Catalytic strategies of the non-heme iron dependent oxygenases and their roles in plant biology
Mark D White and Emily Flashman

Non-heme iron-dependent oxygenases catalyse the incorporation of O₂ into a wide range of biological molecules and use diverse strategies to activate their substrates. Recent kinetic studies, including in crystalllo, have provided experimental support for some of the intermediates used by different subclasses of this enzyme family. Plant non-heme iron-dependent oxygenases have diverse and important biological roles, including in growth signalling, stress responses and secondary metabolism. Recently identified roles include in strigolactone biosynthesis, O-demethylation in morphine biosynthesis and regulating the stability of hypoxia-responsive transcription factors. We discuss current structural and mechanistic understanding of plant non-heme iron oxygenases, and how their chemical/genetic manipulation could have agricultural benefit, for example, for improved yield, stress tolerance or herbicide development.

Address
Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, UK

Corresponding author: Flashman, Emily (emily.flashman@chem.ox.ac.uk)

Introduction
Non-heme iron-dependent oxygenases are a widespread family of functionally diverse enzymes that facilitate the incorporation of molecular oxygen into a range of biomolecules, reactions that are often inaccessible through synthetic approaches. Motivated by biomimetic catalyst design, extensive research has been conducted to understand their chemistry, providing detailed mechanistic insights into a number of associated enzyme subfamilies. Unique or unifying catalytic strategies employed by these enzymes continue to be identified, as do novel and important biological roles. In this Review, we briefly highlight recent advances in the mechanistic understanding of non-heme (mono-) iron dependent oxygenases before focusing on the (ever-emerging) range of important roles that these enzymes play in plant biology. Targeted manipulation of these enzymes could have beneficial effects for plant growth and/or stress tolerance, addressing the 21st century issue of food security. We therefore highlight those of potential agricultural (and/or health) interest.

Resolving intermediates in non-heme iron dependent oxygenase catalysis
To activate O₂, non-heme iron-dependent oxygenases use a redox active iron, coordinated octahedrally at their active site with water, usually in a vicinal facial triad arrangement [1]. During turnover, H₂O is sequentially displaced by substrate/co-substrate and O₂, which is reductively activated enabling a specific substrate modification. Enzyme subfamilies are proposed to employ different reactive iron-oxo species to activate their substrate. These species are short-lived intermediates that are difficult to study, but methodological advances over the past 15 years have enabled an accumulation of indirect and direct evidence for their formation. For example, a combination of freeze trapping techniques and Mössbauer spectroscopy allowed the characterisation of a transient Fe(IV)-oxo species in 2-oxoglutarate (2OG)-dependent and perin-dependent oxygenases (e.g. TauD and Phenylalanine hydroxylase, respectively, Figure 1a) [2-4]. This high valent intermediate has not been identified in all non-heme iron-dependent oxygenases (formation of an Fe(IV)-oxo intermediate usually requires co-oxidation of another species, e.g. 2OG) and others are proposed to modify their substrates via lower valent alternatives. Here we summarise current evidence for activating intermediates across other members of this enzyme family.

Catechol dioxygenases
Catechol (intradiol and extradiol) dioxygenases catalyse the oxidative cleavage of catechol substrates as part of bacterial aromatic degradation pathways [5]. Extradiol dioxygenases cleave the C–C bond adjacent to a hydroxyl group to form ring-opened products where O atoms are incorporated into aldehyde and carboxylate functional groups (Figure 1b). Fe(II) is ligated by the common His/His/Glu motif [1] with substrate hydroxyl groups coordinating directly to the metal prior to O₂ binding. Mechanistic hypotheses based on studies with homoprotocatechuate dioxygenase (HPCD) propose no overall change in the oxidation state of the Fe(II) during turnover of the wild type enzyme, with Fe(II) acting as a conduit for electron transfer between O₂ and substrate to generate Fe(II)-superoxo and semiquinone radical intermediates (Figure 1b) which recombine to form an alkylperoxo...
Non-heme iron-dependent oxygenase-catalysed reactions, active site structures and reaction intermediates. **Left panels:** The active site structures of non-heme iron-dependent oxygenases, showing the coordination of amino acid residues (light blue cylinders), substrate (green cylinders) and co-substrate (coral cylinders) to the iron (maroon sphere). A purple mesh shows the electron density of the metal cofactor and water molecules are represented as red balls. **Right panels:** The corresponding non-heme iron-dependent oxygenase reaction schemes and iron-oxo intermediates, following the route of molecular oxygen (red). Unresolved/currently proposed reaction species are coloured blue. For references, see text. (a) Taurine Dioxygenase (TauD) catalyses oxidation of taurine to aminoacetaldehyde and sulphite via a high valent Fe(IV)-oxo species (PDB ID: 1GQW). (b) Homoprotocatechuate dioxygenase (HPCD) catalyses the oxidative cleavage of homoprotocatechuate (HPCA) to α-hydroxy-α-carboxymethyl cis-muconic semialdehyde using a Fe(II)-superoxo/semiquinone intermediate (PDB ID: 4GH3). (c) Protocatechuate 3,4-Dioxygenase (3,4-PCD) catalyses the oxidative cleavage of protocatechuate (PCA) to β-carboxymuconate via a Fe(III)-alkylperoxo intermediate (PDB ID: 3PCA). (d) Naphthalene Dioxygenase (NDO) catalyses the dihydroxylation of naphthalene (Nap) via a Fe(II)-(hydro)peroxo intermediate (PDB ID: 107G). (e) Cysteine dioxygenase (CDO) catalyse the oxidation of cysteine (Cys) to cysteine sulfinic acid via a (putative) Fe(III)-superoxo intermediate (PDB ID: 2IC1). (f) 2-Hydroxyethylphosphonate dioxygenase (HEPD) catalyse the oxidation of 2-hydroxyethylphosphonate (HEP) to hydroxymethylphosphonate and formic acid via a (putative) Fe(III)-superoxo species (PDB ID: 3GBF).
intermediate [6]. These species have been observed in crystallo upon reaction of an anaerobic HPCD-Fe(II)-4-NC complex with O2, where 4-NC (4-nitrocatechol) is a non-physiological substrate used to slow the reaction (note care should be taken in interpreting the radical nature or oxidation status of intermediates observed crystallographically without additional analysis) [7]. The use of HPCD variants and substituted active site metals has allowed spectroscopic detection of catalytically competent Fe/Co/Mn(III)-superperoxo intermediates upon slower rates of catalysis (reviewed in [6]). As only Fe(II) species have been observed in the native reaction, the Fe(II) state may indeed be maintained or it may be that an Fe(III)-superperoxo is so transient that it remains undetectable with current technical capabilities. Recently, in crystallo studies of homogentisate 1,2-dioxygenase (HGDO), an extradiol dioxygenase which catalyses conversion of homogentisate (HG) to maleylacetoacetate, revealed the equivalent intermediates to those seen in crystallo for HPCD, but in the reaction with native HG substrate. Exposing anaerobically prepared HGDO-Fe(II)-HG co-crystals to air followed by flash-cooling allowed observation of Fe(II)-superperoxo-semiquinone radical, alkylperoxo and product bound intermediates [8], supporting the proposed mechanism for this class of enzyme (though again, it may be that in crystallo studies cannot detect very transient high valent intermediates).

