Simulation-based low-dose, high-frequency plus mobile mentoring versus traditional group-based trainings among health workers in Ebonyi and Kogi States, Nigeria; a cluster randomized controlled trial

EMMANUEL UGWA (✉ drajulugreatgod@hotmail.co.za )
JHPIEGO

Mark Kabue
JHPIEGO

Emmanuel Otolorin
JHPIEGO

Gayane Yenokyan
Johns Hopkins University

Adetiloye Oniyire
JHPIEGO

Bright Orji
JHPIEGO

Ugo Okoli
JHPIEGO

Joseph Enne
JHPIEGO

Gabriel Alobo
JHPIEGO

Gladys Olisaekoo
JHPIEGO

Adebayo Oluwatobi
JHPIEGO

Chioma Oduenyi
JHPIEGO

Adekunle Aledare
Kogi State Ministry of Health

Boniface Onwe
Ebonyi State Ministry of Health

Gbenga Ishola
JHPIEGO
Research article

Keywords: training, simulation, mentoring, health workers, maternal and child health, Nigeria

Posted Date: January 24th, 2020

DOI: https://doi.org/10.21203/rs.2.21705/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License

Version of Record: A version of this preprint was published on June 26th, 2020. See the published version at https://doi.org/10.1186/s12913-020-05450-9.
Abstract

Background: There are few studies from low- and middle-income countries on learning outcomes among health workers trained on day of birth care using onsite, simulation-based, low-dose, high frequency (LDHF) training plus mobile (m) mentoring. The aim of this study was to compare their knowledge and skills competencies with those of health workers trained using the traditional offsite, group-based training (TRAD) approach in Kogi and Ebonyi states, Nigeria, over a 12-month period. Methods: We conducted a prospective cluster randomized controlled trial, enrolling 299 health workers in 60 health facilities in Kogi and Ebonyi states, randomized to either LDHF/m-mentoring (intervention, n=30 facilities) or traditional group-based training (TRAD, n=30 facilities) control arm. Health workers in both arms received basic emergency obstetric and newborn care training with simulated practice using anatomic models and role-plays. The control arm participants were trained offsite while the intervention arm were trained onsite where they work. Mentorship was done through telephone calls and reminder text messages. The multiple choice questions and objective structured clinical examinations mean scores were compared; p-value <0.05 was considered statistically significant. Qualitative data were collected and analyzed along themes of interest. Results: The mean knowledge scores between the two arms at months 3 and 12 post-training were equally high; no statistically significant differences. Both arms showed improvements in composite scores for assessed BEmONC clinical skills from around 30% at baseline to 75% and above at endline (p <0.05). Overall, the observed improvement and retention of skills was higher in intervention arm compared to the control arm at 12 months post-training, (p<0.05). Some LDHF/m-mentoring approach trainees reported that mentors’ support improved their acquisition and maintenance of knowledge and skills, which may have led to reductions in maternal and newborn deaths in their facilities. Conclusion: The LDHF/m-mentoring intervention is more effective than TRAD approach in improving health workers’ skills acquisition and retention. Health care managers should have the option to select the LDHF/m-mentoring learning approach, depending on their country’s priorities or context, as it ensures health workers remain in their place of work during training events thus less disruption to service delivery.

Background

Health workers in Nigeria are usually trained using traditional lecture-based, offsite approach in which a limited number of persons from any health facility at a time are trained. This approach to training is also known to be expensive [1–4]. Maternal and newborn health outcomes have remained suboptimal despite continuous training of health workers being provided [2]. Health workers absenteeism from work to attend offsite training is also a concern for health facility managers [3, 4]. Moreover, since only a few health workers are trained each time through the current offsite workshop approach, the quality of care may not be improved to the desired level [2]. Health workers may also find it difficult to practice new or updated skills because the entire team members have not been trained on the relevant skills and approaches. In addition, step-down training by those that have been trained most often does not happen as intended due to lack of will and management support among other factors. As a result, health worker turnover and
attrition affects the quality of care provided negatively if those leaving are the only ones who received training.

There are few studies from low- and middle-income countries (LMICs) on learning outcomes and facilitators and barriers to learning approaches on day-of-birth care among maternal and newborn health workers trained using onsite simulation-based low-dose, high-frequency (LDHF) plus mobile (m)-mentoring training approach compared to those trained by offsite traditional group-based training (TRAD). The LDHF/m-mentoring approach used in this study is described in the study protocol manuscript; it primarily involves onsite, more interactive, and team-oriented training [5]. The LDHF/m-mentoring approach also uses mobile phone mentorship calls and reminder text messages to the trainees.

As there is limited quantity and quality of skilled birth attendants in Nigeria evidence-based approach is needed to train health workers to improve competencies and maternal/newborn outcomes [6, 7]. Doctors, nurses and community health extension workers (CHEWs) are commonly trained on day of birth care. Considering the high maternal and newborn mortality and morbidity figures in Nigeria, there is need to train birth attendants on high-impact interventions using competency-based approaches to improve the quality of maternal and newborn care and reduce maternal and perinatal/neonatal mortality [8–11]. It’s expected that all health workers have the necessary level of competency to perform life-saving procedures if appropriately trained on basic emergency obstetric and newborn care (BEmONC) functions, including newborn resuscitation and management of bleeding after birth.

There is limited evidence from developing countries including Nigeria on facilitators, barriers, and effectiveness of simulation-based LDHF/m-mentoring learning approaches in improving maternal and newborn health, including day of birth care. In the few studies where the LDHF/m-mentoring approach has been tested, there sample sizes have been limited and methodological approaches have not been standardized [7]. The studies should be adequately powered and use rigorous designs to answer the research questions [7].

**Methods**

**Study Objectives**

This study aimed to compare the knowledge and skills competencies of providers in improving maternal and newborn day of birth care after the LDHF/m-mentoring versus the TRAD training approaches in Ebonyi and Kogi states, Nigeria. The primary outcomes were increase in knowledge, clinical skills, and retention of clinical competency at 3- and 12-months post-training. The secondary outcomes measured were facilitators of and barriers to the LDHF/m-mentoring training approach at individual and institutional levels.

Our hypothesis was that LDHF/m-mentoring results in better knowledge and skills outcomes compared to the TRAD approach.
Study Setting

The study was conducted in Ebonyi and Kogi States, in Nigeria. Ebonyi State has a population of 2.8 million and is in the South-East zone. Kogi state has a population of 4.3 million and is in the North-Central zone. At the time of the study, the Maternal and Child Survival Program (MCSP), in partnership with the Federal Ministry of Health, Ebonyi and Kogi States Ministries of Health and Professional Associations supported 120 health facilities across the two states, of which 60 were selected to be part of the study, 30 in each state. The MCSP is a global, $560 million, 5-year cooperative agreement funded by the United States Agency for International Development (USAID) to introduce and support scale-up of high-impact health interventions among USAID’s 25 maternal and child health priority countries, as well as other countries.

Study Design

This was a prospective cluster randomized controlled trial design. It was a mixed-method study. Informed consent and ethical approval were obtained. The study was conducted between October 2016 and November 2017 in sixty health facilities that were randomly selected and assigned to either the intervention arm or the control arm. The training approaches, eligibility criteria and randomization have been described in the published study protocol [5]. In brief the intervention LDHF arm had facility-based driven simulation-based LDHF trainings in which providers were not required to leave their duty stations, with a heavy emphasis was placed on simulation with practice and feedback.

