THE SLOAN DIGITAL SKY SURVEY CO-ADD: A GALAXY PHOTOMETRIC REDSHIFT CATALOG

RIBAMAR R. R. REIS1,2, MARCELLE SOARES-SANTOS1,3, JAMES ANNIS4, SCOTT DODELSON1,4,5, JIANGANG HAO4, DAVID JOHNSTON1, JEFFREY KUBO4, HUAN LIN1, HEE-JONG SEO6, and MELANIE SIMET4

1 Center for Particle Astrophysics, Fermi National Accelerator Laboratory, Batavia, IL 60510, USA
2 Instituto de Física, Universidade Federal do Rio de Janeiro, CEP 21941-972, Rio de Janeiro, RJ, Brazil
3 Instituto de Astronomía, Geofísica e Ciencias Atmosféricas, Universidade de São Paulo, CEP 05508-090, São Paulo, SP, Brazil
4 Department of Astronomy & Astrophysics, The University of Chicago, Chicago, IL 60637, USA
5 Kavli Institute for Cosmological Physics, Chicago, IL 60637, USA
6 Berkeley Center for Cosmological Physics, LBL and Department of Physics, University of California, Berkeley, CA 94720, USA

Received 2011 September 7; accepted 2011 December 20; published 2012 February 14

ABSTRACT

We present and describe a catalog of galaxy photometric redshifts (photo-z) for the Sloan Digital Sky Survey (SDSS) Co-add Data. We use the artificial neural network (ANN) technique to calculate the photo-z and the nearest neighbor method to estimate photo-z errors for ~13 million objects classified as galaxies in the co-add with $r < 24.5$. The photo-z and photo-z error estimators are trained and validated on a sample of ~83,000 galaxies that have SDSS photometry and spectroscopic redshifts measured by the SDSS Data Release 7 (DR7), the Canadian Network for Observational Cosmology Field Galaxy Survey, the Deep Extragalactic Evolutionary Probe Data Release 3, the VIsible imaging Multi-Object Spectrograph–Very Large Telescope Deep Survey, and the WiggleZ Dark Energy Survey. For the best ANN methods we have tried, we find that 68% of the galaxies in the validation set have a photo-z error smaller than $\sigma_{68} = 0.031$. After presenting our results and quality tests, we provide a short guide for users accessing the public data.

Key words: catalogs – galaxies: distances and redshifts

Online-only material: color figures

1. INTRODUCTION

In recent years, digital sky surveys obtained multi-band imaging for of order a hundred million galaxies; however we have spectroscopic redshifts available for only over one million galaxies. Deep, wide-area surveys planned for the next decades will increase the number of galaxies with multi-band photometry to a few billion and we will only be able to obtain spectroscopic redshifts for a small fraction of these objects, due to technological and financial limitations. As a result, substantial effort has been going into developing photometric redshift (photo-z) techniques, which use multi-band photometry to estimate approximate galaxy redshifts. For many applications in extragalactic astronomy and cosmology, the resulting photometric redshift precision is sufficient for the science goals at hand, provided one can accurately characterize the uncertainties in the photo-z estimates.

Two broad categories of photo-z estimators are in wide use: template-fitting and training-set methods. In template fitting, one assigns a redshift to a galaxy by finding the redshifted spectral energy distribution (SED), selected from a library of templates, that best reproduces the observed fluxes in the broadband filters. By contrast, in the training-set approach, one uses a training set of galaxies with spectroscopic redshifts and photometry to derive an empirical relation between photometric observables (e.g., magnitudes, colors, and morphological indicators) and redshift. Examples of empirical methods include polynomial fitting (Connolly et al. 1995), the nearest neighbor method (Csabai et al. 2003), the nearest neighbor polynomial (NNP) technique (Oyaizu et al. 2008b), artificial neural networks (ANNs; Collister & Lahav 2004; Vanzella et al. 2004; d’Abrusco et al. 2007), and support vector machines (Wadadekar 2005). When a large spectroscopic training set that is representative of the photometric data set to be analyzed is available, training-set techniques typically outperform template-fitting methods, in the sense that the photo-z estimates have smaller scatter and bias with respect to the true redshifts (Oyaizu et al. 2008b). On the other hand, template fitting can be applied to a photometric sample for which relatively few spectroscopic analogs exist. For a comprehensive review and comparison of photo-z methods, see Oyaizu et al. (2008b).

