The DIS cross-sections ratio \(R = \sigma_L/\sigma_T \) at small \(x \) from HERA data.

A.V. Kotikov

Laboratoire de Physique Theorique ENSLAPP
LAPP, B.P. 100, F-74941, Annecy-le-Vieux Cedex, France

G. Parente

Departamento de Física de Partículas
Universidade de Santiago de Compostela
15706 Santiago de Compostela, Spain

Abstract

We extract the deep inelastic scattering cross-sections ratio \(R = \sigma_L/\sigma_T \) in the range \(10^{-4} \leq x \leq 10^{-1} \) from \(F_2 \) HERA data using very simple relations based on perturbative QCD. The result depends on only one parameter \(\delta \), being \(x^{-\delta} \) the behavior of the parton densities at low \(x \), which has been determined recently with a good accuracy by the H1 group.
In recent years the behaviour of deep inelastic lepton-hadron scattering (DIS) at the small values of Bjorken variable \(x\), has been intensively studied. The present letter is devoted to the behaviour of the ratio of cross-sections of the absorption of a longitudinal- and transverse-polarized photon by hadron: \(R = \sigma_L/\sigma_T\), at small values of \(x\). The ratio \(R\), which may be represented as the combination of the longitudinal \(F_L(x, Q^2)\) and transverse \(F_T(x, Q^2)\) DIS structure functions (SF):

\[
R(x, Q^2) = \frac{F_L(x, Q^2)}{F_T(x, Q^2) - F_L(x, Q^2)}
\]

is a very sensitive QCD characteristic because it is equal to zero in the parton model with spin\(-1/2\) partons (it is very large with spin\(-0\) partons). However, modern DIS experimental data (see the review in [1]) are not accurate enough to determine \(R(x, Q^2)\). In addition, at small values of \(x\), \(R\) data are not yet available, as they require a rather cumbersome procedure (see [2], for example) for the extraction from the experiment.

We study the behaviour of \(R(x, Q^2)\) at small values of \(x\), using the H1 data [3, 4] and the method [5] of replacement of the Mellin convolution by ordinary products. By analogy with the case of the gluon distribution function (see [1, 3, 4, 5, 6]), it is possible to obtain the relation between \(F_L(x, Q^2)\), \(F_T(x, Q^2)\) and \(dF_T(x, Q^2)/d\ln Q^2\) at small \(x\). Thus, the small \(x\) behaviour of the ratio \(R(x, Q^2)\) can be extracted directly from the measured values of \(F_T(x, Q^2)\) and its derivative. These extracted values of \(R\) may be well considered as new small \(x\) “experimental data” [6]. Moreover, when experimental data for \(R\) at small \(x\) become available with a good accuracy, a violation of this exactly perturbative relation will be an indication of the importance of other effects as higher twist contribution and/or of non-perturbative QCD dynamics at small \(x\).

We follow the notation of our previous work in refs. [8, 9]. The singlet quark \(s(x, Q_0^2)\) and gluon \(g(x, Q_0^2)\) parton distribution functions (PDF) [7] at some \(Q_0^2\) are parameterized by (see, for example, [10]):

\[
p(x, Q_0^2) = A_p x^{-\delta}(1 - x)^{\nu_p}(1 + \epsilon_p \sqrt{x} + \gamma_p x) \quad \text{(hereafter } p = s, g).\]

The value of \(\delta\) is a matter of controversy. The “conventional” choice is \(\delta = 0\), which leads to a non-singular behaviour of the PDF when \(x \to 0\). Another value, \(\delta \sim \frac{1}{2}\), was obtained in the studies performed in ref. [11] as the sum of the leading powers of \(\ln(1/x)\) in all orders of perturbation theory. Experimentally, recent NMC data [12] favor small values of \(\delta\). This result is also in agreement with present data for \(pp\) and \(\bar{p}p\) total cross-sections (see [13]) and corresponds to the model of Landshoff and Nachtmann pomeron [14] with the exchange of a pair of non-perturbative gluons, yielding \(\delta = 0.086\). However, the new HERA data [9, 15] prefer \(\delta \geq 0.2\). For example, the \(\delta\) value obtained recently by H1 group [3] seems to depend slowly on \(Q^2\) values. Its average value increases from \(\delta = 0.228\) at \(Q^2 = 8.5\) GeV\(^2\) to \(\delta = 0.503\) at \(Q^2 = 800\) GeV\(^2\).

