Computational prediction of disease microRNAs in domestic animals

Teresia Buza1,2*, Mark Arick II2, Hui Wang2 and Daniel G Peterson2

Abstract

Background: The most important means of identifying diseases before symptoms appear is through the discovery of disease-associated biomarkers. Recently, microRNAs (miRNAs) have become highly useful biomarkers of infectious, genetic and metabolic diseases in human but they have not been well studied in domestic animals. It is probable that many of the animal homologs of human disease-associated miRNAs may be involved in domestic animal diseases. Here we describe a computational biology study in which human disease miRNAs were utilized to predict orthologous miRNAs in cow, chicken, pig, horse, and dog.

Results: We identified 287 human disease-associated miRNAs which had at least one 100% identical animal homolog. The 287 miRNAs were associated with 359 human diseases referenced in 2,863 Pubmed articles. Multiple sequence analysis indicated that over 60% of known horse mature miRNAs found perfect matches in human disease-associated miRNAs, followed by dog (50%). As expected, chicken had the least number of perfect matches (5%). Phylogenetic analysis of miRNA precursors indicated that 85% of human disease pre-miRNAs were highly conserved in animals, showing less than 5% nucleotide substitution rates over evolutionary time. As an example we demonstrated conservation of human hsa-miR-143-3p which is associated with type 2 diabetes and targets AKT1 gene which is highly conserved in pig, horse and dog. Functional analysis of AKT1 gene using Gene Ontology (GO) showed that it is involved in glucose homeostasis, positive regulation of glucose import, positive regulation of glycogen biosynthetic process, glucose transport and response to food.

Conclusions: This data provides the animal and veterinary research community with a resource to assist in generating hypothesis-driven research for discovering animal disease-related miRNA from their datasets and expedite development of prophylactic and disease-treatment strategies and also influence research efforts to identify novel disease models in large animals. Integrated data is available for download at http://agbase.hpc.msstate.edu/cgi-bin/animal_mirna.cgi.

Keywords: Disease microRNAs, Target, Domestic animals, Homology, Orthology, Phylogenetic analysis

Background

MicroRNAs (miRNAs) are naturally occurring single-stranded small RNA molecules that play important roles in post-transcriptional regulation of gene expression [1]. Studies have shown that miRNAs exert their regulatory role by partially binding their target (complementary) mRNAs at 3′ UTRs (untranslated regions) [2-5]. Phylogenetic studies indicate that animal miRNAs are highly conserved [6,7]. Until recently, miRNAs were thought to be of little or no cellular significance [8-10]. The first miRNA shown to have a regulatory function was lin-4 from Caenorhabditis elegans [11,12]. Lin-4 acted as a silencer of genes that regulate developmental timing, but it was considered a unique evolutionary adaptation as lin-4 homologs were not found in other species. The discovery of the regulatory miRNA let-7 in C. elegans in 2000 [10], with homologs in other species including humans, caused researchers to reconsider the idea that miRNAs may have a more widespread function within cells. We now know that many miRNAs play central roles in post-transcriptional gene regulation. Additionally, expression of specific miRNAs has been linked to various diseases [13-16]. Considerable research has been devoted to understanding
regulatory roles of miRNAs in human diseases [17-26], and miRNAs are important biomarkers of several disease processes [27-32] including many cancers [33-43] and cardiovascular [18,44-53], inflammation [54-57], and gastrointestinal diseases [58-60].

While databases for human disease-associated miRNAs are publicly available [61-70], there is no any integrated resource for disease-associated miRNAs in domestic animals. An integrated resource of animal disease-related miRNA data would provide the animal and veterinary research community with an invaluable resource for searching disease related miRNA subsets from their experimental data. Pubmed articles stand solely as the major reliable source of information for disease miRNA data. However, there are very few Pubmed articles currently (as of 12/31/2014) documenting disease-associated miRNAs in domestic animals compared to human, mouse or rat (Figure 1). Identification of miRNA/disease associations in domestic animals is critical for understanding miRNA involvement in the pathophysiology of these organisms.

The main objective of our study was to identify animal miRNA homologs of published human disease-associated miRNAs in cow, chicken, pig, horse and dog using phylogenetic techniques. Using the current available human and animal miRNA resources, we identified potential disease-related miRNAs in domestic animals based on integrated computational and manual approaches including assessing the sequence similarities and evolutionary relationships between human disease miRNAs and their animal orthologs. These predictions will serve as a resource to facilitate hypothesis-driven research in domestic animals, which upon verification in animals could suggest animal models for human diseases and strategies for developing therapeutic measures.

![Figure 1](http://www.biomedcentral.com/1756-0500/7/403)

Figure 1 Publication statistics of disease associated miRNAs as of 12/31/2013. Searches from NCBI-Pubmed titles or abstracts were conditioned to retrieve publications from the last ten years. The searches contained species names, miRNA abbreviations, disease(s) and duration (year). For example searching Pubmeds for dog disease associated miRNAs in the past 10 years were acquired using the following query statement: (dog OR canine OR (Canis familiaris) AND (microRNA OR microRNAs OR miRNA OR mirRNAs OR mir OR miRs) AND (cancer OR cancers OR disease OR diseases OR disorder OR disorders) AND ("2004/01/01"[PDat] : "2013/12/31"[PDat])). Note that (A) and (B) are presented in different y-axis scale due to large difference in number of Pubmed articles.
Methods

Human and domestic animal mature miRNA sizes
We compared the sizes of all known mature human miRNAs with the sizes of all known cow, chicken, pig, horse, and dog to establish their length diversity.

