Prevalence and Pattern of Adult Maxillofacial Injuries: An Institution-based Retrospective Study

Thanvir Mohamed Niazi, Asok Kumar Ramasamy Subramanian, Cathrine Diana, Natesh Pughalaendhi, Ulaganathan Gurunathan, Nithya Ganesh Sappaniapillai Kathiresan

Department of Oral and Maxillofacial Surgery, CSI College of Dental Sciences and Research, Madurai, Tamil Nadu, India

ABSTRACT

Introduction: Maxillofacial injuries are more prevalent in road traffic accidents (RTAs). The incidence of RTAs tends to vary with geographical location, socioeconomic status, religion etc. Aim: The main aim of this study is to determine the pattern and prevalence of maxillofacial injuries reported to our institution.

Materials and Methods: Data were obtained from medical records of the patients from January 2007 to December 2017 reported in CSI College of Dental Sciences and Research, Madurai, Tamil Nadu were retrieved and analyzed. Data include age, gender, etiology, site of injury, anatomical site associated injuries and their management were recorded and analyzed with STATA software version 14 (StataCorp LLC, College Station, TX, USA).

Results: Maxillofacial injuries occur more commonly in 2nd and 3rd decade (40.44%) with mean age of 32.58 ± 11.15 years. RTA (77.21%) and alcohol influence (51%) were considered as the most common cause of maxillofacial injuries and was statistically significant. Mandible (44.85%) was most commonly involved and 62.5% required a surgical intervention.

Conclusion: RTA with mandibular fracture is predominant in men between the age group of 20-30 years. Expansion in road network, increase in motorization, alcohol consumption and urbanization in developing countries had accompanied with rise in RTAs. Thus the use of safety devices and educating people by conducting preventive camps about traffic rules will reduce the number of RTA.

KEYWORDS: Madurai, maxillofacial injuries, road traffic accident

INTRODUCTION

Trauma is one of the primary causes for death in humans during the first four decades. According to World Health Organization, around 15–20 million individuals got injured and nearly 1 million people die annually in road traffic accidents (RTAs). World Health Statistics, in 2008, stated that RTA was the leading cause for death, and it will be the fifth leading cause for death by 2030.[1,2] In developing countries, 7.4%–8.4% maxillofacial injuries require emergency medical care, and it poses a great threat to life.

Many epidemiological studies on the pattern of maxillofacial injuries from different countries reported that the etiology of these injuries may vary with geographic location, economic status, culture, and alcohol consumption.[3,4] Trauma may occur in a workplace, RTA, assault, and sports. It can either occur alone or associated with the injuries of upper and lower extremities. In RTA, face is the most frequently injured region. Introduction

Address for correspondence: Dr. Asok Kumar Ramasamy Subramanian, Department of Oral and Maxillofacial Surgery, CSI College of Dental Sciences and Research, Madurai 625001, Tamil Nadu, India. E-mail: asok6395@gmail.com

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

For reprints contact: reprints@medknow.com

How to cite this article: Niazi TM, Subramanian AK, Diana C, Pughalaendhi N, Gurunathan U, Kathiresan NG. Prevalence and pattern of adult maxillofacial injuries: An institution-based retrospective study. J Pharm Bioall Sci 2020;12:S472-9.
of high-speed engines in two-wheelers, alcohol addiction, lack of sufficient infrastructure of roads, and disproportionate increase in two-wheelers are considered as major causative factors for an increase in maxillofacial trauma in India. This study aimed to determine the prevalence and pattern of maxillofacial injuries reported in our institution.

MATERIALS AND METHODS

Patient reports with medical record of maxillofacial injury, between January 2007 and December 2017, in the department of Oral and Maxillofacial Surgery, CSI College of Dental Sciences and Research, Madurai, Tamil Nadu, India, were retrieved and analyzed retrospectively. Data include age, gender, etiology, fracture site, associated injuries, and treatment modalities. All these data were recorded and analyzed using STATA software, version 14.0 (StataCorp LLC, College Station, TX, USA). For this study, approval from institutional ethics committee and institutional review board of CSI College of Dental Sciences and Research were obtained.

