Identification of molecular performance from oil palm clones based on SSR markers

Lollie Agustina P. Putri¹, M Basyuni², Eva S Bayu¹, D Arvita¹, D Arifiyanto³, and I Syahputra³

¹ Department of Agroecotechnology, Faculty of Agriculture, Universitas Sumatera Utara, Jln. Prof. A. Sofyan no.3 Medan, North Sumatera 20155
² Department of Forestry, Faculty of Forestry, Universitas Sumatera Utara, Medan 20155
³ PT. Socfin Indonesia, Desa Martebing, Dolok Masihul Kabupaten Serdang Bedagai, Sumatera Utara

E-mail: lollie.agustina@usu.ac.id

Abstract. In Indonesia, the oil palms are an important economic crop, producing food and raw materials for the food, confectionary, cosmetics and oleo-chemical industrial demands of oil palm products. Clonal oil palm offers the potential for greater productivity because it is possible to establish uniform tree stands comprising identical copies (clones) of a limited number of highly productive oil palms. Unfortunately, tissue culture sometimes accentuates the expression of detects in oil palm, particularly when embryogenesis is induced in particular callus for prolonged periods. This research is conducted by taking individual tree sample of clone germplasm two years old. The purpose of this research is to molecular performance analysis of some oil palm clones based on SSR markers. A total of 30 trees oil palm clones were used for analysis. In this experiment, the DNA profile diversity was assessed using five loci of oil palm’s specific SSR markers. The results of the experiment indicated out of 3 SSR markers (FR-0779, FR-3663 and FR-0782) showed monomorphic of PCR product and 2 SSR markers (FR-0783 and FR-3745) showed polymorphic of PCR product. There are 10 total number of PCR product. These preliminary results demonstrated SSR marker can be used to evaluate genetic relatedness among trees of oil palm clones.

1. Introduction

African oil palm (Elaeis guineensis Jacq.) has the highest productivity amongs cultivated oleaginous crops. Species can constitute a single crop apable to fulfill the growing demand for vegetable oils, which is estimated to reach 240 millions tons by 2050. Oil palm cultivation is one of the most profitable land uses in the humid tropics [1]. An important aspect to be considered when deriving perennial plants from micropropagation is the maintenance of genetic integrity with regard to the mother plant. In this regard, somaclonal variation has been reported at different levels (morphological, cytological, cytochemical, biochemical, and molecular) in micropropagated plants [2]. The economic consequence of somaclonal variation among regenerated plants is enormous in fruit crops and woody plants, because they have long life cycles. In consequence, the behaviour of micropropagated plants should be assessed after their long juvenile stage in field conditions. The occurrence of somaclonal
variation is a matter of great concern for any micropropagation system. In order to evaluate its presence several strategies were used to detect somaclonal variants, based on one or more determinants from among morphological traits, cytogenetic analysis (numerical and structural variation in the chromosomes), and molecular and biochemical markers [3]. Global methylation levels and methylation of specific sites are documented in several crops, e.g. oil palm [4], grapevine [5, 6] and apple [7]. In addition, epigenetic changes, such as DNA methylation and histone modifications, may be associated with the physiological responses of the plant cells to the conditions in vitro [8]. Studies on somaclonal variation are important for its control and possible suppression with the aim of producing genetically identical plants, and for its use as a tool to produce genetic variability, which will enable breeders the genetic improvement [1].

Microsatellite fingerprinting is based on high genetic variability and is one of the best molecular tools for elucidating the structure and genetic diversity of populations. Among the various DNA marker methods currently available that can be used to examine genetic diversity at the molecular level, the most informative polymorphic marker system to date is microsatellites, or SSRs (simple sequence repeats) [9]). Their high information content, co-dominance, and PCR based detection mean that SSRs are an ideal tool for many genetic applications. The advantages of microsatellite over other types of genetic markers will become more important, and more obvious, when they are used to track desirable traits in large-scale breeding programs and as anchor points for map-based gene cloning strategies. They are also preferred for high throughput mapping, genetic analyses and marker assisted plant improvement programmes [10]. The objective of the present investigation is to differentiate among 30 clones oil palm genotypes based on SSR markers. The description of molecular relationships was conformed using the constructing dendrogram.

2. Materials and methods

2.1. Plant material and DNA isolation
Fresh young leaves collected from 30 individual clones of ‘BTC A - group‘ oil palm collections of PT. Socfindo. Total genomic DNA was isolated from the fresh leaf samples following modified method using CTAB by [11] with modification at polyvinilpolypirrolidone (PVPP) and 2-mercaptoethanol concentration [12]. The quantity and quality of DNA were determined by spectrophotometer and electrophoresis on 1% agarose gel, respectively by BioSpectrometer (Eppendorf). The material genetics (genomic DNA) were stored at -20 °C.

