MicroRNA in pancreatic ductal adenocarcinoma and its precursor lesions

Yasmin G Hernandez, Aimee L Lucas

Yasmin G Hernandez, Department of Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States

Aimee L Lucas, Henry Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States

Author contributions: Hernandez YG and Lucas AL wrote the paper.

Conflict-of-interest statement: Authors declare no conflict of interest for this article.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Correspondence to: Aimee L Lucas, MD, MS, Assistant Professor of Medicine, Henry Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, Box #1069, New York, NY 10029, United States. aimee.lucas@mssm.edu

Received: April 29, 2015

Peer-review started: May 7, 2015

First decision: September 8, 2015

Revised: November 4, 2015

Accepted: December 1, 2015

Article in press: December 2, 2015

Published online: January 15, 2016

Abstract

Pancreatic ductal adenocarcinoma (PDAC) is the 4th deadliest cancer in the United States, due to its aggressive nature, late detection, and resistance to chemotherapy. The majority of PDAC develops from 3 precursor lesions, pancreatic intraepithelial lesions (PanIN), intraductal papillary mucinous neoplasm (IPMN), and mucinous cystic neoplasm. Early detection and surgical resection can increase PDAC 5-year survival rate from 6% for Stage IV to 50% for Stage I. To date, there are no reliable biomarkers that can detect PDAC. MicroRNAs (miRNA) are small noncoding RNAs (18-25 nucleotides) that regulate gene expression by affecting translation of messenger RNA (mRNA). A large body of evidence suggests that miRNAs are dysregulated in various types of cancers. MiRNA has been profiled as a potential biomarker in pancreatic tumor tissue, blood, cyst fluid, stool, and saliva. Four miRNA biomarkers (miR-21, miR-155, miR-196, and miR-210) have been consistently dysregulated in PDAC. MiR-21, miR-155, and miR-196 have also been dysregulated in IPMN and PanIN lesions suggesting their use as early biomarkers of this disease. In this review, we explore current knowledge of miRNA sampling, miRNA dysregulation in PDAC and its precursor lesions, and advances that have been made in using miRNA as a biomarker for PDAC and its precursor lesions.

Key words: Pancreatic cancer; MicroRNA; Biomarkers; Pancreatic intraepithelial lesions; Intraductal papillary mucinous neoplasm

© The Author(s) 2016. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Reliable biomarkers are needed to detect pancreatic ductal adenocarcinoma (PDAC) early in order to decrease mortality. In this review, we discuss what the current knowledge is on microRNA (miRNA) in PDAC and its precursor lesions. MiR-21, miR-155, miR-196, and miR-210 are dysregulated in tissue, serum, cyst fluid, and stool of PDAC patients. MiR-21, miR-155, and miR-196 are dysregulated in intraductal papillary
mucinous neoplasm and pancreatic intraepithelial lesions demonstrating that these miRNAs may serve as potential biomarkers for early stage lesions and cancer.

Hernandez YG, Lucas AL. MicroRNA in pancreatic ductal adenocarcinoma and its precursor lesions. World J Gastrointest Oncol 2016; 8(1): 18-29 Available from: URL: http://www.wjgnet.com/1948-5204/full/v8/i1/18.htm DOI: http://dx.doi.org/10.4251/wjgo.v8.i1.18

INTRODUCTION

Pancreatic ductal adenocarcinoma (PDAC) is the 4th deadliest cancer in the United States, due to its aggressive nature, late detection, and resistance to chemotherapy[1,2]. The majority of PDAC develops from 3 precursor lesions, pancreatic intraepithelial lesions (PanIN), intraductal papillary mucinous neoplasm (IPMN), and mucinous cystic neoplasm (MCN)[3]. The cystic precursor lesions of the pancreas are detectable by certain imaging modalities such as Endoscopic ultrasound (EUS)[4-6], Magnetic Resonance Imaging of the Abdomen with Cholangiopancreatography[7], and computerized tomography scan[8,9]. To date, there is no modality that clearly detects PanIN lesions, although studies have suggested a correlation between multifocal PanIN and lobular atrophy of the pancreas on EUS[10].

Early detection and surgical resection can increase PDAC 5-year survival rate from 6% for Stage IV to 50% for Stage I [11,12]. Detection and surgical removal of precursor lesions has the potential to be curative. Because of this, there has been much research focused on identification of individuals at high-risk of PDAC, detection of early stage lesions, and on the discovery of reliable biomarkers of this deadly disease. Carbohydrate antigen (CA) 19-9 is a poor biomarker of PDAC, as it is elevated in 30%-40% of benign diseases of the pancreas with a sensitivity of 79% (70%-90%) and specificity of 82% (68%-91%) for PDAC. The majority of PDAC develops from precursor lesions, and advances that have been made in using miRNA as a biomarker for PDAC and its precursor lesions.

ROLE OF MiRNA IN PDAC DETECTION: SAMPLES FROM TISSUE, SERUM, PANCREATIC JUICE, STOOL AND SALIVA

Attention has been paid to circulating serological signatures, autoantibodies, epigenetic markers, circulating tumor cells (TCs), and miRNAs in order to detect PDAC at an earlier stage of disease[25,26]. The use of miRNA for diagnosis and screening is still an evolving field; in the right patient population, an ideal miRNA test would be highly sensitive and specific, minimally-invasive and cost-effective. MiRNA expression in PDAC was first examined in PDAC tissue cells[27]. Now miRNA has been found in serum, blood, whole plasma, stool, saliva, and cyst fluid (Table 1). Current knowledge is described below.

MiRNA in whole pancreas tissue or PDAC biopsies

Szafranska et al[27] performed the first analysis comparing miRNA expression in normal pancreas tissue, chronic pancreatitis (CP) tissue and PDAC tissue. On imaging, it can be challenging to distinguish CP from PDAC given the thick stroma and inflammation that may be found in both of these conditions. Furthermore, it is unclear if the aberrant expression of particular miRNAs is secondary to the desmoplastic reaction in CP and PDAC, and not related to tumorigenesis itself. They and others have found that miRNA-216 and miRNA-217 are significantly down-regulated in PDAC and miRNA-143, miR-145, miR-146a, miR-148a, miR-150, miR-155, miR-196a, miR-196b, miR-210, miR-222, miR-223, miR-31 are up-regulated in PDAC[24,27-29]. However, this study also demonstrated that dysregulation of miRNA-196a, miR-196b, miR-203, miR-210, miR-222, miR-217, and miR-375 were found only in PDAC, whereas miRNA-29c, miR-96, miR-143, miR-145, miR-148b, and miR-150 were abnormally expressed in both CP and PDAC. This may suggest that the latter are responsible for causing the desmoplastic reaction as opposed to tumorigenesis.
MiR-1290 is elevated in early stage PDAC compared to normal controls30. Additionally, miR-135b has been shown to be an effective biomarker for distinguishing PDAC from CP with high sensitivity and specificity31.

