Review Article

Predictors, prevention, and management of postoperative pain associated with nonsurgical root canal treatment: A systematic review

Mothanna K. AlRahabi, PhD

Department of Restorative Dental Science, College of Dentistry, Taibah University, Almadinah Almunawwarah, KSA

Received 26 January 2017; revised 19 March 2017; accepted 27 March 2017; Available online 9 May 2017

Abstract

Postoperative pain after root canal treatment can be reduced by applying recent advances in endodontic techniques and equipment. This systematic review includes current knowledge about pain after nonsurgical root canal treatment, including predictors, related factors, effects of recent advances, and management. A literature search was performed using the PubMed, ScienceDirect, and Cochrane Library databases for articles published between 1990 and 2016. Search keywords included postoperative pain, nonsurgical treatment, single visit, recent advances in endodontics, and management of postoperative pain with endodontic treatment. Only original research studies were included; editorials, reviews, brief notes, conference proceedings, and letters to the editor were excluded. The initial search yielded 4941 articles, which were assessed and filtered using the selection criteria. Sixty-five studies met the inclusion criteria and were included in the review. The findings showed that pain after nonsurgical root canal treatment occurred in 3–69.3% of patients. Microorganisms were identified as the primary contributors to postoperative pain, and there was no significant difference in postoperative pain between single- and multiple-visit treatments. Postoperative pain after root canal treatment ranges from mild to moderate and occurs even after optimally performed procedures. Furthermore, adequate management of postoperative pain is often considered an indicator of clinical excellence. Application of recently developed endodontic techniques and devices will reduce postoperative pain. Furthermore, a flexible, severity-based drug administration plan can be used to control and manage pain after root canal treatment. Application of the current research findings will reduce pain following root canal treatment and improve patient outcomes.
Introduction

Pain is a critical factor in dentistry because it is the primary cause of dental anxiety. Pain is defined as an unpleasant sensory and emotional experience associated with actual or potential tissue damage or a sensation described in terms of such damage. Odontogenic pain is generated through complicated pathways; tissue damage results in action potential generation towards the central nervous system, which occurs in conjunction with inflammatory reactions at the affected site.

It is a common belief that root canal treatment is the most painful type of dental treatment, and fear of postoperative pain affects many patients. Therefore, accurate knowledge regarding pain after root canal treatment and related factors will enable clinicians to predict and effectively manage postoperative pain. Furthermore, knowledge regarding the prevalence, severity, and management of postoperative pain after nonsurgical root canal treatment will reduce the occurrence of tooth removal and enable evidence-based guidelines for general practitioners to manage postoperative pain. Although root canal treatment alleviates long-term pain, postoperative pain immediately following root canal treatment is commonly reported. Therefore, effective prevention and management of such pain is essential to improve patient outcomes.

The present study aimed to determine the effects of nonsurgical root canal treatment on postoperative pain and to determine predictive and related factors. We also assessed the effects of recent advances in postoperative pain management using a systematic review approach. To achieve these aims, the following specific questions were addressed in relation to the effects of nonsurgical root canal treatment on postoperative pain in adult patients.

1) Does root canal treatment produce postoperative pain, and if so, what are the prevalences, severities, possible causes, and related factors?
2) Are there relationships between recent advances in endodontics and postoperative pain?
3) How can postoperative pain be prevented, reduced, and managed?

Materials and Methods

An electronic literature search was performed using the PubMed, ScienceDirect, and Cochrane databases to identify relevant peer-reviewed articles published between 1990 and 2016. Search keywords included “postoperative pain”, “nonsurgical treatment”, “single visit”, “recent advances in endodontics”, and “management of postoperative pain of endodontic treatment.” We included original studies published in English. Editorials, reviews, brief notes, conference proceedings, and letters to editors were excluded (Table 1). The initial search identified 4941 articles, which were then assessed for eligibility and filtered using the selection criteria (Figure 1). Sixty-five studies met the inclusion criteria and were included in the present review.
Results

The results of this systematic review revealed that the incidence of postoperative pain during the first 24–48 hours ranges from 3% to 69.3%. Mild to moderate pain has been observed in some studies, and moderate to severe pain has been observed in other studies. A strong relationship exists between preoperative and postoperative pain. Patients with acute preoperative pain are likely to experience more severe postoperative pain. The majority of studies revealed that patient age is not related to pain after nonsurgical root canal treatment; women experience more pain after this treatment than men. The incidence of pain after nonsurgical root canal treatment is also higher in the mandibular arch and in molar teeth. Intracanal medication is also related to pain after root canal treatment. No definitive evidence exists indicating that there are significant differences in postoperative pain between single-visit and multiple-visit root canal treatments. Recent advances in endodontics have resulted in reduced postoperative pain in terms of both intensity and duration. Providing patients with information regarding expected postoperative pain and managing pain using prescription medications are methods to improve patient confidence, increase patients' pain thresholds, and improve their perspective regarding future dental treatments. Pretreatment analgesia administered 30 minutes before root canal treatment reduces postoperative pain and may be useful, especially in patients with low pain thresholds. NSAIDs are most commonly used to control pain after root canal treatment. A flexible drug administration plan for pain control is recommended (Figure 2) and should be determined according to pain severity.