Extraction and verification of disease-associated human miRNAs
Briefly, we surveyed publicly available databases that link human miRNAs with diseases [65,67,71,72] and selected the most up-to-date and comprehensive human disease miRNA database, i.e., the Human miRNA Disease Database (HMDD) version 2.0 [58], as a baseline for searching animal homologs. We then filled a request form available at http://202.38.126.151/hmdd/html/tools/hmdd_req.html to request all human disease-associated miRNA data from Dr. Qinghua Cui of department of Biomedical Informatics, Peking University Health Science Center. From this data we retrieved the miRNA IDs (identifiers) that were named according to miRBase [73] nomenclature standards, the disease(s) associated with each miRNA and the PubMed articles from which the HMDD data was extracted. We then manually reviewed the PubMed titles and abstracts to verify association of the miRNAs with human diseases.

Prediction of animal homologs of human disease-associated miRNAs
We used the IDs of human disease miRNAs (from HMDD) to extract corresponding mature (i.e., processed) miRNA nucleotide sequences from miRBase version 20 [73]. We also downloaded all sequences of mature and precursor (pre) miRNAs for cow, chicken, pig, horse and dog from miRBase version 20 and then used a Perl script to identify cow, chicken, pig, horse, and dog mature miRNA sequences that were 100% identical to sequences of human disease-associated miRNAs. The outputs of the Perl script were deemed “human disease miRNAs with animal counterparts” (HDMACs).

Phylogenetic analysis of HDMAC precursor sequences
The precursor miRNA sequences (pre-miRNAs) of HDMACs were compared using a multiple alignment and phylogenetic approach to detect conservation profiles and rapid sequence divergence in human and domestic animals. Briefly, we used Clustal Omega [74] tool for multiple alignment of pre-miRNA sequences and Clustalw2-Phylogeny tool [75] to generate the Neighbor-Joining (NJ) phylogenetic trees to determine nucleotide substitutions that have occurred over evolutionary time. Briefly, NJ method compares each sequence with each other, calculates distance matrices, then combines the least distant pair of sequences and construct phylogenetic tree. We displayed distances (divergence proportions) calculated from all pairs of sequences in the multiple alignments to facilitate evolutionary interpretation of phylogenograms. Divergence proportions less or equal to 5% (≤0.05) were considered to be highly conserved.

Annotation of human disease miRNA targets and their animal orthologs
We manually annotated the genes targeted by the human disease-associate miRNAs from the associated PubMed articles and predict their animal orthologs using the Ensembl Biomart [76] tool. All human targets and their animal orthologs with one-to-one matches and reciprocal % identity >70 were integrated in the animal disease miRNA resource.

Integration of disease information with human-animal miRNA homologs
We integrated the information gathered from this study to form a computationally predicted animal disease miRNA resource which contained miRNA information including standardized miRBase identifiers of mature miRNAs, pre-miRNAs, and miRNA families linked to the associated human disease. Whenever applicable we used OMIM (Online Mendelian Inheritance in Man) [77], OMIA (Online Mendelian Inheritance in Animal) [78] and Disease Ontology (DO) [79] standardized names for disease phenotypes and BRENDA (BRaunschweig ENzyme Data-base) Tissue Ontology (BTO) [80,81] terms to standardize names of source tissues or cell types. PubMed IDs were used as central literature references. Additional information regarding the genomic location(s) of miRNAs, type of experiment, and publication date was also integrated.

Results

Lengths of animal and human mature miRNAs
Generally, the distribution of mature miRNA lengths in all species followed same trend, with 22-nt sequences dominating in each species (Figure 2).

Dataset of human disease-associated miRNAs
After surveying various human disease-related miRNA databases, we found that the miRNAs in the Human miRNA Disease Database (HMDD) version 2.0 [71] (updated on 09/30/2013) were best suited for use as a training set (Figure 3). This database contained 578 published human miRNAs associated with 383 diseases referenced in 3,486 Pubmed articles. The human disease miRNA referenced in HMDD included 70% of the total 4,961 human disease miRNA articles we identified in Pubmed (Figure 1).

We identified 694 domestic animal mature miRNA sequences that showed 100% sequence identity with the 287 human disease miRNAs (Figure 4, Additional file 1). Over 60% of total horse mature miRNAs (216) showed...
perfect matches to human disease-associated miRNAs, followed by dog (50%). As expected, chicken had the least number of perfect matches (5%), most likely a result of the relative evolutionary distance between birds and mammals. We found that 14 human disease miRNAs were conserved in all animals, chicken included, while 41 were conserved only between the mammalian representatives (Table 1).

