Canalization and symmetry in Boolean models for genetic regulatory networks

C.J. Olson Reichhardt1 and Kevin E. Bassler2,3

1Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545
2Department of Physics, University of Houston, Houston, TX 77204-5005
3Texas Center for Superconductivity at the University of Houston, Houston, TX 77204

E-mail: cjrx@lanl.gov

Abstract. Canalization of genetic regulatory networks has been argued to be favored by evolutionary processes due to the stability that it can confer to phenotype expression. We explore whether a significant amount of canalization and partial canalization can arise in purely random networks in the absence of evolutionary pressures. We use a mapping of the Boolean functions in the Kauffman N-K model for genetic regulatory networks onto a k–dimensional Ising hypercube (where $k = K$) to show that the functions can be divided into different classes strictly due to geometrical constraints. The classes can be counted and their properties determined using results from group theory and isomer chemistry. We demonstrate that partially canalizing functions completely dominate all possible Boolean functions, particularly for higher k. This indicates that partial canalization is extremely common, even in randomly chosen networks, and has implications for how much information can be obtained in experiments on native state genetic regulatory networks.

PACS numbers: 89.75.Hc, 87.10.+e, 02.10.Ox, 87.16.Yc
1. Introduction

To preserve the identity of a species, biological organisms must be capable of maintaining relatively stable phenotype expression in the face of a variety of environmental factors and a certain level of genetic randomness. Experimental observations have shown that certain developmental traits appear to control the expression of other traits. Waddington [1] termed the control of one trait by another “canalization,” a name derived from the analogy that the developmental pathway of the organism is like one particular canal in a floodplain, and the further development of the organism is completely constrained by that canal. Canalization produces robustness because it suppresses those changes in phenotype expression that would require development to deviate from the canalized pathway. For this reason it has been suggested that organisms evolve to be canalized.

The significance of canalization and how it might evolve remains a subject of debate [2]. Since canalization suppresses the expression of genetic variability, experimental detection of the existence of a canalized trait generally involves perturbing the organism out of the canalized state [3]. There is good evidence for the existence of canalization in a variety of organisms [4, 5, 6]; however, the microscopic mechanism for canalization is not well established. Presumably canalization is produced genetically by the complex interactions between genes known as the genetic regulatory network (GRN). As we shall see, however, a certain amount of canalization is expected to appear in GRNs even in the absence of an evolutionary preference for canalization. An open question is whether or not real GRNs contain more canalization than would be expected from a random graph, which could indicate that evolution favors canalization.

Genetic regulatory networks have been proposed as the mechanisms through which identical genetic information is expressed as different cell types within the same organism, and they can also control distinct stages in the life cycle of an individual cell. Depending on the conditions experienced by a given cell and the regulatory interactions between genes, at any moment a distinct subset of all possible genes are activated. The state or temporal pattern of expression produces particular cell types. Organisms with larger numbers of genes have a larger number of potentially realizable cell types. There has been a recent dramatic increase in the amount of experimental information available on the structure of genetic regulatory networks in a range of organisms, including *E. coli* [7], budding yeast *S. cervisiae* [8, 9], *Drosophila* species [10], *Xenopus* [11], and the embryo of the sea urchin *S. purpuratus* [12]. In the simplest representation, the nodes of the network are genes and the links between genes describe their interactions. Generally, the interactions are directional, so that the expression of gene A may depend on, that is “listen to,” the expression of gene B, but the expression of gene B doesn’t necessarily depend directly on the expression of gene A. The connectivity of a gene indicates how many other genes it “listens to” when determining whether to be in an active or inactive state. Analysis of the connectivity of *E. coli* [13, 14] and other GRNs shows a broad distribution of connectivity among the genes, with a significant amount
Canalization and symmetry in Boolean models...

Table 1. An example of a $k = 3$ Boolean function.

in1	in2	in3	out
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

of negative autoregulation. In the context of canalization, several questions arise. What types of structures in a GRN produce canalization of a trait? Do these structures arise randomly, or do they only appear because of a special evolutionary preference? How significant is canalization on the scale of the entire regulatory network?

