Abstract

This study had two purposes: first, to investigate the influence that different racket sizes and ball compressions had on the children’s abilities to perform backhand ground strokes from the base line and second, to evaluate their shots precision error due to inappropriate sized equipment. There was a quantitative repeated-measurements design experiment. Children were asked to perform 6 two-handed backhand shots using a combination between two sizes of rackets and balls with three different compression values. The precision was measured by a point system, where the shots were performed on a predefined target area. The aim was to shot and score as many points as possible. The smaller racket used in combination with the lowest pressurized ball provided the best performance. Moreover, this combination ensured the correct execution of the shots, also preventing injuries. The study demonstrated the positive influence of proper sized equipment to the correct and fast skills' development.

1. Introduction

A few decades ago some European countries like France and Belgium have developed a special tennis training program using equipment tailored for children. The officially declared purpose was that the future adult players will attain such a performance value that will position them in the top of the ATP and WTA rankings. In the last years the International Tennis Federation (ITF) together with the national federations of more than 45 countries around the world have adopted this program, promoting it as a solid background for the development of the young players. This trend of equipment adaptation was spread between some other team and individual sports like golf, basketball, football (Benham, 1988; Pang & Ha, 2005). In the case of the tennis game the court size was reduced accordingly to the children’s somatic development. In this way are created the conditions for them to

* E-mail: rodica_prodan2@yahoo.com, tel.0040762683970
develop their playing abilities on the entire court, by a real coverage of it. For example, because of the shorter distance, the young players can run to the net or cover the sides. Moreover, it allows them to develop some game tactics and strategies very useful on long term, when they will be able to play on the standard size court (ITF, 2009; Farrow & Reid, 2010; Newman, 2010).

The lower pressurized balls travel the court with a lower speed and have a lower bounce. The young players can follow it, receive it and return it much easier. This aspect is helping them to learn and improve on some technic fundamentals (arm movement, ball impact area on the racket, etc.). By using these balls the games are longer and have more consistency. However, until now just few researchers have analysed these aspects based on field collected data (Kemp & Vincent, 1968; Hammond & Smith, 2006; Farrow & Reid, 2010). Most of the other studies were based only on data collected during laboratory measurements and simulations.

In 2004, Vergauwen, Madou and Behets created the ForeGround test, in order to measure the speed and precision of some forehand strokes done from the base line, following some recommendations made in an earlier study (Vergauwen, Spaepen, Lefevres, & Hespel, 1998). This type of stroke was chosen by its widespread use among tennis players. The purpose was to conceive a test upon which to build a hierarchy of the players, but following only one type of stroke does not ensure a very accurate one.

The racket length is a very important aspect but also very ignored one. Appropriate racket length and weight ensures a good control upon the racket’s head, its balance and stability, the ball impact area. Meanwhile, injuries due to inappropriate use of an oversized racket are avoided, or at least are kept to the lowest possible occurrence level when using adapted equipment.

2. Material and methods

This study had two purposes: first, to investigate the influence that different racket sizes and ball compressions had on the children's abilities to perform backhand ground strokes from the base line and second, to evaluate their shots precision error due to inappropriate sized equipment.

One of the research hypotheses was that the use of equipment adapted to somatic development of children facilitates comprehensible dissemination to them of tennis fundamentals, a steeper learning curve and faster improvement.

The second hypothesis was that fun and joy of playing tennis encourages children to continue practicing this sport activity over the time.

The third hypothesis was that properly adapted equipment ensures getting better precision and speed results by children than in the case of using the standard sized one.

For this study, after obtaining the parents’ consent, were selected 20 children having 8 - 9 years of age. Because at this age the somatic differences between boys and girls are very low (Barrell, 2008), it was not necessary a gender related separation of them. The children were randomly separated in two groups, each with
10 subjects: one, the experimental and the other being the control group. Each group used only one size of racket and three types of balls. Every child had at least a 6 months experience on the tennis court, which was enough to understand and to perform the imposed strokes. The court’s size was of orange type according to ITF classification, having 18 meters length, 6.5 meters width and the net in the middle was 80 centimeters high.

The used balls were of three different amounts of pressure, resulting in different bouncing heights: red (non-pressurized), orange (low pressurized) and green (medium pressurized), according to ITF’s recommendations (ITF, 2011). Regarding their sizes, the red balls had the diameter between 7.5-8 centimeters and weighted 36.0-46.0 grams; the orange balls had a 6.5-6.8 centimeters diameter and weighted 36.0-46.9 grams; the green ones had 6.5-6.8 centimeters diameter and weighted 56.0-56.9 grams. The balls were thrown towards the children by a physical education teacher having more than 20 years of experience, who was asked to throw the balls in the same area of the court.