Discussion

Postoperative pain prevalence and severity

The incidence of postoperative pain during the first 24–48 h ranged from 3% to 69.3%. Mild to moderate pain was observed in some studies, and moderate to severe pain was observed in other studies. In addition, several studies have reported severe postoperative pain after 12–24 h. Pain typically lasts for 24–48 h, although some patients report pain that continued for 3–9 days following root canal treatment. The variability in results can be explained by the use of different criteria to assess postoperative pain, the use of different materials and techniques for root canal treatments, and failure to consider preoperative pain as a variable.

Factors resulting in postoperative pain

Microorganisms are the most common factor associated with postoperative pain after nonsurgical root canal treatment, as pain typically results from the acute inflammation of periradicular tissues. Other causes of postoperative pain include mechanical or chemical damage to periradicular tissues. Specifically, mechanical factors such as overinstrumentation or extrusion of root canal obturation materials are associated with pain after

![Figure 2: Drug administration protocol for postoperative pain management.](image-url)
endodontic treatments, and sodium hypochlorite (NaOCl) extrusion produces severe pain, swelling, and tissue injury when used as an irrigant for the periapical tissues.

Factors related to postoperative pain

Postoperative pain following nonsurgical root canal treatment is a multifactorial phenomenon and is related to the presence of periapical pathosis, missed canals, inadequate cleaning and shaping, apical extrusion of debris, apical patency during instrumentation, irrigant and intracanal medication extrusion, and overbite restorations, as well as tooth type and gender.

There is a strong relationship between preoperative and postoperative pain. Patients who have acute preoperative pain are likely to experience more severe postoperative pain.

However, there are inconsistent findings regarding the relationship between pulpal status and postoperative pain. Several studies have reported that pulpal status contributes to postoperative pain, whereas other studies have not demonstrated an influence of pulpal status. Peripheral and central sensitization resulting from inflammatory mediators during pulpitis and apical periodontitis may also increase pain severity.

The majority of studies have found that patient age was not related to pain after nonsurgical root canal treatment. However, other studies have indicated a negative correlation between increasing age and treatment outcome, with patients >35 years of age experiencing less pain than younger patients.

There is no definitive evidence to prove that increasing age is associated with progressive loss of nociceptive sensitivity. Thus, decreased pain sensitivity with increasing age is not related to changes in physiological pain systems. However, pulp chamber recession complicates root canal treatment in older patients and results in more severe postoperative pain.

Women experience more pain after nonsurgical root canal treatment than men. The biological differences between men and women resulting from changes in serotonin and non-adrenalin hormones may underlie gender differences. Similarly, cortisol modulates pain sensation and is secreted in higher quantities in men than in women. Other factors such as oestrogen, the menstrual cycle, lifestyle, and societal expectations may also contribute to gender differences in physiological reactions to pain.

The incidence of pain after nonsurgical root canal treatment is also higher in the mandibular arch and in molar teeth. This difference may result from the dense trabecular pattern of the mandibular bone, which decreases blood circulation and concentrates infection, thereby delaying healing. Similar effects are associated with the complex anatomy of the lower molars.

The maintenance of apical patency during root canal instrumentation had no significant influence on pain after root canal treatment. However, apical foramen enlargement due to over instrumentation during root canal treatment may increase the incidence and intensity of postoperative pain.

Intracanal medication is also related to pain after root canal treatment. Compared to when no dressing is used, dressing the necrotic canals with chlorhexidine alone or with calcium hydroxide plus chlorhexidine reduces postoperative pain. In addition, postoperative pain associated with acute apical periodontitis is effectively managed by intracanal dressing with Ledermix paste, which is a mixture of a glucocorticoid (triamcinolone) and an antibiotic (demeclocycline).

Number of clinic visits and postoperative pain

For the last few decades, more than 70% of dental schools have recommended single-visit root canal treatment. Recent advances in endodontics, such as nickel titanium rotary instrumentation, reliable apex locators, ultrasonics, microscopic endodontics, digital radiography, newer obturation systems, and bio compatible sealing materials, have facilitated more efficient endodontic procedures and enabled single-visit rather than multiple-visit root canal treatments. However, some studies report that many clinicians perform root canal treatments over multiple visits. Although single-visit root canal treatment is an efficient and clinically effective procedure, the incidence of postoperative pain is concerning, even though the majority of studies found no significant differences in postoperative pain between single-visit and multiple-visit root canal treatments. However, other studies have reported that postoperative pain increased for single-visit root canal treatments, which contrasts with reports that postoperative pain is reduced for single-visit root canal treatments. These discrepancies may result from differences in sample size, treatment techniques (such as rotary instrumentation vs. manual instrumentation or lateral condensation vs. vertical conization obturation), pulp status, whether teeth are single- or multi-rooted, and pain measurement techniques.

