Immunotargeting with CD154 (CD40 Ligand) Enhances DNA Vaccine Responses in Ducks

Sheryl L. Gares, Karl P. Fischer, Stephen E. Congly, Stacey Lacoste, William R. Addison, D. Lorne Tyrrell and Klaus S. Gutfreund

Departments of Medicine and Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada

Received 1 March 2006/Returned for modification 12 April 2006/Accepted 12 May 2006

Engagement of CD154 on activated T cells with CD40 on antigen-presenting cells (APCs) potentiates adaptive immune responses in mammals. Soluble multimeric forms of CD154 have been used as an adjuvant or in immunotargeting strategies to enhance vaccine responses. The objective of our study was to examine the ability of duck CD154 (DuCD154) to enhance DNA vaccine responses in the duck hepatitis B model. Constructs were generated to express the functional domain of DuCD154 (tCD154), truncated duck hepatitis B virus (DHBV) core antigen (tcore) and chimera of tcore fused to tCD154 (tcore-tCD154). Expression in LMH cells demonstrated that all proteins were secreted and that tCD154 and tcore-tCD154 formed multimers. Ducks immunized with the plasmid pcore-tCD154 developed accelerated and enhanced core-specific antibody responses compared to ducks immunized with pcore or pcore plus ptCD154. Antibody responses were better sustained in both pcore-tCD154- and pcore plus ptCD154-immunized ducks. Core-specific proliferative responses of duck peripheral blood mononuclear cells were enhanced in ducks immunized with pcore-tCD154 or pcore alone. This study suggests that the role of CD154 in the regulation of adaptive immune responses had already evolved before the divergence of birds and mammals. Thus, targeting of antigens to APCs with CD154 is an effective strategy to enhance DNA vaccine responses not only in mammalian species but also in avian species.

The development of DNA vaccines for avian species, including ducks, has applications for both human and livestock disease. Ducks infected with duck hepatitis B virus (DHBV) serve as an important model for infection of humans with the hepatitis B virus (HBV) (43). Worldwide, more than 350 million individuals are chronically infected with HBV, and many of these carriers will eventually die from end-stage liver disease or hepatocellular carcinoma (1, 54). Despite considerable progress in the treatment of hepatitis B, posttherapy relapse and drug-resistant HBV mutants remain major challenges (34). Long-term disease remission requires effective immunological control of the HBV infection, emphasizing the need for therapies that stimulate a successful immune response (32, 39–41). Therapeutic vaccines have been shown to augment HBV-specific cellular immune responses in patients with chronic hepatitis B, but clinically relevant viral suppression could not be demonstrated (17, 28, 35, 36). Recently, the DHBV model has been used to explore protective and therapeutic immunization strategies (10, 24, 42, 46, 48). DNA vaccines that express the DHBV envelope or DHBV core protein either alone or in combination with nucleoside analogues have been associated with an accelerated viral clearance in established chronic DHBV infection in some of these studies (24, 42, 46).

Wild aquatic birds such as ducks, geese, and swans are regarded as the principal reservoir hosts of the avian influenza viruses (52). Domestic ducks that are in contact with wild waterfowl and avian livestock may function as a key intermediate in the transmission of avian influenza (25). Ducks can show few or no signs of disease even when carrying viruses that are highly pathogenic in chickens (20, 22). Reassortment of genes between avian and mammalian influenza in other hosts, such as pigs, may help to overcome host restrictions and result in pandemic outbreaks (51). The analysis of the reconstructed genome of the 1918 Spanish influenza virus suggests that this strain was likely an avian influenza-like virus that adapted to humans (49). Hence, the development of effective vaccines and large-scale vaccination programs for avian livestock, including domestic ducks, is an important goal to reduce the burden of human and livestock disease from influenza.

