EXTERNAL SCIENTIFIC REPORT

Food of plant origin: production methods and microbiological hazards linked to food-borne disease.

Reference: CFT/EFSA/BIOHAZ/2012/01 Lot 2
(Food of plant origin with low water content such as seeds, nuts, cereals, and spices)

Evelyn Hackla, Alexandra Ribaritsb, Nives Angererb, Markus Gansbergerb, Christine Hözla, Cornelia Konlechnera, Jutta Taferner-Krieglb, Angela Sessitscha

a: AIT Austrian Institute of Technology GmbH, Bioresources Unit
b: Austrian Agency for Health and Food Safety GmbH (AGES)

ABSTRACT

Food-borne diseases caused by food of non-animal origin (FoNAO) contaminated with pathogenic bacteria, viruses and parasites are a major health concern worldwide. The present study was set up as an extensive literature review aimed at evaluating biological hazards associated with FoNAO with low water content. Data were extracted from 315 publications to identify the most critical FoNAO/pathogen combinations. The number and severity of outbreaks of disease provided the basis for a primary evaluation, and qualitative criteria relating to pathogen prevalence, food/pathogen interaction, and the production of FoNAO items were used for defining three priority groups. Level one priority worldwide was assigned to “seeds for sprouting and sprouted seeds” in combination with both \textit{Salmonella} spp. and pathogenic \textit{E. coli}, respectively. Priority two was attributed to rice/\textit{Bacillus cereus} and baby corn/\textit{Shigella sonnei} for EU countries, while for non-EU countries nuts combined with either \textit{Salmonella} spp. or pathogenic \textit{E. coli} were rated as grade two priority. Level 3 priority was assigned to nuts/\textit{Salmonella} spp. for EU countries and baby corn/\textit{Shigella sonnei} and pepper/\textit{Salmonella} spp. for non-EU countries. The study provides an extensive scientific database that will be instrumental in the conceptualization of specific measures for preventing and efficiently controlling outbreaks of disease linked to FoNAO.

© AIT Austrian Institute of Technology GmbH and Austrian Agency for Health and Food Safety GmbH (AGES)

KEY WORDS

Food borne outbreak, food of non animal origin (FoNAO), food/pathogen combination, biological hazard, pathogen, extensive review

DISCLAIMER

The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.

1 Question No EFSA-Q-2013-00082.
Any enquiries related to this output should be addressed to biohaz@efsa.europa.eu

Suggested citation: AIT Austrian Institute of Technology GmbH and Austrian Agency for Health and Food Safety GmbH (AGES): Food of plant origin: production methods and microbiological hazards linked to food-borne disease. Reference: CFT/EFSA/BIOHAZ/2012/01 Lot 2 (Food of plant origin with low water content such as seeds, nuts, cereals, and spices). Supporting Publications 2013:EN-403. [160 pp.]. Available online: \texttt{www.efsa.europa.eu/publications}

© European Food Safety Authority, 2013
SUMMARY

Food-borne diseases caused by pathogenic bacteria, viruses and parasites are a major health concern worldwide. Although traditionally food of animal origin has been primarily implicated in outbreaks, incidences caused by contaminated food of non-animal origin (FoNAO) have been increasing, reflecting rising consumers’ demands for fresh and minimally processed fruit and vegetables. This highlights the need for an in-depth evaluation and characterization of the hazards posed by contaminated FoNAO.

The present study was set up as an extensive literature review addressing biological hazards associated with FoNAO with low water content. Search strategies were defined a priori and involved systematic searches in bibliographic databases and grey literature sources. Thereby, pathogenic bacteria, viruses and parasites that have been found associated with FoNAO with low water content were identified on a worldwide level and were further characterised regarding their prevalence and colonization behaviour. Reports on food-borne outbreaks caused by biological hazards encompassing the last ten years were compiled. Critical steps in the production and processing of the FoNAO items concerned were determined, and consumption patterns as well as trade volumes from third countries into the European Union were assessed. In total, 7710 entries (Lot1 and Lot2) from scientific databases were retrieved and 51 grey literature sources were taken into account. Following screening according to a set of relevance and quality criteria, this resulted in 315 publications used for collecting data and extracting them into an Excel-based compendium of tables.

A synopsis of the collective data set was formed for prioritising FoNAO/pathogen combinations. While the number and severity of outbreaks of disease provided the basis for a primary evaluation, qualitative criteria relating to pathogen prevalence and their colonization behaviour as well as to the production of FoNAO items were used for defining three priority groups. Level one priority worldwide was assigned to “seeds for sprouting and sprouted seeds” in combination with Salmonella spp. and to pathogenic E. coli on/in sprouts. Priority two was attributed to rice/Bacillus cereus and baby corn/Shigella sonnei for EU countries, while for non-EU countries nuts combined with either Salmonella spp. or pathogenic E.coli were rated as grade two priority. Level three priority was assigned to nuts/Salmonella spp. for EU countries and baby corn/Shigella sonnei and pepper (black/red)/Salmonella spp. for non-EU countries. The study provides a broad scientific database that will be instrumental in the conceptualization of specific measures for improving the safety of FoNAO. Ultimately, it may contribute to the prevention and a better control of food borne diseases.
TABLE OF CONTENTS

Abstract ... 1
Key words .. 1
Summary ... 2
Table of contents .. 3
Background as provided by EFSA .. 4
Terms of reference as provided by EFSA .. 5
1. Introduction ... 7
2. Objectives and Research Questions .. 9
3. Materials and Methods ... 11
 3.1. Overall research strategy .. 11
 3.2. Extensive literature review .. 11
 3.2.1. Searches in bibliographic databases and other literature sources 13
 3.2.2. Screening abstracts for relevance ... 13
 3.2.3. Quality assessment .. 14
 3.2.4. Data extraction .. 14
 3.3. Search strategy used within thematic area (A) Microbiological hazards 14
 3.3.1. Development of a keyword-list of food items (FoNAO with low water content) 15
 3.3.2. Search regarding “hazard identification” (A1) ... 16
 3.3.3. Search regarding “pathogen prevalence” (A2) .. 18
 3.3.4. Search regarding “food/pathogen interaction” (A3) .. 22
 3.3.5. Search regarding “hazard characterization” (A4) .. 24
 3.4. Search strategy used within thematic area (B) Production ... 25
 3.5. Search strategy used within thematic area (C) Consumption .. 27
 3.6. Methodology for ranking FoNAO/pathogen combinations (thematic area D) 29
 3.6.1. Method development .. 29
 3.6.2. Evaluation based on outbreak data .. 29
 3.6.3. Evaluation based on multiple qualitative criteria .. 30
4. Results .. 32
 4.1. (A) Microbiological hazards that may contaminate FoNAO with low water content 32
 4.1.1. Hazard identification (A1) .. 32
 4.1.2. Hazard prevalence and enumeration data (A2) .. 34
 4.1.3. Food/pathogen interaction (A3) .. 36
 4.1.4. Hazard characterization (A4) .. 38
 4.2. (B) Production methods and trade volumes of FoNAO with low water content from third
countries to the European Union ... 40
 4.3. (C) Consumption of FoNAO with low water content .. 41
 4.4. (D) Ranking of food/Pathogen combinations ... 43
5. Conclusions .. 50
6. References ... 52
7. List of Tables .. 75
8. List of Figures ... 77
9. Appendices ... 78
 A. Appendix Specific to Thematic Area A ... 78
 B. Appendix Specific to Thematic Area B ... 114
 C. Appendix Specific to Thematic Area C .. 155
 D. Appendix Specific to Thematic Area D .. 157

Supporting publications 2013:EN-403

The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European food safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.
BACKGROUND AS PROVIDED BY EFSA

In May 2011 a major outbreak of STEC O104 infections occurred in Germany. More than 4,000 people were reported ill with symptoms and the outbreak resulted in the death of more than 46 people. Other countries reported a small number of people becoming ill by the same strain, most of whom had recently visited the region of northern Germany where the outbreak occurred. At the end of June, there was a second outbreak in Bordeaux, France, which was caused by the same E. coli strain. In both cases, investigations implicated sprouted seeds.

According to the 2009 European Union Summary Report on trends and sources of zoonoses, zoonotic agents and food borne outbreaks, the majority of verified outbreaks in the EU were associated with foodstuffs of animal origin. Fruit and vegetables were implicated in 43 (4.4 %) verified outbreaks. These outbreaks were primarily caused by frozen raspberries contaminated with norovirus. In addition, 8.1 % outbreaks were associated with mixed or buffet meals where foods of plant origin could not be excluded.

According to the US Centre for Disease Control and Prevention (CDC) 2008 report on surveillance for food borne disease outbreaks, the two main commodities associated with most of the outbreak-related illnesses originating from food of plant origin were fruits-nuts and vine-stalk vegetables. One of the main pathogen-commodity pair responsible for most of the outbreaks was norovirus in leafy vegetables. The pathogen-commodity pairs responsible for most of the outbreak-related illnesses were Salmonella in vine-stalk vegetables and Salmonella in fruits-nuts. In addition, in September 2011, a multistate outbreak of listeriosis linked to cantaloupe melon caused 29 deaths in the US.

These outbreaks indicate the need to consider more specific measures for food of plant origin. Thus, EFSA wants to outsource preparative work of an extensive search of scientific and technical literature for future activities related to risk posed by pathogens in food of plant origin.

Regulation (EC) No 852/2004 on the hygiene of foodstuffs lays down general hygiene requirements to be respected by food businesses at all stages of the food chain. All food business operators have to comply with requirements for good hygiene practice in accordance with this Regulation, thus preventing the contamination of food of animal and of plant origin. Establishments other than primary producers and associated activities must implement procedures based on the HACCP principles to monitor effectively the risks. In addition to the general hygiene rules, several microbiological criteria have been laid down in Regulation (EC) No 2073/2005 for food of plant origin.

The overall objectives of the present contract work are as follows: to provide an extensive literature search of available data for microbiological hazards, that may contaminate food of plant origin in the food chain (from primary production to retail), which can be used for risk assessment activities such as hazard identification, hazard characterization and exposure assessment.

An extensive literature search must be structured in a way to identify as many relevant studies as possible. The fundamental aspects of an extensive literature search are the tailored search strategy/ies (i.e. combination of search terms and Boolean operators) and the extensive list of information sources used (i.e. bibliographic databases and other sources such as e.g. journal tables of content etc.). The process of extensive literature search is clearly reported to allow transparency and reproducibility. The output of extensive literature search is an extensive collection of evidence (to be screened for relevance). An extensive literature search followed by a study selection process should be performed by the tenderer(s), to produce a set of relevant evidence, in particular to identify specific food/pathogen combinations most often linked to food borne disease originating from food of plant origin.
TERMS OF REFERENCE AS PROVIDED BY EFSA

For Lot 2, the scope of the work is:

- To carry out an extensive literature search for available data on:
 (i) production methods (farming and processing including post-harvest practices such as cutting, washing and packaging) and trade volumes from third countries to the European Union of food of plant origin with high water content such as fruits, vegetables, juices and herbs;
 (ii) consumption of all food items considered for each subcategory of food of plant origin. Literature search on consumption data shall cover, for each food subcategory, where possible, age of consumers, amounts consumed (e.g. grams/day; grams/kg body weight/day) and how the food is consumed (e.g. raw, cooked). The approach used shall be consistent, as far as possible, with the Food Classification and Description System for exposure assessment used by EFSA
 (iii) microbiological hazards (bacteria, parasites and viruses) in the food chain (from primary production to retail) that may contaminate food of plant origin with high water content such as fruits, vegetables, juices and herbs in particular:
 - hazard identification,
 - hazard characterisation,
 - prevalence and enumeration data of foodborne pathogens as part of exposure assessment;
 (iv) specific food/pathogen combinations most often linked to foodborne disease originating from food of plant origin with high water content.

- Literature searches for data regarding point (ii) shall cover all European Union Member States (including EU candidate and pre-accession countries). For points (i), (iii) and (iv) literature shall be searched at worldwide level.

- Furthermore, the literature search should include published scientific articles and academic dissertations, proceedings of conferences as well as the grey literature (national and international reports, public health institute publications, project or research reports, unpublished reports e.g. from ongoing research projects, other documents, data published on web sites and any other source relevant to the subject under assessment).

- The literature search should be conducted including multiple bibliographic databases (e.g. PubMed, CAB abstracts, Web of Science, Medline, Scopus).

- The searches should cover at least the last 10 years and should be updated, as far as possible, throughout the entire duration of the resulting contract from this tender.

- The process used for the extensive literature searches should be clearly reported to allow transparency and reproducibility. EFSA should be provided with methodologies proposed for the:
 - extensive literature search (i.e. screening criteria used in the search proposal, how many experts will screen titles, abstracts and full text; expertise of the reviewers; whether the examination of the studies will be done independently by the reviewers; how potential disagreements on study eligibility will be solved);
 - criteria used to generate the structured tables summarising the data from the selected literature and
 - identification of specific food/pathogen combinations most often linked to foodborne disease originating from food of plant origin with high water content.
 - References not considered pertinent after the screening process should be listed and reasoning should be provided why these references were not considered pertinent. References for which full text could not be retrieved on time will also be listed.
This contract was awarded by EFSA to:

Contractor: AIT Austrian Institute of Technology GmbH in consortium with AGES (Austrian Agency for Health and Food safety)

Contract title: Food of plant origin: production methods and microbiological hazards linked to food-borne disease. (Food of plant origin with low water content such as seeds, nuts, cereals, and spices)

Contract number: CFT/EFSA/BIOHAZ/2012/01 – LOT 2 - CT 2
1. Introduction

Outbreaks of gastrointestinal disease caused by the consumption of raw or minimally processed vegetables contaminated with biological hazards have increasingly been reported worldwide and within the EU. This is partly due to consumers’ increased demands for fresh produce, and especially for ready-to-eat pre-cut vegetables and fruits. For implementing future activities for mitigating risks posed by pathogens in food of non-animal origin (FoNAO) we need to pin-point the microbiological hazards linked to food-borne disease implicating FoNAO. Thus, there is a need for identifying and characterizing the bacteria, viruses and parasites that may contaminate food of plant origin together with the identification of the food items concerned. In addition, data are required that allow thorough exposure assessment, considering for instance various subcategories of food and different groups of consumers.

The present study was carried out in the frame of an assignment for a tender responding to the invitation to open tender (Ref. CH/MH/cm (2012)-out-6206701) by the EFSA Biological Hazards Unit. This study relates to Lot 2 of the tender, and thus addresses risks regarding food of non-animal origin (FoNAO) with low water content (such as seeds, nuts, cereals, and spices), while FoNAO with high water content are dealt with in a separate study relating to Lot 1 of the same tender.

Classification of the food items considered in the present study follows the categorization of FoNAO commodities set up by EFSA. FoNAO items that were allocated to Lot 2 of the tender (addressing FoNAO with low water content) and thus were included in the present study are presented in Table 1. Basically, the individual commodities categorized by EFSA were assigned to either Lot 1 or Lot 2 of the assignment according to the water content of the respective food item as it is most frequently reported. Beverages such as cocoa, coffee, herb teas, and teas were allocated to Lot 2 because low water content items such as cocoa and coffee beans or dried tea leaves were held more important regarding biological contamination of the respective commodities. Food supplements and plant extracts were also included in Lot 2 because these commodities are most often used in dehydrated state.

By performing the present study we aimed to assist in the conceptualization of future activities that are needed for securing the microbiological safety of food of plant origin. We carried out extensive literature searches to provide a comprehensive dataset of the currently available information relating to biological hazards associated with FoNAO with low water content. We employed methods of the systematic literature review, involving that a structured literature search strategy was applied that was developed a priori. Data extraction into a database was accomplished following multi-phase reviewing of the retrieved scientific and grey literature, involving relevance screening of abstracts and quality assessment of full text literature.

The objectives and specific tasks of the present study are described in chapter 2, and the methods employed for completing the project tasks are presented in chapter 3. The study results are given in chapter 4, referring to the associated structured tables shown in the appendices A to D. Conclusions resulting from the study are summarized in chapter 5.
Table 1: Classification of commodities of FoNAO with low water content as included in the present study, based on BIOHAZ classification.

General commodity category	Specific categories	Examples of commodities
Dry legumes, cereals, edible seeds and grains, flours and products thereof	24. Cereals and dry legumes	Barley, buckwheat, fonio, maize (corn), millet, oats, quinoa, rye, sorghum, triticale, wheat
	25. Rice	
	26. Pasta	
	27. Other dry legumes, cereals, edible seeds and grains, flours and products thereof (processed products)	Bread, breakfast cereals, cornflakes flours, polenta, semolina, tortilla, various edible seeds
	28. Seeds for sprouting and sprouted seeds	Alfalfa, basil cress, broccoli, borage cress, chick peas, coriander, fennel, fenugreek, garden cress, garlic, leek, lemon cress, lentil, mung bean, onion, peas, radish, shiso, sunflower, wheat
	31. Nuts and nuts products	Almonds, chestnuts, coconut, hazelnuts, macadamia nut, nut bars, peanut, pistachio, walnut
	32. Spices and dry powdered herbs	Chilli, cumin, curry, nutmeg, pepper (black/white)
	33. Beverages*	Cocoa, coffee, herb teas, tea
	37. Other processed products	Canned bottled products
	39. Others	Food supplements, plant extracts

*including composite products such as chocolate made of the basic food commodities (e.g. cocoa, coffee beans)
2. Objectives and Research Questions

Following the objectives expressed in the tender specifications, the present study aimed (i) to carry out extensive literature searches, (ii) to provide summary reports on the currently available information, and (iii) to provide EFSA with a set of relevant evidence addressing points as detailed in the tender specifications.

Specific project tasks were formulated for research areas A, B, C, and D that were indicated in the tender specifications. Tasks within research areas A, B, and C were addressed by carrying out structured literature searches that were based on specific research questions (RQs). The collective dataset obtained via the searches was then used for addressing the tasks within research area D.

Area A. Identification and characterization of biological hazards associated with food of non-animal origin (FoNAO) with low water content.

Project tasks within research area A were to identify and characterize pathogenic bacteria, viruses, and parasites associated with FoNAO with low water content. This involved exploring the prevalence of the biological hazards found in association with FoNAO with low water content and collecting data on relevant food-borne outbreaks.

Associated RQs:
- Which bacteria, viruses, and parasites, have been found associated with the food items addressed (FoNAO with low water content)?
- What is the prevalence of the hazards identified in the food commodities?
- What are the growth characteristics/requirements of the hazards identified and what is their persistence under various conditions prevailing in the food commodities?
- What is the colonization/adhesion/internalization behaviour of the hazards identified in food of non-animal origin?
- Which outbreaks have been reported or otherwise addressed concerning the individual pathogens in association with the individual food commodities (FoNAO with low water content)?

Area B. Production methods (farming and processing including post-harvest practices such as cutting, washing and packaging) of FoNAO with low water content and information on trade volumes from third countries to the European Union.

The primary task within research area B was to identify FoNAO with low water content that were associated with biological hazard contamination. Then, critical steps in the production line of these FoNAO regarding contamination with biological hazards had to be investigated. In addition, data on trade volumes of the food items from third countries to the European Union had to be provided.

Associated RQs:
- Which food items (FoNAO with low water content) have been found associated with microbiological hazards regarding contamination by pathogenic bacteria, viruses or parasites?
- Which procedures are used for the production and processing of the food items identified, including agricultural practices and post-harvest procedures?
- What are the critical steps in the production and processing procedures that are linked to risks of biological contamination?
- What are the trade volumes of the food items identified from third countries to the European Union?
Area C. Consumption of FoNAO with low water content associated with biological pathogen contamination.
The principal project task within research area C was to collect consumption data of FoNAO with low water content, including, where possible, data on the age of consumers, amounts consumed (grams/day), and how the food is consumed (e.g. raw, cooked, meals).

Associated RQs:

- What amounts of the food items identified are consumed in countries of the European Union?
- When are the food items consumed (time of day, meal)?
- Where are the food items consumed (at home or in the public)?
- Which population groups (especially age groups) consume the food items identified and in what amounts?

Area D. Food/pathogen combinations that are most often linked to food borne disease originating from FoNAO with low water content.
The major project task within area D was to form a synopsis of the data retrieved in areas A, B, and C, involving that relevant information was extracted that allowed evaluating the most important food/pathogen combinations regarding criteria such as pathogen prevalence, outbreak data, risks introduced in food production, and consumption modes.

Evaluation of food/pathogen combinations should consider the following aspects:

- What are the criteria that define the relevance of the food/pathogen combinations identified as being most critical regarding human health issues?
- Which food/pathogen combinations can be identified as most critical in EU versus non-EU countries?
- How do the hazards identified affect human health?
- What are the outbreak incidences specifically for the set of hazards identified in combination with the set of food items identified?
3. Materials and Methods

3.1. Overall research strategy

The overall research strategy followed within the present study involved that a series of literature searches were performed, addressing the research questions that were defined in correspondence with the thematic areas given in the tender specifications (see chapter 2). Thus, the literature searches were aimed at identifying and characterizing biological hazards, exploring production methods, and collecting consumption data.

The individual searches performed were inter-related and built upon each other. Within each thematic area, a set of research questions formed the basis of the specific search strategy applied. The research questions determined the key words in the bibliographic searches, and they were also used to retrieve information by scanning the grey literature sources and by using various ad-hoc strategies. Finally, the research questions set the frame for the organization of the structured tables in the appendix section (Tables 12-31) presenting the results of the searches.

Specific search strategies were developed for the thematic areas A, B, and C (see below). Each search strategy was set up as a comprehensive overall plan for the entire search process, as defined in Zins (2000). The various searches consisted each of a sequence of interrelated actions, which determined the course of the searches and thus affected the final search results. Essential steps in the search process were to ask the right questions, then to proceed with the search while inferring optional outcomes of alternative actions, to evaluate the search results, and to eventually repeat and modify the process (Zins 2000). This means, for instance, that the lists of key words related to the food commodities and microbiological hazards addressed were defined during the course of the searches and were continuously extended to address the research questions as specifically as possible.

Searches within the research areas A, B, and C were carried out in bibliographic databases by using the systematic review methodology as well as via directed searches performed in various grey literature sources. Research area D was addressed by evaluating the collective search results as described in section 3.6. Thus, a synopsis of the data retrieved via multiple searches was formed as the final outcome of the study.

3.2. Extensive literature review

The principles of the “systematic literature review” (EFSA, 2010) were applied to fulfil the project tasks formulated for research areas A, B, and C. This involved that a protocol was developed a priori that defined in advance the research question and scope and the search methods, including the eligibility criteria for the inclusion of studies into the review. Thereby, biases in the selection of research studies were reduced and reproducibility of the search strategy was granted. Figure 1 illustrates the various steps of the reviewing process, comprising literature searches and screening procedures as well as data extraction and documentation.
Figure 1: Scheme of the extensive reviewing process, including the search strategy and underlying logistical operations.
3.2.1. Searches in bibliographic databases and other literature sources

Depending on the research question, one or several bibliographic databases were used for searching scientific literature, as indicated specifically for the individual research areas (Chapter 3.3 to 3.5).

In addition, hand searching of relevant sources was performed for the various research areas concerned, including the following strategies:

- screening of websites of relevant organizations (e.g., ECDC, CDC, WHO, ProChildren Project – see individual search descriptions for details)
- checking the tables of content of relevant journals or special issues of specific journals
- obtaining “related articles” suggested during searches in PubMed/Web of Knowledge
- searching relevant literature cited in comprehensive review articles in the respective fields
- including relevant articles found during other bibliographic searches in the collection of citations used in the abstract screening (e.g., articles about outbreaks found during the search for pathogen enumeration)

Searches were performed on a worldwide level, except for consumption data, which were retrieved only from EU countries. In all searches, publications from the last ten years were considered as relevant for the present study. The cut-off date for the searches, when no more literature entries were added to the database, was set with 31 October 2012.

3.2.2. Screening abstracts for relevance

A relevance screening tool consisting of short series of questions was applied to quickly determine if an article or other literature source was relevant to answer the research question. Hence, decisions about inclusion or exclusion of articles were made according to a pre-determined method. In the first reviewing process, only the titles and abstracts of the papers or other literature entries retrieved were screened. Separate relevance screening tools were designed for the various search strategies relating to research questions in topic (A) to (D).

The relevance screening was applied to data entries collected in a Zotero 3.0.8. database (http://www.zotero.org/; Roy Rosenzweig Center for History and New Media of the George Mason University, Virginia). Corresponding to the series of questions defined in the screening tool, number codes (“tags”) were assigned to the literature entries. Subsequently, the entries were sorted according to the codes applied, allowing distinguishing relevant from non-relevant entries and collecting entries for hand-searching or further screening of the full texts.

In the screenings performed for the searches A to C, specific codes were given according to the various exclusion criteria, and a specific code was applied for inclusion regarding the research question considered. In addition, a specific code was given if inclusion or exclusion could not be decided based on the abstract, so that full text screening or discussion in the panel were necessary.

As in some cases the articles retrieved were appropriate (also) for another research question than the one actually considered, additional codes were given for collecting these references in a hand-searching pool. This was done to ensure that the information obtained was not lost, even if eventually the same reference was also retrieved via specific bibliographic searches regarding the respective research question. In particular, review articles, which often referred to more than one research question, were collected in the hand searching pools. While review articles obtained via the various searches were not used for direct data extraction, they were used to retrieve the original articles containing relevant data.
Prior to running the reviewing process, the screening tool was validated for reliability and reproducibility by having two reviewers independently apply the same selection criteria to a randomly selected set of at least twenty studies. Eventually, the selection tool was further modified in order to yield reproducible and reliable results, and was then tested again as described above.

3.2.3. Quality assessment

Full text versions of all citations identified as relevant in the first reviewing process were obtained (as far as available to the contractor) and subjected to a quality assessment step, aimed at excluding studies whose quality was too low to provide meaningful data to address the research question. A predetermined method was established for assessing the eligibility and quality of the studies collected, and only studies that were of appropriate quality were used for data extraction.

The quality assessment tools (see appendix B) were used to explore the study quality. It was checked whether the study addressed the research question (e.g., microbiological hazard), if the study outcome (e.g., hazard identification or hazard characterization) was meaningful and whether the data presentation was conclusive. Moreover, the suitability of the study design was addressed. Hence, it was checked whether the type of study was appropriate to yield meaningful information for the present extensive literature review.

As in the first reviewing process, two reviewers performed a validation step by testing the quality assessment tool on a set of randomly selected studies prior to the assessment process.

Two reviewers assessed the quality of each study in both reviewing processes, with one reviewer being primarily responsible for the screening and the other reviewer holding controlling function. Any disagreements that arose (in spite of the prior validation step) were resolved in consensus among all reviewers or (if this was not possible) were finally resolved by the project lead.

3.2.4. Data extraction

Data from all articles considered relevant in the full text quality check were extracted into multiple tables set up in Excel data sheets addressing the thematic areas A to C. The format of the Excel database was defined a priori. Basically, it was designed for assembling the research findings (results), which were then transferred to the results section in the present report document. Thus, following the eligibility screenings executed on full texts, data from a final set of literature that fulfilled all selection criteria were extracted into structured tables.

Descriptive data on the studies and on the search process were collected from the Zotero database by sorting the literature entries according to the codes (corresponding to the various inclusion and exclusion criteria) applied in the screenings. These data were filled into flow diagrams for documentation of the various searches performed.

Zotero is fully compatible with the EndNote bibliographic software system, and thus allowed that the comprehensive reference lists were finally exported into the EndNote format as requested in the tender specifications.

3.3. Search strategy used within thematic area (A) Microbiological hazards

The search strategy employed within thematic area (A) was built on the four components “hazard identification” (A1), “prevalence” (A2), “food/pathogen interaction” (A3), and “hazard characterization” (A4), corresponding to four individual searches (see below). In the process of the searches, a keyword-list of food items (FoNAO with low water content) was set up, which was used for designing the search strategies applied within the various research areas.

The searches were performed independently in three databases, i.e.
3.3.1. Development of a keyword-list of food items (FoNAO with low water content)

Based on the FoNAO list provided by EFSA (see chapter 1), a list of keywords of food items identified as relevant regarding issues of biological contamination was developed. Results from the various searches within area A (see below) were used for generating the keyword list, which was continuously extended during the following searches. The keywords compiled comprised general categories, sub-categories and a detailed list of food items, and were subsequently used in the various bibliographic and other searches throughout the project.

Table 2: List of food commodities (FoNAO with low water content) for the use as key words in bibliographic searches, where either categories, sub-categories or individual commodities (detailed list) were applied.

Categories	seeds OR nuts OR cereals OR spices
Sub-categories	cereals OR dry legumes OR rice OR pasta OR seeds OR grains OR flours OR nuts OR spices OR dry powdered herbs OR vegetable oils OR products OR dried vegetables OR dried fruits OR food supplements OR plant extracts
Detailed list of food items	cereals OR dry legumes OR barley OR buckwheat OR fonio OR maize OR corn OR millet OR oats OR quinoa OR rye OR sorghum OR triticale OR wheat
OR	rice
OR	pasta
Food of plant origin with low water content

3.3.2. Search regarding “hazard identification” (A1)

The aim of search A1 was to establish a comprehensive list of pathogens (bacteria, viruses, and parasites) that have been found associated with FoNAO with low water content. Bibliographic searches were performed in the PubMed and WoK bibliographic databases by using eight different search strings (Table 3). Since search A1 was performed separately for FoNAO of low water content (addressed in the present report), Table 3 gives the search results (hits) in PubMed and WoK, respectively, referring only to these commodities. In addition, the numbers of merged hits from both databases (without duplicates) are shown.

By introducing exclusion criteria via the Boolean operator “not”, search results in both WoK and PubMed were narrowed down to those food items that were of non-animal origin (see Table 3). It was verified that no hits were missed that related to food items of both animal and non-animal origin.

In addition to the use of search engines as shown below, hand searching was performed on “related articles” listed with publications retrieved via PubMed. All articles within the Internet Journal of Food Safety (http://internetjfs.org/currentissues.html) available online were screened by title.

All hits retrieved via bibliographic searches and hand searching were subjected to relevance and (if selected) to subsequent full text screening by using the respective tools presented in Figures 2 and 3.

In the relevance screening, it was checked if the publications retrieved refered to either Lot 1 or Lot 2 (or to both lots), even though the searches were performed separately for both lots. Thus, the publications could be assigned codes for either of the lots or for both lots.

Table 3: Search A1 (hazard identification) for FoNAO with low water content in two bibliographic databases.

Search string	PubMed	Web of Knowledge	Hits (PubMed)	Hits (WOK)
#1 Microbiological quality OR microbial quality OR bacteriological quality [Title] AND food items** [all fields]; from 1992-2012	Microbiological quality OR microbial quality [Title] AND food items** [Topic]; from 1992-2012	19	173	
#2 *** examination [Title] AND food items **[all fields]; from 1992-2012	*** examination [Title] AND food items **[Topic]; from 1992-2012	1	5	
The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.
Data appropriate for insertion in results table.
- No pathogen incidence.
- No (relevant) pathogens analyzed according to list of pathogens\(^1\).
- Study type not appropriate
 (e.g., laboratory inoculation study, review\(^2\), statistical modelling study)
- Weak methodology or data presentation insufficient
 (e.g., inconsistent data, analysis of single samples)

\(^1\) This list was based on the searches “pathogen identification” and “pathogen prevalence” and includes the pathogens shown in Tables 12 to 14 in Appendix A.
\(^2\) Review articles were used to collect additional relevant articles that were not found via the bibliographic search, but they were not used for direct data extraction.

Figure 3: Full text screening tool for search A1 Hazard identification. *Review articles were used to collect additional relevant articles that were not found via the bibliographic search but were not used for direct data extraction.*

3.3.3. Search regarding “pathogen prevalence” (A2)

Search A2 was aimed at obtaining prevalence data of the pathogens identified in search A1, considering the complete list of food commodities given in Table 2. Other than in search A1, key words of FoNAO of both high and low water content were included in search A2 and all following searches. This was done to avoid redundancy in the search results, which often referred to FoNAO of both high and low water content (corresponding to Lot 1 and Lot 2 of the assignment). Search results were allocated to either Lot 1 or Lot 2 during the subsequent relevance check. Hence, Tables 4 and 5 show the numbers of hits referring to FoNAO of high and low water content, respectively. As for area A1, bibliographic searches within area A2 were carried out in the PubMed and Web of Knowledge databases. Search results from both databases were combined for each pathogen and duplicates were removed.

Depending on the pathogen concerned, some search strings contained exclusion criteria via the Boolean operator “not”. Search results were narrowed down to those relating to food items that were of non-animal origin in searches relating to *Campylobacter* sp., *Listeria* sp., *Shigella* spp. and *Salmonella* spp., which are commonly associated with animal-derived food commodities. In searches relating to *Staphylococcus aureus*, because this pathogen is often reported in a clinical context, results were excluded that referred to the respective pathogens in a clinical environment. Regarding searches involving *E. coli*, both exclusion criteria were used because of strong associations of pathogenic *E. coli* with food of animal origin and because of its high clinical relevance. It was verified that no relevant hits were missed by introducing the exclusion criteria (see Table 4, Table 5).
Table 4: Search A2/prevalence and enumeration data of pathogenic bacteria associated with FoNAO with high and low water content in two bibliographic databases.

Search string	Pubmed Key words, Boolean operators, Settings, Time frame	Web of Knowledge Key words, Boolean operators, Settings, Time frame	Hits (PubMed)	Hits (WOK)
#1	Food items A, B [all fields] AND bacillus cereus [all fields] AND prevalence [all fields]; from 2002-2012	Food items A, B [topic] AND bacillus cereus [topic] AND prevalence [topic]; from 2002-2012	53 (A)	104 (A)
			40 (B)	89 (B)
#2	Food items A, B [all fields] AND clostridium botulinum [all fields] AND prevalence [all fields]; from 2002-2012	Food items A, B [topic] AND clostridium botulinum [topic] AND prevalence [topic]; from 2002-2012	49 (A)	40 (A)
			23 (B)	29 (B)
#3	Food items A, B [all fields] AND clostridium perfringens [all fields] AND prevalence [all fields]; from 2002-2012	Food items A, B [topic] AND clostridium perfringens [topic] AND prevalence [topic]; from 2002-2012	53 (A)	75 (A)
			23 (B)	39 (B)
#4	Food items A, B [all fields] AND aeromonas [all fields] AND prevalence [all fields]; from 2002-2012	Food items A, B [topic] AND aeromonas [topic] AND prevalence [topic]; from 2002-2012	52 (A)	63 (A)
			23 (B)	29 (B)
#5	Food items A, B [all fields] AND campylobacter [all fields] AND prevalence [all fields] NOT (a) [all fields]; from 2002-2012	Food items A, B [topic] AND campylobacter [topic] AND prevalence [topic] NOT (a) [topic]; from 2002-2012	94 (A)	82 (A)
			18 (B)	36 (B)
#6	Food items A, B [all fields] AND Escherichia [all fields] AND prevalence [all fields] NOT (a),(b) [all fields]; from 2002-2012	Food items A, B [topic] AND Escherichia [topic] AND prevalence [topic] NOT (a),(b) [topic]; from 2002-2012	205 (A)	192 (A)
			52 (B)	99 (B)
#7	Food items A, B [all fields] AND (Enterobacter sakazakii OR Cronobacter) [all fields] AND prevalence [all fields]; from 2002-2012	Food items A, B [topic] AND (Enterobacter sakazakii OR Cronobacter) [topic] AND prevalence [topic]; from 2002-2012	26 (A)	33 (A)
			79 (B)	30 (B)
#8	Food item A,B [all fields] AND Listeria [all fields] AND prevalence [all fields] NOT (a) [all fields]; from 1992-2012	Food item A, B [topic] AND Listeria [topic] AND prevalence [topic] NOT (a) [topic]; from 1992-2012	71 (A)	147 (A)
			34 (B)	120 (B)
#9	Food item A,B [all fields] AND Salmonella [all fields] AND prevalence [all fields] NOT (a) [all fields]; from 2002-2012	Food item A, B [topic] AND Salmonella [topic] AND prevalence [topic] NOT (a) [topic]; From 2002-2012	315 (A)	231 (A)
			347 (B)	104 (B)
#10	Food item A,B [all fields] AND Shigella [all fields] AND prevalence [all fields] NOT (a) [all fields]; from 2002-2012	Food item A, B [topic] AND Shigella [topic] AND prevalence [topic] NOT (a) [topic]; from 2002-2012	57 (A)	62 (A)
			38 (B)	24 (B)
#11	Food item A,B AND Staphylococcus [all fields] AND prevalence [all fields] NOT (b) [all fields]; from 2002-2012	Food item A, B [topic] AND staphylococcus [topic] AND prevalence [topic] NOT (b) [topic]; from 1992-2012	206 (A)	152 (A)
			102 (B)	114 (B)

Supporting publications 2013:EN-403
Table 5: Search A2/prevalence and enumeration data of viruses and parasites associated with FoNAO with high and low water content in two bibliographic databases.

Search String	Pubmed Key words, Boolean operators, Settings, Time frame	Web of Knowledge Key words, Boolean operators, Settings, Time frame	Hits (PubMed)	Hits (WOK)
#1	Food item A, B AND vibrio [all fields] AND prevalence [all fields]; from 2002-2012	Food items A, B [topic] AND vibrio [topic] AND prevalence [topic]; from 2002-2012	140 (A)	90 (A)
#13	Food item A, B [all fields] AND yersinia [all fields] AND prevalence [all fields]; from 2002-2012	Food items A, B [topic] AND yersinia [topic] AND prevalence [topic]; from 2002-2012	171 (A)	100 (A)

A Key words (detailed list) of FoNAO with high water content (for details see Lot 1 report)
B Key words (detailed list) of FoNAO with low water content (Lot 2)
(a) “(animal OR chicken OR egg OR poultry OR pork OR beef OR cattle OR milk OR pork OR cheese OR seafood OR mussels)”
(b) “(patient OR hospital OR resistance OR infection)"
Additional hand searching performed within search A2 included the 2009 special issue on food poisoning from raw fruit and vegetables in Epidemiology and Infection (Vol. 137, Issue 3) which was screened for relevant papers. Review articles and other articles that had been collected in the hand-searching pool (see also 3.2.2) were also screened (Duffy and Moriarty, 2003; Shields and Olson, 2003; Dawson, 2005; Crépet et al., 2007; Moore et al., 2007; Doyle and Erickson, 2008; Erickson et al., 2010; Baert et al., 2011; Bari et al., 2011b; Olaimat and Holley, 2012; Zweifel and Stephan, 2012).

All hits were subjected to relevance screening by using the tool given below (Figure 4). Articles retrieved for full-text screening were subsequently checked by using the respective tool (Figure 5).

Question	Code	Answer
Question 1	10	We do not comprehend the article language.
Question 2	20	The article is not about a FoNAO.
Question 3	30	The article is about the prevalence of the searched pathogen on a FoNAO with high water content (Lot1).
	31	The article contains other information concerning the pathogen.
	32	The article contains data about other pathogenic microorganism associated with food items of Lot1.
	33	The article contains information about outbreak data associated with food items of Lot1.
Question 4	40	The article is about the prevalence of the searched pathogen on a FoNAO with low water content (Lot2).
	41	The article contains other information concerning the pathogen.
	42	The article contains data about other pathogenic microorganism associated with food items of Lot2.
	43	The article contains information about outbreak data associated with food items of Lot2.
Question 5	50	The inclusion will be further discussed.
Question 6	60	The full text has to be checked for clarification.

Figure 4: Relevance screening tool for search A2 Prevalence and enumeration data.

- Data appropriate for insertion in results table.
- No pathogen incidence.
- No (relevant) pathogens analysed according to list of pathogens\(^1\).
- Study type not appropriate (e.g., laboratory inoculation study, review\(^*\), statistical modelling study)
- Weak methodology or data presentation insufficient (e.g., inconsistent data, analysis of single samples)

\(^1\)This list was based on the searches “pathogen identification” and “pathogen prevalence” and includes the pathogens shown in Tables 12 to 14 in Appendix A.

Figure 5: Full text screening tool for search A2 Prevalence and enumeration data. *Review articles were used to collect additional relevant articles that were not found via the bibliographic search but were not used for direct data extraction.

The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European food safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.
3.3.4. Search regarding “food/pathogen interaction” (A3)

Search A3 was aimed at collecting data on the persistence and colonization behaviour of the pathogens in the food commodities given above. Thus, besides exploring the growth characteristics/requirements of the hazards identified, the colonization/adhesion/internalization behaviour in FoNAO with low water content and relevant mitigation options were addressed. Bibliographic searches were carried out in the WoK and CAB Abstracts databases.

Table 6 presents the strategy used in search A3 interaction of bacteria, viruses and parasites associated with FoNAO. The searches were performed for both FoNAO of high and low water content. In the subsequent relevance screening, articles were assigned to either Lot 1 or Lot 2 according to the water content of the food items addressed. Results from both bibliographic databases were combined and duplicates removed.

Table 6: Search A3 interaction of pathogenic bacteria, viruses and parasites associated with FoNAO with high and low water content in two bibliographic databases.

Pathogen	Search strategy	Hits (WoK)	Hits (CAB Abstracts)
Bacteria	A) and B) [title] AND Bacillus cereus or Clostridium botulinum or Clostridium perfringens or Aeromonas or Campylobacter or Escherichia coli O157:H7 or Shiga-toxin producing E. coli or STEC or Enterogaegregative E. coli or EAEC or enterotoxigenic E. coli or ETIE or Enterobacter sakazakii or Cronobacter or Listeria or Salmonella [title] AND growth or growth profile or dynamics or growth potential or bacterial counts or bacterial count or viability or viable or survival or proliferation or bacterial load or presence or occurrence or incidence or enumeration or persistence or pathogen number or colonization or adhesion or internalization or invasion or attachment or infestation or plant host or non-animal or infection or plant colonization or plant colonization [title] Years 2002-2012 (current)	864	441
Viruses	A) and B) [title] AND Calicivirus or Norovirus or Norwalk or Norwalk-like Virus or Sapovirus or Aichi virus or Astrovirus or Coronavirus or Enteric adenovirus or Rotavirus or Hepatitis A or Hepatitis E [title] AND growth or growth profile or dynamics or growth potential or bacterial counts or bacterial count or viability or viable or survival or proliferation or bacterial load or presence or occurrence or incidence or enumeration or persistence or pathogen number or colonization or adhesion or internalization or invasion or attachment or infestation or plant host or non-animal or infection or plant colonization or plant colonization [title] Years 2002-2012 (current)	44	11
Parasites	A) and B) [title] AND Protozoan parasite OR Cyclospora OR Cryptosporidium OR Giardia OR Isospora OR Helminth parasite OR parasitic worm OR Ancylostoma or Necator americanus OR hookworm OR Ascaris OR Hymenolepis OR Strongyloides stercoralis OR Taenia OR Trichnella OR Trichuris [title] AND growth or growth profile or dynamics or growth potential or bacterial counts or bacterial count or viability or viable or survival or proliferation or bacterial load or presence or occurrence or incidence or enumeration or persistence or pathogen number or colonization or adhesion or internalization or invasion or attachment or infestation or plant host or non-animal or infection or plant colonization or plant colonization [title] Years 2002-2012 (current)	23	12

A Key words of FoNAO (detailed list) with high water content (Lot 1)
B Key words of FoNAO (detailed list) with low water content (Lot 2)
All hits were subjected to relevance screening by using the tool given below (Figure 6). Articles retrieved for full-text screening were subsequently checked by using the respective tool (Figure 7).

Question	Code	Answer
Question 1	10	We do not comprehend the article language.
Question 2	20	The main subject of the article is not about a FoNAO from Lot1 or Lot2.
Question 3	30	The article is not about a pathogen.
Question 4	40	The article is about survival, growth or persistence on a FoNAO of Lot1.
Question 5	50	The article is about survival, growth or persistence on a FoNAO of Lot2.
Question 6	60	Inclusion of the article will be discussed in the panel.
Question 7	70	The full text is required to find out about the contents.

Figure 6: Relevance screening tool for search A3 food/pathogen interaction.

- Data inserted in table
- Study type not appropriate (e.g. laboratory inoculation study, review*, statistical modelling study)
- Weak methodology or data presentation

Figure 7: Full text screening tool for search A3 food/pathogen interaction.*Review articles were used to collect additional relevant articles that were not found via the bibliographic search but were not used for direct data extraction.
3.3.5. Search regarding “hazard characterization” (A4)

The aim of search A4 was to collect data on food-borne outbreaks that could be traced back to the consumption of FoNAO with low water content.

