Multi-relay Antennas for Energy Harvesting Cognitive Radio Networks using Energy-Assisted Decode Forward Method

Yadlapalli Priyanka, R. Arthi

Abstract: The single antenna relay energy-assisted decode forward (EDF) was not applicable for multi cognitive users that has less data rates. In order to achieve higher data rates with increased user demands energy harvesting or Simultaneous Wireless Information and Power Transfer (SWIPT) enabled networks with multi antenna relays are highly recommended. The proposed work considers multi relay EDFSWIPT for 5G systems with presence of transmitter and an antenna array. The transmitter affords data and power towards various numerous single-antenna secondary receivers (SR). The SR outfitted with a power splitter receiving system where multiple primary relays are introduced. The goal of proposed work is to amplify weighted sum rate harvested energy for SR using multi relay EDF. The simulation considers the capacity, outage probability, and throughput for both primary and secondary networks with respect to both single multi relay EDF. The simulation results afford that multi relay EDF has better performance than single antenna array EDF.

Index Terms: Energy harvesting, multi relay, cognitive network, SWIPT, EDF

I. INTRODUCTION

SWIPT has been introduced in [1]-[5] and it has a special architecture explained in [4]-[5]. Theoretical swipt contains only one signal that are used for transmitting information and energy without any loss of the information. But practically it was not possible because the energy harvesting is performed in RF domain. In existing system, single relay and access point and destination are used. The relay network has only one relay [6] so the data rate and number of users are less, so to increase data rates and more number of cognitive users multi relay SWIPT has been proposed in this work.

Energy harvesting has been growing in research territory for both scholastics and industry, because it understands the usage of battery-controlled remote gadgets. Energy Harvesting was particularly vital, more helpful in wireless sensor networks because of restricted energy. In this scenario, the Radio Frequency has brought two information and power from transmitters to beneficiaries [7-14], suggested as “synchronous remote data and power exchange”. In this way, new pre-coding procedures for transmitters and optimizing design systems for receivers has been explored. This paper proposes to use multi relay EDF to increase higher data rates through more number of cognitive users as suggested in [6] to analyze the performance of network capacity, outage probability and throughput compared with existing single relay EDF.

The preparation of the article are as follows: Section II summarizes the Related Work, Section III examines Problem statement and the System Architecture of proposed System. Section IV contributes the Simulation Results. The Conclusion was conferred in Section V.

II. RELATED LITERATURES

Multi-antenna source and recipients [11] framework has been considered to examine these issues, cooperative networks [12], and obstruction channels [13], and additionally secure transmission [14]. Furthermore, the creators in [15,16,17] considered the transmit control minimization issue for multiuser SWIPT MISO frameworks below the deficient channel state information (CSI) with limited channel vector blunders and stochastic channel vector mistakes. As an imperative measure, the total reaped energy amplification in multiuser power-splitting SWIPT MISO framework has been explored under the ideal channel side data of channels from sender to recipients [17]. Be that as it may, the arrangement of [17] constructed on progressive second-order cone programming cannot remain connected to cognitive radio networks (CRN) where interference limitations of Primary User (PU) ought to be measured by the instance of imperfect CSI.

Like the mechanism presented by [18], the uses of RF-controlled procedures to reap energy and move information in CRN were briefed by [19]. Different specialists considered SWIPT for various situations with a specific end goal to give energy to destination though guaranteeing nature of administration. In [20], the secondary system manipulated both range and energy in primary systems by helping essential information broadcasting.

Single optional information link within the sight of various energy harvesting recipients and PUs were studied by [21]. SWIPT in cognitive relay and cognitive wireless powered networks were additionally examined by [22] and [23] accordingly. On the other hand, CRNs with power-splitting (PS) SWIPT and beam forming outlines in multiuser situations are not very much concentrated up until now. In the earlier work by [24], SWIPT CRN situations has been
Multi-relay Antennas for Energy Harvesting Cognitive Radio Networks using Energy-Assisted Decode Forward Method

III. PROBLEM STATEMENT

The existing work uses energy assisted decode and forward (EDF) method to transmit information in addition to energy that are not transmitted simultaneously. To overcome this SWIPT technique has been introduced [6] that uses single antenna relay which has limited number of cognitive users. To sustain the higher desires of data rate and cognitive users, use of single relay was not sufficient. The proposed work considers multi relay EDF to achieve high data rate that increases the number of cognitive users and compares with existing single antenna relay EDF.