In this paper, we present a publicly available galaxy photometric redshift catalog for the co-add data which is part of the Seventh Data Release (DR7) of the Sloan Digital Sky Survey (SDSS) imaging catalog (Blanton et al. 2003; Eisenstein et al. 2001; Gunn et al. 1998; Ivezić et al. 2006; Strauss et al. 2002; York et al. 2000; Abazajian et al. 2009). We use the ANN photo-z method, which has proved to be a superior training-set method (Oyaizu et al. 2008b), and briefly compare the results using different photometric observables. Since the SDSS photometric catalog covers a large area of sky, a number of deep spectroscopic galaxy samples with SDSS photometry are available to use as training sets, as shown in Figure 1.

2. SDSS PHOTOMETRIC CATALOG AND GALAXY SELECTION

The SDSS comprises a large-area imaging survey of the north Galactic cap, a multi-epoch imaging survey of an equatorial stripe in the south Galactic cap, and a spectroscopic survey of roughly 10^6 galaxies and 10^5 quasars (York et al. 2000). The survey uses a dedicated, wide-field, 2.5 m telescope (Gunn et al. 1998) at Apache Point Observatory, New Mexico. Imaging is carried out in drift-scan mode using a 142 mega-pixel camera (Gunn et al. 2006) that gathers data in five broad bands, $ugriz$, spanning the range from 3000 to 10,000 Å (Fukugita et al. 1996), with an effective exposure time of 54.1 s per band. The images are processed using specialized software (Lupton et al. 2001; Stoughton et al. 2002) and are astrometrically (Pier et al. 2002).
Figure 1. Normalized r magnitude distributions for various catalogs. Top three rows: the distributions of the spectroscopic catalogs used for photo-z training and validation are shown for CNOC2, DEEP2, VVDS, WiggleZ, and SDSS DR7. Entries denote the number of unique galaxy measurements used from each catalog. Bottom left: distribution for the whole spectroscopic sample. Bottom right: the distribution for the SDSS co-add galaxy sample, where objects were classified as galaxies according to the photometric TYPE flag (see the text).

2003) and photometrically (Hogg et al. 2001; Tucker et al. 2006) calibrated using observations of a set of primary standard stars (Smith et al. 2002) observed on a neighboring 20 inch telescope.

The seventh SDSS Data Release (DR7) imaging footprint increased ∼22% when compared to the previous data release (DR6) which covers an essentially contiguous region of the north Galactic cap. The additional coverage includes the small missing patches in the contiguous region of the north Galactic cap and the stripes which are part of the Sloan Extension for Galactic Understanding and Exploration (SEGUE) survey. In any region where imaging runs overlap, one run is declared primary and is used for spectroscopic target selection; other runs are declared secondary. The area covered by the DR7 primary imaging survey, including the southern stripes, is 11,663 deg2 (Abazajian et al. 2009).

The SDSS stripe along the celestial equator in the south Galactic cap ("Stripe 82") was imaged multiple times in the Fall months. This was first carried out to allow a co-addition of the repeat imaging scans in order to reach fainter magnitudes, roughly 2 mag fainter than the single SDSS scans (see Table 1). The co-addition includes a total of 122 runs, covering any given piece of the ∼250 deg2 area between 20 and 40 times. The co-addition runs are designated 106 and 206 under the Stripe82 database in the Catalog Archive Server (CAS; see the SDSS CasJobs Web site http://casjobs.sdss.org/casjobs/). The reader can find a detailed description of the co-addition in Annis et al. (2011).

The SDSS database provides a variety of measured magnitudes for each detected object. Throughout this paper, we use dereddened model magnitudes to perform the photometric redshift computations. To determine the model magnitude, the SDSS photometric pipeline fits two models to the image of each object.

