Local Ward identities for collective excitations in fermionic systems with spontaneously broken symmetries

Pietro M. Bonetti

1 Max Planck Institute for Solid State Research, D-70569 Stuttgart, Germany

(Dated: August 8, 2024)

We derive Ward identities for fermionic systems exhibiting a gauge symmetry that gets globally broken. In particular, we focus on the relation that connects the gauge field response functions to the transverse susceptibilities of the order parameter. We find that the long-wavelength and zero energy limit of the former are related to the coefficients of a low-energy expansion of the latter. We examine three physical cases: the superconductor, the Néel antiferromagnet and the spiral magnet. In the case of a metallic spiral magnet that completely breaks the SU(2) spin symmetry we explicitly show that the Ward identities are fulfilled within the random phase approximation. We subsequently derive microscopic expressions for the spin stiffnesses and spin wave velocities, which can be plugged into low energy models to study the effect of long-wavelength bosonic fluctuations on top of mean-field solutions.

I. INTRODUCTION

Symmetries play a prominent role in several branches of physics. In condensed matter systems, they often allow for making rigorous statements about the nature of a phase transition, or provide insightful information about entire phases. A renowned example is the Goldstone theorem [1], which predicts the number of gapless modes when a global continuous symmetry is spontaneously broken, irrespective of the microscopic details of the system. In some systems, a global invariance is promoted to a local one with the introduction of a gauge field.

In this case, constraints for the correlation functions can be derived, corresponding to fundamental conservation laws. These exact relations, going under the name of Ward (or Ward-Takahashi) identities [2, 3], play a key role in the development of approximations to tackle the many body problem [4–7], as it is desirable for a method to satisfy them. Many works have been produced with this aim, focusing, among others, on the consistency of many-body approximations [8–12], or on the gauge invariance of response functions [13–15]. Ward identities have also been analyzed in systems with broken symmetries, such as ferromagnets [9, 16] or superconductors [17–20]. Some of the most considered Ward identities are those which impose constraints relating single particle properties (as the self-energy) to the two-particle correlators (the vertex functions), providing a benchmark on the consistency of the approximations employed to compute these quantities.

In this paper, we derive Ward identities descending from a local symmetry that gets globally broken in a fermionic system. We consider the gauge field as an external perturbation and probe the linear response of the system to it, thus preserving the massless character of the Goldstone modes. We derive a functional identity from which a hierarchy of exact constraints for correlation functions can be extracted. We focus on the Ward identity connecting the linear response to the external gauge field and the transverse susceptibilities of the order parameter, containing information on the Goldstone gapless excitations. In particular, we show that the low frequency and momentum expansion of the inverse of the susceptibilities is related to precise limits of the gauge field response kernel. We discuss three examples: a superconductor breaking the U(1) charge symmetry, a Néel antiferromagnet breaking the SU(2) spin symmetry leaving a residual U(1), and a spiral magnet, completely breaking SU(2).

Similar relations can be found in the literature for special cases (see for example Ref. [21]). Here, we provide a formal derivation within a formalism that allows to extend them to any system and any possible kind of long-range order that breaks a continuous symmetry. These identities are of fundamental relevance, as from the sole knowledge of the local symmetry group, one can infer the form of the transverse susceptibilities for small energies and long wavelengths. This is reminiscent of and intimately connected to hydrodynamic theories for systems exhibiting spontaneous symmetry breaking, such as superfluid helium [22] or magnets [23, 24]. Moreover, when the gauge field is of "pure gauge", that is, it can be removed by means of a local transformation, the Ward identities are useful to derive a low-energy theory for the slow directional fluctuations of the order parameter in the fashion of nonlinear sigma models [25].

We focus particularly on the case of doped antiferromagnets, that host low-lying fermionic excitations, forming small Fermi surfaces. We show that from the Ward identities one can compute a dynamical transverse susceptibility \(\chi^{\perp}_{\text{dyn}} \equiv \lim_{\omega \to 0} \chi^{\perp}(q = 0, \omega) \) and a spin stiffness \(J \) and extract the spin wave velocity as \(c_s = \sqrt{J/\chi^{\perp}_{\text{dyn}}} \). This is in contrast with the hydrodynamic approach of Refs. [23, 24], which predicts \(c_s = \sqrt{J/\chi^{\perp}} \), with \(\chi^{\perp} = \lim_{q \to 0} \chi^{\perp}(q, \omega = 0) \) the uniform transverse susceptibility. As it was noticed in Ref. [26], the equality \(\chi^{\perp} = \chi^{\perp}_{\text{dyn}} \) holds only for insulating antiferromagnets at low temperatures, as the spin systems considered in Refs. [23, 24]. Furthermore, as a consequence of the doping, Néel antiferromagnetism is often destroyed, making way to a coplanar spiral magnet. In this state,
the spins are no longer antiferromagnetically ordered but
the magnetization rotates in a plane, completely break-
ing the SU(2) rotational symmetry and giving rise to
three rather than two Goldstone modes [27–30]. Spi-
ral states have been found to emerge in the two dimen-
sional Hubbard model and in the t-J model at moderate
hole doping away from half filling, and they are possi-
ble candidates for the incommensurate magnetic corre-
tations connected with a specific gauge symmetry which
gets globally broken due to the onset of long-range or-
tabilities connected with a specific gauge symmetry which
are not required. According to the Elitzur’s theorem [49],
the breaking of the U(1) gauge symmetry is not possible,
leading to a discussion on the topological nature of the
order parameter of the superconductor as a classical
state [50], due to a subtle interplay of the Ward identities
for a spiral magnet and derive approximations for the spin
stiffnesses and dynamical susceptibility of each gapless
mode. These formulas generalize to finite temperature
and doping and to spiral magnetic states the previously
derived expressions for spin stiffnesses in the ground
state at half filling [21, 48]. This formalism represents a
convenient starting point to study long-wavelength
fluctuation effects on top of mean-field solutions.

The paper is organized as follows. In Sec. II we de-
ervive the anomalous Ward identities descending from
a gauge symmetry that gets globally broken in a fermionic
system. We consider three different systems: the super-
conductor, the antiferromagnet, and the spiral magnet.
In Sec. III we present an explicit and detailed evaluation
of the Ward identities for a spiral magnet and derive
approximate expressions for the spin stiffnesses and dy-
namical susceptibilities. A conclusion in Sec. IV closes
the presentation.

II. WARD IDENTITIES

In this section we derive and discuss the Ward iden-
tities connected with a specific gauge symmetry which
gets globally broken due to the onset of long-range or-
terior in the fermionic system. We focus on two specific
symmetry groups: the (abelian) U(1) charge symmetry and
the (nonabelian) SU(2) spin symmetry. All over the
paper we employ Einstein’s notation, that is, a sum over
repeated indices is implicit.

A. U(1) symmetry

We now analyze the Ward identities in a superconduc-
tor. According to the Elitzur’s theorem [49], the breaking
of the U(1) gauge symmetry is not possible, leading to
the interpretation of the superconductor as a topologi-
cally ordered state [50], due to a subtle interplay of the
dynamical gauge field and the order parameter [51]. In
this work, we treat the gauge field as a classical external
perturbation and measure the system’s response to it, so
that a discussion on the topological nature of the order
is not required.

We consider the generating functional of susceptibili-
ties of the superconducting order parameter and gauge
kernels, defined as:

\[\mathcal{G}[A_\mu, \mathcal{J}, \mathcal{J}^*] = \]

\[- \ln \int D\psi D\overline{\psi} e^{-S[\psi, \overline{\psi}, A_\mu] + (\mathcal{J}, \psi) + (\mathcal{J}^*, \overline{\psi})}, \]

(1)

where \(\psi = (\psi_\uparrow, \psi_\downarrow) \) and \(\overline{\psi} = (\overline{\psi}_\uparrow, \overline{\psi}_\downarrow) \) are Grassmann spinor fields corresponding to the annihilation (creation) of a fermion, \(A_\mu \) is the electromagnetic field, \(\mathcal{J}(\mathcal{J}^*) \) is a source field that couples to the superconducting order parameter \(\overline{\psi}_\uparrow \psi_\downarrow \) (\(\overline{\psi}_\downarrow \psi_\uparrow \)), and \(S[\psi, \overline{\psi}, A_\mu] \) is the action of the system.

The index \(\mu = 0, 1, \ldots, d \), with \(d \) the system
dimensionality, runs over temporal (\(\mu = 0 \)) and spatial
(\(\mu = 1, \ldots, d \)) components. In the above equation and
from now on, the expression \((A, B)\) has to be interpreted
as \(\int_A B(x) dx \), where \(x \) is a collection of variables
consisting of a spatial coordinate \(x \) (possibly discrete, for
lattice systems), and an imaginary time coordinate \(\tau \), and \(\mathcal{Z} \) is a shorthand for \(\int \mathcal{D}x \mathcal{D}\tau \mathcal{D}J \). With \(\beta \) the inverse temperature.

Even in the case of a lattice system, we define the
gauge field over a continuous space time, so that expres-
sions involving its gradients are well defined.

We let the global U(1) charge symmetry be broken by
an order parameter that, to make the treatment simpler,
we assume to be local (s-wave)

\[\langle \psi_\uparrow(x) \psi_\downarrow(x) \rangle = \langle \overline{\psi}_\uparrow(x) \overline{\psi}_\downarrow(x) \rangle = \varphi_0, \]

(2)

where the average is computed at zero source and gauge
fields, and, without loss of generality, we choose \(\varphi_0 \in \mathbb{R} \).

A generalization to systems with nonlocal order parame-
ters, such as d-wave superconductors, is straightforward.

The functional (1) has been defined such that its sec-
ond derivative with respect to \(\mathcal{J} \) and \(\mathcal{J}^* \) at zero \(\mathcal{J}, \mathcal{J}^* \) and
\(A_\mu \) gives (minus) the susceptibility of the order parame-
ter \(\chi(x, x') \), while (minus) the gauge kernel \(K_{\mu\nu}(x, x') \) can be extracted differentiating twice with respect to the
gauge field. In formulas

\[\chi(x, x') = -\frac{\delta^2 \mathcal{G}}{\delta \mathcal{J}(x) \delta \mathcal{J}^*(x')} \bigg|_{J = J^* = A_\mu = 0}, \]

(3a)

\[K_{\mu\nu}(x, x') = -\frac{\delta^2 \mathcal{G}}{\delta A_\mu(x) \delta A_\nu(x')} \bigg|_{J = J^* = A_\mu = 0}. \]

(3b)

Let us now consider the constraints that the U(1) gauge
invariance imposes on the functional \(\mathcal{G} \). Its action on the
fermionic fields is

\[\psi(x) \rightarrow e^{i \theta(x)} \psi(x), \]

(4a)

\[\overline{\psi}(x) \rightarrow e^{-i \theta(x)} \overline{\psi}(x), \]

(4b)

with \(\theta(x) \) a generic function. Similarly, the external fields transform as

\[\mathcal{J}(x) \rightarrow \mathcal{J}^*(x) = e^{2i \theta(x)} \mathcal{J}(x), \]

(5a)

\[\mathcal{J}^*(x) \rightarrow \mathcal{J}^*(x) = e^{-2i \theta(x)} \mathcal{J}^*(x), \]

(5b)

\[A_\mu(x) \rightarrow A_\mu'(x) = A_\mu(x) - \partial_\mu \theta(x), \]

(5c)
where $\partial_\mu = (i \partial_\tau, \nabla)$. In Eqs. (4) and (5) the spatial coordinate x of the spinors ψ and $\bar{\psi}$, as well as the sources J and J^\ast may be a lattice one, while the gauge field A_μ and the parameter θ are always defined over a continuous space. To keep the notation lighter, we always indicate the space-time coordinate as x, keeping in mind that its spatial component could have a different meaning depending on the field it refers to.

For G to be invariant under a U(1) gauge transformation, it must not to depend on $\theta(x)$:

$$\frac{\delta}{\delta \theta(x)} G[A_\mu, J^\ast, (J^\ast)^\ast] = 0. \quad (6)$$

Considering an infinitesimal transformation, that is $|\theta(x)| \ll 1$, from Eqs. (5) and (6), we obtain

$$\partial_\mu \left(\frac{\delta G}{\delta A_\mu(x)} \right) + 2i \left[\frac{\delta G}{J(x)} J(x) - \frac{\delta G}{J^\ast(x)} J^\ast(x) \right] = 0. \quad (7)$$

We now consider the change of variables

$$J(x) = J_1(x) + i J_2(x), \quad J^\ast(x) = J_1(x) - i J_2(x), \quad (8a)$$

and

$$J_1(x) (J_2(x))$$

is a source field coupling to longitudinal (transverse) fluctuations of the order parameter, and the functional Γ, defined as the Legendre transform of G,

$$\Gamma[A_\mu, \phi_1, \phi_2] = \sum_{a=1,2} \int x \phi_a(x) J_a(x) + G[A_\mu, J_1, J_2], \quad (9)$$

where $\phi_a(x) = \frac{\delta G[A_\mu, J_1, J_2]}{\delta J_a(x)}$. The gauge kernel can be computed from Γ as well:

$$\frac{\partial^2 \Gamma}{\partial A_\mu(x) \partial A_\mu(x')} \bigg|_{\phi=A_\mu=0} = 0, \quad (10)$$

because, thanks to the Legendre transform properties, $\frac{\delta \Gamma}{\delta A_\mu(x)} = \frac{\delta G}{\delta A_\mu(x)}$. Differently, differentiating Γ twice with respect to the fields ϕ_a returns the inverse correlator

$$C^{ab}(x, x') = \frac{\partial^2 \Gamma}{\partial \phi_a(x) \partial \phi_b(x')} \bigg|_{\phi=A_\mu=0}, \quad (11)$$

which obeys a reciprocity relation

$$\int_{x''} C^{ac}(x, x'') \chi^{cb}(x'', x') = \delta_{ab} \delta(x - x'), \quad (12)$$

with the generalized susceptibility $\chi^{ab}(x, x')$, defined as

$$\chi^{ab}(x, x') = \frac{\partial^2 G}{\partial J_a(x) \partial J_b(x')} \bigg|_{J_a = 0}. \quad (13)$$

Eq. (7) can be expressed in terms of Γ as

$$\partial_\mu \left(\frac{\delta \Gamma}{\delta A_\mu(x)} \right) - 2 \left[\frac{\delta \Gamma}{\delta \phi_1(x)} \phi_2(x) - \frac{\delta \Gamma}{\delta \phi_2(x)} \phi_1(x) \right] = 0. \quad (14)$$

Eq. (14) is an identity for the generating functional Γ stemming from U(1) gauge invariance of the theory. Taking derivatives with respect to the fields, one can derive an infinite set of Ward identities.

We are interested in the relation between the gauge kernel and the transverse inverse susceptibility $C^{22}(x, x')$. For this purpose, we differentiate Eq. (14) once with respect to $\phi_2(x')$ and once with respect to $A_\mu(x')$, and then set the fields to zero. We obtain the set of equations

$$- \partial_\mu C^{22}_\mu(x, x') = 2 \varphi_0 \frac{C^{22}(x, x')}{x}, \quad (15a)$$

$$- \partial_\mu K_{\mu\nu}(x, x') = 2 \varphi_0 \frac{C^{22}(x, x')}{x}, \quad (15b)$$

where $\varphi_0 = \langle \phi(x) \rangle = \langle \phi_1(x) \rangle = \langle \psi_\uparrow(x) \psi_\uparrow(x) \rangle$, and we have defined the quantity

$$C^{22}_\mu(x, x') = \frac{\partial^2 \Gamma}{\partial A_\mu(x) \partial \phi_a(x')} \bigg|_{\phi=A_\mu=0}. \quad (16)$$

Combining (15a) and (15b), we obtain

$$\partial_\mu \partial_\nu K_{\mu\nu}(x, x') = 4 \varphi_0^2 C^{22}(x, x'). \quad (17)$$

Fourier transforming Eq. (17) and rotating to real frequencies, we have

$$- q_a q_\nu K_{\mu\nu}(q) = 4 \varphi_0^2 C^{22}(q), \quad (18)$$

with $q = (q, \omega)$ a collective variable combining momentum and real frequency.

