Newly identified APN splice isoforms suggest novel splicing mechanisms may underlie circRNA circularization in moth

Meijing Gao¹, Yuan Liu¹,², Yun Wang³, Xiao Zhang¹, Sa Dong⁴ and Xianjin Liu¹,²

¹ Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
² School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
³ Horticulture Department, Jinling Institute of Technology, Nanjing, China
⁴ School of Horticulture and Plant Protection, Yangzhou University, China

Keywords
alternative splicing; aminopeptidases N; circular RNA; splicing mechanism

Correspondence
X. Liu, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
Tel: +86 25 8439 0401
E-mail: jaasliu@jaas.ac.cn

(Received 18 February 2019, revised 4 June 2019, accepted 21 June 2019)
doi:10.1002/2211-5463.12689

Circular RNA (circRNA) have long been considered by-products of splicing errors, but the coordination of RNA transcription and exon circularization events remains poorly understood. Here, we investigated this question using genes encoding aminopeptidases N (APNs), which are receptors of Bacillus thuringiensis toxins, in the cotton bollworm, Helicoverpa armigera. We cloned and sequenced the cDNA of ten APN genes (HaAPN1-10) located in the same APN gene cluster, and detected 20 and 14 novel splicing isoforms with exon skipping in HaAPN1 and HaAPN3, respectively, whereas no or very few variants were found in the remaining genes. Further study identified 14 and 6 circular RNA (circRNA) in HaAPN1 and HaAPN3, respectively. Neither novel splicing isoforms nor circRNA were detected in HaAPN2 and HaAPN5. Distinct from the conventional GT/AG splicing signal, short co-directional repeats were involved in the splicing of the linear and circular isoforms of HaAPN1 and HaAPN3. Identification of the splice sites revealed that the linear isoforms may be related in some way to the circularization. Moreover, phylogenetic analysis and detection of circRNA of the APN gene of the diamondback moth, Plutella xylostella (PxAPN3), showed that circRNA formation is relatively conserved during the lepidopteran evolutionary process. These results contribute to an improved understanding of lepidopteran APNs and this novel class of insect circRNA.

Alternative splicing is an essential post-transcriptional process by which multiple functional RNA or proteins are generated from a single transcript. A large number of gene isoforms can be generated via alternative splicing, the most striking example of which is the Drosophila Dscam gene, which encodes a cell adhesion protein that is important for fly neuronal wiring and immune responses. An incredibly large number of Dscam isoforms (38 016) can be generated via mutually exclusive splicing of 4 cassette exon clusters [1]. Alternative splicing patterns constantly change under physiological conditions, allowing organisms to respond to changes in the environment by determining the part of the genome that gets expressed [2]. Most alternative splicing events can be grouped into one of four categories: alternative 5’ splice sites, alternative 3’ splice sites, cassette exons and retained introns [3].

The mechanisms of alternative splicing have been extensively studied in recent years. The splicing

Abbreviations
APN, aminopeptidase N; circRNA, circular RNA; gDNA, genomic DNA; ORF, open reading frame; qRT-PCR, quantitative real-time PCR; RNAi, RNA interference; RNase R, ribonuclease R.
reaction is catalysed by the spliceosome, which is a large, highly dynamic, multicomponent complex [1]. The splicing code is extremely intricate, and recent studies on the correlation between circular RNA (circRNA) formation and exon skipping have provided a new perspective from which to investigate alternative splicing [4–6]. CircRNA have long been considered by-products of splicing errors, and they are rare and likely lack biological functions in organisms [7]. With the advent of high-throughput sequencing of non-polyadenylated RNA transcripts, many studies have revealed large numbers of circRNA that are endogenous to eukaryotes (e.g. humans, mice, zebrafish, worms, fruit flies, plants), many of which are abundant and stable [8–10]. CircRNA have no free 3' or 5' end, so these RNA cannot be detected by molecular techniques that rely on polyadenylated free RNA ends. Two additional key features of circRNA are an out-of-order arrangement of exons known as a ‘backsplice’ and RNase R resistance [11]. CircRNA can arise from exons (exonic circRNA) or introns, but exonic circRNA are the most widely studied of these RNA. Although widely discussed, the mechanisms underlying exonic circRNA production remain under intense investigation. Two mechanisms have been proposed for mammalian exonic circRNA formation, namely ‘direct backsplicing’ and ‘lariat intermediate formation’. Both mechanisms involve the backsplice being formed by the canonical spliceosome [12]. One study has demonstrated that flanking complementary sequences, including both repetitive and nonrepetitive sequences, play important roles in exon circularization [13]. However, the exact mechanism underlying spliceosome-associated circularization is unclear. In addition, the coordination of RNA transcription and exon circularization events remains poorly understood.

Aminopeptidases N (APNs), which are exopeptidases that catalyse the cleavage of neutral amino acids from the N termini of peptides, are M1-type zinc-dependent metalloproteases [14]. APNs are abundant in the brush border membrane vesicles (BBMVs) of insect midguts and are widely known as receptors of Bacillus thuringiensis (Bt) toxins, although their main function is protein digestion [15]. The involvement of APN genes in the mode of action of Cry1A and Cry1C toxins was suggested following knockdown by RNA interference (RNAi), which resulted in reduced susceptibility among lepidopteran larvae [16–18]. In H. armigera, which is a moth commonly known as the cotton bollworm, corn earworm or Old World (African) bollworm, seven different APN cDNA sequences have been reported [19], but only APN1 has been confirmed to be involved in Bt resistance. Knockdown of APN1 in H. armigera larvae and interference in transfected Sf21 cells revealed the interactions of APN1 with Cry1Ac [20]. Later evidence showed that a mutation in APN1 is associated with Cry1Ac resistance in H. armigera [21].

