Cysteine Substitutions Define Etomidate Binding and Gating Linkages in the α-M1 Domain of γ-Aminobutyric Acid Type A (GABA_A) Receptors*

Received for publication, June 17, 2013, and in revised form, September 3, 2013. Published, JBC Papers in Press, September 5, 2013, DOI 10.1074/jbc.M113.494583

Deirdre S. Stewart, Mayo Hotta, Guo-dong Li, Rooma Desai, David C. Chiara, Richard W. Olsen, and Stuart A. Forman‡

From the ‡Department of Anesthesia Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, the ‡Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, and the Departments of ‡Molecular and Medical Pharmacology and ‡Anesthesiology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095

Background: Etomidate induces anesthesia via intersubunit transmembrane sites in GABA_A receptors.

Results: In receptors engineered with α-M1 domain cysteines, GABA accelerates modification. Etomidate inhibits modification at three positions.

Conclusion: Etomidate contacts a subdomain of α-M1 linked to channel gating, consistent with *in silico* model docking.

Significance: We identify new structures that both bind anesthetic and modulate channel gating through rearrangement.

Etomidate is a potent general anesthetic that acts as an allosteric co-agonist at GABA_A receptors. Photoreactive etomidate derivatives labeled αMet-236 in transmembrane domain M1, which structural models locate in the β+/α- subunit interface. Other nearby residues may also contribute to etomidate binding and/or transduction through rearrangement of the site. In human αβ_y2L GABA_A receptors, we applied the substituted cysteine accessibility method to α1-M1 domain residues extending from α1Gln-229 to α1Gln-242. We used electrophysiology to characterize each mutant’s sensitivity to GABA and etomidate. We also measured rates of sulphydryl modification by *p*-chloromercuribenzenesulfonate (pCMBS) with and without GABA and tested if etomidate blocks modification of pCMBS-accessible cysteines. Cys substitutions in the outer α1-M1 domain impaired GABA activation and variably affected etomidate sensitivity. In seven of eight residues where pCMBS modification was evident, rates of modification were accelerated by GABA co-application, indicating that channel activation increases water and/or pCMBS access. Etomidate reduced the rate of modification for cysteine substitutions at α1Met-236, α1Leu-232 and α1Thr-237. We infer that these residues, predicted to face β2-M3 or M2 domains, contribute to etomidate binding. Thus, etomidate interacts with a short segment of the outer α1-M1 helix within a subdomain that undergoes significant structural rearrangement during channel gating. Our results are consistent with *in silico* docking calculations in a homology model that orient the long axis of etomidate approximately orthogonal to the transmembrane axis.

Ionotropic γ-aminobutyric acid type A (GABA_A) receptors are important targets for many general anesthetics (1), but we lack a detailed understanding of the anesthetic binding sites. GABA_A receptors are pentamers of homologous subunits, each containing a large extracellular N-terminal domain, four transmembrane domains (M1–M4), and a large intracellular M3-M4 linker. The most abundant GABA_A receptor subtypes contain 2α, 2β, and 1γ subunits arranged β-α-β-α-γ when viewed counterclockwise from the extracellular space (Fig. 1A) (2, 3).

Etomidate is a potent intravenous general anesthetic that produces its major effects through GABA_A receptors (4, 5). Etomidate enhances receptor activation by GABA, increasing apparent affinity (reducing GABA EC₅₀). At high concentrations, etomidate also directly activates GABA_A receptors (6–9). These effects on human αβ_y2L GABA_A receptors are modeled by an equilibrium allosteric co-agonist scheme with two equivalent etomidate sites per receptor (10, 11).

Azepomatide and TDBzl- etomidate (4-[3-(trifluoromethyl)-3H-diazirin-3-yl]benzyl 1-(1-phenylethyl)-1H-imidazole-5-carboxylate) are photoreactive etomidate analogs (8, 12) that label purified GABA_A receptors in detergent at αMet-236 in M1 and βMet-286 and βVal-290 in M3 (13, 14). Tryptophan mutations at α1Met-236 or β2Met-286 mimic etomidate effects (15), and a cysteine substitution at β2Met-286 is protected from covalent modification in the presence of etomidate (16). Based on x-ray crystal structures of pentameric ion channel homologs from *Gloeobacter violaceus* (GLIC) and *Caenorhabditis elegans* (GLIC) (17–19), GABA_A receptor structural homology models (14, 20, 21) locate these transmembrane residues in interfacial clefts between β and α subunits (Fig. 1B). Disulfide trapping studies (22) further support this rotational orientation of α-M1 and β-M3 domains.

* This work was supported, in whole or in part, by National Institutes of Health Grants R01GM089745 and P01GM58448.

† To whom correspondence should be addressed: Dept. of Anesthesia Critical Care and Pain Medicine, Jackson 444, Massachusetts General Hospital, Boston, MA 02114. Tel.: 617-724-5156; Fax: 617-724-8644; E-mail: saforman@partners.org.

‡ The abbreviations used are: GLIC, *G. violaceus* ion channel; ELIC, *E. chrysanthemi* ion channel; MMTS, methyl methanethiosulfonate; MTSEA, 2-aminomethyl methanethiosulfonate; MWC, Monod-Wyman-Changeux; pCMBS, para-chloromercuribenzenesulfonate; PTX, picrotoxin; ANOVA, analysis of variance.
Etomidate and GABA\(\alpha\) Receptor \(\alpha\)-M1 Domain Cysteines

The aims of this study were to investigate the roles of \(\alpha\)-M1 domain residues in receptor gating, etomidate modulation, and etomidate binding interactions in functional \(\alpha\)\(1\)\(\beta\)\(2\)\(\gamma\)2L GABA\(\alpha\) receptors in native membranes. We applied the substituted cysteine accessibility method to a series of 13 single-residue cysteine-substituted mutations in the \(\alpha\)-M1 domain near \(\alpha\)1Met-236. In each mutant channel, sensitivity to GABA and etomidate and the effects and rates of pCMBS modification with and without GABA were quantified electrophysiologically. We also tested proximity to bound etomidate at each accessible cysteine by testing if etomidate blocks sulfhydryl modification. Additional biochemical studies were performed on channels harboring the \(\alpha\)1M236C mutation. Results were compared with \textit{in silico} etomidate docking calculations in a homology model of the \(\beta\)2-M3/\(\alpha\)-M1 interfacial pocket.

MATERIALS AND METHODS

Animal Use—Female \textit{Xenopus laevis} were housed in a veterinary-supervised environment in accordance with local and federal guidelines. Frogs were anesthetized by immersion in 0.2% tricaine (Sigma-Aldrich) prior to minilaparotomy to harvest oocytes.

Chemicals—\(R\)-(+) - Etomidate was obtained from Bedford Laboratories (Bedford, OH). The clinical preparation in 35% propylene glycol was diluted directly into buffer. Propylene glycol at the resulting concentrations has no effect on GABA\(\alpha\) function (10). Picrotoxin (PTX) was purchased from Sigma-Aldrich and dissolved (2 mM) in electrophysiology buffer. Alphaxalone was purchased from MP Biomedical (Solon, OH) and prepared as a stock solution in DMSO.

Chemical Synthesis—\(\alpha\)1, \(\beta\)2, and \(\gamma\)2L subunits were cloned into pCDNA3.1 vectors (Invitrogen). Mutations in cDNA were created with oligonucleotide-directed mutagenesis using QuikChange kits (Agilent Technologies, Santa Clara, CA). Clones from each mutagenesis reaction were subjected to DNA sequencing completely (15). Experiments were performed at room temperature (21–23°C) in ND96 buffer (96 mM NaCl, 2 mM KCl, 0.8 mM MgCl\(_2\), 1.8 mM CaCl\(_2\), 5 mM HEPES, pH 7.5). Peak current responses to varying GABA concentrations (range from 0.1 \(\mu\)M to 30 mM), alone or co-applied with 3.2 \(\mu\)M etomidate, were measured in \textit{Xenopus} oocytes (\(n \geq 3\) using two-microelectrode voltage clamp electrophysiology, as described previously (29). GABA applications were from 5 to 20 s, depending on the time to reach steady-state peak current. Normalizing GABA responses at maximal GABA (1–30 mM) were recorded every second or third sweep. Picrotoxin-sensitive leak was measured using 2 mM PTX, followed by >5-min washout and a maximal GABA response test. Etomidate (3–10 \(\mu\)M) or alphaxalone (2

