CREMONA MAPS AND INVOLUTIONS

JULIE DÉSERTI

ABSTRACT. We deal with the following question of Dolgachev: is the Cremona group generated by involutions? Answer is yes in dimension 2 (see [6]). We give an upper bound of the minimal number n_φ of involutions we need to write a birational self map φ of \mathbb{P}^2.

We prove that de Jonquières maps of \mathbb{P}^3 and maps of small bidegree of \mathbb{P}^3 can be written as a composition of involutions of \mathbb{P}^3 and give an upper bound of n_φ for such maps φ. We get similar results in particular for automorphisms of $(\mathbb{P}^1)^n$, automorphisms of \mathbb{C}^n, monomial maps of \mathbb{P}^2, and elements of the subgroup generated by the standard involution of \mathbb{P}^n and $\text{PGL}(n + 1, \mathbb{C})$.

1. INTRODUCTION

This article is motivated by the following question:

Question (Dolgachev). Is the n dimensional Cremona group generated by involutions?

Answer is yes in dimension 2; more precisely:

Proposition 1.1 ([6]). *For any φ in Bir(\mathbb{P}^2) there exist A_0, A_1, \ldots, A_k in Aut(\mathbb{P}^2) such that*

$$\varphi = \left(A_0 \circ \sigma_2 \circ A_0^{-1} \right) \circ \left(A_1 \circ \sigma_2 \circ A_1^{-1} \right) \circ \cdots \circ \left(A_k \circ \sigma_2 \circ A_k^{-1} \right)$$

*where σ_2 denotes the standard involution of \mathbb{P}^2

$$\sigma_2: (z_0 : z_1 : z_2) \rightarrow (z_1 z_2 : z_0 z_2 : z_0 z_1).$$

Let us note that since Bir(\mathbb{P}^2) is generated by $\text{PGL}(3, \mathbb{R})$ and some involutions ([21]), any element of Bir(\mathbb{P}^2) can be written as a composition of involutions.

If φ is an element of G, then $n(\varphi, H)$ is the minimal number of involutions of $H \supset G$ we need to write φ. In dimension 2 we get the following result:

Theorem A. *If φ is an automorphism of $\mathbb{P}^1 \times \mathbb{P}^1$, then $n(\varphi, \text{Aut}(\mathbb{P}^1 \times \mathbb{P}^1)) \leq 4$.

If φ is an automorphism of \mathbb{P}^2, then $n(\varphi, \text{Aut}(\mathbb{P}^2)) \leq 8$.

If φ belongs to the Jonquières subgroup $J_2 \subset \text{Bir}(\mathbb{P}^2)$, then $n(\varphi, J_2) \leq 10$.

If φ is a birational self map of \mathbb{P}^2 of degree d, then $n(\varphi, \text{Bir}(\mathbb{P}^2)) \leq 10d - 2$.*

One can be more precise for the well-known subgroup Aut(\mathbb{C}^2) of polynomial automorphisms of \mathbb{C}^2 of Bir(\mathbb{P}^2):

Theorem B. *Let φ be an element of Aut(\mathbb{C}^2) of degree d. Then $n(\varphi, \text{Bir}(\mathbb{P}^2)) \leq 44 + \frac{2d}{4}.$

More precisely,

- if φ is affine, then $n(\varphi, \text{Aut}(\mathbb{P}^2)) \leq 8$;
- if φ is elementary, then $n(\varphi, J_2) \leq 10$;
- if φ is generalized Hénon map, then either it is of jacobian 1 and $n(\varphi, \text{Aut}(\mathbb{C}^2)) = 2$ or $n(\varphi, \text{Bir}(\mathbb{P}^2)) \leq 11$;*

Date: August 7, 2017.
• If \(d \) is prime, then \(n(\varphi, \text{Bir}(\mathbb{P}^2_C)) \leq 26 \).

What happens in higher dimension? A first result is the following:

Theorem C. Let \(n \geq 3 \). Every automorphism of \((\mathbb{P}^1_C)^n \), then \(\varphi \) can be written as a composition of involutions of \((\mathbb{P}^1_C)^n \), and \(n(\varphi, \text{Aut}(\mathbb{P}^1_C)^n) \leq 2n \).

• If \(\varphi \) is an automorphism of \(\mathbb{P}^n_C \), then \(\varphi \) can be written as a composition of involutions of \(\mathbb{P}^n_C \), and \(n(\varphi, \text{Aut}(\mathbb{P}^n_C)) \leq 2(n + 1) \).

Since any element of

\[
G_n(C) = \langle \sigma_n = \left(\prod_{i \neq 0}^n z_i : \prod_{i \neq 1}^n z_i : \ldots : \prod_{i \neq n}^n z_i \right), \text{Aut}(\mathbb{P}^n_C) \rangle
\]

can be written as a composition of conjugate involutions ([7]) one gets that:

Theorem D. Let \(n \geq 3 \). Any element of the normal subgroup generated by \(G_n(C) \) in \(\text{Bir}(\mathbb{P}^n_C) \) can be written as a composition of involutions of \(\mathbb{P}^n_C \).

Furthermore one can give an upper bound of \(n(\varphi, \text{Bir}(\mathbb{P}^n_C)) \) when \(\varphi \) belongs to the subgroup of tame automorphisms of \(C^n \):

Theorem E. Let \(n \geq 3 \). Let \(\varphi \) be a tame automorphism of \(C^n \) of degree \(d \). Then \(\varphi \) can be written as a composition of involutions of \(\mathbb{P}^n_C \). Moreover,

- if \(\varphi \) is affine, then \(n(\varphi, \text{Aut}(\mathbb{P}^n_C)) \leq 2n + 4 \);
- if \(\varphi \) is elementary, then \(n(\varphi, \text{Bir}(\mathbb{P}^n_C)) \leq 2n + 10 \);
- otherwise \(n(\varphi, \text{Bir}(\mathbb{P}^n_C)) \leq \frac{4}{3}(2n + 7) + 10n + 32 \).

Let us recall (see [15]) that the Jonquières subgroup \(J_0(1, \mathbb{P}^3_C) \) of \(\text{Bir}(\mathbb{P}^3_C) \) is given in the affine chart \(z_3 = 1 \) by

\[
\{ \varphi = (\varphi_0(z_0, z_1, z_2), \psi(z_1, z_2)) | \varphi_0 \in \text{PGL}(2, C[z_1, z_2]), \psi \in \text{Bir}(\mathbb{P}^2_C) \}
\]

Denote by \(\text{Mon}(n, C) \) the group of monomial maps of \(\mathbb{P}^n_C \), and finally set

\[
J_n = \text{PGL}(2, C(z_1, z_2, \ldots, z_{n-1})) \times \text{PGL}(2, C(z_2, z_3, \ldots, z_{n-1})) \times \ldots \times \text{PGL}(2, C(z_{n-1})) \subset \text{Bir}(\mathbb{P}^n_C).
\]

Theorem F. Assume that \(2 \leq \ell \leq 4 \), and \(n \geq 3 \).

- If \(\varphi \in \text{Bir}(\mathbb{P}^3_C) \) is of bidegree \((2, \ell) \), then \(\varphi \) can be written as a composition of involutions of \(\mathbb{P}^3_C \), and \(n(\varphi, \text{Bir}(\mathbb{P}^3_C)) \leq 9 + 7\ell \).
- Any element \(\varphi \) of \(J_0(1; \mathbb{P}^3_C) \) of degree \(d \) can be written as a composition of involutions of \(\mathbb{P}^3_C \), and \(n(\varphi, \text{Bir}(\mathbb{P}^3_C)) \leq 10d + 6 \).
- If \(\varphi \) belongs to \(\text{Mon}(n, C) \), then \(\varphi \) can be written as a composition of involutions of \(\mathbb{P}^n_C \), and \(n(\varphi, \text{Bir}(\mathbb{P}^n_C)) \leq 3n + 9 \).
- Any element \(\varphi \) of \(J_n \) can be written as a composition of involutions of \(\mathbb{P}^n_C \), and \(n(\varphi, J_n) \leq 4(2n - 1) \).

If \(H \) is a subgroup of \(G \) let us denote by \(N(H; G) \) the normal subgroup generated by \(H \) in \(G \).

Corollary G. Any element of

\[
\langle N(\text{PGL}(4, C); \text{Bir}(\mathbb{P}^3_C)), N(J_0(1; \mathbb{P}^3_C); \text{Bir}(\mathbb{P}^3_C)), N(\text{Mon}(3, C); \text{Bir}(\mathbb{P}^3_C)),
N(G_3(C); \text{Bir}(\mathbb{P}^3_C)), N(\langle \varphi_1, \ldots, \varphi_k \rangle; \text{Bir}(\mathbb{P}^3_C)) | \varphi_i \in \text{Bir}(\mathbb{P}^3_C) \text{ of bidegree } (2, \ell), 2 \leq \ell \leq 4 \rangle
\]

can be written as a composition of involutions of \(\mathbb{P}^3_C \).
For any \(n \geq 4 \), any element of
\[
(N[\text{PGL}(n+1, \mathbb{C}); \text{Bir}(\mathbb{P}^n_2)], N[\text{Inn}(\text{Bir}(\mathbb{P}^n_2)), N(\text{Mon}(n, \mathbb{C}); \text{Bir}(\mathbb{P}^n_2)), N(G_n(\mathbb{C}); \text{Bir}(\mathbb{P}^n_2))]
\]
can be written as a composition of involutions of \(\mathbb{P}^n_2 \).

Remark 1.2. An other motivation for studying birational maps of \(\mathbb{P}^n_2 \) that can be written as a composition of involutions is the following. The group of birational maps of \(\mathbb{P}^n_2 \) that can be written as a composition of involutions is a normal subgroup of \(\text{Bir}(\mathbb{P}^n_2) \). So if the answer to Dolgachev Question is no, we can give a negative answer to the following question asked by Mumford ([12]): is \(\text{Bir}(\mathbb{P}^n_2) \) a simple group?

