Clinical Utility of Genetic Testing in the Precision Diagnosis and Management of Pediatric Patients with Kidney and Urinary Tract Diseases

Nasim Bekheirnia,1 Kevin E. Glinton,2 Linda Rossetti,2 Joshua Manor,2 Wuyan Chen,3 Dolores J. Lamb,4 Michael C. Braun,1 and Mir Reza Bekheirnia1,2

Abstract

Background As genetic testing increasingly integrates into the practice of nephrology, our understanding of the basis of many kidney disorders has exponentially increased. Given this, we recently initiated a Renal Genetics Clinic (RGC) at our large, urban children’s hospital for patients with kidney disorders.

Methods Genetic testing was performed in Clinical Laboratory Improvement Amendments–certified laboratories using single gene testing, multigene panels, chromosomal microarray, or exome sequencing.

Results A total of 192 patients were evaluated in this clinic, with cystic kidney disease (49/192) being the most common reason for referral, followed by congenital anomalies of the kidney and urinary tract (41/192) and hematuria (38/192). Genetic testing was performed for 158 patients, with an overall diagnostic yield of 81 out of 158 (51%). In the 16 out of 81 (20%) of patients who reached a genetic diagnosis, medical or surgical treatment of the patients were affected, and previous clinical diagnoses were changed to more accurate genetic diagnoses in 12 of 81 (15%) patients.

Conclusions Our genetic testing provided an accurate diagnosis for children and, in some cases, led to further diagnoses in seemingly asymptomatic family members and changes to overall medical management. Genetic testing, as facilitated by such a specialized clinical setting, thus appears to have clear utility in the diagnosis and counseling of patients with a wide range of kidney manifestations.

KIDNEY360 2: 90–104, 2021. doi: https://doi.org/10.34067/KID.0002272020

Introduction

Genetic testing has increasingly integrated into the practice of different specialties in medicine and surgery. Within the field of nephrology, in particular, the availability of such testing led to the rapid growth and expansion of our knowledge of the clinical spectrum of monogenic kidney diseases. The genetic etiology of kidney diseases, such as polycystic kidney disease, Alport syndrome, several forms of monogenic steroid-resistant nephrotic syndrome (SRNS), and nephropthisis has grown and can now be identified in a significant portion of affected individuals. In patients with SRNS, 30% of those diagnosed before age 25 will have a pathogenic variant in one of 30 known SRNS genes (1). Even in a condition not commonly associated with genetic causes, such as nephrolithiasis, around 15% of individuals have a specific underlying genetic etiology (2). Given the growing number of recognized disease-causing gene defects, multigene panels are now available and, in some cases, can provide adequate diagnostic coverage (3). Similarly, exome sequencing (ES) has immense utility in the diagnosis of adults and children with a variety of disorders (4,5).

With the expanding number of candidate genes and the increasing complexity of genetic testing available, the need for more comprehensive diagnostic evaluations for such patients has also increased. To address this need, a Renal Genetics Clinic (RGC) at Texas Children’s Hospital (TCH) was formed in February 2015. Patients are referred from a variety of care settings, including the Pediatric Nephrology Clinic and various inpatient/outpatient services at TCH. Through this clinic, patients undergo a thorough genetic evaluation with a focus on kidney-specific malformations, complications, or diseases. Furthermore, given the nature of the clinic, family members of affected individuals can be evaluated, allowing us to provide guidance, if needed, for family planning. Extensive research shows the key roles genetic defects play in pediatric kidney disorders, and a growing number of studies are evaluating the utility of clinical genetics evaluation and

1Section of Pediatric Renal Disease, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
2Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
3PreventionGenetics Diagnostic Laboratory, Marshfield, Wisconsin
4Department of Urology, Englander Institute for Precision Medicine and Center for Reproductive Genomics, Weill Cornell Medicine, New York, New York

Correspondence: Dr. Mir Reza Bekheirnia, Departments of Pediatrics/Molecular and Human Genetics, Baylor College of Medicine 1102 Bates St., Suite 245, Houston, TX 77030. Email: bekheim@bcm.edu
genetic testing in the clinical practice (6,7). However, there is still a need to expand the knowledge in the intersection of clinical nephrology and clinical genetics. The specific objective of this study is to assess the role of clinical genetics in precision diagnosis and management of early onset pediatric kidney diseases. We hypothesized that genetic evaluation improves patient care in pediatric nephrology. Diagnostic yield and effect on medical management is reported for the first 4 years of this clinic’s operations.

Materials and Methods

Study Participants

Patients were all evaluated within the RGC at TCH. The clinic was initially held on only one half day per month, but this was increased to a full clinical day monthly after approximately 18 months. Patients were referred by pediatric nephrologists on the basis of their expert opinions. Patients were interviewed and examined by a clinical geneticist, and appropriate genetic testing was recommended on the basis of their clinical history, presentation, and family history. Pretest counseling was provided. Patients consented for ES from pediatric nephrology service at TCH. Proteinuria was defined as urinary protein excretion >100 mg/m² per day or 4 mg/m² per hour. Nephrotic-range proteinuria was defined as ≥1000 mg/m² per day or 40 mg/m² per hour. Microscopic hematuria was defined as the presence of more than five red blood cells per high-power field (40× magnification). CKD was defined on the basis of fulfilling one of the following clinical criteria (8):

- GFR of <60 ml/min per 1.73 m² for >3 months with implications for health, regardless of whether other CKD markers are present.
- GFR >60 ml/min per 1.73 m² that is accompanied by evidence of structural damage or other markers of functional kidney abnormalities, including proteinuria, albuminuria, renal tubular disorders, or pathologic abnormalities detected by histology or inferred by imaging. ESKD was defined as a GFR <15 ml/min per 1.73 m².

Genetic Testing

Testing performed by CLIA laboratories include diseasespecific panels (Supplemental Table 1), chromosomal microarray (CMA), expanded next-generation sequencing panels (Total BluePrint), and ES (trio or proband only [when both parents were not available]). When appropriate, combinations of these tests were also performed to optimize diagnostic yield in cases with atypical or unclear phenotypes. Overall, for patients with isolated hematuria or proteinuria, specific panels were recommended first. For cystic kidney with suspicion of autosomal dominant polycystic kidney disease (ADPKD), a PKD panel was recommended. For patients with congenital anomalies of the kidney and urinary tract (CAKUT), ESKD of unknown etiology, and suspected nephronophthisis, broad genetic testing was recommended. Specific panels were also recommended for specific rare kidney diseases (e.g., Gitelman syndrome and renal tubular acidosis). In general, for CAKUT, we tried to order CMA first and use ES when CMA was not diagnostic. For proteinuria, when we did not have an identifiable genetic variant by the panel, ES was recommended (9). Comparison analysis of detection rate between different testing modalities was not performed because the choice of genetic testing was not randomized, and, therefore, is biased to compare the detection rate of different genetic testing modalities. We expect that broad genetic testing (e.g., CMA/ES) has a higher yield; however, this requires further investigation and depends on other factors, such as patient population and reasons for referral. Genomic DNA was isolated from peripheral leukocytes obtained via venipuncture or, less commonly, from saliva.

Venn-Diagram Generation

The scoring system was processed by the library in Pandas. Because this is a five-class comparison, circular Venn diagrams are challenging. Therefore, oval-shaped Venn diagrams were chosen. Modified application-programming-
interface calls were used in the Python environment to create the Venn diagram in this manuscript.

Results

A total of 192 patients were evaluated in this clinic from February 2015 to June 2019 (Table 1). Patients ranged in age from 1 day of life to 25 years of age, with a mean age of 8.7 years (SD, 6.0 years). Patients were from diverse ethnic backgrounds. The most common reason for referral was cystic kidney disease in 49 patients (26%), followed by CAKUT in 41 patients (21%), 38 patients with hematuria (20%), and 21 patients with proteinuria (11%). A further 43 patients (23%) were seen for “other” clinical diagnoses, including nephronophthisis, nephrocalcinosis, developmental delay combined with kidney disease, or overlapping phenotypes (Supplemental Table 2). Of the 192 patients, three were asymptomatic with a positive family history of ADPKD. Considering the ethics of genetic screening in asymptomatic children, genetic testing was only recommended for their affected parent. In addition, parents of two patients were not interested in genetic testing at the initial visit. Genetic testing was performed for 158 of 187 patients (85%). We were not able to perform genetic testing for 29 individuals (12 because of insurance denial, 16 families were not interested in pursuing genetic testing, and one was not available at the time of testing). Information regarding detection rates of different tests among variable indications for referral can be found in Supplemental Table 3. Among 158 patients, 81 (51%) had positive diagnostic results (Table 2). The type of genetic testing (e.g., panel, CMA, ES, and Total BluePrint) and post-test recommendations are summarized in Table 2. In an additional five patients, the patients’ phenotypes were partially explained by genetic workup (Supplemental Table 4).

Among 158 patients, 115 variants of uncertain significance were detected in 42 patients. These variants were all reviewed by a clinical geneticist, their significance was reevaluated on the basis of the patient’s history, and further recommendations were provided to clarify their significance. The challenges of interpretation of these variants of uncertain significance are summarized in Supplemental Table 5.

Given the breadth of diagnoses encountered, no single test was universally applicable to every patient. Different tests, or a combination of tests, were recommended and completed for patients depending on the specificity of their clinical phenotype or reported history through different CLIA laboratories. For patients with CAKUT (41 patients; tests completed for 33), for instance, CMA or a combination of CMA with ES ultimately led to a diagnostic yield of 42% (14/33; including the partially diagnosed cases). However, in patients who presented with cystic kidney, the use of a multigene panel was the most successful approach to provide a genetic diagnosis in 79% (15/19) patients. Multigene panel testing also had a high detection rate for patients with proteinuria (seven out of ten patients; 70%) and hematuria (ten out of 15 patients; 67%).

Our testing approach led to the identification of pathogenic or likely pathogenic single nucleotide variants (SNVs) in 34 genes (Table 2). Similarly, 11 different pathogenic or likely pathogenic copy number variants (CNVs) were also identified, ranging from single exon deletions to large megabase-sized deletions of multiple genes. Pathogenic SNVs or CNVs were found most commonly in *PKD1* (15), followed by *COL4A5* (14), *HNF1B* (4), *COL4A4* (4), *WT1* (4), and *PKHD1* (4). Secondary findings of *BRCA2* pathogenic variants were identified in two families; they were provided with appropriate genetic counseling.

Pathogenic or likely pathogenic variants in *PKD1*, their strength, and age of diagnoses are summarized in Table 3. Out of 15 variants in *PKD1*, seven are truncating, four are missense, one was a partial gene deletion, one was an in-frame indel, and two were splice-site variants that likely do not cause truncation, but cause exon skipping. Missense variants all have a Combined Annotation Dependent Deletion score of >20, which put them in the top 1% of deleterious variants in the human genome. Therefore, these variants are likely to put the patients at high risk of progression. However, truncating variants pose a higher chance of reaching ESKD at a younger age (11).

Effect on Precision Diagnosis and Management

To assess the effect of genetic testing and evaluation on patients’ management, each patient with a positive result was scored according to a five-level scoring system as defined in the Methods. Out of 81 positive diagnostic results, 16 (20%) affected immediate medical or L1, and 12 (15%) prior L2 Details regarding L1 and L2 effects on management are summarized in Table 4. The most common indication of referral among these patients with L1 impact was nephrotic syndrome or proteinuria, a condition where medication adjustment, by avoiding immunosuppression, became possible. Other immediate benefits of genetic evaluation included surgical decision making regarding the need for prophylactic (patient number RGC-0034) or therapeutic nephrectomy (RGC-0186) in patients with pathogenic variants in *WT1*. In three patients (RGC-0118, RGC-0185, and RGC-
Patient Number	Sex	Age(yr)	L1	L2	L3	L4	L5	Type of Genetic Testing (1, 2, 3, 4, 5)	Gene/Locus	Genetic Finding (SNV/Indel/CNV)	Phenotype (Indication for Referral)	Comment
RGC-0001	F	10			+	+	-	1	PKD1	NM_001009944.2: c.7987C>T	Bilateral renal cysts	
RGC-0003	M	0.8			+	+	4	4	PKD1	Partial PKD1 gene deletion (at least exons 27–38) (het) (novel)	Bilateral renal cysts	Subsequently mother was found have cysts in her kidneys
RGC-0004	M	13			+	+	+	2	HNF1B	arr[GRCh37]2q23.3	Chromosomal abnormality	
RGC-0009	M	10			+	+	+	1	PKD1	NM_001009944.2: c.7483T>C	Bilateral renal cysts and duplicated collecting system	Symptomatic sibling tested positive for KFM
RGC-0010	M	16			+	-	+	1	COL4A5	NM_000495.4: c.152G>T	Hematuria and proteinuria	
RGC-0013	M	3			-	-	+	1	COL4A5	NM_000495.4: c.3197G>C	Alport syndrome	Patient also has 16p11.2 0.521 Mb duplication
RGC-0014	F	10			+	+	-	2	1q21 del	arr[GRCh37]1q21.1q21.2	Learning disability, VUR, cataracts, microcephaly	Unilateral multicystic dysplastic kidney, VUR, hypercalcemia, developmental delay, hypotonia
RGC-0018	F	1.5			+	+	+	2	HNF1B	arr[GRCh37]17q12	Unilateral multicystic dysplastic kidney, VUR,	Unilateral multicystic dysplastic kidney, VUR, hypercalcemia, developmental delay, hypotonia
RGC-0019	F	16			+	-	-	2, 3	WDR19	NM_025132: c.3703G>A	ESKD, dysautonomia, migraines, choledochal and pancreas cyst	PKD1 variant is de novo
RGC-0021	F	2.7			+	+	+	2, 4	PKD1	c.1299A>G (p.Y430C)	Cystic kidney and Chiari malformation	EYAI variant is de novo
RGC-0026	F	4			+	+	-	2, 4	EYAI	arr[GRCh37]6q22.33	Branchio-oto-renal syndrome	
RGC-0029	M	2.9			+	+	-	1	PKD1	NM_001009944.2: c.2659delT	Bilateral renal cysts	
RGC-0030	F	1.5			+	-	-	1	NPHS2	c.790G>C	Infantile nephrotic syndrome	
RGC-0032	M	12			+	+	-	2, 4	DYRK1A	NM_001396.4: c.501delA	Intellectual disability and hypospadias	DYRK1A variant is de novo
RGC-0034	F	2.6			+	+	+	1, 2, 4	WTI	NM_002442.4: c.1390G>A	Atypical HUS	WTI variant is de novo
RGC-0039	F	7			+	+	2	4	COL4A5	NM_000091: c.1407delA	Hereditary nephritis	Each variant is inherited from one parent

