NOTE

Genomic Characterization of *Neoparamoeba pemaquidensis* (Amoebozoa) and Its Kinetoplastid Endosymbiont

Goro Tanifuji,1† Eunsoo Kim,1† Naoko T. Onodera,1† Rebecca Gibeault,1 Marlena Dlutek,1 Richard J. Cawthorn,2 Ivan Fiala,3 Julius Lukeš,3 Spencer J. Greenwood,4 and John M. Archibald1†

Canadian Institute for Advanced Research, Integrated Microbial Biodiversity Program, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2; Department of Pathology and Microbiology and AVC Lobster Science Centre, University of Prince Edward Island, Charlottetown, PE, Canada C1A 4P3; Biology Centre, Institute of Parasitology, Czech Academy of Sciences and Faculty of Sciences, University of South Bohemia, 3705 České Budějovice (Budweis), Czech Republic; and Department of Biomedical Sciences and AVC Lobster Science Centre, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada C1A 4P3

Received 10 March 2011/Accepted 31 May 2011

We have performed a genomic characterization of a kinetoplastid protist living within the amoebozoan *Neoparamoeba pemaquidensis*. The genome of this “Ichthyobodo-related organism” was found to be unexpectedly large, with at least 11 chromosomes between 1.0 and 3.5 Mbp and a total genome size of at least 25 Mbp.

Kinetoplastids are an important group of eukaryotic microbes named by virtue of their shared possession of a conspicuous mass of DNA—the “kinetoplast”—inside the mitochondrion (21, 31). They are remarkable for their bizarre suite of biochemical features (e.g., spliced leader [SL] trans splicing and mitochondrial RNA editing) (1, 5, 21) and are best known as pathogens: the so-called “tritryps” are responsible for mass mortality and morbidity in humans and other animals (1, 14, 18, 22). A comprehensive evolutionary framework for understanding the biology of these important pathogens is currently lacking.

The kinetoplastid endosymbiont of *Neoparamoeba pemaquidensis*, an amoebozoan that causes disease in fish (e.g., Atlantic salmon) and invertebrates such as lobster (20, 27), represents an apparent example of “recent” adaptation to intracellularly. We refer to this enigmatic endosymbiont as the “Ichthyobodo-related organism” (IRO) based on 18S ribosomal DNA (rDNA) analyses showing its close affinity to *Ichthyobodo* (6, 10–12). In this study we characterized genes from *N. pemaquidensis* and its kinetoplastid endosymbiont and carried out the first investigation of the chromosomes of both organisms using pulsed-field gel electrophoresis (PFGE) and Southern blotting.

N. pemaquidensis strains CCAP 1560/4 and 1560/5 and *Neoparamoeba branchiphila* AFSM3/II were cultured as described previously (13). Using standard transmission electron microscopy (TEM) and 4′,6-diamidino-2-phenylindole (DAPI) staining protocols, *N. pemaquidensis* strain 1560/4 was mostly found to possess 1 (and only occasionally 2) oval or round IRO per cell, each 4 to 6 µm in diameter. The IRO was typically very closely associated with the host cell nucleus, with their surfaces often appearing to be in direct contact (Fig. 1A and C). This is consistent with previous reports based on studies of multiple strains of *Neoparamoeba* (e.g., see references 10, 12, 13, and 17). Within the IRO, a single mitochondrion was found to occupy more than half of the endosymbiont cell volume, with its distinctive kinetoplast DNA (kDNA) appearing as a complex fibrillar structure in TEM micrographs (Fig. 1A and B). The close proximity of the IRO to the amoeba host nucleus was also apparent under DAPI staining (Fig. 1C). The IRO nucleus stained weakly with DAPI relative to the amoeba nucleus, suggesting that the host and endosymbiont nuclei differ greatly in terms of their DNA content (Fig. 1C).

In order to gain insight into the evolutionary origins of *Neoparamoeba* and the IRO, we amplified six protein genes from both the host and its endosymbiont using PCR and/or reverse transcriptase PCR (RT-PCR) (alpha-tubulin [αTub], beta-tubulin [βTub], elongation factor 2 [EF2], heat shock protein 90 [hsp90], an RNA polymerase I subunit [Rpa1], and an RNA polymerase II subunit [Rpb1]; primer sequences are available upon request). PCR products were cloned into suitable vectors, and several clones per amplicon were sequenced on a CEQ8000 capillary DNA sequencer (Beckman Coulter, Inc., Fullerton, CA) and analyzed using ABI Seqsight software.

