Prevalence and associated factors of electrocardiographic left ventricular hypertrophy in a rural community, central Thailand

Patipan Viwatrangkul1, Sakda Lawanwisut1, Pondfah Leekhaphan1, Tatchamon Prasart-intara3, Pathomphon Phiensuparp1, Sirapat Prakiatpongsa1, Promnavaporn Amnaj1, Vichaya Phoominart1, Krittanan Chanyou1, Peeratuth Jiratrakan3, Pisit Klumnaimueang1, Nattapat Pipitdaecha3, Rawin Panchamawat1, Pannathorn Tangkongpanich2, Mathirut Munthinh1, Ram Rangsin4 & Boonsub Sakboonyarat4*

Left ventricular hypertrophy (LVH) is considered a cardiac condition with life-threatening complications. Detected LVH is a strong predictor of cardiovascular diseases and death. This condition is normally diagnosed at offices. We aimed to determine the prevalence and associated factors of electrocardiographic-LVH (ECG-LVH) among adults in a Thai rural community. A cross-sectional study was conducted in Na-Yao rural community of Thailand in 2020. A total of 638 individuals aged ≥ 20 years were interviewed using standardized structured questionnaires related to demographic information, risk behaviors, comorbidities and anthropometric measurements. LVH was determined by Sokolov-Lyon and Cornell criteria based on the collected electrocardiograms. The prevalence of ECG-LVH among adults was 6.6%. The factors independently associated with ECG-LVH were being male (AORs 2.04, 95% CI 1.05–3.98), history of diabetes mellitus (AORs 1.01, 95% CI 1.01–1.02), and hypertensive crisis ≥ 180/110 mmHg (AORs 7.24, 95% CI 1.31–39.92). However, resting heart rate was negatively associated with ECG-LVH (p < 0.05). Our data emphasized that LVH was one of the significant health problems among adults in a rural community. This condition could lead to severe complications. Thus, effective detection and public health interventions should be provided at the community level.

Abbreviations
ECG-LVH Electrocardiographic-left ventricular hypertrophy
LV Left ventricular
HT Hypertension
DM Diabetes mellitus
HR Heart rate
SBP Systolic blood pressure
DBP Diastolic blood pressure
OR Odds ratio
AOR Adjusted odds ratio
95% CI 95% Confidence interval

Left ventricular hypertrophy (LVH) is considered a cardiac condition secondary to both structural and functional adaptation of the heart leading to many life-threatening complications like myocardial ischemia, left ventricular (LV) dysfunction, heart failure and even sudden cardiac death1–4. Several studies reported that the potential risk...
Factors of LVH included being male\(^{1,6}\), high blood pressure\(^{7,8}\), insulin resistance\(^{3}\) and obesity\(^{10}\). Detecting and monitoring LVH, a strong predictor of cardiovascular diseases and death\(^{11}\), is crucial. Regression of LVH could reduce the risk of adverse outcomes\(^{12}\).

Approximately one half of the Thai population resides in rural areas where the characteristics of healthcare infrastructure and providers differ from those of urban settings especially in remote rural areas. In Thailand, a related study among adults in an urban setting in 2000 reported a prevalence of LVH at approximately 13\(^{13}\). However, only limited information is available on the prevalence of and factors potentially responsible for LVH among adults in remote rural communities. The required information is essential to focus on preventing problems. Even though echocardiography is a gold standard to detect LVH, the technology is unavailable to use in those remote areas and also requires more specialists to complete the process. However, ECG criteria for LVH have been illustrated as strong independent predictors of cardiovascular morbidity and mortality in the general population\(^3,4\). Thus, this study aimed to determine the prevalence and associated factors of electrocardiographic-LVH (ECG-LVH) among adults in a remote rural community in central Thailand.

Methods

Study designs and subjects. The study was conducted in a remote rural area, 150 km from Bangkok: Na-Ngam community at the border area of Chachoengsao Province, central Thailand. The remote rural community houses approximately 3500 adults. A cross-sectional survey was conducted between January and February 2020. Information on people in the rural area was retrieved from the National Population Registry to determine the sampling frame. The registered population was selected using a random sampling which proportionated about 20\% of population. The individuals residing in the area during the study were included. The inclusion criteria comprised adults aged at least 20 years old. Subjects were excluded from the study if they were pregnant (or suspected) or could not answer the questionnaires.

