Volatile compounds profile of some Indonesian shallot varieties

Siti D Indrasari¹, Desi Arofa³, Kristamti¹, Sudarmaji¹, Dody D Handoko²*
¹Yogyakarta Assessment Institute for Agricultural Technology, Yogyakarta, Indonesia
²Laboratory of Flavor Analysis, Indonesian Center for Rice Research, Subang, West Java, Indonesia
*Email: dodyhandoko@gmail.com

Abstract. Shallot, Allium ascalanicum L., is one of the leading horticultural commodities that are widely cultivated in Indonesia. Shallot is a commonly used seasoning for various types of dishes. This study aimed to determine the volatile compounds profile of some raw Indonesian shallot varieties. Four shallots varieties (Bima Brebes, Biru Lancor, Saptosari, and Filipin) were analyzed the volatile component profiles using Solid-Phase Microextraction (SPME)-Gas Chromatography-Mass Spectroscopy (GCMS). The GCMS analysis detected 104 types of volatile compounds in which the major volatile compounds were disulfides, sulfur-containing, thiophenes, and diverse functional groups. The most abundant volatile compound groups in the Bima Brebes variety were sulfur-containing compounds (40.61%), followed by diverse functional groups (28.43%) and disulfide (17.51%). In the Biru Lancor variety, the major volatile compounds were disulfide (44.68%), followed by sulfur-containing (30.90%) and thiophenes (8.80%). The most abundant volatile groups in the Saptosari variety were sulfur-containing (57.06%), followed by disulfide (22.68%) and thiophenes (9.19%). In the Filipin variety, the major volatile compound groups were disulfide (53.80%), followed by thiophenes (15.70%), and sulfur-containing (10.55%). The most abundant volatile compounds in all shallots volatiles were dipropyl disulfide, 1-methylethyl propyl disulfide, (E)-1-(prop-1-en-1-yl)-2-propyl disulfane, and propyl mercaptan.

1. Introduction
Shallot is one of the vegetable commodities which widely planted, from lowland areas (< 1 m above sea level) to highland areas (> 1000 m above sea level). The plant originates from Tajikistan, Afghanistan, and Iran and is widely cultivated in tropical regions of Asia [1]. Some types of shallots are widely cultivated such as garlic (Allium sativum L.), shallot (A. cepa L. var. Aggregatum), leeks (A. ampeloprasum L. var. Porrum), and green onion (A. fistulosum L) [2]. The total value of Indonesian seasonal vegetable exports (17 types of vegetables included shallot) in 2018 reached USD 11.82 million. Shallots was the largest commodity contributor to the foreign exchange exported with a net weight of 5.22 thousand tons with an export value of 6.29 million USD [3].

Onion is known to be used as spices, food, and medicine throughout the world. Besides being eaten directly in raw form, it is also used as a spice in cooking and pickles. Shallots can be used as a medicinal ingredient as they contain functional bioactive components such as saponins, sapogenins, sulfuric compounds (thiosulfimates), and flavonoids, including quercetin and kaempferol [4]. It was
also reported that shallot has medicinal effects such as antioxidants [5,6], regulating the immune system [7], anticancer [8], anti-blood clotting [9], antifungal [10], and maintaining and improving liver function [11,12].

In Indonesia, some shallots varieties, i.e. local, improved, and introduced, are widely cultivated. Indonesian Agency for Research and Development released some improved shallot varieties such as Bima, Lancer Biru, Trisula, Katumi, and Sembrani [1,13]. These varieties are thought to have physical or chemical/physicochemical properties, such as tuber size and shape, color, resistance to pests and diseases, harvest age, and tuber aroma. There is very limited literature on Indonesian shallot postharvest, especially on the volatile compound profiles. Galingging et al. [14] studied the profile of flavor compounds of fifteen shallot varieties grown in Indonesian tidal swampland using solvent (methanol extraction). Some researchers studied the shallot physicochemical properties [13], storage [15,16], drying [17], antioxidant activity [18-20], and fried shallot properties [21-22]. This study aimed to study the volatile component’s profile of some raw shallot varieties using Solid-Phase Microextraction (SPME)- Gas Chromatography-Mass Spectroscopy (GCMS).

