Constraints on cosmological models from strong gravitational lensing systems

Shuo Cao, a Yu Pan, a,b Marek Biesiada, c Wlodzimierz Godlowski d and Zong-Hong Zhu a

a Department of Astronomy, Beijing Normal University, Beijing 100875, China
b College Mathematics and Physics, Chongqing Universe of Posts, and Telecommunications, Chongqing 400065, China
c Department of Astrophysics and Cosmology, Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
d Institute of Physics, Opole University, Oleska 48, 45-052 Opole, Poland

E-mail: baodingcaoshuo@163.com, panyu@cqupt.edu.cn, biesiada@us.edu.pl, godlowski@uni.opole.pl, zhuzh@bnu.edu.cn

Received October 9, 2011
Revised December 17, 2011
Accepted February 5, 2012
Published March 8, 2012

Abstract. Strong lensing has developed into an important astrophysical tool for probing both cosmology and galaxies (their structure, formation, and evolution). Using the gravitational lensing theory and cluster mass distribution model, we try to collect a relatively complete observational data concerning the Hubble constant independent ratio between two angular diameter distances \(D_{ds}/D_s\) from various large systematic gravitational lens surveys and lensing by galaxy clusters combined with X-ray observations, and check the possibility to use it in the future as complementary to other cosmological probes. On one hand, strongly gravitationally lensed quasar-galaxy systems create such a new opportunity by combining stellar kinematics (central velocity dispersion measurements) with lensing geometry (Einstein radius determination from position of images). We apply such a method to a combined gravitational lens data set including 70 data points from Sloan Lens ACS (SLACS) and Lens Structure and Dynamics survey (LSD). On the other hand, a new sample of 10 lensing galaxy clusters with redshifts ranging from 0.1 to 0.6 carefully selected from strong gravitational lensing systems with both X-ray satellite observations and optical giant luminous arcs, is also used to constrain three dark energy models (ΛCDM, constant \(w\) and CPL).

1 Corresponding author.
under a flat universe assumption. For the full sample \((n = 80)\) and the restricted sample \((n = 46)\) including 36 two-image lenses and 10 strong lensing arcs, we obtain relatively good fitting values of basic cosmological parameters, which generally agree with the results already known in the literature. This results encourages further development of this method and its use on larger samples obtained in the future.

Keywords: gravitational lensing, dark energy experiments, dark energy theory

ArXiv ePrint: 1105.6226
1 Introduction

Pioneering observations of type Ia supernovae (SNe Ia) [1, 2] have demonstrated that our present universe is passing through an accelerated phase of expansion preceded by a period of deceleration. A new type of matter with negative pressure known as dark energy, has come up to explain the present phase of acceleration. The simplest candidate of dark energy, the cosmological constant (Λ), is consistent with various observations such as more precise supernova data [3–5], the CMB observations [6, 7], the light elements abundance from Big Bang Nucleosynthesis [8], the baryon acoustic oscillations (BAO) detected in SDSS sky survey [9], radio galaxies [10], and gamma-ray bursts [11]. However, various other models were proposed as candidates of dark energy, such as the typical dynamical scalar field called quintessence [12], phantom corrections [13], a joint quintom scenario [14] or Chaplygin gas [15–18], to mention just a few out of a long list. On the other hand there are still many other ways to understand the accelerating universe, such as Modified Friedmann Equation [19, 20] and Dvali-Gabadadze-Porrati(DGP) mechanism [21]. But until now none of these models was demonstrated superior over the other. Besides, while updating the current estimates of cosmological model parameters, one should try to use new probes. Strongly gravitationally lensed systems belong to this category. They can provide the information on two angular diameter distances, D_{ds} and D_s. One is the distance to the source and the other is that between the deflector and the source. Since angular diameter distance depends on cosmological geometry, we can use their ratios to constrain cosmological models.

The discovery of strong gravitational lensing in Q0957+561 [22] opened up an interesting possibility to use strong lens systems in the study of cosmology and astrophysics. Up to now, strong lensing has developed into an important astrophysical tool for probing both cosmology [23–29] and galaxies (their structure, formation, and evolution) [30–36]. Now several hundreds of strong lens systems produced by massive galaxies have been discovered, but only ~ 90 galactic-scale strong lenses with known redshift of the lens and the source and measured image separation can form well-defined samples useful for statistical analyses. These well-defined strong lenses are particularly useful not only for constraining the statistical properties of galaxies such as stellar velocity dispersions or galaxy evolution [35, 37], but also for constraining cosmological parameters such as the present-day matter density Ω_m, dark
energy density Ω_x and its equation of state w [25, 27]. For example, the Cosmic Lens All-Sky Survey (CLASS) statistical data, which consists of 8958 radio sources out of which 13 sources are multiply imaged [25, 38] was first extensively used by [25], who found $\Omega_m \approx 0.3$ assuming a flat cosmology and non-evolving galaxy populations. [27] reused this CLASS statistical sample based on the velocity dispersion function (VDF) of early-type galaxies derived from the SDSS Data Release 1 (DR1; [39]). [28] reanalyzed 10 CLASS multiply-imaged sources whose image-splittings are known to be caused by single early-type galaxies to check the validity of the DGP model with radio-selected gravitational lensing statistics. More recently, the distribution of gravitationally-lensed image separations observed in the Cosmic Lens All-Sky Survey (CLASS), the PMN-NVSS Extragalactic Lens Survey (PANELS), the Sloan Digital Sky Survey (SDSS) and other surveys was used by [40], who found $w < -0.52$ assuming a flat cosmology and adopting semi-analytical modeling of galaxy formation. The idea of using strongly gravitationally lensed systems, in particular measurements of their Einstein radii combined with spectroscopic data, for measuring cosmological parameters including the cosmic equation of state was discussed in ref. [41] and also in a more recent papers [42–44].

On the other hand, galaxy clusters, as the largest dynamical structures in the universe, are also widely used both in cosmology and astrophysics. Firstly, their mass distributions at different redshifts can be described by the Press-Schechter function [45], which reflects the linear growth rate of density perturbations and therefore can provide constraints on cosmological parameters such as the matter and dark energy densities [46]. Secondly, combining the Sunyaev-Zel’dovich effect [47] with observations of clusters’ X-ray luminosity, one is able to measure or estimate the Hubble constant and other cosmological parameters in given cosmological model [48–52]. Relevant discussions on the corrections to the Sunyaev-Zeldovich effect for galaxy clusters can be found in [53–55]. More importantly, giant arcs generated by the galaxy cluster are perfect indicators of its surface mass density, while the mass distribution of the cluster’s mass halo can be modelled from X-ray luminosity and temperature, which may provide certain observable [56, 57]. Recently, [58] collected a new sample with such data from an online database BAX and various literature, which led to some interesting results compared with those obtained by [57].

In this paper, we try to collect a relatively complete observational data concerning the Hubble constant independent ratio between two angular diameter distances D_{ds}/D_s from various large systematic gravitational lens surveys and galaxy cluster data. This paper is organized as follows. In section 2, we briefly describe the methodology for both strong gravitationally lensed systems: galactic lenses and galaxy clusters. Then, in section 3 we present the D_{ds}/D_s data from various large systematic gravitational lens surveys and lensing galaxy clusters with X-ray observations and optical giant luminous arcs. We further introduce three popular cosmological models tested in section 4. Finally, we show the results of constraining cosmological parameters using MCMC method and conclude in section 5. In the final section we also compare our approach with the conventional one based on strong lensing statistics.

