Correlated Prompt Fission Data in Transport Simulations

Patrick Talou
Nuclear Physics Group, Theoretical Division, LANL

15th International Conference on Nuclear Reaction Mechanisms
Varenna, Italy, June 11-15, 2018
The nuclear fission process is complex and rich

Fission Yields, prompt fission neutrons (PFN) and γ rays (PFG) are all correlated.
Unanswered questions in evaluated nuclear data

- Multiplicity distribution $P(\nu)$, multiplicity-dependent spectra $\chi(\varepsilon_n)_{\nu}$, neutron data as a function of emitting fragment $\nu(A,Z,KE)$, angular distributions Ω_{n-n}, neutron-gamma ($\nu-\gamma$) correlations.

Answers needed for advanced simulation of detectors, correlated signatures, interpretation and design of complex fission experiments, …

Important new constraints on consistent and predictive capability for fission modeling!
A New Approach: Event-by-Event Monte Carlo Simulations of the Decay of Fission Fragments

Fragment Yields $Y(A,TKE)$ in Cf-252 (sf)

Prompt emissions of n and γ (~10^{-14} sec) + "late" isomeric γ emissions up to ~\(\mu\)sec

Follow decay of each excited fission fragment

The **CGMF** code follows the sequential emissions of prompt neutrons and γ rays from the excited primary fission fragments, event-by-event. Similar codes (FREYA, FIFRELIN, GEF) are being developed elsewhere.

Review paper: Talou, Vogt, Randrup, Rising, Pozzi *et al*, EPJ A 54, 9 (2018) (LANL, LLNL, LBNL, LANL, UM, *et al*)
Complete reconstruction of (post-scission) fission events

- Hauser-Feshbach statistical theory of nuclear reactions
 - Neutron and γ-ray emission probabilities calculated and sampled at each stage of the decay
 - Weisskopf-Ewing approximation
 - no n-γ competition
 - no (J,π) conservation

- CGMF/FREYA: Monte Carlo implementations
- Full kinematic reconstruction of fission fragments, neutrons and gammas emitted

Monte Carlo histories of fission events:
Prompt Fission Neutrons & γ Rays

- Until recently, models were limited to average observables only
- We can now model prompt neutrons and γ rays on an event-by-event basis and infer:
 - Multiplicity Distributions: $P(\nu), P(N_{\gamma})$
 - Angular Distributions: $\Theta_{n-n}, \Theta_{n-FF}$
 - Exclusive data: $\phi(\varepsilon_{\nu}|\nu=3), \phi(\varepsilon_{\gamma}|\gamma-\gamma-\gamma), \ldots$
 - Correlations: $n-n, n-\gamma, \gamma-\gamma, n-\gamma-FF$
 - Time-dependent emissions: $N_{\gamma}(t)$
 - Correlations with emitting fission fragments (A,Z,KE,J)
 - ...
Many important physics input needed for neutron-rich fission fragments

- Global optical model calculations
- γ-ray strength function and importance of the M1 “scissors” mode
- Nuclear structure of neutron-rich nuclei
- Level densities

And intriguing fission physics questions

- Excitation energy sorting at scission? $\rightarrow P(\nu|A,TKE;E_{\text{inc}})$
- Pre-fission neutron emission? “scission neutrons”, pre-scission neutrons, multi-chance fission, pre-equilibrium neutrons
- Relations between fission cross sections, fission fragment angular distributions and prompt fission data? \rightarrow fission paths/channels/barriers
- Experimental $\langle \nu \rangle$ can be reproduced very well, given slight adjustment of $\langle \text{TKE} \rangle$
- $P(\nu)$ requires tuning $Y(\text{TKE})$

A novel approach to estimating $\langle \text{TKE} \rangle$

P. Jaffke, P. Möller, P. Talou, A.J. Sierk, Phys. Rev. C 97, 034608 (2018)
Multiplicity-dependent n and γ spectra

- Very strong dependence of γ spectrum on N_γ
- Much weaker dependence of neutron spectrum on ν

![Chart 1: 235U (n_{th},f) and 252Cf (sf)]

- **235U (n_{th},f)**
 - CGMF
 - PM
 - $N_\gamma=5$
 - $N_\gamma=10$
 - $N_\gamma=15$

- **252Cf (sf)**
 - Total
 - $\nu = 1$
 - $\nu = 2$
 - $\nu = 3$
 - $\nu = 4$
 - $\nu = 5$

Never considered in simulations before!
Angular correlations

- Θ_{n-LF} neutron vs. Light Fragment axis mostly due to kinematics
- Θ_{n-n} neutron-neutron aperture, mostly due to fragment ν ratio

Pringle, 1975
Guseva, 2008
Pozzi, 2014
More exclusive angular correlations

Θ_{n-LF} function of fragment mass!

Θ_{n-n} function of E_n threshold
Presence of ns to µs isomers in fission fragments

Prompt Fission Gamma Spectrum

Talou et al., PRC 94, 064613 (2016)
A Host of LANSCE Instruments can be used for correlated measurements

- DANCE – 4π calorimeter, 160 BaF$_2$ crystals, FP14 Lujan Center
- NEUANCE – 21 stilbene crystals
- Chi-Nu arrays – 45 liquid scintillators (low-energy PFNS) + 26 Li-glass detectors (high-energy PFNS)
Correlated \((E^\gamma_{\text{tot}}, \text{TKE}) \)

Measurement of \(^{252}\text{Cf}(\text{sf}) \) at DANCE (\(\gamma \) rays) + NEUANCE (neutrons) + 4 Si detectors to measure correlated n-\(\gamma \)-TKE events – G. Rusev

- NEUANCE (stilbene detectors) inside DANCE 4\(\pi \) \(\gamma \)-ray calorimeter
- 4 Si detectors to measure TKE

UNCLASSIFIED
Leveraging Chi-Nu Arrays

- Chi-nu arrays were developed to measure PFNS very precisely
- Can also be used to study n-\(\gamma\) correlations

Measured bi-correlation \((\Delta t_1, \Delta t_2)\) histograms of \(^{252}\text{Cf}\) neutrons and photons.

M.J. Marcath, R.C. Haight et al., Phys. Rev. C 97, 044622 (2018).
Gamma-ray Spectroscopy

- Infer fission yields from gamma line intensities
- Several assumptions that require simulations
 - How many γ lines are in the energy window considered?
 - How much of the “flux” passes through $2^+ \rightarrow 0^+$ transition
 - Corrections when performing $\gamma - \gamma$ or $\gamma - \gamma - \gamma$ coincidences
Concluding remarks

- New theoretical tool to study the fission process in great detail
- Important questions remain on:
 - The fission process
 - Nuclear structure and reaction data of neutron-rich nuclei
- A fun physics playground with important applications!