T₀ censorship of early dark energy and AdS

Gen Ye¹* and Yun-Song Piao¹,²,³,⁴†

¹ School of Physics, University of Chinese Academy of Sciences, Beijing 100049, China
² Institute of Theoretical Physics, Chinese Academy of Sciences,
P.O. Box 2735, Beijing 100190, China
³ School of Fundamental Physics and Mathematical Sciences,
Hangzhou Institute for Advanced Study,
UCAS, Hangzhou 310024, China and
⁴ International Center for Theoretical Physics Asia-Pacific, Beijing/Hangzhou, China

Abstract

Present-day temperature T₀ of cosmic microwave background has been precisely measured by the FIRAS experiment. We identify why the early dark energy (EDE) (non-negligible around matter-radiation equality) scenario is compatible with the FIRAS result, while lifting the Hubble constant H₀. We perform Monte Carlo Markov Chain analysis to confirm our observations. We also present an α-attractor Anti-de Sitter (AdS) model of EDE. As expected, the existence of an AdS phase near recombination can effectively result in H₀ ≃ 73km/s/Mpc at 1σ region in the bestfit model.

PACS numbers:

* yegen14@mails.ucas.ac.cn
† yspiao@ucas.ac.cn
I. INTRODUCTION

The Hubble constant H_0, the present-day expansion rate of the Universe, sets the scale of the current Universe. Local measurements of H_0 yield $H_0 \gtrsim 73\text{km/s/Mpc}$ [1–5] (e.g. the SH0ES group reports $H_0 = 74.03 \pm 1.42 \text{ km/s/Mpc}$ [5, 6]), which shows $> 4\sigma$ discrepancy [7] compared with the Planck result $H_0 = 67.72 \pm 0.78\text{km/s/Mpc}$ [8]. This discrepancy (called “Hubble tension”) can hardly be explained by systematic errors [9].

However, the analysis of Planck is based on ΛCDM and probes of high redshift physics, i.e. cosmic microwave background (CMB) and baryon acoustic oscillations (BAO). Thus the Hubble tension might be a hint of beyond-ΛCDM physics, specially before recombination [10–13]. One possibility is early dark energy (EDE) [14–23] (see also [24–26] for modified gravity). EDE is non-negligible only for a short period near matter-radiation equality and before recombination (the Universe after recombination is ΛCDM-like), which results in a suppressed sound horizon, and thus $H_0 \gtrsim 70\text{km/s/Mpc}$.

Recently, it has been found in Ref.[21] that the existence of Anti de-Sitter (AdS) vacua around recombination can effectively lift H_0 to $\sim 73\text{km/s/Mpc}$ at 1σ region. The cosmologies with an AdS phase at low-z have been studied in Refs.[27–29]. The AdS vacua is ubiquitous in the landscape (consisting of all effective field theories with consistent UV-completion) [30, 31]. The AdS potential in Ref.[21] is only a phenomenological one, see also [32, 33] for inflation with multiple AdS vacua. Thus it is significant to explore AdS-EDE models originating from UV-complete theories.

Precise measurement of the present-day CMB T_0 from the COBE/FIRAS experiment, independent of Planck, yields [34, 35]

$$T_{0,\text{FIRAS}} = 2.72548 \pm 0.00057K.$$ \hspace{1cm} (1)

Based on ΛCDM, the Planck and BAO data yields $T_0 = 2.718 \pm 0.021K$ [36], consistent with $T_{0,\text{FIRAS}}$. However, the T_0 deduced from the Planck and SH0ES data, assuming ΛCDM, has $> 4\sigma$ discrepancy compared with $T_{0,\text{FIRAS}}$, called T_0 tension in Ref.[37], see also [38, 39] for recent studies. This might be yet another hint of new physics beyond ΛCDM.

In this paper, we identify, at the cosmological parameter level, why the EDE scenario can lift H_0, while staying compatible with $T_{0,\text{FIRAS}}$. We perform Monte Carlo Markov Chain (MCMC) analysis to confirm our observations. We also present a well-motivated AdS-EDE
model as well as the corresponding MCMC analysis. Low-z resolutions to the Hubble tension have also been discussed, see e.g.\cite{40–43} for different perspectives. As a contrast, we also show that \(w_{CDM}\) models with a constant equation of state parameter \(w \lesssim -1.3\) of dark energy at low-z seem incompatible with \(T_{0,FIRAS}\). Throughout this paper we assume a spatially flat Universe.

