Rate and Equilibrium Constants for the Addition of N-Heterocyclic Carbenes into Benzaldehydes: A Remarkable 2-Substituent Effect**

Christopher J. Collett, Richard S. Massey, James E. Taylor, Oliver R. Maguire, AnnMarie C. O’Donoghue, * and Andrew D. Smith*

Abstract: Rate and equilibrium constants for the reaction between N-aryl triazolium N-heterocyclic carbene (NHC) precatalysts and substituted benzaldehyde derivatives to form 3-(hydroxybenzyl)azolium adducts under both catalytic and stoichiometric conditions have been measured. Kinetic analysis and reaction profile fitting of both the forward and reverse reactions, plus onwards reaction to the Breslow intermediate, demonstrate the remarkable effect of the benzaldehyde 2-substituent in these reactions and provide insight into the chemoselectivity of cross-benzoin reactions.

While efficient catalytic asymmetric methods available for both intra- and intermolecular reactions,[1,2] however, the development of cross-benzoin reactions has proven difficult in terms of the chemoselective formation of a single reaction product.[3] While efficient chemoselective NHC-catalyzed protocols for both intra- and intermolecular cross-benzoin reactions between aldehydes and ketones have been reported,[4] the reaction between two distinct aldehydes remains a significant synthetic challenge. As 2-substituted benzaldehydes are generally poor substrates for homo-benzoin reactions they have been widely utilized in cross-benzoin processes.[5] For example, Miller and Mennen reported the intramolecular cross-benzoin reaction between an arylaldehyde and a tethered aliphatic aldehyde to effect macrocyclization.[6] Connon and co-workers found that N-(C,F₅) triazolium NHC catalyst 3 catalyzes intermolecular cross-benzoin reactions between 2-substituted benzaldehydes and aliphatic aldehydes with high levels of chemoselectivity (Scheme 1a).[7] A selective cross-benzoin reaction between two benzaldehydes catalyzed by thiamine diphosphate dependent benzaldehyde lyase (BAL) was reported by Müller et al., with one 2-substituted benzaldehyde a prerequisite for good chemoselectivity.[8] Glorius and co-workers subsequently utilized this phenomenon in arylaldehyde cross-benzoin reactions using thiazolium NHC catalyst 7 (Scheme 1b).[9,10] Gravel et al. have reported a triazolium NHC-catalyzed cross-benzoin process between benzaldehydes and alkyl aldehydes, with preliminary kinetic studies showing the reaction is at least first-order with respect to both aldehydes and that the chemoselectivity was determined at or after the C–C bond forming step.[11] Current explanations of the observed chemoselectivity in cross-benzoin reactions of arylaldehydes are usually simplistically based upon steric arguments. Previous to this investigation, it was commonly assumed that the presence of a 2-substituent decreases the rate of NHC addition into an arylaldehyde (Scheme 2).[8,12] The NHC I therefore preferably adds into aldehyde II to form least-hindered 3-(hydroxybenzyl)azolium adduct IV, which undergoes deprotonation to form Breslow intermediate V.[12,13] However, to account for the observed selectivity, intermediate V must now add into the more “hindered” 2-substituted benzaldehyde VI.[13,14] This...
steric argument is therefore inherently contradictory. There are currently no detailed mechanistic studies that offer insight into the rate of NHC additions into 2-substituted benzaldehydes, the effect of the N-aryl NHC substituent upon the rates of these processes, or the role of the 2-substituent in chemoselective cross-benzoin reactions of arylaldehydes. Building upon our previous mechanistic studies of NHC-catalyzed processes,[13] herein the remarkable effect of 2-arylaldehyde substitution upon equilibrium constants for 3-(hydroxybenzyl)azolium adduct formation is demonstrated. For the first time, individual rate constants for adduct formation have been determined under stoichiometric conditions and the effects of both aldehyde and N-aryl NHC substitution have been probed, with the results offering potential insight into the chemoselectivity of cross-benzoin processes.

