Association of the FAM46A Gene VNTRs and BAG6 rs3117582 SNP with Non Small Cell Lung Cancer (NSCLC) in Croatian and Norwegian Populations

Godfrey Essien Etokebe1 *, Shanbeh Zienolddiny3, Zeljko Kupanovac1,2, Morten Enersen1, Sanja Balen4, Veljko Flego2, Ljiljana Bulat-Kardum2, Andelka Radojičić-Badovinac6, Vidar Skaug3, Per Bakke5, Aage Haugen3, Zlatko Dembic1

1 Institute for Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway, 2 Section of Pulmology, Department of Internal Medicine, Clinical Hospital Center, University of Rijeka, Rijeka, Croatia, 3 Department of Chemical and Biological Working Environment, National Institute of Occupational Health, Oslo, Norway, 4 Institute for Transfusion Medicine, Clinical Hospital Center, University of Rijeka, Rijeka, Croatia, 5 Department of Clinical Sciences, University of Bergen, Bergen, Norway, 6 Department for Biology and Medical Genetics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia

* godfreye@odont.uio.no

Abstract

We analyzed for associations between a variable number of tandem repeat (VNTR) polymorphism in the Family with sequence similarity 46, member A (FAM46A) gene and a single nucleotide polymorphism (rs3117582) in the BCL2-Associated Athanogene 6 (BAG6) with non small cell lung cancer in Croatian and Norwegian subjects. A total of 503 (262 Croatian and 241 Norwegian) non small cell lung cancer patients and 897 controls (568 Croatian and 329 Norwegian) were analyzed. We found that the frequency of allele b (three VNTR repeats) of FAM46A gene was significantly increased in the patients compared to the healthy controls in the Croatian and the combined Croatian and Norwegian subjects. Genotype frequencies of cd (four and five VNTR repeats) and cc (four VNTR repeats homozygote) of the FAM46A gene were significantly decreased in the patients compared to the healthy controls in the Croatian and Norwegian subjects, respectively. Logistic regression analyses revealed FAM46A genotype cc to be an independent predictive factor for non small cell lung cancer risk in the Norwegian subjects after adjustment for age, gender and smoking status. This is the first study to suggest an association between the FAM46A gene VNTR polymorphisms and non small cell lung cancer. We found also that BAG6 rs3117582 SNP was associated with non small cell lung cancer in Europeans. Logistic regression analyses revealed that genotypes and alleles of BAG6 were independent predictive factor for non small cell lung cancer risk in the Norwegian and combined Croatian-Norwegian subjects, after adjustment for age and gender.
Introduction

Lung cancer is the most predominant cause of cancer death globally [1]. Through epidemiological studies many environmental risk factors have been established for lung cancer including smoking, air pollution and industrial substances [2]. Although tobacco smoking is the major risk factor, genetic factors also affect lung cancer susceptibility [3–5]. Direct evidence for genetic predisposition to lung cancer is highlighted by several genome wide association studies (GWAS) that has been done [6–11].

Most of the genetic association reports studying lung cancer use single nucleotide polymorphisms (SNPs) as markers. A genomic variant that is understudied is the variable number of tandem repeats (VNTR) probably due to VNTR complexity and the challenges in assaying them. These limitations do not favor the discovery of novel VNTRs as potential predictive and prognostic factors in lung cancer etiology. Predictive and prognostic factors are important in the diagnosis and treatment of lung cancer [12–14]. The positive long term economic impact of robustly testing for predictive factors cannot be underestimated. This enhances the quality of medical care by significantly reducing false positives or negatives that may impact negatively on the treatment outcome. For example, robust testing for epidermal growth factor receptor (EGFR) gene mutational status in non small cell lung cancer (NSCLC) patients has defined this gene as an important predictive and prognostic factor in NSCLC diagnosis and treatment. This has also allowed for the therapeutic targeting of this genetic locus in NSCLC treatment [15;16].

VNTRs can modulate many biological processes such as gene transcription and protein function. They may also be responsible for many disorders in humans that include unstable (genetic) repeat expansions [17;18]. There are few reports on the association between VNTRs and lung cancer susceptibility in case-control studies. These include VNTRs in the H-ras gene [19;20], interleukin-1 receptor antagonist gene (IL1RN *2) [21;22] and Mitogen-activated protein kinase 2 gene (MAPKAPK2) [23].

The Family-with-sequence-similarity 46, member A (FAM46A) gene [24] is located at chromosome 6.14.1. It harbors a VNTR within its coding sequence in exon 2. This VNTR may vary from two to seven repeats per chromosome [25;26]. The FAM46A polypeptide chain also contains the Domain of unknown function 1693 (DUF1693) [27] and as such no biological role has been assigned to the FAM46A gene as of date [28;29]. FAM46A protein interacts with the BCL2-Associated Athanogene 6 (BAG6) protein [28] which has been reported to modify risk of lung cancer [30]. The BAG6 gene is located on chromosome 6p21.3 and regulated apoptosis and HSP70 [31]. FAM46A protein also interacts with the zinc finger, FYVE domain-containing 9 (ZFYVE9) protein [28] which is involved in TGF-β signaling.

We previously reported that the mouse homologue of the Fam46a gene is expressed in developing tooth buds. Due to its nuclear localization and interaction with the human transcription factor, ZFYVE9 protein, we suggested that the FAM46A protein might be involved in cellular proliferation [32]. In addition, we have recently reported that the FAM46A gene VNTR is associated with increased risk of tuberculosis and osteoarthritis [33;34]. Data suggest that patients with tuberculosis are associated with increased lung cancer [35]. Based on these facts, we hypothesized that the FAM46A gene may be involved in lung cancer and that this involvement may be through variations in the length of the FAM46A VNTR. In addition, we analyzed for the association of a BAG6 SNP to validate its previous reported association with lung cancer [30]. The associations were investigated in two different European populations.
Materials and Methods

Ethics Statement

The study was approved by the Medical ethics committees of the University Hospital, University of Rijeka, Croatia, and Regional Committees for Medical and Health Research Ethics, Oslo, Norway. Written consents were obtained from all participants.

