ABSTRACT

A description is an entity that can be interpreted as true or false of an object, and using feature structures as descriptions accrues several computational benefits. In this paper, I create an explicit interpretation of a typed feature structure used as a description, define the notion of a satisfiable feature structure, and create a simple and effective algorithm to decide if a feature structure is satisfiable.

1. INTRODUCTION

Describing objects is one of several purposes for which linguists use feature structures. A description is an entity that can be interpreted as true or false of an object. For example, the conventional interpretation of the description ‘it is black’ is true of a soot particle, but false of a snowflake. Therefore, any use of a feature structure to describe an object demands that the feature structure can be interpreted as true or false of the object. In this paper, I tailor the semantics of [King 1989] to suit the typed feature structures of [Carpenter 1992], and create an explicit interpretation of a typed feature structure used as a description. I then use this interpretation to define the notion of a satisfiable feature structure.

Though no feature structure algebra provides descriptions as expressive as those provided by a feature logic, using feature structures to describe objects profits from a large stock of available computational techniques to represent, test and process feature structures. In this paper, I demonstrate the computational benefits of marrying a tractable syntax and an explicit semantics by creating a simple and effective algorithm to decide the satisfiability of a feature structure. Gerdemann and Götz’s Troll type resolution system implements both the semantics and an efficient refinement of the satisfiability algorithm I present here (see [Götz 1993], [Gerdemann and King 1994] and [Gerdemann (fc)]).

2. A FEATURE STRUCTURE SEMANTICS

A signature provides the symbols from which to construct typed feature structures, and an interpretation gives those symbols meaning.

Definition 1. Σ is a signature iff

\[\Sigma = \langle \langle \mathcal{Q}, \mathcal{T}, \leq, \mathcal{S}, \mathfrak{A}, \mathfrak{F} \rangle, Q \text{ is a set,} \]

\[\langle \mathcal{T}, \leq \rangle \text{ is a partial order,} \]

\[\mathcal{S} = \{ \sigma \in \mathcal{T} \mid \text{for each } \tau \in \mathcal{T}, \]

\[\text{if } \sigma \preceq \tau \text{ then } \sigma = \tau \} \}

\[\mathfrak{A} \text{ is a set,} \]

\[\mathfrak{F} \text{ is a partial function from the Cartesian product of } \mathcal{T} \text{ and } \mathfrak{A} \text{ to } \mathcal{T}, \]

\[\text{and for each } \tau \in \mathcal{T}, \text{ each } \tau' \in \mathcal{T} \text{ and each } \alpha \in \mathfrak{A}, \]

\[\text{if } \mathfrak{F}(\tau, \alpha) \text{ is defined and } \tau \preceq \tau' \]

\[\text{then } \mathfrak{F}(\tau', \alpha) \text{ is defined, and} \]

\[\mathfrak{F}(\tau, \alpha) \preceq \mathfrak{F}(\tau', \alpha). \]

Henceforth, I tacitly work with a signature \(\langle \mathcal{Q}, \mathcal{T}, \leq, \mathcal{S}, \mathfrak{A}, \mathfrak{F} \rangle \). I call members of \(\mathcal{Q} \) states, members of \(\mathcal{T} \) types, \(\preceq \) subsumption, members of \(\mathcal{S} \) species, members of \(\mathfrak{A} \) attributes, and \(\mathfrak{F} \) appropriateness.

Definition 2. \(I \) is an interpretation iff

\[I \text{ is a triple } \langle U, S, A \rangle, \]

\[U \text{ is a set,} \]

\[S \text{ is a total function from } U \text{ to } \mathcal{S} \]

\[A \text{ is a total function from } \mathfrak{A} \text{ to the set of partial functions from } U \text{ to } U, \]

\[\text{for each } \alpha \in \mathfrak{A} \text{ and each } u \in U, \]

\[\text{if } A(\alpha)(u) \text{ is defined} \]

\[\text{then } \mathfrak{F}(S(u), \alpha) \text{ is defined, and} \]

\[\mathfrak{F}(S(u), \alpha) \preceq S(A(\alpha)(u)), \]

\[\text{and for each } \alpha \in \mathfrak{A} \text{ and each } u \in U, \]

\[\text{if } \mathfrak{F}(S(u), \alpha) \text{ is defined} \]

\[\text{then } A(\alpha)(u) \text{ is defined.} \]

Suppose that \(I \) is an interpretation \(\langle U, S, A \rangle \).

I call each member of \(U \) an object in \(I \).

