

On a new generalization of Fibonacci hybrid numbers

Elif Tan · N. Rosa Ait-Amrane

Received: 9 December 2020 / Accepted: 28 April 2022 / Published online: 16 May 2022
© The Indian National Science Academy 2022

Abstract The hybrid numbers were introduced by Ozdemir [9] as a new generalization of complex, dual, and hyperbolic numbers. A hybrid number is defined by \(k = a + bi + ce + dh \), where \(a, b, c, d \) are real numbers and \(i, \epsilon, h \) are operators such that \(i^2 = -1, \epsilon^2 = 0, h^2 = 1 \) and \(ih = -hi = \epsilon + i \). This work is intended as an attempt to introduce the bi-periodic Horadam hybrid numbers which generalize the classical Horadam hybrid numbers. We give the generating function, the Binet formula, and some basic properties of these new hybrid numbers. Also, we investigate some relationships between generalized bi-periodic Fibonacci hybrid numbers and generalized bi-periodic Lucas hybrid numbers.

Keywords Fibonacci sequence · Bi-periodic Horadam sequence · Horadam hybrid number · Hybrid number

Mathematics Subject Classification 11B39 · 05A15 · 11K31

1 Introduction

Non-commutative algebras play important role and have broad applications in many areas, such as mathematics and physics. Hence it is worth to study and investigate the properties of some special types of non-commutative algebras. The real quaternion algebra is the first non-commutative division algebra to be discovered and defined by

\[\mathbb{H} = \{ a + bi + cj + dk \mid i^2 = j^2 = k^2 = -1, ij = -ji = k \} \]

where \(a, b, c, d \in \mathbb{R} \). For a survey on the properties of quaternions, we refer to Hamilton’s book [5], and for some special type of quaternions see [4,6].

A new non-commutative number system, the hybrid numbers, were introduced by Ozdemir [9] as a generalization of complex numbers, dual numbers, and hyperbolic numbers which are having the form \(a + be \) with \(e^2 = -1, e^2 = 0, \) and \(e^2 = 1 \), respectively. The set of hybrid numbers are defined as

Communicated by B. Sury.

E. Tan (✉)
Department of Mathematics, Faculty of Science, Ankara University, 06100 Tandogan, Ankara, Turkey
E-mail: etan@ankara.edu.tr

N. R. Ait-Amrane
Faculty of Mathematics, RECITS Laboratory, USTHB, 16111 Bab-Ezzouar, Algiers, Algeria
E-mail: rosamrane@gmail.com

Springer
The components of the bi-periodic Horadam hybrid numbers belong to the bi-periodic Horadam sequence called as, bi-periodic Horadam hybrid numbers. The bi-periodic Horadam hybrid numbers generalize the best Honsberger formula, etc. regarding to the Horadam hybrid numbers.

Liana’s paper, Senturk et al. [11] derived summation formulas, matrix representations, general bilinear formula, (1.3)

\[a_{n+1} = a_{n} + b_{n}c_{n} + d_{n}h_{n} \]

where \(a_{n+1} = a_{n} + b_{n}c_{n} + d_{n}h_{n} \) are defined as

\[
k_1k_2 = (a_1 \pm a_2) + (b_1 \pm b_2) i \pm (c_1 \pm c_2) \epsilon + (d_1 \pm d_2) h, \]

\[
k_1k_2 = a_1a_2 - b_1b_2 + d_1d_2 + b_1c_2 + c_1b_2 \]

\[
+ (a_1b_2 + b_1a_2 + b_1d_2 - d_1b_2) i \]

\[
+ (a_1c_2 + c_1a_2 + b_1d_2 - d_1b_2 + d_1c_2 - c_1d_2) \epsilon \]

\[
+ (a_1d_2 + d_1a_2 + c_1b_2 - b_1c_2) h. \]

The multiplication of a hybrid number \(k = a + bi + c\epsilon + dh \) by the real scalar \(s \) is defined as

\[
sp = sa + sbi + sce + sdh, \]

and the norm of a hybrid number \(k \) is defined by

\[
|| k || := \sqrt{\overline{C(k)}}, \]

where \(C(k) := k\bar{k} \) is the character of the hybrid number \(k \) and \(\bar{k} := a - bi - c\epsilon - dh \) is the conjugate of \(k \). Ozdemir’s paper [9] serves as an excellent reference to the algebraic and geometric properties of the hybrid numbers.

Recently, many studies have been devoted to the hybrid numbers whose components are taken from special integer sequences such as Fibonacci, Lucas, Pell, Jacobsthal sequences, etc. In particular, Szynal-Liana [12] introduced the Horadam hybrid numbers as

\[
K_{W_n} = W_n + W_{n+1}i + W_{n+2}\epsilon + W_{n+3}h \quad (1.2) \]

where \(\{W_n\} \) is the Horadam sequence defined by \(W_0 = pW_{n-1} - qW_{n-2} \) with arbitrary initial values \(W_0, W_1 \).

In [12–15], the authors studied several properties of special type of hybrid numbers. The basic properties of k-Pell hybrid numbers were investigated by Catarino [2]. Also, Morales [8] considered the \((p, q)\)-Fibonacci and \((p, q)\)-Lucas hybrid numbers and gave several relations between them. Recently, motivated by the Szynal-Liana’s paper, Senturk et al. [11] derived summation formulas, matrix representations, general bilinear formula, Honsberger formula, etc. regarding to the Horadam hybrid numbers.

