Efficacy and Safety of Vorapaxar in Non–ST-Segment Elevation Acute Coronary Syndrome Patients Undergoing Noncardiac Surgery

Sean van Diepen, MD, MSc; Pierluigi Tricoci, MD, PhD, MHS; Mohua Podder, PhD; Cynthia M. Westerhout, PhD; Philip E. Aylward, MD; Claes Held, MD, PhD; Frans Van de Werf, MD; John Strong, MD; Lars Wallentin, MD; David J. Moliterno, MD; Harvey D. White, DSc; Kenneth W. Mahaffey, MD; Robert A. Harrington, MD; Paul W. Armstrong, MD

Background—Perioperative antiplatelet agents potentially increase bleeding after non–ST-segment elevation (NSTEMI) acute coronary syndromes (ACS). The protease-activated receptor 1 antagonist vorapaxar reduced cardiovascular events and was associated with increased bleeding versus placebo in NSTEMI ACS, but its efficacy and safety in noncardiac surgery (NCS) remain unknown. We aimed to evaluate ischemic, bleeding, and long-term outcomes of vorapaxar in NCS after NSTEMI ACS.

Methods and Results—In the TRACER trial, 2202 (17.0%) patients underwent major or minor NCS after NSTEMI ACS over 1.5 years (median); continuing study treatment perioperatively was recommended. The primary ischemic end point for this analysis was cardiovascular death, myocardial infarction, stent thrombosis, or urgent revascularization within 30 days of NCS. Safety outcomes included 30-day NCS bleeding and GUSTO moderate/severe bleeding. Overall, 1171 vorapaxar and 1031 placebo patients underwent NCS. Preoperative aspirin and thienopyridine use was 96.8% versus 97.7% (P=0.235) and 89.1% versus 86.1% (P=0.036) for vorapaxar versus placebo, respectively. Within 30 days of NCS, no differences were observed in the primary ischemic end point between vorapaxar and placebo groups (3.4% versus 3.9%; adjusted odds ratio 0.81, 95% CI 0.50 to 1.33, P=0.41). Similarly, no differences in NCS bleeding (3.9% versus 3.4%; adjusted odds ratio 1.41, 95% CI 0.87 to 2.31, P=0.17) or GUSTO moderate/severe bleeding (4.2% versus 3.7%; adjusted odds ratio 1.15, 95% CI 0.72 to 1.83, P=0.55) were observed. In a 30-day landmarked analysis, NCS patients had a higher long-term risk of the ischemic end point (adjusted hazard ratio 1.62, 95% CI 1.33 to 1.97, P<0.001) and GUSTO moderate/severe bleeding (adjusted hazard ratio 5.63, 95% CI 3.98 to 7.97, P<0.001) versus patients who did not undergo NCS, independent of study treatment.

Conclusion—NCS after NSTEMI ACS is common and associated with more ischemic outcomes and bleeding. Vorapaxar after NSTEMI ACS was not associated with increased perioperative ischemic or bleeding events in patients undergoing NCS. (J Am Heart Assoc. 2015;4:e002546 doi: 10.1161/JAHA.115.002546)

Key Words: coronary disease • hemorrhage • noncardiac surgery • non–ST-segment elevation acute coronary syndromes • surgery • vorapaxar

After an acute coronary syndromes (ACS) or percutaneous coronary interventions, up to one-third of patients require noncardiac surgery (NCS).1–3 Importantly, a previous ACS is an important risk factor for perioperative major adverse cardiac events.4–6 Although the perioperative use of antplatelet therapies has been reported to reduce major adverse cardiac events in high-risk NCS patients, it may also increase bleeding complications.7–10 In the Thrombin Receptor Antagonist for Clinical Event Reduction in Acute Coronary Syndrome (TRACER) trial, the protease-activated receptor 1

From the Divisions of Critical Care and Cardiology (S.v.D.) and Canadian ViGOUR Centre (S.v.D., M.P., C.M.W., P.W.A.), University of Alberta, Edmonton, Alberta, Canada; Duke Clinical Research Institute, Duke University Medical Center, Durham, NC (P.T.); SAHMRI, Flinders University and Medical Centre, Adelaide, Australia (P.E.A.); Department of Medical Sciences, Uppsala Clinical Research Center, Uppsala, Sweden (C.H., L.W.); Department of Cardiology, University of Leuven, Belgium (F.V.W.); Merck, Whitehouse Station, NJ (J.S.); Gill Heart Institute and Division of Cardiovascular Medicine, University of Kentucky, Lexington, KY (D.J.M.); Green Lane Cardiovascular Service, Auckland City Hospital, Auckland, New Zealand (H.D.W.); Stanford University, Stanford, CA (K.W.M., R.A.H.); Division of Cardiology, University of Alberta, Edmonton, Alberta, Canada (P.W.A.).

Accompanying Tables S1 through S4 are available at http://jaha.ahajournals.org/content/4/12/e002546/suppl/DC1

Correspondence to: Sean van Diepen, MD, MSc, 2C2 Cardiology Walter MacKenzie Center, University of Alberta Hospital, 8440-11 St. Edmonton, Alberta, Canada T6G 2B7. E-mail: sv9@ualberta.ca

Received August 10, 2015; accepted October 30, 2015.