Each type denotes a set of objects in \(I \). The
denotations of the species partition \(U\), and \(S\) assigns each object in \(I\) the unique species whose denotation contains the object: object \(u\) is in the denotation of species \(\sigma\) iff \(\sigma = S(u)\). Subsumption encodes a relationship between the denotations of species and types: object \(u\) is in the denotation of type \(\tau\) iff \(\tau \subseteq S(u)\). So, if \(\tau_1 \subseteq \tau_2\) then the denotation of type \(\tau_1\) contains the denotation of type \(\tau_2\).

Each attribute denotes a partial function from the objects in \(I\) to the objects in \(J\), and \(A\) assigns each attribute the partial function it denotes. Appropriateness encodes a relationship between the denotations of species and attributes: if \(\mathcal{G}(\sigma, \alpha)\) is defined then the denotation of attribute \(\alpha\) acts upon each object in the denotation of species \(\sigma\) to yield an object in the denotation of type \(\tau\), but if \(\mathcal{G}(\sigma, \alpha)\) is undefined then the denotation of attribute \(\alpha\) acts upon no object in the denotation of species \(\sigma\). So, if \(\mathcal{G}(\tau, \alpha)\) is defined then the denotation of attribute \(\alpha\) acts upon each object in the denotation of type \(\tau\) to yield an object in the denotation of type \(\mathcal{G}(\tau, \alpha)\).

I call a finite sequence of attributes a path, and write \(\mathfrak{P}\) for the set of paths.

Definition 3. \(P\) is the path interpretation function under \(I\) iff

- \(I\) is an interpretation \(\langle U, S, A \rangle\),
- \(P\) is a total function from \(\mathfrak{P}\) to the set of partial functions from \(U \to U\), and for each \(\langle \alpha_1, \ldots, \alpha_n \rangle \in \mathfrak{P}\),
- \(P(\alpha_1, \ldots, \alpha_n)\) is the functional composition of \(A(\alpha_1), \ldots, A(\alpha_n)\).

I write \(P_I\) for the path interpretation function under \(I\).

Definition 4. \(F\) is a feature structure iff

- \(F\) is a quadruple \((Q, q, \delta, \theta)\),
- \(Q\) is a finite subset of \(\mathcal{G}\),
- \(q \in Q\),
- \(\delta\) is a finite partial function from the Cartesian product of \(Q\) and \(\mathfrak{A}\) to \(Q\),
- \(\theta\) is a total function from \(Q\) to \(\mathcal{T}\), and for each \(q' \in Q\),
 - for some \(\pi \in \mathfrak{P}\), \(\pi\) runs to \(q'\) in \(F\) iff \(\langle \alpha_1, \ldots, \alpha_n \rangle \in \mathfrak{P}\), \(q' \in Q\), and for some \(\{q_0, \ldots, q_n\} \subseteq Q\),
 - \(q = q_0\),
 - for each \(i < n\), \(\delta(q_i, \alpha_{i+1})\) is defined, and \(\delta(q_i, \alpha_{i+1}) = q_{i+1}\), and \(q_n = q'\).

Each feature structure is a connected Moore machine (see [Moore 1956]) with finitely many states, input alphabet \(\mathfrak{A}\), and output alphabet \(\mathcal{T}\).

Definition 5. \(F\) is true of \(u\) under \(I\) iff

- \(F\) is a feature structure \((Q, q, \delta, \theta)\),
- \(I\) is an interpretation \(\langle U, S, A \rangle\),
- \(u\) is an object in \(I\), and for each \(\pi_1 \in \mathfrak{P}\), each \(\pi_2 \in \mathfrak{P}\) and each \(q' \in Q\),
 - if \(\pi_1\) runs to \(q'\) in \(F\), and \(\pi_2\) runs to \(q'\) in \(F\),
 - then \(P_I(\pi_1)(u)\) is defined, \(P_I(\pi_2)(u)\) is defined, \(P_I(\pi_1)(u) = P_I(\pi_2)(u)\), and \(\theta(q') \subseteq S(P_I(\pi_1)(u))\).

Definition 6. \(F\) is a satisfiable feature structure iff

- \(F\) is a feature structure, and
- for some interpretation \(I\) and some object \(u\) in \(I\), \(F\) is true of \(u\) under \(I\).

3. MORPHS

The abundance of interpretations seems to preclude an effective algorithm to decide if a feature structure is satisfiable. However, I insert morphs between feature structures and objects to yield an interpretation free characterisation of a satisfiable feature structure.

