Recent Insights into Cell Surface Heparan Sulphate Proteoglycans and Cancer [version 1; peer review: 3 approved]

John R Couchman¹, Hinke Multhaupt¹, Ralph D. Sanderson²

¹Department of Biomedical Sciences and Biotech Research & Innovation Center, University of Copenhagen, Copenhagen, Denmark
²Department of Pathology and University of Alabama at Birmingham Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA

V1 First published: 29 Jun 2016, 5(F1000 Faculty Rev):1541
https://doi.org/10.12688/f1000research.8543.1
Latest published: 29 Jun 2016, 5(F1000 Faculty Rev):1541
https://doi.org/10.12688/f1000research.8543.1

Abstract
A small group of cell surface receptors are proteoglycans, possessing a core protein with one or more covalently attached glycosaminoglycan chains. They are virtually ubiquitous and their chains are major sites at which protein ligands of many types interact. These proteoglycans can signal and regulate important cell processes, such as adhesion, migration, proliferation, and differentiation. Since many protein ligands, such as growth factors, morphogens, and cytokines, are also implicated in tumour progression, it is increasingly apparent that cell surface proteoglycans impact tumour cell behaviour. Here, we review some recent advances, emphasising that many tumour-related functions of proteoglycans are revealed only after their modification in processes subsequent to synthesis and export to the cell surface. These include enzymes that modify heparan sulphate structure, recycling of whole or fragmented proteoglycans into exosomes that can be paracrine effectors or biomarkers, and lateral interactions between some proteoglycans and calcium channels that impact the actin cytoskeleton.

Keywords
Heparan sulphate, heparanase, exosomes, Cell surface proteoglycans

Open Peer Review

Approval Status ✔ ✔ ✔

version 1 ✔ ✔ ✔ ✔
29 Jun 2016

Faculty Reviews are review articles written by the prestigious Members of Faculty Opinions. The articles are commissioned and peer reviewed before publication to ensure that the final, published version is comprehensive and accessible. The reviewers who approved the final version are listed with their names and affiliations.

1. Jeremy E Turnbull, University of Liverpool, Liverpool, UK
2. Marion Kusche-Gullberg, University of Bergen, Bergen, Norway
3. Jeffrey Esko, University of California, San Diego, La Jolla, USA
 Mark Fuster, VA San Diego Healthcare System, La Jolla, USA
 University of California San Diego Medical Center, La Jolla, USA

Any comments on the article can be found at the end of the article.
Corresponding author: John R Couchman (john.couchman@bric.ku.dk)

Competing interests: RDS is on the Scientific Advisory Board of Sigma-tau Research S.A.

Grant information: JRC and HAB were supported by the Department of Biomedical Sciences and the Biotech Research & Innovation Center at the University of Copenhagen. RDS is supported by National Institutes of Health grant CA138340. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Copyright: © 2016 Couchman JR et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Couchman JR, Multhaupt H and Sanderson RD. Recent Insights into Cell Surface Heparan Sulphate Proteoglycans and Cancer [version 1; peer review: 3 approved] F1000Research 2016, 5(F1000 Faculty Rev):1541 https://doi.org/10.12688/f1000research.8543.1

First published: 29 Jun 2016, 5(F1000 Faculty Rev):1541 https://doi.org/10.12688/f1000research.8543.1
Introduction

Proteoglycans are present in all cellular and tissue compartments. Moreover, in mammals they are expressed by virtually all cells. By definition, proteoglycans consist of a core protein to which one or more glycosaminoglycan chains are covalently attached. While the number of proteoglycan core proteins in the mammalian genome is not large, their form and functions are highly variable. Aggrecan, a major constituent of cartilage matrix, for example, may have >100 chondroitin sulphate chains, which are key to its function in the maintenance of a hydrated, compression-resisting matrix.12,13 Decorin, on the other hand, with roles in collagen fibril formation and regulation of innate immunity, has only one chondroitin or dermatan sulphate chain.1 Not surprisingly, since proteoglycans can be intracellular, cell surface, or extracellular matrix components, they are increasingly studied in the context of tumour growth and the tumour and stem cell niche, and invasion, metastasis, and tumour-host interactions.2-9