© 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
Vorapaxar in Noncardiac Surgery

van Diepen et al

DOI: 10.1161/JAHA.115.002546

The present analysis included all patients in the TRACER trial who were admitted with an NSTE ACS and treated either with a coronary stent or with medical therapy alone and subsequently underwent either major or minor NCS. Patients who underwent coronary artery bypass grafting were specifically excluded: vorapaxar outcomes in this patient population have been previously described. The TRACER case report form contained the type, date, and reasons for NCS procedure as entered by local study personnel. The study authors examined all NCS data entries and classified them as either major or minor surgery. Major surgical procedures were defined using the American Heart Association/American College of Cardiology definitions of intermediate- and high-risk procedures. Major procedures were further classified by surgical site according to prior categorization as follows: abdominal, thoracic, orthopedic and spinal, vascular, urological (urological and gynecological), intracranial neurologic, and head and neck surgeries. Minor surgical procedures were similarly identified using guideline definitions of low-risk procedures and included endoscopic, superficial, cataract, breast, ambulatory, percutaneous, or dental procedures. Repeat coronary angiograms, percutaneous coronary interventions, and cardiac surgical procedures were excluded. If a patient underwent a major and minor surgical procedure within 30 days, the major procedure was hierarchically selected as the index procedure to avoid an excess attributable risk to minor procedures (eg, a bronchoscopy preceding a lobectomy).

The timing of NCS after NSTE ACS events was a priori categorized as follows: \( \leq 30 \), \( >30 \) to 180, \( >180 \) days to 1 year, and \( >1 \) year. The TRACER case report form coded for the preoperative use of all cardiac medications. Given the long biologic half-life of vorapaxar, the study protocol recommended study drug continuation through NCS procedures. The timing and reasons for interruptions were recorded in the case report form by local study personnel. The primary analysis of this study compared clinical end points in vorapaxar- versus placebo-treated patients who underwent NCS. A secondary analysis evaluated the long-term clinical outcomes in NSTE ACS patients who underwent NCS regardless of treatment assignment. A sensitivity analysis limited to participants who were receiving perioperative treatment was also performed.

Outcomes

The primary ischemic end point for this analysis was the incidence of 30-day perioperative cardiovascular death, nonfatal myocardial infarction, stent thrombosis, or urgent revascularization. The secondary ischemic end points of interest included the TRACER trial primary end point (cardiovascular death, myocardial infarction, recurrent ischemia with rehospitalisation, or stroke), the individual components of the primary ischemic end point, all-cause mortality, stroke, and the incidence of the composite primary outcome among 30-day NCS survivors through study follow-up. The primary bleeding end point was the 30-day incidence of perioperative NCS bleeding defined as any GUSTO (Global Utilization of
Strategies to Open Occluded Arteries) or TIMI (Thrombolysis In Myocardial Infarction) bleeding associated with the NCS. For example, a surgical incision site hematoma would qualify as NCS bleeding but spontaneous epistaxis would not. The secondary bleeding end points included all 30-day perioperative GUSTO moderate or severe bleeding, TIMI major or minor bleeding, and TIMI clinical significant bleeding. All clinical end points were adjudicated by a clinical events committee.

Statistical Methods

Patient and procedural characteristics, concomitant treatment, and in-hospital procedures are reported as medians (25th, 75th percentiles) for continuous variables and as percentages for discrete variables. The Wilcoxon rank sum test and χ² test were applied, respectively, to test differences between groups, including 30-day outcomes. Kaplan–Meier estimates were reported for 2-year follow-up, and differences among groups were tested by using the log-rank test (when proportional hazard assumptions were met).

The associations of vorapaxar versus placebo with the 30-day NCS primary end point and safety end points for the NCS patients (intent-to-treat) were examined through multivariable logistic regression. These associations were examined in patients who were event free at the time of surgery. Study treatment–related analyses were based on the intention-to-treat assumption, unless otherwise stated. Associations with 30-day events were reported as odds ratios (ORs) with 95% CIs. Sensitivity analyses were also carried out on patients who were receiving treatment during surgery, including 901 vorapaxar- and 819 placebo-treated patients.

To compare long-term prognosis between NSTE ACS patients who did not undergo NCS with those who did undergo NCS and survived 30 days postrandomization and postoperatively, respectively, time-to-event analyses were performed. Hazard ratios (HRs) and 95% CIs were calculated using Cox proportional hazards regression, including NCS as a time-dependent covariate and with the adjustment of baseline covariates and randomized stratification factors (Table S1).

SAS software version 9.4 (SAS Institute) was used to perform statistical analyses. P-values were not adjusted for multiple comparisons.

Results

In the TRACER trial, 2202 (17.0%) of 12 944 patients underwent NCS after randomization during a median follow-up of 1.5 years. A total of 1312 (10.1%) patients underwent cardiac surgery after randomization and were excluded from the study. Baseline characteristics of patients who did and did not undergo NCS are provided in Table S2. Briefly, patients who underwent NCS were more likely to be older, have a higher body mass index, have more comorbidities, and have a lower creatinine clearance and were more frequently in the vorapaxar treatment group. There were no differences between the 2 groups in revascularization strategies after the index NSTE ACS. The incidence of NCS varied by study region as follows: North America 25.8%, South America 12.6%, Western Europe 16.8%, Eastern Europe 12.8%, Asia 19.6%, and Australia/New Zealand 30.4%.

Study participants who underwent NCS were followed for a median of 565 days. Among the 2202 NCS procedures, 474 (21.5%) patients had major and 1728 (78.5%) had minor surgical procedures. The proportion of NCS procedures relative to the timing after the index NSTE ACS was categorized as ≤30, >30 to 180, >180 days to 1 year, and >1 year and distributes as 18.5%, 30.9%, 27.2%, and 23.5%, respectively.1,16,20 The preoperative use of aspirin and thienopyridines was 97.2% and 87.7%, respectively, and 21.7% of patients stopped the study drug a median of 14.0 (3.0, 62.0) days preoperatively.

