TRIGGERED STAR FORMATION

J. Palouš and S. Ehlerová

Astronomical Institute, Academy of Sciences of the Czech Republic, Prague

RESUMEN

El resumen será traducido al español por los editores. The star formation triggered in dense walls of expanding shells will be discussed. The fragmentation process is studied using the linear and non-linear perturbation theory. The influence of the energy input, the ISM distribution and the speed of sound is examined analytically and by numerical simulations. We formulate the condition for the gravitational fragmentation of expanding shells: if the total surface density of the disc is higher than a certain critical value, shells are unstable. This value depends on the energy of the shell and the sound speed in the ISM. As an example the formation of OB associations near the Sun will be discussed. We trace their orbits in the Milky Way to see where they have been born: 10 - 12 Myr ago progenitors of Scorpius-Centaurus OB associations and the Orion OB association resided together within a sheet-like region elongated in the $l = 20^\circ - 200^\circ$ direction, showing that the local OB associations may be formed as fragments of an expanding supershell.

ABSTRACT

The star formation triggered in dense walls of expanding shells will be discussed. The fragmentation process is studied using the linear and non-linear perturbation theory. The influence of the energy input, the ISM distribution and the speed of sound is examined analytically and by numerical simulations. We formulate the condition for the gravitational fragmentation of expanding shells: if the total surface density of the disc is higher than a certain critical value, shells are unstable. This value depends on the energy of the shell and the sound speed in the ISM. As an example the formation of OB associations near the Sun will be discussed. We trace their orbits in the Milky Way to see where they have been born: 10 - 12 Myr ago progenitors of Scorpius-Centaurus OB associations and the Orion OB association resided together within a sheet-like region elongated in the $l = 20^\circ - 200^\circ$ direction, showing that the local OB associations may be formed as fragments of an expanding supershell.

Key Words: HYDRODYNAMICS — ISM: STRUCTURE — ISM: SUPERNOVA REMNANTS — GALAXIES: EVOLUTION — STARS: FORMATION

1. INTRODUCTION

The gravitational instability in the ISM may develop spontaneously, or it may be triggered by an external push (Elmegreen; 1998): (1) a compression of pre-existing clouds, (2) an accumulation of gas into a shell that may be unstable, and (3) cloud collisions. Shell collisions, as considered by Chernin et al. (1995), can also influence the star formation. Here we focus on the mechanism (2).

The growth of perturbations on the surface of expanding spherical thin shell was analyzed in the linear approximation by Elmegreen (1994) and Vishniac (1994). The instantaneous maximum growth rate is

$$\omega = -\frac{3v_{exp}}{R} + \sqrt{\frac{v_{exp}^2}{R^2} + \left(\frac{\pi G \Sigma_{sh}}{c_{sh}}\right)^2},$$

(1)

where R is the radius of the shell, v_{exp} is its expansion speed, Σ_{sh} is its column density and c_{sh} is the speed of sound within the shell. The perturbation grows only if $\omega > 0$.

The linear analysis is extended to quadratic terms by Wünsch & Palouš (2001). Quadratic terms give the possibility to follow the evolution of fragments after the time when the gravitational instability starts. Masses of individual fragments and their mass spectrum can be evaluated.

Probably both the spontaneous and triggered star formation operate in galaxies and it is difficult to decide, which mechanism is more important. To discuss the star formation triggered in expanding shells without an a priori assumption on their shapes, we use 3-dimensional simulations. In a numerical code, the condition (1) is used and we quantify when and where the expanding shell starts to be unstable. This approach was first used in Ehlerová et al. (1997), here we extend parameter ranges and generalize re-
sults. We also propose a model of the local system of young stars, Gould’s belt, which may be the result of triggered star formation event in the local ISM.

2. CRITICAL SURFACE DENSITY

To study the influence of the total energy input E_{tot}, of the speed of sound in the ISM c_{ext}, of the disk thickness H and of the maximum disk density ρ_0 on the gravitational instability of shell, we use the 3 dimensional numerical model. We fix the speed of sound in the shell c_{sh} and evaluate if the condition for the gravitational instability of the shell is fulfilled at some region during the shell evolution.

