1. Introduction

GLAWI\(^1\) is a large Machine-Readable Dictionary (MRD) extracted from Wiktionnaire, the French language edition of Wiktionary, and converted into a workable XML format. In a previous work, Sajous et al. (2010) introduced WiktionaryX, an electronic lexicon including lemmas, semantic relations and translations. Hathout et al. (2014b) described how GLAFF, a large inflectional and phonological lexicon, has been extracted from the same source. The assessment of GLAFF’s lexical coverage and the quality of its phonemic transcriptions has shown that Wiktionnaire is a valuable starting point to build lexical resources of good quality. Sajous and Hathout (2015) introduced GLAWI, a dictionary built from an updated version of Wiktionnaire that merges the information stored in WiktionaryX and GLAFF into a single resource. New information, such as etymology and morphological relations, has also been added. Sajous and Hathout (2015) focused on the parsing process and the standardization of Wiktionnaire’s heterogeneous data, a prerequisite to produce a workable MRD. In the current article, we illustrate the richness of GLAWI’s lexical knowledge, leaving apart the extraction process. We also contemplate different uses that can be made of this resource, either in academic research, or in concrete NLP applications.

2. Resource description

The general structure of GLAWI’s entries is illustrated in Figure 1. GLAWI’s macro- and micro-structure are very close to the ones of Wiktionnaire: the basic unit is a word written form (hereafter, grapheme), associated with a given page/URL. When several parts of speech (POS) or homographs correspond to the same grapheme, the article contains one separate POS section for each of them. Each POS section includes definitions (glosses and examples), and several optional subsections described hereafter. Table 1 gives the number of lemmas and inflected forms by POS.

\(^1\)GLAWI is freely available at http://redac.univ-tlse2.fr/lexicons/glawi_en.html

Table 1: Lemmas and inflected forms for the main POS

POS	Lemmas	Inflected forms
noun	179,340	272,170
proper noun	57,371	8,019
adjective	56,296	93,295
verb	36,928	1,251,809
adverb	5,552	5,552
total	335,487	1,630,845

2.1. Definitions

Word senses, marked by definition tags, are listed in the POS sections. A definition contains a gloss and possibly one or several usage examples. Glosses and examples are each available in four different versions (an example is given in Figure 2):

1. the original wikicode, intended for developers willing to perform specific extractions or conversions.
2. an XML formatted version where markups encode typesetting (boldface, italic, etc.), dates, foreign words, mathematical/chemical formulae and external/inner links. Markups can be used to select or to remove specific types of elements (e.g. foreign words or non textual content such as formulae). Links could be used by a weighting scheme in information retrieval (Cutler et al., 1997) or to build hyperlink graphs for semantic similarity computation (Weale et al., 2009).
3. a raw text version. Many other text versions can be generated from the XML one by selecting specific elements and formatting them differently.
4. a CoNLL output (Nivre et al., 2007) of the Talismane syntactic parser (Urieli, 2013). Dependencies may prove useful for various tasks. For example, Hathout et al. (2014a) used them as features to train a classifier and identify Wiktionnaire’s glosses of derived action nouns, with an accuracy ranging from 94% to 99%.
2.2. Labels

As shown in Figure 2, definitions may include linguistic labels. They are identified by the parser and marked with label tags. Moreover, we inventoried thousands of labels and manually assigned to each one a category among the followings: attitudinal, diachronic, diafrequential, diatopic, domain, grammar, loan, semantics or other for uninventoried labels.\footnote{More details are given in (Sajous and Hathout, 2015).} GLAWI’s main linguistic labels are listed in Table 2. They can be used to study lexical variation. They may also prove useful for various applications. words marked as attitudinal may be used for sentiment analysis. Specialized lexicons can be extracted on the basis of domain labels. Words marked with these labels can also be used as seeds for focused web-crawling. Diatopic and diachronic labels may guide text simplification by favoring more usual words rather than very rare ones. Diatopic variations may help distinguish closely related languages, for example hexagonal and overseas French. Blacklisted words based on such labels could be used to improve state-of-the-art classifiers, as Tiedemann and Ljubešić (2012) did to discriminate between Bosnian, Croatian and Serbian. Such lexicons may reveal French or Canadian origin in author profiling or identification, in a similar way to Tanguy et al. (2011), who used British/American English variants as features for author attribution.
Figure 2: A given sense of mousse (feminine noun, homograph #1) as a metonym for bière ‘bier’

