Proteomic alteration of endometrial tissues during secretion in polycystic ovary syndrome may affect endometrial receptivity

Jun Li1†, Xiaohua Jiang2,3,4†, Caihua Li2,3,4†, Huihui Che2, Lin Ling1 and Zhaolian Wei2,3,4*

Abstract
Embryo implantation is a complex developmental process that requires coordinated interactions among the embryo, endometrium, and the microenvironment of endometrium factors. Even though the impaired endometrial receptivity of patients with polycystic ovary syndrome (PCOS) is known, understanding of endometrial receptivity is limited. A proteomics study in three patients with PCOS and 3 fertile women was performed to understand the impaired endometrial receptivity in patients with PCOS during luteal phases. Through isobaric tags for relative and absolute quantitation (iTRAQ) analyses, we identified 232 unique proteins involved in the metabolism, inflammation, and cell adhesion molecules. Finally, our results suggested that energy metabolism can affect embryo implantation, whereas inflammation and cell adhesion molecules can affect both endometrial conversion and receptivity. Our results showed that endometrial receptive damage in patients with PCOS is not a single factor. It is caused by many proteins, pathways, systems, and abnormalities, which interact with each other and make endometrial receptive research more difficult.

Keywords: Endometrial receptivity, Endometrium, PCOS, Proteomics

Introduction
Polycystic ovary syndrome (PCOS) is the most common endocrine disorder among women of reproductive age and perplexes researchers and doctors globally [1]. Even though many researchers focus on the pathophysiology of PCOS, the etiology underlying PCOS is still unknown. Many present studies mainly focused on improving clinical symptoms, such as insulin resistance, obesity, metabolic derangements, and increase in androgen, to achieve successful conceiving, reduce pregnancy-related complications, and enhance pregnancy outcomes [2, 3]. Ovulation disorders were previously considered the main cause of infertility in patients with PCOS. The pregnancy rates are still low in patients with PCOS and the high risk of biochemical abortion after ovulation disorders have been reduced. Many factors may lead to this situation, and impaired endometrial receptivity could be a responsible reason for adverse pregnancy outcomes in patients with PCOS. Unfortunately, only a few studies have elucidated the molecular mechanisms underlying impaired endometrial receptivity. Some important proteins involved in embryo implantation, such as forkhead box protein O1 (FOXO1), homeobox A10 (HOXA10), insulin-like growth factor-binding protein 1 (IGFBP-1), and inhibiting insulin growth factor 1 (IGF-1) are known to be abnormal in patients with PCOS compared with healthy individuals [4]. Single protein changes do not reflect the function of the endometrial microenvironment due to protein–protein interactions; therefore, the ongoing studies have increasingly focused on proteomic analyses.

© The Author(s) 2022. Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
Proteomics-based analyses are not limited by previous information on the problem and can help discover the potential advantage of revealing novel associations with unexpected molecules that can lead to new mechanistic explanations for impaired endometrial implantation.

In the present years, proteomics analyses have been used to elucidate the potential mechanisms underlying adverse pregnancy outcomes in patients with PCOS. To the best of our knowledge, no research has been performed on the secretory endometrial proteome in patients with PCOS to date. To elucidate the molecular basis underlying infertility related to endometrium implantation in patients with PCOS, we compared the secretory endometrial proteomic profile of patients with PCOS with that of healthy fertile women using isobaric tags for relative and absolute quantitation (iTRAQ).

Materials and methods

Clinical sample preparation methods

The endometrial tissues were obtained from 3 patients with PCOS and 3 healthy volunteers who already had children. The patients with PCOS took letrozole on the 3rd day of menstruation; their ovulation was continuously monitored, starting from the 10th day of menstruation; and the endometrium was obtained on the 5th day of ovulation.

These patients were also screened for their glucose metabolism and endocrine normality through serum determinations of the levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH), estradiol, glucose, and insulin on day 3 of the menstrual cycle. No participants demonstrated any evidence of chromosomal abnormality, pathological uterine disorder, or endometrial hyperplasia. None of the patients had used oral contraception or had undergone hormonal therapy during the past 3 months. The diagnosis of PCOS was made in accordance with the 2003 Rotterdam criteria, which included any two or all three of the following features: (1) oligo-/anovulation; (2) clinical or biochemical signs of hyperandrogenism; and (3) polycystic ovary morphology on ultrasound examination [5]. The main demographic characteristics of the patient and the control groups are summarized in Table 1. The results for the PCOS and control groups did not differ in terms of age, body mass index (BMI), FSH, LH, and testosterone, albeit it differed for the levels of insulin and glucose. Each biopsy was dry frozen at −80 °C for protein extraction.

The patients were recruited at the Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, approved by the Institutional Ethics Committee (No: 20170609). All patients provided their informed consent prior to their participation in the study. Figure 1 displays the basic principle of iTRAQ quantitative proteomics and the main steps involved in the quantitative techniques.

Protein extraction

We used the lysis buffer 3 (8 M urea, TEAB or 40 mM Tris–HCl with 1 mM PMSF, 2 mM EDTA and 10 mM DTT; pH 8.5) and two magnetic beads to extract the proteins. Then, we removed the mixtures into a tissue lyser for 2 min at 50 Hz to release the proteins. Next,
the supernatant was transferred into a new tube after centrifugation at 25,000×g at 4 °C for 20 min, reduced with 10-mM dithiothreitol (DTT) at 56 °C for 1 h, and alkylated with 55-mM iodoacetamide (IAM) in the dark at room temperature for 45 min. Following centrifugation, the supernatant containing the proteins was quantified by Bradford assay.

QC of protein extraction

Protein quantitation by Bradford assay

First, we added 0, 2, 4, 6, 8, 10, 12, 14, 16, and 18 μL of the BSA solution, separately, into a 96-well plate, and to the corresponding wells, we added 20, 18, 16, 14, 12, 10, 8, 6, 4, and 2 μL of pure water, separately. Meanwhile, we prepared serial dilutions (20 μL/well) of the unknown sample for enumeration. Next, we added 180 μL of Coomassie blue to each well and mixed the contents of each well. The absorbance of each standard and sample well were read at 595 nm. Each sample had at least two duplicates. Then, the absorbance of the standards vs. their concentration was plotted. Finally, we calculated the extinction coefficient and the concentrations of the unknown samples.

Protein digestion

The protein solution (100 μg) containing 8 M urea was diluted 4 times with 100 mM TEAB. We then applied trypsin gold (Promega, Madison, WI, USA) to digest the proteins (protein: trypsin = 40:1) at 37 °C overnight. Next, we used the Strata X C18 column (Phenomenex) and vacuum-dried the specimens to desalt the peptides with triethylammonium bicarbonate (TEAB). In the labeling reaction, the isopropanol concentration was maintained at >75%, and the labeling process was stopped by adding trifluoroacetic acid (TFA) at the end of the incubation period at the ambient temperature for 2 h. Then, we combined and desalted the labeled peptides on the Strata X C18 column and vacuum-dried them as per the manufacturer’s protocol.

