Commentary

Role of mast cells in the generation of a T-helper type 2 dominated anti-helminthic immune response

Nathan M. Ryan and Steve Oghumu

Department of Pathology, College of Medicine, Ohio State University Wexner Medical Center, Columbus, OH, U.S.A.

Correspondence: Steve Oghumu (oghumu.1@osu.edu)

Mast cells are long-lived, innate immune cells of the myeloid lineage which are found in peripheral tissues located throughout the body, and positioned at the interface between the host and the environment. Mast cells are found in high concentrations during helminth infection. Using Kitw-sh mast cell deficient mice, a recently published study in *Bioscience Reports* by Gonzalez et al. (Biosci. Rep., 2018) focused on the role of mast cells in the immune response to infection by the helminth *Hymenolepis diminuta*. The authors showed that mast cells play a role in the modulation of Th2 immune response characterized by a unique IL-4, IL-5 and IL-13 cytokine profile, as well as subsequent robust worm expulsion during *H. diminuta* infection. Unlike WT mice which expelled *H. diminuta* at day 10, Kitw-sh deficient mice displayed delayed worm expulsion (day 14 post infection). Further, a possible role for mast cells in the basal expression of cytokines IL-25, IL-33 and thymic stromal lymphopoietin was described. Deletion of neutrophils in Kitw-sh deficient mice enhanced *H. diminuta* expulsion, which was accompanied by splenomegaly. However, interactions between mast cells and other innate and adaptive immune cells during helminth infections are yet to be fully clarified. We conclude that the elucidation of mechanisms underlying mast cell interactions with cells of the innate and adaptive immune system during infection by helminths can potentially uncover novel therapeutic applications against inflammatory, autoimmune and neoplastic diseases.

Mast cells (MC) are long-lived, granulated, tissue resident effector cells of hematopoietic origin, recognized for their role in allergic inflammation and immunity to parasitic infection. They derive from common myeloid progenitors in the bone marrow, and continue their development through the granulocyte/monocyte progenitor lineage. Development into MC progenitors in the bone marrow is highly regulated by transcription factors. Cells committed to the MC lineage leave the bone marrow as MC progenitors, and circulate in the bloodstream before homing to peripheral tissues including the skin, lung, peritoneum and the intestinal epithelia [1]. Two major subsets have been identified: connective tissue MCs and mucosal MCs. Mast cell development and survival are dependent on the surface expression of the receptor tyrosine kinase c-kit, present in the W-locus (chromosome 5) in mice. C-kit is a receptor for the ligand, stem cell factor (SCF), an important growth factor for MC. Indeed, mutations at the c-kit locus have been used extensively for the study of MC deficiency in mice. For example, mice with the W-sh mutation (KitW-sh/W-sh) which possess an inversion mutation in the transcriptional regulatory region of the c-kit gene [2] results in a significant reduction in c-kit mRNA and subsequently MC deficiency in peripheral tissues. In addition to mutant Kit-based mast cell deficient mice, (KitW-sh/W-sh and WBB6F1-KitW/Wv) genetically modified mouse models such as Mcpt5Cre and Cpa3Cre have been shown to be useful in addressing the function of MC in vivo [3].

MCs are known mediators of anti-helminthic responses such as infections with *Heligmosomoides polygyrus*, *Trichuris suis*, *Schistosoma japonicum*, *Necator americanus*, *Strongyloides venezuelensis*, *Trichinella spiralis* and *Trichuris muris* [4–11] (Table 1). In the context of helminthic infection, the effector functions of MC are largely mediated by high affinity interactions of the IgE receptor, FcεRI present...
Table 1 Helminthic infections: role of mast cells and suppression of autoimmune inflammatory diseases

Helminth	MC involvement in helminth infection	Amelioration of inflammatory disease
Hymenolepis diminuta (Rat Tapeworm)	MC contributes to helminth expulsion [24,43]	DNBS/DSS colitis [22,23,44–47]
		Autism [48]
		Arthritis [49]
		DNBS/DSS colitis [22,23,44–47]
		Autism [48]
		Arthritis [49]
Trichuris suis (Pig Whipworm)	MC accumulates during infection [9]	DNBS/DSS colitis [22,23,44–47]
		Autism [48]
		Arthritis [49]
		EAE [51]
		OVA-sensitization [52]
		Ulcerative colitis [53,54]
		Crohn's disease [54–56]
		Multiple sclerosis [57]
		Allergic rhinitis [58]
		Peanut/Treenut allergy [59]
		Plaque psoriasis [60]
		DNBS/DSS colitis [22,23,44–47]
		Autism [48,61]
Necator americanus (Human Hookworm)	MC accumulation and degranulation correlate with protection against helminth [10]	Crohn's disease [62]
		Celiac disease [63]
		Asthma [64–66]
		Multiple sclerosis [67]
		Allergic rhinitis [68]
Trichuris trichuria (Human Whipworm)	Not studied	Ulcerative colitis [69]
		Atopic dermatitis [70]
		Multiple sclerosis [71]
Schistosoma mansoni	Conflicting data; most evidence suggest that MC accumulation correlates with susceptibility to infection [72–75]	EAE [76,77]
		NOD [78,79]
		TNBS/DSS colitis [80–82]
		OVA-sensitization [83,84]
		Anaphylaxis [85]
		TSHR (Graves’ disease) [86]
		CIA [87]
Trichinella spiralis	Apparent involvement of MC in helminth expulsion [88,89]	EAE [90–92]
		NOD [93]
		DNBS colitis [94–97]
Heligmosomoides polygyrus	MC play a major role in clearance of infection [98,99]	EAE [100]
		NOD [93]
		ISD [101–103]
		OVA-sensitization [100,104,105]
		Arthritis [106]
		Peanut allergy [107]
		TNBS colitis [108,109]
Trichinella pseudospiralis	MC accumulates during infection [110]	EAE [111]
Taenia crassiceps	MC accumulates during infection [112]	MLDS [113]
		EAE [114]
		DSS colitis [115]
Litomosoides sigmodontis	MC degranulation promotes helminth invasion and survival in host [116,117]	NOD [118,119]
		OVA-sensitization [120]
		DIO [121]
Ancylostoma caninum	MC accumulates during infection [122]	MLDS [123]
Strongyloides venezuelensis	MC play a major role in clearance of infection [124,125]	MLDS [126]

