AREA OF THE COMPLEMENT OF THE FAST ESCAPING SETS OF A FAMILY OF ENTIRE FUNCTIONS

SONG ZHANG AND FEI YANG

Abstract. Let f be an entire function with the form $f(z) = P(e^z)/e^z$, where P is a polynomial with $\deg(P) \geq 2$ and $P(0) \neq 0$. We prove that the area of the complement of the fast escaping set (hence the Fatou set) of f in a horizontal strip of width 2π is finite. In particular, the corresponding result can be applied to the sine family $\alpha \sin(z + \beta)$, where $\alpha \neq 0$ and $\beta \in \mathbb{C}$.

1. Introduction

Let $f: \mathbb{C} \to \mathbb{C}$ be a transcendental entire function. Denote by f^n the n-th iterate of f. The Fatou set $F(f)$ of f is defined as the maximal open set in which the family of iterates \(\{f^n : n \in \mathbb{N}\} \) is normal in the sense of Montel. The complement of $F(f)$ is called the Julia set $J(f)$, which is denoted by $J(f)$. It is well known that $J(f)$ is a perfect completely invariant set which is either nowhere dense or coincides with \mathbb{C}. For more details about these sets, one can refer [Bea91], [CG93] and [Mil06] for rational maps, and [Ber93] and [EL92] for meromorphic functions.

Already in 1920s, Fatou considered the iteration of transcendental entire functions [Fat26] and one of his study object was $f(z) = \alpha \sin(z) + \beta$, where $0 < \alpha < 1$ and $\beta \in \mathbb{R}$. After Misiurewicz showed that the Fatou set of $f(z) = e^z$ is empty in 1981 [Mis81], the dynamics of exponential maps and trigonometric functions attracted many interests from then on. See [DK84], [DT86] and [DG87] for example. In particular, in 1987 McMullen [McM87] proved a remarkable result which states that the Julia set of $\sin(\alpha z + \beta)$, $\alpha \neq 0$ always has positive Lebesgue area and the Hausdorff dimension of the Julia set of λe^z, $\lambda \neq 0$ is always 2. From then on a series of papers considered the area and the Hausdorff dimension of the dynamical objects of the transcendental entire functions, not only for the Julia sets in dynamical planes (see [Sta91], [Kar99a], [Kar99b], [Tan03], [Sch07], [Bar08], [RS10], [AB12], [Rem13], [Six15a] and the references therein for example), but also the bifurcation loci in the parameter spaces (see [Qiu94] and [ZL12]).

Unlike the polynomials, the Julia set of a transcendental entire function f is always unbounded. Since the Fatou set of f is dense in the complex plane (if $F(f) \neq \emptyset$), it is interesting to ask when the Fatou set of f has finite area. For the sine function $f(z) = \sin z$, Milnor conjectured that the area of the Fatou set of f is finite in a vertical strip of width 2π. By applying the tools in [McM87], Schubert proved this conjecture in 2008 [Sch08].

For a transcendental entire function f, the escaping set $I(f)$ was studied firstly by Eremenko in [Ere89]. A subset of the escaping set, called the fast escaping set $A(f)$, was introduced by Bergweiler and Hinkkanen in [BH99]. These sets have received quite a lot of attention recently. Especially for the fast escaping set, see [Six11], [RS12], [Six13], [Six15b], [Evd16] and the references therein. In this paper,
we consider the area of the complement of the fast escaping sets of a family of entire functions and try to extend the result of Schubert to this class. Our main result is the following.

Theorem 1.1. Let P be a polynomial with $\deg(P) \geq 2$ and $P(0) \neq 0$. Then the area of the complement of the fast escaping set of any function with the form $f(z) = P(e^z)/e^z$ is finite in any horizontal strip of width 2π.

The method in this paper is strongly inspired by the work of McMullen and Schubert ([McM87] and [Sch08]). It is worth to mention that we give also a specific method can be adopted also to the type of entire functions with the form $f(z) = P(e^z)/e^z$. Since the fast escaping set of $f(z) = P(e^z)/e^z$ is the complement of the fast escaping set of f. In fact, we believe that our method can be adopted also to the type of entire functions with the form

$$f(z) = \frac{P(w)}{w^m} \circ \exp(z)$$

completely similarly, where $m \geq 1$ is a positive integer, P is a polynomial with degree $\deg(P) \geq m + 1$ and $P(0) \neq 0$.

As a consequence of Theorem 1.1 and Theorem 3.1, we have the following result on the area of the complement of the fast escaping set of the sine family.

Theorem 1.2. Let S be any vertical strip of width 2π. Then the area of the complement of the fast escaping set of $f(z) = a \sin(z + \beta)$ with $\alpha \neq 0$ satisfies

$$\text{Area}(S \cap A(f)^c) \leq (4\pi + 4r) \left(x^* + r + 8c e^{1-x^*/2} \frac{r}{1 - e^{-r/2}} \right),$$

where

$$r = \frac{1}{8}, \quad c = \frac{536\sqrt{2}}{|\alpha|} + \frac{1}{|\alpha|^2}$$

and

$$x^* = \max \left\{ \log \left(1 + \frac{18K}{|\alpha|} \right), \log \left(\frac{8(K + 1)}{|\alpha|} \right), 6 \log 2, 12 + 2 \log e \right\}$$

with $K = \max\{|\alpha|/2, |\beta|\}$. In particular, if $f(z) = \sin z$ or $\cos z$, then

$$\text{Area}(S \cap A(f)^c) < 361.$$
2. Distortion lemmas and some basic settings

2.1. Distortion quantities. As in [McM87] and [Sch08], we introduce some quantities of distortion in this subsection. Let D be a bounded set in the complex plane \mathbb{C} and let f be a holomorphic function defined in a neighbourhood of D. We say that f has bounded distortion on D if there are positive constants c and C, such that for all distinct x and y in D, one has

$$c < \frac{|f(x) - f(y)|}{|x - y|} < C.$$

The quantity

$$L(f|_D) := \inf \{ C/c : c \text{ and } C \text{ satisfy } (1) \}$$

is the distortion of f on D. By (1), we have

$$\sup_{z \in D} |f'(z)| \leq C \quad \text{and} \quad \inf_{z \in D} |f'(z)| \geq c.$$

Therefore, $L(f|_D)$ has a lower bound satisfying

$$L(f|_D) \geq \sup_{z \in D} \frac{|f'(z)|}{\inf_{z \in D} |f'(z)|}.$$

The equality holds in this inequality if D is a convex domain.

Let $\text{Area}(E)$ be the Lebesgue area of the measurable set $E \subset \mathbb{C}$. If X and D are two measurable subsets of the complex plane with $\text{Area}(D) > 0$, we use

$$\text{density}(X, D) := \frac{\text{Area}(X \cap D)}{\text{Area}(D)}$$

to denote the density of X in D. If c and C satisfy (1), then $c^2 \text{Area}(X) \leq \text{Area}(f(X)) \leq C^2 \text{Area}(X)$. This means that

$$\text{density}(f(X), f(D)) \leq L(f|_D)^2 \text{density}(X, D).$$

The nonlinearity of f on D is defined as

$$N(f|_D) := \sup \left\{ \frac{|f''(z)|}{|f'(z)|} : z \in D \right\} \cdot \text{diam}(D),$$

provided the right-hand side is finite. In the following by square we mean a closed square whose sides are parallel to the coordinate axes. We will use the following relation between the distortion and nonlinearity on squares.
Lemma 2.1. Let Q be a compact and convex domain in \mathbb{C} (in particular if Q is a square) and let f be a conformal map defined in a neighbourhood of Q with $N(f|_Q) < 1$. Then

$$L(f|_Q) \leq 1 + 2N(f|_Q).$$

Proof. Since f is conformal, let z_0 be a point in Q such that

$$|f'(z_0)| = \sup_{z \in Q} |f'(z)| > 0.$$

Since Q is convex, for any $z \in Q$ we have

$$\frac{|f'(z) - f'(z_0)|}{|f'(z_0)|} = \left| \int_{z_0}^{z} \frac{f''(\zeta) d\zeta}{f'(z_0)} \right| \leq \frac{\sup_{z \in Q} |f''(z)|}{|f'(z_0)|} \cdot |z - z_0|$$

$$\leq \sup_{z \in Q} \left\{ \left| \frac{f''(z)}{f'(z)} \right| \right\} \cdot \text{diam}(Q) = N(f|_Q) < 1.$$

Therefore, the image of Q under $f'(z)$ is contained in the disk $D(f'(z_0), |f'(z_0)|)$ and hence $\log f'(z)$ is well-defined on Q.