CD154, a member of the tumor necrosis factor superfamily, has a central role in the development and regulation of adaptive immune responses in mammals (2, 27). CD154 is a type II integral membrane glycoprotein that is rapidly up-regulated on activated CD4+ cells and, via CD40 engagement on dendritic cells (DC), promotes DC migration to lymph nodes, DC survival, and T-cell priming (6, 33, 38). Engagement of CD154 with CD40 on B cells stimulates increased expression of major histocompatibility complex and CD80/86 on B cells, which subsequently promotes reciprocal activation of antigen-stimulated B and T cells. Effects of this activation cascade include B-cell clonal expansion, germinal center formation, isotype switching, affinity maturation, and the generation of long-lived plasma cells (11). Furthermore, soluble CD154 generated through proteolytic cleavage of the extracellular domain is biologically active, especially in multimeric forms (7, 12, 37). Consequently, CD154 has been used in various vaccination strategies to enhance both humoral and cellular immune responses in mammals (14, 19, 29–31, 45, 53). We have recently identified the
duck homologue of CD154 (DuCD154) and demonstrated biological activity of its extracellular domain (8). In this study, we examine the use of the extracellular domain of DuCD154 as an immunotargeting agent and immunomodulator to enhance DNA vaccine responses in ducks.

MATERIALS AND METHODS

Generation of plasmid constructs. All reagents for molecular work were from Invitrogen Canada, Inc. (Burlington, ON, Canada). To generate plasmids expressing secreted, truncated duck CD154 (tCD154), clone 13-5 containing the open reading frame of DuCD154 (8) was digested with SalI and then treated with Klenow and deoxynucleoside triphosphates to blunt ends, followed by digestion with EcoRI (SalI/Klenow/EcoRI). This fragment contains the extracellular domain, including the endogenous carboxyl secretory leader of DuCD154. The vector pSecTag2C was treated with HindIII/Klenow/NheI, and then the fragment was inserted into NheI/EcoRerventioned pSecTag2C to generate ptcore. To prepare the fusion construct ptcore-tCD154, a NheI/HincII fragment from pSecTag2C-2EV-Xmn was mixed with ptCD154 treated with HindIII/Klenow/NheI. Plasmids were propagated in Str. enterica coli TOP10 F- and then purified on QIAGEN columns (QIAGEN, Inc., Mississauga, ON, Canada) in phosphate-buffered saline (PBS).

Expression and purification of DuCD154 from E. coli. An AccuKlenow/HincII fragment from DuCD154 clone 13-5, comprising the majority of the DuCD154 ectodomain, was inserted into BamHI/Klenow-treated pET21b (EMD Bio-sciences, Inc., Mississauga, ON, Canada). This insertion places a polyhistidine tract in frame and downstream of the DHBV sequence. Overexpression of DuCD154 (23-kDa predicted size) was achieved by transformation into E. coli BL21(DE3). Transformed cultures were grown overnight at 37°C in LB broth containing 100 μg/ml ampicillin and then induced with 1 mM isopropyl-β-D-thiogalactopyranoside (all from Invitrogen Canada, Inc.) for the final 2 h of culture. Bacteria were pelleted at 2,000 × g for 10 min, and pellets were suspended in 6 M guanidine·HCl lysis buffer. Mechanical lysis was done with shaking for 1 h, and then cellular debris was pelleted at 10,000 × g for 30 min. Polyhistidine-tagged DuCD154 was purified from the supernatant by immobilized metal affinity chromatography using 8 M urea as the chaotrop in accordance with the manufacturer’s protocol (QIAGEN, Inc.). DuCD154 was eluted from the matrix using decreasing pH as the elution variable. Partial purification as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) were pooled, dialyzed extensively against 0.05% saline, and used as antigens for antibody (Ab) production. Protein concentrations were determined using the DC protein assay (Bio-Rad Laboratories Ltd., Mississauga, ON, Canada) as a standard.