Data collection. The investigators provided information sheets and informed subjects of the objectives and methods of the study including the interview questionnaire and ECG test. Written informed consent was obtained before conducting the study. When subjects could not read the information sheet, the investigators would read and describe the information to them. Additionally, subjects could use their fingerprint on the consent form to confirm their agreement. The duration of the questionnaire process, ECG testing and anthropometric measurement was approximately 30 min. Face-to-face interviews were performed using standardized questionnaires provided by well-trained interviewers. The questionnaire, used to identify the associated factors of ECG-LVH among adults in a rural community, covered information on demographic characteristics and self-reported comorbidity including history of hypertension (HT) and history of diabetes mellitus (DM), smoking and alcohol consumption. Smoking status was divided in three categories including current smoker, exsmoker and never\(^{15}\).

Measurements. Body weight and height were measured using body composition monitor (OMRON model HBF-212, Kyoto, Japan) and stadiometer (DETECTO, St. Webb City, MO, USA), respectively. Body mass index (BMI) was categorized according to the Asia-Pacific BMI classifications, i.e., < 18.5 kg/m\(^2\), 18.5 to 22.9 kg/m\(^2\), 23.0 to 24.9 kg/m\(^2\), 25.0 to 29.9 kg/m\(^2\) and ≥ 30 kg/m\(^2\)\(^{26}\). The participants stood on the floor with Frankfort horizontal plane\(^7\), then neck circumference was measured at midway between the midcervical spine and midanterior neck to within 1 mm, with a plastic tape\(^{18}\). Neck circumference was categorized in two groups, i.e., ≥ 37.5 cm (men), ≥ 32.75 cm (women), < 37.5 cm (men) and < 32.75 cm (women)\(^{18}\). Blood pressure was measured using an automatic blood pressure monitor (OMRON, HEM-7120, Kyoto, Japan) by an operator trained in standard-ized technique following the 2019 Thai guidelines on the treatment of HT\(^{20}\). The participants were advised to avoid caffeine and smoking for at least 30 min before the measurement was performed. The participants were instructed to be stationary at least 5 min in a chair, with feet on the floor and arms supported at heart level. During the measurement, talking was prohibited. Two measurements were taken, and the average was recorded.

Procedure for recording a standard 12-lead electrocardiography was conducted by well-trained investigators using a Digital 3-channel Color Electrocardiograph (Model: EKG-903A3, Beijing, PR China). The participants were asked to lie down in a comfortable position in a private partition room. The head was well-supported, the back rested on the bed and pillows. The inner aspects of the participants’ wrists were placed close to, but not touching, their waist. The investigator applied the limb leads at both wrists and ankles of the participants, then applied the chest leads; V1 to V6. The calibration signal on the ECG machine was checked to ensure standardization as a paper speed of 25 mm/s and ECG size 1 mV/10 mm deflection\(^{21}\). The participants were asked to lie still and to breathe normally during the measurement. The 12-lead ECG was recorded and correctly labeled within the identification number.

ECG-LVH was defined as a Sokolow-Lyon voltage (SV1 + RV5/S6) > 35 mm\(^{22}\), and the Cornell voltage criterion-based LVH was defined as R in aVL + SV3 > 28 mm for men S in V3 + R in aVL > 20 mm for women\(^{23,24}\). The ECG was reviewed, interpreted, and results were confirmed by cardiologists of Phramongkutklao Hospital in Bangkok.

The participants received the results, descriptions of their ECG test and the recommendation of self-health management. The participants presenting ECG-LVH and other abnormal ECG would receive standard care under their healthcare coverage scheme. The list of participants with ECG-LVH and other abnormal ECG patterns was registered in the health database at the Health Promoting Hospital, the primary care unit in Na-Yao rural community.
LVH, LVH was a greater risk factor for cardiac death among females than among males. Strong evidence was observed among females. This finding was compatible with other related studies; however, other studies reported a higher prevalence of LVH among females. Although being male was an associated risk factor for LVH, LVH was a greater risk factor for cardiac death among females than among males. Strong evidence was observed that LVH was a risk predictor of cardiovascular events including coronary heart disease, stroke and sudden cardiac death. When LVH continued to progress, the prevalence of patients with cardiovascular diseases and their complications were more likely to increase. Thus, early detection, prevention and treatment of modifiable cardiovascular risk factors in a general population residing in a community should be implemented as effective interventions.

