Нейросетевой классификатор гиперспектральных снимков кожных патологий

В.О. Винокуров 1, И.А. Матвеева 1, Ю.А. Христофорова 1, О.О. Мякишин 1, И.А. Братченко 1, Л.А. Братченко 1, А.А. Морятов 2, С.Г. Козлов 2, А.С. Мачихин 3, И. Абдулхалим 4, В.П. Захаров 4

1 Самарский национальный исследовательский университет имени академика С.П. Королёва, 443086, Россия, г. Самара, Московское шоссе, д. 34;
2 Самарский государственный медицинский университет, 443079, Россия, г. Самара, ул. Чапаевская, д. 89;
3 Научно-технологический центр уникального приборостроения РАН, 117342, Россия, г. Москва, ул. Бутлерова, д. 15;
4 Университет имени Давида Бен Гуриона в Негеве, 8410501, Израиль, г. Беэр-Шева, Р.О.В. 653

Аннотация

В работе представлены результаты применения нейросетевого классификатора для анализа снимков злокачественных и доброкачественных кожных образований, полученных с помощью гиперспектральной камеры. С помощью трёхблочной нейросети архитектуры VGG произведена классификация набора двумерных изображений меланомы, папилломы и базальноклеточной карциномы, полученных в диапазонах 530–570 и 600–606 нм, характеризуемых наибольшим поглощением меланина и гемоглобина. Проанализирована достаточность включения в обучающий набор двумерных изображений ограниченного спектрального диапазона. Полученные результаты позволяют судить о значительных перспективах применения нейросетевых алгоритмов обработки гиперспектральных данных для классификации кожных патологий. При относительно малом наборе обучающих данных точность классификации для трех типов новообразований составила 96 %.

Ключевые слова: гиперспектральная визуализация, нейросетевой классификатор, меланома, гемоглобин, онкология, меланома, базальноклеточная карцинома, VGG.

Цитирование: Винокуров В.О. Нейросетевой классификатор гиперспектральных снимков кожных патологий / В.О. Винокуров, И.А. Матвеева, Ю.А. Христофорова, О.О. Мякишин, И.А. Братченко, Л.А. Братченко, А.А. Морятов, С.Г. Козлов, А.С. Мачихин, И. Абдулхалим, В.П. Захаров // Компьютерная оптика. – 2021. – Т. 45, № 6. – С. 879-886. – DOI: 10.18287/2412-6179-CO-832.

Citation: Vinokurov VO, Matveeva IA, Khristoforova YA, Myakinin OO, Bratchenko IA, Bratchenko LA, Moryatov AA, Kozlov SG, Machikhin AS, Abdulhalim I, Zakharov VP. Neural network classifier of hyperspectral images of skin pathologies. Computer Optics 2021; 45(6): 879-886. DOI: 10.18287/2412-6179-CO-832.

Введение

Рак кожи является наиболее часто диагностируемым злокачественным новообразованием [1]. Так, к 2025 году Международное агентство по исследованию рака прогнозирует рост заболеваемости до 19,3 миллионов в год, что почти на 30% выше показателя 2012 года (14,1 миллион) [2–3]. В России за 2018 год, по данным Московского научно-исследовательского онкологического института имени П.А. Герцена, было выявлено 89958 злокачественных кожных патологий, а в США за тот же период зафиксировано 104350 новых случаев [4–5].

Меланома представляет собой опухоль, образовавшуюся из клеток-меланоцитов и является одним из наиболее опасных типов рака. Хотя она встречается реже прочих злокачественных образований кожи (3% от общего числа выявленных случаев), за счёт высокой вероятности метастазирования смертность от меланомы составляет порядка 74% [6–9]. Среди немеланомных злокачественных новообразований 75% составляет базальноклеточная карцинома — базалиома (Basal Cell Carcinoma – BCC) [6].

Для всех видов новообразований кожи первичным средством диагностики, естественно, служит визуальный осмотр врача-дерматолога. Крайне желательно именно обнаружение заболевания на раннем этапе, т.к. это существенно повышает выживаемость [10]. Тем не менее достоверность визуального осмотра при определении меланомы не превышает 50%, поскольку внешнее она имеет характеристики, схожие с пигментным невусом, из которого (или на фоне которого) меланома может развиться в результате ряда внешних воздействий [11–12]. Невус, в свою очередь, представлен широким диапазоном форм, оттенков и размеров, существенно усложняющим диагностику "на глаз". Кроме того, поскольку перерождение дисплазического невуса в меланому происходит на клеточном уровне, отличить их in situ считается невозможным [13].
Наиболее полную клиническую картину даёт взятие биоптата, предусматривающее забор образца новообразования и дальнейшее его гистологическое исследование специалистом-патоморфологом. Из-за «агрессивного» поведения и высоких рисков метастазирования при внешнем воздействии подобная процедура, как правило, не применяется [14]. Вместо этого, удаление подлежит весь поражённый участок и небольшая зона заведомо здоровой ткани вокруг, а лабораторные исследования проводятся постфактум.

Сегодня оптическая диагностика рака кожи осуществляется с использованием разных оптических методов: дерматоскопия, флюоресцентия, комбинационное рассеяние (КР), диффузная отражательная спектроскопия и т.д.

Альтернативными методами, используемыми чаще всего, являются дерматоскопия и эпилиминесцентная микроскопия (Epiluminiscent Microscopy – ELM), использующая микроскоп с источником света для более детального осмотра поражённого участка [15, 16].

Более высокая точность дифференциального анализа различных опухолей кожи продемонстрирована при использовании спектроскопии КР, которая чувствительна к молекулярным изменениям большого класса компонентов: ДНК, липиды, белки и нуклеиновые кислоты, коллаген, эластин, каротиноиды и др. Точность классификации опухолей на основании КР варьируется в широком диапазоне в зависимости от выборки и методов анализа спектральных данных. В работе [17] рассчитана чувствительность 56 % и специфичность 89 % при классификации меланомы (n = 10) и пигментных невусов (n = 10); в работе [18] 79 % чувствительность и 95 % специфичность при классификации меланомы (n = 19) относительно бальзамкиночечной карциномы и доброкачественных опухолей (n = 37); в работе [19] классификация рака кожи (n = 340) и доброкачественных опухолей (n = 391) выполнена с 90 % чувствительностью и 82 % специфичностью.