First, the catalytic reactions between a range of substituted benzaldehydes (0.01 M) and NHC precatalyst 9–11 (0.002 M, 20 mol%) using Et3N (0.002 M, 20 mol%) in CDCl3 were monitored through in situ 1H NMR spectroscopy. Analysis of the resulting reaction profiles allowed equilibrium constants for adduct formation (Kexp) to be determined (Table 1).[12] The results demonstrate the remarkable effect of having a heteroatom substituent in the 6-position of the benzaldehyde on Kexp. For example, the reaction between NHC precatalyst 9 and 2-methoxybenzaldehyde 2 gave Kexp = 56 m−1 compared with Kexp = 3 m−1 for reaction with benzaldehyde 5 (Table 1, entries 1 and 2). As observed previously,[13] the 2,6-substituted NHC precatalysts 10 and 11 gave significantly higher Kexp values, although 2-methoxy aldehyde substitution again led to further prominent increases (Table 1, entries 3–6). The importance of the 2-heteroatom for this effect is demonstrated by reaction of NHC precatalyst 10 with 2-tolualdehyde 12, which gives Kexp = 16 m−1 (Table 1, entry 7). The effect is not limited to 2-alkoxy substituents, as the reaction with 2-bromobenzaldehyde 14 gave Kexp = 332 m−1 whereas reaction with 4-bromo-benzaldehyde 15 gave Kexp = 15 m−1 (Table 1, entries 9 and 10). The introduction of an additional heteroatom substituent in the 6-position further shifted the equilibrium in favor of adduct formation. For example, reaction of 10 with 2,6-difluorobenzaldehyde 16 gave Kexp = 785 m−1 whereas with 2-fluorobenzaldehyde 17 Kexp = 150 m−1 (Table 1, entries 11 and 12). The use of 2-pyridinecarboxaldehyde 18 also gave an equilibrium strongly in favor of the corresponding adduct, while reaction with 6-bromo-2-pyridinecarboxaldehyde 19 exclusively gave 3-(hydroxybenzyl)azolium adduct 33 such that Kexp could not be measured (Table 1, entries 13 and 14).

In most cases, the 3-(hydroxybenzyl)azolium salts could also be isolated from a stoichiometric reaction between the NHC precatalyst and the corresponding aldehyde in the presence of excess Et3N.

To gain further insight into the dramatic effect of 2-heteroatom substitution, rate constants for 3-(hydroxybenzyl)azolium adduct formation were measured. First, the effect of the N-aryl NHC substituent was assessed, as no kinetic measurements have previously been made for triazo-lium-catalyzed benzoin or Stetter processes.[13,14] Reactions of aldehyde 13, which is often employed as a model substrate for intramolecular Stetter reactions, were performed under pre-steady-state conditions using stoichiometric concentrations of NHC precatalysts in CD2OD with an Et3N•Et3N-HCl (2:1) buffer at 15 °C,[13] analogous to the conditions used by Leeper and White in their study of the thiazolium-catalyzed benzoin reaction.[13a] Kinetic analysis of the reaction profiles obtained before significant product formation (<5%) allowed pseudo

Table 1: Equilibrium constants K for 3-(hydroxybenzyl)azolium adduct formation.[10]

Entry	Adduct	Yield [%][1]				
		Kexp [m−1]				
1	9	5	3	20	3	
2	9	2- MeOC4H11	2	56	21	24
3	10	Ph	5	31	22	9
4	10	2- MeOC4H11	2	143	23	28
5	11	Ph	5	39	24	–
6	11	2- MeOC4H11	2	601	25	69
7	10	2- Me-C6H4	12	16	26	70
8	10	2- ROC6H4	13	140	27	74
9	10	2- Br-C6H4	14	332	28	63
10	10	4- Br-C6H4	15	15	29	54
11	10	2- FC-C6H4	16	150	30	37
12	10	2,6- FC-C6H4	17	785	31	71
13	10	2- pyridyl	18	303	32	–
14	10	6- Br- 2- pyridyl	19	–	33	58

[a] Starting concentrations: aldehyde (0.01 M), NHC precatalyst (0.002 M), Et3N (0.002 M) in CDCl3 at 25 °C. [b] Yield of isolated product from reaction between NHC precatalyst (1 equiv), aldehyde (1 equiv), and Et3N (2 equiv) in CH2Cl2. [c] R = E- CH2CH=CHCOOEt.

Scheme 2. General mechanism for a cross-benzoin reaction.
second-order rate constants for 3-(hydroxybenzyl)azolium adduct formation (k_1, M$^{-1}$s$^{-1}$) and equilibrium constants ($K_{	ext{eq}}$, M$^{-1}$) to be measured (Table 2).\[16\] Formation of the 3-(hydroxybenzyl)azolium adduct involves two distinct steps: the initial deprotonation of pre-catalyst by base and the subsequent reaction of the NHC with azolium. After the formation of adduct oxanyon, the base can be regenerated upon protonation at oxygen resulting in an overall pseudo second-order process under these experimental conditions.