MiR-21, MiR-155, and miR-196 have been demonstrated by multiple groups to differentiate PDAC from non-cancerous lesions of the pancreas20-24,27,32. Special attention has been placed on the role of miR-21 in

miRNA	Whole pancreas	Serum and plasma	Saliva	Stool	Pancreatic juice
miR-10b	↑[54]				
miR-16	↑[52]				
miR-18a	↑[29,56,57]				
miR-20a	↑[55,134]				
miR-21	↑[22,24,27,32,34,38,55,71]	↑[55,71]	↑[63-71]	↑[61,62,71]	
miR-24	↑[55]				
miR-27a-3p	↑[134]				
miR-29c	↑[27]				
miR-30a-3p	↑[27]				
miR-30c	↑[37]				
miR-31	↑[27]				
miR-34a	↑[37]				
miR-96	↑[27,135]	↑[52]			
miR-99a	↑[32]				
miR-101	↑[54]				
miR-106b	↑[27]				
miR-130b	↑[31]				
miR-135b		↑[37,58]			
miR-139-3p		↑[27]			
miR-141	↑[27]				
miR-143	↑[27,71]	↑[71]			
miR-145	↑[27]				
miR-146a	↑[27]				
miR-148a	↑[27,29]				
miR-148b	↑[27,29]				
miR-150	↑[27]				
miR-155	↑[22,24,27,32,66,71]	↑[22,54]	↑[63-71]	↑[61,71]	↑[64,71]
miR-181a,b,d	↑[24]		↑[72]		
miR-185	↑[52,55,134]				
miR-191	↑[55]				
miR-192	↑[37,58]				
miR-194	↑[37]				
miR-196a	↑[22,23,27,32,52,71]	↑[21,22,52,71]	↑[72]	↑[71]	↑[62,71]
miR-196b	↑[27]		↑[72]	↑[60]	
miR-200a	↑[136]				
miR-200b	↑[136]				
miR-205		↑[27]			
miR-210	↑[27,71,137,138]	↑[137]	↑\textsuperscript{[72], ↔[71]}	↑[60,71]	
miR-212	↑[38]	↑[37]			
miR-216	↑[27,38]	↑[63]	↑[71]		↑[62]
miR-217	↑[27]				
miR-222	↑[24,27,38]	↑[27]			
miR-223	↑[27]				
miR-225	↑[27,71]	↔[71]			
miR-242	↑[59]				
miR-494	↑[27,74]				
miR-508-5p		↑[37]			
miR-513a-5p		↑[37]			
miR-602		↑[37]			
miR-603		↑[37]			
miR-663a		↑[59]			
miR-801		↑[37]			
miR-887		↑[37]			
miR-923		↑[37]			
miR-940		↑[74]	↑[74]		
miR-1290	↑[30]				
miR-1427		↑[74]	↑[72,74]		
miR-3679-5p		↑[74]	↑[72,74]		

miR: MicroRNA; ↑: Up-regulated; ↓: Down-regulated; ↔: Unchanged.
PDAC, as it has been implicated in tumorigenesis, TC invasion, the desmoplastic reaction, and metastasis of TC[33-36]. Further studies did not demonstrate that miR-21 expression in stromal cells correlated with tumor stage.

MiR-192 has also been found to be present in pancreatic TC, but is seldom seen in stromal cells and not found in adjacent normal pancreas tissue[37]. In this same study, miR-194 expression was detected in PDAC tissue, but not found in the surrounding normal pancreatic tissue. Unfortunately, despite these findings, no significant difference was found between the serum levels of miR-194 in patients with PDAC and healthy controls.

One proposed mechanism for PDAC development includes signaling between the molecular markers of the desmoplastic reaction and TCs[38-41]. Li et al[40] demonstrated that miR-148a is down-regulated in microdissected PDAC tissue and when over-expressed prevents tumor growth. This suggests that miR-148a may have a crucial role in the molecular signaling by which tumorigenesis occurs. While it is important to find biomarkers that are deregulated in PDAC, it is also important to understand which miRNAs are involved in these aberrant signaling pathways.

MiRNA in serum and plasma of PDAC patients

MiRNAs are known to have organ-specific expression in many human cancers[42,43]. Less than a decade ago, studies found that miRNA could reliably be detected in the serum in both animal models and humans[44,45], and since that time, there has been much research dedicated to identifying which miRNAs have differential expression and the implications of these findings in the detection, staging, treatment, and prognosis of cancers[46-50].

Attempts to use miRNA biomarkers in conjunction with CA19-9 have yielded mixed results. A study examining 847 different miRNAs in patients with PDAC found increased expression of miR-375 in PDAC as compared to controls. MiR-375 did not improve detection nor predict prognosis in patients with PDAC when compared to CA19-9 alone[51]. Liu et al[52] found that using serum miR-16 and miR-196a in combination with CA19-9 increased detection of PDAC and Stage I lesions when compared to either modality alone, which suggests that miR-16 and miR-196a may be deregulated early in PDAC. These biomarkers were also up-regulated in studies performed on pancreas tissue, demonstrating that miR-16 and miR-196a can be used as peripheral biomarkers of PDAC. Gao, et al[53] also demonstrated that miR-16, when combined with CA19-9, served as a potential biomarker for detection of PDAC when compared to patients with CP.

One limitation of CA19-9 as a biomarker is that it is elevated in a large portion of patients with benign pancreatic diseases. Because of this limitation, studies have evaluated the miRNA expression of patients with PDAC compared to those with benign diseases such as CP or choledocholithiasis. They found that miR-10b, miR-155, and miR-106b were consistently elevated in the serum of patients with PDAC but not in those with benign pancreatic disease[54]. Liu et al[55] have demonstrated that up-regulation of miR-20a, miR-21, miR-24, miR-25, miR-99a, miR-185, and miR-191 can be used to distinguish PDAC from healthy controls and CP. Additionally, miR-135b has been shown to be an effective biomarker for distinguishing PDAC from CP with high sensitivity and specificity[51]. MiR-18a levels have also been shown to have increased expression in patients with PDAC and interestingly decrease after surgical resection suggesting that miR-18a levels may be a good marker to not only detect disease but also to monitor disease recurrence[56,57]. Zhang et al[37] also demonstrated that miR-194, miR-192, miR-602, miR-801, miR-212, miR-34a are up-regulated in PDAC, while miR-923, miR-139-3p, miR-513a-5p, miR-630, miR-30c-1, miR-887, miR-508-5p, and miR-139a-5p were down-regulated in PDAC specimens[37,58]. From these data, they demonstrated that miR-192 is neither present in the stromal cells of the pancreas nor the serum, but it is up-regulated in PDAC TCs and is involved in cell proliferation of PANC-1 TC lines in vitro[59]. Lin et al[60] performed microarray on 1711 serum miRNAs and found that 23 were down-regulated and 22 were up-regulated in the serum of PDAC patients when compared to normal controls. Of these, miR-492 and miR-663a were found to have decreased expression that was statically significant in PDAC; however, only miR-663a was found to have a positive correlation with stage of disease[60]. Further studies are needed to determine which miRNAs will be clinically relevant.

