Neurological Manifestations of SARS-CoV-2 Infection: Protocol for a Sub-analysis of the COVID-19 Critical Care Consortium Observational Study

Denise Battaglini1,2†, Lavienraj Premraj3,4, Matthew Griffee5, Samuel Huth4,6, Jonathon Fanning4,6, Glenn Whitman7, Diego Bastos Porto8, Rakesh Arora4,9, Lucian Durham11, Eric Gnall12,13, Marcelo Amato14, Virginie Williams15, Alexandre Noel15, Sabrina Araujo De Franca16, Gordan Samoukovic16, Bambang Pujo17, David Kent18, Eva Marwali19, Abdulrahman Al-Fares20,21, Stephanie-Susanne Stecher22, Mauro Panigada23, Marco Giani24,25, Giuseppe Foti24,25, Paolo Pelosi1,26†, Antonio Pesenti22,27, Nicole Marie White28, Gianluigi Li Bassi4,6,29, Jacky Suen4, John F. Fraser4,30, Chiara Robba1,26†, Sung-Min Cho31 and the COVID-19 Critical Care Consortium†

† Anesthesia and Intensive Care, San Martino Policlinico Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) for Oncology and Neurosciences, Genoa, Italy; 1 Department of Medicine, University of Barcelona, Barcelona, Spain; 2 Griffith University School of Medicine, Gold Coast, QLD, Australia; 3 Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia; 4 Department of Anesthesiology and Perioperative Medicine, University of Utah, Salt Lake City, UT, United States; 5 Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia; 6 Division of Neuroscience Critical Care, Departments of Neurology, Neurosurgery, and Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States; 7 Hospital Sao Camilo de Esteio, Esteio, Brazil; 8 Section of Cardiothoracic Surgery, Department of Surgery, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada; 9 Cardiac Sciences Program, St. Boniface Hospital, Winnipeg, MB, Canada; 10 Department of Surgery, Division of Cardiothoracic Surgery, Medical College of Wisconsin, Milwaukee, WI, United States; 11 Division of Cardiovascular Diseases, Lankenau Medical Center and Lankenau Institute of Medical Research, Wynnewood, PA, United States; 12 Jefferson Medical College, Philadelphia, PA, United States; 13 Laboratório de Pneumologia LM-09, Disciplina de Pneumologia, Heart Institute (Incor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil; 14 Équipe de Recherche en Soins Intensifs (ERESI), Research Centre, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l’île-de-Montréal, Hôpital du Sacré-Coeur-de-Montréal, 5400 boulevard Gouin Ouest, K-3000, Montreal, QC, Canada; 15 Division of Critical Care Medicine, McGill University Health Centre, Montreal, QC, Canada; 16 Department of Anesthesiology and Reanimation, Dr. Scetomo Academic Hospital, Surabaya, Indonesia; 17 Institute for Clinical Research and Health Policy Studies, Tufts Medical Center/Tufts University School of Medicine, Boston, MA, United States; 18 Pediatric Cardiac Intensive Care Division, National Cardiovascular Center Harapan Kita, Jakarta, Indonesia; 19 Kuwait Extracorporeal Life Support Program, Ministry of Health, Kuwait City, Kuwait; 20 Department of Anesthesia and Critical Care Medicine, Al-Amir Hospital, Kuwait City, Kuwait; 21 Department of Medicine 2, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany; 22 Department of Anesthesia and Critical Care, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy; 23 Emergency Department, Azienda Socio Sanitaria Territoriale (ASST) Monza - San Gerardo Hospital, Monza, Italy; 24 University of Milano-Bicocca, Milan, Italy; 25 Department of Surgical Sciences and Integrated Diagnostics, University of Genova, Genoa, Italy; 26 Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy; 27 Australian Centre for Health Services Innovation, Centre for Healthcare Transformation, School of Public Health and Social Work, Queensland University of Technology, Brisbane, QLD, Australia; 28 Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; 29 Adult Intensive Care Services, The Prince Charles Hospital, Brisbane, QLD, Australia.

Introduction: Neurological manifestations and complications in coronavirus disease-2019 (COVID-19) patients are frequent. Prior studies suggested a possible association between neurological complications and fatal outcome, as well as the existence of potential modifiable risk factors associated to their occurrence. Therefore,
INTRODUCTION