Subjects

The number of participants, sex and age distribution of the subjects are described in Table 1 for the both the Croatian and Norwegian subjects, respectively. Blood samples were collected at the Clinical Institute for Transfusion Medicine, University Hospital Center Rijeka, Rijeka, Croatia for the Croatian subjects and at National Institute of Occupational Health, Oslo, Norway for the Norwegian subjects. Ethnicity of participants was established by patient or healthy individual interview and by consulting the admission documentation at the hospitals. Some clinical information for particularly subjects was lacking and as such, not all subjects were included in the characteristics estimations in Table 1. Subjects were not matched for possible confounding factors such as age, gender, and smoking status. Not all patients and controls were typed for the two markers due to lack of particular samples.

Genomic DNA extraction

Genomic DNA from NSCLC patients and healthy controls was extracted from whole blood as described previously [36–38]. In brief, 200 μl of whole blood was mixed with 400 μl of sucrose buffer (0.32 M sucrose, 10 mM Tris–HCl, pH 7.5, 5 mM MgCl2, 1%, v/v, Triton X-100) and incubated for 1 min at room temperature. To collect white cell nuclei, samples were centrifuged 2 min at 5,000g. Precipitated nuclei were washed twice with 800 μl of sucrose buffer and centrifuged (2 min at 5,000g). After the second wash, the nuclei were re-suspended in 400 μl DNAzol (Invitrogen Corporation, Carlsbad, CA, USA) and incubated at room temperature for 5 min. Genomic DNA was precipitated with 200 μl of 100% ethanol and collected by centrifugation (2 min at 5,000g). The precipitate was washed with 1 ml of 75% ethanol and centrifuged for 1 min at 5,000g, twice. Genomic DNA was re-suspended in Tris-EDTA buffer solution (10 mM Tris-HCl, 1 mM disodium EDTA, pH 8.0; Sigma-Aldrich Chemie Gmbh, Munich, Germany).

Genotyping by DNA-sequencing Capillary Electrophoresis

DNA fragments of 647 base pairs (bp) in length encoding the FAM46A gene were amplified from human genomic DNA by using a FAM-labeled forward primer, designated Gfam_VF (5′-AGGGTACTTCGCCATGTCTG-3′), in combination with an unlabeled reverse primer, designated GEX_R (5′-CTCGTGATGGCCACAGATT-3′), by PCR as previously described [33;34]. The 25 μL total volume PCR mixtures contained the following: 25 ng of genomic DNA, 0.2 μm each of the specific primers, and 1x Paq5000 Hotstart PCR master mix (Agilent Technologies, Inc., CA, USA). PCR was performed in a Peltier Thermal cycler (MJ Research, Massachusetts, USA). The Paq5000 polymerase was activated by an initial step at 95°C lasting 2 min, followed by 35 cycles of denaturing, annealing, and extension steps at 95°C for 20 s, 65°C for 20 s, and 72°C for 30 s, respectively, followed by a final extension step at 72°C for 5 min. Amplicons were resolved by 1% ethidium bromide-stained agarose gel electrophoresis and visualized by the Geldoc imaging system (Bio-Rad, Hercules, CA, USA). Amplicons (0.5 μl) were mixed with 0.5 μl GeneScan 1200 LIZ Size Standard (Life Technologies, NY, USA) and loaded onto a 3730 DNA Analyzer (Life Technologies, NY, USA) for allele separation. Separated alleles were analyzed by the Genemapper software (Life Technologies, NY, USA). Allele (VNTR) identity was
Table 1. Characteristics of non small cell lung cancer (NSCLC) patients and normal (healthy) controls.

| Subjects                | Characteristic                     | Patients          | Controls         | p-value   |
|-------------------------|------------------------------------|-------------------|------------------|-----------|
|                        | n²                                 | 215               | 471              |           |
| Croatsians              | Average age (males and females)    | 66.12 (±10.39)    | 42.83 (±10.84)   | <0.0001  |
| nor                   | Age range (males and females)      | 31–92             | 19–73            |           |
|                        | n¹                                 | 57                | 189              |           |
|                        | Average age (females)              | 66.93 (±10.99)    | 45.12 (±10.99)   | <0.0001  |
| nor                   | Age range (females)                | 47–85             | 21–68            |           |
|                        | nᵐ                                 | 158               | 282              |           |
|                        | Average age (males)                | 65.82 (±10.18)    | 41 (±11.55)      | <0.0001  |
| nor                   | Age range (males)                  | 31–92             | 19–73            |           |
|                        | Smoking status                     | never: 37         | never: na        |           |
| nor                   | Histology                          | Adenocarcinoma: 67|                 |           |
| nor                   | Squamous carcinoma: 113            |                   |                  |           |
| nor                   | Large cell carcinoma: 3            |                   |                  |           |
| nor                   | undetermined NSCLC: 79             |                   |                  |           |
|                        |                                    |                   |                  |           |
| Norwegians             | n²                                 | 238               | 292              |           |
| nor                   | Average age (males and females)    | 64.24 (±10.22)    | 59.66 (±10.34)   | <0.0001  |
| nor                   | Age range (males and females)      | 25–82             | 40–88            |           |
| nor                   | n¹                                 | 70                | 69               |           |
| nor                   | Average age (females)              | 64.04 (±10.42)    | 61.63 (±10.98)   | 0.19     |
| nor                   | Age range (females)                | 36–81             | 40–83            |           |
| nor                   | nᵐ                                 | 177               | 223              |           |
| nor                   | Average age (males)                | 64.45 (±10.16)    | 59.06 (±10.08)   | <0.0001  |
| nor                   | Age range (males)                  | 25–71             | 40–88            |           |
| nor                   | Smoking status                     | never: 17         | never: 0         | <0.0001  |
| nor                   | Histology                          | Adenocarcinoma: 148|                |           |
| nor                   | Squamous carcinoma: 98             |                   |                  |           |
| nor                   | Large cell carcinoma: 33           |                   |                  |           |
| nor                   | undetermined NSCLC: 79             |                   |                  |           |
|                        |                                    |                   |                  |           |
| Pooled Croatsians and Norwegians | n²                                 | 453               | 760              |           |
| nor                   | Average age (males and females)    | 65.13 (±10.16)    | 49.29 (±10.16)   | <0.0001  |
| nor                   | Age range (males and females)      | 31–92             | 19–88            |           |
| nor                   | n¹                                 | 124               | 258              |           |
| nor                   | Average age (females)              | 65.16 (±10.16)    | 49.53 (±10.16)   | <0.0001  |
| nor                   | Age range (females)                | 36–85             | 21–83            |           |
| nor                   | nᵐ                                 | 329               | 502              |           |
| nor                   | Average age (males)                | 65.12 (±10.19)    | 49.17 (±14.07)   | <0.0001  |
| nor                   | Age range (males)                  | 25–92             | 19–88            |           |
| nor                   | Smoking status                     | never: 54         | never: na        |           |
| nor                   | Histology                          | Adenocarcinoma: 215|                |           |
| nor                   | Squamous carcinoma: 211            |                   |                  |           |
| nor                   | Large cell carcinoma: 37           |                   |                  |           |
| nor                   | undetermined NSCLC: 79             |                   |                  |           |

