Acarologia

A quarterly journal of acarology, since 1959
Publishing on all aspects of the Acari

All information:
http://www1.montpellier.inra.fr/CBGP/acarologia/
acarologia-contact@supagro.fr

OPEN ACCESS

Acarologia is proudly non-profit,
with no page charges and free open access

Please help us maintain this system by
encouraging your institutes to subscribe to the print version of the journal
and by sending us your high quality research on the Acari.

Subscriptions: Year 2020 (Volume 60): 450 €
http://www1.montpellier.inra.fr/CBGP/acarologia/subscribe.php
Previous volumes (2010-2018): 250 € / year (4 issues)
Acarologia, CBGP, CS 30016, 34988 MONTFERRIER-sur-LEZ Cedex, France
ISSN 0044-586X (print), ISSN 2107-7207 (electronic)

The digitalization of Acarologia papers prior to 2000 was supported by Agropolis Fondation under the reference ID 1500-024 through the « Investissements d’avenir » programme
(Labex Agro: ANR-10-LABX-0001-01)

Acarologia is under free license and distributed under the terms of the
Creative Commons-BY-NC-ND which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.
Two new species of microdispid mites (Acari: Heterostigmata: Pygmephoroidea) associated with *Lucanus ibericus* (Coleoptera: Lucanidae)

Sarina Seyedein*a, Vahid Rahiminejad*a, Ahmad Nadimi*a

*aDepartment of Plant Protection, Faculty of Plant Production, Gorgan University of Agricultural Science and Natural Resource, Golestan, Iran.

Original research

ABSTRACT

Two new species of the microdispid mites (Acari: Microdispidae) phoretic on *Lucanus ibericus* are described from Iran: *Premicrodispus gorganiensis* Rahiminejad & Seyedein sp. nov. and *Neomicrodispus lucani* Rahiminejad & Seyedein sp. nov. The mites were collected from forests with Hornbeam trees (*Carpinus* spp.) and Oak trees (*Quercus* spp.) in Gorgan, northern Iran. The distribution of the heterostigmatic mites on lucanid beetles is reviewed. Also, a key to species of the *Neomicrodispus* is provided.

Keywords Microdispidae; forest; fauna; Insect; phoresy; stag beetle; Iran

Zoobank http://zoobank.org/7FD7D3DB-1488-4C29-9519-AD8B6262D005

Introduction

Although many of heterostigmatic mites (Acari: Prostigmata) prefer to be free-living, almost all of them take advantage of phoresy in some periods of their life to distribute and establish their populations (Hermann et al. 1970; Kaliszewski et al. 1995). Heterostigmata have a wide range of associations with arthropods, including predation, parasitism and mutualism; so that different host–symbiont interactions could lead to speciation (Okabe et al. 2012). More than 2000 described species in eight superfamilies are classified in Heterostigmata (Walter et al. 2009; Zhang et al. 2011). The four families Microdispidae, Scutacaridae, Neopygmephoridae and Pygmephoridae constitute the largest superfamily in Heterostigmata (Acari: Prostigmata), known as Pygmephoroidea (Khaustov 2004). The least diverse family in the superfamily, Microdispidae Cross, 1965, includes 28 described genera and more than 120 species (Khaustov and Minor 2020) that are mostly fungivorous, inhabiting soil, litter, moses or decaying plant material, and some are in relation with various arthropods by phoresy or parasitism with the most prevalent hosts for this family being beetles and ants (Kaliszewski et al. 1995; Walter et al. 2009; Hajiqanbar et al. 2012a; Rahiminejad et al. 2015a; Khaustov and Minor 2020). The taxonomic placement of many microdispid mites was as doubtful, hereupon, Khaustov (2018) provided a key for genera. There are various reports about microdispid mites in Iran (Rahiminejad et al. 2010, 2015a; Hajiqanbar et al. 2012a, b; Hosseininaveh et al. 2013, 2015; Loghmani et al. 2014a, b; Katlav et al. 2015; Hajiqanbar and Hasseininaveh 2014; Filekesh et al. 2014; Abbasi-Moghadam et al. 2014; Badood et al. 2015; Ashari et al. 2018; Hajiqanbar and Arjomandi 2019; Rahiminejad and Hajiqanbar 2020). Until now, six genera and 23 species have been recorded from Iran (Hajiqanbar and Sobhi 2018).