Intradiol dioxygenases cleave the C–G bond of catechol enediol units, and use 2 tyrosine and 2 histidine residues to bind Fe(III). Fe(III) is unlikely to bind and activate O2, presenting a mechanistic conundrum. It is proposed, based predominantly on studies with protocatechuate 3,4-dioxygenase (3,4-PCD), that catechol substrates bind to the Fe(III) via both hydroxyls. Concerted O2 addition forms a Fe(III)-alkylperoxo species, before peroxo protonation results in O–O scission and a Criegee rearrangement to create an anhydride in the substrate ring which is attacked by the Fe(III)-hydroxide promoting cleavage [5]. None of these intermediates have been spectroscopically characterised, but in crystallo kinetic experiments using a slow-reacting substrate analogue (4-fluorocatechol) revealed species analogous with both proposed alkylperoxo (Figure 1c) and anhydride intermediates [9].

Rieske dioxygenases

Rieske dioxygenases catalyse a diverse range of reactions, predominantly on arene substrates [10], a well-studied example being naphthalene dioxygenase (Figure 1d). Electrons for O2 reduction are supplied by NAD(P)H via a 2Fe-2S (Rieske) cluster. The proposed mechanism invokes O2 binding to an enzyme-substrate complex followed by electron transfer from the Rieske cluster to form an Fe(III) hydroperoxo intermediate (observed in crystallo for naphthalene dioxygenase [11]). The subsequent steps have not been resolved, but have been proposed to occur either via coupled O–O cleavage and substrate oxidation or via rearrangement of the hydroperoxo intermediate to cleave O–O and yield a high valent Fe(V) hydroperoxo species which subsequently oxidises the substrate (discussed in detail in [10]). Interestingly, a recent study correlating rates of Rieske cluster oxidation and product formation in benzoate 1, 2-dioxygenase implicates another possible mechanism, whereby substrate activation is achieved by a Fe(III)-superperoxo species prior to electron transfer from the Rieske cluster [12]. It is possible that different oxidative approaches are utilised by different members of this diverse enzyme subclass.

Cysteine dioxygenases

Cysteine dioxygenases (CDOs) catalyse t-cysteine oxidation to cysteine sulfenic acid as part of taurine biosynthesis (Figure 1e) [13]. A His/His/His triad coordinates Fe(II), to which t-cysteine binds in a bidentate fashion via its amino and thiolate groups, prior to O2. Despite significant effort, their catalytic mechanism remains unsolved (possibilities are discussed in [13]), however proposed pathways commonly invoke initial formation of a transient Fe(III)-superperoxo intermediate. For mouse CDO this species has been trapped and spectroscopically characterised, albeit having been artificially generated by Fe(II) reduction and superoxide addition [14].

2-Hydroxyethylphosphonate dioxygenase

In addition to enzymes that oxidise substrates in which radical intermediates can be stabilised (e.g. aromatic substrates or cysteine), and 2O6g/pterin-dependent oxygenases (where Fe(IV)-oxo formation for C–H activation is facilitated by cosubstrate oxidation), some non-heme iron-dependent oxygenases are proposed to directly cleave C–H bonds in aliphatic substrates directly via superoxo intermediates [15]. Although trapping and characterisation of such intermediates remains a challenge, recently reported double kinetic isotope experiments with 2-hydroxyethylphosphonate dioxygenase (HEPD, which catalyses hydroxymethylphosphonate formation in the biosynthesis of the herbicide phosphinotricin, Figure 1f) indicate that substrate activation (requiring cleavage of the HEP C2 C–H bond) must occur prior to the irreversible oxygen reduction step, supporting the use of an Fe(III)-superperoxo intermediate to achieve C–H cleavage [16].

Overall, recent studies provide experimental support for some of the lower-valent intermediates proposed to activate substrate by this enzyme family, particularly from in crystallo kinetic studies [8, 9]. Ultimately however, the electronic nature of these reactive iron-oxo intermediates should be confirmed spectroscopically. For Fe(III)-superperoxo species this has been achieved in modified enzyme systems, but demonstration of the ‘native’ use of this intermediate remains elusive.
Non-heme iron oxygenases in plant biology

Here we highlight recent advances in our understanding of selected plant non-heme iron-dependent oxygenases, including those of potential agrochemical/agricultural interest, summarised with further examples in Table 1.

