Resistance to epidermal growth factor receptor tyrosine kinase inhibitors, T790M, and clinical trials

G.M. O’Kane MB BCh BAO MD,* T.A. Barnes BSc(Med) MB BS,* and N.B. Leighl MD MMSc*

ABSTRACT

Tumours with sensitizing mutations in the EGFR gene constitute a distinct molecular subgroup of non-small-cell lung cancers (NSCLC) that benefit from precision medicine. First- and second-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) are recommended as upfront therapy for EGFR-mutated advanced NSCLC and, compared with chemotherapy, have resulted in superior progression-free survival, improved tumour response rates, and improved quality of life. However, resistance inevitably develops, and the third-generation TKI osimertinib has been approved to target the gatekeeper EGFR mutation T790M, which is responsible for resistance in 60% of cases. Multiple drivers of TKI resistance have now been identified, and many new drugs are in development. With respect to this rapidly evolving field, our review highlights the current status of treatment options for patients with EGFR-mutated advanced NSCLC, focusing especially on identified causes of resistance, challenges, and clinical trials aiming to improve outcomes in this patient population.

Key Words Lung cancer, EGFR, resistance, T790M

INTRODUCTION

Lung cancer continues to be a leading cause of cancer-related mortality worldwide. In 2017, estimates suggested that, in North America alone, 222,500 new cases of lung cancer and 155,870 deaths occurred1. Non-small-cell lung cancer (NSCLC) constitutes 85% of lung cancers and has traditionally been classified as squamous cell carcinoma, adenocarcinoma, or large-cell carcinoma. Molecular profiling can now identify key subgroups of patients according to tumour genotype, notably EGFR mutations and ALK and ROS1 rearrangements, to be reported routinely at diagnosis. Mutations in EGFR occur in advanced lung cancer in more than half of all Asian patients and in approximately 15% of white patients2,3. The classical phenotype for patients with EGFR mutations is a female nonsmoker with adenocarcinoma4–6.

The EGFR tyrosine kinase domain spans exons 18–24, with most mutations having been identified within exons 18–21. The “classical” sensitizing EGFR mutations include deletions in exon 19 and the point mutation L858R in exon 21. Non-classical or uncommon mutations account for approximately 15% of the remaining alterations, which consist of a large heterogeneous group of insertions, deletions, point mutations, and other complex aberrations7.

In the advanced setting, many trials have shown the superiority of first-line gefitinib, erlotinib, and afatinib in comparison with standard platinum doublet chemotherapy8–16. A randomized phase II study failed to show a difference between gefitinib and erlotinib in pretreated patients17. Compared with gefitinib, first-line afatinib is associated with greater progression-free survival (PFS); however, no difference in overall survival (OS) is observed, and afatinib is associated with greater toxicity18,19. Afatinib differs from gefitinib and erlotinib because of its irreversible binding and targeting of epidermal growth factor receptor (EGFR) and human epidermal growth factor receptors 2–4 (HER2, HER3, HER4)20. Recently, dacomitinib, another second-generation tyrosine kinase inhibitor (TKI), when compared with gefitinib, has also demonstrated an improvement by 5.5 months in PFS (14.7 months vs. 9.2 months), but again with increased toxicities21. Afatinib might have an important role in patients with uncommon mutations; however, reports of its activity have been inconsistent22.

Despite initial response rates of up to 70% in patients with the classical mutations, resistance to first- and second-generation TKIs will develop, on average, after 9–16 months of treatment8,10,13,14. In this review, we focus on mechanisms of resistance and current clinical trials evaluating combination therapies to overcome resistance.
APPROACH TO TKI RESISTANCE AND T790M INHIBITORS

De novo resistance to EGFR TKIs in common EGFR mutations can occur in up to 10% of patients23. Intrinsic resistance could be a result of the presence of a concurrent nonsensitizing mutation, including T790M.

Given variation in the detection methods, the reported baseline incidence of T790M mutations is variable, but is associated with inferior outcomes to first- and second-generation EGFR TKIs24. The allele fraction of T790M might predict response, and clonal selection over time can influence the development of resistance25. Pharmacogenomics might also affect sensitivity to the TKIs; deletion polymorphisms in BIM, which mediates EGFR TKI apoptosis, can reduce TKI efficacy26. In-frame deletions in exons 2–7 of the extracellular domain of EGFR are another mechanism of intrinsic resistance27. In vivo and in vitro modelling has demonstrated that the overexpression of BIM, a protein that is part of the EGF-CFC family can cause de novo resistance through activation of sac and epithelial-to-mesenchymal transition28. Targeting sac concurrently with an EGFR TKI might delay time to drug failure.

Mechanisms of acquired EGFR TKI resistance can be broadly classified by the aberration of the EGFR pathway, including the T790M mutation in exon 20, alternative pathways, or by pathologic transformation. Repeat testing for EGFR T790M is required to guide treatment options after failure of first-line TKIs. The burden of disease progression and symptoms experienced by the patient are important considerations when deciding when to switch systemic therapies (Figure 1).

Oligometastatic Progression

In the setting of oligometastatic progression, adding a local therapy while continuing the initial TKI is appropriate29. Alternatively, for low-burden asymptomatic progressive disease, continuation of the EGFR TKI beyond radiologic progression, with a switch at the time of development of symptoms or clinically significant progression, can prolong the time on first-line therapy. That approach is supported by data from the phase II ASPIRATION trial, which demonstrated that approximately half of all patients, after development of disease progression by RECIST (the Response Evaluation Criteria in Solid Tumors) at a median of 11.0 months, were able to continue on the same TKI therapy until a median of 14.1 months before developing clinically significant disease progression and switching therapies30.

EGFR T790M-Positive Progression and Third-Generation TKIs

In approximately 60% of patients, the T790M mutation is responsible for resistance, and treatment with a third-generation TKI is indicated. The substitution of methionine for threonine at amino acid 790 induces steric hindrance and increased affinity of the receptor for adenosine triphosphate, limiting the efficacy of first- and second-generation TKIs.