II. EARLY DARK ENERGY AND ADS

EDE may be non-negligible only for a short epoch decades before recombination \cite{14, 15}. The injection of EDE energy results in a larger Hubble rate \(H(z \gtrsim z_{rec})\) prior to recombination, so a suppressed sound horizon \(r_s = \int_{z_{rec}}^{\infty} dz/H(z)\). The spacing of CMB acoustic peaks perfectly sets the angular scale \(\theta_{CMB}\),

\[
\theta_{CMB} = \frac{r_s(z_{rec})}{D_A(z_{rec})},
\]

where

\[
D_A(z_{rec}) \equiv \int_{0}^{z_{rec}} \frac{dz}{H(z)} = \frac{1}{T_0} \int_{T_0}^{T_{rec}} \frac{dT}{H(T)}
\]

and \(z_{rec} \sim 1100\) is the recombination redshift. \(D_A(z_{rec})\) is the comoving angular distance, which is sensitive only to post recombination physics. Generally, \(D_A\) is anti-correlated with \(H_0\), so for constant \(\theta_{CMB}\), \(H_0 \sim r_s^{-1}\) will increase.

In the AdS-EDE model \cite{21}, initially the scalar field sits at the hillside of its potential \(V(\phi)\), and \(\rho_\phi\) is negligible. It will roll down the potential sometime near matter-radiation equality (when \(\rho_\phi/\rho_{tot} \sim 10\%)\), and roll into an AdS phase. In the AdS region, we have \(w_\phi = p_\phi/\rho_\phi > 1\), so that \(\rho_\phi \sim a^{-3(1+w)}\) will more quickly redshift away (in Refs.\cite{14, 15, 18} the dissipation of \(\rho_\phi\) is less effective by oscillation with cycle-averaged \(w < 1\), see also Refs.\cite{19, 23} for different mechanisms). This is crucial for having a larger injection of \(\rho_\phi (> 10\%)\), thus a higher \(H_0\). \(\rho_\phi\) injected must be dissipated rapidly enough so that it is negligible around recombination, or it will interfere with the fit of \(\Lambda CDM\) to CMB data. After that, the field will climb up to the \(\Lambda > 0\) region, and the Universe is settled to be \(\Lambda CDM\)-like until now.

The potential \(V(\phi)\) in Ref.\cite{21} is only a phenomenological one. Inspired by the \(\alpha\)-attractor \cite{44, 45}, we take \(V(\phi)\) as (see Fig-1)

\[
V(\phi) = V_0 \left[1 - \exp \left(-\gamma \tanh \left(\frac{\phi}{M_p \sqrt{6\alpha}} \right) \right) \right]^2 - V_0 + V_\Lambda.
\]
For $\phi \ll -M_p(6\alpha)^{1/2}$, we have a high plateau $V(\phi) \sim e^{2\gamma}V_0$ responsible for EDE. For $\phi \gg M_p(6\alpha)^{1/2}$, $V(\phi) = V_\Lambda$ behaves like a cosmological constant in the current Universe. In Ref. [45], the high plateau drives inflation in the early Universe, in which case $\gamma = \ln\left(\frac{H_{\text{inf}}}{H_\Lambda}\right) \gg 1$.

Here, the AdS-EDE model with potential (4) will be briefly called αAdS. Initially, $\rho_{\phi_i} = V(\phi_i) \simeq (0.1\text{eV})^4$, roughly equal to height of the high plateau $e^{2\gamma}V_0$ if $\alpha \ll 1$. In the MCMC analysis, we choose $6\alpha = (0.15)^2 \ll 1$ for simplicity, thus only V_0, γ, V_Λ are free parameters. The minima of potential (4) is $V_{\text{min}} = -V_0 + V_\Lambda$ at $\phi = 0$. The existence of an AdS phase requires $V_0 \gtrsim V_\Lambda$, i.e.

$$\gamma \lesssim \frac{1}{2} \ln \frac{V(\phi_i)}{V_\Lambda} \simeq 13,$$

where $V_\Lambda \sim (10^{-4}\text{eV})^4$ is the current dark energy scale. In the limit of large γ, the αAdS model reduces to a run-away model [16, 17] with $V(\phi > 0) \sim V_\Lambda$.

