Serosurvey of *Borrelia* in dogs, horses, and humans exposed to ticks in a rural settlement of southern Brazil

Soroprevalência e fatores associados a *Borrelia* em cães, equinos e humanos expostos a carrapatos em um assentamento rural do sul do Brasil

Denise Amaral Gomes Nascimento¹; Rafael Felipe da Costa Vieira²; Thallitha Samih Wischral Jayme Vieira³; Roberta dos Santos Toledo³; Katia Tamekuni¹; Nelson Jessé Rodrigues dos Santos¹; Daniela Dibb Gonzáles¹; Maria Luísa Vieira⁴; Alexander Welker Biondo²; Odilon Vidotto¹*

¹ Departamento de Medicina Veterinária Preventiva, Universidade Estadual de Londrina – UEL, Londrina, PR, Brasil
² Departamento de Medicina Veterinária, Universidade Federal do Paraná – UFPR, Curitiba, PR, Brasil
³ Departamento de Medicina Veterinária e Saúde Pública, Universidade Paranaense – UNIPAR, Umuarama, PR, Brasil
⁴ Grupo de Leptospirose e Doença de Lyme, Unidade de Microbiologia Médica, Institute of Hygiene and Tropical Medicine – IHMT, Universidade Nova de Lisboa – UNL, Lisboa, Portugal

Received July 20, 2016
Accepted August 23, 2016

Abstract

The aims of the present study were to serosurvey dogs, horses, and humans highly exposed to tick bites for anti-*Borrelia burgdorferi* s.l. antibodies, identify tick species present, and determine risk factors associated with seropositivity in a rural settlement of Paraná State, southern Brazil. Eighty-seven residents were sampled, along with their 83 dogs and 18 horses, and individual questionnaires were administered. Immunofluorescence antibody test (IFAT) was performed on serum samples and positive samples were subjected to western blot (WB) analysis. Anti-*B. burgdorferi* antibodies were found in 4/87 (4.6%) humans, 26/83 (31.3%) dogs, and 7/18 (38.9%) horses by IFAT, with 4/4 humans also positive by WB. Ticks identified were mostly from dogs and included 45/67 *Rhipicephalus sanguineus*, 21/67 *Amblyomma ovale*, and 1/67 *A. cajennense* s.l. All (34/34) horse ticks were identified as *A. cajennense* s.l.. No significant association was found when age, gender, or presence of ticks was correlated to seropositivity to *Borrelia* sp. In conclusion, although anti-*Borrelia* antibodies have been found in dogs, horses and their owners from the rural settlement, the lack of isolation, molecular characterization, absence of competent vectors and the low specificity of the commercial WB kit used herein may have impaired risk factor analysis.

Keywords: Immunofluorescence antibody test (IFAT), Lyme disease, serology, tick-borne disease, western blot.

Resumo

Os objetivos do presente estudo foram realizar um levantamento sorológico de cães, cavalos e humanos altamente expostos a picadas de carrapatos para anticorpos anti-*B. burgdorferi* s.l., identificar as espécies de carrapatos presentes, e determinar os fatores de risco associados a soropositividade em um assentamento rural do Estado do Paraná, sul do Brasil. Oitenta e sete residentes foram amostrados junto com seus respectivos 83 cães e 118 cavalos e questionários individuais foram aplicados. O teste de imunofluorescência indireta (IFI) foi realizado nas amostras sorológicas e as positivas foram submetidas a análise por *western blot* (WB). Anticorpos anti-*B. burgdorferi* foram detectados em 4/87 (4,6%) humanos, 26/83 (31,3%) cães e 7/18 (38,9%) cavalos pela IFI, com 4/4 humanos também positivos pelo WB. Os carrapatos identificados foram em sua maioria de cães e incluíram 45/67 *Rhipicephalus sanguineus*, 21/67 *Amblyomma ovale* e 1/67 *A. cajennense* sensu lato. Todos (34/34) carrapatos de cavalos foram identificados como *A. cajennense* s.l.. Não foram observadas diferenças estatísticas entre idade, sexo ou presença de carrapatos e soropositividade para *Borrelia* sp. Em conclusão, embora anticorpos anti-*Borrelia* tenham sido encontrados em cães, equinos e seus proprietários do assentamento rural, a ausência de isolamento, caracterização molecular, ausência de vetores competentes e baixa especificidade do kit comercial de WB utilizado podem ter limitado a análise de fatores de risco.