Coronavirus disease 2019 (COVID-19) presents with a wide spectrum of symptoms, from mild to severe, up to sequential organ failure and multiple-organ dysfunction (1). Reports of neurological manifestations associated with COVID-19 are increasing in the literature (2, 3). COVID-19 neurological signs can involve either the central nervous system (CNS), peripheral nervous system (PNS), or musculoskeletal system. Fatigue, myalgia, impaired sense of smell and taste, and headache are common neurological manifestations of COVID-19 (4, 5), whereas dizziness, confusion, delirium, agitation, stroke, hypoxic ischemic injury, seizures, encephalitis and coma among others have been reported neurological complications of hospitalized patients (4, 5). In some cases, neurological manifestations have been reported even without a primary respiratory involvement (4, 5). Several explanations have been proposed for the cause of neurological symptoms of COVID-19, but the underlying pathophysiology is not well defined. Putative mechanisms include viral neurotropism, a hyperinflammatory and hypercoagulable state, or pathological brain–lung crosstalk (6). Endothelial dysregulation (7–9) and pro-thrombotic state (10–12) have been widely suspected to be the possible main contributors of the increased risk of neurologic events. Indeed, COVID-19 patients are at high risk of hypoxia, hypotension, and microvascular abnormalities (13–15) which can promote neuroinflammation and excitotoxicity and increased permeability of the blood brain barrier (16). The risk is even more increased by the use of extracorporeal membrane oxygenation (ECMO) support that is a salvage option in COVID-19 critically ill patients with refractory hypoxemia (17). Prior studies suggested a possible association between neurological complications and mortality (18), but more information is required to delineate this association with respect to regional variation, as well as the risk factors associated to the occurrence of neurological complications (19). The aim of this study is to estimate the incidence of neurological complications in critically ill COVID-19 patients. Associations between neurological complications, patient-level variables and outcomes will also be assessed.

METHODS AND ANALYSIS

Study Design

This is a pre-planned sub-analysis of a large international multicenter observational study of patients in participating intensive care units (ICUs) with COVID-19 of the COVID-19 Critical Care Consortium incorporating the ExtraCorporeal Membrane Oxygenation for 2019 novel Coronavirus Acute Respiratory Disease (ECMOCARD). The collaborative consists of investigators from the Asia-Pacific extracorporeal life support organization (APELSO) in collaboration with centers within the SPRINT-SARI and International Severe Acute Respiratory and emerging Infection Consortium (ISARIC) Network. In Australia, this study is also supported by collaboration with the “National registry on the treatment and outcomes of patients requiring ECMO” (EXCEL Registry). A panel of 13 experts

Abbreviations: APELSO, Asia-Pacific extracorporeal life support organization; BMI, body mass index; CNS, central nervous system; COVID-19, Coronavirus disease 2019; CT, computed tomography; ECMO, extracorporeal membrane oxygenation; ECMOCARD, ExtraCorporeal Membrane Oxygenation for 2019 novel Coronavirus Acute Respiratory Disease; eCRF, electronic case report form; ICU, intensive care unit; IRB, institutional review board; ISARIC, International Severe Acute Respiratory and emerging Infection Consortium; MRI, magnetic resonance images; mRS, modified Rankin scale; NSE, neuron specific enolase; PNS, peripheral nervous system.

The aim to describe neurological complications in critically ill COVID-19 patients and to assess the associated risk factors, and outcomes. Adult patients with confirmed COVID-19, admitted to Intensive Care Unit (ICU) will be considered for this analysis. Data collected in the COVID-19 Critical Care Consortium study includes patients’ pre-admission characteristics, comorbidities, severity status, and type and severity of neurological complications. In-hospital mortality and neurological outcome were collected at discharge from ICU, and at 28-days.

Ethics and Dissemination: The COVID-19 Critical Care Consortium main study and its amendments have been approved by the Regional Ethics Committee of participating sites. No further approval is required for this secondary analysis.

Trial Registration Number: ACTRN12620000421932.

Keywords: COVID-19, neurological complications, disability, stroke, neurological outcome
in neurocritical care was created in 2020 together with the main protocol of the COVID-19 Critical Care Consortium by the Steering committee of the consortium. The planed this subanalysis and the electronic case report form (eCRF) in February 2020 and followed it up through monthly meeting. The study will be conducted in compliance with the STrengthening the Reporting of OBServational studies in Epidemiology (STROBE) (20) (Supplementary Item 1). Trial registration number: ACTRN12620000421932.

Objectives
The primary objective is to identify and describe the type and incidence of neurological complications in COVID-19 patients before and after admission to ICU, for all ICU patients selected patient subgroups (sex, age, country, treatment, COVID-19 wave).

Secondary objectives include: To evaluate the effect of neurological complications on outcomes after COVID-19, i.e., mortality, duration of ICU and hospital stay, neurological outcome (modified Rankin scale, mRS) at discharge, incidence of delirium and cognitive outcome at discharge. To identify factors related to the occurrence of neurological complications (including neurological injury due to the antiviral therapy).

Specific Sub-analysis
Secondary sub-analyses will also include the investigation of (1) magnetic resonance images (MRI) or computed tomography (CT) features; (2) serum biomarkers [neuronal injury markers (S100B, neuron specific enolase, NSE), endothelial dysfunction markers, inflammatory markers].