Carotenoid cleavage dioxygenases

Carotenoid cleavage dioxygenases (CCDs) catalyse the oxidative cleavage of double bonds in carotenoid backbones to form apocarotenoid precursors for the biosynthesis of plant signalling molecules, including strigolactones and abscisic acid (ABA). Strigolactones, known to act as root-derived signals for symbiotic fungi and parasitic plant germination, have recently been identified as growth hormones that regulate shoot branching [17]. The strigolactone biosynthetic pathway includes 9-cis-β-carotene oxidation to 9-cis-β-apo-10’-carotenal, catalysed by CCD7, followed by a double oxygenation reaction to form carlactone, catalysed by CCD8 (Figure 2a) [18**]. The first committed step in the biosynthesis of ABA, a phytohormone that inhibits growth, is catalysed by 9’-cis-epoxycarotenoid dioxygenases (NCEDs, Figure 2b)[19]. Other CCDs have roles in saffron biosynthesis [20], tuber development in potatoes [21] and formation of isoprenoid volatiles in tomatoes [22].

Selective inhibition of CCDS would be a valuable agrochemical tool to modify plant growth and development characteristics, thus structural and mechanistic studies are important. A crystal structure of the maize NCED Vp14

Enzyme(s)	Oxygenase class	Biological function	Potential agricultural application(s)	Reference(s)
Flavanone 3-β-hydroxylase (FHT), flavonol synthase (FLS) and anthocyanidin synthase (ANS)	2OG-dependent dioxygenase	Flavonoid (e.g. anthocyanin) biosynthesis	Control of photoinhibition properties, visual characteristics (e.g. colour) and (possibly) antioxidant content	[62]
Feruloyl CoA hydroxylase (F6’H1)	2OG-dependent dioxygenase	Iron deficiency response	Manipulation of environmental compatibility	[63]
9’-Cis-epoxycarotenoid dioxygenase (NCED)	Carotenoid cleavage dioxygenase	Abscisic acid biosynthesis	Control of abiotic stress tolerance (e.g. drought) and growth and development characteristics	[19,23,24]
1-Aminocyclopropane-1-carboxylic acid oxidase (ACCO)	2OG-dependent ‘like’ dioxygenase	Ethylene biosynthesis	Manipulation of fruit ripening, abiotic stress tolerance (e.g. flooding) and senescence.	[44,45]
9-Lipoxygenase (9LOX) and 13-lipoxygenase (13LOX)	Lipoxygenase	Oxylin (e.g. jasmonic acid) and volatile hydrocarbon biosynthesis	Control of herbivore/microbial defence properties, flavour intensity and abiotic stress tolerance (e.g. high salinity)	[64]
Gibberellin C2 (GA3), C3 (GA3) and C20 (GA20) oxidase	2OG-dependent dioxygenase	Gibberellin biosynthesis (GA3 and GA20 oxidase) and catabolism (GA20 oxidase)	Manipulation of growth and development characteristics	[29,30,33]
Salicylic acid 3-hydroxylase (SSH)	2OG-dependent dioxygenase	Salicylic acid catabolism	Control of biotic/abiotic stress tolerance (e.g. temperature) and senescence	[65]
Carotenoid cleavage dioxygenase 7 (CCD7) and 8 (CCD8)	Carotenoid cleavage dioxygenase	Strigolactone (e.g. orobanchol) biosynthesis	Manipulation of parasitic plant interaction, symbiotic fungal relationships and growth and development characteristics (e.g. shoot and root branching)	[17,18**]
Dioxigenase for auxin oxidation (DAO)	2OG-dependent dioxygenase	Auxin (e.g. indole-3-acetic acid) catabolism	Control of fruit development and tropic responses (e.g. hydrotropism)	[66]
Plant cysteine oxidase 1-5 (PCO1-5)	Cysteine dioxygenase	Hypoxic response regulation (oxygen sensing?)	Manipulation of abiotic stress tolerance (hypoxia)	[58**,59]
Acreductone dioxygenase (ARD)	Methionine salvage/ethylene production	Control of fruit ripening, abiotic stress tolerance (e.g. flooding) and senescence.	[57]	
4-Hydroxyphenylpyruvate dioxygenase (HPPD)	2OG-dependent ‘like’ dioxygenase	Tyrosine catabolism/ tocopherol and plastiquinone production	Control of antioxidant/nutritional content and photoinhibition properties. Herbicide target.	[52,53*]
3,4-Dihydroxyphenylalanine dioxygenase (DOD)	Catechol dioxygenase (extradiol)	Betalain (e.g. betanin) biosynthesis	Manipulation of photoinhibition properties and visual characteristics (e.g. colour)	[67]
Histone arginine demethylases JMJ20 and JMJ22	2OG-dependent demethylase	Epigenetic regulation (e.g. gibberellin signalling)	Control of growth and development characteristics (e.g. seed germination)	[28*]
Reactions catalysed by plant non-heme iron-dependent oxygenases, following the route of molecular oxygen (red). (a) Carotenoid cleavage dioxygenases 7 and 8 (CCD7 and CCD8 respectively) catalyse the oxidation of 9-cis-β-carotene to carlactone. (b) The 9'-Cis-Epoxycarotenoid Dioxygenase (NCED) VP14 catalyses the oxidative cleavage of 9-cis-violaxanthin to xanthoxin. (c) Gibberellic (GA) Oxidases catalyse the biosynthesis (GA20 and GA3-Oxidase) and catabolism (GA2-Oxidase) of active GA’s (GA1 and GA4). (d) N-demethylases catalyse demethylation of methylated nucleotide bases (left) and histone lysines/arginines (right). (e) Codeine O-demethylase (CODM) and thebaine 6-O-demethylase (T6ODM) catalyse the demethylation of thebaine to morphinone. (f) 1-aminocyclopropane-1-carboxylic acid oxidase (ACCO) catalyses the breakdown of 1-Aminocyclopropane-1-carboxylic Acid to ethylene. (g) 4-hydroxyphenylpyruvate dioxygenase (HPPD) catalyses the oxidation of 4-hydroxyphenylpyruvate to homogentisate. (h) Acireductone dioxygenases (ARD) catalyse the production of 2-keto-4-methylthiobutyric acid from acireductone. (i) Plant cysteine oxidases (PCO) catalyse the oxidation of N-terminal cysteine residues to cys-sulfenic acid.
[23] reveals a seven-bladed β-propeller scaffold, with a helical dome over the upper face. The active site Fe(II) is located in the centre of the propeller, ligated to four histidine residues from separate blades, with H2O and O2 occupying the remaining coordination sites in the (substrate-free) crystal structure [23]. Three second sphere glutamate residues, one from each of the remaining blades, are also highly conserved, though their role in catalysis is unknown. Oxygen isotope experiments, where solvent (i.e. H2 O2) back-exchange of cleavage products is accounted for, suggests a dioxygenation reaction mechanism [24,25]. However mechanistic understanding of the CCDs lags behind many other non-heme iron-dependent oxygenases (reviewed in [26]). Similarly, inhibitor studies are at an early phase, though mimics of NCED substrates and (potential) intermediates reduce ABA production in planta [26], and certain hydroxamic acids are capable of selective inhibition of CCD8 [27].