![Potential Diagram](image)

FIG. 1: Potential (4), plotted only for illustration. The scalar field initially sits at ϕ_i near the high plateau. It begins rolling down the potential around matter-radiation equality, passing through the AdS region near $\phi \simeq 0$ and finally climbs up the low plateau responsible for the current dark energy.
TABLE I: Mean and 1σ results of all the chains. All EDE models (ϕ^4 [15], ϕ^4AdS [21], αAdS) are confronted with P18+BAO+SN+H_0 dataset.

III. T_0 CENSORSHIP OF BEYOND-ΛCDM MODELS

A. Dataset

Our dataset consists of the Planck18 high-l and low-l TT,EE,TE and lensing likelihoods (P18) [8], the BOSS DR12 [46] with its full covariant matrix for BAO measurements as well as the 6dFGS [47] and MGS of SDSS [48] for low-z BAO, and the Pantheon data (SN) [49]. Recent SH0ES result $H_0 = 74.03 \pm 1.42$km/s/Mpc [5] is employed as a Gaussian prior (H_0).

We modified the Montepython-3.3 [50, 51] and CLASS [52, 53] codes to perform the MCMC analysis.

Here, we regard T_0 as an MCMC parameter. We sample the cosmological parameter set \{$\hat{T}_0^{-3} \omega_b, \hat{T}_0^{-3} \omega_{cdm}, H_0, \ln(10^{10} A_s T_0^{1+n_s}), n_s, \tau_{reio}, T_0$\} for ΛCDM, where $\hat{T}_0 \equiv T_0 / T_{0,FIRAS}$ and $\hat{\omega}_{b/\text{cdm}} T_0^{3}_{0,FIRAS} \equiv \hat{T}_0^{-3} \omega_{b/\text{cdm}}$ (reducing degeneracy between $H_0, \omega_{b/\text{cdm}}$ and T_0, see Ref.[37]).

The wCDM models introduce one more MCMC parameter w. Beyond that, the EDE-like models have additional parameters \{$\omega_{scf}, \ln(1 + z_c)$\}. As described in Refs.[14, 15, 21], z_c is the redshift at which the field ϕ starts rolling and $\omega_{scf} = \rho_{\phi}/\rho_{\text{tot}}$ is the energy fraction of EDE at z_c. Moreover, the αAdS model (4) has yet a parameter γ. Once \{$\omega_{scf}, \ln(1 + z_c), \gamma$\} are fixed, V_Λ will be set by matching the budget equation $\Omega_{DE} = 1 - \Omega_m - \Omega_r$. The field initially sits around the high plateau $3 \omega_{scf} M_p^2 H^2(z_c) \sim e^{2\gamma}V_0$, so the minimal value V_{min} of potential (4)

$$V_{\text{min}} \sim -3 \omega_{scf} M_p^2 H^2(z_c) e^{-2\gamma} + V_\Lambda$$

(6)
is roughly set by γ, ω_{scf}, and z_c. When $\gamma \lesssim 13$, $V_{\text{min}} < 0$ is AdS-like, see (5).

B. Physical consideration

In our dataset, CMB and BAO play significant roles. Thus it is worthwhile to highlight their constraints on parameters $\{h_0, T_0, |w|, \bar{\omega}_m\}$, where $h_0 = H_0 \times (100\text{km/s/Mpc})^{-1}$, which helps to clarify the MCMC results in Sect-III C.

We assume a spatially-flat Universe, which is wCDM-like after recombination. We can Taylor expand $D_A(z_{\text{rec}})$ around a bestfit Planck ΛCDM model (by performing partial derivatives with respect to one of $\{h_0, T_0, |w|, \bar{\omega}_m\}$) to estimate its dependence on $\{h_0, T_0, |w|, \bar{\omega}_m\}$.

Using $\Omega_m \approx 0.3$ and $\Omega_{DE} \approx 0.7$, for fixed θ_{CMB} in (2), we have

$$ (r_s T_0) h_0^{0.19} T_0^{0.21} |w|^{-0.09} \bar{\omega}_m^{0.4} = \text{const.} \quad (7) $$

