Using the Guttman Scale to Define and Estimate Measurement Error in Items over Time: The Case of Cognitive Decline and the Meaning of “Points Lost”

Rochelle E. Tractenberg1,2, Futoshi Yumoto2,3, Paul S. Aisen4, Jeffrey A. Kaye5, Robert J. Mislevy6

1 Departments of Neurology, Biostatistics, Bioinformatics & Biomathematics, and Psychiatry, Georgetown University Medical Center, Washington, District of Columbia, United States of America, 2 Collaborative for Research on Outcomes and –Metrics, United States of America, 3 University of Maryland University College, College Park, Maryland, United States of America, 4 Department of Neurology, University of California San Diego, La Jolla, California, United States of America, 5 Layton Alzheimer’s Disease Research Center, Oregon Health Sciences University, Portland, Oregon, United States of America, 6 Educational Testing Service, Princeton, New Jersey, United States of America

Abstract

We used a Guttman model to represent responses to test items over time as an approximation of what is often referred to as “points lost” in studies of cognitive decline or interventions. To capture this meaning of “point loss”, over four successive assessments, we assumed that once an item is incorrect, it cannot be correct at a later visit. If the loss of a point represents actual decline, then failure of an item to fit the Guttman model over time can be considered measurement error. This representation and definition of measurement error also permits testing the hypotheses that measurement error is constant for items in a test, and that error is independent of “true score”, which are two key consequences of the definition of “measurement error” – and thereby, reliability - under Classical Test Theory. We tested the hypotheses by fitting our model to, and comparing our results from, four consecutive annual evaluations in three groups of elderly persons: a) cognitively normal (NC, N = 149); b) diagnosed with possible or probable AD (N = 78); and c) cognitively normal initially and a later diagnosis of AD (converters, N = 133). Of 16 items that converged, error-free measurement of “cognitive loss” was observed for 10 items in NC, eight in converters, and two in AD. We found that measurement error, as we defined it, was inconsistent over time and across cognitive functioning levels, violating the theory underlying reliability and other psychometric characteristics, and key regression assumptions.

Introduction

Acknowledging and understanding the error associated with measurement is crucial to improving statistical modeling. Commonly, independent variables are treated as if they are error-free, with responses independent over time [1]; error-free independent variables is a key assumption of regression [2]. Measurement error is a source of variability that has traditionally not been considered in neuropsychology, including the study of cognitive aging or Alzheimer’s disease (AD) (although see [3] and [4] for counter-examples). Under classical test theory (CTT; see [5,6]) observed scores (e.g., cognitive or personality test scores) are considered imperfect representations of the ‘true’ construct in which we are actually interested. Intra-individual variability (IV) can play a significant role in the design, analysis and interpretation of psychological and cognitive outcomes (see [4]); in cases where investigators want to utilize IV as a longitudinal outcome, rather than change in total scores, teasing the variability apart from extent to which a test fails to reflect what is targeted (“real” error) is especially important.

Typically, clinical studies of, and trials of interventions to affect, AD and mild cognitive impairment are powered to detect a minimum number of “points lost” – representing cognitive decline. Although clinicians do not necessarily believe that once a point on any cognitive test is lost the capacity to answer correctly itself is permanently lost, the number of points “lost” is used to represent the amount of cognitive decline that was observed and/or prevented (e.g., [7–13]; see also [14]).

CTT defines the observed score X as a function of some “true” but unobservable score T plus some “error” that is specific to the individual (N = T+ε) [5]. The true score for an individual is an unknown constant and the error with which this true score is measured (yielding X) is an unknown random variable, defined as being independent of the true score. While the “true score” does not represent “The Truth” in an absolute sense, it does represent the error-free version of an individual’s test performance under
Measurement Error Definition and Estimation