Further, we restrict the analysis to the case of large \(\delta\) values (i.e. \(x^{-\delta} \gg 1\)) following recent H1 data [3]. The more complete analysis concerning to the extraction of the longitudinal SF \(F_L(x, Q^2)\), may be found in [4], where we took into account also the case \(\delta \sim 0\) corresponding to the standard pomeron.

Assuming the Regge-like behaviour for the gluon distribution and \(F_2(x, Q^2)\) at \(x^{-\delta} \gg 1\):

\[
g(x, Q^2) = x^{-\delta} \tilde{g}(x, Q^2), \quad F_2(x, Q^2) = x^{-\delta} \tilde{s}(x, Q^2),
\]

\[\text{In recent years the behaviour of deep inelastic lepton-hadron scattering (DIS) at the small values of Bjorken variable } x, \text{ has been intensively studied. The present letter is devoted to the behaviour of the ratio of cross-sections of the absorption of a longitudinal- and transverse-polarized photon by hadron: } R = \sigma_L/\sigma_T, \text{ at small values of } x. \text{ The ratio } R, \text{ which may be represented as the combination of the longitudinal } F_L(x, Q^2) \text{ and transverse } F_T(x, Q^2) \text{ DIS structure functions (SF):} \]

\[R(x, Q^2) = \frac{F_L(x, Q^2)}{F_T(x, Q^2) - F_L(x, Q^2)} \]

is a very sensitive QCD characteristic because it is equal to zero in the parton model with spin\(-1/2\) partons (it is very large with spin\(-0\) partons). However, modern DIS experimental data (see the review in [1]) are not accurate enough to determine \(R(x, Q^2)\). In addition, at small values of \(x\), \(R\) data are not yet available, as they require a rather cumbersome procedure (see [2], for example) for the extraction from the experiment.

We study the behaviour of \(R(x, Q^2)\) at small values of \(x\), using the H1 data [3, 4] and the method [5] of replacement of the Mellin convolution by ordinary products. By analogy with the case of the gluon distribution function (see [1, 3, 4, 5, 6]), it is possible to obtain the relation between \(F_L(x, Q^2)\), \(F_T(x, Q^2)\) and \(dF_T(x, Q^2)/d\ln Q^2\) at small \(x\). Thus, the small \(x\) behaviour of the ratio \(R(x, Q^2)\) can be extracted directly from the measured values of \(F_T(x, Q^2)\) and its derivative. These extracted values of \(R\) may be well considered as new small \(x\) “experimental data” [6]. Moreover, when experimental data for \(R\) at small \(x\) become available with a good accuracy, a violation of this exactly perturbative relation will be an indication of the importance of other effects as higher twist contribution and/or of non-perturbative QCD dynamics at small \(x\).

We follow the notation of our previous work in refs. [8, 9]. The singlet quark \(s(x, Q_0^2)\) and gluon \(g(x, Q_0^2)\) parton distribution functions (PDF) [7] at some \(Q_0^2\) are parameterized by (see, for example, [10]):

\[p(x, Q_0^2) = A_p x^{-\delta}(1 - x)^{\nu_p}(1 + \epsilon_p \sqrt{x} + \gamma_p x) \quad \text{(hereafter } p = s, g). \]

The value of \(\delta\) is a matter of controversy. The “conventional” choice is \(\delta = 0\), which leads to a non-singular behaviour of the PDF when \(x \to 0\). Another value, \(\delta \sim \frac{1}{2}\), was obtained in the studies performed in ref. [11] as the sum of the leading powers of \(\ln(1/x)\) in all orders of perturbation theory. Experimentally, recent NMC data [12] favor small values of \(\delta\). This result is also in agreement with present data for \(pp\) and \(\bar{p}p\) total cross-sections (see [13]) and corresponds to the model of Landshoff and Nachtmann pomeron [14] with the exchange of a pair of non-perturbative gluons, yielding \(\delta = 0.086\). However, the new HERA data [9, 15] prefer \(\delta \geq 0.2\). For example, the \(\delta\) value obtained recently by H1 group [3] seems to depend slowly on \(Q^2\) values. Its average value increases from \(\delta = 0.228\) at \(Q^2 = 8.5\) GeV\(^2\) to \(\delta = 0.503\) at \(Q^2 = 800\) GeV\(^2\).