We now define the superfluid stiffness $J_{\alpha\beta}$ and the uniform density-density susceptibility χ_n [53] as

$$J_{\alpha\beta} \equiv - \lim_{q \to 0} K_{\alpha\beta}(q, \omega = 0), \quad (19a)$$

$$\chi_n \equiv \lim_{\omega \to 0} K_{00}(q = 0, \omega), \quad (19b)$$

where the minus sign in (19a) has been introduced so that $J_{\alpha\beta}$ is positive definite. Notice that, even though the limits $q \to 0$ and $\omega \to 0$ in Eq. (19b) have been taken in the opposite order compared to what is conventionally done, they commute in a s-wave superconductor because of the absence of gapless fermionic excitations. In the above equation and from now on, we employ the convention that the indices labeled as μ, ν include temporal and spatial components, whereas α and β only the latter. Taking the second derivative with respect to q on both sides of (18), we obtain

$$J_{\alpha\beta} = 2 \varphi_0^2 \frac{\partial^2}{\partial q_a \partial q_\beta} C^{22}(q, \omega = 0) \bigg|_{q \to 0}, \quad (20a)$$

$$\chi_n = - 2 \varphi_0^2 \frac{\partial^2}{\partial q_a \partial q_\beta} C^{22}(q = 0, \omega) \bigg|_{\omega \to 0}, \quad (20b)$$

where $\partial^2_{q_a q_\beta}$ and $\partial^2_{q_\alpha q_\beta}$ are shorthands for $\frac{\partial^2}{\partial q_a q_\beta}$ and $\frac{\partial^2}{\partial q_a q_\beta}$, respectively. Moreover, we have made use of the Goldstone theorem, reading $C^{22}(0, 0) = 0$. To derive Eq. (20) from (18) we have exploited the finiteness of the gauge kernel $K_{\mu\nu}(q)$ in the $q \to 0$ and $\omega \to 0$ limits. Eq. (20) states
that the superfluid stiffness and the uniform density-density correlation function are not only the zero momentum and frequency limit of the gauge kernel, but also the coefficients of the inverse transverse susceptibility when expanded for small q and ω, respectively. Inverting Eq. (12), $C^{22}(q)$ can be expressed in terms of $\chi^{ab}(q)$ as

$$C^{22}(q) = \frac{1}{\chi^{22}(q) - \chi^{21}(q)\chi^{12}(q)}.$$

(21)

In the limit $q \to 0 = (0,0)$, $\chi^{22}(q)$ diverges for the Goldstone theorem, while the second term in the denominator vanishes like some power of q. This implies that, for small q,

$$C^{22}(q) \approx \frac{1}{\chi^{22}(q)}.$$

(22)

From this consideration, together with (20), we can deduce that the transverse susceptibility can be written as

$$\chi^{22}(q,\omega) \sim \frac{4\varphi_0^2}{\chi_n\omega^2 + J_{\alpha\beta}q_\alpha q_\beta},$$

(23)

for small q and ω.

The above form of the $\chi^{22}(q)$ can be also deduced from a low energy theory for the phase fluctuations of the superconducting order parameter. Setting J and J^* to zero in (1), and integrating out the Grassmann fields, one obtains an effective action for the gauge fields. The quadratic contribution in A_μ is

$$S_{\text{eff}}^{(2)}[A_\mu] = -\frac{1}{2} \int_q K_{\mu\nu}(q)A_\mu(-q)A_\nu(q),$$

(24)

where \int_q is a shorthand for $\int \frac{d^d q}{(2\pi)^d}$. Since we are focusing on only slow and long-wavelength fluctuations of A_μ, we replace $K_{\mu\nu}(q)$ with $K_{\mu\nu}(0)$. Considering a pure gauge field, $A_\mu(x) = -\partial_\mu \theta(x)$, where $\theta(x)$ is (half) the phase of the superconducting order parameter $(\phi(x) = \varphi_0 e^{2i\theta(x)})$, we obtain

$$S_{\text{eff}}[\theta] = \frac{1}{2} \int_x \left\{ -\chi_n [\partial_\mu \theta(x)]^2 + J_{\alpha\beta} \partial_\alpha \theta(x) \partial_\beta \theta(x) \right\},$$

(25)

with $\theta(x) \in [0,2\pi]$ a periodic field. The above action is well known to display a Berezinskii-Kosterlitz-Thouless (BKT) transition [54, 55] for $d = 1$ (at $T = 0$) and $d = 2$ (at $T > 0$), while for $d = 3$ ($T \geq 0$) or $d = 2$ ($T = 0$), it describes a gapless phase mode known as Anderson-Bogoliubov phonon [19].

From (25), we can extract the propagator of the field $\theta(x)$

$$\langle \theta(-q)\theta(q) \rangle = \frac{1}{-\chi_n\omega^2 + J_{\alpha\beta}q_\alpha q_\beta},$$

(26)

where we have neglected the fact that $\theta(x)$ is defined modulo 2π. Writing $\phi_2(x) = (\phi(x) - \phi^*(x))/(2\pi) = -\varphi_0 \sin(2\theta(x)) \sim -2\varphi_0 \theta(x)$, $\chi^{22}(q)$ can be expressed as

$$\chi^{22}(q) = \langle \phi_2(-q)\phi_2(q) \rangle \sim 4\varphi_0^2 \langle \theta(-q)\theta(q) \rangle$$

$$= \frac{4\varphi_0^2}{-\chi_n\omega^2 + J_{\alpha\beta}q_\alpha q_\beta},$$

(27)

which is in agreement with Eq. (23).

B. SU(2) symmetry

In this Section, we repeat the same procedure we have applied in the previous one to derive the Ward identities connected to a SU(2) gauge invariant system. We consider the functional

$$G[A_\mu, J] = -\ln \int D\psi D\overline{\psi} e^{-S[\psi, \overline{\psi}, A_\mu] + \langle J, \frac{i}{2} \overline{\psi} \gamma^\mu \psi \rangle},$$

(28)

where $A_\mu(x) = A_\mu^a(x)\frac{\sigma^a}{2}$ is a SU(2) gauge field, σ are the Pauli matrices, and $J(x)$ is a source field coupled to the fermion spin operator $\frac{1}{2} \overline{\psi}(x)\gamma^\mu \psi(x)$. Similarly to the previous section, derivatives of G with respect to A_μ and J at zero external fields give minus the gauge kernels and spin susceptibilities, respectively. In formulas,

$$\chi^{ab}(x, x') = -\frac{\delta^2 G}{\delta J^a_\mu(x) \delta J^b_\nu(x')}$$

$$K^{ab}_{\mu\nu}(x, x') = -\frac{\delta^2 G}{\delta A^a_\mu(x) \delta A^b_\nu(x')},$$

(29a)

(29b)

We let the SU(2) symmetry be broken by a (local) order parameter of the form

$$\left\langle \frac{1}{2} \overline{\psi}(x)\gamma^\mu \psi(x) \right\rangle = \varphi_0 \hat{v}(x),$$

(30)

with $\hat{v}(x)$ a position-dependent unit vector pointing along the local direction of the magnetization [56].

A SU(2) gauge transformation on the fermionic fields reads

$$\psi(x) \to R(x)\psi(x),$$

$$\overline{\psi}(x) \to \overline{\psi}(x)R^\dagger(x),$$

(31a)

(31b)

where $R(x) \in$ SU(2) is a matrix acting on the spin indices of ψ and $\overline{\psi}$. The external fields transform as

$$J_\mu(x) \to J'_\mu(x) = R^{ab}(x)J_b(x),$$

$$A^{ab}_\mu(x) = R^{ab}(x)A^a_\mu(x)R(x) + iR^\dagger(x)\partial_\mu R(x),$$

(32a)

(32b)

where $R(x)$ is the adjoint representation of $R(x)$

$$R^{ab}(x)\sigma^b = R(x)\sigma^a R^\dagger(x).$$

(33)

The SU(2) gauge invariance of G can be expressed as

$$\frac{\delta}{\delta R(x)} [A^a_\mu, \hat{J}^a] = 0,$$

(34)
Writing $R(x) = e^{i\theta_L(x)\pi^2}$, $R^\dagger(x) = e^{-i\theta_L(x)\pi^2}$, and considering an infinitesimal transformation $[\theta_L(x)]\ll 1$, we obtain the functional identity
\[
\partial_{\mu}\left(\frac{\delta\Gamma}{\delta A_\mu^a(x)}\right) - e^{a^\dagger}m\left[\frac{\delta\Gamma}{\delta \phi^m(x)}\phi^m(x)\right. - \left.\frac{\delta\Gamma}{\delta A_\mu^m(x)}A_\mu^m(x)\right] = 0, \tag{35}
\]
where ε^{abc} is the Levi-Civita tensor. $\Gamma[A_\mu, \phi]$ is the Legendre transform of \mathcal{G}, defined as
\[
\Gamma[A_\mu, \phi] = \int_x \phi^a(x) \cdot \vec{J}(x) + \mathcal{G}[A_\mu, \phi], \tag{36}
\]
with $\phi_a(x) = \frac{\delta \mathcal{G}[A_\mu, \phi]}{\delta A_\mu^a(x)}$. The inverse susceptibilities $C^{ab}(x, x')$, defined as,
\[
C^{ab}(x, x') = -\frac{\delta^2 \Gamma}{\delta \phi_a(x) \delta \phi_b(x')} \bigg|_{\phi = \phi_0 = 0}, \tag{37}
\]
obey a reciprocity relation with the spin susceptibilities $\chi^{ab}(x, x')$ similar to (12).

Defining the quantities
\[
C^{ab}_\mu(x, x') = -\frac{\delta^2 \Gamma}{\delta A_\mu^a(x) \delta \phi_b(x')} \bigg|_{\phi = A_\mu = 0}, \tag{38a}
\]
\[
B^{a}_\mu(x) = -\frac{\delta \Gamma}{\delta A_\mu^a(x)} \bigg|_{\phi = A_\mu = 0}, \tag{38b}
\]
we obtain from (35) the set of equations
\[
-\partial_{\mu}C^{ab}_\mu(x, x') = \varphi_0 e^{a^\dagger}m c^{ab}(x, x')v_m(x), \tag{39a}
\]
\[
-\partial_{\mu}K^{ab}_\mu(x, x') = \varphi_0 e^{a^\dagger}m c^{bd}(x, x')v_m(x) - \varepsilon^{abc}B^c_\mu(x)\delta(x - x'), \tag{39b}
\]
\[
\partial_{\mu}B^{a}_\mu(x) = 0, \tag{39c}
\]
where (39a), (39b), have been obtained differentiating (35) with respect to $\phi_b(x')$ and $A_\mu(x')$, respectively, and setting the fields to zero. Eq. (39c) simply comes from (35) computed at zero A_μ, ϕ_0. According to Eq. (30), the expectation value of $\bar{\phi}(x)$ takes the form $\langle \phi(x) \rangle = \varphi_0 \hat{\psi}(x)$.

Combining (39a), (39b), and (39c), we obtain the Ward identity
\[
\partial_{\mu}\partial_{\nu}K^{ab}_\mu(x, x') = \varphi_0^2 e^{a^\dagger}m \varepsilon^{abc}d^{\alpha}(x)\vec{v}^\beta(x')c^{mp}(x, x'), \tag{40}
\]
which connects the gauge kernels with the inverse susceptibilities.

In the following, we analyze two concrete examples where the above identity applies, namely the Néel antiferromagnet and the spiral magnet. We do not consider ferromagnets or, in general, systems with a net average magnetization, as in this case the divergence of the transverse components of the kernel $K^{ab}_{00}(q)$ for $q \to 0$ leads to changes in the form of the Ward identities. In this case, one can talk of type-II Goldstone bosons [57], characterized by a nonlinear dispersion.

1. Néel order

We now consider the particular case of antiferromagnetic (or Néel) ordering for a system on a d-dimensional bipartite lattice. In this case $\hat{\psi}(x)$ takes the form $(1-\delta^2)\hat{\psi}$, with $(-1)^x\hat{\psi}$ being $1(-1)$ on the sites of sublattice A (B), and $\hat{\psi}$ a constant unit vector. In the following, without loss of generality, we consider $\hat{\psi}=(1, 0, 0)$. Considering only the diagonal $(a=b)$ components of (40), we have
\[
\partial_{\mu}\partial_{\nu}K^{11}_{\mu\nu}(x, x') = 0, \tag{41a}
\]
\[
\partial_{\mu}\partial_{\nu}K^{22}_{\mu\nu}(x, x') = \varphi_0^2 (-1)^{x-x'}C^{33}(x, x'), \tag{41b}
\]
\[
\partial_{\mu}\partial_{\nu}K^{33}_{\mu\nu}(x, x') = \varphi_0^2 (-1)^{x-x'}C^{22}(x, x'). \tag{41c}
\]

Despite Néel antiferromagnetism breaking the lattice translational symmetry, the components of the gauge Kernel considered above depend only on the difference of their arguments $x - x'$, and thus have a well-defined Fourier transform. Eq. (41a) implies $q_0q_0K^{11}_{\mu\nu}(q, \omega) = 0$, as expected due to the residual $U(1)$ gauge invariance in the Néel state. In particular, one obtains $\lim_{q_0 \to 0} K^{11}_{\mu\nu}(q, 0) = 0$, and $\lim_{\omega \to 0} K^{11}_{\mu\nu}(0, \omega) = 0$.

Eqs. (41b) and (41c) are the same equation as we have $K^{22}_{\mu\nu}(x, x') = K^{33}(x, x')$, again because of the residual symmetry. If we rotate them onto the real time axis and perform the Fourier transform, we get
\[
J_{\alpha\beta} = -\lim_{q_0 \to 0} K^{22}_{\alpha\beta}(q, 0) = \frac{1}{2} \varphi_0^2 q_0^2 C^{33}(q, 0) \bigg|_{q \to q}, \tag{42a}
\]
\[
C^{22}(Q, 0) = C^{33}(Q, 0) = 0. \tag{43}
\]

Furthermore, to derive Eq. (42) from (41b), we have used the finiteness of the $q \to 0$ and $\omega \to 0$ limits of the gauge kernels. Following the argument given in the previous section, for $q = (q, \omega)$ close to $Q = (Q, 0)$, we can replace $C^{33}(q)$ by $1/\chi^{33}(q)$ in (42), implying
\[
\chi^{22}(q \approx Q) = \chi^{33}(q \approx Q) \approx \frac{\varphi_0^2}{\chi^{33}_{\text{dyn}}q^2 + J_{\alpha\beta}(q - Q)_{\alpha}(q - Q)_{\beta}}, \tag{44}
\]

Notice that in Eq. (44) we have neglected the imaginary parts of the susceptibilities, that, for doped antiferromagnets, can lead to Landau damping of the Goldstone modes [58].

Also for Néel ordering, form (44) of the transverse susceptibility can be deduced from a low energy theory for
the gauge field $A_\mu(x)$, that is,

$$
S_{\text{eff}}[A_\mu] = -\frac{1}{2} \int_q \left[K_{00}^{ab}(0, \omega \to 0)A_0^a(-q)A_0^b(q) + K_{a\beta}^{ab}(q \to 0, 0)A_a^a(-q)A_\beta^b(q) \right].
$$

(45)

Considering a pure gauge field

$$
A_\mu(x) = iR^\dagger(x)\partial_\mu R(x),
$$

(46)

with $R(x)$ a SU(2) matrix, we obtain the action

$$
S_{\text{eff}}[\hat{n}] = \frac{1}{2} \int_x \left\{ -\frac{1}{\chi_{\text{dyn}}} |\partial_t \hat{n}(x)|^2 + J_{\alpha\beta} \partial_\alpha \hat{n}(x) \partial_\beta \hat{n}(x) \right\},
$$

(47)

where $\hat{n}(x) = (-1)^x R(x)\hat{\psi}(x)$, with $R(x)$ defined as in Eq. (33), and $|\hat{n}(x)|^2 = 1$. Eq. (47) is the well-known O(3)/O(2) nonlinear sigma model (NLσM) action, describing low-energy properties of quantum antiferromagnets [25, 59].