A very diverse group of scarabaeoide beetles (Coleoptera: Scarabaeoidea), including Lucanidae, could be identified as hosts for microdispid mites (Kaliszewski et al. 1995; Walter et al. 2009; Hajiqanbar et al. 2012a; Rahiminejad et al. 2015a; Khaustov and Minor 2020). The taxonomic placement of many microdispid mites was as doubtful, hereupon, Khaustov (2018) provided a key for genera. There are various reports about microdispid mites in Iran (Rahiminejad et al. 2010, 2015a; Hajiqanbar et al. 2012a, b; Hosseininaveh et al. 2013, 2015; Loghmani et al. 2014a, b; Katlav et al. 2015; Hajiqanbar and Hasseininaveh 2014; Filekesh et al. 2014; Abbasi-Moghadam et al. 2014; Badood et al. 2015; Ashari et al. 2018; Hajiqanbar and Arjomandi 2019; Rahiminejad and Hajiqanbar 2020). Until now, six genera and 23 species have been recorded from Iran (Hajiqanbar and Sobhi 2018).

A very diverse group of scarabaeoide beetles (Coleoptera: Scarabaeoidea), including Lucanidae, could be identified as hosts for microdispid mites (Kaliszewski et al. 1995; Walter et al. 2009; Hajiqanbar et al. 2012a; Rahiminejad et al. 2015a; Khaustov and Minor 2020). The taxonomic placement of many microdispid mites was as doubtful, hereupon, Khaustov (2018) provided a key for genera. There are various reports about microdispid mites in Iran (Rahiminejad et al. 2010, 2015a; Hajiqanbar et al. 2012a, b; Hosseininaveh et al. 2013, 2015; Loghmani et al. 2014a, b; Katlav et al. 2015; Hajiqanbar and Hasseininaveh 2014; Filekesh et al. 2014; Abbasi-Moghadam et al. 2014; Badood et al. 2015; Ashari et al. 2018; Hajiqanbar and Arjomandi 2019; Rahiminejad and Hajiqanbar 2020). Until now, six genera and 23 species have been recorded from Iran (Hajiqanbar and Sobhi 2018).
Lucanid beetles feed on honeydew or on sap from leaves and trees in their adult stage and their larvae breed in or beneath the decaying wood of logs or stumps (Holloway 2007).

During a survey on mite fauna of the cohort Heterostigmata associated with insects in Golestan province, Northern Iran, in summer 2019, two new species of the genera *Premicrodispus* and *Neomicrodispus* phoretic on beetles (Coleoptera: Lucanidae) were collected by light trap. The aim of this paper is to describe these new species. In addition, the representatives of the Heterostigmata associated with lucanid beetles are reviewed. A key for species of the genus *Neomicrodispus* is provided as well.

Materials and methods

Host beetles were captured by light trap in Alangdareh Forest, in Golestan province, northern Iran, during summer 2019. Mite specimens were cleared in lactophenol and mounted in Hoyer’s medium. The morphology of the mites was studied by a light microscope with phase contrast illumination (Olympus BX51, Tokyo, Japan). The terminology of the idiosoma and legs follows that of Lindquist (1986), the designation of cheliceral setae follows Grandjean 1947 and the nomenclature of subcapitular setae follows Grandjean (1944). All measurements in the descriptions are given in micrometers (μm) for the holotype and four paratypes (in parentheses). Details of geographical position were recorded using a global positioning system (GPS model: eTrex).

The beetle host was identified by the help of a key for Iranian lucanid beetles provided by Bartolozzi *et al.* (2014).

The type materials of the new species and host beetles are deposited in the Arthropods Collection, Acari section, Department of Plant Protection, Faculty of Plant Production, Gorgan University of Agricultural Science and Natural Resource, Golestan, Iran.

Systematics

Family Microdispidae Cross, 1965

Genus *Premicrodispus* Cross, 1965

Type species: *Microdispus (Premicrodispus) chandleri* Cross, 1965, by original designation

Three subgenera, *Premicrodispus* Cross, 1965, *Premicrodispulus* Khaustov & Chydyrov, 2010, *Premicrodispoides* Khaustov & Maslov, 2013, and about 31 species constitute the cosmopolitan genus *Premicrodispus* (Khaustov and Minor 2020). Khaustov (2006) provided the diagnosis of the genus.

Premicrodispus gorganiensis Rahiminejad & Seyedein sp. nov.

Zoobank: 686F49BC-B7F0-409F-A406-96217D5A4CCA

(Figures 1–3)

Diagnosis — The new species is characterized by posterior margin of tergites C and D with a distinct median incision; setae d, e and f blunt-ended; setae e not associated with ridge; distance d–d about 1.5 times longer than seta d; seta h₁ less than 1.5 times longer than h₂; seta 4a absent and seta ps₂ present; tibiotarsus I with four solenidia; all dorsal setae extending posterior border of their tergites; cupuli ia and ih rhombic.

Description — Female. Length of body (including gnathosoma) 236 (229–241), width 121 (118–125).

Gnathosoma (Figs 1A & B)– gnathosomal capsule elongated, dorsally with one pair of cheliceral setae, cha 11 (10–11). Palpal femorogenu with subequal setae dFe 5 (5–6) and dGe 7 (6–8). Gnathosoma ventrally with one pair of subcapitular setae m 11 (10–11). Pharyngeal
system well sclerotized (Fig. 1C), including three pumps, pump 2 developed with transversely striate and pumps 1 and 3 vestigial.