Since Q is compact, let $z_1 \in Q$ such that

$$|f'(z_1)| = \inf_{z \in Q} |f'(z)| > 0.$$

Since Q is convex and $\log f'(z)$ is well-defined, we have

$$\log L(f|_Q) = \log \left| \frac{f'(z_0)}{f'(z_1)} \right| \leq |\log f'(z_1) - \log f'(z_0)|$$

$$= \left| \int_{z_0}^{z_1} (\log f'(z))' dz \right| = \left| \int_{z_0}^{z_1} \frac{f''(z)}{f'(z)} dz \right|$$

$$\leq \sup_{z \in Q} \left\{ \left| \frac{f''(z)}{f'(z)} \right| \right\} \cdot \text{diam}(Q) = N(f|_Q).$$

Since $e^x \leq 1 + 2x$ for $x \in [0, 1)$, we have

$$L(f|_Q) \leq \exp(N(f|_Q)) \leq 1 + 2N(f|_Q). \quad \square$$

Remark. McMullen notes in [McM87] that $L(f|_Q)$ is bounded above by $1 + O(N(f|_Q))$ if $N(f|_Q)$ is small. After that Schubert states in [Sch08] that $L(f|_Q) \leq 1 + 8N(f|_Q)$ if $N(f|_Q) < 1/4$ but without a proof.

Let n be a positive integer. For each $1 \leq i \leq n$, let $D_i \subset \mathbb{C}$ be an open set and $f_i : D_i \to \mathbb{C}$ a conformal map. Let σ and M be two positive constants satisfying

$$|f_i'(z)| > \sigma > 1 \quad \text{and} \quad \left| \frac{f_i''(z)}{f_i'(z)} \right| < M,$$

where $z \in D_i$ and $1 \leq i \leq n$.

Furthermore, let $Q_i \subset D_i$, $1 \leq i \leq n$ be squares with sides of length $r > 0$ satisfying $Q_{i+1} \subset f_i(Q_i)$ for all $1 \leq i \leq n - 1$. Define $V := f_n(Q_n)$ and

$$F := (f_n \circ \cdots \circ f_1)^{-1} : V \to Q_1.$$

Then F is a conformal map. McMullen proved that the distortion of F on V is bounded above by a constant depending only on σ, M, and r, but not on f_i and n ([McM87]). Actually, this upper bound can be formulated in the following lemma.

Lemma 2.2. If the sides of length r of Q_i is chosen such that $r \leq 1/(4M)$ for all $1 \leq i \leq n$, then the distortion of F on V satisfies

$$L(F|_V) \leq \exp \left(\frac{\sigma}{\sigma - 1} \right).$$
Area of the Complement of the Fast Escaping Sets

Proof. Let g_i be the inverse of f_i, which maps $f_i(Q_i)$ to Q_i for $1 \leq i \leq n$. Recall that $V = f_n(Q_n)$. Define $V_i := g_1 \circ \cdots \circ g_n(V')$, where $1 \leq i \leq n$. In particular, $V_n = g_n(V') = Q_n$. Since $|f_i'(z)| > \sigma > 1$ for all $1 \leq i \leq n$, we have

$$\text{diam}(V_i) \leq \sqrt{2r}/\sigma^{n-i}, \quad \text{for all } 1 \leq i \leq n.$$

Note that $V_1 \subset Q_1 \subset D_i$ for $1 \leq i \leq n$ since $Q_{i+1} \subset f_i(Q_i)$ for all $1 \leq i \leq n-1$. This means that there exists a square $Q'_i \subset Q_i$ such that $V_i \subset Q'_i$ and the length of the sides of Q'_i is at most $\sqrt{2r}/\sigma^{n-i}$. Hence by [4], the nonlinearity of f_i on Q'_i satisfies

$$N(f_i|Q'_i) = \left(\sup_{z \in Q'_i} \frac{|f_i''(z)|}{|f_i'(z)|} \right) \cdot \text{diam}(Q'_i) \leq \frac{2Mr}{\sigma^{n-i}} \leq \frac{1}{2}.$$

By Lemma 2.1, we have

$$L(f_i|Q'_i) \leq 1 + \frac{4Mr}{\sigma^{n-i}}, \quad \text{for all } 1 \leq i \leq n.$$

For any holomorphic functions f and g, it is straightforward to verify that the distortion of f and g satisfies

$$L(f|V) = L(f^{-1}|f(V)) \quad \text{and} \quad L((g \circ f)|V) \leq L(f|V)L(g|f(V)).$$

Hence, we have

$$L(F|V) = L((f_n \circ \cdots \circ f_1)|V_1) \leq L((f_1|V_1)\cdots L((f_n|V_n) \leq L(f_1|Q'_1)\cdots L(f_n|Q'_n) \leq \prod_{i=0}^{n-1} \left(1 + \frac{4Mr}{\sigma^{n-i}} \right) \leq \prod_{i=0}^{n-1} \left(1 + \frac{1}{\sigma^i} \right).$$

Since $\log(1+x) \leq x$ for all $x > 0$, we have

$$L(F|V) \leq \exp \left(\sum_{i=0}^{n-1} \frac{1}{\sigma^i} \right) < \exp \left(\sum_{i=0}^{\infty} \frac{1}{\sigma^i} \right) = \exp \left(\frac{\sigma}{\sigma - 1} \right). \quad \square$$

2.2. Nesting conditions, density and area. In his proof of the existence of Julia sets of entire functions having positive area, McMullen introduced a system of compact sets which satisfies the nesting conditions [McM87]. We now recall the precise definition.

Definition (Nesting conditions). For $k \in \mathbb{N}$, let \mathcal{E}_k be a finite collection of measurable subsets of C, i.e. $\mathcal{E}_k := \{ E_{k,i} : 1 \leq i \leq d_k \}$, where each $E_{k,i}$ is a measurable subset of C and $d_k := \# \mathcal{E}_k < +\infty$. We say that $\{ \mathcal{E}_k \}_{k=0}^\infty$ satisfies the nesting conditions if $\mathcal{E}_0 = \{ E_{0,1} \}$, where $E_{0,1}$ is a compact connected measurable set and for all $k \in \mathbb{N}$,

(a) every $E_{k+1,i} \in \mathcal{E}_{k+1}$ is contained in a $E_{k,j} \in \mathcal{E}_k$, where $1 \leq i \leq d_{k+1}$ and $1 \leq j \leq d_k$;

(b) every $E_{k,i} \in \mathcal{E}_k$ contains a $E_{k+1,j} \in \mathcal{E}_{k+1}$, where $1 \leq i \leq d_k$ and $1 \leq j \leq d_{k+1}$;

(c) $\text{Area}(E_{k,i} \cap E_{k,j}) = 0$ for all $1 \leq i, j \leq d_k$ with $i \neq j$; and

(d) there is $\rho_k > 0$ such that for all $1 \leq i \leq d_k$ and $E_{k,i} \in \mathcal{E}_k$, we have\footnote{We suppose that the inverse of f exists in the first equality.}

$$\text{density}(E_{k+1}, E_{k,i}) := \text{density} \left(\bigcup_{j=1}^{d_{k+1}} E_{k+1,j}, E_{k,i} \right) \geq \rho_k.$$
Let \(\{E_k\}_{k=0}^\infty \) be a sequence satisfying the nesting conditions. Define \(E := \cap_{k=0}^\infty E_k \).

The following lemma was established in [McM87, Proposition 2.1].

Lemma 2.3. The density of \(E \) in \(E_{0,1} \) satisfies

\[
\text{density}(E, E_{0,1}) \geq \prod_{k=0}^\infty \rho_k.
\]

Now we give the definition of some regions which are needed in the following.

For \(x > 0 \), we define

\[
\Lambda(x) := \{z \in \mathbb{C} : |\text{Re} z| > x\}.
\]

For any given \(m, n \in \mathbb{Z} \) and \(r > 0 \), we define the closed square by

\[
Q_{r}^{m,n} := \{z \in \mathbb{C} : mr \leq \text{Re} z \leq (m+1)r \text{ and } nr \leq \text{Im} z \leq (n+1)r\}.
\]

Let

\[
Q_r := \{Q_{r}^{m,n} : m, n \in \mathbb{Z}\}
\]

be a partition of \(\mathbb{C} \) by the grids with sides of length \(r > 0 \). Sometimes we write \(Q_{r}^{m,n} \in Q_r \) as \(Q_r \), if we don’t want to emphasize the superscript of \(Q_{r}^{m,n} \).

