Mitochondrial sub-cellular localization of cAMP-specific phosphodiesterase 8A in ovarian follicular cells

Amel Lounas¹, Nathalie Vernoux², Marc Germain³, Marie-Eve Tremblay² & François J. Richard¹

Cyclic adenosine monophosphate (cAMP) is a ubiquitous secondary messenger that plays a central role in endocrine tissue function, particularly in the synthesis of steroid hormones. The intracellular concentration of cAMP is regulated through its synthesis by cyclases and its degradation by cyclic nucleotide phosphodiesterases (PDEs). Although the expression and activity of PDEs impact the specificity and the amplitude of the cAMP response, it is becoming increasingly clear that the sub-cellular localization of PDE emphasizes the spatial regulation of the cell signalling processes that are essential for normal cellular function. We first examined the expression of PDE8A in porcine ovarian cells. PDE8A is expressed in granulosa cells, cumulus cells and oocytes. Second, we assessed the mitochondrial sub-cellular localization of PDE8A. Using western blotting with isolated mitochondrial fractions from granulosa cells and cumulus-oocyte complexes revealed immuno-reactive bands. PDE assay of isolated mitochondrial fractions from granulosa cells measured specific PDE8 cAMP-PDE activity as PF-04957325-sensitive. The immune-reactive PDE8A signal and MitoTracker labelling co-localized supporting mitochondrial sub-cellular localization of PDE8A, which was confirmed using immuno-electron microscopy. Finally, the effect of PDE8 on progesterone production was assessed during the in-vitro maturation of cumulus-oocyte complexes. Using PF-04957325, we observed a significant increase (P < 0.05) in progesterone secretion with follicle-stimulating hormone (FSH). Active mitochondria stained with MitoTracker orange CMTMRos were also increased by the specific PDE8 inhibitor supporting its functional regulation. In conclusion, we propose the occurrence of mitochondrial sub-cellular localization of PDE8A in porcine granulosa cells and cumulus cells. This suggests that there is potential for new strategies for ovarian stimulation and artificial reproductive technologies, as well as the possibility for using new media to improve the quality of oocytes.

Cyclic adenosine monophosphate (cAMP) is a ubiquitous secondary messenger that is synthesized in response to the stimulation of G-protein-coupled receptors that mediate a wide variety of important cellular functions. The functions that are mediated by cAMP include those that occur in ovari(al) follicular cells following the stimulation of the follicle-stimulating hormone (FSH) receptor¹ and the luteinizing hormone (LH) receptor². These functions include steroidogenesis, folliculogenesis, cell division, ovulation, oocyte maturation, cumulus cell expansion and luteinisation³.

The intracellular concentration of cAMP is regulated through its synthesis by adenylyl cyclases and its degradation by phosphodiesterases (PDEs). PDEs hydrolyze 3′-5′ cyclic adenosine monophosphate to produce an inactive 5′ adenosine monophosphate. PDEs belong to a superfamily of metallophosphohydrolases that are encoded by 21 genes and grouped into 11 families, based on structural and functional characteristics, tissue distribution and substrate. PDE8 hydrolyzes only cAMP such as PDE4 and PDE7⁴. Other families (PDE5, PDE6 and PDE9) hydrolyze only cGMP or both cyclic nucleotides (PDE1, PDE2, PDE3, PDE10 and PDE11)⁵.

¹Centre de recherche en reproduction, développement et santé intergénérationnelle (CRDSI), Département des sciences animales, Faculté des Sciences de l’agriculture et de l’alimentation, Université Laval, Québec, Québec, G1V 0A6, Canada. ²Centre de recherche du CHU de Québec-Université Laval, Axe Neurosciences, Département de médecine moléculaire, Université Laval, Québec, Québec, G1V 4G2, Canada. ³Département de biologie médicale, Université du Québec à Trois-Rivières, Québec, G8Z 4M3, Canada. Correspondence and requests for materials should be addressed to F.J.R. (email: francois.richard@fsaa.ulaval.ca)
The expression of PDE8A in granulosa cells, cumulus cells and the oocyte. PDE3A is localized in the sarcoplasm and PDE8B in the cytosol. PDE8A and PDE8B both have a very high affinity for cAMP. The PDE8s are both involved in steroidogenesis in Leydig cells, but in different sub-cellular locations: PDE8A in the least studied PDEs, we have claimed the presence of PDE8A in bovine follicular cells. The aim of the present study was to assess whether PDE8A could be detected in mitochondrial-isolated fractions. Western blots were performed on mitochondrial fractions isolated from both granulosa cells and COCs by differential centrifugation. This revealed immuno-reactive bands at molecular weights corresponding to voltage-dependent anion channels (VDAC) and cytochrome c oxidase IV (COXIV) (Fig. 2), supporting the isolation and enrichment of the mitochondria. Immuno-reactive bands corresponding to PDE8A (92, 74, 70, 58, and 56 kDa) were obtained in mitochondrial fractions from both granulosa cells and COCs, indicating the expression of PDE8A in isolated mitochondrial fractions.