Acknowledgments. I would like to thank D. Cerveau for his constant availability and kindness. Thanks to S. Zimmermann for pointing out Proposition 2.1.

2. Recalls and Definitions

2.1. Polynomial automorphisms of \(\mathbb{C}^n \).
A polynomial automorphism \(\varphi \) of \(\mathbb{C}^n \) is a bijective map from \(\mathbb{C}^n \) into itself of the type
\[
(z_0, z_1, \ldots, z_{n-1}) \mapsto (\varphi_0(z_0, z_1, \ldots, z_{n-1}), \varphi_1(z_0, z_1, \ldots, z_{n-1}), \ldots, \varphi_{n-1}(z_0, z_1, \ldots, z_{n-1})
\]
with \(\varphi_i \in \mathbb{C}[z_0, z_1, \ldots, z_{n-1}] \). The set of polynomial automorphisms of \(\mathbb{C}^n \) form a group denoted \(\text{Aut}(\mathbb{C}^n) \).

Let \(A_n \) be the group of affine automorphisms of \(\mathbb{C}^n \), and let \(E_n \) be the group of elementary automorphisms of \(\mathbb{C}^n \). In other words \(A_n \) is the semi-direct product of \(\text{GL}(n, \mathbb{C}) \) with the commutative unipotent subgroup of translations. Furthermore \(E_n \) is formed with automorphisms \((\varphi_0, \varphi_1, \ldots, \varphi_{n-1}) \) of \(\mathbb{C}^n \) where
\[
\varphi_i = \varphi_i(z_i, z_{i+1}, \ldots, z_{n-1})
\]
depends only on \(z_i, z_{i+1}, \ldots, z_{n-1} \). The subgroup \(\text{Tame}_n \) of \(\text{Aut}(\mathbb{C}^n) \), called the group of tame automorphisms of \(\mathbb{C}^n \), is the group generated by \(A_n \) and \(E_n \). For \(n = 2 \) one has \(\text{Tame}_2 = \text{Aut}(\mathbb{C}^2) \), more precisely:

Theorem 2.1 ([11]). The group \(\text{Aut}(\mathbb{C}^2) \) has a structure of amalgamated product
\[
\text{Aut}(\mathbb{C}^2) = A_2 \ast_{S_2} E_2
\]
with \(S_2 = A_2 \cap E_2 \).

Nevertheless \(\text{Tame}_3 \neq \text{Aut}(\mathbb{C}^3) \) (see [19]).

2.2. Birational maps of \(\mathbb{P}^n_2 \).
A rational self map of \(\mathbb{P}^n_2 \) is a map of the type
\[
(z_0 : z_1 : \ldots : z_n) \mapsto (\varphi_0(z_0, z_1, \ldots, z_n) : \varphi_1(z_0, z_1, \ldots, z_n) : \ldots : \varphi_n(z_0, z_1, \ldots, z_n))
\]
where the \(\varphi_i \)'s denote homogeneous polynomials of the same degree without common factor (of positive degree).

A birational self map \(\varphi \) of \(\mathbb{P}^n_2 \) is a rational map of \(\mathbb{P}^n_2 \) such that there exists a rational self map \(\psi \) of \(\mathbb{P}^n_2 \) with the following property \(\varphi \circ \psi = \psi \circ \varphi = \text{id} \) where id: \((z_0 : z_1 : \ldots : z_n) \mapsto (z_0 : z_1 : \ldots : z_n) \).

The degree of \(\varphi \in \text{Bir}(\mathbb{P}^n_2) \) is the degree of the \(\varphi_i \)'s. For \(n = 2 \), one has \(\text{deg} \varphi = \text{deg} \varphi^{-1} \); for \(n = 3 \) such an equality does not necessary hold, we thus speak about the bidegree of \(\varphi \) which is \((\text{deg} \varphi, \text{deg} \varphi^{-1}) \).

The group of birational self maps of \(\mathbb{P}^n_2 \) is denoted \(\text{Bir}(\mathbb{P}^n_2) \) and called Cremona group.

The groups \(\text{Aut}(\mathbb{P}^n_2) = \text{PGL}(n+1, \mathbb{C}) \) and \(\text{Aut}(\mathbb{C}^n) \) are subgroups of \(\text{Bir}(\mathbb{P}^n_2) \).

Let us mention that contrary to \(\text{Aut}(\mathbb{C}^2) \) the Cremona group in dimension 2 does not decompose as a non-trivial amalgam (appendix of [4]).
2.3. Birational involutions in dimension 2. Let us first describe some involutions:

- Consider an irreducible curve \(\mathcal{C} \) of degree \(v \geq 3 \) with a unique singular point \(p \); assume furthermore that \(p \) is an ordinary multiple point with multiplicity \(v - 2 \). To \((\mathcal{C}, p)\) we can associate a birational involution \(\mathcal{I}_f \) which fixes pointwise \(\mathcal{C} \) and preserves lines through \(p \) as follows. Let \(m \) be a generic point of \(P^2_{\mathcal{C}} \setminus \mathcal{C} \); let \(r_m, q_m \) and \(p \) be the intersections of the line \((mp)\) with \(\mathcal{C} \); the point \(\mathcal{I}_f(m) \) is defined by: the cross ratio of \(m, \mathcal{I}_f(m), q_m \) and \(r_m \) is equal to \(-1\). The map \(\mathcal{I}_f \) is a de Jonquières involution of \(P^2_{\mathcal{C}} \). A birational involution is of de Jonquières type if it is birationally conjugate to a de Jonquières involution of \(P^2_{\mathcal{C}} \).

- Let \(p_1, p_2, \ldots, p_8 \) be eight points of \(P^2_{\mathcal{C}} \) in general position. Consider the set of sextics \(\mathcal{S} = \mathcal{S}(p_1, p_2, \ldots, p_8) \) with double points at \(p_1, p_2, \ldots, p_8 \). Take a point \(m \) in \(P^2_{\mathcal{C}} \). The pencil given by the elements of \(\mathcal{S} \) having a double point at \(m \) has a tenth base double point point \(m^\prime \). The involution which switches \(m \) and \(m^\prime \) is a \text{Bertini involution}. A birational involution is of Bertini type if it is birationally conjugate to a Bertini involution.

- Let \(p_1, p_2, \ldots, p_7 \) be seven points of \(P^2_{\mathcal{C}} \) in general position. Denote by \(L \) the linear system of cubics through the \(p_i \)'s. Consider a generic point \(p \) in \(P^2_{\mathcal{C}} \) and define by \(L_p \) the pencil of elements of \(L \) passing through \(p \). The involution which switches \(p \) and the ninth base-point of \(L_p \) is a \text{Geiser involution}. A birational involution is of Geiser type if it is birationally conjugate to a Geiser involution.

Birational involutions of \(P^2_{\mathcal{C}} \) have been classified:

Theorem 2.2 ([2]). A non-trivial birational involution of \(P^2_{\mathcal{C}} \) is either of de Jonquières type, or of Bertini type, or of Geiser type.

2.4. Birational involutions in higher dimension. There are no classification in higher dimension; in [17] the author gives a first nice step toward a classification in dimension 3. Let us give some examples:

- the involution
 \[
 \sigma_n = \left(\prod_{i=0}^{n} z_i : \prod_{i=0}^{n} z_i : \ldots : \prod_{i=0}^{n} z_i \right)
 \]

- the involutions of \(\text{PGL}(n + 1, \mathbb{C}) \);
- the involutions of \(\text{Mon}(n, \mathbb{C}) \) induced by the involutions of \(\text{GL}(n, \mathbb{Z}) \);
- the de Jonquières involutions: consider a reduced hypersurface \(H \) of degree \(v \) in \(P^n_{\mathbb{C}} \) that contains a linear subspace of points of multiplicity \(v - 2 \). Assume that \(p \) is a singular point of \(H \) of multiplicity \(v - 2 \). Take a general point \(m \) of \(H \). Denote by \(\ell_p \) the line passing through \(p \) and \(m \). The intersection of \(\ell_p \) with \(H \) contains \(p \) with multiplicity \(v - 2 \), and the residual intersection is a set of two points \(r_m \) and \(q_m \) in \(\ell_p \). Define \(\mathcal{I}_f(m) \) to be the point on \(\ell_p \) such that the cross ratio of \(m, \mathcal{I}_f(m), q_m \) and \(r_m \) are equal to \(-1\). The map \(\mathcal{I}_f \) is a de Jonquières involution of \(P^n_{\mathbb{C}} \).

3. Automorphisms of \((P^1_{\mathbb{C}})^n\) and of \(P^n_{\mathbb{C}} \)

Lemma 3.1. Any non-trivial homography is either an involution, or the composition of two involutions of \(\text{PGL}(2, \mathbb{C}) \).
In particular if \(\varphi \) belongs to \(\text{Aut}(\mathbb{P}^1_n \times \mathbb{P}^1_n \times \ldots \times \mathbb{P}^1_n) \), then

\[
n(\varphi, \text{Aut}(\mathbb{P}^1_n \times \mathbb{P}^1_n \times \ldots \times \mathbb{P}^1_n)) \leq 2n.
\]

Remark 3.2. The homography \(v \in \text{PGL}(2, \mathbb{C}) \) is a non-trivial involution if and only if there exists \(p \in \mathbb{P}^1 \setminus \text{Fix}(v) \) such that \(v^2(p) = p \), where \(\text{Fix}(v) \) denotes the set of fixed points of \(v \).

Indeed assume that there exists \(p \in \mathbb{P}^1 \setminus \text{Fix}(v) \) such that \(v^2(p) = p \), then \(\text{Fix}(v) \neq \mathbb{P}^1 \) and so \(v \neq \text{id} \). If \(m \in \{p, v(p)\} \), then \(v^2(m) = m \). If \(p \notin \{p, v(p)\} \), the cross ratio of \(p, v(p), v(m), m \) is equal to the cross ratio of \(p, v(p), v(m) \) and \(v^2(m) \). This implies that \(v^2(m) = m \).