Гиперспектральная визуализация (Hyperspectral Imaging – HSI) также требует длительного времени регистрации снимков (до нескольких минут). При этом в отличие от спектральных методов КР и флюоресценции, которые позволяют измерять спектральные характеристики с выбранных точек поверхности биоткани, метод HSI регистрирует изображение всей области опухоли, позволяя более подробно изучать спектральные характеристики со всех точек поверхности патологии, вызывающих подозрение на злокачественность. Такое преимущество метода особенно важно, поскольку на ранней стадии распределение опухолевых клеток на поверхности кожи неоднородно [20], что, в свою очередь, обуславливает большую часть ошибочных результатов биопсии рака кожи, поскольку взятый биоптат может не содержать опухолевых клеток.

Флуоресцентия в видимой области чувствительна к широкому компонентному составу эндогенных флуорофоров биоткани по сравнению с HSI области около 600 нм [21], однако несмотря на это низкая точность на уровне 70% не позволяет с высокой эффективностью применять метод в качестве самостоятельного подхода, и в большинстве работ он используется в качестве вспомогательного, что позволяет увеличить точность исследования до 30–90% [17]. При этом в отличие от HSI исследование с помощью флюоресцентия характеризуется быстрым временем регистрации сигнала (доли секунд/секунды) и простой реализацией, что позволяет с эффективностью применить данный метод для выделения границ опухолей [22]. При этом метод HSI также обладает возможностью исследования поверхности для обнаружения границ подозрительных участков патологии, но в течение длительного времени экспозиции (до нескольких минут). Задача обнаружения границ опухоли с использованием HSI была продемонстрирована в ранней работе [23]. Метод HSI регистрирует спектральный снимок всего участка биоткани, что позволяет выделять отдельные фрагменты поверхности, представляющие интерес для последующего точечного спектрального анализа биохимических особенностей.

При этом во всех вышеописанных работах значение дифференциальной точки получено при бинарной классификации рака кожи относительно других опухолей кожи. Классификация меланомы проводится даже в нескольких этапах [18], поскольку, насколько нам известно, не существует мультиклассовых регрессионных моделей при анализе различных типов опухолей. Преимущество реализации нейронных сетей для анализа HSI-снимков заключается в возможности осуществлять мультиклассовый анализ, что позволяет вывести дифференциальный анализ на более высокий уровень.

Данные HSI представляют собой гиперкуб, состоящий из двумерных изображений, полученных при фотофиксации объекта на определённых длинах волн [24, 25]. Очевидно, что для соблюдения целостности данных при решении задачи классификации необходимо использовать весь диапазон двумерных изображений, образующих гиперкуб. В свою очередь, это приводит к увеличению объёмов обрабатываемой информации, что вынуждает исследователей ограничивать количество анализируемых образцов [26].

Задача классификации гиперспектральных данных решается двумя способами: с помощью разработанной вручную техники извлечения признаков и с помощью извлечения признаков на основе обучения с учителем. В последнее время свёрточные нейронные сети (Convolutional Neural Network – CNN) набирают популярность из-за значительного увеличения производительности по сравнению с разрабатываемым вручную подходом к извлечению признаков [27].
Для анализа HSI существует множество методов, список которых постоянно расширяется. Однако использование гиперспектральной пространственной информации для классификации опухолей всё ещё мало изучено. Ху [28] с соавторами произведли моделирование архитектуры CNN с пятью уровнями между свёрточными слоями, использующими базовые блоки нейросети для включения каждого пиксель-вектора в расчёт весов. Данное исследование дало эффективность одновременного использования всех трёх координатных плоскостей гиперкуба.

На основании работы Ma [29] был предложен механизм контекстного глубокого обучения (Context Deep Learning – CDL). Построенная по этому принципу сеть принимает в качестве входных данных каждый пиксель-вектор и соседствующие с ним пиксели-векторы, позволяя извлекать как спектральную, так и пространственную информацию, обеспечивая тонкую настройку классификации.

Одна из последних работ [30] в области обнаружения опухолей кожи по гиперспектральным данным использует подход, описываемый как непараметрическая, многомерная оценка плотности вероятности. Описываемая в работе архитектура представляет собой традиционную 6-слойную свёрточную нейросеть, предназначенную для классификации плоскоклеточной карциномы, рака щитовидной железы и нормальной ткани, локализованной на шее. Классификатор достижен точности определения порядка 80% [31]. Также результаты диагностики онкологий кожи по-зитивно стимулируют разработку новых подходов для оптической in vivo диагностики с применением HSI.

В данной работе рассматривается дифференцирование гиперспектральных изображений – меланомы, базальноклеточной карциномы и папилломы с использованием трёхслойной нейросети архитектуры VGG, обученной на наборе данных, специально собранным для проводимого исследования и непрерывно расширяемом по мере обработки данных. Действенность метода определена типом злокачественного кожнообразования на основании двухмерных изображений, экструдированных из HSI-данных образца, была ранее показана Шерендан с соавторами [26], реализовывавшей обработку изображений вручную. Результаты проведённого исследования позволяют судить о том, что даже без дополнительной обработки обучающей выборки и при малом количестве образцов нейросетевому классификатору удается с высокой точностью производить дифференцирование злокачественных новообразований.

1. Материалы и методы

Для регистрации спектральных изображений использовался акустооптический видеоспектрометр, позволяющий получать изображение исследуемого участка на произвольно-задаваемой длине волны в диапазоне 440–750 нм. При этом спектральное разрешение составляет $\delta \lambda = 2.5$ нм (при $\lambda = 633$ нм), а пространственное разрешение – 0,14 мм. Особенно установки является двойная последовательная фильтрация. Она обеспечивает практически полную компенсацию спектральных и пространственных искажений изображения в одной ячейке, вызываемых дифракцией Брэгга, обычно приводящих к изменению спектров в отдельных точках [32]. Результатом фиксации гиперспектральных данных является гиперкуб из 151 изображения.

2. Предобработка гиперспектральных данных

У большинства изображений присутствуют тёмные области, обусловленные ограниченной зоной захвата камеры. Наиболее тривиальным решением является цифровое увеличение, поскольку кожные патологии присутствуют в центре кадра. Подобный подход позволяет сократить объем изображения в 4 раза (с 1,3 до 0,3 Мб), что даёт существенную экономию памяти при проецировании на весь набор данных. Уменьшение размеров матрицы изображения приводит к сокращению времени на манипуляции, связанные с обработкой изображений нейросетевым классификатором. На рис. 1 представлены исходное и увеличенное изображения.