The authors have used a speed-precision measurement test containing series of 6 backhand groundstrokes done from the baseline with the three types of ball. These two dependent variables were considered as main performance indicators for every stroke series. The accuracy of the shot was evaluated through a scoring system associated with the different target areas of the tennis court.

The success rate was defined as the ratio between the number of strokes performed and the number of points achieved. The stroke’s speed was measured directly using a device attached to the racket’s handle. This device belongs to the Player Analysis Technology (PAT) approved by ITF in 2015 to be used during training sessions, but also in official competitions.

Figure 1. Target configuration on the court.
Data were collected in different days for different types of balls, with a day-off in between. In testing days the children performed the warming-up with the same type of balls that were scheduled to be used that day during tests. The children were asked to perform 3 series of 6 strokes each, as follows: the first series was down the line, the second series was crosscourt and the third was sharp crosscourt, as shown in figure 1.

Target areas were marked by some cones. Also, they were asked to hit with maximum force that allows them to still control the ball’s trajectory. Before every stroke series the authors made a short oral presentation of the test followed by a direct illustration done by performing a few strokes at the designated target point.

Collected data were analysed by using version 2.0 of the SPSS statistical analysis software. The effect of the ball and racket independent variables upon each dependent variable (speed-precision, success rate, ball placement) was examined using six two-tailed paired-samples t tests. Confidence intervals were set at 95%.

3. Results and Discussions

T tests for the precision-speed (PS) dependent variable revealed a significant difference when using ball and racket modifications, t(9) = 3.53, p = 0.01. So, the mean PS when using standard equipment was 3.32 (±1.68), against 6.41 (±1.97) when using the adapted equipment, like in figure 2.

![Graph showing precision-speed combination for non-pressurized (NP) and moderate pressure (MP) balls.](image)

Figure 2. The precision-speed combination. NP- non-pressurized ball; MP – moderate pressure

Also was evaluated the effect of different pressurized balls and different sized rackets upon the strokes’ rate of success, the down the line and crosscourt strokes precision. In the case of non-pressurized balls it was observed a significant difference of the success rate (t(9) = 8.14, p < 0.001), as shown in Figure no. 3.
Figure 3. *Success rate of the stroke*

The moderate-pressurized ball’s speed was lower than in the case of using the low-pressurized ball (t(9) = 3.81, p = 0.04), as shown in Figure 4.

Figure 4. *Ball’s average speed*

Figure 5. *Down the line strokes’ precision*
The participants’ stroke precision when using non-pressurized and low pressure balls was significantly better than the case of normal pressurized balls. For down the line strokes a significant difference between the two conditions was recorded ($t(9) = 3.56, p = 0.01$), as shown in Figure no. 5, but also for crosscourt strokes ($t(9) = 3.20, p = 0.01$).

Discussions

The results prove that unpressurised and low pressure balls give the children the opportunity to do successful strokes with more precision and power. Because speed, precision and consistency are the fundamental characteristics of the tennis game (Bahamonde & Knudson, 2003; Elliot, Reid & Crespo, 2009), it can be concluded that improved performance obtained with modified equipment reveals a greater development potential at younger ages. Moreover, the results promote early success and speed up the mastering of the fundamental skills.

All this game adaptation and down scaling of courts and racquets performed under the influence and guidance of the International Tennis Federation has generated a global movement to increase participation and retention within the sport of tennis. The authors investigate the origins of this movement, its development and its latest results materialized in the creation of standards for junior tennis facilities and equipment.

4. Conclusions

This study proved to the participants that using tennis equipment adapted to their somatic development ensures them a great improvement of the practiced shot, hence a faster learning, practicing and finally progress. Therefore, the changes in the tennis game for children are of outmost importance in the preparation of the new generations of young and adult players, regardless of their targeted performance level. In this way the players’ determination, enthusiasm and joy of play attract to the tennis courts more fans of this great sport.

