Recent Findings on the Effects of Pharmacological Agents on the Nerve Regeneration after Peripheral Nerve Injury

Samira Bolandghamat¹ and Morteza Behnam-Rassouli¹,*

¹Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Iran

Abstract: Peripheral nerve injuries (PNIs) are accompanied with neuropathic pain and functional disability. Despite improvements in surgical repair techniques in recent years, the functional recovery is yet unsatisfied. Indeed a successful nerve repair depends not only on the surgical strategy but also on the cellular and molecular mechanisms involved in traumatic nerve injury. In contrast to all strategies suggested for nerve repair, pharmacotherapy is a cheap, accessible and non-invasive treatment that can be used immediately after nerve injury. This study aimed to review the effects of some pharmacological agents on the nerve regeneration after traumatic PNI evaluated by functional, histological and electrophysiological assessments. In addition, some cellular and molecular mechanisms responsible for their therapeutic actions, restricted to neural tissue, are suggested. These findings can not only help to find better strategies for peripheral nerve repair, but also to identify the neuropathic effects of various medications and their mechanisms of action.

Keywords: Peripheral nerve injury, pharmacological agents, nerve regeneration, nerve repair, pharmacotherapy, functional recovery.

1. INTRODUCTION

Peripheral nerve injuries (PNIs) have several causes like trauma and medical disorders and result in neuropathic pain and functional disability [1]. In contrast to the injuries of the central nervous system (CNS), in the PNIs, the damaged nerves will regenerate spontaneously to the extent restricted by the size of the nerve gap, neuroma and scar tissue formation [2]. Most traumatic nerve injuries need surgical repair to permit the regeneration of axons into the distal segment of the nerve [2]. However, the current state of research is a shift from primarily focusing on surgical repair methods to molecular mechanisms and new strategies influencing the key factors such as post-traumatic neuronal and glial cell death [3, 4], Schwann cell proliferation, migration and differentiation [5, 6], growth cone mobility [7], axonal outgrowth [8, 9] and orientation [10]. In this way, various types of conditioning treatments and extrinsic manipulations have been suggested, such as topical or systemic application of natural/or synthetic compounds [3, 11], electrical stimulation [12, 13], electromagnetic fields [14, 15], biological or non-biological scaffolds in combination with cells and/or neurotrophic factors [16-20] and gene therapy [21]. A combination of the above-mentioned methods is often used in experimental studies. Pharmacological agents have the advantage of accessibility and currently used for the treatment of PNIs in the clinic [22, 23]. In this review article, we discuss the effects of selected pharmacological agents on the nerve regeneration after traumatic PNI in the animal studies evaluated by functional, histological and electrophysiological assessments (Fig. (1), Table 1). These medications were chosen on the basis of our laboratory's previous works in the field of peripheral nerve regeneration. These findings can not only help to find better strategies for peripheral nerve repair, but also to identify the neuropathic effects of various medications and their mechanisms of action.

2. APPLICATION OF PHARMACOLOGICAL AGENTS AFTER SURGICAL REPAIR OF THE INJURED NERVE

2.1. Monotherapy (Pharmacotherapy)

2.1.1. Dexamethasone

Dexamethasone is a potent anti-inflammatory glucocorticoid used for the treatment of acute spinal cord injuries [24]. Administration of this compound as topical (at doses of 1-4 mg/kg), systemic (2 mg/kg), or loaded in a silicone tube (0.1 mg/kg) improves the functional and morphological indexes of injured peripheral nerve [25-29]. A high dose of dexamethasone reduces the severity of Wallerian degeneration and delays the clearance of myelin debris after PNI [30]. Dexamethasone also has age-dependent effects on neuronal survival and functional recovery after facial nerve crush in mice [31]. According to a study, dexamethasone (1 mg/kg/day, for 7 days) slows functional recovery in the adult mice, while
enhancing it in the juveniles after facial nerve crush. Moreover, neuronal survival is more decreased in juvenile mice than adults after treatment with dexamethasone [31]. Recent studies have shown that dexamethasone can act through mechanisms beyond anti-inflammatory action, such as upregulation of brain-derived neurotrophic factor (BDNF) [29], increasing the immunoreactivity of nerve growth factor (NGF) in nerve tissue [28], reducing fibrosis [28] and oxidative stress [32] after PNI. The other effects of dexamethasone on peripheral nerve tissue include being a potent co-mitogen for Schwann cell proliferation [33], increasing the viability of frataxin-depletion Schwann cells [34], inhibiting blood-nerve barrier disruption after sciatic nerve injury [35], accelerating the time of initiation and the rate of myelin synthesis in Schwann cell/neuronal cocultures [36] and stimulating the transcription from the promoters of peripheral myelin protein-22 (PMP-22) and protein zero (P0) genes in Schwann Cells [37]. Although dexamethasone is widely used for the treatment of PNI in the animal studies, it can cause life-threatening side effects, either at high doses or after prolonged use [31, 38].

2.1.2. Methylprednisolone

Methylprednisolone is an intermediate-acting glucocorticoid widely used as a standard therapeutic agent for the treatment of spinal cord injury and idiopathic facial nerve

Fig. (1). In vivo study of the effects of the pharmacological agent on nerve regeneration after peripheral nerve injury. Two common models of traumatic peripheral nerve injury used in animal studies, including nerve crush and transection. Pharmacological agents, either alone or in combination with stem cells, are administered through different routes after or before surgical repair of the injured nerve. They exert positive or negative effects on nerve regeneration by influencing inflammation, apoptosis and oxidative stress. The success of nerve repair is evaluated by morphological, functional (motor and sensory) and electrophysiological assessments. (A higher resolution / colour version of this figure is available in the electronic copy of the article).
Table 1. Summary of animal studies indicating positive (+) or negative (-) effects of pharmacological agents on the morphological, functional, and electrophysiological indexes of the injured peripheral nerve in adult animals.

