Combining fragments of classical logic: When are interaction principles needed?

Carlos Caleiro · Sérgio Marcelino · João Marcos

Published online: 29 October 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
We investigate the combination of fragments of classical logic as a way of conservatively extending a given Boolean logic by the addition of new connectives, and we precisely characterize the circumstances in which such a combination produces the corresponding fragment of classical logic over the signature containing connectives from both fragments given as input. If the thereby produced combined fragment is only incompletely characterized by the components given as input, this means that connectives from one component need to interact with connectives from the other component, giving rise to interaction principles. The main contributions strongly rely on the (well-known) description of the 2-valued clones made by Post, on the (not so well-known) axiomatization procedures for 2-valued matrices laid out by Rautenberg, and on Avron’s non-deterministic matrices, which have (recently) been used to produce a significant advance on the understanding of the semantics of fibring.

Keywords Combination of logics · Many-valued logics · Clone theory (algebra)

1 Introduction
In what concerns the extensibility of the language of a given logic by some new connective respecting certain inferential patterns, one of the main criteria invoked in justifying, granting intelligibility or acknowledging the legitimacy of such an extension is the ‘conservativeness restraint.’ According to such restraint, the addition of a new connective together with its corresponding characterizing rules should not allow for novel inferences to arise using exclusively the original language, involving formulas deprived of such connective. Arguably, an equally important but much less discussed criterion involves the possible emergence, through such extension, of ‘interaction principles’ involving the newly added connective and other connectives from the original language extended therewith.

The most common proof formalisms used in the literature in discussing how rules give meaning to the connectives they govern, originated from the landmark work of Gentzen (1934), typically allow for interaction to arise in rather unexpected ways. For an example, one might recall that logics containing conjunction and disjunction often have as algebraic counterparts some variety of lattices or another. However, the existence of non-distributive lattices does not seem to be matched in a natural way by logics whose disjunction does not distribute over conjunction. Quite to the contrary, the canonical presentations of the latter connectives in natural deduction or sequent calculi in general enjoy distributivity as an artifact that is produced by the very choice of proof formalisms (cf. Béziau and Coniglio 2011; Humberstone 2015). Excessive interaction might also be held responsible for ‘collapsing phenomena’ in which two connectives turn out to be indistinguishable when their rules are put together for the definition of a single logic containing both connectives. There is, for instance, a well-known debate in the literature about the presentation of a logic containing both a classical and an intuitionistic implication (cf. del Cerro and Herzig 1996). The common arguments according to which these two implications would necessarily coincide are, however, based either on the (incorrect) assumption that the minimal logic that contains two standard implications enjoys an unrestricted version of the Deduction Metatheo-
The main known mechanisms for combining logics often differ on how they deal with conservativeness and interaction. Among such combination mechanisms, fibring fares well on both fronts: Unintended interaction is unlikely to arise through fibring, and the fibring of two logics containing no quasi theorems (formulas that follow from whatsoever non-empty set of premises) is always conservative over each component (cf. Marcelino and Caleiro 2017). Within the scope of such a combination mechanism, the ideas concerning the addition of a new connective to a given logic can be made clear and distinct, and the related questions may be given precise answers. It is worth noting, in particular, that the smallest logic that conservatively extends both the ‘logic of conjunction’ and the ‘logic of disjunction’ is not distributive (cf. Marcelino and Caleiro 2017), and also noting that the smallest logic that conservatively extends both the logics of classical implication and of intuitionistic implication does not actually necessitate the collapse between the latter connectives (cf. Caleiro and Ramos 2007). In fact, the results in the present paper imply that it is even plausible to have two non-collapsing copies of classical implication cohabiting the same logic. In both the above-mentioned examples, and in many others, the corresponding joint fragments of classical logic can be recovered by the addition of inference rules capturing the emerging interaction principles.

A neat characterization of fibering is given by way of Hilbert calculi: The combination of two logics, each one characterized by a certain set of inference rules, is produced by the union of these sets of rules. In contrast—and in a sense precisely for being so frugal on what concerns interaction principles—fibring resisted admitting a straightforward semantics (see Caleiro et al. 2005; Carnielli et al. 2008 for an overview). Indeed, among other phenomena to be discussed in the present contribution, it is worth noting that one could very well happen to fibre the logics of two connectives with 2-valued semantics and end up giving origin to a logic with no finite-valued semantics whatsoever, even if non-determinism were allowed. Nonetheless, after an important theoretical advance contributed by Marcelino and Caleiro (2017), we now know that a semantics for disjoint fibring may be given through a powerful and elegant technology that makes use of non-deterministic semantics. This technology is applied in the present paper to the combination of fragments of classical logic, as a way of illustrating how rich is the problem that the new semantics allows solving.

The paper is organized as follows. In Sect. 2, we recall a number of necessary definitions and facts regarding logics, their semantics and axiomatizations. In particular, we introduce logical matrices and Nmatrices, as well as some important properties and operations on them. We put special emphasis on classical logic and on Post’s characterization of Boolean clones. We also recall the essential mechanism of fibering, and we prove some useful results about fibred logics and their derived connectives. Several fundamental facts about disjoint fibrings of fragments of classical logic and the characterizations of the resulting logics are then proved in Sect. 3, along with several illustrative examples. The general plan draws to a close, in Sect. 4, by proving the main announced results concerning the combination of fragments of classical logic and by a recollection of what has been accomplished along the way toward attaining the stated goals. This is followed in Sect. 5 by some pointers to directions for future research.

2 Preliminaries

This section contains the main definitions, fixes the notation for the rest of the paper, recalls several important notions and well-known results, makes some remarks and presents a few new simple and useful facts.

2.1 Syntax

A propositional signature Σ is a family {Σ(κ)}κ∈N of sets, where each Σ(κ) contains the κ-place connectives of Σ. To simplify notation, we express the fact that ⊗ ∈ Σ(κ) for some κ ∈ N by simply writing ⊗ ∈ Σ, and we write Σ1 ∪ Σ2 (resp., Σ1 ∩ Σ2) to denote the signature Σ such that Σ(κ) = Σ1(κ) ∪ Σ2(κ) (resp., Σ(κ) = Σ1(κ) ∩ Σ2(κ)) for all κ ∈ N. We also write Σ1 ⊆ Σ2 when Σ1(κ) ⊆ Σ2(κ) for all κ ∈ N. The signatures Σ1 and Σ2 are said to be disjoint when Σ1 ∩ Σ2 = ∅. The language LΣ(P) is the carrier of the absolutely free Σ-algebra generated over a given set of sentential variables P. Elements of LΣ(P) are called formulas. Given a formula φ ∈ LΣ(P), we denote by var(φ) (resp. sub(φ)) the set of variables (resp. subformulas) of φ, recursively defined as usual; the extension of var and sub from formulas to sets thereof is defined as one would expect. We say that two (sets of) formulas share no variables if their underlying sets of variables are disjoint. If φ /∈ P, we say that φ is compound, and we denote by head(φ) its outermost connective. As usual, given a 1-place connective ⊗, we define the possible nestings of ⊗ as ⊗0 := p and ⊗i+1 := ⊗(⊗i p) for all i ∈ N. When appropriate, given any symbol s, we will use 3k to denote a sequence of k consecutive occurrences of s.

A substitution is a mapping σ : P → LΣ(σ), uniquely extendable into an endomorphism σ : LΣ(P) → LΣ(P). Given Γ ⊆ LΣ(P), we denote by Γσ the set {φσ : φ ∈ Γ}. We take a k-place derived connective λ1...kn, denoted by φ(p1, ..., pk) when convenient, to be a for-
mula $\varphi \in L_\Sigma([p_1, \ldots, p_k])$. Given two signatures Σ and Σ', a (homophonic) translation $t : \Sigma \rightarrow L_\Sigma(P)$ is a mapping that assigns to each k-place connective $\xi \in \Sigma$ a formula $t(\xi) \in L_\Sigma([p_1, \ldots, p_k])$ (understood as a derived k-place connective $\lambda p_1 \cdots p_k t(\xi)$). Such translation extends naturally into a function $t : L_\Sigma(P) \rightarrow L_\Sigma(P)$, defined by setting $t(p) := p$ for $p \in P$, and $t(\xi(\psi_1, \ldots, \psi_k)) := t(\xi)(t(\psi_1), \ldots, t(\psi_k))$ for $\xi \in \Sigma^{(k)}$. We use $id_\Sigma : \Sigma \rightarrow L_\Sigma(P)$ to refer to the identity translation defined by setting $id_\Sigma(\varphi) := \varphi$ for each k-place connective $\varphi \in \Sigma$. Given disjoint signatures Σ_1 and Σ_2, and translations $t_1 : \Sigma_1 \rightarrow L_{\Sigma_1}(P)$ and $t_2 : \Sigma_2 \rightarrow L_{\Sigma_2}(P)$, we use $t_1 \cup t_2 : \Sigma_1 \cup \Sigma_2 \rightarrow L_{\Sigma_1 \cup \Sigma_2}(P)$ to denote their union.

Given signatures $\Sigma \subseteq \Xi$, let $X_\Sigma := \{x_\varphi : \varphi \in L_\Sigma(P) \setminus P \text{ and head}(\varphi) \notin \Sigma\}$ be a set of sentential variables. Using X_Σ to see as ‘monoliths’ the formulas from Σ whose heads are alien to Σ, we can represent in $L_\Sigma(P \cup X_\Sigma)$ the Σ-skeleton of any formula $\varphi \in L_\Sigma(P)$ by setting $skel_\Sigma(p) := p$ if $p \in P$, and setting for each connective $\varphi \in \Sigma^{(k)}$:

$$skel_\Sigma(\varphi_1, \ldots, \varphi_k) := \begin{cases} skel_\Sigma(\varphi_1), \ldots, skel_\Sigma(\varphi_k), & \text{if $\varphi \in \Sigma$} \\ x_{\varphi}(\varphi_1, \ldots, \varphi_k), & \text{otherwise.} \end{cases}$$

It is handy to note here that $\text{sub}(skel_\Sigma(\varphi)) \subseteq skel_\Sigma(\text{sub}(\varphi))$. This implies, given $\Gamma \subseteq L_\Sigma(P)$, that $skel_\Sigma(\Gamma)$ is closed under subformulas whenever Γ is closed under subformulas.

2.2 Logics

A logic L is a structure $\langle \Sigma, \vdash \rangle$, where Σ is a signature and $\vdash \subseteq 2^{L_\Sigma(P)} \times L_\Sigma(P)$ is a substitution-invariant (Tarskian) consequence relation over $L_\Sigma(P)$. The set $\Gamma \subseteq L_\Sigma(P)$ is called an L-theory whenever Γ is closed under \vdash, that is, $\Gamma^+ := \{\varphi : \Gamma \vdash \varphi\} \subseteq \Gamma$. We obtain an equivalence relation \vdash^+L on sets of formulas of L by defining $\Gamma, \Delta \subseteq L_\Sigma(P)$ as (logically) equivalent when $\Gamma^+ = \Delta^+$. An L-theory Γ^+ is said to be trivial if $\Gamma^+ = L_\Sigma(P)$ for every substitution $\sigma : P \rightarrow L_\Sigma(P)$, and otherwise said to be non-trivial. Two connectives $\Theta_1, \Theta_2 \in \Sigma^{(k)}$ for some $k \in \mathbb{N}$ are said to be indistinguishable in a logic $L = \langle \Sigma, \vdash \rangle$ provided that $\varphi \vdash^+_L \Theta(\varphi)$ for every $\varphi \in L_\Sigma(P)$, where $t : \Sigma \rightarrow L_\Sigma(P)$ is the translation that replaces every occurrence of Θ_1 with Θ_2, that is, $t(\Theta_1) = \Theta_2(p_1, \ldots, p_k)$ and $t(\Theta) = \Theta(p_1, \ldots, p_j)$ for every connective $\varphi \in \Sigma^{(j)} \setminus \Theta_1$ and every $j \in \mathbb{N}$.

Let $\varphi(p_1, \ldots, p_k)$ be some k-place derived connective. If $\varphi(p_1, \ldots, p_k) \vdash p_j$ for some $1 \leq j \leq k$, we say that φ is projective on its jth component. Such a derived connective is called a projection-conjunction if it is logically equivalent to its set of projective components, i.e., if there is some $J \subseteq \{1, 2, \ldots, k\}$ such that (i) $\varphi(p_1, \ldots, p_k) \vdash p_j$ for every $j \in J$ and (ii) $\{p_j : j \in J\} \vdash \varphi(p_1, \ldots, p_k)$. In case $\varphi(p_1, \ldots, p_k) \vdash p_{k+1}$, we say that φ is bottom-like. We will call φ top-like if $\varphi(p_1, \ldots, p_k) \vdash p_{k+1}$. Do note that the latter is a particular case of projection-conjunction (take $J = \emptyset$). Another particular case of projection-conjunction is given by the affirmation connective $\lambda p_1, p_1$. A derived connective that is neither top-like nor bottom-like will here be called significant; if in addition it is not a projection-conjunction, we will call it very significant. Note that being very significant means being either bottom-like or a projection-conjunction. In case $p_1, \ldots, p_k \vdash \varphi(p_1, \ldots, p_k)$, we will say that φ is truth-preserving. Obviously, all projection-conjunctions are truth-preserving.

2.3 Hilbert calculi

A Hilbert calculus \mathcal{H} is a structure $\langle \Sigma, R \rangle$ where Σ is a signature, and $R \subseteq 2^{L_\Sigma(P)} \times L_\Sigma(P)$ is a set of so-called inference rules. Given $\langle \Delta, \psi \rangle \in R$, we refer to Δ as the set of premises and to ψ as the conclusion of the rule. When Δ is empty, ψ is dubbed an axiom. An inference rule $\langle \Delta, \psi \rangle \in R$ is often denoted by $\frac{\Delta}{\psi}$, or simply by $\frac{\psi_1, \ldots, \psi_n}{\psi}$ if $\Delta = \{\psi_1, \ldots, \psi_n\}$ is finite, or by $\frac{\mathbf{1}}{\psi}$ if $\Delta = \emptyset$. It is well known that a Hilbert calculus $\mathcal{H} := \langle \Sigma, R \rangle$ induces a logic $L_{\mathcal{H}} := \langle \Sigma, \vdash_{\mathcal{H}} \rangle$ such that, for each $\Gamma \subseteq L_\Sigma(P)$, $\Gamma^+_{\mathcal{H}}$ is the least set that contains Γ and is closed under all applications of instances of the inference rules in R, that is, if $\frac{\mathbf{1}}{\psi} \in R$ and $\sigma : P \rightarrow L_\Sigma(P)$ is such that $\Delta^\sigma \subseteq \Gamma^+_{\mathcal{H}}$, then $\psi^\sigma \in \Gamma^+_{\mathcal{H}}$. Such definition of a logic induced by a Hilbert calculus is meant to capture the ‘schematic character’ of inference rules.

2.4 Logical matrices and Nmatrices

An Nmatrix \mathcal{M} over a signature Σ is a structure $\langle V, D, \cdot \rangle$ where V is a set of (truth-values), $D \subseteq V$ is the set of designated values and, for each $\Theta \in \Sigma^{(k)}$, \mathcal{M} gives the interpretation $\Theta_{\mathcal{M}} : v^k \rightarrow 2^V \setminus \{\emptyset\}$ of Θ in \mathcal{M}. We use U to refer to the set $V \setminus D$ of undesignated values. Henceforth, we will assume that we are dealing only with non-degenerate Nmatrices, in the sense that $D \neq \emptyset$ and $U \neq \emptyset$. Clearly, such restriction will only leave out a couple of uninteresting logics. When D is a singleton, we will say that \mathcal{M} is unitary. The traditional, and deterministic, notion of (logical) matrix is recovered by considering Nmatrices for which the image of every tuple of values through $\Theta_{\mathcal{M}}$ is a singleton, in which case we often drop the braces from the set notation.

