TRACE FOSSILS FROM THE MISSISSIPPIAN
OF THE PIASKOWA GÓRA SECTION
(THE INTRA-SUDETIC BASIN, SW POLAND)

Jolanta MUSZER

Institute of Geological Sciences, University of Wrocław, Cybulskiego 30, 50-204 Wrocław, Poland, e-mail: jolanta.muszer@uwr.edu.pl

Muszer, J., 2020. Trace fossils from the Mississippian of the Piaskowa Góra section (the Intra-Sudetic Basin, SW Poland). Annales Societatis Geologorum Poloniae, 90: xx–xx.

Abstract: Eight ichnotaxa and enigmatic tubular forms were discovered and described for the first time from clastic deposits (the Culm facies) of the uppermost part of the Szczawno Formation (upper Mississippian) from the Piaskowa Góra section in the northern part of the Intra-Sudetic Basin near Wałbrzych. The trace fossils are represented mostly by pascichnia and less numerous domichnia, fodinichnia and repichnia. Psammichnites plummeri and numerous Phycosiphon isp. are the most common ichnotaxa. They are accompanied by Archaeonassa fossulata, Beaconites cf. capronus, Curvolutilus multiplex, Dictyodora liebeana, Palaeophycus isp., and Planolites isp. D. liebeana is described for the first time from the lower Serpukhovian. Most components of the ichnoassemblage are typical of the Cruziana ichnfacies, but the co-occurrence of Dictyodora and Phycosiphon could indicate a transition to deeper environmental settings (the Zoophycos ichnofacies). The lithological features as well as the accompanying trace fossils, wrinkle structures and floral remnants of Archaeocalamites indicate rapid sedimentation, alternating with more tranquil periods of sedimentation, in an intermediate environment between the lower offshore (the distal Cruziana ichnofacies) and the fan-delta slope (below the wave base, the Zoophycos ichnofacies). The studied trace fossils and palynological data indicate that marine conditions in the Wałbrzych area in the Mississippian prevailed locally until the early Serpukhovian.

Key words: Trace fossils, Szczawno Formation, Intra-Sudetic Basin, lower Serpukhovian.

Manuscript received 3 April 2020, accepted 15 June 2020

INTRODUCTION

The Intra-Sudetic Basin contains Mississippian (not older than the middle Viséan) through to Permian rocks, overlain by the lower Triassic and Upper Cretaceous deposits (Bosowski et al., 1995; Turnau et al., 2002; Awdankiewicz et al., 2003). The total thickness of the Carboniferous–Permian molasse succession exceeds 10 km, with up to 8.5 km of Carboniferous sediments (Nemec et al., 1982; Dziedzic and Teisseyre, 1990).

Carboniferous trace fossils from the central part of the Polish Sudetes are still inadequately known. The best known ichnoassemblages are from the upper Viséan of the Bardo Unit (Muszer and Haydukiewicz, 2009, 2010; Muszer and Ugli, 2013). Trace fossils from the Carboniferous of the Intra-Sudetic Basin are poorly illustrated from the Viséan alluvial sediments of the Stare Bogaczowice Formation (Teisseyre, 1968, p. 267) and only noted without any descriptions from the Viséan sediments near Wałbrzych (Żakowa, 1958, 1960; Nemec et al., 1982; Mastalerz, 1987, 1995). Żakowa (1958, 1960) mentioned Dictyodora liebeana Weiss from Konradów and Dictyodora from Poniatów and Czarnota without any illustrations. Nemec et al. (1982) marked an occurrence of unnamed trace fossils on the lithological profile of the Lubomin Formation, while Mastalerz (1987, 1995) mentioned the presence of trace fossils in some facies of the Szczawno Formation. Recently, a preliminary reports about Mississippian trace fossils were presented by Muszer (2013, 2019) from the Intra-Sudetic Basin (the Szczawno Formation) and the Świebodzice Unit (the Pogorzała Formation).

The Mississippian fine-grained sediments are mostly locally and poorly exposed in the Sudetes. Construction of bypass roads around the city of Wałbrzych in recent years provided new outcrops and, consequently, a better understanding of the Szczawno Formation. The present study was carried out in the years 2013–2014 and completed in 2016. They provided new data on the trace fossils of this lithostratigraphic unit.

The aim of the present paper is the description of a newly discovered trace fossil assemblage from the middle part of
the Piaskowa Góra section and the comparison of it to ichnoassemblages of selected Mississippian sites. On the basis of the ichnological record, the depositional environment of the upper part of the Szczawno Formation near Wałbrzych is interpreted. This paper is the first comprehensive ichnological study of the Szczawno Formation. It allows better understanding of the palaeontological record of the Szczawno Formation and its palaeoenvironment. These studies provided new data on the Mississippian regression in the Sudetes.

GEOLOGICAL SETTING

The Intra-Sudetic Basin represents a late Palaeozoic intramontane trough situated in the eastern part of the European Variscides at the northern margin of the Bohemian Massif (Awdankiewicz, 1998). It is the largest geologic unit in the central Sudetes. The Intra-Sudetic Basin (= Intra-Sudetic Synclinorium according to Żelaźniewicz et al., 2011) is a northwest-southeast trending elongated synclinorial structure, mostly separated from the crystalline basement by normal faults (Teisseyre, 1975). The northern part of the unit is bounded by the Izera-Karkonosze Block, the Kaczawa Metamorphic Unit, the Świebodzice Depression and the Góry Sowie Massif (Fig. 1).

The Carboniferous–Permian molasse sequence consists of mostly continental siliciclastic deposits arranged into several upward-fining megacyclothem, 200–500 m thick, and subordinate volcanics (e.g., Nemec et al., 1982; Mastalerz and Prouza, 1995; Awdankiewicz, 1998). The overall chronostratigraphy is based mainly on the general spatial relationships of the nonfossiliferous rocks to those, which are palaeontologically dated, as well as on some other lithological criteria commonly employed (Nemec et al., 1982).

The Carboniferous deposits of the Intra-Sudetic Basin are differentiated into several informal formations (Nemec et al., 1982; Dziedzic and Teisseyre, 1990; Bossowski et al., 1995; Mastalerz and Prouza, 1995), the names of which come from the 19th century local mining nomenclature (for a lithostratigraphic scheme, see Fig. 2). The formations differ in composition, colour and palaeontological content. They are mostly of continental origin, except for the Szczawno Formation, which consists of deposits laid down in fluvial-deltaic and marine environments (Mastalerz and Prouza, 1995). The Szczawno Formation was formerly named “Szczawno Culm” (Teisseyre, 1952) or “Younger Culm” (Dathe, 1892; Radwański, 1952; Żak, 1958). This unit covers the Lubomin Formation and passes upward into the Wałbrzych Formation (Fig. 2). The Szczawno Formation records a marine transgression during the late Viséan (Żakowa, 1958, 1960, 1963).

The sedimentology of the Szczawno Formation was studied by several authors (e.g., Radwański, 1952; Żak, 1958; Teisseyre, 1971, 1975; Nemec et al., 1982; Mastalerz, 1987, 1995; Mastalerz and Porębski, 1987; Dziedzic and Teisseyre, 1990). The upper Viséan deposits of the Intra-Sudetic Basin show facies differences as they were deposited into two distinct sub-basins (Mastalerz, 1987, 1995; Bossowski et al., 1995; Mastalerz and Prouza, 1995; Awdankiewicz et al.,...
The western part of the basin formed a shallow-marine embayment, passing southwards into an extensive, fluviodeltaic system (Mastalerz and Prouza, 1995). In this sub-basin, the clastic material initially was deposited in a delta and associated settings that prograded into a shallow bay. The eastern part of the basin (the Wałbrzych Sub-basin) represents a relatively deeper sea. Mastalerz (1995) distinguished six facies associations within the Szczawno Formation in the Wałbrzych Sub-basin. They are interpreted as deposits of alluvial-delta plain, fan-delta front, prodelta, subaqueous fan, basin plain and slope, and shallow-marine shelf. To the east, the Szczawno Formation consists mainly of flysch-like, sandstone/mudstone beds interlayered with conglomerates, pebbly mudstones and clayey sediments, while towards the west, coarser clastics with local horizons exhibiting root structures predominate (Nemec et al., 1982). According to Nemec et al. (1982) and Bossowski et al. (1995), the thickness of the Szczawno Formation varies from 400–600 m in the eastern part of the basin to about 3000 m in its western part. In the Wałbrzych Sub-basin, the formation passes upwards to non-marine Namurian sediments of the Wałbrzych Formation (e.g., Grocholski, 1960, 1974; Teisseyre, 1961; Dziedzic, 1965; Nemec et al., 1982), which is the oldest coal-bearing lithostratigraphic unit of this region. In the western part of the Intra-Sudetic Basin, the Szczawno Formation is unconformably overlain by the Westphalian deposits (Nemec et al., 1982).

