Broken current anomalous dimensions, conformal manifolds and RG flows

Vladimir Bashmakov1, Matteo Bertolini1,2, Himanshu Raj1

1 SISSA and INFN - Via Bonomea 265; I 34136 Trieste, Italy
2 ICTP - Strada Costiera 11; I 34014 Trieste, Italy

bertmat,hraj,vbashmakov@sissa.it

Abstract

We consider deformations of a conformal field theory explicitly breaking some global symmetries of the theory, addressing both cases of marginal and relevant deformations. Exploiting the constraints put by conformal symmetry, we compute anomalous dimensions of broken currents. Our analysis is done using field theory techniques and also holographic ones, where necessary. Field theoretical methods suffice to discuss e.g. symmetry-breaking deformations of the $O(N)$ model in $d = 4 - \epsilon$ dimensions. Holography is instrumental, instead, to compute current anomalous dimensions in β-deformed superconformal field theories, and in a class of $N = 1$ RG flows at large 't Hooft coupling.
Contents

1 Introduction 1
2 Methods - Field theory and holography 4
 2.1 On exactly marginal deformations 6
3 Multiplet recombination along conformal manifolds 7
 3.1 Abelian toy model 7
 3.2 β-deformed superconformal field theories 9
4 Multiplet recombination by relevant deformations 15
 4.1 The $O(N)$ model 15
 4.2 AdS-to-AdS domain walls 17
5 Conclusions 20

A β-deformations: matter fields quantum numbers 21
B Volumes of X_5 and the 2-torus 21
C Fixed points of the deformed $O(N)$ model 22

1 Introduction

Conformal field theories (CFT) play a central role in physics. Several physical phenomena are governed by (approximate) CFT and in the theoretical understanding of many others they are key ingredients. In fact, the extreme UV and IR dynamics of a generic quantum field theory (QFT) are often governed by a CFT, so the latter are also important to have control on QFT in general.

The basic data one needs to know to characterize a CFT are the spectrum of primary operators and OPE coefficients, and different approaches can be pursued to have control on them (e.g., the recent renewed interest in the bootstrap program).

Whenever two conformal field theories are connected by some deformation, be it relevant or marginal, interesting phenomena can arise. For instance, it can happen that a primary operator of the undeformed CFT enjoying some shortening condition merges with

1This is known to be true at least in $d = 2$ and $d = 4$ dimensions (and believed to be so for $d \leq 6$). In this work, we will be mostly concerned with four-dimensional QFTs.
another primary, and the two distinct conformal families recombine into a single, longer one in the deformed CFT [2]. This phenomenon can be used to understand properties of the deformed CFT once the original CFT and the corresponding deformation are known. For instance, if the deformation is small, one can compute the leading correction to the anomalous dimension of operators which recombine just by doing computations in the original CFT [3].

In this paper we will focus on the phenomenon of multiplet recombination, in particular of current multiplets. The basic dynamics can be summarized as follows. Consider a d-dimensional CFT with some global symmetry (think of a $U(1)$ symmetry, for definiteness). The corresponding current is conserved

$$\partial^\mu J_\mu = 0 .$$

From the above equation it follows that the CFT operator J_μ is at the unitarity bound, its dimension being $\Delta_J = d - 1$.

Suppose now we perturb the CFT by a deformation triggered by some charged scalar operator and coupling g. Such deformation breaks the symmetry explicitly. Suppose further that the deformed theory is still a CFT; either because the deformation is (exactly) marginal or, if the deformation is relevant, because the end-point of the RG is still a CFT. At such fixed point the current is not conserved anymore, that is

$$\partial^\mu J_\mu = O ,$$

with O an operator of the deformed CFT, itself related to a scalar primary operator of the undeformed CFT. Note that in the deformed CFT O is a descendant of the spin-one current, so they belong to the same conformal family, while in the original CFT they do not, see eq. (1.1).

Strictly speaking, this picture holds only when currents are weakly broken, namely when the symmetry-breaking CFT sits at small values of the coupling g which controls the deformation, anomalous dimensions are small and can be evaluated perturbatively in g. This is the case whenever the deformation is marginal, since then g does not run and can be taken to be arbitrarily small. For relevant deformations, instead, the coupling runs and reaches some fixed value g^\ast. In this case there should exist some parameter which lets one tune g^\ast to small values, i.e. it should be possible to make the RG flow arbitrarily

\[2\] This primary operator is the one obtained by acting with a symmetry transformation on the operator triggering the deformation. We are assuming that for every local operator of the deformed theory there exists one in the undeformed theory such that correlation functions of the former reduce to those of the latter for $g = 0$.

short in the space of couplings. For generic RG flows, instead, \(g_* \) cannot be tuned to zero, anomalous dimensions can easily be order one, and it is difficult to map conformal families of the two CFTs. Still, it remains true that in the deformed theory there is (at least) a spin-1 short operator less, and a spin-1 long operator more (with all its descendants). Therefore, in the following we will refer to current multiplet recombination even for these more intricate situations.

From eq. (1.2) it follows that the scaling dimension of the current in the deformed CFT is \(\Delta_J > d - 1 \), meaning that some (positive by unitarity) anomalous dimension has been generated

\[
\Delta_J = d - 1 + \gamma .
\] (1.3)

From the viewpoint of representations of the conformal algebra, the multiplet where \(J_\mu \) sits is a short multiplet in the original CFT, and a long multiplet in the deformed one. As seen from the original CFT, the multiplet to which \(J_\mu \) belongs has recombined with that to which \(O \) does.

In this paper we present several concrete realizations of this scenario, triggered by exactly marginal and relevant deformations, and compute anomalous dimensions of broken currents.

If the undeformed CFT is a free theory and the deformation can be made parametrically small, it turns out that field theory techniques suffice to reach such a goal. An example we will discuss in some detail is the \(O(N) \) model in \(d = 4 - \epsilon \) dimensions, for which relevant, symmetry-breaking deformations can be considered, and IR fixed points are reached for parametrically small values of the couplings.

For interacting, possibly strongly coupled CFT, instead, we will turn to holography, and compute \(\gamma \) using AdS/CFT techniques. This will allow us to compute the anomalous dimension of broken currents in a class of \(\mathcal{N} = 1 \) superconformal field theories (SCFT) arising from D-branes at toric Calabi-Yau singularities which admit symmetry breaking exactly marginal deformations known as \(\beta \)-deformations [4, 5]. Holography will also be instrumental in discussing a class of RG flows connecting SCFT at strong coupling. Here the anomalous dimensions will be large, but the possibility to have access to the entire flow allows to have control on how multiplet recombine and to compute current anomalous dimensions.

In the next section we explain the field theory and holographic methods we use. This is a review of known stuff, which we do to make the paper self-contained and also to set our notations and conventions. We will be interested both in deformations driven by relevant operators and by marginal ones. Therefore, we will also review some basic results regarding the possible existence of exactly marginal deformations in conformal
field theories. In section 3 we will present examples where the deformation is driven by exactly marginal operators. We will start with a toy-model, which can be described within field theory, and then discuss β-deformed $\mathcal{N} = 1$ SCFT. In section 4 we will consider, instead, instances where the symmetry-breaking deformation is relevant. First we discuss the $O(N)$ model, which can be treated using field theory techniques, and then focus on a class of holographic models describing RG flows between SCFT at strong coupling [6]. Section 5 contains our conclusions. Three appendices contain some technical material we did not include in the bulk of the paper.

2 Methods - Field theory and holography

Computing operator anomalous dimensions exactly is, in principle, very difficult. However, when these arise because multiplet recombine in a CFT, eq. (1.2), the constraints put by conformal symmetry help.

Let us first suppose that the breaking is weak. This means that the CFT with broken symmetries can be made parametrically near to the symmetry-preserving one. To make this manifest, let us rewrite eq. (1.2) as

$$\partial^\mu J_\mu = g O ,$$

(2.1)

which is just to emphasize that at $g = 0$ the current is conserved. Here we are considering either deformations triggered by exactly marginal operators or by relevant ones. In the latter case g should be understood as g_*, the value of the coupling at the IR fixed point, which, as such, is dimensionless.

In such a situation, as we will review below, one can determine γ, to leading order in g, by computing the two-point functions of O and J_μ in the unperturbed CFT [3, 7] (interesting recent works using a similar approach are [2, 8, 9, 10]). The basic idea goes as follows.

