ABSTRACT

To determine whether the management of irrigation and nutrition in cape gooseberry crops with calcium to reduce the cracking of fruits affects the water potential of the plants, the present study was carried out using a randomized block design with 12 treatments in a 4×3 factorial arrangement. The blocks were the irrigation frequencies (4, 9 and 14 days apart). The first factor was the irrigation coefficient (0.7, 0.9, 1.1 and 1.3 of the evaporation tank of class A), and the second factor was the calcium dose (0, 50 and 100 kg ha⁻¹), representing 36 experimental units. Seed propagated cape gooseberries were transplanted in 20 L pots using peat moss as substrate. The water potential in the leaves (ψleaf) and stems (ψstem) was measured as well as the water consumption and irrigation water-use efficiency (WUEi) of the plants. The ψleaf and ψstem of the cape gooseberry plants presented a sinusoidal trend throughout the day. The water frequency of 4 days with an irrigation coefficient of 1.1 showed the highest values of ψleaf and ψstem. The ψstem and ψleaf reached the highest values at predawn (4 am) as a result of the low vapor pressure deficit (VPD) levels that occurred at that time and reached their lowest point in the midday hours. The irrigation coefficient of 1.1 had the second largest WUEi and, thus, represented the water level most suitable for growing cape gooseberry since it generated the largest number of big fruits and the smallest percentage of cracked fruits.

Key words: Solanaceae, fertilization, water level, WUEi, consumptive use.

Introduction

Although the area planted with cape gooseberry in Colombia increased in the period between 2010 and 2016, from 745 to 1,023 ha, the yield was reduced from 13.8 to 12.5 t ha⁻¹ (Agronet, 2019), which constitutes a decrease of 9.4%. This can be probably caused by an increase in cracked fruits (Gordillo et al., 2004) and by other aspects, such as inadequate fertilization and disease management plans; the lowest yield was in 2013 with 9.8 t ha⁻¹ (Agronet, 2019). In addition, cape gooseberry crops have been greatly impacted by adverse weather conditions, including the irregular supply of water by rainfall (Villareal-Navarrete et al., 2017; Aparecido et al., 2019).
One of the restrictions presented by the export of cape gooseberry fruits is the cracking problem, which causes the product to reach its destination with the presence of fungi and results in rejection of the fruits and consequent economic losses. The cracking of fruits results from mainly two causes: the first may be a poor and irregular supply of water to the crop with excessive enlargement of the fruits (e.g. through high water and nutrient supply) in the last developmental stage beyond what the tissue can support (Fischer, 2005), and the second occurs with deficiencies of calcium, which is probably associated with morphogenetic reasons that cause cape gooseberry fruits to not absorb the amounts of calcium needed to provide resistance in the cell walls and, thus, avoid cracking (Álvarez-Herrera et al., 2012).

At the field level, irrigation coefficients of 1.2 (120% of evaporation) increased the yield of fruits per plant in the plot in which Ca was added, compared with the application of a smaller amount of water (Gordillo et al., 2004). However, in a greenhouse with an application of a net irrigation coefficient of 1.3 and 100 kg ha⁻¹ of Ca, the percentage of cracked fruits decreased, but the fruit production was lower (Álvarez-Herrera et al., 2012).

The water potential reveals the moment of maximum water requirements by a plant in a day or a crop cycle and determines the water potential of the soil when measurements are taken at predawn. It also facilitates irrigation scheduling, which results in better control of water stress at certain times of the day or at times when the temperature increases considerably (Cole and Pagay, 2015). In this regard, Taiz and Zeiger (2010) stated that, among the resources required by a plant for its growth, development, and physiology, water is the largest in terms of amount, and so is the aggravating factor that can be the most limiting, which accentuates the importance of irrigation and its key role in the production of crops. It is also known that the water status of a plant, combined with climatic conditions, regulates the rate of transpiration, which plays an important role in the absorption and mobility of calcium (Marschner, 2012).

Because irrigation and nutrition management with calcium greatly influence the obtention of good quality fruits (Álvarez-Herrera et al., 2014) and recent research recommends different irrigation doses, depending on whether quality (not cracked fruits) or quantity (large fruits) is desired (Álvarez-Herrera et al., 2015), it is necessary to know the water status of a plant under different irrigation regimes, for which, the determination of the water potential acquires great importance. Therefore, this research aimed to determine the water potential of cape gooseberry plants subjected to different irrigation regimes and calcium doses.

Materials and methods

Location and methods

The experiment was carried out in a greenhouse with a plastic cover at the Faculty of Agricultural Sciences, Universidad Nacional de Colombia, Bogota campus, at an altitude of 2,556 m a.s.l. and with coordinates 4°38'7” N and 74°5’20” W. The average greenhouse temperature was 18°C and the relative humidity was 60%.

