Sex Differences in 1-Year Health Status Following Percutaneous Coronary Intervention in Patients Without Acute Myocardial Infarction: Results From the China PEACE Prospective Study

Xin Zheng, MD, PhD;† Rachel P. Dreyer, PhD;* Jeptha P. Curtis, MD; Shuling Liu, PhD; Xiao Xu, PhD; Xueke Bai, MS; Xi Li, MD, PhD; Haibo Zhang, MD; Siming Wang, MD; Frederick A. Masoudi, MD, MSPH; John A. Spertus, MD, MPH; Jing Li, MD, PhD; Harlan M. Krumholz, MD, SM;‡ for the China PEACE Collaborative Group

Background—Sex differences in health status outcomes after percutaneous coronary intervention among patients without acute myocardial infarction are not well described.

Methods and Results—A total of 2237 patients (33.4% women) without acute myocardial infarction undergoing percutaneous coronary intervention were enrolled from 39 Chinese tertiary hospitals in the PEACE (China Patient-centered Evaluative Assessment of Cardiac Events) prospective percutaneous coronary intervention study. Data were collected immediately before and 1 year following percutaneous coronary intervention. Health status was measured using the disease-specific Seattle Angina Questionnaire (SAQ) Angina Frequency and Quality of Life domains, as well as the SAQ Summary Score. Among the study population, women were older, more often single, had lower levels of education, and had a higher prevalence of cardiac risk factors such as hypertension and diabetes mellitus. Women had lower mean 1-year SAQ Angina Frequency scores (mean±SD, 91.0±17.3 versus 93.9±13.3; P<0.01), SAQ Quality of Life scores (mean±SD, 67.3±23.0 versus 70.6±21.6; P<0.01), and SAQ Summary Scores (mean±SD, 81.6±13.8 versus 84.8±11.9; P<0.01), a difference of marginal clinical significance that persisted after multivariable adjustment. A slightly larger improvement in the SAQ Summary Score was observed in women as compared with men (20.9±22.6 versus 18.5±21.3; P=0.007) in unadjusted analysis. However, women were less likely to achieve clinically significant improvement in SAQ Angina Frequency (adjusted odds ratio, 0.67; 95% CI, 0.45–1.00) and SAQ Quality of Life (adjusted odds ratio, 0.73; 95% CI, 0.56–0.96) after adjustment.

Conclusions—There were no clinically significant differences in 1-year health status outcomes and improvement in health status by sex among patients without acute myocardial infarction following percutaneous coronary intervention. However, female sex was associated with poorer 1-year health status and a lower likelihood of experiencing clinically significant improvement in health status.

Clinical Trial Registration—URL: https://www.clinicaltrials.gov/. Unique identifier: NCT01624922. (J Am Heart Assoc. 2020;9:e014421. DOI: 10.1161/JAHA.119.014421.)

Key Words: sex differences • health status • percutaneous coronary intervention

From the National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Fuwai Hospital, National Center for Cardiovascular Diseases, Beijing, People’s Republic of China (X.Z., X.B., X.L., J.L., H.Z., S.W.); Center for Outcomes Research and Evaluation, Yale New Haven Hospital, New Haven, CT (R.P.D., J.P.C., S.L., X.X., H.M.K.); Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (J.P.C., H.M.K.); Departments of Emergency Medicine (R.P.D.), and Obstetrics, Gynecology and Reproductive Sciences (X.X.), Yale School of Medicine, New Haven, CT; Department of Health Policy and Management, Yale School of Public Health, New Haven, CT (H.M.K.); Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO (F.A.M.); Department of Cardiovascular Outcomes Research, Saint Luke’s Mid America Heart Institute/University of Missouri–Kansas City, Kansas City, MO (J.A.S.).

Accompanying Appendix S1 and Table S1 are available at https://www.ahajournals.org/doi/suppl/10.1161/JAHA.119.014421

*Dr Zheng and Dr Dreyer are co-first authors.
†Dr Krumholz is the senior author.
‡A complete list of the China PEACE Collaborative Group members can be found in Appendix S1.

Correspondence to: Xin Zheng, MD, PhD, and Jing Li, MD, PhD, National Clinical Research Center of Cardiovascular Diseases, Fuwai Hospital, 167 Beilishi Rd, Beijing 100037, People’s Republic of China. E-mails: xin.zheng@fwoxford.org and jing.li@fwoxford.org

Received October 10, 2019; accepted January 24, 2020.

© 2020 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
Clinical Perspective

What Is New?

- There were no clinically significant differences in 1-year health status outcomes or improvement in health status by sex among patients without acute myocardial infarction following percutaneous coronary intervention.
- Female sex was associated with poorer 1-year health status and a lower likelihood of experiencing clinically improvement in health status.

What Are the Clinical Implications?

- Women can benefit as much as men from percutaneous coronary intervention with regard to their unadjusted health status outcomes.
- Further studies are needed to clarify the association between sex and health status following percutaneous coronary intervention.

Percutaneous coronary intervention (PCI) is a cornerstone in the treatment for patients with coronary artery disease (CAD), including those with and without acute myocardial infarction (AMI). Unlike patients with AMI, those undergoing PCI for stable coronary disease have substantially lower risks for death and major cardiovascular events, especially given the wide use of more-sensitive biomarkers of myocardial necrosis, such as troponins, as the key criteria for diagnosing AMI. Therefore, improving health status–related (symptoms, functioning, and quality of life) outcomes have become increasingly important for these patients.

Earlier studies have shown improved health status following PCI among stable patients. However, these studies did not stratify the population by sex. Whether women can benefit as much as men from PCI with regard to their health status outcomes remains unclear. Among patients undergoing PCI, women tend to have worse socioeconomic status than men and hence may experience greater barriers to access to follow-up care and have poor adherence to medications after discharge. Moreover, women more likely have other comorbidities and microvascular dysfunction, where PCI may be less effective in relieving symptoms. Thus, it is possible that women may have more residual symptoms and worse quality of life after PCI compared with men. However, data on sex-based differences in such outcomes for patients without AMI are sparse.

Data from China can provide a unique opportunity for investigating sex differences in patients’ health status after PCI. The volume of PCI procedures has increased substantially over the past decade, reaching 915,256 procedures in 2018, with 65% performed among patients without AMI. Understanding how women and men differ in symptoms and quality of life after PCI may help guide clinical decision making regarding PCI and inform better tailored care for the large number of women undergoing these procedures in China. Such information may also inform care for women in Western countries.

Using data from the China PEACE-Prospective PCI Study (China Patient-centered Evaluative Assessment of Cardiac Events Prospective Percutaneous Coronary Intervention Study), we sought to determine whether: (1) women have similar health status at 1 year after PCI among patients without AMI; (2) improvement in health status from baseline to 1 year following PCI differs by sex; and (3) such sex differences persist after adjustment for patients’ sociodemographics, clinical characteristics, treatment factors, and baseline health status.

Methods

Disclosure Statement The data and statistical code are not available to other researchers at this time.

Study Population and Study Design

The design of the China PEACE-Prospective PCI Study has been published previously. In brief, between 2012 and 2013, we enrolled 4,225 consecutive patients undergoing PCI for CAD who had at least 1 coronary stent implanted at 40 sites (39 participating tertiary hospitals) located in 18 provinces in China. For this study, we excluded patients who died during hospitalization (n=11), those with treatment withdrawal because of serious illness (n=1), those who were transferred out (n=8), and those with AMI (n=1968) and focused on participants without AMI (n=2237), including those with unstable angina (UA; n=1599) or stable CAD (n=638). Diagnosis of AMI was determined by the clinical discharge diagnosis terms recorded in medical charts.