Lemma 2.4. Let \(Q \subset \mathbb{C} \) be a square with sides of length \(r > 0 \) and suppose that \(f \) is conformal in a neighbourhood of \(Q \) with distortion \(L(f|_Q) < \infty \). For any \(x > 0 \) and \(z_0 \in Q \), we have

\[
\text{Area}(\cup\{Q_r \in Q_r : Q_r \cap (\partial f(Q) \cup (\partial \Lambda(x) \cap f(Q))) \neq \emptyset\}) \leq cr^2,
\]

where \(c = 16 + 12\sqrt{2}L(f|_Q)|f'(z_0)| \).

This lemma was established in [Sch08, Lemma 2.3] with a different coefficient \(c \). For completeness we include a proof here and the argument is slightly different.

Proof. If \(\gamma \subset \mathbb{C} \) is a vertical line with length \(l_1 > 0 \), it is clear that

\[
\#\{Q_r \in Q_r : Q_r \cap \gamma \neq \emptyset\} \leq 4 + \frac{2l_1}{r}.
\]

Let \(\gamma \subset \mathbb{C} \) be a continuous curve with length \(l_2 = 2\sqrt{2}kr > 0 \), where \(k \) is a positive integer. We claim that

\[
k' := \#\{Q_r \in Q_r : Q_r \cap \gamma \neq \emptyset\} \leq 4 + 8k.
\]

Indeed, if \(k = 1 \), then it is easy to see \(k' \leq 12 \). Assume that \(k = n + 1 \) and in this case \(k' \leq 4 + 8n \). If \(k = 0 \), let \(\gamma(t) : [0,1] \rightarrow \mathbb{C} \) be a parameterization of \(\gamma \) such that the length of \(\gamma([t_0,1]) \) is \(2\sqrt{2}mr \) while the length of \(\gamma([t_0,1]) \) is \(2\sqrt{2}r \), where \(0 < t_0 < 1 \). Since \(\gamma([t_0,1]) \) can intersect at most 8 squares while \(\gamma([t_0,t_0]) \) can intersect at most 4 + 8 by the assumption, it follows that \(k' \leq 4 + 8(n+1) \) if \(k = n + 1 \). Hence the claim \([\text{3}]\) is proved.

For the general case, we assume that \(\gamma \subset \mathbb{C} \) is a continuous curve with length \(l_3 > 0 \). Let \([x] \) be the integer part of \(x > 0 \). By \([\text{3}]\), we have

\[
\#\{Q_r \in Q_r : Q_r \cap \gamma \neq \emptyset\} \leq 4 + 8 \left[\frac{l_3}{2\sqrt{2}r} \right] + 8 \leq 12 + \frac{2\sqrt{2}l_3}{r}.
\]

Since \(f \) is a conformal map in a neighbourhood of \(Q \), we conclude that \(\partial f(Q) = f(\partial Q) \). From \([\text{2}]\), the length of \(\partial f(Q) \) satisfies

\[
l_4 := \int_{\partial f(Q)} |d\xi| = \int_{\partial Q} |f'(z)||dz| \leq \sup_{z \in Q} |f'(z)| \cdot 4r \leq 4 L(f|_Q)|f'(z_0)| r.
\]
Similarly, the length of $\partial \Lambda(x) \cap f(Q)$ satisfies
\begin{equation}
\begin{aligned}
|\partial \Lambda(x) \cap f(Q)| &= \frac{2 \sup_{z \in Q} |f'(z)| \cdot \operatorname{diam}(Q)}{r} \\
&\leq \frac{2 \sqrt{2} L(f|Q)|f'(z_0)|}{r}.
\end{aligned}
\end{equation}
By (7), (9), (10) and (11), we have
\begin{align*}
\# \{Q_r \in Q_r : Q_r \cap (\partial f(Q) \cup (\partial \Lambda(x) \cap f(Q))) \neq \emptyset\} \\
&\leq \left(4 + \frac{2 l_5}{r} \right) + \left(12 + \frac{2 \sqrt{2} l_4}{r} \right) = 16 + \frac{2 l_5 + 2 \sqrt{2} l_4}{r} \\
&\leq 16 + 12 \sqrt{2} L(f|Q)|f'(z_0)|.
\end{align*}
The proof is finished if we notice that the area of each Q_r is r^2. \hfill \Box

2.3. Basic properties of the polynomial and entire function. For $N \geq 2$, let P be a polynomial with degree at least 2 which has the form
\begin{equation}
P(z) = a_0 + a_1 z + \cdots + a_N z^N,
\end{equation}
where $a_i \in \mathbb{C}$ for $0 \leq i \leq N$ and $a_0 a_N \neq 0$. In the rest of this article, the polynomial P will be fixed. We denote
\begin{equation}
K := \max \{|a_0|, |a_1|, \ldots, |a_N|\} > 0.
\end{equation}

Lemma 2.5. Let $\varepsilon > 0$ be any given constant. The following statements hold:
\begin{enumerate}[(a)]
\item If $|z| \geq 1 + \frac{K}{\varepsilon |a_N|} > 1$, then
\begin{equation}
|P(z) - a_N z^N| \leq \varepsilon |a_N| |z|^N;
\end{equation}
\item If $|z| \leq \frac{\varepsilon |a_0|}{K + \varepsilon |a_0|} < 1$, then
\begin{equation}
|P(z) - a_0| \leq \varepsilon |a_0|.
\end{equation}
\end{enumerate}

Proof. By the definition of K in (12), if $|z| \geq 1 + \frac{K}{\varepsilon |a_N|} > 1$, then
\begin{equation}
|P(z) - a_N z^N| \leq K(1 + |z| + \cdots + |z|^{N-1}) < K \frac{|z|^N}{|z| - 1} \leq \varepsilon |a_N| |z|^N.
\end{equation}
On the other hand, if $|z| \leq \frac{\varepsilon |a_0|}{K + \varepsilon |a_0|} < 1$, then
\begin{equation}
|P(z) - a_0| \leq K(|z| + \cdots + |z|^N) < K \frac{|z|}{1 - |z|} \leq \varepsilon |a_0|.
\end{equation}
\hfill \Box

Note that
\begin{equation}
P(z)/z = a_0 z^{-1} + a_1 + \cdots + a_N z^{N-1}
\end{equation}
is a rational function. Let $\mathbb{D}(a, r) := \{z \in \mathbb{C} : |z - a| < r\}$ be the open disk centered at $a \in \mathbb{C}$ with radius $r > 0$. For each $R > 0$ and $\theta, \xi \in [0, 2\pi)$, we denote a closed domain
\begin{equation}
\mathbb{U}(R, \theta, \xi) := \{z \in \mathbb{C} : |z| \geq R \text{ and } \theta - \frac{\xi}{2} \leq \arg(z) \leq \theta + \frac{\xi}{2}\}.
\end{equation}

Lemma 2.6. For every $\theta \in [0, 2\pi)$, the rational function $P(z)/z$ is univalent in a neighborhood of $\mathbb{U}(2R_1, \theta, \frac{\pi}{N-1})$ and $\mathbb{D}(0, R_2/2)$, where
\begin{equation}
R_1 = 1 + \frac{4K}{|a_N|} \quad \text{and} \quad R_2 = \frac{|a_0|}{4K + |a_0|}.
\end{equation}
Proof. (a) If $|z| \geq R_1$, by Lemma 2.5(a) we have
\[
\left| \frac{P(z)}{z} - a_N z^{N-1} \right| \leq \frac{1}{4} |a_N| |z|^{N-1}.
\]
Then one can write $P(z)/z$ as
\[
P_1(z) = \frac{P(z)}{z} = a_N z^{N-1}(1 + \varphi(z)),
\]
where $\varphi(z)$ is holomorphic in $\mathbb{C} \setminus \{0\}$ and $|\varphi(z)| \leq 1/4$ if $|z| \geq R_1$.

Let $w_0 \in \mathbb{C} \setminus \{0\}$. For any $w \in \partial U(|w_0|/2, \arg(w_0), \pi)$, we have
\[
|w - w_0| > \frac{1}{4}(|w| + |w_0|).
\]
Let $g(z) := z^{N-1}$. For each $z_0 \in \mathbb{C}$ such that $|z_0| \geq 2R_1$, we define $w_0 := g(z_0) = z_0^{N-1}$. Note that $g^{-1}(U(|w_0|/2, \arg(w_0), \pi))$ consists of $N - 1$ disjoint closed domains:
\[
D_k := U\left(2^{-1/(N-1)}|z_0|, \arg(z_0) + \frac{2k\pi}{N-1} \frac{\pi}{N-1}\right),
\]
where $0 \leq k \leq N - 2$. Then for $0 \leq k \leq N - 2$, $z_k := z_0 e^{2k\pi i/(N-1)}$ is contained in the interior of D_k.