n², male and female subjects; n¹, females subjects; nᵐ, males subjects; na, not available.

doi:10.1371/journal.pone.0122651.001
confirmed by sequencing directly PCR amplicons from samples that were genotyped as various homozygotes (two each). To further confirm the genotyping results, 10% of the samples were re-genotyped with 100% concordance. Also, randomly selected samples that were genotyped as heterozygotes were sub-cloned into TOPO Zero Blunt Sequencing plasmids (Life Technologies, NY, USA) prior to sequencing. Sequencing reaction was performed using the BigDye chemistry 3.1 (Life Technologies, NY, USA) with forward and reverse primers GVF (5′-AGGG-TACTTCGCCATGTCTG-3′) and GEX_R (5′-CTCGTGATGGCCACAGATT-3′), respectively and resolved by the ABI 3730 DNA analyzer (Life Technologies, NY, USA).

Genotyping of **BAG6** rs3117582 Single Nucleotide Polymorphism (SNP)

BCL2-Associated Athanogene 6 (**BAG6**) gene rs3117582 SNP was assessed by probe-based real-time PCR assays as described by the Kits manufacturer (Life Technologies, NY, USA) in our NSCLC patient and control groups, respectively. Stratagene MX3005 real-time PCR cycler was applied (Agilent Technologies, Santa Clara, CA, USA) for temperature cycling and signal quantification.

**Statistical analysis**

The differences in the distribution of categorical variables, including demographic characteristics, selected variables, allelic and genotypic frequencies were analyzed by the chi-square (Fisher two tailed) method using the 2-way Contingency Table Analysis (available athttp://statpages.org/ctab2x2.html and http://research.microsoft.com/en-us/um/redmond/projects/mscompbio/fisherexacttest/) or t-test (http://www.graphpad.com/quickcalcs/ttest1/?Format=SD) between patients and controls. The Hardy-Weinberg analysis was done using the Arlequin software version 3.5 (Genetics and Biometry Laboratory, University of Geneva, Geneva, Switzerland), which showed that the FAM46A VNTRs and the BAG6 genotypes were in Hardy-Weinberg equilibrium (HWE). A statistically significant difference was defined when p was ≤0.05. The associations between the FAM46A VNTRs and BAG6 rs3117582 SNP polymorphisms and non small cell lung cancer risk were estimated by computing the odds ratios (ORs) and their 95% confidence intervals (CIs). We performed logistic regression analysis to evaluate the influence of age, gender and smoking status as confounders for the association of FAM46A VNTRs and BAG6 rs3117582SNP, respectively, with non small cell lung cancers in the Croatian and Norwegian subjects. Smoking status could not be included as a cofounder when we analyzed for the association of these genetic elements with non small cell lung cancer in the Croatian subjects and the combined Croatian-Norwegian subjects because information on the smoking status of the Croatian healthy control group was not available. Logistic regression analyses were carried out using SPSS (version 21; SPSS Inc., Chicago, IL, USA) and a p-value of ≤ 0.05 was set as the criterion for statistical significance.

**Results**

**Allelic and genotypic frequencies of the FAM46A gene VNTR**

The frequency of VNTR genotypes and alleles for the FAM46A gene in the patients and healthy controls are listed in Table 2 and 3. We found twenty genotypes comprising of six alleles for the FAM46A gene with different frequencies in the two populations. Therefore, in further analyses of genotypes we chose to analyze results separately for each population, in addition to performing combined analyses. Analysis of the allelic frequencies, however, showed that the VNTR with 5 repeats (d allele in Table 3) was the most frequent allele with a similar frequency in healthy controls in both the Croatian (42%) and Norwegian (40%) populations. We chose,
therefore, d allele as the reference allele in further analysis of the odds ratios. Tables 4 and 5 show the risk for lung cancer associated with each genotype (Table 4) or allele (Table 5) comparing frequencies of each genotype or allele in cases and controls with the most frequent genotype or allele as reference. In the Croatian subjects the cd genotype and in the Norwegian

