Sunflower (*Helianthus annuus* L.) genetic resources, production and researches in Turkey

Ahmet Semsettin Tan1,∗ and Yalcin Kaya2

1 Sunflower Breeder and Geneticist, Menemen, Izmir, Turkey
2 Trakya University, Dept. of Genetics and Bioengineering, Edirne, Turkey

Received 12 September 2018 – Accepted 30 January 2019

Abstract – Sunflower is one of the leading oilseed crops and it is widely grown in the Thrace region of Turkey. In 2017, in Turkey as a whole, oilseed and confectionary sunflowers were grown on 779.622 ha with a total production of 1 964 385 t of seed, and average yields of 2.64 t ha−1 for oilseed and 1.67 t ha−1 for confectionary types. Turkey is one of the important countries for crop diversity and has been described as a microcentre in different parts of the world. Landraces of sunflower (*Helianthus annuus* L.) show significant diversity in Turkey and have been collected in the framework of the “National Industrial Plant Genetic Resources Project” (NPGRP). Nine hundred and thirty two oilseed and confectionary sunflower accessions are in longterm conservation in the National Seed Gene Bank of Turkey. The mission of the National Sunflower Research Project is to develop improved germplasm and hybrid varieties by conventional and biotechnical breeding techniques in Turkey. New germplasm and breeding lines have been developed to improve oilseed and confectionary sunflower hybrids with desired characters including high yield and oil quality, resistance to diseases such as: *Plasmopara halstedii* (Farl.) Berl de Toni., *Puccinia helianthi* Schw., and *Orobanche cumana* Walr. Adverse conditions are also taken under consideration. These studies are integrated with agronomic and other related research.

Keywords: sunflower / *Helianthus annuus* L. / production / landraces / Turkey

Résumé – Tournesol (*Helianthus annuus* L.) en Turquie: ressources génétiques, production et recherche. En Turquie, le tournesol est l’une des principales cultures d’oléagineux et est principalement cultivé dans la région de Thrace. En 2017, les tournesols oléagineux et de bouche ont été cultivés sur 77 9622 hectares en Turquie pour une récolte de 1 964 385 t et des rendements moyens de 2640 t/ha pour le premier et 1 670 t/ha pour le second. La Turquie est l’un des principaux pays pour la diversité des cultures et est décrite comme un microcentre pour certaines cultures originaires de différentes régions du monde. Les variétés du tournesol (*Helianthus annuus* L.) présentent également une diversité importante en Turquie. Les variétés de pays de tournesol ont été rassemblées dans le cadre du « Projet national de ressources génétiques pour les cultures industrielles » (National Industrial Plant Genetic Resources Project, NPGRP). Neuf cent trente-deux entrées (932 entrées) de tournesol oléagineux et de bouche sont en conservation à long terme à la Banque nationale de ressources génétiques de Turquie. Le projet de recherche national sur le tournesol a pour mission de développer du matériel génétique amélioré au moyen de techniques de sélection conventionnelles et biotechnologiques pour la région de Thrace et d’autres zones de production en Turquie. De nouveaux germplasmes et lignées parentales ont été mis au point pour améliorer les variétés hybrides oléagineux et de bouche avec les caractères recherchés: rendement élevé et huile de bonne qualité, résistance aux maladies telles que *Plasmopara halstedii* (Farl.) Berl de Toni., *Puccinia helianthi* Schw. et *Orobanche cumana* Walr. Les comportements en conditions défavorables sont également pris en compte. Ces études sont également intégrées à des recherches en agronomie et d’autres sujets connexes.