*Corresponding author. Mailing address: Department of Biochemistry & Molecular Biology, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, Halifax, Nova Scotia B3H 4R2, Canada. Phone: (902) 494-2536. Fax: (902) 494-1355. E-mail: john.archibald@dal.ca.
† These authors contributed equally to this work.
‡ Published ahead of print on 10 June 2011.
Protein alignments were analyzed individually (data not shown) and as a single concatenate. Trees inferred from the concatenated data set showed the IRO branching robustly with the tritryps *Leishmania* and *Trypanosoma*, to the exclusion of two other euglenozoans, *Diplonema* and *Euglena* (Fig. 2). We also amplified and sequenced the SL RNA gene from the IRO genome and confirmed the presence of an SL mini-exon addition to IRO alpha- and beta-tubulin mRNAs by RT-PCR and 5′/H11032 rapid amplification of cDNA ends (RACE)-PCR (data not shown). Additional RACE-PCR experiments showed that the host-derived alpha-tubulin mRNA does not undergo mini-exon addition. These results suggest that SL trans splicing takes place in the kinetoplastid endosymbiont but not in its host. No spliceosomal introns were found in any of the IRO protein genes sequenced herein, which are among the first to be determined, so it remains to be seen whether both cis and trans splicing occurs in these organisms, as has been shown for euglenoids and other kinetoplastids (3).

Consideration of the *Neoparamoeba* host- and IRO-derived sequences revealed interesting differences in base composition. The G+C content of the IRO genes was 51.0 to 65.5% for the protein coding genes sequenced in our study, and the previously sequenced ribosomal intergenic spacer regions (ITS1 and -2) showed 68.1% G+C when considered together. In stark contrast, sequences derived from the *Neoparamoeba* host were 49.8 to 55.2% G+C in protein-coding genes and were much lower overall in G+C content, especially in noncoding regions, such as the internal transcribed spacer (ITS) (21.5%). Although low G+C content is often seen in endosymbiont and
organellar genomes, the *N. pemaquidensis* host and IRO genomes exhibit the opposite pattern.

In addition to changes in base composition, adaptation to a life of intracellularity often leads to a reduction in genome size. This phenomenon is commonly seen in plastids and mitochondria (15, 32), bacterial endosymbionts, such as *Buchnera* (25, 26, 30), and eukaryotic intracellular pathogens, such as microsporidia (7, 8, 35). A strong signal for coevolution of *Neoparamoeba*-IRO pairs is clear from analyses of rDNA sequences (6, 11), and given that *Neoparamoeba* is invariably found with at least one IRO residing within it, the relationship between the two is very likely obligate (6). How big is the IRO nuclear genome, and where does this enigmatic organism reside along the continuum between transient endosymbiont and organelle? To address this question, we used pulsed-field gel electrophoresis (PFGE) to investigate the structure of the host and endosymbiont genomes of *N. pemaquidensis*. PFGE plugs were prepared using the general procedure described by Tanifuji et al. (34), with *N. pemaquidensis* prey bacteria being removed by filtration with a 3-μm pore polycarbonate membrane (Sterlitech, Kent, WA) prior to plug formation. A strong “smear” of similarly sized chromosomes in the range of 0.45 to 1 Mbp was apparent under a variety of different PFGE conditions and ethidium bromide stainings and with different PFGE plug concentrations (Fig. 3A and B). In order to differentially target host and IRO chromosomes, nonradioactive Southern hybridization analyses were performed using digoxigenin (DIG)-labeled probes against the predicted telomeric repeat of the *N. pemaquidensis* host [(TTTAGGG)$_n$], the host rDNA ITS, and the SL RNA gene of the IRO. Southern hybridizations using host ITS and telomere probes detected strong signals between 0.45 and 1.2 Mbp, a pattern that was also seen with a host 28S rDNA probe (data not shown). These results suggest that the host genome contains many chromosomes in the 0.45- to 1.2-Mbp range.

Chromosomes of the *N. pemaquidensis* IRO were detected in Southern hybridization analyses using an SL RNA gene probe. Euglenoids and dinoflagellates are known to possess SL RNA genes in high copy number (2, 18, 28, 36), and our results suggest that the same is true for the *N. pemaquidensis* IRO. To our surprise, hybridizations using the SL RNA gene probe against membranes derived from multiple independent PFGE runs and using various plug cell concentrations revealed a total of 11 distinct hybridizing bands between 1.0 and 3.5 Mbp; particularly strong signals were detected at 1.0, 2.4, and 3.5 Mbp (Fig. 3). Taking into account the fact that the chromosomal band migration distance was found to vary depending on PFGE plug cell density (see Fig. 3B; this is often the case in PFGE), these 11 bands total 25 Mbp. We consider this to be a tentative absolute lower bound for the size of the *N. pemaquidensis* IRO nuclear genome. This estimate must be considered in the context of several important caveats, including (i) the likelihood of comigrating chromosomes in our PFGE analyses, (ii) interchromosomal variation in the SL RNA gene copy number (and thus variation in hybridization intensity), and (iii) the possibility that not all IRO chromosomes contain an SL RNA gene.