Pancreatic juice miRNA

Pancreatic juice sampling requires an invasive endoscopic procedure, but studying the miRNA concentrations of patients with PDAC, benign pancreatic lesions, and healthy controls can shed light on potential biomarkers for detecting disease as they are found in high concentration in cyst fluid. As EUS and endoscopic retrograde cholangiopancreatogram (ERCP) are two methods by which pancreatic masses are frequently sampled, these specimens could be sent for miRNA analysis in order to determine the malignant potential of these lesions. Wang et al[60] performed microarray of 49 miRNAs on secretin-stimulated pancreatic juice of a group of patients with PDAC, CP, and normal controls. They demonstrated that miR-205, miR-210, miR-492, and miR-1427 are all significantly elevated in PDAC when compared to controls; however, this statistical significance does not exist when compared to patients with CP[59]. Additionally, by using ROC curves, they determined that combining these 4 miRNAs with serum CA19-9 the sensitivity and specificity of PDAC detection is 91% and 100% respectively, though this analysis was limited by a sample size of 6. Other groups have evaluated the pancreatic juice of patients with PDAC pre-operatively via ERCP and from post-operative specimens[61,62]. Sadakari et al[61] analyzed the expression
of miR-155 and miR-21 in pancreatic juice sampled via ERCP and found that these miRNAs were significantly elevated when compared to patients with CP and healthy controls, though the levels did not correlate with pancreatic juice cytology\(^{(61)}\). Again these findings are consistent with those from pancreatic tissue and serum. Hong et al\(^{(62)}\) evaluated 158 miRNAs in post-operative fine needle aspiration specimens and found by qRT-PCR that miR-21, miR-27a, miR-146a, and miR-186a were significantly over-expressed in PDAC tissue and miR-217, miR-20a, and miR-96 were significantly down-regulated in PDAC tissue when compared to normal controls\(^{(63)}\). These two studies have demonstrated the feasibility of detecting miRNA from pancreatic juice, thus indicating the potential for using pancreatic juice biomarkers to detect early lesions given the higher concentration of miRNA in this fluid sample.

miRNA in stool specimens

Frozen stool specimens may serve as potential non-invasive biomarker samples for PDAC. Over-expressed miRNAs from gastrointestinal cancers are shed from the exfoliative cells of the gastrointestinal tract. Intraluminal release of pancreatic juice also allows for detection of miRNAs in the stool\(^{(63-69)}\). Previous studies have largely focused on genetic markers of tumorigenesis and not miRNA\(^{(70)}\). Yang et al\(^{(63)}\) performed a feasibility study of using stool miRNAs as a potential screening tool for detection of PDAC. They evaluated expression of 5 miRNAs that had been previously shown to be over-expressed in PDAC and found that miRNA-21 and miR-155 were over-expressed and miR-216 was under-expressed in all PDAC stool specimens when compared to normal controls and CP patients. These findings are consistent with what has been found in whole pancreas, pancreatic cyst fluid, and serum specimens. Additionally, with ROC analysis they demonstrated that combining miR-21 and miR-155 in stool samples there was a sensitivity of 93.33% and specificity of 66.67%. When they combined all 3 miRNAs (miR-21, miR-155, and miR-216), the sensitivity and specificity were 83.33% each. Link et al\(^{(71)}\) selected 7 miRNAs (miR-21, miR-210, miR-143, miR-155, miR-196a, miR-216a, miR-375) and determined that like Yang’s group miR-216a was found in lower concentrations in the stool of patients with PDAC. However, unlike Yang’s group, they found that miR-155 was down-regulated in this population and miR-21 was unchanged in the stool of controls compared to CP or PDAC\(^{(71)}\).

Ren et al\(^{(72)}\) also evaluated the expression of miR-21, miR-155, miR-181a, miR-196a, and miR-210 and found that miR-181b, miR-196a, and miR-210 were significantly over-expressed in PDAC patients when compared to controls, but only miR-181b and miR-210 were elevated in CP patients, though these elevations were not significant. Ren et al\(^{(72)}\) established a positive correlation between miR-196a levels and tumor size, which had not been previously described in studies of the serum or stool. Overall, while studies of fecal miRNA have demonstrated feasibility, conflicting data have emerged on which miRNAs are differentially expressed in the stool of PDAC, benign pancreatic disease, and normal controls.

Salivary miRNA

The field of salivanomics has been developing since blood molecules have been found in saliva\(^{(73)}\). As with stool miRNA, salivary miRNA may serve as a non-invasive biomarker for PDAC. Xie et al\(^{(74)}\) is the only group to have evaluated salivary miRNA in PDAC. They conducted a microarray of 2006 miRNAs and noted that 10, including miR-4433-5p, miR-4665-3p, miR-940, miR-1273g-3p, miR-3676-5p, miR-3679-5p, miR-3940-5p, miR-4327, miR-4442, and miR-5100, were up-regulated or down-regulated in salivary samples. Of these, only miR-940 was significantly up-regulated and miR-3679-5p was significantly down-regulated in the PDAC specimens during the validation phase of the study. Until now, neither has been implicated in PDAC in the serum, stool, whole pancreas, or pancreatic juice. More studies are needed in this area.

ROLE OF miRNA IN DETECTION OF PRECURSOR LESIONS

The absence of symptoms in early disease makes PDAC a cancer that is detected at very late stages when mortality approaches 100%. Much research has been dedicated to detecting miRNA in patients with PDAC as a novel biomarker for the presence of disease. Given the aggressive nature of PDAC, detection of precursor lesions with malignant potential would be critical to increasing the survival of these patients. PanIN lesions are microscopic PDAC precursor lesions that are graded 1-3 and are categorized based on the level of architectural and cytological atypia that is present\(^{(75,76)}\). Grade 1a is early intraepithelial proliferative lesions that have flat architecture, while grade 1b lesions have papillary architecture. PanIN-2 lesions have moderate abnormalities and PanIN-3 lesions have severe abnormalities, though none of these lesions invade the basement membrane\(^{(75,76)}\). IPMN lesions are mucin-producing cystic tumors, which arise from the epithelium of the pancreatic ducts and have the potential for malignant transformation\(^{(77,78)}\). They are categorized by main duct type (MD) or branch duct type (BD) and histologically are classified as having low-, intermediate-, and high-grade dysplasia\(^{(3)}\). Their malignant potential differs based on their location within the pancreatic ducts, and MD-IPMN carry a 44%-48% risk compared to BD-IPMNs, which only carry a 11%-17% risk of malignant transformation\(^{(79-82)}\). MCN are also mucin-producing epithelial neoplasms with ovarian-type stroma occur primarily in middle-aged females and are located in the body and tail of the pancreas and carry a 12% chance of tumor progression\(^{(83-86)}\). Cystic fluid is analyzed

WJGO | www.wjgnet.com 22

January 15, 2016 | Volume 8 | Issue 1 |
for CEA and amylase as other tumor markers have not demonstrated reliability in detecting malignant lesions.