Lemma 3.3. Let \(v \in \text{PGL}(2, \mathbb{C}) \) be an homography. Consider three points \(a, b, c \) of \(\mathbb{P}^1 \) such that \(a, b, c \) are distinct, \(a \notin \text{Fix}(v) \), \(b \notin \text{Fix}(v) \) and \(b \neq v(a) \).

There exist two involutions \(t_1, t_2 \in \text{PGL}(2, \mathbb{C}) \) such that \(v = t_2 \circ t_1 \).

Proof. Let us first prove that there exists two unique homographies \(t_1, t_2 \in \text{PGL}(2, \mathbb{C}) \) such that

\[
\begin{cases}
t_1(a) = v(b), & t_1(b) = v(a), & t_1(v(a)) = b; \\
t_2(v(a)) = v(b), & t_2(v(b)) = v(a), & t_2(t_1(c)) = v(c).
\end{cases}
\]

Note that by assumptions \(a, b, v(a) \) (resp. \(v(b), v(a), b \)) are pairwise distinct. Hence there exists a unique homography \(t_1 \in \text{PGL}(2, \mathbb{C}) \) that sends \(a, b, v(a) \) onto \(v(b), v(a), b \).

The points \(v(a), v(b) \) and \(t_1(c) \) are distinct. Assume by contradiction that \(t_1(c) = v(a) \), then \(t_1(c) = t_1(b) \). By injectivity of \(t_1 \), one has \(c = b \); contradiction. Similarly \(t_1(c) \neq v(b) = t_1(a) \) and \(v(a) \neq v(b) \). Since \(a, b, c \) are distinct, \(v(a), v(b) \) and \(v(c) \) also. As a consequence there exists a unique homography \(t_1 \in \text{PGL}(2, \mathbb{C}) \) that sends \(v(a), v(b), t_1(c) \) onto \(v(b), v(a), v(c) \).

By assumption \(b \) and \(v(a) \) are distinct so \(b \) does not belong to \(\text{Fix}(t_1) \). But \(t_1^2(b) = t_1(v(a)) = b \). According to Remark 3.2 the homography \(t_1 \) is thus an involution. Similarly \(v(a) \) and \(v(b) \) are distinct but \(v(a) \) and \(v(b) \) are switched by \(t_2 \) hence \(t_2 \) is an involution (Remark 3.2).

Since \(v(p) = t_2 \circ t_1(p) \) for \(p \in \{a, b, c\} \) one gets \(v = t_2 \circ t_1 \).

Proof of Lemma 3.1. Let \(v \) be an homography. If \(v = \text{id} \), then \(v = t \circ i \) for any involution \(t \). Assume now that \(v \neq \text{id} \); then \(v \) has at most two fixed points. Let us choose \(a, b \) in \(\mathbb{P}^1 \setminus \text{Fix}(v) \). If \(a \neq v(b) \) or if \(b \neq v(a) \), then \(v \) can be written as a composition of two involutions (Lemma 3.3). If \(b = v(a) \) and \(a = v(b) \), then \(v^2(a) = a \) with \(a \notin \text{Fix}(v) \); Remark 3.2 thus implies that \(v \) is an involution.

Lemma 3.4. Let \(n \geq 2 \) be an integer.

1. Let \(k \) be a commutative ring of any characteristic. If \(\varphi \) is an element of \(\text{SL}(n, k) \), then \(n(\varphi, \text{SL}(n, k)) \leq 2(n + 1) \).
2. Assume that \(k \) is an algebraically closed field, and that \(\varphi \) belongs to \(\text{PGL}(n, k) \). Then \(n(\varphi, \text{PGL}(n, k)) \leq 2(n + 1) \).
3. If \(\varphi \) is an element of \(\text{PGL}(2, \mathbb{C}|z_1, z_2, \ldots, z_{n-1}) \), then \(n(\varphi, \text{Bir}(\mathbb{P}^n)) \leq 8 \).

Proof.

1. Let us recall that an element of \(\text{SL}(n, k) \) can be written as a composition of \(\leq n + 1 \) transvections ([16]). But a transvection is a composition of two involutions so any element of \(\text{SL}(n, k) \) can be written as a composition of \(\leq 2(n + 1) \) involutions.
2. If \(k \) is algebraically closed, then \(\text{PSL}(n, k) \cong \text{PGL}(n, k) \) and one gets the result.
(3) Let \(g \) be an element of \(\text{PGL}(2, \mathbb{C}[z_1, z_2, \ldots, z_{n-1}]) \); denote by \(P(z_1, z_2, \ldots, z_{n-1}) \) its determinant and by \(h \) a scaling of scale factor \(\frac{1}{P(z_1, z_2, \ldots, z_{n-1})} \). Then \(h \circ g \) belongs to \(\text{SL}(2, \mathbb{C}[z_1, z_2, \ldots, z_{n-1}]) \) and hence, according to the first assertion, can be written as a composition of \(\leq 6 \) involutions. But \(h \) is as a composition of two involutions:

\[
\frac{1}{z_0 P(z_1, z_2, \ldots, z_{n-1})} \circ \frac{1}{z_0}
\]

As a result \(n(\varphi, \text{Bir}(\mathbb{P}_C^2)) \leq 8. \)

\(\square \)

4. Dimension 2

4.1. The real Cremona group. There is an analogue to Proposition 1.1 for the real Cremona group.

Theorem 4.1. Any element of \(\text{Bir}(\mathbb{P}_R^2) \) can be written as a composition of involutions of \(\mathbb{P}_R^2 \).

Theorem 4.1 directly follows from the simplicity of \(\text{PGL}(3, \mathbb{R}) \) and the following statement:

Proposition 4.2 ([21]). The group \(\text{Bir}(\mathbb{P}_R^2) \) is generated by \(\text{PGL}(3, \mathbb{R}) \), the set of standard quintic involutions and the two following quadratic involutions

\[
(z_1 z_2 : z_0 z_2 : z_0 z_1) \quad \quad (z_0 z_2 : z_1 z_2 : z_0^2 + z_1^2).
\]

4.2. The de Jonquières subgroup. An element of \(\text{Bir}(\mathbb{P}_C^2) \) is a de Jonquières map if it preserves a rational fibration, i.e. if it is conjugate to an element of

\[
J_2 = \text{PGL}(2, \mathbb{C}(z_1)) \rtimes \text{PGL}(2, \mathbb{C}).
\]

We will denote by \(\tilde{J}_2 \) the subgroup of birational maps that preserves fiberwise the fibration \(z_1 = \text{constant} \), i.e. \(\tilde{J}_2 = \text{PGL}(2, \mathbb{C}(z_1)) \).

Lemma 4.3. If \(\varphi = (\varphi_0, \varphi_1) \) belongs to \(\tilde{J}_2 \), then \(n(\varphi, \tilde{J}_2) \leq 8 \).

Furthermore if \(\det \varphi_0 = \pm 1 \), then \(n(\varphi, \tilde{J}_2) \leq 4 \).

Proof. Lemma 3.4 implies the first assertion, and the last assertion follows from [9]. \(\square \)

Corollary 4.4. Any de Jonquières map of \(\mathbb{P}_C^2 \) can be written as a composition of \(\leq 10 \) Cremona involutions of \(\mathbb{P}_C^2 \).

Proof. Let us remark that any Jonquières map \(\varphi \) of \(\mathbb{P}_C^2 \) can be written as \(\psi \circ j \circ \psi^{-1} \) where \(\psi \) denotes an element of \(\text{Bir}(\mathbb{P}_C^2) \) and \(j \) an element of \(J_2 \). But

\[
j = \left(\frac{\alpha(z_1) z_0 + b(z_1)}{c(z_1) z_0 + d(z_1)}, \frac{\alpha z_1 + \beta}{z_1 + \delta} \right) = \left(z_0, \frac{\alpha z_1 + \beta}{z_1 + \delta} \right) \circ \left(\frac{\alpha(z_1) z_0 + b(z_1)}{c(z_1) z_0 + d(z_1)}, z_1 \right)
\]

As a consequence

\[
\varphi = \left(\psi \circ \left(z_0, \frac{\alpha z_1 + \beta}{z_1 + \delta} \right) \circ \psi^{-1} \right) \circ \left(\psi \circ \left(\frac{\alpha(z_1) z_0 + b(z_1)}{c(z_1) z_0 + d(z_1)}, z_1 \right) \circ \psi^{-1} \right)
\]

Then one concludes with Lemmas 3.1 and 4.3. \(\square \)
4.3. **Subgroup of polynomial automorphisms of** \mathbb{C}^2. Note that there is no analogue to Proposition 1.1 in the context of polynomial automorphisms of \mathbb{C}^2. For instance the automorphism $(2z_0,3z_1)$ cannot be written as a composition of involutions in $\text{Aut}(\mathbb{C}^2)$.

According to Lemma 3.4 and Corollary 4.4 one has the following result:

Lemma 4.5. Let φ be a polynomial automorphism of \mathbb{C}^2.

If φ is an affine automorphism, then $n(\varphi, \text{Aut}(\mathbb{P}_\mathbb{C}^2)) \leq 8$.

If φ is an elementary automorphism, then $n(\varphi, J_2) \leq 10$.

An element $\varphi \in \text{Aut}(\mathbb{C}^2)$ is a generalized Hénon map if

$$\varphi = (z_1, P(z_1) - \delta z_0)$$

where δ belongs to \mathbb{C}^* and P is an element of $\mathbb{C}[z_1]$ of degree ≥ 2. Note that $\delta = \text{jac}(\varphi)$.

Lemma 4.6. Let $\varphi \in \text{Aut}(\mathbb{C}^2)$ be a generalized Hénon map.

