A Stochastic Model for the Species Abundance Problem in an Ecological Community

Simone Pigolotti, Alessandro Flammini, and Amos Maritan

Abstract: We propose a model based on coupled multiplicative stochastic processes to understand the dynamics of competing species in an ecosystem. This process can be conveniently described by a Fokker-Planck equation. We provide an analytical expression for the marginalized stationary distribution. Our solution is found in excellent agreement with numerical simulations and compares rather well with observational data from tropical forests.

PACS numbers: 87.23.-n, 87.23.Cc

I. INTRODUCTION

One of the most widespread quantities employed in Ecology to describe the biodiversity in a given ecosystem is the distribution of species abundance. In operational terms it can be defined as the histogram of the number of species (in a well defined temporal and geographical context) consisting of a generic number of individuals, or, from a more theoretical perspective, as the probability that a generic species is composed by a certain number of individuals. Data collected in different locations suggest that the relative species abundance distributions show a certain degree of similarity. To elucidate the causes that determine the shapes of these distributions and therefore their similarity is a problem of the utmost importance and not only of theoretical nature: to understand the motives that influences the relative rarity or commonness of different species can be of great help in determining policies for the conservation of the endangered ones.

The first studies on this subject can be dated back to the ’40 and are due to Fisher and Preston. Their works were focused on finding distributions that could fit well particular data set in an empirical way. In particular, Preston argued that the probability of finding species with a certain number of of individuals \(x \) should be log-normal distributed, while Fisher proposed a function of the form \(e^{-ay}/x \), with \(a << 1 \), the so-called Fisher log series.

Later, MacArthur firstly pointed out that similar distributions are found in very different ecosystems, suggesting that the shape of such distributions is to a large extent determined by very basic, general and ecosystem-independent mechanisms. This in turn hinted to the possibility to predict the shape of such distributions with simple and general models, without taking into account too many specific details of the ecosystem under consideration. Several models have been proposed that spoused this view. Many of them restrict to modeling a single ecological community, a collection of similar species that feed on the same pool of resources in a local area. This definition implies that species belonging to the same community interact mainly in a competitive way: in particular, there are no prey-predator relationships among them. The particular case of single ecological community can be framed in the wider context of a neutrality hypothesis. The concept of neutrality was firstly introduced in the framework of a biomolecular evolution theory by Kimura, and then extended to other fields of biology. In the words of Hubbell, an ecological theory can be considered neutral when “...treats organisms in the community as essentially identical in their per capita probabilities of giving birth, dying, migrating and speciating. This neutrality is defined at the individual level, not the species level ...”

The question whether there exist ecological communities satisfying this assumption is still rather controversial, therefore it is crucial to understand what are the consequences of this zero order hypothesis. In the context of a neutral hypothesis it is reasonable to describe the number of offspring to which any given individual gives place to as a stochastic variable. As a consequence, the number of individuals in a species at a given time can be regarded as a multiplicative random process.

Here we present a model aimed at reproducing the features of species abundance distributions under a minimal set of assumptions: neutrality and the possibility to describe the birth process as a multiplicative random process. The model translates in a Fokker-Planck equation for the species abundance distribution and is amenable to an analytical treatment. The solutions found are compared with the experimental data we avail of. The shape of these solutions depend on one parameter, and give in the two limiting cases both a lognormal-like curve and the Fisher log series. The paper is organized as follows. In the second section we will present the model and comment the assumptions made. In the third one we will take the continuum time limit of our model, and will provide an analytical solution for the marginalized stationary probability distribution function. In the last two
sections we compare our results with the experimental data and comment them.

II. THE MODEL

Let us consider an ecological community consisting of a fixed number, s, of species. According to MacArthur and Wilson theory of island biogeography\cite{10}, the number of species in a community approaches a dynamical equilibrium between immigration, speciation and extinction. We assume that we can neglect the fluctuations around this equilibrium value: in our model, when a species go extinct, it is immediately replaced by another one. We also assume that the net effect of the competitive interaction between species in the community is just to keep also the total number of individuals in the community fixed; the resources available are enough to support just N individuals across all the species. This last assumption implies that the populations of the species undergo a zero sum dynamics. This hypothesis is well confirmed by experimental data \cite{3, 10}; at the end of section III we will show that relaxing these constraints does lead to similar conclusions in the large N limit. We introduce the s variables x^t_i, representing the population of the i-th specie at (discrete) time t, with the condition:

$$\sum_{i=1}^s x^t_i = N \quad \forall t$$

Let $P(\lambda)$ be the probability that an individual in the community has λ offspring during one time step. Here neutrality plays a key role: our assumption implies that $P(\lambda)$ is the same for all individuals. The population of the i-th species evolves according to the following equation:

$$x^{t+1}_i = N \frac{\sum_{k=1}^s \lfloor x^t_i \rfloor \lambda^t_{k,i} + b}{\sum_{j=1}^s \left(\sum_{k=1}^s \lfloor x^t_i \rfloor \lambda^t_{k,j} + b \right)}$$