As cystic neoplasms of the pancreas carry the risk of malignant transformation, determining a way to accurately predict which will progress to invasive carcinomas may guide surgical management and treatment decisions. MiRNA has been examined in PanIN lesions and IPMN as a potential candidate for early detection and the likelihood of progression to cancer. Understanding which miRNAs become deregulated early in the disease process may lead to advances for treatment decisions (Table 2).

MiRNA in IPMN lesions

Given the increased use of abdominal imaging, more pancreatic cystic lesions are being detected. There are guidelines in place to help guide management based on cystic characteristics that are consistent with malignancy. The first study looking at miRNA expression levels in precursor lesions of the pancreas was performed by Habbe et al. who determined that miR-155 and miR-21 were over-expressed in the IPMN neoplastic epithelium, specifically those with carcinoma-in-situ. MIIR-155 was also significantly elevated in the pancreatic juice of intestinal-type IPMN. In a recent study, miR-100, miR-99b, miR-99a, miR-342-3p, miR-126, miR-130a were found to be down-regulated in high-risk vs low-risk IPMN lesions. Furthermore, low miR-99b in IPMN fluid was associated with MD involvement, which is associated with a greater risk for transformation into a malignant neoplasm. Abue et al. found that miR-483-3p was up-regulated in PDAC cells and plasma when compared to IPMN lesions and may also serve as a useful biomarker in differentiating IPMN lesions with malignant potential from normal tissue and PDAC. The down-regulated miRNAs correlated with high-risk IPMNs and may be involved in cyst invasion and progression. Lee et al. found that miRNA expression varied amongst pancreatic cystic neoplasm. Specifically, miR-31-5p, miR-4830-5p, miR-99a-5p, and miR-375 were characteristic of serous cystadenoma (SCA), whereas miR-10-5p, miR-202-3p, miR-210, and miR-375 differentiated MCN from SCA, IPMN, and PDAC. It is unclear why this overlap in miR-375 occurs. Henry et al. found that miR-92a, miR-99a, miR-100, miR-125b, miR-145, miR-212 and miR-483 were differentially expressed between benign and pre-malignant and malignant lesions of the pancreas and they suggested that a high amount of RNA present in the cystic fluid may suggest the presence of malignant transformation. As previously described miR-21, miR-155, miR-196a have been implicated in both PDAC and IPMN and given these widely replicated results, studies aimed at detecting these biomarkers in serum, saliva, and stool could help to determine, in a non-invasive way, if they are increased in pre-malignant lesions.

MiRNA in PanIN lesions

Currently, PanIN lesions are found in the neighboring pancreatic tissue of patients with PDAC; however, there is no consistent way to detect the presence of these lesions. Identifying a biomarker to detect PanIN lesions may be critical in early detection of PDAC. Slater et al. demonstrated that miRNA-196a and miR-196b were elevated in PDAC and PanIN-2/3 lesions in both animal models of PDAC and humans with PDAC. Ryu et al. demonstrated that miR-155
is up-regulated in PanIN-2 and PanIN-3 lesions when compared to neighboring healthy pancreatic tissue, but not in PanIN-1 lesions. Furthermore, miR-21 has been shown to be over-expressed in PanIN-2\cite{98,99} and PanIN-3\cite{96,99}, but not in PanIN-1 lesions suggesting that this is a marker for later disease. These are significant findings as miR-155 and miR-21 have been shown to be up-regulated in IPMN lesions and PDAC suggesting that they are early markers for cells with malignant potential. Yu et al\cite{100} found that miR-196b was up-regulated in PanIN-3 lesions, which correlates with previous studies that have found that miR-196b is up-regulated in PDAC lesions\cite{100,101}. Importantly, miR-21, miR-155, miR200a, miR-200b, miR-182, and miR-296-5p were deregulated as early as PanIN-1 lesions and remained deregulated until progression to PDAC, with the exception of miR-200c that normalized in PanIN-3 lesions. A recent publication describing miRNA expression in PanIN lesions found that miRNA-148a and miR-217 were down-regulated while miR-10b was up-regulated in PanIN-2 and PanIN-3 lesions\cite{101}. While miR-21 has been shown repeatedly to be over-expressed in PDAC, there are conflicting studies on its deregulation in early PanIN lesions suggesting that it may represent a later and more aggressive dysregulation in the progression to PDAC. A non-invasive method to detect advanced PanIN lesions would represent a significant advance in the field.

DISCUSSION

While PDAC is the fourth most common cause of cancer-related deaths, there is still no reliable way to detect early disease and patients present with late-stage disease with a nearly 100% mortality. Research in the field of biomarkers shows a great deal of promise as current research aims to understand the molecular mechanisms and stromal microenvironment of this deadly tumor. MiRNA are small nucleotides that control the genetic expression in all cells and importantly in an organ-specific manner. Abberant miRNA expression has been identified in various cancers\cite{102-106} and factors such as transcriptional deregulation, epigenetic alterations, mutations, DNA copy number abnormalities, and defects in the miRNA biogenesis pathway may account for these differences in expression\cite{107,108}. C-myc and p53 are two transcriptional factors that have been associated transcriptional deregulation of miRNA\cite{109-111}. Epigenetic regulation of miRNAs by DNA methylation and histone tail modification play a role in miRNA expression through chromatin remodeling\cite{110,112-114}. Both germ-line and somatic mutations are responsible for miRNA expression levels in various types of cancers\cite{115-117}. It has been described by Calin et al\cite{118}, that miRNAs are located a fragile sites on the chromosome, minimal regions of loss of heterozygosity, minimal regions of amplifications, and common breakpoints, thus increasing the risk for DNA copy abnormalities. DNA copy abnormalities have been found in melanoma, breast cancer, ovarian cancer, leukemia, colorectal cancer\cite{119-122}. Lastly, defects in miRNA biogenesis pathway may contribute to varying expression levels and cancer phenotype as miRNA undergoes complex processing intracellularly prior to reaching its mature form\cite{123-127}. In addition to the aforementioned mechanisms, dietary components, such as folate, retinoids, curcumin, and Vitamin D have been implicated in the modulation of miRNA expression\cite{128-130}. Some miRNAs have been shown to increase muscle loss in cancer cachexia and specifically, increased miR-21 levels have been shown to increase muscle breakdown in pancreatic cancer\cite{131,132}. Deeper understanding of the regulatory mechanisms of miRNA expression will hopefully give new insight to the factors responsible for miRNA deregulation and lead to miRNA-based diagnostic testing and miRNA-directed therapy for PDAC.