Definition 7. \(M\) is a semi-morph iff

- \(M\) is a triple \(\langle \Delta, \Gamma, \Lambda \rangle\),
- \(\Delta\) is a nonempty subset of \(\mathfrak{P}\),
- \(\Gamma\) is an equivalence relation over \(\Delta\),
- \(\Lambda\) is a total function from \(\Delta\) to \(\mathcal{G}\),
- for each \(\alpha \in \mathfrak{A}\), each \(\pi_1 \in \mathfrak{P}\) and each \(\pi_2 \in \mathfrak{P}\),
 - if \(\pi_1 \alpha \in \Delta\) and \((\pi_1, \pi_2) \in \Gamma\), then \(\langle \pi_1 \alpha, \pi_2 \alpha \rangle \in \Gamma\),

- \(\Lambda\) is a total function from \(\Delta\) to \(\mathcal{G}\),
- \(\Lambda\) is a total function from \(\Delta\) to \(\mathcal{G}\),
- for each \(\pi_1 \in \mathfrak{P}\) and each \(\pi_2 \in \mathfrak{P}\),
- if \(\pi_1 \alpha \in \Delta\) and \(\pi_2 \beta \in \Delta\), then \(\Lambda(\pi_1) = \Lambda(\pi_2)\), and for each \(\alpha \in \mathfrak{A}\) and each \(\pi \in \mathfrak{P}\),
 - if \(\pi \alpha \in \Delta\), then \(\pi \in \Delta\), \(\mathcal{G}(\Lambda(\pi), \alpha)\) is defined, and \(\mathcal{G}(\Lambda(\pi), \alpha) \subseteq \Lambda(\pi \alpha)\).

Definition 8. \(M\) is a morph iff

- \(M\) is a semi-morph \(\langle \Delta, \Gamma, \Lambda \rangle\), and
- for each \(\alpha \in \mathfrak{A}\) and each \(\pi \in \mathfrak{P}\),
 - if \(\pi \in \Delta\) and \(\mathcal{G}(\Lambda(\pi), \alpha)\) is defined
 - then \(\pi \alpha \in \Delta\).

Each morph is the Mosher abstraction (see [Mosher 1988]) of a connected and totally well-typed (see [Carpenter 1992]) Moore machine with possibly infinitely many states, input alphabet \(\mathfrak{A}\), and output alphabet \(\mathcal{G}\).
Definition 9. M abstracts u under I iff

M is a morph $(\Delta, \Gamma, \Lambda)$, I is an interpretation (U, S, A), u is an object in I, for each $\pi_1 \in \mathfrak{P}$ and each $\pi_2 \in \mathfrak{P}$, $(\pi_1, \pi_2) \in \Gamma$ iff $P_I(\pi_1)(u)$ is defined, $P_I(\pi_2)(u)$ is defined, and $P_I(\pi_1)(u) = P_I(\pi_2)(u)$, and for each $\sigma \in S$ and each $\pi \in \mathfrak{P}$, $(\pi, \sigma) \in \Lambda$ iff $P_I(\pi)(u)$ is defined, and $\sigma = S(P_I(\pi)(u))$.

Proposition 10. For each interpretation I and each object u in I,

some unique morph abstracts u under I. I thus write of the abstraction of u under I.

Definition 11. u is a standard object iff

u is a quadruple $(\Delta, \Gamma, \Lambda, E)$, $(\Delta, \Gamma, \Lambda)$ is a morph, and E is an equivalence class under Γ.

I write \bar{U} for the set of standard objects, write \bar{S} for the total function from \bar{U} to S, where for each $\sigma \in S$ and each $(\Delta, \Gamma, \Lambda, E) \in \bar{U}$,

$\bar{S}(\Delta, \Gamma, \Lambda, E) = \sigma$

iff for some $\pi \in E$, $\Lambda(\pi) = \sigma$,

and write \bar{A} for the total function from \mathfrak{A} to the set of partial functions from \bar{U} to \bar{U}, where for each $\alpha \in \mathfrak{A}$, each $(\Delta, \Gamma, \Lambda, E) \in \bar{U}$ and each $(\Delta', \Gamma', \Lambda', E') \in \bar{U}$,

$\bar{A}(\alpha)(\Delta, \Gamma, \Lambda, E) \text{ is defined, and }$

$\bar{A}(\alpha)(\Delta, \Gamma, \Lambda, E) = (\Delta', \Gamma', \Lambda', E')$

iff $(\Delta, \Gamma, \Lambda) = (\Delta', \Gamma', \Lambda')$, and for some $\pi \in E$, $\pi\alpha \in E'$.