Subjects with AD. Subjects with AD (“AD”, N = 329) are patients from the Aging and Alzheimer’s Clinic (the clinical core of the NIA-funded Layton Alzheimer’s Disease Research Center at OHSU). They originally presented with memory complaints, either on referral by self, family or health care provider. On enrolling in the OHSU registry for participation in an NIA-sponsored longitudinal study, each subject’s clinical history and exam findings were presented at a weekly case conference where a consensus diagnosis (based on standard criteria at the time [31]) was reached by the neurologists, geriatric psychiatrists, neuropsychologists and research nurses of the OHSU Alzheimer’s Disease Center. A battery of tests was administered on each annual visit, either on referral by self, family or health care provider. On enrolling in the OHSU registry for participation in an NIA-sponsored longitudinal study, each subject’s clinical history and exam findings were presented at a weekly case conference where a consensus diagnosis (based on standard criteria at the time [31]) was reached by the neurologists, geriatric psychiatrists, neuropsychologists and research nurses of the OHSU Alzheimer’s Disease Center. A battery of tests was administered on each annual visit, according to the protocol. Of the 329 patients with data, 78 had MMSE item level information at their first four successive visits.
Non-demented elderly subjects. Cognitively intact participants (“NC”, N = 412) are research subjects of the Oregon Brain Aging Study (OBAS [32–33]), a federally-funded (US Veterans Affairs and National Institute on Aging, NIA) project to study normal neurological aging. These subjects were known to be cognitively intact based on the extensive neurological and neuropsychological assessment they received on enrollment in OBAS, and on each successive annual evaluation. Of the 412 persons with data, 149 had MMSE item level information at their first four successive visits.

Subjects with subsequent “other” or questionable/incipient dementia diagnoses. Subjects in the “AD to be” cohort (“Converters” N = 185) are individuals from the Aging and Alzheimer’s Center Clinical Core who were found to be cognitively intact (i.e., enrolled in OBAS) at their first visit to the clinic and who subsequently were diagnosed with questionable, possible or probable AD. On their first visit, the clinical history and exam findings for each person in this group were presented at a weekly case conference where a consensus diagnosis—that the patient did NOT meet diagnostic criteria for possible or probable AD [31] - was reached by the clinical team. However, at a follow-up annual visit, the individual was characterized as no longer meeting the criteria for non-demented elderly. Of the 185 persons with data, 133 had MMSE item level information at their first four successive visits.

Instrument

The Mini-Mental State Examination (MMSE [30]) is a 30-point test with items requiring attention, orientation, calculation, memory, language, and visuospatial functioning. The MMSE, and change on it, has been used as an outcome measure in clinical studies, but it is also prevalent as an inclusion criterion for clinical studies and clinical trials in AD.

Data Analysis

These analyses focused on whether each item over four years fits the Guttman model in each of three cohorts modeled separately. To the extent that the item does fit the model, it represents within-person consistency with a “cognitive loss” interpretation of a change from correct to incorrect response over successive visits (and a “cognitive stability” interpretation of the same answer at any two successive visits). We characterized deviations from this assumption as “measurement error” (ME, described below) and compared these estimates across items and cohorts. If ME is not different for items or cohorts, then standard reliability coefficients can be computed and interpreted. If ME differs for items, or cohorts, then key assumptions for regression (error free independent variables) and key CTT implications are violated, so that standard reliability coefficients cannot be interpreted.

Scoring MMSE items

The MMSE has 11 items worth a total of 30 points (using the scoring given by [34]). The data for two items, worth 3 points each (name 3 items and follow 3-stage instructions), were not entered into the data file in a manner that could be consistently recoded to the 0/1 required by a Guttman model, so these items were unmodeled. Responses on three items (WORLD spelled backwards, 3-item recall, and repeat ‘no ifs, ands or buts’) were recoded (unless missing) so that perfect performance was ‘correct’ (1) and otherwise, responses were recoded as 0. Two items (“what county are we in?” and “what hospital are we in?”) could not be modeled because they had high proportions of missing responses due to changes over time in which question was used, while insufficient variability was observed in two additional items (take this paper, fold it in half) so that models did not converge. We assigned one point to each of the two naming items (typically one point is allotted for the two correctly-named items). Thus, nine of the original 11 MMSE items were modeled (giving a total of 16 points). These manipulations of the item-level data were data driven, and not theoretically motivated — in keeping with our objective that this method be usable beyond the assessment of cognitive decline.

Model fit and measurement error

Modeling proceeded using parameters and coding developed by Dayton [22–23], outlined in Appendix (see also [35–36]) for Excel (2003, Microsoft Inc., Redmond Washington). Model fit for each of the MMSE items was summarized with two statistics. The first, π^* (“pi star”; [37]; see also [22–23]), is an index of how “far” from a perfect fit to the data the model is [22–23]. The value of π^* indicates what percent of the observations would need to be

Table 1. Example Guttman Scale response patterns for one item over four visits.
Observed response pattern on one item
Pattern 1
Pattern 2
Pattern 3
Pattern 4
Pattern 5
Pattern 1 of 11*

Notes: 1 indicates the item was answered correctly; 0 indicates it was incorrect. Patterns in the first five rows are consistent with the Guttman scale. NB: the first and fifth patterns (1111, 0000) do not represent decline since individuals with either pattern of responses to this item over the four visits either always or never exhibited the ability to answer correctly (respectively). Both patterns are consistent with a Guttman Model because each shows the expected consistency in what an item reflects about the individual’s state/ability.