The central ethics committee at the China National Centre of Cardiovascular Disease, local ethics committee at each participating hospital, and the Yale University Human Investigation Committee approved this study. The Chinese government funded the study and had no role in the study design, data collection, data analysis, data interpretation, or writing of the report. The study was registered on www.clinicaltrials.gov (NCT01624922).

Data Collection and Variable Definitions

We collected patients’ baseline characteristics and in-hospital treatment and complications by central medical chart abstraction and in-person interview by trained site investigators during the index hospitalization. Patients’ baseline characteristics
included social demographics, cardiac risk factors, comorbidities, and disease severity at admission. In-hospital treatment included number of vessels treated, complete versus incomplete revascularization, type of sent placed, access site, and medications used. In-hospital complications included AMI, stroke, target vessel revascularization, and bleeding events. Complete revascularization was defined as absence of diameter stenosis ≥50% in major coronary arteries or their side branches with a diameter ≥2.5 mm after successful stent implantation during index hospitalization. In contrast, incomplete revascularization was defined as the presence of diameter stenosis ≥50% in major coronary arteries or their side branches with a diameter ≥2.5 mm after successful stent implantation during index hospitalization.

We collected data on patients’ clinical outcomes from discharge to 1 year. In addition, we conducted follow-up interviews at 1, 6, and 12 month after index hospitalization to characterize clinical outcomes and health status using validated patient-reported outcome measures. For this study, we focused on 12-month outcomes. Clinical outcomes included all-cause death, cardiac death, nonfatal AMI, ischemic stroke, coronary revascularization, and a composite of major adverse cardiac events (including cardiac death, nonfatal AMI, ischemic stroke, and coronary revascularization). All the clinical cardiac events were adjudicated by trained cardiologists. Disease-specific (Seattle Angina Questionnaires [SAQ]) health status instruments translated into Chinese were administered by trained site investigators. If the relative of the patients, rather than the patient him- or herself answered phone survey, only the clinical outcomes were collected.

The SAQ is a 19-item disease-specific health status measure for patients with CAD. It has a 4-week recall period. The 5 domains of the SAQ include physical limitation, angina stability, angina frequency, treatment satisfaction, and quality of life. Each domain ranges from 0 to 100 points, with higher scores indicating higher levels of functioning, fewer symptoms, and greater quality of life or treatment satisfaction. The SAQ has similar psychometric properties in men and women and to validly quantify angina frequency as compared with daily diaries. In this study, we used SAQ-AF (SAQ Angina Frequency) score and SAQ-QoL (SAQ Quality of Life) score. For both SAQ-AF and SAQ-QoL scores, an increase of ≥10 points was considered a clinically significant improvement. Additionally, we used the SAQ-SS (SAQ Summary Score), which summarizes the physical limitation, angina frequency, and quality-of-life domains, to assess patients’ overall angina-related health status.

Statistical Analysis

We used frequency and percentages to describe categorical variables and means with SD or medians with interquartile ranges to describe continuous variables. We compared baseline characteristics between women and men using chi-squared tests, Student t tests, or Kruskall-Wallis tests as appropriate. Mean SAQ-AF, SAQ-QoL, and SAQ-SS at baseline and 12 months were calculated and plotted between women and men, and the change from baseline to 12 months was represented as density plots. Then, mean SAQ-AF, SAQ-QoL, and SAQ-SS at baseline and 1 year were compared between women and men, as well as the proportion of patients free of angina (SAQ-AF score≥100). Similarly, we compared mean change from baseline to 1 year in SAQ-AF, SAQ-QoL, and SAQ-SS, as well as the proportion of patients achieving clinically significant improvements from baseline in SAQ-AF and SAQ-QoL, between men and women. Likewise, all-cause mortality, cardiac death, stroke, AMI, coronary revascularization and a composite of major adverse cardiac events within 1 year following PCI were compared between women and men.

We tested the distribution of health status at 12 months. Both SAQ-QoL and SAQ-SS were normally distributed. However, SAQ-AF score was left-skewed. Thus, we modeled SAQ-QoL and SAQ-SS using linear regressions to investigate the independent effect of sex on 1-year health status. We also modeled the likelihood of being free of angina (SAQ-AF score≥100) and the likelihood of achieving clinical significance improvement in SAQ-AF score and SAQ-QoL score using logistic regression. For each of these regressions, we started with an unadjusted model (model 0), which only included sex. Then, we incrementally adjusted for additional covariates. The first model (model 1) included model sociodemographics (age, marital status, education, working status, and health insurance). The second model (model 2) added risk factors and comorbidities (hypertension, diabetes mellitus, hyperlipidemia, smoking status, body mass index >24 kg/m², family history of CAD, previous CAD, previous AMI, previous PCI, previous coronary artery bypass graft, previous stroke, peripheral artery disease, and heart failure) to model 1. The third model (model 3) added clinical characteristics at admission (eGFR, acute heart failure, acute stroke, and extent of CAD) to model 2. The fourth model (model 4) added treatment factors (number of vessels treated during PCI, stent implanted, access site, and medication during hospitalization) to model 3. The fifth model (model 5) added in-hospital complications (major bleeding, any bleeding, blood transfusion, stroke, AMI, target vessel revascularization, coronary artery bypass graft, and length of stay) to model 4. The sixth model (model 6) added baseline health status to model 5.

The proportion of missing data of health status at 1 year was 24.0% and 23.8% among patients with UA and stable CAD, respectively. Among this cohort, women had more patients with missing data at 1-year health status than men. Baseline characteristics of those patients with complete health status
data versus those with missing data at 1 year, overall and stratified by sex, among the cohorts are presented in Table S1. To minimize the effect of selection bias, we constructed a nonparsimonious, multivariable logistic regression model to determine the probability of having missing health status data. We then weighted each of the observed patients by inverse probability of the likelihood of having missing data to increase the contribution of the experience of those most likely to have missing follow-up assessments.

Given that the missing values of the covariates in each model were rare (<2%), except for body mass index (<20%), missing values for covariates were imputed using multiple imputation. Specifically, we replaced each missing value with a set of values generated from its predictive distribution, given the observed data, and repeated this procedure to generate multiple imputed data sets. Each imputed data set was then analyzed separately using the corresponding modeling methods, and the final results were obtained by combining across all imputed data sets using Rubin’s rule to account for uncertainty of imputation. All comparisons were 2-sided, with statistical significance defined as \(P < 0.05 \). Statistical analyses were performed using SAS (version 9.4; SAS Institute Inc., Cary, NC) and R software (version 3.4.1; R Foundation for Statistical Computing, Vienna, Austria).

Results

Study Population and Baseline Characteristics

A total of 2237 patients without AMI undergoing PCI were included. Baseline characteristics are shown in Table 1. Median age was 63 years (interquartile range, 55–70). Women comprised 33.4%. Women were older, more often single, had a lower level of education, and were less likely to be employed and have urban insurance compared with men. Women were also less likely to be smokers and have a history of AMI and more likely to have hypertension, diabetes mellitus, hyperlipidemia, and worse renal function. During hospitalization, there were no significant sex differences in the number of vessels treated, proportion of complete revascularization, as well as use of medications and occurrence of complications during hospitalization. Women had a longer length of stay than men.

