Global phase diagram of a spin–orbit-coupled Kondo lattice model on the honeycomb lattice*

Xin Li(李欣)\textsuperscript{1,2}, Rong Yu(俞榕)\textsuperscript{3,1}, and Qimiao Si\textsuperscript{4}

\textsuperscript{1}Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
\textsuperscript{2}School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
\textsuperscript{3}Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials and Micro-nano Devices, Renmin University of China, Beijing 100872, China
\textsuperscript{4}Department of Physics & Astronomy, Rice Center for Quantum Materials, Rice University, Houston, Texas 77005, USA

(Rceived 16 March 2019; revised manuscript received 22 April 2019; published online 31 May 2019)

Motivated by the growing interest in the novel quantum phases in materials with strong electron correlations and spin–orbit coupling, we study the interplay among the spin–orbit coupling, Kondo interaction, and magnetic frustration of a Kondo lattice model on a two-dimensional honeycomb lattice. We calculate the renormalized electronic structure and correlation functions at the saddle point based on a fermionic representation of the spin operators. We find a global phase diagram of the model at half-filling, which contains a variety of phases due to the competing interactions. In addition to a Kondo insulator, there is a topological insulator with valence bond solid correlations in the spin sector, and two antiferromagnetic phases. Due to the competition between the spin–orbit coupling and Kondo interaction, the direction of the magnetic moments in the antiferromagnetic phases can be either within or perpendicular to the lattice plane. The latter antiferromagnetic state is topologically nontrivial for moderate and strong spin–orbit couplings.

Keywords: heavy fermion system, Kondo insulator, spin–orbit coupling

PACS: 71.10.Hf, 71.27.+a, 71.70.Ej

DOI: 10.1088/1674-1056/28/7/077102

\begin{abstract}
Exploring novel quantum phases and the associated phase transitions in systems with strong electron correlations is a major subject of contemporary condensed matter physics.\textsuperscript{[1–3]} In this context, heavy fermion (HF) compounds play a crucial role.\textsuperscript{[3–7]} In these materials, the coexisted itinerant electrons and local magnetic moments (from localized f electrons) interact via the antiferromagnetic exchange coupling, resulting in the famous Kondo effect.\textsuperscript{[8]} Meanwhile, the Ruderman–Kittel–Kasuya–Yosida (RKKY) interaction, namely the exchange coupling among the local moments mediated by the itinerant electrons, competes with the Kondo effect.\textsuperscript{[9]} This competition gives rise to a rich phase diagram with an antiferromagnetic (AFM) quantum critical point (QCP) and various emergent phases nearby.\textsuperscript{[1,10]}

In the HF metals, experiments\textsuperscript{[11,12]} have provided strong evidence for local quantum criticality,\textsuperscript{[13,14]} which is characterized by the beyond-Landau physics of Kondo destruction at the AFM QCP. Across this local QCP, the Fermi surface jumps from large in the paramagnetic HF liquid phase to small in the AFM phase with Kondo destruction. A natural question arises: how does this local QCP connect to the conventional spin density wave (SDW) QCP described by the Hertz–Millis theory?\textsuperscript{[15,16]} A proposed global phase diagram\textsuperscript{[17–20]} makes this connection via the tuning of the quantum fluctuations in the local-moment magnetism. Besides the HF metals, it is also interesting to know whether a similar global phase diagram can be realized in Kondo insulators (KIs), where the chemical potential is inside the Kondo hybridization gap when the electron filling is commensurate. The KIs are band insulators where the band gap originates from nontrivial strong electron-correlation effects. A Kondo-destruction transition is expected to accompany the closure of the band gap. The question that remains open is: do the local moments immediately order or do they form a different type of magnetic state, such as spin liquid or valence bond solid (VBS), when the Kondo-destruction takes place?

Recent years have seen extensive studies about the effect of a fine spin–orbit coupling (SOC) on the electronic bands. In topological insulators (TIs), the bulk band gap opens due to a non-zero SOC, and there exist gapless surface states. The non-trivial topology of the band structure is protected by the time reversal symmetry (TRS). Even for a system with broken TRS, the conservation of combination of TRS and translational symmetry can give rise to a topological antiferromagnetic insulator (T-AFMI).\textsuperscript{[21]} In general, these TIs and TAFIs can be tuned to topologically trivial insulators via topological quantum phase
\end{abstract}
transitions. But how the strong electron correlations influence the properties of these symmetry dictated topological phases and the related phase transitions is still under active discussion.

