Oscillatory dynamics in a discrete predator-prey model with distributed delays

Changjin Xu1, Lilin Chen2, Peiluan Li3, Ying Guo4*

1 Guizhou Key Laboratory of Economics System Simulation, Guizhou University of Finance and Economics, Guiyang 550004, PR China; School of Information Science and Engineering, Central South University, Changsha 410083, PR China, 2 School of Mathematics and Statistics, Guizhou University of Finance and Economics, Guiyang 550004, PR China, 3 School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang 471023, PR China, 4 School of Information Science and Engineering, Central South University, Changsha 410083, PR China

* yingguo@csu.edu.cn

Abstract

This work aims to discuss a predator-prey system with distributed delay. Various conditions are presented to ensure the existence and global asymptotic stability of positive periodic solution of the involved model. The method is based on coincidence degree theory and the idea of Lyapunov function. At last, simulation results are presented to show the correctness of theoretical findings.

Introduction

It is well known that the qualitative analysis of predator-prey models is an interesting mathematical problem and has received great attention from both theoretical and mathematical biologists [1–5]. In particular, the periodic solutions are of great interest. During the past decades, a great deal of excellent results have been reported for a lot of different continuous or impulsive predator-prey models. For example, Zhang and Hou [6] investigated the four positive periodic solutions of a ratio-dependent predator-prey system with multiple exploited (or harvesting) terms. Liu and Yan [7] considered positive periodic solutions for a neutral delay ratio-dependent predator-prey model with a Holling type II functional response. Liu [8] dealt with the impulsive periodic oscillation of a predator-prey model with Hassell-Varley-Holling functional response. For more related work, one can see [9–27]. Dunkel [28] pointed out that feedback control item in predator-prey models depends on the population number for certain time past and also depends on the average of the population number for a period of time past. In particular, time delay often occur in predator-prey models due to the impact of all the past life history of the predators and preys on their present birth rates. In many cases, the time delay will extend over the entire past due to the intra-species and inter-species competition. Then there is a distribution of delays over a period of time, thus the distributed delays should be incorporated in predator-prey models.

The functional response plays a key role in characterizing the interaction of predators and preys. Based on the experiments of different kinds of species, Holling [29] proposed three...
types of functional responses: (I) \(f_1(u) = au \), (II) \(f_2(u) = \frac{au}{c+u} \), (III) \(f_3(u) = \frac{au}{c+u^2} \), where \(u(t) \) represents the prey density at time \(t \), \(c > 0 \) is the half-saturation constant, \(a > 0 \) denotes the search rate of the predator. Holling type II functional response is most typical of predators that specialized on one or a few prey \([29–33]\). So in this paper, Holling type II functional response is introduced in model \((1)\).

Motivated by the viewpoint, we proposed the following predator-prey model with Holling II functional response and distributed delays

\[
\begin{align*}
\frac{dx_1}{dt} &= x_1(t) \left[r_1(t) - \int_{-\infty}^{t} k_1(s-t)x_1(s)\,ds \right] \\
&\quad - \frac{x_1(t)}{1 + mx_1(t)} \int_{-\infty}^{t} k_2(s-t)x_2(s)\,ds, \\
\frac{dx_2}{dt} &= x_2(t) \left[-r_2(t) - \int_{-\infty}^{t} k_3(s-t)x_2(s)\,ds \right] \\
&\quad + x_2(t) \int_{-\infty}^{t} \frac{k_2(s-t)x_1(s)}{1 + mx_1(t)}\,ds,
\end{align*}
\]

where \(x_i(t)(i=1,2) \) stands for the prey and predator density at time \(t \), \(r_i(t) \) denotes the intrinsic growth rate of prey at time \(t \) and \(r_2(t) \) denotes the death rate of predator at time \(t \), \(m > 0 \) stands for the half-saturation constant, \(k_i(\cdot, \cdot) \in C_{\text{loc}} ([0, +\infty) \times \mathbb{R}) \rightarrow (0, +\infty)(i=1,2,3,4) \) is continuous function such that \(\int_{-\infty}^{t} k_i(s)\,ds = 1, \int_{0}^{\infty} sk_i(s)\,ds < \infty \). For the biological meaning of model \((1)\), one can see \([34]\).

As pointed out in \([35–42]\), discrete time models are more better to describe the dynamical behaviors than continuous ones since the populations have non-overlapping generations. What’s more, discrete-time systems can provide convenience for numerical simulations. Thus it is interesting to investigate discrete-time systems. The principle aim of this paper is to propose a discrete version of system \((1)\) and analyze the effect of the periodicity of the ecological and environmental parameters on the dynamics of discrete time predator-prey model.

Discrete version of system \((1)\)

Following \([40, 43]\) and assuming that the average growth rates in system \((1)\) change at regular intervals of time, one has

\[
\begin{align*}
\frac{1}{x_1(t)} \dot{x}_1(t) &= r_1([t]) - \sum_{l=0}^{+\infty} k_1(-l)x_1([t]-l) - \frac{1}{1 + mx_1([t])} \sum_{l=0}^{+\infty} k_2(-l)x_2([t]-l), \\
\frac{1}{x_2(t)} \dot{x}_2(t) &= -r_2([t]) - \sum_{l=0}^{+\infty} k_3(-l)x_2([t]-l) + \sum_{l=0}^{+\infty} \frac{k_2(-l)x_1([t]-l)}{1 + mx_1([t])},
\end{align*}
\]

where \([t]\) stands for the integer part of \(t \), \(t \in (0, +\infty) \) and \(t \neq 0, 1, 2, \ldots \). The solution \(\bar{x} = (x_1, x_2)^T \) of \((2)\) possesses the following natures:

1. \(\bar{x} \) is continuous on \([0, +\infty)\).
2. \(\frac{dx_1(t)}{dt}, \frac{dx_2(t)}{dt} \) exist for \(\forall t \in [0, +\infty) \) with the possible exception of the points \(t \in \{0, 1, 2, \ldots\} \), where left-sided derivative exists.
3. \((2)\) holds \(\forall [k, k+1) \), where \(k = 0, 1, 2, \ldots \).
Integrating (2) on \([k, k + 1), k = 0, 1, 2, \cdots\), one has

\[
\begin{align*}
 x_1(t) &= x_1(k) \exp \left\{ \left[r_1(k) + \sum_{l=0}^{+\infty} k_1(-l)x_1(k-l) \right] + \frac{t-k}{1+mx_1(k)} \right\}, \\
 x_2(t) &= x_2(k) \exp \left\{ \left[-r_2(k) - \sum_{l=0}^{+\infty} k_2(-l)x_2(k-l) \right] + \frac{t-k}{1+mx_1(k)} \right\}.
\end{align*}
\]

(3)

Let \(t \to k + 1 \), then (3) reads as

\[
\begin{align*}
 x_1(k + 1) &= x_1(k) \exp \left\{ \left[r_1(k) + \sum_{l=0}^{+\infty} k_1(-l)x_1(k-l) \right] + \frac{1}{1+mx_1(k)} \sum_{l=0}^{+\infty} k_2(-l)x_2(k-l) \right\}, \\
 x_2(k + 1) &= x_2(k) \exp \left\{ \left[-r_2(k) - \sum_{l=0}^{+\infty} k_2(-l)x_2(k-l) \right] + \frac{1}{1+mx_1(k)} \sum_{l=0}^{+\infty} k_1(-l)x_1(k-l) \right\}.
\end{align*}
\]

(4)

which is a discrete version of system (1), where \(k = 0, 1, 2, \cdots \).

