Research Article

Neuron-Specific Fluorescence Reporter-Based Live Cell Tracing for Transdifferentiation of Mesenchymal Stem Cells into Neurons by Chemical Compound

Do Won Hwang,1,2 Hyun Woo Kwon,2,3 Jaeho Jang,1 Hee Jung Jung,4 Kwang Rok Kim,4 and Dong Soo Lee1,2

1Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
2Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Medicine or College of Pharmacy, Seoul National University, Seoul, Republic of Korea
3Department of Nuclear Medicine, Korea University Anam Hospital and Korea University College of Medicine, Seoul, Republic of Korea
4Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea

Correspondence should be addressed to Kwang Rok Kim; kkrok@krict.re.kr and Dong Soo Lee; dsl@snu.ac.kr

Received 6 October 2016; Revised 13 February 2017; Accepted 1 March 2017; Published 20 July 2017

1. Background

Mesenchymal stem cells (MSCs) are nonhematopoietic stem cells in the bone marrow (BM), which are able to differentiate into mesodermal lineage cells including osteogenic, chondrogenic, adipogenic, and other mesenchymal lineage cells [1–4]. MSCs may be the best candidate for stem cell-based replacement therapy because they can be easily collected from humans and have relatively low immunogenicity [5–7].

Evidence for therapeutic effects of MSCs have accumulated in recent studies, showing that MSCs exert immunomodulatory effects by reducing proinflammatory activity and neuroprotection via secreting neurotrophic factors to prevent further neuronal injury [8–12]. Intrastriatal transplantation of GDNF- (glial cell line-derived neurotrophic factor-) treated MSCs improved behavior in movement impairment in a rat model of Parkinson’s disease [13]. Transplantation of BM-derived MSCs through intraperitoneal injection delayed disease onset and increased life span in an
simple method described here e
continuously proliferate in vivo and make tumors. The
genesis from MSCs. Furthermore, the grafted MSCs might
di
di
di
di
the
di
di
lineage from heterogeneous cell population [21]. Tubulin
from embryonal stem cells and sort out the astrocyte cell
moters which are speci
di
di
di
ence reporter was used to purify di

NY, USA), containing 10% of fetal bovine serum (FBS;

NY, USA), along with 100 U/ml penicillin, 100 µg/ml streptomycin, and 0.25 µg/ml amphotericin B (Gibco, Grand Island, NY, USA). The nonadherent
cells were removed after 48 h, and the adherent cells were washed with phosphate-buffered saline (PBS) and then cul-
tured in fresh medium. The cultured cells were maintained for 12 to 20 passages during the experiment. The MSCs were
seeded with the initial density of 4 × 10^5 cells per 10 cm plate. The MSCs were treated with NHPDQC at a concentration of
20 µM and 0.1% dimethyl sulfoxide (DMSO: Sigma-Aldrich, St. Louis, USA), followed by incubation in a standard incubator
with 5% CO₂ for 72 h. The MSCs in the control group were treated with the same amount of DMSO and incubated under the same conditions. The morphologies of the cells were

di
di

2.2. Reverse Transcription Polymerase Chain Reaction (RT-
PCR). The total RNA of the MSCs was isolated using TRIzol
reagent (Invitrogen, Grand Island, NY, USA) and was
reverse-transcribed using a first-strand cDNA synthesis kit (Invitrogen, Grand Island, NY, USA). The sequences of
forward and reverse primers were described in Table 1. The polymerase chain reaction (PCR) was performed for 30
cycles (denaturation at 94°C for 30 s, annealing at 56°C for
30 s, and extension at 72°C for 60 s).

2.3. Immunohistochemistry. Cells were fixed with 4% parafor-
maldehyde (PFA: Wako Pure Chemical, Osaka, Japan) for
20 min at room temperature. After blocking with normal
serum, the cells were incubated in 0.1% Triton X-100 in
PBS containing primary mouse antibody TuJ1 against
brain-specific βIII-tubulin (1:200 dilution: TU-20, Cell Sig-
naling) and β-tubulin (1:50 dilution, D-10, Santa Cruz) for
24 h at 4°C. The cells were washed and incubated with Alexa
Fluor 488-conjugated goat anti-mouse secondary antibodies
(Invitrogen, Grand Island, NY, USA). Fluorescence images
were obtained with a Carl Zeiss LSM 510 microscope.