The easiest way to approach such questions is through a simplified model for a genetic regulatory network such as the Kauffman N-K model [15], which represents the GRN as a random Boolean network. The N-K model has been studied extensively [16, 17, 18, 19, 20, 21, 22, 23]. Certain features of real GRNs, including the ability of a single network to produce multiple cell types (which appear as multiple attractors for the network), are captured by the N-K model. In this model, each gene is represented by a single binary element which can be either on or off in the state 1 or 0. Every gene receives input from a fixed set of k other genes that are randomly chosen when the network is constructed, where $k = K$. Depending on the states of its input genes, a given gene determines whether to express the state 1 or 0 according to a randomly chosen Boolean function of k variables. An example of a Boolean function for $k = 3$ is given in table 1. The value of k may vary from gene to gene. The system evolves in discrete time steps and all genes update their states simultaneously. The entire network eventually settles into an attractor cycle which produces a specific series of network states as a function of time. The initial conditions of the states of the genes in the network determine which of the available attractors the network will reach. The different attractors are interpreted as representing different cell types expressed by a given set of genes.

A gene with connectivity k employs one of the 2^{2^k} possible Boolean functions to determine its response to its k inputs. Canalization occurs in a Boolean function if the output of the gene is fixed by a particular value of at least one of its input genes, regardless of the values of any other inputs to that gene. In this case the input that fixes the output of the regulated gene is a canalizing input. Note that one value of an input gene, say value 0, can be a canalizing input even if the other value 1 from the same input gene is not canalizing. Canalization also occurs in a Boolean function if particular values of two or more inputs together suffice to guarantee the next state of the regulated gene, regardless of the values of any other inputs to the gene. In this case,
the inputs that together fix the output of the regulated gene are said to be *collectively canalizing inputs*. How canalizing a particular Boolean function is can be quantified by the set of numbers $P_n, n = 0, 1, \ldots, k - 1$, which are the fraction of sets of n individual input values that are canalizing or collectively canalizing. Note that Boolean functions with $P_0 = 1$ have a fixed output state regardless of their inputs. Boolean functions can also be characterized by their internal homogeneity p which is defined as the fraction of 1s or 0s, whichever is larger, output by the function due to all of the possible sets of input [24].

A consequence of canalization is that some of the interactions between genes may become irrelevant. As an extreme example, if the Boolean function of a particular gene has $P_0 = 1$, this gene will be insensitive to the state of the rest of the network and its interactions with its input genes are irrelevant. The number of canalizing functions as a function of k was derived recently in Ref. [25]. Although the behaviour of canalizing functions would certainly contribute to the stability of a network that is subjected to random perturbations, such an extreme behaviour has a detrimental effect on the ability of the network to respond to changing conditions. In contrast, other Boolean functions successfully maintain a degree of stability while retaining the ability to change. For these Boolean functions, which we will refer to as “partially canalizing,” the gene may ignore one or more of its inputs under certain conditions. In some cases, the gene completely ignores n inputs at all times, so that its effective connectivity is $k_{\text{eff}} = k - n$. In other cases, if a particular input has the value 1, for example, the gene ignores the remaining inputs, but if that same input has the value 0, the gene listens to its other inputs. Here, the effective connectivity of the gene depends on the current state of the network. More complex categories are also possible, such as the nested canalizing functions proposed by Kauffman [19, 26]. Since the fraction of canalizing functions drops rapidly with k, as shown in Ref. [27], it has been assumed that canalization plays a less important role at high k compared to small k [28]. The class of partially canalizing functions is considerably larger than the class of canalizing functions; however, is it large enough to dominate all classes of functions? As we will show below on mathematical grounds, the partially canalizing functions completely dominate the class of all possible Boolean functions as k increases, so that the emergence of canalization is essentially unavoidable in a complex network.

2. Results

Our approach is to examine the properties of individual Boolean functions and to determine the amount of canalization expected from a random sample of functions. Since the number of possible Boolean functions explodes combinatorially with k, we employ powerful techniques from group theory and isomer chemistry to classify the various functions and help obtain their properties. We provide results through $k = 5$ with these methods. The techniques can be applied readily to higher k, but become increasingly complicated. Therefore, to find results for larger k through $k = 8$ we employ
statistical sampling methods.