Idiosomal dorsum (Fig. 1A) – Body elliptic, all tergites smooth; stigmata oval and associated with thin tracheal trunks; all dorsal setae smooth; setae d, e and f blunt-ended, other dorsal setae pointed; prodorsal shield with elliptic stigmata, trichobothria with long stem, clavate and sparsely barbed, setae sc_2 36 (32–37); tergite C with two pairs of setae c_1 21 (20–24) and c_2 32 (30–35), setae c_2 longer than c_1, posterior border of tergites C and D with distinct median incision; tergite D with setae d 18 (17–19), and cupuli ia rhombic and situated postero-lateral setae d; tergite EF with two pairs of setae e 14 (13–14) and f 23 (21–24), bases of setae e not associated with linear ridge; tergite H with setae h_1 21 (20–22), h_2 16 (15–16), cupuli ih rhombic and situated posteriad setae h_2; distance h_1–h_1 subequal to h_1–h_2; all dorsal setae reach to posterior border of their tergites. Distances between dorsal setae: sc_2–sc_2 37 (35–39), c_1–c_1 45 (41–48), c_2–c_2 80 (79–83), c_1–c_2 22 (20–23), d–d 31 (30–32), e–e 80 (76–84), e–f 11 (10–12), f–f 45 (44–48), h_1–h_1 18 (17–20), h_2–h_2 57 (54–58), h_1–h_2 19 (19–20).

Idiosomal venter (Fig. 1B) – Apodemes 1 (ap1) and 2 (ap2) well developed and joined with prosternal apodeme (appr), sejugal apodeme (apsej) thick, well sclerotized and joined with

Figure 1 *Premicrodispus gorganiensis* sp. nov., female. A – body in dorsal view, B – body in ventral view, C – pharyngeal system.
appr; all ventral plates smooth; all ventral setae pointed and smooth; setae 4a absent; anterior margin of posterior sternal plate straight, without lobe; apodemes 3 (ap3) extending beyond bases of setae 3a; apodemes 4 (ap4) short and reaching to bases of setae 3b; apodemes 5 absent; posterior margin of posterior sternal plate tripartite; coxal field I with setae 1a 11 (11–12), 1b 16 (15–17); coxal field II with setae 2a 11 (11–12), 2b 11 (10–12); coxal field III with setae 3a 14 (13–14), 3b 11 (9–11), 3c 16 (16–18); coxal field IV with setae 4b 14 (13–15) and 4c 11 (11–12), setae 1b and 3c subequal and longest on idiosomal venter; pseudanal plate with setae ps1 17 (16–18), ps2 9 (8–9) and ps3 31 (30–34).

Legs (Figs 2, 3) – Leg I (Fig. 2A). Thinner and shorter than other legs. Setal formula: (number of solenidia in parentheses): Tr1–Fe3–Ge4–TiTa15 (4). Tibiotarsus I with seta k and five other blunt-ended eupathidial setae (p", tc", tc", ft" and ft"'), solenidion ω 1 6 (6–7) digitiform, solenidion ω2 3 (3–3) baculiform, solenidion φ 1 3 (2–3) weakly clavate, φ 2 3 (2–3) baculiform, setae pl" and pl"" whip-like; genu with three barbed setae and seta l'" smooth; femur with setae d, v" and l'" subequal. Leg II (Fig. 1B). Setal formula: Tr1–Fe3–Ge3–Ti4(1)–Ta6(1).

Figure 2 Premicrodispus gorganiensis sp. nov., female. A – leg I, B – leg II.
Figure 3 *Premicrodispus gorganiensis* sp. nov., female. A – leg III, B – leg IV.

Tarsus with sickle-like simple claws, solenidion ω 4 (3–4) digitiform, seta pl*"* shortest on tarsus I; tibia with solenidion ϕ 3 (2–3) weakly clavate, setae v’ and v" subequal and longer than two others; genu with setae l’ thickened; femur with setae l’ and d, shortest and longest setae on legII, respectively; trochanter with seta v’ as long as v’ on first leg. Leg III (Fig. 3A). Setal formula: Tr1–Fe2–Ge2– Ti4(1)–Ta6. All leg setae smooth and pointed; tibia with solenidion ϕ 3 (2–3) digitiform, seta l’ shorter than three others; genu with two subequal setae l’ and v’; femur divided into basi- and telofemur with seta d longer than seta v’; trochanter with seta v’ longer than femoral seta v’. Leg IV (Fig. 3B). Setal formula: Tr1–Fe2–Ge1– Ti4(1)–Ta6. Setae tc’ thickened; tibia with solenidion ϕ 3 (2–3) digitiform, seta v” on tibia and tc’ on tarsus are shortest and longest on leg IV, respectively; genu with seta v’ as long as seta v” on tibia;
femur divided into basi- and telofemur with seta v’ longer than d; trochanter with seta v’ longer than v’ on femur.