Besides performing bibliographic searches (Table 7) using two different search engines (WoK, PubMed), information was collected from grey literature, including data from US multistate outbreaks of the Center of Disease Control (CDC) USA (2006-2012) and from the European Centre for Disease Prevention and Control (ECDC) reports (2009, 2010). Searches were performed simultaneously for FoNAO with low and high water content. During the relevance screening, articles were allocated to Lot1 or Lot2 depending on the water content of the food items addressed.

Table 7: Search A4/Outbreaks caused by food borne pathogens related to FoNAO with high and low water content in two bibliographic databases.

Search string	Pubmed	Web of Knowledge	Hits (PubMed)	Hits (WOK)	
# 1	Outbreak [Title] OR food-borne outbreak [Title/Abstract] OR foodborne outbreak [Title/Abstract] AND A) B) [Title]; from 2002-2012	Outbreak [title] OR food-borne outbreak [topic] OR foodborne outbreak [topic]	778 (A)	308 (A)	
				283 (B)	63 (B)
			(total 823)	(total 336)	
A	Key words of FoNAO (detailed list) with high water content (Lot 1)				
B	Key words of FoNAO (detailed list) with low water content (Lot 2)				

Furthermore, review articles were screened for additional references describing food-borne outbreaks related to FoNAO (Tribst et al., 2009; Olaimat and Holley, 2012; Pexara et al., 2012; Zweifel and Stephan, 2012).

The relevance and full text screening tools applied within search A4 are presented in Figures 8 and 9.
Food of plant origin with low water content

Question	Description	Answer	
7	Should the inclusion of the article be discussed in the panel?	60	The inclusion will be further discussed in the panel.
8	Should the full text be checked for details?	70	The full text has to be checked for clarification.
9	Is the article a review article in which outbreak data might be found?	80	The article is a review and outbreak data might be extracted in a hand searching approach.

Figure 8: Relevance screening tool for search A4 Hazard characterization (outbreaks).

- Data appropriate for insertion in table
- Outbreak before 2002
- Not about a FoNAO
- Study type not appropriate (e.g. review*, statistical modelling, laboratory study, results revised**)
- Weak methodology or data presentation insufficient (e.g., inconsistent or missing data)
- Outbreak already documented (article added as further reference)
- Food source or pathogen not unambiguously identified

*Review articles were used to collect additional relevant articles that were not found via the bibliographic search, but were not used for direct data extraction.
**Outbreak initially traced back to a wrong source - later articles revise these findings.

Figure 9: Full text screening tool for search A4 Hazard characterization (outbreaks).

3.4. **Search strategy used within thematic area (B) Production**

The aim of the search performed within thematic area (B) was to identify critical points in the primary production and the processing of the food items that have been found associated with biological hazards. Production processes for the same food item can vary considerably between, and sometimes even within countries (FAO/WHO, 2011, online). Therefore, the search was focused on the identification of critical points and contamination sources during primary production and processing rather than on a description of complete production processes.

“Critical points” have to be distinguished from “Critical Control Points (CCPs)” as determined by the “Hazard Analysis Critical Control Point (HACCP)” system. The term “critical point” as used in the present report describes a production step which was identified as possible entry point for biological contamination. The critical points in the production processes for food items belonging to the same FoNAO category were assumed to be comparable.

The focus of the search was set on obtaining GAP/GMP/HACCP documents and guidelines (comprising grey literature) available on the internet that address the mitigation of risks within the production process. By using this search strategy, mainly documents were collected that are meant for the use by producers and thus are of practical relevance.

A systematic web-based search was carried out via the google search engine (http://www.google.com/), using keywords derived from the outcome of the searches within thematic area (A).

Keywords relating to food items, processing stages and biological hazards were extracted from the search results of area A (listed in tables 9 to 11), and were then applied in combination with...
Production-relevant terms (i.e. production, cultivation, harvesting, and different terms concerning quality control and management such as HACCP, control, GAP, GMP, quality control, and contamination).

The following search strings were used:

[(Food item)* AND Production]
OR [(Food item)* AND Cultivation AND Harvesting]
OR [(Food item)* AND Production AND (Processing stage)**]
OR [(Food item)* AND Production AND Pathogen]
OR [(Food item)* AND Production AND (Processing stage)** AND (Pathogen)***]
OR [(Food item)* AND Production AND HACCP]
OR [(Food item)* AND Production AND (Processing stage)** AND HACCP]
OR [(Food item)* AND Production AND Control]
OR [(Food item)* AND Production AND (Processing stage)** AND Control]
OR [(Food item)* AND Production AND GAP]
OR [(Food item)* AND Production AND Processing stage** AND GMP]
OR [(Food item)* AND Production AND Quality control]
OR [(Food item)* AND Production AND (Processing stage)** AND Quality control]
OR [(Food item)* AND Production AND Contamination]
OR [(Food item)* AND Production AND (Pathogen)*** AND Contamination]
OR [(Food item)* AND Production AND (Processing stage)** AND Contamination]
OR [(Food item)* AND Production AND (Processing stage)** AND (Pathogen)*** AND Contamination]

* Keyword list (FoNAO with low water content; Table 1)
** specific processing stage as found associated with the respective food item, see Table 20, 21
*** specific pathogen(s) as found associated with the respective food item, see Table 20, 21

The relevance of the documents (hits) was assessed by screening titles and summaries/short descriptions of the search results. Documents which were expected to contain relevant information were downloaded, and the full texts were screened for information concerning critical control points in the primary production and processing of the food items under investigation.

To identify relevant information contained in complex documents, text searches were done by using truncated terms like contamin* and microbi* as well as relevant biological hazards according to the list presented in Table 9.

Complementary, scientific literature searches was done in the PubMed and CAB abstracts databases by using the search strings given above, which resulted in only a few articles. The PubMed database allowed accessing citations and abstracts for biomedical literature. CAB was selected as a complementary database because it covers the applied life sciences, and was thus expected to provide information that is of practical relevance concerning the production of FoNAO commodities. Scientific articles were also obtained during the searches using the google search engine (http://www.google.com).

Supporting publications 2013:EN-403

The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.
3.5. Search strategy used within thematic area (C) Consumption

The aim of the search was to collect data related to the consumption of FoNAO associated with microbiological pathogens as identified in research area A. The most detailed compilation of consumption data of FoNAO is given in the Comprehensive European Food Consumption Database by EFSA (http://www.efsa.europa.eu/en/date-foodcdb/date-fooddb.htm), which at the request of EFSA was not considered in the present study (since this database can be consulted internally). Instead, specific information on consumption habits and the dietary intake of FoNAO by specific population groups (e.g. elderly, children, toddlers, pregnant women) was retrieved from scientific publications.

Thus, bibliographic searches were performed in WoK, SciVerse Scopus and CAB abstracts, aimed at retrieving information from multiple and varied sources involving various search algorithms. In addition to the comprehensive WoK and CAB Abstract databases, Scopus was selected as the largest abstract and citation database of peer-reviewed literature.

Corresponding search strings were used for the three databases (Tables 8 and 9). In all cases, the exclusion criterion “cancer” was introduced to exclude studies focusing on anti-cancerogenic effects of vegetable-derived compounds such as polyphenols, which did not deliver any quantitative consumption data of FoNAO.

Table 8: Search C1/Consumption habits (frequency, place) regarding FoNAO.

Search Database	Search Strategy	Results
Scopus* (keywords,	Categories A, B [title, abstract and keywords] AND consumption OR frequency OR time OR routine OR daily OR monthly OR meal OR breakfast OR lunch OR tea OR dinner OR supper OR snack OR home-made OR restaurant OR canteen OR coffee shop OR cafeteria OR school OR kindergarten OR nursery [title, abstract and keywords] AND Europe [title, abstract and keywords] NOT cancer [title, abstract and keywords]; time-frame 2002-2012	121
Boolean operators,		
settings		
WOK (keywords,	Subcategories A, B [title] AND consumption OR frequency OR time OR routine OR daily OR monthly OR meal OR breakfast OR lunch OR tea OR dinner OR supper OR snack OR home-made OR restaurant OR canteen OR coffee shop OR cafeteria OR school OR kindergarten OR nursery [title] AND Europe or European [title] NOT cancer [topic]; time-frame 2002-2012	34
Boolean operators,		
settings		
CAB Abstracts (keywords, Boolean operators, settings)	Subcategories A, B [title] AND consumption OR frequency OR time OR routine OR daily OR monthly OR meal OR breakfast OR lunch OR tea OR dinner OR supper OR snack OR home-made OR restaurant OR canteen OR coffee shop OR cafeteria OR school OR kindergarten OR nursery [title] AND Europe or European [title] NOT cancer [all fields]; time-frame 2002-2012	10

*Note that only the food categories list, (i.e. fruits, vegetables, produce, juices, herbs) could be used in this search due to the limited amount of search words that can be entered in Scopus.

A Key words of FoNAO with high water content (Lot 1)
B Key words of FoNAO with low water content (Lot 2)
Table 9: Search C2/Consumption of FoNAO by various population groups

Search Database	Search Strategy	Results
Scopus* (keywords, Boolean operators, settings)	Categories A, B [title] age OR baby OR toddler OR children OR infant OR adolescent OR teenager OR junior OR juvenile OR adult OR grown-up OR elderly OR very elderly OR senior OR aged OR young OR old OR man OR woman OR patient OR patients OR health* OR pregnant OR breastfeeding OR boys OR girls OR mother OR maternal [title] AND Europe OR European [title, abstract and keywords] AND NOT cancer [title, abstract and keywords]; time-frame 2002-2012	12
WOK (keywords, Boolean operators, settings)	Subcategories A, B [title] AND age OR baby OR toddler OR child OR children OR infant OR adolescent OR teenager OR juvenile OR junior OR adult OR grown-up OR elderly OR very elderly OR senior OR aged OR young OR old OR man OR woman OR women OR patient OR patients OR health* OR pregnant OR “breast feeding” OR breastfeeding OR boys OR girls OR mother OR maternal [title] AND Europe OR European [title] NOT cancer [topic]; time-frame 2002-2012	67
CAB Abstracts (keywords, Boolean operators, settings)	Subcategories A, B [title] AND age OR baby OR toddler OR children OR infant OR adolescent OR teenager OR juvenile OR junior OR adult OR grown-up OR very elderly OR senior OR young OR old OR man OR woman OR women OR patient OR patients OR health* OR pregnant OR breastfeeding OR boys OR girls OR mother OR maternal [title] AND Europe OR European [title] NOT cancer [all fields]; time-frame 2002-2012	12

*Note that only the food categories list, (i.e. fruits, vegetables, produce, juices, herbs) could be used in this search due to the limited amount of search words that can be entered in Scopus.
A Key words of FoNAO with high water content (Lot 1)
B Key words of FoNAO with low water content (Lot 2)

Search results from both searches (C1 and C2) using the three databases were combined to avoid redundancy, and were subjected to relevance and full text screening by using the tools presented below (Figures 10 and 11).

Question	Answer code	Answer	
Question 1	Do we comprehend the article language?	10	We do not comprehend the article language.
Question 2	Is the article about food consumption patterns in a European Country?	20	The article is not about food consumption patterns in a European Country.
Question 3	Does the article contain quantitative data (food frequency, amounts) about food consumption?	30	The article describes quantitative data about food consumption.
Question 4	Is the article about toddlers, children, adolescents?	40	The article is about toddlers, children or adolescents.
Question 5	Is the article about adults?	60	The article is about adults.
Question 6	Is the article about elderly people?	70	The article is about elderly persons.
Question 7	Is the article about food consumption patterns, but does not describe quantitative data?	80	The article might contain relevant data, but not quantitative ones.
Question 8	Should the inclusion of the article be discussed in the panel?	100	The inclusion will be further discussed in the panel.

Figure 10: Relevance screening tool for search C1 Consumption.
Data appropriate for insertion in table
No European study or study type inappropriate
Data format inappropriate

Figure 11: Full text screening tool for search C1 Consumption.

3.6. Methodology for ranking FoNAO/pathogen combinations (thematic area D)

3.6.1. Method development

The methodology applied for identifying FoNAO/pathogen combinations that were considered as most important regarding risks to human health involved that a synopsis of the results from the individual searches in research areas A to C was formed. Thus, the collective data retrieved in searches A to C were used to evaluate the FoNAO/pathogen combinations regarding multiple qualitative and quantitative criteria as described in sections 3.6.2 and 3.6.3.

Following data extraction into structured tables, it became evident that outbreak incidences reported for the various FoNAO/pathogen combinations presented the primary basis for evaluation. Reports on outbreaks yielded the most comprehensive data set assembled within the present study, and allowed a clear and unambiguous association of biological hazards with FoNAO commodities. Furthermore, numbers of cases reported together with information regarding the severity of outbreaks (i.e. number of hospitalisations and number of deaths) allowed that a quantitative analysis of the outbreak data was performed.

By contrast, the data on pathogen prevalence obtained via search A2 depended very much on parameters such as type of study performed, type and extent of survey, number of samples analyzed, methodology used, etc. Similarly, information on food/pathogen interaction in the food commodities considered and on mitigation strategies (search A3) was fragmented and biased for methodology and study design. This was because studies on pathogen food/pathogen interaction and hazard mitigation as reported in the retrieved publications had not been performed in the same way (using the same methodology) for the various pathogens considered in the present report, and data were partly not available or not comparable. While numbers of publications on pathogen prevalence and outbreaks also gave a comprehensive data set, they were not considered as equally appropriate criteria because they also contained study-related biases. Data relating to production and consumption issues (searches B and C) were not equally comprehensive for the various food items considered. Hence, outbreak incidences represented the basis for a primary evaluation step, and the collective data on pathogen prevalence, food/pathogen interaction, and production were used in a qualitative way for evaluating the FoNAO/pathogen combinations.

3.6.2. Evaluation based on outbreak data

Outbreak information was used in a quantitative manner for the primary evaluation of FoNAO/pathogen combinations.

Specifically, FoNAO/pathogen combinations were identified that were associated with outbreaks involving the ten highest numbers of cases, the ten highest numbers of hospitalisations, and involving cases of death. This selection process was performed separately for bacteria-, virus- and parasite-related outbreaks, and distinct rankings were carried out for outbreak cases reported for EU and non-EU countries.
In this primary evaluation procedure, those FoNAO/pathogen combinations that were involved in outbreaks that could not be allocated to a single specific FoNAO commodity and that included composite FoNAO commodities (that were composed of multiple food items) were excluded. This was done because we aimed to identify FoNAO/pathogen combinations implicating specific, individual food items that are considered most critical regarding contamination with pathogenic bacteria, viruses or parasites.

The primary evaluation procedure resulted in two comprehensive sets of FoNAO/pathogen combinations for EU and non EU countries, respectively, which formed the basis for the second evaluation step. Results of the ranking of FoNAO/pathogen combinations involved in outbreaks according to the number of cases, the number of hospitalisations, and the number of deaths are presented in the results section (with the associated tables 30 to 35 being presented in appendix D).

3.6.3. Evaluation based on multiple qualitative criteria

In the scope of the second evaluation step, the complex information collected via searches A to C was used in a qualitative way to evaluate the FoNAO/pathogen combinations selected in the primary ranking procedure.

Specifically, information obtained via the searches in areas A to C was used to define criteria that allowed a grading of the FoNAO/pathogen combinations within the four aspects “outbreaks”, “production”, “prevalence”, and “food/pathogen interaction”. Additionally, the relative infectivity of the relevant pathogens was evaluated based on information provided in Kothary and Babu (2001) and Koopmans and Duizer (2004) and by screening relevant fact sheets by the CDC. This information was used for characterising food/pathogen interaction (see below).

The following procedure was applied for the prioritisation of FoNAO/pathogen combinations, considering the four criteria “outbreaks”, “production”, “prevalence”, and “food/pathogen interaction” (see also Fig. 12):

Outbreaks. As the most important criterion for prioritisation, FoNAO/pathogen combinations were graded in relation to outbreaks with “A” (“highly critical”) if (i) cases were high (among the top 10 rankings), (ii) hospitalisations were high (among the top 10 rankings) and/or cases of death were involved, and if (iii) multiple outbreaks involving the given combination had been reported. “B” grading (“critical”) was applied if two of the three above criteria (i) to (iii) were fulfilled, and “C” grading (“moderate critical”) was applied if one of the three criteria (i) to (iii) was fulfilled.

Production. A given FoNAO/pathogen combination was graded “A” if multiple critical factors in the production and/or processing were identified as important regarding biological contamination. “B” grading was applied if a single factor was identified as critical for the given FoNAO/pathogen combination. This was done because control measures supposedly are more easily introduced and followed when focusing on a single factor as compared to multiple factors.

Prevalence. If prevalence data for the given FoNAO/pathogen combination had been retrieved via search A2, an additional grade “A” was applied regarding the prevalence criterion.

Food/pathogen interaction. If a critical interaction (namely attachment, biofilm formation, or internalisation) had been evidenced for the pathogen in a given FoNAO/pathogen combination, an additional grade “A” was applied regarding this criterion. Similarly, high infectivity of the pathogen (meaning a low infectious dose) resulted in “A” grading, based on the evaluation by Kothary and Babu (2001) and according to Koopmans and Duizer (2004) as well as specific CDC fact sheets.
The following **classification scheme** was applied for the prioritisation of FoNAO/pathogen combinations (see also Fig. 12):

Level 1 Priority was given to combinations yielding at least triple A grading, with A grading in outbreaks being a precondition.

Level 2 Priority was given to combinations yielding double A grading, with A or B grading in outbreaks being a precondition.

Level 3 Priority was given to combinations that had at least one A grade in either of the four criteria together with some other distinctive feature (i.e. any other grading in another aspect). Hence, FoNAO/pathogen combinations that were not assigned any A grade or were assigned only one A grade without any other grade regarding some other aspect were excluded from the priority list.

The prioritisation method applied combined a quantitative ranking procedure (i.e. ranking of FoNAO/pathogen combinations according to quantitative outbreak data) with a qualitative approach (i.e. the evaluation of FoNAO/pathogen combinations regarding the criteria “outbreaks”, “production”, “prevalence”, and “food/pathogen interaction”). This strategy allowed evaluating FoNAO/pathogen combinations regarding multiple aspects that were explored in the study areas A to C. Since the specific data used for the prioritisation were heterogeneous and inconsistent for the various combinations, criteria were defined that were applicable to all combinations. By using the classification scheme described above, FoNAO/pathogen combinations were allocated to priority groups.

The specific criteria used to assign the various FoNAO/pathogen combinations to priority groups are shown below. This methodology was applied separately for EU and non-EU countries, respectively.

Figure 12: Scheme applied for the prioritisation of FoNAO/pathogen combinations. A, B and C grading corresponds to factors that are “highly critical”, “critical” and “moderately critical” regarding food safety, respectively, within each of the four criteria “outbreaks”, “production”, “prevalence” and “food/pathogen interaction”. For further details see text.
4. Results

4.1. Microbiological hazards that may contaminate FoNAO with low water content

Data concerning research area A were retrieved via four individual searches, and consequently were extracted into tables presenting data on hazard identification (A1), hazard prevalence (A2), food/pathogen interaction (A3), and hazard characterisation (A4).

In the following sections, the study selection procedures underlying the various searches are described and the information contained in the tables is summarized. The associated tables are shown in the appendix A.

4.1.1. Hazard identification (A1)

In search A1, separate bibliographic searches using scientific databases were carried out especially for FoNAO with high and low water content, respectively, relating to Lot 1 and Lot 2 of the assignment. However, literature entries obtained for Lot 1 and Lot 2 were combined for performing the relevance check, because many publications dealt with a combination of food items of both high and low water content.

As depicted in Figure 13, in total 702 abstracts collected via bibliographic searches were subjected to the relevance screening, 171 of which were screened in full text in the following quality check. 23 publications retrieved via hand-searching were added to the quality screening. Finally, 52 publications relating to Lot 1 and 27 publications relating to Lot 2 met the quality criteria and were selected for data extraction. Thus, for the present study only data relating to FoNAO with low water content were extracted into the tables shown in appendix A.

Tables 12 to 14 in appendix A show the various bacterial pathogens, viruses, and parasites that have been identified as being associated with items of FoNAO with low water content, listed in alphabetical order. The food/pathogen combinations presented were initially derived from the results of search A1, but were then extended with data from the following, more specific searches (mainly A2). Search A1 was carried out on a worldwide scale, and data are given collectively for EU and non-EU countries. Besides FoNAO categories, the food item(s) concerned and the sources of the food, also the countries are given where the food commodities were found in association with a biological contaminant (e.g. site of survey or location of the outbreak, not necessarily the place of origin/production of the food commodity analysed). Thus, the tables give an overview of the biological hazards as they have been described in association with multiple FoNAO items with low water content that are included in the various FoNAO categories (see Table 1) considered in the present study.

Bacterial pathogens found associated with FoNAO with low water content comprise representatives of the genera Bacillus, Campylobacter, Cronobacter, Enterobacter, Salmonella, Shigella as well as Klebsiella pneumoniae, Listeria monocytogenes Pseudomonas aeruginosa, Staphylococcus aureus and Yersinia enterocolitica. Of in total 103 associations of biological hazards with FoNAO with low water content identified in the literature, most of them were with Cronobacter spp. (29 combinations reported) and Salmonella spp. (24 combinations reported), Cronobacter spp. included C. dublinensis, C. malonaticus, C. muyjensis, and C. sakazakii, and Salmonella spp. comprised multiple serovars (i.e. Agona, Bredeney, Enteritidis, Infantis, Kentucky, Muenchen, Newport, Typhi, Typhimurium, and unspecified serovars).

Notably, no viruses have been described on/in FoNAO with low water content. Parasites that have been described in association with FoNAO with low water content include Cryptosporidium spp, Enterocytozoon bieneusi, Giardia spp., and Microsporidia spores.
The list of pathogens established via search A1 was used in subsequent keyword searches concerning specific research questions in areas B and C.

Figure 13: Flow chart of the study selection process underlying search A1. * The respective articles were then assigned to categories for inclusion or exclusion.
4.1.2. Hazard prevalence and enumeration data (A2)

Bibliographic searches regarding the prevalence of bacterial pathogens, viruses and parasites on/in items of FoNAO were performed in the WoK and PubMed databases by using 20 search strings each for the set of bacteria, viruses, and parasites that have been identified via search A1. Searches were done for the collective food items relating to Lot 1 and Lot 2 of the assignment, resulting in 4751 potentially relevant abstracts that were subjected to the relevance check. The vast majority of 4283 abstracts were excluded because they did not deal with FoNAO or because of language restrictions, and only 146 articles were identified as relevant for Lot 2 (since they related to FoNAO with low water content). However, in total 670 articles were found to potentially contain information that may be of relevance not only for research area A2 but also for other areas, and were hence added to the respective hand searching pools for further evaluation. Together with 12 articles retrieved via hand searching, in total 438 full text articles were accessed and checked in the quality check. Of those, 55 articles were finally selected for extracting prevalence data in Lot 2 (Figure 14).

Tables 13 and 14 in appendix A present the data extracted from scientific articles retrieved via search A2. Additionally, data collected via search A1 were included, which had been deposited in the hand searching pool (because they reported on detection rates, see Figure 14). The tables show prevalence data (detection rates) for pathogenic bacteria, viruses, and parasites that were reported in association with FoNAO with low water content. While table 13 gives the information for EU countries, data from non-EU countries are shown in Table 14.

The scope of Tables 13 and 14 is to demonstrate the association of various pathogenic bacteria, viruses and parasites with specific food items found in scientific publications. Furthermore, the tables illustrate what are the specific prevalences (detection rates) of the biological hazards, considering sources and processing states of the food items. The pathogens are listed in alphabetical order, and additional information is given on the various FoNAO categories concerned and on the country where the studies or surveys were performed. Like the data on hazard identification shown in Table 12, no detection rates have been reported for viruses on/in FoNAO with low water content.

Detection rates of biological hazards varied considerably, ranging from 0.01 to 100%. This reflects the various methodologies applied in the studies and surveys, and that the sample numbers investigated were in a broad range. Thus, while the information on detection rates of biological hazards on/in FoNAO provides a detailed database on surveys and studies performed in EU and non-EU countries, the detection rates are not suited for comparison regarding the relative importance of the FoNAO item/pathogen combinations. Still, studies reporting on detection rates give an indication that the FoNAO/pathogen combination concerned may potentially represent a food safety problem.
Figure 14: Flow chart of the study selection process underlying search A2. * The respective articles were then assigned to categories for inclusion or exclusion.
4.1.3. Food/pathogen interaction (A3)

Bibliographic searches regarding the interaction of bacterial pathogens, viruses and parasites with items of FoNAO were done in the WoK and PubMed databases, yielding 953 potentially relevant abstracts. The searches were done for the collective food items relating to Lot 1 and Lot 2 of the assignment, however, search results were assigned to either Lot 1 (217 relevant publications) or Lot 2 (55 relevant publications) during the relevance screening. Following quality checking of the full text publications, 48 articles were used for data extraction in Lot 1. Of those, 30 articles gave data on the growth characteristics of biological pathogens, 8 gave data on the colonisation behaviour of pathogenic bacteria on/in FoNAO items, and 10 contained information on the mitigation of pathogen contamination (Figure 15).

Table 15 in appendix A presents the results of search A3, comprising data relating to the growth characteristics of pathogenic bacteria and persistence of viruses on/in items of FoNAO under various experimental conditions (e.g. temperature, pH, various amendments) and exposure times. In cases where multiple treatments were addressed, only the most effective conditions within a specific study were extracted. Since data were mostly derived from inoculation studies, in most cases the initial inoculation dose is given together with the increase or decrease in colony forming units (cfu) numbers.

Table 16 in appendix A contains data on the colonisation behaviour of pathogenic bacteria associated with FoNAO with low water content. Information was collected from studies that related to the attachment, biofilm formation and/or the internalisation of the bacteria. Specific information on colonisation is shown in the “details” column. For instance, attachment and/or biofilm formation on FoNAO with low water content have been described for pathogenic *E.coli*, *Listeria* spp, and *Salmonella* spp. In addition, internalisation into FoNAO with low water content has been reported for *Bacillus cereus*, *E. coli*, several *Salmonella* serovars, and *Listeria monocytogenes*. This implicates a critical behaviour of the pathogens regarding food safety, which has to be considered when evaluating their importance regarding food safety issues.

Treatments applied for the mitigation of biological contamination are shown in Table 17 in appendix A. For the various pathogenic bacteria, viruses, and parasites the associated food commodities are given where treatments have been applied for reducing pathogen loads. In most studies either chemical or physical treatments were applied, and hence, the specific conditions are detailed (including concentrations of additives, treatment time, inoculation details) together with the reduction effects of the treatment on the pathogens.
Figure 15: Flow chart of the study selection process underlying search A3. * The respective articles were then assigned to categories for inclusion or exclusion.
4.1.4. Hazard characterization (A4)

The WoK and CAB bibliographic databases were searched for data on outbreaks of disease that could be traced back to bacterial pathogens, viruses, and parasites linked to FoNAO with low water content. Of 1091 potentially relevant abstracts identified via the searches, 141 and 46 were considered as relevant for providing information on outbreak data relating to Lot 1 and Lot 2 of the assignment, respectively. In addition to scientific literature entries identified via the bibliographic searches, hand searching of various scientific and grey literature sources (e.g. CDC and ECDC reports) yielded 42 documents that were screened for relevance. Following quality checking of the full text publications, 43 articles were used for data extraction in Lot 2 (Figure 16).

Tables 18 and 19 in appendix A present the outbreak data obtained via search A4 for EU countries (including mixed outbreaks concerning EU and non-EU countries) and non EU countries, respectively. For EU countries, data are given for pathogenic bacteria and viruses that have been reported in the publications as being associated with FoNAO with low water content. However, for non-EU countries only reports on bacterial pathogen-associated outbreaks have been retrieved. The individual outbreaks are listed only once with references of all documents relating to it, comprising scientific and grey literature sources.

For both EU and non EU countries, various serovars of Salmonella were most often implicated in outbreaks, accounting for 34 of in total 64 outbreaks (EU) and 13 out of in total 18 outbreaks (non-EU). Other bacteria involved in outbreaks comprise Bacillus cereus, Clostridium botulinum, Clostridium perfringens, pathogenic E.coli, Shigella sonnei, Staphylococcus aureus, and Yersinia enterocolitica. Among the viruses, Norovirus and Hepatitis A virus were reportedly associated with outbreaks in EU countries. Parasites have not been found involved in FoNAO (low water content)-related outbreaks.

Besides FoNAO categories and food items linked to the outbreaks, in Tables 18 and 19 comments are given on food sources and processing states of the implicated FoNAO items if available, together with the countries where the outbreaks occurred. The tables contain information on the year of the outbreak, on the number of cases reported, the number of hospitalisations, and the number of deaths, if indicated in the publications. Here, all FoNAO food items with low water content that were reported as associated with outbreaks were considered, even if the individual food items were not further specified or if composite food items were concerned that did not allow exact source tracking. This was done to provide an extensive database of all outbreak incidences where FoNAO commodities with low water content were implicated.
Figure 16: Flow chart of the study selection process underlying search A4. * The respective articles were then assigned to categories for inclusion or exclusion.
4.2. (B) Production methods and trade volumes of FoNAO with low water content from third countries to the European Union

The search within thematic area (B) aimed at illustrating both the primary production and processing steps for the food items identified during the search within thematic area (A). The focus was set on critical points (CPs), indicating susceptibility to microbial contamination. If applicable, CPs were collected from the literature that were indicated in association with the pathogens shown in the tables produced for thematic area (A).

For all tables, the classification of commodities of FoNAO was included as presented in Table 1 of this report and following the categorization of FoNAO commodities set up by EFSA. The selected food items and pathogens are based on the outcome of the searches within thematic area (A). Tables 20 and 21 show the categories and items of FoNAO with low water content associated with pathogenic bacteria and parasites, respectively. These items were considered for the literature searches, by themselves and in conjunction with the associated pathogen(s). The search for CPs was primarily based on the production procedures of a specific food item; in addition, the food item and the pathogen were searched for in combination.

The CPs were identified from publications like HACCP documents, guidance documents and reports as well as scientific publications. The CPs listed in the documents describing the production and processing procedures for a given food item were extracted. A clear link between a CP and a specific pathogen was not frequently found in the relevant documents. If such an association was reported, the pathogen is included in the list.

The CPs are depicted in a harmonized way. In a number of cases not the original description of the CP in the production process according to the cited document is given but a simplified term was chosen. It is thus possible to identify the most important and most critical points and procedures during the production of a specific food item based on the frequency of their occurrence in the cited documents.

For the primary production and processing steps, two separate tables (Tables 22 and 23 in appendix B) were produced. Primary production was defined as commodity growing and harvesting on the field, whereas all subsequent steps starting from transport were defined as processing. Resulting from the search strategy, Tables 22 and 23 focus on the depiction of CPs reported for the production and processing procedures of a specific food item.

Each CP is given in a separate line; in addition, the publishing organization and the country of publication (including the classification EU vs. non-EU) are shown. Generally, production and processing procedures have been mainly described for non-EU countries, which is reflected in the listed entries of which roughly ¾ originate from non-EU documents.

Table 22 indicates the CPs identified in the primary production process (i.e. until harvest) of specific food items. The following CPs were identified in primary production: cleaning, cultivation, drying, environment, equipment, fecal matter, harvesting, irrigation, manure, packaging, personnel, processing, soil, storage, transport, and water (in total 16 CPs). Contamination through “fecal matter” was the most frequently identified CP. The harvesting procedure was determined to be equally important in order to avoid the contamination of the analyzed food items. Also manure is a crucial CP, followed by irrigation, cultivation and the environment (e.g. production site, crop rotation). For some food items, a predominant CP was clearly determined. “Fecal matter” was identified as the predominant source of microbial contamination in seeds. For “ready-to-eat dried seeds” (Category 28) irrigation, manure, soil and fecal matter were listed as potential sources of contamination with – in particular – Salmonella spp., similar to “seeds for sprouting”, for which harvesting was listed as additional CP.

Table 23 shows the CPs in the processing procedures, starting from the transport of the commodity until the final, and, if applicable, packed product. Storage was established as the most frequent CP linked to virtually all food items under investigation. Raw material and water were important for most
food items, followed by processing and packaging, also shown to be universally valid. Drying was critical primarily for spices, pepper, herbs, but also in chocolate products production. Some CP was specific to a particular food item, e.g. sprouted seeds or milling of cereals. Concerning sprout production, also harvesting of the sprouts is critical, in addition to the harvesting of the seeds used for sprouting (see primary production).

Table 24 in appendix B gives an overview of examples of guideline documents and standards found during the literature research. Almost all of the guideline documents are of non-EU origin, again reflecting that the investigated FoNAO with low water content is mostly produced and – at least partially – processed outside the EU.

Table 25 in appendix B shows trade volumes from third countries into the EU of FoNAO with low water content that have been reported in association with biological hazards in the last ten years (2002-2011). The trade volumes for the corresponding food items were extracted from the Eurostat-Database (http://epp.eurostat.ec.europa.eu/newxtweb/). The appropriate categories for the selected food items were combined according to the product description. Significant amounts of relevant FoNAO with low water content are imported into the EU.

4.3. (C) Consumption of FoNAO with low water content

The search strategy applied for search C1 (consumption habits) and search C2 (population group) is illustrated in Figure 6. This strategy was used for retrieving data relating to food items of both high and low water content to avoid redundancy. However, of the 213 abstracts considered as potentially relevant, only 31 were selected for full text checking. Finally, only eight articles were maintained after the full text quality check and were used for data extraction into tables of both Lot 1 and 2.

Data from relevant articles were extracted into Table 26 in appendix C. However, scientific publications contained mainly information on fruit and vegetable consumption in general but in most cases did not report on consumption patterns regarding individual items of FoNAO. Screening the websites of major pan-European nutrition studies (HELENA Health Lifestyle in Europe by Nutrition in Adolescence, http://www.helenastudy.com/; HBSC Health behaviour in school aged children, http://www.hbsc.org/publications/journal/; ProChildren project http://www.prochildren.org/; ISAFRUIT, http://www.isafruit.org) yielded information on consumer groups and regional aspects of fruit and vegetable consumption, but gave only few data relating to individual food items. Due to time and resource limitation it was not possible to access the raw data of the nutrition studies by contacting individual researchers. The most detailed compilation of consumption data of FoNAO is given in the Comprehensive European Food Consumption Database by EFSA (http://www.efsa.europa.eu/en/foodcdb/date - foodcdb/date - fooddb.htm), which in accordance with EFSA was not considered in the present study since it is internally available by EFSA.
Figure 17: Flow chart of the study selection process underlying search C1 (consumption habits) and search C2 (consumption by population groups).
4.4. (D) Ranking of food/Pathogen combinations

The present study explored multiple aspects of biological contamination of FoNAO with low water content, aimed at identifying the most critical FoNAO/pathogen combinations regarding food safety. Thus, research area D was dedicated to evaluating the data collected in the previous research areas and forming a conclusive synopsis of all search results.

However, while the various data retrieved via searches A, B and C were all considered for the final evaluation of food/pathogen combinations, data on outbreak incidences formed the primary basis for an evaluation regarding their overall importance. The occurrence and severity of outbreaks are solid indications of a health concern, which is of utmost importance for human societies. Similarly, estimated health risks of the hazards for the consumer were consensually considered as an important criterion for prioritisation of food safety issues in a survey that was performed among various food safety-relevant stake holder groups (Van Boxstael et al., 2012).

Tables 27 to 29 in appendix D present the FoNAO/pathogen combinations identified that were associated with outbreaks involving the ten highest numbers of cases, the ten highest numbers of hospitalisations, and involving cases of death in EU countries. Correspondingly, Tables 30 to 32 in appendix D show food/pathogen combinations with the ten highest numbers of outbreak cases and hospitalisations, and involving cases of death in non-EU countries. Outbreaks caused by pathogenic bacteria, viruses and parasites were treated individually. Outbreak data were collected globally, from reports originating from both EU and non-EU regions. For the scope of the evaluation, outbreaks were listed separately for EU and non EU countries according to the outbreak location. Regarding EU data, EFSA/BIOMO data from EUSR were not considered, since it is internally available by EFSA; and only literature data was used for this purpose. It is notable that most publications on outbreaks in non EU regions are dealing with outbreaks in the United States, which may also be due to language restrictions.

In the EU (Tables 27-29), the outbreaks involving the highest numbers of outbreak cases (including 50 cases of death) were caused by pathogenic E. coli on/in sprouts; comprising two linked outbreaks in Germany and France, which involved travel-related cases in other European and non-European countries. Fenugreek seeds imported from Egypt were identified as the common source for the French and German outbreaks. Furthermore, several outbreaks involving Salmonella spp. on/in sprouts had high numbers of cases and hospitalisations and included also one case of death. Multiple outbreaks involving rice/ Bacillus cereus were reported for Germany and the Netherlands. Singular outbreak cases that ranged among the ten highest numbers of cases concerned the combinations baby corn/Shigella sonnei, white pepper/Bacillus cereus, buckwheat/Bacillus cereus, aniseed/Salmonella Agona, almonds/Salmonella enteritidis, curry/Bacillus cereus, and hemp flour/Salmonella Montevideo. Virus related outbreaks involved only highly processed and composite FoNAO products (i.e. bakery products (doughnuts)/Hepatitis A virus, Sushi rice/Norovirus, and sweets and chocolate/Norovirus), which were not considered in the ranking.

In non-EU countries (Tables 30 and 31), the highest numbers of outbreak cases involving hospitalisations were caused by Salmonella on/in sprouts (alfalfa and bean sprouts) in outbreaks in the USA and in Canada. Multiple sprout-related outbreaks, however with fewer cases, were also caused by pathogenic E. coli, including travel-related cases within the French and German outbreaks in 2011 that were linked to fenugreek seeds. Outbreak incidences caused by other combinations involved black and red pepper/Salmonella Montevideo, Bamboo shoots/Clostridium botulinum, baby corn/Shigella sonnei, and nuts (pine nuts, almonds, hazelnuts) combined with Salmonella spp. or pathogenic E.coli. No virus-related outbreaks were reported for non-EU countries that were related to FoNAO with low water content.

Supporting publications 2013:EN-403

The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European food safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.
The FoNAO/pathogen combinations listed in Tables 27 to 32 formed the primary basis for the subsequent prioritisation regarding multiple qualitative factors. The focus of this prioritisation analysis was on ready-to-eat, unprocessed FoNAO, excluding composite products. Hence, FoNAO items belonging to category 27 (“other dry legumes, cereals, edible seeds and grains, flours and products thereof”) and 33 (beverages, including composite products such as chocolate made of the basic food commodities) were excluded from the evaluation process because no unambiguous food item/pathogen association could be formed. It has to be considered that source tracking to individual FoNAO items is not always possible with composite and highly processed products such as chocolate and bakery products, and that ingredients of complex food items may include those of animal origin.

Tables 10 and 11 presented below show the food/pathogen combinations that have been attributed level 1 to 3 priorities. Again, separate evaluations were done for EU and non EU countries. Priority groups were defined based on multiple factors specified within the criteria “outbreaks”, “pathogen prevalence”, “production”, and “food/pathogen interaction” (see Tables 10 and 11 and Chapter 3.6). The approach followed for evaluating the importance of FoNAO/pathogen combinations regarding food safety used a qualitative prioritisation scheme. Specifically, FoNAO/pathogen combinations were rated as highly critical (A), critical (B) or moderately critical (C) with respect to food safety regarding multiple aspects, including outbreaks of disease, production and processing procedures, hazard prevalence in the food commodity concerned, and food/pathogen interaction (see also Chapter 3.6). FoNAO/pathogen combinations that were rated as highly critical regarding at least three criteria (including outbreaks), were assigned highest priority. Combinations that showed two highly critical characteristics (with outbreaks being rated either highly critical or critical) were allocated to priority group 2. If a combination had one highly critical characteristic together with some other critical factor, priority level 3 was applied. Defining priority groups was preferred over a ranking of all food/pathogen combinations in a numeric order, because the information corresponding to the classification criteria was heterogeneous and varied for the various combinations.

For both EU and non EU countries, highest priority was assigned to the FoNAO/pathogen combinations sprouts/Salmonella spp. and sprouts/pathogenic E.coli. Besides other E.coli-related outbreaks, two linked outbreaks in Germany and France that were traced back to E. coli O104:H4 on/in fenugreek seeds affected several European and non-European countries, involving high numbers of cases and deaths. Multiple outbreaks within and outside the EU were associated with Salmonella spp. on alfalfa and bean sprouts, with high numbers of cases and hospitalisations including one case of death. In addition, critical factors regarding food safety have been reported in the areas production and food/pathogen interaction for the FoNAO category “seeds for sprouting and sprouted seeds”. Detection of Salmonella spp. on/in seeds for sprouting and sprouted seeds has also been documented.

Priority two for EU countries was attributed to the combination of rice with Bacillus cereus. High prevalences (up to 100%) of Bacillus cereus and Bacillus cereus like organisms have been documented in rice and products thereof, together with multiple outbreaks associated with this combination. However, one has to take into consideration that Bacillus cereus is a spore forming pathogen, and that it has been indicated that its emetic toxin is produced only by a minority of B.cereus strains (Häggblom et al. 2002). This combination was graded priority two in spite of highly critical factors regarding production, prevalence, and food/pathogen interaction, because no hospitalisations or cases of death have been involved in outbreaks. However, considering the enormous global consumption of this food commodity and the fact that pathogenicity of Bacillus cereus depends on toxin expression also supports the grading as priority 2.

FoNAO/pathogen combinations allocated to priority group two for EU countries include baby corn combined with Shigella sonnei. A high number of cases involving hospitalisations was reported for an outbreak in Denmark, and critical factors have been identified regarding production and food/pathogen interaction (Shigella spp. being highly infectious). Possibly, this outbreak was related to an outbreak in

Supporting publications 2013:EN-403
Australia also involving *Shigella sonnei* and baby corn, which, however, was less severe. Hence, *Shigella sonnei* and baby corn was assigned priority three for non-EU countries. For EU countries, priority 3 grading was allocated to nuts/*Salmonella* spp. based on a cluster of outbreak cases in Sweden with highly probable associations to almond consumption (but no records of hospitalisations), and because of multiple risk factors regarding production, prevalence, and food/pathogen interaction.

In non-EU countries, nuts have been implicated in multiple outbreaks caused by *Salmonella* spp. and pathogenic *E.coli*, involving high numbers of cases and hospitalisations. Several studies report on *Salmonella* prevalence on/in nuts, and a high persistence of both *Salmonella* spp. and *E.coli* on/in nuts has been found in inoculation studies. Since similarities among various kinds of nuts (e.g. almonds, pine nuts, pecan nuts or hazelnuts) could be seen regarding the critical steps in production and processing as well as the colonization behaviour of bacterial pathogens, nuts in general were considered as a commodity for classifying the FoNAO/pathogen combinations. Hence, combinations of nuts with *Salmonella* spp. and with pathogenic *E.coli* were assigned grade 2 priority for non-EU countries.

For non-EU countries, pepper (black/red) combined with *Salmonella* spp. has been allocated to priority group three based on a single but severe outbreak case and because of the frequent detection of *Salmonella* spp. on/in spices including pepper. Sixteen studies report the occurrence of *Salmonella* spp. in spices and dry herbs, three out of which relate to *Salmonella* spp. on/in pepper. Furthermore, pepper is susceptible to bacterial contamination during specific production steps that involve drying on the ground potentially without proper hygienic considerations. Food safety risks may also be introduced by the fact that unlike other herbs and spices pepper is frequently added to meals after cooking (and thus is not heated).
Table 10: Ranking of food/pathogen combinations in EU countries based on criteria related to outbreaks\(^1\), pathogen prevalence and food/pathogen interaction, and to the production of the food item(s) concerned. “High number” means position in top ten list (Tables 30-32). For details on the classification scheme applied ((A) “highly critical”, (B) “critical”, (C) “moderately critical”) see methods section. NR= not reported.