The following assumptions are made:

(H1) \(r_i; \ Z \to R^+ \) is positive \(\alpha \)-periodic (\(\alpha \) is a positive integer), i.e., \(r_i(k + \alpha) = r_i(k) \) (1, 2), \(\forall k \in Z \).

(H2) The following inequalities hold true.

\[
\begin{align*}
 0 &\leq \sum_{l=0}^{+\infty} k_1(-l) < +\infty, 0 \leq \sum_{l=0}^{+\infty} k_2(-l) < +\infty, \\
 0 &\leq \sum_{l=0}^{+\infty} k_3(-l) < +\infty, 0 \leq \sum_{l=0}^{+\infty} k_4(-l) < +\infty.
\end{align*}
\]

Existence of positive periodic solutions

First we given two notations:

\[
I_\delta := \{0, 1, 2, \cdots, \alpha - 1\}, \quad \ell := \frac{\alpha - 1}{\alpha}, \quad \ell(k) := \frac{\sum_{l=0}^{+\infty} \ell(l)}{\alpha},
\]

where \(\ell(k) \) is a \(\alpha \)-periodic sequence of real numbers defined for \(k \in Z \). Let \(X, Y \) be normed vector spaces, \(L: \text{Dom}L \subset X \to Y \) be a linear mapping, \(N: X \to Y \) be a continuous mapping. The mapping \(L \) will be called a Fredholm mapping of index zero if \(\dim \text{Ker}L = \text{codim} \text{Im}L < +\infty \) and \(\text{Im}L \) be closed in \(Y \). If \(L \) is a Fredholm mapping of index zero and there exist continuous projectors \(P: X \to X \) and \(Q: Y \to Y \) such that \(\text{Im}P = \text{Ker}L, \text{Im}L = \text{Ker}Q = \text{Im}(I - Q) \), it follows
that $L|\text{Dom}L \cap \text{Ker}P : (I - P)X \to \text{Im}L$ is invertible. We denote the inverse of this map by K_P. If Ω is an open bounded subset of X, the mapping $N \text{ will be called } L\text{-compact on } \Omega \text{ if } QN(\Omega)$ is bounded and $K_P((I - Q)N : \Omega \to X$ is compact. Since $\text{Im}Q$ is isomorphic to $\text{Ker}L$, there exists an isomorphism $I: \text{Im}Q \to \text{Ker}L$.

Lemma 1 [44] Let L be a Fredholm mapping of index zero and let N be L-compact on Ω. If

(a) $\forall \rho \in (0, 1)$, every solution y of $Ly = \rho Ny$ is such that $y \notin \partial \Omega$;

(b) $QN\neq 0, \forall x \in \text{Ker}L \cap \partial \Omega$, and $\deg(JQN, \Omega \cap \text{Ker}L, 0) \neq 0$, then the equation $Ly = Ny$ has at least one solution lying in $\text{Dom}L \cap \Omega$.

Lemma 2 [40] Let $h : Z \to R$ be α periodic, i.e., $h(k + \alpha) = h(k)$, then $\forall \zeta_1, \zeta_2 \in I_\alpha$ and $\forall k \in Z$, one has

$$h(k) \leq h(\zeta_1) + \sum_{s = 0}^{k-1} |h(s + 1) - g(s)|,$$

$$h(k) \geq h(\zeta_2) - \sum_{s = 0}^{k-1} |h(s + 1) - g(s)|.$$

Lemma 3 $(\dot{x}_1(k), \dot{x}_2(k))$ is an α periodic solution of (4) with strictly positive components if and only if $(\ln \{x_1(k)\}, \ln \{x_2(k)\})$ is an α periodic solution of

$$\begin{aligned}
\begin{cases}
 x_1(k + 1) - x_1(k) &= r_1(k) - \sum_{l = 0}^{+\infty} k_l(-l) \exp(x_1(k - l)) - \frac{1}{1 + m \exp(x_1(k))} \sum_{l = 0}^{+\infty} k_l(-l) \exp(x_1(k - l)) ,
 \\
 x_2(k + 1) - x_2(k) &= -r_2(k) - \sum_{l = 0}^{+\infty} k_l(-l) \exp(x_2(k - l)) + \frac{1}{1 + m \exp(x_1(k))} \sum_{l = 0}^{+\infty} k_l(-l) \exp(x_2(k - l)).
\end{cases}
\end{aligned}$$

(5)

Proof If $(\dot{x}_1(k), \dot{x}_2(k))$ is an α periodic solution of (4) with strictly positive components, then