In a CFT, the structure of two-point functions of primary operators is fixed, up to an overall normalization, by conformal invariance. In particular, we have for the spin-one current

$$\langle J_\mu(x)J_\nu(y) \rangle = C_J \frac{I_{\mu\nu}}{(2\pi)^d (x-y)^{2\Delta_J}} , \quad I_{\mu\nu} = \delta_{\mu\nu} - 2\frac{(x-y)_\mu (x-y)_\nu}{(x-y)^2} .$$

(2.2)

This equation holds independently on the current being or not being conserved, so, in our case, both in the unperturbed CFT and in the perturbed one. However, the operator dimension Δ_J as well as C_J differ, since they depend on g (in fact, on any coupling of the theory, in general).
Differentiating twice the correlator (2.2) one gets
\[
\langle \partial^\mu J_\mu(x) \partial^\nu J_\nu(y) \rangle = C_J \frac{2(2\Delta_J + 2 - d)(\Delta_J + 1 - d)}{(2\pi)^d(x - y)^{2\Delta_J + 2}}. \tag{2.3}
\]
By the operator identity (2.1) the same two-point function is given by
\[
\langle \partial^\mu J_\mu(x) \partial^\nu J_\nu(y) \rangle = g^2 \langle O(x)O(y) \rangle. \tag{2.4}
\]
By taking the ratio with (2.2), using (1.3), one gets
\[
g^2 (x - y)^2 I_{\mu\nu} \frac{\langle O(x)O(y) \rangle}{\langle J_\mu(x)J_\nu(y) \rangle} = 2\gamma (d + 2\gamma). \tag{2.5}
\]
The above equation shows that in computing current anomalous dimension one needs to know the correlators to one order less in perturbation theory. In particular, to get \(\gamma \) to leading order in \(g \) one needs the value of the two-point functions of \(J_\mu \) and of \(O \) at zeroth order, namely in the undeformed theory where \(O \) is a primary operator (cf the footnote in page two) and its two-point function has the following structure
\[
\langle O(x)O(y) \rangle = C_O \frac{1}{(2\pi)^d(x - y)^{2\Delta_O}}. \tag{2.6}
\]
Plugging this expression into eq. (2.5) and using (2.2) one gets, upon expanding in powers of the coupling \(g \) (note that eq. (2.1) implies that \(\Delta_O = \Delta_J + 1 \))
\[
\gamma = \frac{1}{2d} g^2 \frac{C_O}{C_J} + O(g^4), \tag{2.7}
\]
with \(C_J \) and \(C_O \) evaluated in the undeformed theory, namely at \(g = 0 \).

This method is powerful because it allows to get information on the deformed CFT by just doing computations in the undeformed one. In practice, however, there are two limitations. First, as already emphasized, the perturbative expansion (2.7) makes sense only if the symmetry is weakly broken. If this is not the case, the above strategy cannot be applied and one should resort to some other method. Second, computing the two-point functions of \(O \) and \(J_\mu \), and hence the exact proportionality coefficient in eq. (2.7), is straightforward only if the undeformed CFT is a free theory. In such a case one has to deal with correlators at tree-level and there are no issues of regularization and renormalization. A different story is if the original CFT is an interacting, possibly strongly coupled theory, e.g. emerging from some non-trivial gauge theory dynamics. These are all situations where AdS/CFT techniques can come to rescue (for field theories with a holographic dual).
In AdS/CFT, QFT global currents are dual to gauge fields in the bulk, the mass/dimension relation, in units of the AdS radius, being
\[m^2 = d - 1 + \Delta J (\Delta J - d) . \] (2.8)

From eq. (2.8) it follows that massless gauge fields are dual to conserved currents, and massive ones to non-conserved currents. Therefore, when two CFTs are related by a symmetry-breaking deformation the gauge field dual to the (broken) current is massless in the vacuum dual to the undeformed CFT, and massive in that dual to the deformed CFT. Indeed, as known since the early days of the AdS/CFT correspondence, the breaking of a field theory global symmetry (be it explicit, like in our case, or spontaneous) corresponds to a Higgs mechanism in the bulk, by which a massless vector eats-up a scalar and becomes massive. This is the bulk counterpart of the dynamics which governs current multiplet recombination. Therefore, to compute current anomalous dimensions holographically, one has to calculate the mass of the dual gauge field and plug the result into eq. (2.8).

Note that this provides the anomalous dimension at face value so it also applies to long RG flows, i.e. when \(g_* \) cannot be tuned to zero. In later sections, we will discuss instances of this kind. Another situation in which AdS/CFT techniques can help is when the breaking is weak, actually, but the undeformed CFT is itself at strong coupling, and therefore computing at \(g = 0 \) is itself non-trivial. In this case, one can evaluate the two-point functions \(\langle J_\mu(x) J_\nu(y) \rangle \) and \(\langle O(x) O(y) \rangle \) entering eq. (2.5) holographically. The \(\beta \)-deformed SCFTs we will discuss later are one such examples.

2.1 On exactly marginal deformations

Current multiplet recombination can be triggered by relevant or by exactly marginal deformations. When the deformation is relevant, an RG flow is induced. When the deformation is marginal, instead, there is no RG flow. One is moving along the conformal manifold, the space of exactly marginal deformations \(\mathcal{M}_c \).

The existence of exactly marginal deformations is difficult to establish, and for a generic CFT they do not exist, in general. However, as shown originally by Leigh and Strassler \[4\], and further elaborated by e.g. \[19\] \[5\] \[20\] \[21\], four-dimensional \(\mathcal{N} = 1 \) SCFTs often enjoy non-trivial conformal manifolds.

Suppose we have a SCFT with some global symmetry group \(G \) and a bunch of marginal chiral operators \(\mathcal{O}_i \) carrying some non-trivial representation of \(G \). Deforming the theory

\footnote{See \[11\] for a holographic description of scalar multiplet recombination, and \[12\] \[13\] \[14\] \[15\] \[16\] \[17\] \[18\] for that of higher spin currents. These are both described by a Higgs-like mechanism in the bulk, though of a different nature in the two cases.}
by a G-breaking marginal superpotential $\mathcal{W} = \sum_i g^i O_i$, an RG flow is induced since, generically, the operators O_i acquire an anomalous dimension. In fact, marginal operators may either remain marginal or become marginally irrelevant, but never marginally relevant \cite{20}. A space of exactly marginal operators exists, in general, and near the origin, namely around $g_i = 0$, it is described by the quotient

$$\mathcal{M}_c = \{g_i | D^a = 0\} / G \quad \text{with} \quad D^a = g^i T^a_{ij} \bar{g}^j.$$ \hspace{1cm} (2.9)

Equivalently, $\mathcal{M}_c = \{g_i\} / G^c$, where G^c is the complexified broken symmetry group. To summarize, the conformal manifold is parametrized by all uncharged operators (which trivially satisfy the constraint $D^a = 0$ and are hence exactly marginal by themselves) plus all G-inequivalent linear combinations of charged, classically marginal operators O_i satisfying the constraint (2.9).

There can exist submanifolds of \mathcal{M}_c where only a subgroup $H \subset G$ of the global symmetries is preserved. Along such submanifolds, current multiplets belonging to the complement of H in G recombine. These are the submanifolds we will be interested in.

\section{Multiplet recombination along conformal manifolds}

As discussed above, the existence of exactly marginal deformation, and in turn of a conformal manifold, is a generic property of supersymmetric field theories. Hence, in what follows, we will stick to four-dimensional $\mathcal{N} = 1$ SCFT. We will first present a toy-model and then consider a class of models which naturally arises in string theory, namely SCFT describing the dynamics of D3-branes at toric Calabi-Yau singularities.

\subsection{Abelian toy model}

Let us consider a four-dimensional $\mathcal{N} = 1$ SCFT admitting a $U(1)$ global symmetry, and assume there exists n chiral primary (classically) marginal operators O_i with charge q_i under $U(1)$. A generic symmetry breaking deformation can be described by the following action

$$S = S_{\text{SCFT}} + \sum_i \int d^4 x \, g_i O_i + h.c. \ ,$$ \hspace{1cm} (3.1)

where O_i are the F-components of the chiral superfields O_i and g_i are complex couplings.