*indicates one example pattern of the 11 other possible outcomes for one item over four visits; none of these other patterns is consistent with a Guttman Model since the item is shown to have been correct after not being correct at an earlier visit. There are a total of 16 (2^4) patterns of right (1) and wrong (0) responses on this item, but only the first five response patterns in this table represent error-free measurement of decline for the item. The proportion of the sample that does not exhibit one of these five patterns over four years is the estimated measurement error for the item.

doi:10.1371/journal.pone.0030019.

*
eliminated to achieve perfect fit of the given model for that item. We used \(\pi^* \) to estimate the ‘level’ of measurement error for each of the items. The associated standard errors of the \(\pi^* \) values were also estimated [36]. There is no inference test associated with this index; values < 0.10 are typically used to indicate acceptably small differences between observed and expected frequencies [22].

An additional summary statistic is the dissimilarity index [DI [22,37]], which compares expected and observed frequencies of patterns for the set, based on the assumed model. Large DI values suggest that the pattern frequencies expected, given that the model is true, are “extremely different” from the observed frequencies. There is no inference test associated with this index; values < 0.05 are typically used to indicate acceptably small differences between observed and expected frequencies [22–23].

For both indices, low values suggest better fit of the model to the data; we could have constructed likelihood ratio tests or computed information criteria to facilitate inference testing or comparisons of our model (fully constrained) against less-constrained models, but our objective was to count the number of items in each group that did and did not fit the Guttman model. In cases where only one pattern was observed for an item, computations of these fit statistics cannot converge, providing no information about measurement error for that item. We calculated \(\pi^* \) and DI for all MMSE items for which <=5% of responses were missing, the fit index would converge, and that we could score as 1/0. Since \(\pi^* \) has an associated SE and an interpretation consistent with our objective, this was our main outcome.

Method

For each item scored as 0/1, a “response vector” for each participant was constructed using responses obtained over four years. The first four annual visits were chosen to maximize the sample size (i.e., the number in each group with multiple consecutive visits) while also capturing a time frame within which cognitive changes might be observable and detectable. Sample sizes dropped precipitously in all cohorts after the fourth year.

Table 1 presents those five vectors of responses on a single item over four years that correspond to the Guttman model of change, i.e., only these five patterns should be observed if an item can be considered to be indicating “real loss” (or “real stability”, 0000 and 1111). There are 16 possible vectors (\(2^4 \)) with which an individual could respond to an item scored 0 (wrong) or 1 (right) over four time points. The proportion of each group exhibiting each of the 16 possible response vectors was calculated per item with Excel [22–23], and the \(\pi^* \) and dissimilarity index values were computed based on a five-class restricted latent class model [23,38] (see modeling and estimation details in Appendix S1; modeling code is available by request from Dr. Yumoto). Values were estimated for each group, as well as over all individuals.

Results

General descriptive statistics for the three groups are presented in Table 2. We did not compare the groups statistically on any demographic variable since neither similarities nor differences in the groups were relevant to our analysis. We also did not explore co-morbidities in terms of psychiatric diagnoses since none of the study participants had such evaluations.

The patients tended to be younger (mean age 70.8, SD: 9.3 years) than the non-demented elderly (mean age: 83.6, SD: 6.7 years) as well as those who were initially cognitively normal but who were later diagnosed as having some cognitive impairment (mean age: 84.3, SD: 6.9 years). The patient group was 46% female while the other two groups were less balanced (NC: 59% female, Converters: 62% female). MMSE total scores for the four visits are included in Table 2 for reference; not surprisingly the two non-demented groups (at baseline) had very similar total MMSE scores while the patient average was lower.

Model fit results

DI values of < 0.05 indicate small differences (5%) between what was expected given the model and what was observed, and \(\pi^* \) values of .10 or higher suggest that 10% or more of the data for that item would need to be eliminated to obtain perfect fit of the model to the data for that item [22–23]. We focused on \(\pi^* \) values, because they offer estimated standard errors, and used the 0.10 value as a rule of thumb for interpretation of fit results. DI values were computed as ancillary summary information. Table 3 presents the \(\pi^* \) values and Table 4 presents the DI values that could be calculated per item, for the three groups separately, as well as the overall values. The overall values were included to highlight whether any overall measurement error could be traced to one or another group or could be considered ‘inherent’ to the item itself.

