Impact of hadronic interactions and conservation laws on cumulants of conserved charges in a dynamical model

Jan Hammelmann and Hannah Elfner

arXiv: 2202.11417
Introduction

Explore the phase diagram of QCD by using heavy-ion collisions

Measure cumulants of conserved charges
Introduction

Signs of global charge conservation effects in measurements of heavy-ion collisions

Net protons are used as a proxy of the net baryon number fluctuations

Perform dynamical simulations to model the background signal
Model

Simulating Many Accelerated Strongly-interacting Hadrons (SMASH)
https://smash-transport.github.io/

Uses a geometric collision criterion

$$\pi d_{\perp}^2 < \sigma_{\text{tot}}$$

Incorporates particles with masses up to $\sim 2\text{ GeV}$

Types of processes are:

- $2 \leftrightarrow 1$ resonance formation / decay
- $2 \leftrightarrow 2$ elastic / inelastic interactions
- String excitation (not used in this work)
Model

Degrees of freedom

N	Δ	Λ	Σ	Ξ	Ω	Unflavored	Strange
N938	Δ1232	Λ1116	Σ1189	Ξ1321	Ω1672	π138	f0 980
N1440	Δ1620	Λ1405	Σ1385	Ξ1530	Ω2250	π1300	f0 1370
N1520	Δ1700	Λ1520	Σ1660	Ξ1690		π1800	f0 1500
N1535	Δ1905	Λ1600	Σ1670	Ξ1820		f0 1710	f2 2010
N1650	Δ1910	Λ1670	Σ1750	Ξ1950		η548	f2 2300
N1675	Δ1920	Λ1690	Σ1775	Ξ2030		η958	a0 980
N1680	Δ1930	Λ1800	Σ1915			η11295	a0 1450
N1700	Δ1950	Λ1810	Σ1940			η1405	f1 1285
N1710	Δ1820	Σ2030				η1475	f1 1420
N1720	Δ1830	Σ2250				η1880	a1 1170
N1875	Δ1890					σ800	h1 1170
N1900	Δ2100						
N1990	Δ2110					ρ776	η1 1400
N2080	Δ2350					ρ1450	b1 1235
N2190	Δ1220					ρ1700	a1 1260
N2220							
N2250						ω783	η2 1645

From A. Schaefer, see https://smash-transport.github.io/

https://theory.gsi.de/~smash/analysis_suite/SMASH-2.2/
Methodology

Initialization
Initialize a box event-by-event with the same number of particles with momenta according to the Boltzmann distribution.

Box
Time: 0 fm
Box Width: 10 fm
Temperature: 0.15 GeV

Calculate cumulants in this sub volume.

https://smash-transport.github.io/
Methodology

Infinite matter simulation

Calculate cumulants of particle distributions as a function of the size of the subvolume

\[x = \frac{V}{V_0} \]

\[\omega = \frac{C_2}{C_1} = \frac{\langle (\delta N)^2 \rangle}{\langle N \rangle} \]

\[S\sigma = \frac{C_3}{C_2} = \frac{\langle (\delta N)^3 \rangle}{\langle (\delta N)^2 \rangle} \]

\[\kappa\sigma^2 = \frac{C_4}{C_2} = \frac{\langle (\delta N)^4 \rangle - 3\langle (\delta N)^2 \rangle^2}{\langle (\delta N)^2 \rangle} \]

Additionally study the effects of cuts on transverse momentum \(0.4 < p_T < 2 \text{ GeV}\)
Methodology

Analytic Comparison
When the net charge number is conserved and the total charge number can fluctuate

\[P(n_+, n_-; x) = \sum_{N_+, N_-} P(N_+, N_-) B(n_+, n_-; x) B(N_-, n_-; x) \]

Binomial distribution

\[P(N_+, N_-) = \delta(N_+ - N_- - Q) P(N_{ch}) \]

Net charge conservation Fluctuation of the total charge number

Analytic expressions for cumulants as function of \(x \)

\[\omega = 1 - x \]
\[S\sigma = \frac{Q}{\langle N_{ch} \rangle} (1 - 2x) \]
\[\kappa\sigma^2 = 1 + 3x(1 - x)(\omega[N_{ch}] - 2) \]

For more details see *Phys.Rev.C* 101 (2020) 2, 024917
Thermal and chemical equilibrium as well as isotropic densities are a pre-requisite to perform these kind of calculations.