Mots clés : tournesol / *Helianthus annuus* L. / production / variétés de pays / Turquie

* Contribution to the Topical Issue “The oil & protein crop supply chain in Eastern Europe / La filière oléoprotéagineuse en Europe de l’Est”

∗Correspondence: a_s_tan@hotmail.com
1 Introduction

Turkey is an important country concerning plant genetic resources and center of origin or micro gene center for several crop species (Harlan, 1951) that did not originate in the country, but shows diversity for many characteristics (Tan, 2009; Tan, 2010a, b; Karagoz et al., 2010). Two centers of origin (Mediterranean and Near Eastern) overlap in Anatolia. About 3700 of the 11 707 plant taxa found there are endemic to Turkey (Guner et al., 2012). The National Industrial Crops Genetic Resources Research Project aims to survey, collect, conserve long term, characterize, regenerate and utilize the industrial crop genetic resources of Turkey. This collection is a source of germplasm to be used in breeding programs.

Helianthus annuus L. originated in North America, where wild sunflowers provide important genetic diversity for crop improvement (Heiser et al., 1969; Heiser, 1978; Putt, 1978; Zeven and de Wet, 1982; Miller, 1987; Gobbelen et al., 1989; Schneiter, 1997). Landraces are also important sources of genetic variability, because they have adapted to local environments as a result of natural selections over centuries. Thus, the evaluation of existing confectionary and oilseed sunflower landraces is essential for increased utilization. Characterization studies indicated that confectionary land races are highly variable for morphological characters (Tan, 1993; Tan, 2002; Tan, 2010a, b; Tan and Tan, 2010; 2011; 2012; Tan et al., 2013a, b; Tan et al., 2016a, c; Tan et al., 2017b; Altunok Memiş, 2018; Altunok Memiş et al., 2018).

2 Sunflower genetic resources in Turkey

Crop genetic bases became narrowed since landraces were replaced by modern cultivars (Tankesley and McCouch, 1997). Therefore, in the framework of National Plant Genetic Resources Program (NPGRP), since the 1960s, Turkish landraces of many species have been surveyed, identified then collected before they disappeared and conserved at the National Seed Gene Bank at the Aegean Agricultural Research Institute (AARI) in Izmir, Turkey (Tan, 2000; Tan, 2010b). The sunflower genetic resources collections are included in this seed bank as part of the “Industrial Crops Genetic Resources Project” (Tan and Tan, 1998a, b; Tan, 2000; Tan, 2009; Tan and Tan, 2010, Tan, 2010a, b; Tan and Tan, 2011, 2012; Tan et al., 2013a, b; Tan et al., 2016a, c; Tan et al., 2017c).

These landraces or primitive cultivars are very important sources of genetic diversity, with their adaptability to local environments as a result of natural or farmer selection over centuries. To date, over 932 oilseed and confectionary sunflower accessions collected from sunflower fields, farmer storage and markets are long term ex situ conserved at the National Seed Gene Bank of Turkey (Anonymous, 2017a; Altunok Memiş et al., 2018). Figure 1 shows the collection areas of sunflower land races in Turkey (Anonymous, 2017a; Tan et al., 2017c; Altunok Memiş, 2018).

The oilseed and confectionary sunflower genetic resources received from the National Seed Gene Bank of Turkey were observed for 43 morphological, phenological and technological characters identified by UPOV (Anonymous, 2000) and IBPGR (IBPGR, 1985).

The data were evaluated by Principal Component Analysis (PCA), and Cluster Analysis and the eco-geographical distribution and agro-morphological variation of both oilseed and confectionary sunflower landraces at National Gene Bank have been published (Sneath and Sokal, 1973; Clifford and Stephenson, 1975; Tan, 1983). The distribution areas of sunflower samples showed significant variation within and between accessions. Distinct groupings were determined in principal components and the results of analyses exhibited broad morphological variation for land races (Tan and Tan, 2010, 2012; Tan et al., 2013a, b; Altunok Memiş, 2018).

This genetic diversity and its characterization are very important for hybrid sunflower variety breeding because parental lines with diverse origin have higher potential heterosis, then hybrids made from closely related parents (Kaya, 2010; Kaya, 2014a; Kaya, 2016). Thus, both

Fig. 1. Collection sites of sunflower land races in Turkey.
confectionary and oilseed sunflower land races have been evaluated and utilized in breeding programs at AARI and TARI (Thrace Agricultural Research Institute).