Continued over
on MC. Interaction between IgE and FceR1 results in the activation and subsequent release of cytosolic granules by MC. These granules contain a number of cytokines, growth factors, and proteases including interleukin (IL)-4, IL-5, vascular endothelial growth factor (VEGF), tumor necrosis factor (TNF) and mast cell protease 1 (MCPT-1), which can be detected as free MCPT-1 in the serum or tissues as an indicator for the presence of MC in vivo [12]. Helminthic infections trigger a number of host responses, largely characterized by a Th2 polarized immune response. In response to helminth infection, innate immune cells and intestinal epithelial cells secrete Th2 cytokines including IL-4, IL-5, IL-9, IL-13, IL-25, IL-33 and thymic stromal lymphopoietin (TSLP) [13]. IL-33, a cytokine released during helminth infection, causes the activation and proliferation of MC through interaction with the ST2 receptor [14,15]. Activation of MC results in their degranulation and release of pre-formed mediators known to modulate cells of the innate and adaptive immune system. Among these are IL-4 and IL-13 resulting in the alternative activation of macrophages [16], prostaglandin D2, which cleaves IL-33 resulting in increased type 2 innate lymphoid cell induction through CRTH2 receptor interaction [17], and TNF-α, CXCL1 and CXCL2 leading to the recruitment and proliferation of neutrophils at the site of infection [18,19]. TNF-α mediated neutrophil recruitment by MC has further been shown to be at least partially dependent MC activation by IL-33 [19]. In addition to the activation and recruitment of cells of the innate and adaptive immune system, MC degranulation induces effector mechanisms involved in worm expulsion such as goblet cell hyperplasia, increased mucin production, mitigation of tissue damage, intestinal smooth muscle contraction associated with heightened peristalsis, and the creation of an environment toxic to helminths [20]. Although MCs are known mediators of the helminth associated Th2 response, it is evident that their roles vary, depending on the host, parasite dose, parasite life cycle stage, and duration of infection [21].

Infection of the rat tapeworm Hymenolepis diminuta in mice is an established model system used to elucidate the complex immune response mechanisms to chronic intestinal helminthic infections in humans. Because these tapeworms possess potent immunosuppressive properties during concomitant inflammatory disease states (such as colitis), and are known to cause minimal to no tissue damage within the host they are ideal models for the study of helminth-associated immunological responses [22]. Not surprisingly, the immunomodulatory and anti-inflammatory properties of H. diminuta are potentially being exploited in the treatment of gut-associated inflammatory diseases – an area currently known as ‘helminth therapy’ which is currently under active investigation [23].

Given our limited understanding of the specific roles of MC during infection with H. diminuta, the study by González et al. [24] begins to define the immunomodulatory function of MC against this helminth in vivo. Mice are known to generate a strong Th2 polarized immune response against H. diminuta and clear infection in 8–10 days [25]. Using C57BL/6 mice with Kit^{W-sh/W-sh} mutations, which depletes MC [26], a revealing picture is beginning to emerge suggesting a role for MC in effective elimination of H. diminuta from infected hosts. Previous studies involving infection by H. diminuta have followed MC activity using rat models, which generate a wide array of MC activation profiles dependent upon helminth dose and rat species, making the elucidation of MC effects on elimination of helminths from the gut lumen challenging [27]. In mice, activation of MC in response to H. diminuta infection has been demonstrated as indicated by the detection of MCPT-1, a MC biomarker detectable in serum [28]. Kit^{W-sh/W-sh} mice lacking in a MC response as shown through the non-detectable levels of serum MCPT-1 have been used previously to demonstrate the wide ranging effects that MC can have in mediating an effective Th2 polarized anti-helminthic immune response in vivo [29]. During H. diminuta infection, Kit^{W-sh/W-sh} mice produced an altered Th2 cytokine immune response profile, which differed in kinetics compared with infected WT mice. Interestingly, infected Kit^{W-sh/W-sh} mice produced higher quantities of IL-4 and IL-13 at day 4, but lower levels at day 8 compared with infected WT controls. Levels of these cytokines are again reversed at day 12, with an apparent rebound in IL-4

Table 1 Helminthic infections: role of mast cells and suppression of autoimmune inflammatory diseases (Continued)

Helminth	MC involvement in helminth infection	Amelioration of inflammatory disease	Disease	Model
Nippostrongylus brasiliensis	MC contributes to helminth expulsion [127]	OVA-sensitization [128]	Experimental (Mouse)	
Schistosoma japonicum	MC accumulates during infection [11]	OVA-sensitization [129,130]	Experimental (Mouse)	
Trichuris muris	MC accumulates but not required for protection against infection [133–135]	DSS colitis [136]	Experimental (Mouse)	

© 2019 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY).
and IL-13 production in infected KitW−sh/W−sh mice. While this altered Th2 cytokine profile in infected KitW−sh/W−sh mice appears to be MC dependent, additional studies are needed to determine the mechanisms underlying the unique kinetics of Th2 cytokine production during H. diminuta infection of KitW−sh/W−sh mice. Nevertheless, these results suggest a role for activated MC in modulating Th2 cytokine production during H. diminuta infection. It must be noted, however, that while non-detectable levels of MCPT-1 are strongly indicative of complete absence of MC (which was used as a surrogate for MC in the study by Gonzalez et al. [24]), there have been demonstrated instances of a MC presence occurring in Kit-deficient animals [31,32]. Nevertheless, the delayed worm expulsion seen experimentally does demonstrate an as yet unknown role for MC in the optimal generation of an effective immune response against H. diminuta.

In addition to the aforementioned cytokines (IL-4, IL-5 and IL-13), González et al. [24] found that basal expression of epithelium derived cytokines IL-25, IL-33, and TSLP in uninfected KitW−sh/W−sh deficient mice was lower compared with uninfected WT controls. This suggests a role for MC maintaining homeostatic basal expression for these cytokines. Previous research performed using different helminth models demonstrates a role for MC in the production of IL-25, IL-33, and TSLP, suggesting the possibility of MC priming of these cytokines during early infection [4]. In H. diminuta infected mice, expression values were similar for these cytokines, indicating that while MC may assist in the maintenance of their basal expression, these cytokines can still be induced independent of MC during this helminth infection. While a clearer picture of the regulation of these epithelium derived cytokines is beginning to emerge, the precise immunologic mechanisms that underlie their production and regulation are still incompletely understood [33]. Increased expression of these cytokines has been linked to the allergic and asthma response [34], and a mechanism decreasing basal IL-25, IL-33 and TSLP expression may be of interest in potential therapy development. Importantly, these cytokines have each recently been attributed to having an important initial role in inducing a microenvironment suitable for Th2 polarization [35]. This correlation between reductions in these epithelial derived cytokines and the delayed Th2 response seen experimentally is further evidence in support of the Th2 polarizing effect of IL-25, IL-33 and TSLP in certain helminth infections. Further research into the immunomodulatory roles and regulatory mechanisms of these epithelial derived cytokines, as well as their cross-talk with MCs during inflammation will provide insights into therapeutic approaches in the management of helminthic, gut-inflammatory and allergic diseases.