2.4. Transfection of Fluorescent Reporter Gene. A plasmid
construct with a Tat1 promoter driving red fluorescent
protein expression, pTat1-DsRed2, was kindly provided by
Dr. Yoon K (Sungkyunkwan University, Seoul, Korea) [25].
The plasmid was transfected into MSCs by incubating for 2 h with Lipofectamine Plus (Invitrogen, Carlsbad, CA),
diluted in OPTI-MEM medium (Gibco, Grand Island, NY).
Subsequently, the cells were washed with PBS and cultured for
48 h in a serum-containing growth medium.

2.5. Confocal Microscopy and Live Cell Imaging. The cells
were seeded on sterile cover slips in 24-well plates and
cultured for 24 h. They were then fixed using 4% PFA under
gentle shaking for 20 min, followed by washing with PBS.
Transfer slides were prepared with a mounting solution
containing 4′,6-diamidino-2-phenylindole dihydrochloride
(DAPI) solution (Vector Laboratories Inc., Burlingame, CA,
USA), a confocal laser scanning microscope (LSM 510; Carl
Zeiss Inc., Thornwood, NY, USA) was used for fluorescence
imaging; detection was carried out at a wavelength of
405 nm for DAPI and at 573 nm for DsRed2. The length of
neurite growth in MSCs with neuronal transdifferentiation

amotrophic lateral sclerosis (ALS) mouse model [14].
However, all these therapeutic effects could have been due
to positive “nonneuronal effects” rather than direct neuro-
genesis from MSCs. Furthermore, the grafted MSCs might
continuously proliferate in vivo and make tumors. The
simple method described here efficiently makes MSCs
differentiate to neurons and, importantly, allows the
in vitro time-lapse live cell monitoring of this transdifferenti-
ation of MSCs.

In our previous work, a new small molecule, N-hydroxy-2-
ixoxaline-based small molecule, NHPDQC

(Figure 1). NHPDQC was proposed as potent neuronal
inducer in view of neuron-specific gene expression and
electrophysiological properties without cellular toxicity [15].

Neuron-specific promoter-regulated reporters have been

Figure 1: The quinoxaline-based small molecule, NHPDQC
(N-hydroxy-2-oxo-3-(3-phenylpropyl)-1,2-dihydroquinoxaline-
6-carboxamide), was structurally modified to induce neuronal
derivation of rat MSCs.

2. Methods

2.1. Neuronal Transdifferentiation of MSCs Using NHPDQC.
MSCs were isolated from the femur bone marrow of male
Fisher rats. The cells were then maintained in Dulbecco’s
modified Eagle’s medium (DMEM; Invitrogen, Grand Island,
NY, USA), containing 10% of fetal bovine serum (FBS;
was manually measured on at least 3 acquired images. The
cells were placed in an incubation chamber equipped with a
time-lapse imaging system (Olympus IX81 microscope).
Phase contrast and fluorescence images were obtained simultane-ously, at 30 min intervals, until 72 h following treatment.
Quantitative analysis for measuring neurite growth and fluo-
rescence signal in the DMSO-treated cells and the
NHPDQC-treated cells were performed by implemented
software (METAMORPH 7.5.6, MDS Analytical Technolo-
gies, PA, USA). And confocal data was used for quantitative
analysis using TissueFAXS2.0. After the samples were pre-
scanned, the region of interest was automatically measured.
Individual fluorescence signals from region of interest were
detected using TissueFAXS2.0. Cell analysis software, Tissue-
Quest, was used for analyzing total fluorescence intensity
versus DAPI in the whole cell population (TissueGnostics,
CA, USA).

2.6. Statistical Analysis. Continuous variables were tested
using Student’s t-test. Data were expressed as mean ±
standard deviation, and P values smaller than 0.05 were consid-
ered significant.

3. Results

3.1. Morphological Changes of MSCs with NHPDQC
Treatment. The NHPDQC was synthesized as 1-bromo-3-
phenylpropane underwent coupling reaction with dimethyl
oxalate, then ketoester cyclization with methyl 3,4-diamo-
nobenzoate, and finally introduction of hydroxylamine
using tetrahydropyranoylxyamine and trifluoroacetic acid,
sequentially [15].

MSCs treated with DMSO alone as a control did not
show any morphological changes (Figure 2(a)). In contrast,
two days after incubation of MSCs with 20 μM NHPDQC,
most MSCs showed apparent neuron-like morphological
changes, including a spindle-like retraction of the cell body
along with the elongated neurite outgrowth (Figure 2(b)).
On live cell microscope imaging, the NHPDQC-treated
MSCs started into neuron-like differentiation within 24 h,
and almost all of MSCs (approximately >95%) formed
finally neuron-like phenotype at 48 h (Figure 2(b), lower
panel). Whereas the total number of cells did not increase
substantially in the NHPDQC-treated MSCs, the DMSO-
treated control MSCs increased gradually in cell number
until 48 h.