A valuation over \mathcal{M} is a mapping $v : L_\Sigma(P) \rightarrow V$ such that for each $\Theta \in \Sigma^{(k)}$ we have $v(\Theta_{\mathcal{M}}(v(p_1), \ldots, v(p_k))) \in \Theta_{\mathcal{M}}(v(p_1), \ldots, v(p_k))$. We denote by $\text{Val}_P(\mathcal{M})$ the set of all

1. $\{V, \cdot_{\mathcal{M}}\}$ is a multi-algebra, see Grätzer (1962) and Corsini and Leoreanu (2009).
valuations on $L_\Sigma(P)$ over \mathcal{M}. It is often useful to work with partially defined valuations, i.e., valuations defined only for a certain subset Γ of the language. This is perfectly usual when dealing with logical matrices, as one only needs to define the value of the sentential variables in $\text{var}(\Gamma)$, for then the corresponding valuation extends uniquely to the full language. In Nmatrices, the same effect can be achieved by defining a valuation for a set of formulas Γ that is closed under subformulas, and demanding that it respects the interpretation of connectives, that is, $v(\otimes (\varphi_1, \ldots, \varphi_n)) \in \bigoplus_{\mathcal{M}} (v(\varphi_1), \ldots, v(\varphi_n))$ for every compound formula $\otimes (\varphi_1, \ldots, \varphi_n) \in \Gamma$. Such a partial valuation, which we dub a Γ-partial valuation, can always be extended to a valuation over the full language (cf. Avron 2009).

As usual, we say that a valuation v over \mathcal{M} satisfies a formula φ (resp. a set of formulas Γ) if $v(\varphi) \in D$ (resp. $v(\Gamma) \subseteq D$). We say that $\Gamma \vdash_{\mathcal{M}} \varphi$ if every valuation over \mathcal{M} that satisfies Γ also satisfies φ. It is well known that $L_{\mathcal{M}} := (\Sigma, \vdash_{\mathcal{M}})$ induces a logic, and we call it the logic characterized by \mathcal{M}. If \mathcal{M} is a finite Nmatrix (i.e., its underlying set of truth-values is finite), then $L_{\mathcal{M}}$ is said to be finitely Nvalued, or k-Nvalued if \mathcal{M} has exactly k truth-values; when \mathcal{M} is a finite logical matrix, then $L_{\mathcal{M}}$ is said simply to be finitely valued, or k-valued. A logic L is said to be (deterministically) many-valued if $L = L_{\mathcal{M}}$ for some logical matrix \mathcal{M} (cf. Marcos 2009).

Given the schematic character of inference rules in Hilbert calculi, we will say about a valuation v that it respects an inference rule $\frac{\alpha}{\beta}$ if, for every substitution $\sigma : P \rightarrow L_\Sigma(P)$, we have that $v(\Delta^\sigma) \subseteq D$ implies $v(\psi^\sigma) \in D$.

Consider the signature Σ such that $\Sigma^{(k)} = \{ \otimes \}$ and $\Sigma^{(j)} = \emptyset$ for $j \neq k$. We will denote by T_\otimes the logic induced, equivalently, by the matrix $\mathcal{M}_\otimes := \langle (0, 1), \{1\}, \cong \rangle$ where $\otimes (a_1, \ldots, a_k) = 1$ for all $a_1, \ldots, a_k \in \{0, 1\}$, or by the Hilbert calculus with the single axiom $\Sigma_\Pi^{(p_1, \ldots, p_k)}$, and we will denote by U_\otimes the logic induced, equivalently, by the matrix $\mathcal{M}_\otimes := \langle (0, 1), \{1\}, \cong \rangle$ where $\otimes (a_1, \ldots, a_k) = 0$ for all $a_1, \ldots, a_k \in \{0, 1\}$, or by the Hilbert calculus with the single rule $\Sigma_\Pi^{(p_1, \ldots, p_k)}$.

2.5 Some useful operations on (N)matrices

Let Ξ, Σ be signatures, $t : \Xi \rightarrow L_\Sigma(P)$ be a translation, and $\mathcal{M} := (V, D, \cdot, \cdot, \otimes)$ be a logical matrix over Σ. Then, we may say that \mathcal{M} induces an interpretation $\iota_{\mathcal{M}} : V^k \rightarrow V$ under t to each connective $\xi \in \Xi$, defined in the case of a k-place connective by setting $\iota_{\mathcal{M}}(a_1, \ldots, a_k) := v(t(\xi))$ where v is any valuation such that $v(p_i) = a_i$ for $1 \leq i \leq k$. We denote by \mathcal{M}^t the matrix over Σ with the same truth-values and designated values as \mathcal{M}, where each $\xi \in \Xi$ receives its interpretation induced under t. It is clear that $\text{Val}_P(\mathcal{M}^t) = \{ v \circ t : v \in \text{Val}_P(\mathcal{M}) \}$.

Let $\kappa \in \mathbb{N} \cup \{0\}$, with $\kappa > 0$. An Nmatrix $\mathcal{M} := (V, D, \cdot, \cdot, \otimes)$ over Σ is said to be κ-saturated if for any sets $\Gamma, \Delta \subseteq L_\Sigma(P)$ with $|\Delta| \leq \kappa$, if $\Gamma \not\vdash_{\mathcal{M}} \psi$ for each $\psi \in \Delta$, then there exists a valuation v over \mathcal{M} such that $v(\Gamma) \subseteq D$ and $v(\Delta) \subseteq U$. We say that \mathcal{M} is saturated if it is ω-saturated (more generally, we might talk about k-saturation, where k is the cardinality of the underlying language). Note that in a saturated Nmatrix \mathcal{M} every $L_{\mathcal{M}}$-theory is precisely characterized by a valuation, that is, for every $L_{\mathcal{M}}$-theory Γ there is a valuation v over \mathcal{M} such that $\Gamma = \{ \varphi \in L_\Sigma(P) : v(\varphi) \in D \}$. Clearly, if \mathcal{M} is κ-saturated, then so is \mathcal{M}^t.

The n-power of \mathcal{M} is the Nmatrix $\mathcal{M}_n := (V^n, D^n, \cdot, \cdot)$ where, for each k-place connective $\otimes \in \Sigma$, we have $\otimes_n (a_1, \ldots, a_k) := \{ \alpha \in V^n : \pi_1(\alpha) \in \otimes_{\mathcal{M}} (\alpha_1, \ldots, \alpha_t) \}$ for $1 \leq i \leq n$, where each $\pi^n : V^n \rightarrow V$ denotes the corresponding ith projection. Note that $\text{Val}_P(\mathcal{M}_n^t) = \text{Val}_P(\mathcal{M}^t)^n$, that is, a valuation on \mathcal{M}_n is just an n-tuple of valuations on \mathcal{M}. From Marcelino and Caleiro (2017), we know that \mathcal{M}_n is n-saturated and $L_{\mathcal{M}} = L_{\mathcal{M}_n}$, for every Nmatrix \mathcal{M}. Given a translation $t : \Xi \rightarrow L_\Sigma(P)$, it is straightforward to see that $(\mathcal{M}^t)^n = (\mathcal{M}^t)^n$ for every $n \in \mathbb{N} \cup \{0\}, n > 1$.

Let Σ_1 and Σ_2 be disjoint signatures. Given Nmatrices $\mathcal{M}_1 := (V_1, D_1, \cdot, \cdot, \otimes)$ over Σ_1 and $\mathcal{M}_2 := (V_2, D_2, \cdot, \cdot, \otimes)$ over Σ_2, their strict product $\mathcal{M}_1 \bullet \mathcal{M}_2$ is the Nmatrix over $\Sigma_1 \cup \Sigma_2$ defined by $(V_{12}, D_{12}, \cdot, \cdot, \otimes)$ where $V_{12} = (D_1 \times D_2) \cup (U_1 \times U_2)$, $D_{12} = D_1 \times D_2$, and for each k-place $\otimes \in \Sigma_1 \cup \Sigma_2$, $\otimes_n ((a_1, b_1), \ldots, (a_k, b_k)) := \begin{cases} \{ (a, b) \in V_{12} : a \in \otimes_{\mathcal{M}_1} (a_1, \ldots, a_k) \}, & \text{if } \otimes \in \Sigma_1 \\ \{ (a, b) \in V_{12} : b \in \otimes_{\mathcal{M}_2} (b_1, \ldots, b_k) \}, & \text{if } \otimes \in \Sigma_2 \end{cases}$

Note that a valuation v over $\mathcal{M}_1 \bullet \mathcal{M}_2$ has two projections $\pi_1(v)$ and $\pi_2(v)$ which (under the obvious restrictions to $L_{\Sigma_1}(P)$ and $L_{\Sigma_2}(P)$) are valuations over \mathcal{M}_1 and \mathcal{M}_2. We know from Marcelino and Caleiro (2017) that $\mathcal{M}_1 \bullet \mathcal{M}_2$ is saturated when both \mathcal{M}_1 and \mathcal{M}_2 are saturated.

The following lemma is very useful in practice, as it tells us how to build in a component-wise manner valuations in an Nmatrix obtained by strict product. Recall that given a Σ-Nmatrix \mathcal{M}, if v is a Γ-partial valuation over \mathcal{M} with $\Gamma \subseteq L_\Sigma(P)$, and we are given a sentential variable $p \notin \text{var}(\Gamma)$, then v may always be extended to a $(\Gamma \cup \{p\})$-partial valuation v' by assigning $v'(p) = a$ for any truth-value a in the set of truth-values, chosen to be designated, or undesignated, if desired.
Lemma 2.1 Let Σ_1 and Σ_2 be disjoint signatures, let M_1 be a Σ_1-Nmatrix and let M_2 be a Σ_2-Nmatrix. Further, let $\Gamma \subseteq L_{\Sigma_1} \cup L_{\Sigma_2}(P)$ be closed under subformulas and take v_1 as a $\text{ske}_{\Sigma_1}(\Gamma)$-partial valuation over M_1, and v_2 as a $\text{ske}_{\Sigma_2}(\Gamma)$-partial valuation over M_2.

If the following compatibility condition holds:

$$v_1(\text{ske}_{\Sigma_1}(\varphi)) \in D_1 \text{ iff } v_2(\text{ske}_{\Sigma_2}(\varphi)) \in D_2 \text{ for all } \varphi \in \Gamma,$$

then setting $v(\varphi) = (v_1(\text{ske}_{\Sigma_1}(\varphi)), v_2(\text{ske}_{\Sigma_2}(\varphi)))$, for $\varphi \in \Gamma$, defines a Γ-partial valuation over $M_1 \bullet M_2$.

Proof The compatibility condition guarantees that for each $\varphi \in \Gamma$ the pair $(v_1(\text{ske}_{\Sigma_1}(\varphi)), v_2(\text{ske}_{\Sigma_2}(\varphi)))$ is a truth-value of $M_1 \bullet M_2$. One just needs to check that the interpretation of connectives is respected. Assume, without loss of generality, that $\varphi = (\varphi_1, \ldots, \varphi_n) \in \Gamma$ with $\varphi \in \Sigma_1$. Since v_1 is a $\text{ske}_{\Sigma_1}(\Gamma)$-partial valuation over M_1, we know that $v_1(\text{ske}_{\Sigma_1}(\varphi_1)) \in \text{def}(v_1(\text{ske}_{\Sigma_1}(\varphi_1)), \ldots, v_1(\text{ske}_{\Sigma_1}(\varphi_n)))$. Therefore,

$$\begin{align*}
v(\varphi) &= (v_1(\text{ske}_{\Sigma_1}(\varphi)), v_2(\text{ske}_{\Sigma_2}(\varphi))) \\
&\in \text{def}(v_1(\text{ske}_{\Sigma_1}(\varphi_1)), v_2(\text{ske}_{\Sigma_2}(\varphi_1)), \ldots, \\
&(v_1(\text{ske}_{\Sigma_1}(\varphi_n)), v_2(\text{ske}_{\Sigma_2}(\varphi_n)))) \\
&= \text{def}(v(\varphi_1), \ldots, v(\varphi_n)).
\end{align*}$$

Proof ends.

Hereupon, the Γ-partial valuation v built as in the proof of the above lemma will be denoted by $v_1 \bullet v_2$.

Take a valuation v over $M_1 \bullet M_2$. If we understand now $\pi_1(v)$ and $\pi_2(v)$ as transformed into functions $\pi_1(v) : L_{\Sigma_1}(P \cup X_1) \rightarrow V_I$ in the obvious way, then it is clear that they are compatible in the above sense and that $v = \pi_1(v) \bullet \pi_2(v)$. In other words, $\text{Val}_P(M_1 \bullet M_2) = \{v_1 \bullet v_2 : v_1 \in \text{Val}_{P \cup X_{\Sigma_1}}(M_1) \text{ is compatible with } v_2 \in \text{Val}_{P \cup X_{\Sigma_2}}(M_2)\}$.

2.6 Classical logic

Classical logic, in any desired signature Σ, is 2-valued. We shall denote by 2_Σ the matrix $\{(0, 1), (1, 0)\}$ where $2_\Sigma : \emptyset : 1 \rightarrow \{0, 1\}$ is the Boolean function associated with each k-place Boolean connective $\emptyset \in \Sigma$.

The most common Boolean connectives, namely \top and \bot (0-place), \neg (1-place), \land, \lor and \rightarrow (2-place), have their interpretations given through the following tables.

Valuations over 2_Σ are dubbed bivaluations. We use $B_\Sigma = L_{2_\Sigma}$ to denote the Σ-fragment of classical logic and use \vdash_{B_Σ} to denote the associated consequence relation.

Hilbert calculi for the corresponding one-connective fragments of classical logic are well known, or may be systematically obtained from sections 2 and 3 of Rautenberg (1981). Possible axiomatizations for the above-mentioned connectives are listed below:

$$
\begin{align*}
[B_\top] & \ 	op \\
[B_\bot] & \bot \\
[B_{\land}] & p \land q \\
[B_{\lor}] & p \lor q \\
[B_\rightarrow] & p \rightarrow q
\end{align*}
$$

Other useful classical connectives may be derived from these, e.g., via a translation t as below:

$$
\begin{align*}
t(\bot) & : \lambda p_1 p_2 . \neg(p_2 \rightarrow p_1) \\
t(\lor) & : \lambda p_1 p_2 . (p_1 \rightarrow p_2) \land (p_2 \rightarrow p_1) \\
t(\land) & : \lambda p_1 p_2 . \neg(p_1 \rightarrow p_2) \\
t(+^3) & : \lambda p_1 p_2 p_3 . p_1 + (p_2 + p_3) \\
t(\iff) & : \lambda p_1 p_2 p_3 . (p_1 \iff p_2) \land (\neg p_1 \iff p_3) \\
t(T_n^k) & : \lambda p_1 \ldots p_k . T_n \text{ for } k \geq 0 \\
t(T_n^k) & : \lambda p_1 \ldots p_k . p_1 \land \cdots \land p_k, \text{ for } k > 0 \\
t(T_n^k) & : \lambda p_1 \ldots p_k . (p_1 \land T_{n-1}^{-1}(p_2, \ldots, p_k)) \\
&\lor T_{n-1}^{-1}(p_2, \ldots, p_k), \text{ for } 0 < n < k
\end{align*}
$$

The Boolean interpretation under $t(\emptyset) \in L_{\Sigma}(P)$ can be immediately obtained from the interpretation of the Boolean connectives in Σ as explained in Sect. 2.4, namely $2_\emptyset : 2_\Sigma$. Of course, such connectives may be taken as primitive in some fragments of classical logic. The purpose here is just to introduce a general mechanism to produce their interpretations. Note that T_n^k, with $0 \leq n \leq k$, represents the so-called k-place threshold connective such that $T_n^k(a_1, \ldots, a_k) = 1$ precisely when $n \leq |\{i \in \{1, \ldots, k\} : a_i = 1\}|$. Axiomatizations for all the corresponding one-connective fragments, or in general for fragments with several connectives, are not always straightforward but may be systematically obtained using the techniques from Rautenberg (1981).
Given a signature Σ of Boolean connectives, we say that a logic $L = (\Sigma, \vdash)$ is superclassical whenever $\vdash \subseteq \vdash_{2\Sigma}$.