A clear understanding of the interaction between MCs and other innate and adaptive immune cells during helminthic infection is vitally important in order to clarify the nature of an effective anti-helminthic immune response. For example, the proportion of neutrophils was observed to be increased in the spleens of MC deficient H. diminuta infected mice. However, contrary to the notion that neutrophils could compensate for the lack of MC to confer protection against H. diminuta infection, Gonzalez et al. [24] found that depletion of neutrophils by intraperitoneal administration of anti-Gr-1 antibodies resulted in enhanced clearance of the worm at a rate comparable to infected WT mice. Furthermore, neutrophil depletion in MC deficient H. diminuta infected mice was accompanied by increased splenomegaly. These data present very interesting observations that warrant further study. While it has been previously shown that in vivo depletion of neutrophils can result in a more strongly polarized Th2 response in the context of helminth infection, the mechanisms that underlie this immunological response are not completely understood [36]. Further, in contrast with the data presented by Gonzalez et al. [24], neutrophil depletion in mice during Nippostrongylus brasiliensis helminth infection resulted in a decreased Th2 response and an increased susceptibility to infection [37]. These observations further support the wide variety and complexity of cellular interactions and immunological responses elicited by different helminth infections in vivo. As is the case with other parasitic diseases, infections with helminths require a consideration of pathogen and host associated factors in order to fully explain mechanisms of action and host immune response pathways. In the context of MC inhibition, it would be of interest to determine the impact of neutrophil depletion on immune response to other helminth infections.

As mentioned at the outset, the concept of helminth-based therapy exploits the immunosuppressive properties of helminth species to reduce the severity of gut associated inflammatory diseases. A summary of pre-clinical and clinical studies utilizing helminth parasites to mitigate inflammatory associated diseases is shown in Table 1. In the context of helminth infection by H. diminuta, a protective effect has been demonstrated against colitis in the affected host [23]. However, the relative contribution of immune cells in mitigating the Th1-dominated inflammatory response during helminth-mediated suppression of gut inflammatory diseases is unclear. Given that MCs modulate Th2 responses during H. diminuta infection, it was of interest to determine whether these cells contribute to protection against dinitrobenzene sulfonylic acid (DNBS) induced colitis in H. diminuta infected mice. DNBS has been used as an effective agent to recapitulate colitis in vivo [38]. Using this DNBS-induced colitis model, it was observed that both MC deficient and WT mice infected with H. diminuta maintained similar heightened levels of protection.
Figure 1. Proposed mechanism for the action of mast cells during the immunological response to helminth infection by *Hymenolepis diminuta*

Mast cells stimulate intestinal epithelial cells causing a constitutive expression of basal IL-25, IL-33 and TSLP. The presence of these cytokines in the intestinal lumen is crucial to an efficient immune response required for timely expulsion of helminths. Detection of helminths by the epithelial cells cause an increased release of cytokines IL-25, IL-33 and TSLP, resulting in the activation of mast cells and other Th2 lymphoid and myeloid progenitors. Mast cells secrete a wide variety of cytokines and growth factors including IL-4, IL-5, IL-13, IL-25, IL-33, TNF-α, CXCL1, CXCL2, and TSLP, MCPT-1, prostaglandin D2, and lysozyme. CXCL1, CXCL2 and TNF-α activates neutrophils, prostaglandin D2 production activates type 2 innate lymphoid cells, while IL-4, IL-5 and IL-13 activates alternatively activated macrophages. Mast cell derived IL-25 stimulates the Th2 immune response. Further, mast cell degranulation results in anti-helminthic effector mechanisms including goblet cell hyperplasia, increased mucin production, smooth muscle contraction and increased peristalsis, leading to helminth expulsion.

against colitis compared with uninfected mice, suggesting that MCs do not play any major role in this protection. Other studies have demonstrated that the epithelial-derived cytokine IL-25 mediates the anti-inflammatory protection by *H. diminuta* in DNBS-induced colitis [39]. However, it is likely that the protection against colitis exhibited by *H. diminuta* and partly mediated by IL-25 occurs independent of MC. Other factors might include an involvement of regulatory T cells and/or other myeloid cells involved in promoting a Th2 response caused by the presence of the worm. These and other possibilities provide exciting areas for additional research.

In conclusion, the study by González et al. [24] has increased our understanding of the host cellular factors involved in immune responses against *H. diminuta*. Results from the present study demonstrate that MCs do contribute to the timely expulsion of *H. diminuta*. Further, MC-deficient animals display an altered cytokine expression kinetic profile resulting in a delayed expulsion of intestinal helminths. The authors also suggest that MCs are involved in the basal expression of IL-25, IL-33 and TSLP by epithelial cells (Figure 1). A key question remains regarding the degree of MC depletion in *Kit*^{W-sh/W-sh} mice during *H. diminuta* infection and what subset of MCs (mucosal MCs and/or connective tissue MCs) are depleted in this model. Nevertheless, it is clear that MC mediated immunoregulation during helminth infection is of great interest, given that the strong Th2 immune response generated during infection by helminths has been linked to a positive prognosis or shown to have a beneficial effect in many autoimmune and neoplastic diseases [40–42]. Consequently, therapeutic applications developed as a result of an increased understanding of helminth-associated immunomodulation, as well as the involvement of MCs in response to helminth infection, remains an appealing and worthwhile goal.

Competing Interests

The authors declare that there are no competing interests associated with the manuscript.

© 2019 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY).
Funding
This work was supported by the National Institute of Health (NIH), National Cancer Institute (NCI) [grant number K01CA207599 (to S.O.)].

Author Contribution
N.M.R. and S.O. wrote the manuscript.

Abbreviations
AAI, allergic airway inflammation; CIA, collagen-induced arthritis; DIO, diet-induced obesity; DNBS, dinitrobenzene sulfonic acid; DSS, dextran sulfate sodium; EAE, experimental autoimmune encephalomyelitis; IL, interleukin; MC, mast cell; MCPT-1, mast cell protease 1; MLDS, multiple low-dose streptozotocin-induced diabetes; NOD, non-obese diabetic; OVA, ovalbumin; TNBS, trinitrobenzene sulfonic acid; TNF, tumor necrosis factor; TSHR, thyroid stimulating hormone receptor; TSLP, thymic stromal lymphopoietin; VEGF, vascular endothelial growth factor.