Oocyte Electrophysiology—Messenger RNA synthesis and \textit{Xenopus} oocyte expression were performed as described previously (15). Experiments were performed at room temperature (21–23°C) in ND96 buffer (96 mM NaCl, 2 mM KCl, 0.8 mM MgCl\(_2\), 1.8 mM CaCl\(_2\), 5 mM HEPES, pH 7.5). Peak current responses to varying GABA concentrations (range from 0.1 \(\mu\)M to 30 mM), alone or co-applied with 3.2 \(\mu\)M etomidate, were measured in \textit{Xenopus} oocytes (\(n \geq 3\) using two-microelectrode voltage clamp electrophysiology, as described previously (29). GABA applications were from 5 to 20 s, depending on the time to reach steady-state peak current. Normalizing GABA responses at maximal GABA (1–30 mM) were recorded every second or third sweep. Picrotoxin-sensitive leak was measured using 2 mM PTX, followed by >5-min washout and a maximal GABA response test. Etomidate (3–10 \(\mu\)M) or alphaxalone (2

Although photolabeling has identified the general region where etomidate binds to GABA\(\alpha\) receptors, complementary approaches are needed to more fully explore etomidate binding interactions in intact receptors. Receptor protein used for photolabeling was affinity-purified in detergent and may have undergone structural changes. The photosensitive diazirine moieties of azietomidate and TDBzl-etomidate are appended under structural changes. The photosensitive diazirine moiety of etomidate docking calculations in a homology model of the \(\beta\)2-M3/\(\alpha\)-M1 interfacial pocket.
μM) was used as a gating enhancer together with maximal GABA to estimate GABA efficacy. Oocyte currents were low pass-filtered at 1 kHz (model OC-725B, Warner Instruments, Hamden, CT), digitized at 1–2 kHz (Digidata 1200, Molecular Devices, Sunnyvale, CA), and recorded digitally (pClamp 7, Molecular Devices).

Cysteine Modification with pCMBS and Etomidate Protection in Xenopus Oocytes—Maximally GABA-activated receptors were used for control (reference) pCMBS modification, and etomidate concentrations in protection studies were at least 2 times EC_{50} for direct activation (30–100 μM), establishing occupation of >90% of etomidate sites. The pCMBS concentration used for each mutant channel was chosen so that control modification was complete after 40–60 s of pCMBS exposure. Oocytes were repetitively stimulated with GABA pulses every 5 min until at least three sequential current responses were constant (±5%). For modification, oocytes were exposed to pCMBS (alone, with GABA, or with GABA plus etomidate) for 5, 10, or 20 s followed by a 5-min ND96 wash. A GABA response test, when appropriate, was repeated prior to the next pCMBS modification, and up to 15 (but usually fewer than 10) modification test cycles were repeated in each oocyte. For modification rate analysis, peak currents were normalized to a pre- or postmodification control and plotted against cumulative pCMBS exposure in units of s × μM. Normalized data were fitted to single exponential functions to determine the apparent modification rate constant in M^{-1} s^{-1}.

Electrophysiology in HEK293 Cell Membrane Patches—HEK293 cell maintenance and transfection for functional studies were performed as described previously (15). Current recordings from excised outside-out membrane patches were performed at −50 mV and room temperature (21–23 °C) as described by Scheller and Forman (30). Currents were stimulated using pulses of GABA delivered via a multibarrel superfusion pipette coupled to piezo-electric elements that switched solutions in under 1 ms. Currents were filtered and digitized at 10 kHz for off-line analysis.

HEK Cell Membrane Preparation for Binding Assays—HEK293T cells at 30–40% confluence were co-transfected using CaPO4 precipitation (31) with cDNAs encoding wild-type or mutant α1, β2, and γ2L. At 48 h after transfection, cells were harvested and centrifuged at 1500 × g for 10 min. The cell pellet was washed twice in PBS and again pelleted. The pellet was homogenized at 11,000 rpm for 30 s in PBS using an Ultra-Turrax T25 homogenizer (Janke & Kunkel, Staufen, Germany). The homogenate was centrifuged for 30 min at 25,000 × g at 4 °C. The membranes were washed and repelleted twice and then resuspended in PBS.

MMTS/MTSEA Reaction and Etomidate Protection in Membranes—Aliquots of membrane suspension were incubated for 30 min at 4 °C with a sulphydryl-modifying reagent (MMTS or MTSEA) or with buffer as a control. For protection experiments, membranes were preincubated for 10 min with 200 μM etomidate, which remained present during MTSEA incubation. To remove sulphydryl reagents (and etomidate), the membrane pellets (in both the MTSEA and the control groups) were resuspended with PBS buffer and repelleted four times (25,000 × g, 30 min, 4 °C).

{[H]Flunitrazepam Binding Assay in Membranes—Membrane suspensions were diluted into assay buffer (10 mM phosphate buffer (pH 7.4), 135 mM KCl, and 1 mM EDTA; 0.5 ml final volume) with 1 μM {[H]flunitrazepam (85.2 Ci/mmol; PerkinElmer Life Sciences) and incubated for 1 h at 4 °C. Nonspecific binding was measured by including 7.5 μM flurazepam. Etomidate modulation was tested at 0.1–100 μM. Multiple (n = 6) samples were suction-filtered on GF/B glass fiber filters. Filters were washed twice with 3 ml of assay buffer and transferred to scintillation vials with 2.5 ml of scintillation fluid (Ecomune, ICN Pharmaceuticals, Aurora, OH) for counting.

Electrophysiological Data Analysis—Analyses for agonist concentration responses, etomidate-induced left shift, and allosteric co-agonist model fitting followed our approach described elsewhere (15, 32). Peak GABA-stimulated currents were normalized to maximal GABA responses, and GABA concentration-response data for individual oocytes in the absence and presence of etomidate were fitted with logistic functions using non-linear least squares (Graphpad Prism version 5),

\[
\frac{I_{\text{agonist}}}{I_{\text{max}}} = \frac{I_{\text{max}} - I_{\text{min}}}{1 + 10^{\log(EC_{50}) - \log(\text{agonist}) \times n} + I_{\text{min}}}
\]

where EC_{50} is the half-maximal activating concentration and n_{H} is Hill slope.

EC_{50} shift ratios were calculated from the difference in log(GABA EC_{50}) values (Δlog(EC_{50})) measured in the presence of 3.2 μm etomidate versus control. Etomidate-dependent direct activation of receptors was analyzed similarly.

PTX-sensitive leak currents (I_{PTX}) normalized to I_{max} were used to estimate basal open probability (P_{o}). GABA efficacy was estimated based on enhancement of maximal GABA responses by etomidate or alphaxalone (32).

Estimated P_{o} was calculated using average I_{PTX}/I_{max} and P_{o} = Enhancer/I_{max} values.

\[
P_{o} = \frac{1}{1 + L_{o}\left(\frac{1}{1 + \frac{GABA}{K_G}} + \frac{1}{1 + \frac{ETO}{K_E}}\right)^{2}}
\]

where

\[
L_{o} = \frac{1}{1 + \left(\frac{GABA}{K_G}\right)^{2}}
\]

Non-linear least squares fits to a Monod-Wyman-Changeux (MWC) co-agonist mechanism with two equivalent sites each for GABA and etomidate (Equation 3) used estimated P_{o} data (Equation 2) from GABA concentration responses with and without etomidate and etomidate direct activation, with both [GABA] and [etomidate] ([ETO]) specified as independent variables.

OCTOBER 18, 2013•VOLUME 288•NUMBER 42 JOURNAL OF BIOLOGICAL CHEMISTRY 30375
Etomidate and GABA_λ Receptor α-M1 Domain Cysteines

TABLE 1

GABA_λ and etomidate sensitivities of wild-type and mutated GABA_λ receptors expressed in Xenopus oocytes