2. Materials and Methods

2.1. Shallots Sample Preparation
The research was conducted from April to September 2016. Four shallot varieties were taken from several regions in Indonesia, namely Bima Brebes from Brebes (Central Java), Biru Lancer from Probolinggo (East Java), Saptosari from Gunung Kidul (Yogyakarta Special Region), and Filipin. Both Bima Brebes and Biru Lancer are improved shallot varieties. Saptosari is a local shallot, whereas Filipin is an introduced variety from the Philippines. The shallot varieties were grown on an inceptisol soil at 200 meters above sea level of Yogyakarta Assessment Institute for Agricultural Technology, Sleman, Yogyakarta Special Region. The harvested tubers were analyzed the volatile component’s profiles using Solid-Phase Microextraction (SPME) Gas Chromatography-Mass Spectroscopy (GCMS).

2.2. Volatile compounds analysis
Analysis of volatile components was carried out at Flavor Analysis Laboratory of Indonesian Center for Rice Research, Subang, West Java. The volatile compounds of shallot samples were analyzed using SPME-GCMS. Five grams of finely sliced raw shallot sample were put in a 20 ml SPME vial, then the extraction was carried out at 35 °C for 30 minutes with a 50/30 um divinylbenzene/ carboxen/polydimethylsiloxane (85 µm, Supelco Inc., PA, USA) SPME fiber. The SPME fiber was then desorbed at 250 °C for 20 minutes to the Agilent GCMS 7890A-5975C injection port. In The GC, the DB FFAP column (30 m x 250 µm x 0.25 µm) was used for the separation of volatile compounds. A spitless injection was used for sample introduction. The oven’s initial temperature is 50 °C, held for 3 minutes then programmed to 210 °C at a rate of 5 °C/minute, and held at 210 °C for 0 seconds. The helium carrier gas rate was set at 1.8 mL/ min. The MS was operated in electron impact mode at an ionization voltage of 70 eV and a source temperature of 230 °C. MS performed a scan at m/z 29-40.

The volatile components were tentatively identified by matching the mass spectra with the spectra of reference compounds in the NIST/ EPA/NIH mass spectral library 2014 (NIST14). Sparkman et al. [23] pointed out that the Wiley Registry of Mass Spectral Data and the NIST/EPA/NIH Mass Spectral Database is the most widely used mass spectra database for the interpretation of the mass spectrum in GC-MS. The content of volatile compounds in each shallot was presented as relative peak area (%) [14,24-26]. The method of compounds quantification was rough, only intended to provide a comparative picture of the amounts in each shallot variety.

3. Result and Discussion
The GC-MS analysis tentatively identified 104 volatile compounds from the shallot extracts (Table 1). Of the compounds, Bima Brebes, Biru Lancer Saptosari, and Filipin variety contained 54, 63, 48, and
61 volatile compounds, respectively. Galingging et al. [14] identified 64 volatiles in the methanol extract of fifteen cultivars of Indonesian shallots. Fasihzadeh et al. [4] detected 49 volatile compounds of the essential oil constituents of raw Persian shallot (Allium stipitatum Regel).

Genetic (variety), environmental, cultivation, and postharvest factors influence the volatile compounds of shallot. Lekshmi et al. [27] reported that geographical factors, climate, soil fertility, and cultivation methods influenced the volatile compounds of shallot. Besides, cooking processes such as baking and frying influenced the volatile compounds of shallot [28,29].

Table 1. Volatile compounds identified in all raw shallot samples.

