Singular blocks of parabolic category \mathcal{O} and finite W-algebras

Ben Webster
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, 02139
bwebster@math.mit.edu

Abstract. We show that each integral infinitesimal block of parabolic category \mathcal{O} (including singular ones) for a semi-simple Lie algebra can be realized as a full subcategory of a “thick” category \mathcal{O} over a finite W-algebra for the same Lie algebra.

The nilpotent used to construct this finite W-algebra is determined by the central character of the block, and the subcategory taken is that killed by a particular two-sided ideal depending on the original parabolic. The equivalences in question are induced by those defined by Miličić-Soergel and Losev.

We also give a proof of a result of some independent interest: the singular blocks of parabolic category \mathcal{O} can be geometrically realized as “partial Whittaker sheaves” on partial flag varieties.

In this note, we aim to clarify the relationship between the category \mathcal{O} of Bernstein-Gelfand-Gelfand [BGG76] and the category \mathcal{O} over the finite W-algebra defined by Brundan, Goodwin and Kleshchev [BGK08]. We show that:

Theorem Any integral infinitesimal block of parabolic category \mathcal{O} for a semi-simple Lie algebra \mathfrak{g} is equivalent to a category of representations over a finite W-algebra for \mathfrak{g} corresponding to a nilpotent (depending on the choice of central character).

Recall that an infinitesimal block of a category of $U(\mathfrak{g})$-modules is defined to be the subcategory generated by the simple modules on which the center of $U(\mathfrak{g})$ acts by a fixed central character.

For a more precise statement of this Theorem, see Corollary 6. The equivalences refered to above are obtained by restricting to subcategories equivalences defined in previous work by Miličić-Soergel [MS97] on representations of Lie algebras and Losev [Losa] on finite W-algebras.

The category of W-algebra modules in question has a flavor similar to the category \mathcal{O} for the W-algebra already defined by Brundan, Goodwin and Kleshchev [BGK08], but it is subtly different.

In order to explain this difference, consider the case of our parabolic being the Borel itself, the original definition of category \mathcal{O} considered in [BGG76]. In this case, we show that a singular block of category \mathcal{O} is equivalent to the category of modules over a W-algebra for the same Lie algebra (with nilpotent depending on the singular block) generated by “Verma modules” for the W-algebra defined by Brundan, Goodwin and Kleshchev [BGK08 §4.2], and which furthermore have trivial central character. We will refer to this category as category \mathcal{O}' for the finite W-algebra.

This category has two subtle differences from the category \mathcal{O}'s defined in [BGG76] for $U(\mathfrak{g})$ and in [BGK08] for the W-algebra:

- The category \mathcal{O}' only contains modules where the center acts semi-simply.
- We have no analogue of the condition that the Cartan act semi-simply, which is imposed in [BGG76] (an analogue of this semi-simplicity is also imposed in [BGK08]).

This work is supported by an NSF Postdoctoral Research Fellowship.
If instead of the Borel, we begin with a block of parabolic category O for some larger parabolic, we must further impose the condition that these modules are killed by a particular two-sided ideal.

The proof of the theorem above is organized into two sections. Section 1 covers preparatory results on category O and Harish-Chandra bimodules; it is likely that many of the results therein are familiar to experts, but they do not seem to have been written down together in the necessary form anywhere in the literature. Section 2 describes the relationship of these results to the representation theory of the finite W-algebra, and completes the proof.

Finally, in Section 3 we also discuss briefly the relationship of these results to geometry. In particular, we give a proof of a result which has circulated as a folk theorem: the singular integral infinitesimal blocks of parabolic category O can be geometrically realized as (N, f)-equivariant (the so-called “partial Whittaker”) D-modules or perverse sheaves on G/Q. This is a classical theorem when f is generic (going back to a paper of Kostant [K]), and the $Q = B$ case follows from work of Bezrukavnikov and Yun [BY, Theorem 4.4.1] but we know of no proof in the literature of the general case.

In a forthcoming paper [BLPW], the author, Braden, Licata and Proudfoot will discuss the relationship to geometry more fully and relate this isomorphism to the geometry of strata in a Slodowy slice and to our conjectures on symplectic duality between such strata.

