Structural Evidence for a Dehydrated Intermediate in Green Fluorescent Protein Chromophore Biosynthesis**

Received for publication, December 6, 2009, and in revised form, February 23, 2010. Published, JBC Papers in Press, March 9, 2010, DOI 10.1074/jbc.M109.092320

Nadya V. Pletneva, Vladimir Z. Pletnev, Konstantin A. Lukyanov, Nadya G. Gurskaya, Ekaterina A. Goryacheva, Vladimir I. Martynov, Alexander Wlodawer§, Zbigniew Dauter¶, and Sergei Pletnev†‡

From the §Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 GSP, Moscow V-437, Russia, the ¶Synchrotron Radiation Research Section, Macromolecular Crystallography Laboratory, NCI, National Institutes of Health, Argonne, Illinois 60439, the ‡Protein Structure Section, Macromolecular Crystallography Laboratory, NCI, National Institutes of Health, Frederick, Maryland 21702, and the †Basic Research Program, SAIC-Frederick, Argonne, Illinois 60439

The acGFPL is the first-identified member of a novel, colorless and non-fluorescent group of green fluorescent protein (GFP)-like proteins. Its mutant aceGFPL, with Gly replacing the invariant catalytic Glu-222, demonstrates a relatively fast maturation rate and bright green fluorescence (λ_{em} = 480 nm). The reverse G222E single mutation in aceGFPL results in the immature, colorless variant aceGFPL-G222E, which undergoes irreversible photoconversion to a green fluorescent state under UV light exposure. Here we present a high resolution crystallographic study of aceGFPL and aceGFPL-G222E in the immature and UV-photoconverted states. A unique and striking feature of the colorless aceGFPL-G222E structure is the chromophore in the trapped intermediate state, where cyclization of the protein backbone has occurred, but Tyr-66 still stays in the native, non-oxidized form, with C^α and C^β atoms in the sp³ hybridization. This experimentally observed immature aceGFPL-G222E structure, characterized by the non-coplanar arrangement of the imidazolone and phenolic rings, has been attributed to one of the intermediate states in the GFP chromophore biosynthesis. The UV irradiation (λ = 250–300 nm) of aceGFPL-G222E drives the chromophore maturation further to a green fluorescent state, characterized by the conventional coplanar bicyclic structure with the oxidized double Tyr-66 C^α-C^β bond and the conjugated system of π-electrons. Structure-based site-directed mutagenesis has revealed a critical role of the proximal Tyr-220 in the observed effects. In particular, an alternative reaction pathway via Tyr-220 rather than conventional wild type Glu-222 has been proposed for aceGFPL maturation.

Green fluorescent proteins (GFP)² and the GFP-like proteins (FPs) have become in recent years very useful tools in many areas of cell biology, biotechnology, and medicine. These proteins exhibit a wide spectral range of fluorescence, from blue to far-red. It became possible to effectively use FPs as single or coupled biomarkers for multicolor labeling of proteins, subcellular compartments, and specific tissue regions. Utilization of FPs enabled monitoring of a variety of characteristics, such as cellular pH and ion concentration, tracking of expression, intracellular localization, and trafficking of proteins of interest in the cell or whole organism and following their interactions with other cellular components (1–5).

Chromoproteins are another large group of non-fluorescent counterparts of FPs that share with them the principal fold but not spectral properties (6, 7). However, a number of artificially created, genetically engineered variants of chromoproteins do exhibit fluorescence (6, 8). Members of both fluorescent and non-fluorescent families possess visible coloration corresponding to an absorption range of 450–610 nm. Extensive diversity of their photophysical characteristics arises mostly from variations in the chemical structure of the internal chromophore group and in the stereochemistry of its adjacent environment.