Experimental design

A randomized complete block design was used with 12 treatments. The blocking criterion was the irrigation frequencies (4, 9 and 14 d). The treatments were in a 4×3 factorial arrangement, in which the first factor corresponded to the applied irrigation coefficients (0.7, 1.0, 1.3 and 1.6 of evaporation of the evaporimeter tank), and the second factor was the calcium doses (0, 50 and 100 kg ha⁻¹), which generated 36 experimental units (EU). Each EU was composed of two cape gooseberry plants, for a total of 72 plants, which were planted in 20 L pots, 80 cm in diameter and 50 cm deep. Peat moss was used as a substrate.

Setup of the experiment

The plant material used was *Physalis peruviana* L., ecotype Colombia, because it is the most desired on the international markets due to its high content of sugars and vitamins (Fischer, 2000). The cape gooseberry seeds were planted in plastic trays with 72 cells, which germinated after 45 d and remained in the trays for 4 months from the time of sowing until they reached an average height of 25 cm.

The plants were planted at a distance of 2 m between plants and rows, and traditional cultural activities (phytosanitary management, pruning, trellis, and harvesting) of commercial crops in the producing areas were carried out. The high V trellis system was used. Edaphic and foliar fertilization were carried out based on the requirements of the crop and considering the fact that peat provides nutrients for a short period of time. The doses used in kg ha⁻¹ were N: 150; P₂O₅: 220; K₂O: 150; MgO: 60; S: 40 B: 1; Zn: 3; Cu: 2; and Mn: 0.5 fractionated from the time of planting, first in two quarterly applications and then three bi-monthly applications, and monthly foliar applications.
For the application of the irrigation levels, a drip irrigation system was used (two drippers per plant with a flow rate of 4 L h⁻¹, each). Once the plants were planted, the different doses of calcium were applied in the substrate around the plants, distributed monthly with a class A evaporation tank built on a scale of 1:1 and installed inside the greenhouse in order to establish the amount of water applied according to the equation for calculating the consumptive use, which takes into account the potential evapotranspiration. The data measured in the evaporimeter inside the greenhouse were correlated with the data from the type A evaporation tank at the climatological station of the IDEAM (regional main category 6 and code 2403513) to validate the latter and extrapolate the date for open field conditions (Eq. 1).

\[
\text{Irrigation level} = \frac{\text{Etp} \times C \times A}{\eta_r}
\]
(1)

where,

- \(\text{Etp}\) = evaporapotranspiration in mm measured in the evaporimeter tank.
- \(C\) = multiplication coefficient according to treatments.
- \(A\) = area of the pot (254.4 cm²).
- \(\eta_r\) = efficiency of drip irrigation (0.9).

The irrigation water-use efficiency (\(WUEi, \%\)) was calculated from the dry biomass of the leaves divided by the total water applied in each treatment.

The leaf and stem water potentials were determined in the plants during the reproductive phase, beginning at 30 d in the vegetative phase, following the treatments with determinations every 4 h (8 am, 12 pm, 4 pm, 8 pm, 12 am, and 4 am (at predawn) using a Scholander pump (Model 615, PMS Instrument Company, Albany, OR, USA). For the determination of the leaf water potential (\(\psi_{\text{leaf}}\)), a leaf from the tertiary branch of each plant was taken, which was bagged in a plastic bag covered with aluminum foil for 15 min, taken out and placed in a pressure chamber to determine the potential. For the determination of the stem water potential (\(\psi_{\text{stem}}\)), a leaf from the tertiary branch was pocketed for 3 h and inserted into a chamber; the measurement was taken according to the methodology followed by Nortes et al. (2005).

The instantaneous measurement of the temperature (\(T\)) and relative humidity (\(RH\)) of the air were recorded with an Extech RHT20 Datalogger (Extech Instruments, Waltham, MA, USA). With these data, the calculation of the vapor pressure deficit (\(VDP\)), given in kPa, was performed using the equation used by Murray (1967):

\[
VDP = \left(1 - \frac{RH}{100}\right) \times \left[6.1078 - \frac{17.27 \times T_{\text{air}}}{T_{\text{air}} + 273.15 - 35.86}\right]
\]
(2)

Data analysis

An analysis of variance (ANOVA) was performed for a completely randomized block design in order to determine if there were significant differences between the irrigation frequencies (blocks) and between the treatments (water level by calcium doses) for each of the measured response variables. In addition, a Tukey comparison test of averages was used at 5% to classify each of the levels of the evaluated factors. The VDP measurements calculated for the hours of measurement of the water potential were correlated with the stem and leaf water potential. The software SAS (version 9.2) was used for the data analysis.