Receptor type	GABA EC₅₀ (μM)	GABA efficacy (n)	Etomidate EC₅₀ (μM)	Etomidate efficacy (n)	GABA EC₅₀ ratio (95% CI)
Wild type	36 (24–55)	0.80 ± 0.03 (6)	30 (14–66)	0.42 ± 0.10 (6)	0.059 (0.043–0.082)
α1G229C	610 (500–750)	0.65 ± 0.02 (6)	40 (17–93)	0.24 ± 0.14 (3)	0.29 (0.19–0.45)*
α1T720C	78 (57–105)	0.90 ± 0.04 (4)	12 (7.1–19)	0.68 ± 0.18 (3)	0.021 (0.012–0.036)*
α1V721C	69 (40–119)	0.63 ± 0.06 (6)	10 (8.7–12)	0.99 ± 0.08 (3)	0.012 (0.005–0.030)*
α1L232C	77 (56–107)	0.95 ± 0.03 (5)	20 (13–32)	0.68 ± 0.23 (4)	0.060 (0.038–0.094)
α1P233C	63 (52–76)	0.32 ± 0.06 (5)	15 (12–19)	3.0 ± 0.95 (3)*	0.069 (0.040–0.118)
α1L235C	96 (65–142)	0.85 ± 0.03 (5)	3.0 (1.3–6.7)*	0.83 ± 0.24 (3)	0.142 (0.072–0.279)
α1M236C	360 (260–510)	0.24 ± 0.06 (6)	19 (13–27)	4.0 ± 0.86 (3)*	0.186 (0.097–0.356)*
α1T237C	43 (32–58)	0.78 ± 0.12 (4)	31 (24–39)	0.9 ± 0.26 (3)	0.078 (0.024–0.259)
α1V238C	51 (38–67)	0.76 ± 0.03 (6)	20 (13–31)	0.9 ± 0.15 (3)	0.122 (0.068–0.220)
α1239C	46 (39–53)	1.00 ± 0.02 (3)	32 (18–57)	0.31 ± 0.10 (3)	0.084 (0.070–0.101)
α1L240C	28 (20–40)	0.91 ± 0.02 (4)	16 (8.9–30)	0.72 ± 0.12 (4)	0.114 (0.072–0.179)
α1S241C	38 (31–48)	0.72 ± 0.03 (4)	13 (7.3–23)	0.62 ± 0.20 (3)	0.028 (0.016–0.042)*
α1Q242C	66 (46–93)	0.89 ± 0.04 (4)	36 (14–96)	0.38 ± 0.11 (3)	0.067 (0.037–0.121)

* p < 0.001.
* p < 0.05.
* p < 0.1.

inactive receptors. The agonist efficacies of GABA and etomidate are indirectly related to c² and d², respectively.

Analysis of patch macrocurrents for activation, desensitization, and deactivation kinetics was performed as described previously (32) using non-linear least squares fits to Equation 4 and F-tests at p = 0.99 (Clampfit version 8.0, Molecular Devices) to choose the best number of exponents.

\[I(t) = A_1 \times \exp(-t/\tau_1) + A_2 \times \exp(-t/\tau_2) + A_3 \times \exp(-t/\tau_3) + C \quad \text{(Eq. 4)} \]

All activation traces were best fit with a single exponent, whereas desensitization and deactivation were consistently fitted with two exponents.

Molecular Modeling—A model of the α1β3γ2 GABA_λ receptor was constructed using the structure of the pentameric ion channel homolog GLIC from Protein Data Bank entry 3P50 as described (33). β2 peptide sequences were substituted into the β3 structures, requiring no insertions or deletions and only 26 amino acid replacements, seven of which were in the transmembrane domain (two in M3 and five in M4). No substitutions were near the etomidate binding sites. The model was placed within a simulated membrane force field and minimized with the photoactive etomidate analog azietomidate placed in the etomidate binding interfaces, consistent with photolabeling results (13, 14). Using C-DOCKER in the Discovery Studio modeling software package (Accelrys Inc., San Diego, CA), R^{- (t)}-etomidate (183-Å³ molecular volume, 213-Å³ Connolly surface volume) was docked within an 11-Å radius sphere in each binding site, solving for the 100 lowest energy solutions starting with 50 different initial orientations and 50 different molecular dynamics-altered etomidate configurations. Interaction energies for all 200 solutions (100 for each site) were between −36 and −39 kcal/mol. As controls, etomidate docking was performed at the other three model intersubunit transmembrane cavities.

Statistical Analysis—Results are reported as mean ± S.D. unless otherwise noted. Wild-type and all mutant group comparisons for log(EC₅₀) and Δlog(EC₅₀) were performed using one-way ANOVA with Dunnett’s post hoc test. Cl. confidence interval.

RESULTS

Functional Characterization of Wild-type and α1M236Cβ2γ2L GABA_λ Receptors

GABA- and Etomidate-dependent Channel Gating—Initial studies focused on the α1Met-236 residue identified in photolabeling studies (13, 14). GABA- and etomidate-dependent gating, spontaneous activation, and macrocurrent rapid kinetics were characterized in α1M236Cβ2γ2L channels expressed in Xenopus oocytes or HEK293 cells and compared with α1β2γ2L (wild-type). Results of oocyte studies are summarized in Table 1. Functional characterizations of α1β2γ2L receptors in oocytes were similar to those reported in earlier studies (10, 15, 32). Wild-type GABA EC₅₀ value averaged 37 μM, and the addition of 3.2 μM etomidate reduced GABA EC₅₀ 18-fold to about 2 μM. Etomidate directly activated wild-type channels with an average EC₅₀ of 30 μM, and maximum etomidate activation averaged 42% of the maximal GABA response. In oocytes expressing α1M236Cβ2γ2L GABA_λ receptors, GABA EC₅₀ averaged about 10-fold higher (390 μM) than that in wild-type (Fig. 2A solid symbols and Table 1). In the presence of etomidate, α1M236Cβ2γ2L receptor currents elicited with maximal GABA (10–30 mM) increased about 4-fold, indicating a low agonist efficacy for GABA. GABA EC₅₀ was reduced about 5-fold (Fig. 2A, open symbols). Etomidate alone was a potent and efficacious agonist of α1M236Cβ2γ2L receptors, inducing maximal currents that were 4-fold larger than those elicited by 10–30 mM GABA (Fig. 2B). Rapid application of GABA (10 mM) to voltage-clamped outside-out patches from HEK293
cells expressing α1M236Cβ2γ2L receptors elicited currents with activation, desensitization, and deactivation phases similar to those of wild-type receptors activated with 1 mM GABA (Fig. 2C and Table 2). With reduced GABA potency and efficacy, accelerated deactivation and slower desensitization might be expected if desensitization proceeds only from open states. However, GABA-bound pre-open states may desensitize at rates comparable with those of open states (34). Also, GABA efficacy in this mutant may differ in HEK293 cells and Xenopus oocytes.

Voltage-clamped oocytes (n = 3) expressing α1M236Cβ2γ2L receptors displayed small picrotoxin-sensitive leak currents in the absence of GABA (Fig. 2D) that were 1–2% of that elicited with 10 mM GABA (0.3–0.5% of maximal currents elicited with 100 μM etomidate). Oocytes expressing wild-type receptors displayed no picrotoxin-sensitive leak currents. GABA and etomidate efficacies (maximal fraction of receptors activated) were assessed using single-sweep experiments, where receptors were initially activated with one of these agonists, followed by the addition of a co-agonist. Maximal α1M236Cβ2γ2L currents elicited by 10 mM GABA increased about 4-fold (300% over base line) with the addition of 2 μM alphaxalone (Fig. 2E), whereas currents elicited by 100 μM etomidate were enhanced only 4–5% with the addition of 3 mM GABA (Fig. 2F). Assuming that

TABLE 2

Wild-type and mutant GABA_A receptor rates of activation, desensitization, and deactivation

Receptor	Maximal activation rate (s⁻¹)	Fast desensitization rate (s⁻¹) (amp (%))	Slow desensitization rate (s⁻¹) (amp (%))	Fast deactivation rate (s⁻¹) (amp (%))	Slow deactivation rate (s⁻¹) (amp (%))
α1β2γ2L	3000 ± 1200 (n = 4)	20 ± 13 (30 ± 11)	1.0 ± 0.45 (70 ± 11)	50 ± 18 (60 ± 17)	6 ± 3.5 (40 ± 17)
α1M236Cβ2γ2L	2700 ± 1000 (n = 3)	28 ± 12 (30 ± 13)	1.1 ± 0.45 (70 ± 13)	60 ± 16 (40 ± 23)	10 ± 5 (60 ± 23)

FIGURE 2. Electrophysiological characterization of α1M236Cβ2γ2L GABA_A receptors. A, GABA concentration response in oocytes. Data points are mean ± S.D. (error bars) (n > 3) peak currents normalized to maximal GABA (10 mM) responses. Lines overlaying points represent nonlinear least squares fits to Hill equations (Equation 1). Solid symbols, GABA alone; EC₅₀ = 320 μM (95% confidence interval, 290–410 μM); n_H = 0.75 ± 0.075; maximum response = 3.7 ± 0.10. B, etomidate agonism concentration response in oocytes. Data points are mean ± S.D. (n > 3) peak currents normalized to maximal GABA (10 mM) responses. The line represents a fitted Hill equation. EC₅₀ = 18 μM (95% confidence interval, 14–29 μM); n_H = 1.7 ± 0.52; maximum response = 4.2 ± 0.63. C, current sweep recorded from an HEK293 cell patch during a 1-s pulse of 10 mM GABA. The white bar indicates GABA application. Average rates of activation, desensitization, and deactivation are summarized in Table 2. D, spontaneous channel gating current in an oocyte. The small outward current during PTX application is due to inhibition of active channels. E, current elicited with 10 mM GABA in the same cell is also displayed. Average spontaneous activity is 1.8 ± 0.28% of maximal GABA response. F, estimation of maximal GABA efficacy in an oocyte. GABA (10 mM; white bar) alone elicits a current that is enhanced severalfold with co-application of alphaxalone (2 μM; black bar). Average results for GABA efficacy are reported in Table 1. G, allosteric co-agonist modeling of GABA and etomidate activation. Estimated P_E was calculated using Equation 2 from data in A and B (same symbols used for each data set). Equation 3 was fitted to estimated P_E using nonlinear least squares with both [GABA] and [etomidate] as input variables. Lines represent the fitted model. Fitted model parameters are reported in Table 3.
both of these combinations of co-agonists open all activatable receptors, these results indicate that the efficacies of GABA and etomidate are ∼0.24 and 0.96, respectively.