Table 2 summarizes the relationship between the number of clinic visits and pain after root canal treatment.

Effects of recent advances in postoperative pain management

Recently, the practice of endodontics has benefitted from several new technologies that have improved treatment efficiency, safety, and quality. In addition, recently developed endodontic techniques and devices, such as operative microscopes, electronic apex locators, and rotary nickel titanium systems, have reduced procedure durations and increased the success rates of endodontic treatments. For example, the crown-down technique for cleaning and shaping root canal systems, which approaches the apical end starting from the coronal third and progressing towards the apical third, reduces extrusion of debris through the apical foramen. This reduction is significant because periapical debris extrusion is a major contributor to pain after root canal treatment. In addition, nickel–titanium engine-driven instrumentation extrudes less debris than manual stainless steel K-files. Hence, these instruments have dramatically decreased the incidence of postoperative pain. Similarly, advances in root canal instrumentation reciprocating systems have resulted in less postoperative pain in terms of both intensity and duration.

Irrigant activation is an effective method to reduce postoperative pain, and the use of a negative apical pressure...
Study and reference no.	Type of tooth	Pulp status	No. of teeth or patients	Percentage of cases	Incidence of postoperative pain	
Patil et al.63	Maxillary central incisor	Vital and nonvital	66 teeth	100%	n/a	There was no significant difference in postoperative pain between single- and multiple-visit root canal treatments
Onay et al.62	All types	Vital and nonvital	1819 teeth	31%	69%	The incidence of postoperative pain was minimal after single-visit root canal treatments
Wong et al.64	All types	Vital and nonvital	538 teeth	51%	49%	There was no significant difference in postoperative pain between single- and multiple-visit root canal treatments
Prashanth et al.57	All teeth	Vital and nonvital	32 patients	50%	50%	There was no significant difference in postoperative pain between single- and multiple-visit root canal treatments
Singh et al.34	Single-rooted teeth	Vital and nonvital	200 teeth	50%	50%	There was no significant difference in postoperative pain between single- and multiple-visit root canal treatments
Wang et al.35	Permanent anterior teeth	Vital	100 teeth	50%	50%	There was no significant difference in postoperative pain between single- and multiple-visit root canal treatments
El Mubara et al.16	All types	Vital and nonvital	230 patients	50%	50%	There was no significant difference in postoperative pain between single- and multiple-visit root canal treatments
Bayram et al.1	All types	Vital and nonvital	306 patients	50%	50%	There was no significant difference in postoperative pain between single- and multiple-visit root canal treatments
Risso et al.13	Molars	Pulp necrosis	118 teeth	48%	52%	Postoperative pain was greater after 2-visit root canal treatment compared to single-visit treatment, although the differences were not statistically significant
Al-Negrish et al.21	Central incisor teeth	Nonvital	120 teeth	50%	50%	There was no significant difference in postoperative pain between single- and multiple-visit root canal treatments
Oginni et al.59	All teeth	Vital and nonvital	107 teeth	45.8%	5.2%	Pain after single-visit root canal treatment was greater than pain after multiple-visit root canal treatment
DiRenzzo et al.65	Permanent molars	Vital and nonvital	72 patients	54%	46%	There was no significant difference in postoperative pain between single- and multiple-visit root canal treatments
Imura and Zuo61	All types	Vital and nonvital	1012 patients	57.5%	42.5%	Pain after multiple-visit root canal treatment was greater than after single-visit root canal treatment
Fava 199458	Maxillary central incisors	Vital	60 patients	50%	50%	There was no significant difference in postoperative pain between single- and multiple-visit root canal treatments
irrigation device can significantly reduce postoperative pain. However, one study found that there were no significant differences in postoperative pain between the use of 2% chlorhexidine and 5.25% sodium hypochlorite irrigating solutions.

Preventive management of postoperative pain

Pain relief is often more important to patients than successful root canal treatment. Therefore, the prevention and management of postoperative pain after nonsurgical root canal treatment is a component of successful outcomes. Providing patients with information regarding expected postoperative pain and managing pain by prescribing medications improves patient confidence, increases patients’ pain thresholds, and improves patients’ views of future dental treatments.

Pretreatment analgesia administered 30 min before root canal treatment reduces postoperative pain and may therefore be useful, especially in patients with low pain thresholds. Pretreatment analgesia with nonsteroidal anti-inflammatory drugs (NSAIDs) before endodontic treatment blocks the cyclooxygenase (COX) pathway and may therefore block pain signals prior to sensation. One study found that premedication with a single dose of ibuprofen did not relieve postoperative pain after root canal treatment. However, the study sample was small (39 patients), and information was not provided regarding whether the pulp was vital or necrotic. Furthermore, a preoperative single oral dose of prednisolone (30 mg) or dexamethasone (4 mg) substantially reduces postoperative pain. Administration of an enduring local anaesthetic (bupivacaine) during treatment can also significantly reduce postoperative pain after nonsurgical root canal treatment, and this effect is hypothesized to occur by blocking nociceptive impulses for a long enough duration of time to prevent central hyperalgesia in the early stages of inflammation after root canal treatment. Intracanal cryotherapy using 2–4 °C saline irrigation for 5 min as the final irrigant may significantly reduce postoperative pain. Cryotherapy restricts tissue metabolism and blood flow to tissues, thereby producing vasoconstriction.