FoNAO Category	Food item	Pathogen	Outbreaks	Production	Prevalence	Food/pathogen interaction	Priority group
28 Seeds for sprouting and sprouted seeds	Sprouts (fenugreek seeds)	*E. coli* O104:H4	(A) Two linked outbreaks in Germany and France with travel-related outbreaks in other EU countries plus Norway (4031 cases, 51 deaths) related to the consumption of fenugreek seeds imported from Egypt	(A) Multiple factors related to production (germination, raw material, fecal matter, manure, harvesting, irrigation, water) and processing (packaging, storage) are critical for microbial contamination of seeds for sprouting and sprouted seeds.	NR	(A) *E. coli* can attach to alfalfa sprouts in a serovar-dependent manner. It grows at 20, 30 and 35 °C.	1
28 Seeds for sprouting and sprouted seeds	Sprouts (alfalfa and bean sprouts)	*Salmonella* spp.	(A) High numbers of cases and hospitalisations in multiple outbreaks	(A) Multiple factors related to production (germination, raw material, fecal matter, manure, harvesting, irrigation, water) and processing (packaging, storage) are critical for microbial contamination of seeds for sprouting and sprouted seeds.	(A) Two studies report on *Salmonella* spp. detection in seeds for sprouting and sprouted seeds.	(A) *Salmonella* spp. can attach to alfalfa sprouts (independent of serovar). It grows at 20, 30 and 35 °C and during seed sprouting.	1
24 Cereals and dry legumes	Corn (baby corn)	*Shigella sonnei*	(B) Outbreak in Denmark with high number of cases and hospitalisations, possibly related to outbreak in Australia	(A) Multiple factors related to production (harvesting) and processing (packaging, transport, storage) are critical for microbial contamination of baby corn.	NR	(A) *Shigella* spp. are highly communicable and have a relatively low infectious dose of 10 to 500 organisms (Kothary and Babu, 2001).	2
25 Rice	Rice	*Bacillus cereus*	(B) High numbers of cases in multiple outbreaks.	(A) Multiple factors related to processing (drying, cleaning, equipment, storage, water) are critical for microbial contamination of rice.	(A) High prevalences of *Bacillus cereus* and *Bacillus cereus* like organisms in rice and products thereof have been reported in multiple studies.	(A) *Bacillus cereus* can internalise in cooked rice; growth depends on storage temperature and pH.	2
FoNAO Category	Food item	Pathogen	Outbreaks	Production	Prevalence	Food/pathogen interaction	Priority group
------------------------	--------------------	-----------	---	--	--	--	----------------
31 Nuts and nuts products	Nuts (almonds)	*Salmonella* spp.	(C) Cluster of 15 outbreak cases in Sweden with high probability of associations with the consumption of almonds	(A) Multiple factors related to production (germination, raw material, fecal matter, manure, harvesting, irrigation, water) and processing (packaging, storage) are critical for contamination of nuts with *Salmonella*.	(A) Several studies report on *Salmonella* prevalence on/in nuts.	(A) *Salmonella* spp. in pecan granules increased by 6.31 log cfu/g during 45 hrs when incubated at 37 °C; *Salmonella* Enteritidis decreased by 0.4 to 3.1 log cfu/g during 550 days when incubated at various temperatures.	3

Outbreaks traced back to the consumption of highly processed food items (containing FoNAO mixed with other ingredients of animal origin, e.g. meat, milk or egg products) were not included in the ranking.
Table 11: Prioritisation of food/pathogen combinations in non-EU countries based on criteria related to outbreaks\(^1\), pathogen prevalence and food/pathogen interaction, and to the production of the food item(s) concerned. “High number” means position in top ten list (Tables 30-32). For details on the classification scheme applied ((A) “highly critical”, (B) “critical”, (C) “moderately critical”) see methods section. NR= not reported.

FoNAO Category	Food item	Pathogen	Outbreaks	Production	Prevalence	Food/pathogen interaction	Priority group
28 Seeds for sprouting and sprouted seeds	Sprouts (alfalfa and bean sprouts)	Salmonella spp.	(A) High number of cases and hospitalisations in multiple outbreaks.	(A) Multiple factors related to production (germination, raw material, fecal matter, manure, harvesting, irrigation, water) and processing (packaging, storage) are critical for microbial contamination of seeds for sprouting and sprouted seeds.	(A) Two studies report on Salmonella spp. detection in seeds for sprouting and sprouted seeds.	(A) Salmonella can attach to alfalfa sprouts (independent of serovar). It grows at 20, 30 and 35 °C and during seed sprouting.	1
28 Seeds for sprouting and sprouted seeds	Sprouts (alfalfa, and clover sprouts, fenugreek seeds)	pathogenic E.coli	(A) Travel-related outbreak cases (Norway, Switzerland, 6 U.S. states, Canada) linked to French and German outbreaks related to sprout consumption (13 cases, 1 death outside the EU); two outbreaks in the U.S. involving high numbers of cases and hospitalisations	(A) Multiple factors related to production (germination, raw material, fecal matter, manure, harvesting, irrigation, water) and processing (packaging, storage) are critical for microbial contamination of baby corn.	NR	(A) E. coli can attach to alfalfa sprouts in a serovar-dependent manner. It grows at 20, 30 and 35 °C.	1
31 Nuts and nuts products	Nuts (almonds, pine nuts, hazelnuts,....)	Salmonella spp.	(B) High numbers of cases and hospitalisations in a multi-state outbreak in the U.S. related to the consumption of Turkish pine nuts.	(A) Multiple factors related to production (germination, raw material, fecal matter, manure, harvesting, irrigation, water) and processing (packaging, storage) are critical for contamination of nuts with Salmonella and pathogenic E.coli.	(A) Several studies report on Salmonella prevalence on/in nuts.	(A) Salmonella spp. in pecan granules increased by 6.31 log cfu/g during 45 hrs when incubated at 37 °C; Salmonella Enteritidis decreased by 0.4 to 3.1 log cfu/g during 550 days when incubated at various temperatures.	2
FoNAO Category	Food item	Pathogen	Outbreaks	Production	Prevalence	Food/pathogen interaction	Priority group
---------------	-----------	----------	-----------	------------	------------	--------------------------	----------------
31 Nuts and nuts products	Nuts (almonds, pine nuts, hazelnuts…)	pathogenic E. coli	(B) High numbers of cases and hospitalisations in a multi-state outbreak in the U.S. related to the consumption of hazelnuts.	(A) Multiple factors related to production (germination, raw material, fecal matter, manure, harvesting, irrigation, water) and processing (packaging, storage) are critical for contamination of nuts with Salmonella and pathogenic E. coli.	NR	(A) E. coli O157:H7 in walnut kernels decreased by 2.6 log cfu/g during 105 days when incubated at 23°C.	2
24 Cereals and dry legumes	Corn (baby corn)	Shigella sonnei	(C) Outbreak in Australia with a high number of cases, possibly related to outbreak in Denmark.	(A) Multiple factors related to production (harvesting) and processing (packaging, transport, storage) are critical for microbial contamination of baby corn.	NR	(A) Shigella spp. are highly communicable and have a relatively low infectious dose of 10 to 500 organisms (Kothary and Babu, 2001).	3
32 Spices and dry powdered herbs	Pepper (black/red)	Salmonella spp.	(B) High number of cases and hospitalisations in a multi-state outbreak in the U.S.	(B) Specific hygiene-related factors in processing (drying-spreading on the ground without cover, storage, cleaning, processing, water, packaging) are critical for bacterial contamination of pepper.		(A) Six studies report on Salmonella spp. detection in spices and dry powdered herbs. Three studies report on Salmonella spp. detection in red and/or black pepper.	3

1Outbreaks traced back to the consumption of highly processed food items (containing FoNAO mixed with other ingredients of animal origin, e.g. meat, milk or egg products) were not included in the ranking.
5. Conclusions

Biological hazards linked to FoNAO are of considerable public concern, which is reflected in the abundant scientific and grey literature retrieved in the present study. Our extensive review addressing pathogenic bacteria, viruses, and parasites associated with FoNAO with low water content yielded 7710 scientific literature entries in the study database (relating to FoNAO with both high and low water content), together with 134 grey literature documents (relating specifically to FoNAO with low water content). 315 documents were finally selected for data extraction from full texts into structured tables of Lot 2. Information referring to pathogen identification and characterisation and to the consumption of FoNAO was derived mainly from scientific publications, while data relating to the production and processing of FoNAO were predominantly contained in grey literature sources.

Bacterial pathogens that were reported in association with FoNAO with low water content were similar for EU and non-EU countries, comprising representatives of the genera Bacillus, Campylobacter, Clostridium, Cronobacter, Enterobacter, Salmonella, Shigella as well as Klebsiella pneumoniae, Listeria monocytogenes Pseudomonas aeruginosa, Staphylococcus aureus and Yersinia enterocolitica. However, of in total 103 associations on biological hazards identified on/in FoNAO with low water content, 29 and 24 were on combinations with Cronobacter spp. and Salmonella spp., respectively. Cronobacter spp. included C. dublinensis, C. malonaticus, C. muytjensii, and C. sakazakii/ronobacter, and Salmonella spp. comprised serovars Agona, Enteritidis, Infantis, Kentucky, Muenchen, Newport, Typhi, Typhimurium, and unspecified serovars. No viruses have been described on/in FoNAO with low water content. Parasites that have been described in association with FoNAO with low water content include Cryptosporidium spp, Enterocytozoon bieneusi, Giardia spp., and Microsporidia spores.

Studies on food/pathogen interaction have evidenced attachment and/or biofilm formation for pathogenic E.coli, Listeria monocytogenes, and Salmonella spp. on FoNAO with low water content. In addition, internalisation into FoNAO with low water content has been reported for Bacillus cereus, E.coli, several Salmonella serovars, and Listeria monocytogenes. This implicates a critical food/pathogen interaction regarding food safety, which has to be considered when evaluating their importance regarding food safety issues.

Critical steps in the production of FoNAO items were identified primarily based on GAP, GMP and HACCP documents and other producer guidelines, and included cleaning, cultivation, drying, environment, equipment, fecal matter, harvesting, irrigation, manure, packaging, personnel, processing, soil, storage, transport, and water. Contamination through “fecal matter” was the most frequently identified critical point (CP). Regarding processing of FoNAO, raw material and water were important CPs for most food items, followed by processing and packaging. Drying was critical primarily for spices, pepper, herbs, but also chocolate products production. In most cases, multiple points in primary production and/or processing were considered as equally critical regarding food safety issues. However, in some cases a single dominant point was highlighted.

The number and severity of outbreaks of disease caused by the consumption of contaminated FoNAO provided the basis for a primary evaluation of the FoNAO/pathogen combinations identified within the study. Additional qualitative criteria relating to pathogen prevalence and their colonization behaviour, and to the production of FoNAO items were included to define three priority groups of critical FoNAO/pathogen combinations for EU and non-EU countries, respectively.

For both EU and non EU countries, highest priority was assigned to the FoNAO/pathogen combinations sprouts/Salmonella spp. and sprouts/pathogenic E.coli, based on multiple outbreaks involving high numbers of cases and hospitalisations and including cases of death, and because of several additional critical factors regarding food safety.
Priority two for EU countries was attributed to the combination of rice with *Bacillus cereus* based on high prevalences (up to 100%) of the bacterial agent in rice and products thereof, together with multiple outbreaks associated with this combination. FoNAO/pathogen combinations allocated to priority group two for EU countries also include baby corn combined with *Shigella sonnei* based on cases involving hospitalisations and critical factors regarding production and infectivity. In non-EU countries, nuts have been implicated in multiple outbreaks caused by *Salmonella* spp. and pathogenic *E.coli*, involving high numbers of cases and hospitalisations, which thus were assigned grade two priority. For EU countries, however, priority three grading was allocated to nuts/*Salmonella* spp. based on a single cluster of reported outbreak cases. For non-EU countries, baby corn/*Shigella sonnei* and pepper (black/red)/*Salmonella* spp. was allocated to priority group three.

This report provides a broad scientific database that will be instrumental in the conceptualisation of specific measures for improving the safety of FoNAO with low water content. Ultimately, it may contribute to the prevention and a better control of food borne diseases.
6. References

Aarathi L.R SKDSN and Dharam RS, Prevailing Standards and Dimensions Governing Sanitary and Phyto-Sanitary Compliance in Indian Black Pepper Supply Chain. Agricultural Economics Research Review Vol. 25 (No.1) January-June 2012 pp 69-78.

ABC (Almond Board of California), 2010, online. Pathogen Environmental Monitoring Program (PEM). Available from: ucfoodsafety.ucdavis.edu/files/26483.pdf

Abusheleibi AA, Sofos JN, Samelis J and Kendall PA, 2003. Survival and growth of Salmonella in reconstituted infant cereal hydrated with water, milk or apple juice and stored at 4 degrees C, 15 degrees C and 25 degrees C. Food Microbiology, 20, 17-25.

ACFS (National Bureau of Agricultural Commodity and Food Standards), 2005, online. Thai Agricultural Standard. Good Agricultural Practices for Peppers. Available from: www.acfs.go.th/standard/download/eng/GAP_peppers.pdf

ACFS (National Bureau of Agricultural Commodity and Food Standards), 2007, online. Thai Agricultural Standard. Baby corn. Available from: http://www.acfs.go.th/standard/download/eng/baby_corn.pdf

ADM (Archer Daniels Midland Company), 2009, online. de Zaan - Cocoa & Chocolate Manual. Available from: http://www.adm.com/en-US/products/food/cocoa/Documents/deZaan-Cocoa-Manual.pdf

Aguilera MO, Stagnitta PV, Micalizzi B and de Guzmán AMS, 2005. Prevalence and characterization of Clostridium perfringens from spices in Argentina. Anaerobe, 11, 327-334.

Ahene RE, Odamten GT and Owusu E, Fungal and bacterial contaminants of six spices and spice products in Ghana. African Journal of Environmental Science and Technology, 5, 633-640.

Ahmed T., online. Food safety in GGC flour mills. Available from: http://www.foodsafetymiddle-east.com/downloads/presentations/Tarannum.pdf

AIV (Microbiology and Food Safety Consultants), online. Lessons learned on dry products and challenges in low moisture foods.

Al-Nabulsi AA, Osaili TM, Shaker RR, Olaimat AN, Ayyash MM and Holley RA, 2009. Survival of Cronobacter Species in Reconstituted Herbal Infant Teas and their Sensitivity to Bovine Lactoferrin. Journal of Food Science, 74, M479-M484.

Alp A, Vural A, Erkant ME and Yesilmen S, 2008. Microbiological and physico-chemical quality properties of wheat varieties in Turkey. Asian Journal of Chemistry, 20, 2866-2874.

Althaus D, Hofer E, Corti S, Julmi A and Stephan R, 2012. Bacteriological Survey of Ready-to-Eat Lettuce, Fresh-Cut Fruit, and Sprouts Collected from the Swiss Market. Journal of Food Protection, 75, 1338-1341.

Ankolekar C and Labbe RG, 2009. Survival during Cooking and Growth from Spores of Diarrheal and Emetic Types of Bacillus cereus in Rice. Journal of Food Protection, 72, 2386-2389.

Ankolekar C, Rahmati T and Labbé RG, 2009. Detection of toxigenic Bacillus cereus and Bacillus thuringiensis spores in U.S. rice. International journal of food microbiology, 128, 460-466.

Anonymous, 2006, online. Baby corn production, processing and marketing in Thailand. Available from: http://www.volkerkleinhenz.com/publications/baby-corn-production-processing-and-marketing-in-thailand/baby-corn-production-processing-and-marketing-in-thailand.pdf

APC (American Peanut Council), 2009, online. Good Manufacturing Practices and Industry Best Practices for Peanut Product Manufacturers.
Food of plant origin with low water content

AQIS (Australian Quarantine and Inspection Service), 2005, online. AQIS Imported Food Surveys. Report 1 - Imported Horticultural Products. Available from: http://www.daff.gov.au/_data/assets/pdf_file/0018/112833/hort_survey.pdf

Ariahu CC, Azi DA and Inyang CU, 2005. Growth and heat resistance of Listeria monocytogenes in "kunun-zaki": A sorghum-based beverage. Journal of Food Processing and Preservation, 29, 278-290.

ARS (Agricultural Research Service), 2000, online. Safer Sprouts. Available from: http://www.ars.usda.gov/is/ar/archive/aug00/sprout0800.pdf

Arvanitoyannis IS and Traikou A, 2005. A comprehensive review of the implementation of hazard analysis critical control point (HACCP) to the production of flour and flour-based products. Crit Rev Food Sci Nutr, 45, 327-370.

ASTA (American Spice Trade Association), 2006, online. HACCP guide for spices and seasonings. Available from: http://wilderfoods.com/uploads/HACCPGuideforSpicesSeasonings2006.pdf

ASTA (American Spice Trade Association), 2008, online. ASTA Safety Guidelines for Spices Sold in the United States. Available from: www.astaspice.org/files/public/FoodSafetyGuidelines.pdf

ASTA (American Spice Trade Association), 2009, online. Microbial Safety in Spices. Available from: http://www.astaspice.org/files/public/ASTA_Micro_Safety_White_Paper_Final.pdf

ASTA (American Spice Trade Associationon), 2011, online. Clean, Safe Spices. Guidance from the American Spice Trade Association. Available from: www.astaspice.org/-files/members/ASTAGuidance.pdf

Baert L, Mattison K, Loisy-Hamon F, Harlow J, Martyres A, Lebeau B, Stals A, Van Coillie E, Herman L and Uyttendaele M, 2011. Review: norovirus prevalence in Belgian, Canadian and French fresh produce: a threat to human health? Int J Food Microbiol, 151, 261-269.

Banerjee M and Sarkar PK, 2003. Microbiological quality of some retail spices in India. Food Research International, 36, 469-474.

Bang J, Kim H, Kim H, Beuchat LR and Ryu J-H, 2011. Inactivation of Escherichia coli O157:H7 on Radish Seeds by Sequential Treatments with Chlorine Dioxide, Drying, and Dry Heat without Loss of Seed Viability. Applied and Environmental Microbiology, 77, 6680-6686.

Bansal A, Jones TM, Abd SJ, Danyluk MD and Harris LJ, 2010. Most-probable-number determination of Salmonella levels in naturally contaminated raw almonds using two sample preparation methods. Journal of Food Protection, 73, 1986-1992.

Barak JD, Whitehand LC and Charkowski AO, 2002. Differences in attachment of Salmonella enterica serovars and Escherichia coli O157:H7 to alfalfa sprouts. Applied and Environmental Microbiology, 68, 4758-4763.

Bari L, Enomoto K, Nei D and Kawamoto S, 2011a. Development of effective seed decontamination technology to inactivate pathogens on mung bean seeds and its practical application in Japan. Japan Agricultural Research Quarterly, 45, 153-161.

Bari L., online. Semi commercial scale seed decontamination process of Mung bean Seeds.

Bari ML, Hossain MA, Isshiki K and Ukuku D, 2011b. Behavior of Yersinia enterocolitica in Foods. Journal of pathogens, 2011, 13p.

Baumgartner A, Grand M, Liniger M and Iversen C, 2009. Detection and frequency of Cronobacter spp. (Enterobacter sakazakii) in different categories of ready-to-eat foods other than infant formula. International journal of food microbiology, 136, 189-192.
Berghofer LK, Hocking AD, Miskelly D and Jansson E, 2003. Microbiology of wheat and flour milling in Australia. International journal of food microbiology, 85, 137-149.

Beuchat LR and Mann DA, 2010. Survival and Growth of Salmonella in High-Moisture Pecan Nutmeats, In-Shell Pecans, Inedible Nut Components, and Orchard Soil. Journal of Food Protection, 73, 1975-1985.

Beuchat LR and Scouen AJ, 2002. Combined effects of water activity, temperature and chemical treatments on the survival of Salmonella and Escherichia coli O157 : H7 on alfalfa seeds. Journal of Applied Microbiology, 92, 382-395.

Beuchat, L. R., online. Surface decontamination of fruits and vegetables eaten raw: a review. Available from: Surface decontamination of fruits and vegetables eaten raw: a review

Bianco MI, Luquez C, de Jong LIT and Fernandez RA, 2008. Presence of Clostridium botulinum spores in Matricaria chamomilla (chamomile) and its relationship with infant botulism. International journal of food microbiology, 121, 357-360.

Bianco MI, Luquez C, de Jong LIT and Fernandez RA, 2009. Linden flower (Tilia spp.) as potential vehicle of Clostridium botulinum spores in the transmission of infant botulism. Revista Argentina De Microbiologia, 41, 232-236.

Blessington T, Mitcham EJ and Harris LJ, 2012. Survival of Salmonella enterica, Escherichia coli O157:H7, and Listeria monocytogenes on Inoculated Walnut Kernels during Storage. Journal of Food Protection, 75, 245-254.

Boehmer TK, Bamberg WM, Ghosh TS, Cronquist A, Fornof ME, Cichon MK, Gershanik M and Vogt RL, 2009. Health care-associated outbreak of Salmonella Tennessee in a neonatal intensive care unit. American journal of infection control, 37, 49-55.

Bonerba E, Di Pinto A, Novello L, Montemurro F, Terio V, Colao V, Ciccarese G and Tantillo G, 2010. Detection of potentially enterotoxigenic food-related Bacillus cereus by PCR analysis. International Journal of Food Science and Technology, 45, 1310-1315.

Brockmann SO, Piechotowski I and Kimmig P, 2004. Salmonella in sesame seed products. Journal of Food Protection, 67, 178-180.

Brug J, Tak NI, Te Velde SJ, Bere E and De Bourdeaudhuij I, 2008. Taste preferences, liking and other factors related to fruit and vegetable intakes among schoolchildren: Results from observational studies. British Journal of Nutrition, 29, S7-S14.

Buchholz U, Bernard H, Werber D, Boehmer MM, Remschmidt C, Wilking H, Delere Y, an der Heiden M, Adlhoch C, Dreesman J, Ehlers J, Ethelberg S, Faber M, Frank C, Fricke G, Greiner M, Hoehle M, Ivarsson S, Jark U, Kirchner M, Koch J, Krause G, Lubur P, Rosner B, Stark K and Kuehne M, 2011. German Outbreak of Escherichia coli O104:H4 Associated with Sprouts. New England Journal of Medicine, 365, 1763-1770.

Buck JW, Walcott R and Beuchat LR, Recent trends in microbiological safety of fruits and vegetables, online. Plant Health Progress doi:10.1094/PHP-2003-0121-01-RV.

Carlin F, Broussolle V, Perelle S, Litman S and Fach P, 2004. Prevalence of Clostridium botulinum in food raw materials used in REPFEDs manufactured in France. International journal of food microbiology, 91, 141-145.

Cava R, Sangronis E, Rodriguez M and Colina J, 2009. MICROBIOLOGICAL QUALITY OF GERMINATED SEED OF Phaseolus vulgaris. Interciencia, 34, 796-800.

CDC (Centers for Disease Control and Prevention), 2007, online(b). Available from: http://www.cdc.gov/ncidod/dbmd/diseaseinfo/salmonellosis_2007/030707_outbreak_notice.htm

Supporting publications 2013:EN-403

The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.
Food of plant origin with low water content

Supporting publications 2013:EN-403

The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.
Chomvarin C, Chantarasuk Y, Srivilbut S, Charonsudjai S and Chaicumpar K, 2006. Enteropathogenic bacteria and enterotoxin-producing *Staphylococcus aureus* isolated from ready-to-eat foods in Khon Kaen, Thailand. The Southeast Asian journal of tropical medicine and public health, 37, 983-990.

Chon J-W, Song K-Y, Kim S-Y, Hyeon J-Y and Seo K-H, 2012. Isolation and Characterization of *Cronobacter* from Desiccated Foods in Korea. Journal of Food Science, 77, M354-M358.

Choo E, Jang SS, Kim K, Lee K-G, Heu S and Ryu S, 2007. Prevalence and genetic diversity of *Bacillus cereus* in dried red pepper in Korea. Journal of Food Protection, 70, 917-922.

CIAT (Centro Internacional de Agricultura Tropical), 1999, online. *Phaseolus* Bean: Post-harvest Operations. Available from: http://www.fao.org/fileadmin/user_upload/-inpho/docs/Post_Harvest_Compendium_-_Phaesolus_beans.pdf

Cleary P, Browning L, Coia J, Cowden J, Fox A, Kearney J, Lane C, Mather H, Quigley C, Syed Q and Tubin-Delic D, 2010. A foodborne outbreak of *Salmonella* Bareilly in the United Kingdom, 2010. Euro surveillance: bulletin européen sur les maladies transmissibles = European communicable disease bulletin, 15.

Cokal Y, Dagdelen A, Cenet O and Gunsen U, 2012. Presence of *L. monocytogenes* and some bacterial pathogens in two Turkish traditional foods, Mihalic cheese and Hosmerim dessert. Food Control, 26, 337-340.

Cordier, 1994, online. HACCP in the chocolate industry. Available from: http://www.gewponoi.com/trofima/ygieini/Literature/Enotita_7-Theoria/FOOD_CON_5,171-175.pdf

Cosano I, Pintado C, Acevedo O, Novella JL, Alonso GL, Carmona M, de la Rosa C and Rotger R, 2009. Microbiological quality of saffron from the main producer countries. Journal of Food Protection, 72, 2217-2220.

Cronin UP and Wilkinson MG, 2009. The growth, physiology and toxigenic potential of *Bacillus cereus* in cooked rice during storage temperature abuse. Food Control, 20, 822-828.

da Silva do Nascimento M, da Silva N, da Silva IF, de Cassia da Silva J, Marques ER and Santos ARB, 2010. Enteropathogens in cocoa pre-processing. Food Control, 21, 408-411.

DAFF (Department of Agriculture, Forestry and Fisheries), 2010, online. Dry Beans - Production Guideline. Available from: www.nda.agric.za/docs/Brochures/prodGuideDryBeans.pdf

Dalgıç AC and Belibağlı KB, 2008. Hazard analysis critical control points implementation in traditional foods: a case study of Tarhana processing. International Journal of Food Science & Technology, 43, 1352-1360.

Danyluk MD, Harris LJ and Schaffner DW, 2006. Monte Carlo simulations assessing the risk of salmonellosis from consumption of almonds. Journal of Food Protection, 69, 1594-1599.

Danyluk MD, Jones TM, Abd SJ, Schlitt-Dittrich F, Jacobs M and Harris LJ, 2007. Prevalence and amounts of *Salmonella* found on raw California almonds. Journal of Food Protection, 70, 820-827.

Danyluk MD, Uesugi AR and Harris LJ, 2005. Survival of *Salmonella enteritidis* PT 30 on inoculated almonds after commercial fumigation with propylene oxide. Journal of Food Protection, 68, 1613-1622.

das Chagas Oliveira Freire F and Offord L, 2002. Bacterial and yeast counts in Brazilian commodities and spices. Brazilian Journal of Microbiology, 33, 145-148.

Dawson D, 2005. Foodborne protozoan parasites. International journal of food microbiology, 103, 207-227.
Decagon (Decagon Devices), 2010, online. Water Activity and Spices. Available from: http://www.aqualab.com/assets/Uploads/Water-Activity-and-Spices.pdf

Deering AJ, Pruitt RE, Mauer LJ and Reuhs BL, 2012. Examination of the internalization of Salmonella serovar Typhimurium in peanut, Arachis hypogaea, using immunocytochemical techniques. Food Research International, 45, 1037-1043.

Delbrassinne L, Andjelkovic M, Dierick K, Denayer S, Mahillon J and Van Loco J, 2012. Prevalence and Levels of Bacillus cereus Emetic Toxin in Rice Dishes Randomly Collected from Restaurants and Comparison with the Levels Measured in a Recent Foodborne Outbreak. Foodborne Pathogens and Disease, 9, 809-814.

DHV (Department of Health Victoria), online. Report on a Survey of Spices for the presence of Pathogens. A national survey conducted under the Coordinated Food Survey Plan with participation by food regulatory agencies in Australia. Available from: http://www.health.vic.gov.au/archive/archive2011/foodsafety/archive/downloads/survey_spices.pdf

Dierick K, Van Coillie E, Swiecicka I, Meyfroidt G, Devlieger H, Meulemans A, Hoedemaekers G, Fourie L, Heyndrickx M and Mahillon J, 2005. Fatal family outbreak of Bacillus cereus-associated food poisoning. Journal of clinical microbiology, 43, 4277-4279.

DM (Dubai Municipality), 2005, online. HACCP Guidelines for Food Manufacturing Premises. Available from: http://pillsburyconsulting.com/tmp/downloads/23rdofDecember2010083130.pdf

DOH (Department of Health), online. Guidelines for Environmental Health Officers on the Interpretation of Microbiological Analysis Data of Food.

Doyle MP and Erickson MC, 2008. Summer meeting 2007 - the problems with fresh produce: an overview. J Appl Microbiol, 105, 317-330.

Duffy G and Moriarty EM, 2003. Cryptosporidium and its potential as a food-borne pathogen. Animal health research reviews / Conference of Research Workers in Animal Diseases, 4, 95-107.

EC (European Commission), 2003, online. Scientific Committee on Veterinary Measures relating to Salmonellae in Foodstuffs. Available from: http://ec.europa.eu/food/fs/sc/scv/out66_en.pdf

ECDC (European Center of Disease Control), 2008, online. Scientific Report of EFSA: The Community Summary Report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in the European Union in 2008. Available from: http://www.efsa.europa.eu/en/efsajournal/pub/1496.htm

ECDC (European Center of Disease Control), 2009, online. Scientific Report of EFSA: EU summary report on trends and sources of zoonoses and zoonotic agents and food-borne outbreaks 2009. Available from: http://www.efsa.europa.eu/en/efsajournal/pub/2090.htm

ECDC (European Center of Disease Control), 2010, online. Scientific Report of EFSA: EU summary report on zoonoses, zoonotic agents and food-borne outbreaks 2010. Available from: http://www.efsa.europa.eu/en/efsajournal/pub/2597.htm

EFSA (European Food Safety Authority), 2010. Application of systematic review methodology to food and feed safety assessments to support decision making. EFSA Journal 8(6):1637, 90 pp.

EFSA (European Food Safety Authority), 2011. Shiga toxin-producing E. coli (STEC) O104:H4 2011 outbreaks in Europe: Taking Stock. EFSA Journal, 9(10):2390, 22 pp.

EFSA (European Food Safety Authority), 2011, online. Scientific Opinion on the risk posed by Shiga toxin-producing Escherichia coli (STEC) and other pathogenic bacteria in seeds and sprouted seeds. Available from: http://www.efsa.europa.eu/en/efsajournal/doc/2424.pdf
Eglezos S, 2010a. The bacteriological quality of retail-level peanut, almond, cashew, hazelnut, brazil, and mixed nut kernels produced in two Australian nut-processing facilities over a period of 3 years. Foodborne Pathogens and Disease, 7, 863-866.

Eglezos S, 2010b. Microbiological quality of wheat grain and flour from two mills in Queensland, Australia. Journal of Food Protection, 73, 1533-1536.

Eglezos S, Huang B and Stutnard E, 2008. A survey of the bacteriological quality of preroasted peanut, almond, cashew, hazelnut, and Brazil nut kernels received into three Australian nut-processing facilities over a period of 3 years. Journal of Food Protection, 71, 402-404.

EIA (Export Inspection Agency), online. Certification of black pepper. Available from: http://eicindia.gov.in/eic/inspection/blackpepper.pdf

Emberland KE, Ethelberg S, Kuusi M, Vold L, Jensvoll L, Lindstedt BA, Nygard K, Kjelsø C, Torpdahl M, Sørensen G, Jensen T, Lukinmaa S, Niskanen T and Kapperud G. 2007. Outbreak of Salmonella Weltevreden infections in Norway, Denmark and Finland associated with alfalfa sprouts, July-October 2007. Euro surveillance: bulletin européen sur les maladies transmissibles = European communicable disease bulletin, 12.

ERG (Eastern Research Group), 2004. Good Manufacturing Practices (GMPs) for the 21st Century – Food Processing. Available from: http://www.ksre.ksu.edu/grsc_subi/Research/-/intl_presentations/Day%201_india08/GMP_Modernization Document.pdf

Erickson MC, Webb CC, Diaz-Perez JC, Phatak SC, Silvoyer JJ, Davey L, Payton AS, Liao J, Ma L and Doyle MP, 2010. Surface and internalized Escherichia coli O157:H7 on field-grown spinach and lettuce treated with spray-contaminated irrigation water. J Food Prot, 73, 1023-1029.

Erol I, Hildebrandt G, Goncuoglu M, Ormanci FSB, Yurtyeri A, Kleer J and Kuplulu O, 2009. Incidence and serotype distribution of Salmonella in spices retailed in Turkey. Fleischwirtschaft, 6.

European Commission, 2004, online. Bacteriological and toxicological safety of dried herbs and spices. Available from: http://www.fsa.ie/uploadedFiles/Monitoring_and_Enforcement/-Monitoring/Surveillance/safety_herbs_spices_2004.pdf

Fahey JW, Ourisson PJ and Degnan FH, 2006. Pathogen detection, testing, and control in fresh broccoli sprouts. Nutr J, 5, 13.

Fangio MF, Roura SI and Fritz R, 2010. Isolation and identification of Bacillus spp. and related genera from different starchy foods. Journal of Food Science, 75, M218-221.

FAO (Food and Agricultural Organization of the United Nations), 2010, online. Good Agricultural Practices (GAP) on horticultural production for extension staff in Tanzania. Available from: http://www.fao.org/docrep/013/i1645e/i1645e00.pdf

FAO (Food and Agriculture Organization of the United Nations), 2012, online. Prevention and control of Salmonella and enterohemorrhagic E. coli in tree nuts. Available from: http://www.fao.org/fileadmin/templates/agns/pdf/EMPRES_FS_SeriesNo2.pdf

FAO/WHO (Food and Agriculture Organization of the United Nations/World Health Organization), 2011, online. Code of hygienic practice for fresh fruits and vegetables. Available from: http://www.codexalimentarius.org/download/standards/10200/CXP_053e.pdf

FD (Food Directorate), 2006, online. Policy on Managing Health Risk Associated with the Consumption of Sprouted Seeds and Beans. Available from: http://www.hc-sc.gc.ca/fn-an/alt_formats/hpfb-dgpsa/pdf/legislation/sprouts_pol_pousses-eng.pdf

FDA (U.S. Food and Drug Administration), 1999, online. Microbiological Safety Evaluations and Recommendations on Sprouted Seed. Available from:
Food of plant origin with low water content

Ferguson DD, Scheftel J, Cronquist A, Smith K, Woo-Ming A, Anderson E, Knutsen J, De AK and Gershman K, 2005. Temporally distinct *Escherichia coli* 0157 outbreaks associated with alfalfa sprouts linked to a common seed source--Colorado and Minnesota, 2003. Epidemiology and infection, 133, 439-447.

Franchini B, Poinhos R, Klepp KI and De Almeida MDV, 2011. Association between parenting styles and own fruit and vegetable consumption among Portuguese mothers of school children. British Journal of Nutrition, 106, 931-935.

Frank C, Werber D, Cramer JP, Askar M, an der Heiden M, Bernard H, Fruth A, Prager R, Spode A, Wadl M, Zoufaly A, Jordan S, Kemper MJ, Follin P, Muller L, King LA, Rosner B, Buchholz U, Stark K and Krause G, 2011. Epidemic Profile of Shiga-Toxin-Producing *Escherichia coli* O104:H4 Outbreak in Germany. New England Journal of Medicine, 365, 1771-1780.

Freshfel (The European Fresh Produce Association), 2011, online. Comparison of different guidelines and practices for sprout production. Available from: http://www.efsaa.europa.eu/en-/supporting/doc/203eax1.pdf

FRI (Food Research Institute), 2007, online. Microbial Food Spoilage — Losses and Control Strategies. Available from: fri.wisc.edu/docs/pdf/FRI_Brief_Microbial_Food_Spoilage_7_07.pdf

FRI (Food Research Institute), 2009, online. White Paper on Human Illness Caused by *Salmonella* from all Food and Non-Food Vectors. Available from: http://fri.wisc.edu/docs/pdf-/FRI_Brief_Salmonella_Human_Illness_6_09.pdf

FSA (Food Standards Agency), online. Advisory Committee on the microbiological safety of food. Discussion paper. The microbiological safety of sprouted seeds.

FSAI (Food Safety Authority of Ireland), 2011, online. Guidelines on Safe Production of Ready-to-Eat Sprouted Seeds (Sprouts). Available from: www.fsa.ie/WorkArea/-linkit.aspx?LinkIdentifier=id&ItemID=10772

FSANZ (Food Standards Australia New Zealand), 2012, online. Proposal P1004 – Primary Production and Processing Standard for Seed Sprouts Regulation Impact Statement. Available from: http://ris.finance.gov.au/files/2012/03/02-Seed-Sprouts-RIS.pdf

FSN (Food Safety Network), 2000, online. Risks Associated With The Consumption of Fresh Sprouts. Available from: http://foodsafety.ksu.edu/articles/406/sprout_consumption_risks.pdf

FSSAI (Food Safety and Standards Authority of India), 2010, online. Training Manual for Food Safety Regulators. Available from: http://www.fssai.gov.in/Portals/0/-Training_Manual/Volume%20II%20Food%20Safety%20Regulators%20and%20Food%20Safety%20Management.pdf

Fu T-J, Reineke KF, Chirtel S and Vanpelt OM, 2008. Factors influencing the growth of *Salmonella* during sprouting of naturally contaminated alfalfa seeds. Journal of Food Protection, 71, 888-896.

Gabriel AA, Microbial Quality of Chlorine Soaked Mung Bean Seeds and Sprouts. Food Sci. Technol. Res., 11, 95-100.

Gandhi AP, Production of soy nuts using hazard analysis critical control point (HACCP). As. J. Food Ag-Ind., 1, 137-154.

Ghenghesh KS, Belhaj K, El-Amin WB, El-Nefathi SE and Zalmum A, 2005. Microbiological quality of fruit juices sold in Tripoli-Libya. Food Control, 16, 855-858.
Gilmour, 2009, online. Best Practices for the Cocoa, Chocolate and Confectionery Industry. Available from: http://www.icco.org/sites/sps/documents/CB-20-3.Rev.1%20Manufacturing-%20Practices%20-%20Edited.pdf

GMA (Grocery Manufacturers Association), 2009, online. Annex to control of Salmonella in low-moisture foods. Available from: http://www.gmaonline.org/downloads/wygwam/Salmonellaguidanceannex.pdf

GMA (Grocery Manufacturers Association), 2010, online. Industry Handbook for Safe Processing of Nuts. Available from: http://www.gmaonline.org/downloads/technical-guidance-and-tools/Industry_Handbook_for_Safe_Processing_of_Nuts_1st_Edition_22Feb10.pdf

Gorski L, Flaherty D and Duhe JM, 2008. Comparison of the stress response of Listeria monocytogenes strains with sprout colonization. Journal of Food Protection, 71, 1556-1562.

Gorski L, Palumbo JD and Nguyen KD, 2004. Strain-specific differences in the attachment of Listeria monocytogenes to alfalfa sprouts. Journal of Food Protection, 67, 2488-2495.

Güven K and Benlikaya N, 2005. Acid pH produced by lactic acid bacteria prevent the growth of Bacillus cereus in boza, a traditional fermented Turkish beverage. Journal of Food Safety, 25, 98-108.

Häggblom MM, Apetroaie C, Andersson MA and Salkinoja-Salonen MS, 2002. Quantitative Analysis of Cereulide, the Emetic Toxin of Bacillus cereus, Produced under Various Conditions. Applied and Environmental Microbiology, 68, 2479-2483.

Hampikyan H, Bingol EB, Colak H and Aydin A, The evaluation of microbiological profile of some spices used in Turkish meat industry. Journal of Food, Agriculture & Environment, 7, 111-115.

Hara-Kudo Y, Ohtsuka LK, Onoue Y, Otomo Y, Furukawa I, Yamaji A, Segawa Y and Takatori K, 2006. Salmonella prevalence and total microbial and spore populations in spices imported to Japan. Journal of Food Protection, 69, 2519-2523.

Harris LJ, Uesugi AR, Abd SJ and McCarthy KL, 2012. Survival of Salmonella Enteritidis PT 30 on inoculated almond kernels in hot water treatments. Food Research International, 45, 1093-1098.

Hauri AM, Saehrendt M, Spangenberg B and Roggentin P, 2004. A foodborne outbreak of Salmonella enterica subsp. enterica serovar Madelia at a silver anniversary reception. European journal of clinical microbiology & infectious diseases: official publication of the European Society of Clinical Microbiology, 23, 841-843.

HDDHS (Houston Department of Health and Human Services), online. Sprouts - Sprouting Questions. Available from: http://www.houstontx.gov/health/Food/Sprouts.pdf

He Y, Guo D, Yang J, Tortorello ML and Zhang W, 2011. Survival and Heat Resistance of Salmonella enterica and Escherichia coli O157:H7 in Peanut Butter. Applied and Environmental Microbiology, 77, 8434-8438.

HEC (Higher Education Commission), 2009, online. Review of literature. Available from: prr.hec.gov.pk/Chapters/46S-2.pdf

Heo S-K, Lee J-Y, Baek S-B and Ha S-D, 2009. A Response Surface Model To Describe the Effect of Temperature and pH On the Growth of Bacillus cereus in Cooked Rice. Journal of Food Protection, 72, 1296-1300.

Hochel I, Ruzickova H, Krasny L and Demnerova K, 2012. Occurrence of Cronobacter spp. in retail foods. Journal of Applied Microbiology, 112, 1257-1265.

Howard MB and Hutcheson SW, 2003. Growth dynamics of Salmonella enterica strains on alfalfa sprouts and in waste seed irrigation water. Applied and Environmental Microbiology, 69, 548-553.
HPA (Health Protection Agency), online. LACORS/HPA Co-ordinated Food Liaison Group Studies: An Assessment of the Microbiological Safety of Ready-To-Eat Dried Seeds From Retail Premises in the United Kingdom with a focus on Salmonella spp. Available from: http://www.hpa.org.uk/webc/HPAwebFile/HPAweb_C/1235464508852

HPA (Health Protection Agency), online. LACORS/HPA Co-ordinated Food Liaison Group Studies: Assessment of the Microbiological Safety of Edible Nut Kernels on Retail Sale in the UK with a focus on Salmonella spp. Available from: https://docs.google.com/viewer?a=v&q=cache:apABoMiFYqgJ:www.lacors.gov.uk/LACORS/upload/22154.pdf+LACORS/HPA+Co-ordinated+Food+Liaison+Group+Studies-:+Edible+Nut+Kernels+&hl=de&gl=at&pid=bl&srcid=ADGEEShYhlfkXA_SV4cJu1VCcT3hhsOdcaX3vNgmyHUYumF3hF3zK4IEsWu3Xiq7FNlWbqz31xq519JGFCf2dpy7HA06Gk8nK8IN0FAsrHrz-p6m_V9aatQanMfE3rRtwvPVxes5VwU&sig=AHIEtbT1tY88bKuXFimHy-dSMYwNHNt7JQ

HPFB (Health Products and Food Branch), 2008, online. Standards and Guidelines for microbiological safety of food. Available from: http://www.hc-sc.gc.ca/fn-an/alt_formats/hpfb-dgpsa/pdf/research/intsum-somexp-eng.pdf

Huong BTM, Mahmud ZH, Neogi SB, Kassu A, Nhien NV, Mohammad A, Yamato M, Ota F, Lam NT, Dao HTA and Khan NC, 2010. Toxigenicity and genetic diversity of Staphylococcus aureus isolated from Vietnamese ready-to-eat foods. Food Control, 21, 166-171.

Hurst W, online. Nut Handling and Processing for Confectioners and Small Nut Roasters. Available from: http://nca.files.cms-plus.com/Session%203%20-%20Pathogen%20Reduction_Goodfellow.ppt

ICMSF (International Commission on Microbiological Specifications for Foods), 1986, online. Microorganisms in foods 2. Sampling for microbiological analysis. Available from: http://www.icmsf.org/pdf/icmsf2.pdf

IPC (International Pepper Community), 2007, online. Draft of Good Agricultural Practices for Pepper. Available from: http://www.ipcnet.org/images/GAP%20for%20Pepper-revfeb2007.pdf

IPC (International Pepper Community), 2012, online. Good Manufacturing Practices.

Isara AR, Isah EC, Lofor PVO and Ojide CK, 2010. Food contamination in fast food restaurants in Benin City, Edo State, Nigeria: Implications for food hygiene and safety. Public health, 124, 467-471.

ITC (International Trade Centre), 2010, online. Spice sub-sector. A strategy for Ethiopia. Available from: http://www.intracen.org/uploadedFiles/intracenorg/Content/Exporters/Sectoral_Information/Agricultural_Products/Spices/Ethiopia-strategy.pdf

Iversen C and Forsythe S, 2004. Isolation of Enterobacter sakazakii and other Enterobacteriaceae from powdered infant formula milk and related products. Food Microbiology, 21, 771-777.

