Length –weight relationship and condition factor of long neck croaker –*Pseudotolithus typus* (Bleeker, 1863) from Lagos Lagoon, Nigeria

Keywords: length-weight relationship, condition factor, Lagos lagoon, *Pseudotolithus typus*

1. **Introduction**

Pseudotolithus typus is found along the coast of West Africa from Senegal to Angola. The Sciaenids constitute a large and varied family of fishes related to snappers but differs in that the spinous dorsal fin is short and the adipose tissue is much longer than the anal fin, which has only one or two spines. *P. typus* possess long head and body, a compressed body with the top of the head slightly concave, supra-lateral eyes and large mouth with lower jaw projecting. *P. typus* is among the top commercially fish species that is widely consumed locally by Nigerians because of its abundances on the local market [1].

Length-weight relationship (LWR) is of great importance in fishery assessments [2]. Length and weight measurements in conjunction with age data can give information on the fish stock, age maturity, life span, mortality, growth and reproduction [3].

Length-weight relationship of fish is widely recognized as an important tool in fisheries science especially in ecology population dynamic and stock management [4]. For this reason, the relationship permits estimating the weight of a specimen easily when the total length is known, these relationships are useful when rapid estimation of biomass is necessary [5]. This relationships provides information on growth patterns and growth of the fish. During their development, fish are known to pass through stages in their life history which are defined by different length-weight relationships [6].

In fisheries science however, the condition factor (K) is used to compare the “condition”, i.e., fatness or wellbeing of fish [1]. It is based on the hypothesis that heavier fish of a particular length are in a better physiological condition.
It is also a useful index for monitoring feeding intensity, age, and growth rates in fish [9].

2. Materials and Methods

2.1 Study Area

Lagos State lies between longitude 3°21'24"E and latitude 6°35'8"N. It is located at the South-Western of Nigeria. Lagos State consists of twenty local governments. Ikeja currently serves as an administrative seat of the State and of a local government. The study area is Makoko, located in Lagos Mainland Local Government Area of Lagos State. Makoko is one of the many water and shoreline settlements in Lagos State. Makoko is a shanty settlement located in the centre of Lagos city, along the banks of the Lagos lagoon. Makoko lies within the south-eastern part of Lagos metropolis. It is bounded on the North by Iwaya and University of Lagos; at the West, by Ebute-Meta; South, by the Third mainland Bridge; and East by the Lagos lagoon [9].

2.2 Fish samples collection

Samples of *Pseudotolithus typus* were randomly obtained from September 2018 to February, 2019 from fishermen catches at Makoko landing point. The fish collection was done monthly for six consecutive months. A total of 93 specimens were collected and transported in ice-packed box to the wet laboratory of the Department of Biological Oceanography, Nigerian Institute for Oceanography and Marine Research (NIOMR) for further examination. These specimens were usually collected during early hour of morning. The sampling methods were season stratified. Seasonal stratification covered wet (September - November) and dry (December – February) seasons.

2.3 Laboratory Procedure

The nomenclature of the fish samples taken to the laboratory for this study conformed to Schneider (1990). The fish specimens were treated individually to determine their biometric data. The fish specimens were treated individually to determine their biometric data. In the Laboratory, Total length and Standard length of each fish sample was measured to the nearest 0.1cm while the weight of each specimen was measured to the nearest 0.1gram with a piece of clean hand towel.

The total length of the fish was measured from tip of the mouth to the caudal peduncle. Meanwhile, fish weight was taken into a data sheet for data analysis.

2.4 Growth Parameters

The total length of the fish was measured from tip of the anterior part of the mouth to the caudal fin while standard length was measured from tip of the mouth to the caudal peduncle. Meanwhile, fish weight was taken after blot drying with a piece of clean hand towel.

Total length (TL), Standard length (SL) for individual specimen was measured using measuring board the nearest 0.1cm while the weight of each specimen was measured to the nearest 0.1gram with the use of an electronic weighing balance (Camry model EK5350 of 5kg capacity).

2.5 Determination of Length- Weight Relationship

Length-weight relationship was determined by linear relationship technique to see if there is a correlation between the length and weight of the fish using the formula described by [11] as follows:

\[W = aL^b \]

The above equation (i) and data were transformed in to logarithms before the calculations were made. Therefore equation (ii) becomes:

\[\log W = \log a + b \log L \]

Where:

- \(W \) = Weight of the fish in grams (g)
- \(L \) = Standard length of the fish in centimeters (cm)
- \(a \) = the regression constant which is also the intercept
- \(b \) = an exponent (slope)

2.6 Condition Factor (K)

The condition factor which is a measure of the relative wellbeing of the fish was estimated using the Fulton’s coefficient formula [13]:

\[K = \frac{100W}{L^3} \]

Where:

- \(K \) = Condition factor
- \(L \) = Standard length in centimetre
- \(W \) = Body weight in grams

2.7 Statistical Analysis

Data obtained from the study were subjected to descriptive statistics (mean and standard deviation) and presented in graphs, pie chart and bar chart. Data were subjected to one way analysis of variance (ANOVA) and significant differences accepted at \(P<0.05 \) using statistical package (SPSS version 14). Relationship between variables (Length and Weight) was analysed using regression.