Results and discussion

Leaf water potential (\(\psi_{\text{leaf}}\))

When analyzing the behavior of the \(\psi_{\text{leaf}}\) in the cape gooseberry plants, circadian rhythm was observed (Fig. 1A), similar to what was found in persimmon (\(Diospyros kaki\) L. f.) by Griñan et al. (2019). There were only significant differences between the evaluated irrigation levels at 8 pm. Likewise, it was noted that, when the amount of water applied increased, the \(\psi_{\text{leaf}}\) was higher than 0.1 MPa approx. on average throughout the different measurements throughout the day. This result coincides with that reported by Singh and Singh (2006), who found that increases in water stress caused a reduction in \(\psi_{\text{leaf}}\) at predawn in \(Dalbergia sissoo\) Roxb., which varied from 0.4 to 1.16 MPa. The same authors pointed out that the higher the photosynthetic rate, the greater the water potential (\(\psi\)), which implies that well-watered plants will have normal development and an adequate \(\psi_{\text{leaf}}\).

The \(\psi_{\text{leaf}}\) showed significant differences between the different irrigation frequencies applied only at certain hours of the day (morning, 8 am, noon, and in the afternoon, 4 pm, Fig. 1B), while in the hours without sunlight (predawn, 4 am, night, 8 pm, and 12 pm), the water status of the plant was homogeneous regardless of the frequency of irrigation. This indicates that the effect of the treatments on the \(\psi_{\text{leaf}}\) increased when the plants received sunlight, which is in agreement with what is reported by Girona et al. (2006), who found that, in hazelnut, the daily variation of the leaf water potential is more related to the climate components, especially to solar radiation, than to the water potential of the soil. Likewise, Sousa et al. (2006) mentioned that the
Álvarez-Herrera, González, and Fischer: Water potential in cape gooseberry (Physalis peruviana L.) plants subjected to different irrigation treatments and doses of calcium

The irrigation frequency of 4 d presented the highest values of \(\psi_{\text{leaf}} \) followed by irrigation every 9 and 14 d, probably because, as the water stress is greater, the \(\psi_{\text{leaf}} \) decreases in cape gooseberry plants. Similarly, Zhu et al. (2004) determined that the \(\psi_{\text{leaf}} \) in apple trees decreased as the water stress increased and mentioned that the concentration of cytokinins at the leaf level also decreased as a result of the lower activity of this hormone in the root zone, which implies delays in processes such as cell division. Also, Kitsaki and Drossopoulos (2005) stated that, as the \(\psi_{\text{leaf}} \) becomes more negative, the higher the ABA content is. Therefore, it can be inferred that the \(\psi_{\text{leaf}} \) is a reliable measure of the level of stress to which a plant is subjected (Girona et al., 2006).

In addition, in grapes, the growth rate of the shoots and the net assimilation of CO\(_2\) had greater correlation with the \(\psi_{\text{leaf}} \) at noon than with the \(\psi_{\text{leaf}} \) at predawn (Baeza et al., 2007).

Jaimez et al. (1999) stated that, in areas with high evaporative demand, plants have a loss of turgor that is related to low values of water potential. In addition, if the frequency of irrigation affects the water potential, the plant likely has difficulties with osmotic adjustment under stress conditions and, below values of -1.6 to -1.8 MPa, the stomatal conductance decreases and, consequently, the photosynthetic rates decrease. Similarly, Marsal and Girona (1997) evaluated the leaf water potential in peach trees and mentioned that values below -3 MPa severely affect plants. They also stated that, in full fruit growth, the sink effect is likely to generate greater water mobilization towards the fruit and decrease the amount of water in the leaves.

Regarding the effect of the different doses of calcium applied to the cape gooseberry plants, they did not affect the \(\psi_{\text{leaf}} \), as shown in figure 1C. Although increasing the application of Ca\(^{2+}\) increased [Ca\(^{2+}\)] in the leaves (unpublished data), there was no effect on the \(\psi_{\text{leaf}} \), probably because changes in the \(\psi_{\text{leaf}} \) are strongly influenced by environmental conditions, especially by a vapor pressure deficit (VPD) (Singh and Singh, 2006).

Stem water potential (\(\psi_{\text{stem}} \))

This potential had a behavior very similar to that of the \(\psi_{\text{leaf}} \) with the \(\psi_{\text{stem}} \) greater at predawn (4 am) and at night (Fig. 2). However, between 8 am and 4 pm, lower values were reached, and, at midday, the minimum averaged -0.97 MPa. These values match those found for citrus at the same time, from -0.6 to -1.3 MPa (García-Tejero et al., 2010), and

\(B \) and \(C \) show the behavior of the \(\psi_{\text{leaf}} \) with different irrigation frequencies and calcium doses, respectively. The bars indicate minimal significant difference according to the Tukey test (\(P \leq 0.05 \)). ns: not significant. *: indicates significant effect with \(P \leq 0.05 \).

\(\psi_{\text{leaf}} \) of grape plants at night has a high correlation with the water potential in the soil. The \(\psi_{\text{leaf}} \) in the cape gooseberry plants showed values of -0.51; -0.84; -1.15; -1.01; -0.74 and -0.65 MPa for the different hours (4 am, 8 am, noon, 4 pm, 8 pm and midnight, respectively), with the maximum differences between treatments at noon.