Clinical Outcomes

At 1 year after PCI, the rate of all-cause mortality was similar between men and women in this cohort (1.7% versus 1.5%; \(P = 0.716 \)). Similarly, the rate of the composite end point, major adverse cardiac events, did not differ significantly between women and men among this cohort (Table 2).

Unadjusted Sex Difference in Health Status

As shown in Table 3 and Figures 1 and 2, women had significantly lower baseline scores for SAQ-AF (58.5±30.4 versus 62.2±30.4; \(P < 0.01 \)), SAQ-QoL (52.7±24.0 versus 57.1±23.7; \(P < 0.01 \)), and SAQ-SS (60.9±20.0 versus 66.3±19.3; \(P < 0.01 \)). The proportion of patients without angina did not vary by sex (17.1% versus 20.3%; \(P = 0.196 \)). At 1 year, women had lower SAQ-AF scores (mean±SD, 91.0±17.3 versus 93.9±13.3; \(P < 0.01 \)), SAQ-QoL scores (mean±SD, 67.3±23.0 versus 70.6±21.6; \(P < 0.01 \)), SAQ-SS (81.6±13.8 versus 84.8±11.9; \(P < 0.01 \)) and a lower proportion of patients without angina (50.3% versus 57.1%; \(P < 0.01 \)) as compared with men. Of note, AF scores improved from baseline to 1 year in both men and women, and there were no sex differences in the change of SAQ-AF (33.9±33.5 versus 32.9±31.7; \(P = 0.343 \)) and SAQ-QoL scores (13.6±31.3 versus 12.6±30.6; \(P = 0.594 \)) or the proportion of patients who had a clinically significant improvement in SAQ-AF (54.6% versus 55.6%; \(P = 0.254 \)) and SAQ-QoL scores (36.4% versus 37.8%; \(P = 0.170 \)). However, women had a larger improvement of SAQ-SS (20.9±22.6 versus 18.5±21.3; \(P = 0.007 \)).

Independent Association of Sex With 1-Year Health Status Scores and Clinically Significant Improvement in Health Status

Among the 2237 patients without AMI at baseline, 535 (23.9%) did not have follow-up health status scores at 1 year. By fitting model 0 (ie, unadjusted model where sex is the only risk factor), women had −3.5 and −3.4 points lower in SAQ-QoL scores and SAQ-SS, respectively, as compared with men (95% CI for parameter coefficients, −5.7 to −1.2 and −4.6 to −2.1, respectively; Figure 3). After adjusting for potential confounders, women still had significantly lower SAQ-QoL scores (−3.2 points; 95% CI, −5.9 to −0.5) and SAQ-SS (−2.7 points, 95% CI −4.2 to −1.2) at 1 year compared with men. Similarly, women were less likely to be free of angina after PCI as compared with men, even after adjusting for confounders (odds ratio, 0.63; 95% CI, 0.49–0.81). After adjusting for confounders, women were less likely to achieve clinically significant improvement in SAQ-AF (odds ratio, 0.67; 95% CI, 0.45–1.00) and SAQ-QoL scores (odds ratio, 0.73; 95% CI, 0.56–0.96) as compared with men (Figure 4).

Discussion

To our knowledge, this is the first study to explore sex differences in long-term health status outcomes following PCI among patients without AMI in China. Among this cohort recruited from real-word practice, women were more likely to
Sociodemographics
Age, y, mean (SD)
Age, median (IQR)
Married, n (%)
Education
Currently/ever work, n (%)
Health insurance, n (%)
Urban insurance
Rural cooperative medical service/None
Unknown

Cardiac risk factors, n (%)
Hypertension
Diabetes mellitus
Hyperlipidemia
Current smoker
BMI ≥24 kg/m²
Family history of CAD

Medical history, n (%)
Previous AMI
Previous PCI
Previous CABG
Previous stroke
Congestive heart failure

Clinical characteristics at admission, n (%)
eGFR <60 mL/min per 1.73 m²
Acute heart failure
Acute stroke

Extent of CAD, n (%)
One-vessel disease
Two-vessel disease
Three-vessel disease
Nonobstructive

LM disease, n (%)
119 (5.3)

Treatments, n (%)
No. of vessels treated during PCI
Zero-vessel
One-vessel
Two-vessel
Three-vessel

Complete vs incomplete revascularization
1.4224

Complete
225 (10.1)
be older and have poorer socioeconomic conditions and more cardiovascular risk factors. Nevertheless, there were no significant differences in treatment and 1-year clinical outcomes by sex. In this context, although women had lower baseline scores of health status, there were no clinically significant differences in unadjusted health status scores at 1 year or likelihood to achieve clinically significant improvements in health status. However, after adjustment for important confounders, women had lower health status scores at 1 year and were less likely to be free of angina or to achieve clinically significant improvements in health status 1 year after PCI. Our findings provide a more complete picture of sex differences in health status outcomes after PCI among stable patients. This information is important for identifying the opportunities for improvement in the care of coronary artery disease for women without AMI.

In our study, we used patients without AMI, including those labeled as UA and stable CAD, as our study population. In real practice, the diagnosis of UA is increasingly controversial. More patients labeled with UA previously were diagnosed as non-ST-segment–elevation MI with the use of troponin, particularly high-sensitivity troponin, resulting in uncertainty of the diagnosis of UA and decreased risk of this cohort. Overdiagnosis of UA may occur because of external factors, such as reporting appropriateness or differences in reimbursement. Therefore, assessing health status outcomes after PCI among this clearly defined population may provide practical insight for real clinical practice.
We observed slightly lower average unadjusted 1-year SAQ-AF and SAQ-QoL scores in women compared with men; however, the difference did not reach the threshold for what is defined as a clinically significant difference, given that a mean difference of >5 points between groups is considered clinically significant. Nevertheless, we observed that women had lower health status scores in symptoms and quality of life at 1 year and were less likely to be free of angina after PCI. Previous studies have shown that observed lower scores at 1 year is largely attributable to lower baseline scores. However, these sex differences persisted even after adjustment for covariates and baseline health status in this study. Several potential reasons may account for these findings.

Table 2. Clinical Outcomes of Patients Without AMI During 1 Year Post-PCI Stratified by Sex

Outcome	Overall (n=2237)	Men (n=1490)	Women (n=747)	Statistic	P Value
All-cause death, n (%)	36 (1.6)	25 (1.7)	11 (1.5)	0.1324	0.7159
Cardiac death, n (%)	21 (0.9)	14 (0.9)	7 (0.9)	0.0000	0.9954
Nonfatal AMI, n (%)	10 (0.4)	5 (0.3)	5 (0.7)	1.2455	0.2644
Ischemic stroke, n (%)	12 (0.5)	7 (0.5)	5 (0.7)	0.3713	0.5423
Coronary revascularization, n (%)	77 (3.4)	50 (3.4)	27 (3.6)	0.1002	0.7516
MACE, n (%)	111 (5.0)	72 (4.8)	39 (5.2)	0.1594	0.6897

AMI indicates acute myocardial infarction; MACE, major adverse cardiovascular events; PCI, percutaneous coronary intervention.