- If φ has jacobian 1, then $n(\varphi, \text{Aut}(\mathbb{C}^2)) \leq 2$.
- Otherwise $n(\varphi, \text{Bir}(\mathbb{P}_\mathbb{C}^2)) \leq 11$.

Proof. Any generalized Hénon map of jacobian 1 can be written $(z_1, P(z_1) - z_0)$ and so is the composition of two involutions: $(z_1, P(z_1) - z_0) = (z_1, z_0) \circ (P(z_1) - z_0, z_1)$.

Let φ be a generalized Hénon map; then

$$\varphi = (z_1, P(z_1) - \delta z_0) = (z_1, z_0) \circ (P(z_1) - \delta z_0, z_1).$$

Note that $(P(z_1) - \delta z_0, z_1)$ is an elementary automorphism; therefore $n(\varphi, \text{Bir}(\mathbb{P}_\mathbb{C}^2)) \leq 1 + 10 = 11$ (Lemma 4.5).

Friedland and Milnor proved that any polynomial automorphism of degree d with d prime is conjugate via an affine automorphism either to a generalised Hénon map or to an elementary automorphism ([8, Corollary 2.7]). Since any generalised Hénon map is the composition of $(z_1, z_0) \in A_2$ with an elementary map one gets that any polynomial automorphism of degree d with d prime can be written as $a_1 e a_2$ with $a_i \in A_2$ and $e \in E_2$. Lemmas 4.5 and 4.6 thus imply:

Lemma 4.7. If $\varphi \in \text{Aut}(\mathbb{C}^2)$ is of degree d with d prime, then $n(\varphi, \text{Bir}(\mathbb{P}_\mathbb{C}^2)) \leq 26$.

A sequence $(\varphi_1, \varphi_2, \ldots, \varphi_k)$ of length $k \geq 1$ is a reduced word, representing the group element $\varphi = \varphi_k \circ \varphi_{k-1} \circ \cdots \circ \varphi_1$ if

- each factor φ_i belongs to either A_2 or E_2 but not to the intersection $A_2 \cap E_2$,
- and no two consecutive factors belong to the same subgroup A_2 or E_2.

It follows from Theorem 2.1 that every element of $\text{Aut}(\mathbb{C}^2)$ can be expressed as such a reduced word, unless it belongs to the intersection $S_2 = A_2 \cap E_2$. The degree of any reduced word $\varphi = \varphi_k \circ \varphi_{k-1} \circ \cdots \circ \varphi_1$ is equal to the product of the degree of the factor φ_i (see [8, Theorem 2.1]). Hence take $\varphi \in \text{Aut}(\mathbb{C}^2)$ of degree $d \geq 2$, then φ is a reduced word $\varphi_k \circ \varphi_{k-1} \circ \cdots \circ \varphi_1$ and

- either there exists only one φ_i of degree > 1, then $\varphi = \varphi_3 \circ \varphi_2 \circ \varphi_1$ with $\deg \varphi_2 > 1$ and $\deg \varphi_1 = \deg \varphi_3 = 1$; as a result $n(\varphi, \text{Bir}(\mathbb{P}_\mathbb{C}^2)) \leq 26$ (Lemma 4.5),
- or there exits at least two φ_i’s of degree > 1, then $n(\varphi, \text{Bir}(\mathbb{P}_\mathbb{C}^2)) \leq \frac{4d}{3} + 44$. Indeed let $(a_0, e_1, a_1, e_2, a_2, \ldots, e_k, a_k)$ be a reduced word representing φ. Any e_i has degree ≥ 2 and $\deg \varphi = \deg e_1 \deg e_2 \prod_{i=3}^k \deg e_i$; hence $\prod_{i=3}^k \deg e_i \leq \frac{d}{4}$ and so $2(k-2) \leq \frac{d}{4}$.

As a result $k \leq \frac{d}{8} + 2$ and

$$n(\varphi, \text{Bir}(\mathbb{P}_\mathbb{C}^2)) \leq (k + 1)n(a_i, \text{Bir}(\mathbb{P}_\mathbb{C}^2)) + kn(e_i, \text{Bir}(\mathbb{P}_\mathbb{C}^2)) \leq \left(\frac{d}{8} + 3\right)n(a_i, \text{Bir}(\mathbb{P}_\mathbb{C}^2)) + \left(\frac{d}{8} + 2\right)n(e_i, \text{Bir}(\mathbb{P}_\mathbb{C}^2)).$$
One can thus state

Theorem 4.8. Let \(\varphi \) be a polynomial automorphism of \(\mathbb{C}^2 \) of degree \(d \).

- If \(\varphi \) is affine, \(n(\varphi, \text{Aut}(\mathbb{P}^2)) \leq 8 \);
- if \(\varphi \) is elementary, then \(n(\varphi, 1_2) \leq 10 \);
- if \(\varphi \) is generalized Hénon map, then either it is of jacobian 1 and \(n(\varphi, \text{Aut}(\mathbb{C}^2)) = 2 \) or \(n(\varphi, \text{Bir}(\mathbb{P}^2)) \leq 11 \);
- if \(d \) is prime, then \(n(\varphi, \text{Bir}(\mathbb{P}^2)) \leq 26 \);
- otherwise \(n(\varphi, \text{Bir}(\mathbb{P}^2)) \leq \frac{9d}{4} + 44 \).

Corollary 4.9. If \(\varphi \) is a polynomial automorphism of \(\mathbb{C}^2 \) of degree \(d \), then \(n(\varphi, \text{Bir}(\mathbb{P}^2)) \leq \frac{9d}{4} + 44 \).

4.4 Birational maps

Theorem 4.10. If \(\varphi \in \text{Bir}(\mathbb{P}^2) \) is of degree \(d \), then \(n(\varphi, \text{Bir}(\mathbb{P}^2)) \leq 10d - 2 \).

Before proving Theorem 4.10 let us give a first and "bad" bound. Let \(\varphi \) be a birational self map of \(\mathbb{P}^2 \) of degree \(d \). The number of base points of \(\varphi \) is \(\leq 2d - 1 \) and the map \(\varphi \) can be written with \(\leq 2(2d - 1) \) blow ups. Since a blow up can be written as \(A_1 \circ \sigma_2 \circ A_2 \circ \sigma_2 \circ A_3 \) with \(A_i \in \text{PGL}(3, \mathbb{C}) \) the map \(\varphi \) can be written with \(4(2d - 1) \) involution \(\sigma_2 \) and \(4(2d - 1) + 1 \) elements of \(\text{PGL}(3, \mathbb{C}) \). As a consequence \(\varphi \) can be written as a composition of \(\leq 4(2d - 1) + 8(4(2d - 1) + 1) = 72d - 28 \) involutions.

Proof of Theorem 4.10. Let us recall that if \(\varphi \) is a birational self map of \(\mathbb{P}^2 \) of degree \(d \), then there exists a de Jonquières map \(\psi \) of \(\mathbb{P}^2 \) such that \(\deg(\varphi \circ \psi) < d \) (see [5], [1, Theorem 8.3.4]).

As a result any \(\varphi \in \text{Bir}(\mathbb{P}^2) \) of degree \(d \geq 1 \) can be written as follows

\[
A \circ (\psi_1 \circ j_1 \circ \psi_1^{-1}) \circ (\psi_2 \circ j_2 \circ \psi_2^{-1}) \circ \ldots \circ (\psi_k \circ j_k \circ \psi_k^{-1})
\]

with \(A \) in \(\text{PGL}(3, \mathbb{C}) \), \(\psi_\ell \in \text{Bir}(\mathbb{P}^2) \), \(j_\ell \in 1_2 \) and \(k \leq d - 1 \).

The statement follows from Lemma 3.4 and Corollary 4.4. \(\square\)

5. Dimension 3

5.1. de Jonquières maps in dimension 3

Let us recall that a de Jonquières map \(\varphi \) of \(\mathbb{P}^2 \) of degree \(d \) is a plane Cremona map satisfying one of the following equivalent conditions:

- there exists a point \(\sigma \in \mathbb{P}^2 \) such that the restriction of \(\varphi \) to a general line passing through \(\sigma \) maps it birationally to a line passing through \(\sigma \);
- \(\varphi \) has homaloidal type \((d; d - 1, 1, 2d - 2)\), i.e. \(\varphi \) has \(2d - 1 \) base points, one of multiplicity \(d - 1 \) and \(2d - 2 \) of multiplicity \(1 \);
- \(\varphi \) is of jacobian 1 and the map \(\varphi \) can be written with \(\leq 2(2d - 1) \) blow ups.

In [15] Pan and Simis propose suitable generalizations of de Jonquières maps to higher dimensional space \(\mathbb{P}^n \), \(n \geq 3 \). More precisely they study elements of the Cremona group \(\text{Bir}(\mathbb{P}^n) \) satisfying a condition akin to the first alternative above: for a point \(\sigma \in \mathbb{P}^n \) and a positive integer \(k \) they consider the Cremona transformations that map a general \(k \)-dimensional linear subspace passing through \(\sigma \) onto another such subspace. Fixing the point \(\sigma \) these maps form a subgroup \(J_\varphi(k; \mathbb{P}^n) \) of \(\text{Bir}(\mathbb{P}^n) \). For any \(k \leq \ell \) the following inclusion holds ([15])

\[
J_\varphi(\ell; \mathbb{P}^n) \subset J_\varphi(k; \mathbb{P}^n)
\]
Let us recall the following characterization of elements of $I_G(1;\mathbb{P}_C^n)$:

Proposition 5.1 ([13]). Fix $\theta = (0:0: \ldots :0:1)$. A Cremona map $\varphi \in \text{Bir}(\mathbb{P}_C^n)$ belongs to $I_G(1;\mathbb{P}_C^n)$ if and only if

$$\varphi = \left(z_0 g_{d-1} + g_d : (z_0 q_{\ell-1} + q_\ell) t_1 : (z_0 q_{\ell-1} + q_\ell) t_2 : \ldots : (z_0 q_{\ell-1} + q_\ell) t_n \right)$$

where

- $g_d, g_{d-1}, q_\ell, q_{\ell-1}, t_1, \ldots, t_n \in \mathbb{C}[z_1, z_2, \ldots, z_n]$,
- $\deg g_{d-1} = d - 1$, $\deg g_d = d$, $\deg q_{\ell-1} = \ell - 1$, $\deg q_\ell = \ell$,
- $\deg t_i = d - \ell$ for $i \in \{1, \ldots, n\}$,
- $(t_1 : t_2 : \ldots : t_n) \in \text{Bir}(\mathbb{P}_C^{n-1})$.