The purpose of the following experiment was to assess whether PDE8A could be detected in mitochondrial-isolated fractions. Western blots were performed on mitochondrial fractions isolated from both granulosa cells and COCs by differential centrifugation. This revealed immuno-reactive bands at molecular weights corresponding to voltage-dependent anion channels (VDAC) and cytochrome c oxidase IV (COXIV) (Fig. 2), supporting the isolation and enrichment of the mitochondria. Immuno-reactive bands corresponding to PDE8A (92, 74, 70, 58, and 56 kDa) were obtained in mitochondrial fractions from both granulosa cells and COCs, indicating the expression of PDE8A in isolated mitochondrial fractions.

The next experiments were performed to assess whether PDE8A could be detected in mitochondrial-isolated fractions. Western blots were performed on mitochondrial fractions isolated from both granulosa cells and COCs by differential centrifugation. This revealed immuno-reactive bands at molecular weights corresponding to voltage-dependent anion channels (VDAC) and cytochrome c oxidase IV (COXIV) (Fig. 2), supporting the isolation and enrichment of the mitochondria. Immuno-reactive bands corresponding to PDE8A (92, 74, 70, 58, and 56 kDa) were obtained in mitochondrial fractions from both granulosa cells and COCs, indicating the expression of PDE8A in isolated mitochondrial fractions.

The next experiments were performed to assess whether PDE8A could be detected in mitochondrial-isolated fractions. Western blots were performed on mitochondrial fractions isolated from both granulosa cells and COCs by differential centrifugation. This revealed immuno-reactive bands at molecular weights corresponding to voltage-dependent anion channels (VDAC) and cytochrome c oxidase IV (COXIV) (Fig. 2), supporting the isolation and enrichment of the mitochondria. Immuno-reactive bands corresponding to PDE8A (92, 74, 70, 58, and 56 kDa) were obtained in mitochondrial fractions from both granulosa cells and COCs, indicating the expression of PDE8A in isolated mitochondrial fractions.

Gene	Primer	Primer sequences	Expected size of PCR product (bp)
PDE8A	F	AAAGCACCCTCAGACGATGCAAC	149
PDE8A	R	GCATCGGTGGATTGACAGTCCG	

Table 1. Primers used to perform PCR amplifications.
Using the PDE8-specific inhibitor, PF-04957325, we obtained an IC50 of 2.5 ± 0.3 nM in granulosa cell extracts (Fig. S4), consistent with the use of an IC90 of 30 nM23. In granulosa cell extracts, 2.55 ± 0.08 picomoles of cAMP hydrolyzed per minute per million cells was measured as the total cAMP-PDE activity (Table 2).

Figure 1. PDE8A expression in ovarian follicular cells. (A) PDE8A transcript detection by RT-PCR in ovarian follicular cells using PDE8A-F and PDE8A-R primers. Lane 1: PCR conducted without template; Lane 2: granulosa cells; Lane 3: COC; Lane 4: cumulus cells; Lane 5: oocytes. Amplifications were conducted on three biological replicates (n = 3). (B) Western blot of PDE8A in ovarian follicular cells using anti-PDE8A (Proteintech). Lane 1: granulosa cells; Lane 2: COC; Lane 3: cumulus cells; Lane 4: oocytes. Protein molecular mass markers are indicated on the right (kDa) (one representative replicate of 3). Immunohistochemical localization of PDE8A in (C) early antral follicle and (D) COC (n = 3). Immunolabelling with anti-PDE8A (Proteintech) was observed with a green signal. The DNA signal was obtained with DAPI in blue. PDE8A signal was calibrated with the non-specific IgG signal. Oocyte diameter is 100 µm.

Figure 2. Western blot of granulosa cell protein extracts (lane 1), mitochondrial fractions from granulosa cells (lane 2), or COCs (lane 3), showing the relative abundance of PDE8A (Proteintech), voltage-dependent anion channel (VDAC, Cell signaling technology Inc.) and cytochrome c oxidase subunit IV (COXIV, Cell signaling technology Inc.). Protein molecular mass markers are indicated on the right (kDa).
cAMP-PDE activity that was sensitive to PF-04957325 was 1.72 ± 0.06 picomoles of cAMP hydrolyzed per minute per million cells. This suggests that PDE8 comprises more than two thirds of the cAMP-PDE activity in granulosa cells, as can be seen based on its sensitivity to PF-04957325. In isolated mitochondrial fractions from granulosa cells, the PDE-PDE activity is one thousandth the one in granulosa cells extracts, and 77% of the activity was found to be PF-04957325-sensitive (Table 2). Thus, these data support measuring PDE8 in mitochondrial fractions as both IBMX-insensitive and PF-04957325-sensitive activities.