PONCT	DET	DET	g=f	n=s 4	det 4	det 100,00 98,84 99,67
DET	DET	g=f	n=s 4	mod 4	mod 100,00 98,18 98,91	
NC	suj	suj	100,00 91,02 89,73			
ADV	_	_	100,00 85,58 86,14			
g=f	n=s 4	mod 4	mod 100,00 71,25 98,98			
7	_	_				
8	P	P	100,00 88,98 98,01			
9	prép	prép	100,00 65,45 81,85			
10	_	_				
11	prép	prép	100,00 95,95 86,35			
12	V	v	n=s	p=3	t=pst 0 root 100,00 96,82 99,88	
13	DET	DET	g=m	n=s 13	det 13	det 100,00 83,94 99,52
14	_	NC	100,00 60,64 77,93			
15	_	_				

Figure 3: Etymology of monoxyle ‘dugout’
Table 2: Main linguistic labels used in definitions and etymology sections. Translations are given in the right column.

Label	Definition	Translations		
Dialfrequent				
rare	rare	Québec	1,717	
extrêmement rare	extremely rare	France	1,138	
très rare	very rare	Canada	971	
plus courant	more common	Suisse	962	
courant	common	Belgique	637	
plus rare	more rare	Lorraine	299	
moins courant	less common	Occitanie	246	
peu usité	rarely used	Normandie	134	
Diachronic				
vieilli	old	Louisiane	90	
désuet	dated	Réunion	89	
avant 1835	before 1835	Afrique	64	
néologisme	neologism	Congo-Kinshasa	47	
archaïque	archaic	Ardennes	46	
1986		Languedoc-Roussillonn	44	
1990		Bretagne	40	
766 other years	5,841			
Loanwords				
anglicisme	Angloicism	localités	49,060	
indo-européen commun	usual indo-european	géographie	11,935	
hispanisme	Hispanism	botanique	6,461	
germanisme	Germanism	zoologie	5,460	
gaulois	Gallic	médecine	5,258	
catalan	Catalan	chimie	3,358	
		histoire	2,804	
		marine	2,644	
		religion	2,559	
		chimie	3,358	
Semantics				
figuré	figurative	linguistique	2,177	
par extension	by extension	géographie	11,935	
en particulier	in particular	botanique	6,461	
analogie	analog	zoologie	5,460	
métonymie	metonymy	médecine	5,258	
ellipse	ellipse	chimie	3,358	
spécialement	especially	physique	1,579	
métaphore	metaphor	militaire	1,572	
hyperbole	hyperbole	musique	1,570	
apocope	apocope	mineralogie	1,531	
généralement	generally	botanique	1,515	
litote	litote	antiquité	1,327	
figure	rhetorical figure	cuisine	1,284	
			367 other domains	45,946

2.3. Etymology

85% of the pages describing a lemma include an etymology section. Figure 3 shows the etymology for *monoxyle* ‘dugout’. Etymologies are available in the four formats listed in Section 2.1.: original wikicode, XML, raw text and CoNLL versions. The information given in Figure 3 includes an attestation date (1759), a source language (Ancient Greek) and a morphological structure (*mono*-xyle). Indications about words formation may be used to complement the morphological relations (cf. section 2.6.). Optional words’ transliterations may also be given when words are written in non Latin alphabets. For example, the transliteration *monoxylos* is provided for the Greek µoνοξλoσ. The meaning of the etymon in the source language may also be given as an attribute. Figure 4 illustrates that the sense of the Romani etymon *piyav* of the French *pillaver*, is *boire* ‘drink alcohol’. The main languages of origin of the French words mentioned in the etymology sections are listed in Table 3.