Further, we restrict the analysis to the case of large \(\delta\) values (i.e. \(x^{-\delta} \gg 1\)) following recent H1 data [3]. The more complete analysis concerning to the extraction of the longitudinal SF \(F_L(x, Q^2)\), may be found in [4], where we took into account also the case \(\delta \sim 0\) corresponding to the standard pomeron.

Assuming the Regge-like behaviour for the gluon distribution and \(F_2(x, Q^2)\) at \(x^{-\delta} \gg 1\):

\[g(x, Q^2) = x^{-\delta} \tilde{g}(x, Q^2), \quad F_2(x, Q^2) = x^{-\delta} \tilde{s}(x, Q^2), \]
we obtain the following equation for the Q^2 derivative of the SF F_2:

$$
\frac{dF_2(x, Q^2)}{dlnQ^2} = -\frac{1}{2} x^{-\delta} \sum_{p=s,g} \left(r_{sp}^{1+\delta}(\alpha) \, \tilde{p}(0, Q^2) + r_{sp}^{\delta}(\alpha) \, x \tilde{p}'(0, Q^2) + O(x^2) \right),
$$

$$
F_L(x, Q^2) = x^{-\delta} \sum_{p=s,g} \left(r_{Lp}^{1+\delta}(\alpha) \, \tilde{p}(0, Q^2) + r_{Lp}^{\delta}(\alpha) \, x \tilde{p}'(0, Q^2) + O(x^2) \right),
$$

where $r_{sp}^{\eta}(\alpha)$ and $r_{Lp}^{\eta}(\alpha)$ are the combinations of the anomalous dimensions of Wilson operators $\gamma_{sp}^{\eta} = \alpha \gamma_{sp}^{(0),\eta} + \alpha^2 \gamma_{sp}^{(1),\eta} + O(\alpha^3)$ and Wilson coefficients $f \alpha B_{Lp}^{\eta,\xi} \left(1 + \alpha R_{Lp}^{\eta,\xi} \right) + O(\alpha^3)$ and $\alpha B_{Lp}^{\eta,\xi} + O(\alpha^2)$ of the η "moment" (i.e., the corresponding variables extended from integer values of argument to non-integer ones):

$$
r_{Ls}^{\eta}(\alpha) = \alpha B_{Ls}^{\eta,\xi} \left[1 + \alpha \left(R_{Ls}^{\eta,\xi} - B_{Ls}^{\eta,\xi} \right) \right] + O(\alpha^3),
$$

$$
r_{Lg}^{\eta}(\alpha) = \frac{e}{f} \alpha B_{Lg}^{\eta,\xi} \left[1 + \alpha \left(R_{Lg}^{\eta,\xi} - B_{Lg}^{\eta,\xi} / B_{Lg}^{0,\eta} \right) \right] + O(\alpha^3),
$$

$$
r_{ss}^{\eta}(\alpha) = \alpha \gamma_{ss}^{(0),\eta} + \alpha^2 \left(\gamma_{ss}^{(1),\eta} + B_2^{\eta,\xi} \gamma_{gs}^{(0),\eta} + 2 \beta_0 B_2^{\eta,\xi} \right) + O(\alpha^3),
$$

$$
r_{sg}^{\eta}(\alpha) = \frac{e}{f} \left[\alpha \gamma_{sg}^{(0),\eta} + \alpha^2 \left(\gamma_{sg}^{(1),\eta} + B_2^{\eta,\xi} \gamma_{gs}^{(0),\eta} + B_2^{\eta,\xi} (2 \beta_0 + \gamma_{gg}^{(0),\eta} - \gamma_{ss}^{(0),\eta}) \right) \right] + O(\alpha^3),
$$

and

$$
\tilde{p}'(0, Q^2) \equiv \frac{d}{dx} \tilde{p}(x, Q^2) \text{ at } x = 0,
$$

where $e = \sum_f e_i^2$ is the sum of squares of quark charges.