Medication	Nerve Injury Model	Route of Administration	Morphological Outcome	Functional Outcome	Electrophysiological Outcome
Dexamethasone	Sciatic nerve crush	Systemic (i.p.)	[25]	[25]	-
		Local	[25, 29], -[28]	[25, 29]	+[28, 29]
	Sciatic nerve transection	Local	[27]	[27]	-
	Facial nerve crush	Local	[26]	[26]	+[26]
		Systemic (i.p.)	[31]	-[31]	
Methylprednisolone	Sciatic nerve crush	Systemic (i.p.)	[42, -50]	-	+[42]
	Sciatic nerve transection	Local	[43, 49]	[43, 49]	-
	Facial nerve crush	Local	[44]	[44]	-
		Systemic (i.p.)	[-44]	[-44]	-
		Systemic (i.m.)	[48]	-	
	Facial nerve transection	Systemic (i.m.)	[-46-48]	-	-[-47]
Atorvastatin	Sciatic nerve crush	Systemic (oral)	[59]	[59]	+[59]
	Sciatic nerve transection	Systemic (i.p.)	-	+[61]	+[61]
	Facial nerve crush	Systemic (oral)	-	-[60]	-
Citicoline	Sciatic nerve transection	Local	[77, 78]	+[77, 78]	[77]
	Sciatic nerve crush	Systemic (i.p.)	-	+[79, 80]	+[79, 80]
Acetyl-L-carnitine	Sciatic nerve transection	Systemic (i.p.)	+[88-90]	+[88]	-
	Sciatric nerve (oral)	+[91]	[91]	[91]	
L-carnitine	Sciatic nerve crush	Systemic (oral)	[93]	+[93]	-
	Sciatic nerve transection	Systemic (i.p.)	-88	-88	-
	Systemic (oral)	-88	-88	-	-
Memantine	Facial nerve crush	Systemic (i.p.)	-	+[96]	-
Riluzole	Sciatic nerve crush	Systemic (i.p.)	-104	-104, +[105]	-104
	Facial nerve crush	Systemic (i.p.)	-103	-103	-

Medication	Nerve Injury Model	Route of Administration	Morphological Outcome	Functional Outcome	Electrophysiological Outcome
Citocline + bone marrow mesenchymal stem cells seeded on the decellularized nerve allograft	Sciatic nerve transection	Systemic (i.p.)	+[116]	+[116]	+[116]
Acetyl-L-carnitine + adipose-derived stromal cells seeded on the decellularized nerve allograft	Sciatic nerve transection	Systemic (i.p.)	+[20]	+[20]	+[20]
Dexamethasone + human mesenchymal stem cells seeded on a membrane	Sciatic nerve transection	Local	+[117]	+[117]	+[117]

(Table 1) contd....
paralysis [39-41]. Unlike the positive effects of high doses of methylprednisolone (20, 30 and 160 mg/kg) on the nerve repair [42-45], the data on the effects of low doses of methylprednisolone (0.39 and 1 mg/kg) remains somewhat controversial [46-48]. Intramuscular administration of a low dose of methylprednisolone (1 mg/kg/day, for 2, 3 weeks and 2 months) has no effect on the nerve regeneration in the neurorrhaphy model of facial nerve injury [46-48]; however, it increases nerve healing after compression of the facial nerve in the New Zealand rabbits [48]. Intrapertioneal injection of methylprednisolone (4 mg/kg, for 5 days) and topical application (20 mg/kg) of methylprednisolone-loaded hydrogel increases the expression of GAP-43 protein as a marker of regeneration and improves functional recovery after PNI [44]. The other effects of methylprednisolone include reducing the levels of nitric oxide (NO) and malondialdehyde (MDA) in the serum and nerve tissue [42, 45], increasing immunoreactivity for NGF and vascular endothelial growth factor (VEGF) in the endoneurium [42], and preventing the increase of endoneurial collagen fibers after PNI [47, 49]. Methylprednisolone (2mg/kg/day, for 14 days) also decreases Schwann cell atrophy, perineural granulation tissue and intraneural infiltration of inflammatory cells, despite increasing perineurial inflammatory cells after sciatic nerve crush [50]. Also, an increase in scores of inflammation and fibrosis with chronic treatment by a low dose of methylprednisolone (0.5 mg/kg/day, for 4 weeks) has been reported [51].

2.1.3. Atorvastatin

Atorvastatin is a statin medication used for the treatment of hypercholesterolaemia [52]. Statins are inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, the rate-limiting enzyme in the cholesterol biosynthesis pathway [53]. They exert the neuroprotective effects in neurodegenerative diseases such as Alzheimer’s disease and multiple sclerosis [54, 55]. These effects have been attributed to the anti-inflammatory [56], anti-thrombotic [57], anti-excitotoxic [52], antioxidant [58] and immunomodulatory activities of statins [55]. Pretreatment with atorvastatin (5 mg/kg/day, for 1 week) improved the functional, electrophysiological, and morphological outcomes in a rat sciatic nerve crush model [59], while it (at the dose of 10 mg/kg) had no effect on the whisking recovery after facial nerve crush injury in the other study [60]. Atorvastatin treatment (5 mg/kg/day, for 14 days) after PNI also has improved the functional and electrophysiological outcomes yet [61]. On the other hand, atorvastatin treatment reduces oxidative stress [58, 59], apoptosis [59], matrix metalloproteinase activity [59-62], inflammation [56, 59, 62, 63] and alleviates the disruption of the blood-nerve barrier at the early stage of nerve injury [59]. Moreover, atorvastatin upregulates the regeneration-associated genes, including growth-associated protein-43, myelin basic protein, ciliary neurotrophic factor, and collagen [59]. It also has a modulatory effect on the intracellular signalling molecules and transcription factors such as inhibiting extracellular signal-regulated kinase, AKT, signal transducer and activators of transcription-1, necrosis factor-xB and increasing activation of c-Jun N-terminal kinase, Smad2/3, and activating protein-1 [59]. It has been suggested that some effects of statins are due to the inhibition of isoprenylation of proteins (e.g., Ras, Rho, Rac) involved in cellular signalling, proliferation and differentiation [64]. Conversely, epidemiological studies indicate that long-term use of statins is associated with peripheral neuropathy and myopathy [65-67].

2.1.4. Citicoline

Citicoline, also known as cytidine-5'-diphosphocholine (CDP-choline), is a natural intracellular precursor of phosphatidylcholine (PC), one of the most abundant phospholipids found in cell membranes [68]. Following injection or ingestion of citicoline in the rat, it is hydrolyzed into choline and cytidine, which enter cells separately and are used for intracellular synthesis of citicoline [69, 70]. It has therapeutic effects for neurological disorders [71-73] through increasing phospholipid synthesis and attenuating phospholipid destruction by reducing phospholipase A2 activity (PLA2) [74, 75]. PLA2 hydrolyzes phosphatidylcholine to lysophosphatidylcholine and arachidonic acid. The former can induce myelin breakdown and the latter involved in the induction of reactive oxygen species, lipid peroxidation and inflammatory responses [75, 76]. Local (78 mg/kg) or systemic (80 and 293 mg/kg) administration of each of citicoline, cytidine, choline or cytidine + choline, improves nerve regeneration and functional recovery after sciatic nerve injury in the rat [77-81]. These findings indicate that the beneficial effects of citicoline are likely to be mediated by its endogenous metabolites choline, cytidine, or both [78, 79]. Citicoline also reduces peripheral scar formation and nerve edema after sciatic nerve transection [77, 80].

