Identification of the G Protein-coupled Receptor Kinase Phosphorylation Sites in the Human \(\beta_2 \)-Adrenergic Receptor

(Received for publication, December 22, 1995, and in revised form, March 12, 1996)

Zoey L. Fredericks, Julie A. Pitcher, and Robert J. Lefkowitz†

From the Departments of Biochemistry and Medicine, Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710

Rapid desensitization of G protein-coupled receptors is mediated, at least in part, by their phosphorylation by the G protein-coupled receptor kinases (GRKs). However, in the case of rhodopsin, the actual sites of receptor phosphorylation have been ambiguously determined. Although previous studies have implicated the cytoplasmic tail of the \(\beta_2 \)-adrenergic receptor (\(\beta_2 \)-AR) as the site of GRK-mediated phosphorylation, the identities of the phosphorylated residues were unknown. Here we report the identification of the sites of GRK2- and GRK5-mediated \(\beta_2 \)-AR phosphorylation. The phosphorylation sites of both serine/threonine kinases reside exclusively in a 40-amino acid peptide located at the extreme carboxyl terminus of the \(\beta_2 \)-AR. Of the seven phosphorylatable residues within this peptide, six are phosphorylated by GRK5 (Thr-384, Thr-393, Ser-396, Ser-401, Ser-407, and Ser-411) and four are phosphorylated by GRK2 (Thr, Ser-396, Ser-401, and Ser-407) at equivalent phosphorylation stoichiometries (\(\sim 1.0 \) mol P/mol receptor). In addition to the GRK5-specific phosphorylation of Thr-393 and Ser-411, differences in the distribution of phosphate between sites are observed for GRK2 and GRK5. Increasing the stoichiometry of GRK2-mediated \(\beta_2 \)-AR phosphorylation from \(\sim 1.0 \) to 5.0 mol P/mol receptor increases the stoichiometry of phosphorylation of Thr-384, Ser-396, Ser-401, and Ser-407 rather than increasing the number of phosphoacceptor sites. The location of multiple GRK2 and GRK5 phosphoacceptor sites at the extreme carboxyl terminus of the \(\beta_2 \)-AR is highly reminiscent of GRK1-mediated phosphorylation of rhodopsin.

Desensitization is the process by which prolonged exposure of cells to stimuli such as a hormone or neurotransmitter results in a decreased cellular response despite continued stimulation. The complex mechanisms involved in this process have been extensively studied using the \(\beta_2 \)-adrenergic receptor (\(\beta_2 \)-AR)-mediated stimulation of adenyl cyclase as a model system. One of the most rapid events implicated in cellular desensitization of \(\beta_2 \)-AR function is phosphorylation of the receptor. Two distinct classes of kinases participate in this rapid desensitization process: the second messenger-regulated kinases (cAMP-dependent protein kinase and protein kinase C) and the G protein-coupled receptor kinases (GRKs 1–6). The family of GRKs possess the unique ability to specifically recognize and phosphorylate the agonist-occupied form of the \(\beta_2 \)-AR. GRK-mediated phosphorylation of the \(\beta_2 \)-AR leads to the binding of the cytosolic arrestin protein and subsequent agonist-dependent functional uncoupling of the receptor from adenyl cyclase stimulation. One important regulatory feature that distinguishes members of the GRK family is the mechanism by which these enzymes are targeted to their membrane incorporated receptor substrates (1, 2). Of particular note, GRK2 and 3 have been demonstrated, in the presence of a specific lipid co-factor (phosphatidylinositol-4,5-bisphosphate) to bind G protein \(\beta \) subunits (\(\beta \)-subunits) at a carboxyl-terminal pleckstrin homology domain (3, 4). Binding of prenylated \(\beta \)-subunits, promotes membrane association of these kinases and enhances both the rate and extent of receptor phosphorylation (3, 4). In contrast, GRK5 does not possess a pleckstrin homology domain, and the activity of this enzyme is not enhanced by \(\beta \)-subunits (5).

Although the \(\beta_2 \)-AR system is one of the most thoroughly studied of the G protein-coupled receptors, the identities of the sites of GRK-mediated agonist-induced phosphorylation have not previously been determined. Mutational and proteolysis studies indicate that the sites of GRK2-mediated \(\beta_2 \)-AR phosphorylation lie potentially within the carboxyl-terminal cytoplasmic tail (C-tail) of this receptor. Thus, removal of the \(\beta_2 \)-AR C-tail by limited proteolysis with trypsin and carboxypeptidase Y (6), truncation of the C-tail at position 365 (7), and site-directed mutations at serine and threonine residues within the C-tail (7–9) result in the loss of phosphoacceptor sites. Additionally, carboxypeptidase Y digestion of \(\beta_2 \)-AR phosphorylated by GRK5, indicates that like GRK2, GRK5 phosphorylates C-tail serine and threonine residues (5).