![Figure 4: Meaning of the Romani *piyav*, found in the etymology of the French *pillaver*](image)
2.4. Semantic relations

POS sections may include (quasi-)synonyms/antonyms, hypernyms/hyponyms, meronyms/holonyms and troponyms. An example of such relations is given in Figure 5 for the noun *communisme* ‘communism’. The number of semantics sections per POS and the total number of semantic relations are given in Table 4.

```xml
<subsection type="semRel">
  <item type="synonym">collectivisme</item>
  <item type="synonym">marxisme</item>
  <item type="antonym">capitalisme</item>
  <item type="hyperonym">idéologie</item>
  <item type="hyponym">bolchévisme</item>
  <item type="hyponym">trotskisme</item>
</subsection>
```

Figure 5: Semantic relations for *communisme*

Such lexical semantic links may prove useful for various applications such as lexical substitution (McCarthy andNavigli, 2009), metaphor resolution (Desalle et al., 2009) or when setting up protocols for the detection of pathologies (Desalle et al., 2014).

2.5. Translations

POS sections often include translations in various languages. Figure 6 gives an example of translations for *piste cyclable* ‘bicycle path’. We can see that languages such as Norwegian Bokmål and Norwegian Nynorsk have two different language codes. The number of translations per POS is given in Table 5.

```
Table 3: 20 most frequently mentioned languages in GLAWI’s etymology sections

| # Etym | Language | Examples |
|--------|----------|----------|
| 17,093 | Latin    | *bibliothèque* ‘library’, *optimum* ‘optimum’ |
| 5,954  | Greek    | *monoxyle* ‘dugout’, *pédagogie* ‘pedagogy’ |
| 4,403  | English  | *self-service*, *syllabification* |
| 2,935  | Occitan  | *resquiller* ‘to queue-jump’, *escalade* ‘climbing’ |
| 1,732  | Old French | *empoûté* ‘clumsy’, *se débner* ‘to leave secretly’ |
| 1,189  | Italian  | *bambin* ‘toddler’, *mandoline* ‘mandoline’ |
| 775    | Spanish  | *aficionado* ‘fan’, *sieste* ‘nap’ |
| 712    | Arabic   | *algèbre* ‘algebra’, *baroud* ‘combat’ |
| 591    | German   | *ersatz* ‘inferior quality substitute’, *nouille* ‘noodle’ |
| 311    | Russian  | *chaman* ‘shaman’, *bélgale* ‘beluga’ |
| 264    | Frankish | *fauteuil* ‘armchair’, *hache* ‘axe’ |
| 244    | Catalan  | *paella* ‘paella’, *salicorne* ‘samphire’ |
| 207    | Breton   | *cohue* ‘rabble’, *menhir* ‘menhir’ |
| 197    | Dutch    | *havre* ‘harbor’, *maquignon* ‘horse trader’ |
| 196    | Portuguese| *caravelle* ‘caravel’, *piranha* ‘piranha’ |
| 175    | Gaulish  | *trogne* ‘mug (face)’, *andain* ‘swath’ |
| 164    | Hebrew   | *talmud* ‘Talmud’, *schwa* ‘schwa’ |
| 163    | Basque   | *jokari* ‘Jokari’, *axoa* (Basque veal stew) |
| 138    | Sanskrit | *nirvana* ‘nirvana’, *gourou* ‘guru’ |
+ 3,155  |         | etymologies in 306 other languages |

**Total:** 40,410 etymologies in 326 different languages

Table 4: Semantic relations

| POS     | # sections | Relations |
|---------|------------|-----------|
| nouns   | 31,332     | synonym   |
|         |            | near-synonym |
|         |            | antonym   |
|         |            | hyperonym |
|         |            | hyponym   |
|         |            | holonym   |
|         |            | meronym   |
| adjectives | 5,613     | synonym   |
|         |            | near-synonym |
|         |            | antonym   |
|         |            | hyperonym |
|         |            | hyponym   |
|         |            | holonym   |
|         |            | meronym   |
| verbs   | 5,157      | synonym   |
|         |            | near-synonym |
|         |            | antonym   |
|         |            | hyperonym |
|         |            | hyponym   |
|         |            | troponym  |
| adverbs | 1,491      | synonym   |
|         |            | near-synonym |
|         |            | antonym   |

Table 5: Number of semantic relations per POS

1373
Many applications may benefit from these translations. Statistical machine translation algorithms tend to disregard lexicons. However, when no parallel corpora are available, algorithms may resort to monolingual corpora and bilingual lexicon induction (Klementiev et al., 2012). The induction process requires a seed dictionary that GLAWI could provide for many language pairs. GLAWI’s translations could also be used to complement existing multilingual resources such as PanDictionary (Mausam et al., 2009), a multilingual translation graphs which compiles numerous dictionaries. Translations may even help infer monolingual information. For example, they can be used to compute semantic relatedness: two words of a given language translating to the same words in different languages are likely to have close meanings (Sajous et al., 2013).