2.1.5. L-carnitine

L-carnitine (levocarnitine; 3-hydroxy-4-N-trimethyl-aminobutyrate) is a naturally occurring compound with an obligatory role in the mitochondrial fatty acid metabolism [82]. It has neuroprotective effects in the CNS injury models
[83-85]. In the rodent intestines, L-carnitine undergoes extensive intracellular acetylation (50-60%) to generate the esterified carnitine, which can more readily cross the basolateral membrane [86, 87]. Long-term treatment with L-acetyl carnitine (50 mg/kg/day, for 2, 8 and 12 weeks) improves functional and histological outcomes and reduces muscle atrophy after PNI [88-90]. Acetyl-L-carnitine (1 ng) loaded in a chitosan conduit improved functional recovery and morphometric indexes of the injured sciatic nerve [91]. Moreover, acetyl-L-carnitine (100 mg/kg, for 15 days) prevents the induction of apoptosis in the distal segment of the ligated nerve by upregulation of XIAP [92]. L-carnitine (50 and 100 mg/kg/day, for 30 days) has also improved histological and functional outcomes after sciatic nerve crush in diabetic rats [93]. Another study has demonstrated that long-term treatment with L-carnitine (100 mg/kg/day, for 1 month) improves functional recovery and reduces inflammation, while short-term treatment (for 1 week) has no effect on the functional recovery after nerve transection [94]. Most of the above studies have reported the neuroprotective effect of acetyl-L-carnitine with its therapeutic effect at the doses of 50 and 100 mg/kg, which can be safe [88-90]. Meanwhile, some studies have demonstrated that L-carnitine (at doses of 50 and 100 mg/kg/day, for 15, 28 and 56 days) has no effect on nerve regeneration and apoptosis after the sciatic nerve injury [88, 92].

2.1.6. Memantine

Memantine, as a derivative of amantadine, is non-competitive N-methyl-D-aspartate glutamate (NMDA) receptor antagonist that prevents excitotoxicity [95, 96]. Memantine (20 mg/kg/day, for 7 days) inhibited apoptosis and accelerated functional recovery after facial nerve crush [96], although it (5 and 10 mg/kg/day, for 7 days) had no effect on the histological outcome and functional recovery after sciatic nerve crush [97]. Intrathecal administration of memantine (200 μg) attenuates tactile allodynia and mechanical hyperalgesia induced by tight ligation of spinal nerves in the rats [98]. Pretreatment with memantine at a low dose (1.79 μg) prevents the induction of dynamic allodynia by blocking Kir2.1 channel and microglia activation in the spinal cord after spared sciatic nerve injury [99].

2.1.7. Riluzole

Riluzole (2-amino-6-trifluoro-methoxy-benzothiazole) is currently the only clinically approved drug for the treatment of amyotrophic lateral sclerosis [100, 101]. The neuroprotective effects of riluzole are a result of blocking voltage-activated Na+ channels and NMDA receptors and thereby reducing excitotoxicity [102]. Systemic administration of riluzole (4 mg/kg/day, for 4 weeks) had no effect on morphological and functional outcomes after facial nerve crush [103]. Moreover, another study has demonstrated that riluzole administration (4, 6 and 8 mg/kg/day, for 8 days) reduces functional, electrophysiological, and morphological outcomes after sciatic nerve crush [104]. Conversely, riluzole treatment (2, 4 and 8 mg/kg/day, for 3 days) has improved rat motor performance and coordination assessed in the open field and rotarod tests on the third day after sciatic nerve crush [105]. It was found that the administration of riluzole (4 and 16 mg/kg, for 2-3 weeks) increases the survival of neonatal and adult spinal motoneurons after axotomy [106-108]. It (0.1 μM) also enhances neurite outgrowth in terms of number, length and branch pattern in the adult L4 dorsal root ganglion culture after PNI [109]. Riluzole administration (4 mg/kg/day, for 5 days) attenuates the mechanical allodynia and thermal hyperalgesia through inhibiting the expression of P2X7 receptor (P2X7R) and microglial activation in the dorsal horn of spinal cord [110]. P2X7R is a microglia non-selective cation channel involved in the development of inflammatory and neuropathic pain and neuronal sensitization [111, 112].

2.1.8. Combination Therapy (Stem Cells + Pharmacological Agent)

Stem cell therapy, in the form of cell transplantation or cell-seeded scaffolds for bridging the nerve gap, is the current method for repairing the injured nerves in the animal models [113]. These scaffolds have the advantages of removing the immunogenicity of the extracellular matrix and the seeded stem cells will eventually differentiate into Schwann cell-like cells [113, 114]. However, the survival of seeded or transplanted stem cells is yet a challenge [115]. Thus, the combination of stem cell therapy and pharmacotherapy may reduce the limitation of each strategy. In one study, administration of citicoline (200 mg/kg/day, for 2 weeks) in combination with bone marrow mesenchymal stem cells seeded on the decellularized nerve allograft improved morphological, functional and electrophysiological indexes of the injured sciatic nerve [116]. In the other study, administration of acetyl-L-carnitine (50 mg/kg/day, for 2 weeks) and adipose-derived stromal cells seeded on the decellularized nerve allograft led to regeneration across a 10-mm sciatic nerve gap, with results similar to those of the autografts in functional, electrophysiological, and histological assessments. In this study, acetyl-L-carnitine treatment attenuated apoptosis and upregulated the expression of NGF, BDNF, glial cell-derived neurotrophic factor (GDNF) and Schwann cell markers (S100 and P75) in the transplanted stem cells [20]. Moreover, local administration of dexamethasone (1 mg/kg) in combination with human mesenchymal stem cells seeded on a membrane has improved the histological, electrophysiological and functional outcomes (in comparison to each treatment alone) after sciatic nerve transection [117]. Lovastatin (5 and 10 μM) also enhances the differentiation of amniotic fluid stem cells to early Schwann cells in the culture. Treating stem cells with lovastatin upregulates Schwann cell markers (S100b and nestin) and lipogenic genes, including the low-density lipoprotein receptor (LDLR), HMG-CoA reductase and NAD(P) dependent steroid dehydrogenase-like (NSDHL) which play a role in myelin formation [118].

