Business process improvement using Object-Process Methodology

Jason M. Casebolt1 | Ahmad Jbara2 | Dov Dori2,3

1System Design and Management, MIT School of Engineering, Sloan School of Management, Massachusetts Institute of Technology, Cambridge, Massachusetts
2Faculty of Industrial & Management Engineering, Technion—Israel Institute of Technology, Haifa, Israel
3System Design and Management, MIT School of Engineering, Sloan School of Management, Massachusetts Institute of Technology, Cambridge, Massachusetts

Correspondence
Dov Dori, Faculty of Industrial & Management Engineering, Technion—Israel Institute of Technology, Haifa 3200003, Israel.
Email: dor@technion.ac.il

Abstract
For decades, business process improvement (BPI) has been a persistent and expensive concern that spans across many industry sectors. We present OPM-BPI—a model-based method to improve business processes using ISO 19450—Object-Process Methodology (OPM). The approach compares favorably to state-of-the-art business process languages and approaches, such as Business Process Modeling Notation (BPMN). An aviation manufacturing company case study of safely removing a part from an aircraft and reinstalling it demonstrates the method. We show how using OPM-BPI enables removing a large portion of the supporting objects, and how related processes can be eliminated or merged, achieving considerable model simplification that represents a significantly improved, more effective and less wasteful business process.

KEYWORDS
business process improvement, business process modeling notation (BPMN), manufacturing processes, model-based systems engineering, Object-Process Methodology, process architecture, process improvement, process-as-a-product

1 | INTRODUCTION

Emerging as a major focus in the 1980s and 1990s, Business Process Improvement (BPI) has been a steady undertaking for major companies around the globe.1,2 The definition of BPI used here is simply “improvement of a process [by] means [of] changing a process to make it more effective, efficient, and adaptable.” The leading drivers of this movement have been the need to save money and to improve performance. Additional motivations include increasing customer satisfaction, improving organizational responsiveness, complying with regulations, such as Sarbanes-Oxley, and major events, like a merger or an acquisition.2 These efforts have made BPI a big business, with process improvement departments, consultants, and practitioners who focus a large part of their time or resources on improving business processes. They use familiar products and methods, such as Lean, Six Sigma, Business Process Reengineering, Workflow, ERP software, and Business Process Management Suite software.2

Despite over 20 years of focus, companies are still spending substantial sums on process improvement each year. For example, a 2013 survey of over 300 large companies revealed that 46% spent at least $500 000 that year on process improvement efforts. Nearly half of those companies (26% of the overall total) spent at least $1 million.2 Of all companies surveyed, 31% classified BPI as a major strategic commitment.

In spite of the large number of BPI methodologies that have been proposed, it seems that there is a room for more such methodologies, because many of the BPI efforts still fail,3 and many new methods have been introduced, borrowing ideas from other disciplines, such as agile, natural language processing (NLP), and big data.

The purpose of this article is to apply systems thinking by using Model-Based Systems Engineering (MBSE), specifically Object Process Methodology (OPM), adopting a new method of BPI, called OPM-BPI. This approach applies MBSE to identify solution-neutral process improvement opportunities in a manner that accounts for the context of the system. The main contributions of this article include:

(1) a new method for business process improvement
(2) a set of solution-neutral process improvements
(3) a metamodel that can be used as a template for deriving new solutions
(4) OPM—a new visualization language and methodology with a minimal ontology that has been effective in many domains and is applied for BPI in this research for the first time.
The rest of this article is organized as follows: Section 2 introduces OPM. In Section 3 we describe OPM-BPI and apply it in Section 4 to a real-life case study at a large aircraft manufacturing company. In section 5 we summarize the results and discuss ongoing research efforts.