The BOSS experiment [46] sets the BAO angular scales as

$$ \theta_{BAO}^\parallel = r_d H(z_{\text{eff}})/(1 + z_{\text{eff}}) \quad \text{and} \quad \theta_{BAO}^\perp = \frac{r_d}{D_A(z_{\text{eff}})}, \quad (8) $$

where z_{eff} is the effective redshift bins of BOSS DR12 data (i.e. $z_{\text{eff}} = 0.38, 0.51, 0.61$ [46]), and r_d is the comoving sound horizon at the baryon drag epoch. Here, we take $z_{\text{eff}} = 0.61$ (the results at different z_{eff} only exhibit slight difference). And for fixed θ_{BAO}^\parallel and θ_{BAO}^\perp, we have

$$ \theta_{BAO}^\parallel : (r_d T_0) h_0^{0.51} T_0^{-0.27} |w|^{-0.26} \bar{\omega}_m^{0.24} = \text{const.} \quad (9) $$

$$ \theta_{BAO}^\perp : (r_d T_0) h_0^{0.75} T_0^{-0.63} |w|^{-0.17} \bar{\omega}_m^{0.12} = \text{const.} \quad (10) $$

C. T_0-H_0 in MCMC results

Table-I presents the MCMC results for ΛCDM and beyond-ΛCDM models, see also the corresponding T_0-H_0 contours in Fig-2. In Appendix-A, we also focus on the αAdS model, and present the posterior distributions and marginalized contours of all the cosmological parameters and the bestfit χ^2 values per experiment. As expected, the existence of an AdS phase near recombination can effectively lift H_0 to $\sim 73\text{km/s/Mpc}$ at 1σ region.

In Fig-2, we see that the ΛCDM+P18 contour respects Eq.(7) (the θ_{CMB} line). The ΛCDM+P18 contour intersects with the SH0ES band at $T_0 \sim 2.6K$, which is inconsistent
FIG. 2: Marginalized 1σ and 2σ contours in the T_0-H_0 plane. The gray band is the 1σ and 2σ SH0ES result $H_0 = 74.03 \pm 1.42$ km/s/Mpc [5]. The thick yellow line depicts the FIRAS 1σ region [34, 35]. Only the EDE models simultaneously lift H_0 and remain compatible with $T_{0,FIRAS}$.

However, the EDE scenario not only lifts H_0, but also is compatible with $T_{0,FIRAS}$. This can be explained as follows. In CMB and BAO constraints (7), (9) and (10), we have $|w| = 1$ for EDE scenarios. The Universe after recombination is ΛCDM-like, and $r_d \sim r_s$, since the physics at and after recombination must not be affected by EDE. Thus we (approximately) solve Eqs.(7), (9) and (10) for $T_0 = T_{0,FIRAS}$, and have

$$r_s h_0 \simeq const., \quad \bar{\omega}_m^{-1} h_0^2 \simeq const.$$

Thus though h_0 is lifted due to $h_0 \sim r_s^{-1}$ (essence of the EDE idea), $T_0 = T_{0,FIRAS}$ needs
not to be shifted. The expense of compatibility with $T_{0,FIRAS}$ is that

$$\bar{\omega}_m = \left(\frac{h_0^2}{h_{0,\Lambda}^2} \right) \bar{\omega}_{m,\Lambda}$$ \hspace{1cm} (12)$$

must be magnified. According to (12), we actually have $\Omega_m \simeq \text{const}$ (equivalently $\Omega_m \simeq \Omega_{m,\Lambda}$), since $\omega_m = \Omega_m h_0^2$. As a consistency check of (12), for $h_{0,\Lambda} \sim 0.68$ and $\bar{\omega}_{m,\Lambda} \sim 0.14$ in ΛCDM (see Table-I), we will have $\bar{\omega}_m \sim 0.16$ in AdS-EDE models ($h_0 \sim 0.73$), consistent with the results in Table-I. We plot contours of $\{H_0, T_0, \bar{\omega}_m\}$ in Fig-3. As expected, H_0 is lifted respecting Eq.(12).

![Figure 3: Marginalized 1σ and 2σ contours of the EDE models in the \{T_0 - \bar{\omega}_m - H_0\} space. $T_{0,FIRAS}$ and H_0 are plotted as described in Fig-2. The $\omega_m T_0^{-3} - H_0$ contours of all EDE models respect Eq.(12) (dashed line).](image)

In ΛCDM, ω_m is difficult to adjust since it is well constrained by Planck, but in EDE ω_m can be consistently tuned due to the scalar field perturbations, see Appendix-B. This
seems to cause a slight larger σ_8, so-called S_8 tension, e.g.[54], see also [55–57]. However, this tension is also present in ΛCDM with $\sim 2\sigma$ significance (inherited but not significantly exacerbated in EDE, as argued in [23, 58]), which might be related with systematic error or possible intrinsic inconsistency of Planck data itself [59, 60].

