Self-dual codes over \mathbb{F}_5 and s-extremal unimodular lattices

Masaaki Harada*

August 9, 2022

Abstract

New s-extremal extremal unimodular lattices in dimensions 38, 40, 42 and 44 are constructed from self-dual codes over \mathbb{F}_5 by Construction A. In the process of constructing these codes, we obtain a self-dual $[44, 22, 14]$ code over \mathbb{F}_5. In addition, the code implies a $[43, 22, 13]$ code over \mathbb{F}_5. These codes have larger minimum weights than the previously known $[44, 22]$ codes and $[43, 22]$ codes, respectively.

1 Introduction

A (linear) $[n, k]$ code C over \mathbb{F}_5 is a k-dimensional subspace of \mathbb{F}_5^n, where \mathbb{F}_5 is the finite field of order 5. The dual code C^\perp of C is defined as $\{x \in \mathbb{F}_5^n \mid x \cdot y = 0 \text{ for all } y \in C\}$, where $x \cdot y$ is the standard inner product. A code C is called self-dual if $C = C^\perp$. Self-dual codes are one of the most interesting classes of codes. This interest is justified by many combinatorial objects and algebraic objects related to self-dual codes. Unimodular lattices are one of the objects related to self-dual codes. In addition, there are many similarities between self-dual codes and unimodular lattices (see [4]). Construction A, which is the most important construction of unimodular lattices from self-dual codes, gives some similarities.

*Research Center for Pure and Applied Mathematics, Graduate School of Information Sciences, Tohoku University, Sendai 980–8579, Japan. email: mharada@tohoku.ac.jp.
Extremal unimodular lattices are unimodular lattices meeting a certain upper bound on minimum norms, and s-extremal unimodular lattices are odd unimodular lattices meeting a certain upper bound on minimum norms of the shadows. In this paper, new s-extremal extremal unimodular lattices in dimensions 38, 40, 42 and 44 are constructed from self-dual codes over \(\mathbb{F}_5 \) by Construction A. In the process of constructing the above self-dual codes, we obtain a self-dual \([44, 22, 14]\) code over \(\mathbb{F}_5 \). This code has larger minimum weight than the previously known self-dual \([44, 22]\) codes. It is a fundamental problem to determine the largest minimum weight \(d_5(n) \) among all self-dual \([n, n/2]\) codes over \(\mathbb{F}_5 \) for a given \(n \). Much work has been done concerning this fundamental problem (see e.g. \([9], [10], [12], [14], [16], [17] \) and \([23]\)). In addition, the new self-dual code implies a \([43, 22, 13]\) code over \(\mathbb{F}_5 \), which has larger minimum weight than the previously known \([43, 22]\) codes.

This paper is organized as follows. In Section 2, we give some definitions, notations and basic results used in this paper. Two methods for constructing self-dual codes are given, namely, quasi-twisted codes and four-negacirculant codes. In Section 3, new s-extremal extremal unimodular lattices in dimension 44 are constructed from four-negacirculant self-dual codes over \(\mathbb{F}_5 \) by Construction A. In the process of constructing these codes, we obtain a self-dual \([44, 22, 14]\) code \(C_{44} \) over \(\mathbb{F}_5 \). This code has larger minimum weight than the previously known self-dual codes. We emphasize that \(C_{44} \) is the first example as not only self-dual \([44, 22, 14]\) codes but also (linear) \([44, 22, 14]\) codes. In addition, \(C_{44} \) implies a \([43, 22, 13]\) code over \(\mathbb{F}_5 \), which has larger minimum weight than the previously known \([43, 22]\) codes. Section 3 also lists the current information on the largest minimum weight among self-dual \([n, n/2]\) codes over \(\mathbb{F}_5 \) for \(22 \leq n \leq 72 \). In Section 4, new s-extremal extremal unimodular lattices in dimensions 38, 40 and 42 are constructed from self-dual codes over \(\mathbb{F}_5 \) by Construction A. These self-dual codes are constructed as quasi-twisted codes or four-negacirculant codes. As a summary, we list the current information on the existence of non-isomorphic s-extremal unimodular lattices with minimum norm 4.

All computer calculations in this paper were done by programs in MAGMA [1].

2 Preliminaries

In this section, we give definitions, notations and basic results used in this paper.
2.1 Unimodular lattices

A (Euclidean) lattice $L \subset \mathbb{R}^n$ in dimension n is unimodular if $L = L^*$, where the dual lattice L^* of L is defined as $\{ x \in \mathbb{R}^n \mid x \cdot y \in \mathbb{Z} \text{ for all } y \in L \}$ under the standard inner product $x \cdot y$. A unimodular lattice L is even if the norm $x \cdot x$ of every vector x of L is even, and odd otherwise. An even unimodular lattice in dimension n exists if and only if n is divisible by eight, while an odd unimodular lattice exists for every dimension. The minimum norm $\min(L)$ of a unimodular lattice L is the smallest norm among all nonzero vectors of L. The kissing number of L is the number of vectors of minimum norm in L. Two lattices L and L' are isomorphic, denoted $L \cong L'$, if there is an orthogonal matrix A with $L' = \{ xA \mid x \in L \}$.

Let L be an odd unimodular lattice in dimension n. The shadow $S(L)$ of L is defined to be $S(L) = L_0 \setminus L$, where L_0 denotes the even sublattice of L. Shadows of odd unimodular lattices appeared in [3] (see also [4, p. 440]), and shadows play an important role in the study of odd unimodular lattices. The theta series of an odd unimodular lattice L and its shadow $S(L)$ are the formal power series $\theta_L(q) = \sum_{x \in L} q^{x \cdot x}$ and $\theta_{S(L)}(q) = \sum_{x \in S(L)} q^{x \cdot x}$, respectively. Conway and Sloane [3] showed that when the theta series of an odd unimodular lattice L in dimension n is written as:

$$\sum_{j=0}^{[n/8]} a_j \theta_3(q)^{n-8j} \Delta_8(q)^j,$$ \hspace{1cm} (1)

the theta series of the shadow $S(L)$ is written as:

$$\sum_{j=0}^{[n/8]} \frac{(-1)^j}{16^j} a_j \theta_2(q)^{n-8j} \theta_4(q^2)^{8j},$$ \hspace{1cm} (2)

where $\Delta_8(q) = q \prod_{m=1}^{\infty} (1 - q^{2m-1})^8(1 - q^{4m})^8$, and $\theta_2(q), \theta_3(q), \theta_4(q)$ are the Jacobi theta series [4].

2.2 Extremal unimodular lattices and s-extremal unimodular lattices

By considering the theta series of odd unimodular lattices and their shadows, Rains and Sloane [25] showed that the minimum norm $\min(L)$ of an odd
unimodular lattice L in dimension n is bounded by
\[
\min(L) \leq \begin{cases}
2\left\lfloor \frac{n}{24} \right\rfloor + 2 & \text{if } n \neq 23, \\
3 & \text{if } n = 23.
\end{cases} \tag{3}
\]

A unimodular lattice meeting the bound (3) with equality is called \textit{extremal}. In addition, it was shown in \cite{8} that
\[
4 \min(S(L)) = 15 \quad \text{if } n = 23 \text{ and } \min(L) = 3,
\]
\[
8 \min(L) + 4 \min(S(L)) \leq 8 + n \quad \text{otherwise}, \tag{4}
\]
where $\min(S(L))$ denotes the minimum norm of $S(L)$, that is, the smallest norm among all vectors of $S(L)$. An odd unimodular lattice meeting the bound (4) with equality is called \textit{s-extremal}. If an s-extremal unimodular lattice L in dimension n having $\min(L) = 4$ exists, then $n \in \{32, 36, 37, \ldots, 47\}$ \cite{8, p. 148}.

