Evaluation of Tracer Kinetic Models for Analysis of $[^{18}\text{F}]$FDDNP Studies

Maqsood Yaqub,1 Ronald Boellaard,1 Bart N. M. van Berckel,1 Nelleke Tolboom,2 Gert Luurtsema,1 Anke A. Dijkstra,1 Mark Lubberink,1 Albert D. Windhorst,1 Philip Scheltens,2 Adriaan A. Lammertsma1

1Department of Nuclear Medicine & PET Research, VU University Medical Centre, P.O. Box 7057, 1007 MB, Amsterdam, The Netherlands
2Department of Neurology & Alzheimer Centre, VU University Medical Centre, P.O. Box 7057, 1007 MB, Amsterdam, The Netherlands

Abstract

Purpose: Different pharmacokinetic methods for $[^{18}\text{F}]$FDDNP studies were evaluated using both simulations and clinical data.

Procedures: Methods included two-tissue reversible plasma (2T4k), simplified reference tissue input (SRTM), and a modified 2T4k model. The latter included an additional compartment for metabolites (2T1M). For plasma input models, binding potential, BP_{ND}, was obtained both directly ($=k_3/k_4$) and indirectly (using volume of distribution ratios).

Results: For clinical data, 2T1M was preferred over 2T4k according to Akaike criterion. Indirect BP_{ND} using 2T1M correlated better with SRTM than direct BP_{ND}. Fairly constant volume of distribution of metabolites was found across brain and across subjects, which was strongly related to bias in BP_{ND} obtained from SRTM as seen in simulations. Furthermore, in simulations, SRTM showed constant bias with best precision if metabolites entered brain.

Conclusions: SRTM is the method of choice for quantitative analysis of $[^{18}\text{F}]$FDDNP even if it is unclear whether labeled metabolites enter the brain.

Key words: $[^{18}\text{F}]$FDDNP, PET, SUV, Reference tissue model, Plasma input model, Metabolites

Introduction

$[^{18}\text{F}]$FDDNP has recently been introduced [1] as a positron emission tomography (PET) ligand for in vivo imaging of amyloid plaques and neurofibrillary tangles in the human brain. Plaques and tangles are thought to be the hallmark of Alzheimer’s disease (AD) [2], and early in vivo detection of these neuropathological lesions could be an important step in evaluating future treatment strategies for AD.

So far, only a few methods for quantification of $[^{18}\text{F}]$FDDNP have been evaluated, such as residence time within a cerebral region relative to that in pons [3], standardized uptake value (SUV) [4], distribution volume ratio (DVR) [4] obtained with Logan analysis [5] using cerebellum as reference region, and several simplified reference tissue-based methods [6] also using cerebellum as reference region. Using Logan analysis, Kepe et al. [7] recently reported increased levels of $[^{18}\text{F}]$FDDNP binding in neocortical regions compared with that in cerebellum in AD patients, whereas no difference in uptake between cerebellum and other regions was found in healthy controls (HC). In addition, Small et al. [8] found that global DVR values in HC were lower than in patients with mild cognitive impairment (MCI), which in turn were lower than in AD subjects. However, arterial sampling was not used in any of these studies. Arterial sampling is considered to be the gold standard, especially if pathological changes may also affect reference regions.

The purpose of the present study was to investigate which pharmacokinetic model could best be used for quantitative...
analysis of F18 FDDNP studies. To this end, both simulated and clinical F18 FDDNP data were used. Data were analyzed using various compartmental models based on plasma [9] and reference tissue [10–12] input data. In addition, a plasma input model was evaluated, which accounted for uptake of labeled metabolites in the brain. Finally, standard uptake value ratios with cerebellum (SUVr) were investigated.

Methods

Scanning Protocol

Clinical data were derived from ongoing patient studies consisting of 12 subjects (six HC, three MCI [13], and three AD) with ages ranging from 58 to 72 years. Mean age (±SD) was 66±5, 68±4, and 63±6 for HC, MCI, and AD, respectively. AD patients were diagnosed with probable AD meeting NINCDS-ADRDA criteria [14]. The study was approved by the Medical Ethics Committee of the VU University Medical Centre, and each subject gave written informed consent prior to inclusion in the study. Clinical results are beyond the scope of the present study and will be reported elsewhere.

As part of the study protocol, each subject first underwent a T1-weighted magnetic resonance imaging (MRI) scan using a 1.5-T SONATA scanner (Siemens Medical Solutions, Erlangen, Germany). This MRI scan was performed to exclude anatomical abnormalities and for co-registration and segmentation purposes.

PET studies were performed using an ECAT EXACT HR+ scanner (CTI/Siemens, Knoxville, USA). The characteristics of this scanner have been described previously [15]. First, a 10-min transmission scan in 2D acquisition mode was performed. This scan was used to correct the subsequent emission scan for tissue attenuation. Next, a dynamic emission scan in 3D acquisition mode was performed following bolus injection of 168±8 MBq [18F] FDDNP [16]. This dynamic emission scan consisted of 23 frames (1×15, 3×5, 3×10, 2×30, 3×60, 2×150, 2×300, 7×600 s) with a total scan duration of 90 min. All frames were reconstructed using FORE+ 2D filtered back projection [17] and a Hanning filter with a cutoff of 0.5 times the Nyquist frequency. Reconstructions included all standard corrections, such as normalization, and decay, dead time, attenuation, randoms, and scatter [18] corrections.