No.	RT (min)	Compound	Chemical Abstract Service (CAS)	Relative peak area (%)			
			Bima B	Biru L.	Saptosari	Filipin	
				nd	nd		
Monosulfides							
1	2.98	Propyl sulfide	111-47-7	0.0359	0.0764	nd	nd
2	3.80	Allyl isopropyl sulfide	50996-72-0	nd	nd	0.3203	
3	24.04	Allyl n-propyl sulfide	1000342-31-5	2.9264	nd	nd	nd
4	28.31	1-propenyl 1-propynyl sulfide	89533-93-7	0.0166	0.2105		
Disulfides							
5	2.85	dimethyl disulfide	624-92-0	nd	0.0369	0.0670	0.2543
6	3.36	1-[(1-methylethyl) thio]-propane	5008-73-1	nd	nd	nd	0.0507
7	3.55	3-(methythio)-propanal	3268-49-3	nd	nd	nd	0.0006
8	6.04	methyl propyl disulfide	2179-60-4	0.6056	2.6387	0.2547	2.4610
9	7.21	methyl 2-propenyl disulfide	2179-58-0	nd	0.0140	0.0165	0.0188
10	7.38	methyl 1-propenyl disulfide	5905-47-5	0.0350	0.0028	0.2311	0.1778
11	9.81	dipropyl disulfide	629-19-6	2.8474	29.6895	21.8970	43.4824
12	9.92	1-methylethyl propyl disulfide	33672-51-4	13.6315	12.0382	nd	7.3502
13	10.15	Methyl pentyl disulfide	72437-68-4	0.2575	nd	nd	nd
14	10.24	Isopropyl disulfide	4253-89-8	0.0687	nd	nd	nd
15	12.76	Diallyl disulfide	2179-57-9	0.0704	nd	nd	nd
Trisulfides							
16	2.24	Dimethyl trisulfide	3658-80-8	nd	0.0006	nd	nd
17	16.67	dipropyl trisulfide	6028-61-1	2.9910	0.1428	0.2860	nd
18	18.52	di-2-propenyl trisulfide	2050-87-5	0.0039	0.0033	0.0047	nd
19	23.81	methyl 2-propenyl trisulfide	34135-85-8	0.0024	0.0960	nd	nd
Sulfur-containing							
20	1.13	Propyl mercaptan	107-03-9	13.0993	0.7753	1.9930	0.7223
21	1.53	Methyl thirane	1072-43-1	0.0581	0.2445	0.4142	0.3315
22	3.02	1-[(1-methylethyl)thio]-propane	5008-73-1	0.0281	0.0142	0.0473	nd
23	3.33	2-(ethethylthio)-propane	5145-99-3	0.0003	nd	nd	nd
24	3.54	3-(methythio)-propanal	3268-49-3	nd	0.0055	0.0011	nd
25	4.00	3- (propthio)-1-propene	27817-67-0	nd	0.0003	nd	0.0183
26	4.26	1-(1-propenylthio)propane	33922-70-2	0.1676	0.4277	0.3908	0.4270
27	5.92	1,1-thiobis-1-propene	33922-80-4	nd	0.0076	0.0028	0.0091
28	7.40	(Z)-1-Methyl-2-(prop-1-en-1-yl)	23838-18-8	nd	nd	0.5492	0.7488