Some limitations that exist with the current miRNA research at this time include standardization of extraction, reproducibility of testing, diagnostic yield in the various sample methods, and small sample sizes. Additionally, despite finding biomarkers for this disease, there is limited evidence that miRNA will impact PDAC-related mortality. Dysregulation of miRNA affects the cell cycle, proliferation, apoptosis, epigenetics, oncogenesis, tumor differentiation, tumor invasion, tumor metastasis and migration, prognosis, and chemoresistance in numerous cancers\cite{133}. Increased efforts to understand the biological function of miRNA expression and its effects on cancer development are needed.

Despite these limitations, great advances have been made in this field and now miRNA expression is being analyzed not just in pancreatic tissue and cystic fluid, but also in stool, saliva, and serum; which would lead to non-invasive ways by which to analyze the expression levels of miRNA in patients at high risk. There have been great efforts to identify which of the greater than 2000 miRNAs are deregulated in PDAC and its precursor lesions and miRNA-21, miR-155, and miR-196b seem to be dysregulated in both early lesions and advanced cancer and show promise as potential screening tools in the future.

REFERENCES

1. Li D, Xie K, Wolff R, Abbruzzese JL. Pancreatic cancer. Lancet 2004; 363: 1049-1057 [PMID: 15051286 DOI: 10.1016/S0140-6736(04)5841-8]
2. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, Thun MJ. Cancer statistics, 2008. CA Cancer J Clin 2008; 58: 71-96 [PMID: 18287387 DOI: 10.3322/caa.2007.0010]
3. Klippel G, Basturk O, Schlitter AM, Konukiewitz B, Esposito I. Intraductal neoplasms of the pancreas. Semin Diagn Pathol 2014; 31: 452-466 [PMID: 25282472 DOI: 10.1053/j.semdp.2014.08.005]
4. Rösch T, Lorenz R, Braig C, Feuerbach S, Siewert JR, Schusdziarra V, Classen M. Endoscopic ultrasound in pancreatic tumor diagnosis. Gastrointest Endosc 1991; 37: 347-352 [PMID: 2070987 DOI: 10.1016/S0016-5107(91)70729-3]
5. Müller MF, Meysenbeger C, Bertschinger P, Schaar R, Marineck B. Pancreatic tumors: evaluation with endoscopic US, CT, and MR imaging. Radiology 1994; 190: 745-751 [PMID: 8115622 DOI: 10.1148/radiology.190.3.8115622]
6. Chang KJ. Endoscopic ultrasound-guided fine needle aspiration in...
MicroRNA in pancreatic cancer

pancreatic ductal adenocarcinoma patients as novel blood-based biomarkers of disease. Cancer Prev Res (Phila) 2009; 2: 807-813 [PMID: 19723895 DOI: 10.1158/1940-6207.CAPR-09-0094]

23 Hable N, Kooistra JB, Mendell JT, Offerhaus GJ, Ryu JK, Feldmann G, Munding JB, Vogt M, Kuhlmann JD, Verdoodt B, Munding JB, Vogt M, Kuhlmann JD, Verdoo...
aspects underlying its role in the modulation of gemcitabine activity. Cancer Res 2010; 70: 4528-4538 [PMID: 20460539 DOI: 10.1158/0008-5472.CAN-09-4467]

36 **Hwang JH**, Voorman J, Giovannetti E, Steinberg SM, Leon LG, Kim VT, Fung N, Park K, Kim MA, Kang GH, Kim DW, Del Chiaro M, Peters MJ, Giaccone G. Identification of microRNA-21 as a biomarker for chemoresistance and clinical outcome following adjuvant therapy in resectable pancreatic cancer. PLoS One 2010; 5: e10630 [PMID: 20948843 DOI: 10.1371/journal.pone.0010630]

37 **Zhang J**, Zhao CY, Zhang SH, Yu DH, Chen Y, Liu QH, Shi M, Ni CR, Zha MH. Upregulation of miR-194 contributes to tumor growth and progression in pancreatic ductal adenocarcinoma. Oncol Rep 2014; 21: 1157-1164 [PMID: 24398877]

38 **Lee EJ**, Gusev Y, Jiang J, Nuovo GJ, Lerner MR, Frankel WL, Morgan DL, Postier RG, Brackett DJ, Schmittgen TD. Expression profiling identifies microRNA signature in pancreatic cancer. Int J Cancer 2007; 120: 1044-1054 [PMID: 17149698 DOI: 10.1002/ijc.22394]

39 **Lou E**, Subramanian S, Steer CJ. Pancreatic cancer: modulation of KRAS, MicroRNAs, and intercellular communication in the setting of tumor heterogeneity. Pancreas 2013; 42: 1218-1226 [PMID: 24152947 DOI: 10.1097/MPA.0b013e31828b071f]

40 **Rowley DR**. Reprogramming the tumor stroma: a new paradigm. Cancer Cell 2014; 26: 451-452 [PMID: 25314074 DOI: 10.1016/j.c cel.2014.09.016]

41 **Apte MV**, Wilson JS, Lugea A, Pandol SJ. A starring role for stellate cells in the pancreatic cancer microenvironment. Gastroenterology 2013; 144: 1210-1219 [PMID: 23622130 DOI: 10.1053/j.gastro.2012.11.037]

42 **Liu CG**, Calin GA, Meloon B, Gambiel N, Sevignani C, Ferracin M, Damiddu CD, Shimizu M, Zupo S, Dono M, Alder H, Bullrich F, Negrini M, Croce CM. An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues. Proc Natl Acad Sci USA 2004; 101: 9740-9744 [PMID: 15120942 DOI: 10.1073/pnas.043293101]

43 **He L**, Thomson JM, Hemann MT, Hernandez-YG, Sethi S, Ali-Fehmi R, Philip PA, Bouwman DL, Weaver DW, Qazi AM. MicroRNA profiling identifies microRNA signature in pancreatic cancer. Oncol Rep 2013; 30: 683-691 DOI: 10.1097/ijc.22415289

44 **Liu J**, Gao J, Yu J, Li Z, Ren Y, Li J, Wang X, Geng W, Wang K, Tong J. Combination of plasma microRNAs with serum CA19-9 for early detection of pancreatic cancer. Int J Cancer 2012; 131: 683-691 [PMID: 21913185 DOI: 10.1002/ijc.26422]

