205211/file/8205212

Okello D., Kang Y., 2019. Exploring antimalarial herbal plants across communities in Uganda based on electronic data. Evidence-Based Complementary and Alternative Medicine, ID 3057180. https://doi.org/10.1155/2019/3057180

Ong H. G., Ling S. W., Win T. T. M., Kang D.-H., Lee J.-H., Kim Y.-D., 2018. Ethnobotany of wild medicinal plants used by the Mùiin ethnic people: A quantitative survey in southern China State, Myanmar. Journal of Herbal Medicine, 13: 91-96. https://doi.org/10.1007/s10298-017-0041-2

Raj A. J., Biswakarma S., Paila N. A., Shukla G., Vineeta Kumar M., Chakravarty S., et al., 2018. Indigenous ethnobotanical plants among forest-dependent communities of Northern Bengal, India. Journal of Ethnobiology and Ethnomedicine, 14: 8. https://doi.org/10.1186/s13002-018-0208-9

Saotong P., Vroumisa T., Tchobsala, Tchuenguem F. F.-N., Njau N. A.-M., Messi J., 2011. Medicinal plants used in traditional treatment of malaria in Cameroon. Journal of Ecology and the Natural Environment, 3 (3): 104-117. https://academicjournals.org/journal/JENE/article-abstract/3E8F71C6080

Silva J. R. A., Ramos A. S., Machado M., Moura D. F., Neto Z., Canto-Cavalheiro M. M., et al., 2011. A review of antimalarial plant species used in traditional medicine in communities in Portuguese-speaking countries: Brazil, Mozambique, Cape Verde, Guinea-Bissau, São Tomé and Príncipe and Angola. Memórias do Instituto Oswaldo Cruz, 106 (1): 162-158. https://doi.org/10.1590/S0070-2266201100001000019

Swan E. K., Yaw T. I., Ngwej L. M., Mumpe B. N., Suprianto, Mukeng N. C. Masumbuko, K. G. Iragi, K. T. N. Ngbolua, M. A. Furaha, N. K. Rolly

Tor-anyin T. A., Sh’a’ato R., Oluma H. O. A., 2003. Ethnobotanical survey of anti-malarial medicinal plants amongst the Tig people of Nigeria. Journal of Herbs, Spices & Medicinal Plants, 10 (3): 61-74. https://doi.org/10.1300/J044v10n03_07

Traore M. S., Baldé M. A., Diallo M. S. T., Baldé E. S., Diañé S., Camara A., et al., 2013. Ethnobotanical survey on medicinal plants used by Guinean traditional healers in the treatment of malaria. Journal of Ethnopharmacology, 150: 1145-1153. https://doi.org/10.1016/j.ijep.2013.10.048

Umar M., Altuf M., Bussmann R. W., Abbasi A. M., 2019. Ethnomedicinal uses of local flora in Chenab riverine area, Punjab province, Pakistan.

UNESCO, 2010. Le Patrimoine mondial dans le Bassin du Congo. Centre du Patrimoine mondial de l’UNESCO, 64 p. https://whc.unesco.org/fr/activites/628/

Vijayakumar S., Yabesh J. E. M., Prabhu S., Manikanand R., Muralidharan B., 2015. Quantitative ethnomedicinal study of plants used in the Nelliampathy hills of Kerala, India. Journal of Ethnopharmacology, 161: 238-254. https://doi.org/10.1016/j.ijep.2014.12.006

WHO, 2019. World Malaria Report 2019. World Health Organization, 232 p. https://www.who.int/publications/i/item/9789241565721

Yetein M. H., Houessou L. G., Loubégignon T. O., Teka O., Tente B., 2013. Ethnobotanical study of medicinal plants used for the treatment of malaria in plateau of Allada, Benin (West Africa). Journal of Ethnopharmacology, 146: 154-163. https://doi.org/10.1016/j.ijep.2012.12.022

Zarei L., Najj-Haddadi S., Pourjabali M., Naghdí N., Tasibh-Forosh M., Shahtsavari S., 2017. Systematic review of anti-Rheumatic Medicinal Plants: An overview of the effectiveness of articular tissues and joint pain associated with Rheumatoid arthritis. Journal of Pharmaceutical Sciences and Research, 9 (5): 547-551. https://www.jsprr.pharmainfo.in/Documents/Volumes/vol9Issue05/jpsr09051706.pdf

Rusaati et al. – Authors’ contributions

Contributor role	Contributor names
Conceptualization	B. I. W. Rusaati, J. W. Kang
Data curation	J. W. Kang
Formal Analysis	B. I. W. Rusaati
Investigation	B. I. W. Rusaati
Methodology	B. I. W. Rusaati, A. P. Gendusa
Resources	J. W. Park, S. H. Joo
Supervision	J. W. Kang
validation	J. W. Kang, N. C. Masumbuko
Visualization	B. I. W. Rusaati
Writing- original draft preparation	B. I. W. Rusaati

Writing- Review and Editing

Contributors	Names
N. C. Masumbuko	K. G. Iragi, K. T. N. Ngbolua, M. A. Furaha, N. K. Rolly

Bois et Forêts des Tropiques - Revue scientifique du Cirad - © Bois et Forêts des Tropiques © Cirad

Cirad - Campus international de Baillauguet, 34398 Montpellier Cedex 5, France - Contact : bft@cirad.fr - ISSN : L-0006-579X