This work has been intended as an attempt to introduce a new generalization of Horadam hybrid numbers, called as, bi-periodic Horadam hybrid numbers. The bi-periodic Horadam hybrid numbers generalize the best known hybrid numbers in the literature, such as Horadam hybrid numbers, Fibonacci&Lucas hybrid numbers, k-Pell hybrid numbers, Pell&Pell-Lucas hybrid numbers, Jacobsthal&Jacobsbthal-Lucas hybrid numbers, etc. The components of the bi-periodic Horadam hybrid numbers belong to the bi-periodic Horadam sequence \(\{w_n\} \) which is defined by the recurrence relation

\[
w_n = \chi(n)w_{n-1} + cw_{n-2}, \quad n \geq 2 \quad (1.3)\]

where \(\chi(n) = a \) if \(n \) is even, \(\chi(n) = b \) if \(n \) is odd with arbitrary initial conditions \(w_0, w_1 \) and nonzero real numbers \(a, b \) and \(c \). It is clear that if we take \(a = b = p \) and \(c = -q \), then it reduces to the classical Horadam sequence in [7]. For the details of the bi-periodic Horadam sequences see [1,3,10,18].

The outline of this paper is as follows: In the rest of this section, we give some necessary definitions and mathematical preliminaries, which is required. In Section 2, we introduce the bi-periodic Horadam hybrid numbers and give the generating function, the Binet formula, matrix representation and several basic properties of these hybrid numbers such as Vajda’s identity, Catalan’s identity, Cassini’s identity, summation and binomial sum formulas. In Section 3, we give some relationships between the generalized bi-periodic Fibonacci hybrid numbers and the generalized bi-periodic Lucas hybrid numbers. The final section is devoted to the conclusions.

The Binet formula for the bi-periodic Horadam sequence \(\{w_n\} \) is

\[
w_n = \frac{a^{\xi(n+1)}}{(ab)^{\frac12}} \left(A\alpha^n - B\beta^n\right), \quad (1.4)\]
where

\[A := \frac{w_1 - \beta w_0}{\alpha - \beta} \quad \text{and} \quad B := \frac{w_1 - \alpha w_0}{\alpha - \beta}. \]

(1.5)

Here \(\alpha \) and \(\beta \) are the roots of the polynomial \(x^2 - abx - abc \), that is, \(\alpha = \frac{ab + \sqrt{a^2b^2 + 4abc}}{2} \) and \(\beta = \frac{ab - \sqrt{a^2b^2 + 4abc}}{2} \), and \(\xi (n) = n - 2 \left\lfloor \frac{n}{2} \right\rfloor \) is the parity function, i.e., \(\xi (n) = 0 \) when \(n \) is even and \(\xi (n) = 1 \) when \(n \) is odd. Let assume \(a^2 b^2 + 4abc > 0 \). Also we have \(\alpha + \beta = ab, \Delta := \alpha - \beta = \sqrt{a^2b^2 + 4abc} \) and \(\alpha \beta = -abc \). If we take the initial conditions 0 and 1, we get the Binet formula of the generalized bi-periodic Fibonacci sequence \(\{ u_n \} \) as

\[u_n = \frac{\alpha^{\xi(n+1)} - \beta^{\xi(n+1)}}{(ab)\left\lfloor \frac{n}{2} \right\rfloor} \left(\frac{\alpha^n - \beta^n}{\alpha - \beta} \right). \]

(1.6)

and by taking the initial conditions 2 and \(b \), we get the Binet formula of the generalized bi-periodic Lucas sequence \(\{ v_n \} \) as

\[v_n = \frac{\alpha^{-\xi(n)} - \beta^{-\xi(n)}}{(ab)\left\lfloor \frac{n}{2} \right\rfloor} \left(\frac{\alpha^n + \beta^n}{\alpha + \beta} \right). \]

(1.7)

The bi-periodic Horadam numbers for negative subscripts is defined as

\[(-c)^n w_{-n} = \left(\frac{b}{a} \right)^{\xi(n)} w_0 u_{n+1} - w_1 u_n. \]

(1.8)

Also we have

\[\alpha^m = a^{-1} a^{\frac{m \xi(m)}{2}} b^{\frac{m \xi(m)}{2}} \alpha u_m + ca^{\frac{m - \xi(m)}{2}} b^{\frac{m - \xi(m)}{2}} u_{m-1} \]

(1.9)

and

\[\beta^m = a^{-1} a^{\frac{m \xi(m)}{2}} b^{\frac{m \xi(m)}{2}} \beta u_m + ca^{\frac{m - \xi(m)}{2}} b^{\frac{m - \xi(m)}{2}} u_{m-1}. \]

(1.10)

For details, see [16, 17].

2 The bi-periodic Horadam hybrid numbers

Definition 1 For \(n \geq 0 \), the bi-periodic Horadam hybrid number \(\mathbb{K}_{w,n} \) is defined by the recurrence relation

\[\mathbb{K}_{w,n} = w_n + w_{n+1}i + w_{n+2}e + w_{n+3}h \]

where \(w_n \) is the \(n \)-th bi-periodic Horadam number.

From the definition of bi-periodic Horadam hybrid numbers, we have

\[\mathbb{K}_{w,0} = w_0 + w_1i + (aw_1 + cw_0)e + ((ab + c) w_1 + bcw_0)h, \]

\[\mathbb{K}_{w,1} = w_1 + (aw_1 + cw_0)i + ((ab + c) w_1 + bcw_0)e \]

\[+ (a(ab + 2c) w_1 + c(ab + c) w_0)h. \]

In the following table, we state several number of hybrid numbers in terms of the bi-periodic Horadam hybrid numbers \(\mathbb{K}_{w,n} \) according to the initial conditions \(w_0, w_1 \) and the related coefficients \(a, b, c. \)

The norm of the \(n \)-th bi-periodic Horadam hybrid number \(\mathbb{K}_{w,n} \) is \(\| \mathbb{K}_{w,n} \| := \sqrt{C (\mathbb{K}_{w,n})} \). Here \(C (\mathbb{K}_{w,n}) \) is the character of the \(n \)-th bi-periodic Horadam hybrid number \(\mathbb{K}_{w,n} \) and defined by

\[C (\mathbb{K}_{w,n}) = \mathbb{K}_{w,n} \overline{\mathbb{K}_{w,n}} = w_n^2 + (w_{n+1} - w_{n+2})^2 - w_{n+2}^2 - w_{n+3}^2, \]

(2.1)

where \(\mathbb{K}_{w,n} := w_n - w_{n+1}i - w_{n+2}e - w_{n+3}h \) is the conjugate of the bi-periodic Horadam hybrid number.
On a new generalization...