This is confirmed by the excellent fitting of reaction data to a kinetic expression describing a second-order reaction proceeding to a position of equilibrium.\[12\] The pseudo first-order rate constants for adduct dissociation (k_diss, s$^{-1}$) could also be calculated as $K_{\text{eq}} = k_1/k_\text{diss}$. Additional estimates for k_1 and k_diss were obtained from reaction profile fitting, with the values used to calculate the corresponding equilibrium constants (K_{eq}). Pleasingly, the fitted values obtained are in good agreement with those obtained from kinetic analysis, with the largest discrepancy occurring for the reaction using NHC pre-catalyst 36 where adduct dissociation is negligible (Table 2, entry 4).\[17\]

Next, the reverse decay towards equilibrium was studied. Analysis of the 1H NMR reaction profiles for dissociation of the adducts of aldehyde 13 allowed rate and equilibrium constants of dissociation to be measured (k_diss, s$^{-1}$ and K_{eq}, M$^{-1}$) and rate constants for association (k_a, M$^{-1}$s$^{-1}$) to be calculated (Table 3).\[18\] Although $K_a = k_1$ and $k_\text{diss} = k_1$, a distinction has been made to differentiate between the two methods of measurement. The dissociation analysis was not possible for the N-2,6-(MeO)$_2$C$_6$H$_3$ adduct as the equilibrium lies so far towards the adduct that insufficient data could be obtained. Notably, as its pK$_a$ is similar to N-Ph pre-catalyst 9 (pK$_a$, 17.7 and 17.8, respectively) but it reacts 2.5 times faster. This is postulated to be due to the orthogonal orientation of the mesityl substituent to the triazolium ring providing a more favorable approach of the aldehyde.\[20\] In all cases 3-(hydroxybenzyl)azolium adduct formation shows a degree of reversibility, however the kinetic data shows the rate of dissociation for the adduct derived from 13 and 10 is particularly slow, meaning that adduct formation is effectively irreversible in this case.\[21\]

Having established reliable methods for measuring equilibrium and rate constants for adduct formation this analysis was extended to look at substituted benzaldehydes (Table 4).\[22\] The reactions were performed using NHC pre-catalyst 9, with comparable data obtained from both kinetic analysis and reaction profile fitting in all cases. The presence of a heteroatom in the aldehyde 2-position again has a marked effect, leading to significantly higher equilibrium constants for adduct formation.\[23\] The kinetic data gives an insight into the origin of this trend. For example, the rate of NHC addition into 2-methoxybenzaldehyde 2 is over 2.5

Table 2: Measurement of rate and equilibrium constants for 3-(hydroxybenzyl)azolium adduct formation.\[15\]

Entry	Ar	k_1 [M$^{-1}$s$^{-1}$]	k_diss [s$^{-1}$]	K_{eq} [M$^{-1}$]	$K_{\text{eq}}^{\text{rev}}$ [M$^{-1}$]
1	Ph	1.52 × 10$^{-2}$	4.76 × 10$^{-5}$	319	394
2	4-FC$_6$H$_4$	4.89 × 10$^{-2}$	9.45 × 10$^{-5}$	383	433
3	4-MeOC$_6$H$_4$	1.28 × 10$^{-2}$	3.09 × 10$^{-5}$	414	555
4	2,6-(MeO)$_2$C$_6$H$_3$	1.07 × 10$^{-2}$	≤ 1.01 × 10$^{-7}$	> 1 × 10$^{-5}$	7034
5	Mes	3.85 × 10$^{-2}$	1.25 × 10$^{-5}$	3082	3414

[a] Starting concentrations: aldehyde 13 (0.04 mM), NHC pre-catalyst (0.04 mM) in CD$_2$OD and 0.18 mM Et$_3$N·Et$_3$N·HCl (2:1) buffer at 15 °C. [b] Calculated through fitting of reaction profiles.