\footnote{In a SCFT there do not exist marginal Kähler deformations \cite{20}. Therefore, marginal deformations are described by superpotential deformations.}

\footnote{For a discussion of the holographic counterpart of these results see \cite{22, 23, 24, 25}.}
The submanifold of M_c along which the $U(1)$ symmetry is broken is described by the D-term-like equation
\[
\sum_{i=1}^{n} g_i g_i \bar{g}_i = 0 ,
\] (3.2)
modulo $U(1)$ transformations. There exist $n-1$ non-trivial solutions of the above equation, in general. Let us dub O a linear combination of operators O_i which solves eq. (3.2)
\[
O = g_1 O_1 + g_2 O_2 + \cdots + g_n O_n .
\] (3.3)
This is an exactly marginal deformation. Hence, if perturbing the original SCFT with $W = g O$, one describes yet another SCFT, which is parametrically near to the original one as $g \to 0$. In the deformed SCFT the $U(1)$ symmetry is broken and the $U(1)$ current is not conserved
\[
\text{SCFT}_0: \quad \partial_{\mu} J^\mu = 0 , \quad \text{SCFT}_g: \quad \partial_{\mu} J^\mu \neq 0 .
\] (3.4)
The minimal number of marginal operators which can provide non-trivial solutions of eq. (3.2) is two. In the following, we will then consider, for definiteness, $i = 1, 2$. In this case there exists a one-dimensional subspace in the space of couplings which corresponds to an exactly marginal deformation, described by the equation
\[
q_1 |g_1|^2 + q_2 |g_2|^2 = 0 ,
\] (3.5)
modulo $U(1)$ transformations. The general solution is $g_1 = \sqrt{-q_2/q_1} e^{i\phi} g_2 \equiv g$, with ϕ an arbitrary phase\footnote{Note that from eq. (3.5) it follows that q_1 and q_2 should have opposite sign.} Within this set we can choose a convenient representative. Upon a $U(1)$ rotation
\[
O_1 \to e^{iq_1 \alpha} O_1 , \quad O_2 \to e^{iq_2 \alpha} O_2 .
\] (3.6)
Choosing $\alpha = \phi/(q_2 - q_1)$, and fixing for definiteness $q_1 = -q_2 \equiv q$ we get for the representative
\[
O_+ \equiv O_1 + O_2 ,
\] (3.7)
and the symmetry breaking SCFT is described by the action
\[
S'_{\text{SCFT}} = S_{\text{SCFT}} + \int d^4 x g O_+ + h.c .
\] (3.8)
Note that once this parametrization is chosen, any combinations of O_1 and O_2 not proportional to O_+ itself, will be marginally irrelevant (in particular the operator $O_- \equiv O_1 - O_2$).

By Noether method one can compute the current (non) conservation equation which reads
\[
\partial_{\mu} J^\mu = iq g O_- + h.c .
\] (3.9)
The fact that O_- is (marginally) irrelevant nicely agrees with Δ_J being bigger than 3 whenever $g \neq 0$.

To leading order in g the anomalous dimension of the current J_μ can be computed following the approach reviewed in section 2. The result is

$$\gamma = \frac{1}{4} g^2 \left| g \right|^2 \frac{C_{O_-}}{C_J} + O(g^4),$$ \hspace{1cm} (3.10)

where C_{O_-} is the normalization of the two point function $\langle O_- O_-^\dagger \rangle$. Here C_{O_-} and C_J are to be evaluated at $g = 0$, so are data of the undeformed SCFT.

For interacting CFTs it may happen that the coupling λ governing their dynamics is itself exactly marginal and the free limit, $\lambda = 0$, is part of the conformal manifold (this is the case for $\mathcal{N} = 4$ SYM, which we will consider later). If a holographic description is available, one could then compute eq. (3.10) for small and large values of λ, and compare. In general, one should expect different answers for γ at small and large λ. A simplification is that the coefficients entering eq. (3.10) are to be evaluated at $g = 0$. At any λ, the symmetry is preserved for $g = 0$ and, for a conserved current, the coefficient C_J of the two-point function does not renormalize. On the contrary, nothing like this is expected to hold for the operator O_- and so for C_{O_-}, in principle. In fact, supersymmetry can also protect C_{O_-}, sometime, as we will see later.

3.2 β-deformed superconformal field theories

D3-branes at conical Calabi-Yau (CY) singularities, that is real cones over Sasaki-Einstein manifolds X_5, provide a large class of $\mathcal{N} = 1$ SCFT with holographic duals, the dual geometry being $AdS_5 \times X_5$. The most studied examples are toric CY, which are CY for which X_5 admits at least a $U(1)^3$ isometry group. Of these three abelian factors, one (that associated to the Reeb vector) corresponds to the superconformal R-symmetry. The other two are flavor symmetries of the dual field theory.

For any toric CY singularity there always exists a supersymmetric, exactly marginal deformation preserving the $U(1)^3$ symmetry. This is known as β-deformation. It may happen that X_5 has an enlarged isometry group $H \supset U(1)^3$. In this case, the β-deformation triggers current multiplet recombination since by β-deforming the theory

7 The discrepancy in the numerical coefficient with eq. (2.7) is because the deformation considered here is complex, compare eq. (3.9) with eq. (2.1).

8 This is because in a SCFT the coefficient C_J of the two-point function of a conserved non-R current is nothing but the cubic ’t Hooft anomaly between the superconformal R-current and the current $\text{Tr}(T_R T_J T_J)$ itself [26, 27]. As such, it does not depend on λ.

9
the flavor group H is broken to $U(1)_R \times U(1)^2$ and several currents are not conserved anymore. This is the class of models of interest to our present analysis.

In what follows we will discuss three such examples: the β-deformed $\mathcal{N} = 4$ SYM, the β-deformed conifold theory and the β-deformed $Y^{p,q}$ theories. In the first case $H = U(1)_R \times SU(3)$ \footnote{Note that exactly marginal deformations do not break conformal symmetry and therefore always preserve the superconformal R-current.} For the conifold theory $H = U(1)_R \times SU(2) \times SU(2)$, while for $Y^{p,q}$ singularities $H = U(1)_R \times SU(2) \times U(1)$.

These models share many similarities, but there is one sharp difference: for $\mathcal{N} = 4$ the free theory is part of the conformal manifold. For the conifold and $Y^{p,q}$ theories, it is not \footnote{From a $\mathcal{N} = 1$ perspective the $SU(4)$ R-symmetry group of $\mathcal{N} = 4$ SYM should be seen as $U(1)_R \times SU(3)$, with the abelian factor being the $\mathcal{N} = 1$ R-symmetry and $SU(3)$ a flavor symmetry.}. Therefore, in the latter cases the only available tool to compute current anomalous dimension is AdS/CFT. In the β-deformed $\mathcal{N} = 4$ theory, instead, one can compute current anomalous dimensions both at weak and strong coupling.

In preparation for what we do next, let us recall some basic results about the structure of the conformal manifold for these theories.

On conformal manifolds of toric Calabi-Yau singularities

The space of exactly marginal deformations of $\mathcal{N} = 4$ SYM is three-dimensional \footnote{From a $\mathcal{N} = 1$ perspective the $SU(4)$ R-symmetry group of $\mathcal{N} = 4$ SYM should be seen as $U(1)_R \times SU(3)$, with the abelian factor being the $\mathcal{N} = 1$ R-symmetry and $SU(3)$ a flavor symmetry.}. Besides the one associated to the complex gauge coupling, which preserves all flavor symmetries, there exist two $\mathcal{N} = 1$ preserving deformations: the β-deformation, which preserves a $U(1)^2$ of the flavor symmetry group, and the so-called cubic deformation, which breaks the flavor symmetry group fully. We will be interested in the β-deformation, which is generated by the superpotential

$$W_\beta = \lambda_\beta \, \text{Tr} \left(\Phi_1 \Phi_2 \Phi_3 + \Phi_1 \Phi_3 \Phi_2 \right), \quad (3.11)$$

where Φ_i are the three adjoint chiral superfields of the $\mathcal{N} = 4$ vector multiplet and transform in the 3 of $SU(3)$.

The SCFT describing the dynamics of D3-branes at the tip of the conifold (a CY with $X_5 = T^{1,1}$ whose topology is $S^3 \times S^2$) \footnote{From a $\mathcal{N} = 1$ perspective the $SU(4)$ R-symmetry group of $\mathcal{N} = 4$ SYM should be seen as $U(1)_R \times SU(3)$, with the abelian factor being the $\mathcal{N} = 1$ R-symmetry and $SU(3)$ a flavor symmetry.} is a four-dimensional $\mathcal{N} = 1$ superconformal gauge theory with gauge group $SU(N) \times SU(N)$, a flavor symmetry group $SU(2) \times SU(2)$, bi-fundamental matter and a quartic superpotential

$$W = \lambda_{KW} \, \varepsilon^{\alpha \beta} \varepsilon^{\dot{\alpha} \dot{\beta}} \text{Tr} \left(A_\alpha A_\beta \right), \quad (3.12)$$
where α and $\dot{\alpha}$ are flavor indices, corresponding to the two $SU(2)$ factors, respectively. The fields A_α transform in the $(\frac{1}{2}, 0)$ of the flavor symmetry group $SU(2) \times SU(2)$. The $B_{\dot{\alpha}}$ transform instead in the $(0, \frac{1}{2})$.