IYCN (USAID’s - Infant & Young Child Nutrition Project), online. Processing Handbook for ProKal Products. Available from: http://iycn.wpengine.netdna-cdn.com/files/IYCN_PROKAL_Food_Production_Manual0312.pdf

Januszewska, 2006, online. Chocolate Industry in a new European Perspective. Available from: http://lib.ugent.be/fulltext/RUG01/001/261/778/RUG01-001261778_2010_0001_AC.pdf

Jaradat ZW, Ababneh QO, Saadoun IM, Samara NA and Rashdan AM, 2009. Isolation of Cronobacter spp. (formerly Enterobacter sakazakii) from infant food, herbs and environmental samples and the subsequent identification and confirmation of the isolates using biochemical, chromogenic assays, PCR and 16S rRNA sequencing. BMC microbiology, 9,
Jedrzejewski S, Graczyk TK, Slodkowicz-Kowalska A, Tamang L and Majewska AC, 2007. Quantitative assessment of contamination of fresh food produce of various retail types by human-virulent microsporidian spores. Applied and Environmental Microbiology, 73, 4071-4073.

Joy CM, Pittappillil GP and Jose KP, Drying of Black Pepper (Piper nigrum L.) using solar tunnel dryer. Pertanika Journal of Tropical Agricultural Science (JTAS), 25, 39-45.

Kačáňová M and Juhaniaková L, 2011. Microorganisms in confectionary products. Journal of Microbiology, Biotechnology and Food Sciences, 1, 57-69.

Kamga Wambo GO, Burckhardt F, Frank C, Hiller P, Wichmann-Schauer H, Zuschneid I, Hentschke J, Hitzbleck T, Contzen M, Suckau M and Stark K, 2011. The proof of the pudding is in the eating: an outbreak of emetic syndrome after a kindergarten excursion, Berlin, Germany, December 2007. Euro surveillance: bulletin européen sur les maladies transmissibles = European communicable disease bulletin, 16.

Kandhai MC, Heuvelink AE, Reij MW, Beumer RR, Dijk R, van Tilburg JJHC, van Schothorst M and Gorris LGM, 2010. A study into the occurrence of Cronobacter spp. in The Netherlands between 2001 and 2005. Food Control, 21, 1127-1136.

Karagozlu N, Ergonul B and Karagozlu C, Microbiological attributes of instant tarhana during fermentation and drying. Bulgarian Journal of Agricultural Science, 14, 535-541.

Karagozlu N, Karagozlu C and Ergonul B, A Model HACCP Plan for Small-Scale Manufacturing of Tarhana (a Traditional Turkish Fermented Food). Bulgarian Journal of Agricultural Science, 15, 501-513.

Kasai Y, Kimura B, Kawasaki S, Fukaya T, Sakuma K and Fujii T, 2005. Growth and toxin production by Clostridium botulinum in steamed rice aseptically packed under modified atmosphere. Journal of Food Protection, 68, 1005-1011.

Kemper MJ, 2012. Outbreak of hemolytic uremic syndrome caused by E. coli O104:H4 in Germany: a pediatric perspective. Pediatric nephrology (Berlin, Germany), 27, 161-164.

Kenney SJ and Beuchat LR, 2004. Survival, growth, and thermal resistance of Listeria monocytogenes in products containing peanut and chocolate. Journal of Food Protection, 67, 2205-2211.

Kilonzo-Nthenge A, Rotich E, Godwin S and Huang T 2009. Consumer storage period and temperature for peanut butter and their effects on survival of Salmonella and Escherichia coli O157:H7. Available from: http://www.foodprotection.org

Kim H, Lee Y, Beuchat LR, Yoon B-J and Ryu J-H, 2009. Microbiological examination of vegetable seed sprouts in Korea. Journal of Food Protection, 72, 856-859.

Kim J-B, Park Y-B, Kang S-H, Lee M-J, Kim K-C, Jeong H-R, Kim D-H, Yoon M-H, Lee J-B and Oh D-H, 2011a. Prevalence, Genetic Diversity, and Antibiotic Susceptibility of Cronobacter spp. (Enterobacter sakazakii) Isolated from Sunshik, Its Ingredients and Soils. Food Science and Biotechnology, 20, 941-948.

Kim K, Jang SS, Kim SK, Park J-H, Heu S and Ryu S, 2008. Prevalence and genetic diversity of Enterobacter sakazakii in ingredients of infant foods. International journal of food microbiology, 122, 196-203.

Kim SA, Oh SW, Lee YM, Imm JY, Hwang IG, Kang DH and Rhee MS, 2011b. Microbial contamination of food products consumed by infants and babies in Korea. Letters in Applied Microbiology, 53, 532-538.

Kimanya ME, Mamiro PRS, Van Camp J, Devlieghere F, Opsomer A, Kolsteren P and Debevere J, 2003. Growth of Staphylococcus aureus and Bacillus cereus during germination and drying of
finger millet and kidney beans. International Journal of Food Science and Technology, 38, 119-125.

Kimura B, Kimura R, Fukaya T, Sakuma K, Miya S and Fujii T, 2008. Growth and toxin production of proteolytic Clostridium botulinum in aseptically steamed rice products at pH 4.6 to 6.8, packed under modified atmosphere, using a deoxidant pack. Journal of Food Protection, 71, 468-472.

King LA, Nogareda F, Weill F-X, Mariani-Kurkdjian P, Loukiadias E, Gault G, Jourdan-DaSilva N, Bingen E, Mace M, Thevenot D, Ong N, Castor C, Noel H, Van Cauteren D, Charron M, Vaillant V, Aldeb B, Goulet V, Delmas G, Coutilier E, Le Strat Y, Combe C, Delmas Y, Terrier F, Vendrely B, Rolland P and de Valk H, 2012. Outbreak of Shiga Toxin-Producing Escherichia coli O104:H4 Associated With Organic Fenugreek Sprouts, France, June 2011. Clinical Infectious Diseases, 54, 1588-1594.

Koch J, Schrauder A, Alpers K, Werber D, Frank C, Prager R, Rabsch W, Broll S, Feil F, Roggentin P, Bockemühl J, Tschäpe H, Ammon A and Stark K, 2005. Salmonella agona outbreak from contaminated aniseed, Germany. Emerging infectious diseases, 11, 1124-1127.

Koivula MJ, Kymalainen HR, Vanne L, Levo S and Sjoberg AM, 2004. Microbial quality of linseed and fibre hemp plants during growing and harvest seasons. Agricultural and Food Science, 13, 327-337.

Kongsengdao S, Samintarapanya K, Rusmeechan S, Wongsa A, Pothirat C, Permpikul C, Pongpakdee S, Puavilai W, Kateruttanakul P, Phengtham U, Panjaporpon K, Janma J, Piyavechviratana K, Sithinamsuwan P, Deesomchok A, Tongsong S, Vilaichone W, Boonyapisit K, Mayotarn S, Piya-Isragul B, Rattanaphon A, Intalapaporn P, Dusitanond P, Harnsomburan P, Laowittawas W, Chairungsaris P, Suwantamee J, Wongmek W, Ratanaat R, Poopmichate A, Panyadilok H, Sutcharitchan N, Chuesuwan A, Onrungsapup P, Suttapras C, Tanprawate S, Lorsuwansiri J and Phattana N, 2006. An outbreak of botulism in Thailand: clinical manifestations and management of severe respiratory failure. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America, 43, 1247-1256.

Kooppack D, Jesionkowska K, Kruczynska D, Stehr R, Schoorl F, Buehler A, Egger S, Codarin S, Hilaire C, Hoeller I, Guerra W, Liverani A, Donati F, Sansavini S, Martinelli A, Petiot C, Carbo J, Echeverria G, Iglesias I and Bonany J, 2010. Apple and peach consumption habits across European countries. Appetite, 55, 478-483.

Koopmans M and Duizer E, 2004. Foodborne viruses: an emerging problem. Int J Food Microbiol, 90, 23-41.

Kothary MH and Babu US, 2001. Infective dose of foodborne pathogens in volunteers: a review. Journal of Food Safety, 21, 49-68.

Krohmer R, Due P, Rasmussen M, Damsgaard MT, Holstein BE, Klepp KI and Lynch J, 2009. Does school environment affect 11-year-olds' fruit and vegetable intake in Denmark? Social Science and Medicine, 68, 1416-1424.

Kumar M, Hora R, Kosztynska M, Waites WM and Warriner K, 2006. Inactivation of Escherichia coli O157:H7 and Salmonella on Mung Beans, Alfalfa, and Other Seed Types Destined for Sprout Production by Using an Oxychloro-Based Sanitizer. Journal of Food Protection, 69, 1571-1578.

Kutter S, Hartmann A and Schmid M, 2006. Colonization of barley (Hordeum vulgare) with Salmonella enterica and Listeria spp. Fems Microbiology Ecology, 56, 262-271.

Lambertini E, Danljuk MD, Schaffner DW, Winter CK and Harris LJ, 2012. Risk of salmonellosis from consumption of almonds in the North American market. Food Research International, 45, 1166-1174.
Lampinen B. and Connell J., online. Producing Quality Almonds: Food Safety Starts on the Farm. Available from: http://homeorchard.ucdavis.edu/8126.pdf

Ledet Müller L, Hjertqvist M, Payne L, Pettersson H, Olsson A, Plym Forshell L and Andersson Y, 2007. Cluster of Salmonella Enteritidis in Sweden 2005-2006 - suspected source: almonds. Euro surveillance: bulletin européen sur les maladies transmissibles = European communicable disease bulletin, 12, E9-10.

Lee TS, Lee SW, Seok WS, Yoo MY, Yoon JW, Park BK, Moon KD and Oh DH, 2004. Prevalence, antibiotic susceptibility, and virulence factors of Yersinia enterocolitica and related species from ready-to-eat vegetables available in Korea. J Food Prot, 67, 1123-1127.

Lee H-Y, Chai L-C, Tang S-Y, Jinap S, Ghazali FM, Nakaguchi Y, Nishibuchi M and Son R, 2009. Application of MPN-PCR in biosafety of Bacillus cereus s.l. for ready-to-eat cereals. Food Control, 20, 1068-1071.

Lee Y-D, Park J-H and Chang H, 2012. Detection, antibiotic susceptibility and biofilm formation of Cronobacter spp. from various foods in Korea. Food Control, 24, 225-230.

Lewis HC, Ethelberg S, Lisby M, Madsen SB, Olsen KEP, Rasmussen P, Kjelsø C, Vestergaard LS, Qureshi K, Howitz M and Mølbak K, 2007. Outbreak of shigellosis in Denmark associated with imported baby corn, August 2007. Euro surveillance: bulletin européen sur les maladies transmissibles = European communicable disease bulletin, 12,

Liao CH, 2008. Growth of Salmonella on sprouting alfalfa seeds as affected by the inoculum size, native microbial load and Pseudomonas fluorescens 2-79. Letters in Applied Microbiology, 46, 232-236.

Lin L-C and Beuchat LR, 2007. Survival of Enterobacter sakazakii in infant cereal as affected by composition, water activity, and temperature. Food Microbiology, 24, 767-777.

Little CL, Jemmott W, Surman-Lee S, Huckleby L and de Pinna E, 2009. Assessment of the microbiological safety of edible roasted nut kernels on retail sale in England, with a focus on Salmonella. Journal of Food Protection, 72, 853-855.

Little CL, Omotoye R and Mitchell RT, 2003. The microbiological quality of ready-to-eat foods with added spices. International journal of environmental health research, 13, 31-42.

Little CL, Rawal N, de Pinna E and McLauchlin J, 2010. Survey of Salmonella contamination of edible nut kernels on retail sale in the UK. Food Microbiology, 27, 171-174.

Little CL, Rawal N, de Pinna E, McLauchlin J and the Food, Water, and Environmental Surveillance Network, online. LACORS/HPA Co-ordinated Food Liaison Group Studies: Assessment of the Microbiological Safety of Edible Nut Kernels on Retail Sale in the UK with a focus on Salmonella spp. Available from: https://docs.google.com/viewer?a=v&q=cache:apABOmlFYQgJ:www.lacors.gov.uk/LACORS/upload/22154.pdf+LACORS/HPA+Co-ordinated+Food+Liaison+Group+Studies:++Edible+Nut+Kernels&hl=de&gl=at&pid=bl&srcid=ADGEEShYhlkXASV4cJu1VCcT3hhsOdcaxsxVNgmyHUyumF3hF3jI3Eswu3Xiq7FNIWbqz3jXq51J9GFICGdpy7HAO6Gk8nK8I0FAsrHrz-p6m_V9aatQmMfE3rtwvPVxes5VwU&sig=AHIEtbT1tyY88bKuXFimHy-dSMYwNHNh7IQ

Liu B and Schaffner DW, 2007. Quantitative analysis of the growth of Salmonella Stanley during alfalfa sprouting and evaluation of Enterobacter aerogenes as its surrogate. Journal of Food Protection, 70, 316-322.

Liu L, He HF, Dai CF, Liang LH, Li T, Li LH, Luo HM and Fontaine R, 2006. Salmonellosis outbreak among factory workers--Huizhou, Guangdong Province, China, July 2004. MMWR. Morbidity and mortality weekly report, 55 Suppl 1, 35-38.
MAF VS (MAF Verification Services), online. Imported food requirements: Peanut butter. Available from: http://www.foodsafety.govt.nz/elibrary/industry/Imported_Food_Requirements_Peanut-Sets_Clearance.pdf

Mankee A, Ali S, Chin AL, Indalsingh R, Khan R, Mohammed F, Rahman R, Sooknanan S, Totamaharaj R, Simeon D and Adesiyun AA, 2005. Microbial quality of "doubles" sold in Trinidad. Food Microbiology, 22, 601-607.

Martínez-Villaluenga C, Frías J, Gulewicz P, Gulewicz K and Vidal-Valverde C, Food safety evaluation of broccoli and radish sprouts. Food and Chemical Toxicology, 46, 1635-1644.

Mena C, Almeida G, Carneiro L, Teixeira P, Hogg T and Gibbs PA, 2004. Incidence of Listeria monocytogenes in different food products commercialized in Portugal. Food Microbiology, 21, 213-216.

Mermelstein, 2012, online. Chocolate Quality Testing. Available from: http://www.blommer.com/published_articles/Chocolate_Quality_Testing.pdf

MGU (Mahatma Gandhi University), 2010, online. Strategies to Improve the Quality of Spices Cultivated In Kerala. Summary and Conclusion. Available from: shodhganga.inflibnet.ac.in/bitstream/10603/324/10/11_chapter6.pdf

Miller BD, Rigdon CE, Ball J, Rounds JM, Klos RF, Brennan BM, Arends KD, Kennelly P, Hedberg C and Smith KE, 2012. Use of Traceback Methods To Confirm the Source of a Multistate Escherichia coli O157:H7 Outbreak Due to In-Shell Hazelnuts. Journal of Food Protection, 75, 320-327.

MMWR (Morbidity and mortality weekly report), 2004c. Outbreak of Salmonella serotype Enteritidis infections associated with raw almonds--United States and Canada, 2003-2004. MMWR. Morbidity and mortality weekly report, 53, 484-487.

MMWR (Morbidity and mortality weekly report), 2007b. Multistate outbreak of Salmonella serotype Tennessee infections associated with peanut butter--United States, 2006-2007. MMWR. Morbidity and mortality weekly report, 56, 521-524.

MMWR (Morbidity and mortality weekly report), 2009a. Multistate outbreak of Salmonella infections associated with peanut butter and peanut butter-containing products--United States, 2008-2009. MMWR. Morbidity and mortality weekly report, 58, 85-90.

MMWR (Morbidity and mortality weekly report), 2009b. Outbreak of Salmonella serotype Saintpaul infections associated with eating alfalfa sprouts - United States, 2009. MMWR. Morbidity and mortality weekly report, 58, 500-503.

Mohle-Boetani JC, Farrar J, Bradley P, Barak JD, Miller M, Mandrell R, Mead P, Keene WE, Cummings K, Abbott S, Werner SB and Investigation T, 2009. Salmonella infections associated with mung bean sprouts: epidemiological and environmental investigations. Epidemiol Infect, 137, 357-366.

Molloy C, Cagney C, O’Brien S, Iversen C, Fanning S and Duffy G, 2009. Surveillance and characterisation by Pulsed-Field Gel Electrophoresis of Cronobacter spp. in farming and domestic environments, food production animals and retail foods. International journal of food microbiology, 136, 198-203.

Moore G, Blair IS and McDowell DA, 2007. Recovery and transfer of Salmonella typhimurium from four different domestic food contact surfaces. J Food Prot, 70, 2273-2280.

Moore L and Tapper K, 2008. The impact of school fruit tuck shops and school food policies on children's fruit consumption: A cluster randomised trial of schools in deprived areas. Journal of Epidemiology and Community Health, 62, 926-931.
Moreira PL, Lourencao TB, Pinto JPAN and Rall VLM, 2009. Microbiological Quality of Spices Marketed in the City of Botucatu, Sao Paulo, Brazil. Journal of Food Protection, 72, 421-424.

MPI (Ministry for Primary Industries), 2001, online. Generic HACCP Models for Food Assurance Programmes. Available from: http://www.foodsafety.govt.nz/elibrary/industry/generic-haccp-models-produce-safety/FMA_169_Fresh_Produce_HACCP_-_Obj_1_and_2_Report_Aug_2001.pdf

Muoki MA, Tumuti DS and Rombo GO, 2008. Nutrition and public hygiene among children under five years of age in Mukuru slums of Makadara Division, Nairobi. East African medical journal, 85, 386-397.

Mustar S and Wan Nazaimoon WM, 2010. The effect of sanitizers on the native microflora of mung bean seeds (Vigna radiata). Journal of Food Technology, 8, 234-238.

Nassereddin RA and Yamani MI, 2005. Microbiological Quality of Sous and Tamarind, Traditional Drinks Consumed in Jordan. Journal of Food Protection, 68, 773-777.

Naturland, online. Organic Farming in the Tropics and Subtropics. Sesame. Available from: http://www.naturland.de/fileadmin/MDB/documents/Publication/English/sesame.pdf

NCA (National Confectioners Association) (b), online. Raw Chocolate: Risks and Recommendations. Available from: http://www.candyusa.com/files/PARawChocolateWhitePaperFinal.pdf

NCA (National Confectioners Association), online. Chocolate Manufacturing Safety.

Neetoo H, Ye M and Chen H, 2009. Factors affecting the efficacy of pressure inactivation of Escherichia coli O157:H7 on alfalfa seeds and seed viability. International Journal of Food Microbiology, 131, 218-223.

NSW Food Authority (New South Wales Food Authority), 2009b, online. Microbiological Quality of High Risk Bakery Products. Available from: http://www.foodauthority.nsw.gov.au/_Documents/corporate_pdf/bakery_survey_08_final_report.pdf

NSW Food Authority (New South Wales Food Authority), 2009c, online. Microbiological quality guide for ready-to-eat foods. Available from: http://www.foodauthority.nsw.gov.au/Documents/science/microbiological_quality_guide_for_RTE_food.pdf

NSW Food Authority (New South Wales Food Authority), 2012, online. Report on the prevalence of Salmonella and E. coli in ready to eat nuts and nut products sold in Australia. Available from: http://www.foodauthority.nsw.gov.au/_Documents/science/national_nut_survey.pdf

NSW Food Authority (New South Wales Food Authority), online. Sprouts. Available from: http://www.foodauthority.nsw.gov.au/_Documents/consumer_pdf/sprouts_%20consumer_fact_sheet.pdf

Nummer BA, Shrestha S and Smith JV, 2012. Survival of Salmonella in a high sugar, low water-activity, peanut butter flavored candy fondant. Food Control, 27, 184-187.

NZFSA (New Zealand Food Safety Authority), 2010a, online. Salmonella (non typhoidal in high lipid foods made from sesame seeds, peanuts or cocoa beans). Available from: http://www.foodsafety.govt.nz/elibrary/industry/salmonella-in-high-lipid-foods.pdf

NZFSA (New Zealand Food Safety Authority), 2010b, online. Risk profile: Salmonella (non typhoidal) in cereal grains. Available from: http://www.foodsafety.govt.nz/elibrary/industry/salmonella-in-cereals.pdf

OCCHD (Oklahoma City-County Health Department), online. Growing Sprouts at Retail. Available from: http://www.occhd.org/system/files/-1675/original/Growing_Sprouts_at_Retail_Fact_Sheet.pdf?1314128685
Oh SK, Lee N, Cho YS, Shin D-B, Choi SY and Koo M, 2007. Occurrence of toxigenic *Staphylococcus aureus* in ready-to-eat food in Korea. Journal of Food Protection, 70, 1153-1158.

Oh S-W, Koo M and Kim HJ, 2012. Contamination Patterns and Molecular Typing of *Bacillus cereus* in Red Pepper Powder Processing. Journal of the Korean Society for Applied Biological Chemistry, 55, 127-131.

Olaimat AN and Holley RA, 2012. Factors influencing the microbial safety of fresh produce: a review. Food Microbiol, 32, 1-19.

Olasupo NA, Smith SI and Akinsinde KA, 2002. Examination of the microbial status of selected indigenous fermented foods in Nigeria. Journal of Food Safety, 22, 85-93.

OMAFRA (Ontario Ministry of Agriculture, Food and Rural Affairs), online. Sprouted Seeds. Good Manufacturing Practices Guidebook. Available from: http://www.sproutnet.com/Reports/OMAFRA%20Seed%20Sampling.pdf

Osaili TM, Shaker RR, Ayyash MM, Al-Nabulsi AA and Forsythe SJ, 2009. Survival and growth of *Cronobacter* species (*Enterobacter sakazakii*) in wheat-based infant follow-on formulas. Letters in Applied Microbiology, 48, 408-412.

Palmai M and Buchanan RL, 2002. Growth of *Listeria monocytogenes* during germination of alfalfa sprouts. Food Microbiology, 19, 195-200.

Pao S, Kim C, Jordan L, Long W, Inserra P and Sayre B, 2011. Growth of *Salmonella enterica* and *Staphylococcus aureus* in No-Knead Bread Dough during Prolonged Yeast Fermentation. Journal of Food Protection, 74, 285-288.

Papageorgiou DK, Melas DS, Abrahim A and Koutsoumanis K, 2003. Growth and survival of *Aeromonas hydrophila* in rice pudding (milk rice) during its storage at 4 degrees C and 12 degrees C. Food Microbiology, 20, 385-390.

Park Y-B, Kim J-B, Jin Y-G and Oh D-H, 2008. Effect of temperatures on the enterotoxin production of *Bacillus cereus* in cereal grains. Food Science and Biotechnology, 17, 824-828.

Penna TCV, Moraes DA and Fajardo DN, 2002. The effect of nisin on growth kinetics from activated *Bacillus cereus* spores in cooked rice and in milk. Journal of Food Protection, 65, 419-422.

Perera ML and Ranasinghe GR, 2012. Prevalence of *Bacillus cereus* and Associated Risk Factors in Chinese-Style Fried Rice Available in the City of Colombo, Sri Lanka. Foodborne Pathogens and Disease, 9, 125-131.

Peter KV, 2001, online. Handbook of herbs and spices. Woodhead Publishing Ltd and CRC Press LLC. Available from: http://www.monkeypuppet.net/gardening/handbook_herbsandspices_vol1.pdf

Peter KV, 2004, online. Handbook of herbs and spices. Volume 2. Woodhead Publishing Ltd and CRC Press LLC. Available from: http://www.monkeypuppet.net/gardening/handbook_herbsandspices_vol2.pdf

Pexara A, Angelidis D and Govaris A, 2012. Shiga toxin-producing *Escherichia coli* (STEC) foodborne outbreaks. Journal of the Hellenic Veterinary Medical Society, 63, 45-53.

Potgieter N, Obi CL, Bessong PO, Igumbor EO, Samie A and Nengobela R, 2005. Bacterial contamination of Vhuswa - a local weaning food and stored drinking-water in impoverished households in the Venda region of South Africa. Journal of health, population, and nutrition, 23, 150-155.
Rajkowski KT, Boyd G and Thayer DW, 2003. Irradiation D-Values for Escherichia coli O157 : H7 and Salmonella spp. on inoculated broccoli seeds and effects of irradiation on broccoli sprout keeping quality and seed viability. Journal of Food Protection, 66, 760-766.

Restaino L, Frampton EW, Lionberg WC and Becker RJ, 2006. A Chromogenic Plating Medium for the Isolation and Identification of Enterobacter sakazakii from Foods, Food Ingredients, and Environmental Sources. Journal of Food Protection, 69, 315-322.

Rimhanen-Finne R, Niskanen T, Lienemann T, Johansson T, Sjoman M, Korhonen T, Guedes S, Kuronen H, Virtanen MJ, Makinen J, Jokinen J, Siitonen A and Kuusi M, 2011. A Nationwide Outbreak of Salmonella Bovismorbificans Associated with Sprouted Alfalfa Seeds in Finland, 2009. Zoonoses and Public Health, 58, 589-596.

Robertson B, Sinclair MI, Forbes AB, Veitch M, Kirk M, Cunliffe D, Willis J and Fairley CK, 2002. Case-control studies of sporadic cryptosporidiosis in Melbourne and Adelaide, Australia. Epidemiol Infect, 128, 419-431.

Robertson LJ, Greig JD, Gjerde B and Fazil A, 2005. The potential for acquiring cryptosporidiosis or giardiosis from consumption of mung bean sprouts in Norway: a preliminary step-wise risk assessment. International journal of food microbiology, 98, 291-300.

Rohekar S, Tsui FWL, Tsui HW, Xi N, Riarh R, Bilotta R and Inman RD, 2008. Symptomatic acute reactive arthritis after an outbreak of Salmonella. The Journal of rheumatology, 35, 1599-1602.

Rosenquist H, Smidt L, Andersen SR, Jensen GB and Wilcks A, 2005. Occurrence and significance of Bacillus cereus and Bacillus thuringiensis in ready-to-eat food. Fems Microbiology Letters, 250, 129-136.

Rossi F, Gaio E and Torriani S, 2010. Staphylococcus aureus and Zygosaccharomyces bailii as primary microbial contaminants of a spoiled herbal food supplement and evaluation of their survival during shelf life. Food Microbiology, 27, 356-362.

Roy A, Moktan B and Sarkar PK, 2007. Microbiological quality of legume-based traditional fermented foods marketed in West Bengal, India. Food Control, 18, 1405-1411.

Sagoo SK, Little CL, Greenwood M, Mithani V, Grant KA, McLauchlin J, de Pinna E and Threlfall EJ, 2009. Assessment of the microbiological safety of dried spices and herbs from production and retail premises in the United Kingdom. Food Microbiology, 26, 39-43.

Samapundo S, Heyndrickx M, Xhaferi R and Devlieghere F, 2011. Incidence, diversity and toxin gene characteristics of Bacillus cereus group strains isolated from food products marketed in Belgium. International journal of food microbiology, 150, 34-41.

Saroj SD, Shashidhar R, Pandey M, Dhokane V, Hajare S, Sharma A and Bandekar JR, 2006. Effectiveness of radiation processing in elimination of Salmonella typhimurium and Listeria monocytogenes from sprouts. J Food Prot, 69, 1858-1864.

SBI (Spices Board India), 2012, online. Regulatory Procedures For The Grant of Spice House Certification To The Spice Processing Establishments. Available from: www.indianspices.com/pdf/Spice-House-Certificate-Manual.pdf

Shields JM and Olson BH, 2003. Cyclospora cayetanensis: a review of an emerging parasitic coccidian. Int J Parasitol, 33, 371-391.

SQA (Scottish Qualifications Authority), online. SVQ in Food Manufacture. Maintain workplace food safety standards in manufacture. Candidate support pack. Available from: http://www.sqa.org.uk/files_ccc/DB5479_Support_Pack_Maintain_Workplace_Food_Safety_Standards_F2MD04.pdf
Schenkel K, Bremer V, Grabe C, Van Treeck U, Schreier E, Höhne M, Ammon A and Alpers K, 2006. Outbreak of hepatitis A in two federal states of Germany: bakery products as vehicle of infection. Epidemiology and infection, 134, 1292-1298.

Schoeller NP, Ingham SC and Ingham BH, 2002. Assessment of the potential for Listeria monocytogenes survival and growth during alfalfa sprout production and use of ionizing radiation as a potential intervention treatment. Journal of Food Protection, 65, 1259-1266.

Schrader W. L., 2002, online. Sprout Production in California. Available from: http://anrcatalog.ucdavis.edu/pdf/8060.pdf

Sengun IY and Karapinar M, 2012. Microbiological quality of Tarhana, Turkish cereal based fermented food. Quality Assurance and Safety of Crops & Foods, 4, 17-25.

Sengun IY, Hancioglu O and Karapinar M, 2005. Microbiological profile of helva sold at retail markets in Izmir city and the survival of Staphylococcus aureus in this product. Food Control, 16, 840-844.

Shaker R, Osaili T, Al-Omary W, Jaradat Z and Al-Zaby M, 2007. Isolation of Enterobacter sakazakii and other Enterobacter sp from food and food production environments. Food Control, 18, 1241-1245.

Shamsuddeen U, 2009. Microbiological quality of spice used in the production of kiliši a traditionally dried and grilled meat product. Bayero Journal of Pure and Applied Sciences, 2, 66-69.

Sharma RR, Demirci A, Puri VM, Beuchat LR and Fett WF, 2004. Modeling the inactivation of Escherichia coli O157:H7 on inoculated alfalfa seeds during exposure to ozonated or electrolyzed oxidizing water. Transactions of the ASAE, 47, 173-181.

Sheth AN, Hoekstra M, Patel N, Ewald G, Lord C, Clarke C, Villamil E, Niksich K, Bopp C, Nguyen T-A, Zink D and Lynch M, 2011. A National Outbreak of Salmonella Serotype Tennessee Infections From Contaminated Peanut Butter: A New Food Vehicle for Salmonellosis in the United States. Clinical Infectious Diseases, 53, 356-362.

Sinigaglia M, Bevilacqua A, Campaniello D, D’Amato D and Corbo MR, 2006. Growth of Listeria monocytogenes in fresh-cut coconut as affected by storage conditions and inoculum size. Journal of Food Protection, 69, 820-825.

Sospedra I, Soriano JM and Manes J, 2010. Assessment of the Microbiological Safety of Dried Spices and Herbs Commercialized in Spain. Plant Foods for Human Nutrition, 65, 364-368.

Soylemez G, Brashears MM, Smith DA and Cuppett SL, Microbial quality of alfalfa seeds and sprouts after a chlorine treatment and packaging modifications. Journal of Food Science: Food Microbiology and Safety, 66, 153-157.

Stafford R, Kirk M, Selvey C, Staines D, Smith H, Towner C and Salter M, 2007. An outbreak of multi-resistant Shigella sonnei in Australia: possible link to the outbreak of shigellosis in Denmark associated with imported baby corn from Thailand. Euro surveillance: bulletin européen sur les maladies transmissibles = European communicable disease bulletin, 12,

Stankovic N, Comic L and Kocic B, Microbiological correctness of spices on sale in health food stores and supermarkets in Nis. Acta Fac. Med. Naiss, 23, 79-84.

Stöcker P, Rosner B, Werber D, Kirchner M, Reinecke A, Wichmann-Schauer H, Prager R, Rabsch W and Frank C, 2011. Outbreak of Salmonella Montevideo associated with a dietary food supplement flagged in the Rapid Alert System for Food and Feed (RASFF) in Germany, 2010. Euro surveillance: bulletin européen sur les maladies transmissibles = European communicable disease bulletin, 16,
Stojanović MM, Katić V and Kuzmanović J, 2011. Isolation of Cronobacter sakazakii from different herbal teas. Vojnosanitetski pregled. Military-medical and pharmaceutical review, 68, 837-841.

STR (Standards and Technical Regulations Express), 2005. online. Codex standard for baby corn. Available from: http://std.gdciq.gov.cn/gssw/JiShuFaGui/CAC/CXS_188e.pdf

Tadesse G, Ashenafi M and Ephraim E, 2005. Survival of E.coli O157 : H7 Staphylococcus aureus, Shigella flexneri and Salmonella spp. in fermenting ’Borde’, a traditional Ethiopian beverage. Food Control, 16, 189-196.

Tang J, Huat Y, Leong YK and Lian HH, 2008. Laboratory Study of Vibrio cholerae O1 Survival on Three Types of Boiled Rice (Oryza sativa L.) Held at Room Temperature. Journal of Food Protection, 71, 2453-2459.

Taormina PJ, Beuchat LR and Slutsker L, 1999. Infections associated with eating seed sprouts: an international concern. Emerg Infect Dis, 5, 626-634.

Taulo S, Wetlesen A, Abrahamsen R, Kululanga G, Mkakosya R and Grimason A, 2008. Microbiological hazard identification and exposure assessment of food prepared and served in rural households of Lungwena, Malawi. International journal of food microbiology, 125, 111-116.

te Velde SJ, Brug J, Wind M, Hildonen C, Bjelland M, Perez-Rodrigo C and Klepp KI, 2008. Effects of a comprehensive fruit- and vegetable-promoting school-based intervention in three European countries: the Pro Children Study. British Journal of Nutrition, 99, 893-903.

Titarmare A, Dubholkar P and Godbole S, 2009. Bacteriological Analysis of Street Vended Fresh Fruit and Vegetable Juices in Nagpur City, India. Internet Journal of Food Safety, 11, 1-3.

Tribst AA, Sant’Ana Ade S and de Massaguer PR, 2009. Review: Microbiological quality and safety of fruit juices—past, present and future perspectives. Crit Rev Microbiol, 35, 310-339.

Turcovský I, Kuniková K, Drahovská H and Kaclíková E, 2011. Biochemical and molecular characterization of Cronobacter spp. (formerly Enterobacter sakazakii) isolated from foods. Antonie van Leeuwenhoek, 99, 257-269.

UC (University of California), online. Small Grain Production Manual. Available from: http://anrcatalog.ucdavis.edu/pdf/8208.pdf

Uçar A and Çakıroğlu FP, 2011. Comparison of chemical and microbiological quality of homemade tarhana in Ankara, Turkey. Journal of Food Agriculture & Environment, 9, 34-37.

Uesugi AR, Danylik MD and Harris LJ, 2006. Survival of Salmonella enteritidis phage type 30 on inoculated almonds stored at -20, 49 23, and 35 degrees C. Journal of Food Protection, 69, 1851-1857.

Uhitil S, Jaksic S, Petrak T, Medic H and Gumhalter-Karolyi L, 2004. Prevalence of Listeria monocytogenes and the other Listeria spp. in cakes in Croatia. Food Control, 15, 213-216.

UNIDO (United Nations Industrial Development Organization), 2004, online. UNIDO Technology Manual. Small-scale Cereal Milling and Bakery Products. Production Methods, Equipment and Quality Assurance Practices. Available from: http://www.unido.org/fileadmin/user_media/Publications/Pub_free/Small_scale_cereal_milling_and_bakery_products.pdf

UNIDO (United Nations Industrial Development Organization), 2005, online. Herbs, spices and essential oils. Post-harvest operations in developing countries. Available from: http://www.unido.org/fileadmin/user_media/Publications/Pub_free/Herbs_spices_and_essential_oils.pdf
USAID (United States Agency for International Development), 2009, online. Package of Practices for Sesame Production. Available from: http://www.nigeriamarkets.org/files/-Sesame_POP_English_July_2009%5B1%5D.pdf

USDA (United States Department of Agriculture), online. Generic HACCP Model for Thermally Processed, Commercially Sterile Meat. Available from: www.fsis.usda.gov/oppde/ni恼/outreach/models/haccp-7.pdf

UVM (University of Vermont), 2011, online. Dry beans. Available from: northerngraingrowers.org/wp-content/uploads/DRY-BEANS.pdf

Van Boxstael S, Habib I, Jacxsens L, De Vocht M, Baert L, Van De Perre E, Rajkovic A, Lopez-Galvez F, Sampsers I, Spanoghe P, De Meulenaer B and Uyttendaele M, 2013. Food safety issues in fresh produce: Bacterial pathogens, viruses and pesticide residues indicated as major concerns by stakeholders in the fresh produce chain. Food Control, 32, 190-197.

van Duynhoven YT, Widdowson MA, de Jager CM, Fernandes T, Neppelenbroek S, van den Brandhof W, Wannet WJ, van Kooij JA, Rietveld HJ and van Pelt W, 2002. Salmonella enterica serotype Enteritidis phage type 4b outbreak associated with bean sprouts. Emerg Infect Dis, 8, 440-443.

Vereecken CA, De Henauw S and Maes L, 2005a. Adolescents' food habits: Results of the Health Behaviour in School-aged Children survey. British Journal of Nutrition, 94, 423-431.

Vereecken CA, Inchley J, Subramanian SV, Hublet A and Maes L, 2005b. The relative influence of individual and contextual socio-economic status on consumption of fruit and soft drinks among adolescents in Europe. European Journal of Public Health, 15, 224-232.

Vitullo M, Ripabelli G, Fanelli I, Tamburro M, Delfine S and Sammarco ML, 2011. Microbiological and toxicological quality of dried herbs. Letters in Applied Microbiology, 52, 573-580.

VON (Vegan-Organic Network), online. Growing Beans for Drying. Available from: http://www.ediblenature.com/healthlibrary/pdf_e-books/2_growing%20beans.pdf

Waje CK, Jun SY, Lee YX, Kim BN, Han DH, Jo C and Kwon JH, 2009. Microbial quality assessment and pathogen inactivation by electron beam and gamma irradiation of commercial seed sprouts. Food Control, 20, 200-204.

Wang X, Meng J, Zhang J, Zhou T, Zhang Y, Yang B, Xi M and Xia X, 2012. Characterization of Staphylococcus aureus isolated from powdered infant formula milk and infant rice cereal in China. International journal of food microbiology, 153, 142-147.

WARDA (Africa Rice Center), 2010, online. Growing lowland rice: a production handbook. Available from: http://www.fao.org/fileadmin/user_upload/ivc/docs/Growing%20lowland%20rice_%20production%20handbook_prepress%20final%20version_19-05-08_low%2ores.pdf

Warriner K, Spaniolas S, Dickinson M, Wright C and Waites WM, 2003. Internalization of bioluminescent Escherichia coli and Salmonella Montevideo in growing bean sprouts. Journal of Applied Microbiology, 95, 719-727.

Warriner K., online. Interventions to improve food safety of sprouted seeds. Available from: http://www.bcfpa.net/Attachments/Presentations/Conference2007/Interventions%20to%20Improve%20Safety%20of%20Sprouted%20Seeds%20%28K.%20Warriner%29%20%28%20Oct%202007%29.pdf

WarwickDC (Warwick District Council), online. HACCP Principles and Practice Toolkit. Available from: http://www.warwickdc.gov.uk/nr/rdonlyres/17733b3e-6659-487e-868f-4f08de80f7c8/0/hacccptoolkitrev4.pdf

Supporting publications 2013:EN-403

The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European food safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.
Werner S, Boman K, Einemo I, Erntell M, de Jong B, Lindqvist A, Löfdahl M, Lofdahl S, Meeuwisse A, Ohlen G, Olsson M, Stamer U, Sellstrom E and Andersson Y, 2007. Outbreak of *Salmonella* Stanley in Sweden associated with alfalfa sprouts, July-August 2007. Euro surveillance: bulletin européen sur les maladies transmissibles = European communicable disease bulletin, 12,

Willis C, Little CL, Sagoo S, de Pinna E and Threlfall J, 2009. Assessment of the microbiological safety of edible dried seeds from retail premises in the United Kingdom with a focus on *Salmonella* spp. Food Microbiology, 26, 847-852.

Wójcik-Stopczynska B, Jakubowska B and Reichelt M, 2009. Microbiological contamination of dried culinary herbs. Herba Polonica, 55, 206-213.

Zeid AAMA 2009. Incidence of *Bacillus cereus* in corn snacks and its control using gamma radiation. Available from: http://www.insipub.com/ajbas/2009/552-560.pdf

Zins C., 2000. Success, a structured search strategy: Rationale, principles, and implications. Journal of the American Society for Information Science 51(13):1232–1247

Zweifel C and Stephan R, 2012. Spices and herbs as source of *Salmonella*-related foodborne diseases. Food Research International, 45, 765-769.

References not included in the study, for which full text could not be retrieved

Akpan I, Atanda OO and Ogunfowokan OA, 2004. Microbiological quality and nutrient composition of dry tomato. Journal of Food Science and Technology-Mysore, 41, 420-422.

Brug J, Yngve A and Klepp KI, 2005. The Pro Children study: Conceptualization, baseline results and intervention development of a European effort to promote fruit and vegetable consumption in schoolchildren. Annals of Nutrition and Metabolism, 49, 209-211.

Cosano I, Pintado C, Acevedo O, Luis Novella J, Luis Alonso G, Carmona M, de la Rosa C and Rotger R, 2009. Microbiological quality of saffron: proposal of a new norm. Alimentaria, 81-84.

Dabbass A, Schoder D, Schopf E and Paulsen P 2004. A case study on survival of *Salmonella* in pasta - short communication. Available from:

De Bourdeaudhuij I, Velde ST, Brug J, Due P, Wind M, Sandvik C, Maes L, Wolf A, Perez Rodrigo C, Yngve A, Thorsdottir I, Rasmussen M, Elmadfa I, Franchini B and Klepp KI, 2008. Personal, social and environmental predictors of daily fruit and vegetable intake in 11-year-old children in nine European countries. European Journal of Clinical Nutrition, 62, 834-841.

de Morais C, Afonso C, Raats MM, Lumbers M, Grunert KG and de Almeida MDV, 2007. Fruit and vegetable variety of consumption by European seniors. Annals of Nutrition and Metabolism, 51, 73-74.

Dikbas N, 2010. Determination of antibiotic susceptibility and fatty acid methyl ester profiles of *Bacillus cereus* strains isolated from different food sources in Turkey. African Journal of Biotechnology, 9, 1641-1647.

Duffey KJ, Huybrechts I, Mouratidou T, Libuda L, Kersting M, De Vriendt T, Gottrand F, Widhalm K, Dallongeville J, Hallstrom L, Gonzalez-Gross M, De Henauw S, Moreno LA and Popkin BM, 2012. Beverage consumption among European adolescents in the HELENA study. European Journal of Clinical Nutrition, 66, 244-252.

Frobisher C, Jepson M and Maxwell S, 2006. The nutritional knowledge and attitudes of 11-12 year olds from four different European countries: A pilot project. International Journal of Health Promotion and Education, 44, 65-70.
Gabriel AA, 2005. Microbial quality of chlorine soaked Mung bean seeds and sprouts. Food Science and Technology Research, 11, 95-100.

Jang JH, Lee NA, Woo GJ and Park JH, 2006. Prevalence of Bacillus cereus group in rice and distribution of enterotoxin genes. Food Science and Biotechnology, 15, 232-237.

Jung MK and Park JH, 2006. Prevalence and thermal stability of Enterobacter sakazakii from unprocessed ready-to-eat agricultural products and powdered infant formulas. Food Science and Biotechnology, 15, 152-157.

Keller SE, Grasso EM, Halik LA, Fleischman GJ, Chirtel SJ and Grove SF, 2012. Effect of Growth on the Thermal Resistance and Survival of Salmonella Tennessee and Oranienburg in Peanut Butter, Measured by a New Thin-Layer Thermal Death Time Device. Journal of Food Protection, 75, 1125-1130.

Kim M-G, Oh M-H, Lee G-Y, Hwang I-G, Kwak H-S, Kang Y-S, Koh Y-H, Jun H-K and Kwon K-S, 2008. Analysis of major foodborne pathogens in various foods in Korea. Food Science and Biotechnology, 17, 483-488.

Klekki KI, Perez-Rodrigo C, De Bourdeaudhuij I, Due P, Elmadfa I, Haraldsdottir J, Konig J, Sjostrom M, Thorisdottir I, de Almeida MDV, Yngve A and Brug J, 2005. Promoting fruit and vegetable consumption among European schoolchildren: Rationale, conceptualization and design of the Pro Children Project. Annals of Nutrition and Metabolism, 49, 212-220.

Lee E-J, Kim S-G, Yoo S-R, Oh S-S, Hwang I-G, Kwon G-S and Park J-H, 2007. Microbial contamination by Bacillus cereus, Clostridium perfringens, and Enterobacter sakazakii in sunsik. Food Science and Biotechnology, 16, 948-953.

Little CL, Barnes J and Mitchell RT, 2002. Microbiological quality of take-away cooked rice and chicken sandwiches: effectiveness of food hygiene training of the management. Communicable disease and public health / PHLS, 5, 289-298.