Osimertinib is a third-generation TKI currently approved for the treatment of T790M-positive disease, and multiple other agents in this class are being investigated (Table 1). Osimertinib is given orally at a dose of 80 mg daily38. Third-generation TKIs limit wild-type inhibition, and therefore, compared with first- and second-generation agents, cause less rash and diarrhea31,38. Their superiority compared with chemotheraphy in T790M-positive NSCLC after failure of first-generation TKI has now been reported, with the recent publication of the AURA3 phase III study31. The overall response rate was 71% compared with 31%, and the PFS was 10.1 months compared with 4.4 months in the osimertinib and chemotherapy arms respectively. Grade 3 or greater toxicity in the chemotherapy cohort was double that seen with osimertinib (47% vs. 23%). Osimertinib is now the standard of care in this subgroup of EGFR-mutated lung cancers after initial first-generation TKI failure. Very recently, the results of the FLAURA study comparing first-generation EGFR TKIs with osimertinib were presented, and an unprecedented superior PFS of 18.9 months was seen in patients receiving osimertinib compared with 10.2 months in those receiving erlotinib or gefitinib (hazard ratio: 0.46; 95% confidence interval: 0.37 to 0.57; p < 0.0001)39.

At least 6 third-generation TKIs have been evaluated in clinical trials. Rociletinib was associated with a response rate of 59% in an early phase I/II trial involving EGFR T790M-positive patients32, but that high rate failed to be confirmed in the study expansion40,41. Rociletinib becomes activated after amide hydrolysis to produce the metabolite M502, which can be converted to M460. M502 inhibits insulin-like growth factor receptor, and as a result, hyperglycemia occurred in 43% of patients32. The continued clinical development of rociletinib was terminated in 2016, and enrolment in studies was halted, including enrolment in the randomized phase III study of rociletinib compared with single-agent chemotherapy in patients for whom an EGFR TKI and a platinum doublet had failed. Olmutinib (HM61713) was approved in South Korea for T790M-positive NSCLC; however, safety concerns related to grades 3 and 4 skin-related adverse events were reported, and further development of the drug was stopped. In addition, ASP8273, which had demonstrated activity in early phase I results is no longer in clinical development after early results from the SOLAR study, in which it was compared head-to-head with gefitinib or erlotinib (see NCT02588261 at http://ClinicalTrials.gov). Table 1 shows data from studies of other third-generation TKIs in earlier phases of development.

T790M-Negative Progression and Other Mechanisms of Resistance to TKIs

In tumours that do not harbour an exon 20 T790M mutation, standard treatment after failure of initial first-generation TKI involves either cytotoxic chemotherapy or enrolment in a clinical trial. In a real-world study by Martin et al., only 21% of patients received chemotherapy after TKI failure, despite 70% being seen to achieve disease control when platinum doublet chemotherapy was administered25.

It is important to acknowledge that combining a TKI with chemotherapy does not result in improvement compared with chemotherapy alone, but it does increase toxicity rates. The large phase III IMPRESS study—which intercalated gefitinib and chemotherapy after patients
progressed while receiving first-line gefitinib—failed to show a survival benefit. In fact, the combination appeared to have a deleterious effect.

C797S and Other EGFR-Mediated Pathways

Excluding T790M, other point mutations in *EGFR* that have been reported to cause resistance include A761T, T854A, L747S, and L718Q. Chabon *et al.* also detected resistance mutations L798I, L762V, and E709K in cell-free DNA. Amplification of *EGFR* can also promote resistance to EGFR TKIs. Afatinib inhibits T790M in vitro, but does not have major clinical activity in this population. In vivo modelling has demonstrated that, compared with single-agent TKIs, combined afatinib–cetuximab might delay the time to resistance, and an ongoing phase II/III trial in TKI-naive patients is being led by SWOG (see NCT02438722 at http://ClinicalTrials.gov).

The C797S point mutation, which changes cysteine to serine in exon 20, represents the most common resistance mutation in patients progressing on osimertinib and has been reported in patients progressing on olmutinib. Most third-generation TKIs use the cysteine site for covalent binding. Based on in vitro modelling, the combination of first- and third-generation TKIs has demonstrated efficacy when the C797S emergent allele develops in *trans* of T790M, but not in *cis*. In data recently presented, C797S detected in samples of circulating tumour DNA was in *cis* with T790M in 82% of samples, in *trans* with T790M in 10% of samples, and present as an isolated mutation in 6% of samples. A potential fourth-generation EGFR TKI, EA1045, has shown promise in targeting T790M and C797S in *vivo*, but only when combined with cetuximab. The clinical utility of this compound is not yet known.

The combination of anti-EGFR antibodies and kinase inhibitors continues to be evaluated. Recent in vivo models have shown synergy for brigatinib–cetuximab in targeting C797S, T790M, and activating EGFR-mutant tumours. Leu792 mutations have been reported to co-occur with C797S after osimertinib failure. Those mutations occurred in *cis* with T790M, but in *trans* with C797S, and might affect osimertinib binding.

How this complex and varied biology will affect continued drug development and translate into the clinical setting is unclear. As third-generation TKIs move to the frontline setting, resistance mechanisms are certainly likely to diversify. Oxnard *et al.* presented data from the results of next-generation sequencing analysis of 157 plasma samples prospectively collected from patients in the *aura* trial at the time of progression on osimertinib. Those authors concluded that loss of T790M does not indicate re-sensitization to first-generation TKIs, but often indicates overgrowth of a competing resistance mutation (for example, *KRAS* mutations, *RET* fusions, *FGFR* fusions). They also noted that the timing of osimertinib resistance...
Variable	Osimertinib\(^{33}\) (AZD9291)	Rociletinib\(^{32}\) (CO1686)	Olmutinib\(^{33}\) (HM61713)	Nazartinib\(^{34}\) (EGF816)	ASP8273\(^{35}\)	PF-06747775\(^{36}\)
Most recently reported phase	Phase III	Phase I/II	Phase I/II	Phase I	Phase I	Phase I
Population Characteristics	Prior TKI failure	Prior TKI failure, with or without prior chemotherapy	Prior TKI failure, T790M+	Prior TKI failure, T790M+ and T790M–	Prior TKI failure, T790M+ and T790M–	Prior TKI failure, T790M+ and T790M–
Patients (n)	419	130	173 (phase I)	132	60	26
Objective response rate (%)	Osimertinib: 71 T790M+: 59 (27/46) T790M–: 29 (5/17)	T790M+: 62 (43/69)	T790M+: 44 (56/127)	T790M+: 38 (15/40)	T790M+: 42 (11/26, all patients)	
Disease control rate (%)	Not reported	T790M+: 93 T790M–: 59	Not reported	91	91	65
Progression-free survival (months)	Osimertinib: 10.1 T790M+: 13.1 T790M–: 5.6	Not reported	9.2	6.7	Not reported	
Grade 3 or greater toxicities (TKI only)	<1% Diarrhea Hyperglycemia QTc prolongation Rash Anemia Hyponatremia Fatigue Muscle spasms	Up to 22% Hyperglycemia Up to 5% rash Up to 14% rash Up to 23% rash Up to 31% rash	Up to 5% rash Fatigue Nausea or vomiting Nausea or vomiting Rash Skin exfoliation	Up to 14% rash Anemia Hyponatremia Skin toxicity		
Approval	FDA-approved	No longer in development	Approval in South Korea ELUXA no longer accruing Trials accruing	No longer in development	Trials accruing	

\(^{33}\) Reported by Nishio \textit{et al.}\(^{37}\) in phase I/II early results in TKI-naïve patients.

