Effect of Alirocumab on Coronary Atheroma Volume in Japanese Patients With Acute Coronary Syndrome
— The ODYSSEY J-IVUS Trial —

Junya Ako, MD, PhD; Kiyoshi Hibi, MD, PhD; Kenichi Tsujita, MD, PhD;
Takafumi Hiro, MD, PhD; Yoshihiro Morino, MD, PhD; Ken Kozuma, MD, PhD;
Toshiro Shinke, MD, PhD; Hiromasa Otake, MD, PhD; Kiyoko Uno, MD, PhD;
Michael J Louie, MD; Yoshiharu Takagi; Katsumi Miyauchi, MD, PhD

Background: In patients with acute coronary syndrome (ACS), alirocumab reduced the risk of recurring ischemic events. ODYSSEY J-IVUS assessed the effect of alirocumab on coronary atheroma volume in Japanese patients recently hospitalized with ACS and hypercholesterolemia, using intravascular ultrasound imaging analysis.

Methods and Results: Patients (n=206) who at index ACS diagnosis either had low-density lipoprotein cholesterol (LDL-C) ≥2.59 mmol/L (≥100 mg/dL) despite stable statin therapy, or were not on statins with LDL-C levels above target after statin initiation, were randomized (1:1) to alirocumab (75 mg every 2 weeks [Q2W]/up to 150 mg Q2W), or standard of care (SoC; atorvastatin ≥10 mg/day or rosuvastatin ≥5 mg/day) for 36 weeks. The primary efficacy endpoint (week [W] 36 mean [standard error] percent change in normalized total atheroma volume [TAV] from baseline) was −3.1 (1.0)% with SoC vs. −4.8 (1.0)% with alirocumab (between-group difference: −1.6 [1.4]; P=0.23). W36 absolute change from baseline in percent atheroma volume was −1.3 (0.4)% (SoC) and −1.4 (0.4)% (alirocumab; nominal P=0.79). At W36, LDL-C was reduced from baseline by 13.4% (SoC) vs. 63.9% (alirocumab; nominal P<0.0001). In total, 61.8% (SoC) and 75.7% (alirocumab) of patients reported treatment-emergency adverse events.

Conclusions: In Japanese patients with ACS and hypercholesterolemia inadequately controlled despite statin therapy, from baseline to W36, a numerically greater percent reduction in normalized TAV was observed with alirocumab vs. SoC, which did not reach statistical significance.

Key Words: Atherosclerosis; Coronary artery disease; Hypercholesterolemia; Intravascular ultrasound; Lipids
(HR, 0.85; 95% CI, 0.73–0.98) with nominally significant P-value vs. placebo in a population of patients with recent (within 1–12 months) ACS. No interaction was observed between treatment effect and geographic region (interaction P-value=0.40). The use of intravascular ultrasound (IVUS) to evaluate atheroma volume is a globally established method to evaluate the CV effect of LLT. In a meta-analysis (n=1,137), a direct relationship was shown between the burden of coronary atherosclerosis as defined by IVUS, its progression, and adverse CV events.11

The present study (ODYSSEY J-IVUS; NCT02984982) assessed the effect of alirocumab on coronary atherosclerotic plaque in Japanese patients with recent hospitalization for ACS who, despite statin therapy, did not achieve the recommended LDL-C levels as defined by the Japan Atherosclerotic Society.6

Methods

ODYSSEY J-IVUS was a Phase IV, 36-week, open-label, randomized, blinded IVUS analysis, parallel-group, multicenter study of Japanese patients who had recently been hospitalized for ACS and who had hypercholesterolemia inadequately controlled despite statin therapy. The study was conducted at 40 sites in Japan; the first patient was enrolled in November 2016 and the last in November 2017. The study design and methods have been published previously.12

The study was conducted in accordance with the ethical principles derived from the Declaration of Helsinki and the International Conference of Harmonization guidelines for Good Clinical Practice, and with all applicable laws, rules, and regulations. The study protocol was approved by the relevant institutional review boards of participating centers, and all participating patients provided written informed consent.

Patients

The study included 206 patients (aged ≥20 years) who had recently been hospitalized for ACS, had LDL-C ≥2.59 mmol/L (≥100 mg/dL) at ACS diagnosis, had undergone IVUS imaging as part of usual clinical practice in Japan, and had an analyzable IVUS image of the culprit or non-culprit vessel with ≥50% angiographic stenosis of the culprit vessel within 1 week after ACS onset. ACS was defined as STElevation myocardial infarction (STEMI), non-STEMI, and unstable angina (Supplementary Table 1). Eligible patients with LDL-C ≥2.59 mmol/L (≥100 mg/dL) who had been on any statin therapy at ACS onset received atorvastatin ≥10 mg/day or rosuvastatin ≥5 mg/day (if not already on these), based on the investigator’s judgement. Eligible patients with LDL-C ≥2.59 mmol/L (≥100 mg/dL) not taking a statin at ACS diagnosis were started on atorvastatin 10 mg/day or rosuvastatin 5 mg/day immediately after diagnosis, and could enter the study if their LDL-C level was ≥2.59 mmol/L (≥100 mg/dL); or ≥1.81 mmol/L (≥70 mg/dL), if the investigator deemed it appropriate) after 2–4 weeks. A full list of study inclusion and exclusion criteria is presented in Supplementary Table 1.