For small enough \(k \), the canalization properties of the functions can be obtained directly from inspection. When there are two inputs for each gene, \(k = 2 \), as shown in table 2, there are only 16 possible functions which fall into four classes: fixed (or completely canalizing) with \(P_0 = 1 \); sensitive to both inputs with \(P_0 = 0 \) and \(P_1 = 0 \); and the partially canalizing cases with \(P_0 = 0 \) and \(P_1 = 1/2 \): sensitive to only one input; sensitive to one or two inputs depending on the value of one input.

Table 2. The sixteen \(k = 2 \) functions and their division into four classes.

in	A	B	C	D
00	0	1	0	1
01	0	1	1	0
10	0	1	0	1
11	0	1	0	0

\(P_0 \) 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
\(P_1 \) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Inspection becomes a less viable option as \(k \) increases. In a simulation study of the evolution properties of the different Boolean functions, Bassler et al. [29] observed that functions with \(k = 3 \) inputs fell into 14 distinct classes. In their study all of the functions that were members of the same class evolved, on average, with equal probability. Upon examining representative functions from each class, they categorized the functions according to their canalization properties \(P_n \). The triple of numbers \(P_0, P_1, \) and \(P_2 \) possible for \(k = 3 \) was nearly enough, but not quite enough, to distinctly identify each class of function. Whether the function was symmetric about its midpoint also needed to be considered in defining the classes. These observations about the structures of the functions belonging to each class were essentially empirical. Class membership could be important for determining the properties of real networks since we expect that on average all functions in the same class will evolve with equal probability.

Here, we demonstrate that there is a fundamental geometric reason for the existence of distinct function classes. In the N-K model, a given function is normally represented by a Boolean string of numbers, such as 1001, of length \(2^k \). Comparing different functions by inspection amounts to comparing strings of numbers with each other. Instead of using this representation, we consider an alternative, equivalent representation of each function in the form of a unit \(k \)-dimensional Ising hypercube. Each axis of the \(k \)-dimensional hypercube (or simply a \(k \)-hypercube) represents one of the \(k \) input variables. The coordinates on a given axis indicate the state of the corresponding input variable. Each vertex of the \(k \)-hypercube represents an output state of the gene. In figure 1 we illustrate the mapping of the input states onto a square and cube for \(k = 2 \) and \(k = 3 \), respectively. The output state of the gene corresponding to an input represented by a particular vertex can be indicated by colouring the vertex white or black to represent the values 0 or 1. It is important to note that this system obeys parity symmetry:
Canalization and symmetry in Boolean models...

Figure 1. Left: Mapping of the four possible input states for $k = 2$ onto the vertices of a square. Right: Mapping of the eight possible input states for $k = 3$ onto the vertices of a cube.

Figure 2. Representation of the sixteen $k = 2$ functions on Ising squares. The functions are grouped into four classes. The members of each class are clearly related by symmetry operations on the square plus parity.

replacing all 0’s with 1’s and vice versa results in the same canalization properties for the function.

With this hypercube mapping, it becomes clear that functions which belong to the same class have the geometric property that they can be rotated into each other by symmetry operations on the k-hypercube plus parity. In mathematical terms, the classes that were identified empirically in Ref. [29] are group orbits. We illustrate the mapping for the sixteen $k = 2$ functions in figure 2, where the rotational plus parity symmetries of the functions belonging to each of the four classes are obvious. In figure 3 we illustrate one representative cube for each of the 14 function classes in $k = 3$. The remaining functions in each class are obtained by applying all possible rotations plus parity to the cube. In the hypercube representation, the canalization properties of a Boolean function correspond to the fraction of homogeneous hypersurfaces. That is, for a Boolean function with k inputs P_n is proportional to the fraction of the $k - n$ dimensional hypersurfaces that have all vertices the same. For the two classes with $P_1 = 1/2$ in figure 2, 2 of the 4 one-dimensional sides are uniformly coloured.

We can now employ results from group theory to obtain information about the class structure of functions at all values of k, not merely those values of k which are small enough to permit direct inspection of all functions. The total number of classes for a
Canalization and symmetry in Boolean models...