On the surfaces of most mammalian cells are representatives of two major families of heparan sulphate proteoglycans (HSPGs), the glypicans and syndecans10-12. The former are linked to the membrane through a glycosylphosphatidylinositol anchor, while the syndecans are transmembrane, with a highly conserved short cytoplasmic domain. Usually the core proteins carry two to five heparan sulphate chains, but syndecans may sometimes also, or alternately, carry chondroitin or dermatan sulphate chains.1 The synthesis of heparan sulphate chains is a complex Golgi apparatus-localised process; while all of the transferases and other modifying enzymes involved in their synthesis are known, their regulation is not.13 The importance of heparan sulphate synthesis lies in the fact that this glycosaminoglycan has an ability to interact with a wide array of binding partners that include cytokines, chemokines, growth factors, extracellular matrix macromolecules, enzymes, and lipoproteins.14,15 Heparan sulphate chains have regions of high modification (i.e. high levels of sulphation) interspersed with regions of low, or no, sulphation.13 This most complex of all post-translational modifications is under scrutiny, since most protein binding partners of heparan sulphate engage with highly sulphated domains,16,17 so the control of its synthesis and how this may change with transformation are important issues. Moreover, mature heparan sulphate chains can be further modified by a single mammalian heparanase enzyme and by two sulphatases that selectively remove the sulphates of some glucosamine residues.17-19 Heparan sulphate editing is now a topic of great interest in tumour biology and some recent developments are summarised below.

For many years, it was assumed that cell surface HSPGs had few independent functions but were mostly acting in cis as co-receptors with other receptors, e.g., tyrosine kinase growth factor receptors and integrins.5,11,12,20 The notion was that the heparan sulphate chains provided binding sites for ligands that could then be concentrated for high-affinity receptor binding and subsequent signalling. It now seems clear that there are more intricate interactions at the cell surface that involve independent roles for the cell surface HSPGs. Some of the latest insights into cell surface HSPG functions with relevance to tumour biology are briefly reviewed here. Recent information on the roles of other classes of extracellular matrix proteoglycans in cancer can be found elsewhere.1,3,4,7-9,21

Heparan sulphate editing: regulatory events in tumour progression

There is abundant evidence that heparan sulphates, owing to their diversity in structure and location, play important roles in regulating the growth and progression of cancer. Much of this regulation occurs via the ability of heparan sulphate to fine-tune molecular interactions that regulate cell behaviour.22 Over the last decade, it has become increasingly apparent that enzymes can edit heparan sulphate structure, thereby precisely modulating its function and regulating cell behaviour. These enzymes include the endoglucononidase heparanase, which cleaves and shortens heparan sulphate chains of proteoglycans that as a consequence possess new non-reducing termini, and the extracellular sulphatases Sulf-1 and Sulf-2 that selectively remove 6-O sulphates. Both of these enzyme activities are proving to be powerful regulators of tumour behaviour.

Heparanase is associated with aggressive tumour behaviour including enhanced growth, angiogenesis, and metastasis. Although a number of studies in many tumour types have supported these conclusions, a unifying mechanistic explanation of precisely how heparanase promotes angiogenesis and metastasis was lacking until recently. In a paper just published in Oncogenesis, Jung et al. demonstrate that heparanase-mediated trimming of syndecan-1 heparan sulphate chains and upregulation of matrix metalloproteinase-9 (MMP-9) expression results in enhanced shedding of syndecan-1 from the cell surface. Shedding exposes a juxtamembrane site on the syndecan-1 core protein that binds to both very late antigen-4 (VLA-4 [integrin α4β1]) and vascular endothelial growth factor receptor-2 (VEGFR2). This coupling of VLA-4 to VEGFR2 activates the latter, thereby initiating downstream signalling that displaces the cytoskeletal adaptor protein paxillin from VLA-4, in turn facilitating the activation of Rac GTPase and polarised cell migration.23 This mechanism is in play on both endothelial cells and tumour cells and demonstrates how heparanase, in concert with syndecan-1, drives angiogenesis, tumour cell invasion, and subsequent metastasis.