Collapsing across all respondents, of the sixteen items that we could model, the \(\pi^* \) values for six items met our criteria for “fit by a Guttman model”, i.e., could be considered to reflect loss without appreciable error (Table 3). These items were to give the year, name the state and city, spell WORLD backwards, name pencil, name watch, and read to command (all \(\pi^* < .05 \)). In fact, 7.5% or less of the full dataset would need to be eliminated for perfect fit of these items, plus naming the month (\(\pi^* = 0.064 \)) and writing to command (\(\pi^* = 0.075 \)), to a Guttman model. Between 10% (name day) and 43% (‘3 word recall’, recoded as 0/1) of the dataset would need to be eliminated for a perfect fit in the other modeled items. In terms of DI over all respondents (Table 4), give the year, date, and state, name a pencil or watch, and read, write and copy to command all had DI < 0.05. Another four items (name the season, day, and month, and repeat ‘no ifs, ands or buts’, recoded as 0/1) had DI < 0.075.

For the non-demented elderly controls, ten items (year, day, month, state, city, paper on floor, name pencil, name watch, read, write) met our \(\pi^* \) criterion for error-free measurement of loss (or in

| Table 2. Descriptive Statistics (% or Mean (SD)) for three cohorts of elderly MMSE respondents with four consecutive visits. |
|---------------|------------------|------------------|------------------|
| | NC (N = 149) | Converters (N = 133) | AD (N = 78) |
| **Age (Time 1)** | 83.6 (6.7) | 84.3 (6.9) | 70.8 (9.3) |
| % Female | 63% | 62% | 46% |
| **Education (yrs)** | 13.9 (2.7) | 14.0 (2.8) | 13.7 (3.3) |
| **MMSE Total: Time 1** | 28.6 (1.3) | 27.8 (1.7) | 22.2 (4.6) |
| **MMSE Total: Time 2** | 28.4 (1.3) | 27.8 (1.6) | 20.9 (5.6) |
| **MMSE Total: Time 3** | 28.4 (1.3) | 27.4 (2.2) | 17.8 (6.8) |
| **MMSE Total: Time 4** | 28.6 (1.3) | 27.1 (2.6) | 14.5 (7.7) |
| **MMSE 16 items: Time 1** | 14.9 (0.9) | 14.4 (1.2) | 11.2 (2.6) |
| **MMSE 16 items: Time 2** | 14.7 (1.0) | 14.4 (1.3) | 10.6 (3.1) |
| **MMSE 16 items: Time 3** | 14.8 (1.0) | 14.3 (1.4) | 8.8 (3.7) |
| **MMSE 16 items: Time 4** | 14.8 (1.1) | 14.1 (1.6) | 7.0 (4.1) |
| **MMSE Total: range from 0–30. MMSE 16 items: sum of 0/1 score on the 16 items shown in Tables 3 and 4.** | **doi:10.1371/journal.pone.0030019.t002** |
their case, stability) over time ($\pi^* < 0.10$). The six items not meeting the criterion for error free measurement reflected from 10.1% (name season) to 40% (3-item recall, recoded as 0/1) measurement error. There was very little loss in this cohort over four years in the average of either the total MMSE score or the sum of the 16 items fit with the Guttman model. This homogeneity (high proportions of items correct at all visits) is reflected in the failures of all but seven items to converge to a DI (Table 4). Of the seven DI that were calculable, five failed to meet a 0.05 cutoff (one of these (copy command) had DI < 0.075). The two items with DI < 0.05 were name the season and put paper on the floor.

For those who were initially non-demented but later were diagnosed with a cognitive impairment, nine of the 16 items with converging calculations gave error-free measurement of loss over time in this cohort according to π^* (year, day, month, state, city, name pencil, name watch, read, write). The seven items that failed to meet the π^* criterion for error-free measurement of loss over time (season; date; WORLD backwards, 3-word recall, paper on floor, no ifs ands or buts; copy design) reflected between 15% and 45% measurement error. Similar to the case with the control group, there was very little change over time in this cohort and DI (Table 4) failed to converge for six of the 16 items. Of the eight DI that were calculable, three were under 0.05 (three others (season, date, put paper on floor) having DI < 0.075).