| 3 |
No.	RT (min)	Compound	Chemical Abstract Service (CAS)	Bima B	Biru L.	Saptosari	Filipin
29	7.41	(E)-1-Methyl-2-(prop-1-en-1-yl)disulfane	23838-19-9	nd	2.5077	1.0116	3.2352
30	10.05	1,3-Propanedithiol	109-80-8	0.1363	9.6472	1.2476	0.2805
31	10.76	(E)-1-(Prop-1-en-1-yl)-2-propyl disulfane	23838-21-3	8.5286	22.3120	41.0881	0.2871
32	11.22	(Z)-1-(Prop-1-en-1-yl)-2-propyl disulfane	23838-20-2	4.7183	3.4440	0.1765	nd
33	11.37	1,2-Dithiolane	557-22-2	nd	0.0479	nd	nd
34	12.07	2-methyl-1-butanethiol	1878-18-8	0.2348	nd	nd	nd
35	13.23	Methanethiol	74-93-1	nd	nd	nd	3.5069
36	13.25	1,2-Ethanethiol	540-63-6	1.1680	nd	6.2713	nd
37	18.65	3,5-diethyl-1,2,4-trithiolane,	54644-28-9	0.0218	0.1340	0.6922	0.1754
38	18.68	trans-3,5-Diethyl-1,2,4-trithiolane	38348-26-4	3.6651	0.1659	0.5845	nd
39	19.15	Allyl mercaptan	870-23-5	4.7238	nd	nd	0.1896
40	19.32	1,1'-thiobis-1-propene	33922-80-4	0.0041	nd	nd	nd
41	23.63	Monopropyl carbonotrichoate	68060-07-1	1.4945	nd	2.0397	2.5600
42	23.95	2,4-Dimethyl-2-thiazoline	6114-40-5	1.1554	nd	nd	nd
43	26.58	cis-3,5-Diethyl-1,2,4-trithiolane	38348-25-3	1.2621	0.0023	nd	nd
44	29.46	1,3,4-trimethyl-2-pyrazoline	14044-41-8	nd	nd	nd	0.0224

Aldehydes

No.	RT (min)	Compound	Chemical Abstract Service (CAS)	Bima B	Biru L.	Saptosari	Filipin
45	1.02	Propanal	123-38-6	nd	nd	nd	0.4257
46	1.69	Acetaldehyde	75-07-0	nd	nd	nd	0.1103
47	2.95	Hexanal	66-25-1	nd	nd	0.0021	nd
48	4.39	(E)-2-Octenal	2548-87-0	nd	0.0020	nd	nd
49	4.43	2-methyl-2-pentenal	623-36-9	0.8643	1.8339	1.0653	2.7180
50	4.50	(E)-2-Hexenal	6728-26-3	nd	nd	0.0781	nd
51	7.90	(E)-2-Butenal	123-73-9	nd	0.0524	nd	nd
52	9.36	2-methylpentanal	123-15-9	0.0007	0.0009	nd	0.0010
53	10.39	Nonanal	124-19-6	0.2015	0.1301	0.1720	0.6478
54	11.50	(E,E)-2,4-Heptadienal	004313-03-5	nd	0.0163	nd	0.0312
55	11.85	Isobutonal	78-85-3	nd	nd	0.3374	nd
56	11.92	2-methylbutanal	96-17-3	nd	0.0050	nd	0.0038
57	13.55	E-2-Undecenal	53448-07-0	0.1265	0.0072	0.0183	0.0394
58	14.43	(E)-2-Decenal	3913-81-3	nd	0.0189	nd	0.0113
59	16.07	(E)-2-Hexenal	6728-26-3	nd	0.0045	nd	0.0028
60	16.82	(E)-2-Octenal	2548-87-0	0.0297	nd	0.0041	nd