We found that study participants reported a history of DM related to LVH. Similarly, the NOMAS cohort study among a multi-ethnic population in the US showed that DM was independently associated with increased risk of LVH. One recent study in the UK demonstrated a relationship existed between cardiac steatosis and LV geometric remodeling among patients with DM; however, the causality of this relationship will need to be investigated in the future. Furthermore, related studies using murine models reported that cardiac steatosis, where superfluous triglyceride accumulates in the myocyte, led to cardiomyopathy. Regarding related reports in a rural community, we found that LVG was linked to high blood pressure level, especially SBP ≥ 180 mmHg or DBP ≥ 110 mmHg. The finding was consistent with the related study of Tangiatporn et al. reporting that 20% of patients with uncontrolled blood pressure were identified as presenting ECG-LVH. Our study revealed that adults with high blood pressure as hypertensive crisis had a strong risk associated with LVG (AOR 7.2, 95% CI 1.3 to 39.9). High blood pressure increases LV wall stress triggering both neurohumoral activation and mechanical stress pathways. When these processes are not prohibited, LVH was a greater risk factor for cardiac death among females than among males. Strong evidence was observed among females. This finding was compatible with other related studies; however, other studies reported a higher prevalence of LVH among females. Although being male was an associated risk factor for LVH, LVH was a greater risk factor for cardiac death among females than among males. Strong evidence was observed that LVH was a risk predictor of cardiovascular events including coronary heart disease, stroke and sudden cardiac death. When LVH continued to progress, the prevalence of patients with cardiovascular diseases and their complications were more likely to increase. Thus, early detection, prevention and treatment of modifiable cardiovascular risk factors in a general population residing in a community should be implemented as effective interventions.
Furthermore, we found that 6 (75%) of a total of 8 participants with hypertensive crisis were unaware of HT. Our data suggested that effective community interventions such as HT screening and modified risk factors of uncontrolled blood pressure among adults with HT should be provided in rural settings.

Related evidence has demonstrated that resting HR is a predictor of cardiovascular events including death. However, our study reported that resting HR was negatively associated with ECG-LVH, significantly. Similarly, related studies in Egypt and Greece reported that LVH was reversely related to HR. Additionally, the finding from the OGHMA study in Japan reported that each 10 beats/min increase in resting HR was associated with reduced development of ECG-LVH, especially among males. Nevertheless, the temporal relationship between resting HR and developing ECG-LVH in the present study could not be proved due to the cross-sectional design.

The study employed a cross-sectional survey which could make it difficult to establish a cause-and-effect relationship between associated factors and ECG-LVH. Another limitation was the small sample size in the

Characteristics	n (%)
Gender	
Male	198 (31.0)
Female	440 (69.0)
Age (years)	
Mean ± SD	56.9 ± 13.0
20–29	20 (3.1)
30–39	37 (5.8)
40–49	125 (19.6)
50–59	188 (29.5)
60–69	153 (24.0)
≥70	115 (18.0)
Marital status	
Single	41 (6.4)
Married	485 (76.0)
Widow	86 (13.5)
Divorced	26 (4.1)
Education level	
Less than primary school	69 (10.8)
Primary school	442 (69.3)
Secondary school	45 (7.1)
High school	53 (8.3)
Vocational	10 (1.6)
Bachelor or higher	19 (3.0)
Scheme	
Universal health coverage	560 (87.8)
Government officer scheme	47 (7.4)
Social security scheme	25 (3.9)
Others	6 (0.9)
Hypertension	
No	396 (62.1)
Yes	242 (37.9)
Diabetes mellitus	
No	567 (88.9)
Yes	71 (11.1)
Blood pressure (mmHg)	
SBP mean ± SD	126.2 ± 16.1
DBP mean ± SD	76.3 ± 10.6
Body mass index (kg/m²)	
mean ± SD	25.0 ± 4.4
< 18.5	35 (5.5)
18.5–22.9	172 (27.0)
23.0–24.9	119 (18.7)
25.0–29.9	236 (37.0)
≥30.0	76 (11.9)

Table 1. Demographic characteristics of participants (n = 638).
study; thus, the association between the well-known risk factors such as obesity and outcome could not be presented. When the study was conducted, the young adults especially those aged less than 40 years were unavailable to participate because most people in this age group (20 to 39 years) worked in the other areas. Thus, the prevalence of ECG-LVH in this community may have been overestimated. However, social desirability bias might also have existed in the study due to face-to-face interview, although the interviewers were well-trained and used standardized surveys.