Several authors addressed the problem of contact between the Szczawno Formation and the Wałbrzych Formation (e.g., Teisseyre, 1961; Dziedzic, 1968; Nemec, 1984; Bossowski et al., 1995; Mastalerz, 1995; Mastalerz and Prouza, 1995), but it is still not fully explained. However, all the above-mentioned authors stated that the siliciclastic deposits of the Szczawno Formation are compositionally of low maturity, in contrast to the more mature clastic material of the Wałbrzych Formation. The boundary between the Szczawno Formation and the Wałbrzych Formation is marked by the disappearance of greywackes and the appearance of quartz conglomerates or a significant number of coal layers (Nemec et al., 1982).

The Szczawno Formation (Figs 1, 2) is palaeontologically the best documented unit of the Mississippian (formerly the Lower Carboniferous) of the Intra-Sudetic Basin (Schmidt, 1925; Źakowa, 1958 and references therein, 1960, 1963; Jerzykiewicz, 1965; Turnau et al., 2002). It is associated with the locally frequently occurrence of marine invertebrates (especially goniatites, brachiopods and molluscs). The Szczawno Formation contains the late Viséan goniatites, which are index taxa to the crenistria (Gota) Zone and the striatus (Goji) Zone (Źakowa, 1958, 1963). According to Turnau et al. (2002), deposition of the formation was during the Asbian and continued into the Brigantian. The latest miospore studies (A. Górecka-Nowak in Muszer et al., 2016) allow assignation of the uppermost part of the Szczawno Formation to the Verrucosisporites morulatus Subzone (Vm), which corresponds to the lower Serpukhovian (= the lower part of the Namurian A) (Fig. 2).

LITHOLOGY OF THE PIASKOWA GÓRA SECTION

A new outcrop of the Szczawno Formation is studied. It is situated in the northern part of the Wałbrzych Sub-basin, south of the Piaskowa Góra district, near Wyszyńskiego Street (Fig. 3A). The section is exposed in about 100 m long western escarpment by the road (GPS coordinates E 16°16’26.01", N 50°48’05.99’). It represents the uppermost part of the Szczawno Formation (lower Serpukhovian; Muszer et al., 2016) and probably, the lowest part of the Wałbrzych Formation (Fig. 3B). The strata dip at 80° to the south.

The uppermost part of the Szczawno Formation (25 m thick; the lower and middle part of the succession) is composed of grey mudstones and claystones, greenish-grey and grey mudstones, rarely interbedded by thin, fine-grained
sandstones and a limestone lens (Fig. 3B). The lower part of the succession studied, about 10 m thick, comprises grey mudstones and claystones. The individual strata are 1–30 mm thick, most of them are thin laminated. Unfortunately, no fossils were found in these deposits. This part of the succession is not fully exposed, owing to vegetation and rubble. The middle part of the succession, about 15 m thick, contains greenish and grey mudstones with a few thin intercalations (up to 3 cm) of grey, fine-grained sandstones with rare calamites (Figs 3B, 4G, H). Graded bedding was observed only in the sandstones. The mudstones are planar laminated. Other sedimentary structures (cross-bedding, ripple marks) and erosional surfaces were not observed in this part of the succession. In the uppermost part of these deposits, a thin 10 cm limestone lens occurs. The middle part of the succession contains numerous trace fossils and rare calamites. The trace fossils are locally abundant, especially on the bedding surfaces (Fig. 3B).

The upper part of the succession, more than 10 m thick, comprises sandstones (mainly arenites) and conglomerates probably of the Wałbrzych Formation. The individual layers of sandstones are 10–15 cm thick and locally contain abundant plant debris, while layers of conglomerates are up to 0.5–1 m thick. The contact between the Szczawno Formation and the Wałbrzych Formation is not well exposed in this profile, but probably there is a sedimentary transition.

MATERIAL AND METHODS

The trace fossils described in this paper were found in the middle and upper parts of greenish and grey mudstones of the uppermost part of the Szczawno Formation. The general morphology, dimensions and orientation of the trace fossils were recorded at the outcrop and 66 samples were collected. A part of samples was collected from debris. Several rock samples were cut and the ichnofabric was observed on polished surfaces using a Nikon SMZ-2T microscope.

All collected specimens and fragments are housed at the collections of the Institute of Geological Sciences of
Wrocław University (catalogue numbers Pi2/1, Pi2/2; Pi5a–Pi5d, Pi5/1–Pi5/12, Pi5–Pi5-z1–Pi5-z20, Pi5-K/1–Pi5-K/8, Pi5/2-3/z1–Pi5/2-3/z5, Pi5/2-3sz, Pi6–Pi6a, Pi6–Pi6/4, Pi7–Pi7a).

SYSTEMATIC ICHNOLOGY

Deposits of the uppermost part of the Szczawno Formation near Piaskowa Góra contain a relatively moderately diverse assemblage of trace fossils, referable to eight ichnnotaxa: *Archaeonassa fossulata*, *Beaconites cf. capronus*, *Curvolithus multiplex*, *Dictyodora liebeana*, *Paleaepothycus isp.*, *Phycosiphon isp.*, *Planolites isp.* and *Psammiteschites plummeri*. Moreover, enigmatic tubular forms and wrinkle structures are present. All of them occur in the middle part of the Piaskowa Góra succession.

Ichnogenus *Archaeonassa* Fenton and Fenton, 1937

Archaeonassa fossulata Fenton and Fenton, 1937

Material: Five specimens (samples Pi5/4, Pi5-z1, Pi5-z19).

Description: Simple, unbranched, straight to meandering, narrow epichnial furrow, parallel to bedding. It is generally 2–3 mm wide and 1 mm deep, preserved on fine-grained sandstone beds. Margins of the furrow on both sides are bound by irregular and slightly raised levees. The trace is at least 75 mm long.

Remarks: The trace is very similar to *Archaeonassa fossulata*, described by Buatois and Mángano (2002: fig. 7A) from the Carboniferous of Argentina, but a V-shaped cross-section is not clear in the specimens from Piaskowa Góra and they are smaller than the Argentinian specimens. *Archaeonassa* generally is interpreted as a grazing trail or pascichnion, produced by arthropods, annelids and molluscs (Buatois and Mángano, 2002; Melchor et al., 2012). It has also been described from the Tithonian-Miocene flysch deposits of the Polish Carpathians (Uchman, 1998).

This ichnogenus was reviewed by Buckman (1994), who argued that these traces are typical of gastropods living in intertidal regimes. Yochelson and Fedonkin (1997) redefined the ichnogenus, designated a lectotype, and concluded that the trace fossils did not result from the activity of gastropods. It is a common element of the *Cruziana* and *Mermia* ichnofacies (Buatois and Mángano, 2002; Melchor et al., 2012). It is known from the Ediacaran (Häntzschel, 1975; Buckman, 1994; Buatois and Mángano, 2002) to the Recent (Netto et al., 2012).

Ichnogenus *Beaconites* Vialov, 1962

Beaconites cf. capronus (Howard and Frey, 1984)

Material: Three specimens (sample Pi5c).

Description: Horizontal, straight and cylindrical burrow with meniscate backfill and thin, up to 1 mm distinct lining. It is 13–15 mm wide and 50–93 mm long. Branching has not been observed. There is no contrast between burrow fill and host sediment. Meniscate backfill is homogeneous and merges laterally with the burrow lining, which is slightly darker than the host rocks. The menisci are thin and strongly curved.

Remarks: The specimens from Piaskowa Góra are very similar to *Beaconites capronus* (Howard and Frey, 1984), described from the Carboniferous of Northeast England by Boyd and McIlroy (2017: figs 2–8), but they are wider and they have not the distinctive chevron-shaped meniscate backfill. They differ from other ichnospecies of *Beaconites* by lack of heterogeneous backfill. However, the small number of specimens and their state of preservation do not permit the determination of ichnospecies in greater detail. The ichnospecies *B. capronus* was originally described as *Auncorichus capronus* by Howard and Frey (1984).

Meniscate burrows (ichnogenera *Ancorichus* Heinberg, 1974; *Beaconites* Vialov, 1962; *Taenidium* Heer, 1877) were classified on the basis of the presence and type of a wall, and differences in the type of meniscate backfilling (see Keighley and Pickerill, 1994; Boyd and McIlroy, 2017). There is still no consensus regarding the distinction between *Auncorichus* and *Beaconites* for a long time (see Dragani et al., 2001). The ichnogenic diagnosis of meniscate burrows was emended by Keighley and Pickerill (1994). According to these authors, *Beaconites* has “distinct, smooth and unornamented burrow linings”, while meniscate traces with an outer mantle belong to *Auncorichus*, and *Taenidium* is an unwalled ichnotaxon. Unwalled *Beaconites barretti* was included by these authors in *Taenidium* Heer, 1877 as *T. barretti*. Ichnotaxonomic problems concerning meniscate filled burrows were also presented by e.g. Bradshaw (1981), Frey et al. (1984), D’Alessandro and Bromley (1987) and Bromley et al. (1999).

Beaconites is reported from the Cambrian to Recent (Knaust, 2004). *Beaconites capronus* often occurs in the Carboniferous of USA and England in intertidal to outer-shelf settings (Keighley and Pickerill, 1994; Boyd and McIlroy, 2017). It has also been described from the Tithonian-Miocene flysch deposits of the Polish Carpathians (Uchman, 1998).