Remark 2.2 Clearly, \top is a top-like connective, though not all top-like connectives ought to be 0-place. In the classical setting, a k-place connective \otimes is top-like precisely in case $\otimes(a_1, \ldots, a_k) = 1$ for all $a_1, \ldots, a_k \in \{0, 1\}$, i.e., $\otimes = \top_k$. It follows that $B_0 \vdash \otimes = \top_k$ for all $k \in \mathbb{N}$. Analogously, \perp is a bottom-like connective, but again not all bottom-like connectives ought to be 0-place. In the classical setting, a k-place connective \otimes is bottom-like precisely in case $\otimes(a_1, \ldots, a_k) = 0$ for all $a_1, \ldots, a_k \in \{0, 1\}$. It follows that $B_\otimes = \perp_k$ when \otimes is bottom-like. Apart from \perp and from the projection-conjunctions \top, \land and \land_k for $k \in \mathbb{N}$, all other Boolean connectives listed above are very significant.

Remark 2.3 Classical negation \neg is the only very significant 1-place Boolean connective. There is only one other significant 1-place Boolean connective, the affirmation connective, interpreted by setting $\lambda p. p(a) = a$ for $a \in \{0, 1\}$, but it is of course a projection-conjunction. Further, if \otimes is any k-place very significant Boolean connective and $J \subseteq \{1, \ldots, k\}$ is the set of indices of its projective components, then $|J| < k$. In that case, of course, $\otimes(p_1, \ldots, p_k) \not\vdash_{B_0}$ $\otimes(p_1, \ldots, p_k)^\sigma$ where $\sigma(p_i) = p_i$ if $i \in J$, and $\sigma(p_i) = q_i$ if $i \notin J$. Note also that any truth-preserving 1-place derived connective \otimes is such that $\overline{\otimes}(T^k) = 1$.

Next we state and prove a simple yet quite useful result:

Lemma 2.4 The logic of a non-top-like k-place Boolean connective \otimes with $k > 0$ expresses some 1-place non-top-like compound derived connective θ. Furthermore, all possible nestings of θ are distinct and none is top-like.

Proof Let α denote the 1-place derived connective induced by the formula $\otimes(p)^\alpha$. If α is not top-like, we are done with $\theta = \alpha$. Otherwise, given that \otimes is not top-like, there must be some bivaluation v such that $v(\otimes(p_1, \ldots, p_k)) = 0$. Set $I := \{i : v(p_i) = 1\}$, and define the substitution σ by setting $\sigma(p_i) := \alpha(p)$ if $i \in I$, and $\sigma(p_i) := p$ otherwise. Let β denote the new 1-place derived connective induced by $\otimes(p_1, \ldots, p_k)^\alpha$. Choosing a bivaluation v' such that $v'(\beta(p)) = 0$, we immediately conclude that $v'(\beta(p)) = v(\otimes(p_1, \ldots, p_k)) = 0$, and thus, $\theta = \beta$ is not top-like.

As θ is compound, we obtain that $\theta^n(p) \neq \theta^m(p)$ for $n \neq m$. Clearly, $\theta^n(p) = p$ is not top-like. When $n > 0$, if θ is bottom-like, then $\theta^n(p)$ is always bottom-like; if θ defines affirmation, then each $\theta^n(p)$ is also an affirmation connective; and if θ defines negation, then $\theta^n(p)$ alternates between affirmation and negation. In all these cases, it is clear that $\not\vdash_{B_0} \theta^n(p)$.

To illustrate the construction in the proof of the above result, consider first Boolean disjunction. The connective \lor is not top-like, and $\alpha(p) := p \lor p$ is also not. Consider now Boolean implication. The connective \rightarrow is also not top-like. However, $\alpha(p) := (p \rightarrow p) \rightarrow p$ is top-like. Still, $\beta(p) := (p \rightarrow p) \rightarrow p$ is not top-like.

We shall call C_Σ^2 the collection of all non-0-place Boolean functions compositionally derived (i.e., closed under compositions and projections) over Σ, as interpreted through 2Σ. In the literature on Universal Algebra (Burris and Sankappanavar 1981), C_Σ^2 is known as the clone of operations definable by all derived connectives allowed by the signature Σ. We denote simply by C_2 the clone of all non-0-place Boolean functions. A set Σ of Boolean connectives is said to be functionally complete precisely when $C_\Sigma^2 = C_2$.

Remark 2.5 Emil Post’s characterization of functional completeness for classical logic (Post 1941; Lau 2006) is very informative. First, it tells us that there are exactly five maximal functionally incomplete clones (i.e., coatoms in Post’s lattice), namely $\mathcal{P}_0 := C_2^\bot, \mathcal{P}_1 := C_2^{\lor}, \mathcal{A} := C_2^{\top \land \bot}, \mathcal{M} := C_2^{\top \lor \bot},$ and $\mathcal{D} := C_2^2$.

The obvious projection functions $\lambda p_1 \ldots p_n. p_i$, for $1 \leq n \leq k$ and $k \in \mathbb{N}$, form the minimal clone C_Σ^0, contained in all the others. The Boolean top-like connectives form the clone $\mathcal{U} \mathcal{P}_1 := C_2^\top$. An analysis of Post’s lattice also reveals that there are a number of clones which are maximal with respect to \top, i.e., functionally incomplete clones that become functionally complete by the mere addition of \top (or actually any other connective from $\mathcal{U}(\mathcal{P}_1)$). In terms of Post’s lattice, the clones whose join with $\mathcal{U}(\mathcal{P}_1)$ result in C_2 are \mathcal{D}, $\mathcal{D}_0 := C_2^\bot$ and $\mathcal{T}_0^\perp := C_2^{\top \lor \bot}$ and $\mathcal{T}_0^{n+1} := C_2^{\top \lor \bot}$ for $n \in \mathbb{N}$. It is worth noting that $\mathcal{T}_0^\bot = \mathcal{P}_0$.

Further detailed analysis of Post’s lattice also tells us that every clone C_Σ^2 that contains the Boolean interpretation of some very significant connective (i.e., such that $C_\Sigma^2 \not\subseteq C_{\Sigma^2 \land \bot}$) must contain the Boolean function associated with at least one of the connectives of the following list $[\mathcal{L}_0]:$ \top_{n+2}^n (for $n \in \mathbb{N}$), \top_{2n+4}^n (for $n \in \mathbb{N}$), $\neg, \Rightarrow, \Leftrightarrow, ++, +^3$, $\land, \land_1 p_2 p_3, p_1 \lor (p_2 \land p_3), \land p_1 p_2 p_3, p_1 \lor (p_2 + p_3), \land p_1 p_2 p_3, p_1 \land (p_2 \lor p_3), p_1 \land (p_2 \rightarrow p_3)$.

What follows is an alternative characterization of very significant Boolean connectives:

Proposition 2.6 Let Σ be a signature. The matrix 2Σ is saturated if and only if C_Σ^2 contains no very significant connective.

Proof Let \vdash_{B_Σ}. Clearly, 2Σ is saturated whenever Σ contains no very significant connective. Indeed, it is straightforward to show by induction on the structure of formulas that, because no connective in Σ is very significant, a non-trivial theory Γ^Σ is always precisely characterized by

\[\vdash_{B_\Sigma} \]
a bivaluation \(v \) such that \(v(p) = 1 \) if \(\Gamma \vdash p \), and \(v(p) = 0 \) if \(\Gamma \nvdash p \), for every \(p \in P \).

Now, suppose that \(\otimes \in \Sigma \) is a \(k \)-place very significant connective with \(j < k \) projective components. We assume without loss of generality that the indices of the projective components of \(\otimes \) are the first ones. Let \(s = k - j \). Given the present assumptions, and in view of Rem. 2.3, given distinct sentential variables \(p_1, \ldots, p_j, q_1, \ldots, q_s, r_1, \ldots, r_s \in P \), we have:

(a) \(\otimes(p_1, \ldots, p_j, q_1, \ldots, q_s) \vdash p_i \) for \(1 \leq i \leq j \)
(b) \(\otimes(p_1, \ldots, p_j, q_1, \ldots, q_s) \nvdash q_i \) for \(1 \leq i \leq s \)
(c) \(\otimes(p_1, \ldots, p_j, q_1, \ldots, q_s) \vdash \otimes(p_1, \ldots, p_j, r_1, \ldots, r_s) \)
(d) \(\otimes(p_1, \ldots, p_j, q_1, \ldots, q_s) \nvdash r_i \) for \(1 \leq i \leq s \)

If \(2^\Sigma \) were saturated, then, from (a)–(d), and taking into account the theory \(\{ \otimes(p_1, \ldots, p_j, q_1, \ldots, q_s) \}^\otimes \), there would exist a bivaluation \(v \) over \(2^\Sigma \) according to which \(v(\otimes(p_1, \ldots, p_j, q_1, \ldots, q_s)) = v(p_i) = 1 \) for \(1 \leq i \leq j \), and simultaneously \(v(\otimes(p_1, \ldots, p_j, r_1, \ldots, r_s)) = v(q_i) = 0 \) for \(1 \leq i \leq s \). But then \(1 = v(\otimes(p_1, \ldots, p_j, q_1, \ldots, q_s)) = \otimes(v(p_1), \ldots, v(p_j), v(q_1), \ldots, v(q_s)) = \otimes(\Gamma, \vec{\otimes}) = \otimes(\otimes(\otimes(p_1, \ldots, p_j, q_1, \ldots, q_s)), \ldots, \otimes(\otimes(p_1, \ldots, p_j, q_1, \ldots, q_s)), 0) = 0 \), which is a contradiction. \(\square \)

2.7 Cancelation, tabularity, determinedness

Let \(\mathcal{L} := \langle \Sigma, \vdash \rangle \) be a logic. We say that \(\mathcal{L} \) enjoys the cancelation property if \(\Gamma \cup \{ \psi \} \vdash \varphi \) implies that \(\Gamma \vdash \varphi \) for all \(\Gamma \cup \{ \psi \} \cup \{ \varphi \} \subseteq \mathcal{L}_\Sigma(P) \) such that the following conditions hold: (i) \(\Gamma \cup \{ \psi \} \) shares no variables with \(\bigcup_{i \in I} \Delta_i \), (ii) \(\Delta_i \) shares no variables with \(\Delta_j \), for every \(i \neq j \in I \), and (iii) \(\Delta_i^\top \) is non-trivial for every \(i \in I \). It is easy to check that any logic defined by a logical matrix (for instance, classical logic) enjoys the cancelation property. A very interesting result from Shoesmith and Smiley (1971) and Wójcicki (1974) shows that this property is also a necessary condition for many-valuedness: a logic \(\mathcal{L} \) enjoys cancelation if and only if \(\mathcal{L} = \mathcal{L}_M \) for some matrix \(M \).

The logic \(\mathcal{L} \) is called locally tabular if its associated relation of logical equivalence \(\models \subseteq \mathcal{L} \) partitions the language \(\mathcal{L}_\Sigma \) freely generated by the signature \(\Sigma \) over a finite set of sentential variables, into a finite number of equivalence classes. It is clear that every logic \(\mathcal{B}_\Sigma \) is locally tabular—that constitutes in fact the theoretical underpinning of the classical truth-tabular decision procedure. In addition, it is known (for a discussion on this topic see Caleiro et al. (2018)) that a logic that fails to be locally tabular cannot be finitely valued. Do note, however, that a logic may well fail to be locally tabular and yet be finitely Nvalued.

Let \(k \in \mathbb{N} \). The logic \(\mathcal{L} \) is said to be \(k \)-determined if, for all \(\Gamma \cup \{ \varphi \} \subseteq \mathcal{L}_\Sigma(P) \), whenever \(\Gamma \nvdash \varphi \) there is a substitution \(\sigma : P \rightarrow \{ p_1, \ldots, p_k \} \) such that \(\Gamma^\sigma \nvdash \varphi^\sigma \). It follows from Caleiro et al. (2018) that any \(k \)-Nvalued logic must be \(k \)-determined, and consequently, that if \(k \)-determinedness fails for all \(k \in \mathbb{N} \), for a given logic, then this logic cannot be finitely Nvalued.

2.8 Fibred logics

Let \(\mathcal{L}_1 := \langle \Sigma_1, \vdash_1 \rangle \) and \(\mathcal{L}_2 := \langle \Sigma_2, \vdash_2 \rangle \) be two logics. The fibring of \(\mathcal{L}_1 \) and \(\mathcal{L}_2 \) is the smallest logic \(\mathcal{L}_1 \bullet \mathcal{L}_2 := \langle \Sigma_1 \cup \Sigma_2, \vdash_{\Sigma_1 \cup \Sigma_2} \rangle \) that extends both \(\mathcal{L}_1 \) and \(\mathcal{L}_2 \), i.e., such that \(\vdash_1 \cup \vdash_2 \subseteq \vdash_{\Sigma_1 \cup \Sigma_2} \). When the underlying signatures are disjoint, the fibring is said to be disjoint. All the phenomena we study in the present paper are instances of disjoint fibring. Note that, by definition, fibring is commutative and associative, that is, \(\mathcal{L}_1 \bullet (\mathcal{L}_2 \bullet \mathcal{L}_3) = (\mathcal{L}_1 \bullet \mathcal{L}_2) \bullet \mathcal{L}_3 \) for any given logic \(\mathcal{L}_3 \).

Given connectives \(\otimes_1 \in \Sigma_1^{(i)} \) and \(\otimes_2 \in \Sigma_2^{(j)} \) for some \(k \in \mathbb{N} \), in case \(\otimes_1 \) and \(\otimes_2 \) happen to be indistinguishable in \(\mathcal{L}_1 \bullet \mathcal{L}_2 \) we shall say that \(\otimes_1, \otimes_2 \) are collapsed by fibring \(\mathcal{L}_1 \) and \(\mathcal{L}_2 \).

Given Hilbert calculi \(\mathcal{H}_1 := \langle \Sigma_1, R_1 \rangle \) and \(\mathcal{H}_2 := \langle \Sigma_2, R_2 \rangle \), then \(\mathcal{L}_1 \bullet \mathcal{L}_2 = \mathcal{L}_{\mathcal{H}_1} \bullet \mathcal{L}_{\mathcal{H}_2} \), where \(\mathcal{H}_1 \bullet \mathcal{H}_2 := \langle \Sigma_1 \cup \Sigma_2, R_1 \cup R_2 \rangle \). Clearly, besides joining the given signatures, which allows for the construction of so-called mixed formulas, the fibring of the calculi also allows ‘mixed reasoning,’ where rules coming from one logic are used in dealing with formulas coming from the other logic.

The next lemma deals with the semantics of the logic obtained by requiring new inference rules to hold in the logic induced by a given Nmatrix. The first part highlights the role of the notion of saturation, as whenever \(R \) contains a non-axiomatized rule, then the saturation proviso is fundamental (for an illustration of that, check Ex. 3.19).

Lemma 2.7 Let \(M \) be an Nmatrix over \(\Sigma \) and \(\mathcal{H} := \langle \Sigma, R \rangle \) be a Hilbert calculus. Sufficient conditions for the logic \(\mathcal{L} = \mathcal{L}_M \bullet \mathcal{L}_{\mathcal{H}} \) to be characterized by \(\{ v \in \text{Val}_P(M) : v \text{ respects each } \Sigma \subseteq v \} \in R \) are secured when either:

(a) \(M \) is saturated, or
(b) \(R \) contains only axioms.