2 The method

Gravitational lensing is one of the successful predictions of General Relativity. Strong gravitational lensing occurs whenever the source, the lens and the observer are so well aligned that the observer-source direction lies inside the so-called Einstein ring of the lens. [59] tried to use lensing images as indicators to estimate cluster mass and constrain cosmological constant.
In a cosmological context, the source is usually a quasar with a galaxy acting as the lens. Strong lensing reveals itself as multiple images of the source, and the image separations in the system depend on angular diameter distances to the lens and to the source, which in turn are determined by background cosmology. Since the discovery of the first gravitational lens, the number of strongly lensed systems increased to a hundred (in the CASTLES data base) and is steadily increasing following new surveys like the Sloan Lens ACS (SLACS) survey [60, 61]. This opens a possibility to constraining the cosmological model provided that we have good knowledge of the lens model.

Now, the idea is that the formula for the Einstein radius in a SIS lens (or its SIE equivalent),

\[
\theta_E = 4\pi \frac{D_A(z_s)}{D_A(0, z_s)} \frac{\sigma_{\text{SIS}}^2}{c^2},
\]

depends on the cosmological model through the ratio of (angular diameter) distances between lens and source and between observer and lens. Under flat Friedman-Walker metric, the angular diameter distance reads

\[
D_A(z; p) = \frac{c}{H_0(1+z)} \int_0^z dz' E(z'; p).
\]

where \(H_0\) is the Hubble constant and \(E(z; p)\) is a dimensionless expansion rate dependent on redshift \(z\) and cosmological model parameters \(p\). If the Einstein radius \(\theta_E\) from image astrometry and stellar velocity dispersion \(\sigma\) (or central velocity dispersion \(\sigma_0\)) from spectroscopy can be determined, this method can be used to constrain cosmological parameters. The advantage of this method is that it is independent of the Hubble constant value and is not affected by dust absorption or source evolutions. However, it depends on the measurements of \(\sigma_0\) and lens modelling (e.g. singular isothermal sphere (SIS) or singular isothermal ellipsoid (SIE) assumption). Hopefully, spectroscopic data for central parts of lens galaxies became available from the Lens Structure and Dynamics (LSD) survey and the more recent SLACS survey etc, which make it possible to assess the central velocity dispersions \(\sigma_0\) [36, 42, 62]. Meanwhile, the SIS (or SIE) model is still a useful assumption in gravitational lensing studies and should be accurate enough as first-order approximation to the mean properties of galaxies relevant to statistical lensing. For example, [63] found that inside one effective radius massive elliptical galaxies are kinematically indistinguishable from an isothermal ellipsoid. In the previous works, such an isothermal mass profile has also been widely used for analyses of statistical lensing [36, 62–68].

However, let us note here that the velocity dispersion \(\sigma_{\text{SIS}}\) of the mass distribution and the observed stellar velocity dispersion \(\sigma_0\) need not be the same. [69] argued that there is a strong indication that dark matter halos are dynamically hotter than the luminous stars based on X-ray observations, and dark matter must necessarily have a greater velocity dispersion than the visible stars. In this paper, we adopt a free parameter \(f_E\) that relates the velocity dispersion \(\sigma_{\text{SIS}}\) and the stellar velocity dispersion \(\sigma_0\) [35, 70]:

\[
\sigma_{\text{SIS}} = f_E \sigma_0.
\]

To be more specific, we have kept \(f_E\) as a free parameter, since it mimics the effects of: (i) systematic errors in the rms difference between \(\sigma_0\) (observed stellar velocity dispersion) and \(\sigma_{\text{SIS}}\) (SIS model velocity dispersion); (ii) the rms error caused by assuming the SIS model in order to translate the observed image separation into \(\theta_E\), since the observed image separation
does not directly correspond to θ_E; (iii) softened isothermal sphere potentials which tend to decrease the typical image separations [71], and could be represented by f_E somewhat smaller than 1. [72] found that the presence of the background matter tends to increase the image separations produced by lensing galaxies from ray-tracing simulations in CDM models, though this effect is small, of order of 20% or less. [73] showed that richer environments of early type galaxies may have a higher ratio of dwarf to giant galaxies than the field. However, [74] showed that this effect nearly cancels the effect of the background matter, making the distribution of image separations significantly independent of environment. They predicted that lenses in groups have a mean image separation which is $\sim 0.2\arcsec$ smaller than that of lenses in the field. Therefore, all these above factors can possibly affect the images separation by up to $\pm20\%$, which may be mimicked by introducing $(0.8)^{1/2} < f_E < (1.2)^{1/2}$ [35]. Moreover, since the main goal of this paper is to constrain cosmological parameters, we firstly consider f_E as a free parameter, obtain its best-fit value and probability distribution function $P(f_E)$, and then treat it as a "nuisance" parameter to determine constraints on the relevant cosmological parameters of interest. The procedure of marginalization is carried out following that of [75, 76], where $P(f_E)$ is normalized to one and is usually taken to be a Gaussian or a $\delta(f_E)$ function peaked at the best-fit value of f_E. We then integrate the likelihood function,

$$\mathcal{L}(p) = \int \mathcal{L}(p, f_E) P(f_E) df_E$$

(2.4)

and determine the best-fit values and confidence level contours from $\mathcal{L}(p)$.

In the method we use, the cosmological model enters not through a distance measure directly, but rather through a distance ratio

$$D_{\text{th}}(z_d, z_s; p) = \frac{D_{ds}}{D_s} = \frac{\int_{z_d}^{z_s} [dz'/E(z'; p)]}{\int_{0}^{z_s} [dz'/E(z'; p)]}$$

(2.5)

and respective observable counterpart reads

$$D_{\text{obs}} = \frac{c^2 \theta_E}{4\pi \sigma_0^2 f_E}$$

(2.6)

with its corresponding uncertainty calculated through propagation equation concerning the errors both on the stellar velocity dispersion σ_v and the Einstein radius θ_E ($\sim 5\%$ error for the Einstein radius [42]).

Moreover, strong lensing by clusters with galaxies acting as sources can produce giant arcs around galaxy clusters, which can also be used to constrain clusters’ projected mass and cosmological parameters [57, 77, 78]. When a galaxy cluster is relaxed enough, the hydrostatic isothermal spherical symmetric β-model [79] can be used to describe the intracluster medium(ICM) density profile: $n_e(r) = n_{e0} \left(1 + r^2/r_c^2\right)^{-3\beta_X/2}$, where n_{e0} is the central electron density, β_X and r_c denote the slope and the core radius, respectively. Assuming that whole gas volume is isothermal (with the temperature T_X), the gravity of relaxed cluster and its gas pressure should balance each other according to the hydrostatic equilibrium condition. With the approximation of spherical symmetry, the cluster mass profile can be given by

$$M(r) = \frac{3 k_B T_X \beta_X}{2G\mu m_p} r_c^{-1} r^{1-\mu}$$

where k_B, m_p and $\mu = 0.6$ are, respectively, the Boltzmann constant, the proton mass, and the mean molecular weight [80]. A theoretical surface density can be derived as

$$\Sigma_{\text{th}} = \frac{3}{2G\mu m_p} \frac{k_B T_X \beta_X}{\theta_c} D_d$$

