Life factors acting on systemic lupus erythematosus

Jiaxuan Chen†, Shuzhen Liao†, Wanxian Pang, Fengbiao Guo, Lawei Yang, Hua-feng Liu* and Qingjun Pan*

Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China

Systemic lupus erythematosus (SLE) is a highly heterogeneous autoimmune disease that primarily affects women. Currently, in the search for the mechanisms of SLE pathogenesis, the association of lifestyle factors such as diet, cigarette smoking, ultraviolet radiation exposure, alcohol and caffeine-rich beverage consumption with SLE susceptibility has been systematically investigated. The cellular and molecular mechanisms mediating lifestyle effects on SLE occurrence, including interactions between genetic risk loci and environment, epigenetic changes, immune dysfunction, hyper-inflammatory response, and cytotoxicity, have been proposed. In the present review of the reports published in reputable peer-reviewed journals and government websites, we consider the current knowledge about the relationships between lifestyle factors and SLE incidence and outline directions of future research in this area. Formulation of practical measures with regard to the lifestyle in the future will benefit SLE patients and may provide potential therapy strategies.

KEYWORDS
systemic lupus erythematosus, lifestyle, diet, smoking, alcohol, ultraviolet radiation

Introduction

Systemic lupus erythematosus (SLE) is a highly heterogeneous autoimmune disease that primarily affects women, especially in the reproductive age. The prevalence rate of SLE worldwide is about 20–70 per 100,000 general population (1, 2). The exact etiology of SLE remains unclear, but genetic risk loci, such as N-acetyltransferase 2 (NAT2) slow acetylator genotype, and environmental factors are crucial in the development of susceptibility to SLE (3, 4). Although many SLE susceptibility genes have been identified recently, gene therapy approaches remain a distant prospect from the point of view of the clinical treatment (5). Furthermore, the significant side effects of high-dose immunosuppressive therapy for SLE, such as osteoporosis, hypertension and infection, have caused much concern (4, 6). Thus, the knowledge of environmental and lifestyle risk
factors, especially those that can be controlled, may offer new promising therapeutic strategies for SLE.

Here we review evidence from reports published in reputable peer-reviewed journals and government websites and consider recent advances in our understanding of the links between lifestyle factors with SLE susceptibility and development. In particular, we analyze the effects of the 1) diet including N-3 polyunsaturated fatty acids (N-3 PUFA), N-6 PUFA, calorie restriction, vitamins, as well as 2) other lifestyle factors, including cigarette smoking, ultraviolet radiation exposure, consumption of alcohol and caffeine-rich beverages, etc. Implementation of practical measures with regard to these lifestyle factors will benefit SLE patients and may provide potential therapy strategies.

Diet effects on SLE

N-3 PUFA and N-6 PUFA

In the last thirty years, numerous studies in murine SLE models such as NZBWF1, BXSB/MpJ, and MRL-1pr/1pr mice reported that fish and olive oils containing N-3 PUFA effectively attenuated plasma auto-antibodies, proteinuria, and kidney glomerulonephritis as well as increased lifespan of animals, compared with the phenotypes of mice fed with beef tallow that contained saturated fatty acids, N-6 PUFA, or N-9 monounsaturated fatty acids (N-9 MUFA) (Figure 1) (7–12). Furthermore, an increasing number of human clinical trials demonstrated that consumption of N-3 PUFA had positive effects on autoimmune glomerulonephritis conditions, such as lupus nephritis and others (13–17). Since the earliest clinical trial in 1989, there have been seven major published clinical studies focusing on the relationship between N-3 PUFA and SLE. All but one of the clinical studies reported beneficial effects, including the improvement in endothelial function, disease activity, or inflammatory markers following the implementation of N-3 PUFA in SLE patients (18). A clinical nutritional study of SLE patients found that dietary patterns low in N-3 PUFA and high in carbohydrates positively correlated with the severity of disease activity, adverse serum lipids, and the presence of plaque (19). A double-blind, double placebo-controlled factorial trial in 52 patients with SLE (15) reported a significant decline in SLAM-R score (revised Systemic Lupus Activity Measure) from 6.12 to 4.69 in the subjects receiving eicosapentaenoic acid (EPA)/docosahexaenoic acid (DHA) compared to those on placebo. In the study carried out by Das and colleagues (20), daily oral supplementation of even moderate EPA and DHA (EPA 162 mg, DHA 144 mg) induced prolonged remission of SLE in ten patients. Furthermore, EPA and DHA also suppressed both T-cell proliferation and the production of inflammatory cytokines.