For the precise definition of primary objects see http://cas.sdss.org/dr7/en/help/docs/glossary.asp#P

Figure 2. Normalized distribution of $g-r$ and $r-i$ colors. Top row: the color distributions for galaxies in the full spectroscopic sample. Bottom row: the color distributions for galaxies in the photometric sample. As above, galaxy classification used the photometric TYPE flag.
galaxy in each passband: a de Vaucouleurs (early-type) and an exponential (late-type) light profile. The models are convolved with the estimated point-spread function (PSF), with arbitrary axis ratio and position angle. The best-fit model in the r band (which is used to fix the model scale radius) is then applied to the other passbands and convolved with the passband-dependent PSFs to yield the model magnitudes. Model magnitudes provide an unbiased color estimate in the absence of color gradients (Stoughton et al. 2002), and the dereddening procedure removes the effect of Galactic extinction (Schlegel et al. 1998).

Figure 3. z_{spec} vs. z_{phot} for the validation set for different spectroscopic sets and different choices of photometric observables. Top left: case C, where the input photometric data comprise the four colors ($u-g, g-r, r-i, i-z$). Top middle: case CC, where the input data are the four colors $u-g, g-r, r-i, i-z$, and five concentration parameters c_u, c_g, c_r, c_i, c_z. Top right: case M, where we use only magnitudes. Bottom left: case Csplit, where we split the sample in r magnitude slices. Bottom middle: case CCsplit, where we split the sample in r magnitude slices. Bottom right: case Msplit, where we split the sample in r magnitude slices. The solid line in each panel indicates $z_{\text{phot}} = z_{\text{spec}}$; the dashed and dotted lines show the 68% and 95% confidence regions as a function of z_{spec} (σ_{68} and σ_{95}), respectively. The points display results for a random 10,000 objects subset of the validation set.

(A color version of this figure is available in the online journal.)

Table 1

AB Magnitude Limits
u
g
r
i
z

Notes. Magnitude limits are for 50% completeness for galaxies in typical seeing (Annis et al. 2011). The median seeing for the SDSS imaging survey is 1.′4.

Table 2

Case	Inputs/Description
C	$u-g, g-r, r-i, i-z$
Csplit	$u-g, g-r, r-i, i-z$, split in r slices
M	u, g, r, i, z
Msplit	u, g, r, i, z, split in r slices
CC	$u-g, g-r, r-i, i-z + c_u, c_g, c_r, c_i, c_z$
CCsplit	$u-g, g-r, r-i, i-z + c_u, c_g, c_r, c_i, c_z$, split in r slices

Table 3

Case	σ	σ_{68}
C	0.16	0.046
Csplit	0.14	0.034
M	0.14	0.034
Msplit	0.14	0.031
CC	0.15	0.043
CCsplit	0.14	0.032

Note. σ and σ_{68} for the validation set using different input parameters (magnitudes, colors, and concentration indices) and training procedures (training with the whole sample or in magnitude bins independently).
To construct the photometric sample of galaxies for which we wish to estimate photo-z, we obtained a catalog drawn from the SDSS CasJobs Web site. We checked some of the SDSS photometric flags to ensure that we have obtained a reasonably clean galaxy sample. In particular, we selected all primary objects from Stripe82 that have the TYPE flag equal to 3 (the type for galaxy) and that do not have any of the flags BRIGHT, SATURATED, or SATUR_CENTER set. For the definitions of these flags we refer the reader to the PHOTO flags entry at the SDSS Web site or to the Appendix. We also took into account the nominal SDSS co-add flux limit by only selecting galaxies with dereddened model magnitude $r<24.5$. In addition, the co-addition does not propagate information on saturated pixels in individuals runs, and therefore the photometry of objects brighter than $r=15.5$ is suspect. To circumvent this issue we selected only galaxies with $r>16$. The full database query we used is given in the Appendix.

The final photometric sample comprises 13,688,828 galaxies. Only 2267 objects are in the DR6 photometric redshift catalog from Oyaizu et al. (2008b). The r magnitude distribution of this sample is shown in the bottom right panel of Figure 1; the $g-r$ and $r-i$ color distributions are shown in the bottom panels of Figure 2.