The conformal manifold of the conifold theory is a five-dimensional space \[5\]. Two exactly marginal deformations, parametrized by suitable functions of the superpotential coupling λ_{KW} and the sum and difference of the inverse gauge coupling squared \[29\], are invariant under $SU(2) \times SU(2)$. The other three break the flavor symmetry group. As already emphasized, an important difference with respect to $N = 4$ SYM is that the free theory, $g_1 = g_2 = 0$, is not part of the conformal manifold \[28\]. This means that in computing eq. (2.7), there is no regime where a field theory, perturbative analysis applies.

Holographically, each exactly marginal deformation is associated to a massless excitation in the bulk. The dilaton and the B_2-flux over S^2 are dual to the flavor-singlet deformations. The flavor-breaking deformations are instead associated to excitations of KK modes. Of these, the β-deformation, which preserves a $U(1)^2$ flavor symmetry, corresponds to the following superpotential coupling

\[
W_\beta = \lambda_\beta \text{Tr} (A_1 B_1 A_2 B_2 + A_1 B_2 A_2 B_1).
\] (3.13)

The conifold theory is in fact part of an infinite class of $N = 1$ SCFT which arises by considering D3-branes at CY singularities whose bases are the so-called $Y^{p,q}$ manifolds \[30\], \[31\]. These are Sasaki-Einstein manifolds with the same topology of the conifold (the conifold is nothing but a real cone over $Y^{1,0}$), but with different properties for generic p, q, e.g. the R-charges are irrationals \[32\], \[33\]. The flavor symmetry group is $SU(2) \times U(1)$, there are $2p$ $SU(N)$ gauge groups and $4p + 2q$ bi-fundamental fields of four different types, U^α, V^α, Y, Z, with α an $SU(2)$ flavor index. The properties of these fields are summarized in appendix \[A\]. Finally, there is a superpotential with cubic and quartic couplings

\[
W = \sum_{i=1}^q \epsilon_{\alpha \beta} \text{Tr} \left(U_i^\alpha V_i^\beta Y_{2i-1} + V_i^\alpha U_i^{\beta + 1} Y_{2i} \right) + \sum_{j=q+1}^p \epsilon_{\alpha \beta} \text{Tr} \left(Z_j U_j^{\alpha + 1} Y_{2j-1} U_j^\beta \right).
\] (3.14)

The conformal manifold is three-dimensional \[5\]. Two exactly marginal deformations are flavor singlets and correspond to the dilaton and the B_2-flux, as for the conifold. The third breaks the flavor group to $U(1)^2$ and is described by the superpotential coupling

\[
W_\beta = \lambda_\beta \text{Tr} \left(\sum_{i=1}^q \sigma_{3 \alpha}^\beta (U_i^\alpha V_i^\beta Y_{2i+2} + V_i^\alpha U_i^{\beta + 1} Y_{2i+3}) + \sum_{j=q+1}^p \sigma_{3\alpha}^\beta Z_j U_j^{\alpha + 1} Y_{2j+3} U_j^\beta \right).
\] (3.15)
where σ_3 is a Pauli matrix. As for the conifold theory, the free theory is not part of the conformal manifold.

By performing a β-deformation in the $\mathcal{N} = 4$, conifold and $Y^{p,q}$ theories, several global currents acquire an anomalous dimension. Our aim will be to compute the leading correction to γ, eq. (2.7), where g here is λ_β and \mathcal{O} are chiral primaries obtained acting with a flavor symmetry transformation on the operators (3.11), (3.13) and (3.15) respectively, at $\lambda_\beta = 0$. To this aim, we need to compute the two-point functions of these scalar operators (actually of their F-components) and of the corresponding broken currents at $\lambda_\beta = 0$. For the conifold and the $Y^{p,q}$ series this is a computation inherently at strong coupling, hence the only available tool is AdS/CFT. For $\mathcal{N} = 4$ instead, one could evaluate the current anomalous dimension both at weak and strong coupling, since the free theory belongs to the conformal manifold in this case. However, for $\mathcal{N} = 4$ well-known non-renormalization theorems ensure that, as far as eq. (2.7) is concerned, the weak and strong coupling results are the same: the two-point function one has to compute involves 1/2 BPS operators, and this is known not to renormalize (recall we have to evaluate at $\lambda_\beta = 0$). Therefore, in what follows we will treat all three cases holographically.

The gravity dual of β-deformed $\mathcal{N} = 4$ SYM and more general toric singularities, including the conifold and the $Y^{p,q}$ series, was found in [35] (see also [36]). This will allow us to treat the three different cases somewhat together.

Broken currents anomalous dimensions

In an $\mathcal{N} = 1$ SCFT with chiral superfields Φ_i the coefficient C_J appearing in (2.2), can be computed using the R-charges and flavor quantum numbers of fermions in the theory via the following t’Hooft anomaly [26]

$$C_J = 36 \sum_i (\dim R_i) (1 - r_i) \text{Tr}_i (T^a T^b) .$$

(3.16)

Here r_i are the R-charges of the chiral superfields and R_i the representation they transform under gauge symmetry transformations (R-charges of chiral superfields are reported in appendix A). The values of C_J for the various theories is presented in table I. The non-abelian flavor symmetry generators are in the fundamental representation and are normalized as $\text{Tr} (T^a T^b) = \frac{1}{2} \delta^{ab}$. Note that, consistently, the result for $Y^{p,q}$ theories is positive definite, hence satisfying unitarity, for $p \geq q \geq 0$, which is the range for which $Y^{p,q}$ manifolds are defined.

Next we turn to the calculation of C_O. Since \mathcal{O} and W_β lie in the same representation of the flavor group, up to a group theory factor (which for all cases we consider turns out to be
Table 1: Central charges for the non-anomalous global currents

Theory	Flavor group	Current central charge: C_I
$\mathcal{N} = 4$ SYM	$SU(3)$	$6(N^2 - 1)$
Conifold theory	$SU(2) \times SU(2)$	$9N^2$
$Y^{p,q}$ theories	$SU(2)$	$6N^2 \left(5pq^2 - 4p^3 + (2p^2 - q^2) \sqrt{4p^2 - 3q^2}\right)/q^2$
	$U(1)$	$48N^2p^2 \left(2p - \sqrt{4p^2 - 3q^2}\right)/q^2$

1) they have the same normalization. Therefore, the value of C_O is the same as the value of the corresponding C_{W_β} (which is nothing but the component of the Zamolodchikov metric along the corresponding modulus). The two-point function for W_β can be extracted from the bulk effective action for the dual massless scalars β which is known to be \cite{35}

$$S = -\frac{N^2}{16\pi^2 R_E^3} \int d^5x \sqrt{g} \left[C \frac{\partial \mu \beta \partial^\nu \bar{\beta}}{\Im \tau}\right], \quad \beta = \gamma - \tau \sigma , \quad (3.17)$$

where τ is the axio-dilaton, R_E is the radius of AdS and the normalization C depends on the geometry of the compact manifold X_5 and reads

$$C = \langle g_{0,E}\rangle \frac{\text{Vol}(S^5)}{\text{Vol}(X_5)} . \quad (3.18)$$

In the above expression $\langle g_{0,E}\rangle$ is the average value of the determinant of the metric on the internal 2-torus that geometrically realizes the $U(1) \times U(1)$ symmetry in the dual field theory. The values of $\langle g_{0,E}\rangle$ in the three cases is presented in appendix \[E\] The two-point function for the marginal operator W_β that one derives from (3.17) is

$$\langle W_\beta(x)W_\beta^\dagger(0)\rangle = \frac{N^2}{(2\pi)^4 \Im \tau |x|^8} \left[C \right]^{4!} , \quad (3.19)$$

assuming a bulk/boundary coupling with unit normalization, $\int d^4x \beta W_\beta + h.c.$ \[12\] This gives the value of C_{W_β} and in turn C_O

$$C_O = 24g_sN^2C . \quad (3.20)$$

In Table 2 we list the value of C_O for various theories under consideration.

\[11\] Here W_β is the F-component of the superpotential W_β.

\[12\] This is suggested by the fact that both parameters are periodic with the same period \[35\].
Table 2: Normalization of two-point functions of the marginally irrelevant operators.

Plugging the value of C_O and C_J in eq. (2.7) (and remembering that these deformations are complex) we obtain the values of γ. Table 3 contains our results (to express these anomalous dimensions in terms of the field theory parameter λ_β, one should take into account that, following the conventions of [35], there is a $(g_s)^{1/2}$ difference between λ_β and β; therefore, the resulting anomalous dimensions scale just with N).

Table 3: Anomalous dimensions for the broken currents belonging to the non-Cartan elements of the flavor group.