References
1. Dahlin, J.S. and Hallgren, J. (2015) Mast cell progenitors: origin, development and migration to tissues. Mol. Immunol. 63, 9–17, https://doi.org/10.1016/j.molimm.2014.01.018
2. Nagle, D.L., Kozak, C.A., Mano, H., Chapman, V.M. and Bucan, M. (1995) Physical mapping of the Tec and Gabrb1 loci reveals that the Wsh mutation on mouse chromosome 5 is associated with an inversion. Hum. Mol. Genet. 4, 2073–2079, https://doi.org/10.1093/hmg/4.11.2073
3. Behrends, D.A., Cheng, L., Sullivan, M.B., Wang, M.H., Roby, G.B., Zayed, N. et al. (2014) Defective bone repair in mast cell deficient mice with c-Kit loss of function. Eur. Cells Mater. 28, 209–221, discussion 221-202, https://doi.org/10.22203/ecm.v028a14
4. Hepworth, M.R., Danilowicz-Luebert, E., Rausch, S., Metz, C., Klotz, C., Maurer, M. et al. (2012) Mast cells orchestrate type 2 immunity to helminths through regulation of tissue-derived cytokines. Proc. Natl. Acad. Sci. U.S.A. 109, 6644–6649, https://doi.org/10.1073/pnas.111268109
5. Martin, R.K., Damle, S.R., Valentine, Y.A., Zelinker, M.P., James, B.N., Lownik, J.C. et al. (2018) B1 cell IgE impedes mast cell-mediated enhancement of parasite expulsion through B2 IgE blockade. Cell Rep. 22, 1824–1834, https://doi.org/10.1016/j.celrep.2018.01.048
6. Lantz, C.S., Boesiger, J., Song, C.H., Mach, N., Kobayashi, T., Mulligan, R.C. et al. (1998) Role for interleukin-3 in mast-cell and basophil development and in immunity to parasites. Nature 392, 90–93, https://doi.org/10.1038/312190
7. Knight, P.A., Wright, S.H., Lawrence, C.E., Paterson, Y.Y. and Miller, H.R. (2000) Delayed expulsion of the nematode Trichinella spiralis in mice lacking the mucosal mast cell-specific granule chymase, mouse mast cell protease-1. J. Exp. Med. 192, 1849–1856, https://doi.org/10.1084/jem.192.12.1849
8. Reitz, M., Brunn, M.L., Rodewald, H.R., Feyenabend, T.B., Roers, A., Dudeck, A. et al. (2017) Mucosal mast cells are indispensable for the timely termination of Strongyloides ratti infection. Mucosal Immunol. 10, 481–492, https://doi.org/10.1038/mi.2016.56
9. Kringel, H., Ilburg, T., Dawson, H., Aasted, B. and Roepstorff, A. (2009) A time course study of immunological responses in Trichuris suis infected pigs demonstrates induction of a local type 2 response associated with worm burden. Int. J. Parasitol. 39, 915–924, https://doi.org/10.1016/j.ijpara.2009.04.008
10. Girod, N., Brown, A., Pritchard, D.J. and Billett, E.E. (2003) Successful vaccination of BALB/c mice against human hookworm (Necator americanus): the immunological phenotype of the protective response. Int. J. Parasitol. 33, 71–80, https://doi.org/10.1016/S0020-7519(02)00248-5
11. Birck, M.M., Pors, S., Johansen, M.V. and Iburg, T. (2006) Distribution of mast cells in relation to Schistosoma japonicum induced lesions in pigs. Southeast Asian J. Trop. Med. Public Health 37, 630–640
12. Wernersson, S. and Peijler, G. (2014) Mast cell secretory granules: armed for battle. Trends Parasitol. 30, 630–634, https://doi.org/10.1016/j.pt.2014.03.004
13. Cortes, A., Munoz-Antoli, C., Esteban, J.G. and Toledo, R. (2017) Th2 and Th1 responses: clear and hidden sides of immunity against intestinal helminths. Trends Parasitol. 33, 678–686, https://doi.org/10.1016/j.pt.2017.05.004
14. Lopes, F., Reyes, J.L., Wang, A., Leung, G. and McKay, D.M. (2015) Enteric epithelial cells support growth of Hymenolepis diminuta in vitro and trigger TH2-promoting events in a species-specific manner. Int. J. Parasitol. 45, 691–696, https://doi.org/10.1016/j.ijpara.2015.05.004
15. Cayrol, C. and Girard, J.P. (2018) Interleukin-33 (IL-33): a nuclear cytokine from the IL-1 family. Immunol. Rev. 281, 154–168, https://doi.org/10.1111/imr.12619
16. Fairweather, D. and Cihakova, D. (2009) Alternatively activated macrophages in infection and autoimmunity. J. Autoimmun. 33, 222–230, https://doi.org/10.1016/j.jaut.2009.09.012
17. Webb, L.M. and Tait Wojno, E.D. (2017) The role of rare innate immune cells in Type 2 immune activation against parasitic helminths. Parasitology 144, 1288–1301, https://doi.org/10.1017/S0031182017000488
18. De Filippo, K., Dudeck, A., Hasenberg, M., Nye, E., van Rooijen, N., Hartmann, K. et al. (2013) Mast cell and macrophage chemokines CXCL1/CXCL2 control the early stage of neutrophil recruitment during tissue inflammation. Blood 121, 4930–4937, https://doi.org/10.1182/blood-2013-02-486217
19. Enoksson, M., Moller-Westerberg, C., Wich, G., Fallon, P.G., Forsberg-Nillson, K., Lunderius-Andersson, C. et al. (2013) Intraportaline influx of neutrophils in response to IL-33 is mast cell-dependent. Blood 121, 530–536, https://doi.org/10.1182/blood-2012-05-434209
20. Mukai, K., Tsai, M., Starkl, P., Marichal, T. and Galli, S.J. (2016) IgE and mast cells in host defense against parasites and venom. Semin. Immunopathol. 38, 581–603, https://doi.org/10.1007/s00281-016-0565-1
21. Raina, K., Kumar, S., Dhar, D. and Agarwal, R. (2016) Silibinin and colorectal cancer chemoprevention: a comprehensive review on mechanisms and efficacy. J. Biomed. Res. 30, 452–465
22 Reyes, J.L., Wang, A., Fernando, M.R., Graepel, R., Leung, G., van Rooijen, N. et al. (2015) Splenic B cells from Hymenolepis diminuta-infected mice ameliorate colitis independent of T cells and via cooperation with macrophages. J. Immunol. 194, 364–378, https://doi.org/10.4049/jimmunol.1400738

23 Melon, A., Wang, A., Phan, V. and McKay, D.M. (2010) Infection with Hymenolepis diminuta is more effective than daily corticosteroids in blocking chemically induced colitis in mice. J. Biomed. Biotechnol. 2010, 384523, https://doi.org/10.1155/2010/384523