Male and larva. Unknown.

Differential diagnosis — The new species is most similar to *Premicrodispus spinosus* Hosseininaveh & Hajiqanbar, 2015 by seta 4a absent, seta ps₂ present, seta ps₃ longer than ps₁ and seta ps₁ longer than ps₂, setae d and f blunt-ended, but differs in having tarsi and tibiae II and III with simple setae (tarsi and tibiae II and III with spine-like setae in *P. spinosus*) and seta e with no linear ridge (setae e associated with a linear ridge in *P. spinosus*). On the other hand, the new species is similar to *P. tenuisetus* Khaustov, 2006 and *P. novaezealandicus* Khaustov and Minor, 2020 by absence of setae 4a and presence of setae ps₂, but differs from them by setae d, e and f blunt-ended (setae d, e and f pointed in *P. tenuisetus*), setae e shorter than f (setae e longer than f in *P. novaezealandicus* and subequal with f in *P. tenuisetus*), setae e not associated with ridge (setae e associated with well-developed oblique ridges in *P. tenuisetus*), pump 3 of pharyngeal system reduced (pump 3 of pharyngeal system ovate in *P. novaezealandicus* and *P. tenuisetus*), seta ps₁ two times longer than ps₂ (seta ps₁ and ps₂ subequal in *P. novaezealandicus*), seta ps₃ longer than ps₁ and seta ps₁ longer than ps₂ (setae ps₁ and ps₂ subequal and longer than seta ps₃ in *P. tenuisetus*), posterior border of tergites C and D with distinct median incision (posterior border of tergites C and D straight in *P. novaezealandicus* and *P. tenuisetus*).

Type material — Female holotype (VRSS-20190812-1) and 5 female paratypes, in a vial containing *Lucanus ibericus* Motschulsky, 1845 (Col.: Lucanidae). The hosts were captured by a light trap from Alangdareh forest, with Hornbeam trees (*Carpinus* spp.) and Oak trees (*Quercus* spp.), Gorgan town, Golestan province, northern Iran, 36.46°N, 54.26°E, altitude, 408 m., coll. V. Rahiminejad, 12 August 2019.

Etymology — The name of the new species refers to its sampling site, the city of Gorgan, northern Iran.

Genus Neomicrodispus Hajiqanbar & Hosseininaveh, 2014

Type species: *Neomicrodispus iranicus* Hajiqanbar & Hosseininaveh, 2014, by original designation.

Type species along with *N. sibiriensis* Khaustov, 2018, constitute the genus (Hajiqanbar and Hosseininaveh 2014; Khaustov 2018).

Neomicrodispus lucani Rahiminejad & Seyedein sp. nov.

Zoobank: AC91F8E7-794C-4C96-B19C-97A7FD76E88C
(Figures 4–6)

Diagnosis — The new species is characterized by having all dorsal setae pointed and sparsely barbed; setae 4a absent; setae cha and m subequal; setae e and h₂ subequal; setae ps₁ and ps₃ subequal and two times longer than ps₂.

Description — **Female.** Length of body (including gnathosoma) 182 (175–184), width 98 (94–103).

Gnathosoma (Figs 4A & B) — Length of gnathosoma 23 (22–23), width 15 (14–15); without dorsal median apodeme; cheliceral setae cha 11 (10–12) smooth and pointed; postpalpal setae (pp) 3 (3) needle-like, located laterad bases of cha. Setae dFe 7 (6–7) and dGe 4 (3–4) smooth, pointed, dFe longer than dGe; subcapitular setae m 10 (10–11) smooth and pointed; accessory setigenous structure indiscernible; pharyngeal pump system (Fig. 4C) with three pumps, second pharyngeal pump large, subrectangular and transversely striated, pharyngeal pumps 1 and 3 reduced and bow-shaped; pharyngeal pump 1 clearly separated from pharyngeal pump 2.

Idiosomal dorsum (Fig. 4A) — Body oval; prodorsum only slightly covered by anterior part of tergite C; oval stigmata and related tracheal trunks visible; trichobothria with long stem, clavate, weakly barbed, with two short apical projections; seta sc₂ 24 (23–27), barbed; idiosomal length 155 (147–158); posterior margins of tergites C, D, EF and H tanned and with
row of U-shaped elevations; all dorsal hysterosomal setae sparsely barbed and pointed; tergite C with two pairs of setae c₁ 38 (36–39) and c₂ 38 (35–39), setae c₁ and c₂ subequal; tergite D with setae d 40 (36–41), cupuli ia indiscernible; tergite EF with two pairs of setae e 17 (17–18) and f 39 (37–41), bases of setae e not associated with ridges and one pair of round porous areas situated besides of the base of setae e, distance e-f subequal to f-f; tergite H with setae h₁ 31 (29–32), h₂ 16 (15–16), cupuli ih round and placed posteriad seta h₂; all dorsal setae extended from posterior border of their tergites. Distances between dorsal setae: sc₂–sc₂ 33 (30–34), c₁–c₁ 29 (28–32), c₂–c₂ 74 (70–77), c₁–c₂ 21 (20–23), d–d 20 (18–21), e–e 61 (59–66), e–f 19 (18–21), f–f 21 (20–22), h₁–h₁ 32 (30–33), h₂–h₂ 51 (50–53), h₁–h₂ 9 (9–10).