The baseline characteristics of NCS patients by treatment assignment are provided in Table 1. Vorapaxar- and placebo-treated patients were well balanced by age, sex, medical history, index NSTE ACS revascularization, major versus minor surgery, and surgical timing. There were no differences in either the number of vorapaxar- and placebo-treated patients in whom the study drug was held preoperatively (23.1% versus 20.2%, P=0.102) or in the median times between the last study drug dose and surgery (13 versus 15 days, P=0.431). Vorapaxar-treated patients were more likely to receive thienopyridines preoperatively (89.1% versus 86.1%, P=0.036). Preoperative aspirin and β-blocker utilization was similar between groups. The incidences of NCS preoperative GUSTO moderate or severe (7.3% versus 4.8%, P=0.011) and TIMI clinically significant (25.4% versus 17.7%, P=0.001) bleeding were higher among vorapaxar-treated NCS patients, but no treatment-related differences were observed in the time between bleeding events and NCS.

Outcomes of NCS Patients by Treatment Assignment

The 30-day incidence of the primary ischemic outcome of cardiovascular mortality, nonfatal myocardial infarction, stent thrombosis, or urgent revascularization was similar in vorapaxar- and placebo-treated NCS patients (3.4% versus 3.9%, P=0.562). Additionally, no differences in the individual components of the 30-day ischemic end point (Figure 1; P>0.05 for all) or the TRACER end point (4.4% versus 4.3%, P=0.843) were observed. The primary bleeding end point of
| Characteristics                                      | Vorapaxar (n=1171) | Placebo (n=1031) | P Value |
|-----------------------------------------------------|--------------------|------------------|---------|
| Age, y, median (IQR)                                | 66.0 (60.0–74.0)   | 65 (59.0–73.0)   | 0.073   |
| Female, n (%)                                       | 335 (28.6)         | 96 (28.7)        | 0.958   |
| Racial or ethnic group, n (%)                       |                    |                  |         |
| White                                               | 1007 (86.3)        | 891 (86.7)       | 0.701   |
| Black                                               | 29 (2.5)           | 25 (2.4)         |         |
| Asian                                               | 100 (8.6)          | 86 (8.4)         |         |
| Other                                               | 31 (2.7)           | 26 (2.5)         |         |
| Body weight, kg, median (IQR)                       | 81.0 (70.0–94.1)   | 82.0 (70.5–95.0) | 0.125   |
| Medical history, n (%)                              |                    |                  |         |
| Hypertension                                        | 846 (72.2)         | 766 (74.3)       | 0.278   |
| Dyslipidemia                                        | 797 (68.1)         | 693 (67.2)       | 0.651   |
| Diabetes mellitus                                   | 428 (36.6)         | 371 (36.0)       | 0.783   |
| Current tobacco use                                 | 264 (22.5)         | 256 (24.8)       | 0.208   |
| Myocardial infarction                               | 382 (32.6)         | 348 (33.8)       | 0.573   |
| Percutaneous coronary intervention                  | 331 (28.3)         | 294 (28.5)       | 0.886   |
| Coronary artery bypass grafting                     | 200 (17.1)         | 190 (18.4)       | 0.408   |
| Heart failure                                       | 157 (13.4)         | 168 (16.3)       | 0.055   |
| Atrial fibrillation                                 | 71 (6.1)           | 65 (6.3)         | 0.814   |
| Stroke or transient ischemic attack                 | 93 (7.9)           | 93 (9.0)         | 0.364   |
| Peripheral arterial disease                         | 120 (10.2)         | 114 (11.1)       | 0.539   |
| Variables at NSTE ACS presentation                 |                    |                  |         |
| Heart rate, bpm, median (IQR)                       | 70 (61–80)         | 69 (61–79)       | 0.824   |
| Systolic blood pressure, mm Hg, median (IQR)       | 131 (118–146)      | 130 (118–146)    | 0.759   |
| Diastolic blood pressure, mm Hg, median (IQR)      | 72 (65–81)         | 74 (65–83)       | 0.235   |
| Hemoglobin, g/L, median (IQR)                       | 136 (126–149)      | 140 (126–150)    | 0.143   |
| Creatinine clearance, μmol/L, median (IQR)         | 87.8 (67.1–112.2)  | 89.1 (66.3–118.0)| 0.115   |
| Positive troponin or CK-MB, n (%)                   | 1101 (94.4)        | 978 (95.2)       | 0.398   |
| Electrocardiographic findings, n (%)                |                    |                  |         |
| ST-segment depression                               | 353 (30.1)         | 296 (28.7)       | 0.461   |
| ST-segment elevation                                | 60 (5.1)           | 44 (4.3)         | 0.345   |
| TIMI risk score, n (%)                              |                    |                  | 0.520   |
| 0–2                                                 | 6 (0.5)            | 5 (0.5)          |         |
| 3–4                                                 | 515 (44.0)         | 474 (46.0)       |         |
| 5–7                                                 | 650 (55.5)         | 552 (53.5)       |         |
| Killip class, n/N (%)                               |                    |                  | 0.442   |
| I                                                   | 1090/1166 (93.5)   | 951 (92.5)       |         |
| II                                                  | 55/1166 (4.7)      | 60/1028 (5.8)    |         |
| III/IV                                              | 21/1166 (1.8)      | 17/1028 (1.7)    |         |
| Region of enrollment, n (%)                         |                    |                  | 0.750   |
| North America                                       | 399 (34.1)         | 355 (34.4)       |         |
| South America                                       | 50 (4.3)           | 38 (3.7)         |         |

Continued
30-day NCS bleeding was similar for vorapaxar- and placebo-treated patients (3.9% versus 3.4%, \(P=0.507\)). Similarly, no differences in the incidence of all GUSTO moderate/severe, TIMI major/minor, or TIMI clinically significant bleeding were observed (\(P>0.05\) for all).

