Synthesis and Characterization of Nano-Hexagonal Calcium Ferrites

B.C. Manjunatha*, K.M. Rajashekara

Department of Physics, S.J.C. Institute of Technology, Chickballapur – 562 101, Karnataka, India.

1. Introduction

Ferrites are broad family of oxides with incredible electrical and magnetic properties. Nano sized ferrite materials have received vital attention because of their wide range of applications in magnetic storage devices [1-3]. The novel magnetic, electric and dielectric properties possessed by them have made ferrites more attractive to the field of science and technology. These important properties of ferrites are popularly used in micro-electronic devices, magnetic switches, sensors, microwave devices, electromagnetic circuits, transformer core, and antenna rods in the field of medicines [4-5]. Magnetic properties of ferrites are mainly depends on chemical composition, method of synthesis, temperature conditions, grain size and surface morphology [6-9]. Ferrite properties are possible to alter with synthesis methods, suitable dopant and annealing temperature [10-13]. The wide variety of applications of ferrites as permanent magnets are not only due to their magnetic properties, but also because of significant saturation magnetization, high electric resistivity, low electrical losses, good chemical stability and low cost.

2. Experimental Methods

The fortuity of preparing ferrites in the form of nanoparticles has opened a novel and exciting trend in the research field. There are many methods for synthesis of hexagonal ferrite nanoparticles, like chemical co-precipitation [1-4], hydrothermal [15], sol-gel [16, 17], combustion [18] etc. In the present work, calcium hexaferrites substituted with trivalent chromium ions synthesized by sol-gel microwave auto combustion method are studied and reported.

Samples were prepared with AR grade calcium nitrate Ca(NO$_3$)$_2$·4H$_2$O, ferric nitrate Fe(NO$_3$)$_3$·9H$_2$O as raw materials. Chromium nitrate Cr(NO$_3$)$_3$·9H$_2$O were used as substituting material. Urea NH$_2$CO-NH$_2$ was used as fuel. A series of chromium substituted calcium hexaferrites samples with general formula Ca$_{x}$Cr$_{y}$Fe$_{12-x}$O$_{19}$, where x= 0,2,4,6 have been synthesized by sol gel microwave auto combustion method the solution undergone dehydration followed by decomposition. In few minutes and upon reaching spontaneous combustion, the solution ignites like smoldering with evolution of a large volume of gases. It releases large amount of heat vaporizing all the solution to become a solid at 430 °C. Prepared powders are loose, foamy, pores and highly friable. The samples crushed into powder using agate mortar were sintered at 900 °C for four hours and allowed to cool gradually on sand bath [19-21].

3. Result and Discussion

The structural characterization of substituted nano-hexa ferrites was done by X-ray diffraction (XRD) and scanning electron microscopy (SEM).

3.1 X-Ray Diffraction Analysis

The particle size of the powder samples was calculated by the Debye-Scherer equation, D = kλ/βcos(θ), where k is Scherer constant (k= 0.89, for hexa-ferrites), λ is wavelength of X-rays 1.5405 Å, β is Full Width of Half Maxima (FWHM) and θ is the Bragg’s angle [10]. The estimated average particle size is found in between 24 to 30 nm. The value of lattice constant a, c and the unit cell volume (V$_{cell}$) were calculated by taking (h k l) parameter and inter planar distance (d), X-ray density (ρ_{x-ray}) and porosity were calculated by using following equations [11].

\[
\frac{1}{d^2} = 4 \left(\frac{h^2 + k^2 + l^2}{3a^2} \right) + \frac{1}{c^2}
\]

\[V_{cell} = 0.866 a^2c\]

\[P = 1 - \frac{\rho_{m}}{\rho_{x-ray}}\]

\[\rho_{x-ray} = \frac{2M}{\pi a^2}\]

where, M is the molar mass, V is cell volume, N$_{A}$ is Avogadro’s number.

Structural parameters are recorded in the Table 1 and Fig. 1.