The SOC also has important effects in HF materials.\[20\] For example, the SOC can produce a topologically nontrivial band structure and induce exotic Kondo physics.\[22,23\] It may give rise to a topological Kondo insulator (TKI),\[31\] which has been invoked to understand the resistivity plateau of the heavy-fermion SmB$_6$ at low temperatures.\[25\]

From a more general perspective, the SOC provides an additional tuning parameter enriching the global phase diagram of the HF systems.\[20,26\] Whether and how the topological nontrivial quantum phases can emerge in this phase diagram is a timely issue. Recent studies have advanced a Weyl–Kondo semimetal.\[27\] The new heavy fermion compound Ce$_3$Bi$_4$Pd$_4$ displays thermodynamic\[28\] and zero-field Hall transport\[29\] properties that provide evidence for the salient features of the Weyl–Kondo semimetal. These measurements probe the linearly dispersing electronic excitations with a velocity that is renormalized by several orders of magnitude and singularities in the Berry-curvature distribution.

Theoretical studies are also of interest for a Kondo lattice model defined on a honeycomb lattice,\[30\] which readily accommodates the SOC.\[31\] In the diluted carrier limit, this model supports a nontrivial Dirac–Kondo semimetal (DKSM) phase, which can be tuned to a TKI by increasing the SOC.\[32\] In Ref. [30], it was shown that, at half-filling, increasing the Kondo coupling induces a direct transition from a TI to a KI. A related model, with the conduction-electron part of the Hamiltonian described by a Haldane model\[33\] on the honeycomb lattice, was subsequently studied.\[34\]

Here we investigate the global phase diagram of a spin-orbit-coupled Kondo lattice model on the honeycomb lattice at half-filling. We show that the competing interactions in this model give rise to a very rich phase diagram containing a TI, a KI, and two AFM phases. We focus on discussing the influence of magnetic frustration on the phase diagram. In the TI, the local moments develop a VBS order. In the two AFM phases, the moments are ordered, respectively, in the plane of the honeycomb lattice (denoted as AFM$_c$) and perpendicular to the plane (AFM$_z$). Particularly in the AFM$_z$ phase, the conduction electrons may have a topologically nontrivial band structure, although the TRS is explicitly broken. This T-AFM$_z$ state connects to the trivial AFM$_c$ phase via a topological phase transition as the SOC is reduced.

The remainder of the paper is organized as follows. We start by introducing the model and our theoretical procedure in Section 2. In Section 3, we discuss the magnetic phase diagram of the Heisenberg model for the local moments. Next, we obtain the global phase diagram of the full model in Section 4. In Section 5, we examine the nature of the conduction-electron band structures in the AFM states, with a focus on their topological characters. We discuss the implications of our results in Section 6.

2. Model and method

The model that we consider here is defined on an effective double-layer honeycomb lattice. The top layer contains conduction electrons realizing the Kane–Mele Hamiltonian.\[31\] The conduction electrons are Kondo coupled (i.e., via AF exchange coupling $J_K$) to the localized magnetic moments in the bottom layer. The local moments interact among themselves through direct exchange interaction, as well as the conduction electron mediated RKKY interaction; the interactions are described by a simple $J_1–J_2$ model. Both the conduction bands and the localized bands are half-filled. This Kondo-lattice Hamiltonian takes the following form on the honeycomb lattice:

$$H = t \sum_{\langle ij \rangle} \sigma_i \sigma_j + \frac{i}{\hbar} \omega_0 \sum_{\langle ij \rangle} \sigma_i \sigma_j + \sum_{\langle ij \rangle} \sigma_i \sigma_j + J_K \sum_{\langle ij \rangle} S_i \cdot S_j + J_1 \sum_{\langle ij \rangle} S_i \cdot S_j + J_2 \sum_{\langle ij \rangle} S_i \cdot S_j,$$  \hspace{1cm} (1)

where $\sigma_i$ creates a conduction electron at site $i$ with spin index $\sigma$. $t$ is the hopping parameter between the nearest neighboring (NN) sites, and $\omega_0$ is the strength of the SOC between the next-nearest neighboring (NNN) sites. $\omega_{ij} = \pm 1$, depending on the direction of the NNN hopping. $S_i = \sigma_i \sigma_i \sigma_i$ is the spin operator of the conduction electrons at site $i$ with $\sigma = \sigma^x, \sigma^y, \sigma^z$ being the Pauli matrices. $S_i$ refers to the spin operator of the local moments with spin $S = 1/2$. In the model we considered here, $J_K, J_1$, and $J_2$ are all AFM. By incorporating the Heisenberg interactions, the studied Kondo-lattice model readily captures the effect of geometrical frustration. In addition, instead of treating the Kondo screening and magnetic order in terms of the longitudinal and transverse components of the Kondo-exchange interactions,\[34–36\] we will treat both effects in terms of interactions that are spin-rotationally invariant; this will turn out to be important in mapping out the global phase diagram.