2 | OBJECT-PROCESS METHODOLOGY

OPM is a leading MBSE platform due, in part, to its December 15, 2015 release by the International Organization for Standardization (ISO) as the ISO-19450 specification for “Automation Systems and Integration—Object-Process Methodology.” Founded on the minimal ontology of stateful objects and processes that transform them as a set of necessary and sufficient building blocks, OPM is a holistic conceptual modeling language and cross-system lifecycle methodology, expressed graphically in a single kind of diagram and a complementary, autogenerated natural language text. It is different from other MBSE modeling languages in (i) the equal priority given to stateful objects and processes as the only two conceptual building blocks needed to represent systems in any domain—the minimal ontology, and (ii) the bimodal representation of the OPM model in both formal intuitive graphics and automatically generated text—simple sentences in a subset of English.

OPM is flexible in its application and has indeed been applied in a wide array of industrial domains, from defense and avionics through electronic consumer appliances to software engineering, Web applications design, and molecular biology. OPM has been used in the evaluation of complex sociotechnical system in fields such as aerospace, defense, information systems, medicine, sciences, and space exploration. Formal yet intuitive, OPM is learned quickly and enables involving the customer as a partner, starting from the early product or system development phases all the way to deployment and maintenance, providing for the integration of risk and interoperability into the architecture and design of complex systems and systems-of-systems.

2.1 | Using OPM to create models

To use OPM, the freely available CASE tool OPCAT provides an environment that enables users to design OPM models, which are referred to as Object-Process Diagrams (OPDs). OPDs created in OPCAT automatically generate Object-Process Language (OPL) text in a separate panel, which is a textual description of the OPD in a subset of English. In addition to model creation, OPCAT enables model simulation through executing the model for behavior verification and validation. Figure 1 is a simple OPM model of OPM-BPI: Process Improving using OPM as a method—the focus of this article—through OPCAT’s OPD (top) and OPL (bottom) views.

Within OPM, a system is comprised of physical (tangible) or informatical (intangible) things—objects and processes—that are represented by rectangles and ovals respectively, as presented in Figure A1. A key premise of OPM is that objects and processes are of equal importance and complement each other for providing a complete structural and procedural specification of the system. Objects are things that exist in some state, and they are represented by nouns. Processes, represented by verbs, preferably in their gerund form (ending with “ing”), are things that transform objects through creating or destroying objects, or changing object states.

To supplement the objects, processes, and states, OPM supports structural and procedural relations, expressed graphically as links, as well as hierarchical organization for complexity management. The four fundamental structural links, represented and defined in Figure A2, are aggregation-participation, generalization-specialization, exhibition-characterization, and classification-instantiation.

While structural links connect objects to objects or processes to processes, procedural links connect processes to objects or to object states. Procedural links include transforming links (consumption, result, input-output, and effect), enabling links (agent and instrument), and control links (which are out of scope for this article). Consumption implies that the process consumes the object. Result links indicate that the process generates the object. An input-output link pair denotes that the process changes an object from an input state to an output state. The effect link denotes that the process changes the object without specifying the input and output states. These are demonstrated in Figure A3.

Enabling links, also presented in Figure 4, denote objects that are needed for the process to occur but themselves are not transformed.
The agent link expressed the fact that the agent (a human) enables the process. An instrument link denotes a nonhuman enabler.

As noted, beyond visualization, OPCAT generates OPL to evaluate the system through textual description in English. OPL has two purposes. First, it enables domain experts and systems architects to better analyze and design a system by providing a description-based model to validate or contrast their graphic-based OPD model. Second, OPL establishes a firm basis for automatically generating the designed application. An OPL example is displayed in the bottom portion of Figure 1.

2.2 OPM summary

OPM is a dual approach that uses graphic-based modeling with text-based validation to construct a system. Through the freely available OPCAT software and the minimal number of selectable entities, OPM is easy to obtain, learn, and use. Despite its simplicity, it enables robust system exploration beyond architecture, including states, aggregation, and zooming within systems-of-systems. Its recent emergence as an international standard provides for its use as a consistent method for the foreseeable future.

3 THE OPM-BPI METHOD

To perform the OPM-BPI method, the design of the business process must be (i) decomposed, (ii) rationalized, and (iii) optimized. Modern systems architectural principles provide a basis from which OPM can be used for decomposition and rationalization. This article expands on these principles by providing a means for optimization or at least significant improvement of business processes.