For any $z \in \partial D_k$ with $0 \leq k \leq N - 2$, we have $z^{N-1} \in \partial U(|w_0|/2, \arg(w_0), \pi)$. Combining (13) and (14), we have
\[
|z^{N-1} - z_0^{N-1}| > \frac{1}{4}(|z^{N-1} + |z_0|^{N-1}) \geq |z^{N-1} \varphi(z) - z_0^{N-1} \varphi(z_0)|.
\]
Define $\varphi_1(z) := a_N (z^{N-1} - z_0^{N-1})$ and $\varphi_2(z) := P_1(z) - P_1(z_0) = a_N z^{N-1}(1 + \varphi(z)) - a_N z_0^{N-1}(1 + \varphi(z_0))$. By Rouche's theorem, $\varphi_1(z) = 0$ and $\varphi_2(z) = 0$ have the same number of roots in each D_k, where $0 \leq k \leq N - 2$. Since $\varphi_1(z) = 0$ has exactly one root z_k in each D_k, this means that $\varphi_2(z) = 0$ has exactly one root in each D_k, where $0 \leq k \leq N - 2$.

On the other hand, (14) holds also for $w \in \partial U(|w_0|/2, -\arg(w_0), \pi)$. By Rouche's theorem again, $\varphi_2(z) \equiv 0$ has no root in each $-D_k$, where $0 \leq k \leq N - 2$. By the arbitrariness of z_0, it means that $P_1(z) = P(z)/z$ is univalent in a neighborhood of $U(2R_1, \theta, \frac{\pi}{N-1})$, where $\theta \in [0, 2\pi)$.

(b) Similarly, by Lemma 2.5(b) one can write $P(z)/z$ as
\[
P_1(z) = \frac{P(z)}{z} = \frac{a_0}{z}(1 + \psi(z)),
\]
where $\psi(z)$ is holomorphic in \mathbb{C} and $|\psi(z)| \leq 1/4$ if $|z| \leq R_2$. For each $z_0 \in \mathbb{D}(0, R_2/2) \setminus \{0\}$ and $z \in \partial \mathbb{D}(0, R_2)$, we have
\[
|z - z_0| > \frac{1}{4}(|z| + |z_0|).
\]
Hence
\[
\left| \frac{1}{z} \right| - \frac{1}{z_0} > \frac{1}{4} \frac{|z| + |z_0|}{|z_0|} \geq \left| \frac{\psi(z)}{z} - \frac{\psi(z_0)}{z_0} \right|.
\]
Define $\psi_1(z) := a_0(1/z - 1/z_0)$ and $\psi_2(z) := P_1(z) - P_1(z_0) = \frac{a_0}{z}(1 + \psi(z)) - \frac{a_0}{z_0}(1 + \psi(z_0))$. By Rouche's theorem, $\psi_1(z) = 0$ and $\psi_2(z) = 0$ have the same number of roots in $\mathbb{D}(0, R_2)$. Since $\psi_1(z) = 0$ has exactly one root z_0 in $\mathbb{D}(0, R_2)$, this means that $\psi_2(z) = 0$ has exactly one root in $\mathbb{D}(0, R_2)$. By the arbitrariness of z_0, it means that $P_1(z) = P(z)/z$ is univalent in a neighborhood of $\mathbb{D}(0, R_2/2)$. \qed
Since P is a polynomial, it is easy to see that $P(e^z)/e^z$ is a transcendental entire function. We now give some quantitativeres on the mapping properties of $f(z) = P(e^z)/e^z$ by applying some properties of $P(z)/z$ obtained above. Recall that $\Lambda(x) = \{ z \in \mathbb{C} : |\Re z| > x \}$ for $x > 0$. We denote
\begin{equation}
K_0 := \min(|a_0|, |a_N|) > 0.
\end{equation}

Corollary 2.7. Let
\begin{equation}
r_0 := \frac{\pi}{N-1} \quad \text{and} \quad R_3 := \log \left(2 + \frac{8K}{K_0}\right).
\end{equation}
Then for any square $Q \subset \Lambda(R_3)$ with sides of length $r \leq r_0$, the restriction of $f(z) = P(e^z)/e^z$ on a neighbourhood of Q is a conformal map.

Proof. We have $|e^z| \geq 2R_1$ if $\Re z \geq \log(2R_1)$ and $|e^z| \leq R_2/2$ if $\Re z \leq \log(R_2/2)$. Let $Q \subset \Lambda(R_3)$ be a square with sides of length $\pi/(N-1)$. It is easy to see that \exp is injective in a neighbourhood of Q and $\exp(Q)$ is contained in $\overline{\mathbb{D}(0, R_2/2)}$ or $U(2R_1, \theta, \pi/N)$ for some $\theta \in [0, 2\pi)$. This means that $f(z) = P(e^z)/e^z$ is conformal in a neighborhood of Q by Lemma 2.6 \hfill □

We will use the following lemma to estimate $|f'(z)|$ and $|f''(z)/f'(z)|$ for $f(z) = P(e^z)/e^z$.

Lemma 2.8. Suppose that $|z| \geq R_4$ or $|z| \leq R_5$, where
\begin{equation}
R_4 = 1 + \max \left\{ \frac{2K+4}{|a_0|}, \frac{K}{|a_0|} \left(\frac{2N^2}{r_0^2} + 1 \right) \right\} \quad \text{and} \quad R_5 = \min \left\{ \frac{|a_0|}{2(N+2)}, \frac{1}{N} \sqrt{|a_0| R_0} \right\}.
\end{equation}
Then
\begin{equation}
\left| P'(z) - \frac{P(z)}{z} \right| > 2 \quad \text{and} \quad \left| \frac{z^2 P''(z)}{z P'(z) - P(z)} - 1 \right| < N.
\end{equation}

Proof. A direct calculation shows that
\begin{equation}
P'(z) = \sum_{k=1}^{N} k a_k z^{k-1} \quad \text{and} \quad P''(z) = \sum_{k=2}^{N} k(k-1) a_k z^{k-2}.
\end{equation}
This means that
\begin{equation}
P'(z) - \frac{P(z)}{z} = \sum_{k=1}^{N} k a_k z^{k-1} - \sum_{k=0}^{N} a_k z^{k-1} = \sum_{k=0}^{N} (k-1) a_k z^{k-1}
\end{equation}
and
\begin{equation}
\frac{z^2 P''(z)}{z P'(z) - P(z)} - 1 = \frac{\sum_{k=0}^{N} k(k-1) a_k z^{k-1}}{\sum_{k=0}^{N} (k-1) a_k z^{k-1}} - 1
= \frac{\sum_{k=0}^{N} k(k-1)^2 a_k z^{k-1}}{\sum_{k=0}^{N} (k-1) a_k z^{k-1}}.
\end{equation}
If $|z| \geq 1 + \frac{2K+4}{|a_0|} > 3$, by (17) we have
\begin{equation}
\left| P'(z) - \frac{P(z)}{z} \right| \geq |a_N| (N-1) |z|^{N-1} - K(N-1)(|z|^{N-2} + \cdots + |z| + 1)
\geq (N-1)|z|^{N-1} \left(|a_N| - \frac{K}{|z| - 1} \right)
\geq \frac{|a_N|}{2} |z|^{N-1} \geq \frac{|a_N|}{2} |z| > 2.
\end{equation}
If $|z| \leq \frac{|a_0|}{2(N+2)} < \frac{1}{2}$, we have
\begin{equation}
\left| P'(z) - \frac{P(z)}{z} \right| \geq \frac{|a_0|}{|z|} - K(N-1)(|z| + \cdots + |z|^{N-1})
\geq \frac{|a_0|}{|z|} - K(N-1) > \frac{|a_0|}{2} |z| \geq K N + 2 > 2.
\end{equation}
Lemma 2.10. The entire function $f(z) = e^z$.

Proof. Let $z \in \Lambda(R_0)$, such that $\gamma(t) \to \infty$ as $t \to \infty$ and $f(\gamma(t)) \to a$ as $t \to \infty$.