For the AD patients, five of the 16 items (state, 3 word recall, name pencil, name watch, read) met our $\pi^* < 0.10$ criterion for error-free measurement of loss over time. For the 11 other items that failed to meet the definition of ‘error free’ over time, error was estimated to range between 10% and 33%. All of the 16 items had convergent dissimilarity indices for this cohort (Table 4), and of these, three had DI < 0.05 (pencil, watch, read); two additional items (3 word recall and name the state) had DI < 0.075.

Table 3. π^* statistics (standard error), reflecting badness of fit of a Guttman model to each modeled MMSE item over four years.

MMSE Item	Over All Groups	NC	Converters	AD
Year	0.030 (.009)	0.007 (.007)	0.015 (.011)	0.103 (.035)
Season	0.164 (.020)	0.101 (.025)	0.152 (.031)	0.308 (.053)
Date	0.269 (.039)	0.235 (.035)	0.152 (.031)	0.231 (.041)
Day	0.103 (.016)	0.040 (.016)	0.068 (.022)	0.282 (.052)
Month	0.075 (.014)	0.020 (.012)	0.045 (.018)	0.231 (.048)
State	0.017 (.007)	0.000	0.000	0.077 (.031)
City	0.036 (.010)	0.000	0.023 (.013)	0.128 (.038)
WORLD†	0.264 (.025)	0.241 (.036)	0.299 (.043)	0.245 (.063)
3 word recall†	0.431 (.026)	0.403 (.090)	0.451 (.043)	0.077 (.031)
Paper on floor	0.144 (.019)	0.034 (.015)	0.158 (.032)	0.333 (.054)
Pencil‖	0.008 (.005)	0.000	0.000	0.041 (.023)
Watch‖	0.004 (.027)	0.000	0.000	0.014 (.014)
No ifs/ands/buts†	0.302 (.024)	0.302 (.038)	0.371 (.042)	0.182 (.045)
Read	0.039 (.010)	0.027 (.013)	0.030 (.015)	0.077 (.031)
Write	0.064 (.013)	0.034 (.015)	0.030 (.015)	0.179 (.044)
Copy	0.248 (.023)	0.255 (.036)	0.278 (.039)	0.182 (.045)

π^ estimates the proportion of observations that are inconsistent with the model under investigation. Low values of π^* suggest that very little ($100\%\times\pi^*$) of the data do not fit the model under investigation. Bold values of π^* indicate acceptably LOW (<10%) levels of misfit; that is, bold values indicate consistency of the item with the Guttman (‘real’ loss) Model.

†This item was recoded so that all possible points right = 1 and any mistakes = 0.

‡These items were each assigned one point (i.e., not treated as one point together). Items not represented in this table did not have 0/1 coding (name 3 items) had too much missing data (what floor are we on? What county are we in?) or failed to converge (take this paper, fold it in half) in all 3 groups (and over all responses) so estimates of π^* were not computable.

Discussion

We defined measurement error assuming only that the same item, administered annually, requires the same trait(s) for correct response, such that an incorrect response implies the loss of the trait. This is not especially realistic, but reflects clinical expectation of what the items are ‘measuring’ and how this is expected to change over time (e.g., [7–13]; [24–27]), although our method does not distinguish “systematic” and “random” error types [29].

We found that most (10/16) of the MMSE items over four visits were consistent with our model for the control group, and that fewer items over the same time span were consistent with the Guttman model for the other two groups. This suggests that measurement error, as we defined it, depends on the level of the underlying construct; it was also different by MMSE item. This definition of measurement error as a “signal” about change over time empirically estimable; and our results do not support the selection of cognitive tests using CTT-derived estimates of reliability and measurement error. Additionally, the results do not support the assumption that the MMSE is an error-free independent variable in regression. In contexts where point loss on tests like the MMSE and cognitive decline are equated (e.g., [7–13]; [24–27]), standard regression analyses, as well as typical reliability coefficients, may not provide the expected information (see [28–29] for discussion of limitations of reliability for variables that change over time). Because this method considers one item at a time, the method could be useful for unidimensional and multidimensional instruments.

There are many limitations to this study. Firstly, it is possible that some MMSE items do reflect state-based ‘cognitive loss’, while others do not; our results do not address whether any of the items that we could not fit are of this state-based loss type. We were
able to evaluate (i.e., generate converging models and their estimates for) 16 of 30 points on this test, even if all the other items passed our definition of “error-free measurement over time”, which we could not establish, the test as a whole would still be inconsistent with the CTT-based reliability coefficient.

