Kinetic investigation of \textit{in situ} growth of CdMoO$_4$ nano-octahedra

LI YanFen, JIANG JunYing, FAN GaoChao, MA YuJie & HUANG ZaiYin*

College of Chemistry & Ecological Engineering, Guangxi University for Nationalities, Nanning 530006, China

Received June 14, 2010; accepted September 30, 2010

CdMoO$_4$ nano-octahedra were grown \textit{in situ} at room temperature by reverse-microemulsion. Energy evolution from this growth process was monitored using microcalorimetry. The microcalorimetric heat flow (MCHF) curve showed a characteristic endothermic peak for the initial reaction, and double discontinuous exothermic peaks for the subsequent crystal growth. Combined with complementary characterization techniques, the evolution of morphology and size of the CdMoO$_4$ nano-octahedra were correlated with the MCHF peaks. Calculations based on the microcalorimetric results at 298.15 K provided rate constants of $7.56 \times 10^{-5} \text{ s}^{-1}$ for the reaction and nucleation process and $1.59 \times 10^{-4} \text{ s}^{-1}$ for the crystallization process.

\textit{in situ} growth, CdMoO$_4$ nano-octahedra, microcalorimetry, heat flow curve

Over the past decade, attention has focused on the preparation of nanomaterials with controlled sizes and morphologies [1–3], which are important in determining the properties of the materials. Unfortunately, real time growth mechanisms for this controlled synthesis remain unclear. Consequently, clarification of the aggregation pathways and thermodynamics of \textit{in situ} growth of nanoparticles is critical. Several methods have been used to explore the aggregation pathways during crystal growth, such as classical crystallization kinetic theory [4], \textit{in situ} electron microscopy [5–7], scanning tunneling microscopy [8,9], \textit{in situ} ellipsometry [10], \textit{in situ} synchrotron X-ray absorption [11], and quartz crystal microbalance in combination with \textit{in situ} X-ray photoelectron spectroscopy [12]. However, these methods cannot be used to evaluate instantaneous information from the non-equilibrium growth of nanomaterials. Moreover, they are expensive, carried out under harsh conditions, lack universality, and do not provide information on energetics. Thus, alternative methods are required to determine the energy evolution during synthesis of nanomaterials. This information could be used to effectively control the size distribution, structure and growth directions of nanoparticles.

Calorimetry is an effective method to measure the changes in heat associated with crystal growth [13,14]. The major advantage of this method is that the system will not be disturbed during measurements. Additionally, continuous and accurate recordings can be provided on energy evolution in the system. \textit{In situ} microcalorimetry has been used to systematically study the thermochemical and thermokinetic properties of the synthesis process and crystal growth of rare-earth complexes [15–17]. This method has also been applied to the zeolite and silica system, and used to delineate the relationship between thermodynamic factors and changes in the solution chemistry and interface properties [18–24]. The formation mechanism of MCM-41 mesoporous silica was also investigated using microcalorimetry [25]. In addition, microcalorimetry has been used to determine standard molar enthalpies [26] and the surface and interface enthalpies [27]. It is therefore reasonable to apply calorimetry to explore the energy evolution of other inorganic or organic nanostructure growth processes.

In this study, we used \textit{in situ} microcalorimetry and transmission electron microscopy (TEM) to track the energy,
1 Materials and methods

1.1 Chemicals

Analytical grade Na$_2$MoO$_4$·2H$_2$O, Cd(NO$_3$)$_2$·4H$_2$O, n-octanol, TritonX-100 (OP), and cyclohexane were purchased from Xilong Chemical Reagent Factory and used without further purification. Deionized water was used to prepare all the aqueous solutions.

1.2 Preparation of the initial synthesis solutions

Typically, two 13.20-mL microemulsion solutions were prepared by adding 1.20 mL 0.1 mol L$^{-1}$ Cd(NO$_3$)$_2$ and 1.20 mL 0.1 mol L$^{-1}$ Na$_2$MoO$_4$ aqueous solutions into a n-octan/OP/cyclohexane system (n-octan/OP/cyclohexane = 3.90:1:22.70), water contents (ϕ = water/OP = 20 (molar ratio)), respectively. After 30 min of stirring, the mixture became a homogenous and completely clear solution to the naked eye, and was stored at room temperature for further use.