	Total PDE activity	PF-sensitive PDE activity (Percentage, %)
Granulosa cells	2.55 ± 0.08	1.72 ± 0.06 (67,4%)
Isolated mitochondria	1.10 ± 0.05	0.85 ± 0.05 (77,2%)

Table 2. Total and PF-04957325-sensitive PDE activities measured in granulosa cell homogenates and in mitochondria isolated fractions. Measurements were conducted on two biological replicates in triplicate (n = 2). [PF-04957325] = 30 nM. *Picomoles of cAMP hydrolyzed/min/million cells, **femtomoles of cAMP hydrolyzed/min/fraction.

Discussion
This study indicates that PDE8A is both expressed and functional in the granulosa and cumulus cells of the ovarian follicle. Sub-cellular localization of PDE8A is also suggested by the following observations. Mitochondrial isolated fractions showed immuno-reactive bands through western blot techniques, showed both PDE8 IBMX-insensitive and PDE8 PF-04957325-sensitive cAMP-PDE activity, and were immuno-reactive to PDE8A specific antibody. The subcellular localization of PDE8A was also supported by immunoelectron microscopy, which showed immunostaining for PDE8A associated with mitochondria. During IVM, FSH-stimulated progesterone secretion from cumulus cells was significantly regulated by the specific inhibition of PDE8. Active mitochondria were increased by the specific PDE8 inhibition.

FSH-stimulated progesterone secretion has been previously observed in granulosa cells and COCs28,29. Specific inhibition of PDE8 by PF-04957325 resulted in a significant increase in progesterone secretion when stimulated by FSH. An increase in progesterone secretion by IBMX has been reported when granulosa cells were treated with FSH30. Interestingly, FSH-induced progesterone secretion in human cumulus granulosa cells was decreased by a common herbicide, atrazine31. This environmental contaminant alters steroidogenesis by decreasing cAMP through an increase in cAMP-PDE activity30, supporting the involvement of phosphodiesterase in progesterone secretion.

Recent studies have reported that granulosa cells from human expressed both PDE8A and PDE8B32. In both COCs and granulosa cells from cattle, IBMX-insensitive cAMP-PDE activity was observed32. In cumulus and granulosa cells, both PDE8A and PDE8B were present32. In swine, a recent study showed IBMX-insensitive cAMP-PDE activity in the membrane-resistant membrane (DRM)15 of granulosa cells, suggesting the presence of an active PDE8 in membrane microdomains. Although this PDE8 activity was not exclusive to DRM, only PDE8A was further studied using western blot15.

Different roles and functions have been proposed for PDE8 depending on which tissues it is present in. It has been hypothesized that the PDE8A gene may play a role in polycystic ovary syndrome in humans (PCOS). The hypothesis is based on the idea that reduced PDE8A expression or activity in theca cells of the ovarian follicle...
Figure 3. Immunolocalization in mitochondrial isolated fractions from granulosa cells by immunofluorescence using anti-P450scc (green, B, United States Biological), anti-PDE8A (green, E, Proteintech) and MitoTracker (orange, A, D). Merge signals are shown in (C, F). The signal was calibrated with non-specific IgG. Magnification is shown as a bar of 10 μm.

Figure 4. PDE8A sub-cellular localization in cumulus cells (A, B) was revealed by immunoelectron microscopy. After isolation COCs were fixed in acrolein and thick slices were incubated with anti-PDE8A. Immunolabelling of PDE8A with mitochondria were marked by arrows. Negative control with IgG is shown in (C).
could contribute to excessive androgen production32. Despite the identification of new PDE8A variants and their localization in the plasma membrane of theca cells, little evidence is available about how genetic variations in PDE8A affect the risk of developing PCOS. The involvement of PDE8 in testosterone production by Leydig cells33 is noteworthy. Based on responses to the PDE8-specific inhibitor PF-04957325 and to gene null mutation, PDE8A and PDE8B (both strongly expressed) have been found to suppress resting steroidogenesis (including testosterone synthesis)23. PDE8A has been observed to co-localize with mitochondrial P450scc in Leydig cells 19, as seen in isolated mitochondrial fractions from granulosa cells in this study (Fig. 3C).

Mitochondrial function can be modulated by calcium and cAMP. The null mutation of PDE8A gene in mice potentiates cAMP/PKA-elicited increases in L-type Ca2+ channel current and sarcoplasmic Ca2+ release during beta-adrenergic stimulation34. The transport of Ca2+ modulates various aspects of mitochondrial function35 such as an increase in ATP production and activation of mitochondrial metabolism36. As explained in a recent review, cAMP signalling is recognized as a modulator for mitochondrial dynamics10. It appears that mitochondrial PDE2A regulates respiratory metabolism12 in rodent liver and brain tissue. In the present study, less than 20% of cAMP-PDE activity was EHNA-sensitive (PDE2-sensitive) in isolated mitochondria from granulosa cells (data not shown). When using gene null mutation in Drosophila, the cAMP-PDE Prune localized in the mitochondrial matrix was found to play a role in mitochondrial biogenesis13.

