Individual differences in attitudes toward mathematics

N R Siregar¹,2, S Wimbarti¹ and M Ilham²
¹Universitas Gadjah Mada, Jl. Sosio Humaniora, Bulaksumur, Yogyakarta 55281, Indonesia.
²Universitas Halu Oleo, Kampus Hijau Bumi Tridharma, Anduonohu, Jl. H.E.A. Mokodompit, Kendari 93231, Indonesia.

E-mail: nani.restati.s@mail.ugm.ac.id

Abstract. The purpose of the research was to analyze the students’ attitude toward mathematics in terms of the different aspect of mathematics game preferences, grade levels, and genders. The subjects of the research were 107 students. They were taken from 2 elementary schools and were taken through proportional random sampling The instrument of the research used The Attitude Toward Mathematics Inventory (ATMI) Likert scale from Tapia. The findings of the research reveal that there are different students attitude toward mathematics based on their mathematics game preferences and their grade levels. As far as their genders are concerned, there are no differences between male and female students attitude toward mathematics. The results of the research support the previous research that was investigated by other experts.

1. Introduction
Having competency in mathematics plays important role in humans being life. For examples, in the health sector and machinery industry sector. However, Indonesian people competences on Mathematics internationally are still far from expectation. Based on the data from National of Educational Progress in USA, [3] point out that there are less than 40% American students who are doing well at mathematics. To students in Indonesia, Programme for International Students Assessment has ever investigated the average scores for middle school in 2015. The findings of the investigation show that the level of the students' math competences is 386. In other words, they are on the average level of math competence. The result was released in 2016. By looking at the International math averages, off 70 countries in the world, Indonesia is in the 63 level. Internationally, Indonesian students math competence is below the international standard score’s [4]. Based on these conditions are needed strategies to strengthen the students' comprehension in mathematics particularly in the elementary school students [5], because early skills for mathematics influence to later academic performance in secondary school. For example, arithmetical word problem-solving in elementary school as basic for algebra [6].

We are living in a digital technology age, video games are the most familiar game for children and adolescents to promote healthy behaviour and social interaction [7]. Technology has a broad impact on several areas of human lives, not only in schools setting [8] but also at home [9]. It is
important that parental monitoring for their school age’s children who are playing a game [10]. Parents are as role models for their children through their parenting in the digital era. They can learn together and teach them playing the educational game to create a positive attitude toward subject matter, for example, math game [11]. Therefore, parental involvement [12], in children’s math activities at home can impact their academic performance in math positively [13, 14]. In a digital age, parental involvement can support their children to like mathematics through playing a math game.

Using digital learning materials in teaching can improve attitudes towards learning mathematics for students elementary school [15]. Therefore, based on gender and students grade that students’ mathematics self-concept is the difference [16]. Male students have a more positive attitude toward math compared to female students [17]. The difference found is that there is no different gender-related to attitudes toward mathematics [18]. The previous researches also support the findings is that there is a different attitude toward Math based on gender and the students major. The question is then why it is important to look into and explore the students’ attitude toward Math in this research? The answer is because the students’ attitude toward Math contributes to their math achievement [22, 23]. The aims of the study are to analyze: (1) the different students' attitudes toward mathematical are based mathematical games preferences; (2) the difference in attitude toward mathematics based on students' grade; (3) the difference in attitude towards mathematics based on gender.

2. Method
The study is a comparative study, in which it compares the students’ attitude toward Math based on the following characteristics: first, game preferences; the students who like playing a game and who do not. Second, the students grade levels: fourth graders, fifth graders, and sixth graders. Third, genders: males (M) students and females (F) students. The subjects of the research are two elementary schools in Kendari city. Before taking the subjects, the students are identified to find out who likes playing a math game and who do not in each class. The result of identification provides some students characteristics. They can be seen in Table 1.