Given the importance of APN1 in the mode of action of Bt toxins, we sequenced the HaAPN1 gene in two H. armigera strains and detected a number of splice isoforms in the cDNA samples. We then confirmed that this variation was the result of post-transcriptional modification of the mRNA with novel and regular splice patterns. Analysis of the other nine HaAPNs in the same cluster as HaAPN1 in the H. armigera genome showed that this splicing event is common in APN genes. Further analysis revealed that this type of splicing is likely associated with the formation of circRNA and that novel noncanonical splice signals (short co-directional repeats) guide this process. Moreover, the identification of the circRNA of P. xylostella APN gene (PxAPN3) revealed that the formation of APN circRNA is relatively conserved during the evolutionary process. These results expand our knowledge regarding lepidopteran APNs and this novel class of insect circRNA.

Results

Common truncated transcripts of HaAPN1 in Helicoverpa armigera strains

Lepidopteran APNs constitute a protein family that is composed of different classes. In the context of Bt resistance in lepidopteran species, APN1 has received much attention [21,22]. Given the important role of this protein in the resistance of H. armigera to Bt, specific primers were designed to amplify the cDNA of HaAPN1 from the SCD strain, which is a susceptible strain of H. armigera that was derived from insects from the Ivory Coast, Africa, over 30 years ago and was maintained in the laboratory without exposure to insecticides or Bt toxins. Extra bands were observed among the nested PCR products obtained with two pairs of primers, namely HaAPN1-1 and HaAPN1-2 (Table S1, Fig. 1). The results of sequence analysis indicated that the 20 different sequences obtained from eight larvae of the SCD strain were novel and severely disrupted. These variations resulted in truncation of amino acid residues or ORF frame shifts, leading to premature termination of translation (Fig. 2, Table 1). We then sequenced HaAPN1 gDNA fragments (corresponding to bp 4-3042 of the cDNA sequences) amplified from the genomic DNA derived from the eight larvae mentioned above, and no deletions were
detected (Fig. 3). The results revealed that the 20 variations likely resulted from RNA splicing rather than mutation of the genomic DNA sequence.

Different variations can originate from a single individual; therefore, we determined the copy number of the **HaAPN1** gene in the SCD strain by a quantitative PCR-based approach, using genomic DNA as template. The data were normalized to the values for the gene encoding the voltage-gated sodium channel, two copies of which are present in diploid insect genomes [23]. Individual *H. armigera* showed an average relative **APN1** gene copy number of 1.03 (±0.20), indicating that there are approximately 2 copies of the **HaAPN1** gene in the diploid genome of *H. armigera*. This result demonstrated that we could confirm the modification of these variations at the mRNA level.

Moreover, the **HaAPN1** cDNA from other strains, one susceptible strain (An) and one resistant strain (LF256), was sequenced and variations were detected. Eight and four variations were detected in An and LF256 strains, respectively, all of which were also detected in the SCD strain (Table 1, Fig. 1), suggesting that RNA splicing of **HaAPN1** does not occur in only one strain but is a common occurrence among strains; however, isoforms resulting from RNA splicing may differ among individuals. We think this may be resulted by the low frequency of the variants and the limited detection or the random production of these variants.

RNA splicing sites were identified by alignment of the cDNA sequences with the genome sequence. Interestingly, the splice sites were novel, differing from previously reported sites [3]. Short co-directional repeats were consistently present at the splice sites (Fig. 2), which may be associated with post-transcriptional modification.
Expression pattern of truncated transcripts of *HaAPN1*

Analysis of the nested PCR products revealed that the wild-type transcript was the most dominant transcript in both strains (Fig. 1), and variant clones accounted for approximately 30% of all the clones that were detected (Table 1). Western blotting was also performed with rabbit polyclonal antibodies that were specific for *HaAPN1*. The result showed that a band slightly below 150 kDa was the main band of the BBMVs, which was consistent with the reported molecular weight (≈ 120 kD) of the *HaAPN1* protein [21], and the difference with the predicted size (112.8 kD) may be resulted by the post-translational modification (Table 1; Fig. 4). The data above suggested that the expression of truncated transcripts did not influence the translation of the wild-type.

Analysis of the transcripts of other *HaAPN* genes in *Helicoverpa armigera*

We sequenced nine other *HaAPN* genes located in the same cluster with *HaAPN1*. Fifteen different transcripts, including the wild-type transcript, were detected for *HaAPN3* (Table 2; Fig. 5), whereas the other genes exhibited no or very few variants. Among these genes, *HaAPN4*, *HaAPN6* and *HaAPN9* had 1, 3 and 4 variants, respectively (Table 3, Fig. 6), and only, the wild-type transcript isoform was detected for *HaAPN2*, *HaAPN5*, *HaAPN7*, *HaAPN8* and *HaAPN10*. These results suggested that truncated transcripts are common among *HaAPNs*.