Table 1 Structural parameters of Ca$_{x}$Fe$_{12-x}$O$_{19}$ where x= 0, 2, 4 and 6

Conc. (x)	D (nm)	a (Å)	c (Å)	V (Å3)	Bulk density (g/cm3)	Porosity	c/a	X-ray density (g/cm3)
0	24	5.892	21325	699.409	2.652	40.753	3.619	5.255
2	30	5.993	22379	696.715	3.551	25.982	3.734	4.979
4	25	6.012	21944	688.237	3.701	23.136	3.646	4.815
6	28	6.043	21509	680.210	3.975	21.567	3.559	4.135

*Corresponding Author: manjunathbcsjct@gmail.com(B.C. Manjunatha)
and spin-down sites by diamagnetic ions and anisotropy [19]. This result indicates that the saturation magnetizations of the chromium substituted calcium ferrites are lower than those of the undoped sample. This is certainly due to the diffusion of Cr into calcium hexaferrite structure. There are two factors to explain the change in magnetization. One of them is the distribution of Cr ions on the five crystallographic sites of the calcium ferrites. The Cr ions entering spin up sub lattices would lead to the small decrease in the saturation magnetization while on the other hand if they enter spin down sub lattices would result in the small increase in the saturation magnetization. However, the saturation magnetization decreases with increasing Chromium content. This may be concluded that Cr ions occupy only spin up 12k, 2a, and 4e sites. The ion occupies octahedral site when the ratio of radius of positive ion to that of negative ion is in between 0.414 - 0.73.

The ratio of Cr3+ (0.62) and O2- (1.4) is 0.436. Another reason is a magnetic dilution, which are due to the substitution of the Fe3+ ions (5 μB) by Cr3+ions (3 μB). It is, therefore, understood that the Fe3+-O–Fe3+ super exchange interaction decreases with increasing Cr dilution. This indicates that the saturation magnetization decreases with the Cr doping content. From the magnetization curve the squareness (SQR) ratio is determined found to be less than 0.5. This means for all samples are multi domain. Calculated magnetic parameters such as saturation magnetization, remanent magnetization and coercivity are given in Table 2. Coercivity is found to be more for CaCr4Fe8O19. The decrease in the value of coercivity, Hc, with increase in the value of x can be attributed to lowering of magneto crystalline anisotropy according to M.V. Cabanas et al. [20,21].

3.2 Micro Structural Analysis

The SEM images of the samples are shown in Fig. 2. It is evident that the particles are in nano size and almost hexagonal in shape.

3.3 Magnetic Studies

Hysteresis curves for the samples shows magnetic behavior of the sample in the presence of external magnetic field are shown in the Fig. 3. The saturation magnetization (Ms), remanence (Mr) and coercivity (Hc) found to decrease with increase in the value of substitution mentioned in Table 2 which is attributed to the occupation of sub lattice spin-up and spin-down sites by diamagnetic ions and anisotropy.

4. Conclusion

The X-ray diffraction analysis of all samples confirms the formation of single phase M-type hexagonal structure. The average size of the particles deduced from XRD peak broadening have been observed in the diameter of the particle is 24 nm and 40 nm. The values of the lattice parameters, morphological structural study support conforms, the synthesized samples are found to be with space group 167 (R-3c), hexagonal of P63/mmc. VSM analysis confirms the saturation magnetization (Ms), remanence (Mr) and coercivity (Hc) are found to be decreased with increase in the value of x substitution which is attributed to the occupation of sub lattice spin-up and spin-down sites by magnetic ions and anisotropy.

Acknowledgment

Authors wish to acknowledge the financial support by the Department of Science and Technology, New Delhi, under EMR scheme for the project entitled ‘Synthesis and characterization of nanohexaferrites’, Research project No.SB/S2/CMP-023/2014.
References