FIGURE 1. Leaf water potential in cape gooseberry plants planted in peat moss in greenhouses and subjected to A) different irrigation levels; B) irrigation frequencies and C) calcium doses in kg ha\(^{-1}\). The bars indicate minimal significant difference according to the Tukey test (\(P \leq 0.05 \)). ns: not significant. *: indicates significant effect with \(P \leq 0.05 \).
those defined by De Swaef et al. (2009) for most fruit trees, between -0.5 and -1.5 MPa.

The ψ_{stem} showed significant differences between the irrigation levels only in the measurements taken at noon (Fig. 2A). The irrigation level that presented the highest ψ_{stem} values had a coefficient of 1.1, both at midday and at other times of the day, while the levels of 0.7, 0.9 and 1.3 throughout the day presented the lowest ψ_{stem} values. It is likely that the amount with a coefficient of 1.3 caused a temporary root hypoxia effect that affected the potential value. The ψ_{stem} values at predawn oscillated on average around -0.5 MPa, which are similar to the oscillations found by Nortes et al. (2005) in almond trees with average values of -0.4 MPa. These results are also in agreement with that found by Navarro et al. (2007), who stated that, in plants subjected to stress, the ψ_{stem} at predawn and noon was less than in the control plants, which reflected the hydraulic signals that the roots send to the shoots. These authors also confirmed that, under stress conditions, maintaining the turgor pressure at the cellular level implies an osmotic adjustment and probable changes in the elasticity of the cell wall in such a way that a decrease in the ψ_{stem} results. Likewise, measuring the ψ_{stem} directly reflects the water status of the plant since it maintains a strong relationship with the flow in the vascular bundles, which highlights the importance of determining the ψ_{stem} (García-Tejero et al., 2010).

The irrigation frequency generated significant differences in the ψ_{stem} at predawn, but not at midday (Fig. 2B). This can be explained because ψ_{stem} is a measurement that correlates very well with ψ_{soil}, according to Sousa et al. (2006). Therefore, measuring ψ_{stem} at predawn would indicate the moisture content of the substrate, while the ψ_{stem} at midday has a strong correlation with the environmental conditions that are indicative of the evaporative demand (De Swaef et al., 2009). However, in wheat, Sato et al. (2006) found no correlation between the ψ_{stem} at predawn and the ψ_{soil}, which could have originated from the moisture retention capacity of the soils, the ability of the plants to absorb water, the species, the growth status, and the environmental conditions.

In this regard, the values of both ψ_{stem} and ψ_{leaf} were lower at noon because, as the transpiration increases and the pressure decreases in the xylem, the cells begin to dehydrate, so it is common to find pressures of between -1 to -2 MPa (Boyer, 1995). This decrease was observed in the ψ_{stem} of the cape gooseberry plants because stress generates problems in the development and growth of plants since it affects processes such as photosynthesis. Under stress conditions, the first defense mechanism in response to a water deficit is the partial closure of the stomata, which restricts the intake of CO$_2$ (De Pauw et al., 2008), affecting the growth of fruits.
as well as other quality parameters (Álvarez-Herrera et al., 2015). In addition, Moriana et al. (2012) found that, in olive trees under stress conditions, the \(\psi_{stem} \) at noon reached -2.0 MPa and that, when the plants had an isohydric response to drought conditions, stomatal control prevented dehydration and potential values were not affected. However, when the response was anisohydric, the plant water potential was more sensitive to water stress.

On the other hand, when analyzing the effect of the doses of calcium applied to the cape gooseberry plants, they did not show significant differences in the behavior of the \(\psi_{stem} \) for any of the hours of the day (Fig. 2C), as happened with the \(\psi_{leaf} \) and showed a pattern of variation that described the \(\psi_{stem} \) of the plants throughout the day. As with the \(\psi_{leaf} \), it is likely that this measurement, being strongly influenced by climate, was not altered by the calcium fertilization. In contrast, Li et al. (2003) found that, when external Ca\(^{2+} \) applications were performed directly on the foliage, there was an increase in tolerance to drought and a decreased water potential because this element influenced the mitigation of oxidative stress by decreasing the activity of catalase, superoxide dismutase, and polyphenol oxidase.

Comparison between leaf and stem water potential and relationship with VPD

Figure 3 shows the average behavior throughout the day of the \(\psi_{leaf} \) and \(\psi_{stem} \) of the cape gooseberry plants. The \(\psi_{stem} \) was lower than the \(\psi_{leaf} \) with significant differences during all hours of the day except for predawn (4 am), where the values were -0.50 and -0.51 MPa for \(\psi_{stem} \) and \(\psi_{leaf} \), respectively. This is consistent with the findings of Vélez et al. (2007), who mentioned that, in citrus, the measurement of \(\psi_{stem} \) and \(\psi_{leaf} \) at predawn, in treatments with an irrigation deficit and with an adequate water supply, had similar values. This suggests that, to have better control of the imposed water deficit, it is necessary to measure the daily variation of the stem. The equilibrium behavior between the observed potentials implies that at predawn, the water status was uniform throughout the whole plant, and the environmental conditions had a minimal influence, which in turn reflected the water potential of the substrate used according to the findings of Nortes et al. (2005). In addition, it could be suggested that this measurement would have a greater correlation in substrates than in clayey soils because of strong moisture retention that would limit the effect of deficit irrigation treatments, as expressed by Sato et al. (2006).