The only G protein-coupled receptor in which the sites of GRK-mediated phosphorylation have been unambiguously identified is rhodopsin. Rhodopsin, the visual light perception receptor, is phosphorylated in a light-dependent manner by GRK1. Both in vitro and in vivo studies have demonstrated that GRK1 phosphorylates rhodopsin on specific residues located at the distal portion of the carboxyl-terminal C-tail (10–16). Additionally, in vitro GRK2, GRK3, and GRK5-mediated phosphorylation sites on rhodopsin have recently been identified (11). Interestingly, although the serine residues phosphorylated by these different GRKs are essentially identical, principally Ser-338 and Ser-343, GRK1 and GRK5 preferentially phosphorylate Ser-338, whereas GRK2 and GRK3 preferentially phosphorylate Ser-343. This study was designed to identify and compare the specific \(\beta_2 \)-AR residues phosphorylated by the GRKs. To address whether the GRKs phosphorylate distinct or overlapping sites, the C-tail of the \(\beta_2 \)-AR was truncated at either Ser-338 or Ser-343 and phosphorylated by GRK2, GRK3, and GRK5 in vitro. These studies indicate that GRK2 and GRK3 phosphorylate Ser-343 with a stoichiometry of approximately 1.0 mol P/mol recepto.
identical amino acid residues on the receptor, two members of the GRK family (GRK2 and GRK5) were utilized. In addition, the effect of increasing phosphorylation stoichiometry on the nature of the β2AR phosphoacceptor sites was examined utilizing either GRK2 alone or in the presence of Gβγ.

MATERIALS AND METHODS

Purification and Reconstitution of the β2AR—Recombinant human β2AR was expressed and purified from baculovirus-infected Spodoptera frugiperda (Sf9) cells as described previously (3, 17). Purified receptor was reconstituted into crude soybean phosphatidylcholine (~20%; Sigma; see Ref 18), and the receptor association was determined by radioligand binding using [3H]-lodoxyanabinol (19).

Receptor Phosphorylation by GRK2 and GRK5—Recombinant GRK2 and GRK5 expressed in Sf9 cells, and G protein βγ subunits from bovine brain were purified to near homogeneity (~90%) as previously reported (3, 5, 20). Phosphorylation of purified and reconstituted β2AR was performed in final volumes of 500 μl consisting of 200–300 nm receptor and 125 nm kinase ± 320 nm Gβγ, in 20 m Tris-HCl (pH 8), 2 mM EDTA, 10 mM MgCl2, and 1 mM dithiothreitol containing 100 μM (γ-32P)ATP (~3000 cpm/pmol) and 100 μM (γ-32P)ATP. The reactions were incubated at 30 °C for 20 min and stopped by placing the sample on ice. At this point, 10 pmol of phosphorylated receptor was removed for two-dimensional phosphoamino acid analysis and determination of phosphorylation stoichiometry. Following electrophoresis on thin-layer cellulose plates (Kodak), in the first dimension, electrophoresis was carried out at pH 1.9 for 1.5 h at 900 V and in the second dimension at pH 3.5 (0.5% pyridine/5.0% glacial acetic acid) for 45 min at 900 V. The phosphoamino acid standards were visualized using a Fluoroomat spray reagent, and phosphopeptides were visualized by autoradiography for 1–4 days. The same phosphopeptides were analyzed quantitatively with a PhosphorImager.

RESULTS

Identification of Phosphopeptides—To determine the location of the GRK2 and GRK5-mediated agonist-specific phosphorylation sites on the β2AR, 400-1000 pmol of purified and reconstituted β2AR was phosphorylated with either enzyme in the presence of receptor-saturating concentrations of the β2AR agonist alprenolol (Fig. 1). The β2AR was phosphorylated by GRK5 to stoichiometries of 0.7–1.1 mol of phosphate/mol of β2AR (Fig. 1A). The β2AR was phosphorylated by GRK2 to stoichiometries of 0.7–1.3 mol of phosphate/mol β2AR, respectively, in the absence or the presence of 320 nM alprenolol (Fig. 1B). The β2AR was phosphorylated to stoichiometries of 1.0, 1.0, and 5.0 mol P/mol receptor by GRK5, GRK2, and GRK2 + Gβγ, respectively.

A pool of several fractions within each peak or the middle fraction of each radioactive peak was applied to an Aquapore C18 column to separate and purify phosphopeptides. The resuspended receptor was heat denatured at 95 °C for 20 min, briefly cooled on ice, and diluted with 50 mM NH4OAc (pH 4) buffer until the urea concentration was below 2 M. To this mixture was added 1 μg of sequencing grade endoprotease Glu-C (Promega), and digestion was allowed to proceed at 30 °C for approximately 17 h. Proteinase K was stopped by freezing the sample. Subdigestions of isolated phosphopeptides were carried out using 1 μg of modified, sequencing grade trypsin (Boehringer Mannheim). These digestions were allowed to proceed at 30 °C for approximately 17 h (after heat denaturing the peptide as described above) followed by dilution with buffer (50 mM Tris-HCl, 1 mM CaCl2, pH 7.6). Phosphorylated and cleaved receptors and phosphopeptides were applied to an Aquapore C18 column (220 × 2.1 mm) attached to an Applied Biosystems reverse-phase HPLC system consisting of a 140B solvent delivery system and a 1000S diode array mult wavelength detector. Peptides were eluted using a linear gradient of 0–60% acetonitrile in 0.1% trifluoroacetic acid over 180 min followed by a linear gradient of 60–90% acetonitrile in 0.1% trifluoroacetic acid over 15 min. The column was run at a flow rate of 150 μl/min with fractions collected every minute. Protein elution was monitored at 220, 230, 260, and 280 nm and by radioactivity detection of every fraction using scintillation counting. Phosphopeptides were detected by plotting radioactivity counts per fraction number, and fractions were stored at −20 °C for subsequent protein sequencing analysis and two-dimensional phosphoamino acid analysis.