Monod-Wyman-Changeux Model Analysis—A two-state MWC allosteric co-agonist model accounts for the gating effects of both GABA and etomidate in oocytes (10) and provides a mechanistic framework for interpretation of the functional effects of mutations (15, 16, 32). A non-linear least squares fit to this model (Equation 3) was performed using estimates of $[\text{GABA}]$ and $[\text{etomidate}]$ in oocytes (10) and provides a mechanistic co-agonist model accounts for the gating effects of both α-M1 domain cysteines. The relatively small GABA EC$_{50}$ shift with etomidate were constrained by an L_o value (200) derived from the spontaneous gating measurement. The resulting fit and parameters are shown in Fig. 2G and compared with model parameters fitted to wild-type data (Table 3). The four free fitted parameters were well constrained by the data sets. MWC model analysis indicates that the M236C mutation dramatically reduced GABA efficacy (Table 3; c for α1M236Cβ_2Y2L is 70-fold larger than for wild-type) while only slightly reducing etomidate efficacy (d for α1M236Cβ_2Y2L does not significantly differ from the wild-type value). The apparent modification rate about 10-fold compared with GABA and etomidate/GABA were significantly less than 1.0.

TABLE 3

Receptor	L_o	K_G	c	K_e	d
α1β_2Y2L	25,000	70 ± 22	0.0019 ± 0.00038	40 ± 14	0.0076 ± 0.0010
α1M236Cβ_2Y2L	200a	100 ± 19	0.135 ± 0.0070a	70 ± 22	0.014 ± 0.0046

a Differs from wild-type value at $p < 0.1$.

TABLE 4

Receptor type	pCMBS alone	pCMBS + GABA	pCMBS + GABA + etomidate	Effect of modification	Rate ratio	Rate ratio
Wild-type	NEa (4)	NEa (4)	ND	NE	1	1
α1Q292C	540 ± 130 (4)	7000 ± 1600 (4)	22,700 ± 5200 (3)	low GABA response	13 ± 4.3d	3.2 ± 1.03d
α1T235C	16 ± 6 (4)	520,000 ± 115,000 (3)	960,000 ± 167,000 (3)	low GABA response	170 ± 50d	1.8 ± 0.5d
α1Y231C	NE (3)	NE (3)	ND	NE	1	1
αL232C	70 ± 18 (6)	150 ± 37 (7)	40 ± 5 (7)	GABA response	2.1 ± 0.75b	0.32 ± 0.16b
αp233C	NE (3)	NE (3)	ND	NE	1	1
αL235C	140 ± 92 (3)	1200 ± 360 (3)	260 ± 84 (3)	GABA response	8.9 ± 6.5b	0.22 ± 0.09b
α1V238C	NE (3)	NE (3)	ND	NE	1	1
αL240C	NE (3)	NE (3)	ND	NE	1	1
αL241C	60 ± 15 (3)	40 ± 19 (3)	70 ± 23 (3)	low GABA response	2.7 ± 1.7d	1.14 ± 0.37
αq242C	NE (3)	ND (3)	ND	NE	1	1

Rates are expressed in m^{-1} (mean ± S.D.) (n). Ratios were calculated from means with propagation of S.D. Statistical significance was determined using Student's t test.

a NE, no effect of modification.

b ND, experiment was not done.

c $p < 0.01$.

d $p < 0.05$.

e $p < 0.001$.

f Protection was inferred when modification rate ratios for GABA + etomidate/GABA were significantly less than 1.0.

Both of these findings indicate that the efficacies of GABA and etomidate are ∼0.24 and 0.96, respectively.

Etomidate and GABAα Receptor α-M1 Domain Cysteines

a-M1 Domain Cysteines—Application of pCMBS (up to 2 mm for 60 s, with or without 1 mm GABA) to oocytes expressing wild-type GABAα receptors produced no detectable changes in electrophysiological properties, including spontaneous activation and responses to low and high GABA (data not shown). Applying pCMBS to oocytes expressing α1M236Cβ2Y2L receptors irreversibly increased leak currents and reduced 10 mM GABA current responses, suggesting that modification activates and enhances desensitization. In the absence of GABA, pCMBS concentrations over 1 mM were needed to produce functional changes within 60 s, and the apparent rate of modification at room temperature was low (16 m^{-1} s$^{-1}$; Table 4). Co-application of 10 mM GABA with pCMBS increased the rate of modification over 10-fold to 210 m^{-1} s$^{-1}$ (Fig. 3A). Because α1M236Cβ2Y2L channels display spontaneous activity and were readily activated by etomidate, we used a maximally GABA-activated receptor condition (10 mM GABA) for control studies of pCMBS modification to compare with modification with GABA plus etomidate. For protection, we used 30 μM etomidate, based on the fitted allosteric model (Table 3), which indicated an etomidate dissociation constant for GABA-activated α1M236Cβ2Y2L receptors ($K_e \times d$) near 1 μM. Co-application of 30 μM etomidate and 10 mM GABA reduced the apparent pCMBS modification rate about 10-fold compared with GABA alone (Fig. 3, B and C, and Table 4).

Etomidate protection of α1M236C from sulphydryl modification was also assessed using a biochemical assay in HEK293...
cell membranes. [3H]Flunitrazepam binding to both wild-type (data not shown) and \(\alpha1M236C\beta2\gamma2L \) receptors (Fig. 3D) was modulated by etomidate. Exposure of \(\alpha1M236C\beta2\gamma2L \) receptors (but not \(\alpha1\beta2\gamma2L \)) to the modifying reagent MTSEA significantly reduced etomidate modulation. Co-application of 200 \(\mu \)M etomidate during MTSEA treatment blocked the modification effect, preserving modulation. Exposure of \(\alpha1M236C\beta2\gamma2L \) receptors to MMTS, which creates a smaller adduct than MTSEA, positively modulates flunitrazepam binding to untreated membranes from HEK293 cells expressing 1-M1 Domain Cysteines

Cysteine Substitution Scan of \(\alpha1\-M1 \) Residues

GABA\(\text{A} \)- and Etomidate-dependent Gating—The molecular length of etomidate in an extended configuration is \(\sim 12 \) Å, about the distance of two full turns along an \(\alpha \)-helical axis. We therefore characterized single residue cysteine mutants along the \(\alpha1\)-M1 domain from \(\alpha1Q229 \) to \(\alpha1Q242 \), spanning four helical turns with the photolabeled \(\alpha1\text{Met-236} \) residue in the middle of this region. All cysteine-substituted receptors were characterized using a two-microelectrode voltage clamp in Xenopus oocytes to assess GABA EC\(\text{50p} \) GABA response modulation by 3.2 \(\mu \)M etomidate, and etomidate direct activation. Results are summarized in Table 1 and Fig. 4.

Five mutant channels in this series, \(\alpha1Q229C, \alpha1T230C, \alpha1L232C, \alpha1I233C, \) and \(\alpha1M236C \), displayed GABA EC\(\text{500} \) values that were significantly (one-way ANOVA; \(p < 0.05 \)) higher than the wild-type value (Table 1 and Fig. 4A). No mutants were characterized by GABA EC\(\text{50} \) values lower than wild type. GABA efficacy was significantly reduced in four mutant channels: \(\alpha1Q229C, \alpha1Y231C, \alpha1P233C, \) and \(\alpha1M236C \). Thus, cysteine substitutions at all seven \(\alpha1\)-M1 residues from Gln-229 to Met-236 (excluding Cys-234) increased GABA EC\(\text{50} \) and/or reduced GABA efficacy, whereas mutations intracellular to Met-236 did not significantly affect GABA EC\(\text{50} \) or efficacy (Table 1).
FIGURE 4. GABA sensitivity and etomidate modulation in α1-M1 cysteine substituted GABA\textsubscript{A} receptors. A, bars represent mean ± S.D. (error bars) GABA EC\textsubscript{50} plotted on a log scale, averaged from multiple individual measurements in separate oocytes (n = 4). B, bars represent mean ± S.D. GABA EC\textsubscript{50} shift ratio in the presence versus absence of 3.2 μM etomidate, averaged from multiple individual measurements in separate oocytes (n = 4) and plotted on a log scale. Large leftward shifts (low shift ratio) indicate high etomidate sensitivity. Mutant results were compared with wild type by ANOVA with Dunnett’s post hoc test.