(2.7)
Combining this with the critical surface mass density for lensing arcs [81]

\[\Sigma_{\text{obs}} = \frac{c^2}{4\pi G D_s D_d D_{ds}} \sqrt{\frac{\theta_t^2}{\theta_c^2}} + 1, \]

(2.8)
a Hubble constant independent ratio can be obtained

\[D_{\text{obs}} = \frac{D_{ds}}{D_s} \mid_{\text{obs}} = \frac{\mu m_p c^2}{6\pi} \frac{1}{k_B T_X \beta_X} \sqrt{\theta_t^2 + \theta_c^2}. \]

(2.9)

The X-ray data fitting results may provide us the above mentioned relevant parameters such as \(T_X, \beta_X, \) and \(\theta_c \). The position of tangential critical curve \(\theta_t \) is usually deemed to be equal to the observational arc position \(\theta_{\text{arc}} \). In this paper we assume that the deflecting angle has a slight difference with the arc radius angle, \(\theta_t = \epsilon \theta_{\text{arc}} \), with the correction factor \(\epsilon = (1/\sqrt{1.2}) \pm 0.04 \) [82]. The complete set of standard priors and allowances of the above parameters included in eq. (2.9) can be found in table 1 of [58]. The observational \(D_{\text{obs}} \) and its corresponding uncertainty are also calculated through eq. (2.9).

We stress here that the observational distance ratio \(D \) has both advantage and disadvantage. The positive side is that the Hubble constant \(H_0 \) gets cancelled, hence it does not introduce any uncertainty to the results. The disadvantage is that the power of estimating \(\Omega_m \) is relatively poor [43]. Therefore we only attempt to fit \(\Omega_m \) in the case of a \(\Lambda \)CDM model (where it is the only free parameter in flat cosmology). Then for both cases above (eq. (2.6) and eq. (2.9)), we can fit theoretical models to observational data by minimizing the \(\chi^2 \) function

\[\chi^2(p) = \sum_i \frac{(D_{\text{th}}^i(p) - D_{\text{obs}}^i)^2}{\sigma_{D,i}^2}, \]

(2.10)

where the sum is over the sample and \(\sigma_{D,i}^2 \) denotes the variance of \(D_{\text{obs}}^i \).

3 Sample used

For the Einstein ring data, we first use a combined sample of 70 strong lensing systems with good spectroscopic measurements of central dispersions from the SLACS and LSD surveys [43, 60, 61]. Original data concerning the sample can be found in ref. [22, 36, 83–90] (see for details). In our sample of 70 lenses some have 2 images and some have 4. There are some general arguments in favor of SIS model, but strictly speaking SIS lens should have only 2 images [43, 44], so one can try to use only 2 image systems out of the full sample. Therefore we selected a subsample of \(n = 36 \) lenses, which is summarized in table 1 where the names of lenses in the restricted sample are given in bold.

As for the strong lensing arcs, redshifts and temperatures of the galaxy clusters are always searched out directly from online databases, such as CDS (The Strasbourg astronomical Data Center) or NED (NASA/IPAC Extragalactic Database). [58] have chosen a new database established especially for X-ray galaxy clusters — BAX, which provides detailed information including \(\beta \) and \(\theta_c \). They also used the fitting results of Chandra, ROSAT, ASCA satellites and VIMOS-IFU survey [51, 91–93]. The final statistical sample satisfy the following well-defined selection criteria. Firstly, the distance between the lens and the source should be always smaller than that between the arc source and the observer, \(D_{ds}/D_s < 1 \), which rules out half of selected lensing arcs. Secondly, the arcs whose positions are too far
from characteristic radius ($\theta_{\text{arc}} > 3\theta_c$) should also be discarded [58]. At last [58] obtained a sample of 10 giant arcs with all necessary parameters listed in table 1.

Now the observational D_{ds}/D_s data containing 80 data points for cosmological fitting are summarized in table 1, with errors calculated with error propagation equation. We also list a restricted sample containing 46 data points, which consists 36 two-image lenses and 10 strong lensing arcs.

4 Cosmological models tested

All cosmological models we will consider in this paper are currently viable candidates to explain the observed acceleration. Given the current status of cosmological observations, there is no strong reason to go beyond the simple, standard cosmological model with zero curvature and cosmological constant Λ (except for the conceptual problems arising when one attempts to reconcile its observed value with some estimate derived from fundamental arguments [94]). However, it is still interesting to investigate alternative models. And we hope that future observations of more accurate D_{ds}/D_s data could allow to better discriminate various competing candidates. In the MCMC simulations we assume for each class of models the best fit values of parameters found in the present work, and vary them within their 2\σ uncertainties. We assume spatial flatness of the Universe throughout the paper, since it is strongly supported by independent and precise experiments e.g. a combined 5-yr Wilkinson Microwave Anisotropy Probe (WMAP5), baryon acoustic oscillations (BAO) and supernova data analysis gives $\Omega_{\text{tot}} = 1.0050^{+0.0060}_{-0.0061}$ [95]. Moreover, the $\Omega_m = 0.27$ prior is used except in the ΛCDM model where the fit is attempted.

For comparison we also performed fits to the newly released Union2 SNe Ia data ($n=557$ supernovae) from the Supernova Cosmology project covering a redshift range $0.015 \leq z \leq 1.4$ [96]. In the calculation of the likelihood from SNe Ia, we marginalize over the nuisance parameter [97]

$$\chi^2_{\text{SNe}} = A - B^2/C + \ln \left(\frac{C}{2\pi} \right), \quad (4.1)$$

where $A = \sum_{i}^{557} (\mu_{\text{data}} - \mu_{\text{th}})^2/\sigma_i^2$, $B = \sum_{i}^{557} (\mu_{\text{data}} - \mu_{\text{th}})/\sigma_i^2$, $C = \sum_{i}^{557} 1/\sigma_i^2$, and the distance modulus is $\mu = 5 \log(d_L/\text{Mpc}) + 25$, with the 1\$\sigma$ uncertainty σ_i from the observations of SNe Ia; and the luminosity distance d_L as a function of redshift z

$$d_L = (1 + z) \int_0^z \frac{cdz'}{H_0 E(z'; p)}. \quad (4.2)$$

4.1 The standard cosmological model (ΛCDM)

We start our analysis by first setting out the predictions for the current standard cosmological model. In the simplest scenario, the dark energy is simply a cosmological constant, Λ, i.e. a component with constant equation of state $w = p/\rho = -1$. If flatness of the FRW metric is assumed, the Hubble parameter according to the Friedmann equation is

$$E^2(z; p) = \Omega_m(1 + z)^3 + \Omega_\Lambda, \quad (4.3)$$

where Ω_m and Ω_Λ parameterize the density of matter and cosmological constant, respectively. Moreover, in the zero-curvature case ($\Omega = \Omega_m + \Omega_\Lambda = 1$), this model has only one independent parameter: $p = \Omega_m$.