Peptide fractionation

We separated the peptides through the Shimadzu LC-20AB HPLC Pump System coupled with a high-pH RP column. Next, we reconstituted the peptides with buffer A (5% ACN, 95% H2O, adjusted the pH to 9.8 with ammonia) to 2 mL and loaded them onto a column (5 μm, 20 cm×180 μm; Gemini C18) containing 5-μm particles (Phenomenex). Then, we separated the peptides at the flow rate of 1 mL/min with a gradient of 5% buffer B (5% H2O, 95% ACN, adjusted pH to 9.8 with ammonia) for 10 min, 5–35% buffer B for 40 min, and 35–95% buffer B for 1 min. Then, the system was maintained in 95% buffer B for another 3 min and decreased to 5% within 1 min before equilibration with 5% buffer B for 10 min. Next, we monitored the elution by measuring the absorbance at 214 nm and collected the fractions every minute. Finally, we divided the eluted peptides into 20 fractions and vacuum-dried them for further analyses.

HPLC

First, each fraction was resuspended in buffer A (2% ACN, 0.1% FA) and centrifuged at 20,000×g for 10 min. Then, the supernatant was loaded on the Thermo Scientific™ UltiMate™ 3000 UHPLC system equipped with a trap and an analytical column. We loaded the samples on the trap column (PEPMAP 100 C18 5UM 0.3×5MM 5PK) at 5 μL/min for 8 min and eluted it into the homemade nanocapillary C18 column (ID 75 μm×25 cm, 3-μm particles) with a 300 nL/min flow rate. The gradient of buffer B (98% ACN, 0.1% FA) was raised from 5 to 25% in 40 min, raised to 35% in 5 min, followed by a 2-min linear gradient to 80%, maintained at 80% B for another 2 min, returned to 5% in 1 min, and then equilibrated for 6 min.

Mass spectrometer detection

We subjected the peptides separated from nanoHPLC to tandem mass spectrometry Q EXACTIVE HF X (Thermo Fisher Scientific, San Jose, CA) for data-dependent acquisition (DDA) detection by nanoelectrospray ionization. The relevant parameters of the MS analysis were as follows: precursor scan range: 350–1500 m/z at the resolution of 60,000 in Orbitrap; electrospray voltage: 2.0 kV; MS/MS fragment scan range: in HCD mode with a 100 m/z scan, resolution at 15,000; normalized collision energy setting: 30%; dynamic exclusion time: 30 s; automatic gain control (AGC) for full MS target and MS2 target: 3e6 and 1e5, respectively; the number of MS/MS scans following one MS scan: 20 most abundant precursor ions above a threshold ion count of 10,000.
Protein quantification

We used an automated software called IQuant to quantitatively analyze the labeled peptides with isobaric tags. This software integrates the Mascot Percolator [6] to provide reliable significance measurements. To assess the confidence of peptides, the PSMs were prefiltered at 1% PSM-level FDR. Then, based on the “simple principle” (the parsimony principle), the identified peptide sequences were assembled into a set of confident proteins. To control the rate of false positives at the protein level, a protein FDR of 1%, which is based on the selected protein FDR strategy [7], was estimated after protein inference (protein-level FDR ≤ 0.01). The process of protein quantification comprised the following steps: protein identification, tag impurity correction, data normalization, missing value imputation, protein ratio calculation, statistical analysis, and result presentation [7]. Data normalization: We selected variance stabilization normalization (VSN) [8, 9] as our preferred normalization strategy. Protein ratio calculation: nonunique peptides and outlier peptide ratios were removed prior to their quantification [10]. The weight approach proposed elsewhere [11] was employed to evaluate the ratios of protein quantity based on the reporter ion intensities. Statistical analysis: Permutation tests were widely applied in the fields of microarray and RNA-Seq data analysis [12, 13]. To estimate the statistical significance of the protein quantitative ratios, IQuant adopted the permutation test, a nonparametric approach, as reported by Nguyen et al. [14]. For each protein, IQuant provided a significance evaluation that was corrected for multiple hypothesis testing by the Benjamini–Hochberg method [15].

Results

Altered levels of proteins in the endometrium of women with PCOS

We quantitatively identified 6524 proteins in samples from the PCOS group and the control group. We used CV to evaluate the reproducibility. CV is defined as the ratio of the standard deviation (SD) and the mean. Lower CV indicates better reproducibility. The mean CV (0.12) showed that the proteins identified in this study have good reproducibility. (Additional file 1: Fig. S1). Proteins with a 1.2-fold change and Q value less than 0.05 were determined as differentially expressed proteins (DEPs) in a single replicate. Compared with the control group, 232 proteins showed significant changes in their levels in the PCOS group. Of these, 108 proteins were increased and 124 proteins were decreased. The list of significantly regulated proteins along with their log 2 changes, corresponding p-values, and relevant biological processes are shown in Fig. 2 and Table 2.
Table 2 List of significantly regulated proteins in PCOS and control groups