Mechanistically, N-3 PUFA prevented inflammatory and autoimmune responses mainly via anti-inflammatory and immune-modulating effects as it suppressed pro-inflammatory cytokine production, lymphocyte proliferation, cytotoxic T cell activity, natural killer cell activity, macrophage-mediated cytotoxicity, neutrophil/monocyte chemotaxis, MHC Class II expression, and antigen presentation (21–38). A large body of experimental evidence has shown that N-3 PUFA decreased plasma levels of interleukin (IL)-1β, IL-6, IL-10, IL-12, IL-18,
tumor necrosis factor alpha (TNF-α), transforming growth factor beta 1 (TGF-β1), intercellular adhesion molecule 1 (ICAM-1), and fibronectin. N-3 PUFA increased the production of antioxidant enzymes and down-regulated mRNA expression of CD4+ T cell-associated genes, such as Cd80, Il6, Il10, Il18, Ccl5, Cxcr3, Tgfα, and Spp1, thereby reducing inflammatory response, oxidative stress, and autoimmune reactions in murine SLE models (11, 39–46). In contrast, N-6 PUFA-containing corn oil, safflower oil, and sunflower oil, which all induced the production of plasma auto-antibodies, proteinuria, and glomerulonephritis by increasing mRNA expression levels of the above-mentioned CD4+ T cell-associated genes in the kidney and/or spleen, contributed to the development of autoimmune reactions in NZBWF1 mice (11). The N-6 PUFA precursor was also shown to participate in the inflammatory process in SLE patients in a clinical study (13). However, the precise molecular mechanisms of N-3 PUFA and N-6 PUFA effects in SLE models remain unclear, and further studies are needed to confirm and correctly interpret the results of the published accounts.

Calorie restriction

There have been many studies that examined the association between calorie restriction and autoimmune diseases such as SLE (Figure 1). Calorie restriction has been shown to alleviate SLE manifestations such as proteinuria, glomerulonephritis, and deposition of immune complexes as well as to prolong the lifespan of lupus mouse models by down-regulating mRNA expression of genes encoding the proinflammatory mediators IFN-α, IL-10, IL-12, TNF-α, NF-κB, and polymeric immune globulin receptor (47–52). This, in turn, reduced lymphoproliferation and antibody production, increased antioxidant defense, and decreased the extent of T lymphocyte shift (53–56). It is known that circulating levels of adipokine leptin markedly decrease with calorie restriction (57). Leptin has pro-inflammatory effects and may inhibit regulatory T cells as well as promote autoimmune responses (58–65). Hypoleptinemia and deficient leptin signaling led to the expansion of the population of regulatory T cells in NZB × NZW F1 mice (57), and a reduction in the number of Th17 cells in MRL/Mp-Faspr mice (66), which contributed to the amelioration of SLE lesions. In addition, caloric restriction was also shown to significantly improve fatigue in subjects with SLE in a clinical study (67).

Vitamin D

A large body of evidence in the last decade has suggested that vitamin D deficiency plays a key role in the development of autoimmune diseases such as SLE. Moreover, the degree of vitamin D deficiency in SLE patients correlates with the severity of SLE manifestations (Figure 1) (68–86). However, a study of a large prospective cohort of women born between 1980 and 2002 indicated that vitamin D consumption did not significantly affect the risk of SLE or rheumatoid arthritis (87). Furthermore, other prospective cohort studies suggested that dietary vitamin D intake during adolescence did not modify SLE risk in adulthood (88). Hiraki et al. suggested the association between dietary vitamin D intake and SLE risk may be misleading, because only 20% of vitamin D comes from food, whereas 80% of vitamin D is generated in the skin following exposure to UVB. Therefore, vitamin D consumption may not accurately reflect the extent of vitamin D deficiency or insufficiency (89). A clinical study conducted in 2017 showed that individuals with vitamin D deficiency are more prone to develop SLE compared with those relatives with SLE (90). In summary, there is a relationship between the degree of vitamin D deficiency or insufficiency and SLE incidence or exacerbation.

Immunomodulatory effects of vitamin D were examined in patients with SLE and it was then shown that 1,25-(OH)2-D3 suppressed the proliferation of activated B cells, decreased the number of memory B cells, and reduced the production of immunoglobulin, which also inhibited the maturation and activation of dendritic cells and reduced the production of IFN-α. In addition, 1,25-(OH)2-D3 also prevented Th1 immune response and simultaneously enhanced Th2 immune response, increased the number of regulatory T cells as well as decreased the numbers of Th1 and Th17 cells. These multiple effects lead to the recovery and maintenance of immune homeostasis, and an overall protective effect in SLE patients (86, 91–104). Although these observations justify the recommendation of vitamin D supplementation in SLE patients, the role of Vitamin D is not fully elucidated (105–107).