Corollary 2.9. Let $R_0 := \max \{ \log R_4, -\log R_0 \}$. Then for any $z \in \Lambda(R_0)$, the function $f(z) = P(e^z)/e^z$ satisfies

$$|f'(z)| > 2 \quad \text{and} \quad \frac{|f''(z)|}{|f'(z)|} < N.$$

Proof. Denote $P_1(w) := P(w)/w$. Therefore, $f(z) = P(e^z)/e^z = P_1 \circ \exp(z)$. It is easy to check that

$$f'(z) = P'_1(e^z)e^z \quad \text{and} \quad f''(z) = P''_1(e^z)e^{2z} + P'_1(e^z)e^z.$$

Let $w = e^z$. By a straightforward computation, we have

$$f'(z) = P'_1(w)w = P'(w) - \frac{P(w)}{w}$$

and

$$f''(z) = \frac{P''(w)w^2 + P'_1(w)w}{P'_1(w)w} = \frac{w^2P''(w)}{wP'(w) - P(w)} - 1.$$

Then the result follows from Lemma 2.8 immediately.

2.4. Escaping and fast escaping sets. Let f be a transcendental entire function. A point $a \in \mathbb{C}$ is called an asymptotic value of f if there exists a continuous curve $\gamma(t) \subset \mathbb{C}$ with $0 < t < \infty$, such that $\gamma(t) \to \infty$ as $t \to \infty$ and $f(\gamma(t)) \to a$ as $t \to \infty$.

Lemma 2.10. The entire function $f(z) = P(e^z)/e^z$ does not have any finite asymptotic value.

Proof. Assume that $a \in \mathbb{C}$ is a finite asymptotic value of $f(z)$. Then by definition, there exists a continuous curve $\gamma(t) \subset \mathbb{C}$ with $0 < t < \infty$, such that $\gamma(t) \to \infty$ as $t \to \infty$ and $f(\gamma(t)) \to a$ as $t \to \infty$. This means that

$$\lim_{t \to \infty} \frac{P(w)}{w} \circ e^{\gamma(t)} = a.$$

Denote $\gamma(t) = x(t) + iy(t)$ and let w_1, w_2, \cdots, w_N be the N roots of the equation $P(w) = aw$. We define the set $Y := \{ \arg w + 2k\pi : 1 \leq i \leq N, k \in \mathbb{Z} \}$. If $x(t)$ is unbounded as $t \to \infty$, then $f(\gamma(t))$ is also unbounded and this is a contradiction. Hence $|x(t)| \leq A$ for some constant $A > 0$ for all t. Since $\gamma(t) \to \infty$
as \(t \to \infty \), this implies that \(y(t) \to \infty \) as \(t \to \infty \). Therefore, for each \(y_0 \in \mathbb{R} \setminus Y \), there exists a sequence \(\{z_n\} \subset \gamma(t) \) such that \(\text{Im} z_n \to \infty \) as \(n \to \infty \) and \(\lim_{n \to \infty} e^{\text{Im} z_n} = e^{y_0} \). Since \(|x(t)| \leq A \), it follows that \(\lim_{n \to \infty} e^{x(t)} \neq 0 \). This implies that \(\lim_{n \to \infty} f(z_n) = \lim_{n \to \infty} P(e^{z_n})/e^{z_n} \neq a \), which is a contradiction. \(\square \)

Let \(f \) be a transcendental entire function. The set

\[
I(f) := \{ z \in \mathbb{C} : f^{\circ n}(z) \to \infty \text{ as } n \to \infty \}
\]

is called the \textit{escaping set of} \(f \). We use \(\text{sing}(f^{-1}) \) to denote the set of \textit{singular values of} \(f \) which consists of all the critical values and asymptotic values of \(f \) and their accumulation points.

\textbf{Corollary 2.11.} The \textit{escaping set} \(I(f) \) of \(f(z) = P(e^z)/e^z \) is contained in the \textit{Julia set} \(J(f) \).

\textit{Proof.} It is clear that the set of the critical values of \(f(z) = P(e^z)/e^z \) is finite. From Lemma 2.10 it follows that \(\text{sing}(f^{-1}) \) is bounded. According to [BH99, Theorem 1], we have \(I(f) \subset J(f) \). \(\square \)

Actually, we will estimate the area of the complement of the fast escaping set in next section. Let \(f \) be a transcendental entire function. The \textit{maximal modulus function} is defined by

\[
M(r, f) := \max_{|z|=r} |f(z)|, \text{ where } r > 0.
\]

We use \(M^{n}(r, f) \) to denote the \(n \)-th iterate of \(M(r, f) \) with respect to the variable \(r > 0 \), where \(n \in \mathbb{N} \). The notation \(M(r, f) \) is written as \(M(r) \) if the function \(f \) is known clearly. A subset of the escaping set, called the \textit{fast escaping set} \(A(f) \) was introduced in [BH99] and can be defined [RS12] by

\[
A(f) := \{ z : \text{ there is } \ell \in \mathbb{N} \text{ such that } |f^{\circ (n+\ell)}(z)| \geq M^{n}(R) \text{ for } n \in \mathbb{N} \}.
\]

Here \(R > 0 \) is a constant such that \(M^{n}(R) \to \infty \) as \(n \to \infty \). It is proved in [RS12, Theorem 2.2(b)] that \(A(f) \) is independent of the choice of \(R \) such that \(M^{n}(R) \to \infty \) as \(n \to \infty \).

\textbf{Lemma 2.12.} Let \(R > 0 \) be a constant and define \(u_0 := R \). For \(n \geq 1 \), define \(u_n \) inductively by \(u_n := Re^{Ru_{n-1}} \). Let \(v_0 \in \mathbb{R} \) and define \(v_n \) inductively by \(v_n := e^{v_{n-1}} \) for \(n \geq 1 \). Then there is \(\ell \in \mathbb{N} \) such that \(v_{n+\ell} \geq 2Ru_n \) for all \(n \in \mathbb{N} \).

\textit{Proof.} For any \(v_0 \in \mathbb{R} \), there exists an integer \(\ell \in \mathbb{N} \) such that \(v_0 \geq 2R^2 \). Shifting the subscript of \((v_n)_{n \in \mathbb{N}} \) if necessary, it is sufficient to prove that if \(v_0 \geq 2R^2 \), then \(v_n \geq 2Ru_n \) for all \(n \in \mathbb{N} \). Suppose that \(v_{n-1} \geq 2Ru_{n-1} \) for some \(n \geq 1 \) (note that \(v_0 \geq 2Ru_0 \)). We hope to obtain that \(v_n \geq 2Ru_n \). Note that \(v_n = e^{v_{n-1}} \geq e^{2Ru_{n-1}} \) and \(u_n = Re^{Ru_{n-1}} \). It is sufficient to obtain \(Ru_{n-1} \geq \log(2R^2) \). This is true since \(u_{n-1} \geq R \) and \(R^2 \geq \log(2R^2) \) for all \(R > 0 \). \(\square \)

\textbf{Corollary 2.13.} Let \(z_0 \in \mathbb{C} \) and suppose that \(z_n = f^{\circ n}(z_0) \) satisfies \(|z_n| \geq \xi_n \) for all \(n \in \mathbb{N} \), where \(\xi_n > 0 \) is defined inductively by

\[
\xi_n = 2\exp(\xi_{n-1}/2) \text{ with } \xi_0 > 0.
\]

Then \(z_0 \) is contained in the \textit{fast escaping set} of \(f(z) = P(e^z)/e^z \).

\textit{Proof.} Recall that \(N \geq 2 \) is the degree of the polynomial \(P \) and \(K > 0 \) is defined in [12]. According to Lemma 2.5, there exists \(\delta_0 \geq 1 \) such that if \(\delta \geq \delta_0 \), then the maximal modulus function of \(f \) satisfies

\[
M(\delta) = M(\delta, f) \leq 2Ke^{(N-1)\delta}.
\]
On the other hand, there exists $\delta_1 > 0$ such that for all $\delta \geq \delta_1$, then $M^{\infty}(\delta)$ is monotonically increasing as n increases. Since the Julia set of f is non-empty, this means that $M^{\infty}(\delta) \to \infty$ as $n \to \infty$ if $\delta \geq \delta_1$.