A. Proposed system architecture

Fig. 1 demonstrates multi relay communication with SWIPT ability that incorporates an Access Point (AP), 3Relays (R1, R2, R3) and Destination(D). The input to AP are ‘M’ data messages outfitted with N relays to multi relays R1,R2,R3. These multi relays are outfitted by a specific antenna by an indistinguishable frequency from 3 Primary Users (PU’s)denoted as PU1...PU1. The signals from AP to SR i.e., multi relay and PUi are denoted as hi∈ℂ i∈[1...M] and gi∈ℂ i∈[1...L] by means of baseband proportional channels [25]. Transmitter receives channel vectors commutatively with components as autonomous and indistinguishably appropriated circularly symmetric complex Gaussian (CSCG) factors.

The transmitter can basically accomplish CSI vectors since transmitter towards SRs with traditional channel approximation techniques. The reaped energy of SRs in support of incomplete CSI and power splitting (PS) among the relays are considered as semi definite relaxation (SDR). The SDR based solution using particle swarm optimization (PSO) as minimization for transmit power has been considered in the proposed work. The proposed algorithm has been indicated in Table 1.

The proposed method has been performed for AP and secondary receivers who are assumed as multiple relays that makes use of the efficient optimized PS proportions from the transmitters. As a result, the SR incoming signal was split by optimal PS. Therefore, the proposed algorithms efficiently use to increase the data rate with multi relay EDF for CR sensor networks.

IV. SIMULATION RESULTS

The performance analysis based on simulated results considered are Symbol Error Rate (SER) over Signal to Noise Ratio (SNR), Cumulative Distributive Function (CDF) for both primary and secondary network, Outage Probability and Sum Throughput over power splitting factor and variance for both single and multi-relay EDF. The simulation factors [6] are indicated in Table 2.

Table 1: Proposed algorithm based on PSO-SDR with multi relay EDF

Initialization:
1. Allocate repetition key of MR-EDF loop: m = 1.
2. Set Xa’s basics, ∀ia, stand arbitrarily {0, 1}.
3. Allocate the global extreme rate: f(gb)=max, (Xn)
4. Fix greatest location of element: Pb,n = xa, ∀a. Fix sum rate of particle: Vn = 0, ∀a.
5. Repeat (MR-EDF loop)
6. for n = 1: Nb do
7. Evaluate element’s new sum rate:
8. Velocity update: Vn = v, Vn + C1r1α ∗ (Pb,n − Xa)
9. Limit vector vn’s every portion in [−Vmax, Vmax].
10. Compute element’s new position: Xa ← Xa + Vn
11. Check every portion of vector Xa in {0, 1}.
12. Assessment: Evaluate f(Xa) and best beam forming variables {w1} by the result of SDR rendering PS ratios set, Xa.
13. Renew newest greatest location of element: if f(Xa) > f(Pb,n) then Assign: Pb,n ← Xa; end if. Renew element’s new global extreme location: if f(Xa) > f(gb) then Allocate: gb ← Xa, {w* i} ← {w1}, ∀i
14. end for
15. Renew repetition key: m ← m + 1.
16. till m > Tmax (terminate MR-EDF loop)

Table 2: Simulation Factors

 Retrieval Number I8402078919/20190BEJESP DOI: 10.35940/ijitee.I8402.0881019
Factors	Values
Transmit Power | 20dBm
Energy Harvester Co-efficient | $C_1=0.05$
$C_2=1$
Path loss exponent | 3
Primary and Secondary data rates | $R_p=1$ bit/cu
$R_s=0.1$ bit/cu
Access Point (AP) | 3m
Relay R_1, R_2, R_3 | 1.5m
Destination (D) | 2m

The achievement of SNR over SER is shown in Fig.2. The SER response of Multi Relay EDF was much better than EDF and DF. At 10^{-4} of SER, the SNR of MR EDF was decreased by an amount of 22 dB to EDF, 25 to DF and 30 dB to AF. It was realized that the MR-EDF SER response has been nearer to the theoretical response.

The achievement of CDF of Primary Network Capacity is shown in Fig.3. CDF was used to calculate the Peak to Average Power (PAPR) values. PAPR was the important metric to calculate the power amplitude fluctuations of the signal. The CDF curve shows according to what Capacity the signal spends at or above a given power level. The CDF response of Multi Relay EDF was much better than EDF. At 2 bits/cu of Capacity, the CDF of MR EDF was decreased by an amount of 0.2 to EDF.