3 Sunflower production in Turkey

An increasing world population makes necessary increased availability of human foods. Vegetable oils are an important source of energy. Production of sunflowers with high yield, oil percentage and oil quality will help to reduce the oilseed production gap in Turkey, which is one of the leading countries for sunflower production. Data presented in Table 1 shows that oilseed and confectionary sunflowers were grown on 77,962 ha producing with 1,964,385 t of seed and an average yield of 2.64 t/ha oilseed and 1.67 t/ha for confectionary types in 2017 (Anonymous, 2017b).

Hybrid varieties constitute approximately 95% of production, but farmers generally prefer to use low yielding landraces when they grow confectionary sunflowers. Major provinces producing oilseed and confectionary sunflower in 2016 are given in Tables 2 and 3.

The Thrace region produces 49.3% of Turkish oilseed sunflowers in Tekirdag, Edirne, Kirkkareli, and Canakkale provinces. This is followed by the Mediterranean, Central Anatolia, Southeastern Anatolia, Black Sea, South Marmara and Aegean regions. These provinces produce a total of 39.7% of production (Anonymous, 2017b). Linoleic (conventional) types represent 97% of sunflower production, high oleic types 3%. The main confectionary seed production areas are in Central Anatolia and the Aegean Region (Anonymous, 2017b).

Sunflower contributes 1,800,000 tons to the total production of 2,700,000 tons of all oilseed crops in Turkey. This production is not sufficient to cover local oil consumption,
partly because, although 9.71 million tons of oilseed sunflower are used directly, 600.777 million tons are exported (Tab. 4). To cover the oilseed deficit, Turkey paid 3.5 million US dollars in 2016 to import oilseed and its derivatives, including 7.38417 million tons of sunflower oil at a cost of 1.015 million US dollars (Tab. 4). While 3.82263 million tons of oilseed sunflower were imported with a value of 2.63925 million US dollars; 0.48259 million tons were exported (Tab. 5). It would be useful to increase, perhaps even double sunflower production in Turkey.

Turkey oilseed processing capacity is 1.750 million tons but only 55% of the capacity of the 110 oil plants is utilized. Seed processing capacity and sunflower oil consumption in Turkey are given in Table 6. Turkish refinery capacity is 4 million tons per year, but the utilization rate of the existing 110 facilities was 70% in 2016 (Anonymous, 2017c). The production of additional oil seeds would create added value. There are some additional potential sunflower production areas such as the Aegean Region and South East Anatolia with suitable ecological conditions for both main and second crop sunflower production in Turkey.

Turkey imports the oilseed sunflower seeds mainly from Bulgaria, Ukraine, Romania, Russia and Moldova. On the other hand, almost half of the raw sunflower oil import is from Ukraine, while the other part is from Russia, Argentina, Romania and Bulgaria. The most exported countries of refined sunflower oil are Iraq, Syria, Lebanon and Thailand (Anonymous, 2017c).

4 Sunflower research in Turkey

The mission of the “National Sunflower Research Projects” at TARI and AARI, and the other Agricultural Research Institutes in Turkey is to breed well adapted and high

Table 4. Sunflower oil export and import values of Turkey (Anonymous, 2017c).
Years
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016

Table 5. Sunflower seed export and import values of Turkey (Anonymous, 2017c).
Years
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016

Table 6. Sunflower seed processing capacity and sunflower oil consumption in Turkey (Anonymous, 2017c).
1000 Metric tons /Years
2009
Seed processing capacity
Sunflower oil consumption
yielding varieties, and to develop knowledge and technology for the Turkish sunflower industry. Research is conducted to develop sunflower varieties with improved yield, oil quality, resistance to diseases such as downy mildew [{*Plasmodiophora halstedii* Farl de Toni}], rust (*Puccinia helianthi* Schw.), *Sclerotinia*, *Rhzopus*, *Botrytis Macrophomina* and *broomrape* (*Orobanche* sp.), other desired characters and adverse conditions (Tan, 1993; Kaya et al., 2004; Kaya and Evci, 2007; Kaya et al., 2009; Kaya, 2010; Tan, 2010a, b, c; Kaya et al., 2013, 2014; Kaya, 2016).