Palavras-chave: Teste de imunofluorescência (IFI), doença de Lyme, sorologia, doenças transmitidas por carrapatos, western blot.

Corresponding author: Odilon Vidotto. Departamento de Medicina Veterinária Preventiva, Universidade Estadual de Londrina – UEL, Rodovia Celso Garcia Cid, PR 445, Km 380, Campus Universitário, CEP 86051-990, Londrina, PR, Brasil. e-mail: vidotto@uel.br
Introduction

Lyme disease (LD) is a tick-borne disease caused by several bacteria in the *Borrelia burgdorferi sensu lato* (s.l.) complex (STANEK & REITER, 2011). *B. burgdorferi sensu stricto* (s.s.), *B. afzelii*, and *B. garinii* have been identified as the major etiological agents of LD in Europe (STANEK et al., 2012). In South America, *Borrelia* spp. closely related to *B. americana* were found in *Ixodes* ticks from Uruguay (BARBIERI et al., 2013) and Argentina (NAVA et al., 2014). In southern Brazil, *B. burgdorferi* s.s. was reported to be found in *Dermacentor nitens* ticks removed from horses (GONÇALVES et al., 2014).

Because of differences in the clinical syndrome and vectors present in the region, LD in Brazil is also known as LD-like syndrome or Baggio-Yoshinari syndrome (BYS) (MANTOVANI et al., 2007). Although several human cases have been described throughout the country (YOSHINARI et al., 2003, 2007; CARRANZA-TAMAYO et al., 2012; ROSA et al., 2014), *Borrelia* spp. have not yet been isolated or characterized from such cases and *Borrelia* infection in humans remains to be confirmed in Brazil (YOSHINARI et al., 2010).

Domestic animals in Brazil have shown evidence of anti-*B. burgdorferi* s.l. antibodies, with the antibody seroprevalence in dogs ranging from less than 1% up to 51% (LABARTHÉ et al., 2003; ALVES et al., 2004; SPOLIDORIO et al., 2010; VIEIRA et al., 2013a, b) and, in horses, from 4.2% to 26.7% (GALO et al., 2009; SPOLIDORIO et al., 2010; VIEIRA et al., 2013a). Since studies in Brazil have focused either on suspected human cases or antibody prevalence in animals, the zoonotic etiology of *Borrelia* infections has not yet been confirmed in Brazil.

In Brazil, rural settlements are commonly characterized by inadequate sanitary care with people sharing the same environment with domestic and wild animals, in climate and environmental conditions favorable for the ticks. The present study aimed to survey antibody prevalence in animals, the zoonotic etiology of *Borrelia* infections in the region, LD in Brazil is also known as LD-like syndrome or Baggio-Yoshinari syndrome (BYS) (MANTOVANI et al., 2007). Although several human cases have been described throughout the country (YOSHINARI et al., 2003, 2007; CARRANZA-TAMAYO et al., 2012; ROSA et al., 2014), *Borrelia* spp. have not yet been isolated or characterized from such cases and *Borrelia* infection in humans remains to be confirmed in Brazil (YOSHINARI et al., 2010).

Domestic animals in Brazil have shown evidence of anti-*B. burgdorferi* s.l. antibodies, with the antibody seroprevalence in dogs ranging from less than 1% up to 51% (LABARTHÉ et al., 2003; ALVES et al., 2004; SPOLIDORIO et al., 2010; VIEIRA et al., 2013a, b) and, in horses, from 4.2% to 26.7% (GALO et al., 2009; SPOLIDORIO et al., 2010; VIEIRA et al., 2013a). Since studies in Brazil have focused either on suspected human cases or antibody prevalence in animals, the zoonotic etiology of *Borrelia* infections has not yet been confirmed in Brazil.