Tables are generated based on the provided data
Patient Number	Sex	Age(yr)	L1	L2	L3	L4	L5	Type of Genetic Testing (1, 2, 3, 4, 5)	Gene/Locus	Genetic Finding (SNV/Indel/CNV)	Phenotype (Indication for Referral)	Comment
RGC-0041	M	15	-	-	+	-	+	2	22q11 triplication	arr[GRCh37]22q11.1q11.21 (17289827–18640328)x3	Facial asymmetry, imperforate anus, neurogenic bladder	This triplication is de novo
RGC-0043	M	11	-	-	+	-	+	2, 4	KAT6B	NM_012330: c.3280delG (p.E1094fs) (het)	Bilateral undescended testes, a mild hypospadias, and Ohdo syndrome	KAT6B variant is de novo
RGC-0046	M	3	+	+	-	+	-	1	NPHS2	NM_014625: c.790G>C (p.E264Q) (het) and c.799T>A (p.V260E) (het)	Positive family history of infantile nephrotic syndrome	Avoid immune suppression
RGC-0047	F	2	+	+	-	+	-	1	NPHS2	NM_014625: c.790G>C (p.E264Q) (het) and c.799T>A (p.V260E) (het)	Infantile nephrotic syndrome	Avoid immune suppression
RGC-0050	M	18	-	-	+	-	+	2, 4	TMEM67	NM_153704: c.515G>T (p.R172L) (het) and c.1021G>A (p.G341R) (het) (novel)	Joubert syndrome	Each variant is inherited from one parent
RGC-0052	M	0.8	-	-	+	+	+	2, 4	NSD1	NM_02455.4: c.3423_3424insCC (p.N1142fsX11) (het) (novel)	Macrosomia and nephromegaly	NSD1 variant is de novo
RGC-0054	M	1.9	+	-	+	-	+	2, 4	PLCE1	NM_016341.3: c.4675_4678delTTTAG (p.L1599fs) (hom) (novel)	Nephrotic-range proteinuria	Each variant is inherited from one parent
RGC-0055	M	10	-	-	+	+	-	1	PKD1	NM_001009944.2: c.7483T>C (p.C2495R) (het)	Family history of ADPKD, bilateral cystic kidney disease, and duplicated collecting system	
RGC-0058	M	3	-	-	-	+	-	1	ATP6V0A4	NM_020632.2: c.1231G>T (p.D411Y) (hom)	Distal renal tubular acidosis	Hearing evaluation was normal
RGC-0063	F	3	-	-	-	+	-	1	PKD1	NM_001009944.2: c.7111delC (p.V2371Cfs*11) (het)	Bilateral renal cysts	Echocardiogram
RGC-0066	F	19	+	-	+	+	+	2, 4	USP9X	NM_001039590.2: c.5606_5607delGC (p.R844_L845delinsQV) (hem) (novel)	Hypertension and Townes–Brock syndrome	USP9X variant is de novo
RGC-0067	M	4.9	-	-	+	+	+	2, 4	COL4A5	NM_000495: c.5034T>A (p.C1678X) (hem) (novel)	Hematuria and thin basement membrane nephropathy	COL4A5 variant is maternally inherited
RGC-0068	M	14	+	-	+	-	+	2, 4	OCRL	NM_000276.3: c.2531_2539delGAGAAGTCT (p.R844L) (hem) (novel)	Cataracts and proteinuria	OCRL variant is maternally inherited, subsequently sibling tested positive for KFM
RGC-0070	F	13	+	-	+	-	+	2, 3	NPHP4	NM_015102.3: c.3611C>T (p.P1204L) (hom)	CKD	
Patient Number	Sex	Age(yr)	L1	L2	L3	L4	L5	Type of Genetic Testing (1, 2, 3, 4, 5)	Gene/Locus	Genetic Finding (SNV/Indel/CNV)	Phenotype (Indication for Referral)	Comment
----------------	-----	---------	----	----	----	----	----	---------------------------------	-------------	---------------------------------	---------------------------------	---------
RGC-0072	M	11			+	+		2, 3	PKD1	NM_001009944:c.9859_9861del(p.L3287del) (het)	Bilateral renal cysts	
RGC-0075	F	14			+	+		2, 3	DCDC2	NM_016356:c.383C>G (p.S128X) (hom)	ESKD and liver fibrosis	Siblings tested negative for KFM
RGC-0076	M	4				+	+	1	COL4A5	NM_000495.4:c.1948G>A (p.G650S) (hem)	Alport syndrome	Each variant in PKD1 is inherited from one parent
RGC-0077	F	6				+	+	1	PKD1	NM_001009944.2:c.8948G>T(p.R3277C) (het), VUS c.955GG>C (p.V13184L) (het)	Bilateral renal cysts	Each variant in PKD1 is inherited from one parent
RGC-0078	F	1.9			+	+		1	PKD1	Likely pathogenic c.9829C>T (p.R3277C) (het), VUS c.3494A>G (p.D1165G) (het)	Bilateral renal cysts	Pseudodominant ARPKD, each variant is inherited from one parent
RGC-0080	M	12				+		1	PKHD1	NM_138694.3: Likely pathogenic (c.3761_3762delinsG) (p.A1254Gfs*49) (het), VUS c.4292G>A (p.Y1431Y) (het)	Bilateral renal cysts	
RGC-0081	M	13				+		2, 4	COL4A5	arr[GRCh37]Xq22.3(107802035–107802303)x0 (Novel)	Alport syndrome, developmental delay, CKD, FSGS, ADHD	This deletion is maternally inherited
RGC-0083	M	16			+	-		2, 4	COL4A5	NM_000495: c.3059delT (p.G1021fs) (hem) (novel)		Both patient and his affected mother's diagnosis has been changed and avoid immune suppression
RGC-0084	F	4.9				+		2, 4	RMND1	NM_017909:c.713A>G (p.N238S) (het) and c.533C>T (p.T178M) (het)	CKD, congenital hearing loss, and developmental delay	Each variant is inherited from one parent
RGC-0085	M	0.5				+		2, 4	CASK	NM_003688:c.1721dupA (p.S575fs) (hem) (novel)	Microcephaly, dysmorphic features, right club feet, neurologic dysfunction, hypotonia, pontocerebellar hypoplasia, and right cryptorchidism	Variant in CASK is de novo
RGC-0086	M	0.2				+		2	1q23.2p25.1 deletion	arr[GRCh37]1q23.2p25.1(160369890–175796325)x1	Multiple congenital anomalies including dysplastic ears, dysplastic kidney, bilateral undescended testes, dysmorphic features, and abnormality of the shape of hands	
Patient Number	Sex	Age(yr)	L1	L2	L3	L4	L5	Type of Genetic Testing (1, 2, 3, 4, 5)	Gene/Locus	Genetic Finding (SNV/Indel/CNV)	Phenotype (Indication for Referral)	Comment
----------------	-----	---------	----	----	----	----	----	--------------------------------------	------------	----------------------------------	-----------------------------------	---------
RGC-0087	M	9						1	PKD1	NM_001009944.2:c.11017–10C>A (IVS37–10C>A) (het)	Bilateral renal cysts	PKD1 variant is inherited from father; subsequently, father and PGF were diagnosed with ADPKD
RGC-0088	F	6						1	PKD1	NM_001009944.2:c.6806C>G (p.S2269*) (het)	Bilateral renal cysts	
RGC-0090	F	18						1	COL4A5	NM_000495.4:c.4602del(p.Y1535Ifs*13) (het) (novel)	Alport syndrome	
RGC-0091	M	8						2, 3	PKD1	NM_001009944.2:c.8043_8046delCTCG (p.S2682Afs*2) (het) (novel)	Bilateral renal cysts	
RGC-0092	F	2						2, 4	PKHD1	NM_138694.3: pathogenic variant c.3761_3762delCCinsG (het), VUS c.10666C>T (p.R3558C) (het)	Bilateral renal cysts	One variant is inherited from one parent and the other one is de novo
RGC-0097	F	17						4	COL4A5	NM_033380.1:c.3631G>A (p.G1211R) (het)	Hereditary nephritis	COL4A5 variant is de novo
RGC-0100	M	15						1	HNF1B	NM_000458.2: c.513G>A (p.W171X) (het)	Bilateral renal cysts	
RGC-0101	M	16						1	COL4A5	arr[GRCh37]Xq22.3 (107868901–107869156)x0 (novel)	Alport syndrome	
RGC-0105	F	8						1	COL4A4	NM_000992.4:c.1334G>C (p.G445A) (het) and c.2570C>T (p.R857L) (het)	Steroid-sensitive nephrotic syndrome	
RGC-0108	M	15						1, 4	OCRL	NM_000276.3:c.239delG (p.S80MfsX26) (hem) (novel)	Proteinuria	OCRL variant was maternally inherited Each variant in WDR19 is inherited from one parent
RGC-0110	M	5						5	WDR19	NM_025132: pathogenic c.1122_1123insT (p.P376fs) (het) (novel) and VUS c.817A>G (p.N273D) (het)	ESKD	
RGC-0112	M	14						2	NPHP1	arr[GRCh37]2q13 (110862477–110907207)x1 (novel)	CKD	
RGC-0113	F	6						2, 4	PKD2	NM_000297.3:c.965G>A (p.R322Q) (het)	VUR, duplicated collecting system, and bilateral cystic kidney	PKD2 variant is paternally inherited
RGC-0115	F	7						1	PKD2	NM_000297.3:c.2614C>T (p.R872*) (het)	Unilateral renal cysts	
RGC-0116	F	1						1, 2, 5	RPS19	NM_001022:c.185G>A (p.R62Q) (het)	CKD and Diamond-Blackfan anemia	RPS19 variant is de novo
Patient Number	Sex	Age(yr)	L1	L2	L3	L4	L5	Type of Genetic Testing (1, 2, 3, 4, 5)*	Gene/Locus	Genetic Finding (SNV/Indel/CNV)	Phenotype (Indication for Referral)	Comment
---------------	-----	---------	----	----	----	----	----	---------------------------------	----------------	---------------------------------	---------------------------------	----------
RGC-0117	M	0.16			+	+		2, 4	BBS12	NM_152618.2: pathogenic c.1115_1116delTT (p.F372*) (het), and VUS c.1277G>A (p.C426Y) (het)	Polydactyly and bilateral renal cysts	Each variant in BBS12 is inherited from one parent
RGC-0118	M	9	+	+	-	+		2, 4	KCNJ1	NM_000220.3: c.924C>A (p.C308*) (hom)	Renal dysplasia	Both parents are heterozygous for variant in KCNJ1
RGC-0120	M	17				+		2, 4	INVS	NM_014425.3: c.2695C>T (p.R899*) (hom)	Nephronophthisis	Both parents are heterozygous for variant in INVS
RGC-0124	F	17				-		1	COL4A4	NM_000092.4: c.1580del, (p.G527Vs*126) (het)	Microscopic hematuria	
RGC-0128	M	2				-		1	PKD1	NM_01009944.2: c.8016+2T>C (IVS21+2T>C) (het)	Bilateral renal cysts	
RGC-0129	M	14					+	2, 4	SLC7A9	NM_014270.4: c.673G>A, c.1523T>A (p.V510P) (het)	Cystine stones and dysplastic kidney	Each variant in SLC7A9 is inherited from one parent
RGC-0132	F	17			+	+		1	PKD1	NM_00009944.2: c.673G>A (p.Asp225His) (het)	Bilateral renal cysts	
RGC-0143	M	2						1	NPHS1	NM_014425.3: c.2695C>T (p.R899*) (hom)	Nephrotic syndrome	Avoid immune suppression
RGC-0145	M	16						1	NEK8	NM_014425.3: c.2695C>T (p.R899*) (hom)	Cystic kidney disease	Clinical diagnosis of ARPKD was changed to nephronophthisis
RGC-0147	M	14						2, 4	KCNJ1	NM_014270.4: c.673G>A, c.1523T>A (p.V510P) (het)	Bartter syndrome	Both parents are heterozygous for variant in KCNJ1
RGC-0152	F	10						1	COL4A5	NM_000092.4: c.1325G>C (p.G442A) (het)	Alport syndrome	
RGC-0156	M	14						1	COL4A5	NM_000092.4: c.1325G>C (p.G442A) (het)	Alport syndrome	COL4A5 variant is maternally inherited and sibling was tested negative for KFM
RGC-0157	M	12						1	COL4A4	NM_000092.4: c.1325G>C (p.G442A) (het)	Microscopic hematuria	
RGC-0159	M	2						1	COL4A4	NM_000092.4: c.1325G>C (p.G442A) (het)	Microscopic hematuria	
RGC-0160	M	5						1	AVPR2	NM_000092.4: c.1325G>C (p.G442A) (het)	Diabetes insipidus	Subsequently sibling was tested positive for KFM
Patient Number	Sex	Age(yr)	L1	L2	L3	L4	L5	Type of Genetic Testing (1, 2, 3, 4, 5)*	Gene/Locus	Genetic Finding (SNV/Indel/CNV)	Phenotype (Indication for Referral)	Comment
---------------	-----	---------	----	----	----	----	----	---------------------------------------	------------	-----------------------------------	-------------------------------------	---------
RGC-0162	F	8	-	-	+	-	-	1	COL4A5	NM_000495.4: c.2678G>A (p.G893D) (het)	Microscopic hematuria	
RGC-0164	M	1.3	-	-	-	+	+	4	HNF1B	Arr[GRCh37]17q12 (34856055–36248918)x1dn	Bilateral renal cysts	This deletion is de novo and secondary finding of BRCA2 is maternally inherited
RGC-0171	M	2	+	-	+	+	+	2, 4	WT1	NM_024426.4: c.1432+4C>T (het)	Proteinuria, recurrent UTI, and hypospadias	WT1 variant was de novo
RGC-0182	F	11	-	-	+	-	-	1	COL4A5	NM_000495: c.557G>A (p.Gly186Asp) (het) (novel)	Microscopic hematuria	Familial diagnosis of FSGS changed to Alport syndrome
RGC-0183	F	16	-	-	+	+	-	1	SLC12A3	NM_000339: c.1001G>A (p.R334Q) (hom)	Gitelman syndrome	Hypocalcemia and hypomagnesemia are due to defect in intestinal absorption of magnesium
RGC-0185	F	0.1	+	-	+	-	-	2, 5	TPM6	NM_017662.4: c.5488–1G>C (hom) (novel)	Hypomagnesemia	
RGC-0186	M	0.9	+	-	+	-	-	1	WT1	NM_0024426.3: c.1288C>T (p.R430*) (het) (novel)	Bilateral Wilms tumor	Impacted nephrectomy
RGC-0190	F	10	+	-	+	+	+	2, 4	WT1	NM_0024426.4: c.1432+5G>A (het)	ESKD and nephrotic range proteinuria	CMA revealed patient is XY female, and WT1 variant is de novo
RGC-0191	F	11	+	-	+	-	-	1	CACNA1S	NM_000069.2: c.3715C>G (p.R1239C) (het)	Hypokalemia	Treatment with acetazolamide
RGC-0192	M	18	-	-	+	+	+	1, 2, 4	COL4A5	NM_000495.4: c.4298–207>A (hem) (novel)	Hematuria and proteinuria	COL4A5 variant is maternally inherited

L1, effect on medical and/or surgical treatment; L2, change of medical diagnosis; L3, providing diagnostic certainty; L4, subsequent evaluation of other body-system involvement; L5, cascade family member testing; SNV, single nucleotide variant; CNV, copy number variant; F, female; M, male; het, heterozygous; KFM, known familial mutation; hem, hemizygous; del, deletion; VUR, vesicoureteral reflux; HUS, hemolytic uremic syndrome; ins, insertion; hom, homozygous; ADPKD, autosomal dominant polycystic kidney disease; VUS, variant of uncertain significance; ARPKD, autosomal recessive polycystic kidney disease; ADHD, attention deficit hyperactivity disorder; PGF, paternal grandfather; UTI, urinary tract infection; CMA, chromosomal microarray.

*Numbers represent the following testing types: 1, panel; 2, CMA; 3, proband exome sequencing; 4, trio exome sequencing; 5, Total BluePrint.

*Patient had a secondray finding of pathogenic variant in BRCA2.
targeted treatment recommendations with directed pharmacotherapy (indomethacin, magnesium, and acetazolamide) became possible after identification of underlying genetic diagnosis (KCNJ1, TPM6, and CACNA1S).

Among 12 patients with L2 impact, four diagnoses were not applicable; VUS, variant of uncertain significance.

Table 3. Genetic information and the strength of the genetic variants for patients diagnosed with pathogenic PKD1 variant

Family Identifier	Variant Type	Variant	Indication for testing	Age of Diagnosis	CADD Score
RGC-001	c.7987C>T (p.Q2663*) (het)	Stop gain	Family history of cystic kidney disease but not definitive for ADPKD and symptomatic	2 yr	Truncating
RGC-003	Partial PKD1 gene deletion (at least exons 27–38) (het)	Partial gene deletion	No family history, but symptomatic	3 mo	NA
RGC-009	c.7483T>C (p.C2495R) (het)	Missense	Family history of ADPKD and symptomatic	9 yr	24.2
RGC-0013	c.1259A>G (p.Y420C) (het)	Missense	No family history but symptomatic	18 mo	23.6
RGC-0021	c.2699delT (p.W887Gfs*11) (het)	Frameshift	Family history of ADPKD, bilateral cystic kidney disease, and duplicated collecting system	2 yr	Truncating
RGC-0029	c.7483T>C (p.C2495R) (het)	Missense	Family history of ADPKD, bilateral cystic kidney disease, and duplicated collecting system	10 yr	24.2
RGC-0055	c.7111del (p.V2371Cfs*11) (het)	Frameshift	Positive family history of ADPKD and symptomatic	1 yr	Truncating
RGC-0072	c.9859_9861del (p.L3267del) (het)	In-frame deletion	Family history of kidney disease and symptomatic	10 yr	NA
RGC-0077	Likely pathogenic c.8948+1G>T (het) (novel), VUS c.9550G>C (p.V3184L) (het)	Splice site, Missense	Family history of cystic kidney disease but not definitive for ADPKD and symptomatic	Prenatal	33
RGC-0078	c.9829C>T (p.R3277C) (het), c.3494A>G (p. D1165G) (het)	Missense	Family history of cystic kidney disease but not definitive for ADPKD and symptomatic	Prenatal	23.9
RGC-0087	c.11017–10C>A (IVS37–10C>A) (het)	Splice site	No family history but symptomatic	5 yr	Predicted to skip exon 38 likely to be nontruncating (12)
RGC-0088	c.6806C>G (p.S2269*) (het)	Stop gain	Family history of ADPKD and symptomatic	6 yr	Truncating
RGC-0091	c.8043_8046delCTCG (p.S2682Afs*2) (het)	Frameshift	Family history of kidney disease and symptomatic	6 yr	Truncating
RGC-0128	c.8016+2T>C (IVS21+2T>C) (het) (novel)	Splice site	Family history of cystic kidney disease but not definitive for ADPKD and symptomatic	2 yr	Truncating
RGC-0132	c.11712+1G>A (het)	Splice site	Family history of cystic kidney disease but not definitive for ADPKD and symptomatic	16 yr	Truncating (13)

CADD, Combined Annotation Dependent Depletion; het, heterozygous; ADPKD, autosomal dominant polycystic kidney disease; NA, not applicable; VUS, variant of uncertain significance.

