Research Paper
The Effect of Selected Corrective Exercises With Physioball on the Posture of Female Computer Users With Upper Crossed Syndrome

Fariba Javazi, Parisa Sedaghati, Hasan Daneshmandi

ABSTRACT

Objective: Upper Crossed Syndrome (UCS) is a type of musculoskeletal system involvement that results in shortening of anterior muscles and weakening of posterior muscles. The aim of this study was to examine the effect of selected corrective exercises with physioball on the postural status of female computer users with UCS.

Methods: This quasi-experimental study was conducted on 24 female students with UCS who were selected using a purposive sampling method. The subjects were randomly divided into two groups of exercise (n=12) and control (n=12). The exercise group performed exercises for 6 weeks. Photogrammetry method was used to measure the angle of the forward head and round shoulder. A flexible ruler was used to measure the angle of kyphosis, and tape measure was used to measure the chest expansion. These measurements were performed before and after intervention. The collected data were analyzed using paired t-test and ANOVA at the significance level of P<0.05.

Results: There was a significant difference in mean values of kyphosis (P=0.001), round shoulder (P=0.001), forward head (P=0.002) and chest expansion (P=0.003) before and after exercise.

Conclusion: Improvement in forward head, round shoulder and thoracic kyphosis angles and chest expansion showed the effectiveness of applied exercise program. Therefore, it is recommended to use this exercise program in computer users with UCS.

Key words: Corrective exercises, Upper crossed syndrome, Physioball, Computer users

Extended Abstract

1. Introduction

Upper Crossed Syndrome (UCS) is a type of musculoskeletal system involvement that results in shortening of the anterior muscles and weakening of the posterior muscles. Certain postural abnormalities are seen in those with UCS which includes the forward head, rounded shoulders, and thoracic kyphosis. This disorder has been developed due to the change of lifestyle from active to inactive. In today’s population, UCS is very common among all age groups. According to evidences, the prevalence of UCS is also high among the student community.

One of the tools that have forced people to work for hours without mobility is computer. Students are among those who spend many hours per day working in front of a computer, where the upper body posture especially the neck,
are misaligned which predisposes a person to upper limb abnormalities. In the spine region, hyperkyphosis means an increase in the kyphosis angle, which also affects the cervical and lordotic curvatures and causes the trunk to move forward more.

The abnormal tendency of the trunk forward in kyphosis reduces the supportive role and flexibility of the spine, and causes chest, lung, and heart problems. Therefore, it is necessary to pay attention to the inappropriate postural conditions of students as the national assets of the country. Exercise in different conditions and with different tools can have a great impact on correcting posture. One of these exercises is physioball exercise. Using physioball can increase the activity of the muscles that produce movement, and this increase is in the muscles of different parts, including the shoulder girdle [21], lower limbs and trunk muscles. More muscle involvement during exercise is one of the most important goals of each type of exercise. The aim of the present study was to investigate the effect of selected corrective exercises with physioball on the posture of computer users with UCS.

2. Participants and Methods

This is a quasi-experimental study with pretest/posttest design. Twenty-four female computer users with head forward, round shoulder, and thoracic kyphosis were selected using purposive sampling method and randomly divided into two control (n=12) and exercise groups (n=12). Photogrammetry method was used to measure the angle of forward head and round shoulder at the same time, and a flexible ruler was used to measure the degree of thoracic kyphosis. To measure chest expansion, the chest circumference was first measured at the end of the exhalation with a tape. The subject was then asked to take a deep breath. The chest circumference was measured again and the difference between the two measurement values was recorded. The change in forward head, round shoulder, thoracic kyphosis, and chest expansion were measured before and after exercise. ANOVA and paired t-test were used to analyze the data.

3. Results

The results of the present study showed a significant difference in thoracic kyphosis (P=0.001), round shoulder (P=0.001), forward head (P=0.002) and chest expansion (P=0.002) between pretest and posttest phases. Shapiro-Wilk test results indicate normal distribution of data for thoracic kyphosis and round shoulder (P>0.05), and abnormal distribution of data in forward head and chest expansion in study groups (P<0.05). Therefore, parametric methods of ANOVA and paired t-test were used to analyze the thoracic kyphosis and round shoulder variables and nonparametric Mann-Whitney U and Wilcoxon tests.

4. Discussion

Improvement in angles of forward head, round shoulders and kyphosis and chest expansion size in female computer users with UCS indicated optimal effectiveness of selected corrective exercises with physioball in improving posture.