2.3 Invariants $\text{inv}(L)_i$

For a given unimodular lattice L in dimension n having $\min(L) = 4$, let $L(4)$ denote the set of vectors of norm 4 in L. There is a subset $L(4)^+$ of $L(4)$ such that
\[
L(4) = L(4)^+ \cup L(4)^- \text{ and } L(4)^+ \cap L(4)^- = \emptyset,
\]
where $L(4)^- = \{-x \mid x \in L(4)^+\}$. For a given unimodular lattice L and a nonnegative integer i, we define
\[
\text{inv}(L)_i = \left| \{ (x, y) \in L(4)^+ \times L(4)^+ \mid x \cdot y \in \{i, -i\} \} \right|.
\]

It is trivial that $\text{inv}(L)_i = \text{inv}(L')_i$ if $L \cong L'$ for a nonnegative integer i.

Lemma 1. $\text{inv}(L)_3 = 0$, $\text{inv}(L)_4 = |L^+(4)|$ and $\text{inv}(L)_0 + \text{inv}(L)_1 + \text{inv}(L)_2 = |L^+(4)|^2 - |L^+(4)|$.

Proof. Let x and y be vectors of $L(4)$. By considering $(x + y) \cdot (x + y)$ and $(x-y) \cdot (x-y)$, it follows that $-2 \leq x \cdot y \leq 2$ if $x \not\in \{y, -y\}$, and it follows that $x \in \{y, -y\}$ if and only if $x \cdot y \in \{-4, 4\}$. The last assertion is trivial.

Hence, it is sufficient to consider only $\text{inv}(L)_0$ and $\text{inv}(L)_1$.

2.4 Self-dual codes and Construction A

Let \mathbb{F}_5 be the finite field of order 5. Throughout this paper, we take the elements of \mathbb{F}_5 to be either 0, 1, 2, 3, 4 or 0, ±1, ±2, using whichever form is more convenient. A (linear) $[n, k]$ code C over \mathbb{F}_5 is a k-dimensional subspace of \mathbb{F}_5^n. All codes in this paper mean linear codes and we omit the term linear. The weight $\text{wt}(x)$ of a vector x of \mathbb{F}_5^n is the number of non-zero components of x. A vector of C is called a codeword. The minimum non-zero weight of all codewords in C is called the minimum weight of C. An $[n, k]$ code with minimum weight d is called an $[n, k, d]$ code. The weight enumerator of C is $\sum_{c \in C} y^{\text{wt}(c)}$.

The dual code C^\perp of an $[n, k]$ code C over \mathbb{F}_5 is defined as

$$C^\perp = \{ x \in \mathbb{F}_5^n \mid x \cdot y = 0 \text{ for all } y \in C \},$$

where $x \cdot y$ is the standard inner product. A code C is called self-dual if $C = C^\perp$. If an $[n, k]$ code is self-dual, then it is trivial that $k = n/2$. It is a fundamental problem to determine the largest minimum weight $d_5(n)$ among all self-dual $[n, n/2]$ codes over \mathbb{F}_5 for a given n.

Let C be a self-dual $[n, n/2]$ code over \mathbb{F}_5. Then the following lattice

$$A_5(C) = \frac{1}{\sqrt{5}} \{(x_1, \ldots, x_n) \in \mathbb{Z}^n \mid (x_1 \mod 5, \ldots, x_n \mod 5) \in C \}$$

is a unimodular lattice in dimension n. This construction of lattices is well known as Construction A.

2.5 Self-dual codes constructed from negacirculant matrices

An $n \times n$ negacirculant matrix has the following form

$$\begin{pmatrix}
 r_0 & r_1 & r_2 & \cdots & r_{n-1} \\
 -r_{n-1} & r_0 & r_1 & \cdots & r_{n-2} \\
 -r_{n-2} & -r_{n-1} & r_0 & \cdots & r_{n-3} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 -r_1 & -r_2 & -r_3 & \cdots & r_0
\end{pmatrix}$$

Throughout this paper, let I_n denote the identity matrix of order n and let A^T denote the transpose of a matrix A. 5
Let A be an $n \times n$ negacirculant matrix. A $[2n, n]$ code over \mathbb{F}_5 having the following generator matrix

$$
(I_n \ A)
$$

is called a *quasi-twisted* code or a double twistulant code. Let A and B be $n \times n$ negacirculant matrices. A $[4n, 2n]$ code over \mathbb{F}_5 having the following generator matrix

$$
\begin{pmatrix}
I_{2n} & A & B \\
-A^T & B & A^T
\end{pmatrix}
$$

is called a *four-negacirculant* code. Many quasi-twisted self-dual codes and four-negacirculant self-dual codes with large minimum weights are known (see e.g. [16], [17], [21] and [22]).

3 New s-extremal extremal unimodular lattices in dimension 44 and new self-dual codes over \mathbb{F}_5

In this section, new s-extremal extremal unimodular lattices in dimension 44 are constructed from four-negacirculant self-dual codes over \mathbb{F}_5 by Construction A. In the process of constructing these codes, we obtain a self-dual $[44, 22, 14]$ code over \mathbb{F}_5. This code has larger minimum weight than the previously known $[44, 22]$ codes. In addition, the new self-dual code implies a $[43, 22, 13]$ code over \mathbb{F}_5, which has larger minimum weight than the previously known $[43, 22]$ codes.

3.1 New s-extremal extremal unimodular lattices in dimension 44

Let L_{44} be an odd unimodular lattice in dimension 44 having minimum norm 4. By using [1] and [2], the possible theta series of L_{44} and its shadow $S(L_{44})$ are determined as follows:

$$
\theta_{L_{44}}(q) = 1 + (6600 + 16\alpha)q^4 + (811008 - 128\alpha - 65536\beta)q^5 + \cdots \quad \text{and}
$$

$$
\theta_{S(L_{44})}(q) = \beta q^3 + (\alpha - 76\beta)q^3 + (1622016 - 52\alpha + 2806\beta)q^5 + \cdots ,
$$
respectively, where \(\alpha \) and \(\beta \) are nonnegative integers \([19]\). It turns out that \(L_{44} \) has kissing number 6600 if and only if \(L_{44} \) is \(s \)-extremal. Two \(s \)-extremal extremal unimodular lattices in dimension 44 are previously known. More precisely, \(A_5(C_{44}) \) in \([19]\) and \(A_5(C_{44,5}(D_{22})) \) in \([21]\) are the known lattices, and we denote the lattices by \(L_{44,1} \) and \(L_{44,2} \), respectively. We remark that the two lattices are constructed from some self-dual codes over \(\mathbb{F}_5 \) by Construction A.

We calculated by MAGMA the invariants \(\text{inv}(L)_i \) \((i = 0, 1) \) given in Section 2.3 for \(L = L_{44,1} \) and \(L_{44,2} \), where the results are listed in Table 1. This was done using the MAGMA function \texttt{ShortVectors}. From the table, it holds that the two lattices \(L_{44,1} \) and \(L_{44,2} \) are non-isomorphic.

\(L \)	\(\text{inv}(L)_0 \)	\(\text{inv}(L)_1 \)
\(L_{44,1} \)	7097112	3750384
\(L_{44,2} \)	7089192	3760944

In order to construct new \(s \)-extremal extremal odd unimodular lattices, we tried to find four-negacirculant self-dual \([44,22]\) codes over \(\mathbb{F}_5 \). Then we found 50 codes \(C_{44,i} \) satisfying the condition that \(A_5(C_{44,i}) \) have minimum norm 4 and kissing number 6600 and the condition that

\[
|\{(\text{inv}(L)_0, \text{inv}(L)_1) \mid L \in \mathcal{L}\}| = 52,
\]

where \(\mathcal{L} = \{L_{44,1}, L_{44,2}\} \cup \{A_5(C_{44,i}) \mid i \in \{1, 2, \ldots, 50\}\} \). The self-duality was verified by the MAGMA function \texttt{IsSelfDual}. The minimum norm and the kissing number were calculated by the MAGMA functions \texttt{Minimum} and \texttt{KissingNumber}, respectively. For \(L = A_5(C_{44,i}) \), the results \(\text{inv}(L)_j \) \((j = 0, 1) \) are listed in Table 2. From Tables 1 and 2 we have the following:

Lemma 2. The 52 lattices \(L_{44,1}, L_{44,2} \) and \(A_5(C_{44,i}) \) \((i = 1, 2, \ldots, 50) \) are non-isomorphic.