Writing $R(x) = e^{\psi_0(x)\vec{A}^\dagger}$, and expanding to first order in $\psi_0(x)$, $\hat{n}(x)$ becomes $\hat{n}(x) \simeq (1, \theta_2(x), -\theta_3(x))$. Considering the expression $\hat{\psi}(x) = (-1)^x \varphi_0 \hat{n}(x)$ for the order parameter field, we see that small fluctuations in $\hat{n}(x)$ only affect the 2- and 3-components of $\hat{\psi}(x)$. The transverse susceptibilities can be therefore written as

$$
\chi^{22}(q) = \chi^{33}(q) = \langle \phi_2(\hat{\psi}) \phi_2(\hat{\psi}) \rangle
\simeq \varphi_0^2 (n_2(q + Q) - n_2(q - Q))
\begin{align}
&= -\frac{1}{\chi_{\text{dyn}}\omega^2 + J_{\alpha\beta}(q - Q)_\alpha(q - Q)_\beta},
\end{align}

(48)

which is the result of Eq. (44). In Eq. (48) we have made use of the propagator of the \hat{n}-field dictated by the action of Eq. (47), that is,

$$
\langle n_\alpha(q)n_\alpha(-q) \rangle = \frac{1}{\chi_{\text{dyn}}\omega^2 + J_{\alpha\beta}q_\alpha q_\beta}.
$$

(49)

Eq. (48) predicts two degenerate magnon branches with linear dispersion for small $q - Q$. In the case of an isotropic antiferromagnet ($J_{\alpha\beta} = J_\delta\delta_{\alpha\beta}$), we have $\omega_q = c_s |q|$, with the spin wave velocity given by $c_s = \sqrt{J/\chi_{\text{dyn}}}.

2. Spiral magnetic order

We now turn our attention to the case of spin spiral ordering, described by the magnetization direction

$$
\hat{\psi}(x) = (\cos(Q \cdot x), \sin(Q \cdot x), 0),
$$

(50)

where at least one component of Q is neither 0 nor π/a_0. In this case, it is convenient to rotate the field $\hat{\psi}(x)$ to a basis in which $\hat{\psi}(x)$ is uniform. This is achieved by the transformation [30]

$$
\hat{\psi}(x) = \mathcal{M}(x)\hat{\psi}(x),
$$

(51)

with

$$
\mathcal{M}(x) = \begin{pmatrix}
\cos(Q \cdot x) & \sin(Q \cdot x) & 0 \\
-\sin(Q \cdot x) & \cos(Q \cdot x) & 0 \\
0 & 0 & 1
\end{pmatrix}.
$$

(52)

In this way, the inverse susceptibilities are transformed into

$$
\mathcal{C}^{ab}(x, x') = -\frac{\delta^2 \Gamma}{\delta \phi_{a_0}^\dagger(x) \delta \phi_b^0(x')} \bigg|_{\hat{\psi} = A_\mu = 0} = \left[M^{-1}(x) \right]^{ac} [M^{-1}(x')]^{bd} C^{cd}(x, x').
$$

(53)

If we now apply the Ward identity (40), we obtain

$$
\partial_\mu \partial_\nu K^{11}_{\mu\nu}(x, x') = \varphi_0^2 \sin(Q \cdot x) \sin(Q \cdot x') 	imes C^{33}(x, x'),
$$

(54a)

$$
\partial_\mu \partial_\nu K^{22}_{\mu\nu}(x, x') = \varphi_0^2 \cos(Q \cdot x) \cos(Q \cdot x') 	imes C^{33}(x, x'),
$$

(54b)

$$
\partial_\mu \partial_\nu K^{33}_{\mu\nu}(x, x') = \varphi_0^2 C^{22}(x, x'),
$$

(54c)

with

$$
\mathcal{C}^{33}(x, x') = C^{33}(x, x'),
$$

(55a)

$$
\mathcal{C}^{22}(x, x') = \sin(Q \cdot x) \sin(Q \cdot x') C^{11}(x, x')
+ \cos(Q \cdot x) \cos(Q \cdot x') C^{22}(x, x')
- \sin(Q \cdot x) \cos(Q \cdot x') C^{12}(x, x')
- \cos(Q \cdot x) \sin(Q \cdot x') C^{21}(x, x').
$$

(55b)

We remark that an order parameter of the type (50) completely breaks the SU(2) spin symmetry, which is why none of the right hand sides of the equations above vanishes. We have considered a coplanar spiral magnetic order, that is, we have assumed all the spins to lie in the same plane, so that out of the three Goldstone modes, two are degenerate and correspond to out-of-plane fluctuations, and one to in-plane fluctuations of the spins. Furthermore, translational invariance is broken, so the Fourier transforms of the gauge kernels $K^{ab}_{\mu\nu}(q, q', \omega)$ and inverse susceptibilities $C^{ab}(q, q', \omega)$ are nonzero not only for $q - q' = 0$ but also for $q - q' = \pm Q$ or $\pm 2Q$. Time translation invariance is preserved, and the gauge kernels and the inverse susceptibilities depend on one single frequency. However, in the basis obtained with transformation (52), translational invariance is restored, so that the Fourier transform of $\mathcal{C}^{ab}(x, x')$ only depends on one spatial momentum. With this in mind, we can extract expressions for the spin stiffnesses and dynamical susceptibilities from (54). After rotating to real frequencies, and using the property that for a spiral magnet the gauge kernels are finite in the limits $q = q' \to 0$ and $\omega \to 0$, we
natural text
with \(\tilde{e}_1 = (1, 0, 0) \), and \(\tilde{\theta}'(x) = \mathcal{M}(x) \tilde{\theta}(x) \). Inserting (64) into (61), we obtain

\[
\mathcal{S}_{\text{eff}}[\tilde{\theta}] = \frac{1}{2} \int_x \left\{ J_{\mu\nu}^{\alpha\beta} \sum_{a=1,2} [\partial_\mu \theta_a(x) \partial_\nu \theta_a(x)] + J_{\mu\nu}^{\alpha\beta} \partial_\mu \theta_3(x) \partial_\nu \theta_3(x) \right\}.
\]

(66)

We are finally in the position to extract the form of the susceptibilities for small fluctuations

\[
\bar{\chi}^{22}(q) = \langle \phi'_2(q) \phi'_2(-q) \rangle \simeq \varphi_0^2 \bar{\theta}'_3(q) \bar{\theta}'_3(-q)
\]

\[
= -\chi_{\text{dyn}} \omega^2 + J_{\alpha\beta} q_\alpha q_\beta,
\]

(67a)

\[
\bar{\chi}^{33}(q) = \langle \phi'_3(q) \phi'_3(-q) \rangle \simeq \varphi_0^2 \bar{\theta}'_2(q) \bar{\theta}'_2(-q)
\]

\[
= \sum_{n=\pm} -\chi_{\text{dyn}} \omega^2 + J_{\alpha\beta} q_\alpha q_\beta.
\]

(67b)

which is the result of Eq. (60). In the above equations we have used the correlators of the \(\theta \) field descending from action (66). Form (60) of the susceptibilities predicts three linearly dispersing Goldstone modes, two of which (the out-of-plane ones) are degenerate and propagate with velocities \(c_{\alpha n}^{(n)} = \sqrt{\lambda_{\alpha n}^{(n)}/\chi_{\text{dyn}}} \), where \(\lambda_{\alpha n}^{(n)} \) are the eigenvalues of \(J_{\alpha\beta}^{(n)} \) and \(n = 1, \ldots, d \). Similarly, the in-plane mode velocity is given by \(c_{\alpha n}^{(n)} = \sqrt{\lambda_{\alpha n}^{(n)}/\chi_{\text{dyn}}} \), with \(\lambda_{\alpha n}^{(n)} \) the eigenvalues of \(J_{\alpha\beta}^{(n)} \).

III. EXPLICIT CALCULATION FOR A SPIRAL MAGNET

In this section, we present an explicit calculation for a spiral magnet, emerging from a Hubbard model, of the left and right hand sides of (56) and (57), and show that the Ward identities are fulfilled. We compute the spin susceptibilities and the gauge kernels within the random phase approximation (RPA), which is a conserving approximation in the sense of Baym and Kadanoff [4], and it is therefore expected to fulfill the Ward identities.

A. Mean-field approximation

In a fermionic lattice system, the amplitude \(\varphi_0 \) of spin spiral order parameter

\[
\langle \tilde{\phi}(x) \rangle = \varphi_0 \langle \cos(Q \cdot x), \sin(Q \cdot x) \rangle, 0
\]

(68)

can be expressed as

\[
\varphi_0 = \int_k |\tilde{\psi}_{k,\uparrow} \psi_{k+Q,\downarrow}|,
\]

(69)

where \(\int_k \) is a shorthand for an integral over the full \(d \)-dimensional Brillouin zone, that is \(\int_{k \in \text{BZ}} \frac{dk}{(2\pi)^d} \).

From (69), we deduce that spiral ordering couples only the electron states \((k, \uparrow) \) and \((k + Q, \downarrow) \), and the mean-field fermion Green’s function can be expressed as a 2 \(\times \) 2 matrix:

\[
\tilde{G}_k(i\nu_n) = \left(\begin{array}{cc}
\nu_n - \xi_k - \Delta & -\Delta \\
-\Delta & \nu_n - \xi_{k+Q} - \Delta
\end{array} \right)^{-1},
\]

(70)

where \(\nu_n = (2n + 1)\pi T \) (\(n \in \mathbb{Z} \)) is a fermionic Matsubara frequency, \(\xi_k = \epsilon_k - \mu \), with \(\epsilon_k \) the single particle dispersion and \(\mu \) the chemical potential, and \(\Delta \) is the spiral order parameter. Diagonalizing (70), one obtains the quasiparticle dispersions

\[
E_{k\pm} = g_k \pm \sqrt{\epsilon_k^2 + \Delta^2},
\]

(71)

with \(g_k = (\xi_k + \xi_{k+Q})/2 \), and \(h_k = (\xi_k - \xi_{k+Q})/2 \).

The Green’s function can be conveniently written as a linear combination of quasiparticle poles

\[
\tilde{G}_k(i\nu_n) = \sum_{\ell = \pm} \frac{1}{2} u'_k \frac{1}{i\nu_n - E_{k\ell}}
\]

(72)

where the coefficients \(u'_k \) are given by

\[
u'_k = \sigma^0 + \epsilon_k^* \sigma^3 - \frac{\Delta}{e_k^*} \sigma^1,
\]

(73)

with \(\sigma^0 = 1 \), and \(e_k = \sqrt{\epsilon_k^2 + \Delta^2} \). We assume the spiral states to emerge from a lattice model with onsite repulsive interactions (Hubbard model), with imaginary time action

\[
\mathcal{S}[\psi, \overline{\psi}] = \int_0^\beta d\tau \left\{ \sum_{j,j',\sigma} \overline{\psi}_{j,j',\sigma} \left[(\partial_\tau - \mu) \delta_{jj'} + t_{jj'} \right] \psi_{j,j',\sigma}
\]

\[
+ U \sum_j \overline{\psi}_{j,j} \psi_{j,j} \right\},
\]

(74)

where \(t_{jj'} \) describes the hopping amplitude between the lattice sites labeled by \(j \) and \(j' \) and \(U \) is the Hubbard interaction. The Hartree-Fock or mean-field (MF) gap equation at temperature \(T \) reads

\[
\Delta = -U \int_k \sum_{\nu_n} \tilde{G}_k^{-1}(i\nu_n) = U \int_k \frac{\Delta}{2\nu_k} \left[f(E_k^-) - f(E_k^+) \right],
\]

(75)

where \(\sum_{\nu_n} \) denotes a sum over the fermionic Matsubara frequencies, and \(f(x) = 1/(e^{x/T} + 1) \) is the Fermi function.

The bosonic order parameter \(\varphi_0 \) is related to \(\Delta \) as \(\Delta = U \varphi_0 \). Finally, the optimal \(Q \)-vector is obtained minimizing the mean-field free energy

\[
\mathcal{F}_{\text{MF}}(Q) = -T \sum_{\nu_n} \int_k \text{Tr ln } \tilde{G}_k(i\nu_n) + \frac{\Delta^2}{U} + \mu n
\]

\[
= -T \int_k \sum_{\ell = \pm} \ln \left(1 + e^{-E_{k\ell}/T} \right) + \frac{\Delta^2}{U} + \mu n,
\]

(76)
where n is the fermion density.

B. Random phase approximation

In this Section, we summarize the RPA for a spiral magnet, closely following Ref. [58]. Further details can be also found in Ref. [30].

The charge and spin susceptibilities are coupled in a spin spiral state. It is therefore convenient to consider the retarded real-time correlators [58]

$$\chi^{ab}_{jj'}(t) = -i \Theta(t) \langle [S^a_j(t), S^b_{j'}(0)] \rangle,$$ \hspace{1cm} (77)

where j and j' label two lattice sites, t is the time, $[\bullet, \bullet]$ denotes the commutator, $\Theta(t)$ is the Heaviside function, and a and b run from 0 to 3. The generalized spin operators are defined in terms of the fermionic fields as

$$S^a_j = \frac{1}{2} \sum_{s,s' = \uparrow, \downarrow} \bar{\psi}_{j,s} \sigma^a_{ss'} \psi_{j,s'}.$$ \hspace{1cm} (78)

The $a = 1, 2, 3$ components correspond to the usual spin operator, while $a = 0$ gives half the fermion density $n_j = \bar{\psi}_{j,\uparrow} \psi_{j,\uparrow} + \bar{\psi}_{j,\downarrow} \psi_{j,\downarrow}$.

It is convenient to work in the rotated basis [30] introduced in Eqs. (51) and (52), the susceptibilities transform as

$$\tilde{\chi}^{jj'}(t) = M_j \chi^{jj'}(t) M_j^T,$$ \hspace{1cm} (79)

with

$$M_j = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(Q \cdot r_j) & \sin(Q \cdot r_j) & 0 \\ 0 & -\sin(Q \cdot r_j) & \cos(Q \cdot r_j) & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix},$$ \hspace{1cm} (80)

where r_j represents the coordinates of the lattice site j.

As previously mentioned, the $\tilde{\chi}^{jj'}(t)$ are translationally invariant, so that their Fourier transform depends only on a single spatial momentum q.

Within RPA, the susceptibilities are given by

$$\tilde{\chi}(q) = \tilde{\chi}_0(q) \left[\mathbb{1} - \Gamma_0 \tilde{\chi}_0(q) \right]^{-1},$$ \hspace{1cm} (81)

where $\tilde{\chi}_0(q)$ is a matrix in the $a, b = 0, 1, 2, 3$ indices, $\mathbb{1}$ is the 4×4 identity matrix, and $\Gamma_0 = 2U \text{diag}(-1,1,1,1)$. The bare susceptibilities on the real frequency axis are given by

$$\tilde{\chi}^{ab}_0(q, \omega) = \frac{1}{4} \int T \sum_{\nu_n} \text{tr} \left[\sigma^a \tilde{G}_k(i\nu_n) \sigma^b \tilde{G}_{k+q}(i\nu_n + i\Omega_m) \right],$$ \hspace{1cm} (82)

where $\Omega_m = 2m\pi T \ (m \in \mathbb{Z})$ denotes a bosonic Matsubara frequency and the substitution $i\Omega_m \rightarrow \omega + i0^+$ has been performed. Using (72), one can perform the frequency sum, obtaining

$$\tilde{\chi}^{ab}_0(q, \omega) = \frac{1}{4} \sum_{\ell, i=\pm} \int_k A^{ab}_{i\ell}(k, q) F_{i\ell}(k, q, \omega),$$ \hspace{1cm} (83)

where we have defined

$$F_{i\ell}(k, q, \omega) = \mathcal{P} \frac{f(E'_{k}^\ell) - f(E_{k+q}^\ell)}{\omega + E_{k}^\ell - E_{k+q}^\ell},$$ \hspace{1cm} (84)

with \mathcal{P} the principal value, and the coherence factors

$$A^{ab}_{i\ell}(k, q) = \frac{1}{2} \text{Tr} \left[\sigma^a u^\ell_k \sigma^b u^\ell_{k+q} \right].$$ \hspace{1cm} (85)

Notice that in Eq. (84) we have neglected the imaginary part of $1/(\omega + i0^+ + E_{k}^\ell - E_{k+q}^\ell)$, which is proportional to a δ function, and is responsible for the Landau damping of the collective spin fluctuations [58].