where $\lfloor \rfloor$ means the integer part. We are assuming that the existence of species with a non integer number of individuals is not too drastic. This might lead to round-off problems only for rare species. At each time step (generation) we just sum the number of offspring of every individual belonging to that species, and then add a small quantity b. This quantity becomes relevant only for small x_i, and this describes the behavior of species near their extinction threshold. We are assuming that the net effect of extinctions, immigration and speciation can be modeled in a simple way with this term, whose effect is to force the x_i’s to be greater than zero. Indeed, for $b = 0$, our system admits an absorbing state with only one x_i equal to N and the others equal to 0, the so-called monodominance\cite{4}. Notice that species are only coupled through the denominator, that simply preserves the normalization condition.

The number of individual of each species will be typically large, so we apply the central limit theorem to the sum of random variables in this equation, obtaining the following model:

$$x^{t+1}_i = N \frac{\bar{\lambda} x^t_i + \sigma \sqrt{x^t_i} \xi^t_i + b}{\sum_{j=1}^s \left(\bar{\lambda} x^t_j + \sigma \sqrt{x^t_j} \xi^t_j + b \right)}$$

(2)

where $\bar{\lambda}$ and σ are the mean value and the r.m.s.d. of the distribution $P(\lambda)$, and the ξ’s are uncorrelated gaussian variables with zero mean and unit variance.

It is worth noting the relation between our model and the multiplicative process introduced by Kesten in\cite{11}. Kesten studied random multiplicative processes of the form $X_{t+1} = \lambda_i X_t + b_i$, where X_t is the variable and both λ and b are random variables. He found that, depending on the mean value of λ and on the boundary conditions, one retrieves a lognormal or a power-law regime. Models for ecology and economics based on this kind of processes were proposed by Sornette\cite{12} and Solomon\cite{13}. In our model the number of individuals of different species can be thought as following coupled Kesten-like processes. The coupling is a consequence of the constrain that keeps fixed to N the number of individuals in the community and that is enforced in equation (1) by the factor N and by the denominator.

III. THE CONTINUUM LIMIT

In order to obtain some analytical result, we do the continuous time limit of this model, by introducing the time interval dt in the following way:

$$\lambda \rightarrow 1 + \lambda dt \quad b \rightarrow b dt \quad \sigma \rightarrow \sigma dt$$

(3)

By means of this substitution, our model becomes:

$$x^t_i = \frac{x^t_i + dt(\bar{\lambda} x^t_i + \sigma \sqrt{x^t_i} \xi^t_i + b)}{1 + \frac{dt}{N} \sum_{j=1}^s \left(\bar{\lambda} x^t_j + \sigma \sqrt{x^t_j} \xi^t_j + b \right)}$$

(4)

Expanding the denominator and using the fact that $\sum_j x_j = N$, we get the Langevin equation:

$$\dot{x}_i = f_i(x) + \sum_{j=1}^s B_{ij}(x) \xi_j$$

(5)

where:

$$f_i(x_i) = b(1 - \frac{s}{N} x_i) \quad B_{ij}(x) = (\delta_{ij} - \frac{x_i}{N}) \sqrt{x_j}$$

(6)
The Fokker-Planck equation \[\dot{P}(x, t) = -\sum_{i=1}^{s} \partial_i \left[-f_i(x) + D \sum_j \partial_j (g_{ji}(x) P(x, t)) \right] \]
with \(D = \frac{\sigma^2}{2} \) and:
\[
g_{ij}(x) = g_{ji}(x) = \sum_k B_{ik} B_{jk} = (\delta_{ij} - \frac{x_i}{N}) x_i \]

We search for a solution of this equation satisfying detailed balance (i.e. \(P^{st} \dot{f}_i = D \sum_j \partial_j (g_{ji} P^{st}) \)). Defining the marginalized probability distribution function:
\[
p(x) = \int_0^\infty \prod_{j \neq i} dx_j P^{st}(x) \]
we can easily obtain an equation for \(p(x) \).
\[
b \left(1 - \frac{sx}{N}\right) \frac{d}{dx} \left[\left(x - \frac{x^2}{N}\right) \frac{dx}{dp(x)} \right] = \frac{b}{D} \frac{d}{dx} \left(\frac{x^\beta - 1}{x^{\beta - 1}}\right) \]

This equation can be easily solved, giving:
\[
p(x) \propto x^{\beta-1} \left(1 - \frac{x}{N}\right)^{\beta(s-\frac{1}{2})-1} \beta = \frac{b}{D} \]

Notice that this distribution correctly shows the monodominance behavior \(\delta(0) \) or \(\delta(N) \) in the limit \(\beta \to 0 \). Finally, if we fix \(\mu = \frac{\beta s}{N} \), in the limit for \(N \to \infty \) we obtain:
\[
p(x) = \frac{\mu^\beta}{\Gamma(\beta)} x^{1-\beta} e^{-\mu x} \]

In fig. 1 we plot simulation of the stationary p.d.f. for various value of the parameter \(\beta \), and check the validity of (12).