Figure 3. A single representative Ising cube mapping of each of the 14 classes in $k = 3$.

given k can be obtained by an application of the orbit-counting theorem,

$$P_G(x_1, x_2, ...) = \frac{1}{|G|} \sum_{g \in G} |X^g|$$

(1)

Here, the symmetry group G of the set X contains $|G|$ symmetry operators g, which together include all transformations of the hypercube onto itself. The set of elements in X that are left invariant by g is denoted as X^g. In order to find X^g, note that the mapping of all k-hypercube vertices onto themselves by a given symmetry operator g can be written as a permutation of the vertex numbers. As a result, each operator g can be expressed in terms of its cycle structure $x_1^{b_1} x_2^{b_2} ... x_n^{b_n}$, where $n = k$. This notation indicates that g contains b_1 cycles of length 1, b_2 cycles of length 2, ..., b_n cycles of length n.\[31\]. For example, the $k = 2$ permutation $(14)(2)(3)$ has the cycle representation $x_1^2 x_2$ since it has 2 cycles of length 1 and a single cycle of length 2. To apply the orbit-counting theorem, we must first construct all of the operators of our group, sum the number of functions left invariant by each operator (the fixed points of that operator), and divide by the total number of operators.

The number of functions in, or size of, a class, is given by the number of elements in the group divided by the number of elements in the isometry group of the functions in the class. The isometry group of a class is the subgroup of the full group that describes the symmetry of a function in the class. Note that the particular isometry group will vary from function to function in the class, but the size of the isometry group will remain invariant.

First, consider the number of symmetry operations $|G|$ in our group, which is the k-hypercube crossed with parity. The symmetry group for the k-hypercube is isomorphic to the hyperoctahedral group O_n with $n = k$, which has $n!2^n$ symmetry transformations\[30\]. As an example, there are eight operators for the $k = 2$ square. There is one operator with cycle structure x_1^4: (1)(2)(3)(4); two operators with cycle structure x_4: (1243) and (3421); three operators with cycle structure x_2^2: (12)(34), (13)(24), and (14)(23); and two operators with cycle structure $x_1^3 x_2$: (14)(2)(3) and (23)(1)(4). When these operators are combined with parity, which doubles the number of symmetry operators, we obtain
Table 3. Cycle polynomials for \(k = 1 \) through 5 and the number of classes \(P_G \) for each \(k \).

\(k \)	Cycle polynomial	\(P_G \)
1	\((1/2)(x_1^2 + x_2)\)	2
2	\((1/8)(x_1^4 + 3x_2^2 + 2x_2^2x_2 + 2x_4)\)	4
3	\((1/48)(x_1^8 + 13x_1^4 + 8x_1^2x_2 + 8x_2^2 + 6x_4^2 + 12x_2^4)\)	28
4	\((1/384)(x_1^{16} + 12x_1^8 + 51x_2^4 + 12x_1^4x_2^8 + 232x_1^4x_2^4 + 48x_1^2x_2^8 + 84x_2^8\)	
+\((96x_2^8 + 48x_2^{12})\)	28	
5	\((1/3840)(x_1^{32} + 384x_1^{10}x_2 + 20x_1^{16}x_2^8 + 60x_1^8x_2^{12} + 231x_2^{16} + 80x_1^8x_2^8 + 320x_1^2x_2^{14} + 240x_1^4x_2^8 + 240x_1^4x_2^4 + 520x_4^8 + 384x_1^2x_2^8 + 160x_1^4x_2^4 + 720x_2^6 + 480x_2^{12})\)	698635

a total of \(|G| = 16 \) operators. For each operator without parity, the number of functions left invariant is equal to \(2^{N_c} \), where \(N_c = \sum_{i=1}^{k} b_i \) is the total number of cycles in the operator. Parity must be treated separately; no functions are left invariant by the parity operator with any \(k \)-hypercube operator containing at least one cycle of length 1. Thus there are \(2^{N_p} \) functions left invariant for the eight operators which include parity, where \(N_p = (1 - \Theta(b_1)) \sum_{i=1}^{k} b_i \) and \(\Theta \) is the Heaviside step function. Applying the orbit-counting theorem produces the correct number of classes, but only if parity is included. In the case of \(k = 2 \) without parity, \(P_G = (1/8)(2^4 + 2(2^2) + 3(2^2) + 2(2^3)) = 6 \) classes. Including parity gives \(P_G = (1/16)(2^4 + 2(2) + 3(2^2) + 2(2^3) + 2(2) + 3(2^2)) = 4 \) classes, which is the correct result.

