RESEARCH OF THE PQ-DIAGRAMS OF THE DIE CASTING PROCESS OF ALUMINIUM, COPPER, MAGNESIUM AND ZINC

Abstract: The processes comparison of die casting of aluminium, copper, magnesium and zinc by the calculated PQ-diagrams was performed in the article. The aluminium casting process is identical to the magnesium casting process, and the copper casting process is identical to the zinc casting process based on the performed analysis.

Key words: melt, die casting, the piston, the casting, the diagram.

Language: English

Citation: Chemezov, D., et al. (2020). Research of the PQ-diagrams of the die casting process of aluminium, copper, magnesium and zinc. ISJ Theoretical & Applied Science, 04 (84), 1-4.

Soi: http://s-o-i.org/1.1/TAS-04-84-1 Doi: https://dx.doi.org/10.15863/TAS.2020.04.84.1
Introduction

The castings from non-ferrous metal alloys of the small and medium dimensions are mainly made by die casting on the special machines [1-10].

The various factors, such as the volume, material, and roughness of the casting must be considered for die casting. The configuration selection of the ingate system is performed for rational casting of the castings from various materials. Changing the number of the process parameters at implementation of the multi-factor experiment will allow to find the optimal option of die casting (from aluminium to zinc).

The PQ-diagram shows the actual process of melt injection. This data is necessary at the design stage of die casting, when the actual process parameters are not yet known.

Materials and methods

The die casting process was modeled under the following constant and variable conditions:

1. **Materials.**
 - Aluminium (Al), copper (Cu), magnesium (Mg), zinc (Zn).
2. **The alloys database.**
 - Density – 2500 kg/m3 (Al), 8400 kg/m3 (Cu), 1750 kg/m3 (Mg), 6000 kg/m3 (Zn); viscosity – 21×10^{-5} m2/s (Al), 26×10^{-5} m2/s (Cu), 26×10^{-5} m2/s (Mg), 32×10^{-5} m2/s (Zn); the constant – 0.35 (Al), 0.35 (Cu), 0.25 (Mg), 0.35 (Zn); the solidification factor – 3.8 (Al), 4.7 (Cu), 2.5 (Mg), 2.5 (Zn).
3. **The casting weight** – 1000 g.
4. **The casting volume.**
 - 400 cm3 (Al), 119.048 cm3 (Cu), 571.429 cm3 (Mg), 166.667 cm3 (Zn).
5. **Wall thickness** – 2…5 mm.
6. **The pouring temperature.**
 - 650 °C (Al), 1000 °C (Cu), 623 °C (Mg), 400 °C (Zn).
7. **The minimal flow temperature.**
 - 540 °C (Al), 800 °C (Cu), 560 °C (Mg), 380 °C (Zn).

Results and discussion

The calculated volume of aluminium melt, taking into account the ingate system, was 480 cm3, the volume of copper melt was 199.048 cm3, the volume of magnesium melt was 651.429 cm3, and the volume of zinc melt was 246.667 cm3. The shot profiles are displayed as the dependencies of changing the piston velocity of the machine from casting time (the Fig. 1). The piston diameter of the machine was accepted 50 mm in all cases.

![Figure 1](image)

Figure 1 – The dependencies of changing the piston velocity of the machine from casting time:

A – Al; B – Cu; C – Mg; D – Zn.
Journal	Impact Factor
ISRA (India)	4.971
ISI (Dubai, UAE)	0.829
GIF (Australia)	0.564
JIF	1.500
SIS (USA)	0.912
PHH (Russia)	0.126
ESJI (KZ)	8.716
SIF (Morocco)	5.667
ICV (Poland)	6.630
IBI (India)	4.260
OAJI (USA)	0.350

Figure 2 – The PQ-diagrams of die casting: A and B – Al; C and D – Cu; E and F – Mg; G and H – Zn.
Casting was carried out in two phases. The piston moves magnesium melt at low velocity in the first casting phase. Movement time of the piston in the first phase is 2.592 s, which is several times more than movement time of the piston at casting of other non-ferrous metals. The second phase of magnesium casting is characterized by instantaneous increasing the piston velocity to 9.701 m/s. The opposite process is observed at copper casting (high velocity of the piston in the first phase is replaced by low velocity in the second phase). The filling ratio of aluminium melt is 82.942%, and zinc melt is 31.407%, magnesium melt is 61.115%, copper melt is 25.344%, magnesium melt is 82.942%, and zinc melt is 31.407%.

The PQ-diagrams of die casting of aluminium, copper, magnesium, and zinc are presented in the Fig. 2. The graphs A, C, E and G were built at standard casting pressure, the low surface finish of the casting and the ingate thickness of 1 mm. The graphs B, D, F and H were built at tight casting pressure, the high surface finish of the casting and the ingate thickness of 4 mm.

The diagrams show: 1 – the machine power, 2 – the die line (the ingate area), 3 and 4 – the ingate velocity limits, 5 – theoretical fill rate. Changing theoretical fill rate is the main difference of die casting under the first and second conditions. Also, at tight casting pressure, the high surface finish of the casting and the ingate thickness of 4 mm, there is some increasing the range of the ingate velocity limits. The aluminium die casting process is similar to the magnesium die casting process. Theoretical fill rate of copper is in the range of the machine power, which indicates rationality of this process.

Conclusion

The lowest efficiency of the considered technological processes is observed at magnesium die casting with the same weight of the castings. High velocity of the piston movement in the second phase is required for reducing formation of casting defects during crystallization of the casting.

Theoretical fill rate changes approximately 1.5 times with the high casting requirements. The most efficient process was determined at copper die casting.