3. APPLICATION OF PHARMACOLOGICAL AGENTS IN THE DELAYED SURGICAL REPAIR

Most studies performed in the animal models of PNI are on the basis of immediate repair, while in the human PNs, there is usually a delay between the nerve injury and surgical repair [119, 120]. This delay can be from a few days up to months and results in poor functional outcome [119, 121, 122]. This unsatisfied functional recovery indicates the necessity of the pharmacological interventions in the delayed repair.
surgical repair and highlights the role of animal studies conducted in this field. In this regard, the local administration of citicoline/or cytidine + choline (78 mg/kg) improved morphological and functional outcomes when the surgical nerve repair was delayed for 3 days [78]. In the other study, oral administration of NeuroHeal, a mixture of acamprosate and ribavirin (2.2 and 1 mM, respectively, for 21 days or 6 months) enhanced motoneuron survival, nerve regeneration and the formation of functional neuromuscular junctions following detachment of L3-L6 ventral roots and reimplantation after a 2-week delay. NeuroHeal also reduced glial scar, muscular atrophy and accelerated nerve regeneration by activating the AKT pathway [123]. In addition, administration of methylprednisolone (2 mg/kg/day, for 2 weeks) during one month delayed nerve repair improved morphological indexes of the rat sciatic nerve [124].

CONCLUSION

Pharmacological agents are cheap, accessible and non-invasive treatments that can be used in the first few hours after a PNI. They act in the forefront and the results of the other treatments depend on them. These medications may inhibit inflammation, oxidative stress and apoptosis and prevent deterioration of the injured nerves. In this regard, we suggest the administration of anti-inflammatory and CNS neuroprotective agents can be beneficial for peripheral nerve repair. However, timing, dose, route of medication administration and type of nerve injury should also be considered. Conversely, some pharmacological agents can cause neurotoxophy, accelerate nerve degeneration or delay regeneration. Administration of NMDA receptor antagonists has no or negative effects on the nerve repair in some studies. Also, it seems that the combination therapy (scaffold + stem cells + pharmacological agents) may be the best strategy for repairing nerve defects. However, the clinical application of this strategy still needs further research. On the other hand, the administration of pharmacological agents in the delayed repair is important since the regeneration capacity declines with delay in surgical repair. While most studies have focused on using pharmacological agents after the immediate surgical nerve repair, little is known about the effects of pharmacological agents on the delayed repair, which resembles delayed nerve repair in human. Then we suggest shifting future animal studies to this model, whose results are more translatable to the clinic. In conclusion, research in this area not only helps to find better strategies for peripheral nerve repair but also to identify the neuropathic effects of various medications and their mechanisms of action.

CONSENT FOR PUBLICATION

Not applicable.

FUNDING

This research was also based on experiments supported by Ferdowsi University of Mashhad (grant No. 3/46389, 3/38692, 3/38693 and 3/33287).

CONFLICT OF INTEREST

The authors declare no conflict of interest, financial or otherwise.

ACKNOWLEDGEMENTS

Declared none.

REFERENCES

[1] Romeo-Guitart, D.; Casas, N. Network-centric medicine for peripheral nerve injury: Treating the whole to boost endogenous mechanisms of neuroprotection and regeneration. Neural Regen. Res. 2019, 14(7), 1122-1128. http://dx.doi.org/10.4103/1673-5374.251187 PMID: 30804234

[2] Siemionow, M.; Brzezicki, G. Current techniques and concepts in peripheral nerve repair. International Review of Neurobiology; Geneva, S.; Tos, P.; Battistion, B., Eds.; Academic Press: New York, 2009, Vol. 87, pp. 141-172.

[3] Lu, Y.; Li, R.; Zhu, J.; Wu, Y.; Li, D.; Dong, L.; Li, Y.; Wen, X.; Yu, F.; Zhang, H.; Ni, X.; Du, S.; Li, X.; Xiao, J.; Wang, J. Fibroblast growth factor 21 facilitates peripheral nerve regeneration through suppressing oxidative damage and autophagic cell death. J. Cell. Mol. Med. 2019, 23(1), 497-511. http://dx.doi.org/10.1111/jcmm.13952 PMID: 30450828

[4] Abbaszadeh, A.; Darabi, S.; Hasanvand, A.; Amini-Khoei, H.; Abbasnezhad, A.; Choghakhori, R.; Aaliehpour, A. Minocycline through attenuation of oxidative stress and inflammatory response reduces the neuropathic pain in a rat model of chronic constrictive injury. J. Basic Med. Sci. 2018, 21(2), 139-144. PMID: 29456810

[5] Yi, S.; Liu, Q.; Wang, X.; Qian, T.; Wang, H.; Zha, G.; Yu, J.; Wang, P.; Gu, X.; Chu, D.; Li, S. Tau modulates Schwann cell proliferation, migration and differentiation following peripheral nerve injury. J. Cell Sci. 2019, 132(6), 222059. http://dx.doi.org/10.1242/jcs.222059 PMID: 30782778

[6] Quintes, S.; Brinkmann, B.G.; Ebert, M.; Fröh, F.; Kungl, T.; Arlt, F.A.; Tarabykin, V.; Huyalebrock, D.; Meijer, S.; Uter, U.; Wegner, M.; Sereda, M.W.; Nave, K.A. Zeb2 is essential for Schwann cell differentiation, myelination and nerve repair. Nat. Neurosci. 2016, 19(8), 1050-1059. http://dx.doi.org/10.1038/nn.4321 PMID: 27294512

[7] Ma, C.H.E.; Omura, T.; Cobos, E.J.; Latremolière, A.; Ghasemlou, N.; Brenner, G.J.; van Veen, E.; Barrett, L.; Sawada, T.; Gao, F.; Coppola, G.; Gertler, F.; Costigan, M.; Geschwind, D.; Woolf, C.J. Accelerating axonal growth promotes motor recovery after peripheral nerve injury in mice. J. Clin. Invest. 2011, 121(11), 4332-4347. http://dx.doi.org/10.1172/JCI58675 PMID: 21965338