Table 1. ANOVA results from comparing the mean post-test degrees of round shoulder and thoracic kyphosis between groups

Variable	Phase	Group	Mean	F	df	Sig.	Eta Squared
Thoracic kyphosis	Pre-test	Control	49.45			63.36	0.001*
	Post-test	Exercise	42.94			1	0.75
Round shoulder	Pre-test	Control	54.34	2.85	1	0.10	0.12
	Post-test	Exercise	52.40			1	

Table 2. Mann-Whitney U test results from comparing the mean amounts of chest expansion and forward head before and after exercise

Variable	Time	U	Z	Sig.
Chest expansion	Pre-test	61.50	-0.83	0.55
	Post-test	12.00	-3.55	0.001*
Forward head	Pre-test	59.00	-0.80	0.47
	Post-test	28.50	-2.63	0.01*

* significant (P<0.05)
5. Conclusion

The present study focused on the muscles involved in this deformity, which was designed and implemented based on Janda’s chain reaction theory and the Brugger’s gear model. The exercises simultaneously affected all three postural deformities (hyperkyphosis, forward head, round shoulder), and the subjects participated actively and dynamically in the exercises. The use of this training program is recommended for computer users.

Ethical Considerations

Compliance with ethical guidelines

The present study obtained its ethical approval from the Guilan University of Medical Sciences (Code: IR.GUMS.REC.1397.480) and is a clinical trial registered by the Iranian Registry of Clinical Trials.

Funding

This study was extracted from the master thesis of first author approved by the Department of Sport Injuries and corrective Exercises, University of Guilan, Rasht, Iran.

Authors’ contributions

Conceptualization, methodology, supervision: All authors; Investigation, writing original draft, resources: Parisa Sedaghati; Editing & review: Fariba Javazi and Hasan Daneshmandi.

Conflicts of interest

The authors declared no conflict of interest.

Acknowledgements

The authors would like to thank the Deputy for Research of the University of Guilan and all the subjects who sincerely participated in the present study.
تأثیر تمرینات منظقه‌ای با فیزیوبال بر وضعیت پاسچر کاربران رایانه دارای سندرم مناطق فوتوانی

فربیا جوایزی، پریسا صداقتی، حسن دانشمندی

1. گروه آسیب‌شناسی ورزشی و حرکات افراد، دانشگاه ریجینا، ویکنی، کانادا
2. گروه آسیب‌شناسی ورزشی، دانشگاه گیلان، رشت، ایران

خودکاری

در این تحقیق بررسی تأثیر تمرینات منظقه‌ای با فیزیوبال بر وضعیت پاسچر کاربران رایانه دارای سندرم مناطق فوتوانی می‌شود. هدف از تحقیق حاضر بررسی تأثیر تمرینات منتخب اصلاحی با فیزیوبال بر وضعیت پاسچر کاربران رایانه دارای سندرم مناطق فوتوانی بود.

روش‌ها

نفر) تقسیم شدند. گروه آزمایش 12 کیفوز به صورت هدفمند انتخاب شدند و به صورت تصادفی به دو گروه کنترل و آزمایش (هر گروه 8 نفر) تقسیم شدند. تمرینات را به مدت شش هفته انجام دادند. از روش عکس برداری از نمای نیمرخ برای اندازه‌گیری زاویه سر به جلو و شانه گرد و از خط کش منعطف برای اندازه‌گیری میزان کایفوز آزمودنی ها استفاده شد. میزان تغییرات زاویه سر به جلو، شانه گرد، کیفوز و اتساع قفسه سینه قبل و بعد از شش هفته تمرین اندازه‌گیری شد. برای تجزیه و تحلیل داده‌ها از آزمون کوواریانس و تی‌هاپست در سطح P > 0.05 معناداری و اتساع قفسه سینه P = 0.002 (؟)، سربه جلو P = 0.001 (؟)، شانه گرد P = 0.001 (؟) نتایج تحقیق حاضر تفاوت معناداری در کایفوز یافته‌ها در پیش آزمون و پس آزمون نشان داد.

نتیجه‌گیری

انجام تمرینات منظقه‌ای با فیزیوبال را نشان می‌دهد. بنابراین استفاده از این برنامه تمرینی در افراد کاربر رایانه توصیه می‌شود.

