Development of Methods for Instrumental Diagnostics of Control Devices for Fire Alarm Systems

S V Senkiv¹, O P Savoshinsky¹, A V Arakcheev¹, L T Tanklevsky¹
¹St. Petersburg Polytechnic University of Peter the Great, 195251, Polytechnic street, 29, Saint-Petersburg, Russia

E-mail: veter_blood@mail.ru

Abstract. This article is devoted to the actual task for today - the creation of a methodology for assessing the operability of fire alarm systems. From the timely operation of a functioning fire alarm system, the effectiveness of measures aimed at localizing and extinguishing the fire and the success of the evacuation of people from a burning building depend. The article considers existing approaches to the assessment of the state of the fire alarm system and the requirements imposed on them both by domestic and foreign standards. The methods of fire alarm diagnostics developed by us on the basis of the "Gefest" GC are considered, and the corresponding software and hardware complex allowing to evaluate the operability of the elements of this system.

1. Introduction

Unfortunately, fires were and remain one of the main problems for people. Often, there are a lot of victims and heavy material losses during such events. Active fire protection systems, which include fire alarms, are implemented to timely detect a fire and to reduce the damage from it. Therefore, questions about improving the means of fire automatics and fire alarm aimed for detection and suppression of combustion are more than relevant for today.

Fire alarm (FA) is one of the basic elements of security, which is installed at any enterprise. The essence of the FA is detection of a fire at early stages and the transmission of a signal to the control panel. A more advanced version of the FA is the Automatic Fire Alarm System (AFAS). In addition to detecting a fire, functions of alerting the threat, as well as the activation of automatic fire extinguishing, smoke removal are added.

The purpose of our research was the development of requirements and the creation of a set of technical means that allow the mobile verification and prediction of the operation of various fire automation systems. To achieve the goal, we developed a number of devices for monitoring the condition of fire alarms at the "Fire safety" department of Saint-Petersburg Polytechnical University. Immediate monitoring device of fire alarm systems (DOC-FAS) - serves to simulate signals: "Warning", "Fire-1", "Fire-2", "Short-circuit", "Clipping", etc., coming from the loop to the receiving-control device.

Being downloaded through the computer CDC-01, a program tests various receiving and monitoring devices with active or passive fire detectors, this device provides diagnostics in manual and automatic modes. It allows testing the threshold of receiving and monitoring devices with different infor-
mational content, both separately and together with the loop and fire detectors in different operation
modes (see figure 1).

![Image](image_url)

Figure 1. The device of the operative control of the fire alarm system (DOCFAS).

The interface of the test report of the AIMD device, when it is output to a monitor for further printing, is shown on the figure 2. COD-PS and Automatic examinations of the UCS-PS. are on the Table 1.

Table 1. Immediate fire alarm monitoring device.

Name	Signal 10	Name	IP 212-3 SM
Circuit number	Rd 2200	Supply voltage min	10
Supply voltage min	17	Supply voltage max	28
Supply voltage max	19	Operating current	0.05
Wire resistance	22	Operating voltage min	7.5
Signal type	100	Operating voltage max	8.5
Half-period T+	0	Operating Current min	20
Half-period T-	0	Operating Current max	20
Ra	2200		
R	65000		
Ro	4700		

Table 2. Automatic Inspection AIMD.

Verification name	Time	Number of current-consuming detectors	Maximum number of detectors triggered	Maximum resistance of wires in the loop
Norm	20	3	3	0
Short circuit	20			
Breakage	20			
Fire 1	20			
Fire 2	20			
Fire N	20			
Fire 1A	20			
Fire 2A	20			
Fire NA	20			
Fire IPRr	20			
Fire IPR3	20			
Water	20			
2. Fire alarm tester (FAT-01)
Fire alarm tester is intended for examination of fire alarm loops with fire detectors, as well as the integrity of low-voltage electrical circuits. It provides an opportunity to assess the condition of individual parts of the loop with fire detectors, the ability to perform their functions. It allows to measure the resistance of the loop in direct and reverse polarity, as well as under reduced voltage (= 5 V) and at a current of less than 5.5 mA to ensure safe testing of electrical circuits executive devices of fire automatics.

![Figure 2. Fire alarm tester (FAT-01).](image)

It should be noted that the main task of TPN-01 is to provide digital indication of monitored parameters, but it is not a measuring instrument. If it is necessary to carry out the measurements with the required accuracy, it is necessary to use the certified measuring instruments.

