The Diameter of the Thick Part of Moduli Space and Simultaneous Whitehead Moves

Kasra Rafi∗ and Jing Tao

Abstract

Let S be a surface of genus g with p punctures with negative Euler characteristic. We study the diameter of the ϵ–thick part of moduli space of S equipped with the Teichmüller or Thurston's Lipschitz metric. We show that the asymptotic behaviors in both metrics are of order $\log \left(\frac{g+p}{\epsilon} \right)$. The same result also holds for the ϵ–thick part of the moduli space of metric graphs of rank n equipped with the Lipschitz metric. The proof involves a sorting algorithm that sorts an arbitrary labeled tree with n labels using simultaneous Whitehead moves, where the number of steps is of order $\log(n)$. As a related combinatorial problem, we also compute, in the appendix of this paper, the asymptotic diameter of the moduli space of pants decompositions on S in the metric of elementary moves.

1 Introduction

Let $\mathcal{M}_{g,p}$ be the moduli space of complete finite-volume hyperbolic surfaces of genus g with p labeled punctures. We equip $\mathcal{M}_{g,p}$ with the Teichmüller metric d_T. Let ϵ_M be the Margulis constant (two curves of length less than ϵ_M on a hyperbolic surface do not intersect) and let $\epsilon \leq \epsilon_M$. Let $\mathcal{M}_{g,p}^\epsilon$ be the ϵ–thick part of $\mathcal{M}_{g,p}$, that is, the space of surfaces where the length of every essential closed curve is at least ϵ. By a theorem of Mumford, $\mathcal{M}_{g,p}^\epsilon$ is compact. We are interested in a better understanding of the “shape” of $\mathcal{M}_{g,p}^\epsilon$. As a first step, we study the asymptotic behavior of the Teichmüller diameter of $\mathcal{M}_{g,p}^\epsilon$ as g and p go to infinity. In this paper, we prove:

Theorem A. There exists K such that, for every g and p with $2g - 2 + p > 0$ and every $\epsilon \leq \epsilon_M$,\n
$$\frac{1}{K} \log \left(\frac{g+p}{\epsilon} \right) \leq \text{diam}_T \left(\mathcal{M}_{g,p}^\epsilon \right) \leq K \log \left(\frac{g+p}{\epsilon} \right).$$

We will adopt a shorthand notation and rewrite Equation 1 as $\text{diam}_T \left(\mathcal{M}_{g,p}^\epsilon \right) \approx \log \left(\frac{g+p}{\epsilon} \right)$.

There are several variations of this theorem. First, there are two natural possible metrics on $\mathcal{M}_{g,p}^\epsilon$. For any two points $X, Y \in \mathcal{M}_{g,p}^\epsilon$, we can consider the Teichmüller distance between X and Y or the induced path metric distance in $\mathcal{M}_{g,p}$ between them. Also, the moduli space has an alternative definition where the punctures are not marked. This is equivalent to considering the quotient space $\mathcal{M}_{g,p}^\epsilon / \text{Sym}_p$ where the symmetric group Sym_p acts on $\mathcal{M}_{g,p}$ by permuting the labeling of the punctures. Our theorem holds for both spaces and in both senses of diameter.

As we shall see, an essential component of the proof of our theorem is that the Teichmüller metric is an L^∞ metric. Hence, another variation is to consider another L^∞ metric on $\mathcal{M}_{g,p}$: the asymmetric

∗ Partially supported by NSF Research Grant, DMS-1007811.
Lipschitz metric d_L as defined by Thurston [Thu86]. There is a simple inequality relating the two metrics (see § 2). For any $X, Y \in \mathcal{M}_{g,p}$,

$$\frac{1}{2}d_L(X, Y) \leq d_T(X, Y).$$

For the proof of Theorem A, we will in fact use the Lipschitz metric to obtain the lower bound and the Teichmüller metric to obtain the upper bound. In view of the above equation, this will simultaneously establish the same asymptotics for the diameter of $\mathcal{M}_\epsilon^{g,p}$ in both metrics. Henceforth, when we say distance or $d(\cdot, \cdot)$, diameter or $\text{diam}(\cdot)$, without reference to a metric, we will mean either one of the two metrics.

Another metric to consider would be the Weil-Petersson metric on Teichmüller space. Heuristically, Weil-Petersson metric is an L^2–metric: the norm of a vector is an L^2–average of the amount of deformation throughout the surface. For this reason, two points that are distance one apart in the Teichmüller metric have Weil-Petersson distance at most $\sqrt{\text{Area}}$. Hence, our theorem provides an upper bound of order $\sqrt{g + p} \log(g + p)$ for the Weil-Petersson diameter of the Teichmüller space. This implies Theorem 1.2 in [CP10] where the growth rate of the Weil-Petersson diameter of Teichmüller space is studied. In this case a matching lower bound seems to be more difficult and remains open.

Width and height

As a general philosophy, one can study the geometry of a surface by decomposing it into pants along the shortest possible curves. If the curves are sufficiently short, then the geometry of the surface is essentially determined by the combinatorics of the pants decomposition, which is encoded by the dual graph of the pants decomposition. When a surface does not admit a short pants decomposition, then the lengths of the curves in the shortest pants decomposition and the twisting information along these curves are also relevant information. For these reasons, the proof of Theorem A naturally breaks down into two parts. One part considers the subset $\mathcal{B}_{g,p} \subset \mathcal{M}_{g,p}$ consisting of surfaces that can be decomposed into pants by curves of length ϵ_M. We will refer to the diameter of $\mathcal{B}_{g,p}$ as the width of $\mathcal{M}_{g,p}$. The other part considers the Hausdorff distance between $\mathcal{M}_\epsilon^{g,p}$ and $\mathcal{B}_{g,p}$. We represent this quantity by $\text{HD}(\mathcal{M}_\epsilon^{g,p}, \mathcal{B}_{g,p})$ and refer to it as the height of $\mathcal{M}_{g,p}$. We prove:

Theorem B (Width of $\mathcal{M}_\epsilon^{g,p}$).

$$\text{diam}(\mathcal{B}_{g,p}) \approx \log(g + p)$$

Theorem C (Height of $\mathcal{M}_\epsilon^{g,p}$).

$$\text{HD}(\mathcal{M}_\epsilon^{g,p}, \mathcal{B}_{g,p}) \approx \log\left(\frac{g + p}{\epsilon}\right).$$

This pair of theorems can be viewed as a refinement of Theorem A. Using the triangle inequality, the upper bounds for the width and height of $\mathcal{M}_\epsilon^{g,p}$ provide the upper bound for the diameter of $\mathcal{M}_\epsilon^{g,p}$. The lower bound for the height is a lower bound for the diameter. However, since our main interest is a better understanding of the shape of $\mathcal{M}_\epsilon^{g,p}$, we include the lower bound arguments for both the width and the height in this paper.

The diameter of space of graphs

The argument for the width involves solving a combinatorial problem of independent interest. By considering the dual graph of the pants decomposition, we can associate to every element $X \in \mathcal{B}_{g,p}$ a graph of rank g with p marked valence-1 vertices and $(2g - 2 + p)$ valence-3 vertices (see § 2). Let Graph(g, p) be
the space of all such graphs. We consider the metric of simultaneous Whitehead moves d_S on $\text{Graph}(g, p)$: a simultaneous Whitehead move on a graph is a composition of an arbitrary number of commuting Whitehead moves. This is a suitable metric for our purposes since we are considering L^{∞} metrics on moduli space. We show that the spaces $\text{Graph}(g, p)$ (equipped with the d_S metric) and $B_{g, p}$ are quasi-isometric and hence their diameters are of the same order.

Theorem D (Diameter of $\text{Graph}(g, p)$).

$$\text{diam}_S(\text{Graph}(g, p)/\text{Sym}_p) \approx \text{diam}_S(\text{Graph}(g, p)) \approx \log(g + p).$$

The main argument for the upper bound of Theorem D boils down to an efficient sorting algorithm for labeled trees using simultaneous Whitehead moves (§ 3). Let $\text{Tree}(n)$ be the space of rooted binary trees with labels $0, \ldots, n$, equipped with the metric simultaneous Whitehead moves. There is a distance-increasing embedding of $\text{Graph}(g, p)$ into $\text{Tree}(n)$, where $n = 2g - 2 + p$ (see § 2). We introduce a sorting algorithm using simultaneous Whitehead moves and show that the algorithm can sort any tree in $\text{Tree}(n)$ in $\log(n)$ number of steps. This bound also gives the desired upper bound for the diameter of $\text{Graph}(g, p)$.

The lower bound for Theorem D can be obtained by a simple example (see § 5). In fact, more can be said for $B_{g, p}$ and $\text{Graph}(g)$. By the work of [Pin73], a generic point in $\text{Graph}(g)$ is an expander graph (see Definition 5.5). We show that the surfaces associated to expander graphs have the following property: By a dividing curve on a surface of genus g we will mean a separating curve which divides the surface into two pieces, both of genus of order g.

Theorem E. For any surface in B_g associated to an expander graph, the length of any dividing curve is at least of order g.

If we fix a surface $X \in B_g$ with a dividing curve of length of order 1, then the above theorem implies the distance between X and any surface in B_g associated to an expander graph is at least of order $\log(g)$. This gives a lower bound of order $\log(g)$ for the diameter of B_g. However, noting that B_g is quasi-isometric to $\text{Graph}(g)$, this also shows that expanders are not equidistributed in $\text{Graph}(g)$, nor are they coarsely dense. This answers a question of Mirzakhani in the negative:

Corollary F. Expander graphs are not coarsely equidistributed in the space $\text{Graph}(g)$ equipped with the metric d_S. In fact, $\text{Graph}(g)$ contains a ball of radius r, where r is on the order of the diameter of $\text{Graph}(g)$, that contains no expander graph.

Theorem E also follows from Buser’s work in [Bus78].

Related combinatorial problems

Similar combinatorial problems have been considered previously in the literature. In [BCG*07], an algorithm was established, using $\log(n)$ simultaneous flips, to transform any triangulation of an n–gon into any other. This can be rephrased in terms of a simultaneous-type metric on the space of unlabeled planar trees. However, the result in [BCG*07] and Theorem D do not imply each other. The trees in [BCG*07] do not have labels and they require their elementary moves to preserve a given embedding of a tree in the plane.

Another related problem of interest is computing the diameter of the space of pants decompositions on a surface $S_{g, p}$ or $S_{g, p}/\text{Sym}_p$ up to homeomorphisms, equipped with the metric of elementary moves. This is equivalent to computing the diameter of $\text{Graph}(g, p)$ or $\text{Graph}(g, p)/\text{Sym}_p$ in the metric of Whitehead moves: two graphs have distance one if they differ by a single Whitehead move. One
can compute these diameters using the existing works of [Bol82] and [STT88], though neither the details nor the statements are contained in any existing literature as far as the authors know. (In the case of $\text{Graph}(g)$, an alternative proof is presented in [Cav10].) We have included in this paper an appendix estimating the diameters of $\text{Graph}(g, p)$ and $\text{Graph}(g, p)/\text{Sym}_p$ in the metric of Whitehead moves (see Theorem A.1 and Theorem A.2). What is worth noting is that in this metric the diameters of $\text{Graph}(g, p)$ and $\text{Graph}(g, p)/\text{Sym}_p$ are not the same.

The theorem in [STT88] is very general and gives a uniform upper bound for the growth rate of the number of elements in a ball of radius r in any space of shapes when shapes are allowed to evolve through locally supported elementary moves. Whitehead moves certainly fit that description. Another example of interest is the mapping class group equipped with the word metric coming from the Lickorish generators [Lic64]. It is an immediate consequence of their theorem that the growth rate of the mapping class group with appropriate set of generators is independent of the complexity of the surface.

Outer space

Our results can be extended to the setting of metric graphs which is of interest to the study of outer automorphism of free groups. Let R_n be a wedge of n circles. The **moduli space of metric graphs** \mathcal{X}_n is the set of non-degenerate metrics graphs of volume n with homotopy type R_n (see § 4). (This is the same as the quotient of Outer space by the outer automorphism group of F_n [CV86].) A well-studied metric on \mathcal{X}_n is the Lipschitz metric d_L, defined in the same way as for surfaces. The ϵ–thick part \mathcal{X}_n^ϵ of \mathcal{X}_n consists of graphs with a lower bound for the length of the shortest loop. We prove:

Theorem G (Diameter of \mathcal{X}_n^ϵ),

$$\text{diam}_L(\mathcal{X}_n^\epsilon) \approx \log \left(\frac{n}{\epsilon} \right).$$

Outline of the paper

The organization of the paper is as follows:

- § 2 This section contains the background material for the paper. In this section, we will also introduce the metric of simultaneous Whitehead moves on graphs and explain how to associate to any surface in $\mathcal{B}_{g, p}$ a rooted binary tree with labels.
- § 3 This section contains the main algorithm which provides the upper bound for the diameter of $\text{Tree}(n)$ in the metric of simultaneous Whitehead moves. As applications, we obtain the upper bound of Theorem D and Theorem B.
- § 4 This section applies the work on trees to obtain the upper bound of Theorem G.
- § 5 This section is devoted to constructing some interesting examples of surfaces, which includes an example for Theorem E. These examples also provide the lower bounds for Theorem B, Theorem C, and Theorem D. We also complete the proof of Theorem G in this section.
- § 6 The final section of the paper contains the argument for the upper bound of Theorem C. We also collect our results together to obtain Theorem A.
- § A In this section, we compute the asymptotic diameter of $\text{Graph}(g, p)$ and $\text{Graph}(g, p)/\text{Sym}_p$ in the metric of Whitehead moves. The results and proofs of this section are independent of the rest of the paper.
Acknowledgments

We thank Curt McMullen for pointing out to us the example of the double hairy torus. We also thank Saul Schleimer for a helpful conversation which contributed to a simplification of the arguments contained in the last section. Finally, we thank the referee for helpful comments.