| Subjects | Genotype | VNTR | Patients (n = 262) frequency (N) | Controls (n = 568) frequency (N) |
|----------|----------|------|---------------------------------|----------------------------------|
| Croatian | Bb       | 3/3  | 24 (0.09)                       | 36 (0.06)                        |
|          | Cc       | 4/4  | 19 (0.07)                       | 31 (0.05)                        |
|          | dd       | 5/5  | 40 (0.15)                       | 92 (0.16)                        |
|          | ee       | 6/6  | 2 (0.01)                        | 3 (0.01)                         |
|          | ff       | 7/7  | 0                               | 1 (0.00)                         |
|          | ab       | 2/3  | 0                               | 4 (0.01)                         |
|          | ac       | 2/4  | 0                               | 1 (0.00)                         |
|          | ad       | 2/5  | 4 (0.02)                        | 4 (0.01)                         |
|          | ae       | 2/6  | 0                               | 2 (0.00)                         |
|          | af       | 2/7  | 0                               | 1 (0.00)                         |
|          | bc       | 3/4  | 38 (0.15)                       | 63 (0.11)                        |
|          | bd       | 3/5  | 69 (0.26)                       | 135 (0.24)                       |
|          | be       | 3/6  | 9 (0.03)                        | 20 (0.04)                        |
|          | bf       | 3/7  | 1 (0.00)                        | 5 (0.01)                         |
|          | cd       | 4/5  | 34 (0.13)                       | 111 (0.20)                       |
|          | ce       | 4/6  | 9 (0.03)                        | 16 (0.03)                        |
|          | cf       | 4/7  | 1 (0.00)                        | 0                               |
|          | de       | 5/6  | 12 (0.05)                       | 39 (0.07)                        |
|          | df       | 5/7  | 0                               | 4 (0.01)                         |
|          | ef       | 6/7  | 0                               | 1 (0.00)                         |
| Norwegian| bb       | 3/3  | 15 (0.06)                       | 21 (0.06)                        |
|          | cc       | 4/4  | 9 (0.04)                        | 36 (0.12)                        |
|          | dd       | 5/5  | 50 (0.21)                       | 64 (0.20)                        |
|          | ee       | 6/6  | 0                               | 2 (0.01)                         |
|          | ab       | 2/3  | 1 (0.001)                       | 2 (0.01)                         |
|          | ac       | 2/4  | 0                               | 2 (0.01)                         |
|          | ad       | 2/5  | 1 (0.001)                       | 4 (0.01)                         |
|          | ae       | 2/6  | 0                               | 2 (0.01)                         |
|          | bc       | 3/4  | 37 (0.15)                       | 40 (0.12)                        |
|          | bd       | 3/5  | 44 (0.18)                       | 50 (0.15)                        |
|          | be       | 3/6  | 12 (0.05)                       | 10 (0.03)                        |
|          | cd       | 4/5  | 47 (0.20)                       | 56 (0.17)                        |
|          | ce       | 4/6  | 7 (0.03)                        | 11 (0.03)                        |
|          | cf       | 4/7  | 1 (0.00)                        | 1 (0.00)                         |
|          | de       | 5/6  | 15 (0.62)                       | 27 (0.08)                        |
|          | df       | 5/7  | 1 (0.004)                       | 1 (0.003)                        |
|          | ef       | 6/7  | 1 (0.004)                       |                                  |

N: frequency of genotypes/alleles per group, n: total number of alleles per group.

doi:10.1371/journal.pone.0122651.t002
subjects the cc genotype was associated with a reduced risk of lung cancer, whereas combining both groups only cc genotype had a significant effect on reduction of the cancer risk (Table 4). Regarding allele frequencies, only subjects with a b allele in the Croatian population had a significant increased risk of lung cancer (Table 5).

Genotypic and Allelic frequencies of BAG6 rs3117582 SNP

For the BAG6 rs3117582 polymorphism we found a gene-dosage increased risk for lung cancer associated with the C allele of BAG6 rs3117582 SNP in the Norwegian subjects. The subjects carrying one C allele had 1.70-fold increased lung cancer risk and subjects with two variant alleles (CC) had almost 7-fold increased risk of lung cancer. No such association was present in the Croatian subjects; however, combining the subjects from both populations the associations remained significant and similar to the associations found in the Norwegian population (Table 6).

Discussion

The present study investigates the association between a VNTR in exon 2 of the FAM46A gene and a SNP (rs3117582) in the BAG6 gene and risk of NSCLC in two case-control studies from Croatia and Norway. We found that an allele of FAM46A gene that carries three VNTR repeats (designated as allele b) was associated with increased risk of lung cancer in the Croatian subjects. In addition, a genotype of FAM46A gene with 4 and 5 VNTR repeats (designated cd) was associated with reduced risk of cancer in these subjects. However, another genotype (cc)
conferred reduced risk to lung cancer in the Norwegian subjects. To date, this is the first report of an association between the FAM46A gene and NSCLC. Of particular interest is our observation that the cc and cd genotypes of the FAM46A gene confer reduced risk to NSCLC in the Norwegian and Croatian subjects, respectively. In addition, we found that the FAM46A bd and dd genotypes were the dominant genotypes in the Croatian and Norwegian subjects, respectively. These findings may suggest that the frequency of the dominant genotype of the FAM46A gene may influence the particular genotypes(s) that

Table 4. Association of FAM46A VNTR genotypes with NSCLC in Croatian and Norwegian subjects.