Effects of cigarette smoking and consumption of alcohol and caffeine-rich beverages on susceptibility to SLE

Cigarette smoking

Numerous epidemiologic studies revealed that exposure to cigarette smoke is associated with increased risk of SLE (Figure 2) (108–115). Furthermore, strong and consistent evidence suggests that current smoking is more risky than previous smoking (116–122). A study conducted by the Systemic Lupus International Collaborating Clinics/American College of Rheumatology Damage Index that involved 105 patients with SLE with 8.98-year follow-up indicated that smoking exposure may have deleterious effects on lupus morbidity (123). According to a meta-analysis conducted in 2004 that included seven case-control and two cohort studies, there
was a modest association between current smoking and risk of SLE, whereas the effect of former smoking was not statistically significant (119). Subsequently, an updated meta-analysis in 2015, which contained 12 published articles encompassing 13 separate studies, found that the odds ratio (OR) values for SLE of current smokers and ex-smokers were 1.56 and 1.23, respectively, compared with the probability of SLE in nonsmokers (121). Recent research focused on cigarette smoking affecting clinical manifestations of patients with SLE has indicated that cigarette smoking was associated with photosensitivity, cutaneous damage, active SLE rash (124–127), higher SLE Disease Activity Index (SLEDAI) score (128), pleuritis, peritonitis, metabolic syndrome (129), neuropsychiatric symptoms (130, 131), vascular necrosis (132), thrombotic events (133–136), cardiovascular disease (137), peripheral vascular disease (138, 139), and production of anti-phospholipid antibodies (136). Moreover, smoking lowers the efficacy of medicines used to treat SLE (3, 140, 141). Likewise, a prospective cross-sectional study of Chinese SLE patients performed in 2015 reported that cigarette smoking causes the development and worsening of symptoms in SLE patients, including photosensitivity, nephropathy, proteinuria, compared with those in nonsmokers (after adjustment for age and gender), whereas SLEDAI scores were not significantly different in smokers and non-smokers (142). Taken together, these studies indicated that smoking is associated with increased risk for the development of SLE.

The mechanism whereby smoking affects SLE pathogenesis remains unclear. In recent years, several new lines of evidence have suggested that the effect of smoking in SLE may be modulated by gene polymorphisms and epigenetic changes. The studies of Japanese population by Kiyohara et al. showed that smokers with the N-acetyltransferase 2 (NAT2) slow acetylator genotype were at a significantly higher risk of SLE (OR 2.34, 95% CI 1.21–4.52) compared with nonsmokers carrying the rapid acetylator genotype (143). Moreover, Kiyohara et al. also demonstrated that smokers with rs1061622 T/G in TNFRSF1B that confers an increased risk for SLE (OR 1.56, 95% CI 0.99–2.47) had 49% of the excess risk for SLE resulting from the gene-environment interactions. In addition, although a significant association between the TT genotype of STAT4 rs7574865 and increased risk of SLE (OR 2.21, 95% CI 1.10–4.68) was found in that study, there was no significant interaction between STAT4 polymorphisms and smoking (144). Further, smokers carrying rs4646903 C/C in the CYP1A1 gene that encodes a monooxygenase that generates various reactive oxygen species were also at a significantly increased risk of SLE (OR 9.72, 95% CI 2.73–34.6), as the presence of rs4646903 contributed over 60% excess risk of SLE (145). Therefore, several gene polymorphism-smoking interactions increase the risk of SLE. In addition, cigarette smoking, as a lifestyle factor, may influence DNA methylation patterns and thereby change the expression levels of disease-relevant genes (146–151). In a genome-wide DNA methylation analysis of peripheral blood mononuclear cells by Dogan et al., it was found that methylation levels of genes implicated in inflammatory and immune function pathways were altered by cigarette smoking, which could consequently cause complex illnesses with inflammatory components (152). Notably, there are indications that DNA methylation state may repair after the cessation of cigarette smoking (153, 154). However, much more
remains to be done with respect to the elucidation of the interactions between gene polymorphisms and epigenetic changes on the one hand and smoking on the other hand.

Ultraviolet radiation

Ultraviolet radiation (UVR) is an important environmental factor inducing SLE, as demonstrated in various studies of human populations and experimental studies (155) (Figure 2). It plays a crucial role in the pathogenesis of lupus by inducing a proinflammatory environment and leading to abnormal long-lasting photoreactivity via inflammatory mediators, such as proinflammatory cytokines, chemokines, and adhesion molecules. UVR exposure upregulates proinflammatory cytokines expression, such as IFN-α, IL-1, IL-6, and TNF-α (156). IFNs increase the expression of proinflammatory chemokines, including chemokine (C-X-C motif) ligand (CXCL) 9, CXCL10, and CXCL11, which recruit chemokine (C-X-C motif) receptor 3 effector cells and induce keratinocyte apoptosis (157).