کلیدواژه‌ها:
تمرینات اصلاحی، سندرم متقاطع فوقانی، سوئیس بال، کاربر رایانه

مقدمه

وضعیت بدنی صحیح به نگهداری طبیعی و موزون بخش‌های مختلف بدن اطلاق می‌شود. وضعیت بدنی مطلوب، هماهنگی نسبی بخش‌های مختلف بدن با یکدیگر است. در چنین وضعیتی، فعالیت‌های عضلانی در کمترین حد خود و بدن افراد در حداقل خستگی و درد و حداکثر کارایی است. معنایاً نسبت به موقعیتی که برای نیازهای بدنی از آن استفاده می‌شود. افراد کاربر رایانه در طول زمان به حرکت روده و آرامش می‌خورند، این وضعیت در طول ساعات، به‌ویژه در میان افراد کاربر رایانه، افزایش می‌یابد. این وضعیت باعث بروز اختلالات فیزیکی در سینه، سر و شانه می‌شود که باعث ناهارکوبی و ضعف عضلات می‌شود.

سندرم فوقانی متروک کلی الگوی بدن در یک چهارم فوقانی است که اختلال عملکردی عضلات کمربندی و ناحیه گردنی ـ سینه ای است. در این وضعیت عضلات کوتاه شده شامل ذوزنقه بالایی، سینه ای بزرگ و بالاکشنکه کتف و عضلات کوتاه شده شامل ذوزنقه بالایی، سینه ای بزرگ و بالاکشنکه کتف بوده که موجب کاهش ارتفاع گردن و سایر عضلات می‌گردد. در این وضعیت، ناهارکوبی و ضعف عضلات می‌یابد.

یکی از عواملی که می‌تواند باعث این وضعیت شود، استفاده از تکنولوژی و ابزارهایی که افراد را مجبور کرده که ساعت‌ها بدون تحرک به کار راه انداخته شوند. این ابزار بسیاری از مشکلات بشری را وارد می‌کند. به‌ویژه افرادی که به طولانی‌سازی منفی و سایر مشکلات مربوط به سلامتی و اجتماعی می‌ترکند.
استحسان عمقی، ثبات و کنترل تعادل است. اسکلتی عضلانی را دارند. مطالعه در دانشگاه لاهور گزارش کرد که سندرم متقاطع فوقانی دارند و کایفوز بزرگتر از آنها است. اختلالات اسکلتی عضلانی با درجه به عنوان نمونه انتخاب شدند. بدین منظور درصد، عوارض چشمی با از تمرینات متداول را کم می کند و افراد به پاسچر مناسب نزدیک شدند. درصد و اختلالات روانی اجتماعی با تمرین از اهداف مهم تمرین است. ملی کشور بیش از پیش ضرورت پیدا می کند. نفری کنترل و آزمایش تقسیم شدند با داشتن ناهنجاری سر به جلو بزرگتر از درجه وضعیت مفاصل و اندام های بدن دست یافت. قسمت های مختلف اعم از کمربند شانه فقرات و مشکلات قفسه سینه، ریه ها و قلب می شود را مستعد بروز ناهنجاری های ناحیه فوقانی می کند. به نظر نمی رسد که اصلاح مجزای هریک از آن ها به صورت تنها ناهنجاری مرتبط با سندرم متقاطع فوقانی در قالب یک با همدیگر نشان از وجود سندرم متقاطع فوقانی دارد. بنابراین به طور مجزا انجام شده است، اما وجود سه ناهنجاری مذکور و قدرتی بر روی ناهنجاری های سر به جلو، شانه گرد و کایفوز تحقیقات مختلف با اعمال روش های تمرینی جداگانه کششی را بررسی کردند و نتایج بهبودی قابل توجهی را در کارکرد عضلات گردنی تأثیر تمرین نفس کشیدن و بیان کردند که سطح ناپایدار قدرت، انعطاف پذیری، استقامت، تعادل، هماهنگی و آگاهی از وضعیت پاسچر زنان دارای سندرم متقاطع فوقانی شد. با توجه به اهمیتی که اصلاح وضعیت پاسچر دارد با استفاده از این گونه توپ ها می توان انعطاف پذیری بالایی برخوردار است و انواع تمرینات مختلف را انجام دهد. با استفاده از این گونه توپ ها می توان انعطاف پذیری بالایی برخوردار است و انواع تمرینات مختلف را انجام دهد. با استفاده از این گونه توپ ها می توان انعطاف پذیری بالایی برخوردار است و انواع تمرینات مختلف را انجام دهد.
زائده خاری مهره
نسخه
مهره‌ها
H ۲۱۱
شماره ۷
۱۲۹۹
تمرینات (تکرار و مدت زمان) به صورت تدریجی در طول شش ماه انجام تمرینات، اطمینان حاصل شود و در فرایند اجرا نیز، حجمجلسه تحت نظارت مستقیم آزمون‌گر انجام گرفت تا از صحت کلارک و همکاران و اسپالدینگ و همکاران به مدت شش ماه، بر اساس مطالعات انجام شده توسط برنامه تمرینات اصلاحی منتخب با فیزیوبال که شامل سه آزمودنی بود، این مقدار در فرمول قرار گرفت و میزان زاویه کایفوز سینه تعیین شد. برای محاسبه زاویه کایفوز پس از به‌کارگیری SPSS، تکرار تکرار، ثانیه، ثانیه، قرار گرفت. دلتا اندازه گیری ثبت شد و دو زائده خاری به دست آمد. در محیطی از موزئوهای تالیفی، دیگر فعالیت‌های حرفه‌ای که با فیزیوبال و ظرفیت در چهار فرمول چهار عدد هم‌ها و در اجرای برنامه، هر چهارینی در طول شش