Рис. 1. Исходное 1024×1024 пикс (слева) и увеличенное 300×300 пикс (справа) изображение папилломы
3. Нейросетевой классификатор

В основе архитектуры нейросетевого классификатора лежит сеть VGG. В отличие от AlexNet, фокусирующейся на меньших размерах окон и шагах первого свёрточного уровня, VGG обращается к глубине изображения. На вход VGG принимает изображение RGB размером 224 × 224 пикселей, представленное спектральным срезом. Входное изображение размером 300 × 300 претерпевает уменьшение до 224 × 244 за счёт дополнительного масштабирования. Поскольку изображение представлено в grayscale цветовой схеме, вместо 3 каналов, на вход подаётся только 1, что позволяет дополнительно упростить механизм взаимодействия.

Свёрточные слои в VGG используют очень маленькое воспринимающее поле (3 × 3, наименьший возможный размер, сохраняющий способность захватывать соседние пиксели). Шаг свертки фиксируется на 1 пиксель, так что пространственное разрешение сохраняется после свертки.

По результатам предшествующих исследований решено было остановиться на трёхслойной структуре VGG, представленной на рис. 2. Тренировка нейросетевого классификатора, строящегося по представленной схеме, производилась на ноутбуке Huawei D15, укомплектованном процессором Ryzen 5 3500, 8 GB оперативной памяти.

3500 – 750

4. Набор данных

Регистрация гиперспектральных изображений производилась в Самарском областном клиническом онкологическом диспансере. Получены информационные согласия каждого испытуемого. Проведение исследования было одобрено этическим комитетом Самарского государственного медицинского университета.

Состав итогового набора образцов и полученных из них изображений представлен в табл. 1. Имеющиеся данные об образцах искусственно обезличены, лишены гендерной и возрастной дифференциации. Новообразования зафиксированы с разным масштабом и наложением на естественные неровности ткани, что несколько снижает точность классификации, но является верным с точки зрения максимального приближения к реальным условиям. Каждому образцу присвоен код, позволяющий упростить обращение к нему классификатора. Всего в данном исследовании были проанализированы 67 образцов.

Табл. 1. Состав набора данных

№	Диагноз	Кол-во образцов	Кол-во изображений
1	Меланома	35	945
2	Папиллома	27	729
3	Базалиома	36	972

С использованием встроенного PO из исходных гиперспектральных изображений исследуемых новообразований кожи были получены отдельные изображения в градациях серого (grayscale). Для каждого исследованного образца получено по 27 изображений для длин волн в интервале 530 – 570 и 600 – 606 нм (с шагом 2 нм). Выбор этих спектральных интервалов продиктован наибольшим поглощением меланина и гемоглобина, а также высокой контрастностью изображений, облегчающей анализ геометрии новообразования. Ряд образцов был отнесен на этом этапе, поскольку они оказались значительно темнее общего уровня. Кроме того, часть образцов была удалена из обучающей и тестовых выборок из-за несоответствия масштаба кадра.

Итоговый набор насчитывал 2646 изображений в формате .tif, с разрешением 1360 × 1024 пикселя, которые были распределены между тренировочной (11991 изображение) выборкой и набором валидации (655 изображений). В состав набора данных для валидации вошло 25% изображений, отбираемых случайным образом и не участвовавших в обучении.

Неравномерное распределение образцов по классам обусловлено необходимостью точного обнаружения меланомы и характеристики проявления папилломы. С ростом классифицируемых новообразований количество образцов может быть выровнено.

5. Результаты и обсуждения

На рис. 3 представлены HSI изображения меланомы, папилломы и базальноклеточной карциномы с отмеченными пиксель-областями на поверхности патологии и нормальной кожи, которые представляют интерес для анализа компонентного состава на основании зарегистрированных спектральных характеристик. Для выделенных пикселей гиперкуба представлены соответствующие спектральные кривые в диапазоне 450 – 750 нм.

Первичные исследования проводились на спектральном интервале 600 – 606 нм, а полученная точность...
Нейросетевой классификатор гиперспектральных снимков кожных патологий

Винокуров В.О. и др.

Компьютерная оптика, 2021, том 45, №6 DOI: 10.18287/2412-6179-CO-832

носность равнялась 92%. При этом затрачиваемое на тренировку классификатора время составляло 193 секунды. Для каждого из 67 образцов было получено по 3 спектральных среза – 268 изображений. Распределение образцов по классам в процентном соотношении было аналогичным. На рис. 4 показаны метрики обучения первичной модели. Результаты обучения оказались нестабильными, ввиду чего было принято решение о расширении спектрального диапазона.

Исследование HSI-изображений патологий кожи было проведено на узких спектральных областях 530 – 570 нм и 600 – 606 нм. Спектральные характеристики диапазонов соответствуют качественным и количественным различиям меланина и гемоглобина в биоткани. Время тренировки классификатора составило 1029 с (~128 с/эпоха). Метрики, полученные в процессе обучения 20 эпох, представлены на рис. 5.

В архитектуре нейросети предусмотрен триггер в виде обратной связи, прерывающий обучение, в случае прекращения увеличения точности в течение 2 эпох. Анализ снимков HSI, учитывающих различия данных хромофоров, с помощью реализации нейронной сети на трех классах: меланома, базальноклеточная карцинома, папиллома.

Рис. 3. Пиксель-векторы для патологии и здоровой кожи на примере меланомы (слева), папилломы (центр) и базальноклеточной карциномы (справа). Сплошным маркером отмечены пиксель-векторы патологии, пунктирным – здоровой кожи.

Рис. 4. Метрика точности итогового классификатора для областей 530 – 570 и 600 – 606 нм (слева) и потерь (справа).

Рис. 5. Метрика точности итогового классификатора для областей 530 – 570 и 600 – 606 нм (слева) и потерь (справа).
Продемонстрированная высокая точность мультимодального разделения опухолей не только сопоставима с результатами применения КР, но и превышает эффективность флуоресцентии и дерматоскопического исследования. Ранее в работе [23] анализ спектральных индексов, рассчитанных по снимкам HSI и характеризующих различия относительного содержания хромофоров кожи для меланомы, базально-клеточной карциномы, пигментных невусов, позволил получить точность не выше 78 %. Подход, основанный на применении КР, отмечен высоким потенциалом в качестве диагностического инструмента рака кожи, поскольку чувствителен к широкому компонентному ряду опухолей, однако характеризуется более длительным временем накопления сигнала (секунды/минуты).