3. Results

3.1 Growth Parameters and Characterization of Fish Species

The range and mean values of weight and total length of *Pseudotolithus typus* from Lagos lagoon are presented in Table 1. Maximum weight was recorded in September with a mean value of 200.01±46.28g while the minimum weight in December with a mean of 118.78±42.98g. The minimum total length was 16cm with a mean of 21.01±3.52 recorded in February, while the maximum total was 36cm with a mean of 27.01±3.62 recorded in November. The weight of *Pseudotolithus typus* sampled ranges from 129g – 261g (September), 122g – 222.5g (October), 78g – 223g (November), 50g – 195g (December), 37g – 200g (January) and 69.00g – 213.00g (February). Monthly variation the monthly sampled fishermen catches of *Pseudotolithus typus* is shown in Figure1. The highest mean body weight was recorded in September (200.01g) while the lowest mean body weight was obtained in January (89.11g). Table 1 shows total length range from 25cm-32cm, 24.50cm – 32cm, 21cm – 36cm, 20cm – 29cm, 18 – 31cm and 16cm – 26cm for September, October, November, December, January and February, respectively. The highest mean total length was noted in September (29.04cm) while the lowest mean total length (23.81) was recorded in January.
Table 1: Monthly variation in weight and total length of *Pseudotolithus typus* from Makoko, Lagos lagoon, Nigeria.

Month	Weight (g) Mean± SD	Min.	Max.	Total Length (cm) Mean ±SD	Min.	Max.
September	200.01±46.28	129.00	261.00	29.04±2.62	23.00	32.00
October	164.38±32.02	122.20	222.34	29.31±2.17	24.50	32.00
November	160.63±42.98	78.00	223.00	27.01±3.620	21.00	36.00
December	118.78±42.12	50.00	195.00	24.80±2.99	20.00	29.00
January	89.11±38.91	37.00	200.00	23.81±3.48	18.00	31.00
February	116.00±36.90	69.00	213.00	24.83±3.48	18.00	30.00

The standard length of *Pseudotolithus typus* ranges from 20cm-29cm, 20cm-26.50cm, 17cm-33cm, 15cm-25cm, 15cm-27cm and 15.50-26.40cm for September, October, November, December, January and February, respectively. The monthly variation in mean standard length of *Pseudotolithus typus* is shown in Figure 2. The highest mean standard length of 33cm was recorded in November while the lowest mean standard length (15cm) was recorded in December.

Table 2 shows the relationship between the natural Log of body weight and the natural Log of total length of *Pseudotolithus typus* for the month of September. The growth exponent ‘b’ is 2.43, the intercept ‘a’ is 2.91 while the coefficient of determination R^2 is 0.827. The value of the coefficient of determination shows a high degree of correlation between the weight and standard length of *Pseudotolithus typus* in September.

The relationship between the natural Log of body weight and the natural Log of total length of *Pseudotolithus typus* for the month of September has a growth exponent ‘b’ of 2.91, the intercept ‘a’ is 3.70 while the coefficient of determination ‘R^2’ is 0.82. The value of the coefficient of determination shows a high degree of correlation between the weight and standard length of *Pseudotolithus typus* in January.

The relationship between the natural Log of body weight and the natural Log of total length of *Pseudotolithus typus* for the month of November has a growth exponent ‘b’ of 2.17, the intercept ‘a’ is 2.37 while the coefficient of determination ‘R^2’ is 0.38.

The range and mean monthly condition factor (K) values is presented in Table 3. Maximum condition factor obtained for *Pseudotolithus typus* was 0.91 in September with a mean of 0.81±0.09 while the minimum condition of 0.65 was recorded in October with a mean of 0.81±0.09. Condition factor of *Pseudotolithus typus* range was 0.60-0.91, 0.65-0.99, 0.47-1.11, 0.58-1.03, 0.44-0.82, 0.37-1.44 for September to February respectively. Table 4 shows mean overall condition factor of *Pseudotolithus typus* samples collected. A mean condition factor of 0.81 was recorded with a standard deviation of ± 0.92.