Menal-Puey S, Fajó-Pascual M and Marques-Lopes I, 2011. Descriptive study of breakfast in a population of immigrant school children,2007-2010. Revista Espanola de Nutricion Humana y Dietetica, 15, 177-183.

Pantukosit S, 2007. Medical referral of patients with acute respiratory failure: lessons learned from a large outbreak of botulism in northern Thailand. Journal of the Medical Association of Thailand = Chotmaihet thangphaet, 90, 1193-1198.

Razavilar V and Fazlara A 2002. The factorial study of growth rate of Staphylococcus aureus in commercial soups affected by selected growth factors. Available from:

Saba A, Messina F, Turrini A, Lumbers M and Raats MM, 2008. Older people and convenience in meal preparation: a European study on understanding their perception towards vegetable soup preparation. International Journal of Consumer Studies, 32, 147-156.

Sathisbabu HN and Rati ER, 2003. Prevalence of Yersinia enterocolitica in Panipuri - A popular street food of India. Journal of Food Science and Technology-Mysore, 40, 303-305.

Srbac M and Beatovic D 2007. Consumption of spices in European countries. Available from: http://www.agric.bl.ac.yu

Szczechinska A, Kozlowska K, Roszkowski W, Brzozowska A, Raats M and Lumbers M, 2007. Differences in frequency of fruit and vegetables intake among older europeans food in later life project. Polish Journal of Natural Sciences, 243-251.

Tahir A, Hameed I, Aftab M and Mateen B, 2012. Microbial assessment of uncooked and cooked rice samples available in local markets of Lahore. Pakistan Journal of Botany, 44, 267-270.
Thorsdottir I and Ramel A, 2003. Dietary Intake of 10- to 16-Year-Old Children and Adolescents in Central and Northern Europe and Association with the Incidence of Type 1 Diabetes. Annals of Nutrition and Metabolism, 47, 267-275.

Whong CMZ, Kwaga JKP and Amber EI, 2009. Enteropathogenicity of Bacillus cereus isolated from some Nigerian foods. West African journal of medicine, 28, 130-133.

Wolf A, Yngve A, Elmadfa I, Poortvliet E, Ehrenblad B, Pérez-Rodrigo C, Thórsdóttir I, Haraldsdóttir J, Brug J, Maes L, De Almeida MDV, Krølner R and Klepp KI, 2005. Fruit and vegetable intake of mothers of 11-year-old children in nine European countries: The pro children cross-sectional survey. Annals of Nutrition and Metabolism, 49, 246-254.

Yngve A, Wolf A, Poortvliet E, Elmadfa I, Brug J, Ehrenblad B, Franchini B, Haraldsdóttir J, Krølner R, Maes L, Pérez-Rodrigo C, Sjöström M, Thórsdóttir I and Klepp KI, 2005. Fruit and vegetable intake in a sample of 11-year-old children in 9 European countries: The pro children cross-sectional survey. Annals of Nutrition and Metabolism, 49, 236-245.

Yoon SK, Kang YS, Sohn MG, Kim CM and Park J, 2007. Prevalence of enterotoxigenic Staphylococcus aureus in retail ready-toeat Korean kimbab rolls. Food Science and Biotechnology, 16, 621-625.

Zaborskis A, Milciuviene S, Narbutaite J, Bendoraitiene E and Kavaliauskiene A, 2010. Caries experience and oral health behaviour among 11 - 13-year-olds: An ecological study of data from 27 European countries, Israel, Canada and USA. Community Dental Health, 27, 102-108.
7. List of Tables

Main report document

Table 1: Classification of commodities of FoNAO with low water content as included in the present study, based on BIOHAZ classification.

Table 2: List of food commodities (FoNAO with low water content) for the use as key words in bibliographic searches, where either categories, sub-categories or individual commodities (detailed list) were applied.

Table 3: Search A1 (hazard identification) for FoNAO with low water content in two bibliographic databases.

Table 4: Search A2/prevalence and enumeration data of pathogenic bacteria associated with FoNAO with high and low water content in two bibliographic databases.

Table 5: Search A2/prevalence and enumeration data of viruses and parasites associated with FoNAO with high and low water content in two bibliographic databases.

Table 6: Search A3/pathogen behaviour of pathogenic bacteria, viruses and parasites associated with FoNAO with high and low water content in two bibliographic databases.

Table 7: Search A4/Outbreaks caused by food borne pathogens related to FoNAO with high and low water content in two bibliographic databases.

Table 8: Search C1/Consumption habits (frequency, place) regarding FoNAO.

Table 9: Search C2/Consumption of FoNAO by various population groups.

Table 10: Ranking of food/pathogen combinations in EU countries based on criteria related to outbreaks, pathogen prevalence and food/pathogen interaction, and to the production of the food item(s) concerned.

Table 11: Ranking of food/pathogen combinations in non-EU countries based on criteria related to outbreaks, pathogen prevalence and food/pathogen interaction, and to the production of the food item(s) concerned.

Appendix A

Table 12: Bacterial pathogens and parasites identified in association with FoNAO with low water content, listed in alphabetical order.

Table 13: Prevalence of pathogenic bacteria and parasites in association with FoNAO of low water content, EU countries. Pathogens are listed in alphabetical order.

Table 14: Prevalence of pathogenic bacteria and parasites in association with FoNAO of low water content, non-EU countries and EU plus non-EU countries.

Table 15: Growth, survival or reduction of pathogenic bacteria, viruses and parasites linked to FoNAO with low water content.

Table 16: Colonization behaviour of pathogenic bacteria linked to FoNAO with low water content.

Table 17: Treatments for mitigating contamination of pathogenic bacteria linked to FoNAO with low water content.

Table 18: Outbreaks of disease caused by pathogenic bacteria and viruses linked to FoNAO with low water content, EU countries.
Table 19: Outbreaks of disease caused by pathogenic bacteria linked to FoNAO with low water content, non EU countries. n.s.= not specified.

Appendix B

Table 20: Categories and items of FoNAO with low water content as reported in association with pathogenic bacteria.

Table 21: Categories and items of FoNAO with low water content as reported in association with parasites.

Table 22: Critical points in specific primary production procedures reported for the food items listed in Tables 20 and 21.

Table 23: Critical points in specific processing procedures reported for the food items listed in Table 20 and 21.

Table 24: Examples of Guidelines and Standards to improve food quality reported for the food items listed in Table 17 and 18.

Table 25: Trade volumes of FoNAO with low water content (that have been reported in association with biological hazards) imported from third countries into the EU from 2002 to 2011.

Appendix C

Table 26: Major outcomes of European consumption studies relating to FoNAO regarding consumption rates, consumer groups, and regional effects.

Appendix D

Table 27: FoNAO (low water content) item/ pathogen combinations with highest numbers of outbreak cases, EU countries.

Table 28: FoNAO (low water content) item/ pathogen combinations causing outbreaks with highest numbers of hospitalisation, EU countries.

Table 29: FoNAO (low water content) item/ pathogen combinations causing outbreaks where cases of death have been reported, EU countries.

Table 30: FoNAO (low water content) item/ pathogen combinations with highest numbers of outbreak cases, non EU countries.

Table 31: FoNAO (low water content) item/ pathogen combinations causing outbreaks with highest numbers of hospitalisation and cases of death, non EU countries.
8. List of Figures

Figure 1: Scheme of the extensive reviewing process, including the search strategy and underlying logistical operations.

Figure 2: Relevance screening tool for search A1 Hazard identification.

Figure 3: Full text screening tool for search A1 Hazard identification.

Figure 4: Relevance screening tool for search A2 Prevalence and enumeration data.

Figure 5: Full text screening tool for search A2 Prevalence and enumeration data.

Figure 6: Relevance screening tool for search A3 food/pathogen interaction.

Figure 7: Full text screening tool for search A3 food/pathogen interaction.

Figure 8: Relevance screening tool for search A4 Hazard characterization (outbreaks).

Figure 9: Full text screening tool for search A4 Hazard characterization (outbreaks).

Figure 10: Relevance screening tool for search C1 Consumption.

Figure 11: Full text screening tool for search C1 Consumption.

Figure 12: Scheme applied for the prioritisation of FoNAO/pathogen combinations.

Figure 13: Flow chart of the study selection process underlying search A1.

Figure 14: Flow chart of the study selection process underlying search A2.

Figure 15: Flow chart of the study selection process underlying search A3.

Figure 16: Flow chart of the study selection process underlying search A4.

Figure 17: Flow chart of the study selection process underlying search C1 and search C2.
9. APPENDICES

A. APPENDIX SPECIFIC TO THEMATIC AREA A

Table 12: Bacterial pathogens and parasites identified in association with FoNAO with low water content, listed in alphabetical order. “Country” signifies the place where the food commodity was found in association with the biological contaminant (e.g. site of survey or screening).

Pathogen	FoNAO Category	FoNAO number	Food item(s)	Country/ies	Reference(s)
Bacillus cereus	Cereals and dry legumes	24	Wheat flour, wheat, job’s tears (*Coix lacryma jobi*), cereal, barley, wheat grain	Turkey, Argentina, Australia, Korea	Segun et al., 2012; Fangio et al., 2010; Alp et al., 2008; Berghofer et al., 2003; Park et al., 2008; Eglezos 2010a
Rice		25	Rice, glutinous rice, brown rice, fried rice with vegetable/Chinese-Style	Nigeria, Italy, Korea, Belgium, Sri Lanka	Isara et al., 2010; Bonerba et al., 2010; Park et al., 2008; Delbrassinne et al, 2012; Perera and Ranasinghe 2012
Other dry legumes, cereals, edible seeds and grains, flours and products thereof (processed products)		27	Bran, flour, wheat germ, biscuits (Infant food)	Australia, Korea	Berghofer et al., 2003; Kim et al., 2011a
Seeds for sprouting and sprouted seeds		28	Sprouts (*Phaseolus vulgaris*)	Venezuela	Cava et al., 2009
Spices and dry powdered herbs		32	Herbs, dried red pepper, spices, red pepper powder, saffron	Italy, Korea, India, Spain, United Kingdom	Vitullo et al., 2011; Choo et al., 2007; Banerjee et al., 2003; Oh et al., 2012; Little et al., 2003; Cosano et al., 2009; Sagoo et al., 2009
Beverages		33	Ground roasted coffee beans	Brazil	Chaves et al., 2012
Other processed products, sauces and dressings, purées, soup, and pastes (including canned and bottled products)		37	Rice soup (Infant food), other food, ready to eat food, tarhana	Korea, India, United Kingdom, Turkey	Kim et al., 2011a; Roy et al., 2007; Little et al., 2003; Ucar et al., 2011; Segun et al., 2012
Rice		25	Rice (brown, white, wild type, black and rice mixtures)	USA	Ankolekar et al., 2009
Pathogen	FoNAO Category	FoNAO number	Food item(s)	Country/-ies	Reference(s)
------------------------------	--	---------------	--	------------------	---
Bacillus cereus like organism	Other dry legumes, cereals, edible seeds and grains, flours and products thereof (processed products)	27	Cereal products, breakfast cereals, raw cereals, pre-mixed drinks, breakfast cereals	Malaysia	Lee et al., 2009
Bacillus cereus spp. group	Rice	25	Rice	Denmark	Rosenquist et al., 2005
	Pasta	26	Pasta	Denmark	Rosenquist et al., 2005
Campylobacter coli	Seeds for sprouting and sprouted seeds	28	Mung bean sprout	Malaysia	Chai et al., 2007
Campylobacter jejuni	Other dry legumes, cereals, edible seeds and grains, flours and products thereof (processed products)	27	Vhuswa	South Africa	Potgieter et al., 2005
	Seeds for sprouting and sprouted seeds	28	Mung bean sprout	Malaysia	Chai et al., 2007
Clostridium botulinum	Spices and dry powdered herbs	32	Chamomile, linden flower (*Tilia* spp.)	Argentina	Bianco et al., 2008
	Other processed products, sauces and dressings, purées, soup, and pastes (including canned and bottled products)	37	Aroma, sauce and gravy, thickening agents	France	Carlin et al., 2004
Clostridium perfringens	Spices and dry powdered herbs	32	Herbs, spices	Italy, India, Argentina	Vitullo et al., 2011; Banerjee et al., 2003; Aguilera et al., 2005
	Other processed products, sauces and dressings, purées, soup, and pastes (including canned and bottled products)	37	Tarhana	Turkey	Segun et al., 2012
	Spices and dry powdered herbs	32	Spices, herbs	United Kingdom, Spain	Sagoo et al., 2009; Cosano et al., 2009
Cronobacter (E. agglomerans)	Other dry legumes, cereals, edible seeds and grains, flours and products thereof (processed products)	27	Starch, semolina, flour	Jordan	Shaker et al., 2007
Cronobacter dublinensis	Cereals and dry legumes	24	Lentils	Czech Republic	Hochel et al., 2012
Pathogen	FoNAO Category	FoNAO number	Food item(s)	Country/-ies	Reference(s)
--	--	---------------	---	-----------------------	------------------------
Other dry legumes, cereals, edible seeds and grains, flours and products thereof (processed products)	27	Sunsk	Korea	Lee et al., 2012	
Cronobacter malonaticus	Spices and dry powdered herbs	32	Pimiento	Czech Republic	Hochel et al., 2012
Cronobacter malonaticus/Cronobacter dublinensis	Other processed products, sauces and dressings, purées, soup, and pastes (including canned and bottled products)	37	Instant soups	Slovakia	Turcovský et al., 2011
Cronobacter maytjensis	Other dry legumes, cereals, edible seeds and grains, flours and products thereof (processed products)	27	Sunsk	Korea	Lee et al., 2012
Cronobacter sakazakii	Other dry legumes, cereals, edible seeds and grains, flours and products thereof (processed products)	27/3	Oat flakes, dried adults cereals, dried infant cereals, semolina, bakery products, coconut biscuits, sunsk, dried flour or meals (Corn, soy, wheat and rice), cereal products	Czech Republic, USA, Jordan, Germany, Korea	Hochel et al., 2012; Restaino et al., 2006; Shaker et al., 2007; ECDC, 2010; Kim et al., 2008; Lee et al., 2012
Seeds for sprouting and sprouted seeds		28	Poppy seed, wheat sprout, sprouts	Czech Republic, Korea	Hochel et al., 2012; Kim et al., 2009
Nuts and nuts products		31	Nuts	Slovakia	Turcovský et al., 2011
Spices and dry powdered herbs		32	Herbs and spices, pepper, caraway	United Kingdom, Czech Republic, Spain	Iversen and Forsythe, 2004; Hochel et al., 2012; Sospedra et al., 2010
Beverages		33	Herbal tea, sous, tea	Serbia, Jordan, Slovakia	Stojanovic et al., 2011; Nassereddin and Yamani, 2005; Turcovský et al., 2011
Others		39	Foodstuffs intended for special nutritional uses (dried dietary foods for special medical purposes intended for infants below 6 months)	Germany	ECDC, 2008
Other dry legumes, cereals, edible seeds and grains, flours and products thereof (processed products)/Nuts and nut products/Dehydrated vegetables and fruit	27/3	Dry food ingredients other than herbs and spices (nuts, fruit, grains)	United Kingdom	Iversen and Forsythe, 2004	

The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.
Pathogen	FoNAO Category	FoNAO number	Food item(s)	Country/-ies	Reference(s)
Cronobacter sakazakii/Cronobacter dublinensis	Spices and dry powdered herbs/Dehydrated vegetables and fruits	32/38	Dried vegetables and spices	USA	Restaino et al., 2006
Cronobacter sakazakii/Cronobacter malonaticus	Other processed products, sauces and dressings, purées, soup, and pastes (including canned and bottled products)	37	Tofu	Czech Republic	Hochel et al., 2012
Cronobacter sakazakii/Cronobacter dublinensis	Other dry legumes, cereals, edible seeds and grains, flours and products thereof (processed products)	27	Pastries	Slovakia	Turcovský et al., 2011
Cronobacter sakazakii/Cronobacter malonaticus	Seeds for sprouting and sprouted seeds	28	Sesam seed	Czech Republic	Hochel et al., 2012
Cronobacter sakazakii/Cronobacter malonaticus	Spices and dry powdered herbs	32	Ginger	Czech Republic	Hochel et al., 2012
Cronobacter sakazakii/Cronobacter dublinensis	Beverages	33	Chocolate products	Slovakia	Turcovský et al., 2011
Cronobacter sakazakii/Cronobacter malonaticus/Cronobacter muytjensi	Other processed products, sauces and dressings, purées, soup, and pastes (including canned and bottled products)	37	Instant lentil soup	Czech Republic	Hochel et al., 2012
Cronobacter sakazakii/Cronobacter dublinensis	Other dry legumes, cereals, edible seeds and grains, flours and products thereof (processed products)	27	Rice flour	Czech Republic	Hochel et al., 2012
Cronobacter sakazakii/Cronobacter malonaticus/Cronobacter muytjensi	Spices and dry powdered herbs	32	Spices	Slovakia	Turcovský et al., 2011
Cronobacter sakazakii/Cronobacter malonaticus/Cronobacter muytjensi	Seeds for sprouting and sprouted seeds	28	Pumpkin seed	Czech Republic	Hochel et al., 2012
Cronobacter sakazakii/Cronobacter muytjensi	Spices and dry powdered herbs	32	Majoram, basil	Czech Republic	Hochel et al., 2012
Pathogen	FoNAO Category	FoNAO number	Food item(s)	Country/-ies	Reference(s)
--------------------------------	--	---------------	---	------------------------------	---
Cronobacter spp.	Cereals and dry legumes	24	Breakfast cereals, grains	Ireland, Korea	Molloy et al., 2009; Chon et al., 2012
	Other dry legumes, cereals, edible seeds and grains, flours and products thereof (processed products)	27	Grains and beans, sunsik, dried cereals	Korea, Netherlands	Kim et al., 2011b; Lee et al., 2012; Kandhai et al., 2010
	Seeds for sprouting and sprouted seeds	28	Sprouts	Swiss	Althaus et al., 2012
	Spices and dry powdered herbs	32	Herbs and spices, spices and dried herbs, sage, dried spices, thyme, chamomile, anise, fennel, mixed Spices, liquorice	Jordan, Ireland, Korea, Netherlands	Jaradat et al., 2009; Baumgartner et al., 2009; Chon et al., 2012; Kandhai et al., 2010
	Seeds for sprouting and sprouted seeds/ Fresh herbs/ Leafy greens eaten raw as salads	28/16/15	Sprouts/fresh herbs/salads	Ireland	Baumgartner et al., 2009
Enterobacter cloaca	Spices and dry powdered herbs	32	Spices	Spain	Sospedra et al., 2010
Enterobacter gergoviae	Spices and dry powdered herbs	32	Spices	Spain	Sospedra et al., 2010
Klebsiella pneumoniae	Nuts and nuts products	31	Almond	Libya	Ghenghesh et al., 2005
Beverages	Tamarind	33	Tamarind	Jordan	Nasserедин и Yaman, 2005
Listeria monocytogenes	Other dry legumes, cereals, edible seeds and grains, flours and products thereof (processed products)	27	Confectionery products and pastes, bakery products, flour, cereals and meals, pastries, cakes, homserim dessert	Hungary, Lithuania, Portugal, Luxembourg, Croatia, Turkey, Slovenia, Ireland	ECDC, 2008; Mena et al., 2004; ECDC, 2009; Uhitil et al., 2004; Cokal et al., 2012
	Seeds for sprouting and sprouted seeds	28	Broccoli sprouts, alfalfa sprouts, red radish sprouts, sprouts, seeds	Korea, Hungary	Waje et al., 2009; ECDC, 2009
	Nuts and nuts products	31	Mixed nuts	Australia	Eglezos 2010b
	Spices and dry powdered herbs	32	Spices and herbs	Italy	ECDC, 2008
	Nuts and nuts products/Dehydrated vegetables and fruit	31/38	Dried fruits (walnut, hazelnut, pine-nut, sultana, apricot)	Portugal	Mena et al., 2004
Pseudomonas aeruginosa	Rice	25	Rice	Nigeria	Isara et al., 2010
Pathogen	FoNAO Category	FoNAO number	Food item(s)	Country/-ies	Reference(s)
-------------------------------	-------------------------------------	---------------	-----------------------------------	-------------------------------	--
Nuts and nuts products		31	Almond	Libya	Ghenghesh et al., 2005
Beverages		33	Sous	Jordan	Nasserreddin and Yamani, 2005
Salmonella Agona	Spices and dry powdered herbs	32	Ground red pepper	Jordan	Erol et al., 2009
Salmonella Bredeney	Spices and dry powdered herbs	32	Spices and herbs, black pepper	Slovakia, Turkey	ECDC, 2008; Erol et al., 2009
Salmonella enterica	Spices and dry powdered herbs	32	Red pepper, black pepper	Japan	Hara-Kudo et al., 2006
Salmonella Enteritidis	Other dry legumes, cereals, edible	27	Bakery products, confectionery	Spain, Hungary, Lithuania,	ECDC, 2008
	seeds and grains, flours and products thereof (processed products)		products and pastes, bakery products (cakes), noodles	Slovakia, Turkey	
Nuts and nuts products		31	Almond	USA	Bansal et al., 2010
Spices and dry powdered herbs		32	Spices and herbs	Netherlands	ECDC, 2008
Salmonella Infantis	Beverages	33	Chocolate	Hungary	ECDC, 2008
Salmonella Kentucky	Spices and dry powdered herbs	32	Red pepper powder	Turkey	Erol et al., 2009
Salmonella Muenchen	Nuts and nuts products	31	Almond	USA	Bansal et al., 2010
Salmonella Newport	Nuts and nuts products	31	Almond	USA	Bansal et al., 2010
Salmonella spp.	Cereals and dry legumes	24	Maize; ugali, maize; porridge, wheat grass, wheat grain	Kenya, India, Australia	Muoki et al., 2008; Titarmare et al., 2009; Eglezos 2010a
	Other dry legumes, cereals, edible	27	Mandazi; chapati, maize flour	Kenya, Malawi, South Africa	Muoki et al., 2008; Taulo et al., 2008; Potgieter et al., 2006
	seeds and grains, flours and products thereof (processed products)		porridge, vhuswa		
Nuts and nuts products		31	Nuts, almond, raw almond, inshell almond, almond kernel	Australia,USA	Eglezos et al., 2008; Danyluk et al., 2006; Bansal et al., 2010; Lambertini et al., 2012; Danyluk et al., 2007
Beverages		33	Tamarind, sous	Jordan	Nasserreddin and Yamani, 2005
Beverages		33	Tamarind, sous	Jordan	Nasserreddin and Yamani, 2005

The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.
Pathogen	FoNAO Category	FoNAO number	Food item(s)	Country/ies	Reference(s)
	Other processed products, sauces and dressings, purées, soup, and pastes (including canned and bottled products)	37	Other food, beans	India, Malawi	Roy et al., 2007; Taulo et al., 2008
	Other dry legumes, cereals, edible seeds and grains, flours and products thereof (processed products)	27	Cereals and meals, bakery products (desserts), noodles	Luxembourg, Spain, Ireland, Slovakia, Germany	ECDC, 2009
	Seeds for sprouting and sprouted seeds	28	Seeds, linseed (flax), sunflower, melon (egusi), seeds; sprouted, alfalfa seeds, seeds mixed, sesam seed	Netherlands, United Kingdom + Import, Romania, Germany	ECDC, 2009; Willis et al., 2009
	Nuts and nuts products	31	Mixed nuts	United Kingdom	Little et al., 2010; Little et al., 2009
	Spices and dry powdered herbs	32	Spices, spices and herbs, spices, curry	Hungary, India, United Kingdom, Netherlands, Sweden	ECDC, 2009; Little et al., 2003; Mankee et al., 2005; ECDC, 2008; Sagoo et al., 2009
	Other processed products, sauces and dressings, purées, soup, and pastes (including canned and bottled products)	37	Halvah, sesam paste	Germany	Brockmann et al., 2004
Salmonella Typhi	Rice	25	Rice	Nigeria	Isara et al., 2010
Salmonella Typhimurium	Nuts and nuts products	31	Almond	USA	Bansal et al., 2010
	Spices and dry powdered herbs	32	Spices and herbs	Netherlands	ECDC, 2008
Shigella sonnei	Rice	25	Rice	Nigeria	Isara et al., 2010
	Spices and dry powdered herbs	32	Herbs	Spain	Sospedra et al., 2010
Shigella spp.	Other dry legumes, cereals, edible seeds and grains, flours and products thereof (processed products)	27	Vhuswa	South Africa	Potgieter et al., 2005
	Spices and dry powdered herbs	32	Spices, herbs	Spain	Sospedra et al., 2010
Staphylococcal enterotoxins	Other dry legumes, cereals, edible seeds and grains, flours and products thereof (processed products)	27	Confectionery products and pastes, cereals and meals	Slovakia, Ireland, Luxembourg	ECDC, 2009
	Beverages	33	Chocolate	Luxembourg	ECDC, 2009

The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s) awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.
Pathogen	FoNAO Category	FoNAO number	Food item(s)	Country/-ies	Reference(s)
Staphylococcus aureus	Cereals and dry legumes	24	Wheat	Turkey	Alp et al., 2008
	Rice	25	Sticky rice, nem chao, rice cakes with filling, rice cake, rice cakes without filling, kimbab, korean snack	Japan, Vietnam, Bagladesch, Korea	Huong et al., 2010; Oh et al., 2007
	Other dry legumes, cereals, edible seeds and grains, flours and products thereof (processed products)	27	Hosmerim dessert, maize flour porridge, creami-cake, buckwheat vermicelli, powdered infant formula milk, cream-bread, bread, cereal based food	Turkey, Malawi, Nigeria, Korea, China, USA	Olasupo et al., 2002; Cokal et al., 2012; Taulo et al., 2008; Oh et al., 2007; Wang et al., 2012
	Spices and dry powdered herbs	32	Spices, herbs	Spain, India	Banerjee et al., 2003; Sospedra et al., 2010
	Beverages	33	Ice coffee (beverage)	Thailand	Chomvarin et al., 2006
	Other processed products, sauces and dressings, purées, soup, and pastes (including canned and bottled products)	37	Other food, beans	India, Malawi	Roy et al., 2007; Taulo et al., 2008
Yersinia enterocolitica	Seeds for sprouting and sprouted seeds	28	Soybean sprout	Korea	Lee et al., 2004
Parasites					
Cryptosporidium spp.	Seeds for sprouting and sprouted seeds	28	Mung bean, mung bean sprouts	Norway, Canada	Robertson et al., 2002; Robertson et al., 2005
Enterocytozoon bieneusi	Seeds for sprouting and sprouted seeds	28	Mung bean sprouts	Poland, USA	Jedrzejewski et al., 2007
Giardia spp.	Seeds for sprouting and sprouted seeds	28	Radish, mung bean, mung bean sprouts	Norway, Canada	Robertson et al., 2002; Robertson et al., 2005
Microsporidian spores	Seeds for sprouting and sprouted seeds	28	Sprouts	Poland, USA	Jedrzejewski et al., 2007
Table 13: Prevalence of pathogenic bacteria and parasites in association with FoNAO of low water content, EU countries. Pathogens are listed in alphabetical order. “Country” signifies the place where the food commodity was found in association with the biological contaminant (e.g. site of survey or screening).

Pathogen	FoNAO category	Food item	Source\(^a\)	Processing/Comment\(^a\)	Prevalence	Country	Reference(s)
Pathogenic bacteria							
Bacillus cereus	25	Rice	Catering	processed	16/40 (40%)	Italy	Bonerba et al., 2010
	25	Rice	Restaurants	processed	10/54 (19%)	Belgium	Delbrassinne et al, 2012
	32	Spices	Restaurants	heat-treated; dried	26/158 (16%)	United Kingdom	Little et al., 2003
	32	Spices	Restaurants	heat-treated; dried	57/237 (24%)	United Kingdom	Little et al., 2003
	32	Saffron	Local retail	Imported and non-imported	2/79 (3%)	Spain	Cosano et al., 2009
	32	Herbs	Local retail	heat-treated; dried	2/743 (0.3%)	United Kingdom	Sagoo et al., 2009
	32	Herbs	Manufacturer	heat-treated; dried	2/23 (9%)	United Kingdom	Sagoo et al., 2009
	32	Spices	Local retail	heat-treated; dried	18/2090 (1%)	United Kingdom	Sagoo et al., 2009
	32	Spices	Local retail	heat-treated; dried	5/109 (5%)	United Kingdom	Sagoo et al., 2009
	37	Ready to eat food	Restaurants	n.s., spices added	130/1936 (7%)	United Kingdom	Little et al., 2003
Bacillus cereus like organism	25	Rice	Local retail	heat treated; ready to eat	26/1070 (2%)	Denmark	Rosenquist et al., 2005
	26	Pasta	Local retail	heat treated; ready to eat	29/2216 (1%)	Denmark	Rosenquist et al., 2005
Bacillus cereus spp. group	25	Basmati rice	n.s.	unprocessed	80/80 (100%)	Belgium	Samapundo et al., 2011
	26	Pasta	n.s.	heat-treated; cooked	16/80 (20%)	Belgium	Samapundo et al., 2011
Clostridium botulinum	37	Aroma, sauce and gravy	Manufacturer	processed; refrigerated	1/62 (2%)	France	Carlin et al., 2004
	37	Thickening agents	Manufacturer	processed; refrigerated	4/25 (16%)	France	Carlin et al., 2004
Clostridium perfringens	32	Herbs	Local retail	heat-treated; dried	5/743 (1%)	United Kingdom	Sagoo et al., 2009
	32	Spices	Local retail	heat-treated; dried	5/2090 (0.2%)	United Kingdom	Sagoo et al., 2009
	32	Saffron	Local retail	Imported and non-imported	25/79 (32%)	Spain	Cosano et al., 2009

Supporting publications 2013:EN-403

The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.
Pathogen	FoNAO category	Food item	Sourcea	Processing/Commenta	Prevalence	Country	Reference(s)
Cronobacter dublinensis	32	Saffron	Local retail	Imported and non-imported	1/79 (0.01%)	Spain	Cosano et al., 2009
Cronobacter malonaticus	32	Pimiento	Supermarket	processed	2/10 (20%)	Czech Republic	Hochel et al., 2012
Cronobacter malonaticus/Cronobacter dublinensis	37	Instant soups	n.s.	heat-treated	1/13 (15%)	Slovakia	Turcovský et al., 2011
Cronobacter sakazakii	27	Bakery products	n.s.	n.s.	1/3 (33%)	Germany	ECDC, 2010
Cronobacter sakazakii	27	Coconut biscuits	Supermarket	processed	1/1 (100%)	Czech Republic	Hochel et al., 2012
Cronobacter sakazakii	27	Oat flakes	Supermarket	processed	1/10 (10%)	Czech Republic	Hochel et al., 2012
Cronobacter sakazakii	28	Poppy seed	Supermarket	processed	1/11 (9%)	Czech Republic	Hochel et al., 2012
Cronobacter sakazakii	28	Wheat sprout	Supermarket	processed	1/9 (11%)	Czech Republic	Hochel et al., 2012
Cronobacter sakazakii	31	Nuts	n.s.	n.s.	2/2 (100%)	Slovakia	Turcovský et al., 2011
Cronobacter sakazakii	32	Caraway	Supermarket	processed	2/15 (13%)	Czech Republic	Hochel et al., 2012
Cronobacter sakazakii	32	Herbs and spices	Local Retail	heat-treated; dried	40/122 (33%)	United Kingdom	Iversen and Forsythe, 2004
Cronobacter sakazakii	32	Pepper	Supermarket	processed	1/14 (7%)	Czech Republic	Hochel et al., 2012
Cronobacter sakazakii	33	Tea	n.s.	n.s.	3/5 (60%)	Slovakia	Turcovský et al., 2011
Cronobacter sakazakii	39	Dried dietary foods intended for infants below 6 months	n.s.	n.s.	1/34 (3%)	Germany	ECDC, 2008
27/3 1/38	Dry food ingredients other than herbs and spices (nuts, fruit, grains)	Local Retail	heat-treated; dried	15/66 (23%)	United Kingdom	Iversen and Forsythe, 2004	
Cronobacter sakazakii/Cronobacter dublinensis	32	Herbs	Local retail/supermarket	heat-treated; dried	1/23 (4%)	Spain	Sospedra et al., 2010
Cronobacter sakazakii/Cronobacter dublinensis	37	Tofu	Supermarket	processed	4/11 (36%)	Czech Republic	Hochel et al., 2012
Cronobacter sakazakii/Cronobacter dublinensis	27	Pastries	n.s.	n.s.	5/9 (56%)	Slovakia	Turcovský et al., 2011
Cronobacter sakazakii/Cronobacter dublinensis	28	Sesam seed	Supermarket	processed	8/12 (67%)	Czech Republic	Hochel et al., 2012
Pathogen	FoNAO category	Food item	Source	Processing/Comment	Prevalence	Country	Reference(s)
---------	----------------	-----------	--------	--------------------	-----------	---------	--------------
malonicus	32 Ginger	Supermarket	processed	3/10 (30%)	Czech Republic	Hochel et al., 2012	
	33 Chocolate products	n.s.	n.s.	11/37 (30%)	Slovakia	Turcovský et al., 2011	
	37 Instant lentil soup	Supermarket	heat-treated	6/10 (60%)	Czech Republic	Hochel et al., 2012	
Cronobacter sakazakii/Cronobacter malonicus/Crono-bacter dublensis	27 Rice flour	Supermarket	processed	6/16 (38%)	Czech Republic	Hochel et al., 2012	
Cronobacter sakazakii/Cronobacter malonicus/Cronobacter muytjensii	32 Spices	n.s.	n.s.	13/21 (62%)	Slovakia	Turcovský et al., 2011	
Cronobacter sakazakii/Cronobacter malonicus/Cronobacter turicensis	28 Pumpkin seed	Supermarket	processed	5/11 (45%)	Czech Republic	Hochel et al., 2012	
	32 Basil	Supermarket	processed	4/10 (40%)	Czech Republic	Hochel et al., 2012	
	32 Majoram	Supermarket	processed	2/12 (17%)	Czech Republic	Hochel et al., 2012	
Cronobacter spp.	24 Breakfast cereals	Supermarket	processed; organic production	9/20 (45%)	Ireland	Molloy et al., 2009	
	27 Dried cereals	Manufacturer/loca l retail	heat-treated; dried	6/123 (5%)	Netherlands	Kandhai et al., 2010	
	28 Sprouts	Manufacturer	ready to eat	1/27 (4%)	Swiss	Althaus et al., 2012	
	32 Dried spices	Manufacturer/loca l retail	heat-treated; dried	1/28 (4%)	Netherlands	Kandhai et al., 2010	
	32 Spices and dried herbs	Local retail	processed; ready to eat	7/26 (30%)	Ireland	Baumgartner et al., 2009	
	28/16/15 Sprouts/fresh herbs/salads	Local retail	processed; ready to eat	14/23 (61%)	Ireland	Baumgartner et al., 2009	
Enterobacter cloacae	32 Spices	Local retail/supermarket	heat-treated; dried	2/30 (7%)	Spain	Sospedra et al., 2010	
Pathogen	FoNAO category	Food item	Source\(^a\)	Processing/Comment\(^a\)	Prevalence	Country	Reference(s)
-------------------	----------------	----------------------------	--------------------------	--------------------------	------------	--------------	-------------------------------
Enterobacter gergoviae	32	Spices	Local retail/supermarket	heat-treated; dried	1/30 (3%)	Spain	Sospedra et al., 2010
Listeria monocytogenes	27	Bakery products	Local retail	n.s.	2/14 (14%)	Lithuania	ECDC, 2008
	27	Cakes	Hotels/restaurants/pastry shops	processed	12/283 (4%)	Croatia	Uhitil et al., 2004
	27	Cereals and meals	Local retail	n.s.	2/214 (1%)	Ireland	ECDC, 2008
	27	Cereals and meals	Manufacturer	n.s.	19/333 (6%)	Luxembourg	ECDC, 2009
	27	Confectionery products and pastes	Local retail	n.s.	5/300 (2%)	Slovenia	ECDC, 2008
	27	Confectionery products and pastes	n.s.	n.s.	1/490 (0.2%)	Hungary	ECDC, 2008
	27	Flour	Manufacturer/local retail	processed	5/27 (19%)	Portugal	Mena et al., 2004
	27	Pastries	Manufacturer/local retail	processed	3/73 (4%)	Portugal	Mena et al., 2004
	28	Seeds	n.s.	sprouted; ready to eat	1/88 (1%)	Hungary	ECDC, 2009
	32	Spices and herbs	n.s.	n.s.	1/2 (50%)	Italy	ECDC, 2008
31/3	8	Dried fruits (walnut, hazelnut, pine-nut, sultana, apricot)	Manufacturer/local retail	processed	1/12 (8%)	Portugal	Mena et al., 2004
Salmonella Bredeney	32	Spices and herbs	n.s.	n.s.	3/45 (7%)	Slovakia	ECDC, 2008
Salmonella Enteritidis	27	Bakery products	Local retail	n.s.	10/35 (29%)	Lithuania	ECDC, 2008
	27	Bakery products (cakes)	n.s.	n.s.	29/6339 (0.5%)	Spain	ECDC, 2008
	27	Confectionery products and pastes	n.s.	n.s.	1/39 (3%)	Slovakia	ECDC, 2008
	27	Confectionery products and pastes	n.s.	n.s.	1/209 (0.5%)	Hungary	ECDC, 2008
	27	Noodles	n.s.	n.s.	9/36 (25%)	Slovakia	ECDC, 2008
	27	Noodles	n.s.	n.s.	3/288 (1%)	Slovakia	ECDC, 2008
	27	Noodles	n.s.	n.s.	5/292 (2%)	Hungary	ECDC, 2008
Pathogen	FoNAO category	Food item	Source*	Processing/Comment*	Prevalence	Country	Reference(s)
--------------------------	----------------	----------------------	----------	--------------------	---------------------	------------------	---------------
Salmonella Infantis	32	Spices and herbs	Local retail	n.s.	1/1768 (0.1%)	Netherlands	ECDC, 2008
Salmonella spp.	33	Chocolate	n.s.	n.s.	1/145 (1%)	Hungary	ECDC, 2008
	27	Bakery products	n.s.	n.s.	3/1354 (0.2%)	Spain	ECDC, 2009
	27	Cereals and meals	Manufacturer	heat-treated; cooked	3/485 (0.6%)	Luxembourg	ECDC, 2009
	27	Noodles	Local retail	n.s.	1/2320 (0.05%)	Ireland	ECDC, 2009
	27	Noodles	Manufacturer	n.s.	9/19363 (0.05%)	Ireland	ECDC, 2009
	27	Noodles	Manufacturer	n.s.	1/27 (4%)	Slovakia	ECDC, 2009
	27	Alfalfa seeds	Local retail	ready to eat	1/58 (2%)	United Kingdom + Import	Willis et al., 2009
	27	Linseed (flax)	Local retail	ready to eat	1/284 (0.4%)	United Kingdom + Import	Willis et al., 2009
	27	Melon (egusi)	Local retail	ready to eat	4/47 (9%)	United Kingdom + Import	Willis et al., 2009
	27	Sesame	Local retail	ready to eat	13/771 (2%)	United Kingdom + Import	Willis et al., 2009
	27	Seeds	Manufacturer	heat-treated; dried	1/1 (100%)	Romania	ECDC, 2009
	27	Seeds	n.s.	sprouted; ready to eat	1/174 (0.6%)	Netherlands	ECDC, 2009
	27	Seeds mixed	Local retail	ready to eat	3/350 (1%)	United Kingdom + Import	Willis et al., 2009
	28	Seeds, sprouted	n.s.	unprocessed	1/229 (5%)	Germany	ECDC, 2008
	28	Sesam seed	n.s.	processed	11/117 (9%)	Germany	Brockmann et al., 2004
	28	Sesam seed	n.s.	processed	2/16 (13%)	Germany	Brockmann et al., 2004
	28	Sunflower	Local retail	ready to eat	1/979 (0.1%)	United Kingdom + Import	Willis et al., 2009
	31	Brazil nut	Local retail	processed	2/469 (0.4%)	United Kingdom	Little et al., 2010
	31	Mixed nuts	Local retail	processed	1/105 (1%)	United Kingdom	Little et al., 2010
	31	Nuts	Local retail	heat-treated; roasted; ready to eat	1/727 (0.1%)	United Kingdom	Little et al., 2009
Pathogen	FoNAO category	Food item	Source*	Processing/Comment*	Prevalence	Country	Reference(s)
------------------------	----------------	------------------------	---------	---------------------	------------	---------------	------------------------------
Food of plant origin with low water content	31 Pistachios	Local retail	heat-treated; roasted; ready to eat	1/25 (4%)	United Kingdom	Little et al., 2009	
	32 Curry	Local retail	n.s.		1/412 (0.2%)	Netherlands	ECDC, 2009
	32 Spices	Local retail	heat-treated; dried	63/1857 (3%)	Netherlands	ECDC, 2009	
	32 Spices	Restaurants	heat-treated; dried	1/154 (1%)	United Kingdom	Little et al., 2003	
	32 Spices and herbs	Local retail	heat-treated; dried	2/198 (1%)	Hungary	ECDC, 2008	
	32 Spices and herbs	Local retail	Imported	1/238 (0.4%)	United Kingdom	ECDC, 2009	
	32 Spices and herbs	Local retail	n.s.	67/1768 (4%)	Netherlands	ECDC, 2008	
	32 Spices	Local retail	n.s.	1/41 (2%)	Sweden	ECDC, 2009	
	32 Spices and herbs	Local retail	n.s.	1/243 (0.4%)	Hungary	ECDC, 2009	
	32 Herbs	Local retail	heat-treated; dried	10/743 (1%)	United Kingdom	Sagoo et al., 2009	
	32 Spices	Local retail	heat-treated; dried	21/2090 (1%)	United Kingdom	Sagoo et al., 2009	
	37 Halvah	n.s.	processed	8/71 (11%)	Germany	Brockmann et al., 2004	
	37 Sesam paste	n.s.	processed	1/12 (8%)	Germany	Brockmann et al., 2004	
Salmonella Typhimurium	32 Spices and herbs	Local retail	n.s.	1/1768 (0.1%)	Netherlands	ECDC, 2008	
Shigella sonnei	32 Herbs	Local retail/supermarket	heat-treated; dried	1/23 (4%)	Spain	Sospedra et al., 2010	
Shigella spp.	32 Herbs	Local retail/supermarket	heat-treated; dried	2/23 (9%)	Spain	Sospedra et al., 2010	
	32 Spices	Local retail/supermarket	heat-treated; dried	3/30 (10%)	Spain	Sospedra et al., 2010	
Staphylococcal enterotoxins	27 Cereals and meals	Local retail	n.s.	20/728 (3%)	Luxembourg	ECDC, 2009	
	27 Cereals and meals	Local retail	n.s.	1/1 (100%)	Ireland	ECDC, 2009	
	27 Confectionery products and pastes	Manufacturer	n.s.	2/6 (33%)	Slovakia	ECDC, 2009	
	33 Chocolate	Manufacturer	n.s.	4/28 (14%)	Luxembourg	ECDC, 2009	
Staphylococcus aureus	32 Herbs	Local retail/supermarket	heat-treated; dried	1/23 (4%)	Spain	Sospedra et al., 2010	
	32 Spices	Local retail/supermarket	heat-treated; dried	2/30 (7%)	Spain	Sospedra et al., 2010	

The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.
Table 14: Prevalence of pathogenic bacteria and parasites in association with FoNAO of low water content, non-EU countries and EU plus non-EU countries. Pathogens are listed in alphabetical order. “Country” signifies the place where the food commodity was found in association with the biological contaminant (e.g. site of survey or screening).