[8] Zhu, H.; Wang, Y.; Yang, X.; Wu, G.; Qiu, Y.; Ye, X.; Gao, Y.; Wang, D. Catalpol improves axonal outgrowth and reinnervation of injured sciatic nerve by activating Akt/mTOR pathway and regulating BDNF and PTEN expression. Am. J. Transl. Res. 2019, 11(3), 1311-1326. PMID: 30972164

[9] Zhu, H.; Xue, C.; Yao, M.; Wang, H.; Zhang, P.; Qian, T.; Zhou, S.; Li, S.; Yu, B.; Wang, Y.; Gu, X. mTOR-129 controls axonal regeneration via regulating insulin-like growth factor-1 in peripheral nerve injury. Cell Death Dis. 2018, 9(7), 720. http://dx.doi.org/10.1038/s41419-018-0760-1 PMID: 29915198

[10] Isaacman-Beck, J.; Schneider, V.; Franzini-Armstrong, C.; Granato, M. The Il3 glycosyltransferase directs target-selective peripheral nerve regeneration. Neuron 2018, 88(4), 691-703. http://dx.doi.org/10.1016/j.neuron.2015.10.004 PMID: 26549330

[11] Ozbay, I.; Ial, I.; Kucur, C.; Akclar, R.; Deger, A.; Aktas, S.; Oghan, F. Effects of ozone therapy on facial nerve regeneration. Rev. Bras. Otorrinolaringol. 2017, 83(2), 168-175. PMID: 27174776

[12] Nix, W.A.; Hopf, H.C. Electrical stimulation of regenerating nerve and its effect on motor recovery. Brain Res. 1983, 272(1), 21-25. http://dx.doi.org/10.1016/0006-8993(83)90360-8 PMID: 6616196

[13] Pockett, S.; Gavin, R.M. Acceleration of peripheral nerve regeneration after crush injury in rat. Neurosci. Lett. 1985, 59(2), 221-224. http://dx.doi.org/10.1016/0304-3940(85)90203-4 PMID: 3877256

[14] Siskin, B.F.; Kanje, M.; Lundborg, G.; Herbst, E.; Kurtz, W. Stimulation of rat sciatic nerve regeneration with pulsed electromagnetic fields. Brain Res. 1989, 485(2), 309-316. http://dx.doi.org/10.1016/0006-8993(89)90575-1 PMID: 2497929

[15] Rusovan, A.; Kanje, M. Stimulation of regeneration of the rat sciatic nerve by 50 Hz sinusoidal magnetic fields. Exp. Neurol. 1991, 112(3), 312-316.
http://dx.doi.org/10.1016/j.jom.2010.04.011 PMID: 20971017

Aksu, U.; Atukeren, P.; Terzioglu, D.; Belce, A.; Demirci-Tansel, C. Effect of dexamethasone in mediating oxidative stress induced by sodium nitroprusside on frog sciatic nerve action potentials. *Biomaterials*. 2013, 1, 21-27.

Neuberger, T.J.; Kalimi, O.; Regelson, W.; Kalimi, M.; De Vries, G.H. Glucocorticoids enhance the potency of Schwann cell mitogens. *J. Neurosci.*, 1994, 14(3), 300-313. http://dx.doi.org/10.1016/j.jom.2008.03.008 PMID: 7932685

Lu, C.; Schoenfeld, R.; Shan, Y.; Tsai, H.J.; Hammack, B.; Corte-passi, G. Frataxin deficiency induces Schwann cell inflammation and death. *Biochim. Biophys. Acta*. 2009, 1792(11), 1052-1061. http://dx.doi.org/10.1016/j.bbadis.2009.07.011 PMID: 19679182

Li, H.; Zhang, L.; Xu, M. Dexamethasone prevents vascular damage in early-stage non-freezing cold injury of the sciatic nerve. *Neural Regen. Res.*. 2017, 12(1), 163-167. http://dx.doi.org/10.4103/1677-1750.63642 PMID: 26981107

Chan, J.R.; Phillips, J.L.; Ji, G.; Glaser, M. Glucocorticoids and pro-estogens signal the initiation and enhance the rate of myelin formation. *Proc. Natl. Acad. Sci. USA*. 1998, 95(18), 10459-10464. http://dx.doi.org/10.1073/pnas.95.18.10459 PMID: 9724725

Desarnaud, F.; Bidichandani, S.; Patel, P.L.; Baulieu, E.E.; Schu-nemann, M. Glucocorticosteroids stimulate the activity of the promoters of peripheral myelin protein-22 and protein zero genes in Schwann cells. *Brain Res.*. 2000, 856(1), 12-16. http://dx.doi.org/10.1016/S0006-8993(00)02130-2 PMID: 10814728

Malkawi, A.K.; Alzoubi, K.H.; Jacob, M.; Matic, G.; Ali, A.; Al Faraj, A.; Almuhamma, F.; Dasouki, M.; Abdel Rahman, A.M. Metabolomics based profiling of dexamethasone side effects in rats. *Front. Pharmacol.*. 2018, 9, 46. http://dx.doi.org/10.3389/fphar.2018.00046 PMID: 29503615

Bracera, M.B.; Shepard, J.M.; Collins, W.F.; Holford, T.R.; Young, W.; Baskin, D.S.; Eisenberg, H.M.; Flamm, E.; Leo-Summers, L.; Maroon, J. A randomized, controlled trial of methylprednisolone or naloxone in the treatment of acute spinal-cord-injury. Results of the second national acute spinal cord injury study. *N. Engl. J. Med.*. 1999, 340(27), 1405-1411. http://dx.doi.org/10.1056/NEJM199905173220201 PMID: 2278545

de Almeida, J.R.; Al Khabori, M.; Guyatt, G.H.; Witterick, I.J.; Lin, V.Y.; Nedzelski, J.M.; Chen, J.M. Combined corticosteroid and antiviral treatment for bell palsy: a systematic review and meta-analysis. *JAMA*. 2009, 302(9), 985-993. http://dx.doi.org/10.1001/jama.2009.1243 PMID: 19724046

Zoorob, R.J.; Cender, D. A different look at corticosteroids. *Am. Fam. Physician*. 1995, 52(3), 443-450. PMID: 7913398

Sevuk, L.; Vayisoglu, Y.; Korklu, S.; Comelekoglu, U.; Arpaci, B.; Aktas, A.; Helvac, A.; Gocer, P.; Aldagd, Z.C.; Karata, M.A.; Talat, D.O. The Effects of Methylprednisolone and vitamin A on the healing of traumatic peripheral nerve paralysis. *J. Int. Adv. Otol.*. 2015, 11(3), 275-280. http://dx.doi.org/10.4103/1677-1750.187776