45 **Gao L**, He SB, Li DC. Effects of miR-16 plus CA19-9 detections on pancreatic cancer diagnostic performance. Clin Lab 2014; 60: 73-77 [PMID: 24669978]

46 **Cote GA**, Gore AJ, McElyea SD, Heathers LE, Xu H, Sherman S, Korc M. A pilot study to develop a diagnostic test for pancreatic ductal adenocarcinoma based on differential expression of select microRNA in plasma and bile. Am J Gastroenterol 2014; 109: 1942-1952 [PMID: 2530767 DOI: 10.1038/ajg.2014.331]

47 **Liu R**, Chen X, Du Y, Yao W, Shen L, Wang C, Hu Z, Zhuan R, Ning G, Zhang C, Yuan Y, Li Z, Ren K, Ba Y, Zhang CY. Serum microRNA expression profile as a biomarker in the diagnosis and prognosis of pancreatic cancer. Clin Chem 2012; 58: 610-618 [PMID: 22194634 DOI: 10.1373/clinchem.2011.172767]

48 **Komatsu S**, Ichikawa D, Takeshita H, Morimura R, Hirajima S, Tsujiura M, Kagawuchi T, Miyaemae M, Nagata H, Konishi H, Shiozaki O, Otsuji E. Circulating miR-18a: a sensitive cancer screening biomarker in human cancer. In Vivo 2014; 28: 293-297 [PMID: 24815829]

49 **Morimura R**, Komatsu S, Ichikawa D, Takeshita H, Tsujiura M, Nagata H, Konishi H, Shiozaki A, Ikoma H, Okamoto K, Ochiai T, Taniguchi H, Otsuji E. Novel diagnostic value of circulating miR-18a in plasma of patients with pancreatic cancer. Br J Cancer 2011; 105: 1733-1740 [PMID: 22045190 DOI: 10.1038/bjc.2011.453]

50 **Zhao C**, Zhang J, Zhang S, Yu D, Chen Y, Liu Q, Shi M, Ni C, Zha M. Diagnostic and biological significance of microRNA-192 in pancreatic ductal adenocarcinoma. Oncol Rep 2013; 30: 276-284 [PMID: 23612862 DOI: 10.3892/ijc.2013.2240]

51 **Lin MS**, Chen WC, Huang JX, Gao HJ, Sheng HH. Aberrant expression of microRNAs in serum may identify individuals with pancreatic cancer. Int J Clin Exp Med 2014; 7: 5226-5234 [PMID: 25664025]

52 **Wang J**, Raimondo M, Guha S, Chen J, Diao L, Dong X, Wallace MB, Killary AM, Frazier ML, Woodward TA, Wang J, Sun Y. Circulating microRNAs in Pancreatic Juice as Candidate Biomarkers of Pancreatic Cancer. J Cancer 2014; 5: 696-705 [PMID: 25258651 DOI: 10.7150/jca.10094]

53 **Sakai Y**, Ohtsuka T, Ohuchida K, Tsutsumi K, Takahata S, Nakamura M, Mizumoto K, Tanaka M. MicroRNA expression analyses in preoperative pancreatic juice samples of pancreatic ductal adenocarcinoma. JOP 2010; 11: 587-592 [PMID: 21068491]

54 **Hong TH**, Park YI. MicroRNA expression profiling of diagnostic needle aspirates from surgical pancreatic cancer specimens. Ann Surg Treat Res 2014; 87: 290-297 [PMID: 25485236 DOI: 10.4174/astr.2014.87.6.290]

55 **Yang JY**, Sun YW, Liu DJ, Zhang JF, Li J, Hua R. MicroRNAs in stool samples as potential screening biomarkers for pancreatic ductal adenocarcinoma. Am J Cancer Res 2014; 4: 663-673 [PMID: 25520858]

56 **Leung WK**, To KF, Man EP, Chan MW, Hui AJ, Ng SS, Lau JY, Sung JJ. Detection of hypermethylated DNA or cyclooxygenase-2 messenger RNA in fecal samples of patients with colorectal cancer or polyps. Am J Gastroenterol 2007; 102: 1070-1076 [PMID: 17378912 DOI: 10.1111/j.1572-0241.2007.01108.x]

57 **Nagasaka T**, Tanaka N, Cullings HM, Sun DS, Sasamoto H.
Potential usefulness of detecting cyclinaxyogenase 2 messenger RNA in feces for colorectal cancer screening. Gastroenterology 2004; 127: 422-427 [PMID: 15300574 DOI: 10.1053/j.gastro.2004.05.022]

Haug U, Wente MN, Seiler CM, Jesenofsky R, Brenner H. Stool testing for the early detection of pancreatic cancer: rationale and current evidence. Expert Rev Mol Diagn 2008; 8: 753-759 [PMID: 18999925 DOI: 10.1586/14737595.8.6.753]

Link A, Becker V, Goel A, Weit M, Malfertheiner P. Feasibility of fecal microRNAs as novel biomarkers for pancreatic cancer. PLoS One 2012; 7: e42933 [PMID: 22905187 DOI: 10.1371/journal.pone.0042933]

Xie Z, Yao J, Liu QJ, Wang XW, Gu JJ, Huang HJ, Gong YF, Li ZS. Differential signature of fecal microRNAs in patients with pancreatic cancer. Mol Med Rep 2012; 6: 201-209 [PMID: 22504911]

Patel RS, Jakimiw A, Yao B, Pauley BA, Carcamo WC, Katz J, Cheng QC, Chan EK. High resolution of microRNA signatures in human whole saliva. Arch Oral Biol 2011; 56: 1506-1513 [PMID: 21704302 DOI: 10.1016/j.archorbio.2011.05.015]

Hruban RH, Adsay NV, Albores-Saavedra J, Compton C, Garrett ES, Goodman SN, Kern SE, Klimstra DS, Klöppel G, Longnecker RD, Wolfgang C, Goggins MG, Hruban RH, Cope L, Maitra A, Mukherjee A, Ohtsuka T, Matsunaga T, Kimura H, Watanabe Y, Tamura K, Nakahara O, McGrath D, Pederzoli P, Fernández-Del Castillo C. Branch duct intraductal papillary mucinous neoplasms: observations in 145 patients who underwent resection. Gastroenterology 2007; 133: 72-79; quiz 309-310 [PMID: 17631133 DOI: 10.1053/j.gastro.2007.05.010]

Goh BK, Tan YM, Chung YF, Chow PK, Cheow PC, Wong WK, Ooi LL. A review of mucinous cystic neoplasms of the pancreas defined by ovarian-type stroma: clinicopathological features of 344 patients. World J Surg 2006; 30: 2236-2245 [PMID: 17103100 DOI: 10.1007/s00268-006-0126-1]

