STABLE COHOMOLOGY OF ALTERNATING GROUPS

FEDOR BOGOMOLOV1 AND CHRISTIAN BÖHNING2

ABSTRACT. In this article we determine the stable cohomology groups $H^i_s(\mathfrak{A}_n, \mathbb{Z}/p\mathbb{Z})$ of the alternating groups \mathfrak{A}_n for all integers n and i, and all primes p.

1. Introduction and preliminaries

Let G be a finite group, V a finite-dimensional generically free complex representation of G, and let $V^L \subset V$ be the nonempty open subset of V on which the G-action is free. There is then a natural homotopy class of maps from the classifying space $B G$ to V^L/G which, for each nonempty G-invariant Zariski open subset $U \subset V^L$ gives maps $H^i(G, \mathbb{Z}/p\mathbb{Z}) \to H^i(U/G, \mathbb{Z}/p\mathbb{Z})$. It turns out that the kernel $K_{G, V}$ of $H^i(G, \mathbb{Z}/p\mathbb{Z}) \to \varprojlim \oplus_{U} H^i(U/G, \mathbb{Z}/p\mathbb{Z})$ is independent of V, and the stable cohomology $H^i_s(G, \mathbb{Z}/p\mathbb{Z})$ is defined to be the quotient $H^i(G, \mathbb{Z}/p\mathbb{Z})/K_{G, V}$. Algebraically, $H^i_s(G, \mathbb{Z}/p\mathbb{Z})$ can be identified with the image of $H^i(G, \mathbb{Z}/p\mathbb{Z})$ in $H^i(\text{Gal}(K), \mathbb{Z}/p\mathbb{Z})$.

More accessible computationally and stable birational invariants of the function field K are the unramified cohomology groups $H^i_{nr}(G, \mathbb{Z}/p\mathbb{Z})$ defined as follows: geometrically, the unramified cohomology classes a inside $H^i_s(G, \mathbb{Z}/p\mathbb{Z})$ are those for which, given any divisorial valuation ν_D of K, there exists a normal model $X = X_D$ of K on which ν_D has a center, an isomorphism $i : U_X \to U_{V^L/G}$ between nonempty open subsets U_X of X and $U_{V^L/G}$ of V^L/G, and a representative a' of a in $H^i(U_{V^L/G}, \mathbb{Z}/p\mathbb{Z})$ such that there is a class $b \in H^i(X, \mathbb{Z}/p\mathbb{Z})$ whose image in $H^i(U_X, \mathbb{Z}/p\mathbb{Z})$ coincides with $i^*(a')$. More algebraically, if $\mathcal{O}_\nu \subset K$ is the valuation ring of ν, $\kappa_\nu = \mathcal{O}_\nu / \mathfrak{m}_\nu$ its residue field, $S = \text{Spec}(\mathcal{O}_\nu)$ with open subset the generic point $U = \text{Spec}(K) \subset S$

1 Supported by NSF grant DMS-1001662 and by AG Laboratory GU-HSE grant RF government ag. 11 11.G34.31.0023.

2 Supported by the German Research Foundation (Deutsche Forschungsgemeinschaft) through Heisenberg-Stipendium BO 3699/1-1.
and complement the closed point $Z = \text{Spec}(\kappa_\nu) \subset S$, one can write down the long exact sequence of étale cohomology with supports

$$\cdots \to H^i(S, \mathbb{Z}/p) \to H^i(U, \mathbb{Z}/p) \to H^{i+1}_Z(S, \mathbb{Z}/p) \to H^{i+1}(S, \mathbb{Z}/p) \to \cdots$$

where $H^i(U, \mathbb{Z}/p) \simeq H^i(\text{Gal}(K), \mathbb{Z}/p)$ and there is the cohomological purity isomorphism

$$H^i_Z(S, \mathbb{Z}/p) \simeq H^{i-2}(Z, \mathbb{Z}/p)$$

whence the preceding sequence becomes the Gysin sequence

$$\cdots \to H^i_{\text{ét}}(S, \mathbb{Z}/p) \xrightarrow{\partial_\nu} H^i(\text{Gal}(K), \mathbb{Z}/p) \xrightarrow{r_\nu} H^{i+1}_Z(S, \mathbb{Z}/p) \to H^{i+1}(S, \mathbb{Z}/p) \to \cdots$$

A class in $H^i(\text{Gal}(K), \mathbb{Z}/p)$ is clearly unramified according to the geometric definition if and only if it is in the image of all maps r_ν for ν running over the divisorial valuations of K, i.e. equivalently if it is in the kernel of all maps ∂_ν, the residue maps. The preceding sequence has as topological analogue the Borel-Moore long exact sequence. The residue map

$$\partial_\nu : H^i(\text{Gal}(K), \mathbb{Z}/p) \to H^{i-1}(\text{Gal}(\kappa_\nu), \mathbb{Z}/p)$$

agrees -up to a sign- with the following map defined entirely within the framework of Galois cohomology (see e.g. [GMS], Chap. II of Serre’s part, §6 and §7): extend ν in some way to a valuation ν^* on \bar{K} which is possible by Chevalley’s theorem; all such extensions are conjugate under $\Gamma = \text{Gal}(K)$, and ν^* defines subgroups $\Gamma_Z \subset \Gamma$ (the decomposition group, Zerlegungsgruppe) and $\Gamma_T \subset \Gamma$ (the inertia subgroup, Trägheitsgruppe) by the conditions that $\sigma \in \Gamma$ is in Γ_Z if $\sigma \cdot \nu^*$ and ν^* are equivalent valuations, i.e. have the same valuation ring, and Γ_T consists of those σ such that $\sigma \cdot x - x \in M_{\nu^*}$ for all x in the valuation ring of ν^* whose maximal ideal we denoted by M_{ν^*}. The decomposition group can be identified with the Galois group $\text{Gal}(\bar{K}_\nu/K_\nu)$ of the completion of K with respect to ν. The residue map ∂_ν then factors over the restriction to the decomposition group

$$\partial_\nu : H^i(\text{Gal}(K), \mathbb{Z}/p) \to H^i(\text{Gal}(K_\nu), \mathbb{Z}/p) \xrightarrow{r_\nu} H^{i-1}(\text{Gal}(\kappa_\nu), \mathbb{Z}/p)$$

where the second arrow has the following description in the local situation: the Galois group $\Gamma_{K_\nu} = \text{Gal}(K_\nu)$ sits in the exact sequence

$$1 \to I \to \Gamma_{K_\nu} \to \Gamma_{\kappa_\nu} = \text{Gal}(\kappa_\nu) \to 1$$

where the surjection is given by the fact that ν extends uniquely to \bar{K}_ν and the residue field of the extension is an algebraic closure of κ_ν. The kernel is the inertia subgroup which we denote by I in this
context, and it is topologically cyclic, \(I \simeq \hat{\mathbb{Z}} \), corresponding to taking roots of the uniformizing parameter, and the preceding sequence splits, \(\Gamma_{K_u} \simeq \hat{\mathbb{Z}} \oplus \text{Gal}(\kappa_u) \). As \(\hat{\mathbb{Z}} \) has cohomological dimension 1, one gets \(H^i(\Gamma_{K_u}, \mathbb{Z}/p) \simeq H^i(\Gamma_{\kappa_u}, \mathbb{Z}/p\mathbb{Z}) \oplus H^{i-1}(\Gamma_{\kappa_u}, \mathbb{Z}/p\mathbb{Z}) \) and a projection, which is independent of the splitting, \(H^i(\text{Gal}(K_u), \mathbb{Z}/p) \to H^{i-1}(\text{Gal}(\kappa_u), \mathbb{Z}/p) \), defining the second arrow in the sequence of maps yielding \(\partial \nu \). More precisely, the Hochschild-Serre spectral sequence of the group extension of \(\Gamma_{\kappa_u} \) by \(I \)

\[
H^p(\Gamma_{\kappa_u}, H^q(I, \mathbb{Z}/p)) \implies H^p(\Gamma_{K_u}, \mathbb{Z}/p)
\]

reduces to a long exact sequence as \(H^i(I, \mathbb{Z}/p) = 0 \) for \(i \geq 2 \), \(H^0(I, \mathbb{Z}/p) = \mathbb{Z}/p \), \(H^1(I, \mathbb{Z}/p) = \text{Hom}(I, \mathbb{Z}/p) = \mathbb{Z}/p \), which reads

\[
\cdots \to H^i(\Gamma_{\kappa_u}, \mathbb{Z}/p) \to H^i(\Gamma_{\kappa_u}, \mathbb{Z}/p) \to H^{i-1}(\Gamma_{\kappa_u}, \text{Hom}(\hat{\mathbb{Z}}, \mathbb{Z}/p)) \to \to H^{i+1}(\Gamma_{\kappa_u}, \mathbb{Z}/p) \to H^{i+1}(\Gamma_{K_u}, \mathbb{Z}/p) \to \cdots
\]

and the fact that the extension splits implies that this long exact sequence breaks into short exact sequences

\[
0 \to H^i(\Gamma_{\kappa_u}, \mathbb{Z}/p) \to H^i(\Gamma_{K_u}, \mathbb{Z}/p) \xrightarrow{r} H^{i-1}(\Gamma_{\kappa_u}, \mathbb{Z}/p)
\]

where \(r \) can also be explicitly described in terms of cocycles, see [GMS], p.16.