Evidence is also emerging that heparanase plays a key role in promoting chemoresistance. In breast cancer cell lines expressing a high level of heparanase, inhibition of the enzyme sensitised the cells to killing by lapatinib.24 Elevated heparanase expression by myeloma cells enhances their resistance to both bortezomib and melphalan and this resistance is reversed in vivo when mice are treated with the heparanase inhibitor Roneparstat.25 Furthermore, heparanase was shown to be present at a high level on tumour cells that survive extensive chemotherapy in myeloma patients, lending further support to the notion that heparanase promotes resistance to therapy.25 Together, these findings raise the exciting possibility that the efficacy of anti-cancer drugs may be enhanced when combined with the use of heparanase inhibitors. This is of particular interest, as there are currently four anti-heparanase drugs in clinical trials in cancer patients.26 These drugs are all heparin mimetics that are thought to inhibit heparanase activity by blocking the enzyme’s active site. However, recent solving of the crystal structure of heparanase provides an opportunity for the discovery of small molecule inhibitors of enzyme activity that should exhibit improved specificity over the heparin mimetics.27 Heparanase-neutralising antibodies have also recently shown promise in attenuating the growth and metastasis of lymphoma and myeloma tumours in mice.27
While heparanase may have important roles in supporting tumour angiogenesis, it is important to recognise that it is not the only mechanism. Many angiogenesis-promoting growth factors, such as VEGF, fibroblast growth factors (FGFs), cytokines, and chemokines, have high affinity for heparan sulphate. It is therefore likely that vascular remodelling is a consequence of multiple interactions involving cell surface HSPGs\(^{14,28-30}\).

Although it is generally agreed that the function of Sulf-1 and -2 is to selectively remove 6-O sulphates from heparan sulphate chains, the impact of these two extracellular sulphatases on tumour growth and progression remains controversial. By altering the composition of heparan sulphates, the Sulfs regulate the signalling capacity of heparin-binding growth factors such as Wnts, FGF, EGF, and VEGF, among others\(^{19}\). Predictably, this has important consequences for tumour behaviour. What is surprising is that despite their seemingly identical function, there are data to support the conclusion that Sulf-1 suppresses tumour growth while Sulf-2 promotes tumour growth\(^{31,32}\). However, such a generalisation appears to be misleading because there is evidence that in some instances Sulf-1 promotes, while Sulf-2 inhibits, tumour growth. Together, these findings strongly suggest that there are factors beyond the catalytic activity of the Sulfs that determine their ultimate impact on tumour behaviour\(^{31,33,34}\) (Figure 1). Such factors may be related to spatial or temporal expression of the Sulfs, variations in their specificity for the heparan sulphate substrate, or differing abilities of the Sulfs to diffuse through the tumour microenvironment. Moreover, there is evidence for non-catalytic properties of Sulfs that lead to alterations in heparan sulphate synthesis through changes in sulphotransferase expression\(^{13}\) or upregulation of glypican-3 core protein, which is relevant to hepatocellular carcinoma\(^{34}\).

Signalling at a distance through exosomes

In 2012, the first of several papers was published suggesting that syndecans were cell surface receptors important in exosome formation\(^{35}\). For this, the most C-terminal region of the syndecan cytoplasmic domain interacting with PDZ domain proteins was required. The cytoplasmic scaffolding protein syntenin (also known as melanoma differentiation-associated gene 9; MDA-9) binds to all syndecans through one of its two PDZ domains\(^{36,37}\), and this was shown to be important for the endosomal and trafficking events that lead to exosome formation\(^{38}\). The other PDZ domain of syntenin had high affinity for the membrane phospholipid phosphatidylinositol 4,5-bisphosphate (PtdIns4,5P\(_2\)). Syntenin also interacts through its C-terminal domain with Bro1/ALG-2-interacting protein (ALIX\(^{39}\)), a central player in exosome

Figure 1. Cell surface proteoglycans regulate cell communication. Cell surface heparan sulphate proteoglycans can interact with multiple ligands through their glycosaminoglycan chains. In addition, they can be modified by heparanase and sulphatases, leading to altered ligand binding. Endocytosis, trafficking, and processing can lead to the release of exosomes bearing modified proteoglycans. These can interact with fibronectin in the extracellular environment and ultimately be bound and internalised by recipient cells. This signalling at a distance may be important in the regulation of tumour cell behaviour.
formation. In turn, ALIX links to a multiprotein endosomal sorting complex required for transport (ESCRT), with additional roles for the GTPase Arf6 and phospholipase D2. Exosomes are now recognised as important signalling vesicles, containing a number of proteins, lipids, and even nucleic acids such as RNAs and miRNAs. They are produced by most cells, including tumour cells, and interest in them from the tumour perspective focuses on whether they can be detectable biomarkers in fluids and their potential roles in regulating the tumour environment (Figure 1). Moreover, syndetin (MDA-9) was first identified in the context of melanoma but is upregulated in many tumours where experiments have shown that it supports cell migration or invasion. It has many binding partners beyond syndecans, including the tetraspanin CD63, an exosome marker, but what controls the selectivity of syndetin to interact with many different cell surface molecules is currently unclear. However, it has been suggested that this protein is a potential tumour target.