Table 3: Measurement of rate and equilibrium constants for 3-(hydroxybenzyl)azolium adduct dissociation.\[14\]

Entry	Ar	k_1 [M$^{-1}$s$^{-1}$]	k_diss [s$^{-1}$]	$K_{\text{eq}}^{\text{rev}}$ [M$^{-1}$]	1/$K_{\text{eq}}^{\text{rev}}$ [M$^{-1}$]
1	Ph	3.33 × 10$^{-4}$	5.14 × 10$^{-2}$	6.47 × 10$^{-3}$	155
2	4-FC$_6$H$_4$	3.94 × 10$^{-4}$	8.76 × 10$^{-2}$	4.50 × 10$^{-2}$	222
3	4-MeOC$_6$H$_4$	1.22 × 10$^{-4}$	2.76 × 10$^{-1}$	4.42 × 10$^{-2}$	226
4	2,6-(MeO)$_2$C$_6$H$_3$	ND	ND	ND	ND
5	Mes	5.34 × 10$^{-2}$	9.90 × 10$^{-2}$	5.40 × 10$^{-4}$	1852

[a] Starting concentrations: 3-(hydroxybenzyl)azolium adduct (0.04 mM) in CD$_2$OD and 0.18 mM Et$_3$N·Et$_3$N·HCl (2:1) buffer at 25 °C.
times faster than addition into benzaldehyde 5, and over ten times as fast as addition into 4-methoxybenzaldehyde (Table 4, entries 1–3). A similar trend is seen comparing intramolecular Stetter substrate 13 with its 4-substituted analogue, demonstrating that the 2-substituent effect is not purely electronic in nature (Table 4, entries 4 and 5). In both cases the rate of the reverse process is also up to five times slower for 2-substituted benzaldehydes, reflecting the increased stability of these adducts. The importance of the heteroatom substituent is highlighted by the use of an analogue of 13 without the oxygen atom linker and 2- and 4-tolualdehyde, which all give equilibrium and rate constants comparable with benzaldehyde 5 (Table 4, entries 6–8). However, even in this case the rate of NHC addition into 2-tolualdehyde is nearly twice as fast as addition into 4-tolualdehyde (although the effect is smaller compared with heteroatom substituents).

Further kinetic analysis of the reaction profiles following the decreasing concentrations of the 3-(hydroxybenzyl)azonium adducts over time allow estimation of the pseudo first-order rate constants for deprotonation (k₂, s⁻¹) into the transiently formed Breslow intermediates (Table 4). The rate constants for deprotonation are of the same order of magnitude for all the aldehydes, including those containing a 2-substituent. Unlike the observed substituent effect on the first step (k₁ and K), the observed order of reactivity on k₂ reflects normal through-bond electronic effects on carbon acidity where electron-donating groups on the aldehyde decrease the rate of deprotonation. This is in agreement with our previous observations of normal electronic effects of the NHC N-aryl substituent on this deprotonation step. Rate constants for deuterium exchange at the benzyl position of O-methylated 3-(hydroxybenzyl)azonium adducts were observed to decrease in the presence of electron-donating substituents (for example, 2-MeO) on the N-aryl ring.

Table 4: Measurement of rate and equilibrium constants using substituted benzaldehydes.[a]

Entry	Ar	k₁	k₂	k₃	K[eq]
1	Ph	1.33×10⁻²	1.17×10⁻⁵	11.4	9.45×10⁻⁶
2	2-MeOC₆H₄	3.44×10⁻⁴	2.92×10⁻⁶	118	5.67×10⁻⁶
3	4-MeOC₆H₄	2.86×10⁻⁵	1.49×10⁻⁵	1.92	1.50×10⁻⁶
4	2-ROC₆H₄	4.79×10⁻⁵	2.98×10⁻⁵	161	9.87×10⁻⁶
5[a]	4-ROC₆H₄	3.58×10⁻⁵	1.00×10⁻⁵	3.58	–
6[b]	2-R(O)C₆H₄	8.87×10⁻⁵	1.31×10⁻⁵	6.76	–
7	2-MeC₆H₄	1.15×10⁻⁵	7.82×10⁻⁶	14.7	3.59×10⁻⁶
8	4-MeC₆H₄	6.71×10⁻⁵	1.11×10⁻⁵	6.02	4.57×10⁻⁶

[a] Starting concentrations: aldehyde (0.04 m), NHC precatalyst 9 (0.04 m) in CD₃OD and 0.18 m Et₃N·HCl (2:1) buffer at 25°C.
[b] Reaction monitored at 15°C. [c] R = E-CH₂CH=CHCOOEt.