Conserved human disease pre-miRNAs in animals

In addition to producing multiple alignments of mature miRNAs, we established additional evolutionary relationship between pre-miRNAs of HDMACs, which included 265 and 649 human and animal pre-miRNA sequences, respectively. About 85% of human disease pre-miRNAs were found to be highly conserved in animals, showing less than 5% nucleotide substitution rates over evolutionary time.
We demonstrate phylogenetic analysis of pre-miRNA sequences of HDMACs that are clustered in the mir-154 family (Figure 6). In this family all pre-miRNAs had nucleotide substitution rate of <4%, among which, pre-miRNA sequences of eight animals; 4 in horse (eca-mir 409, 494, 377 & 382), 2 in dog (cfa-mir-494 & 377) and 2 in cow (bta-mir-377 & 382) had 100% percent identity with 4 of human disease pre-miRNAs sequences.

Animal orthologs of human disease miRNA targets
Genes targeted by the human disease-associated miRNAs were utilized to predict their animal orthologs using the Ensembl Biomart [76] tool. Currently, over 45 targets conserved across human and domestic animals are included in the integrated resource available through AgBase [82,83] at http://agbase.hpc.msstate.edu/cgi-bin/animal_mirna.cgi. Example of conserved disease miRNA targets linked to type 2 diabetes is included in this article (Figure 7, Table 2) and more targets are shown as Additional file 3.

Data integration
In order to provide a unified view of data generated from this study we integrated all information to form a core resource of domestic animal disease-related miRNAs. The integrated data links all 694 animal mature miRNAs with 287 human miRNAs which are associated with 359 human diseases referenced in 2,863 Pubmed articles. This information is classified into five main categories including information for miRNA, associated disease, reference, genomic location and target (Table 3). The integrated resource is the main reference and preliminary data towards our efforts to develop an advanced farm and domestic animal disease-associated miRNA resource. The preliminary integrated resource is available at http://agbase.hpc.msstate.edu/cgi-bin/animal_mirna.cgi.

Application of the integrated resource
We have demonstrated how experimentally confirmed diabetes type 2-associated miRNA hsa-mir-143-3p can be used to identify related miRNAs in animals (Figure 7, Table 2) thus, providing a more focused hypothesis-driven investigations in animals. We found that the hsa-miR-143 which is located on the right arm (3′) of its pre-miRNA is highly conserved in pig, horse and dog. The hsa-miR-143-3p target gene is AKT1 [84] which has 97-100% sequence identity with AKT1 found in pig, horse and dog. The biological processes annotated to AKT1 using Gene ontology (GO) [85,86] indicate that this gene is involved in similar processes in all species including, glucose homeostasis, positive regulation of glucose import, positive regulation of glycogen biosynthetic process, response to food and glucose transport (Table 2).

Discussion
One means of identifying diseases before symptoms appear is through the discovery and utilization of disease-associated molecular biomarkers. Many biomarker techniques that have been widely applied in human and model organism studies have not been adequately implemented in the study of domestic animal diseases. It is now clear that miRNA play major regulatory role in various disease processes but financial investment is more committed to investigate miRNA involvement in human disease more than any other species (Figure 1). There are several miRNAs currently classified as biomarkers for human cancers [27,42,87-93], cardiovascular [45,46,94,95], and inflammation [54-57] diseases. Although not experimentally found
Human_homolog	MicroRNA family	Cow (bta)	Chicken (gga)	Pig (ssc)	Horse (eca)	Dog (cfa)	Total animal species
hsa-miR-128-3p	mir-128	+	+	+	+	+	5
hsa-miR-130a-3p	mir-130	+	+	+	+	+	5
hsa-miR-135a-5p	mir-135	+	+	+	+	+	5
hsa-miR-148a-3p	mir-148	+	+	+	+	+	5
hsa-miR-184	mir-184	+	+	+	+	+	5
hsa-miR-19a-3p	mir-19	+	+	+	+	+	5
hsa-miR-193a-3p	mir-193	+	+	+	+	+	5
hsa-miR-204-5p	mir-204	+	+	+	+	+	5
hsa-miR-205-5p	mir-205	+	+	+	+	+	5
hsa-miR-27b-3p	mir-27	+	+	+	+	+	5
hsa-miR-29b-3p	mir-29	+	+	+	+	+	5
hsa-miR-30b-5p	mir-30	+	+	+	+	+	5
hsa-miR-365b-3p	mir-365	+	+	+	+	+	5
hsa-miR-490-3p	mir-490	+	+	+	+	+	5
hsa-miR-19b-3p	mir-19	+	+	+	+	-	4
hsa-miR-193a-3p	mir-193	+	+	+	+	-	4
hsa-miR-24-3p	mir-24	+	+	+	+	-	4
hsa-miR-206	mir-1	+	+	-	+	+	4
hsa-miR-20a-5p	mir-17	+	+	-	+	+	4
hsa-miR-190a-5p	mir-190	+	+	-	+	+	4
hsa-miR-194-5p	mir-194	+	+	-	+	+	4
hsa-miR-216b-5p	mir-216	+	+	-	+	+	4
hsa-miR-383-5p	mir-383	+	+	-	+	+	4
hsa-miR-98-5p	let-7	+	-	+	+	+	4
hsa-miR-99b-5p	mir-10	+	-	+	+	+	4
hsa-miR-130b-3p	mir-130	+	-	+	+	+	4
hsa-miR-148b-3p	mir-148	+	-	+	+	+	4
hsa-miR-149-5p	mir-149	+	-	+	+	+	4
hsa-miR-187-3p	mir-187	+	-	+	+	+	4
hsa-miR-532-5p	mir-188	+	-	+	+	+	4
hsa-miR-196a-5p	mir-196	+	-	+	+	+	4
hsa-miR-208b-3p	mir-208	+	-	+	+	+	4
hsa-miR-92a-3p	mir-25	+	-	+	+	+	4
hsa-miR-92b-3p	mir-25	+	-	+	+	+	4
hsa-miR-26a-5p	mir-26	+	-	+	+	+	4
hsa-miR-151a-5p	mir-28	+	-	+	+	+	4
hsa-miR-29c-3p	mir-29	+	-	+	+	+	4
hsa-miR-324-5p	mir-324	+	-	+	+	+	4
hsa-miR-328-3p	mir-328	+	-	+	+	+	4
hsa-miR-331-3p	mir-331	+	-	+	+	+	4
hsa-miR-34a-5p	mir-34	+	-	+	+	+	4
hsa-miR-361-5p	mir-361	+	-	+	+	+	4
hsa-miR-376a-3p	mir-368	+	-	+	+	+	4
hsa-miR-370-3p	mir-370	+	-	+	+	+	4
to be associated with miRNAs, some of these human diseases are also found in domestic animals [96-99]. Advances in knowledge about human disease-associated miRNAs warrant investigation of similar diseases in related species.