Idiosomal venter (Figs. 4B) – All apodemes (ap1 to ap4, apsej, appr and appo well developed, except ap5, absent; ap3 extending beyond bases of setae 3a; ap4 reach to bases of setae 3b; ventral plates smooth. All ventral setae pointed and weakly barbed except smooth 4b;

Figure 4 Neomicrodispus lucani sp. nov., female. A – body in dorsal view, B – body in ventral view, C – Pharyngeal system.

Seyedein S. et al. (2020), Acarologia 60(3): 595-606; DOI 10.24349/acarologia/20204388
setal formula of coxal fields: 2,2,3,2; setae 1b and 2a subequal, setae 2b longest on anterior sternal plate; setae 3a and 3b subequal and longer than 3c; setae 4a absent and setae 4b longest setae on ventral plates; posterior part of poststernal plate tanned and with U-shaped elevations; posterior margin of aggenital plate almost straight; anterior genital sclerite (ags) small, bell-like and posterior genital sclerite (pgs) bow-shape; setae ps1–3 smooth. Lengths of ventral setae: 1a 23 (21–23), 1b 12 (11–13), 2a 12 (10–12), 2b 32 (31–32), 3a 23 (21–25), 3b 20 (19–21), 3c 12 (12–13), 4b 42 (40–45), 4c 30 (29–32), ps1 8 (7–10), ps2 4 (4–5), ps3 8 (7–10).

Legs (Figs 5 & 6) – Leg I (Fig. 5A). Setal formula: (number of solenidia in parentheses): Tr1–Fe3–Ge4–TiTa15 (3). Tibiotarsus with five eupathidial setae tc', tc'', ft', ft'' and p', setae

Figure 5 Neomicrodispus lucani sp. nov., female. A – leg I, B – leg II.
Figure 6 Neomicrodispus lucani sp. nov., female. A – leg III, B – leg IV.

tc' shorter than tc", setae pv', v', l'" and pl" barbed, other leg setae smooth, solenidia ω1 9 (8–9) > φ1 7 (6–7) > φ2 3 (3–4), solenidion ω1 weakly clavate, longer than other solenidia, solenidion φ1 clubbed, solenidion φ2 baculiform; genu with setae v' and v" barbed and subequal to l" and shorter than l'; femur with setae d barbed and longer than subequal v" and l'; seta v' on trochanter shortest setae of leg. Leg II (Fig. 5B). Setal formula: Tr1–Fe3–Ge3–Ti4(1)–Ta6(1). Tarsus with setae tc" and u' smooth and subequal, other setae of segment barbed, solenidion ω 8 (7–8) digitiform; all setae on tibia barbed except smooth d, setae d shorter than other.
tibial setae, solenidion ϕ 4 (3–4) digitiform; genu with setae v' barbed and longer than setae l'' and l'; all setae on femur smooth, setae l' and v'' subequal and distinctly shorter than seta d'; seta v' on trochanter barbed and longer than v' of genu. Leg III (Fig. 6A). Setal formula: Tr1–Fe2–Ge2–Ti4(1)–Ta6. All setae on tarsus smooth except barbed pv'; all setae on tibia subequal and barbed except smooth d, solenidion ϕ 3 (3–4) weakly clavate; genu with setae v' and l' subequal, seta v' barbed; seta v' on femur barbed and subequal with smooth v'; trochanter with seta v' smooth and longer than v' on femur. Leg IV (Fig. 6B). Setal formula: Tr1–Fe2–Ge1–Ti3–Ta6. Longer than other legs. Tarsus with setae u', pv' and te' barbed, seta pl' shortest and te' longest setae of segment; all setae on tibia barbed except smooth l', seta d longest on segment; pore-like structure visible below base of seta d'; genu with seta v' barbed; femur with seta d' more than twice longer than v', both barbed; seta v' on trochanter smooth and slightly longer than femoral seta v'.

Male and larva. Unknown.

Differential diagnosis — The new species can be distinguished from *N. sibriensis* by the absence of setae 4a (present in *N. sibriensis*). Also *N. lucani* sp. nov. differs from *N. iranicus* by seta cha and m subequal (seta cha two times longer than m in *N. iranicus*), seta e and h_2 subequal (seta e more than 1.5 times longer than h_2 in *N. iranicus*), setae ps_1 and ps_3 subequal and two times longer than ps_2 (setae $ps_{1,3}$ subequal in *N. iranicus*).