One way of anchoring PDE to membranes involves N-myristoylation. This process appears to take place for human PDE8A36. There is a 92% sequence homology between swine PDE8A and its human counterpart, which indicates that they contain similar N-myristoylation sequences. This was validated using Myristoylator (https://web.expasy.org/myristoylator/). PDE8A also contains a Per-ARNT-Sim (PAS) domain37. This is a structural motif and a protein sensor domain that is involved in various biological processes, such as responding to partial pressure changes in oxygen and redox signalling. In addition, it has been demonstrated that PDE8 may form a complex with the regulatory subunit of PKA channeling cAMP degradation to facilitate cAMP desensitisation38. The mitochondrial subcellular localization of PDE8A suggests its contribution to finely tuned mitochondrial function such as steroidogenesis.

In conclusion, the role of cAMP regulation in ovarian follicular cells must be better understood in order to improve artificial reproductive technologies for livestock producers and would-be parents. Improving the quality of the oocyte obtained from ovarian stimulation and/or IVM remains one of the greatest challenges of artificial

Figure 5. Effect of PDE8A inhibition on (A) progesterone synthesis and (B) active mitochondria in cumulus cells during in-vitro maturation of COC, for 48 h in IVM medium, without stimulation (Ct), with recombinant human FSH (FSH), with PF-04957325 (specific PDE8 inhibitor, PF) or with FSH and PF-04957325 (FSH + PF). (A) Progesterone was assayed in triplicate in three biological replicates (n = 3). Different letters indicate statistically significant differences (P < 0.05). (B) Active mitochondria were measured in cumulus cells using MitoTracker. Asterisk indicates statistical significance (P < 0.05) with the control. (C) Representative images of active mitochondria measured in cumulus cells using MitoTracker orange CMTMRos.
reproduction. The involvement of molecular devices such as PDE8A and its mitochondrial sub-cellular localization may have implications in steroidogenesis, oocyte physiology and obtaining oocyte developmental competence. Further investigation is required.

Materials and Methods

Chemicals. Unless otherwise stated, all chemicals were purchased from Sigma Chemical Company (St. Louis, MO, USA).

Ovary collection and tissue recovery. As described previously, pre-pubertal pig ovaries were collected. Briefly, the ovaries were recovered from a local slaughterhouse, placed in saline solution (0.9% NaCl) containing antibiotics and antimycotics (100,000 IU/L penicillin G, 100 mg/L streptomycin, 250 µg/L amphotericin B) and maintained at 37°C. On arrival at the laboratory, they were rinsed in saline solution containing antibiotics and antimycotics at 37°C. Antral follicles (3 to 6 mm) were punctured using an 18-gauge needle attached to a 10 mL syringe in order to collect a mixture of follicular cells (cumulus-oocyte complexes and granulosa cells) in follicular fluid. Granulosa cells and cumulus-oocyte complexes were selected according to the criteria described previously. They were then washed with HEPEs buffered Tyrode medium containing 0.01% (w/v) polyvinyl alcohol (PVA-HEPES). The cells were used immediately or flash-frozen for future use depending on the experiment.

RT-PCR. Total RNA was isolated from several sheets of granulosa cells, 50 COC, cumulus cells obtained from 50 COCs and 50 oocytes denuded of cumulus cells (DO) using the PicoPure™ RNA Isolation Kit. RNA samples were suitably diluted in elution buffer after determining concentration and purity using a Nanodrop bioanalyser (ThermoFisher Scientific, Waltham, MA). Total RNA was reverse transcribed using the qScript Flex cDNA Kit from Quanta Biosciences (Beverly, MA). The primer pairs designed for the porcine PDE8A sequence (shown with the PCR product size in Table 1) were purchased from Integrated DNA Technologies (Coralville, IA). The cDNA was amplified using an AccuStart II PCR SuperMix (2X) kit from Quanta Biosciences. Negative controls were treated in parallel and under the same conditions in order to detect residual contamination with genomic DNA. PCR products were visualized via electrophoresis using 2% agarose gel stained with EZ vision DNA dye (VWR, Ville Mont-Royal, Québec). All experiments were done in triplicate. The PCR products were then purified for sequencing at the Plateforme de Séquençage et de Génotypage des Génomes (CHUL) in order to confirm their homology with porcine PDE8A (XM_021098897).