3.1 Decomposition

The first step is to decompose the design into its entities so that it can be evaluated. Using OPM, each entity of the design is identified as either an object or a process. The focus of the first step should be accuracy of the identification, not the relationships between the objects and processes; relationship association will take place in the next step.

3.2 Rationalization

The second step is to rationalize the entities that were identified in Step 1, namely, to express meaningful and useful relations among them. With OPM, this involves connecting the objects and processes that were identified with structural and procedural relations. Modern system architecting principles also provide the basis for this linkage.

The concept of layered architecting within OPM is the starting point of performing BPI. Following this approach, we identify the system’s objects and processes, and separate them into the operand object—the major object transformed by the system, value-related objects and processes, and finally supporting processes and objects. Figure A4 provides an example of this rationalization approach, resulting in a layered architecture. This approach rationalizes not just the relationships, but also the value-added role that each object and process play in the context of the system’s intended function.

3.3 Optimization

After rationalization is complete, the OPM-BPI method takes a different point of view than the modern systems architectural principles. Where Crawley et al suggest that supporting objects and processes provide structure that enables the value-related objects and processes to perform their respective functions, our OPM-BPI method asserts that the supporting objects and processes serve as both waste and complexity to a process being performed. The concept visualized in Figure 2 proposes that the operand, as well as the value-related objects and processes, are value-adding, and are therefore desired. The nonvalue-added waste that exists as the supporting objects and processes should be minimized or eliminated to maintain efficiency.

The concept underlying this view is that the additional layers of architecture in a business or industrial process serve to complicate, add time, and otherwise hinder a process to perform its pure function. This departs significantly from product development, where such additional structures serve to support the system by design. The key is properly identifying value-adding entities as those that if removed would degrade or otherwise prevent the intended function of the business process from occurring. The remaining entities, those that do not meet this standard, are therefore considered nonvalue-adding.

Once the entities have been rationalized into value-adding and nonvalue-adding objects and processes, then optimization occurs through any combination of one or more of the following solution-neutral actions: (i) delete, (ii) combine, (iii) reduce/simplify, (iv) automate, (v) offload/outsource, and (vi) upgrade. These are evaluated for each individual entity, as well as groupings of entities together. Similar to other guiding concepts, such as TRIZ, this OPM-BPI method narrows the focus of a user’s creativity to improving certain aspects of a process with specific types of optimization actions.

The nonvalue-adding objects and processes should be the major focal point, since their removal or simplification does not disrupt the functioning of the business process. Therefore, these things are potentially waste, so their deletion is preferred over other optimization options, since waste eliminated is preferred over waste reduced. Value-added objects and value-adding processes should be reviewed as well, but with an opposite intent, because deletion of a value-added thing undermines the proper functioning of the business process under design. In these cases, simplification activities, such as automation, are preferred over deletion, which, for value-adding objects and processes, is harmful almost by definition.

The result of the OPM-BPI method is an identified set of solution-neutral process improvements that optimize the system and preserve intended function. The solution-specific means of implementing the improvements should be determined by the expertise and resources available at a company using the method. Therefore, OPM-BPI does not provide solution-specific improvements. Rather,
it identifies solution-neutral opportunities to generate such improvements.

Indeed, our framework provides a powerful abstraction that formalizes any given problem in OPM, so it is not limited only to BPI. Figure 3 shows an OPM metamodel that formalizes OPM’s perspective on problem solving in general. According to this metamodel, every Problem Occurring process is initiated by a trigger. The stakeholders who benefit from the system are the Beneficiary Group. The problem occurring process changes the Beneficiary Attribute from (state) wanted to unwanted, and the Benefit-Providing from (state) satisfactory to problematic. The Problem Solving process does the exact opposite. Problem Solving needs a set of agents who are humans who are essential for performing the function of the system we are solving.