The TRAD arm participants the standard 8-day group-based training that comprised lectures with limited practice sessions on simulators, which was conducted off-site away from the participants’ workplaces, in a hotel. In contrast, the intervention arm, the 8-day BEmONC training was conducted was divided into two separate 4-day sessions one month apart, coupled with routine follow up of trainees by the trainers/supervisors at the location of service delivery. Qualitative data were collected through six focus group discussions (FGD) comprising 8–10 participants per group purposively selected from among at 12 months. The participants were greeted and invited via telephone and given a full study information including the aims of the study. All the invited respondents gave consent to participate in the study. The FGDs were used to collect data on experiences and satisfaction of trainees with the LDHF/m-mentoring training approach. The enquiry was based on the high-frequency practice sessions with simulators, mobile mentoring through sms and quizzes, overall impressions of the LDHF/m-mentoring approach, and how it could be improved. The IDIs with PPCs collected data on their experience managing simulator practice sessions, interactions with trainers/master mentors, m-Mentoring, changes made in clinical practice after the training, success, challenges and their overall impression about LDHF/m-mentoring training approach. With regard to trainers, data were collected about their experiences with the LDHF/m-mentoring training approach, successes and challenges with mobile mentoring to support the PPCs, and the effectiveness of approach in building the capacity of the service providers. The data was collected in their workplaces. Only the interviewer and the respondents were present at a private place where the
interviews were conducted. Interviewed guides were developed by the authors and pretested. Repeated interviews were not carried out. Audio-recorders were also used during interviews to help during recall. The interviews lasted for 45-60 minutes. Transcripts were not returned to participants for comments. Data saturation was discussed.

Both study arms were trained by senior clinicians whose knowledge and skills were standardized. BEmONC training packages were adapted from previous studies and training documents [1, 2]. The tools were pre-tested among 25 health workers from health facilities that were not part of the study. Before being used, checklists for the assessed clinical skills were modified in accordance with the Nigeria context by the research team and data collectors. At the time of the study, MCSP did not support any interventions in these facilities that are likely to cause contamination. Other quality improvement interventions only happened at the non-study facilities at the time of the study.

Before the first training session started, pre-test assessment was done through administration of multiple choice questions (MCQs) and objective structured clinical examination (OSCEs) using manikins to assess the baseline knowledge and skills competency of the participants. The assessment covered the seven components BEmONC functions [1, 2, 5]. The MCQs and OSCEs were administered during different pre-determined assessments points, namely; baseline, immediately post-training, 3 and 12 months after initial training. The questions answered correctly, and procedures done competently were documented and a percent score computed per module. A score of $\geq 80\%$ in each module was the desired competency level or pass. The assessors were blinded to the groups the participants were assigned to as they conducted the assessments.

Eligibility Criteria

The sixty health facilities were selected from a sampling frame of the 120 MCSP-supported health facilities in the two states located in three geopolitical zones where the project support. They represented all three levels of the healthcare system in Nigeria (Primary health care or PHC, secondary, tertiary). The service providers were drawn from among those working in labor and delivery sections of the participating health facilities in the two states. In addition, the service providers should also have spent at least six months in the health facility working in either maternal or newborn care section.

Randomization

The unit of randomization in this study was the health facility. The 60 facilities were matched based on locations and level in the health care system, then divided into nine strata taking into consideration the three geopolitical zones as well as the three levels of the health care system in Nigeria. Thereafter, each stratum was randomized to either intervention or control arm using randomly permuted blocks in a ratio of 1:1 so as to achieve balance in geographical location and types of health facilities in the two study arms. Randomization was done by a study team member. Those assessing outcomes were blinded to the
training methodology used for the health facilities. Since there were at times less than three skilled birth attendants in some health facilities, all health workers employed in the maternity or newborn units in such facilities who met the inclusion criteria were selected from the randomized health care facilities.[5]

**Sample Size**

The details on the computation of the sample size, including the assumptions are provided in the study protocol manuscript. [5]. Briefly, the required number of participants was computed as the average number of health workers to be included from each of the 60 facilities (30 per arm) using a test of two proportions. The percent of competent providers was estimated at 50% in the control group. Study power was set at 80% to reject a null hypothesis that the proportions of competent providers are equal in the two study arms against the alternative hypothesis of 20 percentage point difference in proportions of competent providers between the two study arms - effect size. The significance level was set at 0.05. Sample size computation was done using PASS statistical software. The correlation of provider competency in each health facility was assumed to be 0.05 given that some facility-level factors are shared by the providers working together might influence how they perform certain tasks. We assumed there are about four provider selected per facility, thus 240 providers sampled across the two groups. An adjusted sample size of 300 participants (150 per study arm) was arrived at after factoring in potential 20% drop-out during follow up period after baseline. More providers were to be recruited from Kogi State since it has a larger population than Ebonyi. Study participants recruited from each facility included the maternity unit head, wherever possible, and two others to ensure that the other team members received the necessary support to practice the competencies.

**Data analysis**

The primary outcome was provider clinical competency in BEmONC skills at three months post-training assessed through simulation. The secondary outcome was retention in clinical competency level in BEmONC skills as determined through MCQs and OSCEs assessments at 12 months post-training. The results presented in this article are based on assessments three and 12 months after training. For both arms, composite scores were computed for the infection prevention and the BEmONC functions, namely; skills in conducting normal delivery, active management of the third stage of labor (AMTSL), neonatal resuscitation, case management of pre-eclampsia and eclampsia with magnesium sulphate (MgSO4), and the management of primary postpartum hemorrhage. Percent scores were computed per participant based on either questions answered correctly or procedures done competently depending on the assessment tool used.

To describe categorical variables, counts and simple proportions were used. Mean and standard deviations as well as median and interquartile range were used to summarize data on continuous variables. Percentage of those achieving the required competency level of \( \geq 80\% \) post-training scores in MCQs and OSCEs were computed and compared across the two study arms. A generalized linear model
was used to test the differences between arms on MCQ and OSCE scores at 12 months using a group indicator as the main predictor in the model. Furthermore, adjustments were made to account for facility-level and health worker characteristics that might have influenced the two study arms at baseline and could be strongly correlated with the outcome scores. A significance level of < 0.05 was set for statistical significance. A longitudinal model that accounts for intra-provider correlations over time as well as within-facility correlations was developed. This model assessed the change in scores over time post-training. The model is appropriate, since it estimates using generalized estimating equations (GEE) with working exchangeable correlation structure.

As regards the qualitative data, translated transcripts in Microsoft Word were imported into ATLAS.ti software (version 8.0). The codebook was developed by the qualitative data analyst with input from the second coder, using a priori codes developed from the research aims and questions, and the interview guides. Reliability checks were performed by each coder independently re-coding documents already coded by the other.

Analysis codes were grouped into four thematic categories, guided by both the specific objectives, research questions and those that emerged from the data. These thematic categories were: 1) knowledge and skills learning outcomes of birth attendants trained through the simulation-based LDHF/m-Mentoring; 2) successful outcomes following simulation-based LDHF/m-Mentoring; 3) data use; 4) challenges and overall impression about LDHF/m-mentoring approach; and 5) interventions/recommendations. The analytic process proceeded in two basic steps: Using the thematic groups, emerging themes were summarized related to relevant specific objectives, while analyzing content to compare the three, different respondent groups across the two states. Illustrative quotes were selected to provide examples of evidence supporting the themes both within and across groups and states.