3. SPECTROSCOPIC TRAINING AND VALIDATION SETS

Since our methods to estimate photo-z and photo-z errors are training-set based, we would ideally like the spectroscopic training set to be fully representative of the photometric sample to be analyzed, i.e., to have similar statistical properties and magnitude/redshift distributions. Training-set methods can be thought of as inherently Bayesian, in the sense that the training-
set distributions form effective priors for the analysis of the photometric sample; to the extent that the training-set distributions reflect those of the photometric sample, we may expect the photo-z estimates to be unbiased (or at least they will not be biased by the prior). Given the practical difficulties of carrying out spectroscopy at faint magnitudes and low surface brightness, such an ideal generally cannot be achieved. Realistically, all we can hope for is a training set that (a) is large enough that statistical fluctuations are small and (b) spans the same magnitude, color, and redshift ranges as the photometric sample (Oyaizu et al. 2008b).

We have constructed a spectroscopic sample consisting of 82,741 galaxies that have SDSS co-add photometry measurements and that have spectroscopic redshifts measured by the SDSS or by other surveys, as described below. We imposed a magnitude limit of $16 < r < 24.5$ on the spectroscopic sample and applied additional cuts on the quality of the spectroscopic redshifts reported by the different surveys. Each survey providing spectroscopic redshifts defines a redshift quality indicator; we refer the reader to the respective publications listed below for their precise definitions. For each survey, we chose a redshift quality cut roughly corresponding to 90% redshift confidence or greater. The SDSS spectroscopic sample provides 57,020 redshifts with confidence level $z_{\text{conf}} > 0.9$. The remaining redshifts are 1355 from the Canadian Network for Observational Cosmology Field Galaxy Survey (CNOC2; Yee et al. 2000), 9955 from the Deep Extragalactic Evolutionary Probe (DEEP2; Weiner et al. 2005) with $z_{\text{quality}} \geq 3$, 8702 from the WiggleZ Dark Energy Survey (Drinkwater et al. 2010) with QoP > 35,709 from the Visible Imaging Multi-Object

\[\sigma_{68} \]

Figure 6. z_{bias} as a function of the spectroscopic redshift for all tested cases. (A color version of this figure is available in the online journal.)

Figure 7. σ and σ_{68} as a function of the photometric redshift for all tested cases. (A color version of this figure is available in the online journal.)

\[\sigma_{68} \]
Spectrograph–Very Large Telescope Deep Survey (VVDS; Garilli et al. 2008) with flag 3 and 4.

The spectroscopic sample obtained by combining all these catalogs was divided into two catalogs of the same size (∼42,000 objects each). One of these catalogs was taken to be the training set used by the photo-z and error estimators, and the other was used as a validation set to carry out tests of photo-z quality (see Section 4.1).

The r magnitude distributions for each spectroscopic sample are shown in Figure 1, while Figure 2 shows the color (g−r and r−i) distributions for all objects in the final spectroscopic sample. As for how representative the spectroscopic training and validation sample are for the full photometric sample, we checked that the color/magnitude space is fully covered by the spectroscopic sample up to redshift 0.75–0.8. Beyond this redshift range, the spectroscopic sample partially covers the color/magnitude space. Therefore, the reader needs to be cautious when using photo-z beyond this range.

4. METHODS

4.1. ANN Photometric Redshifts

The ANN method that we use to estimate galaxy photo-z is a general classification and interpolation tool used successfully in a variety of fields. We use a particular type of ANN called a Feed Forward Multilayer Perceptron to map the relationship between photometric observables and redshifts, as implemented in Oyaizu et al. (2008b).

In this work we use X:15:15:15:1 networks to estimate photo-z, where X is the number of input photometric parameters per galaxy, following the notation of Collister & Lahav (2004). The corresponding number of degrees of freedom (the number of weights) is roughly 1000, depending on the actual value of X.

