University of Novi Sad, Faculty of Medicine Novi Sad
Department of Dental Medicine

University of Belgrade, Institute of Physics, Belgrade

Dental Clinic of Vojvodina, Novi Sad

Review article

Pregledni članac

UDK 616.314:60

https://doi.org/10.2298/MPNS2012364N

NOVEL BIOPHOTONICS-BASED TECHNIQUES IN DENTAL MEDICINE
– A LITERATURE REVIEW

NOVE TEHNIKE ZASNOVANE NA BIOFOTONICI U DENTALNOJ MEDICINI – PREGLED LITERATURE

Evgenije NOVTA1, Tijana LAINOVIĆ1, Dušan GRUJIĆ2, Jelena KOMŠIĆ3,
Dejan PANTELIĆ2 and Larisa BLAŽIĆ1,3

Summary
Introduction. Biophotonics deals with interactions between light and biological matter, integrating knowledge of physics, chemistry, engineering, biology, and medicine for solving specific biomedical or life science problems. Due to the ability to provide non-invasive, highly sensitive tissue information and inducing specific localized tissue ablation, biophotonics-based technologies may be of utmost importance in improving dental healthcare. The aim of this review article is to give an overview of contemporary biophotonics-based technologies and their applications in dental research and clinical practice. Various applications of biophotonics-based technologies. Biomedical imaging techniques (nonlinear microscopy methods and optical coherence tomography), photo-mechanical methods (digital holographic interferometry, photo-elasticity, digital image correlation, Moiré interferometry), optical spectroscopy techniques (Raman and Fourier transform infrared spectroscopy, Brillouin light scattering spectroscopy), fiber Bragg grating sensors, photodynamic therapy, photo-bistimulation, and femtosecond laser applications are presented in this paper. Conclusion. In accordance with the modern tendencies of prevention and timely diagnosis of oral diseases, biophotonics may be considered the leading scientific discipline on the path of progress of dental medicine and technology. Therefore, this paper provides an overview of modern methods based on biophotonics and summarizes their applicability focusing on the field of dental medicine.

Key words: Optics and Photonics; Lasers; Microscopy; Optical Imaging; Dentistry; Mouth Diseases

Sažetak
Uvod. Biofotonika se bavi interakcijom svetlosti sa biološkom materijom, integrirajući znanja iz fisike, biologije, hemije, tehnike i medicinе za rešavanje određenog biomedicinskог или природног проблема. Zbog mogućnosti neinvazivnог pružanja višekomponentних informacija o tkivu i indukovanja specifične lokalizovane ablacije tkiva, tehnologije zasnovane na biofotonici mogu imati ogromnu vrednost za poboljšanje stomatološke zdravstvene zaštite. Cilj ovog preglednог rada je da se pruži prikaz savremenih tehnologija zasnovanih na biofotonici i njihove primene u stomatološkim istraživanjima i kliničкоj praksi. Različite primene tehnika zasnovanih na biofotonici. Tehnike biomedicinskог snimanja (metode nelineарне микроскопије и оптичких кохерентних томографија), фотомеханичке методе (релевантног Фурејеовог интерферометрија, фотовискости, интерферометрија, фотореакције спектроскопије (Раман и Фурејеове спектроскопије), фотобистимуляције, и примена фемтосекундног лазера представљени су у овом раду. Закључак. У склопу савремених тенденција прецизности и прорачуне дјагностике биолошког оближње, биофотоника се може смрати водаочном научном дисциплином на путу напредак стоматолошке медицине и технологии. Стога, овај рад пруга предлог савремених метода заснованих на биофотони и резимира њихову премијност у прорачуну усмерених се на област стоматолошке медицине.

Кључне речи: оптика и фотоника; лазери; микроскопија; оптичкие идивизиони; стоматологија; болести уста

Introduction

Biophotonics, defined as a field of biomedical optics, is a novel interdisciplinary scientific approach, relating to the interaction of light with biological matter [1]. Accordingly, biophotonics integrates physics, chemistry, engineering, biology, and medicine for solving specific biomedical or life science problems [2]. It combines optical methods for studying and manipulating biological specimens at the subcellular, cellular, tissue, and organ levels, while covering biomedical diagnosis, research, and therapy [3]. From a general viewpoint, photonics is defined as “the technology of generating and harnessing light and other forms of radiant energy whose quantum unit is the photon” [4]. It includes all light-based optical technologies used for information processing and transfer, measurement of changes in physical parameters, as well as physically modifying material characteristics [5]. Ever...
since the first demonstration of lasers in 1960, a
concentrated source of monochromatic light, pho-
onics has emerged as an indispensable tool for basic
life science research [6].