* p < 0.05; ** p < 0.01; *** p < 0.001.

In the presence of 3.2 μM etomidate, five mutant channels exhibited GABA EC\textsubscript{50} shifts that significantly differed (one-way ANOVA, p < 0.05) from the wild-type value (Table 1 and Fig. 4B). Receptors with α1Q229C and α1M236C mutations showed etomidate shifts smaller than that in wild type, and α1T230C, α1Y231C, and α1S241C were associated with larger shifts. All α1-M1 domain cysteine-substituted mutant receptors were directly activated by etomidate (Table 1). Etomidate direct activation EC\textsubscript{50} values varied from 3 μM (α1I235Cβ2γ2L) to 40 μM (α1Q229Cβ2γ2L), and the maximal relative efficacy of etomidate activation, normalized to maximal GABA efficacy, varied from about 0.24 in α1Q229Cβ2γ2L channels up to about 4.0 in both α1P233Cβ2γ2L and α1M236Cβ2γ2L receptors. Whereas maximum etomidate agonist efficacy relative to GABA was significantly increased by P233C and M236C mutations, the estimated normalized etomidate efficacy for the mutants (calculated 95% confidence intervals for GABA efficacy × etomidate efficacy, from Table 1) did not significantly differ from wild type. In other words, high relative etomidate efficacy simply reflected low GABA efficacy with P233C and M236C mutants. Overall, six mutations, all but one extracellular to Thr-237, altered etomidate sensitivity as assessed by direct activation EC\textsubscript{50} or EC\textsubscript{50} shifts (Table 1).

pCMBS Modification and Etomidate Protection—In the resting closed state (no GABA), exposure to pCMBS up to 1 mM for 60 s produced no functional changes in receptors containing α1Y231C, α1P233C, α1I235C, α1V238C, α1I239C, and αQ242C mutations. For the other seven cysteine-substituted mutant channels, evidence of pCMBS modification in the absence of GABA was observed with apparent rates ranging from 10 to 3000 m-1 s-1 (Table 4). Along the transmembrane axis, closed state aqueous accessibility extended from Gln-229 to Ser-241. Modification of cysteine substitutions at the most extracellular residues we studied, Q229C and T230C, was much faster than at more internal residues, with L240C slowest. A helical wheel projection based on the homology model (Fig. 5A) locates all closed state accessible residues within one hemi-face of α-M1, projecting toward β2-M3 and the intersubunit space or toward α-M2. None are predicted to face lipid in the model.

With the addition of GABA at >10 × EC\textsubscript{50} pCMBS modification was observed in eight mutant receptors: the seven that were modified in the resting state plus α1I235Cβ2γ2L. Rates of pCMBS modification in the presence of GABA varied from 20 to 520,000 M-1 s-1 (Table 4). GABA significantly increased pCMBS modification rates at all modifiable α1-M1 cysteine-substituted sites, except α1Ser-241. The ratio of modification rates in the presence versus absence of GABA varied from 2-fold at α1L232C and α1L240C up to 170-fold at α1T230C (Fig. 5B). A rate ratio could not be calculated for α1I235C receptors, which displayed no modification in the absence of GABA.

The addition of etomidate significantly increased the apparent rate of pCMBS modification in three cysteine-substituted receptors at α1Gln-229, α1Thr-230, and α1Ile-235 (Fig. 5C and Table 4). Fig. 6, A and B, illustrates the enhancement of α1Q229C modification by both GABA and etomidate. As observed for α1M236C, etomidate reduced apparent rates of pCMBS modification at α1L232C and α1T237C (Table 4 and Fig. 5C). In GABA-activated α1L232Cβ2γ2L receptors, 30 μM etomidate reduced the pCMBS modification rate about 3-fold (Fig. 6, C and D). In α1T237Cβ2γ2L receptors, 100 μM etomidate reduced the pCMBS modification rate nearly 5-fold (Fig. 6, E and F).
Etomidate Docking to a Molecular Structure Homology Model—The energy-minimized homology model (Fig. 7) is based on the crystal structure of GLIC, a prokaryotic homopentameric ion channel that is thought to represent either an open or desensitized channel state (17, 18, 35, 36). The orientations of α_1-M1 residues in the model are similar to those in a homology model (21) based on GluCl (19).

Etomidate docked between α_1-M1 and β_2-M3 transmembrane domains adopts an L-shape when viewed along the transmembrane axis, with the plane of the benzene ring forming the short leg and approximately orthogonal to the plane of the imidazole ring and ester linkage, which together form the long leg (Fig. 7). In the 100 lowest energy docking orientations in the binding sites at GABAA receptor α_1-M1/β_2-M3 interfaces, the etomidate molecule is oriented with the benzene ring located near β_2-M2. In the lowest energy pose, the non-branching nitrogen in the imidazole group is located 3.0 Å from the amide nitrogen of β_2N265 (M2–15'), a residue where mutations affect etomidate sensitivity (37, 38). The ester leaving group (ethanol) projects outward from the ion channel toward the lipid-protein interface between α_1-M1 and β_2-M3. The C2 ethanol carbon is 4.6 Å from the α carbon of β_2Met-286, and the ester carbonyl oxygen is 3.5 Å from both α_1Pro-233 and α_1Met-236 and 4 Å from β_2Phe-289. In α_1-M1, etomidate makes contact with part of the water-accessible surface of Ile-228, Leu-232, Pro-233, Met-236, Thr-237, and Leu-240 side chains. Control etomidate docking calculations in α_2-M1/β_1-M3, α_2-M1/β_3-M3, and β_3-M1/α_1-M3 subunit interfaces produced similar energetically stable interactions.

DISCUSSION

Our main findings are that cysteine substitution at most residues in the outer GABAA receptor α-M1 domain impair GABA agonism, whereas effects on etomidate modulation vary. GABA accelerates pCMBS modification at most accessible positions. Etomidate protection from modification indicates proximity to three (two newly identified) residues in this region.

The Outer α-M1 Domain Is Linked to GABA Agonism and the Channel State—Cysteine substitutions in $\alpha_1\beta_2\gamma_2$ homology model (Fig. 7) is based on the crystal structure of GLIC, a prokaryotic homopentameric ion channel that is thought to represent either an open or desensitized channel state (17, 18, 35, 36). The orientations of α_1-M1 residues in the model are similar to those in a $\alpha_1\beta_2\gamma_2$ homology model (21) based on GluCl (19). R-(-)-Etomidate docked between α_1-M1 and β_2-M3 transmembrane domains adopts an L-shape when viewed along the transmembrane axis, with the plane of the benzene ring forming the short leg and approximately orthogonal to the plane of the imidazole ring and ester linkage, which together form the long leg (Fig. 7). In the 100 lowest energy docking orientations in the binding sites at GABAA receptor α_1-M1/β_2-M3 interfaces, the etomidate molecule is oriented with the benzene ring located near β_2-M2. In the lowest energy pose, the non-branching nitrogen in the imidazole group is located 3.0 Å from the amide nitrogen of β_2N265 (M2–15'), a residue where mutations affect etomidate sensitivity (37, 38). The ester leaving group (ethanol) projects outward from the ion channel toward the lipid-protein interface between α_1-M1 and β_2-M3. The C2 ethanol carbon is 4.6 Å from the α carbon of β_2Met-286, and the ester carbonyl oxygen is 3.5 Å from both α_1Pro-233 and α_1Met-236 and 4 Å from β_2Phe-289. In α_1-M1, etomidate makes contact with part of the water-accessible surface of Ile-228, Leu-232, Pro-233, Met-236, Thr-237, and Leu-240 side chains. Control etomidate docking calculations in α_2-M1/β_1-M3, α_2-M1/β_3-M3, and β_3-M1/α_1-M3 subunit interfaces produced similar energetically stable interactions.