The first identified member of a novel colorless non-fluorescent group of GFP-like proteins was acGFPL from jellyfish <i>Aequorea coerulescens</i> (9). Its discovery suggested that many other species might express similar colorless FPs. It was found that a glycine replacement of Glu-222, a conserved residue adjacent to the chromophore, plays a key role in creating a fluorescent form of acGFPL. A variant of acGFPL, named aceGFPL (commercial name AcGFPL from Clontech), obtained by mutation of five residues that included mutating residue Glu-222 to a glycine, exhibited bright green fluorescence. The reverse single mutation G222E in aceGFPL resulted in the colorless variant aceGFPL-G222E that demonstrated no visible coloration and fluorescence, similarly to the wild type acGFPL. Detailed characterization of the purified aceGFPL-G222E showed that only a minor fraction (about 3%) of this protein contains mature chromophore in the protonated state (absorption maximum at 390 nm), whereas the major fraction exhibits no absorption/fluorescence in the visible region, indicating the...
presence of an immature chromophore. Importantly, this immature protein can be converted into a green fluorescent state (similar to aceGFP, with excitation and emission maxima at 480 and 505 nm, respectively) by UV light illumination (\(\lambda = 250 \text{–} 300 \text{ nm}\)). We have focused on the stereochemical features responsible for these unique properties. We present here the results of a high resolution x-ray study of the mutant variants of the colorless non-fluorescent progenitor acGFPL. The proteins that were investigated include the green fluorescent aceGFP (resolution 1.5 Å), the colorless aceGFP-G222E (resolution 1.14 Å), and UV-photoconverted aceGFP-G222E-(UV) (resolution 1.75 Å). The structural aspects of this study have been supported by site-directed mutagenesis and by spectroscopic characterization of three new mutant variants, namely aceGFP-Y220L, aceGFP-Y220F, and aceGFP-G222E-Y220L.

EXPERIMENTAL PROCEDURES

Expression, Purification, and Crystallization—The pQE30 plasmids with the corresponding vectors of aceGFP, aceGFP-Y220L/F, aceGFP-G222E, and aceGFP-G222E-Y220L were transformed into *Escherichia coli* JM109 (DE3) cells. The proteins were expressed in 3 liters of LB medium by overnight incubation at 37 °C. Cells were resuspended in 20 mM Tris, pH 7.8, 200 mM NaCl and disrupted by sonication. Purification of each protein was performed on metal-affinity (TALON resin, Clontech) and size-exclusion (Superdex-200 (16/60), Amersham Biosciences) columns. All major purification steps were performed in 20 mM Tris, pH 7.8, 200 mM NaCl buffer.

Prior to crystallization, aceGFP and aceGFP-G222E were transferred to 10 mM Tris-HCl, pH 7.5, 100 mM NaCl, 2.5 mM EDTA buffer and concentrated to 10–15 mg/ml in 10-kDa molecular mass cutoff concentration units (Vivascreen). Crystals were obtained by the hanging drop vapor diffusion method at 20 °C. Each crystallization drop consisted of 1 μl of protein solution mixed with an equal volume of reservoir solution and was incubated against 500 μl of reservoir solution. The hexagonal bipyrimal crystals of aceGFP, with visible green coloration, were obtained from 0.2 M potassium/sodium tartrate, 0.1 M sodium citrate, 2 M ammonium sulfate, pH 5.6, and the prismatic crystals of aceGFP-G222E were obtained from 0.2 M ammonium acetate, 0.1 M Bis-Tris, pH 6.5, 25% polyethylene glycol 3350. Crystal growth time varied from 1 week to 2 months. A crystal of the colorless aceGFP-G222E, surrounded by the mother liquor in its crystallization drop, was photoconverted to the green fluorescent state by 2 h of UV irradiation (254 nm) at 20 °C.

Crystal Structure Determination and Refinement—X-ray diffraction data for aceGFP, aceGFP-G222E, and the UV-photoconverted aceGFP-G222E-(UV) were collected from single crystals flash-cooled in a 100 K nitrogen stream. Prior to cooling, the crystals were transferred to a cryo-protecting solution containing 20% glycerol and 80% reservoir solution. Data were collected with a MAR300 CCD detector at the SER-CAT beamline 22ID (Advanced Photon Source (APS), Argonne National Laboratory, Argonne, IL) and were processed with HKL2000 (10).