Proof Both cases are fairly simple. Let \(\mathcal{L} := \langle \Sigma, \vdash \rangle \).

(a) As \(\vdash_M \subseteq \vdash \), every \(\mathcal{L} \)-theory \(\Gamma \) is also an \(\mathcal{L}_M \)-theory. Thus, since \(M \) is saturated, there exists \(v \in \text{Val}_P(M) \) such that \(T_v := \Gamma = \{ \varphi : v(\varphi) \in D \} \). Of course, given that \(\Gamma \) is an \(\mathcal{L} \)-theory, it follows that \(v \) respects the rules in \(R \). Conversely, just observe that \(T_v \) is always an \(\mathcal{L}_M \)-
theory when \(v \in \text{Val}_P(M) \), but \(T_v \) is also an \(\mathcal{L} \)-theory when \(v \) respects the rules in \(R \).

(b) Let \(Ax = \langle \psi^v : \frac{\psi}{\neg \psi} \in R \text{ and } \psi : P \to \text{L}_\Sigma(P) \rangle \). Observe that \(\Gamma \vdash \psi \) if and only if \(\Gamma \cup Ax \vdash_M \psi \). The result follows simply by noting that \(v \) respects the axioms in \(R \) if and only if \(v(Ax) \subseteq D \).

\[\square \]

Remark 2.8 A semantics for disjoint fibring may be provided through a combo of the operations for strict product and saturation. Assuming \(\Sigma_1 \) and \(\Sigma_2 \) to be disjoint, and given Nmatrices \(M_1 \) over \(\Sigma_1 \) and \(M_2 \) over \(\Sigma_2 \), we know from Marcelino and Caleiro (2017) that \(L_{M_1} \bullet L_{M_2} = L_{M_1^\top \bullet M_2^\top} \). Furthermore, as \(M_i \) is known to be saturated, one can directly use \(M_i \) rather than \(M_i^\top \), in the latter recipe. \(\triangle \)

Let \(\mathcal{L} := \langle \Sigma, \vdash \rangle \) be a logic, and \(\emptyset \notin \Sigma \) be any \(k\)-place connective. The logic resulting from adding \(\emptyset \) to \(\mathcal{L} \) as a new unrestrained (resp., top-like / bottom-like) connective is simply \(\mathcal{L} \bullet I_\emptyset \) (resp., \(\mathcal{L} \bullet T_\emptyset / \mathcal{L} \bullet I_\emptyset \)).

Proposition 2.9 Given an Nmatrix \(M := \langle V, D, \ast \rangle \) over \(\Sigma \) and a \(k\)-place \(\emptyset \notin \Sigma \):

(a) \(L_M \bullet I_\emptyset := \langle \Sigma^+, \vdash I_\emptyset \rangle \) is isomorphic to the extension of \(M \) with \(\emptyset \ast (a_1, \ldots, a_k) = V \) for all \(a_1, \ldots, a_k \in V \);

(b) \(L_M \bullet T_\emptyset := \langle \Sigma^+, \vdash T_\emptyset \rangle \) is isomorphic to the extension of \(M \) with \(\emptyset \ast (a_1, \ldots, a_k) = D \) for all \(a_1, \ldots, a_k \in V \);

(c) \(L_M \bullet I_\emptyset := \langle \Sigma^+, \vdash I_\emptyset \rangle \) is isomorphic to the extension of \(M \) with \(\emptyset \ast (a_1, \ldots, a_k) = U = V \setminus D \) for all \(a_1, \ldots, a_k \in V \), provided that \(M \) is saturated, or simply \(2\text{-saturated if } k = 0 \).

Proof First note that \(M^\top \) is saturated.

Let \(\Sigma^+ := \Sigma \cup \{ \emptyset \} \) and fix \(\Gamma \cup \{ \psi \} \subseteq L_{\Sigma^+}(P) \).

(a) Let \(L_M \bullet I_\emptyset := \langle \Sigma^+, \vdash I_\emptyset \rangle \). It is easy to see that \(\Gamma \vdash I_\emptyset \psi \) if and only if \(\text{skel}_\Sigma(\Gamma) \downarrow_M \text{skel}_\Sigma(\psi) \). Soundness and completeness follow by observing that \(\text{Val}_P(M \bullet M_\emptyset^\top) := \{ v \in \text{Val}_P(M) / v \ast \emptyset \in M \} \).

(b) Let \(L_M \bullet T_\emptyset := \langle \Sigma^+, \vdash T_\emptyset \rangle \). It is easy to see that \(\Gamma \vdash T_\emptyset \psi \) if and only if \(\Gamma \cup \{ \psi \} \subseteq L_{\Sigma^+}(P) \). Soundness and completeness follow by observing that \(\text{Val}_P(M \bullet M_\emptyset^\top) := \{ v \in \text{Val}_P(M) / v \ast \emptyset \in M \} \).

(c) Let \(L_M \bullet I_\emptyset := \langle \Sigma^+, \vdash I_\emptyset \rangle \). It is easy to see that \(\Gamma \vdash I_\emptyset \psi \) if and only if \(\Gamma \vdash \psi \) for some \(\psi \in L_{\Sigma^+}(P) \) with head(\(\psi \)) = \(\emptyset \). Soundness follows by observing that \(\text{Val}_P(M \bullet M_\emptyset^\top) := \{ v \in \text{Val}_P(M) / v \ast \emptyset \in M \} \).

For completeness, if \(\Gamma \nvdash \psi \), then \(\Gamma \nvdash \psi \) and \(\Gamma \nvdash I_\emptyset \psi \) for any \(\psi \), with head(\(\psi \)) = \(\emptyset \). As both \(M \) and \(M_i^\top \) are saturated, we know that \(M \bullet M_i^\top = 0 \), and thus there is \(v \in \text{Val}_P(M \bullet M_i^\top) \) such that \(\psi(\xi) \subseteq D \), \(\psi(\xi) \in U \) and \(\psi(\xi) \in U \) for every \(\psi \) with head(\(\psi \)) = \(\emptyset \). In view of this last fact, we see that \(v \in \text{Val}_P(M \bullet M_i^\top) \).

When \(k = 0 \), there is exactly one formula whose head is \(\emptyset \) so, if \(\Gamma \nvdash \emptyset \) then \(\Gamma \nvdash \emptyset \) and \(\Gamma \nvdash I_\emptyset \emptyset \), or equivalently, \(\text{skel}_\Sigma(\Gamma) \nvdash_M \text{skel}_\Sigma(\emptyset) \text{ and skel}_\Sigma(\Gamma) \nvdash_M \emptyset \). Since \(M \) is assumed to be 2-saturated, there is \(v \in \text{Val}_{P \cup \Sigma}(M) \) such that \(v(\text{skel}_\Sigma(\Gamma)) \subseteq D \), \(v(\text{skel}_\Sigma(\emptyset)) \subseteq U \), and \(v(\emptyset(\xi)) \subseteq U \). Thus, the valuation \(v \circ \text{skel}_\Sigma \in \text{Val}_P(M \bullet M_i^\top) \) is such that \((v \circ \text{skel}_\Sigma)(\xi) \subseteq D \), \((v \circ \text{skel}_\Sigma)(\emptyset) \subseteq U \), and \((v \circ \text{skel}_\Sigma)(\emptyset) \subseteq U \). We conclude that \(v \circ \text{skel}_\Sigma \in \text{Val}_P(M_i \bullet M_i^\top) \).

\[\square \]

2.9 Translations and fibring

We close these prolegomena with some technical results concerning the relationship between the disjoint fibring of logics induced by given logical matrices, and the disjoint fibring of the logics obtained by some translations/abbreviations over those matrices. The intricacies of these results are essential for understanding how careful one needs to be when transferring examples or counterexamples to or from a combination of logics involving connectives that are defined by abbreviation. From this point on, we assume fixed signatures \(\Sigma_1, \Sigma_2, \Sigma_1, \Sigma_2 \) with \(\Sigma_2 \) disjoint from \(\Sigma_2 \) and \(\Sigma \), and translations \(t_1 : \Sigma_1 \to \Sigma_1, \Sigma_1 \to \Sigma_2 \). We shall write \(\Sigma \) for \(\Sigma_1 \cup \Sigma_2, \Sigma \) for \(\Sigma_1 \cup \Sigma \), and \(t_1 \cup t_2 \). We also fix saturated matrices \(M_1 \) and \(M_2 \) over the signatures \(\Sigma_1 \) and \(\Sigma_2 \). In case we are given non-saturated matrices \(M_1 \) or \(M_2 \), we can always consider instead \(M_i^\top \) or \(M_i^2 \).

Proposition 2.10 For every \(\Gamma \cup \{ \psi \} \subseteq L_E(P) \), if \(\Gamma \vdash \psi \), then \(t(\Gamma) \vdash t(\psi) \).

Proof The result follows from the fact that \(\{ v \circ t : v \in \text{Val}_P(M_1 \bullet M_2) \} \subseteq \text{Val}_P(M_1^t \bullet M_2^t) \). To see this, note that if \(v \in \text{Val}_P(M_1 \bullet M_2) \), then \(v \circ t = (\tau_1(v) \circ \tau_2(v)) \circ t = (\tau_1(v) \circ t_1^+(\tau_2(v) \circ t_2^+)) \circ t_1^+(\tau_2(v) \circ t_2^+) \) where, for \(i \in \{1, 2\} \), we are considering \(t_i^+(\Gamma) := \{ t_i^+(\xi) : \xi \in X_{\Sigma_i} \} \to L_{\Sigma_i}(P \cup X_{\Sigma_i}) \to L_{\Sigma_i}(P \cup X_{\Sigma_i}) \) as an extension of \(t_i : L_{\Sigma_i}(P) \to L_{\Sigma_i}(P) \) defined as follows: \(t_i^+(\xi) := p \) for \(p \in P, t_i^+(\xi)(\psi_1(\xi), \ldots, \psi_k)) := \tau_1(\xi)(t_i^+(\psi_1(\xi), \ldots, \psi_k)) \) for \(\xi \in X_{\Sigma_i}^k \), and \(t_i^+(\xi) := \text{skel}_\Sigma(t(\psi)) \) for \(\psi \in X_{\Sigma_i} \).

Because \(\tau_1(\psi) \) and \(\tau_2(\psi) \) are compatible, it is routine to check that \(t_1^+(\psi) \circ t_2^+ \) is \(\text{Val}_P(M_1^t \bullet M_2^t) \) and \((t_1^+(\psi) \circ t_2^+) \in \text{Val}_P(X_{\Sigma_i} \bullet M_2^t) \).
Note that the converse of the above statement is in general not true, and we may have \(t(\Gamma) \not\vdash t(\varphi) \), while \(\Gamma \models \varphi \). When this happens, it must be because \(\{ v \circ t : v \in \text{Val}_P(M_1 \cdot M_2) \} \not\subseteq \text{Val}_P(M_1 \cdot M_2') \). Let \(\otimes \) be a binary Boolean connective, \(\bot_1 \) and \(\bot_2 \) be two 0-place bottom-like connectives and consider \(B_{\otimes} \circ B_{1 \otimes 1} \cdot B_{2 \otimes 1} \). Now let \(t_1 := \text{id}_{\otimes} \), \(t_2(\bot_1) = t_2(\bot_2) := \bot, \) and \(t := t_1 \cup t_2 \). Clearly, \(2_{\bot_1} \cup 2_{\bot_2} \) is saturated. Every valuation \(v \) over \(2_{\otimes} \cup 2_\bot \) is such that \(v((\bot_1)) = v((\bot_2)) \), but it is not the case that \(v'(\bot_1) = v'(\bot_2) \) for valuations \(v' \) over \(2_{\otimes} \cup 2_{\bot_1} \cup 2_{\bot_2} \). Hence, \(\{ v \circ t : v \in \text{Val}_P(2_{\otimes} \cup 2_{\bot_1} \cup 2_{\bot_2}) \} \not\subseteq \text{Val}_P((2_{\otimes} \cup 2_{\bot_1} \cup 2_{\bot_2})^t) \).

At any rate, one may still secure the converse of the previous proposition under certain particular circumstances:

Proposition 2.11 The following assumptions give sufficient conditions for concluding that \(\Gamma \vdash t(\varphi) \) if and only if \(t(\Gamma) \vdash t(\varphi) \), for every \(\Gamma \cup \{ \varphi \} \subseteq \text{L}_E(P) \):

(a) \(t \) is injective, or

(b) \(\top \) is the only connective in \(\Sigma_2, M_1 \) is unitary and \(M_2 = 2_\top \),

(c) \(\bot \) is the only connective in \(\Sigma_2, t_2 = \text{id}_{\Sigma_2}, \) and \(M_2 = 2_\bot \).

Proof In each case, we prove that \(\text{Val}_P(M_1'^t \cdot M_2'^t) \subseteq \{ v \circ t : v \in \text{Val}_P(M_1 \cdot M_2) \} \). Let \(v' \in \text{Val}_P(M_1'^t \cdot M_2'^t) \).

(a) For \(i, j \in \{1, 2\}, i \neq j \), consider valuations \(v_i \in \text{Val}_{P \cup X_{\Sigma_2}}(M_i) \) defined by mutual recursion, as follows: \(v_i(p) := \pi_i(v')(p), v_i(x_{(i)}) := \pi_i(v'(x_i)), \) and \(v_i(x_i) \) is chosen compatibly with \(v_j(\text{ske}_{\Sigma_2}(\varphi)) \) for \(\varphi \notin t(\text{L}_E(P)) \). Note that the injectivity of \(t \) is essential to guarantee that \(v_i(\lambda_{(i)}) = \pi_i(v')(x_i) \) is well defined.

(b) Note that \(X_{\Sigma_1} = \{ x_\bot \} \). Consider a valuation \(v_1 \in \text{Val}_{P \cup X_{\Sigma_2}}(M_1) \) defined by setting \(v_1(p) := \pi_1(v')(p), \) and \(v_1(x_\bot) \) being assigned a designated value in the only possible way, and a valuation \(v_2 \in \text{Val}_{P \cup X_{\Sigma_2}}(2_\top) \) defined by setting \(v_2(p) := \pi_2(v')(p), \) and let the value of \(v_2(x_\bot) \) be chosen compatibly with \(v_1(\text{ske}_{\Sigma_2}(\varphi)) \). Note that the unitariness of \(M_1 \) is fundamental to the construction of \(v_1 \), whereas the fact that \(M_2 = 2_\top \) makes compatible choices unique when constructing \(v_2 \).

(c) Note that \(X_{\Sigma_2} = \{ x_\bot \} \). Consider the valuation \(v_1 \in \text{Val}_{P \cup X_{\Sigma_2}}(M_1) \) defined by setting \(v_1(p) := \pi_1(v')(p), \) and \(v_1(x_\bot) := \pi_1(v'(x_\bot)), \) and the valuation \(v_2 \in \text{Val}_{P \cup X_{\Sigma_2}}(2_\bot) \) defined by setting \(v_2(p) := \pi_2(v')(p) \) and by letting the value of \(v_2(x_\bot) \) be chosen compatibly with \(v_1(\text{ske}_{\Sigma_2}(\varphi)) \). Note that again that \(M_2 = 2_\bot \) makes compatible choices unique when constructing \(v_2 \).

In each case, it is routine to check that \(v_1 \) and \(v_2 \) defined in this manner are compatible and that \(v' = (v_1 \circ v_2) \circ t \). This implies that if \(t(\Gamma) \vdash t(\varphi) \), then \(\Gamma \models \varphi \). The result then follows from Prop. 2.10.

