Facet-dependent electrooxidation of propylene into propylene oxide over Ag$_3$PO$_4$ crystals

Jingwen Ke1,2, Jiankang Zhao1,2, Mingfang Chi1,2, Menglin Wang1, Xiangdong Kong1, Qixuan Chang1, Weiran Zhou1, Chengxuan Long1, Jie Zeng1 & Zhigang Geng1

The electrooxidation of propylene into propylene oxide under ambient conditions represents an attractive approach toward propylene oxide. However, this process suffers from a low yield rate over reported electrocatalysts. In this work, we develop an efficient electrocatalyst of Ag$_3$PO$_4$ for the electrooxidation of propylene into propylene oxide. The Ag$_3$PO$_4$ cubes with (100) facets exhibit the highest yield rate of 5.3 g$_{PO}$ m$^{-2}$ h$^{-1}$ at 2.4 V versus reversible hydrogen electrode, which is 1.6 and 2.5 times higher than those over Ag$_3$PO$_4$ rhombic dodecahedra with (110) facets and tetrahedra with (111) facets, respectively. The theoretical calculations reveal that the largest polarization of propylene on Ag$_3$PO$_4$ (100) facets is beneficial to break the symmetric π bonding and facilitate the formation of C-O bond. Meanwhile, Ag$_3$PO$_4$(100) facets exhibit the lowest adsorption energies of $^\cdot$C$_3$H$_6$ and $^\cdot$OH, inducing the lowest energy barrier of the rate-determining step and thus accounting for the highest catalytic performance.
Propylene oxide (PO) is an important industrial intermediate that can be transformed into various commodity chemicals such as polymers, propylene glycol, polyurethane foams, propylene carbonate, and so on. Common industrial methods of PO production include chlorohydrin process, Halcon process, directed oxidation process, and hydrogen peroxide-based process (HPPO). The chlorohydrin process requires abundant environmentally hazardous chlorine and produces a large amount of sludge. The Halcon process involves autoxidation of ethylene oxide or isobutene to produce alkylhydroperoxide that acts as an oxidant to produce PO but accompanies with the substantial formation of peroxycarboxylate. The directed oxidation process needs to be operated at high temperature, leading to the formation of byproducts such as acrolein and CO. The HPPO has been restricted to manufacture PO from propylene due to the high cost and insufficient supply of H₂O₂. Based on the aforementioned analysis, there is an urgent demand to develop an environmentally friendly, low-cost, and simple process to achieve a highly efficient synthesis of PO.

The electrooxidation of propylene into PO has attracted particular attention. This process utilizes sustainable and abundant water as an oxygen source under ambient conditions, with pure hydrogen generated on the counter electrode simultaneously. Moreover, the mild reaction conditions require less handling and distribution infrastructure than those necessary for PO production. Currently, various catalysts have been applied to the electrooxidation of propylene. Since Pd favored the activation of C-H bond on allyl carbon, leading to the production of acrolein, the selectivity for PO was as low as 25%. Ag-based materials preferred to activate the C=C double bond rather than methyl hydrogen (α-H) in propylene, benefiting the formation of PO. Holbrook et al. reported that PO was directly obtained via the electrooxidation of propylene on a silver electrode, but suffered from low activity (<0.01 g PO m⁻² h⁻¹). For high yields of PO, it would be accessible if we modify Ag-based catalysts to enhance their activity.

A typical route to engineer the structures of Ag-based catalysts is based on regulating the exposed facets. The catalytic performance for the electrooxidation of propylene can be described by the adsorption energies of propylene (E_{ads,Pr*}) and oxygen species (E_{ads,O*}). Since E_{ads,Pr*} and E_{ads,O*} are sensitive to the facets, optimizing the catalytic performance requires the construction of uniform facets. Ideal facets should exhibit specific density of states (DOS) that properly overlap with the p orbitals of adsorbed propylene (Pr*) and oxygen species. Moreover, breaking the symmetric π bonding for the activation of C=C double bond demands the degree of propylene polarization that is also dependent on the facets. Therefore, fabricating uniform facets of Ag-based catalysts that are optimized by adjusting the DOS and propylene polarization serves as a promising way to promote the catalytic performance for the electrooxidation of propylene.

Herein, we developed highly efficient electrocatalysts of Ag₃PO₄ cubes that performed a high yield rate of PO production for the electrooxidation of propylene. Three types of Ag₃PO₄ crystals enclosed by (100), (110), and (111) facets were fabricated, including Ag₃PO₄ cubes, rhombic dodecahedra, and tetrahedra, respectively. During the electrooxidation of propylene, Ag₃PO₄ cubes exhibited the highest yield rate of 5.3 g PO m⁻² h⁻¹ in 0.1 M phosphate buffer solution (PBS) at 2.4 V versus reversible hydrogen electrode (vs RHE), which was 1.6 and 2.5 times higher than those over Ag₃PO₄ rhombic dodecahedra and tetrahedra, respectively. Based on density functional theory (DFT) calculations, the formation of bidentate CH₂CH₃CH₂OH⁺ (PrOH⁺) intermediate from Pr* and OH⁻ was the rate-determining step (RDS). The activation barrier for the formation of PrOH⁺ on (100) facets was 1.27 eV, which was lower than those on (110) and (111) facets of Ag₃PO₄. The lowered E_{ads,Pr*} and adsorption energies of OH⁻ (E_{ads,OH⁻}) over Ag₃PO₄ cubes were favorable to the activation of propylene, resulting in the enhanced activity relative to Ag₃PO₄ rhombic dodecahedra and tetrahedra.