TABLE 1

Crystallographic data and refinement statistics

Protein	aceGFP (PDB ID: 3LVA)	aceGFP-G222E (PDB ID: 3LVC)	aceGFP-G222E (UV-photoconverted) (PDB ID: 3LVD)
Space group	P6₁,22	P2₁,2₁	P2₁,2₁
Cell dimensions (Å)	a, b = 74.5, c = 325.9	a = 59.9, b = 80.4, c = 95.8	a = 59.5, b = 80.2, c = 95.4
Z/(Z^c)	24 (2)	8 (2)	8 (2)
Estimated solvent content (%)	50	43	42
Temperature (K)	100	100	100
Wavelength (Å)	1.00	1.00	1.00
Resolution range (Å)	29.1–1.50 (1.57–1.50)^a	29.7–1.14 (1.17–1.14)^a	28.4–1.75 (1.81–1.75)^a
Total reflections measured	805,382	757,611	223,690
Unique reflections observed (F > 0)	83,894	168,358	46,602
Multiplicity	9.6 (8.8)^a	4.5 (3.9)^a	4.8 (4.8)^a
I/σ(I)	30.0 (2.4)^a	16.8 (3.1)^a	17.7 (2.7)^a
R_{merge}	0.068 (0.718)^a	0.074 (0.481)^a	0.084 (0.583)^a
Completeness (%)	96.5 (96.0)^a	100.0 (100.0)^a	99.9 (100.0)^a

^a Values for the data in the highest resolution shell.

^b Percentage of the data reserved for working and free sets.

^c r.m.s.d., root mean square deviation.
The crystal structure of aceGFP was solved by the molecular replacement method with MOLREP (11, 12), using the coordinates of a GFP monomer (PDB ID: 1GFL (13)) without its chromophore. The refined coordinates of aceGFP were used to solve the aceGFP-G222E structure. Structure refinement was performed with PHENIX (14), alternating with manual correction of the model using COOT (15). Water molecules were located with ARP/wARP (16), and structure validation was performed with PROCHECK (17). Crystallographic data and refinement statistics are presented in the Table 1. The coordinates and structure factors of the aceGFP, aceGFP-G222E, and aceGFP-G222E-(UV) (after UV irradiation) were deposited in the Protein Data Bank under accession codes 3LVA, 3LVC, and 3LVD, respectively.

Mutagenesis and Spectroscopic Characterization—Preparation of the structure-based variants aceGFP-Y220F/L and aceGFP-222E-Y220L by site-directed mutagenesis was performed by PCR using the overlap extension method with primers containing the appropriate target substitutions (18). Absorption and excitation-emission spectra of the purified proteins were recorded with a Varian Cary 100 UV-vis spectrophotometer and Varian Cary Eclipse fluorescence spectrophotometer, respectively.

RESULTS

Overall Structure—A monomer (molecular mass ~27 kDa) of aceGFP and aceGFP-G222E adopts a fold typical for all GFP-like proteins that consists of an 11-stranded β-barrel, with loop caps from both sides and a chromophore embedded in the middle of an internal α-helix going along the β-barrel axis. In the crystalline state, both proteins form dimers composed of two such monomers arranged in an antiparallel fashion, with an angle of ~40° between the β-barrel axes.

Chromophore Structure of the Green aceGFP—The aceGFP variant exhibits bright emission in the green spectral range ($\lambda_{ex} = 480$ nm, $\lambda_{em} = 505$ nm; Fig. 1A). In contrast to wild type green fluorescent proteins, the important position 222, proximal to the chromophore, is occupied in aceGFP by an unusual Gly residue instead of the highly conserved catalytic Glu. Nevertheless the chromophore structure, matured from the Ser-65–Tyr-66–Gly-67 triad (Fig. 2), is identical to that present in wild type avGFP from Aequorea victoria (PDB ID: 1W7S) and cgGFP from Clytia gregaria (2HPW). The chromophore adopts a two-ring coplanar structure typical for GFP, consisting of a five-member imidazolone heterocycle having a p-hydroxybenzylidene substituent with the phenolic ring of Tyr-66 in cis-orientation to the C=C bond. Tyr-66 exhibits trigonal planar geometry of bonds attached to the C atom and a double character of the C=C bond, indicating the sp hybridization state of both atoms. Ser-65 is characterized by the sp3 hybridization of C, the single character of the C=N bond, and the trans-configuration of the preceding peptide bond.