Results

Two hundred and ninety-nine participants completed the study out of the original 323 providers who were randomized to different study arms; LDHF arm = 172; TRAD arm = 127 (Table 1 and Fig. 1). Both arms had similar socio-demographic characteristics Table 1).
**Table 1**  
Baseline characteristics of study sample of providers by study arm

| Characteristic of Health Workers | LDHF/m-mentoring | TRAD | p value |
|----------------------------------|------------------|------|---------|
|                                  | N = 172, Percent | N = 127, Percent |         |
| State or Location                |                  |                  |         |
| Ebonyi                           | 36.6             | 26.0             | 0.05a   |
| Kogi                             | 63.4             | 74.0             |         |
| Type of Facility                 |                  |                  |         |
| Primary health center            | 38.4             | 47.2             | 0.05a   |
| General/Mission hospital         | 52.3             | 38.6             |         |
| Tertiary hospital                | 9.3              | 14.2             |         |
| Mean (SD) Age: years             | 41.0 (10.3)      | 40.6 (8.8)       | 0.78b   |
| Sex                              |                  |                  |         |
| Male                             | 15.7             | 22.0             | 0.16a   |
| Female                           | 84.3             | 78.0             |         |
| Marital Status                   |                  |                  |         |
| Married                          | 84.3             | 89.0             | 0.60c   |
| Single                           | 10.4             | 8.6              |         |
| Divorced                         | 0.6              | 0.0              |         |
| Widowed                          | 4.7              | 2.4              |         |
| Religion                         |                  |                  |         |
| Christian                        | 79.7             | 74.8             | 0.33a   |
| Islam                            | 18.6             | 22.8             |         |

Types of tests: a = Pearson's chi-squared; b = Two sample t test; c = Fisher's exact; d = Wilcoxon rank-sum. SD, standard deviation; IQR, interquartile range. *TRAD participants residing within 5 km of the training sites were not accommodated in a hotel; they travelled daily to the training site.
### Characteristic of Health Workers

| Characteristic                          | LDHF/m-mentoring | TRAD       | p value |
|----------------------------------------|------------------|------------|---------|
|                                        | N = 172, Percent | N = 127, Percent |         |
| Other                                  | 0.0              | 0.8        |         |
| Missing                                | 1.7              | 1.6        |         |
| Duration Since Graduation: years       | 12.0 (6.0–23.0)  | 14.0 (8.0–21.0) | 0.54<sup>d</sup> |
| Cadre/Job Title                        |                  |            |         |
| Community health extension worker      | 34.3             | 43.3       | 0.03<sup>c</sup> |
| Doctor                                 | 3.5              | 8.7        |         |
| Nurse                                  | 57.0             | 46.4       |         |
| Other                                  | 5.2              | 1.6        |         |
| Median (IQR) Duration Working at Facility since Employment: years | 6.0 (3.0–10.0)  | 6.0 (3.0–10.0) | 0.84<sup>d</sup> |
| Median (IQR)* Time to Training: minutes | 60.0 (60.0–90.0) | 60.0 (60.0–120.0) | <0.001<sup>d</sup> |
| Duration at current position: median (IQR) years | 8.0 (4.0–18.0)  | 9.0 (4.0–15.0) | 0.76<sup>d</sup> |

Types of tests: a = Pearson's chi-squared; b = Two sample t test; c = Fisher's exact; d = Wilcoxon rank-sum. SD, standard deviation; IQR, interquartile range. *TRAD participants residing within 5 km of the training sites were not accommodated in a hotel; they travelled daily to the training site.

Table 2 shows that the TRAD arm had better knowledge test scores compared to the LDHF/m-mentoring arm at baseline and immediately after the training intervention in some thematic areas, such as AMTSL, essential newborn care, and neonatal resuscitation (p < 0.05). However, at 3 and 12 months after training assessment, both arms are equal in knowledge acquisition and retention; no statistically significant differences were noted.
Table 2
Comparison of levels of knowledge between study arms across four assessment periods

| Thematic Area # | Thematic Area                  | Total number of items | Assessment 1—Baseline | Assessment 2—Immediate post-training |
|-----------------|--------------------------------|-----------------------|------------------------|--------------------------------------|
|                 |                                |                       | Unadjusted analysis    | Adjusted analysis*                   |
|                 |                                |                       | Mean # correct, LDHF   | Mean # correct, TRAD                  |
|                 |                                |                       | IRR (95%CI) p value    | IRR (95%CI) p value                  |
| 1               | Infection prevention           | 6                     | 3.17 2.67 1.19 (1.07, 1.32) 0.001 | 1.17 (1.06, 1.30) 0.002 |
| 2               | Normal birth                   | 8                     | 4.17 4.01 1.04 (0.96, 1.13) 0.349 | 1.03 (0.95, 1.12) 0.498 |
| 3               | AMTSL                          | 4                     | 1.79 1.73 1.03 (0.88, 1.21) 0.682 | 1.02 (0.88, 1.18) 0.822 |
| 4               | Management of eclampsia        | 2                     | 1.13 1.11 1.02 (0.89, 1.18) 0.754 | 1.02 (0.88, 1.17) 0.805 |
| 5               | Essential newborn care         | 2                     | 0.94 1.03 0.92 (0.77, 1.09) 0.318 | 0.91 (0.76, 1.08) 0.270 |
| 6               | Neonatal resuscitation        | 20                    | 8.55 11.15 0.77 (0.70, 0.84) < 0.001 | 0.75 (0.68, 0.82) < 0.001 |
|                 | Overall score                  | 42                    | 17.62 19.71 0.89 (0.83, 0.96) 0.002 | 0.88 (0.82, 0.94) < 0.001 |

IRR, incidence rate ratio; CI, Confidence interval
| Thematic Area # | Thematic Area                  | Total number of items | Assessment 1—Baseline | Unadjusted analysis | Adjusted analysis* |
|-----------------|--------------------------------|-----------------------|------------------------|---------------------|--------------------|
|                 |                                |                       |                        |                     |                    |
|                 |                                |                       | Mean # correct, LDHF   | Mean # correct, TRAD| IRR (95%CI) p value| IRR (95%CI) p value|
| 2               | Normal birth                   | 8                     | 6.51                   | 6.76                | 0.96 (0.92, 1.01)  | 0.134              | 0.95 (0.90, 1.00)  | 0.040              |
| 3               | AMTSL                          | 4                     | 3.2                    | 3.49                | 0.92 (0.86, 0.98)  | 0.009              | 0.90 (0.84, 0.96)  | 0.002              |
| 4               | Management of eclampsia        | 2                     | 1.72                   | 1.8                 | 0.95 (0.89, 1.02)  | 0.138              | 0.95 (0.89, 1.01)  | 0.116              |
| 5               | Essential newborn care         | 2                     | 1.34                   | 1.65                | 0.81 (0.74, 0.89)  | < 0.001            | 0.80 (0.72, 0.88)  | < 0.001            |
| 6               | Neonatal resuscitation        | 20                    | 11.29                  | 16.21               | 0.7 (0.63, 0.77)   | < 0.001            | 0.68 (0.61, 0.75)  | < 0.001            |
| Overall score   |                                | 42                    | 24.21                  | 30.57               | 0.79 (0.75, 0.84)  | < 0.001            | 0.77 (0.73, 0.82)  | < 0.001            |
|                 |                                |                       |                        |                     |                    |
| Thematic Area # | Total number of items          | Assessment 3—3 months post-training |
|                 |                                | Unadjusted analysis | Adjusted analysis* |
|                 |                                | Mean # correct, LDHF | Mean # correct, TRAD | IRR (95%CI) p value | IRR (95%CI) p value |
| 1               | Infection prevention           | 6                     | 4.54                   | 4.24                | 1.07 (0.99, 1.16)  | 0.086              | 1.04 (0.96, 1.12)  | 0.348              |
| 2               | Normal Birth                   | 8                     | 5.9                    | 5.7                 | 1.04 (0.96, 1.11)  | 0.342              | 1.01 (0.94, 1.08)  | 0.760              |
| 3               | AMTSL                          | 4                     | 3.07                   | 3.04                | 1.01 (0.92, 1.10)  | 0.853              | 0.97 (0.89, 1.06)  | 0.569              |