According to Knaust (2004), this ichnospecies represents a fodinichnion of a worm-like deposit feeder. However, *Beaconites* is a combination of locomotion and feeding trace and could be regarded as a pascichnion. It is a common element of the *Cruziana* and *Skolithos* ichnofacies (Knaust, 2004), but also occurs as a typical component of the *Scoyenia* ichnofacies in non-marine settings (Buatois and Mángano, 2011a; Melchor et al., 2012).

Ichnogenus *Curvolithus* Fritsch, 1908

Curvolithus multiplex Fritsch, 1908

Material: Four specimens (samples Pi5c, Pi6a).

Description: Straight to curved, horizontal, flattened and unbranched endostratal structure with three rounded lobes on upper surface and four lobes on the convex lower surface. The central lobe on the upper surface is smooth and wider than the outer lobes, which are separated by shallow furrows. The described specimens are 4–6 mm wide and visible at the distance of 24–43 mm.
Fig. 4. Trace fossils and floral fossils from the Piaskowa Góra section.

A. Archaeonassa fossulata Fenton and Fenton, 1937; Cat. No. Pi5/4.
B. Curvolithus multiplex Fritsch, 1908; Cat. No. Pi5c.
C. Dictyodora liebeana (Geinitz, 1867); Cat. No. Pi5-z8.
D. Phycosiphon isp. (Ph, black arrows) and Palaeophycus isp. (Pa); Cat. No. Pi5-z12.
E. Palaeophycus isp.; Cat. No. Pi5c.
F. Planolites isp. (Pl) and Psammichnites plummeri (Fenton and Fenton, 1937) (Ps); Cat. No. Pi5-z6.
G–H. Archaeocalamites sp.; Cat. No. Pi5a.
Fig. 5. Trace fossils from the Piaskowa Gora section. A–D. *Psammichnites plummeri* (Fenton and Fenton, 1937), positive hyporelief. A. Cat. No. Pi6/4; B. Cat. No. Pi6/3; C. Cat. No. Pi5-K/1; D. Cat. No. Pi5-3. E. *Psammichnites plummeri* (Fenton and Fenton, 1937), negative epirelief with axial tube; Cat. No. Pi5-5. F. *Psammichnites plummeri* (Fenton and Fenton, 1937) (Ps) and *Phycosiphon* isp. (Ph); Cat. No. Pi5-z4. G. *Phycosiphon* isp. on polished surface of vertical cross-section (black arrows); Cat. No. Pi5c. H. *Beaconites cf. capronus* (Howard and Frey, 1984); Cat. No. Pi5c.
Remarks: Curvolithus was revised by Buatois et al. (1998). It is commonly interpreted as a locomotion trace (repichnion) of endostratal invertebrate carnivores (Buatois et al., 1998 and references therein). The potential tracers are gastropods, wormlike polychaetes, oligochaetes, nemerteans or holothurians. Lockey et al. (1987) suggested that the animal has a flattened cross-section.

Curvolithus is a common element of the Cruziana ichnofacies sensu Seilacher (1967). Lockey et al. (1987) defined the Curvolithus ichnocoenoses, which is actually considered as a subset of the Cruziana ichnofacies (Bromley, 1996; McIlroy, 2008). This ichnogenus is commonly associated with shallow-marine deposits, either of normal or slightly brackish salinity (Buatois et al., 1998). It also occurs in fully marine, fan-deltaic to offshore settings (Webby, 1970; Fürsich and Heinberg, 1983; Heinberg and Birkelund, 1984; Maples and Suttner, 1990).

The stratigraphical range of Curvolithus is from Precambrian to Miocene (Buatois et al., 1998; Krobicki and Uchman, 2003; Hofmann et al., 2011), and this ichnogenus commonly occurs in the Carboniferous and Jurassic deposits (Eagar et al., 1985).

Ichnogenus Dictyodora Weiss, 1884
Dictyodora liebeana (Geinitz, 1867)

Fig. 4C

1867 Dictyophyton? Liebeanum – Geinitz, pp. 286–288, Taf. 3, fig. 3

1870 Nemertites sudeticus – Roemer, p. 33, pl. 6 (7).

1867 Dictyodora liebeana (Weiss) – Ruchholtz, pp. 514–516, figs 13–15, pl. 4.

1982 Dictyodora liebeana – Benten, pp. 123–126, figs 7, 8.

1996 Dictyodora liebeana – Orr et al., pp. 246–248, fig 7A–F.

2004 Dictyodora liebeana – Mikuláš et al., p. 84, pl. 2, fig. 4; pl. 3, figs 1, 2, 4, pl. 4, figs 1–4; pl. 6, fig. 2

2006 Dictyodora liebeana – Baucon and Neto de Carvalho, p. 98–100, fig. 10.

Material: A dozen specimens (samples Pi5c, Pi5-z16, Pi6a).

Description: Simple or branched, cylindrical, straight to curved or undulating, predominantly horizontal to inclined endichnial burrows. They are 2–3 mm wide and up to 28 mm long. Wall is smooth, non-ornamented. Filling is similar to the host rock.

Remarks: Palaeophycus is interpreted as a dwelling burrow (domichnion) produced by deposit-feeders or predators, mostly by polychaetes, usually moving parallel to the sediment surface (e.g., Pemberton and Frey, 1982; Uchman, 1995). This ichnogenus is considered as either a freshwater or marine eurybathic trace fossil, described from the Precambrian to Recent (Pemberton and Frey, 1982).

Ichnogenus Phycosiphon Fischer-Ooster, 1858
Phycosiphon isp.

Figs 4D, 5F–G

Material: Several fragments of specimens (samples Pi5c, Pi5d, Pi7a, Pi5-z8, Pi5-z20).

Description: Meandering, three-dimensional spreite burrow, which is steeply inclined to vertical with respect to the bedding. The described specimens are visible in horizontal cross-sections on bedding surfaces as irregular meandering and undulated spreite “bands”, which are up to 1 mm wide. The meanders are mainly asymmetrical and often intersect. Complex meanders (third-order at the most) also occur. The meanders are 0.2–10 mm apart.

Remarks: The specimens described are preserved only as fragments of much larger structures, but they display features characteristic of Dictyodora liebeana. This ichnospecies represents a complex feeding-trace of worm-like endobionta (Benton, 1982). According to Uchman and Wetzel (2012), Dictyodora is a deep-tier pascichnion reported only from the Palaeozoic deep-sea sediments, while Buatois and Mángano (2011) regarded this ichnogenus as fodinichnion. The producer of this trace fossil is still unknown, although a worm or a mollusc without a shell has been suggested (Benton and Trewin, 1980). According to Seilacher (2007), the tracemaker explored deep tiers while being connected to the surface by a long snorkel-like tube.

According to Uchman (2004), the ichnogenus Dictyodora ranges from the Ordovician to the Carboniferous, although its ichnospecies display narrower ranges. D. liebeana has the chronostratigraphic value and is considered as good trace fossil indicator of the Lower Carboniferous (Uchman, 2004, 2007; Buatois and Mángano, 2011). D. liebeana occurs mostly in deep-sea deposits of Europe, rich in clay, especially in the Culm facies (e.g., Benton, 1982; Stepanek and Geyer, 1989; Pek and Zapletal, 1990; Orr et al., 1996; Uchman, 2004: table 1; Mikuláš et al., 2004; Baucon and Neto de Carvalho, 2008). However, this ichnogenus has been described also from Silurian prodeltaic deposits in Argentina (see Pazos et al., 2015). This ichnogenus is regarded as typical of the deep-sea Nereites ichnofacies (Seilacher, 1967, 1974; Buatois and Mángano, 2011).
specimens of *Phycosiphon incertum* from the Palaeocene of Japan (Naruse and Nifuku, 2008: fig. 1) and large specimens of *P. incertum* from the Eocene of Spitsbergen (Rodríguez-Tovar et al., 2014: fig. 3A). They have similar dimensions and oval to comma-shaped or U-shaped vertical cross-sections. They differ in shape, dimensions and character of the halo in the *Nereites* ichnofacies (see Bednarz and McIlroy, 2012: fig. 2G).

Phycosiphon has been previously differently described (for lists of synonyms see Fu, 1991; Goldring et al., 1991; Wetzel and Bromley, 1994). The *Phycosiphon*-producer generally colonized sediments enriched in organic matter (Wetzel, 2010). The tracemaker was an opportunistic highly selective deposit feeder (fodinichnion), but it remains unrecognized (Wetzel and Bromley, 1994; Wetzel and Uchman, 2001; Wetzel, 2008, 2010). According to Bednarz and McIlroy (2009), producers of phycosiphoniform burrows were small, probably vermiciform organisms. This ichnogenus was reported from the Palaeozoic to Holocene strata deposited in various marine environments from continental shelves to submarine fans (Seilacher, 1978; Fu, 1991; Goldring et al., 1991; Savrda et al., 2001; Naruse and Nifuku, 2008), but it is the most typical of the deep-sea *Nereites* ichnofacies (Ineson, 1987) and of the *Zoophycos* ichnofacies (Frey and Pemberton, 1984; Buatois and Mángano, 2011a).

