Embracing fragmentation to save reindeer from disease

Atle Mysterud1 \textcopyright | Olav Strand2 | Christer M. Rolandsen2 \textcopyright

1Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
2Norwegian Institute for Nature Research (NINA), Trondheim, Norway

\textbf{Abstract}

Space demanding mammalian species, such as reindeer, are in decline worldwide due to habitat loss and fragmentation. Policy to restore connectivity of reindeer habitat is now put to an abrupt halt in several areas because of an outbreak of Chronic Wasting Disease in Norway, and replaced with deliberate fragmentation of the landscape by enhancing barrier effects of linear structures.

\textbf{Keywords}

connectivity, fragmentation, reindeer, wildlife disease

1 | INTRODUCTION

Conservation biologists around the world are struggling to keep habitat well connected under the threat of human infrastructure development. Connectivity is vital to secure long-term gene flow and allow species migration under threat of climate change. Space demanding species in particular face severe limitations to movement with increasing human footprint on the planet (Tucker et al., 2018). Reindeer and caribou (\textit{Rangifer tarandus}), with their extensive migratory and nomadic space use behavior, are in decline worldwide (Vors & Boyce, 2009). Wild alpine reindeer in Norway form a northern and a southern Conservation area of Europe with distinct genetics from different glacial recolonization history, but comprise today 24 population management units due to an ever increasing fragmentation due to roads, railroads and tourist trails. The vast majority of studies show adverse impacts of human activity on reindeer and caribou space use (Johnson, Ehlers, & Seip, 2015; Plante, Dussault, Richard, & Côté, 2018; Vistnes & Nellemann, 2008). Genetic diversity of reindeer are already lowered in management units with low population sizes, and an overarching aim of conservation genetics is to restore lost connectivity (Kvie, Heggenes, Bårdesen, & Røed, 2019). To facilitate reindeer crossing and restore connectivity, the main road across the Hardangervidda mountains were from 2007 blocked for car traffic in sensitive periods when large herds (>1,000 animals) were within 3 km (Figure 1: site 1). In other areas, parking along road was banned (Figure 1: site 7 from 1992), and access roads to a tourist cabin were closed (Figure 1: site 3). In some areas roads are deliberately not cleaned for snow during winter to allow reindeer movements (Figure 1: site 5, 6, and 8), while another road was closed for private traffic only allowing shuttle busses to a large tourist cabin (Figure 1: site 9 since 2016). In one area, there are restrictions on seasonal opening times even for biking (Figure 1: site 2). In some areas heavy restrictions on development plans have been put in place by introduction of regional land management plans in 2013–2015 (e.g., in site 11, 12, and 13 in Figure 1).

2 | CHRONIC WASTING DISEASE OUTBREAK AMONG REINDEER

Promoting connectivity and studying the impact of human disturbance on reindeer and other wild ungulates has been a core focus of conservation biology in Norway...
This state-of-affairs changed abruptly with the first outbreak of chronic wasting disease (CWD) among reindeer detected in spring 2016 (Benestad, Mitchell, Simmons, Ytrehus, & Vikøren, 2016), with further cases detected with onset of surveillance fall 2016 (Mysterud et al., 2019). Facing CWD, we had to rethink our whole approach to conservation of reindeer in Norway, at least in the short-term. CWD is a contagious and lethal prion disease among cervids continuously spreading in USA and Canada since its emergence among wild deer in 1981 (Spraker et al., 1997). The infectious prions causing CWD are found in body fluids, and new individuals are infected through exposure via the oral route (Mathiason et al., 2009). CWD can transmit from animal to animal by direct contact, but over time environmental contamination of prions increases and becomes an important mode of transmission (Almberg, Cross, Johnson, Heisey, & Richards, 2011). The prions can persist in the environment for many years (Zabel & Ortega, 2017), and there are no effective management actions towards CWD once reaching an endemic stage (Uehlinger, Johnston, Bollinger, & Waldner, 2016). CWD has a slow epidemic growth, but has four decades later now come to the point of reaching high prevalence and causing population declines among deer in USA (DeVivo et al., 2017; Edmunds et al., 2016). CWD therefore have huge cultural and economic consequences (Bishop, 2004; Rivera, Brandt, Novakofski, & Mateus-Pinilla, 2019), and spillover to semi-domestic reindeer in Norway would threaten the whole Sami-herding culture (Mysterud & Tranulis, 2017).