References

1. **BAHAMONDE, R. E., & KNUDSON, D.** (2003). Kinetics of the upper extremity in the open and square stance tennis forehand, *Journal of Science and Medicine in Sport*, 6 (1), 88-101;
2. **BARRELL, M.** (2008). *PTR Kids Tennis-Teaching Professional’s Manual*, London: International Tennis Federation;
3. **BENHAM, T.** (1988). Modification of basketball equipment and children’s performance, *Journal of Applied Research in Coaching and Athletics* 3(1), 18-28;
4. **ELLIOTT, B., REID, M., & CRESPO, M.** (2009). *Technique development in tennis stroke production*, Spain: International Tennis Federation;
5. **FARROW, D., & REID, M.** (2010). The effect of equipment scaling on the skill acquisition of beginning tennis players, *Journal of Sports Sciences* 7, 723-732;
6. **HAMMOND, J., & SMITH, C.** (2006). Low compression tennis balls and skill development, *Journal of Sports Science and Medicine* 5, 575-581;
Dezvoltarea Aptitudinilor Specifice Jocului de Tenis Utilizând Echipamente Adecvate

Prodan Rodica 1
Grosu Emilia Florina 2

1,2 Universitatea Babeș-Bolyai, Strada Pandurilor nr. 7, Cluj-Napoca 400376, România

Cuvinte cheie: tenis, copii, aptitudini, echipament, dezvoltare

Rezumat

Primul scop al studiului a fost de a investiga influența pe care rachetele de tenis de diferite dimensiuni și mingile cu diferite presiuni o au asupra abilității copiilor de a efectua corect loviturile de rever și al doilea, de a evalua precizia loviturilor în cazul utilizării unui echipament neadecvat dimensional. A fost conceput un experiment cantitativ cu măsurători repetate. Copiilor li s-a solicitat să efectueze 6 loviturile de rever de pe linia de bază, cu racheta având două mărimi și mingă cu trei grade de presiune diferite. Precizia a fost măsurată cu ajutorul unui sistem de puncte, corespunzător unor zone marcate pe teren. Racheta de dimensiuni mai mici în combinație cu mingia nepresurizată a dus la obținerea performanțelor maxime și a asigurat efectuarea corectă a loviturilor. Studiul a demonstrat influența pozitivă a echipamentului cu dimensiunea adecvată asupra dezvoltării corecte și rapide la copii a aptitudinilor specifice jocului de tenis.

1. Introducere

De câteva decenii, țări europene precum Franța și Belgia au dezvoltat un astfel de program dedicat copiilor din rândul căroră, ajunși la vârsta adultă, unii
reușesc la ora actuală să ocupe poziții frunzașe în clasamentele ATP (masculin) și WTA (feminin).

În ultimii ani Federația Internațională de Tenis (ITF) împreună cu federațiile naționale de tenis din peste 45 de țări au adoptat acest program, care a devenit o bază solidă de dezvoltare a tinerilor jucători. Această tendință de adaptare a echipamentului s-a manifestat și în cadrul altor sporturi, atât individuale cât și de echipă, cum ar fi fotbal, golf, baschet (Benham, 1988; Pang & Ha, 2005).

În cazul tenisului, dimensiunea terenului a fost redusă proporțional cu talia copiilor. Acest aspect le asigură dezvoltarea capacităților de joc pe toată suprafața terenului, prin acoperirea reală a acestuia. De asemenea, le permite să dezvolte tactici de joc pe care le vor putea utiliza cu succes și în viitor când, vor putea juca pe terenul cu dimensiunea standard. De exemplu, tinerii jucători sunt capabili să vină la fileu datorită distanței mai scurte și a unei zone mai înguste pe care trebuie să o acopere (ITF, 2009; Farrow & Reid, 2010; Newman, 2010).

Mingea cu presiune scăzută parcurge mai lent suprafața de joc și are săritura de amplitudine mai mică. Tinerii jucători pot urmări mingea, o pot primi și returna mai ușor, acest aspect îi ajută în asimilarea unor deprinderi și elemente tehnice fundamentale (priza mâinii pe rachetă, zona de impact a mingii, mișcarea brațului, etc.). Utilizarea acestor mingi asigură jocuri mai lungi și mai consistente. De asemenea, pătrunde în această dată puține studii au analizat aceste aspecte pe baza unor date culese din teren (Kemp & Vincent, 1968; Hammond & Smith, 2006; Farrow & Reid, 2010). Majoritatea studiilor s-au bazat doar pe simulări și măsurători efectuate în laborator.

În anul 2004, Vergauwen, Madou and Behets au conceput un test intitulat ForeGround, bazat pe efectuarea unor lovituri de forehand din zona liniei de bază și măsurarea preciziei și a vitezei loviturii, în urma recomandărilor elaborate cu ocazia unei cercetări anterioare (Vergauwen, Spaepen, Lefevres, & Hespel, 1998). A fost aleasă această lovitură datorită procentului ridicat de utilizare a ei de către jucătorii de toate categoriile de performanță. Intenția a fost de a concepe un test pe baza căruia să poată fi întocmită o ierarhie a valorii jucătorilor, însă faptul că este urmărit doar un singur tip de lovitură nu asigură ierarhiei o acuratețe sporită.