Results

Preparation and characterization of Ag₃PO₄ crystals. Typically, Ag₃PO₄ crystals with different exposed facets were prepared via solvent-phase synthesis under ambient pressure at room temperature. As shown in the scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images, Ag₃PO₄ crystals exhibited uniform morphologies of cubes, rhombic dodecahedra, and tetrahedra, respectively. The average edge length of Ag₃PO₄ cubes was around 750 nm. The SEM images and the corresponding energy-dispersive X-ray spectroscopy elemental mapping for Ag₃PO₄ crystals show the homogeneous distribution of Ag, P, and O elements throughout the whole structure.

Catalytic performance of Ag₃PO₄ crystals for the electrooxidation of propylene. Since Pd favored the activation of C-H bond on allyl carbon, leading to the production of acrolein, the selectivity for PO was as low as 25%. Ag-based materials preferred to activate the C=C double bond rather than methyl hydrogen (α-H) in propylene, benefiting the formation of PO. Holbrook et al. reported that PO was directly obtained via the electrooxidation of propylene on a silver electrode, but suffered from low activity (<0.01 g PO m⁻² h⁻¹). For high yields of PO, it would be accessible if we modify Ag-based catalysts to enhance their activity.

A typical route to engineer the structures of Ag-based catalysts is based on regulating the exposed facets. The catalytic performance for the electrooxidation of propylene can be described by the adsorption energies of propylene (E_{ads,Pr*}) and oxygen species (E_{ads,O*}). Since E_{ads,Pr*} and E_{ads,O*} are sensitive to the facets, optimizing the catalytic performance requires the construction of uniform facets. Ideal facets should exhibit specific density of states (DOS) that properly overlap with the p orbitals of adsorbed propylene (Pr*) and oxygen species. Moreover, breaking the symmetric π bonding for the activation of C=C double bond demands the degree of propylene polarization that is also dependent on the facets. Therefore, fabricating uniform facets of Ag-based catalysts that are optimized by adjusting the DOS and propylene polarization serves as a promising way to promote the catalytic performance for the electrooxidation of propylene.

Catalytic performance of Ag₃PO₄ crystals for the electrooxidation of propylene. The catalytic performance of Ag₃PO₄ crystals was evaluated in a three-compartment electrochemical cell equipped with gas diffusion electrode (GDE) for the electrooxidation of propylene (Supplementary Fig. 2). We conducted chronoamperometric measurements in 0.1 M PBS (pH = 7.0). After 1-h electrolysis, the catalytic products were determined to be PO, acetone, and acetic acid via ¹H NMR (¹H NMR) measurements (Supplementary Figs. 3 and 4). At all applied potentials, the faradaic efficiencies (FE) for acetone and acetic acid were lower than 5% (Supplementary Fig. 5). Almost 80% selectivity for PO among liquid products was obtained over Ag₃PO₄ cubes, with approximately 75% and 70%
selectivity for PO over Ag₃PO₄ rhombic dodecahedra and tetrahedra, respectively (Supplementary Fig. 6). As shown in Fig. 2a, Ag₃PO₄ cubes exhibited the highest FE for PO (FEPO) among Ag₃PO₄ crystals at all applied potentials. Especially, at 2.2 V vs RHE, the FEPO over Ag₃PO₄ cubes reached 18.7%, whereas the FEPO over Ag₃PO₄ rhombic dodecahedra and tetrahedra were 15.9% and 13.1%, respectively. Figure 2b shows the partial current densities (j) of PO for Ag₃PO₄ crystals. The Ag₃PO₄ cubes exhibited higher partial j of PO (jPO) with respect to the other two counterparts at all applied potentials. Notably, the jPO over Ag₃PO₄ cubes reached the highest value of 0.49 mA cm⁻² at 2.4 V vs RHE, whereas the jPO over Ag₃PO₄ rhombic dodecahedra and tetrahedra were 0.31 and 0.19 mA cm⁻², correspondingly. The Ag₃PO₄ cubes exhibited the highest yield rate of 5.3 gPO m⁻² h⁻¹ at 2.4 V vs RHE, which was 1.6 and 2.5 times higher than those over Ag₃PO₄ rhombic dodecahedra (3.4 gPO m⁻² h⁻¹) and Ag₃PO₄ tetrahedra (2.1 gPO m⁻² h⁻¹) (Fig. 2c). Notably, Ag₃PO₄ cubes exhibited a record-high yield rate for PO production among previously reported electrocatalysts for the electrooxidation of propylene (Supplementary Table 2). To explore the intrinsic activity of Ag₃PO₄ crystals, we normalized the jPO by electrochemical surface area (ECSA). The ECSAs of Ag₃PO₄ crystals were determined by measuring double-layer capacitance (Cdl) using cyclic voltammetry (CV) measurements with different scan rates (Supplementary Fig. 7 and Supplementary Table 3). Figure 2d shows the ECSA-normalized jPO. At all applied potentials, the ECSA-normalized jPO over Ag₃PO₄ cubes were always the highest among Ag₃PO₄ crystals. The highest ECSA-normalized jPO of 0.16 mA cm⁻² was obtained over Ag₃PO₄ cubes at 2.4 V vs RHE, which was 2.3 and 5.3 times as high as those over Ag₃PO₄ rhombic dodecahedra (0.07 mA cm⁻²) and Ag₃PO₄ tetrahedra (0.03 mA cm⁻²), respectively. Meanwhile, normalized by the ECSA, the commercial Ag₃PO₄ exhibited a low ECSA-normalized jPO of 0.01 mA cm⁻² at 2.4 V vs RHE, which was lower than those of the three types of Ag₃PO₄ crystals (Supplementary Fig. 8). Accordingly, Ag₃PO₄ cubes with exposed (100) facets possessed the highest intrinsic activity for the electrooxidation of propylene.