2 Preliminaries

Moduli spaces

Let $S_{g,p}$ be a connected, oriented surface of genus g with p labeled punctures. We require the Euler characteristic $\chi(S_{g,p}) = 2 - 2g - p$ to be negative. Let $\mathcal{M}_{g,p}$ be the moduli space of complete, finite-volume, hyperbolic surfaces of homeomorphism type $S_{g,p}$, up to label-preserving isometries. The quotient $\mathcal{M}_{g,p}/\text{Sym}_p$ of $\mathcal{M}_{g,p}$ by the symmetric group Sym_p on p letters is the moduli space of unlabeled punctured surfaces. One can also think of $(\mathcal{M}_{g,p}, \mathcal{M}_{g,p}/\text{Sym}_p)$ as the quotient of the Teichmüller space of $S_{g,p}$ by the (pure) mapping class group of $S_{g,p}$. We refer to [GL00], [Hub06], and [FM10] for more details.

By a curve on $S_{g,p}$, we will always mean a free homotopy class of a simple closed curve which is not homotopic to a point or to a puncture. For a hyperbolic surface X, any curve has a unique geodesic representative which is the shortest in its homotopy class. Given a curve α on X, let $\ell_X(\alpha)$ be the length of the geodesic representative of α on X. A curve α is called a systole on X if $\ell_X(\alpha)$ is minimal among all curves on X. We will let $\ell(X)$ be the length of a systole on X. Given $\epsilon > 0$, the ϵ–thick part of $\mathcal{M}_{g,p}$ is

$$\mathcal{M}_\epsilon^{\epsilon} = \{ X \in \mathcal{M}_{g,p} : \ell(X) \geq \epsilon \}.$$

To make $\mathcal{M}_\epsilon^{\epsilon}$ non-empty and connected, we consider only $\epsilon \leq \epsilon_M$, where ϵ_M is a fixed constant such that for any $X \in \mathcal{M}_{g,p}$, if two distinct curves on X have lengths less than ϵ_M then they are disjoint. The constant ϵ_M is called the Margulis constant and is independent of g and p.

Two L^∞ metrics

We consider two L^∞ metrics on $\mathcal{M}_{g,p}$. Let $X, Y \in \mathcal{M}_{g,p}$,

- **Teichmüller metric:**

 $$d_T(X, Y) = \frac{1}{2} \inf_f \{ \log K(f) : f : X \to Y \text{ is } K(f)\text{-quasi-conformal} \}.$$

- **Lipschitz metric:**

 $$d_L(X, Y) = \inf_f \{ \log L(f) : f : X \to Y \text{ is } L(f)\text{-Lipschitz} \}.$$

The Lipschitz metric was introduced by Thurston in [Thu86]. Unlike the Teichmüller metric, the Lipschitz metric is not symmetric and one needs to be careful when choosing the order of the two points when computing the distance. Both metrics induce the same topology on $\mathcal{M}_{g,p}$. We have the following inequality:

$$\frac{1}{2} d_L(X, Y) \leq d_T(X, Y).$$ (2)

Equation 2 follows from two facts. The first fact, due to Wolpert, asserts that under any K–quasiconformal map, the hyperbolic length of any curve changes by at most a factor of K [Wol79, Lemma 3.1]. The second fact is due to Thurston [Thu86]:
Theorem 2.1 (Thurston). For any \(X, Y \in \mathcal{M}_{g,p}\),

\[
d_{L}(X, Y) = \sup_{f} \inf_{\alpha} \log \frac{\ell_{Y}(f(\alpha))}{\ell_{X}(\alpha)},
\]

where the sup is taken over all curves on \(X\) and the inf is taken over all Lipschitz maps from \(X\) to \(Y\).

To compute distances in the Teichmüller metric, Kerckhoff has a similar formula using extremal lengths of curves \([Ker80]\). For any \(X \in \mathcal{M}_{g,p}\), the extremal length of a curve \(\alpha\) on \(X\) is defined to be

\[
\text{Ext}_{X}(\alpha) := \sup_{\rho} \frac{\ell_{\rho}(\alpha)^{2}}{\text{Area}(\rho)}.
\]

Here, \(\rho\) is any metric in the conformal class of \(X\), \(\ell_{\rho}(\alpha)\) is the \(\rho\)-length of the shortest curve in the homotopy class of \(\alpha\), and \(\text{Area}(\rho)\) is the area of the surface \(X\) equipped with the metric \(\rho\).

Theorem 2.2 (Kerckhoff). For any \(X, Y \in \mathcal{M}_{g}\),

\[
d_{T}(X, Y) = \frac{1}{2} \sup_{f} \inf_{\alpha} \log \frac{\text{Ext}_{Y}(f(\alpha))}{\text{Ext}_{X}(\alpha)},
\]

where the sup is taken over all curves on \(X\) and the inf is taken over quasi-conformal maps from \(X\) to \(Y\).

Notations

Throughout this paper, we will use the following set of notations. Given two quantities \(a\) and \(b\), we will write \(a = O(b)\) to mean \(a \leq K b\), for some uniform constant \(K\). Similarly, \(a = \Omega(b)\) if \(a \geq K b\). We will say \(a\) is on the order of \(b\) and write \(a \asymp b\) if \(a = O(b)\) and \(a = \Omega(b)\). To control notations in a string of inequalities, it is sometimes convenient to replace \(a = O(b)\) by \(a \prec b\), and \(a = \Omega(b)\) by \(a \succ b\).

Pants decomposition and Bers' constant

Two isotopy classes of curves on \(S_{g,p}\) will be called disjoint if they have disjoint representatives. A multicurve on \(S_{g,p}\) is a (non-empty) collection of distinct curves on \(S_{g,p}\) which are pairwise disjoint. A pants decomposition \(P\) of \(S_{g,p}\) is a multicurve such that each component of \(S_{g,p} \setminus P\) is a 3-holed sphere, also called a pair of pants. The number of curves in \(P\) is equal to the complexity \(\xi(S_{g,p}) = 3g - 3 + p\) and the number of pants in a decomposition is equal to \(|\chi(S_{g,p})| = 2g - 2 + p\).

Let \(B(X)\) be the minimal number such that \(X\) admits a pants decomposition \(P\) with \(\ell_{X}(\alpha) \leq B(X)\) for all \(\alpha \in P\). Let

\[
B_{g,p} = \sup_{X \in \mathcal{M}_{g,p}} B(X)
\]

be the Bers' constant for \(S_{g,p}\). It is originally proved by Bers that \(B_{g,p}\) is finite for all \(g\) and \(p\). For closed surfaces, Buser gave an explicit upper and lower bounds for \(B_{g}\) in \([Bus92, \S 5.2]\):

Theorem 2.3 (Buser).

\[
\sqrt{6g - 2} \leq B_{g} \leq 21(g - 1)
\]
One can extend the proof of Theorem 2.3 to obtain upper and lower bound for the Bers’ constant in the punctured case as well: \[\Omega(\sqrt{g+p}) = B_{g,p} = O(g + p) \]. The lower bound for \(B_{g,p} \) is obtained by Buser’s hairy torus construction. His construction does not lie in the thick part of moduli space. We give another construction in the thick part that gives the same lower bound (see Lemma 5.9). (In [PB10], Parlier-Balacheff improved the upper bound of \(B_{0,p} \) to match the lower bound, but we will not need that here.)

Width and height of \(\mathcal{M}^c_{g,p} \)

Let \(\mathcal{B} \subset \mathcal{M}^c_{g,p} \) be the set of surfaces \(X \in \mathcal{B} \) such that \(X \) admits a pants decomposition where the length of every curve is exactly \(\epsilon_M \). By our choice of \(\epsilon_M \), intersecting curves cannot have lengths \(\epsilon_M \), therefore such a pants decomposition on \(X \) is unique.

Let \(\text{diam}_L(\mathcal{B}) \) be the maximal Lipschitz distance between any two points in \(\mathcal{B} \). We will call this quantity the Lipschitz width of \(\mathcal{M}^c_{g,p} \). Let \(\text{HD}_L(\mathcal{M}^c_{g,p}, \mathcal{B}) \) be the Lipschitz Hausdorff distance between \(\mathcal{M}^c_{g,p} \) and \(\mathcal{B} \), defined to be

\[
\text{HD}_L(\mathcal{M}^c_{g,p}, \mathcal{B}) = \sup_{Y \in \mathcal{M}^c_{g,p}} \inf_{X \in \mathcal{B}} \max\{d_L(X,Y), d_L(Y,X)\}.
\]

This quantity will be called the Lipschitz height of \(\mathcal{M}^c_{g,p} \). The Teichmüller width and height of \(\mathcal{M}^c_{g,p} \) are defined similarly.

Dual graphs to pants decompositions

To compare geometries of various surfaces in \(\mathcal{B} \), we can look at the dual graph of the pants decompositions. Given \(X \in \mathcal{B} \), let \(P \) be the associated pants decomposition on \(X \). The dual graph \(\Gamma_p \) of \(P \) has a vertex for each pair of pants in \(X \setminus P \) or for each puncture of \(X \). Two (not necessarily distinct) vertices are connected by an edge if either they represent two (not necessarily distinct) pairs of pants glued along some curve in \(P \), or if one vertex is a puncture contained in the pants represented by the other vertex. See Figure 1 for an example in genus 8.

For closed surfaces of genus \(g \), the dual graph to a pants decomposition is always a trivalent graph of rank \(g \). For punctured surfaces, the dual graph is a graph of rank \(g \) with \(p \) marked valence–1 vertices and \(2g - 2 + p \) valence–3 vertices. Let \(\text{Graph}(g, p) \) be the set of all such graphs. Let

\[
\psi : \mathcal{B} \to \text{Graph}(g, p),
\]

be the map defined by the dual graph construction. The map \(\psi \) is surjective. Shearing along each pants curve does not change the dual graph, thus each fiber is a \((3g - 3 + p)\)-dimensional torus, and since each pants curve has length \(\epsilon_M \), each fiber has uniformly bounded diameter.

Whitehead moves on graphs

Given \(\Gamma \in \text{Graph}(g, p) \), we will call an edge \(e \) of \(\Gamma \) interior if both vertices of \(e \) have valence three; otherwise \(e \) is exterior. From any \(\Gamma \), there is a way of deriving a new graph by modifying the locgl gluing structure about an interior edge \(e \), called a Whitehead move on \(e \). A Whitehead move on \(e \) is a process of collapsing \(e \) and reopening in a different direction. We allow two ways to reopen, as illustrated in Figure 2 on the left.
Figure 1: From pants decomposition to trivalent graph; from trivalent graph to labeled tree.

Figure 2: Whitehead on e on left; corresponding elementary move on right.
One may endow Graph\((g, p)\) with the metric \(d_W\) of Whitehead moves: \(d_W(\Gamma_1, \Gamma_2) = 1\) if and only if \(\Gamma_1\) and \(\Gamma_2\) differ by a Whitehead move. Since our graph \(\Gamma\) corresponds to a pants decomposition \(P\) on a surface, there is a natural interpretation of Whitehead moves as **elementary moves** on pants decompositions. Each edge \(e\) in \(\Gamma\) corresponds to two pairs of pants glued along a common curve \(a\). An elementary move on \(a\) changes \(P\) by fixing all curves in \(P \setminus a\), and replacing \(a\) by a transverse curve that intersects it minimally. Since only Whitehead moves associated to interior edges with distinct vertices are non-trivial, we only consider the case where \(a\) lies in a 4-holed sphere. The two different directions of reopening represent the two minimally-intersecting transverse curves up to homeomorphisms of the surface. (See the right hand side of Figure 2.) Therefore, Graph\((g, p)\) equipped with the metric of Whitehead moves is isometric to the space of homeomorphism types of pants decompositions on \(S_{g,p}\) equipped with the metric of elementary moves.

Simultaneous Whitehead moves

Since we are considering \(L^\infty\) metrics on moduli spaces, the metric of Whitehead moves on Graph\((g, p)\) is not the correct model metric for \(\mathcal{R}_{g,p}\). Our goal is to equip Graph\((g, p)\) with an appropriate metric so that its diameter is of the same order as the diameter of \(\mathcal{R}_{g,p}\). Making one Whitehead move corresponds to modifying a surface \(X \in \mathcal{R}_{g,p}\) by an elementary move in a four-holed sphere. But modifying \(X\) in several disjoint four-holed spheres at the same time contributes the same amount of distortion after taking the sup. This observation leads to the definition of **simultaneous Whitehead moves**.

For any graph \(\Gamma \in \text{Graph}(g, p)\), we will say two edges of \(\Gamma\) are **disjoint** if they do not share any vertices. Note that Whitehead moves on disjoint edges commute. Disjoint edges in \(\Gamma\) correspond to four-holed spheres which have disjoint interiors. Hence the corresponding elementary moves also commute with each other. A **simultaneous Whitehead move** on \(\Gamma\) is a composition of Whitehead moves on an arbitrary number of pairwise disjoint edges in \(\Gamma\).

We equip Graph\((g, p)\) with the metric \(d_S\) of simultaneous Whitehead moves: \(d_S(\Gamma_1, \Gamma_2) = 1\) if and only if \(\Gamma_1\) and \(\Gamma_2\) differ by a simultaneous Whitehead move. The following lemma allows us to bound distances in \(\mathcal{R}_{g,p}\), by distances in Graph\((g, p)\). Recall the dual graph map \(\psi: \mathcal{R}_{g,p} \rightarrow \text{Graph}(g, p)\).