During the rest of the day, the differences between the measured potentials, probably, occurred as a result of the longer bagging time (3 h) for the measurement of the \(\psi_{stem} \). This process limits the influence of environmental conditions (temperature and radiation) and decreases the photosynthesis of the bagged leaf, creating a continuum between the stem and the leaf (Boyer, 1995). As a result, values that are lower than those recorded in the leaf are obtained. The bagging time (15 min) only decreased the temperature and the effects of solar radiation but did not generate a continuous equilibrium in the vascular system, as reflected in the differences of the potentials at different times of day with the exception of the measurement at predawn. Likewise, the greatest difference between the potentials was measured at noon, with which it can be inferred that this is the time when the environmental conditions affected the potential the most. For this reason, for cape gooseberry plants, the measurement of this parameter at midday would be a good indicator of maximum water stress because of the high sensitivity that it presents, similar to that found by Nortes et al. (2005).

![Figure 3. Leaf and stem water potential in cape gooseberry plants planted in peat moss in greenhouses. Bars indicate minimal significant difference according to the Tukey test (\(P\leq0.05 \)). ns: not significant. *: indicates significant effect with \(P\leq0.05 \).](image-url)
relationship between the measured potentials and the VPD presented a polynomial trend. In this regard, Hogg and Hurdle (1997) stated that the relationship between the water potential and the VPD is not linear because stomatal closure is gradual as the VPD increases and stabilizes as a necessary response to keep the water potential high enough and avoid damage to the plant. However, Intrigliolo and Castel (2006) observed linear relationships in plums, and Sato et al. (2006) found a linear relationship between measurements at predawn of the water potential and the VPD, explained by night perspiration. Likewise, De la Rosa et al. (2013) stated that, in peaches, the ψ_{stem} at noon had a better correlation with the average temperature and with the VPD than with other climatic variables. However, they suggested that, to automate the measurements of the water status of plants, measurements of the maximum daily trunk contraction at noon would be a reliable alternative, similar to measuring the ψ_{stem} (Intrigliolo and Castel, 2005; Vélez et al., 2007) or stomatal conductance, which has an inversely proportional relationship with to ψ_{stem} in forest species (Hogg et al., 2000).

![FIGURE 4. Relationship between the water potential of leaves and stems in cape gooseberry plants with a vapor pressure deficit (VPD).](image)

Water consumption and irrigation water-use efficiency (WUEi)

Table 1 shows the amount of water applied during the treatment phase to the cape gooseberry plants. The plants that received the most water corresponded to the treatment of 1.3 with an irrigation frequency of 9 d, while the lower application of water corresponded to the irrigation frequency of 4 d with a coefficient of 0.7. The daily water consumption varied from 1.4 to 2.8 L/plant-d (Tab. 2) for the treatments with an irrigation frequency of 4 d with a coefficient of 0.7 and an irrigation frequency of 9 d with a coefficient of 1.3, respectively, which reflects the fact that the variation in the irrigation regimes used reached 100%.

![TABLE 1. Total application of water (L) in cape gooseberry plants throughout the production period (6 months).](image)

Irrigation coefficient	Irrigation frequency (d)		
	4	9	14
0.7	257	271	262
0.9	331	348	337
1.1	404	425	412
1.3	478	503	487

The WUEi did not show significant differences for the irrigation level interaction with the calcium dose ($P=0.8946$), nor for the irrigation frequency ($P=0.6402$). However, there were differences when analyzing the effect separately from the irrigation level factor ($P=0.0357^*$). The coefficient that showed the highest WUEi was 0.7, which was 30%, 39%, and 50% higher than in the irrigation levels of 1.1; 0.9 and 1.3, respectively. Thus, it can be stated that the less water applied to cape gooseberry plants, the greater the efficiency in the production of biomass and the lower the water potential (Tab. 3), as reported in cucumber (Rahil and Qanadillo, 2015) and tomato (Zotarelli et al., 2009; Savic et al., 2011). These authors mentioned that the treatments with higher WUEi had more daily applications of water with more frequent irrigations and that a higher number of applications saw less water loss by infiltration. In addition, Intrigliolo and Castel (2010) confirmed that, in plums in the first season, the irrigation deficit generated a higher WUEi. However, for the second and third seasons, the treatments began to decrease the WUEi, as a product of the wastage of the plant subjected to permanent stress. In parallel, Fischer and Lüdders (1999) found that the WUEi in cape gooseberry plants is affected by the temperature of the root zone and that, when the soil temperature approaches 30°C, the WUEi is higher than when the plants are planted in root zones of 22 and 14°C.