In [B-P] the following theorem was proven (loc. cit, Theorem 5.1):

Theorem 1.1. There is a natural isomorphism \(H_\ast^s(\mathfrak{A}_{2n+1}, \mathbb{Z}/2\mathbb{Z}) \simeq H_\ast^s(\mathfrak{A}_{2n}, \mathbb{Z}/2\mathbb{Z}) \), and as a \(\mathbb{Z}/2\mathbb{Z} \)-vector space

\[
H_\ast^s(\mathfrak{A}_{2n}, \mathbb{Z}/2\mathbb{Z}) = \bigoplus_{0 \leq i \leq n} \mathbb{Z}/2\mathbb{Z} \cdot w_{2i} \oplus \bigoplus_{0 < i \leq n} \mathbb{Z}/2\mathbb{Z} \cdot u_1 \wedge w_{2i}
\]

where \(w_j \) are the (images in stable cohomology of) the Stiefel-Whitney classes in \(H^j(\mathfrak{A}_{2n}, \mathbb{Z}/2\mathbb{Z}) \) obtained from the cohomology ring of the real orthogonal group \(O(2n) \) via the inclusions \(\mathfrak{A}_{2n} \subset \mathfrak{S}_{2n} \subset \mathfrak{O}(2n) \). The class \(u_1 \) is a one-dimensional cohomology class which can be described as follows:

Putting \(N = 2n \), the group \(\mathfrak{S}_N \) acts generically freely on the complement \(\mathbb{C}^{N-1} - H \) of the braid hyperplane arrangement \(H \) in the standard permutation representation \(\mathbb{C}^{N-1} \), and \((\mathbb{C}^{N-1} - H)/\mathfrak{S}_N \simeq \mathbb{C}^{N-1} - \Delta \), the complement of the discriminant. Taking a nonramified double covering \(\mathbb{C}^{N-1} - \Delta \) of \(\mathbb{C}^{N-1} - \Delta \) corresponding to the inclusion \(\mathfrak{A}_N \subset \mathfrak{S}_N \), one gets a description of \(u_1 \) as the generator of \(H^1(\mathbb{C}^{N-1} - \Delta) \) given by the root of the discriminant.
In our Theorem 3.6 we determine $H_*(\mathcal{A}_N, \mathbb{Z}/p\mathbb{Z})$ completely for odd primes p.

We base our approach to the computation of the stable cohomology of alternating groups on the following lemmas.

Lemma 1.2. Suppose a group is a product $G \times A$ of finite groups G and A with A abelian. Then there is the Künneth decomposition

$$H_*^s(G \times A, \mathbb{Z}/p) \cong \bigoplus_{i+j=n} H_*^s(G, \mathbb{Z}/p) \otimes H_*^j(A, \mathbb{Z}/p).$$

Proof. It is known (Bogo93, Lemma 7.1) that if we choose a free presentation $\pi : \mathbb{Z}^n \twoheadrightarrow A$ of A, then the kernel of the stabilization map coincides with the kernel of π^*. In other words, if one realizes \mathbb{Z}^n as the fundamental group of some algebraic torus T, with cover $T' \rightarrow T \simeq T'/A$ corresponding to A, and realizes T' as a maximal torus in some $\text{GL}(W)$, then stabilization is achieved by considering the image of the cohomology of A in the cohomology of $T \simeq T'/A \subset W^L/A$. This is so because one can find a product of circles $(S^1)^m$ in the complement of any divisor D in $T \simeq (\mathbb{C}^*)^m$, the inclusion being a homotopy equivalence, so the cohomology of T is already stable. The product of circles can be found by induction on the dimension m of T; if $m = 1$, one chooses a circle in the complex plane \mathbb{C} not passing through the finite number of points which D consists of. If $m > 1$, one views T as a subset of W, which is stratified into torus orbits of lower dimension. Each of these is isomorphic to an algebraic tori. Choose a codimension 1 torus orbit T_1 adjacent to T. The closure \bar{D} inside W of a divisor $D \subset T$ meets T_1 in a proper algebraic subset, and by the induction hypothesis there is a real submanifold $M \simeq (S^1)^{m-1}$ in the complement of $D \cap T_1$. If x_1, \ldots, x_m are coordinates in W such that $T = \{x_i \neq 0 \forall i\}$, $T_1 = \{x_1 = 0 \land x_j \neq 0 \forall j \neq 1\}$, then $W = W' \oplus \mathbb{C}$ where $W' = \{x_1 = 0\}$. If we choose a small circle $S_\varepsilon \subset \mathbb{C}$, then $M \times S_\varepsilon \subset W$ will be in a small neighbourhood of M hence will not intersect D.

This argument can be made relative: note first that there is always a natural surjection $H_*^s(G, \mathbb{Z}/p) \otimes H_*^s(A, \mathbb{Z}/p) \twoheadrightarrow H_*^s(G \times A, \mathbb{Z}/p)$ as the Zariski topology on a product is finer than the product topology, and to show it is an isomorphism, it suffices to note the following: suppose $T \simeq (\mathbb{C}^*)^m \simeq T'/A$ is as before, and V is a generically free G-representation, V^L the open part where the action is free. Then if $D \subset (V^L/G) \times T$ is any divisor, there is always a divisor $D' \subset V^L/G$
and a relatively compact subset \(U^L/G \subset V^L/G - D' \) with a (trivial) iterated circle fibration \(U^L/G \times (S^1)^m \subset ((V^L/G) \times T) - D \) such that \(U^L/G \times (S^1)^m \) and \((V^L/G) \times T) - D \) are homotopy equivalent.

Indeed, viewing \(V^L/G \times T \subset V^L/G \times W \), the latter being a vector bundle, we have a zero section \(V^L/G \subset V^L/G \times W \). Moreover, \(\tilde{D} \cap V^L/G \), where \(\tilde{D} \) is the closure of \(D \) in \(V^L/G \times W \), will be contained in some divisor \(D' \). Shrinking \(V^L/G - D' \) slightly, we can find a relatively compact open subset \(U^L/G \subset V^L/G - D' \) homotopy equivalent to \(V^L/G - D' \) and with the claimed circle fibration.

We say that the stable cohomology \(H^*_s(G, \mathbb{Z}/p) \) is detected by abelian subgroups if the map induced by the restriction to abelian subgroups

\[
H^*_s(G, \mathbb{Z}/p) \longrightarrow \prod_A H^*_s(A, \mathbb{Z}/p)
\]

is injective (where \(A \) ranges over all abelian subgroups of \(G \)). We will then also use the following principle which follows from Lemma 1.2.

Lemma 1.3. Suppose \(G_1 \) and \(G_2 \) are finite groups such that at least one of \(H^*_s(G_1, \mathbb{Z}/p) \) or \(H^*_s(G_2, \mathbb{Z}/p) \) is detected by abelian subgroups. Then one has a K"{u}nneth formula in stable cohomology

\[
H^*_s(G_1 \times G_2, \mathbb{Z}/p) \simeq H^*_s(G_1, \mathbb{Z}/p) \otimes H^*_s(G_2, \mathbb{Z}/p).
\]

Proof. There is always the natural surjection

\[
H^*_s(G_1, \mathbb{Z}/p) \otimes H^*_s(G_2, \mathbb{Z}/p) \twoheadrightarrow H^*_s(G_1 \times G_2, \mathbb{Z}/p).
\]

Without loss of generality, we can assume that abelian subgroups \(A_i \) are a detecting family for the stable cohomology of \(G_1 \):

\[
H^*_s(G_1, \mathbb{Z}/p) \twoheadrightarrow \prod_{i \in I} H^*_s(A_i, \mathbb{Z}/p).
\]

Now by Lemma 1.2 there is an injection

\[
H^*_s(G_1, \mathbb{Z}/p) \otimes H^*_s(G_2, \mathbb{Z}/p) \hookrightarrow \prod_i H^*_s(A_i \times G_2, \mathbb{Z}/p).
\]

But \(i = (\prod \text{res}_{A_i \times G_2}) \circ p \) where

\[
\prod \text{res}_{A_i \times G_2} : H^*_s(G_1 \times G_2, \mathbb{Z}/p) \rightarrow \prod_i H^*_s(A_i \times G_2, \mathbb{Z}/p)
\]

is the product of restriction maps. Hence \(p \) is also injective.

Lemma 1.4. Let \(G \) be a finite group such that \(H^i_{nr}(G, \mathbb{Z}/p) = 0 \) for all \(i > 0 \). Then every stable class \(a \in H^*_s(G, \mathbb{Z}/p) \) is nontrivial on the centralizer \(C(g) \) of some element \(g \in G \), i.e. the restriction \(\text{res} : H^*_s(G, \mathbb{Z}/p) \rightarrow H^*_s(C(g), \mathbb{Z}/p) \) is nonzero.
Proof. With the notation established above we have the maps of groups

\[I \subset \text{Gal}(K_\nu) \subset \text{Gal}(K) \to G, \]

and the image of the inertia subgroup \(I \) in \(G \) is cyclic, generated by \(g \) say, and the image of the decomposition group \(\text{Gal}(K_\nu) \) in \(G \) belongs to the centralizer \(C(g) \). As the residue map \(\partial_\nu \) factors over \(\text{Gal}(K_\nu) \), we obtain the assertion. \(\square \)

Recall the exact sequence

\[1 \to I \to \Gamma_{K_\nu} \to \Gamma_{K_\nu} \to 1 \]

where \(I \) is the inertia subgroup of the decomposition group \(\Gamma_{K_\nu} \) associated to the valuation \(\nu \) of \(K = \mathbb{C}(V)^G \). The following Lemma allows one to increase the usefulness of Lemma 1.4 in inductive arguments further.