The low-z resolutions beyond ΛCDM have been also studied in e.g.[28, 61–68]. It is usually thought that wCDM models with $w \simeq -1.3$ might resolve the Hubble tension, e.g.[40, 61, 69], though it is disfavored by the full BAO data. However, in Fig-2, we see that such a solution seems also incompatible with $T_{0,FIRAS}$.

The wCDM model, like ΛCDM, does not alter the physics around and before recombination, so rST_0 is constant [37]. It is well-known that wCDM with $w < -1$ is not supported by the full BAO data, e.g.recent Ref.[69], so we only solve Eqs.(7) and (10), and have

$$h_0^{-3}|w| \simeq \text{const.}, \quad T_0^{-8}|w| \simeq \text{const.}$$

(13)

Note (13) is conflicted with BAO constraint (9), see the black line in Fig-4. Here, if $|w| > 1$, $h_0 \propto |w|^{1/3}$ will be lifted. However, $T_0 \propto |w|^{1/8}$ must also be magnified, which will make T_0 inconsistent with the result (1) of $T_{0,FIRAS}$. Though we can fix $T_0 = T_{0,FIRAS}$, and have $h_0 \sim |w|^{9/19}$ for the CMB constraint (7), it is obviously conflicted with BAO constraints (9) and (10). As a consistency check of (13), for $h_0 \sim 0.68$ in ΛCDM, we will have $w \simeq -1.3$ in wCDM ($h_0 \sim 0.74$) but

$$T_0 \simeq T_{0,FIRAS}|w|^{1/8} \sim 2.8K,$$

(14)

which is consistent with the wCDM results in Table-I. Here, we confront wCDM with P18 and perpendicular BAO data (θ_{BAO}). The contours of $\{H_0, T_0, w\}$ is plotted in Fig-4, which clearly shows the inconsistency of wCDM with $T_{0,FIRAS}$. As expected, T_0 is lifted respecting Eq.(14).

IV. CONCLUSION

It is well-known that H_0 and T_0 are basic cosmological parameters (specially not dimensionless). Precisely measured value $T_{0,FIRAS}$ of T_0 can be regarded as a censorship of beyond-ΛCDM models resolving the H_0 tension.

We, based on Eqs.(7), (9) and (10) (i.e. CMB and BAO constraints), identified why EDE is compatible with $T_{0,FIRAS}$, while lifting H_0. As a contrast, we also showed that wCDM
FIG. 4: Marginalized 1σ and 2σ contours of the $wCDM$ model in the $\{w-T_0-H_0\}$ space. $T_{0,FIRAS}$ and H_0 are plotted as described in Fig-2. Upper panel: The rainbow line plots compatible intersections of (7) and (10) at different T_0, with a color coding for T_0. As expected, the contour of the $wCDM$ model spreads along the predicted line. The black line plots the $\theta_{\parallel BAO}$ constraint (9) at $T_0 = 2.77 K$ (see Table-I), which suggests that $wCDM$ with $w \lesssim -1.3$ is not actually favored by BAO data. Lower Panel: In addition, such a $wCDM$ model is also inconsistent with $T_{0,FIRAS}$. Models with $w \lesssim -1.3$ seem inconsistent with $T_{0,FIRAS}$. We performed MCMC analysis for the corresponding models to confirm our observations. It has been pointed out in Ref.[37] that for ΛCDM, T_0 yielded by the Planck and SH0ES data has $>4\sigma$ discrepancy compared with $T_{0,FIRAS}$. However, we showed that EDE is compatible with not only $T_{0,FIRAS}$, but also local measurements of H_0. Our result suggests that even if EDE is not the final story restoring cosmological concordance, it might be on the right road. Relevant issues are worth studying.

Inspired by the α-attractor [44, 45], we also presented a well-motivated AdS-EDE model.
In the MCMC analysis, we do not assume AdS \textit{in priori}, but in Fig-5 we see that the MCMC result weakly hints the existence of an AdS phase, with the bestfit cosmology having AdS depth $V_{\text{min}} \sim -(0.001 \text{ eV})^4$. The bestfit model allows $H_0 \sim 73 \text{ km/s/Mpc}$ at 1σ range, which indicates that the existence of AdS phase around recombination helps to significantly lift H_0. Our result again highlights an unexpected point that AdS vacua, ubiquitous in consistent UV-complete theories, might also play a crucial role in our observable Universe.