School	Class IV	Class V	Class VI	Total
	Like M F	Like M F	Like M F	
A	10 8 14	8 4 16	6 6 16	110
B	12 6 14	12 6 10	8 6 14	104
Total	22 12 28	20 10 26	14 12 30	214

Based on the total of students in Table 1, some 50% are taken as samples through proportional random sampling in each characteristic, so the total subjects of the research are 107 students. The samples can be seen in Table 2. First, game preference: there are 45 students like playing a game and 62 students who do not. Second, grade level: there are 37 fourth graders, and 35 students of fifth graders and sixth graders each of them. Third, genders: there are 48 male students and 59 female students.”
Table 2. Some students based on class, do/don’t like playing a game, and gender

Game preferences	Like	Dislike	Like + Dislike	Male	Female	Male + Female
Class IV	17	20	37	17	20	37
Class V	15	20	35	17	18	35
Class VI	13	22	35	14	21	35
Total	45	62	107	48	59	107

To permit their children to play a game in order to study mathematics is considered difficult. In this case, there are some Math video games which are played by students — for example, Minecraft, cooking fever, a clash of clan, and math blaster. On the other side, there are students dislike playing a game, including mathematical game. Their parents are not allowing them to play a game because it gives a negative impact on them.

Attitude towards mathematics as a dependent variable, and gender, grade and game preferences as independent variables. The instrument of the study uses The Attitude Toward Mathematics Inventory (ATMI) that is proposed by [20]. The attitude scale is 5 points Likert type scale and consist of 39 items for strongly agree (5 points), agree (4 points), neutral (3 points), disagree (2 points), and strongly disagree (1 point). Students complete descriptions about their parents who allow them to play or do not allow playing a game, and parents who guide them playing a math video game.

Based on validity test, one item is excluded, and all items are valid through coefficient correlation with r-count > r-table .316, df = 37 on signficance level α = .05. Cronbach's Alpha .926 > r-table .316, df = 37. Therefore, it can be considered that the test is reliable.

Before analyzing the differences in scores between the groups, the first thing to do is to test the assumption of data normality and homogeneity of variance as a requirement for analysis. If the assumption of normality and homogeneity of variants was fulfilled, then the hypothesis is tested for the difference between two averages or independent samples t-test at the significance level α = .05. This way to analyze attitudes based preferences in the game, and based on class level (grades IV, V, and VI). Therefore, analyzing the difference in attitude toward mathematical based on gender is using one-way ANOVA at a significant level α = .05. Analysis of data using the SPSS for Windows 22 application.

3. Result and discussion

The results of the normality test on mathematics using the Kolmogorov-Smirnov test to the students who do not like playing games with p-value = .064 > 0.05, and students who like playing games with the Shapiro-Wilk test p-value = .098 > .05. Based on class level using the Shapiro-Wilk test for class IV students p-value = .86 > .05, for class V students p-value = .684 > .05, and class VI students p-value = .055 > .05. Furthermore, Kolmogorov-Smirnov test (N > 50) for girls, p-value = .200 > .05, while men with the Shapiro-Wilk test (N < 50) p-value .381 > .05. Thus the data is normally distributed.

3.1. Students attitude toward math based on their game preferences

Table 3. Students attitude average scores toward mathematics based on like/dislike playing a math game

Game preferences	N	Mean	Std. Deviation	Std. error mean
Score				
Like	45	164.78	13.87	2.07
Dislike	62	155.24	16.06	2.04
Table 3 provides the average scores of students who like playing a game and who do not. The average score of students who like playing a game is 164.78 while the average score of students who do not like playing a game is 155.24.

Table 4. Independent samples t-test attitude toward mathematics based on like/dislike playing a math game

Levene's test for equality of variances	t-test for equality of means								
F	Sig.	t	df	Sig. (2-tailed)	Mean difference	Std. error difference	95% Confidence interval of the difference		
---	------	---	----	-----------------	----------------	-----------------------	--		
Equal variances assumed	3.57	.06	-3.03	105	.002	-9.54	2.97	-15.43	-3.64
Equal variances not assumed	-3.28	101.78	.001	9.54	2.90	-15.30	-3.77		

Table 4 gives the data about the students’ attitude toward math based on their preferences on mathematics games with its p-value = .062 > .05. The value indicates that it fulfills the assumption of variant homogeneity that they have the same variants. The analysis is, therefore, using the equal variant assumption. Furthermore, the students’ attitudes toward math who like playing the games and who do not have significant differences with its p-value = .002 < .05. The different scores between both of them are -9.54. The score indicates that the students attitude on math particularly the students who do not like playing games are lower by 9.54, ranging from -15.43 to -3.64 and at the level of thrust 95%.