The achievement of CDF of Secondary Network Capacity is shown in Fig.4. The CDF response of Multi Relay EDF was much better than EDF. At 2.5 bits/cu of Capacity, the CDF of MR EDF was decreased by an amount of 0.2 to EDF.

The achievement of Primary Outage Probability over Power splitting factor is indicated in Fig.5. The Primary Outage Probability (POP) response for Multi Relay EDF was much better than EDF. At 0.2 of Power Splitting factor, the POP of MR EDF was decreased by an amount of 10^{-1} to EDF.

The achievement of Sum Throughput over Power splitting factor is indicated in Fig.6. The Sum Throughput response of Multi Relay EDF was much better than EDF. At 0.2 of PS factor, the throughput of MR EDF was increased by an amount of 0.3 bits/cu as compared to EDF.
Fig.7: Sum Throughput over Variance

The achievement of Sum Throughput over Variance is shown in Fig.7. The Sum Throughput response of Multi Relay EDF was much better than EDF. All the time, the throughput of MR EDF was increased by an amount of 0.25 bits/cu to EDF.

V. CONCLUSION

A multi relay EDF SWIPT to increase the data rates with enhanced cognitive users are proposed and performance of simulated results justifies it. Though the existing method tried to prove with single relay antenna with respect to decode forward and energy assisted decode forward, the proposed work proves better performance with respect to outage probability, sum throughput and network capacity. The proposed algorithm satisfies the optimal sum rate and power splitting ratios for both perfect and imperfect CSIs. The proposed MR-EDF SWIPT achieves faster convergence than single relay EDF. Further the user scheduling, energy harvesting scheduling besides relay beam forming can be considered as future work for both single and multi-relay EDF.