Inclusion and Exclusion Criteria
The COVID-19 Critical Care Consortium included all COVID-19 patients (≥18 years) admitted to ICU for receiving critical care with confirmed or suspected COVID-19 respiratory disease. For this specific sub-analysis, further inclusion criteria will be available data on neurological complications/manifestations. Patients treated with mechanical ventilation or ECMO for other causes than COVID-19 will be excluded.

Study Procedures and Setting
The protocol of the main study has been previously published (21). Participants in the COVID-19 Critical Care Consortium Observational Study are recruited at multiple sites in over 52 countries from 1st January 2020 onwards.

Data Collection
Data collection started from the commencement of COVID-19 pandemic and is planned to continue until completion of COVID-19 pandemic, as judged by the World Health Organization. According to the COVID-19 Critical Care Consortium Observational Study protocol (21) and neurological sub-study protocol, the following data will be collected: general patient characteristics, age, gender, body mass index (BMI), country, previous chronic comorbidities, scores of severity; premorbid scores [modified Rankin scale (0–6 points), Figure 1; new neurological complications, laboratory findings, imaging, and management of neurological complications (Supplementary Item 2); patient outcome (mortality at discharge, at 28-days, withdrawal of life-saving therapy and reason; mRS at ICU discharge, mRS at 28 days after discharge). Main eCRF of the COVID-19 critical care consortium study and neuro sub-study are provided in the Supplementary Items 3, 4.

Data Management
Data are stored in the central online eCRF database managed by the Oxford University in anonymized form, in order to preserve confidentiality of information in medical records. The Username and password will be assigned by the Oxford University during the registration process for individual Research Coordinators or Site Investigators. All electronic data transfer between study site and database will be username and password protected. The Participant List of the Neurology sub-study is maintained locally and is not to be transferred to any other location. Confidentiality of the participant will be maintained unless disclosure is required by law.

Data entry and management will be coordinated by ISARIC and ECMOCARD steering committee, including programming and data management support. ANZIC-RC and ISARIC will act as custodian of the data. The University of Queensland (Australia) will receive data from the data custodians via data sharing agreements. The management committee of the trial will take responsibility for the content and integrity of any data.

Definition of Neurological Complications
Definition of neurological complications (23–32) is listed in Table 1.

Statistical Analysis Plan
Planned analyses will comprise of descriptive summaries and regression-based methods for estimating associations between patient-level variables, neurological complications, and outcomes. Descriptive statistics for summarizing the study cohort will be presented as medians with interquartile ranges and frequencies with percentages for continuous and categorical variables, respectively. As an observational study, missing data are expected; a data completeness summary will accompany descriptive summaries for all variables considered. The incidence of neurological complications will be calculated as the number of events per 1,000 ICU days and as the number of events divided by the total number of ICU admissions. Incidence will be estimated per complication using logistic and Poisson regression; Poisson models will include patient days as an offset to account for varying ICU exposure. Baseline models will be adjusted for patient-level variables (e.g., sex, age, country) and calendar time to account for the timing of different COVID-19 waves. Additional covariates will be informed by univariate analysis and penalized regression techniques to address the secondary objective related to incidence.

Analysis of associations between neurological complications and clinical outcomes will be examined using generalized linear mixed models for binary outcomes and parametric survival models for time-to-event outcomes. Evidence of potential associations, including patient demographics and clinical signs assessed during ICU admission, will initially be assessed using
FIGURE 1 | Modified Rankin Scale (mRS). The Modified Rankin Score (mRS) is a 6-point disability scale with possible scores ranging from 0 to 6 (from 0 = no symptoms to 6 = dead). A score of 0–3 indicate mild to moderate disability and a score of 4–5 indicate severe disability. From Wade (22).

TABLE 1 | Definition of neurological complications/manifestations.

Neurological complication	Definition
Central nervous system	
Ischemic stroke (23)	Neurological deficit due to an acute focal injury in the central nervous system caused by vascular involvement such as occlusion and cerebral infarction.
Intracranial hemorrhage (23, 24)	Bleeding that occurs inside the skull. Hemorrhagic stroke: neurological deficit due to an acute focal injury in the central nervous system caused by vascular involvement with intracerebral or subarachnoid hemorrhage. Subdural hematoma: collection of blood under the dura mater.
Encephalitis/meningitis (25)	Severe inflammatory disorder of the brain or meninges or parenchyma.
Transverse myelitis and other spinal cord pathologies (26)	Inflammatory disorder with acute or subacute motor-sensory and autonomic spinal cord dysfunction.
Epilepsy, seizures, and generalized convulsive status epilepticus (27, 28)	Epilepsy is a disorder of the brain characterized by an enduring predisposition to generate epileptic seizures, and by neurobiological, cognitive, psychological, and social consequences. Seizure is a transient occurrence of signs and/or symptoms due to abnormal excessive or synchronous neuronal activity in the brain. Generalized convulsive status epilepticus is defined in adults and children older than 5 years as ≥5 min of (1) continuous seizure or (2) two or more discrete seizures between which there is incomplete recovery of consciousness.
Delirium (29)	Acute change in consciousness and attention caused by an organic condition.
Peripheral nervous system	
Guillain-Barré Syndrome (30)	Inflammatory immune-mediated polyradiculoneuropathy with acute onset that manifests with tingling, progressive weakness, autonomic disfunction and pain.
Critical illness myopathy/neuropathy (31)	Neuromuscular weakness in the intensive care setting.
Hypogeusia/hyposmia (32)	Quantitative disorders characterized by reduction of taste or smell.
Others	
Hypoxic-ischemic brain injury (33)	Reduction in blood supply, oxygen supply or utilization that determines a decreased oxygen delivery to the brain and post cardiac arrest hypoxic ischemic brain injury (reduction in blood supply, oxygen supply or utilization that determines a decreased oxygen delivery to the brain due to cardiac arrest).