Crippa S, Fernández-Del Castillo C, Salvia R, Finkelstein D, Bassi C, Dominguez I, Muzikansky A, Thayer SP, Falconi M, Mino-Kenudson M, Capelli P, Lauwers GY, Partelli S, Pederzoli P, Warshaw AL. Mucin-producing neoplasms of the pancreas: an analysis of distinguishing clinical and epidemiologic characteristics. Clin Gastroenterol Hepatol 2010; 8: 213-219 [PMID: 19835989 DOI: 10.1016/j.cgh.2009.10.001]

Zamboni G, Scarpa A, Bogina I, Iacono C, Bassi C, Talaman G, Sessa F, Capella C, Solcia E, Rickaert F, Mariuzzi GM, Klöppel G. Mucinous cystic tumors of the pancreas: clinicopathological features, prognosis, and relationship to other mucinous cystic tumors. Am J Surg Pathol 1999; 23: 410-422 [PMID: 10199470 DOI: 10.1097/00000478-199904000-00005]

Crippa S, Fernández-Del Castillo C. Management of intraductal papillary mucinous neoplasms. Curr Gastroenterol Rep 2008; 10: 136-143 [PMID: 18462599 DOI: 10.1007/s11894-008-0034-7]

Ryu JK, Matthaei H, Dal Molin M, Hong SM, Canto MI, Schullik RD, Wolfgang C, Goggins MG, Hruban RH, Cope L, Maitra A. Elevated microRNA miR-21 levels in pancreatic cyst fluid are predictive of mucinous precursor lesions of ductal adenocarcinoma. Pancreatology 2011; 11: 343-350 [PMID: 21757972 DOI: 10.1016/j.pan.2011.03.003]

Abue M, Yokoyama M, Shibuya R, Tanai K, Yamaguchi K, Sato I, Tanaka N, Hamada S, Shimosegawa T, Sugamura K, Sato H. Circulating miR-483-3p and miR-21 is highly expressed in plasma of pancreatic cancer. Int J Oncol 2015; 46: 539-547 [PMID: 25384963]

Nakahara O, Takamori H, Iwatsuki M, Baba Y, Sakamoto Y, Tanaka H, Chikanoto A, Horino K, Beppu T, Kanemitsu K, Honda Y, Iyama K, Baba H. Carcinogenesis of intraductal papillary mucinous neoplasm of the pancreas: loss of microRNA-101 promotes overexpression of histone methyltransferase EZH2. Am Surg Oncol 2012; 19 Suppl 3: S56-S571 [PMID: 21932133 DOI: 10.1245/s10434-011-0208-6]

Aso T, Ohtsuka T, Matsunaga T, Kimura H, Watanabe Y, Tamura K, Ichino N, Oosogawa T, Takahata S, Shindo K, Ushijima Y, Ashima S, Oda Y, Ito T, Mizumoto K, Tanaka M. “High-risk stigmata” of the 2012 international consensus guidelines correlate with the malignant grade of branch duct intraductal papillary mucinous neoplasms of the pancreas. Pancreas 2014; 43: 1239-1243 [PMID: 25036910 DOI: 10.1097/MPA.0000000000000199]

Perruth-Wey J, Chen YA, Fisher K, McCarthy S, Qu X, Lloyd MC, Kasprzak A, Fournier M, Williams VL, Ghia KM, Yoder SJ, Hall L, Georgeades C, Olavoy F, Husain K, Springett GM, Chen
DT, Yeatman T, Centeno BA, Klapman J, Coppola D, Malafa M. A genome-wide investigation of microRNA expression identifies biologically-meaningful microRNAs that distinguish between high-risk and low-risk intraductal papillary mucinous neoplasms of the pancreas. PLoS One 2015; 10: e0116869 [PMID: 25607660 DOI: 10.1371/journal.pone.0116869]

Lee LS, Szafranska-Schwarzbach AE, Wylie D, Doyle LA, Bellizzi AM, Kadiyala V, Suleiman S, Banks PA, Andruss BF, Convell DL. Investigating MicroRNA Expression Profiles in Pancreatic Cystic Neoplasms. Clin Transl Gastroenterol 2014; 5: e47 [PMID: 24476997 DOI: 10.1038/ctg.2013.18]

Henry JC, Bassi C, Giovinazzo F, Bloomston M. MicroRNA from pancreatic duct aspirate differentiates cystic lesions of the pancreas. Ann Surg Oncol 2013; 20 Suppl 3: S661-S666 [PMID: 23884752 DOI: 10.1245/s10434-013-3138-8]

Brosens LA, Hackeng WM, Offerhaus GJ, Hruban RH, Wood LD. Pancreatic adenocarcinoma pathology: changing “landscape” J Gastrointest Oncol 2015; 6: 358-374 [PMID: 26261723 DOI: 10.3978/j.issn.2078-6891.2015.03.02]

Andea A, Sarkan F, Asad VN. Clinicopathological correlates of pancreatic intraductal neoplasia: a comparative analysis of 82 cases with and 152 cases without pancreatic ductal adenocarcinoma. Mod Pathol 2003; 16: 996-1006 [PMID: 14559982 DOI: 10.1097/01.mp.0000087422.4733.62]

Shi C, Klein AP, Goggins M, Maitra A, Canto M, Ali S, Schullik R, Palmisano E, Hruban RH. Increased Prevalence of Precursor Lesions in Familial Pancreatic Cancer Patients. Clin Cancer Res 2009; 15: 7737-7743 [PMID: 19996207 DOI: 10.1158/1078-0436.CCR-08-2445]

Slaté EP, Strauch K, Rospleszcz S, Usheva E, Heeger K, Fendrich V, Langer P, Bartsch H, Siemens H, Li H, Kirchner T, Hermeking H, He X, Lowe SW, Hannon GJ. microRNAs join the p53 feedback loop to regulate epithelial-mesenchymal transition and e-Myc for Generating iPS Cells via Cationized Pleurotus eryngii Polysaccharide-based Nanotransfection. ACS Appl Mater Interfaces 2015; 7: 1895-1896 [PMID: 26269400 DOI: 10.1021/acsami.5b06768]

He L, He X, Lowe SW, Hannon GJ. microRNAs join the p53 network—another piece in the tumour-suppression puzzle. Nat Rev Cancer 2007; 7: 819-822 [PMID: 17914404 DOI: 10.1038/nrc2132]

Chang TC, Yu D, Lee YS, Wentzel EA, Arking DE, West KM, Dang CV, Thomas-Tikhonenko A, Mendell JT. Widespread microRNA repression by Myc contributes to tumorigenesis. Nat Genet 2008; 40: 43-50 [PMID: 18066665 DOI: 10.1038/ng.707.2009.30]