Table 2: Relationship between weight and total length of *Pseudotolithus typus* from Makoko, Lagos lagoon, Nigeria

Month	Intercept (a)	Growth exponent (b)	Coefficient of determination (R^2)
September	2.91	2.43	0.83
October	2.09	2.17	0.77
November	1.26	1.92	0.74
December	7.13	3.69	0.87
January	3.79	2.59	0.82
February	0.64	1.27	0.38

Fig 1: Monthly sampled fishermen catches for *Pseudotolithus typus* in Makoko

Fig 2: Monthly mean Standard length of *Pseudotolithus typus* samples
4. Discussion

4.1 Length and Weight Relationship of Pseudotolithus typus

A length-weight relationship (LWR) provides information on growth patterns and growth of animals. During their development, fish are known to pass through stages in their life history which are defined by different length-weight relationships. In this study, growth of Pseudotolithus typus samples from Lagos lagoon showed negative allometry. It was observed that if fish must maintain its shape as it grows, their b-values must be equal to 3, but there is no existing theory that says the b-value must be negatively or positively allometric. Allometric growth is negative (b<3) if the fish gets relatively thinner as it grows bigger (growth in age with reduction in size) and positive (b>3) if it gets plumper as it increases in age. It was reported that various factors, including seasons, environmental parameters, the presence of food, feeding ratio, habitat, sex and physiological conditions of fish may be responsible for differences in the observed b value. The strong relationship between length and weight in the coefficient of determination (R²) values agrees with previous studies on different fish species from various water bodies.

Table 3: Monthly condition factor of Pseudotolithus typus samples

Month	Condition factor K		
	Mean±SD	Min.	Max.
September	0.81±0.09	0.60	0.91
October	0.81±0.09	0.65	0.99
November	0.82±0.15	0.47	1.11
December	0.75±0.12	0.58	1.03
January	0.64±0.12	0.44	0.82
February	0.79±0.26	0.37	1.44

Table 4: Overall condition factor of Pseudotolithus typus from Makoko, Lagos Lagoon, Nigeria

Month	Condition factor K		
	Mean±SD	Min.	Max.
September-February	0.81±0.92	0.65	0.99

5. Conclusion and Recommendation

The growth pattern of Pseudotolithus typus in Lagos lagoon indicated allometric growth. Varied condition factor (K) value was obtained and this shows that the well-being of this species depends on season.

6. References

1. Fagade S, Olaniyi C. The biology of the West African shad Ethmalosa fimbriata (Bowditch) in the Lagos lagoon, Nigeria. J. Fish Biol 1972;4:519-533.
2. Ayoade AA, Ikulala AO. Length weight relationship, condition factor and stomach contents of Hemichromis bimaculatus, Serotherodon melanotheron and Tilapia gueteri (perciformes: Cichildae) in Eleiyele Lake, Southwestern Nigeria. Int. Journal of Tropical Biology 2007;55(3-4):969-977
3. Kumar DB, Singh NR, Bink D, Devashish K. Length-weight relationship of Labeo rohita and Labeo gonius (Hamilton-Buchanan) from Sone Beel, the biggest wetland of Assam. Indian Journal of Environmental Research and Development 2014;8(3).
4. Abdoli A, Rasooli P. Length-weight relationship of 10 Species of fishes collected from Iranian freshwaters, Journal of Applied Ichthyology 2008;22:156-157.
5. Froese R. Length-weight relationship for 18 less studied fish species. Journal of Applied Ichthyol 1998;14:117-118.
6. Ighwela KA, Ahmed A, Abol-Munafi AB. Condition Factor as an Indicator of Growth and Feeding Intensity of Nile Tilapia Fingerlings (Oreochromis niloticus) Feed on Different Levels of Maltose. American-Eurasian Journal of Agriculture & Environmental Science.
7. Seher D, Suleyman CI. Condition factors of seven cyprinid fish species from Çamlıgözê Dam Lake on central Anatolia, Turkey. African Journal of Agricultural Research, 2012;7(31):4460-4464.

8. Ujjania NC, Kohli MPS, Sharma LL. Length-weight relationship and condition factors of Indian major carps (C. catla, L. rohita and C. mrigala) in Mahi Bajaj Sagar, India. Research Journal of Biology 2012;2(1):30-36.

9. Udoma O. Makoko: venue of lagos, world bank public participation policies and processes in relation to the lives of beneficiaries in slum upgrading projects: case study: Makoko, Lagos, Nigeria 2013.

10. Schneider W. Field guide to the commercial marine resources of the Gulf of Guinea. FAO, Rome 1990, 227.

11. Le Cren ED. The length-weight relationship and seasonal cycle in gonadal weight and condition in the perch (Perca fluviatilis). Journal of Animal Ecological 1951;20:271-279.

12. Zar JH. Bio statistical analysis, prentice hall New Jersey, 1984, 718.

13. Fulton TW. The rate of growth of fishes. 20th Annual Report of the Fishery Board of Scotland 1902;(3):141-241.

14. Nunoo FKE, Sossoukpe E, Adite A, Fiog-be ED. Food habits of two species of Pseudotolithus (Sciaenidae) off Benin (West Africa) nearshore waters and implications for management International. Journal of Fisheries and Aquaculture 2013;5(6):142-151.