Theorem 5.2. Let φ be an element of $I_G(1,\mathbb{P}_C^3)$ of degree d; then $n(\varphi, \text{Bir}(\mathbb{P}_C^3)) \leq 10d + 6$.

If H is a subgroup of G let us denote by $N(H; G)$ the normal subgroup generated by H in G.

Corollary 5.3. Any birational map of $N(I_G(1,\mathbb{P}_C^3); \text{Bir}(\mathbb{P}_C^3))$ is a composition of involutions of $\text{Bir}(\mathbb{P}_C^3)$.

Proof of Theorem 5.2. Any φ in $I_G(1,\mathbb{P}_C^3)$ can be written in the affine chart $z_3 = 1$

$$\varphi = \left(\frac{z_0 A(z_1, z_2) + B(z_1, z_2)}{z_0 C(z_1, z_2) + D(z_1, z_2)}, \psi(z_1, z_2) \right)$$

where

$$\frac{z_0 A(z_1, z_2) + B(z_1, z_2)}{z_0 C(z_1, z_2) + D(z_1, z_2)} \in \text{PGL}(2, \mathbb{C}[z_1, z_2]), \quad \psi \in \text{Bir}(\mathbb{P}_C^2).$$

Let us note that

$$\varphi = (z_0, \psi(z_1, z_2)) \circ \left(\frac{z_0 A(z_1, z_2) + B(z_1, z_2)}{z_0 C(z_1, z_2) + D(z_1, z_2)}, z_1, z_2 \right).$$

The map ψ can be written as a composition of $\leq 10d - 2$ involutions (Theorem 4.10) and $\frac{z_0 A(z_1, z_2) + B(z_1, z_2)}{z_0 C(z_1, z_2) + D(z_1, z_2)} \in \text{PGL}(2, \mathbb{C}[z_1, z_2])$ can be written as a composition of ≤ 8 involutions (Lemma 3.4). As a result φ is a composition of $10d + 6$ or fewer involutions. \hfill \Box

5.2. Maps of small bidegrees.

If φ is a birational self map of \mathbb{P}_C^3, then the bidegree of φ is the pair $(\deg \varphi, \deg \varphi^{-1})$. Let us recall that $\deg \varphi^{-1} \leq (\deg \varphi)^2$. The left-right conjugacy is the following one

$$\text{PGL}(4, \mathbb{C}) \times \text{Bir}(\mathbb{P}_C^3) \times \text{PGL}(4, \mathbb{C}) \quad (A, \varphi, B) \mapsto A \varphi B^{-1}.$$

Pan, Ronga and Vust give birational self maps of \mathbb{P}_C^3 of bidegree $(2, \cdot)$ up to left-right conjugacy, and show that there are only finitely many bimclasses ([14, Theorems 3.1.1, 3.2.1, 3.2.2, 3.3.1]). In particular they show that the smooth and irreducible variety of birational self maps of \mathbb{P}_C^3 of bidegree $(2, \cdot)$ has three irreducible components of dimension 26, 28, 29. More precisely the component of dimension 26 (resp. 28, resp. 29) corresponds to birational maps of bidegree $(2, 4)$ (resp. $(2, 3)$, resp. $(2, 2)$). Let us denote by $\Theta(\varphi)$ the orbit of φ under the left-right conjugacy.

Proposition 5.4. Let φ be a birational self map of \mathbb{P}_C^3 of bidegree $(2, 2)$. Then φ can be written as a composition of involutions of \mathbb{P}_C^3. Furthermore $n(\varphi, \text{Bir}(\mathbb{P}_C^3)) \leq 23$.

Proof. If \(\varphi \) is a birational self map of \(\mathbb{P}^3_\mathbb{C} \) of bidegree (2, 2), then up to left-right conjugacy \(\varphi \) is one of the following \((14)\)

\[
\begin{align*}
f_1 &= (z_0 z_1 : z_1 z_3 : z_2 : z_3 : z_0^2 - z_1 z_2) & f_2 &= (z_0 z_1 : z_1 z_3 : z_2 z_3 : z_1 z_2)
f_3 &= (z_0 z_1 : z_1 z_3 : z_2 : z_3^2) & f_4 &= (z_0 z_1 : z_1 z_3 : z_2^2 : z_1 z_3 - z_0^2 + z_1 z_2)
f_5 &= (z_0 z_1 : z_2 z_3 : z_1 z_3 : z_1 z_2) & f_6 &= (z_0 z_1 : z_2 z_3 : z_1^2 : z_1 z_3 - z_2^2) \\
f_7 &= (z_0 z_1 - z_1 z_2 : z_1 z_3 : z_2 z_3 : z_3^2) & f_8 &= (z_0 z_1 : z_1 z_3 : z_2 z_3 : z_3^2)
\end{align*}
\]

Note that \(f_8 = \text{id} \), and that \(f_1, f_2, f_3 \) are involutions. Any element \(\psi \) in \(\Theta(f_i) \), \(i \in \{1, 2, 3, 8\} \), satisfies \(n(\psi, \text{Bir}(\mathbb{P}^3_\mathbb{C})) \leq 21 \). The other \(f_i \) are de Jonquières maps of \(\mathbb{P}^3_\mathbb{C} \) so according to Theorem 5.2 can be written as compositions of involutions. Nevertheless to find a better bound for \(n(\varphi, \text{Bir}(\mathbb{P}^3_\mathbb{C})) \) we will give explicit decompositions.

First

\[
f_4 = (z_0 : z_2 + z_3 : -z_2 : z_1) \circ (z_0 z_2 : z_1 z_3 : z_2^2 : z_2 z_3) \circ (z_0 z_2 : z_1 z_3 : z_3^2 : z_2 z_3) \circ (z_0 z_2 : z_1 z_3 : z_2 z_3 : z_0 + z_3)
\]

hence for any \(\psi \in \Theta(f_4) \) one has \(n(\psi, \text{Bir}(\mathbb{P}^3_\mathbb{C})) \leq 23 \) (which corresponds to two elements in \(\text{PGL}(4, \mathbb{C}) \) and three involutions).

Second

\[
f_5 = (z_0 : z_3 - z_2 : z_2 : z_1) \circ (z_0 z_2 : z_1 z_3 : z_2^2 : z_2 z_3) \circ (z_0 z_2 : z_1 z_3 : z_3^2 : z_2 z_3) \circ (z_0 : z_1 : -z_3 : z_2 + z_3)
\]

As a consequence \(n(\psi, \text{Bir}(\mathbb{P}^3_\mathbb{C})) \leq 22 \) for any \(\psi \in \Theta(f_5) \).

Third

\[
f_6 = (z_0 : z_1 : z_3 : -z_2) \circ (z_0 z_3 : z_1 z_3 : z_1^2 - z_3 z_2 : z_3^2) \circ (z_0 : z_1 : z_3 - z_2 : z_3).
\]

Therefore for any \(\psi \in \Theta(f_6) \) one has the inequality \(n(\psi, \text{Bir}(\mathbb{P}^3_\mathbb{C})) \leq 21 \).

Last

\[
f_7 = (-z_0 : z_1 : z_2 : z_3) \circ (-z_0 z_3 + z_1 z_2 : z_1 z_3 : z_2 z_3 : z_3^2)
\]

So \(n(\psi, \text{Bir}(\mathbb{P}^3_\mathbb{C})) \leq 21 \) for any \(\psi \in \Theta(f_7) \). \(\square \)

Proposition 5.5. Any birational self map \(\varphi \) of \(\mathbb{P}^3_\mathbb{C} \) of bidegree (2, 3) can be written as a composition of involutions of \(\mathbb{P}^3_\mathbb{C} \); moreover \(n(\varphi, \text{Bir}(\mathbb{P}^3_\mathbb{C})) \leq 30 \).

Proof. If \(\varphi \) is a birational self map of \(\mathbb{P}^3_\mathbb{C} \) of bidegree (2, 3), then \(\varphi \in \Theta(f_i) \) where \(f_i \) is one of the following map \((14)\)

\[
\begin{align*}
f_1 &= (-z_0 z_1 + z_0 z_2 : z_0 z_3 : -z_0 z_1 + z_1 z_2 : z_1 z_3) & f_2 &= (z_0 z_1 : z_0 z_2 - z_1 z_2 : z_0 z_3 : z_1 z_3)
f_3 &= (z_0 z_1 - z_0 z_2 : z_0 z_3 : z_1 z_2 : z_1 z_3) & f_4 &= (z_0 z_1 : z_0 z_2 : z_0 z_3 - z_1 z_3 : z_1^2)
f_5 &= (z_0 z_2 : z_0 z_3 : z_1^2 : z_1 z_3) & f_6 &= (z_0 z_1 : z_0 z_2 - z_1^2 : z_0 z_3 : z_1 z_3)
f_7 &= (z_0 z_1 : z_0 z_2 - z_1 z_3 : z_0 z_3 : z_1^2) & f_8 &= (z_0 z_2 - z_1^2 : z_0 z_3 : z_1 z_2 : z_1 z_3)
f_9 &= (z_0^2 : z_0 z_1 : z_1 z_2 : z_0 z_3 - z_1^2) & f_{10} &= (z_0^2 - z_1^2 : z_0 z_2 : z_0 z_3 : z_1^2)
f_{11} &= (z_0 z_2 + z_1^2 : z_0 : z_0 z_1 : z_0 z_3 - z_1 z_2) &
\end{align*}
\]
Let us give for any of these maps a decomposition with involutions and elements of $\text{PGL}(4, \mathbb{C})$:

\[
\begin{align*}
\phi_1 &= \left(-z_2 + z_0 : -z_1 + z_3 : z_0 : z_3 \right) \circ \left(z_0 z_1 : z_3^2 : z_2 z_3 : z_1 z_3 \right) \circ \left(z_0 z_1 : z_3^2 : z_1 z_2 : z_1 z_3 \right) \\
& \circ \left(z_0 : z_1 - z_2 : z_3 \right) \circ \left(z_0 z_2 : z_1 z_3 : z_3^2 : z_2 z_3 \right) \circ \left(z_0 z_2 : z_1 z_3 : z_3^2 : z_2 z_3 \right) \\
& \circ \left(-z_0 + z_2 : z_1 : z_2 : z_3 \right) \circ \left(z_0 z_2 : z_1 z_3 : z_3^2 : z_2 z_3 \right) \circ \left(z_0 z_2 : z_1 z_3 : z_3^2 : z_2 z_3 \right) \\
& \circ \left(x_2^2 : z_1 z_3 : z_0 z_2 : z_0 z_3 \right) \circ \left(x_2^2 : z_1 z_3 : z_0 z_2 : z_0 z_3 \right) \\
\phi_2 &= \left(z_1 : z_2 : z_0 : z_3 \right) \circ \left(z_0 z_3 : z_0 z_2 : z_2 z_3 : x_2^2 \right) \circ \left(z_0 + z_1 : z_2 : z_3 \right) \\
& \circ \left(x_2^2 : z_1 z_3 : z_0 z_2 : z_0 z_3 \right) \circ \left(z_0 z_1 : z_3^2 : z_2 z_3 : z_1 z_3 \right) \circ \left(z_0 z_1 : z_3^2 : z_2 z_3 : z_1 z_3 \right) \\
& \circ \left(z_0 z_1 : z_3^2 : z_1 z_2 : z_1 z_3 \right) \circ \left(z_0 : z_1 : z_2 : z_3 \right) \\
\phi_3 &= \left(-z_0 : z_1 : z_2 : z_3 \right) \circ \left(-z_0 z_3 + z_1 z_2 : z_1 z_3 : z_2 z_3 : z_3^2 \right) \\
& \circ \left(x_2^2 : z_1 z_3 : z_0 z_2 : z_0 z_3 \right) \circ \left(x_2^2 : z_1 z_3 : z_0 z_2 : z_0 z_3 \right) \\
\phi_4 &= \left(z_0 + z_1 : z_2 : z_3 : z_1 \right) \circ \left(z_0 z_1 : z_3^2 : z_2 z_3 : z_1 z_3 \right) \circ \left(z_0 : z_1 : z_2 : z_3 \right) \\
& \circ \left(z_0 : z_1 : z_2 : z_3 \right) \circ \left(z_0 z_1 : z_3^2 : z_2 z_3 : z_1 z_3 \right) \\
\phi_5 &= \left(z_2 : z_0 : z_1 : z_3 \right) \circ \left(z_2^2 : z_0 z_2 : z_1 z_3 : z_2 z_3 : z_2^2 \right) \\
& \circ \left(z_2 z_3 : z_0 z_1 z_3 : z_2 z_3 : z_2^2 \right) \circ \left(z_2 z_3 : z_1 z_2 : z_1 z_3 \right) \circ \left(z_2 z_3 : z_1 z_2 : z_1 z_3 \right) \\
\phi_6 &= \left(z_1 : z_2 : z_0 : z_3 \right) \circ \left(z_0 z_2 : z_1 z_3 : z_2 z_3 : z_2 z_3 : z_2^2 \right) \\
& \circ \left(z_2 z_3 : z_1 z_3 : z_2 z_3 : z_2^2 \right) \circ \left(z_2 z_3 : z_1 z_3 : z_2 z_3 : z_2^2 \right) \\
\phi_7 &= \left(z_0 : z_1 : z_0 : z_2 \right) \circ \left(z_0 z_2 : z_1 z_3 : z_2 z_3 : z_2 z_3 : z_2^2 \right) \\
& \circ \left(z_2 z_3 : z_1 z_3 : z_2 z_3 : z_2^2 \right) \circ \left(z_2 z_3 : z_1 z_3 : z_2 z_3 : z_2^2 \right) \\
\phi_8 &= \left(-z_2 : z_0 : z_1 : z_2 : z_3 \right) \circ \left(-z_0 z_3 : z_0 z_2 : z_2 z_3 : z_3^2 \right) \\
& \circ \left(z_0 z_1 : z_0 z_2 : z_1 z_3 : z_2 z_3 : z_2^2 \right) \\
\phi_9 &= \left(z_0 : z_1 : z_2 : z_3 : z_1 \right) \circ \left(z_2 z_3 : z_1 z_3 : z_2 z_3 : z_2 z_3 : z_2^2 \right) \\
& \circ \left(z_2 z_3 : z_1 z_3 : z_2 z_3 : z_2^2 \right) \circ \left(z_2 z_3 : z_1 z_3 : z_2 z_3 : z_2^2 \right) \\
\phi_{10} &= \left(z_2 : z_0 : z_1 : z_2 : z_3 \right) \circ \left(z_2 z_3 : z_1 z_3 : z_2 z_3 : z_2 z_3 : z_2^2 \right) \\
& \circ \left(z_2 z_3 : z_1 z_3 : z_2 z_3 : z_2^2 \right) \circ \left(z_2 z_3 : z_1 z_3 : z_2 z_3 : z_2^2 \right) \\
\phi_{11} &= \left(-z_2 : z_0 : z_1 : z_2 : z_3 \right) \circ \left(z_2 z_3 : z_1 z_3 : z_2 z_3 : z_2 z_3 : z_2^2 \right) \\
& \circ \left(z_2 z_3 : z_1 z_3 : z_2 z_3 : z_2^2 \right) \circ \left(z_2 z_3 : z_1 z_3 : z_2 z_3 : z_2^2 \right)
\end{align*}
\]

\[\square\]

Proposition 5.6. Let φ be a birational self map of $\mathbb{P}^3_\mathbb{C}$ of bidegree $(2, 4)$. Then φ can be written as a composition of involutions of $\mathbb{P}^3_\mathbb{C}$. Furthermore $\text{deg}(\varphi, \text{Bir}(\mathbb{P}^3_\mathbb{C})) \leq 37$.

Proof. If φ is a birational self map of $\mathbb{P}^3_\mathbb{C}$ of bidegree $(2, 4)$, then $\varphi \in \mathcal{O}(f_i)$ where f_i is one of the following maps (14):

\[
\begin{align*}
\phi_1 &= (z_1 z_2 : z_2 z_3 : z_2 z_3 : z_0 z_2 - z_1^2 - z_2^2) \\
\phi_2 &= (z_1^2 - z_1 z_3 : z_1 z_2 z_3 : z_0 z_2 - z_1^2 - z_2^2) \\
\phi_3 &= (z_0 z_2 : z_2 z_3 : z_1^2 : z_0 z_2 - z_1^2) \\
\phi_4 &= (z_1^2 : z_1 z_3 : z_2 z_3 : z_1^2 : z_0 z_2 - z_1^2 - z_2^2) \\
\phi_5 &= (z_1 z_2 : z_2 z_3 : z_1^2 : z_0 z_2 - z_1^2) \\
\phi_6 &= (z_1^2 : z_1 z_3 : z_2 z_3 : z_1^2 : z_0 z_2 - z_1^2 - z_2^2) \\
\phi_7 &= (z_0 z_2 : z_2 z_3 : z_1^2 : z_0 z_2 - z_1^2) \\
\phi_8 &= (z_1^2 : z_1 z_3 : z_2 z_3 : z_1^2 : z_0 z_2 - z_1^2 - z_2^2) \\
\phi_9 &= (z_0 z_2 : z_2 z_3 : z_1^2 : z_0 z_2 - z_1^2) \\
\phi_{10} &= (z_1^2 : z_1 z_3 : z_2 z_3 : z_1^2 : z_0 z_2 - z_1^2 - z_2^2) \\
\phi_{11} &= (z_0 z_2 : z_2 z_3 : z_1^2 : z_0 z_2 - z_1^2 - z_2^2) \\
\end{align*}
\]
Let us give for any of these maps a decomposition with involutions and elements of $\text{PGL}(4, \mathbb{C})$:

\[
\begin{aligned}
 f_1 &= (z_3 : z_2 : z_1 : -z_0) \circ (-z_0 z_2 z_1 + z_2^2 z_1 + z_2^2 z_1 - z_1 z_2 z_3) \\
 &= (z_0 z_2 z_1 : z_2 z_1 ^2 : z_1 z_2 z_3) \circ (z_2 z_1 ^2 : z_1 z_2 z_3)
\end{aligned}
\]

\[
\begin{aligned}
 f_2 &= (z_3 : z_2 : z_1 : z_0) \circ (z_0 z_2 : z_1 z_2 : z_2^2 z_1) \circ (z_0 : z_1 : z_2 : z_2 z_3) \\
 &= (z_0 z_2 : z_1 z_2 : z_2^2 z_1) \circ (z_0 z_2 : z_1 z_2 : z_1 z_3) \circ (z_0 z_2 : z_1 z_2 : z_2 z_3) \circ (z_0 z_1 : z_2^2 z_1 : z_1 z_2 z_3) \circ (z_0 z_2 : z_1 z_2 : z_2 z_3)
\end{aligned}
\]