Ichnogenus Planolites Nicholson, 1873

Planolites isp.

Fig. 4F

Material: Four specimens (samples Pi5-z6, Pi5c).

Description: Horizontal or irregularly sinuous, unlined, smooth cylindrical burrow, which is unbranched and filled with material different than the host rock. It is elliptical in cross-section and 6–11 mm in diameter. The length of the preserved trace reaches 10 cm. The filling is structureless, finer grained and darker than the host rocks.

Remarks: *Planolites* is usually interpreted as a pascichnion structure of deposit feeders, which actively backfilled the burrows (Pemberton and Frey, 1982; Keighley and Pickerill, 1995; Bromley, 1996; Rodriguez-Tovar and Uchman, 2004; Pervesler et al., 2011). It may be produced by “worms”, arthropods, molluscs, insects (Gradziński and Uchman, 1994; Keighley and Pickerill, 1995; Bromley, 1996; Uchman, 1998; Buatois and Mángano, 2002) or infaunal holothuroids (Chen et al., 2011). *Planolites* is an eurybathic trace found in various marine and continental environments (Rodriguez-Tovar and Uchman, 2004; Sarkar et al., 2009; Leszczyński, 2010; Hofmann et al., 2011; Phillips et al., 2011; Buatois and Mángano, 2011a). It has been reported from the latest Neoproterozoic to Recent (e.g., Pemberton and Frey, 1982; Rodriguez-Tovar and Uchman, 2004).

Ichnogenus Psammichnites Torell, 1870

Psammichnites plumeri (Fenton and Fenton, 1937b)

Figs 4F, 5A–F, 6, 7G–H

Material: Several dozen of specimens and fragments (samples Pi5-1–Pi5-5; Pi5-K/1–Pi5-K/8; Pi5-z1–Pi5-z18; Pi5b, Pi5c; Pi6a; Pi6/1–Pi6/4; Pi7a), several specimens observed in the field, three polished cross-sections. Additionally, several samples were collected from debris.

Description: Predominantly horizontal, strongly sinuous to meandering ribbon-shaped trace fossil preserved as positive hyporelief, characterized by a narrow median groove, and two convex lobes with fine crenulated transverse ridges. A negative epirelief is represented by a narrow medial ridge and two wide grooves. This trace fossil is unbranched, but crossovers or interpenetrations are found. It is 9–40 mm, mostly 13–27 mm wide (*Fig. 6*). The transverse ridges are 4–17 mm wide. The median groove or ridge is 2–6 mm wide, commonly straight and occasionally sinuous (*Fig. 5C, D*). The trace fossil shows a significant correlation between the width of specimen and the medial groove width and the coefficient of determination is equal to $R^2 = 0.67$ (*Fig. 6*). Maximum observed length of the ichnospecies is approximately 26 cm, but the specimens studied are often incomplete because of the fragile host rock.

The trace fill is similar to the host rock and meniscate internal structures are preserved only in some specimens (*Figs 5A, B, 7G–H*). Locally, a well-developed marginal levee is present (*Fig. 5C, D*). Some specimens are partially preserved (ridges locally broken) and traces exhibit a clear axial tube, 2 mm in diameter (*Fig. 5E*).

Remarks: The described trace fossil is locally abundant. According to Gaillard and Racheboeuf (2006), the axial tube could be a fecal string.

Following a recent systematic reevaluation, *Olivellites* Fenton and Fenton, 1937b and *Aulichnites* Fenton and Fenton, 1937c may be considered as the synonyms of the ichnogenus *Psammichnites* (Mángano et al., 2002; see also D’Alessandro and Bromley, 1987). *Psammichnites* is commonly referred to the feeding activity of a large soft-bodied marine animal, probably a mollusc, moving through the sediment and being connected to the sediment surface by a snorkel device (Seilacher, 1997; Seilacher-Drexler and Seilacher, 1999; Aceñolaza and Aceñolaza, 2006; Gámez Vintaned et al., 2006; Baucon and Neto de Carvalho, 2008). *Psammichnites plumeri* is regarded as a grazing trace...
Fig. 7. Tubular forms from the Piaskowa Góra section. A. Photograph in the field before extraction of moulds. Yellow lines show a contour of tubular forms (right – specimen 1; left – specimen 2). B. Tubular form observed in the field and associated trace fossils *Psammichnites* isp.; w – wall. C. Cross-sections of the tubular form observed in the field with characteristic bioturbated structure of the fill and double layered wall (w) in the enlargement. D. Fragment of mould – constriction; Cat. No. Pi5/2-3. E. Fragment of mould – enlargement; Cat. No. Pi5/1a-b. F. A thin section of contraction; Cat. No. Pi/2-3/sz1; hr – hosted rock, int – internal part of the tubular form. G–H. Polished cross-sections of *Psammichnites plummeri*. G. Cat. No. Pi5-z5. H. Cat. No. Pi5-z3.
(pascichnion) of an arthropod deposit feeders (Mángano et al., 2002; Buatois and Mángano, 2011).

The stratigraphic range of the ichnogenus is from the lower Cambrian to probably Permian (see Mángano et al., 2002). *Psammichnites* is often reported from marginal-marine environments (Mángano et al., 2002), while Carboniferous *Psammichnites* is listed as a common element of lower estuarine settings (Mángano et al., 2005; Buatois and Mángano, 2007). This ichnotaxon is present in siliciclastic shallow-marine deposits, typically in intertidal and shallow subtidal settings (e.g., Mángano et al., 2002; Buatois and Mángano, 2011a, Desjardins et al., 2012). It also occurs in muddy substrates in offshore settings and thick turbidite series (see Álvaro and Vizcaíno, 1999). Seilacher-Drexler and Seilacher (1999) considered that both kinds of medial grooves (straight or sinuous) seem to represent an ethological response due to a change in the grazing strategy.

Psammichnites plummeri is described from the Carboniferous (Mississippian–Pennsylvanian) of the United States, Europe and Australia (Maples and Suttner, 1990; Mángano et al., 2002) and from the Pennsylvanian of Argentina (Alonso-Muruaga et al., 2013).

OTHER STRUCTURES

Tubular forms

Fig. 7 A–E

Material: Two specimens (17 fragments of external moulds; samples Pi5/1–Pi5/12), negative impression of a tunnel studied in the field, fifteen polished cross-sections and three thin sections (samples Pi5/2-3/z1–Pi5/2-3/z5; Pi5/2-3/z1; Pi5/2-3/z4; Pi5/2-3/z5).

Description: Large, unbranched and nearly vertical to slightly oblique tube-like forms resembling burrows. They consist of alternating and irregular constrictions and enlargements (Fig. 7A), which are sharply demarcated from the host rocks (Fig. 7A–D). The enlargements (swollen chambers) are elongated and asymmetric, 13.5–15 cm long (Fig. 7C). The constrictions are up to 13 cm long (Fig. 7D). It was very difficult to estimate the total length of the trace fossil, because of its incompleteness. The wall (or double wall) is present only in enlargements and is composed of the same material as the host rock (Fig. 7B). Macroscopic observations, polished sections and a thin section (Fig. 7E) of the tubular forms have shown fill of a characteristic bioturbated structure.

Remarks: The mudstones surrounding this form, except for planar bedding and lamination, show no other sedimentary and deformation structures. Inside of these tubular forms there is no conduits, central hole or cementation zones or any traces of cementation supporting cold seep origin or root origin. Because of the complicated nature of the enigmatic tubular forms, the detailed description and the ichnological and petrological study of these forms will be presented in a separated paper (Muszer and Bartz, in preparation).

Wrinkle structures

Fig. 8A–B

Material: Three examples (samples Pi2/1, Pi2/2, Pi5/z9).

Description: These are wrinkled or pitted impressions preserved on bedding planes. They form thin surfaces, which consist of slightly bent ridges and troughs up to 50 mm long and up to 2 mm wide. They cover several tens of square centimetres of a bedding surface.

Remarks: These structures (MISS – microbially induced sedimentary structures) are interpreted as matgrounds, which involved substrate modification by microbial activity (Marriott et al., 2013; Pazos et al., 2015b; Vodrážková et al., 2019). According to Noffke et al. (2001) microbial mats dominated by cyanobacteria depend on photosynthesis and are bathymetrically controlled. The MISS occur at the turning points of regression-transgression (Noffke et al., 2006). Wrinkle structures are known from the Archean onwards and they are very common in shallow-marine to marginal-marine environments (Noffke et al., 2001, 2006; Porada et al., 2008; Buatois et al., 2014).