1.3 In situ microcalorimetric method and synthesis

The energy evolution was measured using a microcalorimeter (RD496-CK2000, MianYang CP Thermal Analysis Instrument Co., Ltd). The structure and technical parameters of this calorimeter have been detailed previously [29]. The microcalorimeter was calibrated first using the Joule effect. The sensitivities of the calorimeter were determined to be (64.54±0.02), (64.56±0.03), (64.60±0.01), (64.68±0.02), and (64.84±0.01) μV mW$^{-1}$ at 297.15, 298.15, 301.15, 303.15, and 308.15 K, respectively. Electric power (100 mW) was provided to the Joule cell, which had 1000 Ω electrical resistance, for 100 s at 298.15 K. The enthalpy of dissolution of KCl (spectral purity grade) in deionized water was (17.237±0.046) kJ mol$^{-1}$, which was in agreement with a previous measurement of (17.241±0.018) kJ mol$^{-1}$ [30].

The calorimetric system was accurate (accuracy 0.02%) and reliable (precision 0.3%). The Cd(NO$_3$)$_2$ and Na$_2$MoO$_4$ microemulsions were placed in a stainless steel sample cell in separate 15-mL containers [31]. The Na$_2$MoO$_4$ microemulsion (1.0 mL) was placed in a small glass tube above the Cd(NO$_3$)$_2$ microemulsion (1.0 mL), which was in a larger glass tube. After establishment of equilibrium, the small glass tube with Na$_2$MoO$_4$ microemulsion was pushed down simultaneously. This led to mixing of the two microemulsions and the thermogram was recorded.

CdMoO$_4$ crystals were produced as a white precipitate by reaction between the cadmium cations and molybdate anions that were solubilized in the microemulsions. Samples were removed at selected intervals and thoroughly washed with acetone, deionized water and ethanol several times to remove any impurities.

1.4 Characterization

The products were characterized by X-ray diffraction (XRD, Philips PW1710) with Cu Kα radiation (λ = 1.5406 Å) and transmission electron microscopy (TEM, JEM-200CX, JEOL) with an accelerating voltage of 200 kV.

2 Results and discussion

2.1 In situ scanning microcalorimetry

The microcalorimetric heat flow (MCHF) curve was measured for in situ CdMoO$_4$ nanocrystallite growth at 298.15 K (Figure 1, curve Q_1). After an initial thermal disturbance caused by loading of the stainless steel sample cells, a flat segment ($t_1=0$–1000 s) was observed, which indicates negligible thermal events occurred. The MCHF curve during this period is taken as the initial baseline for the following thermal peaks.

In curve Q_1, one weak endothermic peak and two relatively strong and discontinuous exothermic peaks were observed simultaneously. The reaction was initiated when the two liquids mixed, and this appeared on the MCHF curve as a sharp decrease in energy with a subsequent endothermic peak. After about 30 s ($t_2=1040$ s), the endothermic maximum was reached. Thereafter, the endothermic event rapidly changed into a more pronounced exothermic event, until at $t_3=1108$ s the MCHF curve crossed the baseline.
from endothermic to exothermic. At \(t_{c}=1380 \) s, the exothermic peak was observed. At \(t_{c}=4310 \) s, the MCHF curve flattened and remained constant for about 5690 s. At \(t_{c}=10000 \) s, an exothermic peak began. At about 20000 s \((t_{c}=30000 \) s), a second weak exothermic peak was observed, after which the MCHF curve flattened and remained constant for at least three more days. Therefore, formation of CdMoO\(_{4}\) nanocrystals was complete at 30000 s, and the following flat curve represents the final baseline. This baseline was distinctly shifted in the exothermic direction from the initial baseline (Figure 1, curve \(Q_{0,1} \)). In order to understand the formation of CdMoO\(_{4}\) nanocrystals, an experiment was carried out in aqueous solution. A very strong endothermic peak appeared rapidly in the MCHF curve (Figure 1, curve \(Q_{2} \)) as the two liquids were mixed, which was followed by a single weak exothermic peak. At \(t_{c}=8920 \) s, the MCHF curve flattened and remained flat for at least four more days. In this case, formation was complete at 8920 s, and the final baseline after this was similar to the initial baseline (Figure 1, curve \(Q_{0,2} \)). Thus, we can infer that the baseline shift reflects that the thermal spectra are different when the reaction takes place in different systems (aqueous vs. microemulsion). CdMoO\(_{4}\) nanocrystal formation is not complete in one step when using the reverse-microemulsion method. (d\(H_{\text{r}} \)/dt) was distinctly shifted in the exothermic direction from the baseline (Figure 1, curve \(Q_{0,1} \)). In order to understand the formation of CdMoO\(_{4}\) nanocrystals, an experiment was carried out in aqueous solution. A very strong endothermic peak appeared rapidly in the MCHF curve (Figure 1, curve \(Q_{2} \)) as the two liquids were mixed, which was followed by a single weak exothermic peak. At \(t_{c}=8920 \) s, the MCHF curve flattened and remained flat for at least four more days. In this case, formation was complete at 8920 s, and the final baseline after this was similar to the initial baseline (Figure 1, curve \(Q_{0,2} \)). Thus, we can infer that the baseline shift reflects that the thermal spectra are different when the reaction takes place in different systems (aqueous vs. microemulsion). CdMoO\(_{4}\) nanocrystal formation is not complete in one step when using the reverse-microemulsion method.