We use the spinon representation for $S_i$, i.e., rewriting $S_i = f_i^{\dagger} \sigma \sigma f_i$ along with the constraint $\sum f_i^{\dagger} f_i = 1$, where $f_i^{\dagger}$ is the spinon operator. The constraint is enforced by introducing the Lagrange multiplier term $\sum \lambda_i (\sum f_i^{\dagger} f_i - 1)$ in the Hamiltonian. To study both the non-magnetic and magnetic phases, we decouple the Heisenberg Hamiltonian into two channels

$$JS_i \cdot S_j = xJS_i \cdot S_j + (1-x)JS_i \cdot S_j$$
\[ x \left( \frac{J}{2} |Q_{ij}|^2 - \frac{J}{2} Q_{i1}^* f_{i1} f_{ja} - \frac{J}{2} Q_{j1} f_{ja} f_{i1} \right) + (1 - x) \left( -J M_i + J M_j + S_i + J M_i S_j \right). \]  

Here \( x \) is a parameter that is introduced in keeping with the generalized procedure of Hubbard–Stratonovich decouplings and will be fixed to conveniently describe the effect of quantum fluctuations. The corresponding valence bond (VB) parameter \( Q_{ij} \) and sublattice magnetization \( M_i \) are \( Q_{ij} = \langle \sum_a f_{i1}^* f_{ja} \rangle \) and \( M_i = \langle S_i \rangle \), respectively. Throughout this paper, we consider the two-site unit cell, thus excluding any states that break the lattice translation symmetry. Under this construction, there are three independent VB mean fields \( Q_i \), \( i = 1, 2, 3 \) for the NN bonds and six independent VB mean fields \( Q_i \), \( i = 4, 5, \ldots, 9 \) for the NNN bonds, which are illustrated in Fig. 1. We consider only AFM exchange interactions, \( J_1 > 0 \) and \( J_2 > 0 \), and will thus only take into account AFM order with \( M = M_{i=A} = -M_{i=B} \).

![Fig. 1](image_url)

(a), (b) Definition of nearest neighboring and next nearest neighboring bond mean fields \( Q_{ij} \). Filled and empty circles denote the two sublattices A and B, respectively. Different bond directions are labeled by different colors. (c) First Brillouin zone corresponds to the two-sublattice unit cell.

To take into account the Kondo hybridization and the possible magnetic order on an equal footing, we follow the treatment of the Heisenberg interaction as outlined in Eq. (2) and decouple the Kondo interaction as follows:

\[ J_K S \cdot s \approx y \left( \frac{J_K}{2} |b|^2 - \frac{J_K}{2} b f_{i1}^* c_{i1} - \frac{J_K}{2} b^* c_{i1}^* f_{i1} \right) + (1 - y) \left( -J_K M_i + J_K S_i + M_i + J_K S_i M_i \right). \]  

Here we have introduced the mean-field parameter for the Kondo hybridization, \( b = \langle \sum_a c_{i1}^* f_{ja} \rangle \), and the conduction electron magnetization \( m_i = \langle s_i \rangle \). For nonzero \( b \), the conduction electrons will Kondo hybridize with the local moments and the system at half-filling is a KI. On the other hand, when \( b \) is zero and \( M \) is nonzero, magnetization \( (m \neq 0) \) on the conduction electron band will be induced by the Kondo coupling, and various AFM orders can be stabilized depending on the strength of the SOC. Just like the parameter \( x \) in Eq. (2) is chosen so that a saddle-point treatment captures the quantum fluctuations in the form of spin-singlet bond parameters, the parameter \( y \) will be specified according to the criterion that the treatment at the same level describes the quantum fluctuations in the form of Kondo-insulator state.

3. Phase diagram of the Heisenberg model for the local moments

Because of the complexity of the full Hamiltonian, we start by setting \( J_k = 0 \) and discuss the possible ground-state phases of the \( J_1–J_2 \) Heisenberg model for the local moments. By treating the problem at the saddle-point level in Eq. (2), we obtain the phase diagram in the \( x–J_2/J_1 \) plane shown in Fig. 2. Here, the \( x \)-dependence is studied in the same spirit as that for the Shastry–Sutherland lattice in Ref. [19]. In the parameter regime explored, an AFM ordered phase (labeled as “AFM” in the figure) and a valence bond solid (VBS) phase are stabilized. The AF order stabilized is the two-sublattice Néel order on the honeycomb lattice, and the VBS order refers to covering of dimer singlets with \( |Q_i| = \langle Q \rangle \neq 0 \) for one out of the three NN bonds (e.g., \( Q_1 \neq 0, Q_2 = Q_3 = 0 \) and \( |Q_i| = 0 \) for all the NNN bonds. This VBS state spontaneously breaks the \( C_3 \) rotational symmetry of the lattice. We thus define the order parameter for the VBS state to be \( Q = |\sum_{j=1,2,3} Q_j e^{i(2\pi j/3)}| \).