3.2. Evaluation of Neuronal-Specific Marker Expression
in MSCs Treated with NHPDQC. On RT-PCR analysis for
neuron-specific gene expression at 48 h after NHPDQC
treatment, early postmitotic neuronal marker (neuron-spe-
cific βIII-tubulin), and other neuron-specific markers, NSE
expressed significantly higher in MSCs (Figure 3(a)). In
the MSCs treated with only DMSO as the control group,
βIII-tubulin expression was not detected, but NSE expres-
sion was detected scantily. Glial marker GFAP expression
was not detected in either the treatment or control group.
Expression of the presynaptic vesicle protein, synaptophysin,
increased slightly in the NHPDQC-treated MSCs within the
treatment group (Figure 3(a)). Immunofluorescence staining
revealed that the cell shape was changed in the NHPDQC-
treated cells using cytoskeleton protein. The NHPDQC
treatment also increased the βIII-tubulin expression in the
cytoplasm of the MSCs (Figure 3(b)). These results
demonstrated that NHPDQC triggered MSCs into early
neuronal lineage within 48 hr postinduction in terms of
immunophenotype with relevant markers.

3.3. In Vitro Transdifferentiation Imaging into Neurons in
Living MSCs. To monitor time-lapse changes of neuronal
differentiation of MSCs by NHPDQC in vitro, we introduced
a reporter plasmid DNA vector driven by the Tat1 promoter,
pTat1-DsRed2. Red fluorescence signals increased in the
cytoplasm of MSCs treated with NHPDQC within 48 h
(Figure 4(a)), compared with that of the DMSO-treated
control group, suggesting that the promoter activity of
the neuronal marker (Tat1) was enhanced by NHPDQC.
The neurite growth length measured on confocal micro-
scopic images had a mean value of 53.3 ± 12.4 μm for the
NHPDQC-treated cells (Figure 4(b)). In contrast, in the

Target genes	Abbreviations	Nucleotide sequences
Neuron-specific enolase	NSE	Forward: GTGGACCACTACATAACAGCAGCA Reverse: TGAAGCAATGTTGGCATGAG
Neuron-specific class III β-tubulin	βIII-tubulin	Forward: GGCTCCCTCTCACAAGGTAT Reverse: GTCCGGCTCTTGTTAGTCG
Glial fibrillary acidic protein	GFAP	Forward: TTTTCCTTGTCTCGAAATTA Reverse: GGTTCCTCTTATGTGAGTCTC
Microtubule-associated protein 2	MAP2	Forward: TCGGCTCATTTAAACCAATCC Reverse: GAGCCACATTTGGAAGTAC
Neurofilament medium	NF-M	Forward: GCACATTGGAGGCTTCGGACAC Reverse: GACTCGACCTTTGCTTCTG
Synaptophysin	Synaptophysin	Forward: CCACGGACCCAGAGAC Reverse: GCTGGCTGCCCCTAAC
β-Actin	β-Actin	Forward: TGGAATCTGTTGGCATTACATGAAAC Reverse: TAAAACCGAGCTCAGTTAACGTCG
DMSO-treated control group, the neurite length was not almost measurable meaning the lack of any morphological changes. When TissueFAX fluorescence imaging analyzer was also introduced to obtain total fluorescence signals for the whole cell population in a cell-loaded slide glass, the red fluorescence signals in pTA1-DsRed2-transfected MSCs after treatment of NHPDQC were approximately 10-fold higher than those in the DMSO-treated cell group (Figure 4(c)).

To establish the time-lapse live cell imaging system for the detection of neuronal differentiation in MSCs by NHPDQC, a live cell fluorescence microscopy equipped with CO2-supplied cell chamber stage was used for maintaining the live MSCs until 30 h. MSCs treated with DMSO only showed negligible Ta1 promoter activity and no significant phenotypic alteration on time-lapse imaging (Figure 5(a)). In contrast, we observed a gradual increase in DsRed2 fluorescent signal, accompanied by morphological change in MSCs within the NHPDQC treatment group (Figure 5(b)). On the quantitative analysis of fluorescence signals, intensity in the NHPDQC-treated group increased gradually from 2 h to 24 h and then started to decrease (Figure 5(c)). However, neurite outgrowth progressed further over time in the NHPDQC-treated MSCs. This suggested that Ta1 promoter-based reporter imaging could be used to trace fate changes of bone marrow-derived MSCs to neurons in live cell condition.