$$\begin{aligned}
\begin{cases}
 \dot{x}_1(k + 1) &= \dot{x}_1(k) \exp\left\{ r_1(k) - \sum_{l = 0}^{+\infty} k_l(-l) \dot{x}_1(k - l) \right. \\
 &\left. - \frac{1}{1 + m \dot{x}_1(k)} \sum_{l = 0}^{+\infty} k_l(-l) \dot{x}_1(k - l) \right\} ,
 \\
 \dot{x}_2(k + 1) &= \dot{x}_2(k) \exp\left\{ -r_2(k) - \sum_{l = 0}^{+\infty} k_l(-l) \dot{x}_2(k - l) \\
 &+ \frac{1}{1 + m \dot{x}_1(k)} \sum_{l = 0}^{+\infty} k_l(-l) \dot{x}_2(k - l) \right\} .
\end{cases}
\end{aligned}$$
Hence
\[
\begin{align*}
\ln \hat{x}_1(k+1) &= \ln \left\{ \hat{x}_1(k) \exp \left\{ \left[r_1(k) - \sum_{l=0}^{+\infty} k_1(-l) \hat{x}_1(k-l) \right. \right. \right. \\
&\left. \left. \left. - \frac{1}{1 + m \hat{x}_1(k)} \sum_{l=0}^{+\infty} k_2(-l) \hat{x}_2(k-l) \right] \right\} \right\}, \\
\ln \hat{x}_2(k+1) &= \ln \left\{ \hat{x}_2(k) \exp \left\{ \left[-r_2(k) - \sum_{l=0}^{+\infty} k_3(-l) \hat{x}_2(k-l) \right. \right. \right. \\
&\left. \left. \left. + \sum_{l=0}^{+\infty} k_4(-l) \hat{x}_1(k-l) \right] \right\} \right\},
\end{align*}
\]
which leads to (5). If \(\{ \ln(\hat{x}_1(k)), \ln(\hat{x}_2(k)) \} \) is an \(\alpha \) periodic solution of (5), then
\[
\begin{align*}
\ln \{ \hat{x}_1(k+1) \} - \ln \{ \hat{x}_1(k) \} &= r_1(k) - \sum_{l=0}^{+\infty} k_1(-l) \exp (\ln \{ \hat{x}_1(k-l) \}) \\
&\quad - \frac{1}{1 + m \exp (\ln \{ \hat{x}_1(k) \})} \sum_{l=0}^{+\infty} k_2(-l) \exp (\ln \{ \hat{x}_2(k-l) \}), \\
\ln \{ \hat{x}_2(k+1) \} - \ln \{ \hat{x}_2(k) \} &= -r_2(k) - \sum_{l=0}^{+\infty} k_3(-l) \exp (\ln \{ \hat{x}_2(k-l) \}) \\
&\quad + \sum_{l=0}^{+\infty} k_4(-l) \exp (\ln \{ \hat{x}_1(k-l) \}) \frac{1}{1 + m \exp (\ln \{ \hat{x}_1(k) \})},
\end{align*}
\]
which leads to (4).

Define
\[
I_2 = \{ v = \{ v(k) \} : v(k) \in \mathbb{R}^2, k \in \mathbb{Z} \}.
\]

Define \(|\cdot| = \max(|\zeta_1|, |\zeta_2|) \), where \(\zeta = (\zeta_1, \zeta_2)^T \in \mathbb{R}^2 \). Let \(P \subset I_2 \) denote the subspace of all \(\alpha \) periodic sequences equipped with the norm \(\| v \| = \max_{k \in I_2} |v(k)|, \forall v = \{ v(k) : k \in \mathbb{Z} \} \in P \). Then \(I_{\omega} \) is a finite-dimensional Banach space.

Let
\[
P_0 = \left\{ v = \{ v(k) \} \in P : \sum_{k=0}^{+\infty} v(k) = 0 \right\}, \tag{6}
\]
\[
P_t = \left\{ v = \{ v(k) \} \in P : v(k) = h \in \mathbb{R}^2, k \in \mathbb{Z} \right\}, \tag{7}
\]
then it follows that \(P_0 \) and \(P_t \) are both closed linear subspaces of \(P \) and
\[
P = P_0 + P_t, \quad \dim P_0 = 2.
\]
Theorem 1 Let χ_0 be defined by (32). Suppose that (H1), (H2) and (H3) $\bar{r}_1 > \sum_{l=0}^{+\infty} k_1(-l) \exp(\chi_0)$ hold, then system (4) has at least an α periodic solution with positive components.

Proof. Let $X = Y = l^p$,

$$
(Lv)(k) = v(k+1) - v(k) = \begin{bmatrix} x_1(k+1) - x_1(k) \\ x_2(k+1) - x_2(k) \end{bmatrix},
$$

$$
(Nv)(k) = \begin{bmatrix} f_1(k) \\ f_2(k) \end{bmatrix},
$$

where $v \in X, k \in Z$ and

$$f_1(k) = r_1(k) - \sum_{l=0}^{+\infty} k_1(-l) \exp(x_1(k-l)) - \frac{1}{1 + m \exp(x_1(k))} \sum_{l=0}^{+\infty} k_2(-l) \exp(x_2(k-l)),$$

$$f_2(k) = -r_2(k) - \sum_{l=0}^{+\infty} k_3(-l) \exp(x_2(k-l)) + \sum_{l=0}^{+\infty} k_4(-l) \exp(x_1(k-l)) \frac{1}{1 + m \exp(x_1(k))}.$$

(10)

Then L is a bounded linear operator and

$$\ker L = l^p, \quad \text{Im} L = l^p_0$$

and

$$\dim \ker L = 2 = \text{codim Im} L,$$

then L is a Fredholm mapping of index zero. Define

$$Py = \frac{1}{2} \sum_{s=0}^{x-1} y(s), \quad y \in X, \quad Qv = \frac{1}{2} \sum_{s=0}^{x-1} v(s), \quad v \in Y.$$

Then P and Q are continuous projectors such that

$$\text{Im} P = \ker L, \quad \text{Im} L = \ker Q = \text{Im}(I - Q).$$

In addition, $K_p: \text{Im} L \to \ker L \cap \text{Dom} L$ exists and

$$K_p(\nu) = \sum_{s=0}^{x-1} \nu(s) - \frac{1}{2} \sum_{s=0}^{x-1} (x-s)\nu(s).$$
By the equation $Lv = \rho Nv$, $\rho \in (0, 1)$, one gets

$$
x_i(k + 1) - x_i(k) = \rho \left[r_i(k) - \sum_{l=0}^{\infty} k_i(-l) \exp (x_i(k - l)) \right. \nonumber
$$

$$
\left. + \frac{1}{1 + m \exp (x_i(k))} \sum_{l=0}^{\infty} k_i(-l) \exp (x_i(k - l)) \right],
$$

(11)

$$
x_2(k + 1) - x_2(k) = \rho \left[-r_2(k) - \sum_{l=0}^{\infty} k_i(-l) \exp (x_i(k - l)) \right. \nonumber
$$

$$
\left. + \frac{\sum_{l=0}^{\infty} k_i(-l) \exp (x_i(k - l))}{1 + m \exp (x_i(k))} \right].
$$

Suppose that $\nu(k) = (x_1(k), x_2(k))^T \in X$ is an arbitrary solution of system (11) for a certain $\rho \in (0, 1)$ then one has

$$
\sum_{k=0}^{n-1} \left[\sum_{l=0}^{\infty} k_i(-l) \exp (x_i(k - l)) \right. \nonumber
$$

$$
\left. + \frac{1}{1 + m \exp (x_i(k))} \sum_{l=0}^{\infty} k_i(-l) \exp (x_i(k - l)) \right] = \bar{r}_1 x_i,
$$

(12)

$$
\sum_{k=0}^{n-1} \left[\sum_{l=0}^{\infty} k_i(-l) \exp (x_i(k - l)) - \sum_{l=0}^{\infty} k_i(-l) \exp (x_i(k - l)) \right] = \bar{r}_2 x.
$$

(13)