The protocol also included continuous arterial sampling, starting 2 min prior to injection and continuing up to 60 min, using a dedicated online detection system [19]. In addition, at set times (5, 10, 20, 40, and 60 min post-injection), arterial sampling was interrupted briefly for the withdrawal of discrete arterial samples. After each sample, the arterial line was flushed with heparinized saline in order to avoid clotting within the line. Finally, two manual arterial sampling was only used for investigating reference tissue models.

Image Analysis

De-skulled T1-weighted MRI scans [23] were co-registered [24, 25] with a summed PET image (frames 3–12, 25 s–5 min post-injection). This summed PET image resembles a flow image, thereby maximizing cortical information. Time–activity curves were then generated using MR-based automatic delineation of regions of interest (ROI), as described by Svarer et al. [26]. For the purpose of the present study, only TACs from 17 regions (cerebellum, orbital frontal cortex, medial inferior frontal cortex, anterior cingulate cortex, thalamus, insula, caudate, putamen, superior temporal cortex, parietal cortex, medial inferior temporal cortex, superior frontal cortex, occipital cortex, sensory motor cortex, posterior cingulate cortex, entorhinal cortex, hippocampus), all averaged over left and right hemispheres, were analyzed. These anatomical regions were small and defined in gray matter only, thereby minimizing signal dilution due to partial volume effects as much as possible.

Kinetic Analyses of Clinical Data

Clinical data were analyzed using conventional plasma input and reference tissue-based algorithms [9]. As there is some concern that labeled F18 FDDNP metabolites might cross the blood–brain barrier [27, 28], additional analyses were performed using a plasma input model accounting for metabolites entering the brain. In addition, average regional activity concentration ratios with the reference region (SUVr) were derived over the time intervals of 40–60, 60–90, and 80–90 min after injection. For all reference tissue models and SUVc, cerebellar gray matter was used as reference region based on its relatively low levels of amyloid and neurofibrillary tangles [2].

Five different conventional compartmental models were evaluated: single-tissue (1T2k), two-tissue irreversible (2T3k) and two-tissue reversible (2T4k) plasma input models, and simplified (SRTM) [12] and full (FRTM) [10, 11] reference tissue models. Plasma input models contained one additional fit parameter for blood volume. The SRTM was used to estimate binding potential directly (BPND STRM). The 2T4k plasma input model was used to estimate binding potential both directly (BPND 2T4k = k3/k4) and indirectly using volume of distribution ratios (BPND 2T4k = DVR − 1 = VT T2T4k / VT cerebellum − 1) [11]. The latter approach will be indicated by 2T4k′.

Based on the possibility of metabolites entering the brain [27, 28], also a modified 2T4k model was used. This model included an additional (parallel) single-tissue compartment for labeled metabolites (2T1M, Fig. 1). The metabolite input curve was based only on polar metabolites and ignores the minor fraction of other metabolites. The direct binding potential BPND 2T1M for this model was defined as k3/k4 (Fig. 1), and the volumes of distributions, VT and VTm, were defined as
Kinetic parameters were based on typical 2T4k parameters obtained from clinical data. Default parameters for simulated reference and target tissue TACs are given by R1 and T1, respectively, as listed in Table 1. Target tissue parameters were varied with respect to binding potential (BP_{2T4k}^{ND} and BP_{2T4k-2}^{ND}), T2–T5, fractional blood volume (V_{f}; T6, T7), and delivery (K_1; T8–T15). One hundred TACs were generated for each run and noise was added to simulate an average noise level of 7.5% coefficient of variation (COV). Noise simulation was based on clinically derived typical values of total scanner true counts, frame lengths, and decay correction factors. A detailed description of the noise simulation used is given in [29].

Simulated data were analyzed using conventional models as described above (1T2k, 2T3k, 2T4k, SRTM, FRTM, and 2T4k) and SUVr methods over the time intervals 40–60, 60–90, and 80–90 min. Fits were evaluated by comparing goodness of fit according to the Akaike criterion. Next, models were evaluated by comparing bias and COV of estimated binding potential (where appropriate, also the indirect estimation through volumes of distribution). Bias was estimated in relative terms using 100 × (BP_{ND}^{model} / BP_{ND}^{simulated} − 1), where BP_{ND}^{model} represents BP_{ND} estimated using the method of analysis under investigation and BP_{ND}^{simulated} simulated BP_{ND}, which was set to either BP_{2T4k}^{ND} or BP_{2T4k-2}^{ND} for direct and indirect methods, respectively.

Metabolite Model To simulate the effects of cerebral uptake of labeled metabolites, simulated TACs were generated using a typical [18F]FDDNP plasma input function in combination with the 2T1M model. Kinetic parameters were based on typical 2T1M parameters obtained from clinical data. Default parameters for simulated reference and target tissue TACs are given by R1 and T1, respectively, as listed in Table 2. Target tissue parameters were varied, including binding potential (BP_{2T1M}^{ND} and BP_{2T1M-2}^{ND}; T2–T5), fractional blood volume (V_{f}; T6, T7), and delivery (K_1; T8–T15). One hundred TACs were generated for each run and noise was added to simulate an average noise level of 7.5% coefficient of variation (COV). Noise simulation was based on clinically derived typical values of total scanner true counts, frame lengths, and decay correction factors. A detailed description of the noise simulation used is given in [29].