Lemma 2.4. There exists a uniform constant \(K\) such that for any \(g\) and \(p\), if \(X, Y \in \mathcal{R}_{g,p}\), then

\[
d_T(X, Y) \leq K d_S(\psi(X), \psi(Y)).
\]

Proof. Let \(S\) be a hyperbolic surface of genus 0 with 4 geodesic boundary components \(\gamma_1, \ldots, \gamma_4\) such that each \(\gamma_i\) has length \(\epsilon_M\) and, furthermore, \(S\) contains a non-peripheral curve \(a\) of length \(\epsilon_M\). The moduli space of all such surfaces is compact, since there are only finitely many ways \(a\) can separate the curves \(\gamma_i\) into two groups, and the amount of shearing along \(a\) is bounded by its length. Thus, there exists a uniform constant \(K_0\), such that for any other such surface \(S'\) with boundaries \(\gamma_i'\) and an essential curve \(a'\) of length \(\epsilon_M\), there is a \(K_0\)–quasi-conformal map \(S \rightarrow S'\) taking each \(\gamma_i\) to \(\gamma_i'\) and \(a\) to \(a'\).

Similarly, we can consider the space of hyperbolic surfaces homeomorphic to a 4–holed sphere, with \(a\) punctures and \(b\) geodesic boundaries of length \(\epsilon_M\) so that \(a + b = 4\). Let \(K_a\) be a uniform constant depending only on \(a\) such that there is \(K_a\)–quasi-conformal map between any two such surfaces fixing the boundaries and the punctures. Let \(K'\) be the maximum of the \(K_a\)'s.

Now suppose \(X, Y \in \mathcal{R}_{g,p}\) have \(d_S(\psi(X), \psi(Y)) = 1\). This means that there is a set of disjoint four-holed spheres in \(X\) on which we need to make a modification as above. We can construct a \(K'\)–quasi-conformal map from \(X\) to some surface \(Y'\), locally using maps as above, where \(Y\) and \(Y'\) have the same dual graph. That is, \(d_T(X, Y) \leq \frac{1}{2} \log K'\) and \(\psi(Y) = \psi(Y')\). But, as mentioned before, the preimage of a
point under ψ is a compact set with uniform diameter. Hence, $d_T(Y, Y') = O(1)$. By the triangle inequality, we have $d_T(X, Y) \leq K$, for some uniform K.

In the general situation where $d_S(\psi(X), \psi(Y)) = n$. Let $X = X_0, X_1, \ldots, X_n = Y$ be a sequence of elements in $\mathcal{B}_{g,p}$ with $d_S(\psi(X_i-1), \psi(X_i)) = 1$ for all $i = 1, \ldots, n$. From above, $d_T(X_{i-1}, X_i) \leq K$. Thus, by the triangle inequality, we obtain the desired statement of the lemma:

$$d_T(X, Y) \leq \sum_{i=1}^{n} d_T(X_{i-1}, X_i) \leq K n = K d_S(\psi(X), \psi(Y)).$$

We conclude:

Corollary 2.5.

$$\text{diam}_T(\mathcal{B}_{g,p}/\text{Sym}_p) \leq \text{diam}_T(\mathcal{B}_{g,p}) < \text{diam}_S(\text{Graph}(g,p)).$$

From graphs to labeled trees

By Corollary 2.5, the problem of bounding the width of $\mathcal{M}^\epsilon_{g,p}$ from above can be replaced by the problem of bounding $\text{diam}_S(\text{Graph}(g,p))$ from above. For the latter problem, it will be more convenient to cut each graph into a binary tree and label the ends in pairs to remember the gluing. We explain how to do this after some definitions.

By a **binary tree** (or a tree for short) we mean a connected graph with no loops, so that the valence at each vertex is either one or three. A **rooted** tree has a distinguished exterior edge e_*. A **labeled** tree is a rooted tree where all ends (exterior edges except for e_*) are labeled with numbers $\{0, 1, 2, \ldots, n\}$, where n will be called the complexity of the tree. Note that a tree of complexity n has $n + 2$ exterior edges and $n - 1$ interior edges. Two labeled trees are said to be equal if there is a homeomorphism between them taking root to root preserving the labels. After this identification, there are finitely many labeled trees for each fixed complexity n. Let $\text{Tree}(n)$ be the space of labeled trees of complexity n. Whitehead moves or simultaneous Whitehead moves for trees are defined as before. We retain the notations d_W and d_S for the metrics of Whitehead moves and simultaneous Whitehead moves on $\text{Tree}(n)$, respectively.

We now construct a map $\text{Graph}(g,p) \to \text{Tree}(n)$, $n = 2g - 2 + p$. Let $\Gamma \in \text{Graph}(g,p)$. The graph Γ has p exterior edges which are labeled (inherit the labeling from the marked vertices). We may identify the labeling as $0, \ldots, p - 1$. Now arbitrarily pick a spanning tree in Γ. The complement of the spanning tree in Γ contains exactly g edges. We cut each such edge in half, resulting in a tree T with $2g$ unlabeled exterior edges. We label these edges arbitrarily from $p, \ldots, 2g + p - 1$ with the only restriction that $p + 2k$ is glued to $p + 2k + 1$ in Γ, for $k = 0, \ldots, g - 1$. Finally, erase the edge with the highest label, $2g + p - 1$, and make that the root of T. The resulting tree T is an element in $\text{Tree}(n)$ associated to Γ. See Figure 1 for an example.

If the two trees associated to two graphs differ by a simultaneous Whitehead move, then the two graphs also differ by one simultaneous Whitehead move, hence

$$\text{diam}_S(\text{Graph}(g,p)/\text{Sym}_p) \leq \text{diam}_S(\text{Graph}(g,p)) \leq \text{diam}_S(\text{Tree}(n)).$$

By Corollary 2.5, we have

$$\text{diam}_T(\mathcal{B}_{g,p}/\text{Sym}_p) \leq \text{diam}_T(\mathcal{B}_{g,p}) < \text{diam}_S(\text{Tree}(n)).$$
3 Trees and upper bound on width

In this section, we describe two algorithms for transforming a binary tree into a desired shape efficiently using simultaneous Whitehead moves. We prove

Theorem 3.1. For any \(n \),

\[
\text{diam}_S(\text{Tree}(n)) = O(\log(n)).
\]

In view of Equation 3 and Equation 4, we obtain the upper bound of Theorem D and the upper bound for the width of \(\mathcal{M}_{g,p}' \). We remark that the lower bound for Theorem D is easy, but we will postpone a proof to § 5 where we discuss the lower bound for the Lipschitz width of \(\mathcal{M}_{g,p}'/\text{Sym}_p \).

This section is organized as follows. In § 3.1, we will introduce an algorithm which makes any tree more compact, by reducing its height to be of order \(\log(n) \) in \(O(\log(n)) \) simultaneous Whitehead moves. Then in § 3.2, we will introduce a distinguished element \(T_n \in \text{Tree}(n) \), called the fully-sorted tree. In § 3.3, we will describe how to sort the labels of a compact tree to be fully-sorted in \(O(\log(n)) \) number of simultaneous Whitehead moves.

3.1 Reducing the height

Given \(T \in \text{Tree}(n) \), the root \(e_r \) defines a partial order “<” on the set of edges of \(T \) where \(e_r \) is the minimal element. Given edges \(e_1 \) and \(e_2 \), we say \(e_2 \) is a descendant of \(e_1 \), and write \(e_1 < e_2 \), if the path from \(e_2 \) to \(e_r \) contains \(e_1 \). (We note that, in our figures, “descendants” are drawn as “ascendants”.) If \(e_1 \) and \(e_2 \) are adjacent and \(e_1 < e_2 \), then \(e_1 \) and \(e_2 \) are in parent-child relationship. The maximal elements of this relation are called the ends of \(T \). Given any edge \(e \) in \(T \), let \(T_e \) be the subtree of \(T \) consisting of \(e \) and its descendants. We will say \(T_e \) is rooted at \(e \) or \(e \) is the root of \(T_e \). The size of \(T_e \) will be the number of edges of \(T_e \). The edge \(e \) defines a partial ordering on the edges of \(T_e \) which is the one inherited from \(T \). The maximal elements of \(T_e \) will be called the ends of \(T_e \), and the labels of \(T_e \) will be the labels of the ends of \(T_e \). We will say the root \(e \) of \(T_e \) has height 1, its children have height 2, and inductively define the height of all edges of \(T_e \). The maximal possible height will be called the height of \(T_e \). The height of \(T \) will be the height of \(T_e = T \). Given a subtree \(T_e \) of height \(h \), we will say \(T_e \) is full if \(T_e \) has \(2^h \) ends.

For each interior edge \(e \), we will label its children \(e_l \) (the left) and \(e_r \) (the right) and we call the trees \(T_{e_l} \) and \(T_{e_r} \) the children subtrees of \(T_e \). Similarly, we label the left and right edges of \(e_l \) and \(e_r \) by \(e_{ll}, e_{lr}, e_{rl}, \) and \(e_{rr} \) and refer to the associated subtrees as the grandchildren subtrees.

Proposition 3.2. Any tree \(T \) can be transformed to have a height \(6 \log_2(n) \) after \(O(\log(n)) \) simultaneous moves.

Proof. To prove the proposition, it suffices to show that, if the height of \(T \) is larger than \(6 \log_2(n) \), one can apply one simultaneous move to reduce the height by a definite multiplicative factor.

Let \(e \) be any edge. We define a special Whitehead move, called the balance move at \(e \). Compare the sizes of the subtrees \(T_{e_{ll}}, T_{e_{lr}}, T_{e_{rl}}, \) and \(T_{e_{rr}} \). If there is an absolute maximum among them, (say \(T_{e_{ll}} \)), we apply one Whitehead move to the edge \(e_{ll} \) which reduces the height of \(e_{ll} \), does not change the height of \(e_{lr} \), and increases the heights of both \(e_{rl} \) and \(e_{rr} \) (see Figure 3). If there is no absolute maximum, we apply no move.

Now consider the following simultaneous Whitehead move consisting of a balance move for each edge of odd height. Since the support of these balance moves are disjoint, their composition defines a simultaneous Whitehead move. We show that after one such simultaneous Whitehead move, any edge whose height was larger than \(6 \log_2(n) \) will have its height reduced by at least a multiplicative factor \(\frac{5}{6} \).
That is, if the height of T is larger than $6 \log_2(n)$ then it is reduced by a factor $\frac{5}{6}$. The algorithm stops when the height of T is less than $6 \log_2(n)$.

Let e be any edge of height $h_e \geq 6 \log(n)$. Consider the path P of length h_e in T connecting e to the root e_*. The height of e is affected by balance moves associated to edges along this path that have odd height. Some will decrease the height of e, some will decrease it and some will leave it unchanged. Moving down from e to e_*, let e_1, e_2, \ldots, e_s be the set of edges in P whose heights are odd and so that, for $j = 1, \ldots, s$, the balance move associated to e_j does not decrease the height of e. We bound the number of such edges, that is, we show that most edges will decrease the height of e.

By assumption, $T_e \subseteq T_{e_1}$ has at least 1 edge. For the edge e_1 the grandchild tree containing e is not of maximal size. Hence, T_{e_1} contains at least two subtrees of size T_e plus the edge e_1 and its children. That is,

$$\text{size}(T_{e_1}) \geq 2 \text{size}(T_e) + 3 \geq 5.$$

Similarly, at each e_j, the grandchild tree containing e is not of maximal size. Hence, T_{e_j} contains two grandchildren subtrees of size at least $T_{e_{j-1}}$. That is,

$$\text{size}(T_{e_j}) \geq 2 \text{size}(T_{e_{j-1}}) + 3.$$

By induction, $\text{size}(T_{e_j}) \geq 2^{j+1} + 1$. The total number of edges in T, $2n + 1$, is larger than $\text{size}(T_{e_1})$. Therefore,

$$s \leq \log_2(n).$$

After applying our simultaneous Whitehead move associate to e_j, $j = 1, \ldots, s$ may cause a height increase for e, but a balance move at every other edge along P with odd height results in a height reduction for e. The number of these edges that cause a height decrease is at least $h_e/2 - \log_2(n)$ and the number of edges that may increase the height is at most $\log_2(n)$. Hence, after the simultaneous move, the height of e is no more than

$$h_e - \frac{h_e}{2} + 2\log_2(n) \leq \frac{5}{6} h_e.$$

Since the maximum height of any tree is $n + 1$, the number of simultaneous moves required to reduce the height of T to a height less than $6 \log_2(n)$ is at most $\log_{6/5}(n + 1)$. This concludes the proof.
3.2 Fully-sorted tree

In this section, we inductively construct a tree $T_n \in \text{Tree}(n)$, for each n. Considering T_n as a base point of $\text{Tree}(n)$, an upper bound for the distance between any tree and T_n provides an upper bound for $\text{diam}_S(\text{Tree}(n))$.

For $n = 0$, T_0 is just the root edge e_\ast with one end labeled 0. Now assume that we have already constructed a tree $T_k \in \text{Tree}(k)$ for all $k < n$. Let m be the largest number so that $2^m \leq n$ and let $k = n - 2^m \geq 0$. Take the root edge e_\ast. On the left, we attach $T_{2^m - 1}$ (a full tree of height m) and on the right we attach a copy of T_k. We then change the labels of ends of T_k by adding 2^m to their values. The tree T_n is the tree giving the binary expansion of numbers 0 to n. See Figure 4 for some examples of T_n.

We can also think of T_n as a fully-sorted tree. This is the description of T_n used in Proposition 3.8.

Definition 3.3. Let d be the number of digits needed for the binary expansion of n. Take $T \in \text{Tree}(n)$. Write every label of T as a d–digit number, possibly starting with several zeros. For an edge $e \in T$, let n_e be the number of ends of T_e and d_e be the number of digits in the binary expansion of n_e. By the k–th digit of a label, we always mean the k–th digit from the right. We say an edge $e \in T$ is k–sorted if the digits $(k + 1)$ to d of all labels of T_e are the same and either

(a1) all labels of T_e have the same k–th digit as well or

(a2) all labels of T_e whose k–th digit is 0 appear as ends of T_e, and all labels of T_e whose k–th digit is 1 appear as ends of T_e.