15. Opadokun IO, Ajani EK. Some aspects of the reproductive biology of Gymnarchus niloticus Cuvier, 1829 (Knifefish) in Lekki Lagoon, Nigeria. International Journal of Fisheries and Aquatic studies 2014;2(3):166-170.

16. Kareem OK, Ajani EK, Oriasosa O, Olanrewaju AN, The Sex Ratio, Gonadosomatic Index, Diet Composition and Fecundity of African Pike, Hepsetus odoe (Bloch, 1794) in Eleye Lake, Nigeria. Journal of Fisheries and Livestock Production 2015;3:139. doi:10.4172/2332-2608.1000139.

17. Ofem BO, Samsons YA, Omoniyi IT. Length-weight Relationship, Condition Factor and Sex Ratio of Forty Six Important Fishes in a Tropical Flood River. Research Journal of Fisheries and Hydrobiology, 2009;4(2):65-72, 2009.

18. Kumolu-Johnson CA, Ndimele PE. Length-weight relationships and condition factors of twenty one fish species in Ologe lagoon, Lagos, Nigeria. Asian Journal of Agricultural Science 2010;2:174-179.

19. Ndiaye W, Diouf K, Samba O, Ndiaye P, Panfili J. The Length-Weight, Relationship and Condition Factor of white grouper (Epinephelus aeneus, Geoffroy Saint Hilaire, 1817) at the south-west coast of Senegal, West Africa. International Journal of Advanced Research 2015;3(3):145-153.

20. Ibrahim BU, Auta J, Balogun JK, Bolorunduro PI, Dankishya AS. Length-weight relationship and condition factor of Barilinus niloticus (Family: Cyprinidae) in Kontagora Reservoir, Niger State, Nigeria. Biological and Environmental Sciences Journal for the Tropics. 2012;9(2):155-158.

21. Ude EF, Ugwu LLC, Mgbenka BO, Nwani CD. Evaluation of length weight relationship of fish species of Ebonyi River, Nigeria. Nigerian Journal of Fisheries, 2011;8(1):136-144.

22. Abowei JFN, Ezekiel EN. The Length-weight relationship and condition factor of Chrysichthys nigrodigitatus (Lacepède, 1803) from Amassoma River flood plains. Science and Agriculture 2013;3(2):2013:30-37.

23. Fafioye OO, Oluajo OA. Length-weight relationships of five fish species in Epe Lagoon, Nigeria. African journal of Biotechnology 2005;4:749-751.

24. Anwa-udondiah EP, Peppe PCG. Length-Weight relationship and Condition Factor of Brackish Tilapia (Sarotherodon melanotheron) cultured in sheltered outertanks. Proceedings of the 26th Annual Conference of the Fisheries Society of Nigeria, Minna, Nigeria 2011, 98-102.

25. Benard. Biometric Characteristics, Food and Feeding Habit and Sex Dimorphism of the Long Neck Croaker (Pseudotolithus typus) from Lagos Lagoon. International Journal of Modern Plant & Animal Sciences 2015;4(1):1-9.

26. Abowei JFN, Davies OA, Eli A. Physicochemistry, morphology and abundance of fin fish of Nkoro River, Niger Delta, Nigeria. International Journal of Pharma and Bio Sciences 2009;6(2).

27. Bagena TB, Tesch FW. Age Growth in Method of Assessment of Fish Production in Fresh Waters, (ed. T. Bagena). Oxford Blackwell Scientific Publication 1978, 101-136.

28. Kumolu-Johnson CA, Ndimele PE. Length-weight relationships of nine fish species from Ologe Lagoon, Lagos, Nigeria. African Journal of Biotechnology. 2011;10(2):241-243.

29. Ndome CB, Muabe T. The feeding behavior and condition index of Heterobranchus bidorsalis in southeastern Nigeria. Journal Sustainable Tropical Agriculture Res 2009;29:18.

30. Youson JH, Holmes JA, Guchardi JG, Beaver RE, Gersmehl JE, Sower SA et al. Importance of condition factor and the influence of water temperature and photoperiod on metamorphosis of sea lamprey, Petromyzon marinus. Canadian journal of Fisheries and Aquatic Science 1993;50:2448-2456.

31. Ikongbeh OA, Ogbe FG, Solomon SG. Length-Weight relationship and Condition factor of Citharinus citharus (Geoffroy Saint-hillaine, 1809) from Lake akata, Benue state, Nigeria. Proceedings of the 27th annual Conference of the Fisheries society of Nigeria 2012, Yenagua, Nigeria 2012, 374-378.