IRR, incidence rate ratio; CI, Confidence interval
| Thematic Area # | Thematic Area                     | Total number of items | Assessment 1—Baseline | Mean # correct, LDHF | Mean # correct, TRAD | Unadjusted analysis | Adjusted analysis* |
|----------------|----------------------------------|-----------------------|------------------------|----------------------|----------------------|---------------------|-------------------|
|                |                                  |                       |                        |                      |                      |                     |                   |
|                |                                  |                       | Assessment 1—Baseline  |                      |                      |                     |                   |
|                |                                  |                       |                        |                      |                      |                     |                   |
|                |                                  |                       | Assessment 4—12 months post-training |                      |                      |                     |                   |

| Thematic Area # | Thematic Area                     | Total number of items | Assessment 4—12 months post-training | Mean # correct, LDHF | Mean # correct, TRAD | IRR (95%CI) | p value | IRR (95%CI) | p value |
|----------------|----------------------------------|-----------------------|--------------------------------------|----------------------|----------------------|-------------|---------|-------------|---------|
|                |                                  |                       |                                      |                      |                      |             |         |             |         |
| 1              | Infection prevention              | 6                     |                                      |                      |                      | 1.04 (0.95, 1.14) | 0.380    | 1.01 (0.93, 1.10) | 0.795    |
| 2              | Normal birth                      | 8                     |                                      |                      |                      | 1.05 (0.97, 1.14) | 0.213    | 1.03 (0.95, 1.11) | 0.470    |
| 3              | AMTSL                             | 4                     |                                      |                      |                      | 1.00 (0.90, 1.10) | 0.944    | 0.96 (0.88, 1.06) | 0.426    |
| 4              | Management of eclampsia           | 2                     |                                      |                      |                      | 1.02 (0.93, 1.11) | 0.730    | 1.00 (0.92, 1.10) | 0.920    |
| 5              | Essential newborn care            | 2                     |                                      |                      |                      | 1.04 (0.93, 1.16) | 0.544    | 1.01 (0.90, 1.13) | 0.867    |

IRR, incidence rate ratio; CI, Confidence interval
Health workers in both arms showed improvement in overall pass rates in clinical skills competency, improving from around 30% at baseline to 75% and above at endline; difference-in-differences were statistically significant (p < 0.05); TRAD (from 27.4–74.8%) and LDHF/m-mentoring (from 30.1–81.1%). Overall, the observed improvement and retention of BEmONC skills was higher in LDHF/m-mentoring study arm participants (81.1%) compared to the TRAD arm participants (74.8%) at 12 months post-training (p < 0.05). There was a dip in both arms at the three-month assessment. (Fig. 2).

Figure 3 shows that overall for BEmONC skills, the LDHF/m-mentoring arms had better post-training assessment scores at 12 months post-training for assisting normal birth (including care of the newborn), AMTSL, manual removal of placenta, bimanual compression of the uterus, abdominal aortic compression, pre-eclampsia/eclampsia management (p < 0.05).

The results of the qualitative study are presented in four sections. The first section addressed knowledge and skill learning outcomes of birth attendants following simulation-based LDHF/m-Mentoring, the second section addressed trainees’ satisfaction with successful outcomes following simulation-based LDHF/m-Mentoring approach, third section addressed facilitators of LDHF/m-Mentoring approach and the fourth section addressed the barriers to LDHF/m-Mentoring approach (Table 3).
Table 3

Key findings by themes and supporting quotations

| Theme 1: Knowledge and skill learning outcomes of birth attendants | Supporting quotation |
|---------------------------------------------------------------|----------------------|
| A. Knowledge on hygiene refers to improved skill or knowledge in hygienic practices e.g hand washing, proper cord care. | A discussant in Ebonyi said: ‘Before we normally use glove as a protective device but now we wash before wearing the gloves (FGD, Ebonyi). Another respondent in Kogi said: ‘My facility re-oriented the people that work with me what standard practice is about. Example, hand washing was not practiced in my labour’. We used an improvised water in order to still be able to comply with this standard practice of hand washing even though there are no running tap (FGD, Kogi). |
| B. Proper documentation refers to improved skill/knowledge in documentation e.g use of partograph | An FGD participant in Ebonyi said: ‘The training was different to me by emphasizing that the partograph is a medico-legal document. The training endured me to the use of partograph and the importance of documentation. They have started using partograph. Before now, they were not using partograph’ (FGD, Ebonyi) |
| C. Respectful maternity care refers to improved skill/knowledge in patient midwife relationship, asking patients for their opinion/choices during service delivery, speaking nicely to clients/patients instead of shouting, explaining procedures to patients/clients and asking for consent. Also allowing relatives into delivery/treatment suite if patient wishes so. | Also, in Kogi state, a discussant said: ‘Yes, it had made me to reemphasize rights of patience and give them utmost respect. Value their opinion more’. |
| D. Resuscitation includes improved/newly acquired skill/knowledge in neonatal care immediately after delivery. | Respondents in Ebonyi said: ‘Mine is in neo-natal resuscitation, before if a baby is presented to me; after like I minute I will dump the baby and call another for help. But after the training, I can now resuscitate a baby no matter how bad. 2) ‘I so much value neo-natal resuscitation, now we keep the place warm and resuscitate. The baby Natalie is very helpful in the area of resuscitation before I don't know about the breathing of the baby, but the NeoNatalie taught me’. |
| E. Disease management is improved skills/knowledge in managing morbid conditions, including providing initial primary care before the arrival of the doctor or referral. | In Kogi, respondents said: 1) ‘In the aspect of child resuscitation. It teaches how to resuscitate the child 2) “Now we do newborn resuscitation 1. It has provided us with options and confidence to face women with PPH unlike previously that this condition scares us a lot and usually ended in referrals. “Before we |
| F. Coaching/mentoring pertains to improved skill/knowledge which has led to training other colleague or students | |
| G. Drug usage pertaining to gained improvement in skills/knowledge involving correct application of drugs for conditions identified. | |

*denotes p value < 0.05
Key Findings

| Supporting quotation |
|----------------------|
| did not know of how treat eclampsia, PE, we used to refer always’ (FGD, Ebonyi). |
| 2. What we don't know how to handle, since we were trained we now know how to handle them e.g. handling pregnant women especially changes in their S.P. We now know hypertension, PE, E. Also bleeding (haemorrhage), before we don't know, the training is an eye opener to us (FGD, Kogi). |
| 3. We learnt many methods of preventing PPH. PPH is minimized here. Before I didn't know management of PE/E. But the training helped me. Good different in knowledge in PPH, PE, E (FGD, Kogi). |
| A respondent in Ebonyi opined: The use of Mama Natalia also helps us to even teach the student nurses before using the real scenario. Another said: I've been able to coach a colleague that didn't part take in the training. Also students that come, I couch them. In Kogi, the participants said: 1) I like the confidence I know have resulting from the knowledge the training has helped me to gain which also made it possible for me to train others. 2) They have made me a better trainer and have taught me how to train a small group. 3) We now render correct health education in addition to sessions for in-house training sessions for staff using the guidelines, which has now been introduced. 1. Also the application of magnesium sulphate in preeclampsia and clampsia. Before I didn't understand it but now even if am sleeping, and woken up, I can perfectly handle it. It has helped to realize that misprostol is not a must for every patient. Prior to the training, I could not use magnesium sulphate but now I can. I can now make use of magnesium sulphate in handling bleeding in women the way they taught us. The training equipped us on how to manage bleeding with Oxytocin’ (FGD, Ebonyi). |
| 2. ‘Has made a very big significant difference” like there are some areas which we don't know before e.g. we didn't know that this oxytocin has to be given before delivery of the placenta. Ten years ago only 3 centres used magnesium sulphate and partograph in Kogi state. Presently, several facilities are making use of these’ (FGD, Kogi). |