Under the applicability conditions of the previous proposition, or in general whenever \(\Gamma \vdash t(\varphi) \) if and only if \(t(\Gamma) \vdash t(\varphi) \), we have the following interesting consequences:

Proposition 2.12 Assume that \(\Gamma \models \varphi \) if and only if \(t(\Gamma) \vdash t(\varphi) \), for every \(\Gamma \cup \{ \varphi \} \subseteq \text{L}_E(P) \). Then, the following properties hold:

- if \(L_{M_1} \cdot L_{M_2} = L_M \) for some matrix \(M \) over \(\Sigma \) then \(L_{M_{1}'} \cdot L_{M_{2}'} = L_M, \) and

- if \(L_{M_{1}'} \cdot L_{M_{2}'} \) is \(k \)-determined then so is \(L_{M_{1}'} \cdot L_{M_{2}'} \) for \(k \in \mathbb{N} \).

Proof For the first property, note that \(\text{Val}(M_1') = \{ v \circ t : v \in \text{Val}(M_1) \} \) by definition, and therefore \(\text{Val}_P(M_1'^t \cdot M_2'^t) \subseteq \{ v \circ t : v \in \text{Val}_P(M_1 \cdot M_2) \} \) which, as in Prop. 2.11, implies that \(L_{M_{1}'} \cdot L_{M_{2}'} = L_M \).

For the second, we show that \(k \)-determinedness is preserved by \(t \). Indeed, from \(\Gamma \models \varphi \) we obtain \(t(\Gamma) \models t(\varphi) \). Assuming that \(L_{M_{1}'} \cdot L_{M_{2}'} \) is \(k \)-determined, we obtain that there is \(\sigma : P \rightarrow \{p_1, \ldots, p_k\} \) such that \(t(\Gamma)^\sigma \models t(\varphi)^\sigma \). As \(\sigma \) only swaps variables, and \(t \) is the identity over variables, we conclude that they commute, i.e., \(t(\varphi)^\sigma = t(\varphi)^\sigma \) for every \(\psi \in \text{L}_E(P) \). Therefore, \(t(\Gamma)^\sigma \models t(\varphi)^\sigma \), and so \(\Gamma^\sigma \models \varphi \). Thus \(L_{M_{1}'} \cdot L_{M_{2}'} \) is also \(k \)-determined.

3. Fibring disjoint fragments of classical logic

In this section, we shall establish the general results about combining Boolean connectives and, in general, fragments of classical logic.

3.1 Adding top-like connectives

We start with the simplest cases where merging two fragments yields the corresponding joint fragment of classical logic, namely when all the connectives from one of the given fragments are top-like.

Proposition 3.1 If the signatures \(\Sigma_1 \) and \(\Sigma_2 \) are disjoint and \(C_2 \subseteq C_1 \), then \(B_{\Sigma_1} \cdot B_{\Sigma_2} = B_{\Sigma_1 \cup \Sigma_2} \).

Proof Consider a 0-place top-like connective \(\top \) such that \(\top \notin \Sigma_1 \) (if \(\top \in \Sigma_1 \) we pick a syntactically different copy).

We obtain that \(B_{\Sigma_1} \cdot B_{\top} = B_{\Sigma_1 \cup \top} \), as a simple corollary of Prop. 2.9. Just note that because \(B_{\Sigma_1} \) is characterized by \(2_{\Sigma_1} \), and \(B_{\top} = \top \) and \(M_2 = 2_\top \), we have that \(B_{\Sigma_1} \cdot B_{\top} \) is characterized by \(2_{\Sigma_1} \cdot 2_\top \). Further, it is immediate to see that \(2_{\Sigma_1} \cdot 2_\top \) is isomorphic to \(2_{\Sigma_1 \cup \top} \). Since \(B_{\Sigma_1} \) is characterized...
by the unitary matrix $2\Sigma_1$ and $B_T = L_{2T}$, we are under the applicability conditions of Prop. 2.11(b). Let t be the translation that sends every connective of Σ_2 to T. Hence, as $B_{\Sigma_1} \cdot B_T$ is characterized by the matrix $2\Sigma_1 \cup T$, we conclude by Prop. 2.12 that $B_{\Sigma_1} \cdot B_{\Sigma_2}$ is characterized by $2\Sigma_1 \cup T = 2\Sigma_1 \cup \Sigma_2$, and therefore, $B_{\Sigma_1} \cdot B_{\Sigma_2} = B_{\Sigma_1 \cup \Sigma_2}$.

Example 3.2 (Coimplication and top). Consider adding classical coimplication \prec to top \top, that is, fibering the logics B_{\prec} and B_T. Recall from Sect. 2.6 the semantics and axiomatization of B_T. Coimplication is characterized by the 2-valued matrix 2_{\prec} where:

$$
\begin{array}{c|cc}
\top & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 1 \\
\end{array}
$$

We shall not explicitly provide here a Hilbert calculus for B_{\prec}. The methods in Rautenberg (1981) would allow one to obtain such a calculus, but the general procedure is tedious and we leave it to the interested reader. We note that 2_{\prec} is not saturated: Note, for instance, that $p \not{\vdash}_{\prec} q \not{\iff}_{\prec} \neg p$ and $p \not{\vdash}_{\prec} q$, but no bivalence can set, at the same time, $v(q) = 1$ and $v(q \not{\iff}_{\prec} p) = v(q) = 0$. However, in this case, we can rely on Prop. 2.9, or more generally on Prop. 3.1, to conclude that $B_{\prec} \cdot B_T = B_{\prec T}$ is characterized by the matrix $2_{\prec} \cdot 2_T = 2_{\prec T}$. This is, of course, a very special case, also because $\{\prec, \top\}$ forms a functionally complete set of classical connectives (in fact, it is functionally complete in a stronger sense, as it also allows for the standard definition of the 0-place Boolean operations—see Section 3.14 of Humberstone (2011)).

3.2 When none of the connectives is very significant

Another case where fibring yields the corresponding classical fragment comes about when all the connectives involved fail to be very significant.

Proposition 3.3 If the signatures Σ_1 and Σ_2 are disjoint and $C_{\Sigma_1} \cap C_{\Sigma_2} \subseteq C_{\top} \cup \bot$, then $B_{\Sigma_1} \cdot B_{\Sigma_2} = B_{\Sigma_1 \cup \Sigma_2}$.

Proof We know from Prop. 2.6 that 2_{Σ_1} and 2_{Σ_2} are saturated, since the connectives are not very significant. Hence, it follows from the results mentioned in Rem. 2.8 that $B_{\Sigma_1} \cdot B_{\Sigma_2}$ is characterized by $2_{\Sigma_1} \cdot 2_{\Sigma_2}$ To conclude, just observe that $2_{\Sigma_1} \cdot 2_{\Sigma_2}$ is isomorphic to $2_{\Sigma_1 \cup \Sigma_2}$.

In particular, this implies that if we merge the axiomatizations of two projection-connuncions with the same arity, we obtain a logic in which these connectives collapse.

Example 3.4 (Two copies of conjunction). We will now consider two syntactically distinct copies, say \land and $\&$, of conjunction, that is, we will combine through fibring two copies of the conjunction-only fragment of classical logic, B_\land and $B_\&$. Semantically, they are characterized by the matrices 2_\land and $2_\&$ with $\land := \land$ defined as in Sect. 2.6. A Hilbert calculus for $B_\&$ is a simple translated copy of the one provided for B_\land in $[B_\land]$, mutatis mutandis.

By Prop. 2.6, both 2-valued matrices are saturated since conjunctions are not very significant. Indeed, as $\Gamma \vdash_{B_\&} \varphi$ precisely when $\varphi \subseteq \varphi (\Gamma)$, a non-trivial theory $\Gamma^{\land \&} \subseteq \land \land \&$ is characterized by the bivaluation v such that $v(p) = 1$ if $p \in \varphi (\Gamma)$, and $v(p) = 0$ if $p \notin \varphi (\Gamma)$.

In view of Rem. 2.2 and the results mentioned in Rem. 2.8, or more generally in view of Prop. 3.3, it is clear that $B_\land \cdot B_\&$ is characterized by $2_\land \cdot 2_\&$, which is again 2-valued and where (up to isomorphism) $\Delta_{\land \&} = \Delta$ for $\varphi \in \{\land, \&\}$. Clearly, this means that the two conjunctions collapse and that $B_{\land \&}$ is obtained by just merging the calculi for the components. $

3.3 Non-finitely valued combinations

We now start to establish the negative cases, that is, to identify the situations when the fibring of classical connectives results in a logic that is subclassical.

Proposition 3.5 The fibering $B\otimes_1 \cdot B\otimes_2$ of the logic of a very significant Boolean connective \otimes_1 and the logic of a non-top-like Boolean connective \otimes_2 distinct from \bot fails to be locally tabular, and therefore, $B\otimes_1 \cdot B\otimes_2 \not\subseteq B_{\otimes_1 \otimes_2}$.

Proof In order to show that $B\otimes_1 \cdot B\otimes_2$ is not locally tabular, we shall build an infinite collection $\{\varphi_i\}_{i \in \mathbb{N}}$ of formulas in $L_{\otimes_1 \otimes_2}(P)$, using only finitely many distinct sentential variables, and then show them to be pairwise non-equivalent.

Let us first focus on \otimes_1. Recall that $B\otimes_1$ is characterized by the saturated matrix 2_{\otimes_1}. Let \otimes_1 be a k-place very significant connective with $j < k$ projective indices. We assume without loss of generality that the projective indices of \otimes_1 correspond to its first j arguments. Let $s = k - j$. As in the proof of Prop. 2.6, we have:

(a) $\otimes_1(p_1, \ldots, p_j, x_1, \ldots, x_s) \vdash_{\otimes_1} p_i$ for $1 \leq i \leq j$;
(b) $\otimes_1(p_1, \ldots, p_j, x_1, \ldots, x_s) \not{\vdash}_{\otimes_1} x_i$ for $1 \leq i \leq s$;
(c) $\otimes_1(p_1, \ldots, p_j, x_1, \ldots, x_s) \not{\vdash}_{\otimes_1} \otimes_1(p_1, \ldots, p_j, y_1, \ldots, y_s)$;
(d) $\otimes_1(p_1, \ldots, p_j, x_1, \ldots, x_s) \not{\vdash}_{\otimes_1} y_i$ for $1 \leq i \leq s$.

From (a)-(d), taking into consideration the theory $\{\otimes_1(p_1, \ldots, p_j, x_1, \ldots, x_s)\}_{i \in \mathbb{N}}^{\otimes_1}$, we may conclude that there is a valuation v_1 over 2_{\otimes_1} such that $v_1(\otimes_1(p_1, \ldots, p_j, x_1, \ldots, x_s)) = v_1(p_i) = \mathbb{N}$ for $1 \leq i \leq j$, $v_1(x_i) \neq \mathbb{N}$ and $v_1(y_i) \neq \mathbb{N}$ for $1 \leq i \leq s$, and $v_1(\otimes_1(p_1, \ldots, p_j, y_1, \ldots, y_s)) \neq \mathbb{N}$.

Next, on what concerns \otimes_2, recall from Rem. 2.2 that a non-top-like Boolean connective distinct from \bot cannot be 0-place. Hence, according to Lemma 2.4, we can fix a non-

© Springer
top-like compound 1-place \(\theta \in L_{O_2}(\{p\}) \). Further, we know from the latter lemma that:

(e) \(\not\vDash_2 \theta^n(p) \) for every \(n \in \mathbb{N} \).

As \(B_{O_2} \) is characterized by the saturated matrix \(2^\omega_0 \cdot 2^\omega_0 \), from (e), considering the theory \(O^+ \) we conclude that there exists a valuation \(v_2 \) over \(2^\omega_2 \) such that \(v_2(\theta^n(p)) \not\in \mathbb{N} \) for every \(n \in \mathbb{N} \).

Let us finally consider the following formulas on \(j + 1 \) sentential variables:

\[\psi_t := \Theta_1(p_1, \ldots, p_j, \theta^{1+t_1}(p), \ldots, \theta^{(j+1)t}(p)), \quad \text{for } t \in \mathbb{N} \]

In these formulas, we sequentially deploy \(s \) distinct nestings of \(\theta \) on the sentential variable \(p \), in the positions corresponding to non-projective components of \(\Theta_1 \).

Take \(t_1 \neq t_2 \). We will show that \(\psi_{t_1} \models \psi_{t_2} \) fails to hold, taking advantage of the completeness of the saturated Nmatrix \(2^\omega_0 \cdot 2^\omega_0 \cdot 2^\omega_0 \cdot B_{O_2} \cdot B_{O_2} \). For that purpose, consider \(\Gamma := (\psi_1, \psi_2) \cup \{ \theta^{1+t_1}, \ldots, \theta^{(j+1)t}: 1 \leq i \leq s \} \), and let \(x_1, \ldots, x_s, y_1, \ldots, y_s \) be the sentential variables in \(X_{\Sigma} \) such that \(x_i := \Theta^{1+t_1}(p) \) and \(y_i := \Theta^{(j+1)t}(p) \) for \(1 \leq i \leq s \).

As the mapping \(v_1 \) is not defined for \(p \) nor for the special sentential variables \(x_s \), \(\psi \in \text{sub}(\{\theta^{1+t_1}, \ldots, \theta^{(j+1)t}: 1 \leq i \leq s\})\{p\} \), but these variables also do not occur in \(\text{skel}_{S_1}(\Gamma) \), we can extend \(v_1 \) to a \(\text{skel}_{S_1}(\text{sub}(\Gamma)) \)-partial valuation \(v'_1 \) such that \(v'_1(p) \) and each \(v'_1(x_{\psi_i}) \) are assigned designated values, respectively, if only if \(v_1(p) \) and \(v_1(\psi) \) are assigned designated values.

Similarly, \(v_2 \) is not defined for \(p_1, \ldots, p_j \) nor for \(x_{\psi_1}, x_{\psi_2} \), and these variables do not occur in \(\text{skel}_{S_2}(\Gamma) \), so we can extend \(v_2 \) to a \(\text{skel}_{S_2}(\text{sub}(\Gamma)) \)-partial valuation \(v'_2 \) such that \(v'_2(p_i) \), for each \(1 \leq i \leq j \), and \(v'_2(x_{\psi_1}), v'_2(x_{\psi_2}) \) are chosen to be compatible, respectively, with \(v_1(p_i) \) and \(v_1(x_{\psi_1}), v_1(x_{\psi_2}) \).

It is clear that \(v'_1 \) and \(v'_2 \) satisfy the compatibility requirement of Lemma 2.1, and therefore, the \(\Gamma \)-partial valuation \(v'_1 \cdot v'_2 \) over \(2^\omega_1 \cdot 2^\omega_2 \) does the job. As it is clear that \(B_{O_1} \cdot B_{O_2} \subseteq B_{O_1 \bullet O_2} \), and also that \(B_{O_1 \bullet O_2} \) is locally tabular, we conclude that \(B_{O_1} \cdot B_{O_2} \subseteq B_{O_1 \bullet O_2} \). \(\square \)

We conclude from the above, in contrast to what happens with conjunction (Ex. 3.4), that when we merge the axiomatizations of two copies of a very significant connective, we obtain a logic where these two copies do not collapse.

Example 3.6 (Two copies of disjunction). This time let us consider two syntactically distinct copies, say \(\vee \) and \(|| \), of disjunction, that is, let us fuse two copies of the disjunction-only fragment of classical logic, \(B_\vee \) and \(B_{||} \). For an illustration of the construction of the proof of Prop. 3.5 in the case of \(B_\vee \bullet B_{||} \), note that the formulas \(\theta^1(p) \vee \theta^2(p), \theta^3(p) \vee \theta^4(p), \theta^5(p) \vee \theta^6(p), \ldots \), where \(\theta(p) = p||p \), are all pairwise non-equivalent.

Semantically, the above-mentioned logics are characterized by the matrices \(2^\omega_\vee \) and \(2^\omega_{||} \) with \(|| := \vee \) defined as in Sect. 2.6. A Hilbert calculus for \(B_{||} \) is a simple translated copy of the one provided in \(B_\vee \). Again, it is easy to see that the 2-valued matrices are not saturated. For instance, \(p \vee q \not\models B_{||} p \) and \(p \vee q \not\models B_{||} q \), but no bivaluation can set \(v(p) = v(q) = 1 \) and at the same time \(v(p) = v(q) = 0 \).