4 | THE AVAE QUALITY ASSURANCE CASE STUDY

4.1 | Introduction

We demonstrate the OPM-BPI method through a case study, in which we had access to a large American aerospace manufacturing company identified with the pseudonym “Aviator Aerospace” (“AvAe”). In this case study, we demonstrate the OPM-BPI method on a major quality assurance process of AvAe. The case study evaluates and validates a combination of concepts, including those that AvAe has already identified, along with new conclusions identified through applying the OPM-BPI method.

4.2 | Background

AvAe is a manufacturing company that produces aerospace parts and assemblies in accordance with government quality system regulations\(^ {13} \) and aerospace industry standards.\(^ {14} \) Consistent with
best practices, AvAe divides its internal control documentation into policies, procedures, and processes that drive its operations. AvAe has a nine-person work group that focuses just on management of quality assurance processes that Quality Assurance Inspectors and Factory Mechanics use to perform their work. BPI and process optimization are among the responsibilities of this quality process management group.

This case study applies the OPM-BPI method to a business process improvement for the “Uninstall Part or Assembly process” (shortly, and following OPM conventions, the Uninstalling process), which was selected due to chronic audit failures, long performance time, and feedback from frustrated process users who claim that the process is too complicated. According to working team time trials, the Uninstalling process takes on average approximately 84 minutes to perform. The process involves 14 written steps, featuring frequent exchanges between Factory Mechanics and Quality Assurance Inspectors at different intervals.

The 14 steps of the Uninstalling process are as follows:

1. Either the Factory Mechanic or the Quality Assurance Inspector initiates both the Uninstall Record and Uninstall Order to begin the process.
2. The Factory Mechanic makes a request to the Quality Assurance Inspector for authorization to uninstall the part or assembly.
3. The Quality Assurance Inspector authorizes the Factory Mechanic’s request for authorization.
4. The Factory Mechanic uninstalls the part or assembly.
5. The Factory Mechanic makes a request for authorization to the Quality Assurance Inspector to reinstall the part or assembly.
6. The Quality Assurance Inspector authorizes the Factory Mechanic’s request for authorization.
7. The Factory Mechanic reinstalls the part or assembly.
8. The Quality Assurance Inspector verifies that the part or assembly reinstallation was performed correctly.
9. The Factory Mechanic and the Quality Assurance Inspector determine if a retest of the reinstalled part or assembly is necessary.
10. If necessary, the Factory Mechanic and the Quality Assurance Inspector retest the reinstalled party or assembly.
11. If necessary, the Quality Assurance Inspector verifies that the retest was performed correctly.
12. The Federal Aviation Administration (“FAA”) Coordinator inspects the reinstalled part or assembly.
13. The Quality Assurance Inspector completes the Order.
14. The Factory Mechanic completes the Record to end the process.
15. Wait times between steps are noted as one role triggers another role to queue up to begin their next step.

4.4 | Step 1: Decomposition

The decomposition of the entities (things, ie, objects and processes) of the Uninstalling process is straightforward, because the 14 process steps were already identified, along with inputs and outputs for each step, the performers (agents in OPM nomenclature) of each step, and the systems (instruments in OPM nomenclature) used by the performers. Such information is considered best practice to include in business process documentation. In addition to objects and processes being identified in business process documentation, an object’s beginning and end states are identified if they are changed through performing the process.

Each of the 14 steps listed in the Uninstalling process document were converted into a separate process in the OPM model. To help relate the written process steps, each process in the OPM model was numbered with the respective process step number. The workers and systems that perform or affect the process. Specifically, the (i) Quality Assurance Inspector, (ii) Factory Mechanic, (iii) FAA Coordinator, (iv) Manufacturing Data System, and (v) the Requirements Data System are represented in the OPM model as objects, and more specifically— as agents. Lastly, state changes were modeled with careful attention to the orders and records being opened and closed. For example, in Figure 4 “installed” is both the initial and final state of Part. Step 4, Uninstall Performing, changes Part from “installed” to “uninstalled”, and Step 7, Uninstall Performing, does the opposite.