| Subjects                      | VNTR Variant | Unadjusted for covariates | Adjusted for covariates |
|-------------------------------|--------------|---------------------------|-------------------------|
|                               | Genotype     | OR(crude), 95% CI, pU N = 830 | OR(adjusted), 95% CI, p^\alpha, N = 734 |
| -----------------------------|--------------|---------------------------|-------------------------|
| Croats                        | bd           | Reference                 |                         |
|                               | bb           | 1.03, 0.72–2.34, 0.38     | 1.26, 0.66–2.40, 0.48   |
|                               | bc           | 1.18, 0.72–1.94, 0.51     | 1.09, 0.64–1.87, 0.76   |
|                               | be           | 0.88, 0.38–2.04, 0.77     | 0.67, 0.24–1.93, 0.46   |
|                               | cc           | 1.20, 0.63–2.28, 0.58     | 1.44, 0.72–2.86, 0.31   |
|                               | cd           | 0.60, 0.37–0.97, 0.037    | 0.56, 0.33–0.96, 0.035   |
|                               | ce           | 1.10, 0.43–2.62, 0.83     | 1.23, 0.49–3.12, 0.66   |
|                               | dd           | 0.60, 0.30–1.22, 0.16     | 0.82, 0.51–1.37, 0.45   |
|                               | de           | 0.80 0.51–1.25, 0.33       | 0.54, 0.25–1.21, 0.13   |
|                               | LFG          | 0.51, 5.75E-06            | 0.55, 0.21–1.43, 0.22   |
| Norwegians                    | bd           | Reference                 |                         |
|                               | bb           | 0.92, 0.42–1.99, 0.82     | 0.98, 0.44–2.18, 0.96   |
|                               | bc           | 1.30, 0.71–2.34, 0.39     | 1.16, 0.62–2.18, 0.65   |
|                               | bd           | 1.09, 0.62–1.9, 0.77      | 0.97, 0.54–1.74, 0.92   |
|                               | be           | 1.39, 0.55–3.50, 0.48     | 1.29, 0.48–3.46, 0.62   |
|                               | cc           | 0.37, 0.16–0.86, 0.02     | 0.27, 0.11–0.69, 0.006   |
|                               | cd           | 1.11, 0.64–1.93, 0.70     | 1.05, 0.59–1.88, 0.86   |
|                               | ce           | 0.81, 0.28–2.29, 0.69     | 0.77, 0.27–2.22, 0.63   |
|                               | de           | 0.73, 0.34–1.53, 0.40     | 0.73, 0.33–1.59, 0.43   |
|                               | LFG          | 1.08, 0.46–2.51, 0.86     | 1.14, 0.47–2.75, 0.78   |
| Combined Croats and Norwegians| bd+dd        | Reference                 |                         |
|                               | bb           | 1.16, 0.74–1.81, 0.51     | 1.27, 0.71–2.26, 0.43   |
|                               | bc           | 1.28, 0.91–1.81, 0.17     | 1.25, 0.80–1.94, 0.33   |
|                               | be           | 1.15, 0.64–2.05, 0.65     | 1.21, 0.55–2.67, 0.63   |
|                               | cc           | 0.78, 0.48–1.26, 0.30     | 0.55, 0.30–0.996, 0.048  |
|                               | cd           | 0.53, 0.60–1.14, 0.25     | 0.90, 0.60–1.35, 0.61   |
|                               | ce           | 1.01, 0.53–1.92, 0.98     | 0.97, 0.43–2.14, 0.91   |
|                               | de           | 0.70, 0.43–1.14, 0.15     | 0.68, 0.37–1.22, 0.19   |
|                               | LFG          | 0.88, 0.50–1.54, 0.66     | 1.05, 0.52–2.12, 0.90   |

p^\text{U}: unadjusted p-value,  
p^\text{\alpha}: p-value adjusted for gender,  
p^\text{\alpha\alpha}: p-value adjusted for age and gender,  
p^\text{\alpha\alpha\alpha}: p-value adjusted for age, gender and smoking status,  
N: number of alleles or genotypes include in the analysis, LFG: Low frequency genotypes (ab+ac+ad+ae+bf+cf+af+ee+ef+ff), CI: confidence interval, OR: Odds ratio  

doi:10.1371/journal.pone.0122651.t004
associates with NSCLC risk in each population. There is the possibility that these polymorphisms could be markers for susceptibility or reduced risk factor for example binding sites for

### Table 5. Association of FAM46A VNTR alleles with NSCLC in Croatian and Norwegian subjects.

| Subjects          | VNTR Variant | Unadjusted for covariates | Adjusted for covariates |
|-------------------|--------------|---------------------------|-------------------------|
|                   |              | OR(crude), 95% CI, pU, N | OR(adjusted), 95% CI, p |
|                   |              | = 1660                    | = 1468                  |
| Croatians         | Allele       |                           |                         |
| d                 | Reference    |                           |                         |
| a                 |              | 0.87, 0.27–                | 0.85, 0.23–             |
|                   |              | 2.77, 0.82                | 3.15, 0.81              |
| b                 |              | **1.32, 1.03–**           | **1.32, 1.003–**        |
|                   |              | **1.70, 0.03**            | **1.74, 0.048**         |
| c                 |              | 1.14, 0.87–                | 1.18, 0.88–             |
|                   |              | 1.49, 0.36                | 1.59, 0.27              |
| e                 |              | 0.97, 0.63–                | 0.89, 0.54–             |
|                   |              | 1.49, 0.89                | 1.46, 0.64              |
| f                 |              | 0.40, 0.09–                | 0.44, 0.10–             |
|                   |              | 1.80, 0.23                | 2.02, 0.29              |
| Norwegians        | Allele       |                           |                         |
| d                 | Reference    |                           |                         |
| a                 |              | 0.25, 0.06–                | 0.32, 0.07–             |
|                   |              | 1.17, 0.08                | 1.52, 0.15              |
| b                 |              | 1.09, 0.81–                | 1.07, 0.78–             |
|                   |              | 1.47, 0.58                | 1.48, 0.68              |
| c                 |              | 0.76, 0.56–                | 0.75, 0.54–1.04, 0.08   |
| e                 |              | 0.82, 0.52–                | 0.80, 0.49–             |
|                   |              | 1.30, 0.40                | 1.31, 0.37              |
| f                 |              | 1.90, 0.31–                | 1.89, 0.31–             |
|                   |              | 11.44, 0.49               | 11.76, 0.49             |
| Combined          | Allele       |                           |                         |
| Croatians and     |              |                           |                         |
| Norwegians        | Allele       | OR(crude), 95% CI, pU, N  | OR(adjusted), 95% CI, p |
|                   |              | = 2800                    | = 2444                  |
| d                 | Reference    |                           |                         |
| a                 |              | 0.52, 0.21–                | 0.53, 0.17–             |
|                   |              | 1.30, 0.16                | 1.68, 0.28              |
| b                 |              | 1.19, 0.98–                | 1.20, 0.94–             |
|                   |              | 1.44, 0.07                | 1.53, 0.15              |
| c                 |              | 0.97, 0.79–                | 0.91, 0.71–             |
|                   |              | 1.18, 0.76                | 1.18, 0.49              |
| e                 |              | 0.90, 0.66–                | 0.84, 0.56–             |
|                   |              | 1.23, 0.51                | 1.25, 0.39              |
| f                 |              | 0.65, 0.23–                | 1.21, 0.35–             |
|                   |              | 1.82, 0.42                | 4.15, 0.76              |