It follows from the results mentioned in Rem. 2.8 that \(B_\vee \bullet B_{||} \) is characterized by the strict product of the saturations \(2^\omega_\vee \cdot 2^\omega_{||} \), the non-denumerably large Nmatrix defined (up to isomorphism) by \(2^\omega_\vee \cdot 2^\omega_{||} = \langle \{N \}, \vee, \rangle \) where:

\[V := \{ (X, Y) : X, Y \subseteq \mathbb{N} \text{ and } X = N \text{ iff } Y = N \} \]

\[(X_1, Y_1) \vee (X_2, Y_2) := \] \[
\begin{cases}
\{(N, N)\}, & \text{if } X_1 \cup X_2 = N \\
\{(X_1 \cup X_2, Y) : Y \subseteq N\}, & \text{if } X_1 \cup X_2 \not\subseteq N \\
(X_1, Y_1) \vee (X_2, Y_2) : = \] \[
\begin{cases}
\{(N, N)\}, & \text{if } Y_1 \cup Y_2 = N \\
\{(X_1, Y_1 \cup Y_2) : X \subseteq N\}, & \text{if } Y_1 \cup Y_2 \not\subseteq N
\end{cases}
\]

This is not unexpected, as classical disjunction is a very significant connective, and therefore \(B_\vee \bullet B_{||} \) is known to be non-finitely valued, as a consequence of Prop. 3.5. Thus, \(B_\vee \bullet B_{||} \) is strictly weaker than \(B_{\vee||} \), and the two disjunctions do not collapse—for instance, the mixed consequence assertion \(p \vee q \not\models p || q \) fails to hold in \(B_\vee \bullet B_{||} \). The latter logic cannot even be said to be finitely valued, as we can indeed show that it fails to be \(k \)-determined for any \(k \in \mathbb{N} \) (recall Sect. 2.7). To see this, consider:

\[\Gamma_k := \{ p_i \vee p_j : 1 \leq i < j \leq k + 1 \} \]

\[\psi_k := \bigvee_{1 \leq i \leq k+1} q \mid (p_i \vee q) \]

It is clear that for every \(\sigma : P \rightarrow \{ p_1, \ldots, p_k \} \) we have that \(\sigma(p_i) = \sigma(p_j) \) for some \(1 \leq i < j \leq k + 1 \). Hence, it is straightforward to conclude in this case that (i) \(\Gamma_k \models \sigma(p_i) \vee \sigma(p_j) \), (ii) \(\sigma(p_i) \vee \sigma(p_j) \models \sigma(p_i) \), (iii) \(\sigma(p_i) \models \sigma(p_j) \), and (iv) \(\sigma(p_i) \vee \sigma(p_j) \models q \), and from these, it immediately follows that \(\Gamma_k \not\models \psi_k \). Now, to show that \(\Gamma_k \not\models \psi_k \), just consider a valuation \(v \) on \(2^\omega_\vee \cdot 2^\omega_{||} \) such that:

\[v(q) = \{N\} \setminus \{1, \ldots, k + 1\}, \emptyset \]

\[v(p_i) = v(p_i \vee q) = \{N\} \setminus \{i\}, \emptyset \]

\[v(p_i \vee p_j) = \{N, N\}, \quad \text{for } 1 \leq i < j \leq k + 1 \]

\[v(q || (p_i \vee q)) = \{\emptyset, \emptyset\}, \quad \text{for } 1 \leq i \leq k + 1 \]

\[v(\bigvee_{0 \leq i \leq \ell} q || (p_i \vee q)) = \{\emptyset, \emptyset\}, \quad \text{for } \ell \leq k + 1 \]

@ Springer
The merged axiomatization for $B \lor B_\perp$ is built as usual. More interestingly, after Rautenberg (1981), note that a complete Hilbert calculus for $B \lor B_\perp$ may be obtained more simply by adding the following interaction rules to the Hilbert calculus given to \lor in $[B_\lor]$:

\[
p \lor (q \lor r) \quad p \lor \neg (\neg r) \quad p \lor (q \lor r)
\]

All the translated rules for the disjunction \lor are easily derivable from the latter mentioned rules.

Note that what we said about merging two copies of the Boolean disjunction applies *mutatis mutandis* to the case of two copies of the Boolean implication. The reason is that classical implication is known to express classical disjunction, e.g., via a translation $t(\lor) = \lambda p_1 p_2. (p_1 \lor p_2) \lor p_2$. \triangle

An equally interesting non-collapsing example is provided by merging the axiomatizations of two copies of classical negation:

Example 3.7 (Two copies of negation). We will now combine B_\perp and B_\perp through fibring, where \neg and \sim are two syntactically distinct copies of classical negation. Semantically, they are characterized by the matrices 2_\perp and 2_\perp with $\sim = \neg$ as defined in Sect. 2.6. A Hilbert calculus for B_\perp is a simple translated copy of the one provided in $[B_\perp]$.

It is easy to see now that the 2-valued classical matrices are not saturated. For instance, $\not\vdash_{B_\perp} p$ and $\not\vdash_{B_\perp} \neg p$, but no bivaluation can fail to satisfy both non-theorems simultaneously, that is, setting $v(p) = v(\neg p) = 0$ is impossible.

In any case, it follows from the results mentioned in Rem. 2.8 that $B_\perp \bullet B_\perp$ is characterized by $2^{\omega} \bullet 2^{\omega}$, a non-denumerably large Nmatrix. This is not too bad, as classical negation is a very significant connective, and therefore, $B_\perp \bullet B_\perp$ is not finitely valued, as a consequence of Prop. 3.5. Thus, $B_\perp \bullet B_\perp$ is strictly weaker than $B_{\sim \sim}$, and the two negations do not collapse—for instance, the mixed consequence assertion $\neg p \vdash \sim p$ fails to hold in $B_\perp \bullet B_\perp$.

A further interesting fact about this particular example is that B_\perp, for $\emptyset \in \{\neg, \sim\}$, turns out to have an alternative semantic characterization by way of the 3-valued determinist matrix $M_3^3 := \{[0, \frac{1}{2}, 1], \{1, \emptyset, \sim\}\}$ where:

\sim_3	1
0	1
1	2
2	1

What is more, this 3-valued matrix is saturated. Indeed, since $\Gamma \vdash_{B_\perp} \neg \phi$ iff $\Gamma \vdash_{B_\perp} \neg \phi$ for i even, or if $\Gamma \vdash_{B_\perp} \neg \phi$ for i odd, a non-trivial theory $\Gamma^{3^{B_\perp}}$ is precisely characterized by the valuation v such that $v(p) = 1$ if $p \in \Gamma^{3^{B_\perp}}$, $v(p) = 0$ if $\neg p \in \Gamma^{3^{B_\perp}}$, and $v(p) = \frac{1}{2}$ if $p \not\in \Gamma^{3^{B_\perp}}$.

Now, in view of the facts mentioned in Rem. 2.8, it follows that $B_{\sim \sim} \bullet B_{\sim \sim}$ is also semantically characterized by the 5-valued Nmatrix defined by $M_5^3 \bullet M_5^3 = \{(0, 0), (0, \frac{1}{2}), (\frac{1}{2}, 0), (\frac{1}{2}, \frac{1}{2}), (1, 1), (1, 1)\}$ where:

\sim_5	1
0	1
1	2
2	1
3	0

On the one hand, an axiomatization for $B_{\sim \sim} \bullet B_{\sim \sim}$ is obtained by merging the calculi for the components. On the other hand, a complete calculus for $B_{\sim \sim}$ may be obtained by adding to the mentioned axiomatization for $B_{\sim \sim} \bullet B_{\sim \sim}$ the following interaction rules:

$\neg \phi \vdash \sim \phi \sim \phi \vdash \neg \phi$

Completeness of the resulting calculus may easily be confirmed with the help of Lemma 2.7(a). It is indeed straightforward to see that the valuations on $M_5^3 \bullet M_5^3$ respecting the two above-mentioned interaction rules cannot use the values $(0, \frac{1}{2})$ and $(\frac{1}{2}, 0)$. Purging the 5-valued Nmatrix from these values, we obtain a (deterministic!) Nmatrix that is isomorphic to M_5^3 on both components. \triangle

Proposition 3.5 also happens to be informative when we combine distinct connectives:

Example 3.8 (Conjunction and disjunction). We will now add classical conjunction \land to classical disjunction \lor, that is, we will combine through fibring the logics B_{\land} and B_{\lor}.

Recall from Sect. 2.6 the semantics and axiomatizations of the latter logics. We have seen in Ex. 3.4 and Ex. 3.6 that 2_{\land} is saturated but 2_{\lor} is not. From the results mentioned in Rem. 2.8, it follows that $B_{\land} \bullet B_{\lor}$ is characterized by the strict product of 2_{\land} and 2_{\lor}, the non-denumerable Nmatrix defined (up to isomorphism) by $2_{\land} \bullet 2_{\lor} = (2^{[N]}, [N], \sim_{\land})$ where:

$X \sim_{\land} Y := \begin{cases} [N], & \text{if } X = Y = [N] \\ \{Z : Z \subseteq [N] \}, & \text{if } X \cap Y \neq [N] \end{cases}$

$X \sim_{\lor} Y := X \cup Y$

Given that classical disjunction is a very significant connective, and that classical conjunction is not top-like, as a consequence of Prop. 3.5 we have that the fibred logic is not finitely Nvalued. We actually also know from Marcelino and Caleiro (2017) that this logic is not finitely Nvalued. Clearly, $B_{\land} \bullet B_{\lor}$ is subclassical and, for instance, $p \lor (q \land r) \not\vdash (p \lor q) \land (p \lor r)$.

An axiomatization for $B_{\land} \bullet B_{\lor}$ may be obtained as usual. More interestingly, after Rautenberg (1981), a complete calculus for $B_{\land \lor}$ may be obtained by simply adding three interaction rules to the calculus of disjunction, namely:
The rules of conjunction are derivable from the latter mentioned rules.

We finish illustrating Prop. 3.9 with a combination of two classical connectives that results functionally complete:

Example 3.9 (Disjunction and negation). We now consider adding classical disjunction \(\lor \) to classical negation \(\neg \), that is, fibring the logics \(B_{\lor} \) and \(B_{\neg} \). Recall from Sect. 2.6 the corresponding semantics and axiomatizations of the latter.

We have seen in Ex. 3.6 and 3.7 that neither \(2_{\lor} \) nor \(2_{\neg} \) are saturated. However, we can consider the 3-valued saturated matrix \(M^3_{\lor} \) instead of \(2_{\lor} \). Again, it follows from the results mentioned in Rem. 2.8 that \(B_{\lor} \land B_{\neg} \) is characterized by the non-denumerable Nmatrix \(2^0_{\lor}\cdot M^3_{\land} = (V, \{N, 1\}, \sim) \). We leave the details of the verification to the interested reader. As classical disjunction is very significant and classical negation is not top-like, Prop. 3.5 implies that the combined logic is not finitely \(N \)-valued. We have further shown in Marcelino and Caleiro (2017) that this logic is not finitely \(N \)-valued. Of course, \(B_{\lor} \land B_{\neg} \) is subclassical and, for instance, \(\not\models p \land \neg p \).

The merged axiomatization for \(B_{\lor} \land B_{\neg} \) is obtained as usual. More interestingly, again after Rautenberg (1981), a complete calculus for \(B_{\lor} \land B_{\neg} \) may be obtained by simply adding the following four interaction rules to the calculus of disjunction:

\[
\begin{align*}
\frac{\psi \land \psi}{\psi} & \quad \frac{p \land q}{p} & \quad \frac{\neg \neg q}{\neg q} & \quad \frac{\neg \neg q}{\neg q} & \quad \frac{\psi \land \psi}{\psi} \\
\frac{p \land q}{p} & \quad \frac{p \land q}{p} & \quad \frac{\neg \neg q}{\neg q} & \quad \frac{\neg \neg q}{\neg q} & \quad \frac{\psi \land \psi}{\psi}
\end{align*}
\]

The rules of negation are derivable from these.

The present example has the additional interest that \(\{\lor, \neg\} \) forms a functionally complete set of classical connectives, and we obtain thus from the above an axiomatization of full classical logic.

\(\triangle \)

3.4 Adding the connective \(\bot \)

At this point, we are just left with the problem of categorizing combinations involving the 0-place connective \(\bot \). We start by showing that all disjoint fibrings of a fragment of classical logic with \(\bot \) are 4-N-valued:

Proposition 3.10 If \(\bot \notin \Sigma \) then \(B_{\Sigma} \land B_{\bot} \) is 4-N-valued.

Proof This is a simple corollary of Prop. 2.9. Note that \(B_{\Sigma} \) is characterized by the matrix \(2^0_{\Sigma} \) and \(B_{\bot} = \bot_1 \) is characterized by the matrix \(M^2_{\bot} = 2_{\bot} \). As \(\bot \) is a 0-place connective, we need no more than 2-saturation. Hence, \(B_{\Sigma} \land B_{\bot} \) is characterized by the 4-valued Nmatrix \(2^2_{\Sigma} \land 2_{\bot} \).

\(\square \)

Example 3.11 (Coimplication and bottom). Recall coimplication \(\triangleleft \) from Sect. 2.6. When fibring \(B_{\triangleleft} \) and \(B_{\bot} \), we make use of the general recipe in Prop. 3.10, which shows that \(B_{\triangleleft} \land B_{\bot} \) is characterized by the 4-valued Nmatrix \(2^2_{\triangleleft} \land 2_{\bot} := \langle (0, 1)^2, \{(1, 1)\}, \sim \rangle \) where:

\(\sim \)	\((0, 0) \)	\((0, 1) \)	\((1, 0) \)	\((1, 1) \)
\((0, 0) \)	\((0, 0) \)	\((0, 1) \)	\((1, 0) \)	\((1, 1) \)
\((0, 1) \)	\((0, 0) \)	\((0, 0) \)	\((1, 0) \)	\((1, 0) \)
\((1, 0) \)	\((0, 0) \)	\((0, 0) \)	\((0, 0) \)	\((0, 1) \)
\((1, 1) \)	\((0, 0) \)	\((0, 0) \)	\((0, 0) \)	\((0, 0) \)

\(\bot \) is equivalently characterized by the matrix \(M^2_{\Sigma U \{\bot\}} := \langle \{0, 1\}^2, \{(1, 1)\}, \sim \rangle \) where \(\hat{G}_2 := \hat{G}_2 \) for \(\Sigma \in \Sigma \) (we take \(\hat{G}_2 \) as the interpretation of \(\emptyset \) in \(2^2_{\bot} \) and

\(\triangle \)
\[\top \vdash p \]

The usual proof for \(\Downarrow \) is easily derivable. Completeness of the resulting calculus may be easily confirmed using Lemma 2.7(b). Indeed, note that there are two kinds of valuations over \(\mathbb{M}_{\top \Downarrow}^4 \) that respect the axiom \(\top \Downarrow p \): either \(v(\top) = (0, 0) \), in which case it is also a valuation over \(\mathbb{M}_{\top \Downarrow}^2 \), or \(v(\top) = (1, 0) \) (resp. \(v(\top) = (0, 1) \)), in which case the only possible values for the other formulas are \((1, 0) \) or \((1, 1) \) (resp. \((0, 1) \) or \((1, 0) \)). So, \(\tau_2(v) \) (resp. \(\tau_1(v) \)) is a valuation over \(\mathbb{M}_{\top \Downarrow}^2 \) satisfying the same formulas as \(v \).

The semantic characterizations provided by Prop. 3.10 and Prop. 3.12 may still be further improved in the very particular, and perhaps surprising, case where all the Boolean connectives in \(\Sigma \) are expressible as derived connectives with the sole use of bi-implication.

