Novel test scenarios needed to validate outdoor stability of perovskite solar cells

Wenya Song 1,2,3, ⋆ and Tom Aernouts 1
1 imec—Partner in Solliance and Energyville, Thor Park 8320, 3600 Genk, Belgium
2 ESAT, Katholieke Universiteit Leuven, 3001 Heverlee, Belgium
3 Author to whom any correspondence should be addressed.
E-mail: wenya.song@imec.be

Keywords: perovskite solar cells, outdoor stability, stability test scenario

Abstract
Perovskite solar cells (PSCs) will eventually operate outdoors, subjected to diurnal cycles with varying irradiance and cell temperature throughout 24 h periods. Hereby, we show the PSC stability results from laboratory accelerated stress tests can not obviously suggest their stability in outdoor-like situations. Thus, to validate PSC outdoor stability, it is necessary to emulate outdoor conditions, for which we propose possible test scenarios.

Halide perovskites, due to their high absorption coefficient [1] and high tolerance on sub-bandgap defects [1, 2], have become one of the most attractive photovoltaic (PV) materials. After 10 years of development, thin film solar cells based on polycrystalline halide perovskites have evolved into one of the most efficient PV technologies, with record lab scale cell efficiency exceeding 25% [3], and mini-modules exceeding 17% [4]. Apart from its high efficiency, the low-cost material and fabrication approaches further facilitate its commercialization. Despite all these merits, the performance stability remains a question. Halide perovskites are sensitive to many factors such as moisture, illumination, temperature etc. The extrinsic factors like moisture could be sheltered by effective encapsulation [5], yet, a well encapsulated cell still faces the impact from intrinsic stress factors: light and temperature. Often researchers assess PV device stability by an accelerated stress test (AST), for instance, by tracking cell efficiency under continuous illumination at elevated temperatures for hundreds or thousands of hours. However, a terrestrial solar cell naturally undergoes diurnal cycles, with varying sun irradiance and environmental temperature through the 24 h period. Keeping in mind that eventually perovskite solar cells (PSCs) will operate outdoors, hence on top of AST, it is necessary to understand the stability of PSCs under diurnal cycles, especially after various PSCs have shown reversible performance changes under light-darkness cycling (table 1).

Hereby, we propose a series of tests as shown in figure 1, which are designed to complement stability results from AST with outdoor stability-emulation scenarios by adding changes in stresses step by step. In these scenarios, we mimic winter-like conditions assuming that the daytime is 6 h and night is 18 h. Figure 1(a) illustrates conventional AST in a lab, which is observing efficiency change under constant irradiance and elevated cell temperature. As the first step to simulate the diurnal cycle, the irradiance and cell temperature are kept the same and 18 h ‘nights’ are introduced, as shown in figure 1(b). Then on top of (b), scenario (c) further introduces variation in cell temperature, mimicking the temperature change of a terrestrial solar cell. Eventually as depicted in figure 1(d), irradiance variation is introduced, resulting in a winter-like stress profile, where the irradiance constantly varies during the day and cell temperature accordingly changes [16].

Our preliminary results indicate that different perovskites behave differently. For each scenario, at least two PSCs were tested. To present the results clearly, only one set of representative data is shown in each graph. As shown in figure 2, PSC with FAMA double cation perovskite continuously degrades in scenario (a). However, in scenario (b) when ‘nights’ are present, although degradation is observed during some days, the performance recovers after ‘nights’. Thus, although being stressed with the same irradiance and temperature for the same
amount of time, FAMA PSCs become more stable in scenario (b) than in (a). For such PSCs, it will be inappropriate to claim its instability solely from the AST results. Thus, diurnal tests are strongly recommended for such PSCs.

The unstable behavior of FAMA perovskites under illumination could result from the volatile \cite{17,18} and mobile \cite{11} nature of the MA cation. After replacing MA with Cs, the resultant FACs perovskites are stable in both scenarios (a) and (b) as shown in figure 3. However, when introducing temperature variation during ‘days’ as shown in (c), the cells start degrading after 5 days. Such degradation has been reported and attributed to temperature variation which promoted ion accumulation at the interface between perovskite and selective contacts \cite{19}. This implies stable PSCs in AST are not necessarily stable in outdoor settings with varying meteorological parameters.

In the end, aforementioned observations lead us to conclude that it is not obvious to relate the PSC stability in AST with actual, real-life outdoor stability. Real outdoor stressing of PSC requires specific emulation of those conditions for which we propose possible scenarios here.

\textbf{Table 1.} PSCs that show reversible performance change under light-darkness cycling. Only the elements in perovskite are presented for easier reading.

Device structure	References
ITO/PEDOT:PSS/MAPbI or FAPbI or MAFAPbI/PCBM/Ca/Al	[6]
ITO/PEDOT:PSS/MAPbI/PCBM/Al	[7]
FTO/TiO2/MAPbI/spiro-OMeTAD/Au	[8]
FTO/TiO2/MAPbI/spiro-OMeTAD/Au	[9]
ITO/TiO2/MAPbI/spiro-OMeTAD/Au	[10]
FTO/TiO2/MAFAPbIBr/spiro-OMeTAD/Au	[11]
FTO/TiO2/MAFAPbIBr/spiro-OMeTAD/Au	[12]
ITO/SnO2/MAFAPbIBr/spiro-OMeTAD/Au	[13]
FTO/SnO2 or TiO2/MAFAPbIBr/spiro-OMeTAD/Au	[14]
ITO/SnO2/MAFAPbIBr/spiro-OMeTAD/Au	[10]
FTO/TiO2/CsRbMAFAPbIBr/PTAA/Au	[15]

MA and FA represent methylammonium and formamidinium cations, respectively.