Fig. 8. Wrinkle structures from the Piaskowa Góra section.
A. Cat. No. Pi2/1. B. Cat. No. Pi2/2.
TRACE FOSSIL ASSEMBLAGE AND ENVIRONMENTAL INTERPRETATION

The ichnoassemblage described occurs only in the greenish-grey mudstones with rare beds of thin, fine-grained sandstones (Figs 3B, 9), which form the Culm facies. It is moderately diverse (eight ichnotaxa) and ranges from eight or seven ichnotaxa in the middle part of the mudstones to two ichnotaxa in the upper part of the mudstones. The greatest diversity of ichnotaxa coincides with the occurrence of “tubular forms”, which are rare. The abundance of individual ichnotaxa varies. *Psammichnites plummeri* is the most common and it has the longest, local, vertical range. It appears with calamite debris in the middle part of the greenish-grey mudstones and sandstones and vanishes just below a limestone lense (Figs 3B, 9). *Psammichnites plummeri* is accompanied by abundant *Phycosiphon* isp., less numerous *Dictyodora liebeana* and *Palaeophycus* isp. and rare *Archaeonassa fossulata* (Fig. 9). The vertical range of *Dictyodora liebeana* is similar to that of *Psammichnites* range. Other ichnotaxa, such as *Beaconites* cf. *capronus*, *Curvolithus multiplex*, and *Planolites* isp., are rare and they occur locally (Fig. 9).

Ethologically, the ichnoassemblage is diversified and represented by most common pascichnia (*Archaeonassa, Dictyodora, Planolites, Psammichnites, Beaconites*), and less numerous fodinichnia (*Phycosiphon*), domichnia (*Palaeophycus, tubular forms?) and repichnia (*Curvolithus*). According to Rindsberg (2012), “preservation potential [of pascichnia] is low and depends on rapid burial without much

Fig. 9. Schematic lithology and distribution of ichnotaxa in the middle part of the Piaskowa Góra section.
erosion”. In marine settings, pascichnia are a dominant element of the Nereites ichnofacies; they are common in the Cruziana ichnofacies, but also subordinate in the Zoophycos ichnofacies (e.g., Buatois and Mángano, 2011). Among the post depositional trace fossils, Dictyodora, Phycosiphon, Palaeophycus, Planolites, and Beconites are present (see Uchman and Wetzel, 2012).

The ichnoassemblage described has a mixed character, which could indicate a transition from the Cruziana to the deeper ichnofacies (Zoophycos or Nereites). The typical representatives of the Cruziana ichnofacies include Archaeonassa fossulata, Curvolithus multiplex, Psammichnites plummeri and Beaconites cf. capronus (e.g., Bromley, 1996; Buatois and Mángano, 2002, 2011a; McIlroy, 2008; Melchor et al., 2012), though the last three are also found in the offshore conditions (Webby, 1970; Heinberg and Birkelund, 1984; Maples and Suttner, 1990; Álvaro and Vizcaíno, 1999). Phycosiphon isp. and Dictyodora liebeana are the most characteristic of the deeper Zoophycos or the Nereites ichnofacies (e.g., Seilacher, 1974; Benton, 1982; Frey and Pemberton, 1984; Pek and Zapletal, 1990; Uchman, 2004; Buatois and Mángano, 2011), but are also known from the shallower settings (Savrda et al., 2001; Naruse and Nifuku, 2008; Pazos et al., 2015a). It is worth noting, that Dictyodora occurs without any graphoglyptids and Nereites in the section studied. Some ichnotaxa of the assemblage (Palaeophycus isp., Planolites isp.) are eurybathic (e.g., Pemberton and Frey, 1982; Hofmann et al., 2011).

An important component of the findings from the Piaskowa Góra section are also wrinkle structures, which are rare in the middle part of the section. The presence of these structures on the surfaces of layers is an evidence of microbial mats and might indicate shallower settings within the photic zone. According to Buatois and Mángano (2011b), microbial mats persisted into the late Palaeozoic in the innermost, freshwater region of estuarine systems, fluvio-lacustrine deposits, glacial lakes and fjords, while Buatois et al. (2013) presented matgrounds from the Carboniferous–Permian open-marine deposits of the western Argentina. The trace fossil association with Dictyodora, Nereites, Zoophycos and microbial mat structures and without graphoglyptids also was described by Pazos et al. (2015a, b) from the Silurian–Devonian prodelta deposits of Argentina.

The quantitative predominance of horizontal traces, which are elements of the Cruziana ichnofacies compared to less numerous components typical of the Zoophycos or the Nereites ichnofacies (containing 3D-spreite structures) and dominant behaviour (pascichnia), indicate an intermediate environment between the lower offshore (the distal Cruziana ichnofacies) and the fan-delta slope (below wave base, the Zoophycos ichnofacies; see Pemberton et al., 2012). Additionally, the presence of floral remains implies a not too distant continental area.

The interesting fan-delta deposits also are reported by Hovikoski et al. (2018) from the Lower Cretaceous in Greenland. The ichnological record in these strata is strongly mixed, containing elements of the impoverished Skolithos, Cruziana, Zoophycos and Nereites ichnofacies. Trace fossils are dominated by infaunal locomotion, feeding trails and crustacean burrows. This fan-delta system differs from traditional deep sea fans in many aspects (organization, architectural elements and ichnological properties; Hovikoski et al., 2018: table 4). One of the important ichnological differences is the absence of graphoglyptids in overbank, depositional lobe, and fan-fringe facies, but the presence of the proximal to distal Cruziana ichnofacies. As noted by the authors cited above, the occurrence of graphoglyptids usually is referred to stable uniform conditions, while unstable physico-chemical conditions on the sea floor were the limiting factors responsible for the absence of this group of trace fossils. Additionally, the other factor, which protected the area from colonization by some, typically deep-sea trace makers, is the isolation of the basin from the open ocean.

The nearest site with numerous Dictyodora liebeana and without graphoglyptids occurs in the Pogorzala Formation (Witoszów region) in the Świebodzice Unit, which was deposited in prodelta settings (Muszer, 2019 and in preparation). This ichnoassemblage contains also numerous Palaeophycus and rare Archaeonassa, Chondrites, Curvolithus, Diplopodichnus, Lockeia, Lophoctenium, and Psammichnites. Recent palynological investigations allow dating of these deposits to give a late Visean–Seripukhovian age (Pluta and Görrecka-Nowak, 2018).

Singh et al. (2017) presented a different Visean–Seripukhovian trace fossil assemblage, but without Dictyodora, from the Po Formation (Himalayas), which indicates the upper shoreface to lower shoreface Cruziana ichnofacies of an open shelf. These storm beds are highly bioturbated, with numerous sedimentary structures and wrinkle structures. These deposits comprise Asteriacites, Biformites, Helminthoidichnites?, Lingulichnus, Lockeia, Palaeophycus, Planolites, Protovirgularia, Psammichnites, Ruspophycus, and Treptichnus.

The other Mississippian ichnoassemblages with Dictyodora liebeana occur in Europe in the Culm facies (mainly in sandstones, siltstones, mudstones), which characterize sedimentary basins, bordering active margins of the Variscan orogeny (see Mikuláš et al., 2004 and references therein). A diverse ichnofauna from Menorca contains D. liebeana, Chondrites, Lophoctenium, Nereites, Neonereites, Arthropycus, Phycosiphon, Synycoprus and graphoglyptids are also absent (Orr et al., 1996). These sediments are interpreted mostly as deposits of an inner- to mid-fan palaeoenvironment. Similar ichnoassemblages were described from Thuringia by Benton (1982) and from Frankenwaldes (Stepanek and Geyer, 1989). They represent the Nereites ichnofacies, which contains, among others, Dictyodora, Chondrites, Lophoctenium, Protovirgularia and Nereites, but also Phycosiphon and the graphoglyptids, such as Paleodictyon or Megagraption. Another similar Dictyodora-Nereites ichnoassemblage occurs in the Pramollo area in Carnic Alps (Baucon and Neto de Carvalho, 2008) and it is referred to deep marine settings associated to delta-front, organic rich-muds. It includes Dictyodora, Nereites and Protopalaeodictyon as an accessory component. Additionally, these fine sediments also are characterized by the presence of floral remains. In the Pramollo area, nine recurrent ichnoassemblages also occur and Psammichnites-Skolithos-Cylindrichnus (lower
estuarine deposits) among them. Two ichnoassemblages with *Dicyodora liebeana* are also known from Moravia and Silesia (Zapletal and Pek, 1987; Mikuláš et al., 2002, 2004). In the first one, this ichnospecies is accompanied by *Chondrites, Phycosiphon, Planolites, Spiradromos, Falcichnites, Pilichnus, Protopaleodictyon* and *Zoophycos*. The second ichnoassemblage besides *Dicyodora* contains *Diplocraterion, Rhizocorallium, Cosmorhaphe* and *Paleodictyon*.

The Carboniferous storm deposits from the Upper Silesia (Poland) described by Głuszek (1998) are stratigraphically equal (Pendleian = Namurian A), but represent the different paralic facies. In this region, 17 ichnogenera were found, e.g. *Phycosiphon, Chondrites, Zoophycos, Nereites*, but *Dicyodora* was absent. These deposits represent zone between upper offshore to lower shoreface.