В данной работе количество исследуемых образцов близко к используемой командой Pardo с соавторами [31], однако проведение исследования на выбранных спектральных диапазонах (530—570 нм и 600—606 им) даёт возможность оценить влияние отдельных спектральных полос на общую точность, а значит, установить, рационально ли исследование всего спектрального диапазона и может ли оно быть заменено лишь линиями пикового поглощения меланина и гемоглобина. Полученная точность классификации изображений – 96 %, позволяет говорить об информативности областей спектра, характеристики которых были основой для идентификации новообразований кожи.

Анализ снимков HSI с использованием нейронных сетей продемонстрирован в работе [30]. Точность 96,4 % была получена для классификации рака и нормальных тканей 50 пациентов с опухолями головы и шеи (29 пациентов плоскоклеточной карциномы верхнего отдела пищевода и 21 пациент с карциномой щитовидной железы) с использованием сверточных нейронных сетей. Авторы отмечают, что полученные результаты могут быть полезны для интраоперационного обнаружения границ опухоли. Наш экспериментальные результаты с точностью 96 % мультимодального разделения рака кожи позволяют решить задачу идентификации типа новообразования и в том числе самого агрессивного рака кожи – меланомы [30]. Учитывая небольшой размер выборок для обучения и валидации нейросети, достигнутые точность и потери классификации могут как улучшаться, так и ухудшаться при их увеличении.

Заключение

Гиперспектральная визуализация в качестве инструмента для исследования патологий кожи позволяет выполнять сразу две задачи: (1) исследование поверхности кожи для обнаружения границ подозрительных участков и (2) исследование морфологических и химических свойств кожи для выявления и идентификации типа опухоли. Данные особенности позволяют повысить надежность и точность диагностики патологий кожи, учитывающей физиологические, морфологические и композиционные особенности строения биотканей.

В данной работе был проведен мультимодальный анализ HSI-изображений 98 патологий кожи в видимой области с помощью реализации трёхблочной структуры нейронной сети VGG. Дифференциальный анализ патологий кожи основан на вариативности распределения хромофоров кожи меланина и гемоглобина при различных процессах, обуславливающих разные патологии. Выбранные для дифференциального анализа изображений спектральные диапазоны 530—570 нм и 600—606 нм в совокупности показали высокую информативность, что подтверждает возможность сокращения регистрируемых спектральных данных и, соответственно, повышает скорость вычислительных процессов. Точность классификации 2646 изображений меланомы, базально-клеточной карциномы и папиллом составила 96 %. Использование алгоритма классификации изображений на основании нейронных сетей позволило повысить точность разделения патологий кожи по сравнению с другими методами классификации [10, 19].

Благодарности

Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 19-52-06005 МНТИ а.

Литература

1. Tests for melanoma skin cancer [Electronic Resource]. – 2016. – URL: https://www.cancer.org/cancer/melanoma-skin-cancer/detection-diagnosis-staging/how-diagnosed.html (request date 10.08.2020).

2. World cancer report 2008 / ed. by P. Boyle, D. Parkin. – Lyon: International Agency for Research on Cancer, 2008. – 511 p.

3. Siegel, R. Cancer statistics, 2012 // R. Siegel, D. Naishadham, A. Jemal // CA: A Cancer Journal for Clinicians. – 2012. – Vol. 62. – P. 10-29. – DOI: 10.3322/caac.20138.

4. Siegel, R.L. Cancer statistics, 2019 // R.L. Siegel, K.D. Miller, A. Jemal // CA: A Cancer Journal for Clinicians. – 2019. – Vol. 69. – P. 8-10.

5. Злокачественные новообразования в России в 2018 году (заболеваемость и смертность) // А.Д. Каприн, В.В. Старицкий, Г.В. Петрова. – М.: МНЮИ им. П.А. Герцена – филиал ФГБУ «НМИЦ» Минздрава России, 2019. – 250 с.

6. de Oliveira Santos, M. Estimativa 2018: Incidência de câncer no Brasil / M. de Oliveira Santos // Revista Brasileira De Cancerologia. – 2018. – Vol. 64, No. 1. – P. 119-120.

7. de Almeida, V.L. Câncer e agentes antineoplásicos ciclo- celular específicos e ciclo-celular nãoespecíficos que interagem com o dna: uma introdução / V.L. de Almeida, A. Leitao, L.d.C.B. Reina [et al.] // Química Nova. – 2005. – Vol. 28, Issue 1. – P. 118-129.