DISCUSSION

Our main findings are that cysteine substitution at most residues in the outer GABAA receptor α-M1 domain impair GABA agonism, whereas effects on etomidate modulation vary. GABA accelerates pCMBS modification at most accessible positions. Etomidate protection from modification indicates proximity to three (two newly identified) residues in this region.
Etomidate and GABA_α-M1 Domain Cysteines

Etomidate effects on cysteine modification in GABA_α receptors with α1Q229C, α1L232C, and α1T237C mutations. Left-hand panels display current traces from oocytes expressing mutant GABA_α receptors. Currents were activated with GABA, indicated by solid black bars above each trace. Downward arrows indicate exposures to pCMBS alone or with GABA or with GABA plus etomidate, followed by washout. Modification conditions (P, pCMBS; G, GABA; E, etomidate) for each set of traces are indicated in micromolar above each set of arrows. Right-hand panels show normalized peak current data from the traces shown on the left plotted against cumulative pCMBS exposure (s × mM). Lines through plotted symbols represent least squares fits to single exponentials. A, α1Q229Cβ2y2L channels. Currents were stimulated with 50 μM GABA (EC₅₀). B, solid squares, modification with pCMBS alone (fitted rate = 520 M^{−1} s^{−1}); open squares, modification with pCMBS plus GABA (fitted rate = 3280 M^{−1} s^{−1}); crossed squares, modification with pCMBS plus GABA and etomidate (fitted rate = 6500 M^{−1} s^{−1}). Inset, rate analyses are shown with a magnified time base. C, α1L232Cβ2y2L channels. Currents were stimulated with 1 mM GABA (EC₁₀₀). D, solid triangles, modification with pCMBS plus GABA (fitted rate = 170 M^{−1} s^{−1}); open triangles, modification with pCMBS plus GABA and etomidate (fitted rate = 34 M^{−1} s^{−1}). E, α1T237β2y2L channels. Currents were stimulated with 1 mM GABA (EC₁₀₀). F, solid circles, modification with pCMBS plus GABA (fitted rate = 1450 M^{−1} s^{−1}); open circles, modification with pCMBS plus GABA and etomidate (fitted rate = 210 M^{−1} s^{−1}).
rows intracellularly. Accelerated pCMBS modification by GABA suggests increased mobility or aqueous access. Bali and Akabas (21) have also examined substituted cysteine accessibility in \(\alpha_1 \)-M1 from Gly-224 to Met-236. At residues examined in both studies (Gln-229 to Met-236), the pattern of GABA-dependent pCMBS modification at Q229C, T230C, L232C, and M236C was similar. Contrasting with our results, Bali and Akabas reported lower GABA EC\(_{50}\) values and higher pCMBS modification rates and reported that Y231C mutations abolish channel function. These differences may be due to their rat “Cys-light” channel background, lacking native transmembrane cysteines, including \(\alpha_1 \)-Cys-234. Importantly, our main conclusions are unaffected by these differences.

A variety of data support the hypothesis that GABA activation expands the space around \(\alpha_1 \)-M1, increasing both water and side chain mobility to a depth near \(\alpha_1 \)Leu-240. Cysteine substitutions could impair GABA-induced gating by reducing side chain volume and increasing water in transmembrane pockets, increasing entropic energy costs. Cysteine, being smaller than most of the residues we mutated, does not occlude etomidate binding, which displaces water and reduces entropy, stabilizing open channel states. Tryptophan substitution at \(\alpha_1 \)Met-236 or \(\beta_2 \)Met-286 enhances gating in the same manner while occluding the etomidate site (15). A similar mechanism was proposed by Jenkins et al. (40) for volatile anesthetic actions at intrasubunit pockets. Bali et al. (22) observed GABA-dependent disulfide formation between \(\beta_2 \)M286C and \(\alpha_1 \)Q229C and suggested that these residues approach each other during gating. However, this intersubunit disulfide bond stabilizes a non-conducting receptor state. GABA-dependent cross-linking could also result from increased side chain or backbone mobility. Delineating transmembrane domain motions during channel gating and desensitization remains an important experimental challenge.

Outer \(\alpha_1 \)-M1 Domain Linkage to Etomidate Modulation—Several outer \(\alpha_1 \)-M1 domain mutations also affected etomidate sensitivity with a pattern distinct from that for GABA sensitivity (Fig. 4). Two cysteine substitutions, Q229C and M236C, reduce etomidate-induced left-shift, whereas T230C, Y231C, and S241C increased modulation. MWC allosteric analysis indicates that the \(\alpha_1 \)M236C mutation insignificantly affects...
Etomidate and GABA_A Receptor α-M1 Domain Cysteines

etomidate allosteric efficacy (Table 3, d). Thus, the small GABA EC₃₀ shift in α1M236Cβ2γ2L receptors reflects only a portion of etomidate modulation; the remainder is evident as increased GABA efficacy (Fig. 1A). The divergence of cysteine mutant effects on orthosteric and allosteric agonists rules out isolated effects on channel gating (L_i in MWC models). Considering evidence that etomidate contacts α-M1 domain residues (discussed below), we speculate that its movements differ when gating is triggered by GABA alone versus with etomidate bound, altering open state stability and channel gating modes.

Etomidate Binds Next to a Short Segment of α-M1—Our pCMBS modification experiments identify M236C, L232C, and T237C as etomidate-protected residues (Fig. 5). Parallel experiments based on [3H]flunitrazepam binding (Fig. 3D) further support etomidate protection of α1M236C. Based on MWC affinity parameters for activated α1M236Cβ2γ2L receptors (K_e ∼ 1 μM), etomidate site occupation was predicted to exceed 96% at 30 μM. Etomidate slowed pCMBS modification at M236C about 10-fold (Fig. 5C). However, GABA alone (reference modification conditions) activated only about 24% of receptors, whereas co-application of etomidate with GABA (protection conditions) probably activated nearly 100% of receptors (Fig. 2, E and F). Supporting this interpretation, allopentazapam, which enhances GABA activation without blocking etomidate binding (41), accelerated pCMBS modification of α1M236C about 3-fold over the GABA-only reference rate (data not shown). Thus, etomidate probably reduced pCMBS modification rates much more than 10-fold in GABA-activated α1M236Cβ2γ2L receptors. We reported similar protection in GABA-activated α1β2M286Cγ2L receptors (16).

We used 30–100 μM etomidate, concentrations associated with direct receptor agonism, to achieve high etomidate site occupancy in protection experiments. Importantly, etomidate agonism is mediated by the same sites that produce modulation by low (general anesthetic) concentrations (10). Despite high predicted site occupancy, etomidate protection at L232C and T237C was less complete than at M236C, suggesting less steric proximity. An alternative protection mechanism whereby etomidate blocks the aqueous pCMBS access pathway is unlikely, because access to L240C and S241C, furthest from the membrane surface, was preserved with etomidate bound. The possibility that etomidate indirectly induces movement of protected residues to become pCMBS-inaccessible also exists. However, a steric protection mechanism is also supported by comparison with Q229C, T230C, and L235C. In receptors with these mutations, etomidate increased pCMBS modification rates beyond those with GABA alone (Table 4 and Fig. 5), paralleling electrophysiological evidence that etomidate increased channel activation. Notably, etomidate also enhanced channel gating in the three protected Cys-mutant receptors (Table 1).

Combining current results, other protection studies, and photolabeling (13, 14, 16) identifies three α-M1 residues (αLeu-232, αMet-236, and αThr-237) and two β-M3 residues (βMet-286 and βVal-290) that form etomidate binding sites. Sensitivity to volatile anesthetics is also affected by mutations at αLeu-232 and βMet-286 (40, 42). Mutations at β2Met-286 also affect propofol sensitivity (43), and propofol protects β2M286C from modification (44). Both propofol and isoflurane inhibit azetomidate photolabeling of GABA_A receptors (45). Thus, the α1-M1/β2-M3 interface apparently contains overlapping sites for volatile anesthetics, propofol and etomidate. Hosie and Smart (25) also identified α1T237 and α1Q242 as determinants for neurosteroid sensitivity, although neurosteroids do not displace etomidate (41). Our cysteine protection results argue against alphaxalone contact with α1Met-236. Similar studies may help specify which residues contact other anesthetics.

Our results suggest that etomidate interactions are limited to 1.5 helical turns of α1-M1, about 8 Å along the transmembrane axis. The long leg of etomidate fits into a right cylinder of diameter 7.4 Å and length 11.9 Å, sufficiently long to contact residues on two or three sequential helical turns. Thus, our results are most consistent with etomidate binding with its long axis approximately perpendicular (90 ± 45°) to the transmembrane axis.

**Comparison with Structural Homology Models and Crystal-ized Receptors—In silico docking of etomidate to the α-M1/β-M3 cavity in a structural homology model (Fig. 7) placed etomidate adjacent to all three protected residues (Leu-232, Met-236, and Thr-237) with its long axis oriented approximately orthogonal to the transmembrane axis. Thus, cysteine protection results agree with the predictions of this and previous models of the etomidate site (13, 14). In the model, etomidate also contacts Ile-228, Pro-233, and Leu-240. We did not include Ile-228 in our study, and α1P233Cβ2γ2L receptors were unaffected by exposure to pCMBS, precluding protection tests. The P233C mutation also did not alter etomidate sensitivity (Table 1 and Fig. 4B). Thus, α1P233 could be an etomidate contact point with a “silent” cysteine mutation. The L240C mutation produced no change in etomidate sensitivity and was modified by pCMBS but not protected. The model places Leu-240 farther from etomidate than the protected residues, and a cysteine mutation would further increase this separation. Assessing other Pro-233 and Leu-240 mutations might provide additional information about etomidate interactions.