Mehrshad, A.; Shahraiki, M.; Ehteshamifar, L. Local administration of methylprednisolone laden hydrogel enhances functional recovery of transected sciatic nerve in rat. *Brain Res.*. 2015, 1618, 1-12. http://dx.doi.org/10.1016/j.brainres.2015.01.013 PMID: 21281630

Mohammadi-Bagheri, G.; Arash, A.; Morteza, B.R.; Naser, M.S.; Ali, M. Synergistic effects of acetyl- L-carnitine and adipose-derived stromal cells on improving regenerative capacity of acellular nerve allograft in sciatic nerve defect. *J. Pharmacol. Exp. Ther.*. 2019, 2019, 369(4), 490-502. http://dx.doi.org/10.1124/jpet.118.254540 PMID: 30591528

Kim, S.; Chung, S.Y.; Youn, S.J.; Jeon, Y. Dexmedetomidine treatment for bilateral lingual nerve injury following orotracheal intubation. *J. Dent. Anesth. Pain Med.*, 2018, 18(2), 115-117. http://dx.doi.org/10.17245/jdamp.2018.18.2115 PMID: 29744387

Cavalli, E.; Mammana, S.; Nicoletti, F.; Bramanti, P.; Mazzon, E. The neuropathic pain: An overview of the current treatment and future therapeutic approaches. *Int. J. Immunopharmacol*. 2019, 33, 2058734198938383. http://dx.doi.org/10.1177/2058734198938383 PMID: 30090486

Kiwerski, J.E. Application of dexamethasone in the treatment of acute spinal cord injury. *Injury*, 1993, 24(7), 457-460. http://dx.doi.org/10.1016/0020-1383(93)90149-Z PMID: 8406764

Sussu, H.; Altun, M.; Erdivi, B.; Turan, S.H. Comparison of the effects of local and systemic dexamethasone on the rat traumatic sciatic nerve model. *Turk Neurosurg.*, 2013, 23(5), 623-629. PMID: 24101310

Jang, C.H.; Cho, Y.B.; Choi, C.H.; Jang, Y.S.; Jung, W.K. Effect of topical dexamethasone in reducing dysfunction after facial nerve crush injury in the rat. *Int. J. Pediatr. Orhkonarylorgy.*, 2014, 78(6), 960-963. http://dx.doi.org/10.1177/1078984713503827 PMID: 24735605

Mohammadi, R.; Azad-Tirgan, M.; Amini, K. Dexamethasone topically accelerates peripheral nerve repair and target organ reinervation: a transplanted sciatic nerve model in rat. *Injury*, 2013, 44(4), 565-569. http://dx.doi.org/10.1016/j.injury.2012.10.013 PMID: 23131678

Uzun, T.; Toptas, O.; Saylan, A.; Carver, H.; Turkoglu, S.A. Evaluation and comparison of the effects of artesunate, dexamethasone and tacrolimus in the sciatic nerve regeneration. *J. Oral Maxillofac. Surg.*, 2019, 77(5), 1092.e1-1092.e12. http://dx.doi.org/10.1016/j.joms.2018.12.019 PMID: 30689960

Sun, H.; Yang, T.; Li, Q.; Zhu, Z.; Wang, L.; Bai, G.; Li, D.; Li, Q.; Wang, W. Dexamethasone and vitamin B(12) synergistically promote peripheral nerve regeneration in rats by upregulating the expression of brain-derived neurotrophic factor. *Arch. Med. Sci.*, 2012, 8(5), 924-930. http://dx.doi.org/10.5114/ams.2012.31623 PMID: 23185205

Mohousainnezhad-moghadam, M.; Behnam-rassouli, M.; Rahim-Rezaee, S.; Mahdavi-Shahri, N. Proceedings of the 2nd International Neuroinflammation Congress and 2nd Student Neuroscience Festival, Mashhad, Iran April 17-19, 2018. 2018, p. 187.

Lieberman, D.M.; Jan, T.A.; Ahmad, S.O.; Most, S.P. Effects of corticosteroids on functional recovery and neuron survival after facial nerve injury in mice. *Arch. Facial Plast. Surg.*, 2011, 13(2), 117-124. http://dx.doi.org/10.1016/j.archfacialsurg.2010.09.001 PMID: 21079107
Pharmacological Agents and Peripheral Nerve Repair

Yanilmaz, M.; Akduman, D.; Sagun, Ö.F.; Haksever, M.; Yaziciyar, O.; Orhan, I.; Akpolat, N.; Gök, U. The effects of aminoguanidine, methylprednisolone, and melatonin on nerve recovery in peripheral facial nerve neurorrhaphy. *J. Craniofac. Surg.*, **2015**, 26(3), 667-672. http://dx.doi.org/10.1097/SCS.0000000000001503 PMID: 25933145

Yildirim, M.A.; Karlidal, T.; Akpolat, N.; Kaygusuz, I.; Keles, E.; Yalcin, S.; Akyigit, A. The effect of methylprednisolone on facial nerve paralysis with different etiologies. *J. Craniofac. Surg.*, **2015**, 26(3), 810-815. http://dx.doi.org/10.1097/SCS.0000000000001502 PMID: 25933144

Li, Q.; Li, T.; Cao, X.C.; Luo, D.Q.; Lian, K.J. Methylprednisolone microsphere sustained-release membrane inhibits scar formation at the site of peripheral nerve lesion. *Neural Regen. Res.*, **2016**, 11(5), 835-841. http://dx.doi.org/10.4103/1673-5374.182713 PMID: 27335571

Ozturk, O.; Tsezcan, A.H.; Adali, Y.; Yildirim, C.H.; Aksoy, O.; Yagmur, M.; Bilge, A. Effect of ozone and methylprednisolone treatment following crush type sciatic nerve injury. *Acta Cir. Bras.*, **2016**, 31(1), 730-735. http://dx.doi.org/10.1590/s0102-86502016100000005 PMID: 27982260

Ozsoy, Z.; Kayaoğlu, H.A.; Özkan, N.; Ozsoy, S.; Yalçık, F.; Yenilovan, E. The effect of methylprednisolone and tenoxicam on the protection of damage of the nerve physiomorphology caused by proline mesh. *Int. J. Surg.*, **2015**, 22, 159-163. http://dx.doi.org/10.1016/j.ijsu.2015.08.075 PMID: 26344122