Simulated data were analyzed using conventional models as described above (1T2k, 2T3k, 2T4k, SRTM, FRTM, and 2T4k) and SUVr methods over the time intervals 40–60, 60–90, and 80–90 min. Fits were evaluated by comparing goodness of fit according to the Akaike criterion. Next, models were evaluated by comparing bias and COV of estimated binding potential (where appropriate, also the indirect estimation through volumes of distribution). Bias was estimated in relative terms using 100 × (BP_{ND}^{model} / BP_{ND}^{simulated} − 1), where BP_{ND}^{model} represents BP_{ND} estimated using the method of analysis under investigation and BP_{ND}^{simulated} simulated BP_{ND}, which was set to either BP_{2T4k}^{ND} or BP_{2T4k-2}^{ND} for direct and indirect methods, respectively.

Metabolite Model To simulate the effects of cerebral uptake of labeled metabolites, simulated TACs were generated using a typical [18F]FDDNP plasma input function in combination with the 2T1M model. Kinetic parameters were based on typical 2T1M parameters obtained from clinical data. Default parameters for simulated reference and target tissue TACs are given by R1 and T1, respectively, as listed in Table 2. Target tissue parameters were varied, including binding potential (BP_{2T1M}^{ND} and BP_{2T1M-2}^{ND}; T2–T5), fractional blood volume (V_{f}; T6, T7), and delivery (K_1; T8–T15). One hundred TACs were generated for each run and noise was added to simulate an average noise level of 7.5% coefficient of variation (COV). Noise simulation was based on clinically derived typical values of total scanner true counts, frame lengths, and decay correction factors. A detailed description of the noise simulation used is given in [29].

Simulated data were analyzed using conventional models as described above (1T2k, 2T3k, 2T4k, SRTM, FRTM, and 2T4k) and SUVr methods over the time intervals 40–60, 60–90, and 80–90 min. Fits were evaluated by comparing goodness of fit according to the Akaike criterion. Next, models were evaluated by comparing bias and COV of estimated binding potential (where appropriate, also the indirect estimation through volumes of distribution). Bias was estimated in relative terms using 100 × (BP_{ND}^{model} / BP_{ND}^{simulated} − 1), where BP_{ND}^{model} represents BP_{ND} estimated using the method of analysis under investigation and BP_{ND}^{simulated} simulated BP_{ND}, which was set to either BP_{2T4k}^{ND} or BP_{2T4k-2}^{ND} for direct and indirect methods, respectively.

Metabolite Model To simulate the effects of cerebral uptake of labeled metabolites, simulated TACs were generated using a typical [18F]FDDNP plasma input function in combination with the 2T1M model. Kinetic parameters were based on typical 2T1M parameters obtained from clinical data. Default parameters for simulated reference and target tissue TACs are given by R1 and T1, respectively, as listed in Table 2. Target tissue parameters were varied, including binding potential (BP_{2T1M}^{ND} and BP_{2T1M-2}^{ND}; T2–T5), fractional blood volume (V_{f}; T6, T7), and delivery (K_1; T8–T15). One hundred TACs were generated for each run and noise was added to simulate an average noise level of 7.5% coefficient of variation (COV). Noise simulation was based on clinically derived typical values of total scanner true counts, frame lengths, and decay correction factors. A detailed description of the noise simulation used is given in [29].

Simulated data were analyzed using conventional models as described above (1T2k, 2T3k, 2T4k, SRTM, FRTM, and 2T4k) and SUVr methods over the time intervals 40–60, 60–90, and 80–90 min. Fits were evaluated by comparing goodness of fit according to the Akaike criterion. Next, models were evaluated by comparing bias and COV of estimated binding potential (where appropriate, also the indirect estimation through volumes of distribution). Bias was estimated in relative terms using 100 × (BP_{ND}^{model} / BP_{ND}^{simulated} − 1), where BP_{ND}^{model} represents BP_{ND} estimated using the method of analysis under investigation and BP_{ND}^{simulated} simulated BP_{ND}, which was set to either BP_{2T4k}^{ND} or BP_{2T4k-2}^{ND} for direct and indirect methods, respectively.
Simulated fractional blood volume, and indirectly using the metabolite model, respectively. The indirect calculation of BPND was performed using target to reference volumes of distribution ratios. Bias in estimated V_T is defined as $100(V_{Tm}/C_0 - V_T)/V_T$, where V_T is volume of distribution for $[18F]$FDDNP. BPND estimated using the method of analysis under investigation and are binding potentials estimated directly and indirectly using the metabolite model, respectively. The indirect calculation of BPND was performed using target to reference volumes of distribution ratios. K_{im} is a rate constant and V_{Tm} the volume of distribution for the metabolites. During all simulations, k_d (0.099 min$^{-1}$) and K_1/k_2 (2.4) were fixed, and same, the K_{im} and k_{2m} were used in reference and target tissues.

Results

Time–Activity Curves

Typical parent $[18F]$FDDNP and polar metabolite plasma curves are shown in Fig. 2a and typical time–activity curves for cerebellum and frontal cortex in Fig. 2b. The average ($N=5$) fractions of $[18F]$-labeled metabolites in plasma as function of time are shown in Fig. 3, fitted using a Hill type function. Very rapid metabolism of $[18F]$FDDNP can be seen, with metabolite-related $[18F]$ activity primarily due to polar metabolites (Fig. 3). The polar metabolites are composed of N-dealkylated fragments with similar chromatogram retention times as primarily fluoroethanol and with a smaller fractions of fluorooacetic acids [28].

Clinical Studies

Fig. 4 show typical fits using various compartmental models. In general, poor fits were seen for the 1T2k model (Fig. 4a). Metabolite models showed slightly better fits (Fig. 4b) than all conventional models (Fig. 4a). Good fits were seen for the reference tissue models (Fig. 4c). Similarly, the Akaike criterion gave preference to 2T1M models over all other plasma input models (2T1Mfvtm 37.3%, 2T1M 31.7%, 2T4k 26.2%, 2T3k 4.8%, and 1T2k 0% preference, respectively). With respect to reference tissue models, the Akaike criterion had strong preference for SRTM (88%).