Protein Sequence Analysis and Two-dimensional Phosphoamino Acid Analysis—A pool of several fractions within each peak or the middle fraction of each radioactive peak was applied to an Applied Biosystems Model 477A protein sequencer with an in-line 120A PTH-analyzer. 50% of the sample was subjected to PTH-derivative analysis, and 50% was used for phosphopeptide sequencing. The amount of 32P released after small aliquots of each phosphopeptide was hydrolyzed in 5.7 M HCl for 2 h at 110 °C. Each sample was then cooled on ice, dried down using a speedvac concentrator, and resuspended in 10 μl of pH 1.9 buffer (2.5% (v/v) formic acid/7.8% (v/v) glacial acetic acid) along with 20 nmol of cold phosphoamino acid standards (phosphoserine, phosphothreonine, and phosphotyrosine). The phosphoamino acids were resolved by two-dimensional electrophoresis on thin-layer cellulose plates (Kodak). The first dimension, electrophoresis was carried out at pH 1.9 for 1.5 h at 900 V and in the second dimension at pH 3.5 (0.5% pyridine/5.0% glacial acetic acid) for 45 min at 900 V. The phosphoamino acid standards were visualized using a Fluoroomat spray reagent, and phosphopeptides were visualized by autoradiography for 1–4 days. The same phosphopeptides were analyzed quantitatively with a PhosphorImager.

Identification of Phosphopeptides—To determine the location of the GRK2 and GRK5-mediated agonist-specific phosphorylation sites on the β2AR, 400-1000 pmol of purified and reconstituted β2AR was phosphorylated with either enzyme in the presence of receptor-saturating concentrations of the β2AR agonist isoproterenol (Fig. 1). The β2AR was phosphorylated by GRK5 to stoichiometries of 0.7–1.1 mol of phosphate/mol of β2AR (~1 mol/μmol). The β2AR was phosphorylated by GRK2 to stoichiometries of 0.7–1.3 and 4.0–5.0 mol P/mol β2AR, respectively, in the absence and the presence of Gβγ subunits. Autoradiography of SDS-polyacrylamide gels loaded with completed phosphorylation reactions revealed the presence of only two phosphorylated proteins, the phosphorylated β2AR and autophosphorylated GRK5s (Fig. 1). Phosphorylated β2AR was subsequently digested with the proteases Glu-C, trypsin, or Asp-N and applied to an Aquapore C18 column to separate and purify phosphopeptides. Digestion of phosphorylated β2AR with trypsin or Asp-N followed by HPLC purification proved to be ineffective methods for separating phosphorylated peptides. The radiolabeled peaks derived from these digestions were insufficiently separated and contained multiple peptides, making it impossible to distinguish between phosphorylated and unphosphorylated residues (data not shown). In contrast, chromatography of the peptides obtained following endoproteinase Glu-C digestion of the β2AR revealed the presence of relatively few radiolabeled peaks, which were subsequently shown by amino acid sequence analysis to be separated from all other peptides.

Digestion with Glu-C followed by HPLC purification of peptides was performed for the β2AR phosphorylated with GRK5 or GRK2 ± Gβγ. Fig. 2A shows a representative absorbance trace at 220 nm for the Glu-C digestion of β2AR phosphorylated by GRK2. The figure shows material eluted from the C18 column between 0 and 80% acetonitrile corresponding to retention times of 0 and 190 min, respectively. No further absorbance material was eluted between 80 and 90% acetonitrile. 32P-Labeled peptides were located by subjecting fractions to scintillation counting (Figs. 2, B–D). In this manner two 32P-labeled peaks were detected for the Glu-C-digested GRK5-phosphorylated β2AR (Fig. 2B), and three 32P-labeled peaks were detected for the Glu-C-digested GRK2-phosphorylated β2AR (Figs. 2, C and D). These peaks represent the only

![Fig. 1. Phosphorylation of β2AR by GRK2 or GRK5. A representative autoradiogram of β2AR phosphorylated by GRK5 (A) or GRK2 (B) in the absence or the presence of 320 nM Gβγ. Phosphorylations were performed as described under "Materials and Methods" in the presence of either a β2-agonist (100 μM isoproterenol, Iso) or an antagonist (100 μM alprenolol, Alp) at 30 °C for 20 min. The β2AR was phosphorylated to stoichiometries of approximately 1.0, 1.0, and 5.0 mol P/mol receptor by GRK5, GRK2, and GRK2 + Gβγ, respectively.](image-url)
radioactivity eluted from the HPLC column when developed with a 0–90% acetonitrile gradient. For GRK5-mediated phosphorylations, peak 1 eluted at approximately 82 min, and peak 2 eluted at 70 min (n = 6 experiments; Fig. 2B). For GRK2-mediated phosphorylations, peak 1 eluted at approximately 80 min, peak 2 eluted at 70 min, and peak 3 eluted at 63 min (n = 5 experiments; Fig. 2C). Peaks derived from phosphorylations by GRK2 in the presence of Gbg eluted at the same times as peaks derived from β2AR phosphorylated by GRK2 alone (n = 5 experiments; Fig. 2D). For both GRK2- and GRK5-mediated phosphorylations, peak 1 is the main peak containing most of the radioactivity, whereas peaks 2 and 3 (GRK2-mediated phosphorylations only) are minor, containing less than 25% of the radioactive counts.