Bösel, J.; Gandor, F.; Harms, C.; Synowitz, M.; Harms, U.; Djoufack, P.C.; Megow, D.; Dimagli, U.; Hörtmig, H.; Fink, K.B.; Endres, M. Neuroprotective effects of atorvastatin against glutamate-induced excitotoxicity in primary cortical neurons. *J. Neurochem.*, **2005**, 92(6), 1386-1398. http://dx.doi.org/10.1111/j.1471-4159.2004.02980.x PMID: 15748157

Alberts, A.W. Discovery, biochemistry and bioengineering of lovastatin. *Am. J. Cardiol.*, **1988**, 62(15), 101-151. http://dx.doi.org/10.1016/0002-9149(88)90002-1 PMID: 3055919

Barone, E.; Conini, G.; Di Domenico, F.; Martin, S.; Sultana, R.; Mancuso, C.; Murphy, M.P.; Head, E.; Butterfield, D.A. Long-term high-dose atorvastatin decreases brain oxidative and nitrosative stress in a preclinical model of Alzheimer disease: a novel mechanism of action. *Pharmacol. Res.*, **2011**, 63(3), 172-180. http://dx.doi.org/10.1016/j.phrs.2010.12.007 PMID: 21193043

Greenwood, J.; Steinman, L.; Zamvil, S.S. Statin therapy and autoimmune disease: from protein prenylation to immunomodulation. *Nat. Rev. Immunol.*, **2006**, 6(5), 358-370. http://dx.doi.org/10.1038/nri1839 PMID: 16639429

Chu, L.W.; Chen, J.Y.; Yu, K.L.; Cheng, K.I.; Wu, P.C.; Wu, B.N. Atorvastatin and anti-inflammatory activities of atorvastatin in a rat chronic constriction injury model. *Int. J. Immunopathol. Pharmacol.*, **2012**, 25(1), 219-230. http://dx.doi.org/10.1177/0390554812460414 PMID: 22507334

Liao, J.K. Isopropenoids as mediators of the biological effects of statins. *J. Clin. Invest.*, **2002**, 110(3), 285-288. http://dx.doi.org/10.1172/JCI101642 PMID: 12163444

Gieris, P. Neuroprotective properties of citalopram: facts, doubts and unresolved issues. *CNS Drugs*, **2014**, 28(3), 185-193. http://dx.doi.org/10.1007/s40263-014-0144-8 PMID: 24504829

Lozano G-Coviella, L.; Agut, J.; Von Borstel, R.; Wurtman, R.J. Metabolism of cytokine (5')-diphosphocholine (cdp-choline) following oral and intravenous administration to the human and the rat. *Neurochem. Res.*, **1987**, 12(3), 293-297. http://dx.doi.org/10.1007/BF00265281 PMID: 29765578

Baker, S.K.; Tamposky, M.A. Statin myopathies: pathophysiological and clinical perspectives. *Clin. Invest. Med.*, **2001**, 24(5), 258-272. PMID: 11605310

Griebl, P. Neuroprotective properties of citalopram: facts, doubts and unresolved issues. *CNS Drugs*, **2014**, 28(3), 185-193. http://dx.doi.org/10.1007/s40263-014-0144-8 PMID: 24504829

Lopez G-Coviella, L.; Agut, J.; Von Borstel, R.; Wurtman, R.J. Metabolism of cytokine (5')-diphosphocholine (cdp-choline) following oral and intravenous administration to the human and the rat. *Neurochem. Res.*, **1987**, 12(3), 293-297. http://dx.doi.org/10.1007/BF00265281 PMID: 29765578

Weiss, G.B. Metabolism and actions of CDP-choline as an endogenous compound and administered exogenously as citicoline. *Life Sci.*, **1995**, 56(9), 637-660. http://dx.doi.org/10.1016/0024-3205(94)00427-T PMID: 7869846

Park, C.H.; Kim, Y.S.; Noh, H.S.; Cheon, E.W.; Yang, Y.A.; Yoo, J.M.; Choi, W.S.; Cho, G.J. Neuroprotective effect of citicoline against KA-induced neurotoxicity in the rat retina. *Exp. Eye Res.*, **2005**, 81(3), 350-358. http://dx.doi.org/10.1016/j.exer.2005.02.007 PMID: 16129120

Parisi, V.; Coppola, G.; Centofanti, M.; Oddone, F.; Angrisani, A.M.; Ziccardi, L.; Ricci, B.; Quaranta, L.; Manni, G. Evidence of neuroprotective role of citalopram in glaucoma patients. *Prog. Brain Res.*, **2008**, 173, pp. 541-554. http://dx.doi.org/10.1016/S0079-6123(08)01137-0 PMID: 18929133

Cacabelos, R.; Caamaño, J.; Gómez, M.J.; Fernández-Novoa, L.; Franco-Maside, A.; Alvarez, X.A. Therapeutic effects of CDP-choline in Alzheimer’s disease. Cognition, brain mapping, cerebrovascular hemodynamics, and immune factors. *Ann. N. Y. Acad. Sci.*, **1996**, 777, 399-403. http://dx.doi.org/10.1111/j.1749-6632.1996.tb34452.x PMID: 8624120

Adhibhatla, R.M.; Hatcher, J.F. Citalopram decreases phospholipase A2 stimulation and hydroxyl radical generation in transient cerebral ischemia. *J. Neurosci. Res.*, **2003**, 73(3), 308-315. http://dx.doi.org/10.1002/jnr.10672 PMID: 12868064

Adhibhatla, R.M.; Hatcher, J.F. Citalopram mechanisms and clinical efficacy in cerebral ischemia. *J. Neurosci. Res.*, **2002**, 70(2), 133-139. http://dx.doi.org/10.1002/jnr.10345 PMID: 11945162

De, S.; Trigueros, M.A.; Kalyvas, A.; David, S. Phospholipase A2 plays an important role in myelin breakdown and phagocytosis during Wallerian degeneration. *Mol. Cell. Neurosci.*, **2003**, 24(3), 753-766.
Pharmacological Agents and Peripheral Nerve Repair

[106] Cabaj, A.M.; Slawinska, U. Riluzole treatment reduces motoneuron death induced by axotomy in newborn rats. *J. Neurotrauma*, 2012, 29(7), 1506-1517. http://dx.doi.org/10.1089/neu.2011.2090 PMID: 22260361

[107] Nógrádi, A.; Virbóvá, G. The effect of riluzole treatment in rats on the survival of injured adult and grafted embryonic motoneurons. *Eur. J. Neurosci.*, 2001, J(3), 113-118. http://dx.doi.org/10.1046/j.0953-816X.2000.01362.x PMID: 11135009

