ГИПОГРАВИТАЦИЯ КАК ФАКТОР РИСКА ПОВЫШЕНИЯ УРОВНЯ ВНУТРИГЛАЗНОГО ДАВЛЕНИЯ

М. А. Валях1, Д. В. Кац1, Н. Г. Глазко1, М. В. Баранов3

1 Российский национальный исследовательский медицинский университет имени Н. И. Пирогова, Москва, Россия
2 Городская клиническая больница № 15 имени О. М. Филатова, Москва, Россия
3 Научно-исследовательский институт медицины человека, Москва, Россия

Космическая медицина давно занимается исследованием воздействия условий сниженной гравитации на организм человека. За последние годы все больше внимания исследователи уделяют изменениям со стороны органа зрения. В первую очередь, это связано с увеличением жалоб космонавтов на недостаточную остроту зрения во время и после окончания космических полетов. Среди наиболее важных изменений у них было обнаружено повышение внутриглазного давления (ВГД) — наиболее опасная патология, нередко приводящая к необратимой слепоте в результате гравитационной нейровегетативной дисфункции.[1–5]

Первые данные о повышении ВГД во время космических экспедиций изучены достаточно давно. Однако внимание изменений со стороны органа зрения у космонавтов стали уделять только в последнее время. В частности, были зарегистрированы подъемы внутриглазного давления (ВГД) в условиях измененной гравитации, а именно в условиях сниженной гравитационной силы — гипогравитации. Данный вид гравитации обнаружен на Луне и предположительно на других планетах нашей Солнечной системы [1–5].

Предварительные данные о повышении ВГД во время космических полетов были получены с помощью ручного...
ПАЦИЕНТЫ И МЕТОДЫ

Данное исследование проводили в июле 2016 г. на базе кафедры офтальмологии лечебного факультета им. академика А. П. Нестерова РНИМУ им. Н. И. Пирогова, в ГКБ № 15 им. О. М. Филатова при участии ФГБУ ФНКЦ ФМБА России в НИИ космической медицины.

Для участия в эксперименте были отобраны 48 участников (96 глаз) молодого возраста. Критерии включения в исследование: возраст 18–30 лет; 2) хорошая общая физическая подготовка; 3) нормальное зрение (выявляющее возможные повреждения волокон зрительного нерва); 4) наличие иных соматических патологий; 5) наличие иных офтальмологических заболеваний; 6) иной возраст и пол.

Во 2-й группе, которая получила название «контроль», отсутствовали ограничения положения в пространстве, в ночной период (с 23:00 до 8:00) обследуемые располагались в горизонтальном положении, в дневной период — в ортостатическом положении.

Исследования проводили с помощью аппланационного тонометра: было зафиксировано увеличение ВГД в течение первых 21 суток наблюдения, т. е. с началом эксперимента у всех испытуемых наблюдалось увеличение ВГД на 20–25% в течение пяти суток после начала эксперимента; в течение 21-го суток уровень ВГД был стабилен.

Во время исследования были определены четыре основные точки: 1) первая точка, носившая название исходного измерения и/или фона — перед началом эксперимента (за день до помещения испытуемых в соответствующие условия); 2) вторая точка — на 11-е сутки эксперимента; 3) третья — на 21-е сутки: четвертая точка — на первые сутки после окончания эксперимента (суммарный день после прекращения нахождения в соответствующих условиях).

Для выявления изменений со стороны гидродинамики глаза всем испытуемым проводили измерение ВГД в установочные временные точки в утренние часы, когда повышение уровня ВГД достигало максимальных значений.

Отсюда вытекает, что включение испытуемых в пространство положение сохранялось в течение 21 суток. Обследуемые находились в помещениях, где была создана полная изоляция от внешних раздражающих факторов: повышенная звукоизоляция, плотно закрытый окон. В помещениях с испытуемыми могли находиться только представители медицинского персонала, участвующие в эксперименте; родственников и/или друзей не допускали. В строго регламентированное время было разрешено пользоваться телефоном и компьютером, читать.

Исследования проводили с помощью аппланационного тонометра Маклакова (ПАО «Красногвардеец», Россия), используя груз 10 г. Полученные данные были оценены с помощью переводной линейки Нестерова–Егорова и программы Statistica 8.0 (StatSoft Inc.; США). Приведенные параметры, имеющие нормальное распределение, представлены в формате: М ± M, где М — среднее значение, m — ошибка среднего значения.