Table 3. Health Status of Patients Without AMI at 1 Year Post-PCI Stratified by Sex

Outcome	Overall (n=2237)	Men (n=1490)	Women (n=747)	Statistics	P Value
SAQ-AF score (mean, SD)					
Baseline	61.0 (30.4)	62.2 (30.4)	58.5 (30.4)	−2.7410	0.0061
1 y	93.0 (14.8)	93.9 (13.3)	91.0 (17.3)	−3.1800	0.0015
Change from baseline to 1 y	33.2 (32.2)	32.9 (31.7)	33.9 (33.5)	0.9479	0.3432
Clinically significant improvement from baseline to 1 y	1237.0 (55.3)	829.0 (55.6)	408.0 (54.6)	2.7376	0.2544
SAQ-QoL score (mean, SD)					
Baseline	55.6 (23.9)	57.1 (23.7)	52.7 (24.0)	−4.0840	<0.0001
1 y	69.5 (22.1)	70.6 (21.6)	67.3 (23.0)	−2.5980	0.0094
Change from baseline to 1 y	12.9 (30.8)	12.6 (30.6)	13.6 (31.3)	0.5327	0.5943
Clinically significant improvement from baseline to 1 y	835.0 (37.3)	563.0 (37.8)	272.0 (36.4)	3.5413	0.1702
SAQ-SS score (mean, SD)					
Baseline	64.5 (19.7)	66.3 (19.3)	60.9 (20.0)	−5.8790	<0.0001
1 y	83.7 (12.6)	84.8 (11.9)	81.6 (13.8)	−4.1490	<0.0001
Change from baseline to 1 y	19.3 (21.8)	18.5 (21.3)	20.9 (22.6)	2.6952	0.0070
The patients without angina (SAQ-AF score=100), n (%)	430.0 (19.2)	302.0 (20.3)	128.0 (17.1)	3.2592	0.1960
1 y	1227.0 (54.9)	851.0 (57.1)	376.0 (50.3)	9.8420	0.0073

AMI indicates acute myocardial infarction; PCI, percutaneous coronary intervention, SAQ-AF, Seattle Angina Questionnaire Angina Frequency; SAQ-QoL, Seattle Angina Questionnaire Quality of Life; SAQ-SS, Seattle Angina Questionnaire Summary Score.
at 1 year. Further studies on other psychosocial factors, such as depression, anxiety, and return to work, are needed to clarify the mechanisms for this difference in health status between women and men.

Although women had slightly lower scores in health status outcomes at baseline and 1 year, we found that women achieved similar magnitude of benefit from PCI in reducing frequency of angina and quality of life, even slightly greater.

Figure 1. Mean Seattle Angina Questionnaire (SAQ) scores stratified by sex at baseline and 1 year.

Figure 2. Distribution of Seattle Angina Questionnaire (SAQ) scores stratified by sex at baseline, 1 year, and the change form baseline to 1 year.
improvement in overall health status, as compared with men. However, after adjustment of important covariates particularly baseline health status, risk factors, and comorbidities, female sex was associated with less likelihood to derive improvements in health status. The mechanism is not clear. Overall, in this cohort, women had lower baseline scores in health status and more risk factors and comorbidities, as compared with men, which were considered as the strongest factors for improvement after PCI. This higher likelihood of improvement was offset by the effect of female sex, resulting in a similar likelihood of improvement between women and men. These findings could be valuable for physicians treating women with PCI aiming to increase their quality of life as they treat men when this procedure is indicated. On the other hand, additional intervention may be needed to achieve the therapeutic goal of stable CAD care and reduce the disparity in outcomes between men and women.

Limitations
The findings of this study should be interpreted in the context of several limitations. First, similar to other longitudinal, observational studies, such as TRIUMPH (Translational Research Investigating Underlying Disparities in Acute Myocardial Infarction Patients’ Health Status) and PREMIER (Prospective Registry Evaluating Outcomes After Myocardial Infarction Patients’ Health Status),

Figure 3. Independent effect of sex on health status at 1 year post-PCI among patients without AMI. (A) Possibility of being free of angina (Seattle Angina Questionnaire Angina Frequency score = 100 vs < 100). (B) Seattle Angina Questionnaire Quality of Life score. (C) Seattle Angina Questionnaire Summary Score. AMI indicates acute myocardial infarction; OR, odds ratio; PCI, percutaneous coronary intervention; SAQ, Seattle Angina Questionnaire.

Figure 4. Independent effect of sex on clinically significant improvement in health status from baseline to 1 year post-PCI among the patients without AMI. (A) Possibility of achieving clinically significant improvement in SAQ-AF score; (B) Possibility of achieving clinically significant improvement in SAQ-QoL score. Seattle Angina Questionnaire summary score. AMI indicates acute myocardial infarction; OR, odds ratio; PCI, percutaneous coronary intervention; SAQ, Seattle Angina Questionnaire; SAQ-AF, Seattle Angina Questionnaire Angina Frequency; SAQ-QoL, Seattle Angina Questionnaire Quality of Life.

DOI: 10.1161/JAHA.119.014421
Infarctions: Events and Recovery),35,36 we could only enroll and follow up patients who consented to participate in the study. Hence, our findings may not generalize to all patients without AMI. Second, 23.9% of patients were missing health status data. To prevent potential biased estimation of sex differences in health status outcomes, we estimated the potential bias by performing a sensitivity analysis comparing baseline characteristics for men and women with and without complete health status data (Table S1). Furthermore, we constructed nonparsimonious, multivariable logistic regression models to determine the probability of having missing data. We then weighted each of the observed patients by inverse probability of the likelihood to have missing data, so that we preferentially weighted the experience of those most like the patients who were missing follow-up assessments. Additionally, in this study, telephone interviews were conducted when in-person interviews were not feasible, and patient-reported outcomes, such as SAQ, were assessed. However, if the patients’ relatives answered the call, the patient-reported outcomes would not be asked and assessed. Thus, the lack of follow-up data for these patients was primarily attributed to relevant questions not asked when the patients’ relatives completed the interview (469; 21.0%), rather than that they definitely had worse clinical outcomes. Thus, the effect of missing data on the result we estimated was small. Third, we did not collect information on additional treatments or comorbidities within 1 year after PCI, which could potentially affect patients’ 1-year health status. Finally, the Chinese PEACE (Patient-centered Evaluative Assessment of Cardiac Events) prospective study was conducted 6 years ago; the analysis in this study may not completely reflect the current situation because of the change of treatment pattern and socioeconomic conditions.

Conclusions

There was no clinically significant difference in 1-year health status outcomes and improvement in health status by sex among patients without AMI following PCI. However, women had poorer 1-year health status and a lower likelihood of deriving clinically improvement in health status. Further studies are needed to clarify the association between sex and health status following PCI.

Acknowledgments

We appreciate the multiple contributions made by study teams at the China Oxford Centre for International Health Research and the Yale New Haven Hospital Center for Outcomes Research and Evaluation in the realms of study design and operation, particularly the data collection efforts.

Sources of Funding

This project was supported by the National Key Research and Development Program (2018YFC1311205) from the Ministry of Science and Technology of China, the Innovation Fund for Medical Science (2016-I2M-1-006, 2016-I2M-2-004) from Chinese Academy of Medical Sciences, the 111 Project (B16005) from the Ministry of Education of China.