Cluster	$\Delta_{\text{max}}/D_\text{c}$	$\Delta_{\text{max}}/D_\text{c}$	σ_DSD	σ_DSD	ref
MS 0451.6-0305	0.550	2.91	0.785	0.878	1.2
IC2201	0.61	1.49	0.611	0.530	2.3
CL0024.1	0.391	1.675	0.919	0.430	2.3
Abell 3990	0.228	4.05	0.737	0.053	2.2
Abell 2667	0.226	1.034	0.837	0.124	2.3
Abell 68	0.255	1.6	0.982	0.225	2.2
MS 1512.4-0293	0.372	2.72	0.734	0.330	2.3
MS 2137.3-2353	0.313	1.501	0.778	0.105	2.3
MS 2053.7	0.583	3.146	0.968	0.209	1.3
PKS 0745-191	0.103	0.433	0.818	0.065	2.3

Table 1. Values of $D = D_{\text{max}}/D_\text{c}$ from samples of lensing galaxy clusters with X-ray observations and combined SLACS + LSD lens sample. The two-image galaxy lenses are written in bold. Reference: 1. Bonamente et al. [51]; 2. Ty & Zhu [58]; 3. Ota & Mitsuda [91]; 4. Covone et al. [92]; 5. Richard et al. [93]; 6. Biesiada, Ptórkowska & Malec [43]; 7. Bolto et al. [60]; 8. Newton et al. [61]; 9. Young et al. [83]; 10. Huchra et al. [84]; 11. Lehár et al. [85]; 12. Fassnacht et al. [86]; 13. Tonry [87]; 14. Koopmans & Treu [88]; 15. Koopmans & Treu [89]; 16. Trey & Koopmans [90].
Cosmological model	Best-fitting parameters \((n = 80)\)	Best-fitting parameters \((n = 46)\)
\(\Lambda\)CDM	\(\Omega_m = 0.20^{+0.07}_{-0.07}\)	\(\Omega_m = 0.26^{+0.11}_{-0.10}\)
\(w\)CDM	\(w = -1.02^{+0.26}_{-0.26}\)	\(w = -1.15^{+0.34}_{-0.35}\)
CPL	\(w_0 = 0.60 \pm 1.76\)	\(w_0 = -0.24 \pm 2.42\)
	\(w_a = -7.37 \pm 8.05\)	\(w_a = -6.35 \pm 9.75\)

Table 2. Fits to different cosmological models from 80 full \(D_{ls}/D_s\) data and 46 restricted \(D_{ls}/D_s\) data. Fixed value of \(\Omega_m = 0.27\) is assumed except \(\Lambda\)CDM.

4.2 Dark energy with constant equation of state (\(w\)CDM)

Allowing for a deviation from the simple \(w = -1\) case, the accelerated expansion is obtained when \(w < -1/3\). In a zero-curvature universe, the Hubble parameter for this generic dark energy component with density \(\Omega_x\) then becomes

\[
E^2(z; p) = \Omega_m(1 + z)^3 + \Omega_x(1 + z)^{3(1 + w)}. \tag{4.4}
\]

Obviously, when flatness and \(\Omega_m = 0.27\) are assumed, it is a one-parameter model with the model parameter: \(p = \{w\}\).

4.3 Dark energy with variable equation of state (CPL)

If the equation of state of dark energy is allowed to vary with time, one has to choose a suitable functional form for \(w(z)\), which in general involves certain parametrization. Now, we consider the commonly used CPL model \([98, 99]\), in which the equation of state of dark energy is parameterized as \(w(z) = w_0 + w_a z\left(\frac{1}{1+z}\right)\), where \(w_0\) and \(w_a\) are constants. The corresponding \(E(z)\) can be expressed as

\[
E^2(z; p) = \Omega_m(1 + z)^3 + (1 - \Omega_m)(1 + z)^{3(1 + w_0 + w_a)} \exp\left(-\frac{3w_a z}{1+z}\right). \tag{4.5}
\]

There are two independent model parameters in this model: \(p = \{w_0, w_a\}\).

5 Results and conclusions

In the first case, we consider \(f_E\) as a free parameter and show the constraint results with the full \(n = 70\) and the restricted \(n = 36\) two-image galaxy lenses in figure 1 and figure 2. In order to derive the probability distribution function for the cosmological parameters of interest, we marginalize \(f_E\) through eq. (2.4) and perform fits of different cosmological scenarios on the full \(n = 80\) sample as well as the restricted \(n = 46\) sample with the results displayed in table 2.

For the full \(n = 80\) sample (containing 70 galaxy lenses and 10 strong lensing arcs), first, in \(\Lambda\)CDM model where \(\Omega_m\) is the only free parameter we were able to make a reliable fit on the samples considered. This result is a considerable improvement over \([43]\), where the authors failed to constrain \(\Omega_m\) with their sample of twenty Einstein rings. Let us compare our results with previously known ones. The current best fit value from cosmological observations is: \(\Omega_A = 0.73 \pm 0.04\) in the flat case \([4]\). Moreover, \([7]\) gave the best-fit parameter \(\Omega_m = 0.274\)
for the flat ΛCDM model from the WMAP5 results with the BAO and SNe Ia Union data. We find that our value of Ω_m (see table 2) obtained from the D_{ds}/D_s data is consistent with the previous works at 1σ. Secondly, the best fit for the wCDM parameter agrees with that inferred from SNe Ia or WMAP5, and the ΛCDM model ($w = -1$) still falls within the 1σ interval from the D_{ds}/D_s sample. Hence the agreement is quite good. Thirdly, concerning the evolving equation of state in the CPL parametrization, confidence regions in the (w_0, w_a) plane are shown in figure 5. One can see that fits for w_0 and w_a are greatly improved as compared with those of [43]. The values inferred are also in agreement with the WMAP5 results presented in [95] including combined WMAP5, BAO and SNe Ia analysis. Moreover, it can be seen that the concordance model (ACDM) is still included at 1σ level for the D_{ds}/D_s data applied here. For comparison we also plot the likelihood contours with

Figure 1. The 68.3 and 95.8 $\%$ confidence regions for ΛCDM model in the (Ω_m, f_E) plane obtained from the full $n = 70$ and the restricted $n = 36$ two-image galaxy lenses. The crosses represent the best-fit points.

Figure 2. The 68.3 and 95.8 $\%$ confidence regions for wCDM model in the (w, f_E) plane obtained from the full $n = 70$ and the restricted $n = 36$ two-image galaxy lenses. The crosses represent the best-fit points.
the Union2 SNe Ia compilation [96]. One can see that the w coefficients obtained from the D_{ds}/D_s sample agree with the respective values derived from supernovae data (almost the whole 2σ confidence interval for w from the Union2 data set lies within the 2σ CI from the D_{ds}/D_s data), which demonstrates the compatibility between the SNe Ia and D_{ds}/D_s data. This is also a great improvement over [43], where SNe Ia results and strong lensing results were found marginally inconsistent at 2σ.

Working on the restricted $n = 46$ sample (containing 36 two-image lenses and 10 strong lensing arcs), despite the sample size has decreased dramatically, we find that fits on Ω_m in ΛCDM model are consistent with the standard knowledge (see figure 3) and the best fit for the w parameter in quintessence scenario is higher than inferred from SNe Ia or WMAP5 (see figure 4). Moreover, for the fits on w_0 and w_a in CPL parametrization, even though confidence regions get larger in figure 5, the result also turns out to agree with SNe Ia fits.

One should also note, that a systematic shift downwards in the (w_0,w_a) plane persists. Such

Figure 3. The marginalized constraint on Ω_m of ΛCDM model from 80 full D_{ds}/D_s data and 46 restricted D_{ds}/D_s data.

Figure 4. The marginalized constraint on w of wCDM model from 80 full D_{ds}/D_s data and 46 restricted D_{ds}/D_s data.
Figure 5. The 68.3 and 95.8 % confidence regions for CPL parametrization in the (w_0,w_a) plane obtained from 80 full D_{ds}/D_s data, 46 restricted D_{ds}/D_s data, and 557 Union2 SNe Ia data. The crosses represent the best-fit points and a star corresponding to $Λ$CDM model is also added for reference.