4. Discussion

Development of fluorescence-based evaluation system capable of tracing the neuronal differentiation of MSCs by chemical compound is crucial for examining the efficacy of neuronal differentiation of MSCs. In this study, we evaluated the neuronal transdifferentiation ability of NHPDQC for MSCs and developed in vitro monitoring system based on neuron-specific promoter-driven fluorescence reporters during neuronal differentiation of MSCs.

Quinoxaline derivatives are known to have wide range of biological properties from antimicrobial effects to anticancer effects [27]. NHPDQC was synthesized via structural modification of quinoxaline-based small molecule, and this small molecule was first identified from a chemical library to induce neurons in neuronal precursor cell lines. NHPDQC treatment in MSCs showed a significant morphology change and the increased NSE and βIII-tubulin expression on a dose-dependent manner. Functional neuronal characteristics were also verified using electrophysiological studies, and DNA microarray analysis showed that certain cholinergic neuron receptors increased [15]. Based on these results, NHPDQC has been considered as neuronal lineage-specific inducer in MSCs.

This small molecule-based protocol for induction of transdifferentiation of MSCs into neurons may be more suitable for future clinical application than stably overexpressing
Figure 3: Neuronal differentiation of MSCs after treatment of NHPDQC. (a) Reverse transcription polymerase chain reaction (RT-PCR) results (left column: DMSO-treated group, right column: NHPDQC treatment group). Expression of the neuronal markers TuJ1 and NSE was increased in the MSCs at 48 h after treatment with NHPDQC. The RT-PCR results revealed that the expression of the presynaptic vesicle protein, synaptophysin, was increased slightly after 48 h of treatment with NHPDQC. Glial marker GFAP did not increase in both of undifferentiated and differentiated MSCs. (b) Immunofluorescence staining was performed in the DMSO-treated cell group and the group treated with NHPDQC. The results showed that TuJ1 expression was increased in the NHPDQC-treated group within 48 h. Green color: β-tubulin (upper panel), TuJ1 (lower panel); blue color: DAPI.
Figure 4: Enhanced fluorescence signals after neuronal differentiation of pTa1-DsRed2-transfected MSCs by NHPDQC. (a) Confocal microscopic data showed that Ta1 promoter-regulated RFP reporter activity was increased in the NHPDQC-treated group within 48 h (blue color: DAPI; red color: pTa1-DsRed2). (b) Two days after treatment of NHPDQC, length of neurite outgrowth was measured from confocal microscope images. *P value <0.05. (c) Total fluorescence activity for the expression of neuronal markers was analyzed in whole cell population by TissueFAXS2.0.
neuron-inducing transcription factor because genetic modification of transplanted cells using viral vectors may induce unwelcomed side effects including innate immune response [28] and insertional mutagenesis [29]. In this study, we used a small molecule-based method to induce neuronal differentiation of rat MSCs. However, in order to accelerate clinical translation, human MSCs would be more useful and acceptable to be used for future human application. Many previous reports clearly suggest that there are similarities and differences of MSCs of different species. Human MSCs were shown to take a longer time to achieve osteogenic and chondrogenic cell differentiation phenotype, compared to the differentiation time of rat MSCs even though rat MSCs and human MSCs have a similar differentiation potential [30]. Studies evaluating transdifferentiation ability of NHPDQC in human MSCs would be necessary to take one step toward clinical application.