It follows from (11)–(13) that

$$
\sum_{k=0}^{n-1} |x_i(k + 1) - x_i(k)| \leq 2\bar{r}_1 x,
$$

(14)

$$
\sum_{k=0}^{n-1} |x_2(k + 1) - x_2(k)| \leq 2\bar{r}_2 x.
$$

(15)

If $\nu = \{\nu(k)\} \in X$, then $\exists \xi_i, \eta_i \in I_k$ such that

$$
x_i(\xi_i) = \min_{k \in I_k} \{x_i(k)\}, \ x_i(\eta_i) = \max_{k \in I_k} \{x_i(k)\} (i = 1, 2).
$$

(16)

By (12) and (13), we have

$$
\sum_{l=0}^{\infty} k_i(-l) \exp (x_i(\xi_i)) \leq \sum_{l=0}^{\infty} k_i(-l) \exp (x_i(k - l)) < \bar{r}_1 x,
$$

(17)

$$
\sum_{l=0}^{\infty} k_i(-l) \exp (x_i(\eta_i)) \geq \sum_{l=0}^{\infty} k_i(-l) \exp (x_i(k - l)) > \bar{r}_2 x.
$$

(18)
Thus

\[x_1(\xi) < \ln \left[\frac{\bar{r}_1}{\sum_{l=0}^{\infty} k_1(-l)} \right] := \theta_1, \]
\[x_2(\eta) > \ln \left[\frac{\bar{r}_2}{\sum_{l=0}^{\infty} k_2(-l)} \right] := \delta_2. \]

In the sequel, we consider two cases.

(a) If \(x_1(\eta_1) \geq x_2(\eta_2) \), then it follows from (12) that

\[\left[\sum_{l=0}^{\infty} k_1(-l) + \sum_{l=0}^{\infty} k_2(-l) \right] \exp (x_1(\eta_1)) \alpha \geq \bar{r}_x \alpha \]

which leads to

\[x_1(\eta_1) > \ln \left[\frac{\bar{r}_1}{\sum_{l=0}^{\infty} k_1(-l) + \sum_{l=0}^{\infty} k_2(-l)} \right] := \theta_2, \]

It follows from (19),(21) and Lemma 2 that

\[x_1(k) \leq x_1(\xi_1) + \sum_{i=0}^{N-1} |x_i(s+1) - x_i(s)| \]
\[\leq \theta_1 + 2\bar{r}_x \alpha := \chi_1, \]

\[x_1(k) \geq x_1(\eta_1) - \sum_{i=0}^{N-1} |x_i(s+1) - x_i(s)| \]
\[\geq \theta_2 - 2\bar{r}_x \alpha := \chi_2. \]

By (22) and (23), we derive

\[\max_{k \in [0, T]} \{x_1(k)\} \leq \max\{|\chi_1|, |\chi_2|\} := \chi_3. \]

From (13) and (24), we obtain

\[\sum_{l=0}^{\infty} k_1(-l) \exp (x_2(\xi_2)) \alpha - \sum_{l=0}^{\infty} k_1(-l) \exp (x_3(k)) \alpha \leq \bar{r}_x \alpha. \]

Then

\[x_2(\xi_2) \leq \ln \left[\frac{\bar{r}_2 + \sum_{l=0}^{\infty} k_1(-l) \exp (x_3(k))}{\sum_{l=0}^{\infty} k_1(-l)} \right] := \delta_1. \]
Thus by (20), (25) and Lemma 3.2, we get

\[
x_2(k) \leq x_2(\zeta) + \sum_{i=0}^{x-1} x_2(s+1) - x_2(s) \leq \delta_1 + 2\bar{r}_2z := \chi_4, \tag{26}
\]

\[
x_2(k) \geq x_2(\eta) - \sum_{i=0}^{x-1} x_2(s+1) - x_2(s) \geq \delta_2 - 2\bar{r}_2z := \chi_5. \tag{27}
\]

It follows from (26) and (27) that

\[
\max_{k \in I_2} \{x_2(k)\} \leq \max\{|\chi_4|, |\chi_5|\} := \chi_6. \tag{28}
\]

(b) If \(x_1(\eta_1) < x_2(\eta_2)\), then it follows from (13) that

\[
\sum_{l=0}^{\infty} k_3(-l) \exp(\zeta(x))z - \frac{1}{m} \sum_{l=0}^{\infty} k_1(-l)z \leq \bar{r}_2z
\]

which leads to

\[
x_2(\zeta) < \ln \left[\frac{\bar{r}_2 + \frac{1}{m} \sum_{l=0}^{\infty} k_1(-l)}{\sum_{l=0}^{\infty} k_3(-l)} \right] := \tilde{\delta}_1, \tag{29}
\]

It follows from (20), (29) and Lemma 3.2 that

\[
x_2(k) \leq x_2(\zeta) + \sum_{i=0}^{x-1} x_2(s+1) - x_2(s) \leq \tilde{\delta}_1 + 2\bar{r}_2z := \chi_7, \tag{30}
\]

\[
x_2(k) \geq x_2(\eta) - \sum_{i=0}^{x-1} x_2(s+1) - x_2(s) \geq \delta_2 - 2\bar{r}_2z := \chi_8. \tag{31}
\]

By (30) and (31), we derive

\[
\max_{k \in I_2} \{x_2(k)\} \leq \max\{|\chi_7|, |\chi_8|\} := \chi_9. \tag{32}
\]

From (12), we get

\[
\sum_{l=0}^{\infty} k_1(-l) \exp(x_1(\eta_1))z + \sum_{l=0}^{\infty} k_2(-l) \exp(\chi_5)z \geq \bar{r}_1z.
\]
Then

\[
x_i(\eta_1) \geq \ln \left[\frac{\bar{r}_1 - \sum_{l=0}^{\infty} k_2(-l) \exp (\chi_{\theta})}{\sum_{l=0}^{\infty} k_l(-l)} \right] := \bar{\theta}_2.
\]

Thus by (19), (33) and Lemma 3.2, we get

\[
x_i(k) \leq x_i(\zeta_1) + \sum_{l=0}^{z-1} |x_i(s+1) - x_i(s)|
\]

\[
\leq \delta_1 + 2\bar{r}_2^2 := \chi_{10},
\]

\[
x_i(k) \geq x_i(\eta_1) - \sum_{l=0}^{z-1} |x_i(s+1) - x_i(s)|
\]

\[
\geq \bar{\bar{\theta}}_2 - 2\bar{r}_2^2 := \chi_{11}.
\]

It follows from (34) and (35) that

\[
\max_{k \in \mathbb{Z}} \{ x_i(k) \} \leq \max \{ |\chi_{10}|, |\chi_{11}| \} := \chi_{12}.
\]

Then \(\chi_i(i = 1, 2, \cdots, 11) \) has no relation with \(\rho \in (0, 1) \). Let \(M = \max\{\chi_3, \chi_6, \chi_9, \chi_{12}\} + M_0 \), where \(M_0 > 0 \) which satisfies \(\max\{\ln |\xi_1'|, |\ln |\xi_2'|\} < M_0 \), where \((\xi_1', \xi_2')^T \) is the unique positive solution of (5). Thus any solution \(v = v(k) = (x_1(k), x_2(k))^T \) of (11) in \(X \) satisfies \(||v|| < M \), \(k \in \mathbb{Z} \).