univariate analysis. Results of univariate analysis will be used to inform variable selection for multivariable analysis. Multivariable models for all study objectives will be adjusted for known confounders as fixed or random effects, including study center, country, and calendar time. Model results will be presented as odds ratios (binary outcomes), relative risks (count outcomes) or hazard ratios (time-to-event outcomes) with 95% confidence intervals and p-values from hypothesis tests as appropriate.

Study Status

The protocol version is 1.2.8 of the COVID-19 Critical Care Consortium Observational Study available at https://www.elso.
Incidence and Types of Neurological Manifestations and Complications of COVID-19

The importance of investigating neurological manifestations in COVID-19, assessing their risk factors, and association with outcome is justified by the increasing identification in the available literature of many studies which reported high morbidity and mortality and poor neurological outcome in COVID-19 patients who manifest neurological complications, with the need for identifying and investigating such alterations in a bigger cohort of COVID-19 critically ill patients. Indeed, regarding each of the identified neurological manifestations of COVID-19, the data are fragmentary and come from different small cohorts. Myalgia, dysgeusia, and taste dysfunction were frequently reported (33% of cases), altered mental status in 32%, headache 29%, encephalopathy 26%, alteration of consciousness 13%, stroke 12%, dizziness 10%, vision impairment 6%, intracerebral hemorrhage, 5%, seizure 4%, encephalitis 2%, and GBS 1% (35). Intracranial hemorrhage was identified in 477 patients with a prevalence of 0.85% and a mortality of 52% suggesting a very poor prognosis despite rare incidence (36). The prevalence of intracranial hemorrhage, ischemic stroke, and hypoxic ischemic brain injury was higher in patients with COVID-19 who underwent ECMO support (5.9%) with a mortality of 92% (17). Acute disseminated encephalomyelitis and acute hemorrhagic leukoencephalitis have been reported in 46 patients with COVID-19 only, of whom 32% died (37).

Risk Factors for Neurological Manifestations and Complications of COVID-19

Regarding risk factors and association of neurological manifestations with outcome, a systematic review revealed that patients who suffer from a severe COVID-19 have more CNS involvement, neurological symptoms, and association with stroke. More severe patients had higher D-dimer and C-reactive protein levels than non-severe patients and presented multiple organ involvement (38). Myalgia, acute cerebrovascular disease, elevated creatin kinase, and lactate dehydrogenase were associated with more severe disease (3), while delirium on admission is a good predictor of mortality outcome in COVID-19 (39). In a cohort of 1,072 patients, age, headache at presentation, preexisting neurologic disease, invasive mechanical ventilation, and neutrophil/lymphocyte ratio ≥ 9 were independent predictors of new neurologic complications (40). In another study, the CT lung disease severity score was predictive of acute abnormalities on neuroimaging in patients with COVID-19 with neurologic manifestations (41). In a retrospective analysis, previous neurological history did not impact mortality, whereas new neurological manifestations were predictors of death (42). In a large cohort of 3,055 COVID-19 patients, preexisting neurological disorders were associated with higher risk of developing new neurological manifestations (2).
Outcome of COVID-19 Patients With Neurological Manifestations and Complications

Patients affected by COVID-19 with neurological manifestations were noted to have an impaired quality of life in 49% of cases, with a residual disability at 6-months in 52%, impaired cognition in 69%, and persistence of anxiety and depression in 32% (43). Neurological outcome in 135 patients with COVID-19 at 3-months follow-up was impaired (44), and a significant patient number still suffer from neurological sequelae 1 year after SARS-CoV-2 infection (45). A large multicentric study investigating delirium in 4,530 COVID-19 patients revealed that acute brain dysfunction was highly prevalent and prolonged in critically ill patients with COVID-19, with benzodiazepines and lack of family visitation identified to be risk factors for its development (46). After 6 months, in a cohort of 236,379 patients with COVID-19, neurological and psychiatric manifestations had an estimated incidence of 33.62 and 12.84%, respectively (47). Clinical outcome was evaluated in a cohort of 267 patients, concluding that patients with cerebrovascular disease had the worst prognosis (48).