3 | MANAGEMENT ACTIONS TO COMBAT CWD

The Norwegian authorities’ assessment was that the situation was so severe that they decided to eradicate the whole CWD-infected population with more than 2000 reindeer (Mysterud & Rolandsen, 2018; Mysterud, Strand, & Rolandsen, 2019), which was conducted from 10th of August 2017 to 1st of May 2018. After eradication, a minimum of 5 year fallowing period with a goal to keep the area free of reindeer was initiated due to the persistence of prions in the environment. An important management aim was to limit risk of spatial spread to nearby population units, in what constituted historically one large southern metapopulation of reindeer (Figure 1).
certainty regarding freedom-of-CWD in the adjacent pop-
ulation (Nordfjella zone 2), measures were taken also
towards more distant populations. With CWD, the hard-
won conservation efforts to restore connectivity were
abandoned: restriction on the use of the road across the
Hardangervidda mountains was lifted (Figure 1: site 1).
Personnel from the Norwegian Environment Agency
increased surveillance of approaching herds with instruc-
tions to use snowmobiles, helicopters or otherwise pre-
vent animals from crossing the road. Wildlife fences were
erected on shorter stretches of roads to further strengthen
the barrier effect (Figure 1: site 3 and 4). Deliberately
increasing fragmentation to save reindeer would be an
unthinkable idea before the emergence of CWD.

4 | CONTAGION AND
CONSERVATION OF
METAPOPULATIONS

The SLOSS (single large or several small) debate pro-
vides insight into how biodiversity can best be con-
served depending on spatial configuration: aggregated,
contiguous, or connected (Diamond, 1975). A key
insight point is how management decisions should
include an assessment of whether the threats are spa-
tially correlated, such as fires and emerging diseases
(Albers, Busby, Hamaide, Ando, & Polasky, 2016).
That well-connected metapopulations increase vulner-
ability to severe disease outbreaks was identified long
time ago (Hess, 1996), but awareness to this fact has
received little attention in practical conservation biol-
ogy. The issue of deliberate fragmentation of land-
scape to limit disease spread is relevant for a wide
range of wildlife diseases. Climate change weaken
condition of many alpine species making them more
vulnerable to disease outbreaks (Jones et al., 2008),
and human-mediated movement of pathogens pose a
considerable threat to wildlife populations and biodi-
versity more in general, especially when pathogens are
introduced into naïve populations (Daszak, Cunning-
ham, & Hyatt, 2000).

5 | ADAPTIVE BARRIERS AS
CONSERVATION TOOLS

Several fences to limit spread of African swine-fever
among wild boar in Europe are in place (Mysterud &
Rolandsen, 2019). Currently, CWD is penetrating north-
wards in Alberta (Alberta, 2020) and Saskatchewan
(Saskatchewan, 2020), Canada. Climate change further
extend the northern distribution ranges of mule deer
and white-tailed deer (Dawe, Bayne, & Boutin, 2014), the
species currently infected with CWD in Canada. This
makes spillover of CWD from deer to boreal caribou an
imminent threat, which may put the most iconic
populations of migratory caribou at risk. In Wyoming,
USA, there is a strong focus on retaining or restoring con-
nectivity (Sawyer, Kauffman, Nielson, & Horne, 2009),
but CWD is closing in also on these migratory populations.
Deliberately fragmenting the landscape to enhance bar-
rier effects of current linear structures appear as a pain-
ful question to be considered more often in conservation
biology in years to come. This provide a delicate bal-
ance, as wildlife managers and local and regional stake-
holders working to secure reindeer habitat are up
against actors readily exploiting new arguments to build
infrastructure with the long-term detriment to habitat
(Hebblewhite, 2017). Adaptively adjusting barriers to
current threats provide one possibility (Figure 1),
though we lack a solid evidence-base for how reindeer
respond to different kinds of barriers. We urge for inno-
ative conservation tactics to solve the tradeoff between
genetic and demographic costs of fragmentation on one
side and emerging pathogens on the other.

