A local constant-factor approximation algorithm for MDS problem in anonymous network

Wojciech Wawrzyniak

Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Poznań, Poland, wwawrzy@amu.edu.pl

Abstract

In research on distributed local algorithms it is commonly assumed that each vertex has a unique identifier in the entire graph. However, it turns out that in case of certain classes of graphs (for example not lift-closed bounded degree graphs) identifiers are unnecessary and only a port ordering is needed [8]. One of the open issues was whether identifiers are essential in planar graphs. In this paper, we answer this question and we propose an algorithm which returns constant approximation of the MDS problem in CONGEST model. The algorithm doesn't use any additional information about the structure of the graph and the nodes don’t have unique identifiers. We hope that this paper will be very helpful as a hint for further comparisons of the unique identifier model and the model with only a port numbering in other classes of graphs.

*The research supported by grant N N206 565740.
1 Introduction

In recent years, there has been a growing interest in designing distributed local algorithms. It might come out of the easiness of applying these algorithms in reality. They run very fast (in constant time) and are tolerant to the network structure changes and node failures. It turns out the running time of these algorithms is completely decoupled from the size of the network and each node takes its decision based only on the knowledge about its k-neighbourhoods. This fact is very important for the scalability of an algorithm in large networks. If the structure of the network changes (i.e. a vertex is removed), then an algorithm must be re-called to repair a solution only for a small surrounding of the removed vertex. It is a significantly faster solution than in case of standard algorithms requirements, which require re-execution of the algorithm on the entire network.

In some research on designing local algorithms (but not strictly local), it is allowed that nodes have a knowledge about the \(f(n)\)-neighbourhood, where \(f(n)\) is a function that depends on the number of vertices in the network. However, in this paper we only consider strictly local algorithms, that do not need any additional information about the structure of the graph and don’t have unique identifiers, so they satisfy much stronger assumptions.

In recent years, several deterministic distributed local algorithms have been proposed. They return solutions that are good approximations of various problems (e.g. minimum edge cover, minimal dominating set, semi-matching), in constant time in different classes of graphs (e.g. bounded degree graphs, planar graphs). However, these algorithms very often assume that nodes have unique identifiers. This assumption could be very important if we consider a more "real" model, in which in a single communication round, each vertex can send a message which contains at most \(O(\log n)\) bits, where \(n = |V(G)|\) is the number of vertices in the graph. This limitation makes it impossible to e.g. detect small cycles in the network, gather knowledge of 2-hop neighbourhoods. Recently in a paper [8] the authors Göös et al. have shown that for lift-closed bounded degree graphs, a model with unique identifiers (known as LOCAL [14]), and model with a port numbering only (known as PO model [8]), are practically equivalent. However, techniques used in their work do not allow us to consider the equivalence of these models for Minimum Dominating Set (MDS) problem in planar graphs. It is known [12] that there exists an algorithm for planar graphs which, in constant time, returns a constant approximation of the MDS in model with unique identifiers and an unbounded message size.

It turns out that there also exists a strictly local algorithm for planar graphs, that in the model without unique identifiers and with upper bounded message size, finds constant approximation of the Minimum Dominating Set.

1.1 Related Work

A distributed algorithm is called a local algorithm if it completes in a constant number of synchronised communication rounds. If we assume that the nodes do not have any additional information about the other vertices, then we say that our algorithm is strictly local.

The research on local algorithms has been ongoing for several years ([1, 3, 9, 14, 15, 16, 17]), but the strictly local algorithms gained the increased interest just recently. There are now more than one hundred works referring, more or less closely, to the topic of such algorithms. Thus, it is not possible to briefly describe all of these publications. The best way to study this topic is to read excellent survey [18] written by Suomela. That article describes all the important results obtained so far by all the researchers. One of many open questions is an issue raised in a paper [8] concerning the similarity of two models: a model with unique identifiers and a model with only a port numbering for MDS problem in planar graphs. We answer this question.
A local constant-factor approximation algorithm for MDS problem in anonymous network

One of the first papers, that considered network without unique identifiers, has been written by Angluin [2]. Unfortunately, in 1992, Linial showed in [14] that there is no algorithm that, in constant time, finds a Maximal Independent Set in a cycle in the unique identifiers model. This result shows how difficult it is to find a fast distributed algorithm and it is even more difficult if we consider strictly local algorithms only. Thankfully, in 1995 Naor and Stockmeyer in [16] introduced the concept of Local Checkable Labelling (LCL) problems and showed that if there is a local algorithm in a model with unique identifiers on nodes then there is also order-invariant local algorithm which uses only the fact that for each pair \(v, u \) of vertices \(id(v) < id(u) \) or \(id(v) > id(u) \). So from the point of view of the LCL problems both models are almost equivalent. Note that the class of LCL problems contains among others the maximal independent set or vertex colouring. Thus, a natural question then came up, whether there exists an algorithm which, without information about the sequence of vertices is able to solve any non-trivial problem. Kuhn and Wattenhofer in [11], presented the first local but randomized algorithm for bounded degree graphs. Their algorithm does not require long messages. Then in [10] the algorithm has been improved by Kuhn et al. Notice that both approaches used the method of linear programming. The first local algorithm for MDS problem for planar graphs was proposed by Lenzen et al. in [12], but their algorithm requires long messages and unique IDs on nodes.

There is also a lower bound for possible approximation factor of an algorithm. In [4] it has been shown that there is no algorithm which, in a constant number of communication rounds returns an \((5 - \epsilon)\) approximation of the MDS in planar graphs.

1.2 Main Results and Organisation

Our main result is summarised in the following theorem. Let \(M \) denote an arbitrary MDS in a planar graph \(G = (V, E) \).

Theorem 1. Let \(G = (V, E) \) be a planar graph and \(D \) be a set returned by algorithm Port-NumberingMds. Then \(|D| \leq O(|M|)\).