8. Carvalho, G.C. Principais marcadores moleculares para os câncer de pele e mama / G.C. Carvalho, F. Alves // NBC- Periodico Cientifico do Nucleo de Bioteciencias. – 2014. – Vol. 4, No. 07. – P. 11-17.
9. Figueiredo, L.C. Cancer de pele: estudio dos principais marcadores moleculares melanoma cutâneo / L.C. Figueiredo, L.N. Cordeiro, A.P. Arruda [et al.] // Revista Brasileira De Cancerologia. – 2003. – Vol. 49, Issue 3. – P. 179-183.
10. Братченко, И.А. Гиперспектральная визуализация патологических процессов в кожных дерматитов / И.А. Братченко, М.В. Алонова, О.О. Мякинин, А.А. Мякинин, С.В. Козлов, В.П. Захаров // Компьютерная оптика. – 2016. – T. 40, № 2. – C. 240-248. – DOI: 10.18287/2412-6179-2016-4-2-240-248.
11. Clark, W.H. Origin of familial malignant melanomas from heritable melanocytic lesions. The B-K mole syndrome / W.H. Clark, R.R. Reimer, M. Greene [et al.] // Archives of Dermatology. – 1978. – Vol. 114, Issue 5. – P. 732-739.
12. Elder, D.E. Diplastic nevus syndrome. A phenotypic asso-
 mation of sporadic cutaneous melanoma / D.E. Elder, J. Leonard, J. Goldman [et al.] // Cancer. – 1980. – Vol. 46, Issue 8. – P. 1784-1794.
13. Романова, О.А. Клинический случай крупного про
 гressирующего диспластического невуса с переходом в
 меланому / О.А. Романова, Н.Г. Артемьева, М.Г. Солохина // Клиническая дерматология и венерол
 огия. – 2018. – № 17. – C. 34-37. – DOI: 10.17116/klinderma201817234-37.
14. Gross, P.E. Challenges to effective cancer control in China, India, and Russia / P.E. Gross, K. Strasser-Weippl, B.L. Lee-Bychkovsky [et al.] // The Lancet Oncology. – 2014. – Vol. 15. – P. 489-538. – DOI: 10.1016/S1470-2045(14)00294-9.
15. Carli, P. Dermatoscopy in the diagnosis of pigmented skin
 lesions: a new semiology for the dermatologist / P. Carli, V. De Giorgi, H. Soyer [et al.] // The Journal of the European
 Academy of Dermatology and Venereology. – 2000. – Vol. 14, Issue 5. – P. 353-369.
16. Jacques, O.M. Imaging skin pathology with polarized light
 / S.L. Jacques, J.C. Ramella-Roman, K. Lee // Journal of Biomed
 ical Optics. – 2002. – Vol. 7, Issue 3. – P. 329-340.
17. Cicchi, R. Combined fluorescence-Raman spectroscopic
 setup for the diagnosis of melanocytic lesions / R. Cicchi, A. Cosci, S. Rossari // Journal of Biophotonics. – 2014. –
 Vol. 7, Issues 1-2. – P. 86-95. – DOI: 10.1002/jbio.201200230.
18. Khristoforova, Y.A. Portable spectroscopic system for in
 vivo skin neoplasms diagnostics by Raman and autofluores
 cence analysis / Y.A. Khristoforova, I.A. Bratchenko, O.O. Myakinin, D.N. Artemyev, A.A. Moriatov, A.E. Orlov, S.V. Kozlov, V.P. Zakharov // Journal of Bio
 photonics. – 2019. – Vol. 12, Issue 4. – e201800400. – DOI: 10.1002/jbio.201800400.
19. Zhao, J. Incorporating patient demographics into Raman
 spectroscopy algorithm improves in vivo skin cancer diag
 nosis specificity / J. Zhao, H. Zeng, S. Kaia, H. Lui // Translational Biophotonics. – 2019. – Vol. 1, Issues 1-2. –
 e201900016. – DOI: 10.1002/tbio.201900016.
20. Kong, K. Diagnosis of tumors during tissue-conserving
 surgery with integrated autofluorescence and Raman scat
 tering microscopy / K. Kong, C.J. Rowlands, S. Varma // Proceedings of the National Academy of Sciences. – 2013. –
 Vol. 110, Issue 38. – P. 15189-15194. – DOI: 10.1073/pnas.1311289110.
21. Tuchin, V.V. Tissue optics and photonics: Light-tissue inter
 action / V.V. Tuchin // Journal of Biomedical Photonics
 & Engineering. – 2015. – Vol. 1, No. 2. – P. 98-134.
 – DOI: 10.18287/jbpe-2015-1-2-98.
22. Zherdeva, L.A. In vivo hyperspectral imaging and differen
 tiation of skin cancer / L.A. Zherdeva, I.A. Bratchenko, O.O. Myakinin // Proceedings of SPIE. – 2016. –
 Vol. 10024. – 100244G. – DOI: 10.1117/12.2246433.
23. Bratchenko, I.A. In vivo hyperspectral analysis of skin
 hemoglobin and melanin content for neoplasia detection /
 I.A. Bratchenko, O.O. Myakinin, V.P. Sherendak [et al.] // Journal of Biomedical Photonics & Engineering. – 2018. –
 Vol. 4, No. 4. – 046301. – DOI: 10.18287/JBPE18.04.046301.
24. Chang, C.I. Hyperspectral imaging: Techniques for spectral
 detection and classification / C.I. Chang. – Boston: Springer. – 2003. – ISBN: 978-0-306-47483-5.
25. Pan, B. R-VCANet: A new deep-learning-based hyperspec
 tral image classification method / B. Pan, Z. Shi, X. Xu // IEEE Journal of Selected Topics in Applied Earth Ob
 servations and Remote Sensing. – 2017. – Vol. 10, Issue 5. – P. 1975-1986.
26. Шерендак, В.П. Гиперспектральный in vivo анализ
 хромофоров нормальной кожи и визуализация онколог
 ических патологий / В.П. Шерендак, И.А. Братченко,
 О.О. Мякинин, П.Н. Вольчин, Ю.А. Христов,
 А.А. Мякинин, Н.Г. Артемьева, В.П. Козлов,
 В.П. Захаров // Компьютерная оптика. – 2019. –
 Т. 43, № 4. – С. 661-670. – DOI: 10.18287/2412-6179-2019-43-4
 661-670.
27. Krizhevsky, A. ImageNet classification with deep convolu
 tional neural networks / A. Krizhevsky, I. Sutskever, G.E. Hinton // NIPS’12: Proceedings of the 25th Internation
 al Conference on Neural Information Processing Systems. – 2012. – Vol. 1. – P. 1097-1105.
28. Hu, W. Deep convolutional neural networks for hyperspectral image classification / W. Hu, Y. Huang, L. Wei [et al.] // Journal of Sensors. – 2015. – Vol. 2015. –
 258619. – DOI: 10.1155/2015/258619.
29. Ma, X. Hyperspectral image classification via contextual
 deep learning / X. Ma, J. Geng, H. Wang // EURASIP Journal on Image and Video Processing. – 2015. – Vol. 20,
 Issue 1. – 20.
30. Halick, M. Deep convolutional neural networks for classi
 fying head and neck cancer using hyperspectral imaging / M. Halick [et al.] // Journal of Biomedical Optics. – 2017. –
 Vol. 22. – 060503. – DOI: 10.1117/1.JBO.22.6.060503.
31. Pardo, A. On the spectral signature of melanoma: a non
 parametric classification framework for cancer detection in
 hyperspectral imaging of melanocytic lesions / A. Pardo,
 J.A. Gutiérrez-Gutiérrez, I. Lihacová, J.M. López-Higuera,
 O.M. Conde // Biomedical Optics Express. – 2018. – Vol. 9,
 Issue 12. – P. 6283-6301.
32. Machikhin, A. Aberration analysis of AOTF-based spectral
 imaging systems / A. Machikhin, V. Batsev, V. Pozhar // Journal of the Optical Society of America A. – 2017. –
 Vol. 34, Issue 7. – P. 1109-111.