The bare susceptibilities have a well defined sign under inversion of q and ω, and under the exchange of the indices a and b. These symmetries can be derived from Eqs. (83), (84), and (85) (see, for example, Ref. [58]) and are listed in Table I. Since neglecting the imaginary part of $F_{i\ell}(k, q, \omega)$ makes the matrix $\tilde{\chi}^{ab}_0(q)$ hermitian, we deduce that those elements which are even (odd) under the exchange $a \leftrightarrow b$ are purely real (imaginary). At least within the RPA, the symmetry properties derived for the bare $\chi_0(q)$ hold also for the full susceptibilities $\tilde{\chi}(q)$.

Goldstone modes associated with spontaneous symmetry breaking of the SU(2) spin symmetry appear in the susceptibilities. In particular, considering the limit $q \rightarrow 0$, all the off-diagonal elements of the type $\tilde{\chi}^{ab}_0(q)$ and $\tilde{\chi}^{22}_0(q)$ vanish as they are odd in q or ω, while $\tilde{\chi}^{22}_0(q)$ takes the simple form

$$\tilde{\chi}^{22}_0(0) = \frac{1}{4} \int_k \frac{f(E_k^\uparrow) - f(E_k^\downarrow)}{4E_k}.$$ \hspace{1cm} (86)

The full susceptibility at $q = 0$ therefore reads

$$\tilde{\chi}^{22}(0) = \frac{\tilde{\chi}^{22}_0(0)}{1 - 2U \tilde{\chi}^{22}_0(0)}.$$ \hspace{1cm} (87)

We immediately see that when the gap equation (75) is fulfilled, the denominator of (87) vanishes, signaling a
gapless mode. This Goldstone mode represents fluctuations of the spins within the plane in which the magnetization lies. We therefore refer to it as in-plane mode in the following. With a similar reasoning, one proves that in the limit $q \to \pm Q$ (with $Q = (Q, 0)$), all the off diagonal elements of the type $\tilde{\chi}_0^{a \beta}(q)$ and $\chi_0^{a \beta}(q)$ vanish, leaving

$$\tilde{\chi}_0^{33}(\pm Q) = \frac{\chi_0^{33}(\pm Q)}{1 - 2U \tilde{\chi}_0^{33}(\pm Q)}. \quad (88)$$

Noticing that $\chi_0^{33}(\pm Q) = \tilde{\chi}_0^{22}(0)$ [58], one sees that the denominator of (88) is vanishing. The susceptibility $\chi_0^{33}(q)$ therefore hosts two poles at $q = \pm Q$, which are due to gapless excitations of the spins outside the plane in which the magnetization lies. We refer to these modes as out-of-plane modes. As already stated, in the spiral state three Goldstone modes appear, as all three generators of the symmetry group SU(2) are broken. However, the two out-of-plane modes have degenerate dispersions, as it is expected for coplanar order.

C. Small q and ω expansion of the susceptibilities

We are now in the position to compute the right hand sides of Eqs. (56) and (57). The small q and ω expansion of the susceptibilities in the spiral state has already carried out in Ref. [58], but for completeness we revisit it here in a slightly different form.

1. In-plane mode

Using (81), the in-plane susceptibility can be conveniently written as

$$\chi_0^{22}(q) = \frac{\chi_0^{22}(q)}{1 - 2U \tilde{\chi}_0^{22}(q)}. \quad (89)$$

with

$$\chi_0^{22}(q) = \tilde{\chi}_0^{22}(q) + \sum_{a,b \in \{0, 1, 3\}} \tilde{\chi}_0^{a} \Gamma_2^{ab}(q) \tilde{\chi}_0^{b}(q). \quad (90)$$

$\Gamma_2(q)$ is given by

$$\tilde{\Gamma}_2(q) = [\mathbb{I}_3 - \Gamma_0 \tilde{\chi}_0(2q)]^{-1} \Gamma_0, \quad (91)$$

where Γ_0^{ab} and $\tilde{\chi}_0^{ab}(2q)$ are matrices obtained from Γ_0^{ab} and $\tilde{\chi}_0^{ab}(2q)$ removing the components where $a = 2$ and/or $b = 2$, and \mathbb{I}_3 denotes the 3×3 identity matrix. For later convenience, we notice that for $q \to 0$, all the off-diagonal elements $\tilde{\chi}_0^{a \beta}(q)$ and $\chi_0^{a \beta}(q)$ vanish, so that $\tilde{\Gamma}_2(q)$ can be obtained from the full expression

$$\tilde{\Gamma}(q) = [\mathbb{I} - \Gamma_0 \tilde{\chi}_0(q)]^{-1} \Gamma_0, \quad (92)$$

selecting only the components in which the indices take the values 0, 1, or 3.

Setting $\omega = 0$, the bare susceptibilities $\tilde{\chi}_0^{33}(q)$ and $\chi_0^{33}(q)$ vanish as they are odd in ω. Moreover, in the limit $q \to 0$, $\tilde{\chi}_0^{a}(q, 0)$ and $\chi_0^{a}(q, 0)$, with $a = 0, 1$, are linear in q as they are odd under $q \to -q$. The in-plane spin stiffness can be therefore written as

$$J_{\alpha \beta}^{\square} = -2\Delta^2 \frac{\partial^2}{\partial_q \partial_{q_\alpha} \tilde{\chi}_0^{22}(0)}$$

$$= -2\Delta^2 \left[\frac{\partial^2}{\partial_q \partial_{q_\alpha} \tilde{\chi}_0^{22}(0)} + 2 \sum_{a,b \in \{0,1\}} \partial_{\chi_0^{a}} \tilde{\chi}_0^{b}(0) \tilde{\Gamma}^{ab}(q \to 0, 0) \partial_{\chi_0^{b}} \chi_0^{0}(0) \right], \quad (93)$$

where we have used $\tilde{\chi}_0^{22}(0) = \tilde{\chi}_0^{a}(0) = 1/(2U)$, descending from the gap equation, and $\partial_{\chi_0^{a}} f(0)$ is a shorthand for $\partial f(q,0)/\partial_{\chi_0^{a}} q \to 0$, and similarly for $\partial^2_{\chi_0^{a}, \chi_0^{b}} f(0)$.

In a similar way, if we set q to 0 and consider the limit of small ω, the terms where a and/or b are 0 or 1 vanish as $\chi_0^{a}(q)$ and $\tilde{\chi}_0^{a}(q)$ for $a=0,1$ are odd in q. On the other hand, $\tilde{\chi}_0^{3}(q)$ and $\chi_0^{3}(q)$ are linear in ω for small ω. With these considerations, the in-plane dynamical susceptibility is given by

$$\tilde{\chi}_0^{\square} = 2\Delta^2 \frac{\partial^2 \chi_0^{22}(0)}{\partial \omega^2}$$

$$= 2\Delta^2 \left[\frac{\partial^2 \chi_0^{33}(0)}{\partial \omega^2} + 2 \sum_{a,b \in \{0,1\}} \partial_{\omega} \chi_0^{a}(0) \tilde{\Gamma}^{ab}(q \to 0, \omega \to 0) \partial_{\omega} \tilde{\chi}_0^{b}(0) \right], \quad (94)$$

where $\partial_{\omega} f(0)$ is a shorthand for $\partial f(q,0)/\partial \omega |_{q \to 0, \omega \to 0}$, and $\tilde{\Gamma}^{ab}(0, \omega \to 0)$ can be cast in the simple form

$$\tilde{\Gamma}^{ab}(0, \omega \to 0) = \frac{2U}{1 - 2U \tilde{\chi}_0^{33}(0, \omega \to 0)}. \quad (95)$$

2. Out-of-plane modes

Similarly to the in-plane mode, one can write the out-of-plane susceptibility in the form

$$\tilde{\chi}_0^{33}(q) = \frac{\chi_0^{33}(q)}{1 - 2U \tilde{\chi}_0^{33}(q)}. \quad (96)$$

with

$$\chi_0^{33}(q) = \tilde{\chi}_0^{33}(q) + \sum_{a,b \in \{0,1,2\}} \chi_0^{a}(q) \tilde{\Gamma}_3^{ab}(q) \chi_0^{b}(q), \quad (97)$$

where $\tilde{\Gamma}_3(q)$ is defined similarly to $\tilde{\Gamma}_2(q)$, removing the components that involve the index 3 instead of the index 2. We also notice that

$$\tilde{\Gamma}_3^{ab}(q, 0) = \tilde{\Gamma}_2^{ab}(q, 0), \quad (98)$$

for $a, b = 0, 1, 2$, because all the off-diagonal components $\tilde{\chi}_0^{a}(q)$ and $\tilde{\chi}_0^{3}(q)$ vanish for zero frequency. Using
the out-of-plane spin stiffness

\[J_{\alpha\beta}^\perp = -\Delta^2 \partial_{q_{\alpha\beta}}^2 \chi_0^{33}(\pm Q) = -\Delta^2 \partial_{\alpha q \beta q}^2 \tilde{\chi}_0^{33}(\pm Q), \tag{99} \]

where \(\partial^m f(\pm Q) \) stands for \(\partial^m f(q,0)/\partial q_\alpha \). In the limit \(\omega \to 0 \), all the \(\tilde{\chi}_0^{33}(q) \) and \(\tilde{\chi}_0^{03}(q) \), with \(a = 0,1,2 \), are linear in \(\omega \), and the dynamical susceptibility is given by

\[\chi_{\rm dyn}^\perp = \Delta^2 \partial_\omega \chi_0^{33}(\pm Q) = \Delta^2 \left[\partial_\omega \tilde{\chi}_0^{33}(\pm Q) \right] + 2 \sum_{a,b \in \{0,1,2\}} \partial_{\omega} \chi_a^{3a}(\pm Q) \Gamma^{ab}(\pm Q) \partial_{\omega} \chi_b^{3b}(\pm Q), \tag{100} \]

with \(\partial_\omega^m f(\pm Q) \) a shorthand for \(\partial_\omega^m f(q,\omega)/\partial \omega^m |_{\omega \to 0} \). We remark that for \(\Gamma^{ab}(q) \) the limits \(q \to Q \) and \(\omega \to 0 \) commute if \(Q \) is not a high-symmetry wavevector, that is, if \(E_{k+Q}^a \neq E_k^a \).

D. Gauge kernels

To calculate the gauge kernels, that is, the left hand sides of Eqs. (56) and (57), we couple our system to a SU(2) gauge field via a Peierls substitution in the quadratic part of action (74):

\[S_0[\psi, \bar{\psi}, A_\mu] = \int_0^\beta d\tau \sum_{j,j'} \bar{\psi}_j \left[(\partial_\tau - A_{0,j} + \mu) \delta_{jj'} + t_{jj'} e^{-r_{jj'} \cdot (\nabla - iA_j)} \right] \psi_j, \tag{101} \]

where \(e^{-r_{jj'} \cdot \nabla} \) is the translation operator from site \(j \) to site \(j' \), with \(r_{jj'} = r_j - r_{j'} \). Notice that under the transformation \(\psi_j \to R_j \psi_j \), with \(R_j \in \text{SU}(2) \), the interacting part of the action (74) is left unchanged, while the gauge field transforms according to (32b). Since the gauge kernels correspond to correlators of two gauge fields, we expand (101) to second order in \(A_\mu \). After a Fourier transformation one obtains

\[S_0[\psi, \bar{\psi}, A_\mu] = -\frac{1}{k} \bar{\psi}_k [i\nu_n + \mu - \epsilon_k] \psi_k + \frac{1}{2} \int_{k,q} A_\mu^a(q) \hat{\gamma}_k^\mu \bar{\psi}_{k+q} \sigma^a \psi_k - \frac{1}{8} \int_{k,q,q'} A_\alpha^a(q - q') A_\beta^a(q') \hat{\gamma}_k^\alpha \bar{\psi}_{k+q} \psi_k, \tag{102} \]

where the first order coupling is given by \(\gamma_k^\mu = (1, \nabla k^\mu) \), and the second order one is \(\gamma_k^{\alpha\beta} = \partial_{k,q_k}^2 \epsilon_k \). Analyzing the coupling of the temporal component of the gauge field to the fermions in (101) and (102), we notice that

the temporal components of the gauge kernel are nothing but the susceptibilities in the original (unrotated) spin basis

\[K_{\alpha\beta}^{ab}(q, q', \omega) = \chi_{\alpha\beta}^{ab}(q, q', \omega), \tag{103} \]

where \(\omega \) is a real frequency.

The spatial components of the gauge kernel can be expressed in the general form (see Fig. 1)

\[K_{\alpha\beta}^{ab}(q, q', \omega) = K_{\alpha\beta}^{ab, \omega \omega'}(q, q', \omega) + \delta_{ab} K_{\alpha\beta}^{\text{dia}} \]

\[+ \frac{1}{4} \int_{q''} \sum_{c,d} K_{\alpha\beta}^{nc}(q, q'', \omega) \Gamma^{cd}(q'', q''', \omega) K_{\alpha\beta}^{db}(q''', q', \omega), \tag{104} \]

where \(\Gamma(q', q''', \omega) \) is the effective interaction (92) expressed in the unrotated basis. Within the RPA, the paramagnetic terms are given by

\[K_{\alpha\beta}^{ab}(q, q', \omega) = \frac{1}{4} \int_{k,k'} T \sum_{\nu,\nu'} \gamma_k^{\alpha\nu} \gamma_{k'}^{\beta\nu'} \text{tr} \left[\sigma^a G_{k,k'}(i\nu_n) \sigma^b G_{k,k'}(i\nu_n + i\Omega_m) \right] \bigg| _{i\Omega \to \omega + i\delta^+}. \tag{105} \]

The Green’s function in the unrotated basis takes the form

\[G_{k,k'}(i\nu_n) = \left(\begin{array}{cc} G_k(i\nu_n) & \delta_{k,k'} - Q_k \nabla_{k,k'}(i\nu_n) \\ F_k(i\nu_n) & G_{k,-Q}(i\nu_n) \end{array} \right), \tag{106} \]

where \(\delta_{k,k'} \) is a shorthand for \((2\pi)^3 \delta^3(k - k') \), and

\[G_k(i\nu_n) = \frac{i\nu_n - \xi_k + Q_k}{(i\nu_n - \xi_k)(i\nu_n - \xi_k - Q_k) - \Delta^2}, \tag{107a} \]

\[\nabla_k(i\nu_n) = \frac{i\nu_n - \xi_k}{(i\nu_n - \xi_k)(i\nu_n - \xi_k - Q_k) - \Delta^2}, \tag{107b} \]

\[F_k(i\nu_n) = \frac{\Delta}{(i\nu_n - \xi_k)(i\nu_n - \xi_k + Q_k) - \Delta^2}. \tag{107c} \]

The diamagnetic term does not depend on \(q, q' \) and \(\omega \), and is proportional to the unit matrix in the gauge indices. It evaluates to

\[K_{\alpha\beta}^{\text{dia}} = -\frac{1}{4} \int_{k,k'} T \sum_{\nu} (\partial_{k,k'}^2 \epsilon_k) \text{tr} \left[G_{k,k'}(i\nu_n) \right]. \tag{108} \]