In Turkey, the main constraints for sunflower are attacks by *broomrape* and *downy mildew* (DM) but resistance is available to both parasites. Sunflower rust races have been identified under field conditions (Kaya et al., 2004; Kaya and Evci, 2007; Kaya et al., 2009; Tan, 2010a, b, c; Tan, 2010a; b; Kaya et al., 2012, 2013, 2014; Tan, 2014; Tan et al., 2016a, b; Tan et al., 2017a, b).

To date, oilseed and confectionary sunflower open pollinated variety, parental lines (CMS, maintainer, and restorer lines) and hybrid varieties have been developed and evaluated in yield trials under main and catch crop production seasons. Variety performance tests and yield trials indicated that sunflower can give with satisfactory yield performance (2.50–5.5 t/ha) in both seasons in Thrace, Aegean, and Mediterranean Regions of Turkey (Kaya, 2010; Tan, 2010a, b; Kaya, 2014b; Tan, 2014; Tan et al., 2016b; Kaya, 2016; Tan et al., 2017a, b). The Aegean Region that has suitable ecological conditions for both cropping systems should be considered for sunflower production, in order to decrease the vegetable oil gap in Turkey.

High oleic and herbicide resistant (IMI and SU groups) sunflower varieties are being developed. There are research programs to develop oilseed and confectionary sunflowers for both main and catch crop production seasons. Sunflower germplasm has been developed from sources such as cultivars and breeding populations and tested for general and specific combining ability. Inbred lines, candidate and commercial varieties are evaluated in preliminary and yield trials on a regional basis for both main and catch production seasons in the Aegean Region and other parts in Turkey. In addition, agronomic studies are made on effects of sowing date, plant population, fertilization, irrigation and honeybee pollination on seed yield, oil content, oil quality, silage quality and other plant characteristics.

There is a lack of certified confectionary seed production with desired quality for this type of crop. Consequently, land races are generally used for confectionary sunflower production in Turkey. However, they are not suitable for combine-harvesting because they are not uniform in terms of plant height and physiological maturity (Tan, 2010b; Tan and Tan, 2010). New high yielding oilseed and confectionary sunflower hybrids have been improved and registered for the direct benefit of the agricultural sector and increased sunflower production in the country (Kaya, 2010; Tan, 2010a, b; Aldemir et al., 2016; Altunok et al., 2016; Tan et al., 2016b, Tan et al., 2017a, b).

New high yielding oilseed and confectionary sunflower hybrids have been improved and registered for the direct benefit of the agricultural sector and increased sunflower production in the country.

5 Conclusion

Sunflower is one of the main oilseed crops that contribute to the economy of Turkey for both human and animal nutrition, creating employment and internal and external trade. Production needs to be increased by breeding high yielding varieties tolerant and or resistant to biological and physiological constraints. Sunflower landraces having diversity will also contribute improving high yielding oilseed and confectionary sunflower hybrids.

References

Aldemir M, Tan AS, Altunok A. 2016. Performance of some confectionary sunflower (*Helianthus annuus* L.) varieties in Aegean Region of Turkey, 19th International Sunflower Conference, Edirne, Turkey, 29 May–3 June 2016, pp. 548–555.

Altunok A, Tan AS, Aldemir M, et al. 2016. Performance of some oilseed sunflower (*Helianthus annuus* L.) varieties in Aegean Region of Turkey, 19th International Sunflower Conference, Edirne, Turkey, 29 May–3 June 2016, pp. 535–547.