In Fig. 3, we plot the evolution of VBS and AF order parameters \( Q \) and \( M \) as a function of \( J_2/J_1 \). A direct first-order transition (signaled by the mid-point of the jump of the order parameters) between these two phases is observed for \( x \lesssim 0.6 \). For the sake of understanding the global phase diagram of the full Kondo–Heisenberg model, we limit our discussion to \( J_2/J_1 < 1 \), where only the NN VBS is relevant. A different decoupling scheme approach has been used to study this model,[37] and the obtained results are consistent with ours in the parameter regime of overlap. To fix the parameter \( x \), we compare our results with those about the \( J_1–J_2 \) model derived from previous numerical studies. DMRG studies[38] found that the AFM state is stabilized for \( J_2/J_1 < 0.22 \), and VBS exists for \( J_2/J_1 > 0.35 \), while in between the nature of the ground states is still under debate. In this parameter regime, the DMRG calculations suggest a plaquette resonating valence bond (RVB) state,[38] while other methods implicate possibly spin liquids.[39] In light of these numerical results, we take \( x = 0.4 \) in our calculations. This leads to a direct transition from AFM to VBS at \( J_2/J_1 \sim 0.27 \), close to the values of phase boundaries of these two phases determined by other numerical methods.
Fig. 2. Ground-state phase diagram of the $J_1$–$J_2$ Hamiltonian for the local moments in the $x$–$J_2/J_1$ plane. A NN VBS and an AFM state are stabilized in the parameter regime shown.

Fig. 3. Evolution of (a) the VBS order parameter $Q$ and (b) the AFM order parameter $M$ as a function of $J_2/J_1$ for $x = 0.3, 0.4, 0.5$.

4. Global phase diagram of the Kondo-lattice model

We now turn to the global phase diagram of the full model by turning on the Kondo coupling. For definiteness, we set $J_1 = 1$ and consider $t = 1$ and $\lambda_{so} = 0.4$. As prescribed in the previous section, we take $x = 0.4$. Similar considerations for $y$ require that its value allows for quantum fluctuations in the form of Kondo-singlet formation. This has guided us to take $y = 0.7$ (see below). The corresponding phase diagram as a function of $J_K$ and the frustration parameter $J_2/J_1$ is shown in Fig. 4.

In our calculation, the phase boundaries are determined by sweeping $J_K$ while along multiple horizontal cuts for several fixed $J_2/J_1$ values, as shown in Fig. 5. For small $J_K$ and large $J_2/J_1$, the local moments and the conduction electrons are still effectively decoupled. The conduction electrons form a TI for finite SOC, and the local moments are in the VBS ground state as discussed in the previous section. When both $J_K$ and $J_2/J_1$ are small, the ground state is AFM. Due to the Kondo coupling, finite magnetization $m$ is induced for the conduction electrons. This opens an SDW gap in the conduction band, and therefore the ground state of the system is an AFM insulator. The SOC couples the rotational symmetry in the spin space to the one in the real space. As a consequence, the ordered moments in the AFM phase can be either along the $z$ direction (AFM$_z$) or in the $x$–$y$ plane (AFM$_{xy}$). For finite SOC, these two AFM states with different energies, which can be tuned by $J_K$. As shown in the phase diagram, the AFM phase contains two ordered states, the AFM$_z$ and AFM$_{xy}$. They are

Fig. 4. Global phase diagram at $T = 0$ from the saddle-point calculations with $x = 0.4$ and $y = 0.7$. The ground states include the valence-bond solid (VBS) and Kondo insulator (KI), as well as two antiferromagnetic orders, T-AFM$_z$ and AFM$_{xy}$, as described in Section 5.

Fig. 5. Evolution of parameters (a) $b$, (b) $Q$, (c) $M_x$, and (d) $M_z$ as a function of $J_K$ for different ratios of $J_2/J_1$. 

077102-4
separated by a spin reorientation transition at $J_K/J_1 \approx 0.8$. For the value of SOC taken, the AFM state is topologically non-trivial, and is hence denoted as T-AFM$_z$ state. The nature of this state and the associated topological phase transition is discussed in detail in the next section.