In Brazil, rural settlements are commonly characterized by inadequate sanitary care with people sharing the same environment with domestic and wild animals, in climate and environmental conditions favorable for the ticks. The present study aimed to survey antibody prevalence in animals, the zoonotic etiology of *Borrelia* infections in the region, LD in Brazil is also known as LD-like syndrome or Baggio-Yoshinari syndrome (BYS) (MANTOVANI et al., 2007). Although several human cases have been described throughout the country (YOSHINARI et al., 2003, 2007; CARRANZA-TAMAYO et al., 2012; ROSA et al., 2014), *Borrelia* spp. have not yet been isolated or characterized from such cases and *Borrelia* infection in humans remains to be confirmed in Brazil (YOSHINARI et al., 2010).

Domestic animals in Brazil have shown evidence of anti-*B. burgdorferi* s.l. antibodies, with the antibody seroprevalence in dogs ranging from less than 1% up to 51% (LABARTHÉ et al., 2003; ALVES et al., 2004; SPOLIDORIO et al., 2010; VIEIRA et al., 2013a, b) and, in horses, from 4.2% to 26.7% (GALO et al., 2009; SPOLIDORIO et al., 2010; VIEIRA et al., 2013a). Since studies in Brazil have focused either on suspected human cases or antibody prevalence in animals, the zoonotic etiology of *Borrelia* infections has not yet been confirmed in Brazil.

In Brazil, rural settlements are commonly characterized by inadequate sanitary care with people sharing the same environment with domestic and wild animals, in climate and environmental conditions favorable for the ticks. The present study aimed to survey antibody prevalence in animals, the zoonotic etiology of *Borrelia* infections in the region, LD in Brazil is also known as LD-like syndrome or Baggio-Yoshinari syndrome (BYS) (MANTOVANI et al., 2007). Although several human cases have been described throughout the country (YOSHINARI et al., 2003, 2007; CARRANZA-TAMAYO et al., 2012; ROSA et al., 2014), *Borrelia* spp. have not yet been isolated or characterized from such cases and *Borrelia* infection in humans remains to be confirmed in Brazil (YOSHINARI et al., 2010).

Domestic animals in Brazil have shown evidence of anti-*B. burgdorferi* s.l. antibodies, with the antibody seroprevalence in dogs ranging from less than 1% up to 51% (LABARTHÉ et al., 2003; ALVES et al., 2004; SPOLIDORIO et al., 2010; VIEIRA et al., 2013a, b) and, in horses, from 4.2% to 26.7% (GALO et al., 2009; SPOLIDORIO et al., 2010; VIEIRA et al., 2013a). Since studies in Brazil have focused either on suspected human cases or antibody prevalence in animals, the zoonotic etiology of *Borrelia* infections has not yet been confirmed in Brazil.

In Brazil, rural settlements are commonly characterized by inadequate sanitary care with people sharing the same environment with domestic and wild animals, in climate and environmental conditions favorable for the ticks. The present study aimed to survey antibody prevalence in animals, the zoonotic etiology of *Borrelia* infections in the region, LD in Brazil is also known as LD-like syndrome or Baggio-Yoshinari syndrome (BYS) (MANTOVANI et al., 2007). Although several human cases have been described throughout the country (YOSHINARI et al., 2003, 2007; CARRANZA-TAMAYO et al., 2012; ROSA et al., 2014), *Borrelia* spp. have not yet been isolated or characterized from such cases and *Borrelia* infection in humans remains to be confirmed in Brazil (YOSHINARI et al., 2010).

Domestic animals in Brazil have shown evidence of anti-*B. burgdorferi* s.l. antibodies, with the antibody seroprevalence in dogs ranging from less than 1% up to 51% (LABARTHÉ et al., 2003; ALVES et al., 2004; SPOLIDORIO et al., 2010; VIEIRA et al., 2013a, b) and, in horses, from 4.2% to 26.7% (GALO et al., 2009; SPOLIDORIO et al., 2010; VIEIRA et al., 2013a). Since studies in Brazil have focused either on suspected human cases or antibody prevalence in animals, the zoonotic etiology of *Borrelia* infections has not yet been confirmed in Brazil.