Because the irrigation level of 1.1 had the second largest WUEi and generated the largest number of large fruits and the highest production (Alvarez-Herrera et al., 2015), it can be stated that this is the suitable irrigation coefficient for the production of cape gooseberry since an irrigation level of 0.7 had a higher WUEi, but lower production with smaller fruits, as found in olive trees by Miranda et al. (2018).
Likewise, in spite of the water deficit, the cape gooseberry fruits had a higher amount of total soluble solids and lower total titratable acids, similar to those found in plums (Intrigliolo and Castel, 2010) and tomatoes (Savic et al., 2011).

TABLE 3. Effect of the irrigation coefficient, the calcium dose and the frequency of irrigation on the irrigation water-use efficiency (WUEi) in cape gooseberry plants.

Factor	Factor level	WUEi (g L⁻¹)
Irrigation coefficient	0.7	3.15 a
	0.9	2.27 ab
	1.1	2.43 ab
	1.3	2.10 a
Calcium doses (kg ha⁻¹)	0	2.33 a
	50	2.59 a
	100	2.55 a
Irrigation frequency (d)	4	2.66 a
	9	2.42 a
	14	2.39 a

Average values with different letters in the same column and classified by factor indicate significant statistical differences according to the Tukey test ($P<0.05$).

Conclusions

The ψ_{leaf} and ψ_{stem} in the cape gooseberry plants presented a behavior similar to a circadian rhythm. The irrigation frequency of 4 d with an irrigation level of 1.1 showed the highest values of ψ_{leaf} and ψ_{stem}. The ψ_{leaf} and ψ_{stem} reached the highest values at predawn (4 am). The application of irrigation levels lower than the ETo produced water stress in the plants and led to crop wilting. The irrigation coefficient of 0.7 presented the highest WUEi; however, the plants in this treatment showed strong symptoms of water stress and lower values of ψ_{leaf} and ψ_{stem}.

Literature cited

Agronet. 2019. Sistema de estadísticas agropecuarias. Producción nacional por producto. Uchuva. URL: www.agronet.gov.co (accessed March 2019).

Álvarez-Herrera, J., G. Fischer, and J.E. Vélez-Sánchez. 2015. Producción de frutos de uchuva (Physalis peruviana L.) bajo diferentes láminas de riego, frecuencias de riego y dosis de calcio. Rev. Colomb. Cienc. Hortic. 9(2), 222-233. Doi: 10.17584/rch.2015v9i2.4177

Álvarez-Herrera, J., G. Fischer, L.P. Restrepo, and M. Quicazán. 2014. Contenidos de carotenoides totales y ácido ascórbico en frutos sanos y rajados de uchuva (Physalis peruviana L.). Acta Hortic. 1016, 77-82. Doi: 10.17660/ActaHortic.2014.1016.8

Álvarez-Herrera, J., H. Balaguera-López, and G. Fischer. 2012. Effect of irrigation and nutrition with calcium on fruit cracking of the cape gooseberry (Physalis peruviana L.) in the three strata of the plant. Acta Hortic. 928, 163-170. Doi: 10.17660/ActaHortic.2012.928.19

Aparecido, L.E.O., R.M. Batista, J.R.S.C. Moraes, C.T.S. Costa, and A.F. Moraes-Oliveira. 2019. Agricultural zoning of climate risk for Physalis peruviana cultivation in Southeastern Brazil. Pesq. Agropec. Bras. 54, e00057. Doi: 10.1590/S1678-3921.pab2019v54e00057

Baeza, P., P. Sánchez-de-Miguel, A. Centeno, P. Junquera, R. Linares, and J.R. Lisarrague. 2007. Water relations between leaf water potential, photosynthesis and agronomic vine response as a tool for establishing thresholds in irrigation scheduling. Sci. Hortic. 114, 151-158. Doi: 10.1016/j.scienta.2007.06.012

Boyer, J. 1995. Measuring the water status of plants and soils. Academic Press, San Diego, USA.

Cole, J. and V. Pagay. 2015. Usefulness of early morning stem water potential as a sensitive indicator of water status of deficit-irrigated grapevines (Vitis vinifera L.). Sci. Hortic. 191, 10-14. Doi: 10.1016/j.scienta.2015.04.034

De la Rosa, J.M., M.R. Conesa, R. Domingo, R. Torres, and A. Pérez-Pastor. 2013. Feasibility of using trunk diameter fluctuation and stem water potential reference lines for irrigation scheduling of early nectarine trees. Agr. Water Manage. 126, 133-141. Doi: 10.1016/j.agwat.2013.05.009

De Pauw, D.J.W., K. Steppe, and B. De Baets. 2008. Identifiability analysis and improvement of a tree water flow and storage model. Math. Biosci. 211, 314-332. Doi: 10.1016/j.mbs.2007.08.007

De Swaef, T., K. Steppe, and R. Lemeur. 2009. Determining reference values for stem water potential and maximum daily trunk shrinkage in young apple trees based on plant responses to water deficit. Agr. Water Manage. 96, 541-550. Doi: 10.1016/j.agwat.2008.09.013

Fischer, G. 2000. Crecimiento y desarrollo de la uchuva. pp. 9-26. In: Flórez, V., G. Fischer, and A. Soria (eds.). Producción, poscosecha y exportación de la uchuva. Unibiblos, Universidad Nacional de Colombia, Bogota.