The g_s and N dependence of current anomalous dimensions can be equivalently obtained from the mass of the dual bulk gauge field. To see this, it is sufficient to look at the $\mu - \alpha$ component of the Einstein’s equation. Schematically, we have

$$R_{\mu\alpha} \succ - \frac{1}{48} \frac{|G_3|^2}{\text{Im} \tau} g_{\mu\alpha} ,$$

where the holomorphic three-form flux in the β-deformed geometry takes the form [35]

$$G_3 = - (\gamma - \tau \sigma) R^4_E \ d (12 \omega_1 \wedge d\psi + i G \omega_2) ,$$

where $R^4_E = 4\pi N$ with $\alpha' = 1$. The 2-forms $\omega_1 \wedge d\psi, \omega_2$ and the function G are different for different cases but the form (3.22) for G_3 is the same for $S^5, T^{1,1}$ and $Y^{p,q}$. This implies that $|G_3|^2 \propto |\gamma - \tau \sigma|^2 R^8_E R^{-6}_E = |\gamma - \tau \sigma|^2 R^2_E$. The extra R^6_E comes from the metric
used for contracting the indices in $|G_3|^2$. The Maxwell operator is normalized with an additional factor of R_E^{-2}. Therefore, after canonically normalizing the Maxwell operator we see that the mass term is proportional to

$$m^2 \propto \frac{|\gamma - \sigma|^2 R_E^4}{\text{Im} \tau} = |\gamma - \sigma|^2 4\pi N g_s \equiv 4\pi g_s N |\beta|^2 . \quad (3.23)$$

It would be interesting to reproduce the exact coefficient by analyzing the fluctuation equations for the gauge fields in detail and see whether the result matches with those in table 3. In the undeformed background the (massless) gauge fields dual to conserved currents are degenerate and lie in adjoint representation of the isometry group of X_5. When the β-deformation is turned on the degeneracy is partially lifted, making some of the gauge fields (those that belong to the non-cartan elements) massive. The β-deformation turns on modes that have dependence on the X_5 coordinates. If the explicit form of vector spherical harmonics on X_5 were known, it would become possible to perform degenerate state perturbation theory and obtain the mass splitting to leading order in the deformation.

4 Multiplet recombination by relevant deformations

In this section we consider instances of symmetry-breaking relevant deformations. First we describe symmetry breaking in the $O(N)$ model in $d = 4 - \epsilon$ dimension. In the free phase, this theory admits a $O(N)$ global symmetry. One can add symmetry-breaking relevant deformations which induce an RG flow which brings the theory to an IR fixed point of the Wilson-Fischer type where current multiplets recombine. For sufficiently small ϵ the IR fixed point is parametrically near to the UV free phase, and one can rely on pure field theory techniques to compute current anomalous dimensions. Later we focus on a class RG flows interpolating between $\mathcal{N} = 1$ SCFTs at strong coupling. These flows are described, holographically, by AdS-to-AdS BPS domain-wall solutions of a simple $\mathcal{N} = 2$ gauged five-dimensional supergravity model, originally discussed in \[6\].

4.1 The $O(N)$ model

The action of the free $O(N)$ model in d dimension is

$$S = \frac{1}{2} \sum_{i=1}^N \int d^d x \ (\partial \phi_i)^2 , \quad (4.1)$$
where ϕ_i are N real scalar fields. This theory possesses a global $O(N)$ symmetry, and the set of corresponding currents reads

$$J^a_\mu = -\partial_\mu \phi_i (T^a)^{ij} \phi_j, \quad a = 1, \ldots, \frac{N(N-1)}{2},$$

where T^a are generators of $O(N)$ (normalized here as $\text{Tr}\{T^a T^b\} = -2\delta^{ab}$). Using the scalar two-point function

$$\langle \phi_i(x) \phi_j(0) \rangle = \frac{\delta_{ij}}{(2\pi)^{d/2}|x|^{d-2}},$$

we get the following two-point function for the currents

$$\langle J^a_\mu(x) J^b_\nu(0) \rangle = 2(d-2)\delta^{ab} I_{\mu\nu} \frac{I}{(2\pi)^d |x|^{2d-2}},$$

where $I_{\mu\nu}$ is defined in eq. (2.2). From here we see that $C_J = 4 - 2\epsilon$ in $d = 4 - \epsilon$ dimensions. We would like to deform this theory via a relevant deformation such that the resulting theory has a fixed point with (partially) broken global symmetry. To this end, let us consider the following deformation which breaks $O(N)$ to $O(N-1)$

$$S_{\text{def}} = \int d^d x \left(\frac{g_1}{4!} \phi_1^4 + \frac{g_2}{4} \phi_1^2 \sum_{j=2}^N \phi_j^2 + \frac{g_3}{4!} \left(\sum_{j=2}^N \phi_j^2 \right)^2 \right).$$

Let us first consider $g_2 = 0$. This is nothing but decoupled sectors of ϕ^4 theory and the interacting $O(N-1)$ model, so the choice $g_2 = 0$ is consistent: this coupling will not be generated quantum mechanically. The RG flow resulting from this deformation ends up in a weakly interacting IR fixed point of the Wilson-Fisher type where the value of the coupling (g_{1*}, g_{3*}) is

$$g_{1*} = \frac{16\pi^2}{3} \epsilon + O(\epsilon^2), \quad g_{3*} = \frac{48\pi^2}{N + 7} \epsilon + O(\epsilon^2).$$

The deformation gives rise to following anomalous currents which were otherwise conserved

$$\partial_\mu J^a_\mu = -\frac{g_{1*}}{3!} (T^a)^{ij} \phi_j \phi_i + \frac{g_{3*}}{3!} (T^a)^{ij} \sum_{k=2}^N \phi_i \phi_j \phi_k \phi_i.$$

In total there are $N - 1$ broken currents. Computing the two-point functions of operators on the right-hand side, which provides the values of C_O, one finally gets from eq. (2.1)

$$\gamma_J = \left(\frac{1}{108} + \frac{N + 1}{4(N + 7)^2} \right) \epsilon^2 + O(\epsilon^3).$$
The result is nothing but the sum of anomalous dimension of \(\phi_1 \) and \(\phi_j \) \((j \neq 1) \). This is expected because, for the deformation under consideration, the anomalous dimension of the current is just the sum of the anomalous dimensions of fundamental fields. The symmetry breaking pattern we discussed here is an instance of the more general one \(O(N) \to O(N - M) \times O(M) \), which can be obtained by a straightforward generalization of the action (4.5), as reported in appendix C. Again, there are two decoupled sectors and current anomalous dimensions are given by the sum of elementary fields anomalous dimensions. The computation one needs to do are basically the same we did before, so we refrain to present them here.

Let us now consider a deformation with \(g_2 \neq 0 \). One can easily see that quantum mechanically also \(g_1 \) and \(g_3 \) are generated, now, so in this case one has to consider the most general deformation, eq. (4.5). The \(\beta \)-functions of the three couplings, eq. (C.2), allow for new fixed points. It turns out there are new fixed points for specific values of \(M \) and \(N \). A simple case is that of \(N = 2M \). One can find that a fixed point, different from (4.6), exists for \(M > 4 \). At this point elementary fields constituting the current \(J_{\mu}^a \) are no longer decoupled, and generically the anomalous dimension of the current is not expected to be just the sum of those of elementary fields. These flows can be analyzed following previous procedure, and current anomalous dimensions can be computed. More details can be found in Appendix C.

4.2 AdS-to-AdS domain walls

We would like now to consider symmetry-breaking relevant deformations connecting \(\mathcal{N} = 1 \) SCFT at strong coupling. This is outside the realm of (perturbative) QFT, and hence we will rely on holography. Flows of this kind are described by BPS solutions of five-dimensional \(\mathcal{N} = 2 \) supergravity with AdS-to-AdS domain-wall metric and one or more scalars having non-trivial profiles.

Note that in five-dimensional \(\mathcal{N} = 2 \) supergravity scalars belong either to hypermultiplets or to vector multiplets. The former are dual to chiral operators, the latter to real linear multiplets (which contain the spin-one currents). Therefore, flows triggered by superpotential deformations imply that hypermultiplet scalars in general run. If the chiral operators are charged under a given symmetry, the corresponding bulk gauge fields undergo a Higgs-mechanism and so, by supersymmetry, also the vector multiplet scalars are expected to run.

