Abstract

Real-time surface and upper-air observations are crucial to the analysis and forecasting of the West African monsoon (WAM). This paper will focus on the African Monsoon – Multidisciplinary Analyses (AMMA)-driven reactivation and modernisation of the radiosonde network over West Africa, its potential long-term impact on upper-air operations in the region, the influence of the additional data in WAM analyses and forecasting, and the AMMA-related development and usage of the West African Analysis/Forecasting (WASA/F) forecast method. Copyright © 2011 Royal Meteorological Society

Keywords: West Africa; radiosonde network; weather analysis; forecasting

1. Introduction

Real-time, in situ, and remote surface and upper-air observations are crucial to the analysis and forecasting of the West African monsoon (WAM). Beyond these benefits in day-to-day weather forecasting, an observational network, well-maintained over many years, allows for the compilation of high-quality (re-)analysis data sets, thereby supporting process, climate, and model validation studies. Despite the advent of many satellite sensors in the last four decades, whose data are assimilated in operational analyses, surface station data and upper-air information from radiosondes remained an essential source of information over land for weather forecast models mainly for the following reasons (Tompkins et al., 2005; Faccani et al., 2009; Agusti-Panareda et al., 2010a): (1) usage of satellite data is still predominantly limited to cloud-free pixels; (2) satellites provide indirect information with a relatively coarse vertical resolution; and (3) a hitherto very limited use of satellite channels with peak sensitivity in the lower troposphere, due to the heterogeneous surface emissivity. As a consequence, present-day radiosonde systems that provide digital in situ wind, temperature, pressure, and humidity data at a high vertical resolution, permit the best possible definition of the (thermo-)dynamic state of the troposphere, especially at lower levels. The determination of the state of the atmosphere in the lowest few kilometres in the WAM region is of pivotal importance since it is the low-level vertical profiles of temperature, humidity and wind that favour or disfavour the organisation of West African rainy systems and that are crucial for determining the influx of moisture from the surrounding oceans.

Operational and maintenance costs of radiosonde networks are, however, very high and the (West) African radiosonde network has been degrading over many years before the African Monsoon – Multidisciplinary Analyses (AMMA) programme was launched in 2002 (cf. Parker et al., 2008). The complete lack of operating radiosonde stations in the important monsoon inflow zone south of 10°N, upstream of the African Easterly Jet (AEJ) east of 10°E, and in the northern Sahel between 15°N and 20°N (Figure 1) was identified as a major risk to the successful achievement of AMMA scientific goals (Polcher et al., 2011). Beyond the support of AMMA's
scientific goals, the AMMA-funded refurbishment and enhancement of the radiosonde network pursued two further aims: (1) to support local agencies in updat-
ing/refurbishing existing stations, establishing new sta-
tions, and training their staff; and (2) to evaluate the
optimal network for Numerical Weather Prediction
(NWP) and climate monitoring by, for example, per-
foming Observing System Experiments (OSEs). The
achievements of AMMA in terms of the latter two
goals are one focus of the present paper.

While the operation and exploitation of radiosonde
and part of surface data for aviation purposes in the
West African francophone countries (except Guinea)
is managed by Agence pour la Sécurité de la Naviga-
tion Aérienne en Afrique et à Madagascar (ASECNA),
the National Weather Services (NWS) run the sur-
face meteorological networks and are responsible for
issuing weather forecasts at the national level. This
unique organisational structure is one of the many
reasons for the large diversity in financial and tech-
nical facilities across West African analysis and fore-
casting centres. A typical use of upper-air data has
been the manual streamline analyses at metric height
levels (e.g. 600, 900, 1500, and 2100 m). Combined
with surface wind and dewpoint-based analyses of
the Intertropical Discontinuity (ITD) location, these
charts formed the basis for nowcasting at ASECNA
and NWS centres until very recently. This situa-
tion was improved at many NWS headquarters by
the European Organisation for the Exploitation of
Meteorological Satellites (EUMETSAT)-funded instal-
lation of Preparation for Use of MSG in Africa
(PUMA) satellite receiving stations. At the African
Centre of Meteorological Application for Develop-
ment (ACMAD) (Niger) another source of weather
charts was through the Météo-France Forecasting
Synergy System fed by the Reseau de Transmis-
sion d’Information Météorologique (RETIM)-Afrique
transmission link. However, before the arrival of
AMMA, forecasters often lacked a modern concep-
tual framework for analysing and forecasting the major
synoptic features of the WAM. Thus, another focus
of the present contribution will be the description
of the West African Synthetic Analysis/Forecasting
(WASA/F) method developed within AMMA.