For the 50 codes \(C_{44,i} \), the first rows \(r_A(C_{44,i}) \) and \(r_B(C_{44,i}) \) of the negacirculant matrices \(A \) and \(B \) in the generator matrices of form (6) are listed in Table 3.

For an odd unimodular lattice \(L \), there are cosets \(L_1, L_2, L_3 \) of \(L_0 \) such that \(L_0 = L_0 \cup L_1 \cup L_2 \cup L_3 \), where \(L = L_0 \cup L_2 \) and \(S(L) = L_1 \cup L_3 \). Two
Table 2: \(\text{inv}(L)_j \) \((j = 0, 1)\) for \(L = A_5(C_{44,i}) \)

\(i \)	\(\text{inv}(L)_0 \)	\(\text{inv}(L)_1 \)	\(i \)	\(\text{inv}(L)_0 \)	\(\text{inv}(L)_1 \)	\(i \)	\(\text{inv}(L)_0 \)	\(\text{inv}(L)_1 \)
1	7068600	3788400	18	7083252	3768864	35	7092756	3756192
2	7071372	3784704	19	7083648	3768336	36	7093152	3755664
3	7074144	3781008	20	7084440	3767280	37	7093548	3755136
4	7074540	3780480	21	7085232	3766224	38	7093944	3754608
5	7074936	3779952	22	7085628	3765696	39	7094340	3754080
6	7075332	3779424	23	7086420	3764640	40	7094736	3753552
7	7076520	3777840	24	7086816	3764112	41	7095132	3753024
8	7077312	3776784	25	7087212	3763584	42	7095528	3752496
9	7078104	3775728	26	7087608	3763056	43	7096320	3751440
10	7078500	3775200	27	7088004	3762528	44	7097904	3749328
11	7078896	3774672	28	7089588	3760416	45	7098300	3748800
12	7079292	3774144	29	7099984	3759888	46	7100676	3745632
13	7079688	3773616	30	7099380	3759360	47	7103448	3741936
14	7081272	3771504	31	7091172	3758304	48	7105824	3738768
15	7081668	3770976	32	7091568	3757776	49	7107012	3737184
16	7082460	3769920	33	7091964	3757248	50	7107804	3736128
17	7082856	3769392	34	7092360	3756720			

Lattices \(L \) and \(L' \) are neighbors if both lattices contain a sublattice of index 2 in common. If \(L \) is an odd unimodular lattice in dimension \(n \) and \(n \) is a multiple of four, then there are two unimodular lattices containing \(L_0 \), which are rather than \(L \), namely, \(L_0 \cup L_1 \) and \(L_0 \cup L_3 \) (see [5]). Note that the two neighbors are even if \(n \) is a multiple of eight. We denote the two unimodular neighbors by

\[N_1(L) = L_0 \cup L_1 \text{ and } N_2(L) = L_0 \cup L_3. \]

Lemma 3. Let \(L \) be an \(s \)-extremal extremal unimodular lattice in dimension 44. Then \(N_1(L) \) and \(N_2(L) \) are also \(s \)-extremal extremal unimodular lattices.

Proof. Since \(L \) is an \(s \)-extremal extremal unimodular lattice in dimension 44, the minimum norm of the shadow \(S(L) \) is 5. Thus, \(N_1(L) \) and \(N_2(L) \) have minimum norm 4. In addition, the shadows of \(N_1(L) \) and \(N_2(L) \) are \(L_2 \cup L_3 \) and \(L_2 \cup L_1 \), respectively. Hence, \(\min(S(N_1(L))) = \min(S(N_2(L))) = 5 \). The result follows. \[\square \]

By the above lemma, more \(s \)-extremal extremal unimodular lattices in dimension 44 are constructed as \(N_j(L_{44,i}) \), \(N_j(L_{44,2}) \) and \(N_j(A_5(C_{44,i})) \) (\(i = 1, 2, \ldots, 50 \)) (\(j = 1, 2 \)).
Lemma 4. Let L and L' be s-extremal extremal unimodular lattices in dimension 44. If $\text{inv}(L)_0 \neq \text{inv}(L')_0$ or $\text{inv}(L)_1 \neq \text{inv}(L')_1$, then $L \not\cong N_1(L')$ and $L \not\cong N_2(L')$.

Proof. Since the minimum norm of the shadow of L' is 5, the two sets of vectors of norm 4 in L' and M are identical for $M = N_1(L')$ and $N_2(L')$. The result follows.

In addition, we verified that the three lattices $L, N_1(L)$ and $N_2(L)$ are non-isomorphic for each lattice $L = L_{44,1}, L_{44,2}$ and $A_5(C_{44,i}) (i = 1, 2, \ldots, 50)$. The neighbors $N_1(L)$ and $N_2(L)$ were constructed using the MAGMA functions EvenSublattice and Dual. In addition, the non-isomorphisms were verified by the MAGMA function IsIsomorphic. By Lemma 4, we have the following:

Proposition 5. There are at least 156 non-isomorphic s-extremal extremal unimodular lattices in dimension 44.

We stopped our search after finding the 50 self-dual codes $C_{44,i}$, which give 150 lattices $A_5(C_{44,i}), N_1(A_5(C_{44,i}))$ and $N_2(A_5(C_{44,i}))$. Our feeling is that the number of non-isomorphic s-extremal extremal unimodular lattices in dimension 44 might be even bigger.

3.2 A self-dual $[44, 22, 14]$ code over \mathbb{F}_5 and its related codes

We verified by MAGMA that $C_{44,50}$ has minimum weight 14, $C_{44,29}$ has minimum weight 13 and $C_{44,i}$ ($i = 1, 2, \ldots, 28, 30, \ldots, 49$) have minimum weight 12. The minimum weight was calculated by the MAGMA function MinimumWeight.

Proposition 6. There is a self-dual $[44, 22, 14]$ code over \mathbb{F}_5.

The code $C_{44,50}$ has generator matrix of form (6), where the negacirculant matrices A and B have the first rows

$$(1003210404) \text{ and } (1224113344),$$

respectively. The first few terms of the weight enumerator of $C_{44,50}$ are given by

$$1 + 12056y^{14} + 95920y^{15} + 807312y^{16} + 4677728y^{17} + \cdots.$$
This was calculated by the MAGMA function `NumberOfWord`.

Let $d_5(n)$ denote the largest minimum weight among all self-dual $[n, n/2]$ codes over \mathbb{F}_5. It was known that $13 \leq d_5(44) \leq 19$ [16, Table III]. Hence, $C_{44,50}$ improves the previously known lower bound on the largest minimum weight $d_5(44)$. As a summary, we list the current information on the largest minimum weight $d_5(n)$ in Table 3 along with references for $22 \leq n \leq 72$. The table updates [16, Table III].

n	$d_5(n)$	References	n	$d_5(n)$	References
22	8–10	[23]	48	14–20	[6]
24	9–10	[23]	50	14–20	[9]
26	9–11	[9]	52	15–21	[9]
28	10–12	[9]	54	16–22	[9]
30	10–12	[9]	56	16–23	[9]
32	11–13	[17]	58	16–24	[6]
34	11–14	[9]	60	18–24	[15]
36	12–15	[9]	62	17–25	[9]
38	12–16	[6]	64	18–26	[15]
40	13–17	[6]	66	18–27	[12]
42	13–18	[16]	68	18–28	[9]
44	14–19	$C_{44,50}$	70	20–29	[12]
46	14–20	[6]	72	22–29	[12]

It is a main problem in coding theory to determine the largest minimum weights $d_q(n,k)$ among all $[n,k]$ codes over a finite field of order q for a given (q,n,k). The current information on $d_5(n,k)$ can be found in [11]. For example, it was known that $12 \leq d_5(43,22) \leq 18$ and $13 \leq d_5(44,22) \leq 19$. We emphasize that $C_{44,50}$ is the first example as not only self-dual [44, 22, 14] codes but also (linear) [44, 22, 14] codes. We verified that all punctured codes of $C_{44,50}$ are [43, 22, 13] codes over \mathbb{F}_5. The punctured codes were constructed by the MAGMA functions `PunctureCode`.