Western blotting. Proteins were extracted from granulosa cells using hypotonic buffer (TRIS-HCl 20 mM pH 7.4, EDTA 1 mM, EGTA 0.2 mM, sodium fluoride 50 mM, benzamidine 50 mM, sodium pyrophosphate 10 mM, aprotinin 4 µg/mL, peptatin 0.7 µg/mL, soybean trypsin inhibitor 10 µg/mL, leupeptin 0.5 µg/mL, and phosphatase inhibitor phenylmethylsulfonyl fluoride (PMSF) 2 mM). The total protein and mitochondrial protein isolated from follicular cells (20 µg of granulosa cell protein extract, 50 COCs, cumulus cells obtained from 50 COCs, 50 oocytes denuded of cumulus cells (DO) and mitochondrial fractions isolated from granulosa cells and COCs (see below) and protein standards 161-0374 (BioRad, Hercules, CA)) were loaded onto 7.5% SDS-polyacrylamide gel for electrophoresis. The proteins were then transferred onto polyvinylidene difluoride (PVDF) membranes, which were blocked for 60 min with TBS containing 0.1% (v/v) Tween-20 and 5% (w/v) non-fat dry milk. Blots were then treated at 4°C overnight with primary antibodies. These primary antibodies were namely anti-PDE8A (Proteintech, Rosemont, IL, cat no. 13956-1-AP), anti-VDAC (Cell signaling technology Inc., Danvers, MA, USA, #4866S) and anti-COXIV (Cell signaling technology Inc., Danvers, MA, USA, #4850S). All primary antibodies were diluted by a factor of 1:1 000. The membranes were then blotted for 1 h with horseradish-peroxidase-conjugated secondary antibody Goat Anti-Rabbit IgG (Invitrogen, 1:20 000) and proteins were detected by chemiluminescence, using the Clarity Western ECL Substrate detection system from Bio-Rad (Mississauga, Ontario, Canada, cat no. 170–5061). Images were obtained using a Fusion FX7 reader from Vilber-Lourmat Lab Equipment (Montreal Biotech Inc., Dorval, CA) with Fusion software. Bio-1D software (Montreal Biotech Inc) was used for image analysis.

Immunohistochemistry. Immunohistochemistry was performed on sections of ovarian pieces and COCs. Pieces of tissues were rapidly fixed in Bouin's fixative solution for 1 h at room temperature while COCs were fixed in 4% (w/v) PFA for 10 min at room temperature. Both of them were dehydrated in four increasing concentrations of alcohol baths and impregnated with hot paraffin (three baths at 44–60°C) to solidify the tissue. Samples enrobed with paraffin were then cut into 5 µm sections using a microtome (Microm HM330 Heidelberg, Germany) and sections were mounted on slides prior to use. The slides were deparaffinized, rehydrated in ethanol baths and washed in PBS solution. Endogenous peroxidase activity was inhibited with 3% hydrogen peroxide in methanol for 10 min and antigen retrieval was achieved by boiling the slides for 20 min in Tris 10 mM/EDTA 1 mM pH 9.0. Non-specific sites were blocked with 1% BSA in PBS for 20 min, slides were next incubated overnight (4°C) with a primary antibody anti-PDE8A (1:200) and the immune complex was revealed after incubation with Alexa Fluor 488 Goat Anti-Rabbit IgG secondary antibody (Invitrogen, 1:200) for 1 h. Nonspecific labeling was assessed using an equivalent concentration of non-PDE8A-immune IgG. On a Nikon Eclipse TE2000-E inverted confocal microscope (Nikon, Mississauga, ON, Canada) at 40 × magnification.

Assessment of active mitochondria. Active mitochondria in cumulus cells were assessed according to the treatments for progesterone quantification. After IVM, COGs were labelled using 500 nM of MitoTracker
Orange (CMTMRos, ThermoFisher Scientific, Waltham, MA) for 30 min at 37.5 °C. The samples were washed twice in PBS solution and fixed with 4% (w/v) PFA for 10 min in the dark at 37 °C. After fixation, COCs were prepared for paraffin section as described above. From 5 μm sections stored in dark at 4 °C, epifluorescent images were obtained with a Zeiss AxioObserver.Z1 epifluorescence microscope using widefield illumination (Colibri.2 at 530 nm and rhodamine filter) with a 40x/0.95NA objective (Carl Zeiss Canada Ltd., Toronto) and a Zeiss AxioCam MRm camera. The focus was made on the brightest fluorescence plane and the acquisition time (200 ms) was kept constant for all experiments.

Isolation of mitochondria. Mitochondria were isolated from 1 000 COCs and 4 millions of granulosa cells by differential centrifugation after cell lysis43. Individual granulosa cells were obtained by gently disrupting sheets of tissue using a micropipette and counted using a NEUBAUER type hemocytometer. The cells were washed twice by centrifuging (1500 × g for 2 min) in 1 mM Tris-HCl buffer (pH 7.0) containing 0.1 M of NaCl, 5 mM of KCl and 7.5 mM of MgCl₂. The cells were then mechanically trituated in 3.5 mM Tris-HCl buffer (pH 7.8) containing 2 mM of NaCl and 0.5 mM of MgCl₂ (half of the cell pellet volume). The cell homogenate was immediately thinned with the 3.5 mM Tris-HCl buffer, diluted 10-fold. After differential centrifugation (13,000 × g for 1 min), the mitochondria were washed twice by gentle pipetting in 35 mM Tris-HCl buffer (pH 7.8) containing 20 mM of NaCl and 5 mM of MgCl₂, and centrifuged (13,000 × g for 1 min). The pellet was either immediately used or stored at −80 °C according to the experiments. The entire procedure was performed at 4 °C.