Study Design

ODYSSEY J-IVUS consisted of a 36-week open-label treatment period, which started within 4 weeks after ACS diagnosis with or without revascularization and also included post-treatment IVUS imaging at Week 36 (end of treatment ±2 weeks; Supplementary Figure 1). Following the treatment period there was a safety follow-up period (off treatment) of 21 days.

Eligible patients were randomized (1:1) by permuted-block design to receive either alirocumab or standard-of-care (SoC). Randomization was stratified by previous use of statin therapy at the index ACS onset. Patients in the alirocumab group received alirocumab 75 mg every 2 weeks (Q2W) in addition to stable dose background statin therapy with/without other LLTs (Supplementary Figure 1). At Week 14, the study allowed alirocumab dose increase to 150 mg Q2W if Week 12 LDL-C was ≥2.59 mmol/L (≥100 mg/dL). Patients in the SoC group received stable dose statin therapy, with optional dose adjustment (within the range approved by health authority). Data for statin dose changes were not available. In patients receiving statin monotherapy in the SoC arm, non-statin, non-PCSK9 inhibitor LLTs could be added by investigators if LDL-C goal <2.59 mmol/L (<100 mg/dL) could not be achieved; adjustments could be made after randomization during the treatment phase. Baseline IVUS images were obtained from culprit or non-culprit vessels as the longest possible length with or without signs of atherosclerosis. Using digitized images, the central laboratory, blinded to the patient’s background and study treatment, selected a target vessel segment >10 mm for serial analysis on the basis of IVUS land-marks (side branches or stent) with preference for the culprit vessel. The IVUS imaging of a target vessel was then performed at Week 36. Investigators were recommended to use the same IVUS imaging system for both the baseline and follow-up with auto-pullback speed of 0.5 mm/s [40 MHz or 60 MHz commercially available IVUS imaging catheter (Boston Scientific, Natick, MA, USA; Terumo Corp., Tokyo, Japan)]

Study Endpoints

On-site visits took place during the treatment period at Weeks 0, 4, 12, 24, and 36. Blood sampling was performed in the morning under fasting conditions, which was defined as an overnight fast of ≥8 h.

The primary efficacy endpoint was the percent change in normalized total atheroma volume (TAV) from baseline to Week 36, defined as follows: Normalized TAV (Week 36)− Normalized TAV (baseline)/Normalized TAV (baseline)× 100. Normalized TAVs at baseline and Week 36 were obtained prior to randomization and after ≥24 weeks of treatment, respectively. Normalized TAV was calculated as previously described;12 briefly:

\[
\text{Normalized TAV (mm}^3\text{)} = \frac{\sum (\text{EEM CSA} - \text{Lumen CSA})\delta \times C}{n}
\]

where EEM CS A is the cross-sectional area inside the external elastic membrane border, Lumen CS A the cross-sectional area inside the lumen border, \(\Sigma \) the summation over all analyzed frames, \(\delta \) the pre-determined intervals between each image (0.5 mm), \(n \) the number of analyzed frames per patient, and C the median of the number of analyzed frames in patients with available baseline TAV within the randomized population. EEM CS A and Lumen CS A were measured by the central laboratory, blinded to study treatment groups.

The key secondary efficacy endpoint was the absolute change in percent atheroma volume (PAV) from baseline to Week 36. PAV was calculated as previously described:6

\[
\text{PAV} (%) = \left(\frac{\sum (\text{EEM CSA} - \text{Lumen CSA})}{\sum \text{EEM CSA}} \right) \times 100
\]
Other secondary endpoints are listed in Supplementary Table 2. All lipids were measured by a central laboratory. LDL-C was calculated using the Friedewald formula. If triglyceride values exceeded 4.5 mmol/L (400 mg/dL), the central laboratory automatically measured LDL-C directly, using the \(\beta \)-quantification method.

Safety parameters, including adverse events (AEs), laboratory data, and vital signs were assessed throughout the study.

Study Populations
The randomized population included patients who were allocated to treatment and recorded in the registration center database, regardless of whether study drug was received.

The primary efficacy analysis population was the modified intent-to-treat (mITT) population, including randomized patients who took \(\geq 1 \) dose or part of a dose of study drug and had an available value of normalized TAV before randomization and after 24 weeks of treatment.

The safety population was defined as the randomized population who received \(\geq 1 \) dose or part of a dose of the study drug and analyzed according to the treatment received. Randomized patients for whom it was unclear whether they took the study drug were included in the safety population.

Statistical Analysis
The sample size was calculated using the results of the eZeitimibe Ultrasound Study (ZEUS) and the Plaque Regression With Cholesterol Absorption Inhibitor or Synthesis Inhibitor or Synthesis Inhibitor Evaluated by Intravascular Ultrasound (PRECISE-IVUS) study. In the PRECISE-IVUS study, percent change from baseline in normalized TAV for patients with ACS was \(-10.2\%\) for atorvastatin+ezetimibe, and \(-1.3\%\) for atorvastatin only. In the ZEUS study, standard deviation (SD) of percent change in TAV was 12.6\%.