Let \(\Omega := \{ v = (v(k)) \in X : ||v|| < M \} \), then \(\Omega \) is an open, bounded set in \(X \) and (a) of Lemma 1 is satisfied. When \(v \in \partial \Omega \cap \text{Ker} L, v = (x_1, x_2)^T \) with \(||v|| = \max \{ |x_1|, |x_2| \} = M \). Then

\[
QNz = \begin{bmatrix} \Lambda_1 \\ \Lambda_2 \end{bmatrix} \neq 0,
\]

where

\[
\Lambda_1 = \bar{r}_1 - \sum_{l=0}^{\infty} k_1(-l) \exp (x_1) - \sum_{k=0}^{z-1} \frac{1}{1 + m \exp (x_1)} \sum_{l=0}^{\infty} k_2(-l) \exp (x_2),
\]

\[
\Lambda_2 = -\bar{r}_2 - \sum_{l=0}^{\infty} k_3(-l) \exp (x_2) + \sum_{k=0}^{z-1} \sum_{l=0}^{\infty} k_1(-l) \exp (x_1) + \sum_{l=0}^{\infty} k_2(-l) \exp (x_2).
\]

Let \(\phi(x_1, x_2, \mu) = \mu QNv + (1 - \mu)Gv, \mu \in [0, 1], \) where

\[
Gv = \begin{bmatrix} \bar{r}_1 - \sum_{l=0}^{\infty} k_1(-l) \exp (x_1) \\ -\bar{r}_2 - \sum_{l=0}^{\infty} k_3(-l) \exp (x_2) \end{bmatrix}.
\]
Letting J be the identity mapping, we have
\[
\deg[JQN(x_1, x_2)^T; \Omega \cap \ker L; 0] = \deg[JQN(x_1, x_2)^T; \Omega \cap \ker L; 0] = \deg[\phi(x_1, x_2, 1); \Omega \cap \ker L; 0] = \deg[\phi(x_1, x_2, 0); \Omega \cap \ker L; 0]
\]
\[
= \sign \left\{ \begin{array}{cc}
\sum_{i=0}^{\infty} k_i (-l) \exp (x_i^*) & 0 \\
0 & -\sum_{i=0}^{\infty} k_i (-l) \exp (x_i^*)
\end{array} \right\}
\]
\[
= \sign \left\{ -\sum_{i=0}^{\infty} k_i (-l) \sum_{i=0}^{\infty} k_i (-l) \exp (x_i^*) \exp (x_i^* + x_i^*) \right\} = -1 \neq 0.
\]

It follows that $Lv = Nv$ has at least one solution in $\text{Dom} L \cap \Omega$, i.e., (5) has at least one α periodic solution in $\text{Dom} L \cap \Omega$, say $v^* = \{ v^*(k) \} = \{ (x_1^*(k), x_2^*(k))^T \}$. Let $\tilde{x}_i^*(k) = \exp \{ x_i^*(k) \}$, $\tilde{x}_2^*(k) = \exp \{ x_2^*(k) \}$ then by Lemma 3 we know that $\tilde{v}^* = \{ \tilde{x}_1^*(k), \tilde{x}_2^*(k) \}$ is a α positive periodic solution of system (4). The proof is complete.

Global asymptotic stability

Let the delays be zero, then (4) becomes
\[
\begin{aligned}
x_1(k + 1) &= x_1(k) \exp \left\{ r_1(k) - k_1 x_1(k) - \frac{k_1 x_1(k)}{1 + mx_1(k)} \right\}, \\
x_2(k + 1) &= x_2(k) \exp \left\{ -r_2(k) - k_2 x_2(k) + \frac{k_2 x_2(k)}{1 + mx_2(k)} \right\}.
\end{aligned}
\tag{37}
\]

Theorem 2 Assume that (H1) and (H2) are satisfied and furthermore suppose that there exist positive constants ν, σ_1 and σ_2 such that
\[
\begin{aligned}
\sigma_1 \left[k_1 + \frac{k_2 m}{(1 + mx_1(k))^2} \right] - \sigma_2 \left[\frac{1}{(1 + mx_1(k))^2} \right] &> \nu, \\
\sigma_1 k_3 - \sigma_1 \left[\frac{mx_1(k) x_2^*(k)}{(1 + mx_1(k))^2} \right] &> \nu.
\end{aligned}
\tag{38}
\]

Then the positive ω-periodic solution of system (37) is globally asymptotically stable.

Proof In view of Theorem 1, there exists a positive periodic solution $\{ x_1^*(k), x_2^*(k) \}$ of system (37). Make the change of variable
\[
u_i(k) = x_i(k) - x_i^*(k) (i = 1, 2).
\tag{39}
It follows from (37) that

\[u_i(k + 1) = x_i(k + 1) - x_i^*(k + 1) \]

\[= x_i(k) \exp \left\{ \left[r_i(k) - k_i x_i(k) - \frac{k_i x_i^*(k)}{1 + m x_i^*(k)} \right] \right\} \]

\[-x_i^*(k) \exp \left\{ \left[r_i(k) - \sum_{l=0}^{\infty} k_i (-l) x_i^*(k) - \frac{k_i x_i^*(k)}{1 + m x_i^*(k)} \right] \right\} \]

\[= \left\{ \begin{array}{l}
x(k) \exp \left[- \left(k_1 + \frac{k_1 m x_i^*(k)}{1 + m x_i^*(k)} \right) u_i(k) \right] x^*(k) \exp \left(- \left(k_1 + \frac{k_1 m x_i^*(k)}{1 + m x_i^*(k)} \right) x^*(k) \right) \right. \\
\left. - \left(\frac{k_2}{1 + m x_i^*(k)} \right) u_j(k) \right\} x^*(k + 1) \] (40)

\[= \left\{ \begin{array}{l}
\left[1 - \left(k_1 x_i^*(k) + \frac{k_1 m x_i^*(k)}{1 + m x_i^*(k)} \right) u_i(k) \right] x^*(k) \\
- \left(\frac{m x_i^*(k) x_i^*(k)}{(1 + m x_i^*(k))} \right) u_j(k) + \gamma_1 \right\} x^*(k + 1), \]

\[u_j(k + 1) = x_j(k + 1) - x_j^*(k + 1) \]