*denotes p value < 0.05
| Theme 2: Trainees’ satisfaction with successful outcomes following the simulation-based LDHF/m-Mentoring approach | Supporting quotation |
|---------------------------------------------------------------|----------------------|
| **A.** Successful outcome on maternal survival refers to numerical gains achieved following training in service delivery pertaining to reduced maternal mortality/better maternal survival following trainings and application of skills. | Post-partum haemorrhage and ruptured uterus are no longer occurring in the supported facilities (IDI-Kogi). ‘Less maternal and newborn complications in the supported facilities. There is clearly noticeable improved new born care and reduced complications and mortalities among new born and their mothers’ (IDI, Kogi). It has helped in reducing maternal mortality very much thus reduce the death that are related to these conditions. Firstly, since the training, we have not had maternal or neonatal deaths in our facility’ (IDI, Ebonyi). ‘Firstly, since the training, we have not had maternal or neonatal deaths in our facility. The one of the baby is my greatest success (There is one case in which a participant called me from a facility in a facility very late at night. They were having issues and she called me to clarify, it had to do with argumentation of labour. I had to put her through and by morning, she gave me the good news that all went well and the woman put to birth’ (IDI, Ebonyi)). “Especially in newborn resuscitation. We have save babies that would have died”. Now babies can be resuscitated so more babies are surviving and we are having more successful deliveries. Before, they used to deliver people and some of the babies end up being asphyxiated. So the way there were resuscitating babies has greatly improved. But now, those problems are no more. Knowledge in method and skills of resuscitation has increased and delivery outcome improved greatly (IDI, Kogi). The training has made our clients to become confident in our ability and services as health workers, especially, after the application of respectful maternal care (IDI, Ebonyi). |
| **B.** Successful outcome on newborn/neonatal survival refers to successes gained as numerical improvement neonatal/infant survival, reduced neonatal/infant mortality following trainings and application of skills. | |
| **C.** Successful outcome on patient trust/satisfaction include any mention of gains achieved following training in service delivery involving patients/clients being happier, more co-operative, feeling safer with health workers and more trusting of health workers. | |

### 3.3 Facilitators of LDHF/m-Mentoring approach

| **A.** Support from Implementing partner refers to support or motivation for the training or practice emanating from the provision and availability of equipment, drugs or supplies from MCSP. | **A respondent in Ebonyi state said:** They are the biggest supporter of this program, they trained us. From Kogi, respondents said: 1. ‘By bringing the training close to us. Also the knowledge they are providing me with. They trained us as consultants with them’. 2. ‘Has been supporting us through training and helping us to sharpen our skills’. From Kogi: 1. Through phone calls, I discussed topics on maternal and child health, real life experience, situation they have example PPH. I advise them to refer cases they cannot handle. 2. They support I provided on phone depended on what they ask. Sometimes while taking delivery, they may ask questions through phone on areas where they needed assistance. They will tell me what they are doing while I seized that opportunity to correct them when I realized they were not doing it right. I had taught about manual removal of retained placenta, pre-eclampsia and eclampsia. 3. There was once they took the picture of a baby during weighing and sent to me. I noticed the baby had cap on |
| **B.** Expert knowledge/skill and support from master mentors through telephone pertaining to support for training and practice through the provision of expert knowledge and skills. | |
| **C.** Incentives/welfare refers to support received from MCSP, master mentors or peer practice coordinators involving the provision of transport fare, lunch during practice sessions to encourage trainings/practice or reimbursement for LDHF/m-Mentoring-related phone calls. | |
| **D.** Support from management of facilities has to do with support | |

*denotes p value < 0.05
| Key Findings                                                                 | Supporting quotation                                                                                                                                                                                                 |
|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| provided by management involving the arrangement of duty rosters to enable trainees attend practices sessions, permission for retraining/stepping down, provision of venues/keys for practice. E. Assessments through text messages and quizzes refers to support from the mentors or coordinators which includes following up of trainees actively to ensure skills/knowledge are acquired, identifying problematic areas with correction provided. | while weighing. I then took advantage of this to teach them how to properly take the weight measurement. From Ebonyi: Usually all the topics but mainly child resuscitation; that was the area they are not finding funny. Occasionally they call me when they have difficulty in the hospital, I also assist them. On phone, I discussed topics such as normal delivery, administration of magnesium sulphate and Manual removal of placenta. Also a mentor said, ‘I also call during their practice session since I know the time they usually have their practice session at 1.30 pm. I sometimes travel to the facilities when phone calls cannot completely address their challenges. I remind them to go back to their manual where explanation through phone is not sufficient to address their challenges’ (IDI, Kogi). ‘Salaries have not been paid for several months. So I support them financially to enable still take care of pregnancy-related matters among pregnant women. Sometimes even paying their transport. At times we pay their transport, and they stay to practice. When I visit, usually I provide refreshment to enable me get their attention. The master mentor supports through giving general encouragement on the need to comply with the guidelines and to reach him for clarification when the need arises. He also assist through training us to acquire more skills related to patient care’ (FGD, Kogi) ‘I motivate them by giving them little things (launch) just to encourage them Yes, light refreshment during practice’ (IDI, Ebonyi). ‘The management allows us to go for training’ (IDI, Ebonyi). 1. ‘Allowing us to put our new skills to practice’ (FGD, Ebonyi). 2. ‘They support by providing a training ground and allowing us to go for the practice’ (FGD, Birth attendants, Ebonyi). ‘They release me to go for trainings. The release gives me opportunity to learn’ (IDI, Kogi) ‘My facility: They usually release me for LDHF activities’ (FGD, Kogi). They have been supportive. At least I am here for this training because my facility management permitted me. So, they created a conducing atmosphere that permitted the project to go on successfully. Other staff also cover up for me when I am away because of this programme’ (IDI, Kogi) ‘It make us to practice. And any one we did not get right were corrected immediately’ (IDI, Kogi). |

*denotes p value < 0.05
Key Findings

| Theme 4: Barriers to LDHF/m-Mentoring approach | Supporting quotation |
|------------------------------------------------|----------------------|
| A. Funding/equipment-supplies pertaining to mention of problems involving inadequate funding, equipment, drugs, supplies, or electricity. | The use of the phone which requires recharge card purchases, the internet cost. Cost, initially, I was making frequent calls but later it was reduced to twice every month. I have not been paid for what I have spent so far in making calls to PPC (IDI, Ebonyi). My major challenge is electricity. It is the cost of maintaining the register because if MCSP closed, we are most likely to revert to old practice (IDI, Ebonyi). |
| B. Logistics and incessant strikes refers to problems encountered during project or use of skills in service areas pertaining to late/untimely dissemination of information, fixing of trainings while trainees are working on shift, training staff and transferring them to areas where skills are not utilized, time constraint, hectic schedule, poor/no transport, poor/wrong choice of meeting venue. | ‘We don’t always have what we need to work with and all that we need to work with. The other area is equipment. There are not enough beds, delivery consumables are not enough, oxygen, scanning machine, insufficient wards and health workers, financial barriers and lack of instruments to work with’ (IDI, Kogi). |
| C. General barriers refer to problems encountered during the project which impacted negatively on the progress of the project or the achievement of the aims/objectives. Includes all barriers outside those which have been specified in other sub-codes of barrier. | I find it difficult bringing everybody together at the same time because we run different shifts. It was very difficult to get members of the group to come together and practice due to our work schedule’ (IDI, Ebonyi). |
| | ‘There was the problem of so much distraction because the people were busy in the ward. You keep starting afresh when they go out and come back. So it took time to complete the tools’ (IDI, Ebonyi). |
| | ‘The mentees having to gather from different places where they live to enable them practice is challenging’ (IDI, Kogi). |
| | ‘Frequent and frequent strikes have seriously hindered our being able to translate knowledge to practice and bad roads for those living in hard-to-reach localities’ (IDI, Kogi). |
| | ‘Most of them are nurses and they do this shift thing and when you call them they will say it’s just only me that is on duty. To get them to practice is a great challenge and to get all the nurses to come together to practice is my greatest challenge’. Some patients will tell you that you should use olive oil. Most patients did not accept some of this new procedure like placing skin to skin but after explanations they accept. These women usually come to be delivered of their babies without these required items like the chlohexidine. It is the ignorance of the patient. |

*denotes p value < 0.05

Excerpts from respondents are presented in italics with the interviewer prompts in plain print within the text, and as plain print. Each quote in the text is labeled by type of interview and State. In cases where quotes were taken from FGDs, when there was more than one response on the topic, these were presented together, with numbers separating the different responses.