Immunofluorescence. To immunostain mitochondrial PDE8A, freshly pelleted mitochondria were suspended in 1:1 ratio of Tris-HCl buffer pH 7.8 and were labelled using 500 nM of MitoTracker Orange (CMTMRos, ThermoFisher Scientific, Waltham, MA) at 38 °C. The samples were washed twice in PBS solution, centrifuged at 14,000 × g for 5 min to eliminate residual markers, fixed with 4% (w/v) PFA in 0.2% Triton X-100 for 10 min in the dark at room temperature, blocked with 5% BSA in PBS for 1 h, then kept at 4 °C overnight with PDE8A polyclonal antibody (Proteintech product number 13956-1-AP, 1:500 in PBS) or porcine P450scc polyclonal antibody (United States Biological, Salem, MA, product number 362774, 1:100 in PBS). The immune-reactive signal was assessed using an equivalent concentration of non-immune IgG (Jackson ImmunoResearch Laboratories Inc., West Grove, PA, USA). All the samples were mounted on glass slides using Grace Bio-Labs 200 SecureSeal imaging spacers (9 mm dia.). Non-specific labelling was assessed using an equivalent concentration of non-immune IgG (Jackson ImmunoResearch Laboratories Inc., West Grove, PA, USA). The immune-reactive signal of tissue using a micropipette and counted using a NEUBAUER type hemocytometer. The cells were washed twice in PBS solution, centrifuged (1500 × g for 2 min) in 1 mM Tris-HCl buffer (pH 7.0) containing 0.13 M of NaCl, 5 mM of KCl, and 25 μM of 2-mercaptoethanol, 0.1 mg/ml of cysteine, 10% (v/v) filtered porcine follicular fluid, and 0.01 µM of cAMP present at 34 °C, following the method described previously43. The granulosa cells were lysed in hypotonic buffer54. The assay was carried out in 200 µL (final volume) of 40 mM Tris-HCl buffer (pH 8.0) containing 10 mM of MgCl₂, 5 mM of 2-mercaptoethanol, 0.75 mg/ml of BSA (Fraction V) and 1 µM of cold cAMP plus 15 nM of [³H] cAMP (1 × 10⁵ cpm/tube, 30 Ci/mmol, GE Healthcare, Baie d’Urfé, QC, Canada). Following incubation with 5’-nucleotidase, adenosine was purified by anion-exchange chromatography followed by quantification using liquid scintillation counter (Perkin Elmer Winspectral 1414, Woodbridge, Ont). The PDE activity was measured both with and without PDE8 inhibitor PF-04957325 (30 nM), and with IBMX (500 mM). The concentration of PF-04957325 that was used in the assay was calculated from the enzyme activity IC₅₀ based on a dose response curve (Fig. S4), and is in accordance with previously used values25. Separate experiments were performed in triplicate for each enzyme assay.

Immunoelectron microscopy. A well-defined protocol was adapted for ovarian cells. Fifty fresh COCs were fixed directly in 0.5 mL of 3.5% acrolein for 30 min at room temperature, then washed twice in PBS to remove the excess fixative. After a quick centrifugation, cell pellets (COCs) were gently mixed with 125 µL of 4% agarose and placed at 4 °C until solid, and then cut into 50 µm sections using a vibratome (Leica VT1000S, Leica Biosystems, Concord, Ont). These were washed three times in PBS for 10 min each, held in 0.1% sodium borohydride (NaBH₄) in PBS for 30 min, and washed again in PBS (three times for 10 min). They were then blocked for 2 h in PBS containing 10% fetal bovine serum, 3% BSA and 0.01% Triton X-100 and incubated with anti-PDE8A (Proteintech product number 13956-1-AP, 1:500 in blocking solution) overnight at 4 °C. Next, they were washed five times in PBS (5 min each) before incubating the sections with the secondary antibody (1:100 in PBS; gold-coupled (1.4 nm particles) goat anti-rabbit IgG, Nanoprobes, Yaphank, NY, USA) overnight at 4 °C. The sections were then washed three times for 5 min each with PBS, followed by two washes (5 min each) with 3% sodium acetate. Using a gold enhancement kit (HQ Silver, Nanoprobes, Yaphank, NY, USA) overnight at 55 °C, the staining was revealed at room temperature for 1 min, rinsed quickly with sodium acetate solution, then rinsed three times for 5 minutes each with PBS. Post fixation of the COCs sections was achieved with osmium tetroxide. The sections were then dehydrated with sequential alcohol baths and propylene oxide. As described previously40, the sections were embedded in Durcupan resin between two ACLAR sheets and placed in the oven at 55 °C for 3 days. Ultrathin sections of ~70 nm were generated from the region of interest of the 50 µm sections using a Leica UC7 ultramicrotome. Images were acquired using a FEI Tecnai Spirit G2 transmission electron microscope (Thermo Fisher Scientific Company, Hillsboro, OR) at 80 kV.