Figure 5: Time-lapse live cell images of (a) the DMSO-treated group and (b) the NHPDQC-treated group in pTa1-DsRed2-transfected MSCs. NHPDQC treatment to induce neuronal differentiation showed that the fluorescence signals in MSCs transfected with pTa1-DsRed2 were gradually increased according to cellular phenotypic changes. (c) Neurite growth (gray) and fluorescence signals (black) were increased in the NHPDQC-treated group than the DMSO-treated cell group from 2 h after treatment. Fluorescence signal in the NHPDQC-treated group was dropped at 24 h after treatment. In contrast, neurite growth was progressed at 30 h after treatment.
Many studies have reported on transdifferentiation of MSCs into neuronal lineage by treatment of chemicals such as β-mercaptoethanol (BME)/dimethyl sulfoxide (DMSO)/butylated hydroxanisole or neurotrophic factors or by their coculture with neural or glial cells [31–37]. More recently, the BME-treated MSCs showed neuron-like features, expressing high level of neural-specific markers (Map2, Nefl, Tau, and nestin) [38]. However, previous neuronal induction protocol using chemicals showed relatively low efficiency and toxic effect to cultured cells [39, 40]. Also, numerous studies have focused on developing a scaffold-based neuronal differentiation induction method [39, 40]. The GO-assembled porcine acellular dermal matrix (PADM) scaffold could promote the differentiation of MSCs into neuronal cells with high gene expression (nestin, beta tubulin-III, GFAP, and MAP2) with neurite sprouting after 7 days under neural differentiation conditions [41]. More interestingly, the exosome of differentiating neuronal cells was sufficient to induce neurogenesis of MSCs [42]. The differentiating PC12 exosome-treated MSCs showed neurite sprouting and upregulated the gene expressions of neuronal markers with a 3.5-fold higher level of miR-125b. However, the design of these 3D architectures was complicated and time consuming and took a long time to generate neuronal lineage.

In our earlier work, the estimated efficacy of NHPDQC for neuronal differentiation was more than 95% in cultured MSCs [15]. Our observation was in agreement with the previous finding, suggesting that NHPDQC would be potent neural inducer in comparison with other chemicals. Woodbury et al. [43] reported that treatment with 2% DMSO elicited morphologic change of MSCs. To eliminate the aberrant effect of nonspecific chemical treatment, we used the control group with much lower DMSO concentration. The control group without NHPDQC did not show any morphological change, indicating NHPDQC-specific induction of neuronal differentiation. Also, we introduced a more convenient method with a low-dose chemical treatment for neural transdifferentiation than that in previous studies [33, 43].

Typical methods for evaluation of neuronal differentiation include a conventional type of inverted microscope for determining cellular morphology, a confocal microscope for detecting immunophenotype, and a transmission electron microscopy for investigating ultrastructure in the fixed sample. These methods have limitation to follow up morphological change because neuronal marker expression of MSCs after committing to neuronal cells fluctuated over time. In this study, we used the neuron-specific promoter-based fluorescence reporter system for time-course tracking of neuronal differentiation in the live MSCs in vitro using time-lapse fluorescence microscope. We found that fluorescence activities in pTα1-DsRed2-transfected MSCs increased gradually in association with increasing neurite outgrowth after induction of neuronal differentiation by NHPDQC. High DsRed2 signals were seen clearly along the extended neurites until at least 30 h (Figure 4(b)). Because the utmost advantage of NHPDQC for inducing neuronal differentiation is high differentiation efficacy and short period time for neuronal induction (more than 95% within 48 h), transient transfection of pTα1-DsRed2 into MSCs was enough to monitor the progress of neuronal differentiation in MSCs.

Development of stable and safe methods for detecting serial changes of neuronal transdifferentiation would be essential in the study of in vivo transdifferentiation of MSCs. In vivo monitoring of neuronal differentiation using optical reporters was reported in living animals in many reports, by showing the change of reporter signals in vivo, using neuron-specific promoter-regulated luciferase reporters or neuron-specific miR-targeted reporters [44, 45]. Though bio-luminescence reporter-based studies provide highly sensitive data with low background in vivo, this method is limited in obtaining microscopic sophisticated changes in vitro. Thus, the development of advanced multimodal imaging techniques using both luciferase and fluorescence reporters could help to better understand in vivo as well as in vitro information on transdifferentiation efficacy of MSCs.

5. Conclusion

In this study, we investigated the capability of a new small molecule, NHPDQC, to facilitate efficiently the neuronal transdifferentiation of MSCs. By observing the changes of fluorescent markers on time-lapse fluorescence imaging system, neuronal differentiation of MSCs could be traced temporally. This efficient method for neuronal induction using NHPDQC and the effective live cell imaging enabled tracking the efficacy of transdifferentiation of MSCs into neurons.