Interestingly, similar to their roles in regulating tumour angiogenesis and metastasis, heparanase and syndecans also work together in regulating exosome secretion by tumour cells. Enhanced heparanase expression in tumour cells stimulates exosome biogenesis, alters exosome protein composition, and enhances the ability of exosomes to promote tumour cell spreading and endothelial cell migration. In this instance, heparan sulphate chains of syndecans are essential for exosome formation within endosomal compartments, and trimming of heparan sulphate by heparanase activates the formation of an endosomal complex containing syndecan coupled to syndetin and ALIX. This complex promotes endosomal membrane budding and drives exosome biogenesis. Following their secretion, exosomes exert their biological activity by docking with recipient cells and delivering cargo that can alter recipient cell behaviour. In this context, the heparan sulphate present on syndecan, which remains on the exosome surface following the biogenesis process, can interact with fibronectin via its Hep-II heparin-binding domain. The fibronectin-coated exosomes subsequently dock by binding to the heparan sulphate of proteoglycans present on the recipient cell surface. At least in some cases, the heparan sulphate present on recipient cells can also act as an internalising receptor, thus facilitating the uptake of exosomes and subsequent delivery of exosome cargo within the cell.

Syndecans are not the only proteoglycans with potential importance to exosomes. In 2015, a very interesting report documented that circulating exosomes containing glypican-1 could potentially identify patients with pancreatic ductal adenocarcinoma, even at early stages of tumour development. Whether the heparan sulphate chains were present and carrying important growth factors, cytokines, or chemokines remains speculative, but once more the connection between cell surface HSPGs and cancer is apparent.

Syndecans, cytoskeleton, adhesion, and migration

The four mammalian syndecans all interact with the actin cytoskeleton. Much research has been devoted to understanding this relationship, and many reports have provided evidence that they contribute to microfilament organisation in adhesion and migration. Perhaps the best example in this regard is syndecan-4. It promotes the assembly of focal adhesions, junctions that form in response to cell adhesion to the extracellular matrix. They are integrin-dependent organelles, but the mechanism by which syndecan influences the process has taken many years to unravel. Key to syndecan-4’s role are interactions with both the actin-associated protein α-actinin and protein kinase Cz, through which there are multiple potential pathways involving Rho family GTPases to the cytoskeleton. The roles of RhoA, Rac, and cdc42 are well known in this regard. Analysis of fibroblasts derived from syndecan-4 null mice show clear differences in microfilament organisation, with much reduced focal adhesions and stress fibres for which RhoGTPase activities seem not to provide the whole explanation. Recent analysis has now shown that this altered adhesion phenotype of S4KO cells relates to calcium channels of the TRPC (transient receptor potential canonical) family. Indeed, elimination of the TRPC7 channel (itself a focal adhesion component) reverts the S4KO cells to wild-type in terms of adhesion, cytoskeleton, and junction formation. This was accompanied by reductions in cytosolic calcium that were shown to be increased in the null cells compared to matching wild-type cells. Further work with epithelial cells and, moreover, genetic experiments with Caenorhabditis elegans (which possesses a single syndecan) show that this regulation of TRPC type channels by syndecans may be a highly conserved and important role for this proteoglycan family.