As an illustrative example, we consider below one such scenario. This corresponds to a SCFT with \(U(1)_{\tilde{R}} \times U(1) \) symmetry (the always present superconformal R-symmetry and an abelian flavor symmetry) perturbed by a charged, relevant deformation \(\mathcal{O} \) triggering
an RG flow towards an IR fixed point. If there are no emergent symmetries in the IR, at such fixed point only a $U(1)_R$ superconformal R-symmetry is preserved.\footnote{The IR R-symmetry is different from the UV one, i.e. it is a combination of the original R-symmetry and the (broken) flavor symmetry. Indeed, a relevant deformation breaks explicitly conformal invariance and in turn the superconformal UV R-symmetry $U(1)_{\tilde{R}}$.} The current associated to the $U(1)$ symmetry recombines and acquires an anomalous dimension.

A two-parameter family of $\mathcal{N} = 2$ supergravity theories describing flows of this kind has been derived long ago \cite{6}. This is $\mathcal{N} = 2$ supergravity coupled to a vector multiplet and a hypermultiplet, with scalar manifold

$$\mathcal{M} = O(1, 1) \times \frac{SU(2, 1)}{SU(2) \times U(1)}.$$ \hspace{1cm} (4.9)

The first factor is parametrized by the vector multiplet real scalar ρ, while the second factor by the four scalars belonging to the hypermultiplet, $q^X = (V, \sigma, \theta, \tau)$. The two gauge fields, the graviphoton A_M and the one sitting in the vector multiplet, B_M, gauge a $U(1) \times U(1)$ subgroup of the isometry group of the hyperscalar manifold. The graviphoton is dual to the R-symmetry, the gauge field B_M to the $U(1)$ flavor symmetry.

This theory admits different class of solutions, depending on the gauging. For instance, there exist domain-wall solutions which provides a holographic version \cite{37} of the so-called τ_U-conjecture, originally proposed in \cite{38}. Or else, non-supersymmetric solutions which have been used to construct models of (holographic) gauge mediation \cite{39}. We will focus, instead, on supersymmetric AdS-to-AdS solutions.

This model has been widely studied and we refer to \cite{6} for any technical detail. In what follows we just summarize the results we need.

What we are interested in are supersymmetric solutions admitting a critical point (i.e. an AdS stationary point of the gravity superpotential) which preserves a $U(1) \times U(1)$ symmetry, and a second critical point preserving a $U(1)$ symmetry. As discussed in \cite{6} (see also \cite{37}), the existence of such fixed points selects a subclass of gaugings, parametrized by two real parameters, β and γ, subject to the condition

$$ (\beta - 1)(1 - 2\zeta) > 0 \quad \cap \quad \zeta > 0 \quad \text{where} \quad \zeta = \frac{1 - \beta}{2\gamma - 1}. \hspace{1cm} (4.10)$$

The UV and IR fixed points sit at

$$P_{UV} : \quad q^X = (1, 0, 0, 0) , \quad \rho = 1$$ \hspace{1cm} (4.11)

$$P_{IR} : \quad q^X = (1 - \xi^2, 0, \xi \cos \varphi, \xi \sin \varphi) , \quad \rho = (2\zeta)^{1/6},$$ \hspace{1cm} (4.12)

in field space, with

$$\xi = \sqrt{\frac{2 - 4\zeta}{3\beta - 1 - 4\zeta}}, \quad \varphi \in [0, 2\pi]. \hspace{1cm} (4.13)$$
Note that P_{IR} is in fact a circle of stationary points, parametrized by φ. This is an exactly marginal marginal deformation of the IR SCFT, which does not play any role for what we want to do next.

For any value of β and γ satisfying the constraint \([4.10]\), there exists a smooth domain-wall (numerical) solution interpolating between P_{UV} and P_{IR} \([6, 37]\). Since P_{UV} and P_{IR} preserve different symmetries, these domain walls describe, holographically, RG flows along which current multiplets recombine. Note that, as advertised, both the hyperscalars and the real scalar ρ run (they have different values at P_{UV} and P_{IR}).

To read the gauge field masses, the relevant part of the $N=2$ Lagrangian is

$$-\frac{1}{4}a_{IJ}F_{\mu\nu}^IF_{J\mu\nu} - \frac{1}{2}(g^2g_{XY}K_i^XK_j^Y)A_{\mu}^I A^{\mu J},$$

(4.14)

where a_{IJ} is a function of the vector scalar multiplet ρ, g controls the value of the cosmological constant and g_{XY} is the metric on the hyperscalar manifold. The Killing vectors are functions of the scalar fields, hence the gauge symmetry can be higgsed or exactly realized depending on the scalar profiles. All flows interpolating between P_{UV} and P_{IR} admit a vanishing Killing vector \([6]\), hence a massless gauge field and, correspondingly, a preserved $U(1)$ symmetry (which can be shown to be an R-symmetry \([6, 37]\)). This reduces to the superconformal R-symmetry $U(1)_R$ in the UV and to the superconformal R-symmetry $U(1)_{IR}$ in the IR. The second Killing vector, associated to the gauge field B_M, instead, vanishes at P_{UV}, only. This implies that B_M is massless at the UV fixed point, and massive elsewhere. Evaluating (4.14) on the IR endpoint of the flow, one finds, in units of the IR AdS radius $L_{IR} = (g W_{IR})^{-1}$ (where W_{IR} is the value of the supergravity superpotential at P_{IR})

$$m_A^2 = 0 \ , \ m_B^2 = \frac{3}{4} \left(\frac{(2\beta + 2\gamma - 3)(6\beta\gamma + \beta - 2\gamma - 3)}{(2\gamma - 1)^{4/3}(1 - \beta)^{2/3}}\right).$$

(4.15)

Plugging the above formula into the mass/dimension relation \([2.8]\) one gets the holographic prediction for the $U(1)$ flavor current anomalous dimension.

As a consistency check, one can evaluate (4.15) for $\beta = -1, \gamma = \frac{3}{2}$, which, as shown in \([6]\), corresponds to the FGPW-flow \([40]\). This is known to describe, holographically, the $\mathcal{N} = 1^*$ mass deformation of $\mathcal{N} = 4$ theory. One gets $m_B^2 = 6$ and in turn $\Delta = 2 + \sqrt{7}$, in agreement with expectations \([40, 6]\).

The supergravity model we have considered is quite simple, but is a prototype of more general ones. It is amusing to see how holography lets one have control on how multiplets recombine even in RG flows which might be extremely intricate from a field theory perspective, and how it makes so transparent the description of in principle very complicated UV/IR operator maps.
5 Conclusions

Current multiplet recombination put severe constraints on CFT parameters. For example, we have seen that for marginal deformations anomalous dimensions of weakly broken currents are fixed, to leading order, by the Zamolodchikov metric on the conformal manifold and by a global current central charge in the undeformed CFT.

We have considered deformations triggered by marginal as well as relevant deformations and shown that in all cases one can compute the anomalous dimension of broken currents. For theories with a holographic dual description, one can also have control on symmetry-breaking flows which are not parametrically short in the space of coupling, and anomalous dimensions can hence be large.

The techniques we have used are well known, and can be applied to several other examples. Besides the β-deformation, the conformal manifold of $\mathcal{N} = 4$ SYM admits another symmetry breaking deformation, which breaks the flavor symmetry group fully, and which can be investigated field theoretically using perturbation theory. Note, also, that at generic points of the conformal manifold of $\mathcal{N} = 4$ SYM supersymmetry is (partially) broken. The corresponding supersymmetry current operators acquire anomalous dimensions which one could also compute. Also the conifold theory, besides the β-deformation, admits two other exactly marginal deformations with different symmetry-breaking patterns.

We focused our attention on four-dimensional theories but there exist marginal deformations for, e.g. theories in three dimensions. An example is the β-deformation of the $\mathcal{N} = 6$ ABJM theory \cite{41} which breaks the $SU(2) \times SU(2)$ flavor symmetry down to $U(1)^2$ \cite{42} (and here, too, supersymmetry is partially broken).

In section 4.2 we have discussed one instance where the breaking is not weak, but there exist many others which can be treated in a similar manner. Here, too, the most interesting direction would be to look for non-supersymmetric flows, or flows along which supersymmetry gets partially or even fully broken.

Acknowledgements

We are grateful to Lorenzo Di Pietro for bringing our attention to this problem and for useful comments. We would also like to thank Riccardo Argurio, Oleg Lunin, Ioannis Papadimitriou, Flavio Porri and Marco Serone for helpful discussions and email exchange. We thank Riccardo Argurio and Lorenzo Di Pietro also for their feedbacks on a preliminary draft version. We acknowledge support from the MPNS-COST Action MP1210 “The String Theory Universe”.

20
A \(\beta \)-deformations: matter fields quantum numbers

In this appendix we report the quantum numbers of matter fields of the \(\mathcal{N} = 4 \) SYM, conifold theory and \(Y^{p,q} \) theories.