Acknowledgments

I would like to thank Tom Braden, Tony Licata and Nick Proudfoot both for useful discussions during the development of this paper, and extremely helpful comments on earlier versions of this paper; Jim Humphreys and an anonymous referee for very useful comments on an earlier version of the paper; Catharina Stroppel, Roman Bezrukavnikov and Ivan Mirković for some valuable education on Harish-Chandra bimodules and Whittaker sheaves; and the Mathematische Forschungsinstitut Oberwolfach for hospitality while this paper was written.

1 Lie theory

First, we fix notation. Let $g \supset q \supset b = h \oplus n$ be a semi-simple complex Lie algebra, a parabolic, a Borel, and a chosen decomposition of b as a Cartan and its nilpotent radical. Let $G \supset Q \supset B = HN$ be connected groups with these Lie algebras (which form of G we take is irrelevant to our purposes). Let Z denote the center of the universal enveloping algebra $U(g)$.

Definition 1 We let \hat{O} be the category of representations of g where n and Z act locally finitely.

This category has a natural infinitesimal block decomposition $\hat{O} = \bigoplus \hat{O}(\chi, f)$ where the sum runs over characters $\chi: Z \to \mathbb{C}$ and $f: n \to \mathbb{C}$ and $\hat{O}(\chi, f)$ is the subcategory where all the irreducible constituents of the restriction to $U(n) \otimes Z$ are $f \otimes \chi$. For any highest weight λ, we let χ_λ be the character of Z acting on the unique irreducible g-module of highest weight λ.

The category \hat{O} contains two very natural subcategories:

- O is the subcategory of modules on which h acts semi-simply.
- O' is the subcategory of modules on which Z acts semi-simply.

These have the same infinitesimal block decomposition as above. We note that O is the most commonly studied of these categories, and $\bigoplus \chi O(\chi, 0)$ in our notation is precisely the category O.
originally defined by Bernstein-Gelfand-Gelfand [BGG76], and \(O(\chi, 0) \) its infinitesimal block for the central character \(\chi \).

It’s worth noting that for non-integral \(\chi \), the infinitesimal blocks \(O(\chi, 0) \) are not necessarily blocks in the abstract sense; they may have further decompositions as the sum of orthogonal subcategories. For several infinitesimal blocks of categories we consider, the abstract block decompositions can actually be quite subtle and complicated.

We will also wish to consider the parabolic version of category \(O \). Let \(O^q(\chi, 0) \) be the subcategory of \(O(\chi, 0) \) consisting of modules also locally finite for the action of \(q \). One particular special object in \(O^q(\chi, 0) \) is the dominant parabolic Verma module \(M^q = \text{Ind}_{U(\mathfrak{g})}^{U(\mathfrak{g})} 1 \), where \(1 \) is the trivial representation of \(q \).

For the entirety of the paper, we will always use \(f \) and \(\mu \) to denote a Lie algebra map \(f : \mathfrak{n} \to \mathbb{C} \) and a weight \(\mu \) of \(\mathfrak{g} \) such that if \(\Delta_f \) be the set of simple roots \(\alpha \) whose root spaces are not killed by \(f \), then \(\alpha(\mu) = -1 \) for all \(\alpha \in \Delta_f \) and \(\alpha(\mu) \in \mathbb{Z} \setminus \{-1\} \) for all \(\alpha \notin \Delta_f \). In particular, note that \(f = 0 \) and \(\mu = 0 \) are compatible in the sense above; this will be an important special case for us.

Let \(p_f \) be the parabolic generated by the standard Borel \(\mathfrak{b} \) and the negative root spaces \(\mathfrak{g}_{-\alpha} \) for \(\alpha \in \Delta_f \).

The starting point for us is an equivalence of categories \(\Phi_\mu : \widehat{O}(\chi_\mu, 0) \to \widehat{O}(\chi, 0) \) constructed by Milićić and Soergel [MS97, Theorem 5.1]. This functor makes sense for any integral value of \(\mu \) for an appropriate value of \(f \); one case of special interest is the functor \(\Phi_0 : \widehat{O}(\chi_0, 0) \to \widehat{O}(\chi, 0) \).