We say T is fully-sorted if every edge e is d_e–sorted. Note that if an edge e is k–sorted, then it is also j–sorted for all $j \geq k$. All descendants of e are also at least k–sorted. On the other hand, if $k < d_e$, then e cannot be k–sorted (there would not be enough free digits to represent n_e different numbers).

Here is the second characterization of the base tree T_n.

Lemma 3.4. A tree $T \in \text{Tree}(n)$ is fully-sorted if and only if $T = T_n$.

Proof. The statement is clear for $n = 0$. Assume T is a fully-sorted tree and $n \geq 1$. The edge e_\ast is d–sorted, since $d_{e_\ast} = d$. In this case, condition (a2) must hold, because the labels of T cannot all start with the same number. That is, all the labels at the ends of $T_{(e_\ast)}$ start with the digit 0 and all the labels at the ends of $T_{(e_\ast)}$, start with the digit 1.
We now cut \(e_e \) out obtaining the two children trees. We modify the labels of the left tree by removing the first digit 0 from all labels. The labels on the right may have several digits in common. We modify the labels by removing all these digits. That is, the number of digits are the minimum needed to represent the labels. Denote the these modified tree simply by \(T_l \) and \(T_r \).

We now check that these two trees are still fully-sorted. Consider the tree \(T_r \) and assume that \(s \) digits have been removed in the modifications of the labels. For \(e \in T_r \), we need to show \(e \) is \(d_e \)-sorted in \(T_r \). Since the number of ends \(n_e \) of \(T_e \) does not change by cutting out the root \(e_e \) from \(T \), the edge \(e \) was \(d_e \)-sorted in \(T \). This means that all digits from \(d_e + 1 \) to \(d \) of the labels of \(T_e \) are the same in \(T \) and either condition 1 or 2 held true for \(e \) in \(T \). Removing \(s \) unnecessary digits from \(T_r \) means, viewing \(T_e \) as a subtree of \(T_r \), the labels must agree on all digits from \(d_e + 1 \) to \(d - s \). Furthermore, if conditions 1 or 2 held true for \(e \) in \(T \) they would still hold for \(e \) in \(T_r \). Therefore, every edge \(e \) of \(T_r \) is \(d_e \)-sorted. The proof for \(T_l \) is the same (\(s = 1 \)).

Note that \(T_l \) has \(2^m \) ends where \(m \) is the largest number with \(n \geq 2^m \). Since \(T_l \) is fully-sorted, by induction \(T_l = T_{2^m - 1} \). Similarly, \(T_r = T_k \), where \(k = n - 2^m \), because \(T_r \) has \(k + 1 \) ends. That is, \(T = T_n \). \(\square \)

3.3 Sorting

We now present the sorting algorithm which will transform any tree \(T \) of height less than \(6 \log_2(n) \) to a fully-sorted tree (which we know has to equal \(T_n \)) in \(O(\log(n)) \) simultaneous Whitehead moves.

Note that the ends of a tree are always 1–sorted. Essentially our algorithm is to sort the tree at different points where possible by applying a *simultaneous sort move* which we describe below.

We say an edge \(e \) is \(k–pre-sorted \), if the following conditions hold

(b1) the children \(e_l \) and \(e_r \) are \(k \)-sorted,

(b2) the digits \((k + 1) \) to \(d \) of all the labels at the ends of \(T_e \) are the same, and

(b3) the edge \(e \) is not \(k \)-sorted.

We say an edge is pre-sorted if it is pre-sorted for some value of \(k \).

To make this well defined for \(k = d \) we assume that all edges are always \((d + 1) \)-sorted (one can think of the digit \((d + 1) \) is always being 0). Given any \(k \)-pre-sorted edge \(e \), one can apply a *sort move* at \(e \) to make \(e \ j \)-sorted, for some \(j \leq k \). There are essentially three types of such moves depicted in Figure 5. The first type requires three Whitehead moves supported at \(e_l \) and \(e_r \). The second and third type require only one Whitehead move supported at one of \(e_l \) or \(e_r \).

We say an edge is *pre-sorted* if it is \(k \)-pre-sorted for some \(k \). We claim the following statement.

Lemma 3.5. Let \(E \) be the collections of pre-sorted edges of \(T \). Then the sort moves associated to the edges in \(E \) have disjoint support.

Proof. The support of the sorting moves at two edges is always disjoint if the edges are not in a parent-child relationship. Hence, it is enough to show that if \(e \) and \(e_l \) are pre-sorted, then the support of the sort move at \(e \) is at \(e_r \). This is equivalent to showing that, in this case, the sort move at \(e \) is of Type 2. The support of the sort move at \(e_l \) is a subset of \(\{e_l, e_r\} \), which are disjoint from \(e_r \). Hence, these two moves do not interfere with one another.

Suppose \(e \) is \(k \)-pre-sorted and \(e_l \) is \(j \)-pre-sorted. Condition (b1) applied to \(e \) implies that, \(e_l \) is \(k \)-sorted. But \(e_l \) is \(j \)-pre-sorted. Thus \(j < k \). By condition (b2), all digits \(j + 1 \leq k < d \) of the labels of \(T_{e_l} \) must be the same. That is, the sort move at \(e \) is of type 2. \(\square \)
Figure 5: The map $\sigma \rightarrow$ represents a sort move at e. There are three types of sort moves.

Definition 3.6. We will say a tree T is ripe if for any edge $e \in T$ is k–sorted, then each child of e is either $(k-1)$–pre-sorted or $(k-1)$–sorted. Note that if T is ripe, then any subtree of T is ripe. We will say an edge $e \in T$ is ripe if T_e is ripe.

Now let $\overline{E} \subset E$ be the set of pre-sorted edges e so that T_e is ripe. A **simultaneous sort moves** is a composition of sort moves associated to edges in \overline{E}. A simultaneous sort move is a composition of 3 simultaneous Whitehead moves.

We denote by $T \xrightarrow{\sigma} T'$ to mean T' is obtained from T from one simultaneous sort move. There is a natural identification of the edges in T with the edges in T' via the map σ. We denote the edge in T' associate to an edge $e \in T$ by $\sigma(e)$.

Lemma 3.7. Suppose $T \xrightarrow{\sigma} T'$ and let $\sigma(e)$ be an edge in T'. If the children of e are ripe in T then $\sigma(e)$ is ripe in T'.

Proof. Let k be the minimal number such that $\sigma(e)$ is k–sorted. We need to show that each child of $\sigma(e)$ is either $(k-1)$–pre-sorted or $(k-1)$–sorted. We argue in five cases depending on how the local picture around e changes under σ. In each case, the lemma essentially follows from the definition.

Case 1: e is pre-sorted and the sorting move is of type 1.

In this case, the children of $\sigma(e)$ are images of the children of e and the grandchildren of e are mapped to the grandchildren of $\sigma(e)$. Since $\sigma(e)$ is k–sorted, the digits $(k+1)$ to d of the ends of $T'_{\sigma(e)}$ match and the k–th digits are as depicted in Figure 5. This means e_r and e_l are k–sorted. But e_r and e_l are ripe, hence the grandchildren of e are $(k-1)$–sorted or $(k-1)$–pre-sorted. Thus, the grandchildren of $\sigma(e)$ are
Proof. We will show that \(e \) in case 3. Assume \(e \) is \((k-1) \)-sorted but \((k-1) \)-pre-sorted (the conditions (b1) and (b2) holds but (b3) may or may not hold). That is, \(\sigma(e) \) is ripe in \(T' \).

Case 2: \(e \) is pre-sorted and the sorting move is of type 2 or 3.

By symmetry, we may assume type 2. In this case, a child of \(\sigma(e) \) is an image of either \(e_l \) or \(e_r \). First consider \(\sigma(e_l) = \sigma(e)_l \). As before, \(e_l \) is \(k \)-sorted and its children are at least \((k-1) \)-presorted. But since the \(k \)-th digit of labels at the ends of \(T_{e_l} \) match, \(e_{ll} \) and \(e_{lr} \) are in fact at least \((k-1) \)-sorted. Hence, \(e_l \) is either \((k-1) \)-pre-sorted or \((k-1) \)-presorted and \(\sigma(e_l) \) is at least \((k-1) \)-sorted. (see Figure 5).

Note also that, \(\sigma(e)_{ll} \) is an image of a grandchild of \(e \) and, as argued in previous case, it is at least \((k-1) \)-sorted. Thus, the children if \(\sigma(e)_l \) are both at least \((k-1) \)-sorted and hence \(\sigma(e)_l \) is either \((k-1) \)-pre-sorted or \((k-1) \)-sorted.

The argument is easier for \(\sigma(e_{rr}) = \sigma(e)_r \) since \(\sigma(e)_r \) is an image of a grandchild of \(e \) and hence it is \((k-1) \)-sorted. Therefore, \(\sigma(e) \) is ripe.

Case 3: \(e \) is not pre-sorted and the children of \(e \) are mapped to the children of \(\sigma(e) \).

In this case, \(e \) is as sorted as \(\sigma(e) \). Hence, \(e_l \) and \(e_r \) are at least \(k \)-sorted and, since they are ripe, the grandchildren are \((k-1) \)-sorted or \((k-1) \)-pre-sorted. That is, the children of \(\sigma(e) \) are either \((k-1) \)-pre-sorted or \((k-1) \)-sorted. This implies that \(\sigma(e) \) is ripe.

Case 4: \(e \) is not pre-sorted but \(\sigma \) contains a sorting move associate to the parent of \(e \) of type 1.

Let \(f \) be the parent of \(e \). The sorting move swaps the grandchildren of \(f \). Since \(\sigma \) contains a sorting move associated to \(f \), all descendants of \(f \) are ripe.

Since \(\sigma(e) \) is \(k \)-sorted, the digits \((k+1) \) to \(d \) of ends of \(T'_{\sigma(e)} \) match. That means the pre-image of the children of \(\sigma(e) \) are \(k \)-sorted. As before, using ripeness, we have that the children of \(\sigma(e) \) are \((k-1) \)-sorted or \((k-1) \)-pre-sorted. Hence \(\sigma(e) \) is ripe.

Case 5: \(e \) is not pre-sorted and \(\sigma \) contains a sorting move associate to the parent of \(e \) of type 2 or 3.

Again, by symmetry, we may assume type 2. Let \(f \) be the parent of \(e \). The case \(e = f_l \) is already covered in case 3. Assume \(e = f_r \). From the figure, we have that all the children of \(\sigma(e) \) have the same \(k \)-th digits. The proof now follows identically to case 1.

Proposition 3.8. Let \(T_n \in \text{Tree}(n) \) be the fully-sorted tree and \(T \in \text{Tree}(n) \) be any tree of height at most \(6 \log_2(n) \). Then

\[
\delta(T, T_n) = O(\log(n)).
\]

Proof. We will show that \(T \) can be transformed to \(T_n \) in \(O(\log(n)) \) simultaneous sort moves.

Let \(h \) be the height of \(T \). First, we show that \(e_\ast \) will be \(d \)-sorted and every edge is ripe after \((h-3) \) steps. At the beginning, every edge is \((d+1) \)-sorted and edges at the ends are \(d \)-sorted. In fact, the edges whose children are ends are also \(d \)-sorted after relabeling left and right edges. Hence, every edge at height \((h-2) \) is either \(d \)-sorted or \(d \)-pre-sorted and ripe. After the first step, every edge at height \((h-2) \) or higher is \(d \)-sorted and every edge at height \(h-3 \) is either \(d \)-sorted or \(d \)-pre-sorted and, by Lemma 3.7, ripe. Note that, if \(T_e \) is not ripe, there are no sorting moves associated edges in the path connecting \(e \) to \(e_\ast \). That is, this path is preserved identically under \(\sigma \) and in particular, the height of \(e \) does not change. Hence, the maximum height of an edge \(e \) where \(T_e \) is not ripe goes down by at least 1 after every simultaneous sorting move.

Continuing in this way, we get that after \((h-3) \) steps, every edge at height \((h-2-(h-3)) = 1 \) or higher is \(d \)-sorted and ripe. That is, \(e_\ast \) is \(d \)-sorted and ripe. Let \(T'_1 \) be the resulting tree. We have shown that \(\delta(T, T'_1) \leq h-3 \).
We now claim that if a tree $T_1 \in \text{Tree}(n)$ has the property that its root e_\ast is $d_e -$sorted and T_1 is ripe, then T_1 will be fully-sorted after at most $d = \lceil \log_2(n) \rceil$ simultaneous sorting moves. We will prove this by induction on n. When $n = 1$ there is nothing to prove. Now suppose $n > 1$. By assumption, T_1 is ripe and e_\ast is $d_e -$sorted. Therefore, any future sorting move will preserve the children subtrees of e_\ast. Let e be a child of e_\ast. The subtree T_1^e is also ripe, since it is a subtree of T_1. After removing all digits which are common to all labels of T_1^e, e is either $d_e -$sorted or $d_e -$pre-sorted. After applying one sorting move $T_1^e \overset{d}{\rightarrow} T_1^{e'}$, the root e becomes $d_e -$sorted and $T_1^{e'}$ remains ripe. By the induction hypothesis, $T_1^{e'}$ can be transformed to T_{d_e} in $d_e \leq d - 1$ simultaneous sorting moves. Therefore, after at most d simultaneous sorting moves, both subtrees attached to e_\ast are fully-sorted. This exactly means that T_1 is fully-sorted after at most d sorting moves.

We conclude:

$$d_S(T, T_n) \leq d_S(T, T^1) + d_S(T^1, T_n) \leq (h - 3) + d = O(\log(n)).$$

This completes the proof of Theorem 3.1. Using Equation 3 and Equation 4, we deduce the following respective corollaries.