After multivariable adjustment, the 30-day associations between treatment assignment and the primary ischemic end point (adjusted OR 0.81, 95% CI, 0.50 to 1.33, \(P=0.412\)) (Figure 1), TRACER end point (adjusted OR 1.01, 95% CI, 0.64 to 1.60, \(P=0.953\)), NCS bleeding (adjusted OR 1.41, 95% CI, 0.87 to 2.31, \(P=0.165\)), GUSTO moderate or severe bleeding (adjusted OR 1.15, 95% CI, 0.72 to 1.83, \(P=0.551\)), TIMI clinically significant bleeding (adjusted OR 1.17, 95% CI, 0.84 to 1.65, \(P=0.355\)), and TIMI major or minor bleeding (adjusted OR 1.07, 95% CI, 0.67 to 1.70, \(P=0.768\)) remained nonsignificant. In a sensitivity analysis, no differences between treatment groups in the adjusted study outcomes were observed among on-treatment study patients (Table 2). No differences in the adjusted end points were observed between vorapaxar- versus placebo-treated NCS patients between postoperative day 30 through the end of study follow-up (Table S3).

**Clinical Outcomes by Surgical Timing, Surgical Type, and Revascularization Strategy**

The timing of surgery after NSTE ACS \(\leq 30\), >30 to 180, >180 days to 1 year, and >1 year was 20.9%, 32.2%, 26.4%, and 20.5% for minor procedures and 9.7%, 26.2%, 30.2%, and 34.0% for major procedures, respectively. No significant interactions between study treatment and clinical outcomes were observed for surgical timing, revascularization strategies after the index NSTE ACS, or major versus minor surgery; thus, study treatment groups were pooled (Figure 2, Table S4). The adjusted 30-day post-NCS risk of cardiovascular mortality, nonfatal myocardial infarction, stent

---

**Table 1. Continued**

| Characteristics                        | Vorapaxar (n=1171) | Placebo (n=1031) | \(P\) Value |
|----------------------------------------|--------------------|------------------|------------|
| Western Europe                         | 467 (39.9)         | 427 (41.4)       |            |
| Eastern Europe                         | 93 (7.9)           | 83 (8.0)         |            |
| Asia                                    | 93 (7.9)           | 81 (7.9)         |            |
| Australia or New Zealand               | 69 (5.9)           | 47 (4.6)         |            |
| Drugs at time of NSTEMI, n (%)         |                    |                  |            |
| Thienopyridine                         | 1043 (89.1)        | 888 (86.1)       | 0.036      |
| Aspirin                                 | 1134 (96.8)        | 1007 (97.7)      | 0.235      |
| \(\beta\)-Blocker                      | 889 (75.9)         | 805 (78.1)       | 0.230      |
| NSTE ACS revascularization, n (%)      |                    |                  |            |
| Medical therapy                         | 418 (35.7)         | 402 (39.0)       | 0.186      |
| Bare-metal stent                        | 298 (25.4)         | 234 (22.7)       |            |
| Drug-eluting stent                      | 455 (38.9)         | 395 (38.3)       |            |
| Type of surgery, n (%)                 |                    |                  |            |
| Major                                   | 247 (21.1)         | 227 (22.0)       | 0.599      |
| Minor                                   | 924 (78.9)         | 804 (78.0)       |            |
| Timing of surgery after randomization, d median (IQR) | 180 (51–341)       | 195 (61–370)     | 0.053      |
| \(\leq 30\) d                           | 226 (19.3)         | 181 (17.6)       | 0.165      |
| >30 d to 6 mo                          | 362 (30.9)         | 318 (30.8)       |            |
| >6 mo to 1 y                           | 330 (28.2)         | 270 (26.2)       |            |
| >1 y                                    | 253 (21.6)         | 262 (25.4)       |            |
| Timing of surgery relative to study drug, n (%) |                    |                  |            |
| Surgery before last dose                | 901 (76.9)         | 819 (79.8)       | 0.102      |
| Surgery after last dose                 | 270 (23.1)         | 207 (20.2)       |            |
| Time between surgery and last dose, d median (IQR) | 13.0 (3.0–52.0)    | 15.0 (3.0–92.0)  | 0.431      |

CK-MB indicates creatinine kinase-MB; NCS, noncardiac surgery; NSTE ACS, non-ST-segment elevation acute coronary syndrome; TIMI, Thrombolysis In Myocardial Infarction.
thrombosis, or urgent revascularization was highest among patients undergoing surgery within 30 days of the index NSTE ACS. Perioperative 30-day NCS bleeding was numerically lower than GUSTO moderate/severe, TIMI clinically significant, or TIMI major/minor bleeding. Compared with patients undergoing NCS within 30 days of the index NSTE ACS, the adjusted risk of perioperative NCS bleeding was higher between >30 and 180 days, but no significant difference was observed beyond 180 days. The risk of TIMI clinically significant and major or minor bleeding was significantly lower in patients undergoing NCS after 30 days. There were no observed differences in the adjusted 30-day risk of the primary ischemic outcome between major and minor surgeries, but the risk of 30-day NCS-related bleeding and GUSTO moderate or severe bleeding was higher for major surgical procedures. The risk-adjusted 30-day ischemic outcomes for

![Figure 1](image.png)

**Figure 1.** Adjusted associations between study treatment and 30-day clinical outcomes in NCS patients. No treatment-related ischemic or bleeding differences were observed. GUSTO indicates Global Utilization of Strategies to Open Occluded Arteries; NCS, noncardiac surgery; OR, odds ratio; TIMI, Thrombolysis In Myocardial Infarction.