In Section 2, the successes, failures, and potential
long-term operational impacts of the refurbished West
African radiosonde network is discussed. Section 3 is
dedicated to the impact of the additional data on WAM
analyses and forecasting. In Section 4, the principal
approach of WASA/F is introduced and Section 5
provides a conclusion.

2. The AMMA radiosonde campaign: successes, problems, and long-term
operational impacts

The dilapidated state of the West African radiosonde
network before AMMA and the multi-faced chal-
enges faced to refurbish, re-activate, and to establish
new upper-air stations has been described in detail
in Parker et al. (2008). Some salient successes of the
AMMA campaign were the – at least temporary – re-
activation of long-silent stations [e.g. Tamale (Ghana,
inactive since 1981), Abidjan (Ivory Coast, silent
since 2001), Ngaoundere (Cameroon, almost no data
feeding into the Global Telecommunication System,
GTS), Conakry (Guinea), and Tessalit (Mali, became
active in 2007 and 2008)], as well as the establish-
mant of three new stations in the coastal inflow zone,
viz. Cotonou and Parakou (both Benin) and Abuja
(Nigeria). The enhanced station network operational
in August 2006 is evident from Figure 1. For the
2 years 2006 and 2007, a unique spatial and temporal
density of highly resolved (vertically every 5–10 m)
sounding data are available for the WAM region.
Between 2005 and 2009, some 13,500 high-resolution

Figure 1. Number of soundings received on the GTS in August 2006 from stations and synoptic times representative of the 2005 (pre-AMMA) operational radiosonde network (numbers in italics) and AMMA Special Observing Period soundings in August 2006 (numbers in boldface).
soundings are stored in the AMMA database (http://amma-international.org/database; Fleury et al., 2011).

Some major problems and shortcomings are also worthy of note. In common with meteorological services worldwide, the African partner agencies in AMMA had to introduce commercial competition with the radiosonde equipment suppliers. This was one reason for the deployment of various sonde types during the AMMA campaign, each of which has its unique, time of day-dependent biases in relative humidity measurements. The Vaisala RS80-A sondes were known for having large dry biases; biases of Vaisala RS92 are weakly moist at night and significantly dry during the daytime; whereas the humidity biases of the French MODEM M2K2 sondes were unknown. The evaluation of radiosonde humidity observations from the 2006 Special Observing Period of AMMA (SOP) with independent Global Positioning System (GPS) estimates of the total column water vapour allowed the documentation of those biases (Bock et al., 2008). Owing to the importance of vertical humidity profiles for the convective activity and WAM water budget, large efforts were undertaken to correct the humidity errors. For that aim two methods have been developed. Nuret et al. (2008) propose a statistical humidity bias correction scheme as a function of temperature and humidity. In a first step, only RS80-A soundings were corrected according to Nuret et al.’s method; their correction was tuned against Vaisala RS92 information at night which is believed to be the most reliable available operational sonde type at night. This corrected RS80-A dataset is available in the AMMA database. At the time of writing, reference soundings at Niamey from Swiss Meteolabor SnowWhite sondes (Verver et al., 2006) are used to correct all other sonde types. A final corrected dataset should be available by 2011. Another correction scheme is proposed by Agustí-Panareda et al. (2009); a statistical method estimates the bias correction as a function of humidity, solar elevation angle, sonde type, and vertical pressure using the European Centre for Medium-Range Weather Forecasts (ECMWF) model first guess and RS92 soundings at night as a reference. They have developed correction functions for all radiosonde types (RS80-A, RS92, and M2K2). As this last method depends both on the no-biased RS-92 assumption at night and on the model’s own bias, a substantial degree of uncertainty in low-level moisture profiles and AMMA reanalyses still persists.

In terms of the long-term operational impacts of the AMMA campaign, it can be stated that the upgrade of ASECNA’s Vaisala ground stations funded by AMMA enabled the network to make the transition to the new digital sonde generation and likely avoided its collapse with the end of the production of the analogue version in 2005 (Parker et al., 2008). The AMMA project also supported ASECNA to improve their launching facilities [e.g. balloon inflation halls, hydrogen generators, (satellite) communication links] at several stations (e.g. Dakar, Abidjan, and Douala) and to conduct training of the station staff. This has undoubtedly contributed to the high success rate of ASECNA’s AMMA soundings in the post-Extensive Observing Period of AMMA (EOP, 2005–2007) era from January 2008 to June 2009 (Figure 2). However, as is evident from Figure 2, some 30% of TEMP messages from these reliable stations are still lost due to persistent GTS failure – a problem out of the scope of the AMMA project. Moreover, even though the AMMA-activated stations in the wetter coastal area (e.g. Tamale, Parakou, Cotonou, and Abuja) performed soundings beyond the end of the AMMA EOP, these stations gradually become moribund when consumables faded out in 2008.