To investigate the structural stability of Ag₃PO₄ cubes during the electrooxidation of propylene, we conducted the in situ X-ray absorption near-edge spectroscopy (XANES) measurements. Based on in situ Ag K-edge XANES profiles, Ag₃PO₄ cubes at
The process of electrooxidation of propylene.

2.2 and 2.5 V vs RHE exhibited an energy absorption edge profile in a range from 25,450 to 25,650 eV similar to that of pristine Ag3PO4 cubes (Supplementary Fig. 9). The durability tests of Ag3PO4 cubes were conducted via chronoamperometric measurement for 10 rounds of successive reactions at 2.2 V vs RHE. The FEPO over Ag3PO4 cubes remained above 17.0% (Supplementary Tables 4 and 5), respectively. These results suggest that Ag3PO4 cubes are stable during the electrooxidation of propylene. As shown in Supplementary Fig. 13, the contact angle of Ag3PO4 cubes (Supplementary Fig. 9). The durability tests of Ag3PO4 cubes were conducted via chronoamperometric measurement for 10 rounds of successive reactions at 2.2 V vs RHE. The FEPO over Ag3PO4 cubes remained above 17.0% (Supplementary Tables 4 and 5), respectively. These results suggest that Ag3PO4 cubes are stable during the electrooxidation of propylene. As shown in Supplementary Fig. 13, the contact angle of Ag3PO4 cubes was reduced from 129.9° to 63.4° after ten successive reaction rounds. The transformation of the GDE from hydrophobicity to hydrophilicity would cause the penetration of electrolyte and hinder the diffusion of propylene, resulting in the decreased FEPO.

Reaction paths over Ag3PO4 crystals. To provide a theoretical insight into the reaction mechanism, we carried out DFT calculations by adopting (100), (110), and (111) facets of Ag3PO4 cubes, Ag3PO4 rhombic dodecahedra, and Ag3PO4 tetrahedra as model slabs, respectively (Supplementary Fig. 14). The most stable (100), (110), and (111) facets of Ag3PO4 crystals possessed different Ag-terminated surfaces via calculating the minimal total energy (Supplementary Table 6). Figure 3a and Supplementary Fig. 15 show the process of electrooxidation of propylene. H2O is adsorbed and dissociated into OH on Ag sites. Afterwards, we considered two reaction pathways classified by adsorbed oxygen species of OH (OH-correlated pathway) or O (O-correlated pathway). For OH-correlated pathway, OH species directly reacts with Pr to produce a bidentate PrOH intermediate. Subsequently, the O-H bond in PrOH is further dissociated to CH3CHCH2O* (PrO*) intermediate, which is an oxametallacycle intermediate during vapor-phase epoxidation of olefin.35,36 With regard to O-correlated pathway, OH is further dehydrogenated to O and couples with Pr to generate PrO2. For the generation of O, there are two pathways that have been considered.37,38 As shown in Supplementary Table 7, the change of Gibbs free energy (ΔG) for direct dehydrogenation of OH was lower than that for the disproportionation of OH over the (100), (110), and (111) facets of Ag3PO4, respectively. As such, all of the O are generated from direct dehydrogenation of OH over the three types of Ag3PO4 facets. Finally, PrO2 is transformed to adsorbed PO (PO*) before desorption. The apparent energy barrier is defined as the energy difference between the initial state and the transition state (TS) with the highest energy. As shown in Fig. 3b–d, the apparent energy barriers (initial state→TS1) of OH-correlated pathway are lower than those (initial state→TS3) of O-correlated pathway for each facet of Ag3PO4 crystals. The electrooxidation of propylene could also undergo the dehydrogenation pathway, but the product would be allyl alcohol, acrolein, and acrylic acid rather than PO according to the previous literature.21,23 In addition, the energy barrier for the dehydrogenation of propylene is 1.50 eV on (100) facets of Ag3PO4, which is higher than that (1.27 eV) for the OH-correlated pathway (Supplementary Fig. 16). To further confirm the OH-correlated pathway with the formation of PrOH* intermediate, we conducted the in situ attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIRS) experiment. Supplementary Fig. 17 shows the in situ ATR-FTIRS spectra over the Ag3PO4 cubes with the applied potentials ranging from 1.0 to 2.6 V vs RHE. The peaks at 1473, 1442, and 1417 cm−1 were assigned to the gaseous propylene,39 which exhibited a decreasing trend as the applied potentials increased, the intensities of the two peaks located at 1541 and 1457 cm−1 were also gradually increased. The two characteristic peaks were ascribed to the vibrations of –C=C– and –CH2 in Pr30,41, respectively, which was a significant intermediate for the formation of PrO2. Especially, a small peak at 1434 cm−1 was observed at potentials higher than 1.6 V vs RHE. The
characteristic peak was assigned to the vibration of CH_2^- in PrOH* intermediate, which was consistent with the calculated peak position of PrOH* species (Supplementary Fig. 17, insert). As such, the electrooxidation of propylene over Ag$_3$PO$_4$ crystals undergoes the OH-correlated pathway rather than the O-correlated and dehydration pathway.