2-Oxoglutarate-dependent oxygenases

The 2OG-dependent oxygenases are involved in a number of primary and secondary metabolic functions in plants, recently reviewed in [28]. These include catalysis of key steps in the biosynthesis of gibberellins (GAs), which have important roles in growth and development. GA C20-oxidase and C3-oxidase catalyse the final step in the production of bioactive forms of the GAs, while GA C2-oxidase catalyses the first step in their catabolism (Figure 2c) [29]. Interestingly the IR8 ‘miracle’ rice variant that was integral to the Green Revolution of the mid 20th century was the result of mutations in the GA C20-oxidase isoform found in leaves and stems, which stunted growth (giving stronger stems) while maintaining fertility, allowing more rice to be produced per unit of agricultural land [30]. These included mutations to conserved residues [31], though their biochemical impact on enzyme function has not been rationalised. A dwarf phenotype linked to naturally occurring mutations in GA C20-oxidase genes has also been observed in other species, for example, Arabidopsis and barley [32,33]. The significant benefits of exploiting these natural variants suggest that targeted manipulation of GA oxidase activity could also result in improved yields. Indeed, 2OG competitive compounds such as daminozide and prohexadione have been used to inhibit GA oxidases, limiting non-productive crop growth and resulting in stem stabilisation [34]. Such 2OG mimics may, however, inhibit other 2OG oxygenases, resulting in non-specific downstream effects, for example, daminozide is a known human histone demethylase inhibitor [35]. Gibberellin-competitive compounds may therefore be more selective for GA oxidase targeting, for example, α,β-16,17-dihydro GA20-acetate has shown inhibition of GA C3-oxidase [36].

2OG oxygenases are also involved in the epigenetic regulation of gene expression via catalysis of N-demethylation reactions in nucleotides and histones (Figure 2d). Plant 2OG-dependent demethylases are less well-characterised than their mammalian homologues, but there is a growing body of evidence supporting roles for DNA demethylases and particularly for histone-demethylases in processes including flower development and stress tolerance (see [28] and references therein). Interestingly, while histone lysine demethylation is well characterised (especially in humans [37]), a role for histone arginine demethylation in regulating GA signalling and seed germination has been identified in Arabidopsis. On light stimulation, JMJ20 and JMJ22 are activated, removing repressive histone arginine methylation mark and promoting transcription of the genes encoding GA C3-oxidases; GA signalling then promotes seed germination [38]. However, the in vitro activity of JMJ20 activity was only demonstrated by western blot analysis and supporting mass spectrometric evidence should be sought to verify this enzyme-mediated arginine demethylation, in order to avoid the controversy that confuses arginine demethylase function in humans [37]. Biochemical/biophysical studies of plant N-demethylases are limited to date (besides a reported structure of the rice H3K4 demethylase JMJ703 catalytic domain [39]) but represent an exciting area for future research. While the complexities involved in selective 2OG-dependent demethylase inhibition may prove challenging, epigenetic regulation by plant N-demethylases will undoubtedly prove to be very important in regulation of gene expression, as for their mammalian counterparts [37].

The first reported O-demethylation reactions catalysed by 2OG oxygenases have recently been identified: In opium poppy plants, thebaine conversion to codeine and morphine is catalysed by thebaine 6-O-demethylase and codeine O-demethylase respectively (Figure 2c) [40]. Formaldehyde detection upon O-demethylation indicated that the mechanism of O-demethylation is homologous to that of 2OG oxygenase-catalysed N-demethylation, that is, methyl hydroxylation followed by formaldehyde elimination [40]. These enzymes, and also 2OG-dependent protopine dealkylase, were subsequently found capable of catalysing a range of dealkylation reactions, including O, O-demethylation, in the biosynthesis of multiple benzylisoquinoline alkaloids in opium poppy [41]. Further, a 2OG-dependent flavone 7-O-demethylase has been identified with a role in flavonoid biosynthesis in sweet basil [42]. The identification of these O-demethylating enzymes adds to the catalytic repertoire of the already diverse 2OG oxygenases, while their potential for manipulation, for example, to inhibit morphine biosynthesis, has important societal and pharmaceutical implications [40,43].