Lemma 12. $(\bar{U}, \bar{S}, \bar{A})$ is an interpretation.

I write \bar{I} for $(\bar{U}, \bar{S}, \bar{A})$.

Lemma 13. For each $(\Delta, \Gamma, \Lambda, E) \in \bar{U}$, each $(\Delta', \Gamma', \Lambda', E') \in \bar{U}$ and each $\pi \in \mathfrak{P}$,

$P_{\bar{I}}(\pi)(\Delta, \Gamma, \Lambda, E) \text{ is defined, and }$

$P_{\bar{I}}(\pi)(\Delta, \Gamma, \Lambda, E) = (\Delta', \Gamma', \Lambda', E')$

iff $(\Delta, \Gamma, \Lambda) = (\Delta', \Gamma', \Lambda')$, and for some $\pi' \in E$, $\pi'\pi \in E'$.

Proof. By induction on the length of π. ■

Lemma 14. For each $(\Delta, \Gamma, \Lambda, E) \in \bar{U}$, if E is the equivalence class of the empty path under Γ then the abstraction of $(\Delta, \Gamma, \Lambda, E)$ under \bar{I} is $(\Delta, \Gamma, \Lambda)$.

Proposition 15. For each morph M, for some interpretation I and some object u in I,

M is the abstraction of u under I.
Definition 16. F approximates M iff F is a feature structure (Q, q, δ, θ), M is a morph $(\Delta, \Gamma, \Lambda)$, and for each $\pi_1 \in \Psi$, each $\pi_2 \in \Psi$ and each $q' \in Q$, if π_1 runs to q' in F, and π_2 runs to q' in F then $(\pi_1, \pi_2) \in \Gamma$, and
$\theta(q') \leq \Lambda(\pi_1)$.

A feature structure approximates a morph iff the Mosher abstraction of the feature structure abstractly subsumes (see [CARPENTER 1992]) the morph.

Proposition 17. For each interpretation I, each object u in I and each feature structure F,

F is true of u under I iff F approximates the abstraction of u under I.

Theorem 18. For each feature structure F, F is satisfiable iff F approximates some morph.

Proof. From propositions 15 and 17.

4. RESOLVED FEATURE STRUCTURES

Though theorem 15 gives an interpretation free characterisation of a satisfiable feature structure, the characterisation still seems to admit of no effective algorithm to decide if a feature structure is satisfiable. However, I use theorem 18 and resolved feature structures to yield a less general interpretation free characterisation of a satisfiable feature structure that admits of such an algorithm.

Definition 19. R is a resolved feature structure iff

R is a feature structure (Q, q, δ, ρ), ρ is a total function from Q to \mathcal{S}, and for each $\alpha \in \mathfrak{A}$ and each $q' \in Q$, if $\delta(q', \alpha)$ is defined

then $\mathfrak{s}(\rho(q'), \alpha)$ is defined, and $\mathfrak{s}(\rho(q'), \alpha) \leq \rho(\delta(q', \alpha))$.

Each resolved feature structure is a well-typed (see [CARPENTER 1992]) feature structure with output alphabet \mathcal{S}.

Definition 20. R is a resolvent of F iff

R is a resolved feature structure (Q, q, δ, ρ), F is a feature structure (Q, q, δ, θ), and for each $q' \in Q$, $\theta(q') \leq \rho(q')$.

Proposition 21. For each interpretation I, each object u in I and each feature structure F,

F is true of u under I iff some resolvent of F is true of u under I.

Definition 22. $(\Omega, \Xi, \preceq, \mathcal{S}, \mathfrak{A}, \mathfrak{s})$ is rational iff for each $\sigma \in \mathcal{S}$ and each $\alpha \in \mathfrak{A}$, if $\mathfrak{s}(\sigma, \alpha)$ is defined then for some $\sigma' \in \mathcal{S}$, $\mathfrak{s}(\sigma, \alpha) \preceq \sigma'$.

Proposition 23. If $(\Omega, \Xi, \preceq, \mathcal{S}, \mathfrak{A}, \mathfrak{s})$ is rational then for each resolved feature structure R, R is satisfiable.