The work with syndecans and channels has so far not embraced tumour cells. Since calcium is a potent regulator of the actin cytoskeleton, it may now be attractive to re-examine some of the previous observations on HSPGs and tumour cells. The literature is replete with studies showing that syndecans are often mis-expressed in solid tumours and in some cases relate to prognosis. A good example is breast cancer, where high levels of syndecan-1 expression, particularly in the tumour stroma, are an indicator of poor prognosis. In other studies, syndecan-2 upregulation has been shown to alter the adhesion and invasiveness of MDA-MB231 breast carcinoma cells and colon carcinoma cells. The difficulty with many studies is understanding whether syndecan expression merely correlates with or is functionally related to tumour progression. In some cases, however, the situation is clearer. A wealth of evidence now suggests that syndecan-1 expression in myeloma is related directly to disease severity and progression. Moreover, it is not only syndecans that may influence tumour progression. Evidence has accumulated rapidly over the past few years showing a relationship between glypicanc-3 expression and the progression of hepatocellular carcinoma. This HSPG is expressed in foetal liver, but levels subside in postnatal life. However, in a large majority of cases, glypicanc-3 is re-expressed in hepatocellular carcinoma. The excitement about this HSPG revolves around the possibility that it may serve as a prognostic marker, but also a target for immunotherapy. Early clinical trials have been reported, but clearly there is a long way to go. On a molecular level, it has been suggested that glypicanc-3 can bind both Wnt and Frizzled, the signalling receptor for Wnts, through its heparan sulphate chains. However, the situation is complex, since glypicanc-3 in normal tissue may be a growth inhibitor. Rare core protein mutations giving rise to the Simpson-Golabi-Behmeln syndrome are characterised by overgrowth and many dysmorphisms in patients and a corresponding murine model. In hepatocellular carcinoma, however, there is also upregulation...
of Sulf-2. It now appears that selective removal of 6-O-sulphate residues from the glypicans’ heparan sulphate chains leads to Wnt activation, possibly through its enhanced mobility, leading to Frizzled binding and signalling. It is also possible that the heparan sulphate chains may bind hepatocyte growth factor and members of the FGF family.

Conclusions
Recent developments have highlighted that both the heparan sulphate chains and the core proteins of cell surface HSPGs are highly and functionally relevant to tumour progression. Moreover, the increasingly recognised importance of the tumour cell niche, which is rich in proteoglycans, and the emerging roles of proteoglycans in stem cell differentiation are areas for future development. Moreover, it is not only HSPGs that present as targets in tumours. The chondroitin sulphate proteoglycan 4 (also known as NG2) is recognised as a cell surface marker of pericytes in the vasculature but is also present more widely, for example on neuronal and oligodendrocyte precursors. It is also an emerging target for immunotherapy in a variety of tumour types, including melanoma, triple negative breast cancer, glioblastoma, mesothelioma, and sarcomas.

The potential for cell surface proteoglycans to be targets for intervention are complicated by their multiple roles and ubiquity. It is perhaps likely that tumour cells, stromal/other host tissue, and the immune system utilise these proteoglycans and their downstream signalling in specific ways to regulate behaviour. Targeting will require detailed understanding, and therefore we can predict that new insights into the functions of proteoglycans will impact tumour biology for many years to come.

Author contributions
All three authors contributed to the writing and editing of this review. HAB was responsible for the figure.

Competing interests
RDS is on the Scientific Advisory Board of Sigma-tau Research S.A.

Grant information
JRC and HAB were supported by the Department of Biomedical Sciences and the Biotech Research & Innovation Center at the University of Copenhagen. RDS is supported by National Institutes of Health grant CA138340.