Potential Pitfalls and Unintended Effects of This Study

Taken together, a large number of case reports and case series, despite coming mainly from small cohorts and local studies raise interest around the need for clarification about type and incidence of COVID-19 neurological manifestations, risk factors, and association with outcome on large scale, thus encouraging to better plan for possible management and therapeutics for neurological complications in critically ill COVID-19 patients. A limitation of current available data in the literature is that most of the data come from small cohorts, that could be addressed by using the larger COVID-19 Critical Care Consortium. Our study is unique in a way that we can address both limitations by studying the questions with international cohort with granular neurological variables. According to the design of our study, no unintended effects are expected. However, some limitations should be addressed. Being an observational study, it can be exposed to bias and confounding. Additionally, it cannot be used to demonstrate causality.

CONCLUSIONS

In conclusion the present study will provide new information on a global scale regarding the incidence and type of neurological complications, risk factors, and associated outcomes in COVID-19 with clinical applications.

ETHICS STATEMENT

The study will be conducted in compliance with the current version of the COVID-19 Critical Care Consortium and Neurologic sub-study protocol. Protocol version and subsequent amendment will be submitted and approved by the Local Ethics Committee in compliance to national standards. Sites wishing to participate will be required to provide the COVID-19 Critical Care Consortium Research Coordinator with an Institutional Review Board (IRB) approval certificate. The regulations of the COVID-19 Critical Care Consortium state that this study will not require individual patient consent as an observational study. Data of this study is already recorded as part of routine clinical care, therefore justifying participant enrolment using a waiver of consent. However, for any location that deems individual consent necessary, informed consent will be managed in accordance with the local regulations of each involved IRB. In particular, in patients who meet the inclusion/exclusion criteria, informed consent will be obtained directly from the patient, either before the study or retrospectively in case the patient is unconscious at the time of enrolment. If the patient is unable to provide a consent form upon admission, informed consent will be obtained by his/her next of kin.

AUTHOR CONTRIBUTIONS

DB drafted the manuscript and planned the methodology and the outcomes. S-MC and CR revised the manuscript and supervised the methodology and outcomes. DB, LP, MGr, SH, JE, GW, DBR, RA, LD, EG, MA, VW, AN, SD, GS, BP, DK, EM, AA-E, S-SS, MP, MGi, GF, PP, AP, NW, GL, JS, CR, and S-MC helped in the revision and methodology and approved the final version. All authors contributed to the article and approved the submitted version.

FUNDING

This study was supported by the Bill & Melinda Gates Foundation, Grant number INV-034765; The University of Queensland; The Wesley Medical Research; The Prince Charles Hospital Foundation; The Health Research Board of Ireland. GL was a recipient of the BITRECS fellowship; the BITRECS project has received funding from the European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement no. 754550 and from the La Caixa Foundation (ID 100010434), under the agreement LCF/PR/GN18/50310006. JS was funded by the Advance Queensland fellowship program.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fmed.2022.930217/full#supplementary-material
40. Flores-Silva FD, García-Grimshaw M, Valdés-Ferrer SI, Vigueras-Hernández AP, Domínguez-Moreno R, Tristán-Samaniego DP, et al. Neurologic manifestations in hospitalized patients with COVID-19 in Mexico City. PLoS ONE. (2021) 16:e0247433. doi: 10.1371/journal.pone.0247433
41. Mahammedi A, Ramos A, Rargalló N, Gaskill M, Kapur S, Saba L, et al. Brain and lung imaging correlation in patients with COVID-19: could the severity of lung disease reflect the prevalence of acute abnormalities on neuroimaging? A global multicenter observational study. Am J Neuroradiol. (2021) 42:1008–16. doi: 10.3174/ajnr.A7072
42. Salahuddin H, Afreen E, Sheikh IS, Lateef S, Dawod G, Daboul J, et al. Neurological predictors of clinical outcomes in hospitalized patients with COVID-19. Front Neurol. (2020) 11:585944. doi: 10.3389/fneur.2020.585944
43. Chaumont H, Meppiel E, Roze E, Tressières B, de Broucker T, Lannuzel A. Long-term outcomes after NeuroCOVID: a 6-month follow-up study on 60 patients. Rev Neurol. (2022) 178:137–43. doi: 10.1016/j.neurol.2021.12.008
44. Rass V, Beer R, Schiefecker AJ, Kofler M, Lindner A, Mahlknecht P, et al. Neurological outcome and quality of life 3 months after COVID-19: a prospective observational cohort study. Eur J Neurol. (2021) 28:3348–59. doi: 10.1111/ene.14803
45. Rass V, Beer R, Schiefecker AJ, Lindner A, Kofler M, Ianosi BA, et al. Neurological outcomes 1 year after COVID-19 diagnosis: a prospective longitudinal cohort study. Eur J Neurol. (2022) 29:1685–96. doi: 10.1111/ene.15307
46. Pun BT, Badenes R, Heras La Calle G, Orun OM, Chen W, Raman R, et al. Prevalence and risk factors for delirium in critically ill patients with COVID-19 (COVID-D): a multicentre cohort study. Lancet Respir Med. (2021) 9:239–50. doi: 10.1016/S2213-2600(20)30552-X
47. Taquet M, Geddes JR, Husain M, Luciano S, Harrison PJ. 6-month neurological and psychiatric outcomes in 236 379 survivors of COVID-19: a retrospective cohort study using electronic health records. Lancet Psychiatry. (2021) 8:416–27. doi: 10.1016/S2215-0366(21)00084-5
48. Ross Russell AL, Hardwick M, Jeyanantham A, White LM, Deh S, Burnside G, et al. Spectrum, risk factors and outcomes of neurological and psychiatric complications of COVID-19: a UK-wide cross-sectional surveillance study. Brain Commun. (2021) 3:fcab168. doi: 10.2139/ssrn.3767901