Lemma 1.5. Let \(G \) be a finite group and let \(a \in H^n_\ast(G, \mathbb{Z}/p) \) be a stable class. For \(\nu \) a divisorial valuation of \(K \), the image of the topologically cyclic inertia subgroup \(I \) in \(G \) is cyclic, generated by \(h \) say. There is a natural class \(d_\nu(a) \in H^{n-1}_\ast(Z_G(h), \mathbb{Z}/p) \) such that the residue \(\partial_\nu(a) \in H^{n-1}(\Gamma_{K_\nu}, \mathbb{Z}/p) \) is the pull-back of \(d_\nu(a) \) to \(\Gamma_{K_\nu} \) via the maps \(\Gamma_{K_\nu} \subset \Gamma_{K_\nu} \cong I \oplus \Gamma_{K_\nu} \to Z(h) \).

Proof. Consider the commutative diagram

\[
\begin{array}{cccccc}
1 & \to & I & \to & \Gamma_{K_\nu} & \to & \Gamma_{K_\nu} & \to & 1 \\
\uparrow & & \uparrow & & \uparrow & & \uparrow & & \uparrow \\
1 & \to & \langle h \rangle & \to & Z(h) & \to & Z(h)/\langle h \rangle & \to & 1 \\
\downarrow & & f & \downarrow g & & & & & \\
1 & \to & \langle h \rangle & \to & \langle h \rangle \times Z(h) & \to & Z(h) & \to & 1 \\
\end{array}
\]

where the arrow \(a \) is the identity, \(b \) is the couple \((i_{\langle h \rangle}, \text{id}_{Z(h)})\) where \(i_{\langle h \rangle} : \langle h \rangle \to Z(h) \) is the inclusion, and \(c \) is the projection. Here \(f \) and \(g \) are defined as follows: the extension defining \(\Gamma_{K_\nu} \) splits, \(\Gamma_{K_\nu} \cong \hat{\mathbb{Z}} \oplus \Gamma_{K_\nu} \), so the map \(\Gamma_{K_\nu} \to Z(h)/\langle h \rangle \) lifts to a map \(g_1 : \Gamma_{K_\nu} \to Z(h) \). The map \(g \) is simply \((1, g_1)\). The map \(f \) is \((f_1, 1)\) where \(f_1 : I \to \langle h \rangle \) is the natural map. As \(\hat{\mathbb{Z}} \) has cohomological dimension one, \(H^i(\Gamma_{K_\nu}, \mathbb{Z}/p) \cong H^{i-1}(\Gamma_{K_\nu}, \mathbb{Z}/p) \oplus H^i(\Gamma_{K_\nu}, \mathbb{Z}/p) \) and the residue map \(\partial_\nu \) was defined by the restriction of \(a \to \Gamma_{K_\nu} \) and projecting to \(H^{i-1}(\Gamma_{K_\nu}, \mathbb{Z}/p) \). By the commutativity of the diagram, we may thus define a class \(d_\nu(a) \) with the requested properties as follows: we restrict \(a \in H^n_\ast(G, \mathbb{Z}/p) \) to \(Z(h) \), and then take the pull-back
1.2. This defines $\text{H}^n_\text{d}(\text{H}) \times \text{Z}/(h), \text{Z}/p)$ and project this unto the component $\text{H}^n_{\text{d}}(\text{H})$ in the K"unneth decomposition, using Lemma 1.2. This defines $d_n(a) \in \text{H}^n_{\text{d}}(\text{H})$, $\text{Z}/p).$

Define a subgroup H of G recursively to be an iterated centralizer if it is the centralizer of an element in G or a centralizer of an element inside another iterated centralizer.

Corollary 1.6. Assume that G is such that each iterated centralizer has trivial unramified cohomology. Then any element $a \in \text{H}^n_\text{d}(G, \text{Z}/p)$ is nontrivial on some abelian p-subgroup.

Proof. We use induction on the cohomological degree, hence assume that every element in $\text{H}^i_\text{d}(H, \text{Z}/p)$, for all $i < n$, and for all iterated centralizers H in G, is nontrivial on some abelian subgroup. By assumption, we get from Lemma 1.5 that $d_n(a) \in \text{H}^n_{\text{d}}(\text{H})$ is nontrivial for some h. Hence $d_n(a)$ is nontrivial on some abelian p-subgroup A of $\text{Z}(h)$. By the construction of $d_n(a)$ in Lemma 1.5 we have that a will then be nontrivial when restricted to $\text{H}^n_{\text{d}}(\langle h, A \rangle, \text{Z}/p)$ where $\langle h, A \rangle$ is the abelian subgroup of G generated by h and A. □

The Steenrod power operations S^j, P^j (see [Steen], [A-M] II.2) are natural transformations

$$S^j : \text{H}^j(X, \text{Z}/2) \to \text{H}^{j+i}(X, \text{Z}/2),$$

$$P^j : \text{H}^j(X, \text{Z}/p) \to \text{H}^{j+2i(p-1)}(X, \text{Z}/p), \text{p an odd prime},$$

on the category of CW-complexes with continuous maps $f : X \to Y$. By functoriality, applied to the map $B \to (V^G) - D$, where D is some divisor, S^j, P^j induce operations on $\text{H}^n_{\text{d}}(G, \text{Z}/p)$.

For later use, we recall here the structure theorem for the cohomology of wreath products due to Steenrod [Steen], Section VII, see also [Mann78], Theorem 3.1 and [A-M], IV. 4, Theorem 4.1. We suppress the $\text{Z}/p\text{Z}$-coefficients in cohomology groups now, i.e. write $H^*(X, \text{Z}/p\text{Z})$.

Theorem 1.7. Let H be a group, and let $H \ltimes \text{Z}/p = (H)^p \rtimes \text{Z}/p$ be the wreath product where $\text{Z}/p\text{Z}$ acts by cyclically permuting the copies of H.

Let $\text{id} \times \Delta^p : \text{Z}/p\text{Z} \times H \to \text{Z}/p\text{Z} \times (H)^p$ be the inclusion $(\text{id} \times \Delta^p)(z, a) = (z; (a, \ldots, a))$ (p-times a) and denote by $t : H^*(H^p) \to H^*(H \ltimes \text{Z}/p)$ the transfer. Then the sequence

$$H^*(H^p) \xrightarrow{t} H^*(H \ltimes \text{Z}/p) \xrightarrow{(\text{id} \times \Delta^p)^*} H^*(\text{Z}/p\text{Z} \times H)$$
is exact.

Moreover, for any $u \in H^j(H)$ there is a class $P(u) \in H^{jp}(H \wr \mathbb{Z}/p)$ (constructed by Steenrod) such that

(i) If $j : H^p \to \mathbb{Z}/p\mathbb{Z} \times (H)^p$ is the natural inclusion, then $j^*(P(u)) = u^{\otimes p}$.

(ii) In the Künneth decomposition of $(\text{id} \times \Delta^p)^*(P(u))$ in $H^*(\mathbb{Z}/p\mathbb{Z} \times H)$ we have

$$(\text{id} \times \Delta^p)^*(P(u)) = \Sigma w_k \otimes D_k(u)$$

where w_k is a generator of $H^k(\mathbb{Z}/p\mathbb{Z})$ and $D_k : H^q(H) \to H^{q-k}(H)$ are homomorphisms which satisfy

(iii)

$$\beta D_{2k}(u) = D_{2k-1}(u), \beta D_{2k-1}(u) = 0, \beta D_0(u) = 0$$

where β is the Bockstein homomorphism, i.e. connecting homomorphism in the long exact sequence coming from the short exact sequence

$$0 \to \mathbb{Z}/p\mathbb{Z} \to \mathbb{Z}/p^2\mathbb{Z} \to \mathbb{Z}/p\mathbb{Z} \to 0.$$

The maps D_k are used originally by Steenrod to define the Steenrod powers P^i, hence the Hopf algebras (Steenrod algebras) $A(p)$.

More precisely,

$$P^i(u) = (-1)^{i+m(j+1)/2} (m!)^j D_{(p-1)(j-2)I}(u) \in H^{j+2(p-1)i}(H, \mathbb{Z}/p\mathbb{Z}) .$$

In this setting, any $c \in H^*(H \wr \mathbb{Z}/p)$ can be written as

$$c = t(c_1) + c_2 \cdot P(c_3)$$

with $c_1 \in H^*(H^p)$, $c_2 \in H^*(\mathbb{Z}/p\mathbb{Z})$ and $c_3 \in H^*(H)$.