Identification of circRNA in several *HaAPNs*

We identified a number of transcripts for *HaAPNs*, most of which were truncated, especially those of *HaAPN3*. For this gene, the truncated transcripts lacked most of the exon sequence. We thus attempted to determine the reason underlying the absence of this sequence. As recent studies have reported that exon skipping is correlated with exon circularization [4], we

Table 1. Linear transcript isoforms of *HaAPN1* from SCD, An and LF256 strains

Isoform	Deletion region	Premature stop codon	Predicted MW (kD)	Number of clones
Wild-type	–	No	112.8	111 59 45
V1	1637-2295	Yes	62.5	1 2 0
V2	460-1125	No	87.1	3 0 1
V3	1633-2403	No	83.7	7 8 2
V4	1153-2028	No	80.1	2 2 0
V5	890-1952	Yes	33.5	6 0 0
V6	1530-2745	Yes	67.9	2 0 0
V7	1147-2407	Yes	43.9	1 0 1
V8	1324-2721	No	61.0	1 2 0
V9	1427-2883	Yes	58.3	2 0 1
V10	1427-2904	Yes	57.3	3 0 0
V11	1427-2937	Yes	56.1	2 0 0
V12	1364-2912	Yes	55.1	3 0 0
V13	1291-2846	Yes	54.9	1 0 0
V14	1346-2982	Yes	51.1	2 1 0
V15	1158-2831	No	41.0	1 3 0
V16	1221-2910	Yes	49.9	1 0 0
V17	1058-2910	Yes	50.7	5 1 0
V18	1058-2964	Yes	43.2	1 0 0
V19	147-2852	No	55.1	1 0 0
V20	135-2934	Yes	8.1	4 2 0

Fig. 3. Alignment of partial gDNA sequences of *HaAPN1* from eight larvae of the SCD strain. Dashes indicate that the bases are the same as those of the consensus sequence.
screened the circRNA of four HaAPNs, namely HaAPN1, HaAPN3, HaAPN2 and HaAPN5. The first two genes exhibited an abundance of truncated transcripts, whereas the other two lacked truncated transcripts. Noncanonical circRNA were validated using divergent primers from both genomic DNA (as a negative control) and cDNA (regular or treated, for example, with RNase R digestion and poly A selection) (Table S2). The reactions were analysed by agarose gel electrophoresis and Sanger sequencing. Head-to-tail junctions were detected in the HaAPN1 and HaAPN3 genes (Figs 7–9), whereas no amplification product was obtained for HaAPN2 and HaAPN5 with divergent primers (Table S2). For instance, HaAPN1 and HaAPN3 produced at least fourteen and six distinct exonic circular RNA, respectively (Figs 8 and 9). We further analysed these circular isoforms and found that multiple exon circularization products could be obtained from single gene loci (Tables 4 and 5); this phenomenon is termed alternative circularization (AC) [13,24,25].

The splice sites of circular transcripts were determined by sequence alignment. Interestingly, as observed for the truncated linear transcripts, short co-directional repeats were present at the splice sites (Figs 8 and 9).

Complementary sequence identification for circRNA of HaAPN1 and HaAPN3

To identify the complementary flanking sequences, 10 nucleotides of upstream and downstream flanking sequences (20 nucleotides total) of each splice site were extracted and classified as sequence 1 (20-nucleotide flanking sequence upstream of the circRNA) and sequence 2 (20-nucleotide flanking sequence downstream of the circRNA). We analysed the sequences with the RNAfold web server (http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi) and found that among the 20 circular isoforms, only eight circRNA had some complementary sequences near the splice sites (Table 6). These complementary sequences were short, ranging in size from 4 to 5 nucleotides (Table 6).

Identification of circRNA in PxAPN3

Several studies have revealed that multiple gene families developed from APN genes before the evolutionary divergence of Lepidoptera [26–28]. Analysis of the phylogenetic tree showed that HaAPN1 and HaAPN3 are more closely related to each other than to other HaAPNs [26–28], and multiple circular transcripts were detected for these two genes. Therefore, we investigated whether the formation of circRNA derived from HaAPNs was evolutionarily conserved in Lepidoptera. For this investigation, we selected the PxAPN3 gene because HaAPN3 is more closely related to PxAPN3 than to HaAPN1 [26–28] and because circular isoforms were also detected for this gene. Five circular isoforms were identified, and similar noncanonical splice signals also guided the formation of circRNA in PxAPN3 (Figs 10 and 11).

Discussion

Members of the aminopeptidase N (APN) gene family of the insect order Lepidoptera (moths and butterflies) bind to insecticidal Cry toxins naturally produced by

Table 2. Linear transcript isoforms of HaAPN3 from the SCD strain

Isoform	Deletion region (bp)	Premature stop codon	Number of clones
Wild-type	–	–	56
V1	117-2301	Yes	1
V2	624-2851	Yes	2
V3	248-2713	Yes	5
V4	248-2963	Yes	1
V5	241-2827	Yes	3
V6	179-2758	No	1
V7	208-2820	No	1
V8	208-2913	No	3
V9	210-2852	No	1
V10	210-2879	No	1
V11	194-2879	Yes	1
V12	233-2911	No	1
V13	244-2939	Yes	1
V14	190-2910	No	3
the bacterium *Bacillus thuringiensis*. Various studies on APN1 from *Manduca sexta* [29], *Lymantria dispar* [30,31], *P. xylostella* [32], *H. armigera* [21,33] and *Trichoplusia ni* [22] have consistently demonstrated that this protein is one of the midgut receptors for Cry1Ac. During our research on APN1 in *H. armigera*, different linear transcripts were detected from two susceptible strains. Among these transcripts, 20 had novel sequences and were severely disrupted, resulting in truncation of amino acid residues or ORF frame shifts (Fig. 2, Table 1). As an important Bt receptor, modification of HaAPN1 may influence the interaction with Bt toxins [21,33]. In our study, the most common splice variants exhibited premature termination (Fig. 2, Table 1), lacking the domain that binds with Cry1Ac [19]. However, these variants showed no preference in susceptible and resistant strains (Table 1) and the wild-type HaAPN1 remained dominant in the susceptible strains (Figs 1 and 4), and thus, the SCD and An strains had not lost their susceptibility to Bt toxin. Therefore, these truncated transcripts may not influence the interaction with Bt toxins, but the high variability of midgut APN1 in *H. armigera* populations provides genetic potential for the evolution of Bt resistance.