2.6. Morphological relations

GLAWI contains compounds, derivative and “related” words that correspond to Wiktionnaire’s sections entitled Composés, Dérivés and Apparentés étymologiques. Examples of such morphological relations are presented for the noun nom ‘name/noun’ in Figure 7.

The number of morphological sections per POS and the total number of morphological relations are given in Table 6. In addition to the morphological sections, information about derivational or compositional coinage of words may be found in the etymology sections (cf. section 2.3.). GLAWI’s morphological relations may be used for research in computational morphology and to build morphological resources like Morphonette, a paradigm-based morphological network (Hathout, 2011) and Démonette, a French derivational morpho-semantic network (Hathout and Namer, 2014). They could also be leveraged in NLP applications. For example, Padó et al. (2013) use derivative words to overcome data sparseness in distributional analysis.

2.7. Forms variation

In Wiktionnaire, alternative spellings may result in separate pages for the same word, such as nénuphar and nénufar ‘water lily’. Other form variations result in redirection links. Though most of them only serve navigational purpose (e.g. to redirect to an existing page when ligatures or diacritics are omitted, when alternative single quotes are used, etc.). Some may be collected to build a lexicon of form variants (see Table 7). Moreover, common misspellings can be used by spell-checkers or for educational purposes. Alternative forms can also benefit text normalization in corpus processing and information retrieval. More deviant variations (oral transcriptions, textolanguage, etc.) can help analyze computer-mediated communications (Melero et al., 2012; Baldwin et al., 2013).

2.8. Phonemic transcriptions

94% of GLAWI’s entries contain one or several phonemic transcriptions. They may include diatopic variations. Figure 8a illustrates regional variants: moins ‘minus, less’

Table 5: Translations

| POS      | # sections | # translations |
|----------|------------|----------------|
| nouns    | 71,133     | 383,612        |
| adjectives | 16,797     | 60,360         |
| verbs    | 11,484     | 70,615         |
| adverbs  | 3,014      | 14,478         |
| total    | 102,428    | 529,065        |

Table 6: Morphological relations

| POS      | # sections | Relations |
|----------|------------|-----------|
| nouns    | 16,948     | compound  |
|          |            | derivative|
|          |            | related   |
| adjectives | 4,939     | compound  |
|          |            | derivative|
|          |            | related   |
| verbs    | 5,443      | compound  |
|          |            | derivative|
|          |            | related   |
| adverbs  | 899        | derivative|
|          |            | related   |

Table 7: Morphological relations

2.8. Phonemic transcriptions

94% of GLAWI’s entries contain one or several phonemic transcriptions. They may include diatopic variations. Figure 8a illustrates regional variants: moins ‘minus, less’

http://redac.univ-tlse2.fr/lexicons/morphonette_en.html
http://redac.univ-tlse2.fr/lexicons/demonette_en.html
| **Form**            | **Standard/other form** | **Translation/indication** | **Variation type**                      |
|---------------------|-------------------------|---------------------------|-----------------------------------------|
| nénuphar            | nénufar                 | water lily               | alternative spelling suggested by the 1990 reform |
| maitriser           | maître                  | to master                |                                         |
| quinquenat          | quinquennat             | five year period         | frequent mispelling                     |
| évidement           | évidemment              | obviously                |                                         |
| enkikiner           | enquiquiner             | to bother, to annoy      | voluntary mispelling (texto/forum)      |
| c‘ qui              | ce qui                  | which                    | oral transcription                       |
| coeur               | cœur                    | heart                    | ligature                                |
| & al.               | et al.                  |                           | symbol/literal                          |
| VOIP                | VoIP                    |                           | case                                    |