2.2. E. guineensis microsatellite primers pairs and genotyping
Five independent microsatellite loci were chosen (FR-0779, FR-3663, FR-0782, FR-0783 and FR-3745) from the oil palm reference map published [13]. PCR products were run on 4% agarose gel with a 1x TBE Buffer system at 70 V and electrophoresed for 3-4 hours and stained with ethidium bromide. The amplified products were mixed with 4 μl of 6X loading dye and resolved in 4% agarose gel containing ethidium bromide in a horizontal electrophoresis tank. The amplified SSR allelic patterns were analysed with the Gel Doc UVITEC Cambridge (USA) and alleles were identified according to their base pair size. GENEalex ver 6.502 and DARwin ver 6.0 software were used in this experiment. Molecular sizes of amplified products were estimated using a 100bp DNA ladder marker (Promega).

3. Results and Discussions
The results will be discussed in two subsections, they are amplification of SSR marker and genetic diversity structure of the clones E. guineensis type.

3.1. Amplification of SSR marker
Figure 1 shows the separation of the alleles of the microsatellite marker FR-3745 after electrophoresis at 60 V for about four hours. The banding pattern of FR-3745 differed by 53 bp. Longer electrophoresis period was required for better separation of the alleles with less difference. The reproducibility of the results was verified and the optimized conditions are described in material and methods. DNAs of the 30 oil palm clones genotypes were subject to PCR against SSR primers FR-3745 as described in Fig. (1) and illustrated in Tables (1). A total of 10 amplicons (amplified fragment) were generated by five SSR primers in which 3 of the primers were monomorphic, all as shown in Table 1. These preliminary results demonstrated SSR marker can be used to evaluate genetic relatedness among trees of oil palm clones genotype.

Table 1. Total number of DNA bands, number and size of polymorphic bands and their distribution among 30 oil palm clones genotypes

Primer	DNA bands	Polymorphic	Size of polymorphic bands (bp)
FR-0779	2	0	-
FR-3663	1	0	-
FR-0782	2	0	-
FR-0783	3	3	272, 300, 336
FR-3745	2	1	317

*total number of bands (polymorphic and non-polymorphic)

3.2. Genetic diversity structure
The results of dendogram by DARwin software indicated out of tree individuals have different profile from another (Figure 2). They are genotype 5, 18, and 29 of population. From that, we preliminary indicated there are three of oil palm clones have somaclonal variation from different clones or
different to trait or mislabelled. From the research [4] there were variations in genomic DNA methylation during the longterm in vitro proliferation of oil palm embryogenic suspension cultures.

Figure 2. Representation of the unrooted Neighbor-Joining tree with five SSR genotypes using the simple matching distances under DARwin6

A comparison of the results obtained in this study (mean 2 alleles/locus) was relatively lower than those earlier reported for MTG commercial oil palm variety (mean 3 alleles/locus) [14], relatively higher reported for two parents (LM2T and LM10T) of BRT10 first selection cycle oil palm population with an estimated average of 1.75 alleles/locus [15]. The number of alleles per locus is affected by the number of markers and sample size analyzed.

The five microsatellite loci of oil palm clone genotype were low polymorphic with 2 alleles per locus. At the population level, mean expected heterozygosity (H_e) 0.316. Nonetheless, comparisons were not on the same basis as the origin and number of samples was different coupled with the number of SSRs assayed. Similarly, the expected heterozygosity ($H_e = 0.543$) was comparable to what was reported by [14] for MTG commercial oil palm variety from Indonesia (Socfindo).

When compared to the previous report of [16], higher values of expected heterozygosity ($H_e = 0.373$) for Deli NIFOR and ($H_e = 0.510$) for 6 Deli dura populations from different origins using 14 SSR markers. These figures are higher than the reported result in this study. This lower genetic diversity because of the oil palm clones population. The profile of microsatellite loci of oil palm clones genotype were in Table 2.

Locus	N	Na	Ne	I	He
Pop-Level	1	2.000	1.627	0.460	0.316

$Na = No. of Different Alleles$ $Ne = No. of Effective Alleles$, $I = Shannon's Information Index$, $He = Expected Heterozygosity$.