Corollary 3.9.

$$\text{diam}_S(\text{Graph}(g, p)/\text{Sym}_p) \leq \text{diam}_S(\text{Graph}(g, p)) = O(\log(g + p)).$$

Corollary 3.10.

$$\text{diam}_T(\mathcal{B}_{g, p}/\text{Sym}_p) \leq \text{diam}_T(\mathcal{B}_g) = O(\log(g + p)).$$

4 Application to the moduli space of metric graphs

We now give an application of the algorithms in § 3 to the moduli space of metric graphs. Our goal is to prove the upper bound of Theorem G of the introduction. The lower bound is worked out in the next section.

4.1 Lipschitz diameter of moduli space of metric graphs

Let R_n be a wedge of n circles. Let \mathcal{X}_n be the space of isometry classes of metric graphs G with the following properties:

- G is homotopy equivalent to R_n.
- The valence of each vertex of G is at least 3.
- The sums of lengths of edges or the volume of G is n.

We call \mathcal{X}_n the *moduli space of metric graphs*. It is also naturally the quotient of Outer Space by the group of outer automorphisms of \mathbb{F}_n (see [CV86]). We equip \mathcal{X}_n with the Lipschitz metric: for any two graphs G and H, define

$$d_L(G, H) = \min \{ \log L(f) \},$$

where f is a $L(f)$–Lipschitz map from G to H. The thick part of \mathcal{X}_n is the subset \mathcal{X}_n^ϵ containing those graphs with no loop shorter than ϵ. We will show:
Theorem 4.1.

\[\text{diam}_{L}(X_{\epsilon}^{n}) = O\left(\log \left(\frac{n}{\epsilon} \right) \right). \]

Let \(G \) and \(H \) be two graphs in \(X_{\epsilon}^{n} \). We will construct a map \(G \rightarrow H \) in four steps. The idea is to interpolate \(G \) and \(H \) by two trivalent graphs, \(G' \) and \(H' \), on which we can apply the algorithms of the previous section. The reader may wish to look at the example in Figure 6.

![Diagram of four steps](image)

Figure 6: An example in \(X_{\epsilon}^{5} \).

We equip \(R_{n} \) with a metric by assigning length 1 to each circle.

Lemma 4.2. The graph \(G \) can be mapped to \(R_{n} \) by a \(O\left(\frac{n}{\epsilon} \right) \)-Lipschitz maps.

Proof. Let \(T \) be the shortest spanning tree of \(G \). Since \(G \in X_{\epsilon}^{n} \), every edge \(e \) in the complement of \(T \) has length at least \(\frac{\epsilon}{k} \) for some universal \(k \). To see this, consider the unique loop consisting of \(e \) and an embedded path in \(T \). Each edge in the loop cannot be longer than \(e \) since \(T \) is the shortest spanning tree. Since there are at most \(O(n) \) edges in the loop and the total length of the loop is at least \(\epsilon \), this gives the lower bound on the length of \(e \). Now map \(T \) to the vertex of \(R_{n} \) and each edge in the complement of \(T \) to a circle of \(R_{n} \) via a linear map. This map is at most \(\frac{kn}{\epsilon} \)-Lipschitz.

Lemma 4.3. \(R_{n} \) can be mapped to a trivalent graph \(G' \) with all edge lengths 1 via a composition of \(\lceil \log_{2} n \rceil \) 2-Lipschitz maps.

Proof. Divide the circles of \(R_{n} \) into two sets with roughly \(n/2 \) circles each. For each circle, mark off two segments of length 1/4 starting from the vertex of \(R_{n} \). For each set, fold all the circles together along the marked segments. Note that folding is a 1-Lipschitz map. The resulting graph has an edge \(e \) of length 1, and each endpoint of \(e \) is attached to roughly \(n/2 \) loops of length 1/2. Now stretch each loop to have length 1 by a 2-Lipschitz map and proceed inductively. At each endpoint of \(e \), divide the circles into two sets of roughly \(n/4 \) circles each. Then fold and stretch. After \(\lceil \log_{2} n \rceil \) number of steps, we obtain a trivalent graph \(G' \) with all edges lengths 1. The composition map \(R_{n} \rightarrow G' \) has Lipschitz constant at most \(2^{\lceil \log_{2} n \rceil} = O(n) \).
Lemma 4.4. There is a trivalent graph H' with all edge lengths 1 that can be mapped to H via a n–Lipschitz map.

Proof. For each constant b, choose a binary tree t_b with b exterior edges. Let v be a vertex of H of valence $b > 3$. Remove a small neighborhood of v in H which does not contain any other vertex of H, and glue the endpoints to the endpoints of t_b in an arbitrary way. Now erase the vertices of valence 2 to obtain a trivalent graph H'. Equip H' with the metric so that each edge has length 1. There is a natural map from H' to H obtained by collapsing the edges of H' that are the image of the interior edges of t_b, and then rescaling the remaining edges of H'. Collapsing is a 1–Lipschitz map, and since edges in H' have length 1 and edges in H cannot be longer than n, this map is n–Lipschitz.

Lemma 4.5. G' can be sent to H' via a composition of $O\left(\log(n)\right)$ L–Lipschitz maps, where L is a uniform constant.

Proof. There is a uniform constant L such that, for any two trivalent graphs with edge lengths 1, if they differ by one simultaneous Whitehead move, then they differ by a Lipschitz map with Lipschitz constant at most L. The graphs G' and H' can be cut into binary trees of complexity $2n - 2$. By Equation 3 and Theorem 3.1, G' can be transformed into H' by $O(\log(n))$ simultaneous Whitehead moves, hence the statement.

Proof of Theorem 4.1.

We construct a Lipschitz map $G \to H$ as a composition of the maps coming from the four Lemmas above:

$$G \xrightarrow{O(n)} R_n \xrightarrow{O(\log(n))} G' \xrightarrow{L(\log(n))} H' \xrightarrow{n} H.$$

The Lipschitz constant of the composition $G \to H$ is bounded by the product of the four Lipschitz constants, which is bounded by n^d/ϵ for some uniform constant d. Thus, $d_L(G, H) = O\left(\log\left(\frac{n}{\epsilon}\right)\right)$.

5 Examples of surfaces

In this section, we construct some examples of surfaces in the thick part of moduli space. These examples will provide the required lower bound for the width and the height, and hence the diameter, of the thick part. They also showcase some interesting behaviors which are of independent interest.

Let’s for the moment restrict our attention to closed surfaces.

To bound the width from below, we construct three surfaces in \mathcal{B}_g which are pairwise $\Omega\left(\log(g)\right)$ apart in the Lipschitz metric. These surfaces are constructed using graphs. The first two surfaces, the line surface X and the bouquet surface Y, are constructed from two graphs which have a large ratio between their diameters. This ratio computes a lower bound on the Lipschitz constant from Y to X. The third surface, called the expander surface Z, is constructed using an expander graph, or a graph with high connectivity. We will show Theorem E holds for Z: every separating curve on Z is of length $\Omega(g)$. This will contrast with X and Y, where both contains separating curves of length ϵ_M. Then the length ratio of separating curves will provide a lower bound on the Lipschitz constant from X or Y to Z.

To bound the height from below, we will construct a surface $H \in \mathcal{M}_g$ that cannot be decomposed into pants by curves shorter than \sqrt{g}. Buser already has such a construction, called the hairy torus, but it does not lie in \mathcal{M}_g. Our construction essentially takes two copies of Buser’s hairy torus and glue them along the hairs. The resulting surface H has $B(H) = \Omega\left(\sqrt{g}\right)$. Using length ratios we obtain a lower bound on the Lipschitz constant from H to any surface in \mathcal{B}_g.

19
Most of our constructions generalize easily to punctured surfaces. The only exception is the expander surface, as the notion of expanders does not exist for graphs in $\mathcal{M}_{g, p} / \text{Sym}_p$, $p > 0$, so this example is skipped. For the height, we give a construction of that works for all $p \geq 0$ and all $g \geq 1$, by combining a double hairy torus and a punctured torus. For the remaining case of genus 0, we will refer to the construction in [PB10] of a hairy sphere.

Since $\mathcal{M}_{g, p}$ covers $\mathcal{M}_{g, p} / \text{Sym}_p$, the height and width of $\mathcal{M}_{g, p}$ are bounded below by the height and width of $\mathcal{M}_{g, p} / \text{Sym}_p$.

5.1 Shadow map

Let $\psi : \mathcal{B}_{g, p} \to \text{Graph}(g, p)$ be the dual graph map. We will regard elements in $\text{Graph}(g, p)$ as metric graphs by assigning length 1 to each edge. Let $X \in \mathcal{B}_{g, p}$. Outside of the cusps, X is quasi-isometric to $\psi(X)$. To make this precise, we introduce the shadow map $\Upsilon : X \to \psi(X)$

For each puncture p of X, let N_p be the horocyclic neighborhood of p such that the horocyclic boundary of N_p has length equal to ϵ_M. Let \overline{X} be the closure of $X \setminus \bigcup N_p$, where p ranges over all punctures of X. We call \overline{X} the truncated surface obtained from X.

Let P be the associated pants decomposition on X. We may assume ϵ_M is small enough so that P is contained in \overline{X} and that the distance from every curve in P to the boundaries of \overline{X} is of order 1.

Given a constant A, for any $\alpha \in P$, let

$$N_{\alpha} = \{ x \in X : d_X(x, \alpha) \leq A \},$$

and for each boundary component $\gamma \in \partial \overline{X}$, let

$$N_\gamma = \{ x \in \overline{X} : d_X(x, \gamma) \leq A \}.$$

Choose A so that $N = \bigcup_{\alpha \in P} N_\alpha \cup \bigcup_{\gamma \in \partial \overline{X}} N_\gamma$ is a disjoint union of embedded annuli. Each component of $\overline{X} \setminus N$ is a pair of pants with diameter bounded uniformly by a constant D. Foliate each N_α and N_γ by closed loops equidistant from α and γ respectively. The shadow map

$$\Upsilon : X \to \psi(X)$$

sends each component in $X \setminus N$ to a vertex and each N_α or N_γ to an edge by collapsing leaves and then mapping linearly onto the edge. The map Υ is essentially distance decreasing. For any $x, y \in \overline{X}$,

$$d_{\psi(X)}(\Upsilon(x), \Upsilon(y)) < d_X(x, y).$$

On the other hand,

$$d_X(x, y) \leq (A + D) \left(d_{\psi(X)}(\Upsilon(x), \Upsilon(y)) + 2 \right).$$

Thus, Υ is an quasi-isometry from \overline{X} to $\psi(X)$.

5.2 Line and bouquet surfaces

We construct two graphs in $\text{Graph}(g, p)/\text{Sym}_p$, one of which has diameter $g + p$ and the other has diameter $\log(g + p)$.

Consider the tree T with $g + p$ exterior edges as in Figure 7. We can make T into an element Γ in $\text{Graph}(g, p)/\text{Sym}_p$ by attaching g loops to g of those edges. The diameter of Γ is at least $g + p$.

20
Now consider any tree T' of height $\log_2 (g + p)$ with $g + p$ exterior edges. For instance, one can pick the fully-sorted tree (see Figure 4). Again, T' can be made into a graph $\Gamma' \in \text{Graph}(g, p)/\text{Sym}_p$ by attaching g loops. The graph Γ' has diameter at most $\log_2 (g + p) + 2$.

![Figure 7: The tree T giving rise to the line surface.](image)

Let $X = X_{g, p}$ and $Y = Y_{g, p}$ be elements of $\mathcal{B}_{g, p}/\text{Sym}_p$ such that $\psi(X) = \Gamma$ and $\psi(Y) = \Gamma'$. We will refer to X and Y as a line surface and bouquet surface, respectively.

Lemma 5.1.

$$\text{diam}_L (\mathcal{B}_{g, p}/\text{Sym}_p) = \Omega(\log (g + p)).$$

Proof. We will use $d_L (Y, X)$ to achieve this lower bound, where X is the line surface and Y is the bouquet surface in $\mathcal{B}_{g, p}/\text{Sym}_p$.

The section on shadow map implies $\text{diam}(X) \geq g + p$ and $\text{diam}(Y) < \log (g + p)$, where X and Y are truncated surfaces obtained from X and Y respectively.

Consider any L-Lipschitz map $f : Y \to X$. We can choose two points x_1 and x_2 in X a distance $\Omega(g + p)$ apart. Let $y_i = f^{-1}(x_i)$. Since x_i has injectivity radius at least ϵ_0, the injectivity radius at y_i is at least ϵ_0 / L. So y_i has distance at most $\log L$ from Y. We can connect y_1 to y_2 by an arc ω in Y with

$$\ell_Y (\omega) < \log (g + p) + 2 \log L.$$

The image $f(\omega)$ is an arc connecting x_1 to x_2, so $\ell_X (f(\omega)) \geq (g + p)$. We have

$$L \geq \frac{\ell_X (f(\omega))}{\ell_Y (\omega)} > \frac{g + p}{\log (g + p) + 2 \log L}.$$

In the case that $L \geq g + p$, then $d_L (Y, X) = \Omega(\log (g + p))$. In the case that $L \leq g + p$, then the above becomes

$$L > \frac{g + p}{3 \log (g + p)}.$$

Thus, we also obtain

$$d_L (Y, X) > \log \left(\frac{g + p}{3 \log (g + p)} \right) = \Omega(\log (g + p)).$$

Combining Lemma 5.1 with Corollary 3.10, we obtain

Corollary 5.2. The Teichmüller and the Lipschitz width of $\mathcal{M}_{g, p}^\epsilon$ and $\mathcal{M}_{g, p}^\epsilon/\text{Sym}_p$ are all of order $\log (g + p)$.

Combining Lemma 5.1 with Corollary 2.5 and Corollary 3.9, we also obtain:

Corollary 5.3.

$$\text{diam}_S (\text{Tree}(g + p)) = \text{diam}_S (\text{Graph}(g, p)) \approx \text{diam}_S (\text{Graph}(g, p)/\text{Sym}_p) \approx \log (g + p).$$
Finally, we can derive the lower bound to the diameter of \mathcal{X}_n^ϵ. Together with the upper bound coming from Theorem 4.1, we obtain

Lemma 5.4.

$$\text{diam}_L(\mathcal{X}_n^\epsilon) \approx \log\left(\frac{n}{\epsilon}\right).$$

Proof. We show the lower bound.