Generation and purification of E. coli-expressed DuCD154 core protein. The sequence encoding amino acids 1 to 199 of the DHBV (Alberta 16 strain) core protein was amplified from a plasmid containing a 1.3-genome-length copy of DHBV-16 DNA from pCMVDHBV2 (9) into pSecTag2C digested with HindIII/HincII, and the fragment was inserted into NheI/EcoRV-treated pSecTag2C to generate pcore. To prepare the fusion construct pcore-tCD154, a NheI/HincII fragment from pSecTag2C-2EV-Xmn was mixed with pcore treated with HindIII/Klenow/NheI. Plasmids were propagated in Str. enterica coli TOP10 F- and then purified on QIAGEN columns (QIAGEN, Inc., Mississauga, ON, Canada) in phosphate-buffered saline (PBS).

Expression and characterization of recombinant proteins in LHM cells. To generate recombinant DHBV core and DuCD154 lacking the polyhistidine tract, LHM cells (ATCC CRL-2117) were transfected as previously described (9) with pcore, pCD154, and pSecTag2C, and supernatants were collected after 72 to 96 h of culture. If supernatants required concentration, Microcon YM-10 (10,000 nominal molecular weight limit; Millipore Corp., Bedford, MA) filters were used. Supernatants were mixed 1:1 with SDS-PAGE loading buffer in the presence (reducing) or absence (nonreducing) of 5% 2-mercaptoethanol, boiled for 10 min, and separated by PAGE using 10% gels. Proteins were blotted onto nitrocellulose membranes using semidy-phototrophic transfer. Membrane blocking and Ab incubations were done in PBS containing 5% skim milk protein and 0.1% Tween 20. Blots were washed in PBS containing 1% skim milk protein and 0.1% Tween 20. DHBV core proteins were detected using mouse MAb 9G8, and DuCD154 was detected using polyclonal mouse serum. ELISA to quantify DHBV core-specific Ab in immunized ducks. Salmon-Fowl, flat-bottom, flexible polyclonal plates (Becton Dickinson, Franklin Lakes, NJ) were coated with 2 μg/ml recombinant, metal affinity-purified DHBV DHBV core, and aliquots were mixed with antigen-coated plates were adsorbed overnight at 4°C or for 30 min at 37°C. After incubation, fluid containing unadsorbed antigen was removed, and 100 μl/well of sterile filtered PBS containing 5% BSA was added. Plates were incubated at 37°C for 30 to 60 min and then washed twice by immersion in PBS containing 0.1% Tween 20 (PBS-T). Duck sera were diluted in PBS containing 1% BSA and 0.1% Tween 20 (assay diluent) and added to plates in triplicate at 50 μl/well. Incubation was for 1 h at 37°C. Thereafter, plates were washed by immersion four times in PBS-T and then affinity-purified goat anti-duck immunoglobulin Y (IgY; heavy plus light chain specific) conjugated to horseradish peroxidase (KPL, Gaithersburg, MD) was diluted in assay diluent 1:5,000 and added at 50 μl/well. Plates were incubated for 30 min at 37°C and then washed four times in PBS-T as described. Following the addition of 3,3’,5,5’-tetramethylbenzidine (KPL) at 100 μl/well, plates were read within 5 min at the optical density at 650 nm. A standard curve was determined for each sample, and then endpoint titers were calculated using an arbitrarily defined cutoff value equivalent to the conjugate background + 3 standard deviations on each ELISA plate. A dilution series of a positive reference serum from a DHBV-infected duck was routinely included on each plate to verify that the cutoff value was equivalent to the endpoint optical density of the reference serum. Comparisons were made between vaccination groups using endpoint titers. Statistical significance was determined by the unpaired Student t test.