Proposition 7. There is a [43, 22, 13] code over \mathbb{F}_5.

The self-dual [44, 22, 14] code $C_{44,50}$ and the punctured codes improve the previously known lower bounds on $d_5(43,22)$ and $d_5(44,22)$.

Corollary 8. $13 \leq d_5(43,22) \leq 18$ and $14 \leq d_5(44,22) \leq 19$.

10
4 Construction of s-extremal extremal unimodular lattices in dimensions 38, 40 and 42

In this section, we construct new s-extremal extremal unimodular lattices in dimensions 38, 40 and 42 from self-dual codes over \mathbb{F}_5 by Construction A. These self-dual codes are constructed as four-negacirculant self-dual codes or quasi-twisted self-dual codes.

4.1 New s-extremal extremal odd unimodular lattices in dimension 40

By using (1) and (2), the possible theta series of an extremal odd unimodular lattice L_{40} in dimension 40 and its shadow $S(L_{40})$ are determined as follows:

$$\theta_{L_{40}}(q) = 1 + (19120 + 256\alpha)q^4 + (1376256 - 4096\alpha)q^5 + \cdots$$
$$\theta_{S(L_{40})}(q) = \alpha q^2 + (40960 - 56\alpha)q^4 + (87818240 + 1500\alpha)q^6 + \cdots,$$

respectively, where α is an even integer with $0 \leq \alpha \leq 80$ [2]. It is trivial that L_{40} has kissing number 19120 if and only if L_{40} is s-extremal. An s-extremal extremal odd unimodular lattice in dimension 40 was explicitly constructed in [2] and three non-isomorphic s-extremal extremal odd unimodular lattices were explicitly constructed in [21]. We calculated by MAGMA $\text{inv}(L)_i (i = 0, 1)$ for the four lattices, where the results are listed in Table 4.

L	$\text{inv}(L)_0$	$\text{inv}(L)_1$
[2]	56589480	34257920
$A_{13}(C_{13,40})$ in [21]	56644200	34184960
$A_9(C_{9,40})$ in [21]	565549160	34311680
$A_{19}(C_{19,40})$ in [21]	56553480	34305920

In order to construct new s-extremal extremal odd unimodular lattices, we tried to find self-dual [40, 20] codes C over \mathbb{F}_5 by considering four-negacirculant codes such that $A_5(C)$ have minimum norm 4 and kissing number 19120. Then we found 50 self-dual [40, 20] codes $C_{40,i}$ over \mathbb{F}_5 such that their lattices $A_5(C_{40,i})$ are s-extremal extremal odd unimodular lattices and

$$|\{(\text{inv}(L)_0, \text{inv}(L)_1) \mid L \in \{A_5(C_{40,i}) \mid i \in \{1, 2, \ldots, 50\}\}| = 50.$$
The results $\text{inv}(A_5(C_{40,i}))_j$ ($j = 0, 1$) are listed in Table 5. From Tables 4 and 5 we have the following:

Proposition 9. There are at least 54 non-isomorphic s-extremal extremal odd unimodular lattices in dimension 40.

Table 5: $\text{inv}(L)_j$ ($j = 0, 1$) for $L = A_5(C_{40,i})$

i	$\text{inv}(L)_0$	$\text{inv}(L)_1$	i	$\text{inv}(L)_0$	$\text{inv}(L)_1$
1	56523240	34346240	18	56593800	34252160
2	56536200	34328960	19	56596680	34248320
3	56554920	34304000	20	56598120	34246400
4	56559240	34298240	21	56601000	34242560
5	56562120	34294400	22	56605320	34236800
6	56563560	34292480	23	56606760	34234880
7	56566440	34288640	24	56609640	34231040
8	56570760	34282880	25	56611080	34229120
9	56572200	34280960	26	56613960	34225280
10	56575080	34277120	27	56618280	34219520
11	56576520	34275200	28	56619720	34217600
12	56579400	34271360	29	56622600	34213760
13	56580840	34269440	30	56624040	34211840
14	56583720	34265600	31	56626920	34208000
15	56585160	34263680	32	56628360	34206080
16	56588040	34259840	33	56631240	34202240
17	56592360	34254080	34	56632680	34200320

For the 50 codes $C_{40,i}$, the first rows $r_A(C_{40,i})$ and $r_B(C_{40,i})$ of the negacirculant matrices A and B in the generator matrices of form (6) are listed in Table 10. We verified by Magma that the 50 codes $C_{40,i}$ have minimum weight 12. Although these codes have minimum weights less than $d_5(40)$, these codes are useful for constructing s-extremal extremal odd unimodular lattices.

We stopped our search after finding the new 50 lattices. Our feeling is that the number of non-isomorphic s-extremal extremal unimodular lattices in dimension 40 might be even bigger.

12
4.2 New s-extremal extremal odd unimodular lattices in dimension 38

Let L_{38} be an extremal odd unimodular lattice in dimension 38. By using (1) and (2), one can determine the possible theta series $\theta_{L_{38}}(q)$ and $\theta_{S(L_{38})}(q)$ as follows. Since the minimum norm of L_{38} is 4, we have that

$$a_0 = 1, a_1 = -76, a_2 = 1140 \text{ and } a_3 = -1520,$$

in (1). By considering the coefficient of $q^\frac{3}{2}$ in (2), a_4 is written as:

$$a_4 = 2^{10} \alpha,$$

by using an integer α. Hence, we have that

$$\theta_{L_{38}}(q) = 1 + (29260 + 1024 \alpha)q + (1668352 - 20480 \alpha)q^5 + \cdots$$

and

$$\theta_{S(L_{38})}(q) = \alpha q^\frac{3}{2} + (6080 - 58 \alpha)q^\frac{7}{2} + (18471040 + 1615 \alpha)q^\frac{11}{2} + \cdots.$$

It is trivial that L_{38} has kissing number 29260 if and only if L_{38} is s-extremal.

An s-extremal extremal unimodular lattice in dimension 38 is previously known and this lattice is denoted by G_{38} in [7]. We calculated by Magma

$$\text{inv}(G_{38})_0 = 129060350 \text{ and } \text{inv}(G_{38})_1 = 83320320. \quad (7)$$

For $n \equiv 2 \pmod{4}$, in order to construct new s-extremal extremal odd unimodular lattices in dimension n, we consider quasi-twisted self-dual $[n, n/2]$ codes over \mathbb{F}_5. Then we found 15 self-dual [38, 19] codes $C_{38,i}$ over \mathbb{F}_5 such that $A_5(C_{38,i})$ have minimum norm 4 and kissing number 29260. This means that $A_5(C_{38,i})$ are s-extremal extremal odd unimodular lattices in dimension 38. For $L = A_5(C_{38,i})$, we calculated by Magma $\text{inv}(L)_j$ ($j = 0, 1$), where the results are listed in Table 6. From (7) and the table, we know that

$$(\text{inv}(G_{38})_0, \text{inv}(G_{38})_1) = (\text{inv}(A_5(C_{38,i}))_0, \text{inv}(A_5(C_{38,i}))_1),$$

however, we verified by Magma that these lattices are non-isomorphic. In addition, there are pairs (i_1, i_2) such that

$$(\text{inv}(A_5(C_{38,i_1}))_0, \text{inv}(A_5(C_{38,i_1}))_1) = (\text{inv}(A_5(C_{38,i_2}))_0, \text{inv}(A_5(C_{38,i_2}))_1).$$