Scheme 3. a) Cross-benzoin reaction; b) competition experiment; c) possible chemoselectivity determining steps in the cross-benzoin reaction.
reaction with benzaldehyde 5 owing to the previously described 2-substituent effect. However, the increased steric hindrance around the nucleophilic carbon of 41 compared with 40 may decrease its relative rate of addition sufficiently to explain the formation of cross-benzoin 37.[25]

Alternatively, NHC dissociation from tetrahedral intermediate 43 may be slow compared with 42, again resulting in preferential formation of cross-product 37. This would be consistent with the measured rate constants for dissociation \(k_{1} \) of the related 3-(hydroxybenzyl)azolium adducts in which a 4-fold difference was observed (Table 4, entries 1 and 2). However, accumulation of intermediates such as 42 and 43 have not been observed in any of our NMR experiments to date, or in earlier NMR studies by Leeper and White of the thiazoium-catalyzed benzoin reaction,[11a] suggesting a faster rate of breakdown relative to the rate of formation from the relevant Breslow intermediate and aldehyde. Furthermore, monitoring reactions of NHC precatalyst 11 with either 37 or 38 gave about 10% retro-benzoin products but no observable products consistent with formation of the corresponding tetrahedral adducts.[26] Additionally, a control experiment reacting NHC precatalyst 11 with acetophenone gave no observable products, suggesting that any NHC-ketone adducts formed rapidly dissociate. Therefore, it seems more likely that the chemoselectivity in cross-benzoin reactions is benzaldehydes bearing a 2-heteroatom substituent is clearly reacting NHC precatalyst 2). However, accumulation of intermediates such as date, or earlier NMR studies by Leeper and White of the rate of breakdown relative to the rate of formation from the Angew. Chem.

In conclusion, measurements of equilibrium and rate constants for the reaction of triazolium NHC precatalysts with substituted benzaldehydes to give 3-(hydroxybenzyl)-azolium adducts under both catalytic and stoichiometric conditions have been made. The results obtained from kinetic analysis and fitting data for both the forward and backwards processes show that nucleophilic addition into benzaldehydes bearing a 2-heteroatom substituent is particularly fast. By contrast, smaller substituent effects are observed on the rate of deprotonation of 3-(hydroxybenzyl)azolium adducts, which fall within the same order of magnitude regardless of aldehyde substitution. The results offer insight into the apparent inconsistency over the second aldehyde addition in cross-benzoin reactions, overturning the assumption that 2-substituted benzaldehydes are less reactive based upon steric arguments.

Keywords: 2-substituent effect · kinetics · mechanistic studies · N-heterocyclic carbenes · organocatalysis

How to cite: Angew. Chem. Int. Ed. 2015, 54, 6887–6892

Angew. Chem. 2015, 127, 6991–6996

[1] a) D. Enders, O. Niemeier, A. Henseler, Angew. Chem. 2007, 107, 5606–5655; b) N. Marion, S. Díez-Gonzalez, S. P. Nolan, Angew. Chem. Int. Ed. 2007, 46, 2988–3000; Angew. Chem. 2007, 119, 3046–3058; c) E. M. Phillips, A. Chan, K. A. Scheidt, Aldrichimica Acta 2009, 42, 55–66; d) A. T. Bijia, N. Kuhl, F. Glorius, Acc. Chem. Res. 2011, 44, 1182–1195; e) H. U. Vora, T. Rovis, Aldrichimica Acta 2011, 44, 3–11; f) X. Bugaust, F. Glorius, Chem. Soc. Rev. 2012, 41, 3511–3522; g) J. Izquierdo, G. E. Hutton, D. T. Cohen, K. A. Scheidt, Angew. Chem. Int. Ed. 2012, 51, 11686–11698; Angew. Chem. 2012, 124, 11854–11866.

[2] J. R. deAlaniz, T. Rovis, Synlett 2009, 1189–1207.

[3] J. Streufert, Synlett 2013, 24, 276–280.