### Table 2. Unadjusted and Adjusted Vorapaxar Versus Placebo 30-Day Perioperative Outcomes in the On-Treatment Population

| Endpoints                          | Observed Events* | Vorapaxar | Placebo | Adjusted OR (95% CI) | P Value |
|-----------------------------------|------------------|-----------|---------|----------------------|---------|
| **Primary ischemic end point**    |                  | 24/804 (3.0) | 26/726 (3.6) | 0.80 (0.44–1.48)   | 0.485   |
| **TRACER end point**              |                  | 26/786 (3.3) | 27/699 (3.9) | 0.85 (0.47–1.54)   | 0.591   |
| **Noncardiac surgical bleeding**  |                  | 30/901 (3.3) | 25/819 (3.1) | 1.37 (0.76–2.45)   | 0.291   |
| **GUSTO moderate or severe bleeding** |                  | 35/858 (4.1) | 31/784 (4.0) | 1.14 (0.66–1.97)   | 0.646   |
| **Severe bleeding**               |                  | 17/1146 (1.5) | 12/1018 (1.2) | 1.74 (0.55–5.55)   | 0.350   |
| **Moderate bleeding**             |                  | 34/1109 (0.7) | 28/995 (2.8) | 1.10 (0.59–2.05)   | 0.763   |
| **TIMI clinically significant bleeding** |                  | 80/698 (11.5) | 64/679 (9.4) | 1.22 (0.84–1.78)   | 0.294   |
| **TIMI major or minor bleeding**  |                  | 39/850 (4.6) | 28/784 (3.6) | 1.22 (0.72–2.09)   | 0.458   |
| **Intracranial haemorrhage**      |                  | 4/1165 (0.3) | 1/1029 (0.1) | —                   |         |

GUSTO indicates Global Utilization of Strategies to Open Occluded Arteries; OR, odds ratio; TIMI, Thrombolysis In Myocardial Infarction; TRACER, Thrombin Receptor Antagonist for Clinical Event Reduction in Acute Coronary Syndrome.

*Denominators change with removal of presurgery events.
patients who underwent revascularization with bare-metal or drug-eluting stents were not significantly different from those for patients who did not undergo revascularization. No relationship between study treatment, surgical site, and bleeding was observed.

Long-term Outcomes in Patients With and Without NCS

Ischemic and bleeding outcomes in NSTE ACS patients who did and did not undergo NCS are presented in Table 3. No significant interactions between treatment assignment and outcomes were observed; thus, treatment groups were pooled. The median follow-up among NCS patients (who survived through 30 days postoperatively) and non-NCS patients (landmarked at 30-day post-NSTE ACS survival) was 1.6 and 1.3 years, respectively. In a 30-day landmark analysis with NCS as a time-dependent covariate, the adjusted ischemic end point (adjusted HR 1.62, 95% CI, 1.33 to 1.97, \( P < 0.001 \)) and the TRACER composite end point (adjusted HR 1.92, 95% CI, 1.62 to 2.27) were higher among NCS patients. The incidence of GUSTO moderate or severe bleeding (adjusted HR 5.63, 95% CI, 3.98 to 7.97, \( P \leq 0.001 \)) (Figure 3), TIMI clinically significant bleeding (adjusted HR 3.54, 95% CI, 2.85 to 4.41, \( P < 0.001 \)), and TIMI major or minor bleeding (adjusted HR 5.19, 95% CI, 3.50 to 7.71, \( P < 0.001 \)) were all significantly higher in the NCS group. No significant interaction effect was found between the subgroups (major versus minor NCS and type of revascularization) and study treatment assignment with the ischemic and safety end points (results not shown).

Discussion

In this large, contemporary, international cohort of patients undergoing NCS after an NSTE ACS with a rigorously adjudicated clinical end point, several important findings emerge. First, no significant differences were observed in the 30-day incidence of the primary ischemic outcome or NCS bleeding between vorapaxar- and placebo-treated patients. Second, early NCS after an NSTE ACS was associated with a significant increase in adverse perioperative ischemic events. Our findings suggest that surgery should be delayed, where clinically appropriate, \( \geq 30 \) days to minimize ischemic events.
and ≥6 months to minimize bleeding events. Finally, among 30-day survivors, NCS patients had a significantly higher long-term risk of ischemic events and bleeding compared with patients who did not undergo NCS, irrespective of treatment assignment.

The published incidence of NCS after an ACS or stent implantation is 2% to 34%.1–3,13,14,21–23 This wide reported range in these observational analyses likely reflects differences in NCS surgical procedures (major or minor), revascularization strategies (bare-metal and/or drug-eluting stent), and duration of follow-up. The present analysis, which followed both medically treated and percutaneously revascularized NSTE ACS patients for a median of 1.5 years, found that 17.0% of patients require major or minor NCS procedures. This finding confirms that NCS after an NSTE ACS is common in a relatively unselected population. In addition, the regional variations in the incidence of NCS after an NSTE ACS observed in this study may also provide insight into the wide difference in published NCS estimates. Our observation that Australia/New Zealand and North American had the highest NCS rates is similar to other published estimates in population-based datasets, though this is the first study to describe international geographical differences in NCS after an NSTE ACS.1–3 Future studies may be directed at understanding the clinical and environmental reasons underpinning regional variations in the incidence of NCS.

The optimal perioperative antiplatelet management strategies in patients undergoing NCS after ACS remains unresolved. A recent major randomized trial reported that use of aspirin increased the risk of NCS bleeding, but this trial specifically excluded patients with recent coronary stenting or thienopyridine use.24 Similarly, the perioperative use of thienopyridines has been associated with increased NCS bleeding, but hemorrhagic risks must be weighed against the potential ischemic risks of drug discontinuation early after coronary stenting.1,7,25–28 The protease-activated receptor 1 antagonist vorapaxar had a higher incidence of bleeding in the overall trial population and, in this analysis, bleeding rates were higher among patients prior to NCS; however, vorapaxar was not associated with differences in 30-day cardiovascular mortality, nonfatal myocardial infarction, stent thrombosis, or urgent revascularization, or 30-day perioperative bleeding. Importantly, 78% of the patients continued vorapaxar through the perioperative period, and the results were similar in an on-treatment sensitivity analysis. In addition, among the 22% of patients who discontinued the study drug a median of 13 days preoperatively, the half-life of up to 311 hours