For sufficiently large $J_K$, the Kondo hybridization $b$ is nonzero (see Fig. 5(a)), and the ground state is a KI. Note that for finite SOC, this KI does not have a topological non-trivial edge state, as a consequence of the topological no-go theorem.[30,40,41] In our calculation at the saddle-point level, the KI exists for $y \geq 0.6$: this provides the basis for taking $y = 0.7$, as noted earlier. Going beyond the saddle-point level, the dynamical effects of the Kondo coupling will appear, and we will expect the KI phase to arise for other choices of $y$.

Several remarks are in order. The phase diagram, Fig. 4, has a similar profile of the global phase diagram for the Kondo insulating systems.[26,42] However, the presence of SOC has enriched the phase diagram. In the AF state, the ordered moment may lie either within the plane or be perpendicular to it. These two states have very different topological properties. We now turn to a detailed discussion of this last point.

5. Topological properties of the AFM states

In this section, we discuss the properties of the AFM$_{xy}$ and AFM$_z$ states, in particular to address their topological nature. For a clear discussion, we fix $t = 1$, $J_1 = 1$, and $J_2 = 0$. Since the Kondo hybridization is not essential to the nature of the AFM states, in this section we simply the discussion by setting $y = 0$.

We start by defining the order parameters of the two states

$$M_x = \langle S_x^1 \rangle = -\langle S_y^1 \rangle, \quad (4)$$

$$M_z = \langle S_z^1 \rangle = -\langle S_w^1 \rangle, \quad (5)$$

$$m_x = -\langle \xi_{x,A} \rangle = \langle \xi_{x,B} \rangle, \quad (6)$$

$$m_z = -\langle \xi_{z,A} \rangle = \langle \xi_{z,B} \rangle. \quad (7)$$

Note that for the AFM$_{xy}$ state, we set $M_z = m_z = 0$ without loss of generality. In Fig. 6, we plot the evolution of these AFM order parameters with $J_K$ for a representative value of SOC $\lambda_{so} = 0.1$. Due to the large $J_1$ value we take, the sublattice magnetizations of the local moments are already saturated to 0.5. Therefore, at the saddle-point level, they serve as effective (staggered) magnetic fields to the conduction electrons. The Kondo coupling then induces finite sublattice magnetizations for the conduction electrons, and they increase linearly with $J_K$ for small $J_K$ values. But $m_z$ is generically different from $m_z$, which is important for the stabilization of the states.

![Fig. 6.](image.png)

We then discuss the energy competition between the AFM$_{xy}$ and AFM$_z$ states. The conduction electron part of the mean-field Hamiltonian reads

$$H_c = \begin{pmatrix} c_{\Lambda \uparrow}^\dagger & c_{\Lambda \downarrow}^\dagger & c_{B \uparrow}^\dagger & c_{B \downarrow}^\dagger \end{pmatrix}^T \mathbf{h}_{\text{MF}} \begin{pmatrix} c_{\Lambda \uparrow} \\ c_{\Lambda \downarrow} \\ c_{B \uparrow} \\ c_{B \downarrow} \end{pmatrix}, \quad (8)$$

with

$$\mathbf{h}_{\text{MF}} = \begin{pmatrix} \Lambda(k) & J_K M_z/2 & e(k) & 0 \\ J_K M_z/2 & -\Lambda(k) & 0 & e(k) \\ e^*(k) & 0 & -\Lambda(k) & -J_K M_z/2 \\ 0 & e^*(k) & -J_K M_z/2 & \Lambda(k) \end{pmatrix} \quad (9)$$

for the AFM$_{xy}$ state and

$$\begin{pmatrix} \epsilon(k) & 0 & 0 & 0 \\ 0 & \epsilon(k) & 0 & 0 \\ 0 & 0 & -\Lambda(k) & -J_K M_z/2 \\ 0 & 0 & -J_K M_z/2 & \Lambda(k) + J_K M_z/2 \end{pmatrix} \quad (10)$$

$$E_{\pm,xy}(k) = \pm \sqrt{\Lambda(k)^2 + (J_K M_z/2)^2 + |\epsilon(k)|^2}, \quad (11)$$

$$E_{\pm,z}(k) = \pm \sqrt{(\Lambda(k) + J_K M_z/2)^2 + |\epsilon(k)|^2}. \quad (12)$$

The eigenenergies of the spinon band can be obtained in a similar way

$$E_{\pm,xy}(k) = \pm \frac{1}{2}(3c \cdot M_z + J_K m_z) \quad (13)$$
\[ E_{\pm z}^J(k) = \pm \frac{1}{2} (3J_z M_z + J_K m_z). \]  

(14)

The expression of the total energy for either state is then

\[
E_{\text{tot}} = \frac{1}{N_k} \sum_k E^c(k) + \frac{1}{N_k} \sum_k E^l(k) + 3J_1 |M|^2 + 2J_K (M \cdot m).
\]  

(15)

The first line of the above expression comes from filling the bands up to the Fermi energy (which is fixed to be zero here). The second line is the constant term in the mean-field decomposition. The factor 2 in the \( k \) summation is to take into account the double degeneracy of the energies. \( N_k \) refers to the number of \( k \) points in the first Brillouin zone.