Across the breadth of eukaryotic diversity, nuclear genome size varies tremendously (16), but even free-living organisms, such as the red-alga *Cyanidioschyzon merolae* and the green
alga *Ostreococcus tauri*, can have very “small” genomes (16.5 Mbp and 12.6 Mbp, respectively) (9, 22). Trypanosomatid haploid genomes are in the range of 35 to 55 Mbp (14), and based on the preliminary data presented herein, it is possible that the IRO genome is similar in size. Our base composition analyses on the preliminary data presented herein, it is possible that the IRO genome is similar in size. Our base composition analyses on the preliminary data presented herein, it is possible that the IRO nuclear genome is very likely not “large,” there is significant reductive evolution in response to what is clearly a life of obligate intracellularity. In concert with investigation of the Neoparamoeba nuclear genome, determining the sequence of the IRO genome will provide a framework for better understanding Neoparamoeba pathogenesis and the nature of this interesting host-endosymbiont relationship.

Nucleotide sequence accession numbers. Genes of Neoparamoeba and the IRO, encoding the following proteins, were sequenced: alpha-tubulin, beta-tubulin, elongation factor 2, heat shock protein 90, an RNA polymerase I subunit, and an RNA polymerase II subunit; GenBank accession numbers are JF262536 to -42, JF262544 to -53, JF419568 to -72, FJ706693 to -98, and JF706718. Sequence of the SL RNA gene from the IRO genome has been deposited in GenBank under accession numbers JF262543 and JF441171.

This work was supported by an operating grant (R0PS016) from the Canadian Institutes of Health Research (CIHR) regional Partnership Program, together with the Nova Scotia Health Research Foundation (NSHRF). G.T. and E.K. are supported by the Tula Foundation. J.M.A. holds a CIHR New Investigator Award, and J.M.A. and J.L. are Fellows of the Canadian Institute for Advanced Research. Program in Integrated Microbial Biodiversity. J.L. is supported by the Czech Ministry of Education and the Praemium Academiae award. We thank Mary Ann Trevors for assistance with TEM preparation.

