Etomidate for anesthesia induction: friends or foe in major cardiac surgery?
Audrey de Jong, Samir Jaber

To cite this version:
Audrey de Jong, Samir Jaber. Etomidate for anesthesia induction: friends or foe in major cardiac surgery?. Critical Care, 2014, 18 (5), pp.560. 10.1186/cc12494. inserm-01202704

HAL Id: inserm-01202704
https://inserm.hal.science/inserm-01202704
Submitted on 21 Sep 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Etomidate for anesthesia induction: friends or foe in major cardiac surgery?

Audrey De Jong and Samir Jaber

See related research by Heinrich et al., http://ccforum.com/content/18/4/R150

Abstract

Use of etomidate for anesthesia induction is still debated. In the previous issue of *Critical Care*, Heinrich and colleagues reported that etomidate for anesthesia induction had similar outcome in comparison with other drugs, in a specific population of 3,054 patients ahead of major cardiac surgery. For the authors, the similar outcomes for mortality and length of hospital stay add to the hemodynamic stability and the improved intubation conditions to support keeping etomidate in the emergency drugs armamentarium for induction of anesthesia in patients at risk of hemodynamic failure. This commentary reviews the results and implications of their study.

Introduction

Etomidate is often considered as a two-edged sword and its use for induction of anesthesia is thus controversial. On the one hand, etomidate is used for its hemodynamic stability after anesthesia induction and also allows good intubation conditions, especially in more severely ill patients, and on the other it has negative effects on steroid synthesis. The relative importance of both the positive and negative effects for outcome of patients in both anesthesia and/or critical care is, however, a highly controversial issue.

In the previous issue of *Critical Care*, Heinrich and colleagues [1] reported in their single monocenter study that etomidate for anesthesia induction resulted in similar outcomes to other drugs in a specific population of 3,054 patients ahead of major cardiac surgery. What does this study add to what we already know?

Adrenal suppression

Etomidate use for anesthesia induction has been an important subject of controversy over the past years. Indeed, it has been well known that adrenal mitochondrial 11-β-hydroxylase activity is transiently inhibited by a single dose of etomidate, with consecutive adrenal suppression [6]. Whether etomidate is associated with impaired outcome is still debated and differs depending on patient categories (for example, anesthesia in the operating room, intensive care, emergency department and prehospital area). In critically ill patients suffering from sepsis, studies and meta-analyses found either an increased [7], an equal [8,9] or a decreased [3] risk of mortality after induction of anesthesia by etomidate for intubation. In major cardiac surgery, the clinical relevance of adrenal suppression after a single dose of etomidate for induction is controversial. Indeed, to our knowledge, etomidate induction has never been associated with ‘conclusive’ negative outcome data [2,10]. Again, in the current study [1], induction with etomidate was not associated with worse outcomes in comparison with other drugs.
Systemic inflammatory response
Cardiac surgery and the initiation of cardiopulmonary bypass are stimulators of the inflammatory response. Variations in cortisol occur after major cardiac surgery and because cortisol acts synergistically with endogenous epinephrine and norepinephrine, the impairment of these stress hormones after etomidate induction is likely to contribute to an increase in vasopressor requirement. In the current study [1], the per-operative vasopressor requirement, Sequential Organ Failure Assessment (SOFA) score and inflammation blood parameters (C-reactive protein, procalcitonin and leukocytes) were not significantly different between the etomidate and the non-etomidate groups over the 5-day course observed. These results do not indicate that adverse events occur following adrenal suppression induced by etomidate. Due to the systemic inflammatory response related to cardiac surgery and the initiation of cardiopulmonary bypass, some studies provide encouraging evidence that steroids may impact on clinically important outcomes. Note that steroid utilization in the perioperative period was not described in the study of Heinrich and colleagues [1].

Hemodynamic parameters
Post-induction hypotension has been associated with increased morbidity and mortality, both in anesthesia [11] and intensive care [4,12,13]. As an imidazole derivative, etomidate has structural similarities to α2B-agonists, causing peripheral vasoconstriction, which contributes to the stable hemodynamic profile of this agent. Patients with cardiovascular compromise may be dependent on a high sympathetic tone to maintain their systemic vascular resistance, blood pressure, and cardiac output. For prevention of post-induction hypotension or hypertension, etomidate would appear to be more appropriate than propofol, thiopental, ketamine, or midazolam. In the current study [1], there was no difference in vasopressor requirement between the groups.

Outcome
The similar outcomes observed in this study [1] for mortality, length of hospital stay, length of ICU stay, re-admission to ICU, duration of mechanical ventilation and SOFA score after induction with etomidate in comparison with other drugs could be the result of the opposite effects of hemodynamic stability and adrenal suppression. Moreover, better intubation conditions were found in the etomidate group, as already reported in the literature [14]. Etomidate could be associated with decreased difficult intubation incidences and complications associated with difficult intubation, even if not assessed in the study.

Limits of the study
Some limits of the study [1] have to be pointed out. First, the drugs used in the non-etomidate group are not detailed; neither are incidences of difficult intubation and associated complications. Second, it was a single center study, which may limit the generalizability of the results. Third, all retrospective observational research, no matter how well adjusted for confounding influences, is vulnerable to residual confounding. Further randomized controlled studies are still needed to better evaluate the potential unknown confounding factors. For example, it is unclear if the patients intubated with etomidate were sicker than the patients intubated with other agents.