Thus, it was assumed that the difference in percent change in normalized TAV from baseline between alirocumab and SoC arms would be 8\%, and the common SD of percent change in normalized TAV would be 15\%. Therefore, a sample size of 150 patients (n=75 [alirocumab group] and n=75 [SoC group]) would have 90% power to detect the treatment difference with a 2-sided significance level of 5\%. Assuming that the proportion of patients with a non-evaluable primary endpoint would be 25\%, it was considered that 200 patients (n=100 in both treatment groups) would be needed.

As previously reported, the primary efficacy endpoint was analyzed in the mITT population using an analysis of covariance model with treatment arm and randomization strata (statin at ACS onset) as fixed effects, and the baseline normalized TAV as covariate. Briefly, the alirocumab arm was compared with the SoC arm at the 2-sided 0.05 level for superiority, and least-squares means at Week 36 for each treatment arm were calculated.

For the key secondary efficacy endpoint and the other secondary efficacy endpoints, descriptive summaries and
analyses were performed in the mITT population.12 Statistical significance of the primary efficacy endpoint at the 0.05 alpha level was required before sequentially testing key secondary efficacy endpoints at the 0.05 level.

Safety analyses were descriptive, based on the safety population. The safety analysis focused on the treatment-emergent AE (TEAE) period (defined as the time from randomization to the last administration+21 days or end of study, whichever came first).

Results

Patients’ Characteristics

A total of 206 patients were randomized 1:1 to alirocumab (n=104) or SoC (n=102; Figure). Baseline characteristics and lipid levels were similar regardless of allocated treatment (Table 1). Mean baseline LDL-C was 2.48 and 2.54mmol/L (95.7 and 97.9mg/dL) in the SoC and alirocumab groups, respectively. At baseline, mean (SD) normalized TAV was 103.3 (50.3) mm\(^3\) in the SoC group and 110.3 (56.1) mm\(^3\) in the alirocumab group. In the alirocumab group, all patients in the mITT population received alirocumab over 24 weeks. Most patients were using background statins at the lowest available doses at baseline (atorvastatin 10 mg or rosuvastatin 5 mg), with a few patients using higher doses (Table 1). Background ezetimibe was used by 7.9% and 7.5% of patients in the SoC and alirocumab groups, respectively.

Efficacy

The percentage change (standard error [SE]) from baseline to Week 36 in normalized TAV was −3.1 (1.0)% in the SoC group and −4.8 (1.0)% in the alirocumab group, resulting in a −1.6 (1.4)% mean difference (P=0.23; mITT population; Table 2).

The mean (SE) absolute change from baseline to Week 36 in PAV was −1.3 (0.4)% and −1.4 (0.4)% in the SoC and alirocumab groups, respectively (mean difference: −0.2%; nominal P=0.79; Table 2). No significant difference between the SoC and alirocumab groups was observed for other prespecified secondary efficacy endpoints related to plaque volume, except for absolute change from baseline to Week 36 in TAV, which was further decreased in the alirocumab group (8.3 mm\(^3\) reduction) compared with the SoC group analyses were performed in the mITT population.

Statistical significance of the primary efficacy endpoint at the 0.05 alpha level was required before sequentially testing key secondary efficacy endpoints at the 0.05 level.

Safety analyses were descriptive, based on the safety population.

Safety analysis focused on the treatment-emergent AE (TEAE) period (defined as the time from randomization to the last administration+21 days or end of study, whichever came first).

Table 1. Patient Baseline Characteristics (mITT Population)
Standard of care
(n=89)
Age, years, mean (SD)
Sex, male, n (%)
BMI, kg/m\(^2\), mean (SD)
CAD prior to the index ACS diagnosis, n (%)
Ischemic stroke, n (%)
PAD, n (%)
Hypertension, n (%)
Diabetes, n (%)
Type 1 diabetes
Type 2 diabetes
CKD, n (%)
Impaired glucose tolerance, n (%)
HeFH, n (%)
Statin therapy at ACS onset, n (%)
Any statin at randomization, n (%)
Atorvastatin
10 mg
20 mg
Rosuvastatin
5 mg
10 mg
20 mg
Any LLT (other than statin), n (%)
Ezetimibe
Fibrate
Other
Aspirin or oral ADP receptor antagonist, n (%)
Aspirin
Oral ADP receptor antagonists (except aspirin)
Prasugrel
Clopidogrel
Ticlopidine
Ticagrelor

(Table 1 continued the next page.)
Table 2. Primary, Key Secondary, and Other IVUS Endpoints at Week 36 in the mITT Population