3. Impact of the additional data on WAM analyses and forecast

The additional radiosondes during the 2006 intensive observing campaign had a positive impact on the ECMWF and French WAM analyses and forecast after the humidity was corrected using the method described in Agustí-Panareda et al. (2009). For the French NWP system, this is shown in Faccani et al. (2009) whereas for the ECMWF analysis system, this was investigated by Agustí-Panareda et al. (2010a) by running two data assimilation experiments for August 2006. The first is the AMMA re-analysis (Agustí-Panareda et al., 2010b) in which all the additional data are included. They consist of data received at ECMWF via the GTS and e-mail during the field campaign and those furnished to ECMWF after the experiment. The second experiment is the ‘pre-AMMA scenario’ in which the additional sondes are deleted such that a typical coverage as in 2005 is obtained (cf Figure 1). Since all the other aspects of the system are the same (e.g. same model version, same resolution) any impact can only be due to data coverage.
can be concluded that the AMMA analysis does not constrain the moisture convergence very well in the Sahel in spite of the extra observations.

One of the most important parameters to forecast during the monsoon season is precipitation. The impact of the extra AMMA radiosondes on the one-day precipitation forecast in the ECMWF analyses system is to increase the precipitation amount by ~2 mm/day over the central Sahel (around the Greenwich meridian) and to decrease the precipitation in the eastern part (east of 10°E, for more details see Agusti-Panareda et al., 2010a). This decrease is not good because it occurs over a region where there was already a deficit of precipitation (e.g. compared to Global Precipitation Climatology Project analysis). This seems to be partly linked to the fact that observations east of 10°E are sparse and the analysis increments are localised, producing an unrealistic local circulation with divergence and subsidence as a result of the large cooling around the radiosonde stations (e.g. Ndjamen). Subsiding motion constitutes a deterrent for the triggering of convection.

Several experiments were run using the French NWP system. The experiment without the stations constituting the AMMA radiosonde network is clearly not performing as well as the other experiments, which means that a basic radiosonde network is needed. However, the impact of the AMMA soundings is further improved if the ECMWF bias correction is applied to the relative humidity measurements. Thus, forecasts running from the AMMA analyses are indeed better for the WAM region than the ones from the pre-AMMA analyses, but the advantage is lost over West
Africa within 24 h, although there is a positive impact over Europe after 2–3 days in the French system (Faccani et al., 2009; Agustí-Panareda et al., 2010a).

Even with additional radiosondes, the network is still far from being optimal over Africa. OSEs during the summer 2006 by Karbou et al. (2010a, 2010b) with and without the assimilation of Advanced Microwave Sounding Unit (AMSU)-A and AMSU-B channels close to the surface over the continent demonstrated an important improvement of analyzed fields and of precipitation forecasts over parts of the Tropics and especially over West Africa, as validated with AMMA observations. Physically, the changes result in a better-organized African monsoon with a stronger Intertropical Convergence Zone (ITCZ) in terms of ascent, vorticity, and precipitation. Forecast errors were reduced over the Tropics, leading to significant forecast improvements at higher latitudes at 48 and 72-h ranges.

4. The West African synthetic analysis/forecast

The task of a forecaster involves the analysis of numerous observations and NWP products (both analysis and forecasts) before deciding on the weather forecast for a given location and range. This is a very complex process involving both objective and subjective criteria and where the experience of the forecaster plays an important role on the skill of the final forecast. The difficulty is even stronger for tropical regions where in contrast to mid-latitudes the atmospheric flow is weakly balanced resulting in a weaker predictability, especially for convective events. This forecast process needs to be performed as quickly as possible and needs to be synthesised into a form which can be understood by non-specialist users and customers. With the development and implementation of the WASA/F method, AMMA again pursued a dual strategy: (1) to fulfil the operational forecast needs for the campaign in 2006, thereby, supporting the achievement of the scientific objectives; and (2) to develop a forecasting method with experienced African forecasters that could be adopted as an operational tool at African weather centres, simply because it provides guidance to the forecaster through the above-mentioned complex forecasting process.