In contemporary dental practice, the principal
priorities are early diagnosis and prevention of com-
mon oral diseases, as well as the preservation of
tooth tissue as much as possible during treatment
[7]. The potential of biophotonics-based technolo-
gies to provide noninvasive highly sensitive tissue
information and induce specifically localized tissue
processing may therefore be of immense value [8, 9].
On the other hand, the ability to identify clini-
cally relevant information much earlier than actual
signs and symptoms of a disease appear indicates
possibility of performing preventive or minimally in-
vasive treatment procedures [10]. The aim of this
review article is to give an overview of contempo-
rary biophotonics-based techniques and their ap-
plications in dental research and clinical practice.

Various applications of biophotonics-based
techniques

Different ways to classify the application of biopho-
onics-based techniques have been suggested, al-
beit very few of them in the field of dental medicine
[2, 5, 10–12]. The most convenient approach would
probably be the one proposed by Kishen and Asun-
di [10], with a wide-ranging categorization into re-
search and clinical applications, subdivided into
diagnostics and therapeutic approaches (Table 1).

Biomedical imaging techniques

Nonlinear microscopy methods, such as two-
photon excited fluorescence (2PEF), second har-
monic generation (SHG), and coherent anti-Stokes
Raman spectroscopy (CARS) are widely used imag-
ing techniques for studying a variety of biological
materials [9, 13, 14]. Recently introduced in dental
research practice for investigating internal tooth tissue
structure and caries diagnosis, 2PEF, and SHG as non-
invasive imaging modalities, provide in situ informa-
tion of the examined samples without the need for
histological tissue sectioning [15, 16]. Moreover, relying
on the intrinsic properties of specimens (2PEF images
are generated by excitation of tissue fluorophores,
while SHG signal is produced by non-centrosymmetric
molecules such as collagen), the use of sample labeling
is unnecessary [15]. Also, these research modalities can
provide three-dimensional information due to their
inherent tomographic capabilities [10].

Another optical imaging technique able to provide
high-resolution noninvasive images of internal micro-
structure in living tissues is optical coherence tomog-
raphy [17]. Unlike 2PEF and SHG, it performs cross-
sectional tomographic imaging in situ and in real-time
by measuring back-scattered or back-reflected light
[17]. At first, applied in ophthalmology for obtaining
corneal and retinal images, it is currently well estab-
lished in dentistry for caries diagnostics, soft tissue
analysis, dental materials investigation, etc. [17–19].

Photo-mechanics

In general, photo-mechanics is a scientific disci-
pline that uses optical methods for studying the me-
chanical response of various structures under an
impact of load [20–22]. It includes several non-de-
structive, highly sensitive (submicron range) tech-
niques such as digital holographic interferometry
(DHI), photo-elasticity, digital image correlation, and
Moiré interferometry that can provide full-field stress
and strain information of specimens in situ [23].

The DHI is a laser optic technique suitable for
the submicron measurement of surface deformations
in a contactless and non-destructive manner
[24]. The basic principle of holographic interferom-
etry considers recording sample images (holograms)
at two states, before and after mechanical load, and
interference of the resulting holograms visualizing
the displacement field of the object [25–27]. By us-
ing a digital camera connected to a computer inter-
faced in DHI, fast and simple recording and recon-
struction of the holographic images in real-time is
possible [24]. As for photo-elasticity, it is based on
the interference of polarized light transmitted by
experimentally loaded models simulating dental
structures, providing information on stress distribu-
tion and intensity [28]. However, these models are
made of light-polarizing material, with obvious dif-
culty to mimic the variation of biological structure
[23]. On the other hand, digital image correlation is
a less sensitive method than photo-elasticity, but it
is not limited in terms of material and it is easy to
use when compared to other optical methods [23].