ACKNOWLEDGMENTS
We acknowledge our institutions for support, University
of Oslo (AM) and Norwegian institute for nature research
(OS and CMR).

CONFLICT OF INTEREST
The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS
Atle Mysterud drafted the article after idea and sugges-
tion from Olav Strand and Christer Rolandsen. All
authors contributed notably to further drafts and devel-
opment of concepts. Olav Strand made the figure.

ETHICS STATEMENT
No animals were used in this study.

DATA AVAILABILITY STATEMENT
This article contains no data.

ORCID
Atle Mysterud https://orcid.org/0000-0001-8993-7382
Christer M. Rolandsen https://orcid.org/0000-0002-
5628-0385

REFERENCES
Albers, H. J., Busby, G. M., Hamaide, B., Ando, A. W., & Polasky, S.
(2016). Spatially-correlated risk in nature reserve site selection.
PLoS One, 11, e0146023.
Alberta. (2020). Chronic Wasting Disease – Updates. https://www.alberta.ca/chronic-wasting-disease-updates.aspx.

Almberg, E. S., Cross, P. C., Johnson, C. J., Heisey, D. M., & Richards, B. J. (2011). Modeling routes of chronic wasting disease transmission: Environmental prion persistence promotes deer population decline and extinction. PLoS One, 6, e19896.

Benestad, S. L., Mitchell, G., Simmons, M., Ytrehus, B., & Vikøren, T. (2016). First case of chronic wasting disease in Europe in a Norwegian free-ranging reindeer. Veterinary Research, 47, 88.

Bishop, R. C. (2004). The economic impacts of chronic wasting disease (CWD) in Wisconsin. Human Dimensions of Wildlife, 9, 181–192.

Daszak, P., Cunningham, A. A., & Hyatt, A. D. (2000). Emerging infectious diseases of wildlife – Threats to biodiversity and human health. Science, 287, 443–449.

Dawe, K. L., Bayne, E. M., & Boutin, S. (2014). Influence of climate and human land use on the distribution of white-tailed deer (Odocoileus virginianus) in the western boreal forest. Canadian Journal of Zoology, 92, 353–363.

DeVivo, M. T., Edmunds, D. R., Kauffman, M. J., Schumaker, B. A., Binet, J., Kreeger, T. J., ... Cornish, T. E. (2017). Endemic chronic wasting disease causes mule deer population decline in Wyoming. PLoS One, 12, e0186512.

Diamond, J. M. (1975). The Island dilemma: Lessons of modern biogeographic studies for the design of natural reserves. Biological Conservation, 7, 129–146.

Edmunds, D. R., Kauffman, M. J., Schumaker, B. A., Lindzey, F. G., Cook, W. E., Kreeger, T. J., ... Cornish, T. E. (2016). Chronic wasting disease drives population decline of white-tailed deer. PLoS One, 11, e0161127.

Hebblewhite, M. (2017). Billion dollar boreal woodland caribou and the biodiversity impacts of the global oil and gas industry. Biological Conservation, 206, 102–111.

Hess, G. (1996). Disease in metapopulation models: Implications for conservation. Ecology, 77, 1617–1632.

Johnson, C. J., Ehlers, L. P. W., & Seip, D. R. (2015). Witnessing extinction – Cumulative impacts across landscapes and the future loss of an evolutionarily significant unit of woodland caribou in Canada. Biological Conservation, 186, 176–186.

Jones, K. E., Patel, N. G., Levy, M. A., Storeygard, A., Bark, D., Gittleman, J. L., & Daszak, P. (2008). Global trends in emerging infectious diseases. Nature, 451, 990–993.

Kvie, K. S., Heggenes, I., Bårdesen, B.-J., & Reed, K. H. (2019). Recent large-scale landscape changes, genetic drift and introductions characterize the genetic structure of Norwegian wild reindeer. Conservation Genetics, 20, 1405–1419.

Mathison, C. K., Hays, S. A., Powers, J., Hayes-Klug, J., Langenberg, J., Dahmes, S. J., ... Hoover, E. A. (2009). Infectious prions in pre-clinical deer and transmission of chronic wasting disease solely by environmental exposure. PLoS One, 4, e5916.