The resulting decreased external root surface temperature may constrain inflammatory reactions, reduce the release of pain-producing substances, and reduce edema in the periapical region. Localized inflammation has a crucial role in odontogenic pain development, and pain after root canal treatment results from periapical tissue inflammation. NSAIDs, including ibuprofen, aspirin, flurbiprofen, ketorolac, and etodolac are most commonly used to control pain after root canal treatment. Prostaglandin synthesis is prevented by NSAIDs by reducing the enzyme activities of COX 1 and 2. Furthermore, moderate to severe pain is ideally managed using a combination of 2 or more drugs to enable a lower dose of each drug, which minimizes side effects. For example, the combination of an NSAID and acetaminophen can improve analgesia for dental pain. Similarly, a combination of ibuprofen and paracetamol effectively reduces pain following root canal treatment when taken immediately following the procedure. However, when NSAID combinations are not effective pain management strategies, a narcotic analgesic should be considered. Therefore, a flexible drug administration plan for pain control is recommended and should be determined on the basis of pain severity. Furthermore, drugs should be administered four times per day until the pain subsides.

The effects of reducing occlusion to relieve postoperative pain after root canal treatment are inconclusive. In teeth with symptomatic apical periodontitis, reducing occlusion did not have any effect on pain after root canal treatment. However, another study revealed that occlusal reduction of teeth with tenderness on biting effectively reduced postoperative pain. Pain on biting may result from inflammatory mediators stimulating periradicular nociceptors, and occlusal reduction may disrupt the continuous mechanical stimulation of the sensitized nociceptors.

Conclusions

Pain after root canal treatment typically ranges from mild to moderate and can occur even after optimally performed root canal treatments. Recent advances in endodontics have reduced the incidence of pain after root canal treatment and improved patient satisfaction regarding postoperative pain. The effective management of postoperative pain is often considered an indicator of clinical excellence. However, further research is required to understand the physiology of pain and the mechanisms of relief associated with drugs and therapy.

Conflict of interest

The authors declare that there are no conflicts of interest regarding this article.

Funding

No funding source had an influence on the study design, the data analyses, or the decision to publish this work.

References

1. Ince B, Ercan E, Dalli M, Dulgergil CT, Zorba YO, Colak H. Incidence of postoperative pain after single-and multi-visit endodontic treatment in teeth with vital and non-vital pulp. Eur J Dent 2009; 3: 273–279.
2. Rosenberg PA. Diagnosis. In: Rosenberg PA, editor. Endodontic pain diagnosis, causes, prevention and treatment. 1st ed. New York: Springer; 2014. p. 1.
3. Turner CL, Eggleston GW, Lunos S, Johnson N, Wiedmann TS, Bowles WR. Sniffing out endodontic pain: use of an intranasal analgesic in a randomized clinical trial. J Endod 2011; 37: 439–444.
4. Pak JG, White SN. Pain prevalence and severity before, during, and after root canal treatment: a systematic review. J Endod 2011; 37: 429–438.
5. Arias A, la Macorra J, Hidalgo J, Azabul M. Predictive models of pain following root canal treatment: a prospective clinical study. Int Endod J 2013; 46: 784–793.
6. Gondim E, Setzer FC, Dos Carmo CB, Kim S. Postoperative pain after the application of two different irrigation devices in
a prospective randomized clinical trial. J Endod 2010; 36: 1295–1301.

7. Smith EA, Marshall JG, Selph SS, Barker DR, Sedgley CM. Nonsteroidal anti-inflammatory drugs for managing postoperative endodontic pain in patients who present with preoperative pain: a systematic review and meta-analysis. J Endod 2016; 42: 7–15.

8. Gomes M, Böttcher D, Scarparo R, Morgental R, Waltrick S, Ghisi A, et al. Predicting pre-and postoperative pain of endodontic origin in a southern Brazilian subpopulation: an electronic database study. Int Endod J 2016. http://dx.doi.org/10.1111/iej.12684.

9. Bourreau MLS, Soares ADJ, Souza-Filho FJD. Evaluation of postoperative pain after endodontic treatment with foraminal enlargement and obturation using two auxiliary chemical protocols. Rev Odontol UNESP 2015; 44: 157–162.

10. Singh S, Garg A. Incidence of post-operative pain after single visit and multiple visit root canal treatment: a randomized controlled trial. J Conserv Dent 2012; 15: 323.

11. Oginni AO, Udoye CI. Endodontic flare-ups: comparison of incidence between single and multiple visit procedures in patients attending a Nigerian teaching hospital. BMC Oral Health 2004; 4: 1.