A pool of several fractions within a peak or the fraction containing the most radioactivity from each peak was subjected to amino acid sequence analysis. Peaks 1 and 2 contain distinct peptides. Comparison of the GRK2- and GRK5-derived peak 1 and similarly peak 2 revealed identical peptide sequences. Amino acid sequence analysis of fractions within peak 1 revealed the presence of a single peptide, a 40-amino acid phosphopeptide comprised of residues 374–413 of the β2AR (peptide 1; Fig. 3A and Table I). Levels of extraneous amino acids at each sequencer cycle were negligible. In Table I, the residue identified, the percent yield for each residue, and the cpm released at each cycle are listed. Sequencer results obtained from the analysis of peak 1 from GRK5, GRK2, or GRK2 + Gbg-phosphorylated β2AR are shown (Table I). This peptide, located at the extreme C terminus of the carboxyl-tail of β2AR, contains four serine and three threonine residues (Thr-384, Thr-393, Ser-396, Ser-401, Ser-407, Thr-408, and Ser-411) and is schematically represented in Fig. 3A. Amino acid sequence termed, respectively, peaks 2 and 1 (B). The radioactive peaks eluting at approximately 70 and 82 min for GRK5-mediated phosphorylations are termed, respectively, peaks 2 and 1 (C and D). No other 32P-labeled fractions were detected.

Fig. 2. Reverse-phase HPLC analysis of phosphopeptides obtained by endoproteinase Glu-C digestion of phosphorylated β2AR. β2AR was phosphorylated in the presence of 100 μM isoproterenol, digested by the endoproteinase Glu-C, and applied to an Aquapore C18 column attached to a reverse-phase HPLC system as described under “Materials and Methods.” Peptides were separated using a linear gradient of 0–60% acetonitrile in 0.1% trifluoroacetic acid for 180 min and 60–90% acetonitrile in 0.1% trifluoroacetic acid for 15 min. Fractions were collected every minute, and phosphopeptides were detected using a scintillation counter. A, representative absorbance trace at 220 nm obtained upon chromatography of Glu-C-digested GRK5-mediated phosphorylated β2AR. B–D, 32P cpm versus retention time (0–45% acetonitrile) plots for β2AR phosphorylated by GRK5 (1 mol P/mol β2AR; n = 6 experiments) (B), GRK2 (1 mol P/mol β2AR; n = 5 experiments) (C), and GRK2 in the presence of 320 nM Gbg (5 mol P/mol β2AR; n = 5 experiments) (D). The radioactive peaks eluting at approximately 70 and 82 min for GRK5-mediated phosphorylations are termed, respectively, peaks 2 and 1 (B). The radioactive peaks eluting at approximately 63, 70, and 80 min for GRK2 phosphorylations are termed, respectively, peaks 3, 2, and 1 (C and D). No other 32P-labeled fractions were detected.
analysis of fractions within peak 2 revealed the presence of two amino acids at each sequencer cycle. These amino acids correspond to peptide 2 (major peptide) and peptide 1 (Fig. 3A). Peptide 2 is a fragment of peptide 1, comprised of residues 380–413 of the β₂AR (Fig. 3A). The molar ratio of peptide 2 to peptide 1 present in peak 2 was approximately 10:1, with no other amino acids detectable at any cycle. Peak 3, derived from GRK2-mediated phosphorylations, contains exclusively a phosphopeptide from autophosphorylated GRK2 (peptide 3; data not shown). Thus, all the agonist-induced GRK2- and GRK5-mediated sites of phosphorylation on the β₂AR appear to lie within a 40-amino acid peptide located at the C-terminus of the C-tail.

Two 32P-labeled β₂AR peptides were eluted from the HPLC C18 column following Glu-C digestion (Figs. 2 and 3A). To examine the possibility that additional phosphorylated peptides were loaded but did not elute from this column, the Glu-C-digested β₂AR was subjected to gel filtration chromatography under denaturing conditions. β₂AR phosphorylated by GRK2 was digested with Glu-C as described previously. Following digestion the lipid vesicles containing undigested β₂AR and regions of the receptor inaccessible to the proteinase were removed by centrifugation. Under these conditions, whereas judged by SDS-polyacrylamide gel electrophoresis approximately 75–90% of the receptor is digested (data not shown), approximately 80% of the total counts incorporated into the β₂AR are found in the supernatant. Gel filtration chromatography of these peptides in 50 mM NH₄OAc, 2 M urea (pH 4) revealed the presence of two 32P-labeled peaks (data not shown). The estimated molecular weights of these peaks correspond approximately to the predicted molecular weights of peptides 1 and 2. Thus chromatography of the Glu-C-digested receptor on two different resins in two different buffers systems yields similar peptide profiles. These results suggest that the 32P-labeled peptides identified by HPLC indeed constitute the major sites of GRK-mediated phosphorylation.