[4] For selected recent examples, see: a) D. Enders, A. Grossmann, J. Fronert, G. Raahe, Chem. Commun. 2010, 46, 6282–6284; b) T. Emi, K. Akihara, R. Obayashi, T. Sakai, Adv. Synth. Catal. 2012, 354, 3283–3290; c) C. A. Rose, S. Gundala, C. L. Fagan, J. F. Franz, S. J. Connon, K. Zeitler, Chem. Sci. 2012, 3, 735–740; d) K. Thai, S. M. Langdon, F. Bilodeau, M. Gravel, Org. Lett. 2013, 15, 2214–2217.

[5] a) H. Stetter, G. Dambkes, Synthesis 1977, 403–404; b) S. M. Mennen, I. J. Miller, J. Org. Chem. 2007, 72, 5260–5269; c) S. E. O’Toole; C. A. Rose, S. Gundala, K. Zeitler, S. J. Connon, J. Org. Chem. 2011, 76, 347–357; d) C. A. Rose, S. Gundala, S. J. Connon, K. Zeitler, Synthesis 2011, 190–198; e) I. Piel, M. D. Paweleczky, K. Hirano, R. Froehlich, F. Glorius, Eur. J. Org. Chem. 2011, 5475–5484; f) M. Y. Jin, S. M. Kim, H. Han, D. H. Ryu, J. W. Yang, Org. Lett. 2011, 13, 880–883; g) M. Y. Jin, S. M. Kim, H. Mao, D. H. Ryu, C. E. Song, J. W. Yang, Org. Biomol. Chem. 2014, 12, 1547–1550; h) S. M. Langdon, M. M. D. Wilde, K. Thai, M. Gravel, J. Am. Chem. Soc. 2014, 136, 7539–7542.

[6] P. Dunkelmann, D. Kolter-Jung, A. Nitsche, A. S. Demir, P. Siegert, B. Lingen, M. Baumann, M. Pohl, M. Müller, J. Am. Chem. Soc. 2002, 124, 12084–12085.

[7] For examples of cross-benzoin reactions from 2,2-diamino enols, see: a) A. Berkesell, S. Elfert, V. R. Yatham, J. M. Neudorfl, J. H. Schlöhr, J. H. Teles, Angew. Chem. Int. Ed. 2012, 51, 12370–12374; Angew. Chem. 2012, 124, 12537–12541.

[8] a) R. Breslow, J. Am. Chem. Soc. 1958, 80, 3719–3726; b) R. Breslow, E. McNelis, J. Am. Chem. Soc. 1959, 81, 3080–3082; c) R. Breslow, R. Kim, Tetrahedron Lett. 1994, 35, 699–702.

[9] Y. T. Chen, G. L. Barletta, K. Haghjoo, J. T. Cheng, F. Jordan, J. Org. Chem. 1994, 59, 7714–7722.

[10] a) J. Kiss, R. D. Dsouza, H. Spiegelw, Helv. Chim. Acta 1968, 51, 325–339; b) A. Berkesell, S. Elfert, K. Etzenbach-Elffers, J. H. Teles, Angew. Chem. Int. Ed. 2010, 49, 7120–7124; Angew. Chem. 2010, 122, 7275–7279; c) D. A. DiRocco, K. M. Oberg, T. Rovis, J. Am. Chem. Soc. 2012, 134, 6143–6145; d) B. Maji, M. Horn, H. Mayr, Angew. Chem. Int. Ed. 2012, 51, 6231–6235; Angew. Chem. 2012, 124, 6335–6339; e) B. Maji, H. Mayr, Angew. Chem. Int. Ed. 2012, 51, 10408–10412; Angew. Chem. 2012, 124, 10554–10558; f) A. Berkesell, V. R. Yatham, S. Elfert, J. M. Neudorfl, Angew. Chem. Int. Ed. 2013, 52, 11158–11162; Angew. Chem. 2013, 125, 11364–11369; g) A. Berkesell, S. Elfert, Adv. Synth. Catal. 2014, 356, 571–578.

[11] a) J. I. Collett, R. S. Massey, O. R. Maguire, A. S. Batsanov, A. C. O'Donoghue, A. D. Smith, Chem. Sci. 2013, 4, 1514–1522. See the Supporting Information for full details and all reaction profiles.

[12] For kinetic studies on the benzoin reaction, see: a) M. J. White, F. J. Leeper, J. Org. Chem. 2001, 66, 5124–5131; b) O. Holločzki, Z. Kelemen, L. Nyúlszí, J. Org. Chem. 2012, 77, 6014–6022;
c) while this work was under review, Gravel et al. published a DFT and experimental study concerning NHC-catalyzed cross-Benzoin processes: S. M. Langdon, C. Y. Legault, M. Gravel, J. Org. Chem. 2015, 80, 3597–3610.