A shift in best-fitting parameters inferred from supernovae (standard candles, sensitive to luminosity distance) and BAO (standard rulers, sensitive to angular diameter distance) has already been noticed and discussed in ref. [43, 100]. Our result suggests the need for taking a closer look at the compatibility of results derived by using angular diameter distances and luminosity distances, respectively. Recent discussions on the ideas of testing the Etherington reciprocity relation between these two distances can be found in ref. [101–105].

In conclusion, our results demonstrate that the method extensively investigated on simulated and observational data [41–43, 58] can practically be used to constrain cosmological models. Moreover, good quality measurements of the relevant observational qualities such as the velocity dispersion and Einstein radius turn out to be crucial. Finally, four important effects, neglected here, should be mentioned. One is that both the Einstein rings and X-ray observations of our new lensing sample come from different surveys or satellites (SLACS, LSD and SBAS and Chandra, ROSAT and ASCA, respectively), the differences in detectors and observing strategies may cause systematical errors which are hard to estimate. The second is that the observed image separation is affected by secondary lenses (satellites, nearby galaxies, groups, etc) in many cases. In this case, those lenses should not be used or the true $θ_E$ corresponding to $σ_0$ should be estimated through realistic modelling. However, most of our samples come from the SLACS survey where the role of environment has been assessed in [106]. Namely, it was found that for SLACS lenses the typical contribution from external mass distribution is no more than a few percent. The third important effect is, that the statistical procedure for cluster lenses relies on many simplifying assumptions. The realistic errors should be estimated by more realistic model of galaxy clusters besides the hydrostatic isothermal spherical symmetric $β$-model. The last one is the influence of line-of-sight mass contamination, with the significant effect of the large-scale structure on strong lensing [107, 108]. More recent results on this issue can be found in ref. [109, 110]. A straightforward solution based on Poissonian statistics suggests that a sample size of order of a few hundred lenses might reduce the line-of-sight ‘noise’ contamination down to a few percent [111]. However, our D_{ds}/D_s data set is really small, and its range of redshift is also
limited. Fortunately, with the ongoing of various systematic gravitational surveys and more giant arc survey projects carried out by the International X-ray Observatory (IXO) [112], extended Roentgen Survey with an Imaging Telescope Array (eRosita) [113] and the Wide Field X-ray Telescope (WFXT) [114] being under way, the sample of strong lenses is growing rapidly, which may ease the problem of line-of-sight contamination. Future observations will definitely enlarge our set and make the method applied in this paper more powerful.

Finally it would be good to compare the distance ratio method used in the present paper with the conventional approach [25, 27] based on strong lensing statistics. The conventional approach is based on large surveys of sources having well defined selection criteria. Up to now these were basically CLASS and JVAS surveys (see also [40] where the CLASS sample was enlarged by data derived from PANELS and SDSS). The observable here is the probability distribution for lens redshift given the angular image separation. It depends on many factors, but in our context, its dependence on cosmology is of particular interest.

The method rests on certain assumptions about the lens population (a mixture of E:SO:S) such like: (i) SIS lens model - it’s similar as we did; hence the mass distribution of lenses gets reduced to the distribution of velocity dispersions σ_{SIS} in the lens population; (ii) lens luminosity function - usually assumed as Schechter function and combined with Faber-Jackson or Tully-Fisher relations; (iii) comoving density of lenses n_*; (iv) redshift evolution of n_*, σ_{SIS} as well as the Schechter, Faber-Jackson and Tully-Fisher exponents. All these assumptions are necessary to calculate the probability distribution for lensing to be compared with the data. So they should be justified and respective parameters ($\sigma_{SIS}, n_*, \alpha, \gamma_{FJ,TF}$) should be known accurately. Usually they are calibrated on samples acquired in different surveys. It is a major source of uncertainties in the conventional approach.

In the conventional approach, velocity dispersion of the lens is a statistical property of the population of lenses, unlike in our case where σ_{SIS} is the property of an individual lens and is directly measured. Even though σ_{SIS} (together with the SIS assumption) is the major source of uncertainty in our method, yet it appears in the power of 2. In conventional method the power is 4 for the cross section plus the powers of α and $\gamma_{FJ,TF}$ which are themselves subject to uncertainty.

The main advantage of conventional approach is that by joint consideration of lensing probability and image separation probability one strengthens the internal consistency of fits. The disadvantage is that the observable quantity whose cosmological dependence is considered is the probability distribution function. It is demanding from the point of view of the frequency of lensed events at different redshifts with different image separations. However, the practice (CLASS+JVAS surveys) shown that among the 8958 sources selected according to well defined criteria there were only 13 multiply-imaged systems subsequently used to test the above mentioned probabilities. This is too small to be competitive with other methods used to test different dark energy scenarios. At least an order of magnitude larger survey (a complete sample of ca 100,000 sources — quasars) is needed for that purpose. Even in this case the above mentioned concerns about systematics remain. Another effect to be considered is the role of environment (groups, clusters, satellite galaxies) in changing the image separation - both methods suffer from it.

Our method, in which lenses are treated individually — not statistically, seems more promising in the sense that existing surveys like SLACS already provided useful samples and the future surveys will provide more. Moreover with surveys concentrated on lens population not on sources, having good spectroscopic data of lensing galaxies, one might hope to further develop our method e.g. by improving the model assumptions for the lenses.
Acknowledgments

This work was supported by the National Natural Science Foundation of China under the Distinguished Young Scholar Grant 10825313, the Ministry of Science and Technology national basic science Program (Project 973) under Grant No. 2012CB821804, the Fundamental Research Funds for the Central Universities and Scientific Research Foundation of Beijing Normal University, and the Polish Ministry of Science Grant No. N N203 390034.

References

[1] A.G. Riess et al., Observational evidence from supernovae for an accelerating universe and a cosmological constant, Astron. J. 116 (1998) 1009 [astro-ph/9805201] [inSPIRE].

[2] Supernova Cosmology Project collaboration, S. Perlmutter et al., Measurements of Ω and Λ from 42 high redshift supernovae, Astrophys. J. 517 (1999) 565 [astro-ph/9812133] [inSPIRE].

[3] Supernova Search Team collaboration, A.G. Riess et al., Type Ia supernova discoveries at $z > 1$ from the Hubble Space Telescope: evidence for past deceleration and constraints on dark energy evolution, Astrophys. J. 607 (2004) 665 [astro-ph/0402512] [inSPIRE].

[4] T.M. Davis et al., Scrutinizing exotic cosmological models using ESSENCE supernova data combined with other cosmological probes, Astrophys. J. 666 (2007) 716 [astro-ph/0701510] [inSPIRE].

[5] Supernova Cosmology Project collaboration, M. Kowalski et al., Improved cosmological constraints from new, old and combined supernova datasets, Astrophys. J. 686 (2008) 749 [arXiv:0804.4142] [inSPIRE].

[6] WMAP collaboration, D. Spergel et al., Wilkinson Microwave Anisotropy Probe (WMAP) three year results: implications for cosmology, Astrophys. J. Suppl. 170 (2007) 377 [astro-ph/0603449] [inSPIRE].