Сведения об авторах

Винокуров Веслав Олегович, 1996 года рождения, является аспирантом кафедры лазерных и биотехнических систем Самарского национального исследовательского университета. В 2017 окончил бакалавриат по специальности «Лазерная техника и лазерные технологии», в 2019 году окончил магистратуру по специальности «Прикладная математика и физика» в Самарском национальном исследовательском университете им. С.П. Королева. Области научных интересов: биофотоника, нейросетевые технологии, машинное зрение.
E-mail: harisvorka@outlook.com.
Матвеева Ирина Александровна, 1995 года рождения, является аспирантом кафедры лазерных и биотехнических систем Самарского национального исследовательского университета. В 2017 году окончила бакалавриат, в 2019 году магистратуру по направлению «Биотехнические системы и технология» в Самарском национальном исследовательском университете им. С.П. Королева. Области научных интересов: биофотоника, Рамановская спектроскопия, математическое моделирование. E-mail: m-irene-a@yandex.ru.

Христофорова Юлия Александровна, 1992 года рождения, является ассистентом кафедры лазерных и биотехнических систем Самарского национального исследовательского университета. В 2013 году окончила бакалавриат по специальности «Прикладные математика и физика», в 2015 году окончила магистратуру по специальности «Прикладные математика и физика» в СГАУ им. С.П. Королева. Области научных интересов: оптика, биофотоника, Рамановская спектроскопия, флуоресценция. E-mail: khristoforovayulia@gmail.com.

Мякинин Олег Олегович, 1987 года рождения, окончил бакалавриат (2009 год) и магистратуру (2011 год) СГАУ по направлению «Прикладные математика и информатика». В настоящий момент является старшим преподавателем кафедры лазерных и биотехнических систем и научным сотрудником лаборатории «Фотоника» Самарского университета. Области его научных интересов: компьютерное зрение, искусственный интеллект, обработка биомедицинских изображений, вычислительная биофотоника. E-mail: myakole@gmail.com.

Братченко Иван Алексеевич, 1985 года рождения, окончил Самарский государственный аэрокосмический университет (СГАУ) в 2009 году со степенью магистра по направлению «Прикладные математика и физика», получил степень кандидата наук в СГАУ в 2012 г. В настоящий момент является доцентом кафедры лазерных и биотехнических систем Самарского университета и старшим научным сотрудником лаборатории «Фотоника» Самарского университета. Области его научных интересов включают биофотонику, оптику и спектроскопию, математическое моделирование. E-mail: iabratchenko@gmail.com.

Братченко Людмила Алексеевна, 1994 года рождения, окончила Самарский университет в 2018 году со степенью магистра по направлению «Прикладные математика и физика». В настоящий момент является аспирантом кафедры лазерных и биотехнических систем Самарского университета. Области ее научных интересов включают биофотонику, оптику и спектроскопию, математическое моделирование. E-mail: shamina94@inbox.ru.

Морятов Александр Александрович, 1978 года рождения, является ведущим онкологом кафедры эндоскопии Самарского областного клинического онкологического диспансера, кандидат медицинских наук. Области его научных интересов включают онкологию, эндоскопию, фотодинамическую терапию и радиационную терапию. E-mail: ama78@mail.ru.

Козлов Сергей Васильевич, 1957 года рождения, является заведующим кафедрой онкологии Самарского государственного медицинского университета, профессор, доктор медицинских наук. Область его научных интересов включает онкологию, эндоскопию, фотодинамическую терапию и радиационную терапию. E-mail: svkozlovsv@mail.ru.

Мачихин Александр Сергеевич, 1984 года рождения, в 2007 году окончил МГТУ им. Н.Э. Баумана, доктор технических наук, ведущий научный сотрудник Научно-технологического центра уникального приборостроения РАН (НТЦ УП РАН), доцент кафедры электротехники и интроскопии НИУ «МЭИ». Область научных интересов: машинное зрение, видеоспектрометрия, акустооптика, спектроскопия. E-mail: machikhin@ntcup.ru.

Абдулхалим Ибрагим, 1960 года рождения, получил степень бакалавра в 1981, степень магистра в 1985 и доктора наук в 1988 в Израильском технологическом институте, г. Хайфа. В настоящий момент является заведующим кафедрой электротехники в Университете имени Давида Бен Гуриона в Негеве, г. Беэр-Шева, Израиль. Область научных интересов: фотоника, биосенсоринг, нанофотоника. E-mail: abdulh1m@bgu.ac.il.

Захаров Валерий Павлович, 1954 года рождения, получил степень кандидата наук в Институте теоретической физики Богослова, Киев, Украина, степень доктора наук в 1999 в СГАУ. В настоящее время занимает должность заведующего кафедрой лазерных и биотехнических систем Самарского университета. Область научных интересов: биофотоника, биомедицинская оптика, спектроскопия, лазерная физика и техника, медицинские лазеры. E-mail: zakharov@susau.ru.

ГРНИ И 50.53.17
Поступила в редакцию 9 ноября 2020 г. Окончательный вариант – 12 июля 2021 г.
Neural network classifier of hyperspectral images of skin pathologies

V.O. Vinokurov1, I.A. Matveeva1, Y.A. Kristoforova1, O.O. Myakinin1, I.A. Bratchenko1, A.A. Moryatov2, S.G. Kozlov3, A.S. Machikhin1, I. Abdulhalim4, V.P. Zakharov1

1Samara National Research University, 443086, Samara, Russia, Moskovskoye shosse, 34; 2Samara State Medical University, 443079, Russia, Samara, st. Chapaevskaya, 89; 3Scientific and Technological Center for Unique Instrumentation of the Russian Academy of Sciences, 117342, Russia, Moscow, st. Butlerova, 15; 4Ben Gurion University of the Negev, Israel, 8410501, Negev, P.O. Box 653 Beer-Sheva

Abstract
The paper presents results of using a neural network classifier to analyze images of malignant skin lesions obtained using a hyper-spectral camera. Using a three-block neural network of VGG architecture, we conducted the classification of a set of two-dimensional images of melanoma, papilloma and basal cell carcinoma, obtained in the range of 530 – 570 and 600 – 606 nm, characterized by the highest absorption of melanin and hemoglobin. The sufficiency of the inclusion in the training set of two-dimensional images of a limited spectral range is analyzed. The results obtained show significant prospects of using neural network algorithms for processing hyperspectral data for the classification of skin pathologies. With a relatively small set of training data used in the study, the classification accuracy for the three types of neoplasms was as high as 96 %.