This functor was considered in earlier work of Soergel [?] to construct an equivalence between \(O(\chi_0, 0) \) and \(O'(\chi_0, 0) \). Our main result of this section will be to understand the effect of this functor on subcategories of interest to us.

We let \(I_q = \text{Ann}_{U(\mathfrak{g})} \Phi_0(M^g) \) and let \(O'_q(\chi_0, f) \) denote the subcategory of modules killed by \(I_q \).

It may look peculiar to the reader that we are using \(M^g \), a Verma module of central character \(\chi_0 \) to define an ideal, and then using this ideal to define a category related to \(O(\chi_\mu, 0) \); this creates no problems, since all the target categories for \(\Phi_\mu \) have central character \(\chi_0 \). We note that \(I_q \cap Z = \ker \chi_0 \), since \(\Phi_0(M^g) \) is a quotient of a Verma module. Thus any object of \(\widehat{O}(\chi_0, f) \) killed by \(I_q \) is automatically a semi-simple \(Z \) module, and therefore in \(O'(\chi_0, f) \).

Proposition 2 The subalgebra \(q \) acts locally finitely and \(\mathfrak{h} \) acts semi-simply on a module \(X \in \widehat{O}(\chi_\mu, 0) \) if and only if \(\text{Ann}(\Phi_\mu(X)) \supset I_q \); that is, we have an induced equivalence \(\Phi_\mu : O^q(\chi_\mu, 0) \to O'_q(\chi_0, f) \).

In particular, setting \(q = \mathfrak{b} \), we have that \(\mathfrak{h} \) acts semi-simply on \(X \in \widehat{O}(\chi_\mu, 0) \) if and only if \(Z \) acts semi-simply on \(\Phi_\mu(X) \); that is, we have an induced equivalence \(\Phi_\mu : O(\chi_\mu, 0) \to O'(\chi_0, f) \).

Most of the ideas necessary for the proof of this fact are already in the literature, which we now collect into the

Lemma 3 For each object \(X \in \widehat{O}(\chi_\mu, 0) \) and each projective functor \(\mathcal{P} : \widehat{O}(\chi_\mu', 0) \to \widehat{O}(\chi_\mu, 0) \), we have an inclusion \(\text{Ann}_{U(\mathfrak{g})}(\Phi_\mu(\mathcal{P}X)) \supset \text{Ann}_{U(\mathfrak{g})}(\Phi_\mu(X)) \).

If \(L_1 \) and \(L_2 \) are simple, then this statement has a converse; \(L_2 \) appears as a composition factor in \(\mathcal{P}L_1 \) for some projective functor if and only if \(\text{Ann}_{U(\mathfrak{g})}(\Phi_\mu L_1) \subset \text{Ann}_{U(\mathfrak{g})}(\Phi_\mu L_2) \).

Proof: The Milićić-Soergel result depends on equivalences of categories

\[
\varphi_1 : \chi_\mu \mathcal{H}_\chi \to \widehat{O}(\chi_\mu, 0) \quad \varphi_2 : \chi_0 \mathcal{H}_\chi \to \widehat{O}(\chi_0, f)
\]

with certain blocks of the category \(\mathcal{H} \) of Harish-Chandra bimodules, defined by fixing the generalized character of the left and right \(Z \)-actions. The equivalence \(\Phi_\mu \) is given by composing these with the “flip equivalence” \(\mathcal{T} : \chi_\mu \mathcal{H}_\chi \to \chi_0 \mathcal{H}_\mu \), so we have \(\Phi_\mu \equiv \mathcal{T} \varphi_2^{-1} \varphi_1 \).
If we were being very careful, we would include \(\mu \) and \(f \) in the notation, since this equivalence exists for any compatible choice, but for simplicity, we leave them out.

The functors \(\varphi_i \) are both of the form

\[
\varphi_i(Y) = \lim Y \otimes_{U(\mathfrak{g})} L_i^n
\]

for an inverse system of representations \(L_i^n \) for \(i = 1, 2 \), and \(n \geq 0 \). Thus, for any \(U(\mathfrak{g}) \)-bimodule \(D \), we have \(\varphi_i(D \otimes_{U(\mathfrak{g})} Y) \cong D \otimes_{U(\mathfrak{g})} \varphi_i(Y) \).