It has been proposed that members of the APN family were derived from gene duplication events that occurred in an ancestral Lepidoptera species [26–28]. We asked whether splicing events also occurred in the different linear transcripts were detected from two susceptible strains. Among these transcripts, 20 had novel sequences and were severely disrupted, resulting in truncation of amino acid residues or ORF frame shifts (Fig. 2, Table 1). As an important Bt receptor, modification of HaAPN1 may influence the interaction with Bt toxins [21,33]. In our study, the most common splice variants exhibited premature termination (Fig. 2, Table 1), lacking the domain that binds with Cry1Ac [19]. However, these variants showed no preference in susceptible and resistant strains (Table 1) and the wild-type HaAPN1 remained dominant in the susceptible strains (Figs 1 and 4), and thus, the SCD and An strains had not lost their susceptibility to Bt toxin. Therefore, these truncated transcripts may not influence the interaction with Bt toxins, but the high variability of midgut APN1 in *H. armigera* populations provides genetic potential for the evolution of Bt resistance.

It has been proposed that members of the APN family were derived from gene duplication events that occurred in an ancestral Lepidoptera species [26–28]. We asked whether splicing events also occurred in the

Table 3. Linear transcript isoforms of APN4, APN6 and APN9 from the SCD strain

Gene	Isoform	Deletion region (bp)	Premature stop codon	Number of clones
HaAPN4	Wild-type	–	–	78
HaAPN4	V1	412-2319	No	2
HaAPN6	Wild-type	–	–	76
HaAPN6	V1	720-2408	No	1
HaAPN6	V2	563-2422	No	1
HaAPN6	V3	345-2766	Yes	2
HaAPN9	Wild-type	–	–	74
HaAPN9	V1	732-2897	No	2
HaAPN9	V2	570-2649	Yes	1
HaAPN9	V3	306-1557	Yes	2
HaAPN9	V4	320-2843	Yes	1
other APN genes in *H. armigera*. Therefore, we sequenced nine other APN genes that were located in the same cluster as *HaAPN1*. Fifteen different transcripts, including the wild-type transcript, were detected for *HaAPN3* (Table 2; Fig. 5), whereas the other HaAPNs exhibited no or very few variants.
We then analysed the evolutionary relationships of the ten genes, and the phylogenetic tree showed that HaAPN1 and HaAPN3 diverged more recently than did the other HaAPNs [26–28], suggesting that the structures of these two genes are very similar. This finding might explain why HaAPN1 and HaAPN3 exhibited a large number of variations, while the other genes did not. Furthermore, this finding suggests that the splice mode might be dependent on the structure of the pre-mRNA.

CircRNA have been extensively studied in recent years and may play specific roles in cellular physiology. Research on the correlation between circRNA formation and exon skipping provides a new perspective from which previously observed splicing events can be explained [4–6]. Among the four HaAPNs screened, HaAPN1 and HaAPN3 exhibited different head-to-tail junctions (Figs 7–9), whereas no amplification product was obtained for HaAPN2 and HaAPN5 with divergent primers. This finding suggests that circular splicing events may be related to linear splicing events.

The splice sites of the linear truncated transcripts and circular transcripts were identified by sequence alignment. Interestingly, the splice sites were novel, differing from previously reported modes, and short co-directional repeats were consistently present at the splice sites (Figs 2, 5, 8 and 9). The repeat sequences were not fixed and were at least 4 bp in length. Splice sites for canonical alternative splicing or AC are mostly located in the junctions between exons and introns, and canonical splicing signals, including GT at the upstream end and AG at the downstream end, have been widely assumed to be markers of linear alternative splicing and circRNA [34]. In our study, nearly all the splice sites were located in the exon, and non-GT/AG splicing signals guided the formation of linear and circular splice transcripts (Figs 2, 5, 8 and 9). Co-existing canonical and noncanonical splice signals have been reported to guide the formation of circRNA [10,35]. However, to date, noncanonical splicing signals have been detected only in plants, and there is little knowledge regarding these signals. The results of our study indicate that further research on this subject is warranted.

Complementary sequences within introns and exons are reported to play important roles at splice sites of

Fig. 8. Junctions of circular isoforms and the correlated linear sequences in HaAPN1. Corresponding positions in the two kinds of isoforms are indicated by the same colour; the sequences that are underlined are the co-directional repeats in the splice site.

(Table 3; Fig. 6). We then analysed the evolutionary relationships of the ten genes, and the phylogenetic tree showed that HaAPN1 and HaAPN3 diverged more recently than did the other HaAPNs [26–28], suggesting that the structures of these two genes are very similar. This finding might explain why HaAPN1 and HaAPN3 exhibited a large number of variations, while the other genes did not. Furthermore, this finding suggests that the splice mode might be dependent on the structure of the pre-mRNA.
circRNA \[10,13\]. We extracted the sequences flanking the splice sites and found that only 40% (8/20) of the circRNA had some complementary sequences near the splice sites. These complementary sequences were short, ranging in size from 4 to 5 nucleotides (Table 6). Similarly, in Arabidopsis thaliana samples, only 37% of the circRNA had some complementary sequences near the splice sites\[10\]. These observations indicate that in addition to complementary sequences, there must exist other elements that guarantee circularization.