We can now compute the spin stiffnesses and dynamical susceptibilities from the gauge kernels.

\[\text{1. In-plane mode} \]

The in-plane spin stiffness is defined as

\[J_{\alpha\beta}^\square = -\lim_{q \to 0} K_{\alpha\beta}^{33}(q, 0), \tag{109} \]
where, similarly to Sec. II B 2, we define as $K_{\mu\nu}(q, \omega)$ the prefactors of those components of the gauge kernels $K_{\mu\nu}(q, q', \omega)$ which are proportional to $\delta_{q,q'}$. In addition to the bare term
\[J_{\alpha\beta}^{0,\square} = - \lim_{q \to 0} K_{\alpha\beta}^{\text{para, 33}}(q, 0) - K_{\alpha\beta}^{\text{dia}}, \tag{110} \]
we find nonvanishing paramagnetic contributions that mix spatial and temporal components. They involve
\[\lim_{q \to 0} K_{0\alpha}(q, q', 0) = \kappa_{0\alpha}(0) \delta_{q',0}, \tag{111a} \]
\[\lim_{q \to 0} K_{0\alpha}(q, q', 0) = \kappa_{0\alpha}(0) \frac{\delta_{q',Q} + \delta_{q'-Q}}{2}, \tag{111b} \]
\[\lim_{q \to 0} K_{3\alpha}(q, q', 0) = \kappa_{3\alpha}(0) \frac{\delta_{q',Q} - \delta_{q'-Q}}{2i}, \tag{111c} \]
where $\kappa_{0\alpha}(0) = \kappa_{3\alpha}(0)$. Noticing that for $a = 0, 1, 2$, we have $\lim_{q \to 0} K_{2\alpha}^{\text{diag}}(q, 0) = \lim_{q \to 0} K_{0\alpha}^{\text{diag}}(q, 0)$, and inserting this result into (104), we obtain
\[J_{\alpha\beta}^\square = J_{\alpha\beta}^{0,\square} - \sum_{a,b \in \{0,1\}} K_{3a}(0) \Gamma_{ab}(q \to 0, 0) K_{3b}(0), \tag{112} \]
where $\Gamma(q \to 0, 0)$ is the effective interaction in the rotated spin basis, defined in Eq. (92). Notice that the delta functions in Eq. (111) convert the unrotated Γ to Γ and, together with the equality $\kappa_{3\alpha}(0) = \kappa_{3\alpha}(0)$, they remove the terms where a or b equal 2 in the sum.

The dynamical susceptibility is defined as
\[\chi_{\text{dyn}}^\square = \lim_{\omega \to 0} K_{00}^{\text{33}}(0, \omega) = \lim_{\omega \to 0} \chi_{\text{33}}(0, \omega). \tag{113} \]
From Eq. (80) we deduce that
\[\chi_{\text{33}}(q, \omega) = \chi_{\text{33}}^\square(q, \omega). \tag{114} \]

Remarking that for $\omega = 0$ all the off-diagonal elements of the bare susceptibilities with one (and only one) of the two indices equal to 3 vanish, we obtain the RPA expression for $\chi_{\text{dyn}}^\square$
\[\chi_{\text{dyn}}^\square = \lim_{\omega \to 0} \frac{\chi_{0}(0, \omega)}{1 - 2U \chi_{0}^3(0, \omega)}. \tag{115} \]

2. Out-of-plane modes
To compute the the out-of-plane stiffness, that is,
\[J_{\alpha\beta}^{1} = - \lim_{q \to 0} K_{\alpha\beta}^{22}(q, 0), \tag{116} \]
we find that all the paramagnetic contributions to the gauge kernel that mix temporal and spatial components vanish in the $\omega \to 0$ and $q = q' \to 0$ limits. Moreover, the $q \to 0$ limit of the momentum diagonal paramagnetic contribution can be written as
\[\lim_{q \to 0} K_{\text{para, a b}}^{22}(q, 0) = \frac{-1}{4} \int_{k, k'} T \sum_{\nu_n} \gamma^a G_{k,k'}(\ii \nu_n) \tr \left[\sigma^a G_{k,k'}(\ii \nu_n) \right] \tag{117} \]
where we have defined $\sigma^\pm = (\sigma^x \pm i\sigma^y)/2$. The out-of-plane spin stiffness is thus given by
\[J_{\alpha\beta}^{1} = - \frac{1}{2} \int_{k} T \sum_{\nu_n} \gamma^a G_{k}(\ii \nu_n) \tr \left[\sigma^a G_{k}(\ii \nu_n) \right] \tag{118} \]

Finally, we evaluate the dynamical susceptibility of the out-of-plane modes. This is defined as
\[\chi_{\text{dyn}}^1 = \lim_{\omega \to 0} K_{00}^{22}(0, \omega) = \lim_{\omega \to 0} \chi_{22}(0, \omega). \tag{119} \]
Applying transformation (79), we can express the momentum-diagonal component of $\chi_{22}(q, q', \omega)$ in terms of the susceptibilities in the rotated basis as
\[\chi_{22}(q, q', \omega) = \frac{1}{4} \sum_{\zeta = \pm} \left[\chi_{11}^\square(q + \zeta Q, \omega) \right. \tag{120} \]
\[\left. + \chi_{22}(q + \zeta Q, \omega) \right. \]
\[\left. + 2i \zeta \chi_{12}(q + \zeta Q, \omega) \right], \]
where we have used (see Sec. III B) $\chi_{12}(q) = -\chi_{21}(q)$. Sending q to 0 in (120), and using the symmetry properties of the susceptibilities for $q \to -q$ (see Table 1), we obtain
\[\chi_{22}(0, \omega) = \frac{1}{2} \left[\chi_{11}^\square(Q, \omega) + \chi_{22}(Q, \omega) + 2i \chi_{12}(Q, \omega) \right] \]
\[= 2\chi_{-+}(Q, \omega), \tag{121} \]
with \(\tilde{\chi}^{+\pm}(q) = \langle S^-(-q)S^+(q) \rangle \), and \(S^\pm(q) = (S^1(q) \pm iS^2(q))/2 \). It is convenient to express \(\tilde{\chi}^{+\pm}(Q, \omega) \) as

\[
\tilde{\chi}^{+\pm}(Q, \omega) = \frac{1}{2} \left[\tilde{\chi}^{00}(Q, \omega) - i \tilde{\chi}^{0\pm}(Q, \omega) \right],
\]

where we have defined

\[
\tilde{\chi}^{00}(q) = \frac{1}{2} \left[\tilde{x}^{00}(q) - i \tilde{x}^{0\pm}(q) \right], \quad \tilde{\chi}^{0\pm}(q) = \frac{1}{2} \left[\tilde{x}^{01}(q) + i \tilde{x}^{0\pm}(q) \right].
\]

In the limit \(\omega \to 0 \), \(\tilde{\chi}^{0\mp}(Q, \omega) \) and \(\tilde{\chi}^{+\pm}(Q, \omega) \) vanish as they are odd in frequency (see Table I). We can now cast the dynamical susceptibility in the form

\[
\chi_{\text{dyn}}(Q, \omega) = 2 \tilde{\chi}^{+\pm}(Q) + \frac{1}{2} \sum_{a, b \in \{0, 1, 2\}} \tilde{\chi}^{0a}(Q) \tilde{\Gamma}^{ab}(Q) \tilde{\chi}^{b+}(Q),
\]

or, equivalently,

\[
\chi_{\text{dyn}} = 2 \tilde{\chi}^{+\mp}(-Q) + \frac{1}{2} \sum_{a, b \in \{0, 1, 2\}} \tilde{\chi}^{0a}(-Q) \tilde{\Gamma}^{ab}(-Q) \tilde{\chi}^{b-}(-Q).
\]

We remark that in the formulas above we have not specified in which order the limits \(q \to \pm Q \) and \(\omega \to 0 \) have to be taken as they commute.

E. Equivalence of RPA and gauge theory approaches

In this Section, we finally prove that the expressions for the spin stiffnesses and dynamical susceptibilities obtained in Sec. III C coincide with those of Sec. III D via a direct evaluation.

1. In-plane mode

We start by computing the first term in Eq. (93). The second derivative of the 22-component of the bare susceptibility can be expressed as

\[
-2 \Delta^2 \partial^2_{q_0 \gamma \beta} \chi^{22}_0(0) = - \Delta^2 \int_k \gamma^{\alpha \beta}_{k+k+Q} \left[f(E^-_k) - f(E^+_k) \right]
+ \frac{f'(E^-_k) + f'(E^+_k)}{4e_k},
\]

where \(f'(x) = df/dx \) is the derivative of the Fermi function. On the other hand, the bare contribution to \(J^{\alpha \beta}_0 \) (Eq. (110)) reads

\[
J^{\alpha \beta}_0 \equiv \int_k \frac{1}{4} T \sum_{\nu_n} \left[G_k(i \nu_n)^{\alpha \beta} \chi^{\alpha \beta}_{k+k+Q} + G_{k+Q}(i \nu_n)^{\alpha \beta} \chi^{\alpha \beta}_k \right]
- 2 F_k(i \nu_n)^{\alpha \beta} \chi^{\alpha \beta}_{k+k+Q} \chi^{\alpha \beta}_k + F_{k+Q}(i \nu_n)^{\alpha \beta} \chi^{\alpha \beta}_k \chi^{\alpha \beta}_k.
\]

The second (diamagnetic) term can be integrated by parts, giving

\[
- \frac{1}{4} \int_k T \sum_{\nu_n} \left[G_k(i \nu_n)^{\alpha \beta} \chi^{\alpha \beta}_{k+k+Q} + F_k(i \nu_n)^{\alpha \beta} \chi^{\alpha \beta}_k \right]
+ F_{k+Q}(i \nu_n)^{\alpha \beta} \chi^{\alpha \beta}_k \chi^{\alpha \beta}_k,
\]

where we have used the properties

\[
\delta_{\alpha \beta} G_k(i \nu_n)^{\alpha \beta} + F_k(i \nu_n)^{\alpha \beta} \chi^{\alpha \beta}_k \chi^{\alpha \beta}_k.
\]

Summing up both terms, we obtain

\[
J^{\alpha \beta}_0 = - \int_k T \sum_{\nu_n} \left[\gamma^{\alpha \beta}_{k+k+Q} F_k(i \nu_n) \right].
\]

Performing the Matsubara sum, we arrive at

\[
J^{\alpha \beta}_0 = - \Delta^2 \int_k \gamma^{\alpha \beta}_{k+k+Q} \left[f(E^-_k) - f(E^+_k) \right]
+ \frac{f'(E^-_k) + f'(E^+_k)}{4e_k},
\]

which is the same result as in (126). Furthermore, one can show that

\[
2i \Delta \delta_{\alpha \beta} \chi^{02}_0(0) = -2i \Delta \delta_{\alpha \beta} \chi^{02}_0(0) = \kappa^{30}_\alpha(0),
2i \Delta \delta_{\alpha \beta} \chi^{23}_0(0) = -2i \Delta \delta_{\alpha \beta} \chi^{23}_0(0) = \kappa^{31}_\alpha(0).
\]

Inserting results (126), (130), and (132) into (93) and (112), we prove that these two expressions give the same result for the in-plane stiffness. Explicit expressions for \(\kappa^{30}_\alpha(0) \) and \(\kappa^{31}_\alpha(0) \) are given in Appendix A.

If we now consider the dynamical susceptibility, it is straightforward to see that

\[
2 \Delta^2 \partial^2_{\omega \alpha \beta} \chi^{22}_0(0) = 2i \Delta \delta_{\alpha \beta} \chi^{23}_0(0) = \lim_{\omega \to 0} \chi^{33}_{0}(0, \omega)
= \Delta^2 \int_k \frac{f(E^-_k) - f(E^+_k)}{4e_k},
\]

which, if inserted into Eqs. (94) and (115), proves that the calculations of \(\chi^{\alpha \beta}_{\text{dyn}} \) via gauge kernels and via the low-energy expansion of the susceptibilities provide the same result.
2. Out-of-plane modes

With the help of some lengthy algebra, one can compute the second momentum derivative of the bare susceptibility \(\chi_{0}^{\alpha\beta}(q) \), obtaining

\[
-\Delta^2 \partial_{\omega}^2 \chi_{0}^{\alpha\beta}(q) = \frac{1}{8} \int_{k,\ell,\ell'=\pm} \left(1 - \ell \frac{h_{k}}{\epsilon_{k}} \right) \left(1 + \ell \frac{h_{k+Q}}{\epsilon_{k+Q}} \right) \frac{f(E_{k}^\ell) - f(E_{k+Q}^\ell)}{E_{k}^\ell - E_{k+Q}^\ell} \right]
\]

Furthermore, one can prove that

\[
\lim_{q \to 0} K_{\alpha\beta}^{22}(q,q,0) = \frac{1}{2} \int_{k,\ell,\ell'=\pm} \left\{ \gamma_{k+Q}^\alpha \gamma_{k+Q}^\beta f_\ell^h(k) \right\} \left[G_{k+Q}(q) - \bar{G}_{k}(q) \right].
\]

Performing the Matsubara sums, one can prove the equivalence of the RPA and gauge theory approach for the calculation of \(J_{\alpha\beta}^{\perp} \).

Similarly, we obtain for the second frequency derivative of the bubble \(\chi_{0}^{\alpha\beta}(q) \)

\[
\Delta^2 \partial_{\omega}^2 \chi_{0}^{\alpha\beta}(q) = -\frac{1}{8} \int_{k,\ell,\ell'=\pm} \left(1 - \ell \frac{h_{k}}{\epsilon_{k}} \right) \left(1 + \ell \frac{h_{k+Q}}{\epsilon_{k+Q}} \right) \frac{f(E_{k}^\ell) - f(E_{k+Q}^\ell)}{E_{k}^\ell - E_{k+Q}^\ell} = 2\chi_{0}^{\alpha\beta}(q).
\]

Furthermore, one can prove that

\[
\Delta \partial_{\omega} \chi_{0}^{\alpha\beta}(q) = \Delta [\partial_{\omega} \chi_{0}^{\alpha\beta}(q)]^* = \chi_{0}^{\alpha\beta}(q) = [\chi_{0}^{\alpha\beta}(q)]^*.
\]

for \(a = 0,1,2 \). Inserting results (136) and (137) into Eqs. (89) and (124), one sees that the RPA and gauge theory approaches are equivalent for the calculation of \(\chi_{\text{dyn}}^{\perp} \). In Appendix B we provide explicit expressions for the off diagonal bare susceptibilities \(\chi_{0}^{\alpha\beta}(q) \).

3. Remarks on more general models

We remark that in the more general case of an interaction of the type

\[
\mathcal{S}_{\text{int}} = \int_{k,k',q} U_{k,k'}(q) \bar{\psi}_{k+q} \gamma_{k} \cdot \gamma_{k'} \psi_{k'},
\]

producing, in general, a \(k \)-dependent gap, the identities we have proven above do not hold anymore within the RPA, as additional terms in the derivative of the inverse susceptibilities emerge, containing expressions involving first and second derivatives of the gap with respect to the spatial momentum and/or frequency. In fact, in the case of nonlocal interactions, gauge invariance requires additional couplings to the gauge field in \(\mathcal{S}_{\text{int}} \), complicating our expressions for the gauge kernels. Similarly, even for action (74), approximations beyond the RPA produce in general a \(k \)-dependent \(\Delta \), and vertex corrections in the kernels are required to obtain the same result as the one obtained expanding the susceptibilities.