PBMC proliferation assay. PBMC proliferation assays were done as previously described with adaptations for the duck (18, 50). Prior to performance of the experiments reported here, proliferative responses were optimized with respect to cell density, incubation time and temperature, antigen concentration, and growth medium. Briefly, venous blood was added to heparinized tubes, diluted in an equal volume of PBS, and layered over Ficoll (lymphocyte M; Cedarlane Laboratories, Hornby, ON, Canada), and then PBMCs were separated by cen-trifugation at 800 × g for 20 min. Cells at the interface were collected, washed, and pelleted twice by centrifugation at 700 × g for 8 min using Dulbecco’s modified Eagle’s medium containing 10% fetal bovine serum (Invitrogen Canada, Inc.), 5% DHBV-negative duck serum, 2 mM l-alanyl-l-glutamine, 50 μg/ml gentamicin, and ITS liquid medium supplement (all from Sigma-Aldrich Co.) and 55 μg/ml recombinant 2-mercaptoethanol (complete medium) to wash the cells. Cells were then resuspended in complete medium, counted by hemacytometer, and then seeded in triplicate to Falcon 96-well, flat-bottom tissue culture plates (Becton Dickinson) at 2 × 10⁶ cells/well, and doubling dilutions were done. Cells were left unstimulated or were stimulated with 100 μg/ml recombinant DHBV core. Tissue culture plates were incubated at 37°C in a 5% CO₂, humidified
sham Biosciences, Piscataway, NJ) was added at 0.5
atmosphere for 6 days. Tritiated thymidine (specific activity, 85 Ci/mM; Amer-
stimulated in vitro to assess DHBV core-specific proliferation.

FIG. 1. Immunization strategy and schedule. (A) Experimental
outline and rationale of each vaccination group; (B) timeline depicting
the immunization schedule. Plasmids were injected at each time point
indicated (*). At week 32 and 42 (*), PBMCs were isolated and
stimulated in vitro to assess DHBV core-specific proliferation.

Animal and immunization protocols. Newborn domestic Pekin ducks (Anas
platyrhynchos) were obtained from an uninfected breeding colony at the Univer-
sity of Alberta that was maintained according to the regulations of the Canadian
Council on Animal Care. Sera from all animals were screened for the presence
of DHBV infection by dot blot analysis prior to use for these studies. Blots were
probed for DHBV DNA as previously described (23). Five- to six-week-old
ducks were inoculated with plasmids every 2 weeks up to week 10 as illustrated in Fig. 1B. A final boost was administered 16 weeks after the
primary immunization. Purified plasmid DNA was injected intramuscularly al-
ternating between the right and left thighs. The total plasmid dose was kept
constant at 400 μg/injection in 400 μl of PBS. Ducks received, per injection,
either 200 μg of ptcore-tCD154 (49 nmol) plus 200 μg of ptcore (54.4 nmol) plus 200 μg of
pSecTag2C or 200 μg ptcore-tCD154 (49 nmol) plus 200 μg of ptcore (54.4 nmol) plus 200 μg of
pSecTag2C. The total number of moles of plasmid per injection per duck was 113
± 5 nmol. Serum was collected pre- and postimmunization to determine core-
specific Ab titers. PBMCs were isolated for analysis of core-specific proliferative
responses of the remaining ducks at weeks 32 and 42. Seven days of causes
related to the experimental protocol during the course of the experiment. Two
ducks were euthanized after developing foot problems. Autopsies performed on
the other 5 ducks indicated death due to heart failure or pneumonia but no
obvious pathology related to vaccination.

Nucleotide sequence accession numbers. The nucleotide sequence data
corresponding to the constructs have been submitted to the GenBank database. The
accession numbers are DQ267671 for DuCD154, AF047045 for the Alberta
strain of DHBV, and K01834 for DHBV-16.

RESULTS

In vitro expression of tcore, tCD154, and tcore-tCD154 in LMH
cells. Plasmid constructs were designed to encode tCD154; a truncated, secreted DHBV core protein (tcore); and
a secreted chimeric protein of tcore fused to tCD154 (tcore-tCD154) (Fig. 2). Protein expression and secretion were veri-