Let $\Gamma \in \mathcal{X}_n^\epsilon$ be a graph of diameter of order n. For instance, pick Γ to be the graph inducing the line surface X_n, but renormalized to have volume n. The wedge R_n of n circles (with edge lengths 1) has diameter 1. Thus $d_L(R_n, G) \approx \log(n)$. On the other hand, let $H \in \mathcal{X}_n^\epsilon$ be any graph which has a loop of length ϵ. Then $d_L(H, R_n) \geq \log\left(\frac{1}{\epsilon}\right)$. It follows that

$$\text{diam}_L(\mathcal{X}_n^\epsilon) \approx \frac{1}{2} \left(\log(n) + \log\left(\frac{1}{\epsilon}\right)\right) = \frac{1}{2} \log\left(\frac{n}{\epsilon}\right).$$

\[\square\]

5.3 Expander surfaces

In this section, we consider only closed surfaces. In this case, the dual graph to a pants decomposition is a trivalent graph. We will use trivalent graphs with “high” connectivity to construct surfaces in $B_{g,p}/\text{Sym}_p$ with long separating curves. These surfaces will be $\Omega(\log(g))$ away from the examples of the previous section, providing another proof of Lemma 5.1. To formalize the notion of connectivity, we define the Cheeger constant of a graph.

Definition 5.5. An infinite family \mathcal{E} of d-regular graphs is a δ-expander family if $\text{ch}(E) \geq \delta$ for every $E \in \mathcal{E}$. Theorem 5.6 ([Pin73, Mar73]). For every d, there exists a δ-expander family of d-regular graphs.

Fix δ and let \mathcal{E} be a δ-expander family of trivalent graphs. We will call a surface $Z_g \in B_g$ an expander surface if its dual graph E_g is an element \mathcal{E}. By a dividing curve on a closed surface S_g, we will mean a separating curve on S_g which divides S_g into two pieces each of which has genus on the order of g. We will prove the following fact about expander surfaces, which was known to Buser ([Bus78]).

Theorem 5.7. If $Z_g \in B_g$ is an expander surface, then the shortest dividing curve on Z_g has length $\Omega(g)$.

Proof. Let α be any dividing curve on Z_g, and let U the closure of one of the components of $Z_g \setminus \alpha$. By assumption, the genus of U is of order g.

Let $\chi: Z_g \to \Gamma_g$ be the shadow map. We claim:

$$|\chi(U)| = \Omega(g) \quad \text{and} \quad 4|\partial \chi(U)| \leq |\chi(\alpha)|.$$

To see the first statement, let U' be the largest subsurface of Z_g with the same shadow as U (that is, the preimage of $\chi(U)$). Since U is a subsurface of U', we have $|\chi(U')| \geq |\chi(U)| = \Omega(g)$. But U' is a union of
pairs of pants, exactly one associated to a vertex in \(Y(U) \). Hence \(|\chi(U')| = |Y(U)| \). That is, \(|Y(U)| = \Omega(g) \).

So the first statement follows.

For the second statement, it is sufficient to construct a map from \(\partial Y(U) \) to \(Y(\alpha) \) so that the preimage of every edge has a uniformly bounded size. Let \(e \in \partial Y(U) \). Then \(e \) shares a vertex \(v \) with an edge outside of \(Y(U) \). The vertex \(v \) corresponds to a pair of pants and \(\alpha \) has to intersect this pair of pants non trivially. Hence, there is an edge connected to \(v \) that is in \(Y(\alpha) \). We send \(e \) to this edge. The preimage of an edge in \(Y(\alpha) \) under this map has size at most 4.

Using (5) and the fact that \(\mathcal{E} \) is an expander family, we obtain

\[
|Y(\alpha)| \geq 4|\partial Y(U)| \geq 4\delta|Y(U)| = \Omega(g).
\]

This bounds the length of \(Y(\alpha) \) from below. Since the shadow map \(Y \) is essentially distance decreasing, we obtain \(\ell_{\mathcal{E}}(\alpha) = \Omega(g) \).

Lemma 5.8. Let \(X_{\mathcal{E}}, Y_{\mathcal{E}}, \) and \(Z_{\mathcal{E}} \) be a line surface, bouquet surface, and expander surface, respectively.

\[
d_\mathcal{E}(X_{\mathcal{E}}, Z_{\mathcal{E}}) = \Omega(\log(g)), \quad d_\mathcal{E}(Y_{\mathcal{E}}, Z_{\mathcal{E}}) = \Omega(\log(g)).
\]

Proof. To see \(d_\mathcal{E}(X_{\mathcal{E}}, Z_{\mathcal{E}}) = \Omega(\log(g)) \), let \(\Gamma_{\mathcal{E}} \) be the graph from which we constructed \(X_{\mathcal{E}} \). One sees that \(\Gamma_{\mathcal{E}} \) can be divided into two roughly equal-sized pieces by one edge. The associated pants decomposition of \(X_{\mathcal{E}} \) contains a dividing curve of length \(\epsilon_M \).

On the other hand, from Theorem 5.7, any dividing curve on \(Z_{\mathcal{E}} \) has length \(\Omega(g) \). Any homeomorphism \(X_{\mathcal{E}} \rightarrow Z_{\mathcal{E}} \) must take dividing curves to dividing curves. Using length ratio, we obtain a lower bound for the Lipschitz constant.

\[
d_\mathcal{E}(X_{\mathcal{E}}, Z_{\mathcal{E}}) > \log \left(\frac{g}{\epsilon_M} \right) = \Omega(\log(g)).
\]

Similarly, \(Y_{\mathcal{E}} \) also admits a dividing curve of length \(\epsilon_M \). So the same argument also shows \(d_\mathcal{E}(Y_{\mathcal{E}}, Z_{\mathcal{E}}) = \Omega(\log(g)) \).

5.4 Hairy Torus example and a lower bound for height

Recall that surfaces in \(\mathcal{B}_{g,p}/\text{Sym}_p \) can be decomposed into pants by curves of length \(\epsilon_M \). In the following, we will construct a surface in \(\mathcal{M}^\epsilon_{g,p}/\text{Sym}_p \) which cannot be decomposed into pants by curves all shorter than \(\sqrt{g+p} \).

Lemma 5.9. There exists a surface \(H \in \mathcal{M}^\epsilon_{g,p}/\text{Sym}_p \) such that \(B(H) = \Omega(\sqrt{g+p}) \)

Assuming Lemma 5.9, we derive the lower bound for the height of the thick part of moduli space:

Corollary 5.10.

\[
\text{HD}_L(\mathcal{M}^\epsilon_{g,p}/\mathcal{B}_{g,p}) \geq \text{HD}_L(\mathcal{M}^\epsilon_{g,p}/\text{Sym}_p,\mathcal{B}_{g,p}/\text{Sym}_p) = \Omega \left(\log \left(\frac{g+p}{\epsilon} \right) \right).
\]

Proof. Let \(H \) be the surface of Lemma 5.9. For any \(X \in \mathcal{B}_{g,p}/\text{Sym}_p \), any Lipschitz map from \(X \) to \(H \) must take a pants decomposition of \(X \) to a pants decomposition of \(H \). Thus some curve on \(X \) must get stretched by a factor \(\Omega \left(\frac{\sqrt{g+p}}{\epsilon_M} \right) \). This means

\[
d_L(X,H) > \log \left(\frac{g+p}{\epsilon_M} \right).
\]
Now consider a surface $Y \in \mathcal{M}_{g,p}^\epsilon \text{Sym}_p$ which has a curve of length $\epsilon \leq \epsilon_M$. Any Lipschitz map from Y to X must stretch this curve by a factor at least $\frac{\epsilon_M}{\epsilon}$, so

$$d_L(Y, X) \geq \log \left(\frac{\epsilon_M}{\epsilon} \right).$$

It follows then

$$\text{HD}_L(\mathcal{M}_{0,p}^\epsilon / \text{Sym}_p, \mathcal{B}_{g,p}^\epsilon / \text{Sym}_p) \gg \frac{1}{2} \log \left(\frac{g+p}{\epsilon} \right) + \frac{1}{2} \log \left(\frac{\epsilon_M}{\epsilon} \right).$$

The rest of this section is dedicated to constructing H for Lemma 5.9. In the case of genus $g = 0$, $p > 0$, this has already been done by Balacheff and Parlier in [PB10]. Their hairy sphere construction gives rise to a surface $H \in \mathcal{M}_{0,p}^\epsilon / \text{Sym}_p$ with $B(H) = \Omega(\sqrt{p})$. For higher genus, we will use a variation of Buser’s hairy torus [Bus92, §5.3]. We will first explain the construction in the case of closed surfaces. Then we will extend the construction to punctured surfaces with at least one genus.

Start with a right-angled geodesic pentagon in hyperbolic plane with side lengths a, b, c, d, e. We set $a = b, c = e$ and $d = .25$. Glue four copies of such pentagons together to form a $2a \times 2a$ hyperbolic square R with an inner geodesic boundary component γ of length 1 (see Figure 8).

![Figure 8: Gluing pentagons](image)

Given any positive integer m, we can paste together m^2 copies of R to obtain a larger square R_m of side lengths $2am$ with m^2 inner boundary components. We index these boundaries by γ_{ij}. Identifying the opposite sides of R_m yields a hyperbolic surface (a hairy torus) T_m of genus 1 with m^2 boundary components. Now take two copies of T_m and glue them along the γ_{ij}’s. The resulting closed surface H_m has genus $g = 1 + m^2$ (see Figure 9).

To show H_m satisfies Lemma 5.9, we define a Lipschitz map $\pi : H_m \to F_m$, where F_m is a flat torus obtained from gluing the opposite sides of a $2am \times 2am$ Euclidean square. The map π is defined locally on each hyperbolic square R with an inner boundary γ.

Let F be a $2a \times 2a$ Euclidean square. Let $\pi_R : R \to F$ be any Lipschitz map that takes the sides of R to the sides of F and γ to the center of F. Let L be the Lipschitz constant of π_R. Divide F_m into m^2 sub-squares. Let $\pi : H_m \to F_m$ be the map such that, on each hyperbolic square R in H_m, π restricted to R is mapped to the corresponding sub-square F in F_m via the map π_R (see Figure 9). The Lipschitz constant of π is at most the Lipschitz constant of π_R. We have shown the following.

Lemma 5.11. The map $\pi : H_m \to F_m$ is L–Lipschitz for a uniform L.

The map π has the following property.

Lemma 5.12. For any pants decomposition P on H_m, there exists a curve $\alpha \in P$ such that $\pi(\alpha)$ is not trivial in homology. Therefore, H_m satisfies Lemma 5.9.
Proof. For the purpose of this proof, we can consider \(\pi \) up to homotopy. The map \(\pi : H_m \to F_m \) is onto on homology, since \(\pi \) maps each hairy torus in \(H_m \) onto \(F_m \). If a curve \(\beta \in P \) maps to a trivial curve in the homology of \(F_m \), then one can find a disk \(D \) in \(F_m \) such that \(\pi(\beta) \) lies in \(D \). We may assume \(\partial D \) avoids the singular points (the centers of the sub-squares) of \(F_m \). The complement \(F_m \setminus D \) is a one-holed torus. Its preimage \(Z = \pi^{-1}(F_m \setminus D) \) in \(H_m \) is an essential subsurface which is not a pair of pants (since \(\pi(Z) \) maps onto the homology of \(F_m \)). Since \(P \) is a pants decomposition, some curve \(\alpha \in P \) must intersect \(Z \). The image \(\pi(\alpha) \) cannot be homotoped away from \(F_m \setminus D \), thus it is non-trivial in the homology of \(F_m \).

For such an \(\alpha \), we have \(\ell_{F_m}(\pi(\alpha)) \geq 2am = 2a\sqrt{g-1} \). Since \(\pi \) is \(L \)-Lipschitz, \(\ell_{H_m}(\alpha) = \Omega(m) = \Omega(\sqrt{g}) \). This is true for any pants decomposition \(P \), so \(B(H_m) = \Omega(\sqrt{g}) \).

![Figure 9: Hairy torus](image)

The double-torus construction yields a closed surface \(H_m \) of genus \(1 + m^2 \). We now extend the construction to every genus \(g \). Given an arbitrary \(g \), let \(m \) be the largest integer such that \(1 + m^2 \leq g < 1 + (m + 1)^2 \). Let \(r = g - (1 + m^2) < 2m + 1 \). Let \(H_m \) be the closed surface of genus \(1 + m^2 \) obtained from gluing two hairy tori together. Cut \(H_m \) along one of the curves of length 1 which came from the gluing, to obtain a surface of genus \(m^2 \) with two boundary components. For the pair of boundary components \(\beta \) and \(\beta' \), we insert a surface with boundary as follows. Let \(W \) be a hyperbolic surface of genus \(r \) with two geodesic boundary components. We require the boundary components of \(W \) to have length 1, and all non peripheral curves on \(W \) to have length at least \(\epsilon \). We glue a copy of \(W \) along its boundary components to \(\beta \) and \(\beta' \). The resulting surface \(H \) is a closed surface of genus \(g = m^2 + r + 1 \). In the map previously defined on \(H_m \to F_m \), the pair \(\beta \) and \(\beta' \) are mapped to the same point in \(F \). Thus, this map can be extended to \(W \) by a constant map. This defines a Lipschitz map \(H \to F_m \) with the same constant as the map \(H_m \to F_m \). The same proof in Lemma 5.12 also works to show \(B(H) = \Omega(m) = \Omega(\sqrt{g}) \).