Table 1 Special cases of the sequence \([K_{w,n}]\)

\(K_{w,n}\)	\((w_0, w_1; a, b, c)\)	bi-periodic Horadam hybrid numbers
\(K_{w,n}\)	\((0, 1; a, b, c)\)	gen. bi-periodic Fibonacci hybrid numbers
\(K_{c,n}\)	\((2, b; a, b, c)\)	gen. bi-periodic Lucas hybrid numbers
\(K_{p,n}\)	\((0, 1; b, a, c)\)	modified gen. bi-periodic Fibonacci hybrid numbers
\(K_{0,n}\)	\((2, a, b, a, c)\)	modified gen. bi-periodic Lucas hybrid numbers
\(K_{W,n}\)	\((W_0, W_1; p, p, -q)\)	Horadam hybrid numbers [11, 12]
\(K_{U,n}\)	\((0, 1; p, p, q)\)	\((p, q)\)-Fibonacci hybrid numbers [8]
\(K_{V,n}\)	\((2, p; p, p, q)\)	\((p, q)\)-Lucas hybrid numbers [8]
\(K_{F,n}\)	\((0, 1; 1, 1, 1)\)	Fibonacci hybrid numbers [13]
\(K_{L,n}\)	\((2, 1; 1, 1, 1)\)	Lucas hybrid numbers [12]
\(K_{P,n}\)	\((0, 1; 2, 2, 1)\)	Pell hybrid numbers [15]
\(K_{Q,n}\)	\((2, 2; 2, 2, 1)\)	Pell-Lucas hybrid numbers [15]
\(K_{kP,n}\)	\((0, 1; 2, 2, k)\)	k-Pell hybrid numbers [2]
\(K_{f,n}\)	\((0, 1; 1, 1, 2)\)	Jacobsthal hybrid numbers [14]
\(K_{j,n}\)	\((2, 1; 1, 1, 2)\)	Jacobsthal-Lucas hybrid numbers [14]

Theorem 1 The generating function for the bi-periodic Horadam hybrid sequence \([K_{w,n}]\) is

\[
G(x) = \frac{(1 - (ab + c)x^2 + b cx^3) K_{w,0} + x(1 + ax - cx^2) K_{w,1}}{1 - (ab + 2c)x^2 + c^2x^4}.
\]

Proof Let

\[
G(x) = \sum_{n=0}^{\infty} K_{w,n}x^n = K_{w,0} + K_{w,1}x + K_{w,2}x^2 + \cdots + K_{w,n}x^n + \cdots.
\]

Since the bi-periodic Horadam hybrid numbers satisfy the recurrence relation

\[
K_{w,n} = (ab + 2c)K_{w,n-2} - c^2K_{w,n-4}, n \geq 4,
\]

we get

\[
\left(1 - (ab + 2c)x^2 + c^2x^4\right) G(x) = K_{w,0} + K_{w,1}x + \left(K_{w,2} - (ab + 2c)K_{w,0}\right)x^2 + \left(K_{w,3} - (ab + 2c)K_{w,1}\right)x^3 + \sum_{n=4}^{\infty} \left(K_{w,n} - (ab + 2c)K_{w,n-2} + c^2K_{w,n-4}\right)x^n = K_{w,0} + K_{w,1}x + (aK_{w,1} + cK_{w,0})x^2 + (aK_{w,1} + cK_{w,0})x^3 + \left((ab + c)K_{w,1} + bcK_{w,0}\right)x^4 + \left((ab + c)K_{w,1} + bcK_{w,0}\right)x^5.
\]

\(\square\)

Next, we state the Binet formula for the bi-periodic Horadam hybrid numbers and so derive some well-known mathematical properties.

Theorem 2 The Binet formula for the bi-periodic Horadam hybrid numbers is

\[
K_{w,n} = \frac{a^{[\xi(n+1)]}(\alpha \beta_{\xi(n)} + B \beta_{\xi(n)})}{(ab)^{\frac{1}{2}}}
\]

where \(\alpha_{\xi(n)}\) and \(\beta_{\xi(n)}\) are defined as

\[
\alpha_{\xi(n)} := 1 + \frac{1}{a} \left(\frac{a}{b}\right)^{\xi(n)} \alpha\iota + \frac{1}{ab} \alpha^2\iota + \frac{1}{a^2 b} \left(\frac{a}{b}\right)^{\xi(n)} \alpha^3 h,
\]

\[
\beta_{\xi(n)} := 1 + \frac{1}{a} \left(\frac{a}{b}\right)^{\xi(n)} \beta\iota + \frac{1}{ab} \beta^2\iota + \frac{1}{a^2 b} \left(\frac{a}{b}\right)^{\xi(n)} \beta^3 h.
\]
Proof By using the definition of the sequence \(\{k_{u,n}\} \) and the Binet formula of \(\{w_n\} \), we obtain the desired result.

Remark 1 If we take \(a = b = p \) and \(c = -q \), we obtain the Binet formula of the classical Horadam hybrid numbers in [12].