Figure 1. Stress profiles aiming for understanding outdoor stability of PSCs.
Figure 2. ‘Eight-day’ tests performed with unencapsulated PSCs according to stress profiles shown in figure 1 (a) and (b). The device structure is ITO/SnO₂/PCBM/FAMAPbIBr/Spiro-OMeTAD/Au. Through the tests, cells are kept inside a glovebox filled with N₂. For both cases, irradiance is ∼1 sun and cells are kept at 60 °C during illumination. During ‘nights’, cells are kept at 25 °C.
Acknowledgments

The authors thank S Subramaniam, L Rakocevic, S Lammar, Y Kuang, J Poortmans for the fruitful discussions. The authors would also like to acknowledge J A Schwenzer and Dr U W Paetzold from Karlsruhe Institute of Technology for performing the test shown in figure 3(c).

ORCID iDs

Wenya Song https://orcid.org/0000-0003-1988-9324
References

[1] De Wolf S, Holovsky J, Moon S J, Löper P, Niesen B, Ledinsky M, Haug F J, Yum J H and Ballif C 2014 Organometallic halide perovskites: Sharp optical absorption edge and its relation to photovoltaic performance J. Phys. Chem. Lett. 5 1035–9

[2] Yin W J, Shi T and Yan Y 2014 Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber Appl. Phys. Lett. 104 63903

[3] NREL 2019 Best Research-Cell Efficiencies (https://nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20191106.pdf)

[4] Green M A, Dunlop E D, Hohl-Ebinger J, Yoshita M, Kopidakis N and Ho-Baillie A W Y 2020 Solar cell efficiency tables (version 55) Prog. Photovoltaics Res. Appl. 28 1–15

[5] Cheacharoen R, Boyd C C, Burkhard G F, Leijtens T, Raiford J A, Bush K A, Bent S F and McGehee M D 2018 Encapsulating perovskite solar cells to withstand damp heat and thermal cycling Sustain. Energy Fuels 2 2398–406

[6] Bag M, Renna I A, Adhikari R Y, Karak S, Liu F, Lahti P M, Russell T P, Tuominen M T and Venkataraman D 2015 Kinetics of ion transport in perovskite active layers and its implications for active layer stability J. Am. Chem. Soc. 137 13130–7

[7] Nie W et al 2016 Light-activated photocurrent degradation and self-healing in perovskite solar cells Nat. Commun. 7 1–9

[8] Huang F, Jiang L, Pascoe A R, Yan Y, Bach U, Spiccia L and Cheng Y 2016 Fatigue behavior of planar CH3NH3PbI3 perovskite solar cells revealed by light on / off diurnal cycling Nano Energy 27 359–14

[9] Yadav P, Prochowicz D, Alharbi E A, Zakeeruddin S M and Grätzel M 2017 Intrinsic and interfacial kinetics of perovskite solar cells under photo and bias-induced degradation and recovery J. Mater. Chem. C 5 7799–805

[10] Khenkin M V et al 2018 Reconsidering figures of merit for performance and stability of perovskite photovoltaics Energy Environ. Sci. 11 739–43

[11] Domanski K et al 2017 Migration of cations induces reversible performance losses over day/night cycling in perovskite solar cells Energy Environ. Sci. 10 604–13

[12] Domanski K, Alharbi E A, Hagfeldt A and Tress W 2018 Systematic investigation of the impact of operation conditions on the degradation behaviour of perovskite solar cells Nat. Energy 3 1–7

[13] Khenkin M V et al 2018 Dynamics of photoduced degradation of perovskite photovoltaics: from reversible to irreversible processes ACS Appl. Energy Mater. 1 799–806

[14] Tress W, Yavari M, Domanski K, Yadav P, Niesen B, Correa Baena J P, Hagfeldt A and Graetzel M 2018 Interpretation and evolution of open-circuit voltage, recombination, ideality factor and subgap defect states during reversible light-soaking and irreversible degradation of perovskite solar cells Energy Environ. Sci. 11 151–65

[15] Duong T et al 2017 Rubidium multication perovskite with optimized bandgap for perovskite-silicon tandem with over 26% efficiency Adv. Energy Mater. 7 1700228

[16] Gehlhaar R, Merckx T, Qui W and Aernouts T 2018 Outdoor measurement and modeling of perovskite module temperatures Glob. Challenges 2 1800008

[17] Song Z et al 2018 Probing the origins of photodegradation in organic-inorganic metal halide perovskites with time-resolved mass spectrometry Sustain. Energy Fuels 2 2460–7

[18] Juarez-Perez E J, Ono L K, Maeda M, Jiang Y, Hawash Z and Qi Y 2018 Photodecomposition and thermal decomposition in methylammonium halide lead perovskites and inferred design principles to increase photovoltaic device stability J. Mater. Chem. A 6 9604–12

[19] Schwenzer J A, Rakocvic L, Gehlhaar R, Abzieher T, Gharibzadeh S, Moghadamzadeh S, Quintilla A, Richards B S, Lemmer U and Paetzold U W 2018 Temperature variation-induced performance decline of perovskite solar cells ACS Appl. Mater. Interfaces 10 16390–9