No.	Protein_ID	Description	P	Mean_Ratio_treated-VS-control		
1	sp	Q7Z680	CCD91_HUMAN	Coiled-coil domain-containing protein 91 (CCDC91)	0.00	0.82
2	sp	Q8NH9	DDX55_HUMAN	ATP-dependent RNA helicase DDX55 (DDX55)	0.00	0.82
3	sp	Y9621	CAN6_HUMAN	Calpain-6 (CAPN6)	0.00	0.79
4	sp	QNYC9	DYH9_HUMAN	Dynein heavy chain 9, axonemal (DNAH9)	0.00	0.33
5	sp	Q9BZV7	TSG10_HUMAN	Testis-specific gene 10 protein (TSGA10)	0.00	0.8
6	sp	Q9NS5Y	NRFP2_HUMAN	Nuclear receptor-binding protein 2 (NRP2P)	0.02	0.8
7	sp	O60331	PI51C_HUMAN	Phosphatidylinositol 4-phosphate 5-kinase type-1 gamma (PIPSK1C)	0.03	0.7
8	sp	Q9Y4X5	ARI1_HUMAN	E3 ubiquitin-protein ligase ARI1 (ARIH1)	0.03	0.74
9	sp	P1602	KV105_HUMAN	Immunoglobulin kappa variable 1-5 (IGKV1-5)	0.01	0.74
10	sp	Q8N6U8	GP161_HUMAN	G-protein coupled receptor 161 (GPR161)	0.04	0.83
11	sp	P05543	THBG_HUMAN	Thrombospondin 2 (THBG)	0.02	0.82
12	sp	Q9NX55	HYPK_HUMAN	Hsp70-interacting protein K (HSPK)	0.00	0.74
13	sp	P35058	PLTP_HUMAN	Phospholipid transfer protein (PLTP)	0.04	0.78
14	sp	Q7SO15	FCG3B_HUMAN	Low affinity immunoglobulin gamma Fc region receptor III-B (FCG3B)	0.04	0.82
15	sp	Q9HCJ0	TNRC6C_HUMAN	Trinucleotide repeat-containing gene 6C protein (TNRC6C)	0.03	0.76
16	sp	P04439	A010_HUMAN	HLA class I histocompatibility antigen, A-3 alpha chain (HLA-A)	0.05	0.65
17	sp	Q9H8V3	ECT2_HUMAN	Protein ECT2 (ECT2)	0.03	0.81
18	sp	O43174	CP26A_HUMAN	Cytochrome P450 26A1 (CYP26A1)	0.02	0.83
19	sp	Q9P3F6	HRG20_HUMAN	Rho GTPase-activating protein 20 (ARHGAP20)	0.00	0.75
20	sp	Q9NVQ4	FAIM1_HUMAN	Fas apoptotic inhibitory molecule 1 (FAIM1)	0.00	0.71
21	sp	Q8NAN2	MIGA1_HUMAN	Mitogargin 1 (MIGA1)	0.00	0.56
22	sp	Q9ND83	SLA1_HUMAN	SLA1-motif-containing protein 1 (SLA11)	0.01	0.83
23	sp	Q9UP85	S12A4_HUMAN	Solute carrier family 12 member 4 (SLC12A4)	0.01	0.76
24	sp	Q96D05	FAM241B_HUMAN	Uncharacterized protein FAM241B (FAM241B)	0.00	0.77
25	sp	Q13009	TIA1_HUMAN	T-lymphoma invasion and metastasis-inducing protein 1 (TIA1M)	0.03	0.65
26	sp	A0A04D2H29	HV103_HUMAN	Immunoglobulin heavy variable 1-3 (IGHV1-3)	0.04	0.72
27	sp	P01597	KV139_HUMAN	Immunoglobulin kappa variable 1-39 (IGKV1-39)	0.00	0.79
28	sp	A0A0758660	LV861_HUMAN	Immunoglobulin lambda variable 8-61 (IGL8-61)	0.03	0.77
29	sp	Q99699	RARR2_HUMAN	Retinoic acid receptor responder protein 2 (RARRR2)	0.02	0.72
30	sp	Q8NN98	EIF1A_HUMAN	Probable RNA-binding protein EIF1AD (EIF1AD)	0.03	0.8
31	sp	P0DOX3	IGD_HUMAN	Immunoglobulin delta heavy chain	0.01	0.83
32	sp	Q15751	HERC1_HUMAN	Probable E3 ubiquitin-protein ligase HERC1 (HERC1)	0.00	0.81
33	sp	P58873	UB2D2_HUMAN	Ubiquitin-conjugating enzyme E2 D2 (UBE2D2)	0.00	0.81
34	sp	A0A0411YV94_HUMAN	Immunoglobulin lambda variable 9-49 (IGLV9-49)	0.00	0.82	
35	sp	P0DP01	HV108_HUMAN	Immunoglobulin heavy variable 1-8 (IGHV1-8)	0.01	0.64
36	sp	P56962	STX17_HUMAN	Syntaxin-17 (STX17)	0.00	0.69
37	sp	P09601	HMOX1_HUMAN	Heme oxygenase 1 (HMOX1)	0.02	0.75
38	sp	A0A075685T	TVA18_HUMAN	T cell receptor alpha variable 18 (TRAV18)	0.00	0.66
39	sp	P10643	CO7_HUMAN	Complement component C7 (C7)	0.00	0.79
40	sp	Q93933	HSF2_HUMAN	Heat shock factor protein 2 (HSF2)	0.00	0.64
41	sp	A0A04C1B3H8	HVS51_HUMAN	Immunoglobulin heavy variable 5-51 (IGHV5-51)	0.03	0.78
42	sp	Q15139	KPCD1_HUMAN	Serine/threonine-protein kinase D1 (PRKD1)	0.00	0.81
43	sp	Q9H1X3	DJC25_HUMAN	DnaJ homolog subfamily C member 25 (DNAJC25)	0.00	0.6
44	sp	A4UGR9	XIRP2_HUMAN	X-linked insulator repeat-containing protein 2 (XIRP2)	0.00	0.68
45	sp	Q8N6N6	NATD1_HUMAN	Protein NATD1 (NATD1)	0.00	0.76
46	sp	A0P2Z3	GXL12_HUMAN	Glucoside xylosyltransferase 2 (GXYLT2)	0.00	0.81
47	sp	P15169	CBPN_HUMAN	Carboxypeptidase N catalytic chain (CPN1)	0.02	0.71
48	sp	Q94952	FBX21_HUMAN	F-box only protein 21 (FBXO21)	0.00	0.83
No.	Protein_ID	Description	P	Mean_Ratio_treated-VS-control		
-----	------------	--	----	-------------------------------		
49	sp	Q4U2R6	RM51_HUMAN	39S ribosomal protein L51, mitochondrial (MRPL51)	0.02	0.83
50	sp	P50749	RASF2_HUMAN	Ras association domain-containing protein 2 (RASSF2)	0.02	0.82
51	sp	Q66P3	AR6P4_HUMAN	ADP-ribosylation factor-like protein 6-interacting protein 4 (ARL6IP4)	0.01	0.8
52	sp	Q94868	FCSK2_HUMAN	F-BAR and double SH3 domains protein 2 (FCHSD2)	0.03	0.7
53	sp	Q9YSU8	MPC1_HUMAN	Mitochondrial pyruvate carrier 1 (MPC1)	0.00	0.75
54	sp	Q96NT0	CC115_HUMAN	Coiled-coil domain-containing protein 115 (CCDC115)	0.01	0.78
55	sp	Q9UGI0	AAG02_HUMAN	S'-AMP-activated protein kinase subunit-gamma-2 (PRKAG2)	0.00	0.81
56	sp	Q0P749	CB080_HUMAN	Uncharacterized protein C2orf80 (C2orf80)	0.00	0.69
57	sp	Q96GM8	TOE1_HUMAN	Target of EGR1 protein 1 (TOE1)	0.01	0.8
58	sp	P01825	H4V59_HUMAN	Immunoglobulin heavy variable 4-59 (IGHV4-59)	0.02	0.78
59	sp	Q9854	ATG1_A_HUMAN	Autophagy-related protein 101 (ATG101)	0.04	0.81
60	sp	Q53FV1	ORML2_HUMAN	ORM1-like protein 2 (ORMDL2)	0.03	0.81
61	sp	P20742	PZP_HUMAN	Pregnancy zone protein (PZP)	0.00	0.8
62	sp	Q15213	WDR46_HUMAN	WD repeat-containing protein 46 (WDR46)	0.01	0.83
63	sp	Q9P1P5	TAAR2_HUMAN	Trace amine-associated receptor 2 (TAAR2)	0.00	0.72
64	sp	P0CG29	GST2_HUMAN	Glutathione S-transferase theta-2 (GSTT2)	0.01	0.75
65	sp	Q960Z8	NSD2_HUMAN	Histone-lysine N-methyltransferase NSD2 (NSD2)	0.05	0.82
66	sp	Q9NX3	DNC28_HUMAN	DnaJ homolog subfamily C member 28 (DNAJC28)	0.00	0.7
67	sp	Q9GZT4	SSR_HUMAN	Serine racemase (SRR)	0.03	0.81
68	sp	Q9NYQ3	HAOX2_HUMAN	Hydroxycacid oxidase 2 (HAO2)	0.00	0.72
69	sp	A8RTX5	YTYC2_HUMAN	Probable theonine-riRNA ligase 2, cytoplasmic (TARSL2)	0.00	0.77
70	sp	Q30453	I3A4_HUMAN	HLA class I histocompatibility antigen, A-34 alpha chain (HLA-A)	0.02	0.74
71	sp	P73332	RB6_HUMAN	RNA-binding protein 6 (RBM6)	0.02	0.83