In three families, reproductive genetic counseling immediately affected the family’s decision making for their family planning. Figure 1 summarizes the overlaps and relationships between five levels of the proposed scoring system. Other important effects on management included screening of potential living related kidney donors, planning for solid organ transplantation, and accurate genetic counseling. The discovery of inherited pathogenic variants in autosomal dominant disease genes led, for instance, to the discovery of previously unrecognized clinical abnormalities in parents (e.g., patients RGC-0003 and RGC-0087) and the illumination of unusual inheritance patterns (e.g., pseudodominance in patient RGC-0080).
In this study, the detection rate (81/158, 51%) and the clinical utility of genetic evaluation/testing was demonstrated for pediatric kidney disorders in an RGC setting. In 31% (25/81) of the patients with positive results, immediate medical/surgical treatment was affected, or the prior diagnoses (achieved by either biopsy or clinical evaluation) were changed.

This clinic is staffed by several pediatric nephrologists with an interest in inherited kidney diseases, a clinical geneticist, and a genetic counselor, and is supported by a strong clinical and human genetics program at Baylor.

Table 4. Details of effect on management (L1 and L2) among patients with diagnostic results

Patient Identifier	L1/ L2	Initial Diagnosis	Changed Diagnosis	Variant Found	Effect on Management
RGC-0030 L1	Infantile nephrotic syndrome	NPHS2	Avoidance of immune suppression		
RGC-0034 L1	Atypical HUS	WTI	Bilateral nephrectomy, pelvic MRI, tapering eculizumab		
RGC-0046 L1	Positive family history of infantile nephrotic syndrome	NPHS2	Avoidance of immune suppression		
RGC-0047 L1	Infantile nephrotic syndrome	NPHS2	Avoidance of immune suppression		
RGC-0054 L1	Nephrotic-range proteinuria	PLCE1	Avoidance of immune suppression		
RGC-0066 L2	Townes-Brocks syndrome	USP9X-related disorder	USP9X		
RGC-0068 L2	FSGS	Lowe syndrome	OCRL		
RGC-0070 L2	Developmental delay and kidney problem	NPHS4			
RGC-0080 L1	ARPKD/ADPKD	PKHD1	Avoidance of immune suppression		
RGC-0083 L1, L2	FSGS	Alport syndrome	COLA4A5		
RGC-0084 L1	Mitochondrial disease	RMND1	Kidney transplantation is indicated for patients with RMND1 variants if needed		
RGC-0105 L2	Nephrotic syndrome	Alport syndrome	COLA4A4		
RGC-0108 L1, L2	Proteinuria/Alport syndrome	Dent syndrome	OCRL		
RGC-0113 L2	CAKUT	ADPKD	PKD2		
RGC-0118 L1, L2	CAKUT	Bartter syndrome	KCNJ1		
RGC-0143 L1	Nephrotic syndrome	NPHS1	Avoidance of immune suppression		
RGC-0145 L2	Polycystic kidney disease	NPHS2	Clinical diagnosis of ARPKD was changed to nephronophthisis		
RGC-0164a L2	Cystic kidney disease	17q12 deletion syndrome	HNF1B and BRCA2		
RGC-0171 L1	Proteinuria	WT1-associated disease	WT1		
RGC-0182 L2	FSGS	Alport syndrome	COLA4A5		
RGC-0185 L1	Hypomagnesemia	TRPM6			
RGC-0186 L1	Wilms tumor	WT1-associated syndrome	Hypocalcemia and hypomagnesemia are due to defect in intestinal absorption of magnesium		
RGC-0190 L1	Renal failure, proteinuria	WT1	Affected surgical nephrectomy of patient		
RGC-0191 L1	Periodic hypokalemic paralysis	CACNA15	CMA revealed patient is XY female. Risk of gonad blastoma in an XY female patient was discussed		
RGC-0192 L2	CKD	Alport syndrome	COLA4A5		

L1, effect on medical and/or surgical treatment; L2, change of medical diagnosis; HUS, hemolytic uremic syndrome; MRI, magnetic resonance imaging; ARPKD, autosomal recessive polycystic kidney disease; ADPKD, autosomal dominant polycystic kidney disease; CAKUT, congenital anomalies of the kidney and urinary tract; DEXA, dual-energy x-ray absorptiometry; CMA, chromosomal microarray.

*aPatient had a secondary finding of pathogenic variant in BRCA2.

Discussion

In this study, the detection rate (81/158, 51%) and the clinical utility of genetic evaluation/testing was demonstrated for pediatric kidney disorders in an RGC setting. In 31% (25/81) of the patients with positive results, immediate medical/surgical treatment was affected, or the prior diagnoses (achieved by either biopsy or clinical evaluation) were changed.

This clinic is staffed by several pediatric nephrologists with an interest in inherited kidney diseases, a clinical geneticist, and a genetic counselor, and is supported by a strong clinical and human genetics program at Baylor.
The detection rate of 51% is within the range of other centers around the world and in the United States. We believe the detection rate can vary on the basis of the reasons for referral and the number of patients assessed. The clinical impact scoring system proposed in this study can potentially be applicable to other centers.

RGCs are the optimal mechanism for integrating a comprehensive genetic evaluation with appropriate molecular testing on a clinical basis (14). This kind of clinic also allows for a family-centered approach, where unaffected relatives may also be evaluated and counseled on their risks for kidney disease. Examples of these clinics in Australia, the United Kingdom, and China showed diagnostic yields of 46% (15), 42% (16), and 42% (7), respectively. In the United States, there are several kidney genetics clinics. In a recent publication, a detection rate of 60% was identified among 41 patients who are mostly in the adult age range (17).

Our testing approach used various combinations of targeted panels, CMA, and ES (by CLIA laboratories). This resulted in the identification of pathogenic SNVs in 34 different genes and 11 unique pathogenic CNVs. Of these changes, 21 are novel and have not previously been reported in published databases (Table 2). These novel variants, although not previously reported, are classified as pathogenic or likely pathogenic on the basis of American College of Medical Genetics and Genomics criteria by board-certified clinical molecular geneticists at CLIA-certified laboratories. In terms of testing performance, our diagnostic yield is higher than the reported yield of ES for adult patients with kidney disease in one study (18), although a higher detection rate was reported in another study with more selective criteria for testing (17). Overall, these findings may highlight the increased contribution of genetic abnormalities in the pediatric population. The diagnostic rate of CAKUT in this cohort is higher than that expected from the literature (19). This is likely due to stringent referral criteria that select patients who are syndromic.

Our patients were placed into one of five categories on the basis of their clinical presentation and presumed diagnosis. Each category varied in terms of which genetic testing was felt to be the most appropriate both initially and upon follow-up. For instance, panel testing (known to be cost-effective and specific) was very useful in cases of both cystic...
kidney disease and hematuria. For patients with cystic kidneys in particular, a panel appeared to be a good initial diagnostic choice because of the high prevalence of PKD1 pathogenic variants. If this test result was negative, or if patients had other concerning physical or clinical abnormalities, expanded testing could be pursued with ES or CMA. This allowed us to identify diagnostic variants in genes not previously considered. For instance, a patient initially referred for cystic kidney disease was later found to have a pathogenic variant in HNF1B, more commonly associated with CAKUT (patient RGC-00164); whereas another patient was diagnosed with biallelic variants in BBS12, indicative of Bardet–Biedl syndrome (patient RGC-0117).

Although ADPKD can be diagnosed by imaging studies, genetic diagnoses add certainty and might be the only option for an accurate diagnosis in young children. In this study, only children with cystic kidneys who had a positive family history or clinical suspicion of ADPKD underwent genetic testing. As shown in recent literature (20,21), genotype information in patients with ADPKD can provide prognostic value and can also be used to manage patients differently on the basis of newly developed therapies. Certainly, this is true when the patients reach the age of 18 when therapy can be provided, if indicated.

Most importantly, genetic evaluation resulted in recommendations for immediate medical or surgical treatment in 20% (16/81) of patients. In addition, the original diagnosis in 15% (12/81) of patients was changed. The benefits of L1 impact on management included targeted therapies and preventing the use of inappropriate treatments (i.e., corticosteroids where there was no expectation of benefit). We compared diagnosis pre- and postgenetic evaluation and concluded that genetic testing improved diagnostic accuracy given that the diagnosis might be different from what was previously achieved by clinical or pathologic evaluations. The change of diagnosis from FSGS to Alport syndrome, reported in this study, was also published by other investigators (22). Additional benefits included reducing the use of invasive diagnostic procedures, such as kidney biopsy. Reduction of genetic testing costs will ultimately result in the precise diagnosis of patients for whom an initial syndromic diagnosis was not clinically suspected. In addition to a confirmatory diagnosis, a genetic diagnosis may also provide prognostic information, establish a targeted surveillance of other organs, and facilitate kidney transplant and reproductive planning (6).

However, this study has the following limitations. First, the design of this study is retrospective and there is still a need for larger, prospective studies similar to the recent research published from an Australian group (23). Second, we did not study the patients’ viewpoints of genetic or genomic testing. Third, although our study included a range of diagnoses, the relatively small overall number/type of patients evaluated in this clinic may affect generalization of our data. Fourth, only a pediatric population was studied. Finally, although we have investigated the health effects of genetic testing, the economic effect of this testing in kidney disease was not studied.

Strengths of this study include the following: (1) the ability to perform advanced clinical genetic testing for a large proportion of our patients; (2) the diversity of the cohort, specifically their ethnicity, kidney phenotypes, and clinical diagnoses; (3) access to world-class pediatric nephrology and clinical genetics groups; and (4) affiliation with one of the largest children’s hospitals in the United States.

In conclusion, results of RGC in a single center is summarized to define the effect of genetic testing and evaluation on management of patients in a pediatric nephrology clinical setting. An overall detection rate of 51% is in line with other reports across the world and in the United States. A new classification for the effect of clinical genetic evaluation on management of patients is provided. In 20% of the patients, medical or surgical management was modified, and clinical diagnosis was changed to a more accurate genetic diagnosis in 15% of the patients.

Disclosures
W. Chen reports receiving other from PreventionGenetics LLC, during the conduct of the study, and other from PreventionGenetics LLC, outside the submitted work. D.J. Lamb reports receiving other from Cematix, and other from Fellow, outside the submitted work. All remaining authors have nothing to disclose.

Funding
This study was supported, in part, by National Institute of Diabetes and Digestive and Kidney Diseases grants K12DK0083014 (under the Multidisciplinary K12 Urologic Research Career Development Program; M. R. Bekheirnia was a K12 scholar) and R01DK078121 to D.J. Lamb. D.J. Lamb is also supported, in part, by the New York Community Trust Frederick J. and Theresa Dow Wallace Fund. This study was also supported by start-up funds from the Renal Section, Department of Pediatrics at TCH, Baylor College of Medicine, and Woods Family Foundation.

Acknowledgments
The authors would like to acknowledge the many patients and their family members. The authors would like to thank Mr. Yash R. Choksi (B.S.) for his kind contribution to create a Venn diagram demonstrating the overlap of different levels of the clinical impact scoring system. The authors would additionally like to thank all referring physicians from either within, or outside of, the TCH medical system. The authors would also like to thank the following diagnostic laboratories for their superb genetic/genomic testing: Baylor Genetics, GeneDx, and PreventionGenetics.

Author Contributions
M.R. Bekheirnia was responsible for funding acquisition and validation; M.R. Bekheirnia and N. Bekheirnia were responsible for formal analysis and resources; M.R. Bekheirnia, N. Bekheirnia, and M.C. Braun were responsible for investigation; M.R. Bekheirnia, N. Bekheirnia, M.C. Braun, and K. E. Glinton were responsible for methodology; M.R. Bekheirnia, N. Bekheirnia, M.C. Braun, K.E. Glinton, and D.J. Lamb provided supervision; M.R. Bekheirnia, N. Bekheirnia, W. Chen, K.E. Glinton, J. Manor, and L. Rossetti were responsible for data curation; M.R. Bekheirnia, N. Bekheirnia, and K.E. Glinton conceptualized the study and were responsible for project administration and visualization; and all authors wrote the original draft and reviewed and edited the manuscript.

Supplemental Material
This article contains supplemental material online at http://kidney360.asnjournals.org/lookup/suppl?doi=10.34067/KID.0002272020/-/DCSupplemental.
Supplemental Table 1. Panels (utilized in this study) and the genes included in each of them.
Supplemental Table 2. ‘Other’ indications for referral.
Supplemental Table 3. Detection rates of different tests among indications for referral.
Supplemental Table 4. Impact on management in patients with partial diagnosis.
Supplemental Table 5. Demographics, phenotype, genetic variants’ information, clinician’s comments and recommendations for patients without diagnostic result who found to have variants of uncertain significance (VUS).