UVR also upregulates intracellular adhesion molecules, such as intercellular adhesion molecule 1 (ICAM-1) and lymphocyte function-associated antigen 1, and increases the secretion of chemokines, including IL-8, chemokine (C-C motif) ligand (CCL) 5, CCL20, CCL22, and chemerin, which are important for recruiting immune cells to areas of inflammation (158, 159).

In addition, one study revealed that UVR exposure induced high-mobility group protein B1 (HMGB1) release, which is related to the number of apoptotic cells in patients with SLE. HMGB1 released from apoptotic keratinocytes exerts inflammatory effects through binding to its receptors, resulting in the development of inflammatory lesions in the skin of patients with SLE upon UVR exposure (160).

If UVR is a trigger for SLE onset, glutathione S-transferases (GSTs, detoxification enzymes that protect cells from attack by reactive electrophiles that are produced by certain stressors, such as infection) may play a key role (3). The isoenzyme Mu of GST (GSTM1) is dominantly inherited. A population-based case-control study reported a threefold increased risk of SLE associated with 24 or more months of occupational sun exposure among Caucasian participants with the null GST Mu 1 (GSTM1) genotype (which leads to decreased activity of the GST enzyme). No effect of occupational sun exposure (on SLE risk) was seen in participants with the positive genotype (i.e., with the full activity of the GST enzyme) (161). However, more mechanisms of UVR affecting SLE disease progression need to be discovered and explored.

Consumption of alcohol and caffeine-rich beverages

Previously, epidemiological studies showed that there was no significant association between alcohol consumption and SLE (110, 162–166). However, in the last several decades, several studies have consistently suggested that moderate alcohol consumption was negatively associated with the risk of SLE, irrespective of the type of alcoholic beverage (3, 112, 115, 167, 168). A meta-analysis of six case-control studies and one cohort study published in 2008 revealed that moderate alcohol consumption likely has a protective effect against the development of SLE (169). Furthermore, a case-control study from Japan suggested that consumption of black tea (OR = 1.88, 95% CI 1.03–3.41) and coffee (OR = 1.57, 95% CI 0.95–2.61) increased the risk of SLE (Figure 2) (170). Gene-environment interactions may be implicated in the mechanisms responsible for protective effects of alcohol consumption and SLE-aggravating action of caffeine-rich beverages. Kiyohara et al. showed that NAT2 genotype significantly affected the association between SLE risk on the one hand and alcohol and black tea consumption on the other hand (170). Another study that enrolled 505 patients with SLE from the Korean Lupus Network (KORNET) SLE registry between January 2014 and January 2016 showed that current alcohol consumption likely has a protective effect against the progression of SLE, while alcohol consumption is controversial and needs more research.

Future directions

Modifying lifestyle risk factors could be the basis of potential preventative measures or therapy for SLE in the future. Insights into cellular and molecular mechanisms of negative and positive effects of lifestyle preferences on SLE incidence and manifestations are still being researched. These mechanisms involve gene-environment interactions, epigenetic changes, immune dysfunction, hyper-inflammatory response, cytotoxicity, and others. Practical measures with regard to these lifestyle choices in the future will benefit SLE patients and may provide potential therapy strategies.

Author contributions

JC and SL wrote the manuscript and designed the figures. WP, FG, LY, H-FL, and QP revised the manuscript. All authors contributed to the article and approved the submitted version.

Funding

This study was supported by the National Natural Science Foundation of China (no. 82070757, 81471530), the Department of established positions for the Zhujiang Scholar from
Pubisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

1. Barber MRB, Drenkard C, Falsantri T, Hoi A, Mak A, Kow NY, et al. Global epidemiology of systemic lupus erythematosus. Nat Rev Rheumatol (2021) 17:515–32. doi: 10.1038/s41584-021-00668-1

2. Dankenho N, Satia JA, Anthony MS. Epidemiology of systemic lupus erythematosus: a comparison of worldwide disease burden. Lupus (2006) 15:908–18. doi: 10.1177/096120330623055X

3. Woo IMP, Parks CG, Jacobsen S, Costenbader KH, Bernatsky S. The role of environmental exposures and gene–environment interactions in the etiology of systemic lupus erythematosus. J Internal Med (2022) 291:755–78. doi: 10.1111/joim.13448