24 Gonzalez, M.I., Lopes, F., McKay, D.M. and Reyes, J.L. (2018) Mast cell deficiency in mice results in biomass overgrowth and delayed expulsion of the rat tapeworm Hymenolepis diminuta. Biosci. Rep., https://doi.org/10.1042/BSR20180687

25 McKay, D.M. (2010) The immune response to and immunomodulation by Hymenolepis diminuta. Parasitology 137, 385–394, https://doi.org/10.1017/S0031182009990886

26 Galli, S.J., Tsai, M., Marichal, T., Tchougououoe, E., Reber, L.L. and Pejler, G. (2015) Approaches for analyzing the roles of mast cells and their proteases in vivo. Adv. Immunol. 126, 45–127, https://doi.org/10.1016/bs.ai.2014.11.002

27 Ishih, A., Nishimura, M. and Sano, M. (1992) Differential establishment and survival of Hymenolepis diminuta in syngeneic and outbred rat strains. J. Helminthol. 66, 132–136, https://doi.org/10.1080/00221499209534712

28 Graepel, R., Leung, G., Wang, A., Villeda, M., Jirik, F.R., Sharkey, K.A. et al. (2013) Murine autoimmune arthritis is exaggerated by infection with the rat tapeworm, Hymenolepis diminuta. Int. J. Parasitol. 43, 593–601, https://doi.org/10.1016/j.ijpara.2013.02.006

29 Hepworth, M.R., Maurer, M. and Hartmann, S. (2012) Regulation of type 2 immunity to helminths by mast cells. Gut microbes 3, 476–481, https://doi.org/10.4161/gmic.21507

30 Silva, da, Z., E., Jamur, M.C. and Oliver, C. (2014) Mast cell function: a new vision of an old cell. J. Histochem. Cytochem.: Off. J. Histochem. Soc. 62, 698–738, https://doi.org/10.1369/0022155414545334

31 Arizono, N., Kasugai, T., Yamada, M., Okada, M., Morimoto, M., Tei, H. et al. (1993) Infection of Nippostrongylus brasiliensis induces development of mucosal-type but not connective tissue-type mast cells in genetically mast-cell-deficient Ws/Ws rats. Blood 81, 2572–2578

32 Allazadeh, H. and Murrell, K.D. (1984) The intestinal mast cell response to Trichinella spiralis infection in mast cell-deficient w/w mice. J. Parasitol. 70, 767–773, https://doi.org/10.2307/3218760

33 Divekar, R. and Kita, H. (2015) Recent advances in epithelium-derived cytokines (IL-33, IL-25, and thymic stromal lymphopoietin) and allergic inflammation. Curr. Opin. Allergy Clin. Immunol. 15, 88–103, https://doi.org/10.1097/AOI.0000000000000133

34 Wang, W., Li, Y., Lv, Z., Chen, Y., Li, Y., Huang, K. et al. (2018) Bronchial allergen challenge of patients with atopic asthma triggers an alarmin (IL-33, TSLP and IL-25) response in the Airways epithelium and submucosa. J. Immunol. 201, 2221–2231, https://doi.org/10.4049/jimmunol.1800709

35 Oyesola, O.O., Fruh, S.P., Webb, L.M. and Tait Wojno, E.D. (2018) Cytokines and beyond: Regulation of innate immune responses during helminth infection. Cytokine, https://doi.org/10.1016/j.cyto.2018.08.021

36 Hirata, M., Hara, T., Kage, M., Fukuma, T. and Sendó, F. (2002) Neutropenia augments experimentally induced Schistosoma japonicum egg granuloma formation in CBA mice, but not in C57BL/6 mice. Parasite Immunol. 24, 479–488, https://doi.org/10.1046/j.1365-3024.2002.00491.x

37 Pesce, J.T., Liu, Z., Hamed, H., Alem, F., Whitmire, J., Lin, H. et al. (2018) Neutrophils clear bacteria associated with parasitic nematodes augmenting the development of an effective Th2-type response. J. Immunol. 198, 464–474, https://doi.org/10.4049/jimmunol.180.1.464

38 Morampudi, V., Bhinder, G., Wu, X., Dai, C., Sham, H.P., Vallance, B.A. et al. (2014) DNBS/TNBS colitis models: providing insights into inflammatory bowel disease and effects of dietary fat. J. Visual. Exp.: JoVE e51297

39 Reyes, J.L., Fernando, M.R., Lopes, F., Leung, G., Mancini, N.L., Matsiz, C.E. et al. (2016) IL-22 restrains tapeworm-mediated protection against experimental colitis via regulation of IL-25 expression. PLoS Pathog. 12, e1005481, https://doi.org/10.1371/journal.ppat.1005481

40 Callejas, B.E., Martinez-Saucedo, D. and Terrazas, L.I. (2018) Parasites as negative regulators of cancer. Biosci. Rep., https://doi.org/10.1042/BSR20180935

41 Logan, J., Navarro, S., Loukas, A. and Giacomin, P. (2018) Helminth-induced regulatory T cells and suppression of allergic responses. Curr. Opin. Immunol. 54, 1–6, https://doi.org/10.1016/j.cell.2018.05.007

42 Blank, M., Bashi, T., Lachnicht, J., Ben-Ami-Shor, D., Shovman, O., Fridkin, M. et al. (2018) Helminths-based bi-functional molecule, tuftsin-phosphorylcholine (TCP), ameliorates an established murine arthritis. PLoS One 13, e0200615, https://doi.org/10.1371/journal.pone.0200615

43 McLauchlan, P.E., Roberts, H.C., Loxton, N.J., Wastling, J.M., Newlands, G.F. and Chappell, L.H. (1999) Mucosal mast cell responses and release of cathepsin G in response to Helminthol. Biosci. Rep., https://doi.org/10.1042/BSR1999041

44 Hunter, M.M., Wang, A., Parhar, K.S., Johnston, M.J., Van Rooijen, N., Beck, P.L. et al. (2010) In vitro-derived alternatively activated macrophages reduce colonic inflammation in mice. Gastroenterology 138, 1395–1405, https://doi.org/10.1053/j.gastro.2009.12.041

45 Liu, J., Morey, R.A., Wilson, J.K. and Parker, W. (2017) Practices and outcomes of self-treatment with helminths based on physicians’ observations. J. Helminthol. 91, 267–277, https://doi.org/10.1017/S0022149X16000316

46 Shi, M., Wang, A., Prescott, D., Waterhouse, C.C., Zhang, S., McDougall, J.J. et al. (2011) Infection with an intestinal helminth parasite reduces Freund’s complete adjuvant-induced mononuclear cells in mice. Arthritis Rheum. 63, 434–444, https://doi.org/10.1002/art.30098
Leonardi, I., Gerstgrasser, A., Schmidt, T. S.B., Nicholls, F., Twes, B., Greinwald, R. et al. (2017) Preventive Trichuris suis ova (TSO) treatment protects immunocompetent rabbits from DDS colitis but may be detrimental under conditions of immunosuppression. Sci. Rep. 7, 16500, https://doi.org/10.1038/s41598-017-16287-4