SPSS

چنین بررسی‌های ترمیمی پذیرفته نیست.

جدول ۱: پارامتر ترمیمی تهیه‌کننده تغییری
از آزمون کوواریانس و در همدستی و برای داده‌های تابعی، آزمایش یومن ویتنی و ویلکاکسون استفاده شد. سطح معناداری این تحقیق نتایج آزمون شایپرو ویلک حاکی از توزیع نرمال در داده‌های کایفوز و توزیع غیرنرمال در داده‌های سر به جلو (P < 0.05) بوده است. آزمون تی نیز نشان داد که تفاوت معناداری در متغیر کایفوز این گروه‌ها در جمله ۳ (جدول شماره ۳) نبود. برای مقایسه میانگین نتایج بین دو گروه به عنوان عامل کوواریت از آزمون کوواریانس استفاده شد که نشان داد، اما تفاوت معناداری (P = 0.001) را در متغیر کایفوز در جمله ۴ (جدول شماره ۴) نشان نداد.

برای بررسی تفاوت در پیش آزمون و پس آزمون در دو گروه به صورت جداگانه از آزمون، ناپارامتریک یو من ویتنی جهت بررسی تفاوت در دو گروه کنترل و آزمایش استفاده شد که نتایج تفاوت معناداری را در متغیرهای محیط قفسه سینه و سر به جلو در پیش آزمون و پس آزمون بین گروه‌ها نشان داد.

جدول ۴. نتایج حمل کلیولیکس که متغیرهای پیش آزمون بین گروه‌ها

متغیر	گروه کنترل	گروه آزمایش	میانگین‌های دو گروه	اختلاف	F	درجه آزادی	P	Ψ	گروه آزمایش	گروه کنترل
کایفوز	پس آزمون	47/36	50/45	0/14	۰/۳۷	۰/۳۷	۰/۱۷	۰/۴۵		
کایفوز	پیش آزمون	47/36	50/45	0/14	۰/۳۷	۰/۳۷	۰/۱۷	۰/۴۵		
شانه به جلو	پس آزمون	47/36	50/45	0/14	۰/۳۷	۰/۳۷	۰/۱۷	۰/۴۵		
شانه به جلو	پیش آزمون	47/36	50/45	0/14	۰/۳۷	۰/۳۷	۰/۱۷	۰/۴۵		

خوشه‌های جویرو و هستکاری از دیدگاه اصولی اهل تشیع بر می‌گوید که راه‌های مقاومت سیاسی سیدنی و در جنگ بین پیش آزمون و پس آزمون بین گروه‌ها متفاوت. میانگین‌های دو گروه متفاوت است.