Disclosures

Dr Krumholz works under contract with the Centers for Medicare & Medicaid Services to support quality measurement programs; was a recipient of a research grant, through Yale, from Medtronic and the U.S. Food and Drug Administration to develop methods for post-market surveillance of medical devices; was a recipient of a research grant from Johnson & Johnson, through Yale University, to support clinical trial data sharing; was a recipient of a research agreement, through Yale University, from the Shenzhen Center for Health Information for work to advance intelligent disease prevention and health promotion; collaborates with the National Center for Cardiovascular Diseases in Beijing; receives payment from the Arnold & Porter Law Firm for work related to the Sanofi clopidogrel litigation, from the Martin Baughman Law Firm for work related to the Cook Celect IVC filter litigation, and from the Siegfried and Jensen Law Firm for work related to Vioxx litigation; chairs a Cardiac Scientific Advisory Board for UnitedHealth; was a member of the IBM Watson Health Life Sciences Board; is a member of the Advisory Board for Element Science, the Advisory Board for Facebook, and the Physician Advisory Board for Aetna; and is the co-founder of HugoHealth, a personal health information platform, and co-founder of Refactor Health, an enterprise healthcare Al-augmented data management company. Drs Curtis and Xu work under contract with the Centers for Medicare and Medicaid Services to develop and maintain performance measures that are publicly reported. Dr Masoudi has a contract with the American College of Cardiology as the Chief Scientific Advisor for the NCDR and has received travel expenses from the China Oxford Centre.

References

1. Weintraub WS, Spertus JA, Kolm P, Maron DJ, Zhang Z, Jurkovitz C, Zhang W, Hartigan PM, Lewis C, Veledar E, Bowen J, Dunbar SB, Deaton C, Kaufman S, O’Rourke RA, Goeree R, Barnett PG, Teo KK, Boden WE; COURAGE Trial Research Group, Mancini GB. Effect of PCI on quality of life in patients with stable coronary disease. N Engl J Med. 2008;359: 677–687.

2. Abdallah MS, Wang K, Magnuson EA, Osnabrugg RL, Kappetein AP, Morice MC, Mohr FA, Serruys PW, Cohen DJ; SYNTAX Trial Investigators. Quality of life after surgery or DES in patients with 3-vessel or left main disease. J Am Coll Cardiol. 2017;69:2039–2050.

3. Abdallah MS, Wang K, Magnuson EA, Spertus JA, Farkouh ME, Fuster V, Cohen DJ; FREEDOM Trial Investigators. Quality of life after PCI vs CABG among
patients with diabetes and multivessel coronary artery disease: a randomized clinical trial. JAMA. 2013;310:1581–1590.

4. Alteras C, Proctor KP, Wladimiroff JW, Pracht K, James S, Mark DB, Anstrom KJ, Davidson R, Litwkozy L, Mukay A, Oskumakha A, Farzaneh-Far R, Ben-Yehuda O, Stone GW, Ohman EM. Effects of ranolazine on angina and quality of life after percutaneous coronary intervention with incomplete vessel revascularization: results from the ranolazine for incomplete vessel revascularization (RIVER-PCI) trial. Circulation. 2016;133:39–47.

5. Benaa KH, Mannovenk J, Wiseth R, Aabege L, Myreng Y, Nørgård O, Nilsen DW, Klaw NE, Uchto M, Trovik T, Bendz B, Stavnes S, Bjørnherm R, Larsen AI, Slette M, Steigen T, Jakobsen OJ, Bleie Ø, Bossum E, Hansen TA, Dahl-Eriksen Ø, Njalstad I, Rasmussen K, Wiigsgaard T, Nordehrang, JE; NORSTENT Investigators. Drug-eluting or bare-metal stents for coronary artery disease. N Engl J Med. 2016;375:1242–1252.

6. Cohen DJ, Van Hout B, Serruys PW, Mohr FW, Macaya C, den Heijer P, Ray L, Witkowski A, Mulkay AJ, Osmukhina A, Farzaneh-Far R, Ben-Yehuda O, Ø, Njølstad I, Rasmussen K, Wilsgaard T, Nordrehaug JE; DANAMI-2 Trial Investigators. Quality of life after PCI with drug-eluting stents or coronary artery bypass surgery. N Engl J Med. 2011;364:1016–1026.

7. Lu Y, Zhang H, Wang Y, Zhou T, Welsh J, Liu J, Guan W, Li J, Li X, Zheng Y, Sperutz JA, Masoudi FA, Krumholz HM, Jiang L. Percutaneous coronary intervention in patients without acute myocardial infarction in china: results from the China PEACE center study of percutaneous coronary intervention. JAMA Netw Open. 2018;1:e185446.

8. van Domburg RT, Daemen J, Morice MC, de Bruyne B, Colombo A, Macaya C, Richardt G, Fajadet J, Ham S, van GA, Wittingbol K, Macours N, Stol HP, Serruys PW. Short- and long-term health related quality-of-life and angiinal status in patients treated with the Artus-Revisional Revascularization Therapies Study part II, ARTS-II: sirolimus-eluting stents for the treatment of patients with multivessel coronary artery disease. Eur Heart J. 2010;5:962–967.

9. Bufe A, Wolfertz J, Dinh W, Bansemir L, Koehler T, Halten G, Gueller H, Fith R, Scheffold T, Lankisch M. Gender-based differences in long-term outcome after ST-elevation myocardial infarction in patients treated with percutaneous coronary intervention. J Womens Health. 2010;19:471–475.

10. Mortensen OS, Bjornner JB, Newman B, Oldenburg B, Groenvold M, Madsen JK, Andersen HR, DANAMI-2 Study Group. Gender differences in health-related quality of life following ST-elevation myocardial infarction: women and men do not benefit from primary percutaneous coronary intervention to the same degree. Eur J Cardiovasc Prev Rehabil. 2007;14:37–43.

11. Shaw LJ, Bugiardini R, Merz CN. Women and ischemic heart disease: evolving knowledge. J Am Coll Cardiol. 2009;54:1561–1575.

12. Biering K, Frydenberg M, Hjollund NH. Self-reported health following percutaneous coronary intervention in women with ischemic heart disease. Heart. 2004;94:554–560.

13. Dreyer RP, Smolderen KG, Strait KM, Belardinelli L, Sperutz JA. Cardiovascular outcomes research consortium. Translational Medicine Study of Angioplasty Compared to Medical Therapy Investigators. Coronary catheterization and percutaneous coronary interventions. JAMA. 2008;94:560.

14. Lu Y, Zhou J, Dreyer RP, Caul M, Dada M, Casperson P, Harris CL, Chaitman BR, Shaw L, Gosselin G, Nawaz M, Decker C, Morrow DA, Sperutz JA. Validation of the Seattle Angina Questionnaires short version of the Seattle Angina Questionnaires. JACC Cardiovasc Imaging. 2011;4:467–476.

15. Dreyer RP, Smolderen KG, Strait KM, Belardinelli L, Sperutz JA. Cardiovascular outcomes research consortium. Translational Medicine Study of Angioplasty Compared to Medical Therapy Investigators. Coronary catheterization and percutaneous coronary interventions. JAMA. 2008;94:560.

16. Dreyer RP, Smolderen KG, Strait KM, Belardinelli L, Sperutz JA. Cardiovascular outcomes research consortium. Translational Medicine Study of Angioplasty Compared to Medical Therapy Investigators. Coronary catheterization and percutaneous coronary interventions. JAMA. 2008;94:560.