\(^{34}\) FDA = U.S. Food and Drug Administration.
can offer insight into the related molecular mechanisms, such that early resistance tended to be associated with T790M loss and competing resistance mechanisms, and late resistance was associated with continued EGFR addiction, but secondary mutations such as C797S.

ALTERNATIVE PATHWAY ACTIVATION

With increasing use of molecular profiling, the understanding of resistance mechanisms is deepening. In 10%–15% of patients, synchronous aberrations have been found. HER2 and MET amplification

Amplification of the MET oncogene is thought to account for 5%–20% of resistance to EGFR TKIs, including osimertinib and other third-generation agents. MET overexpression leads to downstream activation of AKT and uncontrolled cell proliferation. Case reports of MET amplification have been documented, with reports of responses to crizotinib and other MET inhibitors. MET amplification was identified in more than one quarter of rociletinib-treated patients who developed resistance, and xenograft tumour models regressed with crizotinib. Amplification of MET generally occurs with loss of EGFR T790M. Pre-existing, co-occurring MET amplification has been associated with inferior responses to rociletinib. Cabozantinib, a dual inhibitor [MET and vascular endothelial growth factor (VEGF)], has demonstrated antitumour activity when combined with erlotinib after failure of EGFR TKI. The tattton multi-arm study is evaluating the addition of a MET inhibitor (AZD6094) in combination with osimertinib (see NCT02143466 at http://ClinicalTrials.gov).

In vitro and in vivo models have shown that HER2 amplification might be another important mechanism of resistance, mutually exclusive of T790M. Acquired HER2 amplification has been described as a mechanism of osimertinib resistance as found by Oxnard et al. in 2 of 40 patients with loss of T790M. Functional in vitro analyses performed by Ortiz-Cuaron et al. suggest that HER2 activation replaces EGFR signalling and reduces the efficacy of EGFR TKIs.

RAS Pathway

Mutations in NRAS, together with copy number gains, have been found to cause osimertinib resistance in vitro. Sensitivity to selumetinib (a MEK inhibitor) in the relevant cell lines was subsequently seen. In the study by Ortiz-Cuaron et al., PC9 cell lines with the KRAS G12S mutation were inhibited by osimertinib and trametinib. The tattton study (NCT02143466) includes a combination arm of osimertinib–selumetinib.

Vascular Endothelial Growth Factor Pathway

The VEGF and EGFR pathways are intimately related. Upregulation of VEGF has been considered a mechanism of resistance to EGFR kinase inhibitors. The beta study, which enrolled more than 600 patients with recurrent or refractory NSCLC, allocated participants in a 1:1 ratio to receive erlotinib–bevacizumab or erlotinib–placebo, and did not identify a survival benefit. In a small subset analysis, a trend toward improved survival was observed in the combination arm in patients with EGFR-mutated tumours. A phase II randomized study in Japanese patients who were treatment-naïve again demonstrated a superior progression-free survival compared with 9.7 months with erlotinib alone; as expected, more patients in the combination arm experienced hypertension (60% vs. 10%). The belief study, a single-arm study of bevacizumab–erlotinib in TKI-naïve patients, reported a median progression-free survival of 3.2 months. Notably, the study population included patients with T790M-positive tumours that were confirmed before treatment. The median progression-free survival was 16.0 months in the patients with a pre-existing T790M mutation (n = 37) and 10.5 months in the T790M-negative group (n = 72). A progression-free survival of 14.4 months has also been reported for gefitinib–bevacizumab. Clearly, the combination of an EGFR TKI and bevacizumab has demonstrated activity.

Ramucirumab is another monoclonal antibody targeting VEGF that is being combined with erlotinib in untreated patients as part of the Relay study (see NCT02411448 at http://ClinicalTrials.gov). The booster study (NCT03133546) will investigate osimertinib and bevacizumab in the second-line setting in patients with confirmed T790M.

Others

BRAF mutations and activating mutations in PIK3CA have also been identified as potential causes of resistance. The PIK3CA activating mutations are not mutually exclusive with EGFR mutations, and co-occurrence is associated with inferior outcomes. Loss of PTEN, and focal amplification of FGFR1 have also been reported.

Phenotypic Transformation

As repeat biopsy to elucidate resistance mechanisms becomes a standard of care, small-cell transformation is increasingly reported. The origins and mechanism for histologic transformation have recently been described. In this rare patient cohort, tumours tend to have shared clonality in the adenocarcinoma and small-cell components.

In the largest series case, transformation occurred in 21 patients with tumours harbouring completely inactivated RB1 and TP53. In a review of 18 reported cases in 2016, treatment had varied widely. The use of platinum–etoposide chemotherapy, sometimes incorporating additional radiation, is generally accepted, although the latter addition remains controversial. Given that the EGFR mutation persists, some authors advocate reintroduction of the EGFR TKI; however, evidence for that approach is lacking. In a review of 6 patients with reported outcomes to platinum–etoposide, 5 responded, but their os was only 7.1 months.

The optimal management of these patients is not yet known. Induction of epithelial-to-mesenchymal transition has also been described in the setting of resistance, and that transformation has been successfully targeted using AKT inhibitors in preclinical models. A recent preclinical study further revealed aberrant activation of the Hedgehog pathway in resistant cell lines as a result of the induction of epithelial-to-mesenchymal transition and ABCG2 upregulation, offering a putative biomarker for targeting resistance.
COMBINATION TREATMENT

Given the multiple potential resistance mechanisms that could emerge, combination therapy for this group of patients is drawing interest, and a number of clinical trials are ongoing. Broadly speaking, those trials are divided into four categories:

- Therapy combining an existing TKI with another class of molecularly targeted agent to overcome resistance
- Therapy combining a TKI with chemotherapy
- Therapy combining a checkpoint inhibitor with a TKI
- Therapy with novel TKIs

Role of Immune Checkpoint Inhibition in Treating Resistance

Immunotherapy has emerged as a new treatment paradigm, attracting significant enthusiasm from patients and providers alike. Nivolumab and atezolizumab have received approval for the treatment of unselected NSCLC in the second-line setting, and pembrolizumab has been approved in the first- and second-line settings in patients with PD-L1-positive tumours (score of 50% or greater by 22C3 assay).