The rest of this paper is structured as follows. We begin by describing the computational model and notation used in this paper. Then in section 2.1 we briefly introduce the principle of our algorithm and its formal pseudocode. Next, in section 2.2 we present the analysis of the correctness of our algorithm, and compute the approximation factor of the algorithm. At the end, in section 3 we summarise our considerations.

1.3 Model and Notation

In this paper we work in a synchronous communication model and as a representation of the network we use a planar graph \(G = (V, E) \). Edges in the graph will correspond to communication links and processors will correspond to vertices from the set \(V \). Moreover, we assume that each vertex has its own labelling of its incident edges and vertices do not have unique identifiers and also do not have any additional information.

In order to facilitate the reader to understand this paper, we use the same notations as in [12]. For nodes \(A \subseteq V \) we define the set of inclusive neighbourhood of \(A \) as \(N^+_A := \{v : v \in A \lor \exists u \in E \land v \in A\} \). We also denote the neighbours of \(A \) not in \(A \) as \(N_A := N^+_A \setminus A \). To simplify the notation in cases where \(A = \{a\} \) we may omit the braces, e.g. \(N_a \) instead of \(N_{\{a\}} \).
A local constant-factor approximation algorithm for MDS problem in anonymous network

2 Constant approximation in \textit{CONGEST} model

2.1 Algorithm

The key idea of the algorithm is based on an appropriate use of planarity of the graph \(G \). Intuitively, some vertex \(v \) should belong to the dominating set \(D \) if it dominates a lot of its neighbours. However, in reality, such approach does not give a constant approximation as we can see in the Figure 7. This situation occurs if graph \(G \) contains many vertices with big common neighbourhood. In our algorithm we first dominate only a small subset of these vertices (step 2 and 3 of the algorithm). So we avoid unnecessary adding of multiple vertices which dominate the same or almost the same neighbourhoods.

\[\text{Algorithm 1} \text{ PortNumberingMds} \]

\begin{verbatim}
1: \(D := \emptyset \).
2: \(D_1 := \text{Hop2Dominate}(G,D), \quad D := D \cup D_1 \)
3: \(D_2 := \text{Hop2Dominate}(G,D), \quad D := D \cup D_2 \)
4: \textbf{for} \(v \in V \text{ in parallel do} \)
5: \(\delta_v^{V \setminus N_D^+} := |N_v^+ \setminus N_D^+| \)
6: \textbf{if} \(v \notin N_D^+ \text{ then} \)
7: \(\mu_v := \max_{w \in (N_v^+ \cap N_D)} \{ \delta_w^{V \setminus N_D^+} \} \)
8: \textbf{choose any} \(w(v) \in \{ w \in (N_v^+ \cap N_D) : \delta_w^{V \setminus N_D^+} = \mu_v \} \)
9: \(D_3 := \{ w(v) : v \notin N_D^+ \}, \quad D := D \cup D_3 \)
10: \textbf{return} \(D \)
\end{verbatim}

\[\text{Function 2 Hop2Dominate}(G,D) \]

\begin{verbatim}
1: \textbf{for} \(v \in V \text{ in parallel do} \quad \delta_v^{V \setminus D} := |N_v^+ \setminus N_D^+| \)
2: \textbf{for} \(v \in V \setminus D \text{ in parallel do} \quad \Delta_v^{V \setminus D} := \max_{w \in N_v^+} \{ \delta_w^{V \setminus D} \} \)
3: \textbf{choose any} \(x(v) \in \{ u \in N_v^+ : \delta_u^{V \setminus D}(u) = \Delta_v^{V \setminus D} \} \)
4: \(X := X \cup \{ x(v) \} \)
5: \textbf{for} \(v \in V \text{ in parallel do} \quad \delta_v^X := |N_v^+ \cap X| \)
6: \textbf{if} \(v \in X \text{ then} \)
7: \(\xi_v := \max_{w \in N_v^+} \{ \delta_w^X \} \)
8: \textbf{choose any} \(d(v) \in \{ w \in N_v^+ : \delta_w^X = \xi_v \} \)
9: \(D_{\text{new}} := \{ d(v) : v \in X \} \)
10: \textbf{return} \(D_{\text{new}} \)
\end{verbatim}

In the next round each vertex not dominated yet adds to the set \(D \) a dominated vertex with biggest residual degree from its dominated neighbourhood. The planarity of the graph \(G \) ensures that there is a small number of such added vertices. To prove that both sets are small, we will use well known fact that Jordan curve divides the plane into two regions - an interior and an exterior, so that any cycle in a planar graph \(G \) divides the graph into two parts without edges between their interiors. We partition our plane graph into disjoint regions in such way that the number of regions are proportional to the size of the set \(D \) and moreover, in each region there is at least one vertex from the set \(M \).
2.2 Analysis

As can be easily seen, the algorithm can be performed in a constant number of communication rounds and returns a dominating set due to last round (step 9), where all not dominated vertices add exactly one of their neighbours to the dominating set D. Therefore, in our analysis we only need to show that the numbers of vertices added to the dominating set D in steps 2, 3 and 9 are small enough that our algorithm returns solutions which are a constant approximation of an optimal MDS. To simplify notation in our analysis, we assume that the set of vertices added in step 2, 3 and 9 will be denoted by D_1, D_2 and D_3 respectively, and some fixed vertices added will be denoted as M. We need to recall the following well-known lemma.

Lemma 1. A minor of a planar graph is planar. A planar graph of n nodes has less than $3n$ edges. A planar bipartite graph of n nodes has less than $2n$ edges.

We will begin the analysis of our algorithm with estimating the maximal number of vertices added to the set $D_1 \setminus M$. To show that this value we need to define a special subgraph G_1 of graph G.