\[
\begin{aligned}
 f_3 &= (z_3 : z_2 : z_1 : -z_0) \circ (z_0 z_2 : z_1 z_2 : z_2^2 z_1 : z_1 z_2) \circ (-z_0 : z_1 : z_2 : z_3) \\
 &= (z_0 z_2 : z_1 z_2 : z_2^2 z_1 : z_1 z_2) \circ (z_0 z_3 : z_1 z_3 : z_2 z_3 : z_1 z_3)
\end{aligned}
\]

\[
\begin{aligned}
 f_4 &= (z_1 : z_2 : z_3 : z_2 : z_2^2 : z_3 : z_1 - z_3) \circ (z_0 z_3 : z_1 z_3 : z_1 z_2 : z_2 z_3) \circ (z_0 z_1 : z_1 z_3 : z_2 z_3 : z_1 z_3) \\
 &= (z_0 z_1 : z_1 z_3 : z_2 z_3 : z_1 z_3) \circ (z_0 z_2 : z_1 z_3 : z_2 z_3 : z_1 z_3)
\end{aligned}
\]

\[
\begin{aligned}
 f_5 &= (z_2 : z_2 : z_1 : z_0) \circ (z_0 z_2 : z_1 z_2 : z_2^2 z_1 : z_2 z_3) \circ (z_0 z_1 : z_1 z_3 : z_2 z_3 : z_1 z_3) \\
 &= (z_0 z_1 : z_1 z_3 : z_2 z_3 : z_1 z_3) \circ (z_0 z_2 : z_1 z_3 : z_2 z_3 : z_1 z_3)
\end{aligned}
\]

\[
\begin{aligned}
 f_6 &= (z_1 : z_2 : z_3 : -z_0 + z_1 z_3 : z_2^2 z_1 : z_2 z_3) \circ (z_0 z_2 : z_1 z_3 : z_2 z_3 : z_1 z_3) \\
 &= (z_0 z_2 : z_1 z_3 : z_2 z_3 : z_1 z_3) \circ (-z_0 z_3 + z_1 z_3 : z_1 z_3 : z_2 z_3 : z_1 z_3)
\end{aligned}
\]

\[
\begin{aligned}
 f_7 &= (z_2 : z_1 : z_0) \circ (z_0 z_2 : z_1 z_2 : z_2^2 z_1 : z_2 z_3) \\
 &= (z_0 z_2 : z_1 z_2 : z_2^2 z_1 : z_2 z_3)
\end{aligned}
\]

\[
\begin{aligned}
 f_8 &= (z_1 : z_2 : z_0) \circ (z_0 z_1 : z_2^2 : z_1 z_3 : z_1 z_2 z_3) \circ (z_0 z_2 : z_1 z_2 z_3 : z_1 z_2 z_3) \\
 &= (z_0 z_2 : z_1 z_2 z_3 : z_1 z_2 z_3) \circ (z_0 z_1 : z_2^2 : z_1 z_3 : z_1 z_2 z_3)
\end{aligned}
\]

\[
\begin{aligned}
 f_9 &= (z_1 : z_2 : z_0) \circ (z_0 z_3 : z_1 z_3 : z_2 z_3 : z_1 z_3) \circ (-z_0 z_3 + z_2^2 : z_1 z_3 : z_2 z_3 : z_1 z_3) \\
 &= (z_0 z_3 : z_1 z_3 : z_2 z_3 : z_1 z_3)
\end{aligned}
\]

\[
\begin{aligned}
 f_{10} &= (z_3 - z_1 : z_2 + z_3 : z_2 : z_0) \circ (z_0 z_3 : z_1 z_2 : z_2 z_3 : z_1 z_3) \\
 &= (z_0 z_1 : z_2^2 : z_2 z_3 : z_1 z_2 z_3) \circ (z_0 z_2 : z_1 z_2 z_3 : z_1 z_3)
\end{aligned}
\]

\[
\begin{aligned}
 f_{11} &= (z_2 : z_1 : z_3 : -z_0) \circ (z_0 z_2 : z_1 z_2 : z_2^2 : z_2 z_3) \circ (z_0 z_2 : z_1 z_2 : z_2 z_3 : z_0) \\
 &= (z_0 z_2 : z_1 z_2 : z_2 z_3 : z_0)
\end{aligned}
\]
6. Dimension ≥ 3

6.1. The group generated by the automorphisms of \mathbb{P}^n and the Cremona involution.

Pan has proved that, as soon as $n \geq 3$, the subgroup generated by $\text{Aut}(\mathbb{P}^n)$ and the involution σ_n is a strict subgroup $G_n(C)$ of Bir(\mathbb{P}^n_C). This subgroup has been studied in [3, 7], and in particular:

Proposition 6.1 ([7]). For any φ in $G_n(C)$ there exist A_0, A_1, \ldots, A_k in $\text{Aut}(\mathbb{P}^n_C)$ such that

$$\varphi = \left(A_0 \circ \sigma_n \circ A_0^{-1}\right) \circ \left(A_1 \circ \sigma_n \circ A_1^{-1}\right) \circ \cdots \circ \left(A_k \circ \sigma_n \circ A_k^{-1}\right)$$

Corollary 6.2. Any element of $N(G_n(C); \text{Bir}(\mathbb{P}^n_C))$ can be written as a composition of involutions of \mathbb{P}^n_C.

6.2. The group of tame automorphisms. As we already mentioned it, Tame_3 does not coincide with $\text{Aut}(C^3)$ (see §2.1): the Nagata automorphism

$$N = (z_0 + 2z_1(z_0z_2 - z_1^2) + z_2(z_0z_2 - z_1^2)^2, z_1 + z_2(z_0z_2 - z_1^2), z_2)$$

is not tame ([19]). Note that since the Nagata automorphism is contained in $G_3(C)$ (see [3]), it can also be written as a composition of involutions (Proposition 6.1). Since $G_n(C)$ contains the group of tame polynomial automorphisms of C^n (see [7]) one gets that

Proposition 6.3. Any element of $N(\text{Tame}_n, \text{Aut}(C^n))$ is a composition of involutions of \mathbb{P}^n_C.

Can we give an upper bound for $\text{n}(\varphi, \text{Bir}(\mathbb{P}^n_C))$ when $\varphi \in \text{Tame}_n$?

Set

$$H_1 = \left\{ (a z_0 + p(z_1), \sum_{i=1}^{n-1} a_{1,i} z_i + \gamma_1, \sum_{i=1}^{n-1} a_{2,i} z_i + \gamma_2, \ldots, \sum_{i=1}^{n-1} a_{n-1,i} z_i + \gamma_{n-1}) \right\} \quad p \in C[z_1], a, a_{i,j}, \gamma_i \in C, a \det(a_{i,j}) \neq 0,$$

$$H_2 = \left\{ (a z_0 + \beta z_1 + \gamma, \delta z_0 + \sum_{i=1}^{n-1} a_{1,i} z_i + \gamma_1, \sum_{i=1}^{n-1} a_{2,i} z_i + \gamma_2, \ldots, \sum_{i=1}^{n-1} a_{n-1,i} z_i + \gamma_{n-1}) \right\}$$

$$\alpha, \beta, \gamma, \delta, a_{i,j}, \gamma_i \in C, \det M(\alpha, \beta, \gamma, \delta, a_{i,j}) \neq 0$$

where

$$M(\alpha, \beta, \gamma, \delta, a_{i,j}) = \begin{pmatrix} \alpha & \beta & \gamma & 0 & \ldots & 0 \\ \delta & 0 & a_{i,j} & 0 & \ldots & 0 \\ \vdots & & & \ddots & \vdots & \vdots \\ 0 & & & & \ddots & \ddots \\ \end{pmatrix}$$

One can check that

$$H_1 \cap H_2 = \left\{ (a z_0 + \beta z_1 + \gamma, \sum_{i=1}^{n-1} a_{1,i} z_i + \gamma_1, \sum_{i=1}^{n-1} a_{2,i} z_i + \gamma_2, \ldots, \sum_{i=1}^{n-1} a_{n-1,i} z_i + \gamma_{n-1}) \right\}$$

$$\alpha, \beta, \gamma, \delta, a_{i,j}, \gamma_i \in C, \det M(\alpha, \beta, \gamma, \delta, a_{i,j}) \neq 0$$
where
\[
M(\alpha, \beta, \gamma, a_{i,j}) = \begin{pmatrix}
\alpha & \beta & \gamma & 0 & \ldots & 0 \\
0 & 0 & 0 & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ldots & \vdots \\
0 & 0 & 0 & 0 & \ldots & 0
\end{pmatrix}
\]

Proposition 6.4. Let \(\varphi = \varphi_k \circ \varphi_{k-1} \circ \ldots \circ \varphi_1 \) be a reduced word in the amalgamated product \(H_1 \ast_{H_1 \cap H_2} H_2 \).

The degree of \(\varphi \) is equal to the product of the degree of the factors \(\varphi_i \).

Proof. We follow the proof of [8, Theorem 2.1].

Let \(\psi = (\psi_0, \psi_1, \ldots, \psi_{n-1}) \) be an element of \(H_1 \ast_{H_1 \cap H_2} H_2 \) which satisfy the condition degrees \(d_0 = \deg \psi_1 \geq \deg \psi_i \) for any \(0 \leq i \leq n-1 \).

Now consider \(\varphi = (\varphi_0, \varphi_1, \ldots, \varphi_{n-1}) \) an element of \(H_1 \setminus (H_1 \cap H_2) \) of degree \(d \); in particular \(\varphi_0 = a \varphi_0 + p(z_1) \) with \(d = \deg p \geq 2 \). Denote by \(\bar{\varphi}_i \) the components of \(\varphi \circ \psi \). One has \(\bar{d}_0 = \deg \bar{\varphi}_0 > \deg \bar{\varphi}_i \) for any \(1 \leq i \leq n-1 \).

Take \(\phi \) in \(H_2 \setminus (H_1 \cap H_2) \), and set \(\phi \circ \varphi \circ \psi = (\bar{\varphi}_0, \bar{\varphi}_1, \ldots, \bar{\varphi}_{n-1}) \). Then \(\bar{d}_0 = \deg \bar{\varphi}_1 = \deg \bar{\varphi}_i \) for any \(i \geq 0 \).