4. Felten R, Scher F, Sibilia J, Chasset F, Arnaud L. Advances in the treatment of systemic lupus erythematosus. From back to the future, to the future and beyond. Joint Bone Spine (2019) 86:429–36. doi: 10.1016/j.jbspin.2018.09.004

5. Chen J, Liao S, Zhou H, Yang L, Guo F, Chen S, et al. Humanized mouse models of systemic lupus erythematosus: Opportunities and challenges. Front Immunol (2021) 12:816956. doi: 10.3389/fimmu.2021.816956

6. Albrecht K, Redeker I, Aringer M, Marschall U, Strangfeld A, Callhoff J. Comorbidities and healthcare utilisation in patients with incident systemic lupus erythematosus followed for 3 years after diagnosis: a claim’s data cohort. Lupus Sci Med (2021) 8(1):e000526. doi: 10.1177/2055818721000526

7. Prickett JD, Robinson DR, Steinberg AD. Effects of dietary enrichment with eicosapentaenoic acid upon autoimmune nephritis in female NZB/NZW/F1 mice. Arthritis Rheumatol (1983) 26:153–9. doi: 10.1002/art.1780260203

8. Robinson DR, Prickett JD, Polisson R, Steinberg AD, Levin L. The protective effect of dietary fish oil on murine lupus. Prostaglandins (1985) 30:51–75. doi: 10.1016/S0090-6980(85)80010-1

9. Robinson DR, Prickett JD, Makoul GT, Steinberg AD, Colvin RB. Dietary fish oil reduces progression of established renal disease in NZB/NZW F1 mice and delays renal disease in BXSB and MRL/l strains. Arthritis Rheumatol (1986) 29:539–46. doi: 10.1002/art.1780290412

10. Peskta J. N-3 polyunsaturated fatty acids and autoimmune-mediated glomerulonephritis. prostaglandins. Leukotrienes Essential Fatty Acids (PLEFA) (2010) 82:251–8. doi: 10.1016/j.plfeda.2010.02.013

11. Peskta J, Vines LL, Bates MA, He K, Langohr I. Comparative effects of n-3, n-6 and n-9 unsaturated fatty acid-rich diet consumption on lupus nephritis, of n-3 and n-6 polyunsaturated fatty acids in patients with systemic lupus erythematosus. Arthritis Res Ther (2010) 82:251–8. doi: 10.1016/j.plefa.2010.02.013

12. Aparicio-Soto M, Sanchez-Hidalgo M, Cardeno A, Rosillo MA, Sanchez-Martinez JA, et al. An update on the role of omega-3 fatty acids on inflammatory potential of long-chain omega-3 fatty acids. Inflamm Res (2004) 53:1551–6. doi: 10.1007/s00032-003-1068-y

13. Gorczyca D, Szponar B, Paszko A, Kowalska E, Bogumil A. Inflammatory potential of long-chain omega-3 fatty acids. Ann Rheumatic Dis (2015) 74:1110–15. doi: 10.1136/annrheumdis-2014-206355

14. Walton AJ, Snaith ML, Locniskar M, Cumberland AG, Morrow WJ, et al. The inflammatory cytokine network. Cytokine Growth Factor Rev (2014) 25:207–13. doi: 10.1016/j.cytogfr.2014.08.010

15. Duffy EM, Meenagh GK, McMillan SA, Strain JJ, Hannigan BM, Bell AL. The role of oxidative stress in systemic lupus erythematosus. Ann Rheumatic Dis (2008) 67:841–8. doi: 10.1136/ard.2007.077156

16. Arries C, Hynan LS, Lerman RH, Karp DR, Mohan C. Placebo-controlled randomized clinical trial of fish oil’s impact on fatigue, quality of life, and disease activity in systemic lupus erythematosus. Nutr J (2013) 12:48. doi: 10.1186/1475-2891-12-48

17. Li X, Bi X, Wang S, Zhang Z, Li J, Zhao AZ. Therapeutic potential of n-3 polyunsaturated fatty acids in human autoimmune diseases. Front Immunol (2019) 10:2241. doi: 10.3389/fimmu.2019.02241

18. Elkan AC, Anania C, Gustafsson T, Jorgstrand T, Hafstrom I, Frostegard J. Diet and fatty acid pattern among patients with SLE: associations with disease activity, blood lipids and atherosclerosis. Lupus (2012) 21:1405–15. doi: 10.1177/0961203312458471

19. Gil A. Polynsaturated fatty acids and inflammatory diseases. Biomedicine Pharmacotherapy = Biomedecine pharmacotherapie (2002) 56:388–96. doi: 10.1016/S0920-1211(02)00326-1