17. Dreyer RP, Smolderen KG, Strait KM, Belardinelli L, Sperutz JA. Cardiovascular outcomes research consortium. Translational Medicine Study of Angioplasty Compared to Medical Therapy Investigators. Coronary catheterization and percutaneous coronary interventions. JAMA. 2008;94:560.

18. Dreyer RP, Smolderen KG, Strait KM, Belardinelli L, Sperutz JA. Cardiovascular outcomes research consortium. Translational Medicine Study of Angioplasty Compared to Medical Therapy Investigators. Coronary catheterization and percutaneous coronary interventions. JAMA. 2008;94:560.

19. Dreyer RP, Smolderen KG, Strait KM, Belardinelli L, Sperutz JA. Cardiovascular outcomes research consortium. Translational Medicine Study of Angioplasty Compared to Medical Therapy Investigators. Coronary catheterization and percutaneous coronary interventions. JAMA. 2008;94:560.

20. Dreyer RP, Smolderen KG, Strait KM, Belardinelli L, Sperutz JA. Cardiovascular outcomes research consortium. Translational Medicine Study of Angioplasty Compared to Medical Therapy Investigators. Coronary catheterization and percutaneous coronary interventions. JAMA. 2008;94:560.
SUPPLEMENTAL MATERIAL
Appendix. Full list of hospitals in the China PEACE prospective PCI study

Hospital / Province / Municipality	City	Staff	Initials	Title		
1 Air Force General Hospital, PLA	Beijing	Jianchang Wang	JCW	Chief physician		
2 Anhui Provincial Hospital	Hefei	Congchun Huang	CCH	Chief physician		
		Haitao Zhang	HTZ	Associate chief physician		
		Xiangyong Kong	XYK	Resident doctor		
3 Baotou Central Hospital	Baotou	Ruiping Zhao	RPZ	Chief physician		
		Wei Du	WD	Resident doctor		
		Hongyu Li	HYL	Resident doctor		
4 China-Japan Union Hospital of Jilin University	Changchun	Ping Yang	PY	Chief physician		
		Zhaohui Feng	ZHF	Nurse-in-Charge		
		Cuimony Mao	CYM	Attending physician		
		Bing Li	BL	Resident doctor		
5 First Hospital of Shanxi Medical University	Taiyuan	Qinghua Han	QHH	Chief physician		
		Liqin Duan	LQD	Associate chief physician		
		Chunrong Jin	CRJ	Associate chief physician		
6 Fujian Provincial Hospital	Fuzhou	Yansong Guo	YSG	Chief physician		
		Feng Lin	FL	Associate chief physician		
		Xingjing Chen	XJC	Attending physician		
7 Fuwai Hospital	Beijing	Yongjian Wu	YJW	Chief physician		
		Jianjun Li	JLL	Chief physician		
		Chenggang Zhu	CGZ	Associate chief physician		
		Yanmeng Tian	YMT	Resident doctor		
		Qian Dong	QD	Nurse		
8 General Hospital of China FAW Group Corporation	Changchun	Hongtao Pan	HTP	Associate chief physician		
9 Guilin People's Hospital	Guilin	Lei Sun	LS	Attending physician		
		Peng Gao	PG	Resident doctor		
		Yanni Zhuang	YNZ	Resident doctor		
		Wei Li	WL	Resident doctor		
10 Inner Mongolia People's Hospital	Huhehot	Yajun Han	YJH	Chief physician		
		Ping Zhao	PZ	Resident doctor		
		Weiyi Zhao	WYZ	Resident doctor		
11 Inner Mongolia Baogang Hospital	Baotou	Zhiping Ge	ZPG	Chief physician		
		Huihua Wen	HHW	Associate chief physician		
		Qiaoling Liu	QLL	Chief physician		
		Yongdong Li	YDL	Chief physician		
12 Jiangxi Provincial People's Hospital	Nanchang	Lang Hong	LH	Chief physician		
		Linfeng Li	LFL	Associate chief physician		
		Lihua Yuan	LHY	Co-chief nurse		
		Yun Li	YL	Nurse-in-Charge		
13 Jinghai County	Tianjin	Peihua Zhao	PHZ	Chief physician		
Hospital /Municipality	Province/Municipality	City	Staff	Initials	Title	
------------------------	-----------------------	------	--------------------	----------	------------------------------	
Hospital			Jingsheng Sun	JSS	Attending physician	
			Rengui Chai	RGC	Resident doctor	
14 Nanyang Central	Henan	Nanyang	Shouzhong Yang	SZY	Chief physician	
Hospital			Yudong Li	YDL	Chief physician	
			Jianbu Gao	JBG	Associate chief physician	
			Songyu Zhang	SYZ	Attending physician	
15 Qingdao Fuwai	Shandong	Qingdao	Ying Yang	YY	Associate chief physician	
Hospital			Guixin Wu	GXW	Attending physician	
			Jiajia Mao	JLM	Nurse	
			Cheng Zheng	CZ	Admin	
16 Qinghai Cardiovascular and Cerebrovascular Hospital	Qinghai	Xining	Huiping Bian	HPB	Chief physician	
			Bo Chen	BC	Associate chief physician	
			Jiandong Cao	JDC	Attending physician	
17 Qinzhou Second People's Hospital	Guangxi	Qinzhou	Hua Yan	HY	Chief physician	
			Liyuan Chen	LYC	Associate chief physician	
			Qixia Liu	QXL	Resident doctor	
			Lin Chen	LC	Attending physician	
18 Shanxi Cardiovascular Hospital	Shanxi	Taiyuan	Bao Li	BL	Chief physician	
			Bin Yang	BY	Associate chief physician	
			Jianhua Li	JHL	Resident doctor	
			Jianhong Wang	JHW	Resident doctor	
19 Shenyang Northern Hospital	Liaoning	Shenyang	Yaling Han	YLH	Chief physician	
			Xiaozeng Wang	XZW	Chief physician	
			Haiwei Liu	HWL	Associate chief physician	
20 Shanghai Jiao Tong University School of Medicine	Jiangsu	Suzhou	Feng Liu	FL	Chief physician	
			Xiangfei Meng	XFM	Attending physician	
			Bo Shao	BS	Attending physician	
			Zhanling Liao	ZLL	Resident doctor	
21 TEDA International Cardiovascular Hospital	Tianjin	Tianjin	Zhigang Liu	ZGL	Chief physician	
			Wenbin Jing	WBJ	Chief physician	
			Zhipeng Guo	ZPG	Associate chief physician	
22 The Affiliated Hospital of Qingdao University	Shandong	Qingdao	Changyong Zhou	CYZ	Chief physician	
			Yini Wang	YNW	Attending physician	
			Tao Yu	TY	Resident doctor	
23 The First Affiliated Hospital of Fujian Medical University	Fujian	Fuzhou	Jinxiu Lin	JXL	Chief physician	
			Dajun Chai	DJC	Associate chief physician	
			Wenxiang Zhao	WXZ	Resident doctor	
24 Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology	Wuhan	Wuhan	Daowen Wang	DWW	Chief physician	
			Jiangang Jiang	JGJ	Chief physician	
			Xiaqing Shen	XQS	Nurse-in-Charge	
	Hospital	Province/Municipality	City	Staff	Initials	Title
---	---	-----------------------	------------	------------------	----------	------------------------
25	The First Hospital of Jilin University	Jilin	Changchun	Yang Zheng	YZ	Chief physician
				Zhaoxi Liu	XZL	Resident doctor
				Wenqian Zhou	WQZ	Resident doctor
				Lin Zou	LZ	Resident doctor
26	The Fourth Affiliated Hospital of China Medical University	Liaoning	Shenyang	Yuanzhe Jin	YZJ	Chief physician
				Xiaohong Zhang	XHZ	Attending physician
				Xueying Zhang	XYZ	Attending physician
27	The People’s Hospital of Liaoning Province	Liaoning	Shenyang	Zhanquan Li	ZQL	Chief physician
				Ying Liu	YL	Chief physician
				Qian Yu	QY	Attending physician
				Yan Xing	YX	Resident doctor
28	The Second Affiliated Hospital of Harbin Medical University	Heilongjiang	Harbin	Bo Yu	BY	Chief physician
29	The Affiliated Hospital of Xuzhou Medical University	Jiangsu	Xuzhou	Dongye Li	DYL	Chief physician
				Yuanyuan Luo	YYL	Chief physician
				Hong Zhu	HZ	Chief physician
30	The Second Affiliated Hospital of Xuzhou Medical College	Jiangsu	Xuzhou	Shuo Zhang	SZ	Chief physician
				Shuang Yang	SY	Associate chief physician
				Jianqi Feng	JQF	Associate chief physician
31	The Second Affiliated Hospital of Zhengzhou University	Henan	Zhengzhou	Xianen Fa	XNF	Chief physician
				Lihua Zhang	LHZ	Chief physician
				Liqiang Sun	LQS	Attending physician
				Lei Liu	LL	Resident doctor
32	The Second Hospital of Dalian Medical University	Liaoning	Dalian	Peng Qu	PQ	Chief physician
				Hongyan Wang	HYW	Associate chief physician
				Dayuan Lou	DYL	Associate chief physician
				Dajun Yuan	DJY	Associate chief physician
33	The First Affiliated Hospital of Zhengzhou University	Henan	Zhengzhou	Zhenwen Huang	ZWH	Chief physician
				Lili Zhang	LLZ	Resident doctor
34	Union Hospital, Tongji Medical College, Huazhong University of Science and Technology	Hubei	Wuhan	Nianguo Dong	NGD	Chief physician
				Yan Long	YL	Resident doctor
				Jiaxin Wei	JXW	Resident doctor
35	Wuhan Asia Heart Hospital	Hubei	Wuhan	Xi Su	XS	Chief physician
				Songzhi Zhao	SZZ	Attending physician
				Wei Wu	WW	Attending physician
				Yujing Fan	YJF	Resident doctor
Hospital	Province/Municipality	City	Staff	Initials	Title	
-------------------	-----------------------	----------	----------------------	----------	-------------------------------	
Xiangtan Central Hospital	Hunan	Xiangtan	He Huang	HH	Chief physician	
			Jianping Zeng	JPZ	Chief physician	
			Mingxing Wu	MXW	Associate chief physician	
			Yi Zhou	YZ	Associate chief physician	
Xuzhou Central Hospital	Jiangsu	Xuzhou	Qiang Fu	QF	Chief physician	
			Zhenyong Li	ZYL	Associate chief physician	
			Peng Wei	PW	Resident doctor	
			Yi Lu	YL	Resident doctor	
Xuzhou First People's Hospital	Jiangsu	Xuzhou	Hongju Zhang	HJZ	Chief physician	
			Liuxiao Jun	LXJ	Attending physician	
			Ming Hu	MH	Nurse-in-Charge	
			Wei Li	WL	Nurse practitioner	
Zhengzhou Central Hospital	Henan	Zhengzhou	Lin Zhang	LZ	Associate chief physician	
			Yumei Guo	YMG	Associate chief physician	
			Huiling Sun	HLS	Attending physician	
Table S1. Baseline characteristics of patients who completed 1-year assessment vs. those missing 1-year data.