With accuracy of $O(x^{2-\delta})$, we have for Eq.(3)

$$
\frac{dF_2(x, Q^2)}{dlnQ^2} = -\frac{1}{2} \left[r_{sg}^{1+\delta}(\xi_{sg})^{-\delta} g(x/\xi_{sg}, Q^2) + r_{ss}^{1+\delta} F_2(x, Q^2) + (r_{ss}^{\delta} - r_{ss}^{1+\delta}) x^{1-\delta} \tilde{\xi}(x, Q^2) \right] + O(x^{2-\delta}),
$$

$$
F_L(x, Q^2) = r_{Lg}^{1+\delta}(\xi_{Lg})^{-\delta} g(x/\xi_{Lg}, Q^2) + r_{Ls}^{1+\delta} F_2(x, Q^2) + (r_{Ls}^{\delta} - r_{Ls}^{1+\delta}) x^{1-\delta} \tilde{\xi}(x, Q^2) + O(x^{2-\delta}),
$$

with $\xi_{sg} = r_{sg}^{1+\delta}/r_{sg}^{\delta}$ and $\xi_{Lg} = r_{Lg}^{1+\delta}/r_{Lg}^{\delta}$.

From Eq.(3) and (4) one can obtain F_L as a function of F_2 and the derivative

$$
F_L(x, Q^2) = -\xi^{\delta} \left[2 \frac{r_{Lg}^{1+\delta} dF_2(x, Q^2)}{dlnQ^2} + \left(r_{Ls}^{1+\delta} - r_{Ls}^{\delta} \right) F_2(x, Q^2) \right] + O(x^{2-\delta}, \alpha x^{1-\delta}),
$$

where the result is restricted to $O(x^{2-\delta}, \alpha x^{1-\delta})$. To arrive to the above equation we have performed the substitution

$$
\xi_{sg} / \xi_{Lg} \rightarrow \xi = \gamma_{sg}^{(0),1+\delta} B_{L}^{\eta,\xi} / \gamma_{sg}^{(0),\xi} B_{L}^{\eta,1+\delta}
$$
and neglected the term \(\sim s'(x_{sg}, Q^2) \).

This replacement is very useful. The NLO anomalous dimensions \(\gamma_{sp}^{(1),n} \) are singular in both points, \(n = 1 \) and \(n = 0 \), and their presence into the arguments of \(\tilde{p}(x, Q^2) \) makes the numerical agreement between this approximate formula and the exact calculation worse (we have checked this point using some MRS sets \(\text{MS} \) of parton distributions).

Using NLO approximation of \(r_{sp}^{1+\delta} \) and \(r_{Lp}^{1+\delta} \) for concrete values of \(\delta = 0.5 \) and \(\delta = 0.3 \) we obtain (for \(f=4 \) and \(\text{MS} \) scheme):

\[
\text{if } \delta = 0.5 \\
F_L(x, Q^2) = \frac{0.87}{1 + 22.9\alpha} \left[\frac{dF_2(0.70x, Q^2)}{d\ln Q^2} + 4.17\alpha F_2(0.70x, Q^2) \right] + O(\alpha^2, x^{2-\delta}, \alpha x^{1-\delta}), \ (8)
\]

\[
\text{if } \delta = 0.3 \\
F_L(x, Q^2) = \frac{0.84}{1 + 59.3\alpha} \left[\frac{dF_2(0.48x, Q^2)}{d\ln Q^2} + 3.59\alpha F_2(0.48x, Q^2) \right] + O(\alpha^2, x^{2-\delta}, \alpha x^{1-\delta}). \ (9)
\]

With the help of Eqs. (1) and (8)-(9) we have extracted the ratio \(R(x, Q^2) \) from H1 1994 data \(\text{[1]} \), determining the slopes \(dF_2/d\ln Q^2 \) from straight line fits as in ref. \(\text{[4, 6]} \). In the present calculation only statistical errors have been taken into account, and we have used \(\Lambda^{(4)}_{\text{MS}} = 225 \text{MeV} \) in the calculation of the running coupling constant \(\alpha_s(Q^2) \) at two loops.