20. Calder PC. N-3 polyunsaturated fatty acids and inflammation: from basic science to clinical application. Proc Nutr Soc (2004) 63:89–104. doi: 10.1079/pen003328

21. Calder PC. N-3 polyunsaturated fatty acids, inflammation, and inflammatory diseases. Am J Clin Nutr (2006) 83:1506–9. doi: 10.1093/ajcn/83.6.1505S

22. Calder PC. The relationship between the fatty acid composition of immune cells and their function. Prostaglandins leukotrienes essential fatty Acids (PLEFA) (2010) 82:251–8. doi: 10.1016/j.plfeda.2010.02.013

23. Calder PC. The role of fatty acids and the immune system: from basic science to clinical applications. Proc Nutr Soc (2004) 63:89–104. doi: 10.1079/pen003328

24. Calder PC. Polyunsaturated fatty acids, inflammation, and inflammatory diseases. Am J Clin Nutr (2006) 83:1506–9. doi: 10.1093/ajcn/83.6.1505S

25. Calder PC. The role of fatty acids and the immune system: from basic science to clinical applications. Proc Nutr Soc (2004) 63:89–104. doi: 10.1079/pen003328

26. Calder PC. Polyunsaturated fatty acids, inflammation, and inflammatory diseases. Am J Clin Nutr (2006) 83:1506–9. doi: 10.1093/ajcn/83.6.1505S

27. Calder PC. The 2008 ESPEN sir David cuthbertson lecture: Fatty acids and inflammation–from the membrane to the nucleus and from the laboratory bench to the clinic. Clin Nutr (Edinburgh Scotland) (2019) 28:29–30. doi: 10.1016/j.clnu.2019.09.003

28. Hou TY, McMurray DN, Chapkin RS. Omega-3 fatty acids, lipid rafts, and T cell signaling. Eur J Pharmacol (2010) 675:2–9. doi: 10.1016/j.ejphar.2015.03.091

29. Lorente-Cebria S, Costa AG, Navas-Carretero S, Zahala M, Laiogia LM, Martinez JA, et al. An update on the role of omega-3 fatty acids on inflammatory and degenerative diseases. J Physiol Biochem (2015) 71:341–9. doi: 10.1007/s13105-015-0395-y

30. Calder PC. Marine omega-3 fatty acids and inflammatory processes: Effects, mechanisms and clinical relevance. Biochim Biophys Acta (2015) 1851:469–84. doi: 10.1016/j.bbadis.2014.08.010

31. Rowan AJ, Westerberg AH, Ostman J, van’t Hof A, Hafstrom I, Frostegard J. Polyunsaturated fatty acids and inflammatory disease. A randomised controlled trial of n-3 polyunsaturated fatty acids on endothelial function and disease activity in systemic lupus erythematosus. Ann Rheumatic Dis (2008) 67:841–8. doi: 10.1136/ard.2007.077156

32. Akerele OA, Cheema SK. A diet enriched in longer chain omega-3 fatty acids reduced placental inflammatory cytokines and improved fetal sustainability.
Modulator of the immune system.

lupus erythematosus.

extent of vitamin D deficiency.

GS, et al. Combined role of vitamin D status and CYP24A1 in the transition to dihydroxyvitamin D3 on the Th17 cells.

Restoration of regulatory and effector T cell balance and B cell homeostasis in development of Th2 cells.

dihydroxyvitamin D3 has a direct effect on naive CD4+ T cells to enhance the response of 25-hydroxy vitamin D in Egyptian patients with systemic lupus erythematosus: modest association with disease activity and the urine protein-to-creatinine ratio.

Arthritis Rheumatism (2013) 65:1860–71. doi: 10.1002/art.37953

de Souza VM, Bastos MG, Fernandes NM, Mansur JN, Raspo NR, de Souza DM, et al. Association of hypovitaminosis D with systemic lupus erythematosus and inflammation. Jornal brasileiro nefrologia: orgao oficial Sociedades Bras e Latino-Americana Nefrologia (2014) 36:430–6. doi: 10.1595/0101-2800.201400462

McChie TK, DeGeuril K, Walters CA, Soyibo A, Lee MG. Vitamin D levels in Jamaican patients with systemic lupus erythematosus. Lupus (2014) 23:1092–6. doi: 10.1177/0961203314528556

Robinson AB, Tangpichra Y, Yow E, Guton R, Comcsagya GA, Schanberg LE. Vitamin D deficiency is common and associated with increased C-reactive protein in children and young adults with lupus: an atherosclerosis prevention in pediatric lupus erythematosus substudy. Lupus Sci Med (2014) 1:e000011.