F. Néel limit

In this Section, we analyze the Néel limit, that is, \(Q = (\pi/a_0, \ldots, \pi/a_0) \). In this case, it is easy to see that, within the RPA, the bare susceptibilities in the rotated basis obey the identities

\[
\chi_{0}^{22}(q,\omega) = \chi_{0}^{33}(q+Q,\omega), \quad \chi_{0}^{30}(q,\omega) = \chi_{0}^{21}(q,\omega) = 0, \quad \chi_{0}^{30}(q,\omega) = \chi_{0}^{31}(q,\omega) = 0.
\]

Furthermore, we obtain for the mixed gauge kernels (see Appendix A)

\[
K_{\alpha\beta}^{ab}(q,q',\omega) = K_{\alpha\beta}^{ab}(q,q',\omega) = 0.
\]

We also notice that \(K_{\alpha\beta}^{11}(q,q',0) \) and \(K_{\alpha\beta}^{22}(q,q',0) \) have (different) momentum off-diagonal contributions for
which \(\mathbf{q}' = \mathbf{q} \pm 2\mathbf{Q} \). If \(\mathbf{Q} = (\pi/a_0, \ldots, \pi/a_0) \), these terms become diagonal in momentum, as \(2\mathbf{Q} = \mathbf{0} \), such that

\[
\lim_{\mathbf{q} \to \mathbf{0}} K_{\alpha\beta}^{11}(\mathbf{q}, 0) = 0, \\
K_{\alpha\beta}^{22}(\mathbf{q}, 0) = K_{\alpha\beta}^{33}(\mathbf{q}, 0).
\]

From the above relations, we can see that \(J_{\alpha\beta}^0 = J_{\alpha\beta}^2 = J_{\alpha\beta}^3 \), and \(\chi_{\text{dyn}}^\perp = \chi_{\text{dyn}}^\parallel \equiv \chi_{\text{dyn}}^\parallel \), as expected for the Néel state.

From these considerations, we obtain for the spin stiffness

\[
J_{\alpha\beta} = - \lim_{\mathbf{q} \to \mathbf{0}} K_{\alpha\beta}^{22}(\mathbf{q}, 0) = - \lim_{\mathbf{q} \to \mathbf{0}} K_{\alpha\beta}^{33}(\mathbf{q}, 0) = -2\Delta^2 \partial^2 \chi^0_{\alpha\beta} \chi^0_{\alpha\beta}(0) = -2\Delta^2 \partial^2 \chi^0_{\alpha\beta} \chi^0_{\alpha\beta}(Q),
\]

which implies that \(J_{\alpha\beta} \) is given by Eq. (131). If the underlying lattice is \(C_4 \)-symmetric, the spin stiffness is isotropic in the Néel state, that is, \(J_{\alpha\beta} = J_{\delta\alpha\delta\beta} \). Similarly, for the dynamical susceptibility, we have

\[
\chi_{\text{dyn}}^\perp = \lim_{\omega \to 0} \chi^0_{\alpha\beta}(\mathbf{q}, 0, \omega) = \lim_{\omega \to 0} \chi^0_{\alpha\beta}(\mathbf{q}, 0, \omega) = 2\Delta^2 \partial^2 \chi^0_{\alpha\beta} \chi^0_{\alpha\beta}(Q),
\]

which, combined with (133), implies

\[
\chi_{\text{dyn}}^\perp = \lim_{\omega \to 0} \frac{\chi^0_{\alpha\beta}(\mathbf{q}, 0, \omega)}{1 - 2U\chi^0_{\alpha\beta}(\mathbf{q}, 0, \omega)},
\]

with \(\chi^0_{\alpha\beta}(\mathbf{q}, 0, \omega) \) given by Eq. (133).

We notice that the dynamical susceptibility is obtained from the susceptibility by letting \(\mathbf{q} \to \mathbf{0} \) before \(\omega \to 0 \). This order of the limits removes the intraband terms (that is, the \(\ell = \ell' \) terms in Eq. (83)), which instead would yield a finite contribution to the uniform transverse susceptibility \(\chi^0_{\alpha\beta} \equiv \lim_{\mathbf{q} \to \mathbf{0}} \chi^0_{\alpha\beta}(\mathbf{q}, 0) \). In the special case of an insulator at low temperature \(T \ll \Delta \), the intraband contributions vanish and one has the identity \(\chi_{\text{dyn}}^\perp = \chi^\perp \), leading to the hydrodynamic relation for the spin wave velocity [23] \(c_s = \sqrt{J/\chi^\perp} \) (in an isotropic antiferromagnet). As noticed in Ref. [26], in a doped antiferromagnet this hydrodynamic expression does not hold anymore, and one has to replace the uniform transverse susceptibility with the dynamical susceptibility. Since \(J = 0 \) and \(\chi_{\text{dyn}} = 0 \) in the symmetric phase due to SU(2) gauge invariance, the expression \(c_s = \sqrt{J/\chi_{\text{dy}}^\perp} \) yields a finite value \(c_s \) at the critical point \(\Delta \to 0 \), provided that \(J \) and \(\chi_{\text{dy}}^\perp \) scale to zero with the same power of \(\Delta \), as it happens within mean-field theory. Note that in the symmetric phase SU(2) gauge invariance does not pose any constraint on \(\chi^\perp \), which is generally finite.

In the simpler case of perfect nesting, that is, when \(\xi_\mathbf{k} = -\xi_{\mathbf{k}+\mathbf{Q}} \), corresponding to the half-filled particle-hole symmetric Hubbard model, and at zero temperature, expressions for \(J \) and \(\chi^\perp \) have been derived in Refs. [21, 48] for two spatial dimensions, and it is straightforward to check that our results reduce to these in this limit. Moreover, Eqs. 31-34 in Ref. [21] are similar to our Ward identities but no derivation is provided.

IV. CONCLUSION

In conclusion, we have derived Ward identities for fermionic systems in which a gauge symmetry is globally broken. In particular, we have shown that the zero-energy and long-wavelength components of the gauge kernels are connected to the transverse susceptibilities of the order parameter by exact relations. We have analyzed several examples, namely a superconductor, a Néel antiferromagnet, and a spiral magnet. In the latter case, we have performed an explicit calculation of the transverse susceptibilities and of the gauge kernels within the random phase approximation and verified that the Ward identities are indeed fulfilled. Furthermore, we have considered the Néel limit \(\mathbf{Q} \to (\pi/a_0, \ldots, \pi/a_0) \) and found that our RPA expressions for the spin stiffnesses and susceptibilities reduce to those previously obtained in Refs. [21, 48]. We have also shown that the hydrodynamic expression for the magnon velocity \(c_s = \sqrt{J/\chi^\perp} \) does not hold in presence of gapless fermionic excitations, and it must be replaced by \(c_s = \sqrt{J/\chi_{\text{dy}}^\perp} \). While \(\chi^\perp \) is computed by taking the \(\omega \to 0 \) limit before letting \(\mathbf{q} \to \mathbf{0} \) in the transverse susceptibility, \(\chi_{\text{dy}}^\perp \) is obtained reversing the order of the limits. The equality \(\chi_{\text{dy}}^\perp = \chi^\perp \) holds only for insulating antiferromagnets at low temperatures \(T \ll \Delta \), as it is the case for the spin systems considered in Refs. [23, 24].

Our findings find immediate application in the study of large distance properties of interacting fermion systems. In fact, via a microscopic calculation, one can evaluate the coefficients of the effective actions listed in Sec. II, and study phenomena which are purely fluctuations-driven. Examples are the Berezinskii-Kosterlitz-Thouless transition in two-dimensional superconductors (see, for example, the microscopic calculation of Ref. [61]) or strong magnetic fluctuations leading to the formation of a pseudogap in low-dimensional electron systems [48, 62]. Special care, however, must be taken when the fermions form Fermi surfaces, as the low-energy modes of the order parameter can decay in particle-hole pairs, producing a Landau damping [58] that can affect the macroscopic and critical properties of the system [26, 63]. An interesting extension of the present work would be to derive Ward identities for the damping of the Goldstone modes.

ACKNOWLEDGMENTS

I am grateful to L. Debeler, E. König, J. Mitscherling, M. Puviani, J. Sýkora, and D. Vilardi for stimulating discussions. A particular thank goes to W. Metzner for encouraging me to write this paper, enlightening discussions, and a careful and critical reading of the manuscript.
Appendix A: Expressions for $\kappa_\alpha^{30}(0)$ and $\kappa_\alpha^{31}(0)$

In this appendix, we report explicit expressions for the off-diagonal paramagnetic contributions to the spin stiffness, namely $\kappa_\alpha^{30}(0)$, and $\kappa_\alpha^{31}(0)$.

For $\kappa_\alpha^{30}(0)$, we have, after making the trace in (105) explicit,

$$
\kappa_\alpha^{30}(0) = \lim_{q \to 0} K_{\text{para},\alpha 0}^{31}(q, q', 0) = -\frac{1}{4} \int k \sum_{\nu n} \left[\left(G_k^0(\nu n) + F_k^2(\nu n) \right) \gamma_\alpha^0 - \left(\overline{G}_k^0(\nu n) + F_k^2(\nu n) \right) \gamma_\alpha^0 \right] \delta_{q', 0} \cdot \delta_{q, 0},
$$

where we have made use of properties (129) in the last line. The first term vanishes when integrated by parts, while the Matsubara summation for the second yields

$$
\kappa_\alpha^{30}(0) = -\frac{\Delta^2}{4} \int k \left[\left(E_k^-(\nu) - f(E_k^+; e_k) \right) + \frac{f'(E_k^+)}{e_k^2} \frac{h_k}{e_k} \left(\partial_{\nu n} g_k - \partial_{\nu n} h_k \right) \right] \cdot \left(\partial_{\nu n} h_k \right).
$$

For $\kappa_\alpha^{31}(0)$ we have

$$
\lim_{q \to 0} K_{\text{para},\alpha 0}^{31}(q, q', 0) = -\frac{1}{4} \int k \sum_{\nu n} \left[G_k^0(\nu n) F_k^0(\nu n) \gamma_\alpha^0 - \overline{G}_k^0(\nu n) F_k^0(\nu n) \gamma_\alpha^0 \right] \cdot \left(\delta \nu Q + \delta \nu - Q \right).
$$

Defining $\kappa_\alpha^{31}(0) = 2 K_{\text{para},\alpha 0}^{31}(0, Q, 0)$ (see Eq. (111b)), and performing the Matsubara sum, we obtain

$$
\kappa_\alpha^{31}(0) = -\frac{\Delta^2}{4} \int k \left[\frac{h_k}{e_k} \left(\partial_{\nu n} g_k + \partial_{\nu n} h_k \right) \right] \left(\frac{f'(E_k^+)}{e_k^2} \frac{h_k}{e_k} \left(\partial_{\nu n} g_k - \partial_{\nu n} h_k \right) \right) \cdot \left(\partial_{\nu n} h_k \right).
$$

Furthermore, it is easy to see that $K_{\text{para},\alpha 0}^{31}(0, \pm Q, 0) = \mp i K_{\text{para},\alpha 0}^{32}(0, \pm Q, 0)$, which, together with Eq. (111c) proves $\kappa_\alpha^{31}(0) = \kappa_\alpha^{32}(0)$. We remark that in the Néel limit both $\kappa_\alpha^{30}(0)$ and $\kappa_\alpha^{31}(0)$ vanish as their integrands are odd under $k \to k + Q$.

Appendix B: Expressions for $\chi_0^{-a}(Q)$

We report here the RPA expressions for the off-diagonal bare susceptibilities $\chi_0^{-a}(Q)$, with $a = 0, 1, 2$. They can all be obtained by computing the trace and the Matsubara summation in Eq. (B).

$$
\chi_0^{-0}(Q) = -\frac{1}{16} \int k \sum_{\ell, \ell'} \left[\frac{\Delta}{e_k} + \frac{e_k}{e_k} + e_k' \frac{\Delta}{e_k} \right] \cdot F_{\ell \ell'}(k, Q, 0),
$$

$$
\chi_0^{-1}(Q) = -\frac{1}{16} \int k \sum_{\ell, \ell'} \left[\frac{h_k + \Delta}{e_k} - e_k' \frac{h_k + \Delta}{e_k + Q} - \ell e_k' \frac{h_k + \Delta}{e_k + Q} \right] \cdot F_{\ell \ell'}(k, Q, 0),
$$

$$
\chi_0^{-2}(Q) = +\frac{i}{16} \int k \sum_{\ell, \ell'} \left[\frac{h_k + \Delta}{e_k} - e_k' \frac{h_k + \Delta}{e_k + Q} + \ell e_k' \frac{h_k + \Delta}{e_k + Q} \right] \cdot F_{\ell \ell'}(k, Q, 0),
$$

with $F_{\ell \ell'}(k, q, \omega)$ defined as in Eq. (84).