Mechanisms of facet effect. We measured the apparent activation energies and reaction orders over three types of Ag$_3$PO$_4$ catalysts. As shown in Supplementary Fig. 18a, the Arrhenius plots of the three types of Ag$_3$PO$_4$ crystals were obtained. The apparent activation energy of Ag$_3$PO$_4$ cubes was 8.1 kJ mol$^{-1}$, which was lower than those of Ag$_3$PO$_4$ rhombic dodecahedra (10.6 kJ mol$^{-1}$) and Ag$_3$PO$_4$ tetrahedra (15.1 kJ mol$^{-1}$). The reaction order for the electrooxidation of propylene was estimated by plotting the ECSA-normalized j_{O} at 2.2 V vs RHE against the partial pressures of propylene (Supplementary Fig. 18b). For Ag$_3$PO$_4$ cubes, the reaction order was 0.00, whereas the reaction orders of Ag$_3$PO$_4$ rhombic dodecahedra and tetrahedra were 0.35 and 0.44, respectively. These results illustrate that the Ag$_3$PO$_4$ cubes with exposed (100) facets promote the propylene activation, resulting in the high catalytic activity for the electrooxidation of propylene into PO. We also investigated the dependence of RDS on different facets of Ag$_3$PO$_4$ along the OH-correlated pathway. The formation of PrOH$^+$ exhibited the highest reaction energy barrier among all the steps independent of facets of Ag$_3$PO$_4$ crystals. Thus, the formation of PrOH$^+$ serves as the RDS during the electrooxidation of propylene. Specially, the energy barriers of the RDS on (110) and (111) facets of Ag$_3$PO$_4$ were 1.69 and 1.82 eV, respectively, both higher than that (1.27 eV) on (100) facets of Ag$_3$PO$_4$. As such, Ag$_3$PO$_4$ cubes favor the activation of propylene relative to Ag$_3$PO$_4$ rhombic dodecahedra and Ag$_3$PO$_4$ tetrahedra (Fig. 3b–d). To rationalize the facet-dependent energy barriers of RDS, we analyzed the adsorption configuration of Pr* and OH* on Ag$_3$PO$_4$ by comparing the distance of C-O between the C in CH$_2$ for Pr* and O for OH* during the RDS. As shown in Supplementary Fig. 19, the (100) facets of Ag$_3$PO$_4$ exhibited the shortest C-O distance of 1.91 Å in the TS1. The shortened C-O distance benefits the formation of C-O bond, corresponding to the lowered barrier of RDS. Considering that the RDS involved the coupling of Pr* (C) and OH (O), we further calculated the $E_{\text{ads,Pr}}^*$ and $E_{\text{ads,OH}}$ values. As shown in Fig. 4a, the $E_{\text{ads,Pr}}^*$ and $E_{\text{ads,OH}}$ on (100) facets of Ag$_3$PO$_4$ are the lowest among the three types of facets. As such, the energy barrier of the RDS has a positive correlation with the absolute value of $E_{\text{ads,Pr}}^*$ and $E_{\text{ads,OH}}$.

To further probe the structure–activity relationship during electrooxidation of propylene over Ag$_3$PO$_4$, we also analyzed the electronic properties of different Ag sites. Both the bond energies of Ag-C and Ag-O that influenced the $E_{\text{ads,Pr}}^*$ and $E_{\text{ads,OH}}$, respectively, were analyzed based on the DOS. Figure 4b shows the projected DOS of these surface Ag atoms on (100), (110), and (111) facets of Ag$_3$PO$_4$. The d-band center of Ag sites on (100) facets shifts away from the Fermi level compared with those on (110) and (111) facets of Ag$_3$PO$_4$, which exhibits the least overlap with the p orbitals of C in Pr* and O in OH. These results reveal that Ag sites on (100) facets of Ag$_3$PO$_4$ display the lowest binding energies of both Pr* and OH*. In addition, from the Bader charge analysis, the secondary carbon (CH$_2$) and tertiary carbon (CH) are -0.19 [e] and -0.09 [e] charged, respectively, for propylene adsorption on (100) facets of Ag$_3$PO$_4$. As such, the polarization of propylene on (100) facets of Ag$_3$PO$_4$ was the largest among all the facets. The polarization of propylene and negative secondary carbon atoms broke the symmetric π bonding and facilitated the formation of C-O bond.

To gain insight into the facet-dependent binding energies of OH and Pr*, we conducted the OH$^-$ and propylene stripping experiments$^{21,45-47}$. As shown in Fig. 4c, the reduction peaks of OH$^-$ and Pr* during the stripping experiments in KOH solution are consistent with the results in Fig. 4b.