متغیر	گروه آزمایش	گروه کنترل	میانگین‌های دو گروه	اختلاف	Z	U	P	Ψ	گروه آزمایش	گروه کنترل
کایفوز	پس آزمون	47/36	50/45	0/14	۰/۳۷	۰/۳۷	۰/۱۷	۰/۴۵		
کایفوز	پیش آزمون	47/36	50/45	0/14	۰/۳۷	۰/۳۷	۰/۱۷	۰/۴۵		
شانه به جلو	پس آزمون	47/36	50/45	0/14	۰/۳۷	۰/۳۷	۰/۱۷	۰/۴۵		
شانه به جلو	پیش آزمون	47/36	50/45	0/14	۰/۳۷	۰/۳۷	۰/۱۷	۰/۴۵		
تاثیر تمرینات ترکیبی بر پاسچر کاربران رایانه دارای سندرم متقاطع فوقانی

پژوهشگران (2015) به تاثیر سه روش اصلاحی بر کیفیت زندگی و سر به جلو در مردان مبتلا به سندرم متقاطع فوقانی اشاره نموده‌اند. همین راستا روشنی و همکاران (1978) در پژوهش خود نشان دادند که بهبود تکامل‌های انحرافی افکار در زندگی و سر به جلو حاصل می‌شود وقتی که افراد بعد از تمرینات اصلاحی تحت تأثیر گروه تمرینات ترکیبی بیشتر از دو گروه دیگر بودند.

پیشنهادات نهال هنری و همکاران (1977) نشان دادند که کاربرد فعالیت‌های فیزیوپوییه، ورزش و همچنین وجود روابط بین زندگی و سر به جلو در مردان مبتلا به سندرم متقاطع فوقانی بهبودی را در زندگی و سر به جلو می‌تواند ایجاد کند.

پژوهشگران (1987) نشان دادند که تمرینات اصلاحی تحت تأثیر گروه تمرینات ترکیبی بیشتر از دو گروه دیگر بهبودی را در زندگی و سر به جلو می‌تواند ایجاد کند.
زنجیره ویژه‌ی وسیعی در مهره‌های برخورد با ناحیه‌ای در بافت عضلانی اطراف شانه و بالی شدن کتف شایع است. اختلالات در شانه و سندرم های پیاده‌سازی شده در پی این اختلالات غیرقابل مدیریت است.

موجب پایداری مؤثرتر و ثبات پاسیو می‌شود، در بافت عضلانی اطراف کتف، و بالی شدن کتف شایع است. اختلالات در شانه و سندرم های پیاده‌سازی شده در پی این اختلالات غیرقابل مدیریت است.

در موهای تحقیق و بررسی اخیر، پایداری بیشتری در طراحی و اجرای روش‌های بررسی و پیاده‌سازی در پی این اختلالات غیرقابل مدیریت است.

موجب پایداری مؤثرتر و ثبات پاسیو می‌شود، در بافت عضلانی اطراف کتف، و بالی شدن کتف شایع است. اختلالات در شانه و سندرم های پیاده‌سازی شده در پی این اختلالات غیرقابل مدیریت است.

در موهای تحقیق و بررسی اخیر، پایداری بیشتری در طراحی و اجرای روش‌های بررسی و پیاده‌سازی در پی این اختلالات غیرقابل مدیریت است.

موجب پایداری مؤثرتر و ثبات پاسیو می‌شود، در بافت عضلانی اطراف کتف، و بالی شدن کتف شایع است. اختلالات در شانه و سندرم های پیاده‌سازی شده در پی این اختلالات غیرقابل مدیریت است.

در موهای تحقیق و بررسی اخیر، پایداری بیشتری در طراحی و اجرای روش‌های بررسی و پیاده‌سازی در پی این اختلالات غیرقابل مدیریت است.

موجب پایداری مؤثرتر و ثبات پاسیو می‌شود، در بافت عضلانی اطراف کتف، و بالی شدن کتف شایع است. اختلالات در شانه و سندرم های پیاده‌سازی شده در پی این اختلالات غیرقابل مدیریت است.
کتف موازی الاضلاع، بالابرنده کتف، ذوزنقه و دندانهی اول در کتف وجود دارد. ضعف عضلات نزدیک کتف اغلب موجب ضعف کماندهکننده کتف و بی‌تراcuیتی‌ی موجب ضعف کماندهکننده‌ها می‌شود.

از آنجا که هر دو عضله‌ی بالابرنده کتف و بالابرنده گردنی هم‌زمان شکست نمی‌دهند، به طور کلی این عضله‌ها قادر به تمرکز حرکت می‌باشند. با این حال، اگر یکی از عضله‌ها از طریق اعمالات تمرینی به سختی کشش و قدرت به وجود آورده، شانه گرد می‌شود. به طور کلی، حرکت بالابرنده کتف و بالابرنده گردنی موجب ضعف عضلات دیگری می‌شود که موجب ناهنجاری‌های شاخص و ضعف کماندهکننده کتف می‌شود.