Thiophenes

No.	RT (min)	Compound	Chemical Abstract Service (CAS)	Bima B	Biru L.	Saptosari	Filipin
61	6.56	2,4-dimethyl-thiophene	638-00-6	1.7459	5.5507	3.3898	5.1796
62	6.57	3,4-dimethyl-thiophene	632-15-5	1.7139	nd	0.1598	5.1581
63	6.60	2,5-dimethyl-thiophene	638-02-8	0.0789	0.0318	0.1624	nd
64	15.71	2,3-dimethyl-	632-16-6	0.5649	2.2912	3.8216	5.2011
No.	RT (min)	Compound	Chemical Abstract Service (CAS)	Bima B	Biru L	Saptosari	Filipin
-----	----------	----------	---------------------------------	--------	--------	-----------	--------
65	17.35	2-ethyl-thiophene	872-55-9	nd	0.7674	1.5017	0.0772
66	20.31	3-ethyl-thiophene	1795-01-3	nd	0.1139	0.1357	0.0755
67	28.03	1,3,4-trimethyl-2-pyrazoline	14044-41-8	nd	nd	0.1286	nd
68	32.18	1,5-dimethyl-1H-Tetrazole	005144-11-6	0.9874	nd	0.0126	0.0341
69	12.34	2-Methylene cyclohexanol	4065-80-9	nd	nd	nd	1.0026
70	14.44	1-Heptanol	111-70-6	0.0466	0.0067	0.0614	0.0678
71	16.71	1-Pentanol	71-41-0	nd	0.0054	0.0758	nd
72	17.47	1-Octen-3-ol	3391-86-4	0.0078	0.0118	0.0126	0.0341
73	7.41	5-ethyl-2-imino-thiazolidin-4-one	1762-69-2	0.0282	1.9334	nd	nd
74	7.90	Bis(3-methylbutyl) fluorene-2,7-disulfonate	253664-95-8	nd	nd	nd	0.0532
75	11.09	(2-propenylthio)-acetic acid	20600-63-9	7.9218	nd	nd	1.6939
76	11.35	n, n’-Dihydroxyacetamide	38762-37-7	1.2825	nd	nd	nd
77	13.63	2-Mercaptothiazole	82358-09-6	nd	0.0601	nd	0.1141
78	14.79	2-Mercapto-3,4-dimethyl-2,3-dihydrothiophene	100031-97-0	0.0109	0.0056	0.0192	0.0046
79	14.99	2-Methoxyethyl sulfanylacetate	19788-48-8	nd	nd	nd	0.1009
80	15.47	2-Thio-2,4-oxazolidinedione	2346-24-9	nd	0.1955	nd	0.3694
81	15.50	2,2-dimethyl-1,3-oxathiane	5809-68-7	1.0556	nd	nd	nd
82	17.10	2-Thiophenecarboxaldehyde	98-03-3	nd	0.0466	nd	0.0442
83	17.27	3-Thiophenecarboxaldehyde	498-62-4	nd	0.0809	nd	0.0113
84	17.36	4-methyl-5-thiazoleacetaldehyde	18764-34-6	nd	nd	nd	2.1190
85	18.12	5-ethyl-2-imino-thiazolidin-4-one	1762-69-2	0.0212	0.0059	0.2326	0.0118
86	20.39	Thiodiacetonitrile	5848-75-9	nd	0.0569	nd	nd
87	20.79	propyl ester-2-furanacarbodiimide acid ester	27249-80-5	nd	0.1242	nd	0.1572
88	22.54	Acetic acid, mercapto-ethyl ester	623-51-8	14.9046	1.1004	nd	nd
89	23.52	2-hexyl-5-methyl-3(2H)-Furanone	33922-66-6	0.6722	0.1106	1.4199	0.2413
90	25.28	propyl ester formic acid	110-74-7	0.3928	nd	nd	nd
91	25.36	3-Thiophenecarboxaldehyde	498-62-4	nd	0.0223	nd	nd
92	25.36	2-Thiophenecarboxaldehyde	98-03-3	nd	nd	nd	0.0114
93	27.34	Thiophene-3-carboxyhydrazide	39001-23-5	nd	0.0086	nd	nd
94	27.57	Pyrazol-5-ol, 1-acetyl-3,4-dimethyl-, acetate	5203-75-8	nd	0.2798	0.5490	0.0004
95	27.59	5-methyl-2-octyl-3(2H)-furanone	57877-72-2	0.1753	nd	nd	nd
96	27.74	p-Dithiane-2,5-diol	40018-26-6	0.6592	nd	0.7479	5.9040
97	28.22	mercapto-acetic acid	68-11-1	1.2110	nd	0.2745	nd

Diverse functional groups

Relative area (%)