72	sp	P01743	H3V16_HUMAN	Immunoglobulin heavy variable 1-46 (IGHV1-46)	0.00	0.8
73	sp	Q9NG1	TNS14_HUMAN	Tetraspanin-14 (TSPAN14)	0.01	0.82
74	sp	Q8BTPS	F174A_HUMAN	Membrane protein FAM174A (FAM174A)	0.01	0.6
75	sp	Q6SO5	JNMT2_HUMAN	Glycylpeptide N-tetradecanoyltransferase 2 (NMT2)	0.01	0.81
76	sp	Q99ES9	CPNE1_HUMAN	Copine-1 (CPNE1)	0.00	0.83
77	sp	Q9Y644	CF20_HUMAN	Cilia- and flagella-associated protein 20 (CFAP20)	0.00	0.79
78	sp	Q88BF9	GLIS1_HUMAN	Zinc finger protein GLIS1 (GLIS1)	0.05	0.72
79	sp	Q9BQ75	CM51_HUMAN	Protein CM51 (CM51)	0.00	0.65
80	sp	Q15055	PER2_HUMAN	Period circadian protein homolog 2 (PER2)	0.00	0.69
81	sp	Q96Q2	TEFM_HUMAN	Transcription elongation factor, mitochondrial (TEFM)	0.01	0.61
82	sp	P0114A	ARCP_HUMAN	Apolipoprotein B-100 (APOP)	0.05	0.83
83	sp	Q8IY8	H01_HUMAN	Interactor of HORMAD1 protein 1 (CCDC36)	0.02	0.7
84	sp	P08571	CD14_HUMAN	Monocyte differentiation antigen CD14 (CD14)	0.00	0.82
85	sp	Q96V8	DTB01_HUMAN	Dysbindin (DTNB1)	0.02	0.76
86	sp	Q15166	PON3_HUMAN	Serum paraoxonase/lactonase 3 (PON3)	0.01	0.82
87	sp	Q81V63	VRK3_HUMAN	Inactive serine/threonine-protein kinase VRK3 (VRK3)	0.04	0.83
88	sp	P01099	AT1_HUMAN	Alpha-1-antitrypsin (SERPINA1)	0.02	0.82
89	sp	Q15022	SU12_HUMAN	Polycomb protein SUZ12 (SUZ12)	0.00	0.7
90	sp	P30711	GSTT1_HUMAN	Glutathione S-transferase theta-1 (GSTT1)	0.01	0.69
91	sp	Q99C4	SCRN3_HUMAN	Secernin-3 (SCRN3)	0.00	0.75
92	sp	P35443	TS4_HUMAN	Thrombospondin-4 (THBS4)	0.00	0.68
93	sp	P14680	MELK_HUMAN	Maternal embryonic leucine zipper kinase (MELK)	0.00	0.62
94	sp	Q66D8	ZNF787_HUMAN	Zinc finger protein 787 (ZNF787)	0.00	0.83
95	sp	P00488	F13A_HUMAN	Coagulation factor XIII A chain (F13A1)	0.03	0.81
96	sp	P01766	HV313_HUMAN	Immunoglobulin heavy variable 3-13 (IGHV3-13)	0.01	0.78
No.	Protein_ID	Description	P	Mean_Ratio_treated-VS-control		
-----	------------	--	-----	------------------------------		
97	sp	Q9Y3D7	TIM16_HUMAN	Mitochondrial import inner membrane translocase subunit TIM16 (PAM16)	0.02	0.83
98	sp	Q1S843	NEDD8_HUMAN	NEDD8 (NEDD8)	0.02	0.73
99	sp	P02533	K1C14_HUMAN	Keratin, type I cytoskeletal 14 (KRT14)	0.01	0.79
100	sp	Q5UCC4	EMC10_HUMAN	ER membrane protein complex subunit 10 (EMC10)	0.00	0.8
101	sp	Q9S2588	UCPS_HUMAN	Brain mitochondrial carrier protein 1 (SLC25A14)	0.03	0.8
102	sp	Q9Q615	SMG1_HUMAN	Serine/threonine-protein kinase SMG1 (SMG1)	0.01	0.78
103	sp	Q8N59	CL045_HUMAN	Uncharacterized protein C12orf45 (C12orf45)	0.00	0.75
104	sp	P51157	RAB28_HUMAN	Ras-related protein Rab-28 (RAB28)	0.02	0.83
105	sp	P27037	AVR2A_HUMAN	Activin receptor type-2A (ACVR2A)	0.05	0.78
106	sp	Q9BT9	TCHP_HUMAN	Trichoplein keratin filament-binding protein (TCHP)	0.04	0.8
107	sp	P15427	SF3B4_HUMAN	Splicing factor 3B subunit 4 (SF3B4)	0.04	0.82
108	sp	P24593	IBPS_HUMAN	Insulin-like growth factor-binding protein 5 (IGFBP5)	0.05	0.78
109	sp	Q9Y229	COQ6_HUMAN	Ubiquinone biosynthesis monoxygenase COQ6, mitochondrial (COQ6)	0.02	0.8
110	sp	P14136	GFAP_HUMAN	Gial fibrillary acidic protein (GFAP)	0.03	0.75
111	sp	Q8NC5	CHST4_HUMAN	Carbohydrate sulfotransferase 4 (CHST4)	0.00	0.8
112	sp	P01834	IGKC_HUMAN	Immunoglobulin kappa constant (IGKC)	0.05	0.83
113	sp	Q4ZH4	FND1C_HUMAN	Fibronectin type III domain-containing protein 1 (FND1C)	0.00	0.77
114	sp	Q15615	IKBB_HUMAN	NF-kappa-B inhibitor beta (NFKBIB)	0.04	0.82
115	sp	P49184	DNLS1_HUMAN	Zinc finger protein S87B (ZNF587B)	0.05	0.83
116	sp	P49184	DNLS1_HUMAN	Deoxyribonuclease-1-like 1 (DNASE1L1)	0.00	0.66
117	sp	Q96H9	FM1_HUMAN	Protein FM1 homolog (FM1)	0.04	0.82
118	sp	Q9B8N8	OTUL_HUMAN	Ubiquitin thioesterase otulin (OTULIN)	0.00	0.82
119	sp	Q9BH15	C014_HUMAN	Uncharacterized protein C3orf14 (C3orf14)	0.01	0.8
120	sp	Q9S80	TTC4_HUMAN	Tetratricopeptide repeat protein 4 (TTC4)	0.02	0.83
121	sp	Q9B592	NP53_B_HUMAN	Protein NipScan homolog 3B (NIPSAP3B)	0.01	0.81
122	sp	A0A07566	KVD29_HUMAN	Immunoglobulin kappa variable 2D-29 (IGKV2D-29)	0.02	0.82
123	sp	A0A07566	KVD29_HUMAN	Immunoglobulin heavy variable 1-18 (IGHV1-18)	0.00	0.71
124	sp	Q96X5	UPT4_HUMAN	U3 small nucleolar RNA-associated protein 4 homolog (UPT4)	0.02	0.81
125	sp	Q9MV5	SDA1_HUMAN	Protein SDA1 homolog (SDADI)	0.02	1.22
126	sp	Q9BL7	UPLS_HUMAN	Ubiquitin-like protein 5 (UBL5)	0.02	1.35
127	sp	Q96K80	ZC3HA_HUMAN	Zinc finger CCCH domain-containing protein 10 (ZC3H10)	0.00	1.24
128	sp	O0479	HMGN4_HUMAN	High mobility group nucleosome-binding domain-containing protein 4 (HMGN4)	0.04	1.31
129	sp	P3553	PKGC_HUMAN	Phosphoenolpyruvate carboxykinase, cytosolic [GTP] (PCK1)	0.04	1.21
130	sp	Q3Mrf	CSO8_HUMAN	Cell cycle control protein 50B (TMEM30B)	0.01	2.09
131	sp	Q5SRD9	FBLN7_HUMAN	Fibulin-7 (FBLN7)	0.02	1.34
132	sp	P0969	GMFB_HUMAN	Glia maturation factor beta (GMFB)	0.00	1.22
133	sp	Q1S041	AR6P1_HUMAN	ADP-ribosylation factor-like protein 6-interacting protein 1 (ARL6IP1)	0.00	1.52
134	sp	Q9BY7	ACTBM_HUMAN	Putative beta-actin-like protein 3 (POTECP)	0.00	1.21
135	sp	Q9H07	TM165_HUMAN	Transmembrane protein 165 (TMEM165)	0.01	1.27
136	sp	Q9H06	RPA2_HUMAN	DNA-directed RNA polymerase I subunit RPA2 (POLR1B)	0.05	1.27
137	sp	Q8UIF8	ROX2_HUMAN	Ribosomal oxygenase 2 (ROX2)	0.00	1.73
138	sp	Q92833	JARD2_HUMAN	Protein Jumonji (JARID2)	0.04	1.25
139	sp	Q5279	SFT2C_HUMAN	Vesicle transport protein SFT2C (SFT2D3)	0.01	1.25
140	sp	P1341	CY24A_HUMAN	Cytochrome b-245 light chain (CYBA)	0.01	1.28
141	sp	Q5BE2	SDK2_HUMAN	Protein sidekick-2 (SDK2)	0.00	1.3
142	sp	P5282	STC1_HUMAN	Stanniocalcin-1 (STC1)	0.02	2
143	sp	Q9687	TBBI1_HUMAN	Tubulin beta-1 chain (TUBB1)	0.04	1.25
144	sp	Q9HA82	CER54_HUMAN	Ceramide synthase 4 (CER54)	0.02	1.88
Table 2 (continued)