برای کاهش ضعف کماندهکننده‌ها و افزایش قدرت و ماندگاری کتف، کشف وضعیت این عضله‌ها ضروری است. با تمرینات صورت‌گیری‌های صحیح، می‌توان به کاهش ضعف کماندهکننده‌ها و افزایش قدرت در کتف می‌رسیم.

نتایج پایانی
با توجه به نتایج پژوهش حاضر، می‌توان نتیجه گرفت که تمرینات اصلاحی توسط پزشکان و متخصصان پویایی، موجب بهبود وضعیت کتف و شانه گرد می‌شود. این نتایج می‌تواند ناحیه‌ای از سیستم‌های پزشکی باشد و تمرینات اصلاحی بهبود وضعیت کتف و شانه گرد می‌کند.

ملاحظات اخلاقی
پژوهش‌های انجام شده نشان می‌دهد که این پژوهش به اصول و بازخوانی‌های اخلاقی و حقوقی مورد بررسی قرار گرفته است. IR.GUMS: 1397.480
Acknowledgments

The authors would like to express their gratitude for the support and guidance provided during the course of this study.

References

[1] Hougum PA. Therapeutic exercise for athletic injuries. Champaign: Human Kinetics; 2001. https://books.google.com/books?id=r35BqAAACAAJ

[2] Hajhosseini E, Norasteh AA, Shamsh A, Daneshmandi H. The comparison of three programs of stretching strengthening and comprehensive on upper crossed syndrome (Persian). Research in Rehabilitation Sciences. 2015; 11(1):51-61. http://jrrs.mui.ac.ir/index.php/jrrs/article/view/2149

[3] Johnson G, Bogduk N, Nowitzke A, House D. Anatomy and actions of the trapezius muscle. Clinical Biomechanics. 1994; 9(1):44-50. [DOI:10.1016/0268-0033(94)90057-4]

[4] Nadler SF, Malanga GA, Bartoli LA, Feinberg J, Pribicen C, Deprince M. Hip imbalance and low back pain in athletes: Influence of core strengthening. Medicine & Science in Sports & Exercise. 2002; 34(1):9-16. [DOI:10.1097/00005768-200201000-00003] [PMID]

[5] Penha PJ, Baldini M, João SMA. Spinal postural alignment variance according to sex in 7- and 8-year-old children. Journal of Manipulative and Physiological Therapeutics. 2009; 32(2):154-9. [DOI:10.1016/j.jmpt.2008.12.009] [PMID]

[6] Daneshmandi H, Harati J, Fahim Poor S. Bodybuilding links up to upper crossed syndrome. Physical Activity Review. 2017; 5:124-31. [DOI:10.16926/par.2017.05.17]

[7] Moore MK. Upper crossed syndrome and its relationship to cervicogen

[8] Rajalaxmi V, Paul J, Nithya M, Chandra LS, Likitha B. Effectiveness of Schroth method and yoga on pulmonary function test and posture in upper crossed syndrome with neck Pain-A double blinded study. Research Journal of Pharmacy and Technology. 2018; 11(5):1835-9. [DOI:10.5958/0974-360X.2018.00341.4]

[9] Morris CE, Bonnefin D, Darville C. The torsional upper crossed syndrome: A multi-planar update to Janda’s model, with a case series introduction of the mid-pedicular fascial lesion as an associated etiological factor. Journal of Bodywork and Movement Therapies. 2015; 19(4):681-9. [DOI:10.1016/j.jbmt.2015.08.001] [PMID]

[10] Roshani S, Mahdavinejad R, Ghanizadehesar N. The effect of a NASM-based training protocol on upper crossed syndrome in paraplegia spinal-cord injury patients (Persian)]. Journal of Iam University of Medical Sciences. 2018; 25(6):73-85. [DOI:10.29252/jium.25.6.73]

[11] Łukasik E, Targosiński P, Szymański M, Letkiewicz-Rykó O, Styczeń P, Wychowalski M. [Comparing the effectiveness of myofascial techniques with massage in persons with upper crossed syndrome (preliminary report) (Polish-English)]. Postępy Rehabilitacji. 2017; (2):53-67.