2-Oxoglutarate dependent ‘like’ oxygenases

1-Aminocyclopentane-1-carboxylic acid oxidase (ACCO) catalyses the final step in biosynthesis of the signalling hormone ethylene (Figure 2f), which influences multiple processes including stress responses and fruit ripening.
Although structurally related to the 2OG oxygenases [44], ACCO does not follow the consensus reaction mechanism whereby Fe(II)-coordinated 2OG acts as the two-electron donor to enable O-O scission and formation of a reactive Fe(IV)-oxo species. Instead, ACC binds directly to the Fe(II) via its carboxylate and amino groups, with a closely bound ascorbate acting as an electron donor promoting formation of a reactive Fe intermediate (an Fe(IV)-oxo species is proposed based on kinetic studies [45]) which triggers ACC ring-opening, ethylene and cyanoformate formation. Cyanoformate is proposed to be shuttled away from the enzyme before it decomposes to cyanide and carbon dioxide in the cell medium [46]. Bicarbonate/CO₂ is required to activate the enzyme, possibly by stabilising the enzyme-substrate complex [47]. Control of ethylene biosynthesis is a major target for regulating fruit ripening, but to date approaches have been predominantly genetic with limited pursuit of small molecule ACCO inhibitors [34].

4-Hydroxyphenylpyruvate dioxygenase (HPPD), present in all living organisms, catalyses the first committed step in t-tyrosine catabolism, converting 4-hydroxyphenylpyruvate (HPP) to homogentisate (Figure 2g). Homogentisate is vital to plant life, as the precursor to tocopherols (plant hormones and antioxidants) and plastiquinone (photosynthetic electron transport and carotenoid biosynthesis). Carotenoid-deficient plants are susceptible to UV damage, bleaching and death, making HPPD an herbicidal target. It represents another ‘2OG-oxygenase-like’ enzyme in that instead of using an α-keto acid from a 2OG co-substrate as the electron donor to cleave O-O, HPPD uses an α-keto acid in the pyruvate substituent of the HPP substrate, coordinated directly to the Fe(II). Nevertheless, the proposed mechanism is similar to the 2OG oxygenases: oxidative decarboxylation of HPP yields 4-hydroxyphenylacetate and CO₂, with O-O cleavage forming a (predicted) Fe(IV)-oxo species [48] which enables homogentisate formation (detailed mechanistic possibilities are discussed in [49]). The overall structure of HPPD has a vicinal oxygen chelate fold (like some of the extradiol dioxygenases) supporting the active site [49,50]. Compounds which chelate to the active site Fe(II) have been developed and successfully used as HPPD inhibitors, for example, the triketones mesotrione and sulcotrione [49]. The emergence of herbicide resistant weeds, including those resistant to HPPD inhibitors [51], is fuelling research into novel inhibitors, safeners and inhibitor-resistant GM crops [52,53*].

Acireductone dioxygenases
Acireductone dioxygenases (ARDs) constitute part of the methionine salvage pathway, which is important in plants in maintaining S-adenosylmethionine levels for ethylene production [54]. Interestingly, the active site metal (coordinated by three histidines and a glutamate [55]) can be either Fe(II) or Ni(II), and the nature of the metal determines the catalysed reaction. ARD-Fe(II) catalyses conversion to formate and 2-keto-4-methylthiobutyric acid, the precursor of methionine. ARD-Ni(II) catalyses conversion to CO₂, formate and methylthiopropionic acid (Figure 2h), which then exits the pathway. The mechanism for the different reactions has been proposed to be due to different modes of substrate ligation resulting in substrate attack at different positions by oxygen, and more recently to hydration of a vicinal triketone intermediate in the ARD-Fe(II) but not the ARD-Ni(II) enzyme (discussed in [56]). This work has been conducted with enzymes from bacteria but mechanistic investigations warrant further pursuit in plants, as ARD and the methionine salvage pathway has a role in abiotic and biotic stress tolerance [57]. Activity has been demonstrated in vitro for a rice ARD-Fe(II) [54], but there is no evidence to date for a role of the ARD-Ni(II) form in plants. Nevertheless, the possibility exists that ARD activity, methionine cycling and thus ethylene-mediated stress tolerance could be affected by relative Fe(II) and Ni(II) availability.

Plant cysteine oxidases
Recent work investigating the hypoxic responses of Arabidopsis thaliana has led to the identification of putative non-heme iron-dependent oxygenases with the capacity to regulate hypoxia-responsive transcription factor levels in an O₂-dependent manner [58**]. These Plant Cysteine Oxidases (PCOs), which have sequence homology with the CDOs [13], catalyse the O₂-dependent oxidation of N-terminal cysteine residues of Group VII Ethylene Response Factors (Figure 2j. [58**] and MD White et al., unpublished), targeting them for proteasomal degradation via the N-end rule pathway [59]. The requirement of the PCOs for O₂ connects their activity with the plant hypoxic response and suggests they could act as plant O₂-sensors. Notably, these enzymes are not 2OG-dependent, yet their role in the plant hypoxic response appears to be functionally homologous to the highly O₂-sensitive 2OG-dependent HIF hydroxylases which regulate the hypoxic response in animals [60,61]. Biochemical and kinetic characterisation of the PCOs will therefore be intriguing, establishing if they are true O₂-sensors and thus a possible intervention point for increasing crop tolerance to hypoxic conditions, for example, flooding.

Summary and future perspectives
Non-heme iron-dependent oxygenases are enzymes of extraordinary catalytic capability and considerable efforts in the field continue to elucidate the diverse strategies they use to activate substrate and achieve oxidation. These enzymes are also fascinating due to the vast array of important biological functions they perform. Structural/functional studies can facilitate manipulation of their activity, either to probe their biological function or to promote a desirable phenotypic effect in the native organism, including for therapeutic purposes. The in vito scope for genetically modifying human/animal enzymatic
properties is (currently) limited, thus small molecule/peptidic therapies remain primary targets. In plants however, the possibility exists to both chemically and genetically alter enzymatic behaviour. Nature has already demonstrated that modified plant oxygenases can have significant beneficial effects on crop yield [30]. By furthering our understanding of these important enzymes it may therefore be possible to efficiently design targeted variant plants capable of improved yield, stress tolerance or nutrient production, helping to address some of the global challenges of our time.