Proposition 3.14 If \(\bot \not\in \Sigma \) and \(C_1^\Sigma \subseteq C_2^\Sigma \) then \(B_\Sigma \bullet B_\bot = B_{\Sigma \cup \{\bot\}} \).

Proof First, we prove that \(B_{\bot \top} \bullet B_\bot = B_{\bot \top \bot} \). Since \(\leftrightarrow \) and \(\top \) are truth-preserving, we know from Prop. 3.12 that \(B_{\bot \top} \bullet B_\bot \) is characterized by the 4-valued matrix \(\mathbb{M}_{\bot \top \bot}^4 := \{0, 1\}^2 \times \{\bot, \top\} \) where \(\square_4 := \square_2 \) and \(\sqcap_4 := \sqcap_2 \) (resp. \(\sqcup_4 := \sqcup_2 \)).

We will show that \(B_{\bot \top} \bullet B_\bot \) is equivalently characterized by \(\mathbb{M}_{\bot \top \bot}^2 \).

Consider the bijection \(h : \{0, 1\}^2 \to \{0, 1\}^2 \) such that \(h(1, a) = (a, a) \) and \(h(0, a) = (1 - a, a) \) for \(a \in \{0, 1\} \). It is straightforward to check that \(h \) establishes an isomorphism between \(\mathbb{M}_{\bot \top \bot}^4 \) and \(\mathbb{M}_{\bot \top \bot}^2 \).

First, note that \(h(\top) = (1, 1) = \bot \) and \(h(\bot) = (0, 0) \). To see that \(h(a, b) \) is commutative and analyze the possible cases: (i) \(h(1, 1) = (1, 1) \) (\(\bot = \bot \)); (ii) \(h(a, b) = (a, b) \) (\(\bot \neq \bot \)); and (iii) \(h(a, b) = (b, a) \) (\(\bot = \bot \)).

This shows that \(B_{\bot \top} \bullet B_\bot \) is equivalently characterized by \(\mathbb{M}_{\bot \top \bot}^2 \), and thus also by \(\mathbb{M}_{\bot \top \bot}^4 \).

Finally, consider \(t_1 : L(\Sigma) \to L(\top \bot) \) such that \(\Sigma = \top \bot \) and \(t_1 : \top \bot \) is the upper-left condition of Prop. 2.11(c) and Prop. 2.12, and from \(\mathbb{M}_{\bot \top \bot}^2 = \mathbb{M}_{\bot \top \bot}^4 \) we conclude that \(B_{\bot \top} \bullet B_\bot = B_{\Sigma \cup \{\bot\}} \).

The next example illustrates a rather special—and perhaps unexpected—situation: the Boolean logic of bi-implication and \(\bot \) coincides with the fibering of the corresponding one-implication fragments. This fact applies also if we replace bi-implication with the connective \(\leftrightarrow_2 \) which is expressible using \(\leftrightarrow \) by setting \(\lambda p_1 p_2 p_3. p_1 \leftrightarrow p_2 \leftrightarrow p_3 \). These results
are to be contrasted, in the light of Prop. 3.18 below, with the fibering of \(\bot \) with any connective in the list \([\bot L1]: T_{n+2}^{n+2} \) (for \(n \in \mathbb{N} \), \(T_2^{1+2} \) (for \(n \in \mathbb{N} \), \(\neg, \gamma, \chi, +, \vDash, \lambda, p_1 p_2 p_3, p_1 \lor (p_2 \land p_3), p_1 \land p_2 p_3, p_1 \lor (p_2 p_3), p_1 \land (p_2 \lor p_3), p_1 \lor (p_2 \lor p_3), p_1 \land (p_2 \lor p_3) \). Note that \([\bot L1]\) contains all the connectives in \([\bot L0]\) except \(\lnot \) and \(\vDash \).

Example 3.15 (Bi-implication and bottom). We consider combining \(B_{\psi \ell} \) and \(B_{\bot} \). It follows from Prop. 3.14 that \(B_{\psi \ell} \cdot B_{\bot} = B_{\psi \ell \bot} \). Thus, the fibred logic is 2-valued and is characterized by the matrix \(2_{\bot \bot} \).

A complete calculus for \(B_{\psi \ell \bot} \) may be obtained by simply merging calculi for the components (a calculus for \(B_{\psi \ell} \) may be found in Rautenberg (1981, p. 332)).

The following example provides further illustration on Prop. 3.5 and highlights the role of the condition concerning the nullarity of bottom in Prop. 3.14.

Example 3.16 (Bi-implication and 1-bottom). Let the connective \(\bot^1 \) be a 1-place bottom-like connective. This time we consider combining \(B_{\psi \ell} \) with the logic \({\bot^1} \), characterized by the Boolean matrix \(2_{\bot^1} \), which is known to be saturated by Prop. 2.6. As \(B_{\psi \ell} \) is not saturated, we consider instead \(2_{\psi \ell}^{aw} \). It follows from the results mentioned in Rem. 2.8 that \(B_{\psi \ell} \cdot B_{\bot^1} \) is characterized by the non-denumerable Nmatrix \(2_{\psi \ell}^{aw} \cdot 2_{\bot^1} = (2^Z, [N], \gamma) \) where \(X \rightarrow Y := (X \cup Y) \cap (\overline{Y} \cup X) \) and \(\overline{1^1}(X) := \{ Y : Y \neq \emptyset \} \).

As \(\bot^1 \) is a non-top-like Boolean connective distinct from the 0-place connective \(\bot \), and \(\psi \ell \) is very significant, by Prop. 3.5 we know that \(B_{\psi \ell} \cdot B_{\bot^1} \) is not characterized by a finite matrix. Furthermore, we claim that \(B_{\psi \ell} \cdot B_{\bot^1} \) is not even finitely Nvalued. We will show indeed that it is not k-determined. Let \(\psi^i := \bot^1(p_i) \), for \(1 \leq i \leq k + 1 \), and \(\Gamma := \{ \psi \ell \rightarrow \psi^i \} \). It follows from the pigeonhole principle that there must be some \(i \neq j \) such that \(\psi^i = \psi^j \), and so \(\Gamma^\sigma \vdash \psi^i \). As \(\psi^i \) is bottom-like, \(\psi^i \vdash \bot \), we obtain \(\Gamma^\sigma \vdash \psi^i \). Hence, \(B_{\psi \ell} \cdot B_{\bot^1} \) is strictly weaker than \(B_{\psi \ell} \). A complete calculus for \(B_{\psi \ell \bot^1} \) may be obtained by simply adding to a calculus for \(B_{\psi \ell} \cdot B_{\bot^1} \) the single interaction axiom \(\bot^1(p) \rightarrow \bot^1(q) \). Completeness follows by Lemma 2.7(b) and the fact that \(A_{\psi \ell} \cdot B \) takes a designated value if and only if \(A = B \), therefore every \(\bot^1 \)-headed formula must have the same value, and the functions that swap some undesignated points with \(\psi \) are isomorphisms between \(2_{\psi \ell}^{aw} \cdot 2_{\bot^1} \) and \(2_{\psi \ell}^{aw} \cdot 1 \). We abstain from presenting here further details as they are in fact very similar to the argument presented to the same effect in Ex. 3.15.

In contrast to the above, the following example shows that the situation changes if we simultaneously add two 0-place bottoms, in which case a subclassical logic is obtained. We will consider the connective \(\vDash) \), but the same argument would apply to the connective \(\leftrightarrow \).

Example 3.17 (\(\vDash \)) and two bottoms). Let \(\bot_1 \) and \(\bot_2 \) be two 0-place bottoms. We consider merging \(B_{\leftrightarrow} \) and the logic of these two bottom-like connectives, \(B_{\bot_1 \bot_2} \), characterized by \(2_{\bot_1 \bot_2} \). Clearly, \(2_{\bot_1 \bot_2} \) is still saturated in view of Prop. 2.6. Following the same recipe as in the case of a single bottom in Prop. 2.9 (but now with 3-saturation), we immediately conclude that \(B_{\psi \ell} \cdot B_{\bot_1 \bot_2} \) is characterized by the Nmatrix \(2_{\psi \ell}^{3} \cdot 2_{\bot_1 \bot_2} \). Choosing \(v \) over \(2_{\psi \ell}^{3} \cdot 2_{\bot_1 \bot_2} \) such that \(v(p) := (0, 1, 1) \), \(v(\bot_1) := (1, 0, 0) \) and \(v(\bot_2) := (0, 0, 0) \), we have that \(v((\vDash (p, \bot_1, \bot_2)) = (1, 1, 1) \). Hence, the mixed consequence assertion \(\vDash (p, \bot_1, \bot_2) \vdash p \) fails to hold in the fibred logic, and so \(B_{\leftrightarrow} \cdot B_{\bot_1 \bot_2} \neq B_{\leftrightarrow \bot_1 \bot_2} \).

An axiomatization for \(B_{\leftrightarrow} \) may be found in Rautenberg (1981, p. 331) and \(B_{\bot_1 \bot_2} \) is axiomatized simply by the rules \(\frac{\bot_1 \bot_2}{\bot_1} \) and \(\frac{\bot_1 \bot_2}{\bot_2} \). A complete calculus for \(B_{\leftrightarrow \bot_1 \bot_2} \) may be obtained by just adding to a calculus for \(B_{\leftrightarrow} \cdot B_{\bot_1 \bot_2} \) the two interaction rules \(\frac{\vDash (p, \bot_1, \bot_2)}{\vDash (p, \bot_1, \bot_2)} \) and \(\frac{\vDash (p, \bot_1, \bot_2)}{\vDash (p, \bot_1, \bot_2)} \).

We see that the Boolean connectives definable by bi-implication still result in a two-valued classical logic when combined with \(\bot \). This can never be the case with other connectives, as we show below. We shall prove that the result of adding \(\bot \) to a logic expressing any connective from \([\bot L1]\) (or equivalently a connective from \([\bot L0]\) that does not belong to \(C^{aw}_N \)) fails to yield the corresponding fragment of classical logic.

Proposition 3.18 If \(\bot \notin \Sigma \) and \(\Theta \in C^{aw}_N \) for \(\Theta \) in \([\bot L1]\) then \(B_{\Sigma} \cdot B_{\bot} \subseteq B_{\Sigma \cup \{\bot\}} \).

Proof
Consider the list of connectives \([\bot L2]\): \(\vee, T_2^3, \neg, +, \lambda, p_1 p_2 p_3, p_1 \land (p_2 \lor p_3) \). Observe that \([\bot L2] \) is a sublist of \([\bot L1]\). First, we prove that \(B_{\Theta} \cdot B_{\bot} \subseteq B_{\Theta \bot} \) for \(\Theta \in [\bot L2] \). Note that \(\Theta = T_2^3 \). In all cases, we shall take advantage of Prop. 3.10, which shows that \(B_{\Theta} \cdot B_{\bot} \) is characterized by the 4-valued Nmatrix \(2_{\Theta}^{aw} \cdot 2_{\bot} \).

- If \(\Theta = \vee \), then \(\bot \lor p \vdash p \) holds classically but fails to hold in \(B_{\Theta} \cdot B_{\bot} \), as shown by a valuation \(v \in \text{Val}_p(2_{\Theta}^{aw} \cdot 2_{\bot}) \) with \(v(\bot) = (0, 1) \) and \(v(p) = (1, 0) \neq (1, 1) \), which is such that \(v(\bot \lor p) = (0, 1) \lor (1, 0) = (1, 1) \).
- If \(\Theta = T_2^3 \), then \(T_2^3(\bot, p, q) \vdash p \) holds classically but fails to hold in \(B_{\Theta} \cdot B_{\bot} \), as shown by a valuation \(v \in \text{Val}_p(2_{\Theta}^{aw} \cdot 2_{\bot}) \) with \(v(\bot) = (0, 1) \), \(v(p) = (1, 0) \neq (1, 1) \) and \(v(q) = (1, 1) \), which is such that \(v(T_2^3(\bot, p, q)) = T_2^3(0, 1, (1, 0), (1, 1), (1, 1), (1, 1)) \).
- If \(\Theta = \neg, \) then \(\bot \neg \bot \) holds classically but fails to hold in \(B_{\Theta} \cdot B_{\bot} \), as shown by a valuation \(v \in \text{Val}_p(2_{\Theta}^{aw} \cdot 2_{\bot}) \)
with \(v(\bot) = (0, 1) \), for which necessarily \(v(\bot) = 1 \) is such that \(v(\bot) = 1 \).

- If \(\otimes = + \), then \(\bot + p \vdash p \) holds classically but fails to hold in \(B_+ \otimes B_\bot \), as shown by a valuation \(v \in \text{Val}_p(2^{2n+2}_\bot, 2^{2n+2}_\bot) \) with \(v(\bot) = (0, 1) \) and \(v(p) = (1, 0) \) is such that \(v(\bot + p) = 0 \). Then \(2^{2n+2}_\bot(1, 0) = (1, 1) \).

- If \(\otimes = \land \), then \(p \land (p_2 \lor p_3) \) holds classically but fails to hold in \(B_\otimes \otimes B_\bot \), as shown by a valuation \(v \in \text{Val}_{p_2, p_3}(2^{2n+2}_\bot, 2^{2n+2}_\bot, 2^{2n+2}_\bot) \) with \(v(\bot) = (0, 1) \), \(v(p) = (1, 1) \), and \(v(q) = (1, 0) \) is such that \(v(p \land (\bot \lor q)) = (1, 1) \).

As it is clear that \(B_\otimes \otimes B_\bot \subseteq B_\otimes \bot \), in all cases considered above, we conclude that \(B_\otimes \otimes B_\bot \subseteq B_\otimes \bot \), for \(\otimes \) a connective from the restricted list \([L_{12}]\).

We now note that each of the other connectives in \([L_{11}]\) expresses some connective from \([L_{12}]\) (actually, in all cases, either \(\lor \) or \(\land \)) may be seen to be a derived connective).

- If \(\otimes = \lor \), then \(\bot + p \vdash p \) holds classically but fails to hold in \(B_\otimes \otimes B_\bot \), as shown by a valuation \(v \in \text{Val}_{p_2, p_3}(2^{2n+2}_\bot, 2^{2n+2}_\bot, 2^{2n+2}_\bot) \) with \(v(\bot) = (0, 1) \), \(v(p) = (1, 1) \), and \(v(q) = (1, 0) \) is such that \(v(p \lor (\bot \lor q)) = (1, 1) \).

Example 3.19 (Negation and bottom). We now consider fibbing the logics \(B_+ \) and \(B_\bot \) of classical negation and bottom. Recall from Ex. 3.7 that \(2 \) is not saturated, but we can consider instead the 3-valued saturated matrix \(M^{3}_{\bot} \). Note also that \(M^{3}_{2} = 2 \), and from Prop. 2.9, it follows that \(B_\bot \cdot B_\bot \) is characterized by the 3-valued Nmatrix \(M^{3}_{2} \cdot 2 = \{(0, 1) \}, \) with \(\bot \land \bot = \top \) and \(\bot \land \bot := (0, 0, 0) \).

To see that \(B_\bot \cdot B_\bot \) is not deterministically many-valued we point out the fact that \(\bot \land \bot \land \bot \) does not hold in \(B_\bot \). Thus, we can add to the calculus of \(B_\bot \), a single interaction axiom, namely:

\[\neg \bot \]

Completeness of the resulting calculus may easily be confirmed using Lemma 2.7(b). Indeed, we know from Prop. 2.9 that \(2 \cdot 2 = 2 \) also defines the same logic. Clearly, any \(v \) that validates the above interaction axiom \(\bot \land \bot \) is such that \(v(\bot) = (0, 0) \); therefore, \(v \) is actually a valuation over \(2 \).