FIG. 5: Marginalized contour of T_0 with respect to V_{min}/Λ. The axis $-\ln(1 - V_{\text{min}}/\Lambda)$ is chosen such that it is log scale when $-V_{\text{min}}/\Lambda \ll 1$ (deep in the AdS phase) and $V_{\text{min}}/\Lambda \to 1$, while it is linear around $V_{\text{min}} \sim 0$. Dashed line labels $V_{\text{min}} = 0$. Yellow band represents $T_{0,FIRAS}$.

Acknowledgments This work is supported by the University of Chinese Academy of Sciences. Y.S.P. is supported by NSFC, Nos. 11575188, 11690021. The computations are performed on the TianHe-II supercomputer.
Appendix A: MCMC results of the αAdS model

In the MCMC analysis we sample over \{$\omega_b/T_0^{3}, \omega_{cdm}/T_0^{3}, H_0, \ln(10^{10}A_s T_0^{1+n_s}), n_s, \tau_{reio}, T_0, \omega_{scf}, \ln(1+z_c), \gamma$\}. We use flat priors for additional EDE parameters (Table-II). Here, we do not assume AdS \textit{in priori} in the MCMC analysis, since the γ prior in Table-II covers non-AdS region of the potential, see Eq.(5). Posterior distributions and marginalized contours of all cosmological parameters are plotted in Fig-6. The mean and bestfit values are shown in Table-III. We also report the bestfit χ^2 values per experiment in Table-IV.

Appendix B: Scalar field perturbations in EDE and ω_m

When the EDE becomes non-negligible, the gravitational perturbation Ψ will be suppressed by the EDE perturbations [55]. In order to preserve the fit to the CMB data, ω_m...
FIG. 6: Posterior distributions and marginalized 68% and 95% contours of all model parameters in the \(\alpha \)AdS model confronted with the full datasets P18+BAO+SN+\(H_0 \).

must increase accordingly to compensate for the slight suppress in \(\Psi \).

We plot the evolution of \(\Psi \) in Fig-7. Two EDE lines are nearly identical at high-\(z \) due to the same cosmological parameters except for \(\omega_{cdm} \). However, they will not coincide any longer when EDE becomes non-negligible. \(\Psi \) in the \(\phi^4 \)AdS model with fixed \(\omega_{cdm} = 0.122 \) is suppressed compared with that in the bestfit \(\phi^4 \)AdS model. This is because in the bestfit \(\phi^4 \)AdS model such suppression will be compensated by the gravity of extra dark matter
TABLE IV: bestfit χ^2 per experiment

Experiment	χ^2
Planck high l	2347.44
Planck low l	416.89
Planck lensing	11.79
BAO BOSS DR12	0.66
BAO low z	2.46
Pantheon	1026.94
SH0ES	1.33

FIG. 7: Evolution of Ψ with $k = 2\pi/r_s$, which roughly corresponds to the first acoustic peak, plotted for the bestfit models of ΛCDM and ϕ^4AdS. The green line is produced by a ϕ^4AdS model with reduced ω_{cdm} while fixing all other parameters to the bestfit.

abundance, which lifts Ψ at recombination to the ΛCDM value (dashed line), so produces
correct power in the CMB TT spectrum.

[1] G. C. F. Chen, C. D. Fassnacht, S. H. Suyu, C. E. Rusu, J. H. Chan, K. C. Wong, M. W. Auger, S. Hilbert, V. Bonvin, S. Birrer, M. Millon, L. V. Koopmans, D. J. Lagattuta, J. P. McKean, S. Vegetti, F. Courbin, X. Ding, A. Halkola, I. Jee, A. J. Shajib, D. Sluse, A. Sonnenfeld and T. Treu, Mon. Not. Roy. Astron. Soc. 490, no.2, 1743-1773 (2019) [arXiv:1907.02533 [astro-ph.CO]].

[2] K. C. Wong, S. H. Suyu, G. C. F. Chen, C. E. Rusu, M. Millon, D. Sluse, V. Bonvin, C. D. Fassnacht, S. Taubenberger, M. W. Auger, S. Birrer, J. H. Chan, F. Courbin, S. Hilbert, O. Tishonova, T. Treu, A. Agnello, X. Ding, I. Jee, E. Komatsu, A. J. Shajib, A. Sonnenfeld, R. D. Blandford, L. V. Koopmans, P. J. Marshall and G. Meylan, [arXiv:1907.04869 [astro-ph.CO]].