In this study we used homology approach to generate a resource that integrates animal miRNA data with human disease-associated miRNAs. As demonstrated using hsa-miR-143-3p which has been associated with diabetes type 2 [84] (Figure 7 and Table 2) it is logical that similar miRNAs perform comparable functions across related species, and therefore diseases correlated with miRNAs in one species may be correlated with homologous miRNA expression and disease in related species. The example of diabetes type 2-associated miRNA hsa-miR-143-3p gave a highlight on how to link disease-associated elements across species and develop hypothesis-driven investigation in animals. Integrating all data enabled us to identify some human disease miRNAs that are found in more than one animal species (Additional file 1), which indicates the likelihood of also sharing common diseases. Having miRNAs targeting similar genes across species provide clue of functional orthology. As indicated in this study one miRNA can be associated with multiple

Human disease miRNA with animal counterparts (Continued)
hsa-miR-374b-5p
hsa-miR-423-5p
hsa-miR-499a-5p
hsa-miR-628-5p
hsa-miR-708-5p
hsa-miR-885-5p
hsa-miR-146a-5p
hsa-miR-21-5p
hsa-miR-218-5p
hsa-miR-22-3p
hsa-miR-34c-5p
hsa-miR-9-5p

A complete table of all matches is provided in the Additional file 1.

Figure 5 Nucleotide substitution rate of pre-miRNAs of HDMACs in key domestic animals. For a particular human-animal pair, blue indicates pre-miRNA sequences with zero nucleotide substitution rate; red bars indicates pre-miRNA sequences with <5% nucleotide substitution rate and green bars are pre-miRNA sequences with >5% nucleotide substitution rate.
diseases. For example, hsa-miR-21-5p has been documented in nearly 400 Pubmed articles and is associated with 124 human disease phenotypes and has homologs in four animals including chicken.

However, not all human miRNA-related diseases may be relevant to all animals. Manual curation effort to continue building and updating the animal disease miRNA resource developed in this study is our long term process. The relevance of each human miRNA disease linked to each animal and targeted gene will continue to be established and integrated in the resource. Validation of the human disease miRNAs in the animal context will likely leverage the findings in human at the same time improve our understanding of their involvement in the pathogenesis, diagnosis, and prognosis of various animal diseases.

Conclusions

In this study we have shown that some human disease-associated miRNAs are well conserved across domestic animals. Also, human genes targeted by disease-associated miRNAs are highly conserved in animals. Conservation of both miRNAs and their target genes across human and domestic animals provides the likelihood of having functional orthology relationship which may also lead to similar diseases. Findings from this study are a step forward
Figure 7 Comparative structural analysis of human *hsa-miR-143* and its animal orthologs. The multiple sequence alignment (A) shows the location of the mature miRNA on the 3′ arm of the pre-miRNA. The minimum free energy (MFE) secondary structure (B) of human *mir-143* is compared to that of the animal orthologs and a normalized pre-miRNA consensus sequence. The species are abbreviated by their scientific names; *hsa* (Homo sapiens – human), *ssc* (Sus scrofa – pig), *eca* (Equine canibus – horse), and *cfa* (Canis familiaris – dog).