Lemma 1

\[
\alpha_{\xi(n)} \beta_{\xi(n)} = \begin{cases}
K_{\xi,0} = \hat{a} \xi(n) - \eta, & \text{if } n \text{ is even}, \\
K_{\xi,0} = \hat{a} \xi(n) - \eta, & \text{if } n \text{ is odd},
\end{cases} \tag{2.2}
\]

\[
\beta_{\xi(n)} \alpha_{\xi(n)} = \begin{cases}
K_{\xi,0} = \hat{a} \xi(n) - \eta, & \text{if } n \text{ is even}, \\
K_{\xi,0} = \hat{a} \xi(n) - \eta, & \text{if } n \text{ is odd},
\end{cases} \tag{2.3}
\]

where

\[
\eta := (1 - b) i + (a - b - c) e + (1 + ab + c) h,
\]

\[
\hat{\eta} := (1 - a) i + (b - a - c) e + (1 + ab + c) h,
\]

\[
\theta := 1 - \frac{bc}{a} + bc + \frac{bc^2}{a},
\]

\[
\hat{\theta} := 1 - \frac{ac}{b} + ac + \frac{ac^3}{b}.
\]

and the sequences \(\{K_u\} \) and \(\{K_v\} \) are the auxiliary sequences that are obtained from \(\{k_{u,n}\} \) and \(\{k_{v,n}\} \) just only switching \(a \leftrightarrow b \). That is, \(\hat{u}_n = \left(\frac{b}{a} \right)^{\xi(n+1)} u_n \) and \(\hat{v}_n = \left(\frac{a}{b} \right)^{\xi(n)} v_n \).

Proof By using the definition of multiplication of two hybrid numbers, we have

\[
\alpha_{\xi(n)} \beta_{\xi(n)} = 1 + \frac{bc}{a} \left(\frac{a}{b} \right)^{\xi(n)} - \frac{bc^3}{a} \left(\frac{a}{b} \right)^{\xi(n)} - \left(\frac{a}{b} \right)^{\xi(n)} bc
\]

\[
+ \left(\frac{ab + 2c}{a} \right)^{\xi(n)} + \left(\frac{ab + 2c}{a} \right)^{\xi(n)} \Delta + \frac{c^2}{a} \left(\frac{a}{b} \right)^{\xi(n)} \Delta \right) i
\]

\[
+ \left(\frac{ab + 2c}{a} \right)^{\xi(n)} \left(\frac{ab + 2c}{a} \right)^{\xi(n)} \Delta + \frac{c^2}{a} \left(\frac{a}{b} \right)^{\xi(n)} \Delta \right) h
\]

\[
= 1 + \frac{a}{b} \xi(n) bc \left(\frac{a}{b} \right)^{\xi(n)} - \frac{c^2}{a} \left(\frac{a}{b} \right)^{\xi(n)} - 1
\]

\[
+ \left(\frac{a}{b} \right)^{\xi(n)} \left(\frac{b}{a} \right)^{\xi(n)} 2 + bi + \left(\frac{b}{a} \right)^{\xi(n)} \left(ab + 2c + h \right) - 2
\]

\[
+ \Delta \left(\frac{a}{b} \right)^{\xi(n)} \frac{c}{a} \left(\frac{a}{b} \right)^{\xi(n)} bi + \left(\frac{a}{b} \right)^{\xi(n)} + c \left(\xi(n) \right) - h \right).
\]

After some necessary simplifications, we get the result (2.2).

Similarly, we can obtain \(\beta_{\xi(n)} \alpha_{\xi(n)} \).

By using the Lemma 1, we have

\[
\alpha_{\xi(n)} \beta_{\xi(n)} + \beta_{\xi(n)} \alpha_{\xi(n)} = \begin{cases}
2 \left(K_{\xi,0} - \theta \right), & \text{if } n \text{ is even}, \\
2 \left(K_{\xi,0} - \theta \right), & \text{if } n \text{ is odd},
\end{cases} \tag{2.4}
\]

\[
\alpha_{\xi(n)} \beta_{\xi(n)} - \beta_{\xi(n)} \alpha_{\xi(n)} = \begin{cases}
2 \Delta \left(K_{\xi,0} - \eta \right), & \text{if } n \text{ is even}, \\
2 \Delta \left(K_{\xi,0} - \eta \right), & \text{if } n \text{ is odd}.
\end{cases} \tag{2.5}
\]
Lemma 2

\[
\alpha_{\xi(n)}\alpha_{\xi(n)} = \begin{cases} \mathbb{K}_{v,0} + \mu + \frac{\Delta}{\beta} (\mathbb{K}_{u,0} + \gamma) & \text{if } n \text{ is even,} \\ \mathbb{K}_{v,0} + \mu_0 + \frac{\Delta}{\beta} (\mathbb{K}_{u,0} + \gamma_0) & \text{if } n \text{ is odd,} \end{cases} \tag{2.6}
\]

\[
\beta_{\xi(n)}\beta_{\xi(n)} = \begin{cases} \mathbb{K}_{v,0} + \mu + \frac{\Delta}{\beta} (\mathbb{K}_{u,0} + \gamma) & \text{if } n \text{ is even,} \\ \mathbb{K}_{v,0} + \mu_0 + \frac{\Delta}{\beta} (\mathbb{K}_{u,0} + \gamma_0) & \text{if } n \text{ is odd,} \end{cases} \tag{2.7}
\]

where

\[
\mu = -1 + \frac{b}{a} (u_2 + 2u_2 - u_1) + b\gamma
\]

\[
\mu_0 = -1 + \frac{a}{b} (u_2 + 2b - u_1) + a\gamma_0
\]

and

\[
\gamma = \frac{1}{2} \left(\frac{b}{a} u_2 + 2u_3 - \frac{b}{a} u_2 \right)
\]

\[
\gamma_0 = \frac{1}{2} (u_0 + 2u_3 - u_2).
\]

Proof By considering the relations

\[
\alpha_{\xi(n)}\alpha_{\xi(n)} = 2\alpha_{\xi(n)} - C (\alpha_{\xi(n)}),
\]

and

\[
\beta_{\xi(n)}\beta_{\xi(n)} = 2\beta_{\xi(n)} - C (\beta_{\xi(n)}),
\]

where \(C (\alpha_{\xi(n)}) \) is the character of the hybrid number \(\alpha_{\xi(n)} \) and using the relations (1.3) and (1.4), we get the desired result.