Type material — Female holotype (VRSS-20190705-8) and three female paratypes, in the vial containing *Lucanus ibericus* Motschulsky, 1845 (Col.: Lucanidae). The hosts captured by a light trap from Alangdareh forest, with Hornbeam trees (*Carpinus* spp.), Gorgan town, Golestan province, northern Iran, 36.46°N, 54.26°E, altitude, 408 m., coll. V. Rahiminejad, 5 July 2019.

Etymology — The name of the new species refers to generic name of the host beetle, *Lucanus*.

Remark — This is the first record of association between *Neomicrodispus* mites and lucanid beetles. Previously, *N. iranicus* was found in a vial containing beetle *Oryctes nasicornis* (L.) (Col.: Scarabaeidae) in northern Iran and *N. sibriensis* collected from a decaying tree stump in Western Siberia, Russia.

Discussion

Stag beetles (Col.: Lucanidae) with about 1700 species, have a worldwide distribution (Bartolozzi *et al.* 2014). Ten species of lucanid beetles are listed for the arthropod fauna of Iran and it seems that *Lucanus ibericus* is the dominant lucanid beetle in northern Iran. This beetle feeds for several (3–7) years on decaying wood of stumps and roots in its larval stage, and the adults are related with leaves, litter and trees, therefore, it could be possible that the beetles had a close association with wide range of mites in soil or on the trees (Walter *et al.* 2009; Harvey *et al.* 2011; Okabe *et al.* 2012; Bartolozzi *et al.* 2014). Mite fauna associated with Lucanidae is poorly studied. Hitherto, three orders of mites (Mesostigmata, Trombidiformes and Sarcoptiformes) have been found to be associated with the beetles (Haitlinger 2008; Walter *et al.* 2009). Until now, nine species belonging to five genera and two families of Heterostigmata have been recorded as phoretic on three different species of lucanid beetle, *L. ibericus*, *Dorcus parallelipipedus* (L.) and *D. parallelus* (Say, 1823) (Table 1).

As *N. iranicus* was collected from *Oryctes nasicornis* (Scarabaeidae), *N. sibriensis* extracted from a decaying stump and *N. lucani* sp. nov. found in association with *L. ibericus*, it seems that a range of arthropods that dwell in decaying wood habitats could be chosen as a hosts for *Neomicrodispus* mites. However, more investigations on the biology and life history of *Neomicrodispus* can clear the nature of the associations.

Presently, the genus *Neomicrodispus* includes three described species based only on females that could be separated by the following key.
Table 1 List of heterostigmatic mites associated with stag beetles.

Mite species	Family	Lucanid host	Reference(s)
Metapygmephorellus colydius	Pygmephoridae	D. parallelipipedus	Rahiminejad et al. (2015b)
Propygmenphorus crossi	Pygmephoridae	L. ibericus	Rahiminejad and Arjomandi (2019)
Premicrodispus turkmenus	Microdispidae	L. ibericus	Badoodam et al. (2015)
Paramicrodispus scarabidophilus	Microdispidae	D. parallelus	Badoodam et al. (2015)
Premicrodispus crenulatus	Microdispidae	L. ibericus	Hajiqanbar et al. (2012)
Paramicrodispus paramaevi	Microdispidae	L. ibericus	Hosseininaveh et al. (2014)
Premicrodispus gorganiensis	Microdispidae	L. ibericus	Current Study
Neomicrodispus lucani	Microdispidae	L. ibericus	Current Study

1. Setae e shorter than f; setae ps1 and ps3 subequal and two times longer than ps2.N. lucani Rahiminejad & Seyedein sp. nov.
— Setae e and f subequal; setae ps1, ps2 and ps3 subequal. .. 2

2. Seta 4a present, dorsal hysterosomal setae longer (d 40, f 42, h1 35)N. sibiriensis Khaustov, 2018
— Seta 4a absent, dorsal hysterosomal setae relatively shorter (d 30, f 32, h1 23)N. iranicus Hajiqanbar & Hosseininaveh, 2014

Acknowledgements

We would like to express our thanks to Professor A.A. Khaustov (Tyumen State University, Russia) for his valuable comments. Also, we appreciate Gorgan University of Agricultural Science and Natural Resource for all the support.

References

Abbasi-Moqadam F., Hajiqanbar H., Katlav A. 2014. First record of Unguidispus okumurai (Acari: Microdispidae), as a new genus and species to mite fauna of Iran. In: Rahimian, H. (Ed.), Abstract book of the 21th Iranian Plant Protection Congress, Urmia, Iran, p. 959.