REFERENCES

1. Barrett, M. P., et al. 2003. The trypanosomiases. Lancet 362:1469–1480.
2. Berriman, M., et al. 2005. The genome of the African trypanosome *Trypanosoma brucei*. Science 309:416–422.
3. Breckenridge, D. G., Y. Watanabe, S. J. Greenwood, M. W. Gray, and M. N. Schnare. 1999. U1 small nuclear RNA and spliceosomal introns in *Euglena gracilis*. Proc. Natl. Acad. Sci. U. S. A. 96:852–856.
4. Callahan, H. A., R. W. Litaker, and E. J. Noga. 2002. Molecular taxonomy of the suborder Bodonina (order Kinetoplastida), including the important fish parasite, *Ichthyobodo necator*. J. Eukaryot. Microbiol. 49:119–128.
5. Campbell, D. A., N. R. Sturm, and M. C. Yu. 2000. Transcription of the kinetoplastid spliced leader RNA gene. Parasitol. Today. 16:78–82.
6. Caraguel, G. C. B., et al. 2007. Microheterogeneity and coevolution: an examination of rDNA sequence characteristics in Neoparamoeba pemaquidensis and its prokinetoplastid endosymbiont. J. Eukaryot. Microbiol. 54:418–426.
7. Cormman, R. S., et al. 2009. Genomic analyses of the microsporidian *Nosema ceranae*, an emerging pathogen of honey bees. Plos. Pathog. 5:e1000466.
8. Corradi, N., J. F. Pombert, L. Farinelli, E. S. Didier, and P. J. Keeling. 2010. The complete sequence of the smallest known nuclear genome from the microsporidian *Encephalitozoon intestinalis*. Nat. Commun. 1:77: doi: 10.1038/ncomms1082.
9. Derelle, E., et al. 2006. Genome analysis of the smallest free-living eukaryote *Ostreococcus tauri* unveils many unique features. Proc. Natl. Acad. Sci. U. S. A. 103:11647–11652.
10. Dykova, I., I. Fiola, J. Lom, and J. Lukeš. 2003. *Perkinsiella amoebae*-like endosymbionts of Neoparamoeba spp., relatives of the kinetoplastid *Ichthyobodo*. Eur. J. Protistol. 39:47–52.
11. Dykova, I., I. Fiola, and H. Pecková. 2008. Neoparamoeba spp. and their eukaryotic endosymbionts similar to *Perkinsiella amoebae* (Hollandane, 1980): coevolution demonstrated by SSU rRNA gene phylogenies. Eur. J. Protistol. 44:269–277.
12. Dykova, I., A. Figueras, and Z. Peric. 2000. *Neoparamoeba* Page, 1987: light and electron microscopic observations on six strains of different origin. Dis. Aquat. Organ. 43:217–223.
13. Dykova, I., et al. 2005. *Neoparamoeba branchiphila* n. sp., and related species of the genus *Neoparamoeba* Page, 1987: morphological and molecular characterization of selected strains. J. Fish Dis. 28:49–69.
14. El-Sayed, N. M., et al. 2005. Comparative genomics of trypanosomatid parasitic protozoa. Science 309:104–109.
15. Gray, M. W., B. F. Lang, and G. Burger. 2004. Mitochondria of protists. Annu. Rev. Genet. 38:477–524.
16. Gregory, T. R. 2005. The C-value enigma in plants and animals: a review of parallels and an appeal for partnership. Annu. Bot. (Lond.) 95:133–146.
17. Hollandane, A. 1988. Identification du parasite (Nebenkern) de Janickigna pigmentifera a un symbionte (*Perkinsia amoebae* nov gen-nov sp.) apparente aux flagelles kinetoplastides. Protoistolgia 16:613–625.
18. Iwans, A. C., et al. 2005. The genome of the kinetoplastid parasite, *Leishmania major*. Science 309:436–442.
19. Jackson, A. P., M. A. Ouai, and M. Berriman. 2008. Insights into the genome sequence of a free-living kinetoplastid: *Bodo saltans* (Kinetoplastida: Euglenozoa). BMC Genomics 9:594.
20. Lee, L. E. J., et al. 2006. High yield and rapid growth of *Neoparamoeba pemaquidensis* in co-culture with a rainbow trout cell-derived cell line RAG2-W1. J. Fish Dis. 29:467–480.
21. Lukeš, J., et al. 2002. Kinetoplast DNA network: evolution of an improbable structure. Eukaryot. Cell 1:895–902.
22. Matsuzaki, M., O. Misumi, T. Shin, et al. 2004. Genome sequence of the ultrasmall unicellular red alga *Cyanidiocystis merolae* 10D. Nature 428:653–657.
23. McCutcheon, J. P., B. R. McDonald, and N. A. Moran. 2009. Origin of an alternative genetic code in the extremely small and GC-rich genome of a bacterial symbiont. Plos. Genet. 5:e1000565.
24. Moore, C. E., and J. M. Archibald. 2009. Nucleomorph genomes. Annu. Rev. Genet. 43:251–264.
25. Moran, N. A., J. P. McCutcheon, and A. Nakabachi. 2008. Genomics and evolution of heritable bacterial symbionts. Annu. Rev. Genet. 42:165–190.
26. Moran, N. A., H. J. McLaughlin, and R. Sorek. 2009. The dynamics and time scale of ongoing genomic erosion in symbiotic bacteria. Science 323:379–382.
27. Mullen, T. E., et al. 2004. Paramoebiased associates with mass mortality of *American lobster Homarus americanus* in Long Island Sound, USA. J. Aquat. Anim. Health 16:29–38.
28. Murthy, V. K., K. M. Dibbern, and D. A. Campbell. 1992. PCR amplification of mini-exon genes differentiates *Trypanosoma cruzi* from *Trypanosoma rangeli*. Mol. Cell Probe 4:237–243.
29. Nakabachi, A., et al. 2006. The 160-kilobase genome of the bacterial endosymbiont *Carsonella*. Science 314:267.
30. Shigenobu, S., H. Watanabe, M. Hattori, Y. Sakaki, and H. Ishikawa. 2000. Genome sequence of the endocellular bacterial symbiont of aphids *Buchnera* sp. APS, Nature 407:81–86.
31. Simpson, A. G. B., J. R. Stevens, and J. Lukeš. 2006. The evolution and diversity of kinetoplastid flagellates. Trends Parasitol. 22:168–174.
32. Smith, D. R. 2009. Unparalleled GC content in the plastid DNA of *Selaginella*. Plant Mol. Biol. 71:627–639.
33. Stamatakis, A. 2006. RAXML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690.
34. Tanifuji, G., M. Erata, K. Ishida, N. Onodera, and Y. Hara. 2006. Diversity of secondary endosymbiont-derived actin-coding genes in cryptomonads and their evolutionary implications. J. Plant Res. 119:205–215.
35. Texier, C., C. Vidalu, B. Vignes, H. El Alouafi, and F. Delbac. 2010. Micropsporia: a model for minimal parasitic-host interactions. Curr. Opin. Microbiol. 13:443–449.
36. Zhang, H., et al. 2007. Spliced leader RNA trans-splicing in dinoflagellates. Proc. Natl. Acad. Sci. U. S. A. 104:4618–4623.