The energy change in the reaction system depends on the reaction progress. The reaction was triggered when the reactant solutions were mixed. Based on anisotropic growth, the period from 1010–1040 s is a reaction and nucleation stage, from 1040–4310 s is the crystallization stage, and from 10000–30000 s is the crystal growth phase. For each of these processes we can determine the rate of heat production, (d\(H_{\text{r}} \)/dt), and enthalpy, \(H_{\text{r}} \), at time \(t \) (Table 1).

This data can be used to determine the rate constant \((k) \) of the liquid phase reaction by the following thermodynamic equation [32].

\[
\ln \left(\frac{1}{H_{0}} \frac{dH_{r}}{dt} \right) = \ln k + n \ln \left(1 - \frac{H_{r}}{H_{0}} \right),
\]

where \(n \) is the reaction order, and \(H_{0} \) is the total enthalpy of the CdMoO\(_{4}\) nanocrystal growth process. At 298.15 K, the reaction and nucleation rate constant \((k_{r}) \) was 7.56×10\(^{-5}\) s\(^{-1}\) (\(R=0.997 \)). The crystallization rate constant \((k_{c}) \) was 1.59×10\(^{-5}\) s\(^{-1}\) (\(R=0.998 \)). The crystal growth stage is not a liquid phase reaction, which means eq. (1) is unsuitable, but we can investigate the enthalpy change with time (Figure 2). Linear fitting of this curve indicated that the rate of total enthalpy change \((r) \) was \(-0.1644\) mJ s\(^{-1}\) (\(R=-0.996 \)) at \(t=10000–30000 \) s (Figure 2(a)). Obviously, the MCHF curve is not smooth in this phase, and it can be divided into three sections a, b, and c with rates of enthalpy change of \(r_{a} = -0.2415 \) mJ s\(^{-1}\) (\(R=0.9995 \)) at \(t=15500–21500 \) s; \(r_{b} = -0.1890 \) mJ s\(^{-1}\) (\(R=0.9999 \)) at \(t=21500–25500 \) s; \(r_{c} = -0.1484 \) mJ s\(^{-1}\) (\(R=0.9977 \)) at \(t=25500–30000 \) s (Figure 2(d)).

2.2 Powder XRD patterns

Figure 3 shows representative XRD patterns of the products prepared via reverse-microemulsion at room temperature. All the XRD patterns are consistent with a pure tetragonal structure for CdMoO\(_{4}\) (JCPDS Card No. 07-0209). The chemical compositions of the samples were determined by chemical analysis (Table 1). The samples were found to mainly contain O, Si, Mo and Cd elements. Si signals arose from the Si substrate, and the other three element signals came from the samples.