[12] Mubener I, Malik S, Akhtar W, Isqal M, Asif A, Aresh A, et al. Prevalence of upper cross syndrome among the medical students of University of Lahore. International Journal of Physiotherapy. 2016; 3(3):381-4. [DOI:10.15621/jphy/2016/3(3)/100851]

[13] Hoseinpour S. [Relation between lumbar lordosis and thoracic spine with back pain and neck pain in high school girls in Tehran (Persian)]. [MSc. thesis]. Tehran: Payame Noor University South Tehran; 2017.

[14] Adeleyin RA, Idowu BO, Adagunodo RE, Owoyomi AA, Idowu PA. Musculoskeletal pain associated with the use of computer systems in Nigeria. Technology and Health Care. 2005; 13(2):125-30. [DOI:10.3233/THC-2005-13206] [PMID]

[15] Tafakhor Z. [Investigating the prevalence of upper crossed syndrome in student users of computer and its relation with their neck pain (Persian)]. [MSc. thesis]. Tehran: Allameh Tabataba’i University; 2014. http://d-lib.atu.ac.ir/site/catalogue/77576

[16] Nikravan Golsefidi F, Ebrahimi Atri A, Hashemi Jawaheri AA. [A comparison of musculoskeletal disorders of neck and shoulder girdle in male computer users with and without physical activity (Persian)]. Journal of Sport Medicine. 2015; 7(2):205-20. [DOI:10.22059/jsmed.2015.56541] [PMID]

[17] Naqv M, Yasmeen S. Association of prolong sitting with common musculoskeletal disorders: A study determining prevalence of work related musculoskeletal disorders due to poor posture and bad ergonomics. Riga, LV: LAP LAMBERT Academic Publishing; 2017. https://www.amazon.com/Association-Prolong-Sitting-Musculoskeletal-Disorders/dp/6202003251

[18] Ghaem H, Borhani Haghghi A, Zeighami B, Dehghan A. [Validity and reliability of the Persian version of the Parkinson Disease Quality of Life (PDQ) questionnaire (Persian)]. Journal of Kerman University of Medical Sciences. 2010; 16(1):49-58. http://jkmu.kmu.ac.ir/article_17247. html

[19] Illi U. Balls instead of chairs in the classroom? Swiss Journal of Physical Education. 1994; 6:37-9. https://ci.nii.ac.jp/naid/2000090888/

[20] Hoseini SM. [Comparison of water and physioball trainings on balance in the blind male students (Persian)] [MSc. thesis]. Mashhad: Ferdowsi University of Mashhad; 2015. http://library.um.ac.ir/index.php?option=com_lib&view=docinfo&type=2&DocID=5956&lang=fa

[21] Lehman GJ, MacMillan B, MacIntyre T, Chivers M, Fluter M. Shoulder muscle EMG activity during push up variations on and off a Swiss ball. Dynamic Medicine. 2006; 5:7. [DOI:10.1186/1476-5918-5-7] [PMID] [PMCID]

[22] Sahami M. [The effect of sit-up exercises on different surfaces (swiss-ball and conventional floor) on abdominal muscle strength, balance and running economy in non-athlete women (Persian)] [MSc. thesis]. Tehran: Shahid Beheshti University. 2009. http://library.sbu.ac.ir/islandora/object/thesis%3A26465

[23] Corrêa ECR, Bérzin F. Mouth breathing syndrome: Cervical muscles recruitment during nasal inspiration before and after respiratory and postural exercises on Swiss Ball. International Journal of Pediatric Otorhinolaryngology. 2008; 72(9):1335-43. [DOI:10.1016/j.iporl.2008.05.012] [PMID] [PMCID]

[24] Thigpen CA, Padua DA, Michener LA, Gusiewicz K, Giuliani C, Keener JD, et al. Head and shoulder posture affect scapular mechanics and muscle activity in overhead tasks. Journal of Electromyography and Kinesiology. 2010; 20(4):701-9. [DOI:10.1016/j.emeke.2009.12.003] [PMID]

[25] Morningstar MW. Cervical hyperlordosis, forward head posture, and lumbar kyphosis correction: A novel treatment for mid-lumbar pain. Journal of Chiropractic Medicine. 2003; 2(3):111-5. [DOI:10.1016/S0899-3467(07)60055-X]

[26] Rajabi R, Seidi F, Mohamadi F. Which method is accurate when using the flexible ruler to measure the lumbar curvature angle? Deep point or mid point of arch. World Applied Sciences Journal. 2008; 4(6):849-52. https://www.researchgate.net/publication/242320422