Table 2. Univariate analysis factors associated with ECG-LVH among adults in a rural community.
The study identified a few modifiable risk factors for ECG-LVH which would be advantageous implementing prevention strategies at the community level. Adults, especially those residing in rural areas should be targeted to increase health literacy and raise awareness about LVH, its complications and adjust their modifiable risk factors especially controlling blood pressure. Authorities in rural communities such as healthcare workers at health promoting hospitals should provide HT and DM screening to identify potential risk factors for LVH. Then adults with HT or DM should be invited to receive a continuous care under the universal health coverage scheme for blood pressure, glycemic control and LVH early detection. Our study may not be generalized to the whole country but may reflect the real experience of adults residing in rural communities in Thailand.

Conclusion

Our data emphasized that ECG-LVH was a significant health issue among adults residing in a rural community in Thailand. Effective public health interventions, especially controlling blood pressure and raising awareness of HT status, should be provided in the community to reduce risks of ECG-LVH. The modifiable risk factors for ECG-LVH should be attenuated to inhibit the progression of cardiovascular events including coronary heart disease and cardiac mortality.

Data availability

The datasets generated during and/or analyzed during the current study are not publicly available because the data set contains sensitive identifying information. Because ethical restrictions have been placed, the data sets are available from the corresponding author on reasonable request.

Received: 18 January 2021; Accepted: 19 March 2021
Published online: 29 March 2021

References

1. Lazzeroni, D., Rimoldi, O. & Camici, P. G. From left ventricular hypertrophy to dysfunction and failure. *Circ. J.* 80, 555–564 (2016).
2. Verdecchia, P. *et al.* Sudden cardiac death in hypertensive patients. *Hypertension (Dallas)* 73, 1071–1078 (2019).
3. Kannel, W. B. Left ventricular hypertrophy as a risk factor: The Framingham experience. *J. Hypertens. Suppl.* Off. J. Int. Soc. Hypertens. 9, S3–S8 (1991).
4. Leveille, E. *et al.* Relationship between left ventricular structural and metabolic remodeling in type 2 diabetes. *Diabetes* 65, 44–52 (2016).
5. Chizindu, A. A. & Emem-Chioma, P. The prevalence and correlations of electrocardiographic-left ventricular hypertrophy in a rural community in Africa. *Niger. J. Med.* 27, 7–13 (2018).
6. Jaggy, C. *et al.* Performance of classic electrocardiographic criteria for left ventricular hypertrophy in an African population. *Hypertension* 36, S4–S6 (2000).
7. Tangiatuporn, W. *et al.* Associated factors of blood pressure control and complications of hypertensive in hypertensive rural Thai populations of Baan Nayao, Chachoengsao Province. *J. Med. Assoc. Thai.* 95(Suppl 3), S48–57 (2012).
8. Brown, D. W., Giles, W. H. & Croft, J. B. Left ventricular hypertrophy as a predictor of coronary heart disease mortality and the effect of hypertension. *Am. Heart J.* 140, 848–856 (2000).

Factors	ECG-LVH		Adjusted odds ratio	95% CI	p-value	
	Yes	No				
Gender	Yes	No				
Female	21 (4.8)	419 (95.2)	1			
Male	21 (10.6)	177 (89.4)	2.04	1.05–3.98	0.035	
History of diabetes mellitus	No	Yes				
	34 (6.0)	533 (94.0)	1			
	8 (11.3)	63 (88.7)	1.01	1.01–1.02	0.033	
Hypertensive crisis	SBP < 180 mmHg and DBP < 110 mmHg	40 (6.3)	590 (93.7)	1		
SBP ≥ 180 mmHg or DBP ≥ 110 mmHg	2 (25.0)	6 (75.0)	7.24	1.31–39.92	0.023	
Heart rate, bpm	50–59	7 (24.1)	22 (75.9)	1		
	60–69	11 (8.7)	116 (91.3)	0.28	0.09–0.83	0.021
	70–79	11 (5.8)	178 (94.2)	0.19	0.06–0.58	0.004
	80–89	8 (4.4)	175 (95.6)	0.14	0.04–0.46	0.001
	≥ 90	5 (4.5)	105 (95.5)	0.14	0.04–0.51	0.003
Neck circumference, cm	< 35.75 in male, < 32.75 in female	12 (4.7)	246 (95.4)	1		
	≥ 35.75 in male, ≥ 32.75 in female	30 (7.9)	350 (92.1)	1.55	0.76–3.15	0.232