No.	Protein_ID	Description	P	Mean_Ratio_{treated-VS-control}		
146	sp	Q128666	MERTK_HUMAN	Tyrosine-protein kinase Mer (MERTK)	0.01	1.28
147	sp	Q812V59	RDH10_HUMAN	Retinol dehydrogenase 10 (RDH10)	0.01	1.76
148	sp	O150144	ZN609_HUMAN	Zinc finger protein 609 (ZNF609)	0.00	1.26
149	sp	P60468	SC61B_HUMAN	Protein transport protein Sec61 subunit beta (SEC61B)	0.02	1.22
150	sp	Q96AA31	RFT1_HUMAN	Protein RFT1 homolog (RFT1)	0.01	1.31
151	sp	Q6PHR2	ULK3_HUMAN	Serine/threonine-protein kinase ULK3 (ULK3)	0.01	3.02
152	sp	Q5BJF2	SGMR2_HUMAN	Sigma intracellular receptor 2 (TMEM97)	0.01	1.4
153	sp	P63267	ACTH_HUMAN	Actin, gamma-enteric smooth muscle (ACTG2)	0.00	1.37
154	sp	P78563	RED1_HUMAN	Double-stranded RNA-specific editase 1 (ADARB1)	0.03	1.28
155	sp	P16422	EPCAM_HUMAN	Epithelial cell adhesion molecule (EPCAM)	0.01	1.24
156	sp	P31371	FGF9_HUMAN	Fibroblast growth factor 9 (FGF9)	0.01	1.23
157	sp	P57053	H2BFS_HUMAN	Histone H2B type F-S (H2BFS)	0.00	1.27
158	sp	Q9HBR06	S38AA_HUMAN	Putative sodium-coupled neutral amino acid transporter 10 (SLC38A10)	0.04	1.56
159	sp	Q5W0Z9	ZDH20_HUMAN	Palmitoyltransferase ZDHHC20 (ZDHHC20)	0.00	1.29
160	sp	P161122	PGCA_HUMAN	Aggrecan core protein (ACAN)	0.04	1.22
161	sp	Q9H954	CB39L_HUMAN	Calcium-binding protein 39-like (CAB39L)	0.00	1.25
162	sp	Q9BBW0	REPI1_HUMAN	Replication initiator 1 (REPIN1)	0.01	1.28
163	sp	Q9GG2U6	CTDS1_HUMAN	Carboxy-terminal domain RNA polymerase II polypeptide A small phosphatase 1	0.00	1.26
164	sp	P42680	TEC_HUMAN	Tyrosine-protein kinase TEC (TEC)	0.05	1.24
165	sp	Q9BR32	ZN2_HUMAN	Zinc transporter 2 (SLC30A2)	0.04	1.36
166	sp	O124632	GOSR2_HUMAN	Golgi SNAP receptor complex member 2 (GOSR2)	0.02	1.25
167	sp	Q75665	TOF1_HUMAN	Oral-facial-digital syndrome 1 protein (OFT1)	0.04	1.52
168	sp	Q14687	GSE1_HUMAN	Genetic suppressor element 1 (GSE1)	0.00	1.21
169	sp	Q9BQX8	N3H23_HUMAN	Condensin complex subunit 3 (NCAPG)	0.04	1.36
170	sp	Q96N9Y8	NECT4_HUMAN	Nectin-4 (NECT4)	0.00	1.21
171	sp	Q7P750	DERM_HUMAN	Dermatopontin (DPT0)	0.01	1.5
172	sp	P619562	SUMO2_HUMAN	Small ubiquitin-related modifier 2 (SUMO2)	0.02	1.22
173	sp	Q9BZ678	FRMD8_HUMAN	FERM domain-containing protein 8 (FRMD8)	0.00	1.22
174	sp	Q9Y6241	JAM1_HUMAN	Junctional adhesion molecule A (JAM1)	0.00	1.26
175	sp	P30486	B48_HUMAN	HLA class I histocompatibility antigen, B-48 alpha chain (HLA-B)	0.01	2.04
176	sp	Q13601	KRR1_HUMAN	KRR1 small subunit processome component homolog (KRR1)	0.00	1.21
177	sp	P27987	IPK8_HUMAN	Insoluble-triphosphatase 3 kinase B (ITPKB)	0.00	1.22
178	sp	P151515	PVR_HUMAN	Poliovirus receptor (PVR)	0.00	1.21
179	sp	Q14925	TIM23_HUMAN	Mitochondrial import inner membrane translocase subunit Tim23 (TIMM23)	0.00	1.34
180	sp	Q8N5567	AFAP1_HUMAN	Actin filament-associated protein 1 (AFAP1)	0.02	1.3
181	sp	Q9Y3C11	NOP16_HUMAN	Nucleolar protein 16 (NOP16)	0.00	1.33
182	sp	P52520	CAD13_HUMAN	Cadherin-13 (CDH13)	0.00	1.32
183	sp	Q9KW60	SENP5_HUMAN	Sentrin-specific protease 5 (SENP5)	0.00	1.4
184	sp	Q9UJI30	ZBTB21_HUMAN	Zinc finger and BTB domain-containing protein 21 (ZBTB21)	0.01	2.55
185	sp	P27847	DPP4_HUMAN	Dipetidyl peptidase 4 (DPP4)	0.03	1.49
186	sp	Q8NH190	O1AG_HUMAN	Olfactory receptor 10A1 (OR10A1)	0.02	2.06
187	sp	P15309	PPAP_HUMAN	Prostatic acid phosphatase (ACP5)	0.00	1.34
188	sp	Q9UR005	ISY1_HUMAN	Pre-mRNA-splicing factor 5 (ISY1)	0.02	2.08
189	sp	Q9M6690	DNHD1_HUMAN	Dynein heavy chain domain-containing protein 1 (DNHD1)	0.02	1.55
190	sp	P4C220	LIM5_HUMAN	LIM and senescent cell antigen-like-containing domain protein 4 (LIM5)	0.01	1.27
191	sp	O75503	CLN5_HUMAN	Ceroid-lipofuscinosis neuronal protein 5 (CLN5)	0.03	1.67
192	sp	Q9HC360	MRRM3_HUMAN	rRNA methyltransferase 3, mitochondrial (MRRM3)	0.00	1.22
193	sp	Q9H9Y2	JUPI2_HUMAN	Jupiter microtubule associated homolog 2 (JPT2)	0.00	1.25
Functional classification of differentially expressed proteins (DEPs) in the endometrium