FIG. 2. Design of plasmid constructs and expressed proteins. A
595-bp SalI/EcoRI fragment of DuCD154 was inserted into pSecTag2C (ptCD154) or was fused with a 512-bp EcoRV/HincII fragment of the
DHBV core in pSecTag2C (ptcore-tCD154). The EcoRV-HincII frag-
ment alone was also ligated into pSecTag2C (ptcore). aa, amino acids.
weeks following primary immunization are shown in Fig. 4. Ducks immunized with control plasmids had a low level of Ab reactivity to the affinity-purified core throughout the course of the vaccination study (Fig. 4D and 5). Therefore, a seropositivity cutoff value was calculated using the mean + 3 standard deviations of the vector control group at each time point. Ducks with endpoint titers greater than this value for the corresponding time point were considered seropositive. In the group immunized with ptcore-tCD154, 5/6 ducks were seropositive 3 weeks after primary immunization (Fig. 4A). In contrast, only one of the ducks vaccinated with ptcore was seropositive (Fig. 4B), and none of the ducks immunized with ptcore plus pCD154 were seropositive (Fig. 4C). Four weeks following primary immunization, all 6 ducks vaccinated with ptcore-tCD154 were seropositive; however, only 2/6 ducks in the ptcore group and only one duck in the ptcore plus pCD154 group had seroconverted. Five weeks following the primary immunization, 5/6 ducks immunized with ptcore-tCD154 were seropositive. One previously slightly positive duck at week 4 had an Ab titer that had declined below the seropositivity cutoff at week 5. At this time point, all 6 ducks immunized with ptcore were seropositive and 5/6 ducks vaccinated with ptcore plus pCD154 were seropositive. At week 6, all ducks in the ptcore-tCD154 and ptcore groups were seropositive and remained seropositive for the duration of the experiment (data not shown). In the group immunized with ptcore plus pCD154, all ducks had seroconverted by week 15 and remained seropositive for the duration of the experiment.

Mean antibody titers of immunized groups. Consistent with the rapid seroconversion of ducks immunized with ptcore-tCD154, the mean endpoint titer was significantly higher than for the vector control group by week 3 ($P = 0.017$; P values comparing test groups with the vector control are cited in the text only). At all subsequent time points up to week 46, ducks in the ptcore-tCD154 group had mean endpoint titers significantly higher than those of the vector control group (P values ranged between 0.0003 and 0.032). In contrast, mean serum titers of ptcore- and ptcore plus pCD154-immunized groups were not significantly different than the vector control group until week 4 ($P = 0.004$ and $P = 0.037$, respectively). By week 6, mean titers for the ptcore group remained significantly higher than those for the vector control group for the duration of the experiment (P values ranged between 3.9×10^{-6} and 0.05). In the group immunized with ptcore plus pCD154, mean Ab titers fluctuated until week 9 and then remained significantly higher than the vector control group for the duration of the experiment (P values ranged between 0.0004 and 0.044).

Ducks immunized with ptcore-tCD154 had a more rapid and vigorous Ab response throughout the course of the experiment than the groups immunized with ptcore or ptcore plus pCD154 (Fig. 5). Mean Ab titers of the ptcore-tCD154 group were significantly greater than titers of the ptcore group as early as 3 weeks following primary immunization. Mean Ab titers of the ptcore-tCD154 group remained significantly higher than in the ptcore-immunized ducks to weeks 42 and 46 (termination of experiment), several months after the final boost at week 16. Hence, ptcore-tCD154 generated an anti-core Ab response that was faster, more vigorous, and better maintained than that induced by ptcore. Comparison of the mean Ab titers of the ptcore-tCD154 group with the titers of the ptcore plus pCD154-immunized ducks indicated that the fusion protein mounted a significantly more robust core-specific Ab response by week 3. The Ab response stimulated by ptcore-tCD154 remained higher than the response stimulated by ptcore plus pCD154, and these differences were significant.

FIG. 3. Expression of secreted tcore, tcore-tCD154, and tCD154 in LMH cells. LMH cells were transiently transfected with pSecTag2C, ptcore, ptcore-tCD154, or pCD154. Proteins in supernatants were concentrated (ptcore 16X) or left unconcentrated, separated by SDS-PAGE under reducing or nonreducing conditions, and then immunoblotted with anti-core MAb 9G8 (A) or anti-CD154 Abs (B). Plasmids used for transfection are indicated above the corresponding lane. Molecular weight markers (in thousands) are indicated on the right and left (A) or on the left (B).
for several time points between weeks 3 and 10. Similar to the ptcore-tCD154 group, Ab titers for the ptcore plus ptCD154-immunized group were significantly higher than in ptcore-immunized animals at weeks 42 and 46 ($P = 0.026$ and 0.012, respectively), indicating that DuCD154 alone or as a fusion protein promoted the longevity of the Ab response.