Extended Data Table 1. The Free Energy Diagram of Electrooxidation of Propylene with OH-Correlated Pathway (Green) and O-Correlated Pathway (Blue) on (110) Facets of Ag$_3$PO$_4$.
surface hydroxyl intermediates shifted from 0.59 V vs RHE (Ag3PO4 cubes) to 0.54 V (Ag3PO4 rhombic dodecahedra) and 0.51 V vs RHE (Ag3PO4 tetrahedra), respectively. These results suggest that the binding energy of OH on Ag3PO4 cubes is the lowest among all the samples. Figure 4d shows the propylene stripping profiles over Ag3PO4 crystals. A broad peak at around 1.13 V vs RHE was observed over Ag3PO4 cubes. Meanwhile, the stripping peaks of propylene over Ag3PO4 rhombic dodecahedra and tetrahedra were located at around 1.26 and 1.31 V vs RHE. The positive shift of the peak potential manifested that the adsorbed strength of Pr* over Ag3PO4 cubes was lower than those over Ag3PO4 rhombic dodecahedra and Ag3PO4 tetrahedra. Both DFT calculations and experiments proved that $E_{\text{ads,Pr*}}$ and $E_{\text{ads,*OH}}$ over Ag3PO4 cubes were the lowest, which was consistent with the highest activity for the electrooxidation of propylene.

Discussion

We achieved highly efficient electrocatalysts of Ag3PO4 cubes which performed a high yield rate (5.3 gPO m$^{-2}$ h$^{-1}$) of PO production for the electrooxidation of propylene. Moreover, we demonstrated the facet effect from two aspects. On the one hand, the DOS of (100) facets on Ag3PO4 exhibited the least overlap with the p orbitals of C in Pr* and O in *OH, thus displaying the lowest $E_{\text{ads,Pr*}}$ and $E_{\text{ads,*OH}}$. The weakened adsorption of Pr* and *OH lowered the energy barrier of PrOH$^-$ formation that was determined as the RDS, accounting for the enhanced activity. On the other hand, the polarization of propylene on (100) facets of Ag3PO4 was the largest among all the facets from the Bader charge analysis, which was conducive to breaking the symmetric π bonding and facilitating the formation of C-O bond. Our work not only offers an effective catalyst for the electrooxidation of propylene but also advances the understanding of the facet effect on catalytic performance.

Methods

Chemicals and materials. Ammonium nitrate (NH4NO3, 99%), silver nitrate (AgNO3, 99.8%), sodium hydroxide (NaOH, 99%), potassium hydrogen phosphate (K2HPO4, 99.5%), ethanol (EtOH, 99.8%) were all purchased from Sinopharm Chemical Reagent Co. Ltd. (Shanghai, China). 1-Propanesulfonic acid 3-(trimethylsilyl) sodium salt (DSS), Dimethyl Sulfoxide-d6 (99.9 atom % D, contains 0.03% v/v TMS), Na3C6H5O7 (99.9 wt% and NaCl 99.9%) and commercial Ag3PO4 were purchased from Aladdin Co. Ltd. (Shanghai, China). The deoxygenated (DI) water with a resistivity of 18.2 MΩ cm was provided by a Millipore Milli-Q grade. All of the chemicals were used without any further purification.

Synthesis of Ag3PO4 cubes. In a typical procedure, 89.2 mL of DI water was added into the beaker, then 1 mL of NH4NO3 solution (0.4 M), 1.8 mL of NaOH solution (0.2 M), and 4 mL of AgNO3 solution (0.05 M) were added to the beaker. After that, the solution turned bright green. The as-obtained precipitate was separated by centrifugation and washed subsequently with DI water three times.

Synthesis of Ag3PO4 rhombic dodecahedra. Except for the feeding ratio of the reactants, the synthetic method of rhombic dodecahedra was similar to that of cubes. Specifically, 89.2 mL of DI water was replaced by 84.2 mL of DI water. 1 mL of NH4NO3 solution (0.4 M) was substituted by 6 mL of NH4NO3 solution (0.4 M). The other steps were the same as those of cubes.

Synthesis of Ag3PO4 tetrahedra. Three mmol of AgNO3 was dissolved in 30 mL of ethanol under rapid stirring for the formation of AgNO3-ethanol solution. Simultaneously, 5 mL of H2PO3 was mixed with 30 mL of ethanol for the formation of H3PO4-ethanol solution. Then, the AgNO3-ethanol solution was added dropwise to the H3PO4-ethanol solution, until the mixture turned slightly cloudy. Finally, the mixture was added into the AgNO3-ethanol solution. After 1-h stirring, the solution turned bright green. The as-obtained precipitate was separated by centrifugation and washed subsequently with ethanol three times.