Table 2 Comparative functional analysis of confirmed target of human *hsa-miR-143-3p* and predicted target of animal orthologs

Species	Functional mature miRNA	Target gene symbol	Target gene length	% identity human-animal	AKT1 predicted biological processes (UniProtKB GO)*	mir-143 target inhibition
Human	*hsa-miR-143-3p*	AKT1 (Confirmed)	480 aa	100	Glucose homeostasis, positive regulation of glucose import, positive regulation of glycogen biosynthetic process, response to food, glucose transport	Cleavage
Pig	*ssc-miR-143-3p*	AKT1 (Predicted)	480 aa	100	Glucose homeostasis, positive regulation of glucose import, positive regulation of glycogen biosynthetic process, response to food, glucose transport	Cleavage
Horse	*eca-miR-143*	AKT1 (Predicted)	479 aa	98	Glucose homeostasis, positive regulation of glucose import, positive regulation of glycogen biosynthetic process, response to food, glucose transport	Cleavage
Dog	*cfa-miR-143*	AKT1 (Predicted)	479 aa	97	Glucose homeostasis, positive regulation of glucose import, positive regulation of glycogen biosynthetic process, response to food, glucose transport	Cleavage

*Showing only the biological process GO terms with direct relevance to type 2 diabetes.
Table 3 Summary of integrated information in the animal disease-miRNA resource

Information	Specific information	
MicroRNA	1. Mature miRNA ID	
	2. Mature miRNA AC	
	3. Mature RNA sequence	
	4. Pre-miRNA/Hairpin ID	
	5. Pre-miRNA/Hairpin AC	
	6. Pre-miRNA/Hairpin sequence	
	7. Family ID	
	8. Family AC	
Location	9. Chromosome number	
	10. Genomic coordinates (start & end)	
	11. Strand (positive or negative)	
Reference	12. Pubmed ID	
	13. Pubmed Central ID (indicates free articles)	
	14. Pubmed title	
	15. Pubmed publication date	
Disease	16. Disease phenotype (reported in Pubmed article)	
	17. Relevance in animal (for non-domestic animal diseases)	
	18. OMIM/OMIA disease phenotype name	
	19. OMIM/OMIA disease phenotype ID	
	20. Disease Ontology (DO)	
	21. Tissue/Cell type (source of samples used)	
	22. Brenda Tissue Ontology (BTO) name	
	23. BTO ID	
	24. Method used to associate a disease with a miRNA	
Target	25. Gene targeted by the disease miRNA	
	26. Animal ortholog of targeted gene	
	27. Reciprocal% identity of target	ortholog
	28. Orthology_confidence[0 low,1 high]	

The integrated data is available at http://agbase.hpc.msstate.edu/cgi-bin/animal_mirna.cgi.

towards building an advanced animal disease miRNA resource, identifying miRNA-related diseases in animals and utilization of miRNA disease biomarkers in animal and veterinary research. In the long-term, validating these human disease miRNAs in domestic animals could identify new large animal models of diseases and most likely biomarkers to expedite development of therapeutic measures for human and animal diseases.

Availability of supporting data

The data supporting the results of this article is included within the article and its additional files. The integrated animal disease miRNA resource is freely available for download via AgBase at http://agbase.hpc.msstate.edu/cgi-bin/animal_mirna.cgi.

Ethical requirements

Our study used human and animal data from publicly available databases and did not require ethics approval from the Institutional Review Board for the Protection of Human Subjects in Research (IRB) or the Institutional Animal Care and Use Committee (IACUC).

Additional files

- **Additional file 1**: Distribution of human disease microRNAs across animal counterparts. Multiple human diseases and locations are separated by a pipe (column 3). The (+) or (−) in columns 2–6 indicates presence or absence of homologous human disease miRNA (column 1) in the selected animal species.

- **Additional file 2**: Phylogenetic distances of pre-miRNAs of HDMACs. The data in column 1 & 3 are the pre-miRNA ID for animals and human, respectively prefixed with abbreviation of species scientific name i.e. bta (Bos Taurus - cow), gga (Gallus gallus - chicken), ssc (Sus scrofa - pig), cfa (Canis familiaris - dog), and hsa (Homo sapiens - human). Column 2 & 4 show the phylogenetic distances calculated based on nucleotide substitution rate within similar clusters.

- **Additional file 3**: Sample of disease miRNAs targets and their animal orthologs. Experimentally verified genes targeted by the disease miRNAs are manually curated from Pubmed articles and their % identity with an animal ortholog is generated via Ensembl Biomart [76].

Abbreviations

- BRENDA: BRaunschweig ENzyme Database; BTO: BRENDA Tissue ontology; DO: Disease ontology; GO: Gene ontology; HDMACs: Human disease miRNAs with animal counterparts; HMDD: Human miRNA disease database; IGBB: Institute for genomics, biocomputing and biotechnology; MFE: Minimum free energy; miRNAs: MicroRNAs; NI: Neighbor-joining; OMIA: Online mendelian inheritance in animal; OMIM: Online mendelian inheritance in man; pre-miRNAs: Precursor miRNAs; UTRs: Un-translated regions.

Competing interest

The authors declare that they have no competing interests.