The proposed forecasting approach is based on the preparation of single synthetic maps that summarize all key features of the WAM analyzed or forecast at a given time. The following ten features are considered important and are drawn on the WASA/F maps in order to capture the main synoptic flow and mesoscale convective features of the situation and to forecast the weather (Figure 4). These are
(1) the ITD; (2) the associated heat low (HL); (3) the Subtropical Jet (STJ) and, if present, the Polar Jet (PJ); (4) associated trough axes extending from mid-latitudes; (5) the Tropical Easterly Jet (TEJ); (6) the AEJ; (7) troughs and cyclonic centres associated with AEWs (see AEW trough and ‘C’ character over southeastern Mauritania in Figure 4); (8) mid-level dry air boundaries (black dashed line in Figure 4); (9) the monsoon layer for which forecasters have to plot specific maps at 950 and 850 hPa to analyze its characteristics (depth, moisture content); and (10) convective activity with the distinction of the three cases of suppressed convection areas, unorganized isolated convective cells (both not present in Figure 4), and Mesoscale Convective Systems (MCSs) (see cumulonimbus signs in Figure 4), or Squall Lines (SLs) (not present in Figure 4).

The first nine key features were provided during AMMA SOP by NWP outputs from different centres, e.g. ECMWF, Météo-France, National Centers for Environmental Prediction (NCEP), and UK Met Office. They were available at ACMAD (Niger) and on a web site specifically developed for the AMMA Operational Centre (http://aoc.amma-international.org/) that also included observations and research products to monitor the WAM at different scales. Using a synthesis of the above-mentioned NWP products, these nine key features were drawn by the forecaster according to some rules using computer software. The model skill to forecast convective activity is poor in such tropical regions, so that the final forecast of MCSs is the result of the combination of all the above nine features, following some rules. For instance, active fast-moving MCSs are known to be favoured by convective instability, high precipitable water, sufficient vertical shear (often present in the AEJ region), mid-level dry air, and the proximity of a (AEW) trough or vortex in the 700–850-hPa layer. A bilingual forecaster’s guide to forecast the WAM at different scales. Using a synthesis of the above-mentioned NWP products, these nine key features were drawn by the forecaster according to some rules using computer software. The model skill to forecast convective activity is poor in such tropical regions, so that the final forecast of MCSs is the result of the combination of all the above nine features, following some rules. For instance, active fast-moving MCSs are known to be favoured by convective instability, high precipitable water, sufficient vertical shear (often present in the AEJ region), mid-level dry air, and the proximity of a (AEW) trough or vortex in the 700–850-hPa layer. A bilingual forecaster’s guide to forecast the WAM at different scales.

The SOP 2006 summer demonstration experiment showed that the WASA/F systems helped the forecasters to capture the synoptic situation and to create a synthesis forecast. However, it appeared that the method needs to be improved to define clearer drawing rules based on adequate and objective diagnostics. It concerns primarily AEWs and related troughs, dry air boundaries, and a way to summarize the main characteristics of the monsoon layer. Finally, it shall be mentioned that Météo-France made available in real-time MCS tracking products derived from Meteosat infrared images developed within the framework of EUMETSAT’s Satellite Application Facilities (SAF) Nowcasting (Morel and Sénési, 2002). This product has been very useful to monitor the convection activity both for forecasters and scientists, and is still used at ACMAD.

5. Conclusions

A unique feature of AMMA has certainly been the leading involvement of ASECNA and some NWSs in carrying out operational and research soundings in West Africa. This was a major pillar of the success in the enhancement of upper-air data in the WAM region between 2005 and 2009 and has greatly contributed to the success of the AMMA field campaign. The assimilation of the additional, humidity bias-corrected sondes data led to a distinct improvement in the analyzed atmospheric fields, in the sense that the analyses are closer to observations. The unique AMMA database comprising the soundings and the AMMA re-analysis is of unprecedented quality and has been proven to be very valuable for WAM process and model studies. This will remain so in the coming years.