Al-Saaleem A, AL’Eed C, Al-Saaghir A, Al-Mayouf SM. Vitamin D status in children with systemic lupus erythematosus and its association with clinical and laboratory parameters. Clin Rheumatol (2015) 34:81–4. doi: 10.1007/s10067-014-2481-z

Mandal M, Tripathy R, Panda AK, Pattanaik SK, Dukua S, Pradhan AK, et al. Vitamin D levels in Indian systemic lupus erythematosus patients: association with disease activity index and interferon alpha. Arthritis Res Ther (2014) 16:R49. doi: 10.1186/ar4479

Yap KS, Northcott M, Hoi AB, Morand EF, Nikpour M. Association of low vitamin D with high disease activity in an Australian systemic lupus erythematosus cohort. Lupus Sci Med (2015) 2:e000064. doi: 10.1177/2055110014543777

Stagi S, Cavalli L, Bertini F, de Martino M, Ceranic MM, Brandi ML, et al. Vitamin D levels in children, adolescents, and young adults with juvenile-onset systemic lupus erythematosus: a cross-sectional study. Lupus (2014) 23:1059–65. doi: 10.1177/0961203314532564

Yap KS, Morand EF, Vitamin D. And systemic lupus erythematosus: continued evolution. J Autoimmun (2015) 68:1822–9. doi: 10.1016/j.jaut.2015.10.008

Hirakul LT, Munger KL, Costenbader KH, Karlson EW. Dietary intake of vitamin D during adolescence and risk of adult-onset systemic lupus erythematosus and rheumatoid arthritis in women. Ann Rheum Dis (2008) 67:530–5. doi: 10.1136/ard.2007.072736

Liao M, Liu G, Feng R, Zhang L. Vitamin D intake cannot represent the actual vitamin D status in children with systemic lupus erythematosus and in adults with systemic lupus erythematosus: modest association with disease activity and the urine protein-to-creatinine ratio. Arthritis Rheumatism (2013) 65:1860–71. doi: 10.1002/art.37953

Ding Y, Liao W, He XJ, Xiang W. Effects of 1,25(OH)2 D3 and vitamin D receptor on peripheral CD4+(+)CD26+(+) double-positive T lymphocytes in a mouse model of systemic lupus erythematosus. J Cell Mol Med (2017) 21:975–85. doi: 10.1111/jcmm.13037

Reynolds JA, Rosenberg AZ, Smith CK, Sergeant JC, Rice GL, Briggs TA, et al. Brief report: Vitamin D deficiency is associated with endothelial dysfunction and increases type I interferon gene expression in a murine model of systemic lupus erythematosus. Arthritis Rheumatol (Hoboken N J.) (2016) 68:2929–35. doi: 10.1002/art.39803

Pocovi-Gerardino G, Correa-Rodriquez M, Callejas-Rubio JL, Rios-Fernández R, Ortego-Centeno N, Rueda-Medina B. Dietary intake and nutritional status in patients with systemic lupus erythematosus. Endocrinologia Diabetes y Nutricion (2018) 65:533–9. doi: 10.1016/j.endinu.2018.05.009

Aparicio-Soto M, Sánchez-Hidalgo M, Álarcón-de-la-Lastra C. An update on diet and nutritional factors in systemic lupus erythematosus patients. Management. Nutr Res (2017) 37:138–177. doi: 10.1016/j.nutres.2017.04.006

Chao Koengnam N, Vitamin D. And rheumatic diseases: A review of clinical evidence. Int J Mol Sci (2021) 22(19):10659. doi: 10.3390/ijms221910659

Kudii M, Nahas LD, Alkhawr R, Hamsbo A, Omar A. The prevalence of oral mucosal lesions and related factors in systemic lupus erythematosus patients. Arthritis Res Ther (2021) 23:229. doi: 10.1186/s13075-021-02614-8

Raymond WD, Handorf M, Furfaro M, Eilertsen GO, Nossent JC. Smoking associates with increased BAFF and decreased interferon-γ levels in patients with systemic lupus erythematosus. Lupus Sci Med (2021) 8(1):e000357. doi: 10.1177/2055110021985067

Wasio M, Horuchi T, Kyioskara C, Kodama H, Tada Y, Asami T, et al. Smoking, drinking, sleeping habits, and other lifestyle factors and the risk of systemic lupus erythematosus in Japanese females: findings from the KYSS study. Modern Rheumatol (2016) 26:143–50. doi: 10.1007/s10165-016-0747-4

Ekholm-Kullberg S, Kautiainen H, Alpa P, Leirisalo-Reksa M, Julkunen H. Smoking and the risk of systemic lupus erythematosus. Clin Rheumatol (2011) 30:1219–22. doi: 10.1007/s10067-013-2244-4