Pathogen	FoNAO category	Food item	Sourcea	Processing/Commenta	Prevalence	Country	Reference(s)
Cryptosporidium	28	Mung bean	Manufacturer	n.s.	14/149 (9%)	Norway	Robertson et al., 2002
Giardia	28	Mung bean	Manufacturer	n.s.	3/149 (2%)	Norway	Robertson et al., 2002
	28	Radish	Manufacturer	n.s.	1/6 (17%)	Norway	Robertson et al., 2002
a n.s.= not specified							

Pathogen	FoNAO category	Food item	Sourcea	Processing/Commenta	Prevalence	Country	Reference(s)
Bacillus cereus	24	Barley	n.s.	unprocessed	16/76 (21%)	Korea	Park et al., 2008
	24	Cereal	n.s.	unprocessed	73/293 (25%)	Korea	Park et al., 2008
	24	Job’s tears (*Coix lacryma jobi*)	n.s.	unprocessed	19/71 (27%)	Korea	Park et al., 2008
	24	Wheat	Manufacturer	processed	41/58 (70%)	Australia	Berghofer et al., 2003
	24	Wheat	Manufacturer	unprocessed	47/58 (81%)	Australia	Berghofer et al., 2003
	24	Wheat	n.s.	unprocessed	5/27 (19%)	Turkey	Alp et al., 2008
	24	Wheat flour	n.s.	processed	1/8 (13%)	Turkey	Segun et al., 2012
	24	Wheat flour	n.s.	unprocessed	3/20 (15%)	Argentina	Fangio et al., 2010
	24	Wheat grain	Manufacturer	unprocessed	2/50 (4%)	Australia	Eglezos 2010a
	25	Brown rice	n.s.	unprocessed	15/83 (18%)	Korea	Park et al., 2008
	25	Fried rice with vegetable/Chinese-Style	Restaurants	processed	36/200 (18%)	Sri Lanka	Perera and Ranasinghe 2012
	25	Glutinous rice	n.s.	unprocessed	23/63 (37%)	Korea	Park et al., 2008
Pathogen	FoNAO category	Food item	Source	Processing stage/Comment	Prevalence	Country	Reference(s)
----------	----------------	-----------	--------	--------------------------	------------	---------	--------------
25		Rice	Restaurants	heat-treated	1/26 (4%)	Nigeria	Isara et al., 2010
25		Rice	Restaurants	heat-treated; fried	8/26 (31%)	Nigeria	Isara et al., 2010
25		Rice (brown, white, wild type, black and rice mixtures)	Local retail/supermarket	non-par boiled	83/178 (47%)	USA	Ankolekar et al., 2009
27		Breakfast cereals	Supermarket	processed	25/41 (61%)	Malaysia	Lee et al., 2009
27		Breakfast cereals	Supermarket	processed	8/8 (100%)	Malaysia	Lee et al., 2009
27		Cereal products	Supermarket	processed	87/111 (78%)	Malaysia	Lee et al., 2009
27		Pre-mixed drinks	Supermarket	processed	14/15 (93%)	Malaysia	Lee et al., 2009
27		Raw cereals	Supermarket	n.s.	15/17 (88.9%)	Malaysia	Lee et al., 2009
27		Biscuits (Infant food)	Local retail/online market	heat-treated	4/10 (40%)	Korea	Kim et al., 2011a
27		Bran	Manufacturer	processed	51/54 (94%)	Australia	Berghofer et al., 2003
27		Flour	Manufacturer	processed	66/71 (93%)	Australia	Berghofer et al., 2003
27		Wheat germ	Manufacturer	processed	28/43 (64%)	Australia	Berghofer et al., 2003
27		Raw cereals	Supermarket	n.s.	15/17 (88.9%)	Malaysia	Lee et al., 2009
27		Sprouts (Phaseolus vulgaris)	Investigation institute	unprocessed	n.d.	Venezuela	Cava et al., 2009
32		Dried red pepper	Local retail	heat-treated; dried	118/140 (84%)	Korea	Choo et al., 2007
32		Red pepper powder	Manufacturer	processed	42/112 (38%)	Korea	Oh et al., 2012
32		Spices	Local retail	heat-treated; dried	83/154 (54%)	India	Banerjee et al., 2003
33		Ground roasted coffee beans	n.s.	n.s.	17/30 (57%)	Brazil	Chaves et al., 2012
37		Other food	Local retail	processed; fermented	21/105 (20%)	India	Roy et al., 2007
37		Rice soup (Infant food)	Local retail/online market	heat-treated	7/34 (21%)	Korea	Kim et al., 2011a
Food of plant origin with low water content

Pathogen

Pathogen	FoNAO category	Food item	Source\(^a\)	Processing stage/Comment\(^a\)	Prevalence	Country	Reference(s)
Campylobacter coli	28	Mung bean sprout	Local retail/supermarket	unprocessed	17/41 (41%)	Malaysia	Chai et al., 2007
Campylobacter jejuni	27	Vhuswa	Home-made	processed	2/125 (2%)	South Africa	Potgieter et al., 2005
	28	Mung bean sprout	Local retail/supermarket	unprocessed	19/41 (46%)	Malaysia	Chai et al., 2007
Clostridium botulinum	32	Chamomile	Local retail	unwrapped samples and tea bags	15/200 (8%)	Argentina	Bianco et al., 2008
	32	Linden flower (Tilia spp.)	Local retail	unwrapped samples	3/100 (3%)	Argentina	Bianco et al., 2009
Clostridium perfringens	32	Spices	Local retail	heat-treated; dried	26/154 (17%)	India	Banerjee et al., 2003
	32	Spices	Local retail/manufacturer	processed	14/115 (12%)	Argentina	Aguilera et al., 2005
	37	Tarhana	Local retail	processed	3/8 (38%)	Turkey	Segun et al., 2012
Cronobacter dublinensis	27	Flour	Local retail	processed	1/3 (33%)	Jordan	Shaker et al., 2007
	27	Semolina	Local retail	processed	1/3 (33%)	Jordan	Shaker et al., 2007
	27	Starch	Local retail	processed	1/3 (33%)	Jordan	Shaker et al., 2007
Cronobacter maytjensii	27	Sunsik	Local retail/supermarket	processed	6/86 (7%)	Korea	Lee et al., 2012
Cronobacter sakazakii	27	Sunsik	Local retail/supermarket	processed	2/86 (2%)	Korea	Lee et al., 2012
	27	Cereal products	Local retail/supermarket	n.s.	8/50 (16%)	Korea	Lee et al., 2012
	27	Dried adults cereals	Supermarket/manufacturer	processed	2/8 (25%)	USA	Restaino et al., 2006
	27	Dried flour or meals (Corn, soy, wheat and rice)	Supermarket/manufacturer	processed	14/87 (18%)	USA	Restaino et al., 2006

\(^a\) Food item in the source table is given as reported.
Pathogen	FoNAO category	Food item	Source\(^a\)	Processing stage/Comment\(^a\)	Prevalence	Country	Reference(s)
Cronobacter spp.	24	Grains	Local retail	unprocessed	7/39 (18%)	Korea	Chon et al., 2012
27	Grains and beans	Local retail	unprocessed	6/20 (30%)	Korea	Kim et al., 2011b	
27	Sunsik	Local retail/supermarket	processed	31/86 (36%)	Korea	Lee et al., 2012	
32	Anise	Local retail	n.s.	4/8 (50%)	Jordan	Jaradat et al., 2009	
32	Chamomile	Local retail	n.s.	2/8 (25%)	Jordan	Jaradat et al., 2009	
32	Fennel	Local retail	n.s.	3/6 (50%)	Jordan	Jaradat et al., 2009	
32	Herbs and spices	Local retail	n.s.	26/67 (39%)	Jordan	Jaradat et al., 2009	
32	Herbs and spices	Local retail	unprocessed	5/26 (19%)	Korea	Chon et al., 2012	
32	Liquorice	Local retail	n.s.	4/4 (100%)	Jordan	Jaradat et al., 2009	
32	Mixed Spices	Local retail	n.s.	11/15 (73%)	Jordan	Jaradat et al., 2009	
32	Sage	Local retail	n.s.	1/2 (50%)	Jordan	Jaradat et al., 2009	

The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.
Pathogen	FoNAO category	Food item	Sourcea	Processing stage/Commenta	Prevalence	Country	Reference(s)
`Thyme`	32	Local retail	n.s.		1/4 (25%)	Jordan	Jaradat et al., 2009
`Escherichia coli 0157:H7 (EHEC)`	37	Beans	Home-made	heat-treated; cooked	2/13 (15%)	Malawi	Taulo et al., 2008
`Klebsiella pneumonia`	31	Almond	Local retail	processed; fruit juice	3/7 (43%)	Libya	Ghenghesh et al., 2005
	33	Tamarind	Local retail	heat treated; dried; pulp tea infusion	1/44 (2%)	Jordan	Nassereddin and Yamani, 2005
`Listeria monocytogenes`	27	Hosmerim dessert	Local retail	n.s.	3/100 (3%)	Turkey	Cokal et al., 2012
	28	Alfalfa sprouts	Supermarket	polyethylene packaging container	1/6 (17%)	Korea	Waje et al., 2009
	28	Broccoli sprouts	Supermarket	polyethylene packaging container	1/7 (14%)	Korea	Waje et al., 2009
	28	Red radish sprouts	Supermarket	polyethylene packaging container	1/6 (17%)	Korea	Waje et al., 2009
	28	Sprouts	Supermarket	polyethylene packaging container	3/55 (5%)	Korea	Waje et al., 2009
	31	Mixed nuts	Manufacturer	heat-treated; cooked; ready-to-eat; packed	2/564 (0.4%)	Australia	Eglezos 2010b
	31	Mixed nuts	Manufacturer	heat-treated; cooked; ready-to-eat; packed	2/43 (5%)	Australia	Eglezos 2010b
`Pseudomonas aeruginosa`	25	Rice	Restaurants	heat-treated; fried	1/3 (33%)	Nigeria	Isara et al., 2010
	31	Almond	Local retail	processed; fruit juice	1/7 (14%)	Libya	Ghenghesh et al., 2005
	33	Sous	Local retail	heat treated; dried; pulp tea infusion	1/21 (5%)	Jordan	Nassereddin and Yamani, 2005
`Salmonella Agona`	32	Ground red pepper	Local retail	unprocessed	1/25 (4%)	Turkey	Erol et al., 2009
`Salmonella Bredeney`	32	Black pepper powder	Local retail	processed; powder	1/25 (4%)	Turkey	Erol et al., 2009
`Salmonella Enterica`	32	Black pepper	Local retail	processed	1/42 (2%)	Japan	Hara-Kudo et al., 2006

The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.
Pathogen	FoNAO category	Food item	Source\(^a\)	Processing stage/Comment\(^a\)	Prevalence	Country	Reference(s)
Salmonella Enteritidis	31	Almond	Manufacturer	unprocessed	5/4153 (0.1%)	USA	Bansal et al., 2010
Salmonella Kentucky	32	Red pepper powder	Local retail	processed; powder	1/25 (4%)	Turkey	Erol et al., 2009
Salmonella Muenchen	31	Almond	Manufacturer	unprocessed	8/4153 (0.2%)	USA	Bansal et al., 2010
Salmonella Newport	31	Almond	Manufacturer	unprocessed	6/4153 (0.1%)	USA	Bansal et al., 2010
Salmonella spp.	24	Maize; porridge	Home-made	processed	5/15 (35%)	Kenya	Muoki et al., 2008
	24	Maize; ugali	Home-made	processed	3/15 (20%)	Kenya	Muoki et al., 2008
	24	Wheat grain	Manufacturer	unprocessed	1/50 (2%)	Australia	Eglezos 2010a
	24	Wheat grass	Take-away	processed; juice	2/3 (67%)	India	Titarmare et al., 2009
	27	Maize flour porridge	Home-made	heat-treated; cooked	9/41 (22%)	Malawi	Taulo et al., 2008
	27	Mandazi; chapati	Home-made	processed	3/15 (17%)	Kenya	Muoki et al., 2008
	27	Vhuswa	Home-made	processed	6/125 (5%)	South Africa	Potgieter et al., 2005
	31	Almond	Manufacturer	n.s.	137/13972 (1%)	USA	Lambertini et al., 2012
	31	Almond	Manufacturer	unprocessed	81/9274 (1%)	USA	Danyluk et al., 2007
	31	Almond	Manufacturer	unprocessed	42/50 (84%)	USA	Danyluk et al., 2006
	31	Almond kernel	Manufacturer	unprocessed	46/3698 (1%)	USA	Bansal et al., 2010
	31	Inshell almond	Manufacturer	unprocessed	7/455 (2%)	USA	Bansal et al., 2010
	31	Nuts	Manufacturer	prior to roasting	1/921 (0.11%)	Australia	Eglezos et al., 2008
	31	Raw almond	Manufacturer	prior to roasting	1/60 (2%)	Australia	Eglezos et al., 2008
	32	Black pepper	Supermarket	heat-treated; dried	12/66 (18%)	Brazil	Moreira et al., 2009
	32	Cumin	Supermarket	heat-treated; dried	1/15 (7%)	Brazil	Moreira et al., 2009
	33	Sous	Local retail	heat treated; dried; roots of glyrrhiza glabra tea infusion	1/21 (5%)	Jordan	Nassereddin and Yamani, 2005

Supporting publications 2013:EN-403

The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.
Pathogen	FoNAO category	Food item	Source	Processing stage/Comment	Prevalence	Country	Reference(s)
Salmonella spp.							
(unsatisfactory according to EC2004)							
Salmonella Typhi	25	Rice	Restaurants	heat-treated	1/3 (33%)	Nigeria	Isara et al., 2010
Salmonella Typhimurium	31	Almond	Manufacturer	unprocessed	4/4153 (0.1%)	USA	Bansal et al., 2010
Shigella sonnei	25	Rice	Restaurants	heat-treated; fried	1/3 (33%)	Nigeria	Isara et al., 2010
Shigella spp.	27	Vhuswa	Home-made	processed	6/125 (5%)	South Africa	Potgieter et al., 2005
Staphylococcus aureus	24	Wheat	n.s.	unprocessed	6/27 (22%)	Turkey	Alp et al., 2008
Kimbab; korean snack	25	Kimbab	Retail Distribution	processed; ready to eat	39/494 (8%)	Korea	Oh et al., 2007
Nem chao	25	Nem chao	Local retail	ready to eat	4/28 (14%)	Japan, Vietnam, Bagladesch	Huong et al.2010
Rice cake	25	Rice cake	Local retail	ready to eat	9/55 (16%)	Japan, Vietnam, Bagladesch	Huong et al.2010
Rice cakes with filling	25	Rice cakes with filling	Retail Distribution	processed; ready to eat	17/88 (19%)	Korea	Oh et al., 2007
Rice cakes without filling	25	Rice cakes without filling	Retail Distribution	processed; ready to eat	37/254 (15%)	Korea	Oh et al., 2007
Sticky rice	25	Sticky rice	Local retail	ready to eat	1/8 (13%)	Japan, Vietnam, Bagladesch	Huong et al.2010
Bread	27	Bread	Retail Distribution	processed; ready to eat	4/88 (5%)	Korea	Oh et al., 2007
Buckwheat vermicelli	27	Buckwheat vermicelli	Retail Distribution	processed; ready to eat	41/223 (18%)	Korea	Oh et al., 2007
Cream-bread	27	Cream-bread	Retail Distribution	processed; ready to eat	7/124 (6%)	Korea	Oh et al., 2007
Cream-cake	27	Cream-cake	Retail Distribution	processed; ready to eat	12/38 (32%)	Korea	Oh et al., 2007
Hosmerim dessert	27	Hosmerim dessert	Local retail	n.s.	64/100 (64%)	Turkey	Cokal et al., 2012
Pathogen

Pathogen	FoNAO category	Food item	Source^a	Processing stage/Comment^a	Prevalence	Country	Reference(s)
Yersinia enterocolitica	28	Soybean sprouts	Supermarket	ready to eat	3/87 (3%)	Korea	Lee et al., 2004
Cryptosporidium spp.	28	Mung bean sprouts	n.s.	n.s.	14/149 (9%)	Norway, Canada	Robertson et al., 2005
Enterocytozoon bieneusi	28	Mung bean sprouts	Manufacturer	n.s.	1/5 (20%)	Poland	Jedrzejewski et al., 2007
Giardia spp.	28	Mung bean sprouts	n.s.	n.s.	3/149 (2%)	Norway, Canada	Robertson et al., 2005
Microsporidian spores	28	Sprouts	Manufacturer	n.s.	1/20 (5%)	Poland	Jedrzejewski et al., 2007

^an.s. = not specified

The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.
Table 15: Growth, survival or reduction of pathogenic bacteria, viruses and parasites linked to FoNAO with low water content.

Pathogen	Food item	FoNAO category	Trial conditions/treatment	Treatment time	Increase/ decrease	Reference(s)
Aeromonas hydrophila	Rice pudding	25	4°C; Seeds inoculated during soaking (steeping medium 6.5 log cfu/mL), followed by germination, autoclaving, and sun drying; B. cereus counts on raw materials, after steeping, and after 24 h and 48 h of germination	22 days	Maximum population: 8.00-9.23 log cfu/g	Papageorgiou et al., 2003
Bacillus cereus	Finger millet	24	25°C; initial pH 4.6-4.7; MAP(5%, CO2, app. 80%)	24 weeks	-0.2 log cfu/g	Kimura et al., 2008
	Kidney beans	27	30°C; initial pH 4.6-4.7; MAP(5%, CO2, app. 80%)	2 weeks	+4.7 log cfu/g	Kimura et al., 2008
Clostridium botulinum	Rice/steamed	25	30°C; aseptically packed under MAP (0% O2, app. 5% CO2, app. 80% N2)	12 weeks	app. +4.4 log cfu/g	Kasai et al., 2005
	Rice/steamed products	25	30°C; initial pH 4.6-4.7; MAP(5%, CO2, 95% N2); deoxidant pack for an O2- concentration of 0.3%	24 weeks	-0.2 log cfu/g	Kimura et al., 2008
	Rice/steamed products	25	30°C; initial pH 4.6-4.7; MAP(5%, CO2, 95% N2); deoxidant pack for an O2- concentration of 0.3%	2 weeks	+4.7 log cfu/g	Kimura et al., 2008
Cronobacter muytjensii	wheat	24	25 or 37°C; prepared with grape or apple juices	24 hrs	> 2.3 log cfu/g	Osaili et al., 2009
Cronobacter sakazakii	wheat	24	25 or 37°C; hydrated with water or milk	24 hrs	> 5 log cfu/g	Osaili et al., 2009
Cronobacter spp.	Herbal infant teas	33	reconstituting herbal infant tea at 37, 21 or ≥ 60°C	6 hrs	4 log cfu reduction at ≥ 60°C	Al-Nabulsli et al., 2009
Enterobacter sakazakii	Infant cereal/oatmeal/	27	30°C; low inoculum	72 hrs	app. +4 log cfu/ml	Lin and Beuchat, 2007
	reconstituted with sterile apple juice					
	Infant cereal/oatmeal/	27	30°C; high inoculum	72 hrs	app. +4.5 log cfu/ml	Lin and Beuchat, 2007
	reconstituted with sterile apple juice					
Escherichia coli	Walnut kernels	31	23°C	105 days	-2.6 log cfu/g	Blessington et al., 2012
O157:H7 (EHEC)	Alfalfa sprouts	28	20, 30 or 35°C	2 days	+2.3 log cfu/g	Charkowski et al., 2002

Supporting publications 2013:EN-403

The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.
Pathogen	Food item	FoNAO category	Trial conditions/treatment	Treatment time	Increase/ decrease	Reference(s)
Food of plant origin with low water content	Alfalfa sprouts	28	25°C; Air	48 hrs	5.0 ± 2.5 x 10^7 cfu/g (maximum average)	Howard and Hutcheson, 2003
	Peanut	31	4°C	15 weeks	app. -2.8 cfu/g	Kilonzo-Nthenge et al., 2009
Listeria monocytogenes	Boza/cereal beverage	24	pH 2.6; 0.8% titratable acidity after 72 hrs	72 hrs	-2.9 log cfu/ml	Güven and Benlkaya, 2005
	Rice	25	4°C	6 days	no growth⁴	Cronin and Wilkinson, 2009
	Rice	25	10, 18°C	6 days	>1.0 log cfu/g	Cronin and Wilkinson, 2009
	Rice	25	25°C	38 hrs	app. +0.5 log cfu/g	Penna et al., 2002
	Alfalfa sprouts	28	22°C	24 hrs	app. +10³ cfu/g	Palmai and Buchanan, 2002
	Peanut/beverage	31	22°C	24 hrs	+2.6 log cfu/ml	Kenney and Beuchat, 2004
	Walnut kernels	31	23°C	105 days	-3.35 log cfu/g	Blessington et al., 2012
	Coconut/fresh cut	31	12°C; Air; pH 6.0; low inoculum (10¹⁸ cfu/g)	6 days	+2.6 log cfu/g	Sinigaglia et al., 2006
Salmonella enterica	Bread dough	27	27°C	24 hrs	app. +2.5 log cfu/g	Pao et al., 2011
	Alfalfa sprouts	28	20, 30 or 35°C	2 days	+3.7 log cfu/g	Charkowski et al., 2002
	Walnut kernels	31	23°C	105 days	-2.56 log cfu/g	Blessington et al., 2012
Salmonella Enteritidis	Almonds	31	-20°C	550 days	app. -0.4 log cfu/g	Uesugi et al., 2006
	Almonds	31	4°C	550 days	app. -0.2 log cfu/g	Uesugi et al., 2006
	Almonds	31	23°C	551 days	app. -3.1 log cfu/g	Uesugi et al., 2006
Salmonella spp.	Cereal/hydrated with water	24	15°C; cereals hydrated with water or milk	24 hrs	+3.8 log cfu/ml	Abushelaibi et al., 2003
	Cereal/hydrated with water	24	25°C	24 hrs	7.1–7.9 log cfu/ml	Abushelaibi et al., 2003
	Cereal/hydrated with water	24	25°C; cereals hydrated with apple juice	24 hrs	± 1.5–2.0 log cfu/ml	Abushelaibi et al., 2003
	Pecan/in-shell	31	4, 21, 30 or 37 °C; high moisture	8 days	-1.19 log cfu/g	Beuchat and Mann, 2010
	Pecan/granules	31	37°C	45 hrs	+6.31 log cfu/g	Beuchat and Mann, 2010
Pathogen	Food item	FoNAO category	Trial conditions/treatment	Treatment time	Increase/ decrease	Reference(s)
--------------------------	-------------------------	----------------	--	----------------	--------------------	-----------------------
Alfalfa seeds	8°C	28	9 weeks	-0.72 log cfu/g	Beuchat and Scouten, 2002	
Alfalfa seeds	21°C	28	8 weeks	-1.61 log cfu/g	Beuchat and Scouten, 2002	
Alfalfa seeds	no inoculum; minidrum sprouter; conditions similar to those used commercially	28	4 days of sprouting	MPN/g remained constant during entire sprouting period	Fu et al., 2008	
Alfalfa seeds	no inoculum; glass jar; conditions as commonly used at home	28	4 days of sprouting	app. +4 log MPN/g	Fu et al., 2008	
Alfalfa seeds	22°C	28	6 days	10^9 cfu/g	Liao, 2008	
Peanut	4°C	31	15 weeks	app. -1 log cfu/g	Kilonzo-Nthenge et al., 2009	
Salmonella Stanley	Alfalfa seeds	28	Inoculation at 3 concentrations (~3, ~30, and ~300 CFU/g), flasks or sprouting chamber	72 hrs	app. +5 log cfu/g independent of inoculum concentration	Liu and Schaffner, 2007
Salmonella Typhimurium	Peanut	31	22°C	7 weeks	-0.58 log cfu/week	Nummer et al., 2012
Coconut/fresh cut	12°C; MAP; pH 6.0; low inoculum (10^2 cfu/g)	31	10 days	+4.4 log cfu/g	Sinigaglia et al., 2006	
Staphylococcus aureus	Finger millet	24	Seeds inoculated during soaking (steeping medium 7 log cfu/mL), followed by germination, autoclaving, and sundrying; S. aureus counts on raw materials, after steeping, and after 24 h and 48 h of germination	after 24 h	-0.5 log cfu/ml	Kimanya et al., 2003
	Kidney beans	27	after 48 h	-0.6 log cfu/ml	Kimanya et al., 2003	
			after 24 h	+0.7 log cfu/ml	Kimanya et al., 2003	
			after 48 h	+0.5 log cfu/ml	Kimanya et al., 2003	
No knead bread dough	38°C	27	24 hrs	app. +2.5 log cfu/g	Pao et al., 2011	
Tahin helva	4°C	37	9 months	Survival: 1.1 x 10^2 cfu/ml	Sengun et al., 2005	
Tahin helva	20°C	37	9 months	Survival: 3.9 x 10^2 cfu/ml	Sengun et al., 2005	
Herbal food supplement	Room temperature; aerobiosis	39	30 days	not detected^a	Rossi et al., 2010	

The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European Food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.
Pathogen Food item FoNAO category Trial conditions/treatment Treatment time Increase/ decrease Reference(s)

Herbal food supplement

- **Pathogen:** Vibrio cholera
 - **Food item:** Rice/boiled/brown
 - **FoNAO category:** 39
 - **Trial conditions/treatment:** Room temperature; anaerobiosis
 - **Treatment time:** 25 days
 - **Increase/ decrease:** not detected
 - **Reference(s):** Rossi et al., 2010

Viruses

- **Pathogen:** Hepatitis A
 - **Food item:** Borde
 - **FoNAO category:** 33
 - **Trial conditions/treatment:** 22°C
 - **Treatment time:** 24 hrs
 - **Increase/ decrease:** +6.6 log/cfu/ml
 - **Reference(s):** Tadesse et al., 2005

- **Pathogen:** Rotavirus (SA11)
 - **Food item:** Borde
 - **FoNAO category:** 33
 - **Trial conditions/treatment:** 22°C
 - **Treatment time:** 24 hrs
 - **Increase/ decrease:** > 7 log cfu/ml
 - **Reference(s):** Tadesse et al., 2005

a no quantitative data reported
Table 16: Colonization behaviour of pathogenic bacteria linked to FoNAO with low water content.

Pathogen	FoNAO category	Food item	Attach-ment^a	Biofilm Formation^b	Internali-ation^b	Details^b	Reference(s)
Bacillus cereus	25	Rice	n.d	n.d	yes	Significantly different mean D95°C-values of spores of the emetic (19.3 min) and the diarrheal (2.8 min) types	Ankolekar and Labbe, 2009
		cooked rice	n.d	n.d	yes	Growth depends on storage temperature and pH of the cooked rice	Heo et al., 2009
Escherichia coli	14	bean sprouts	n.d	yes	yes	*E. coli* present on seeds become internalized within the subsequent sprouts and cannot be removed by postharvest biocidal washing	Warriner et al., 2003
Escherichia coli	28	alfalfa sprouts	yes	n.d	n.d	attachment dependent on serotype	Barak et al., 2002
Listeria monocytogenes	28	sprouts (alfalfa, radish, broccoli)	yes	n.d	n.d		Gorski et al., 2008
		alfalfa sprouts	yes	n.d	yes		Gorski et al., 2004
Listeria spp.	24	barley	yes	n.d	yes	*Listeria* spp. colonized the root hair zone but did not colonize other parts of the root surface; endophytic colonization of *Listeria* spp. was not observed	Kutter et al., 2006
Salmonella enterica	24	barley	yes	n.d	yes	high-density colonization of root hairs and root surface; also spreading to subjacent rhizodermis layers and the inner root cortex.	Kutter et al., 2006
Salmonella enterica	28	alfalfa sprouts	yes	n.d	n.d	not dependent on serotype	Barak et al., 2002
Salmonella Typhimurium	14	bean sprouts	n.d	yes	yes	*Salmonella* spp. present on seeds become internalized within the subsequent sprouts and cannot be removed by postharvest biocidal washing	Warriner et al., 2003
Salmonella Montevideo	31	peanut	n.d	n.d	yes	Average 13.6 cells/mm³; *S. Typhimurium* contaminates peanut seeds, persists within the germinated seedlings, and is internalized within peanut tissue.	Deering et al., 2012

^an.d. = not determined ^bn.r. = not reported
Table 17: Treatments for mitigating contamination of pathogenic bacteria linked to FoNAO with low water content.

Pathogen	FoNAO category	Food item	Treatment characterisation	Treatment	Conditions	Time	Reduction Effect	Reference(s)
Bacillus cereus	27	Corn Snacks	Physical	Irradiation, gamma	60Co gamma cell: 7, 8 and 9 kGy; initial counts ranging from 3×10^3 to $6 \times 10^3 \, \text{cfu/g}$	n.s.	complete elimination of bacterial spores, required dose correlated with initial counts	Zeid, 2009
Cronobacter spp.	33	Herbal Infant Teas	Biological	Bovine lactoferrin	5 or 10 mg/ml; 37°C; enrichment to a final concentration of ~ 4 log CFU/mL	4 h	no viable cells (plating in duplicate on TSA, incubated at 37°C for 24h)	Al-Nabulsi et al., 2009
Enterococcus faecalis	31	Almonds	Physical	Hot water	minimum temperature of 88°C	1.6 to 2.0 min	5 to 6 log CFU/g reduction	Harris et al., 2012
Escherichia coli O157:H7 (EHEC)	28	Alfalfa seeds	Physical	High hydrostatic pressure	soaked in water, followed by 60 min; 600 Mpa for 2 min at 20°C; inoculation to $10^3 \, \text{CFU/g}$	15 min	complete elimination, germination rate of seeds 4% lower than untreated	Neetoo and Chen, 2009
Escherichia coli O157:H7 (EHEC)	28	Broccoli seeds	Physical	Irradiation, gamma	1.1 kGy	n.s.	D-values: 1-log CFU reduction	Rajkowski et al., 2003
Escherichia coli O157:H7 (EHEC)	28	Radish seeds and sprouts	Chemical + Physical	Chlorine dioxide + drying and dry heat	ClO$_2$ (500 µg/ml, 5 min), drying (45°C, 23% rel. humidity, 24 h), and dry heat (70°C, 23% rel. humidity, 48h)	n.s.	Complete elimination (~5.9 log CFU/g)	Bang et al., 2011
Escherichia coli O157:H7 (EHEC)	31	Peanut Butter	Physical	Thermal treatment	30 days incubation period at 4°C and thermal treatment 72°C	60 min	1.5 log CFU reduction	He et al., 2011
Escherichia coli O157:H7 (EHEC)	31	Peanut Butter	Physical	Thermal treatment	30 days incubation period at 25°C and thermal treatment 72°C	60 min	1.5 log CFU reduction	He et al., 2011
Escherichia coli O157:H7 (EHEC)	31	Peanut Butter	Physical	Thermal treatment	30 days incubation period at 4°C and thermal treatment 90°C	60 min	6 log CFU reduction	He et al., 2011
Pathogen	FoNAO category	Food item	Treatment characterisation	Treatment	Conditions	Timea	Reduction Effect	Reference(s)
--------------------------	----------------	----------------------------	----------------------------	---------------------	---	-------	--------------------------	----------------------
Escherichia coli O157:H7 (EHEC)	31	Peanut Butter	Physical	Thermal treatment	30 days incubation period at 25°C and thermal treatment 90°C	60 min	7 log CFU reduction	He et al., 2011
Listeria monocytogenes	27	Kunun-zaki (a sorghum based beverage)	Physical	Thermal treatment + acidity	pH 5.4; 50°C	n.s.	D-value: 24 min	Ariahu et al., 2005
Listeria monocytogenes	27	Kunun-zaki (a sorghum based beverage)	Physical	Thermal treatment + acidity	pH 5.4; 65°C	n.s.	D-value: 0.16 min	Ariahu et al., 2005
Listeria monocytogenes	27	Kunun-zaki (a sorghum based beverage)	Physical	Thermal treatment + acidity	pH 6.6; 50°C	n.s.	D-value: 45.1 min	Ariahu et al., 2005
Listeria monocytogenes	27	Kunun-zaki (a sorghum based beverage)	Physical	Thermal treatment + acidity	pH 6.6; 65°C	n.s.	D-value: 0.35 min	Ariahu et al., 2005
Listeria monocytogenes	28	Alfalfa sprout	Physical	Irradiation, beta	3.3 or 5.3 kGy	n.s.	from 6 log CFU/g to completely eliminated	Schoeller et al., 2002
Salmonella Enterica	31	Peanut Butter	Physical	Thermal treatment	30 days incubation period at 4°C and thermal treatment 72°C	n.s.	D-value: 18.38 min	He et al., 2011
Salmonella Enterica	31	Peanut Butter	Physical	Thermal treatment	30 days incubation period at 25°C and thermal treatment 72°C	n.s.	D-value: 16.94 min	He et al., 2011
Salmonella Enterica	31	Peanut Butter	Physical	Thermal treatment	30 days incubation period at 4°C and thermal treatment 90°C	n.s.	D-value: 5.08 min	He et al., 2011
Pathogen and Food Item Details

Pathogen	FoNAO category	Food item	Treatment characterisation	Treatment	Conditions	Time	Reduction Effect	Reference(s)
Salmonella enterica	31	Peanut Butter	Physical	Thermal treatment	30 days incubation period at 25°C and thermal treatment 90°C	n.s.	D-value: 5.40 min	He et al., 2011
Salmonella enteritidis	31	Almonds	Chemical	Propylene Oxide	0.5 kg/m³	4 h	> 5 log CFU/g	Danyluk et al., 2005
Salmonella enteritidis	31	Almonds	Physical	Hot water	minimum temperature of 88°C	1.6 to 2.0 min	5 log CFU reduction	Harris et al., 2012
Salmonella senftenberg	31	Almonds	Physical	Hot water	minimum temperature of 88°C	1.6 to 2.0 min	5 log CFU reduction	Harris et al., 2012
Salmonella spp.	28	Broccoli seeds	Physical	Irradiation, gamma	1.1 kGy	n.s.	D-values: 1-log CFU reduction	Rajkowski et al., 2003

n.s. = not specified

Table 18: Outbreaks of disease caused by pathogenic bacteria and viruses linked to FoNAO with low water content, EU countries. n.s.= not specified. n.r.= not reported.

Pathogen	FoNAO category	Food item	Details (vehicle, source)	Country	Year	Number cases	Number hospitalisations	Number deaths	Reference(s)
Bacillus cereus	24	Buckwheat	n.r.	Poland	2009	52	0	0	ECDC, 2009
Bacillus cereus	25	Rice	rice pudding	Germany	2007	46	0	0	Kamba Wambo et al., 2011
Bacillus cereus	25	Rice	n.r.	Netherlands	2009	3	n.s.	n.s.	ECDC, 2009
Bacillus cereus	25	Rice	n.r.	Netherlands	2009	3	n.s.	n.s.	ECDC, 2009
Bacillus cereus	25	Rice	n.r.	Netherlands	2009	3	n.s.	n.s.	ECDC, 2009
Bacillus cereus	25	Rice	n.r.	Netherlands	2009	2	n.s.	n.s.	ECDC, 2009
Pathogen	FoNAO category	Food item	Details (vehicle, source)	Country	Year	Number cases	Number hospitali-sations	Number deaths	Reference(s)
--------------------------	----------------	---------------------------	----------------------------	-----------------	------	--------------	----------------------------	---------------	---------------------------
Bacillus cereus	25	Rice	rice and indian lentils	Germany	2010	3	0	0	ECDC, 2010
Bacillus cereus	26	Pasta salad	n.r.	Belgium	2004	5	5	1	Dierick et al., 2005
Bacillus cereus	27	Cereal products including rice and seeds/pulses	n.r.	Belgium	2010	9	0	0	ECDC, 2010
Bacillus cereus	27	Cereal products including rice and seeds/pulses	Chinese rice/noodle dish	Netherlands	2010	2	0	0	ECDC, 2010
Bacillus cereus	27	Cereal products including rice and seeds/pulses	Chinese noodle dish	Netherlands	2010	2	0	0	ECDC, 2010
Bacillus cereus	27	Cereal products including rice and seeds/pulses	Chinese rice dish	Netherlands	2010	2	0	0	ECDC, 2010
Bacillus cereus	32	Curry	n.r.	Belgium	2009	7	0	0	ECDC, 2009
Bacillus cereus	32	White pepper	n.r.	Denmark	2010	112	0	0	ECDC, 2010
Bacillus cereus	37	Cereal products including rice and seeds/pulses	pastes	Slovakia	2009	16	0	0	ECDC, 2009
Bacillus cereus	37	Falafel	n.r.	Netherlands	2009	2	n.s.	n.s.	ECDC, 2009
Bacillus cereus	37	Kisir	cereal product including rice and seeds, Turkish salad	Finland	2010	8	0	0	ECDC, 2010
Bacillus cereus	37	Pesto	n.r.	Netherlands	2009	2	n.s.	n.s.	ECDC, 2009
Clostridium perfringens	25	Rice	duck rice, cooked	Portugal	2009	5	n.s.	0	ECDC, 2009
Escherichia coli O104:H4 (STEC O104:H4)	28	Sprouts, fenugreek seeds	seeds from Egypt, sprouts from Germany and France	Germany, France, other EU countries plus Norway	2011	4033	n.s.	50	CDC, 2011, online(e), Buchholz et al., 2011, EFSA, 2011; Frank et al., 2011, King et al., 2012, Kemper 2012

Supporting publications 2013:EN-403

The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.
Pathogen	FoNAO category	Food item	Details (vehicle, source)	Country	Year	Number cases	Number hospitalizations	Number deaths	Reference(s)
Salmonella Bareilly	28	Bean sprouts	n.r.	United Kingdom	2010	231	32	1	ECDC, 2010; Cleary et al., 2010
Salmonella Bareilly	28	Bean sprouts	n.r.	United Kingdom	2010	21	3	0	ECDC, 2010
Salmonella Bovismorbidicans	28	Alfalfa sprouts	raw	Finland	2009	28	0	0	ECDC, 2009; Rimhanen-Finne et al., 2011
Salmonella Bovismorbidicans	28	Sprouts	n.r.	Estonia	2009	6	3	0	ECDC, 2009
Salmonella enterica	32	Aniseed	n.r.	Germany	2002-2003	42	0	0	Koch et al., 2005
Salmonella Enteritidis	24	Corn	grits with sweet milk	Hungary	2010	17	4	0	ECDC, 2010
Salmonella Enteritidis	26	Noodles	n.r.	Hungary	2010	18	1	0	ECDC, 2010
Salmonella Enteritidis	27	Bakery products	n.r.	France	2009	4	0	0	ECDC, 2009
Salmonella Enteritidis	27	Bakery products	layer cakes	Lithuania	2009	11	6	0	ECDC, 2009
Salmonella Enteritidis	27	Bakery products	cakes	Lithuania	2009	10	6	0	ECDC, 2009
Salmonella Enteritidis	27	Bakery products	fine bakery product containing pasteurized dairy products and raw eggs	Poland	2009	243	93	0	ECDC, 2009
Salmonella Enteritidis	27	Bakery products	n.r.	Poland	2009	10	8	0	ECDC, 2009
Salmonella Enteritidis	27	Bakery products	n.r.	Poland	2009	3	2	0	ECDC, 2009
Salmonella Enteritidis	27	Bakery products	dumpling	Slovakia	2009	85	11	0	ECDC, 2009
Pathogen	FoNAO category	Food item	Details (vehicle, source)^a	Country	Year	Number cases	Number hospitali-sations^b	Number deaths^b	Reference(s)
------------------------------	----------------	--------------------	---	-------------	------	--------------	-------------------------------------	-------------------------	---------------------
Salmonella Enteritidis	27	Bakery products	apple pie with royal icing	Slovakia	2009	20	1	0	ECDC, 2009
Salmonella Enteritidis	27	Bakery Products	n.r.	Austria	2010	22	6	0	ECDC, 2010
Salmonella Enteritidis	27	Bakery Products	cake filled with heated creme	Germany	2010	9	2	0	ECDC, 2010
Salmonella Enteritidis	27	Bakery Products	fine bakery product containing pasteurized dairy products and raw eggs	Poland	2010	273	89	0	ECDC, 2010
Salmonella Enteritidis	27	Bakery Products	farm (primary production)	Poland	2010	11	8	0	ECDC, 2010
Salmonella Enteritidis	27	Bakery Products	n.r.	Poland	2010	11	5	0	ECDC, 2010
Salmonella Enteritidis	31	Almonds	raw	Sweden	2005-2006	15	n.s.	n.s.	Ledet Müller et al., 2007
Salmonella Enteritidis	33	Sweets and chocolate	n.r.	Hungary	2009	35	5	0	ECDC, 2009
Salmonella Enteritidis	33	Sweets and chocolate	n.r.	Hungary	2009	4	0	0	ECDC, 2009
Salmonella Infantis	37	Falafel	n.r.	Sweden	2010	18	0	0	ECDC, 2010
Salmonella Kottbus	28	Bean sprouts	n.r.	United Kingdom	2010	4	0	0	ECDC, 2010
Salmonella Madelia	26	Tortellini	with pesto	Germany	2002	18	2	n.s.	Hauri et al., 2004
Salmonella Montevideo	27	Hemp flour	n.r.	Germany	2010	4	1	0	ECDC, 2010, Stöcker et al., 2011
Salmonella spp.	27	Bakery products	n.r.	France	2009	15	2	0	ECDC, 2009
Salmonella spp.	27	Bakery Products	n.r.	France	2010	22	3	0	ECDC, 2010

^a Details of the vehicle and source of contamination.

^b Number of hospitalisations and deaths.

ECDC, European Centre for Disease Control; n.s., not specified.
Pathogen	FoNAO category	Food item	Details (vehicle, source)\(^a\)	Country	Year	Number cases	Number hospitalisations\(^b\)	Number deaths\(^b\)	Reference(s)	
Salmonella spp.	27	Bakery Products	n.r.	France	2010	10	5	0	ECDC, 2010	
Salmonella spp.	33	Sweets and chocolate	n.r.	Romania	2010	14	12	1	ECDC, 2010	
Salmonella Stanley	28	Alfalfa sprouts	n.r.	Sweden	2007	51	n.s.	n.s.	Werner et al., 2007	
Salmonella Typhimurium	27	Bakery Products	n.r.	France	2010	8	0	0	ECDC, 2010	
Salmonella Weltvreden	28	Alfalfa sprouts	n.r.	Norway, Sweden, Denmark, Finland	2007	45	n.s.	n.s.	Emberland et al., 2007	
Shigella sonnei	14	Corn	baby corn	Denmark	2007	120	13	n.s.	Lewis et al., 2007	
Staphylococcus aureus	26	Pasta	cooked, with chicken	Portugal	2009	16	n.s.	0	ECDC, 2009	
Staphylococcus aureus	26	Spaghetti	n.r.	Belgium	2009	10	0	0	ECDC, 2009	
Staphylococcus aureus	27	Bakery Products	infected food handler	France	2010	87	5	0	ECDC, 2010	
Staphylococcus aureus	33	Sweets and chocolate	n.r.	Romania	2010	5	5	0	ECDC, 2010	
Staphylococcus aureus	37	Cereal products	including rice and seeds/pulses	n.r.	France	2009	2	0	0	ECDC, 2009
Yersinia enterocolitica	25	Rice	cooked, with codfish	Portugal	2009	21	1	1	ECDC, 2009	
Viruses										
Calicivirus norovirus	25	Rice	sushi rice	Sweden	2009	28	0	0	ECDC, 2009	
(Norwalk-like virus)										
Calicivirus norovirus	33	Sweets and chocolate	n.r.	Hungary	2010	25	0	0	ECDC, 2010	
(Norwalk-like virus)										
Hepatitis A virus	27	Bakery Products	doughnuts	Germany	2004	64	n.s.	n.s.	Schenkel et al., 2006	

\(^a\) n.r.= not reported
\(^b\) n.s.= not specified

Supporting publications 2013:EN-403

The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.
Table 19: Outbreaks of disease caused by pathogenic bacteria linked to FoNAO with low water content, non EU countries.