The first hypothesis of the research is that there is difference students attitude toward mathematics based on math game preferences. The result has shown that the participants who like playing math game have a significant correlation with attitude toward mathematics. In this study, participants are students in elementary school who have different parenting style, particular in using gadget. They teach children to learn mathematics by using math game. Previous studies have shown that parental involvement in academic performance students in elementary school [24, 25]. Other side, parents and children, both of them are living in a digital era. Parents use electronic tools (internet) to communicate for others, to look for information about job, knowledge and many more. Therefore, parents need to minimize punishment to children but apply parents disciplinary while their children are having poor academic performance [26]. For example, mathematics, parents show a positive attitude for a game which is played by their children. Otherwise, if parents have a negative attitude toward video game, then they should more be involved in their children when they are playing the games [27].

3.2. Attitude toward mathematics based on the level of the students’ grade

Table 5. Students average scores in mathematics based on their grade levels

Class	N	Mean	Std. Deviation	Std. Error	95% Confidence interval for mean	
					Lower bound	Upper bound
IV	37	37154.00	16.37	2.69	148.54	159.46
V	35	35159.91	13.38	2.26	155.32	164.51
VI	35	35164.14	16.24	2.75	158.56	169.72
Total	107	107159.25	15.83	1.53	156.22	162.29
The level (grade) of the class determines the students' attitude on math, that is the higher their class level, the greater their math scores are. It can be seen in Table 5 that the average scores of fourth grade (VI) are 154.00, the fifth grade (V) score is 159.91, and the fourth grade (IV) score is 164.14. The scores indicate that they are higher than on another.

Table 6. Test of homogeneity of variances on the students attitude on mathematics based on the level of the class

Levene Statistic	df1	df2	Sig.
2.205	2	104	.115

Table 6 provides the data on the students' attitude on math based on the level of the class of p-value = .062 > .05. The value fulfills the assumption of variant homogeneity that the three groups have the same variants. The post-hoc test uses the Bonferroni test to determine the significant difference of the class group.

Table 7. One-way ANOVA for attitude toward mathematics based on grade levels

Sum of squares	df	Mean square	F	Sig.	
Between Groups	1873.16	2	936.58	3.94	.022
Within Groups	24699.03	104	237.49		
Total	26572.19	106			

The results of one way ANOVA test within the groups show that the F statistic was = 3.94 with its p-value = .022 < .05. It, therefore, can be concluded that there are significant differences on students attitude toward math within the groups of the class level.

Table 8. Post Hoc attitude tests toward mathematics based on the level of the students' grade

Dependent variable: Attitude	Mean difference (I-J)	Std. Error	Sig.	95% Confidence interval	
				Lower bound	Upper bound
Bonferroni					
IV	-5.91	3.63	.32	-14.76	2.93
VI	-10.14*	3.63	.02	-18.98	-1.30
V	5.91	3.63	.32	-2.93	14.76
VI	-4.23	3.68	.76	-13.19	4.73
VI	10.14*	3.63	.02	1.30	18.98
V	4.23	3.68	.76	-4.73	13.19

Based on the table, The 5th and 6th grade show significant differences in the students' attitude toward math. However, the 4th-grade students show differently. The Second hypothesis of the research is that there is a different attitude toward mathematics based on the students' grades. This study supports previous researches which is done by expert [28, 29]. This finding of the research suggests that children become more aware of their mathematical performance in relation to become older, either because of generally greater self-awareness or because of the greater experience of tests and teacher assessments. Additionally, the children’s self-assessment has increased influence on their motivation, and their performance as they get older [30]. This research has limitations; for example, there is not scale inventory especially for parents. It is necessary due to parental self-report scale describes how the relationship between parents and their children in learning math. In a recent study only using students’ perspective related their parents allow them playing a math game.
3.3. Attitude toward mathematics based on gender

Table 9. Mean on attitude toward mathematics based on gender

Gender	N	Mean	Std. deviation	Std. error mean
Score				
Male	48	160.19	14.48	2.09
Female	59	158.49	16.94	2.20

Table 9 shows that the average scores of the male students' attitude on math is higher than the female students. The average score of male scores is 160.19, and the average scores of female students are 158.49. Furthermore, to find out whether there are differences between male students and female students' attitude on math, the t-test can be seen in Table 10.