Definition 1. Let graph $G_1 = (V_1, E_1)$ be a subgraph of $G = (V_G, E_G)$ constructed in the following way:

i) $V_1 := X \cup D_1$ and $E_1 = \emptyset$, where X is a set from step 2 of the algorithm.

ii) Add all edges between vertices from V_1.

iii) Add minimal number of edges (from E_G) and nodes (from V_G) such that each vertex from the current set V_1 has adjacent vertex from the set M or is contained in the set M (so for each $v \in V_1$ we have $N^+_v(G_1) \cap M \neq \emptyset$).

In order to simplify the description of proofs, we will also introduce the following notation (see Figure 1):

\[
egin{align*}
X_M & := \{v : v \in (X \cap M)\}, & Y_M & := \{d(v) : v \in X_M\}, \\
X_S & := \{v : v \in X \setminus M \wedge |N^+_v \cap X| \leq c\}, & Y_S & := \{d(v) : v \in X_S\}, \\
X_L & := \{v : v \in X \setminus (X_M \cup X_S)\}, & Y_L & := \{d(v) : v \in X_L\}, \\
E_i & := \{\{v, x\} : v \in Y_L \setminus M \wedge x \in X_i\}, & i & \in \{M, S, L\}, \\
Y & := Y_M \cup Y_S \cup Y_L
\end{align*}
\]

where $d(v)$ is a vertex chosen in the step 10 of the algorithm. Notice that not all of the subsets are disjoint, for example, it is possible that some fixed vertex v belongs to both sets Y_L and X_L $(v \in Y_L \cap X_L)$. To show that the maximal number of vertices in the set $D_1 \setminus M \subseteq Y_M \cup Y_S \cup Y_L$ is comparable to the order of the set M, we will consider the size of each set Y_M, Y_S, and Y_L separately. This analysis is contained in Lemma 2, Lemma 3 and Lemma 7.

At the beginning we will prove, a simple but very useful fact.

Fact 1. $|Y_i| \leq |X_i|$ for each $i \in \{M, S, L\}$

Proof. Note that the vertex from the set Y_i has been added in step 2 of the algorithm by one of the vertices in X_i. In addition, each vertex $x \in X_i$ adds at most one vertex to D_1. Thus, the order of the set Y_i cannot be greater than the order of the set X_i. \qed

Lemma 2. $|X_M| \leq |M|$ and $|Y_M| \leq |M|$.

Proof. The set X_M is a set contains the elements which both belong to sets X and M. Hence the order of X_M is less or equal to the order of M ($|X_M| \leq |M|$). Moreover, using Fact 1 we obtain that $|Y_M| \leq |X_M| \leq |M|$. \qed
Lemma 3. \(|X_S| \leq c|M| \) and \(|Y_S| \leq c|M| \).

Proof. In the step 2 of the algorithm every vertex \(v \in X \) adds its adjacent vertex \(w \in N^+_v \) with the biggest residual degree \(\delta^X_w \) (where \(\delta^X_w := |N^+_w \cap X| \)) from the inclusive neighbourhood. The definition of the set \(X_S \) implies that every vertex \(v \in X_S \) that does not belong to \(M \) has at least one neighbour in the set \(M \), so that vertices from the set \(X_S \) have to be dominated in the optimal solution \(M \). Let us define a set \(A := N_{X_S} \cap M \) then for all \(m \in A \) we have that the residual degree of \(m \) is less or equal to \(c \) (\(\delta^X_m \leq c \)). Otherwise, the vertex \(v \) would not belong to \(X_S \) (\(v \notin X_S \)) because its residual degree is bigger than \(c \). Hence, every vertex \(m \in A \subseteq M \) dominates at most \(c \) vertices from the set \(X_S \) so \(|M| \geq |X_S|/c \). Using \(|Y_S| \leq |X_S| \) from Fact 4 we obtain that \(|M| \geq |X_S|/c \geq |Y_S|/c \).

Our goal is to show that \(|D_1 \setminus M| = O(|M|) \) so it is left to prove that the maximal number of vertices in \(Y_L \) is small (\(|Y_L| = O(|M|) \)). For this purpose, we will use a technique of splitting the graph \(G \) into bunches and then we will show that each induced region of a bunch contains many vertices from the set \(M \). We start by defining what we mean by a term bunch, which was first introduced in [5].

Definition 2. Let \(G = (V, E) \) be a planar graph, \(S \subseteq V \), \(T \subseteq V \) and \(W \subseteq V \). A \(v_i-v_j \)-path is called \textbf{S-T-W-special} if it has the form \(v_iuv_j \), where \(v_i \in S \), \(u \in T \) and \(v_j \in W \).

Although our algorithm works in planar graphs, in the analysis we assume that the given graph \(G \) is plane. Let us recall some basic theoretical graph terminology for planar graphs. If \(G \) is a plane graph in \(R^2 \) then maximal open set \(f \in R^2 \setminus G \) such that any two points in \(f \) can be connected by a curve contained in \(f \) is called a face of \(G \). Let \(P, Q \) be two special \(v_i-v_j \)-paths.

In any plane drawing, graph \(P \cup Q \) contains exactly one bounded face. (We will assume here that the face is empty if \(P = Q \).) Now we set \(F(P \cup Q) := f \) and \(\text{Reg}(P \cup Q) := (P \cup Q) \cup f \) where \(f \) is the bounded face in the drawing of \(P \cup Q \).

Definition 3. Let \(G = (V, E) \) be a plane graph and let \(v_i \in S \), \(v_j \in W \), \(T \subseteq V \) where \(i \neq j \). A maximal set \(B \) of \(S-T-W \)-special paths between \(v_i \) and \(v_j \) is called a \textbf{S-T-W-bunch} between \(v_i \) and \(v_j \) if there exist two distinct paths \(P, Q \in B \) such that all paths from \(B \) are contained in \(\text{Reg}(P \cup Q) \) and no vertex from \(S \cup W \) is contained in \(F(P \cup Q) \). In addition, the paths \(P, Q \) will be called the \textbf{boundary paths} of \(B \). Moreover if a bunch \(B \) contains at least five special paths then we say that \(B \) is a \textbf{large bunch}.