Lomberk GA, Urrutia R. The Triple-Code Model for Pancreatic Cancer: Cross Talk Among Genetics, Epigenetics, and Nuclear Structure. Surg Clin North Am 2015; 95: 935-952 [PMID: 26351555 DOI: 10.1016/j.suc.2015.05.011]

Santosh B, Vashney A, Yadava PK. Non-coding RNAs: biological functions and applications. Cell Biochem Funct 2015; 33: 14-22 [PMID: 25475931 DOI: 10.1002/cbf.3079]

Rodriguez-Vicente AE, Diaz MG, Hernandez-Rivas JM. Chronic lymphocytic leukemia: a clinical and molecular heterogeneous disease. Cancer Genet 2013; 206: 49-62 [PMID: 23531595 DOI: 10.1016/j.cancergen.2013.01.003]

Shi L, Jackstadt R, Siemens H, Li H, Kirchner T, Herrmeking H. p53-induced mir-15a-16-1 and AP4 form a double-negative feedback loop to regulate epithelial-mesenchymal transition and metastasis in colorectal cancer. Cancer Res 2014; 74: 532-542 [PMID: 24285725 DOI: 10.1158/0008-5472.CAN-13-2203]

Vos S, Vesuna F, Raman V, van Diest PJ, van der Groep P. microRNA expression patterns in normal breast tissue and invasive breast cancers of BRCA1 and BRCA2 germ-line mutation carriers. Oncotarget 2015; 6: 32115-32137 [PMID: 26378051]

Wu M, Jolicour N, Li Z, Zhang L, Fortin Y, L’Abbe D, Yu Z, Shen SH. Genetic variations of microRNAs in human cancer and their effects on the expression of mirRNAs. Carcinogenesis 2008; 29: 1710-1716 [PMID: 18356149 DOI: 10.1093/carcin/bgn073]

Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Vendramin SG, Shimizu M, Rattan S, Bullrich F, Negrini M, Croce CM. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 2004; 101: 2999-3004 [PMID: 14973191 DOI: 10.1073/pnas.0307323101]

Zhang L, Huong J, Yang N, Greshock J, Megraw MS, Giannakakis A, Liang S, Naylor TL, Barchetti A, Ward MR, Yao G, Medina A, O’Brien-Jenkins A, Katsaros D, Hatzigeorgiou AG, Coukos G. Genomic and epigenetic alterations deregulate microRNA expression in human epithelial ovarian cancer. Proc Natl Acad Sci USA 2008; 105: 7004-7009 [PMID: 18458333 DOI: 10.1073/pnas.0801615105]

Esquela-Kerscher A, Slack FJ. Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer 2006; 6: 259-269 [PMID: 16557279 DOI: 10.1038/nrc1840]

Deng S, Calin GA, Croce CM, Coukos G, Zhang L. Mechanisms of microRNA deregulation in human cancer. Cell Cycle 2008; 7: 2643-2646 [PMID: 18710931 DOI: 10.4161/cc.7.17.6597]

Brevig K, Esquela-Kerscher A. The complexities of microRNA regulation: mirandering around the rules. Int J Biochem Cell Biol 2010; 42: 1316-1329 [PMID: 19800023 DOI: 10.1016/j.bioci.2009.09.016]

Deng W, Cao X, Chen J, Zhang Z, Yu Q, Wang Y, Shao G, Zhou J, Gao X, Yu J, Xu X. MicroRNA Replacing Oncogenic Ki67 and e-Myc for Generating iPS Cells via Cationized Pleurotus eryngii Polysaccharide-based Nanotransfection. ACS Appl Mater Interfaces 2015; 7: 1895-1896 [PMID: 26269400 DOI: 10.1021/acsami.5b06768]
elastin gene expression in cancer cells.

Davis CD. Evidence for dietary regulation of microRNA expression in cancer cells. Nutr Rev 2008; 66: 477-482 [PMID: 18667010 DOI: 10.1111/j.1753-4887.2008.00080.x]

Wang WL, Chatterjee N, Chittur SV, Welsh J, Tenniswood MP. Effects of 1α,25-dihydroxyvitamin D3 and testosterone on miRNA and mRNA expression in LNCaP cells. Mol Cancer 2011; 10: 58 [PMID: 21592394 DOI: 10.1186/1476-4589-10-58]

Kutmon M, Coort SL, de Nooijer K, Lemmens C, Evelo CT. Integrative network-based analysis of mRNA and microRNA expression in 1,25-dihydroxyvitamin D3-treated cancer cells. Genes Nutr 2015; 10: 484 [PMID: 26276506 DOI: 10.1007/s12263-015-0484-0]

He WA, Calore F, Loundpe, Canella A, Guttridge DC, Croce CM. Microvesicles containing miRNAs promote muscle cell death in cancer cachexia via TLR7. Proc Natl Acad Sci USA 2014; 111: 4525-4529 [PMID: 24616506 DOI: 10.1073/pnas.1402714111]

Soares RJ, Cagnin S, Chemello F, Silvestrin M, Musaro A, De Pitta C, Lanfranchi G, Sandri M. Involvement of microRNAs in the regulation of muscle wasting during catabolic conditions. J Biol Chem 2014; 289: 21909-21925 [PMID: 24891504 DOI: 10.1074/jbc.M114.561845]

Wang N, Xia S, Chen K, Xiang X, Zhu A. Genetic alteration regulated by microRNAs in biliary tract cancers. Crit Rev Oncol Hematol 2015; 96: 262-273 [PMID: 26095617 DOI: 10.1016/j.critrevonc.2015.05.015]

Wang WS, Liu LX, Li GP, Chen Y, Li CY, Jin DY, Wang XL. Combined serum CA19-9 and mir-27a-3p in peripheral blood monocellular cells to diagnose pancreatic cancer. Cancer Prev Res (Phila) 2013; 6: 331-338 [PMID: 23430754 DOI: 10.1158/1940-6207.CAPR-12-0307]

Yu S, Lu Z, Liu C, Meng Y, Ma Y, Zhao W, Liu J, Yu J, Chen J. miRNA-96 suppresses KRAS and functions as a tumor suppressor gene in pancreatic cancer. Cancer Res 2010; 70: 6015-6025 [PMID: 20610624 DOI: 10.1158/0008-5472.CAN-09-4531]

Li A, Omura N, Hong SM, Vincent A, Walter K, Griffith M, Borges M, Goggins M. Pancreatic cancers epigenetically silence SIP1 and hypomethylate and overexpress miR-200a/200b in association with elevated circulating miR-200a and miR-200b levels. Cancer Res 2010; 70: 5226-5237 [PMID: 20551052 DOI: 10.1158/0008-5472.CAN-09-4227]