Multivariate analysis Adjusted for Gender, History of DM, Hypertensive crisis, Heart rate and Neck circumference
9. Nkum, B. C., Micah, F. B., Ankrak, T. C. & Nyan, O. Left ventricular hypertrophy and insulin resistance in adults from an urban community in The Gambia: Cross-sectional study. *PLoS ONE* **9**, e93606 (2014).

10. Okin, P. M., Jern, S., Devereux, R. B., Kjeldsen, S. E. & Dahlöf, B. Effect of obesity on electrocardiographic left ventricular hypertrophy in hypertensive patients: The losartan intervention for endpoint (LIFE) reduction in hypertension study. *Hypertension (Dallas)* **35**, 13–18 (2000).

11. Vikli, B. A., Okin, P. M. & Devereux, R. B. Prognostic implications of left ventricular hypertrophy. *Am. Heart J.* **141**, 334–341 (2001).

12. Devereux, R. B. et al. Prognostic significance of left ventricular mass change during treatment of hypertension. *JAMA* **292**, 2350–2356 (2004).

13. Sriratanasathavorn, C. et al. The prevalence of left ventricular hypertrophy and associated factors in a Thai population. *J. Med. Assoc. Thailand* **83**, S218–S222 (2000).

14. Rautaharju, P. M. et al. Electrocardiographic estimate of left ventricular mass versus radiographic cardiac size and the risk of cardiovascular disease mortality in the epidemiologic follow-up study of the First National Health and Nutrition Examination Survey. *Am. J. Cardiol.* **62**, 59–66 (1988).

15. Centers for Disease Control and Prevention. *Adult Tobacco Use Information* (2020). https://www.cdc.gov/nchs/nhis/tobacco/tobacco_co_glossary.htm. Accessed 24 May 2020

16. Inoue, S. et al. The Asia-Pacific Perspective: Redefining Obesity and Its Treatment (Health Communications Australis, 2000).

17. Oh, S., Ahn, J., Nam, K.-U., Paeng, J.-Y. & Hong, J. Frankfort horizontal plane is an appropriate three-dimensional reference in the evaluation of clinical and skeletal cant. *J. Korean Assoc. Oral Maxillofac. Surg.* **39**, 71–76 (2013).

18. WHO. Measuring Obesity: Classification and Description of Anthropometric Data: Report on a WHO Consultation on the Epidemiology of Obesity 2–7 (WHO, 1987).

19. Meelah, S. et al. Prevalence and associated factors of uncontrolled blood pressure among hypertensive patients in the rural communities in the central areas in Thailand: A cross-sectional study. *PloS ONE* **14**, e0212572 (2019).

20. Thai Hypertension Society. 2019 Thai Guidelines on the Treatment of Hypertension (Thai Hypertension Society, 2019).

21. Jevon, P. Procedure for recording a standard 12-lead electrocardiogram. *Br. J. Nurs.* **19**, 649–651 (2010).

22. Sokolow, M. & Lyon, T. P. The ventricular complex in left ventricular hypertrophy as obtained by unipolar precordial and limb leads. *Am. Heart J.* **37**, 161–186 (1949).

23. Okin, P. M., Ronan, M. J., Devereux, R. B. & Klugfield, P. Electrocardiographic identification of increased left ventricular mass by simple voltage-duration products. *J. Am. Coll. Cardiol.* **25**, 417–423 (1995).

24. Devereux, R. B., Casale, P. N., Eisenberg, R. R., Miller, D. H. & Klugfield, P. Electrocardiographic detection of left ventricular hypertrophy using echocardiographic determination of left ventricular mass as the reference standard. Comparison of standard criteria, computer diagnosis and physician interpretation. *J. Am. Coll. Cardiol.* **3**, 82–87 (1984).