[7] WMAP collaboration, E. Komatsu et al., Five-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation, Astrophys. J Suppl 180 (2009) 330 [arXiv:0803.0547] [inSPIRE].

[8] S. Burles, K.M. Nollett and M.S. Turner, Big Bang nucleosynthesis predictions for precision cosmology, Astrophys. J. 552 (2001) L1 [astro-ph/0010171] [inSPIRE].

[9] SDSS collaboration, D.J. Eisenstein et al., Detection of the baryon acoustic peak in the large-scale correlation function of SDSS luminous red galaxies, Astrophys. J. 633 (2005) 560 [astro-ph/0501171] [inSPIRE].

[10] R.A. Daly et al., Cosmological studies with radio galaxies and supernovae, Astrophys. J. 691 (2009) 1058 [arXiv:0710.5112] [inSPIRE].

[11] L. Amati et al., Measuring the cosmological parameters with the $E_{p,i}-E_{iso}$ correlation of gamma-ray bursts, Mon. Not. Roy. Astron. Soc. 391 (2008) 577 [arXiv:0805.0377] [inSPIRE].

[12] R. Caldwell, R. Dave and P.J. Steinhardt, Cosmological imprint of an energy component with general equation of state, Phys. Rev. Lett. 80 (1998) 1582 [astro-ph/9708069] [inSPIRE].

[13] R. Caldwell, A phantom menace?, Phys. Lett. B 545 (2002) 23 [astro-ph/9908168] [inSPIRE].

[14] B. Feng, X.-L. Wang and X.-M. Zhang, Dark energy constraints from the cosmic age and supernova, Phys. Lett. B 607 (2005) 35 [astro-ph/0404224] [inSPIRE].
[15] A. Kamenshchik, U. Moschella and V. Pasquier, An alternative to quintessence, *Phys. Lett. B* 511 (2001) 265 [gr-qc/0103004] [INSPIRE].

[16] Z.H. Zhu, Generalized Chaplygin gas as a unified scenario of dark matter/energy: observational constraints, *Astron. Astrophys.* 423 (2004) 421 [astro-ph/0411039] [INSPIRE].

[17] M. Biesiada, W. Godlowski and M. Szydlowski, Generalized Chaplygin gas models tested with SNIa, *Astrophys. J.* 622 (2005) 28 [astro-ph/0403305] [INSPIRE].

[18] H.-S. Zhang and Z.-H. Zhu, Interacting Chaplygin gas, *Phys. Rev. D* 73 (2006) 043518 [astro-ph/0509895] [INSPIRE].

[19] K. Freese and M. Lewis, Cardassian expansion: a model in which the universe is flat, matter dominated and accelerating, *Phys. Lett. B* 540 (2002) 1 [astro-ph/0201229] [INSPIRE].

[20] Z.-H. Zhu, M.-K. Fujimoto and X.-T. He, Observational constraints on cosmology from modified Friedmann equation, *Astrophys. J.* 603 (2004) 365 [astro-ph/0403228] [INSPIRE].

[21] G. Dvali, G. Gabadadze and M. Porrati, 4D gravity on a brane in 5D Minkowski space, *Phys. Lett. B* 485 (2000) 208 [hep-th/0005016] [INSPIRE].

[22] D. Walsh, R. Carswell and R. Weymann, 0957+561 A, B — Twin quasistellar objects or gravitational lens, *Nature* 279 (1979) 381 [INSPIRE].

[23] Z.-H. Zhu, Gravitational lensing statistics as a probe of dark energy, *Mod. Phys. Lett. A* 15 (2000) 1023 [astro-ph/0010351] [INSPIRE].

[24] Z.H. Zhu, Gravitational lensing statistical properties in general FRW cosmologies with dark energy component(s): analytic results, *Int. J. Mod. Phys. D* 9 (2000) 591 [astro-ph/0107233] [INSPIRE].

[25] K.-H. Chae, The cosmic lens all sky survey statistical lensing, cosmologies and global properties of galaxy populations, *Mon. Not. Roy. Astron. Soc.* 346 (2003) 746 [astro-ph/0211244] [INSPIRE].

[26] K.H. Chae et al., Constraints on scalar-field dark energy from the Cosmic Lens All-Sky Survey gravitational lens statistics., *Astrophys. J.* 607 (2004) L71 [astro-ph/0403256] [INSPIRE].

[27] J.L. Mitchell et al., Robust cosmological constraints from gravitational lens statistics, *Astrophys. J.* 622 (2005) 81 [astro-ph/0401138] [INSPIRE].

[28] Z.H. Zhu and M. Sereno, Testing the DGP model with gravitational lensing statistics, *Astron. Astrophys.* 487 (2008) 831.

[29] Z.H. Zhu, Testing power-law cosmology with galaxy clusters, *Astron. Astrophys.* 483 (2008) 15 [arXiv:0712.3602] [INSPIRE].

[30] Z.H. Zhu and W.P. Wu, A remark on the inversion of the magnification bias in the quasar-galaxy associations, *Astron. Astrophys.* 324 (1997) 483 [astro-ph/9702159] [INSPIRE].

[31] S.D. Mao and P. Schneider, Evidence for substructure in lens galaxies?, *Mon. Not. Roy. Astron. Soc.* 295 (1998) 587 [astro-ph/9707187] [INSPIRE].

[32] K.J. Jin, Y.Z. Zhang and Z.H. Zhu, Gravitational lensing effects of fermion fermion stars. 1. Strong field case, *Phys. Lett. A* 264 (2000) 335 [gr-qc/9907035] [INSPIRE].

[33] C.R. Keeton, Cold dark matter and strong gravitational lensing: concord or conflict?, *Astrophys. J.* 561 (2001) 46.

[34] C. Kochanek and M.J. White, Global probes of the impact of baryons on dark matter halos, *Astrophys. J.* 559 (2001) 531 [astro-ph/0102334] [INSPIRE].
[35] E.O. Ofek, H.-W. Rix and D. Maoz, The redshift distribution of gravitational lenses revisited: constraints on galaxy mass evolution, Mon. Not. Roy. Astron. Soc. 343 (2003) 639 [astro-ph/0305201] [nSPIRE].

[36] T. Treu et al., The Sloan-Lens ACS Survey II: stellar populations and internal structure of early-type lens galaxies, Astrophys. J. 640 (2006) 662 [astro-ph/0512044] [nSPIRE].

[37] K.-H. Chae and S. Mao, Limits on the evolution of galaxies from the statistics of gravitational lenses, Astrophys. J. 599 (2003) L61 [astro-ph/0311203] [nSPIRE].

[38] I.W.A. Browne et al., The cosmic lens all-sky survey: II. Gravitational lens candidate selection and follow-up, Mon. Not. Roy. Astron. Soc. 341 (2003) 13 [astro-ph/0211069] [nSPIRE].

[39] SDSS collaboration, C. Stoughton et al., The Sloan Digital Sky Survey: early data release, Astron. J. 123 (2002) 485 [nSPIRE].

[40] S. Cao and Z.-H. Zhu, Constraints on cosmological models from lens redshift data, Astron. Astrophys. 538 (2012) A43 [arXiv:1105.6182] [nSPIRE].

[41] M. Biesiada, Strong lensing systems as a probe of dark energy in the universe, Phys. Rev. D 73 (2006) 023006 [nSPIRE].

[42] C. Grillo, M. Lombardi and G. Bertin, Cosmological parameters from strong gravitational lensing and stellar dynamics in elliptical galaxies, Astron. Astrophys. 477 (2008) 397.