Lungimea rachetei este un aspect foarte important, dar totodată foarte ignorat. Dimensiunile adecvate (lungimea și greutatea) asigură controlul capului rachetei, stabilitatea ei și perceptia asupra impactului mingii, elemente de importanță primordială în controlul mingii. Mai mult, se va preîntâmpina apariția accidentărilor datorate mânuirii unei rachete supradimensionate.

2. Material și metode

Scopul cercetării a fost de a analiza influența pe care o are echipamentul modificat dimensional copiilor asupra vitezii și preciziei în jocul de tenis al acestora.

Una dintre ipotezele cercetării de față a fost aceea că prezentarea noțiunilor fundamentale ale jocului și deprinderea lor de către copii sunt facilitate de utilizarea unui echipament dimensionat proporțional cu caracteristicile fizice ale
copiilor. A doua ipoteză a fost aceea că distrația și primele experiențe de succes ale copiilor îi înauraunează să continue de-a lungul timpului cu practicarea acestui sport. A treia ipoteză a fost aceea că utilizarea echipamentului dimensionat pentru copii oferă rezultate mai bune din perspectiva preciziei și vitezei loviturilor decât în cazul utilizării unui echipament dimensional destinat adulților.

Pentru efectuarea studiului au fost selecțiați cu acordul părinților 20 de copii cu vârsta cuprinzând între 8 și 9 ani, deoarece la această vârstă diferențele de dezvoltare somatică sunt minime la fete și băieți (Barrell, 2008), astfel nemaifiind necesară în cadrul studiului o grupare a participanților pe sexe. Copiii au fost grupați aleator în două grupe a câte 10 subiecți, fiecare dintre grupe urmând să utilizeze în cadrul testului numai un tip dimensional de rachetă și trei tipuri de mingi. Fiecare copil selectat avea o experiență de minim 6 luni în jocul de tenis, suficientă pentru a putea înțelege și pentru a efectua cerințele impuse. Loviturile s-au executat pe un teren de tenis etichetat de tip portocaliu, cu dimensiunile recomandate de ITF pentru categoria de vârstă 8 – 9 ani (18 m x 6,5 m, înălțimea fileului la centru 80 cm).

Mingile utilizate au fost de trei categorii de presiune: roșii (fără presiune), portocalii (scăzută) și verzi (medie), (ITF, 2011). Cele roșii au avut diametrul de 7,5-8,0 cm și gramajul de 36,0-46,0 grame; cele portocalii au avut diametrul de 6,5-6,8 cm și gramajul de 36,0-46,9 grame; cele verzi au avut diametrul de 6,55-6,8 cm și gramajul de 56,0-59,5 grame. Mingile au fost aruncate spre copii de către un profesor de sport având o experiență de 20 de ani în lucrul cu copiii, căruia i s-a cerut să arunce mingile în aceeași zonă din teren.

Măsurarea performanțelor s-a realizat prin intermediul unui test de precizie-viteză a loviturii, compus din șase loviturii de rever efectuate de pe linia de bază a terenului. Aceste variabile dependente au fost considerate drept principali indicatori ai performanței în cazul fiecărei serii de loviturii. Precizia loviturii a fost evaluată prin intermediul unui sistem de punctaj asociat diferitelor zone de pe teren alese drept țintă. Rata de reușită s-a definit ca fiind raportul dintre numărul loviturilor efectuate și numărul punctelor obținute. Viteza loviturii a fost măsurată în mod direct prin intermediul unui dispozitiv atașat rachetei, din categoria PAT (Player Analysis Technology), aprobat de către ITF în anul 2015 pentru utilizare în timpul antrenamentelor cât și al competițiilor.

Datele au fost culese în zile diferite pentru mingi de categorii diferite, cu o zi de repaus între teste. Copii și-au făcut încălzirea în ziua respectivă cu mingile cu care urmau să fie testați în acea zi. Copiilor li s-a cerut să efectueze 3 serii a câte 6 loviturii, astfel: prima serie a fost cu loviturii în lung de linie până la linia de bază a terenului advers, a doua serie a fost în diagonală până la linia de bază a terenului advers, iar a treia a fost în diagonală până la colțul format de linia de serviciu cu linia laterală, conform figurii 1. Zonele țintă au fost semnalizate prin intermediul unor conuri amplasate pe terenul advers. De asemenea, li s-a cerut să lovească mingea cu forța maximă care le permite să controleze traiectoria mingii. Înainte de începerea fiecărei serii de loviturii conducătorul studiului le-a explicat verbal
copiilor care este cerința testului respectiv și le-a ilustrat cerința prin efectuarea câtorva lovituri demonstrative la ținta stabilită.