Таблица 1. Общая характеристика групп исследования

| Группы | Признак | Количество пациентов/глаз | Положение испытуемых в пространстве | Средний возраст со средней ошибкой (лет) |
|--------|---------|---------------------------|---------------------------------------|------------------------------------------|
| 1-я группа: модель гипогравитации | Чередование ортостатического положения с углом наклона тела 3,5° в дневной период и горизонтального положения на ночную период | 24/48 | 21,75 ± 3,83 |
| 2-я группа: контроль | Без ограничений в пространстве (1–21 сутки наблюдения) | 24/48 | 21,21 ± 2,54 |
представлены в значениях, равных показателям истинного (определяет действительный уровень офтальмотонуса и общепринятого в мировой офтальмологической практике) ВГД (Р0, мм рт. ст.). Нормальный уровень истинного ВГД (Р0) при измерении ВГД тонометром Маклакова весом 10 г достигает 10–22 мм рт. ст.

Прямая офтальмоскопия
Исследование глазного дна проводили при помощи электронного офтальмоскопа BXα, регистрационный номер ФС № 2005/1022 (NEITZ; Япония). Измерения проводили на узких зрачках без использования капель, вызывающих медикаментозный мидриаз во время эксперимента, и в состоянии медикаментозного мидриаза до начала эксперимента и на первые сутки после его окончания.

Компьютерная периметрия
Оценку полей зрения проводили методом статической периметрии на приборе Humphrey Field Analyzer II 750i (Zeiss; Германия), регистрационный номер ФСЗ № 2008/02964. При анализе полученных данных учитывали показатели достоверности проведенного исследования: число ложноположительных и ложноотрицательных ответов, данные о потере фиксации взора.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ
При анализе данных, полученных в ходе эксперимента, в 1-й группе (группа «модель гипогравитации») отмечается статистически значимое повышение уровня офтальмотонуса у всех испытуемых, которое было зафиксировано во время измерения ВГД на 11-е сутки, равное 3,33 ± 0,08 мм рт. ст. На 21-е сутки эксперимента было отмечено продолжение увеличения уровня ВГД (3,42 ± 0,03 мм рт. ст.) по сравнению с данными, полученными до начала эксперимента. Однако стоит отметить, что на первые сутки после окончания эксперимента значения ВГД вернулись к значениям, соотносимым со значениями, полученными до начала эксперимента (табл. 2).

При оценке результатов прямой офтальмоскопии на протяжении всего эксперимента ни у одного испытуемого не было зафиксировано отклонений от нормы. Диск зрительного нерва (ДЗН) — бледно-розовый, экскавация физиологическая (0,3–0,4), сосудистый пучок в центре, ход и калибр сосудов не изменен, макулярная область без особенностей, на периферии зон дистрофии и/или разрывов нет.

По данным компьютерной периметрии, грубых нарушений в виде абсолютных скотом или значительного увеличения слепого пятна при анализе показателей испытуемых в этой группе выявлено не было.

В группе «контроль» никаких изменений уровня ВГД во время эксперимента и по его окончании не было зафиксировано. Значения у всех испытуемых были в пределах нормы на протяжении всего исследования (табл. 3). Так же как и в первой группе при оценке данных прямой офтальмоскопии и компьютерной периметрии, отклонений от нормы зафиксировано не было.

Статистический анализ изменений ВГД, зафиксированных в исследуемых группах с помощью U-критерия Манна–Уитни для двух несвязанных совокупностей, позволил определить следующее: для групп «модель гипогравитации» и «контроль» Uэмп. = 0, тогда как Uкрт. = 834 (р < 0,01), что говорит о статистической достоверности и значимости полученных результатов.

Таблица 2. Исследование ВГД в группе «модель гипогравитации»
| Срок исследования | Параметр | Среднее ВГД со средней ошибкой, мм рт. ст. |
|---------------------|----------|------------------------------------------|
| Исходное           |          | 15,75 ± 0,72                            |
| 11-е сутки          |          | 19,08 ± 0,64                            |
| Δ исходное — 11-е сутки эксперимента | 3,33 ± 0,08 | р < 0,01                               |
| 21-е сутки          |          | 19,17 ± 0,69                            |
| Δ исходное — 21-е сутки эксперимента | 3,42 ± 0,03 | р < 0,01                               |
| Первые сутки после выхода испытуемых из эксперимента |          | 15,67 ± 0,62                            |
| Δ исходное — 1-е сутки после окончания эксперимента | 0,08 ± 0,1 | р > 0,05                                |

Таблица 3. Исследование ВГД в группе «контроль»
| Срок исследования | Параметр | Среднее ВГД со средней ошибкой, мм рт. ст. |
|---------------------|----------|------------------------------------------|
| Исходное           |          | 15,75 ± 0,72                            |
| 11-е сутки          |          | 15,79 ± 0,73                            |
| Δ исходное — 11-е сутки эксперимента | 0,04 ± 0,01 | р > 0,05                               |
| 21-е сутки          |          | 15,71 ± 0,71                            |
| Δ исходное — 21-е сутки эксперимента | 0,04 ± 0,01 | р > 0,05                               |
| Первые сутки после выхода испытуемых из эксперимента |          | 15,77 ± 0,71                            |
| Δ исходное — 1-е сутки после окончания эксперимента | 0,02 ± 0,01 | р > 0,05                               |
ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Гипогравитация оказывает влияние на офтальмотонус, приводя к повышению ВГД. Во время клинического эксперимента были получены статистически достоверные и значимые результаты повышения ВГД. Среднее увеличение данного показателя составило 3,42 ± 0,03 мм рт. ст. Однако можно предположить, что влияние гипогравитации на офтальмотонус носит транзиторный характер, так как уже в первые сутки после окончания эксперимента происходит восстановление уровня ВГД.