Table I

Cycle	Residue	GRK5	Yield	cpm	GRK2	Yield	cpm	GRK2 + G_{β₂}	Yield	cpm
1	Asn	100	112		100	199		100	335	
2	Lys	33	88		124	149		13	236	
3	Leu	125	100		106	160		119	220	
4	Leu	128	96		106	197		123	339	
5			150						644	
6	Glu	58	168		40	254		47	410	
7	Asp	66	189		28	349		45	474	
8	Leu	94	236		73	306		79	452	
9	Pro	81	240		47	290		60	489	
10	Gly	104	277		56	393		64	498	
11	Thr	27	743		36	603		40	1325	
12	Glu	47	561		25	483		32	1132	
13	Asp	54	513		18	474		34	1004	
14	Phe	54	442		41	424		45	788	
15	Val	51	403		39	480		46	835	
16	Gly	73	368		29	541		40	699	
17	His	15	368		30	540		31	821	
18	Gin	34	432		28	485		32	348	
19	Gly	67	459		27	587		32	682	
20	Thr	13	524		20	640		20	776	
21	Val	31	449		26	660		29	863	
22	Pro	31	434		15	657		20	811	
23	Ser	4	716		4	1485		5	1872	
24	Asp	24	638		5	1324		10	1612	
25	Asn	59	628		11	905		15	1362	
26	Ile	28	570		9	777		13	1208	
27	Asp	24	532		6	728		11	1153	
28	Ser	2	663		2	1625		2	1786	
29	Gin	13	607		5	1354		7	1874	
30	Gly	32	567		6	1093		8	1498	
31	Arg	31	501		6	798		10	1224	
32	Asn	24	495		7	673		9	1111	
33			453						1057	
34	Ser	2	569		1	1030		1	1472	
35	Thr	5	556		1	877		2	1387	
36	Asn	18	532		5	811		7	1276	
37	Asp	9	508		3	556		3	1167	
38	Ser	<1	478		<1	607		<1	1180	
39	Leu	7	493		2	475		2	1176	
40	Leu	9	464		3	383		4	1034	
threonine, or tyrosine residues were phosphorylated by either GRK, two-dimensional phosphoamino acid analysis of peptide 1 was performed three times for each GRK. The results indicate that peptide 1 contains phosphoserine and phosphothreonine residues for both GRK2 and GRK5 phosphorylations (Fig. 3B). No phosphotyrosine residues were detected. Quantitation of the data using a PhosphorImager reveals that for GRK2-mediated (\(G_{bg}\)) phosphorylations; 90% of the total \(^{32}\)P incorporated in peptide 1 was present on phosphoserine and 10% on phosphothreonine residues. In contrast, for GRK5-mediated phosphorylations; 80% of the total \(^{32}\)P incorporated was associated with phosphoserine and 20% with phosphothreonine residues.

To identify the exact phosphorylation sites on the receptor, phosphopeptide sequencing of peptide 1 was performed in conjunction with PTH-derivative sequence determination. After each Edman degradation cycle, the amount of released radioactivity was determined by scintillation counting (see Table I). The release of radioactivity at a certain cycle indicates phosphorylation of the residue present at that same cycle of amino acid sequencing. The phosphopeptide sequencing plots for peptide 1 phosphorylated by GRK5 and GRK2 are shown in Fig. 4. For \(\beta_2\)AR phosphorylated by GRK5 to a stoichiometry of 1 mol Pi/mol receptor, radioactivity was released from peptide 1 at five cycles: 11, 20, 23, 28, and 34, corresponding to Thr-384, Thr-393, Ser-396, Ser-401, and Ser-407 residues, respectively (Fig. 4A and Table I). For \(\beta_2\)AR phosphorylated by GRK2 (1 mol P./mol \(\beta_2\)AR), significant radioactivity was released from peptide 1 at only four cycles: 11, 23, 28, and 34 corresponding to Thr-384, Ser-396, Ser-401, and Ser-407 residues, respectively (Fig. 4B and Table I). Interestingly, the addition of \(G_{bg}\) to GRK2-mediated phosphorylation reactions increased the stoichiometry of phosphorylation of peptide 1 (from \(0.5\) to 5.0 mol P./mol receptor) but did not alter the nature or number of phosphorylated residues (Fig. 4C and Table I).

Technical limitations of phosphopeptide sequencing, arising due to the large size of peptide 1, make it difficult to analyze the most C-terminal of the potential phosphorylation sites. As the number of Edman degradation cycles increases, the background counts increase while the amino acid yield and \(32\)P signal decrease (Table I) due to incomplete and nonspecific peptide bond cleavage. These limitations obscure the release of radioactivity at cycles 35 and 38, which correspond to Thr-408 and Ser-411, respectively. Additionally, the "carry over" of \(32\)P signal observed after each cycle containing a phosphorylated residue in combination with decreasing \(32\)P signal may cause the signal at cycle 34 (Ser-407) to mask any radioactivity potentially released at cycle 35 (Thr-408).

To attempt to elucidate the sites of phosphorylation at the C terminus of peptide 1, this peptide was subjected to tryptic digest. Tryptic digest of peptide 1 derived from \(\beta_2\)AR phosphorylated by GRK5 and GRK2 in the presence of \(G_{bg}\) was digested by trypsin and subjected to HPLC separation as described under "Materials and Methods." \(32\)P cpm versus retention time (0–45% acetonitrile) plots are shown for peptide 1 phosphorylated by GRK5 (A) and GRK2 (B) in the presence of \(G_{bg}\). Significantly radioactive peaks eluted at approximately 50 and 88 min for GRK5-mediated phosphorylations corresponding, respectively, to peaks 4 and 5 (A) and at approximately 64 and 87 min for GRK2 phosphorylations in the presence of \(G_{bg}\), corresponding respectively to peaks 4 and 5 (B).
Amino acid and phosphopeptide sequence analysis of peptide 4

The cycle number, amino acid residue, percentage of amino acid yield, and cpm are presented for each cycle of amino acid and phosphopeptide sequence analysis of peptide 4 derived from tryptic digest of peptide 1. The data show a representative example of sequence information obtained for GRK5 or GRK2 + Gβγ-phosphorylated peptide 4. The amino acid identified in the first cycle of sequence analysis was assigned 100% amino acid yield. The first amino acid yield was approximately 18 pmol for GRK5 and 7 pmol for GRK2 + Gβγ. Peptide 4, derived either GRK5 or GRK2 + Gβγ-phosphorylated β2AR, was subjected to sequence analysis on at least two separate occasions.