	Overall		Complete		Missing				
	Complete (n = 1702)	Missing (n = 535)	P-Value	Women (n = 555)	Men (n = 1147)	P-Value	Women (n = 192)	Men (n = 343)	P-Value
Socio-demographics									
Age, mean (SD)	61.56(9.85)	64.49(10.21)	<.0001	63.98(8.9)	60.39(10.08)	<.0001	66.41(8.44)	63.41(10.94)	0.0004
Age, median (IQR)	62(55,69)	65(58,72)	<.0001	64(58,71)	61(53,68)	<.0001	68(60,73)	64(55,72)	0.0022
Married, n (%)	1551(91.1)	475(88.8)	0.1058	465(83.8)	1086(94.7)	0.0000	159(82.8)	316(92.1)	0.0011
Education (high school or higher education), n (%)	247(14.5)	65(12.1)	0.1688	32(5.8)	215(18.7)	0.0000	10(5.2)	55(16)	0.0002
Currently/ever work, n (%)	1472(86.5)	443(82.8)	0.0343	424(76.4)	1048(91.4)	0.0000	130(67.7)	313(91.3)	0.0000
Health insurance, n (%)	0.0147	0.0026	0.0279	0.0014	0.0012	0.0018			
Urban insurance	1201(70.6)	342(63.9)	363(65.4)	838(73.1)	110(57.3)	232(67.6)	0.0021		
Rural cooperative medical service/None	499(29.3)	192(35.9)	192(34.6)	307(26.8)	81(42.2)	111(32.4)	0.0001		
Unknown	2(0.1)	1 (0.2%)	0(0)	2(0.2)	1(0.5)	0(0)	0.0001		
Cardiac risk factors, n (%)									
Hypertension	1170(68.7)	375(70.1)	0.5555	436(78.6)	734(64)	0.0000	162(84.4)	213(62.1)	0.0000
Diabetes	501(29.4)	170(31.8)	0.3029	200(36)	301(26.2)	0.0000	75(39.1)	95(27.7)	0.0068
Hyperlipidemia	856(50.3)	257(48)	0.3626	294(53)	562(49)	0.1241	107(55.7)	150(43.7)	0.0077
Current smoker	637(37.4)	191(35.7)	0.4709	36(6.5)	601(52.4)	0.0000	20(10.4)	171(49.9)	0.0000
BMI>=24kg/m2	893(52.5)	240(44.9)	0.0021	295(53.2)	598(52.1)	0.6937	84(43.8)	156(45.5)	0.6994
Family history of CAD	192(11.3)	61(11.4)	0.9385	69(12.4)	123(10.7)	0.2962	22(11.5)	39(11.4)	0.9755
Medical history, n (%)									
------------------------	----------	----------	----------	----------	----------	----------	----------	----------	----------
Prior CAD	965(56.7)	313(58.5)	0.4614	309(55.7)	656(57.2)	0.5538	105(54.7)	208(60.6)	0.1800
Prior MI	267(15.7)	106(19.8)	0.0255	58(10.5)	209(18.2)	0.0000	28(14.6)	78(22.7)	0.0232
Prior PCI	279(16.4)	94(17.6)	0.5239	73(13.2)	206(18)	0.0120	26(13.5)	68(19.8)	0.0670
Prior CABG	12(0.7)	3(0.6)	0.7213	5(0.9)	7(0.6)	0.5018	0(0)	3(0.9)	0.1938
Prior stroke	251(14.7)	105(19.6)	0.0071	110(19.8)	141(12.3)	0.0000	41(21.4)	64(18.7)	0.4515
Congestive heart failure	599(35.2)	173(32.3)	0.2253	220(39.6)	379(33)	0.0076	59(30.7)	114(33.2)	0.5521