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Battaglini, Premraj, Griffee, Huth, Fanning, Whitman, Bastos Porto, Arora, Durham, Gnall, Amato, Williams, Noel, De Franca, Samoukovic, Pujo, Kent, Marrwali, Al-Fares, Stecher, Panigada, Gians, Foti, Pelosi, Pesenti, White, Li Bassi, Suen, Fraser, Robba, Cho and the COVID-19 Critical Care Consortium. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
APPENDIX

Prefix/First Name/Last Name	Site Name
Eugeni Roure	The University of Queensland, Australia
Marta Roure	The Queensland Brain Institute, The University of Queensland, St. Lucia, QLD, Australia
Fatima Nasrallah	School of Clinical Sciences and Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Queensland, Australia
Katie McMahon	Royal Brisbane and Women’s Hospital, Herston, Queensland, Australia
Judith Bellapart	Erasmus Hospital, Free University of Brussels, Evere, Belgium
Fabio Silvio Taccone	Al Adan Hospital
Tala Al-Dabbous	Allegheny General Hospital
Huda Altoudri	Avera McKennan Hospital & University Health Centre
Mohammed Shamsah	Barmeriheizer Bruder Regensburg
Subbarao Elapavalu	Baylor Scott & White Health
Ashley Berg	Bergamo Hospital
Christina Horn	Beth Israel Deaconess Medical Centre
Yunis Mayasi	Box Hill Hospital
Stephen Schroll	Caboolture Hospital
Dan Meyer	Canberra Hospital
Jorge Velasco	Carillion Clinic
Ludmyla Ploskanych	Chiba University Graduate School of Medicine
Wanda Fikes	Chonnam National University Hospital
Richini Bagewadi	Cleveland Clinic- Abu Dhabi
Marvin Dao	Cleveland Clinic - Florida
Haley White	Cleveland Clinic - Ohio
Atodria Berrios Lavenina	Clinica Las Condez
Ashley Ehlers	Clinica Pasteur National- University of Comahue
Maysoon Shalabi-McGuire	Clinica Valle De Lili
Trent Witt	Medial ICU, Columbia College of Physicians and Surgeons, New-York-Presbyterian Hospital, NY, NY, USA
Lorenzo Graziolesi	Dr Sulaiman Alhabib Medical Group – Research Center, Riyadh, Saudi Arabia
Luca Lorini	Emory University Healthcare System
E. Wilson Grandin	Fatmawati Hospital
Jose Nunez	Fondazione IRCCS Policlinico of Milan (Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico)
Tiago Reyes	Fondazione Policlinico Universitario
Diamuod O’Brian	Agostino Gemelli IRCCS
Stephanie Hunter	Fujioka University
Mahesh Ramanan	Fundación Cardiovascular de Colombia
Julia Affleck	Galway University Hospitals
Hernandez Hurkadli Veerendra	Geelong Hospital
Sumeet Rai	Glenfield Hospital
Josie Russell-Brown	Gold Coast University Hospital
Mary Nourse	Grote Schuur Hospital
Mark Joseph	Hamad General Hospital – Weill Cornell Medical College in Qatar
Brock Mitchell	Jernej Cupido
Martha Tenzer	Zainap Fanie
Ryuizo Abe	Malcolm Miller
Hwa Jin Cho	Lisa Seymore
In Seok Jeong	David Cosgrave
Nadeem Rahman	Allison Bone
Vivek Kakar	Yusuf Hakeem
Nicolas Brozzi	James Winears
Omar Mehkri	Mandy Talott
Sudhir Krishnan	David Thomson
Abhijit Duggal	Christel Arnold-Day
Stuart Houtham	Jerome Cupido
Jeronimo Graf	Zainap Fanie
	Mandy Talott
	David Thomson
	Christel Arnold-Day
	Jerome Cupido
	Zainap Fanie
	Malcolm Miller
	Lisa Seymore
	David van Straaten
	Ali Alt Hassan
	Jeffrey Aludin
	Al-Reem Alqahani
	Khoulod Mohamed
	Ahmed Mohamed
	Darwin Tan
	Joy Villanueva
	Ahmed Zaqout
	Ethan Kurtzman
	Aroon Ademi