As a result whenever we compose with an element of \(H_1 \setminus (H_1 \cap H_2) \) followed with an element of \(H_2 \setminus (H_1 \cap H_2) \) the degree will be multiply by \(d \). The statement follows by induction. \(\Box \)

Let us now remark that \((H_1, H_2) \) contains both \(A_n \) and \((z_0 + z_1^2, z_1, z_2, \ldots, z_{n-1}) \). Since \(\text{Tame}_n = \langle A_n, (z_0 + z_1^2, z_1, z_2, \ldots, z_{n-1}) \rangle \) (see [20, Chapter 5.2]) any tame automorphism is a reduced word in \(H_1 \ast_{H_1 \cap H_2} H_2 \). Following what we did in §4.3 one obtains:

Theorem 6.5. Let \(\varphi \) be a tame automorphism of \(\mathbb{C}^n, n \geq 3 \), of degree \(d \).

- If \(\varphi \) is affine, then \(n(\varphi, \text{Aut}(\mathbb{P}^n_\mathbb{C})) \leq 2n + 4 \);
- if \(\varphi \) is elementary, then \(n(\varphi, \text{Bir}(\mathbb{P}^n_\mathbb{C})) \leq 2n + 10 \);
- otherwise \(n(\varphi, \text{Bir}(\mathbb{P}^n_\mathbb{C})) \leq \frac{d}{2}(2n + 7) + 10n + 32 \).

Remark 6.6. We cannot use this strategy to get a more precise statement for \(G_n(\mathbb{C}) \). Indeed using similar arguments as in the appendix of [4] one can prove that \(G_n(\mathbb{C}) \) has property \((FR)\); in particular, according to [18] one has:

Proposition 6.7. The group \(G_n(\mathbb{C}) \) does not decompose as a non-trivial amalgam.

More precisely if \(G_n(\mathbb{C}) \) is contained in an amalgam \(G_1 \ast_A G_2 \), then \(G_n(\mathbb{C}) \) is contained in a conjugate of either \(G_1 \) or \(G_2 \) (see [18]).

6.3. Monomial maps in any dimension.

Let \(\mathbb{A}^n_\mathbb{C} \) be the affine space of dimension \(n \). The multiplicative group \(GL_\mathbb{C}^n \) can be identified to the Zariski open subset \((\mathbb{A}^1_\mathbb{C} \setminus \{0\})^n \) of \(P^m_\mathbb{C} \).

Hence \(\text{Bir}(\mathbb{P}^m_\mathbb{C}) \) contains the group of all algebraic automorphisms of the group \(G^n_\mathbb{C} \) \(i.e. \) the group \(\text{Mon}(n, \mathbb{C}) \) of monomial maps \(GL(n, \mathbb{Z}) \).

Theorem 6.8 ([10]). Let \(n \geq 3 \) be an integer. Any element \(\varphi \) of \(GL(n, \mathbb{Z}) \) can be written as a composition of involutions of \(GL(n, \mathbb{Z}) \), and \(n(\varphi, GL(n, \mathbb{Z})) \leq 3n + 9 \).

Corollary 6.9. Let \(\varphi \) be an element of \(\text{Mon}(n, \mathbb{C}) \), with \(n \geq 3 \). Then \(\varphi \) can be written as a composition of involutions of \(\text{Mon}(n, \mathbb{C}) \), and \(n(\varphi, \text{Mon}(n, \mathbb{C})) \leq 3n + 9 \).

Remark 6.10. If \(n \) is even, then \(\text{Mon}(n, \mathbb{C}) \subset G_n(\mathbb{C}) \) (see [3]) ; Proposition 6.1 thus already says that any monomial map of \(\text{Bir}(\mathbb{P}^m_\mathbb{C}) \) can be written as a composition of involutions but here we get two more informations:
• a bound for the minimal number of involutions,
• and the fact that the involutions belong to $\text{Mon}(n, C)$.

Furthermore Proposition 6.1 gives nothing for $\text{Mon}(n, C)$ for n odd since $\text{Mon}(n, C) \neq C_n$ as soon as n is odd ([3]).

Corollary 6.11. Any element of $N[\text{Mon}(n, C); \text{Bir}(P^n_C)]$ is a composition of involutions of P^n_C.

6.4. Subgroups J_n.

Let us introduce J_n the subgroup of $\text{Bir}(P^n_C)$ formed by the maps of the type

$$
\left(\varphi_0, \varphi_1, \ldots, \varphi_{n-2}, \frac{\alpha z_{n-1} + \beta}{\gamma z_{n-1} + \delta} \right)
$$

with

$$
\varphi_i = \left(\frac{z_i A_i(z_{i+1}, z_{i+2}, \ldots, z_{n-1}) + B_i(z_{i+1}, z_{i+2}, \ldots, z_{n-1})}{z_i C_i(z_{i+1}, z_{i+2}, \ldots, z_{n-1}) + D_i(z_{i+1}, z_{i+2}, \ldots, z_{n-1})} \right) \in \text{PGL}(2, C(z_{i+1}, z_{i+2}, \ldots, z_{n-1}))
$$

and

$$
\frac{\alpha z_{n-1} + \beta}{\gamma z_{n-1} + \delta} \in \text{PGL}(2, C).
$$

According to the proof of Lemma 4.3 one gets:

Proposition 6.12. Let $\varphi = (\varphi_0, \varphi_1, \ldots, \varphi_{n-1})$ be an element of J_n.

Assume $0 \leq i \leq n - 2$. If $\det \varphi_i = \pm 1$, then $n(\varphi_i, \text{PGL}(2, C(z_{i+1}, z_{i+2}, \ldots, z_{n-1})) \leq 4$ otherwise $n(\varphi_i, \text{PGL}(2, C(z_{i+1}, z_{i+2}, \ldots, z_{n-1})) \leq 8$.

In particular $n(\varphi, J_n) \leq 4(2n - 1)$.

Corollary 6.13. Any element of $N(J_n; \text{Bir}(P^n_C))$ can be written as a composition of involutions of P^n_C.

References

[1] M. Alberich-Carramiñana. *Geometry of the plane Cremona maps*, volume 1769 of *Lecture Notes in Mathematics*. Springer-Verlag, Berlin, 2002.

[2] E. Bertini. Ricerche sulle trasformazioni univoche involutorie nel piano. *Annali di Mat.*, 8:244–286, 1877.

[3] J. Blanc and I. Hedén. The group of Cremona transformations generated by linear maps and the standard involution. *Ann. Inst. Fourier (Grenoble)*, 65(6):2641–2660, 2015.

[4] S. Cantat and S. Lamy. Normal subgroups in the Cremona group. *Acta Math.*, 210(1):31–94, 2013. With an appendix by Yves de Cornulier.

[5] G. Castelnuovo. Le trasformazioni generatrici del gruppo cremoniano nel piano. *Atti R. Accad. Sci. Torino*, 36:861–874, 1901.

[6] D. Cerveau and J. Déserti. *Transformations birationnelles de petit degré*, volume 19 of *Cours Spécialisés*. Société Mathématique de France, Paris, 2013.

[7] J. Déserti. Some properties of the group of birational maps generated by the automorphisms of P^n_C and the standard involution. *Math. Z.*, 281(3-4):893–905, 2015.

[8] S. Friedland and J. Milnor. Dynamical properties of plane polynomial automorphisms. *Ergodic Theory Dynam. Systems*, 9(1):67–99, 1989.

[9] W. H. Gustafson, P. R. Halmos, and H. Radjavi. Products of involutions. *Linear Algebra and Appl.*, 13(1/2):157–162, 1976. Collection of articles dedicated to Olga Taussky Todd.

[10] H. Ishibashi. Involuntary expressions for elements in $\text{GL}_n(\mathbb{Z})$ and $\text{SL}_n(\mathbb{Z})$. *Linear Algebra Appl.*, 219:165–177, 1995.

[11] H. W. E. Jung. Über ganze birationale Transformationen der Ebene. *J. Reine Angew. Math.*, 184:161–174, 1942.

[12] D. Mumford. Hilbert’s fourteenth problem—the finite generation of subrings such as rings of invariants. pages 431–444, 1976.

[13] I. Pan. Une remarque sur la génération du groupe de Cremona. *Bol. Soc. Brasil. Mat. (N.S.)*, 30(1):95–98, 1999.
[14] I. Pan, F. Ronga, and T. Vust. Transformations birationnelles quadratiques de l’espace projectif complexe à trois dimensions. *Ann. Inst. Fourier (Grenoble)*, 51(5):1153–1187, 2001.

[15] I. Pan and A. Simis. Cremona maps of de Jonquières type. *Canad. J. Math.*, 67(4):923–941, 2015.

[16] D. Perrin. *Cours d’algèbre*. Ellipses. Ellipses, 1996.

[17] Yu. G. Prokhorov. On birational involutions of \mathbb{P}^3. *Izv. Ross. Akad. Nauk Ser. Mat.*, 77(3):199–222, 2013.

[18] J.-P. Serre. *Arbres, amalgames, SL$_2$*. Société Mathématique de France, Paris, 1977. Avec un sommaire anglais, Rédigé avec la collaboration de Hyman Bass, Astérisque, No. 46.

[19] I. P. Shestakov and U. U. Umirbaev. The tame and the wild automorphisms of polynomial rings in three variables. *J. Amer. Math. Soc.*, 17(1):197–227 (electronic), 2004.

[20] A. van den Essen. *Polynomial automorphisms and the Jacobian conjecture*, volume 190 of *Progress in Mathematics*. Birkhäuser Verlag, Basel, 2000.

[21] S. Zimmermann. *Compositions and relations in the Cremona groups*. 2016. Thesis (Ph.D.)–Universität Basel.