Here we view $H^*(H \wr \mathbb{Z}/p)$ as a module over $H^*(\mathbb{Z}/p\mathbb{Z})$ via the cohomology pull-back induced by the surjection $H \wr \mathbb{Z}/p \to \mathbb{Z}/p\mathbb{Z}$. The Steenrod operations P^i have the following formal properties:

1. $P^0 = \text{id}$.
2. If $\dim(x) = 2n$, then $P^n(x) = x^p$.
3. If $2i > \dim(x)$, then $P^i(x) = 0$.
4. (Cartan formula) $P^i(x \cup y) = \sum_{j=0}^i P^j(x) \cup P^{i-j}(y)$.

A consequence of the Bloch-Kato conjecture (now a theorem by the work of Voevodsky, Rost and many others) is

Lemma 1.8. The Steenrod cohomology operations Sq^i, P^i are zero in stable cohomology $H^n_s(G, \mathbb{Z}/p\mathbb{Z})$.

Proof. Any stable class \(a \in H^*_s(G, \mathbb{Z}/p) \subset H^*(\text{Gal}(K), \mathbb{Z}/p) \) arises as the pull-back from some torus \(T \simeq (\mathbb{C}^*)^m \), more precisely, \(a \) has a representative \(a' \) in the cohomology of \(H^*((V^L/G) - D, \mathbb{Z}/p) \) and there is a regular map \(f : (V^L/G) - D \to T \) together with a class \(\hat{a} \in H^*(T, \mathbb{Z}/p) \) with \(f^*(\hat{a}) = a' \). This follows from the fact, which is a consequence of the Bloch-Kato conjecture, that \(H^*(\text{Gal}_{\text{ab}}(K), \mathbb{Z}/p) \to H^*(\text{Gal}(K), \mathbb{Z}/p) \) is surjective where \(\text{Gal}_{\text{ab}}(K) \) is the abelianized Galois group \(\text{Gal}(K)/[\text{Gal}(K), \text{Gal}(K)] \).

Since the Steenrod power operations are trivial in the cohomology algebra of the torus \(T \) (which is an exterior algebra on one-dimensional generators), the assertion of the Lemma will then follow from the functoriality of the cohomology operations.

It remains to explain in some more detail how from the surjection \(H^*(\text{Gal}_{\text{ab}}(K), \mathbb{Z}/p) \to H^*(\text{Gal}(K), \mathbb{Z}/p) \) we get the map \(f : (V^L/G) - D \to T \). There is a finite abelian quotient \(\text{Gal}(K) \to A \) such that \(a \) is induced from a class \(a'' \) in the cohomology of \(A \). The group \(A \) corresponds to an unramified abelian covering \(\tilde{X} \) of some nonempty open affine subvariety \(X \subset V^L/G \). The coordinate ring \(\mathbb{C}[\tilde{X}] \) contains an arbitrary finite dimensional representation of \(A \) as the regular functions on an \(A \)-orbit in \(\tilde{X} \) are precisely the regular representation \(\mathbb{C}[A] \) and this is also a subrepresentation (not only a quotient) because \(A \) is reductive. In particular, embedding \(A \) in a torus of diagonal matrices in some \(GL_m(\mathbb{C}) \), one obtains a dominant regular map from an open subset \(X' \) of \(X = \tilde{X}/A \), hence some \((V^L/G) - D \) to a torus \(T = (\mathbb{C}^m)^L/A \simeq (\mathbb{C}^*)^m \) for which it holds by construction that the image of the class \(a'' \) in the cohomology of \(T \) induces a representative \(a' \in H^*((V^L/G) - D, \mathbb{Z}/p) \) of \(a \). \(\square \)

Thus the techniques used in the present article are mainly topological in flavour; for the connection to motivic cohomology and further developments the reader may consult [Kahn-Su00], [Kahn11], [Ngu1], [Ngu2], [TY11].

2. Detection by elementary abelian \(p \)-subgroups

In this section we want to prove the following Theorem.

Theorem 2.1. Let \(p \) as always be an odd prime and \(\mathfrak{A}_N \) the alternating group on \(N \) letters. Then \(H^*_s(\mathfrak{A}_N, \mathbb{Z}/p) \) is detected by elementary abelian \(p \)-subgroups.

We denote by \(G_n = \mathbb{Z}/p\mathbb{Z} \times \cdots \times \mathbb{Z}/p\mathbb{Z} \) \((n \text{ factors})\) the iterated wreath product of \(n \) cyclic \(p \)-groups. This is the \(p \)-Sylow of \(\mathfrak{A}_p^e \). If \(N \) is
arbitrary (not necessarily a power of \(p \)) expand it in base \(p \):

\[
N = a_0 + a_1 p + \cdots + a_m p^m
\]

with \(0 \leq a_j < p \), \(a_m \neq 0 \), and note that this gives rise to a natural inclusion

\[
i_{a_1, \ldots, a_m} : \mathcal{A}_{a_1, \ldots, a_m} := \prod_{1}^{a_1} \mathcal{A}_p \times \prod_{1}^{a_2} \mathcal{A}_{p^2} \times \cdots \times \prod_{1}^{a_m} \mathcal{A}_{p^m} \hookrightarrow \mathcal{A}_N
\]

and that a \(p \)-Sylow subgroup in \(\mathcal{A}_N \) is given by the product of \(p \)-Sylow subgroups in the factors in \(\mathcal{A}_{a_1, \ldots, a_m} \). Hence it follows from Lemma 1.3 that it is enough to prove Theorem 2.1 for \(N = p^n \).

First we will prove the weaker

Theorem 2.2. The stable cohomology \(H^*_s(\mathcal{A}_N, \mathbb{Z}/p) \) is detected by abelian \(p \)-subgroups.

The proof of Theorem 2.2 will follow from the structures of centralizers in complete monomial groups.

Definition 2.3. Let \(H \) be a group. The **complete monomial group** of degree \(m \) on \(H \) is the group \(\Sigma_m(H) := H \wr \mathfrak{S}_m = (H)^m \rtimes \mathfrak{S}_m \), where \(\mathfrak{S}_m \) is the symmetric group on \(m \) letters.

A **monomial cycle** in \(\Sigma_m(H) \) is an element of the form \((h_1, \ldots, h_m); \sigma)\) where \(\sigma \in \mathfrak{S}_m \) is a cycle. The **determinant class** of a monomial cycle is the conjugacy class in \(H \) of the product \(h_1 \cdot \ldots \cdot h_m \). The **length** of a monomial cycle is the length of the underlying cycle \(\sigma \).

We have to recall some results from [Ore] on the structure of conjugacy classes and centralizers in groups \(\Sigma_m(H) \):

1. Two monomial cycles in \(\Sigma_m(H) \) are conjugate if and only if they have the same length and determinant class ([Ore], Theorem 6).
2. Any element \(x \in \Sigma_m(H) \) can be written uniquely as a product of commuting monomial cycles (the underlying cycles in \(\mathfrak{S}_m \) have no common variables) ([Ore], Theorem 3).
3. From (1) and (2) follows the description of conjugacy classes in \(\Sigma_m(H) \): two elements \(x', x \in \Sigma_m(H) \) are conjugate if the monomial cycles in their decompositions in (2) can be matched in such a way that corresponding cycles have the same length and determinant class.
4. Let \(c = ((h, \ldots, 1, 1); \sigma) \) be a monomial cycle of length \(m \) in \(\Sigma_m(H) \). Then its centralizer in \(\Sigma_m(H) \) is an extension

\[
1 \rightarrow Z_H(h) \rightarrow Z_{\Sigma_m(H)}(c) \rightarrow \mathbb{Z}/m \rightarrow 0
\]
In other words, the centralizer $Z_{\Sigma_m(H)}(c)$ is generated by c and the group $Z_H(h)$ embedded diagonally into $H^m \subset \Sigma_m(H)$.

(5) ([Ore], Theorem 8): Let $x = x_1 \cdot \ldots \cdot x_l$, $x_i = y_1^{(i)} \cdot \ldots \cdot y_{k_i}^{(i)}$ be the decomposition of an element x in $\Sigma_m(H)$ into disjoint monomial cycles $y_j^{(i)}$ as in (2), where we group the cycles of equal length and determinant class together: for fixed i, all $y_j^{(i)}$ have determinant class h_i and length n_i. Then the centralizer of x in $\Sigma_m(H)$ has a description as

$$Z_{\Sigma_m(H)}(x) = \prod_{i=1}^l \Sigma_{k_i}(Z_{\Sigma_{n_i}(H)}(y_1^{(i)}))$$

where as in (4) the centralizer of $y_1^{(i)}$ (or any $y_j^{(i)}$) in the group $\Sigma_{n_i}(H)$ is an extension

$$1 \to Z_H(h_i) \to Z_{\Sigma_{n_i}(H)}(y_1^{(i)}) \to \mathbb{Z}/n_i\mathbb{Z} \to 0.$$

From the last fact (5) we get immediately

Lemma 2.4. Let $\Sigma_m(A)$ be a complete monomial group with A abelian. Then the centralizer of any element x in $\Sigma_m(A)$ is a product of groups of the same type

$$Z_{\Sigma_m(A)}(x) = \prod_{h=1}^M \Sigma_{k_h}(A_h)$$

where the A_h are abelian.