By comparing the expressions of \( E^c(k) \) in Eqs. (11) and (12), we find that adding a small \( M_z \) is to increase the size of the gap at both of the two (inequivalent) Dirac points, thereby pushing the states further away from the Fermi-energy. While adding a small \( M_z \) is to enlarge the gap at one Dirac point but reduce the gap size at the other one. Therefore, an AFM_{xy} state is more favorable than the AFM_{z} state in lowering the energy of the conduction electrons \( \sum_k E^c(k) \).

Meanwhile, from Eqs. (13)–(15), we see that the overall effect of adding a magnetization of the conduction band, \( m_z \), is to increase the total energy \( E_{\text{tot}} \) (the main energy increase comes from the \( 2J_K (M \cdot m) \) term). Because \( |m_z| < |m_i| \) from the self consistent solution, as shown in Fig. 6, the energy increase of the AFM_{z} state is smaller than that in the AFM_{xy} state.

With increasing \( J_K \), the two effects from the magnetic orders compete, resulting in different magnetic ground states as shown in Fig. 4. This analysis is further supported by our self-consistent mean-field calculation. In Fig. 7, we plot the energy difference between these two states \( \Delta E = E_{\text{xy}} - E_{\text{z}} \) as a function of \( J_K \) at several \( \lambda_{so} \) values. In the absence of SOC, the model has the spin SU(2) symmetry, and the AFM_{x} and AFM_{xy} states are degenerate with \( \Delta E = 0 \). For finite \( \lambda_{so} \), at small \( J_K \) values, the energy gain from the \( \sum_k E^c(k) \) term dominates, \( \Delta E > 0 \), and the ground state is an AFM_{z} state. With increasing \( J_K \), the contribution from the \( 2J_K (M \cdot m) \) term is more important. \( \Delta E \) crosses zero to be negative, and the AFM_{xy} state is eventually energetically favorable for large \( J_K \).

Next we discuss the topological nature of the AFM_{x} and AFM_{xy} states. In the absence of Kondo coupling \( J_K \), the conduction electrons form a TI, which is protected by the TRS. There, the left- and right-moving edge states connecting the conduction and valence bands are respectively coupled to up and down spin flavors (eigenstates of the \( S^z \) operator) as the consequence of SOC, and these two spin polarized edge states do not mix.

Once the TRS is broken by the AFM order, generically, topologically nontrivial edge states are no longer guaranteed. However, in the AFM_{z} state, the structure of the Hamiltonian for the conduction electrons is the same as that in a TI. This is clearly shown in Eq. (10) the effect of magnetic order is only to shift \( A(k) \) to \( A(k) + J_K M_z/2 \). In particular, the spin-up and spin-down sectors still do not mix with each other. Therefore, the two spin polarized edge states are still well defined as in the TI, and the system is topologically nontrivial, though without the protection of TRS. Note that the above analysis is based on assuming \( J_K M_z \ll A(k) \), where the bulk gap between the conduction and valence bands is finite. For \( J_K M_z > 6\sqrt{3} \lambda_{so}/(1-\gamma) \), the bulk gap closes at one of the inequivalent Dirac points and the system is driven to a topologically trivial phase via a topological phase transition.\[^{30}\]

We also note that a similar AFM_{z} state arises in a Kondo lattice model without SOC but with a Haldane coupling, as analyzed in Ref. [34].

For the AFM_{xy} state, we can examine the Hamiltonian for the conduction electrons in a similar way. As shown in Eq. (9), the transverse magnetic order \( M_z \) mixes the spin-up and spin-down sectors. As a result, a finite hybridization gap opens between the two edge states, making the system topologically trivial.