Keywords: hyperspectral imaging, neural network classifier, melanin, hemoglobin, oncopathology, melanoma, basal cell carcinoma, VGG.

Citation: Vinokurov VO, Matveeva IA, Kristoforova YA, Myakinin OO, Bratchenko IA, Bratchenko LA, Moryatov AA, Kozlov SV, Machikhin AS, Abdulhalim I, Zakharov VP. Neural network classifier of hyperspectral images of skin pathologies. Computer Optics 2021; 45(6): 879-886. DOI: 10.18287/2412-6179-2016-732-739.

Acknowledgements: The reported study was funded by the Russian Foundation for Basic Research under project 19-52-06005 MNTI-a.

References
[1] Tests for melanoma skin cancer. – 2016. — Source: (https://www.cancer.org/cancer/melanoma-skin-cancer/detection-diagnosis-staging/how-diagnosed.html).
[2] Boyle P, Parkin D, eds. World cancer report 2008. Lyon: International Agency for Research on Cancer; 2008.
[3] Siegel R. Cancer statistics, 2012. CA Cancer J Clin 2012; 62: 10-29. DOI: 10.3322/caac.20138.
[4] Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin 2019; 69: 8-10.
[5] Kaprin AD, StarinskyVV, Petrova GV. Malignant neoplasms in Russia in 2018 (morbidity and mortality) [In Russian]. Moscow: Moscow Scientific Research Institute PA Herzen; 2019.
[6] de Oliveira Santos M. Estimativa 2018: Incidência de câncer no Brasil. Revista Brasileira De Cancerologia 2018; 64(1): 119-120.
[7] de Almeida VL, Leitao A, Reina LdCB, et al. Câncer e agentes oncineoplásicos cilo-cellular específicos e cíclocellular nãoespecíficos que interagem com o dna: uma introdução. Quim Nova 2005; 28(1): 118-129.
[8] Carvalho GC, Alves F. Principais marcadores moleculares para os câncer de pele e mama. NBC-Periodico Ciêntifico do Nucleo de Biocieencias 2014; 4(07): 11-17.
[9] Figueiredo LC, Cordeiro LN, Arruda AP, et al. Cancer de pele: estudo dos principais marcadores moleculares e melanoma cutaneo. Rev Bras de Cancerologia 2003; 49(3): 179-183.
[10] Bratchenko IA, Alonova MV, Myakinin OO, Moryatov AA, Kozlov SV, Zakharov VP. Hyperspectral visualization of skin pathologies in visible region. Computer Optics 2016; 40(2): 240-248. DOI: 10.18287/2412-6179-2016-40-2-240-248.
[11] Clark WH, Reimer RR, Greene M, et al. Origin of familial malignant melanomas from heritable melanocytic lesions. The B-K mole syndrom. Arch Dermatol 1978; 114(5): 732-739.
[12] Elder DE, Leonardi J, Goldman J, et al. Displastic nevus syndrome. A phenotypic association of sporadic cutaneous melanoma. Cancer 1980; 46(8): 1787-1794.
[13] Romanova OA, Artemieva HG, Solochina MG. Case history of a large progressive dysplastic nevus with subsequent transformation into melanoma [In Russian]. Klinicheskaya Dermatologiya i Venereologiya 2018; 17: 34-37. DOI: 10.17116/klinderma201817234-37.
[14] Gross PE, Strasser-Weippel K, Lee-Bychkovsky BL, et al. Challenges to effective cancer control in China, India, and Russia. Lancet Oncol 2014; 15: 489-538. DOI: 10.1016/S1470-2045(14)70029-4.
[15] Carli P, De Giorgi V, Soyer H, et al. Dermatoscopy in the diagnosis of pigmented skin lesions: a new semiology for the dermatologist. J Eur Acad Dermatol Venereol 2000; 14(5): 353-369.
[16] Jacques S.L, Ramella-Roman J.C, Lee K. Imaging skin pathology with polarized light. J of Biomed Opt 2002; 7(3): 329-340.
[17] Cicchi R, Cosci A, Rossari S. Combined fluorescence-Raman spectroscopic setup for the diagnosis of melanocytic lesions. J Biophotonics 2014; 7(1-2): 86-95. DOI: 10.1002/jbio.201200230.
[18] Kristoforova YA, Bratchenko IA, Myakinin OO, Artemyev DN, Moryatov AA, Orlov AE, Kozlov SV, Zakharov VP. Portable spectroscopic system for in vivo skin neo.
plasms diagnostics by Raman and autofluorescence analysis. J Biophotonics 2019; 12(4): e201800400. DOI: 10.1002/jbio.201800400.

[19] Zhao J, Zeng H, Kalia S, Lui H. Incorporating patient demographics into Raman spectroscopy algorithm improves in vivo skin cancer diagnostic specificity. Transl Biophotonics 2019; 1(1-2): e201900016. DOI: 10.1002/jbio.201900016.

[20] Kong K, Rowlands CJ, Varma S. Diagnosis of tumors during tissue-conserving surgery with integrated autofluorescence and Raman scattering microscopy. PNAS 2013; 110(38): 15189-15194. DOI: 10.1073/pnas.1311289110.

[21] Tuchin VV. Tissue optics and photonics: Light-tissue interaction. J of Biomedical Photonics & Eng 2015; 1(2): 98-134. DOI: 10.18287/jbpe-2015-1-2-98.

[22] Zherdeva LA, Bratchenko IA, Myakinin OO. In vivo hyperspectral imaging and differentiation of skin cancer. Proc SPIE 2016; 10024: 100244G. DOI: 10.1117/12.2246433.

[23] Bratchenko IA, Myakinin OO, Sherendak VP, et al. In vivo hyperspectral analysis of skin hemoglobin and melanin content for neoplasia detection. J of Biomedical Photonics & Eng 2018; 4(4): 040301. DOI: 10.18287/jbpe18.04.040301.