References
1. Sadowski CE, Lovric S, Ashraf S, Pabst WL, Gee HY, Kohl S, Engelmann S, Vega-Warner V, Fang H, Hallbritter J, Somers MJ, Tan W, Shril S, Fessi I, Lifton RP, Bockenhauer D, E Desoky S, Kari JA, Zenker M, Kemper MJ, Mueller D, Fathy HM, Soliman NA, Hildebrandt F; SRNS Study Group: A single-gene cause in 29.5% of cases of steroid-resistant nephrotic syndrome. J Am Soc Nephrol 26: 1279–1289, 2015 10.1681/ASN.2014050489
2. Hallbritter J, Baum M, Hynes AM, Rice SJ, Thwaites DT, Gucev ZS, Fisher B, Spanaes L, Porath JD, Braun DA, Wassner AJ, Nelson CP, Tasic V, Sajja S, Hildebrandt F; Freemen monogenic gene account for 15% of nephroteliasis/nephrocalcinosis. J Am Soc Nephrol 26: 543–551, 2015 10.1681/ASN.2014040388
3. Bullich G, Domingo-Gallego A, Vargas I, Ruiz P, Lorente-Grandoso L, Furfano M, Fraga G, Madrid A, Ariceta G, Borreguera M, Piñeiro-Fernández JA, Rodríguez-Peña L, Ballesta-Martínez MJ, Llano-Rivas I, Menchita MA, Ballarín J, Torres D, Torra E: A kidney-disease gene panel allows a comprehensive genetic diagnosis of cystic and glomerular inherited kidney diseases. Kidney Int 94: 363–371, 2018 10.1016/j.kint.2018.02.027
4. Yang Y, Muzny DM, Xia F, Niu Z, Person D, Ying D, Ward P, Braxton A, Wang M, Buhay C, Veeraraghavan N, Hayes A, Cheng T, Leduc M, Beuten J, Zhang J, He W, Scull J, Willis A, Landecker M, Craigen WJ, Excoffier LM, Liu P, Wen S, Alcaraz W, Cui H, Walkiewicz M, Patel A, Boerwinkle E, Beaudet AL, Lupsiri JK, Plon SE, Eng CM: Molecular findings among patients referred for clinical whole-exome sequencing. JAMA 312: 1870–1879, 2014 10.1001/jama.2014.14601
5. Braxton A, James RB, Baina M, Niu Z, Wang X, Dhar S, Wisniewski NW, Alemzadeh ZH, Gambin T, Xia F, Person RE, Walkiewicz M, Shaw CA, Sutton VR, Beaudet AL, Muzny D, Eng CM, Yang Y, Gibbs RA, Lupsiri JK, Boerwinkle E, Plon SE: Molecular diagnostic experience of whole-exome sequencing in adult patients. Genet Med 16: 678–685, 2014 10.1038/gim.2015.142
6. Jayasinghe K, Stark Z, Patel C, Mallawaarachchi A, McCarthy H, Faull R, Chakera A, Sundaram M, Jose M, Kerr P, Wu Y, Wardrop SI: Massively parallel sequencing and targeted exomes in familial kidney disease can diagnose underlying genetic disorders. Kidney Int 92: 1493–1506, 2017 10.1016/j.kint.2017.06.013
7. Rossetti A, Teguera A, Wang M, Buhay C, Veeraraghavan N, Shril S, Fessi I, Lifton RP, Bockenhauer D, E Desoky S, Kari JA, Desoky S, Fathy H, Zenker M, Bakkaloglu SA, Müller D, Noyan A, Ozalpin F, Cardanaphornchai MA, Hashmi S, Hopcian J, Kopp JB, Benador N, Bockenhauer D, Bogdanovic R, Stajic N, Cernin G, Etteger R, Fehrenbach H, Kemper M, Munarriz RL, Podracka L, Bünser R, Sendagöl R, Tasic V, Mane S, Lifton RP, Braun DA, Hildebrandt F: Whole exome sequencing of patients with steroid-resistant nephrotic syndrome. Clin J Am Soc Nephrol 13: 53–62, 2018 10.2215/CJN.04120417
8. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hedges M, Lyon E, Spector E, Voelkerding K, Rehm HL; ACMG Laboratory Quality Improvement Committee and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American college of medical genetics and genomics and the association for molecular pathology. Genet Med 17: 405–424, 2015 10.1038/gim.2015.30
9. Hwang YH, Conklin J, Chan W, Roslin NM, Liu J, He N, Wang K, Sundsbøl JH, Heyer CM, Haider M, Paterson AD, Harris PC, Pei Y: Renin-angiotensin-aldosterone system involvement in autosomal dominant polycystic kidney disease. J Am Soc Nephrol 27: 1861–1868, 2016 10.1681/ASN.2015060648
10. Rossetti Sandro, Consugar Mark B, Chapman Arlene B, Torres Vicente E, Guay-Woodford Lisa M, Grantan Jared J, Bennett William M, Meyers Catherine M, Walker Denise L, Bae Kyongtae, Zhang Qin Jian, Thompson Paul A, Miller J Philip, Harris Peter C; CRISP Consortium: Comprehensive molecular diagnostics and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American college of medical genetics and genomics and the association for molecular pathology. Genet Med 17: 405–424, 2015 10.1038/gim.2015.30
11. Hwang YH, Conklin J, Chan W, Roslin NM, Liu J, He N, Wang K, Sundsbøl JH, Heyer CM, Haider M, Paterson AD, Harris PC, Pei Y: Renin-angiotensin-aldosterone system involvement in autosomal dominant polycystic kidney disease. J Am Soc Nephrol 27: 1861–1868, 2016 10.1681/ASN.2015060648
12. Alkandri S, Yates LM, Johnson SA, Sayer JA: Lessons learned from a multidisciplinary renal genetics clinic. QJM 110: 453–457, 2017 10.1093/qjmed/hcx030
13. Thomas CP, Freese ME, Ounda A, Jenkins V, Smith MP, Oshinubi B, Oka Takehiko, Kawahara Kozo, Rigó Krisztina, Takeishi Masahiko, Horie Shigeo, Nutahara Kikuo: Identification of Pathogenic Mutations in PKD1 and PKD2 in Patients with Autosomal Dominant Polycystic Kidney Disease by Next-Generation Sequencing and Use of a Comprehensive New Classification System. PLoS One 11[11]: e0166288, 2016 10.1371/journal.pone.0166288
14. Mallett A, Corney C, McCarthy H, Alexander SI, Healy H: Nephromics in the renal clinic - translating nephrogenetics for clinical practice. Hum Genomics 9: 13, 2015 10.1186/s40246-015-0035-1
15. Thomas CP, Freese ME, Ounda A, Jenkins V, Smith MP, Oshinubi B, Oka Takehiko, Kawahara Kozo, Rigó Krisztina, Takeishi Masahiko, Horie Shigeo, Nutahara Kikuo: Identification of Pathogenic Mutations in PKD1 and PKD2 in Patients with Autosomal Dominant Polycystic Kidney Disease by Next-Generation Sequencing and Use of a Comprehensive New Classification System. PLoS One 11[11]: e0166288, 2016 10.1371/journal.pone.0166288
16. Mallett A, Corney C, McCarthy H, Alexander SI, Healy H: Nephromics in the renal clinic - translating nephrogenetics for clinical practice. Hum Genomics 9: 13, 2015 10.1186/s40246-015-0035-1
17. Thomas CP, Freese ME, Ounda A, Jenkins V, Smith MP, Oshinubi B, Oka Takehiko, Kawahara Kozo, Rigó Krisztina, Takeishi Masahiko, Horie Shigeo, Nutahara Kikuo: Identification of Pathogenic Mutations in PKD1 and PKD2 in Patients with Autosomal Dominant Polycystic Kidney Disease by Next-Generation Sequencing and Use of a Comprehensive New Classification System. PLoS One 11[11]: e0166288, 2016 10.1371/journal.pone.0166288
18. Groopman EE, Marasa M, Cameron-Christie S, Petrovski S, Aggarwal VS, Milo-Rasouly H, Li Y, Zhang J, Nestor J, Krihtivasan P, Lam WW, Mitrotti A, Piva S, Kil BH, Chatterjee D, Reingold R, Bradbury D, DiVecchia M, Snyder H, Mu X, Mehl K, Balderos O, Fesler DA, Weng C, Radhakrishnan J, Canetta P, Appel GB, Bomback AS, Ahn W, Uy NS, Alarn S, Cohen DJ, Crew RJ, Duke GK, RAO MK, Kalakalasan S, Copeland B, Ren Z, Bridges J, Malone CD, Mebane CM, Daonaarkar N, Fellström BC, Haelinger CJ, Mohan S, Sanna-Cherchi S, Kyrlyuk F, Fleckner J, March R, Platt A, Goldstein DB, Gharavi AG: Diagnostic Utility of exome sequencing for kidney disease. N Engl J Med 379: 120–131, 2019 10.1056/NEJMoa1806859
19. van der Ven AT, Connaughton DM, Iyel H, Mann N, Nakayama M, Chen J, Vivante A, Hwang DW, Schulz J, Braun DA, Schmidt MJ, Schapiao D, Schneider R, Wajeiko JK, Daga A, Majumdar AJ, Tan W, Jobst-Schwan T, Hermle T, Widmeier E, Ashraf S, Aamaro A, Hoogstraaten CA, Hugh H, Kitzler TM, Kause F, Kolvenbach
CM, Dai R, Spaneas L, Amann K, Stein DR, Baum MA, Somers MJG, Rodig NM, Ferguson MA, Traum AZ, Daouk GH, Bogdanovic R, Stajic N, Soliman NA, Kari JA, El Desoky S, Fathy HM, Milosevic D, Al-Saffar M, Awad HS, Eid LA, Selvin A, Senguttuvan P, Sanna-Cherchi S, Rehm HL, MacArthur DG, Lek M, Laricchia KM, Wilson MW, Mane SM, Lifton RP, Lee RS, Bauer SB, Lu W, Reutter HM, Tasic V, Shril S, Hildebrandt F: Whole-exome sequencing identifies causative mutations in families with congenital anomalies of the kidney and urinary tract. *J Am Soc Nephrol* 29: 2348–2361, 2018 10.1681/ASN.2017121265

20. Torres VE, Chapman AB, Devuyst O, Gansevoort RT, Grantham JJ, Higashihara E, Perrone RD, Krasa HB, Ouyang J, Czerwiec FS; TEMPO 3:4 Trial Investigators: Tolvaptan in patients with autosomal dominant polycystic kidney disease. *N Engl J Med* 367: 2407–2418, 2012 10.1056/NEJMoa1205531

21. Torres VE, Chapman AB, Devuyst O, Gansevoort RT, Perrone RD, Koch G, Ouyang J, McQuade RD, Blais JD, Czerwiec FS, Sergeyeva O; REPRISE Trial Investigators: Tolvaptan in later-stage autosomal dominant polycystic kidney disease. *N Engl J Med* 377: 1930–1942, 2017 10.1056/NEJMo1710030

22. Malone AF, Phelan PJ, Hall G, Cetincelik U, Horstad A, Alonso AS, Jiang R, Lindsey TB, Wu G, Sparks MA, Smith SR, Webb NJ, Kalra PA, Adeyemo AA, Shaw AS, Conlon PJ, Jennette JC, Howell DN, Winn MP, Gbadegesin RA: Rare hereditary COL4A3/COL4A4 variants may be mistaken for familial focal segmental glomerulosclerosis. *Kidney Int* 86: 1253–1259, 2014 10.1038/ki.2014.305

23. Jayasinghe K, Stark Z, Kerr PG, Gaff C, Martyn M, Whitlam J, Creighton B, Donaldson E, Hunter M, Jarmolowicz A, Johnstone L, Krzesinski E, Lunke S, Lynch E, Nicholls K, Patel C, Prawer Y, Ryan J, See EJ, Talbot A, Trainer A, Tytherleigh R, Valente G, Wallis M, Wardrop L, West KH, White SM, Wilkins E, Mallett AJ, Quinlan C: Clinical impact of genomic testing in patients with suspected monogenic kidney disease [published online ahead of print September 17, 2020]. *Genet Med* 10.1038/s41436-020-00963-4

Received: April 21, 2020 Accepted: October 29, 2020

N.B. and K.E.G. contributed equally to this work.
Supplemental Table 1. Panels (utilized in this study) and the genes included in each of them are summarized below.

Panel Name	Genes
Nephrotic Syndrome (NS)/Focal Segmental Glomerulosclerosis (FSGS) Panel	ACTN4, ANKFY1, ANLN, APOL1, ARHGAP24, ARHGDIA, CD2AP, CDK20, COL4A3, COL4A4, COL4A5, COL4A6, COQ2, COQ6, COQ8B, CRB2, CUBN, DGKE, DHC1, EMP2, FAT1, GAPVD1, GON7, INF2, ITGA3, ITGB4, ITSN1, ITSN2, KANK1, KANK2, KANK4, KAT2B, KIRREL1, LAGE3, LAMA5, LAMB2, LMX1B, MAGI2, MYH9, MYO1E, NFKB2, NPHS1, NPHS2, NUP107, NUP133, NUP160, NUP205, NUP93, OSGEP, PAX2, PDSS2, PLCE1, PTPRO, SCARB2, SGPL1, SMARCA1, TBC1D8B, TNS2, TP53RK, TRKPB, TRIM8, TRPC6, TTC21B, WDR4, WDR73, WT1, XPO5, YRDC
Alport syndrome Panel	COL4A3, COL4A4, COL4A5, COL4A6
Autosomal Dominant Polycystic Kidney Disease (ADPKD) Panel	DNAJB11, GANAB, HNF1B, PKD1, PKD2
Recessive Polycystic Kidney Disease (ARPKD) Panel	DZIP1L, PKHD1
Hereditary cystic kidney disease panel	ANK6B, CEP164, CEP290, CEP83, COL4A1, CRB2, DCDC2, DICER1, DNAJB11, DZIP1L, GANAB, GLIS2, HNF1B, IFT172, INVS, IQCB1, JAG1, LRP5, MAPK8P1, MUC1, NEK8, NOTCH2, NPHP1, NPHP3, NPHP4, OFD1, PAX2, PKD1, PKD2, PKHD1, RPGRIP1L, SDCCAG8, SEC61A1, TMEM67, TSC1, TSC2, TTC21B, UMOD, VHL, WDR19, ZNF423
Nephrotic Syndrome	NPHS1, NPHS2, WT1, PLCE1, LAMB2
Autosomal Dominant and Recessive Polycystic Kidney Disease (ADPKD and ARPKD) Panel	DNAJB11, DZIP1L, GANAB, HNF1B, PKD1, PKD2, PKHD1
Distal Renal Tubular Acidosis Panel	ATP6V0A4, ATP6V1B1, CA2, SLC4A1
Atypical Hemolytic Uremic syndrome (s-HUS) panel	C3, CFB, CFH, CFHR1, CFHR3, CFHR5, CFI, DGKE, MCP, THBD
Panel	Genes
--	--
Tuberous Sclerosis Complex Panel	TSC1, TSC2
Microscopic Hematuria (custom panel)	ACTN4, ADCY10, APOL1, C1QA, C1QB, C1QC, C3, CASR, CD2AP, CFH, CFI, CLCN5, CLDN14, CLDN16, CLDN19, COL4A3, COL4A4, COL4A5, COL4A6, CYP24A1, FN1, INF2, MUC1, MYH9, MYO1E, NPHS2, OCRL, SEC61A1, SLC34A1, SPRY2, VHL
Neurohypophyseal Diabetes Insipidus and Nephrogenic Diabetes Insipidus Panel	AQP2, AVP, AVPR2
Custom Glycosuria panel	SLC5A2, SLC5A2
Nephrolithiasis and Nephrocalcinosis Panel	ADCY10, AGXT, APRT, ATP6V0A4, ATP6V1B1, CA2, CASR, CLCN5, CLDN16, CLDN19, CYP24A1, FAM20A, GRHPR, HNF4A, HOGA1, HPRT1, KCNJ1, OCRL, SLC12A1, SLC22A12, SLC26A1, SLC2A9, SLC34A1, SLC3A1, SLC4A1, SLC7A9, SLC9A3R1, VDR, XDH
Nephrolithiasis Panel	ADCY10, AGXT, ALPL, APRT, ATP6V0A4, ATP6V1B1, CA2, CASR, CLCN5, CLDN16, CLDN19, CYP24A1, FAM20A, GPHN, GRHPR, HOGA1, HPRT1, KCNJ1, MOCOS, MOCS1, OCRL, PREPL, SLC12A1, SLC22A12, SLC26A1, SLC2A9, SLC34A1, SLC3A1, SLC4A1, SLC7A9, SLC9A3R1, UMOD, VDR, XDH
Alagille syndrome	ABCB11, ABCB4, ABCC2, ABCG5, ABCG8, ACOX2, AKR1C4, AKR1D1, ALDOB, AMACR, ATP8B1, BAAT, CC2D2A, CFTR, CLDN1, CYP27A1, CYP7A1, CYP7B1, DCCD2, DGUOK, DHCR7, EHHADH, FAH, GNAS, GPBAR1, HNF1B, HSD17B4, HSD3B7, INVS, JAG1, KMT2D, LIPA, MKS1, MPV17, MYO5B, NOTCH2, NPC1, NPC2, NPHP1, NPHP3, NPHP4, NR1H4, PEX1, PEX10, PEX11B, PEX12, PEX13, PEX14, PEX16, PEX19, PEX2, PEX26, PEX3, PEX5, PEX6, PEX7, PKD1L1, PKHD1, POLG, SCP2, SERPINA1, SLC10A1, SLC10A2, SLC25A13, SLC27A5, SLC51A, SLC51B, SMPD1, TALDO1, TJP2, TMEM216, TRMU, UGT1A1, UTP4, VIPAS39, VPS33B
Bartter syndrome panel	BSND, CASR, CLCNKA, CLCNKB, GNAI1, KCNJ1, MAGED2, SLC12A1, SLC12A3
Wilms tumor	WT1
Periodic Paralysis Panel	CACNA1S, KCNJ1, RYR1, SCN4A

Total blue print panel: https://www.bcm.edu/research/medical-genetics-labs/test_detail.cfm?testcode=1390
Supplemental Table 2. "Other" indications for referral are summarized in this table

Name of disease	Number
Hypertension	2
CKD	2
Rhabdomyolysis	2
Diamond-Blackfan anemia	1
Nephronophthisis	3
Bilateral Wilms Tumor	1
Renal Tubular Acidosis	1
Bartter syndrome	2
Diabetes insipidus	2
Hypokalemic paralysis	1
Glycosuria	1
Hyperuricemia and nephropathy	1
Townes brock syndrome	1
Nephrocalcinosis	5
Macrocephaly and low muscle tone	1
Alagille syndrome	1
Gitelman syndrome	1
a-HUS	3
Micropenis	1
Mitochondrial	1
Bilateral renal angiomyolipoma	1
Hypophosphatemia	1
VACTERL	1
Hyperoxaturia	1
Hypomagnesemia	2
Hypocalcemia	1
Autism and renal artery stenosis	1
Joubert	2