Because of the co-existence of circular splicing events and linear splicing events, we suspected that the linear variants were by-products of circular isoform formation. We investigated the specific locations of the splice sites and found that the splice sites of the linear and circular transcripts did not complement each other perfectly. For example, among the circular HaAPN3 transcripts in sample S, only C4 could be detected, whereas three different truncated linear transcripts were detected in the same sample (V4, V7 and V8). The splice sites of the two types of transcripts did not overlap; in fact, the splice sites of the circular transcripts were located within the linear splice sites (Table 5; Fig. 12). Even though there was no overlap between the splice sites of the linear and circular transcripts, we believe that the linear variants are related to the circular isoforms for two reasons. The first reason is the similarity of the splicing signal: short co-directional repeats were involved in the formation of both types of transcripts. The second reason is that the splice sites between these two types of transcripts were adjacent (Tables 4 and 5). If the circular isoforms were not related to the linear variants, the splice sites of the circular isoforms would have been randomly distributed rather than densely clustered in the splice site-rich region of the linear variants. For example, for HaAPN3, the donor positions of the linear transcripts and the acceptor positions of the circular isoforms were all clustered in exons 1 and 2, and the acceptor
positions of the linear transcripts and the donor positions of the circular isoforms were located mainly in exons 13 and 14 (Table 5). We designed different pairs of divergent primers to amplify the HaAPN3 circular isoforms, and no new splice sites were detected in other exons. Moreover, divergent primers were designed to amplify the circular isoforms of HaAPN2 and HaAPN5, but we did not detect any products. Similarly, based on the data described above, no linear variants were detected for these two genes. For the above-mentioned reasons, we suspected that the circRNA may be related in some way to linear spliced events.

Several studies have revealed all of the APN genes were derived from gene duplication [26–28], and we suspected that there existed circRNA corresponding to the ancestral gene. It is possible that during evolution, some APNs lost this circRNA, and some APNs, such as the later ancestor of HaAPN1 and HaAPN3,
retained this circRNA. Alternatively, it is possible that circRNA formation did not occur for the ancestral gene and that during the evolutionary process, some APNs, such as the later ancestor of HaAPN1 and HaAPN3, acquired this feature. We know that multiple gene families developed from APN genes before the evolutionary divergence of Lepidoptera, and the amino acid sequence identity of the encoded proteins ranges from 23 to 40% between different clusters of the same species and from 50 to 95% between members of the same cluster in different species [26–28]. Thus, HaAPN3 shares closer evolutionary relationships with the APN3 of other species than with HaAPN1. We selected the PxAPN3 gene for analysis and detected five circular isoforms with the same noncanonical splice signals (Figs 10 and 11), which proved that there is some conservation for the circRNA formation in the evolutionary process of lepidopteran APNs.

In summary, the results of this study demonstrate that linear and circular splice transcripts are common in several lepidopteran APNs, and the circRNA may be related in some way to linear spliced events. A class of noncanonical splicing signals (short co-directional repeats) was shown to participate in the formation of the two types of transcripts. Phylogenetic analysis and detection of circular RNA of several APN genes showed that the formation of circular RNA is relatively conserved during the evolutionary process. These results expand our knowledge of lepidopteran APNs and this novel class of insect circRNA. Nonetheless, as the functions of the circular isoforms and truncated linear isoforms and the details of the splicing process remain unknown, further in-depth studies are needed.

Table 6. Complementary sequences surrounding splice sites of circRNA

Gene	Isoform	Flanking sequences upstream of the circRNA	Complementary sequences	Flanking sequences downstream of the circRNA	Complementary sequences
HaAPN1	C1	AACTACGATCAAATCCACTTG	TCAA	ATTTTGAACGAAATCCACAGC	TTTGA
	C2	TAACTACGATCAAATCCACTTG	–	GAATGAGCCCAAATCCACTC	–
	C3	GGGATCCGATTATTCTGATT	TCAA	GGCTATGTTGAATGAGCCCAA	TTGA
	C4	TGGACTAGGCGGATCATTATC	–	CAAAATCACCAGGTTAACATT	–
	C5	TGGACGCGAATACACTTGTGTA	GAGC	GAAGCAAATCAGTCAGCTG	GTCA
	C6	CATTGGTGACCTGTGTCATT	TTTGAC	TAAACCTTAATGCTCAACT	GTCAA
	C7	CTATCCTATTACCTGGACTA	–	TCAAGTTCAAAACTTGGTAGA	–
	C8	GCAAACCCATTACCTGGACTA	–	GAACGAAATCACAGCTGCA	–
	C9	CACTACTGGGCAACACACAC	–	AGGCTAATGTTGACAGCACT	–
	C10	CGTTCACGCGACACTTCTCC	–	CAGACTTAAACACAGTAATG	–
	C11	GTATCAACAGCGACACGCA	–	GAAGGCCCTACGGCACACAC	–
	C12	CTCTCCACACATACCTATTC	GTTC	TGAACCCCAAAATCCACTAGG	GAAG
	C13	CTCTACTGGGACAAACACCC	–	GTCTAGGTTCACATCAGT	–
	C14	CTCTACTGGGACAAACACCC	–	CGACTTACGTCACACACAC	–
HaAPN3	C1	CCGTTCTCCTCCTACCTGTCG	CGTCT	TGAAAGACGTACCAGGTA	AGACG
	C2	AATCCGTACCACCCACCCCC	–	CTTGAGCCCTACAGTACAGT	–
	C3	GAAGGACACATGATCCACAC	AAGGA	CAAACCTGGTGATCCCTTAC	TCCCT
	C4	CAAAGAAGCAGCCACCGAAGG	–	ACAATAAACATCAACAGGAGAC	–
	C5	TGACCTTTCAATCCTATTCCT	–	GGCGAACCCTTACACCGACT	–
	C6	GCCAAGTTCGAGTCGTTACGT	ACGT	ACTGGTGGAAGACGTACCAGC	ACYT

Fig. 10. Validation of noncanonical circRNA of PxAPN3. Divergent primers were used to amplify from both genomic DNA (as a negative control) and cDNA (regular or with various treatments such as RNaseR digestion and polyA selection). Results were visualized via agarose gel electrophoresis. The arrow marks the target band.
Materials and methods

Insects

The SCD strain is a susceptible strain of *H. armigera* that was derived from insects from the Ivory Coast, Africa, over 30 years ago and has been maintained in the laboratory without exposure to insecticides or Bt toxins [36,37]. The An strain, which is another susceptible laboratory strain of *H. armigera*, was derived from a field strain from Anyang, Henan Province, northern China [38]. The LF256 strain originated from a field-captured male, and the resistance to Cry1Ac was autosomal, recessive and 220-fold relative to susceptible strain SCD [39]. Larvae were reared on an artificial diet, and adults were maintained as described previously [36,37].