High resolution structural evidence locating allosteric agonists in transmembrane intersubunit sites is emerging from several pentameric ligand-gated ion channel models. Co-crystals of *C. elegans* GluCl channels locate ivermectin (19) in sites that are structural homologs of etomidate sites in GABA_A receptors. Ivermectin is much larger than etomidate and makes extensive contacts with GluCl M1 domains. Co-crystallization of propofol and desflurane with GLIC (46) identified intrasubunit transmembrane sites, although cysteine accessibility studies by Ghosh et al. (47) suggest that propofol inhibition is mediated by intersubunit sites. Recent crystal data from positively modulated GLIC-P238A mutants also locate anesthetics and alcohols in intersubunit cavities (48). Co-crystallization of *Erwinia chrysanthemi* (ELIC) channels with bromoform also identified an intersubunit site deep in the membrane (near residues corresponding to GABA_A α1Gln-242 and α1Trp-246), along with other sites (49). Thus, both proaryktic and eukaryotic pentameric ion channels harbor multiple types of anesthetic binding sites, linked to both enhancing and inhibitory anesthetic effects (50).

In our current study, cysteine mutations at residues predicted to project into the intrasubunit helical bundle pocket
displayed weaker effects on GABA and etomidate sensitivity than at residues facing the intersubunit site. This suggests that intersubunit transmembrane pockets in GABA$_\alpha$ receptors influence channel gating more than neighboring intrasubunit transmembrane pockets. Accordingly, although we and others (21) find evidence for variable α-M1 side chain movements with gating, suggesting local secondary structure changes, our data also point to important quaternary rearrangements (at subunit interfaces) linked to gating.

Despite agreement between model docking and protection results, the limitations of in silico docking to current homology models are evident from control computations showing that etomidate docks with similar stability to all five transmembrane subunit interfaces. This is probably because the model was built on a homomeric template. Nonetheless, recent photolabeling studies demonstrate that R-(-)-etomidate binds to β-M3/α-M1 interfaces with greater than 100-fold higher affinity than to α-M3/β-M1 or γ-M3/β-M1 interfaces that are selectively photolabeled by a barbiturate derivative (33). More broadly, links between crystalized receptor structures and functional states remain tenuous, and co-crystal structures reveal no significant rearrangements in anesthetic binding cavities (46, 48), highlighting the value of complementary approaches.

Can Mutant Function Predict Anesthetic Contact?—We thoroughly characterized cysteine mutant channel functions yet found no phenotypic “fingerprint” for residues contacting etomidate. Considering the three protected α-M1 mutants we identified and β2Met-286 (16), two (β2Met-286 and α1Met-236) reduce etomidate left shift, and three (β2Met-286, α1Met-236, and α1Leu-232) reduce GABA sensitivity. However, in α1Q229C/β2y2L, a mutant with functional characteristics similar to α1M236C/β2y2L and β2M286C/β2y2L, etomidate enhances rather than inhibits pCMBS modification. MWC allosteric analysis, which derives independent parameters for etomidate binding and efficacy, also fails to unambiguously identify etomidate binding site mutations. MWC analysis of α1M236C indicates minimal changes from wild type in both etomidate affinity and efficacy, whereas cysteine protection and photolabeling clearly place this residue in the etomidate binding site. Functional analysis of multiple mutations at candidate residues might improve inferences regarding ligand interactions. MWC analyses of α1M236W, β2M286W, and β2M286C mutations (15, 16) identified dominant effects on the etomidate efficacy parameter (d), which reflects binding to the high affinity activated state. Our current protection results were obtained in GABA-bound receptors and thus reflect interactions with open and/or desensitized states. Although β2M286C is protected by etomidate in resting (closed) state receptors (16), the low affinity of this state makes its study more challenging.

In summary, we find that cysteine substitutions at outer α-M1 residues (Gln-229 through αMet-236) reduce GABA sensitivity and variably affect etomidate sensitivity. Accessibility to pCMBS was evident in α1-M1 residues predicted to face the intersubunit space or the α1-M2 domain and few others. GABA enhanced modification at most of these positions, indicating gating-coupled rearrangements at the subunit level. Etomidate inhibited modification of L232C, M236C, and T237C, indicating contact with a limited portion of α-M1 at the subunit-subunit interface. These results agree with in silico model docking calculations, suggesting that the long axis of etomidate lies perpendicular to the α1-M1 domain.

Acknowledgments—We thank Aiping Liu, Youssef Jouaidi, and Alex Stern (all at Massachusetts General Hospital) for technical help and Professors Keith W. Miller (Massachusetts General Hospital), Douglas E. Raines (Massachusetts General Hospital), and Jonathan B. Cohen (Harvard Medical School) for helpful comments on the manuscript.

REFERENCES
1. Franks, N. P. (2008) General anesthesia. From molecular targets to neuronal pathways of sleep and arousal. Nat. Rev. Neurosci. 9, 370–386
2. Olsen, R. W., and Sieghart, W. (2008) International Union of Pharmacology. LXX. Subtypes of y-aminobutyric acid(A) receptors. Classification on the basis of subunit composition, pharmacology, and function. Update. Pharmacol. Rev. 60, 243–260
3. Baumann, S. W., Baur, R., and Sigel, E. (2002) Forced subunit assembly in α1β2γ2 GABAA receptors. Insight into the absolute arrangement. J. Biol. Chem. 277, 46020–46025
4. Jurd, R., Arras, M., Lambert, S., Drexl, B., Siegwart, R., Crestani, F., Zaugg, M., Vogt, K. E., Ledermann, B., Antkowiak, B., and Rudolph, U. (2003) General anesthetic actions in vivo strongly attenuated by a point mutation in the GABAA receptor β3 subunit. FASEB J. 17, 250–252
5. Reynolds, D. S., Rosahl, T. W., Cirone, J., O’Meara, G. F., Haythornthwaite, A., Newman, R. J., Myers, J., Sur, C., Howell, O., Rutter, A. R., Atack, J., Maccaulay, A. J., Hadingham, K. L., Hutson, P. H., Beelli, D., Lambert, J. J., Dawson, G. R., McKernan, R., Whiting, P. J., and Wafford, K. A. (2003) Sedation and anesthesia mediated by distinct GABAA receptor isoforms. J. Neurosci. 23, 8608–8617
6. Yang, J., and Uchida, I. (1996) Mechanisms of etomidate potentiation of GABAA receptor-gated currents in cultured postnatal hippocampal neurons. Neuroscience 73, 69–78
7. Hill-Venning, C., Beelli, D., Peters, J. A., and Lambert, J. J. (1997) Subunit-dependent interaction of the general anaesthetic etomidate with the y-aminobutyric acid type A receptor. Br. J. Pharmacol. 120, 749–756
8. Husain, S. S., Ziebell, M. R., Ruesch, D., Hong, F., Arevalo, E., Kosterlitz, J. A., Olsen, R. W., Forman, S. A., Cohen, J. B., and Miller, K. W. (2003) 2-(3-Methyl-3H-diaziren-3-yl)ethyl 1-(1-phenylethyl)-1H-imidazole-5-carboxylate. A derivative of the stereoselective general anesthetic etomidate for photolabeling ligand-gated ion channels. J. Med. Chem. 46, 1257–1265
9. Tomlin, S. L., Jenkins, A., Lieb, W. R., and Franks, N. P. (1998) Stereoselective effects of etomidate optical isomers on y-aminobutyric acid type A receptors and animals. Anesthesiology 88, 708–717
10. Rüssch, D., Zhong, H., and Forman, S. A. (2004) Gating allostериzmi at a single class of etomidate sites on α1β2γ2 GABAA receptors accounts for both direct activation and agonist modulation. J. Biol. Chem. 279, 20982–20992
11. Gültchouts, G., Stewart, D. S., and Forman, S. A. (2012) Two etomidate sites in α1β2γ2 y-aminobutyric acid type A receptors contribute equally and noncooperatively to modulation of channel gating. Anesthesiology 116, 1235–1244
12. Husain, S. S., Nirthanan, S., Ruesch, D., Solt, K., Cheng, Q., Li, G. D., Arevalo, E., Olsen, R. W., Raines, D. E., Forman, S. A., Cohen, J. B., and Miller, K. W. (2006) Synthesis of trifluoromethylidyl diazirine and benzo-phenone derivatives of etomidate that are potent general anesthetics and effective photolabels for probing sites on ligand-gated ion channels. J. Med. Chem. 49, 4818–4825
13. Li, G. D., Chiara, D. C., Sawyer, G. W., Husain, S. S., Olsen, R. W., and Cohen, J. B. (2006) Identification of a GABAA receptor anesthetic binding
Etomidate and GABA\textsubscript{A} Receptor α-M1 Domain Cysteines

site at subunit interfaces by photolabeling with an etomidate analog. J. Neurosci. 26, 11599–11605.