Other examples of the Carboniferous deltaic deposits of the paralic facies from the Central Pennine Basin in England were presented by Edgar et al. (1985), who distinguished three types of sequences (turbidite deltas, shallow-water sheet deltas, swamp deltas). Among the Pendleian (lowest Namurian) deposits, they described three types of depth-related sedimentary associations corresponding with trace-fossil assemblages: the turbidite, the delta slope, and the delta top association. The slope association (laminated sandstones and siltstones) is dominated by *Cochlichnus*, and belonging to the delta top association. The slope association (laminated sedimentary associations corresponding with trace-fossil assemblages: the turbidite, the delta slope, and the delta top association. The slope association (laminated sandstones and siltstones) is dominated by *Lophocentrum, Curvolithus, and Cochlichnus* (Edgar et al., 1985: p. 105, fig. 4). These authors interpreted the assemblage as occurring on a prograding delta slope with reduced salinity and belonging to the *Zoophycos* ichnofacies. In the upper Namurian (upper Kinderscoutian and Marsdenian) deposits, they described three types of depth-related sedimentary associations corresponding with trace-fossil assemblages: the turbidite, the delta slope, and the delta top association. The slope association (laminated sandstones and siltstones) is dominated by *Lophocentrum, Curvolithus, and Cochlichnus* (Edgar et al., 1985: p. 105, fig. 4) among others the “Scolicia”-*Olivellites (= Psammichnites*) assemblages of the *Cruziana* ichnofacies, which represents a delta-top environment.

The ichnoassemblage from the Piaskowa Góra section shows some similarities and differences to the others Mississippian ichnoassemblages from the European Culm facies. *Dicyodora liebeana* is present in all these sections and *Phycosiphon* occurs in almost all sites. In most of them graphoglyptids are present or occur as an accessory component. The exception is the ichnoassemblage from Menorca (Orr et al., 1996), in which graphoglyptids are absent. It represents an inner to mid-fan environment, and is the most similar to the ichnoassemblage described, because of the presence of *D. liebeana, Phycosiphon* and the absence of graphoglyptids. However, that ichnoassemblage contains *Nereites* and others ichnogenera (*Chondrites, Lophocentrum, Arthropodichnus, Syncopepus*). The differences in the composition of the Piaskowa Góra ichnoassemblage compared to others from the Culm facies could be the result of relatively fast shallowing the environment in the final, early Serpukhovian stage of the Mississippian sea regression in the Intra-Sudetic Basin.

The lithological features of the Piaskowa Góra section (dominated by greenish-grey mudstones, rarely interbedded with thin, fine-grained sandstones) and well-developed parallel lamination are characteristic of the low-energy lower-offshore settings (see Pemberton et al., 2012) and deeper settings (slopes and deep-sea fans; see Hubbard et al., 2012; Uchman and Wetzel, 2012). According to Mastalerz (1995), turbidity currents played an important role in sedimentation on the delta front of sediments of the Szczawno Formation.

In summary, the middle part of the Piaskowa Góra succession is characterized by a high rate of sedimentation of fine-grained deposits, which did not allow the settlement of a typical sessile benthos. The fauna has left only trace fossils. The delivery of sediments was periodically interrupted, and then mobile benthos and infauna could develop. Most of the fauna was probably opportunistic. The environment was oxygenated, photic and of low hydrodynamic energy. Sediments were locally rich in organic matter, and that allowed to the appearance of deposit feeders and their development.

CONCLUSIONS

Eight, ethologically diverse ichnotaxa, dominated by *pascichnia*, and including also *fodinichnia*, *domichnia* and *repichnia*, have been documented for the first time in the Mississippian (the lower Serpukhovian) succession from the Piaskowa Góra section. They were discovered in the middle part of the studied succession, in greenish-grey mudstones with thin fine-grained sandstones of marine origin, which represent the uppermost part of the Szczawno Formation. Enigmatic tubular forms and rare wrinkle structures also were discovered.

The ichnoassemblage is dominated by *Psammichnites plummeri*, accompanied by *Archaeonassa fossulata, Beaconites cf. capronus, Curvolithus multiplex, Dicyodora liebeana, Palaeophycus isp., Phycosiphon isp.* and *Planolites* isp. The ichnoassemblage described contains either typical representatives of the *Cruziana* ichnofacies or less numerous elements of the *Zoophycos* or the *Nereites* ichnofacies. The mixed character of the components, the quantitative predominance of elements of the *Cruziana* ichnofacies, and the absence of graphoglyptids and others representatives of the *Nereites* ichnofacies indicate an intermediate environment between lower offshore (the distal *Cruziana* ichnofacies) and fan-delta slope (the *Zoophycos* ichnofacies). The palaeoenvironment was relatively oxygenated, but of low-energy and quiet waters within the photic zone. Frequent and periodically occurring delivery of fine-grained sediments, did not allow colonization by a typical sessile benthos, but only by infauna and mobile benthos.

The ichnoassemblage described shows some similarities (the presence of *Dicyodora liebeana* and *Phycosiphon*) and differences (the lack of *Nereites* and graphoglyptids), when compared to the others Mississippian ichnoassemblages from the European Culm facies. This could be the result of relatively fast shallowing of the environment in the final, early Serpukhovian stage of marine regression in the Mississippian of the Intra-Sudetic Basin.

Dicyodora liebeana has a chronostratigraphic value and its stratigraphic range is regarded as restricted to the Lower Carboniferous (Uchman, 2004, 2007). *D. liebeana* was observed previously in the upper Visean Szczawno Formation (Zakowa, 1958; Muszer, 2013), but now is described for the first time from the upper Mississippian (lower Serpukhovian).
Acknowledgements

Support was given by the National Science Centre (Grant Number: UMO-2011/01/B/ST10/05112) and the Grant ING UWr 0401/0157/17. A. Uchman is thanked for consultations, help in evaluating the literature and valuable suggestions. The referees A. Wetzel and C. Neto de Carvalho are also thanked for their helpful comments. I am also grateful to K. Pluta for drawing attention to the outcrop and supplying some specimens of Psammichnites. Special thanks are due to my husband Antoni for help in the field work.

REFERENCES

Aceñolaza, G. & Aceñolaza, F., 2006. Nereites saltensis (trace fossil): a taxonomical reevaluation of type and additional material from the Puncoviscana Formation of NW Argentina (Ediacaran–Early Cambrian). In: Gaucher, C. & Bossi, J. (eds), V South American Symposium on Isotope Geology, Short Papers. Punta del Este, Uruguay, pp. 218–220.

Alonso-Muruaga, P. J., Buatois, L. A. & Limarino, C. O., 1999. Biostratigraphic significance of the Late Carboniferous Hoyada Verde Formation of western Argentina: exploring postglacial shallow-marine ecosystems of Gondwana. Palaeogeography, Palaeoclimatology, Palaeoecology, 183: 71–86.

Álvaro, J. J. & Vizcaïno, D., 1999. Invertebrate ichnology of continental freshwater environments. In: Miller, W. III (ed.), Trace Fossils. Concepts, Problems, Prospects. Elsevier, Amsterdam, pp. 285–323.

Avani, L. A. & Mángano, M. G., 2002. Trace fossils from Carboniferous floodplain deposits in western Argentina: implications for ichnofacies models of continental environments. Palaeogeography, Palaeoclimatology, Palaeoecology, 183: 71–86.

Avani, L. A. & Mángano, M. G., 2007. Invertebrate ichnology of continental freshwater environments. In: Miller, W. III (ed.), Trace Fossils. Concepts, Problems, Prospects. Elsevier, Amsterdam, pp. 285–323.

Avani, L. A. & Mángano, M. G., 2011a. Ichnology. Organism-Substrate Interactions in Space and Time. Cambridge University Press, 358 pp.

Avani, L. A. & Mángano, M. G., 2011b. The trace-fossil record of organism-matground interactions in space and time. Microbial mats in siliciclastic sediments. SEPM Special Publications, 101: 15–28.

Avani, L. A., Mángano, M. G., Mikuláš, R. & Maples, C. G., 1998. The ichnogenus Curvolithus revisited. Journal of Palaeontology, 72: 758–769.

Avani, L. A., Netto, R. G., Mángano, M. G. & Carmona, N. B., 2014. Ediacaran matground ecosystem persisted into the earliest Cambrian. Nature Communications, 5: 1–5.

Avani, L. A., Netto, R. G., Mángano, M. G. & Carmona, N. B., 2013. Global deglaciation and the reappearance of microbial matground-dominated ecosystems in the late Palaeozoic of Gondwana. Geobiology 11: 307–317.

Buckman, J. O., 1994. Archaeossa Letton and Fenton 1937 reviewed. Ichnos, 3: 185–192.

Benton, M. J. & Trewin, N. H., 1980. Dictyodora from the Silurian of Pembrokeshire, Scotland. Palaeontology, 23: 501–513.

Bosowski, A., Ignatowicz, A., Mastalerz, K., Kurowski, L. & Nowak, G. J., 1996. Intra-Sudetic Depression. In: Desjardins, P. R., Buatois, L. A. & Mángano, M. G., 2012. Tidal flats and subtidal sand bodies. In: Knaust, D. & Bromley, R. G. (eds), Trace fossils as indicators of sedimentary environments. Developments in Sedimentology, 64: 529–561. Elsevier.

Bradshaw, M. A., 1981. Paleoenviro...
Knaust, D., 2007. Invertebrate trace fossils and ichnodiversity in shallow-marine carbonates of the German Middle Triassic (Muschelkalk). In: Bromley, R. G., Buatois, L., Mángano, G., Genise, J. F. & Melchor, R. N. (eds), Sediment-Organism Interactions: A Multifaceted Ichnology. SEPM Special Publication, 88: 221–238.