[24] Chang CI. Hyperspectral imaging: Techniques for spectral detection and classification. Boston: Springer; 2003. ISBN: 978-0-306-47483-5.

[25] Pan B, Shi Z, Xu X. R-VCANet: A new deep-learning-based hyperspectral image classification method. IEEE J Sel Top Appl Earth Obs Remote Sens 2017; 10(5): 1975-1986.

[26] Sherendak VP, Bratchenko IA, Myakinin OO, Volkhin PN, Khristoforova YuA, Moryatov AA, Machikhin AS, Pozhar VE, Kozlov SG, Zakharov VP. Hyperspectral in vivo analysis of normal skin chromophores and visualization of oncological pathologies. Computer Optics 2019; 43(4): 661-670. DOI: 10.18287/2412-6179-2019-43-4-661-670.

[27] Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. NIPS’12 2012; 1: 1097-1105.

[28] Hu W, Huang Y, Wei L, et al. Deep convolutional neural networks for hyperspectral image classification. J Sens 2015: 258619. DOI: 10.1155/2015/258619.

[29] Ma X, Geng J, Wang H. Hyperspectral image classification via contextual deep learning. EURASIP J Image Video Process 2015; 20(1): 20.

[30] Halicke M, et al. Deep convolutional neural networks for classifying head and neck cancer using hyperspectral imaging. J Biomed Opt 2017; 22: 060503. DOI: 10.1117/1.JBO.22.6.060503.

[31] Pardo A, Gutiérrez-Gutiérrez JA, Lihacova I, López-Higuera JM, Conde OM. On the spectral signature of melanoma: a non-parametric classification framework for cancer detection in hyperspectral imaging of melanocytic lesions. Biomed Opt Express 2018; 9(12): 6283-6301.

[32] Machikhin A, Batshev V, Pozhar V. Aberration analysis of AOTF-based spectral imaging systems. J Opt Soc Am A 2017; 34(7): 1109-1113. DOI: 10.1364/JOSAA.34.001109.

Authors’ information

Vseslav O. Vinokurov, born in 1996, is a postgraduate student of Laser and Biotechnical Systems department of Samara National Research University. In 2017 he graduated from a bachelor’s degree in Laser Engineering and Laser Technologies, and in 2019 he graduated from a Master's degree in Applied Mathematics and Physics at the Samara National Research University S.P. Korolyov. Areas of scientific interest: biophotonics, neural network technologies, machine vision. E-mail: harisvork@outlook.com.

Irina A. Matveeva, born in 1995, is a postgraduate student of Laser and Biotechnical Systems department, Samara National Research University. In 2017 she graduated from a bachelor's degree, in 2019 from a master's degree in "Biotechnical Systems and Technologies" at Samara National Research University. Research interests: biophotonics, Raman spectroscopy, mathematical modeling. E-mail: m-irene-ad@yandex.ru.

Yulia A. Khristoforova, born in 1992, is a graduate student of Laser and Bio-technical Systems department of Samara National Research University. In 2013 she graduated with the bachelor's degree in Applied Mathematics and Physics, in 2015 she graduated from the Master's Degree in Specialty "Applied Mathematics and Physics". Areas of scientific interests: optics, biophotonics, Raman spectroscopy, autofluorescence. E-mail: khristoforovajulia@gmail.com.

Oleg O. Myakinin (b 1987) received his bachelor’s and master’s degrees of Applied Mathematics and Informatics from SSAU in 2009 and 2011. He is a Senior Lecturer of Lasers and Biotechnical Systems department and researcher of «Photonics» laboratory. His research interests include computer vision, interferometry, and biomedical images processing. E-mail: myakole@gmail.com.

Ivan A. Bratchenko (b. 1985) received MSc in Applied Mathematics and Physics from Samara State Aerospace University (SSAU) in 2009, received a PhD in 2012. Now he is an assistant professor of Laser and Biotechnical Systems department of SSAU and a leading researcher of the «Photonics» laboratory of SSAU. His research interests include biophotonics, optics and spectroscopy, mathematical modeling. E-mail: iabratchenko@gmail.com.

Lyudmila A. Bratchenko, born in 1994, graduated from Samara University in 2018 with a master's degree in Applied Mathematics and Physics. Currently, he is a postgraduate student at of Laser and Biotechnical Systems depart-
ment, Samara University. Her research interests include biophotonics, optics and spectroscopy, mathematical modeling. E-mail: shamina94@inbox.ru.

Alexander A. Moryatov (b 1978) is an oncologist in the Endoscopy department of Samara Regional Clinical Oncology Dispensary, MD. His research interests include oncology, endosonography, photodynamic therapy, and radiofrequency ablation. E-mail: ama78@mail.ru.

Alexander S. Machikhin, born in 1984, in 2007 he graduated from Bauman Moscow State Technical University, Doctor of Science, Leading Researcher of the Scientific and Technological Center of Unique Instrumentation RAS, associate professor at Moscow Power Engineering Institute (MPEI). Scientific interests: computer vision, video spectrometry, acoustooptics, spectroscopy. E-mail: machikhin@ntcup.ru.

Sergey V. Kozlov (b 1957) is the head of the Oncology department of Samara State Medical University, professor, MD. His research interests include oncology, endosonography, photodynamic therapy, and radiofrequency ablation. E-mail: svkozlovsv@mail.ru.

Ibrahim Abdulhalim born in 1960, received his BS in 1981, MS in 1985 and PhD in 1988 in Israel Institute of Technology, Haifa, Israel. Currently he is a Head of Electrooptic Engineering department at the Ben Gurion University of the Negev, Beer Sheva, Israel. Research interests: photonics, biosensing, nanophotonics. E-mail: abdulhlm@bgu.ac.il.

Valery P. Zakharov (b 1954) received his PhD (1984) in Theoretical Physics from Bogolyubov Institute for Theoretical Physics, Kiev, Ukraine, and his DSc (1999) in Optics from SSAU. Currently, he is a professor and holds the Laser and Biotechnical Systems chair. He is a head of the «Photonics» research laboratory of SSAU. His research interests include biophotonics, biomedical optics, spectroscopy, laser physics and techniques, medical lasers. E-mail: zakharov@ssau.ru.

Received November 9, 2020. The final version – July 12, 2021.