Anomalous Antiferromagnetic Phase Diagram in HoRu$_2$Al$_{10}$

S Kamikawa1*, I Ishii1†, H Goto1, K Takezawa1, F Nakagawa1, H Tanida1, M Sera1 and T Suzuki1,2,3

1Department of Quantum Matter, ADSM, Hiroshima University, Higashihiroshima, Hiroshima 739-8530, Japan
2Institute for Advanced Materials Research, Hiroshima University, Higashihiroshima, Hiroshima 739-8530, Japan
3Cryogenics and Instrumental Analysis Division, N-BARD, Hiroshima University, Higashihiroshima, Hiroshima 739-8526, Japan.
E-mail: *d140235@hiroshima-u.ac.jp, †ish@hiroshima-u.ac.jp, ¶tsuzuki@hiroshima-u.ac.jp

Abstract. To investigate an antiferromagnetic (AFM) phase transition of HoRu$_2$Al$_{10}$ with T_N = 5.2 K, we performed specific heat measurements on a single-crystalline sample under magnetic fields H. In H along the b- and c-axes, a sharp peak of the specific heat at T_N, indicating the phase transition, shifts to lower temperature with increasing H. From these measurements, we clarified a magnetic phase diagram for $H \parallel b$ and c above 2 K. In $H \parallel b$, T_N decreases monotonically with increasing H, and the phase boundary closes around 1.0 T, which is a usual behavior for an antiferromagnet. In $H \parallel c$, although T_N shows a monotonic decrease with increasing H at low H, the phase boundary exhibits an inflection point around 4.0 T, suggesting that additional interaction are enhanced or induced by $H \parallel c$ in HoRu$_2$Al$_{10}$. From the stand point of fluctuation of quadrupole moments in isomorphic compound HoFe$_2$Al$_{10}$, we propose that the inflection point is originated from a quadrupolar instability.

1. Introduction

Ternary aluminides $LnTr_2Al_{10}$ (Ln = rare earth, Tr = Ru, Os, and Fe) with the orthorhombic YbFe$_2$Al$_{10}$-type structure (space group: $Cmcm$) have attracted many interests of magnetism. At the early stage, CeRu$_2$Al$_{10}$ has been studied intensively. It is the first example which shows an AFM ordering in the Kondo insulating state [1–4]. The AFM transition temperature of CeRu$_2$Al$_{10}$ is one hundred times higher than the expected temperature from the de Gennes law in $LnTr_2Al_{10}$ despite the strongly reduced Ce magnetic moment [3, 4]. In addition, the ordering direction of the magnetic moment in the AFM state is along the magnetically hard axis [3, 4]. The origin of the unusual AFM transition temperature and direction of the ordered moments has not been clarified. Recently, other $LnTr_2Al_{10}$ compounds have been also studied, such as an AFM transition with a valence instability [5], an incommensurate AFM ordering [6], successive magnetic phase transitions, and so on [7–11].

We focus on an AFM transition at T_N in HoRu$_2$Al$_{10}$ which was reported by Mizushima et al. [11]. A sharp peak of the specific heat C_p was observed at T_N. The temperature T dependencies of magnetic susceptibility along the all axes decrease below T_N, suggesting an
AFM transition at T_N in HoRu$_2$Al$_{10}$. The H dependence of the magnetization M along the c-axis at 2 K shows a metamagnetic transition at 0.8 T. In contrast, M along the a- and b-axes increase almost monotonically with increasing H up to 7 T. The results suggest that the magnetic moments of Ho are oriented toward the c-axis below T_N. As the Ho$^{3+}$ ion in HoRu$_2$Al$_{10}$ is under the orthorhombic symmetry, degenerated 4f-electronic state of the free Ho$^{3+}$ ion (total angular momentum $J=8$) splits into seventeen singlets by the crystal electric field (CEF). In this situation, it is unlikely that there is a spin-degenerated state. In the present work, to investigate the AFM transition in HoRu$_2$Al$_{10}$, we performed specific heat measurements in $H // b$ and c.