To support this analysis, we perform calculations of the energy spectra of the conduction electrons in the AFM_{z} and AFM_{xy} states, as shown in Eqs. (9) and (10), on a finite slab of size \( L_x \times L_y \), with \( L_x = 200 \) and \( L_y = 40 \). The boundary condition is chosen to be periodic along the \( x \) direction and open and zig-zag-type along the \( y \) direction. In Fig. 8, we show the energy spectra with three different sets of parameters: (a) \( \lambda_{so} = 0.01, J_K = 0.4, M_z = 0.5 \), (b) \( \lambda_{so} = 0.1, J_K = 0.4, M_z = 0.5 \), and (c) \( \lambda_{so} = 0.1, J_K = 0.8, M_z = 0.5 \), which respectively correspond to the topologically trivial AFM_{z} state, topological AFM_{xy} insulator, and AFM_{xy} state. As clearly seen, the gapless edge states only exist for parameter set (b), where the system is in the topological AFM_{z} state. Note that in this state, the spectrum is asymmetric with respect to the Brilluion zone boundary (\( k_z = \pi \)), reflecting the explicit breaking of TRS. Based on our analysis and numerical calculations, we...
construct a phase diagram (as shown in Fig. 9) to illustrate the competition of these AFM states. As expected, the AFM\textsubscript{z} state is stabilized for $J_K \lesssim 0.7$, and is topological for $J_K < 12\sqrt{3}\lambda_{so}$ (above the red line).

6. Discussion

We have discussed the properties of various phases in the ground-state phase diagram of the spin–orbit-coupled Kondo lattice model on the honeycomb lattice at half filling. We have shown how the competition of SOC, Kondo interaction, and magnetic frustration stabilizes these phases. For example, in the AFM phase the moments can order either along the $z$-direction or within the $x$–$y$ plane. In our model, the AFM order is driven by the RKKY interaction, and the competition of SOC and Kondo interaction dictates the direction of the ordered magnetic moments.

Throughout this work, we have discussed the phase diagram of the model at half filling. The phase diagram away from half-filling is also an interesting problem. We expect that the competition between the AFM\textsubscript{z} and AFM\textsubscript{xy} states persist at generic fillings, but the topological feature will not. Another interesting filling would be the dilute-carrier limit, where a DKSM exists, and can be tuned to a TKI by increasing the SOC.\[32\]

In this work, we have considered a particular type of SOC, which is inherent in the band structure of the itinerant electrons. In real materials, there are also SOC terms that involve the magnetic ions. Such couplings will lead to models beyond the current work, and may further enrich the global phase diagram.

Although the model in this work is defined on the honeycomb lattice, our conclusion on the global phase diagram is quite general, and will be important in understanding the nature of the transition between the Kondo insulating phase and the antiferromagnetic phase in real materials. For example, the Kondo insulator compound SmB\textsubscript{6} undergoes a magnetic transition under pressure.\[44\] The Kondo-insulator-to-antiferromagnet transition may also be realized by doping CeNiSn with Pt or Pd ions since both CePtSn and CePdSn are antiferromagnetic at low temperatures.\[44–46\] Nontrivial topological properties in the antiferromagnetic phase are expected given that the 5d electrons of CePtSn may contain a large SOC. Moreover, because the Kane–Mele model describes the electron states in graphene, our model may also shed light on the properties of graphene with 5d adatoms.\[47\]

7. Conclusion

We have investigated the ground state phase diagram of a spin–orbit coupled Kondo lattice model at half-filling. The combination of SOC, Kondo and RKKY interactions produces various quantum phases, including a Kondo insulator, a topological insulator with VBS spin correlations, and two AFM phases. Depending on the strength of SOC, the magnetic moments in the AFM phase can be either ordered perpendicular to or in the $x$–$y$ plane. We further show that the $z$-AFM state
is topologically nontrivial for strong and moderate SOC, and can be tuned to a topologically trivial one via a topological phase transition by varying either the SOC or the Kondo coupling. Our results shed new light on the global phase diagram of heavy fermion materials.

Acknowledgment

We thank W Ding, P Goswami, S E Grefe, H H Lai, Y Liu, S Paschen, J H Pixley, T Xiang, and G M Zhang for useful discussions.