Define

$$R := \max\{2K_{\cdot}, (N - 1)\delta_0, \delta_1\} \geq 1.$$

We denote $u_0 = R$ and for $n \geq 1$, define u_n inductively by $u_n = R e^{Ru_{n-1}}$. Then we have $M^{\infty}(R) \leq u_n$ for all $n \in \mathbb{N}$. By the definition of ξ_n, we have $\xi_n = 2 \exp^{\infty}(\xi_0/2)$. Let $\nu_0 := \xi_0/2$ and define $\nu_n := e^{\nu_{n-1}}$ for $n \geq 1$. According to Lemma 2.12, there exists $\ell \in \mathbb{N}$ such that for all $n \in \mathbb{N}$,

$$|f^{n(\ell+1)}(z_0)| = |z_{n+\ell}| \geq \xi_{n+\ell} = 2\nu_{n+\ell} \geq 4Ru_n \geq u_n \geq M^{\infty}(R).$$

By the definition of R, we have $M^{\infty}(R) \to \infty$ as $n \to \infty$. This means that z_0 is contained in the fast escaping set of f. \hfill \Box

3. PROOF OF THE THEOREMS

3.1. Proof of Theorem 1.1. Recall that $N \geq 2$ is the degree of the polynomial P. Let $r > 0$ be fixed such that

$$r \leq \frac{1}{4N}.$$

We define

$$x' := \max\{R_3, R_6, 6 \log 2\},$$

where R_3 and R_6 are constants introduced in Corollary 2.7 and Corollary 2.9 respectively.

Recall that $\Lambda(x) = \{z \in \mathbb{C} : |\text{Re} z| > x\}$ is the set defined in [5] for all $x > 0$. Let Q_0 be a square in $\Lambda(x)$ with sides of length r, where $x \geq x'$. Since $r < r_0 = \pi/(N - 1)$, from Corollary 2.7 we know that f is conformal in a neighbourhood of Q_0. For $k \in \mathbb{N}$, define

$$x_k := 2 \exp^{\circ k}(x/2).$$

In particular, $x_0 = x \geq x'$ and we have $x_{k+1} := 2 \exp(x_{k}/2) > x_{k} \geq x'$ since $2e^{x/2} > x$ for all $x \in \mathbb{R}$.

Recall that Q_r is a collection of grids with sides of length $r > 0$ defined in [6]. For any subset E of Q_0 in $\Lambda(x_0)$ and $k \in \mathbb{N}$, define

$$\text{pack}(f^{\circ k}(E)) := \{Q_r \in Q_r : Q_r \subset f^{\circ k}(E) \cap \Lambda(x_k)\}.$$

We now define a sequence of families of measurable sets satisfying the nesting conditions based on the square Q_0. Let $\mathcal{E}_0 := \{Q_0\}$ and for $k \geq 1$, define inductively

$$\mathcal{E}_k := \{F_k \subset Q_0 : F_k \subset E_{k-1} \in \mathcal{E}_{k-1} \text{ and } f^{\circ k}(F_k) \in \text{pack}(f^{\circ k}(E_{k-1}))\}.$$

It is clear that \mathcal{E}_k is a finite collection of measurable subsets of \mathbb{C} for all $k \in \mathbb{N}$. Denote the elements of \mathcal{E}_k by $E_{k,i}$, where $1 \leq i \leq d_k$.

By definition, for all $k \in \mathbb{N}$, we have $f^{\circ (k+1)}(E_{k,i}) = f(Q_{x_k}^i)$, where $Q_{x_k}^i$ is a square with sides of length r and $Q_{x_k}^i \subset \Lambda(x_k)$. From [4], Corollary 2.9 and (25), we have

$$N(f|_{Q_{x_k}^i}) < N \sqrt{2r} \leq \frac{\sqrt{2}}{4}.$$

By Lemma 2.1, the distortion of f on $Q_{x_k}^i$ satisfies

$$L(f|_{Q_{x_k}^i}) \leq 1 + 2N(f|_{Q_{x_k}^i}) < 2.$$

3Note that $Q_{x_k}^i \subset \Lambda(x_k)$ is a square depending also on the subscript ‘i’ of $E_{k,i}$, where $k \in \mathbb{N}$ and $1 \leq i \leq d_k$. We omit this index here for simplicity.
For every $k \in \mathbb{N}$, let z_k be any point in $Q^k \subset \Lambda(x_k)$. From (2) and (28) we have

$$\text{Area}(f(Q^k)) = \int_{Q^k} |f'(z)|^2 dx dy \geq \inf_{z \in Q^k} |f'(z)|^2 \cdot \text{Area}(Q^k)$$

$$\geq \frac{|f'(z_k)|^2}{(L(f|_{Q^k}))^2} \cdot r^2 > \frac{1}{4} |f'(z_k)|^2 r^2$$

and

$$\text{diam}(f(Q^k)) \leq \sup_{z \in Q^k} |f'(z)| \cdot \text{diam}(Q^k)$$

$$\leq L(f|_{Q^k})|f'(z_k)| \cdot \sqrt{2}r < 2\sqrt{2}|f'(z_k)|r.$$

Recall that $K_0 = \min\{|a_o|, |a_N|\} > 0$ is the constant defined in (15). By (19), (20) and (22), we have

$$|f'(z_k)| > \frac{1}{2} K_0 e^{\text{Re} z_k} > \frac{1}{2} K_0 e^{x_k}.$$

For $k \in \mathbb{N}$ and $1 \leq i \leq d_k$, we denote

$$B_1 := \bigcup \{Q_r \in Q_r : Q_r \subset f^{o(k+1)}(E_{k,i}) \cap (\mathbb{C} \setminus \Lambda(x_k+1))\}$$

and

$$B_2 := \bigcup \{Q_r \in Q_r : Q_r \cap (\partial f^{o(k+1)}(E_{k,i}) \cup (\partial \Lambda(x_k+1) \cap f^{o(k+1)}(E_{k,i})) \neq \emptyset\}.$$

Recall that $f^{o(k+1)}(E_{k,i}) = f(Q^k)$ for some square Q^k in $\Lambda(x_k)$ with sides of length r, where $k \in \mathbb{N}$ and $1 \leq i \leq d_k$. From (29), (30) and (31), we have

$$\frac{\text{Area}(B_1)}{\text{Area}(f^{o(k+1)}(E_{k,i}))} \leq \frac{2x_{k+1} \text{diam}(f^{o(k+1)}(E_{k,i}))}{\text{Area}(f^{o(k+1)}(E_{k,i}))}$$

$$= \frac{2x_{k+1} \text{diam}(f(Q^k))}{\text{Area}(f(Q^k))} \leq \frac{16\sqrt{2} x_{k+1}}{K_0 r} \cdot \frac{1}{K_0 e^{x_k}}.$$

Note that $x_{k+1} \geq x_1 = 2e^{x/2}$ for all $k \in \mathbb{N}$ and $x \geq 6 \log 2$ by (26). By Lemma 2.4 (28), (29) and (31), we have

$$\frac{\text{Area}(B_2)}{\text{Area}(f^{o(k+1)}(E_{k,i}))} \leq \frac{(16 + 12\sqrt{2} L(f|_{Q^k}) |f'(z_k)|) r^2}{\text{Area}(f(Q^k))}$$

$$< \frac{32(2 + 3\sqrt{2} |f'(z_k)|)}{|f'(z_k)|^2} < \frac{256}{K_0^2 e^{2x_k}} + \frac{192\sqrt{2}}{K_0 e^{x_k}}$$

$$\leq \left(\frac{128}{K_0^2} \frac{1}{e^{2x/2}} + \frac{96\sqrt{2}}{K_0} \frac{1}{e^{x/2}}\right) x_{k+1} \leq \left(\frac{4K_0}{K_0} + \frac{12\sqrt{2}}{K_0}\right) x_{k+1}.$$

For all $k \in \mathbb{N}$ and $1 \leq i \leq d_k$, by (32) and (33), we have

$$\text{density} \left(\bigcup \text{pack}(f^{o(k+1)}(E_{k,i})), f^{o(k+1)}(E_{k,i})\right)$$

$$\geq \frac{\text{Area}(B_1)}{\text{Area}(f^{o(k+1)}(E_{k,i}))} - \frac{\text{Area}(B_2)}{\text{Area}(f^{o(k+1)}(E_{k,i}))}$$

$$> 1 - c_0 \frac{x_{k+1}}{e^{x_k}} \geq 1 - c_1 \frac{x_{k+1}}{e^{x_k}},$$

where

$$c_1 \geq c_0 := \frac{32\sqrt{2}}{K_0 r} + \frac{1}{4K_0} + \frac{12\sqrt{2}}{K_0}.$$

Comparing (26), we assume that $x^* > 0$ is a fixed constant such that

$$x^* \geq \max\{R_3, R_6, 6 \log 2, 12 + 2 \log c_1\}.$$
Moreover, we suppose that the sequence \(\{x_k\}_{k \in \mathbb{N}} \) in (27) is chosen such that the initial point satisfies \(x_0 = x \geq x^* \). Then, all the statements above are still true since \(x^* \geq x' \).