Hansen, C.S., Hasseldam, H., Bachar, I.H., Thamsborg, S.M., Johansen, F.F. and Kringle, H. (2017) Trichuris suis secretes products that reduce disease severity in a multiple sclerosis model. Acta. Parasitol. 62, 22–28, https://doi.org/10.1515/ap-2017-0002

Ebnner, F., Hepworth, M.R., Rausch, S., Janek, K., Niewienda, A., Kühl, A. et al. (2014) Therapeutic potential of larval excretory/secretory proteins of the pig whipworm Trichuris suis in allergic disease. Allergy 69, 1489–1497, https://doi.org/10.1111/all.12496

Summers, R.W., Elliott, D.E., Urban, Jr, J.F., Thompson, R.A. and Weinstock, J.V. (2005) Trichuris suis therapy for active ulcerative colitis: a randomized controlled trial. Gastroenterology 128, 825–832, https://doi.org/10.1053/j.gastro.2005.01.005

Summers, R.W., Elliott, D.E., Oadir, K., Urban, Jr, J.F., Thompson, R. and Weinstock, J.V. (2003) Trichuris suis seems to be safe and possibly effective in the treatment of inflammatory bowel disease. Am. J. Gastroenterol. 98, 2034–2041, https://doi.org/10.1111/j.1572-0241.2003.07660.x

Sandborn, W.J., Elliott, D.E., Weinstock, J., Summers, R.W., Landry-Wheeler, A., Silver, N. et al. (2013) Randomised clinical trial: the safety and tolerability of Trichuris suis ova in patients with Crohn’s disease. Aliment. Pharmacol. Ther. 38, 255–263, https://doi.org/10.1111/apt.12366

Summers, R.W., Elliott, D.E., Urban, Jr, J.F., Thompson, R. and Weinstock, J.V. (2005) Trichuris suis therapy in Crohn’s disease. Gut 54, 87–90, https://doi.org/10.1136/gut.2004.041749

Fleming, J.O., IsaaK, A., Lee, J.E., Luzzio, C., Carruthers, M.D., Cook, T.D. et al. (2011) Probiotic helminth administration in relapsing-remitting multiple sclerosis: a phase 1 study. Multiple Sclerosis 17, 743–754, https://doi.org/10.1177/1352458511398054

Bager, P., Arnved, J., Ronborg, S., Wohlfahrt, J., Poulsen, L.K., Westergaard, T. et al. (2010) Trichuris suis ova therapy for allergic rhinitis: a randomized, double-blind, placebo-controlled clinical trial. J. Allergy Clin. Immunol. 125, 123-130 e121-123, https://doi.org/10.1016/j.jaci.2009.08.006

Trichuris Suis Ova in Peanut and Tree Nut Allergy. ed.), https://ClinicalTrials.gov/show/NCT01070498

60 Safety and Effectiveness of CNDO 211 in Trichuris Suis Ova for the Treatment of Moderate to Severe Plaque Psoriasis. ed.), https://ClinicalTrials.gov/show/NCT01836939

61 Trichuris Suis Ova in Autism Spectrum Disorders. ed.), https://ClinicalTrials.gov/show/NCT01402251

62 Croese, J., O’Neil, J., Masson, J., Cooke, S., Melrose, W., Pritchard, D. et al. (2006) A proof of concept study establishing Necator americanus in pigs’ patients and reservoir donors. Gut 55, 136–137, https://doi.org/10.1136/gut.2005.079129

63 Daveson, A.J., Jones, D.M., Gaze, S., McSorley, H., Clouston, A., Pascoe, A. et al. (2011) Effect of hookworm infection on wheat challenge in celiac disease–a randomised double-blind placebo controlled trial. PLoS One 6, e17366, https://doi.org/10.1371/journal.pone.0017366

64 Feary, J.R., Venn, A.J., Mortimer, K., Brown, A.P., Hool, D., Falcone, F.H. et al. (2010) Experimental hookworm infection: a randomized placebo-controlled trial in asthma. Clin. Exp. Allergy: J. Br. Soc. Allergy Clin. Immunol. 40, 299–306, https://doi.org/10.1111/j.1365-2222.2009.03433.x

65 Feary, J., Venn, A., Brown, A., Hool, D., Falcone, F.H., Mortimer, K. et al. (2009) Safety of hookworm infection in individuals with measurable airway responsiveness: a randomized placebo-controlled feasibility study. Clin. Exp. Allergy: J. Br. Soc. Allergy Clin. Immunol. 39, 1060–1069, https://doi.org/10.1111/j.1365-2222.2009.03187.x

66 Mortimer, K., Brown, A., Feary, J., Jagger, C., Lewis, S., Antoniak, M. et al. (2006) Dose-ranging study for trials of therapeutic infection with Necator americanus in humans. Am. J. Trop. Med. Hyg. 75, 914–920, https://doi.org/10.4269/ajtmh.2006.75.914

67 Worms for Immune Regulation of Multiple Sclerosis. ed.), https://ClinicalTrials.gov/show/NCT01470521

68 Blount, D., Hool, D., Feary, J., Venn, A., Telford, G., Brown, A. et al. (2009) Immunologic profiles of persons recruited for a randomized, placebo-controlled clinical trial of hookworm infection. Am. J. Trop. Med. Hyg. 81, 911–916, https://doi.org/10.4269/ajtmh.2009.09-0237

69 Broadhurst, M.J., Leung, J.M., Kashyap, V., McCune, J.M., Mahadevan, U., McKerror, J.H. et al. (2010) IL-22+ CD4+ T cells are associated with therapeutic trichuris triichiura infection in an ulcerative colitis patient. Sci. Transl. Med. 2, 60ra88, https://doi.org/10.1126/scitranslmed.3001500

70 van den Biggelaar, A.H., Rodrigues, L.C., van Ree, R., van der Zee, J.S., Hoeksma-Kruize, Y.C., Souverijn, J.H. et al. (2004) Long-term treatment of intestinal helminths increases mite skin-test reactivity in Gabonese schoolchildren. J. Infect. Dis. 189, 892–900, https://doi.org/10.1086/381767

71 Fleming, J.O. and Cook, T.D. (2006) Multiple sclerosis and the hygiene hypothesis. Neurology 67, 2085–2086, https://doi.org/10.1212/01.wnl.0000247663.40297.2d