Average values of the various parameters, together with observed range, for 2T4k, 2T1M, and SRTM models are given in Tables 3, 4, and 5 for typical AD regions, i.e., for regions previously shown to be involved in AD [8]. These regions were used in order to accurately estimate typical kinetic parameters for AD subjects, as the latter parameter estimates were used in the simulations.

Fig. 5 shows high correlation ($R^2=0.95$) between K_{im} and k_{2m} values from the 2T1M model over all regions and subjects, indicating an almost constant V_T for metabolites.

TAC	K_1 (ml·cm$^{-3}$·min$^{-1}$)	BP$^{2T1M}_{ND}$	V_T	BP$^{2T4k}_{ND}$	K_{im} (ml·cm$^{-3}$·min$^{-1}$)	V_{Tm}
R 1	0.34	0.65	0.05	5.59	0.39	0.50
T 1	0.34	1.3	0.05	5.34	0.33	0.50
T 2	0.34	0.8	0.05	4.37	0.09	0.50
T 3	0.34	1.0	0.05	4.86	0.21	0.50
T 4	0.34	1.2	0.05	5.34	0.33	0.50
T 5	0.34	1.4	0.05	5.83	0.45	0.50
T 6	0.34	1.6	0.05	6.31	0.58	0.50
T 7	0.34	1.8	0.05	6.80	0.70	0.50
T 8	0.34	2.1	0.05	7.53	0.88	0.50
T 9	0.34	2.3	0.05	8.01	1.00	0.50
T 10	0.34	1.3	0.05	5.59	0.39	0.00
T 11	0.34	1.3	0.05	5.59	0.39	0.01
T 12	0.34	1.3	0.05	5.59	0.39	0.03
T 13	0.34	1.3	0.05	5.59	0.39	0.05
T 14	0.34	1.3	0.05	5.59	0.39	0.50
T 15	0.34	1.3	0.05	5.59	0.39	0.50
T 16	0.34	1.3	0.05	5.59	0.39	0.50
T 17	0.34	1.3	0.05	5.59	0.39	0.50
T 18	0.34	1.3	0.05	5.59	0.39	0.50
T 19	0.34	1.3	0.05	5.59	0.39	0.50
T 20	0.34	1.3	0.05	5.59	0.39	0.50
T 21	0.34	1.3	0.05	5.59	0.39	0.50
As expected, high correlation was found between BPND estimates of SRTM and FRTM ($R^2 = 0.99$). In addition, good correlation was obtained for SUVr over 40–60 min ($R^2 = 0.93$). Note that the 2T1M_i models, i.e., including a compartment for metabolites entering the brain, correlated better with SRTM than the conventional 2T4k model (Table 6 and Fig. 6).

Simulation Studies

Conventional Simulations In general, SRTM produced better fits than FRTM according to the Akaike criterion (∼85% preference). According to the same criterion, 2T4k showed better fits than both 1T2k and 2T3k in all simulations (∼96% preference). At lower K_1 values, however, preference for 2T4k reduced in favor of 2T3k (max. 33% preference for 2T3k). Visual inspection showed poor fits for the 1T2k model, similar to what was seen in clinical fits, and therefore, it was excluded from further evaluation.

When simulating different levels of binding the 2T4k model (direct estimation of BP_{ND}) showed good overall accuracy (5% bias BP_{ND}), but mediocre precision (24% COV BP_{ND}). Results for reference tissue-based models, including SUV, are summarized in Table 7. In general, all reference tissue-based methods showed increased bias at lower levels of binding, but results were more stable at higher levels. Therefore, bias estimates were averaged only over the stable part, i.e., for BP_{ND}>0.14. In contrast, absolute differences with simulated BP_{ND} values were more stable and are shown over the full range of simulated BP_{ND} values (Table 7). Average bias (Table 7) over the stable range of BP_{ND} was lowest for indirect 2T4k (2T4k_i). 2T4k_i and SRTM both showed relatively constant bias and high precision for higher simulated BP_{ND} levels. Finally, best accuracy and precision for SUV_r was obtained with SUV_{40–60}.

All models were less sensitive to changes in V_b. At a fixed level of binding (BP_{ND}=2.3, BP_{ND}=0.25), variations in
derived BP_{ND} due to changes in simulated V_b were smaller than 5% for all compartmental models. For SUVr methods, bias (±COV) in approximated BP_{ND} (i.e., SUVr−1) depended on the actual time interval used and changed from 21±16% to 10±18%, from 30±22% to 28±21%, and from 31±41% to 34±45% for SUVr40–60, SUVr60–90, and SUVr80–90, respectively, when varying V_b of the target region from 0.025 to 0.075.

Delivery differences affected all compartmental methods, including plasma input models. For the direct 2T4k model, bias in BP_{ND} varied from 10% to −2% when varying K_1 of the target region from 0.212 to 0.496. Results for indirect 2T4k and SRTM are shown in Fig. 7. Results from FRTM are not included, as BP_{ND} bias was as high as 250%. Bias in BP_{ND} (±COV), based on SUVr−1, ranged from −27±18% to 3±17%, from 25±20% to −3±18%, and from 48±36% to −7±39% for SUVr40–60, SUVr60–90, and SUVr80–90, respectively, when varying K_1 of the target region from 0.212 to 0.496.