| écart type          | écart-type              | standard deviation       | compound linking character              |
| copier-coller       | copier/coller           | copy and paste           |                                         |
| climato-sceptique   | climatosceptique        | climateskeptics          |                                         |
| abreuvement         | abreuveage              | watering                 | concurrent suffixes                     |
| graticiel           | gratuciel               | freeware                 | portmanteau formation                   |
| débit de boisson    | débit de boissons       | public house, pub        | inflection within MWE                   |
| erratum             | errata                  |                           |                                         |
| coulibiac           | koulibiak               | stuffed Russian baked dough | loan word/conventional                   |
| halal               | hallal                  | Italian mild cheese      | transcriptions                          |
| mozzarella          | mozzarella              | black tea                |                                         |
| chai                | tchai                   |                           |                                         |
| clubbeur            | clubber                 |                           |                                         |
| N’Djaména           | Ndjamena                |                           |                                         |
|                      |                         |                           | foreign proper name                     |

Table 7: Examples of form variations

is pronounced /mɔ̃w/ in “standard” French (Paris) and /mɔwɛ̃/ in Southern France (Marseille). An example of national variations is given in the Figure 8b, where two different transcriptions are given for sorcière ‘witch’ in France and Québec (Canada). Hathout et al. (2014b) have shown that the quality of Wiktionnaire’s transcriptions and syllabation is comparable to those of existing phonological lexicons, the latter having a smaller coverage. Quality pronunciation lexicons have a significant impact on text-to-speech systems. While unknown words are processed by machine-learned models, grapheme-to-phoneme conversion of common words use large-scale pronunciation lexicons (Rojec and Kačič, 2007). Phonemic transcriptions and syllabations are also widely used in psycholinguistics to set up experimental material for semantic priming, as in (Bracco et al., 2015).

3. Conclusion

The GLAWI machine-readable dictionary is a new type of lexicographical resource that eases the use of Wiktionary for both linguistic research and NLP. The standardization of thewikicode allows the user to easily extract a variety of information, such as neologisms, feminine equivalent of masculine nouns, etc. To date, it is the only free resource available for contemporary French that contains definitions. We plan to develop a user interface to query GLAWI by setting conditions on the individual fields that make up the entries in a way similar to GLAFFOLI, the online interface provided to manually query GLAFF. This work opens the way to the creation of similar resources for other languages, including those who do not yet have any freely available Machine-Readable Dictionary. Electronic dictionaries similar to GLAWI are under development for Italian and English. The many possible uses of this type of dictionaries will also improve the endowment of poorly or lesser-resourced languages in quality linguistic resources. At the time of writing, a morphosyntactic Serbian lexicon extracted from Wiktionary is currently being released.

4. Acknowledgements

Computations performed to produce GLAWI have been carried out using the OSIRIM platform, that is administered by IRIT and supported by CNRS, the Region Midi-Pyrénées, the French Government and ERDF.

5http://redac.univ-tlse2.fr/glaffoli/
5. Bibliographical References

Baldwin, T., Cook, P., Lui, M., MacKinlay, A., and Wang, L. (2013). How Noisy Social Media Text, How Different Social Media Sources? In Sixth International Joint Conference on Natural Language Processing, IJCNLP 2013, pages 356–364, Nagoya, Japan.

Bracco, G., Calderone, B., and Celata, C. (2015). Phonotactic probabilities in Italian simplex and complex words: a fragment priming study. In Proceedings of the NetworkS Final Conference on Word Knowledge and Word Usage: Representations and Processes in the Mental Lexicon, pages 24–28, Pisa, Italy.