[3] W. L. Freedman, B. F. Madore, D. Hatt, T. J. Hoyt, I. S. Jang, R. L. Beaton, C. R. Burns, M. G. Lee, A. J. Monson, J. R. Neeley, M. M. Phillips, J. A. Rich and M. Seibert, [arXiv:1907.05922 [astro-ph.CO]].

[4] C. D. Huang, A. G. Riess, W. Yuan, L. M. Macri, N. L. Zakamska, S. Casertano, P. A. Whitelock, S. L. Hoffmann, A. V. Filippenko and D. Scolnic, [arXiv:1908.10883 [astro-ph.CO]].

[5] A. G. Riess, S. Casertano, W. Yuan, L. M. Macri and D. Scolnic, Astrophys. J. 876, no.1, 85 (2019) [arXiv:1903.07603 [astro-ph.CO]].

[6] A. G. Riess, W. Yuan, S. Casertano, L. M. Macri and D. Scolnic, [arXiv:2005.02445 [astro-ph.CO]].

[7] A. G. Riess, Nature Rev. Phys. 2, no. 1, 10 (2019) [arXiv:2001.03624 [astro-ph.CO]].

[8] N. Aghanim et al. [Planck], [arXiv:1807.06209 [astro-ph.CO]].

[9] L. Verde, T. Treu and A. Riess, [arXiv:1907.10625 [astro-ph.CO]].

[10] J. L. Bernal, L. Verde and A. G. Riess, JCAP 1610, 019 (2016) [arXiv:1607.05617 [astro-ph.CO]].

[11] K. Aylor, M. Joy, L. Knox, M. Millea, S. Raghuathan and W. K. Wu, Astrophys. J. 874, no.1, 4 (2019) [arXiv:1811.00537 [astro-ph.CO]].