RESULTS

In our retrospective analysis, we recorded maxillofacial trauma of approximately 136 cases, among them, 117

Figure 1: Gender-wise distribution of maxillofacial injuries

Figure 2: Year-wise distribution
were males and 19 were females [Figure 1]. Year-wise distribution of prevalence in maxillofacial injuries is depicted in Figure 2. Maxillofacial trauma was more prevalent among the second and third decade and accounts for approximately 40.44%. The age-wise distribution of maxillofacial trauma is depicted

Figure 3: Age-wise distribution

Figure 4: Etiology of injuries
In Figure 3. The mean age for this study population was 32.58 ± 11.15 years. The least age recorded in this study was 17 years and the highest age was 69 years.

In this retrospective study, maxillofacial injury more commonly occurs in RTAs (77.21%), among them 67.65% were two-wheelers [Figure 4]. Trauma due to falling accounts for 22.79%, and sports-inflicted injuries
Figure 7: Site of injury

Figure 8: Management of maxillofacial injuries
account for 2.94% of all cases as shown in Figure 5. Approximately 51% of the study population consumed alcohol during injury, and it was statistically significant [Figure 6].

Mandibular fracture was the most common to occur with a percentage of 44.85%, maxillary fracture accounted for 19.12%, and 34.56% fractures occurred in both maxilla and mandible [Figure 7]. Of them, 85 patients were treated surgically, 34 were treated conservatively, and 16 were treated by both surgical and conservative methods [Figure 8].

The proportion between etiology and the maxillofacial injury was statistically significant with a high proportion to RTA followed by other injuries ($P = 0.023$) [Table 1]. Association between alcohol consumption and maxillofacial injury is shown in Table 2, and it is found that there is a statistical significance between these variables ($P = 0.046$).

The proportion between the facial soft tissue injuries and the site of the fracture is statistically significant ($P < 0.001$) [Table 3]. The association between the fracture site and treatment modalities is shown in Table 4, and it is statistically significant ($P < 0.001$).

DISCUSSION

Trauma is the leading cause of death below the age of 40 years, and maxillofacial area is more likely to get injured during trauma when compared with other parts of body.[5] In this study, second and third decades are more commonly affected with male predominance.[2,3,6–11] A study conducted by Agrawal et al.[9] reported that maxillofacial injuries are prevalent among third and

Etiology	Fracture Site	Total N (%)	P value			
Assault	Nil N (%)	Mandible N (%)	Maxilla N (%)	Combined N (%)		
Assault	0	0	2(50)	2(50)	4(100)	0.023 (S)
Fall	1(3.23)	10(32.26)	10(32.26)	10(32.26)	31(100)	
Pediatric	0	5(100)	0	0	5(100)	
Sports	0	4(100)	0	0	4(100)	
Two Wheelers	1(1.09)	42(45.65)	14(15.22)	35(38.04)	92(100)	
Total	2(1.47)	61(44.85)	26(19.12)	47(34.56)	136(100)	

Alcohol Consumption	Fracture Site	Total N (%)	P value			
Nil N (%)	Mandible N (%)	Maxilla N (%)	Combined N (%)			
No	2(3.03)	34(51.52)	14(21.21)	16(24.24)	66(100)	0.046 (S)
Yes	0	27(38.57)	12(17.14)	31(44.29)	70(100)	
Total	2(1.47)	61(44.85)	26(19.12)	47(34.56)	136(100)	