Figure 1a shows the extracted ratio \(R \) at \(Q^2 = 20 \text{ GeV}^2 \) for two different values of the parameter \(\delta \). It also shows BCDMS \(\text{[15]} \) and preliminary CCFR (see \(\text{[16]} \)) data points where the errors are very much larger. For comparison we have also plotted various predictions for \(R \) using QCD formulas at \(O(\alpha_s^2) \) \(\text{[17]} \) and parton densities extracted from fits to HERA data. The large difference between the result from MRS(G) and the latest set MRS(R1) \(\text{[18]} \) shows, as it is expected, the large effect on \(R \) of the unknown of the gluon distribution at small \(x \).

In figure 1a one can also see that the result from MRS(R1) fits very well the points obtained with \(\delta = 0.5 \) for the lowest \(x \) data, although it fails to account for the highest \(x \) bins. The calculation with MRS(D-) is also statistically compatible with our data.

By other part recent theoretical predictions on \(R \) based on conventional NLO DGLAP evolution analysis of HERA data (LBY) \(\text{[19]} \) and on the dipole picture of BFKL dynamics (NPRW) \(\text{[20]} \), both finding values \(\delta = 0.3 \), lie closer to the data points obtained with \(\delta = 0.3 \) Eq. (9).

Finally Fig. 1b shows \(R \) for \(\delta = 0.3 \) (the value favoured by H1 data \(\text{[3]} \)) and at three different \(Q^2 \) values in comparison with the SLAC R(1990) parametrization \(\text{[21]} \). One can see the very good agreement at \(x \leq 10^{-2} \) even if only the statistical errors are taken into account.

Notice that the points at the same \(x \) and different \(Q^2 \) are correlated by the form in which the derivative term \(dF_2/d\ln Q^2 \) is determined.

In summary, we have presented Eqs. (1) and (7)-(9) for the extraction of the ratio \(R = \sigma_L/\sigma_T \) at small \(x \) from the SF \(F_2 \) and its \(Q^2 \) derivative. These equations provide the possibility of the non-direct determination of \(R \). This is important since the direct
extraction of R from experimental data is a cumbersome procedure (see [2]). Moreover, the fulfillment of Eqs. (1), (7)-(10) by DIS experimental data is a cross-check of perturbative QCD at small values of x. Our formulas can also be used as a parametrization of R as a function of the most widely used phenomenological F_2.

We have found that the results depend on the concrete value of the slope δ. In the case $\delta = 0.3$, which is very close to the values obtained by H1 group [3] at the considered Q^2 interval, we found very good agreement with the SLAC parametrization [21] and also a relatively good agreement with the studies based on NLO DGLAP and BFKL dynamics (see [19] and [20], respectively). However the calculation performed with the latest sets of HERA parton densities using perturbative QCD at second order (see MRS(R1) curve in Fig. 1a) predicts an slightly higher value for R.

This work was supported in part by CICYT and by Xunta de Galicia. We are grateful to J.W. Stirling for providing the parton distributions used in this work, and to A. Bodek and M. Klein for discussions.

a) Electronic address: KOTIKOV@LAPPHP8.IN2P3.FR. On leave of absence from Particle Physics Laboratory, JINR, Dubna, Russia.
b) Electronic adress: GONZALO@GAES.USC.ES
c) Although with the theoretical prejudice contained in the starting QCD relation.
d) We use PDF multiplied by x and neglect the nonsinglet quark distribution at small x.
e) Hereafter we use $\alpha(Q^2) = \alpha_s(Q^2)/4\pi$.
f) Because we consider here $F_2(x, Q^2)$ but not the singlet quark distribution.