Table 1. Applications of biophotonics-based techniques in dental medicine

Diagnostics/Dijagnostika	Therapy/Terapija	Research/Istraživanje
Biomedical imaging	Photodynamic therapy/Fotodinamička terapija	Photo-mechanics/Fotomehanika
Biomedicinski imidžing	Photo-biostimulation/Fotobiostimulacija	Optical spectroscopy/Optička spektroskopija
	Photo-thermal effects/Foto-termalni efekti	Fiber optic sensors/Fiber optički senzori
Moiré interferometry is an optical method viable for studying elastic, viscoelastic, and plastic deformations of both isotropic and anisotropic materials [29]. The main advantage of this method is its capability of measuring in-plane deformations (unlike DHI), particularly corresponding to hard tooth tissue functional load [23]. With its high sensitivity, spatial resolution, and clarity, Moiré interferometry is recommended for investigating dental mechanical strain, as well as deformations caused by thermal or hydro (e.g. moisture change, water loss) alterations in tooth tissue [29–31].

Optical spectroscopy methods

The interaction of light (electromagnetic radiation) with matter can lead to a variety of phenomena such as absorption, scattering, reflection, and emission, presenting the basis of optical spectroscopy [1, 10]. Considering different regions of the electromagnetic spectrum that can be employed in spectroscopy for the structural analysis of biological material, various experimental techniques have been developed. Ultraviolet-visible spectroscopy, fluorescence spectroscopy, infrared and Raman spectroscopy, as well as Brillouin light scattering spectroscopy are some of the techniques that may be applied in dental research practice [10, 32].

Raman and Fourier transform infrared (FTIR) spectroscopy are complementary research techniques most frequently used for non-destructive imaging of hard dental tissues and studying dental materials’ chemical composition, especially the degree of conversion (DC) [33, 34]. It is commonly perceived that the main advantage of Raman spectroscopy compared to FTIR is its ability to provide a material examination in their native state, but the recent advances in FTIR spectroscopy also allow sample analysis with minimal preparation [34]. In contemporary dental research practice, FTIR has proved to be a useful technique for rapid and precise investigation of chemical structural properties of natural and synthetic materials at the molecular scale [34–37]. On the other hand, the use of Raman spectroscopy has significantly increased due to the advances in instrumentation and technique (e.g. implementation of miniature fiber optical probes) [38–40]. By expanding its field of application into oral hard and soft tissue pathology diagnosis, as well as identification of oral microbial flora, Raman spectroscopy can be considered an important diagnostic tool in the early detection and prognosis of oral diseases [33].

Brillouin light scattering spectroscopy (BLS) measures spectral changes of coherent incident light caused by its interaction with inherent density fluctuations of matter [32]. The frequency shift and linewidth of spectra are linked to the stiffness and viscosity of the material. Unlike standard mechanical tests, BLS is non-invasive and non-destructive. Recently, researchers have performed the first study of hard dental tissues and materials using BLS [16, 32]. By measuring different Brillouin frequency shifts and linewidths of spectra in healthy and decayed dentinal samples, BLS showed the potential to be used as a micro-precise diagnostic laser-based tool in dental medicine to differentiate healthy dentin from a carious lesion, as well as to examine tissue-material interfaces precisely and non-destructively [16, 32]. Based on the research outcomes, a fiber-optic diagnostic tool with a microscopic precision based on BLS could be developed for in situ clinical use in dental practice.

Fiber optic sensors

Optical fibers offer the advantage of adaptability of light beam manipulation providing an optical passage for illuminating inaccessible areas, or for using high-energy laser beams at a specific location for tissue cutting [10]. The progress from conventional sensors to fiber optic-based sensors (FOS), provided a highly sensitive, safe, rapid, and minimally invasive diagnostic method [41]. Being a suitable method for real-time assessment of local temperature and tooth biomechanical behavior, as well as for measurement of dental material polymerization kinetics, fiber Bragg gratings sensors seem to be the most convenient and appealing type of FOS in dental medicine [42, 43].

Therapeutic applications

Photodynamic therapy (PDT) is a relatively new treatment modality, still in the early stage of development within the field of dental medicine [44]. Defined as “the light-induced inactivation of cells, microorganisms or molecules” [45], PDT provides an alternative treatment of elimination of malignant cells or pathogenic microorganisms, while overcoming the problems of bacterial, fungal, and viral resistance. However, PDT has a few disadvantages, such as a period of consequent skin photosensitivity due to the accumulation of photosensitizing agents in the target tissue, and a limited ability to penetrate deep tissues [44]. Although having a few limitations, PDT with its non-invasive approach and non-resistant broad-ranging spectrum of action against pathogens can be considered a promising therapeutic tool in dentistry [44].