Soft Tissue Injury	Fracture Site	Total N (%)	P value			
Nil N (%)	Mandible N (%)	Maxilla N (%)	Combined N (%)			
Abrasion	1 (1.56)	25 (39.06)	19 (29.69)	19 (29.69)	64 (100)	< 0.001 (S)
Laceration	1 (16.67)	1 (16.67)	3 (50)	1 (16.67)	6 (100)	
Abrasion and Laceration	0	12 (41.38)	0	17 (58.62)	29 (100)	
Nil	0	23 (62.16)	4 (10.81)	10 (27.03)	37 (100)	
Total	2 (1.47)	61 (44.85)	26 (19.12)	47 (34.56)	136 (100)	

Management	Fracture Site	Total N (%)	P value			
Nil N (%)	Mandible N (%)	Maxilla N (%)	Combined N (%)			
Conservative	1(2.94)	17(50)	10(29.41)	6(17.65)	34(100)	<0.001 (S)
Surgical	1(1.18)	44(51.76)	16(18.82)	24(28.24)	85(100)	
Surgical and Conservative	0	0	0	17(100)	17(100)	
Total	2(1.47)	61(44.85)	26(19.12)	47(34.56)	136(100)	
fifth decade. Fasola et al.[4] stated that RTA was more common among older adults. The mean age in our study was 32.58\% similar to the results of Agrawal et al.[9] and higher than that of Gupta et al.[1] Factors determining the prevalence and pattern of maxillofacial trauma get varied according to geographic, culture, and economic status of a particular region.[4] Worldwide, it has been reported that maxillofacial trauma occurs due to RTA, self fall, assault, and during sports.[12]

Two-wheelers have a great impact on maxillofacial injuries. Our study reports that RTA accounts for 77.21\% in maxillofacial injuries, of which 67.65\% were motorcycles, which was found to coincide with other studies as it contributes to 45\%–65\% of RTA.[4,7,8,13,14] Due to RTA, around 60\%–80\% pedestrians, bicyclers, and two-wheelers got injured in India.[15] Zamani-Alavijeh et al.[10] in their study reported that motorcycle riders with a lack of awareness of wearing helmet and other protective aids had the highest risk of being injured in head, face, and neck region. These injuries usually occur due to a skid or fall from the motorcycle, colliding with other vehicle due to loss of control.[17]

In our study, half of the population was intoxicated with alcohol, similar to that of other studies.[3,7,10,12,18] Prabhu et al.[11] suggested that alcohol consumption between 21 and 35 years of age tends to be increasing in developing countries.

Laceration and abrasion were the most prevalent soft tissue injuries.[5,19] Gassener et al.[5] in their study reported that soft tissue injuries were commonly seen in lips extraorally. Intraorally, it is more common in gingiva, buccal mucosa, palate, and tongue.[5] In this report, the incidence of fracture in mandible bone was higher when compared to midface fractures.[6,7,8,10,19,20] Bbte et al.[19] reported that mandibular fractures were more prevalent in developing countries.

Conclusion

Our study concludes that RTA with a mandibular fracture is predominant in men between the age-group of 20 and 40 years. Alcohol influence followed by increased passion to use two-wheelers among youngsters and high-speed driving without proper safety measures such as helmets during driving are considered as important factors contributing to trauma. Strict enforcement of traffic rules and safety regulations along with improved emergency medical service will reduce the death rate and minimize the disability that occurs during RTA. In addition to this, use of improved safety devices in automobiles such as strict wear of helmets by motorcyclists, wearing of seat belts in four-wheelers, and educating people by conducting preventive camps to obey traffic rules, especially at the level of schools, colleges, and in rural areas, would reduce the number of RTA and maxillofacial trauma.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