In Brazil, rural settlements are commonly characterized by inadequate sanitary care with people sharing the same environment with domestic and wild animals, in climate and environmental conditions favorable for the ticks. The present study aimed to survey antibody prevalence in animals, the zoonotic etiology of *Borrelia* infections has not yet been confirmed in Brazil.

In Brazil, rural settlements are commonly characterized by inadequate sanitary care with people sharing the same environment with domestic and wild animals, in climate and environmental conditions favorable for the ticks. The present study aimed to survey antibody prevalence in animals, the zoonotic etiology of *Borrelia* infections has not yet been confirmed in Brazil.

In Brazil, rural settlements are commonly characterized by inadequate sanitary care with people sharing the same environment with domestic and wild animals, in climate and environmental conditions favorable for the ticks. The present study aimed to survey antibody prevalence in animals, the zoonotic etiology of *Borrelia* infections has not yet been confirmed in Brazil.

In Brazil, rural settlements are commonly characterized by inadequate sanitary care with people sharing the same environment with domestic and wild animals, in climate and environmental conditions favorable for the ticks. The present study aimed to survey antibody prevalence in animals, the zoonotic etiology of *Borrelia* infections has not yet been confirmed in Brazil.
purified recombinant antigens of *B. burgdorferi* s.s. (Bb), *B. afzelii* (Ba), and *B. garinii* (Bg). This test was designed to detect the following antigens: recombinant VlsE from Ba, Bg, and Bb; lipids from Ba and Bb; p83 from Ba, p41 from Bg, p39 from Bg, OspC from Bg, and new recombinant antigens p58, p21, p20, p19, and p18. Procedures were performed according to the manufacturer’s instructions and samples were considered positive when ≥ two reactive bands were present.

Dog sera that were positive by IFAT were subjected to WB using a commercial kit (recomBlot Borrelia canis IgG, Mikrogen, Germany), which was designed to detect anti-*B. burgdorferi* s.s., anti-*B. garinii*, anti-*B. afzelii*, and anti-*B. bavariensis* antibodies. The test contains highly purified recombinant *B. burgdorferi* antigens (OspA, OspC, p100, VlsE, p39, p18, and p41). All procedures were performed according to the manufacturer’s instructions, and samples were considered positive when ≥ two reactive bands were present.

Statistical analysis

The Chi-square or Fisher’s exact test was applied to determine the individual risk factors associated with antibody seropositivity to *B. burgdorferi*. Odds ratios (OR), 95% confidence intervals, and \(p \) values were calculated separately for each variable. Results were considered significant at \(p < 0.05 \). Data were gathered and analyzed using freely available software (Epi Info version 3.5.3, Centers of Disease Control, Atlanta, GA, USA).

Results

Anti-*B. burgdorferi* antibodies were found in 4/87 (4.6%; 95% CI: 1.8–11.2) human residents by IFAT, with antibody titers ranging from 128 to 256. In addition, 15/26 (57.7%) dog sera were confirmed positive by commercial WB, with 12/15 (80%) sera reacting to p100, 9/15 (60%) to p41, 4/15 (26.7%) to p39, 3/15 (20%) to OspC. Results of the 15 positive dogs on WB are summarized in Table 1. No significant association was found between seropositivity to *B. burgdorferi* and dog age (Fisher’s exact test: \(p > 0.05 \)), gender (Chi-square: \(p = 0.163 \)), or presence of ticks (Chi-square: \(p = 0.865 \)). The seroprevalence of *B. burgdorferi* in dogs and risk factors for infection are presented in Table 2.

An overall 7/18 (38.9%; 95% CI: 21.6–63.9) horses were determined seropositive for anti-*B. burgdorferi* antibodies by IFAT, with antibody titers ranging from 64 to 256. No significant association was found between seropositivity to *B. burgdorferi* and horse age (Chi-square: \(p = 0.864 \)), gender (Chi-square: \(p = 0.705 \)), or presence of ticks (Chi-square: \(p = 0.4404 \)).