Table 10. Independent samples t-test attitude toward mathematics based on gender

Levene's test for equality of variances	t-test for equality of means	95% Confidence interval of the difference							
	F	Sig.	t	df	Sig. (2-tailed)	Mean difference	Std. error difference	Lower	Upper
Equal variances assumed	3.12	.08	-.55	107	.58	-1.70	3.09	-7.82	4.43
Equal variances not assumed	.58	1.70	3.04	4.32	-7.72	4.32			

Table 10 gives the data about the students' attitude on math based on sex (gender) with its p-value = .58 > .05. The value fulfills the assumption of variant homogeneity that they both have the same variants. The data were analyzed by using equal variant assumption. The results of the analysis show that there are no significant differences in students' attitudes toward math between male students and female students because its p-value is p-value = .08 > .05. However, the male students' scores are higher than the female students. The different score is very small that is -1.70. The score indicates that the female students score lower by 1.70 ranging from -7.82 to 4.43 with the level of trust is 95%.

The third hypothesis is that there is no difference between male and female students' attitude toward mathematics. Previously, many kinds of research show significant correlation on it, but many studies do not. This study supports previous research that there is no difference between females and males in attitude toward mathematics [31].

4. Conclusion
The results of the research reveal that there are no distinctions between male students and female students' attitude toward math. Furthermore, The students who frequently play video games on education (math) have a positive and significant contribution to their attitudes toward mathematics than the students who do not. There is a different attitude toward math based on grade levels. The higher class has a more positive attitude toward math than the lower class. Therefore, further research will be focusing on math game education based on parenting involvement. Particularly in children primary school. The idea is that to build their positive attitude toward mathematics. Parenting involvement is not only as a model to build a positive attitude toward mathematics, but also play an important role for successful academic in many areas, including mathematics performance [32].
5. Acknowledgements
A word thanks addresses to: headmaster of elementary school (SDN 2 Baruga and SDN 12 Baruga) Kendari city who have allowed me to conduct research in the two schools, and I would like also to address my thanks to grade four, five, and six teachers who have provided their time to do research during the lesson in their classes, and thanks to students who become the subjects of the research.

References
[1] Reyna V F and Brainerd C J 2007 The importance of mathematics in health and human judgment: Numeracy, risk communication, and medical decision making Learning and Individual Differences 17 147
[2] Saward V 2017 Mathematics delivering the advantage: the role of mathematicians in manufacturing and beyond Proceedings Mathematical, Physical, and Engineering Sciences 473 2201
[3] Nelson P M, Parker D C, and Zaslofsky A F 2016 The Relative Value of Growth In Math Fact Skill Across Late Elementary and Middle School Assessment for Effective Later Vention 41 184
[4] OECD 2016 Program for International Student Achievement (PISA) Result from 2015 www.oecd.org/pisa/PISA-21015-Indonesia.
[5] Roy S and Roth D 2015 Solving general arithmetic word problems Proceedings of Conference on Empirical Methods in Natural Language Processing pp 1743-1752.
[6] Ojose B 2008 Applying Piaget’s theory of cognitive development to mathematics instruction The Mathematics Education 18 1 26
[7] Das P, Zhu M, McLaughlin L, Bilgrami Z, and Milanaik R L 2017 Augmented reality video games: New possibilities and implications for children and adolescents Multimedia Technologies and Interaction 1 (8)
[8] Montrieaux H, Vanderlinde R, Schellens T, and Marez L D 2015 Teaching and learning with mobile technology: A quantitative exploratory study about the introduction of tablet devices in secondary education. PLoS ONE 10 (12) e0144008
[9] Plowman L Researching young children’s everyday uses of technology in the family home Interacting with Computers 27 36
[10] Hastings E C, Karas T L, Winsler A., Way E, Madigan A, and Tyler S 2009 Young Children’s Video/Computer Game Use: Relations with School Performance and Behavior Issues in Mental Health Nursing 30 638
[11] Giannakos M N 2013 Enjoy and learn with educational games: examining factors affecting learning performance Computers and Education 68 429
[12] Hart S A, Ganley C M, and Purpura D J 2016 Understanding the Home Math Environment and Its Role in Predicting Parent Report of Children’s Math Skills PLoS ONE 111 2
[13] Sonnenschein S, Galindo C, Shari R, Metzger, Joy A, Thompson, Hui Chih Huang, and Lewis H 2012 Parents' Beliefs about Children's Math Development and Children's Participation in Math Activities Child Development Research Article ID 851657 13 https://doi.org/10.1155/2012/851657
[14] Yan W and Lin Q 2005 Parents involvement and mathematics achievement: Contrast across racial and ethnic group The Journal of Educational Research 99 116
[15] Chen M J, Lee C Y, and Hsu W C 2015 Influence of mathematical representation and mathematical self-efficacy on the learning effectiveness of fifth grades in pattern reasoning International Journal of Learning, Teaching and Educational Research 131 1
[16] Erdogan F and Sengul S 2014 A study on the elementary school students’ mathematic self concept Procedia Social and Behavioral Sciences 152 596
[17] Hall J 2012 Gender issues in mathematics: An Ontario perspektif Journal of Teaching and Learning 8 59
[18] Kibrislioglu N 2015 An investigation about 6th grade students’ attitude towards mathematics. *Procedia Social and Behavioral Sciences* **186** 64