Endpoint	Standard of care (n=89)	Alirocumab (n=93)	P-value*
Primary endpoint			
Percentage change from baseline in normalized TAV, LS mean (SE)	−3.1 (1.0)	−4.8 (1.0)	0.2279
LS mean difference (SE)	−1.6 (1.4)	0.2796	
Key secondary endpoint			
PAV absolute change from baseline, %, LS mean (SE)	−1.3 (0.4)	−1.4 (0.4)	0.7898
LS mean difference (SE)	−0.2 (0.5)	0.4687	
Other secondary endpoints			
Normalized TAV absolute change from baseline, mm³, LS mean (SE)	−4.7 (1.0)	−5.8 (1.0)	0.4687
LS mean difference (SE)	−1.0 (1.4)	0.6935	
EEM volume absolute change from baseline, mm³, estimate for adjusted mean (SE)	−8.2 (1.9)	−10.0 (1.8)	0.4946
Estimate for adjusted mean difference (SE)	−1.8 (2.6)	0.0732	
EEM volume percentage change from baseline, %, estimate for adjusted mean (SE)	−0.9 (0.9)	−3.2 (0.9)	0.0731
Estimate for adjusted mean difference (SE)	−2.3 (1.3)	0.0731	
Lumen volume absolute change from baseline, mm³, estimate for adjusted mean (SE)	−1.3 (1.4)	−0.9 (1.4)	0.8696
Estimate for adjusted mean difference (SE)	0.3 (1.9)	0.8696	
Lumen volume percentage change from baseline, %, estimate for adjusted mean (SE)	1.2 (1.3)	−0.9 (1.2)	0.2437
Estimate for adjusted mean difference (SE)	−2.1 (1.8)	0.2437	
TAV absolute change from baseline, mm³, estimate for adjusted mean (SE)	−5.1 (1.0)	−8.3 (1.0)	0.0208
Estimate for adjusted mean difference (SE)	−3.3 (1.4)	0.0208	
TAV percentage change from baseline, %, estimate for adjusted mean (SE)	−3.0 (1.0)	−5.4 (1.0)	0.0866
Estimate for adjusted mean difference (SE)	−2.4 (1.4)	0.0866	

*Alirocumab vs. standard of care. †P-value is nominal. LS, least-squares; SE, standard error. Other abbreviations as in Table 1.
	Standard of care (n=89)	Alirocumab (n=93)	P-value*
Week 12			
LDL-C (calculated)	−0.25 (0.04) [−9.6 (1.7)]	−1.62 (0.04) [−62.4 (1.6)]	
absolute change from	LS mean difference (SE)	−1.37 (0.06) [−52.8 (2.4)]	<0.0001
baseline, mmol/L	LS mean (SE)	−7.6 (1.9)	
[mg/dL], LS mean	LS mean difference (SE)	−64.5 (1.8)	
(SE)		−57.0 (2.6)	<0.0001
Week 36			
LDL-C (calculated)	−0.40 (0.05) [−15.5 (1.8)]	−1.64 (0.05) [−63.2 (1.8)]	
absolute change from	LS mean difference (SE)	−1.24 (0.07) [−47.8 (2.5)]	<0.0001
baseline, mmol/L	LS mean (SE)	−13.4 (2.0)	
[mg/dL], LS mean	LS mean difference (SE)	−63.9 (1.9)	
(SE)		−50.5 (2.8)	<0.0001
Apo B absolute change	−0.17 (0.01) [−16.8 (1.4)]	−0.51 (0.01) [−51.0 (1.3)]	
from baseline, g/L	LS mean (SE)	−16.6 (1.6)	
[mg/dL], LS mean	LS mean difference (SE)	−55.1 (1.5)	
(SE)		−38.5 (2.2)	<0.0001
Non-HDL-C absolute	−0.53 (0.05) [−20.3 (2.0)]	−1.79 (0.05) [−69.2 (2.0)]	
change from baseline,	LS mean (SE)	−1.26 (0.07) [−48.9 (2.8)]	<0.0001
mmol/L [mg/dL], LS	LS mean difference (SE)	−54.5 (1.7)	
mean (SE)		−40.5 (2.4)	<0.0001
Total cholesterol	−0.39 (0.06) [−15.2 (2.3)]	−1.60 (0.06) [−61.7 (2.2)]	
absolute change from	LS mean difference (SE)	−1.20 (0.08) [−46.5 (3.2)]	<0.0001
baseline, mmol/L	LS mean (SE)	−7.6 (1.4)	
[mg/dL], LS mean	LS mean difference (SE)	−35.4 (1.3)	
(SE)		−27.8 (1.9)	<0.0001
Lp(a) absolute change	−0.10 (0.01) [−10.3 (0.5)]	−0.16 (0.01) [−15.5 (0.5)]	
from baseline, g/L	Estimate for adjusted mean difference (SE)	−0.05 (0.01) [−5.2 (0.7)]	<0.0001
[mg/dL], estimate	Estimate for adjusted mean difference (SE)	−17.2 (2.6)	
for adjusted mean (SE)		−55.8 (2.5)	
HDL-C absolute change	0.12 (0.02) [4.7 (0.9)]	0.21 (0.02) [8.1 (0.9)]	
from baseline, mmol/L	LS mean (SE)	12.2 (2.3)	
[mg/dL], LS mean	LS mean difference (SE)	8.9 (3.2)	0.0066
Fasting TGs absolute	−0.30 (0.05) [−26.2 (4.7)]	−0.40 (0.05) [−35.3 (4.5)]	
change from baseline,	Combined estimate for adjusted mean (SE)	−0.10 (0.07) [−9.1 (6.4)]	0.1563
mmol/L [mg/dL],	Combined estimate for adjusted mean difference (SE)	−8.9 (3.6)	
combined estimate	Combined estimate for adjusted mean difference (SE)	−18.4 (3.5)	
for adjusted mean	Apo A1 absolute change	0.04 (0.02) [3.8 (1.9)]	
(SE)	Apo A1 absolute change	0.08 (0.03) [8.2 (2.7)]	
from baseline, g/L	Apo A1 absolute change	4.6 (1.6)	
[mg/dL], LS mean	Apo A1 absolute change	7.1 (2.3)	0.0019
(SE)	Apo A1 absolute change	0.0594	
HDL-C percentage	0.04 (0.02) [3.8 (1.9)]	0.12 (0.02) [12.0 (1.9)]	
change from baseline,	LS mean (SE)	0.08 (0.03) [8.2 (2.7)]	
%, LS mean (SE)	LS mean difference (SE)	4.6 (1.6)	
Fasting TGs percentage	−8.9 (3.6)	−18.4 (3.5)	
from baseline, %,	Combined estimate for adjusted mean difference (SE)	−9.5 (5.1)	
combined estimate	Combined estimate for adjusted mean difference (SE)	−5.10 (5.1)	
for adjusted mean	Combined estimate for adjusted mean difference (SE)	−10.0 (5.1)	
Apo A1 percentage	0.04 (0.02) [3.8 (1.9)]	0.12 (0.02) [12.0 (1.9)]	
change from baseline,	LS mean (SE)	0.08 (0.03) [8.2 (2.7)]	
%, LS mean (SE)	LS mean difference (SE)	4.6 (1.6)	
*Nominal P-value for alirocumab vs. standard of care. Abbreviations as in Tables 1,2.			
Death in the SoC arm and no deaths in the alirocumab arm; the patient in the SoC arm died during the TEAE period from sepsis, ACS, and cardiac failure.