Cutler, M., Shih, Y., and Meng, W. (1997). Using the Structure of HTML Documents to Improve Retrieval. In Proceedings of the USENIX Symposium on Internet Technologies and Systems, pages 241–252, Monterey, California.

Desalle, Y., Gaume, B., and Duvignau, K. (2009). SLAM. Automatic lexical solutions for metaphors. TAL, 50(1):145–175.

Desalle, Y., Gaume, B., Magistry, P., Duvignau, K., Cheung, H., and Hsieh, S.-K. (2014). Skillex: An Action Labelling Efficiency Score. The Case for French and Mandarin. In Proceedings of the Annual Meeting of the Cognitive Science Society (CogSci2014), pages 409–414, Quebec City, Canada.

Hathout, N. and Namer, F. (2014). Démonette, a French derivational morpho-semantic network. Linguistic Issues in Language Technology, 11(5):125–168.

Hathout, N., Sajous, F., and Calderone, B. (2014a). Acquisition and enrichment of morphological and morpho-semantic knowledge from the French Wiktionary. In Proceedings of the COLING Workshop on Lexical and Grammatical Resources for Language Processing, pages 65–74, Dublin, Ireland. Association for Computational Linguistics and Dublin City University.

Hathout, N., Sajous, F., and Calderone, B. (2014b). GLAFF, a Large Versatile French Lexicon. In Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC’14), pages 1007–1012, Reykjavik, Iceland.

Hathout, N. (2011). Morphonette: a paradigm-based morphological network. Lingue e linguaggio, 2011(2):243–262.

Klementiev, A., Irvine, A., Callison-Burch, C., and Yarowsky, D. (2012). Toward statistical machine translation without parallel corpora. In Proceedings of the 13th Conference of the European Chapter of the Association for Computational Linguistics (EACL’2012), pages 130–140, Avignon, France. Association for Computational Linguistics.

Maussam, Soderland, S., Etzioni, O., Weld, D. S., Skinner, M., and Bilmes, J. (2009). Compiling a massive, multilingual dictionary via probabilistic inference. In Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP, ACL ’09, pages 262–270, Suntec, Singapore.

McCarthy, D. andNavigli, R. (2009). The English lexical substitution task. Language Resources and Evaluation, 43(2):139–159.

Melero, M., Costa-Jussà, M. R., Domingo, J., Marquina, M., and Quixal, M. (2012). Holaa!! writin like u talk is kewl but kinda hard 4 NLP. In Nicoletta Calzolari, et al., editors, Proceedings of the Eight International Conference on Language Resources and Evaluation (LREC’12), pages 3794–3800, Istanbul, Turkey.

Nivre, J., Hall, J., Kübler, S., McDonald, R., Nilsson, J., Riedel, S., and Yuret, D. (2007). The CoNLL 2007 Shared Task on Dependency Parsing. In Proceedings of the CoNLL 2007 Shared Task on dependency parsing (EMNLP-CoNLL), pages 915–932, Prague, Czech Republic.

Padó, S., Šnajder, J., and Zeller, B. (2013). Derivational Smoothing for Syntactic Distributional Semantics. In Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, pages 731–735, Sofia, Bulgaria.

Roje, M. and Kačič, Z. (2007). Time and Space-efficient Architecture for a Corpus-based Text-to-speech Synthesis System. Speech Communication, 49(3):230–249.

Sajous, F. and Hathout, N. (2015). GLAWI, a free XML-encoded Machine-Readable Dictionary built from the French Wiktionary. In Proceedings of the of the eLex 2015 conference, pages 405–426, Herstmonceux, UK.

Sajous, F., Navarro, E., Gaume, B., Prévot, L., andChudy, Y. (2010). Semi-automatic Endogenous Enrichment of Collaboratively Constructed Lexical Resources: Piggy-backing onto Wiktionary. In Hrafn Loftsson, et al., editors, Advances in Natural Language Processing, volume 6233 of LNCS, pages 332–344. Springer Berlin / Heidelberg.

Sajous, F., Navarro, E., Gaume, B., Prévot, L., andChudy, Y. (2013). Semi-automatic enrichment of crowdsourced synonymy networks: the WISIGOTh system applied to Wiktionary. Language Resources and Evaluation, 47(1):63–96.

Tanguy, L., Urieli, A., Calderone, B., Hathout, N., and Sajous, F. (2011). A Multitude of Linguistically-rich Features for Authorship Attribution. In Notebook for PAN at CLEF 2011, Amsterdam, Netherlands.

Tiedemann, J. andLjubešić, N. (2012). Efficient Discrimination Between Closely Related Languages. In Proceedings of COLING 2012, pages 2619–2634, Mumbai, India.

Urieli, A. (2013). Robust French syntax analysis: reconciling statistical methods and linguistic knowledge in the Talisman toolkit. Ph.D. thesis, Université de Toulouse II-Le Mirail.

Weale, T., Brew, C., and Fosler-Lussier, E. (2009). Using the Wiktionary Graph Structure for Synonym Detection. In Proceedings of the ACL-IJCNLP Workshop on The People’s Web Meets NLP: Collaboratively Constructed Semantic Resources, pages 28–31, Suntec, Singapore.