Following Oyaizu et al. (2008b), in order to avoid overfitting, the spectroscopic sample is divided into two independent subsets, the training and validation sets, and the formal minimizations are done using the training set. After each minimization step, the network is evaluated on the validation set, and the set of weights that performs best on the validation set is chosen as the final set. To reduce the chance of ending in a less-than-optimal local minimum, we minimize five networks starting at different positions in the space of weights. Among these, we choose the network that gives the lowest photo-z scatter in the validation set.

We calculated photo-z using galaxy magnitudes, colors, and the concentration indices for all passbands. The concentration index ci in a passband i is defined as the ratio of PetroR50 and PetroR90, which are the radii that encircle 50% and 90% of the Petrosian flux, respectively. Early-type (E and S0) galaxies, with centrally peaked surface brightness profiles, tend to have low values of the concentration index, while late-type spirals, with quasi-exponential light profiles, typically have higher values of c. Previous studies (Morgan 1958; Shimasaku et al. 2001; Yamauchi et al. 2005; Park & Choi 2005) have shown that the concentration parameter correlates well with galaxy morphological type, and we used it to help break the degeneracy between redshift and galaxy type. We present the photo-z results for different combinations of input parameters in Section 5.

4.2. Photometric Redshift Errors

We estimated photo-z errors for objects in the photometric catalog using the nearest neighbor error (NNE) estimator.
Figure 9. Colors vs. spectroscopic redshift for galaxies in the validation set. Red squares (blue circles) denote galaxies with $r < 22$ ($r \geq 22$). The curves are the predicted color–redshift relations for different types of galaxies (E, Sbc, Im) obtained by redshifting the k-corrected SEDs of Assef et al. (2010) and applying the appropriate filters. (A color version of this figure is available in the online journal.)

Table 4

Catastrophic Redshifts
Case

C
Csplit
M
Msplit
CC
CCsplit

Note. Fraction of objects (N_{cat}/N_{total}) with $|z_{phot} - z_{spec}| > 0.1$ for the validation set using different input parameters (colors, concentration indices, and magnitudes) and training procedures.

(Oyaizu et al. 2008a), publicly available. The NNE method is training-set based, with a neighbor selection similar to the NNP photo-z estimator; it associates photo-z errors to photometric objects by considering the errors for objects with similar multi-band magnitudes in the validation set. We use the validation set, because the photo-z of the training set could be overfitted, which would result in NNE underestimating the photo-z errors. In studies of photo-z error estimators applied to mock and real galaxy catalogs, Oyaizu et al. (2008a) found that NNE accurately predicts the photo-z error when the training set is representative of the photometric sample. In the following, $\sigma_{z_{NNE}}$ will denote the nearest neighbors error estimate.

10 http://kobayashi.physics.lsa.umich.edu/~ccunha/nearest/
5. RESULTS

To test the quality of the photo-z estimates, we use the photo-z bias, z_{bias}, and the photo-z rms scatter, σ, defined by

$$z_{\text{bias}} = \frac{1}{N} \sum_{i=1}^{N} (z_{\text{phot},i} - z_{\text{spec},i}),$$

$$\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (z_{\text{phot},i} - z_{\text{spec},i})^2,$$

and σ_{68} is the range containing 68% of the validation set objects in the distribution of $\delta z = z_{\text{phot},i} - z_{\text{spec},i}$. In other words, σ_{68} is the value of $|z_{\text{phot},i} - z_{\text{spec},i}|$ such that 68% of the objects have $|z_{\text{phot},i} - z_{\text{spec},i}| < \sigma_{68}$. Naturally, if the probability distribution function $P(\delta z)$ is Gaussian, then σ and σ_{68} coincide. We also consider σ_{95}, defined in an analogous way.

We computed the photo-z using the ANN method with different combinations of input photometric observables. All tested combinations are listed in Table 2. In case M, we use the five magnitudes $ugriz$. In case C, we use the four colors $ugri$, and in $i-z$. In case CC, we use the four colors with the concentration indices c_u, c_g, c_r, c_i. We also repeat the cases M, C, and CC splitting the training set and the photometric sample into four bins of r magnitude, $r \leq 18$, $18 < r \leq 20$, $20 < r \leq 22$, and $22 < r \leq 24.5$, and perform separate ANN fits in each bin. These cases are dubbed Msplit, Csplit, and CCsplit, respectively. For all cases we use the same network configuration, described in Section 4.1.