In the parameter space ρ_0 versus H the gravitationally unstable and stable regions are separated by surfaces of constant surface density Σ_{crit}. Simulations with different disc profiles (Gaussian, exponential, multicomponent) show, that Σ_{crit} does not depend on it.

There are two types of deviations to this rule:

- **The blow-out effect.** For thin disks a higher density ρ_0 than corresponding to Σ_{crit} is needed for the instability. The blow-out enables the leakage of the energy to the galactic halo, leading to the decrease of the effective energy and pressure pushing the densest parts of the shell.

- **The small shell in the thick disk.** The low energy shell is generally small, and in thick disks they evolve in an almost homogeneous medium never reaching dimensions comparable to the thickness of the disk. Consequently, the value of the gas surface density of the disk is irrelevant in this case. For the instability, the value of ρ_0 has to be higher than predicted by Σ_{crit} criterion, since a substantial fraction of the ISM in the disk remains untouched by the shell.

Σ_{crit} depends strongly on c_{ext}: for larger values of c_{ext} the fragmentation starts at larger values of Σ_{crit}. From simulations with different c_{ext}, E_{tot} we derive the fit:

$$\Sigma_{\text{crit}} = 0.27 \left(\frac{E_{\text{tot}}}{10^{52}\text{erg}} \right)^{-1.1} \left(\frac{c_{\text{ext}}}{\text{km/s}} \right)^4 \cdot 10^{20}\text{cm}^{-2}. \quad (2)$$

With this criterium we can estimate where in the galactic disk the triggered star formation operates.

3. GOULD’S BELT AS A TRIGGERED STAR FORMATION EVENT

We compute orbits of individual OB stars from Gould’s belt in the vicinity of the Sun backwards in time and analyze their positions and velocities at different epochs. The volume taken by members of Scorpius-Centaurus OB association gets smaller going from now to the past. The smallest volume, from which the present OB associations Lower Centaurus-Crux, Upper Centaurus-Lupus and Upper Scorpius are coming, is reached between 10 - 12 Myr ago, when its diameter is less than 100 pc. At that time the distance of the center of this region was about 100 pc from the Sun and all this region was in the first galactic quadrant between galactic longitudes $10^\circ < l < 45^\circ$. Before that time, even deeper in the past, the orbits of the future members of Scorpius-Centaurus OB associations deviate again and the volume taken by the corresponding test particles restarts to grow.

10 Myr ago the OB associations which form today the Gould’s belt, particularly the associations in Orion and Scorpius-Centaurus, have been closer to each other forming a sheet-like pattern about 500 pc long and less than 100 pc wide, with the main axis in the direction $l : 20^\circ - 200^\circ$.

The formation of stars in a region described above may be the result of the gravitational instability, fragmentation and subsequent star formation in an expanding shell, which is deformed by the galactic differential rotation. The motion of stars formed in a triggered star formation event in the expanding shell should be evaluated and compared to the observed kinematical parameters of Gould’s belt.

The authors gratefully acknowledge financial support by the Grant Agency of the Academy of Sciences of the Czech Republic under the grant No. A 3003705/1997 and support by the grant project of the Academy of Sciences of the Czech Republic No. K1048102. JP would like to thank Guillermo Tenorio-Tagle, Jose Franco and organizers of the “Ionized Gaseous Nebulae” meeting in Mexico City for the financial support during the conference.

REFERENCES

Chernin, A. D., Efremov, Yu. N., Voinovich, P. A., 1995, MNRAS 275, 313

Ehlerová, S., Palouš, J., Theis, Ch., Hensler, G. 1997, A&A 328, 121

Elmegreen, B. G. 1994, ApJ 427, 384

Elmegreen, B. G. 1998, in Origins of Galaxies, Stars, Planets and Life, ed. C. E. Woodward, H. AQ.

Thronson & M. Shull, ASP Conf. Ser. 148, p. 150

Vishniac, E. T. 1994, ApJ 428, 186

Wünsch, R., Palouš, J. 2001, A&A, submitted