DHBV core-specific proliferative responses of PBMC in immunized ducks. Core-specific cellular immune responses were evaluated by quantifying PBMC proliferative responses to DHBV core antigen in vitro. The SI of each duck at three different cell seeding concentrations is shown in Fig. 6. PBMCs from ducks immunized with ptcore-tCD154 had significantly greater proliferation at lower seeding densities than the vector control group (Fig. 6A and D), whereas ptcore-immunized animals had significant proliferative responses only at the highest seeding concentration (Fig. 6B). Although stimulation indices of three of four ptcore plus ptCD154-immunized ducks appeared numerically greater than those of the vector control group, the differences were not statistically significant (Fig. 6C).

DISCUSSION

The immunostimulatory functions of CD154 (CD40L) have been exploited to enhance B- and T-cell responses in various vaccination strategies in mammalian species. We have recently cloned DuCD154 and demonstrated that the extracellular domain enhances proliferation of duck splenocytes (8). The objective of the current study was to determine if the functional domain DuCD154 can enhance DNA vaccine responses in ducks either via coexpression with viral antigens or as a fusion protein to target viral antigen to antigen-presenting cells (APCs). The plasmids generated for this immunization study expressed tCD154, tcore, and a secreted chimeric protein, tcore-tCD154. Supernatants from transfected LMH cells were analyzed by immunoblotting with Ab to DHBV core or DuCD154. Each of the three plasmid constructs produced secreted proteins of the expected size under reducing conditions. Under nonreducing conditions, dimeric tCD154 and dimeric plus trimeric tcore-tCD154 proteins were detected. This suggests that these proteins multimerize through the formation of intermolecular disulfide bonds. Dimeric and trimeric forms of soluble CD154 bind more efficiently to cell surface CD40 on APCs than does monomeric CD154 (12, 37). Thus, our data indicated that ptCD154 and ptcore-tCD154 encoded proteins that were likely able to bind to and activate duck APCs.

We hypothesized that tcore-tCD154 fusion proteins would direct DHBV core antigen to APCs via CD40 and activate APCs, thereby promoting induction of core-specific T- and B-cell responses more effectively. Immunization with a combi-
nation of ptcore plus ptCD154 would enhance immune responses compared to the expression of core alone because of the adjuvant effect of DuCD154. Chimeric proteins of tcore-tCD154 did in fact accelerate the Ab response by 2 weeks and generated titers that, by week 3, were 30- to 65-fold above those observed with tcore and tcore plus tCD154 proteins, respectively. Ab responses to tcore were similar in kinetics and titer to responses generated by a DNA vaccine encoding full-length DHBV core protein (46). The response to tcore-tCD154 remained elevated relative to the other groups throughout the experiment. In contrast, coexpressed CD154 only promoted a better sustained B-cell response than immunization with ptcore. Examination of core-specific proliferative responses of PBMCs several months after the final immunization indicated that both ptcore-tCD154 and ptcore stimulated strong T-cell responses in vitro. This suggested that core-specific T memory cells were better induced by immunization with ptcore-tCD154 and ptcore than with ptcore plus ptCD154.

The enhanced B-cell response compared to immunization with DHBV core alone might be due to engagement of secreted DuCD154 with CD40 on antigen-activated B cells and

FIG. 5. Comparison of mean antibody titers of immunized groups. Mean endpoint titers ± standard errors are indicated for ducks immunized with ptcore-tCD154 (○), ptcore (●), ptcore plus ptCD154 (▲), or pSecTag2C (▲). Statistical comparisons at the indicated time points were between ptcore-tCD154- and ptcore-immunized groups (∗) or between ptcore-tCD154- and ptcore plus ptCD154-immunized groups (+). ∗ and +, * P ≤ 0.05; ++, * P ≤ 0.01; +++, * P ≤ 0.005.