Proof. Suppose that $R = (Q, q, \delta, \rho)$ and β is a bijection from ordinal ζ to \mathcal{S}. Let

$\Delta_0 = \{ \pi \mid \pi \text{ runs to } q' \text{ in } R \}$, $\Gamma_0 = \{ (\pi_1, \pi_2) \mid \pi_1 \text{ runs to } q' \text{ in } R, \pi_2 \text{ runs to } q' \text{ in } R \}$, $\Lambda_0 = \{ (\pi, \sigma) \mid \pi \text{ runs to } q' \text{ in } R \}$.

For each $n \in \mathbb{N}$, let

$\Delta_{n+1} = \Delta_n \cup \{ \alpha \in \mathfrak{A}, \pi \in \Delta_n, \text{ and } \mathfrak{s}(\Lambda_n(\pi), \alpha) \text{ is defined} \}$,

$\Gamma_{n+1} = \Gamma_n \cup \{ \pi \in \Delta_n, \pi_1 \alpha \in \Delta_{n+1}, \pi_2 \alpha \in \Delta_{n+1}, \text{ and } (\pi_1, \pi_2) \in \Gamma_n \}$,

$\Lambda_{n+1} = \{ \alpha \in \mathfrak{A}, \pi \in \Delta_n, \pi \alpha \in \mathcal{S} \}$,

$\Lambda_n \cup \{ (\pi \alpha, \beta(\xi)) \mid \pi \alpha \in \Delta_{n+1}, \text{ and } \xi \text{ is the least ordinal in } \zeta \text{ such that } \mathfrak{s}(\Lambda_n(\pi), \alpha) \leq \beta(\xi) \}$.

For each $n \in \mathbb{N}$, $(\Delta_n, \Gamma_n, \Lambda_n)$ is a semi-morph. Let

$\Delta = \bigcup \{ \Delta_n \mid n \in \mathbb{N} \}$, $\Gamma = \bigcup \{ \Gamma_n \mid n \in \mathbb{N} \}$, and $\Lambda = \bigcup \{ \Lambda_n \mid n \in \mathbb{N} \}$.

$(\Delta, \Gamma, \Lambda)$ is a morph that R approximates. By theorem 18, R is satisfiable.

Theorem 24. If $(\Omega, \Xi, \preceq, \mathcal{S}, \mathfrak{A}, \mathfrak{s})$ is rational then for each feature structure F,

F is satisfiable iff F has a resolvent.

Proof. From propositions 21 and 23.

5. A SATISFIABILITY ALGORITHM

In this section, I use theorem 24 to show how – given a rational signature that meets reasonable computational conditions – to construct an effective algorithm to decide if a feature structure is satisfiable.
Definition 25. \((\Omega, \mathcal{I}, \preceq, \mathcal{S}, \mathcal{A}, \mathcal{F}) \) is computable iff
\(\Omega, \mathcal{I} \) and \(\mathcal{A} \) are countable,
\(\mathcal{S} \) is finite,
for some effective function \(\text{SUB} \),
for each \(\tau_1 \in \mathcal{I} \) and each \(\tau_2 \in \mathcal{I} \),
if \(\tau_1 \preceq \tau_2 \)
then \(\text{SUB}(\tau_1, \tau_2) = \text{‘true’} \)
otherwise \(\text{SUB}(\tau_1, \tau_2) = \text{‘false’} \), and
for some effective function \(\text{APP} \),
for each \(\tau \in \mathcal{I} \) and each \(\alpha \in \mathcal{A} \),
if \(\mathcal{F}(\tau, \alpha) \) is defined
then \(\text{APP}(\tau, \alpha) = \mathcal{F}(\tau, \alpha) \)
otherwise \(\text{APP}(\tau, \alpha) = \text{‘undefined’} \).

Proposition 26. If \((\Omega, \mathcal{I}, \preceq, \mathcal{S}, \mathcal{A}, \mathcal{F}) \) is computable then for some effective function \(\text{RES} \),
for each feature structure \(F \),
\(\text{RES}(F) = \{ \text{the resolvants of } F \} \).