We now face the task of identifying all operators \(g \) for the \(k \)-hypercube. This can be performed by simple inspection in \(k = 2 \) and \(k = 3 \), but it becomes more complicated to keep track of higher-dimensional rotation symmetries. Fortunately, this problem was solved in the middle of the last century, when Harrison [32] derived a formula that produces the complete cycle representation for all \(k \) in the group of interest to us, called the “Zyklenzeiger” in the notation of Ref. [32]. We have used this formula to obtain the cycle representations through \(k = 5 \), shown in table 3. The number of classes for each \(k \), \(P_G \), is also listed in table 3. Clearly, obtaining the properties of the classes by inspection is not feasible by the time \(k = 5 \).

What we are interested in is not simply how many different classes are present, but also the size of each class, and the structure, particularly the canalization properties, of the functions belonging to them. For example, how many classes are there which have the same internal inhomogeneity \(p \)? To find this, we use an application of Pólya’s theorem [33] which is frequently used in isomer chemistry [34]. In isomer chemistry, for a molecule composed of exactly two different types of atoms, the terms \(A \) and \(B \) can be used to represent the different types of atoms. In our case, \(A \) and \(B \) represent 0 and 1, such that either \(A = 0 \) and \(B = 1 \), or \(B = 0 \) and \(A = 1 \). Using the generating polynomial, substitute in a term of the form \(A^a + B^a \) for each \(x_a \). Divide the result by the total number of operators, including parity. Then, drop all terms in the result where the exponent of \(B \) exceeds that of \(A \), as these terms are already accounted for by parity.
Table 4. Class structure for $k = 2$.

Class type	N_h	$\langle S_c \rangle$
A^4	1	2
A^3B	1	8
A^2B^2	2	3

Table 5. Class structure for $k = 3$.

Class type	N_h	$\langle S_c \rangle$
A^8	1	2
A^7B	1	16
A^6B^2	3	18.667
A^5B^3	3	37.333
A^4B^4	6	11.667

The multiplicity of each term indicates how many of the classes are of that form. For example, representatives of classes of the form A^2B^2 are 1010 and 1100. This gives us the desired result of how many classes N_h there are for each value of the internal homogeneity p. Since we also know that the total number $N_f(m, n)$ of functions of the form A^mB^n is simply $N_f(m, n) = (2 - \delta_{m,n})(2^k)!/(m!n!)$, where $m + n = 2^k$, we can estimate the number of functions in each class by the average size of a class, $\langle S_c \rangle = N_f/N_h$. The class structure and average class size for $k = 1$ through 5 are listed in tables 4 through 7. We note that the actual size S_c of each class is given by the number of operators that preserve the symmetry of that particular function class. Thus, as discussed earlier, the maximum class size S_c^{max} is equal to the total number of operators

$$S_c^{\text{max}} = k! 2^{k+1}.$$ (2)

$S_c^{\text{max}} = 16$ for $k = 2$, 96 for $k = 3$, 768 for $k = 4$, and 7680 for $k = 5$. This is consistent with the average class sizes which we obtain.

We also note that isomer chemistry provides a simple means for determining whether two randomly selected functions belong to the same class. Construct the adjacency matrix for the k-hypercube. Along the diagonal, place the values A or B corresponding to the colours of the vertices of one of the functions under consideration, and then find the determinant of the resulting matrix. Each function class has a unique determinant, so performing this procedure on both functions provides an immediate test of whether the two functions fall into the same class.

To show that canalization remains important even as k increases, we measured the average number of homogeneous d-dimensional sides present in a series of randomly generated functions for different k. We denote the number of d-dimensional homogeneous sides (which produce canalization) that a k-dimensional Boolean function
Canalization and symmetry in Boolean models...

Table 6. Class structure for $k = 4$.