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

References

1. Aspberg A: The different roles of aggrecan interaction domains. J Histochem Cytochem. 2012; 60(12): 987–96. PubMed Abstract | Publisher Full Text | Free Full Text
2. Heinegård D, Saxne T: The role of the cartilage matrix in osteoarthritis. Nat Rev Rheumatol. 2011; 7(1): 50–6. PubMed Abstract | Publisher Full Text
3. Neill T, Schaefer L, Iozzo RV: The different roles of aggrecan interaction domains. J Histochem Cytochem. 2012; 60(12): 987–96. PubMed Abstract | Publisher Full Text | Free Full Text
4. Iozzo RV: Decoding the Matrix: Instructive Roles of Proteoglycan Receptors. Biochemistry. 2015; 54(30): 4583–98. PubMed Abstract | Publisher Full Text | Free Full Text
5. Couchman JR: Transmembrane signaling proteoglycans. Annu Rev Cell Dev Biol. 2010; 26: 89–114. PubMed Abstract | Publisher Full Text
6. Pickford CE, Holley RJ, Rushton G, et al.: Specific glycosaminoglycans modulate neural specification of mouse embryonic stem cells. Stem Cells. 2011; 29(4): 629–40. PubMed Abstract | Publisher Full Text
7. Schaefer L, Iozzo RV: Small leucine-rich proteoglycans, at the crossroad of cancer growth and inflammation. Curr Opin Genet Dev. 2012; 22(1): 56–7. PubMed Abstract | Publisher Full Text
8. Multhaupt HA, Leitinger B, Gullberg D, et al.: Extracellular matrix component signaling in cancer. Adv Drug Deliv Rev. 2016; 97: 28–40. PubMed Abstract | Publisher Full Text
9. Theoharis AD, Giacelli C, Boux P, et al.: Cell-matrix interactions: focus on proteinase-proteoglycan interplay and pharmacological targeting in cancer. FEBS J. 2014; 281(22): 5023–42. PubMed Abstract | Publisher Full Text | F1000 Recommendation
10. Filimun J, Capurro M, Rast J: Glypicans. Genome Biol. 2008; 9(5): 224. PubMed Abstract | Publisher Full Text | Free Full Text
11. Morgan MR, Humphries MJ, Bass MD: Synergistic control of cell adhesion by integrins and syndecans. Nat Rev Mol Cell Biol. 2007; 8(12): 957–69. PubMed Abstract | Publisher Full Text | Free Full Text
12. Couchman JR, Gopal S, Lim HC, et al.: Syndecans: from peripheral coreceptors to mainstream regulators of cell behaviour. Int J Exp Pathol. 2015; 96(1): 1–10. PubMed Abstract | Publisher Full Text | Free Full Text
13. Multhaupt HA, Couchman JR: Heparan sulfate biosynthesis: methods for investigation of the heparanosome. J Histochem Cytochem. 2012; 60(12): 988–106. PubMed Abstract | Publisher Full Text | Free Full Text
14. Xu D, Esko JD: Demystifying heparan sulfate-protein interactions. Annu Rev Biochem. 2014; 83: 129–57. PubMed Abstract | Publisher Full Text | F1000 Recommendation
15. Gallagher J: Fell-Muir Lecture: Heparan sulphate and the art of cell regulation: a polymer chain conducts the protein orchestra. Int J Exp Pathol. 2015; 96(4): 203–31. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
16. Lindahl U, Li JP: Interactions between heparan sulfate and proteins-design and functional implications. Int Rev Cell Mol Biol. 2009; 276: 165–59. PubMed Abstract | Publisher Full Text
17. Lamanna WC, Kalus I, Padva M, et al.: The heparanase—thes enigma of encoding and decoding heparan sulfate sulfation. J Biotechnol. 2007; 129(2): 290–307. PubMed Abstract | Publisher Full Text
18. Rosen SD, Lemjabbar-Alaoui H: Sulf-2: an extracellular modulator of cell signaling and a cancer target candidate. Expert Opin Ther Targets. 2010; 14(9): 935–49. PubMed Abstract | Publisher Full Text | Free Full Text
19. Hammond E, Khurana A, Shridhar V, et al.: The Role of Heparanase and Sulfatases in the Modification of Heparan Sulfate Proteoglycans within the Tumor Microenvironment and Opportunities for Novel Cancer Therapeutics. Front Oncol. 2014; 4: 195. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
20. Berndfield M, Götte M, Park PW, et al.: Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem. 1999; 68: 729–77. PubMed Abstract | Publisher Full Text
21. Poluzzi C, Iozzo RV, Schaefer L: Endostatin and endorepellin: A common route of action for similar angiostatic cancer averengers. Adv Drug Deliv Rev. 2016; 97: 156–73. PubMed Abstract | Publisher Full Text | Free Full Text
22. Bishop JR, Schukz M, Esko JD: Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature. 2007; 446(7139): 1030–7. PubMed Abstract | Publisher Full Text
43. Théry C, Boussac M, Véron P, et al. Heparanase induces shedding of Syndecan-1CD138 in myeloma and endothelial cells activates VEGFR2 and an invasive phenotype: prevention by novel synstatins. Oncogene. 2016; 35(10):2955–63. PubMed Abstract | Publisher Full Text | Free Full Text

44. Thompson CA, Purushothaman A, Ramani VC, et al. Heparanase regulates secretion, composition, and function of tumor cell-derived exosomes. J Biol Chem. 2013; 288(14):10093–100. PubMed Abstract | Publisher Full Text | Free Full Text

45. Roucoult B, Meuissen S, Bao J, et al. Heparanase activates the syndecan-syntenin-ALIX exosome pathway. Cell Res. 2015; 25(4):412–28. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