[1] J. Goldstone, Field theories with "Superconductor" solutions, Il Nuovo Cimento 19, 154 (1961).
[2] J. C. Ward, An identity in quantum electrodynamics, Phys. Rev. 78, 182 (1950).
[3] Y. Takahashi, On the generalized Ward identity. Il Nuovo Cimento 6, 371 (1957).
[4] G. Baym and L. P. Kadanoff, Conservation Laws and Correlation Functions, Phys. Rev. 124, 287 (1961).
[5] A. A. Abrikosov, L. P. Gorkov, and I. E. Dzialoshinskii, Methods of Quantum Field Theory in Statistical Physics (Pergamon, Elmsford, New York, 1965).
[6] T. Toyoda, Nonperturbative canonical formulation and Ward-Takahashi relations for quantum many-body systems at finite temperatures, Ann. Phys. 173, 226 (1987).
[7] M. Revzen, T. Toyoda, Y. Takahashi, and F. C. Khanna, Baym-kadanoff criteria and the ward-takahashi relations in many-body theory, Phys. Rev. B 40, 769 (1989).
[8] Y. A. Bychkov, L. P. Gor’kov, and I. Dzyaloshinskii, Possibility of superconductivity type phenomena in a one-dimensional system, Sov. Phys.-JETP 23, 489 (1966), [Zh. Eksp. Teor. Fiz. 50, 738 (1966)].
[9] J. A. Hertz and D. M. Edwards, Electron-magnon interactions in itinerant ferromagnetism. I. Formal theory, J. Phys. F 3, 2174 (1973).
[10] N. E. Bickers, D. J. Scalapino, and S. R. White, Conserving Approximations for Strongly Correlated Electron Systems: Bethe-Salpeter Equation and Dynamics for the Two-Dimensional Hubbard Model, Phys. Rev. Lett. 62, 961 (1989).
[11] A. A. Katamin, Fulfillment of Ward identities in the functional renormalization group approach, Phys. Rev. B 70, 115109 (2004).
[12] F. Krien, E. G. C. P. van Loon, H. Hafermann, J. Otstuki, M. I. Katsnelson, and A. I. Lichtenstein, Conservation in two-particle self-consistent extensions of dynamical mean-field theory, Phys. Rev. B 96, 075155 (2017).
[13] G. Giuliani and G. Vignale, Quantum Theory of the Electron Liquid (Cambridge University Press, 2008).
[14] H. Rostami, M. I. Katsnelson, and M. Polini, Theory of plasmonic effects in nonlinear optics: The case of graphene, Phys. Rev. B 95, 035416 (2017).
[15] H. Rostami, M. I. Katsnelson, G. Vignale, and M. Polini, Gauge invariance and Ward identities in nonlinear response theory, Ann. Phys. 431, 168523 (2021).
[16] D. M. Edwards and J. A. Hertz, Electron-magnon interactions in itinerant ferromagnetism. II. Strong ferromagnetism, J. Phys. F 3, 2191 (1973).
[17] J. Schrieffer, Theory Of Superconductivity, Advanced Books Classics (Avalon Publishing, 1999).
[18] P. W. Anderson, Coherent Excited States in the Theory of Superconductivity: Gauge Invariance and the Meissner Effect, Phys. Rev. 110, 827 (1958).
[19] P. W. Anderson, Random-Phase Approximation in the Theory of Superconductivity, Phys. Rev. 112, 1900 (1958).
[20] Y. Nambu, Quasi-Particles and Gauge Invariance in the Theory of Superconductivity, Phys. Rev. 117, 648 (1960).
[21] H. J. Schulz, Functional Integrals for Correlated Electrons, in The Hubbard Model: Its Physics and Mathematical Physics, edited by D. Baeriswyl, D. K. Campbell, J. M. P. Carmelo, F. Guinea, and E. Louis (Springer US, Boston, MA, 1995) pp. 89–102.
[22] I. M. Khalatnikov, An Introduction to the Theory of Superfluidity (W. A. Benjamin, Inc., New York, 1965).
[23] B. I. Halperin and P. C. Hohenberg, Hydrodynamic Theory of Spin Waves, Phys. Rev. 188, 898 (1969).
[24] B. I. Halperin and W. M. Saslow, Hydrodynamic theory of spin waves in spin glasses and other systems with non-collinear spin orientations, Phys. Rev. B 16, 2154 (1977).
[25] F. Haldane, Continuum dynamics of the 1-d heisenberg antiferromagnet: Identification with the o(3) nonlinear sigma model, Physics Letters A 93, 464 (1983).
[26] S. Sachdev, A. V. Chubukov, and A. Sokol, Crossover and scaling in a nearly antiferromagnetic Fermi liquid in two dimensions, Phys. Rev. B 51, 14874 (1995).
[27] E. Rastelli, J. Reatto, and A. Tassi, Quantum fluctuations in helimagnets, J. Phys. C 18, 353 (1985).
[28] P. Chandra, P. Coleman, and A. I. Larkin, A quantum fluids approach to frustrated Heisenberg models, J. Phys. Condens. Matter 2, 7933 (1990).
[29] B. I. Shraiman and E. D. Siggia, Excitation spectrum of the spiral state of a doped antiferromagnet, Phys. Rev. B 46, 8305 (1992).
[30] A. P. Kampf, Collective excitations in itinerant spiral magnets, Phys. Rev. B 53, 747 (1996).
[31] B. I. Shraiman and E. D. Siggia, Spiral phase of a doped quantum antiferromagnet, Phys. Rev. Lett. 62, 1564 (1989).
[32] R. Frésard, M. Dzierzawa, and P. Wölfle, Slave-Boson Approach to Spiral Magnetic Order in the Hubbard Model, Europhys. Lett. 15, 325 (1991).
[33] A. V. Chubukov and D. M. Frenkel, Renormalized perturbation theory of magnetic instabilities in the two-dimensional Hubbard model at small doping, Phys. Rev. B 46, 11884 (1992).
[34] A. V. Chubukov and K. A. Musaelian, Magnetic phases of the two-dimensional Hubbard model at low doping, Phys. Rev. B 51, 12605 (1995).
[35] V. N. Kotov and O. P. Sushkov, Stability of the spiral phase in the two-dimensional extended t − J model, Phys. Rev. B 70, 195105 (2004).
[36] P. A. Igoshev, M. A. Timirgazin, A. A. Katanin, A. K. Arzhnikov, and V. Y. Irkhin, Incommensurate magnetic order and phase separation in the two-dimensional Hubbard model with nearest- and next-nearest-neighbor hopping, Phys. Rev. B 81, 094407 (2010).
[37] H. Yamase, A. Eberlein, and W. Metzner, Coexistence of Incommensurate Magnetism and Superconductivity in the Two-Dimensional Hubbard Model, Phys. Rev. Lett. 116, 096402 (2016).
[38] A. Eberlein, W. Metzner, S. Sachdev, and H. Yamase, Fermi Surface Reconstruction and Drop in the Hall Number due to Spiral Antiferromagnetism in High-Tc Cuprates, Phys. Rev. Lett. 117, 187001 (2016).
[39] J. Mitscherling and W. Metzner, Longitudinal conductivity and Hall coefficient in two-dimensional metals with spiral magnetic order, Phys. Rev. B 98, 195126 (2018).
[40] P. M. Bonetti, J. Mitscherling, D. Vilaridi, and W. Metzner, Charge carrier drop at the onset of pseudogap behavior in the two-dimensional Hubbard model, Phys. Rev. B 101, 165142 (2020).
[41] P. Azaria, B. Delamotte, and T. Jolicoeur, Nonuniversalities in helical and canted-spin systems, Phys. Rev. Lett. 64, 3175 (1990).
[42] P. Azaria, B. Delamotte, and D. Mouhanna, Low-temperature properties of two-dimensional frustrated quantum antiferromagnets, Phys. Rev. Lett. 68, 1762 (1992).
[43] P. Azaria, B. Delamotte, F. Delduc, and T. Jolicoeur, A renormalization-group study of helimagnets in $D = 2 + \epsilon$ dimensions, Nuclear Physics B 408, 485 (1993).
[44] P. Azaria, B. Delamotte, and D. Mouhanna, Spontaneous
symmetry breaking in quantum frustrated antiferromagnets, Phys. Rev. Lett. 70, 2483 (1993).
[45] A. V. Chubukov, T. Senthil, and S. Sachdev, Universal magnetic properties of frustrated quantum antiferromagnets in two dimensions, Phys. Rev. Lett. 72, 2089 (1994).
[46] A. V. Chubukov, S. Sachdev, and T. Senthil, Quantum phase transitions in frustrated quantum antiferromagnets, Nuclear Physics B 426, 601 (1994).
[47] P. Azaria, P. Lecheminant, and D. Mouhanna, The massive CP$^{N-1}$ model for frustrated spin systems, Nuclear Physics B 455, 648 (1995).
[48] K. Borejsza and N. Dupuis, Antiferromagnetism and single-particle properties in the two-dimensional half-filled Hubbard model: A nonlinear sigma model approach, Phys. Rev. B 69, 085119 (2004).
[49] S. Elitzur, Impossibility of spontaneously breaking local symmetries, Phys. Rev. D 12, 3978 (1975).
[50] X. G. Wen, Vacuum degeneracy of chiral spin states in compactified space, Phys. Rev. B 60, 7387 (1995).
[51] T. Hansson, V. Oganesyan, and S. Sondhi, Superconductors are topologically ordered, Ann. Phys. 497, 3978 (1989).
[52] J. W. Negele and H. Orland, Quantum Many-Particle Systems, edited by D. Pines (Westview Press, Reading, Massachusetts, 1998).
[53] The spin stiffnesses and dynamical susceptibilities (or density-density uniform susceptibility, for the superconductor) can be equivalently defined as the coefficients of a low-energy expansion of the transverse susceptibilities. Here, we choose to define them from the gauge kernels and show that, within a conserving approximation, the two definitions are equivalent.
[54] I. A. Goremykin and A. A. Katanin, Antiferromagnetism without anomalous averages, J. Phys. C 6, 1181 (1973).
[55] Note that it is also possible to describe antiferromagnetism without the introduction of a sublattice magnetization, as shown in Ref. [64].
[56] J. H. Wilson, J. B. Curtis, and V. M. Galitski, Analog spacetimes from nonrelativistic Goldstone modes in spinor condensates, Phys. Rev. A 105, 043316 (2022).
[57] P. M. Bonetti and W. Metzner, Spin stiffness, spectral weight, and Landau damping of magnons in metallic spin magnets, Phys. Rev. B 105, 134426 (2022).
[58] A. Auerbach, Interacting Electrons and Quantum Magnetism (Springer-Verlag, New York, 1994).
[59] W. Metzner and H. Yamase, Phase stiffness in an antiferromagnetic superconductor, Phys. Rev. B 100, 014504 (2019).
[60] M. S. Scheurer, S. Chatterjee, W. Wu, M. Ferrero, A. Georges, and S. Sachdev, Topological order in the pseudogap metal, Proc. Natl. Acad. Sci. USA 115, E3665 (2018).
[61] A. J. Millis, Effect of a nonzero temperature on quantum critical points in itinerant fermion systems, Phys. Rev. B 48, 7183 (1993).
[62] V. Y. Irkhin and M. I. Katsnelson, On the description of the antiferromagnetism without anomalous averages, Z. Phys. B 62, 201 (1986).
[63] P. M. Bonetti and W. Metzner, SU(2) gauge theory of the pseudogap phase in the two-dimensional Hubbard model, Phys. Rev. B 106, 205152 (2022).
[64] J. M. Kosterlitz and D. J. Thouless, Ordering, metastability and phase transitions in two-dimensional systems, J. Phys. C 6, 1181 (1973).

Erratum: Local Ward identities for collective excitations in fermionic systems with spontaneously broken symmetries [Phys. Rev. B 106, 155105 (2022)]

We found a mistake in the original paper, namely the statement that the second derivative of the Γ-functional with respect to the gauge field returns the gauge kernel (Eq. (10) of the original paper).

The Ward identities (WIs) presented in the original paper are nonetheless correct, provided that one does not interpret the object labeled as $K_{\mu\nu}$ as the gauge kernel but as the second derivative with respect to the gauge field of the generating functional Γ computed at zero fields. The physical meaning, the usefulness, and the computation of such object are left for future research.

In the following, we present a revised derivation of the WIs for the actual gauge kernel $K_{\mu\nu}$, both for the case of a U(1) and of an SU(2) symmetry.

I. U(1) SYMMETRY

We consider a fermionic theory, described by the Grassmann fields ψ and $\bar{\psi}$ and coupled to a U(1) gauge field A_{μ}, and governed by the action $S[\psi, \bar{\psi}, A_{\mu}]$. We define the U(1) gauge kernel as

$$K_{\mu\nu}(x, x') \equiv \langle j_{\mu}(x) j_{\nu}(x') \rangle_c + \langle P_{\mu\nu}(x, x') \rangle,$$ \hspace{1cm} (1)
with \(j_\mu(x) \equiv \frac{\delta S}{\delta A_\mu(x)} \big|_{A_\mu=0} \) the paramagnetic current operator, \(P_{\mu\nu}(x, x') \equiv -\frac{\delta^2 S}{\delta A_\mu(x) \delta A_\nu(x')} \big|_{A_\mu=0} \) the diammagnetic current operator, and where the (connected) average is taken by means of the path integral defined by \(S \). The gauge kernel can also be defined as the second derivative at zero source fields of the \(G \)-generating functional of the original paper (Eq. (1))

\[
K_{\mu\nu}(x, x') \equiv -\frac{\delta^2 \bar{G}[J, J^*, A_\mu]}{\delta A_\mu(x) \delta A_\nu(x')} \bigg|_{J=J^*=A_\mu=0}.
\]

(2)

The U(1) gauge kernel obeys the relation

\[
\partial_\mu K_{\mu\nu}(x, x') = 0,
\]

(3)
even in presence of spontaneous symmetry breaking. This can be readily derived from Eq. (7) of the original paper. The above relation is somewhat obvious as it implies charge conservation, which must be fulfilled even in the superconducting state [17]. Fourier transforming Eq. (3), one obtains

\[
i\omega K_{0\nu}(q, \omega) - iq_\alpha K_{\alpha\nu}(q, \omega) = 0,
\]

(4)

where \(\alpha \) is only a spatial index and a sum over it is implied. Here and henceforth we use Einstein’s convention for repeated indices, unless otherwise specified. Note that for the derivative in Eq. (3) to make sense, \(A_\mu \) needs to be defined on a continuous space-time, which implies, in case of a lattice system, that Eq. (4) is valid only for those values of \(|q|\) that are much smaller than the inverse lattice spacing. Setting \(\nu = 0, q = 0, \) and \(\nu = \beta \) (with \(\beta \) also a spatial index), \(\omega = 0 \), respectively, one gets

\[
K_{00}(q = 0, \omega) = 0,
\]

(5a)

\[
K_{\alpha\beta}(q, \omega = 0) \approx J_{\alpha\beta}(q) - \frac{[J_{\gamma\delta}(q)q_\gamma][J_{\beta\delta}(q)\delta]}{J_{\beta\delta}(q)q_\gamma q_\delta},
\]

(5b)

where \(J_{\alpha\beta}(q) \) a function approaching the superfluid stiffness for \(q \to 0 \) in the superconducting state. Eq. (5b) is the most general form that \(K_{\alpha\beta}(0, 0) \) can take to obey \(q_\alpha K_{\alpha\beta}(q, 0) = 0 \). The above relations clearly show that Eqs. (19) of the original paper cannot be correct if the correlator \(K \) appearing there is the gauge kernel. While \(\delta \bar{G}/\delta A_\mu = \delta \Gamma/\delta A_\mu \) descends from the properties of the Legendre transform, a similar relation does not apply to the second derivative of the \(G \)- and \(\Gamma \)-functionals with respect to the gauge field. The correct form of Eq. (10) is

\[
\frac{\delta^2 \Gamma}{\delta A_\mu(x) \delta A_\nu(x')} \bigg|_{A_\mu=0} = -K_{\mu\nu}(x, x') + \int_{x''} L_{\mu,\alpha}(x, x''') \chi_{ab}^{-1}(x'', x''') L_{\nu,\beta}(x'', x''') dx''',
\]

(6)

with

\[
L_{\mu,\alpha}(x, x') = \frac{\delta^2 \bar{G}}{\delta A_\mu(x) \delta J_\alpha(x')} \bigg|_{A_\mu=J=0}.
\]

(7)

A proof of this relation is given in Appendix A. This proves that the \(K \)-correlator in Eq. (10) of the original paper is not the gauge kernel. Thus, in Eqs. (15-20) of the original paper one should replace \(K_{\mu\nu}(q, \omega) \) with (minus) the right hand side of Eq. (6).

Eqs. (20) of the original paper, despite being correct if one properly replaces \(K_{\mu\nu}(q, \omega) \), are not particularly useful as it is not clear how to compute the second derivative of the \(\Gamma \)-functional with respect to the gauge field within a diagrammatic approach. In the following, we present a revised and more useful derivation of the Ward identities making use of the sole \(G \)-functional.

We consider Eq. (7) of the original paper using the parametrization in Eqs. (8). We write \(J_1(x) = h + \delta J_1(x) \), where \(h \) is a uniform symmetry breaking field. Taking the derivative of Eq. (7) of the original paper once with respect to \(A_\mu \) and once with respect to \(J_2 \) and setting \(A_\mu = J_2 = \delta J_1 = 0 \), we obtain

\[
\partial_\mu K^{h}_{\mu\nu}(x, x') = -2h L^{h}_{\nu,2}(x', x),
\]

(8a)

\[
\partial_\nu L^{h}_{\mu,2}(x, x') = -2h \chi^{h}_{22}(x, x') + 2\varphi^{h}_0 \delta(x - x'),
\]

(8b)

where \(K^{h}_{\mu\nu}(x, x'), \chi^{h}_{ab}(x, x') \equiv -\frac{\delta^2 \bar{G}}{\delta A_\mu(x) \delta A_\nu(x')} \bigg|_{\delta J_1=\delta J_2=A_\mu=0}, \varphi^{h}_0 = -\frac{\delta \bar{G}}{\delta J_1(x)} \bigg|_{\delta J_1=\delta J_2=A_\mu=0}, \) and \(L^{h}_{\mu,\alpha}(x, x') \) are the gauge kernel, susceptibility, condensate fraction, and \(\Gamma \)-correlator, respectively (see Eq. (7)), computed in presence of a uniform explicit symmetry breaking field \(h \). Combining the two equations above, we obtain

\[
\partial_\mu \partial'_\nu K^{h}_{\mu\nu}(x, x') = 4h^2 \left(\chi^{h}_{22}(x, x') - \frac{\varphi^{h}_0}{h} \delta(x - x') \right),
\]

(9)
where ∂'_c is a derivative over x'. Considering the global U(1) symmetry of the problem, one can obtain a relation similar to Eq. (7) of the original paper:

$$
\int_x \left[\frac{\delta G}{\delta J_2(x)} J_1(x) - \frac{\delta G}{\delta J_1(x)} J_2(x) \right] = 0,
$$

(10)

where \int_x is an integral over the spatio-temporal coordinates. From the above relation, one readily obtains

$$
\chi^{h}_{22}(q = 0, \omega = 0) = \frac{\varphi_0^h}{h}.
$$

(11)