Fourth-instar *P. xylostella* larvae were purchased from Keyun (Henan, China).

Sequencing of cDNA and DNA samples

For the cDNA samples, total RNA from the midgut tissue of eight fifth instars was individually extracted for each strain using TRIzol reagent following protocols provided by the manufacturer (Invitrogen, Waltham, MA, USA) and reverse transcribed with Moloney murine leukaemia virus reverse transcriptase.
(Promega, Madison, WI, USA). Specific primers were designed and used to amplify gene fragments (Table S1). PCR products of the expected size were purified using the Wizard DNA purification system (Promega) and cloned into the pGEM-T Easy vector system (Promega). All clones were sequenced by Invitrogen (Shanghai, China). Reference sequences of the HaAPN genes were downloaded from OGS2 (http://webapollo.bioinformatics.csiro.au/helicoverpa_armigera).

Genomic DNA was isolated from the same fifth instars by phenol–chloroform extraction, and PCR amplification was performed using specific primers (Table S1). Cloning and sequencing were carried out as described above.

qRT-PCR assays
To normalize the copy number of the HaAPN1 gene derived from the SCD strain, genomic DNA was individually extracted as described above. Real-time PCR samples were prepared in SYBR® Premix Ex Taq™ (Tli RNaseH Plus; TaKaRa, Japan), and reactions were carried out using the 7500 RT-PCR detection system (ABI, Carlsbad, CA, USA). The qRT-PCR protocol included an initial incubation at 95 °C for 30 s, followed by 40 cycles of amplification at 95 °C for 5 s and 60 °C for 34 s. Data were normalized to the values for the gene encoding the voltage-gated sodium channel (HaSC), two copies of which are present in diploid insect genomes, using the $2^{-\Delta\Delta CT}$ method. Primers and PCR conditions were optimized to reduce nonspecific amplification. The PCR efficiency was similar for the target gene (97.2%) and the reference gene (95.7%). The primer sequences are provided in Table S1.

Midgut BBMV preparation and western blot analysis
Brush border membrane vesicles were prepared from insect midguts by the differential magnesium precipitation method [40]. Briefly, for each sample, the midguts of 10 fifth-instar H. armigera larvae were dissected, washed in ice-cold 0.15 M NaCl solution and then homogenized in 3 mL of MET buffer (pH 7.5, containing 300 mM mannitol, 5 mM EGTA and 17 mM Tris/HCl). Then, 3.5 ml of 24 mM MgCl2 was added, and the samples were incubated on ice for 15 min. The homogenate was centrifuged at 2500 g for 10 min, and then, the supernatant was transferred into a new tube and centrifuged at 30 000 g for 30 min. The pellets were collected and dissolved in 800 μL of 10 mM HEPES buffer (pH 7.5, containing 130 mM KCl and 10% glycerol). Prepared BBMVs were kept at −80 °C until used. Protein concentration was determined by the Bradford method with BSA as a standard.

For western blot assays, the BBMV proteins (10 μg) were separated by SDS/PAGE (10%) and transferred to polyvinylidene difluoride (PVDF) membranes (Bio-Rad, Hercules, CA, USA). The membranes were blocked with 2.5% (w/v) BSA in TBST (pH 7.5, containing 25 mM Tris, 3 mM KCl, 135 mM NaCl and 0.1% Tween-20) for 1.5 h and then washed three times with TBST. After blocking, all membrane incubations and washes were performed in TBST. Proteins were detected with a polyclonal anti-HaAPN1 antibody (1/5000; 1 h) and a goat anti-rabbit secondary antibody coupled with horseradish peroxidase (1/10 000; 1 h) (Abgent, San Diego, CA, USA) followed by the Super Signal chemiluminescent substrate (Thermo, Waltham, MA, USA) according to the manufacturer’s instructions. The polyclonal anti-HaAPN1 antibody was provided by the Institute of Plant Protection, Chinese Academy of Agricultural Sciences (CAAS), China. The antibody specificity was assessed by the expressed HaAPN1 in Escherichia coli line (Fig. S1).

Detection of the circRNA of APN genes
As described above, total RNA from eight H. armigera individuals was extracted. One of the eight samples was named Sample S, and the remaining seven samples were combined and named Sample M. Total RNA from ten P. xylostella individuals was extracted following the methods described above, and the ten samples were combined for use.

rRNA was removed using the Ribo-Zero Magnetic kit (Epicentre, Madison, WI, USA). Linear RNA was removed by RNase R (Epicentre) treatment (20 U for 1 h at 40 °C). Linear RNA was extracted with the PolyATtract® mRNA Isolation System III (Promega). Reverse transcription was also performed with the M-MLV system but with random primers (Promega); primers were designed to amplify the circRNA sequences of the APN genes (Table S2). Cloning and sequencing were carried out as described above. Reference sequences of the HaAPN genes were downloaded from OGS2 (http://webapollo.bioinformatics.csiro.au/helicoverpa_armigera). ThePxAPN3 sequence was obtained from NCBI, and the accession number is XM_011556806.