[14] For mechanistic studies on the Stetter reaction, see: a) K. J. Hawkes, B. F. Yates, Eur. J. Org. Chem. 2008, 5563–5570; b) D. A. DiRocco, T. Rovis, J. Am. Chem. Soc. 2011, 133, 10402–10405; c) J. M. Um, D. A. DiRocco, E. L. Noey, T. Rovis, K. N. Houk, J. Am. Chem. Soc. 2011, 133, 11249–11254; d) J. L. Moore, A. P. Silvestri, J. R. de Alaniz, D. A. DiRocco, T. Rovis, Org. Lett. 2011, 13, 1742–1745; e) D. A. DiRocco, E. L. Noey, K. N. Houk, T. Rovis, Angew. Chem. Int. Ed. 2012, 51, 2391–2394; Angew. Chem. 2012, 124, 2441–2444.

[15] NHC precatalysts 3 and 11 gave full conversion into the product in less than 5 min and therefore could not be examined further.

[16] A correction factor to account for hemiacetal formation was required to accurately determine aldehyde concentrations. The formation of 3-deutero 3-(hydroxybenzyl)azolium adducts were also observed, presumably through deuteration of the transiently formed Breslow intermediate. See the Supporting Information for details.

[17] The same trends were observed at 25 °C, indicating that kinetic analysis up to adduct equilibrium remains valid in cases where Stetter product formation is more significant. See the Supporting Information.

[18] Rate and equilibrium constants for dissociation were also obtained from fitting analysis. See the Supporting Information.

[19] a) R. S. Massey, C. J. Collett, A. G. Lindsay, A. D. Smith, A. C. O’Donoghue, J. Am. Chem. Soc. 2012, 134, 20421–20432; b) D. E. Tucker, P. Quinn, R. S. Massey, C. J. Collett, D. J. Jasiewicz, C. R. Bramley, A. D. Smith, A. C. O’Donoghue, J. Phys. Org. Chem. 2015, 28, 108–115.

[20] a) B. Maji, M. Breugst, H. Mayr, Angew. Chem. Int. Ed. 2011, 50, 6915–6919; Angew. Chem. 2011, 123, 7047–7052; b) F. Ragone, A. Poater, L. Cavallo, J. Am. Chem. Soc. 2010, 132, 4249–4258.

[21] This is consistent with the work of Bode et al. on the effect of the N-Mes substituent in NHC reactions with enals; see: J. Mahattthananchai, J. W. Bode, Chem. Sci. 2012, 3, 192–197.

[22] The reactions of benzaldehyde 5 with a range of NHC precatalysts show the same trends as previously, suggesting that the effect of the N-aryl NHC substituent is independent of aldehyde substitution. See the Supporting Information.

[23] Whilst the trends in K^{eq} are same between the reactions performed in CD$_2$OD and CD$_3$Cl, quantitative comparisons cannot be made owing to the different concentrations and temperatures.

[24] An alternative mechanism in which Breslow intermediate 41 reacts with benzaldehyde 5 to form an adduct (analogous to 42/43) that undergoes a 1,2-hydride shift to eliminate the NHC would also lead to major product 37. This mechanism has been ruled out based upon a deuteration experiment. See the Supporting Information for details.

[25] Scheidt et al. have recently proposed a similar argument to explain the poor reactivity of 2-substituted benzaldehydes in thiazolium-catalyzed acylium additions into aza-ortho-quinone methides; see: M. T. Hovey, C. T. Check, A. F. Sipher, K. A. Scheidt, Angew. Chem. Int. Ed. 2014, 53, 9603–9607; Angew. Chem. 2014, 126, 9757–9761.

[26] This is also in agreement with data from White and Leeper, which show that the second-order rate constant for the thiazolium-catalyzed retro-benzoin is 28-fold slower than the analogous rate constant for the forward reaction of benzaldehyde. See Ref. [13a].

[27] Wölfenden and Jencks have shown that 2-substituted benzaldehydes have unexpectedly high rate and equilibrium constants for benzaldehyde semicarbazide formation; see: R. Wölfenden, W. P. Jencks, J. Am. Chem. Soc. 1961, 83, 2763–2768.