Theme 1: Knowledge and skill learning outcomes of birth attendants

The participants reported improved knowledge and skills on hygienic practices such as hand-washing, use of partograph, neonatal care immediately after delivery, disease management and correct use of drugs.
A discussant in Ebonyi said:

‘Before we normally use glove as a protective device but now we wash before wearing the gloves
(FGD, Ebonyi)

Also, on appropriate documentation a respondent in Kogi state, a discussant said:

I was not used to making use of partograph before this training. But now, we routinely use partograph
to monitor the progress of labour (FGD, Kogi).

A respondent from Ebonyi on management of disease condition said that

‘We now do abdominal aortic compressions and it works perfectly for us. The simulators are good at
helping me learn what I have not seen before like bimanual compression. With the simulators, I have
learnt how this is done’ (IDI, Ebonyi State)

In both states, all the FDG participants opined that the simulation-based/m-Mentoring training approach
enabled them gain improvement in skills/knowledge involving correct application of drugs such as use of
magnesium sulphate in the management of pre-ecclampsia/ecclampsia, oxytocin to manage post-
partum haemorrhage, use of misoprostol now used only when it is indicated rather than being used
routinely for all clients during labour as was the case prior to the training. The use of magnesium
sulphate was said to be the most valuable information or skill learnt during the training.

A respondent said,

‘Also the application of magnesium sulphat in preeclampsia and clampsia. Before I didn’t understand
it but now even if am sleeping, and woken up, I can perfectly handle it. It has helped to realize that
misprostol is not a must for every patient. Prior to the training, I could not use magnesium sulphate
but now I can. I can now make use of magnesium sulphate in handling bleeding in women the way
they taught us. The training equipped us on how to manage bleeding with Oxytocin’ (FGD, Ebonyi).

**Theme 2:** Trainees’ satisfaction with successful outcomes following the simulation-based LDHF/m-
Mentoring approach

The respondents reported successful outcome on maternal survival, newborn/neonatal survival and
patient trust/satisfaction such as feeling safer with health workers.

A reduction in maternal and neonatal morbidity and mortality were common theme across states and
respondents. In Ebonyi states, a respondent said since after the simulation-based training commenced,
they have not had any maternal or neonatal deaths in their facility. In Kogi state, a participant stated a
reduced mortality from pre-ecclampsia and ecclampsia because of improved skills among the peer
practice coordinators.
There is clearly noticeable improved new born care and reduced complications and mortalities among new born and their mothers’ (IDI, Kogi)

‘Firstly, since the training, we have not had maternal or neonatal deaths in our facility’ (IDI, Ebonyi)

Also

The training has made our clients to become confident in our ability and services as health workers, especially, after the application of respectful maternal care (IDI, Ebonyi)

Theme 3: Facilitators of LDHF/m-Mentoring approach

Respondents identified facilitators of LDHF/m-Mentoring approach as support provided by the implementing partners through availability of equipment/supplies, use of telephone for communication, expert knowledge/skill and support from master mentors, incentives/welfare such as transport reimbursement and meals during training, support from management of facilities such as arrangement of duty rosters to enable trainees attend practices sessions and assessments through text messages and quizzes.

From Kogi:

1. Through phone calls, I discussed topics on maternal and child health, real life experience, situation they have example PPH. I advise them to refer cases they cannot handle.

2. The support I provided on phone depended on what they ask. Sometimes while taking delivery, they may ask questions through phone on areas where they needed assistance. They will tell me what they are doing while I seized that opportunity to correct them when I realized they were not doing it right. I had taught about manual removal of retained placenta, pre-eclampsia and eclampsia.

3. There was once they took the picture of a baby during weighing and sent to me. I noticed the baby had cap on while weighing. I then took advantage of this to teach them how to properly take the weight measurement.

From Ebonyi:

Occasionally they call me when they have difficulty in the hospital, I also assist them. On phone, I discussed topics such as normal delivery, administration of magnesium sulphate and Manual removal of placenta.

‘Salaries have not been paid for several months. So I support them financially to enable still take care of pregnancy-related matters among pregnant women. Sometimes even paying their transport. At times we pay their transport, and they stay to practice. When I visit, usually I provide refreshment to enable me get their attention.
Excerpts from discussants on ways their facility management supported them in their role as a master mentor?

1. ‘They release the auditorium key to those of us that stay at the quarter to practice even at night’.
2. ‘They support by providing a training ground and allowing us to go for the practice’ (FGD, Birth attendants, Ebonyi).

**Theme 4: Barriers to LDHF/m-Mentoring approach**

The barriers mentioned include lack of funding/equipment/supplies and incessant strikes actions. The cost of obtaining or providing training and guidance from the master mentors was one of the most important barriers identified by different birth attendants across the two states. In both Ebonyi and Kogi states lack of finance for the various costs involved in the LDHR/m-Mentoring-related activities was mentioned more frequently and consistently than any other barrier, although comparing the two states, finance-related barrier was more mentioned by birth attendants in Kogi state. Unavailability of equipment hampered some birth attendants’ from translating what they have learnt into practice.

*The use of the phone which requires recharge card purchases, the internet cost. Cost, initially, I was making frequent calls but later it was reduced to twice every month. I have not been paid for what I have spent so far in making calls to PPC (IDI, Ebonyi).*

*‘We don’t always have what we need to work with and all that we need to work with. The other area is equipment. There are not enough beds, delivery consumables are not enough, oxygen, scanning machine, insufficient wards and health workers, financial barriers and lack of instruments to work with’*(IDI, Kogi).

On the question what was your experience facilitating peer practice, respondents said,

1. ‘I find it difficult bringing everybody together at the same time because we run different shifts. It was very difficult to get members of the group to come together and practice due to our work schedule’ (IDI, Ebonyi).
2. ‘There was the problem of so much distraction because the people were busy in the ward. You keep starting afresh when they go out and come back. So it took time to complete the tools’ (IDI, Ebonyi).

**Discussion**

In this cluster randomized control trial, the knowledge assessment scores increase from baseline to endline at 12 months between the study arms, but the acquisition and retention of BEmONC skills was different at 12 months with the LDHF/m-mentoring arm demonstrating better performance than the TRAD arm. This study contributes to the much needed evidence base for LDHF/m-mentoring training approach in LMICs, adding on the finding of related studies done in Uganda [1] and Ghana [2]. As part of the intervention package, LDHF/m-mentoring study arm participants received weekly SMS reminders and
quizzes along with continuous skills practice on anatomical models, which helped, reinforce knowledge on specific clinical areas over time. In contrast, the TRAD arm participants, which represent the status-quo, did not have the extra support, which might explain the differences in skills performance at 12 months. Furthermore, information gathered qualitatively suggests that a key benefit of m-mentoring is the ability of trainees to call their mentors at the point of care to address uncommon complications such as placenta praevia. This close mentor-mentee relationship might also have helped the mentees to develop confidence in these crucial skills, which demonstrates a great potential of the LDHF/m-mentoring approach.

Overall, the LDHF arm had better skills performance at all the assessment points compared to the TRAD arm. The qualitative data also support this improvement in knowledge and skills related to maternal and newborn care. Of note, there was an observed drop in skills competency at three months in both arms from the immediate post-training assessment. Some of the possible explanation for the drop in skills competency is that it takes time following intense training, before a practice has been established as routine. Another possible cause for the drop may have been that there was a health workers’ strike that was ongoing just before the post-training assessments in the two states. Despite these factors, the LDHF/m-mentoring arm still performed better in all competencies at 3- and 12- months post-training. It’s encouraging to note that this observed better performance was in competences that are very crucial for the survival of the mother and the baby on the day of birth; these include, AMTSL, manual removal of placenta, neonatal resuscitation, loading dose of magnesium sulphate, and pre-eclampsia/eclampsia. The continued simulation practice may have helped in building and retaining these competencies.