1. \(\mathcal{N} = 4 \) SYM: When written in the \(\mathcal{N} = 1 \) language, \(\mathcal{N} = 4 \) SYM theory contains 3 chiral superfields \(\Phi^i \) that transform in the fundamental representation of \(SU(3) \). The R-charges of each of these is 2/3 as is evident from the \(\mathcal{N} = 4 \) superpotential.

2. Conifold theory: The theory contains two kind of bifundamental matter fields \(A_\alpha, B_\dot{\alpha} \). They share the same R-charge \(R = \frac{1}{2} \), and, correspondingly, the same scaling dimension \(\Delta = \frac{3}{4} \). The fields \(A_\alpha \) transform in the \((\frac{1}{2}, 0)\) of the flavor symmetry group \(SU(2) \times SU(2) \). The \(B_\dot{\alpha} \) transform instead in the \((0, \frac{1}{2})\).

3. \(\mathcal{N} = 1 \) \(Y^{p,q} \) theories: The theory contains four different kinds of bifundamental matter fields which are either singlets or doublets under the \(SU(2) \) flavor symmetry. There are \(p \) doublets labelled \(U_\alpha, V_\alpha \), \(p - q \) singlets labelled \(Z \) and \(p + q \) singlets labelled \(Y \). Under the \(U(1) \) flavor (non-R) symmetry these fields have charges 0, 1, \(-1\), 1 respectively whereas under the \(U(1) \) R symmetry they have the following charges

\[
\begin{align*}
 r_U &= \frac{2}{3} pq^{-2} \left(2p - \sqrt{4p^2 - 3q^2} \right), \\
 r_V &= \frac{1}{3} q^{-1} \left(3q - 2p + \sqrt{4p^2 - 3q^2} \right), \\
 r_Z &= \frac{1}{3} q^{-2} \left(-4p^2 + 3q^2 + 2pq + (2p - q) \sqrt{4p^2 - 3q^2} \right), \\
 r_Y &= \frac{1}{3} q^{-2} \left(-4p^2 + 3q^2 - 2pq + (2p - q) \sqrt{4p^2 - 3q^2} \right). \\
\end{align*}
\]

(B.1)

B Volumes of \(X_5 \) and the 2-torus

In this appendix we give the expressions for \(\text{Vol}(S^5)/\text{Vol}(X_5) \) and \(\langle g_{0,E} \rangle \) which were needed to derive \(C_O \) in section 3.2. The ratio of the volumes defined in eq. (3.18), are (see [35] and references therein for details)

\[
\begin{align*}
 \frac{\text{Vol}(S^5)}{\text{Vol}(T^{1,1})} &= 27 \quad \frac{\text{Vol}(S^5)}{\text{Vol}(Y^{p,q})} = \frac{3p^2 \left(3q^2 - 2p^2 + p \sqrt{4p^2 - 3q^2} \right)}{q^2 \left(2p + \sqrt{4p^2 - 3q^2} \right)}. \\
\end{align*}
\]

(B.1)

The average value of the determinant of the internal two-torus \(\langle g_{0,E} \rangle \) can be computed from the corresponding metrics given in [35]. We summarize them below.
1. S^5: The 2-torus in (3.12) of [35] is parametrized by the coordinates (φ_1, φ_2). The average volume is $\langle g_{0,E} \rangle = \pi N$.

2. $T^{1,1}$: This case is slightly subtle. The 2-torus in this case is parametrized by the coordinates $\varphi_1, \varphi_2 = \phi_1 \pm \phi_2$, where ϕ_1, ϕ_2 are the coordinates appearing in the standard line element ((A.18) [35]) of $T^{1,1}$. Taking this into account one finds

$$14 \langle g_{0,E} \rangle = \frac{5\pi}{9} N.$$

3. $Y^{p,q}$: Here the two-torus in eq (A.24) of [35] is parametrized by (α, ϕ). We have

$$\langle g_{0,E} \rangle = \langle g_0 \rangle R_E^4,$$

where the determinant g_0 and R_E have been defined in appendix A.2 of [35]. Upon computing the average we find

$$\langle g_{0,E} \rangle = \frac{7p^2 - 6q^2 - p\sqrt{4p^2 - 3q^2}}{9p(p^2 - q^2)} \pi N. \quad (B.2)$$

In computing $\langle g_0 \rangle$ we have used the following relation for a

$$a = \frac{1}{2} - \frac{p^2 - 3q^2}{4p^3} \sqrt{4p^2 - 3q^2}, \quad (B.3)$$

and the integration over the y coordinate is in the range (y_1, y_2)

$$y_1 = \frac{1}{4p} (2p - 3q - \sqrt{4p^2 - 3q^2}), \quad y_2 = \frac{1}{4p} (2p + 3q - \sqrt{4p^2 - 3q^2}). \quad (B.4)$$

C Fixed points of the deformed $O(N)$ model

The most general deformation of the $O(N)$ model that breaks the $O(N)$ symmetry to $O(M) \times O(N - M)$ is

$$\int d^d x \left[\frac{g_1}{4!} \left(\sum_{i=1}^M \phi_i^2 \right)^2 + \frac{g_2}{4} \sum_{i=1}^M \phi_i^2 \sum_{j=M+1}^N \phi_j^2 + \frac{g_3}{4!} \left(\sum_{j=M+1}^N \phi_j^2 \right)^2 \right]. \quad (C.1)$$

The one-loop β-functions of the couplings g_1, g_2, g_3 in $d = 4 - \epsilon$ dimensions are presented below.

$$\beta_{g_1} = -g_1 \epsilon + \frac{1}{16\pi^2} \left(\frac{g_1^2}{3} (M + 8) + 3g_2^2 (N - M) \right),$$

$$\beta_{g_2} = -g_2 \epsilon + \frac{g_2}{48\pi^2} (g_1(M + 2) + g_3(N - M + 2)), \quad (C.2)$$

$$\beta_{g_3} = -g_3 \epsilon + \frac{1}{16\pi^2} \left(\frac{g_3^2}{3} (N - M + 8) + 3g_2^2 M \right).$$

The last equality of (4.6) in [35] has a typo. We thank O. Lunin for a discussion on this point.
A real zero of β_{g_i} does not exist for generic values of M and N, but it does for specific ones. Here, we present few of the many possible fixed points and specify their nature, i.e., whether it is a IR/UV stable fixed point or an unstable one (this can be established by computing derivatives of the β-functions). However, regardless of the nature, current multiplet recombination happens at these fixed points and one can compute anomalous dimensions of broken currents through the method described in the main text.

1. $M = 1$: This case was discussed in the main text with the coupling g_2 switched off. In the presence of the coupling we have found that a new fixed point exists for $N \geq 12$. However this fixed point is unstable.

2. $N = 2M$: For this case we find that for $M > 4$ there exist the following real zeros of the β function equations:

$$g_{1*} = \frac{48\pi^2\epsilon}{M + 8}, \quad g_{2*} = 0, \quad g_{3*} = \frac{48\pi^2\epsilon}{M + 8}, \quad (\text{IR stable fixed point}), \quad (C.3)$$

$$g_{1*} = \frac{24\pi^2\epsilon}{M + 2}, \quad g_{2*} = \frac{8\pi^2 \sqrt{\frac{M-4}{M}}\epsilon}{M + 2}, \quad g_{3*} = \frac{24\pi^2\epsilon}{M + 2}, \quad \text{(unstable point)} \quad (C.4)$$

References

[1] R. Rattazzi, V. S. Rychkov, E. Tonni and A. Vichi, *Bounding scalar operator dimensions in 4D CFT*, JHEP 0812 (2008) 031 [arXiv:0807.0004 [hep-th]].

[2] S. Rychkov, Z. M. Tan, *The ϵ-Expansion from Conformal Field Theory*, [hep-th/1505.00963v3].

[3] D. Anselmi, *The N=4 quantum conformal algebra*, Nucl. Phys. B 541 (1999) 369 [hep-th/9809192].

[4] R. G. Leigh and M. J. Strassler, *Exactly marginal operators and duality in four-dimensional N=1 supersymmetric gauge theory*, Nucl. Phys. B 447 (1995) 95 [hep-th/9503121].

[5] S. Benvenuti and A. Hanany, *Conformal manifolds for the conifold and other toric field theories*, JHEP 0508 (2005) 024 [hep-th/0502043].

[6] A. Ceresole, G. Dall’Agata, R. Kallosh and A. Van Proeyen, *Hypermultiplets, domain walls and supersymmetric attractors*, Phys. Rev. D 64 (2001) 104006 [hep-th/0104056].
[7] A. V. Belitsky, J. Henn, C. Jarczak, D. Mueller and E. Sokatchev, *Anomalous dimensions of leading twist conformal operators*, Phys. Rev. D 77 (2008) 045029 [arXiv:0707.2936 [hep-th]].