For the pairs, we verified by Magma that $A_5(C_{38,i_1})$ and $A_5(C_{38,i_2})$ are non-isomorphic. Therefore, we have the following:
Table 6: \(r(C) \) and \(\text{inv}(A_5(C))_j \) \((j = 0, 1)\) for \(C = C_{38,i} \)

\(i\)	\(r(C) \)	\(\text{inv}(A_5(C))_0 \)	\(\text{inv}(A_5(C))_1 \)
1	(1, 4, 0, 1, 2, 3, 3, 1, 3, 4, 0, 4, 0, 1, 2, 1, 1, 2)	128961854	83451648
2	(1, 0, 0, 0, 4, 2, 2, 1, 0, 3, 4, 2, 0, 3, 1, 2, 1, 0)	129027518	83364096
3	(1, 0, 4, 3, 0, 3, 2, 1, 3, 3, 0, 1, 3, 4, 0, 0, 3, 4)	129060350	83320320
4	(1, 0, 0, 2, 1, 1, 1, 1, 1, 0, 0, 2, 0, 2, 0, 2, 0, 1)	129093182	83276544
5	(1, 0, 0, 2, 2, 0, 4, 0, 0, 2, 3, 1, 0, 0, 2, 1, 0, 1, 3)	129126014	83232768
6	(1, 0, 0, 3, 3, 3, 4, 3, 1, 0, 3, 2, 0, 4, 4, 4, 2, 3)	129126014	83232768
7	(1, 0, 2, 1, 1, 3, 3, 2, 1, 0, 4, 2, 3, 0, 0, 3, 1, 4, 2)	129126014	83232768
8	(1, 0, 0, 4, 0, 0, 2, 3, 4, 2, 1, 0, 0, 3, 1, 4, 1, 0, 4)	129158846	83189992
9	(1, 0, 3, 2, 0, 1, 1, 4, 3, 1, 0, 1, 3, 4, 1, 2, 4, 3, 4)	129158846	83189992
10	(1, 0, 3, 2, 2, 2, 3, 2, 0, 1, 3, 3, 3, 0, 4, 2, 1, 4, 3)	129191678	83154216
11	(1, 0, 0, 2, 1, 2, 0, 0, 2, 1, 0, 3, 3, 0, 2, 1, 4, 2, 1)	129224510	83101440
12	(1, 0, 3, 3, 3, 2, 2, 1, 3, 2, 4, 1, 3, 1, 3, 3, 4, 1)	129224510	83101440
13	(1, 0, 0, 1, 3, 3, 2, 3, 0, 2, 1, 1, 3, 1, 1, 3, 1, 1, 1)	129257342	83057664
14	(1, 0, 1, 4, 4, 4, 4, 1, 2, 0, 3, 3, 4, 2, 2, 0, 4, 1, 3)	129257342	83057664
15	(1, 0, 2, 2, 3, 2, 4, 2, 3, 3, 1, 2, 4, 4, 1, 0, 0, 1, 0)	129257342	83057664

Proposition 10. There are at least 16 non-isomorphic \(s \)-extremal extremal odd unimodular lattices in dimension 38.

For the 15 codes \(C_{38,i} \), the first rows \(r(C_{38,i}) \) of the negacirculant matrices \(A \) in the generator matrices of form (4) are listed in Table 6. We verified by Magma that the codes \(C_{38,i} \) have minimum weight 10 if \(i \in \{1, 3, 4, 5, 8, 9, 12, 13, 15\} \) and the other codes have minimum weight 11. Although these codes have minimum weights less than \(d_5(38) \), these codes are useful for constructing \(s \)-extremal extremal odd unimodular lattices.

4.3 New \(s \)-extremal extremal odd unimodular lattices in dimension 42

Let \(L_{42} \) be an extremal odd unimodular lattice in dimension 42. By using (1) and (2), one can determine the possible theta series \(\theta_{L_{42}}(q) \) and \(\theta_{S(L_{42})}(q) \) as follows. Since the minimum norm of \(L_{42} \) is 4, we have that

\[
a_0 = 1, \quad a_1 = -84, \quad a_2 = 1596 \quad \text{and} \quad a_3 = -4144,
\]

in (1). By considering the coefficients of \(q^{\frac{1}{2}} \) and \(q^{\frac{5}{2}} \) in (2), \(a_4 \) and \(a_5 \) are written as:

\[
a_4 = 2^6 \alpha \quad \text{and} \quad a_5 = -2^{18} \beta,
\]
by using integers α and β. Hence, we have that
\[
\theta_{L_{42}}(q) = 1 + (11844 + 64\alpha)q^4 + (1080576 - 768\alpha - 262144\beta)q^5 + \cdots
\]
and
\[
\theta_{S(L_{42})}(q) = \beta q^{\frac{1}{2}} + (\alpha - 78\beta)q^{\frac{5}{2}} + (265216 - 54\alpha + 2961\beta)q^9 + \cdots .
\]

An s-extremal extremal unimodular lattice in dimension 42 is previously known and this lattice is denoted by G_{42} in [7]. We calculated by MAGMA

\[
\text{inv}(G_{42})_0 = 22272390 \quad \text{and} \quad \text{inv}(G_{42})_1 = 12633936 .
\]

Lemma 11. Let L_{42} be an extremal odd unimodular lattice in dimension 42. Then L_{42} has kissing number 11844 if and only if L_{42} is s-extremal.

Proof. It is sufficient to show that if L_{42} has kissing number 11844 then L_{42} is s-extremal. Suppose that L_{42} has kissing number 11844. By considering the coefficients of q^4 in $\theta_{L_{42}}(q)$, we have $\alpha = 0$. By considering the coefficients of $q^{\frac{1}{2}}$ and $q^{\frac{5}{2}}$ in $\theta_{S(L_{42})}(q)$, we have $\beta = 0$. The result follows. \Box

By considering quasi-twisted codes, we found 30 self-dual $[42, 21]$ codes $C_{42,i}$ over \mathbb{F}_5 such that $A_5(C_{42,i})$ have minimum norm 4 and kissing number 11844. This means that $A_5(C_{42,i})$ are s-extremal extremal odd unimodular lattices in dimension 42. For $L = A_5(C_{42,i})$, we calculated by MAGMA $\text{inv}(L)_j \quad (j = 0, 1)$, where the results are listed in Table 7. There are pairs (i_1, i_2) such that

\[
(\text{inv}(A_5(C_{42,i_1})))_0, \text{inv}(A_5(C_{42,i_1})))_1 = (\text{inv}(A_5(C_{42,i_2})))_0, \text{inv}(A_5(C_{42,i_2})))_1 .
\]

For the pairs, we verified by MAGMA that $A_5(C_{42,i_1})$ and $A_5(C_{42,i_2})$ are non-isomorphic. Therefore, we have the following:

Proposition 12. There are at least 31 non-isomorphic s-extremal extremal odd unimodular lattices in dimension 42.