p^[U]: unadjusted p-value,
p^[G]: p-value adjusted for gender,
p^[AG]: p-value adjusted for age and gender,
p^[AGS]: p-value adjusted for age, gender and smoking status,
N: number of alleles or genotypes include in the analysis, CI: confidence interval, OR: Odds ratio.

doi:10.1371/journal.pone.0122651.t005
miRNA, CpG methylation changes, SNPs in vicinity or genetic instability. Our results may therefore encourage further studies aimed at replicating our results, validating and/or eliminating the possibility of false positives or negatives that may be present in our results as a consequence of these genetic events.

The function of the FAM46A gene and its component domains (PS50315 and DUF1693) is unknown [25]. The DUF domain is present in many hypothetical proteins including nematode prion-like proteins [27] and in nucleotidyltransferase superfamily genes with unknown function [27]. Our results suggest that the VNTR-encoded PS50315 domain of the FAM46A protein might have functional importance in NSCLC. The FAM46A gene might have a role in TGF-β signaling, cell death (apoptosis) and/or inflammation due to its interaction with the ZFYVE9 protein [28]. An experimentally determined interacting partner of the FAM46A protein is the VNTR-encoded PS50315 domain of the FAM46A protein.

### Table 6. Association of BAG6 SNP 3117582 with NSCLC in Croatian and Norwegian subjects.

| Subjects | SNP Variant | Number of cases (n) | Number of healthy controls (n) | Unadjusted for covariates | Adjusted for covariates |
|----------|-------------|---------------------|-------------------------------|---------------------------|-------------------------|
|          | Genotype   |                     |                               | OR(crude), 95% CI, p<sub>U</sub> | OR(adjusted), 95% CI, p<sub>pag</sub> |
|          | AA         | 218                 | 491                           | Reference                 |                         |
|          | AC         | 41                  | 69                            | 1.34, 0.88–2.03, 0.17      | 1.46, 0.94–2.29, 0.095  |
|          | CC         | 2                   | 4                             | 1.13, 0.21–6.19, 0.89      | 1.59, 0.26–6.67, 0.61  |
|          |            |                     |                               |                           |                         |
| Norwegians | Genotype   | 249                 | 332                           | Reference                 |                         |
|          | AA         | 170                 | 271                           | 1.70, 1.16–2.56, 0.01      | 1.68, 1.08–2.61, 0.02  |
|          | AC         | 62                  | 58                            | 4.25, 1.11–16–25, 0.03     | 7.06, 1.45–34.40, 0.016 |
|          | CC         | 8                   | 3                             | 1.70, 1.28–2.27, 0.0003    | 1.72, 1.27–2.33, 0.0005 |
| Combined Croatians and Norwegians | Genotype   | 498                 | 664                           | Reference                 |                         |
|          | AA         | 340                 | 542                           | 1.70, 1.28–2.27, 0.0003    | 1.72, 1.27–2.33, 0.0005 |
|          | AC         | 124                 | 116                           | 1.83, 1.39–2.42, 0.00002   | 1.88, 1.39–2.54, 0.00004 |
|          | CC         | 16                  | 6                             | 1.83, 1.47–2.67, 4.96x10<sup>-8</sup> | 1.63, 1.24–2.13, 0.0004 |

p<sub>U</sub>: unadjusted p-value, 
p<sub>p</sub>: p-value adjusted for gender, 
p<sub>pag</sub>: p-value adjusted for age and gender, 
p<sub>pags</sub>: p-value adjusted for age, gender and smoking status, 
N: number of alleles or genotypes include in the analysis, n: numbers of alleles or genotypes, CI: confidence interval, OR: Odds ratio.

doi:10.1371/journal.pone.0122651.t006
ZFYVE9 protein [28]. ZFYVE9 protein is involved in the recruitment of unphosphorylated forms of SMAD2/SMAD3 to the TGF-β receptor (TGF-βR) [39]. Phosphorylation of SMAD2/SMAD3 induces dissociation from ZFYVE9. This allows for the formation of SMAD2/SMAD4 complexes and the consequent translocation of the SMAD2/SMAD4 complexes to the nucleus. Perhaps the FAM46A protein is involved in this cascade of events. TGF-β is a potent inhibitor of cell growth and accumulating evidence suggests that perturbation of TGF-β signaling pathway leads to tumorigenesis [40]. It is therefore tempting to speculate that FAM46A protein may be involved in lung cancer etiology through its participation in the TGF-β signaling pathway. This may involve the VNTR-encoded PS50315 domain of FAM46A gene. Our results may therefore encourage further studies to validate this postulation.