The TEAEs occurring in ≥2% of patients were reported at generally similar frequencies in the SoC and alirocumab groups; nasopharyngitis (SoC: 14.7%; alirocumab: 26.2%) was the most common TEAE. In total, 7 (6.8%) patients in the alirocumab group and none in the SoC group experienced ≥1 local injection-site reaction. Most of these (n=6) were classified as mild in intensity (n=1 moderate intensity), and all patients continued to receive study treatment.

Discussion

ODYSSEY J-IVUS aimed to assess the effect of the PCSK9 inhibitor alirocumab on coronary atheroma volume in Japanese ACS patients. Alirocumab treatment over 36 weeks resulted in a numerically greater but not statistically significant percentage reduction in the primary endpoint, normalized TAV (4.8% and 3.1% reduction; P>0.05 vs. SoC). No significant differences were observed in absolute (5.1 mm³ reduction; −3.3 mm³ estimate for adjusted mean difference; nominal P=0.02; Table 2).

At Week 12, alirocumab reduced LDL-C from baseline by 64.5% vs. 7.6% with SoC (nominal P<0.0001 vs. SoC; Table 3). No patients in the alirocumab arm had their dose increased at Week 12. Alirocumab treatment resulted in a greater mean percent change from baseline to Week 36 (63.9% reduction) compared with the SoC group (13.4% reduction; mean difference: 50.5% reduction vs. SoC; nominal P<0.0001; Table 3). LDL-C <1.81 mmol/L (<70 mg/dL) at Week 36 was achieved by 32.6% of patients in the SoC group and 95.7% in the alirocumab group (nominal P<0.0001). Further lipid parameter results are shown in Table 3.

The results of a subgroup analysis of percent change from baseline to Week 36 in normalized TAV according to baseline subgroups are presented in Supplementary Figure 2.

Safety

The frequency of TEAEs was 61.8% in the SoC group and 75.7% in the alirocumab group (Table 4). There was 1 death in the SoC arm and no deaths in the alirocumab arm; the patient in the SoC arm died during the TEAE period from sepsis, ACS, and cardiac failure.

The TEAEs occurring in ≥2% of patients were reported at generally similar frequencies in the SoC and alirocumab groups; nasopharyngitis (SoC: 14.7%; alirocumab: 26.2%) was the most common TEAE. In total, 7 (6.8%) patients in the alirocumab group and none in the SoC group experienced ≥1 local injection-site reaction. Most of these (n=6) were classified as mild in intensity (n=1 moderate intensity), and all patients continued to receive study treatment.

Table 4. Safety Summary: Safety Population

TEAEs (preferred term level) in ≥2% of patients in any group	Standard of care (n=102)	Alirocumab (n=103)
Nasopharyngitis	15 (14.7)	27 (26.2)
Injection-site reaction	0	7 (6.8)
Back pain	2 (2.0)	5 (4.9)
Angina pectoris	2 (2.0)	5 (4.9)
Coronary artery stenosis	2 (2.0)	5 (4.9)
Epistaxis	2 (2.0)	5 (4.9)
Insomnia	0	5 (4.9)
Constipation	0	4 (3.9)
Cough	2 (2.0)	4 (3.9)
Dermatitis contact	1 (1.0)	4 (3.9)
Fall	1 (1.0)	4 (3.9)
Headache	3 (2.9)	4 (3.9)
Hyperuricemia	0	4 (3.9)
Urticaria	1 (1.0)	4 (3.9)
Contusion	1 (1.0)	3 (2.9)
Gastroenteritis	0	3 (2.9)
Hypertension	3 (2.9)	3 (2.9)
Palpitations	0	3 (2.9)
Wound	1 (1.0)	3 (2.9)
Myocardial ischemia	5 (4.9)	2 (1.9)
Diarrhea	4 (3.9)	1 (1.0)
Pneumonia	4 (3.9)	1 (1.0)
Prinzmetal angina	3 (2.9)	1 (1.0)
Type 2 diabetes mellitus	3 (2.9)	0

CV, cardiovascular; SAE, serious adverse event; TEAE, treatment-emergent adverse event.
PAV change and other prespecified secondary efficacy endpoints related to plaque volume, except for absolute change in TAV (nominal P=0.02 vs. SoC).