Miscellaneous
The most abundant volatile compounds in the shallots can be categorized into ten groups of volatile compounds (Table 2). Among them, the most abundant volatile compounds were disulfides, sulfur-containing, thiophenes, and diverse functional groups. The major volatile compound groups in the Bima Brebes variety were sulfur-containing (40.61%), followed by diverse functional groups (28.43%) and disulfide (17.51%). In the Biru Lancor variety, the most abundant volatile compounds were disulfide (44.68%), followed by sulfur-containing (30.90%) and thiophenes (8.80%). The volatile groups in the Saptosari variety were sulfur-containing (57.06%), followed by disulfide (22.68%) and thiophenes (9.19%). In the Filipin variety, the most abundant volatile compound groups were disulfide (53.80%), followed by thiophenes (15.70%), and sulfur-containing (10.55%).

Table 2. Categories of volatile compound groups in all shallot samples.

No.	Volatile Compound Groups	Percentage of volatile compound groups (%)			
		Bima Brebes	Biru Lancor	Saptosari	Filipin
1.	Monosulfides	2.97	0.09	nd	0.53
2.	Disulfides	17.51	44.68	22.68	53.80
3.	Trisulfides	3.00	0.24	0.29	nd
4.	Sulfur-containing	40.61	39.90	57.06	12.51
5.	Aldehydes	1.23	2.08	1.69	3.99
6.	Thiophenes	4.13	8.80	9.28	15.70
7.	Nitrogen-containing	0.99	nd	0.13	nd
8.	Alcohols	0.05	0.02	0.15	1.10
9.	Diverse functional group	28.43	4.04	3.26	10.83
10.	Miscellaneous	1.08	0.14	5.46	1.54
	Total	100.00	100.00	100.00	100.00

nd = not detected

The most abundant volatile compounds in the shallots volatiles were dipropyl disulfide, 1-methylethyl propyl disulfide, (E)-1-(prop-1-en-1-yl)-2-propyl disulfane, and propyl mercaptan (Table 1). These results were slightly different with Galingging et al. [14] report as differences in the volatile extraction; this study used the SPME (headspace extraction), whereas they used methanol extraction (solvent extraction). Furthermore, they reported that 64 volatiles were identified in fifteen Indonesian shallot varieties. Among the volatiles, cyclonaotanol was the major compound. Based on the multivariate data analysis, (23S)-ethylcholest-5-en-3β-ol, obtusifoliol, pentacosane, furfural, cholesterol, 23 S/R-methylcholesterol, 9, 17-octadecadienol, 1-nonadecene, 14-methylergost8-en-3-ol, ergost-5-en-3-ol, 14α-methyl-δ8-ergostenol, docosane, and octacosane could be used to distinguish the shallot varieties.
Thiosulfimates (Ti) and Zwiebelanes (Zw) are constituents of fresh aroma in garlic (onions) and shallots [30]. Moreover, constituents of the Ti group were dimethyl thiosulfinate, methyl propyl thiosulfinate, methyl 1-propenyl thiosulfinate, propyl methyl thiosulfinate, 1-propenyl methyl thiosulfinate, propyl 1-propenyl thiosulfinate, 1-popenyl propyl thiosulfinate, while the Zw group was cis-Zwiebelane, trans-Zwiebelane, and Zwiebelane isomer [31]. Zhang et al. [32] reported that the aroma volatiles categories of raw of Allium species (included shallot) were alkenes, alkanes, alcohols, aldehydes, ketones, sulfides, and miscellaneous compounds. Moreover, scallion and onion possessed the highest fractions of [E]-2-hexenal and 2,5-dimethyl-thiophene, respectively, whereas chive and shallot possessed the highest fraction of propanal.

Wu et al. [28] categorized the shallot oil compounds into thiols, mono-sulfides, disulfides, trisulfides, thiophenes, and oxygen compounds. Moreover, the main constituents of raw shallot oils were methyl propyl trisulfide, dimethyl trisulfide, propyl propenyl disulfide, and 1-methylthiopropylethyl disulfide.