In particular, for any two-sided ideal \(I \), we have \(\varphi_i(IY) \cong I \varphi_i(Y) \). Also, for any projective functor \(\mathcal{P} : \hat{\mathcal{O}}(\chi_{\mu'}, 0) \to \hat{\mathcal{O}}(\chi_{\mu}, 0) \) where we let \(\mathcal{P}_L \) denote the functor on \(U(\mathfrak{g}) \)-bimodules given by acting with the projective functor \(\mathcal{P} \) on the left, then by the same principle, we have \(\mathcal{P} \varphi_1 = \varphi_1 \mathcal{P}_L \).

One important consequence of this fact is that the left annihilator of a bimodule \(Y \) coincides with the annihilator of \(\varphi_i(Y) \). Thus, \(\varphi_1^{-1}(X) \) is a Harish-Chandra bimodule whose left annihilator is that of \(X \) and whose right annihilator is that of \(\Phi_{\mu}(X) \). Thus, we have

\[
\text{Ann}(\Phi_{\mu}(\mathcal{P}X)) = \text{RAnn}(\mathcal{P}_L \varphi_1^{-1}(X)) \supset \text{RAnn}(\varphi_1^{-1}(X)) = \text{Ann}(\Phi_{\mu'}(X)).
\]

The first part of the result follows.

Now, we prove the second statement (the partial converse). Consider the Harish-Chandra bimodules \(\varphi_1^{-1}(L_1) \) and \(\varphi_1^{-1}(L_2) \). By reversing left and right in [Vog80 Theorem 3.2], we have

\[
\text{Ann}(\Phi_{\mu}L_1) = \text{RAnn}(\varphi_1^{-1}(L_1)) \supset \text{RAnn}(\varphi_1^{-1}(L_2)) = \text{Ann}(\Phi_{\mu'}L_2)
\]

if and only if there is a projective functor \(\mathcal{P} \) such that \(\varphi_1^{-1}(L_2) \) is a composition factor in \(\mathcal{P}_L \varphi_1^{-1}(L_1) \).

Applying the equivalence \(\varphi_1 \), this is true if and only if \(L_2 \) is a composition factor of \(\mathcal{P}L_1 \). \(\square \)

Proof of Proposition 2 If \(X \) is in \(\mathcal{O}^q(\chi_{\mu}, 0) \), then there is a projective functor \(\mathcal{P} : \mathcal{O}^q(\chi_0, 0) \to \mathcal{O}^q(\chi_{\mu}, 0) \) and a surjection \(\mathcal{P}M^q \to X \), (this is an old result; it follows, for example, from [Kho05 Proposition 22]) and thus, by Lemma 5 we have inclusions

\[
\text{Ann}(\Phi_0(M^q)) \subset \text{Ann}(\Phi_{\mu}(\mathcal{P}M^q)) \subset \text{Ann}(\Phi_{\mu}(X)).
\]

Assume \(\Phi_{\mu}(X) \) is killed by \(I_q \). By passing to composition factors, we may assume that \(X \) is simple. Let \(J_i \) be the primitive ideals killing the composition factors \(L_i \) of \(M^q \), in the order induced by a Jordan-Hölder series. Then \(J_1 \cdots J_m \subset I_q \subset \text{Ann}(\Phi_{\mu}(X)) \). Since \(\text{Ann}(\Phi_{\mu}(X)) \) is prime, we have \(J_i \subset \text{Ann}(\Phi_{\mu}(X)) \) for some \(i \). Thus, by the second part of Lemma 3 \(X \) appears as a composition factor of \(\mathcal{P}L_i \). Since \(L_i \) is \(q \)-locally finite, so is \(\mathcal{P}L_i \), and thus \(X \).