Данные изменения можно объяснить тем, что во время нахождения в условиях моделирования гипогравитации в организме испытуемых происходит перераспределение жидкости, сопровождающееся увеличением кровенаполнения структур и органов головы и шеи, в том числе сосудистой оболочки глаза. Эти изменения могут приводить к уменьшению внутриглазного объема, а соответственно к увеличению ВГД. В дальнейшем при адаптации организма к условиям, имитирующим космический полет, развивается гипоплазата путем снижения реабсорбции жидкости и электролитов в почечных канальцах, усиления клубочковой фильтрации, и в несколько раз возрастает диурез и выведение осмотических активных веществ, что приводит к нормализации ВГД [8]. Другое возможное объяснение данных изменений заключается в том, что в результате перераспределение жидкости в организме испытуемых происходит повышение выработки внутриглазной жидкости и затруднение ее оттока через дренажную систему глаза [9].

ВЫВОДЫ

1. При анализе показателей офтальмотонуса во время эксперимента по моделированию гипогравитации были получены статистически достоверные и значимые результаты о повышении уровня ВГД в период с момента начала эксперимента и до 21 суток исследования (р < 0,01).
2. Изменения ВГД в условиях гипогравитации носит транзиторный характер после окончания воздействия данных условий уровень офтальмотонуса возвращается к исходным показателям. 3. По данным прямой офтальмоскопии, никаких изменений на глазном дне, в частности на ДЗН, у испытуемых во время нахождения в условиях моделирования гипогравитации не происходит. 4. По результатам компьютерной периметрии в ходе эксперимента по созданию измененных условий гравитации значимых изменений зафиксировано не было.

Литература

1. Rastegar N, Eckert P, Mertz M. Radiation — induced cataract in astronauts and cosmonauts. Graefes Arch Clin Exp Ophthalmol. 2002; (240): 534–47.
2. Thomas H, Mader C, Robert OD, Anastas F. Optic Disc Edema, Globale Flattening, Choroidal Folds, and Hyperopic Shifts Observed in Astronauts after Long — duration Space Flight. American Academy of Ophthalmology Published by Elsevier Inc. 2011; 2058–70.
3. Chylack BE, Peterson LE, Feiveson AH, et al. NASA study of cataract in astronauts (NASA). Report 1: Cross — sectional study of the relationship of exposure to space radiation and risk of lens opacity. Radiat Res. 2009; (172): 10–20.
4. Cucinotta FA, Manuel FK, Jones J, et al. Space radiation and cataracts in astronauts. RADIAT Res. 2001; 460–6.

5. Frey MA. Radiation health: mechanism of radiation — induced cataracts in astronauts. Aviat Space Environ Med. 2009; 575–6.
6. Draeger J. Tomometry under microgravity conditions. Norderney Symposium on Scientific Results of the German Spacelab Mission D1. 1986; 503–9.
7. Mejakvic PJ, Elken O, Mejakvic IB. Visual function after prolonged bed rest. J Gravit Physiol. 2002; (9): 31–2.
8. Kergoat H, Lovasik JV. Seven-degree head-down tilt reduces choroidal pulsatile ocular blood flow. Aviation, Space and Environmental Medicine. 2005; 76 (10): 930–5.
9. Mader TH, Gibson GR, Pass AF, et al. Optic disc edema globe flattening, choroidal folds, and hyperopic shifts observed in astronauts after long-dyration space flight. Ophthalmology. 2011; (118); 2058–69.

References

1. Rastegar N, Eckert P, Mertz M. Radiation — induced cataract in astronauts and cosmonauts. Graefes Arch Clin Exp Ophthalmol. 2002; (240): 534–47.
2. Thomas H, Mader C, Robert OD, Anastas F. Optic Disc Edema, Globale Flattening, Choroidal Folds, and Hyperopic Shifts Observed in Astronauts after Long — duration Space Flight. American Academy of Ophthalmology Published by Elsevier Inc. 2011; 2058–70.
3. Chylack BE, Peterson LE, Feiveson AH, et al. NASA study of cataract in astronauts (NASA). Report 1: Cross — sectional study of the relationship of exposure to space radiation and risk of lens opacity. Radiat Res. 2009; (172): 10–20.
4. Cucinotta FA, Manuel FK, Jones J, et al. Space radiation and cataracts in astronauts. RADIAT Res. 2001; 460–6.