The forecasts started from the AMMA re-analyses lost the advantage within the first 24 h over West Africa. As a consequence, it is at present impossible to define an optimal radiosonde network for NWP in West Africa due to model biases in the short range forecasts. Forecast quality depends on the quality of observations, of the data assimilation, as well as of the models. This calls for both an optimal observation network, as well as for data assimilation and model improvements. Regarding the latter, the process and model studies within AMMA (Lafond et al., 2011; Ruti et al., 2011) have provided the research avenue. Also, more research is needed in data assimilation and the use of alternative data. Progress in this direction can be expected from use of cloud motion winds, the assimilation of rain rates and a more aggressive use of satellite radiances over land and in cloudy areas. In the latter context, a recent step to improve low-level moisture analyses and rainfall forecasts over tropical monsoon regions has been achieved using Medium Resolution Imaging Spectrometer (MERIS) and AMSU microwave channels, respectively (Bauer et al., 2009; Karbou et al., 2010a, 2010b).

The AMMA project clearly demonstrated that a good observation network is a minimum condition for making progress towards improving process understanding and models. Direct measurements will always be needed due to their high vertical resolution and use in the calibration of satellite retrieval algorithms. Given the likely model improvements emerging from ongoing AMMA research, there is a persisting need to determine an optimal, cost-effective radiosonde network. To achieve this goal, a longer, multi-year period is necessary in which the (West) African radiosonde network performs at a spatial density and temporal sounding frequency comparable to the networks in Europe, North America, and East Asia. AMMA demonstrated that the radiosonde network can be as strong as in these other regions of the world. Such a network would have other benefits such as climate change monitoring in a continent that is thought to be very vulnerable to the projected climate changes. The
radioonde network will, however, decay further in the coming years without a structural change in the international management. As part of this, it is necessary to improve the quality, value, and training in use of NWP products for local meteorological agencies which will then motivate better collection and communication of data.

ACMAD has developed the WASA/F method somewhat further to capture North African dry season features like slight to moderate dust or haze zones. WASA/F maps are currently operationally produced at ACMAD and available through their website (http://www.acmad.ne/en/prevision/short_range.pdf). ACMAD is also involved in WMO severe weather forecasting demonstration project (SWFDP, http://www.un-spider.org/guide-en/3220/severe-weather-forecasting-demonstration-project-swfdp) such as for southern Africa. Within this context South African Synthetic Analysis/Forecasting (SASA/F) maps are currently being developed and tested. Thus, AMMA kicked off and steered the transfer and development of a new analysis and forecasting method for all seasons and the entire African continent. Currently, a Handbook for Forecasters in West Africa is being compiled in which AMMA consortium members play a leading role. However, the further development of WASA/F and SASA/F after AMMA is not guaranteed. The value of this new method needs to be better recognized in the region and internationally. It is to be hoped that these initiatives to systematically improve the operational use of NWP products in Africa will have a positive influence on data collection and communication by the local meteorological agencies.

Acknowledgements

The support of the AMMA project is gratefully acknowledged (see http://onlinelibrary.wiley.com/doi/10.1002/asl.331/full for full acknowledgement).

References

Agusti-Panareda A, Beljaars A, Cardinali C, Genkova I, Thornicroft C. 2010a. Impact of assimilating AMMA soundings on ECMWF analyses and forecasts. Weather and Forecasting 25: 1142–1160. DOI: 10.1175/2010WAF2222570.1

Agusti-Panareda A, Beljaars A, Ahlgrimm M, Balsamo G, Bock O, Forbes R, Ghelli A, Guichard F, Koehler M, Meynadier R, Morcrette JJ. 2010b. The ECMWF re-analysis for the AMMA observational campaign. Quarterly Journal of Royal Meteorological Society 136: 1457–1472.

Agusti-Panareda A, Vasiljevic D, Beljaars A, Bock O, Guichard F, Nuret M, Garcia Menendez A, Andersson A, Bechtold P, Fink A, Hershbach H, Lafore JP, Ngamini JB, Parker DJ, Redelsperger JL, Tompkins AM. 2009. Radiosonde humidity bias correction over the West African region for the special AMMA reanalysis at ECMWF. Quarterly Journal of Royal Meteorological Society 135: 595–617.

Bauer P. 2009. 4D-Var assimilation of MERIS total column water vapour retrievals over land. Quarterly Journal of Royal Meteorological Society 135: 1852–862.

Bock O, Bouin MN, Doerflinger E, Collard P, Masson F, Meynadier R, Nahmani S, Koité M, Gaptia Lawalan Bakwan K, Didé F, Ouendrago D, Pokperlaar S, Ngamini JB, Lafore JP, Janicot S, Guichard F, Nuret M. 2008. The West African Monsoon observed with ground-based GPS receivers during AMMA. Journal of Geophysical Research 113: D21105. DOI: 10.1029/2008JD010327

Faccani C, Rahier F, Fournet N, Agusti-Panareda A, Karbou F, Moll P, Lafore JP, Nuret M, Hildou FZ, Bock O. 2009. The impact of the AMMA radiosonde data on the French global assimilation and forecast system. Weather and Forecasting 24: 1268–1286.