Those agents have demonstrated superior outcome when compared with chemotherapy in terms of OS, response, and even quality of life, but their efficacy in patients with EGFR-mutated lung cancer is less clear. Expression of PD-L1 is less common in patients with EGFR-mutated lung cancer, but it is an independent negative prognostic factor.86,87 Notably, EGFR-mutated lung cancers have been shown to overexpress CD73 and the adenosine A2A receptor. CD73 represents a checkpoint in the adenosine pathway, and its interaction with the adenosine A2A receptor creates an immunosuppressive environment, suggesting a potential therapeutic target in EGFR-mutated NSCLC.88

In a meta-analysis of checkpoint inhibitor trials, no survival benefit of immunotherapy compared with docetaxel was evident in the second-line setting in patients with whose tumours harboured EGFR mutations (n = 186)89, but this approach remains under active investigation. The CAURAL trial of durvalumab–osimertinib, and the phase 1 TATTON study which is investigating the same combination, have been halted because of concerns about a high rate of interstitial lung disease seen in the combination arm.90 Similarly, a study of nivolumab–EGF816 was halted for toxic epidermal necrolysis (see NCT02323126 at http://ClinicalTrials.gov). Early reports about erlotinib–nivolumab have emerged from the CheckMate 012 study, with grade 3 toxicity being observed in 19% of patients (no grade 4 toxicities), the overall response rate being 19%, and the OS at 18 months being 64%. Early results from trials of durvalumab–gefitinib and atezolizumab–erlotinib have reported response rates of up to 80%. Elevation in liver transaminases was the most common reason for dose interruption.91,92 Although the combination of a TKI and an immune checkpoint inhibitor appears to be active, an understanding of who is susceptible to toxicity will be an ongoing area of investigation.

Liquid Biopsies to Detect T790M

Tumour heterogeneity and the limitations of biopsy in this advanced cancer population mean that using a “liquid" biopsy to detect the T790M mutation in plasma or urine is an important option, with approval as companion diagnostics given by the U.S. Food and Drug Administration. Many real-time methods, including non-digital assays (Cobas [Roche Diagnostics, Basel, Switzerland], TheraScreen [Qiagen, Hilden, Germany]) and digital assays (digital droplet polymerase chain reaction (dPCR), beaming (beads, emulsion, amplification, magnets) digital PCR) are available to detect EGFR sensitizing and T790M mutations in plasma. Cross-comparisons between platforms demonstrated high sensitivity for Cobas and beaming in detecting T790M (73% and 81% respectively).

A prospective study by Sacher et al.93 using digital droplet PCR to detect EGFR and KRAS mutations reported a detection sensitivity of 77% for T790M and 64% for KRAS mutations. In a post hoc analysis of the initial aura study, patients with T790M detected in plasma achieved a response rate of 70% with osimertinib. Patients who were tissue-negative but plasma-positive for the mutation experienced outcomes similar to those achieved in the overall study population, with a response rate of 63% and a PFS of 9.7 months94. Those results suggest that plasma genotyping could be an option as the first method of detecting T790M mutations and might spare patients from undergoing repeat tissue biopsy, preserving tissue biopsies for only those patients who are plasma T790M-negative. The phase IV ASTRA study will prospectively investigate this possibility. Currently, plasma genotyping is recommended only for patients in whom a tumour biopsy cannot be obtained.95 Serial analyses of plasma when patients are receiving TKIs might reveal the emergence of resistance before radiologic or symptomatic progression is seen; whether such detection should prompt a change in treatment is currently unknown.

CENTRAL NERVOUS SYSTEM METASTASIS IN EGFR-MUTATED LUNG CANCER

In patients who progress intracranially in the presence of extracranial disease control, local therapy to the brain can be used while the EGFR TKI is continued. First- and second-generation TKIs are known to have only minor cerebrospinal fluid penetration, and central nervous system (cNS) progression can be the first site of uncontrolled disease in up to one third of patients. That progression might potentially be overcome by high-dose pulsed EGFR TKI; however, that approach does not tend to be used in clinical practice in Canada.96

The mechanisms of CNS resistance can differ from those causing systemic progression. The Jackman criteria for acquired resistance note that relapse only in the CNS does not indicate systemic resistance.98. Autopsy studies have demonstrated heterogeneity in systemic compared with intracranial metastasis resistance mutations, with the novel D761Y mutation being detected in a brain metastasis.44. In continuing TKI alongside whole-brain radiation or stereotactic radiosurgery, a small retrospective study found an intracranial disease control rate of 76%.100

With the longer duration of patient survival in the era of targeted therapies, the treatment of CNS metastases is gaining increasing attention. A recent comparison of stereotactic radiosurgery followed by TKI, whole-brain...
radiation therapy followed by TKI, or TKI followed by local treatment showed that the median OS was superior when a local treatment was used first (46 months vs. 30 months vs. 25 months respectively, p < 0.01)101. Erlotinib was the TKI used in most patients.

A similar retrospective analysis reported superior time to intracranial progression when whole-brain radiation therapy was administered first for CNS control; however, no difference in survival was observed102. Newer-generation TKIs are showing promise in the treatment of intracranial disease, with better cerebrospinal fluid penetration. Osimertinib demonstrated activity in early clinical trials, later confirmed in the randomized AURA3 study103. The highlight was a significant improvement in PFS for patients with CNS metastases in the osimertinib group (8.5 months vs. 4.2 months with chemotherapy; hazard ratio: 0.32; 95% confidence interval: 0.21 to 0.49)31.

The Bloom study (see NCT02228369 at http://Clinical Trials.gov) will evaluate osimertinib 160 mg daily in NSCLC patients with leptomeningeal disease. Early results have reported radiologic responses in 7 of 18 evaluable patients104. The study is also evaluating AZD3579, a novel EGFR TKI designed to cross the blood–brain barrier. Recent results have been promising, achieving an intracranial response rate of 63% and an extracranial response rate of 50%. The drug was tolerable, with a spectrum of toxicities similar to that seen with other EGFR TKIs105.