Finally, we establish the relationship between \(h \)-semi-simplicity and \(Z \)-semi-simplicity. By [MS97 Theorem 5.3] in the case where \(n = 1 \), we have that a bimodule \(D \in \chi_\mu \mathcal{H}_{\chi_0} \) is semi-simple as a right \(Z \)-module if and only if \(\varphi_1(D) \) is a module on which the Cartan acts semi-simply, that is, a weight module. Thus, \(X \) is a weight module if and only if \(\varphi_1^{-1}(X) \) is semi-simple as a right bimodule if and only if \(\mathcal{P}\varphi_1^{-1}(X) \) is semi-simple as a left \(Z \)-module if and only if \(\Phi_{\mu}(X) \) is semi-simple as a \(Z \)-module (applying the commutation of ideals past \(\varphi_2 \) again). \(\square \)

2 Finite W-algebras

Now, we will connect the previous section, which only dealt with representations of Lie algebras, to the study of finite W-algebras.
The finite W-algebra W_e is a infinite-dimensional associative algebra constructed from the data of g and a nilpotent element $e \in g$; geometrically, it is obtained by taking a quantization of the Slodowy slice to the orbit through e. It is most easily defined as the endomorphism ring of the Gelfand-Graev representation $Q_{\Xi, m} = \Xi \otimes U(m) U(g)$ for a particular nilpotent subalgebra $m \subset n$ depending on e, and a one-dimensional representation Ξ of m constructed using e. For more on the general theory of W-algebras, see \cite{Pre02, GG02}.

The algebra W_e has a category of representations analogous to \hat{O} above, originating in the work of Brundan, Goodwin and Kleshchev \cite{BGK08}. This category is associated a choice of parabolic p such that

- e is distinguished in the Levi l of p
- p contains a fixed maximal torus t of the centralizer $C_g(e) = \{x \in g | [x, e] = 0\}$.

This choice of parabolic allows us to put an preorder on the weights of t by declaring that $\lambda \leq \mu$ if and only if $\mu - \lambda$ is a linear combination of weights of t acting on p.

We have a natural inclusion $U(t) \hookrightarrow W_e$, (described in \cite[Theorem 3.3]{BGK08}) and thus can analyze any W_e representation by its restriction to t.

Definition 4 Let $\hat{O}(W_e, p)$ be the category of modules X such that

- t acts on X with finite dimensional generalized weight spaces.
- the weights which appear in X are contained in a finite union of sets of the form $\{\mu | \mu \leq \lambda\}$.

As before, $O(W_e, p)$ denotes the subcategory on which t acts semi-simply, and $O'(W_e, p)$ denotes the subcategory on which $Z \cong Z(W_e)$ acts semi-simply.

Alternatively, following \cite{Losa}, we could define an analogue of \hat{O} as the category of W_e-modules which are locally finite for the action of the non-negative weight spaces of an element $\xi \in C_g(e)$ acting by the adjoint action on W_e. This will recover the BGK definition when p is precisely the non-negative weight spaces for the adjoint action of ξ on g. In Losev’s notation, $\hat{O}(W_e, p)$ is denoted $O(\xi)$, and the category we and \cite{BGK08} denote $O(W_e, p)$, Losev would denote $O^l(\xi)$ (leaving the e implicit).

There is an isomorphism $Z \cong Z(W_e)$, typically referenced in the literature to a footnote to Question 5.1 in the paper of Premet \cite{Pre07}, where Premet gives an argument he ascribes to Ginzburg. This isomorphism allows us to identify central characters of $U(g)$ and W_e. We denote the subcategory of $\hat{O}(W_e, p)$ with generalized central character χ by $\hat{O}(\chi, W_e, p)$, and the subcategory where Z acts semi-simply (and thus by the character χ) by $O'(\chi, W_e, p)$.

We will primarily interested in the case where after fixing a parabolic $p \supset b$ with Levi l, we take e to be the principal nilpotent in l (for the Borel given by intersection with b), and we will assume we are in this situation. In type A, all nilpotents will appear this way up to conjugacy, since we can take p to be block upper triangular matrices attached to the Jordan blocks of e; in other types, there are nilpotents that are not of this form.

As before, let $f : n \rightarrow C$ be a fixed character of this nilpotent Lie algebra.