Now we explain the construction in the case of punctured surfaces of genus 1. For any \(a \), there exists a hyperbolic quadrilateral with 3 right angles and one ideal vertex, such that the two sides opposite of the ideal vertex have length \(a \). Glue four copies of such quadrilaterals together to form a \(2a \times 2a \) hyperbolic square \(R' \) with a puncture. The surface \(R' \) can be mapped to \(F \) minus the center by a uniformly Lipschitz map. Pasting together \(m^2 \) copies of \(R' \) and gluing opposite sides yields a surface \(Q_m \) of genus 1 with \(p = m^2 \) punctures. Gluing the maps on each \(R' \) equips \(Q_m \) with a Lipschitz map \(\pi \) to the flat torus \(F_m \). By the same proof as in Lemma 5.12, any pants decomposition \(P \) on \(Q_m \) must contain a curve \(\alpha \) which does not vanish in the homology of \(F \). Hence \(\ell_F(\pi(\alpha)) \geq 2am = 2a\sqrt{p} \), which implies \(\ell_{Q_m}(\alpha) = \Omega(\sqrt{p}) = B(Q_m) \).

For an arbitrary \(p \), we do a similar modification as in the case of closed surfaces. Let \(r = p - m^2 < 2m + 1 \). Let \(Q_m \) be the genus 1 surface with \(m^2 \) punctures as constructed above. Now remove an \(R' \)-square
of Q_m and replace it with an R-square. The result is a surface Q_m' of genus 1 with $m^2 - 1$ punctures and one boundary component of length 1. One checks that $B(Q_m') = B(Q_m) = \Omega(m)$. To the inner boundary of R, attach a sphere with $r + 1$ punctures with a boundary component of length 1, such that all essential curves also have length at least ϵ. The result is a surface Q of genus 1 with p punctures. The map $Q \to F_m$ defined locally in each R and R' and extended by the constant map to the attached sphere. The same reasoning as before shows $B(Q) = \Omega(m) = \Omega(\sqrt{p})$.

Finally, we combine the two constructions. Let $g > 1$ and p be arbitrary. Let H be a closed surface of genus $g - 1$ obtained from the double hairy torus construction. Cut H along one of the curves of length 1 to obtain a surface H' of genus $g - 2$ with two boundary components. From above, we can construct a surface Q' with genus 1, p punctures, and one boundary component of length 1, such that $B(Q') = \Omega(\sqrt{p})$. Now glue Q' to H' via an intermediate pair of pants with three boundary components of lengths 1. The resulting surface X has the right topology. The Lipschitz map from H to F_m, where $m = \sqrt{g}$, sends the boundary components of H' to the same point. Therefore, this map extends to all of X by a constant map on Q' and the intermediate pants. Likewise, the Lipschitz map from Q' to F_m', $m' = \sqrt{p}$, can be extended to X by a constant map on H' and the intermediate pants. In both cases, for any pants decomposition P on X, the image of P in either F_m or F_m' is non-trivial in homology. Therefore, P contain a curve α and a curve α', such that $\ell_X(\alpha) = \Omega(\sqrt{g})$ and $\ell_X(\alpha') = \Omega(\sqrt{p})$. It follows then

$$B(X) = \Omega(\sqrt{g} + \sqrt{p}) = \Omega(\sqrt{g + p}).$$

This concludes the proof of Lemma 5.9 and this section.

6 Upper bound for height

In this section, we give an upper-bound for the height of $\mathcal{M}_{g,p}'$. For any $X \in \mathcal{M}_{g,p}'$, we will show that there exists a surface $Y \in \mathcal{A}_{g,p}$ and a map from Y to X such that, for any curve γ on X, the ratio of $\text{Ext}_X(\gamma)$ to $\text{Ext}_Y(\gamma)$ is bounded above by a polynomial function in $\frac{g + p}{\epsilon}$. Then Theorem 2.2 would provide an upper bound of $\log(\frac{g + p}{\epsilon})$ for the Teichmüller distance between X and Y.

Let $X \in \mathcal{M}_{g,p}'$ be given and let P be the shortest pants decomposition of X. By Theorem 2.3, there is an upper bound of order $(g + p)$ for the lengths of the curve in P (the bound does not depend on c). Let $Y \in \mathcal{A}_{g,p}$ be a surface where there is a pants decomposition P' in the homeomorphism class of P where the curves have lengths ϵ_M. For $\alpha \in P'$, choose the shortest transverse curve $\overline{\alpha}$ to α which intersects α minimally and is disjoint from the other curves in P'. All transverse curves have length of order 1. The curves in P' and their duals form a set of curves μ which is usually referred to as a clean marking on Y.

There is map from Y to X that sends the curves in P' to curves in P. In fact, the homotopy class of this map is unique up to Dehn twist around curves in P. We choose such a map f so that, for any $\alpha \in P'$, the length of $f(\overline{\alpha})$ in X has an upper bound of order $M = \max\{g + p, \log(\frac{1}{\epsilon})\}$. To see that such map exists, let β be any curve in P. We will find a transverse curve $\overline{\beta}$ to β of length $O(M)$. Cutting X along curves all curves in P except β leaves a subsurface containing $\overline{\beta}$ which is either a torus with one boundary component or a sphere with four boundary components. The length of each boundary component has an upper bound of order $g + p$ and a lower bound of ϵ. Consider the case that β is contained in a torus with a boundary component β'. There are a pair of arcs ω and ω' in the torus that are perpendicular to β and β'. One can use elementary hyperbolic geometry to show that the lengths of ω and ω' are $O(M)$. By a surgery using ω and ω' and arcs in β' and β, we can construct a curve that intersects β exactly once. The length of geodesic representative $\overline{\beta}$ of the curve is bounded above by the sum of the lengths of β, β', ω
and \(\omega' \), thus \(\ell_X(\beta) = O(M) \). A similar construction also works in the case that \(\beta \) is contained in a sphere with four boundary components.

Hence, we do not distinguish between \(P \) and \(P' \) and denote them both by \(P \) and we can consider \(\mu \) as a marking on \(X \).

Let \(\gamma \) be a curve in \(Y \). First we compare the extremal length and the hyperbolic length of \(\gamma \) in \(Y \). Recall the definition of extremal length from the background section. If we pick \(\rho \) to be the hyperbolic metric on \(Y \), we have the following inequality just from the definition:

\[
\text{Ext}_Y(\gamma) \geq \ell_\rho(\gamma)^2 \geq \frac{\ell_Y(\gamma)^2}{2\pi \chi(Y)} = \frac{\ell_Y(\gamma)^2}{g + p}.
\]

We now estimate the \(\ell_Y(\gamma) \) using its intersection pattern with curves in \(\mu \): Recall that curves in \(\mu \) are either pants curve coming from \(P \), usually denoted by \(\alpha \), or dual curves, denoted by \(\overline{\alpha} \). For simplicity, when we write \(\alpha \in \mu \), we allow \(\alpha \) to be both a pants curve or a dual curve. In the case where \(\alpha \) is a pants curve, \(\overline{\alpha} \) would be the pants curve that \(\alpha \) is dual to (every curve is the dual of the dual).

Lemma 6.1. \(\ell_Y(\gamma) \sum_{\alpha \in \mu} i(\gamma, \alpha) \ell_Y(\overline{\alpha}). \) (7)

Proof. This is well known. Essentially, every time \(\gamma \) intersects \(\alpha \), it has to cross an annulus with thickness comparable to the length of \(\overline{\alpha} \). \(\square \)

Note that a curve \(\alpha \in \mu \) has length of order 1 in \(Y \). Also,

\[\ell_X(\alpha) < M. \]

Hence, we can control how the sum on the right-hand side of Equation 7 changes when we replace \(Y \) with \(X \). That is,

\[\sum_{\alpha \in \mu} i(\gamma, \alpha) \ell_Y(\overline{\alpha}) > \frac{1}{M} \sum_{\alpha \in \mu} i(\gamma, \alpha) \ell_X(\overline{\alpha}). \] (8)

This sum, in turn, provides an upper bound for the length of \(\gamma \) in \(X \). The following formula was proved in [LRT10, Proposition 3.2]

Lemma 6.2. For any curve \(\gamma \) on \(X \),

\[2 \sum_{\alpha \in \mu} i(\gamma, \alpha) \ell_X(\overline{\alpha}) \geq \ell_X(\gamma). \] (9)

The final step is to compare the hyperbolic length and the extremal length of \(\gamma \) in \(X \).

Lemma 6.3. For any \(X \in \mathcal{M}_{g,p}^\ell \) and any curve \(\gamma \),

\[\ell_X(\gamma)^2 > \frac{\ell^2}{g + p} \text{Ext}_X(\gamma). \] (10)

To prove this, we use the following lemma which essentially follows from the definition of the extremal length and is a special case of [Min96, Lemma 4.1]:
Lemma 6.4. Given a metric σ on S and a representative $\hat{\gamma}$ of a simple closed curve γ, let $v = v(\sigma, \hat{\gamma})$ be a number so that the v–neighborhood of $\hat{\gamma}$ is homeomorphic to a standard product $\hat{\gamma} \times [0, 1]$. Then

$$\text{Ext}_v(\gamma) \leq \frac{\text{Area}(\sigma)}{4v^2}.$$

Proof of Lemma 6.3. Let X be a point in \mathcal{L}^ϵ. We would like to apply the above lemma. However, when $\ell_X(\gamma)$ is large, the geodesic representative of γ gets exponentially close to itself, that is $v(\gamma, X) = e^{-\ell_X(\gamma)}$. Hence, to obtain a polynomial bound, we need to perturb γ and push it away from itself as much as possible. Our approach is to triangulate the surface and spread γ locally in each triangle.

Let \overline{X} be the truncated surface obtained from X (see § 5.1). We may assume all curves of P are contained in \overline{X}. Choose a triangulation T on \overline{X} so that the length of any edge in T has an upper bound of $\epsilon/2$ and a lower bound of order ϵ and so that there is a uniform lower bound on angles of every triangle in T. Such T can be constructed using a Delaunay triangulation on random well-spaced points on \overline{X}, which has been constructed explicitly in [LL00]. The edge lengths of the triangles of T take values in the interval $[\frac{\epsilon}{2}, \frac{\epsilon}{2}]$ for a uniform k. The triangles in this construction have bounded circumradii on the order of ϵ. This fact provides a uniform lower bound for the angles (see [Bre09]).

We may also perturb the triangulation so that γ does not pass through any vertex of T and is not tangent to any edge of T.

Claim 6.5. For any edge e in T,

$$|\gamma \cap e| \leq \frac{2\ell_X(\gamma)}{\epsilon}.$$

Proof of the claim. Let $p, q \in \gamma \cap e$ be two intersection points that appear consecutively along γ. Consider the loop formed by taking the union of the arc $\omega_e \subset \gamma$ connecting p to q with the segment $\omega_e \subset e$ connecting p to q. This loop is essential in X and thus must have length at least ϵ. The length of the arc ω_e is at most $\epsilon/2$. Thus the length of arc ω_f is at least $\epsilon/2$. Hence, the intersection number is less than $2\ell_X(\gamma)/\epsilon$. \hfill \Box

Let $l = \ell_X(\gamma)$. We refer to Figure 10 in the following construction. For a triangle $\Delta \in T$, the restriction of γ to Δ is a collection of $O(l/\epsilon)$ arcs. For every edge e of Δ, let $i_e = |\gamma \cap e|$. When $i_e > 1$, let \hat{e} be the middle third of the segment e. Mark i_e points on \hat{e} subdividing it into $(i_e - 1)$ equal segments. When $i_e = 1$, \hat{e} is just the middle point of e and it contains one marked point. When $i_e = 0$, \hat{e} is empty. We replace the restriction of γ to Δ with a collection of straight segments that start and end with the chosen marked points. Note that the distance between segments is at least of order ϵ/l. We denote the resulting curve by $\hat{\gamma}$ which is a slight perturbation of γ and hence is homotopic to it. For every point in $\hat{\gamma}$, there is a neighborhood with radius of order ϵ that is contained in the union of at most two triangles. Thus, there is a neighborhood of $\hat{\gamma}$, with the thickness of order ϵ/l, that is standard. That is,

$$v = v(\hat{\gamma}, X) > \frac{\epsilon}{l}.$$

Taking σ to be the hyperbolic metric on X and using Minsky’s Lemma we obtain

$$\text{Ext}_X(\gamma) \leq \frac{\text{Area}(X)}{\epsilon^2/l^2}.$$

The proof follow from the fact that the area of X is of order $(g + p)$. \hfill \Box

We can now combine these results to obtain the desired upper bound for the height of the thick part.
Theorem 6.6.

\[\text{HD}_T \left(\mathcal{M}_{g,p}^\epsilon, \mathcal{B}_{g,p} \right) = O \left(\log \left(\frac{g + p}{\epsilon} \right) \right). \]

Proof. We will show that for any \(X \in \mathcal{M}_{g,p}^\epsilon \), there is \(Y \in \mathcal{B}_{g,p} \) so that

\[d_T(Y, X) = O \left(\log \left(\frac{g + p}{\epsilon} \right) \right). \]

Let \(\gamma \) be a curve on \(X \). We can combine Equations (6), (7), (8), (9), (10) (multiply (6), (10) and the square of (7), (8) and (9)) to obtain:

\[\text{Ext}_Y(\gamma) > \left(\frac{\epsilon}{g + p} \right)^2 \frac{1}{M^2} \text{Ext}_X(\gamma), \]

where \(M = \max \{ g + p, \log \left(\frac{1}{\epsilon} \right) \} \). We overestimate an upper bound for \(M \) for uniformity: \(M < \frac{g + p}{\epsilon} \). Hence, after reorganizing, we have

\[\frac{\text{Ext}_X(\gamma)}{\text{Ext}_Y(\gamma)} < \left(\frac{g + p}{\epsilon} \right)^2 M^2 < \left(\frac{g + p}{\epsilon} \right)^4. \]

Since this is true for every curve \(\gamma \), applying Theorem 2.2, we obtain the desired upper bound

\[d_T(X, Y) \leq \frac{1}{2} \sup_{\gamma} \log \frac{\text{Ext}_X(\gamma)}{\text{Ext}_Y(\gamma)} < 2 \log \left(\frac{g + p}{\epsilon} \right). \]

Combining Theorem 6.6 with Corollary 5.10, we deduce that

Corollary 6.7. The Teichmüller and the Lipschitz height of \(\mathcal{M}_{g,p}^\epsilon / \text{Sym}_p \) and \(\mathcal{M}_{g,p}^\epsilon \) are all of order \(\log \left(\frac{g + p}{\epsilon} \right) \).