Pathogen	FoNAO category	Food item	Source, Processing Stage	Country	Year	Number cases	Number hospital	Number deaths	Reference(s)
Clostridium botulinum	37	Bamboo shoots	n.r.	Thailand	2006	209	25	0	Kongsaengdao et al., 2006
Escherichia coli O157	28	Alfalfa sprouts	n.r.	USA	2003	7	2	0	Ferguson et al., 2005
Escherichia coli O157:H7	31	Hazelnut	in shell hazelnuts, retail food stores	Multi-state outbreak states	2011	8	4	0	CDC, online(h); Miller et al., 2012
Escherichia coli O26	28	Clover sprouts	raw, at restaurant chain	Multi-state outbreak states	2012	29	7	0	CDC, online(c) updated 10-10-2012
Salmonella Agona	37	Cereals	Malt-O-Meal unsweetened Puffed Rice Cereals and unsweetened Puffed Wheat Cereals	Multi-state outbreak states	2008	28	8	0	CDC, online(c) 2008
Salmonella Enteritidis	31	Turkish Pine Nuts	bulk bins at grocery stores	Multi-state outbreak states	2011	43	2	0	CDC, online(f) 2011
Salmonella Enteritidis	28	Alfalfa sprouts and spicy sprouts	manufactured by Fresh Evergreen Sprouts	Multi-state outbreak states	2011	25	3	0	CDC, online(g) 2011
Salmonella Enteritidis	37	Cake or Bread	n.r.	China	2004	199	92	n.s.	Liu et al., 2006
Salmonella Enteritidis	31	Almonds	raw	USA, Canada	2003-2004	29	0	0	MMWR, 2004c
Salmonella Enteritidis	28	Bean sprouts	n.r.	Canada	2005	592	n.s.	n.s.	Rohekar et al., 2008
Salmonella Montevideo	32	Black and red pepper	production of Italian-style meats	Multi-state outbreak states	2010	272	52	0	CDC, online(c) 2010
Pathogen, FoNAO category, Food item, Source, Processing Stage, Country, Year, Number of cases, Number of hospital admissions, Number of deaths, Reference(s)

Pathogen	FoNAO category	Food item	Source, Processing Stage	Country	Year	Number of cases	Number of hospital admissions	Number of deaths	Reference(s)
Salmonella Newport	28	Alfalfa Sprouts	n.r.	Multi-state outbreak USA	2010	44	7	0	CDC, online(e)
Salmonella Saintpaul	28	Alfalfa Sprouts	n.r.	Multi-state outbreak USA	2009	235	7	0	CDC, online(b); MMWR, 2009b
Salmonella serotype I 4,[5],12:i:-	28	Alfalfa Sprouts	n.r.	Multi-state outbreak USA	2010	140	33	0	CDC, online(d)
Salmonella Tennessee	31	Peanut Butter	n.r.	Multi-state outbreak USA	2007	425	71	0	CDC, online(b); Boehmer et al., 2009, Sheth et al., 2011, MMWR, 2007b
Salmonella Typhimurium	31	Peanut Butter	n.r.	Multi-state outbreak USA	2009	715	171	9	CDC, online(a); MMWR, 2009a
Salmonella Wandsworth; Salmonella Typhimurium	27	Cereals snack of puffed rice and corn	Multistate outbreak USA, Canada	2007	65	6	0	CDC, online(c)	
Shigella sonnei	14	Corn	baby corn	Australia	2007	58	n.s.	n.s.	Stafford et al., 2007

\(^a\)n.r.= not reported
\(^b\)n.s.= not specified
B. Appendix Specific to Thematic Area B

Table 20: Categories and items of FoNAO with low water content as reported in association with pathogenic bacteria. “Country” signifies the place where the food commodity was found in association with the biological contaminant (e.g. site of survey or screening).

FoNAO Category	Food item	Pathogen	Country	Reference(s)
24 Cereals and dry legumes	Barley	*Bacillus cereus*	Korea	Park et al., 2008
	Breakfast cereals	*Cronobacter spp.*, *Bacillus cereus*	Ireland, Malaysia	Molloy et al., 2009; Lee et al., 2009
	Cereal	*Bacillus cereus*	Korea	Park et al., 2008
	Grains	*Cronobacter spp.*	Korea	Chon et al., 2012
	Job’s tears (*Coix lacrymajobi*)	*Bacillus cereus*	Korea	Park et al., 2008
	Lentils	*Cronobacter dublinensis*	Czech Republic	Hochel et al., 2012
	Maize; porridge	*Salmonella spp.*	Kenya	Muoki et al., 2008
	Maize; ugali	*Salmonella spp.*	Kenya	Muoki et al., 2008
	Wheat	*Bacillus cereus, Staphylococcus aureus*	Turkey, Australia	Alp et al., 2008; Berghofer et al., 2003
	Wheat flour	*Bacillus cereus*	Turkey, Argentina	Segun et al., 2012; Fangio et al., 2010
	Wheat grain	*Bacillus cereus, Salmonella spp.*	Australia	Eglezos 2010a
	Wheat grass	*Salmonella spp.*	India	Titarmare et al., 2009
25 Rice	Basmati rice	*Bacillus cereus* spp. group	Belgium	Samapundo et al., 2011
	Brown rice	*Bacillus cereus*	Korea	Park et al., 2008
	Fried rice with vegetable/Chinese-Style	*Bacillus cereus*	Sri Lanka	Perera and Ranasinghe 2012
	Glutinous rice	*Bacillus cereus*	Korea	Park et al., 2008
	Kimbap; korean snack	*Staphylococcus aureus*	Korea	Oh et al., 2007
	Nem choa	*Staphylococcus aureus*	Japan, Vietnam, Bagladesch	Huong et al. 2010
FoNAO Category	Food item	Pathogen	Country	Reference(s)
----------------	-----------	----------	---------	--------------
Rice	B. cereus, Pseudomonas aeruginosa, Salmonella Typhi, Shigella sonnei, B. cereus like organism	Nigeria, Italy, Belgium, Denmark	Isara et al., 2010; Bonerba et al., 2010; Delbrassinne et al., 2012; Rosenquist et al., 2005	
Rice (brown, white, wild type, black and rice mixtures)	B. cereus	USA	Ankolekar et al., 2009	
Rice cake	S. aureus	Japan, Vietnam, Bangladesh	Huong et al.2010	
Rice cakes with filling	S. aureus	Korea	Oh et al., 2007	
Rice cakes without filling	S. aureus	Korea	Oh et al., 2007	
Sticky rice	S. aureus	Japan, Vietnam, Bangladesh	Huong et al.2010	
26 Pasta	Pasta	B. cereus spp. Group, B. cereus like organism	Belgium, Denmark	Samapundo et al., 2011; Rosenquist et al., 2005
27 Other dry legumes, cereals, edible seeds and grains, flours and products thereof (processed products)	Bakery products	Salmonella Enteritidis, Listeria monocytogenes, Cronobacter sakazakii	Spain, Lithuania, Germany	ECDC, 2008; ECDC, 2010
Bakery products (cakes)	Salmonella Enteritidis	Slovakia	ECDC, 2008	
Bakery products (desserts)	Salmonella spp.	Spain	ECDC, 2009	
Biscuits (Infant food)	B. cereus	Korea	Kim et al., 2011a	
Bran	B. cereus	Australia	Berghofer et al., 2003	
Bread	S. aureus	Korea	Oh et al., 2007	
Buckwheat vermicelli	S. aureus	Korea	Oh et al., 2007	
Cakes	L. monocytogenes	Croatia	Uhitil et al., 2004	
Cereal based food	S. aureus	Nigeria	Olasupo et al., 2002	
Cereal products	B. cereus	Malaysia	Lee et al., 2009	
Cereal products	Cronobacter sakazakii	Korea	Lee et al., 2012	
Cereals and meals	Salmonella spp. , Listeria monocytogenes, Staphylococcal enterotoxins	Luxembourg, Ireland	ECDC, 2009; ECDC, 2008	
Coconut biscuits	Cronobacter sakazakii	Czech Republic	Hochel et al., 2012	
FoNAO Category	Food item	Pathogen	Country	Reference(s)
---	---	---	------------------------------	---------------------------------------
Confectionery products and pastes	Confectionery products and pastes	*Salmonella Enteritidis*, *Listeria monocytogenes*, Staphylococcal enterotoxins	Hungary, Slovakia	ECDC, 2008; ECDC, 2009
Cream-bread	Cream-bread	*Staphylococcus aureus*	Korea	Oh et al., 2007
Cream-cake	Cream-cake	*Staphylococcus aureus*	Korea	Oh et al., 2007
Dried adults cereals	Dried adults cereals	*Cronobacter sakazakii*	USA	Restaino et al., 2006
Dried cereals	Dried cereals	*Cronobacter spp.*	Netherlands	Kandhai et al., 2010
Dried flour or meals (Corn, soy, wheat and rice)	Dried flour or meals (Corn, soy, wheat and rice)	*Cronobacter sakazakii*	USA	Restaino et al., 2006
Dried infant cereals	Dried infant cereals	*Cronobacter sakazakii*	USA	Restaino et al., 2006
Flour	Flour	*Bacillus cereus*, *Listeria monocytogenes*, *Cronobacter (E. agglomerans)*	Australia, Portugal, Jordan	Berghofer et al., 2003; Mena et al., 2004; Shaker et al., 2007
Grains and beans	Grains and beans	*Cronobacter spp.*	Korea	Kim et al., 2011b
Hosmerim dessert	Hosmerim dessert	*Staphylococcus aureus*, *Listeria monocytogenes*	Turkey	Cokal et al., 2012
Maize flour porridge	Maize flour porridge	*Staphylococcus aureus*, *Salmonella spp.*	Malawi	Taulo et al., 2008
Mandazi; chapati	Mandazi; chapati	*Salmonella spp.*	Kenya	Muoki et al., 2008
Noodles	Noodles	*Salmonella spp., Salmonella Enteritidis*	Ireland, Slovakia, Hungary	ECDC, 2009, ECDC, 2008
Oat flakes	Oat flakes	*Cronobacter sakazakii*	Czech Republic	Hochel et al., 2012
Pastries	Pastries	*Cronobacter sakazakii/Cronobacter malonicus*, *Listeria monocytogenes*	Slovakia, Portugal	Turcovský et al., 2011; Mena et al., 2004
Powdered infant formula milk	Powdered infant formula milk	*Staphylococcus aureus*	China, USA	Wang et al., 2012
Pre-mixed drinks	Pre-mixed drinks	*Bacillus cereus*	Malaysia	Lee et al., 2009
Raw cereals	Raw cereals	*Bacillus cereus*	Malaysia	Lee et al., 2009
Rice flour	Rice flour	*Cronobacter sakazakii/Cronobacter malonicus/Cronobacter dublinensis	Czech Republic	Hochel et al., 2012
Semolina	Semolina	*Cronobacter (E. agglomerans), Cronobacter sakazakii	Jordan	Shaker et al., 2007
Starch	Starch	*Cronobacter (E. agglomerans)*	Jordan	Shaker et al., 2007
FoNAO Category	Food item	Pathogen	Country	Reference(s)
----------------	-----------	----------	---------	--------------
	Sunsik	*Cronobacter sakazakii, Cronobacter spp., Cronobacter dublinensis, Cronobacter muytjensii*	Korea	Kim et al., 2008; Lee et al., 2012
	Vhuswa	*Shigella spp., Salmonella spp., Campylobacter jejuni*	South Africa	Potgieter et al., 2007; Potgieter et al., 2006; Potgieter et al., 2005
	Wheat germ	*Bacillus cereus*	Australia	Berghofer et al., 2003
	Seeds for sprouting and sprouted seeds			
	Alfalfa seeds	*Salmonella spp.*	United Kingdom + Import	Willis et al., 2009
	Alfalfa sprouts	*Listeria monocytogenes*	Korea	Waje et al., 2009
	Broccoli sprouts	*Listeria monocytogenes*	Korea	Waje et al., 2009
	Linseed (flax)	*Salmonella spp.*	United Kingdom + Import	Willis et al., 2009
	Melon (egusi)	*Salmonella spp.*	United Kingdom + Import	Willis et al., 2009
	Mung bean sprout	*Campylobacter jejuni, Campylobacter coli*	Malaysia	Chai et al., 2007
	Poppy seed	*Cronobacter sakazakii*	Czech Republic	Hochel et al., 2012
	Pumpkin seed	*Cronobacter sakazakii/Cronobacter malonicicus/Cronobacter turicensis*	Czech Republic	Hochel et al., 2012
	Red radish sprouts	*Listeria monocytogenes*	Korea	Waje et al., 2009
	Seasame	*Salmonella spp.*	United Kingdom + Import	Willis et al., 2009
	Seeds	*Salmonella spp., Listeria monocytogenes*	Netherlands, Romania, Hungary	ECDC, 2009
	Seeds mixed	*Salmonella spp.*	United Kingdom + Import	Willis et al., 2009
	Seeds, sprouted	*Salmonella spp.*	Germany	ECDC, 2008
	Sesam seed	*Salmonella spp., Cronobacter sakazakii/Cronobacter malonicicus*	Germany, Czech Republic	Brockmann et al., 2004; Hochel et al., 2012
	Soybean sprout	*Yersinia enterocolitica*	Korea	Lee et al., 2004
FoNAO Category	Food item	Pathogen	Country	Reference(s)
---------------------	------------------------------------	---	------------------	------------------------------
Sprouts	Cronobacter sakazakii, Cronobacter spp., Listeria monocytogenes	Korea, Swiss	Kim et al., 2009; Althaus et al., 2012; Waje et al., 2009	
Sprouts (Phaseolus vulgaris)	Bacillus cereus	Venezuela	Cava et al., 2009	
Sunflower	Salmonella spp.	United Kingdom + Import	Willis et al., 2009	
Wheat sprout	Cronobacter sakazakii	Czech Republic	Hochel et al., 2012	
31 Nuts and nuts products	Almond	Pseudomonas aeruginosa, Klebsiella pneumoniae, Salmonella spp., Salmonella Muenchen, Salmonella Typhimurium, Salmonella Enteritidis, Salmonella Newport	Libya, USA	Ghenghesh et al., 2005; Lamberti et al., 2012; Bansal et al., 2010; Danyluk et al., 2006
	Almond kernel	Salmonella spp.	USA	Bansal et al., 2010
	Brazil nut	Salmonella spp.	United Kingdom	Little et al., 2010
	Inshell almond	Salmonella spp.	USA	Bansal et al., 2010
	Mixed nuts	Salmonella spp., Listeria monocytogenes	United Kingdom, Australia	Little et al., 2010; Eglezos 2010b
	Nuts	Salmonella spp., Cronobacter sakazakii, Salmonella spp.	Australia, Slovakia, United Kingdom	Eglezos et al., 2008; Turcovský et al., 2011; Little et al., 2009
	Pistachios	Salmonella spp.	United Kingdom	Little et al., 2009
	Raw almond	Salmonella spp.	Australia	Eglezos et al., 2008
32 Spices and dry powdered herbs	Anise	Cronobacter spp.	Jordan	Jaradat et al., 2009
	Basil	Cronobacter sakazakii/Cronobacter muytjensi	Czech Republic	Hochel et al., 2012
	Black pepper	Salmonella spp., Salmonella Enterica	Brazil, Japan	Moreira et al., 2009; Harakudo et al., 2006
	Black pepper powder	Salmonella Bredene	Turkey	Erol et al., 2009
	Caraway	Cronobacter sakazakii	Czech Republic	Hochel et al., 2012
	Chamomile	Clostridium botulinum, Cronobacter spp.	Argentina, Jordan	Bianco et al., 2008; Jaradat et al., 2009
	Cumin	Salmonella spp.	Brazil	Moreira et al., 2009
FoNAO Category	Food item	Pathogen	Country	Reference(s)
----------------	----------------------	---------------------------------	-----------------------	-------------------------------
	Curry	*Salmonella* spp.	Netherlands	ECDC, 2009
	Dried red pepper	*Bacillus cereus*	Korea	Choo et al., 2007
	Dried spices	*Cronobacter* spp.	Netherlands	Kandhai et al., 2010
	Fennel	*Cronobacter* spp.	Jordan	Jaradat et al., 2009
	Ginger	*Cronobacter sakazakii/Cronobacter malonaticus*	Czech Republic	Hochel et al., 2012
	Ground red pepper	*Salmonella Agona*	Turkey	Erol et al., 2009
	Herbs	*Bacillus cereus, Clostridium perfringens, Shigella sonnei, Staphylococcus aureus, Shigella spp., Bacillus cereus, Cronobacter sakazakii, Salmonella spp, Clostridium perfringens*	Italy, Spain, United Kingdom	Vitullo et al., 2011; Sospedra et al., 2010; Sagoo et al., 2009
	Herbs and spices	*Cronobacter spp., Cronobacter sakazakii, Cronobacter spp.*	Jordan, United Kingdom, Korea	Jaradat et al., 2009; Iversen and Forsythe, 2004; Chon et al., 2012
	Linden flower (Tilia spp.)	*Clostridium botulinum*	Argentina	Bianco et al., 2009
	Liquorice	*Cronobacter* spp.	Jordan	Jaradat et al., 2009
	Majoram	*Cronobacter sakazakii/Cronobacter muytjenisi*	Czech Republic	Hochel et al., 2012
	Mixed Spices	*Cronobacter* spp.	Jordan	Jaradat et al., 2009
	Pepper	*Cronobacter sakazakii*	Czech Republic	Hochel et al., 2012
	Pimiento	*Cronobacter malonaticus*	Czech Republic	Hochel et al., 2012
	Red pepper	*Salmonella Enterica*	Japan	Hara-Kudo et al., 2006
	Red pepper powder	*Bacillus cereus, Salmonella Kentucky*	Korea, Turkey	Oh et al., 2012; Erol et al., 2009
	Saffron	*Clostridium perfringens, Clostridium perfringens, Bacillus cereus*	Spain	Cosano et al., 2009
	Sage	*Cronobacter* spp.	Jordan	Jaradat et al., 2009
FoNAO Category	Food item	Pathogen	Country	Reference(s)
----------------	-----------	----------	---------	--------------
Spices		*Clostridium perfringens, Bacillus cereus, Shigella spp., Staphylococcus aureus, Clostridium perfringens, Enterobacter cloacae, Bacillus cereus, Salmonella spp., Enterobacter gergoviae, Salmonella spp., Cronobacter sakazakii/Cronobacter malonaticus/Cronobacter mujtjenisi, Salmonella spp.*	United Kingdom, India, Spain, Argentina, Netherlands, Slovakia	Sagoo et al., 2009; Banerjee et al., 2003; Sospedra et al., 2010; Little et al., 2003; Aguiler et al., 2005; ECDC, 2009; Mankee et al., 2005; Turcovský et al., 2011
Spices and dried herbs	Cronobacter spp.	Ireland	Baumgartner et al., 2009	
Spices and herbs	*Salmonella spp., Salmonella Enteritidis, Salmonella Typhimurium, Salmonella Bredeney, Listeria monocytogenes, Salmonella spp.*	United Kingdom, Netherlands, Slovakia, Italy, Hungary, Sweden	ECDC, 2009; ECDC, 2008	
Thyme	Cronobacter spp.	Jordan	Jaradat et al., 2009	
Beverages	Chocolate	*Salmonella Infantis, Staphylococcal enterotoxins*	Hungary, Luxembourg	ECDC, 2008, ECDC, 2009
Chocolate products	*Cronobacter sakazakii/Cronobacter malonaticus*	Slovakia	Turcovský et al., 2011	
Ground roasted coffee beans	*Bacillus cereus*	Brazil	Chaves et al., 2012	
Herbal tea	*Cronobacter sakazakii*	Serbia	Stojanovic et al., 2011	
Ice coffee (beverage)	*Staphylococcus aureus*	Thailand	Chomvarin et al., 2006	
Sous	*Cronobacter sakazakii, Salmonella spp., Pseudomonas aeruginosa*	Jordan	Nassereddin and Yamani, 2005	
Tamarind	*Klebsiella pneumoinea, Salmonella spp.*	Jordan	Nassereddin and Yamani, 2005	
Tea	*Cronobacter sakazakii*	Slovakia	Turcovský et al., 2011	
Other processed products, sauces and dressings, purées, soup, and pastes (including canned and bottled products)	Aroma, sauce and gravy	*Clostridium botulinum*	France	Carlin et al., 2004
Halvah	*Salmonella spp.*	Germany	Brockmann et al., 2004	
Instant lentil soup	*Cronobacter sakazakii/Cronobacter malonaticus*	Czech Republic	Hochel et al., 2012	
Instant soups	*Cronobacter malonaticus/Cronobacter dublinensis*	Slovakia	Turcovský et al., 2011	
Other food	*Bacillus cereus, Salmonella spp., Staphylococcus aureus*	India	Roy et al., 2007	
FoNAO Category	Food item	Pathogen	Country	Reference(s)
---------------	-----------	----------	---------	--------------
	Ready to eat food	*Bacillus cereus*	United Kingdom	Little et al., 2003
	Rice soup (Infant food)	*Bacillus cereus*	Korea	Kim et al., 2011a
	Sesam paste	*Salmonella* spp.	Germany	Brockmann et al., 2004
	Tarhana	*Bacillus cereus, Clostridium perfringens*	Turkey	Ucar et al., 2011; Segun et al., 2012
	Thickening agents	*Clostridium botulinum*	France	Carlin et al., 2004
	Tofu	*Cronobacter sakazakii/Cronobacter dublinensis*	Czech Republic	Hochel et al., 2012
39 Others	Foodstuffs intended for special nutritional uses (dried dietary foods for special medical purposes intended for infants below 6 months)	*Cronobacter sakazakii*	Germany	ECDC, 2008
27/31 38 Other dry legumes, cereals, edible seeds and grains, flours and products thereof (processed products)/Nuts and nut products/Dehydrated vegetables and fruit	Dry food ingredients other than herbs and spices (nuts, fruit, grains)	*Cronobacter sakazakii*	United Kingdom	Iversen and Forsythe, 2004
28/16 15 Seeds for sprouting and sprouted seeds/ Fresh herbs/ Leafy greens eaten raw as salads	Sprouts/fresh herbs/salads	*Cronobacter spp.*	Ireland	Baumgartner et al., 2009
31/38 Nuts and nuts products/Dehydrated vegetables and fruit	Dried fruits (walnut, hazelnut, pine-nut, sultana, apricot)	*Listeria monocytogenes*	Portugal	Mena et al., 2004
32/38 Spices and dry powdered herbs/Dehydrated vegetables and fruits	Dried vegetables and spices	*Cronobacter sakazakii*	USA	Restaino et al., 2006

Supporting publications 2013:EN-403

The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.
Table 21: Categories and items of FoNAO with low water content as reported in association with parasites.

FoNAO Category	Food item	Pathogen	Country	Reference(s)
28 Seeds for sprouting and sprouted seeds	Mung bean sprouts	Cryptosporidium spp., Giardia spp.	Norway	Robertson et al., 2002
	Mung bean sprouts	Enterocytozoon bieneusi, Cryptosporidium spp., Giardia spp.	Poland, USA, Norway, Canada	Jedrzejewski et al., 2007; Robertson et al., 2005
	Radish sprouts	Giardia spp.	Norway	Robertson et al., 2002
	Sprouts	Microsporidian spores	Poland, USA	Jedrzejewski et al., 2007

Table 22: Critical points in specific primary production procedures reported for the food items listed in Tables 20 and 21.

Food item	FoNAO category	Critical point	Pathogen"	Country	EU/non-EU	Reference(s)
Baby corn	24	harvesting	n.r.	Thailand	non-EU	Soylemez et al., 2001
			n.r.	Thailand	non-EU	CDC, 2009
			n.r.	Italy	EU	CDC, 2009
		environment	n.r.	Italy	EU	CDC, 2009
		manure	n.r.	Italy	EU	Lampinen et al., 2004
		personnel	n.r.	Italy	EU	Lampinen et al., 2004
		water	n.r.	Italy	EU	Lampinen et al., 2004
Cereals	24	harvesting	Salmonella spp.	New Zealand	non-EU	Anonymous, 2006
		cultivation	Salmonella spp.	New Zealand	non-EU	Anonymous, 2006
		transport	Salmonella spp.	New Zealand	non-EU	FAO, 2010
Seed		fecal matter	Salmonella spp.	USA	non-EU	FAO, 2010
		Campylobacter	USA	non-EU	FAO, 2010	

Supporting publications 2013:EN-403

The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.
Food item	FoNAO category	Critical point	Pathogen	Country	EU/non-EU	Reference(s)
Alfalfa Seeds and Sprouts	28	manure	*Escherichia coli*	USA	non-EU	FAO, 2010
		water	*Cryptosporidium*	USA	non-EU	UVM, 2011
		fecal matter	n.r.	USA	non-EU	Aarathi et al., 2012
		harvesting	n.r.	USA	non-EU	MGU, 2010
		irrigation	n.r.	USA	non-EU	TAS, 2005
		manure	n.r.	USA	non-EU	TAS, 2005
Linseed	28	cultivation	n.r.	Finland	EU	TAS, 2005
		harvesting	n.r.	Finland	EU	TAS, 2005
Ready-To-Eat Dried Seeds	28	irrigation	*Salmonella spp.*	United Kingdom	EU	IPC, 2007
		manure	*Salmonella spp.*	United Kingdom	EU	IPC, 2007
		soil	*Salmonella spp.*	United Kingdom	EU	IPC, 2007
		fecal matter	*Salmonella spp.*	United Kingdom	EU	IPC, 2007
Seeds for sprouting	28	cleaning	*Escherichia coli*	Australia	non-EU	Warriner, s.a.
		n.r.	*Listeria spp.*	Australia	non-EU	ARS, 2000
		n.r.	*Salmonella spp.*	Australia	non-EU	ARS, 2000
		cultivation	n.r.	EU	EU	Peter, 2004
		n.r.	USA	non-EU	Stankovic et al., 2006	
		n.r.	USA	non-EU	FSANZ, 2012	
		equipment	n.r.	Canada	non-EU	NZFSA, 2010b
		fecal matter	*Escherichia coli*	Australia	non-EU	ARS, 2000
			Escherichia coli	Canada	non-EU	HPA, s.a.
Food of plant origin with low water content

Food item	FoNAO category	Critical point	Pathogen	Country	EU/non-EU	Reference(s)
			Escherichia coli	USA	non-EU	FSANZ, 2012
			Escherichia coli	USA	non-EU	FSN,2000
			Listeria spp.	Australia	non-EU	ARS, 2000
			Listeria spp.	USA	non-EU	FSN,2000
			n.r.	Canada	non-EU	NZFSA, 2010b
			n.r.	Canada	non-EU	FSN,2000
			n.r.	EU	EU	UNIDO, 2005
			n.r.	Japan	non-EU	EC, 2004
			n.r.	United Kingdom	EU	FAO, 2012
			n.r.	USA	non-EU	Warriner, s.a.
		harvesting	**Salmonella spp.**	Australia	non-EU	Bari et al., 2011a
			Salmonella spp.	Canada	non-EU	HPA, s.a.
			Salmonella spp.	USA	non-EU	EC, 2004
			n.r.	USA	non-EU	FSANZ, 2012
			n.r.	Australia	non-EU	Bari et al., 2011a
			n.r.	Australia New Zealand	non-EU	FAO, 2012
			n.r.	Canada	non-EU	HPA, s.a.
			n.r.	EU	EU	Koivula et al., 2004
			n.r.	Italy	EU	FAO, 2012
			n.r.	Japan	non-EU	EC, 2004
			n.r.	Malaysia	non-EU	Schrader, 2002
			n.r.	USA	non-EU	FSANZ, 2012
			Salmonella spp.	Australia	non-EU	Bari et al., 2011a

The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.
Food item	FoNAO category	Critical point	Pathogen\(^a\)	Country	EU/non-EU	Reference(s)
		irrigation	*Salmonella* spp.	USA	non-EU	EC, 2004
		n.r.	*Salmonella* spp.	Australia New Zealand	non-EU	FAO, 2012
		n.r.	*Escherichia coli*	Canada	non-EU	NZFSA, 2010b
		n.r.	*Escherichia coli*	Canada	non-EU	FSN, 2000
		n.r.	*Escherichia coli*	Italy	EU	FAO, 2012
		n.r.	*Escherichia coli*	Philippines	non-EU	CFS, 2011
		n.r.	*Escherichia coli*	United Kingdom	EU	FAO, 2012
		n.r.	*Escherichia coli*	USA	non-EU	FSN, 2000
		manure	*Salmonella* spp.	USA	non-EU	EC, 2004
		n.r.	*Salmonella* spp.	Canada	non-EU	Schrader, 2002
		n.r.	*Escherichia coli*	Australia New Zealand	non-EU	NSW Food Authority, 2012
		n.r.	*Escherichia coli*	Canada	non-EU	NZFSA, 2010b
		n.r.	*Escherichia coli*	Italy	EU	FAO, 2012
		n.r.	*Escherichia coli*	Malaysia	non-EU	Warriner, s.a.
		n.r.	*Escherichia coli*	Philippines	non-EU	Schrader, 2002
		n.r.	*Escherichia coli*	United Kingdom	EU	FAO, 2012
		n.r.	*Escherichia coli*	USA	non-EU	FSN, 2000
		packaging	*Salmonella* spp.	USA	non-EU	EC, 2004
		n.r.	*Escherichia coli*	Australia	non-EU	EFSA, 2011, online
		n.r.	*Listeria* spp.	Australia	non-EU	EFSA, 2011, online
		n.r.	*Salmonella* spp.	USA	non-EU	Stankovic et al., 2006
		n.r.	*Escherichia coli*	Australia	non-EU	EFSA, 2011, online

The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.
Food item	FoNAO category	Critical point	Pathogen\(^a\)	Country	EU/non-EU	Reference(s)
		transport	*Listeria* spp.	Australia	non-EU	FAOWHO_2011
			Salmonella spp.	Australia	non-EU	FAOWHO_2011
		water	*Escherichia coli*	Australia	non-EU	FAOWHO_2011
			Listeria spp.	Australia	non-EU	FAOWHO_2011
			n.r.	Australia New Zealand	non-EU	IPC, 2012
			n.r.	Canada	non-EU	CFS, 2011
			n.r.	Italy	EU	FAO, 2012
			n.r.	Japan	non-EU	WojcikStopczynska et al., 2009
			n.r.	Malaysia	non-EU	Warriner, s.a.
			Salmonella spp.	Australia	non-EU	Food Standards Agency, s.a.
			Escherichia coli	Australia	non-EU	Food Standards Agency, s.a.
			Escherichia coli	Canada	non-EU	CFS, 2011
			Listeria spp.	Australia	non-EU	Food Standards Agency, s.a.
			n.r.	EU	EU	Koivula et al., 2004
			n.r.	Japan	non-EU	WojcikStopczynska et al., 2009
			Salmonella spp.	Australia	non-EU	FSANZ, 2012
			Salmonella spp.	Canada	non-EU	CFS, 2011
Sesame	28	cultivation	*Salmonella* spp.	USA	non-EU	FSN,2000
		environment	*Salmonella* spp.	USA	non-EU	Gabriel, 2005
		cleaning	*Salmonella* spp.	USA	non-EU	Gabriel, 2005
		drying	*Salmonella* spp.	USA	non-EU	Mohle-Boetani et al., 2009
			Salmonella spp.	USA	non-EU	Mustar and Nazaimoon, 2010
			Salmonella spp.	USA	non-EU	Mustar and Nazaimoon, 2010
Food item	FoNAO category	Critical point	Pathogen\(^a\)	Country	EU/non-EU	Reference(s)
-----------	----------------	----------------	----------------	---------	----------	--------------
Almond	31	harvesting	*Salmonella* spp.	USA	non-EU	Mustar and Nazaimoon, 2010
		personnel	*Salmonella* spp.	USA	non-EU	NSW Food Authority, s.a.
		manure	*Salmonella* spp.	USA	non-EU	NSW Food Authority, s.a.
		storage	*Salmonella* spp.	USA	non-EU	NSW Food Authority, s.a.
		water	*Salmonella* spp.	USA	non-EU	NSW Food Authority, s.a.
		fecal matter	*Salmonella* spp.	New Zealand	non-EU	NSW Food Authority, s.a.
		water	*Salmonella* spp.	New Zealand	non-EU	NSW Food Authority, s.a.
		harvesting	*Salmonella* spp.	USA	non-EU	NSW Food Authority, s.a.
Nuts	31	fecal matter	*Salmonella* spp.	Italy	EU	NSW Food Authority, s.a.
		irrigation	*Salmonella* spp.	Italy	EU	NSW Food Authority, s.a.
		harvesting	*Salmonella* spp.	Italy	EU	NSW Food Authority, s.a.
			Escherichia coli	Italy	EU	NSW Food Authority, s.a.
			Salmonella spp.	Australia	non-EU	NSW Food Authority, s.a.
Black pepper	32	cultivation	n.r.	Indonesia	non-EU	FD, 2006

Supporting publications 2013:EN-403

The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.
Food item	FoNAO category	Critical point	Pathogen\(^a\)	Country	EU/non-EU	Reference(s)
n.r.	Indonesia	n.r.	AIV, s.a.			
environment	n.r.	Thailand	non-EU	Buck et al., 2003		
n.r.	Indonesia	n.r.	FD, 2006			
fecal matter	n.r.	Thailand	non-EU	Buck et al., 2003		
harvesting	n.r.	India	non-EU	Taormina et al., 1999		
n.r.	Thailand	n.r.	non-EU	Buck et al., 2003		
manure	n.r.	Indonesia	non-EU	ASTA, 2011		
soil	n.r.	Indonesia	non-EU	Buck et al., 2003		
water	n.r.	Thailand	non-EU	Buck et al., 2003		
n.r.	Indonesia	n.r.	ASTA, 2011			
Cayenne pepper	32	n.r.	Proteus ssp.	Serbia	non-EU	ASTA, 2011
			Escherichia coli	Serbia	non-EU	ASTA, 2011
Herbs	32	cultivation	n.r.	EU	EU	ASTA, 2011
			n.r.	Poland	EU	ASTA, 2011
		environment	n.r.	EU	EU	ASTA, 2011
		fecal matter	n.r.	EU	EU	ASTA, 2011
		harvesting	n.r.	EU	EU	ASTA, 2011
			n.r.	Poland	EU	ASTA, 2011
			n.r.	non-EU	non-EU	NZFSA, 2010
Pepper	32	harvesting	n.r.	Indonesia	non-EU	NZFSA, 2010

\(^a\) The presence of one or more of these pathogens in the critical point is of concern.
Food item	FoNAO category	Critical point	Pathogen^a	Country	EU/non-EU	Reference(s)
Spices	32	cultivation	n.r.	EU	EU	USAID, 2009
			n.r.	Serbia	non-EU	SBI, 2012
			n.r.	Pakistan	non-EU	UNIDO, 2005
		environment	n.r.	EU	EU	EC, 2004
			n.r.	India	non-EU	EC, 2004
			n.r.	Brasil	non-EU	Stankovic et al., 2006
			n.r.	Turkey	non-EU	das Chagas Oliveira Freire and Offord, 2002
fecal matter	n.r.	harvesting	n.r.	EU	EU	EC, 2004
			n.r.	Brasil	non-EU	das Chagas Oliveira Freire and Offord, 2002
			n.r.	Turkey	non-EU	Hampikyan et al., 2009
			n.r.	non-EU	non-EU	Hampikyan et al., 2009
			n.r.	Pakistan	non-EU	HEC, 2009
packaging	n.r.	packaging	n.r.	India	non-EU	SBI, 2012
personnel	n.r.	personnel	n.r.	EU	EU	EC, 2004
			n.r.	India	non-EU	SBI, 2012
			n.r.	Brasil	non-EU	das Chagas Oliveira Freire and Offord, 2002
processing	n.r.	processing	n.r.	India	non-EU	SBI, 2012
storage	n.r.	storage	n.r.	India	non-EU	SBI, 2012
water	n.r.	water	n.r.	EU	EU	EC, 2004
Beans	37	soil	n.r.	USA	non-EU	HEC, 2009

^an.r. = not reported concerning a specific pathogen
Table 23: Critical points in specific processing procedures reported for the food items listed in Tables 20 and 21.

Food item	FoNAO category	Critical point	Pathogen*	Country	EU/non-EU	Reference(s)	
Baby corn	24	cleaning	n.r.	Australia	non-EU	Anonymous, 2006	
		heating	n.r.	Australia	non-EU	Anonymous, 2006	
		packaging	n.r.	Thailand	non-EU	Liu et al., 2007	
			n.r.	China	non-EU	Anonymous, 2006	
		processing	n.r.	China	non-EU	AQIS, 2005	
		raw material	n.r.	China	non-EU	AQIS, 2005	
		storage	n.r.	Thailand	non-EU	Soylemez et al., 2001	
			n.r.	Thailand	non-EU	ACFS, 2005	
		transport	n.r.	Thailand	non-EU	Liu et al., 2007	
			n.r.	Thailand	non-EU	ACFS, 2005	
		water	n.r.	Thailand	non-EU	ACFS, 2005	
		heating		USA	non-EU	STR, 2005	
		milling	n.r.	USA	non-EU	STR, 2005	
				Salmonella spp.	New Zealand	non-EU	FSSAI, 2010
				Salmonella spp.	New Zealand	non-EU	FSSAI, 2010
Cereals	24	raw material	Salmonella spp.	New Zealand	non-EU	FSSAI, 2010	
		storage	n.r.	USA	non-EU	STR, 2005	
				Salmonella spp.	New Zealand	non-EU	FSSAI, 2010
Wheat	24	milling	n.r.	Canada	non-EU	FSSAI, 2010	
		packaging	n.r.	Canada	non-EU	FSSAI, 2010	
Food item	FoNAO category	Critical point	Pathogen\(^a\)	Country	EU/non-EU	Reference(s)	
---------------------	----------------	----------------	----------------	---------------	-----------	------------------------	
processing	n.r.			Canada	non-EU	FSSAI, 2010	
receiving	n.r.			Canada	non-EU	FSSAI, 2010	
storage	n.r.			USA	non-EU	ICMSF, 1986	
Rice	25	cleaning	n.r.	United Kingdom	EU	NSW Food Authority, 2009b	
		drying	n.r.	United Kingdom	non-EU	NSW Food Authority, 2009b	
		equipment	n.r.	United Kingdom	EU	NSW Food Authority, 2009b	
		heating	n.r.	United Kingdom	EU	NSW Food Authority, 2009b	
		personnel	n.r.	United Kingdom	EU	NSW Food Authority, 2009b	
		raw material	n.r.	United Kingdom	EU	NSW Food Authority, 2009c	
		storage	n.r.	United Kingdom	EU	UNIDO, 2004	
		water	n.r.	United Kingdom	EU	UNIDO, 2004	
Bakery products	27	cleaning	n.r.	India	non-EU	UNIDO, 2004	
			n.r.	Australia	non-EU	Aarathi et al., 2012	
			n.r.	Austria	EU	Aarathi et al., 2012	
		environment	n.r.	India	non-EU	UNIDO, 2004	
			n.r.	Austria	EU	EIA, 2002	
		equipment	n.r.	India	non-EU	UNIDO, 2004	
			n.r.	Australia	non-EU	Aarathi et al., 2012	
			n.r.	Austria	EU	EIA, 2002	
		packaging	n.r.	India	non-EU	UNIDO, 2004	
			n.r.	Austria	EU	EIA, 2002	
		personnel	n.r.	India	non-EU	Ciat, 1999	

The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.
Food item	FoNAO category	Critical point	Pathogen\(^a\)	Country	EU/non-EU	Reference(s)
processing	n.r.	Australia	non-EU	Aarathi et al., 2012		
raw material	n.r.	India	non-EU	DAFF, 2010		
storage	n.r.	Australia	non-EU	Aarathi et al., 2012		
water	n.r.	Austria	EU	EIA, 2002		
Flour	27	cleaning	n.r.	Greece	EU	EIA, 2002
		packaging	n.r.	Greece	EU	EIA, 2002
		raw material	n.r.	Greece	EU	IPC, 2012
		storage	n.r.	Greece	EU	Joy et al., 2002
		water	n.r.	Greece	EU	MGU, 2010
Alfalfa Seeds and Sprouts	28	water	n.r.	USA	non-EU	MGU, 2010
Alfalfa Sprouts	28	water	n.r.	USA	non-EU	Peter, 2001
Linseed	28	cleaning	Escherichia coli	United Kingdom	EU	Martinez-Villaluenga et al., 2008
		Salmonella spp.	United Kingdom	EU	Martinez-Villaluenga et al., 2008	
		drying	Escherichia coli	United Kingdom	EU	Martinez-Villaluenga et al., 2008
		Salmonella spp.	United Kingdom	EU	Martinez-Villaluenga et al., 2008	
Ready-To-Eat Dried Seeds	28	drying	Salmonella spp.	United Kingdom	EU	FRI, 2007
		heating	Salmonella spp.	United Kingdom	EU	FRI, 2007
Seeds for	28	storage	n.r.	Japan	non-EU	FRI, 2007
Food item	FoNAO category	Critical point	Pathogen	Country	EU/non-EU	Reference(s)
--------------	----------------	----------------	----------	---------	-----------	--------------
sprouting		n.r.	USA	non-EU	ADM, 2009	
		Salmonella spp.	USA	non-EU	Cordier, 1994	
		n.r.	Malaysia	non-EU	Cordier, 1994	
		Escherichia coli	Australia	non-EU	Cordier, 1994	
		Listeria spp.	Australia	non-EU	Cordier, 1994	
Sesame	28	antimicrobial treatment	*Salmonella* spp.	USA	non-EU	Gilmour, 2009
			Salmonella spp.	USA	non-EU	Gilmour, 2009
		heating	*Salmonella* spp.	New Zealand	non-EU	Januszewska, 2006
		packaging	*Salmonella* spp.	USA	non-EU	GMA, 2009
			Salmonella spp.	USA	non-EU	Januszewska, 2006
		personnel	*Salmonella* spp.	USA	non-EU	Gilmour, 2009
		processing	*Salmonella* spp.	USA	non-EU	Cordier, 1994
			Salmonella spp.	USA	non-EU	Januszewska, 2006
		storage	*Salmonella* spp.	USA	non-EU	EC, 2003
			Salmonella spp.	USA	non-EU	Gilmour, 2009
			Salmonella spp.	USA	non-EU	Januszewska, 2006
			Escherichia coli	Germany	EU	Januszewska, 2006
			Salmonella spp.	Germany	EU	Januszewska, 2006
			Staphylococcus aureus	Germany	EU	Januszewska, 2006
		transport	*Salmonella* spp.	USA	non-EU	Januszewska, 2006
		water	*Salmonella* spp.	USA	non-EU	Gilmour, 2009
			Salmonella spp.	USA	non-EU	GMA, 2009

The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.
Food item	FoNAO category	Critical point	Pathogen*	Country	EU/non-EU	Reference(s)
Sprouts	28	antimicrobial treatment	n.r.	Canada	non-EU	Mermelstein, 2012
		n.r.	n.r.	Canada	non-EU	Nascimento et al., 2009
		n.r.	n.r.	Canada	non-EU	Mermelstein, 2012
		n.r.	n.r.	Canada	non-EU	Nascimento et al., 2009
		cleaning	n.r.	USA	non-EU	NCA, s.a. (b)
		n.r.	n.r.	USA	non-EU	NCA, s.a. (b)
		cooling	n.r.	Canada	non-EU	NCA, s.a.
		n.r.	n.r.	Italy	EU	FAO, 2012
		n.r.	n.r.	Canada	non-EU	NCA, s.a.
		equipment	n.r.	India	non-EU	EC, 2004
		n.r.	n.r.	India	non-EU	EC, 2004
		fecal matter	n.r.	USA	non-EU	IPC, 2012
		germination	n.r.	USA	non-EU	Januszewska, 2006
		n.r.	n.r.	Canada	non-EU	Nascimento et al., 2009
		n.r.	n.r.	Canada	non-EU	NCA, s.a.
		Salmonella spp.	n.r.	EU	EU	NCA, s.a. (b)
		Bacillus cereus	n.r.	Canada	non-EU	NCA, s.a. (b)
		Escherichia coli	n.r.	Japan	non-EU	WojcikStopczynska et al., 2009
		Listeria spp.	n.r.	Japan	non-EU	WojcikStopczynska et al., 2009
		Escherichia coli	n.r.	USA	non-EU	FAO, 2012
Food of plant origin with low water content

Food item	FoNAO category	Critical point	Pathogen⁹	Country	EU/non-EU	Reference(s)
Salmonella spp.			USA	non-EU	FAO, 2012	
n.r.			Italy	EU	FAO, 2012	
n.r.			n.r.	EU	GMA, 2010	
n.r.			n.r.	non-EU	Hurst, s.a.	
n.r.			n.r.	non-EU	ABC, 2010	
Campylobacter spp.			New Zealand	non-EU	ERG, 2004	
Listeria spp.			New Zealand	non-EU	GMA, 2009	
Salmonella spp.			New Zealand	non-EU	GMA, 2009	
Escherichia coli			Australia	non-EU	IYCN, s.a.	
Listeria spp.			Australia	non-EU	IYCN, s.a.	
Salmonella spp.			Australia	non-EU	IYCN, s.a.	
n.r.			USA	non-EU	IPC, 2012	
n.r.			USA	non-EU	IPC, 2012	
n.r.			Canada	non-EU	Nascimento et al., 2009	
n.r.			Canada	non-EU	NCA, s.a.	
Salmonella spp.			EU	EU	NCA, s.a. (b)	
n.r.			Canada	non-EU	NCA, s.a. (b)	
harvesting			n.r.	USA	Januszewska, 2006	
harvesting			n.r.	Canada	NCA, s.a. (b)	
harvesting			n.r.	USA	EC, 2004	
harvesting			n.r.	Italy	FAO, 2012	
harvesting			n.r.	n.r.	Little et al., s.a.	