References

[1] R. G. Roberts and M. R. Whalley, J. of Phys. G17, D1 (1991).
[2] A. M. Cooper-Sarkar et al., Z. Phys. C39, 281 (1988); M. W. Krasny et al., Z. Phys. C53, 687 (1992); L. Favart et al., Report No. LAL 96-32, IIHE 96-01 (hep-ph/9606465) (unpublished).
[3] T. Ahmed et al., H1 Collab., Nucl. Phys. B470, 3 (1996).
[4] T. Aid et al., H1 Collab., Phys. Lett. B354, 494 (1995).
[5] A. V. Kotikov, Yad. Fiz. 57, N1, 142 (1994); Phys. Rev. D49, 5746 (1994).
[6] M. Derrick et al., ZEUS Collab., Phys. Lett. B345, 576 (1995); Z. Phys. C65, 379 (1995).
[7] K. Prytz, Phys. Lett. B311, 286 (1993); B332, 393 (1994) 393; R. K. Ellis, Z. Kunszt and E. M. Levin, Nucl. Phys. B420, 517 (1994).
[8] A.V. Kotikov and G. Parente, Phys. Lett. B379, 195 (1996).
[9] A. V. Kotikov and G. Parente, Report No. US-FT-19-96 (hep-ph/9605207) (unpublished).

[10] A. D. Martin, W. S. Stirling, and R. G. Roberts, Phys. Lett. B306, 145 (1993); Phys. Lett. B354, 155 (1995).

[11] E. A. Kuraev, L. N. Lipatov, and V. S. Fadin, ZHETF 53, 2018 (1976), 54, 128 (1977); Ya. Ya. Balitzki and L. N. Lipatov, Yad. Fiz. 28, 822 (1978); L. N. Lipatov, ZHETF 63, 904 (1986).

[12] P. Amaudruz et al, NMC Collab., Phys. Lett. B295B, 159 (1992); M. Arneodo et al., NMC Collab., Report No. CERN-PPE/95-138.

[13] A. Donnachie and P. V. Landshoff, Nucl. Phys. 244B, 322 (1984); 267B, 690 (1986).

[14] P. V. Landshoff and O. Nachmann, Z. Phys. C35, 405 (1987).

[15] A. C. Benvenuti et al., BCDMS Collab., Phys. Lett. B237, 592 (1990).

[16] H. Abramowicz, “Test of QCD at low x”, talk given at the EPS Conference, Warsaw 1996.

[17] D.I. Kazakov, A.V. Kotikov, G. Parente, O.A. Sampayo and J. Sánchez Guillén, Phys. Rev. Lett. 65 (1990) 1535, 2921 (E); J. Sánchez Guillén, J.L. Miramontes, M. Miramontes, G. Parente and O.A. Sampayo, Nucl. Phys. B353 (1991) 337; D.I. Kazakov and A.V. Kotikov, Phys. Lett. B291 (1992) 171; G. Parente and J. Sánchez Guillén in Proc. of the XXII Int. Symposium on Multiparticle Dynamics, Santiago de Compostela, July 1992; E.B. Zijlstra and W.L. van Neerven, Nucl. Phys. B383 (1992) 525.

[18] A. D. Martin, R. G. Roberts and W. S. Stirling, Report No. RAL-TR-96-037, DTP/96/44.

[19] C. Lopez, F. Barreiro and F. J. Yndurain, Report No. hep-ph/9605395 (unpublished).

[20] H. Navelet et al., Report No. SPhT T96/043, DAPNIA/SPP 96-08 (hep-ph/9605389) (unpublished).

[21] L. W. Whitlow et al., SLAC Collab., Phys. Lett. B250, 193 (1990).

Figure captions

Figure 1: The ratio $R = \sigma_L/\sigma_T$ at small x. The points were extracted from Eqs. (1), (8) and (9) using H1 [3, 4] data. The dashed-dotted line (NPRW) is the prediction of Saclay group [20] based on the dipole picture of BFKL dynamics. The band represent the uncertainty from the DGLAP analysis of HERA data by [19]. It is also shown BCDMS data [15] points at high x and the preliminary CCFR data point from [16]. The solid lines in Fig. 1b are the SLAC R1990 parametrization [21] at $Q^2 = 8.5, 20$ and 35 GeV2 (lower curve corresponds to lower Q^2 value).