Class type	N_h	$\langle S_c \rangle$
A^{16}	1	2
$A^{15}B$	1	16
$A^{14}B^2$	4	60
$A^{13}B^3$	6	186.667
$A^{12}B^4$	19	191.58
$A^{11}B^5$	27	323.56
$A^{10}B^6$	50	320.32
A^9B^7	56	408.57
A^8B^8	74	173.9

Table 7. Class structure for $k = 5$.

Class type	N_h	$\langle S_c \rangle$
A^{32}	1	2
$A^{31}B$	1	64
$A^{30}B^2$	5	198.4
$A^{29}B^3$	10	992
$A^{28}B^4$	47	1530.2
$A^{27}B^5$	131	3074.4
$A^{26}B^6$	472	3839.8
$A^{25}B^7$	1326	5076.7
$A^{24}B^8$	3779	5566.7
$A^{23}B^9$	9013	6224.1
$A^{22}B^{10}$	19963	6463.2
$A^{21}B^{11}$	38073	6777.7
$A^{20}B^{12}$	65664	6877.2
$A^{19}B^{13}$	98804	7031.6
$A^{18}B^{14}$	133576	7058.7
$A^{17}B^{15}$	158658	7131.3
$A^{16}B^{16}$	169112	3554.3

has as $C(d, k)$. The total number of d-dimensional sides is

$$N_d(k) = \frac{2^{k-d}k!}{(k-d)!d!}.$$ \hspace{1cm} (3)

Note that the canalization properties P_n discussed in the beginning of this paper are related to $C(d, k)$ as $P_n = C(k-n, k)/N_{k-n}(k)$. In figure 4 we plot the average fraction of homogeneous d dimensional sides, $c_d = \langle C(d, k) \rangle/N_d(k)$, for $d = 1$ through 4 and $k = 2$ through 8, obtained numerically. We sampled up to 1×10^8 functions generated with $p = 0.5$. For the case of $d = 1$, shown in figure 4(a), on average over 50% of the sides of the hypercube are uniformly coloured even for $k = 8$, indicating a significant amount of partial canalization. As d increases, c_d drops considerably, as illustrated in figure 4(b-d) for $d = 2, 3$, and 4. Thus, the most prevalent type of partial canalization is that associated with homogeneous $d = 1$ sides.
Canalization and symmetry in Boolean models...

Figure 4. Average fraction c_d of homogeneous d-dimensional sides in randomly selected Boolean functions versus k for (a) $d = 1$, (b) $d = 2$, (c) $d = 3$, and (d) $d = 4$.

The mapping of Boolean functions onto k-hypercubes we have described here provides a means of constructing $k + 1$ functions recursively from pairs of k functions. A $k + 1$ function can be composed by stacking together two k functions. Depending on the symmetry properties of the two k functions chosen, there may be only one possible class of $k + 1$ functions that can be constructed from those k functions, or there may be several classes that depend on the relative orientation of the k functions when they are stacked together. This allows us to bound the amount of canalization present. When we assemble a $k + 1$ function out of two k functions, we must have

$$N_d(k + 1) \geq C(d, k + 1) \geq \sum_{i=1}^{2} C_i(d, k).$$

The lower bound is obtained from the fact that the value of $C(d, k + 1)$ must be at least as large as the sum of the values $C_i(d, k)$ of the two functions that have been combined. This is simply a consequence of the fact that homogeneous d-dimensional sides cannot be destroyed as a result of combining two functions. The new sides that are added when the functions are joined may or may not be homogeneous, depending on which two k functions are combined and how they are oriented with respect to each other. It is possible that none of the new sides would be homogeneous, in which case the lower limit of Eq. (4) would apply. The internal homogeneity $p(k + 1)$ of the composite function is given simply by

$$p(k + 1) = \frac{1}{2} \sum_{i=1}^{2} p(k).$$
3. Discussion

Now that we have used the mapping of the functions onto \(k \)-hypercubes in order to obtain information about the class structures of the functions for several values of \(k \), we can make some observations regarding how prevalent partial canalization is among all possible functions. Previous estimates of the fraction of canalizing functions indicated that canalization was of less and less importance as \(k \) increased. These estimates used a very narrow definition of canalization, however. Rather than counting the number of partially canalizing functions, consider the number of completely uncanalizing functions. These functions have the property that they are sensitive to all values of all inputs. There are exactly 2 such functions for each \(k \), regardless of \(k \). All of the remaining functions are at least partially canalizing. This means that partial canalization completely dominates the classes of functions, especially as \(k \) increases.