Metabolite Simulations Metabolite simulations were limited to 2T4k, 2T1Mfvtm, and SRTM. SRTM provided the most precise estimation of BP_{ND} over the range of simulated K_1m with a COV of 4.0±0.4%. Although there was a strong negative bias (−42±7%) for SRTM, it was very constant.

![Decay corrected frontal cortex gray matter time–activity curve from an AD subject (=data) with fits using a conventional plasma input, b metabolite, and c reference tissue models.](image)
Table 3. Average (±SD) values of the kinetic parameters, together with their range given between brackets, for the reversible two-tissue compartment model, derived from clinical data

Data	K_1	k_2	k_3	BP_{2T1M}^{ND}	V_T	BP_{2T1M}^{J}	V_b
HC ctx	0.25±0.03 (0.2–0.3)	0.06±0.01 (0.04–0.08)	0.02±0.01 (0.01–0.05)	2.14±0.71 (1–4)	14±6 (7–25)	0.22±0.18 (0.04–0.7)	0.03±0.01 (0.01–0.05)
AD ctx	0.36±0.08 (0.3–0.5)	0.06±0.01 (0.04–0.08)	0.02±0.01 (0.01–0.04)	1.76±0.71 (1–3)	17±5 (9–26)	0.23±0.20 (0.03–0.6)	0.05±0.03 (0.02–0.11)
AD + HC cer	0.35±0.09 (0.3–0.5)	0.07±0.01 (0.06–0.09)	0.02±0.02 (0.01–0.06)	1.67±0.56 (1–3)	13±5 (6–20)	–	0.03±0.02 (0.01–0.07)

These consisted of several typical AD cortical (ctx; i.e. orbital frontal cortex, medial inferior frontal cortex, anterior cingulate cortex, superior temporal cortex, parietal cortex, medial inferior temporal cortex, superior frontal cortex, enthorinal cortex, hippocampus) and cerebellar (cer) gray matter regions from healthy controls (HC) and AD subjects. K_1 is given in ml·cm$^{-3}$·min$^{-1}$. k_2 and k_3 in min$^{-1}$. BP_{2T1M}^{ND} and BP_{2T1M}^{J} are binding potentials, estimated directly and indirectly, respectively, using the reversible two-tissue plasma input model.

Table 4. Average (±SD) values of the kinetic parameters, together with their range given between brackets, for the 2T1M metabolite model, derived from clinical data

Data	K_1	k_2	k_3	BP_{2T1M}^{ND}	V_T	BP_{2T1M}^{J}	V_b
HC ctx	0.28±0.05 (0.2–0.4)	0.33±0.30 (0.09–0.68)	1.06±0.75 (0.01–2.43)	3.07±2.89 (0.4–11)	3.70±0.62 (3–5)	0.03±0.14 (–0.18–0.44)	0.03±0.01 (0.01–0.05)
AD ctx	0.41±0.10 (0.3–0.6)	0.24±0.15 (0.09–0.73)	0.54±0.50 (0.05–1.84)	2.06±1.65 (0.6–8)	5.19±0.86 (4–7)	0.06±0.11 (–0.2–3)	0.04±0.02 (0.01–0.09)
AD + HC cer	0.39±0.13 (0.3–0.6)	0.28±0.16 (0.10–0.53)	0.49±0.47 (0.04–1.30)	1.89±1.42 (0.5–4)	4.24±1.07 (3–6)	–	0.02±0.02 (0.01–0.05)

K_1 and K_{1m} are given in ml·cm$^{-3}$·min$^{-1}$. k_2 and k_3 in min$^{-1}$. BP_{2T1M}^{ND} and BP_{2T1M}^{J} are binding potentials, estimated directly and indirectly, respectively, using the metabolite model. BP_{SRTM}^{ND} is the binding potential estimated using the simplified reference tissue model.
Table 5. Average (±SD) values of the kinetic parameters, together with their range given between brackets, for the simplified reference tissue model, derived from clinical data

Data	R_1	k_2	BP_{SRTM}
HC ctx	0.89±0.06 (0.7–1.0)	0.08±0.02 (0.03–0.11)	0.06±0.04 (0.07–0.12)
AD ctx	0.87±0.08 (0.7–1.0)	0.06±0.02 (0.03–0.11)	0.07±0.04 (0.00–0.14)

BP_{SRTM} is the binding potential estimated using the simplified reference tissue model

(Fig. 8a). $2T1M_{\text{fvtm}}$ provided a more accurate estimate of BPND (5±7% bias), but precision (COV of 37±20%) was much poorer than for SRTM (Fig. 8a). $2T1M_{\text{fvtm}}$, $2T4k$, and $2T4k^1$ provided lower precision and higher bias in estimated BPND over the range of simulated K_{1m} (Fig. 8a, b). However, V_T estimates with the $2T1M_{\text{fvtm}}$ model were much more accurate and had higher precision (Fig. 8c).

Simulations over a range of different binding levels showed strong negative bias (~46±4% with COV of 7±6%) for SRTM, but again, resulting BPND estimates were the most stable amongst all models tested (Fig. 9a). Similarly, most accurate results were obtained with indirect $2T1M_{\text{fvtm}}$ (Fig. 9a). Precision of both SRTM and $2T1M_{\text{fvtm}}$ improved with increasing BPND. BPND estimates obtained with $2T1M_{\text{fvtm}}$, $2T4k$, and $2T4k^1$ were not precise and strongly biased (Fig. 9). Finally, Fig. 10a shows nearly linearly increasing (negative) bias in BPND obtained with SRTM for increasing V_{Tm}. In contrast, Fig. 10b illustrates that this bias was independent of K_{1m} for K_{1m}>0.1.