[8] P. Basu and C. Krishnan, *ε-expansions near three dimensions from conformal field theory*, JHEP 1511 (2015) 040 [arXiv:1506.06616 [hep-th]].

[9] E. D. Skvortsov, *On (Un)Broken Higher-Spin Symmetry in Vector Models*, arXiv:1512.05994 [hep-th].

[10] S. Giombi and V. Kirilin, *Anomalous Dimensions in CFT with Weakly Broken Higher Spin Symmetry*, arXiv:1601.01310 [hep-th].

[11] V. Bashmakov, M. Bertolini, L. Di Pietro and H. Raj, *Scalar Multiplet Recombination at Large N and Holography*, arXiv:1603.00387 [hep-th].

[12] M. Bianchi, J. F. Morales and H. Samtleben, *On Stringy AdS$_5 \times S^5$ and Higher Spin Holography*, JHEP 0307 (2003) 062 [hep-th/0305052].

[13] N. Beisert, M. Bianchi, J. F. Morales and H. Samtleben, *Higher Spin Symmetry and N = 4 Sym*, JHEP 0407 (2004) 058 [hep-th/0405057].

[14] M. Bianchi, *Higher Spin Symmetry (Breaking) in N = 4 Sym Theory and Holography*, Comptes Rendus Physique 5 (2004) 1091 [hep-th/0409292].

[15] M. Bianchi, P. J. Heslop and F. Riccioni, *More on La Grande Bouffe*, JHEP 0508 (2005) 088 [hep-th/0504156].

[16] I. R. Klebanov and A. M. Polyakov, *AdS Dual of the Critical O(N) Vector Model*, Phys. Lett. B 550 (2002) 213 [hep-th/0210114].

[17] L. Girardello, M. Porrati and A. Zaffaroni, *3-D Interacting CFTs and Generalized Higgs Phenomenon in Higher Spin Theories on AdS*, Phys. Lett. B 561 (2003) 289 [hep-th/0212181].

[18] R. G. Leigh and A. C. Petkou, *Singleton deformation of higher-spin theory and the phase structure of the three-dimensional O(N) vector model*, Phys. Rev. D 88 (2013) no.4, 046006 [arXiv:1212.4421 [hep-th]].

[19] B. Kol, *On conformal deformations*, JHEP 0209 (2002) 046 [hep-th/0205141].
[20] D. Green, Z. Komargodski, N. Seiberg, Y. Tachikawa and B. Wecht, *Exactly Marginal Deformations and Global Symmetries*, JHEP **1006** (2010) 106 [arXiv:1005.3546 [hep-th]].

[21] B. Kol, *On Conformal Deformations II*, arXiv:1005.4408 [hep-th].

[22] Y. Tachikawa, *Five-dimensional supergravity dual of a-maximization*, Nucl. Phys. B **733** (2006) 188 [hep-th/0507057].

[23] J. Louis and C. Muranaka, *Moduli spaces of AdS$_5$ vacua in $\mathcal{N} = 2$ supergravity*, JHEP **1604** (2016) 178 [arXiv:1601.00482 [hep-th]].

[24] O. Aharony, B. Kol and S. Yankielowicz, *On exactly marginal deformations of $\mathcal{N}=4$ SYM and type IIB supergravity on $\text{AdS}(5) \times S^5$*, JHEP **0206** (2002) 039 [hep-th/0205090].

[25] A. Ashmore, M. Gabella, M. Graa, M. Petrini and D. Waldram, *Exactly marginal deformations from exceptional generalised geometry*, arXiv:1605.05730 [hep-th].

[26] D. Anselmi, J. Erlich, D. Z. Freedman and A. A. Johansen, *Positivity constraints on anomalies in supersymmetric gauge theories*, Phys. Rev. D **57** (1998) 7570 [hep-th/9711035].

[27] E. Barnes, E. Gorbatov, K. A. Intriligator and J. Wright, *Current correlators and AdS/CFT geometry*, Nucl. Phys. B **732** (2006) 89 [hep-th/0507146].

[28] M. J. Strassler, *The Duality cascade*, hep-th/0505153.

[29] I. R. Klebanov and E. Witten, *Superconformal field theory on three-branes at a Calabi-Yau singularity*, Nucl. Phys. B **536** (1998) 199 [hep-th/9807080].

[30] J. P. Gauntlett, D. Martelli, J. Sparks and D. Waldram, *Supersymmetric AdS(5) solutions of M theory*, Class. Quant. Grav. **21** (2004) 4335 [hep-th/0402153].

J. P. Gauntlett, D. Martelli, J. Sparks and D. Waldram, *Sasaki-Einstein metrics on $S^2 \times S^3$* Adv. Theor. Math. Phys. **8** (2004) no.4, 711 [hep-th/0403002].

[31] D. Martelli and J. Sparks, *Toric geometry, Sasaki-Einstein manifolds and a new infinite class of AdS/CFT duals*, Commun. Math. Phys. **262** (2006) 51 [hep-th/0411238].

[32] M. Bertolini, F. Bigazzi and A. L. Cotrone, *New checks and subtleties for AdS/CFT and a-maximization*, JHEP **0412** (2004) 024 [hep-th/0411249].
[33] S. Benvenuti, S. Franco, A. Hanany, D. Martelli and J. Sparks, An Infinite family of superconformal quiver gauge theories with Sasaki-Einstein duals, JHEP 0506 (2005) 064 [hep-th/0411264].

[34] S. Lee, S. Minwalla, M. Rangamani and N. Seiberg, Three point functions of chiral operators in $D = 4, N=4$ SYM at large N, Adv. Theor. Math. Phys. 2 (1998) 697 [hep-th/9806074].

E. D'Hoker, D. Z. Freedman and W. Skiba, Field theory tests for correlators in the AdS / CFT correspondence, Phys. Rev. D 59 (1999) 045008 [hep-th/9807098].

S. Penati, A. Santambrogio and D. Zanon, Two point functions of chiral operators in $N=4$ SYM at order g^{*4}, JHEP 9912 (1999) 006 [hep-th/9910197].

S. Penati, A. Santambrogio and D. Zanon, More on correlators and contact terms in $N=4$ SYM at order g^{*4}, Nucl. Phys. B 593 (2001) 651 [hep-th/0005223].

B. Eden, P. S. Howe and P. C. West, Nilpotent invariants in $N=4$ SYM, Phys. Lett. B 463 (1999) 19 doi:10.1016/S0370-2693(99)00705-4 [hep-th/9905085].

A. Petkou and K. Skenderis, A Nonrenormalization theorem for conformal anomalies, Nucl. Phys. B 561 (1999) 100 doi:10.1016/S0550-3213(99)00514-3 [hep-th/9906030].

M. Bianchi and S. Kovacs, Nonrenormalization of extremal correlators in $N=4$ SYM theory, Phys. Lett. B 468 (1999) 102 doi:10.1016/S0370-2693(99)01211-3 [hep-th/9910016].

[35] O. Lunin and J. M. Maldacena, Deforming field theories with $U(1) \times U(1)$ global symmetry and their gravity duals, JHEP 0505 (2005) 033 [hep-th/0502086].

[36] A. Butti, D. Forcella, L. Martucci, R. Minasian, M. Petrini and A. Zaffaroni, On the geometry and the moduli space of beta-deformed quiver gauge theories, JHEP 0807 (2008) 053 [arXiv:0712.1215 [hep-th]].

[37] M. Bertolini, L. Di Pietro and F. Porri, Holographic R-symmetric flows and the τ_U conjecture, JHEP 1308 (2013) 071 [arXiv:1304.1481 [hep-th]].

[38] M. Buican, A Conjectured Bound on Accidental Symmetries, Phys. Rev. D 85 (2012) 025020 [arXiv:1109.3279 [hep-th]].

[39] R. Argurio, M. Bertolini, L. Di Pietro, F. Porri and D. Redigolo, Holographic Correlators for General Gauge Mediation, JHEP 1208 (2012) 086 [arXiv:1205.4709 [hep-th]].
[40] D. Z. Freedman, S. S. Gubser, K. Pilch and N. P. Warner, *Renormalization group flows from holography supersymmetry and a c theorem* Adv. Theor. Math. Phys. 3 (1999) 363 [hep-th/9904017].

[41] O. Aharony, O. Bergman, D. L. Jafferis and J. Maldacena, *N=6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals*, JHEP 0810 (2008) 091 [arXiv:0806.1218 [hep-th]].

[42] M. S. Bianchi and S. Penati, *The Conformal Manifold of Chern-Simons Matter Theories*, JHEP 1101 (2011) 047 [arXiv:1009.6223 [hep-th]].