Proof. It suffices to remark that any central extension of a cyclic group by an abelian group is again abelian. \(\square\)

To prove Theorem 2.2 it suffices, by the technique of Lemma 1.5 exposed above, to show the following.

Lemma 2.5. Let p be an odd prime and let x be an element of order a power of p in a group $A \wr \mathfrak{A}_m = A^m \rtimes \mathfrak{A}_m$ where A is an abelian p-group. Then there is a group

$$Z' = \prod_{h=1}^M A_h \wr \mathfrak{A}_{k_h}$$

where all the A_h are abelian p-groups, and with the property that Z' is contained in the centralizer $Z_{A \wr \mathfrak{A}_m}(x)$ and contains a p-Sylow of $Z_{A \wr \mathfrak{A}_m}(x)$.
Proof. We consider the group \(A \wr \mathfrak{A}_m \) as a subgroup of the complete monomial group \(\Sigma_m(A) \). By Lemma 2.4 it suffices to determine the intersection of \(Z_{\Sigma_m(A)}(x) = \prod_{h=1}^{M} \Sigma_{k_h}(A_h) \) and \(A \wr \mathfrak{A}_m \). As \(p \) is odd, it is clear that the intersection contains

\[
Z' = \prod_{h=1}^{M} A_h \wr \mathfrak{A}_{k_h}
\]

and that the complete centralizer \(Z_{A \wr \mathfrak{A}_m}(x) \) is an extension

\[
1 \rightarrow Z' \rightarrow Z_{A \wr \mathfrak{A}_m}(x) \rightarrow (\mathbb{Z}/2)^r \rightarrow 0
\]

where \((\mathbb{Z}/2)^r\) is an elementary abelian \(2 \)-group which can be identified with the kernel of the sign

\[
\prod_{h=1}^{M} \mathfrak{G}_{k_h} \subset \mathfrak{G}_{\Sigma_{k_h}} \rightarrow \{ \pm 1 \}
\]

modulo the subgroup \(\prod_{h=1}^{M} \mathfrak{A}_{k_h} \). The statement follows as \(p \) is odd. \(\square \)

Thus we obtain

Proof. (of Theorem 2.2) We will prove more generally that \(H^s_*(G, \mathbb{Z}/p) \) is detected by abelian \(p \)-subgroups where \(G \) is any group which is a product of groups \(A \wr \mathfrak{A}_m \) with \(A \) an abelian \(p \)-group. We have that \(H^s_*(G, \mathbb{Z}/p) \) is detected by \(H^s_*(\text{Syl}_p(G), \mathbb{Z}/p) \), and the higher unramified cohomology of \(\text{Syl}_p(G) \) is trivial. This follows immediately from \([B-P] \), Lemma 2.4, namely, if one forms a wreath product of groups, each of which has stably rational generically free linear quotients, then the wreath product inherits this property.

Hence every element \(a \) in \(H^s_*(G, \mathbb{Z}/p) \) will, in the notation of Lemma 1.5, give a nontrivial \(d_v(a) \in H^{n-1}_s(Z_G(h), \mathbb{Z}/p) \) for some element \(h \in G \) of \(p \)-power order. Thus it will be enough to show that \(H^{n-1}_s(Z_G(h), \mathbb{Z}/p) \) is detected by abelian \(p \)-subgroups. But \(H^{n-1}_s(Z_G(h), \mathbb{Z}/p) \) is detected by \(H^{n-1}_s(\text{Syl}_p(Z_G(h)), \mathbb{Z}/p) \) and, by Lemma 2.5, \(\text{Syl}_p(Z_G(h)) \) is contained in a group which in turn is contained in \(Z_G(h) \) and is again a product of groups of type \(A \wr \mathfrak{A}_m \). Hence we can conclude by induction on the cohomological degree \(n \). \(\square \)

Now we prove Theorem 2.1. It will follow immediately from

Proposition 2.6. Let \(N = p^n \), and suppose that \(A \) is an abelian \(p \)-subgroup of \(\mathfrak{A}_N \). Thus one can write

\[
A = \prod_{i=1}^{k} ((\mathbb{Z}/(p^i)))^{r_i}, \quad l_i, \ r_i \in \mathbb{N}.
\]

If A is not reduced to a single cyclic group $\mathbb{Z}/(p^I)$, then A is contained in a product of alternating groups $\prod_{j=1}^h \mathfrak{A}_t \subset \mathfrak{A}_N$ with $t_h < N$ for all h.

Once we have this Proposition, the proof of Theorem 2.1 is an induction: it suffices to prove it for $N = p^n$, and we may assume that detection by elementary abelian subgroups holds for the stable cohomology of all \mathfrak{A}_j with $j < N$. Now clearly, $H^1_s(\mathfrak{A}_N, \mathbb{Z}/p)$ is detected by elementary abelian p-subgroups, for $H^1_s(\mathfrak{A}_N, \mathbb{Z}/p) = 0$ unless $p = 3$ and $N = 3$ so that $\mathfrak{A}_N = \mathbb{Z}/3$. So we have to show that any stable class $a \in H^i_s(\mathfrak{A}_N, \mathbb{Z}/p)$ for $i \geq 2$ is nontrivial on an elementary abelian p-subgroup. By Theorem 2.2 a is nontrivial on an abelian p-subgroup A with $\text{rk}(A/pA) \geq 2$ (as the stable cohomology of A is an exterior algebra on $\text{rk}(A/pA)$ generators). Such an A is contained in a product of smaller alternating groups by Proposition 2.6. Thus the proof is complete by induction.

Proof. (of Proposition 2.6)
Denote by $X_N = \{1, \ldots, N\}$ the set of letters on which the ambient $S_N \supset A$ acts. Let

$$X_N = \prod_{\alpha} X_{N, \alpha}$$

be the decomposition of X_N into A-orbits. Let $X_{N,00} =: X$ be a fixed orbit. This orbit is isomorphic to a quotient \tilde{A} of A, hence a group of the same form

$$\tilde{A} = \prod_{i=1}^k (\mathbb{Z}/(p^I))^n_{i}$$

and the action of A on this orbit is via the regular representation of \tilde{A} on itself. In other words, A embeds into a subgroup $\prod_{\alpha} \tilde{A}_{\alpha}$ of \mathfrak{A}_N where each \tilde{A}_{α} is embedded into a subgroup $\mathfrak{A}_{\text{ord}(A_{\alpha})}$ via the regular representation.

In summary, it suffices to prove the statement of Proposition 2.6 for the case that the group A in its statement is embedded into the ambient \mathfrak{A}_N via the regular representation. We can write $A = A' \times \mathbb{Z}/(p^k)$ with $\text{rk}(A'/pA') < \text{rk}(A/pA)$. Moreover, by definition of the regular representation, the composition of arrows

$$A = A' \times \mathbb{Z}/(p^k) \hookrightarrow \mathfrak{A}_{|A'|} \times \mathbb{Z}/(p^k) \hookrightarrow \mathfrak{A}_{|A'|} \wr \mathbb{Z}/(p^k)$$

gives the regular representation of A where the first arrow \hookrightarrow from the left is induced by the regular representation of A', the second such arrow embeds $\mathfrak{A}_{|A'|} \times \mathbb{Z}/(p^k)$ into the wreath product $\mathfrak{A}_{|A'|} \wr \mathbb{Z}/(p^k)$ by
sending \((a; \sigma)\) to \((a, a, \ldots, a; \sigma)\) as usual, and the last arrow embeds the wreath product \(\mathfrak{A}_{|A'|} \wr \mathbb{Z}/(p^k)\) into \(\mathfrak{A}_{|A'|p^k}\) by partitioning the set of \(|A'| \cdot p^k\) objects which \(\mathfrak{A}_{|A'|p^k}\) permutes into \(p^k\) disjoint groups of \(|A'|\) objects, and letting \(\mathbb{Z}/(p^k)\) act by cyclically rotating these groups, and letting \((\mathfrak{A}_{|A'|})p^k\) act via permutations within these groups. It follows that

\[A \subset \mathfrak{A}_{|A'|} \times \mathfrak{A}_{p^k} \]

where now \(\mathfrak{A}_{p^k}\) is embedded into \(\mathfrak{A}_{|A'|}\) as arbitrary alternating (not only cyclic) permutations of the \(p^k\) groups of items. Note that elements of the two subgroups \(\mathfrak{A}_{p^k}\) and \(\mathfrak{A}_{|A'|}\) of the group \(\mathfrak{A}_{|A'|}\) commute, and the two subgroups intersect trivially, so that we do have a direct product. Moreover, if \(A\) is not reduced to a single cyclic group, we have that \(A'\) is not the trivial group, and \(p^k < |A|\). □

3. Stable cohomology of alternating groups

Let \(\mathfrak{A}_n\) be, as in the previous section, the alternating group on \(n\) letters, and let \(p\) be an odd prime (the case \(p = 2\) has been treated in [B-P]). We assume first \(n = p^m\) for simplicity.

We have to know the way elementary abelian \(p\)-subgroups sit inside \(\mathfrak{A}_n\) for the following. We summarize everything in the following Lemma which is proven by arguments analogous to those already used in the proof of Proposition 2.6.