[108] Pintér, S.; Gloviczki, B.; Szabó, A.; Márton, G.; Nógrádi, A. Increased survival and reinnervation of cervical motoneurons by riluzole after avulsion of the C7 ventral root. *J. Neurotrauma*, 2010, 27(12), 2273-2282. http://dx.doi.org/10.1089/neu.2010.1445 PMID: 20939695

[109] Shortland, P.J.; Leinster, V.H.L.; White, W.; Robson, L.G. Riluzole promotes cell survival and neurite outgrowth in rat sensory neurons in vitro. *Eur. J. Neurosci.*, 2006, 24(12), 3343-3353. http://dx.doi.org/10.1111/j.1460-9568.2006.05218.x PMID: 17229083

[110] Jiang, K.; Zhuang, Y.; Yan, M.; Chen, H.; Ge, A.Q.; Sun, L.; Miao, B. Effects of riluzole on P2X7R expression in the spinal cord in rat model of neuropathic pain. *Neurosci. Lett.*, 2016, 618, 127-133. http://dx.doi.org/10.1016/j.neulet.2016.02.065 PMID: 26952972

[111] Chessell, I.P.; Hatcher, J.P.; Bountra, C.; Michel, A.D.; Hughes, I.P.; Green, P.; Egerton, J.; Murfin, M.; Richardson, J.; Peck, W.L.; Grahames, C.B.; Casula, M.A.; Yiangou, Y.; Birch, R.; Anand, P.; Buell, G.N. Disruption of the P2X7 purinoceptor gene abolishes chronic inflammatory and neuropathic pain. *Pain*, 2005, 114(3), 386-396. http://dx.doi.org/10.1016/j.pain.2005.01.002 PMID: 15777864

[112] Chu, Y.X.; Zhang, Y.; Zhang, Y.Q.; Zhao, Z.Q. Involvement of microglial P2X7 receptors and downstream signaling pathways in long-term potentiation of spinal nociceptive responses. *Brain Behav. Immun.*, 2010, 24(7), 1176-1189. http://dx.doi.org/10.1016/j.bbi.2010.06.001 PMID: 20554014

[113] Jiang, L.; Jones, S.; Jia, X. Stem cell transplantation for peripheral nerve regeneration: current options and opportunities. *Int. J. Mol. Sci.*, 2017, 18(1), 1-17. http://dx.doi.org/10.3390/ijms18010094 PMID: 28067783

[114] Han, G.H.; Peng, J.; Liu, P.; Ding, X.; Wei, S.; Lu, S.; Wang, Y. Therapeutic strategies for peripheral nerve injury: decellularized nerve conduits and Schwann cell transplantation. *Neural Regen. Res.*, 2019, 14(8), 1343-1351. http://dx.doi.org/10.4103/nrr.nrr_179_18 PMID: 30964052

[115] Erba, P.; Mantovani, C.; Calbermatten, D.F.; Pierer, G.; Terenghi, G.; Kingham, P.J. Regeneration potential and survival of transplanted undifferentiated adipose tissue-derived stem cells in peripheral nerve conduits. *J. Plast. Reconstr. Aesthet. Surg.*, 2010, 63(12), e811-e817. http://dx.doi.org/10.1016/j.bjps.2010.08.013 PMID: 20851070

[116] Abdolmaleki, A. *Proceedings of the 17th Global Neuroscience Conference*. Osaka, Japan October 16-17, 2017 p. 34.

[117] Moattari, M.; Moattari, F.; Kaka, G.; Mohseni Koucheshfani, H.; Sadraie, S.H.; Naghdii, M.; Mansouri, K. Evaluation of dexamethasone treated mesenchymal stem cells for recovery in neurotmesis model of peripheral nerve injury. *Neural. Res.*, 2018, 40(12), 1060-1070. http://dx.doi.org/10.1080/01616412.2018.1517859 PMID: 30246623

[118] Preitschopf, A.; Li, K.; Schörgenhofer, D.; Kinschlechner, K.; Schütz, B.; Thi Thanh Pham, H.; Rosner, M.; Joo, G.J.; Röhrle, C.; Weichhart, T.; Stangl, H.; Luber, G.; Hengstschläger, M.; Mikula, M. mTORC1 is essential for early steps during Schwann cell differentiation of amniotic fluid stem cells and regulates lipogenic gene expression. *PLoS One*, 2014, 9(9), e107004.

[119] Martins, R.S.; Bastos, D.; Siqueira, M.G.; Heise, C.O.; Teixeira, M.J. Traumatic injuries of peripheral nerves: a review with emphasis on surgical indication. *Arq. Neuropsiquiatr.*, 2013, 71(10), 811-814. http://dx.doi.org/10.1590/S0004-282X20130127 PMID: 24212521

[120] Dahlin, L.B.; Wiberg, M. Nerve injuries of the upper extremity and hand. *EJORT Open Rev.*, 2017, 2(5), 158-170. http://dx.doi.org/10.1032/1308-5242.1.160071 PMID: 28630754

[121] Jonsson, S.; Wiberg, R.; McGrath, A.M.; Novikov, L.N.; Wiberg, M.; Novikova, L.N.; Kingham, P.J. Effect of delayed peripheral nerve repair on nerve regeneration, Schwann cell function and target muscle recovery. *PLoS One*, 2013, 8(2), e56484.

[122] Dahlin, L.B. *The Role of Timing in Nerve Reconstruction*. *Tissue Engineering of The Peripheral Nerve: Biomaterials and Physical Therapy*; Geuna, S.; Perroteau, I.; Tos, P.; Battiston, B., Eds.; Academic Press: New York, 2013, Vol. 3, 109 pp. 151-164. http://dx.doi.org/10.1016/B978-0-12-420045-6.00097-9

[123] Romeo-Guitart, D.; Forés, J.; Navarro, X.; Casas, C. Boosted regeneration and reduced denervated muscle atrophy by neurohelal al pre-clinical model of lumbar root avulsion with delayed reimplantation. *Sci. Rep.*, 2017, 7(1), 12028.

[124] Bolandghamat, S.; Behnam-Rassouli, M.; Mahdavi-shahri, N.; Moghim, A. *Proceedings of the 3rd International Neuroinflammation Congress and 3rd Student Neurosciences Festival*, Mashhad, Iran. June 11-13, 2019, p. 149.