Preparation of working electrodes. For all Ag3PO4 crystals, the as-prepared sample and Nafion solution were ultrasonically suspended in ethanol and uniformly spread on carbon papers with a loading amount of 2.5 mg cm$^{-2}$.
Electrochemical measurements. For the electrooxidation of propylene, the electrochemical measurements were carried out in a three-compartment electrochemical cell equipped with a GDE. Graphite rod and Ag/AgCl electrodes were used as the counter electrode and reference electrode, respectively. The potentials were controlled by an Autolab potentiostat/galvanostat (CHI 660E). All potentials were measured against the Ag/AgCl reference electrode and converted to the RHE reference scale on account of the equation:

$$E_{\text{RHE}} = E_{\text{Ag/AgCl}} + 0.211V + 0.0591\text{pH}$$

(1)

After propylene was purged into the gas cavity for 300 s to remove the residual air, chronoamperometric electrolysis was performed at each potential for 1 h. The liquid products in the electrolyte were quantified via 1H NMR analysis. The F_{CEO} was calculated at a given potential as follows:

$$F = c \times V \times N \times F / Q$$

(2)

where c represents the concentration of product for PO, V represents the volume of the electrolyte, N represents the number of electrons transferred for product formation, which is 2 for PO, F is the Faraday constant, and Q represents the quantity of electric charge integrated by t current.

The SEM measurements were conducted in 0.1 M PBS solution using a three-electrode cell equipped with an Ag/AgCl reference electrode and a graphite counter electrode. 10 mg of the catalyst was dispersed in a mixture of 950 μL ethanol and 50-μL NaOH solution under ultrasonic stirring to form a homogeneous ink. Ten microliter of the ink was then dropped onto a glassy carbon disk electrode by a micropipette to form a working layer. CVs of AgPO$_4$ were conducted with various scan rates (10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 mV s$^{-1}$) under argon atmosphere to obtain the double-layer capacitance (C_{dl}). The C_{dl} was estimated by plotting the ΔU ($U_{\text{red}}-U_{\text{ox}}$) in the middle of the scan range against the scan rates, where U_{red} and U_{ox} were the anodic and cathodic current density, respectively. The linear slope was equivalent to twice of the C_{dl}. The ECSAs were calculated by the following equation:

$$\text{ECSA}_S = R_F S$$

(3)

where R_F represented the roughness factor of AgPO$_4$ surface and S represented the surface area of carbon paper electrode (1 cm2 in this case). Based on the C_{dl} of a smooth oxide surface (60 μC cm$^{-2}$ for AgPO$_4$ surface28), R_F was calculated according to the relation $R_F = C_{\text{dl}}/60$.

Instrumentations. XRD patterns were recorded by using a Philips X’Pert Pro Super diffractometer with Cu-Kα radiation ($\lambda = 1.54178\AA$). XPS measurements were performed on a VG ESCALAB MK II X-ray photoelectron spectrometer with an exciting source of Al Kα at 1486.6 eV. The liquid products were examined on a Varian 400 MHz NMR spectrometer (Bruker AVANCE AV III 400). SEM images were taken using a Hitachi S-4800 scanning electron microscope. TEM images were taken using a Hitachi H-7650 transmission electron microscope at an accelerating voltage of 200 kV using Cu-based TEM grids. Inductively coupled plasma atomic emission spectroscopy (ICP-AES) was used to determine the concentration of Ag species. X-ray Fluorescence Spectrometer (XR3-1800, SHIMADZU) was used to quantify the molar ratio of Ag to P for the GDE of AgPO$_4$ cubes. The in situ ATR-FTIR measurements were carried out on a Nicolet 8700 with a wavenumber resolution of 4 cm$^{-1}$ at room temperature.

In situ XANES measurements. In situ XANES experiments were carried out at BL14W1 beamline of Shanghai Synchrotron Radiation Facility. The XANES spectra of Ag K-edge ($E_0 = 25514\ eV$) were operated at 3.5 GeV under "top-up" mode with a constant current of 260 mA. The in situ XANES data were recorded under a nitrogen atmosphere and a H-cell. The electrolyte was propylene-saturated 0.1 M PBS (pH = 7), while Ag/AgCl and a graphite rod acted as a reference and counter electrode, respectively. The working electrode was prepared with a loading amount of 2.5 mg cm$^{-2}$ for AgPO$_4$ cubes. The energy was calibrated according to the absorption edge of pure Ag foil. For the X-ray absorption near-edge structure (XANES) measurements, the K-edge ($\lambda = 0.15418\AA$) and L$_{\alpha3}$-edge ($\lambda = 0.93827\AA$) were recorded at BL14W1 beamline of Shanghai Synchrotron Radiation Facility. The XANES data were analyzed to determine the double-layer capacitance (C).

The Gibbs free energy changes (ΔG) for the elementary steps in the proposed mechanism are calculated as follows:

$$\Delta G = \Delta E_{\text{DFT}} + \Delta ZPE - \Delta T S$$

(4)

Here, ΔE_{DFT} is the change of energies of the optimized structures from DFT calculations. ΔZPE is the zero-point energy difference by analyzing the frequencies. $\Delta T S$ is the entropy of each intermediate. It is assumed that $S = 0$ for all the adsorbed species. TSs of key elementary steps were searched using the climbing image nudged elastic band method32. All TSs were confirmed as true saddle points with a single imaginary frequency mode along the reaction coordinate. According to the model of computational hydrogen electrode, at standard conditions, the free energy change of the surface deprotonation process is equivalent to the hydrogen production, namely $H^+ + e^- = 1/2 H_2$29. The adsorption energy (E_{ads}) is defined as follows:

$$E_{\text{ads}} = E_{\text{elec/ads}} - E_{\text{surf}} - E_{\text{adsorb}}$$

(5)

where $E_{\text{elec/ads}}, E_{\text{surf}}$, and E_{adsorb} represent the total energies of the slab with adsorbate(s), the clean slab, and the isolated adsorbate, respectively.