Lemma 3.1. Suppose \(n = p^m\) and denote by \(I_m := \{\underline{i} = (i_1, \ldots, i_m) \in \mathbb{N}^m\}\) the set of all nonnegative integer sequences \(\underline{i}\) with

\[p^m = i_1p + i_2p^2 + \cdots + i_mp^m = \sum_{j=1}^{m} i_j p^j. \]

Then there is a natural bijection between \(I_m\) and the set of conjugacy classes of maximal elementary abelian \(p\)-subgroups in \(\mathfrak{S}_{p^m}\). The subgroup \(T(i_1, \ldots, i_m)\) corresponding to \(\underline{i}\) can be described as follows: partition the set of integers \(X = \{1, \ldots, n\}\) into segments of \(p\) power lengths according to \(\underline{i}\):

\[X = \bigcup_{j=1}^{m} \bigcup_{s=1}^{i_j} X^j_s \]

where \(X^j_s\) is a set with \(p^j\) elements,

\[X^j_s = \{i_1p + \cdots + i_{j-1}p^{j-1} + (s-1)p^j, \ldots, i_1p + \cdots + i_{j-1}p^{j-1} + sp^j\} \]
for definiteness. The subset X^i corresponds to a subgroup $\mathcal{G}_{p^i} = (\mathcal{G}_{p^i})^{X^i} \subset \mathcal{G}_{p^m}$ fixing all elements in X outside X^i. Inside $(\mathcal{G}_{p^i})^{X^i}$ there is a copy of $(\mathbb{Z}/p\mathbb{Z})^i$, which we denote by $((\mathbb{Z}/p\mathbb{Z})^i)^X$, embedded via the regular representation, i.e. we identify the elements in X^i with the elements of $((\mathbb{Z}/p\mathbb{Z})^i)^X$ and the permutation action is then given by left multiplication.

We denote $T(0, \ldots, p^{m-k}, \ldots, 0)$ (a single nonzero entry p^{m-k} in the k-th place) by $T_{k,m}$.

Hence every maximal elementary abelian p-subgroup in \mathcal{A}_n is conjugate -in \mathcal{S}_n or \mathcal{A}_n, it is the same thing- to one contained in $\mathcal{A}_{p^{n-1}} \times \cdots \times \mathcal{A}_{p^{n-1}}$ (p factors) or conjugate to $T_{m,m}$.

The proof is immediate if one notices that under the action of some elementary abelian p-subgroup A the set X breaks up into A orbits of cardinality a p power, and the action of A restricted to an orbit embeds A into the permutation group of the elements of the orbit in such a way that the image is conjugate to the image of the regular representation. The result is in [A-M] VI. 1, Thm. 1.3, but also [Mui], Chapter II, §2, where it is ascribed to Dixon. For the statement that the conjugacy classes of maximal elementary abelian p-subgroups in \mathcal{A}_n are the same as in \mathcal{S}_n one can appeal to the following Lemma which we will also use in other instances below (it is e.g. in [Mann85], p. 269).

Lemma 3.2. For $n = p^m$ the Weyl groups $W_{\mathcal{S}_n}(T_{m,m}) = N_{\mathcal{S}_n}(T_{m,m})/T_{m,m}$ resp. $W_{\mathcal{A}_n}(T_{m,m})$ of $T_{m,m} \cong (\mathbb{Z}/p\mathbb{Z})^m$ inside \mathcal{S}_n resp. \mathcal{A}_n are

$$W_{\mathcal{S}_n}(T_{m,m}) = \text{GL}_m(\mathbb{F}_p), \quad W_{\mathcal{A}_n}(T_{m,m}) = \text{GL}_m^+(\mathbb{F}_p)$$

where $\text{GL}_m^+(\mathbb{F}_p)$ is the kernel of the map $\text{GL}_m(\mathbb{F}_p) \to \mathbb{Z}/2\mathbb{Z}$ given by the determinant raised to the power $(p - 1)/2$.

In fact it is true that the Weyl group of any group H in the embedding $H \hookrightarrow \mathcal{S}_n$ given by the regular representation is the group of outer automorphisms of H, which become all inner in $\mathcal{S}_{|H|}$. Both statements of the Lemma follow from this remark as $\text{Aut}((\mathbb{Z}/p\mathbb{Z})^m) = \text{GL}(m, \mathbb{F}_p)$.

Likewise, Lemma 3.2 implies that in the normalizer of any maximal elementary abelian p-subgroup in \mathcal{S}_n there are elements which do not lie in \mathcal{A}_n. Hence conjugacy classes of these in the two groups coincide.

We will also use in an essential way the Cárdenas-Kuhn Theorem to calculate the stable cohomology of \mathcal{A}_n, so we recall the precise statement (see [A-M] III.5 for the proof).
Theorem 3.3. Let \(E \subseteq S \subseteq G \) be a closed system of finite groups, where the closedness means that every subgroup of \(S \) which is conjugate to \(E \) in \(G \) is already conjugate to \(E \) in \(S \). Let \(W_G(E) = N_G(E)/E \) resp. \(W_S(E) = N_S(E)/E \) be the Weyl groups of \(E \) in \(G \) resp. \(S \), and suppose that \(E \) is \(p \)-elementary and that \(W_S(E) \) contains a \(p \)-Sylow of \(W_G(E) \). Then the image of the restriction map

\[
\text{res}_E^G : H^*(G, \mathbb{Z}/p\mathbb{Z}) \rightarrow H^*(E, \mathbb{Z}/p\mathbb{Z})
\]

is equal to

\[
\text{im} \left(\text{res}_E^S : H^*(S, \mathbb{Z}/p\mathbb{Z}) \rightarrow H^*(E, \mathbb{Z}/p\mathbb{Z}) \right) \cap H^*(E, \mathbb{Z}/p\mathbb{Z})^{W_G(E)}.
\]

We will mostly use this in the form of the following

Corollary 3.4. Let \(S \) be a \(p \)-Sylow of a finite group \(G \), and let \(E \) be an elementary abelian \(p \)-subgroup of \(S \). Suppose that any subgroup of \(S \) conjugate to \(E \) in \(G \) is conjugate to \(E \) in \(S \). Then we have

\[
\text{im} \left(\text{res}_E^G : H^*(G, \mathbb{Z}/p\mathbb{Z}) \rightarrow H^*(E, \mathbb{Z}/p\mathbb{Z}) \right) = \text{im} \left(\text{res}_E^S : H^*(S, \mathbb{Z}/p\mathbb{Z}) \rightarrow H^*(E, \mathbb{Z}/p\mathbb{Z}) \right) \cap H^*(E, \mathbb{Z}/p\mathbb{Z})^{W_G(E)}.
\]

Proof. It suffices to remark that \([G : S] \equiv [N_G(E) : N_S(E)] \neq 0 \text{ (mod } p)\). \(\square\)

Now if \(n \) is arbitrary (not necessarily a power of \(p \)), to understand \(H^*_s(\mathfrak{A}_n, \mathbb{Z}/p\mathbb{Z}) \), expand \(n \) in base \(p \):

\[
n = a_0 + a_1p + \cdots + a_mp^m
\]

with \(0 \leq a_j < p \), \(a_m \neq 0 \), and note that this gives rise to a natural inclusion

\[
i_{a_1, \ldots, a_m} : \mathfrak{A}_{a_1, \ldots, a_m} := \prod_{1}^{a_1} \mathfrak{A}_p \times \prod_{1}^{a_2} \mathfrak{A}_{p^2} \times \cdots \times \prod_{1}^{a_m} \mathfrak{A}_{p^m} \hookrightarrow \mathfrak{A}_n
\]

and that a \(p \)-Sylow subgroup in \(\mathfrak{A}_n \) is given by the product of \(p \)-Sylow subgroups in the factors in \(\mathfrak{A}_{a_1, \ldots, a_m} \). In the notation of Lemma 3.3.1, the group \(\mathfrak{A}_{a_1, \ldots, a_m} \) contains an elementary abelian \(p \)-subgroup

\[
E := \prod_{1}^{a_1} T_{1,1} \times \prod_{1}^{a_2} T_{1,2} \times \cdots \times \prod_{1}^{a_m} T_{1,m} \simeq (\mathbb{Z}/p\mathbb{Z})^{\frac{n-a_k}{p^k}}.
\]

Proposition 3.5. The group \(E \) detects the stable cohomology of \(\mathfrak{A}_n \), i.e.

\[
H^*_s(\mathfrak{A}_n, \mathbb{Z}/p\mathbb{Z}) \rightarrow H^*_s(E, \mathbb{Z}/p\mathbb{Z})
\]

is injective.
Proof. It will be sufficient to prove this for $n = p^m$ as a Künneth theorem holds in stable cohomology for groups whose stable cohomology is detected by abelian subgroups, cf. Lemma 1.3. Now \(\mathfrak{A}_{p^m} \) contains the wreath product

\[
\mathfrak{A}_{p^m} \wr \mathbb{Z}/p\mathbb{Z}
\]

which detects the stable cohomology of \(\mathfrak{A}_{p^m} \) as it contains a \(p \)-Sylow. Using induction, it will be sufficient to prove that

\[
H_s^*(\mathfrak{A}_{p^m}, \mathbb{Z}/p\mathbb{Z}) \rightarrow H_s^*(\mathfrak{A}_{p^{m-1}} \times \cdots \times \mathfrak{A}_{p^{m-1}})
\]

is injective for \(m > 1 \). By Lemma 3.1 and because \(H_s^*(\mathfrak{A}_n, \mathbb{Z}/p\mathbb{Z}) \) is detected by elementary abelian \(p \)-subgroups, it will be sufficient to show that all positive-dimensional classes in \(H^*(T_{m,m}, \mathbb{Z}/p\mathbb{Z}) \) coming as restrictions from \(H^*(\mathfrak{A}_{p^m}, \mathbb{Z}/p\mathbb{Z}) \) are unstable. This follows from the calculation in [Mann85], Theorem 1.9, and the fact that the Bocksteins are zero in stable cohomology. \(\square \)