Cycle	Residue	GRK5 Yield	GRK5 cpm	GRK2 + Gβγ Yield	GRK2 + Gβγ cpm
1	Asn	100%	91	100%	122
2	Ser	33%	257	36%	339
3	Thr	36%	118	45%	127
4	Asn	48%	90	53%	84
5	Asp	40%	100	36%	77
6	Ser	15%	514	14%	99
7	Leu	24%	184	29%	72
8	Leu	25%	127	32%	59

Fig. 6. Release of 32P radioactivity during Edman degradation of peptide 4. A nine-amino acid phosphopeptide (peptide 4) eluting with peak 4 was isolated and subjected to phosphopeptide sequence analysis as described in the legend to Fig. 4. The amino acid sequence of peptide 4 obtained for both GRK-mediated phosphorylations is shown at the top (A). Radioactivity plots are shown for peptide 4 derived from β2AR phosphorylations mediated by GRK5 (A) and GRK2 + Gβγ (B). The amino acid residues corresponding to significant peaks of 32P release are indicated. Phosphopeptide sequence analysis of peptide 4 was repeated at least two times for each experimental condition, yielding similar results.

A summary of the results obtained from the phosphopeptide sequence analysis is shown in Fig. 7. In Fig. 7A, the phosphate distribution within peptide 1 for both GRK5 and GRK2 + Gβγ-mediated phosphorylations is illustrated as the percentage of phosphate incorporated at each potential phosphoacceptor site for which 32P release could be accurately determined. The total counts incorporated in peptide 1 at positions 384, 393, 396, and 401 was taken as 100%. Positions 407, 408, and 411 were not included in Fig. 7A due to the high background 32P release obtained upon phosphopeptide sequence analysis of this region of peptide 1. The phosphate distribution between these potential phosphoacceptor sites is instead illustrated in Fig. 7B for both GRK5 and GRK2 + Gβγ-mediated phosphorylations of peptide 4. The total counts incorporated in peptide 4 at positions 407, 408, and 411 was taken as 100%. Examination of Fig. 7 reveals differences in both the nature and number of

Table II

Cycle	Residue	GRK5 Yield	GRK5 cpm	GRK2 + Gβγ Yield	GRK2 + Gβγ cpm
1	Asn	100%	91	100%	122
2	Ser	33%	257	36%	339
3	Thr	36%	118	45%	127
4	Asn	48%	90	53%	84
5	Asp	40%	100	36%	77
6	Ser	15%	514	14%	99
7	Leu	24%	184	29%	72
8	Leu	25%	127	32%	59
the sites phosphorylated and the distribution of phosphate between the phosphoacceptor sites for these two enzymes. First, Fig. 7 (A and B) demonstrates that six of the seven potential phosphoacceptor sites in peptide 1 are phosphorylated by GRK5 (Thr-384, Thr-393, Ser-396, Ser-401, Ser-407, and Ser-411) and four of the seven are phosphorylated by GRK2 (Thr-384, Ser-396, Ser-401, and Ser-407). Interestingly, the addition of G_{βγ} to GRK2-mediated phosphorylations increases the stoichiometry of phosphorylation but does not alter the nature or the number of the sites phosphorylated by this enzyme (Fig. 4, B and C). The phosphoacceptor sites of GRK5 and GRK2 overlap; however, GRK5, unlike GRK2, significantly phosphorylates both Thr-393 and Ser-411 (Fig. 7, A and B). Additionally, at equivalent phosphorylation stoichiometries (−1.0 mol P_i/mol receptor), GRK5, unlike GRK2, displays no marked preference for any particular phosphoacceptor site. The positions of the GRK-mediated phosphorylated residues within the β₂AR sequence are represented schematically in Fig. 8. Residues phosphorylated by both GRK2 and GRK5 are shown in black, GRK5 specific phosphorylation sites are shown in gray (Fig. 8).