12. Albashaireh Z, Alnegrash A. Postobturation pain after single-and multiple-visit endodontic therapy. A prospective study. J Dent 1998; 26: 227–232.

13. Risco PDA, Cunha A, Araujo M, Luiz R. Postobturation pain and associated factors in adolescent patients undergoing one-and two-visit root canal treatment. J Dent 2008; 36: 928–934.

14. Ng YL, Glennon J, Setchell D, Gulabivala K. Prevalence of and factors affecting post-obturation pain in patients undergoing root canal treatment. Int Endod J 2004; 37: 381–391.

15. Glennon J, Ng YL, Setchell D, Gulabivala K. Prevalence of and factors affecting postoperative pain in patients undergoing root canal treatment. Int Endod J 2004; 37: 29–37.

16. ElMubarak AH, Abou-bakr NH, Ibrahim YE. Postoperative pain in multiple-visit and single-visit root canal treatment. J Endod 2010; 36: 36–39.

17. Siqueira JF, Roças IN, Favieri A, Machado AG, Gayhya SM, Oliveira JC, et al. Incidence of postoperative pain after intra-canal procedures based on an antimicrobial strategy. J Endod 2002; 28: 457–460.

18. Bhagwat S, Mehta D. Incidence of post-operative pain following single visit endodontics in vital and non-vital teeth: an in vivo study. Contemp Clin Dent 2013; 4: 295.

19. Fava L. Single visit root canal treatment: incidence of postoperative pain using three different instrumentation techniques. Int Endod J 1995; 28: 103–107.

20. Wang C, Xu P, Ren L, Doug G, Ye L. Comparison of post-obturation pain experience following one-visit and two-visit root canal treatment on teeth with vital pulps: a randomized controlled trial. Int Endod J 2010; 43: 692–697.

21. Al-Neghish ARS, Hababheh R. Flare up rate related to root canal treatment of asymptomatic pulpally necrotic central incisor teeth in patients attending a military hospital. J Dent 2006; 34: 635–640.

22. Menhinick K, Gutmann J, Regan J, Taylor S, Buschang P. The efficacy of pain control following nonsurgical root canal treatment using ibuprofen or a combination of ibuprofen and acetaminophen in a randomized, double-blind, placebo-controlled study. Int Endod J 2004; 37: 531–541.

23. Law A, Nixdorf DR, Aguirre A, Reams G, Tortomasi A, Manne B, et al. Predicting severe pain after root canal therapy in the national dental PBRN. J Dent Res 2014; 94: 37S–43S.

24. Law AS, Nixdorf DR, Rabinowitz I, Reams GJ, Smith JA, Torres AV, et al. Root canal therapy reduces multiple dimensions of pain: a national dental practice-based research network study. J Endod 2014; 40: 1738–1745.

25. Gotler M, Bar-Gil B, Ashkenazi M. Postoperative pain after root canal treatment: a prospective cohort study. Int J Dent 2012. http://dx.doi.org/10.1155/2012/310467.

26. Menakaya TN, Oderinu OH, Adegbulugbe IC, Shaba OP. Incidence of postoperative pain after use of calcium hydroxide mixed with normal saline or 0.2% chlorhexidine digluconate as intracanal medicament in the treatment of apical periodontitis. Saudi Dent J 2015; 27: 187–193.

27. Alonso-Ezpeleta L-O, Gasco-Garcia C, Castellanos-Cosano L, Martin-Gonzalez J, Lopez-Frias F-J, Segura-Egea J-J. Postoperative pain after one-visit root-canal treatment on teeth with vital pulps: comparison of three different obturation techniques. Med Oral Patol Oral Cir Bucal 2012; 17: e721–e727.

28. Mitchell RP, Baumgartner JC, Sedgley CM. Apical excursion of sodium hypochlorite using different root canal irrigation systems. J Endod 2011; 37: 1677–1681.

29. de Oliveira Alves V. Endodontic flare-ups: a prospective study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010; 110: e68–e72.

30. Jaze B, Ercan E, Dalli M, Dulgergil CT, Zorba YO, Colak H. Incidence of postoperative pain after single-and multi-visit endodontic treatment in teeth with vital and non-vital pulp. Eur J Dent 2009; 3: 273.

31. Watkins CA, Logan HL, Kirchner HL. Anticipated and experienced pain associated with endodontic therapy. J Am Dent Assoc 2002; 133: 45–54.

32. Ali SG, Mulay S, Palekar A, Seipal D, Joshi A, Gufran H. Prevalence of and factors affecting post-obturation pain following single visit root canal treatment in Indian population: a prospective, randomized clinical trial. Contemp Clin Dent 2012; 3: 459.

33. Sadaf D, Ahmad MZ. Factors associated with postoperative pain in endodontic therapy. Int J Biomed Sci 2014; 10: 243.

34. Segura-Egea J, Cisneros-Cabello R, Llamas-Carreras J, Velasco-Ortega E. Pain associated with root canal treatment. J Endod 2009; 42: 614–620.