For the 30 codes $C_{42,i}$, the first rows $r(C_{42,i})$ of the negacirculant matrices A in the generator matrices of form (5) are listed in Table 4. We verified by MAGMA that the codes $C_{42,i}$ have minimum weight 10 if $i \in \{3, 5, 6, 22, 26, 28, 29\}$, the code $C_{42,19}$ have minimum weight 11 and the other codes have minimum weight 12. Although these codes have minimum weights less than $d_5(42)$, these codes are useful for constructing s-extremal extremal odd unimodular lattices.
Table 7: \(r(C)\) and \(\text{inv}(A_5(C))_j\) \((j = 0, 1)\) for \(C = C_{42,i}\)

\(i\)	\(r(C)\)	\(\text{inv}(A_5(C))_0\)	\(\text{inv}(A_5(C))_1\)
1	(1, 3, 2, 1, 1, 2, 3, 2, 2, 2, 4, 1, 0, 4, 0, 4, 3, 2, 1, 1)	22228542	12692400
2	(1, 0, 3, 0, 2, 0, 4, 4, 0, 1, 4, 2, 0, 3, 4, 3, 2, 2, 2, 0)	22242150	12674256
3	(1, 0, 2, 0, 1, 3, 1, 2, 1, 4, 0, 0, 4, 2, 3, 2, 3, 0, 0, 0, 0)	22247946	12666528
4	(1, 0, 4, 0, 3, 1, 0, 0, 1, 1, 2, 2, 1, 0, 1, 1, 1, 0, 1, 1)	22258026	12653088
5	(1, 0, 1, 2, 3, 0, 4, 4, 0, 1, 0, 2, 2, 3, 2, 4, 0, 2, 0, 3, 1)	22261806	12648048
6	(1, 0, 4, 1, 2, 2, 1, 0, 4, 3, 4, 3, 0, 1, 1, 1, 1, 4, 0, 1)	22261806	12648048
7	(1, 0, 0, 1, 1, 1, 4, 1, 1, 1, 4, 1, 3, 1, 1, 2, 1, 4, 4, 1, 0)	22262562	12647040
8	(1, 3, 1, 4, 4, 0, 4, 0, 3, 2, 2, 1, 2, 0, 1, 4, 2, 0, 4, 1)	22263318	12646032
9	(1, 2, 2, 0, 2, 2, 1, 4, 0, 1, 1, 3, 1, 3, 2, 3, 0, 4, 2)	22264830	12644016
10	(1, 0, 1, 3, 0, 0, 1, 4, 2, 3, 2, 0, 0, 3, 0, 3, 0, 1, 4, 3)	22267602	12640320
11	(1, 4, 3, 3, 1, 3, 4, 4, 4, 4, 4, 2, 0, 2, 1, 2, 0, 1, 3, 4)	22270626	12636288
12	(1, 3, 2, 0, 3, 0, 3, 2, 2, 1, 1, 2, 4, 2, 3, 4, 2, 4, 3, 2)	22271634	12634944
13	(1, 3, 4, 2, 2, 4, 4, 0, 1, 3, 2, 0, 3, 0, 0, 1, 0, 3, 0, 1, 2)	22272138	12634272
14	(1, 0, 4, 1, 4, 0, 2, 0, 3, 2, 2, 1, 2, 0, 4, 1, 0, 1, 0, 1)	22273902	12631920
15	(1, 0, 2, 4, 2, 2, 3, 2, 1, 3, 0, 0, 1, 0, 3, 0, 1, 2, 3, 3)	22273902	12631920
16	(1, 0, 4, 0, 2, 1, 4, 4, 0, 3, 2, 0, 4, 3, 4, 1, 3, 1, 2, 0, 4)	22274658	12630912
17	(1, 0, 0, 1, 1, 1, 3, 1, 1, 4, 1, 1, 2, 1, 2, 0, 0, 4, 0, 0)	22275918	12629232
18	(1, 1, 0, 0, 0, 2, 0, 2, 0, 2, 0, 2, 1, 0, 4, 2, 4, 1, 1, 0, 4)	22278438	12625872
19	(1, 3, 3, 4, 2, 4, 0, 4, 2, 4, 1, 1, 3, 3, 3, 3, 0, 3, 0, 0, 1)	22280706	12622848
20	(1, 4, 3, 3, 0, 0, 2, 2, 1, 0, 0, 0, 3, 4, 0, 4, 4, 3, 0, 2)	22284486	12617808
21	(1, 2, 2, 1, 2, 2, 1, 1, 3, 2, 3, 0, 0, 1, 4, 2, 0, 1, 0, 2, 1)	22285242	12616800
22	(1, 0, 3, 0, 2, 0, 4, 0, 1, 4, 0, 0, 0, 4, 4, 3, 3, 3, 1)	22286754	12614784
23	(1, 1, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 1, 4, 3, 1, 3, 1)	22300866	12595968
24	(1, 0, 2, 0, 3, 4, 3, 0, 3, 0, 3, 2, 3, 2, 3, 4, 2, 3, 0, 3, 1)	22304142	12591600
25	(1, 0, 3, 3, 3, 4, 3, 0, 2, 1, 4, 0, 2, 1, 0, 3, 0, 2, 3, 2, 3)	22311450	12581856
26	(1, 1, 2, 1, 4, 1, 1, 2, 3, 1, 4, 2, 1, 0, 2, 2, 2, 4, 4, 1, 3)	22320774	12569424
27	(1, 2, 3, 3, 2, 1, 3, 0, 1, 3, 0, 4, 2, 2, 3, 2, 3, 0, 4, 4)	22338162	12546240
28	(1, 0, 2, 1, 0, 4, 4, 1, 2, 1, 0, 0, 4, 3, 3, 1, 3, 1, 2, 1, 0)	22339674	12544224
29	(1, 0, 1, 0, 1, 3, 0, 3, 1, 2, 0, 1, 1, 0, 2, 4, 3, 4, 2, 4)	22365378	12509952
30	(1, 0, 2, 1, 4, 2, 4, 0, 3, 1, 2, 0, 1, 1, 0, 1, 0, 1, 0, 3, 0, 3)	22391586	12475008
4.4 Summary of the existence of s-extremal unimodular lattices with minimum norm 4

In Section 3 and this section, we constructed 15, 50, 30 and 153 new non-isomorphic s-extremal extremal unimodular lattices in dimensions 38, 40, 42 and 44, respectively. As a summary, we list in Table 8 the current information on the number $N(n)$ of non-isomorphic s-extremal unimodular lattices L in dimension n with $\min(L) = 4$. The table updates the table given in [8, p. 148] and Table 2 in [19].

Table 8: Existence of s-extremal unimodular lattices L with $\min(L) = 4$

n	$N(n)$	References	n	$N(n)$	References
32	5	[3]	42	≥ 31	Proposition [12]
36	≥ 19	[20]	43	≥ 1	[19]
37	$?$		44	≥ 156	Proposition [5]
38	≥ 16	Proposition [10]	45	$?$	
39	≥ 1	[13]	46	≥ 1	[18]
40	≥ 51	Proposition [9]	47	≥ 1	[18]
41	≥ 1	[19]			

Acknowledgments. This work was supported by JSPS KAKENHI Grant Number 19H01802.

References

[1] W. Bosma, J. Cannon and C. Playoust, The Magma algebra system I: The user language, J. Symbolic Comput. 24 (1997), 235–265.

[2] S. Bouyuklieva, I. Bouyukliev and M. Harada, Some extremal self-dual codes and unimodular lattices in dimension 40, Finite Fields Appl. 21 (2013), 67–83.

[3] J.H. Conway and N.J.A. Sloane, A note on optimal unimodular lattices, J. Number Theory 72 (1998), 357–362.

[4] J.H. Conway and N.J.A. Sloane, Sphere Packing, Lattices and Groups (3rd ed.), Springer-Verlag, New York, 1999.
[5] S.T. Dougherty, M. Harada and P. Solé, Shadow lattices and shadow codes, *Discrete Math.* **219** (2000), 49–64.

[6] P. Gaborit, Quadratic double circulant codes over fields, *J. Combin. Theory Ser. A* **97** (2002), 85–107.

[7] P. Gaborit, Construction of new extremal unimodular lattices, *European J. Combin.* **25** (2004), 549–564.

[8] P. Gaborit, A bound for certain s-extremal lattices and codes, *Arch. Math.* **89** (2007), 143–151.

[9] P. Gaborit and A. Otmani, Experimental constructions of self-dual codes, *Finite Fields Appl.* **9** (2003), 372–394.

[10] S.D. Georgiou and E. Lappas, Self-dual codes from circulant matrices, *Des. Codes Cryptogr.* **64** (2012), 129–141.

[11] M. Grassl, Bounds on the minimum distance of linear codes and quantum codes, Available online at http://www.codetables.de/, Accessed on 2021-01-01.