2.3 TEM images

The formation of CdMoO\(_{4}\) nano-octahedra was examined using a series of TEM images (Figure 4). These clearly revealed the crystallite structures of CdMoO\(_{4}\) obtained at selected

Table 1 Thermokinetic data of the liquid-phase reaction in the reverse-microemulsion system at 298.15 K

\(t(s) \)	Reaction and nucleation process		Crystallization process		Crystal growth process			
	\(H_{\text{r}}(\text{mJ}) \)	(d\(H_{\text{r}} \)/dt\(_{0}\) (mJ s\(^{-1}\))		\(H_{\text{r}}(\text{mJ}) \)	(d\(H_{\text{r}} \)/dt\(_{0}\) (mJ s\(^{-1}\))		\(H_{\text{r}}(\text{mJ}) \)	(d\(H_{\text{r}} \)/dt\(_{0}\) (mJ s\(^{-1}\))
1007	-349.9243	-0.2914	1646	-432.5462	-0.1597	14726	-375.1667	-0.2148
1009	-352.5317	-0.3001	1666	-436.6450	-0.1637	14763	-373.6523	-0.2143
1011	-356.0729	-0.3126	1686	-440.6772	-0.1671	14746	-375.5354	-0.2134
1013	-359.7695	-0.3256	1706	-444.9457	-0.1712	14756	-375.4378	-0.2127
1015	-363.2228	-0.3375	1726	-449.2196	-0.1750	14766	-375.2844	-0.2117
1017	-366.0295	-0.3466	1746	-453.5120	-0.1785	14776	-375.1290	-0.2115
1019	-368.4015	-0.3538	1766	-457.8453	-0.1820	14786	-376.1096	-0.2104
1021	-370.6864	-0.3605	1786	-462.2353	-0.1854	14796	-376.0582	-0.2100
1023	-372.6816	-0.3660	1806	-466.6684	-0.1887	14806	-376.9161	-0.2092
1025	-374.358	-0.3701	1826	-470.9856	-0.1913	14816	-376.8198	-0.2086
1027	-375.9267	-0.3736	1846	-475.5295	-0.1945	14826	-377.7432	-0.2081
1029	-377.2928	-0.3763	1866	-480.0427	-0.1974	14836	-377.2464	-0.2068
1031	-378.4622	-0.3782	1886	-484.5972	-0.2003	14846	-377.4343	-0.2066
1033	-379.4666	-0.3793	1906	-489.0816	-0.2026	14856	-377.3870	-0.2063
1035	-380.3238	-0.3798	1926	-493.8259	-0.2058	14866	-377.2738	-0.2058
Figure 2 Microcalorimetric heat curve of CdMoO$_4$ nano-octahedra at the crystal growth stage: (a) $t = 10000–30000$ s, (b) $t = 10000–14500$ s, (c) $t = 14500–15500$ s, and (d) $t = 15500–30000$ s.

Figure 3 XRD patterns of the CdMoO$_4$ samples obtained at reaction times of; a, 1 min; b, 30 min; c, 1 h; d, 8 h and e, 48 h.

intervals, and directly mirrored the evolution process of the morphology and size of the CdMoO$_4$ nanocrystals.

In combination with the MCHF curves we used the TEM results to analyze the in situ growth of the CdMoO$_4$ nanocrystals. At the end of the initial baseline (Figure 1, curve Q_1), the clear solutions were mixed together. This resulted in mixing of the Cd$^{2+}$ and MoO$_4^{2-}$ ions and direct precipitation of CdMoO$_4$. The in situ MCHF curve at this point was endothermic. Near the end of the endothermic curve, the compounds started to nucleate and the MCHF curve became exothermic. Overall, the reaction and nucleation period was

Figure 4 TEM images of CdMoO$_4$ nanocrystals at different times during the synthesis. (a) 1 min, (b) 30 min, (c) 1 h, (d) 8 h and (e) 48 h.
characteristically endothermic. During this time, the TEM image suggests that a large number of CdMoO₄ nanoparticles form with diameters of about 15 nm (Figure 4(a)). During nucleation, the nanoparticles started to aggregate and the crystals began to grow; the curve was very exothermic at this point. This crystal growth reduced the overall interface between the solid particles and mother liquid. CdMoO₄ samples taken near the end of this phase consisted of mainly spherical and polyhedron particles with sizes of about 18 nm (Figure 4(b)). Subsequently, the in situ MCHF curve flattened and remained flat for about 5690 s. The heat effects during this stage were not obvious, because thermodynamic control gradually prevailed over kinetic control. This period is a homeostasis process where balance is achieved between crystal growth and dissolution. The average particle diameter in this period was 22 nm and several octahedra were observed (Figure 4(c)). The crystal growth process followed this, and anisotropic growth occurred on each plane of the crystals, which led to octahedra and similar shaped aggregates with edge lengths of about 25 nm (Figure 4(d)). Aggregation and dispersion of the crystals repelled each other strongly, slowed the reaction, which appeared on the MCHF curve as a flatter second exothermic peak (Figure 4(d)). The strong brightness contrast in the image indicates that the products are nano-octahedra. The selected area electron diffraction (SAED) pattern (Figure 4(e)) illustrates that these nanoparticles are single crystalline CdMoO₄ structures.