FUTURE DIRECTIONS

Third-generation TKIs are now being investigated in the adjuvant setting (ADAURA), and multiple studies are also evaluating their role in first-line treatment for advanced \textit{EGFR}-mutated lung cancer (FLAURA). As the understanding of resistance mechanisms evolves, circulating DNA is likely to start to be used for the detection of mutations, with tissue biopsies held in reserve. Whether the early detection of resistance in blood should dictate a treatment change is unknown. The optimal sequencing of drugs to be used in \textit{EGFR}-mutated lung cancer to extend survival and maintain quality of life is likely to emerge in the coming years. We expect that the time to chemotherapy start will continue to be delayed as the current treatment paradigm unravels and new drugs are approved.

CONFLICT OF INTEREST DISCLOSURES

We have read and understood \textit{Current Oncology}'s policy on disclosing conflicts of interest, and we declare that we have none.

AUTHOR AFFILIATIONS

*Department of Medical Oncology, Princess Margaret Cancer Centre, Toronto, ON.

REFERENCES

1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. \textit{CA Cancer J Clin} 2017;67:7–30.
2. Shi Y, Au JS, Thongprasert S, et al. A prospective, molecular epidemiology study of \textit{EGFR} mutations in Asian patients with advanced non-small-cell lung cancer of adenocarcinoma histology (\textit{PIONEER}). \textit{J Thorac Oncol} 2014;9:154–62.
3. Shigematsu H, Lin L, Takahashi T, et al. Clinical and biological features associated with epidermal growth factor receptor gene mutations in lung cancers. \textit{J Natl Cancer Inst} 2005;97:339–46.
4. Lynch TJ, Bell DW, Sordella R, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. \textit{N Engl J Med} 2004;350:2129–39.
5. Pao W, Miller V, Zakowski M, et al. \textit{egfr} receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity to gefitinib and erlotinib. \textit{Proc Natl Acad Sci U S A} 2004;101:13306–11.
6. Paez JG, Janne PA, Lee JC, et al. \textit{EGFR} mutations in lung cancer: correlation with clinical response to gefitinib therapy. \textit{Science} 2004;304:1497–500.
7. O’Kane GM, Bradbury PA, Feld R, et al. Uncommon \textit{EGFR} mutations in advanced non–small-cell lung cancer. \textit{Lung Cancer} 2017;109:137–44.
8. Mok TS, Wu YL, Thongprasert S, et al. Gefitinib or carboplatin–paclitaxel in pulmonary adenocarcinoma. \textit{N Engl J Med} 2009;361:947–57.
9. Mitsudomi T, Morita S, Yatabe Y, et al. Gefitinib versus cisplatin plus docetaxel in patients with non-small-cell lung cancer harbouring mutations of the epidermal growth factor receptor (\textit{WJTOG3405v2}): an open label, randomised phase 3 trial. \textit{Lancet Oncol} 2010;11:121–8.
10. Maemondo M, Inoue A, Kobayashi K, et al. on behalf of the North-East Japan Study Group. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated \textit{EGFR}. \textit{N Engl J Med} 2010;362:2380–8.
11. Zhou C, Wu YL, Chen G, et al. Final overall survival results from a randomised, phase III study of erlotinib versus chemotherapy as first-line treatment of \textit{EGFR} mutation–positive advanced non-small-cell lung cancer (\textit{OPTIMAL, CTONG-0802}). \textit{Ann Oncol} 2015;26:1877–83.
12. Han JY, Park K, Kim SW, et al. First-signall: first-line single-agent Iressa versus gemcitabine and cisplatin trial in never-smokers with adenocarcinoma of the lung. \textit{J Clin Oncol} 2012;30:1122–8.
13. Rosell R, Carcereny E, Gervais R, et al. on behalf of the Spanish Lung Cancer Group in collaboration with the Groupe Français de Pneumo-Cancérologie and the Associazione Italiana Oncologia Toracica. Erlotinib versus standard chemotherapy as first-line treatment of \textit{EGFR} mutation–positive advanced non-small-cell lung cancer (\textit{OPTIMAL, CTONG-0802}). \textit{Ann Oncol} 2015;26:1877–83.
14. Sequist LV, Yang JC, Yamamoto N, et al. Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with \textit{EGFR} mutations. \textit{J Clin Oncol} 2013;31:3327–34.
15. Wu YL, Zhou C, Hu CP, et al. Afatinib versus cisplatin plus gemcitabine for first-line treatment of Asian patients with advanced non-small-cell lung cancer harbouring \textit{EGFR} mutations (\textit{Lux-Lung 6}): an open-label, randomised phase 3 trial. \textit{Lancet Oncol} 2014;15:213–22.
16. Yang JC, Wu YL, Schuler M, et al. Afatinib versus cisplatin-based chemotherapy for \textit{EGFR} mutation–positive lung adenocarcinoma (\textit{Lux-Lung 3 and Lux-Lung 6}): analysis of overall survival data from two randomised, phase 3 trials. \textit{Lancet Oncol} 2015;16:141–51.
17. Urama Y, Katakami N, Morita S, et al. Randomized phase III study comparing gefitinib with erlotinib in patients with previously treated advanced lung adenocarcinoma: \textit{wJOG 5108L}. \textit{J Clin Oncol} 2016;34:3248–57.
18. Park K, Tan EH, O’Byrne K, et al. Afatinib versus gefitinib as first-line treatment of patients with \textit{EGFR} mutation–positive non-small-cell lung cancer (\textit{Lux-Lung 7}): a phase 2B, open-label, randomised controlled trial. \textit{Lancet Oncol} 2016;17:577–89.
19. Paz-Ares L, Tan EH, O’Byrne K, et al. Afinitinib versus gefitinib in patients with EGFR mutation–positive advanced non–small-cell lung cancer: overall survival data from the phase IIIb LUX-Lung 7 trial. Ann Oncol 2017;28:270–7.
20. Solca F, Dahl G, Zoephel A, et al. Target binding properties and cellular activity of afatinib (BIBW 2992), an irreversible ErBB family blocker. J Pharmacol Exp Ther 2012;343:342–50.
21. Mok T, Cheng Y, Zhou X, et al. Dacotinib versus gefitinib for the first-line treatment of advanced EGFR mutation positive non–small cell lung cancer (ARCHER 1050): a randomized, open-label phase III trial [abstract LBA9007]. J Clin Oncol 2007;34: [Available online at: http://ascopubs.org/doi/abs/10.1200/JCO.2007.34.18_suppl.LBA9007; cited 21 December 2017]
22. Yang JC, Sequist LV, Geater SL, et al. Clinical activity of afatinib in patients with advanced non–small-cell lung cancer harbouring uncommon EGFR mutations: a combined post-hoc analysis of LUX-Lung 2, LUX-Lung 3, and LUX-Lung 6. Lancet Oncol 2015;16:830–8.