Clinical characteristics at admission									
eGFR, mean (SD)	80.65(19.11)	84.85(25.14)	0.0005	75.73(17.95)	83.02(19.21)	<.0001	80.92(22.99)	87.08(26.05)	0.0071
eGFR, median (IQR)	79.49	82.36	0.0113	75.46	81.56	<.0001	79.46	83.27	0.0084
Acute heart failure, n (%)	14(0.8)	3(0.6)	0.5430	5(0.9)	9(0.8)	0.8034	2(1)	1(0.3)	0.2651
Acute Stroke, n (%)	40(2.4)	13(2.4)	0.9158	15(2.7)	25(2.2)	0.5043	4(2.1)	9(2.6)	0.6969
Extent of CAD, n (%)	0.0033			0.5809				0.1289	
1-vessel disease	765(44.9)	196(36.6)	236(42.5)	529(46.1)	70(36.5)	126(36.7)			
2-vessel disease	599(35.2)	204(38.1)	204(36.8)	395(34.4)	70(36.5)	134(39.1)			
3-vessel disease	326(19.2)	132(24.7)	111(20)	215(18.7)	49(25.5)	83(24.2)			
Non-obstructive	12(0.7)	3(0.6)	4(0.7)	8(0.7)	3(1.6)	0(0)			
LM disease	88(5.2)	31(5.8)	0.5748	26(4.7)	62(5.4)	0.5290	10(5.2)	21(6.1)	0.6642

Treatments, n (%)													
No. of vessels treated during PCI	0.0489				0.1852				0.6011				
0-vessel	7(0.4)	5(0.9)	1(0.2)	6(0.5)	2(1)	3(0.9)							
1-vessel	1260(74)	400(74.8)	421(75.9)	839(73.1)	149(77.6)	251(73.2)							
	2-vessel	3-vessel	Complete vs. incomplete revascularization	Complete	Incomplete	Unknown	Stent	DES	BMS	Unknown	Access site	Medications during hospitalization, n (%)	In hospital complications, n (%)
-------------------------	---------	---------	--	---------	-----------	---------	-------	-----	-----	---------	-------------	--	-------------------------------
	410(24.1)	129(24.1)		129(23.2)	281(24.5)	41(21.4)	88(25.7)					Aspirin 1559(91.6) 487(91) 0.6806 510(91.9) 1049(91.5) 0.7612 179(93.2) 308(89.8) 0.1826	Major bleeding 0(0) 1(0.2) 0.0744 23(4.1) 43(3.7) 0.6922 1(0.5) 0(0) 0.1810
	129(23.2)	129(23.2)		21(1.8)	21(1.8)	21(1.8)	21(1.8)					Clopidogrel/ Ticagrelor 1695(99.6) 531(99.3) 0.3319 554(99.8) 1141(99.5) 0.3001 190(99) 341(99.4) 0.5548	
	510(91.9)	510(91.9)		1049(91.5)	1049(91.5)	1049(91.5)	1049(91.5)					Statins 1679(98.6) 530(99.1) 0.4495 550(99.1) 1129(98.4) 0.2629 190(99) 340(99.1) 0.8473	
	179(93.2)	179(93.2)		308(89.8)	308(89.8)	308(89.8)	308(89.8)					Beta-blocker 1388(81.6) 418(78.1) 0.0802 461(83.1) 927(80.8) 0.2633 148(77.1) 270(78.7) 0.6610	
	308(89.8)	308(89.8)		270(78.7)	270(78.7)	270(78.7)	270(78.7)					ACEI/ARB 1080(63.5) 363(67.9) 0.0638 356(64.1) 724(63.1) 0.6812 130(67.7) 233(67.9) 0.9580	
	233(67.9)	233(67.9)		233(67.9)	233(67.9)	233(67.9)	233(67.9)					In hospital complications, n (%)	
Complete vs. incomplete	0.0019	0.0019		0.3600	0.3600	0.5330	0.5330						
revascularization													
Complete	170(10)	170(10)		56(10.1)	114(9.9)	23(12)	32(9.3)						
Incomplete	755(44.4)	755(44.4)		56(10.1)	114(9.9)	23(12)	32(9.3)						
Unknown	777(45.7)	777(45.7)		56(10.1)	114(9.9)	23(12)	32(9.3)						
Stent	0.7306	0.7306		0.6474	0.6474	0.2674	0.2674						
DES	1610(94.6)	1610(94.6)		1087(94.8)	1087(94.8)	178(92.7)	326(95)						
BMS	0.0(0.0)	0.0(0.0)		0.0(0.0)	0.0(0.0)	0.0(0.0)	0.0(0.0)						
Unknown	92(5.4)	92(5.4)		32(5.8)	32(5.8)	14(7.3)	17(5)						
Access site	0.9629	0.9629		0.0469	0.0469	0.0907	0.0907						
Radial	1531(90)	1531(90)		1030(89.8)	1030(89.8)	167(87)	315(91.8)						
Femoral	132(7.8)	132(7.8)		84(7.3)	84(7.3)	17(8.9)	23(6.7)						
Others	39(2.3)	39(2.3)		33(2.9)	33(2.9)	8(4.2)	5(1.5)						
Condition	Count (Percent)	Count (Percent)	Chi-sq	p-Value	Count (Percent)	Count (Percent)	Chi-sq	p-Value	Count (Percent)	Count (Percent)			
---------------------------	-----------------	-----------------	--------	---------	-----------------	-----------------	--------	---------	-----------------	----------------			
Any bleeding	66 (3.9)	22 (4.1)	0.8078	0.398	10 (5.2)	12 (3.5)	0.3394						
Blood transfusion	3 (0.2)	3 (0.6)	0.1337	0.718	2 (0.2)	1 (0.3)	0.2651						
Stroke	63 (3.7)	22 (4.1)	0.6648	0.416	10 (5.2)	12 (3.5)	0.3394						
MI	22 (1.3)	9 (1.7)	0.5013	0.490	4 (2.1)	5 (1.5)	0.5894						
TVR	10 (0.6)	5 (0.9)	0.3909	0.566	3 (1.6)	2 (0.6)	0.2588						
CABG	2 (0.1)	0 (0)	0.4276	0.514	1 (0.5)	0 (0)	0.1810						
Length of stay, mean (SD)	10.24 (5.21)	10 (4.63)	0.3091	0.541	10.38 (4.88)	9.78 (4.47)	0.1501						
Length of stay, median (IQR)	9 (7,12)	9 (7,12)	0.4228	0.530	9 (7,13)	9 (7,12)	0.1674						

ACE-I = angiotensin-converting-enzyme inhibitor; ARB = angiotensin receptor blocker; BMI = body mass index; BMS: bare mental stent; CABG = coronary artery bypass grafting; CAD: coronary heart disease; DES: drug eluting stent; IQR = interquartile range; MI: myocardial infarction; PCI = percutaneous coronary intervention; SD = standard deviation; TVR: target vessel revascularization.