Progesterone quantification. As previously described, a commercial immunoassay (ALPCO Diagnostics, Salem, NH, product number 11-PROHU-E01) was used to measure the progesterone secreted by porcine COCs cultured in North Carolina State University-23 (NCSU-23) medium without bovine serum albumin containing 25 μM of 2-mercaptoethanol, 0.1 mg/ml of cysteine, 10% (v/v) filtered porcine follicular fluid, and 0.01 µg/
ml of recombinant human FSH (GONAL-f, Serono, Mississauga, ON, Canada)⁴⁷. This was done in the presence or absence of the PDE8 inhibitor (PF-04957325, donated by Pfizer under a Material Transfer Agreement). The concentration of PF-04957325 (300 nM) corresponded to the cell based IC⁹⁰.²³ For each experimental condition, 10 COCs were incubated for 48 h in an equal volume (125 μL) of medium in 96-well assay plates. Maturation medium and COCs were recovered from three independent experiments and kept at −80 °C until use. The progesterone in the maturation medium was assayed in triplicate according to the manufacturer’s instructions. The sensitivity of the assay was 0.1 ng/mL.

Statistical analysis. All means are presented with their corresponding SEM. Statistical analysis was performed using GraphPad Prism 8.0.1 for MacOS (GraphPad Software Inc., San Diego, CA). Statistical significance was assessed by one-way ANOVA, followed by either Dunnett’s or Bonferroni’s multiple comparison post hoc tests in order to identify individual differences between means. Probabilities of P < 0.05 were considered statistically significant.

Third party rights. The PDE8-specific inhibitor, PF-04957325, was donated by Pfizer under a Material Transfer Agreement.

Data Availability All data generated during this study are included in this published article.