In Figure 3, we plot the photometric redshift, z_{phot}, for 10,000 randomly selected objects from validation set versus true spectroscopic redshift, z_{spec}, for all cases considered. In each panel, the solid line traces $z_{\text{phot}} = z_{\text{spec}}$ and the dashed and dotted lines show the corresponding 68% and 95% regions (σ_{68} and σ_{95}), respectively, defined in z_{spec} bins. We find that all
frac{fraction of catastrophic results, here defined as the number of object}{for which we get |\hat{z}_{\text{phot}} - z_{\text{spec}}| > 0.1 divided by the total number in the sample. This definition corresponds to \sim 12\% of the distribution of |\hat{z}_{\text{phot}} - z_{\text{spec}}| for this sample. Based on these results we choose Msplit as the best case. Specifically, Msplit has overall smaller \sigma_{68} as a function of magnitude (Figure 4) and a better fraction of catastrophic results (Table 4).

In Figure 9, we plot the colors \(u - g\), \(g - r\), \(r - i\), and \(i - z\) versus spectroscopic redshift bright \((r < 22)\) and faint \((r \geq 22)\) galaxies in the validation set. We see that, for faint galaxies, colors and spectroscopic redshift are barely correlated. Such degeneracy explains the low efficiency of the method in this magnitude regime.

In Figure 10, we plot the normalized error distribution, i.e., the distribution of \((\hat{z}_{\text{phot}} - z_{\text{spec}})/\sigma_{\text{NNE}}\), for objects in the spectroscopic sample, using the Msplit case, in \(r\) magnitude slices, without any bias correction. The solid lines show Gaussian distributions with zero mean and unit variance. These plots indicate that, on average, the photo-\(z\) estimates are nearly unbiased and the NNE error is a good estimate of the true error, although we can see some asymmetry in the distribution depending on the magnitude range.

In Figure 11, we show the distribution of the estimated photometric redshift, corrected for the bias, \(\hat{z}_{\text{phot}} - \hat{z}_{\text{bias}}\) for the photometric sample, in \(r\) magnitude bins, for our best case (Msplit). The bias was estimated from the validation sample in photo-\(z\) bins with width 0.04 as in Figure 5. The bias correction is included in the final catalog.

For a significant fraction of the photometric sample, the nearest neighbors error estimate is large (greater than 10\% of the photo-\(z\) value) and for most of the science cases it will be necessary to cut the catalog. We show in Figure 12 the photo-\(z\) distributions for the whole sample (as in Figure 11) and for objects with \(\sigma_{\text{NNE}} < 0.1\). We also show in Figure 13 the photometric redshift, \(\hat{z}_{\text{phot}}\), for 10,000 randomly selected objects from the validation set versus the true spectroscopic redshift, \(z_{\text{spec}}\), for the same low-error subsample.

We found that the use of concentration parameters does not improve the result significantly, in contrast to our initial expectation based on the SDSS DR6 results (Oyaizu et al. 2008a). O’Mill et al. (2011) also found that these parameters improve the results for the SDSS DR7 main data. This is related to the error in the measured moments for higher magnitudes, which is especially important for this sample; consequently the additional noise roughly compensates the additional information from these parameters. Similar conclusions can be found in Singal et al. (2011), although their definition of concentration is not the same as that used here.
Figure 13. Photo-z vs. spectroscopic redshift for the Msplit case. Left: full sample as in Figure 3. Right: only objects with $\sigma_{\text{NNE}} z < 0.1$.

(A color version of this figure is available in the online journal.)

6. ACCESSING THE CATALOG

The best-case bias-corrected photo-z catalog (Msplit) is publicly available as a SDSS value-added catalog at http://www.sdss.org/dr7/products/value_added/index.html.