Chromophore Structure of the Colorless aceGFP-G222E—The replacement of the unusual Gly-222 with the generally conserved Glu residue in aceGFP traps the protein in an immature colorless state (9). Indeed, the crystal structure of aceGFP-G222E showed that the chromophore moiety is not fully matured. Here the posttranslational modification has terminated at the backbone cyclized state characterized by the non-coplanar, non-conjugated two-ring structure, with Tyr-66 in the native (non-oxidized) form. The single character of the Tyr-66 C=C and C=C bonds, the tetrahedral geometry of...
bonds attached to the C^a atom, and the characteristic value of the torsion angle \(\chi = -55^\circ \) around the C^b–C^a all unequivocally define the sp^3 hybridization state of both the C^a and the C^b atoms (Figs. 3 and 4a).

The environment of the chromophore in aceGFP-G222E can be defined as 19 side chains arranged in a manner practically identical to those in aceGFP, except for the extra Glu-222 side chain (Fig. 5). Glu-222 and another highly conserved residue, Arg-96, play an active catalytic role in the GFP-like proteins, facilitating oxidative chemistry in the posttranslational modification process (19–22). Most of the proximal residues are involved in an extensive H-bond network interacting with the chromophore. The proximal waters (presumed reaction products of the maturation process) also participate in the network, mediating interactions between the residues. The network is apparently functionally important as a potential proton/electron wire in the maturation process.

Interestingly, the carboxyl group of Glu-222 in the immature aceGFP-G222E exhibits a 2 Å displacement relative to the corresponding position in the wild type green avGFP and cgGFP. This shift is stabilized by an H-bond with the Tyr-220 side chain and can be reproduced with \(\chi = 30^\circ \) torsion rotations around the respective C–C, C–C, and C–C bonds of the side chain of Glu-222. In WT avGFP and cgGFP, the carboxyl O^1 and O^2 atoms of Glu-222 form hydrogen bonds with the side chains of Ser-205 and the chromophore Ser-65, respectively. The corresponding water-mediated H-bond pathway OH(Tyr-66)–OHO(Wat)–OH(Ser-205)–O(Ser-65) was proposed to be important for promoting rapid proton transfer from a neutral chromophore to Glu-222 (23). In the colorless aceGFP-G222E, this pathway is replaced by a longer chain OH(Tyr-66)–OHO(Wat)–OH(Ser-205)–OH(Tyr-220)–O(Ser-65), which also incorporates Tyr-220. Here the corresponding O^1 atom of Glu-222 makes two H-bonds with the hydroxyl of Tyr-220 and the chromophore Ser-65, and O^2 interacts with the proximal water, mediating interactions in the H-bond network (Fig. 6).

Chromophore Structure of the UV-photoconverted aceGFP and aceGFP-G222E

Irradiation of the colorless aceGFP-G222E variant with UV light (\(\lambda = 250–300 \) nm) causes its irreversible photo-
conversion to a green fluorescent state that is similar to the one found in aceGFP (9). In contrast to a non-irradiated precursor, the chromophore structure in the UV-converted variant is fully matured and has spectral properties practically identical to that in aceGFP (Fig. 1, A and B), exhibiting coplanar arrangement of the imidazolone and phenolic rings with a conjugated system of \(\pi \)-electrons. Except for the chromophore itself, photoconverted and non-photoconverted aceGFP-G222E, as well as aceGFP, have practically identical three-dimensional structural arrangement of the residues nearest to the chromophore. No decarboxylation of Glu-222, characteristic for UV-induced photoconversion of WT avGFP (24) and photoactivatable GFP (25, 26), was observed in aceGFP-G222E.

Mutagenesis of Tyr-220—A comparison of the three-dimensional structures of aceGFP/aceGFP-G222E with WT avGFP/cgGFP revealed an important amino acid difference at position 220. This position, located in the immediate environment of the chromophore, is occupied by Tyr and Leu/Ile, respectively (Fig. 2). In aceGFP-G222E, the Tyr-220 phenolic ring shifts the Glu-222 carboxylate by 2 Å from the standard position observed in avGFP/cgGFP. The replacement Y220L in the colorless aceGFP-G222E resulted in a green fluorescent product aceGFP-G222E-Y220L with excitation-emission spectra similar to those of the wild type avGFP (Fig. 1C). In the green fluorescent aceGFP, lacking Glu-222, substitutions Y220L and especially Y220F resulted in very slowly maturing mutants that required 1–2 weeks of incubation to develop fluorescence. At the same time, matured aceGFP-Y220L and aceGFP-Y220F proteins have excitation and emission spectra indistinguishable from those of parental aceGFP (Fig. 1A). Moreover, molar extinction coefficients and fluorescence quantum yields for these mutants were found to be very close to that of aceGFP (50,000 M\(^{-1}\)cm\(^{-1}\) and 0.55, respectively (9). Thus, Tyr-220 appears to be important to ensure fast chromophore maturation of aceGFP, but its presence...
Three-dimensional Structures of aceGFP and aceGFP-G222E