The lack of a statistically significant difference in the primary efficacy endpoint between the alirocumab and SoC groups needs to be considered in light of several specific factors of the study design, such as the limited sample size (n=206) and the short duration of treatment period (36 weeks) derived from a power calculation utilizing 2 previous Japanese IVUS studies (ZEUS and PRECISE-IVUS). These, together with other limiting factors that are described next, may have affected the study’s ability to detect a statistically significant change in TAV.

There were important differences in design between J-IVUS, ZEUS, and PRECISE-IVUS. J-IVUS, consistent with other global IVUS studies, included patients with analyzable IVUS images regardless of the existence of plaque and at a longer vessel length (mean vessel length of 18–20 mm in J-IVUS and minimum of 30 mm in the global IVUS studies), whereas ZEUS and PRECISE-IVUS analyzed shorter vessel lengths (8–10 mm and 10–12 mm, respectively) only targeting part of the vessel with plaques. This led to a smaller proportion of TAV in J-IVUS actually representing the atherosclerotic plaque volume, resulting in a smaller reduction in plaque volume in comparison with the ZEUS and PRECISE-IVUS studies.

The ZEUS study, an open-label study of 24 weeks in 95 patients, demonstrated a difference in TAV reduction of 5.0% between the atorvastatin/ezetimibe and atorvastatin-only group (P=0.06), with a difference in LDL-C decrease from baseline of 0.40 mmol/L (15.4 mg/dL) between the 2 groups (note PAV was not reported in ZEUS). The randomized, open-label PRECISE-IVUS trial of 9–12 months conducted in 202 patients demonstrated reduction of TAV by 8.9% and PAV by 1.5% between the atorvastatin/ezetimibe and atorvastatin-only groups, with a difference in LDL-C decrease from baseline of 0.30 mmol/L (11.6 mg/dL) between ACS patients in the 2 groups. In contrast to previously reported IVUS studies, ZEUS and PRECISE-IVUS described large plaque reductions in relation to the observed LDL-C decreases (5.0–8.9% TAV reduction and 1.5% reduction in LDL-C with LDL-C decreases from baseline of 0.30–0.40 mmol/L [11.6–15.4 mg/dL]), and over relatively shorter treatment periods of 6–12 months.

The 104-week SATURN study reported a difference in PAV reduction of –0.2% between atorvastatin and rosuvastatin groups (P=0.17; percent change in TAV not reported), with a difference in LDL-C decrease from baseline of 0.20 mmol/L (7.7 mg/dL) between the 2 groups. The multinational, randomized, double-blind, placebo-controlled GLAGOV study compared the effect of the PCSK9 inhibitor evolocumab (420 mg every 4 weeks on top of statin) on plaque progression over a study period of 76 weeks (vs. only 36 weeks in J-IVUS) in 968 patients (n=206 in J-IVUS) who had a clinical indication for coronary angiography. The primary endpoint reached statistical significance with a 1.0% PAV difference vs. placebo when the LDL-C decrease from baseline vs. placebo was 1.46 mmol/L (56.5 mg/dL; time-weighted on-treatment value; in J-IVUS the LDL-C decrease from baseline vs. SoC was 1.37 mmol/L [52.8 mg/dL] at Week 12). In J-IVUS, the shorter study period (9 months) and smaller number of enrolled patients compared with these previous studies may have limited the ability to show a significant difference in plaque volume. Therefore, the present study does not definitively establish alirocumab’s efficacy on plaque regression.

Another limiting factor in the analysis of the present study results includes the open-label study design and the ability of investigators to alter background LLT in the SoC arm during the observation period. An increase in ezetimibe therapy occurred in the SoC group, from 7.9% of patients at randomization to 48.0% during the study, which may have confounded the results.

Clinical benefits of alirocumab have been demonstrated in the ODYSSEY OUTCOMES trial. ODYSSEY OUTCOMES was conducted in 18,924 recent ACS patients over a 2.8-year median double-blind follow-up, and showed a significant reduction in a composite of death from coronary artery disease, nonfatal myocardial infarction, fatal or nonfatal ischemic stroke, or unstable angina requiring hospitalization with alirocumab vs. placebo (HR [95% CI]: 0.85 [0.78–0.93]). In a prespecified analysis of the trial, no interaction was observed between treatment effect and geographic regions (interaction P-value not significant: 0.40). The separation of the MACE Kaplan-Meier curves in the ODYSSEY OUTCOMES study after 1 year of treatment also suggested the need for a longer treatment period than the one used in J-IVUS to observe the full effect of alirocumab.

Alirocumab was generally well tolerated, and the safety data were consistent with previously published safety data regarding alirocumab.