To simplify the notation, if the sets \(A, B, C \) are clear from the context, we will write \textit{special paths} instead of \(A-B-C \)-special paths. In one of the last lemmas in this paper we will consider

![Figure 1: An example of the graph G1. If d(v) = u then edge e = vu is marked by an arrowhead.](image-url)
special paths and bunches of length three. Their definition is analogous to the definitions of special paths of length two.

After defining the concepts of bunches and special paths, next, in Fact and Lemma, we will estimate their sizes. Then, in Lemma, we will show that most of regions designated by the bunches contain many vertices from the set \(M \). The proof of Fact is quite complicated and at the beginning we show that the number of connected components of the induced subgraph is smaller than \(|M| \).

Lemma 4. Let \(G = (V, E) \) be a graph and \(M \) be a dominating set in \(G \). If \(H = (V_H, E_H) \) is a subgraph of \(G \) such that \(M \subseteq V_H \) and every vertex \(v \in V_H \setminus M \) contains at least one adjacent vertex from \(M \) then \(\omega(H) \leq |M| \).

Proof. Let \(Z_1, Z_2, \ldots, Z_k \) be a partition of \(V_H \) to minimal number of connected components. If a set \(Z_i \) contains at least one vertex \(v \in V_H \setminus M \) then there is a vertex \(m \in M \) such that \(\{m, v\} \in E_H \). Hence each connected component \(Z_i \) contains at least one vertex from \(M \). In other case there is no vertex \(v \in V_H \setminus M \) in component \(Z_i \) then since \(Z_i \neq \emptyset \) thus \(Z_i \) contains at least one vertex from a set \(M \). We obtain that each connected component contains at least one vertex from \(M \) thus \(\omega(H) \leq |M| \).

Lemma 5. Let \(G = (V, E) \) be a planar graph and \(A, B, C \subseteq V \) be subsets of vertices such that the sets are pairwise disjoint and each vertex from \(B \) is adjacent to at least one vertex from each sets \(A \) and \(C \). Then graph \(G \) contains at most \(4(|A| + |C|) + \omega(V) \) \(A-B-C \)-bunches, where \(\omega(V) \) denote the number of connected components in graph \(G \).

Proof. To bound the number of bunches in the graph \(G \) more effort is required. First of all, we need to define a multigraph \(H = (V_H, E_H) \) obtained from \(G \) by contracting each vertex \(x \in B \) to any adjacent vertex \(m \in C \) and adding edge between contracted vertices and neighbours of a vertex \(x \) from a set \(A \) (see Figure 2). Let vertices \(u, w \in V \) was contracted in the graph \(H \) then we say that path \(vuw \) from the graph \(G \) \((v \in A, u \in B, w \in C) \) corresponds to edge \(e = \{v, uw\} \) in the graph \(H \). Notice that each vertex \(x \in B \) is adjacent with exactly one vertex \(m \in C \).

![Figure 2: An example of the construction of the graph \(H \). We say that path \(v_2v_5v_8 \) from the graph \(G \) corresponds to edge \(e \) in the graph \(H \).](image)

Let us consider a connected component of the multigraph \(H \) \((H[Z_i]) \), where \(Z_i \subseteq V_H \) denotes the set of all vertices from such component. Then we can find spanning tree \(T := T_H^{Z_i} \) in a multigraph \(H[Z_i] \). From a well known Lemma we know that a multigraph \(H[Z_i] \) is planar.
Consider a plane drawing of $H[Z_i]$. Let for every vertex $v \in Z_i$ and $\epsilon_v > 0$ define a ball C_v around a vertex v of radius ϵ_v, such that C_v intersects only with these edges of $H[Z_i]$ that contain v and does not contain points from other balls. We denote a connected region of $C_v \setminus T \subseteq \mathbb{R}^2$ as a \textit{side} of vertex v. It is obvious that every edge from $E(H[Z_i]) \setminus E(T)$ that contains v reaches v by some side s of a vertex v. In this case we will say the edge ends in side s (see Figure 3).

![Figure 3: An example of sides in an arbitrary graph, as we can see that edges e_2, e_3 end in side s_2 of vertex v. The edges of the tree T are shown in bold.](image)

We also have to prove similar fact like in paper [5].

\textbf{Fact 2.} \textit{The multigraph H contains at most two edges e, e' of $E(H[Z_i]) \setminus E(T)$ such that e and e' end in the same sides and corresponding special paths of edges e, e' in G belong to different A-B-C-bunches in corresponding graph $G[Z_i']$, where Z_i' denotes all contracted vertices in Z_i. Furthermore there is at most one such pair of edges e, e' in a multigraph H.}

\textit{Proof.} Let F be the set of u-v edges from $E(H[Z_i]) \setminus E(T)$ that end in the same sides of u and v. Assume that $e, e' \in F$ belong to different bunches then $C_1 := uTv + e$ is a cycle and consequently every other u-v edge i.e. e' must be contained in one of the regions of C_1. Because corresponding special paths of e and e' are contained in different bunches in $G[Z_i']$ thus the region $R[C_1] \cup R[C_2]$ where $C_2 := uTv + e'$ contains all vertices from Z_i'. If there is other u-v edge e'' which belongs to different bunch than e and e' contained in the bounded face of C_1 or bounded face C_2 then there is a vertex z from the set Z_i which is contained in the bounded region of the cycle $ueve'u$. Then e, e' and e'' end in different side of u (contradiction). Moreover if graph H' contains such edges e, e' then from planarity there is no any other pair of edges $e_2, e'_2 \in E(H[Z_i]) \setminus E(T)$ which ends in the same sides of two vertices. \hfill \square