Theorem 3.6. Let \(p \) be an odd prime as before. Then \(H_s^*(\mathfrak{A}_n, \mathbb{Z}/p\mathbb{Z}) = 0 \) in positive degrees unless \(p = 3 \). For \(p = 3 \) one has for \(k \in \mathbb{N} \)

\[
H_s^*(\mathfrak{A}_{3k}, \mathbb{Z}/3\mathbb{Z}) \simeq H_s^*(\mathfrak{A}_{3k+1}, \mathbb{Z}/3\mathbb{Z}), \quad H_s^d(\mathfrak{A}_{3k+2}, \mathbb{Z}/3\mathbb{Z}) = 0, \quad d > 0,
\]

and

\[
H_s^d(\mathfrak{A}_{3k}, \mathbb{Z}/3\mathbb{Z}) \neq 0 \text{ for } d > 0 \iff d = k,
\]

where \(H_s^*(E, \mathbb{Z}/3\mathbb{Z}) = H_s^*((\mathbb{Z}/3\mathbb{Z})^k, \mathbb{Z}/3\mathbb{Z}) \) is an exterior algebra on one-dimensional generators \(e_1, \ldots, e_k \).

Basically, we would like to use the Cardéñas-Kuhn Theorem with the elementary abelian subgroup \(E \), and \(S = \text{Syl}_p(\mathfrak{A}_n), \quad G = \mathfrak{A}_n \), but it will be more transparent to break it up into several steps.

Lemma 3.7. For \(p \neq 3 \) an odd prime we have in positive degrees \(H_s^*(\mathfrak{A}_n, \mathbb{Z}/p\mathbb{Z}) = 0 \).

Proof. The Weyl group \(W_{\mathfrak{A}_n}(E) \) contains two obvious subgroups: (1) the group \(\mathfrak{A}_N \) permuting the \(N := (n - a_0)/p \) copies of \(\mathbb{Z}/p\mathbb{Z} \) in \(E \), (2) a product \(\prod N(\mathbb{Z}/p\mathbb{Z})^* \) where \((\mathbb{Z}/p\mathbb{Z})^* \) is the subgroup of the group of units in \(\mathbb{Z}/p\mathbb{Z} \) given as the kernel of \(a \mapsto a^{(p-1)/2} \). The stable cohomology of \(E \) is an exterior algebra over \(\mathbb{Z}/p\mathbb{Z} \) on \(N \) generators \(e_1, \ldots, e_N \). The \(\mathfrak{A}_N \)-invariants are concentrated in degrees 0, 1, \((N - 1) \), \(N \), one-dimensional in each case and generated by

\[
1, \quad e_1 + \cdots + e_N, \quad f_1 \wedge \cdots \wedge f_{N-1}, \quad e_1 \wedge \cdots \wedge e_N,
\]
where \(f_1, \ldots, f_{N-1} \) is a basis of the \(\mathfrak{A}_N \)-invariant complement to \(e_1 + \cdots + e_N \) in \(H^1(E, \mathbb{Z}/p\mathbb{Z}) \). All of these are not invariant under the scalings in \(\prod_{i=1}^{N}(\mathbb{Z}/p\mathbb{Z})^{*+} \) unless \(p = 3 \) when \((\mathbb{Z}/p\mathbb{Z})^{*+} \) is reduced to \(\{1\} \).

Lemma 3.8. One has

1. \(H^d_s(\mathfrak{A}_{3k+2}, \mathbb{Z}/3\mathbb{Z}) = 0, \ d > 0 \).
2. There is a natural embedding

\[
H^s_*(\mathfrak{A}_{3k+1}, \mathbb{Z}/3\mathbb{Z}) \hookrightarrow H^s_*(\mathfrak{A}_{3k}, \mathbb{Z}/3\mathbb{Z}) .
\]

Proof. This is already contained in [B-P], Lemmas 4.1 and 4.2. For completeness, let us repeat the argument: the restriction \(\text{res} \mathfrak{A}_{3k+2} \rightarrow \mathfrak{A}_{3k+1} \) factors through the restriction map induced from the embedding \(Syl_3(\mathfrak{A}_{3k+2}) \hookrightarrow \mathfrak{A}_{3k+2} \); but \(H^s_*(\mathfrak{A}_{3k}, \mathbb{Z}/3\mathbb{Z}) = 0 \) in positive degrees as the stable cohomology of \(\mathfrak{A}_{3k} \) is detected by its elementary abelian 2-subgroup generated by a maximal set of commuting transpositions. This proves (1), and (2) follows from the fact that the 3-Sylows in \(\mathfrak{A}_{3k} \) and \(\mathfrak{A}_{3k+1} \) are the same.

Lemma 3.9. Let \(n = 3k \) or \(n = 3k + 1 \). Then the Weyl group \(N_{\mathfrak{A}_n}(E) \) of \(E \simeq (\mathbb{Z}/3\mathbb{Z})^k \) in \(\mathfrak{A}_n \) sits in an extension

\[
1 \rightarrow (\mathbb{Z}/2\mathbb{Z})^{k-1} \rightarrow W_{\mathfrak{A}_n}(E) \rightarrow \mathfrak{S}_n \rightarrow 1
\]

where \(\mathfrak{S}_n \) acts by permuting the copies of \(\mathbb{Z}/3\mathbb{Z} \) in \(E \simeq (\mathbb{Z}/3\mathbb{Z})^k \), and the group \((\mathbb{Z}/2\mathbb{Z})^{k-1} \) acts by sending an even number of the generators \(g_i \) in the \(i \)th copy of \(\mathbb{Z}/3\mathbb{Z} \) to their inverses \(g_i^{-1} \). In stable cohomology \(H^s_*(E, \mathbb{Z}/3\mathbb{Z}) = E(e_1, \ldots, e_k) \) (exterior algebra), the action of the group \(W_{\mathfrak{A}_n}(E) \) is generated by the (signed) transpositions sending \(e_i, e_j \) to \(e_j, -e_i \), and transformations corresponding to elements in \((\mathbb{Z}/2\mathbb{Z})^{k-1} \) acting via sign changes \(e_i \mapsto -e_i \) on an even number of the \(e_i \).

Proof. Any element of the normalizer \(N_{\mathfrak{A}_n}(E) \) induces a well-defined permutation of the copies of \(\mathbb{Z}/3\mathbb{Z} \) in \(E \). This gives a map to \(\mathfrak{S}_n \) which is onto: note that conjugating the 3-cycle \((123)\) by \(\tau = (23) \) exchanges the two nontrivial elements \(g, g^{-1} \) in \(\mathbb{Z}/3\mathbb{Z} \). We can also transpose two copies of \(\mathbb{Z}/3\mathbb{Z} \) in \(E \) by conjugating an element in \(\mathfrak{A}_n \). Now suppose \(n \in N_{\mathfrak{A}_n}(E) \) induces the trivial element in \(\mathfrak{S}_n \), so fixes all the copies of \(\mathbb{Z}/3\mathbb{Z} \) in \(E \) (though not necessarily elementwise). Then the only possible nontrivial automorphism of each copy of \(\mathbb{Z}/3\mathbb{Z} \) is exchanging \(g \) and \(g^{-1} \) as before. To conclude the proof, it suffices to note that if \(n \) induces the identity in \(\text{Aut}((\mathbb{Z}/3\mathbb{Z})^k) \), then \(n \in (\mathbb{Z}/3\mathbb{Z})^k \).

We can now turn to the
Proof. (of Theorem 3.6) The remaining assertion not covered by Lemma 3.7 and Lemma 3.8 are that
\[H^d_s(\mathfrak{A}_3k, \mathbb{Z}/3\mathbb{Z}) \neq 0 \text{ for } d > 0 \iff d = k, \] and
\[H^k_s(\mathfrak{A}_3k, \mathbb{Z}/3\mathbb{Z}) \simeq \langle \det_k \rangle \text{ where } \text{res}_{E}^{\mathfrak{A}_3k}(\det_k) = e_1 \wedge \cdots \wedge e_k. \]
and that
\[H^*_{s}(\mathfrak{A}_3n+1, \mathbb{Z}/3\mathbb{Z}) \to H^*_{s}(\mathfrak{A}_3n, \mathbb{Z}/3\mathbb{Z}) \]
is surjective (it is injective by (2) of Lemma 3.8).