Mysterud, A., Madslien, K., Viljugrein, H., Vikoren, T., Andersen, R., Gjere, M. E., ... Vågå, J. (2019). The demographic pattern of infection with chronic wasting disease in reindeer at an early epidemic stage. Ecosphere, 10, e02931.

Mysterud, A., & Rolandsen, C. M. (2018). A reindeer cull to prevent chronic wasting disease in Europe. Nature Ecology and Evolution, 2, 1343–1345.

Mysterud, A., & Rolandsen, C. M. (2019). Fencing for wildlife disease control. Journal of Applied Ecology, 56, 519–525.

Mysterud, A., Strand, O., & Rolandsen, C. M. (2019). Efficacy of recreational hunters and marksmen for host culling to combat chronic wasting disease in reindeer. Wildlife Society Bulletin, 43, 683–692.

Mysterud, A., & Tranulis, M. (2017). Chronic wasting disease could overturn semi-domestic herding industry [in Norwegian]. Aftenposten 14 February 2017.

Panzacchi, M., Van Moorter, B., & Strand, O. (2013). A road in the middle of one of the last wild reindeer migration routes in Norway: Crossing behaviour and threats to conservation. Rangifer, 33, 15–26.

Plante, S., Dussault, C., Richard, J. H., & Clôté, S. D. (2018). Human disturbance effects and cumulative habitat loss in endangered migratory caribou. Biological Conservation, 224, 129–143.

Rivera, N. A., Brandt, A. L., Novakofski, J. E., & Mateus-Pinilla, N. E. (2019). Chronic wasting disease in cervids: Prevalence, impact and management strategies. Veterinary Medicine (Auckland, NZ), 10, 123–139.

Saskatchewan. (2020). Overview of chronic wasting disease in Saskatchewan. https://www.saskatchewan.ca/business/agriculture-natural-resources-and-industry/agribusiness-farmers-and-ranchers/livestock/animal-health-and-welfare/chronic-wasting-disease.

Sawyer, H., Kauffman, M. J., Nielsen, R. M., & Horne, J. S. (2009). Identifying and prioritizing ungulate migration routes for landscape-level conservation. Ecological Applications, 19, 2016–2025.

Spraker, T. R., Miller, M. W., Williams, E. S., Getzy, D. M., Adrian, W. J., Schoonveld, G. G., ... Merz, P. A. (1997). Spongiform encephalopathy in free-ranging mule deer (Odocoileus hemionus), white-tailed deer (Odocoileus virginianus) and Rocky Mountain elk (Cervus elaphus nelsoni) in northcentral Colorado. Journal of Wildlife Diseases, 33, 1–6.

Strand, O., Jordhøy, P., Panzacchi, M., & Van Moorter, B. (2015). Roads and wild reindeer. A summary of surveillance of RV7 over Hardangervidda [in Norwegian]. NINA rapport 1121.

Tucker, M. A., Böhning-Gaese, K., Fagan, W. F., Fryxell, J. M., Van Moorter, B., Alberts, S. C., ... Mueller, T. (2018). Moving in the Anthropicocene: Global reductions in terrestrial mammalian movements. Science, 359, 466–469.

Uehlinger, F. D., Johnston, A. C., Bollinger, T. K., & Waldner, C. L. (2016). Systematic review of management strategies to control chronic wasting disease in wild deer populations in North America. BMC Veterinary Research, 12, 1–16.

Vistnes, I., & Nelliemann, C. (2008). The matter of spatial and temporal scales: A review of reindeer and caribou response to human activity. Polar Biology, 31, 399–407.

Vors, L. S., & Boyce, M. S. (2009). Global declines of caribou and reindeer. Global Change Biology, 15, 2626–2633.

Zabel, M., & Ortega, A. (2017). The ecology of prions. Microbiology and Molecular Biology Reviews, 81, e00001–e00017.

How to cite this article: Mysterud A, Strand O, Rolandsen CM. Embracing fragmentation to save reindeer from disease. Conservation Science and Practice. 2020;2:e244. https://doi.org/10.1111/csp2.244