Acknowledgements
We thank Prof. Yidong Wu from College of Plant Protection, Nanjing Agricultural University, for kindly providing the insects. This research was funded by
grants from the China Postdoctoral Science Foundation (No. 2018M630538), the National Natural Science Foundation of China (No. 31630061) and Jiangsu Province Natural Science Foundation of China (No. BK20150114).

Conflict of interest
The authors declare no conflict of interest.

Author contributions
Meijing Gao designed the experiments; Meijing Gao, Yuan Liu, Yun Wang and Sa Dong conducted the experiments; and all authors analysed the data. Meijing Gao and Xianjin Liu wrote the manuscript.

References
1. Graveley BR (2005) Mutually exclusive splicing of the insect Dscam pre-mRNA directed by competing intronic RNA secondary structures. *Cell* **123**, 65–73.
2. Kurokawa K, Kuwano Y, Tominaga K, Kawai T, Katsuura S, Yamagishi N, Satake Y, Kajita K, Kajita T and Rokutan K (2010) Brief naturalistic stress induces an alternative splice variant of SMG-1 lacking exon 63 in peripheral leukocytes. *Neurosci Lett* **484**, 128–132.
3. McManus CJ and Graveley BR (2011) RNA structure and the mechanisms of alternative splicing. *Curr Opin Genet Dev* **21**, 373–379.
4. Kelly S, Greenman C, Cook PR and Papantonis A (2015) Exon skipping is correlated with exon circularization. *J Mol Biol* **427**, 2414–2417.
5. Suzuki H, Aoki Y, Kameyama T, Saito T, Masuda S, Tanihata J, Nagata T, Mayeda A, Takeda S and Tsukahara T (2016) Endogenous multiple exon skipping and back-splicing at the DMD mutation hotspot. *Int J Mol Sci* **722**, 1722.
6. Koh W, Gonzalez V, Natarajan S, Cartar R, Brown PO and Gawad C (2016) Dynamic ASXL1 exon skipping and alternative circular splicing in single human cells. *PLoS ONE* **11**, e0164085.
7. Coquierre C, Mascrez B, Hetuin D and Bailleul B (1993) Mis-splicing yields circular RNA molecules. *Faseb J* **7**, 155–160.
8. Menczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregeresen LH, Munshauer M et al. (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. *Nature* **495**, 333–338.
9. Wang PL, Bao Y, Yee MC, Barrett SP, Hogan GJ, Oisen MN, Disen MN, Dinenny JR, Brown PO and Saizman J (2014) Circular RNA is expressed across the eukaryotic tree of life. *PLoS ONE* **9**, e90859.
10. Sun X, Wang L, Ding Y, Zhang X, Che Y, Liu Z, Zhang X, Ye J, Wang J, Sablok G et al. (2016) Integrative analysis of Arabidopsis thaliana transcriptomics reveals intuitive splicing mechanism for circular RNA. *FEBS Lett* **590**, 3510–3516.
11. Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B,Damgaard CK and Kjems J (2013) Natural RNA circles function as efficient microRNA sponges. *Nature* **495**, 384–388.
12. Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, Marzluff WF and Sharpless NE (2013) Circular RNAs are abundant, conserved, and associated with ALU repeats. *RNA* **19**, 141–157.
13. Zhang X, Wang H, Zhang Y, Lu X, Chen L and Yang L (2014) Complementary sequence-mediated exon circularization. *Cell* **159**, 134–147.
14. Hooper NM (1994) Families of zinc metalloproteases. *FEBS Lett* **354**, 1–6.
15. Terra WR and Ferreira C (1994) Insect digestive enzymes: properties, compartmentalization and function. *Comparative Biochem Physiol Part B Comp Biochem* **109**, 1–62.
16. Khajuria C, Zhu YC, Chen MS, Buschman LL, Higgins RA, Yao J, Crespo ALB, Siegfried BD, Muthukrishnan SM and Zhu KY (2009) Expressed sequence tags from larval gut of the European corn borer (*Ostrinia nubilalis*): exploring the genes potentially involved in *Bacillus thuringiensis* toxicity and resistance. *BMC Genom* **10**, 286.
17. Coates BS, Sumerford DV and Lewis LC (2008) Mining an *Ostrinia nubilalis* midgut expressed sequence tag (EST) library for candidate genes and single nucleotide polymorphisms (SNPs). *Insect Molec Biol* **17**, 607–620.
18. Heckel DG (1994) The complex genetic basis of resistance to *Bacillus thuringiensis* toxin in insects. *Biocontrol Sci Tech* **4**, 405–417.
19. Angelucci C, Barrett-Wilt GA, Hunt DF, Akhurst RJ, East PD, Gordon KHJ and Campbell PM (2008) Diversity of aminopeptidases, derived from four lepidopteran gene duplications, and polyalcalins expressed in the midgut of *Helicoverpa armigera*: Identification of proteins binding the δ-endotoxin, Cry1Ac of *Bacillus thuringiensis*. *Insect Biochem Molec* **38**, 685–696.
20. Sivakumar S, Rajagopal R, Venkatesh GR, Srivastava A and Bhatnagar RK (2007) Knockdown of aminopeptidase N from *Helicoverpa armigera* larvae and in transfected SF21 cells by RNA interference reveals its functional interaction with *Bacillus thuringiensis* insecticidal protein Cry1Ac. *J Biol Chem* **282**, 7312–7319.
21 Zhang S, Cheng H, Gao Y, Wang G, Liang G and Wu K (2009) Mutation of an aminopeptidase N gene is associated with Helicoverpa armigera resistance to Bacillus thuringiensis Cry1Ac toxin. Insect Biochem Mol Biol 39, 421–429.