Fischer, G. 2005. El problema del rajado del fruto de uchuva y su posible control. pp. 55-82. In: Fischer, G., D. Miranda, W. Piedrahita, and J. Romero (eds.). Avances en cultivo, poscosecha y exportación de la uchuva (Physalis peruviana L.) en Colombia. Unibiblos, Universidad Nacional de Colombia, Bogota.

Fischer, G. and P. Lüdders. 1999. Efecto de la temperatura del substrato sobre el consumo de agua y la transpiración en la uchuva (Physalis peruviana L.). Suelos Ecuat. 29(1), 45-49.

García-Tejero, L., R. Romero-Vicente, J.A. Jiménez-Bocanegra, G. Martínez-García, V.H. Durán-Zuazo, and J.L. Muriel-Fernández. 2010. Response of citrus trees to deficit irrigation during different phenological periods in relation to yield, fruit quality, and water productivity. Agr. Water Manage. 97, 689-699. Doi: 10.1016/j.agwat.2009.12.012

Girona, J., M. Mata, J. del Campo, A. Arbone, E. Bartra, and J. Marsal. 2006. The use of midday leaf water potential for scheduling deficit irrigation in vineyards. Irrig. Sci. 24, 115-127. Doi: 10.1007/s00271-005-0015-7

Gordillo, O., G. Fischer, and R. Guerrero. 2004. Efecto del riego y de la fertilización sobre la incidencia del rajado en frutos de...
uchuva (*Physalis peruviana* L.) en la zona de Silvania (Cundinamarca). Agron. Colomb. 22(1), 53-62.

Griñan, I., P. Rodríguez, Z.N. Cruz, H. Nouri, E. Borsato, A.J. Molina, A. Moriana, A. Centeno, M.J. Martín-Palomó, D. Pérez-Lopez, A. Torrecillas, and A. Galindo. 2019. Leaf water relations in *Diospyros kaki* during a mild water deficit exposure. Agr. Water Manage. 217, 391-398. Doi: 10.1016/j.agwat.2019.03.008

Hogg, E.H. and P.A. Hurdle. 1997. Sap flow in trembling aspen: implications for stomatal responses to vapor pressure deficit. Tree Physiol. 17, 501-509. Doi: 10.1093/treephys/17.8.950

Hogg, E.H., B. Saugier, J.Y. Pontailler, T.A. Black, W. Chen, P.A. Hurdle, and A. Wu. 2000. Responses of trembling aspen and hazelnut to vapor pressure deficit in a boreal deciduous forest. Tree Physiol. 20, 725-734. Doi: 10.1093/treephys/20.11.725

Intrigliolo, D.S. and J.R. Castel. 2005. Usefulness of diurnal trunk shrinkage as a water stress indicator in plum trees. Tree Physiol. 26, 303-311. Doi: 10.1093/treephys/26.3.303

Intrigliolo, D.S. and J.R. Castel. 2006. Performance of various water stress indicators for prediction of fruit size response to deficit irrigation in plum. Agr. Water Manage. 83, 173-180. Doi: 10.1016/j.agwat.2005.12.005

Intrigliolo, D.S. and J.R. Castel. 2010. Response of plum trees to deficit irrigation under two crop levels: tree growth, yield and fruit quality. Irrig. Sci. 28, 525-534. Doi: 10.1007/s00271-010-0212-x

Jaimez, R.E., F. Rada, and C. García-Nuñez. 1999. The effect of irrigation frequency on water and carbon relations in three cultivars of sweet pepper (*Capsicum chinense* Jacq.), in a tropical semiarid region. Sci. Hortic. 81, 301-388. Doi: 10.1016/S0304-4238(99)00017-5

Kitsaki, C.K. and J.B. Drossopoulos. 2005. Environmental effect on ABA concentration and water potential in olive leaves (*Olea europaea* L. cv. “Koroneiki”) under non-irrigated field conditions. Environ. Exp. Botany 55, 209-219. Doi: 10.1016/j.envexpbot.2004.06.002

Li, M., G. Xuan-Wang, and J. Lin. 2003. Application of external calcium in improving the PEG-induced water stress tolerance in licorice cells. Bot. Bull. Acad. Sin. 44, 275-284. Doi: 10.7016/j.sbbas.200310.0275

Marsal, J. and J. Girona. 1997. Relationship between leaf water potential and gas exchange activity at different phenological stages and fruit loads in peach trees. J. Am. Soc. Hort. Sci. 122, 297-464. Doi: 10.21273/JASHS.122.3.415

Marschner, P. (ed). 2012. Marschner’s mineral nutrition of higher plants. Elsevier, Amsterdam.