3 Conclusion

In summary, microcalorimetry is a useful technique to track the in situ physicochemical events of nanocrystallite growth. The overall goal of our microcalorimetric study was to provide direct evidence for oscillatory thermokinetic evolution of CdMoO₄ nanocrystallite growth. On the basis of anisotropic growth, the initial process is associated with a strong energetic driving force and is controlled by chemical reactions. The remainder of the process primarily involves formation of the unique morphology, and is mainly kinetically controlled. This information aids understanding of phase transformation in inorganic composites, and could be used to control the crystal size, structures, and growth directions of nanostructure inorganic composite materials.

This work was supported by the National Natural Science Foundation of China (20963501), the Natural Science Foundation of Guang Zhan Autonomous Region (0575030, 0852078 and 0991085), and the Innovation Project of Guangxi University for Nationalities (gxun-chs2009082).

1 Tang Q, Zhou W J, Zhang W, et al. Size-controllable growth of single crystal In(OH)₃ and In₂O₃ nanocubes. Crystal Growth Design, 2005, 5: 147–150
2 Yu S H, Antonietti M, Cölfen H, et al. Synthesis of very thin 1D and 2D CdWO₄ nanoparticles with improved fluorescence behavior by polymer-controlled crystallization. Angew Chem Int Ed, 2002, 41: 2356–2360
3 Wang Y G, Ma J F, Tao J T, et al. Hydrothermal synthesis and characterization of CdWO₄ nanorods. J Am Ceram Soc, 2006, 89: 2980–2982
4 Sugimoto T, Kimijima K. New approach to the formation mechanism of AgCl nanoparticles in a reverse micelle system. J Phys Chem B, 2003, 107: 10753–10759
5 Stach F A, Pauzsuskie P J, Kuykendall T, et al. Watching GaN nanowires grow. Nano Lett, 2003, 3: 867–869
6 Radisic A, Vereeecken P M, Hannon J B, et al. Quantifying electrochemical nucleation and growth of nanoscale clusters using real-time kinetic data. Nano Lett, 2006, 6: 238–242
7 Chou Y C, Wu W W, Cheng S L, et al. In-situ TEM observation of repeating events of nucleation in epitaxial growth of nano CoSi₂ in nanowires of Si. Nano Lett, 2008, 8: 2194–2199
8 Szukutnik P D, Sarlata A, Nufurs S, et al. Real-time scanning tunneling microscopy observation of the evolution of Ge quantum dots on nanopatterned Si(001) surfaces. Phys Rev B, 2004, 69: 201309–201312
9 Zell C A, Freeland W. In situ STM and STS study of Co and Co-Al alloy electrodeposition from an ionic liquid. Langmuir, 2003, 19: 7445–7450
10 Logothetidis S, Gioti M, Pantasal P. Real-time monitoring, growth kinetics and properties of carbon based materials deposited by sputtering. Diamond Relat Mater, 2001, 10: 117–124
11 Lougham B, Illy B N, Ryan M P. Direct observation of distinct nucleation and growth processes in electrochemically deposited ZnO nanostructures using in situ XANES. J Phys Chem C, 2008, 112: 2820–2824
12 Chelly R, Werckmann J, Angot P, et al. Growth of epitaxial SiGe nanostructures at low temperature on Si(100) using hot-wire assisted gas source molecular beam epitaxy. Thin Solid Films, 1997, 294: 84–87
13 Chen S P, Li N, Gao S L. Structure analysis and the standard molar enthalpy of formation of a coordination polymer [Co(TO)₂Cl₂]₄ (TO = 1,2,4-triazole-5-one). Thermochim Acta, 2007, 460: 88–91
14 Liu Y, Yan C G, Wang T Z, et al. Kinetics of the toxic action of Pb²⁺ on rhizopus nigricans as studied by microcalorimetry. Thermochim Acta, 1999, 333: 103–108
15 Gao S L, Yang X W, Ji M, et al. Standard enthalpies of formation of solid complexes of RE nitrates with histidine. Thermochim Acta, 1998, 323: 1–7
16 Shuai Q, Gao S L, Chen S P, et al. Determination of specific heat capacity of rare earth organic-sulfur complexes by microcalorimetry (in Chinese). Acta Chim Sin, 2005, 63: 1962–1966
17 Fan X Z, Chen S P, Xie G, et al. The regularity of thermochemical properties of ternary complexes RE[(Pdc₅)₂(phen)]. Chin J Chem, 2006, 24: 1013–1019
18 Rimer J D, Trofymuk O, Navrotsky A, et al. Kinetic and thermodynamic studies of silica nanoparticle dissolution. Chem Mater, 2007, 19: 4189–4197
19 Yang S Y, Navrotsky A. An in situ calorimetric study of zeolite crystalization kinetics. Microporous Mesoporous Mat, 2002, 52: 93–103
20 Navrotsky A. Calorimetric insights into the synthesis of templated materials. Curr Opin Colloid Interface Sci, 2005, 10: 195–202
21 Yang S Y, Navrotsky A. Early-stage reactions in synthesis of TPA-Silicalite-1: Studies by in situ calorimetry, SAXS, and pH measurements. Chem Mater, 2004, 16: 3682–3687
22 Gross A F, Yang S Y, Navrotsky A, et al. In situ calorimetric study of the hexagonal-to-lamellar phase transformation in a nanostructured silica/surfactant composite. J Phys Chem B, 2003, 107: 2709–2718
23 Yang S Y, Navrotsky A. In situ calorimetric, structural, and compositional study of zeolite synthesis in the system 5.15Na₂O-1.00Al₂O₃-
3.28SiO$_2$·165H$_2$O. J Phys Chem B, 2000, 104: 6071–6080