[12] L. Knox and M. Millea, Phys. Rev. D 101, no.4, 043533 (2020) [arXiv:1908.03663 [astro-ph.CO]].
[13] M. Z. Lyu, B. S. Haridasu, M. Viel and J. Q. Xia, [arXiv:2001.08713 [astro-ph.CO]].
[14] V. Poulin, T. L. Smith, T. Karwal and M. Kamionkowski, Phys. Rev. Lett. 122, no.22, 221301 (2019) [arXiv:1811.04083 [astro-ph.CO]].
[15] P. Agrawal, F. Y. Cyr-Racine, D. Pinner and L. Randall, [arXiv:1904.01016 [astro-ph.CO]].
[16] S. Alexander and E. McDonough, Phys. Lett. B 797, 134830 (2019) [arXiv:1904.08912 [astro-ph.CO]].
[17] M. X. Lin, G. Benevento, W. Hu and M. Raveri, Phys. Rev. D 100, no.6, 063542 (2019) [arXiv:1905.12618 [astro-ph.CO]].
[18] T. L. Smith, V. Poulin and M. A. Amin, Phys. Rev. D 101, no.6, 063523 (2020) [arXiv:1908.06995 [astro-ph.CO]].
[19] F. Niedermann and M. S. Sloth, [arXiv:1910.10739 [astro-ph.CO]].
[20] J. Sakstein and M. Trodden, Phys. Rev. Lett. 124, no.16, 161301 (2020) [arXiv:1911.11760 [astro-ph.CO]].
[21] G. Ye and Y. S. Piao, Phys. Rev. D 101, no.8, 083507 (2020) [arXiv:2001.02451 [astro-ph.CO]].
[22] M. Braglia, W. T. Emond, F. Finelli, A. E. Gumrukcuoglu and K. Koyama, [arXiv:2005.14053 [astro-ph.CO]].
[23] F. Niedermann and M. S. Sloth, [arXiv:2006.06686 [astro-ph.CO]].
[24] G. Ballesteros, A. Notari and F. Rompineve, arXiv:2004.05049 [astro-ph.CO].
[25] M. Zumalacarregui, Phys. Rev. D 102, no. 2, 023523 (2020) [arXiv:2003.06396 [astro-ph.CO]].
[26] M. Braglia, M. Ballardini, W. T. Emond, F. Finelli, A. E. Gumrukcuoglu, K. Koyama and D. Paoletti, Phys. Rev. D 102, no. 2, 023529 (2020) [arXiv:2004.11161 [astro-ph.CO]].
[27] L. Visinelli, S. Vagnozzi and U. Danielsson, Symmetry 11, no.8, 1035 (2019) [arXiv:1907.07953 [astro-ph.CO]].
[28] O. Akarsu, J. D. Barrow, L. A. Escamilla and J. A. Vazquez, Phys. Rev. D 101, no. 6, 063528 (2020) [arXiv:1912.08751 [astro-ph.CO]].
[29] R. Caldern, R. Gannouji, B. L’Huillier and D. Polarski, [arXiv:2008.10237 [astro-ph.CO]].
[30] H. Ooguri and C. Vafa, Nucl. Phys. B 766, 21-33 (2007) [arXiv:hep-th/0605264 [hep-th]].
[31] G. Obied, H. Ooguri, L. Spodyneiko and C. Vafa, [arXiv:1806.08362 [hep-th]].
[32] Y. S. Piao, Phys. Rev. D 70, 101302 (2004) [hep-th/0407258].
[33] H. H. Li, G. Ye, Y. Cai and Y. S. Piao, Phys. Rev. D 101, no. 6, 063527 (2020) [arXiv:1911.06148 [gr-qc]].
17
[51] T. Brinckmann and J. Lesgourgues, Phys. Dark Univ. 24, 100260 (2019) [arXiv:1804.07261 [astro-ph.CO]].
[52] J. Lesgourgues, [arXiv:1104.2932 [astro-ph.IM]].
[53] D. Blas, J. Lesgourgues and T. Tram, JCAP 07, 034 (2011) [arXiv:1104.2933 [astro-ph.CO]].
[54] M. Raveri and W. Hu, Phys. Rev. D 99, no.4, 043506 (2019) [arXiv:1806.04649 [astro-ph.CO]].
[55] J. C. Hill, E. McDonough, M. W. Toomey and S. Alexander, [arXiv:2003.07355 [astro-ph.CO]].
[56] M. M. Ivanov, E. McDonough, J. C. Hill, M. Simonovi, M. W. Toomey, S. Alexander and M. Zaldarriaga, [arXiv:2006.11235 [astro-ph.CO]].
[57] G. D’Amico, L. Senatore, P. Zhang and H. Zheng, [arXiv:2006.12420 [astro-ph.CO]].
[58] A. Klypin, V. Poulin, F. Prada, J. Primack, M. Kamionkowski, V. Avila-Reese, A. Rodriguez-Puebla, P. Behroozi, D. Hellinger and T. L. Smith, [arXiv:2006.14910 [astro-ph.CO]].
[59] W. L. K. Wu, P. Motloch, W. Hu and M. Raveri, [arXiv:2004.10207 [astro-ph.CO]].
[60] A. Chudaykin, D. Gorbunov and N. Nedelko, [arXiv:2004.13046 [astro-ph.CO]].
[61] E. Di Valentino, A. Melchiorri and J. Silk, Phys. Lett. B 761, 242-246 (2016) [arXiv:1606.00634 [astro-ph.CO]].
[62] E. Di Valentino, A. Melchiorri and O. Mena, Phys. Rev. D 96, no.4, 043503 (2017) [arXiv:1704.08342 [astro-ph.CO]].
[63] E. Di Valentino, A. Melchiorri, E. V. Linder and J. Silk, Phys. Rev. D 96, no.2, 023523 (2017) [arXiv:1704.00762 [astro-ph.CO]].
[64] E. Di Valentino, A. Melchiorri, O. Mena and S. Vagnozzi, [arXiv:1908.04281 [astro-ph.CO]].
[65] S. F. Yan, P. Zhang, J. W. Chen, X. Z. Zhang, Y. F. Cai and E. N. Saridakis, Phys. Rev. D 101, no.12, 121301 (2020) [arXiv:1909.06388 [astro-ph.CO]].
[66] W. Yang, E. Di Valentino, S. Pan, S. Basilakos and A. Paliathanasis, arXiv:2001.04307 [astro-ph.CO].
[67] W. Yang, E. Di Valentino, S. Pan and O. Mena, [arXiv:2007.02927 [astro-ph.CO]].
[68] H. B. Benaoum, W. Yang, S. Pan and E. Di Valentino, arXiv:2008.09098 [gr-qc].
[69] G. Alestas, L. Kazantzidis and L. Perivolaropoulos, Phys. Rev. D 101, no.12, 123516 (2020) [arXiv:2004.08363 [astro-ph.CO]].