| Table 3. Outcomes in Patients With and Without NCS |
|-----------------------------------------------|
| Patients Without NCS (n=9363) | Patients With NCS (n=2202) | Events After NCS | P Value* |
|-----------------------------------------------|
| Clinical end points, n (%) | | | |
| Primary ischemic end point | 1230 (13.1) | 255 (11.6) | 253 (11.5) | 80 (3.6) | 173 (7.9) | <0.001 |
| TRACER end point | 1348 (14.4) | 327 (14.9) | 240 (10.9) | 96 (4.4) | 144 (6.5) | <0.001 |
| All-cause mortality | 367 (3.9) | 1 (0.04) | 201 (9.1) | 34 (1.5) | 167 (7.6) | <0.001 |
| Cardiovascular mortality | 254 (2.7) | 1 (0.04) | 106 (4.8) | 30 (1.4) | 76 (3.4) | <0.001 |
| Myocardial infarction | 819 (8.8) | 237 (10.8) | 146 (6.6) | 68 (3.1) | 78 (3.5) | 0.001 |
| Stent thrombosis | 77 (0.8) | 25 (1.1) | 11 (0.5) | 6 (0.3) | 5 (0.2) | 0.117 |
| Urgent revascularization | 279 (3.0) | 62 (2.8) | 25 (1.1) | 2 (0.1) | 23 (1.0) | <0.001 |
| Stroke | 100 (1.1) | 31 (1.4) | 27 (1.2) | 8 (0.4) | 19 (0.9) | 0.522 |
| Safety end points, n (%) | | | |
| GUSTO moderate or severe bleeding | 152 (1.6) | 135 (6.1) | 115 (5.2) | 87 (4.0) | 28 (1.3) | <0.001 |
| Severe bleeding | 71 (0.8) | 38 (1.7) | 42 (1.9) | 29 (1.3) | 13 (0.6) | <0.001 |
| Moderate bleeding | 83 (0.9) | 96 (4.5) | 78 (3.5) | 62 (2.8) | 16 (0.7) | <0.001 |
| TIMI clinically significant bleeding | 850 (9.1) | 480 (21.8) | 236 (10.7) | 173 (7.9) | 63 (2.9) | 0.018 |
| TIMI major or minor bleeding | 151 (1.6) | 139 (6.3) | 106 (4.8) | 85 (3.9) | 21 (1.0) | <0.001 |
| Intracranial haemorrhage | 30 (0.3) | 8 (0.4) | 9 (0.4) | 5 (0.2) | 4 (0.2) | 0.520 |

GUSTO indicates Global Utilization of Strategies to Open Occluded Arteries; NCS, non cardiac surgery; TIMI, Thrombolysis In Myocardial Infarction; TRACER, Thrombin Receptor Antagonist for Clinical Event Reduction in Acute Coronary Syndrome.

*P-value for the comparison of patients with events after NCS vs patients without NCS.
suggested residual pharmacokinetic effect was likely present in many patients. These results are consistent with an animal study that reported no increase in bleeding time or blood loss with vorapaxar in addition to aspirin and thienopyridine treatment, and with the results of a secondary TRACER analysis that reported no increase in coronary artery bypass grafting–related major bleeding. The novel composite end point was created to best align with clinically important events in perioperative care; however, the results mirror those of the TRACER end point. Our findings have implications for patients with coronary artery disease on vorapaxar who require NCS. Among patients requiring urgent NCS, preoperative delay for the sole purpose of eliminating the drug effect is likely unnecessary. We acknowledge the need for further clarity regarding the perioperative management of other antiplatelet agents and that preoperative vorapaxar management may need to be individualized for surgical procedures where substantial morbidity with bleeding exists (ie, neurosurgery).

The association between early NCS after an ACS and adverse NCS perioperative outcomes was first described in the prerevascularization era. A similar relationship has been well described in patients with percutaneous revascularization and has led to recommendations to delay NCS after an ACS ≥30 days when possible. Our study confirms these findings using a contemporary, international cohort of patients with mixed revascularization strategies, and it suggests that surgery should be delayed ≥30 days when it is clinically appropriate. Moreover, this analysis adds important information on perioperative bleeding. Although postoperative bleeding is associated with adverse outcomes across the spectrum of surgical procedures, little is known about its relationship with NCS timing after an NSTE ACS. A recent major multicenter, randomized controlled trial reported that aspirin before NCS increased major bleeding and, in a post-hoc analysis, major bleeding was an independent predictor of myocardial infarction. This trial did not, however, address the risks and benefits in patients with recent ACS. A prospective cohort of patients in France found that timing of NCS after stenting was independently associated with the risk of hemorrhagic complications. With the use of centrally adjudicated clinical end points, our findings suggest that, if possible, surgery should be delayed ≥6 months to minimize the risk of both NCS and spontaneous bleeding. Postoperative ischemic events, however, were highest within the first 30 days after NSTE ACS with relatively balanced events thereafter. Our findings suggest that NCS should be delayed >30 days, where clinically appropriate, to minimize the risk of both adverse cardiac events and hemorrhagic complications. Confirmation of this association with other antiplatelet agents requires further investigation.

The cardiovascular and bleeding risks of NCS after an ACS have been well described. However, little is known about the long-term outcomes of NCS in this population. In this study we observed a significant risk association between NCS and both ischemic events and major bleeding. Importantly, this analysis was landmarked to only include patients who survived through 30 postoperative days to minimize NCS-related events, and the Kaplan–Meier curves for bleeding appeared to continue to separate through the follow-up period, suggesting a long-term risk association between NCS and NSTE ACS that extends well beyond the traditional perioperative period. Although preoperative bleeding rates were higher among vorapaxar-treated patients, no postoperative interaction between treatment and outcomes was observed, suggesting an independent long-term risk association in the NCS population. We acknowledge that the reasons underpinning these findings are beyond the scope of this analysis and a careful evaluation of postoperative care may be merited on the basis of these results. Clinicians ought to carefully consider the individual patient bleeding risks and benefits before resuming antiplatelet therapies in patients with ACS who have undergone NCS.