FIGURE 7. Proposed reaction scheme for GFP chromophore biosynthesis according to Barondeau et al. (32).

ence has a negligible effect on the spectral properties of the matured protein.

DISCUSSION

The immature chromophore of aceGFP-G222E exhibits non-coplanar arrangement of the imidazolone and phenolic rings, indicating the lack of their conjugation (Figs. 3 and 4a). This state is characterized by the non-oxidized single Tyr-66 C=O–Cβ bond, with both atoms in sp3 hybridization. A distinct feature of the colorless aceGFP-G222E, as well as of aceGFP, is the presence of Tyr-220, as opposed to Leu and Ile in WT avGFP and cgGFP, respectively. In aceGFP-G222E, the side chain of Tyr-220 pushes the negatively charged carboxyl group of Glu-222 by ~2 Å from its conventional position. As a result, the H-bonded wire between Glu-222 and the chromophore Tyr-66 is extended by insertion of the interactions with Tyr-220. Such a shift apparently causes local distortion of the electrostatic field, which terminates the chromophore maturation process at an intermediate stage in which the cyclization of the protein backbone has occurred, but Tyr-66 still remains in the native, non-oxidized form. To check the proposed charge effect, we replaced the “pushing” Tyr-220 residue with a smaller Leu, aiming to restore the location of the Glu-222 side chain to that observed in avGFP and cgGFP. Indeed, this replacement resulted in a fully matured product aceGFP-G222E-Y220L, with spectral properties similar to those of the wild type avGFP (Fig. 1C).

UV irradiation of the immature aceGFP-G222E drives the post-translational modification process further and results in a fully matured chromophore having the GFP conventional planar bicyclic structure and the conjugated system of π-electrons. The conserved Glu-222, Arg-96, and possibly, Tyr-220, are expected to participate in catalysis of this process. The UV-converted variant exhibits bright green fluorescence similar to that observed in avGFP and cgGFP. Indeed, this replacement resulted in a fully matured product aceGFP-G222E-Y220L, with spectral properties similar to those of the wild type avGFP (Fig. 1C).

The details of the mechanism of chromophore formation in GPs have been a subject of considerable controversy. Several crystal structures trapping various intermediate states have been reported, leading to a number of proposed reaction schemes of chromophore biosynthesis (21, 31, 32). One of the plausible pathways of chromophore maturation (Fig. 7) has been proposed by Barondeau et al. (32). Currently, three intermediates, I, III, IV, and the mature state VI of the chromophore from the proposed pathway, have been experimentally detected by x-ray crystallography. The precyclized state I was trapped in the anaerobically prepared GFP variants with modified chromophore-forming sequences Gly-65–Gly-66–Gly-67 and Ala-65–Ser-66–Ala-67 (19, 33). The dehydrated intermediate III has now been observed by us in the non-modified chromophore Ser-65–Tyr-66–Gly-67 of the colorless aceGFP-G222E. The distinguishing feature of this state is the intact geometry of Tyr-66, characterized by sp3 hybridization of both the Cα and the Cβ atoms and by the tetrahedral arrangements of their covalent bonds (Fig. 4a). The structure corresponding to the following partially oxidized enolate intermediate IV with sp2 and sp3 hybridization of the respective Cα and Cβ atoms (Fig.
Three-dimensional Structures of aceGFP and aceGFP-G222E

4b) has been detected for the blue fluorescent BPFPsol matured variant after reducing the previously mutated chromophore Thr-65–His-66–Gly-67 with dithionite (32).