Let $H'[Z_i]$ be the supergraph of T obtained as follows. For every vertex $v \in V_T$ put a vertex w_v in each side of v and join it with v by one edge. The set of new added vertices we denote as $V_{T'}$. Substitute the edge from $E(H[Z_i]) \setminus E(T)$ which ends in the side of v containing w_v with the edge that ends in w_v. Let $e_1, e_2, \ldots, e_k \in E(H[Z_i]) \setminus E(T)$ be a maximal set of edges which corresponds to special paths in some fixed bunch from $G[Z_i']$ then we remove edges e_2, e_3, \ldots, e_k from $H'[Z_i]$. The supergraph $H'[Z_i]$ is a planar multigraph and using Fact 2 we obtain that almost every pair of vertices (except for one) could be connected by at most one edge from a set $E(H'[Z_i]) \setminus E(T)$. Let us notice that for each bunch in $G[Z_i']$ there exists disjoint corresponding edge in $H'[Z_i]$. For every vertex $v \in T$ we add exactly $\deg_T(v)$ new vertices, thus we can simply
Proof. This follows directly from Lemma 4 and Lemma 5.

Fact 3. Let \(A := Y_L \setminus M \), \(B := X_L \setminus Y_L \) and \(C := M \). Then the graph \(G_1 \) contains at most \(4|Y_L \setminus M| + 5|M| \) \(A\,\cdot\,B\,\cdot\,C \)-bunches. This set of bunches we denote by \(\mathcal{B}_1 \).

Lemma 6. Let \(B \in \mathcal{B}_1 \) be a bunch such that \(B \) contains at least five \((Y_L \setminus M)\)-\((X_L \setminus Y_L)\)-\(M\)-special paths in the graph \(G_1 \) (\(b_B \geq 5 \)). Then \(|M| = 2 \left\lceil \frac{b_B - 5}{2} \right\rceil \), where \(M \in F(B) := \{m \in M : m \in F(P, Q) \text{ and } P, Q \text{ are boundary paths of a bunch } B\} \).

Proof.

Let us consider the structure of a subgraph of \(G \) induced by vertices contained in a region designated by a boundary of special paths of some bunch \(B \in \mathcal{B}_1 \) (\(R[B] \)). Recall that we denote a number of special paths in a bunch \(B \in \mathcal{B}_1 \) as \(b_B \) and we take into account only bunches \(B \in \mathcal{B}_1 \) such that \(b_B \geq 5 \). Hence each considered bunch contains a vertex \(v \in Y_L \setminus M \), a vertex \(m \in M \) and at least five vertices from the set \(X_L \setminus Y_L \) (see Figure 5). Moreover, a bunch \(B \) creates at least \(b_B - 1 \) disjoint regions in the graph \(G \setminus B \). We will show that many of them
contain vertices from \(M \) and, more precisely, each region \(R[B] \) contains at least \(\lceil (b_B - 3)/2 \rceil \) vertices from \(M \).

Since vertex \(x_i \) belongs to the set \(X_L \setminus Y_L \), thus \(x_i \) was added to \(X \) by some vertex \(u \in V \) in the step 3 of the algorithm, as a vertex with the largest degree in the neighbourhood \(N_u(v) \). It is possible that \(u \neq v \). Using an assumption that \(b_B \geq 5 \) we obtain \(\deg_G(m), \deg_G(v) \geq 5 \) thus an interior vertex \(x_i \) (see Figure 5) could not have been added by any of the vertices \(x_{i-1}, x_{i+1} \) or \(m \) until some other node \(z \) adjacent to \(x_i \) exists in \(F(v, x_{i-1}, m, x_{i+1}, v) \) (see Figure 5). Hence each interior vertex \(x_i \in F(B) \) is adjacent with at least one vertex \(z \) from region \(F(v, x_{i-1}, m, x_{i+1}, v) \) such that at least one of the following cases is satisfied or \(x(v) = x_i \)

a) \(z \in M \)
b) \(\exists m' \in M \) such that \(\{m', z\} \in E_G \) and \(m' \in F(v, x_{i-1}, m, x_{i+1}, v) \)

Let \(z_1, z_2, \ldots, z_k \) be a set of vertices lying inside \(F(v, x_{i-1}, m, x_{i+1}, v) \) and adjacent to a vertex \(x_i \). Suppose that \(x(v) \neq x_i \) and case a) is not satisfied for any \(z_j \), so \(x(v) \neq x_i \) and \(z_1, z_2, \ldots, z_k \notin M \). In the optimal solution \(M \) every vertex \(v \in V \) belongs to \(M \) or has a neighbour in this set, thus there exist vertices \(m'_1, m'_2, \ldots, m'_k \in M \) such that each \(m'_j \) dominates \(z_j \) (\(j \in \{1, 2, \ldots, k\} \)). Recall that there exists \(z_i \in \{z_1, z_2, \ldots, z_k\} \) such that \(x(z_i) = x_i \) (determined in step 3 of the algorithm) so \(\deg_G(m'_i) \leq \deg_G(x_i) \). Assume by contradiction, that case b) is also not satisfied for each \(m'_1, m'_2, \ldots, m'_k \). Then \(m'_1 = m'_2 = \ldots = m'_k = m \), but in this case \(\deg_G(m) > \deg_G(x_i) \) and thus there is no vertex \(z_i \) such that \(x(z_i) = x_i \). It is a contradiction with assumption that \(x_i \in X \). Hence at least one of the cases a), b) is satisfied.