Total: 43
Supplemental Table 3. Detection rates of different tests among indications for referral

Cystic Kidney disease total of 49

	Total number	Positive	VUS	Negative
Panel	19	15	2	2
CMA	3	0	0	3
CMA/ES	13	4	7	2
ES	3	3	0	0
Not done	11			

(3 asymptomatic patients with family history of ADPKD, 4 insurance denial, 1 patient not available, 3 patients not interested to pursue genetic testing)

CAKUT total of 41

	Total Number	Positive	VUS	Negative
Panel	0	0	0	0
CMA	9	5	0	4
CMA/ES	22	8*	12	2
ES	1	1	0	0
Total Blueprint	1	0	1	0
Not done	8			

(7 not interested, 1 insurance denial)

*Includes three partially diagnosed cases

Hematuria Total number of 38

	Total number	Positive	VUS	Negative
Panel	15	10	4	1
CMA	2	0	1	1
Panel and ES	1	1	0	0
CMA/ES	12	7	2	3
Panel and CMA and ES	1	1	0	0
ES	1	1	0	0
Not done	6			

(3 not interested to pursue genetic testing, 3 insurance denial)
Proteinuria total number of 21

	Total number	Positive	VUS	Negative
Panel	10	7	2	1
CMA	0	0	0	0
Panel and CMA	1	0	1	0
CMA/ES	8	5	2	1
CMA and Panel and Total Blueprint panel	1	0	1	0
Not done	1			1 (patient was not interested to pursue genetic testing)

Other indications total number of 43

	Total number	Positive	VUS	Negative
Panel	11	5	3	3
CMA	4	2	0	2
CMA/ES	14	8	6	0
Panel and CMA, and ES	1	0	1	0
Total BluePrint	3	1	1	1
CMA and Total Blueprint	1	1	0	0
Panel and CMA and Total Blueprint	1	1	0	0
Not done	8			0
				4 (not interested to pursue genetic testing, 4 due to insurance)
Supplemental Table 4. Impact on management in patients with partial diagnosis

Patient Number	L1	L2	L3	L4	L5	Type of genetic testing (1,2,3,4,5)	Partial diagnosis	Gene/locus	SNV	Phenotype
RGC-0022	-	-	-	-	-	2,4	Hearing Loss	GJB2	NM_004004.5; c.35delG, (p.G12VfsX2) and c.416G>A, (p.S139N)	Proteinuria, PUV, bilateral hearing loss
RGC-0023	-	-	+	-	-	2,4	Cataract	CHMP4B	NM_176812.4; c.508_510delGAA, (p.E170del) (Het)	Cataract and proteinuria
RGC-0036	-	-	+	-	-	2,4	Sickle cell anemia	HBB	NM_000518.4; c.20A>T, (p.E7V)(Hom)	Sickle cell anemia and proteinuria
RGC-0106	-	-	-	+	+	2,4	DD	NAA15	NM_057175.3; c.439C>T(p.Q147X) (Het)	Syndromic CAKUT
RGC-0133	-	-	+	-	-	2,4	DD	CHMP1A	NM_002768.4; c.88C>T(p.Q30X) (Hom)	Hyperoxaluria, DD, non-verbal, wheelchair bound

L1, impact on medical or surgical treatment; L2, change of medical diagnosis; 3, providing diagnostic certainty; 4, subsequent evaluation for other body system involvement; 5, cascade family member testing; CNV, copy number variant; DD, developmental delay; PUV, posterior urethral valve; SNV, single nucleotide variant. Type of testing; 1, panel; 2, CMA; 3, proband ES; 4, trio ES; 5, Total blueprint panel.
Supplement Table 5. Demographics, phenotype, genetic variants’ information, clinician’s comments and recommendations for patients without diagnostic result who were found to have variants of uncertain significance (VUS)

Patient ID	Gender	Age	Phenotype	Gene	Variant	gnomAD	CADD score	Clinician’s comment	Recommendation	
RGC-0007	M	4	Cystic kidney	PKD1	NM_001009944; c.971G>T,(p.R324L)(Het) (inherited from father)	0	13.07	Paternal kidney US recommended		
RGC-0007	M	4	Cystic kidney	TRPC6	NM_004621; c.2116G>A, p.V706I (Het) (inherited from mother)	2/250230	28	Recessive disorder and only one heterozygous variant		
RGC-0007	M	4	Cystic kidney	LAMB2	NM_002292; c.5233G>A, (p.A1745T)(Het) (inherited from mother)	0	24.5	Recessive disorder and only one heterozygous variant		
RGC-0007	M	4	Cystic kidney	MYO1E	NM_004998; c.1615C>A, (p.L539M)(Het) (inherited from father)	0	16.21	Recessive disorder and only one heterozygous variant		
RGC-0007	M	4	Cystic kidney	ITGA8	NM_003638; c.1492A>G (p.M498V)(Het)(inherited from mother)	1/251076	0.876	Inherited from the affected mother but variant predicted benign and phenotype does not match with dysplastic kidney in the mother		
RGC-0011	M	2	Cystic kidney	PKD1	NM_001009944; c.8119G>A (p.V2707M) (Het) (inherited from father)	0	9.007	Paternal kidney US recommended		
RGC-0011	M	2	Cystic kidney	PKD1	NM_001009944; c.4151C>T (p.T1384I) (Het) (inherited from father)	0	24.5	Paternal kidney ultrasound recommended		
RGC-0011	M	2	Cystic kidney	PKD1	NM_001009944; c.3239C>A (p.P1080H) (Het) (inherited from mother)	2/214486	23.5	Maternal kidney US recommended		
RGC-0012	F	16.8	Hematuria	2	TRPC6 and YAP1	arr[hg19] 11q22.1 (101,450,649-102,064,511)x3	NA	NA	TRPC6 might be disrupted therefore this VUS might have clinical consequences (clinical significance of a duplication of these or any genes in this region is not currently known. This region in its entirety is not known to vary in copy number in normal population)	Annual UA and follow up with nephrology
RGC-0016	M	17.1	Kidney stone	3	TRPC6	NM_004621; c.1678G>A (p.A560T) (Het) (inherited from mother)	0	17.98	VUS inherited from unaffected mother	Follow up in 2 years for reanalysis of tES
RGC-0016	M	17.1	Kidney stone	3	SLC4A4	NM_001098484; c.149G>C (p.G50A) (Het) (inherited from mother)	390/249120	20.6	Recessive disorder and only one heterozygous variant	Follow up recommended
RGC-0025	M	18	Proteinuria	3	COL4A5	NM_033380.1; c.2180C>G (p.P727R) (inherited from mother)	0	27.3	Phenotype does not match Alport and mother does not have microscopic hematuria	
RGC-0027	F	16	CAKUT	3	IL17RD	NM_017563.3; c.8C>G (p.P3R) (Het) (inherited from father)	0	26.1	Phenotype does not fit with Kallmann syndrome but VUS could contribute to kidney anomaly	Testing of family members/paternal kidney ultrasound recommended
RGC-0040	F	3.4	CAKUT	3	CHD7	NM_017780; c.8378C>G (p.A2739G) (Het) (inherited from father)	4/244694	24	Phenotype does not fit	
RGC-0040	F	3.4	CAKUT	3	PKD2	NM_000297; c.2420G>A (p.R807Q) (Het) (inherited from father)	754/251136	26.1	Phenotype does not fit	
RGC-0040	F	3.4	CAKUT	3	PKD1	NM_001009944; c.6749C>T	0	23.5	Phenotype does not fit	
Patient ID	Gender	Age	Diagnosis	Gene	Mutation	Description	Age at Diagnosis	Final Diagnosis		
------------	--------	-----	-----------	------	----------	-------------	-----------------	----------------		
RGC-0040	F	3.4	CAKUT	MSR1	arr 8p22(16032346-16073395)x1	NA	NA	Likely benign		
RGC-0040	F	3.4	CAKUT	MSR1	arr 8p22(15965430-16021863)x3	NA	NA	Likely benign, Inherited from mother		
RGC-0048	F	9.8	CAKUT	LRP2	NM_004525; c.2456G>A (p.R819H)(Het)(inherited from father)	27/251146	25.1	Patient does not have full phenotype of Donnai-Barrow Syndrome		
RGC-0048	F	9.8	CAKUT	LRP2	NM_004525; c.403G>A (p.D135N)(Het)(inherited from mother)	0	24			
RGC-0048	F	9.8	CAKUT	PKD1	NM_001009944; c.10325C>T (p.A3442V)(Het) (inherited from father)	1/244174	12.83	Phenotype does not fit		
RGC-0048	F	9.8	CAKUT	PKD1	NM_001009944; c.5530G>C (p.G1844R)(Het)(inherited from father)	0	21.3	Phenotype does not fit		
RGC-0048	F	9.8	CAKUT	SLC7A9	NM_014270; c.814G>A (p.V272M) (Het) (inherited from father)	0	13.93	Recessive disorder and only one heterozygous variant		
RGC-0048	F	9.8	CAKUT	FRAS1	NM_025074; c.6584A>G (p.E2195G)(Het)(inherited from father)	238/280120	22.4	Two FRAS1 variants on the same chromosome		
RGC-0048	F	9.8	CAKUT	FRAS1	NM_025074;c.9553G>A (p.G3185R)(Het)(inherited from father)	197/279136	24.8			
RGC-0048	F	9.8	CAKUT	NPHP1	NM_000272; c.830G>A (p.R277Q)(Het) (inherited from mother)	173/282608	2.723	Recessive disorder and only one heterozygous variant		
RGC-0059	F	12	CAKUT	CC2D2A	NM_001080522; c.2597A>G, (p.N866S)(Het)(inherited from mother)	45/280162	16.74	Recessive disorder and only one heterozygous variant		
RGC-0059	F	12	CAKUT	3	PKHD1	NM_138694; c. 5750A>G, (p. Q1917R)(Het)(inherited from father)	0	32	Recessive disorder and only one heterozygous variant	
RGC-0059	F	12	CAKUT	3	ITGA8	NM_003638; c. 1336G>A, (p. V446I)(Het)(inherited from mother)	126/282842	2.758	Recessive disorder and only one heterozygous variant	
RGC-0064	M	12	CAKUT	3	NID1	NM_002508.2; c.3680dupC (p.G1228RfsX9)(Het)(inherited from father)	0	6.445	VUS seems likely pathogenic, affected sibling positive	
RGC-0064	M	12	CAKUT	3	NID1	NM_002508.2; c.1297C>T (p.R433X)(Het)(inherited from mother)	0	12.17	VUS seems likely pathogenic, affected sibling positive	
RGC-0065	F	1	Other (Nephromegaly and Nephrocalcinosis)	3	CRB2	NM_173689.5; c.1298C>T (p.P433L)(Het)	124/282294	15.97	Recessive disorder and only one heterozygous variant	
RGC-0065	F	1	Other (Nephromegaly and Nephrocalcinosis)	3	LIG4	NM_002312.3; c.686A>G (p.H229R)(Het)	178/281618	23.3	Recessive disorder and only one heterozygous variant	
RGC-0065	F	1	Other (Nephromegaly and Nephrocalcinosis)	3	PSAT1	NM_051797.2; c.94T>C (p.Y32H)(Het)	5/280748	25.2	Recessive disorder and only one heterozygous variant	
RGC-0065	F	1	Other (Nephromegaly and Nephrocalcinosis)	3	COL4A5	NM_000495.4; c.4450T>C (p.Y1484H)(Het)	0	25.4	Unrelated to patient's phenotype	
RGC-0065	F	1	Other (Nephromegaly and Nephrocalcinosis)	3	SH3YL1	Arr 2p25.3 (66097-239712)x1	NA	NA	Non disease-associated regions No parental follow-up recommended	
RGC-0065	F	1	Other (Nephromegaly and Nephrocalcinosis)	3	NUP52CL	Arr Xp22.3 (106384817-106398144)x1	NA	NA	Non disease-associated regions No parental follow-up recommended	
RGC-0069	M	2.3	Proteinuria	1,2	CD2AP	NM_012120.2; c.1286_1288dup (p.E429dup)(Het)	126/250158	3.562	In-frame duplication IES recommended	
RGC-0094	F	3.5	CAKUT	3	COL4A5	NM_000495.4; c.2600T>C (p.L867T)(Het)	2/182030	16.49	Unrelated to patient's phenotype	