[43] M. Biesiada, A. Piorkowska and B. Malec, Cosmic equation of state from strong gravitational lensing systems, Mon. Not. Roy. Astron. Soc. 406 (2010) 1055 [arXiv:1105.0946] [nSPIRE].

[44] M. Biesiada, B. Malec and A. Piorkowska, Dark energy constraints from joint analysis of standard rulers and standard candles, Res. Astron. Astrophys. 11 (2011) 641.

[45] W.H. Press and P. Schechter, Formation of galaxies and clusters of galaxies by selfsimilar gravitational condensation, Astrophys. J. 187 (1974) 425 [nSPIRE].

[46] S. Borgani et al., Cosmological constraints from the ROSAT deep cluster survey, Astrophys. J. 517 (1999) 40 [astro-ph/9901017] [nSPIRE].

[47] R.A. Sunyaev and Y.B. Zel’dovich, The observations of relic radiation as a test of the nature of X-ray radiation from the clusters of galaxies, Comm. Astrophys. Space Phys. 4 (1972) 173.

[48] E. Reese et al., Determining the cosmic distance scale from interferometric measurements of the Sunyaev-Zel’dovich effect, Astrophys. J. 581 (2002) 53 [astro-ph/0205350] [nSPIRE].

[49] R.W. Schmidt et al., An improved approach to measuring H0 using X-ray and SZ observations of galaxy clusters, Mon. Not. Roy. Astron. Soc. 352 (2004) 1413 [astro-ph/0405374].

[50] M.E. Jones et al., H0 from an orientation-unbiased sample of SZ and x-ray clusters, Mon. Not. Roy. Astron. Soc. 357 (2005) 518 [astro-ph/0103046] [nSPIRE].

[51] M. Bonamente et al. Determination of the cosmic distance scale from Sunyaev-Zel’dovich effect and Chandra X-ray measurements of high-redshift galaxy clusters, Astrophys. J. 647 (2006) 25.

[52] Z.-H. Zhu and M.-K. Fujimoto, Constraints on Cardassian scenario from the expansion turnaround redshift and the Sunyaev-Zel’dovich/x-ray data, Astrophys. J. 602 (2004) 12 [astro-ph/0312022] [nSPIRE].

[53] N. Itoh, Y. Kohyama and S. Nozawa, Relativistic corrections to the Sunyaev-Zel’dovich effect for clusters of galaxies, Astrophys. J. 502 (1998) 7 [astro-ph/9712289] [nSPIRE].

[54] S. Nozawa, N. Itoh and Y. Kohyama, Relativistic corrections to the Sunyaev-Zel’dovich effect for clusters of galaxies. 2. Inclusion of peculiar velocities, Astrophys. J. 508 (1998) 17 [astro-ph/9804051] [nSPIRE].
[55] S. Nozawa et al., An improved formula for the relativistic corrections to the kinematical Sunyaev-Zel’dovich effect for clusters of galaxies, *Nuovo Cim. B* 121 (2006) 487 [astro-ph/0507466] [inSPIRE].

[56] M. Sereno, Probing the dark energy with strong lensing by clusters of galaxies, *Astron. Astrophys.* 393 (2002) 757.

[57] M. Sereno and G. Longo, Determining cosmological parameters from x-ray measurements of strong lensing clusters, *Mon. Not. Roy. Astron. Soc.* 354 (2004) 1255 [astro-ph/0409119] [inSPIRE].

[58] H. Yu and Z.-H. Zhu, Combining optical and X-ray observations of galaxy clusters to constrain cosmological parameters, *Res. Astron. Astrophys.* 11 (2011) 776 [arXiv:1011.6060] [inSPIRE].

[59] B. Paczynski and K. Gorski, Another possible case of a gravitational lens, *Astrophys. J. Lett.* 248 (1981) L101.

[60] A.S. Bolton et al., The Sloan Lens ACS survey. V. The full ACS strong-lens sample, *Astrophys. J.* 682 (2008) 964 [arXiv:0805.1931] [inSPIRE].

[61] E.R. Newton et al., The Sloan Lens ACS Survey. XI. Beyond hubble resolution: size, luminosity and stellar mass of compact lensed galaxies at intermediate redshift, *Astrophys. J.* 734 (2011) 104 [arXiv:1104.2608] [inSPIRE].

[62] T. Treu et al., The Sloan Lens ACS survey. II. Stellar populations and internal structure of early-type lens galaxies, *Astrophys. J.* 640 (2006) 662 [Erratum ibid. 650 (2006) 1219].

[63] L. Koopmans et al., The structure & dynamics of massive early-type galaxies: on homology, isothermality and isotropy inside one effective radius, *Astrophys. J.* 703 (2009) L51 [arXiv:0906.1349] [inSPIRE].

[64] C.S. Kochanek, Is there a cosmological constant?, *Astrophys. J.* 466 (1996) 638 [astro-ph/9510077] [inSPIRE].

[65] L.J. King et al., Multifrequency radio observations of the gravitational lens system 1938 + 666, *Mon. Not. Roy. Astron. Soc.* 289 (1997) 450.

[66] C.D. Fassnacht and J.G. Cohen, Keck spectroscopy of three gravitational lens systems discovered in the JVAS and CLASS surveys, *Astron. J.* 115 (1998) 377 [astro-ph/9711044] [inSPIRE] [inSPIRE].

[67] D.J. Rusin and C. Kochanek, The evolution and structure of early-type field galaxies: a combined statistical analysis of gravitational lenses, *Astrophys. J.* 623 (2005) 666 [astro-ph/0412004] [inSPIRE].

[68] L.V. Koopmans, T. Treu, A.S. Bolton, S. Burles and L.A. Moustakas, The Sloan Lens ACS survey. 3. The structure and formation of early-type galaxies and their evolution since z ~ 1, *Astrophys. J.* 649 (2006) 599 [astro-ph/0601628] [inSPIRE].

[69] R.E White and D.S. Davis, X-ray properties of a complete sample of elliptical galaxies, *Bull. Am. Astron. Soc.* 28 (1996) 1323.

[70] C.S. Kochanek, Do the redshifts of gravitational lens galaxies rule out a large cosmological constant?, *Astrophys. J.* 384 (1992) 1.

[71] R. Narayan and M. Bartelmann, Lectures on gravitational lensing, astro-ph/9606001 [inSPIRE].

[72] H. Martel, P. Premadi and R. Matzner, Light propagation in inhomogeneous universes. III. Distributions of image separations, *Astrophys. J.* 570 (2002) 17.

[73] D. Christlein, The dependence of the galaxy luminosity function on environment, *Astrophys. J.* 545 (2000) 145.
[74] C.R. Keeton, D. Christlein and A.I. Zabludoff, *What fraction of gravitational lens galaxies lie in groups?,* Astrophys. J. **545** (2000) 129.

[75] S. Allen et al., *Improved constraints on dark energy from Chandra X-ray observations of the largest relaxed galaxy clusters,* Mon. Not. Roy. Astron. Soc. **383** (2008) 879 [arXiv:0706.0033] [SPIRE].

[76] L. Samushia and B. Ratra, *Constraints on dark energy from galaxy cluster gas mass fraction versus redshift data,* Astrophys. J. **680** (2008) L1 [arXiv:0803.3775] [SPIRE].