24 Yang S Y, Navrotsky A. *In situ* calorimetric study of the growth of silica TPA-MFI crystals from an initially clear solution. Chem Mater, 2002, 14: 2803–2811

25 Nan Z D, Wang M Y, Yan B Q. *In situ* investigation on the formation mechanism of MCM-41 mesoporous silica by microcalorimetry. J Chem Eng Data, 2009, 54: 83–89

26 Li P, Liu Z H. Standard molar enthalpies of formation for the two alkali metal borates Li$_4$[B$_9$O$_{26}$(OH)$_4$]·6H$_2$O and Cs$_3$[B$_{10}$O$_{19}$(OH)$_9$]. J Chem Eng Data, 2009, 54: 830–832

27 Costa G C C, Ushakov S V, Castro R H R, et al. Calorimetric measurement of surface and interface enthalpies of Yttria-Stabilized Zirconia (YSZ). Chem Mater, 2010, 22: 2937–2945

28 Gong Q, Li G, Qian X F, et al. Synthesis of single crystal CdMoO$_4$ octahedral microparticles via microemulsion-mediated route. J Colloid Interface Sci, 2006, 304: 408–412

29 Ji M, Liu M Y, Gao S L, et al. A new microcalorimeter for measuring thermal effects. Instru Sci Technol, 2001, 29: 53–57

30 Marehada V K. The enthalpy of solution of SRM 1655 (KCl) in H$_2$O Marthada. J Res NBS Standards, 1980, 85: 467

31 Ren Y X, Gao S L, Chen S P, et al. Investigation of the crystallization kinetics of Zn(Met)(AcO)$_2$·H$_2$O in mixed solution of water and acetone by microcalorimetry. Chin J Chem, 2004, 22: 1095–1101

32 Gao S L, Chen S P, Hu R Z, et al. Derivation and application of thermodynamic equations (in Chinese). Chin J Inorg Chem, 2002, 18: 362–366