2. Experimental

By using Al self-flux method, we grew a single crystal of HoRu$_2$Al$_{10}$ and polycrystalline LuRu$_2$Al$_{10}$ which is a non-magnetic reference material. Specific heat under H is measured with a relaxation method by using the commercial PPMS system (Quantum Design). H is applied along the b- and c-axes between 2 and 10 K. Here, we note that the definition of the b- and c-axes are reverse between our and Mizushima’s samples. To confirm the validity of our definition, we performed X-ray diffraction (XRD) experiments. The XRD patterns on our single-crystalline sample for all planes between 2θ= 70 and 120 degrees, and found the peak position for $\theta=70$ and 120 degrees are shown in Figure 1(a), where θ is the scattering angle. We observed Bragg peaks for the a-plane at 85.48, 85.74, 116.07, and 116.53 degrees, for the b-plane at 74.31, 74.52, 98.11, and 98.44 degrees, and for the c-plane at 85.12, 85.39, 115.46, and 115.91 degrees, respectively. In addition, we determined the lattice parameters of HoRu$_2$Al$_{10}$ ($a=9.092$ Å, $b=10.206$ Å, and $c=9.117$ Å) by the Rietveld refinement of powder XRD patterns using the program RIETAN-FP [12]. The lattice parameters of HoRu$_2$Al$_{10}$ and LuRu$_2$Al$_{10}$ reported by Sera et al. [13] are shown by closed and open symbols in Figure 1(b), respectively. The lattice parameters of HoRu$_2$Al$_{10}$ are very close to the expected values from the lanthanide contraction. From the lattice parameters of HoRu$_2$Al$_{10}$, we estimated the Bragg peak positions in 2θ for all planes between 70 and 120 degrees, and found the peak position for $\theta=70$ and 120 degrees are shown in Figure 1(b).
Table 1. The relation between the plane indices and the Bragg peak positions in 2θ. We also show the calculated peak positions for each plane index obtained from the Rietveld refinement of powder XRD patterns using the program RIETAN-FP with the lattice parameters ($a = 9.092$ Å, $b = 10.206$ Å, and $c = 9.117$ Å) in HoRu$_2$Al$_{10}$ [12].

Plan index	Bragg peak position (deg)	Raw data	Calculation
(8 0 0)	85.48, 85.74	85.34, 85.60	
(10 0 0)	116.07, 116.53	115.82, 116.28	
(0 8 0)	74.31, 74.52	74.28, 74.50	
(0 10 0)	98.11, 98.44	98.01, 98.33	
(0 0 8)	85.12, 85.39	85.06, 85.32	
(0 0 10)	115.46, 115.91	115.32, 115.78	

the plane indices and the peak positions in 2θ. The observed peaks are corresponding to each plane index, respectively. This result indicates the validity of our definition for the crystal axis in HoRu$_2$Al$_{10}$. Therefore, we use our definition for the crystal axis.

3. Results and Discussion

Figure 2(a) shows the T dependencies of C_p of HoRu$_2$Al$_{10}$ and polycrystalline LuRu$_2$Al$_{10}$. The absolute value of C_p in LuRu$_2$Al$_{10}$ is almost the same as that in HoRu$_2$Al$_{10}$ above 60 K. We assumed LuRu$_2$Al$_{10}$ as a non-magnetic reference compound to HoRu$_2$Al$_{10}$. We subtracted C_p of LuRu$_2$Al$_{10}$ from that of HoRu$_2$Al$_{10}$ to estimate the magnetic specific heat C_m of HoRu$_2$Al$_{10}$. The T dependence of C_m and magnetic entropy S_m are shown in Figure 2(b). C_m exhibits a sharp peak at T_N, and a Schottky peak around 9 K. S_m reaches $1.26R\ln2(=7.26 \text{ J/K mol})$ at T_N, where R is the gas constant. S_m saturates around 90 K, suggesting that the CEF splitting in HoRu$_2$Al$_{10}$ is relatively small. The entropy release at T_N indicates that the AFM transition at T_N originates from the pseudo-degenerated state of singlets, though all the CEF states are

![Graph of Cp vs T](image1)

![Graph of Cm vs T](image2)

Figure 2. T dependencies of (a) the specific heat C_p of HoRu$_2$Al$_{10}$ and LuRu$_2$Al$_{10}$, and (b) the magnetic specific heat C_m and the magnetic entropy S_m of HoRu$_2$Al$_{10}$. The inset displays the same data in an expanded scale of C_p in HoRu$_2$Al$_{10}$ and LuRu$_2$Al$_{10}$ below 20 K.
singlets as mentioned above. Here, the pseudo-degenerated state means electronic states with energy separations which can be regarded as a degenerated state from the following viewpoint. If the system is in a condition at a certain temperature which has a higher energy scale than the energy separation, the energy separations may be ignored in the energy scale. In the case of HoRu$_2$Al$_{10}$, the entropy release at T_N is about ΔS_{CEF}, indicating that the CEF ground and first excited states seem to degenerate above T_N. Thus, we mention that the pseudo-degenerated state at T_N is a pseudo-doublet. The energy splitting between the CEF ground and first excited states is most likely less than T_N.

Figure 3(a) and (b) show the T dependencies of C_p in $H // b$ and c, respectively. In $H // b$ and c, the sharp peak of C_p shifts to lower T with increasing H, and then the peak is not observed above 0.7 and 5.5 T, respectively. The Schottky specific heat for $H // b$ increases with increasing H. In contrast, the Schottky specific heat for $H // c$ decreases. These behaviors are expected to originate from the change of the Schottky peak which depends on the energy scale. In the case of HoRu$_2$Al$_{10}$, the entropy release at T_N is about ΔS_{CEF}, indicating that the CEF ground and first excited states seem to degenerate above T_N. Thus, we mention that the pseudo-degenerated state at T_N is a pseudo-doublet. The energy splitting between the CEF ground and first excited states is most likely less than T_N.