[77] T.G. Bremer and R.H. Sanders, *Constraints on cosmological parameters from clusters containing luminous arcs,* Mon. Not. Roy. Astron. Soc. **257** (1992) 97.

[78] R. Lynds and V. Petrosian, *Giant luminous arcs in galaxy clusters,* Bull. Am. Astron. Soc. **18** (1986) 1014.

[79] A. Cavaliere and R. Fusco-Femiano, *X-rays from hot plasma in clusters of galaxies,* Astron. Astrophys. **49** (1976) 137.

[80] P. Rosati, S. Borgani and C. Norman, *The evolution of X-ray clusters of galaxies,* Ann. Rev. Astron. Astrophys. **40** (2002) 539 [astro-ph/0209035] [SPIRE].

[81] P. Schneider et al., *Gravitational lenses,* Springer, U.S.A. (1992).

[82] T. Ono, K. Masai and S. Sasaki, *Cluster mass estimate using strong gravitational lenses revisited,* Pub. Astron. Soc. Jap. **51** (1999) 91.

[83] P. Young et al., *The double quasar Q0957 + 561 A, B — A gravitational lens image formed by a galaxy at z = 0.39,* Astrophys. J. **241** (1980) 507.

[84] J. Huchra et al., *2237 + 0305: a new and unusual gravitational lens,* Astron. J. **90** (1985) 691 [SPIRE].

[85] J. Lehár et al., *A gravitationally-lensed ring in MG 1549 + 3047,* Astron. J. **105** (1993) 847.

[86] C.D. Fassnacht et al., *1608 + 656: a gravitationally lensed poststarburst radio galaxy,* Astrophys. J. Lett. **460** (1996) L103.

[87] J.L. Tonry, *Redshifts of the gravitational lenses B1422 + 231 and PG1115 + 080,* Astron. J. **115** (1998) 1.

[88] L.V.E. Koopmans and T. Treu, *The stellar velocity dispersion of the lens galaxy in M2016 + 112 at z = 1.00,* Astrophys. J. **568** (2002) L5.

[89] L. Koopmans and T. Treu, *The structure and dynamics of luminous and dark matter in the early-type lens galaxy of 0047-281 at z = 0.485,* Astrophys. J. **583** (2003) 606 [astro-ph/0205281] [SPIRE].

[90] T. Treu and L.V. Koopmans, *Massive dark-matter halos and evolution of early-type galaxies to z = 1,* Astrophys. J. **611** (2004) 739 [astro-ph/0401373] [SPIRE].

[91] N. Ota and K. Mitsuda, *A uniform X-ray analysis of 79 distant galaxy clusters with ROSAT and ASCA,* Astron. Astrophys. **428** (2004) 757 [astro-ph/0407602] [SPIRE].

[92] G. Covone et al., *VIMOS-IFU survey of z ~ 0.2 massive galaxy clusters. I. Observations of the strong lensing cluster Abell 2667,* Astron. Astrophys. **456** (2006) 409 [astro-ph/0511332] [SPIRE].

[93] J. Richard et al., *A statistical study of multiply-imaged systems in the lensing cluster Abell 68,* Astrophys. J. **662** (2007) 781 [astro-ph/0702705] [SPIRE].

[94] S. Weinberg, *The cosmological constant problem,* Rev. Mod. Phys. **61** (1989) 1 [SPIRE].

[95] WMAP collaboration, G. Hinshaw et al., *Five-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: data processing, sky maps and basic results,* Astrophys. J. Suppl. **180** (2009) 225 [arXiv:0803.0732] [SPIRE].
R. Amanullah et al., Spectra and light curves of six type Ia supernovae at $0.511 < z < 1.12$ and the Union2 compilation, *Astrophys. J.* **716** (2010) 712 [arXiv:1004.1711] [inSPIRE].

E. Di Pietro and J.-F. Claeskens, Future supernovae data and quintessence models, *Mon. Not. Roy. Astron. Soc.* **341** (2003) 1299 [astro-ph/0207332] [inSPIRE].

M. Chevallier and D. Polarski, Accelerating universes with scaling dark matter, *Int. J. Mod. Phys.* **D 10** (2001) 213 [gr-qc/0009008] [inSPIRE].

E. V. Linder, Cosmic shear with next generation redshift surveys as a cosmological probe, *Phys. Rev. D* **68** (2003) 083503 [astro-ph/0212301] [inSPIRE].

E. V. Linder and G. Robbers, Shifting the universe: early dark energy and standard rulers, *JCAP* **06** (2008) 004 [arXiv:0803.2877] [inSPIRE].

B. A. Bassett and M. Kunz, Cosmic distance-duality as a probe of exotic physics and acceleration, *Phys. Rev. D* **69** (2004) 101305 [astro-ph/0312443] [inSPIRE].

J.-P. Uzan, N. Aghanim and Y. Mellier, The distance duality relation from x-ray and SZ observations of clusters, *Phys. Rev. D* **70** (2004) 083533 [astro-ph/0405620] [inSPIRE].

R. Holanda, J. Lima and M. Ribeiro, Testing the distance-duality relation with galaxy clusters and type Ia supernovae, *Astrophys. J.* **722** (2010) L233 [arXiv:1005.4458] [inSPIRE].

S. Cao and Z.-H. Zhu, The distance duality relation and the temperature profile of Galaxy Clusters, *Sci. China G* **54** (2011) 2260 [arXiv:1102.2750] [inSPIRE].

A. Piorkowska, M. Biesiada and B. Malec, Distance duality in different cosmological models, *Acta Phys. Polon.* **B 42** (2011) 2297.

T. Treu et al., The Sloan Lens ACS Survey. VIII. The relation between environment and internal structure of early-type galaxies, *Astrophys. J.* **690** (2009) 670 [Erratum ibid. 692 (2009) 1690] [arXiv:0806.1056] [inSPIRE].

R. Bar-Kana, Effect of large scale structure on multiply imaged sources, *Astrophys. J.* **468** (1996) 17 [astro-ph/9511056] [inSPIRE].

C. Keeton, C. Kochanek and U. Seljak, Shear and ellipticity in gravitational lenses, *Astrophys. J.* **482** (1997) 604 [astro-ph/9610163] [inSPIRE].

N. Dalal, J.F. Hennawi and P. Bode, Noise in strong lensing cosmography, *Astrophys. J.* **622** (2005) 99 [astro-ph/0409028] [inSPIRE].

I. Momcheva et al., A spectroscopic study of the environments of gravitational lens galaxies, *Astrophys. J.* **641** (2006) 169 [astro-ph/0511594] [inSPIRE].

J. M. Kubo et al., The Sloan Bright Arcs Survey: discovery of seven new strongly lensed galaxies from $z = 0.66–2.94$, *Astrophys. J.* **724** (2010) L137 [arXiv:1010.3037] [inSPIRE].

N. E. White et al., The international X-ray observatory, in the proceedings of the X-ray astronomy 2009 — Present status, multi-wavelength approach and future perspectives, September 7–11, Bologna, Italy (2009), arXiv:1001.2843 [inSPIRE].

P. Predelh et al., eROSITA on SRG, in the proceedings of the X-ray astronomy 2009 — Present status, multi-wavelength approach and future perspectives, September 7–11, Bologna, Italy (2009), arXiv:1001.2502 [inSPIRE].

WXFT team and S.S. Murray, The wide field X-ray telescope mission, *Bull. Am. Astron. Soc.* **41** (2010) 520.