23. Takeda M, Okamoto I, Fujita Y, et al. De novo resistance to epidermal growth factor receptor–tyrosine kinase inhibitors in EGFR mutation–positive patients with non–small cell lung cancer. J Thorac Oncol 2010;5:399–400.
24. Costa C, Molina MA, Drozdowskyj A, et al. The impact of EGFR T790M mutations and BIM mRNA expression on outcome in patients with EGFR-mutant NSCLC treated with erlotinib or chemotherapy in the randomized phase III EURTAC trial. Clin Cancer Res 2014;20:2001–10.
25. Martin P, Shiau CJ, Pasic M, et al. Clinical impact of mutation fraction in epidermal growth factor receptor mutation positive NSCLC patients. Br J Cancer 2016;114:616–22.
26. Faber AC, Corcoran RB, Ebi H, et al. BIM expression in treatment-naïve cancers predicts responsiveness to kinase inhibitors. Cancer Discov 2011;1:352–65.
27. Ji H, Zhao X, Yuza Y, et al. Epidermal growth factor receptor variant III mutations in lung tumorigenesis and sensitivity to tyrosine kinase inhibitors. Proc Natl Acad Sci U S A 2006;103:7817–22.
28. Park KS, Raffeld M, Moon YW, et al. CRIPTO1 expression in EGFR-mutant NSCLC elicits intrinsic EGFR inhibitor resistance. J Clin Invest 2014;124:3003–15.
29. Yu HA, Sima CS, Huang J, et al. Local therapy with combined EGF tyrosine kinase inhibitor therapy as a treatment strategy in EGFR-mutant advanced lung cancers that have developed acquired resistance to EGFR tyrosine kinase inhibitors. J Thorac Oncol 2013;8:546–51.
30. Park K, Ahn M, Yu C, et al. ASPIRATION: first-line erlotinib (E) until and beyond RECIST progression (PD) in Asian patients with EGFR mutation positive (MUT+) NSCLC. Ann Oncol 2014;25(suppl 4):iv426–7.
31. Mok TS, Wu YL, Ahn MJ, et al. Osimertinib or platinum–pemetrexed in EGFR T790M–positive lung cancer. N Engl J Med 2017;376:629–40.
32. Sequist LV, Soria JC, Goldman JW, et al. Rociletinib in EGFR-mutated non–small-cell lung cancer. N Engl J Med 2015;372:1700–9.
33. Park K, Lee JS, Lee KH, et al. Updated safety and efficacy results from phase I/II study of HM61713 in patients (pts) with EGFR mutation positive non–small cell lung cancer (NSCLC) who failed previous EGFR–tyrosine kinase inhibitor (TKI) [abstract 8004]. J Clin Oncol 2015;33: [Available online at: http://ascopubs.org/doi/abs/10.1200/JCO.2015.33.15_suppl.8004; cited 21 December 2017]
34. Tan DSW, Yang JCH, Leight NB, et al. Updated results of a phase 1 study of EGF816, a third-generation, mutant-selective EGFR tyrosine kinase inhibitor (TKI), in advanced non–small cell lung cancer (NSCLC) harboring T790M [abstract 9044]. J Clin Oncol 2016;34: [Available online at: http://ascopubs.org/doi/abs/10.1200/JCO.2016.34.15_suppl.9044; cited 10 February 2018]
35. Yu HA, Spira AI, Horn L, et al. Antitumor activity of ASP8273 30 mg in subjects with EGFR mutation–positive non–small cell lung cancer: interim results from an ongoing phase 1 study [abstract 9050]. J Clin Oncol 2016;34: [Available online at: http://ascopubs.org/doi/abs/10.1200/JCO.2016.34.15_suppl.9050; cited 10 February 2018]
36. Husain H, Martins R, Goldberg S, et al. Phase 1 dose escalation of PF-06747775 (EGFR-T790M) inhibitor in patients with advanced EGFRm (Del 19 or L858R+/–T790M) NSCLC [abstract P3.02b-001]. J Thorac Oncol 2017;12:S1185.
37. Nishio M, Azuma K, Hayashi H, et al. ASP8273 tolerability and antitumor activity in TKI-naïve Japanese subjects with EGFRmut+ NSCLC: preliminary results [abstract P3.02b-086]. J Thorac Oncol 2017;12:S1243–4.
38. Goss G, Tsai CM, Shepherd FA, et al. Osimertinib for pre-treated EGFR T790M-Met–positive advanced non–small-cell lung cancer (AURA3): a multicentre, open-label, single-arm, phase 2 study. Lancet Oncol 2016;17:1643–52.
39. Mackensen A, Ferradini L, Carcelain G, et al. Evidence for in situ amplification of cytotoxic T-lymphocytes with antitumor activity in a human regressive melanoma. Cancer Res 1993;53:3569–73.
40. Sequist LV, Soria JC, Camidge DR. Update to rociletinib data with the RECIST confirmed response rate. N Engl J Med 2016;374:2296–7.
41. Broderick J. Clovis ends development ofrociletinib in lung cancer. Cranbury, NJ: Intellisphere; 2016. [Available online at: http://www.onclive.com/web-exclusives/clovis-ends-development-of-rociletinib-in-lung-cancer; cited 13 June 2017]
42. Soria JC, Wu YL, Nakagawa K, et al. Gefitinib plus chemotherapy versus placebo plus chemotherapy in EGFR-mutation-positive non–small-cell lung cancer after progression on first-line gefitinib (IMPRESS): a phase 3 randomised trial. Lancet Oncol 2015;16:990–8.
43. Costa DB, Halmos B, Kumar A, et al. BIM mediates EGFR tyrosine kinase inhibitor–induced apoptosis in lung cancers with oncogenic EGFR mutations. PLoS Med 2007;4:1669–79.
44. Balak MN, Gong Y, Riely GJ, et al. Novel D761Y and common secondary T790M mutations in epidermal growth factor receptor–mutant lung adenocarcinomas with acquired resistance to kinase inhibitors. Clin Cancer Res 2006;12:6494–501.
45. Bean J, Riely GJ, Balak M, et al. Acquired resistance to epidermal growth factor receptor kinase inhibitors associated with a novel T854A mutation in a patient with EGFR-mutant lung adenocarcinoma. Clin Cancer Res 2008;14:7519–25.
46. Bersanelli M, Minari R, Bordi P, et al. L718Q mutation as a new mechanism of acquired resistance to AZD9291 in EGFR-mutated NSCLC. J Thorac Oncol 2016;11:e121–3.
47. Chabon JJ, Simmons AD, Lovejoy AF, et al. Circulating tumour dna profiling reveals heterogeneity of EGFR inhibitor resistance mechanisms in lung cancer patients. Nat Commun 2016;7:11815.
48. Sequist LV, Waltman BA, Díaz-Santagata D, et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci Transl Med 2011;3:75ra26.
49. Erkan D, Choi HG, Yun CH, et al. EGFR mutations and resistance to irreversible pyrimidine-based EGFR inhibitors. Clin Cancer Res 2015;21:3913–23.
50. Pietrowska Z, Niederer MJ, Karlovich CA, et al. Heterogeneity underlies the emergence of EGFRT790 wild-type clones following treatment of T790M-positive cancers with a third-generation EGFR inhibitor. Cancer Discov 2015;5:713–22.
51. Miller VA, Hirsh V, Cadranel J, et al. Afinitinib versus placebo for patients with advanced, metastatic non–small-cell lung
cancer after failure of erlotinib, gefitinib, or both, and one or two lines of chemotherapy (LUX-Lung 1): a phase 2b/3 randomised trial. Lancet Oncol 2012;13:528–38. [Erratum in: Lancet Oncol 2012;13:e186]