We found that the BAG6 rs3117582 SNP is associated with NSCLC both at the genotypic and allelic levels in the Norwegian subjects and the combined Croatian and Norwegian subjects. This is interesting since BAG6 protein is an interacting partner of FAM46A protein [28]. Previous reports have shown that SNPs in BAG6 gene (rs1052486 and rs3117582) conferred susceptibility to lung cancer [8;30]. Our results support these previous reports and further suggest a role for the BAG6 gene in the etiology of non small cell lung cancer. BAG6 polypeptides regulates a variety of cellular processes such as apoptosis [41], HLA class II expression [42], T cell responses [43], protein modification and gene expression [44]. All these processes may require that the BAG6 protein is constitutively expressed at steady-state levels for optimal functioning. In addition, the BAG6 rs3117582 SNP is located at the promoter region of the BAG6 gene (38 basepairs from the transcription start site). Mutations at the promoter region of genes have been shown to influence the expression levels of the respective genes. This may concurrently attenuate the physiological efficiency of the genes in a dose-response manner [45;46]. Our results suggest that the C allele of BAG6 rs3117582 SNP is associated with increased risk for NSCLC in the Norwegian subjects and the combined Croatian and Norwegian subjects in a gene-dosage manner. This may also suggest that, the presence of the minor C allele of BAG6 rs3117582 SNP in its promoter may perturbed the BAG6 gene expression. This perturbation may lead to significant increase in NSCLC risk in individuals that bear this allele. This postulation needs to be investigated in further studies to determine and ascertain the possible underlying mechanism(s) of action.

In conclusion, our study suggests that the FAM46A gene VNTR and BAG6 rs3117582 SNP are associated with NSCLC in both the Croatian and Norwegian populations. Our results also corroborate the previous findings that BAG6 gene is associated with lung cancer and suggest gene-dosage association of the BAG rs3117582 SNP with NSCLC. We further suggest that these loci could be potential research targets that might have therapeutic potentials.

Author Contributions

Conceived and designed the experiments: GEE ZD. Performed the experiments: GEE. Analyzed the data: GEE SZ. Contributed reagents/materials/analysis tools: GEE SZ ZK ME SB VF LB AR VS PB AH ZD. Wrote the paper: GEE SZ ZK ME SB VF LB AR VS PB AH ZD.

References

1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin 2011; 61:69–90. doi: 10.3322/caac.20107 PMID: 21296855
2. Spitz MR, Hong WK, Amos CI, Wu X, Schabath MB, Dong Q, et al. A risk model for prediction of lung cancer. J Natl Cancer Inst 2007; 99:715–726. PMID: 17470739
3. Albright F, Teerlink C, Werner TL, Cannon-Albright LA. Significant evidence for a heritable contribution to cancer predisposition: a review of cancer familiality by site. BMC Cancer 2012; 12:138. doi: 10.1186/1471-2407-12-138 PMID: 22471249
10. Truong T, Sauter W, McKay JD, Hosgood HD III, Gallagher C, Amos CI, et al. Coordinated association

16. Gridelli C, Maione P, Bareschino MA, Schettino C, Sacco PC, Ambrosio R, et al. Erlotinib in the treat-

11. Walsh KM, Gorlov IP, Hansen HM, Wu X, Spitz MR, Zhang H, et al. Fine-mapping of the 5p15.33,

17. Hannan AJ. TRPing up the genome: Tandem repeat polymorphisms as dynamic sources of genetic

12. Lindstedt BA, Ryberg D, Zienolddiny S, Khan H, Haugen A. Hras1 VNTR alleles as susceptibility mark-

19. Jacobsen B, Kriegbaum MC, Santoni-Rugiu E, Ploug M. C4.4A as a biomarker in pulmonary adenocar-

20. Ryberg D, Lindstedt BA, Zienolddiny S, Haugen A. A hereditary genetic marker closely associated with

23. Liu B, Yang L, Huang B, Cheng M, Wang H, Li Y, et al. A functional copy-number variation in MAP-

24. Lagali PS, Kakuk LE, Griesinger IB, Wong PW, Ayyagari R. Identification and characterization of

4. Brennan P, Hainaut P, Boffetta P. Genetics of lung-cancer susceptibility. Lancet Oncol 2011; 12:399–

5. Cote ML, Liu M, Bonassi S, Neri M, Schwartz AG, Christiani DC, et al. Increased risk of lung cancer in

8. Rudd MF, Webb EL, Matakaidou A, Sellick GS, Williams RD, Bridle H, et al. Variants in the GH-IGF axis

11. Hart, Landvik NE, Lind H, Skaug V, Haugen A, Zienolddiny S. A combination of functional polymor-

14. Brennan P, Hainaut P, Boffetta P. Genetics of lung-cancer susceptibility. Lancet Oncol 2011; 12:399–

9. Hannan AJ. Tandem repeat polymorphisms: modulators of disease susceptibility and candidates for

15. Campbell L, Blackhall F, Thatcher N. Gefitinib for the treatment of non-small-cell lung cancer. Expert

18. Brennand P, Hainaut P, Boffetta P. Genetics of lung-cancer susceptibility. Lancet Oncol 2011; 12:399–

19. Lindstedt BA, Ryberg D, Zienolddiny S, Phillips DH, Haugen A. Interleukin 1 receptor antagonist

22. Lind H, Zienolddiny S, Ryberg D, Skaug V, Phillips DH, Haugen A. Interleukin 1 receptor antagonist

23. Liu B, Yang L, Huang B, Cheng M, Wang H, Li Y, et al. A functional copy-number variation in MAP-

24. Lagali PS, Kakuk LE, Griesinger IB, Wong PW, Ayyagari R. Identification and characterization of

FAM46A VNTR, BAG6 rs3117582 SNP and NSCLC Risk
25. Barragan I, Borrego S, Abd El-Aziz MM, El-Ashry MF, Abu-Safieh L, Bhattacharya SS, et al. Genetic analysis of FAM46A in Spanish families with autosomal recessive retinitis pigmentosa: characterisation of novel VNTRs. Ann Hum Genet 2008; 72:26–34. PMID: 17803723

26. Cui J, Wang W, Lai MD, Xu EP, Lv BJ, Lin J, et al. Identification of a novel VNTR polymorphism in C6orf37 and its association with colorectal cancer risk in Chinese population. Clin Chim Acta 2006; 368:155–159. PMID: 16545789

27. Kuchta K, Kniewski L, Wynicz LS, Rychlewski L, Ginalski K. Comprehensive classification of nucleotidyltransferase fold proteins: identification of novel families and their representatives in human. Nucleic Acids Res 2009; 37:7701–7714. doi: 10.1093/nar/gkp854 PMID: 19833706