[12] M. Grassl and T.A. Gulliver, On circulant self-dual codes over small fields, *Des. Codes Cryptogr.* **52** (2009), 57–81.

[13] T.A. Gulliver and M. Harada, An optimal unimodular lattice in dimension 39, *J. Combin. Theory Ser. A* **88** (1999), 158–161.

[14] T.A. Gulliver and M. Harada, Double circulant self-dual codes over $GF(5)$, *Ars Combin.* **56** (2000), 3–13.

[15] T.A. Gulliver and M. Harada, On the minimum weight of codes over \mathbb{F}_5 constructed from certain conference matrices, *Des. Codes Cryptogr.* **31** (2004), 139–145.

[16] T.A. Gulliver and M. Harada, New nonbinary self-dual codes, *IEEE Trans. Inform. Theory* **54** (2008), 415–417.

[17] T.A. Gulliver, M. Harada and H. Miyabayashi, Double circulant and quasi-twisted self-dual codes over \mathbb{F}_5 and \mathbb{F}_7, *Adv. Math. Commun.* **1** (2007), 223–238.
[18] M. Harada, Extremal odd unimodular lattices in dimensions 44, 46 and 47, *Hokkaido Math. J.* **32** (2003), 153–159.

[19] M. Harada, Construction of some unimodular lattices with long shadows, *Int. J. Number Theory* **7** (2011), 1345–1358.

[20] M. Harada, Extremal unimodular lattices in dimension 36, *Int. J. Comb.* (2014), Art. ID 792471, 7 pp.

[21] M. Harada, Extremal Type I \mathbb{Z}_k-codes and k-frames of odd unimodular lattices, *IEEE Trans. Inform. Theory* **61** (2015), 72–81.

[22] M. Harada, W. Holzmann, H. Kharaghani and M. Khorvash, Extremal ternary self-dual codes constructed from negacirculant matrices, *Graphs Combin.* **23** (2007), 401–417.

[23] J.S. Leon, V. Pless and N.J.A. Sloane, Self-dual codes over $GF(5)$, *J. Combin. Theory Ser. A* **32** (1982), 178–194.

[24] G. Nebe and N.J.A. Sloane, Unimodular lattices, together with a table of the best such lattices, in *A Catalogue of Lattices*, published electronically at http://www.math.rwth-aachen.de/~Gabriele.Nebe/LATTICES/

[25] E. Rains and N.J.A. Sloane, The shadow theory of modular and unimodular lattices, *J. Number Theory* **73** (1998), 359–389.
i	$r_A(C_{44,i})$	$r_B(C_{44,i})$	i	$r_A(C_{44,i})$	$r_B(C_{44,i})$
1	$1,0,0,4,4,4,0,2,3,1,1$	$2,0,1,0,2,0,0,4,3,4,0$	26	$1,0,0,3,2,4,3,2,0,3,1$	$2,0,1,4,4,1,3,2,3,0$
2	$1,0,0,1,2,2,2,3,2,0,4$	$4,0,3,4,1,2,0,1,1,2,2$	27	$1,0,0,1,2,1,3,0,4,2,1$	$1,1,3,2,3,4,3,2,3,4$
3	$1,0,0,1,1,3,4,1,1,4,0$	$1,3,3,2,2,0,2,2,0,3,2$	28	$1,0,0,4,0,0,1,1,1,0,2$	$3,4,3,3,2,4,1,2,2,2$
4	$1,0,0,4,0,2,1,4,0,1,2$	$3,1,0,4,4,1,3,2,0,4,2$	29	$1,0,0,0,4,4,1,1,0,2,4$	$1,0,0,3,0,3,0,2,4,4,2$
5	$1,0,0,0,3,1,1,4,1,0,1$	$(1,4,3,2,4,2,0,4,2,0,2)$	30	$1,0,0,1,2,1,4,2,1,4,3$	$(3,3,0,1,1,4,1,4,1,4)$
6	$1,0,0,1,1,0,4,1,2,2,3$	$(2,1,0,1,0,3,1,0,2,4,4)$	31	$1,0,0,0,2,3,3,4,2,0,4$	$(4,0,3,4,1,2,0,1,4,1,4)$
7	$1,0,0,3,3,0,3,1,1,4,0$	$(1,3,3,2,2,0,2,0,1,0,4)$	32	$1,0,0,3,1,3,3,1,1,4,0$	$(1,3,3,2,2,0,2,0,4,0,0)$
8	$1,0,0,4,1,1,4,1,0,1,3$	$(1,4,1,0,0,2,1,4,3,4,3)$	33	$1,0,0,2,4,1,2,3,4,4,2$	$(3,2,3,4,2,2,0,3,0,3)$
9	$1,0,0,0,1,4,4,3,4,0,4$	$(4,0,1,0,2,1,3,1,2,2,2)$	34	$1,0,0,0,1,3,2,0,4,4,2$	$(1,4,1,1,3,1,0,0,1,2,2)$
10	$1,0,0,0,2,3,3,3,2,4,2$	$(2,1,0,1,3,0,4,2,1,4,1)$	35	$1,0,0,4,1,1,2,2,2,4,2$	$(1,3,1,3,2,0,4,2,2,4,2)$
11	$1,0,0,3,3,2,4,1,1,4,1$	$(2,2,1,0,0,1,0,1,1,3,0)$	36	$1,0,0,2,3,4,4,1,4,2,2$	$(3,3,1,4,3,3,3,0,3,4)$
12	$1,0,0,3,0,3,0,1,0,0,3$	$(0,4,2,1,0,1,1,3,3,0,3)$	37	$1,0,0,1,4,0,4,2,0,4$	$(4,0,3,4,1,2,0,2,3,4,3)$
13	$1,0,0,4,3,4,0,4,2,2,3$	$(2,3,0,4,2,3,1,4,4,2,0)$	38	$1,0,0,2,3,3,3,0,3,0,2$	$(4,1,2,2,4,4,0,0,1,4,0)$
14	$1,0,0,1,2,1,3,1,1,4,0$	$(1,3,3,2,2,0,2,0,3,1,2)$	39	$1,0,0,4,0,1,3,1,3,0,1$	$(1,4,1,1,1,0,0,0,2,1,1)$
15	$1,0,0,2,2,1,1,4,0,2,2$	$(3,0,4,0,0,0,4,4,3,3,3)$	40	$1,0,0,1,1,0,3,0,1,4,1$	$(2,2,1,0,0,1,0,0,3,2,4)$
16	$1,0,0,0,4,3,1,1,1,4,1$	$(2,2,1,0,0,1,0,3,3,4,2)$	41	$1,0,0,0,4,0,3,3,3,2,4$	$(3,2,0,1,3,3,1,0,3,2,2)$
17	$1,0,0,2,2,0,0,2,2,0,2$	$(0,0,1,2,2,3,4,3,2,1,0)$	42	$1,0,0,4,3,1,2,4,0,2,2$	$(3,0,4,0,0,0,4,3,2,0,0)$
18	$1,0,0,2,3,0,0,3,2,0,4$	$(4,0,3,4,1,2,0,2,4,4,2)$	43	$1,0,0,4,2,2,1,1,1,0,2$	$(4,3,3,3,3,3,4,0,4,0,2)$
19	$1,0,0,4,2,4,0,1,0,4,0$	$(3,2,4,3,3,4,4,4,4,0,2)$	44	$1,0,0,4,1,0,4,4,2,2,4$	$(4,3,0,3,4,2,2,1,1,0)$
20	$1,0,0,3,3,3,2,4,1,2,3$	$(0,0,4,2,2,0,0,2,2,3,4)$	45	$1,0,0,4,4,0,4,3,4,3,2$	$(2,2,1,2,1,3,1,2,3,3,1)$
21	$1,0,0,4,4,1,2,1,0,4,3$	$(0,3,2,2,4,3,1,2,3,2,0)$	46	$1,0,0,0,4,4,3,0,1,1,4$	$(3,3,3,1,4,1,2,4,3,4,3)$
22	$1,0,0,0,0,3,0,3,4,0,4$	$(4,0,1,0,2,1,3,2,1,4,1)$	47	$1,0,0,0,4,0,2,1,4,2,2$	$(3,3,1,4,3,3,0,4,4,2)$
23	$1,0,0,2,3,1,4,4,1,2,3$	$(0,0,4,2,2,0,0,0,2,4,3)$	48	$1,0,0,1,4,0,4,2,4,2,2$	$(3,3,1,4,3,3,1,0,0,3)$
24	$1,0,0,0,2,3,0,2,1,0,3$	$(1,0,4,3,0,2,3,2,4,4,4)$	49	$1,0,0,4,2,0,4,1,1,3,0$	$(4,4,3,4,3,2,2,0,0,1,1)$
25	$1,0,0,4,2,0,4,0,3,0,2$	$(4,1,2,2,4,4,0,1,1,2,4)$	50	$1,0,0,3,3,2,1,0,4,0,4$	$(1,2,2,4,1,4,1,3,3,4,4)$
Table 10: Self-dual \([40, 20, 12]\) codes \(C_{40,i}\) over \(\mathbb{F}_5\)