4. Conclusions
This preliminary conclusion is the SSR markers used in this study were able to classify the genetic background of clone type oil palm and represent an essential tool for genetic analysis of this main oil palm germplasm. Based on molecular results, some of 30 individual palms of clones oil palm type
have different DNA pattern from the others. The FR-0783 and FR-3745 marker can be used to evaluate genetic relatedness among trees of oil palm clones genotype in ‘BTC A group’.

Acknowledgement
The authors gratefully acknowledge that the present research is supported by PT. Socfin Indonesia for their full support on this study and University of Sumatera Utara, Ministry of Research and Technology and Higher Education Republic of Indonesia. The support is under the research grant BP-PTN USU of year 2016 Contract Number 27/UN5.2.3.1/PPM/SP/2016.

References
[1] Barcelos D, Rios SA, Cunha RNV, Lopes R, Motoike SY, Babiyuch E, Skirycz A, Kushnir S 2015 Oil Palm Natural Diversity and The Potential For Yield Improvement Frontier in Plant Science 6: article 190 doi:10.3389/fpls.015.00190.
[2] Rani V, Raina S 2000 Genetic Fidelity of Organized Meristemderived Micropropagated Plants: A Critical Reappraisal In Vitro Cellular Developmental Biology Plant 36: 319-330
[3] Rani V, Parida A, Raina S 1995 Random Amplified Polymorphic DNA (RAPD) Markers for Genetic Analysis in Micropropagated Plants of Populus deltoides Marsh Plant Cell Report 14:459-462.
[4] Jaligot E, Rival A, Beule` T, Dussert S, Verdeil JL 2000 Somaclonal Variation in Oil Palm (Elaeis guineensis Jacq.): the DNA Methylation Hypothesis Plant Cell Report 19:684-690.
[5] Schellenbaum P, Mohle V, Wenzel G, Walter B 2008 Variation in DNA Methylation Patterns of Grapevine Somaclones (Vitis vinifera L.) BMC Plant Biology 8:78-88.
[6] Baránek M., Křižan B., Ondružková E., Pidra M 2010 DNA Methylation Changes in Grapevine Somaclones Following in Vitro Culture and Thermotherapy Plant Cell Tissue Culture 101:11-22.
[7] Li X, Xu M, Korban SS 2002 DNA Methylation Profiles Differ Between Field- and In Vitrogrown Leaves of Apple Journal of Plant Physiology 159: 1129-1134.
[8] Smulders MJM, de Klerk GJ 2011 Epigenetics in Plant Tissue Culture Plant Growth Regulation 63:137-146
[9] Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalski A 1996 The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis Molecular Breeding 2: 225-238
[10] MC Couch SR, Teytelman L, Xu Y, Lobos KB, Clare K, Walton M, Fu B, Maghirang R, Li Z, Xing Y, Zhang Q, Kono I, Yano M, Fjellstrom R, Declerck G, Schneider D, Cartinhour S, Ware D, Stein L 2002 Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.) DNA Research 9: 257-279
[11] Oroco-Castillo C, Chalmers KJ, Waugh R, Powell W 1994 Detection of genetic diversity and selective gene introgression in coffee using RAPD markers Theor. Appl. Genet. 87: 934-940
[12] Toruan-Mathius N, Hutabarat T 1997 Pemanfaatan teknik penanda molekuler dalam usaha meningkatkan produktivitas tanaman perkebunan Warta Puslit Biot Perkebunan II (1):2-9
[13] Bilotte N, Marseillac N, Risterucci AM, Adon B, Brottier P, Baurens FC, Singh R, Herrán A, Asmadi H, Billot C, Amblard P, Durrand-Gasselin T, Courtois B, Asmono D, Cheah SC, Rohde W, Ritter E, Charrier A 2005 Microsatellite-based high density linkage map in oil palm (Elaeis guineensis Jacq.) Theor. Appl. Genet. 110:754-765
[14] Putri LAP, Setiando H, Hardianti R 2017 DNA Profiles of MTG (Moderat Tahan Gano) Oil Palm Variety Based on SSR Markers IOP Conf. Series: Materials Science and Engineering 180:0120144
[15] Allou D, Adon B, Sangare A 2008 Molecular Variability from Two Selection of BRT10 Population in an In breeding program of Oil Palm (Elaeis guineensis Jacq.) in Côte d’Ivoire African Journal of Biotechnology 7:3550-3553
[16] Cochard B, Adon B, Rekima S, Billotte N, Desmier R, Koutou A 2009 Geographic and Genetic
Structure of African Oil Palm Diversity Suggests New Approaches to Breeding *Tree Genetics & Genomes* 5:493-504.