Pouwels et al. (21) proposed a different pathway of chromophore formation in which the dehydratation reaction of the hydroxylated imidazolone is the last chemical step leading to a mature chromophore. The state preceding the matured form has been attributed to the non-dehydrated chromophore structure (Fig. 4c) trapped in the crystal of the colorless EGFP variant. This variant has the chromophore-forming sequence Thr-65–Leu-66–Gly-67 with an unusual non-aromatic Y66L substitution (31). The observed framework reveals the hydroxylated imidazolone and partially oxidized Leu-66 C=–C bond with sp² and sp³ hybridization of the respective atoms. The authors’ assignment of the C= (Leu-66) atom hybridization to sp³ is consistent with the observed trigonal planar geometry of three attached bonds but somewhat disagrees with their single character. This non-dehydrated state with oxidized C= (66) sp² atom cannot succeed or precede our dehydrated form III with non-oxidized C= (66) sp³ (Fig. 7). This might indicate the complexity of chromophore biosynthesis, suggesting more than one possible reaction pathway defined by the concrete chromophore-forming sequence and the immediate stereochemical environment. The unusual aliphatic nature of the chromophore Leu-66 in the EGFP variant could also make a dramatic difference in the maturation process when compared with that in GFP-like proteins that contain an aromatic residue at position 66.

Acknowledgments—We acknowledge the use of beamline 22-ID of the Southeast Regional Collaborative Access Team (SER-CAT), located at the APS, Argonne National Laboratory. Use of the APS has been attributed to the non-dehydrated chromophore structure (Fig. 4c) trapped in the crystal of the colorless EGFP variant. This variant has the chromophore-forming sequence Thr-65–Leu-66–Gly-67 with an unusual non-aromatic Y66L substitution (31). The observed framework reveals the hydroxylated imidazolone and partially oxidized Leu-66 C=–C bond with sp² and sp³ hybridization of the respective atoms. The authors’ assignment of the C= (Leu-66) atom hybridization to sp³ is consistent with the observed trigonal planar geometry of three attached bonds but somewhat disagrees with their single character. This non-dehydrated state with oxidized C= (66) sp² atom cannot succeed or precede our dehydrated form III with non-oxidized C= (66) sp³ (Fig. 7). This might indicate the complexity of chromophore biosynthesis, suggesting more than one possible reaction pathway defined by the concrete chromophore-forming sequence and the immediate stereochemical environment. The unusual aliphatic nature of the chromophore Leu-66 in the EGFP variant could also make a dramatic difference in the maturation process when compared with that in GFP-like proteins that contain an aromatic residue at position 66.