To determine the functional differences in the increased and decreased proteins, the quantified proteins were analyzed for the following three types of enrichment-based clustering analyses: gene ontology (GO) enrichment analysis of DEPs, pathway enrichment analysis of DEPs, and eukaryotic orthologous groups (KOOGs) annotation of DEPs.

GO enrichment analysis showed the GO terms in which the DEPs were enriched in all identified proteins. It represented the important or typical biological functions in the study. We performed pathway enrichment analysis of DEPs based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. KOOGs were delineated by comparing protein sequences encoded in complete genomes, which represented major phylogenetic lineages.

Through the GO enrichment analysis of biological processes, we found that these different proteins were closely associated with cellular processes, metabolic processes, and biological regulation. Based on their molecular functions, these proteins with altered levels were strongly associated with binding, catalytic activity, and molecular function regulators (Fig. 3, Additional file 1: Fig. S2).

The results from KEGG pathway enrichment showed that the DEPs were mainly involved in allograft rejection, cell adhesion molecules (CAMs), type I diabetes mellitus, allograft rejection, phagosomes, and the necrotic factor (NF)—kappa B signaling pathway (Fig. 4, Additional file 1: Fig. S3). Moreover, we constructed a scatter plot for the top 20 KEGG enrichment results as shown in Fig. 5.

For DEPs, their KOOG terms were also extracted and showed that the DEPs were mainly associated with inorganic ion transport and metabolism, lipid transport and metabolism, and energy production and conversion. We plotted bar plots accordingly (Fig. 6). Thus, we could easily obtain their functional categories.

Predicted protein–protein interactions (PPI) of DEPs and subcellular localization prediction of DEPs

Proteins usually interact with each other to participate in certain biological functions. STRING is a database of known PPI. Based on Fig. 7, we determined the interaction between proteins (Fig. 7). Proteins can be targeted in the inner space of an organelle, different intracellular membranes, the plasma membrane, or to the exterior of...
the cell through secretion. This delivery process is performed on the basis of the information present in the protein. Correct sorting is important for the cell; errors can lead to the development of diseases. We predicted protein subcellular localization using bioinformatics tools (WoLF PSORT). The bar plot of subcellular localization prediction showed that different proteins are mainly present in the nucleus, extracellular space, cytosol, plasma membrane, and mitochondria (Fig. 8).

Taken together, these results showed that these DEPs mainly play a role in metabolic processes, cell adhesion molecules, and immunity.

Discussion
Embryo implantation is a key process in pregnancy. For successful embryo implantation, the process must be sequential, which means that the three phases, namely apposition, adhesion, and invasion, should occur...
sequentially [16]. For pregnancy, endometrium transition to the pregnancy state is the key to embryo implantation, and a change in several proteins in the endometrium during this process is a prerequisite [17, 18]. The DEPs discovered in the present study were mainly involved in energy metabolism, inflammation, and cell–cell adhesion functions, as well as the cell and cell parts in cellular components and catalytic activity. Energy metabolism may affect embryo implantation, whereas inflammation and CAMs may affect both endometrial conversion and receptivity.

Impairment of embryo implantation because of energy metabolism deficit

The exact mechanism of embryo implantation is not clear, and probably energy metabolism is a crucial factor in implantation [19]. PCOS is an endocrine disorder characterized by hyperinsulinemia and obesity [20]. These characteristics can cause an insulin-resistant state and metabolic disorder in organs such as the endometrium [21, 22]. As insulin resistance in the endometrium leads to no response or sensitivity to the metabolic effects of insulin, the endometrium needs more insulin for normal metabolism [23]. The gene for insulin-like growth factor-binding protein 5 (IGFBP5) is downregulated in patients with PCOS than in healthy people, and IGFBP5 is an important member of the IGFBP family. IGFBP5 may affect cell metabolism. A decrease in IGFBP5 level may be associated with the pathogenesis of type 2 diabetes [24, 25], and decreased GLUT4 expression may be one of the mechanisms by which IGFBP causes insulin resistance [26]. Moreover, the results of our subcellular localization analysis show that many different proteins are located in mitochondria. Importantly, mitochondria play a key role in energy production by converting nutrients into energy, and altered proteins
may negatively affect energy metabolism. For example, mitochondrial pyruvate carrier 1 (MPC1) and transcription elongation factor mitochondrial (TEFM) levels were significantly decreased in patients with PCOS. Pyruvate, carried by MPC1 into the mitochondrion, is essential to mitochondrial energy metabolism. The lack of MPC1 can impair pyruvate transport and then can damage mitochondrial energy metabolism [27].
glucose metabolism is in mitochondria, in which TEFM regulates the formation of mitochondrial RNA primers. As RNA primers are necessary for the initiation of mitochondrial DNA replication, the lack of TEFM reduces mitochondrial DNA replication [28]. Therefore, abnormalities in MPC1 and TEFM must affect mitochondrial oxidation, thus leading to a bioenergetic crisis. Therefore, we hypothesized that energy metabolism deficits may cause embryo implantation failure, and treatment including energy supplements may improve the endometrial microenvironment.

CAM deficiency causes miscarriage
Apart from energy metabolism deficits, embryo implantation also requires adhesion molecules. Increasing or decreasing adhesion molecules can lead to embryo implantation failure. In our proteomics analysis results, we observed the differential expression of adhesion molecules in the PCOS group including CAMs,
receptor–ligand activity, and cell adhesion. Among these, epithelial CAM (EpCAM) level was increased in endometrial samples of women with PCOS. EpCAM regulates many important cellular functions such as cell migration, metastasis, proliferation, and cell differentiation [29, 30]; however, the main role of EpCAM is intercellular adhesion [31]. A specific EpCAM is necessary for embryo implantation, and the amount of EpCAM during the implantation window should be reduced [32]. EpCAMs are maintained mainly at the basal cell surface to maintain a polarized epithelial surface, and then uterine epithelial cells connect with the underlying stroma to prevent premature detachment before implantation [33]. However, higher concentrations of EpCAM can impair adhesion or promote deadhesion by competitively binding to extracellular matrix proteins and blocking cell attachment. Proteomics analysis results show that T-lymphoma invasion and metastasis-inducing protein 1 (TIAM1) were decreased in the PCOS group, which regulates cell migration, motility, and cell adhesion in some cells [34, 35]. TIAM1 is decreased by estradiol and increased by progesterone in a dose-dependent manner [36]. Patients with PCOS lack a complete menstrual cycle as a result of oligo- or anovulation; thus, the endometrium is exposed to estradiol for an extended period and lacks progesterone [37]. The reduction in TIAM1 level is consistent with the characteristics of patients with PCOS. TIAM1 is essential in embryo implantation in mice by increasing the implantation site of the endometrium [38]. Studies have shown that increased levels of TIAM1 during the implantation window facilitates embryo implantation, and decreased TIAM1 levels might be associated with the failure of embryo implantation in patients with repeated implantation failure [35]. More studies need to be established to explore the details of adhesion mechanisms underlying the endometrium of PCOS.