References

[1] Löhneysen H 2010 J. Low Temp. Phys. 161 1
[2] Sachdev S 1999 Quantum Phase Transitions (New York: Cambridge University Press)
[3] Si Q and Steglich F 2010 Science 329 1161
[4] Gegenwart P, Si Q and Steglich F 2008 Nat. Phys. 4 186
[5] Löhneysen H von, Rosch A, Vojta M and Wolfle P 2007 Rev. Mod. Phys. 79 1015
[6] Tsunetsugu H, Sigrist M and Ueda K 1997 Rev. Mod. Phys. 69 809
[7] Yang Y F and Yu L 2015 Acta Phys. Sin. 64 217401 (in Chinese)
[8] Hewson A C 1993 The Kondo Problem to Heavy Fermions (Cambridge: Cambridge University Press)
[9] Doniach S 1977 Physica B+C 91 231
[10] Custers J, Gegenwart P, Wilhelm H, Neumaier K, Tokiwa Y, Trovarelli O, Geibel C, Steglich F, Pénin C and Coleman P 2003 Nature 424 524
[11] Schröder A, Aeppli G, Coldea R, Adams M, Stockert O, Löhneysen H v, Bucher E, Ramazashvili R and Coleman P 2000 Nature 407 351
[12] Paschen S, Luhmann T, Wirth S, Gegenwart P, Trovarelli O, Geibel C, Steglich F, Coleman P and Si Q 2004 Nature 432 881
[13] Si Q, Rabello S, Ingersent K and Smith J L 2001 Nature 413 804
[14] Coleman P, Pénin C, Si Q and Ramazashvili R 2001 J. Phys.: Condens. Matter 13 R723
[15] Hertz J A 1976 Phys. Rev. B 14 1165
[16] Millis A J 1993 Phys. Rev. B 48 7183
[17] Si Q 2006 Physica B 378 23
[18] Si Q 2010 Phys. Stat. Solid. B 247 476
[19] Pixley J H, Yu R and Si Q 2014 Phys. Rev. Lett. 113 176402
[20] Si Q and Paschen S 2013 Phys. Stat. Solid. (b) 250 425
[21] Meng R S K, Essin A M and Moore J E 2010 Phys. Rev. B 81 245209
[22] Nakatsuji S, Machida Y, Maeno Y, Tayama T, Sakakibara T, Dujin J v, Balicas L, Millican J N, Macaluso R T and Chan J Y 2006 Phys. Rev. Lett. 98 087204
[23] Chen G 2017 Phys. Rev. B 94 205107
[24] Dzero M, Sun K, Galitski V and Coleman P 2010 Phys. Rev. Lett. 104 106408
[25] Barla A, Derr J, Sanchez J P, Salce B, Lapertot G, Doyle B P, Rufler R, Lensdorff R, Abd-Elmeguid M M and Flouquet J 2005 Phys. Rev. Lett. 94 166401
[26] Yamamoto S J and Si Q 2010 J. Low Temp. Phys. 161 233
[27] Lai H H, Grefe S E, Paschen S and Si Q 2018 Pro. Natl. Acad. Sci. USA 115 93
[28] Dzsaber S, Prochaska L, Sidorenko A, Eguchi G, Sverker R, Waas M, Prokofiev A, Si Q and Paschen S 2017 Phys. Rev. Lett. 118 246601
[29] Dzsaber S, Yan X, Eguchi G, Prokofiev A, Shiroka T, Blaha P, Rubel O, Grefe S E, Lai H H, Si Q and Paschen S 2018 arXiv:1811.02819
[30] Feng X Y, Chung C H, Dai J and Si Q 2013 Phys. Rev. Lett. 111 016402
[31] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801
[32] Feng X Y, Zhong H, Dai J and Si Q 2016 arXiv:1605.02380
[33] Haldane F D M 1988 Phys. Rev. Lett. 61 2015
[34] Zhong Y, Wang Y F, Wang Y Q and Luo H G 2013 Phys. Rev. B 87 035128
[35] Lacroix C and Cyrot M 1979 Phys. Rev. B 20 1969
[36] Li H, Liu Y, Zhang G M and Yu L 2015 J. Phys.: Condens. Matter 27 425601
[37] Li H, Song H F and Liu Y 2016 Euro. Phys. Lett. 116 37005
[38] Ganesh R, Brink J van den and Nishimoto S 2013 Phys. Rev. Lett. 110 127203
[39] Clark B K, Abanin D A and Sondhi S L 2011 Phys. Rev. Lett. 107 087204
[40] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[41] Qi X L and Zhang S C 2011 Phys. Rev. Lett. 107 085205
[42] Pixley J H, Yu R, Paschen S and Si Q 2018 Phys. Rev. B 98 085110
[43] Zhou Y, Wu Q, Rosa P F S, Yu R, Guo J, Yi W, Zhang S, Wang Z, Wang H, Cai S, Yang K, Li A, Jiang Z, Zhang S, Wei X, Huang Y, Yang Y F, Fisk Z, Si Q, Sun L and Zhao Z 2017 Sci. Bull. 62 1439
[44] Kasaya M, Tani T, Shiroka T, Eguchi G, Prokofiev A, Si Q and Paschen S 2017 Phys. Rev. Lett. 118 246601
[45] Casas M, Tani T, Iga F and Kasuya T 1988 J. Magn. Magn. Mater. 76 277
[46] Malik S K, Adroja D T, Dhar S K, Vijayaraghavan R and Padalia B D 1989 Phys. Rev. B 40 2414
[47] Adroja D T and Rainford B D 1994 Physica B 194–196 363
[48] Hu J, Alicea J, Wu R, and Franz M 2012 Phys. Rev. Lett. 109 266801