Photo-biostimulation or low-level laser therapy is another non-invasive treatment modality used in several fields of contemporary dental practice [46–48]. By using low-powered laser light biological interaction is induced, in particular reduction of pain mediators and inflammatory cells leading to an acceleration of pain relief and healing [49]. In the field of orthodontics, it was found that intraoral application of low-level laser therapy reduced the treatment time, supposedly by increasing cellular metabolic activity and favoring bone remodeling [46]. Moreover, photo-biostimulation can be used to reduce pain severity and duration, as well as swelling after dental implant surgery [49].

With the recent introduction of high power and high repetition rate femtosecond lasers significant progress towards precise and effective tooth tissue ablation was achieved, compared to cavity preparation using a conventional erbium laser [8]. Utilizing proper laser parameters for efficient dental ablation, femtosecond lasers cause no collateral thermo-mechanical damage to the surrounding tooth tissue, whereas beneficial tooth surface roughness is achieved [8, 50]. Therefore, based on “cold” tooth tissue ablation and machining precision at the submicron and nano levels, femtosec-
ond laser may become an advanced alternative laser system for tooth cavity preparation [50].

Conclusion

Bearing in mind constant efforts to accomplish prevention and early diagnosis of oral diseases, as well as non-invasive treatment measures in modern dental practice, biophotonics should be the leading scientific discipline to provide advancements in dental medicine and technology. In the light of such trends, this paper has provided an overview of contemporary biophotonics-based techniques and summarized their applicability focusing on the field of dental medicine.