Miranda, R.D., M.V. Cuevas, A. Díaz-Espejo, and V. Hernández-Santana. 2018. Effects of water stress on fruit growth and water relations between fruits and leaves in a hedgerow olive orchard. Agr. Water Manage. 210, 32-40. Doi: 10.1016/j.agwat.2018.07.028

Moriana, A., D. Pérez-López, M.H. Prieto, M. Ramírez-Santa-Pau, and J.M. Pérez Rodríguez. 2012. Midday stem water potential as a useful tool for estimating irrigation requirements in olive trees. Agr. Water Manage. 112, 43-54. Doi: 10.1016/j.agwat.2012.06.003

Murray, F.W. 1967. On the computation of saturation vapor pressure. J. Appl. Meteorol. 6, 203-204. Doi: 10.1175/1520-0450(1967)006<0203:OTCOSV>2.0.CO;2

Navarro, A., S. Bañon, E. Olmos, and M.J. Sánchez-Blanco. 2007. Effects of sodium chloride on water potential components, hydraulic conductivity, gas exchange and leaf ultrastructure of *Arbutus unedo* plants. Plant Sci. 172, 473-480. Doi: 10.1016/j.plantsci.2006.10.006

Nortes, P.A., A. Pérez-Pastor, G. Egea, W. Conejero, and R. Domingo. 2005. Comparison of changes in stem diameter and water potential in young almond trees. Agric. Water Manage. 77, 296-307. Doi: 10.1016/j.agwat.2004.09.034

Rahil, M.H. and A. Qanadillo. 2015. Effects of different irrigation regimes on yield and water use efficiency of cucumber crop. Agr. Water Manage. 148, 10-15. Doi: 10.1016/j.agwat.2014.09.005

Sato, T., O. Abdalla, T. Oweis, and T. Sakuratai. 2006. The validity of predawn leaf water potential as an irrigation-timing indicator for field-grown wheat in northern Syria. Agr. Water Manage. 82, 223-236. Doi: 10.1016/j.agwat.2005.07.023

Savic, S., R. Stikic, V. Zaric, B. Vucelic-Radovic, Z. Jovanovic, S. Djordjevic, and D. Petkovic. 2011. Deficit irrigation technique for reducing water use of tomato under polytunnel conditions. J. Cent. Eur. Agr. 12(4), 597-607. Doi: 10.5513/JCEA01/12.4.960

Singh, B. and G. Singh. 2006. Effects of controlled irrigation on water potential, nitrogen uptake and biomass production in *Dalbergia sissoo* seedlings. Environ. Exp. Botany 55, 209-219. Doi: 10.1016/j.envexpbot.2004.11.001

Sousa, T., M. Oliveira, and M. Pereira. 2006. Physiological indicators of plant water status of irrigated and non-irrigated grapevines grown in a low rainfall area of Portugal. Plant Soil 282, 127-134. Doi: 10.1007/s11104-005-5374-6

Taiz, L. and E. Zeiger. 2010. Plant physiology. Sinauer Associates, Sunderland, USA.

Urban, L. and I. Langzele. 2003. Effect of high-pressure mist on leaf water potential, leaf diffusive conductance, CO₂ fixation and production of cultivar ‘Sonia’ rose plants grown on rockwool. Sci. Hortic. 50, 229-244. Doi: 10.1016/j.scientifichortsoc.2004.09.034

Vélez, J.E., D.S. Intrigliolo, and J.R. Castel. 2007. Scheduling deficit irrigation of citrus trees with maximum daily trunk shrinkage. Agr. Water Manage. 90, 197-204. Doi: 10.1016/j.agwat.2007.03.007

Villarreal-Navarrete, A., G. Fischer, L.M. Melgarejo, G. Correa, and L. Hoyos-Carvajal. 2017. Growth response of the cape gooseberry (*Physalis peruviana* L.) to waterlogging stress and *Fusarium oxysporum* infection. Acta Hortic. 1178, 161-168. Doi: 10.17660/ActaHortic.2017.1178.28

Zhu, Li-Hua., A. van de Peppel, X.Y. Li, and M. Welander. 2004. Changes of leaf water potential and endogenous cytokinins in young apple trees treated with or without paclobutrazol under drought conditions. Sci. Hortic. 99, 133-141. Doi: 10.1016/j.scientifichortsoc.2003.10.006

Zotarelli, L., J. Schulberg, M. Dukes, R. Muñoz-Carpena, and J. Icerman. 2009. Tomato yield, biomass accumulation, root distribution and irrigation water use efficiency on a sandy soil, as affected by nitrogen rate and irrigation scheduling. Agr. Water Manage. 96, 23-34. Doi: 10.1016/j.agwat.2008.06.007