Krobicki, M. & Uchman, A., 2003. Trace fossils Curvolithus from the Middle Jurassic Crinoidal Limestones of the Pieniny Klippen Belt (Carpathians, Poland). Geologica Carpathica, 54: 175–180.

Leszczyński, S., 2010. Coniacian–?Santonian paralic sedimentation in the Rakowice Male area of the North Sudetic Basin, SW Poland: Sedimentary facies, ichnological record and palaeogeographical reconstruction of an evolving marine embayment. Annales Societatis Geologorum Poloniae, 80: 1–24.

Lockley, M. G., Rindsberg, A. K. & Zeiler, R. M., 1987. The palaeoenvironmental significance of the nearshore Curvolithus ichnofacies. Palaios, 2: 255–262.

Mángano, M. G., Buatois, L. A. & Guinea, F. M., 2005. Ichnology of the Alfarcito Member (Santa Rosita Formation) of northwestern Argentina: animal-substrate interactions in a Lower Paleozoic wave-dominated shallow sea. Ameghiniana, 42: 641–668.

Mángano, M. G., Buatois, L. A. & Rindsberg, A. K., 2002. Carboniferous Psammichnites: systematic re-evaluation, taphonomy and autecology. Ichnos, 9: 1–22.

Maples, C. G. & Suttner, L. J., 1990. Trace fossils and marine-non-marine cyclicity in the Fountain Formation (Pennsylvanian: Morrowan/Atokan) near Manitou Springs, Colorado. Journal of Paleontology, 64: 859–880.

Marriott, S. B., Hillier, R. D. & Morrissey, L. B., 2013. Enigmatic sedimentary structures in the Lower Old Red Sandstone, south Wales, UK: possible microbial influence on surface processes and early terrestrial food webs. Geological Magazine, 150: 396–411.

Mastalerz, K., 1987. Sedimentacja w basenie śród粗wierdeckim na przelomie dolnego i górnego karbuonu. In: Baranowski, Z., Grocholski, A., Malinowski, J., Oberg, J. & Porębski, S. (eds), Przewodnik NVIII Zjazd Polskiego Towarzystwa Geologicznego & Polskiego Towarzystwa Geologicznego, 17–19 września 1987. AGH, Kraków, pp. 134–145. [In Polish.] Mastalerz, K., 1995. Deposits of high-density turbidity currents on fan-delta slopes: an example from the upper Viséan Szczawno Formation, Intrasudetic Basin, Poland. Sedimentary Geology, 98: 121–146.

Mastalerz, K. & Porębski, S. J., 1987. Fan-delta complexes in a Viséan low-energy marine embayment, Intrasudetic Basin (SW Poland). In: Nemec, W. (ed.), International Symposium “Fan Deltas – Sedimentology and Tectonic Settings”, Abstracts. University of Bergen, Bergen, pp. 139–140.

Mastalerz, K. & Prouza, V., 1995. Development of the Intra-Sudetic Basin during Carboniferous and Permian. In: Mastalerz, K., Prouza, V., Kurowski, L., Bossowski, A., Ihnatowicz, A. & Nowak, G. (eds), Sedimentary record of the Variscan orogeny and climate – Intra-Sudetic Basin, Poland and Czech Republic. Guide to excursion B1. XIIth International Congress on Carboniferous-Permian, August 28 – September 2, Kraków, Poland. Państwowy Instytut Geologiczny, Warszawa, pp. 5–15.

McIlroy, D., 2008. Ichnological analysis: the common ground between ichnofacies workers and ichnofabric analysts. Palaeogeography, Palaeoclimatology, Palaeoecology, 270: 332–338.

Melchor, R. N., Genise, J. F., Buatois, L. A. & Uamanzo, A. M., 2012. Fluvial environments. In: Knaust, D. & Bromley, R. G. (eds), Trace fossils as indicators of sedimentary environments. Developments in Sedimentology, 64: 329–378. Elsevier.

Mikulaš, R., Lehotský, T. & Bábek, O., 2004. Trace fossils of the Moravice Formation from the southern Nizký Jeseník Mts. (Lower Carboniferous, Culm facies; Moravia, Czech Republic). Bulletin of Geosciences, 79: 81–98.

Muszer, J., 2013. Skamieniałości sławne z formacji ze Szczawna okolic Wałbrzycha (Sudety Środkowe) – wstępne wyniki badań. In: Kędzierski, M. & Kołodziej, B. (eds), Aktualizm i antyaktualizm w paleontologii. XXII Konferencja Naukowa Sekcji Paleontologicznej Polskiego Towarzystwa Geologicznego, 27–30 września 2013 r., Materiały Konferencyjne. Polskie Towarzystwo Geologiczne, Kraków, pp. 34–35. [In Polish.]

Muszer, J., 2019. Trace fossils from the Witosów region – preliminary results. In: Muszer, J., Chrzastek, A. & Niedźwiedzki, R. (eds), From Precambrian to Holocene – biodiversity changes recorded in the rocks. XXIV Konferencja Naukowa Sekcji Paleontologicznej PTG, Wrocław, Długopole Górne 11–14 września 2019, Materiały konferencyjne. Polskie Towarzystwo Geologiczne, Instytut Nauk Geologicznych Uniwersytetu Wrocławskiego, Wrocław, pp. 61–62. [In Polish.] Muszer, J., Górecka-Nowak, A., Kryza, R. & August, C., 2016. Nowe dane na temat biostratigrafii i chronomorfografii osadów karbońskich w Sudeckich. Nowe data on biostratigraphy and chronomorphography of the Carboniferous sediments in Sudeces. In: Pawłowska, K. & Pawłowski, D. (eds), XXIII Konferencja Naukowa Sekcji Paleontologicznej Polskiego Towarzystwa Geologicznego, 21–23 września 2016 Poznań, Abstrakty. Instytut Geologii, Uniwersytet im. A. Mickiewicza, Poznań, pp. 73–74. [In Polish.] Muszer, J. & Haydukiewicz, J., 2009. Occurrence of the trace fossil Zoophycos from the Upper Viséan Papatrońia Beds of the Bardo Structural Unit (Sudeces, SW Poland). Geologia Sudetica, 41: 57–66.

Muszer, J. & Haydukiewicz, J., 2010. First Paleozoic Zoophycos trace fossils from the Sudeces (the Bardo Unit). Geological Quarterly, 54: 381–384.

Muszer, J. & Uglik, M., 2013. Palaeoenvironmental reconstructions of the Upper Viséan Papatrońia Beds (Bardo Unit, Polish Sudeces) using ichnological and palaeontological data. Geological Quarterly, 57: 365–384.

Naruse, H. & Nifuku, K., 2008. Three dimensional morphology of the ichnifossil Phycisiphon incertum and its implication for paleoslope inclination. Palaios, 23: 270–279.

Nemec, W., 1984. Wałbrzych Beds (Lower Namurian, Wałbrzych Coal Measures): analysis of alluvial sedimentation in a coal basin. Geologia Sudetica, 19: 7–73. [In Polish, with English summary.]

Netto, R. G., Brenner, J. S., Buatois, L. A., Uchman, A., Mángano, M. G., Ridge, J. C., Kaczakauskas, V. & Gaigalas, A., 2012. Glacial Environments. In: Knaust, D. & Bromley, R. G. (eds), Trace fossils as indicators of sedimentary environments. Developments in Sedimentology, 64: 299–327. Elsevier.
Nicholson, H. A., 1873. Contributions to the study of the errant
Nemec, W., Porębski, S. J. & Teisseyre, A. K., 1982. Explanatory
J. Muszer
Pemberton, S. G., MacEachern, J. A., Dashtgard, S. E., Bann, K.
Pazos, P. J., Heredia, A. M., Fernández, D. E., Gutiérrez,
Orr, P. J., Benton, M. J. & Trewin, N. H., 1996. Deep marine
Noffke, N., Beukes, N., Gutzmer, J. & Haze, R., 2006. Spatial
Porada, H., Ghergut, J. & Bouougri, E. H., 2008. Kinneyia-type
Pluta, K. & Górecka-Nowak, A., 2018. Miospore evidence
Phillips, Ch., McIlroy, D. & Elliott, T., 2011. Ichnological char-
Pervesler, P., Uchman, A., Hohenegger, J. & Dominici, S., 2011.

Radwański, S., 1952. Paleogeografia i sedymentacja kulmu w północnej części niecki śródsudeckiej. Palaeogeography and sedimentation of the Culm in the northern part of the Intrasudetic Basin. Bulletin of the Institute of Geology, 79: 3–73. [In Polish, with English summary.]

Rindsberg, A. K., 2012. Ichnotaxonomy: Finding patterns in a wel-
ter of information. In: Knaust, D. & Bromley, R. G. (eds), Trace fossils as indicators of sedimentary environments. Developments in Sedimentology, 64: 45–78. Elsevier.