Abbreviations

Abbreviation	Description
ALS	Amyotrophic lateral sclerosis
BM	Bone marrow
BME	β-Mercaptoethanol
DAPI	Dihydrochloride
DMEM	Dulbecco’s modified Eagle’s medium
DMSO	Dimethyl sulfoxide
FACS	Fluorescence-activated cell sorting
FBS	Fetal bovine serum
FOV	Field of view
GDNF	Glial cell line-derived neurotrophic factor
GFAP	Glial fibrillary acidic protein
MAP2	Microtubule-associated protein 2
miR	MicroRNA
MSCs	Mesenchymal stem cells
NEFL	Neurofilament, light polypeptide
NSE	Neuron-specific enolase
PADM	Porcine acellular dermal matrix
PBS	Phosphate-buffered saline
PFA	Paraformaldehyde
RFP	Red fluorescent protein
rGO	Reduced graphene oxide
RT-PCR	Reverse transcription polymerase chain reaction
Tα1	Tubulin α1

Conflicts of Interest

The authors declare that they have no competing interests.
Authors’ Contributions

Do Won Hwang and Dong Soo Lee conceived and designed the experiments. Hyun Woo Kwon and Jaejo Jung performed the experiments. Hee Jung Jung and Kwang Rok Kim contributed reagents/materials/analysis tools. Do Won Hwang and Hyun Woo Kwon analyzed the data. Do Won Hwang, Hyun Woo Kwon, and Dong Soo Lee wrote the manuscript. Do Won Hwang and Hyun Woo Kwon contributed equally to this investigation. All authors read and approved the manuscript.

Acknowledgments

This research was supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (HI14C0466, HI14C3344, and HI14C1277); the National Research Foundation of Korea grant funded by the National Research Foundation of Health & Welfare, Republic of Korea (HI14C0466, HI14C3344, and HI14C1277); the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2015M3C7A1028926); and by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2016R1D1A1A02937217).

References

[1] P. S. Mathieu and E. G. Loboa, “Cytoskeletal and focal adhesion influences on mesenchymal stem cell shape, mechanical properties, and differentiation downstream on osteogenic, adipogenic, and chondrogenic pathways,” Tissue Engineering. Part B, Reviews, vol. 18, no. 6, pp. 436–444, 2012.

[2] J. T. Vilquin and P. Rosset, “Mesenchymal stem cells in bone and cartilage repair: current status,” Regenerative Medicine, vol. 1, no. 4, pp. 589–604, 2006.

[3] C. M. Teven, X. Liu, N. Hu et al., “Epigenetic regulation of mesenchymal stem cells: a focus on osteogenic and adipogenic differentiation,” Stem Cells International, vol. 2011, Article ID 201371, 18 pages, 2011.

[4] M. F. Pittenger, A. M. Mackay, S. C. Beck et al., “Multilineage potential of adult human mesenchymal stem cells,” Science, vol. 284, no. 5411, pp. 143–147, 1999.

[5] Y. Miura, “Human bone marrow mesenchymal stromal/stem cells: current clinical applications and potential for hematolgy,” International Journal of Hematology, vol. 103, no. 2, pp. 122–128, 2016.

[6] T. Squillaro, G. Peluso, and U. Galderisi, “Clinical trials with mesenchymal stem cells: an update,” Cell Transplantation, vol. 25, no. 5, pp. 829–846, 2016.

[7] D. M. Griffin, T. Ritter, and B. P. Mahon, “Immunological aspects of allogeneic mesenchymal stem cell therapies,” Human Gene Therapy, vol. 21, no. 12, pp. 1641–1655, 2010.

[8] H. Yagi, A. Soto-Gutierrez, B. Parekkadan et al., “Mesenchymal stem cells: mechanisms of immunomodulation and homing,” Cell Transplantation, vol. 19, no. 6, pp. 667–679, 2010.

[9] S. Zhao, R. Wehner, M. Bornhäuser, R. Wassmuth, M. Bachmann, and M. Schmitz, “Immunomodulatory properties of mesenchymal stromal cells and their therapeutic consequences for immune-mediated disorders,” Stem Cells and Development, vol. 19, no. 5, pp. 607–614, 2010.

[10] R. E. Newman, D. Yoo, M. A. LeRoux, and A. Danilkovitch-Miagkova, “Treatment of inflammatory diseases with mesenchymal stem cells,” Inflammation & Allergy Drug Targets, vol. 8, no. 2, pp. 110–123, 2009.

[11] F. Gao, S. M. Chiu, D. A. Motan et al., “Mesenchymal stem cells and immunomodulation: current status and future prospects,” Cell Death & Disease, vol. 7, no. 1, pp. e2062.1–e2062.11, 2016.

[12] T. B. Ribeiro, A. S. Duarte, A. L. Longhini et al., “Neuroprotection and immunomodulation by xenografted human mesenchymal stem cells following spinal cord ventral root avulsion,” Scientific Reports, vol. 5, pp. 16167.1–16167.12, 2015.