DISCUSSION

The difficulties associated with obtaining sufficient quantities of purified G protein-coupled receptors has hampered attempts to unambiguously determine the sites of GRK-mediated phosphorylation. Previously, the only receptor for which this has been possible is rhodopsin, whose relative abundance in rod outer segment membranes has permitted identification of GRK1 phosphorylation sites both in vitro (10–13, 15, 16) and more recently in vivo (14). In this study, the problem of insufficient material was overcome by the expression and subsequent purification of human β₂AR in an SF9 cell/baculovirus system. Purified β₂AR was reconstituted in lipid vesicles and phosphorylated in vitro by either GRK2 or GRK5. GRK-mediated phosphorylation sites were subsequently assigned by phosphopeptide sequencing of HPLC-purified peptides derived from proteolysis of phosphorylated β₂AR. All the sites of both GRK2 and GRK5-mediated phosphorylation were found to reside within a peptide comprising the carboxyl-terminal 40 amino acids of the β₂AR (Figs. 2 and 3). Phosphoamino acid analysis revealed that this peptide contained both phosphoserine and phosphothreonine but no phosphotyrosine residues when phosphorylated by either GRK5 (−1.0 mol P_i/mol receptor) or by GRK2 at either low (−1.0 mol P_i/mol receptor) or high (−5.0 mol P_i/mol receptor) stoichiometries of phosphorylation (Fig. 3B). Of the seven potential phosphorylation sites within this 40-amino acid peptide (4 serine and 3 threonine residues), GRK5 was shown to phosphorylate six sites and GRK2 was shown to phosphorylate four sites even at stoichiometries as low as 1.0 mol P_i/mol receptor (Fig. 4, B and C). These results are highly reminiscent of those obtained with rhodopsin in which three carboxyl-terminal residues (Ser-334, Ser-338, and Ser-343) were shown to be phosphorylated by GRK1 (12). Additionally, our findings are consistent with those of Hausdorff et al. (8), who demonstrated that substitution mutants of the β₂AR in which all of the potential GRK2 phosphorylation sites in the C-tail were replaced with alanine residues fail to phosphorylate or undergo desensitization.

Phosphorylation studies using synthetic peptides have demonstrated that both GRK1 and GRK2 are acidotropic kinases, preferring acidic amino acids in proximity to phosphorylatable residues (21, 22). In this respect it is interesting to note that both the β₂AR and rhodopsin have pairs of acidic residues located at the amino-terminal side of the most amino-terminal phosphorylated residue (Fig. 9). Similarly, the putative GRK2 phosphorylation sites on the carboxyl-terminal domain of the N-formyl peptide receptor, deduced from studies in which a GST fusion protein encompassing the C-tail of this receptor was utilized, also possess a pair of acidic amino acids adjacent to its most amino-terminal phosphorylation site (23). The putative phosphorylation sites on the third loop of the α₂C10 adrenergic receptor are also similar in this respect (24) (Fig. 9). In the case of the α₂C10 receptor, the putative phosphorylation sites were assigned by point mutation of potential phosphorylatable residues and subsequent examination of the phosphorylation state of these mutant receptors upon exposure to agonist.

Interestingly, the use of peptides derived from the carboxyl terminus of rhodopsin (12), a N-formyl peptide receptor fusion protein (23) or mutant C5α receptors in which serine residues...
in the carboxyl terminus are substituted by alanines (25), indicates that GRK-mediated phosphorylation may proceed in a sequential manner. Thus mutation of a single residue, for example Ser-338 of rhodopsin, results in inhibition of phosphorylation of both Thr-336 and Ser-343. In all these examples a pair of acidic amino acids is located amino-terminal to the postulated initial site of phosphorylation (Fig. 9). Phosphorylation of the four serines in the third loop of the αC10 receptor, however, appears to occur independently because each of the four mutant receptors (EESSSA, EESSAS, EEASS, and EASSS) are phosphorylated to approximately 75% of the wild type receptor (EESSS) level (24). It remains to be determined if the nonsequential nature of GRK-mediated αC10 phosphorylation reflects differences between different GRKs, the close proximity of the αC10 serine residues, or their third loop location. In this respect it will be of interest to determine the sequential or nonsequential nature of GRK2 and GRK5-mediated βAR phosphorylation.

Both the β2AR and rhodopsin systems have been observed to be phosphorylated in vitro to stoichiometries of greater than 7 mol/mol (3, 26, 27); however, agonist-induced phosphorylation of the β2AR has been observed to be approximately 1–2 mol/mol in intact cells (28). High stoichiometries of kinase and receptor and low concentrations of proteins that limit the extent of phosphorylation, such as β-arrestin and phosphatases. An important question to ask is whether the sites identified in our in vitro study represent the sites of in vivo phosphorylation. A recent study on mouse rhodopsin found the primary sites of in vivo phosphorylation by GRK1 to be Ser-338 and Ser-334 (14). These findings agree with several in vitro studies that found Ser-338 to be a major site of phosphorylation (11, 13–16, 29). Ser-338 and Ser-334 were also found to be the two major sites of in vitro phosphorylation in bovine rhodopsin under several experimental conditions (11, 13). Considering these findings, we suggest that the major in vitro sites of GRK-mediated βAR phosphorylation identified in this study potentially represent important sites of in vivo phosphorylation.

Increasing the stoichiometry of GRK2-mediated βAR phosphorylation from ~1.0 to 5.0 mol P/mol receptor had no effect on the number or the sites phosphorylated by this kinase (Fig. 7A). These results suggest that the interaction with Gβγ serves to facilitate the GRK2-receptor interaction without significantly altering the mode of action of the kinase. Similar results have recently been reported for GRK2 phosphorylation of rhodopsin (11). Interestingly, although GRK2 and GRK5 phosphorylate an overlapping series of residues, significant differences exist: the GRK5-specific phosphorylation of Thr-393 and Ser-411 and the differential distribution of phosphate between the phosphoacceptors. This specificity potentially reflects subtle differences in the nature of the GRK2 and GRK5 binding sites on the β2AR.