Remark 2 If we take \(a = b = p \) and \(c = q \), we obtain the analogous relations for \((p, q)\)-Fibonacci hybrid numbers given in [8].

Theorem 3 (Vajda's like identity) For non-negative integers \(n, r, \) and \(s \), we have

\[
\mathbb{K}_{w,n+2r} \mathbb{K}_{w,n+2s} - \mathbb{K}_{w,n+2r+s} = \begin{cases} (-c)^n A \beta \Delta^2 u_2 n & \text{if } n \text{ is even} \\ (-c)^n A \beta \Delta^2 u_2 n & \text{if } n \text{ is odd} \end{cases}
\]

Proof From the Binet formula of the bi-periodic Horadam hybrid numbers, we get

\[
\mathbb{K}_{w,n+2r} \mathbb{K}_{w,n+2s} - \mathbb{K}_{w,n+2r+s} = \frac{a_{\xi(n)}^{2(n+2r)} + \beta_{\xi(n)}^{2n+2r}}{(ab)^{\frac{a_{\xi(n)}}{2}}} \left(A a_{\xi(n)}^{\alpha^{n+2r}} - B \beta_{\xi(n)}^{n+2r} \right) \frac{a_{\xi(n)}^{2(n+2s+1)}}{(ab)^{\frac{a_{\xi(n)}}{2}}} \left(A a_{\xi(n)}^{\alpha^{n+2s+1}} - B \beta_{\xi(n)}^{n+2s+1} \right)
\]

\[
= \frac{a_{\xi(n)}^{2(n+1)}}{(ab)^{\frac{a_{\xi(n)}}{2}}} \left(-A a_{\xi(n)}^{\alpha^{n+2r}} \beta_{\xi(n)}^{n+2r} - AB \beta_{\xi(n)}^{n+2r} \alpha_{\xi(n)}^{n+2r} \beta_{\xi(n)}^{n+2r} \right)
\]

\[
+ A \beta a_{\xi(n)}^{\alpha^{n+2r}} \beta_{\xi(n)}^{n+2r} + A \beta_{\xi(n)}^{n+2r} \alpha_{\xi(n)}^{n+2r} \beta_{\xi(n)}^{n+2r} \beta_{\xi(n)}^{n+2r}
\]

\[
= \frac{a_{\xi(n)}^{2(n+1)}}{(ab)^{\frac{a_{\xi(n)}}{2}}} A \beta a_{\xi(n)}^{\alpha^{2r}} \left(\beta_{\xi(n)}^2 - \alpha_{\xi(n)}^2 \right) \frac{a_{\xi(n)}^{2(n+2r+1)}}{(ab)^{\frac{a_{\xi(n)}}{2}}} \left(\beta_{\xi(n)} \alpha_{\xi(n)}^{2r} - \alpha_{\xi(n)} \beta_{\xi(n)}^{2r} \right)
\]
If n is even, by considering the relations (2.2) and (2.3), we obtain
\[
\mathbb{K}_{w,n+2r}\mathbb{K}_{w,n+2s} - \mathbb{K}_{w,n}\mathbb{K}_{w,n+2(r+s)} = \sum_{r=1}^{n+1} \frac{a^2 \alpha^{2\xi(n+1)}}{(ab)^{2\xi(n)+1}} AB (ab)^n \alpha^{2r} \beta^{2s} \left((\mathbb{K}_{w,n} - \mathbb{K}_{w,n+2(r+s)}) \right).
\]

Similarly, we obtain the desired result for odd n. \hfill \Box

Corollary 1 If we take $s = -r$, we get the Catalan’s like identity:
\[
\mathbb{K}_{w,n+2r}\mathbb{K}_{w,n-2r} = \mathbb{K}_{w,n}^2
\]
\[
= \left\{ \begin{array}{ll}
(\mathbb{K}_{w,n} - \mathbb{K}_{w,n+2(r+s)})
\end{array} \right.
\]
if n is even.

Corollary 2 If we take $s = -r$ and $r = 1$, we get the Cassini’s like identity:
\[
\mathbb{K}_{w,n+2r}\mathbb{K}_{w,n-2r} = \mathbb{K}_{w,n}^2
\]
\[
= \left\{ \begin{array}{ll}
(\mathbb{K}_{w,n} - \mathbb{K}_{w,n+2(r+s)})
\end{array} \right.
\]
if n is odd.

Note that for even case, the Cassini’s like identity can be stated as by means of the following matrix identity:
\[
\left[\frac{\mathbb{K}_{w,2n+2} - c^2 \mathbb{K}_{w,2n}}{\mathbb{K}_{w,2n} - c^2 \mathbb{K}_{w,2n-2}} \right] = \left[\frac{\mathbb{K}_{w,4} - c^2 \mathbb{K}_{w,2}}{\mathbb{K}_{w,2} - c^2 \mathbb{K}_{w,0}} \right]^{n-1}.
\]

By taking determinant from above to down below of both sides of the matrix equality (2.8), we get
\[
\mathbb{K}_{w,2n+2}\mathbb{K}_{w,2n-2} = c^{2n-2} \left(\mathbb{K}_{w,4}\mathbb{K}_{w,0} - \mathbb{K}_{w,2}^2 \right).
\]

By taking determinant from down below to above of both sides of the matrix equality (2.8), we get
\[
\mathbb{K}_{w,2n-2}\mathbb{K}_{w,2n+2} = c^{2n-2} \left(\mathbb{K}_{w,0}\mathbb{K}_{w,4} - \mathbb{K}_{w,2}^2 \right).
\]

Theorem 4 For $n \geq 1$, we have
\[
\sum_{r=1}^{n} \mathbb{K}_{w,r} = \frac{c^2 \left(\mathbb{K}_{w,n} + \mathbb{K}_{w,n-1} - \mathbb{K}_{w,0} - \mathbb{K}_{w,-1} \right) - \mathbb{K}_{w,n+2} - \mathbb{K}_{w,n+1} + \mathbb{K}_{w,2} + \mathbb{K}_{w,1}}{c^2 - ab - 2c + 1}.
\]