We also treated several items (3-item recall and WORLD spelled backwards, repeat “no ifs, ands or buts”) as dichotomous (all right/all wrong). This facilitated the interpretability of our definition of measurement error for these items — a more complete evaluation of these and other-polynomial items, including a sensitivity analysis to determine if our approach yields different error rate estimates depending on scoring, will be an important future study. Also, several items exhibited too little variability within a group to estimate our summary statistics. That is, for any item where all respondents exhibited the same response pattern over time, even if it was consistent with the Guttman scale, that would be insufficient variability for the model to converge. Validating our definition of measurement error in a new sample would be an ideal context for exploring the specific item and item-type performances.

Our model implies conditional independence [20,22–3] because we modeled each item as requiring one skill over time. Therefore, when the effects of that skill are conditioned on, the response likelihoods become random. There might be some residual memory for the item over time, but this should be minimal because the test is just one in a large battery, and the assessments are 12 months apart. In cases of residual dependency, it could be attributed to memory for the item, and so would be expected to decrease as the respondent’s cognitive impairment increases, and might have contributed to our observations of more items failing to fit the Guttman model as cohort impairment increased. Therefore, it is possible that some of the increase in numbers of items failing to fit the Guttman model as cognitive impairment increased might be attributable to decreasing memory for the item over time. This is typically not taken into consideration in clinical applications where “point loss” is equated with “cognitive decline”, and it is unlikely that this explains all of our results.

The “10% rule” as our \(\pi^* \) cutoff represents a willingness to accept up to 10% of misfit, which could include increasing variation or recovery. Our method provides no information about the sensitivity to, or reliability for estimating, fluctuating performance (e.g., [39]), although importantly, current usage of tests such as the MMSE is almost exclusively to detect “cognitive decline”. CTT-based reliability estimates are often used to choose the tests to be employed as inclusion or exclusion criteria or as study endpoints in clinical research (e.g., [14], pp. 108–109; [40], pp. 22–23; [41], pp. 39–41; [42] pp. 9–17; pp. 24–26), and our results suggest that this practice may be less strongly supported
than is currently assumed (although see [28]). While not our primary goal, our results suggest that intra-individual variability (IV), based on MMSE items, increases with greater levels of dementia severity. This comports with other published work using other tasks (e.g., [43–46]). Whether our results reflect IV or not, they suggest that “point loss” may be an inappropriate proxy for “cognitive decline” with tests like the MMSE.

When measurement error is not independent of the true score, then estimating reliability for the set of items as a whole becomes considerably more complicated (see [3] for CTT-based estimation of reliability when error and true score are not independent; see [28] for discussion of reliability in longitudinal assessments; see also [47]). If our results are borne out with independent samples and other, less-restrictive [but still empirical] definitions of measurement error, reliability should not be estimated by CTT for tests like the MMSE.

Supporting Information

Appendix S1 Model fitting details and estimation of DI and π*

Author Contributions

Conceived and designed the experiments: RET. Performed the experiments: RET. Contributed reagents/materials/analysis tools: JAK PSA RJM. Wrote the paper: RET FY JAK PSA RJM. Applicability and interpretation of modeling: JAK PSA RJM.

References

1. Gustafson P (2004) Measurement Error and Misclassification in Statistics and Epidemiology: Impacts and Bayesian Adjustments. Boca Raton: Chapman & Hall/CRC.

2. Chatterjee S, Hadi AS, Price B (2002) Regression Analysis by Example, 3E. New York: Wiley.

3. Van der Linden M, Birnbaum S (1982) Reliability of computerized tests used in the examination of the Alzheimer’s disease. Statistics in Medicine 11(11–12): 1411–20.

4. Salhouse TA (2007) Implications of within-person variability in cognitive and neuropsychological functioning for the interpretation of change. Neuropsychol Aging 21(4): 694–711.

5. Raykov T, Marcoulides GA (2011) Introduction to Psychometric Theory. New York, NY: Routledge.

6. Embretson SE, Reise SP (2000) Item Response Theory for Psychologists. Lawrence Erlbaum Associates, Mahwah, NJ.

7. Carcarillon L, Périss K, Prété JJ, Helmer C, Orœgou JM, Dartigues JF (2007) Fast cognitive decline at the time of dementia diagnosis: a large prognostic factor for survival in the community. Dement Geriatr Cogn Disord 23(6): 499–45.