Rodríguez-Tovar, F. J., Nagy, J. & Reolid, M., 2014. Palaeoenviroment of Eocene prodelta in Spitsbergen record-
ed by the trace fossil Phycosiphon incertum. Polar Research, 33: 23786. http://dx.doi.org/10.3402/polar.v33.i23786.

Rodríguez-Tovar, F. J. & Uchman, A., 2004. Ichnotaxonomic analysis of the Cretaceous/Palaeogene boundary interval in the Agost section, south-east Spain. Cretaceous Research, 25: 647–654.

Roemer F., 1870. Geologie von Oberschlesien. Eine Erläuterung
zu der im Auftrage des Königl. Preuss. Handels-Ministeriums von dem Verfasser bearbeiteten geologischen Karten von Oberschlesien in 12 Sektionen. Robert Nischowsky, Breslau, 587 pp.

Rucholtz, K., 1967. Zur Ichnologie und Facies des Devons und Unterkarbons im Harz. Geologie, 16: 503–527.

Sarkar, S., Ghosh, S. K. & Chakraborty, C., 2009. Ichnology of a Late Palaeozoic ice-marginal shallow marine succession: Talchir Formation, Satpara Gondwana basin, central India. Palaeogeography, Palaeoclimatology, Palaeoecology, 283: 28–45.

Savrda, C. E., Krawinkel, H., McCarthy, F. M. G., McHugh, C. M. G., Olson, H. C. & Mountain, G., 2001. Ichnofabrics of a Pleistocene slope succession, New Jersey margin: Relations to climate and sea-level dynamics: Palaeogeography, Palaeoclimatology, Palaeoecology, 171: 41–61.

Schmidt, H., 1925. Die Karbonischen Goniatiten Deutschlands. Jahrbuch der Preussischen Geologischen Landesanstalt, 45: 489–609.

Seilacher, A., 1967. Bathymetry of trace fossils. Marine Geology, 5: 413–428.

Seilacher, A., 1974. Flysch trace fossils: evolution of behavioural diversity in the deep-sea. Neues Jahrbuch für Geologie und Palaontologie, Monatshefte, 1974: 233–245.

Seilacher, A., 1978. Use of trace fossils for recognizing deposition-
al environments. In: Basan P. B. (ed.), Trace fossil concepts. Society for Sedimentary Geology Short Course Notes, 5: 167–181. Society of Economic Paleontologists and Mineralogists, Tulsa, OK.

Seilacher, A., 1997. Fossil Art. The Royal Tyrrell Museum of Palaeontology, Drumheller, Alberta, 64 pp.

Seilacher, A., 2007. Trace Fossil Analysis. Springer, Berlin, Heidelberg, 226 pp.

Seilacher-Drexler, E. & Seilacher, A., 1999. Undertraces of sea pens and moon sails and possible fossil counterparts. Neues Jahrbuch für Geologie und Palaontologie, Abhandlungen, 214: 195–210.

Singh, B. P., Bhargava, O. N., Mikuláš, R., Prasad, S. K., Singla, G. & Kaur, R., 2017. Asteriacites and other trace fossils from the Po Formation (Visean–Serpuhovian), Gannachidham Hill, Spiti Valley (Himalaya) and its paleoenvironmental signif-
cance. Geologica Carpathica, 68: 464–478.
TRACE FOSSILS FROM THE MISSISSIPPIAN OF THE PIASKOWA GÓRA SECTION

Stepek, J. & Geyer, G., 1989. Spurenfossilien aus dem Kulm (Unterkarbon) des Frankenwaldes. *Beringeria*, 1: 1–55.

Teisseyre, A. K., 1968. The Lower Carboniferous of the Intra-Sudetic Basin: a study in sedimentary, petrography and base.

Teisseyre, A. K., 1961. On the problem of unconformity between Lower and Upper Carboniferous in the Middle Sudetes. *Geologia Sudetica*, 5: 237–280.

Teisseyre, A. K., 1975. Sedimentology and paleogeography of the lowest Kulm of the Intrasudetic Basin. *Geologia Sudetica*, 6: 1–58. [In Polish, with English summary.]

Teisseyre, A. K., 1971. Sedimentology of the Kulm alluvial fans in the western Intrasudetic Basin (Central Sudetes, SW Poland). *Geologia Sudetica*, 9: 5–135. [In Polish, with English summary.]

Teisseyre, H., 1952. Geological structure of the northern region of Wałbrzych (Lower Silesia). *Biuletyn Państwowego Instytutu Geologicznego*, 62: 1–58. [In Polish, with English summary.]

Teisseyre, H., 1961. On the problem of unconformity between Lower and Upper Carboniferous in the Middle Sudetes. *Bulletin de l'Academie Polonaise des Sciences, Série des Sciences Géologiques et Géographiques*, 9: 53–61.

Torell, O. M., 1870. Petrificta Suecana Formationis Cambricae. *Acta Universitets Lundensis, Lunds Universit Årsskrift*, 2: 1–14.

Turnau, E., Żelaźniewicz, A. & Franke, W., 2002. Middle to early late Viséan onset of late orogenic sedimentation in the Intra-Sudetic Basin, West Sudetes: miospore evidence and tectonic implication. *Geologia Sudetica*, 34: 9–16.

Uchman, A., 1995. Taxonomy and palaeoecology of flysch trace fossils: the Marnoso-arenacea Formation and associated facies (Miocene, Northern Apennines, Italy). *Beringeria*, 15: 3–115.

Uchman, A., 1998. Taxonomy and ethology of flysch trace fossils: revision of the Marian Książkiewicz collection and studies of complimentary material. *Annales Societatis Geologorum Poloniae*, 68: 105–218.

Uchman, A., 2004. Phanerozoic history of deep-sea trace fossils. In: McIlroy, D. (ed.), *Developments in Sedimentology*, 64: 643–671. Elsevier.

Uchman, A., 2007. Deep-sea ichnology: development of major concepts. In: Miller, W., III (ed.), *Trace Fossils: Concepts, Problems, Prospects*. Elsevier, Amsterdam, pp. 248–267.

Uchman, A. & Wetzel, A., 2012. Deep-sea fans. In: Knaust, D. & Bromley, R. G. (eds), *Trace fossils as indicators of sedimentary environments. Developments in Sedimentology*, 64: 643–671. Elsevier.

Vialov, O. S., 1962. Problematica of the Beacon Sandstone at Beacon Heights, West Antarctica. *New Zealand Journal of Geology and Geophysics*, 5: 718–732.

Vodrážková, S., Vodrážka, R., Munneck, A., Franců, J., Al-Bassam, K., Halodová, P. & Tonarová, P., 2019. Microbially induced wrinkle structures in Middle Devonian siliciclastics from the Prague Basin, Czech Republic. *Lethaia*, 52: 149–164.

Webby, B. D., 1970. Late Precambrian trace fossils from New South Wales. *Lethaia*, 3: 79–109.

Weiss, E., 1884. Vorlegung des Dictyophyllum liebeanaum Gein. aus der Gegend von Gera. *Sitzungsberichte der Gesellschaft Naturforschender Freunde zu Berlin*, 1884, p. 17. Berlin.

Wetzel, A., 2008. Recent bioturbation in the deep South China Sea: a uniformitarian ichnologic approach. *Palaios*, 23: 601–615.

Wetzel, A., 2010. Deep-sea ichnology: Observations in modern sediments to interpret fossil counterparts. *Acta Geologica Polonica*, 60: 125–138.

Wetzel, A. & Bromley, R. G., 1994: *Phycosiphon incertum* revisited: Anconichnus horizontalis is its junior subjective synonym. *Journal of Paleontology*, 68: 1396–1402.

Wetzel, A. & Uchman, A., 2001. Sequential colonization of muddy turbidites in the Eocene Beloveza Formation, Carpathians, Poland. *Palaeoecography, Palaeoclimatology, Palaeoecology*, 168: 171–186.

Yochelson, E. L. & Fedonkin, M. A., 1997. The type specimens (Middle Cambrian) of the trace fossil *Archeonassa* Fenton & Fenton. *Canadian Journal of Earth Sciences*, 34: 1210–1219.

Żak, C., 1958. Structure and the development of the western limb of the Intrasudetic basin. *Bulletin of the Institute of Geology*, 98: 77–124.

Żakowa, H., 1958. Biostratigraphy of the Lower Carboniferous marine deposits of the area of Wałbrzych Miasto (Lower Silesia). *Institut Geologiczny, Prace*, 19, 211 pp. [In Polish, with English summary.]

Żakowa, H., 1960. The upper Visean from Konradów near Wałbrzych (Lower Silesia). *Kwartalnik Geologiczny*, 4: 331–355. [In Polish, with English summary.]

Żakowa, H., 1963. Stratigraphy and facial extents of the Lower Carboniferous in the Sudetes. *Kwartalnik Geologiczny*, 7: 73–94. [In Polish, with English summary.]

Żelaźniewicz, A., Aleksandrowski, P., Bula, Z., Karnkowski, P. H., Konon, A., Oszczypko, N., Ślączka, A., Zaba, J. & Żytko, K., 2011. *Regionalizacja tektoniczna Polski*. Komitet Nauk Geologicznych PAN, Wrocław, 60 pp. [In Polish.]