Proof. Since \((\Omega, \mathcal{I}, \preceq, \mathcal{S}, \mathcal{A}, \mathcal{F}) \) is computable,
for some effective function \(\text{GEN} \),
for each finite \(Q \subseteq \Omega \),
\(\text{GEN}(Q) = \{ \text{the total functions from } Q \text{ to } S \} \),
for some effective function \(\text{TEST}_1 \),
for each finite set \(Q \), each finite partial function \(\delta \) from the Cartesian product of \(Q \) and \(\mathcal{A} \) to \(Q \), and each total function \(\theta \) from \(Q \) to \(\mathcal{I} \),
if for each \((q, \alpha) \) in the domain of \(\delta \),
\(\mathcal{F}(\theta(q), \alpha) \) is defined, and
\(\mathcal{F}(\theta(q), \alpha) \preceq \theta(\delta(q, \alpha)) \)
then \(\text{TEST}_1(\delta, \theta) = \text{‘true’} \)
otherwise \(\text{TEST}_1(\delta, \theta) = \text{‘false’} \), and
for some effective function \(\text{TEST}_2 \),
for each finite set \(Q \), each total function \(\theta_1 \) from \(Q \) to \(\mathcal{I} \) and each total function \(\theta_2 \) from \(Q \) to \(\mathcal{I} \),
if for each \(q \in Q \), \(\theta_1(q) \preceq \theta_2(q) \)
then \(\text{TEST}_2(\theta_1, \theta_2) = \text{‘true’} \)
otherwise \(\text{TEST}_2(\theta_1, \theta_2) = \text{‘false’} \).

Construct \(\text{RES} \) as follows:
for each feature structure \((Q, q, \delta, \theta) \),
set \(\Sigma_{\text{in}} = \text{GEN}(Q) \) and \(\Sigma_{\text{out}} = \{ \} \)
while \(\Sigma_{\text{in}} \) is not empty
do set \(\Sigma_{\text{in}} = \{ \rho_1, \ldots, \rho_n \} \)
if \(\text{TEST}_1(\delta, \rho) = \text{‘true’} \),
\(\text{TEST}_2(\theta, \rho) = \text{‘true’} \), and
\(\Sigma_{\text{out}} = \{ \rho' \} \)
then set \(\Sigma_{\text{out}} = \{ \rho, \rho'_1, \ldots, \rho'_n \} \)
if \(\Sigma_{\text{out}} = \{ \rho_1, \ldots, \rho_n \} \)
then output \(\{ (Q, q, \delta, \theta_1), \ldots, (Q, q, \delta, \theta_n) \} \).
\(\text{RES} \) is an effective algorithm, and
for each feature structure \(F \),
\(\text{RES}(F) = \{ \text{the resolvants of } F \} \).

Theorem 27. If \((\Omega, \mathcal{I}, \preceq, \mathcal{S}, \mathcal{A}, \mathcal{F}) \) is rational
and computable then for some effective function \(\text{SAT} \),
for each feature structure \(F \),
if \(F \) is satisfiable
then \(\text{SAT}(F) = \text{‘true’} \)
otherwise \(\text{SAT}(F) = \text{‘false’} \).

Proof. From theorem 24 and proposition 26.

Gerdemann and Götz’s T roll system (see [Götz 1993], [Gerdemann and King 1994] and [Gerdemann (fc)]) employs an efficient refinement of \(\text{RES} \) to test the satisfiability of feature structures. In fact, Troll represents each feature structure as a disjunction of the resolvants of the feature structure. Loosely speaking, the resolvants of a feature structure have the same underlying finite state automaton as the feature structure, and differ only in their output function. Troll exploits this property to represent each feature structure as a finite state automaton and a set of output functions. The Troll unifier is closed on these representations. Thus, though \(\text{RES} \) is computationally expensive, Troll uses \(\text{RES} \) only during compilation, never during run time.

References

[Carpenter 1992] Robert Carpenter The logic of typed feature structures. Cambridge tracts in theoretical computer science 32. Cambridge University Press, Cambridge, England. 1992.

[Gerdemann (fc)] Dale Gerdemann. Troll: type resolution system, user’s guide. Sonderforschungsbereich 340 technical report. Eberhard-Karls-Universität, Tübingen, Germany. Forthcoming.

[Gerdemann and King (1994)] Dale Gerdemann and Paul John King. The correct and efficient implementation of appropriateness specifications for typed feature structures. In these proceedings.

[Götz 1993] Thilo Götz. A normal form for typed feature structures. Master’s thesis. Eberhard-Karls-Universität, Tübingen, Germany. 1993.

[King 1989] Paul John King. A logical formalism for head-driven phrase structure grammar. Doctoral thesis. The University of Manchester, Manchester, England. 1989.

[Moore 1956] E. F. Moore. ‘Gedanken experiments on sequential machines’. In Automata Studies. Princeton University Press, Princeton, New Jersey, USA. 1956.
[Mosher 1988] Michael Andrew Mosher. *Extensions to unification grammar for the description of programming languages.* Doctoral thesis. The University of Michigan, Ann Arbor, Michigan, USA. 1988.