Fleury L, Boichard JL, Brissebret S, Cloché S, Eymard L, Mastrillo L, Moulaye O, Ramage K, Asencio N, Coppeaux J, Devic MP, Favot F, Ginoux K, Lafore JP, Polcher J, Redelsperger JL, Rousot S, Tytéca M. 2011. AMMA information system: an efficient cross-disciplinary tool and a legacy for forthcoming projects. Atmospheric Science Letters 12: 149–154. DOI: 10.1002/asl.303.

Karbou F, Gérard E, Rahier F. 2010a. Global 4D-Var assimilation and forecast experiments using AMSU observations over land. Part I: impact of various land surface emissivity parameterizations. Weather and Forecasting 25: 5–19.

Karbou F, Rahier F, Lafore JP, Redelsperger JL, Bock O. 2010b. Global 4D-Var assimilation and forecast experiments using AMSU observations over land. Part II: impact of assimilating surface sensitive channels on the African Monsoon during AMMA. Weather and Forecasting 25: 20–36.

Lafore J-P, Flamant C, Guichard F, Parker DJ, Bouniol D, Fink AH, Giraud V, Gosset M, Hall N, Höller H, Jones SC, Protat A, Roca R, Roux F, Saïd F, Thorncroft C. 2011. Progress in understanding of weather systems in West Africa. Atmospheric Science Letters 12: 7–12. DOI: 10.1002/asl.335.

Meynadier R, Bock O, Gevois S, Guichard F, Redelsperger JL, Agusti-Panareda A, Beljaars A. 2010. West African Monsoon water cycle. 2. Assessment of numerical weather prediction water budgets. Journal of Geophysical Research 115: D19107. DOI: 10.1029/2010JD013919.

Morel C, Sénési S. 2002. A climatology of mesoscale convective systems over Europe using satellite infrared imagery. I. methodology. Quarterly Journal of Royal Meteorological Society 128: 1953–1992.

Nuret M, Lafore JP, Bock O, Guichard F, Agusti-Panareda A, Ngamini JB, Redelsperger JL. 2008. Correction of humidity bias for Vaisala RS80 sondes during AMMA 2006 Observing Period. Journal of Atmospheric and Oceanic Technology 25: 2152–2158.

Parker DJ, Fink AH, Janicot S, Ngamini JB, Douglas M, Altesimba E, Agusti-Panareda A, Beljaars A, Didé F, Diedhiou A, Lebel T, Polcher J, Redelsperger JL, Thorncroft C, Wilson GA. 2008. The AMMA radiosonde program and its implications for the future of atmospheric monitoring over Africa. Bulletin of the American Meteorological Society 89: 1015–1027.

Polcher J, Parker DJ, Gaye A, Diedhiou A, Eymard L, Fierfi FH, Genesio L, Höller H, Janicot S, Lafore J-P, Karambihi H, Lebel T, Redelsperger JL, Reeves CE, Ruti P, Sandholt I, Thorncroft C. 2011. AMMA’s contribution to the evolution of prediction and decision-making systems for West Africa. Atmospheric Science Letters 12: 2–6. DOI: 10.1002/asl.320.

Ruti PM, Williams JE, Houdin F, Guichard F, Boone A, Van Velthoven P, Favot F, Musat I, Rummukainen M, Dominguez M, Gaertner MA, Lafore JP, Loisada T, Rodríguez de Fonseca MB, Polcher J, Giorgi F, Xue Y, Bouarar I, Law K, Josse B, Barrett B, Yang X, Mari C, Traore AK. 2011. The West African climate system: a review of the AMMA model inter-comparison initiatives. Atmospheric Science Letters 12: 116–122. DOI: 10.1002/asl.305.

Tompkins AM, Cardinali C, Morcrette JJ, Rodwell M. 2005. Influence of aerosol climatology on forecasts of the African Easter Jet. Geophysical Research Letters 32: L10801. DOI: 10.1029/2004GL022189.

Verge R, Fujiwara M, Dethamns P, Becker C, Fortuin P, Miloshevich L. 2006. Performance of the vaisala RS80A/H and RS90 humicap sensors and the meteorolab “Snow White” chilled-mirror hygrometer in parambario, suriname. Journal of Atmospheric and Oceanic Technology 23: 1506–1518.