[13] M. Dezawa, H. Kanno, M. Hoshino et al., “Specific induction of neuronal cells from bone marrow stromal cells and application for autologous transplantation,” The Journal of Clinical Investigation, vol. 113, no. 12, pp. 1701–1710, 2004.

[14] S. Corti, F. Locatelli, C. Donadoni et al., “Wild-type bone marrow cells ameliorate the phenotype of SOD1-G93A ALS mice and contribute to CNS, heart and skeletal muscle tissues,” Brain, vol. 127, no. 11, pp. 2518–2532, 2004.

[15] N. R. Kim, S. K. Kang, H. H. Ahn et al., “Discovery of a new and efficient small molecule for neuronal differentiation from mesenchymal stem cell,” Journal of Medicinal Chemistry, vol. 52, no. 24, pp. 7931–7933, 2009.

[16] Z. Wang, Y. Wang, Z. Wang et al., “Polymeric nanohelicide regulated spatiotemporal real-time imaging of the differentiation dynamics of transplanted neural stem cells after traumatic brain injury,” ACS Nano, vol. 9, no. 7, pp. 6683–6695, 2015.

[17] K. Raasch, E. Malecki, M. Siemann et al., “Identification of nucleoside analogs as inducers of neuronal differentiation in a human reporter cell line and adult stem cells,” Chemical Biology & Drug Design, vol. 86, no. 2, pp. 129–143, 2015.

[18] B. A. DeRosa, K. C. Belle, B. J. Thomas et al., “hVGAT-mCherry: a novel molecular tool for analysis of GABAergic neurons derived from human pluripotent stem cells,” Molecular and Cellular Neurosciences, vol. 68, pp. 244–257, 2015.

[19] L. Iacovitti, X. Wei, J. Cai et al., “The hTH-GFP reporter rat model for the study of Parkinson’s disease,” PLoS One, vol. 9, no. 12, pp. e113151.1–e113151.19, 2014.

[20] I. Kern, R. Xu, S. Julien et al., “Embryonic stem cell-based screen for small molecules: cluster analysis reveals four response patterns in developing neural cells,” Current Medicinal Chemistry, vol. 20, no. 5, pp. 710–723, 2013.

[21] F. Tang, K. Shang, X. Wang, and J. Gu, “Differentiation of embryonic stem cell to astrocytes visualized by green fluorescent protein,” Cellular and Molecular Neurobiology, vol. 22, no. 1, pp. 95–101, 2002.

[22] H. Hioki, H. Kameda, H. Nakamura et al., “Efficient gene transduction of neurons by lentivirus with enhanced neuron-specific promoters,” Gene Therapy, vol. 14, no. 11, pp. 872–882, 2007.

[23] S. Kumar, K. Zimmermann, H. Hioki, A. Pfeifer, and S. L. Baader, “Efficient and graded gene expression in glia and neurons of primary cerebellar cultures transduced by lentiviral vectors,” Histochemistry and Cell Biology, vol. 143, no. 1, pp. 109–121, 2015.

[24] F. D. Miller, C. C. Naus, M. Durand, F. E. Bloom, and R. J. Milner, “Isotype of alpha-tubulin are differentially regulated during neural maturation,” The Journal of Cell Biology, vol. 105, no. 6, Part 2, pp. 3065–3073, 1987.
[25] K. Mizutani, K. Yoon, L. Dang, A. Tokunaga, and N. Gaiano, “Differential Notch signalling distinguishes neural stem cells from intermediate progenitors,” Nature, vol. 449, no. 7160, pp. 351–355, 2007.

[26] T. Coksaygan, T. Magnus, J. Cai et al., “Neurogenesis in Talpa-1 tubulin transgenic mice during development and after injury,” Experimental Neurology, vol. 197, no. 2, pp. 475–485, 2006.

[27] J. A. Pereira, A. M. Pessoa, M. N. Cordeiro et al., “Quinoloxine, its derivatives and applications: a state of the art review,” European Journal of Medicinal Chemistry, vol. 97, pp. 664–672, 2015.

[28] P. R. Lowenstein, R. J. Mandel, W. D. Xiong, K. Kroeger, and M. G. Castro, “Immune responses to adenovirus and adeno-associated vectors used for gene therapy of brain diseases: the role of immunological synapses in understanding the cell biology of neuroimmune interactions,” Current Gene Therapy, vol. 7, no. 5, pp. 347–360, 2007.

[29] R. Daniel and J. A. Smith, “Integration site selection by retroviral vectors: molecular mechanism and clinical consequences,” Human Gene Therapy, vol. 19, no. 6, pp. 557–568, 2008.