25. Eguchi, K. et al. Association between diabetes mellitus and left ventricular hypertrophy in a multiethnic population. *Am. J. Cardiol.* **101**, 1787–1791 (2008).

26. Jobe, M. et al. Electrocardiographic left ventricular hypertrophy among gambian diabetes mellitus patients. *Ghana Med. J.* **49**, 19–24 (2015).

27. Liao, Y., Cooper, R. S., Mensah, G. A. & McGee, D. L. Left ventricular hypertrophy has a greater impact on survival in women than in men. *Circulation* **92**, 805–810 (1995).

28. Gosse, P. Left ventricular hypertrophy as a predictor of cardiovascular risk. *J. Hypertens. Suppl. Off. J. Int. Soc. Hypertens.* **23**, S27–33 (2005).

29. Okwuosa, T. M. et al. Left ventricular hypertrophy and cardiovascular disease risk prediction and reclassification in blacks and whites: The atherosclerosis risk in communities study. *Am. Heart J.* **169**, 155–161 (2015).

30. Porthan, K. et al. ECG left ventricular hypertrophy as a risk predictor of sudden cardiac death. *Int. J. Cardiol.* **276**, 125–129 (2019).

31. Dweck, M. R. et al. Left ventricular remodeling and hypertrophy in patients with aortic stenosis: Insights from cardiovascular magnetic resonance. *J. Cardiovasc. Magn. Reson.* **14**, 50 (2012).

32. Glenn, D. J. et al. A murine model of isolated cardiac steatosis leads to cardiomyopathy. *Hypertension* **57**, 216–222 (2011).

33. Mbuye, A. et al. Left ventricular hypertrophy in black African subjects with artery hypertension: Results of a cross-sectional survey conducted in semi-rural area in Senegal. *Ann. Cardiol. Angeiol. (Paris)* **66**, 210–216 (2017).

34. Shenasa, M. & Shenasa, H. Hypertension, left ventricular hypertrophy, and sudden cardiac death. *Int. J. Cardiol.* **237**, 60–63 (2017).

35. Mewton, N., Liu, C. Y., Croisille, P., Bluemke, D. & Lima, J. A. C. Assessment of myocardial fibrosis with cardiovascular magnetic resonance. *J. Am. Coll. Cardiol.* **57**, 891–903 (2011).

36. Palatini, P. & Julius, S. Elevated heart rate: A major risk factor for cardiovascular disease. *Clin. Exp. Hypertens.* **26**, 637–644 (2004).

37. Inoue, T. & Ohyama, Y. Elevated heart rate and risk factor and risk marker of cardiovascular disease. *Curr. Hypertens. Rev.* **7**, 29–40 (2011).

38. Saha, M. M., Ibrahim, M. M. & Rizik, H. H. Gender and the relationship between resting heart rate and left ventricular geometry. *J. Hypertens.* **19**, 367–373 (2001).

39. Zakopoulos, N. A. et al. Twenty-four-hour heart rate and blood pressure are additive markers of left ventricular mass in hypertensive subjects. *Am. J. Hypertens.* **19**, 170–177 (2006).

40. Inoue, T. et al. Development of electrocardiographic left ventricular hypertrophy and resting heart rate over time: Findings from the OGHMA study. *Angiology* **71**, 70–76 (2019).

Acknowledgements

The authors express their grateful thanks to the director, healthcare workers and village health volunteers of Baan-Na-Yao Health Promoting Hospital, Chachoengsao Province. The authors thank all the staff of the Department of Military and Community Medicine, Phramongkutklao College of Medicine, for their support in completing this study.

Author contributions

The concept for study was developed by P.V., S.L., T.P., P.P., S.P., P.A., V.P., K.C., P.J., P.K., N.P., R.P., P.T., M.M., R.R. and B.S. P.V., S.L., T.P., P.P., S.P., P.A., V.P., K.C., P.J., P.K., N.P., R.P. and B.S. collected the data. P.V., S.L., P.L. and B.S. analyzed the data. P.V., S.L. and P.L. wrote the first draft. All authors contributed and approved the final version.

Funding

The present study was supported by Phramongkutklao College of Medicine.
Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to B.S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021