References

1. Bordin-Aykroyd S, Brito R, Leavitt WP, Raz G, Lynch E. Biophotonics: an introduction to new laser users. EC Dent Sci. 2019;18(9):2171-86.
2. Tsia KK, editor. Understanding biophotonics: fundamentals, advances, and applications. Boca Raton: CRC Press; 2015. p. 1-4.
3. Marcu L, Boppart SA, Hutchinson MR, Popp J, Wilson BC. Biophotonics: the big picture. J Biomed Opt. 2017;23(2):1-7.
4. Fuller PW. An introduction to high speed photography and photonics. Imaging Science Journal. 2009;57(6):293-302.
5. Gerd K. Biophotonics: concepts to application. Singapore: Springer Science; 2016. p. 1–22.
6. Luke AM, Mathew S, Altawash MM, Madan BM. Lasers: a review with their applications in oral medicine. J Lasers Med Sci. 2019;10(4):3274-9.
7. Innes NPT, Chu CH, Fontana M, Lo ECM, Thomson WM, Uribe S, et al. A century of change towards prevention and minimal intervention in cariology. J Dent Res. 2019;98(6):611-7.
8. Petrov T, Pecheva E, Walmsley AD, Dimov S. Femtosecond laser ablation of dentin and enamel for fast and more precise dental cavity preparation. Mater Sci Eng C Mater Biol Appl. 2018;90:433-8.
9. Lin PY, Lyu HC, Hsu CY, Chang CS, Kao FJ. Imaging curious dental tissues with multiphoton fluorescence lifetime imaging microscopy. Biomed Opt Express. 2011;2(1):149-58.
10. Kishen A, Asundi A. Fundamentals and applications of biophotonics in dentistry. London: Imperial College Press; 2007.
11. Prasad PN. Introduction to biophotonics. Hoboken, New Jersey: John Wiley; 2003. p. 1-11.
12. Meglinski I. Biophotonics for medical applications. Cambridge: Elsevier; 2015.
13. Rabasović MD, Pantelić DV, Jelenković BM, Ćurčić SB, Rabasović MS, Vrbica MD, et al. Nonlinear microscopy of chitin and chitosin structures: a case study of two case-dwelling insects. J Biomed Opt. 2015;20(1):016010.
14. Bukara K, Jovanic S, Drvenica IT, Stancic A, Ilic V, Rabasovic MD, et al. Mapping of hemoglobin in erythrocytes and erythrocyte ghosts using two photon excitation fluorescence microscopy. J Biomed Opt. 2017;22(2):026003.
15. Cloître T, Panayotov IV, Tassery H, Gergely C, Levallois B, Cuisinier FJ. Multiphoton imaging of the dentine-enamel junction. J Biophotonics. 2013;6(4):330-7.
16. Lainoino T, Magueritarian J, Blažić L, Pantelić D, Rabasović MD, Krmpot AJ, et al. Mapping mechanical properties and structure of dentin by Brillouin spectroscopy and nonlinear optical microscopy. In: Linarin KV, Searcchi G, editors. Optical elastography and tissue biomechanics VI. Bellingham, Washington: SPIE; 2019. p. 1088018.
17. Machoy M, Seeliger J, Szszyka-Sommerfeld L, Koprowski R, Gedrange T, Woźniak K. The use of optical coherence tomography in dental diagnostics: a state-of-the-art review. J Healthc Eng. 2017;2017:7560645.
18. Maia AM, de Freitas AZ, de L Campello S, Gomes AS, Karlsson L. Evaluation of dental enamel caries assessment using quantitative light induced fluorescence and optical coherence tomography. J Biophotonics. 2016;9(6):596-602.
19. Han SH, Sadr A, Tagami J, Park SH. Internal adaptation of resin composites at two configurations: influence of polymerization shrinkage and stress. Dent Mater. 2016;32(9):1085-94.
20. Pantelić D, Vasiljević D, Blažić L, Savić-Šević S, Murić B, Nikolić M. Biomechanical model produced from light-activated dental composite resins: a holographic analysis. Phys Scr. 2013;T157:014021.
21. Pantelić D, Blažić L, Savić-Šević S, Murić B, Vasiljević D, Panić B, et al. Holographic measurement of dental tissue contraction and stress, due to postpolymerization reaction. Acta Phys Pol A. 2007;112(5):1157-60.
22. Puskar T, Jevremovic D, Blažić L, Vasiljevic DM, Pantelić D, Murić B, et al. Holographic interferometry as a method for measuring strain caused by polymerization shrinkage of dental composite. Contemp Mater. 2010;1(1):105-11.
23. Li FC, Kishen A. Deciphering dentin tissue biomechanics using digital moiré interferometry: a narrative review. Opt Lasers Eng. 2018;107:273-80.
24. Pantelić DV, Gruijić DŽ, Vasiljevic DM. Single-beam, dual-view digital holographic interferometry for biomechanical strain measurements of biological objects. J Biomed Opt. 2014;19(12):127005.
25. Pantelić D, Savić-Šević S, Vasiljevic D, Murić B, Blažić L, Nikolić M, et al. Holographic measurement of a tooth model and dental composite contraction. Materials and Manufacturing Processes. 2009;24(10-11):1142-6.
26. Blažić L, Pantelić D, Savić-Šević S, Murić B, Belić I, Panić B. Modulated photocoagulation of composite restoration: measurement of cuspal movement using holographic interferometry. Lasers Med Sci. 2011;26(2):179-86.
27. Pantelić D, Blažić L, Savić-Šević S, Panić B. Holographic detection of a tooth structure deformation after dental filling polymerization. J Biomed Opt. 2007;12(2):024026.
28. Tioissi R, de Torres EM, Rodrigues RCS, Conrad HJ, de Mattos M da GC, Fok ASL, et al. Comparison of the correlation of photoelasticity and digital imaging to characterize the load transfer of implant-supported restorations. J Prostheth Dent. 2014;111(2):276-84.
29. wood JD, Wang R, Weiner S, Pashley DH. Mapping of tooth deformation caused by moisture change using moiré interferometry. Dent Mater. 2003;19(3):159-66.
30. Lim H, Li FC, Friedman S, Kishen A. Residual microstrain in root dentin after canal instrumentation measured with digital moiré interferometry. J Endod. 2016;42(9):1397-402.
31. Shrestha A, Messer HH, Asundi A, Kishen A. Effect of hydration on the strain gradients in dental hard tissues after heat and cold application. J Endod. 2010;36(10):1643-7.

32. Lainović T, Marqueritat J, Martinei Q, Dagany X, Blažić L, Pantelić D, et al. Micromechanical imaging of dentin with Brillouin microscopy. Acta Biomater. 2020;105:214-22.

33. Ramakrishnaiah R, Rehman GU, Basavarajappa S, Al Khuraif AA, Durgesh BH, Khan AS, et al. Applications of Raman spectroscopy in dentistry: analysis of tooth structure. Appl Spectrosc Rev. 2015;50(4):332-50.