35. Pasqualini D, Mollo L, Scotti N, Cantatore G, Castellucci A, Migliaretti G, et al. Postoperative pain after manual and mechanical glide path: a randomized clinical trial. J Endod 2012; 38: 32–36.

36. Sessle BJ. Peripheral and central mechanisms of orofacial inflammatory pain. Int Rev Neurobiol 2011; 97: 179–206.

37. Martin-González J, Echevarría-Pérez M, Sánchez-Dominguez B, Tarilonte-Delgado ML, Castellanos-Cosano L, López-Frias FJ, et al. Influence of root canal instrumentation and obturation techniques on intra-operative pain during endodontic therapy. Med Oral Patol Oral Cir Bucal 2012; 17: 492–500.

38. Edionwe J, Shaba O, Umesi D. Single visit root canal treatment: a prospective study. Niger J Clin Pract 2014; 17: 276–281.

39. Walco GA. Toward an integrated model of pain over the life course. Pain 2004; 108: 207–208.

40. Ali A, Olivier JG, Duran-Sindreu F, Abella F, Roig M, Garcia-Font M. Influence of preoperative pain intensity on postoperative pain after root canal treatment: a prospective clinical study. J Endod 2015; 41: 39–42.

41. Fillingim RB, King CD, Ribeiro-Dasilva MC, Rahim-Williams B, Riley JL. Sex, gender, and pain: a review of recent clinical and experimental findings. J Pain 2009; 10: 447–485.

42. Mehrvarzfar P, Shababi B, Sayyad R, Fallahdoost A. Effect of suprapерiosteal injection of dexamethasone on postoperative pain. Aust Endod J 2008; 34: 25–29.

43. Allen LB, Lu Q, Tsao JC, Worthman CM, Zeltzer LK. Sex differences in the association between cortisol concentrations and laboratory pain responses in healthy children. Gend Med 2009; 6: 193–207.
44. Paller CJ, Campbell CM, Edwards RR, Dobs AS. Sex-based differences in pain perception and treatment. *Pain Med* 2009; 10: 289–299.

45. Cleghorn BM, Christie WH, Dong CC. Root and root canal morphology of the human permanent maxillary first molar: a literature review. *J Endod* 2006; 32: 813–821.

46. Arora M, Sangwan P, Tewari S, Duhaj J. Effect of maintaining apical patency on endodontic pain in posterior teeth with pulp necrosis and apical periodontitis: a randomized controlled trial. *Int Endod J* 2015; 49: 317–324.

47. Arias A, Azabal M, Hidalgo JJ, José C. Relationship between postendodontic pain, tooth diagnostic factors, and apical patency. *J Endod* 2009; 35: 189–192.

48. Saini H, Sangwan P, Sangwan A. Pain following foraminal enlargement in mandibular molars with necrosis and apical periodontitis: a randomized controlled trial. *Int Endod J* 2016; 49: 1116–1123.

49. Singh RD, Khatter R, Bal RK, Bal C. Intracanal medications versus placebo in reducing postoperative endodontic pain – a double-blind randomized clinical trial. *Braz Dent J* 2013; 24: 22–29.

50. Willershausen B, Willershausen I, Ehlers V, Azaripour A, Biseñó B. A prospective clinical trial on the influence of a triamcinolone/demecolcine and a calcium hydroxide based temporary cement on pain perception. *Head Face Med* 2012; 8: 1.

51. Ehmann E, Messer H, Adams G. The relationship of intracanal medicaments to postoperative pain in endodontics. *Int Endod J* 2003; 36: 868–875.

52. Oginni AO, Udoye CI. Endodontic flare-ups: comparison of incidence between single and multiple visit procedures in patients attending a Nigerian teaching hospital. *BMC Oral Health* 2004; 4: 4.

53. Qualtrough A, Whitworth J, Dummer P. Preclinical endodontology: an international comparison. *Int Endod J* 1999; 32: 406–414.

54. Al-Rahabi M, Abdulkhayum AM. Single visit root canal treatment: review. *Saudi Endod J* 2012; 2: 80.

55. Kishen A, Peters OA, Zehnder M, Diogenes AR, Nair MK. Advances in endodontics: potential applications in clinical practice. *J Conserv Dent* 2016; 19: 199.

56. Mohammadi Z, Farhad A, Tabrizizadeh M. One-visit versus multiple-visit endodontic therapy – a review. *Int Endod J* 2006; 39: 289–293.

57. Prashanth M, Tavane PN, Abraham S, Chacko L. Comparative evaluation of pain, tenderness and swelling followed by radiographic evaluation of periapical changes at various intervals of time following single and multiple visit endodontic therapy: an in vivo study. *J Contemp Dent Pract* 2011; 12: 187–191.

58. Fava L. A clinical evaluation of one and two-appointment root canal therapy using calcium hydroxide. *Int Endod J* 1994; 27: 47–51.

59. Oginni A, Udoye C. Endodontic flare-ups: comparison of incidence between single and multiple visits procedures in patients attending a Nigerian teaching hospital. *Odontostomatol Trop* 2004; 27: 23–27.

