Weight-Preserving Simulated Tempering

Jeffrey S. Rosenthal, University of Toronto.
(Fujitsu/UofT/DA Monthly Seminar, March 23, 2022)

N.G. Tawn, G.O. Roberts, and J.S. Rosenthal, “Weight-Preserving Simulated Tempering”. *Statistics and Computing* **30** (2020), 27–41.

G.O. Roberts, J.S. Rosenthal, and N.G. Tawn, “Skew Brownian Motion and Complexity of the ALPS Algorithm”. *Journal of Applied Probability* **59**(3), to appear.

Background on the Metropolis Algorithm (MCMC)
- Given a previous state X, propose a new state $Y \sim Q(X, \cdot)$.
 (Assume that Q is symmetric about X; otherwise “Metropolis-Hastings”.)
- Then, if $\pi(Y) > \pi(X)$, accept the new state and move to it.
- If not, then accept it only with probability $\pi(Y) / \pi(X)$, otherwise reject it and stay where you are.
- The empirical distribution (black) converges to the target (blue).

 ![Graph](image.png)

Problem: The Chain can get Stuck in a Local Mode
- Can’t “jump over” places where π small. [Metropolis ex]
- Consider the following running example, with two separated modes:

 ![Graph](image.png)

- A simple Metropolis algorithm may have trouble mixing well:
• The chain (green, running “up”) can’t easily move from “5” to “−5”.
• And this problem gets even worse in higher dimensions.

Traditional Solution: Tempering

• Replace the target $\pi(x)$ by a tempered version, $\pi_\tau(x) = \pi(x)^{1/\tau}$.
• For optimisation: let $\tau \downarrow 0$ (cooling), to make it more “peaked”:

![Graph showing the effect of cooling](temp = 0.5)

• But for mixing, take $\tau \gg 1$, to make it “flatter” ($\pi(x)^{1/\tau} \to 1$):

![Graph showing the effect of mixing](temp = 2)
• If τ is large enough, then the chain can explore, without obstacles:

$$\pi(x)^{(1/\text{temp})}$$

(temp = 8)

Challenge: Tempering Doesn’t Preserve Mode Weights

• How much “weight” (probability mass) does each mode have?
• In our example, the original ($\tau = 1$) target has a certain balance:

![Graph showing mode weights](image)

• As we do more tempering ($\tau \nearrow$), the density values get closer to 1.
• This gives more weight to “fatter” modes, even with small $\pi(x)$:

![Graph showing mode weights](image)

52.3% 47.7% (temp = 2)
For large enough temperatures τ, the weights become very different:

This means that even though there are no “obstacles” to moving from 5 to -5, there is less “motivation” for the chain to do so.

So, the chain will not move to near -5 very often.

But, at $\tau = 1$, the mode around -5 has most of the mass of $\pi(x)$.

In higher dimension, the weight changes become exponentially worse.

This can lead to poor mixing (cf. Woodard et al., 2009):

So, we have exchanged one convergence problem for another. Bad!

(Note: I focus here on Simulated Tempering, with a single chain. But the same mixing problems arise for Parallel Tempering, i.e. Replica Exchange, with one chain for each possible temperature.)

Some Theory on Why the Weights are not Preserved

Can we get the benefits of tempering, while avoiding weight changes?

Suppose π is a mixture of probability distributions: $\pi(x) = \sum_j w_j g_j(x)$.

Usual tempering: $\pi_\tau(x) = [\pi(x)]^{1/\tau} = [\sum_j w_j g_j(x)]^{1/\tau}$.

If the components are well separated, $\pi_\tau(x) \approx \sum_j w_j^{1/\tau} g_j(x)^{1/\tau}$.
Let \(m_{j,\tau} = \int g_j(z)^{1/\tau} dz \) be the mass of \(g_j(x)^{1/\tau} \). So \(m_{j,1} = 1 \).

Let \(f_j(x, \tau) = g_j(x)^{1/\tau}/m_{j,\tau} \) be the normalised version of \(g_j^{1/\tau} \).

Then \(\pi_{\tau}(x) \approx \sum_j (w_j^{1/\tau} m_{j,\tau}) f_j(x, \tau) \).

Since \(w_j^{1/\tau} m_{j,\tau} \neq w_j \) for \(j \neq 1 \), the weights are not preserved.

Can we get the benefits of tempering, while avoiding weight changes?

Solution – Weight-Preserving Tempering

- Idea: Replace \(\pi_{\tau}(x) = [\pi(x)]^{1/\tau} \) by \(\pi^*_{\tau}(x) = [\pi(x)]^{1/\tau} [\pi(\mu_{x,\tau})]^{1-(1/\tau)} \).
- Here \(\mu_{x,\tau} \) is the closest mode to \(x \), at a given temperature \(\tau \).
- Then if \(\pi(x) = \sum_j w_j g_j(x) \) are well separated, then

\[
\pi^*_{\tau}(x) = [\pi(x)]^{1/\tau} [\pi(\mu_{x,\tau})]^{1-(1/\tau)} = \left[\sum_j w_j g_j(x) \right]^{1/\tau} \left[\sum_j w_j g_j(\mu_{x,\tau}) \right]^{1-(1/\tau)}
\]

\[
\approx \left[\sum_j w_j^{1/\tau} g_j(x)^{1/\tau} \right] \left[\sum_j w_j^{1-(1/\tau)} g_j(\mu_{x,\tau})^{1-(1/\tau)} \right]
\]

\[
\approx \sum_j \left[w_j^{1/\tau} g_j(x)^{1/\tau} \right] \left[w_j^{1-(1/\tau)} g_j(\mu_{x,\tau})^{1-(1/\tau)} \right]
\]

\[
= \sum_j w_j g_j(x)^{1/\tau} g_j(\mu_{x,\tau})^{1-(1/\tau)}.
\]

- Near the mode, \(g_j(x)^{1/\tau} g_j(\mu_{x,\tau})^{1-(1/\tau)} \approx g_j(x)^{1/\tau} g_j(x)^{1-(1/\tau)} = g_j(x) \), so \(\int g_j(x)^{1/\tau} g_j(\mu_{x,\tau})^{1-(1/\tau)} dx \approx 1 \), so mode \(j \) has weight \(\approx w_j \). Phew!
- For example, in the Gaussian case where \(g_j(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-(x-\mu)^2/2\sigma^2} \),

\[
\int g_j(x)^{1/\tau} g_j(\mu)^{1-(1/\tau)} dx = \int \left(\frac{1}{\sqrt{2\pi\sigma}} \right)^{1/\tau} e^{-(x-\mu)^2/2\sigma^2} \left(\frac{1}{\sqrt{2\pi\sigma}} \right)^{1-(1/\tau)} dx = \sqrt{\tau}
\]

which depends only on \(\tau \) (not \(\sigma \)), so weight ratios are preserved. Good!
- Let’s try this \(\pi^* \) on our example, for different temperatures:

![Graph showing the distribution of \(\pi(x) \) for different temperatures and weights](image)
Weights are approximately preserved. But still mixes pretty well:

THEOREM: Under certain (strong) assumptions, mixing time is $O[d (\log d)^2]$ in dimension d. Works well in simulations, too. Good!

Apply to discrete distributions, like DA? Maybe – let’s discuss it!

www.probability.ca / jeff@math.toronto.edu / @ProbabilityProf