8. Cortes F, Portet F, Touchon J, Vellas B (2007) Six- and 18-month changes in mild to moderate Alzheimer’s patients treated with acetylcholinesterase inhibitors: what can we learn for clinical outcomes of therapeutic trials? J Nutr Health Aging Jul–Aug;11(4): 330–7.

9. Rockwood K, Fay S, Gorman M, Carver D, Graham JE (2007) The clinical meaningfulness of ADAS-Cog changes in Alzheimer’s disease patients treated with donepezil in an open-label trial. BMC Neurol 30: 7.

10. Vellas B, Andrieu S, Cantet C, Dartigues JF, Gauthier S (2007) Long-term changes in ADAS-cog: what is clinically relevant for disease modifying trials in Alzheimer’s disease? J Nutr Health Aging Jul–Aug;11(4): 338–41.

11. Soto ME, Andrieu S, Cantet C, Reynish E, Ouesset PJ, Airós C, Gillette-Guyonnet S, Neunhauser H, Vellas B, REAL-FR group (2008) Predictive value of rapid decline in mini mental state examination in clinical practice for prognosis in Alzheimer’s disease. Dement Geriatr Cogn Disord 26(2): 109–16.

12. Aronson S, Van Baalen B, Kavagna S, Schwalen S (2009) Optimal dosing of galantamine in patients with mild or moderate Alzheimer’s disease: post hoc analysis of a randomized, double-blind, placebo-controlled trial. Drugs Aging 26(3): 231–9. doi: 10.2165/00002512-200926030-00004.

13. Seltzer B (2010) Galantamine-ER for the treatment of mild-to-moderate Alzheimer’s disease: Clinc Interv Aging 5: 1–6.

14. Lezak MD, Howieson DB, Loring DW (2004) Neuropsychological Assessment, 4E. New York, NY: Oxford University Press.

15. Haertel EH (2006) Reliability. In RL. Brennan, ed. Educational Measurement, 4E, Westport, CT: Praeger. pp 63–110.

16. Rust J, Golombok S (1999) Modern Psychometrics: The Science of Psychological Assessment, 2E. London: Routledge.

17. Shavelson RJ, Webb NM (1991) Generalizability Theory: A Primer. Thousand Oaks: Sage.

18. Eisenstein EL, Diener LW, Nahm M, Weinfurt KP (2010) Impact of the Patient-Centered Outcomes Research Initiative (PCORI) upon the Reported Outcomes Management Information System (PROMIS) upon the measurement error, reliability should not be estimated by CTT for tests like the MMSE.

19. Guttman L (1944) A basis for scaling qualitative data. American Sociological Review 9: 623–39.

20. McCutcheon AL (1987) Latent Class Analysis. Thousand Oaks, CA: Sage Publications.

21. Hayes RD, Elliscoin PL (1990) Longitudinal scalar analysis: A methodology and microcomputer program for Guttman scale analysis of longitudinal data. Behavior Research Methods, Instruments & Computers 22: 162–166.

22. Dayton CM (1998) Latent Class Scaling Analysis. Thousand Oaks, CA: Sage Publications.

23. Dayton CM (2003) Applications and computational strategies for the two-point mixture index of fit. British Journal of Mathematical and Statistical Psychology 56: 1–13.

24. Arenselaer-Lapiere G, Whitehead V, Belleville S, Massoulf F, Bergman H, et al. (2010) The execution of the mild cognitive impairment (MCI) categories depend on the source of norms. J Clin Exp Neuropsychol 2011 Feb 6: 1–8. [Epub ahead of print] PMID: 21302169.

25. Carcarillon L, Berrut G, Sellal F, Dartigues JF, Gillette S, et al. (2011) Diagnosis of Alzheimer’s disease patients with rapid cognitive decline in clinical practice: interest of the deco questionnaire. J Nutr Health Aging 15(5): 361–6.

26. O’Rourke N, Caspar S, Gutman GM, Theurer K, Cook M, et al. (2009) Cognitive status and the psychological well-being of long-term care residents over time. Aging Ment Health 13(2): 280–7.

27. Ancolis-Israel S, Palmer BW, Cooke JR, Corey-Bloom J, Fiorentino L, et al. (2008) Cognitive effects of treating obstructive sleep apnea in Alzheimer’s disease: a randomized controlled study. J Am Geriatr Soc 56(11): 2076–81.