Altunok Memiş AA. 2018. Türkiye Yağlık Ve Çerezlik Aylığı: *Plasmodiophora halstedii* Farl de Toni ve *Puccinia helianthi* Schw. Genetik Kaynakların Karakterizasyonu ve Değerlendirilmesi. Doktora Tezi. Ege Univ. Zir. Fak. Tarla Bitkileri Bölümü. Borova, İzmir.

Aldemir M, Tan AS, Altunok A, Aldemir M, et al. 2018. Endüstri Bitkileri GenetikKaynakları Araştırma Projesi. Proje Sonuç Raporu (2014–2018). Ege Tarsmsal Araştırma Enstitüsü Müdürlüğü, Menemen, İzmir.

Anonymous. 2000. UPOV Guidelines for the conduct of tests for distinctness, Uniformity and stability, sunflower (*Helianthus annuus* L.). TG/81/6. Available from http://www.upov.int/edocs/tdgdocs/en/tg081.pdf.

Anonymous. 2017a. Database of documentation project of seed gene Bank of AARI in Turkey. Menemen, İzmir/Turkey: Aegean Agricultural Research Institute.

Anonymous. 2017b. TÜİK. Turkish Statistical Institute. Crop Production Statistics. http://www.tuik.gov.tr/.

Anonymous. 2017c. Association of vegetable oil industries database (Bitkisel Yağ Sanayicileri Derneği Verileri). Available from https://www.bysd.org.tr/Default.aspx/.

Clifford HT, Stephenson W. 1975. An introduction to numerical classification. New York: Academic Press.

Gobbelen G, Downey RK, Ashti A. 1989. Oil crops of the world: Their breeding and utilization. McGraw-Hill Pub. Co.

Guner A, Aslan S, Ekim T, Vural M, Babaç MT. 2012. Türkiye Bitkileri Listesi (Damarlı Bitkiler). Nezahat Gökyiğit Bitkileri Bölümü. İstanbul, Türkiye.

Harlan JR. 1951. Anatomy of gene centers. *Amer Nat* 85: 97–103.

Heiser CB Jr, Smith DM, Clevenger SB, Martin WC Jr. 1969. The North american Sunflowers (*Helianthus*). *Mem Torrey Bot Club* 22(3): 1–218.

Heiser CB Jr. 1978. Taxonomy of *Helianthus* and origin of domesticated sunflower. *In: Fehr W, ed. Sunflower sci. and technology. Agronomy* 19: 31–53.

IBPGR. 1985. Sunflower descriptors. Rome, Italy: International board for plant genetic resources (IBPGR).

Karagoz A, Zencirci N, Tan A, et al. 2010. Conservation and utilization of plant genetic resources. *Proc of Turkish Agricultural Engineering VII. Technical Congress. 11–15 January, Ankara Turkey*. 1: 155–177.
Kaya Y. 2010. Public sunflower breeding in Turkey and future directions. *Plant Sci.* (Rastenievudni Naouki) 47(1): 7–13.

Kaya Y. Sunflower. In: Pratap A, ed. Alien gene transfer in crop plants. 2. Springer Press, 2014a, pp. 281–315.

Kaya Y. 2014b. Sunflower production in Balkan region: Current situation and future prospects. *Agric For* 60(4): 95–101.

Kaya Y, Erci G. 2007. Herbicide resistance in sunflower (*Helianthus annuus* L.). *International Research Conference, Plant Genetic Stocks*. The basis of agriculture of today, June 13–14, Plovdiv, Bulgaria, Vol. 2: 45–47.

Kaya Y. 2016. Sunflower in breeding oilseed crops for sustainable production. Elsevier Inc. Available from http://dx.doi.org/10.1016/B978-0-12-801309-0.00004-5.