References

1. Glaouegen, P., Crepieux, P., Heitzler, D., Poupou, A. & Reiter, E. Mapping the follicle-stimulating hormone-induced signaling networks. Front Endocrinol Lausanne 2, 45 (2011).
2. Conti, M. Specificity of the Cyclic Adenosine 3′,5′-Monophosphate Signal in Granulosa Cell Function. Biol. Reprod. 67, 1653–1661 (2002).
3. Richard, F. J., Santiquet, N., Bergeron, A. & Raheem Khan, D. Signal Transmission Pathways in Oocyte Maturation. In Animal Models and Human Reproduction (eds Constantinescu, G. & Schatten, H.) 177–212, https://doi.org/10.1002/9781118881286.ch8 (John Wiley & Sons, Inc., 2017).
4. Beavo, J. A. & Brunton, L. L. Cyclic nucleotide phosphodiesterase. Annu Rev Physiol 79, 237–260 (2017).
5. Richard, F. J., Tsafritsi, A. & Conti, M. Role of phosphodiesterase type 3A in rat oocyte maturation. Biol. Reprod. 65, 1444–1451 (2001).
6. Zhang, M., Su, Y. Q., Sugikura, K., Xia, G. & Eppig, J. J. Granulosa cell ligand NPPC and its receptor NPR2 maintain meiotic arrest in mouse oocytes. Science 330, 366–369 (2010).
7. Jin, S. L., Richard, F. J., Kuo, W. P., D’Ercole, A. J. & Conti, M. Impaired growth and fertility of cAMP-specific phosphodiesterase PDE4-deficient mice. Proc. Natl. Acad. Sci. USA 96, 11998–12003 (1999).
8. Richard, F. J., Santiquet, N., Bergeron, A. & Khan, D. R. Signal Transduction Pathways in Oocyte Maturation. In Animal Models and Human Reproduction 177–212, https://doi.org/10.1002/9781118881286.ch8 (John Wiley & Sons, Inc., 2017).
9. Verde, I. Liver receptor homolog-1 is essential for pregnancy. Nat Med 19, 1061–1066 (2013).
10. Aciin-Perez, R. et al. A phosphodiesterase 2A isoform localized to mitochondria regulates respiration. J Biol Chem 286, 30423–30432 (2011).
11. Zhang, F. et al. The CAMP phosphodiesterase Prune localizes to the mitochondrial matrix and promotes mtDNA replication by stabilizing TFAM. EMBO Rep 16, 520–527 (2015).
12. Zhao, X. et al. Phosphoproteome Analysis of Functional Mitochondria Isolated from Resting Human Muscle Reveals Extensive Phosphorylation of Inner Membrane Protein Complexes and Enzymes* T. S., Mol. Cell. Proteomics 10, 1–14 (2011).
13. Bergeron, A., Gilmour, E., Sirard, M. A. & Richard, F. J. Active 3′,5′ cyclic nucleotide phosphodiesterases are present in detergent-resistant membranes of murine granulosa cells. Reprod. Fertil. Dev. 29, 778–790 (2017).
14. Lingwood, D. & Simons, K. Lipid rafts as a membrane-organizing principle. Science 327, 46–50 (2010).
15. Simons, K. & Toomre, D. Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1, 31–39 (2000).
16. Richard, F. J., Santiquet, N., Bergeron, A. & Khan, D. R. Signal Transduction Pathways in Oocyte Maturation*. In Animal Models and Human Reproduction 177–212, https://doi.org/10.1002/9781118881286.ch8 (John Wiley & Sons, Inc., 2017).
17. Verde, I. et al. Myomegalin is a novel protein of the golgi/centrosome that interacts with a cyclic nucleotide phosphodiesterase. J Biol Chem 276, 11189–11198 (2001).
18. Mika, D., Richter, W., Westenbroek, R. E., Catterall, W. A. & Conti, M. PDE4B mediates local feedback regulation of beta(1)-adrenergic cAMP signaling in a sarcolemmal compartment of cardiac myocytes. J Cell Sci 127, 1033–1042 (2014).
19. Ahmad, F. et al. Regulation of sarcoplasmic reticulum Ca2+ ATPase 2 (SERCA2) activity by phosphodiesterase 3A (PDE3A) in human myocardium: phosphorylation-dependent interaction of PDE3A1 with SERCA2. J Biol Chem 290, 6763–6776 (2015).
20. Montenisi, S. et al. PDE2A2 regulates mitochondria morphology and apoptotic cell death via local modulation of CAMP/PKA signalling. Cell 6, e21374 (2017).
21. Shimizu-Albergine, M., Tsai, L. C., Patrucco, E. & Beavo, J. A. cAMP-specific phosphodiesterases 8A and 8B, essential regulators of Leydig cell steroidogenesis. Mol Pharmacol 81, 556–566 (2012).
22. Soderling, S. H., Bayuga, S. J. & Beavo, J. A. Cloning and characterization of a CAMP-specific cyclic nucleotide phosphodiesterase. Proc Natl Acad Sci U S A 85, 8991–8996 (1988).
23. Sasserville, M. et al. Characterization of novel phosphodiesterases in the bovine ovarian follicle. Biol. Reprod. 81, 415–425 (2009).
24. Wang, P., Wu, P., Egan, R. W. & Billah, M. M. Human phosphodiesterase 8A splice variants: Cloning, gene organization, and tissue distribution. Gene 280, 183–194 (2001).
25. Sasserville, M., Côté, N., Gagnon, M. C. & Richard, F. J. Up-regulation of 3′,5′ cyclic guanosine monophosphate-specific phosphodiesterase in the porcine cumulus-oocyte complex affects steroidogenesis during in vitro maturation. Endocrinology 149, 5568–5576 (2008).
26. Xia, P., Teleky, E. R. & Armstrong, D. T. Effect of IGF-I on pig oocyte maturation, fertilization, and early embryonic development in vitro, and on granulosa and cumulus cell biosynthetic activity. Mol. Reprod. Dev. 38, 373–379 (1994).
27. Lahav, M., Garmey, J. C. & Veldhuis, J. D. Paradoxical effect of 3-isobutyl-1-methylxanthine on cytochrome P450 cholesterol side-chain cleavage mRNA accumulation in porcine granulosa cells. Mol. Cell. Endocrinol. 117, 203–210 (1996).
28. Pogromic-Majkic, K. et al. Atrazine suppresses FSH-induced steroidogenesis and LH-dependent expression of ovinute genes through PDE-CAMP signaling pathway in human cumulus granulosa cells. Mol. Cell. Endocrinol. 461, 79–88 (2018).
Acknowledgements
The authors thank Isabelle Laflamme, Raphaëlle Sénèchal, Christine Guillemette, Catherine Chaput and Alexandre Bastien for their technical support and advice, Annie Rioux for collecting ovaries, and the Olymel meat-processing company for providing gilt ovaries. This work was supported by the Natural Sciences and Engineering Research Council of Canada grant awarded to F.J.R. (NSERC, RGPIN-2014-04774) and Fonds de recherche Nature et technologies du Québec awarded to F.J.R., M.E.T. and M.G. (FRQNT, 2019–PR-255563). M.E.T. is a Canada Research Chair (Tier 2) in Neuroimmune Plasticity in Health and Therapy.

Author Contributions
A.L. designed the research experiments, performed the experiments, analyzed the data and wrote the manuscript. N.V. performed experiments. M.–E.T. designed experiments, performed experiments, analyzed the data and revised the manuscript. M.G. designed experiments, analyzed data and revised the manuscript. F.J.R. designed the research and funding acquisition, provided materials, analyzed the data and wrote the manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-019-48886-8.

Competing Interests: The authors declare no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s) 2019