Acknowledgements

We thank Dr. Richard Hopkins for helpful discussions and critical reading of the manuscript. This work was supported by the Biotechnological and Biological Sciences Research Council (BB/M024458/1) and a Royal Society Dorothy Hodgkin Research Fellowship (E.F.).

References and recommended reading

Papers of particular interest, published within the period of review, have been highlighted as:
* of special interest
** of outstanding interest

1. Koehntop KD, Emerson JP, Que L Jr. The 2- His-1-carboxylate facial triad: a versatile platform for dioxygen activation by mononuclear non-heme iron (II) enzymes. J Biol Inorg Chem 2005, 10:87-93.

2. Krebs C, Galonic Fujimori D, Walsh CT, Bollinger JM Jr. Non-heme Fe(V)-oxido intermediates. Acc Chem Res 2007, 40:484-492.

3. Eser BE, Barr EW, Fantom PA, Saleh L, Bollinger JM Jr, Krebs C, Fitzpatrick PF. Direct spectroscopic evidence for a high-spin Fe(IV) intermediate in tyrosine hydroxylase. J Am Chem Soc 2007, 129:11334-11335.

4. Panay AJ, Lee M, Krebs C, Bollinger JM, Fitzpatrick PF. Evidence for a high-spin Fe(IV) species in the catalytic cycle of a bacterial phenylalanine hydroxylase. Biochemistry 2011, 50:1928-1933.

5. Bugg TD, Ramaswamy S. Non-heme iron-dependent oxygenases: unravelling catalytic mechanisms for complex enzymatic oxidations.Curr Opin Chem Biol 2008, 12:134-140.

6. Fielding AJ, Lipscomb JD, Que L Jr. A two-electron-shell game: intermediates of the extradiol-cleaving catechol dioxygenases. J Biol Inorg Chem 2014, 19:491-504.

7. Kovaleva EG, Lipscomb JD: Crystal structures of Fe(III)-dioxygenase superoxo, alkylperoxo, and bound product intermediates. Science 2007, 316:453-457.

8. Jeong JH, Bommer M, Lin TY, Dobbek H: Visualizing the substrate-, superoxo-, alkylperoxo-, and product-bound states at the nonheme Fe(III) site of homogentisate dioxygenase. Proc Natl Acad Sci U S A 2013, 110:12625-12630.

This paper presents in crystallo evidence of multiple previously proposed intermediates in the native homogentisate dioxygenase reaction.

9. Knot CJ, Purpuro VM, Lipscomb JD: Crystal structures of alkylperoxo and anhydride intermediates in an intradiol ring-cleaving dioxygenase. Proc Natl Acad Sci U S A 2015, 112:388-393.

10. Barry SM, Challis GL: Mechanism and catalytic diversity of rieske non-heme iron-dependent oxygenases. ACS Catal 2013:3.

11. Karlsson A, Parales JV, Parales RE, Gibson DT, Eklund H, Ramaswamy S: Crystal structure of naphthalene dioxygenase: side-on binding of dioxygen to iron. Science 2003, 299:1039-1042.

12. Rivard BS, Rogers MS, Marell DJ, Nebergall MB, Chakrabarty S, Cramer CJ, Lipscomb JD: Rate-determining attack on substrate precedes rieske cluster oxidation during cis-dihydroxylation by benzoate dioxygenase. Biochemistry 2015, 54:4652-4664.

13. Joseph CA, Maroney MJ: Cysteine dioxygenase: structure and mechanism. Chem Commun 2007:3338-3349.

14. Crawford JA, Li W, Pierce BS: Single turnover of substrate-bound ferric cysteine dioxygenase with superoxide anion: enzymatic reactivation, product formation, and a transient intermediate. Biochemistry 2011, 50:10241-10253.

15. van der Donk WA, Krebs C, Bollinger JM Jr: Substrate activation by iron superoxo intermediates. Curr Opin Struct Biol 2010, 20:673-683.

16. Zhu H, Peck SC, Bonnot F, van der Donk WA, Klimman JP: Oxygen-18 kinetic isotope effects of nonheme iron enzymes HEPD and MPNs support iron(III) superoxide as the hydrogen abstraction species. J Am Chem Soc 2015.

17. Al-Babili S, Bouwmeester HJ: Strigolactones, a novel carotenoid-derived plant hormone. Annu Rev Plant Biol 2015, 66:181-196.

18. Alder A, Jamil M, Marzorati M, Bruno M, Vermaath M, Bigler P, Ghisla S, Bouwmeester H, Beyer P, Al-Babili S: The path from beta-carotene to carlactone, a strigolactone-like plant hormone. Science 2012, 335:1348-1351.

This paper provides MS and NMR evidence of the sequential roles of CCD7 and CCD8 in biosynthesis of carlactone, a likely strigolactone precursor.

19. Schwartz SH, Tan BC, Gage DA, Zeevaart JA, McCarty DR: Specific oxidative cleavage of carotenoids by VP14 of maize. Science 1997, 278:1872-1874.

20. Frusciante S, Diretto G, Bruno M, Ferrante P, Pietrella M, Prado-Cabero A, Rubio-Moraga A, Beyer P, Gomez-Gomez L, Al-Babili S et al.: Novel carotenoid cleavage dioxygenase catalyzes the first dedicated step in saffron crocin biosynthesis. Proc Natl Acad Sci U S A 2014, 111:12246-12251.

21. Bruno M, Beyer P, Al-Babili S: The potato carotenoid cleavage dioxygenase 4 catalyzes a single cleavage of beta-ionone ring-containing carotenones and non-epoxidated xanthophylls. Arch Biochem Biophys 2015, 572:126-133.