Takvorjan SU, Merola JF, Costenbader KH. Cigarette smoking, alcohol consumption and risk of systemic lupus erythematosus. Lupus (2014) 23:537–44. doi: 10.1177/0961203313501400

Versini M, Tosmono S, Comaneshier D, Shoefned Y, Cohen AD, Amital H. Smoking and obesity in systemic lupus erythematosus: a cross-sectional study. Eur J Clin Invest (2017) 47:442–7. doi: 10.1111/eci.12897

Barbahy M, Tedeschi SK, Iai B, Malpais S, Kreps D, Sparks JA, et al. Cigarette smoking and the risk of systemic lupus erythematosus, overall and by anti-double stranded DNA antibody subtype, in the nurses’ health study cohorts. Ann Rheum Dis (2018) 77:196–202. doi: 10.1136/annrheumdis-2017-211675

Guzi YC, Barbahy M, Castro-Webb N, Conte C, Tedeschi SK, Leatherwood C, et al. Relationship of cigarette smoking and alcohol consumption to incidence of systemic lupus erythematosus in a prospective cohort study of black women. Arthritis Care Res (2019) 71:671–7. doi: 10.1002/acr.23703

Nagata C, Fujita S, Iwata H, Kurosawa Y, Kobayashi K, Kobayashi M, et al. Systemic lupus erythematosus: a case-control epidemiologic study in Japan. Int J Dermatol (1995) 34:333–7. doi: 10.1111/j.1365-4632.1995.tb03614.x
systemic lupus erythematosus (SLE) lupus. (2013) 22:597–606. doi: 10.1177/0961203313483377

161. Fraser PA, Ding WZ, Mohseni M, Treadwell EL, Dooley MA, St Clair EW, et al. Glutathione s-transferase m null homozygosity and risk of systemic lupus erythematosus associated with sun exposure: a possible gene-environment interaction for autoimmunity. *J Rheumatol* (2003) 30:276–82.

162. Wang P, Dan YL, Wu Q, Tao SS, Yang XK, Wang DG, et al. Non-causal effects of smoking and alcohol use on the risk of systemic lupus erythematosus. *Autoimmun Rev* (2021) 20:102890. doi: 10.1016/j.autrev.2021.102890

163. Nagata C, Fujita S, Iwata H, Kurosawa Y, Kobayashi K, Kobayashi M, et al. Systemic lupus erythematosus: a case-control epidemiologic study in Japan. *Int J Dermatol* (1995) 34:333–7. doi:10.1111/j.1365-4632.1995.tb03614.x

164. Ghaussy NO, Sibbitt WLIJ, Qualls CR. Cigarette smoking, alcohol consumption, and the risk of systemic lupus erythematosus: a case-control study. *J Rheumatol* (2001) 28:2449–53.

165. Formica MK, Palmer J, Rosenberg L, McAlindon TE. Smoking, alcohol consumption, and risk of systemic lupus erythematosus in the black women’s health study. *J Rheumatol* (2003) 30:1222–6.

166. Kim SK, Lee SS, Choe JY, Park SH, Lee H. Effect of alcohol consumption and smoking on disease damage in systemic lupus erythematosus: data from the Korean lupus network (KORNET) registry. *Lupus* (2017) 26:1540–9. doi:10.1177/0961203317709346

167. Kiyohara C, Washio M, Horuchi T, Asami T, Ide S, Atsumi T, et al. Cigarette smoking, alcohol consumption, and risk of systemic lupus erythematosus: a case-control study in a Japanese population. *J Rheumatol* (2012) 39:1363–70. doi:10.3899/jrheum.111609

168. Barbhaiya M, Lu B, Sparks JA, Malpeis S, Chang SC, Karlson EW, et al. Influence of alcohol consumption on the risk of systemic lupus erythematosus among women in the nurses’ health study cohorts. *Arthritis Care Res* (2017) 69:384–92. doi:10.1002/acr.22945

169. Wang J, Pan H-J, Ye D-Q, Su H, Li X-P. Moderate alcohol drinking might be protective for systemic lupus erythematosus: a systematic review and meta-analysis. *Clin Rheumatol* (2008) 27:1557–63. doi:10.1007/s10067-008-1004-z

170. Kiyohara C, Washio M, Horuchi T, Asami T, Ide S, Atsumi T, et al. Modifying effect of n-acetyltransferase 2 genotype on the association between systemic lupus erythematosus and consumption of alcohol and caffeine-rich beverages. *Arthritis Care Res* (2014) 66:1048–56. doi:10.1002/acr.22282