The H-T diagram for $H // b$ and c in HoRu$_2$Al$_{10}$. Closed and open symbols denote our and Mizushima’s data [11], respectively.

Figure 3. T dependencies of the specific heat C_p for (a) $H // b$ and (b) $H // c$ in HoRu$_2$Al$_{10}$.

Figure 4. H-T diagram for $H // b$ and c in HoRu$_2$Al$_{10}$. Closed and open symbols denote our and Mizushima’s data [11], respectively.
an inflection point around 3.0 K. This result suggests that additional interactions are enhanced or induced by $H // c$. We have reported that isomorphic compound HoFe$_2$Al$_{10}$ shows elastic softening originating from inter-level transition of quadrupole in the low energy range [14, 15]. Considering the result of HoFe$_2$Al$_{10}$, we assume that the inflection point of the H-T diagram for $H // c$ is caused by enhancement of an instability due to the fluctuating quadrupole moments in $H // c$. To investigate the quadrupolar instability around T_N in HoRu$_2$Al$_{10}$, ultrasonic measurements in H along the all axes are in progress.

4. Conclusion
We performed specific heat measurements under $H // b$ and c. The sharp peak of C_m is observed at T_N. S_m exceeds $Rln2$ at T_N, indicating that the AFM transition at T_N originates from the pseudo-degenerated state of singlets. The peak of C_m shifts to lower T with increasing $H // b$ and c. From the results, we clarified the H-T diagram of HoRu$_2$Al$_{10}$ for $H // b$ and c above 2 K. In $H // b$, the phase boundary closes around 1 T. Meanwhile, in $H // c$, we found the inflection point of the phase boundary around 4 T, which is an anomalous behavior for antiferromagnet. Considering the result that fluctuation of quadrupole moments exist in isomorphic compound HoFe$_2$Al$_{10}$, we propose that the inflection point of the H-T diagram for $H // c$ in HoRu$_2$Al$_{10}$ arises from the quadrupolar instability.

Acknowledgments
This work was supported by JSPS KAKENHI Grant Numbers 262870830A, 26800189, 24540376, 26800188, and 2624706001. This work was also supported by JSPS Core-to-Core Program, A. Advanced Research Networks.

References
[1] Strydom A M 2009 Physica B 404 2981
[2] Nishioka T, Kawamura Y, Takesaka T, Kobayashi R, Kato H, Matsumura M, Kodama K, Matsubayashi K, and Uwatoko Y 2009 J. Phys. Soc. Jpn. 78 123705
[3] Robert J, Mignot J M, André G, Nishioka T, Kobayashi R, Matsumura M, Tanida H, Tanaka D, and Sera M 2010 Phys. Rev. B 82 100404(R)
[4] Khalyavin D D, Hillier A D, Adroja D T, Strydom A M, Manuel P, Chapon L C, Peratheepan P, Knight K, Deen P, Ritter C, Muro Y, and Takabatake T 2010 Phys. Rev. B 82 100405(R)
[5] Peratheepan P, and Strydom A M 2015 J. Phys.: Condens. Matter 27 095604
[6] Takai S, Matsumura T, Tanida H, and Sera M 2015 Phys. Rev. B 92 174427
[7] Sera M, Nohara H, Nakamura M, Tanida H, Nishioka T, and Matsumura M 2013 Phys. Rev. B 88 100404(R)
[8] Muro Y, Kajino J, Onimaru T, and Takabatake T 2011 J. Phys. Soc. Jpn. 80 SA021
[9] Kawamura Y, Tanimoto S, Nishioka T, Tanida H, Sera M, Matsubayashi K, Uwatoko Y, Kondo A, Kindo K, and Sekine C 2012 J. Phys. : Conf. Series 391 012029
[10] Khandelwal A, Sharma V K, Chandra L S S, Singh M N, Sinha A K, and Chattopadhyay M K 2013 Phys. Scr. 88 035706
[11] Mizushima T, Watanabe Y, Ejiri J, Kuwai T, and Isikawa Y 2015 J. Phys. : Conf. Series 592 012051
[12] Izumi F and Momma K 2007 Solid State Phenomena vol 130 (Pfaffikon: Trans Tech Publication) p 15-20
[13] Sera M, Tanaka D, Tanida H, Moriyoshi C, Ogawa M, Kuroiwa Y, Nishioka T, Matsumura M, Kim J, Tsuji N, and Takata M 2013 J. Phys. Soc. Jpn. 82 024603
[14] Kamikawa S, Ishii I, Noguchi Y, Goto H, Fujita T K, Nakagawa F, Tanida H, Sera M, and Suzuki T 2015 Phys. Procedia 75 187
[15] Kamikawa S, Ishii I, Noguchi Y, Goto H, Fujita T K, Nakagawa F, Tanida H, Sera M, and Suzuki T (submitted)