Acknowledgments—We thank Judy Phelps and Dr. Richard Cook for amino acid and phosphopeptide sequencing. Darrell Capel for GRK and Gβγ purifications, Carter Stone and Sturgis Payne for preparation of reconstituted βAR, Grace Irons for virus culture, and Mary Holben and Donna Addision for secretarial assistance.

REFERENCES

1. Inglese, J., Friedman, N. J., Koch, W. J., and Lefkowitz, R. J. (1993) J. Biol. Chem. 268, 23735–23738
2. Premont, R. T., Inglese, J., and Lefkowitz, R. J. (1995) FASEB J. 9, 175–182
3. Pitcher, J. A., Inglese, J., Higgins, J. B., Ariza, J. L., Casey, P. J., Kim, C., Benovic, J. L., Kwatra, M. M., Caron, M. G., and Lefkowitz, R. J. (1992) Science 257, 1264–1267
4. Pitcher, J. A., Touhara, K., Payne, E. S., and Lefkowitz, R. J. (1995) J. Biol. Chem. 270, 11707–11711
5. Premont, R. T., Koch, W. J., Inglese, J., and Lefkowitz, R. J. (1994) J. Biol. Chem. 269, 6832–6841
6. DeMann, H. G., Bouvier, M., Benovic, J. L., Caron, M. G., and Lefkowitz, R. J. (1997) J. Biol. Chem. 272, 14282–14288
7. Bouvier, M., Hausdorff, W. P., De Blasi, A., O’Dowd, B. F., Kobilka, B. K., Caron, M. G., and Lefkowitz, R. J. (1988) Nature 333, 370–373
8. Hausdorff, W. P., Bouvier, M., O’Dowd, B. F., Irons, G. P., Caron, M. G., and Lefkowitz, R. J. (1989) J. Biol. Chem. 264, 12657–12665
9. Hausdorff, W. P., Campbell, P. T., Ostrowski, J., Yu, S. S., Caron, M. G., and Lefkowitz, R. J. (1991) Proc. Natl. Acad. Sci. U. S. A. 88, 2979–2983
10. Palczewski, K., Buczylko, J., Kaplan, W. M., Pdans, A. S., and Crabb, J. W. (1991) J. Biol. Chem. 266, 12949–12955
11. Palczewski, K., Ohguro, H., Premont, R. T., and Inglese, J. (1995) J. Biol. Chem. 270, 15294–15298
12. Ohguro, H., Palczewski, K., Ericsson, L. H., Walsh, K. A., and Johnson, R. S. (1997) J. Biol. Chem. 272, 14259–14262
13. Ohguro, H., Johnson, R. S., Ericsson, L. H., Walsh, K. A., and Palczewski, K. (1994) Biochemistry 33, 1023–1028
14. Ohguro, H., Van Haasser, J. P., Millari, A. H., and Palczewski, K. (1995) J. Biol. Chem. 270, 14259–14262
15. Papac, D. I., Oatios, J. E., Crouch, R. K., and Knapp, D. R. (1993) Biochemistry 32, 5930–5934
16. McDowell, J. H., Nowacki, J. P., and Hargrave, P. A. (1993) Biochemistry 32, 4968–4974
17. Benovic, J. L., Shorr, R. G., Caron, M. G., and Lefkowitz, R. J. (1984) Biochemistry 23, 4510–4518
18. Ceriones, R. A., Strufović, B., Benovic, J. L., Lefkowitz, R. J., and Caron, M. G. (1983) Nature 306, 562–566
19. Samaria, P., Catecchia, S., Costa, T., and Lefkowitz, R. J. (1993) J. Biol. Chem. 268, 4625–4636
20. Casey, P. J., Graziano, M. P., and Gilman, A. G. (1989) Biochemistry 28, 611–616
21. Ohguro, H., Palczewski, K., Regan, J. W., Caron, M. G., Lefkowitz, R. J., and Benovic, J. L. (1991) Biochemistry 30, 5118–5125
22. Palczewski, K., Arendt, A., McDowell, J. H., and Hargrave, P. A. (1989) Biochemistry 28, 8764–8770
23. Prosnowitz, E. R., Kim, C. M., Benovic, J. L., and Ye, R. D. (1995) J. Biol. Chem. 270, 1130–1137
24. Eason, M. G., Moreira, S. P., and Liggett, S. B. (1995) J. Biol. Chem. 270, 4681–4688
25. Giannini, E., Brouchin, L., and Boulay, F. (1995) J. Biol. Chem. 270, 19166–19172
26. Aton, B. R., Litman, J. J., and Jackson, M. L. (1984) Biochemistry 23, 1737–1741
27. Wilcken, U. and Kühn, H. (1982) Biochemistry 21, 3014–3022
28. Strasser, R. H., Benovic, J. L., Caron, M. G., and Lefkowitz, R. J. (1986) Biochemistry 25, 6362–6366
29. Pullen, N., and Akhtar, M. (1994) Biochemistry 33, 14536–14542

Fig. 9. Alignment of known and postulated G protein-coupled receptor GRK phosphorylation sites. The sequences surrounding the GRK-mediated phosphorylation sites of the human β2AR and rhodopsin and the putative GRK-mediated phosphorylation sites of the αC10, N-formyl peptide, and C5α receptor are shown. The sites of phosphorylation are indicated in bold type, the proposed initial sites of phosphorylation are underlined, and pairs of acidic residues are boxed.