22. Ilg A, Bruno M, Beyer P, Al-Babili S: Tomato carotenoid cleavage dioxygenases 1A and 1B: Relaxed double bond specificity leads to a plenitude of dialdehydes, mono-apocarotenoids and isoprenoid volatiles. FEBS Open Bio 2014, 4:584-593.

23. Messing SA, Gabelli SB, Echeverria I, Vogel JT, Guan JC, Tan BC, Klee HJ, McCarty DR, Amzel LM: Structural insights into maize viviparous14, a key enzyme in the biosynthesis of the phytohormone abscisic acid. Plant Cell 2010, 22:2970-2980.

24. Schmidt H, Kurtzer R, Eisenreich W, Schwab W: The carotenone A1CCD1 from Arabidopsis thaliana is a dioxygenase. J Biol Chem 2006, 281:9845-9851.

25. Sui X, Golczak M, Zhang J, Kleinberg KA, von Lintig J, Palczewski K, Kiser PD: Utilization of dioxygen by carotenoid cleavage oxygenases. J Biol Chem 2015.

This thorough study provides confirmation that the carotenoid cleavage oxygenases catalyse a dioxygenation reaction; it had previously been equivocal whether a mono-oxygenase or di-oxygenase reaction mechanism was followed.

26. Harrison PJ, Bugg TD: Enzymology of the carotenoid cleavage oxygenases: reaction mechanisms, inhibition and biochemical roles. Arch Biochem Biophys 2014, 544:105-111.

27. Harrison PJ, Newgas SA, Descombres F, Shepherd SA, Thompson AJ, Bugg TD: Biochemical characterization and selective inhibition of beta-carotene cis-trans isomerase D27 and carotenoid cleavage dioxygenase CCD8 on the strigolactone biosynthetic pathway. FEBS J 2015.

28. Farrow SC, Facchini PJ: Functional diversity of 2-oxoglutarate/Fe(II)-dependent dioxygenases in plant metabolism. Front Plant Sci 2014, 5:524.