(Continued)
Continued

Prefix/First Name/Last Name	Site Name
Ana Dobrita	Hartford HealthCare
Khadija El Aoudi	Hasan Sadikin Hospital (Adult)
Julet Segura	Hiroshima University
Gezy Giwangkancana	Hospital Alemán
Shinricho Ohshimo	Hospital Civil Marie Curie
Javier Osatnik	Hospital Clinic, Barcelona
Anne Joosten	Hospital Clinic, Barcelona
Antoni Torres	Hospital Clinic, Barcelona
Minlan Yang	Hospital Clinic, Barcelona
Ana Motos	Hospital Clinic, Barcelona
Carlos Luna	Hospital de Clínicas
Francisco Arancia	Hospital del Tórax
Virginie Williams	Hospital du Sacre Coeur (Université de Montreal)
Alexandre Noel	Hospital Emergencia Ate Vitarte
Nestor Luque	Hospital Mater Dei
Marina Fantini	Hospital Nuestra Señora de Gracia
Ruth Noemi Jorge García	Hospital Puerta de Hierro
Enrique Chicote Alvarez	Hospital Universitari Sagrat Cor
Anna Greti	Hospital Universitario Sant Joan d’Alacant
Adrian Ceccato	Hospital Universitario Virgen de Valme
Angel Sanchez	Hospital Verge de la Cinta de Tortosa
Ana Loza Vazquez	Houston Methodist Hospital
Ferran Roche-Campo	INCOR (Universidade de São Paulo)
Diego Franck-Liasat	INNOVA Fairfax Hospital
Divina Tuazon	ISMETT
Marcelo Amato	Johns Hopkins
Luciana Cassimiro	Kakogawa Acute Care Medical Center
Flavio Pola	Keimyung University Dong San Hospital
Francisco Ribeiro	Kikusui Chuo Hospital
Guilherme Fonseca	Klinikum Passau
Heidi Dallon	Kouritu Tousei Hospital
Mehul Desai	Al-Amri and Jaber Al-Ahmed Hospitals, Kuwait Extracorporeal Life Support Program
Hala Deeb	Kyoto Medical Centre
Antonio Arcadipane	Kyoto Prefectural University of Medicine
Gennaro Martucci	Kyung Pook National University Chilgok Hospital
Giovanna Panarello	Medicine University Vienna
Chiara Vitiello	Medical Department II, LMU Hospital
Claudia Bianco	Medical Education Center (Main Line Health)
Giovanna Occhipinti	MedStar Washington Hospital Centre
Matteo Rossetti	Medical College of Wisconsin (Froedtert Hospital)
Raffaele Cuffaro	Mayo Clinic of Washington D.C.
Sung-Min Cho	Mayo Clinic of Washington D.C.
Glenn Whitman	Mayo Clinic of Wisconsin (Froedtert Hospital)
Hiroki Shimizu	Medical University of Vienna
Naoki Moriyama	Medical University of Vienna
Jae-Byun Kim	Medical University of Vienna
Nobuya Kitamura	Medical University of Vienna
Johannes Gebauer	Medical University of Vienna
Yoshiki Yokoyama	Medical University of Vienna
Abdulrahman Al-Fares	Medical University of Vienna
Sarah Buabias	Medical University of Vienna
Ebas Alamad	Medical University of Vienna
Fatma Alawadhi	Medical University of Vienna
Kalthour Alawadi	Medical University of Vienna
Hiro Tanaka	Medical University of Vienna
Satoru Hashimoto	Medical University of Vienna
Masaki Yamazaki	Medical University of Vienna
Tak-Hyuck Oh	Medical University of Vienna
Mark Epler	Medical University of Vienna
Cathleen Forney	Medical University of Vienna