Kaya Y, Erci G, Pekcan V, Gucer T. 2004. Determining new broomrape-infested areas, resistant lines and hybrids in Trakya region of Turkey. *Helia* 27(40): 211–218.

Kaya Y, Erci G, Pekcan V, Gucer T, Yılmaz MI. 2009. Evaluation of broomrape resistance in sunflower hybrids. *Helia* 32(51): 161–169.

Kaya Y, Jocic S, Miladinovic D. Sunflower. In: Gupta SK, ed. *Technological Innovations in Major World Oil Crops*. 1. New York: Springer Press, 2012, pp. 85–129.

Kaya Y, Erci G, Pekcan V, Yılmaz MI. 2013. Clearfield technology in sunflower and developing herbicide resistance sunflower hybrids. *Soil-Water J* 2(2): 1713–1720.

Kaya Y, Erci G, Pekcan V, Yılmaz MI. Broomrape breeding in sunflower: A case study in Turkey. Proceedings of the Third International Symposium on Broomrape (Orobanche spp.) in Sunflower, June 3–6. Cordoba: New York, 2014, pp. 194–199.

Miller JF. Sunflower Vol: 2. In: Fehr W, ed. *Principle of cultivar selection*. San Fransisco: Freeman, 1997.

Pütt ED. 1978. History and present word status. In: Carter JF, ed. *Sunflower science and technology*. Madison, WI: American Society of Agronomy, pp. 1–29.

Schneiter AA (Ed.). 1997. *Sunflower science and technology*. *Am Soc Agron* 35. Madison, Wisconsin, USA.

Sneath PHA, Sokal RR. 1973. *Numerical Taxonomy*. The principles and practice of numerical classification. San Fransisco: Freeman.

Tan A. 1983. *Sayısal Taksonomik Yöntemlerle Varyasyonun Saptanması*. EBZAE, 30. Menemen.

Tan AS. 1993. Ayaççeğinde (Helianthus annuus L.) melez varetye (F1) islahında kendirmenin hatlarnın çoklu dizi (Line x Teste) analizi yönteminin mezon genotiplerin verim yeteneklerinin saptanması üzerine araştırmları. Doktoru tezi. E.U. Zir. Fak. Fen Bil. Ens. Tarla Bit. Ana Bil. Dalı. Bornova - İzmir.

Tan A. 2000. Biodiversity conservation. *Ex situ* and *in situ* conservation: A case in Turkey. *In: Watanabe K, Komamine Y, Okada Y, eds. Challenge of plant and agricultural sciences to the crisis of food production*. Elsevier Inc. Available from http://dx.doi.org/10.1016/B978-0-12-801309-0.00004-5.

Tan AS, Tan A. 2010. Sunflower (*Helianthus annuus* L.) Genetic Biotechnology Conference. SUNBIO 2010. 1–3 March 2010, Antalya, Turkey. *Helia* 53: 77–84.

Tan AS. 2010b. Performance of some oilseed and confectionary type of sunflower (*Helianthus annuus* L.) varieties Aegean Region of Turkey. *8th European Sunflower Biotechnology Conference*. SUNBIO 2010. 1–3 March 2010, Antalya, Turkey. *Helia* 53: 91–100.

Tan AS. 2010c. Identification of rust (*Puccinia helianthi Schw.*) races of sunflower (*Helianthus Annuus* L.) in Turkey. *8th European Sunflower Biotechnology Conference*. SUNBIO 2010. 1–3 March 2010, Antalya, Turkey. *Helia* 53: 181–190.

Tan AS. 2014. *Bazi Yağlık Hibrî Açıcıçi Çeşitlerinin Menemen Ekolojik Koşullarında Performansları*. *Anadolu J AARI* 24(1): 1–20.