The rampant occurrence of partial canalization has important implications for recent work on mapping of genetic regulatory networks. The experiments typically map only those connections between genes which are active in the native state of the organism. Here, “active” means that a change in one gene directly affects the second gene. This technique will not detect many of the partially canalizing interactions that could exist between genes. In the case where the partial canalization is of the form that a gene completely ignores one or more of its inputs, the actual value of \(k \) for that gene is larger than the apparent value of \(k \). This could potentially impact the distributions of \(k \) that have been extracted from experimental measurements. A far more dangerous case is a partially canalizing interaction between genes in which a gene ignores one or more inputs when a canalizing input has a value of 1 (for example), but responds to the other inputs when that same canalizing input has a value of 0. If the gene ignores its inputs in the native state, the connection between that gene and its ignored inputs will not be detected experimentally. Suppose that the canalizing gene is identified as causing a disease state. Consultation of the experimentally determined genetic network map indicates that this gene does not appear to control anything else of importance. If, however, the canalizing gene is treated and switches to the state opposite from its canalizing value, the gene that received the canalizing input will suddenly start to respond to the values of its other inputs. This could result in unexpected side effects or worse effects. Thus, from a purely combinatorial point of view, it is important to consider all possible interactions between genes, and not merely those which are expressed in the native state.

The natural predominance of canalization as \(k \) increases suggests that the canalization observed experimentally could be due simply to the high fraction of the available Boolean functions which are canalizing, rather than evolutionary pressure to develop canalizing functions. It is, however, unclear how much canalization is present in real genetic regulatory networks, as discussed in Ref. [35]. It is possible that there is in fact a special evolutionary preference for canalization, which could result in real networks having even higher levels of canalization than would be expected from random selection.
at increasing k. In order to answer this question it would be necessary to measure the
excess canalization, which is the difference between the P_n's observed in real networks
and that in random networks [36]. The existing experimental data on genetic regulatory
networks is not extensive enough to determine whether an interaction between genes
is canalizing or partially canalizing. As noted above, the difference between the two
types of interactions can become important when the network is perturbed away from
its native state. More experimental work is needed in order to determine the prevalence
of canalization and/or partial canalization in actual genetic regulatory networks. The
Boolean models can offer guidance in determining how likely it would be to observe any
type of canalization in a random network.

4. Conclusion

In conclusion, we have used a mapping of the Boolean functions in the Kauffman
model for genetic regulatory networks onto a k − hypercube to obtain information
about the classes into which the functions can be divided. These classes arise due
to geometrical constraints, and can be constructed by applying all possible rotations
of the k − hypercube plus parity to each function. The classes can be counted and
their properties determined using results from group theory and isomer chemistry. We
emphasize that partially canalizing functions completely dominate all possible functions,
particularly for higher k. This indicates that partial canalization should be extremely
common, even in a randomly chosen network, and has implications for how much
information can be obtained in experiments on native state genetic regulatory networks.

Acknowledgments

We thank Min Liu for discussions. This work was supported by the U.S. DoE under
Contract No. W-7405-ENG-36 (CJOR), the LANL Laboratory Directed Research and
Development program (CJOR), and the NSF through grant No. DMR-0427538 (KEB).
References