\[= x_j(k) \exp \left\{ \left[-r_j(k) - k_j x_j(k) + \frac{k_j x_j^*(k)}{1 + m x_j^*(k)} \right] \right\} \]

\[-x_j^*(k) \exp \left\{ \left[-r_j(k) - k_j x_j^*(k) + \frac{k_j x_j^*(k)}{1 + m x_j^*(k)} \right] \right\} \]

\[= \left\{ x_j(k) \exp \left[-k_j u_j(k) - \left(\frac{k_j x_j^*(k)}{1 + m x_j^*(k)} - \frac{k_j x_j^*(k)}{1 + m x_j^*(k)} \right) \right] - x_j^*(k) \right\} \]

\[\times \frac{x^*(k + 1)}{x_j^*(k)} \]

\[= \left\{ \left[1 - k_j x_j^*(k) \right] \frac{u_j(k)}{x_j^*(k)} - \frac{1}{(1 + m x_j^*(k))} u_j(k) + \gamma_2 \right\} x_j^*(k + 1). \] (41)

where \(\|u_i\| (i = 1, 2) \) converges to zero as \(\|u\| \to 0 \).

Define a function \(V \) by

\[V(N(k)) = \sigma_1 \left| \frac{u_i(k)}{x_i^*(k)} \right| + \sigma_2 \left| \frac{u_j(k)}{x_j^*(k)} \right|, \] (42)

where \(\sigma_1 > 0 \) and \(\sigma_2 > 0 \) are given by (44) and (45) respectively. Calculating the difference of \(V \)
along the solution of system (40) and (41), we have

\[
\Delta V = \sigma_1 \left(\frac{u_1(k + 1) - u_1(k)}{x_1'(k + 1)} - \frac{u_2(k + 1) - u_2(k)}{x_2'(k + 1)} \right) + \sigma_2 \left(\frac{u_1(k + 1) - u_1(k)}{x_1'(k + 1)} - \frac{u_2(k + 1) - u_2(k)}{x_2'(k + 1)} \right)
\]

\[
\leq -\sigma_1 \left[k_1 + \frac{k_m m}{(1 + mx_1')^2} \right] |u_1(k)| + \sigma_1 \left[\frac{mx_1'(k)x_2'(k)}{(1 + mx_1')^2} \right] |u_2(k)|
\]

\[
-\sigma_2 k_2 |u_2(k)| + \sigma_2 \left[\frac{1}{(1 + mx_1')^2} \right] |u_1(k)|
\]

\[
\leq -\Pi_1 |u_1(k)| - \Pi_2 |u_2(k)|,
\]

where

\[
\Pi_1 = \sigma_1 \left[k_1 + \frac{k_m m}{(1 + mx_1')^2} \right] - \sigma_1 \left[\frac{1}{(1 + mx_1')^2} \right],
\]

\[
\Pi_2 = \sigma_2 k_2 - \sigma_1 \left[\frac{mx_1'(k)x_2'(k)}{(1 + mx_1')^2} \right].
\]

It follows from the condition (38) that \(\exists \epsilon > 0 \) such that, if \(k \) is sufficiently large and \(||u|| < \epsilon \), then

\[
\Delta V \leq -\frac{\epsilon}{2} (|u_1(k)| + |u_2(k)|) < -\frac{\epsilon}{2}.
\]

In view of Freedman [45], we can see that the trivial solutions of (40) and (41) is uniformly asymptotically stable and so is the solution \((x'(k), y'(k))^T\) of (37). The proof is complete.

Remark 1 *In [34], Ye et al. investigated the periodic solution of a continuous predator-prey system with Holling type II functional response and infinite delays by applying continuation theorem in coincidence degree theory and some priori estimates on solutions, moreover, this paper does not involve the global asymptotic stability. In this paper, we study the existence of periodic solution of discrete predator-prey model with distributed delays by applying continuation theorem in coincidence degree theory and analyze the global asymptotic stability of periodic solution by Lyapunov function. Form this viewpoint, the results of this article supplement the previous studies of Ye et al. [18].*

Numerical example

Example 1 Consider the model as follows:

\[
\begin{align*}
x_1(k + 1) &= x_1(k) \exp \left\{ r_1(k) - \sum_{l=0}^{+\infty} k_1(-l)x_1(k - l) \right. \\
&\quad - \left. \frac{1}{1 + mx_1'(k)} \sum_{l=0}^{+\infty} k_2(-l)x_2(k - l) \right\},
\end{align*}
\]

\[
\begin{align*}
x_2(k + 1) &= x_2(k) \exp \left\{ -r_2(k) - \sum_{l=0}^{+\infty} k_1(-l)x_1(k - l) + \sum_{l=0}^{+\infty} k_2(-l)x_2(k - l) \right. \\
&\quad \left. \frac{1}{1 + mx_1'(k)} \right\},
\end{align*}
\]
where \(r_1(k) = 0.6 + \sin k\pi \), \(r_2(k) = 0.45 + \sin k\pi \), \(m = 5 \), \(k_i(s) = c^i \) \((i = 1, 2, 3, 4) \). So \(\bar{r}_1 = 0.3 \), \(\bar{r}_2 = 0.225 \), \(\sum_{l=0}^{+\infty} l_{2}(-l) \exp (\chi_0) \approx 0.2437 \). Thus the conditions (H1)-(H3) of Theorem 3.1 hold true. Therefore, system (47) has at least a positive two-periodic solution (see Figs 1 and 2). Fig 1 shows the changing situation of prey density with the increase of time \(t \); Fig 2 shows

Fig 1. The time histories of \(t-x_1, t-x_2 \). The blue line stands for \(x_1(t) \) and the red line stands for \(x_2(t) \).

Fig 2. The relational graph of \(t, x_1 \) and \(x_2 \).
From Figs 1 and 2, we can see that the prey density and the predator density will keep periodic oscillation with the increase of time t.

Example 2

Consider the model as follows:

$$
\begin{align*}
 x_1(k+1) &= x_1(k) \exp \left\{ \frac{r_1(k) - k_1 x_1(k) - \frac{k_2 x_2(k)}{1 + m x_1(k)}}{1 + m x_1(k)} \right\}, \\
 x_2(k+1) &= x_2(k) \exp \left\{ \frac{-r_2(k) - k_2 x_1(k) + \frac{k_3 x_1(k)}{1 + m x_1(k)}}{1 + m x_1(k)} \right\}.
\end{align*}
$$

(48)

where $r_1(k) = 0.2 + \cos k\pi$, $r_2(k) = 0.1 + \cos k\pi$, $m = 2$, $k_1 = 0.2$, $k_2 = 0.12$, $k_3 = 0.24$, $k_4 = 0.35$. So $\bar{r}_1 = 0.1$, $\bar{r}_2 = 0.05$. Let $\sigma_1 = 0.18$, $\sigma_2 = 0.23$, $\nu = 0.04$. Thus the conditions (H1)-(H2) and (38) of Theorem 4.1 are satisfied. Thus the positive two-periodic solution of system (48) is globally asymptotically stable (see Figs 3 and 4). Fig 3 shows the changing situation of prey density with the increase of time t; Fig 4 shows the changing situation of predator density with the increase of time t; From Figs 3 and 4, we can see that the prey density and the predator density will keep globally asymptotically stable periodic oscillation with the increase of time t.