In a subgraph induced by boundary paths of a bunch \(B \) there are exactly \(b_B - 2 \) internal vertices from the set \(X_L \setminus Y_L \) and furthermore at most one such vertex could be chosen by vertex \(v \in Y_L \setminus M \) from this bunch. So at least \(b_B - 3 \) internal vertices of the bunch have corresponding vertex \(m' \in M \) which is contained in the region \(F(v, x_{i-1}, m, x_{i+1}, v) \). Notice that it is possible that two vertices \(x_j, x_{j+1} \in X_L \setminus Y_L \) have corresponding vertices \(m', m'' \) in the same face (i.e \(m' = m'' \)). Thus, we get that \(|M| \in F(B)| \geq \lceil (b_B - 3)/2 \rceil \).

Now we are ready to show that the \(|Y_L| = O(|M|) \).

Lemma 7. Let \(c \in \mathbb{N} \) and \(c' > 0 \) be constants such that

\[
\frac{22c'}{cc' - 24c' - 2} > 0 \quad \text{and} \quad C := \max \left\{ \frac{22c'}{cc' - 24c' - 2}, c' \right\}.
\]

Then

\[
|Y_L \setminus M| \leq C|M| \quad \text{so} \quad |Y_L| \leq (C + 1)|M|
\]
Proof. We start with an outline of the proof. Our goal is to show that $|Y_L \setminus M| = O(|M|)$. To this end, we first prove that there are many edges in the set E_L (E_L was specified in Definition 1 on page 3). Since E_L is large, the graph G_1 contains also many $(Y_L \setminus M)\cdot(X_L \setminus Y_L)\cdot M$-bunches. In addition using Lemma 5, most of them contain a lot of vertices from the optimal solution M. Hence, finally we get that $|Y_L \setminus M| = O(|M|).

Assume that $|Y_L \setminus M| > c'|M|$ (where $c' > 0$). In other case lemma is proved because $C \geq c'$. To estimate the order of the set of edges E_L we will first consider number of edges in sets E_M and E_S in a graph G_1. Notice that the graph G_1 is planar and sets X_M and $Y_L \setminus M$ are disjoint ($X_M \cap (Y_L \setminus M) = \emptyset$). Hence, from the assumption that $|Y_L \setminus M| > c'|M|$ and Lemma 1 and Lemma 2 we get that $|E_M| \leq 2(|X_M| + |Y_L \setminus M|) \leq 2(|M| + |Y_L \setminus M|) \leq (2|M|)(c' + 1)/c'$.

Observe also that set E_S is empty ($E_S = \emptyset$). Indeed, if there is an edge $e = \{u, v\}$ such that $u \in X_S$ and $v \in Y_L \setminus M$ then vertex u would have chosen vertex $v \notin Y_L \setminus M$, so u would not be in the set X_S ($u \notin X_S$). Let E'_L be a subset of E_L, where no edge has two endpoints inside $Y_L \setminus M$ set. Thus using planarity we obtain the following inequality $|E'_L| \geq |E_L| - 6|Y_L \setminus M|$. From the definition of the set Y_L we know that each vertex $v \in Y_L$ is adjacent to at least c vertices from $X := X_M \cup X_S \cup X_L$. Hence,

$$|E'_L| \geq c|Y_L \setminus M| - |E_M| - |E_S| \geq c|Y_L \setminus M| - 0 - 2|Y_L \setminus M|(c' + 1)/c' \geq |Y_L \setminus M| \cdot \frac{cc' - 2c' - 2}{c'}$$

Observe that there is a bijection from E'_L to a set of $(Y_L \setminus M)\cdot(X_L \setminus Y_L)\cdot M$-special paths in the graph G_1. Thus a graph G_1 contains at least $|E'_L|$ special paths.

Now we would like to use fact 3 and lemma 6 together. To do it we have to ensure that considered bunches contain at least five special paths (assumption of the lemma). Recall that if bunch B contains at least five special paths then we say that B is large. It is obvious from pigeonhole principle, that there are at most $4|B_1|$ special paths which do not belong to large bunches.

Now we will calculate order of the set of $(Y_L \setminus M)\cdot(X_L \setminus Y_L)\cdot M$-special paths in graph G_1 which belong to the set of large bunches. From Fact 3 we know that $|B_1| \leq 4|Y_L \setminus M| + 5|M|$, so at most $16|Y_L \setminus M| + 20|M|$ considered special paths not belong to a set of large bunches. Let $B_1^{B_{IG}}$ be a set of special paths which are contained in some large bunch and such that an internal vertex x_i of each special path v, x_i, m was not added to set X by a vertex v then

$$|B_1^{B_{IG}}| \geq |E'_L| - (16|Y_L \setminus M| + 20|M|) \geq |Y_L \setminus M| \cdot \frac{cc' - 2c' - 2}{c'} - 20|M|$$

Using lemma 6 and observing that in calculation of a set $B_1^{B_{IG}}$ we remove four vertices for each bunch we get that

$$|M| \geq \sum_{B \in B_1, \delta_B \geq 5} \left\lfloor \frac{b_B - 3}{2} \right\rfloor \geq \frac{|B_1^{B_{IG}}|}{2} \geq \frac{|Y_L \setminus M| \cdot \frac{cc' - 2c' - 2}{c'} - 20|M|}{2}$$

Notice that using easily lemmas 2, 3, and 7 and assuming proper values for constants c and c' we obtain that $|D_1 \setminus M| = O(|M|)$ and moreover using exactly the same reasoning we could prove following lemma.

Lemma 8. Let c, c' and C be defined as in earlier lemmas. Then $|D_2 \setminus M| \leq |M| + c|M| + C|M|$.

11
Thus to prove that our algorithm returns a constant approximation of the MDS problem we have to show that $|D_3| = O(|M|)$. Let us observe that the set D_3 contains only vertices which are not dominated by set D_1. We divide a set D_3 to three pairwise disjoint subsets $D_3 \cap M$, $D'_3 := \{v \in (D_3 \setminus M) : \exists u \in N_v \setminus M \land w(u) = v\}$, and $D_3 \setminus (D'_3 \cup M)$. The orders of the sets $D_3 \cap M$ and $D_3 \setminus (D'_3 \cup M)$ is obvious so we only have to calculate the size of the set D'_3.