Proposition 5 ([Losa] If e is principal in the Levi of p_f, there is an equivalence

$$\mathcal{L} : \hat{O}(\chi_0, W_e, p_f) \rightarrow \hat{O}(\chi_0, f)$$

inducing equivalences

$$O'(\chi_0, W_e, p_f) \cong O'(\chi_0, f) \quad O(\chi_0, W_e, p_f) \cong O(\chi_0, f)$$
Furthermore, $\mathcal{L}(X)$ is killed by I_q if and only if X is killed by a certain two-sided ideal $(I_q)_\dagger$ of the W-algebra. We denote the subcategory killed by $(I_q)_\dagger$ by $\hat{\mathcal{O}}(\chi_0, W_e)$.

The ideal $(I_q)_\dagger$ arises from a pair of maps: $I \mapsto I^\dagger$ sends two-sided ideals in the W-algebra to two-sided ideals of $U(\mathfrak{g})$ and $J \mapsto J_\dagger$ goes the opposite direction; these both are defined by Losev in [Losb] §3.4. In a forthcoming paper [BLPW], the author, Braden, Licata and Proudfoot will show that this ideal $(I_q)_\dagger$ is primitive, and itself has a geometric interpretation.

Proof: The only part of the equivalences not stated directly in [Los] Theorem 4.1 is the equivalence of most interest for us, that of $\mathcal{O}'(\chi_0, W_e, p_f) \cong \mathcal{O}'(\chi_0, f)$.

It follows from [Los] Theorem 4.1(1)] and [Losb] Theorem 1.2.2(iii)] that

\[(*) : \text{the center acts semi-simply on } X \in \hat{\mathcal{O}}(\chi_0, W_e, p_f) \text{ if and only if it acts semi-simply on } \mathcal{L}(X). \]

The “only if” portion of (\ast) shows that \mathcal{L} induces a fully faithful functor $\mathcal{L} : \mathcal{O}'(\chi_0, W_e, p_f) \to \mathcal{O}'(\chi_0, f)$. The “if” portion of (\ast) shows that the essential surjectivity of \mathcal{L} implies the essential surjectivity of this restriction.

Now, fix a $U(\mathfrak{g})$-module X such that $\text{Ann}(X) \supseteq I_q$, and consider $\text{Ann}(\mathcal{L}^{-1}(X))$. We know by [Losb] Theorem 4.1(1)] that $\text{Ann}(\mathcal{L}^{-1}(X)) = \text{Ann}(X)$. It follows that $\text{Ann}(\mathcal{L}^{-1}(X)) \supseteq \text{Ann}(X) \supseteq (I_q)_\dagger$ since Losev’s \dagger maps both preserve inclusion (this follows from [Losb] Theorem 1.2.2(i)] for $(\cdot)_\dagger$ and is noted by Losev in [Losb] §3.4 for $(\cdot)^\dagger$).

On the hand, if $V \in \mathcal{O}'(\chi_0, W_e, p_f)$ is killed by $(I_q)_\dagger$. Then $\mathcal{L}(V)$ is a $U(\mathfrak{g})$-module killed by $(I_q)_\dagger$. By [Losb] Proposition 3.4.4], $(I_q)_\dagger \supseteq I_q$ and $\mathcal{L}(V)$ is killed by I_q.

To recap, if μ is a weight of \mathfrak{g} such that $\mu + \rho$ is dominant integral, and e is the principal nilpotent of the Levi in the parabolic p_f corresponding to the stabilizer of $\mu + \rho$ under the usual action of W on weights, then combining Propositions 2 and 3, we have

Corollary 6 There is an equivalence $\mathcal{O}^q(\chi_0, 0) \cong \mathcal{O}_{q'}^q(\chi_0, f) \cong \mathcal{O}'(\chi_0, W_e, p_f)$.

3 Relation to geometry

In order to give the reader some feeling for the “meaning” of the ideal I_q, we will briefly indicate its relationship to geometry. This relation will be drawn out much more fully in a forthcoming paper of the author, Braden, Licata, and Proudfoot.

We have the G-space G/Q, and as with any G-space, a map $\alpha : U(\mathfrak{g}) \to D(G/Q)$ to the ring of global differential operators on G/Q sending a Lie algebra element to the corresponding vector field.