[1] C.S. Prakash, D.K. Kulkarni, Chromium substituted hexagonal calcium ferrites, Int. J. Pure Appl. Phys. 32 (1994) 361-363.
[2] G.A. Ozin, A.C. Arsenault, Nanochemistry, A chemical approach to nanomaterials, Royal Society of Chemistry, London, 2005.
[3] C.N.R. Rao, A. Muller, A.K. Cheetham, Chemistry of nanomaterial synthesis, properties and applications, Vol.2, Wiley-VCH, Weinheim, Germany, 2004.
[4] G. Cao, Nanostructures and nanomaterials, synthesis, properties and applications, Imperial College Press, London, 2004.
[5] C.N.R. Rao, Chemical approaches to the synthesis of inorganic materials, Wiley Eastern Ltd., New Age International Ltd., New Delhi, 1994.
[6] C.S. Prakash, V.M. Nanoti and D.K. Kulkarni, Magnetic characterization of calcium hexaferrites, Mater. Lett. 24 (1995) 171-173.
[7] K.C. Patil, S.T. Aruna, T. Mimani, Combustion synthesis: An update, Curr. Opin Solid State Mater Sci. 6 (2002) 507–512.
[8] A. Ghasemi, A. Morizako, Structural and electromagnetic characteristics of substituted stronitum hexaferrite nanoparticles, J. Magn. Magn. Mater., 320(6) (2008) 1167-1172.
[9] B.S. Satone, K.G. Rewatkar, Morphological and electrical properties of transition metal ion substituted calcium hexagonal nano ferrites synthesized by sol gel auto-combustion method, Int. J. Curr. Trends Eng. Res. 2(4) (2016) 74-83.
[10] W. Zhong, W. Ding, N. Zhang, J. Hong, Q. Yan, Y. Du, Key step in synthesis of ultrafine BaFe_{2}O_{3} by sol-gel technique, J. Magn. Magn. Mater. 168(1) (1997) 196-202.
[11] C.O. Augustin, R. Kalai Selvan, R. Nagaraj, L. John Berchmans, Effect of La3+ substitution on the structural, electrical and electrochemical properties of stromitium ferrites by citrate combustion method, Mater. Chem. Phys. 89 (2005) 406-411.
[12] K.C. Patil, S.T. Aruna, S. Ekambaram, Combustion synthesis, Curr. Opin. Solid State Mater. Sci. 2 (1997) 158-165.
[13] W.A. Kaczmarek, B. Idzikowski, K.H. Muller, Preparation and properties of strontium hexaferite/polyyurethane magnetic coatings, Prog. Org. Coat. 75(1) (2012) 124-130.
[14] S. Hajarpour, A. Honarhakhs Raouf, K.H. Gheisari, Structural evolution and magnetic properties of nanocrystalline magnesium-zinc soft ferrites synthesized by glyscine–nitrate combustion process, J. Magn. Magn. Mater. 363 (2014) 21-25.
[15] T. Koutzarova, S. Kolev, C. Ghelev, I. Nedkov, Structural and magnetic properties and preparation techniques of nanosized m-type hexaferite powders, Adv. Nanoscale Magn. 1(122) (2007) 183.
[16] V. Pillai, P. Kumar, M.S. Multani, D.O. Shah, Structure and magnetic properties of nanoparticles of barium ferrite synthesized using microemulsion processing, Colloids Surf. A: Physicochem. Engg. Aspects 80 (1993) 69-75.
[17] L. Lechevallier, J.M. Le Breton, J.F. Wang, L.R. Harris, Structural analysis of hydrothermally synthesized Sr_{x}Sm_{8-x}Fe_{12}O_{19} hexagonal ferrites, J. Magn. Magn. Mater. 269 (2004) 192-196.
[18] D. Mishra, Ananda, R.K. Panda, R.P. Das, Studies on characterization, microstructures and magnetic properties of nano-size barium hexa-ferrite prepared through a hydrothermal precipitation–calcination route, Mater. Chem. Phys. 86 (2004) 132-136.
[19] Ch. Mamatha, M. Krishnasah, C.S. Prakash, K.G. Rewatkar, B.M. Nagabhushana, Structural, electrical and magnetic properties of aluminum substituted nanocalcium hexaferrites, Int. J. ChemTech Res. 6(3) (2014) 2165-2167.
[20] A.D. Deshpande, K.G. Rewatkar, V.M. Nanoti, Study of morphology and magnetic properties of nano sized particles of zirconium – cobalt substituted calcium hexaferrites, Mater. Today: Proc. 4 (2017) 12174-12179.
[21] S.B. Lengule, P.R. Moharkar, S.R. Gawali, K.G. Rewatkar, Synthesis and characterization of substituted calcium hexaferrites by auto combustion method, Int. J. Res. Biosci. Agric. Tech. 2(7) (2015) 178-181.

https://doi.org/10.30799/jant302.20060204

Cite this Article as: B.C. Manjunatha, K.M. Rajashekara, Synthesis and characterization of nano-hexagonal calcium ferrites, J. Nanosci. Tech. 6(2) (2020) 894–896.