FIG. 6. DHBV core-specific proliferative responses of PBMCs. Ducks were immunized with DNA plasmid ptcore-tCD154 (A), ptcore (B), ptcore plus ptCD154 (C), or pSecTag2C (D). PBMCs from vaccinated ducks were isolated and stimulated in vitro with DHBV core antigen. Each point represents the SI of an individual duck at the indicated seeding concentration. Statistical comparisons are between the test group and the pSecTag2C control group.
direct induction of B memory cells. Furthermore, soluble DuCD154-mediated activation of APCs might enhance T-cell priming. T-cell help to B cells, and induction of B memory cells. In mammalian systems, interaction of antigen-stimulated B cells via CD40 with CD154 on activated CD4 T cells promotes B-cell activation, including upregulation of CD80/86 and major histocompatibility complex class II, B-cell differentiation, and sustained Ab secretion (11, 21). Reciprocal interaction of CD80/86 on activated B cells with CD28 on T cells promotes clonal expansion of primed T cells and cytokine secretion (13). We observed strong core-specific Ab responses in the ptcore plus ptCD154 group but relatively weak core-specific T-cell proliferative responses. Since Ab responses were well maintained by this group, soluble CD154 might act as a surrogate for conventional T-cell help and directly stimulate B-cell maturation, decreasing the requirement for induction of antigen-specific T cells and the subsequent generation of T memory cells (21). In addition, hepnadnaviral core antigen has been shown to induce core-specific IgM secretion of B cells (5). Furthermore, the priming of T cells might have been inhibited in the presence of DuCD154-activated B cells. Inadequate induction of antigen-specific T-cell proliferative responses for ptcore plus ptCD154-immunized ducks might explain the considerable initial lag in the Ab response. The weak responses of PBMCs from ptcore plus ptCD154-vaccinated animals to in vitro antigen stimulation supports this possibility.

DNA vaccines offer many advantages over conventional vaccines but can be poorly immunogenic and inefficient at inducing long-lived memory (15). To improve DNA vaccine efficacy, coinjection of plasmids encoding antigens and CD154 has been reported previously (3, 4, 14, 31, 44, 47). Although some groups have shown that this strategy can enhance immune responses, we did not observe a significant improvement of Ab responses between ptcore and ptcore plus ptCD154-immunized ducks until several months after the final boost. This could be related to lower levels of expression of tcore than of tCD154. Activation of APC prior to antigen uptake might predominate when there is a paucity of antigen, leading to inefficient immune induction. Our observations are consistent with a recent report in which coinjection of plasmids that expressed multivalent trimered CD154 with viral antigens in mice failed to enhance antigen-specific Ab responses and proliferation of splenocytes (45). Nevertheless, cytotoxic T-cell responses were markedly enhanced. Other groups reported that coinjection of antigen and CD154-expressing plasmids enhanced cellular immune responses (4, 44, 47). However, in these studies, cellular immune responses were exclusively assessed by CD8 + cytolytic responses or gamma interferon production. Our in vitro assay measured a proliferating population of PBMCs most likely comprised of CD4 + cells, since antigen was added exogenously. At this time, we cannot perform in vitro cytotoxicity assays with the duck model.

Our results indicate that CD154 fusion proteins improved DNA vaccine responses most efficiently. Other reports indicate that CD40 targeting using DNA plasmids that express proteins such as green fluorescent protein (GFP), viral antigens, and tumor antigens fused to CD154 improve B- and T-cell responses (26, 29, 30, 53). Similar to our results, GFP fused to CD154 dramatically enhanced early B-cell responses to GFP compared to coinjection with GFP plus CD154 plasmids, but long-term Ab responses and T-cell responses between the two groups were not compared (26). Ab responses of sheep immunized with bovine herpesvirus (BHV) glycoprotein fused to bovine CD154 were not significantly enhanced compared with animals immunized with BHV glycoprotein alone until 12 weeks after the primary immunization (29). However, serum IgA and nasal IgA titers in BHV-challenged cattle were earlier and significantly higher in cattle previously immunized with bovine CD154 fusion constructs (30). Together, these studies suggest that CD40-targeted antigen delivery is an effective strategy to improve the kinetics of immune induction and memory. Our work emphasizes that, similar to what occurs in mammalian systems, DuCD154 likely has an important immunoregulatory role that promotes the induction of adaptive immune responses in avian species.