[1] Waddington C H 1942 Nature 150 563
[2] Gibson G and Wagner G 2000 BioEssays 22 372
[3] Scharloo W 1991 Ann. Rev. Ecol. System. 22 65
[4] Wagner G P, Booth G and Bagheri-Chaichian H 1997 Evolution 51 329
[5] Debat V and David P 2001 Trends in Ecology and Evolution 16 555
[6] Meiklejohn C D and Hartl D L (2002) Trends in Ecology & Evolution 17 468
[7] Thieffry D, Huerta A M, Pérez-Ruèda E and Collado-Vides J 1998 BioEssays 20 433
[8] Lee T I, Rinaldi N, Robert F, Odom D T, Bar-Joseph Z, Gerber G K, Hannett N M, Harbison C T, Thompson C M, Simon I et al. 2002 Science 298 799
[9] Tong A H Y, Lesage G, Bader G D, Ding H, Xu H, Xin X, Young J, Berriz G F, Brost R L, Chang M et al. 2004 Science 303 308
[10] Gibson G and Hogness D S 1996 Science 271 200
[11] Koide T, Hayata T and Cho K W Y 2005 Proc. Natl. Acad. Sci. 102 4943
[12] Davidson E H, Rast J P, Oliveri P, Ransick A, Calestani C, Yu H-C, Minokawa T, Amore G, Hinman V, Arenas-Mena C et al. 2002 Science 295 1669
[13] Babu M M and Teichmann S A 2003 Nucl. Acids Res. 31 1234
[14] Ma H-W, Kumar B, Ditges U, Gunzer F, Buer J and Zeng A-P 2002 Nucl. Acids Res. 30 6643
[15] Kauffman S A 1969 J. Theoret. Biol. 22 377
[16] Albert R and Barabási A-L (2000) Phys. Rev. Lett. 84 5660; Ravasz E, Somera A L, Mongru D A, Oltvai Z N and Barabási A-L 2002 Science 297 1551
[17] Coppersmith S N, Kadanoff L P and Zhang Z 2001 Physica D 149 11; Coppersmith S N, Kadanoff L P and Zhang Z 2001 Physica D 157 54; Qu X, Aldana M and Kadanoff L P 2002 J. Stat. Phys. 109 967
[18] Bilke S and Sjunnesson F 2002 Phys. Rev. E 65 016129
[19] Kauffman S, Peterson C, Samuelsson B and Troein C 2003 PNAS 100 14796
[20] Socolar J E S and Kauffman S A 2003 Phys. Rev. Lett. 90 068702
[21] Samuelsson B and Troein C 2003 Phys. Rev. Lett. 90 098701 Samuelsson B and Troein C 2005 Phys. Rev. E 72 046112
[22] Moreira A A and Amaral L A N 2005 Phys. Rev. Lett. 94 218702
[23] Drossel B, Mihaljev T and Greil F 2005 Phys. Rev. Lett. 94 088701; Drossel B 2005 Phys. Rev. E 72 016110; Greil F and Drossel B 2005 Phys. Rev. Lett. 95 048701; Kaufman V and Drossel B 2005 Eur. Phys. J. B 43 115; Kaufman V, Mihaljev T and Drossel B 2005 Phys. Rev. E 72 046124; Paul U, Kaufman V and Drossel B 2006 Phys. Rev. E 73 026118
[24] Walker C C and Ashby W R 1966 Kybernetik 3 100; Walker C C 1971 Cybernetics 1 55; Walker C C and Gelfand A E 1979 Behavioral Science 24 112
[25] Just W, Shmulevich I and Konvalina J 2004 Physica D 197 211
[26] Kauffman S, Peterson C, Samuelsson B and Troein C 2004 PNAS 101 17102
[27] Raeymaekers L 2002 J. Theor. Biol. 218 331
[28] Kauffman S A 1984 Physica 10D 145
[29] Bassler K E, Lee C and Lee Y 2004 Phys. Rev. Lett. 93 038101
[30] Edwards R and Glass L 2000 Chaos 10 691
[31] King R B 1981 Inorg. Chem. 20 363
[32] Harrison M A 1963 J. SIAM 11 806; Harrison M A 1965 Introduction to Switching and Automata Theory (New York: McGraw Hill)
[33] Pólya G 1937 Acta. Math. 38 145; see translation in Pólya G and Read R C 1987 Combinatorial Enumeration of Groups, Graphs, and Chemical Compounds (Heidelberg: Springer-Verlag)
[34] Balasubramanian K 1982 Computers & Chemistry 6 57
[35] Grefenstette J, Kim S and Kauffman S 2006 BioSystems 84 81
[36] Bassler K E and Liu M 2005 Proc. of SPIE 5845 104