14. Chiara, D. C., Dostalova, Z., Jayakar, S. S., Zhou, X., Miller, K. W., and Cohen, J. B. (2012) Mapping general anesthetic binding site(s) in human α1β3 γ-aminobutyric acid type A receptors with [13C]TDBzl-etomidate, a photoactive etomidate analogue. Biochemistry 51, 836–847.

15. Stewart, D. S., Hotta, M., Desai, R., and Forman, S. A. (2013) State-dependent cross-linking of the M2 transmembrane segment of the GABA\textsubscript{A} receptor. J. Biol. Chem. 288, 19343–19357.

16. Bocquet, N., Nury, H., Baaden, M., Le Poupon, C., Changeux, J. P., Derler, M., and Corringer, P. J. (2009) X-ray structure of a pentameric ligand-gated ion channel in an apparently open conformation. Nature 457, 111–114.

17. Akk, G., Li, P., Bracamontes, J., Reichert, D. E., Covey, D. F., and Steinbach, M. I., Barnard, E. A., and Macdonald, R. L. (2002) Mutation of the transmembrane subunit interface. Experimental basis for homology modeling of the α1β2γ2L subunit. J. Neurosci. 23, 4492–4499.

18. Greenfield, L. J., Jr., Zaman, S. H., Sutherland, M. L., Lumin, S. C., Niemeyer, M. I., Barnard, E. A., and Macdonald, R. L. (2002) Mutation of the GABA\textsubscript{A} receptor M1 transmembrane subunit affects allosteric sensitivity to GABA and anesthetics. Mol. Pharmacol. 57, 474–484.

19. Hosie, A. M., Wilkins, M. E., da Silva, H. M., and Smart, T. G. (2006) Endogenous neurosteroids regulate GABA\textsubscript{A} receptors through two discrete transmembrane sites. Nature 444, 486–489.

20. Akk, G., Li, P., Bracamontes, J., Reichert, D. E., Covey, D. F., and Steinbach, J. H. (2008) Mutations of the GABA\textsubscript{A} receptor alpha1 subunit M1 domain reveal unexpected complexity for modulation by neuroactive steroids. Mol. Pharmacol. 74, 614–627.

21. Scheller, M., and Forman, S. A. (2002) Coupled and uncoupled gating and desensitization effects by pore domain mutations in GABA\textsubscript{A} receptors. J. Neurosci. 22, 8411–8421.

22. Desai, R., Ruesch, D., and Forman, S. A. (2009) α-amino butyric acid type A receptor mutations at β2N265 alter etomodate efficacy while preserving basal and agonist-dependent activity. Anesthesiology 111, 774–784.

23. Chiara, D. C., Jayakar, S. S., Zhou, X., Zhang, X., Savechenkov, P. Y., Bruzik, K. S., Miller, K. W., and Cohen, J. B. (2013) Specificity of intersubunit general anesthetic-binding sites in the transmembrane domain of the human α1β3γ2L γ-aminobutyric acid type A (GABA\textsubscript{A}) receptor. J. Biol. Chem. 288, 19343–19357.

24. Belelli, D., Lambert, J. J., Peters, J. A., Wafford, K., and Whiting, P. J. (1997) The interaction of the general anesthetic etomidate with the γ-aminobutyric acid type A receptor is influenced by a single amino acid. Proc. Natl. Acad. Sci. U.S.A. 94, 11031–11036.

25. Jansen, M., and Akabas, M. H. (2006) State-dependent cross-linking of the M2 and M3 segments. Functional basis for the alignment of GABA\textsubscript{A} and acetylcholine receptor M3 segments. J. Neurosci. 26, 4492–4499.

26. Jern, L. R., and Dutzler, R. (2009) Structure of a potentially open state of a proton-activated pentameric ligand-gated ion channel. Nature 457, 115–118.

27. Jern, L. R., and Dutzler, R. (2009) Structure of a potentially open state of a proton-activated pentameric ligand-gated ion channel. Nature 457, 115–118.

28. Mercado, J., and Czajkowski, C. (2006) Charged residues in the M1 domain of the GABA\textsubscript{A} receptor mediate GABA binding. J. Biol. Chem. 281, 1200–1208.

29. Parikh, R. B., Ral, M., and Akabas, M. H. (2011) Structure of the M2 transmembrane segment of GLIC, a prokaryotic Cys loop receptor homologue from Gloeobacter violaceus, probed by substituted cysteine accessibility method. J. Biol. Chem. 286, 14098–14109.

30. Barton, J. J., Peters, J. A., Wafford, K., and Whiting, P. J. (1997) The interaction of the general anesthetic etomidate with the γ-aminobutyric acid type A receptor is influenced by a single amino acid. Proc. Natl. Acad. Sci. U.S.A. 94, 11031–11036.

31. Jern, L. R., and Dutzler, R. (2009) Structure of a potentially open state of a proton-activated pentameric ligand-gated ion channel. Nature 457, 115–118.

32. Jern, L. R., and Dutzler, R. (2009) Structure of a potentially open state of a proton-activated pentameric ligand-gated ion channel. Nature 457, 115–118.

33. Li, G. D., Chiara, D. C., Cohen, J. B., and Olsen, R. W. (2009) Neurosteroids allosterically modulate binding of the anesthetic etomidate to γ-aminobutyric acid type A receptors. J. Biol. Chem. 284, 11771–11775.

34. Krasowski, M. D., Finn, S. E., Ye, Q., and Harrison, N. L. (1998) Trichloroethanol modulation of recombinant GABA\textsubscript{A} glycine and GABA r1 receptors. J. Pharmacol. Exp. Ther. 284, 934–942.

35. Krasowski, M. D., Nishikawa, K., Nikolaea, N., Lin, A., and Harrison, N. L. (2001) Methionine 286 in transmembrane domain 3 of the GABA\textsubscript{A} receptor beta subunit controls a binding cavity for propofol and other alkyphenoaul general anesthetics. Neuropharmacology 41, 952–964.

36. Li, G. D., Chiara, D. C., Cohen, J. B., and Olsen, R. W. (2009) Neurosteroids allosterically modulate binding of the anesthetic etomidate to γ-aminobutyric acid type A receptors. J. Biol. Chem. 284, 11771–11775.

37. Krasowski, M. D., Nishikawa, K., Nikolaea, N., Lin, A., and Harrison, N. L. (2001) Methionine 286 in transmembrane domain 3 of the GABA\textsubscript{A} receptor beta subunit controls a binding cavity for propofol and other alkyphenoaul general anesthetics. Neuropharmacology 41, 952–964.

38. Gillett, D., Lantbert, J. J., Peters, J. A., Waaford, K., and Whiting, P. J. (1997) The interaction of the general anesthetic etomidate with the γ-aminobutyric acid type A receptor is influenced by a single amino acid. Proc. Natl. Acad. Sci. U.S.A. 94, 11031–11036.

39. Jern, L. R., and Dutzler, R. (2009) Structure of a potentially open state of a proton-activated pentameric ligand-gated ion channel. Nature 457, 115–118.

40. Bartnicki, J., and Czajkowski, C. (2013) Prenyl binding to the resting state of the Gloeobacter violaceus ligand-gated ion channel (GLIC) induces structural changes in the inter- and intrasubunit transmembrane domain (TMD) cavities. J. Biol. Chem. 288, 17420–17431.

41. Sauguet, L., Howard, R. J., Malherbe, L., Lee, U. S., Corringer, P. J., Harris, R. A., and Delarue, M. (2013) Structural basis for potentiation by alcohols and anesthetics in a ligand-gated ion channel. Nat. Commun. 4, 1697.

42. Spurny, R., Billen, B., Howard, R. J., Brams, M., Deavey, S., Price, K. L., Weston, D. A., Strelkov, S. V., Tytgat, J., Bertrand, S., Bertrand, D., Lumins, S. C., and Ulens, C. (2013) Multisite binding of a general anesthetic to the prokaryotic pentameric Erwinia chrysantheni ligand-gated ion channel (ELIC). J. Biol. Chem. 288, 8355–8364.

43. Forman, S. A., and Miller, K. W. (2011) Anesthetic sites and allosteric mechanisms of action on Cys-loop ligand-gated ion channels. Can J. Anesth. 58, 191–205.