Authors’ contributions

TB generated data for this manuscript and performed data analysis and interpretation, MA provided computational data integration assistance, HW generated standardized disease phenotype names for the integrated resource, TB and DGP wrote the manuscript. All authors read, critiqued, edited and approved the final manuscript.

Acknowledgements

This work was supported by the Office of Research and Graduate Studies, College of Veterinary Medicine and the Institute for Genomics, Biocomputing & Biotechnology. We thank the staff at the High Performance Computing Collaboratory (HPC2) for their technical support and routine backup of data generated from this study. We thank the reviewers for their valuable comments.

Received: 13 June 2014 Accepted: 20 June 2014
Published: 27 June 2014

References

1. Winter J, Jung S, Keller S, Gregory RI, Diederichs S: Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 2009, 11(3):228–234.

2. Minguzzi S, Selcuklu SD, Spillane C, Parle-McDermott A: An NTD-Associated Polymorphism in the 3′ UTR of MTHFD1L can Affect Disease Risk by Altering miRNA Binding. Hum Mutat 2014, 35(1):96–104.

3. Wang L, Liu W, Jiang W, Lin J, Jiang Y, Li B, Pang D: A miRNA binding site single-nucleotide polymorphism in the 3′-UTR region of the IL23R gene is associated with breast cancer. PLoS One 2012, 7(12):e49823.
4. Fang L, Du WW, Yang X, Chen K, Ganekar A, Levy G, Yang W, Yee AJ, Lu WY, Xuan JW, Gao Z, Xie F, He C, Deng Z, Yang BB: Versican 3'-untranslated region (3'-UTR) functions as a ceRNA in inducing the development of hepatocellular carcinoma by regulating miRNA activity. *FASEB J* 2013, 27(3):1097–119.

5. Marin RM, Voelkel F, von Erlach T, Vianek J: Analysis of the accessibility of CUl binding sites reveals that nucleation of the miRNA-miRNA pairing occurs preferentially at the 3'-end of the seed match. *RNA* 2012, 18(10):1760–1770.

6. Niwa R, Slack FJ: The evolution of animal microRNA function. *Curr Opin Genet Dev* 2007, 17(2):145–150.

7. Christodoulou F, Rafter F, Tomer R, Simakov O, Trachana K, Klaus S, Smyrnai H, Hannonn GQ, Bork P, Arendt D: Ancient animal microRNAs and the evolution of tissue identity. *Nature* 2010, 463(7284):1088–1094.

8. Ma ZL, Yang HY, Tien P: Progress of miRNA and its functions in eukaryotes. *Hs Chin* 2003, 30(7):693–696.

9. Pasquinelli AE, Reinhard Bt, Slack F, Martindale MQ, Kuroda MI, Maller B, Hayward DC, Bell AE, Degnan B, Muller P, Spring J, Srinivasan A, Fishman M, Finnerty J, Corbo J, Levine M, Leahy P, Davidson E, Ruvkun G: Body size regulation by the 1800bp 3'-UTR of the C. elegans lin-14. *Nature* 2000, 408(6808):86–91.

10. Reinhard B, Slack FJ, Barson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G: The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. *Nature* 2000, 403(6772):901–906.

11. Lee RC, Feinbaum RL, Ambros V: The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. *Cell* 1993, 75(5):843–854.

12. Wightman B, Ha I, Ruvkun G: Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in *C. elegans*. *Cell* 1993, 75(5):855–862.

13. Lu TX, Sheeul JD, Wei T, Plassard AJ, Besse JA, Abiona JP, Franciosi JP, Putnam PE, Eby M, Martin LJ, Arcon EJ, Rohrbach MG: MicroRNA signature in patients with esophageal esophagitis, reversibility with glucocorticoids, and assessment as disease biomarkers. *J Allergy Clin Immunol* 2012, 129(1):1064–1075 e1069.

14. Heneghan HM, Miller N, Kelly R, Kerin MJ: Systemic miR-195 differentiates breast cancer from other malignancies and is a potential biomarker for detecting noninvasive and early stage disease. *Oncologist* 2010, 15(7):653–662.

15. Shi H, Xu J, Zhang G, Xu L, Li C, Wang L, Zhao Z, Jiang W, Guo Z, Li X: Walking the interactome to identify human miRNA-disease associations. *Bioinformation* 2011, 7(2):e58159.

16. Watahiki A, Macfarlane RJ, Gleave ME, Crea F, Wang Y, Helgason CD, Ahmad D, Nader H, Rim ED, Fadwa B, Luc V, Arlebein P, Philipsen M, Redouane R, Bassam B: Circulating miR-150 and miR-342 in plasma are novel potential biomarkers for acute myeloid leukemia. *J Transl Med* 2013, 11:31–31.

17. Enser E, Mglajlin M, Fox JK, Dinnenho RC, Kieffer TJ: Circulating miR-375 as a biomarker of B- cell death and death in mice. *Endocrinology* 2013, 154(2):603–608.

18. Zeng X, Wang J, Wu M, Xiong W, Tang H, Deng M, Li X, Luo Q, Su B, Luo Z, Zhou Y, Zhou M, Zeng Z, Li X, Chen S, Shuai C, Li G, Fang J, Peng S: Circulating miR-17, miR-20a, miR-29c, and miR-223 combined as non-invasive biomarkers in nasopharyngeal carcinoma. *PLoS One* 2012, 7(10):e46367.