Azhari Sh., Hajiqanbar H., Talebi A.A. 2018. First record of the rare genus Punicodoxa (Acari: Microdispidae) from Asia, with description of a new species phoretic on termites (Insecta: Isoptera). Syst. Appl. Acarol., 23(3): 468-476. doi:10.11158/saa.23.3.6

Badoodam S., Hajiqanbar H., Talebi A.A. 2015. New species and records of the family Microdispidae (Acari: Prostigmata) from Golestan province, Iran. Internat. J. Acarol., 41 (7): 600-605. doi:10.1080/01647954.2015.1084047

Bartolozzi L., Ghahari H., Sprecher-Uebersax E., Zilioli, M. 2014. A checklist of stag beetles (Coleoptera: Scarabaeoidea: Lucanidae) from Iran. Zootaxa, 3887(3): 422-436. doi:10.11646/zootaxa.3887.3.2

Filekesh M., Hajiqanbar H., Jabaleh I. 2014. New records of three species of the superfamily Pygmeophoroidea (Acari: Heterostigmata) from Asia. Pers. J. Acarol., 3: 277-283. doi:10.22073/pjia.v3i4.10170

Grandjean F. 1944. Observations sur les Acariens de la famille des Stigmaeidae. Arch. Sci. Phys. Natur., 26: 103-131.

Grandjean, F. 1947. L’origine pileuse des mors et la chaetotaxie de la mandibule chez les Acariens actinochitineux. Comptes rendus des Séances de l’Académie des Sciences, 224: 1251-1254.

Haitlinger R. 2008. Mites associated with insects in Poland. In: Gwiazdowicz, D.J. (ed) Selected problems of acarological research in forests. 113-115. Wydawnictwo Uniwersytetu Przyrodniczego, Poznan. 125 pp.

Hajiqanbar, H., Rahiminejad, V. & Fathipour, Y. (2012a) New insect host records for mites of the family Microdispidae (Acari: Heterostigmata), with description of a new species of the genus Paramicrodispus. Entomol. Sci., 15(3): 309-313. doi:10.1111/j.1479-8298.2012.00515.x
Hajiqanbar, H., Salarzehi, S., Olyaie Torshiz, A. & Noei, J. (2012b) First record of the **Premicrodispus lineatus** (Mahunka, 1986) (Acari: Heterostigmata, Microsiphidae) from Iran. Pers. J. Acarol., 1 (2): 157-158. doi:10.11151/j.1479-8298.2012.00515.x

Hajiqanbar, H., Hosseininavesh F. 2014. A new genus and species of the family Microsiphidae (Acari: Prostigmata) associated with *Oryctes nasicornis* (Coleoptera: Scarabaeidae) and redescriptions of the monotypic genus *Fiedopus* Mahunka, 1975. Zool. Stud., 53: 58. doi:10.1186/s40055-014-0058-7

Hajiqanbar, H., Arjomandi E. 2019. Heterostigmatic mites (Acari: Trombidiformes: Prostigmata) associated with Coleoptera and Hymenoptera in Mazandaran province, northern Iran. Pers. J. Acarol., 8 (4): 343-352. doi:10.22073/paj.v8i4.56685

Hajiqanbar H., Sobhi M. 2018. New records of the microsiphid mites (Acari: Heterostigmata: Microsiphidae) associated with ants with a review of the family in Iran. Pers. J. Acarol., 7(2): 105-113.

Harvey D.J., Hawes C.J., Gange A.C., Finch P., Chesmore D., Farr, I. 2011. Development of non-invasive monitoring methods for larvae and adults of the stag beetle, *Lucanus cervus*. Insect Conserv. Diver., 4: 4-14. doi:10.1111/j.1752-4598.2009.00072.x

Hermann H.R., Blum M.S., Hunt A.N. 1970. Myrmecophilous arthropods associated with imported fire ant, *Solenopsis saevissima* (Hymenoptera: Formicidae). J. Académie des Sciences, 33: 13-18.

Holloway B.A. 2007. *Lucanidae* (Insecta: Coleoptera). Fauna of New Zealand, 61, 254 pp.

Hosseininavesh F., Hajiqanbar H., Talebi A.A. 2013. First record of the **Premicrodispus akermanae** (Sevastianov and Al Douri, 1988) (Acari: Microsiphidae) from Iran. In: Joharchi, O. & Saboori, A. (Eds.), Abstract book of the 2nd International Persian Congress of Acarology, Tehran, Iran, p. 15.