Conclusions

Based on the previous works and some biological meanings of predators and preys, we propose a new discrete delayed predator-prey system. By using the continuation theorem in coincidence degree theory, we present a set of sufficient conditions to ensure to ensure the existence of positive periodic solution of the discrete delayed predator-prey system. In addition, we also discussed the global asymptotic stability of positive periodic solution for the considered...
system. The obtained theoretical findings have important significance in biological ecology. Considering the effect of random factor, it is meaningful for us to deal with the dynamics of stochastic predator-prey system. This topic will be our future research direction.

Supporting information

S1 Fig. The time histories of $t-x_1, t-x_2$. The blue line stands for $x_1(t)$ and the red line stands for $x_2(t)$.

S2 Fig. The relational graph of t, x_1 and x_2.

S3 Fig. The time histories of $t-x_1, t-x_2$. The blue line stands for $x_1(t)$ and the red line stands for $x_2(t)$.

S4 Fig. The relational graph of t, x_1 and x_2.

Acknowledgments

This work is supported by National Natural Science Foundation of China (No.61673008) and Project of High-level Innovative Talents of Guizhou Province ([2016]5651) and Major Research Project of The Innovative Group of The Education Department of Guizhou Province ([2017]039), Project of Key Laboratory of Guizhou Province with Financial and Physical Features ([2017]004) and Foundation of Science and Technology of Guizhou Province ([2018]1025 and [2018]1020). **ORCID iD of the corresponding author:** 0000-0002-9306-2061.
Author Contributions

Formal analysis: Peiluan Li, Ying Guo.
Investigation: Lilin Chen.
Methodology: Ying Guo.
Software: Ying Guo.
Writing – original draft: Changjin Xu.
Writing – review & editing: Changjin Xu.