Proposition 7 The map α induces an isomorphism $D(G/Q) \cong U(\mathfrak{g})/I_q$. In particular, $gr(U(\mathfrak{g})/I_q) = \mathbb{C}[T^*G/P]$, and I_q is prime.

Proof: Borho and Brylinski [BB82] show that $D(G/Q) \cong U(\mathfrak{g})/I$ where I is the annihilator of a simple parabolic Verma module L^g with highest weight $2\rho_Q - 2\rho$; this is the unique such with central character χ_0. Thus, we need only show that $I = I_q$.

We can understand the functor Φ_q restricted to $\mathcal{O}(\chi_0, 0) \cap \mathcal{O}'(\chi_0, 0)$ as localizing a module to a B-equivariant D-module on G/B, then using the “flip” functor to think of this as a B-equivariant

\[^2 \text{We thank the referee for pointing out this reference.} \]
Proof: By Beilinson-Bernstein [BB81], the sections functor $\Phi_0(M^\mathfrak{g})$ localizes to the \mathfrak{l}-extension of the structure sheaf $\mathcal{O}_{W_0 B/B}$ as a D-module (don’t confuse this with the use of the symbol \mathcal{O} for a category; that will not appear in the rest of this proof), the structure sheaf of the dense Q-orbit, so $\Phi_0(M^\mathfrak{g})$ localizes to the \mathfrak{l}-extension of $\mathcal{O}_{W_0 Q/B}$. Since the latter sheaf is smooth along the fibers of the natural map $G/B \to G/Q$, the pushforward of this sheaf to G/Q is the \mathfrak{l}-extension of $\mathcal{O}_{W_0 Q/B}$. In particular, $\Phi_0(M^\mathfrak{g})$ is the sections of a D-module on G/Q, and thus annihilated by I.

On the other hand, by the work of Irving [Ir85 §4.3], the socle of $M^\mathfrak{g}$ is in the same right cell as $L^\mathfrak{g}$, by the \mathfrak{n}-modules on G/Q, and thus also to the category of \mathfrak{a}-extension of G/Q, and can only be made sense of using perverse sheaves on the characteristic p-extension of \mathfrak{a}-extension of G/Q.

This isomorphism, followed by the symbol map on differential operators induces an isomorphism $\text{gr}(U(\mathfrak{g})/I_\mathfrak{q}) \cong \mathbb{C}[T^*G/Q]$. Since the associated graded of $U(\mathfrak{g})/I_\mathfrak{q}$ is the global function ring of an irreducible quasi-projective variety, the associated graded is an integral domain, and thus so is $U(\mathfrak{g})/I_\mathfrak{q}$.

Interestingly, this establishes a conjecture which had appeared in an unpublished manuscript of Bezrukavnikov and Mirković, and which had been previously studied by the author and Stroppel.

Definition 8 We say that a D-module \mathcal{M} on G/Q is (\mathfrak{N}, f)-equivariant if the action of \mathfrak{n} on \mathcal{M} by $n \cdot m = \alpha_n m - f(n)m$ (where α_n is the vector field given by the infinitesimal action of n on G/Q) integrates to an \mathfrak{N}-equivariant structure on \mathcal{M}. Some authors use “strongly equivariant” for this form of equivariance.

There is also a version of (\mathfrak{N}, f)-equivariance for perverse sheaves on G/Q, though in the algebraic category this can only be made sense of using perverse sheaves on the characteristic p analogue of G/Q (for more on this approach, see [BBM04]). In this case, we let f' be a character $f': \mathfrak{n}/\mathbb{F}_p \to \mathbb{G}_a/\mathbb{F}_p$ such that $\Delta_{f'} = \Delta_f$ and twist the equivariance condition by an Artin-Schreier sheaf pulled back from $\mathbb{G}_a/\mathbb{F}_p$ by f'. These are sometimes called “partial Whittaker” or “Whittavariant” sheaves.

Corollary 9 The category $\mathcal{O}_\mathfrak{a}(\chi_\mu, 0)$ is equivalent to the category of (\mathfrak{N}, f)-equivariant D-modules on G/Q (and thus also to the category of (\mathfrak{N}, f')-equivariant perverse sheaves on G/Q, with all groups considered as algebraic groups over \mathbb{F}_p).