REFERENCES

1. L. Varshney, Transporting Information and Energy Simultaneously, in Proc. IEEE ISIT, Jul. 2008, pp. 1612–1616.
2. P. Grover and A. Sashay, Shannon meets Tesla: Wireless Information and Power Transfer, in Proc. IEEE ISIT, Jun. 2010, pp. 2363–2367.
3. O. Ozel, K. Tutuncuoglu, S. Uluru, and A. Yodler, Fundamental Limits of Energy Harvesting Communications, IEEE Communication Magazine, vol. 53, no. 4, pp. 126–132, Apr. 2015.
4. X. Zhou, R. Zhang, and C. K. Ho, Wireless Information And Power Transfer: Architecture Design and Rate-Energy Tradeoff, IEEE Transactions on Communication, vol. 61, no. 11, pp. 4754–4767, Nov. 2013.
5. R. Zhang and C. K. Ho, MIMO Broadcasting for Simultaneous Wireless Information and Power Transfer, IEEE Transactions on Wireless Communication, vol. 12, no. 5, pp. 1989–2001, May 2013.
6. Dillep K. Verma, Ronald Y.chang, and Fengsun Chien, Energy Assisted Decode and Forward for Energy Harvesting Cooperative Cognitive Networks, 2332–7731/2016IEEE.
7. B. S., Ho C.K., Zhang R., Wireless Powered Communication: Opportunities and Challenges, IEEE Communication Magazine 2015;53:117–125. DOI: 10.1109/MCOM.2015.7081084.
8. Ding Z., Ng D.W.K., Peng M., Suraweera H.A., Schober R., Poor H.V., Application of Smart Antenna Technologies in Simultaneous Wireless Information and Power Transfer, IEEE Communication Magazine, 2015;53:86–93. DOI: 10.1109/MCOM.2015.7081080.
9. Shu Q., Liu L., Xu W., Zhang R., Joint transmit beamforming and receive power splitting for MISO SWIPT systems, IEEE Transactions on Wireless Communication, 2014;13:3269–3280. DOI: 10.1109/TWC.2014.041714.131688.
10. Vu Q.D., Tran L.N., Farrel R., Hong E.K., An Efficiency Maximization Design for SWIPT, IEEE Signal Processing Letters, 2015;22:2189–2193. DOI 10.1109/LSP.2015.2464082.
11. Ding Z., Krikidis I., Shariif B., Poor H.V., Wireless Information and Power Transfer in Cooperative Networks with Spatially Random Relays, IEEE Transactions on Wireless Communication, 2014;13:4440–4453. DOI 10.1109/TWC.2014.2314114.
12. Timotheou S., Krikidis I. Zheng G., Ottersten B., Beamforming for MISO Interference Channels with QoS and RF Energy Transfer, IEEE Transactions on Wireless Communication, 2014;13:2646–2658.
13. Feng R., Li Q., Zhang Q., Qin J., Robust Secure Transmission in MISO Simultaneous Wireless Information and Power Transfer System, IEEE Transactions on Vehicular Technology, 2015;64:800–805. DOI: 10.1109/TVT.2014.2322076.
14. Liao J., Khandaker M.R.A., Wong K.K., Robust power-splitting SWIPT beam forming for broadcast channels, IEEE Communication Letters, 2016;20:181–184. DOI: 10.1109/LCOMM.2015.2498928.
15. Wang F., Peng T., Huang Y., Wang X., Robust transceiver optimization for power-splitting based downlink MISO SWIPT systems, IEEE Signal Processing Letters, 2015;22:1492–1496. DOI:10.1109/LSP.2015.241083.
16. Chu Z., Zhu Z., Xiang W., Hussein J., Robust beamforming and power splitting design in MISO SWIPT downlink system, IET Communication, 2016;10:691–698. DOI: 10.1049/iet-com.2015.0475.
17. Nasr A.A., Tuan H.D., Ngo D.T., Durran S., Kim D.I., Path-Following Algorithms for Beamforming and Signal Splitting in RF Energy Harvesting Networks, IEEE Communication Letters, 2016;20:1687–1690. DOI:10.1109/LCOMM.2016.2578921.
18. Goldsmith A., Jafar S.A., Marc l., Srinivas S., Breaking spectrum gridlock with cognitive radios: An information theoretic perspective, Proc. IEEE, 2009;97:904–914. DOI: 10.1109/PROC.2009.517177.
19. Mohjazi L., Dianati M., Karagiannidis G.K., Muhaidat S., RF-powered cognitive radio networks: Technical challenges and limitations, IEEE Communication Magazine, 2015;53:94–100. DOI: 10.1109/MCOM.2015.7081081.
20. Zheng G., Ho Z., Jorswieck E.A., Ottersten B., Information and Energy Cooperation in Cognitive Radio Networks, IEEE Transactions on Wireless Communication, 2014;62:2290–2303. DOI: 10.1109/TSP.2014.231043.
21. Ng D.W.K., Lo E.S., Schober R., Multi-Objective Resource Allocation for Secure Communication in Cognitive Radio Networks with Wireless Information and Power Transfer, IEEE Transactions on Vehicular Technology, 2016;65:3166–3184. DOI: 10.1109/TVT.2015.2436334.
22. Yang Z., Ding Z., Fan P., Karagiannidis G.K., Outage performance of cognitive relay networks with wireless information and power transfer, IEEE Transactions on Vehicular Technology, 2016;65:3828–3833. DOI: 10.1109/TVT.2015.2443875.
23. Lee S., Zhang R., Cognitive wireless powered network: Spectrum sharing models and throughput maximization, IEEE Transactions on Cognitive Communication Networks, 2015;1:335–346. DOI: 10.1109/TCCN.2015.2508028.
24. Tuan P.V., Koo I., Optimal Multisus MISO Beamforming for Power-Splitting SWIPT Cognitive Radio Networks, IEEE Access, 2017; 5:14141–14153. DOI: 10.1109/ACCESS.2017.2727073.
25. Ghasemi A., Sousa E.S., Fundamental limits of spectrum sharing in fading environment, IEEE Transactions on Wireless Communication, 2007;6:649–658. DOI: 10.1109/TWC.2007.05447.

AUTHORS PROFILE

Yadlapalli Priyanka is a Post Graduate student in Communication Systems from Vignana Bharathi Institute of Technology, Hyderabad. She has done her under gradation in Electronics and Communication Engineering from Khammam Institute of Technology and Sciences, Hyderabad.
Arthi. R obtained her Ph.d in Wireless Sensor Networks from Anna University, Chennai, India during the year 2014. She did her M.Tech in Digital Communication from BMS College of Engineering, Bangalore during 2001. She had her M.B.A from Madurai Kamaraj University in Marketing Research through DLP during 1997. She did her B.E in Electronics and Communication Engineering from Periyar Maniammai college of Technology for Women, Thanjavur during 1994. She has 22 years of teaching experience including 4 years of Research experience. She has published in more than 20 papers both in International Conference and Journals to her credit. She is a Reviewer for various International Journals and acted as a Program Committee member for many International conferences. At present she is working as a Professor in Department of ECE, Vignana Bharathi Institute of Technology, Hyderabad, India. Her area of interest includes Wireless Communication, Wireless Networks, Wireless Sensor Networks, Green Computing, Mobile Computing, Network Security etc.