Our last step is to prove that our algorithm returns a constant approximation of the MDS problem we have to show that $|D_3| = O(|M|)$.

Definition 4. Let graph $G_2 = (V_2, E_2)$ be a subgraph of $G = (V_G, E_G)$ constructed in the following way:

i) $V_2 := \{v \in (D_3 \setminus M) : \exists u \in N_v \setminus M \land w(u) = v\}$ and $E_2 = \emptyset$.

ii) For every vertex $v \in V_2$ add exactly one vertex $u \notin M$. The set of added vertices denote as U. Add also edge $\{u, v\}$ to E_2.

iii) Add minimal number of edges (from E_G) and nodes (from $D_1 \cup D_2$) such that each vertex $x \in V_2 \setminus U$ has adjacent vertex from the set $D_1 \cup D_2$.

iv) Add minimal number of edges (from E_G) and nodes (from V_G) such that each vertex $v \in U$ has adjacent vertex from the set M.

Figure 6: Example of bunch in the graph G_2.

Notice that $u \in U$ cannot be adjacent to any vertex from a set D_1, indeed in other case a vertex u would be dominated by D_1 and so it will omit a step 10 of the algorithm.

Fact 4. Let denote a set of $(D_1 \cup D_2)$-D'_3-U-$(M \setminus D_1)$-bunches in graph G_2 as B_2. Then $|B_2| \leq (9 + 8c + 8C)|M|$.

Proof. To prove this lemma we need to observe that sets $D_1 \cup D_2$, D'_3, U, and $(M \setminus D_1)$ in graph G_2 are pairwise disjoint. Moreover each vertex $x \in D'_3$ has exactly one adjacent vertex $u \in U$. Thus if G' be a graph constructed from G by contracting each such edge $\{x, u\}$ then we apply this graph in Lemma 5 and obtain that $|B_2| \leq 5(|D_1 \cup D_2| + |M \setminus (D_1 \cup D_2)) + |M| \leq (9 + 8c + 8C)|M|$.

Lemma 9. Let $B \in B_2$ be a bunch such that B contains at least five $(D_1 \cup D_2)$-D'_3-U-$(M \setminus Y)$-special paths in graph G_2 ($b_B \geq 5$). Then $|M \in F(B)| \geq \left\lceil \frac{b_B - 4}{2} \right\rceil$.

Proof. The graph G induced by vertices contained in a region of some bunch $B \in B_2 (R[B])$ looks quite similar like a bunch from a set B_1. Using the same reasoning as in the corresponding Lemma 6 we will obtain that for every vertex $x_i \in F(B) \cap D'_3$ there exists at least one vertex z inside $F(v, x_i-1, m, x_i+1, v)$ adjacent to x_i such that at least one following case is satisfied:
A local constant-factor approximation algorithm for MDS problem in anonymous network

a) $z \in M$

b) $\exists m' \in M$ such that $\{m', z\} \in E_G$, $m' \in F(v, x_{i-1}, m, x_{i+1}, v)$ and $m' \neq m$

A vertex v_i was added to the set D_3 in the step [9] by vertex u_i thus

$$|N_m^+ \cap (V \setminus N_D^+)| \geq |N_m^+ \cap (V \setminus N_D^+)|.$$

Hence for each an interior vertex x_i there exist adjacent vertices z_1, \ldots, z_l which are not dominated by any vertex $v \in D_1 \cup D_2$. Suppose that $z_1, \ldots, z_l \notin M$ and case b) is not satisfied then vertices z_1, \ldots, z_l must be adjacent with single vertex $m \in M \setminus (D_1 \cup D_2)$. Let us notice that vertex m is adjacent with at least one vertex $D_1 \cup D_2$ so $d(u_i) = m$. Contradiction that vertex u_i chose x_i in the step [10] of the algorithm. Each internal vertex from a bunch B has a corresponding vertex $m' \in M$ which is contained in one of two surrounding faces. Since two vertices $x_j, x_{j+1} \in D_3$ could share the same corresponding vertex m' thus we obtain that $|M \cap F(B)| \geq (|B| - 2)/4$.

Lemma 10. $|D_3| \leq (22 + 16c + 16C)|M|$.

Proof. Let us notice that for any $v \in D_1$ and $w \in U$ there is no edge $\{v, w\}$ in a graph G_2. Indeed, in other case a vertex w will be dominated in step [2] or step [3] of the algorithm so would not belongs to a set U. Moreover every vertex $u \in U$ must be dominated in M so must be adjacent to some vertex $m \in M \setminus (D_1 \cup D_2)$. If we denote a set of special paths which are contained in set of large bunches as B_2^B then $|B_2^B| \geq |D_3| - (20 + 16c + 16C)|M|$. So similarly like in a lemma [3] we get that

$$|M| \geq \sum_{B \in B_2, b_B \geq 3} \left\lfloor \frac{|B_2^B|}{2} \right\rfloor \geq \frac{|B_2^B|}{2} \geq \frac{|D_3| - (20 + 16c + 16C)|M|}{2}.$$

Theorem 2. Let $G = (V, E)$ be a planar graph and D be a set returned by the algorithm $PortNumberingMds$ and M be an optimal solution of the Minimum Dominating Set for a given graph G then

$$|D| \leq 636|M|.$$

Proof. Let us fix values of constants c and c' in the following way $c := 29$ and $c' = 4.8$. Then value of C from earliest lemma is equal to 4.8. We know that the order of the set D returned by our algorithm satisfies a following inequality $|D| \leq |D_1 \setminus M| + |D_2 \setminus M| + |D_3 \setminus M| + |M|$.