References

1. Dai BX, Zou JZ. Periodic solutions of a discrete-time nonautonomous predator-prey system with the Beddington-DeAngelis functional response. Journal of Applied Mathematics and Computing. 2007; 24 (1-2): 127–139. https://doi.org/10.1007/BF02832305
2. Menouer MA, Moussaoui A, Dads EHA. Existence and global asymptotic stability of positive almost periodic solution for a predator-prey system in an artificial lake, Chaos, Solitons & Fractals. 2017; 103: 271–278. https://doi.org/10.1142/S0217939X14500405
3. Zhang Y, Chen SH, Gao SJ, Wei X. Stochastic periodic solution for a perturbed non-autonomous predator-prey model with generalized nonlinear harvesting and impulses. Physica A: Statistical Mechanics and Its Applications. 2017; 466: 347–366. https://doi.org/10.1016/j.physa.2017.05.058
4. Yang WB. Analysis on existence of bifurcation solutions for a predator-prey model with herd behavior. Applied Mathematical Modelling. 2018; 53: 433–446. https://doi.org/10.1016/j.apm.2017.09.020
5. Jiang DQ, Zuo WJ, Hayat T, Alsaidi A. Stationary distribution and periodic solutions for stochastic Holling-Leslie predator-prey systems. Physica A: Statistical Mechanics and Its Applications. 2016; 460: 16–28. https://doi.org/10.1016/j.physa.2016.04.037
6. Zhang ZQ, Hou ZT. Existence of four positive periodic solutions for a ratio-dependent predator-prey system with multiple exploited (or harvesting) terms. Nonlinear Analysis: Real World Applications. 2010; 11(3): 1568–1571. https://doi.org/10.1016/j.nonrwa.2009.03.001
7. Liu GR, Yan JR. Positive periodic solutions for a neutral delay ratio-dependent predator-prey model with a Holling type II functional response. Nonlinear Analysis: Real World Applications. 2011; 12(6): 3252–3260. https://doi.org/10.1016/j.nonrwa.2011.05.024
8. Liu XX. Impulsive periodic oscillation for a predator-prey model with Hassell-Varley-Holling functional response. Applied Mathematical Modelling. 2014; 38(4): 1482–1494. https://doi.org/10.1016/j.apm.2013.08.020
9. Kuang Y. Delay Differential Equation with Application in Population Dynamics. Academic Press, Boston; 1993.
10. Huo HF, Li WT. Existence of positive periodic solution of a neutral impulsive delay predator-prey system. Applied Mathematics and Computation. 2007; 185(1): 499–507. https://doi.org/10.1016/j.amc.2006.07.065
11. Tang XH, Cao DM, Zhou XF. Global attractivity of positive periodic solution to periodic Lotka-Volterra competition systems with pure delay. Journal of Differential Equations. 2006; 228(2): (2006) 580–610. https://doi.org/10.1016/j.jde.2006.06.007
12. Ding XQ, Wang FF. Positive periodic solution for a semi-ratio-dependent predator-prey system with diffusion and time delays. Nonlinear Analysis: Real World Applications. 2008; 9(2): 239–249. https://doi.org/10.1016/j.nonrwa.2006.09.011
13. Pao CV. Global asymptotic stability of Lotka-Volterra competition systems with diffusion and time delays. Nonlinear Analysis: Real World Applications. 2004; 5(1): 91–104. https://doi.org/10.1016/S1468-1218(03)00018-X
14. Gopalsamy K, Weng PX. Global attractivity in a competition system with feedback controls. Computers & Mathematics with Applications. 2003; 45(4-5): 665–676. https://doi.org/10.1016/S0898-1221(03)00026-9
15. Xiong XS, Zhang ZQ. Periodic solutions of a discrete two-species competitive model with stage structure. Mathematical and Computer Modelling. 2008; 48(3-4): 333–343. https://doi.org/10.1016/j.mcm.2007.10.004
16. Huo HF, Li WT. Periodic solution of a delayed predator-prey system without dominating instantaneous negative feedback. Applied Mathematics and Computation. 2004; 156(3): 871–882. https://doi.org/10.1016/j.amc.2003.06.015
17. Ahmad S, Stamova IM. Asymptotic stability of an N-dimensional impulsive competitive system, Nonlinear Analysis: Real World Applications. 2007; 8(2): 654–663. https://doi.org/10.1016/j.nonrwa.2006.02.004
18. Chen YM, Zhou Z. Stable periodic solution of a discrete periodic Lotka-Volterra competition system, Journal of Mathematical Analysis and Applications. 2003; 277(1): 358–366. https://doi.org/10.1016/S0022-247X(02)00611-X
19. Zhu M, Lu SP. Existence and global attractivity of positive periodic solutions of competition systems. Journal of Applied Mathematics and Computing. 2011; 37(1-2): 635–646. https://doi.org/10.1007/s12190-010-0456-x
20. Bohner M, Fan M, Zhang JM. Existence of periodic solutions in predator-prey and competition dynamic systems. Nonlinear Analysis: Real World Applications. 2006; 7(5): 1193–1204. https://doi.org/10.1016/j.nonrwa.2005.11.002
21. Liu J, Zhao ZQ. Multiple solutions for impulsive problems with non-autonomous perturbations. Applied Mathematics Letters. 2017; 64: 143–149. https://doi.org/10.1016/j.aml.2016.08.020
22. Wang Y, Jiang QJ. Existence and nonexistence of positive solutions for the fractional coupled system involving generalized p-Laplacian. Advances in Difference Equations. 2017; 337: 1–19. https://doi.org/10.1186/s13662-017-1385-x
23. Liu C, Peng YJ. Stability of periodic steady-state solutions to a non-isentropic Euler-Maxwell system. Zeitschrift für angewandte Mathematik und Physik. 2017; 68: 105. https://doi.org/10.1007/s00033-017-0848-y
24. Guo YX. Globally robust stability analysis for stochastic Cohen-Grossberg neural networks with impulse control and time-varying delays. Ukrainian Mathematical Journal. 69(8): 1220–1233. https://doi.org/10.1007/s11253-017-1426-3
25. Bai YZ, Mu XQ. Global asymptotic stability of a generalized SIRS epidemic model with transfer from infectious to susceptible. Journal of Applied Analysis and Computation. 2018; 8(2): 402–412. https://doi.org/10.11948/2018.402
26. Liu LS, Sun FL, Zhang XG, Wu YH. Bifurcation analysis for a singular differential system with two parameters via topological degree theory. Nonlinear Analysis: Modelling and Control. 2017; 22(1): 31–50. https://doi.org/10.15388/NA.2017.1.3
27. Shao J, Zheng ZW, Meng FW. Oscillation criteria for fractional differential equations with mixed nonlinearities. Advances in Difference Equations. 2013; 323: 1–9. https://doi.org/10.1186/1687-1847-2013-323
28. Dunkel G. Single-species model for population growth depending on past history. Lecture Notes in Mathematics, vol.60, Springer, Heidelberg, 1968, pp.92–99.
29. Holling CS. The functional response of predators to prey density and its role in mimicry and population regulation. Memoirs of the Entomological Society of Canada. 1965; 97(45): 5–60. https://www.amazon.com/functional-predators-population-regulation-Entomological/dp/B0007IU2KI https://doi.org/10.4039/entm19745f
30. Castellanos V, Chan-López RE. Existence of limit cycles in a three level trophic chain with Lotka-Volterra and Holling type II functional responses. Chaos, Solitons & Fractals. 2017; 95: 157–167. https://doi.org/10.1016/j.chaos.2016.12.011
31. Li SB, Wu JH, Dong YY. Effects of a degeneracy in a diffusive predator-prey model with Holling II functional response. Nonlinear Analysis: Real World Applications. 2018; 43: 78–95. https://doi.org/10.1016/j.nonrwa.2018.02.003
32. Xu CJ, Liao MX. Bifurcation behaviors in a delayed three-species food-chain model with Holling type-II functional response. Applicable Analysis. 2013; 92(12): 2468–2486. https://doi.org/10.1080/00036811.2012.742187
33. Xu CJ, Li PL. Oscillations for a delayed predator-prey model with Hassell-Varley type functional response. Comptes Rendus Biologies. 2015; 338(4): 227–240. https://doi.org/10.1016/j.crvi.2015.01.002 PMID: 25836016
34. Ye D, Fan M, Zhang WP. Periodic solution of density dependent predator-prey systems with Holling type 2 functional response and infinite delays. Zeitschrift Fur Angewandte Mathematik Und Mechanik. 2005; 85(3): 213–221. https://doi.org/10.1002/zamm.200210171
35. Sun YG, Saker SH. Positive periodic solutions of a discrete three-level food-chain model of Holling type II. Applied Mathematics and Computation. 2006; 180(1): 353–365. https://doi.org/10.1016/j.amc.2005.12.015
36. Xu R, Chen LS, Hao FL. Periodic solutions of a discrete time Lotka-Volterra type food-chain model with delays. Applied Mathematics and Computation. 2005; 171(1): 91–103. https://doi.org/10.1016/j.amc.2005.01.027

37. Li YK. Positive periodic solutions of a discrete mutualism model with time delays. International Journal of Computational Mathematical Sciences. 2011; 2005(4): 499–506. https://doi.org/10.1155/IJMMS.2005.499

38. Nie LF, Teng ZD, Hu L, Peng JG. Existence and stability of periodic solution of a predator-prey model with state-dependent impulsive effects, Mathematics and Computers in Simulation. 2009; 79(7): 2122–2134. https://doi.org/10.1016/j.mcs.2008.05.041

39. Wang LL, Li WT. Periodic solutions and permanence for a delayed nonautonomous ratio-dependent predator-prey model with Holling type functional response. Journal of Computational and Applied Mathematics. 2004; 162(2): 341–357. https://doi.org/10.1016/j.cam.2003.06.005

40. Wiener J. Differential equations with piecewise constant delays, Trends in theory and practice of nonlinear differential equations. In Lecture Notes in Pure and Applied Mathematics, Volume 90, Ddkker, New York; 1984.

41. Zhang WP, Zhu DM, Bi P. Multiple positive solutions of a delayed discrete predator-prey system with type IV functional responses, Applied Mathematics Letters. 2007; 20(10): 1031–1038. https://doi.org/10.1016/j.aml.2006.11.005

42. Fazly M, Hesaaraki M. Periodic solutions for predator-prey systems with Beddington-DeAngelis functional response on time scales. Nonlinear Analysis: Real World Applications. 2008; 9(3): 1224–1235. https://doi.org/10.1016/j.nonrwa.2007.02.012

43. Fan M, Wang K. Periodic solutions of a discrete time nonautonomous ratio-dependent predator-prey system. Mathematical and Computer Modelling. 2002; 35(9-10): 951–961. https://doi.org/10.1016/S0895-7177(02)00062-6

44. Gaines RE, Mawhin JL. Coincidence Degree and Nonlinear Differential Equations. Springer-Verlag, Berlin; 1977.

45. Freedman HI. Deterministic Mathematical Models in Population Ecology, Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, New York; 1980.