A comprehensive review of the diversity of roles for 2OG oxygenases in plant biology.
29. Yamaguchi S: Gibberellin metabolism and its regulation. Annu Rev Plant Biol 2008, 59:225-251.
30. Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapnon D, Ishiyama K, Saito T, Kobayashi M, Khush GS et al.: Green revolution: a mutant gibberellin-synthesis gene in rice. Nature 2002, 416:701-702.
31. Thomas SQ, Phillips AL, Hedden P: Molecular cloning and functional expression of gibberellin 2-oxidases, multifunctional enzymes involved in gibberellin deactivation. Proc Natl Acad Sci U S A 1999, 96:4698-4703.
32. Barboza L, Effgen S, Alonso-Blanco C, Kooke R, Keurentjes JJ, Koornneef M, Alcazar R: Arabidopsis semidwarfs evolved from independent mutations in GA20ox1, orthologs to green revolution dwarf alleles in rice and barley. Proc Natl Acad Sci U S A 2013, 110:15818-15823.
33. Jia Q, Zhang J, Westcott S, Zhang XO, Bellgard M, Lance R, Li C: GA-20 oxidase as a candidate for the semidwarf gene sdw1 in barley. Funct Integr Genomics 2009, 9:255-268.
34. Rose NR, McDonough MA, King ON, Kawamura A, Schofield CJ: Inhibition of 2-oxoglutarate dependent oxygenases. Chem Soc Rev 2011, 40:3464-3497.
35. Rose NR, Woon EC, Tumber A, Walport LJ, Chowdhury R, Li XS, King ON, Lejeune C, Ng SS, Krojer T et al.: Plant growth regulator daminozide is a selective inhibitor of human KDM2/7 histone demethylases. J Med Chem 2012, 55:6639-6643.
36. Zhou R, Yu M, Pharis RP: 16,17-Dihydro gibberelin A5 competitively inhibits a recombinant Arabidopsis GA 3beta-hydroxylase encoded by the GA4 gene. Plant Physiol 2004, 135:1000-1007.
37. Thennes CC, England KS, Kawamura A, Chowdhury R, Schofield CJ, Hopkins RJ: Targeting histone lysine demethylases — progress, challenges, and the future. Biochim Biophys Acta 2014, 1839:1416-1432.
38. Cho JN, Ryu JY, Jeong YM, Park J, Song JJ, Amasino RM, Noh B, Noh YS: Control of seed germination by light-induced histone arginine demethylilation activity. Dev Cell 2012, 22:736-748.
39. Chen Q, Chen X, Wang Q, Zhang F, Lou Z, Zhang Q, Zhou DX: Structural basis of a histone H3 lysine 4 demethylase required for stem elongation in rice. PLoS Genet 2013, 9:e1003239.
40. Hagel JM, Facchini PJ: Dioxygenases catalyze the O-demethylation steps of morphine biosynthesis in opium poppy. Nat Chem Biol 2010, 6:273-275.
 This paper describes the first O-demethylation reaction catalysed by non-heme iron dependent oxygenases, and also opens the possibility of manipulation of codeine/morphine biosynthesis.
41. Farrow SC, Facchini PJ: Dioxygenases catalyze O-demethylation reactions of 7-deoxyflavones from Apocynaceae, and widespread roles in benzylisoquinoline alkaloid metabolism in opium poppy. J Biol Chem 2013, 288:28997-29012.
42. Berim A, Kim MJ, Gang DR: Identification of a unique 2-oxoglutarate-dependent flavone 7-O-demethylase completes the elucidation of the lipophilic flavone network in basil. Plant Cell Physiol 2015, 56:126-136.
43. Runguphan W, Glenn WS, O’Connor SE: Redesign of a dioxygenase in morphiine biosynthesis. Chem Biol 2012, 19:674-678.
44. Zhang Z, Ren JS, Clifton IJ, Schofield CJ: Crystal structure and mechanistic implications of 1-aminocyclopropane-1-carboxylic acid oxidase: the ethylene-forming enzyme. Chem Biol 2004, 11:1383-1394.
45. Mirica LM, Kliment JP: The nature of O2 activation by the ethylene-forming enzyme 1-aminocyclopropane-1-carboxylic acid oxidase. Proc Natl Acad Sci U S A 2008, 105:1814-1819.
46. Murphy LJ, Robertson KN, Harroun SG, Brousseau CL, Werner-Zwanziger U, Mollenan J, Tunonen HM, Clyburne JA: A simple complex on the verge of breakdown: isolation of the elusive cyanoformate ion. Science 2014, 344:75-78.
47. Brioso L, El Bakkali-Taheri N, Giorgi M, Fadel A, Kaizer J, Reglier M, Tron T, Ajdouez HL, Smaan AJ: 1-Aminocyclopropane-1-carboxylic acid oxidase: insight into cofactor binding from experimental and theoretical studies. J Biol Inorg Chem 2012, 17:939-949.
48. Borowski T, Bassan A, Siegbehn PE: 4-Hydroxyphenylpyruvate dioxygenase: a hybrid density functional study of the catalytic reaction mechanism. Biochemistry 2004, 43:12331-12342.
49. Moran GR: 4-Hydroxyphenylpyruvate dioxygenase and hydroxymandelate synthase: exemplars of the alpha-keto acid dependent oxygenases. Arch Biochem Biophys 2014, 544:58-68.
50. He P, Moran GR: Structural and mechanistic comparisons of the metal-binding members of the vicinal oxygen chelate (VOC) superfamily. J Inorg Biochem 2011, 105:1259-1272.
51. Heap I: The International Survey of Herbicide Resistant Weeds. 2015.
52. Siehl DL, Tao Y, Albert H, Dong Y, Heckert M, Madrigal A, Lincoln-Cabatu B, Lu J, Fenwick T, Bermudez E et al.: Broad 4-hydroxyphenylpyruvate dioxygenase inhibitors herbicide tolerance in soybean with an optimized enzyme and expression cassette. Plant Physiol 2014, 166:1162-1176.
53. Ahrens H, Lange G, Muller T, Rosinger C, Willsm L, van Almsick A: 4-Hydroxyphenylpyruvate dioxygenase inhibitors in combination with safeners: solutions for modern and sustainable agriculture. Angew Chem Int Ed Engl 2013, 52:9388-9398.
 A comprehensive review with an industrial perspective on current strategies in herbicide development.
54. Sauter M, Lorbiecke R, Ouyang B, Pochapsky TC, Rzewuski G: The immediate-early ethylene response gene OsARR1 encodes an acridone dioxygenase involved in recycling of the ethylene precursor S-adenosylmethionine. Plant J 2005, 44:718-729.
55. Pochapsky TC, Pochapsky SS, Ju T, Mo H, Al-Mjeni F, Maroney MJ: Modeling and experiment yields the structure of acridone dioxygenase from Klebsiella pneumoniae. Nat Struct Biol 2002, 9:966-972.
56. Maroney MJ, Ciurliti S: Nonredox nickel enzymes. Chem Rev 2014, 114:4206-4228.
57. Xu L, Jia J, Lv J, Liang X, Han D, Huang L, Kang Z: Characterization of the expression profile of a wheat acridone-dioxygenase-like gene in response to stripe rust pathogen infection and abiotic stresses. Plant Physiol Biochem 2010, 48:461-468.
58. Weits DA, Giuntoli B, Kosmacz M, Parlanti S, Hubberten HM, Riegler H, Hoefgen R, Perez P, van Dongen JT, Licausi F: Plant cysteine oxidases control the oxygen-dependent branch of the N-end-rule pathway. Nat Commun 2014, 5:3425.
 The identification of putative plant oxygen sensing enzymes, with homology to cysteine dioxygenases.
59. Gibbs DJ, Conde JV, Berokhan S, Prasad G, Mendiondo GM, Holdsworth MJ: Group VII ethylene response factors coordinate oxygen and nitric oxide signal transduction and stress responses in plants. Plant Physiol 2015, 169:23-31.
60. Tarhonskaya H, Chowdhury R, Leung IK, Loik ND, McCullagh JS, Claridge TD, Schofield CJ, Flashman E: Investigating the contribution of the active site environment to the slow reaction of hypoxia-inducible factor prolyl hydroxylase domain 2 with oxygen. Biochem J 2014, 463:363-372.
61. Myllyharju J: Prolyl 4-hydroxylases, master regulators of the hypoxia response. Acta Physiol (Oxf) 2013, 208:148-165.
62. Cheng AX, Han XJ, Wu YF, Lou HX: The function and catalysis of 2-oxoglutarate-dependent oxygenases involved in plant flavonoid biosynthesis. Int J Mol Sci 2014, 15:1080-1095.
63. Viganò G, Morandini P, Murgia I: Searching iron sensors in plants by exploring the link among 2'-OG-dependent dioxygenases, the iron deficiency response and metabolic adjustments occurring under iron deficiency. Front Plant Sci 2014, 4:169.
64. Porta H, Rocha-Sosa M: Plant lipoxygenases. Physiological and molecular features. Plant Physiol 2002, 130:15-21.

65. Zhang K, Halitschke R, Yin C, Liu CJ, Gan SS: Salicylic acid 3-hydroxylase regulates Arabidopsis leaf longevity by mediating salicylic acid catabolism. Proc Natl Acad Sci U S A 2013, 110:14807-14812.

66. Zhao Z, Zhang Y, Liu X, Zhang X, Liu S, Yu X, Ren Y, Zheng X, Zhou K, Jiang L et al.: A role for a dioxygenase in auxin metabolism and reproductive development in rice. Dev Cell 2013, 27:113-122.

67. Khan MI, Giridhar P: Plant betalains: chemistry and biochemistry. Phytochemistry 2015, 117:267-295.