REFERENCES
1. Verkhusha, V. V., and Lukyanov, K. A. (2004) Nat. Biotechnol. 22, 289–296
2. Chudakov, D. M., Lukyanov, S., and Lukyanov, K. A. (2005) Trends Biotechnol. 23, 605–613
3. Zubova, N. N., and Savitsky, A. P. (2005) Uspekhi Biol. Khim. 45, 1–66
4. Remington, S. J. (2006) Curr. Opin. Struct. Biol. 16, 714–721
5. Wang, Y., Shyy, J. Y., and Chien, S. (2008) Annu. Rev. Biomed. Eng. 10, 1–38
6. Gurskaya, N. G., Fradkov, A. F., Terskikh, A., Matz, M. V., Labas, Y. A., Martynov, V. I., Yanushhevich, Y. G., Lukyanov, K. A., and Lukyanov, S. A. (2001) FEBS Lett. 507, 16–20
7. Prescott, M., Ling, M., Beddoe, T., Oakley, A. J., Dove, S., Hoegh-Guldberg, O., Devenish, R. J., and Rossjohn, J. (2003) Structure 11, 275–284
8. Bulina, M. E., Chudakov, D. M., Mudrik, N. N., and Lukyanov, K. A. (2002) BMC. Biochem. 3, 7
9. Gurskaya, N. G., Fradkov, A. F., Pounkova, N. I., Staroverov, D. B., Bulina, M. E., Yanushhevich, Y. G., Labas, Y. A., Lukyanov, S., and Lukyanov, K. A. (2003) Biochem. J. 373, 403–408
10. Otwinowski, Z., and Minor, W. (1997) Methods Enzymol. 276, 307–326
11. Wang, Y., and Tepleyakov, A. (1997) J. Appl. Crystallogr. 30, 1022–1025
12. Collaborative Computational Project Number 4 (1994) Acta Crystallogr. D. Biol. Crystallogr. 50, 760–763
13. Yang, F., Moss, L. G., and Phillips, G. N., Jr. (1996) Nat. Biotechnol. 14, 1246–1251
14. Terwilliger, T. C., Grosse-Kunstleve, R. W., Afonine, P. V., Moriarty, N. W., Zwart, P. H., Hung, L. W., Read, R. J., and Adams, P. D. (2008) Acta Crystallogr. D. Biol. Crystallogr. 64, 61–69
15. Emsley, P., and Cowtan, K. (2004) Acta Crystallogr. D. Biol. Crystallogr. 60, 2126–2132
16. Perrakis, A., Sixma, T. K., Wilson, K. S., and Lamzin, V. S. (1997) Acta Crystallogr. D. Biol. Crystallogr. 53, 448–455
17. Laskowski, R. A., MacArthur, M. W., Moss, D. S., and Thornton, J. M. (1993) J. Appl. Crystallogr. 26, 283–291
18. Ho, S. N., Hunt, H. D., Horton, R. M., Pullen, J. K., and Pease, L. R. (1989) Gene 77, 51–59
19. Barondeau, D. P., Putnam, C. D., Kassmann, C. I., Tainer, J. A., and Getzoff, E. D. (2003) Proc. Natl. Acad. Sci. U.S.A. 100, 12111–12116
20. Barondeau, D. P., Kassmann, C. I., Tainer, J. A., and Getzoff, E. D. (2006) J. Am. Chem. Soc. 128, 4685–4693
21. Pouwels, L. J., Zhang, L., Chan, N. H., Dorrestein, P. C., and Wachter, R. M. (2008) Biochemistry 47, 10111–10122
22. Sniegowski, J. A., Lappe, J. W., Patel, H. N., Huffman, H. A., and Wachter, R. M. (2005) J. Biol. Chem. 280, 26248–26255
23. Shu, X., Leiderman, P., Gepshtein, R., Smith, N. R., Kallio, K., Huppert, D., and Remington, S. J. (2007) Protein Sci. 16, 2703–2710
24. van Thor, J. J., Gensch, T., Heilingwerf, K. J., and Johnson, L. N. (2002) Nat. Struct. Biol. 9, 37–41
25. Patterson, G. H., and Lippincott-Schwartz, J. (2002) Science 297, 1873–1877
26. Henderson, J. N., Gepshtein, R., Heenan, J. R., Kallio, K., Huppert, D., and Remington, S. J. (2009) J. Am. Chem. Soc. 131, 4176–4177
27. Heim, R., Prasher, D. C., and Wlodawer, A. (1997) Acta Crystallogr. D. Biol. Crystallogr. 53, 51–59
28. Barondeau, D. P., Tainer, J. A., and Getzoff, E. D. (2006) J. Am. Chem. Soc. 128, 4464–4472
29. Ehrig, T., O’Kane, D. J., and Prendergast, F. G. (1995) FEBS Lett. 367, 163–166
30. Brejc, K., Sixma, T. K., Kitts, P. A., Kain, S. R., Tsien, R. Y., Ormø, M., and Remington, S. J. (1997) Proc. Natl. Acad. Sci. U.S.A. 94, 2306–2311
31. Palm, G. J., Zdanov, A., Gaitanaris, G. A., Stauber, R., Pavlakis, G. N., and Wlodawer, A. (1997) Nat. Struct. Biol. 4, 361–365
32. Rosenow, M. A., Huffman, H. A., Phail, M. E., and Wachter, R. M. (2004) Biochemistry 43, 4464–4472
33. Barondeau, D. P., Tainer, J. A., and Getzoff, E. D. (2006) J. Am. Chem. Soc. 128, 3166–3168
34. Barondeau, D. P., Kassmann, C. I., Tainer, J. A., and Getzoff, E. D. (2005) Biochemistry 44, 1960–1970
35. DeLano, W. L. (2002) The PyMOL Molecular Graphics System, DeLano Scientific LLC, San Carlos, CA
36. Wallace, A. C., Laskowski, R. A., and Thornton, J. M. (1995) Protein Eng. 8, 127–134
37. McDonald, I. K., and Thornton, J. M. (1994) J. Mol. Biol. 238, 777–793