Table 6. Outcome parameters (slope, intercept, and Pearson product moment correlation coefficient R^2) for linear regression of different models versus BP_{SRTM}

Model	Slope	Intercept	R^2
FRTM	0.97	0.01	0.99
$2T4k^1$	−4.11	2.21	0.15
$2T4k$	NA	NA	NA
$2T1M$	NA	NA	NA
$2T1M_{\text{fvtm}}$	2.66	−0.11	0.68
$2T1M_{\text{fvtm}}$	NA	NA	NA
$2T1M_{\text{fvtm}}$	2.59	−0.09	0.58
SUVr40−60	1.14	0.03	0.93
SUVr60−90	0.64	0.06	0.69
SUVr80−90	0.46	0.06	0.43

In the case of SUV methods, SUVr−1 was taken as an estimate of BPND.

A indicates poor correlation, i.e., $R^2<0.10$

Discussion

Clinical Studies

Due to rapid plasma clearance and metabolism $[18F]$FDDNP scans, it proved to be difficult to obtain reliable measurements of metabolite fractions at later time points. As a result, only incomplete plasma data were available for six of the subjects, and data from these subjects were only used for evaluation of reference tissue models. Although only six subjects with complete plasma input data remained, this

Fig. 5. Correlation between metabolite influx (K_{1m}) and efflux (k_{2m}) rate constants for clinical $[18F]$FDDNP data from several regions of interests and subjects. These rate constants were obtained using a modified two-tissue reversible model, including an additional single-tissue compartment for metabolites.

Fig. 6. Correlation of BPND from $2T1M_{\text{fvtm}}$ and $2T4k^1$, respectively, with BP_{SRTM} for clinical $[18F]$FDDNP data obtained from several regions of interest and subjects. $2T4k^1$ represents the reversible two-tissue plasma input model and $2T1M_{\text{fvtm}}$, the modified reversible two-tissue model, which includes an additional parallel single-tissue compartment for metabolites. For both models, BPND was estimated indirectly through calculation of distribution volume ratios.
seems to be sufficient for this initial evaluation of quantitative (plasma input) models. Clearly, however, the difficulties in obtaining reliable plasma metabolite data should be taken into account when selecting a method for routine clinical studies.

Clinical [18F]FDDNP data were analyzed using conventional models, models correcting for possible metabolites entering the brain, and activity ratios. Clearly, due to the very nature of clinical data, absolute statements about accuracy and precision cannot be given. Therefore, the various methods were compared using the Akaike criterion. In addition, resulting BPND values were compared with SRTM, as this model showed stable results during simulations.

Table 7. Average bias and absolute difference (diff.) with simulated BPND over a range of simulated BPND for various reference tissue models

Model	Bias (%)	SD in bias (%)	Diff.	SD in diff.
2T4k	1	17	0.041	0.033
SRTM	-12	16	0.053	0.062
FRTM	-13	23	0.094	0.175
SUVr40–60	-4	14	0.034	0.026
SUVr60–90	16	15	0.054	0.037
SUVr90–90	22	33	0.095	0.072

In addition, corresponding SD are given. In the case of SUV methods, SUVr−1 was taken as an estimate of BPND. For bias, the range was set from 0.25 to 0.48 due to the large relative biases at lower specific binding. For absolute difference, the range was set from 0.03 to 0.48.

On the basis of the Akaike criterion, plasma input models with a compartment for metabolites were preferred over conventional plasma input models, and SRTM was preferred over FRTM. Good correlations with SRTM were obtained only for FRTM, SUVr40–60, and plasma input models that included a compartment for metabolites entering the brain, such as 2T1M and 2T1Mvfm (Fig. 6).
For most other methods, correlations with SRTM were poor ($R^2 < 0.1$).

Specifically, in the case of the metabolite models, somewhat large values were seen for the micro parameters K_{1m} and k_{2m} (Fig. 5). However, the majority of observed K_{1m} values are below 0.5 (many overlapping data at lower K_{1m}), and K_{1m} and k_{2m} are well correlated. The higher K_{1m} and k_{2m} values are possibly the result of noise, as the higher values for K_{1m} and k_{2m} were generally seen for the smallest ROIs used. Moreover, the relative slow in-growth of metabolites, i.e., the metabolite input function shows a slow increase rather than a sharp peak, makes estimation of individual micro-parameters less precise. Note, however, that the macro-parameter V_{Tm} is reasonably stable across anatomical regions and subjects.

Observed improvements in fits and correlations for models that incorporate a labeled metabolite compartment, together with the reasonably constant V_{Tm}, suggest that metabolites enter the brain. This is in line with a previous assessment using multi-input spectral analysis [27] and initial animal studies where labeled metabolites of 18F FDDNP were injected [28]. Additional studies are, however, needed to confirm whether this is indeed the case.

Simulation Studies

The standard 2T4k plasma input model was not a good model for estimating the level of specific 18F FDDNP binding directly (i.e., as defined by k_3/k_4). Firstly, although BPND bias calculated relative to total binding potential showed good accuracy, it only had mediocre precision. Secondly, at lower regional delivery ($=K_1$) levels, its bias was sensitive to the actual value of K_1. This increased sensitivity to K_1 is related to the kinetics of 18F FDDNP, which, for a normal level of binding in regions with low delivery, are relatively slow. Under those conditions, within the time frame of a scan, tracer kinetics are best described by an irreversible compartment model, which is illustrated by the increased preference for the 2T3k model according to the Akaike criterion.