Data availability

All the data supporting this study are available in the paper and Supplementary Information. Source Data are provided with this paper.

Code availability

The codes and simulation files that support the plots and data analysis within this paper are available from the corresponding author upon reasonable request.

Received: 3 June 2021; Accepted: 14 January 2022; Published online: 17 February 2022

References

1. Terfzan, J., Hui, M., Likozar, B. & Djonovic, P. Propylene epoxidation using molecular oxygen over copper- and silver-based catalysts: a review. ACS Catal. 10, 13415–13436 (2020).
2. Herzberger, J. et al. Polymerization of ethylene oxide, propylene oxide, and other alkylene oxides: synthesis, novel polymer architectures, and bioconjugation. ACS Catal. 5, 1353–1370 (2015).
3. Martín, C., Fiorani, G. & Kleij, A. W. Recent advances in the catalytic preparation of cyclic carbonates. ACS Catal. 5, 306–344 (2015).
4. Nihuiss, T. A., Makke, M., Moulijn, J. A. & Weckhuysen, B. M. The production of propylene oxide: catalytic processes and recent developments. Ind. Eng. Chem. Res. 45, 3447–3459 (2006).
5. Karmadonova, I. E., Zudin, V. N., Kuznetsova, N. I., Kuznetsova, L. I. & Bal’zhinimova, B. S. Preparation of ethylbenzene and isopropylbenzene hydroperoxides in the N-hydroxyphthalimide–Fe(III) homogeneous catalytic system and use of solutions in the epoxidation of olefins. Catal. Ind. 12, 216–225 (2020).
6. Bujjink, J. K. F., Van Vlaenderen, J. J. M., Crocker, M. & Niele, F. G. M. Propylene epoxidation over titanium-on-silica catalyst-the heart of the SMPO process. Catal. Today 93–95, 199–204 (2004).
7. Lei, Y. et al. Increased silver activity for direct propylene epoxidation via subnanometer size effects. Science 322, 224–228 (2010).
8. Ghosh, S. et al. Selective oxidation of propylene to propylene oxide over supported tungsten nanostructure with molecular oxygen. ACS Catal. 4, 2169–2174 (2014).
9. Hua, Q. et al. Crystal-plane-controlled selectivity of Cu$_2$O catalysts in propylene oxidation with molecular oxygen. Angew. Chem. Int. Ed. 53, 8446–8461 (2014).
10. Xi, Z., Zhou, N., Sun, Y. & Li, K. Reaction-controlled phase-transfer catalysis for propylene epoxidation to propylene oxide. Science 292, 1139–1141 (2001).
11. Gordon, C. P. et al. Efficient epoxidation over dinuclear sites in titanium silicalite-1. Nature 586, 708–713 (2020).
12. Signorile, M. et al. Titanium defective sites in TS-1: structural insights by combining spectroscopy and simulation. Angew. Chem. Int. Ed. 59, 18145–18150 (2020).
13. Jin, K. et al. Epoxidation of cyclooctene using water as the oxygen atom source at manganese oxide electrocatalysts. J. Am. Chem. Soc. 141, 6413–6418 (2019).
14. Seh, Z. W. et al. Combining theory and experiment in electrocatalysis: insights into materials design. Science 355, eaad4998 (2017).
15. Irkovsky, J. S., Busch, M., Ahlberg, E., Panas, I. & Krtil, P. Switching on the electrocatalytic ethene epoxidation on nanocrystalline RuO$_2$. J. Am. Chem. Soc. 133, 5882–5892 (2011).
17. Luna, P. D. et al. What would it take for renewable energy technologies to displace petrochemical processes? Science 364, 693–697 (2019).

18. Winje, A. et al. Co as a probe molecule to study surface adsorbrates during electrochemical oxidation of propene. ChemElectroChem 8, 250–256 (2021).

19. Maria, B. B., Teresa, L., Helmut, B. & Ulrich, M. Propene oxidation and hydrogenation on a porous platinum electrode in acidic solution. J. Phys. Chem. B 107, 4793–4800 (2003).

20. Sun, Y. P., Qiu, O., Xu, W. L. & Scott, K. A study of the performance of a sparged packed bed electrode reactor for the direct electrochemical oxidation of propylene. J. Electroanal. Chem. 503, 36–44 (2001).

21. Winje, A. et al. Towards an atomic understanding of electrocatalytic partial hydrogenolysis oxidation: propene on palladium. Energy Environ. Sci. 12, 1055–1067 (2019).

22. Pulido, A., Concepción, P., Boronat, M. & Corma, A. Aerobic epoxidation of propene over silver (111) and (100) facet catalysts. J. Catal. 292, 138–147 (2012).

23. Zhao, B. & Wang, G.-C. Theoretical investigation of propylene epoxidation on Ag(111) by molecular oxygen: Na(K,CI) effects. J. Phys. Chem. C. 123, 17273–17282 (2019).

24. Holbrook, L. L. & Wise, H. Electrooxidation of olefins at a silicon electrode. J. Catal. 38, 294–298 (1975).

25. Chou, T.-C. & Chang, J.-C. Anodic oxidation of propylene on a screen electrode. Chem. Eng. Sci. 35, 1581–1590 (1980).