Table 1. Results of immunofluorescence antibody testing (IFAT) and western blotting for anti-*Borrelia* sp. antibodies in dogs from a rural settlement, Paraná State, southern Brazil.

Dogs	Antibody titer (IFAT)	Western Blot
12	64	p100, VlsE, p41
21	128	p39
22	64	p41, OspC
23	64	p41
24	64	p100, p41
26	128	p100
29	64	p100, p41
31	128	p100, p39, OspC
45	64	p100, p41
46	64	p100, p41
53	64	p100, p41
60	128	p100, p39, OspC
66	128	p100
75	128	p100, p39
90	64	p100, p41

+\(+ \), Number of positive animals; N, number of samples per variable; OR, odds ratio; 95% CI, 95% confidence interval.

Of the ticks collected, 67/101 (66.3%; 95% CI: 56.6–74.8) were from dogs and 34/101 (33.7%; 95% CI: 25.2–43.3) were from horses. Three tick species were identified on dogs: *Rhipicephalus sanguineus* (n = 45, 67.1%), *Amblyomma ovale* (n = 21, 31.4%) and *A. cajennense* sensu lato (n = 1, 1.5%). From horses, all 34/34 (100%) ticks were identified as *A. cajennense* sensu lato.

Discussion

Anti-*B. burgdorferi* antibodies were found in 31.3% of dogs, 38.9% of horses, and 4.6% of residents from the settlement. Antibody positivity to this organism has been previously described in subjects from rural areas of Brazil (GONÇALVES et al., 2013). However, to the author’s knowledge, no survey or study to date has both assessed the anti-*B. burgdorferi* antibody prevalence in domestic animals and their corresponding owners and determined the risk factors associated with seropositivity.
Human sera that were positive for anti-\textit{Borrelia} antibodies by IFAT were confirmed positive by WB, as recommended by the U.S. Centers for Disease Control and Prevention (CDC, 2011). Interestingly, although the LD agent in Brazil may exhibit a different pattern of reactivity by WB when \textit{B. burgdorferi} s.s. from the Northern Hemisphere is used (MANTOVANI et al., 2007; YOSHINARI et al., 2010), human sera from this study showed IgG reactivity by WB to \textit{B. garinii}, \textit{B. afzelii}, and \textit{B. burgdorferi} antigens. The overlapping occurrence of these three \textit{Borrelia} species has been only reported in the Palearctic region and associated to ticks belonging to the \textit{Ixodes ricinus} complex (ESTRADA-PENÀ et al., 2011). Thus, the authors have not excluded the possibility that the anti-\textit{Borrelia} IgG detected in the present study is a result of cross-reactivity with bacteria not belonging to the genus \textit{Borrelia} or even with the BYS agent.

Antibody seropositivity to \textit{Borrelia} spp. was found by WB in 18% of dogs in the present study, which is a higher prevalence than has been reported previously in tick endemic areas (JOPPERT et al., 2001; O’DWYER et al., 2004). Previous studies have shown cross-reactivity with antigens of other spirochetes, such as \textit{Leptospira} p41 and OspC (BRUCKBAUER et al., 1992; LESCHNIK et al., 2010), and it is important to note the possibility that dog sera in this study (untested for anti-\textit{Leptospira} antibodies) may have tested positive by WB as result of cross-reactivity. However, since 80% dogs’ sera also demonstrated antibodies against p100 by WB (Table 1), an antigen for which no cross-reactivity has been reported, the antibodies detected here are likely a result of \textit{Borrelia} infection. In addition, the present study corroborates previous studies (O’DWYER et al., 2004) in which no association was established between seropositivity to \textit{Borrelia} spp. and age, gender, or presence of ticks in dogs.

An overall 38.9% of horses were seropositive for anti-\textit{Borrelia} spp. antibodies by IFAT. This seroprevalence was higher than previously reported by ELISA testing, with seroprevalences of 26.7% in urban cart horses in northern Brazil (GALO et al., 2009) and 28.4% in farm horses in southeastern Brazil (MADUREIRA et al., 2007). Results suggest a much higher exposure of horses to ticks and \textit{Borrelia} spp. at this rural settlement, which may differ from dog and human exposure since prevalence in dogs and owner were in agreement with previous studies.