The 2T1M$_{vtn}$ model did not provide accurate estimates of (direct) BP$_{ND}$ in the metabolite simulations (Figs. 8b and 9b).
Although data were simulated using the same model, BPND was very sensitive to noise as a result of the large number of fit parameters. However, VT estimates obtained with the 2T1Mfvtm model were less sensitive to noise and provided highly accurate and precise VT values (Fig. 8c).

For plasma input models, more accurate and precise results were obtained with indirect estimates of BPND (2T4k and 2T1Mfvtm) than with their direct counterparts (2T4k and 2T1Mfvtm), especially in the case of metabolite simulations.

SRTM was better than FRTM, both in terms of bias and COV. In addition, in the majority of the simulations, it was preferred by the Akaike criterion. SRTM results were comparable in conventional and metabolite simulations. If no metabolites entered the brain, SRTM-derived BPND showed a constant negative bias, although it was affected by changes in delivery. On the other hand, when polar metabolites entered the brain, SRTM showed increasing negative bias with increasing VTm. However, clinical data showed an overall constant VTm (Fig. 5). This indicates that variable bias in SRTM-derived BPND due to variability in VTm will be limited. Simulations showed that for VTm fixed to the clinical estimated value (VTm=0.6), this bias also was not sensitive to metabolite influx (Fig. 10b, KTm>0.01, BPND bias ~−46%). Furthermore, the bias found in these simulations could be related to the slope between BPND versus BPND, (slope=2.59, Table 6; 100%×(1/2.59)=39%) for the clinical studies, indicating a relatively constant metabolite contribution in practice. Thus, SRTM seems to be a useful method, irrespective whether labeled metabolites enter the brain, provided that VTm is relatively constant across the brain and between subjects, as actually suggested by the clinical results.

Among SUVr methods, over the range of simulated binding levels, only SUVr40−60 showed acceptable results, with much better accuracy (~1%) than SRTM (~12%). However, apart from a strong dependency on variations in delivery, SUVr results were also highly dependent on differences in blood volume fractions with only an acceptable accuracy for a specific time interval (SUVr60−90). In general, SUVr results varied widely between different time intervals which, together with the large uncertainties, indicate that this might not be the ideal method for clinical studies.

In general, SRTM showed best overall performance, although it showed some sensitivity to regional flow/delivery differences. As expected, SRTM, like all other reference tissue-based models, showed larger biases at lower regional binding levels. Important advantages of SRTM were its overall high precision and a relatively constant bias in BPND even in the presence of labeled metabolites. Although this bias was dependent on the actual value of VTm, clinical data indicated that this was constant across the brain and among subjects.

General Considerations

Amyloid plaques (and neurofibrillary tangles) do not behave like neurotransmitters. They have complex structures with multiple affinity sites for [18F]FDDNP. In addition, it is...
likely that access to amyloid sites will become more difficult with increasing plaque size [30]. Consequently, use of receptor-ligand models to assess amyloid load might provide an increasing underestimate with increasing load. In addition, quantification might be compromised by the possibility of labeled metabolites entering the brain, especially since the fraction of labeled (polar) metabolites in blood is high due to rapid metabolism of \(^{[18F]}\)FDDNP.

Nevertheless, \(^{[18F]}\)FDDNP may still be of value if a difference between MCI and healthy controls can be demonstrated, and it might be used to study pathological effects as a function of disease severity/progression [8]. In addition, at early stages, a stable receptor-ligand model is likely to provide a reasonable quantitative estimate of the pathological changes associated with AD and could therefore be an important tool in evaluating effects of therapy. Clearly, given its relatively small specific signal, the value of \(^{[18F]}\)FDDNP can only be determined by large comparative clinical studies, such as the one by Small et al. [8]. From the present study, it follows that such a comparison should preferably be performed using SRTM as method of analysis, as it showed high precision and constant bias across the brain and among subjects even when metabolites enter the brain.

Conclusion

SRTM outperformed other models, providing \(\text{BP}_{ND}\) estimates with high precision. As clinical data indicated that the volume of distribution of labeled metabolites \(V_{TM}\) was constant across the brain and among subjects, bias in SRTM-derived \(\text{BP}_{ND}\) will be constant and predictable. The main potential drawback is its sensitivity to variations in regional \(K_1\), although this did not appear to be a problem in the clinical studies.

Acknowledgments

The authors would like to thank the personnel of the Department of Nuclear Medicine & PET Research for tracer production and data acquisition. The authors would also like to thank the “American Health Assistance Foundation” (grant A2005-026), the “Internationale Stichting Alzheimer Research” (grant no. 05512), and the Netherlands Foundation of Scientific research (VIDI grant 016.066.309) for financial support.