Finally, combining Corollary 6.7 with Corollary 5.2 and the triangle inequality, we obtain
Corollary 6.8. The Teichmüller and the Lipschitz diameter of $\mathcal{M}_{g,p}/\Sym_p$ and \mathcal{M}_g^e are all of order $\log\left(\frac{g+p}{\epsilon}\right)$.

Proof. Note that the lower bound for the Lipschitz height of $\mathcal{M}_{g,p}/\Sym_p$ is also a lower bound for the diameter of $\mathcal{M}_{g,p}/\Sym_p$. Thus, $\text{diam}_L(\mathcal{M}_{g,p}/\Sym_p) = \Omega\left(\log\left(\frac{g+p}{\epsilon}\right)\right)$. What remains to show is the upper bound for the Teichmüller diameter of $\mathcal{M}_{g,p}$.

Let X, Y be any two points in $\mathcal{M}_{g,p}$. By Theorem 6.6, there exist X' and Y' in $\mathcal{B}_{g,p}$, such that
\[d_T(X, X') < \log\left(\frac{g+p}{\epsilon}\right) \quad d_T(Y, Y') < \log\left(\frac{g+p}{\epsilon}\right). \]

By Corollary 5.2, we have
\[d_T(X', Y') < \log\left(\frac{g+p}{\epsilon}\right). \]

Thus, by the triangle inequality, (note that Teichmüller metric is symmetric),
\[d_T(X, Y) \leq d_T(X, X') + d_T(X', Y') + d_T(Y', Y) < 3\log\left(\frac{g+p}{\epsilon}\right). \]

\[\Box \]

A The metric of Whitehead moves on the space of graphs

In this section, we compute the asymptotic diameter of $\text{Graph}(g, p)$ and $\text{Graph}(g, p)/\Sym_p$ in the metric of Whitehead moves. Recall that this is equivalent to computing the asymptotic diameter of the moduli space of pants decompositions on $S_{g,p}$ and $S_{g,p}/\Sym_p$ in the metric of elementary moves. The main results and proofs are extrapolated from known results. Our purpose for writing this section is to unify what is known and to put it into our context. This section can be read independently from the rest of the paper.

Let d_W represent the metric of Whitehead moves: two graphs have distance one if they differ by one Whitehead move. The main results we would like to present are as follows. Note that, as a matter of convention, we have $x \log(x) = 0$, when $x = 0$.

Theorem A.1 (Labeled punctures).
\[\text{diam}_W(\text{Graph}(g, p)) \asymp (g+p)\log(g+p). \]

Theorem A.2 (Unlabeled punctures).
\[\text{diam}_W(\text{Graph}(g, p)/\Sym_p) \asymp g \log(g+p) + (g+p). \]

Our arguments for the two theorems are based on the work of [Bol82] and [STT88]. In the case $p = 0$, we also refer to [Cav10] for an alternate proof of $\text{diam}_W(\text{Graph}(g)) \asymp g \log(g)$.

We first argue for the upper bounds. The upper-bound in Theorem A.1 follows easily from Theorem D. Namely, since a simultaneous Whitehead move is a composition of at most $g+p$ Whitehead moves, we have
\[\text{diam}_W(\text{Graph}(g, p)) < (g+p)\log(g+p). \]

Similarly, if $g \geq p$, then the same argument also shows
\[\text{diam}_W(\text{Graph}(g, p)/\Sym_p) < (g+p)\log(g+p) < g \log(g+p). \]
This argument fails for \(p > g \), so we present another one that works in general.

When \(g = 0 \) and \(p \geq 2 \), then \(\text{Graph}(0, p) / \text{Sym}_p \) is the space of unlabeled (unrooted) trees with \(p \) ends. This case has been dealt with in [STT88] where it is shown that

\[
\text{diam}_W(\text{Graph}(0, p) / \text{Sym}_p) = p.
\]

(11)

(In fact, their estimate is very explicit with only a small additive error.)

Now suppose \(g \geq 1 \). We use induction on \(g \) and assume Theorem A.2 for all smaller values of \(g \). Let \(\Gamma_0 \in \text{Graph}(g, p) / \text{Sym}_p \) be a graph which has a loop of length 1 (an edge \(e \) starting and ending at the same vertex). Let \(\Gamma_1 \in \text{Graph}(g-1, p+1) / \text{Sym}_{p+1} \) be the graph obtained from \(\Gamma_0 \) after removing \(e \). Let \(\Gamma' \) be any other graph in \(\text{Graph}(g, p) / \text{Sym}_p \). It is sufficient to show that \(\Gamma' \) is distance \(O(\log(g+p)) \) from a graph \(\Gamma' \) with a loop \(e' \) of length one. This is because \(\Gamma \setminus \{e'\} \) can be transformed to \(\Gamma_1 \) in many steps using induction and the theorem follows.

Let \(T \) be a spanning subtree of \(\Gamma' \). Then \(T \) has \(g+p \) ends. Using Equation 11, we can use Whitehead moves with support in \(T \) to transform \(\Gamma' \) to a graph with a spanning tree of diameter \(\log(g+p) \). We denote the new graph by \(\Gamma' \). Then \(\Gamma' \) has a loop of length of order \(\log(g+p) \). That is, for \(n < \log(g+p) \), there is a linear map \(\phi : [0, n] \to \Gamma' \) such that the image is a non-trivial loop, \(\phi(0) = \phi(n) \), and \(\phi([i-1, i]) \) is an edge of \(\Gamma' \). One can always apply a Whitehead move at an edge on the loop to shorten the length of the loop by at least one. Hence, after \(O(\log(g+p)) \)-many moves, there is a loop of length one. This proves the upper bound.

The lower bounds for both theorems are obtained by a counting argument. We first need an asymptotic formula for the cardinalities of \(\text{Graph}(g, p) \) and \(\text{Graph}(g, p) / \text{Sym}_p \). For the following, we introduce the notation \(A \sim B \) to mean \(A = c^{g+p} B \), where \(c \) is an uniform constant. Since we will be applying the logarithm later, exponential factors can be ignored.

By the work of [Bol82], we have

\[
|\text{Graph}(g, p)| \sim \frac{(6g+2p)!}{g!(2g+p)!}
\]

Up to exponential factors, this simplifies to

\[
|\text{Graph}(g, p)| \sim \frac{(g+p)^{6g+2p}}{g^g(g+p)^{2g+p}} \sim (g+p)^{g+p}.
\]

(12)

Similarly, we have

\[
|\text{Graph}(g, p) / \text{Sym}_p| \sim \frac{(6g+2p)!}{g!(2g+p)!} \sim \frac{(g+p)^{6g+p}}{g!p!(2g+p)!}. \]

(13)

To finish the proof, we need the result in [STT88], which gives an upper-bound of the form \(c^{g+p+r} \) for the cardinality of a ball of radius \(r \) in \(\text{Graph}(g, p) \) and in \(\text{Graph}(g, p) / \text{Sym}_p \), where \(c \) is some fixed constant (See [STT88, Theorem 2.3]). (In fact, their theorem is much more general and applies to any space of shapes when shapes are allowed to evolve through locally supported elementary moves, such as Whitehead moves.)

Let \(r \) be the minimal number such that the ball of radius \(r \) contains the whole space \(\text{Graph}(g, p) \). By Equation 12, we have

\[
c^{g+p+r} > (g+p)^{g+p}.
\]
Taking the logarithm of both sides, we obtain

\[g + p + r > (g + p) \log(g + p) \implies \text{diam}_W(\text{Graph}(g, p)) \geq r > (g + p) \log(g + p). \]

This completes the proof of Theorem A.1.

For unlabeled punctures, we prove two lower bounds. Since our errors are multiplicative, their sum is also a lower bound.

Let \(\Gamma, \Gamma' \in \text{Graph}(g, p)/\text{Sym}_p \) be respectively of diameters of order \((g + p)\) and \(\log(g + p)\). Consider a sequence \(\Gamma_1 \ldots \Gamma_n \) of Whitehead moves taking \(\Gamma \) to \(\Gamma' \). Since

\[\left| \text{diam}(\Gamma_i) - \text{diam}(\Gamma_{i+1}) \right| \leq 1 \]

we must have

\[\text{diam}_W(\text{Graph}(g, p)/\text{Sym}_p) > (g + p) - \log(g + p) > (g + p). \] (14)

That is the first lower bound.

When \(g \geq p \), Equation 13 reduces to

\[|\text{Graph}(g, p)/\text{Sym}_p| \sim g^g \left(\frac{g}{p} \right)^p. \] (15)

On the other hand, when \(p > g \), we have

\[|\text{Graph}(g, p)/\text{Sym}_p| \sim p^g \left(\frac{p}{g} \right)^g. \] (16)

Let \(r \) be the minimal number such that the ball of radius \(r \) contains \(\text{Graph}(g, p)/\text{Sym}_p \). When \(g \geq p \), Equation 15 implies

\[r > g \log(g) + p \log \frac{g}{p} > g \log(g + p). \]

Similarly, when \(p > g \), Equation 16 implies

\[r > g \log(p) + g \log \frac{p}{g} > g \log(g + p). \]

Using the above and Equation 14 we obtain:

\[\text{diam}_W(\text{Graph}(g, p)/\text{Sym}_p) > g \log(g + p) + (g + p). \]

This finishes the proof of Theorem A.2.

References

[BCG+07] P. Bose, J. Czyzowicz, Z. Gao, P. Morin, and D. R. Wood, *Simultaneous diagonal flips in plane triangulations*, J. Graph Theory 54 (2007), no. 4, 307–330.

[Bol82] Béla Bollobás, *The asymptotic number of unlabelled regular graphs*, J. London Math. Soc. (2) 26 (1982), no. 2, 201–206.
[Bre09] W. Breslin, *Thick triangulations of hyperbolic n-manifolds*, Pacific J. Math. **241** (2009), no. 2, 215–225.

[Bus78] Peter Buser, *Cubic graphs and the first eigenvalue of a Riemann surface*, Math. Z. **162** (1978), no. 1, 87–99.

[Bus92] P. Buser, *Geometry and spectra of compact Riemann surfaces*, Progress in Mathematics, vol. 106, Birkhäuser Boston Inc., Boston, MA, 1992.

[Cav10] W. Cavendish, *Growth of the diameter of the pants graph modulo the mapping class group*, Preprint, https://web.math.princeton.edu/~wcavendi/PantsModMCG.pdf, 2010.

[CP10] W. Cavendish and H. Parlier, *Growth of the Weil-Petersson diameter of moduli space*, to appear in Duke Math. J. arXiv:math.GT/1004.3029, 2010.

[CV86] M. Culler and K. Vogtmann, *Moduli of graphs and automorphisms of free groups*, Invent. Math. **84** (1986), no. 1, 91–119.

[FM10] B. Farb and D. Margalit, *A primer on mapping class groups*, Princeton Univ. Press, Princeton, N.J., 2010.

[GL00] F. P. Gardiner and N. Lakic, *Quasiconformal Teichmüller theory*, Mathematical Surveys and Monographs, vol. 76, American Mathematical Society, Providence, RI, 2000.

[Hub06] J. Hubbard, *Teichmüller theory and applications to geometry, topology and dynamics*, Matric Edition, Ithaca, NY, 2006.

[Ker80] S. P. Kerckhoff, *The asymptotic geometry of Teichmüller space*, Topology **19** (1980), no. 1, 23–41.

[Lic64] W. B. R. Lickorish, *A finite set of generators for the homeotopy group of a 2-manifold*, Proc. Cambridge Philos. Soc. **60** (1964), 769–778. MR 0171269 (30 #1500)

[LL00] G. Leibon and D. Letscher, *Delaunay triangulations and Voronoi diagrams for Riemannian manifolds*, Proceedings of the Sixteenth Annual Symposium on Computational Geometry (Hong Kong, 2000) (New York), ACM, 2000, pp. 341–349 (electronic).

[LRT10] A. Lenzhen, K. Rafi, and J. Tao, *Bounded combinatorics and the Lipschitz metric on Teichmüller space*, Preprint, arXiv:math.GT/1011.6078, 2010.

[Mar73] G. A. Margulis, *Explicit constructions of expanders*, Problemy Peredači Informacii **9** (1973), no. 4, 71–80.

[Min96] Y. N. Minsky, *Extremal length estimates and product regions in Teichmüller space*, Duke Math. J. **83** (1996), no. 2, 249–286.

[PB10] H. Parlier and F. Balacheff, *Bers’ constants for punctured spheres and hyperelliptic surface*, Preprint, arXiv:math.GT/0911.5149, 2010.

[Pin73] M. S. Pinsker, *On the complexity of a concentrator*, 7th International Telegraffic Conference (1973), 318/1–318/4.

[STT88] D. D. Sleator, R. E. Tarjan, and W. P. Thurston, *Rotation distance, triangulations, and hyperbolic geometry*, J. Amer. Math. Soc. **1** (1988), no. 3, 647–681.
[Thu86] W. P. Thurston, *Minimal stretch maps between hyperbolic surfaces*, Preprint, arXiv:math.GT/9801039, 1986.

[Wol79] S. A. Wolpert, *The length spectra as moduli for compact Riemann surfaces*, Ann. of Math. (2) 109 (1979), no. 2, 323–351.