34. Lopes CCA, Limirio PHJO, Novais VR, Dechichi P. Fourier transform infrared spectroscopy (FTIR) application chemical characterization of enamel, dentin and bone. Appl Spectrosc Rev. 2018;53(9):747-69.

35. Khan AS, Khalid H, Sarfraz Z, Khan M, Iqbal J, Muhammad N, et al. Vibrational spectroscopy of selective dental restorative materials. Appl Spectrosc Rev. 2017;52(6):507-40.

36. Daugherty MM, Lien W, Mansell MR, Risk DL, Savett DA, Vandewalle KS. Effect of high-intensity curing lights on the polymerization of bulk-fill composites. Dent Mater. 2018;34(10):1531-41.

37. Zorzin J, Maier E, Harre S, Fey T, Belli R, Lohbauer U, et al. Bulk-fill resin composites: polymerization properties and extended light curing. Dent Mater. 2015;31(3):293-301.

38. Wang Z, Zheng W, Hsu SC; Huang Z. Optical diagnosis and characterization of dental caries with polarization-resolved hyperspectral stimulated Raman scattering microscopy. Biomed Opt Express. 2016;7(4):1284-93.

39. Mitić Ž, Stolić A, Stojanović S, Najman S, Ignjatović N, Nikolić G, et al. Instrumental methods and techniques for structural and physicochemical characterization of biomaterials and bone tissue: a review. Mater Sci Eng C Mater Biol Appl. 2017;79:930-49.

40. Han GJ, Kim JM, Cho BH, Hwang Y, Kim HY. Improved resin-to-dentin bond strength and durability via non-thermal atmospheric pressure plasma drying of etched dentin. Eur J Oral Sci. 2019;127(2):170-8.

Rad je primljen 3. III 2021.
Recenziran 9. III 2021.
Prijvačen za štampu 14. III 2021.
BIBLID.0025-8105:(2020):LXXIII:11-12:364-368.

41. Roriz P, Carvalho L, Frazão O, Santos JL, Simões JA. From conventional sensors to fibre optic sensors for strain and force measurements in biomechanics applications: a review. J Biomech. 2014;47(6):1251-61.

42. Vinagre A, Ramos J, Alves S, Messias A, Alberto N, Nogueira R. Cuspal displacement induced by bulk fill resin composite polymerization: biomechanical evaluation using fiber bragg grating sensors. Int J Biomater. 2016;2016:7134283.

43. Rajan G, Raju R, Jinachandran S, Farrar P, Xi J, Prusty BG. Polymerisation shrinkage profiling of dental composites using optical fibre sensing and their correlation with degree of conversion and curing rate. Sci Rep. 2019;9(1):3162.

44. Stájer A, Kajári S, Gajdács M, Musah-Eroje A, Baráth Z. Utility of photodynamic therapy in dentistry: current concepts. Dent J (Basel). 2020;8(2):43.

45. Gursoy H, Ozçakir-Tomruk C, Tanalp J, Yılmaz S. Photodynamic therapy in dentistry: a literature review. Clin Oral Investig. 2013;17(4):1113-25.

46. Caccianiga G, Pausicco A, Perillo L, Nucera R, Pinsino A, Maddalone M, et al. Does low-level laser therapy enhance? Results from a randomized pilot study. Photomed Laser Surg. 2017;35(8):421-6.

47. Pawar SS, Pujar MA, Makandar SD, Khaiser MI. Postendodontic treatment pain management with low-level laser therapy. Journal of Dental Lasers. 2014;8(2):60-3.

48. Suresh S, Merugu S, Mithradat N. Low-level laser therapy: a biostimulation therapy in periodontics. SRM Journal of Research in Dental Sciences. 2015;6(1):53-6.

49. Caccianiga G, Perillo L, Portelli M, Baldoni M, Galletti C, Gay-Escoda C. Evaluation of effectiveness of photobiostimulation in alleviating side effects after dental implant surgery. A randomized clinical trial. Med Oral Patol Oral Cir Bucal. 2020;25(2):e277-82.

50. Chen H, Li H, Sun Y, Wang Y, Lü PJ. Femtosecond laser for cavity preparation in enamel and dentin: ablation efficiency related factors. Sci Rep. 2016;6:20950.