28. Colland F, Jacq X, Trouplin V, Mougin C, Groizeleau C, Hamburger A, et al. Functional proteomics mapping of a human signaling pathway. Genome Res 2004; 14:1324–1332. PMID: 15231748

29. Lim J, Hao T, Shaw C, Patel AJ, Szabo G, Rual JF, et al. A protein-protein interaction network for human inherited ataxias and disorders of Purkinje cell degeneration. Cell 2006; 125:801–814. PMID: 16713569

30. Wang Y, Broderick P, Webb E, Wu X, Vijayakrishnan J, Matakidou A, et al. Common 5p15.33 and 6p21.33 variants influence lung cancer risk. Nat Genet 2008; 40:1407–1409. doi: 10.1038/ng.273 PMID: 18978787

31. Wu YH, Shih SF, Lin JY. Ricin triggers apoptotic morphological changes through caspase-3 cleavage of BAT3. J Biol Chem 2004; 279:19264–19275. PMID: 14960581

32. Etokebe GE, Kuchler AM, Haraldsen G, Landin M, Osmundsen H, Dembic Z. Family-with-sequence-similarity-46, member A (Fam46a) gene is expressed in developing tooth buds. Arch Oral Biol 2009; 54:1002–1007. doi: 10.1016/j.archoralbio.2009.08.005 PMID: 19740458

33. Etokebe GE, Jotanovic Z, Mihelic R, Jericevic BM, Nikolic T, Balen S, et al. Susceptibility to large-joint osteoarthritis (hip and knee) is associated with BAG6 rs3117582 SNP and the VNTR polymorphism in the second exon of the FAM46A gene on chromosome 6. J Orthop Res 2014.

34. Etokebe GE, Bulat-Kardum L, Munthe LA, Balen S, Dembic Z. Association of variable number of tandem repeats in the coding region of the FAM46A gene, FAM46A rs11040 SNP and BAG6 rs3117582 SNP with susceptibility to tuberculosis. PLoS One 2014; 9:e91385. doi: 10.1371/journal.pone.0091385 PMID: 24625963

35. Fan WC, Ting WY, Lee MC, Huang SF, Chiu CH, Lai SL, et al. Latent TB infection in newly diagnosed lung cancer patients—A multicenter prospective observational study. Lung Cancer 2014; 85:472–478. doi: 10.1016/j.lungcan.2014.07.001 PMID: 25063540

36. Jotanovic Z, Etokebe GE, Mihelic R, Heiland KM, Mulac-Jericevic B, Tijanic T, et al. Hsp osteoarthritiis susceptibility is associated with IL1B -511(G>A) and IL1 RN (VNTR) genotypic polymorphisms in Croatian Caucasian population. J Orthop Res 2011; 29:1137–1144. doi: 10.1002/jor.21378 PMID: 21671260

37. Jotanovic Z, Etokebe GE, Mihelic R, Kaarvatn MH, Mulac-Jericevic B, Tijanic T, et al. IL1B -511(G>A) and IL1RN (VNTR) allelic polymorphisms and susceptibility to knee osteoarthritis in Croatian population. Rheumatol Int 2012; 32:2135–2141. doi: 10.1007/s00296-011-1946-3 PMID: 21523343

38. Kaarvatn MH, Jotanovic Z, Mihelic R, Etokebe GE, Mulac-Jericevic B, Tijanic T, et al. Associations of the interleukin-1 gene locus polymorphisms with risk to hip and knee osteoarthritis: gender and subpopulation differences. Scand J Immunol 2013; 77:151–161. doi: 10.1111/sji.12016 PMID: 23216199

39. Tsukazaki T, Chiang TA, Davison AF, Attisano L, Wrana JL. A FYVE domain protein that recruits Smad2 to the TGFbeta receptor. Cell 1998; 95:779–791. PMID: 9865696

40. Kawabata M, Imamura T, Inoue H, Hanai J, Nishihara A, Hanyu A, et al. Intracellular signaling of the TGF-beta superfamily by Smad proteins. Ann N Y Acad Sci 1999; 886:73–82. PMID: 10667205

41. Sasaki T, Gan EC, Wakeham A, Kornbluth S, Mak TW, Okada H. HLA-B-associated transcript 3 (Bat3)/Scythe is essential for p300-mediated acetylation of p53. Genes Dev 2007; 21:848–861. PMID: 17400783

42. Kamper N, Franken S, Temme S, Koch S, Bieber T, Koch N, gamma-Interferon-regulated chaperone governs human lymphocyte antigen class II expression. FASEB J 2012; 26:104–116. doi: 10.1096/fj.11-189670 PMID: 21940994

43. Rangachari M, Zhu C, Sakuiishi K, Xiao S, Karman J, Chen A, et al. Bat3 promotes T cell responses and autoimmunity by repressing Tim-3-mediated cell death and exhaustion. Nat Med 2012; 18:1394–1400. PMID: 22663785

44. Nguyen P, Bar-Sela G, Sun L, Bisht KS, Cui H, Kohn E, et al. BAT3 and SET1A form a complex with CTCFL/BORIS to modulate H3K4 histone dimethylation and gene expression. Mol Cell Biol 2008; 28:6720–6729. doi: 10.1128/MCB.00568-08 PMID: 18765639
45. Aguillon JC, Cruzat A, Aravena O, Salazar L, Lianos C, Cuchacovich M. Could single-nucleotide polymorphisms (SNPs) affecting the tumour necrosis factor promoter be considered as part of rheumatoid arthritis evolution? Immunobiology 2006; 211:75–84. PMID: 16446172

46. Shih MC, Chiu YN, Hu MC, Guo IC, Chung BC. Regulation of steroid production: analysis of Cyp11a1 promoter. Mol Cell Endocrinol 2011; 336:80–84. doi: 10.1016/j.mce.2010.12.017 PMID: 21195129