The potential of this vaccination strategy to resolve an established chronic infection with DHBV can now be assessed in the duck model, which might lead to more effective approaches to treat chronic hepatitis B in humans. The observed positive effect on induction and maintenance of Ab responses with our vaccine might also be utilized to develop more effective DNA vaccines to protect against avian pathogens such as avian influenza, a disease of global importance from both a health and economic perspective.

ACKNOWLEDGMENTS

We thank Gerald Lachance for expert assistance with the care and handling of the ducks and Babita Agrawal for critically reviewing the manuscript.

This work was supported by grants to K.S.G. from the National Sciences and Engineering Research Council (NSERC) of Canada, the Canadian Liver Foundation, and the University Hospital Foundation and by a grant to D.L.T. from the Canadian Institutes of Health Research (CIHR). S.L.G. was supported by a postdoctoral fellowship awarded by the Canadian Association for the Study of the Liver (CASL)/Biotec Ortho, and S.E.C. was supported by summer studentships awarded by the Canadian Liver Foundation.

REFERENCES

1. Beasley, R. P., I. Y. Hwang, C. C. Lin, and C. S. Chien. 1981. Hepatocellular carcinoma and hepatitis B virus. A prospective study of 22,707 men in Taiwan. Lancet 2:1129–1133.
2. Bodmer, J. G., L. P. Schnei, and J. Tschopp. 2002. The molecular architecture of the TNF superfamily. Trends Biochem. Sci. 27:19–26.
3. Boyer, J. D., T. M. Robinson, M. A. Kutzler, R. Parkinson, S. A. Calarota, M. K. Sidhu, K. Muthumani, M. Lewis, G. Pavlakis, B. Belfer, and D. Weiner. 2005. SIV DNA vaccine co-administered with IL-12 expression plasmid enhances CD8 SIV cellular immune responses in cynomolgus macaques. J. Med. Primatol. 34:262–270.
4. Burger, J. A., R. B. Medouza, and T. J. Kipps. 2001. Plasmids encoding granulocyte-macrophage colony-stimulating factor and CD154 enhance the immune response to genetic vaccines. Vaccine 19:2181–2189.
5. Cao, T., U. Lazidina, I. Desombere, P. Vanlandsehs, D. Milch, M. Sti,berg, and G. Lerrous-Roels. 2001. Hepatitis B virus core antigen binds and activates naive human B cells in vivo studies with a human PBL-NOD/SCID mouse model. J. Virol. 75:6359–6366.
6. Castle, B. E., K. Kishimoto, C. Stearns, M. L. Brown, and M. R. Kehry. 1993. Regulation of expression of the ligand for CD40 on T helper lymphocytes. J. Immunol. 151:1777–1788.
7. Fanslow, W. C., S. Srivinasan, R. Paxton, M. G. Gibson, M. K. Spriggs, and R. J. Armitage. 1994. Structural characteristics of CD40 ligand that determine biological function. Semin. Immunol. 6:267–278.
8. Fischer, K. P., S. L. Gares, D. Wang, D. L. Tyrell, and K. S. Gufeirad, 6 June 2006, posting date. Identification and characterization of functional CD154 (CD40 ligand) in the Pekin duck. Dev. Comp. Immunol. [Online.] doi:10.1016/j.dci.2006.05.001.
9. Fischer, K. P., and D. L. Tyrell. 1996. Generation of duck hepatitis B virus polymerase mutants through site-directed mutagenesis which demonstrate resistance to lamivudine [(-)beta-L-2', 3'-dideoxy-3'-thiacytidine] in vitro. Antimicrob. Agents Chemother. 40:1957–1960.