Conclusions

In Japanese patients who had ACS events and whose LDL-C was ≥2.59 mmol/L (≥100 mg/dL) at ACS diagnosis, alirocumab 75 mg Q2W treatment in addition to stable dose statin therapy with or without other LLTs resulted in a numerically greater percent reduction in normalized TAV vs. SoC, which did not reach statistical significance over 36 weeks of follow-up. Consistent with previously published ODYSSEY results, alirocumab substantially reduced LDL-C levels, with reductions being maintained at all time points up to Week 36. Alirocumab was generally well tolerated and no particular safety concerns were identified.

Acknowledgments

The authors thank the patients, their families, and all investigators involved in this study. The authors also thank Micron, Inc. (image analysis; Kobe, Japan), EPS Corporation (statistical analysis and clinical research operation; Tokyo, Japan), and the following people from the study sponsors for study operation support: Yuko Azuma, Noriyuki Kanda, Naoko Kudo, Takahiro Nakama, and Makiko Usami (Sanofi). The following people from the study sponsors provided critical review of the manuscript: Michael Howard, Asuka Ozaki, and Timothée Sourdille (Sanofi), and Richa Attre, Garen Manvelian, and Robert Pordy (Regeneron Pharmaceuticals, Inc.). A full list of principal investigators and committee members is shown in the Supplementary File. Medical writing assistance and editorial support was provided by Susanne Ulm, PhD, of Prime (Knutsford, UK), supported by Sanofi and Regeneron Pharmaceuticals, Inc. according to Good Publication Practice guidelines (https://annals.org/aim/fullarticle/2474869/good-publication-practice-communicating-company-sponsored-medical-research-gpp3). The sponsor was involved in the study design and the collection, analysis, and interpretation of data, as well as data checking of information provided in the manuscript. The authors were responsible for all content and editorial decisions, and received no honoraria related to the development of this publication.
Sources of Funding

This study was funded by Sanofi and Regeneron Pharmaceuticals, Inc.

Disclosures

Consultancy

Michael J Louie: employee of Regeneron Pharmaceuticals, Inc.
Kiyoko Uno and Yoshiharu Takagi: employees of Sanofi.

Stock/Stock Options

Michael J Louie: Regeneron Pharmaceuticals, Inc.
Kiyoko Uno: Sanofi K.K.

Remuneration

Junya Ako: Sanofi.
Kenichi Tsujita: Bayer Yakuhin, Ltd., Daiichi Sankyo Co., Ltd., Kowa Pharmaceutical Co. Ltd., MSD K.K., Sanofi K.K., Takeda Pharmaceutical Co., Ltd.
Takahumi Hiro: Bayer Yakuhin, Ltd.
Yoshihiro Morino: Sanofi Aventis.
Toshiro Shinke: Abbott Vascular, Dai-ichi Sankyo, Bayer, Sanofi, Nitro.
Hiromasa Otake: Sanofi, Terumo, Micron.

Research Funding

Kenichi Tsujita: AstraZeneca K.K., Sugi Bee Garden, Japan Medical Device Technology Co., Ltd.

Scholarship Funds or Donations

Kenichi Tsujita: IIT Co., Ltd., Astellas Pharma Inc., Abbott Vascular Japan Co., Ltd., Onitsuka Pharmaceutical Co. Ltd., Kaneka Medix Co. Ltd., Goodman Co., Ltd., GM Medical Co., Ltd., Daiichi Sankyo Co., Ltd., Takeda Pharmaceutical Co., Ltd., Mitsubishi Tanabe Pharma, Chugai Pharmaceutical Co., Ltd., TERUMO Co., Ltd., Boehringer Ingelheim Japan, Medtronic Japan Co., Ltd., Japan Lifeline Co., Ltd., Novartis Pharma K.K., Fides-one, Inc., Bristol-Myers K.K., Boston Scientific Japan K.K., Cardinal Health Japan, MSD K.K.

Hiromasa Otake: Boston Scientific, Sanofi.

Endowed Departments by Commercial Entities

Takahumi Hiro. This author also works for a department endowed by Boston-Scientific Japan Co., Ltd. at Nihon University School of Medicine.

References

1. Pilgrin T, Vranckx P, Valgimigli M, Stefanini GG, Piccolo R, et al. Risk and timing of recurrent ischemic events among patients with stable ischemic heart disease, non-ST-segment elevation acute coronary syndrome, and ST-segment elevation myocardial infarction. *Am Heart J* 2016; 175: 56–65.

2. Jernberg T, Havard P, Henriksen M, Hjelm H, Thuresson M, Janzon M. Cardiovascular risk in post-myocardial infarction patients: Nationwide real world data demonstrate the importance of a long-term perspective. *Ear Heart J* 2015; 36: 1163–1170.

3. Anderson JL, Adams CD, Antman EM, Bridges CR, Califf RM, Casey DE Jr, et al. ACCF/AHA focused update incorporated into the ACCF/AHA 2007 guidelines for the management of patients with unstable angina/non-ST-elevation myocardial infarction: A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. *J Am Coll Cardiol* 2013; 61: e179–e347.

4. Amsterdam EA, Wenger NK, Brindis RG, Casey DE, Ganiats TG, Holmes DR, et al. 2014 AHA/ACC clinical performance and quality measures for adults with ST-elevation and non-ST-elevation myocardial infarction: A report of the American College of Cardiology/American Heart Association Task Force on Performance Measures. *J Am Coll Cardiol* 2014; 64: e139.