\(i\)	\(r_A(C_{40,i})\)	\(r_B(C_{40,i})\)	\(i\)	\(r_A(C_{40,i})\)	\(r_B(C_{40,i})\)
1	\((1,0,0,3,0,3,2,3,3,1)\)	\((4,3,0,3,2,2,3,3,1,1)\)	26	\((1,0,0,3,3,2,1,3,1,1)\)	\((2,3,2,2,2,4,2,1,1,2)\)
2	\((1,0,0,3,2,3,3,3,4,1)\)	\((4,3,0,3,2,2,1,2,2,0)\)	27	\((1,0,0,4,0,0,0,1,1,3)\)	\((2,3,2,2,2,4,2,0,0,1)\)
3	\((1,0,0,2,4,0,0,3,2,3)\)	\((2,3,2,2,2,4,4,4,2,3)\)	28	\((1,0,0,3,3,1,3,3,1,3)\)	\((2,3,2,2,2,4,2,0,4,0)\)
4	\((1,0,0,0,3,1,0,2,1,3)\)	\((2,3,2,2,2,4,2,3,3,4)\)	29	\((1,0,0,4,3,4,3,0,1,3)\)	\((2,3,2,2,2,4,2,1,4,1)\)
5	\((1,0,0,2,4,0,2,3,1,3)\)	\((4,3,0,3,2,2,2,4,1,0)\)	30	\((1,0,0,2,2,1,2,0,2,3)\)	\((2,3,2,2,2,4,4,0,2,4)\)
6	\((1,0,0,2,4,3,3,2,1,3)\)	\((2,3,2,2,2,4,4,4,2,3)\)	31	\((1,0,0,4,1,4,4,4,3,1)\)	\((4,3,0,3,2,2,0,1,2,4)\)
7	\((1,0,0,2,0,2,4,3,3,1)\)	\((4,3,0,3,2,2,3,3,4,2)\)	32	\((1,0,0,2,2,4,1,1,3,1)\)	\((4,3,0,3,2,2,1,2,1,2)\)
8	\((1,0,0,0,4,1,4,3,4,1)\)	\((4,3,0,3,2,2,1,1,2,1)\)	33	\((1,0,0,0,4,3,4,3,2,3)\)	\((2,3,2,2,2,4,1,2,0,2)\)
9	\((1,0,0,3,2,1,3,1,2,3)\)	\((2,3,2,2,2,4,2,4,2,4,1)\)	34	\((1,0,0,3,2,4,2,1,2,3)\)	\((2,3,2,2,2,4,0,1,3,0)\)
10	\((1,0,0,4,3,0,3,4,1,3)\)	\((2,3,2,2,2,4,0,0,1,1)\)	35	\((1,0,0,4,3,3,3,1,4,1)\)	\((4,3,0,3,2,2,1,3,2,4)\)
11	\((1,0,0,0,4,0,3,3,2,3)\)	\((2,3,2,2,2,4,0,1,0,3)\)	36	\((1,0,0,0,1,0,1,3,1,3)\)	\((2,3,2,2,2,4,4,2,1,0)\)
12	\((1,0,0,0,0,1,2,2,4,1)\)	\((1,3,1,0,1,3,1,0,4,2)\)	37	\((1,0,0,3,4,0,3,2,1,3)\)	\((2,3,2,2,2,4,1,2,0,2)\)
13	\((1,0,0,0,4,3,4,1,3,1)\)	\((4,3,0,3,2,2,3,2,4,0)\)	38	\((1,0,0,0,1,1,4,2,2,3)\)	\((2,3,2,2,2,4,3,3,2,0)\)
14	\((1,0,0,4,0,0,2,2,4,1)\)	\((4,3,0,3,2,2,4,3,2,4)\)	39	\((1,0,0,3,0,1,1,1,1,3)\)	\((2,3,2,2,2,4,4,2,0,0)\)
15	\((1,0,0,2,0,2,4,0,3,1)\)	\((4,3,0,3,2,2,3,3,0,3)\)	40	\((1,0,0,1,3,4,1,0,2,3)\)	\((2,3,2,2,2,4,3,3,3,0)\)
16	\((1,0,0,4,0,0,0,2,3,1)\)	\((4,3,0,3,2,2,3,1,0,1)\)	41	\((1,0,0,1,3,0,0,2,2,3)\)	\((2,3,2,2,2,4,0,2,0,4)\)
17	\((1,0,0,4,1,3,3,1,1,3)\)	\((2,3,2,2,2,4,0,3,1,1)\)	42	\((1,0,0,3,1,3,1,0,2,3)\)	\((2,3,2,2,2,4,0,4,3,3)\)
18	\((1,0,0,0,1,2,3,3,3,1)\)	\((4,3,0,3,2,2,3,3,0,0)\)	43	\((1,0,0,2,0,0,4,1,3,1)\)	\((4,3,0,3,2,2,1,3,1,3)\)
19	\((1,0,0,2,3,4,2,4,3,1)\)	\((4,3,0,3,2,2,1,1,3,1)\)	44	\((1,0,0,4,1,4,1,0,1,3)\)	\((2,3,2,2,2,4,4,3,3,3)\)
20	\((1,0,0,0,3,3,2,3,3,1)\)	\((2,3,2,2,2,4,3,1,0,1)\)	45	\((1,0,0,2,4,3,1,0,2,3)\)	\((2,3,2,2,2,4,3,2,4)\)
21	\((1,0,0,3,4,1,4,4,1,3)\)	\((2,3,2,2,2,4,4,4,1,4)\)	46	\((1,0,0,2,0,0,4,1,3,1)\)	\((4,3,0,3,2,2,0,0,1,2)\)
22	\((1,0,0,1,0,1,2,1,1,3)\)	\((2,3,2,2,2,4,1,4,3,2)\)	47	\((1,0,0,1,1,2,1,0,1,3)\)	\((2,3,2,2,2,4,3,0,4,0)\)
23	\((1,0,0,3,1,4,3,1,1,3)\)	\((2,3,2,2,2,4,0,3,4,1)\)	48	\((1,0,0,4,1,3,0,1,1,3)\)	\((2,3,2,2,2,4,3,1,3,1)\)
24	\((1,0,0,3,2,3,0,3,1,3)\)	\((2,3,2,2,2,4,4,0,4,3)\)	49	\((1,0,0,2,3,2,4,3,1,3)\)	\((2,3,2,2,2,4,0,2,0,4)\)
25	\((1,0,0,2,1,1,3,3,3,1)\)	\((4,3,0,3,2,2,3,0,2,2)\)	50	\((1,0,0,4,4,3,4,2,2,3)\)	\((2,3,2,2,2,4,1,4,1,0)\)