72 Ganley-Leal, L.M., Mwinzi, P.N., Cetere-Sossah, C.B., Andove, J., Hightower, A.W., Karanja, D.M. et al. (2006) Higher percentages of circulating mast cell precursors correlate with susceptibility to reinfection with Schistosoma mansoni. Am. J. Trop. Med. Hyg. 75, 1053–1057, https://doi.org/10.4269/ajtmh.2006.75.1053

73 Prendergast, C.T., Sanin, D.E. and Mountford, A.P. (2016) CD4 T-cell hyporesponsiveness induced by schistosome larvae is not dependent upon eosinophils but may involve connective tissue mast cells. Parasite Immunol. 38, 81–92, https://doi.org/10.1111/pii.12300

74 Ford, M.J., Bickle, Q.D. and Taylor, M.G. (1987) Immunity to Schistosoma mansoni in congenitally athymic, irradiated and mast cell-depleted rats. Parasitology 94, 313–326, https://doi.org/10.1017/S003118200005397X

75 Sher, A., Correa-Oliveira, R., Hieny, S. and Hussain, R. (1983) Mechanisms of protective immunity against Schistosoma mansoni infection in mice vaccinated with irradiated cercariae. IV. Analysis of the role of IgE antibodies and mast cells. J. Immunol. 131, 1460–1465

76 Sewell, D., Qing, Z., Reineke, E., Elliott, D., Weinstock, J., Sandor, M. et al. (2003) Immunomodulation of experimental autoimmune encephalomyelitis by helminth ova immunization. Int. Immunol. 15, 59–69, https://doi.org/10.1093/intimm/dxq102

77 Flamme, La, C.A., Ruddenklau, K. and Backstrom, B.T. (2003) Schistosomiasis decreases central nervous system inflammation and alters the progression of experimental autoimmune encephalomyelitis. Infect. Immun. 71, 4996–5004, https://doi.org/10.1128/IAI.71.9.4996-5004.2003

78 Cooke, A., Tonks, P., Jones, F.M., O’Shea, H., Hutchings, P., Fulford, A.J. et al. (1999) Infection with Schistosoma mansoni prevents insulin dependent diabetes mellitus in non-obese diabetic mice. Parasite Immunol. 21, 169–176, https://doi.org/10.1046/j.1365-3024.1999.00213.x
105 Kitagaki, K., Businga, T.R., Racila, D., Elliott, D.E., Weinstock, J.V. and Kline, J.N. (2006) Intestinal helminths protect in a murine model of asthma. J. Immunol. 177, 1628–1635, https://doi.org/10.4049/jimmunol.177.3.1628
106 Salinas-Carmona, M.C., de la Cruz-Galicia, G., Perez-Rivera, I., Solis-Soto, J.M., Segoviano-Ramirez, J.C., Vazquez, A.V. et al. (2009) Spontaneous arthritis in MRL/lpr mice is aggravated by Staphylococcus aureus and ameliorated by Nippostrongylus brasiliensis infections. *Autoimmunity* **42**, 25–32, https://doi.org/10.1080/0891693090302228290

107 Bashir, M.E., Andersen, P., Fuss, I.J., Shi, H.N. and Nagler-Anderson, C. (2002) An enteric helminth infection protects against an allergic response to dietary antigen. *J. Immunol.* **169**, 3284–3292, https://doi.org/10.4049/jimmunol.169.6.3284

108 Sutton, T.L., Zhao, A., Madden, K.B., Elfrey, J.E., Tuft, B.A., Sullivan, C.A. et al. (2008) Anti-Inflammatory mechanisms of enteric Heligmosomoides polygyrus infection against trinitrobenzenic sulfonic acid-induced colitis in a murine model. *Infect. Immun.* **76**, 4772–4782, https://doi.org/10.1128/IAI.00744-07

109 Selkaw, T., Metwali, A., Blum, A.M., Ince, M.N., Urban, Jr, J.F., Elliott, D.E. et al. (2007) Heligmosomoides polygyrus promotes regulatory T-cell cytokine production in the murine normal distal intestine. *Infect. Immun.* **75**, 4655–4663, https://doi.org/10.1128/IAI.00358-07

110 Wakelin, D., Goyal, P.K., Dehlawi, M.S. and Hermanek, J. (1994) Immune responses to Trichinella spiralis and *T. pseudospiralis* in mice. *Immunology* **81**, 475–479

111 Wu, Z., Nagano, I., Asano, K. and Takahashi, Y. (2010) Infection of non-encapsulated species of Trichinella ameliorates experimental autoimmune encephalomyelitis involving suppression of Th17 and Th1 response. *Parasitol. Res.* **107**, 1173–1188, https://doi.org/10.1007/s00436-010-1985-9

112 Sato, H., Kamiya, H., Oku, Y. and Kamiya, M. (1994) Infection course of the strobilar stage of *Taenia crassiceps* in golden hamsters, with reference to host responses. *Parasitol. Res.* **80**, 99–103, https://doi.org/10.1007/BF00933774

113 Espinoza-Jimenez, A., Rivera-Montoya, I., Cardenas-Arreola, R., Moran, L. and Terrazas, L.I. (2010) *Taenia crassiceps* infection attenuates multiple low-dose streptozotocin-induced diabetes. *J. Biomed. Biotechnol.* **2010**, 850541, https://doi.org/10.1155/2010/850541

114 Reyes, J.L., Espinoza-Jiménez, A.F., González, M.I., Verdin, L. and Terrazas, L.I. (2011) *Taenia crassiceps* infection abrogates experimental autoimmune encephalomyelitis. *Cell. Immunol.* **267**, 77–87, https://doi.org/10.1016/j.cellimm.2010.11.006

115 Ledesma-Soto, Y., Callejas, B.E., Terrazas, C.A., Reyes, J.L., Espinoza-Jimenez, A., Gonzalez, M.I. et al. (2015) Extraintestinal helminth infection limits pathology and proinflammatory cytokine expression during DSS-induced ulcerative colitis: a role for alternatively activated macrophages and prostaglandins. *BioMed Res. Int.* **2015**, 563425, https://doi.org/10.1155/2015/563425

116 Specht, S., Frank, J.K., Aferink, J., Dubben, B., Layland, L.E., Denece, G. et al. (2011) *CCL17* controls mast cells for the defense against filarial larval entry. *J. Immunol.* **186**, 4845–4852, https://doi.org/10.4049/jimmunol.1000612

117 Muhsin, M., Ajendra, J., Gentil, K., Berbudí, A., Neumann, A.L., Klaas, L. et al. (2018) IL-6 is required for protective immune responses against early filarial infection. *Int. J. Parasitol.* **48**, 99–103, https://doi.org/10.1016/j.ijpara.2018.05.011