19. Wang N, Zhou Y, Jiang L, Li D, Yang X, Zhang CY, Zen K: Urinary microRNA-10a and microRNA-30d serve as novel, sensitive and specific biomarkers for kidney injury. *PLoS One* 2012, 7(12):e51140.

20. Sun Y, Wang M, Lin G, Sun S, Li X, Qi J, Li J: Serum microRNA-155 as a potential biomarker to track disease in breast cancer. *PLoS One* 2012, 7(10):e47003.

21. Garofalo M, Romango G, Di Leva G, Nuovo G, Jeon Y-J, Ngankeu A, Sun J, Lovat F, Alder H, Cordorelli G, Engelman JA, Ono M, Rho JK, Cascione L, Vollina S, Nephew KP, Croce CM: EGFR and MET receptor tyrosine kinase-altered microRNA expression induces tumorigenesis and gefitinib resistance in lung cancers. *Nat Med* 2012, 18(1):74–82.

22. Tsujiura M, Ickhawa D, Komatsu S, Shiozaki A, Takehita H, Kosuga T, Konishi H, Morimura R, Deguchi K, Fujwara H, Okamoto K, Otani E: Circulating microRNAs in plasma of patients with gastric cancers. *Br J Cancer* 2010, 102(7):1174–1179.

23. Zeng Z, Wang J, Zhao L, Hu P, Zhang H, Tang X, He D, Tang S, Zhou Z: Potential role of microRNA-21 in the diagnosis of gastric cancer: a meta-analysis. *PLoS One* 2013, 8(9):e73728.

24. Zeng RC, Zhang W, Yan X-Q, Ye Z-Q, Chen E-D, Huang D-P, Zhang X-H, Huang GL: Down-regulation of microRNA-30a in human plasma is a novel marker for breast cancer. *Med Oncol* 2013, 30(1):477.

25. Yong FL, Law CW, Wang CW: Potentiality of a triple microRNA classifier: miR-193a-3p, miR-23a and miR-338-5p for early detection of colorectal cancer. *BMC Cancer* 2013, 13:280.

26. Ye J, Wu X, Wu D, Pu P, Ni C, Zhang Z, Chen Z, Qu F, Xu J, Huang J: miRNA-27a targets vascular endothelial growth factor C to inhibit tumor progression and angiogenesis in colorectal cancer. *PLoS One* 2013, 8(7):e68687.

27. Wu J, Yang T, Li X, Yang Q, Liu R, Huang L, Li Y, Yang C, Jiang Y: Alteration of serum miR-206 and miR-133b is associated with lung carcinogenesis induced by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. *Toxicol Appl Pharmacol* 2013, 267(3):238–246.

28. Yamada N, Nakagawa T, Tsujiura N, Kumazaki M, Noguchi S, Mori T, Hirata I, Maruo K, Akao Y: Role of intracellular and extracellular MicroRNA-92a in colorectal cancer. *Transl Oncol* 2013, 6(4):482–492.

29. Watahihi A, Amsfarlane RJ, Gleave ME, Crea F, Wang Y, Helgason CD, Chi KN: Plasma miRNAs as biomarkers to identify patients with castration-resistant metastatic prostate cancer. *Int J Mol Sci* 2013, 14(4):7757–7770.

30. Wang Z, Han J, Cui Y, Fan K, Zhou X: Circulating microRNA-21 as noninvasive predictive biomarker for response in cancer immunotherapy. *Med Hypotheses* 2013, 81(1):141–143.

31. Wang JL, Hu Y, Kong X, Wang ZH, Chen HY, Xu J, Fang JY: Candidate microRNA biomarkers in human gastric cancer: a systematic review and validation study. *PLoS One* 2013, 8(9):e73683.

32. Gilliö F, Smith JG, Miyazu K, Gilje P, Spencer A, Blomquist S, Erlinge D: Circulating cardio-enriched microRNAs are associated with long-term prognosis following myocardial infarction. *BMC Cardiovasc Disord* 2013, 13:12–12.
45. Zhu S, Cao L, Zhu J, Kong L, Jin Q, Qian L, Zhu C, Hu X, Ji M, Guo X, Han S, Yu Z: Identification of maternal serum microRNAs as novel non-invasive biomarkers for prenatal detection of fetal congenital heart defects. *Clin Chim Acta* 2013, 424:66–72.

46. Zhou X, Mao A, Wang X, Duan X, Yao Y, Zhang C: Urine and serum microRNA-1 as novel biomarkers for myocardial injury in open-heart surgeries with cardiopulmonary bypass. *PLOS One* 2013, 8(4):e52245.

47. Wang E, Nie Y, Zhao Q, Wang W, Wang H, Jiao L, Zang H, Hu S, Zheng Z: Circulating miRNAs reflect early myocardial injury and recovery after heart transplantation. *J Cardiothorac Surg* 2013, 8:165–165.