4 Putting it all together

4.1 Characterizing the Boolean combinations

Building on Prop. 3.1, Prop. 3.3, Prop. 3.5, Prop. 3.14 and Prop. 3.18, from the previous subsections, we are finally able to identify, in the next theorem, the precise conditions for the recovery of a fragment of classical logic by fibering disjunctive classical components. The facts about Boolean clones highlighted in Rem. 2.5 turn out to be essential in proving the result, which takes indeed full advantage of the fact that every very significant connective expresses some connective in \([L_{0}]\).

Theorem 4.1 If the signatures \(\Sigma_1 \) and \(\Sigma_2 \) are disjoint, then \(B_{\Sigma_1} \cdot B_{\Sigma_2} = B_{\Sigma_1 \cup \Sigma_2} \) if and only if either:

(a) \(C^{2}_{\Sigma_i} \subseteq C_{\Sigma_i}^{2} \) for some \(i \in \{1, 2\} \), or
(b) \(C^{2}_{\Sigma_1}, C^{2}_{\Sigma_2} \subseteq C_{\Sigma_i}^{2} \), or
(c) \(C^{2}_{\Sigma_i} \subseteq C^{2}_{\Sigma_i} \) and \(\bot \in \Sigma_j \) is the only non-top-like connective in \(\Sigma_j \), for \(i \neq j \) with \(i, j \in \{1, 2\} \).

Proof If (a) is the case, then \(B_{\Sigma_1} \cdot B_{\Sigma_2} = B_{\Sigma_1 \cup \Sigma_2} \) follows from Prop. 3.1. If (b) is the case, then \(B_{\Sigma_1} \cdot B_{\Sigma_2} = B_{\Sigma_1 \cup \Sigma_2} \) follows from Prop. 3.3. If (c) is the case, then assume without loss of generality that \(i = 1 \) and \(j = 2 \). First observe that \(B_{\Sigma_1} = B_{\Sigma_1 \cup \Sigma_2} \cdot B_{\bot} \), and also \(B_{\Sigma_1 \cup \Sigma_2} \cdot B_{\bot} = B_{\Sigma_1 \cup \Sigma_2} \cdot B_{\Sigma_2} \), both facts being justified by Prop. 3.1 as \(C^{2}_{\Sigma_i} \subseteq C_{\Sigma_i}^{2} \). Thus, \(B_{\Sigma_1 \cup \Sigma_2} \cdot B_{\Sigma_2} = (B_{\Sigma_1 \cup \Sigma_2} \cdot B_{\bot}) = (B_{\Sigma_1} \cdot B_{\Sigma_2} \cdot B_{\bot}) \cdot B_{\bot} \),
In Sect. 3 we have analyzed several examples of combinations of classical connectives produced through fibring, namely, by merging the corresponding axiomatizations, including their characterizations through (logical) (N)matrices, as well as the interaction principles needed for the corresponding fragment of classical logic to be recovered. It is worth taking a more abstract look at these examples and the results that structure them.

A first batch of examples that was considered concerned the cohabitation, in the same logic, of two copies of the same Boolean connective. Already there one can find all sorts of interesting phenomena arising. As shown, the addition (through fibring) to the logic of classical conjunction of another copy of classical conjunction, with the same behavior, makes these connectives collapse into one another ($B_\perp \cdot B_\perp = B_{\perp \&}$, Ex. 3.4). On the other hand, the analogous collapse does not occur if we combine, say, two copies of negation ($B_\perp \cdot B_\neg \neq B_{\perp \neg}$, Ex. 3.7), or two copies of disjunction ($B_\lor \cdot B_\lor \neq B_{\lor \lor}$, Ex. 3.6). As we have pointed out, the fibring of two copies of the logic of classical negation does not have a finite-valued characterization, yet is 5-Nvalued, and the fibring of two copies of the logic of classical disjunction does not even have a finite-valued non-deterministic semantics.

Another batch of examples we have entertained involved the combination of two distinct Boolean connectives. Again, if such combination is produced via fibring, aiming at a common minimal conservative extension of the logics of the connectives given as input, several different phenomena may be observed. In most interesting cases (such as conjunction plus disjunction $B_\& \cdot B_\lor \neq B_{\& \lor}$, Ex. 3.8), the combined logic turns out to be subclassical and not characterizable by a finite-valued Nmatrix, and this is also the case in situations (such as disjunction plus negation: $B_\lor \cdot B_\neg \neq B_{\lor \neg}$, Ex. 3.9) in which one could have expected the resulting logic to be functionally complete. However, there are cases (such as coimplication plus top: $B_\land \cdot B_\top = B_{\land \top}$, Ex. 3.2) in which one actually does obtain full classical logic without the need to impose any sort of additional interaction principles involving the two connectives being combined.

A particular class of examples that deserved separate attention was the combination of the logic of some standard classical connectives with the logic of bottom-like connectives. To a bystander unaware of the results in the present paper, the semantic behavior observed in this last batch of examples might seem erratic. For instance, while combining the logics of negation and of bottom gives rise to a 3-Nvalued logic ($B_\neg \cdot B_\perp \neq B_{\neg \perp}$, Ex. 3.19), and combining the logics of implication and of bottom gives rise to a 4-Nvalued logic ($B_\to \cdot B_\perp \neq B_{\to \perp}$, Ex. 3.11), adding a bottom to the logic of implication results in a deterministically 4-valued logic ($B_\top \cdot B_\perp \neq B_{\top \perp}$, Ex. 3.13). Other curious examples include the addition of a bottom to the logic of bi-implication, which outputs the corresponding fragment of classical logic without the addition of interaction principles ($B_\leftrightarrow \cdot B_\bot = B_{\leftrightarrow \bot}$, Ex. 3.15), and the alternative addition of a 1-place bottom-like connective to the same logic of bi-implication ($B_\cup \cdot B_\bot \neq B_{\cup \bot}$, Ex. 3.16), which results subclassical, instead. We have also considered an example in which the logic of a ternary odd counter (a ternary connective that is true iff exactly one or three of its arguments is true) is fibred with the logic containing two copies of the classical bottom, and the resulting logic turned out to be 8-Nvalued ($B_{\land 3} \cdot B_{\bot 1 \bot 2} \neq B_{\land 3 \bot 1 \bot 2}$, Ex. 3.17).

The above-mentioned seemingly capricious diet of examples was employed both in motivating and in illustrating the
results obtained in the present paper. Substantially advancing beyond the results of the investigation done at our earlier paper (Caleiro et al. 2017), we have in the preceding subsection at last identified, in Thm. 4.1 and Cor. 4.2, the precise conditions for the recovery of a fragment of classical logic (for any arbitrary signature, with a 2-valued interpretation in terms of logical matrices) through the fibring of disjoint Boolean components. It is worth mentioning, nonetheless, that some intermediate results obtained while establishing the foundations for these main results have helped in identifying some sufficient conditions for a logic (not) to be finitely valued (Prop. 3.5), and in several cases, we directly showed that our illustrations had (or did not have) a non-deterministic finite-valued characterization.

5 What lies ahead

In this paper, we have fully uncovered the conditions under which merging the Hilbert calculi of disjoint fragments of classical logic still leads to a fragment of classical logic, or potentially to full classical logic, without the need to introduce further inference rules regulating the interaction between the connectives from each of the fragments. It comes as no surprise that this is an extremely rare event, but there are a few non-trivial and perhaps unexpected exceptions, fully identified at Thm. 4.1 and Cor. 4.2. The proofs of these results, which we believe to be entirely novel, rely in an essential way on the ingenious classification of two-valued clones by Post (1941). Analogous results for fragments of other important logics are thus expected to be far from straightforward. It is worth noting that as a by-product of Prop. 3.3 and Prop. 3.5, we have also fully characterized the circumstances under which collapses of classical connectives are produced via fibring, namely, when we are dealing with two copies of a Boolean connective that is not very significant.

Some of the results and the general techniques used in this paper are, nonetheless, applicable well beyond classical logic. Overall, the present investigation may be seen as an application of the recent semantic characterization of disjoint fibring in Marcelino and Caleiro (2017), which uses in a fundamental way the advantages of the non-deterministic environment permitted by Nmatrices. The myriad of interesting subclassical logics that are obtained in all the cases in which the combination of classical fragments fails to be classical, as illustrated in most of the examples, are an immediate by-product of this semantic technology and that allow the results hereby obtained to extend in a non-trivial way the preliminary results in Caleiro et al. (2017).

A more comprehensive understanding of fibred logics, even beyond the disjoint case, is an obvious avenue for future research. But several other narrower alleys have been opened by the work reported in this paper. For a start, despite having done so for all the examples analyzed, we have not been able to obtain a general categorization of the cases when the logic combining two fragments of classical logic fails to be finitely valued yet still happens to be finitely Nvalued. It seems that a deeper understanding of finite–Nvaluedness is still lacking, parallel to the results of Caleiro et al. (2018) with respect to finite-valuedness. We have also not managed to prove in a systematic way the completeness of the calculi obtained by the addition of new interaction rules directly from the Nmatrices characterizing the fibring of the underlying fragments of classical logic (note that the resulting calculi are known to be complete, as a result of the techniques introduced by Rautenberg in his notable paper (Rautenberg 1981)). We left these completeness proofs open in a few of the examples, as the notion of a valuation respecting an inference rule turns out to be less innocent than it might seem. In order to systematically tackle this problem, it seems that one should try to employ the technique of ’rexpansions,’ from Avron and Zohar (2017), which advocates first expanding the Nmatrix at hand in order to be able to split conflicting behaviors in the evaluation of connectives, that may then be simply refined (pursed from an undesired value) when one needs to impose an additional rule on it. The completeness proofs we included in our examples are basic instances of the rexpansion technique. Another, more general but related, path to pursue is targeting a deeper understanding of the algebraic properties of Nmatrices. A good example of the perplexities brought about by such a seemingly innocent extension of the notion of logical matrix concerns the definition of derived connectives by abbreviation, which amounts to a straightforward matter for operations on matrices but which brings unsuspected difficulties in Nmatrices. 2 In particular, a better understanding of more general applicability conditions for our Prop. 2.11 can very well depend on such a fundamental study of Nmatrices. Finally, it is important to get a better grip on the role of saturation in the process of fibring logics, and its interplay with strict products of Nmatrices. As we have seen, it is sometimes sufficient to require k-saturation for finite k; we believe though that other milder forms of saturation may play a key role in obtaining simpler (in particular, denumerable) semantics for combined logics.

In closing, it is worth noting that the essential role played by the saturation requirement in order to explain the semantics of the combined logics seems to suggest that the

\footnote{The problem is that, while it is true that any logical matrix M and any translation $t : \Xi \rightarrow L_2(P)$ allow one to interpret unambiguously any derived connective, so that $\text{Val}_P(M^T) = \{v \circ t : v \in \text{Val}_P(M)\}$, the latter equality is not true, in general, if M is an Nmatrix. For an example of that, suppose the 1-place derived connective $\sim \in \Xi$ is introduced through t as $\lambda P_1. P_1 \equiv \top$, where \equiv is the Boolean implication and \top is an unrestrained 0-place connective. In that case, the induced Nmatrix M^T would take $\sim_{M^T} = \{0, 1\}$, while the original Nmatrix M can only allow \sim_M to be affirmation connective or the negation connective.}
emergence of interaction principles is connected with a lack of expressiveness of the standard Tarskian framework for the study of logics (as hinted also in Coniglio (2007)) and that the outcome of the present investigation would be entirely different if we were to adopt multiple-conclusion logics, after Shoesmith and Smiley (1978).

Acknowledgements This research was done under the scope of R&D Unit 50008, funded by the applicable financial framework (FCT/MEC, UID/EEA/50008/2013, through national funds and when applicable cofunded by FEDER/PT2020) and is part of the MoLC initiative of SQIG at Instituto de Telecomunicações. The third author was partially funded by CNPq.

Compliance with ethical standards

Conflict of interest The authors declared that they have no conflict of interest.

Ethical approval This article does not contain any studies with human participants or animals performed by any of the authors.

References

Avron A (2009) Multi-valued semantics: why and how. Studia Logica 92:163–182
Avron A, Zohar Y (2017) Non-deterministic matrices in action: expansions, refinements, and reexpansions. In: 2017 IEEE 47th international symposium on multiple-valued logic (ISMVL), pp 118–123
Béziau J-Y, Coniglio M (2011) To distribute or not to distribute? Logic J IGPL 19(4):566–583
Burris SN, Sankappanavar HP (1981) A course in universal algebra. Springer, Berlin. http://www.thoralf.uwaterloo.ca/htdocs/ualg.html
Caleiro C, Ramos J (2007) Combining classical and intuitionistic implications. In: Konen B, Wolter F (eds) FroCoS 2007: frontiers of combining systems, LNLI. Springer, New York, pp 118–132
Caleiro C, Ramos J (2007) From fibering to cryptofibering: a solution to the collapsing problem. Logica Universalis 1:71–92
Caleiro C, Carnielli W, Rasga J, Sernadas C (2005) Fibering of logics as a universal construction. In: Gabbay D, Guenthner F (eds) Handbook of philosophical logic, vol 13, 2nd edn. Kluwer, Dordrecht, pp 123–187
Caleiro C, Marcelino S, Marcos J (2017) Merging fragments of classical logic. In: Dixon C, Finger M (eds) FroCoS 2017: frontiers of combining systems, 11th international symposium, Brasília, volume 10483 of LNCS. Springer, pp 298–315
Caleiro C, Marcelino S, Rivieccio U (2018) Characterizing finite-valuedness. Fuzzy Sets Syst 345:113–125
Carnielli W, Coniglio M, Gabbay D, Gouveia P, Sernadas C (2008) Analysis and synthesis of logics: how to cut and paste reasoning systems, vol 35. Applied logic series. Springer, New York
Coniglio M (2007) Recovering a logic from its fragments by meta-fibring. Logica Universalis 1(2):377–416
Corsini P, Leoreanu V (2009) Applications of hyperstructure theory (advances in mathematics). Springer, New York
del Cerro LF, Herzig A (1996) Combining classical and intuitionistic logic. Or: intuitionistic implication as a conditional. In: ProCoS 1996: frontiers of combining systems. Kluwer, pp 93–102
Gabbay D (1996) Fibred semantics and the weaving of logics: part 1. J Symb Logic 61:1057–1120
Gentzen GKE (1934) Untersuchungen über das logische Schließen I. Math Z 39:176–210
Grätzer G (1962) A representation theorem for multi-algebras. Arch Math 13:452–456
Humberstone L (2011) The connectives. MIT Press, Cambridge
Humberstone L (2015) Béziau on And and Or. In: Koslow A, Buchsbaum A (eds) The road to universal logic: Festschrift for 50th birthday of Jean-Yves Béziau, vol I. Springer, New York, pp 283–307
Lau D (2006) Function algebras on finite sets: basic course on many-valued logic and clone theory. Springer, New York
Marcelino S, Caleiro C (2017) On the characterization of fibred logics, with applications to conservativity and finite-valuedness. J Logic Comput 27(7):2063–2088
Marcelino S, Caleiro C (2017) Disjoint fibring of non-deterministic matrices. In: Logic, language, information, and computation: 24th international workshop, WoLLIC 2017 proceedings, London, UK, July 18–21, pp 242–255
Marcos J (2009) What is a non-truth-functional logic? Studia Logica 92:215–240
Post EL (1941) On the two-valued iterative systems of mathematical logic. Princeton University Press, Princeton
Rautenberg W (1981) 2-Element matrices. Studia Logica 40(4):315–353
Shoesmith DJ, Smiley TJ (1971) Deducibility and many-valuedness. J Symbol Logic 36(4):610–622
Shoesmith DJ, Smiley TJ (1978) Multiple-conclusion logic. Cambridge University Press, Cambridge
Wójcicki R (1974) Note on deducibility and many-valuedness. J Symbol Logic 39(3):563–566

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.