VUS means variant of uncertain significance.
ID	Age	Diagnosis	Genes	Chromosome	Variant Details	p-value	Odds Ratio	Comment	
RGC-0095	M	9	Cystic kidney	PKD1	NM_001009944.2; c.8498C>A (p.P2833H) (Het)	0	6.179	Conserved codon, seems likely pathogenic	
RGC-0096	M	10.7	Cystic Kidney	PKD1	NM_001009944.2; c.10810 G>A (p.E3604K) (Het) (inherited from father)	0	22.9	Seems likely pathogenic based on PKDB and Clinvar	
RGC-0096	M	10.7	Cystic Kidney	Portion of PLEKHA7, ABCC8 and 6 other genes	arr[GRCh37] 11p15.1(16957123_17439236)x3 (inherited from father)	NA	NA	Paternal kidney US recommended	
RGC-0096	M	10.7	Cystic Kidney	Portion of VCX3A, entire HDHD1, STS, VCX, and PNPLA4	arr[GRCh37] Xp22.31(6453036_8131810)x2 (inherited from mother)	NA	NA	Patient affected by Arthrogryposis and VCX3A is disrupted	
RGC-0099	M	1.5	CAKUT		arr[GRCh37] (X)x1~2,(Y)x1 (Mosaic gain) (155186Kb) associated with mosaic Klinefelter syndrome	NA	NA	20-30% mosaicism	
RGC-0103	M	0.01	CAKUT	FAT1	NM_005245.3; c.7014C>A (p.S2338R) (Het) (inherited from mother)	7/280606	4.937	Follow up	
RGC-0103	M	0.01	CAKUT	FAT1	NM_005245.3; c.9320G>T (p.C3107F) (Het) (inherited from mother)	5/249052	24.9	Follow up	
RGC-0103	M	0.01	CAKUT	PPEF1	arr[GRCh19] Xp22.13 (18821936-18822035)x0	NA	NA	No disease association	
RGC-0104	F	14.8	Proteinuria	MYO1E	NM_004998.3; c.2627C>G (p.T876R) (Het) (inherited from mother)	400/282482	20.8	Recessive disorder and only one heterozygous variant	
RGC-0104	F	14.8	Proteinuria	PLCE1	NM_016341.3; c.2032A>G (p.M678V) (Het) (inherited from father)	280/280870	23.6	Recessive disorder and only one heterozygous variant	
RGC-0107	F	5.3	CAKUT	BICC1	NM_001080512.2; c.707A>G	8/282402	3.304	Paternal kidney US recommended	
Patient	Sex	Age	Phenotype	Gene	Variant Description	mtDNA	Probability	Phenotype overlap	
-----------	-----	-----	------------------------------------	-------	--	-------	-------------	-------------------	
RGC-0109	M	15.6	Other (Hyperuricemic and nephropathy)	WT1	NM_024426.4; c.358G>A (p.G120S)	Het	0	22.4	No phenotype overlap
RGC-0109	M	15.6	Other	WDR19	NM_025132.3; c.7C>T (Het)	54/275970	0.436	Recessive disorder and only one heterozygous variant	
RGC-0109	M	15.6	Other	PKHD1	NM_138694.3; c.2744C>T (p.A915V)(Het)	0	26.3	No phenotype overlap (kidneys not enlarged)	
RGC-0109	M	15.6	Other	PKHD1	NM_138694.3; c.7675G>C (p.V2559L)(Het)(inherited from mother)	280/282300	9.628	Predicted benign	
RGC-0111	F	0.01	CAKUT	COL4A4	NM_000092.4; c.3394C>G (p.P1132A)(Het)(inherited from father)	1/248216	25.4	No phenotype overlap	
RGC-0111	F	0.01	CAKUT	LAMB2	NM_002292.3; c.4224+19G>C (Het)(inherited from father)	3031/279460	4.844	Recessive disorder and only one heterozygous variant	
RGC-0122	M	4	Hematuria	COL4A3	NM_000091.4; c.1483C>T (p.H495Y)(Het)(inherited from father)	202/280910	0.689	Kidney biopsy showed TBM	Testing other siblings
RGC-0122	M	4	Hematuria	FN1	NM_212482.1; c.3626C>T (p.T1209I)(Het)(inherited from father)	2/251442	24.4	Biopsy does not fit	
RGC-0125	F	14	Other(a-HUS)	THBD	NM_003361; c.1456G>T (p.D486Y)(Het)	2115/276574	1.136	Reanalyze ES	
RGC-0125	F	14	Other(a-HUS)	DGKE	NM_003647; c.303G>C (p.K101N)(Het)	39/282288	22.9	Recessive disorder and only one heterozygous variant	
RGC-0125	F	14	Other(a-HUS)	GANAB	NM_198335.2; c.1652A>C (p.N551T)(Het)(inherited from father)	0	22.3	No family history on paternal side, and positive family history from maternal side	
RGC-0125	F	14	Other(a-HUS)	1,3	ALMS1	NM_015120.4; c.9463A>T(p.T3155S)(Het)(inherited from father)	65/249098	24.7	Recessive disorder and only one heterozygous variant
----------	-----	----	----------------	-----	-------	---	----------	------	---
RGC-0125	F	14	Other(a-HUS)	1,3	TRIOBP	NM_0010391412; c.6632A>T(p.Q2211L)(Het)(inherited from father)	40/280310	28.2	Recessive disorder and only one heterozygous variant
RGC-0125	F	14	Other(a-HUS)	1,3	GRHPR	NM_012203.1; c.374G>A(p.R125Q)(Het)(inherited from father)	78/282832	29.7	Recessive disorder and only one heterozygous variant
RGC-0125	F	14	Other(a-HUS)	1,3	DGKE	NM_003647.2; c.303G>C(p.K101N)(Het)(inherited from father)	39/282288	23.2	Recessive disorder and only one heterozygous variant
RGC-0126	M	17	Proteinuria	1,2,5	CFH	NM_000186.3; c.2270A>C(p.N757T)(Het)	0	0.112	No phenotype overlap
RGC-0126	M	17	Proteinuria	1,2,5	CD2AP	NM_012120.2; c.164A>C(p.K55T)(Het)	63/282798	30	Fits with biopsy report and family history
RGC-0126	M	17	Proteinuria	1,2,5	NPHS2	NM_014625; c.725C>T(p.A242V)(Het)	1962/281850	25.3	Recessive disorder and only one heterozygous variant
RGC-0126	M	17	Proteinuria	1,2,5	LAMB2	NM_004646; c.2740G>A(p.G914A)(Het)	0	27.7	Although patient has two variants in LAMB2, Family history of proteinuria in this patient suggest AD mode of inheritance
RGC-0126	M	17	Proteinuria	1,2,5	LAMB2	NM_004646; c.1193C>T(p.T398I)(Het)	694/282716	7.968	Parental testing for KFM in LAMB2
RGC-0130	M	20	Cystic kidney	3	SEC61A1	NM_013336.3; c.554C>G(p.T185S)(Het)(de novo)	0	28.4	Patient's phenotype has overlap with reported phenotype associate with this gene
RGC-0136	F	7	CAKUT	3	MT-RNR2	m.2872C>T(Homoplasmic)(inherited from mother)	0	NA	Mother also homoplasmic suggesting that this
Reference	Sex	Age	Diagnosis	Gene	Variant	Allele Count	Risk Score	Result	Comments
-----------	------	-----	-----------	------	---------	-------------	------------	--------	----------
RGC-0138	F	16	CAKUT	GJB3	NM_024009.2; c.223C>T (p.R75C)(Het)	42/282762	29.7	Mother does not have hearing loss	
RGC-0138	F	16	CAKUT	WFS1	NM_006005.3; c.527T>C (p.V176A)(Het)	3/250700	22.4	Mother does not have hearing loss	
RGC-0138	F	16	CAKUT	GATA3	NM_0010022951; c.828C>T (p.R276W)(Het)	0	32	Patient's phenotype has overlap with reported phenotype associated with this gene, patient has hypoparathyroidism	
RGC-0138	F	16	CAKUT	NPHS1	NM_004646.3; c.7C>A (p.L3M)(Het)	8/185830	4.560	Recessive disorder and only one heterozygous variant	
RGC-0139	M	15	Cystic kidney	PRKD1	NM_007242.2; c.1947T>G (p.F649L)(Het)	2/250352	11.83	Mother reported to have heart disease	
RGC-0139	M	15	Cystic kidney	PKD1	NM_001009944.2; c.7061A>C (p.Q2354P)(Het)	0	27.1	Likely the cause of ADPKD, there is history of ADPKD in father	
RGC-0139	M	15	Cystic kidney	PKD1	NM_001009944.2; c.6097G>A (p.A2033T)(Het)	11/275498	23.2	there is history of ADPKD in father	
RGC-0140	F	8	CAKUT	KIAA1109	NM_015312.3; c.822-3T>C (Het)(inherited from father)	2/247734	6.412	Recessive disorder and only one heterozygous variant	
RGC-0140	F	8	CAKUT	COL4A4	NM_000092.4; c.2985C>T (p.P995=)(Het)(inherited from father)	19/280864	0.112		
RGC-0140	F	8	CAKUT	FANCC	NM_000136.2; c.998T>C (p.L333P)(Het)(inherited from father)	2/249760	22.4	Recessive disorder and only one heterozygous variant	
RGC-0140	F	8	CAKUT	3	AHI1	NM_017651.4; c.1621G>T (p.D541Y)(Het)(inherited from mother)	0	24.2	Recessive disorder and only one heterozygous variant
RGC-0140	F	8	CAKUT	3	TMTC3	NM_181783.3; c.10A>G (p.I4V)(Het)(inherited from father)	13/276640	12.9	Recessive disorder and only one heterozygous variant
RGC-0140	F	8	CAKUT	3	CFH	NM_000186.3; c.506A>G (p.H169R)(Het)(inherited from father)	3/251074	0.014	No phenotype overlap
RGC-0141	F	0.9	Other (Hypocalcemia)	3	TRPC6	NM_004621.5; c.101T>C (p.M34T) (Het)(inherited from father)	2/199782	24.5	Father does not have kidney disease
RGC-0141	F	0.9	Other (Hypocalcemia)	3	SLC12A1	NM_000338.2; c.2282G>A (p.R761Q)(Het)(inherited from mother)	26/282292	22.7	Recessive disorder and only one heterozygous variant
RGC-0141	F	0.9	Other (Hypocalcemia)	3	INVS	NM_014425.3; c.2822A>G (p.H941R)(Het)(inherited from mother)	1/251378	6.868	Recessive disorder and only one heterozygous variant
RGC-0141	F	0.9	Other (Hypocalcemia)	3	ITGA8	NM_003638.1; c.1156T>C (p.F386L)(Het)(inherited from mother)	14/282834	22.4	Recessive disorder and only one heterozygous variant
RGC-0141	F	0.9	Other (Hypocalcemia)	3	APOL1	NM_003661.3; c.334C>T (p.R112C)(Het)(de novo)	4/251190	11.68	Variant discussed with experts and seems benign
RGC-0142	F	0.5	Other (a-HUS)	1.4	CFH	NM_000186.3; c.3357C>G (p.D1119E)(Het)(inherited from mother)	3/282870	11.94	Patient has homozygous CFHR3-CFHR1 deletion
RGC-0142	F	0.5	Other (a-HUS)	1.4	ITGA8	NM_003638.2; c.840T>C (p.S280=)(Het)(inherited from father)	215/282194	7.427	Recessive disorder and only one heterozygous variant
RGC-0148	F	2	Hematuria	1	ACTN4	NM_004924.5; c.751C>T (p.R251W)(Het)(inherited from father)	3/143328	32	Paternal kidney evaluation
RGC-0149	M	3	Hematuria	1	COL4A4	NM_000092.4; c.1442G>T (p.G481V)(Het)(inherited from mother)	1/143110	26	Segregation study suggests this variant causes hematuria in this family
RGC-0150	M	1.6	Other (DI)	1	AVPR2	NM_000054.4; c.910+5G>T (intronic)(Hem)	0	9.197	Segregation study suggests this variant causes DI in this family
RGC-0153	F	9	Other (Glycosuria)	1	SLC5A2	NM_00304.3; c.1665+4A>T (Het)(inherited from father)	0.003%	19.57	Determine father’s phenotype
RGC-0158	M	8	Hematuria	1	COL4A3	NM_000091.4; c.4445C>T (p.A1482V)(Het)	223/143266	22.5	May describe phenotype
RGC-0158	M	8	Hematuria	1	NPHS1	NM_004646.3; c.2614G>A (p.V872I)(Het)	3/143174	18.54	Pt also has nephrotic syndrome and also has a pathogenic variant in NPHS2
RGC-0169	M	2	Cystic kidney	1	PKD1	NM_001009944.2; c.7146C>G (p.S2382R)(Het)	0	23.3	Reported in autism but there was not concern about DD or ASD in this patient
RGC-0169	M	2	Cystic kidney	1	NPHP1	NM_000272.3; duplication of whole gene	NA		
RGC-0170	F	5	Proteinuria	1	CUBN	NM_001081.3; c.2677A>G (p.T893A)(Het)	146/143296	4.896	Phase of the two VUSs are unknown Parents did not provide samples
RGC-0170	F	5	Proteinuria	1	CUBN	NM_001081.3; c.5285T>G, c.5285T>G (p.V1762G)(Het)	12/282422	5.578	Phase of the two VUSs are unknown Follow up
RGC-0170	F	5	Proteinuria	1	NPHS1	NM_004646.3; c.710T>C (p.L237P)(Het)	4/251428	31	Recessive disorder and only one heterozygous variant
RGC-0170	F	5	Proteinuria	1	PAX2	M_003990.4; c.809G>A (p.R270H)(Het)	7/251366	29.2	Ophthalmology evaluation
RGC-0170	F	5	Proteinuria	1	PLCE1	NM_016341.3; c.642A>T (p.Q214G)(Het)	293/280000	10.49	Recessive disorder and only one
---	---	---	---	---	---	---			
RGC-0170	F	5	Proteinuria	1	SMARCAL1	M_014140.3; c.1196C>T (p.T399M)(Het)	353/282896	0.899	Recessive disorder and only one heterozygous variant
RGC-0170	F	5	Proteinuria	1	WDR73	NM_032856.3; c.481G>T (p.V161F)(Het)	5/248808	11.65	Recessive disorder and only one heterozygous variant
RGC-0174	M	14	Other (Alagille syndrome)	1	JAG1	NM_000214.2; c.776G>T (p.G259V)(Het)(VUS)	0	26.6	tES recommended
RGC-0180	F	5	Proteinuria	1	INF2	NM_022489.3; c.2851C>T (p.R951W)(Het)	1/154628	23.6	Father had trace of protein in dipstick Testing of siblings for INF2
RGC-0184	M	4	Proteinuria	3	EVC2	arr[GRCh37]4p16.2(5616917_5699833)x3	NA	NA	Parental testing recommended
RGC-0187	F	4	Cystic kidney	3	PUF60	NM_078480.2; c.1292C>T (p.P43L)(Het)(inherited from father)	0	22.5	Father does not have kidney disease
RGC-0187	F	4	Cystic kidney	3	GLIS2	NM_032975.2; c.1244C>T (p.R415L) (Het)(inherited from mother)	21/1/176552	26.8	Recessive disorder and only one heterozygous variant
RGC-0187	F	4	Cystic kidney	3	ARHGEDIA	NM_001301242.1; c.544A>G (p.T182A)(Hom)(both parents are carrier)	1/249280	6.032	Seems disease causing Testing of siblings recommended
RGC-0187	F	4	Cystic kidney	3	FLNA	NM_001456.3; c.1399C>T (p.R467C)(Het)(inherited from mother)	1/177746	23.6	Mother unaffected

DI, Diabetes insipidus; Es, Exome sequencing; PKDB, Autosomal Dominant Polycystic Kidney Disease Mutation Database; RBP, Retinol-binding Protein; TBM, Thin basement membrane; UA, Urine analysis; US, Ultrasound. Type of the testing; 1, panel; 2, CMA; 3, proband ES; 4, trio ES; 5, Total Blueprint panel.
Supplemental Table 1. Panels (utilized in this study) and the genes included in each of them are summarized below.

Panel	Genes
Nephrotic Syndrome (NS)/Focal Segmental Glomerulosclerosis (FSGS) Panel	ACTN4, ANK FY1, ANLN, APOL1, ARHGAP24, ARHGDIA, CD2AP, CDK20, COL4A3, COL4A4, COL4A5, COL4A6, COQ2, COQ6, COQ8B, CRB2, CUBN, DGKE, DLC1, EMP2, FAT1, GAPVD1, GON7, INF2, ITGA3, ITGB4, ITSN1, ITSN2, KANK1, KANK2, KANK4, KAT2B, KIRREL1, LAGE3, LAMA5, LAMB2, LMX1B, MAFB, MAGI2, MYH9, MYO1E, NEU1, NFKB2, NPHS1, NPHS2, NUP107, NUP133, NUP160, NUP205, NUP93, OSGEP, PAX2, PDSS2, PLCE1, PTPRO, SCARB2, SGPL1, SMARCAL1, TBC1D8B, TNS2, TP53RK, TPRKB, TRIM8, TRPC6, TTC21B, WDR4, WDR73, WT1, XPO5, YRDC
Alport syndrome Panel	COL4A3, COL4A4, COL4A5, COL4A6
Autosomal Dominant Polycystic Kidney Disease (ADPKD) panel	DNAJB11, GANAB, HNF1B, PKD1, PKD2
Recessive Polycystic Kidney Disease (ARPKD) panel	DZIP1L, PKHD1
Hereditary cystic kidney disease panel	ANKS8, CEP164, CEP290, CEP83, COL4A1, CRB2, DCDC2, DICER1, DNAJB11, DZIP1L, GANAB, GLIS2, HNF1B, IFT172, INVS, IQCB1, JAG1, LRPP5, MAPKBP1, MUC1, NEK8, NOTCH2, NPHP1, NPHP3, NPHP4, OFD1, PAX2, PKD1, PKD2, PKHD1, RPGRIP1L, SDCCAG8, SEC61A1, TMEM67, TSC1, TSC2, TTC21B, UMOD, VHL, WDR19, ZNF423
Nephrotic Syndrome	NPHS1, NPHS2, WT1, PLCE1, LAMB2
Autosomal Dominant and Recessive Polycystic Kidney Disease (ADPKD and ARPKD) Panel	DNAJB11, DZIP1L, GANAB, HNF1B, PKD1, PKD2, PKHD1
Distal Renal Tubular Acidosis Panel	ATP6V0A4, ATP6V1B1, CA2, SLC4A1
Atypical Hemolytic Uremic syndrome (s-HUS) panel	C3, CFB, CFH, CFHR1, CFHR3, CFHR5, CFI, DGKE, MCP, THBD
Panel	Genes
--	--
Tuberous Sclerosis Complex Panel	TSC1, TSC2
Microscopic Hematuria (custom panel)	ACTN4, ADCY10, APO1, C1QA, C1QB, C1QC, C3, CASR, CD2AP, CFH, CFI, CLCN5, CLDN14, CLDN16, CLDN19, COL4A3, COL4A4, COL4A5, COL4A6, CYP24A1, FN1, INF2, MUC1, MYH9, MYO1E, NPHS2, OCRL, SEC61A1, SLC34A1, SPRY2, VHL
Neurohypophyseal Diabetes Insipidus and Nephrogenic Diabetes Insipidus Panel	AQP2, AVP, AVPR2
Custom Glycosuria panel	SLC5A2, SLC5A2
Nephrolithiasis and Nephrocalcinosis Panel	ADCY10, AGXT, APRT, ATP6V0A4, ATP6V1B1, CA2, CASR, CLCN5, CLDN16, CLDN19, CYP24A1, FAM20A, GRHPR, HNF4A, HOCA1, HPRT1, KCNJ1, OCRL, SLC12A1, SLC22A12, SLC26A1, SLC26A9, SLC34A1, SLC34A3, SLC3A1, SLC4A1, SLC7A9, SLC9A3R1, VDR, XDH
Nephrolithiasis Panel	ADCY10, AGXT, ALPL, APRT, ATP6V0A4, ATP6V1B1, CA2, CASR, CLCN5, CLDN16, CLDN19, CYP24A1, FAM20A, GRHPR, HOCA1, HPRT1, KCNJ1, MOCOS, MOCS1, OCRL, PREPL, SLC12A1, SLC22A12, SLC26A1, SLC26A9, SLC34A1, SLC34A3, SLC3A1, SLC4A1, SLC7A9, SLC9A3R1, UMOD, VDR, XDH
Alagille syndrome	ABCB11, ABCB4, ABCC2, ABCG5, ABCG8, ACOX2, AKR1C4, AKR1D1, ALDOB, AMACR, ATPB1, BAAT, CC2D2A, CFTR, CLDN1, CYP27A1, CYP7A1, CYP7B1, DCCD2, DGUOK, DHCR7, EHHADH, FAH, GNAS, GPBAR1, HNF1B, HSD17B4, HSD3B7, INS, JAG1, KMT2D, LIPA, MKS1, MPV17, MY05B, NOTCH2, NPC1, NPC2, NPHP1, NPHP3, NPHP4, NR1H4, PEX1, PEX10, PEX11B, PEX12, PEX13, PEX14, PEX16, PEX19, PEX2, PEX26, PEX3, PEX5, PEX6, PEX7, PKD1L1, PKHD1, POLG, SCPE, SERPINA1, SLC10A1, SLC10A2, SLC25A13, SLC27A5, SLC51A, SLC51B, SMPD1, TALDO1, TJP2, TMEM216, TRMU, UGT1A1, UTP4, VIPAS39, VPS33B
Bartter syndrome panel	BSND, CASR, CLCNKA, CLCNKB, GNAII, KCNJ1, MAGED2, SLC12A1, SLC12A3
Wilms tumor	WT1
Periodic Paralysis Panel	CACNA1S, KCNJ1, RYR1, SCN4A