4. Conclusion
The GCMS analysis tentatively identified 104 types of volatile compounds in all shallot varieties. Among the volatile compounds, the major volatile groups were disulfides, sulfur-containing, thiophenes, and diverse functional groups. Volatile groups of sulfur-containing were the most abundant component in Bima Brebes and Saptosari varieties, while disulfides were the most abundant component in Biru Lancor and Filipin varieties. The most abundant volatile compounds in the shallots volatiles were dipropyl disulfide, 1-methylethyl propyl disulfide, (E)-1-(prop-1-en-1-yl)-2-propyldisulfane, and propyl mercaptan.

Acknowledgment
The authors express their gratitude to Indonesian Agency for Agricultural Research and Development, The Indonesian Ministry of Agriculture for funding this research.

References
[1] Putrasamedja S and Suwandi S 1996 Bawang Merah di Indonesia (Bandung: Balai Penelitian Tanaman Sayuran)
[2] Brewster J L 2008 Onions and other vegetable alliums (CABI)
[3] BPS 2019 Statistik Tanaman Sayuran dan Buah-Buahan Semusim Indonesia 2018
[4] Fasihzadeh S, Lorigooini Z and Jivad N 2016 Chemical constituents of Allium stipitatum Regel (Persian shallot) essential oil Der Pharm. Lett. 8 175–80
[5] Sedighi M, Rafein-kopei M and Noori-Ahmadabadi M 2012 Effect of Allium ampeloprasum on ileum function: Involvement of beta-adrenogic receptors and voltage dependent calcium channels Life Sci. J. 9
[6] Asgari S, Samani R A, Deris F, Shahinfard N, Salimi M, Mortazaei S, Asgharzadeh S and Shirzad H 2012 Antioxidant Activity and the Lowering Effect of Hydroalcoholic Extract of Allium hirtifolium Boisson Some Haemostatic Factors in Hypercholesterolemic Rabbits J Maz. Univ Med Sci 22 40–8
[7] Jafariana A, Ghannadib A and Elyasi A 2005 The Effects of Allium hirtifolium Boiss. on Cell-Mediated Immune Response in Mice Iran. J. Pharm. Res. 2 205–11
[8] Ghodrati Azadi H, Ghaffari S M, Riazi G H, Ahmadian S and Vahedi F 2008 Antiproliferative activity of chloroform extract of Persian Shallot, Allium hirtifolium, on tumor cell lines Cytotechnology 56 179–85
[9] Lorigooini Z, Ayatollahi S A, Amidi S and Kobarfard F 2015 Evaluation of anti-platelet aggregation effect of some Allium species Iran. J. Pharm. Res. 14 1225–31
[10] Moghim H, Taghipoor S, Shahinfard N, Kheiri S, Heydari Z and Rafieian S 2014 chamomilla and Stachys lavandulifolia extracts on Candida albicans J. HerbMed Pharmacol. 3 9–14
[11] Kazemi M 2014 GC/MS analyses for detection and identification of antioxidant constituents of Carum copticum essential oil Thai J. Agric. Sci. 47 141–5
[12] Nasri H, Sahinfard N, Rafieian M, Rafieian S, Shirzad M and Rafieian-kopaei M 2014 Turmeric: A spice with multifunctional medicinal properties J. HerbMed Pharmacol. 3 5–8
[13] Sukasih E, Setyadjit and Musadad D 2018 Physico-chemical characteristics of shallot New-Superior Varieties (NSV) from Indonesia IOP Conf. Ser. Earth Environ. Sci. 102 012037
[14] Galingging R Y, Sobir, Aisyah S and Maharijaya A 2018 GC-MS Profiling of Volatile Compounds from Fifteen Different Varieties of Indonesian Shallot Grown in Tidal Swampland Rasayan J. Chem. 11 575–81