Immune disorders lead to miscarriage
The embryo is a natural semi-allograft, and tolerance mechanisms for successful embryo implantation involve the acceptance of allografts [39]. A recent study highlighted that immune imbalance plays a key role in recurrent miscarriage [40]. Our pathway analysis reports that allograft rejection, natural killer (NK)-cell-mediated cytotoxicity, and primary immunodeficiency in patients with PCOS were significantly abnormal compared with those in healthy women. For instance, human leukocyte antigen C (HLA-C), a marker of recurrent miscarriage, was significantly increased in the PCOS group [41]. In the fetal–maternal interface, NK cells recognize and eliminate exogenous cells mainly resulting from HLA expressed on the foreign cell surface [42]. Thus, the increased HLA-C levels may negatively affect the process by which NK cells recognize embryo antigens, resulting in immune tolerance disorders. Hemeoxynase 1 (HMOX1) was significantly decreased in patients with PCOS. HMOX1 is a central player in anti-inflammatory, antioxidant, and cytoprotective activities, and HMOX1 can inhibit the cytotoxicity of other immune cells, cytokine release, and proliferation [43, 44]. HMOX1 is necessary for protecting fetuses from rejection [45, 46]. Therefore, HMOX1 deficiency may affect fetal and allograft rejection, thereby leading to embryo implantation failure. Thus, curing immune disorders in the endometrium will improve the probability of embryo implantation success.

Strengths and limitations of the study
Our results show that endometrial receptive damage in patients with PCOS is not only associated with a single factor but also multiple proteins, pathways, systems, and other abnormalities; these factors also interact with each other. Due to difficulty in obtaining the desired endometrial tissues repeatedly at the same time, we only compared endometrial proteomics in the luteal phase between the experimental group and the control group, rather than comparing the endometrial proteomics in different phases in one group. Moreover, animal validation model tests are in preparation.

Conclusion
Our results show that endometrial receptive damage in patients with PCOS is not a single factor event but occurs because of multiple proteins, pathways, systems, and other abnormalities, and they also interact with each other, thereby greatly increasing the difficulty of endometrial receptive research. More studies are needed to support the hypothesis of this study and to establish a better understanding of the molecular mechanistic details underlying impaired endometrial implantation in patients with PCOS.

Supplementary Information
The online version contains supplementary material available at https://doi.org/10.1186/s12014-022-09353-1.

Additional file 1. Fig. S1. CV distribution in replicate. Fig. S2. Gene Ontology Analysis of Differentially Expressed Proteins. Fig. S3. Pathway analysis of Differentially Expressed Proteins.

Acknowledgements
The authors acknowledge support from Professor Haijian Cai in the Center for Scientific Research of Anhui Medical University.
Author contributions
JL and XJ designed research. JL and CL performed the research. JL, XJ and LL analyzed the data and drafted the final version of the manuscript. CL and ZW supervised the study, and provided financial support, editing and final approval of the manuscript. All authors read and approved the final manuscript.

Funding
This research was funded by the National Natural Science Foundation of China Youth Science Fund Development Project of the First Affiliated Hospital of Anhui Medical University (Grant Number 2017k60) and University Natural Science Research Project of Anhui Province [KJ2020A0201].

Availability of data and materials
The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE [47] partner repository with the dataset identifier PXD024735.

Declarations

Competing interests
No conflicts of interest, financial or otherwise, are declared by the authors.

Author details
1Department of Obstetrics and Gynecology, The Second Affiliated Hospital No 230022, Hefei, China. 2Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China. 3Anhui Provincial Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei 230022, China. 4Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei 230022, China.