Total blue print panel: https://www.bcm.edu/research/medical-genetics-labs/test_detail.cfm?testcode=1390
Supplemental Table 2. "Other" indications for referral are summarized in this table

Name of disease	Number
Hypertension	2
CKD	2
Rhabdomyolysis	2
Diamond-Blackfan anemia	1
Nephronophthisis	3
Bilateral Wilms Tumor	1
Renal Tubular Acidosis	1
Bartter syndrome	2
Diabetes insipidus	2
Hypokalemic paralysis	1
Glycosuria	1
Hyperuricemia and nephropathy	1
Townes brock syndrome	1
Nephrocalcinosis	5
Macrocephaly and low muscle tone	1
Alagille syndrome	1
Gitelman syndrome	1
a-HUS	3
Micropenis	1
Mitochondrial	1
Bilateral renal angiomyolipoma	1
Hypophosphatemia	1
VACTERL	1
Hyperoxaturia	1
Hypomagnesemia	2
Hypocalcemia	1
Autism and renal artery stenosis	1
Joubert	2
	43
Supplemental Table 3. Detection rates of different tests among indications for referral

Cystic Kidney disease total of 49

Test Type	Total Number	Positive	VUS	Negative
Panel	19	15	2	2
CMA	3	0	0	3
CMA/ES	13	4	7	2
ES	3	3	0	0
Not done	11			

(3 asymptomatic patients with family history of ADPKD, 4 insurance denial, 1 patient not available, 3 patients not interested to pursue genetic testing)

CAKUT total of 41

Test Type	Total Number	Positive	VUS	Negative
Panel	9	0	0	0
CMA	9	5	0	4
CMA/ES	22	8*	12	2
ES	1	1	0	0
Total Blueprint	1	0	1	0
Not done	8			

*Includes three partially diagnosed cases

Hematuria Total number of 38

Test Type	Total Number	Positive	VUS	Negative
Panel	15	10	4	1
CMA	2	0	1	1
Panel and ES	1	1	0	0
CMA/ES	12	7	2	3
Panel and CMA and ES	1	1	0	0
ES	1	1	0	0
Not done	6			

(3 not interested to pursue genetic testing, 3 insurance denial)
Proteinuria total number of 21

	Total number	Positive	VUS	Negative
Panel	10	7	2	1
CMA	0	0	0	0
Panel and CMA	1	0	1	0
CMA/ES	8	5	2	1
CMA and Panel and Total Blueprint panel	1	0	1	0
Not done	**1**	**0**	**1**	**0**

(patient was not interested to pursue genetic testing)

Other indications total number of 43

	Total number	Positive	VUS	Negative
Panel	11	5	3	3
CMA	4	2	0	2
CMA/ES	14	8	6	0
Panel and CMA, and ES	1	0	1	0
Total Blueprint	3	1	1	1
CMA and Total Blueprint	1	1	0	0
Panel and CMA and Total Blueprint	1	1	0	0
Not done	**8**	**0**	**4**	**4**

(4 not interested to pursue genetic testing, 4 due to insurance)
Supplemental Table 4. Impact on management in patients with partial diagnosis

Patient Number	L1	L2	L3	L4	L5	Type of genetic testing (1,2,3,4,5)	Partial diagnosis	Gene/locus	SNV	Phenotype
RGC-0022	-	-	+	-	+	2,4	Hearing Loss	GJB2	NM_004004.5; c.35delG, (p.G12VfsX2) and c.416G>A, (p.S139N)	Proteinuria, PUV, bilateral hearing loss
RGC-0023	-	-	+	-	+	2,4	Cataract	CHMP4B	NM_176812.4; c.508_510delGAA, (p.E170del) (Het)	Cataract and proteinuria
RGC-0036	-	-	+	-	+	2,4	Sickle cell anemia	HBB	NM_000518.4; c.20A>T, (p.E7V)(Hom)	Sickle cell anemia and proteinuria
RGC-0106	-	-	-	+	+	2,4	DD	NAA15	NM_057175.3; c.439C>T (p.Q147X) (Het)	Syndromic CAKUT
RGC-0133	-	-	+	-	+	2,4	DD	CHMP1A	NM_002768.4; c.88 C>T (p.Q30X) (Hom)	Hyperoxaluria, DD, non-verbal, wheelchair bound

L1, impact on medical or surgical treatment; L2, change of medical diagnosis; L3, providing diagnostic certainty; L4, subsequent evaluation for other body system involvement; L5, cascade family member testing; CNV, copy number variant; DD, developmental delay; PUV, posterior urethral valve; SNV, single nucleotide variant. Type of testing; 1, panel; 2, CMA; 3, proband ES; 4, trio ES; 5, Total blueprint panel.
Supplement Table 5. Demographics, phenotype, genetic variants’ information, clinician’s comments and recommendations for patients without diagnostic result who were found to have variants of uncertain significance (VUS)

Patient ID	Gender	Age	Phenotype	Testing (1,2,3,4, 5)	Gene	Variant	gnomAD	CADD score	Clinician’s comment	Recommendation
RGC-0007	M	4	Cystic kidney	3	PKD1	NM_001009944; c.971G>T, (p.R324L)(Het) (inherited from father)	0	13.07	Paternal kidney US recommended	
RGC-0007	M	4	Cystic kidney	3	TRPC6	NM_004621; c.2116G>A, p.V706I (Het) (inherited from mother)	2/250230	28	Recessive disorder and only one heterozygous variant	
RGC-0007	M	4	Cystic kidney	3	LAMB2	NM_002292; c.5233G>A, (p.A1745T)(Het) (inherited from mother)	0	24.5	Recessive disorder and only one heterozygous variant	
RGC-0007	M	4	Cystic kidney	3	MYO1E	NM_004998; c.1615C>A, (p.L539M)(Het) (inherited from mother)	0	16.21	Recessive disorder and only one heterozygous variant	
RGC-0007	M	4	Cystic kidney	3	ITGA8	NM_003638; c.1492A>G (p.M498V)(Het)(inherited from mother)	1/251076	0.876	Inherited from the affected mother but variant predicted benign and phenotype does not match with dysplastic kidney in the mother	
RGC-0011	M	2	Cystic kidney	3	PKD1	NM_001009944; c.8119G>A (p.V2707M) (Het) (inherited from father)	0	9.007	Paternal kidney US recommended	
RGC-0011	M	2	Cystic kidney	3	PKD1	NM_001009944; c.4151C>T (p.T1384I) (Het) (inherited from father)	0	24.5	Paternal kidney ultrasound recommended	
RGC-0011	M	2	Cystic kidney	3	PKD1	NM_001009944; c.3239C>A (p.P1080H) (Het) (inherited from mother)	2/214486	23.5	Maternal kidney US recommended	
ID	Sex	Age	Condition	Exon	Gene	Description	VUS Status	Clinical Significance	Comments	
--------	-----	-----	-----------	------	------	-------------	------------	-----------------------	----------	
RGC-0012	F	16.8	Hematuria	2	TRPC6 and YAP1	arr(hg19) 11q22.1 (101,450,649-102,064,511)x3	NA	NA	TRPC6 might be disrupted therefore this VUS might have clinical consequences (clinical significance of a duplication of these or any genes in this region is not currently known. This region in its entirety is not known to vary in copy number in normal population. This region in its entirety is not known to vary in copy number in normal population. Follow up recommended)	Annual UA and follow up with nephrology
RGC-0016	M	17.1	Kidney stone	3	TRPC6	NM_004621; c.1678G>A (p.A560T) (Het) (inherited from mother)	0	17.98	VUS inherited from unaffected mother	Follow up in 2 years for reanalysis of iES
RGC-0016	M	17.1	Kidney stone	3	SLC4A4	NM_001098484; c.149G>C (p.G50A)(Het)(inherited from mother)	390/249120	20.6	Recessive disorder and only one heterozygous variant	
RGC-0025	M	18	Proteinuria	3	COL4A5	NM_033380.1; c.2180C>G (p.P727R) (inherited from mother)	0	27.3	Phenotype does not match Alport and mother does not have microscopic hematuria	Follow up recommended
RGC-0027	F	16	CAKUT	3	IL17RD	NM_017563.3 c.8C>G (p.P3R) (Het)(inherited from father)	0	26.1	Phenotype does not fit with Kallmann syndrome but VUS could contribute to kidney anomaly	Testing of family members/paternal kidney ultrasound recommended
RGC-0040	F	3.4	CAKUT	3	CHD7	NM_017780; c.8378C>G (p.A2793G)(Het)(inherited from father)	4/244694	24	Phenotype does not fit	
RGC-0040	F	3.4	CAKUT	3	PKD2	NM_000297; c.2420G>A (p.R807Q)(Het)(inherited from father)	754/251136	26.1	Phenotype does not fit	
RGC-0040	F	3.4	CAKUT	3	PKD1	NM_00109944; c.6749C>T	0	23.5	Phenotype does not fit	
Patient ID	Gender	Age	Diagnosis	Genes	Variants	Location	Reference	Phenotype	Comments	
------------	--------	------	-----------	-------	----------	----------	-----------	-----------	----------	
RGC-0040	F	3.4	CAKUT	MSR1	c.2456G>A	NM_004525	27/251146	Likely benign	Inherited from mother	
RGC-0048	F	9.8	CAKUT	LRP2	c.403G>A	NM_004525	0	Patient does not have full phenotype of Donnai-Barrow Syndrome	Brain MRI was normal, urine beta 2 microglubin is high, RBP recommended	
RGC-0048	F	9.8	CAKUT	LRP2	c.2456G>A	NM_004525	0	Phenotype does not fit	Paternal kidney US recommended	
RGC-0048	F	9.8	CAKUT	PKD1	c.5530G>C	NM_001009944	0	Phenotype does not fit	Paternal kidney US recommended	
RGC-0048	F	9.8	CAKUT	PKD1	c.5184G>A	NM_001009944	0	Recessive disorder and only one heterozygous variant	Recessive disorder and only one heterozygous variant	
RGC-0048	F	9.8	CAKUT	FRAS1	c.814G>A	NM_001009944	0	Two FRAS1 variants on the same chromosome	Two FRAS1 variants on the same chromosome	
RGC-0048	F	9.8	CAKUT	FRAS1	c.9553G>A	NM_001009944	197/279136	Recessive disorder and only one heterozygous variant	Recessive disorder and only one heterozygous variant	
RGC-0048	F	9.8	CAKUT	NPHP1	c.830G>A	NM_001009944	173/282608	Recessive disorder and only one heterozygous variant	Recessive disorder and only one heterozygous variant	
RGC-0059	F	12	CAKUT	CC2D2A	c.1709G>A	NM_001009944	45/280162	Recessive disorder and only one heterozygous variant	Recessive disorder and only one heterozygous variant	
ID	Gender	Age	Clinical Feature	Gene	Variant Description	Frequency	p-value	Comment		
--------	--------	-----	-----------------------------------	------------	--------------------------------------	-----------	---------	---		
RGC-0059	F	12	CAKUT	PKHD1	NM_138694; c. 5750A>G, (p.Q1917R)(Het)(inherited from father)	0	32	Recessive disorder and only one heterozygous variant		
RGC-0059	F	12	CAKUT	ITGA8	NM_003638; c. 1336G>A, (p.V446I)(Het)(inherited from mother)	0	2.758	Recessive disorder and only one heterozygous variant		
RGC-0064	M	12	CAKUT	NID1	NM_002508.2; c.3680dupC (p.G1228RfsX9)(Het)(inherited from father)	0	6.445	VUS seems likely pathogenic, affected sibling positive		
RGC-0064	M	12	CAKUT	NID1	NM_002508.2; c.1297C>T (p.R433L) (Het)	0	12.17	Brain MRI, testing siblings		
RGC-0065	F	1	Other (Nephromegaly and Nephrocalcinosis)	CRB2	NM_173689.5; c.1298C>T (p.P433L)(Het)	124/282294	15.97	Recessive disorder and only one heterozygous variant		
RGC-0065	F	1	Other (Nephromegaly and Nephrocalcinosis)	LIG4	NM_002312.3; c.686A>G (p.H229R)(Het)	178/281618	23.3	Recessive disorder and only one heterozygous variant		
RGC-0065	F	1	Other (Nephromegaly and Nephrocalcinosis)	PSAT1	NM_058179.2; c.94T>C (p.Y32H)(Het)	5/280748	25.2	Recessive disorder and only one heterozygous variant		
RGC-0065	F	1	Other (Nephromegaly and Nephrocalcinosis)	COL4A5	NM_000495.4; c.4450T>C (p.Y1484H)(Het)	0	25.4	Unrelated to patient's phenotype		
RGC-0065	F	1	Other (Nephromegaly and Nephrocalcinosis)	SH3YL1	Arr 2p25.3 (66097-239712)x1	NA	NA	Non disease-associated regions		
RGC-0065	F	1	Other (Nephromegaly and Nephrocalcinosis)	NUP52CL	Arr Xp22.3 (10638417-106398144)x1	NA	NA	Non disease-associated regions		
RGC-0069	M	2.3	Proteinuria	CD2AP	NM_012120.2; c.1286_1288dup (p.E429dup)(Het)	126/250158	3.562	In-frame duplication		
RGC-0094	F	3.5	CAKUT	COL4A5	NM_000495.4; c.2600T>C (p.L867T)(Het)	2/182030	16.49	Unrelated to patient's phenotype		