By a straightforward induction, one can show that for all \(k \in \mathbb{N} \) and \(x \in \mathbb{R} \),
\[
\exp^{(k+1)}(x) \geq \exp(k)(x).
\]
Since \(x_{k+1} = 2e^{x_{k}/2} \), we have
\[
\frac{x_{k+1}}{e^{x_{k}/2}} = \frac{2}{e^{x_{k}/2}} = \frac{2}{\exp(k+1)(x)/2} \leq \frac{2}{e^k} \cdot \frac{1}{e^{x/2}}.
\]
On the other hand, by (39), we have \(e^{x/2} \geq c_1 e^6 > 6c_1 e^4 \) since \(x \geq x_* \). Therefore,
\[
c_1 e^4 \frac{x_{k+1}}{e^{x_k}} \leq c_1 e^4 \cdot \frac{2}{e^k} \cdot \frac{1}{e^{x/2}} \leq c_1 e^4 \cdot \frac{2}{e^{x/2}} < \frac{1}{3}.
\]
Define \(V := f(Q^k) \) and let \(G := f^{-(k+1)} : V \to Q_0 \) be the inverse of \(f^{(k+1)}|_{E_k} \), where \(k \in \mathbb{N} \) and \(1 \leq i \leq d_k \). By Lemma 2.2, Corollary 2.9 and (25), the distortion of \(G \) on \(V \) satisfies
\[
L(G|_V) < \exp\left(\frac{2^2}{c-1}\right) = e^2.
\]
From (3) and (39), we have
\[
density(E_{k+1}, E_{k,i}) = 1 - \density(E_{k,i} \setminus E_{k+1}, E_{k,i})
\]
\[
= 1 - \density(G(f^{(k+1)}(E_{k,i} \setminus E_{k+1})), E_k(E_{k+1}, E_{k,i}))
\]
\[
\geq 1 - L(G|_V)^2 \density\left(f^{(k+1)}(E_{k,i}) \setminus \bigcup \text{pack}\left(f^{(k+1)}(E_{k,i}), f^{(k+1)}(E_{k,i})\right)\right)
\]
\[
\geq 1 - e^4 \left(1 - \density\left(\bigcup \text{pack}\left(f^{(k+1)}(E_{k,i}), f^{(k+1)}(E_{k,i})\right)\right)\right).
\]
Therefore, by (34) and (38), we have
\[
density(E_{k+1}, E_{k,i}) \geq 1 - c_1 e^4 \frac{x_{k+1}}{e^{x_k}} \geq \frac{2}{3},
\]
where \(k \in \mathbb{N} \) and \(1 \leq i \leq d_k \). For all \(k \in \mathbb{N} \), by setting
\[
\rho_k := 1 - c_1 e^4 \frac{x_{k+1}}{e^{x_k}},
\]
it is easy to see that \(\{E_k\}_{k=0}^\infty \) satisfies the nesting conditions.

Define \(E = \cap_{k=0}^\infty E_k \). Recall that \(A(f) \) is the fast escaping set of \(f \) defined in (24). Since every point \(z \in E_{k,i} \) satisfies \(f^j(z) \in \Lambda(x_j) \) for \(0 \leq j \leq k \) and \(x_k \to +\infty \) as \(k \to \infty \), it means that \(E \) is contained in the fast escaping set \(A(f) \) by (27) and Corollary 2.13. According to Lemma 2.3, we have
\[
density(A(f), Q_0) \geq \density(E, Q_0) \geq \prod_{k=0}^\infty \rho_k.
\]
Note that \(\log(1 - t) > -2t \) for \(t \in (0, 1/2) \). By (38) and (41), we have
\[
\log \left(\prod_{k=0}^\infty \rho_k \right) = \sum_{k=0}^\infty \log \left(1 - c_1 e^4 \frac{x_{k+1}}{e^{x_k}} \right) \geq -2 \sum_{k=0}^\infty c_1 e^4 \frac{x_{k+1}}{e^{x_k}}
\]
\[
\geq - \frac{4c_1 e^4}{e^{x/2}} \sum_{k=0}^\infty \frac{1}{e^k} > - \frac{8c_1 e^4}{e^{x/2}}.
\]
Since \(e^{-t} \geq 1 - t \) for all \(t \in \mathbb{R} \), we have
\[
density(A(f), Q_0) > \exp\left(- \frac{8c_1 e^4}{e^{x/2}} \right) \geq 1 - \frac{8c_1 e^4}{e^{x/2}}
\]
for all \(x \geq x^* \) and all square \(Q_0 \subset \Lambda(x) \) with sides of length \(r \).
Theorem 3.1. Let S be any horizontal strip of width 2π. Then the area of the complement of the fast escaping set of $f(z) = P(e^z)/e^z$ satisfies

$$\text{Area}(S \cap A(f)^c) \leq (4\pi + 4r) \left(x^* + r + 8c_1 e^{4-x^*/2} \frac{r}{1 - e^{-r/2}} \right) < \infty,$$

where r, c_1 and x^* are any positive constants satisfying (25), (35) and (36) respectively.

Proof. Define the half strip S_+ by

$$S_+ := \{ z \in \mathbb{C} : 0 \leq \text{Im } z \leq 2\pi \text{ and } \text{Re } z \geq 0 \}.$$

We take

$$m_0 = \lfloor x^*/r \rfloor + 1 \text{ and } n_0 = \lfloor 2\pi/r \rfloor + 1,$$

where $\lfloor x \rfloor$ denotes the integer part of $x \geq 0$. Recall that $Q_r^{m,n}$ is defined as

$$Q_r^{m,n} := \{ z \in \mathbb{C} : mr \leq \text{Re } z \leq (m+1)r \text{ and } nr \leq \text{Im } z \leq (n+1)r \},$$

where $m,n \in \mathbb{Z}$. Since $Q_r^{m,n} \subset A(x^*)$ for all $m \geq m_0$, we get

$$\text{density}(A(f), Q_r^{m,n}) > 1 - \frac{8c_1 e^4}{\exp(mr/2)}$$

for all $m \geq m_0$ by (12). So

$$\text{Area}(S_+ \cap A(f)^c) \leq \text{Area} \left(\bigcup_{m=0}^{\infty} \bigcup_{n=0}^{n_0} Q_r^{m,n} \setminus A(f) \right)$$

$$\leq \sum_{m=0}^{\infty} \sum_{n=0}^{n_0} \text{Area}(Q_r^{m,n} \setminus A(f))$$

$$\leq \sum_{m=0}^{\infty} \sum_{n=0}^{n_0} \left(1 - \text{density}(A(f), Q_r^{m,n}) \right) \cdot \text{Area}(Q_r^{m,n}).$$

By (44) and (45), we obtain

$$\text{Area}(S_+ \cap A(f)^c) \leq r^2 \left(\sum_{m=0}^{m_0-1} \sum_{n=0}^{n_0} 1 + \sum_{m=m_0}^{\infty} \sum_{n=0}^{n_0} \frac{8c_1 e^4}{\exp(mr/2)} \right)$$

$$\leq (2\pi + 2r) \left(x^* + r + 8c_1 e^{4-x^*/2} \frac{r}{1 - e^{-r/2}} \right).$$

This means that $\text{Area}(S_+ \cap A(f)^c) < \infty$ for every fixed $r > 0$ satisfying (25). Similarly, one can obtain

$$\text{Area}(S_- \cap A(f)^c) \leq (2\pi + 2r) \left(x^* + r + 8c_1 e^{4-x^*/2} \frac{r}{1 - e^{-r/2}} \right),$$

where $S_- = \{ z \in \mathbb{C} : 0 \leq \text{Im } z \leq 2\pi \text{ and } \text{Re } z \leq 0 \}$. Since $f(z) = f(z + 2\pi i)$, for any horizontal strip S of width 2π, we have

$$\text{Area}(S \cap A(f)^c) \leq (4\pi + 4r) \left(x^* + r + 8c_1 e^{4-x^*/2} \frac{r}{1 - e^{-r/2}} \right).$$

This completes the proof of Theorem 3.1 and hence Theorem 1.1. \qed
3.2. **Proof of Theorem 1.2** Consider the quadratic polynomial
\[P(z) = \frac{\alpha}{2} z^2 + i\beta z - \frac{\alpha}{2}, \]
where \(\alpha \neq 0 \) and \(\beta \in \mathbb{C} \).