Nevertheless, Heinrich and colleagues [1] underline that etomidate remains one of the rare emergency drugs available for induction of anesthesia and cannot be abandoned in the setting of major cardiac surgery. Other drugs such as ketamine, thiopental or propofol can also be harmful in the setting of induction of anesthesia ahead of major cardiac surgery. The risk:benefit ratio of induction with etomidate should be carefully assessed before anesthetic induction of cardiac surgical patients, taking into account the associated conditions and particularly hemodynamic data. Indeed, major cardiac surgery patients differ from critically ill septic patients, and etomidate could be particularly appropriate in this situation. However, further large randomized clinical trials are needed to determine if there is any ‘optimal’ induction drug in major cardiac surgery. Analogues of etomidate, such as cyclopropyl methoxycarbonyl metomidate [15], could be of interest to retain the beneficial hemodynamic effects of etomidate with less impairment of the adrenal function.

Conclusion
There are no convincing or consistent data from evidence-based medicine that etomidate is associated with poor outcome, especially increased mortality, particularly if adjustment is made for pre-existing severity of illness. Although some authors have suggested that, in the ICU, physicians should abandon the use of etomidate, the present study of Heinrich and colleagues [1], performed in the setting of anesthesia care, adds a new piece in the ‘etomidate puzzle’. Etomidate could be considered as an interesting and alternative drug in the setting of major cardiac surgery. Finally, it makes the decision to use or not use etomidate more and more complex: it should be used in ways that are adapted to every type of patient and reason for intubation (including type of surgery). The story of etomidate is to be continued.

Abbreviation
SOFA: Sequential organ failure assessment.
Competing interests
SJ has received consulting fees from Dräger, Hamilton, Maquet and Fisher Paykel. ADJ has no potential competing interests relevant to this article.

References
1. Heinrich S, Schmidt J, Ackermann A, Moritz A, Harig F, Castellanos I: Comparison of clinical outcome variables in patients with and without etomidate facilitated anesthesia induction ahead of major cardiac surgery: a retrospective analysis. Crit Care 2014, 18:R150.
2. Wagner CE, Bick JS, Johnson D, Ahmad R, Han X, Ehrenfeld JM, Schildcrout JS, Pretorius M: Etomidate use and postoperative outcomes among cardiac surgery patients. Anesthesiology 2014, 120:579–589.
3. Jung B, Clavieras N, Nougaret S, Molinari N, Roquilly A, Cisse M, Carr J, Chanques G, Asehnoune K, Jaber S: Effects of etomidate on complications related to intubation and on mortality in septic shock patients treated with hydrocortisone: a propensity score analysis. Crit Care 2012, 16:R224.
4. Jaber S, Jung B, Corne P, Sebbane M, Muller L, Chanques G, Verzilli D, Jonquet O, Eledjam J-J, Lefrant J-Y: An intervention to decrease complications related to endotracheal intubation in the intensive care unit: a prospective, multiple-center study. Intensive Care Med 2010, 36:248–255.
5. Asehnoune K, Mahe PJ, Seguin P, Jaber S, Jung B, Guitton C, Chatel-Josse N, Subileau A, Tellier AC, Masson F, Renard B, Malledant Y, Lejus C, Volteau C, Sébille V, Roquilly A: Etomidate increases susceptibility to pneumonia in trauma patients. Intensive Care Med 2012, 38:1673–1682.
6. Molenaar N, Bijkerk RM, Beishuizen A, Hempen CM, de Jong MF, Vermes I, van der Sluijs VG, Gribes AR, Groeneveld A: Steroidogenesis in the adrenal dysfunction of critical illness: impact of etomidate. Crit Care 2012, 16:R121.
7. Chan CM, Mitchell AL, Shorr AF: Etomidate is associated with mortality and adrenal insufficiency in sepsis: a meta-analysis. Crit Care Med 2012, 40:2945–2953.
8. Ray DC, McKeown DW: Effect of induction agent on vasopressor and steroid use, and outcome in patients with septic shock. Crit Care Med 2007, 11:R56.
9. Jaber P, Combex L, Lapostolle F, Dhaouadi M, Ricard-Hibon A, Vivien B, Bertrand L, Beltramini A, Gamand P, Albizzati S, Perdrizet D, Lebail G, Chollet Xemard C, Maxime V, Brun-Quisson C, Lejus C, Volteau C, Sébille V, Roquilly A: Adrenocortical suppression and recovery after continuous hypnotic infusion: etomidate versus its soft analogue cyclopropyl-methoxycarbonyl metomidate. Crit Care 2013, 17:R20.
10. Zed PJ, Abu-Laban RB, Harrison DW: Intubating conditions and hemodynamic effects of etomidate for rapid sequence intubation in the emergency department: an observational cohort study. Acad Emerg Med 2006, 13:78–83.
11. Ge D, Pejo E, Cotten JF, Raines DE: Adrenocortical suppression and recovery after continuous hypnotic infusion: etomidate versus its soft analogue cyclopropyl-methoxycarbonyl metomidate. Crit Care 2013, 17:R20.

Cite this article as: De Jong and Jaber: Etomidate for anesthesia induction: friends or foe in major cardiac surgery? Critical Care 2014 18:560.