Study Limitations

The limitations of the study merit consideration. The study case report form coded for the incidence and timing of study drug interruptions, but it did not provide detailed information on the perioperative management of aspirin, thienopyridines, or other cardiac medications. In addition, the current analysis...
was neither prespecified nor randomized. Thus, the results of this analysis should be considered hypothesis generating. More patients in the vorapaxar cohort of this study experienced preoperative bleeding, which influences the generalizability of the study. However, no associations between postoperative outcomes or timing of surgery were observed in this analysis. Finally, the number of patients in the major surgery cohort may not be adequately powered to detect a significant result.

Conclusions
Among NSTE ACS patients undergoing NCS, we observed no differences in perioperative ischemic or bleeding events between vorapaxar- and placebo-treated patients. Early NCS (≤30 days) was associated with an increased risk of adverse perioperative ischemic events and bleeding; these findings suggest that NCS should be delayed ≥30 days to minimize ischemic events and delayed ≥6 months to minimize bleeding. Among 30-day NCS survivors, we observed significantly higher long-term ischemic and bleeding risk association in patients with prior NSTE ACS. Future studies should be directed at elucidating the relationships between concurrent antiplatelet agents and revascularization strategies with clinical outcomes.

Sources of Funding
The TRACER trial was funded by Merck & Co, Inc (Whitehouse Station, NJ, USA).

Disclosures
van Diepen, Podder, Westerhout, Moliterno: none. Tricoci: consultant & research grant from Merck. Aylward: research grants from Merck, AstraZeneca, Eli Lilly, Bayer/Johnson & Johnson, Sanofi Aventis, GalapaoSmithKline, and CSL; speaker bureau and advisory board honoraria from AstraZeneca, Eli Lilly, Boehringer Ingelheim, Bayer, Johnson & Johnson, Pfizer, Servier, and Bristol-Myers Squibb; travel support from Bristol-Myers Squibb, AstraZeneca, Boehringer Ingelheim, Bayer, and Merck. Held: institutional research grants from AstraZeneca, GalapaoSmithKline, Pfizer/Bristol-Myers Squibb, Roche, and Schering-Plough (now Merck); consulting fees from AstraZeneca. Van de Werf: research grants, advisory board membership, and speaker’s fees from Merck. Strony: employed by Merck. Wallentin: research grants, advisory board membership, and speaker’s fees from Merck.

References
1. Hawn MT, Graham LA, Richman JS, Itani KF, Henderson WG, Maddox TM. Risk of major adverse cardiac events following noncardiac surgery in patients with coronary stents. JAMA. 2013;310:1462–1472.
2. To AC, Armstrong G, Zeng I, Webster MW. Noncardiac surgery and bleeding after percutaneous coronary intervention. Circ Cardiovasc Interv. 2009;2:213–221.
3. Wijeyasurya DN, Wijeyasurya HC, Yun L, Wasowicz M, Beattie WS, Velianou JL, Ko DT. Risk of elective major noncardiac surgery after coronary stent insertion: a population-based study. Circulation. 2012;126:1355–1362.
4. Goldman L, Calendra DL, Nussbaum SR, Southwick FS, Krogstad D, Murray B, Burke DS, O’Malley TA, Goroll AH, Caplan GH, Nolan J, Carabello B, Slater EE. Multifactorial index of cardiac risk in noncardiac surgical procedures. N Engl J Med. 1977;297:845–850.
5. Detsky AS, Abrams HB, McLaughlin JR, Drucker DJ, Sasson Z, Johnston N, Scott JG, Forbath N, Hillard JR. Predicting cardiac complications in patients undergoing non-cardiac surgery. J Gen Intern Med. 1986;1:211–219.
6. Lee TH, Marcantono ER, Mangione CM, Thomas EJ, Polanczyk CA, Cook EF, Sugarbaker DJ, Donaldson MC, Poss R, Ho KK, Ludwig LE, Pedan A, Goldman L. Derivation and prospective validation of a simple index for prediction of cardiac risk of major noncardiac surgery. Circulation. 1999;100:1043–1049.
7. Capodanno D, Angiolillo DJ. Management of antiplatelet therapy in patients with coronary artery disease requiring cardiac and noncardiac surgery. Circulation. 2013;128:2785–2798.
8. Burger W, Chemnitzium JM, Kneissl GD, Rucker G. Low-dose aspirin for secondary cardiovascular prevention—cardiovascular risks after its perioperative withdrawal versus bleeding risks with its continuation—review and meta-analysis. J Intern Med. 2005;257:399–414.
9. Oscarsson A, Gupta A, Fredrikson M, Jarhult J, Nyström M, Pettersson E, Darsih B, Krok H, Swahn E, Eintrei C. To continue or discontinue aspirin in the perioperative period: a randomized, controlled clinical trial. Br J Anaesth. 2010;104:305–312.
10. Mantz J, Samama CM, Tubach F, Devereaux PJ, Collet JP, Albaladejo P, Cholley B, Nizard R, Barré J, Pirou V, Poilier N, Mignon A, Schlumberger S, Longrois D, Assaad F, Farèse ME, Ravaud P, Steg PG. STRATAGEM Study Group, Impact of preoperative maintenance or interruption of aspirin on thrombotic and bleeding events after elective non-cardiac surgery: the multicentre, randomised, blinded, placebo-controlled, STRATAGEM trial. Br J Anaesth. 2011;107:899–910.
11. Tricoci P, Huang Z, Held G, Moliterno DJ, Armstrong PW, Van de Werf F, White HD, Aylward PE, Wallentin L, Chen E, Lokhnygina Y, Pei J, Leonardi S, Rorick TL, Kilian AM, Jennings LH, Nyström M, Prieto JC, Ruzyllo W, Sinnaeve PR, Storey RF, Valgimigli M, Whellan DJ, Widimsky P, Strony J, Sankyo Pharma Development; non-financial support from AstraZeneca, non MSD, Roche, and Regado Biosciences outside the submitted work. Mahaffey: all disclosures prior to August 1, 2013 available at www.dcri.org, and all disclosures afterward are available at https://med.stanford.edu/profiles/kenneth-mahaffey. Harrington: research grants from Merck, AstraZeneca, Bristol-Myers Squibb, and Johnson & Johnson; consulting fees from CSL, Bristol-Myers Squibb, Daiichi, Gilead, Johnson & Johnson, Merck, and MyoKardia. Armstrong: research grants from Merck; consulting fees from Eli Lilly, and other fees from AstraZeneca. All authors have approved the final article.
Vorapaxar in Noncardiac Surgery