[19] Mata M, de L, Montero V, and Peixoto F 2012 Attitude towards mathematics: Effects of individual, motivational and social support factors. *Article ID 876028* 10 doi: 10.1155/2012/876028

[20] Tapia M and Marsh G EII 2004 An instrument to measure mathematics attitudes. *Academic Exchange Quarterly* **82** 16

[21] Karjanto M 2016 Attitude toward mathematics among the students at Nazarbayev University foundation year programme. *International Journal of Mathematics Education in Science and Technology* **48** 849

[22] Butty J A and L M 2001 Teacher instruction student attitude and mathematics performance among 10th and 12th grade, balck and Hispanic student. *The Journal of Negro Education* **70** 19

[23] Chen L, Bae S R, Batista C, Qin S, Chen T, Evans T M., and Menon V 2018 Positive attitude toward math support early academic success: Behavioral evidence and neurocognitive mechanisms. *Psychological Science* **29** 390

[24] Gubbins V and Otero G 2015 Effect of the parental involvement style perceived by elementary school students at home on language and mathematics performance in children schools. *Education Studies* **42** 121

[25] Jay T, Rose J, and Simmons B 2018 Why is parental involvement in children’s mathematical learning hard? Parental perspective on their role supporting children’s learning. *Sage Open* **82** 1

[26] Hotz V J and Pantano J 2015 Strategic parenting, birth order, and school performance. *Journal of Population Economics* **284** 911

[27] Gong H and Piller Y 2018 Differences in Parental Involvement and Perception of Video Games: A Pilot Study on American-Born and Immigrant Parents. *Eurasia Journal Math Science and Technology Education* **143** 785

[28] Yasar M 2016 High School Students' Attitudes towards Mathematics. *Eurasia Journal of Mathematics, Science and Technology Education* **12** 931

[29] Yang X 2015 Rural junior secondary school students’ perceptions of classroom learning environments and their attitude and achievement in mathematics in West China. *Learning Environment Research* **18** 249

[30] Dowker A, Bennet K, and Smith L 2012 Attitude to mathematics in primary school children. *Child Development Research* **2012** 124939

[31] Hargreaves M, Humer M, and Swinnerton B 2008 A comparison of performance and attitudes in mathematics amongst the gifted. Are boy better at mathematics or do they think they? *Assessment in Education: Principles, Policy and Practice* **151** 19

[32] Rodríguez S I, Piñeiro I, Gómez-Taibo M L, Regueiro B, Estévez I, and Valle A 2017 An explanatory model of maths achievement: Perceived parental involvement and academic motivation. *Psicothema* **292** 184