7. CONCLUSIONS

We have presented a public catalog of photometric redshifts for the SDSS co-add photometric sample using photo-z estimates, based on the ANN method, considering the five magnitudes $ugriz$ as input parameters and also performing the training in r magnitude bins separately (Msplit). Our tests indicate that the photo-z estimates are most reliable for galaxies with $r < 22$ and that the scatter increases significantly at fainter magnitudes. Based on our results, we advise the reader to use this catalog carefully for $z_{\text{phot}} \geq 0.75$, since all performance indicators show a lower efficiency of the method, with the chosen spectroscopic sample, at this redshift range. However, depending on the specific science goals, a simple quality cut on the photo-z error might be sufficient to compensate this problem at the desired level.

Funding for the Sloan Digital Sky Survey (SDSS) and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U.S. Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS Web site is http://www.sdss.org/.

The SDSS is managed by the Astrophysical Research Consortium (ARC) for the Participating Institutions. The Participating Institutions are the American Museum of Natural History, Astrophysical Institute Potsdam, University of Basel, University of Cambridge, Case Western Reserve University, The University of Chicago, Drexel University, Fermilab, the Institute for Advanced Study, the Japan Participation Group, The Johns Hopkins University, the Joint Institute for Nuclear Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Scientist Group, the Chinese Academy of Sciences (LAMOST), Los Alamos National Laboratory, the Max-Planck-Institute for Astronomy (MPIA), the Max-Planck-Institute for Astrophysics (MPA), New Mexico State University, Ohio State University, University of Pittsburgh, University of Portsmouth, Princeton University, the United States Naval Observatory, and the University of Washington.

APPENDIX

DATA QUERY CODE

Here we provide the SDSS database query used to obtain the catalog containing the photometric sample used in this paper. Note that the query requires the TYPE flag to be set to 3 (galaxies) and selects objects with dereddened model magnitude $16 < r < 24.5$, which do not have any of the following flags: BRIGHT, SATURATED, and SATUR_CENTER. The full query is shown below.

```
SELECT ObjID, ra, dec, 
dered_u, dered_g, dered_r, dered_i, dered_z, 
petroR50_u/petroR90_u as c_u, 
petroR50_g/petroR90_g as c_g, 
petroR50_r/petroR90_r as c_r, 
petroR50_i/petroR90_i as c_i, 
petroR50_z/petroR90_z as c_z, 
err_u, err_g, err_r, err_i, err_z 
INTO coadd_mags_allinone 
FROM Stripe82..PhotoObjAll 
WHERE (flags_r & 0x0000080000040002) = 0 
AND type=3 
AND mode=1 
AND (run=106 or run=206) 
AND dered_r BETWEEN 16 AND 24.5
```

We made an additional cut in order to select only objects which have positive values for \textit{petroR50/petroR90}. The final catalog has 13,688,828 galaxies.

Here we provide a brief description of the flags used in the query: BRIGHT indicates that an object is a duplicate detection of an object with signal to noise greater than 200σ; SATURATED indicates that an object contains one or more saturated pixels; SATUR.CENTER indicates that the object center is close to at
least one saturated pixel. Note that in selecting PRIMARY objects (using PhotoPrimary), we have implicitly selected objects that either do not have the BLENDED flag set or else have NODEBLEND set or nchild equal zero. In addition, the PRIMARY catalog contains no BRIGHT objects, so the cut on BRIGHT objects in the query above is in fact redundant. BLENDED objects have multiple peaks detected within them, which Photo attempts to deblend into several CHILD objects. NODEBLEND objects are BLENDED but no deblending was attempted on them, because they are either too close to an EDGE, or too large, or one of their children overlaps an edge. A few percent of the objects in our photometric sample have NODEBLEND set; some users may wish to remove them.

We also suggest that users require objects to have the BINNED1 flag set. BINNED1 objects were detected at $\geq 5\sigma$ significance in the original imaging frame.

The SDSS Web site\(^\text{11}\) provides further recommendations about flags, which we strongly recommend that users read.