Studies on BEmONC in-service training have demonstrated the value of simulation and continuous practice in improving knowledge and skills competency [1, 2, 7]. This has led to adaptation of various approaches to determine which ones lead to the greatest returns on investment [1–4, 8–11]. Our findings are consistent with those of previous studies that reported TRAD offsite training may improve the trainees’ competencies, but knowledge and skills may not be transferred to other co-workers at the facility, nor translated into practice or performance [12, 13]. On the other hand, methods that involve repetitive, mentor-supported learning and regularly coordinated practice sessions, such as the onsite LDHF/m-mentoring training, result in better skills acquisition and retention over time [1, 2, 5, 7, 14–17]. This claim has been supported by other rigorously, well-designed studies that showed that onsite LDHF/m-mentoring training approach, coupled with an efficient mentorship program, resulted in improved provider preparedness to deal with complications [1, 2, 15].

Findings from the Ghana study [2] that measured patient-level outcomes showed that the LDHF/m-mentoring training approach was associated with a sustained decrease in facility-based newborn mortality and intrapartum stillbirths [2]. The limitations acknowledged by Gomez and colleagues in the Ghana study, such as the lack of a randomized control trial design and lack of concealment/information bias, have been addressed in our study using a cluster randomized controlled trial in a similar low-resource setting. Although our study did not measure patient-level outcomes, we assessed a crucial component of the day of birth, namely the competency of the service providers. Our study was
adequately powered to produce generalizable conclusions on the comparative effectiveness of the
LDHF/m-mentoring and TRAD approaches in the study setting and possibly in similar environments
especially in LMICs. As reported by other studies, to be effective, training programs should be conducted
as close as possible to the workplace and be competency-based [16–18].

The present study also adds to the growing yet still insufficient body of evidence in LMICs supporting the
use of simulation, specifically for training in the management of obstetrics and newborn emergencies
[19–21]. Skills that are not used very frequently, such as management of obstetric and newborn
complications, are likely to be non-existent or lost due to a lack of use, and therefore the need to practice
often. The appropriate dose or frequency of practice in order to reach competency level depends on many
factors, which may include the personal attributes of service provider among other things. Simulation-
based trainings provide participants with the opportunity to repeat practice sessions in a safe
environment where they will not harm patients [1–2, 18, 21]. Using the workplace to practice skills is
beneficial. The availability of the anatomical models for continuous onsite simulation practice sessions
also helps to organize emergency drills to test the health systems response to life-threatening
complications.

Another important finding is that some of the enablers for the LDHF/m-mentoring approach are related to
successful outcomes that were reported as health workers improved their skills, which motivated the
participants to practice more and seek support from master mentors. On the other hand, some of the
barriers to this approach include funding and logistics, such as availability of space for the practice
sections and labor strikes by health workers. It has been reported that inadequate mentorship should be
addressed to improve quality of BEmONC [22]. To function maximally, health workers need to improve
their competency and they need an enabling environment, including availability of supplies, equipment,
appropriate guidelines and policies, and timely remuneration [23, 24]. Our study findings corroborated
those of previous studies in LMICs on the effectiveness of the LDHF training approach compared to the
offsite traditional training approach to build health workers capacity [1, 2].

This study had some limitations some of which have been reported through the qualitative data
presented as challenges and barriers experienced. These include some operational-level logistical
challenges in ensuring that the mentors always had the airtime in a timely manner in order to maintain
seamless communication with the mentees. The was mitigated by the mentors being very understanding
by using their resources as they awaited support provided through the study. Another limitation was the
health workers’ strike which occurred around month three post-training, which potentially affected the
findings negatively at that assessment period. Finally, although the study team had lobbied the MOH not
to transfer the participants to other non-study facilities for duration of the study, some staff were
transferred. However, the proportion was very low; they were not included in the analysis.

**Conclusion**
This is one of the few studies from a middle-income country that has used a pragmatic design—a cluster randomized controlled trial and qualitative methods—to generate much needed information on learning outcomes of two approaches to health worker capacity building. Our study findings corroborate those of similar studies that used rigorous methodology, to support the proposition to a shift from traditional offsite group-based training to low-dose, high-frequency and onsite training as an effective way to build the capacity of maternal and newborn care providers. This shift can be explored in other clinical settings to improve the quality of care. The findings suggest that a low-dose, high frequency and simulation- and practice-based training approach, including mobile mentoring is likely to result in better skills competency outcomes and higher skills retention among health workers. This study has shown promising results that can address health worker absenteeism due to frequent offsite trainings, which are a major concern for health facility managers in LMICs. Training staff onsite without taking them away from service delivery points is a strong reason for adoption of the LDHF/m-mentoring approach.

The findings are expected to provide health facility managers and other decision makers with valuable information to guide resource allocation for maximum benefit and effectiveness in building the capacity of frontline health workers. The authors recommend that capacity building among healthcare workers, to the extent possible, should utilize the onsite LDHF/m-mentoring learning approach. Further evidence is needed to determine the value of m-mentoring in influencing learning outcomes and the cost-effectiveness of both training approaches as these were not explored in our study.

**Declarations**

**Ethics approval and consent to participate**

Ethical approval was obtained from Nigerian Health Research Ethics Committee with approval number NHREC/ 01/01/2007 November 2015 and the Johns Hopkins School of Public Health, Institutional Review Board #000007196, on August 23rd, 2016. The trial was retrospectively registered with the NIH-Sponsored ClinicalTrials.Gov registry on 24th August, 2017: NCT03269240. Verbal informed consent was obtained from study participants and confidentiality was assured. Verbal informed consent was used because the authors thought that asking health providers to review and sign forms might be considered risky because of the fear that if they performed poorly their supervisors may see their scores and trace it back to them.

**Consent for publication**

Not applicable

**Availability of data and material**

The datasets generated and/or analyzed during the current study are available in the figshare repository, [https://doi.org/10.6084/m9.figshare.9955133](https://doi.org/10.6084/m9.figshare.9955133)

**Competing interests**
The authors declare that they have no competing interest.

**Funding**

This study was made possible by the generous support of the American people through the United States Agency for International Development (USAID) under the terms of the Cooperative Agreement AID-OAA-A-14-00028. The contents are the responsibility of the authors and do not necessarily reflect the views of USAID or the United States Government. The USAID contributed to the design of the study by improving the methodology rigor and also reviewed the final manuscript.

**Authors’ contributions**

EU, MK, EO, GY, AO, BO1, UO, JE, GI, GA, GO, OA, CO, AA and BO2 contributed to the data collection, analysis and development of the manuscript. EU, MK, EO and GY conceived the idea of the manuscript and wrote the initial draft. All other authors contributed significantly to the research project and manuscript development. All authors read and approved the final manuscript.

**Acknowledgements**

The authors acknowledge the support received from the Federal Ministry of Health, Ebonyi State Ministry of Health and Kogi State Ministry of Health, Nigeria, health providers in all the selected health facilities during the design and implementation stages. We are sincerely grateful to Dr. Iwasam Agbor and the Hospiman Global Research Firm for working on the qualitative data collection, analysis and report writing. We also acknowledge and sincerely thank Elizabeth Thompson, Barbara Rawlins and Jennifer Hoeg for reviewing the manuscript and making very valuable corrections and Edward Bunker for support in data de-identification.