[30] A. Scuteri, E. Donzelli, D. Foudah et al., “Mesengenic differentiation: comparison of human and rat bone marrow mesenchymal stem cells,” International Journal of Stem Cells, vol. 7, no. 2, pp. 127–134, 2014.

[31] K. Parivar, J. Baharara, and A. Sheikholeslami, “Neural differentiation of mouse bone marrow-derived mesenchymal stem cells treated with sex steroid hormones and basic fibroblast growth factor,” Cell Journal, vol. 17, no. 1, pp. 27–36, 2015.

[32] S. B. Nandy, S. Mohanty, M. Singh, M. Behari, and B. Airan, “Fibroblast growth factor-2 alone as an efficient inducer for differentiation of human bone marrow mesenchymal stem cells into dopaminergic neurons,” Journal of Biomedical Science, vol. 21, pp. 1–9, 2014.

[33] N. Rismanchi, C. L. Floyd, R. F. Berman, and B. G. Lyeth, “Cell death and long-term maintenance of neuron-like state after differentiation of rat bone marrow stromal cells: a comparison of protocols,” Brain Research, vol. 991, no. 1-2, pp. 46–55, 2003.

[34] S. F. Tzeng, M. J. Tsai, S. C. Hung, and H. Cheng, “Neuronal morphological change of size-sieved stem cells induced by neurotrophic stimuli,” Neuroscience Letters, vol. 367, no. 1, pp. 23–28, 2004.

[35] J. Sanchez-Ramos, S. Song, F. Cardozo-Pelaez et al., “Adult bone marrow stromal cells differentiate into neural cells in vitro,” Experimental Neurology, vol. 164, no. 2, pp. 247–256, 2000.

[36] Y. Jiang, D. Henderson, M. Blackstad, A. Chen, R. F. Miller, and C. M. Verfaillie, “Neuroectodermal differentiation from mouse multipotent adult progenitor cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, Supplement 1, pp. 11854–11860, 2003.

[37] Y. S. Levy, D. Merims, H. Panet, Y. Barhum, E. Melamed, and D. Ofen, “Induction of neuron-specific enolase promoter and neuronal markers in differentiated mouse bone marrow stromal cells,” Journal of Molecular Neuroscience, vol. 21, no. 2, pp. 121–132, 2003.

[38] R. Khanabadi, A. Saadat, M. Fazilah et al., “Promoting effect of small molecules in cardiomyogenic and neurogenic differentiation of rat bone marrow-derived mesenchymal stem cells,” Drug Design, Development and Therapy, vol. 10, pp. 81–91, 2015.

[39] S. Suon, H. Jin, A. E. Donaldson et al., “Transient differentiation of adult human bone marrow cells into neuron-like cells in culture: development of morphological and biochemical traits is mediated by different molecular mechanisms,” Stem Cells and Development, vol. 13, no. 6, pp. 625–635, 2004.

[40] S. Wenisch, K. Trinkaus, A. Hild et al., “Immunohistochemical, ultrastructural and electrophysiological investigations of bone-derived stem cells in the course of neuronal differentiation,” Bone, vol. 38, no. 6, pp. 911–921, 2006.

[41] W. Guo, S. Wang, X. Yu et al., “Construction of a 3DrGO-collagenhybrid scaffold for enhancement of the neural differentiation of mesenchymal stem cells,” Nanoscale, vol. 8, no. 4, pp. 1897–1904, 2016.

[42] Y. S. Takeda and Q. Xu, “Neuronal differentiation of human mesenchymal stem cells using exosomes derived from differentiating neuronal cells,” PLoS One, vol. 10, no. 8, pp. e0135111.1, 2015.

[43] D. Woodbury, E. J. Schwarz, D. J. Prockop, and I. B. Black, “Adult rat and human bone marrow stem cells differentiate into neurons,” Journal of Neuroscience Research, vol. 61, no. 4, pp. 364–370, 2000.

[44] H. Y. Ko, W. Hwang do, D. S. Lee, and S. Kim, “A reporter gene imaging system for monitoring microRNA biogenesis,” Nature Protocols, vol. 4, no. 11, pp. 1663–1669, 2009.

[45] W. Hwangdo, J. H. Kang, J. M. Jeong et al., “Noninvasive in vivo monitoring of neuronal differentiation using reporter driven by a neuronal promoter,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 35, no. 1, pp. 135–145, 2008.