So using lemmas [2] [3] and [7] we obtain that $|D_1 \setminus M|, |D_2 \setminus M| \leq |Y_M| + |Y_S| + |Y_L \setminus M| \leq |M| + c|M| + C|M|$. Using Lemma 10 and simply calculating $|D_3 \setminus M|$, and $|D_3 \setminus (D_3 \cup M)|$ we get that

$$|D_3 \setminus M| \leq |D_3| + |M| \leq 23|M| + 16c|M| + 16C|M|.$$

Thus if we fix constants $c = 33$ and $c' = 5.6$ then $|D| \leq |M| + |D_1 \setminus M| + |D_2 \setminus M| + |D_3 \setminus M| \leq (26 + 18c + 18C)|M| \leq 636|M|$.
A local constant-factor approximation algorithm for MDS problem in anonymous network

Figure 7: An example of possible results for a) an optimal algorithm b) algorithm in which each vertex chooses one the neighbor of the largest degree. The vertices from the resulting Dominating Set are marked (black).

3 Conclusion

In this paper we presented a constant approximation algorithm for the MDS problem in planar graphs. The algorithm is deterministic and strictly local. So nodes do not need any additional information about the structure of the graph and don’t have unique identifiers. In our algorithm we use only short messages with at most $O(\log n)$ bits (CONGEST model).

Recently in paper "Lower Bounds for Local Approximation" [8] Mika G"o"os et al. have shown that for lift-closed bounded degree graphs models PO and ID are practically equivalent. In this paper we show that it is true for planar graphs and MDS problem. We hope that this work will be very helpful as a hint for further comparisons of these models in other classes of graphs.

Moreover the approximation factor is 636, so there is a large gap to the known lower bound $(5 - \epsilon)$ from paper [4] and approximation factor 130 from paper [12]. An interesting issue might be a reduction of this gap in a PO or ID model.

References

[1] N. Alon, L. Babai, and A. Itai. A fast and simple randomized parallel algorithm for the maximal independent set problem. Journal of Algorithms, 7(4):567–583, 1986.

[2] D. Angluin. Local and global properties in networks of processors. In Proc. 12th Annual ACM Symposium on Theory of Computing (STOC, Los Angeles, CA, USA, April 1980), pages 82–93. ACM Press, New York, NY, USA, 1980.

[3] R. Cole and U. Vishkin. Deterministic Coin Tossing with Applications to Optimal Parallel List Ranking. Information and Control, 70(1):32–53, 1986.

[4] A. Czygrinow, M. Hanckowiak, and W. Wawrzyniak. Fast distributed approximations in planar graphs. In Proc. 22nd International Symposium on Distributed Computing (DISC, Arcachon, France, September 2008), volume 5218 of Lecture Notes in Computer Science, pages 78–92. Springer, Berlin, Germany, 2008.

[5] A. Czygrinow, M. Hanckowiak, and W. Wawrzyniak. Distributed packing in planar graphs. In the twentieth ACM Symposium on Parallel Algorithms and Architectures, pages 55–61, 2008.

[6] A. Czygrinow, M. Hanckowiak, K. Krzywdziński, E. Szymańska, and W. Wawrzyniak. Brief announcement: Distributed approximations for the semi-matching problem. In Proc. 25th International Symposium on Distributed Computing (DISC, Rome, Italy, September 2011), volume 6950 of Lecture Notes in Computer Science, pages 200-201. Springer, Berlin, Germany, 2011.

[7] A. Czygrinow, M. Hanckowiak, E. Szymanska, and W. Wawrzyniak. Distributed 2-approximation
algorithm for the semi-matching problem. In Proc. 26th International Symposium on Distributed Computing (DISC, Salvador, Brazil, October 2012), volume 7611 of Lecture Notes in Computer Science, pages 210-222. Springer, Berlin, Germany, 2012.

[8] M. Göös, J. Hirvonen, and J. Suomela, Lower Bounds for Local Approximation, In Proc. 31st Annual ACM Symposium on Principles of Distributed Computing (PODC, Madeira, Portugal, July 2012), pages 175–184. ACM Press, New York, NY, USA, 2012.

[9] A. Israel and A. Itai. A fast and simple randomized parallel algorithm for maximal matching. Information Processing Letters, 22(2):77–80, 1986.

[10] F. Kuhn, T. Moscibroda, and R. Wattenhofer. The price of being near-sighted. In Proc. 17th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA, Miami, FL, USA, January 2006), pages 980–989. ACM Press, New York, NY, USA, 2006.

[11] F. Kuhn and R. Wattenhofer. Constant-time distributed dominating set approximation. Distributed Computing, 17(4):303–310, 2005.

[12] C. Lenzen, Y. A. Oswald, and R. Wattenhofer. What can be approximated locally? TIK Report 331, ETH Zurich, Computer Engineering and Networks Laboratory, November 2010.

[13] C. Lenzen and R. Wattenhofer. Leveraging Linial’s locality limit. In Proc. 22nd Symposium on Distributed Computing (DISC 2008), volume 5218 of LNCS, pages 394–407. Springer, Berlin, 2008.

[14] N. Linial. Locality in Distributed Graph Algorithms. SIAM Journal on Computing, 21(1):193–201, 1992.

[15] M. Luby. A Simple Parallel Algorithm for the Maximal Independent Set Problem. SIAM Journal on Computing, 15(4):1036–1055, 1986

[16] M. Naor and L. Stockmeyer. What Can Be Computed Locally? SIAM Journal on Computing, 24(6):1259–1277, 1995.

[17] D. Peleg. Distributed Computing: A Locality-Sensitive Approach. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2000.

[18] J. Suomela, Survey of local algorithms. ACM Computing Surveys (to appear), http://www.cs.helsinki.fi/local-survey/