Our research hypothesis is that tick-borne infections are common in Brazil, because of a favorable climate and high prevalence and wide distribution of ticks, and that these diseases are underestimated. Moreover, we hypothesize that two major groups of humans are at highest risk of \textit{Borrelia} infection: immune-compromised and those that are highly exposed to ticks. Based on the results of the present study and a previous study by our group on \textit{Ehrlichia} spp. in subjects highly exposed to ticks (VIEIRA et al., 2013a), the authors emphasize that physicians should consider tick-borne diseases in inhabitants from rural settlements in Brazil.

In conclusion, anti-\textit{Borrelia} antibodies were found in dogs, horses and their owners in a rural settlement from southern Brazil. However, the lack of isolation, molecular characterization, absence of competent vectors and the low specificity of the commercial WB kit used herein may have impaired risk factor analysis.

Acknowledgements

This study was part of research toward a master’s degree for Denise Nascimento at the Universidade Estadual de Londrina. Denise Nascimento was sponsored by a fellowship from the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) at the time of the study. This study was supported by Fundação Araucária do Paraná (proc. 054/2007) and CNPq.

References

Alves AL, Madureira RC, Silva RA, Corrêa FN, Botteon RCCM. Freqüência de anticorpos contra \textit{Borrelia burgdorferi} em cães na região metropolitana do Rio de Janeiro. \textit{Pesq Vet Bras} 2004; 24(4): 203-206. http://dx.doi.org/10.1590/S0100-736X2004000400006.

Aragão HB, Fonseca F. Notas de Ixodologia. VIII. Lista e chave para os representantes da fauna ixiológica brasileira. \textit{Mem Inst Oswaldo Cruz} 1961; 59(2): 115-129. PMid:13861962. http://dx.doi.org/10.1590/ S0074-02761961000200001.

Barbieri AM, Venzał MJ, Marcelli A, Almeida AP, González EM, Labruna MB. \textit{Borrelia burgdorferi} sensu lato infecting ticks of the \textit{Ixodes ricinus} complex in Uruguay: first report for the Southern Hemisphere. \textit{Vector Borne Zoonotic Dis} 2013; 13(3): 147-153. PMid:23402334. http://dx.doi.org/10.1089/vbz.2012.1102.

Bruckbauer HR, Preac-Mursic V, Fuchs R, Wilske B. Cross-reactive proteins of \textit{Borrelia burgdorferi}. \textit{Eur J Clin Microbiol Infect Dis} 1992; 11(3): 224-232. PMid:1597198. http://dx.doi.org/10.1007/BF02098084.

Carranza-Tamayo CO, Costa JNG, Bastos WM. Lyme disease in the state of Toçantins, Brazil: report of the first cases. \textit{Braz J Infect Dis} 2012; 16(6): 586-589. PMid:23141972. http://dx.doi.org/10.1016/j.bjid.2012.07.013.

Centers for Disease Control and Prevention – CDC. \textit{Laboratory diagnostic testing for \textit{Borrelia burgdorferi} infection [online].} Atlanta: CDC; 2011 [cited 2015 Oct 27]. Available from: http://www.cdc.gov/lyme/resources/Halperin_2012_Chap4_JohnsonB.pdf.

Collares-Pereira M, Santos SC, Vieira ML. Valor diagnóstico da técnica de imunofluorescência indireta com diferentes estirpes no rastreio de \textit{Borrelia} e \textit{Borrelia burgdorferi} no estado de Tocantins, Brasil. \textit{Pesqui Vet Bras} 2000; 58: 97-105.

Estrada-Peña A, Ortega C, Sánchez N, Desimone L, Sudre B, Suk JE, et al. Correlation of \textit{Borrelia burgdorferi} sensu lato prevalence in questing \textit{Ixodes ricinus} ticks with specific abiotic traits in the western palearctic. \textit{Appl Environ Microbiol} 2011; 77(11): 3838-3845. PMid:21498767. http://dx.doi.org/10.1128/AEM.00677-11.