Continued
Prefix/First Name/Last Name	Site Name
Taku Tanaka	Nagoya University Hospital
Eva Marwali	National Cardiovascular Center
Yoel Purnama	Harapan Kita, Jakarta, Indonesia
Santi Rahayu Dewayantti	
Ardiyan	
Dafsah Arifa Juzar	National Taiwan University Hospital
Debby Siqian	Nemours Alfred I duPont Hospital for Children
Yih-Shang Chen	North Estonia Medical Centre
Mark Ogino	
Indrek Ratsep	
Andrea-Maris Post	
Piret Silaots	
Arnie Krun	
Merli-Helen Lehishe	
Tanel Lepik	Northwell Health
Frank Manetta	
Effe Mihelis	
Iam Claire Sarmiento	
Mangala Narasimhan	
Michael Varmone	
Mamoru Komats	
Julia Garcia-Diaz	
Catherine Harmon	
S. Veena Satyapriya	
Amar Bhatt	
Nahash A. Mokadam	
Alberto Uribe	
Alicia Gonzalez	
Haixia Shi	
Johnny McKeown	
Joshua Pasek	
Juan Florida	
Marco Echeverria	
Rita Moreno	
Bishop Zakhrany	
Marco Cavana	
Alberto Cucino	
Giuseppe Fori	
Marco Giani	
Benedetta Fumagalli	
Davide Chiumello	
Valentina Castagna	
Andrea Dell’Amore	
Paolo Navalesi	
Hoi-Ping Shurn	
Alain Vuysteke	
Asad Usman	
Andrew Acker	
Benjamin Smood	
Blake Mergler	
Federico Sertic	
Madhu Subramanian	
Alexandra Sperry	
Nicolas Rizer	
Erlina Burhan	
Menalidi Rasmin	
Ermita Akmal	
Faya Stompul	
Navy Lalong	
Bhat Navedh	
Simon Erickson	
Peter Barrett	
David Dean	

(Continued)
Prefix/First Name/Last Name	Site Name
Tamara Seitz	Sozialmedizinisches Zentrum Süd – Kaiser-Franz-Josef-Spital
Rakesh Arora	St Boniface Hospital (University of Manitoba)
David Kent	St Christopher’s Hospital for Children
Daniel Marino	St George Hospital
Swapnil Panwar	
Andrew Cheng	
Jennene Miller	
Shigeki Fujitani	
Naoki Shimizu	
Jai Madhok	
Clark Owyang	
Hergen Buscher	
Claire Reynolds	
Olavi Maasikas	
AleksanBeljantsev	
Vladislav Mithnovits	
Takako Akimoto	
Marko Aizawa	
Kanako Horibe	
Ryota Onodera	
Carol Hodgson	
Aidan Burrell	
Meredith Young	
Timothy George	
Kiran Shekar	
Niki McGuinness	
Lacey Irvine	
Brigid Flynn	
Tomoyuki Endo	
Kazuhiro Sugiyama	
Keiki Shimizu	
Eddy Fan	
Kathleen Exconde	
Shingo Ichiba	
Leslie Lussier	
Gösta Lotz	
Maximilian Malfertheiner	
Lars Maier	
Esther Dreier	
Neurinda Permata Kusumastuti	
Colin McCloskey	
Al-Awwab Dabalz	
Tarek B Elshazty	
Josiah Smith	
Konstanty S. Szuldrzynski	
Piotr Bialoński	
Yusuff Hakeem	
Keith Willie	
Srinivas Murthy	
Ken Kujit S. Parhar	
Kirsten M. Fiest	
Cassidy Codian	
Anmol Shahid	
Mohamed Fayed	University of California, San Francisco-Fresno Clinical Research Centre
Timothy Evans	University of Chicago
Rebekah Garcia	University of Cincinnati Medical Centre
Ashley Gutierrez	University of Florida
Hiroaki Shizimu	University of Iowa
Tae Song	
Rebecca Rose	
Suzanne Bennett	
Denise Richardson	
Giles Peek	
Lovkesh Arora	
Kristina Rapaport	
Kristina Rudolph	
Zita Sibenaller	
Lori Stout	
Alicia Walter	
Daniel Herr	University of Maryland - Baltimore
Nazv Vedladi	University of Michigan Medical Center
Robert Bartlett	University of Milan
Antonio Pasenti	University of Nebraska Medical Centre
Shaun Thompson Julie Hoffman	University of Oklahoma Health Sciences Centre (OU)
Xiaomian Ying	Faculty of Medicine, University of Tripoli
Ryan Kennedy	University of Utah Hospital
Muhhammed Ehiadi	Vall d’Hebron University Hospital, Barcelona
Matthew Griffin	Washington University in St. Louis/ Barnes Jewish Hospital
Anna Ciullo	Yokohama City University Medical Center
Yuri Kida	COVID-19 Critical Care Consortium
Ricard Ferrer Poca	
Jordi Riera	
Sofia Contreras	
Cynthia Alegre	
Christy Kay	
Irene Fischer	
Elizabeth Renner	
Hayato Taniguci	
John Fraser	
Gianluigi Li Bassi	
Jacky Suen	
Adrian Barnett	
Nicole White	
Kristen Gibbons	
Simon Forsyth	
Amanda Corley	
India Paease	
Samuel Hinton	
Gabriella Abbate	
Halah Hassan	
Silver Heinsar	
Varun A Karnik	
Katrina Ki	
Hollier F. O’Neill	
Nchafatso Obonyo	
Leticia Pretti Pimenta	
Janice D. Reid	
Kei Sato	
Kiran Shekar	
Aapeli Vuorinen	
Karin S. Wildi	
Emily S. Wilson	
Stephanie Yerkovich	
James Lee	
Daniel Piotkin	ISARIC, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
Barbara Wanjiru Citarella	
Laura Merson	

(Continued)