We prove first the assertions in the displayed formula 1 above, and 2 will follow easily (we just have to check that the determinant class comes from \(H^*_{s}(\mathfrak{A}_3n+1, \mathbb{Z}/3\mathbb{Z}) \)). We apply the Cardéñas-Kuhn Theorem 3.3 with \(S = \text{Syl}_3(\mathfrak{A}_3k) \) containing \(E \) and \(G = \mathfrak{A}_3k \). Then
- The fact that \(E \simeq (\mathbb{Z}/3\mathbb{Z})^k \subset \text{Syl}_3(\mathfrak{A}_3k) \subset \mathfrak{A}_3k \) is a closed system has been checked in [Mui], Prop. 2.2: in fact, he checks that if \(A \) is any maximal elementary abelian \(p \)-subgroup of a symmetric group \(S_n \), then any subgroup of a \(p \)-Sylow \(\text{Syl}_p(S_n) \) containing \(A \) which is conjugate to \(A \) in \(\overline{S_n} \) is conjugate to \(A \) in \(\text{Syl}_p(S_n) \). This implies clearly the statement for the alternating groups we need.
- By the Cardéñas-Kuhn Theorem or rather its Corollary 3.4, we get that the image of the cohomology of \(\mathfrak{A}_3k \) in the cohomology of \(E \) is
\[
\text{im} \left(\text{res}_{E}^{\text{Syl}_3(\mathfrak{A}_3k)} : H^*(\text{Syl}_3(\mathfrak{A}_3k, \mathbb{Z}/3\mathbb{Z}) \to H^*(E, \mathbb{Z}/p\mathbb{Z}) \right) \cap H^*(E, \mathbb{Z}/3\mathbb{Z})^{W_{\mathfrak{A}_3k}(E)}.
\]
- By Theorem 1.7 and induction
\[\text{res}_{E}^{\mathfrak{A}_3k} : H^*(A_{3k}, \mathbb{Z}/3\mathbb{Z}) \to H^*(E, \mathbb{Z}/3\mathbb{Z})^{W_{\mathfrak{A}_3k}(E)} \]
is surjective (compare also the argument in [Mui], Prop. 3.9 and Lemma 3.11).

Thus
\[\text{res}_{E}^{\mathfrak{A}_3k} : H^*_s(A_{3k}, \mathbb{Z}/3\mathbb{Z}) \simeq H^*_s(E, \mathbb{Z}/3\mathbb{Z})^{W_{\mathfrak{A}_3k}(E)} \]
and by the description of the action of \(W_{\mathfrak{A}_3k} \) on the stable cohomology of \(E \), we find that only \(e_1 \wedge \cdots \wedge e_k \) remains spanning the positive dimensional invariants.

Finally, to prove the surjectivity of the arrow in the displayed formula 2 above, consider the inclusions \(E \subset \mathfrak{A}_3n \subset \mathfrak{A}_3n+1 \). Then \(\text{Syl}_3(\mathfrak{A}_3k) = \text{Syl}_3(\mathfrak{A}_3k+1) \) and, in exact analogy to the argument above, by [Mui],
Prop. 2.2, \(E \subset \text{Syl}_3(\mathfrak{A}_{3^{n+1}}) \subset \mathfrak{A}_{3n+1} \) is a closed system, so that by Cardénas-Kuhn the image of the cohomology of \(\mathfrak{A}_{3n+1} \) in the cohomology of \(E \) coincides with the image of the cohomology of \(\mathfrak{A}_{3n} \) in \(E \) (because also \(W_{\mathfrak{A}_{3n}}(E) \simeq W_{\mathfrak{A}_{3n+1}}(E) \)). □

References

[A-M] Adem, A., Milgram, R. J., Cohomology of finite groups, 2nd ed., Grundlehren der Mathematischen Wissenschaften 309, Springer-Verlag, Berlin, 2004.

[Ben] Benson, D.J., Representations and Cohomology II. Cohomology of groups and modules, Cambridge studies in advanced mathematics 31, Cambridge University Press (1991)

[Bogo93] Bogomolov, F., Stable Cohomology of Groups and Algebraic Varieties, Russian Acad. Sci. Sb. Math. Vol. 76 (1993), No. 1, 1-21

[Bogo95] Bogomolov, F., On the structure of the Galois groups of the fields of rational functions, Proceedings of Symposia in Pure Mathematics, Volume 58.2 (1995) (S. Barbara conference 1992 “K-theory and quadratic forms”) p. 83-88.

[Bogo05] Bogomolov, F., Stable cohomology of finite and profinite groups, in: Algebraic Groups (Yuri Tschinkel (Ed.)), Mathematisches Institut Georg-August-Universität Göttingen Summer School 27.06.-13.07.2005, Universitätsverlag Göttingen 2007

[BMP] Bogomolov, F., Maciel, J., Petrov, T., Unramified Brauer groups of finite simple groups of Lie type \(A_l \), Amer. J. Math. 126 (2004), no. 4, p. 935-949

[BPT] Bogomolov, F., Petrov, T., Tschinkel, Yu., Unramified cohomology of finite groups of Lie type, in Cohomological and geometric approaches to rationality problems, Progr. Math., 282, Birkhäuser Boston, Inc., Boston, MA, 2010, p. 5573

[B-P] Bogomolov, F., Petrov, T., Unramified cohomology of alternating groups, Cent. Eur. J. Math. 9 (5), (2011), 936-948

[CTO] Colliot-Thélène, Ojanguren, M., Variétés unirationelles non rationelles: au delà de l’exemple d’Artin et Mumford, Invent. Math. 97 (1989), 141-158

[GMS] Garibaldi, S., Merkurjev, A., Serre, J.-P., Cohomological invariants in Galois cohomology, University Lecture Series 28, American Mathematical Society, Providence, RI, 2003.

[Evans] Evens, L., The Cohomology of Groups, Oxford Mathematical Monographs, Oxford University Press (1991)

[Kahn-Su00] Kahn, Bruno, Sujatha, R., Motivic cohomology and unramified cohomology of quadrics J. European Math. Soc. 2 (2000), 145-177.

[Kahn11] Kahn, Bruno, Relatively unramified elements in cycle modules, J. K-Theory 7 (2011), no. 3, 409?427

[Mann78] Mann, B.M., The cohomology of the symmetric groups, Transactions of the American Mathematical Society Vol. 242 (1978), 157-184
[Mann85] Mann, B.M., The cohomology of the alternating groups, Michigan Math. J. 32 (1985), no. 3, 267-277.

[Mui] Mui, Huynh, Modular invariant theory and cohomology algebras of symmetric groups, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 22 (1975), no. 3, 319-369.

[Ng1] Nguyen, Thi Kim Ngan, Modules de cycles et classes non ramifiées sur un espace classifiant, Thèse de Doctorat, dirigée par Bruno Kahn, Université Paris VII-Denis Diderot (2010).

[Ng2] Nguyen, Thi Kim Ngan, Classes non ramifiées sur un espace classifiant. (French) [Unramified classes over a classifying space] C. R. Math. Acad. Sci. Paris 349 (2011), no. 5-6, 233-237.

[Ore] Ore, Oystein, Theory of monomial groups, Trans. Amer. Math. Soc. 51, (1942), 157-64.

[Pey08] Peyre, E., Unramified cohomology of degree 3 and Noether’s problem, Invent. Math. 171 (2008), 191-225.

[Piru] Pirutka, Alena, Cohomologie non ramifiée en degré trois d’une variété de Severi-Brauer. (French. English, French summary) [Degree-three nonramified cohomology of Severi-Brauer varieties] C. R. Math. Acad. Sci. Paris 349 (2011), no. 7-8, 369-373.

[Quill71a] Quillen, D., The Adams Conjecture, Topology Vol. 10 (1971), 67-80.

[Quill71b] Quillen, D., The spectrum of an equivariant cohomology ring I, Annals of Math. 94 (1971), 549-572.

[Quill71c] Quillen, D., The spectrum of an equivariant cohomology ring II, Annals of Math. 94 (1971), 573-602.

[Quill78] Quillen, D., Homotopy Properties of the Poset of Nontrivial p-Subgroups of a Group, Advances in Math. 28 (1978), 101-128.

[Serre] Serre, J.-P., Galois Cohomology, Springer Monographs in Mathematics, Springer-Verlag (2002).

[Steen] Steenrod, N.E., Cohomology Operations, Lectures by N.E. Steenrod, written and revised by D.B.A. Epstein, Annals of Mathematics Studies 50, Princeton University Press 1962.

[TY11] Tezuka, M. & Yagita, N., The image of the map from group cohomology to Galois cohomology, Trans. Amer. Math. Soc. 363 (2011), 4475-4503.

F. BOGOMOLOV, COURANT INSTITUTE OF MATHEMATICAL SCIENCES, 251 MERCER ST., NEW YORK, NY 10012, U.S.A., and

LABORATORY OF ALGEBRAIC GEOMETRY, GU-HSE, 7 VAVILOVA STR., MOSCOW, RUSSIA, 117312

E-mail address: bogomolo@courant.nyu.edu

CHRISTIAN BÖHNING, FACHBEREICH MATHEMATIK DER UNIVERSITÄT HAMBURG, BUNDESSTRASSE 55, 20146 HAMBURG, GERMANY

E-mail address: christian.boehning@math.uni-hamburg.de