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

References

1. Barrio JR, Huang SC, Cole GM et al (1999) PET imaging of tangles and plaques in Alzheimer disease. J Nucl Med 40(Suppl. S):707–717 (Abstract)
2. Braak H, Braak E (1997) Frequency of stages of Alzheimer-related lesions in different age categories. Neurobiol Aging 18:351–357
3. Shohji-Jadid K, Small GW, Agdeppa ED (2002) Localization of neurofibrillary tangles and beta-amyloid plaques in the brains of living patients with Alzheimer disease. Am J Geriatr Psychiatry 10:24–35
4. Kepe V, Shohji-Jadid K, Wu HM et al (2004) Global and regional \(^{[18F]}\)FDDNP binding as in vivo measure of Alzheimer’s disease. J Nucl Med 45(Suppl. 1):126–126
5. Logan J, Fowler JS, Volkow ND, Wang GJ, Ding YS, Alexoff DL (1996) Distribution volume ratios without blood sampling from graphical analysis of PET data. J Cereb Blood Flow Metab 16:834–840
6. Wong KP, Kepe V, Small GW, Satyamurthy N, Barrio JR, Huang SC (2007) Comparison of simplified methods for quantitative analysis of \(^{[18F]}\)FDDNP PET data. IEEE NSS-MIC, vol 4, pp 3146–3150 (Conference Proceeding)
7. Kepe V, Huang SC, Small GW, Satyamurthy N, Barrio JR (2006) Visualizing pathology deposits in the living brain of patients with Alzheimer’s disease. Methods Enzymol 412:144–160
8. Small GW, Kepe V, Ercoli LM et al (2006) PET of brain amyloid and tau in mild cognitive impairment. N Engl J Med 355:2652–2663
9. Gunn RN, Gunn SR, Cunningham VJ (2001) Positron emission tomography compartmental models. J Cereb Blood Flow Metab 21:635–652
10. Hume SP, Myers R, Bloomfield PM et al (1992) Quantitation of carbon-11-labeled raclopride in rat striatum using positron emission tomography. Synapse 12:47–54
11. Lammertsma AA, Bench CJ, Hume SP et al (1996) Comparison of methods for analysis of \(^{[11C]}\)raclopride studies. J Cereb Blood Flow Metab 16:42–52
12. Lammertsma AA, Hume SP (1996) Simplified reference tissue model for PET receptor studies. Neuroimage 4:153–158
13. Petersen RC, Doody R, Kurz A et al (2001) Current concepts in mild cognitive impairment. Arch Neurol 58:1985–1992
14. Meckelmann G, Drachman D, Foltstein M, Katzman R, Price D, Stadian EM (1984) Clinical-diagnosis of Alzheimer’s disease: report of the Nincods-Adrda Work Group under the auspices of Department of Health and Human-Services Task Force on Alzheimers Disease. Neurology 34:939–944
15. Brix G, Zers J, Adam LE et al (1997) Performance evaluation of a whole-body PET scanner using the NEMA protocol. J Nucl Med 38:1614–1623
16. Klok RP, Klein PJ, van Berckel BN, Tolboom N, Lammertsma AA, Windhorst AD (2008) Synthesis of 2-(1,1-dicyanopropen-2-yl)-6-(\(^{18F}\)-fluoroethyl)-methylamino-naphthalene \([18F]FDDNP\). Appl Radiat Isot 66:203–207
17. Defrise M, Kinahan PE, Townsend DW, Michel C, Sibomana M, Newport DF (1997) Exact and approximate rebinning algorithms for 3-D PET data. IEEE Trans Med Imaging 16:145–158
18. Watson CC (2000) New, faster, image-based scatter correction for 3D PET. IEEE Trans Nucl Sci 47:1587–1594
19. Boellaard R, van Lingen A, van Balen SCM, Hoving BG, Lammertsma AA (2001) Characteristics of a new fully programmable blood sampling device for monitoring blood radioactivity during PET. Eur J Nucl Med 28:81–89
20. Greuter H, van Ophelent PLB, Luurtsema G, Fransen EJF, Boellaard R, Lammertsma AA (2004) Validation of a multivariate gamma-counter for measuring high-pressure liquid chromatography metabolite profiles. J Nucl Med Technol 32:28–32
21. Takkenkamp K, Luurtsema G, Greuter HN et al (2007) Plasma metabolites of \(^{[11C]}\)PIB and \(^{[18F]}\)FDDNP. J Label Comp Radiopharm 50(S1):S474 (Abstract)
22. Gunn RN, Sargent PA, Bench CJ et al (1998) Tracer kinetic modeling of the 5-HT1A receptor ligand [carbonyl-11C]WAY-100635 for PET. J Nucl Med 39:828–835
23. Smith SM (2002) Fast robust automated brain extraction. Hum Brain Map 17:143–155
24. Maes F, Collignon A, Vandermeulen D, Marchal G, Suetens P (1997) Multimodality image registration by maximization of mutual information. IEEE Trans Med Imaging 16:187–198
25. West J, Fitzpatrick JM, Wang MY et al (1997) Comparison and evaluation of retrospective intermodality brain image registration techniques. J Comput Assist Tomogr 21:554–566
26. Saver C, Madsen K, Hasselbalch SG et al (2005) MR-based automatic delineation of volumes of interest in human brain PET images using probability maps. Neuroimage 24:969–979
27. Lubberink M, van Berckel BNM, Luurtsema G et al (2007) Multi-input spectral analysis for assessing cerebral uptake of labelled metabolites: validation and application to \(^{[11C]}\)PIB and \(^{[18F]}\)FDDNP studies. J Cereb Blood Flow Metab 27. BrainPET07 Abstract PS1-5M (Abstract)
28. Luurtsema G, Schuit RC, Takkenkamp K et al (2008) Peripheral metabolism of \(^{[18F]}\)FDDNP and cerebral uptake of its labelled metabolites. Nucl Med Biol 35:869–874
29. Shohji-Jadid K, Boellaard R, Kropholler MA, Lammertsma AA (2006) Optimization algorithms for tracer-weighting factors for analysis of dynamic PET studies. Phys Med Biol 51:4217–4232
30. Shohji-Jadid K, Barrio JR, Kepe V, Huang SC (2006) Exploring a mathematical model for the kinetics of beta-amyloid molecular imaging probes through a critical analysis of plaque pathology. Mol Imaging Biol 8:151–162