The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.
Food item	FoNAO category	Critical point	Pathogen\(^a\)	Country	EU/non-EU	Reference(s)
Salmonella spp.	USA	non-EU	APC, 2009			
Campylobacter spp.	New Zealand	non-EU	GMA, 2010			
Listeria spp.	New Zealand	non-EU	GMA, 2010			
Salmonella spp.	New Zealand	non-EU	GMA, 2010			
n.r.	Canada	non-EU	NCA, s.a. (b)			
Heating	Salmonella spp.	EU	EU	NCA, s.a. (b)		
Salmonella spp.	EU	EU	NCA, s.a. (b)			
Packaging	n.r.	Canada	non-EU	Nascimento et al., 2009		
n.r.	Canada	non-EU	NCA, s.a. (b)			
Escherichia coli	USA	non-EU	FAO, 2012			
Salmonella spp.	USA	non-EU	FAO, 2012			
n.r.	n.r.	non-EU	ABC, 2010			
Salmonella spp.	USA	non-EU	APC, 2009			
Campylobacter spp.	New Zealand	non-EU	GMA, 2010			
Listeria spp.	New Zealand	non-EU	GMA, 2010			
Salmonella spp.	New Zealand	non-EU	GMA, 2010			
n.r.	USA	non-EU	IPC, 2012			
n.r.	Canada	non-EU	Nascimento et al., 2009			
n.r.	Canada	non-EU	NCA, s.a. (b)			
Personnel	n.r.	India	non-EU	EC, 2004		
Escherichia coli	Germany	EU	ABC, 2010			
n.r.	India	non-EU	EC, 2004			
Food item	FoNAO category	Critical point	Pathogen*	Country	EU/non-EU	Reference(s)
-----------	----------------	----------------	-----------	---------	-----------	--------------
processing	n.r.	EU	n.r.	NCA, s.a. (b)		
	n.r.	USA	non-EU	EC, 2004		
	n.r.	non-EU	ABC, 2010			
	Escherichia coli	Australia	non-EU	IYCN, s.a.		
	Listeria spp.	Australia	non-EU	IYCN, s.a.		
	Salmonella spp.	Australia	non-EU	IYCN, s.a.		
	n.r.	EU	n.r.	NCA, s.a. (b)		
raw material	n.r.	Canada	n.r.	Januszewska, 2006		
	n.r.	USA	non-EU	NCA, s.a. (b)		
	n.r.	Canada	non-EU	Arvanitoyan-nis and Trai-kou, 2005		
	n.r.	USA	non-EU	UNIDO, 2005		
	n.r.	Netherlands	EU	UNIDO, 2005		
	Escherichia coli	Germany	EU	ABC, 2010		
	n.r.	USA	non-EU	ABC, 2010		
	n.r.	EU	n.r.	ABC, 2010		
	n.r.	Italy	EU	FAO, 2012		
	n.r.	n.r.	EU	GMA, 2010		
	n.r.	non-EU	Little et al., s.a.			
	Salmonella spp.	USA	non-EU	ERG, 2004		
	Listeria spp.	New Zealand	non-EU	GMA, 2010		
	Salmonella spp.	New Zealand	non-EU	IYCN, s.a.		
	Escherichia coli	Australia	non-EU	MAF VS, s.a.		
Food item	FoNAO category	Critical point	Pathogen⁶	Country	EU/non-EU	Reference(s)
-----------	----------------	----------------	-----------	---------	-----------	--------------
Listeria spp.	Australia	non-EU	MAF VS, s.a.			
Salmonella spp.	Australia	non-EU	CFS, 2011			
n.r.	India	non-EU	IPC, 2012			
n.r.	USA	non-EU	NCA, s.a. (b)			
n.r.	Canada	non-EU	Arvanitoyannis and Traikou, 2005			
receiving	n.r.	USA	non-EU	IPC, 2012		
storage	n.r.	Canada	non-EU	Kačániová and Juhaniaková, 2011		
Salmonella spp.	EU	EU	NCA, s.a. (b)			
n.r.	Canada	non-EU	NCA, s.a. (b)			
n.r.	USA	non-EU	NCA, s.a. (b)			
n.r.	EU	EU	NCA, s.a. (b)			
n.r.	USA	non-EU	Arvanitoyannis and Traikou, 2005			
n.r.	USA	non-EU	UNIDO, 2005			
n.r.	EU	EU	GMA, 2010			
n.r.	n.r.	non-EU	Little et al., s.a.			
n.r.	Canada	non-EU	Kačániová and Juhaniaková, 2011			
Salmonella spp.	EU	EU	NCA, s.a. (b)			
n.r.	Canada	non-EU	NCA, s.a. (b)			
n.r.	USA	non-EU	NCA, s.a. (b)			
n.r.	EU	EU	NCA, s.a. (b)			
n.r.	USA	non-EU	Arvanitoyannis and Traikou, 2005			
transport	n.r.	USA	non-EU	Januszewska, 2006		

The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.
Food item	FoNAO category	Critical point	Pathogen\(^a\)	Country	EU/non-EU	Reference(s)
n.r.	n.r.	Canada	non-EU	Kačáňiová and Juhaniaková, 2011		
n.r.	n.r.	Canada	non-EU	NCA, s.a. (b)		
n.r.	n.r.	EU	EU	Arvanitoyan-nis and Traikou, 2005		
Escherichia coli	USA	non-EU	FAO, 2012			
Salmonella spp.	USA	non-EU	FAO, 2012			
n.r.	n.r.	Canada	non-EU	Kačáňiová and Juhaniaková, 2011		
n.r.	n.r.	Canada	non-EU	NCA, s.a. (b)		
n.r.	n.r.	EU	EU	Arvanitoyannis and Traikou, 2005		
Escherichia coli	Canada	EU	EU	Kačáňiová and Juhaniaková, 2011		
n.r.	n.r.	Canada	non-EU	Nascimento et al., 2009		
n.r.	n.r.	Canada	non-EU	Arvanitoyan-nis and Traikou, 2005		
n.r.	n.r.	USA	non-EU	Arvanitoyan-nis and Traikou, 2005		
n.r.	n.r.	Canada	non-EU	EC, 2004		
Escherichia coli	Germany	EU	ABC, 2010			
n.r.	n.r.	EU	EU	FAO, 2012		
n.r.	n.r.	n.r.	EU	Hurst, s.a.		
n.r.	n.r.	n.r.	non-EU	NSW Food Authority, 2012		
n.r.	n.r.	n.r.	non-EU	NSW Food Authority, 2012		
Salmonella spp.	USA	non-EU	ERG, 2004			
Campylobacter spp.	New Zealand	non-EU	IYCN, s.a.			
Listeria spp.	New Zealand	non-EU	IYCN, s.a.			
Food item	FoNAO category	Critical point	Pathogen	Country	EU/non-EU	Reference(s)
-----------	----------------	----------------	----------	---------	-----------	--------------
Nuts		antimicrobial treatment	n.r.	Italy	EU	WARDA, 2010
		cleaning	Escherichia coli	Italy	EU	WarwickDC, s.a.
		heating	Salmonella spp.	Italy	EU	WarwickDC, s.a.
		personnel	n.r.	USA	non-EU	IPCC, 2012
		processing	Salmonella spp.	USA	non-EU	FSANZ, 2012
		processing	n.r.	United Kingdom	EU	NSW Food Authority, s.a.
		raw material	Salmonella spp.	USA	non-EU	FSN, 2000
		receiving	Salmonella spp.	USA	non-EU	Mohle-Boetani et al., 2009
		segregation	n.r.	Italy	EU	WarwickDC, s.a.
		shelling	Salmonella spp.	Italy	EU	WarwickDC, s.a.
		shelling	Salmonella spp.	USA	non-EU	Mustar and Nazaimoon, 2010
		shelling	n.r.	United Kingdom	EU	NSW Food Authority, s.a.
Food item	FoNAO category	Critical point	Pathogen¹	Country	EU/non-EU	Reference(s)
----------------	----------------	----------------	-----------	---------	-----------	--------------
shelling	n.r.	Australia	non-EU	AIV, 2010		
storage	*Salmonella* ssp.	Italy	EU	WarwickDC, s.a.		
storage	n.r.	Italy	EU	Bari et al., 2011a		
storage	n.r.	USA	non-EU	HDHHS., s.a.		
storage	*Salmonella* ssp.	USA	non-EU	NSW Food Authority, s.a.		
storage	n.r.	United Kingdom	EU	AIV, 2010		
storage	*Salmonella* ssp.	Australia	non-EU	ASTA, 2011		
water	*Escherichia coli*	Italy	EU	EFSA, 2011, online		
water	*Salmonella* ssp.	Italy	EU	FAOWHO, 2011		
cleaning	*Salmonella* ssp.	USA	non-EU	Gandhi, 2008		
environment	*Salmonella* ssp.	USA	non-EU	ASTA, 2011		
	Salmonella ssp.	USA	non-EU	Gandhi, 2008		
heating	*Salmonella* ssp.	USA	non-EU	ASTA, 2011		
	Salmonella ssp.	New Zealand	non-EU	ASTA, 2006		
packaging	*Salmonella* ssp.	USA	non-EU	ASTA, 2011		
	n.r.	USA	non-EU	GMA, 2009		
	Salmonella ssp.	USA	non-EU	Ahene et al., 2011		
	Coliforms	USA	non-EU	ASTA, 2006		
processing	*Salmonella* ssp.	USA	non-EU	Naturland, 2002		
	n.r.	USA	non-EU	Naturland, 2002		
	Salmonella ssp.	USA	non-EU	Ahene et al., 2011		
	Coliforms	USA	non-EU	ASTA, 2006		

Peanut butter 31

The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.
Food item	FoNAO category	Critical point	Pathogen	Country	EU/non-EU	Reference(s)
raw material	n.r.	USA	non-EU	ASTA, 2011		
Salmonella spp.	USA	non-EU	Gandhi, 2008			
Salmonella spp.	USA	non-EU	Gandhi, 2008			
Coliforms	USA	non-EU	Ahene et al., 2011			
Salmonella spp.	New Zealand	non-EU	ASTA, 2006			
roasting	Salmonella spp.	USA	non-EU	ASTA, 2011		
n.r.	USA	non-EU	NZFSA, 2010			
shelling	n.r.	USA	non-EU	Naturland, 2002		
storage	Salmonella spp.	USA	non-EU	ASTA, 2011		
Salmonella spp.	USA	non-EU	Gandhi, 2008			
Salmonella spp.	USA	non-EU	Ahene et al., 2011			
Coliforms	USA	non-EU	ASTA, 2006			
transport	Salmonella spp.	USA	non-EU	Gandhi, 2008		
Coliforms	USA	non-EU	ASTA, 2006			
water	Salmonella spp.	USA	non-EU	ASTA, 2011		
drying	n.r.	India	non-EU	ASTA, 2006		
heating	n.r.	India	non-EU	ASTA, 2006		
packaging	n.r.	India	non-EU	ASTA, 2008		
raw material	n.r.	India	non-EU	ASTA, 2008		
water	n.r.	India	non-EU	ASTA, 2008		
Soy Nuts 31	n.r.	India	non-EU	Decagon, 2010		
Black pepper 32	cleaning	n.r.	India	non-EU	DM, 2005	
Food of plant origin with low water content

Food item	FoNAO category	Critical point	Pathogen*	Country	EU/non-EU	Reference(s)
n.r.	India	n.r.		non-EU	HEC, 2009	
drying	n.r.	India	n.r.	non-EU	DHV, 2010	
n.r.	India	n.r.		non-EU	EC, 2004	
n.r.	India	n.r.		non-EU	HEC, 2009	
n.r.	India	n.r.		non-EU	HEC, 2009	
environment	n.r.	India	n.r.	non-EU		Hampikyan et al., 2009
equipment	n.r.	India	n.r.	non-EU	EC, 2004	
fecal matter	n.r.	USA	n.r.	non-EU	ITC, 2010	
harvesting	n.r.	Thailand	n.r.	non-EU	ITC, 2010	
heating	n.r.	India	n.r.	non-EU	DHV, 2010	
n.r.	United Kingdom	n.r.		EU	ITC, 2010	
packaging	n.r.	India	n.r.	non-EU	EC, 2004	
n.r.	India	n.r.		non-EU	GMA, 2009	
personnel	n.r.	India	n.r.	non-EU	GMA, 2009	
n.r.	Thailand	n.r.		non-EU	Peter, 2004	
processing	n.r.	India	n.r.	non-EU	DHV, 2010	
n.r.	India	n.r.		non-EU	DHV, 2010	
storage	n.r.	India	n.r.	non-EU	EC, 2004	
n.r.	India	n.r.		non-EU	HEC, 2009	
n.r.	Thailand	n.r.		non-EU	Peter, 2004	
threshing	n.r.	Indonesia	n.r.	non-EU	HEC, 2009	
transport	n.r.	India	n.r.	non-EU	EC, 2004	

The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European food safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.
Food item	FoNAO category	Critical point	Pathogen*	Country	EU/non-EU	Reference(s)
Herbs	32	antimicrobial treatment	n.r.	non-EU	non-EU	Stankovic et al., 2006
		cleaning	n.r.	non-EU	non-EU	Stankovic et al., 2006
		drying	n.r.	EU	EU	SBI, 2012
			n.r.	non-EU	non-EU	UNIDO, 2005
			n.r.	Poland	EU	UNIDO, 2005
		packaging	n.r.	non-EU	non-EU	UNIDO, 2005
		personnel	n.r.	EU	EU	SBI, 2012
		processing	n.r.	EU	EU	Shamsuddeen, 2009
			n.r.	Poland	EU	USDA, 1999
		storage	n.r.	EU	EU	SQA, 2010
		transport	n.r.	EU	EU	SBI, 2012
Nuts	32	cleaning	n.r.	USA	non-EU	Beuchat, s.a.
Pepper	32	cleaning	n.r.	Indonesia	non-EU	Beuchat, s.a.
		drying	n.r.	Indonesia	non-EU	CFIA, 2008 (b)
			n.r.	Nigeria	non-EU	CFIA, 2008b
		environment	n.r.	Indonesia	non-EU	CFIA, 2008 (b)
		fecal matter	*Salmonella spp.*	USA	non-EU	Beuchat, s.a.
		packaging	n.r.	Indonesia	non-EU	CFIA, 2008 (b)
		personnel	n.r.	Indonesia	non-EU	CFIA, 2008 (b)
Food item	FoNAO category	Critical point	Pathogena	Country	EU/non-EU	Reference(s)
-----------	---------------	---------------	------------	----------	-----------	--------------
segregation	n.r.	Indonesia	non-EU	CFIA, 2008a		
storage	n.r.	Indonesia	non-EU	CFIA, 2008a		
transport	n.r.	Indonesia	non-EU	CFIA, 2008a		
water	n.r.	Indonesia	non-EU	CFIA, 2008a		
Spices	32	antimicrobial treatment	n.r.	Ghana	non-EU	CFIA, 2008b
			n.r.	USA	non-EU	EC, 2003
			n.r.	Australia	non-EU	Kumar et al., 2006
			n.r.	non-EU	non-EU	FAOWHO, 2011
		cleaning	n.r.	Ghana	non-EU	CFIA, 2008b
			n.r.	USA	non-EU	FDA, 1999
			n.r.	non-EU	non-EU	FAOWHO, 2011
		drying	n.r.	Australia	non-EU	Kumar et al., 2006
			n.r.	EU	EU	Saroj et al., 2006
			n.r.	Turkey	non-EU	T.H.P. van Duynhoven et al., 2002
			n.r.	Pakistan	non-EU	Bari et al., 2011a
			n.r.	Ethiopia	non-EU	Bari, s.a.
			n.r.	non-EU	non-EU	FAOWHO, 2011
	environment	n.r.	USA	non-EU	EC, 2003	
			n.r.	Turkey	non-EU	Bari et al., 2011a
			n.r.	Pakistan	non-EU	Bari et al., 2011a
	equipment	n.r.	USA	non-EU	EC, 2003	
Food item	FoNAO category	Critical point	Pathogen	Country	EU/non-EU	Reference(s)
-----------	----------------	----------------	----------	---------	-----------	--------------
n.r.	USA	n.r.	USA	non-EU	Freshfel, 2011	
n.r.	Dubai	n.r.	USA	non-EU	Omafra, s.a.	
fecal matter	n.r.	Pakistan	USA	non-EU	Bari, s.a.	
n.r.	Australia	n.r.	Pakistan	non-EU	Freshfel, 2011	
n.r.	United Kingdom	n.r.	Pakistan	EU	Buck et al., 2003	
n.r.	India	n.r.	Pakistan	non-EU	EFSA, 2011, online	
n.r.	USA	n.r.	Pakistan	non-EU	FD, 2006	
n.r.	Turkey	n.r.	Pakistan	non-EU	Bari et al., 2011a	
n.r.	India	n.r.	Pakistan	non-EU	Fahey et al., 2006	
n.r.	non-EU	n.r.	Pakistan	non-EU	FAO/WHO, 2011	
n.r.	USA	n.r.	Pakistan	non-EU	FD, 2006	
n.r.	EU	n.r.	Pakistan	EU	Saroj et al., 2006	
n.r.	Nigeria	n.r.	Pakistan	non-EU	Fahey et al., 2006	
n.r.	Ghana	n.r.	Pakistan	non-EU	CFIA, 2008b	
n.r.	USA	n.r.	Pakistan	non-EU	Freshfel, 2011	
n.r.	EU	n.r.	Pakistan	EU	Sharma et al., 2004	
n.r.	USA	n.r.	Pakistan	non-EU	Sharma et al., 2004	
n.r.	India	n.r.	Pakistan	non-EU	Fahey et al., 2006	
n.r.	USA	n.r.	Pakistan	non-EU	FD, 2006	
n.r.	Ghana	n.r.	Pakistan	non-EU	CFIA, 2008b	
n.r.	USA	n.r.	Pakistan	non-EU	FDA, 1999	
n.r.	EU	n.r.	Pakistan	EU	Sharma et al., 2004	
Food of plant origin with low water content

Food item	FoNAO category	Critical point	Pathogen*	Country	EU/non-EU	Reference(s)
Salmonella spp.				USA	non-EU	Sharma et al., 2004
n.r.				United Kingdom	EU	EFSA, 2011, online
Clostridium perfringens				Serbia	non-EU	Fahey et al., 2006
Escherichia coli				Serbia	non-EU	Fahey et al., 2006
transport	n.r.			USA	non-EU	FDA, 1999
	n.r.			EU	EU	Sharma et al., 2004
water	n.r.			USA	non-EU	Freshfel, 2011
	n.r.			Australia	non-EU	OCCHD, s.a.
	n.r.			Pakistan	non-EU	Bari, s.a.
	n.r.			United Kingdom	EU	Fahey et al., 2006
Thyme	32	antimicrobial treatment	n.r.	United Kingdom	EU	Food Standards Agency, s.a.
White pepper	32	cleaning	Salmonella spp.	USA	non-EU	FSAI, 2011
		packaging	Salmonella spp.	USA	non-EU	FSANZ, 2012
		processing	Salmonella spp.	USA	non-EU	FSAI, 2011
		storage	Salmonella spp.	USA	non-EU	FSANZ, 2012
Chocolate products	33	cleaning	n.r.	Switzerland	non-EU	FSANZ, 2012
		drying	Coliforms	Brazil	non-EU	NSW Food Authority, s.a.
			Escherichia coli	Brazil	non-EU	NSW Food Authority, s.a.
			Salmonella spp.	USA	non-EU	Saroj et al., 2006
			Listeria spp.	USA	non-EU	Saroj et al., 2006

Thyme, White pepper, and Chocolate products are examples of food items that may require specific handling and processing to prevent contamination by various pathogens. The table includes details on the critical points where these pathogens are most likely to be found, along with the country of origin and the reference(s) used to support the findings.

Supporting publications 2013:EN-403

The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.
Food of plant origin with low water content

Food item	FoNAO category	Critical point	Pathogen	Country	EU/non-EU	Reference(s)
		environment	*Escherichia coli*	USA	non-EU	Schrader, 2002
			Staphylococcus spp.	USA	non-EU	Schrader, 2002
		harvesting	*Salmonella spp.*	Belgium	EU	Mohle-Boetani et al., 2009
			Listeria spp.	Belgium	EU	MPI, 2001
			Escherichia coli	Belgium	EU	MPI, 2001
		processing	*Staphylococcus spp.*	Belgium	EU	Mohle-Boetani et al., 2009
		raw material	*Salmonella spp.*	Switzerland	non-EU	FSANZ, 2012
			n.r.	Belgium	EU	Mohle-Boetani et al., 2009

Supporting publications 2013:EN-403

The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.
Food item	FoNAO category	Critical point	Pathogen^a	Country	EU/non-EU	Reference(s)
Salmonella spp.			Belgium	EU	MPI, 2001	
Listeria spp.			Belgium	EU	MPI, 2001	
Escherichia coli			Belgium	EU	MPI, 2001	
Staphylococcus spp.			Belgium	EU	MPI, 2001	
Salmonella spp.			Slovakia	EU	NSW Food Authority, s.a.	
Salmonella spp.		roasting	USA	non-EU	OCCHD, s.a.	
Salmonella spp.			Switzerland	non-EU	FSN, 2000	
Salmonella spp.			EU	EU	HDHHS., s.a.	
Salmonella spp.			Belgium	EU	MPI, 2001	
Listeria spp.			Belgium	EU	MPI, 2001	
Escherichia coli			Belgium	EU	MPI, 2001	
Staphylococcus spp.			Belgium	EU	NSW Food Authority, s.a.	
Salmonella spp.		storage	USA	non-EU	NSW Food Authority, s.a.	
Salmonella spp.			Switzerland	non-EU	HDHHS., s.a.	
Coliforms			Brazil	non-EU	NSW Food Authority, s.a.	
Escherichia coli			Brazil	non-EU	NSW Food Authority, s.a.	
n.r.			USA	non-EU	Karagozlu et al., 2009	
n.r.		water	Switzerland	non-EU	HDHHS., s.a.	
n.r.			Belgium	EU	MPI, 2001	
Food item	FoNAO category	Critical point	Pathogen\(^a\)	Country	EU/non-EU	Reference(s)
---------------	----------------	----------------	----------------	---------	-----------	--------------
Beans	37	drying	n.r.	United Kingdom	EU	Karagozlu et al., 2009
		storage	n.r.	Colombia	non-EU	Karagozlu et al., 2009
			n.r.	South Africa	non-EU	Karagozlu et al., 2009
			n.r.	USA	non-EU	Karagozlu et al., 2009
Tarhana	37	cooling	n.r.	Turkey	non-EU	Karagozlu et al., 2009
		drying	n.r.	Turkey	non-EU	Sengun et al., 2012
			n.r.	Turkey	non-EU	Sengun et al., 2012
			n.r.	Turkey	non-EU	Peter, 2004
		heating	n.r.	Turkey	non-EU	Karagozlu et al., 2009
			n.r.	Turkey	non-EU	Ucar et al., 2011
		packaging	n.r.	Turkey	non-EU	Ahmed, s.a.
		processing	n.r.	Turkey	non-EU	Sengun et al., 2012
		raw material	n.r.	Turkey	non-EU	Ahmed, s.a.
		receiving	n.r.	Turkey	non-EU	Ahmed, s.a.
		sieving	n.r.	Turkey	non-EU	Ahmed, s.a.
		storage	n.r.	Turkey	non-EU	University of California, 2006

\(^a\)n.r.= not reported concerning a specific pathogen
Table 24: Examples of Guidelines and Standards to improve food quality reported for the food items listed in Table 20 and 21.

Food item	FoNAO category	Title	Organization	Country	Reference(s)
Seeds for sprouting	28	Code of hygienic practice for fresh fruits and vegetables	Food and Agriculture Organization of the United Nations/World Health Organization	Italy	FAO/WHO, 2011
Sesame	28	Clean, Safe Spices. Guidance from the American Spice Trade Association	American Spice Trade Association	USA	ASTA, 2011
Sprouts	28	Food Safety Practices Guidance for Sprout Manufacturers	Canadian Food Inspection Agency	Canada	CFIA, 2008b
		HACCP Generic Model for Sprouts Grown in Water	Canadian Food Inspection Agency	Canada	CFIA, 2008a
		Guidelines on Safe Production of Ready-to-Eat Sprouted Seeds (Sprouts)	Food Safety Authority of Ireland	Ireland	Food Safety Authority of Ireland, 2011
		Sprouted Seeds. Good Manufacturing Practices Guidebook	Ministry of Agriculture, Food and Rural Affairs	Canada	Omafra, s.a.
		Comparison of different guidelines and practices for sprout production	The European Fresh Produce Association	EU	Freshfel, 2011
Nuts	31	Industry Handbook for Safe Processing of Nuts	Grocery Manufacturers Association	USA	GMA, 2010
		Nut Handling and Processing for Confectioners and Small Nut Roasters	University of Georgia	USA	Hurst, s.a.
Black pepper	32	Draft of Good Agricultural Practices for Pepper	International Pepper Community	Indonesia	IPC, 2007
		Good Agricultural Practices for Peppers	National Bureau of Agricultural Commodity and Food Standards	Thailand	TAS, 2005
Herbs	32	Handbook of herbs and spices	-	United Kingdom	Peter, 2004
Pepper	32	Good Manufacturing Practices	International Pepper Community	Indonesia	IPC, 2012
Spices	32	ASTA Safety Guidelines for Spices Sold in the United States	American Spice Trade Association	USA	ASTA, 2008
		HACCP Guide for Spices & Seasonings	American Spice Trade Association	USA	ASTA, 2006
		Microbial Safety in Spices - White Paper	American Spice Trade Association	USA	ASTA, s.a.
		Guidelines for Environmental Health Officers on the Interpretation of Microbiological Analysis Data of Food	Department of Health - Directorate: Food, South Africa	South Africa	DOH, s.a.
		HACCP Guidelines for Food Manufacturing Premises	Dubai Municipality	Dubai	DM, 2005
Food of plant origin with low water content

Food item	FoNAO category	Title	Organization	Country	Reference(s)
Beans	37	Dry Beans - Production Guideline	Department of Agriculture, Forestry and Fisheries	South Africa	DAFF, 2010

Table 25: Trade volumes of FoNAO with low water content (that have been reported in association with biological hazards) imported from third countries into the EU from 2002 to 2011.

Food item	FoNAO category	Product description (EUROSTAT)	Import EU27 (Quantity in 100 kg)									
			2011	2010	2009	2008	2007	2006	2005	2004	2003	2002
Wheat	24	durum wheat; common wheat and meslin seed	17,953,490	22,127,409	21,130,969	13,177,396	19,092,580	20,070,111	17,735,894	17,961,592	17,776,908	11,824,745
Spices	32	mixtures of different types of spices (incl. crushed or ground)	27,427	29,540	36,663	37,721	37,028	38,004	38,351	38,137	37,480	32,635
Saffron	32	Saffron (incl. crushed or ground)	3,753	3,059	1,202	1,453	1,081	1,447	1,935	1,405	1,527	772
Nuts	31	nuts and other seeds, incl. mixtures, prepared or preserved (excl. prepared or preserved with vinegar, preserved with sugar but not laid in syrup, jams, fruit jellies, marmalades, fruit purée and pastes, obtained by cooking, groundnuts, roasted nuts, and coconuts, cashew nuts, brazil nuts, areca "betel" nuts, cola nuts and macadamia nuts and mixtures containing >= 50% by weight of tropical fruits and nuts)	1,002,920	937,868	889,182	903,599	948,059	1,000,090	955,034	1,020,715	715,118	656,369

The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European food safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.
Food item	FoNAO category	Product description (EUROSTAT)	Import EU27 (Quantity in 100 kg)									
			2011	2010	2009	2008	2007	2006	2005	2004	2003	2002
Red pepper	32	pepper of the genus piper (incl. Crushed or ground)	618,350	649,332	609,661	609,791	659,220	663,908	603,739	625,568	657,928	632,463
Black pepper	32	pepper of the genus piper (incl. Crushed or ground)	618,350	649,332	609,661	609,791	659,220	663,908	603,739	625,568	657,928	632,463
Rice	25	rice in husk for sowing; round grain rice in husk + medium grain rice in husk + long grain rice in husk (incl. for sowing and parboiled)	528,461	21,486	25,973	292,413	69,635	165,093	130,505	320,850	448,577	1,010,101
Rice	25	round grain husked [brown] rice + medium grain husked [brown] rice + long grain husked [brown] rice (incl. parboiled)	8,528,825	6,562,835	7,544,244	9,299,990	9,191,826	7,894,089	8,346,353	8,324,560	8,222,332	7,751,538
Rice	25	semi-milled round grain rice + semi-milled medium grain rice + semi-milled long grain rice (incl. parboiled) AND wholly milled round grain rice, whether or not polished or glazed + wholly milled medium grain rice, whether or not polished or glazed + wholly milled long grain rice, whether or not polished or glazed (incl. parboiled)	4,670,532	4,071,287	3,983,873	4,345,346	3,169,548	2,986,192	2,123,544	2,990,925	3,329,734	3,102,509
Rice	25	broken rice	1,179,119	2,431,065	3,216,132	2,466,624	2,122,440	2,156,626	1,329,103	1,407,834	1,846,145	1,800,792
Pistachios	31	roasted almonds and pistachios	30,004	43,360	29,537	23,106	19,562	17,180	21,833	24,804	31,262	33,930
Raw almond	31	roasted almonds and pistachios	30,004	43,360	29,537	23,106	19,562	17,180	21,833	24,804	31,262	33,930
Cumin	32	cumin seeds	106,891	107,915	101,019	97,807	98,070	87,266	82,113	76,394	78,980	80,991
Tarhana	37	flour of common wheat and spelt	319,546	122,091	95,720	57,409	37,456	35,702	40,640	532,965	78,946	93,560

Supporting publications 2013:EN-403

The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European food safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.
Food item	FoNAO category	Product description (EUROSTAT)	Import EU27 (Quantity in 100 kg)
Beans	37	Shelled and unshelled beans "Vigna spp., Phaseolus spp.", prepared or preserved otherwise than by vinegar or acetic acid (excl. frozen)	474,572 381,606 368,422 523,881 480,688 447,963 411,850 419,824 379,407 401,471
Maize flour porridge	27	maize flour	129,459 113,192 128,702 140,317 97,029 93,935 77,205 71,171 82,407 118,084
Alfalfa seeds	28	alfalfa seed for sowing	21,205 20,717 14,349 49,251 70,428 60,477 56,414 58,802 33,425 30,566
Linseed	28	linseed (incl. for sowing)	4,462,261 5,236,375 4,121,814 4,500,378 6,988,237 5,021,312 4,783,558 5,296,201 5,830,034 6,042,934
Linseed	28	linseed (incl. for sowing)	1,034,218 1,065,035 1,094,638 1,084,394 1,013,373 997,533 1,012,069 1,034,064 932,885
Sesame	28	sesame seeds, whether or not broken (incl. for sowing)	4,064,088 2,435,151 6,219,152 3,383,534 5,109,208 5,732,678 5,270,927 7,659,821 9,218,171 7,787,282
Sunflower	28	sunflower seeds, whether or not broken (incl. for sowing, shelled or in grey and white striped shell)	115,873 120,380 108,189 105,167 108,277 97,924 98,572 92,276 111,797 109,281

The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.
Table 26: Major outcomes of European consumption studies relating to FoNAO regarding consumption rates, consumer groups, and regional effects.

Food Item(s)	Age-Class	Method	No. of surveyed participants	Scope of the study	Outcome 1 (consumption rate)	Outcome 2* (observed differences between groups)	Outcome 3* (observed differences between counties/environments)	Research project	Country/countries	Reference(s)
Apple	Adults (50-70 yrs)	Fruit-frequency question.	4271	Apple and peach consumption frequency	Highest consumption Poland (55% > 5 times/wk) and Italy (39.3% 3-5 times/wk); lowest consumption Netherlands and Spain	Differences between gender (females higher consumption) and age groups	Differences between countries	ISAFRUIT	Germany, Poland, Switzerland, France, Netherland, Italy, Spain	Konopacka et al. 2010
Peach	Adults (50-70 yrs)	Fruit-frequency question.	499	Apple and peach consumption frequency	Highest consumption France (48% > 3-5 times/wk, 40% > 5 times/wk); lowest consumption Germany	Differences between gender (females higher consumption) and age groups	Differences between countries	ISAFRUIT	Germany, Poland, Spain, France, Italy	Konopacka et al. 2010
Fruit and soft drinks	Adolescents (11, 13, 15 yrs)	standardized question.	114 558	Health behaviour in school aged children	33% consume fruit daily; 26% consume soft drinks daily	Girls and younger pupils consume fruit more often and soft drinks less often	Differences between schools, countries, regions, and family material wealth	HBSSC	28 European countries or regions	Vereecken et al. 2005a
Fruit, vegetables and soft drinks	Adolescents (11, 13, 15 yrs)	stand. question.	162 305	Health behaviour in school aged children	Fruit consumption 2.8-5/ wk; vegetables 2.4-5.5/ wk, soft drinks 2.5-5/ wk	n.r.	Differences between countries	HBSSC	35 Countries (Europe, Israel, N-America)	Vereecken et al. 2005b
Food Item(s)	Age-Class	Method	No. of surveyed participants	Scope of the study	Outcome 1 (consumption rate)	Outcome 2* (observed differences between groups)	Outcome 3* (observed differences between counties/environments)	Research project	Country/countries	Reference(s)
----------------------	--------------------	-----------------------------	------------------------------	--	----------------------------	---	---	----------------	---	---------------
Fruit and vegetables	-	stand. question.	13 305	Factors related to fruit and vegetable intake	43.5 % consume fruit daily; 46.1 % consume vegetables daily	Gender differences	Differences between countries	ProChildren Project	Austria, Belgium, Denmark, Iceland, Netherland, Nor-way, Portugal, Spain, Sweden	Brug et al. 2008
Fruit and vegetables	Adolescents (10-13 years)	24 hours recall	1489	Effect of fruit and vegetable promotion	Total fruit and vegetable intake 221-256 g/d	n.r.	n.r.	ProChildren Project	Norway, Netherland, Spain	Velde et al. 2008
Fruit and vegetables	Adolescents (11 yrs)	Food frequency question.; 24 hrs recall	1919	Influence of school environment on fruit and vegetable intake	40 % consume > 200 g fruit/d; 25% consume > 130 g vegetables/d; 64 % consume fruit almost daily; 46.9 % consume vegetables almost daily	n.r.	n.r.	ProChildren Project	Denmark	Krolner et al. 2009
Fruit and vegetables	Adolescents (11-13 yrs)	Food Frequency Questionnaire; 24 hrs recall	1601	Influence of parenting styles on fruit and vegetable consumption	155 g/d fruits and 88 g/d vegetable consumption	n.r.	n.r.	ProChildren Project	Portugal	Franchini et al. 2011
Fruit and vegetables	Adolescents (9-11 yrs)	24 hours recall	1612	Impact of school fruit tuck shops and school food policies on fruit and vegetable consumption	0.69-0.74 portions/d	n.r.	n.r.	-	U.K.	Moore and Tapper 2008

* n.r. = not reported
D. APPENDIX SPECIFIC TO THEMATIC AREA D

Table 27: FoNAO (low water content) item/pathogen combinations with highest numbers of outbreak cases, EU countries. Collective cases from multiple outbreaks are indicated in bold.

Rank	Food item	FoNAO category	Pathogen	Country	Year	Cases	Hospitalisations	Deaths	Reference(s)
1	Sprouts (fenugreek seeds)	28	E. coli O104:H4 (STEC O104:H4)	Germany; other EU countries (travel-related)	2011	4033	n.s.	50	CDC, 2011, online (e); Buchholz et al. 2011; EFSA, 2011; Frank et al. 2011; King et al. 2012; Kemper 2012
2	Sprouts (bean sprouts, alfalfa sprouts)	28	Salmonella spp.	Denmark, Norway, U.K.	2009-2011	386	38	1	ECDC, 2009; ECDC, 2010; Emberland et al. 2007; Rimhanen-Finne et al. 2011, Werner et al. 2007
3	Baby corn	24	Shigella sonnei	Denmark	2007	120	13	n.s.	Lewis et al., 2007
4	White pepper	32	Bacillus cereus	Denmark	2010	112	0	0	ECDC, 2010
5	Buckwheat	24	Bacillus cereus	Poland	2009	52	0	0	ECDC, 2009
6	Aniseed	32	Salmonella Agona	Germany	2002-2003	42	0	0	Koch et al., 2005
7	Almonds	31	Salmonella enteritidis	Sweden	2005-2006	15	n.s.	n.s.	Ledet Müller et al., 2007
8	Rice	25	Bacillus cereus	Germany, Netherlands	2007-2010	14	0	0	ECDC, 2009; ECDC, 2010;
9	Curry	32	Bacillus cereus	Belgium	2009	7	0	0	ECDC, 2009
10	Hemp flour	27	Salmonella Montevideo	Germany	2010	4	1	0	ECDC, 2010; Stöcker et al., 2011

*a Outbreaks traced back to the consumption of highly processed food items (containing FoNAO mixed with other ingredients of animal origin, e.g. meat, milk or egg products) were not included in the ranking.

*b n.s. = not specified

Supporting publications 2013:EN-403

The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.
Table 28: FoNAO (low water content) item/pathogen combinations causing outbreaks\(^a\) with highest numbers of hospitalisation, EU countries. Collective cases from multiple outbreaks are indicated in **bold**.

Rank	Food item	FoNAO category	Pathogen	Country	Year	Cases	Hospitalisations	Deaths\(^b\)	Reference(s)
1	Sprouts (bean sprouts, alfalfa sprouts)	28	*Salmonella* spp.	Denmark, Finland, Norway, Sweden, U.K.	2009-2011	386	38	1	ECDC, 2009; ECDC, 2010; Emberland et al. 2007; Rimhanen-Finne et al. 2011, Werner et al. 2007
2	Baby corn	24	*Shigella sonnei*	Denmark	2007	120	13	n.s.	Lewis et al., 2007
3	Hemp flour	27	*Salmonella Montevideo*	Germany	2010	4	1	0	ECDC, 2010; Stöcker et al., 2011

\(^a\) Outbreaks traced back to the consumption of highly processed food items (containing FoNAO mixed with other ingredients of animal origin, e.g. meat, milk or egg products) were not included in the ranking.

\(^b\) n.s. = not specified

Table 29: FoNAO (low water content) item/pathogen combinations causing outbreaks\(^a\) where cases of death have been reported, EU countries.

Rank	Food item	FoNAO category	Pathogen	Country	Year	Cases	Hospital.\(^b\)	Deaths\(^b\)	Reference(s)
1	Sprouts (fenugreek seeds)	28	*E. coli* O104:H4 (STEC O104:H4)	Germany, France, EU-travel related	2011	4033	n.s.	50	CDC, 2011, Buchholz et al. 2011, Frank et al. 2011, King et al. 2012, Kemper 2012
2	Sprouts (bean sprouts, alfalfa sprouts)	28	*Salmonella* spp.	Denmark, Norway, Sweden, U.K.	2009-2011	386	38	1	ECDC, 2009; ECDC, 2010; Emberland et al. 2007; Rimhanen-Finne et al. 2011, Werner et al. 2007

\(^a\) Outbreaks traced back to the consumption of highly processed food items (containing FoNAO mixed with other ingredients of animal origin, e.g. meat, milk or egg products) were not included in the ranking.

\(^b\) n.s. = not specified

The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.
Table 30: FoNAO (low water content) item/ pathogen combinations with highest numbers of outbreak cases, non EU countries. Collective cases from multiple outbreaks are indicated in bold.

Rank	Food item	FoNAO category	Pathogen	Country	Year	Cases	Hospitalisations	Deaths	Reference(s)
1	Sprouts (alfalfa, bean sprouts)	28	Salmonella spp.	Several multi-state outbreaks USA (26, 14, 11, and 5 states), Canada	2005-2011	1036	50	0	CDC, 2009; CDC, 2010; CDC, 2011; MMWR 2009, 58 (18), 500-503; Rohokar et al., 2008
2	Black and red pepper	32	Salmonella Montevideo	Multi-state outbreak USA (44 states)	2010	272	52	0	CDC, 2010
3	Bamboo shoots	37	Clostridium botulinum	Thailand	2006	209	25	0	Kongsaengdao et al., 2006
4	Corn (baby corn)	24	Shigella sonnei	Australia	2007	58	n.s.	n.s.	Strafford et al., 2007
5	Turkish Pine Nuts	31	Salmonella Enteritidis	Multi-state outbreak USA (5 states)	2011	43	2	0	CDC, 2011
6	Clover sprouts	28	Escherichia coli O26	Multi-state outbreak USA (11 states)	2012	29	7	0	
7	Almonds	31	Salmonella Enteritidis	USA, Canada	2003-2004	29	0	0	MMWR, 2004 (c)
8	Sprouts (alfalfa and clover sprouts, fenugreek seeds)	28	Pathogenic E. coli (E. coli O157, E. coli O104: H4)	USA, Canada, Switzerland	2003, 2011, 2012	49	9	1	Buchholz et al. 2011, CDC, 2011, Ferguson et al., 2005; Frank et al. 2011, King et al. 2012, Kemper 2012; CDC, 2012, online (c)
9	Hazelnut	31	E. coli O157:H7	Multi-state outbreak USA (3 states)	2011	8	4	0	CDC, 2011, online (h), Miller et al., 2012

* Outbreaks traced back to the consumption of highly processed food items (containing FoNAO mixed with other ingredients of animal origin, e.g. meat, milk or egg products) were not included in the ranking.

b n.s. = not specified
Table 31: FoNAO (low water content) item/pathogen combinations causing outbreaks\(^a\) with highest numbers of hospitalisation and cases of death, non EU countries. Collective cases from multiple outbreaks are indicated in **bold**.

Rank	**Food item**	**FoNAO**	**Pathogen**	**Country**	**Year**	**Cases**	**Hospital.\(^b\)**	**Deaths\(^b\)**	**Reference(s)**
Hospitalisations									
2	Black and red pepper	32	*Salmonella* Montevideo	Multi-state outbreak USA (44 states)	2010	272	52	0	CDC, 2010
1	Sprouts (alfalfa, bean sprouts)	28	*Salmonella* spp.	Several multi-state outbreaks USA (26, 14, 11, and 5 states), Canada	2005–2011	1036	50	0	CDC, 2009; CDC, 2010; CDC, 2011; MMWR 2009, 58 (18), 500-503; Rohekar et al., 2008
3	Bamboo shoots	37	*Clostridium botulinum*	Thailand	2006	209	25	0	Kongsangdao et al., 2006
4	Clover sprouts	28	*Escherichia coli* O26	Multi-state outbreak USA (11 states)	2012	29	7	0	CDC, 2012, online (c)
5	Sprouts (alfalfa and clover sprouts, fenugreek seeds)	28	Pathogenic *E. coli* (E. coli O157, E. coli O104:H4)	USA, Canada, Switzerland	2003, 2011, 2012	49	9	1	Buchholz et al. 2011, CDC, 2011, Ferguson et al., 2005; Frank et al. 2011, King et al. 2012, Kemper 2012; CDC, 2012, online (c)
6	Hazelnut	31	*E. coli* O157:H7, multi-state outbreak USA (3 states)	2011	8	4	0	CDC, 2011, online (h), Miller et al., 2012	
7	Turkish Pine Nuts	31	*Salmonella Enteritidis*	Multi-state outbreak USA (5 states)	2011	43	2	0	CDC, 2011
8	Almonds	31	*Salmonella Enteritidis*	USA, Canada	2003–2004	29	0	0	MMWR, 2004 (c)
Cases of death									
1	Sprouts (alfalfa and clover sprouts, fenugreek seeds)	28	Pathogenic *E. coli* (E. coli O157, E. coli O104:H4)	USA, Canada, Switzerland	2003, 2011, 2012	49	9	1	Buchholz et al. 2011, CDC, 2011, Ferguson et al., 2005; Frank et al. 2011, King et al. 2012, Kemper 2012; CDC, 2012, online (c)

\(^a\) Outbreaks traced back to the consumption of highly processed food items (containing FoNAO mixed with other ingredients of animal origin, e.g. meat, milk or egg products) were not included in the ranking. \(^b\) n.s. = not specified