Proof First note that by considering the formula in (1.8), the bi-periodic Horadam hybrid numbers for negative subscripts can be defined as
\[
\mathbb{K}_{w,-n} = w_{-n} + w_{-n+1}i + w_{-n+2}e + w_{-n+3}h.
\]

If n is odd, we have
\[
\sum_{r=1}^{n} \mathbb{K}_{w,r} = \sum_{r=1}^{n+1} \mathbb{K}_{w,2r} + \sum_{r=1}^{n+1} \mathbb{K}_{w,2r-1}
\]
\[
= \sum_{r=1}^{n+1} \frac{a^2 \alpha^{2r} \beta^{2r}}{(ab)^{2r}} + \sum_{r=1}^{n+1} \frac{ab}{(ab)^{2r}} \left(A\alpha^{2r-1} - B\beta^{2r-1} \right)
\]
For non-negative even integer \(n \) and non-negative integer \(r \), we have

\[
\sum_{r=1}^{n-1} \left(\frac{\alpha^2}{ab} \right)^r - aB\beta\xi(2r-1) \sum_{r=1}^{n-1} \left(\frac{\alpha^2}{ab} \right)^r
\]

\[
+ \frac{ab}{\alpha} A\alpha \xi(2r-1) \sum_{r=1}^{n-1} \left(\frac{\alpha^2}{ab} \right)^r - \frac{ab}{\beta} B\beta\xi(2r-1) \sum_{r=1}^{n-1} \left(\frac{\beta^2}{ab} \right)^r
\]

\[
= A\alpha \xi(2r) \left(\frac{\alpha^2}{ab} \right)^r - aB\beta\xi(2r) \left(\frac{\beta^2}{ab} \right)^r
\]

\[
+ \frac{ab}{\alpha} A\alpha \xi(2r-1) \left(\frac{\alpha^2}{ab} \right)^r - \frac{ab}{\beta} B\beta\xi(2r-1) \left(\frac{\beta^2}{ab} \right)^r
\]

Since \(\xi(2r) = 0 \) and \(\xi(2r-1) = 1 \), we have

\[
\sum_{r=1}^{n} K_{w,r} = \frac{a}{(ab)^{\frac{\alpha}{\beta}}} \left(\frac{A\alpha\alpha^a+1 - A\alpha\alpha^2 (ab) \frac{\alpha}{\beta} + B\beta\beta^a+1 (ab) \frac{\alpha}{\beta}}{\alpha^2 - ab} + \frac{B\beta\beta^a+1 + B\beta\beta^2 (ab) \frac{\alpha}{\beta}}{\beta^2 - ab} \right)
\]

\[
+ \frac{ab}{(ab)^{\frac{\alpha}{\beta}}} \left(\frac{A\alpha\alpha^a+1 - A\alpha\alpha^2 (ab) \frac{\alpha}{\beta} - B\beta\beta^a+1 (ab) \frac{\alpha}{\beta}}{\alpha^2 - ab} + \frac{B\beta\beta^a+1 + B\beta\beta^2 (ab) \frac{\alpha}{\beta}}{\beta^2 - ab} \right)
\]

\[
= a \frac{(ab)^{\frac{\alpha}{\beta}}}{(ab)^{\frac{\alpha}{\beta}}} \left(\alpha^2 - ab \right) \left(\beta^2 - ab \right)
\]

\[
\left((\alpha\beta)^2 (A\alpha\alpha^a+1 - B\beta\beta^a+1) - ab (A\alpha\alpha^2 - B\beta\beta^2) \right)
\]

\[
+ \frac{ab}{(ab)^{\frac{\alpha}{\beta}}} \left(\frac{A\alpha\alpha^a+1 - A\alpha\alpha^2 (ab) \frac{\alpha}{\beta} - B\beta\beta^a+1 (ab) \frac{\alpha}{\beta}}{\alpha^2 - ab} + \frac{B\beta\beta^a+1 + B\beta\beta^2 (ab) \frac{\alpha}{\beta}}{\beta^2 - ab} \right)
\]

\[
= \left(\begin{array}{c}
K_{w,n-1} - K_{w,0} + K_{w,n} - K_{w,-1} - K_{w,n+1} + K_{w,n+2} + K_{w,2} + K_{w,1}
\end{array} \right) / (\alpha^2 - ab - 2c + 1)
\]

If \(n \) is even, we have

\[
\sum_{r=1}^{n} K_{w,r} = \sum_{r=1}^{n/2} K_{w,2r} + \sum_{r=1}^{n/2} K_{w,2r-1}.
\]

In a similar manner, we get the desired result. □

Theorem 5 For non-negative even integer \(n \) and non-negative integer \(r \), we have

\[
\sum_{i=0}^{n} (-c)^{n-i} K_{w,2i+r} = (ab)^{\frac{\alpha}{\beta}} K_{w,n+r}.
\]
Proof From the Binet formula of the bi-periodic Horadam hybrid numbers, we get

\[
\sum_{i=0}^{n} \binom{n}{i} (-c)^{n-i} k_{w,2i+r} = \sum_{i=0}^{n} \binom{n}{i} (-c)^{n-i} \frac{a^{2i+(r+1)}}{(ab)^{\frac{2i}{2}}} \left(Aa_{\xi(r)} a^{2i+r} - Bb_{\xi(r)} b^{2i+r} \right) \\
= \frac{a^{\frac{2i}{2}}}{(ab)^{\frac{1}{2}}} \left(Aa_{\xi(r)} a^{n+r} - Bb_{\xi(r)} b^{n+r} \right) = \frac{a^{\frac{n+r}{2}}}{(ab)^{\frac{1}{2}}} \left(a^{2n} b^{2} - a^{n} b^{n} \right) \\
= \frac{a^{\frac{n+r}{2}}}{(ab)^{\frac{1}{2}}} k_{w,n+r} = (ab)^{\frac{1}{2}} k_{w,n+r}.
\]

\[\square\]