van Diepen et al

19. van Diepen S, Bakal JA, McAlister FA, Ezekowitz JA. Mortality and readmission

20. Livhits M, Ko CY, Leonard MJ, Zimmonds DS, Gibbons MM, de Virgilio C. Risk

21. Conroy M, Bolsin SN, Black SA, Orford N. Perioperative complications in

22. Cruden NL, Harding SA, Flapan AD, Graham C, Wild SH, Slack R, Pell JP, Newby

23. Gandhi NK, Abdel-Karim A-RR, Banerjee S, Brilakis ES. Frequency and risk of

24. Devereaux PJ, Mrkobrada M, Sessler DI, Leslie K, Alonso-Coello P, Kurz A, Villar

25. Howard-Alpe GM, de Bono J, Hudsmith L, Orr WP, Foex P, Spear JW. Coronary

26. Ernst A, Eberhardt R, Wahidi M, Becker HD, Herth FJ. Effect of routine
clopidogrel use on bleeding complications after transbronchial biopsy in
humans. Chest. 2006;129:734–737.

27. Albaladejo P, Marret E, Samama CM, Collet JP, Aylward P, Wallentin L, Strony
J, Harrington RA, Mahaffey KW. Vorapaxar in acute coronary syndrome patients
undergoing coronary artery bypass graft surgery: subgroup analysis from the
TRACER trial (Thrombin Receptor Antagonist for Clinical Event Reduction in
Acute Coronary Syndrome). J Am Coll Cardiol. 2014;63:1048–1057.

28. Vicien MN, Meislitzer T, Heizlinger B, Halaj M, Fleisher LA, Metzler H. Coronary
artery stenting and non-cardiac surgery—a prospective outcome study.
Br J Anaesth. 2006;96:686–693.

29. Chintala M, Vemulpalapilli S, Kurowski S, Sabin C, Reynolds D, Pravik E,
Friedrichs G. SCH 530348, a novel oral antiplatelet agent, demonstrated no
bleeding risk alone or in combination with aspirin and clopidogrel in
cynomolgus monkeys (abstract P579). Arterioscler Thromb Vasc Biol. 2008;28:e138–e139. Available at: http://atvb.ahajournals.org/content/28/6/e132.full.pdf+html. Accessed May 21, 2014.

30. Rao TL, Jacobs KH, El-Etr AA. Reinfarction following anesthesia in patients with
myocardial infarction. Anesthesiology. 1983;59:499–505.

31. Kaluza GL, Joseph J, Lee JR, Raiser ME, Raizner AE. Catastrophic outcomes of
noncardiac surgery soon after coronary stenting. J Am Coll Cardiol. 2000;35:1288–1294.

32. Wilson SH, Fasseas P, Orford JL, Lennon RJ, Horlock T, Charnoff NE, Melby S,
Berger PB. Clinical outcome of patients undergoing non-cardiac surgery in the
two months following coronary stenting. J Am Coll Cardiol. 2003;42:234–240.

33. Reddy PR, Vaitkus PT. Risks of noncardiac surgery after coronary stenting. Am J
Cardiol. 2005;95:755–757.

34. Holcomb CN, Graham LA, Richman JS, Rhyne RR, Itani KM, Maddox TM, Hawn
MT. The incremental risk of noncardiac surgery on adverse cardiac events
following coronary stenting. J Am Coll Cardiol. 2014;64:2730–2739.

35. Johnston KW. Multicenter prospective study of nonruptured abdominal aortic
aneurysm. Part II. Variables predicting morbidity and mortality. J Vasc Surg.
1989;9:437–447.

36. Mor E, Jennings L, Gonwa TA, Holman MJ, Gibbs J, Solomon H, Goldstein RM,
Husberg BS, Waterberg IA, Klintmalm GB. The impact of operative bleeding on
outcome in transplantation of the liver. Surg Gynecol Obstet. 1993;176:219–
227.

37. Moulton MJ, Creswell LL, Mackey ME, Cox JL, Rosenblum M. Reexploration
for bleeding is a risk factor for adverse outcomes after cardiac operations. J Thorac Cardiovasc Surg. 1996;111:1037–1046.

38. Douketis JD, Spyropoulos AC, Spencer FA, Mayr M, Jaffer AK, Eckman MH,
Dunn AS, Kuzn R; American College of Chest Physicians. Perioperative
management of antithrombotic therapy: antithrombotic therapy and preven-
tion of thrombosis, 9th ed; American College of Chest Physicians-Evidence-
Based Clinical Practice Guidelines. Chest. 2012;141:e32S–e350S.

11

DOI: 10.1161/JAHA.115.002546