52. Pirazzoli V, Ayeni D, Meador CB, et al. Afatinib plus cetuximab delays resistance compared to single-agent erlotinib or afatinib in mouse models of TKI-naive EGFR L858R-induced lung adenocarcinoma. Clin Cancer Res 2016;22:426–35.

53. Song HN, Jung KS, Yoo KH, et al. Acquired C797S mutation upon treatment with a T790M-specific third-generation EGFR inhibitor (HM61713) in non–small cell lung cancer. J Thorac Oncol 2016;11:e45–7.

54. Thress KS, Paweletz CP, Felip E, et al. Acquired EGFR C797S mutation mediates resistance to AZD9291 in non–small cell lung cancer harboring EGFR T790M. Nat Med 2015;21:560–2.

55. Yu HA, Tian SK, Drilon AE, et al. Acquired resistance of EGFR-mutant lung cancer to a T790M-specific EGFR inhibitor: emergence of a third mutation (C797S) in the EGFR tyrosine kinase domain. JAMA Oncol 2015;1:982–4.

56. Niederst MJ, Hu H, Mulvey HE, et al. The allelic context of the C797S mutation acquired upon treatment with third-generation EGFR inhibitors impacts sensitivity to subsequent treatment strategies. Clin Cancer Res 2015;21:3924–33.

57. Piotrowska Z, Nagy R, Fairclough S, et al. Characterizing the genomic landscape of EGFR C797S in lung cancer using ctDNA next-generation sequencing [abstract OA 09.01]. J Thorac Oncol 2017;12(suppl 2):S1767.

58. Jia Y, Yun CH, Park E, et al. Overcoming EGFR T790M and EGFR C797S resistance with mutant-selective allostERIC inhibitors. Nature 2016;534:129–32.

59. Uchibori K, Inase N, Araki M, et al. Acquired resistance to the mutant-selective egfr inhibitor: circulating tumour dna profiling reveals heterogeneity of egfr inhibitor resistance mechanisms in lung cancer patients. Nat Commun 2016;7:13513.

60. Reckamp KL, Frankel PH, Mack PC, et al. Phase ii trial of XL184 (cabozinatini) plus erlotinib in patients (pts) with advanced EGFR-mutant non–small cell lung cancer (nsclc) with progressive disease (pd) on epidermal growth factor receptor (egfr) tyrosine kinase inhibitor (tki) therapy: a California Cancer Consortium phase ii trial (nct 93030) [abstract 8014]. J Clin Oncol 2014;32:. [Available online at: https://meetinglibrary.asco.org/record/92543/abstract; cited 21 December 2017]

61. Wakelee HA, Gettinger S, Engelman J, et al. A phase iiia study of cabozinatini (XL184) with or without erlotinib in patients with non–small cell lung cancer. Cancer Chemother Pharmacol 2017;79:923–32.

62. Takezawa K, Pirazzoli V, Arcila ME, et al. HER2 amplification: a potential mechanism of acquired resistance to egfr inhibition in EGFR-mutant lung cancers that lack the second-site EGFR T790M mutation. Cancer Discov 2012;2:922–33.

63. Oxnard GR, Thress K, Paweletz C, et al. Mechanisms of acquired resistance to AZD9291 in EGFR T790M positive lung cancer. Presented at: 16th World Conference on Lung Cancer; Denver, CO, U.S.A.; 6–9 September 2015. [Available online at: https://library.iaslc.org/virtual-library/search? product_id=1&presentation=17.07; cited 10 February 2018]

64. Eberlein CA, Stetson D, Markovets AA, et al. Acquired resistance to the mutant-selective egfr inhibitor AZD9291 is associated with increased dependence on Ras signaling in preclinical models. Cancer Res 2015;75:2489–500.

65. Seto T, Kato T, Nishio M, et al. Erlotinib alone or with bevacizumab plus erlotinib versus erlotinib alone in advanced non–small cell lung cancer after failure of standard first-line chemotherapy (nera): a double-blind, placebo-controlled, phase 3 trial. Lancet 2011;377:1846–54.

66. Rosell R, Ansari R, Bustin F, et al. Efficacy of bevacizumab plus erlotinib versus erlotinib alone in advanced non–small cell lung cancer harbouring EGFR mutations (J025567): an open-label, randomised, multicentre, phase 2 study. Lancet Oncol 2014;15:1236–44. [Erratum in: Lancet Oncol 2014;15:e475]

67. Ichihara E, Hotta K, Nagami N, et al. Phase ii trial of gefitinib in combination with bevacizumab as first-line therapy for advanced non–small cell lung cancer patients with advanced squamous non–small cell lung cancer harbouring EGFR mutations (JO25567): an open-label, randomised, multicentre, phase 2 trial. J Thorac Oncol 2017;12:15–26.

68. Planchard D, Loriot Y, Andre F, et al. EGFR-independent mechanisms of acquired resistance to AZD9291 in EGFR T790M-positive nsclc patients. Ann Oncol 2015;26:2073–8.

69. Drilon A, Cappuzzo F, Ou SI, Camidge DR. Targeting MET in lung cancer: will expectations finally be met? J Thorac Oncol 2017;12:15–26.