Instead of having a system of stochastic differential equation, it is possible to take into account the interaction of a species with the ecosystem in an averaged way. Let us consider the Langevin equation:
\[
\dot{x}(t) = b + \lambda x - \gamma x + D \sqrt{x} \xi \]

where the parameter \(\gamma \) takes into account the effect of competition. In order to have normalizable solutions, we have to require that \(\gamma > \lambda \). When this condition holds, it is straightforward to show that the stationary p.d.f. satisfying detailed balance is the same as (12), with \(\mu = -(\lambda - \gamma) / D \). Notice that in this case, the detailed balance solution is exact; it is also remarkable that the stationary distribution (12) can be achieved without fixing neither the number of species, nor the number of individuals.

IV. COMPARISON WITH EXPERIMENTAL DATA

Among the most reliable data on single-trophic species distribution of species abundance are tropical forest census. In order to make a coarse graining, a Preston plot is used: data are collected via a logarithmic binning in base 2, and species at the edge between two consecutive binning are equally divided between them. Since we have a continuous probability density, we compared the histogram with the integral over the bins of the distribution with the experimental data, and made a least-square fit of the parameters \(\beta \) and \(\mu \), plus the normalization. We found a good agreement of our predicted curve with the histogram; in fig.2 it is shown the comparison between our solution and the lognormal. Notice that the two distributions have the same number of fitted parameter. It would be interesting to compare our distribution with data collected form other kind of ecosystems, and to try to clarify the dependence of our free parameter \(\beta \) from ecological quantities like the immigration pressure, the speciation rate and the extinction threshold.

V. DISCUSSION AND PERSPECTIVES

The model we introduce admits a family of stationary p.d.f. depending on the parameter \(\beta \). This parameter fully determines the shape of the distribution: for \(\beta << 1 \) one recovers the Fisher log series, while for \(\beta \) large, one obtains a lognormal-like distribution. As we already pointed out, both these distributions are well known in the population biology literature as possible candidate to be the ‘right’ distributions found in nature.

There is some analogy between our model and the Kesten process. Indeed, also the Kesten process
mits two different regimes, one lognormal and one with a power law tail. The main difference is that in our case the multiplicative random process is applied to the square root of the variables, rather than to the variable itself. As a consequence, in the Kesten case, the exponent of the power law tail of the stationary distribution is always greater than one, while the small \(\beta \) regime of our system is characterized by a power law tail over many decades, with an exponent that is always less than 1: the cutoff due to the conserved number of individuals ensures the normalization of these long-tailed distributions.

It is remarkable that our distribution is the same found in studies made by Kerner in the '50\[16\] on the invariant measure in a system of Lotka-Volterra equations with purely asymmetric couplings. In that works the interactions are only of predator-prey type, and the system is deterministic, while we are considering a stochastic system with purely competitive coupling. The discovery of the same distribution in such different models suggests that it might exist some deeper and more general mechanism determining the statistical behavior of ecosystems, regardless of the type of interactions among species.

Acknowledgments

This work is a byproduct of many discussions with J. Banavar and I. Volkov.

[1] R. MacArthur, PNAS, USA, 43:293 (1957)
[2] R. A. Fisher, A. S. Corbet, and C. B. Williams, Journal of Animal Ecology 12 42-58 (1943)
[3] F. W. Preston, Ecology 29, 254-283 (1948)
[4] S. P. Hubbell, The Unified Neutral Theory of Biodiversity and Biogeography. Princeton, NJ 2001. Princeton University Press.
[5] A. McKane, D. Alonso & R. V. Solé, Phys.Rev.E 62, 8466-8484 (2000)
[6] I. Volkov, et al., Nature 424, 1035-1037. (2003)
[7] M. Kimura, The Neutral Theory of Molecular Evolution. Cambridge Univ. Press, Cambridge UK 1983.
[8] D. Tilman, Plant Strategies and the Dynamics and Structure of Plant Communities. Princeton Univ. Press, Princeton, NJ, (1988).
[9] J. Harte, Nature 424 1006-1007.,(2003)
[10] R. MacArthur, & E. O. Wilson, The theory of island biogeography. Princeton, NJ 1967: Princeton University Press.
[11] H. Kesten, Acta Math. 131, 207 (1973).
[12] D. Sornette, Physica A 250, 295-314. (1998)
[13] S. Solomon, cond-mat/9901250 (1999)
[14] C.W. Gardiner, Handbook of stochastic methods. Springer-Verlag, Berlin 1985.
[15] R. Condit, S.P. Hubbell and R.B. Foster, Journal of Tropical Ecology 12: 231-256 (1996).
[16] E.H. Kerner, Bull.Math.Biophysics. 19 121-46 (1957); Bull.Math.Biophysics 21 217-55 (1959).