3 Some relations between generalized bi-periodic Fibonacci and Lucas hybrid numbers

In this section, we state some relations between generalized bi-periodic Fibonacci numbers and generalized bi-periodic Lucas hybrid numbers. We also give some relations between generalized bi-periodic Fibonacci numbers and modified generalized bi-periodic Lucas hybrid numbers. To do this, we consider the generalized bi-periodic Fibonacci hybrid numbers \(k_{u,n}\), the generalized bi-periodic Lucas hybrid numbers \(k_{v,n}\), and the modified generalized bi-periodic Lucas hybrid numbers \(k_{\gamma,n}\) which are stated in Table 1.

From Theorem 2, the Binet formula of \(k_{u,n}\) is

\[
k_{u,n} = \frac{a^{\frac{n+1}{2}}}{(ab)^{\frac{1}{2}}} \left(\frac{a_{\xi(n)} a^{n} - b_{\xi(n)} b^{n}}{a - b} \right),
\]

the Binet formula of \(k_{v,n}\) is

\[
k_{v,n} = \frac{a^{\frac{-n}{2}}}{(ab)^{\frac{1}{2}}} \left(a_{\xi(n)} a^{n} + b_{\xi(n)} b^{n} \right),
\]

and the Binet formula of \(k_{\gamma,n}\) is

\[
k_{\gamma,n} = \frac{b^{\frac{-n}{2}}}{(ab)^{\frac{1}{2}}} \left(a_{\xi(n+1)} a^{n} + b_{\xi(n+1)} b^{n} \right).
\]

Theorem 6 For any natural number \(m, n\) with \(n > m\), we have

(i) \(k_{u,n+1} + c k_{u,n-1} = k_{u,n}\),

(ii) \(k_{\gamma,n+1} + c k_{\gamma,n-1} = (ab + 4c) k_{u,n}\),

(iii) \(k_{u,n} k_{v,m} - k_{u,m} k_{v,n} = \begin{cases} 2 (-c)^{m} (k_{v,0} - \theta) a_{u,n-m}, & \text{if } n \text{ and } m \text{ are both even}, \\ 2 (-c)^{n} b^{2} (k_{v,0} - \theta) a_{u,n-m}, & \text{if } n \text{ and } m \text{ are both odd}. \end{cases}\)

(iv) \(k_{v,n} k_{v,m} - \frac{\Delta^{2}}{a^{2}} k_{u,n} k_{u,m} = \begin{cases} 4 (-c)^{n} (k_{v,0} - \theta), & \text{if } n \text{ is even}, \\ 4 (-c)^{n} b^{2} (k_{v,0} - \theta), & \text{if } n \text{ is odd}. \end{cases}\)

(v) \(k_{v,n} k_{v,m} + \frac{\Delta^{2}}{a^{2}} k_{u,n} k_{u,m} = \begin{cases} 2 \left((k_{v,0} + \mu_{e}) v_{2n} + \frac{\Delta^{2}}{a^{2}} (k_{u,0} + \gamma_{e}) u_{2n} \right), & \text{if } n \text{ is even}, \\ 2 \left(\frac{b}{a} (k_{v,0} + \mu_{o}) v_{2n} + \frac{\Delta^{2}}{a^{2}} (k_{u,0} + \gamma_{o}) u_{2n} \right), & \text{if } n \text{ is odd}. \end{cases}\)
Proof (i) From the relations (3.1) and (3.3), we have,
\[
\mathbb{K}_{u,n+1} + c\mathbb{K}_{u,n-1}
= \frac{a^\xi(n)}{(ab)^{n+1}} \left(\frac{\alpha\xi(n+1)\alpha^{n+1} - \beta\xi(n+1)\beta^{n+1}}{\alpha - \beta} \right) + c\frac{a^\xi(n)}{(ab)^{n+1}} \left(\frac{\alpha\xi(n-1)\alpha^{n-1} - \beta\xi(n-1)\beta^{n-1}}{\alpha - \beta} \right)
= \frac{a^\xi(n)}{(ab)^{n+1}} \left(\alpha\xi(n+1)\alpha^{n+1} - \beta\xi(n+1)\beta^{n+1} \right) + \frac{a^\xi(n)}{(ab)^{n+1}} \left(\alpha\xi(n-1)\alpha^{n-1} - \beta\xi(n-1)\beta^{n-1} \right)
= \frac{a^\xi(n)}{(ab)^{n+1}} \left(\alpha\xi(n+1)\alpha^{n} - \beta\xi(n+1)\beta^{n} \right) \frac{\alpha - \beta}{\alpha - \beta}
= \frac{a^\xi(n)}{(ab)^{n+1}} \left(\alpha\xi(n+1)\alpha^{n} + \beta\xi(n+1)\beta^{n} \right) = \mathbb{K}_{u,n}.
\]

(ii) By using the relations (3.1) and (3.3), we get the desired result.

(iii) By using the Binet formulas for \(\mathbb{K}_{u,n} \) and \(\mathbb{K}_{v,n} \), and considering the relation (2.4), we get the desired result.