REFERENCES

Abazajian, K., Adelman-McCarthy, J. K., Agüeros, M. A., et al. 2009, ApJS, 182, 543
Annis, J., Soares-Santos, M., Strauss, M. A., et al. 2012, ApJ, submitted (arXiv:1111.6619)
Assef, J., Kochanek, C. S., Brodwin, M., et al. 2010, ApJ, 713, 970
Blanton, M. R., Lin, H., Lupton, R. H., et al. 2003, AJ, 125, 2276
Collister, A. A., & Lahav, O. 2004, PASP, 116, 345
Connolly, A. J., Csabai, I., Szalay, A. S., et al. 1995, AJ, 110, 2655
Csabai, I., Budavári, T., Connolly, A. J., et al. 2003, AJ, 125, 580

d’Abrusco, R., Longo, G., Paolillo, M., et al. 2007, arXiv:astro-ph/0701137
Drinkwater, M. J., Jurek, R., Blake, C., et al. 2010, MNRAS, 401, 1429
Eisenstein, D. J., Annis, J., Gunn, J. E., et al. 2001, AJ, 122, 2267
Fukugita, M., Ichikawa, T., Gunn, J. E., et al. 1996, AJ, 111, 1748
Garilli, B., Le Fèvre, O., Guzzo, L., et al. 2008, A&A, 486, 683
Gunn, J. E., Carr, M., Rockosi, C., et al. 1998, AJ, 116, 3040
Gunn, J. E., Siegmund, W. A., Munnery, E. J., et al. 2006, AJ, 131, 2332
Hogg, D. W., Finkbeiner, D. P., Schlegel, D. J., & Gunn, J. E. 2001, AJ, 122, 2129
Ivezić, Ž., Lupton, R. H., Schlegel, D., et al. 2004, Astron. Nachr., 325, 583
Jiang, L., Fan, X., Annis, J., et al. 2008, AJ, 135, 1057
Lupton, R., Gunn, J. E., Ivezić, Ž., Knapp, G. R., & Kent, S. 2001, in ASP Conf. Ser. 238, Astronomical Data Analysis Software and Systems X, ed. F. R. Harnden, Jr., F. A. Primini, & H. E. Payne (San Francisco, CA: ASP), 269
Morgan, W. W. 1958, PASP, 70, 364
O’Mill, A. L. 2011, MNRAS, 413, 1395
Oyaizu, H., Lima, M., Cunha, C., Lin, H., & Frieman, J. 2008a, ApJ, 689, 709
Oyaizu, H., Lima, M., Cunha, C., et al. 2008b, ApJ, 674, 768
Park, C., & Choi, Y.-Y. 2005, ApJ, 635, L29
Pier, J. R., Munn, J. A., Hindlsrey, R. B., et al. 2003, AJ, 125, 1599
Schlegel, D. J., Finkbeiner, D. P., & Davis, M. 1998, ApJ, 500, 525
Shimasaku, K., Fukugita, M., Doi, M., et al. 2001, AJ, 122, 1238
Singal, J., Shimakova, M., Gerke, B., Griffith, R. L., & Lotz, J. 2011, PASP, 123, 615
Smith, J. A., Tucker, D. L., Kent, S., et al. 2002, AJ, 123, 2121
Stoughton, C., Lupton, R. H., Bernardi, M., et al. 2002, AJ, 123, 485
Strauss, M. A., Weinberg, D. H., Lupton, R. H., et al. 2002, AJ, 124, 1810
Tucker, D. L., Kent, S., Richmond, M. W., et al. 2006, Astron. Nachr., 327, 821
Vanzella, E., Cristiani, S., Fontana, A., et al. 2004, A&A, 423, 761
Wadadekar, Y. 2005, PASP, 117, 79
Weiner, B. J., Phillips, A. C., Faber, S. M., et al. 2005, ApJ, 620, 595
Yamauchi, C., Ichikawa, S.-i., Doi, M., et al. 2005, ApJ, 130, 1545
Yee, H. K. C., Morris, S. L., Lin, H., et al. 2000, ApJS, 129, 475
York, D. G., Adelman, J., Anderson, J. E., Jr., et al. 2000, AJ, 120, 1579

\(^{11}\) http://cas.sdss.org/dr7/en/help/docs/algorithm.asp?search=flags&submit1=Search