This, combined with the properties $\chi^{h}_{22}(-q, \omega) = \chi^{h}_{22}(q, -\omega) = \chi^{h}_{22}(q, \omega)$, implies that the Fourier transform of the right hand side of Eq. (9) is at least quadratic in frequency and/or momentum. We can thus assume the following small-q and small-ω expansion of $\chi^{h}_{22}(q, \omega)$

$$
\chi^{h}_{22}(q, \omega) \simeq \frac{4(\varphi_0^h)^2}{-\delta h^2 + J_{\alpha\beta}^h q_{\alpha} q_{\beta} + 4h \varphi_0^h}.
$$

(12)

Taking the Fourier transform of Eq. (9), one gets

$$
\lim_{\omega \to 0} K_{00}^h(0, \omega) = -4h^2 \frac{1}{2} \delta^2 \chi^{h}_{22}(0, \omega) \bigg|_{\omega \to 0} = -\chi^{h}_{22} = -4(\varphi_0^h)^2 \frac{1}{2} \delta^2 \left(\frac{1}{\chi^{h}_{22}(0, \omega)} \right) \bigg|_{\omega \to 0},
$$

(13a)

$$
\lim_{q \to 0} K_{\alpha\beta}^h(q, 0) = -4h^2 \frac{1}{2} \delta^2 q_{\alpha} q_{\beta} \chi^{h}_{22}(q, 0) \bigg|_{q \to 0} = J_{\alpha\beta}^h = 4(\varphi_0^h)^2 \frac{1}{2} \delta^2 \left(\frac{1}{\chi^{h}_{22}(q, 0)} \right) \bigg|_{q \to 0}.
$$

(13b)

Finally, taking the $h \to 0$ limit, we obtain

$$
\chi_n = \lim_{h \to 0} K_{00}^h(0, \omega) = -4(\varphi_0^h)^2 \frac{1}{2} \delta^2 \left(\frac{1}{\chi^{h}_{22}(0, \omega)} \right) \bigg|_{\omega \to 0},
$$

(14a)

$$
J_{\alpha\beta} = \lim_{h \to 0} K_{\alpha\beta}^h(q, 0) = 4(\varphi_0^h)^2 \frac{1}{2} \delta^2 \left(\frac{1}{\chi^{h}_{22}(q, 0)} \right) \bigg|_{q \to 0},
$$

(14b)

where χ_n and $J_{\alpha\beta}$ are the coefficients of the expansion (12) obtained in absence of a symmetry breaking field. In particular, $J_{\alpha\beta}$ is the superfluid stiffness. Also, φ_0 and $\chi_{22}(q, \omega)$ are the condensate fraction and susceptibility obtained for zero h.

The equations above are a more useful version of the Ward identities presented in the original paper. The calculation of $\lim_{h \to 0} K_{\mu\nu}^h$ can be performed in the same way as one computes the gauge kernel, introducing a symmetry breaking field, and sending it to zero at the end of the calculation. The equations above also clearly prove that the dynamical (Eq. (14a)) or static (Eq. (14b)) limits do not commute with the $h \to 0$ limit in the gauge kernel. Inverting their order, one would obtain Eqs. (5) instead of those above.

II. SU(2) SYMMETRY

Most of the considerations above also apply to the case of a spontaneously broken SU(2) symmetry, with minor modifications. The SU(2) gauge kernel has a similar definition to its U(1) counterpart. Also in this case, the SU(2) gauge kernel can only be obtained by taking the derivative of the G-functional (and not from the Γ functional).

Relations similar to Eqs. (6), (7), can be obtained for a system with SU(2) symmetry, making, also in this case, Eq. (40) of the original paper not useful for practical calculations. In the following, we derive WIs for the actual SU(2) gauge kernel.

The analogue of Eq. (7) is, in the SU(2)-symmetric case,

$$
\partial_\mu \left(\frac{\delta G}{\delta A^\mu_\alpha(x)} \right) - \varepsilon^{\alpha\ell m} \left[\frac{\delta G}{\delta J^{\ell}(x)} J^m(x) + \frac{\delta G}{\delta A^\ell_\mu(x)} A^m_\mu(x) \right] = 0.
$$

(1)

We now set $J_\alpha(x) = h_\alpha(x) + \delta J_\alpha(x)$, where $h_\alpha(x)$ is a symmetry breaking field. Its spatial dependence must take the same form as the spin condensate $S^\alpha_\ell(x) = -\delta G(\delta J_\alpha(x)|_{A_\alpha = \delta J_\ell = 0}$ in essence, for every point x, we have $S^\alpha_\ell(x) = (\varphi_0^h/h)h_\alpha(x)$, where $h = \sqrt{h_\alpha(x)h_\alpha(x)}$ and φ_0^h are constants.
Similarly to the previous section, one can derive a functional identity for the original paper. Setting $\epsilon = 0$ where the first (second) equation has been obtained deriving (1) with respect to $A_\mu(x')$ ($J_\mu(x')$) and setting $A_\mu = \delta J = 0$. The third equation can be derived from (1) setting $A_\mu = \delta J = 0$. Its right hand side is zero because we have assumed $S^h(x)$ and $h(x)$ to be parallel. We have also defined

\[
L^a_{\mu, \nu}(x, x') = -\frac{\delta^2 G}{\delta A_\mu(x) \delta J^\nu(x')} \bigg|_{A_\mu = \delta J = 0},
\]

\[
B_{\mu}^{a}(x) = -\frac{\delta G}{\delta A_\mu(x)} \bigg|_{A_\mu = \delta J = 0}.
\]

$K^{h,ab}_{\mu, \nu}$ and χ^h_{ab} are the gauge kernel and spin susceptibility in presence of a symmetry breaking field. Combining all Eqs. (2), we get

\[
\partial_\nu \partial_\nu' K^{h,ab}_{\mu, \nu}(x, x') = \epsilon^{\alpha \nu \mu} \chi^{h}_{ab}(x, x') h_m(x) h_{\nu}(x') + (2\delta_{\alpha \nu} \delta_{b m} - \delta_{a \nu} \delta_{b m} - \delta_{a b} \delta_{\nu m}) S^h(x) h_m(x) \delta(x - x')
\]

\[
= \epsilon^{\alpha \nu \mu} \chi^{h}_{ab}(x, x') h_m(x) h_{\nu}(x') + h\varphi_0 h^2 \varphi_0 \left(\frac{h_a(x) h_b(x)}{h^2} - \delta_{ab} \right).
\]

Similarly to the previous section, one can derive a functional identity for G descending from the global SU(2) symmetry of the system, reading

\[
\int_x \epsilon^{\alpha \nu \mu} \frac{\delta G}{\delta J_\nu(x)} J_\mu(x) = 0.
\]

Taking a functional derivative with respect to $J_\mu(x')$, multiplying by $\epsilon^{np} h_p(x')$, summing over n and p, setting $\delta J_\nu = A_\nu = 0$, and integrating over x', we obtain

\[
\int_x \int_x \epsilon^{\alpha \nu \mu} \chi^{h}_{\nu n}(x, x') h_m(x) h_p(x') = \frac{\varphi_0 h^2}{\varphi_0} \int_x (\delta_{ab} \delta_{\nu m} - \delta_{a \nu} \delta_{b m}) h_\nu(x) h_m(x).
\]

A. Spiral order

In the case of spiral order, we have $h(x) = h(\cos(Q \cdot x), \sin(Q \cdot x), 0)$ and $S^h(x) = \varphi_0 h(\cos(Q \cdot x), \sin(Q \cdot x), 0)$. Eq. (6) then gives

\[
\chi^h_{22}(0, 0) = \frac{\varphi_0 h}{h},
\]

\[
\chi^h_{33}(Q, 0) = \frac{\varphi_0 h}{h},
\]

where χ^h_{ab} is the susceptibility in a rotated spin basis, and it is connected to χ^{h}_{ab} with relations similar to Eqs. (55) of the original paper. Setting $a = b = 1, 2, 3$ in Eq. (2), Fourier transforming and using the above relations, one obtains

\[
\lim_{\omega \to 0} K^{h,11}_{00}(0, \omega) = \lim_{q \to 0} K^{h,22}_{00}(0, \omega) = -\frac{h^2}{4} \varphi_0^2 \chi^h_{33}(Q, 0) \omega \to 0,
\]

\[
\lim_{q \to 0} K^{h,11}_{\alpha \beta}(q, 0) = \lim_{q \to 0} K^{h,22}_{\alpha \beta}(q, 0) = -\frac{h^2}{4} \varphi_0^2 \chi^h_{33}(Q, 0) \omega \to 0.
\]

\[
\lim_{\omega \to 0} K^{h,33}_{00}(0, \omega) = -\frac{h^2}{2} \varphi_0^2 \chi^h_{22}(0, \omega) \omega \to 0,
\]

\[
\lim_{q \to 0} K^{h,33}_{\alpha \beta}(q, 0) = -\frac{h^2}{2} \varphi_0^2 \chi^h_{22}(Q, 0) \omega \to 0.
\]
where, as in the original paper, \(K^{ab}_{ij}(q, \omega) \) is the translational invariant component of the SU(2) gauge kernel. Assuming the following forms for the susceptibilities,

\[
\tilde{\chi}^{h}_{22}(q, \omega) \simeq \frac{(\varphi^h_0)^2}{-\chi^h_{\text{dyn}}\omega^2 + J^{h\beta}_{\alpha\beta} q_\alpha q_\beta + \hbar \varphi^h_0},
\]

\[
\tilde{\chi}^{h}_{33}(q, \omega) \simeq \sum_{\eta=\pm} \frac{(\varphi^h_0)^2/2}{-\chi^h_{\text{dyn}}\omega^2 + J^{h\beta}_{\alpha\beta} (q - \eta Q)_\alpha (q - \eta Q)_\beta + \hbar \varphi^h_0/2},
\]

one can prove, following the steps performed in the U(1)-symmetric case, the final form of the Ward identities for a spiral magnet

\[
\chi^\perp = \lim_{h \to 0} \chi^\perp_{\text{dyn}} = \frac{(\varphi^h_0)^2}{2 \omega} \left(\frac{1}{\chi^{33}(Q, \omega)} \right) \bigg|_{\omega \to 0}.
\]

\[
J^{\perp}_{\alpha\beta} = \lim_{h \to 0} \chi^\perp_{\alpha\beta} = \frac{(\varphi^h_0)^2}{2 \omega} \left(\frac{1}{\chi^{22}(Q, \omega)} \right) \bigg|_{\omega \to 0}.
\]

Also in this case, the static or dynamic limit does not commute with the \(h \to 0 \) limit.

\section{B. Néel order}

The Ward identities in the case of Néel order can be straightforwardly derived following the steps performed in the previous subsection. Assuming \(S^b(x) = \varphi^h_0(-1)^b(1,0,0) \) and \(h(x) = h(-1)^b(1,0,0) \), they read as

\[
\chi^\text{dyn} = \lim_{h \to 0} \chi^\text{dyn} = \frac{(\varphi^h_0)^2}{2 \omega} \left(\frac{1}{\chi^{33}(Q, \omega)} \right) \bigg|_{\omega \to 0},
\]

\[
J^{\square}_{\alpha\beta} = \lim_{h \to 0} \chi^\square_{\alpha\beta} = \frac{(\varphi^h_0)^2}{2 \omega} \left(\frac{1}{\chi^{22}(Q, \omega)} \right) \bigg|_{\omega \to 0}.
\]

where now \(Q \) takes the form \((\pi, \pi)\). The above equations remain valid upon exchanging the index "2" with "3".

\section{III. Explicit Calculation for a Spiral Magnet}

Sec. III of the original paper is fully correct, as the microscopic expressions for the spin stiﬀnesses and dynamical susceptibilities correspond to those derived in presence of a small symmetry breaking field that is sent to zero at the end of the calculation.

A misprint is present in Eq. (A4) of the original paper. Its correct form is

\[
\kappa^3_{ij}(0) = -\frac{\Delta}{4} \int_k \left[\frac{h_k}{\epsilon_k} (\partial_{k_\alpha} g_k) + (\partial_{k_\alpha} h_k) \right] \frac{f'(E^+_{k})}{\epsilon_k} + \left[\frac{h_k}{\epsilon_k} (\partial_{k_\alpha} g_k) - (\partial_{k_\alpha} h_k) \right] \frac{f'(E^-_{k})}{\epsilon_k} + \frac{h_k}{\epsilon_k} (\partial_{k_\alpha} g_k) \frac{f(E^-_{k}) - f(E^+_{k})}{\epsilon_k},
\]

that is, compared to the original paper, the prefactor is \(\Delta \) and not \(\Delta^2 \).

\section{IV. Note}

In Ref. [65] the expressions for the spin stiﬀnesses and dynamical susceptibilities derived in the original manuscript have been used. Even though it was not explicitly stated, they have been derived applying a small symmetry breaking field to the system and sending it to zero after performing the dynamical or static limit. The expressions in Ref. [65]
are therefore correct within the (renormalization group improved) random phase approximation employed in the paper.

During the review process of this Erratum, Ref. [66] appeared, which presents a similar derivation of the Ward identities above, and, as also discussed here, identifies the presence of an infinitesimal symmetry breaking field as crucial to obtain the correct formulas for the spin stiffnesses.

ACKNOWLEDGMENTS

I am thankful to W. Metzner for noticing the error in the original paper. I am also very thankful to W. Metzner, H. Müller-Groeling and D. Vilardi for enlightening discussions, a careful reading of the manuscript, and for correcting additional typos and misprints.

Appendix A: Derivation of Eq. (6)

In this Appendix, we present a derivation of Eq. (6). The identity

$$\frac{\delta \Gamma}{\delta A_\mu(x)} = \frac{\delta G}{\delta A_\mu(x)},$$

(A1)

descends directly from the properties of the Legendre transform that connects G and Γ. Taking a further derivative with respect to the gauge field in the above equation, we get

$$\frac{\delta^2 \Gamma}{\delta A_\mu(x) \delta A_\nu(x')} = \frac{\delta^2 G}{\delta A_\mu(x) \delta A_\nu(x')} + \int_{x''} \frac{\delta^2 G}{\delta A_\mu(x) \delta J_a(x''')} \frac{\delta J_a(x''')}{\delta A_\nu(x')}. \tag{A2}$$

Setting the fields to zero, we obtain

$$\left. \frac{\delta^2 \Gamma}{\delta A_\mu(x) \delta A_\nu(x')} \right|_{A_\mu=\phi=0} = -K_{\mu \nu}(x, x') - \int_{x''} \frac{\delta^2 G}{\delta A_\mu(x) \delta J_a(x''')} \left. \frac{\delta J_a(x''')}{\delta A_\nu(x')} \right|_{A_\mu=\phi=0}, \tag{A3}$$

with $L_{\mu, a}(x, x'')$ defined as in Eq. (7). At this point, one needs to express the source field $J_a(x)$ in terms of the "classical" field $\phi_a(x)$, which Γ depends on. Since we only need its derivative with respect to the gauge field at zero sources, we are allowed to expand the relation connecting $\phi_a(x)$ and $J_a(x)$ to linear order in the fields:

$$\phi_a(x) \equiv -\frac{\delta G}{\delta J_a(x)} \approx \varphi_{0,a} + \int_{x'} [\chi_{ab}(x, x') J_b(x') + L_{\mu,a}(x', x) A_\mu(x')] + \ldots, \tag{A4}$$

with $\varphi_{0,a} = -\frac{\delta G}{\delta J_a(x)} |_{J=0} = 0$ the condensate fraction. Solving for $J_a(x)$, we obtain

$$\left. \frac{\delta J_a(x)}{\delta A_\mu(x')} \right|_{A_\mu=\phi=0} = -\int_{x''} \chi_{ab}^{-1}(x, x'') L_{\mu,b}(x', x''), \tag{A5}$$

with the inverse susceptibility $\chi_{ab}^{-1}(x, x')$ obeying

$$\int_{x''} \chi_{ac}(x, x'') \chi_{cb}^{-1}(x'', x') = \delta(x - x') \delta_{ab}. \tag{A6}$$

Inserting Eq. (A5) into Eq. (A3), we obtain Eq. (6).