118 Hübner, M.P., Stocker, J.T. and Mitre, E. (2009) Inhibition of type 1 diabetes in filaria-infected non-obese diabetic mice is associated with a T helper type 2 shift and induction of FoxP3+ regulatory T cells. *Immunology* **127**, 512–522, https://doi.org/10.1111/j.1365-2567.2008.02958.x

119 Ajendra, J., Berbudí, A., Hoerauf, A. and Hübner, M.P. (2016) Combination of worm antigen and proinulin prevents type 1 diabetes in NOD mice after the onset of insulin. *Clin. Immunol.* **164**, 119–122, https://doi.org/10.1016/j.clim.2016.02.005

120 Dittrich, A.M., Erbacher, A., Specht, S., Diesner, F., Krokowski, M., Avagyan, A. et al. (2008) Helminth infection with *Litomosoides sigmodontis* induces regulatory T cells and inhibits allergic sensitization, airway inflammation, and hyperreactivity in a murine asthma model. *J. Immunol.* **180**, 1792–1799, https://doi.org/10.4049/jimmunol.180.3.1792

121 Berbudí, A., Surendar, J., Ajendra, J., Gondorf, F., Schmidt, D., Neumann, A.L. et al. (2016) Filarial infection or antigen administration improves glucose tolerance in diet-induced obese mice. *J. Innate Immun.* **8**, 601–616, https://doi.org/10.1159/000448401

122 Yang, Y., Xiao, S., Ren, H., Wu, J., Feng, Z. and Hotze, P.J. (1999) Cutaneous and subcutaneous mast cell and eosinophil responses after challenge in mice vaccinated with living infective third-stage hookworm larvae. *Chin. Med. J.* **112**, 1020–1023

123 Ferreira, I., Smyth, D., Gaze, S., Aziz, A., Giaconini, P., Ruysers, N. et al. (2013) Hookworm excretory/secretary products induce interleukin-4 (IL-4)- and IL-10+ CD4+ T cell responses and suppress pathology in a mouse model of colitis. *Infect. Immun.* **81**, 2104–2111, https://doi.org/10.1128/IAI.00563-12

124 Mukai, K., Karasuyama, H., Kabashima, K., Kubo, M. and Galli, S.J. (2017) Differences in the importance of mast cells, basophils, IgE, and IgG versus that of CD4+ T cells and ILC2 cells in primary and secondary immunity to *strongyloides venezuelensis*. *Infect. Immun.* **85**, https://doi.org/10.1128/IAI.00053-17

125 Peres, R.S., Chiuso-Miniciucci, F., da Rosa, L.C., Domingues, A., Zorzella-Pezavento, S.F., Franca, T.G. et al. (2013) Previous contact with *Strongyloides venezuelensis* contributed to prevent insulitis in MLD-STZ diabetes. *Exp. Parasitol.* **134**, 183–189, https://doi.org/10.1016/j.exppara.2013.03.007

126 Mitchell, L.A., Wescott, R.B. and Perryman, L.E. (1983) Kinetics of expulsion of the nematode, Nippostrongylus brasiliensis, in mast-cell deficient W/WV mice. *Parasite Immunol.* **5**, 1–12, https://doi.org/10.1111/j.1365-3024.1983.tb00718.x

127 Wohlbheben, G., Trujillo, C., Muller, J., Ritze, Y., Grunewald, S., Tatsch, U. et al. (2004) Helminth infection modulates the development of allergen-induced airway inflammation. *Int. Immunol.* **16**, 585–596, https://doi.org/10.1093/intimm/dxh062

128 Mo, H.M., Lei, J.H., Jiang, Z.W., Wang, C.Z., Cheng, Y.L., Li, Y.L. et al. (2008) Schistosoma japonicum infection modulates the development of allergen-induced airway inflammation in mice. *Parasitol. Res.* **103**, 1183–1189, https://doi.org/10.1007/s00436-008-1114-1

129 Yang, J., Zhao, J., Yang, Y., Zhang, L., Yang, X., Zhu, X. et al. (2007) Schistosoma japonicum egg antigens stimulate CD4+ CD25+ T cells and modulate airway inflammation in a murine model of asthma. *Immunology* **120**, 8–18, https://doi.org/10.1111/j.1365-2567.2006.02472.x

130 Mo, H.M., Liu, W.Q., Lei, J.H., Cheng, Y.L., Wang, C.Z. and Li, Y.L. (2007) *Schistosoma japonicum* egg antigens modulate the activity of CD4+ CD25+ Tregs and prevent development of colitis in mice. *Exp. Parasitol.* **116**, 385–389, https://doi.org/10.1016/j.exppara.2007.02.009
132 Zheng, X., Hu, X., Zhou, G., Lu, Z., Qiu, W., Bao, J. et al. (2008) Soluble egg antigen from Schistosoma japonicum modulates the progression of chronic progressive experimental autoimmune encephalomyelitis via Th2-shift response. *J. Neuroimmunol.* **194**, 107–114, https://doi.org/10.1016/j.jneuroim.2007.12.001

133 Sorobetea, D., Holm, J.B., Henningsson, H., Kristiansen, K. and Svensson-Frej, M. (2017) Acute infection with the intestinal parasite Trichuris muris has long-term consequences on mucosal mast cell homeostasis and epithelial integrity. *Eur. J. Immunol.* **47**, 257–268, https://doi.org/10.1002/eji.201646738

134 Betts, C.J. and Else, K.J. (1999) Mast cells, eosinophils and antibody-mediated cellular cytotoxicity are not critical in resistance to Trichuris muris. *Parasite Immunol.* **21**, 45–52, https://doi.org/10.1046/j.1365-3024.1999.00200.x

135 Koyama, K. and Ito, Y. (2000) Mucosal mast cell responses are not required for protection against infection with the murine nematode parasite Trichuris muris. *Parasite Immunol.* **22**, 13–20, https://doi.org/10.1046/j.1365-3024.2000.00270.x

136 Vegas-Sanchez, M.C., Rollan-Landeras, E., Garcia-Rodriguez, J.J. and Bolas-Fernandez, F. (2015) Induction of ulcerative colitis in mice influences the course of infection with the nematode Trichuris muris. *J. Helminthol.* **89**, 593–600, https://doi.org/10.1017/S0022149X14000558

137 Chenery, A.L., Antignano, F., Burrows, K., Scheer, S., Perona-Wright, G. and Zaph, C. (2016) Low-Dose Intestinal Trichuris muris Infection Alters the Lung Immune Microenvironment and Can Suppress Allergic Airway Inflammation. *Infect. Immun.* **84**, 491–501, https://doi.org/10.1128/IAI.01240-15