60. Jabeen S, Khurshiduzzaman M. Incidence of post obstruction pain following single and multi visit root canal treatment in a teaching hospital of Bangladesh. *Mymensingh Med J* 2014; 23: 254–260.

61. Iqura N, Zuolo M. Factors associated with endodontic flare-ups: a prospective study. *Int Endod J* 1995; 28: 261–265.

62. Onay EO, Ungor M, Yazıcı AC. The evaluation of endodontic flare-ups and their relationship to various risk factors. *BMC Oral Health* 2015; 15: 142.

63. Patil AA, Joshi SB, Bhagwat S, Patil SA. Incidence of post-operative pain after single visit and two visit root canal therapy: a randomized controlled trial. *J Clin Diagn Res* 2016; 10: ZC09–ZC12.

64. Wong AW, Zhang S, Li SK, Zhu X, Zhang C, Chu C-H. Incidence of post-obturation pain after single-visit versus multiple-visit non-surgical endodontic treatments. *BMC Oral Health* 2015; 15: 96.

65. DiRenzo A, Gresla T, Johnson BR, Rogers M, Tucker D, BeGole EA. Postoperative pain after 1-and 2-visit root canal therapy. *Oral Surg Oral Med Oral Pathol Oral Radiol Endod* 2002; 93: 605–610.

66. Alrahabi M, Ahmad MS. Knowledge regarding technical aspects of non-surgical root canal treatment in Al-Madinah Al-Munawarah private dental centers. *Saudi Endod J* 2015; 5: 155.

67. Fleming CH, Litaker MS, Alley LW, Eleazer PD. Comparison of classic endodontic techniques versus contemporary techniques on endodontic treatment success. *J Endod* 2010; 36: 414–418.

68. Cheung GS, Liu CS. A retrospective study of endodontic treatment outcome between nickel-titanium rotary and stainless steel hand filing techniques. *J Endod* 2009; 35: 938–943.

69. Zarrabi MH, Bidar M, Jafarzadeh H. An in vitro comparative study of apically extruded debris resulting from conventional and three rotary (Profile, Race, FlexMaster) instrumentation techniques. *J Oral Sci* 2006; 48: 85–88.

70. Talebzadeh B, Nezafati S, Rahimi S, Shahi S, Lotti M, Ghasemi N. Comparison of manual and rotary instrumentation on postoperative pain in teeth with asymptomatic irreversible pulpitis: a randomized clinical trial. *Iran Endod J* 2016; 11: 273.

71. Vaudt J, Bitter K, Neumann K, Kielbassa A. Ex vivo study on root canal instrumentation of two rotary nickel–titanium systems in comparison to stainless steel hand instruments. *Int Endod J* 2009; 42: 22–33.

72. Madhusudhana K, Khairnar V, Reddy N. Apical extrusion of debris and irrigants using hand and three rotary instrumentation systems-an in vitro study. *Contemp Clin Dent* 2010; 1: 234.

73. Nekooof MH, Sheykhrzeae MS, Meraji N, Jamee A, Shirvani A, Jamee J, et al. Comparison of the effect of root canal preparation by using WaveOne and ProTaper on postoperative pain: a randomized clinical trial. *J Endod* 2015; 41: 575–578.

74. Neelakantan P, Sharma S. Pain after single-visit root canal treatment with two single-file systems based on different kinematic – a prospective randomized multicenter clinical study. *Clin Oral Invest* 2015; 19: 2211–2217.

75. Shokrancheh A, Ajami M, Farhadi N, Hosseini M, Rohani B. Postoperative endodontic pain of three different instrumenta- tion techniques in asymptomatic necrotic mandibular molars with periapical lesion: a prospective, randomized, double-blind clinical trial. *Clin Oral Investig* 2016; 21: 413–418.

76. Ramamoorthi S, Niveditha MS, Divyanand MJ. Comparative evaluation of postoperative pain after using endodontic needle and EndoActivator during root canal irrigation: a randomised controlled trial. *Aust Endod J* 2015; 41: 78–87.

77. da Silva EJNL, Monteiro MR, Belladonna FG, Almeida JF, De-Deus G, de Almeida Neves A. Postoperative pain after foraminal instrumentation with a reciprocating system and different irrigating solutions. *Braz Dent J* 2015; 26: 216–221.

78. Almeida G, Marques E, De Martins A, da Silveira Bueno C, Nowakowski A, Cunha R. Influence of irrigating solution on postoperative pain following single-visit endodontic treatment: randomized clinical trial. *J Can Dent Assoc* 2012; 78: e84.