Hosseininavesh F., Hajiqanbar H., Talebi A.A. 2015. Two new species of the genus **Premicrodispus** (Acari: Microsiphidae) associated with beetles (Coleoptera) with a key to Palearctic species of the genus. J. Nat. Hist., 49: 915-931. doi:10.1080/00222933.2014.952292

Kaliszewski M., Athias-Binche F., Lindquist E.E. 1995. Parasitism and parasitoidism in Tarsonemina (Acari: Heterostigma-mata) and Evolutionary Considerations. Adv. Parasitol., 35: 335-67. doi:10.1016/S0065-308X(08)60074-3

Kattav A., Hajiqanbar H., Talebi A.A. 2015. A contribution to the knowledge of heterostigmatic mites (Acari: Prostigmata) in western Mazandaran Province, Northern Iran. Acarologia 55(3): 311-320. doi:10.11151/acarologia/20152175

Khaustov A.A. 2004. Mites of the family Neopygmephoridae Cross, 1965 stat. n. and their position in Heterostigmata. In: Balashov Y.S. (Ed.), VIII Russian Acarological Conference, St.Petersburg. Zoological Institute of RAS, St.Petersburg, p. 137. [in Russian]

Khaustov A.A. 2006. A review of the genera **Premicrodispus** Cross, 1965 and **Dolichodispus** gen. nov. (Acari: Microsiphidae) of Crimea. Acarina, 14 (2): 155-174.

Khaustov A.A. 2018. First record of the genus **Neomicrodispus** (Acari: Microsiphidae) from Russia with the description of a new species and a key to world genera of the family Microsiphidae. Acarina, 26 (2): 175-182. doi:10.21684/3.322.8077-2018.26-2.175-182

Khaustov A.A., Frolov A.V. 2018. A new species, new genus and new records of heterostigmatic mites (Acari: Heterostigmata) phoretic on scarab beetles of the subfamily Orphninae (Coleoptera: Scarabaeidae). Zootaxa, 4514 (2): 181-201. doi:10.11646/zootaxa.4514.2.3

Khaustov A.A., Minor M.A. 2020. New species of Microsiphidae (Acari: Heterostigmata) from alpine New Zealand. Zootaxa, 4750 (4): 477-498. doi:10.11646/zootaxa.4750.4.2

Lindquist E.E. 1986. The world genera of Tarsoneminae (Acari: Heterostigmata): a morphological, phylogenetic, and systematic revision, with a realclassification of family-group taxa in the Heterostigmata. Mem. Entomol. Soc. Can., 118: 1-517. doi:10.4039/entm118136-6

Loghmani A., Hajiqanbar H., Talebi, A.A. 2014a. New records of mites of the superfamily Pyg- mphororhidae (Acari: Heterostigmata) associated with insects from northeastern Iran and new host records. Syst. Appl. Acarol., 19(2): 154-159. doi:10.11151/saa.19.2.5

Loghmani A., Hajiqanbar H., Talebi A. 2014b. New species and new record of the genus **Caesarodispus** (Acari: Heterostigmata: Microsiphidae) phoretic on *Temnothorax* sp. (Hymenoptera: Formicidae) with a key to world species of the genus. Ann. Zool., 64: 273-278. doi:10.3161/000345414X680627

Okabe K., Masuya H., Kanzaki N. 2012. Regional collapse of symbiotic specificity between lucanid beetles and canestrinid mites. Naturwissenschaften, 99: 959-965. doi:10.1007/s00114-012-0979-0

Rahiminejad V., Hajiqanbar H., Fathipour Y. 2010. First record of phoresy of Microsiphidae (Acari: Prostigmata) on Scarabaeidae (Insecta: Coleoptera). In: Manzari S. (ed.) Proceedings of 19th Iranian Plant Protection Congress. Iranian Research Institute of Plant Protection Press, Tehran, p. 352.

Rahiminejad V., Hajiqanbar H., Talebi A. 2015a. Three new species of the genus **Caesarodispus** (Acari: Microsiphidae) associated with ants (Hymenoptera: Formicidae), with a key to species. Entomol. Sci., 18: 461-469. doi:10.1111/ens.12149

Rahiminejad V., Hajiqanbar H., Khaustov A., Talebi A. 2015b. A New Genus and Two New Species of the Family Pyg mphororhidae (Acari: Heterostigmata) Associated with Beetles (Insecta: Coleoptera). Ann. Entomol. Soc. Am., 108(5): 893-901. doi:10.1111/ans.aov073

Rahiminejad V., Hajiqanbar H. 2019. New records of mites of the Heterostigmata (Acari: Prostigmata) associated with insects from Golestan province, northern Iran. Pers. J. Acarol., in press.

Walter D.E., Lindquist E.E., Smith I.M., Cook D.R., Krantz G.W., 2009. Order Trombidiformes. In: Krantz, G.W. & Walter, D.E. (eds.) A Manual of Acarology. Texas, Texas Tech University Press, USA, pp. 233-420.

Zhang Z.Q., Fan Q.H., Pesic V., Smith H., Bochkov A.V., Khaustov A.A., Baker A., Wohltmann A., Wenn T., Amrine J.W., Beron P., Lin J., Gabrys G., Husband R. 2011. Order Trombidiformes Reuter, 1909. In: Zhang Z.Q. (Ed.), Animal biodiversity: An outline of higher-level classification and survey of taxonomic richness, pp. 129−138. Magnolia Press.