[15] Priyantono E, Purwanto Y A and Sobir S 2016 Penyimpanan Dingin Bawang Merah (Allium ascalonicum L.) Varietas Bima Brebes, Tajuk, dan Bali Karet. J. Agro-based Ind. 33 32–8
[16] Kusmali M, Ahmad U and Darmawati E 2020 The Effect of Curing and Leaves Cutting in Longterm Storage of Shallot IOP Conf. Ser. Earth Environ. Sci. 542 012009
[17] Ummah N, Purwanto Y A and Suryani A 2016 Penentuan Konstanta Laju Pengeringan Bawang Merah (Allium ascalonicum L.) Iris Menggunakan Tunnel Dehydrator War. IHP J. Agro-based Ind. 33 49–56
[18] Mardiah N, Mulyanto C, Amelia A, Lisnawati L, Anggraeni D and Rahmawanty D 2017 Penentuan Aktivitas Antioksidan dari Ekstrak Kulit Bawang Merah (Allium ascalonicum L.) Dengan Metode DPPH J. Pharmascience 4 147–54
[19] Rahayu S, Kurniasih N and Amalia V 2015 Ekstraksi dan identifikasi senyawa flavonoid dari limbah bawang merah sebagai antioksidan alami al Kim. 2 1–8
[20] Cahyani D D 2019 Pengaruh Suhu dan Waktu Pemanasan terhadap Kadar Senyawa Fenolik Total dan Profil Senyawa Volatil dalam Bawang Putih (Allium sativum L.) dan Bawang Merah (Allium ascalonicum L.) pada Proses Pembuatan Bawang Hitam (Universitas Negeri Malang)
[21] Khamidah A and Murni W S 2017 Pembuatan Bawang Goreng Untuk Mengurangi Kehilangan Hasil di saat Panen Raya Seminar Nasional dan Gelar Produk UMM pp 1182–92
[22] Ete A and Alam N 2009 Karakteristik Mutu Bawang Goreng Palu Sebelum Penyimpanan Agroland 16 273–80
[23] Sparkman O D, Penton Z E and Kitson F G 2011 Mass Spectral Data Interpretation Gas Chromatography and Mass Spectrometry: A Practical Guide (Elsevier) pp 149–205
[24] Li Y Q, Kong D X and Wu H 2013 Analysis and evaluation of essential oil components of cinnamon barks using GC-MS and FTIR spectroscopy Ind. Crops Prod. 41 269–78
[25] Song S, Fan L, Xu X, Xu R, Jia Q and Feng T 2019 Aroma patterns characterization of braised pork obtained from a novel ingredient by sensory-guided analysis and gas-chromatography-olfactometry Foods 8
[26] Syamsudin T S, Hafsah H and Iriawati I 2019 Data set on volatile compound of coffee flowers at different annual rainfall Data Br. 26 104418
[27] Lekshmi N, Packia V, Viswanathan M, Manivannan G and Shobi M 2014 GC-MS Characterization of Volatile Odorous Compounds in Allium Cepa Nanobio Pharm. Technol. 489–94
[28] Wu J L, Chou C C, Chen M H and Wu C M 1992 Volatile Flavor Compounds from Shallots J. Food Sci. 47 606–8
[29] Chyau C and Mau J 2001 Effects of various oils on volatile compounds of deep-fried shallot flavouring Food Chem. 74 41–6
[30] Block E, Putman D and Zhao S H 1992 Allium chemistry: GC-MS analysis of thiosulfonates and related compounds from onion, leek, scallion, shallot, chive, and Chinese chive J. Agric. Food Chem. 40 2431–8
[31] August J, Arnault I, Legin A, Rudnitskaya A, Seleznev B, Sparfel G and Doré C 2005 Comparison of gas chromatography–mass spectrometry and electronic tongue analysis for the classification of onions and shallots Int. J. Environ. Anal. Chem. 85 971–80
[32] Zhang Z-M, Wu W-W and Li G-K 2006 HSSPME-GC/MS Study of the Aroma Volatiles of Allium species and Chemometric Interpretation for the Aroma Characteristics *J. Plant Sci.* 1 315–23