28. Van Den Wittenboer G, Hox J, De Leenheer ED (2000) Latent class analysis of respondent scalability. Quality & Quantity 34: 177–191.

29. Collins LM (2001) Reliability for static and dynamic categorical latent variables: Developing measurement instruments based on a model of the growth process. In LM. Collins, AG. Sayer, eds. (2001). New Methods for the Analysis of Change. Washington, DC: American Psychological Association. pp 273–299.

30. Folstein M, Folstein S, McHugh P (1975) "Mini-Mental State": a practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research 12: 189–98.

31. McKhann G, Drachman D, Folstein M, Katzman R, Price D, et al. (1984) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of the Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 34: 939–944.

32. Kaye JA, Oken BS, Howieson DB, Howieson J, Holm LA, et al. (1994) Neuropsychological evaluation of the optimally healthy oldest old. Archives of Neurology 51: 1205–1211.

33. Green MS, Kaye JA, Ball MJ (2000) The Oregon brain aging study: neuropsychology accompanying healthy aging in the oldest old. Neurology 54(1): 105–13.

34. Tombaugh TN, McIntyre NJ (1992) The Mini-Mental Sate Examination: A comprehensive review. Journal of the American Geriatrics Society 40: 922–935.

35. Clogg CC, Raudas T, Xi D (2006) A new index of structure for the analysis of models for mobility tables and other cross-classifications. In P. Marsden, ed. Sociological Methodology. Oxford, UK: Blackwell. pp 197–222.

36. Xi, Lindsay BG (1996): A note on calculating the π* index of fit for the analysis of contingency tables. Sociological Methods & Research 25(2): 248–259.

37. Raudas T, Clogg CC, Lindsay BG (1994) A new index of fit based on mixture methods for the analysis of contingency tables. Journal of the Royal Statistical Society Series B 56: 623–39.

38. Vermunt JK (1997) LEM 1.0: A general program for the analysis of categorical data. Tilburg: Tilburg University.

39. Walker MP, Ayre GA, Cummings JL, Wednes K, McKeeth IG, et al. (2000) Quantifying fluctuation in dementia with Lewy bodies, Alzheimer’s disease, and vascular dementia. Neurology 54(1): 235–239.

40. Hobart JC, Thompson AJ (2001) Assessment measures and clinical scales. In RJ. Hobart, ed. Assessment and management in multiple sclerosis. London: Lippincott Williams & Wilkins.

41. Mitrushina M, Boone KB, Razani J, D’Elia LF (2003) Handbook of normative data for neuropsychological assessment, 2E. New York, NY: Oxford University Press.

42. Slick DJ (2006) Psychometrics in neuropsychological assessment. In E. Strauss, EMS. Sherman, O. Spreen, eds. A compendium of neuropsychological tests: Administration, norms and commentary, 3E. New York, NY: Oxford University Press. pp 5–43.

43. Tractenberg RE, Pietrzak R (2011) Intra-individual variability in cognitive aging: Definitions, context, and effect sizes. PLoS ONE Apr 19(4): e10673.

44. Holock DF, MacDonald SWS (2004) Intradiurnal variability in performance as a theoretical window onto cognitive aging. In RA. Dixon, L. Backman, L-G. Nilsson, eds. New Frontiers in Cognitive Aging. New York: Oxford University Press. pp 65–83.
45. Nesselroade JR, Salthouse TA (2004) Methodological and theoretical implications of intraindividual variability in perceptual-motor performance. Journal of Gerontology, B Psychological Science and Social Science 59(2): P49–P55.

46. Christensen H, Dear KBG, Anstey KJ, Parslow RA, Sachdev P, et al. (2005) Within-Occasion Intraindividual Variability and Preclinical Diagnostic Status: Is Intraindividual Variability an Indicator of Mild Cognitive Impairment? Neuropsychology 19(3): 309–317.

47. Charles EP (2005) The correction for attenuation due to measurement error: clarifying concepts and creating confidence sets. Psychological Methods 10(2): 206–226.

48. Xi L (1994) The mixture index of fit for the independence model in contingency tables. Master of Arts paper, Department of Statistics, Pennsylvania State University.

49. Xi L, Lindsay BG (1996) A note on calculating the p index of fit for the analysis of contingency tables. Sociological Methods & Research 25: 248–259.

50. Rudas T, Clogg CC, Lindsay BG (1994) A new index of fit based on mixture methods for the analysis of contingency tables. Journal of the Royal Statistical Society, Series B 56: 623–639.