Galo KR, Fonseca AH, Madureira RC, Barbosa JD No. Frequência de anticorpos homólogos anti-\textit{Borrelia burgdorferi} em equínios na região metropolitana de Belém, Estado do Pará. \textit{Pesqui Vet Bras} 2009; 29(3): 229-232. http://dx.doi.org/10.1590/1519-78952009003000007.

Gonçalves DD, Benitez A, Lopes-Mori FM, Alves LA, Freire RL, Navarro GT, et al. \textit{Zoonezis} in humans from small rural properties in Jataízinho, Paraná, Brazil. \textit{Braz J Microbiol} 2013; 44(1): 125-131. PMid:24159294. http://dx.doi.org/10.1590/S1517-83822013000500011.

Gonçalves DD, Carreira T, Nunes M, Benitez A, Lopes-Mori FM, Vidotto O, et al. First record of \textit{Borrelia burgdorferi} B31 strain in \textit{Dermacentor nitens} ticks in the northern region of Paraná (Brazil). \textit{Braz J Microbiol} 2014; 44(3): 883-887. PMid:24516456. http://dx.doi.org/10.1590/ S1517-83822013000300035.
Guimarães JH, Tucci EC, Barros-Battesti DM. *Ecotoparásitos de importância veterinária*. São Paulo: Editora Pêdie;FAPESP; 2001.

Joppert AM, Hagiwara MK, Yoshinari NH. *Borrelia burgdorferi* antibodies in dogs from Cotinga County, São Paulo State, Brazil. *Rev Inst Med Trop Sao Paulo* 2001; 43(5): 251-255. PMID:11696846. http://dx.doi.org/10.1590/S0036-46652001000500003.

Labarthe N, De Campos Pereira M, Barbarini O, McKee W, Coimbra CA, Hoskins J. Serologic prevalence of *Dirofilaria immitis*, *Ehrlichia canis*, and *Borrelia burgdorferi* infections in Brazil. * Vet Ther* 2003; 4(1): 67-75. PMID:12756637.

Lesnich MW, Kirtz G, Khanakah G, Duscher G, Leidinger E, Thalhammer JG, et al. Humoral immune response in dogs naturally infected with *Borrelia burgdorferi* sensu lato and in dogs after immunization with a *Borrelia* vaccine. *Clin Vaccine Immunol* 2010; 17(5): 828-835. PMID:20219882. http://dx.doi.org/10.1128/CVI.00427-09.

Madureira RC, Corrêa FN, Cunha NC, Guedes DS Jr, Fonseca AH. Ocorrência de anticorpos homólogos anti-*Borrelia burgdorferi* em equinos de propriedades dos municípios de Três Rios e Vassouras, estado do Rio de Janeiro. *Rev Bras Ci Vet* 2007; 14(1): 43-46.

Mantovani E, Costa IP, Gauditano G, Bonoldi VL, Higuchi ML, Yoshinari NH. Description of Lyme disease-like syndrome in Brazil. Is it a new tick borne disease or Lyme disease variation? *Braz J Med Biol Res* 2007; 40(4): 443-456. PMID:17401487. http://dx.doi.org/10.1590/S0001-789X2007000400002.

Martins TF, Onofrio VC, Barros-Battesti DM, Labruna MB. Nymphs of the genus *Amblyomma* (Acarai: Ixodidae) of Brazil: descriptions, redescriptions, and identification key. *Ticks Tick Borne Dis* 2010; 1(2): 75-99. PMID:21771514. http://dx.doi.org/10.1016/j.ttbdis.2010.03.002.

Nava S, Barbieri AM, Maya L, Colina R, Mangold AJ, Labruna MB, et al. *Borrelia* infection in *Ixodes paracuticus* ticks (Acarai: Ixodidae) from northwestern Argentina. *Acta Trop* 2014; 139: 1-4. PMID:24979685. http://dx.doi.org/10.1016/j.actatropica.2014.06.010.