22 Tiewsiri K and Wang P (2011) Differential alteration of two aminopeptidases N associated with resistance to Bacillus thuringiensis toxin Cry1Ac in cabbage looper. Proc Natl Acad Sci USA 108, 14037–14042.

23 Puinean AM, Foster SP, Oliphant L, Denholm L, Field LM, Millar NS, Williamson MS and Bass C (2010) Amplification of a cytochrome P450 gene is associated with resistance to neonicotinoid insecticides in the aphid Myzus persicae. PLoS Genet 6, e1000999.

24 Gao Y, Wang Y, Zheng Y, Zhang J, Chen S and Zhao F (2016) Comprehensive identification of internal structure and alternative splicing events in circular RNAs. Nat Commun 7, 12060.

25 Zhang X, Dong R, Zhang Y, Zhang J, Luo Z, Zhang J, Chen L and Yang L (2016) Diverse alternative back-splicing and alternative splicing landscape of circular RNAs. Genome Res 26, 1277–1287.

26 Hughes AL (2014) Evolutionary diversification of aminopeptidase N in Lepidoptera by conserved clade-specific amino acid residues. Mol Phylogenet Evol 76, 127–133.

27 Lin P, Cheng T, Jin S, Jiang L, Wang C and Xia Q (2014) Structural, evolutionary and functional analysis of APN genes in the Lepidoptera Bombyx mori. Gene 535, 303–311.

28 Crava CM, Bel Y, Lee SF, Manachini B, Heckel DG and Escribè B (2010) Study of the aminopeptidase N gene family in the lepidopterans Ostrinia nubilalis (Hübner) and Bombyx mori (L.): sequences, mapping and expression. Insect Biochem Mol Biol 40, 506e515.

29 Flores-Escobar B, Rodríguez-Magadan H, Bravo A, Soberón M and Gómez I (2013) Differential role of Manduca sexta aminopeptidase-N and alkaline phosphatase in the mode of action of Cry1Aa, Cry1Ab, and Cry1Ac toxins from Bacillus thuringiensis. Appl Environ Microbiol 15, 4543–4550.

30 Garner KJ, Hiremath S, Lehtoma K and Valaitis AP (1999) Cloning and complete sequence characterization of two gypsy moth aminopeptidase N cDNAs, including the receptor for Bacillus thuringiensis Cry1Ac toxin. Insect Biochem Mol Biol 29, 527–535.

31 Valaitis AP (2011) Localization of Bacillus thuringiensis Cry1A toxin-binding molecules in gypsy moth larval gut sections using fluorescence microscopy. J Invertebr Pathol 2, 69–75.

32 Chang WX, Gahan LJ, Tabashnik BE and Heckel DG (1999) A new aminopeptidase from diamondback moth provides evidence for a gene duplication event in Lepidoptera. Insect Mol Biol 8, 171–177.

33 Rajagopal R, Agrawal N, Selvapandian A, Sivakumar S, Ahmad S and Bhatnagar R (2003) Recombinantly expressed isoenzymic aminopeptidases from Helicoverpa armigera (American cotton bollworm) midgut display differential interaction with closely related Bacillus thuringiensis insecticidal proteins. Biochem J 370, 971–978.

34 Stefan S, Isabelle J, Oliver R, Tim S, Silke S, Lee-Hsueh H and Albrecht B (2015) Exon circularization requires canonical splice signals. Cell Rep 10, 103–111.

35 Ye C, Zhang X, Chu Q, Liu C, Yu Y, Jiang W, Zhu Q, Fan L and Guo L (2016) Full-length sequence assembly reveals circular RNAs with diverse non-GT/AG splicing signals in rice. RNA Biol 14, 1055–1063.

36 Yang Y, Yang Y, Guo J, Wu Y and Wu Y (2009) Introgression of a disrupted cadherin gene enables susceptible Helicoverpa armigera to obtain resistance to Bacillus thuringiensis toxin Cry1Ac. B Entomol Res 99, 175–181.

37 Zhang H, Tian W, Zhao J, Jin L, Yang J, Liu C, Yang Y, Wu S, Wu K, Cui J et al. (2012) Diverse genetic basis of field-evolved resistance to Bt cotton in cotton bollworm from China. Proc Natl Acad Sci USA 109, 10275–10280.

38 Liu L, Gao M, Yang S, Liu S, Wu Y, Carrière Y and Yang Y (2017) Resistance to Bacillus thuringiensis toxin Cry2Ab and survival on single-toxin and pyramided cotton in cotton bollworm from China. Evol Appl 10, 170–179.

39 Gao M, Wang X, Yang Y, Tabashnik BE and Wu YD (2018) Epistasis confers resistance to Bt toxin Cry1Ac in the cotton bollworm. Evol Appl 11, 809–819.

40 Woltersberger M, Luethy P, Maurer A, Parenti P, Sacchi FV, Giordana B and Hanozet GM (1987) Preparation and partial characterization of amino acid transporting brush border membrane vesicles from the larval midgut of the cabbage butterfly (Pieris brassicae). Comp Biochem Phys A 86, 301–308.

Supporting information

Additional supporting information may be found online in the Supporting Information section at the end of the article.

Table S1. Nucleotide primers used to obtain cDNA and gDNA fragments of HaAPNs and to perform qPCR.

Table S2. Nucleotide primers used to obtain the circRNA fragments of HaAPNs and PxAPN3.

Fig. S1. Western blotting analysis of expressed HaAPNI in Escherichia coli. Lane 1, 200 kD ladder; lane 2, expressed HaAPNI in E. coli.