26. Nguyen, N. L., De Gironcoli, S. & Piccinin, S. Ag-Cu catalysts for ethylene epoxidation: selectivity and activity descriptors. J. Phys. Chem. 138, 184707 (2013).

27. Christopher, P. & Linic, S. Engineering selectivity in heterogeneous catalysis: Ag nanowires as selective ethylene oxidation. J. Am. Chem. Soc. 130, 11264–11265 (2008).

28. Hsieh, M. S., Su, H. J., Hsieh, P. L., Chiang, Y. W. & Huang, M. H. Synthesis of Ag nanocrystals with tunable shapes for facet-dependent optical property, photocatalytic activity, and electrical conductivity examinations. ACS Appl. Mater. Interfaces 9, 39986–39993 (2017).

29. Martin, D. J., Umezawa, N., Chen, X., Ye, J. & Tang, J. Facet engineered Ag$_x$PO$_y$ for efficient water photooxidation. Energy Environ. Sci. 6, 3380–3386 (2013).

30. Wu, Y. A. et al. Facet-dependent active sites of a single Cu$_x$O particle photocatalyst for CO$_2$ reduction to methanol. Nat. Energy 4, 957–968 (2019).

31. Bi, Y., Ouyang, S., Umezawa, N., Cao, J. & Ye, J. Facet effect of single-crystalline Ag$_x$PO$_y$ sub-microcrystals on photocatalytic properties. J. Am. Chem. Soc. 133, 6490–6492 (2011).

32. Zhu, G. et al. Self-regulated route to ternary hybrid nanocrystals of Ag$_x$-Ag$_y$-Cu$_z$S$_d$ with near-infrared photoluminescence and enhanced photothermal conversion. Nanoscale 6, 11147–11154 (2014).

33. Li, T., Lin, O., Lu, Z., He, L. & Wang, X. Preparation and characterization of silver loaded montmorillonite modified with sulfur amino acid. Appl. Surf. Sci. 365, 386–395 (2015).

34. Chowdari, B. V. R., Mok, K. F., Xie, J. M. & Gopalakrishnan, R. Spectroscopic and electrical studies of silver sulfophosphate glasses. J. Non-Cryst. Solids 160, 73–81 (1993).

35. Linic, S. & Barteau, M. A. Formation of a stable surface oxametallacycle that produces ethylene oxide. J. Am. Chem. Soc. 124, 310–317 (2002).

36. Liu, J.-C., Tang, Y., Chang, C.-R., Wang, Y.-G. & Li, J. Mechanistic insights into propene epoxidation with O$_2$/H$_2$O mixture on Au(111): a hydroperoxyl pathway from ab initio molecular dynamics simulations. ACS Catal. 6, 2525–2535 (2016).

37. Zhang, B. et al. High-valence metals improve oxygen evolution reaction performance by modulating 3d metal oxidation cycle energetics. Nat. Catal. 3, 983–992 (2020).

38. Wang, Y.-X. & Wang, G.-C. A systematic theoretical study of water gas shift reaction on Cu(111) and Cu(110): potential effect. ACS Catal. 9, 2261–2274 (2019).

39. Jin, G. et al. In situ FT-IR study on the direct gas phase epoxidation of propylene over Ag-MoO$_3$ catalyst. Acta Phys. Chem. Sin. 22, 809–814 (2006).

40. Huang, W. X. & White, I. M. Transition from n-Bonded to di-a metalacetylcyan propene on O-modified Ag(111). Langmuir 18, 9622–9624 (2002).

41. Xiong, W. et al. Fine cubic Cu$_x$O nanocrystals as highly selective catalyst for propylene epoxidation with molecular oxygen. Nat. Commun. 12, 5921 (2021).

42. Liu, Z.-P. & Hu, P. General rules for predicting where a catalytic reaction should occur on metal surfaces: a density functional theory study of C-H and C-O bond breaking/making on flat, stepped, and kinked metal surfaces. J. Am. Chem. Soc. 125, 1958–1967 (2003).

43. Medford, A. J. et al. From the sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. J. Catal. 328, 36–42 (2015).

44. Zhou, Y. et al. Dopant-induced electron localization drives CO$_2$ reduction to C$_2$ hydrocarbons. Nat. Chem. 10, 974–980 (2018).

45. Huang, H. et al. Understanding of strain effects in the electrochemical reduction of CO$_2$ using Pd nanostructures as an ideal platform. Angew. Chem. Int. Ed. 56, 3594–3598 (2017).

46. Zhang, S., Kang, P. & Meyer, T. J. Nanostructured tin catalysts for selective electrochemical reduction of carbon dioxide to formate. J. Am. Chem. Soc. 136, 1734–1737 (2014).

47. Lum, Y. et al. Tuning OH binding energy enables selective electrochemical oxidation of ethylene to ethylene glycol. Nat. Catal. 3, 14–22 (2020).

48. Geng, Z. et al. Oxygen vacancies in ZnO nanosheets enhance CO$_2$ electrochemical reduction to CO. Angew. Chem. Int. Ed. 57, 6054–6059 (2018).

49. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

50. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

51. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

52. Hendelman, G., Uberuaga, B. P. & Jonsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

53. Nørskov, K. J. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).