(iv) By using the Binet formulas for \(\mathbb{K}_{u,n} \) and \(\mathbb{K}_{v,n} \), we have
\[
\mathbb{K}_{v,n}^2 - \Delta^2 \mathbb{K}_{u,n}^2 \mathbb{K}_{u,n} = \frac{a^{-2\xi(n)}}{(ab)^{2(n+1)}} \left((\alpha\xi(n))\alpha^n + (\beta\xi(n))\beta^n \right)^2 - \frac{a^{-2\xi(n+1)}}{(ab)^{2(n+1)}} \left((\alpha\xi(n))\alpha^{n+1} - (\beta\xi(n))\beta^{n+1} \right)^2
= \frac{a^{-2\xi(n)}}{(ab)^{2(n+1)}} \left((\alpha\xi(n))\alpha^n + (\beta\xi(n))\beta^n \right)^2 - \frac{a^{-2\xi(n+1)}}{(ab)^{2(n+1)}} \left((\alpha\xi(n))\alpha^n - (\beta\xi(n))\beta^n \right)^2
= \frac{a^{-2\xi(n)}}{(ab)^{2(n+1)}} \left((\alpha\xi(n))\alpha^n + (\beta\xi(n))\beta^n \right)^2 - \frac{a^{-2\xi(n+1)}}{(ab)^{2(n+1)}} \left((\alpha\xi(n))\alpha^n - (\beta\xi(n))\beta^n \right)^2
= \frac{a^{-2\xi(n)}}{(ab)^{2(n+1)}} \left((\alpha\xi(n))\alpha^n + (\beta\xi(n))\beta^n \right)^2 - \frac{a^{-2\xi(n+1)}}{(ab)^{2(n+1)}} \left((\alpha\xi(n))\alpha^n - (\beta\xi(n))\beta^n \right)^2
\]

By considering the relation (2.4), we have
\[
\mathbb{K}_{v,n}^2 - \Delta^2 \mathbb{K}_{u,n}^2 \mathbb{K}_{u,n} = \begin{cases} 4\frac{1}{(ab)^n} (\alpha\beta)^n (\mathbb{K}_{v,0} - \theta) & \text{if } n \text{ is even} \\ 4\frac{a^{-2}}{(ab)^n} (\alpha\beta)^n (\mathbb{K}_{v,0} - \theta) & \text{if } n \text{ is odd} \end{cases}
= \begin{cases} 4(-c)^n (\mathbb{K}_{v,0} - \theta) & \text{if } n \text{ is even} \\ 4(-c)^n \frac{a}{\theta} (\mathbb{K}_{v,0} - \theta) & \text{if } n \text{ is odd} \end{cases}
\]

(v) By using the Binet formulas for \(\mathbb{K}_{u,n} \) and \(\mathbb{K}_{v,n} \), we obtain
\[
\mathbb{K}_{v,n}^2 - \Delta^2 \mathbb{K}_{u,n}^2 \mathbb{K}_{u,n} = \frac{a^{-2\xi(n)}}{(ab)^{2(n+1)}} \left((\alpha\xi(n))\alpha^n + (\beta\xi(n))\beta^n \right)^2 \cdot \left((\alpha\xi(n))\alpha^n + (\beta\xi(n))\beta^n \right)^2
\]

By considering the relations (2.6) and (2.7), we get the desired result. \(\square \)

4 Conclusion

In recent years, many studies have been devoted to investigate the hybrid numbers whose components are from the special number sequences such as Fibonacci, Lucas, Pell, Horadam numbers, etc. This work provides a new generalization for hybrid numbers whose coefficients are from the bi-periodic Horadam numbers. Most of the results of this study generalize the results of those were given in \([11,12]\). It would also be interesting to study the algebraic structure of these new hybrid numbers.
Acknowledgements We are grateful to the referee for giving us helpful comments to improve the quality of this paper.

References

1. Bilgici G. (2014). Two generalizations of Lucas sequence. Appl. Math. Comput., 245, 526-538.
2. Catarino P. (2019). On k-Pell hybrid numbers. J Discrete Math Sci Cryptography, 22(1), 83-89.
3. Edson M., Yayenie O. (2009). A new generalizations of Fibonacci sequences and extended Binet’s formula, Integers 9, 639-654.
4. Halici S., Karatas A. (2017). On a generalization for quaternion sequences, Chaos Solitons Fractals, 98, 178-182.
5. Hamilton W.R. (1853). Lectures on quaternions. Hodges and Smith. Dublin.
6. Horadam A.F. (1963). Complex Fibonacci numbers and Fibonacci quaternions, Amer. Math. Monthly, 70, 289-291.
7. Horadam A.F. (1965). Basic properties of a certain generalized sequence of numbers, The Fibonacci Quarterly, 3(3) 161-176.
8. Morales G.C. (2021). Investigation of generalized hybrid Fibonacci numbers and their properties. Applied Mathematics E-Notes, 21, 110-118.
9. Ozdemir M. (2018). Introduction to hybrid numbers, Advances in Applied Clifford Algebras, 28 (1), 11.
10. Sahin M. (2011). The Gelin-Cesaro identity in some conditional sequences, Hacet. J. Math. Stat., 40 (6), 855-861.
11. Senturk T.D., Bilgici G., Dasdemir A. and Unal Z. (2020). A study on Horadam hybrid numbers, Turk J Math., 44, 1212-1221.
12. Szyynal-Liana A. (2018). The Horadam hybrid numbers, Discuss Math Gen Algebra Appl. 38 (1), 91-98.
13. Szyynal-Liana A., Wloch I. (2019). The Fibonacci hybrid numbers, Utilitas Math., 110, 3-10.
14. Szyynal-Liana A., Wloch I. (2019). On Jacobsthal and Jacobsthal-Lucas hybrid numbers, Ann Math Silesianae, 33(1), 276-283.
15. Szyynal-Liana A., Wloch I. (2018). On Pell and Pell-Lucas hybrid numbers, Commentat Math. 58, 11-17.
16. Tan E., Leung H-H. (2020). A note on congruence properties of the generalized bi-periodic Horadam sequence, Hacet. J. Math. Stat. 49 (6), 2084-2093.
17. Tan E., Leung H-H. (2020). Some basic properties of the generalized bi-periodic Fibonacci and Lucas sequences, Advances in Difference Equations, 26.
18. Yayenie O. (2011). A note on generalized Fibonacci sequence, Appl. Math. Comput., 217, 5603-5611.