Proof: By Beilinson-Bernstein [BB81], the sections functor $\mathcal{D}_{G/Q} \to \mathcal{O}_\mathfrak{g}$ is an equivalence. If \mathcal{M} is a (\mathfrak{N}, f)-equivariant D-module, then the action of $U(\mathfrak{n})$ on $\Gamma(\mathcal{M})$ is locally finite, with \mathbb{C}_f being the only representation which appears in the composition series, so $\mathcal{M} \in \mathcal{O}_\mathfrak{q}(\chi_\mu, f)$. On the other hand, if $\mathcal{M} \in \mathcal{O}_\mathfrak{q}(\chi_\mu, f)$, then the f-twisted \mathfrak{n}-action via differential operators on the localization will integrate to an (\mathfrak{N}, f)-action.

As we noted earlier, the $B = Q$ case of this can be derived from the “paradromic/Whittavariant” duality of [BY].
References

[BB81] Alexandre Beilinson and Joseph Bernstein, *Localisation de g-modules*, C. R. Acad. Sci. Paris Sér. I Math. **292** (1981), no. 1, 15–18.

[BB82] Walter Borho and Jean-Luc Brylinski, *Differential operators on homogeneous spaces. I. Irreducibility of the associated variety for annihilators of induced modules*, Invent. Math. **69** (1982), no. 3, 437–476. MR MR679767 (84b:17007)

[BBM04] Roman Bezrukavnikov, Alexander Braverman, and Ivan Mirkovic, *Some results about geometric Whittaker model*, Adv. Math. **186** (2004), no. 1, 143–152. MR MR2065510 (2005e:20068)

[BGG76] I. N. Bernštejn, I. M. Gel’fand, and S. I. Gel’fand, *A certain category of g-modules*, Funkcional. Anal. i Priložen. **10** (1976), no. 2, 1–8.

[BGK08] Jonathan Brundan, Simon M. Goodwin, and Alexander Kleshchev, *Highest weight theory for finite W-algebras*, Int. Math. Res. Not. IMRN (2008), no. 15, Art. ID rnn051, 53. MR MR2438067 (2009f:17011)

[BLPW] Tom Braden, Anthony Licata, Nicholas J. Proudfoot, and Ben Webster, *Symplectic duality for Slodowy slices*, In preparation.

[BY] Roman Bezrukavnikov and Zhiwei Yun, *On the Koszul duality for affine Kac-Moody groups*, arXiv:0812.1584.

[GG02] Wee Liang Gan and Victor Ginzburg, *Quantization of Slodowy slices*, Int. Math. Res. Not. (2002), no. 5, 243–255.

[Irv85] Ronald S. Irving, *Projective modules in the category O_S: self-duality*, Trans. Amer. Math. Soc. **291** (1985), no. 2, 701–732.

[Kho05] Oleksandr Khomenko, *Categories with projective functors*, Proc. London Math. Soc. (3) **90** (2005), no. 3, 711–737.

[Losa] Ivan Losev, *On the structure of the category O for W-algebras*, arXiv:0812.1584.

[Losb] ________, *Quantized symplectic actions and W-algebras*, arXiv:0707.3108.

[MS97] Dragan Miličić and Wolfgang Soergel, *The composition series of modules induced from Whittaker modules*, Comment. Math. Helv. **72** (1997), no. 4, 503–520. MR MR1600134 (99e:17010)

[Pre02] Alexander Premet, *Special transverse slices and their enveloping algebras*, Adv. Math. **170** (2002), no. 1, 1–55, With an appendix by Serge Skryabin.

[Pre07] ________, *Enveloping algebras of Slodowy slices and the Joseph ideal*, J. Eur. Math. Soc. (JEMS) **9** (2007), no. 3, 487–543. MR MR2314105 (2008c:17006)

[Vog80] David A. Vogan, Jr., *Ordering of the primitive spectrum of a semisimple Lie algebra*, Math. Ann. **248** (1980), no. 3, 195–203. MR MR575938 (81k:17006)