We then have
\[f(z) := P(e^z) e^z = \frac{\alpha}{2} e^{2z} + i\beta - \frac{\alpha}{2} e^{-z}. \]

Note that \(\alpha \sin(z + \beta) \) is conjugated by \(z \mapsto i(z + \beta) \) to \(f(z) \). In order to prove Theorem 1.2, it is sufficient to prove the corresponding statements on \(f \).

Now we collect all the needing constants in the proof. Note that the degree of \(P \) is \(\text{deg}(P) = N = 2 \). By (25) we fix the choice of \(r > 0 \) by setting \(r = 1/8 \).

By (15), we have \(K_0 = |\alpha|/2 \). From (35), we fix \(c_1 = c_0 = \frac{536\sqrt{2}}{|\alpha|} + \frac{1}{|\alpha|^2} \).

By (16), we have
\[R_3 = \log \left(2 + \frac{16K}{|\alpha|} \right), \]
where \(K = \max\{|\alpha|/2, |\beta|\} \).

According to Lemma 2.8, we have
\[R_4 = \max \left\{ 1 + \frac{4(K + 2)}{|\alpha|}, 1 + \frac{18K}{|\alpha|} \right\} \quad \text{and} \quad R_5 = \min \left\{ \frac{|\alpha|}{8(K + 1)}, \frac{1}{4} \sqrt{\frac{|\alpha|}{2K}} \right\}. \]

Since \(K \geq |\alpha|/2 > 0 \), we have
\[\frac{8(K + 1)}{|\alpha|} > \frac{8K}{|\alpha|} \geq 4 \sqrt{\frac{2K}{|\alpha|}} \quad \text{and} \quad \frac{8(K + 1)}{|\alpha|} = \frac{4K}{|\alpha|} + \frac{4(K + 2)}{|\alpha|} > 1 + \frac{4(K + 2)}{|\alpha|} \]
and
\[1 + \frac{18K}{|\alpha|} = 1 + \frac{16K}{|\alpha|} + \frac{K}{|\alpha|/2} \geq 2 + \frac{16K}{|\alpha|}. \]

Hence by (36), we can fix
\[x^* = \max \left\{ \log \left(1 + \frac{18K}{|\alpha|} \right), \log \left(\frac{8(K + 1)}{|\alpha|} \right), 6 \log 2, 12 + 2 \log c_1 \right\}. \]

By Theorem 3.1, the proof of Theorem 1.2 is finished modulo the statement on the sine and cosine functions.

Let \(S \) be a vertical strip with width \(2\pi \). If \(\alpha = 1 \) and \(\beta = 0 \), then \(K = 1/2 \) and \(r = 1/8 \), \(c_1 = 536\sqrt{2} + 1 \) and \(x^* = 12 + 2 \log (536\sqrt{2} + 1) \).

From (43) we have
\[\text{Area}(S \cap A(\sin z)^c) \leq \left(4\pi + \frac{1}{2} \right) \left(\frac{97}{8} + 2 \log(536\sqrt{2} + 1) + \frac{1}{e^2 - e^{31/16}} \right) < 361. \]

If \(\alpha = 1 \) and \(\beta = \pi/2 \), then \(K = \pi/2 \) and we still have (46). Also from (43) we have
\[\text{Area}(S \cap A(\cos z)^c) < 361. \]

This finishes the proof of Theorem 1.2.
REFERENCES

[AB12] M. Aspenberg and W. Bergweiler, Entire functions with Julia sets of positive measure, *Math. Ann.* 352 (2012), no. 1, 27-54.

[Bea91] A. F. Beardon, *Iteration of rational functions, Complex analytic dynamical systems*, Graduate Texts in Mathematics, 132, Springer-Verlag, New York, 1991.

[Ber93] W. Bergweiler, Iteration of meromorphic functions, *Bull. Amer. Math. Soc.* 29 (1993), 151-188.

[BH99] W. Bergweiler and A. Hinkkanen, On semiconjugation of entire functions, *Math. Proc. Cambridge Philos. Soc.* 126 (1999), no. 3, 565-574.

[Bar08] K. Barański, Hausdorff dimension of hairs and ends for entire maps of finite order, *Math. Proc. Cambridge Philos. Soc.* 145 (2013), no. 3, 95-106.

[CG93] L. Carleson and T. W. Gamelin, *Complex dynamics*, Universitext: Tracts in Mathematics, Springer-Verlag, New York, 1993.

[DG87] R. L. Devaney and L. R. Goldberg, Uniformization of attracting basins for exponential maps, *Duke Math. J.* 55 (1987), 253-266.

[DK84] R. L. Devaney and M. Yu. Lyubich, Dynamical properties of some classes of entire functions, *Ann. Inst. Fourier (Grenoble)* 42 (1992), no. 4, 989-1020.

[Evd16] V. Evdoridou, Fast escaping points of entire functions: a new regularity condition, *Math. Proc. Cambridge Philos. Soc.* 160 (2016), no. 1, 95-106.

[Fat26] P. Fatou, Sur l’itération des fonctions transcendantes entières, *Acta Math.* 47 (1926), 337-370.

[Kar99a] B. Karpińska, Area and Hausdorff dimension of the set of accessible points of the Julia sets of \(\lambda e^z\) and \(\lambda \sin(z)\), *Fund. Math.* 159 (1999), 269-287.

[Kar99b] B. Karpińska, Hausdorff dimension of the hairs without endpoints for \(\lambda \exp(z)\), *C. R. Acad. Sci. Paris Sér. I Math.* 328 (1999), 1039-1044.

[Mis81] M. Misuriwicz, On itertates of \(e^z\), *Ergod. Th. Dynam. Sys.* 1 (1981), 103-106.

[McM87] C. T. McMullen, Area and Hausdorff dimension of Julia sets of entire functions, *Trans. Amer. Math. Soc.* 300 (1987), no. 1, 329-342.

[Mil06] J. Milnor, *Dynamics in One Complex Variable: Third Edition*, Annals of Mathematics Studies, 160, Princeton Univ. Press, Princeton, NJ, 2006.

[Qiu94] W. Qiu, Hausdorff dimension of the M-set of \(\lambda \exp(z)\), *Acta Math. Sinica (N.S.)* 10 (1994), 362-368.

[Rem14] L. Rempe, Hyperbolic entire functions with full hyperbolic dimension and approximation by Eremenko-Lyubich functions, *Proc. Lond. Math. Soc.* 108 (2014), no. 5, 1193-1225.

[RS12] P. J. Rippon and G. M. Stallard, Fast escaping points of entire functions, *Proc. Lond. Math. Soc.* 105 (2012), no. 4, 787-820.

[Sch07] D. Schleicher, The dynamical fine structure of iterated cosine maps and a dimension paradox, *Duke Math. J.* 136 (2007), 343-356.

[Sch08] H. Schubert, Area of Fatou sets of trigonometric functions, *Proc. Amer. Math. Soc.* 136 (2008), no. 4, 1251-1259.

[Six11] D. J. Sixsmith, Entire functions for which the escaping set is a spider’s web, *Math. Proc. Cambridge Philos. Soc.* 151 (2011), no. 3, 551-571.

[Six13] D. J. Sixsmith, On fundamental loops and the fast escaping set, *J. Lond. Math. Soc.* 88 (2013), no. 3, 716-736.

[Six15a] D. J. Sixsmith, Julia and escaping set spiders’ webs of positive area, *Int. Math. Res. Not.* (2015), no. 9, 9751-9774.

[Six15b] D. J. Sixsmith, Functions of genus zero for which the fast escaping set has Hausdorff dimension two, *Proc. Amer. Math. Soc.* 143 (2015), no. 6, 2597-2612.

[Sta91] G. M. Stallard, The Hausdorff dimension of Julia sets of entire functions, *Ergod. Th. Dynam. Sys.* 11 (1991), 769-777.

[Tan03] M. Taniguchi, Size of the Julia set of structurally finite transcendental entire function, *Math. Proc. Cambridge Philos. Soc.* 135 (2003), 181-192.

[ZL12] G. Zhan and L. Liao, Area of non-escaping parameters of the sine family, *Houston J. Math.* 38 (2012), 499-524.
Department of Mathematics, Nanjing University, Nanjing, 210093, P. R. China
E-mail address: dg1521017@smail.nju.edu.cn

Department of Mathematics, Nanjing University, Nanjing, 210093, P. R. China
E-mail address: yangfei@nju.edu.cn