References

1. Gupta A, Babu AK, Bansal P, Sharma R, Sharma SD. Changing trends in maxillofacial trauma: a 15 years retrospective study in the southern part of Haryana, India. Indian J Dent Res 2018;29:190-5.
2. Ugboko VI, Osudanya SA, Fugade OO. Maxillofacial fractures in a semi-urban Nigerian teaching hospital. A review of 442 cases. Int J Oral Maxillofac Surg 1998;27:286-9.
3. Agnihotri A, Galfat D, Agnihotri D. Incidence and pattern of maxillofacial trauma due to road traffic accidents: a prospective study. J Maxillofac Oral Surg 2014;13:184-8.
4. Fasola AO, Nyako EA, Obiechina AE, Arotiba JT. Trends in the characteristics of maxillofacial fractures in Nigeria. J Oral Maxillofac Surg 2003;61:1140-3.
5. Gassener R, Tuli T, Hachl O, Rudisch A, Ulmer H. Cranio-maxillofacial trauma: a 10 year review of 9,543 cases with 21,067 injuries. J Craniomaxillofac Surg 2003;31:51:61-61.
6. Kapoor P, Kalra N. A retrospective analysis of maxillofacial injuries in patients reporting to a tertiary care hospital in East Delhi. Int J Crit Illn Inj Sci 2012;2:6-10.
7. Subalakshmi K, Arun R, Loganayagi R, Fabi BAJ, Bhagyalakshmi S. A retrospective study on the etiology, prevalence and pattern of maxillofacial trauma in the population of Tiruvannamalai Dt, South India. IOSR J Dent Med Sci 2018;17:42-6.
8. van Beek GJ, Merkx CA. Changes in the pattern of fractures of the maxillofacial skeleton. Int J Oral Maxillofac Surg 1999;28:424-8.
9. Agrawal A, Prasad RB, Shetty L, Nachiappan S, Manju M. Characteristics of craniofacial trauma in a rural hospital in South India. Ann Afr Med 2006;3:33-7.
10. Gali R, Devireddy SK, Kishore Kumar RV, Kanubaddy SR, Nemaly C, Akheel M. Facioamaxillary fractures in a semi-urban South Indian teaching hospital. A review of 442 cases. Contemp Clin Den 2015;6:539-43.
11. Prabhu P, Srinivas R, Vishwanathan K, Raavi A. Factors influencing alcohol and tobacco addiction among patients attending a de-addiction centre, South India. J Int Soc Prev Community Dent 2014;4:103-7.
12. Ryan GA, Legge M, Rosman D. Age-related changes in driver’s crash risk and crash type. Accid Anal And Prev 1998;30:379-387.
13. Singh R, Singh HK, Gupta SC, Kumar Y. Pattern, severity and circumstances of injuries sustained in a road traffic accident: a tertiary care hospital-based study. Indian J Community Med 2013;39:30-4.
14. Anitha R, Devakumari S. Prevalence and patterns of maxillofacial trauma in south India: a retrospective study for seven years. IOSR J Dent Med Sci 2017;6:22-5.
15. Mohan D. The road ahead: traffic injuries and fatalities in India. Transportation research and injury prevention programme. New Delhi, India: Indian Institute of Technology Delhi; 2004. p. 1-30.
16. Zamani-Alavijeh F, Narimani N, Montazeri A, Fakhri A, Mansourian M, Shafiee A, et al. Self-reported risk behaviors among offender motorcyclists in Ahvaz City. Electron Physician 2015;7:1464-9.
17. Bakargjiev A, Pechalova P. Maxillofacial surgery in southern Bulgaria: a retrospective study of 1706 cases. J Craniomaxillofac Surg 2007;35:147-50.
18. Nasser F, Taha SM, Farag L. Pattern of traumatic maxillofacial injuries among the young Qatari population during the years 2006–2009: a retrospective study. Egypt J Ear, Nose, Throat Allied Sci 2013;14:11-5.
19. Bhate K, Mitra S, Kulkarni D, Kshirsagar K. Understanding the pattern of maxillofacial trauma in local population in Pimpri, India. Indian J Multidisciplinary Res Inf 2016;2:407-11.
20. Subhashraj K, Nandakumar N, Ravindran C. Review of maxillofacial injuries in Chennai, India: a study of 2748 cases. Br J Oral Maxillofac Surg 2007;45:637-9.