5. Jneid H, Addison D, Bhatt DL, Fonarow GC, Gokak S, Grady KL, et al. 2017 AHA/ACC clinical performance and quality measures for adults with STElevation and non-ST-elevation myocardial infarction: A report of the American College of Cardiology/American Heart Association Task Force on Performance Measures. *J Am Coll Cardiol* 2017; 70: 2048–2090.

6. Teramoto T, Sasaki J, Ishibashi S, Birou S, Daida H, Dohi S, et al. Executive summary of the Japan Atherosclerosis Society (JAS) guidelines for the diagnosis and prevention of atherosclerotic cardiovascular diseases in Japan: 2012 version. *J Atheroscler Thromb* 2013; 20: 517–523.

7. Catapano AL, Graham I, De Backer G, Wiklund O, Chapman MJ, Dreux H, et al. 2016 ESC/EAS Guidelines for the Management of Dyslipidaemias. *Eur Heart J* 2016; 37: 2999–3058.

8. Grundy SM, Stone NJ, Bailey AL, Beam C, Bircher KK, Blumenthal RS, et al. 2018 AHA/ACC/AACVPR/AMA/ABC/ACPMA/ADA/AGS/APhA/ASPAC/NLA/PCNA guideline on the management of blood cholesterol: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. *J Am Coll Cardiol* 2019; 73: 3163–3209.

9. Schwartz GG, Steg PG, Szarek M, Bhatt DL, Bittner VA, Diaz R, et al. Alirocumab and cardiovascular outcomes after acute coronary syndrome. *N Engl J Med* 2018; 379: 2097–2107.

10. Mintz GS, Nissen SE, Anderson WD, Bailey SR, Erbel R, Fitzgerald PJ, et al. American College of Cardiology clinical expert consensus document on standards for acquisition, measurement and reporting of intravascular ultrasound studies (IVUS): A report of the American College of Cardiology Task Force on Clinical Expert Consensus Documents. *J Am Coll Cardiol* 2001; 37: 1478–1492.

11. Nicholls SJ, Hsu A, Wolksi K, Hu B, Bayturan O, Lavoie A, et al. Intravascular ultrasound-derived measures of coronary atherosclerotic plaque burden and clinical outcome. *J Am Coll Cardiol* 2010; 55: 2399–2407.

12. Ako J, Hibi K, Kozuma K, Miyouchi K, Morino Y, Shinkle T, et al. Effect of alirocumab on coronary atheroma volume in Japanese patients with acute coronary syndromes and hypercholesterolemia not adequately controlled with statins: ODYSSEY J-IVUS rationale and design. *J Cardiovasc 2018; 71: 583–589.

13. Friedewald WT, Levy RJ, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without the use of the preparative ultracentrifuge. *Clin Chem 1972; 18: 499–502.

14. Nakajima M, Miyouchi K, Yokoyama T, Ogita M, Miyazaki T, Tamura H, et al. Effect of combination of ezetimibe and a statin on coronary plaque regression in patients with acute coronary syndrome: ZEUS trial (eZetimibe Ultrasound Study). *J Clin Metabol Endocr* 2014; 3: 8–13.

15. Tsujita K, Sugiyama S, Sumida H, Shimomura H, Yamashita T, Yamanaka K, et al. Impact of dual lipid-lowering strategy with ezetimibe and atorvastatin on coronary plaque regression in patients with percutaneous coronary intervention: The multicenter randomized controlled PRECISe-IvUS trial. *J Am Coll Cardiol* 2013; 60: 495–507.

16. Nissen SE, Tuzcu EM, Brewer HB, Sipahi I, Nicholls SJ, Ganz P, et al. Effect of ACAT inhibition on the progression of coronary atherosclerosis. *N Engl J Med* 2006; 354: 1253–1263.

17. Nissen SE, Tuzcu EM, Schoenhagen P, Brown BG, Ganz P, Vogel RA, et al. Effect of intensive compared with moderate lipid-lowering therapy on progression of coronary atherosclerosis: A randomized controlled trial. *JAMA* 2004; 291: 1071–1080.

18. Nicholls SJ, Ballantyne CM, Barter PJ, Chapman MJ, Erbel RM, Libby P, et al. Effect of two intensive statin regimens on progression of coronary disease. *N Engl J Med* 2011; 365: 2078–2087.

19. Nicholls SJ, Puri R, Anderson T, Ballantyne CM, Cho L, Kastelein JJ, et al. Effect of evolocumab on progression of coronary disease in statin-treated patients: The GLAGOV randomized clinical trial. *JAMA* 2016; 316: 2373–2384.

20. Jones PH, Bays HE, Chaudhuri U, Perdy R, Lorenzato C, Miller MJ, et al. Improvement of atherosclerotic plaque burden and clinical outcome with LDL cholesterol lowering with the PCSK9 monoclonal antibody evolocumab: Results from 14 randomized trials. *Am J Cardiol* 2016; 118: 1805–1811.

Supplementary Files

Please find supplementary file(s): http://dx.doi.org/10.1253/circj.CJ-19-0412