**Authors’ Information**

1. Jhpiego-an affiliate of Johns Hopkins University, 971 Reuben Okoya Crescent, Wuye District, Abuja, Nigeria. 2. Jhpiego-an affiliate of Johns Hopkins University, 1615 Thames St, Baltimore, MD 21231, USA. 3. The Johns Hopkins Biostatistics Center, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD 21205, 4. Department of Public Health, State Ministry of Health, Lokoja, Kogi State, Nigeria, 5. Department of Public Health, State Ministry of Health, Abakiliki, Ebonyi State, Nigeria

**Abbreviations**

AMTSL
Active management of third stage of labor
BEmONC
basic emergency obstetric and newborn care
FGDs
Focused Group Discussions.
IDI
In-depth Interviews
IQR
interquartile range
LDHF
low-dose, high-frequency; m-mentoring:mobile mentoring
LMICs
Low and Middle Income Countries.
MCQ
Multiple Choice Questionnaire

References

1. Evans CL, Bazant E, Atukunda I, Williams E, Niermeyer S, Hiner C, et al. Peer-assisted learning after onsite, low-dose, high-frequency training and practice on simulators to prevent and treat postpartum hemorrhage and neonatal asphyxia: A pragmatic trial in 12 districts in Uganda. PLoS ONE. 2018; doi.org/10.1371/journal.pone.0207909

2. Gomez PP, Nelson AR, Asiedu A, Addo E, Agbodza D, Allen C, et al. Accelerating newborn survival in Ghana through a low-dose, high-frequency health worker training approach: a cluster randomized trial. BMC Pregnancy Childbirth. 2018; doi:10.1186/s12884-018-1705-5.

3. Leslie HH, Gage A, Nsona H, Hirschhorn LR, Kruk ME. Training and supervision did not meaningfully improve quality of care for pregnant women or sick children in Sub-Saharan Africa. Health Aff (Millwood). 2016; doi.org/10.1377/hlthaff.2016.0261.

4. Gulmezoglu AM, Lawrie TA. Impact of training on emergency resuscitation skills: Impact on Millennium Development Goals (MDGs) 4 and 5. Best Pract Res Clin Obstet Gynaecol. 2015; doi.org/10.1016/j.bpobgyn.2015.03.018.

5. Ugwa E, Otolorin E, Kabue M, Ishola G, Evans C, Oniyire A, et al. Simulation-based low-dose, high-frequency plus mobile mentoring versus traditional group-based training approaches on day of birth care among maternal and newborn healthcare providers in Ebonyi and Kogi States, Nigeria; a randomized controlled trial. BMC Health Serv Res. 2018;18:630.

6. Nkwo PO, Lawani LO, Ubesie AC, Onodugo VA, Obu HA, Chinawa JM. Poor availability of skilled birth attendants in Nigeria: A case study of Enugu state primary health care system. Ann Med Health Sci Res. 2015;5:20-5.

7. Bluestone J, Johnson P, Fullerton J, Carr C, Alderman J, BonTempo J. Effective in-service training design and delivery: evidence from an integrated literature review. Hum Resour Health. 2013; 11:51.

8. Banke-Thomas A, Wilson-Jones M, Madaj B, van den Broek N. Economic evaluation of emergency obstetric care training: a systematic review. BMC Pregnancy Childbirth. 2017; doi: 10.1186/s12884-017-1586-z.
9. Frank K, Lombaard H, Pattinson R. Does completion of the essential steps in managing obstetric emergencies (ESMOE) training package result in improved knowledge and skills in managing obstetric emergencies? South African J Obstet. 2009;15:94–9.

10. Ameh CA, van den Broek N. Making it happen: training health-care providers in emergency obstetric and newborn care. Best Pract Res Clin Obstet Gynaecol. 2015;29:1077–91.

11. Shoushtarian M, Barnett M, McMahon F, Ferris J. Impact of introducing practical obstetric multi-professional training (PROMPT) into maternity units in Victoria, Australia. BJOG. 2014;121:1710–8.

12. Evans CL, Bazant E, Johnson P, Hiner C, Williams E, Conecker G, et al. Saving Lives at Birth Final Report: Building and Sustaining Capacity of Frontline Health Workers in Uganda. Baltimore: A partnership of: Jhpiego, USAID, Norwegian Ministry of Foreign Affairs; Bill & Melinda Gates Foundation; Grand Challenges Canada; UKaid; American Academy of Pediatrics; Laerdal; 2016.

13. Evans CL, Johnson P, Bazant E, Bhatnagar N, Zgambo J, Khamis AR. Competency-based training Helping Mothers Survive: Bleeding after Birth for providers from central and remote facilities in three countries. Int. J. Gynecol. Obstet. 2014; doi.org/10.1016/j.ijgo.2014.02.021.

14. Otolorin E, Gomez P, Currie S, Thapa K, Dao B. Essential basic and emergency obstetric and newborn care: From education and training to service delivery and quality of care. Int. J. Gynecol. Obstet. 2015;130:S46–S53.

15. Sutton RM, Niles D, Meaney P, Aplenc R, French B, Abella BS, et al. Low-dose, high-frequency CPR training improves skill retention of in-hospital pediatric providers. Pediatrics 2011;128:e145–e151.

16. Jayanna K, Bradley J, Mony P, Cunningham T, Washington M, Bhat S, et al. Effectiveness of Onsite Nurse Mentoring in Improving Quality of Institutional Births in the Primary Health Centres of High Priority Districts of Karnataka, South India: A Cluster Randomized Trial. PLoS ONE 2016; doi:10.1371/journal.pone.0161957.

17. Ameh CA, Broek N. Making It Happen: Training health-care providers in emergency obstetric and newborn care. Best Pract Res Clin Obstet Gynaecol 2015; 29 (8):1077-1091.

18. Ameh CA, Kerr R, Madaj B, Mdegela M, Kana T, Jones S, et al. Knowledge and skills of healthcare providers in Sub-Saharan Africa and Asia before and after competency-based training in emergency obstetric and early newborn care. PLoS ONE. 2016; doi:10.1371/journal.pone.0167270.

19. Lentz GM, Mandel LS, Lee D, Gardella C, Melville J, Goff BA. Testing surgical skills of obstetric and gynecologic residents in a bench laboratory setting: validity and reliability. Am J Obstet Gynecol. 2001; 184, 1462-1468, discussion 1468-70.

20. Macedonia, CR, Gherman, RB, Satin AJ. Simulation laboratories for training in obstetrics and gynecology. Obstet Gynecol. 2003; 102, 388-392.

21. Meri en, AER., van de Ven J, Mol BW, Houterman S, Oei SG. Multidisciplinary team training in a simulation setting for acute obstetric emergencies: A systematic review. Obstet Gynecol. 2010; doi.org/10.1097/AOG.0b013e3181d9f4cd.

22. Amatullah AF. Using interprofessional simulation-based training to improve management of obstetric emergencies: A systematic review. Clinical Simulation Nursing. 2018;
doi.org/10.1016/j.ecns.2017.10.014.

23. Austin A, Gulema H, Belizan M. Barriers to providing quality emergency obstetric care in Addis Ababa, Ethiopia: Healthcare providers’ perspectives on training, referrals and supervision, a mixed methods study. BMC Pregnancy Childbirth. 2015;15(1):1.

24. Graham W, Bell J, Bullough C. Can skilled attendance at delivery reduce maternal mortality in developing countries? In: De Brouwere V, van Lerberghe W, editors. Safe motherhood strategies: a review of the evidence. Antwerp, ITGPress, 2001, 97-129.

Figures

![Consort flowchart of enrolment of study participants and data analysis](image-url)

Figure 1

Consort flowchart of enrolment of study participants and data analysis
Figure 2

Trends in BEmONC skills mean composite scores by study arm over 12-month period

*denotes p value < 0.05

Figure 3

Assessment of providers’ BEmONC skills at 12 months post-training

Supplementary Files
This is a list of supplementary files associated with this preprint. Click to download.

- Jan18CONSORT2010Checklist121420191.doc
- coreqchecklist.pdf