O’Dwyer LH, Soares SO, Massard CL, Souza JCP, Flausíno W, Fonseca AH. Soroprevalência de *Borrelia burgdorferi* s.l. sensu lato entre pacientes infectados por carrapatos em cães de áreas rurais do Estado do Rio de Janeiro, Brasil. *Cienc Rural* 2004; 34(1): 201-205. http://dx.doi.org/10.1590/S1013-84782004001000031.

Onofrio VC, Barros-Battesti DM, Labruna MB, Facchini JL. Diagnoses of and illustrated key to the species of *Ixodes* Latreille, 1795 (Acarai: Ixodidae) from Brazil. *Syst Parasitol* 2009; 72(2): 143-157. PMID:19115087. http://dx.doi.org/10.1007/s11230-008-9169-z.

Rosa NS No, Gauditano G, Yoshinari NH. Chronic lymphomonocytic meningoencephalitis, oligoarthritis and erythema nodosum: report of Baggio-Yoshinari syndrome of long and relapsing evolution. *Rev Bras Reumatol* 2014; 54(2): 148-151. PMID:24878862. http://dx.doi.org/10.1016/j.rbr.2014.03.010.

Spolidorio MG, Labruna MB, Machado RZ, Moraes-Filho J, Zago AM, Donatele DM, et al. Survey for tick-borne zoonoses in the state of Espirito Santo, southeastern Brazil. *Am J Trop Med Hyg* 2010; 83(1): 201-206. PMID:20595502. http://dx.doi.org/10.4269/ajtmh.2010-09-0595.

Stanek G, Reiter M. The expanding Lyme *Borrelia* complex — clinical significance of genonic species? *Clin Microbiol Infect* 2011; 17(4): 487-493. PMID:21414082. http://dx.doi.org/10.1111/j.1469-0691.2011.03492.x.

Stanek G, Wormser GP, Gray J, Srle F. Lyme borreliosis. *Lancet* 2012; 379(9814): 461-473. PMID:21903253. http://dx.doi.org/10.1016/S0140-6736(11)60103-7.

Vieira RF, Vieira TS, Nascimento DA, Martins TF, Krawczak FS, Labruna MB, et al. Serological survey of *Ehrlichia* species in dogs, horses and humans: zoonotic scenery in a rural settlement from southern Brazil. *Rev Inst Med Trop Sao Paulo* 2013a; 55(5): 335-340. PMID:24037288. http://dx.doi.org/10.1590/S0074-02762013000500007.

Vieira TS, Vieira RF, Nascimento DA, Tanemaki K, Toledo RS, Chandrasekhar R, et al. Serosurvey of tick-borne pathogens in dogs from urban and rural areas from Paraña State, Brazil. *Rev Bras Parassitol Vet* 2013b; 22(1): 104-109. PMID:24252955. http://dx.doi.org/10.1590/S1984-29612013000100019.

Yoshinari N, Spolidorio M, Bonoldi VL, Sorto M. Lyme disease like syndrome associated lymphocytoma: first case report in Brazil. *Clinics* 2007; 62(4): 525-526. PMID:17823716. http://dx.doi.org/10.1590/S1807-59322007000400020.

Yoshinari NH, Abrio MG, Bonoldi VL, Soares CO, Madruga CR, Scofield A, et al. Coexistence of antibodies to tick-borne agents of babesiosis and Lyme borreliosis in patients from Cotinga county, State of São Paulo, Brazil. *Mem Inst Oswaldo Cruz* 2003; 98(3): 311-318. PMID:12886408. http://dx.doi.org/10.1590/S0074-02762003000300004.

Yoshinari NH, Mantovani E, Bonoldi VL, Marangoni RG, Gauditano G. Doença de Lyme-símile brasileira ou síndrome Baggio-Yoshinari: zoonose exótica e emergente transmitida por carrapatos. *Rev Assoc Med Bras* 2010; 56(3): 363-369. PMID:20676548. http://dx.doi.org/10.1590/S0104-42302010000300025.