46. Purushothaman A, Bandari SK, Liu J, et al. Fibronectin on the Surface of Myeloma Cell-derived Exosomes Mediates Exosome-Cell Interactions. J. Biol. Chem. 2016; 291(4):1652–63. PubMed Abstract | Publisher Full Text | Free Full Text

47. Christianson HC, Svensson KJ, van Kuppevelt TH, et al. Cancer cell exosomes depend on cell-surface heparan sulfate proteoglycans for their internalization and functional activity. Proc Natl Acad Sci U S A. 2013; 110(43):17380–5. PubMed Abstract | Publisher Full Text | Free Full Text

48. Melo SA, Lukee LC, Kahler C, et al. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature. 2015; 523(7559):177–82. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

49. Greene DK, Tomova S, Couchman JR, et al. Syndecan-4 associates with alpha-actinin. J Biol Chem. 2003; 278(9):7617–23. PubMed Abstract | Publisher Full Text | Free Full Text

50. Choi Y, Kim S, Lee J, et al. The oligomeric status of syndecan-4 regulates pathways controlling alpha-actinin. Eur J Cell Biol. 2008; 87(10):867–75. PubMed Abstract | Publisher Full Text | Free Full Text

51. Okina E, Grossi A, Gopal S, et al. Alpha-actinin interactions with syndecan-4 are integral to fibroblast-matrix adhesion and regulate cytoskeletal architecture. Int J Biochem Cell Biol. 2012; 44(12):2161–74. PubMed Abstract | Publisher Full Text | Free Full Text

52. Doxas A, Yoneda A, Couchman JR. PKCbeta-dependent activation of RhoA by syndecan-4 during focal adhesion formation. J Cell Sci. 2006; 119(Pt 13):2837–46. PubMed Abstract | Publisher Full Text | Free Full Text

53. Bass MD, Roach KA, Morgan MR, et al. Syndecan-4-dependent Rac1 regulation determines directional migration in response to the extracellular matrix. J Cell Biol. 2007; 177(3):527–38. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

54. Hall A. Rho family GTPases. Biochem Soc Trans. 2012; 40(6):1378–82. PubMed Abstract | Publisher Full Text | Free Full Text

55. Li H, Peyrolier K, Klici G, et al. Rho GTPases and cancer. Biofactors. 2014; 40(2):226–35. PubMed Abstract | Publisher Full Text | Free Full Text

56. Gopal S, Biber A, Whitford JR, et al. Heparan sulfate chain valency controls syndecan-4 function in cell adhesion. J Biol Chem. 2010; 285(19):14247–58. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

57. Mostafavi-Pour Z, Askari JA, Parkinson SJ, et al. Integrin-specific signaling pathways controlling focal adhesion formation and cell migration. J Cell Biol. 2003; 161(1):155–67. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

58. Gopal S, Segaard P, Multihaupt HA, et al. Transmembrane proteoglycans control stretch-activated channels to set cytosolic calcium levels. J Cell Biol. 2015; 210(7):1199–211. PubMed Abstract | Publisher Full Text | Free Full Text

59. Reijmers RM, Spaargaren M, Pins ST. Heparan sulfate proteoglycans in the control of B cell development and the pathogenesis of multiple myeloma. FEBS J. 2013; 280(10):2180–93. PubMed Abstract | Publisher Full Text | Free Full Text

60. Ropers HG, Synstatin: a selective inhibitor of the syndecan-1-coupled IGF1R-β3 integrin complex in tumorigenesis and angiogenesis. FEBS J. 2013; 280(10):2207–15. PubMed Abstract | Publisher Full Text | Free Full Text

61. Ramani VC, Purushothaman A, Stewart MD, et al. The heparanase/syndecan-1 axis in cancer: mechanisms and therapies. FEBS J. 2013; 280(10):2294–306. PubMed Abstract | Publisher Full Text | Free Full Text

62. Theodosis AD, Skandalis SS, Neil T, et al. Insights into the key roles of proteoglycans in breast cancer biology and translational medicine. Biochim Biophys Acta. 2015; 1855(2):276–300. PubMed Abstract | Publisher Full Text | Free Full Text

63. Syntenin-1 in breast cancer is related to an aggressive phenotype and to poorer prognosis. Cancer. 2003; 98(3):474–83. PubMed Abstract | Publisher Full Text | Free Full Text