Legend:
- **Gender:** M (Male), F (Female)
- **Age:** in years
- **Clinical Feature:** CAKUT (Congenital Anomalies of the Kidney and Urinary Tract)
- **Gene:** Name of the gene
- **Variant Description:** Description of the variant
- **Frequency:** Number of occurrences
- **p-value:** Statistical significance
- **Comment:** Additional information about the variant's status or its effect on the patient's phenotype.
| Case ID | Sex | Age | Diagnosis | Genes Involved | Gene | Probe | p-value | BMID | Testing recommended | | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| RGC-0095 | M | 9 | Cystic kidney | PKD1, NM_001009944.2; c.8498C>A (p.P2833H) (Het) | | | 6.179 | | Testing affected mother |
| RGC-0096 | M | 10.7| Cystic Kidney | PKD1, NM_001009944.2; c.10810 G>A (p.E3604K) (Het)(inherited from father) | | | 22.9 | | Paternal kidney US recommended |
| RGC-0096 | M | 10.7| Cystic Kidney | Portion of PLEKHA7, ABCG8 and 6 other genes | | | NA | | Patient affected by Arthrogryposis and VCX3A is disrupted |
| RGC-0099 | M | 1.5 | CAKUT | Portion of VCX3A, entire HDHD1, STS, VCX, and PNPLA4 | | | NA | | Follow up |
| RGC-0103 | M | 0.01| CAKUT | FAT1, NM_005245.3; c.7014C>A (p.S2338R) (Het)(inherited from mother) | 7/280606 | 4.937 | | | Follow up |
| RGC-0103 | M | 0.01| CAKUT | FAT1, NM_005245.3; c.9320G>T (p.C3107F)(Het)(inherited from mother) | 5/249052 | 24.9 | | | No disease association |
| RGC-0104 | F | 14.8| Proteinuria | MYO1E, NM_004998.3; c.2627C>G (p.T876R)(Het)(inherited from mother) | 400/282482 | 20.8 | | | Recessive disorder and only one heterozygous variant |
| RGC-0104 | F | 14.8| Proteinuria | PLCE1, NM_0016341.3; c.2032A>G (p.M678V)(Het)(inherited from father) | 280/280870 | 23.6 | | | Recessive disorder and only one heterozygous variant |
| RGC-0107 | F | 5.3 | CAKUT | BICC1, NM_001080512.2; c.707A>G | 8/282402 | 3.304 | | | Paternal kidney US recommended |
| Family | Gender | Age | Diagnosis | Gene | Variant | Exon | Depth | Distance | p-value | Risk | Notes |
|---------|--------|-----|------------------------------------|--------|---------|------|-------|-----------|---------|-------|---|
| RGC-0109 | M | 15.6| Other (Hyperuricemic and nephropathy) | WT1 | NM_024426.4; c.358G>A (p.G120S)(Het) | 5 | 0 | 22.4 | No phenotype overlap |
| RGC-0109 | M | 15.6| Other | WDR19 | NM_025132.3; c.*7C>T (Het) | 5 | 54/275970 | 0.436 | Recessive disorder and only one heterozygous variant |
| RGC-0109 | M | 15.6| Other | PKHD1 | NM_138694.3; c.2744C>T (p.A915V)(Het) | 5 | 0 | 26.3 | No phenotype overlap (kidneys not enlarged) |
| RGC-0109 | M | 15.6| Other | PKHD1 | NM_138694.3; c.7675G>C (p.V2559L)(Het)(inherited from mother) | 5 | 280/282300 | 9.628 | Predicted benign |
| RGC-0111 | F | 0.01| CAKUT | COL4A4 | NM_000092.4; c.3394C>G (p.P1132A)(Het)(inherited from father) | 3 | 1/248216 | 25.4 | No phenotype overlap |
| RGC-0111 | F | 0.01| CAKUT | LAMB2 | NM_002292.3; c.4224+19G>C(Het)(inherited from father) | 3 | 3031/279460 | 4.844 | Recessive disorder and only one heterozygous variant |
| RGC-0122 | M | 4 | Hematuria | COL4A3 | NM_000091.4; c.1483C>T (p.H495Y)(Het)(inherited from father) | 3 | 202/280910 | 0.689 | Kidney biopsy showed TBM Testing other siblings |
| RGC-0122 | M | 4 | Hematuria | FN1 | NM_212482.1; c.3626C>T (p.T1209I)(Het)(inherited from father) | 3 | 2/251442 | 24.4 | Biopsy does not fit |
| RGC-0125 | F | 14 | Other (a-HUS) | THBD | NM_000361; c.1456G>T (p.D486Y)(Het) | 1,3 | 2115/276574 | 1.136 | Reanalyze ES |
| RGC-0125 | F | 14 | Other (a-HUS) | DGKE | NM_003647; c.303G>C (p.K101N)(Het) | 1,3 | 39/282288 | 22.9 | Recessive disorder and only one heterozygous variant |
| RGC-0125 | F | 14 | Other (a-HUS) | GANAB | NM_198335.2; c.1652A>C (p.N551T)(Het)(inherited from father) | 1,3 | 0 | 22.3 | No family history on paternal side, and positive family history from maternal side |
| RGC-0125 | F | 14 | Other(a-HUS) | 1,3 | ALMS1 | NM_015120.4; c.9463A>T (p.T3155S)(Het)(inherited from father) | 65/249098 | 24.7 | Recessive disorder and only one heterozygous variant |
|----------|----|----|-------------|-----|-------|---|-----------|------|--|
| RGC-0125 | F | 14 | Other(a-HUS) | 1,3 | TRIOBP | NM_0010391412; c.6632A>T (p.Q2211L)(Het)(inherited from father) | 40/280310 | 28.2 | Recessive disorder and only one heterozygous variant |
| RGC-0125 | F | 14 | Other(a-HUS) | 1,3 | GRHPR | NM_012203.1; c.374G>A (p.R125Q)(Het)(inherited from father) | 78/282832 | 29.7 | Recessive disorder and only one heterozygous variant |
| RGC-0125 | F | 14 | Other(a-HUS) | 1,3 | DGKE | NM_003647.2; c.303G>C (p.K101N)(Het)(inherited from father) | 39/282288 | 23.2 | Recessive disorder and only one heterozygous variant |
| RGC-0126 | M | 17 | Proteinuria | 1,2,5 | CFH | NM_000186.3; c.2270A>C (p.N757T)(Het) | 0 | 0.112 | No phenotype overlap |
| RGC-0126 | M | 17 | Proteinuria | 1,2,5 | CD2AP | NM_012120.2; c.164A>C (p.K55T)(Het) | 63/282798 | 30 | Fits with biopsy report and family history |
| RGC-0126 | M | 17 | Proteinuria | 1,2,5 | NPHS2 | NM_014625; c.725C>T (p.A242V)(Het) | 1962/281850 | 25.3 | Recessive disorder and only one heterozygous variant |
| RGC-0126 | M | 17 | Proteinuria | 1,2,5 | LAMB2 | NM_004646; c.2740G>A (p.G914A)(Het) | 0 | 27.7 | Although patient has two variants in LAMB2, Family history of proteinuria in this patient suggest AD mode of inheritance Parental testing for KFM in LAMB2 |
| RGC-0126 | M | 17 | Proteinuria | 1,2,5 | LAMB2 | NM_004646; c.1193C>G (p.T398I)(Het) | 694/282716 | 7.968 | Parental testing for KFM in LAMB2 |
| RGC-0130 | M | 20 | Cystic kidney | 3 | SEC61A1 | NM_013336.3; c.554 C>G (p.T185S)(Het)(de novo) | 0 | 28.4 | Patient's phenotype has overlap with reported phenotype associate with this gene |
| RGC-0136 | F | 7 | CAKUT | 3 | MT-RNR2 | m.2872C>T (Homoplasmic) (inherited from mother) | 0 | NA | Mother also homoplasmic suggesting that this |
| Reference | Gender | Age | Condition | Gene | Mutation | Minor Allele Frequency | Description |
|-----------|--------|-----|-----------|------|----------|-----------------------|-------------|
| RGC-0138 | F | 16 | CAKUT | GJB3 | NM_024009.2; c.223C>T (p.R75C)(Het)(inherited from mother) | 42/282762 29.7 | Mother does not have hearing loss |
| RGC-0138 | F | 16 | CAKUT | WFS1 | NM_006005.3; c.527T>C (p.V176A)(Het)(inherited from mother) | 3/250700 22.4 | Mother does not have hearing loss |
| RGC-0138 | F | 16 | CAKUT | GATA3| NM_0010022951; c.826C>T (p.R75C)(Het) | 0 32 | Patient's phenotype has overlap with reported phenotype associate with this gene, patient has hypoparathyroidism |
| | | | | | | | KFM testing of other family members |
| RGC-0138 | F | 16 | CAKUT | NPHS1| NM_004646.3; c.7C>A (p.L3M)(Het) | 8/185830 4.560 | Recessive disorder and only one heterozygous variant |
| RGC-0139 | M | 15 | Cystic kidney | PRKD1| NM_002742.2; c.1947T>G (p.F649L)(Het)(inherited from mother) | 2/250352 11.83 | Mother reported to have heart disease |
| RGC-0139 | M | 15 | Cystic kidney | PKD1 | NM_001009944.2; c.7061A>C (p.Q2354P)(Het)(inherited from father) | 0 27.1 | Likely the cause of ADPKD, there is history of ADPKD in father |
| | | | | | | | Testing of siblings for specific variant in PKD1 |
| RGC-0139 | M | 15 | Cystic kidney | PKD1 | NM_001009944.2; c.6097G>A (p.A2033T)(Het)(inherited from father) | 11/275498 23.2 | there is history of ADPKD in father |
| | | | | | | | Testing of siblings for specific variant in PKD1 |
| RGC-0140 | F | 8 | CAKUT | KIAA1109| NM_015312.3; c.822-3T>C (Het)(inherited from father) | 2/247734 6.412 | Recessive disorder and only one heterozygous variant |
| RGC-0140 | F | 8 | CAKUT | COL4A4| NM_000092.4; c.2985C>T (p.P995=(Het)(inherited from father) | 19/280864 0.112 | |
| RGC-0140 | F | 8 | CAKUT | FANCC| NM_000136.2; c.988T>C (p.L333P)(Het)(inherited from father) | 2/249760 22.4 | Recessive disorder and only one heterozygous variant |
| Sample ID | Gender | Age | Condition | Gene | Mutation Description | Allele Count | Probability | Notes |
|------------|--------|-----|-----------------|------------|---|--------------|-------------|--|
| RGC-0140 | F | 8 | CAKUT | AHI1 | NM_017651.4; c.1621G>T (p.D541Y)(Het)(inherited from mother) | 0 | 24.2 | Recessive disorder and only one heterozygous variant |
| RGC-0140 | F | 8 | CAKUT | TMTC3 | NM_181783.3; c.10A>G (p.I4V)(Het)(inherited from father) | 13/276640 | 12.90 | Recessive disorder and only one heterozygous variant |
| RGC-0140 | F | 8 | CAKUT | CFH | NM_000186.3; c.506A>G (p.H169R)(Het)(inherited from father) | 3/251074 | 0.014 | No phenotype overlap |
| RGC-0141 | F | 0.9 | Other (Hypocalcemia) | TRPC6 | NM_004621.5; c.101T>C (p.M34T)(Het)(inherited from father) | 2/199782 | 24.5 | Father does not have kidney disease |
| RGC-0141 | F | 0.9 | Other (Hypocalcemia) | SLC12A1 | NM_000338.2; c.2282G>A (p.R761Q)(Het)(inherited from father) | 26/282292 | 22.7 | Recessive disorder and only one heterozygous variant |
| RGC-0141 | F | 0.9 | Other (Hypocalcemia) | INVS | NM_014425.3; c.2822A>G (p.H941R)(Het)(inherited from mother) | 1/251378 | 6.868 | Recessive disorder and only one heterozygous variant |
| RGC-0141 | F | 0.9 | Other (Hypocalcemia) | ITGA8 | NM_003638.1; c.1156T>C (p.F386L)(Het)(inherited from mother) | 14/282834 | 22.4 | Recessive disorder and only one heterozygous variant |
| RGC-0141 | F | 0.9 | Other (Hypocalcemia) | APOL1 | NM_003661.3; c.334C>T (p.R112C)(Het)(de novo) | 4/251190 | 11.68 | Variant discussed with experts and seems benign |
| RGC-0142 | F | 0.5 | Other (a-HUS) | CFH | NM_000186.3; c.3357C>G (p.D1119E)(Het)(inherited from mother) | 3/282870 | 11.94 | Patient has homozygous CFHR3-CFHR1 deletion |
| RGC-0142 | F | 0.5 | Other (a-HUS) | ITGA8 | NM_003638.2; c.840T>C (p.S280)(Het)(inherited from father) | 215/282194 | 7.427 | Recessive disorder and only one heterozygous variant |
| RGC-0148 | F | 2 | Hematuria | ACTN4 | NM_004924.5; c.751C>T (p.R251W)(Het)(inherited from father) | 3/143328 | 32 | Paternal kidney evaluation |
| ID | Sex | Age | Phenotype | Gene | Mutation Details | RawAF | Genomic AF | Notes |
|---------|-----|-----|--------------------|------|--|-------|-------------|--|
| RGC-0149 | M | 3 | Hematuria | COL4A4 | NM_000092.4; c.1442G>T (p.G481V)(Het)(inherited from mother) | 1/143110 | 26 | Segregation study suggests this variant causes hematuria in this family |
| RGC-0150 | M | 1.6 | Other (DI) | AVPR2 | NM_000054.4; c.910+5G>T (intronic)(Hem) | 0 | 9.197 | Segregation study suggests this variant causes DI in this family |
| RGC-0153 | F | 9 | Other (Glycosuria)| SLC5A2 | NM_00304.3; c.1665+4A>T (Het)(inherited from father) | 0.003% | 19.57 | Determine father’s phenotype |
| RGC-0158 | M | 8 | Hematuria | COL4A3 | NM_000091.4; c.4445C>T (p.A1482V)(Het) | 223/143266 | 22.5 | May describe phenotype |
| RGC-0158 | M | 8 | Hematuria | NPHS1 | NM_004646.3; c.2614G>A (p.V872I)(Het) | 3/143174 | 18.54 | Pt also has nephrotic syndrome and also has a pathogenic variant in NPHS2 |
| RGC-0169 | M | 2 | Cystic kidney | PKD1 | NM_001099944.2; c.7146C>G (p.S2382R)(Het) | 0 | 23.3 | Reported in autism but there was not concern about DD or ASD in this patient |
| RGC-0169 | M | 2 | Cystic kidney | NPHP1 | NM_000272.3; duplication of whole gene | NA | | |
| RGC-0170 | F | 5 | Proteinuria | CUBN | NM_001081.3; c.2677A>G (p.T893A)(Het) | 146/143296 | 4.896 | Phase of the two VUSs are unknown Parents did not provide samples |
| RGC-0170 | F | 5 | Proteinuria | CUBN | NM_001081.3; c.5285T>G, c.5267T>G, (p.V1762G)(Het) | 12/282422 | 5.578 | Phase of the two VUSs are unknown Follow up |
| RGC-0170 | F | 5 | Proteinuria | NPHS1 | NM_004646.3; c.710T>C (p.L237P)(Het) | 4/251428 | 31 | Recessive disorder and only one heterozygous variant |
| RGC-0170 | F | 5 | Proteinuria | PAX2 | M_003990.4; c.809G>A (p.R270H)(Het) | 7/251366 | 29.2 | Ophthalmology evaluation |
| RGC-0170 | F | 5 | Proteinuria | PLCE1 | NM_016341.3; c.642A>T (p.Q214G)(Het) | 293/280000 | 10.49 | Recessive disorder and only one |
| RGC-0170 | F | 5 | Proteinuria | 1 | SMARCAL1 | M_014140.3; c.1196C>T (p.T399M)(Het) | 353/282896 | 0.899 | Recessive disorder and only one heterozygous variant |
|----------|----|-----|-------------|-----|----------|--------------------------------------|------------|-------|---|
| RGC-0170 | F | 5 | Proteinuria | 1 | WDR73 | NM_032856.3; c.481G>T (p.V161F)(Het) | 5/248808 | 11.65 | Recessive disorder and only one heterozygous variant |
| RGC-0174 | M | 14 | Other (Alagille syndrome) | 1 | JAG1 | NM_000214.2; c.776G>T (p.G259V)(Het)(VUS) | 0 | 26.6 | tES recommended |
| RGC-0180 | F | 5 | Proteinuria | 1 | INF2 | NM_022489.3; c.2851C>T (p.R951W)(Het) | 1/154628 | 23.6 | Father had trace of protein in dipstick Testing of siblings for INF2 |
| RGC-0184 | M | 4 | Proteinuria | 3 | EVC2 | arr[GRCh37]4p16.2(5616917_5699833)x3 | NA | NA | Parental testing recommended |
| RGC-0187 | F | 4 | Cystic kidney | 3 | PUF60 | NM_078480.2; c.1292C>T (p.P43L)(Het)(inherited from father) | 0 | 22.5 | Father does not have kidney disease |
| RGC-0187 | F | 4 | Cystic kidney | 3 | GLIS2 | NM_032975.2; c.1244C>T (p.R415L) (Het)(inherited from mother) | 21/176552 | 26.8 | Recessive disorder and only one heterozygous variant |
| RGC-0187 | F | 4 | Cystic kidney | 3 | ARHGDIA | NM_001301242.1; c.544A>G (p.T182A)(Hom)(both parents are carrier) | 1/249280 | 6.032 | Seems disease causing Testing of siblings recommended |
| RGC-0187 | F | 4 | Cystic kidney | 3 | FLNA | NM_001456.3; c.1399C>T (p.R467C)(Het)(inherited from mother) | 1/177746 | 23.6 | Mother unaffected |

DI, Diabetes insipidus; Es, Exome sequencing; PKDB, Autosomal Dominant Polycystic Kidney Disease Mutation Database; RBP, Retinol-binding Protein; TBM, Thin basement membrane; UA, Urine analysis; US, Ultrasound. Type of the testing; 1, panel; 2, CMA; 3, proband ES; 4, trio ES; 5, Total Blueprint panel.