48. Matsumoto S, Sakata Y, Suna S, Nakatani D, Usami M, Hara M, Kitamura T, Hamasaki T, Nanto S, Kawahata T, Komuro I: Circulating p53-responsive microRNAs are predictive indicators of heart failure after acute myocardial infarction. *Circ Res* 2013, 113(3):322–326.

49. Finn NA, Eapen D, Manocha P, Al Kassem H, Lassegue B, Ghaseimzadeh N, Quyyumi A, Sears CD: Coronary heart disease alters intercellular communication by modifying microparticulate-mediated microRNA transport. *FEBS Lett* 2013, 587(21):3456–3463.

50. Dickinson BA, Semus HM, Montgomery RL, Stack C, Latimer PA, Lewton SM, Hesse D, Green R, Elia D, Lo SEO, et al.: Effects on microRNA target binding and biogenesis. *Sensors (Basel)* 2013, 13(4):919–929.

51. Wang H, Lu H-M, Yang W-H, Luo C, Lu S-H, Zhou Y, Lin Y-Z: Identification of maternal serum microRNAs as novel non-invasive biomarkers for prenatal detection of fetal congenital heart defects. *Zhang Q, Jiang F: Biomedical and molecular platform for prediction of cardiovascular disease. *Nucleic Acids Res* 2013, 41(Database issue):D975–979.

52. Dong L, Luo M, Wang F, Zhang J, Li T, Yu J: *TUMIR*: an experimentally supported database of human microRNA deregulation in various cancers. *J Clin Bioinformatics* 2013, 3(1):7.

53. Bruneo AE, Li L, Kalabus JL, Pan Y, Yu A, Hu Z: miRdSNP: a database of disease-associated SNPs and microRNA target sites on 3′UTRs of human genes. *BMC Genomics* 2012, 13:44.
86. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G: Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 2000, 25(1):25–29.

87. Zhao A, Li G, Peoch M, Genin C, Gigante M: Serum miR-210 as a novel biomarker for molecular diagnosis of clear cell renal cell carcinoma. Exp Mol Pathol 2013, 94(1):115–120.

88. Yu X, Luo L, Wu Y, Yu X, Liu Y, Xu Z, Zhang X, Cui L, Ye G, Le Y, Guo J: Gastric juice miR-129 as a potential biomarker for screening gastric cancer. Med Oncol 2013, 30(1):365.

89. Yang JP, Tai L-H, Huang C-W, Huang M-Y, Hou M-F, Joo S-HH, Wang J-Y: The functional significance of MicroRNA-29c in patients with colorectal cancer: a potential circulating biomarker for predicting early relapse. PloS One 2013, 8(6).

90. Ting HJ, Messing J, Yasmin-Karim S, Lee YF: Identification of microRNA-98 as a therapeutic target inhibiting prostate cancer growth and a biomarker induced by vitamin D. J Biol Chem 2013, 288(1):1–9.

91. Si H, Sun X, Chen Y, Cao Y, Chen S, Wang H, Hu C: Circulating microRNA-92a and microRNA-21 as novel minimally invasive biomarkers for primary breast cancer. J Cancer Res Clin Oncol 2013, 139(2):223–229.

92. Mori F, Strano S, Blandino G: MicroRNA-181a/b: novel biomarkers to stratify breast cancer patients for PARPi treatment. Cell Cycle 2013, 12(12):1829–1834.

93. Li C, Li JF, Cai Q, Qiu QQ, Yan M, Liu BY, Zhu ZG: MiRNA-199a-3p: A potential circulating diagnostic biomarker for early gastric cancer. J Surg Oncol 2013, 108(2):89–92.

94. Endo K, Naito Y, Ji X, Nakanishi M, Noguchi T, Goto Y, Nonogi H, Ma X, Weng H, Hirokawa G, Asada T, Kakimoto S, Yamaoka T, Fukushima Y, Iwai N: MicroRNA 210 as a biomarker for congestive heart failure. Biol Pharm Bull 2013, 36(1):48–54.

95. Bauters C, Kumanswamy R, Holzmann A, Bretthauer J, Anker SD, Pinet F, Thum T: Circulating miR-133a and miR-423-5p fail as biomarkers for left ventricular remodeling after myocardial infarction. Int J Cardiol 2013, 168(3):1837–1840.

96. Parker HG, Ostrander EA: Cancer. Hiding in plain view—an ancient dog in the modern world. Science 2014, 343(6169):376–378.

97. Rowell JL, McCarthy DO, Alvarez CE: Dog models of naturally occurring cancer. Trends Mol Med 2011, 17(7):380–388.

98. Khanna C, Lindblad-Toh K, Vail D, London C, Bergman P, Barber L, Breen M, Kitchell B, McNeil E, Modiano JF, Niemi S, Comstock KE, Ostrander E, Westmoreland S, Withrow S: The dog as a cancer model. Nat Biotechnol 2006, 24(9):1065–1066.

99. Davis JL, Gardner SY, Schwabenton B, Breuhaus BA: Congestive heart failure in horses: 14 cases (1984–2001). J Am Vet Med Assoc 2002, 220(10):1512–1515.