64. Leventon M, Lundin J, Nordling S, et al. Prognostic value of syndecan-1 expression in breast cancer. Oncology. 2004; 67(1):11–8. PubMed Abstract | Publisher Full Text | Free Full Text

65. Lim HG, Multihaupt HA, Couchman JR. Cell surface heparan sulfate proteoglycans control adhesion and invasion of breast cancer cells. Mol
74. Yamauchi N, Watanabe A, Hishinuma M, Iglesias BV, Centeno G, Pascuccelli H, Capurro M, Wanless IR, Sherman M, Filmus J, Capurro M: Glypican-3 binds to Frizzled and plays a direct role in the stimulation of canonical Wnt signaling. FEBs J. 2013; 280(10): 2471–6. PubMed Abstract | Publisher Full Text | F1000 Recommendation

75. Pilia G, Hughes-Benzie RM, MacKenzie A, et al.: Mutations in GPC3, a glypican gene, cause the Simpson-Golabi-Behmel overgrowth syndrome. Nat Genet. 1996; 12(3): 241–7. PubMed Abstract | Publisher Full Text

76. Lau J, Oseini AM, Moser CD, et al.: The oncogenic effect of sulfatase 2 in human hepatocellular carcinoma is mediated in part by glypican 3-dependent Wnt activation. Hepatology. 2010; 52(5): 1680–9. PubMed Abstract | Publisher Full Text

77. Zittermann SI, Capurro MI, Shi W, et al.: Soluble glypican 3 inhibits the growth of hepatocellular carcinoma in vitro and in vivo. Int J Cancer. 2010; 126(6): 1291–301. PubMed Abstract | Publisher Full Text

78. Geo W, Kim H, Ho M: Human Monoclonal Antibody Targeting the Heparan Sulfate Chains of Glypican-3 Inhibits HGF-Mediated Migration and Motility of Hepatocellular Carcinoma Cells. PLoS One. 2015; 10(9): e0137664. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

79. Vennin FA, Walkopf L, Eiter JT: Targeting ECM Disrupts Cancer Progression. Front Oncol. 2015; 5: 224. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

80. Stewart MD, Ramani VC, Sanderson RD: Shed syndecan-1 translocates to the nucleus of cells delivering growth factors and inhibiting histone acetylation: a novel mechanism of tumor-host cross-talk. J Biol Chem. 2015; 290(2): 941–9. PubMed Abstract | Publisher Full Text | Free Full Text

81. Okia LE, Okotiscanyi RK, Qin A, et al.: Cell surface heparan sulfate proteoglycans as novel markers of human neural stem cell fate determination. Stem Cell Res. 2016; 16(1): 92–104. PubMed Abstract | Publisher Full Text | F1000 Recommendation

82. Armulik A, Genové G, Betsholtz C: Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell. 2011; 21(2): 193–215. PubMed Abstract | Publisher Full Text | F1000 Recommendation

83. Beard RE, Zheng Z, Lagisetty KH, et al.: Multiple chimeric antigen receptors successfully target chondroitin sulfate proteoglycan 4 in several different cancer histologies and cancer stem cells. J Immunother Cancer. 2014; 2: 25. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

84. Campoli M, Ferrone S, Wang X: Functional and clinical relevance of chondroitin sulfate proteoglycan 4. Adv Cancer Res. 2010; 109: 73–121. PubMed Abstract | Publisher Full Text
Open Peer Review

Current Peer Review Status: ✔ ✔ ✔

Editorial Note on the Review Process

Faculty Reviews are review articles written by the prestigious Members of Faculty Opinions. The articles are commissioned and peer reviewed before publication to ensure that the final, published version is comprehensive and accessible. The reviewers who approved the final version are listed with their names and affiliations.

The reviewers who approved this article are:

Version 1

1. Jeffrey Esko
 Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
 Mark Fuster
 1 Medical and Research Sections, VA San Diego Healthcare System, La Jolla, CA, USA
 2 Department of Medicine, Division of Pulmonary and Critical Care, University of California San Diego Medical Center, La Jolla, CA, USA
 Competing Interests: No competing interests were disclosed.

2. Marion Kusche-Gullberg
 Department of Biomedicine, University of Bergen, Bergen, Norway
 Competing Interests: No competing interests were disclosed.

3. Jeremy E Turnbull
 Centre for Glycobiology, Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
 Competing Interests: No competing interests were disclosed.
The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com