3. Auxiliary immediate monitoring device (AIMD)
AIMD (see figure 5) allows to simulate increase in line resistance, decrease in the value of insulation resistance of wires, reverse polarity of wires of communication lines and control, simulate an open and short circuit in the control circuits in order to evaluate the response of the receiving and monitoring device to responses to these effects.

![Figure 3. Auxiliary immediate monitoring device (AIMD).](image)
The principle of the device is as follows:
The AIMD is connected to the break of the fire-signal line, communication lines, warning and control lines. It makes possible to assess the stability of the operation of fire control devices and monitoring in the conditions of changing the parameters of control circuits within the permissible limits.

![Figure 4. Stand of FA, executed by employees of "Gefest" Enterprise group.](image)

4. Conclusion
Designed methods and equipment will make it possible to assess the real efficiency of the operated fire automatics systems in many premises and determine directions for improving a regulatory and technical base in the area of enhancing the operability and reliability of fire alarm systems.

5. References
[1] 123-FZ 2008 "Technical Regulations on Fire Safety Requirements"
[2] GOST R 53325-2009 Fire engineering Technical means of fire automatics. General technical requirements Test methods
[3] SP 3.13130.2009 Fire protection systems The system of warning and control of the evacuation of people in case of fire Fire safety requirements
[4] JV "Fire-fighting equipment: automatic fire alarm and fire extinguishing systems" Requirements for installation and operation First edition
[5] NPB 75-98 Devices foster-control fire. Fire control devices General technical requirements Test methods
[6] NFPA 72 Standard of the American Fire Protection Association (USA)
[7] BS 5839 Standard for the design and installation of fire detection and warning systems (UK)
[8] EN54 Requirements for all components of fire detection and warning systems (EU)
[9] Vasiliev M A 1999 Development of methods for functional control of fire alarm equipment and their technical implementation Dissertational work for the degree of Candidate of Technical Sciences
[10] Baraleichuk V G, Meshalkin E A, Sharapov S A 2011 Analysis of normative documents in the field of fire safety (Moscow)
[11] Sharovar F I 1979 Devices and fire alarm systems (Moscow: Stroiizdat)
[12] Fomin V I 2002 Fire automatics Fire safety (Specialized catalog)
[13] Lomaev E, Fedorov A V, Lukyanchenko A, Semerikov A Modern concepts of management of maintenance and repair of auto-fire protection equipment (The Academy of the State Fire Fighting Service of the Ministry of Emergency Situations of Russia)
[14] Lukyanchenko A, Fedorov A V, Lomaev Y Model of the process of technical maintenance and repair of elements and systems of automatic fire protection
[15] Navatsky A 2006 *Industrial and fire automatics. Part 1. Production automation for the prevention of fires and explosions. Fire alarm* (Moscow: Academy of State Fire Service of the Ministry of Emergency Measures of Russia) p 370

[16] Baburov V P 2007 *Industrial and fire automatics Part 2. Automatic fire extinguishing systems* (Moscow: Academy of State Fire Service of the Ministry of Emergency Measures of Russia) p 304

[17] Molchanov V P 2001/2002 *Fire automatics - a reliable protection against heat* (the catalog "Fire automatics"

[18] Fedorov A V, Lukyanchenko A A, Chang Dong Hyung, Aleshkov A M 2008 *Fundamentals of the creation of automated control systems for fire protection of potentially hazardous industries* (Internet-journal "Technologies of Techno-Sphere Security") 2

[19] Chan Dong Hyung, Aleshkov A M 2009 *Security Systems* (Moscow: Groteck)

[20] Katkin D 2011 *Fire safety systems - foreign experience* (Security Systems 1)

[21] Savchenko V T *On the projects of European standards EN 54 on fire alarm systems* (article)

[22] Gravit M, Zybina O, Vaititckii A, Kopytova A, *Problem of magnesium oxide wallboard usage in construction*

[23] Tanklevsky L, Tsoy A, Snegirev A *Electrically controlled dynamic sprinkler activation: computation assessment of potential efficiency*

[24] Bolodian I, Melikhov A, Tanklevsky L *Automatic fire-extinguishing system for inhabited pressurized compartments of manned spacecraft*