Legendă: Pro-profesorul care aruncă mingile, P1-participantul nr. 1, linia albă punctată-traseul mingii aruncate, triunghi negru-con țintă, săgeată neagră bidirecțională-zona de deplasare pentru efectuarea loviturii, linie neagră-traseul impus pentru mingea lovită, cameră foto/video-locul de amplasare al instrumentelor de certificare a calității loviturii

Figura 1. Configurația conurilor pe terenul de tenis.

Datele colectate au fost analizate cu ajutorul aplicației software de analiză statistică SPSS, versiunea 2.0. Efectul variabilelor independente mingie și rachetă asupra fiecărei variabile dependente (viteză-precizie, rată de succes, precizie de amplasare a mingii) a fost examinat prin intermediul testelor t de tip 2x2, având gradul de încredere stabilit la 95%.

3. Rezultate și Discuții

Testele T pentru variabila dependentă viteză-precizie au consemnat o diferență semnificativă a mediei acestei variabile, $t(9) = 3,53$, $p = 0,01$. Astfel, în situația utilizării echipamentelor neadaptate media variabilei a fost de 3,32 $(±1,68)$, față de o medie de 6,41 $(±1,97)$ în cazul utilizării echipamentelor adaptate, conform fig. 2.

Figura 2. Combinăția viteză-precizie.

NP- mingie nepresurizată; PM – presiune moderată
De asemenea, s-a evaluat efectul utilizării mingilor de presiuni diferite și a rachetelor de dimensiuni diferite asupra ratei de succes a loviturilor, a preciziei loviturilor în lung de linie, pe diagonală și la marginea liniei de serviciu. În cazul mingilor nepresurizate s-a observat o diferență semnificativă a ratei de succes \(t(9) = 8,14, p < 0,001 \), ilustrată în figura 3.

![Figura 3. Rata de succes a loviturii](image)

Viteza mingii cu presiune medie a fost diferită față de cazul utilizării mingii cu presiune scăzută \(t(9) = 3,81, p = 0,04 \), figura 4.

![Figura 4. Viteza medie a mingii](image)

Precizia loviturilor participanților în situația utilizării mingilor cu presiune scăzută a fost semnificativ mai bună decât atunci când au utilizat mingea de presiune medie. La lovitura în lung de linie s-a înregistrat \(t(9) = 3,56, p = 0,01 \) (figura 5), iar la lovitura în diagonală s-a înregistrat \(t(9) = 3,20, p = 0,01 \).
Figura 5. Precizia loviturii în lung de linie

Discuții
Rezultatele studiului sugerează faptul că mingile roșii - nepresurizate și cele portocalii - cu presiune scăzută le permit copiilor să-și perfeccioneze abilitatea de a lovi cu mai multă forță și precizie lovituri de succes. Deoarece viteza, precizia și consistența sunt caracteristicile fundamentale ale tenisului (Bahamonde & Knudson, 2003; Elliot et. al., 2009), se poate concluziona că performanța îmbunătățită obținută de copii cu echipament modificat dimensional ar sugera un potențial sporit de dezvoltare al aptitudinilor fundamentale de la vârste mai fragede. Mai mult, rezultatele indică apariția succesului de timpuriu și accelerarea dobândirii aptitudinilor fundamentale. Toată această adaptare a jocului și modificarea dimensiunilor terenurilor și a rachetelor efectuate sub influența și directa îndrumare a Federației Internaționale de Tenis a generat o mișcare globală cu scopul de a crește numărul practicanților și păstrarea lor un timp cât mai îndelungat în cadrul jocului de tenis. Autorii au investigat originea acestei mișcări, dezvoltarea ei și ultimele rezultate ale acesteia, materializate în crearea de standarde internaționale pentru terenurile și echipamentele de tenis ale copiilor.

4. Concluzii
Participanții la studiu au dovedit că pot să își îmbunătățească performanțele tipului de lovitură practicat în condițiile utilizării unor echipamente (mingi, rachete, teren) dimensionate după dezvoltarea lor somatică, față de situația utilizării unor echipamente standard pentru adulți. De aceea, modificările aduse jocului de tenis în cazul copiilor au o importanță deosebită în pregătirea noilor generații de jucători atât de nivel profesionist, cât și de amatori, care, cu entuziasm, bucuria de a juca și determinarea lor să atragă în continuare pe terenurile de tenis cât mai mulți iubitori ai sportului alb.