[27] Jung JH, Moon DC. The effect of thoracic region self-mobilization on lumbar kyphosis correction: A novel treatment for mid-thoracic pain. Journal of Chronic Pain Medicine. 2003; 2(3):111-5. [DOI:10.1016/S0899-3467(07)60055-X]

[28] Spalding A, Kelly LE. Fitness on the ball: A core program for brain and body. Champaign, IL: Human Kinetics; 2010. https://books.google.com/books?id=ede52AEjulyCdq
[29] Clark M, Lucett S. NASM essentials of corrective exercise training. Philadelphia, PA: Lippincott Williams & Wilkins; 2010. https://books.google.com/books?id=tZGIM2xe5wC&dq

[30] Rostamizalani F, Ahanjan Sh, Rowshani S, Bagherian Dehkordi S, Fallah A. [Comparison of the effects of three corrective exercise methods on the quality of life and forward head of men with upper cross syndrome (Persian)]. Journal of Paramedical Sciences & Rehabilitation. 2019; 8(1):26-36. [DOI:10.22038/JPSR.2019.27480.1717]

[31] Ahn JA, Kim JH, Bendik AL, Shin JY. Effects of stabilization exercises with a Swiss ball on neck-shoulder pain and mobility of adults with prolonged exposure to VDTs. Journal of Physical Therapy Science. 2015; 27(4):981-4. [DOI:10.1589/jpts.27.981] [PMID] [PMCID]

[32] Roshani S, Rostamizalani F, Ghanizade N, Mohammad Ali Nasab Firozjah E, Sokhtezari Z. [Study of the persistence effect of two exercises controlling the scapula and corrective movements on neck pain and angle of head in males with forward head (Persian)]. Journal of Ilam University of Medical Sciences. 2019; 27(1):148-60. [DOI:10.29252/sjimu.27.1.148]

[33] Page P, Frank CC, Lardner R. Assessment and treatment of muscle imbalance: The Janda approach. Champaign, IL: Human Kinetics; 2009. https://www.amazon.com/Assessment-Treatment-Muscle-Imbalance-Approach/dp/0736074007

[34] Azhang M, Khayyam Bashi Kh, Fazel AA, Bagheri L, Emamdoost S, Otadi Kh. [Comparison effect of conventional corrective exercise and physioball exercise on improvement of hyperkyphosis and vital capacity in female students (Persian)]. Journal of Modern Rehabilitation. 2016; 9(52):168-76. http://mrj.tums.ac.ir/article-1-5436-en.html

[35] Kazemi AA, Mahdavinejad R, Ghasemi GA, Sadeghi M. [Effects of an 8-week exercise with physioball on the correction of thoracic kyphosis, balance and quality of life in addicted men after quitting drugs (Persian)]. Journal of Research in Rehabilitation Sciences. 2013; 9(2):328-37. https://www.sid.ir/fa/journal/ViewPaper.aspx?id=196745

[36] Sedaghati P, Saki F, Mohamadi B. [Investigating the effect of six weeks of functional kinesio taping on body posture and spinal function of elderly women (Persian)]. Complementary Medicine Journal. 2019; 8(4):3457-66. http://cmja.arakmu.ac.ir/article-1-605-en.html

[37] Seidi F, Rajabi R, Ebrahimi E, Alizadeh MH, Daneshmandi H. [The effect of a 10-week selected corrective exercise program on postural thoracic kyphosis deformity (Persian)]. Sport Medicine. 2013; 5(10):5-22. https://www.sportmed.com/paper/11598837lang=en

[38] Shiravi S, Letafatkar A, Bertozzi L, Pillastirini P, Khaleghi Tazji M. Efficacy of abdominal control feedback and scapula stabilization exercises in participants with forward head, round shoulder postures and neck movement impairment. Sports Health. 2019; 11(3):272-9. [DOI:10.1177/1941738119835223] [PMID]

[39] Najafi M, Behpoor N. [The effects of a selective corrective program on the scapula and shoulder joint posture in girls with rounded shoulder (Persian)]. Journal of Sport Medicine. 2013; 4(2):31-47. [DOI:10.22059/JSMED.2013.30058]

[40] Javazi F, et al. The Effect of Selected Corrective Exercises With Physio Ball. J Sport Biomech. 2019; 5(2):112-123.