Tan A, Tan AS. 1998a. Database management systems for conservation of genetic diversity in Turkey. *In: Zencirci N, Kaya Z, Anıkster Y, Adams WT, eds. The Proceeding of International Symposium on In situ Conservation of Plant Genetic Diversity. 4–8 November, 1996. Antalya, Turkey.*

Tan A, Tan AS. 1998b. Data collecting and analysis: For *in situ*, on farm, conservation. *In: Jarvis DI, Hodgkin T, eds. Strengthen the scientific basis of in situ conservation of agricultural biodiversity on-farm. Options for data collecting and analysis. Proc. of a workshop to develop tools & procedures for *in situ* conservation on-farm, 25–29 August, Rome, Italy: IPGRI. Available from ftp://ftp.fao.org/ag/agp/countryreports/TurkeyFINALCR.pdf.

Tan AS, Tan A. 2010. Sunflower (*Helianthus annuus* L.) Landraces of Turkey. *International Symposium on Sunflower Genetic Resources*. October 16–20, 2011. Kusadasi, İzmir, Turkey. *Helia* 34: 39–46.

Tan AS, Tan A. 2012. Characterization of sunflower genetic resources of Turkey. *18th International Sunflower Conference, Argentina, Feb 27 Mare–1 Feb 2012.*

Tan AS, Aldemir M, AльтonuK ve A, Tan A. 2013a. *Characterization of Confectionary Sunflower (Helianthus annuus L.) Genetic resources of denizli and erzurum provinces*. *Anadolu J AARI* 23(1): 5–11.

Tan AS, Aldemir M, AльтonuK ve A, Tan A. 2013b. *Characterization of confectionary sunflower (Helianthus Annuus L.) Land races of Turkey*. *International Plant Breeding Congress. 10–14 November 2013, Antalya, Turkey.*

Tan AS, AльтonuK M, Aldemir M. 2014. *Oilseed and confectionary sunflower (Helianthus annuus L.) landraces of Turkey*. *19th International Sunflower Conference, Edirne, Turkey. 29 May–3 June 2016*, pp. 556–566.

Tan AS, Aldemir M, AльтonuK A. 2016b. *Oilseed and confectionary sunflower (Helianthus annuus L.) researches in Aegean Agricultural Research Institute (AARI)*. *19th International Sunflower Conference, Edirne, Turkey. 29 May–3 June 2016*, pp. 527–534.

Tan AS, AльтonuK A, Aldemir M, Yılmaz I, Kartal H, Peksüslü A, Aykas L. 2016c. *Türkiye Endüstri Bitkileri Genetik Kaynakları*. *Anadolu J AARI* 26(1): 28–45.
Tan AS, Aldemir M, Altunok A. 2017a. Bazı Çerezlik Ayçiçeği Çeşit Adaylarının Menemen, İzmir Ekolojik Koşullarında Verim Potansiyelleri. ETAE Dergisi. Anadolu J AARI 2017(1): 1–16.

Tan AS, Tan A, Aldemir M, Altunok A. 2017b. Ege Bölgesi Ayçiçeği Araştırmaları Projesi. 2017 Yılı Gelişme Raporu (Sunflower Research Project for Aegean Region Annual Report, 2017). Ege Tar. Ara. Ens. Menemen, İzmir.

Tan AS, Tan A, Aldemir M, et al. 2017c. Endüstri Bitkileri Genetik Kaynakları Projesi. 2017. Yılı Gelişme Raporu (Industrial Crops Resources Research Project. Annual Report, 2017). Ege Tarmsal Arastirma Enstitüsü (Aegean Agriculture Research Institute). Menemen, İzmir, Turkey.

Tanksley SD, McCouch SR. 1997. Seed banks and molecular maps: Unlocking genetic potential from the wild. Science 277: 1063–1066.

Zeven AC, de Wet JMJ. 1982. Dictionary of cultivated plants and their regions of diversity. The Netherlands: Pudoc, Wageningen, pp. 200.

Cite this article as: Tan AS, Kaya Y. 2019. Sunflower (Helianthus annuus L.) genetic resources, production and researches in Turkey. OCL 26: 21.