Temperature and baryon chemical potential are calculated assuming

\[\frac{dN}{dp} \sim \exp\left(- \left(\sqrt{p^2 + m^2} - \mu_B \right) / T \right) \]

The density is distributed isotropically in the system.
Simple $\pi \rho$ hadron gas interacting via an energy dependent cross section $\pi^\pm \pi^\mp \leftrightarrow \rho^0$

Cumulants follow lines of perfect conservation

Correlations are present within a cut in momentum space

$\kappa \sigma^2$ dependency on the charge density \rightarrow total charge number fluctuation

Test System

Simple $\pi \rho$ hadron gas interacting via an energy dependent cross section $\pi^\pm \pi^\mp \leftrightarrow \rho^0$

Cumulants follow lines of perfect conservation

Correlations are present within a cut in momentum space

$\kappa \sigma^2$ dependency on the charge density \rightarrow total charge number fluctuation

Simple $\pi \rho$ hadron gas interacting via an energy dependent cross section $\pi^\pm \pi^\mp \leftrightarrow \rho^0$

Cumulants follow lines of perfect conservation

Correlations are present within a cut in momentum space

$\kappa \sigma^2$ dependency on the charge density \rightarrow total charge number fluctuation

Test System

Simple $\pi \rho$ hadron gas interacting via an energy dependent cross section $\pi^\pm \pi^\mp \leftrightarrow \rho^0$

Cumulants follow lines of perfect conservation

Correlations are present within a cut in momentum space

$\kappa \sigma^2$ dependency on the charge density \rightarrow total charge number fluctuation

Simple $\pi \rho$ hadron gas interacting via an energy dependent cross section $\pi^\pm \pi^\mp \leftrightarrow \rho^0$

Cumulants follow lines of perfect conservation

Correlations are present within a cut in momentum space

$\kappa \sigma^2$ dependency on the charge density \rightarrow total charge number fluctuation
Full Hadron Gas

Full set of hadrons from SMASH with all possible interactions

Perform final decays after the dynamical evolution

Possibility to extract $C_2[N_{ch}]$ for a realistic interacting hadron gas

Effects of conservation still present within the net-proton numbers
In the limit $x \to 0$, $\omega / k \sigma^2 \to 1$ (Poisson Limit)

For small volumes and large baryon chemical potentials, the cumulants don’t strictly follow the analytic expressions
Mapping between protons and baryons

δB fluctuations are of interest, however only δP fluctuations are accessible

Is it possible to map fluctuations $\delta N_p \rightarrow \delta N_B$?

Mapping between proton and baryon number fluctuations $\delta P \leftrightarrow \delta B$

Kitazawa and Asakawa Phys.Rev.C 85 (2012) 021901

Based on binomial unfolding procedure
input: Probability $p = \langle N_p \rangle / \langle N_B \rangle$
Mapping between protons and baryons

Dynamical correlations within the model limits the applicability in large acceptance regions

Dependency on the complexity of the system
Impact of deuteron formation

Build a relatively easy hadron gas such that the impact of deuterons can be extracted

$\pi \rho h_1(1170) \Delta N d d'$

Deuteron formation on the basis of a fictional resonance d'

$pn \leftrightarrow d' \quad \pi d' \leftrightarrow \pi d \quad Nd' \leftrightarrow Nd$

Run system with and without deuterons and compare the fluctuations

Deuterons are almost not affected by conservation effects
Conclusion

Summary

Charge annihilation processes affect the kurtosis at large densities

At large baryon chemical potentials the scaled variance is modified in small volumes

Proton number fluctuations cannot be recovered at large acceptance regions from baryon number fluctuations due to dynamical correlations

Deuteron number has no large impact on conservation effect

Outlook

Critical initial conditions in an expanding sphere

Impact of baryon annihilation and rescattering in more realistic scenarios
Backup
Mapping between protons and baryons

Dependence on the complexity of the system
Fluctuations of the total charge number $C_2[N_{ch}]$ becomes important at large densities

More charge annihilation processes (C_4 depends on $C_2[N_{ch}]$)

Fluctuations can be described by analytic formulas with the input of $\langle N_\pm \rangle$ and $C_2[N_{ch}]$