Received: 23 July 2021 Accepted: 18 April 2022
Published online: 28 May 2022

References
1. Al WB, Teede H, Garad R, Franks S, Balen A, Bhide P, et al. Harmonising research outcomes for polycystic ovarian syndrome: an international multi-stakeholder core outcome set. Hum Reprod. 2020;35:404–12.
2. Gonzalez F, Considine RV, Abdelhadi OA, Acton AJ. Inflammation triggered by saturated fat ingestion is linked to insulin resistance and hyperandrogenism in PCOS. J Clin Endocrinol Metab. 2020. https://doi.org/10.1210/clinem/dgaa108.
3. Zhu X, Fu Y. Randomized, controlled pilot study of low-dose human chorionic gonadotropin administration beginning from the early follicular phase for women with polycystic ovarian syndrome undergoing ovarian stimulation using the protogesterone protocol. Front Endocrinol. 2019;10:875.
4. Piltom TT. Polycystic ovarian syndrome: endometrial markers. Best Pract Res Clin Obstet Gynaecol. 2016;35:66–79.
5. Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum Reprod. 2003;19:41–7.
6. Wen B, Zhou R, Feng Q, Wang Q, Wang J, Liu S. iQuant: an automated pipeline for quantitative proteomics based upon isotopic tags. Proteomics. 2014;14:2280–5.
7. Brosch M, Yu L, Hubbard T, Choudhary J. Accurate and sensitive peptide identification with Mascot Percolator. J Proteome Res. 2009;8:3176–81.
8. Karp NA, Huber W, Sadowski PG, Charles PD, et al. Addressing accuracy and precision issues in iTRAQ quantitation. Mol Cell Proteom. 2010;9:1885–97.
9. Huber V, von Heydebreck A, Sullmann H, Poustka A, Vingron M. Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics. 2002;18(Suppl 1):596–104.
10. Tukey JW. Exploratory data analysis, vol. 231. Reading: Addison-Wesley; 1977.
11. Breitwieser FP, Muller A, Dayon L, Kocher T, et al. General statistical modeling of data from protein relative expression isotopic jags. J Proteome Res. 2011;10:2758–66.
12. Langmead B, Hansen KD, Leek JT. Cloud-scale RNA sequencing differential expression analysis with Myrna. Genome Biol. 2010;11:R83.
13. Volinia S, Galasso M, Sana ME, Wise TF, et al. Breast cancer signatures for invasiveness and prognosis defined by deep sequencing of microRNA. Proc Natl Acad Sci USA. 2012;109:3024–9.
14. Nguyen H, Wood I, Hill M. A robust permutation test for quantitative SILAC proteomics experiments. J Integr Omics. 2012;2:80–93.
15. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B Methodol. 1995;57:289–300.
16. Lopes IM, Baracat MC, Siomes MJ, Siomes RS, Baracat EC, Soares JJ. Endometrium in women with polycystic ovary syndrome during the window of implantation. Rev Assoc Med Bras. 1992;11(5):702–9.
17. Kasvandik S, Saarma M, Kaart T, Rooda L, Veltput-Meikas A, Ehrenberg A, et al. Uterine fluid proteins for minimally invasive assessment of endometrial receptivity. J Clin Endocrinol Metab. 2020. https://doi.org/10.1210/ jcem/dgz019.
18. Sadigh AR, Mihanfar A, Fattahi A, Latifi Z, Akbarzadeh M, Hajipour H, et al. S100 protein family and embryo implantation. J Cell Biochem. 2019;120:1922–44.
19. Perakakis N, Upadhayay J, Ghaly W, Chen J, Chrysafi P, Anastasilakis AD, et al. Regulation of the activins-follistatin-inhibins axis by energy status: Impact on reproductive function. Metabolism. 2018;85:240–9.
20. Teede HJ, Misso ML, Costello AF, Dokras A, Laven J, Moran L, et al. Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovarian syndrome. Fertil Steril. 2018;110:364–79.
21. Cabrera-Cruz H, Drostica L, Plaza-Parrochia F, Torres-Pinto I, Romero C, Vega M. The insulin-sensitizing mechanism of myo-inositol is associated with AMPK activation and GLUT-4 expression in human endometrial cells exposed to a PCOS environment. Am J Physiol Endocrinol Metab. 2020;318:E237–48.
22. Shafiee MN, Seedhouse C, Mongan N, Chapman C, Deen S, Abu J, et al. Up-regulation of genes involved in the insulin signalling pathway (IGF1, Pten and IGFBP1) in the endometrium may link polycystic ovarian syndrome and endometrial cancer. Mol Cell Endocrinol. 2016;424:94–101.
23. Diamanti-Kandarakis E, Dunaf A. Insulin resistance and the polycystic ovary syndrome revisited: an update on mechanisms and implications. Endocr Rev. 2012;33:981–1030.
24. Gleason CE, Ying Y, Cominski TP, Gupta R, Kaestner KH, Pintar JE, et al. Role of insulin-like growth factor-binding protein 5 (IGFBP5) in perivisceral fat. Cell Metabol. 2010;12:78–92.
25. Rojas-Rodriguez R, Lifshitz LM, Bellve KD, Min SY, Pires J, Leung K, et al. Human adipose tissue expansion in pregnancy is impaired in gestational diabetes mellitus. Diabetologia. 2015;58:2106–14.
26. Xiang A, Chu G, Zhu Y, Ma G, Yang G, Sun S. IGFBPs suppresses olate-induced intramyocellular lipids deposition and enhances insulin signaling. J Cell Physiol. 2019;234:15288–98.
27. Li X, Zheng H, Shi L, Liu Z, He L, Gao J. Stress-seventy subfamily A 4, a member of HSP70, confers yeast cadmium tolerance in the loss of mitochondrial pyruvate carrier 1. Plant Signal Behav. 2019;14:8101.
28. Li X, Zheng H, Shi L, Liu Z, He L, Gao J. Stress-seventy subfamily A 4, a member of HSP70, confers yeast cadmium tolerance in the loss of mitochondrial pyruvate carrier 1. Plant Signal Behav. 2019;14:8101.
29. Munz M, Ziedler R, Gries O. The tumour-associated antigen EpCAM upregulates the fatty acid binding protein E-FABP. Cancer Lett. 2005;225:151–7.
30. OstA WA, Chen Y, Mitikarian K, Mitas M, Salem M, Hannun YA, et al. EpCAM is overexpressed in breast cancer and it is a potential target for breast cancer gene therapy. Cancer Res. 2004;64:8318–24.
31. Schmidt DS, Klingenb P, Schnolzer M, Zoller M. CD44 variant isoforms associate with tetraspanins and EpCAM. Exp Cell Res. 2004;297:329–47.
32. Lei Z, Maeda T, Tamura A, Nakamura T, Yamazaki Y, Shiratori H, et al. Uterine fluid proteins for minimally invasive assessment of endometrial receptivity. J Clin Endocrinol Metab. 2020. https://doi.org/10.1210/ jcem/dgz019.
33. Sadigh AR, Mihanfar A, Fattahi A, Latifi Z, Akbarzadeh M, Hajipour H, et al. S100 protein family and embryo implantation. J Cell Biochem. 2019;120:1922–44.
34. Murphy CR. Uterine receptivity and the plasma membrane transforma-
35. Diaz J, Mendoza P, Silva P, Quest AF, Torres VA. A novel caveolin-1/p85alpha/Rab5/Tiam1/Rac1 signaling axis in tumor cell migration and invasion. Commun Integr Biol. 2014. https://doi.org/10.4161/19420889.2014. 972850.

36. Miyamoto Y, Yamauchi J, Tanoue A, Wu C, Mobley WC. TrkB binds and tyrosine-phosphorylates Tiam1, leading to activation of Rac1 and induction of changes in cellular morphology. Proc Natl Acad Sci USA. 2006;103:10444–9.

37. Ma HL, Gong F, Tang Y, Li X, Li X, Yang X, et al. Inhibition of endometrial Tiam1/Rac1 signals induced by miR-22 up-regulation leads to the failure of embryo implantation during the implantation window in pregnant mice. Biol Reprod. 2015;92:152.

38. Li X, Feng Y, Lin JF, Billig H, Shao R. Endometrial progesterone resistance and PCOS. J Biomed Sci. 2014;21:2.

39. Ma HL, Zhang T, Meng J, Qin ZY, Du F, Wang QY, et al. The role of T-lymphoma invasion and metastasis inducing protein 1 in early pregnancy in mice. Mol Hum Reprod. 2008;14:589–94.

40. Sollwedel A, Bertoja AZ, Zenclussen ML, Gerlof K, Lisewski U, Wafula P, et al. Protection from abortion by heme oxygenase-1 up-regulation is associated with increased levels of Bag-1 and neuropilin-1 at the fetal-maternal interface. J Immunol. 2005;175:4875–85.

41. Franasiak JM, Scott RT. Contribution of immunology to implantation failure of euploid embryos. Fertil Steril. 2017;107:1279–83.

42. Meuleman T, van Beelen E, Kaaja RJ, van Lith JM, Claas FH, Bloemenkamp KW. HLA-C antibodies in women with recurrent miscarriage suggests that antibody mediated rejection is one of the mechanisms leading to recurrent miscarriage. J Reprod Immunol. 2016;116:28–34.

43. Kofod L, Lindhard A, Hviid T. Implications of uterine NK cells and regulatory T cells in the endometrium of infertile women. Hum Immunol. 2018;79:693–701.

44. Chauveau C, Remy S, Royer P, Hill M, Tanguy-Royer S, Hubert FX, et al. Heme oxygenase-1 expression inhibits dendritic cell maturation and proinflammatory function but conserves IL-10 expression. Blood. 2005;106:1694–702.

45. Sun L, Shi T, Qiao H, Jiang X, Jiang H, Krisansen GW, et al. Hepatic overexpression of heme oxygenase-1 improves liver allograft survival by expanding T regulatory cells. J Surg Res. 2011;166:e187–94.

46. Ozen M, Zhao H, Lewis DB, Wong RJ, Stevenson DK. Heme oxygenase and the immune system in normal and pathological pregnancies. Front Pharmacol. 2015;6:84.

47. Deutsch EW, Bandeira N, Sharma V, Perez-Riverol Y, Carver JJ, Kundu DJ, et al. The ProteomeXchange consortium in 2020: enabling “big data” approaches in proteomics. Nucleic Acids Res. 2020;48:01145–52.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ready to submit your research? Choose BMC and benefit from:
• fast, convenient online submission
• thorough peer review by experienced researchers in your field
• rapid publication on acceptance
• support for research data, including large and complex data types
• gold Open Access which fosters wider collaboration and increased citations
• maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.
Learn more biomedcentral.com/submissions