79. Jariwala S, Goel B. Pain in endodontics: causes, prevention and management. *Endodontology* 2001; 13: 63–66.

80. Van Wijk A, Hoogstraten J. Reducing fear of pain associated with endodontic therapy. *Int Endod J* 2006; 39: 384–388.
81. Van Wijk AJ, Duyx MP, Hoogstraten J. The effect of written information on pain experience during periodontal probing. J Clin Periodontol 2004; 31: 273–281.
82. Sethi P, Agarwal M, Chourasia HR, Singh MP. Effect of single dose pretreatment analgesia with three different analgesics on postoperative endodontic pain: a randomized clinical trial. J Conserv Dent 2014; 17: 517.
83. Gopikrishna V, Parameswaran A. Effectiveness of prophylactic use of rofecoxib in comparison with ibuprofen on post-endodontic pain. J Endod 2003; 29: 62–65.
84. Attar S, Bowles WR, Baisden MK, Hodges JS, McClanahan SB. Evaluation of pretreatment analgesia and endodontic treatment for postoperative endodontic pain. J Endod 2008; 34: 652–655.
85. Al-Kahtani A. Effect of long acting local anesthetic on post-operative pain in teeth with irreversible pulpitis. J Endod 2003; 29: 62–65.
86. Parirokh M, Yosefi MH, Nakhaee N, Manochehrifar H, Pochapski MT, Santos FA, de Andrade ED, Sydney GB. Effect of pretreatment prednisolone on post-endodontic pain: randomized clinical trial. J Endod 2010; 36: 978–981.
87. Al-Nahlawi THT, Alrazak MA, Al-Abdullah A. Effect of pretreatment dexamethasone on postendodontic pain. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009; 108: 790–795.
88. Al-Kahtani A. Effect of long acting local anesthetic on post-operative pain in teeth with irreversible pulpitis: randomized clinical trial. Saudi Pharm J 2014; 22: 39–42.
89. Al-Kahtani A. Effect of long acting local anesthetic on post-operative pain in teeth with irreversible pulpitis: randomized clinical trial. J Endod 2012; 38: 1035–1039.
90. Keskin C, Özdemir Ö, Uzun I, Güler B. Effect of intracanal cryotherapy on pain after single-visit root canal treatment in teeth with irreversible pulpitis. J Endod 2012; 38: 1055–1059.
91. Keskin C, Özdemir Ö, Uzun I, Güler B. Effect of intracanal cryotherapy on pain after single-visit root canal treatment. Aust Endod J 2016. http://dx.doi.org/10.1111/aenj.12175.
92. Nadler SF, Weingand K, Kruse RJ. The physiologic basis and clinical applications of cryotherapy and thermotherapy for the pain practitioner. Pain Physician 2004; 7: 395–400.
93. Parirokh M, Sadr S, Nakhaee N, Abbott PV, Manochehrifar H. Comparison between prescription of regular or on-demand ibuprofen on postoperative pain after single-visit root canal treatment of teeth with irreversible pulpitis. J Endod 2014; 40: 151–154.
94. Hargreaves K, Abbott P. Drugs for pain management in dentistry. Aust Dent J 2005; 50: S14–S22.
95. Mehrvarzfar P, Abbott P, Saghiri M, Delvarani A, Asgar K, Lotfi M, et al. Effects of three oral analgesics on postoperative pain following root canal preparation: a controlled clinical trial. Int Endod J 2012; 45: 76–82.
96. Mehlsch DR, Aspley S, Daniels SE, Southerden KA, Christensen KS. A single-tablet fixed-dose combination of racemic ibuprofen/paracetamol in the management of moderate to severe postoperative dental pain in adult and adolescent patients: a multicenter, two-stage, randomized, double-blind, parallel-group, placebo-controlled, factorial study. Clin Ther 2010; 32: 1033–1049.
97. Elzaki WM, Abubakr NH, Ziada HM, Ibrahim YE. Double-blind randomized placebo-controlled clinical trial of efficiency of nonsteroidal anti-inflammatory drugs in the control of post-endodontic pain. J Endod 2016; 42: 835–842.
98. Becker DE. Pain management: part 1: managing acute and postoperative dental pain. Anesth Prog 2010; 57: 67–79.
99. Thomas R. How pain is controlled in endodontic therapy. SAAD Dig 2015; 31: 32–37.
100. Arslan H, Seckin F, Kurklu D, Karatas E, Yanikoglu N, Capar ID. The effect of various occlusal reduction levels on postoperative pain in teeth with symptomatic apical periodontitis using computerized analysis: a prospective, randomized, double-blind study. Clin Oral Investig 2016. http://dx.doi.org/10.1007/s00784-016-1835-y.
101. Parirokh M, Rekabi AR, Ashouri R, Nakhaee N, Abbott PV, Gorjestani H. Effect of occlusal reduction on postoperative pain in teeth with irreversible pulpitis and mild tenderness to percussion. J Endod 2013; 39: 1–5.
102. Rosenberg PA, Babick PJ, Schertzer L, Leung A. The effect of occlusal reduction on pain after endodontic instrumentation. J Endod 1998; 24: 492–496.
103. Rosenberg PA. Clinical strategies for managing endodontic pain. Endod Top 2002; 3: 78–92.

How to cite this article: AlRahabi MK. Predictors, prevention, and management of postoperative pain associated with nonsurgical root canal treatment: a systematic review. J Taibah Univ Med Sc 2017;12(5):376–384.