70. Chabon J, Simmons AD, Lovejoy AF, et al. Corrigendum: circulating tumour dna profiling reveals heterogeneity of egfr inhibitor resistance mechanisms in lung cancer patients. Nat Commun 2016;7:13513.

71. Lee JK, Lee J, Kim S, et al. Clonal evolution during progression of EGFR mutation-positive tumors harboring resistance mutations. Cell 2016;167:3130–43.

72. Lee JK, Lee J, Kim S, et al. Clonal evolution during progression of EGFR mutation-positive tumors harboring resistance mutations. Cell 2016;167:3130–43.
a case report and review of literature. Medicine (Baltimore) 2016;85:e2752.
84. Walter AO, Sijn RT, Haringasma HJ, et al. Discovery of a mutant-selective covalent inhibitor of EGFR that overcomes T790M-mediated resistance in nsclc. Cancer Discov 2013;3:1404–15.
85. Bai XY, Zhang XC, Yang SQ, et al. Blockade of Hedgehog signaling synergistically increases sensitivity to epidermal growth factor receptor tyrosine kinase inhibitors in non-small-cell lung cancer cell lines. PLoS One 2016;11:e0149370.
86. D’Incecco A, Andreozzi M, Ludovini V, et al. PD-1 and PD-L1 expression in molecularly selected non-small-cell lung cancer patients. Br J Cancer 2015;112:95–102.
87. Tang Y, Fang W, Zhang Y, et al. The association between PD-L1 and EGFR status and the prognostic value of PD-L1 in advanced non–small cell lung cancer patients treated with EGFR- tki. Oncotarget 2015;6:14209–19.
88. Inoue Y, Yoshimura K, Kurabe N, et al. Prognostic impact of CD73 and A2A adenosine receptor expression in non-small-cell lung cancer. Oncotarget 2017;8:8738–51.
89. Lee CK, Man J, Lord S, et al. Checkpoint inhibitors in metastatic EGFR-mutated non–small cell lung cancer—a meta-analysis. J Thorac Oncol 2017;12:403–7.
90. Taylor P. AZ halts durvalumab combination trials on safety grounds [Web article]. Surrey, UK: PMLive; 2015. [Available at: http://www.pmlive.com/pharma_news/az_halts_durvalumab_combination_trials_on_safety_grounds_840199; cited 21 April 2017]
91. Gibbons DL, Chow LQ, Kim DW, et al. Efficacy, safety and tolerability of MEDI4736 (durvalumab [D]), a human IgG1 anti-programmed cell death–ligand-1 (PD-L1) antibody, combined with gefitinib (G); a phase i expansion in tki-naïve patients (pts) with EGFR mutant nsclc [abstract 570]. J Thorac Oncol 2016;11(suppl 4):S79.
92. Ma BBY, Rudin CM, Cervantes A, et al. Preliminary safety and clinical activity of erlotinib plus atezolizumab from a phase ib study in advanced nsclc [abstract 4410]. Ann Oncol 2016;27(suppl 9):ix139–56.
93. Sacher AG, Paweletz C, Dahlberg SE, et al. Prospective validation of rapid plasma genotyping for the detection of EGFR and KRAS mutations in advanced lung cancer. JAMA Oncol 2016;2:1014–22.
94. Oxnard GR, Thress KS, Alden RS, et al. Association between plasma genotyping and outcomes of treatment with osimertinib (AZD9291) in advanced non-small-cell lung cancer. J Clin Oncol 2016;34:3375–82.
95. United States, Department of Health and Human Services, Food and Drug Administration (Fda). List of cleared or approved companion diagnostic devices [in vitro and imaging tools] [Web page]. Silver Spring, MD: FDA; 2017. [Available at: https://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/InVitroDiagnostics/ucm301431.htm; cited 13 June 2017]
96. Oxnard GR, Paweletz CP, Kuang Y, et al. Noninvasive detection of response and resistance in EGFR-mutant lung cancer using quantitative next-generation genotyping of cell-free plasma dna. Clin Cancer Res 2014;20:1698–705.
97. Zheng D, Ye X, Zhang MZ, et al. Plasma EGFR T790M ctDNA status is associated with clinical outcome in advanced nsclc patients with acquired egfr–tki resistance. Sci Rep 2016;6:20913.
98. Grommes C, Oxnard GR, Kris MG, et al. “Pulsat ile” high-dose weekly erlotinib for cns metastases from EGFR mutant non–small cell lung cancer. Neuro Oncol 2011;13:1364–9.
99. Jackman D, Pao W, Riely GJ, et al. Clinical definition of acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small-cell lung cancer. J Clin Oncol 2010;28:357–60.
100. Shukuya T, Takahashi T, Naito T, et al. Continuous egfr–tki administration following radiotherapy for non–small cell lung cancer patients with isolated cns failure. Lung Cancer 2011;74:457–61.
101. Magnuson WJ, Lester-Coll NH, Wu AJ, et al. Management of brain metastases in tyrosine kinase inhibitor–naive epidermal growth factor receptor–mutant non–small-cell lung cancer: a retrospective multi-institutional analysis. J Clin Oncol 2017;35:1070–7.
102. Doherty MK, Karpanty GJ, Tomasini P, et al. Treatment options for patients with brain metastases from EGFR/ALK-driven lung cancer. Radiother Oncol 2017;123:195–20.
103. Ahn MJ, Tsai CM, Yang JCH, et al. AZD9291 activity in patients with EGFR-mutant advanced non–small cell lung cancer (nsclc) and brain metastases: data from phase ii studies [abstract 3083]. Eur J Cancer 2015;51:S625–6.
104. Yang JCH, Cho BC, Kim DW, et al. Osimertinib activity in patients (pts) with leptomeningeal (LM) disease from non–small cell lung cancer (NSCLC): updated results from BLOOM, a phase i study [abstract 2020]. J Clin Oncol 2016;34; [Available online at: http://ascopubs.org/doi/abs/10.1200/JCO.2017.35.15_suppl.2020; cited 21 December 2017]
105. Ahn MJ, Kim DW, Cho BC, et al. Phase I study (BLOOM) of AZD3759, a bbb penetrable egfr inhibitor, in patients with tki-naïve, EGFRm nsclc with cns metastases [abstract 2006]. J Clin Oncol 2006;35; [Available online at: http://ascopubs.org/doi/abs/10.1200/JCO.2017.35.15_suppl.2006; cited 21 December 2017]