4.5 | Step 2: Rationalization

After the decomposition, the next step is to rationalize those entities into layered architecture. Figure 4 demonstrates the primary value-creation function of the process by selecting and grouping respective entities into operands—essential objects that the system transforms, thereby adding value (on the left), internal value-related processes to the right of the operands, value-related instrument objects next, then supporting processes, and finally auxiliary objects. The classification of these things was based on reviewing the process documentation to verify that the intended output is the reinstallation of an uninstalled part or assembly. Stated differently, that the state of the part or assembly changes from installed to uninstalled, and back to installed.

The selection of the internal value-related processes was more subjective from the point of view of the process improvement architect. The concept was to identify which of the process steps, if removed, would undermine the intended-function of the documented process. The ones selected as value-adding processes were: (1) Order and Record Initiating, (2) Uninstall Performing, (3) Install Performing, (4) FAA Conformity Inspecting, 10 Retest Performing (If Required), (12) FAA Conformity Inspecting, (13) Order Completing, and (14) Record Accepting.

By description, Step 10 Retest Performing (If Required) and Step 12 FAA Conformity Inspection may seem to be nonvalue-adding processes, since they are by definition either rework or verification. Still, we decided to list these as value-adding processes since AvAe classifies them within quality assurance processes, which therefore consider them value-adding, though from a manufacturing perspective.
such activities could be considered nonvalue-adding. The decision not to list Step 10 Retest Performing (If Required) and Step 12 FAA Conformity Inspecting as supporting processes, unlike the other verification-type processes, is that they are imposed by auditing entities, 13,14 and therefore are value-adding to the extent that they satisfy mandatory external constraints.

The value-related instrument and agent objects (middle column) were then listed as those that either perform or are essential to function. This was straightforward from the process documentation that lists the performers as the OPM agents (humans) Factory Mechanic, Quality Assurance Inspector, and FAA Coordinator. The less straightforward one is the Record, which may seem nonessential, but is also a requirement-constraint imposed by external sources, 13,14

Supporting processes and supporting objects/interfaces are those entities that, if they were simply deleted, would not disrupt the intended function of the documented process. For processes, these are all the remaining requesting, authorizing, verifying, and determining steps. These steps are differentiated from internal value-related processes because they are not imposed requirements that must be satisfied. The supporting objects/interfaces similarly assist the process, but they would undermine the intended function had they been deleted.

4.6 Step 3: Optimization

For optimization to take place, we evaluated the nonvalue-added columns (fourth and fifth columns) to determine if the entities, individually or collectively, could be reduced or deleted. This means that the manufacturing and requirements systems, as well as the requesting, authorizing, verifying, and determining steps, were targeted for (i) deletion, (ii) combination, (iii) reduction or simplification, (iv) automation, (v) offload or outsource, and/or (vi) upgrade. Figure 5 demonstrates the three objects and five processes targeted to be optimized as pink (darker than the rest).

Optimization 1: Current AvAe Proposal—Delete Inspection by Quality Assurance Inspector (Supporting Processes): The improvement of Operator Self-Inspection ("OSI") has been considered by AvAe leadership. OSI has been around for a few decades, 16 but still has not been fully deployed into manufacturing companies like AvAe. This approach shifts responsibility of quality inspection from the Quality Assurance Inspector to the operator of the process, which in the case study is the AvAe Factory Mechanic. Quality Assurance Inspectors then perform a separate external function of monitoring the certification of the self-inspecting operators. One of the goals of OSI is to eliminate the need for the operator to stop and wait for an inspector to come and inspect the product. Here, the incorporation of OSI would result in deletion of nonvalue-adding Step 8 Reinstall Verifying, where the Quality Assurance Inspector would otherwise inspect the re-installed Part or assembly, and instead merge that inspection back into Step 7 Reinstall Performing for the Factory Mechanic to perform during the reinstallation. This could be alternatively viewed as (i) deletion, (ii) combination, or (iii) reduction or simplification, depending on the perspective of the process architect.
FIGURE 5 OPM of targeted improvements highlighted

Optimization 2: Current AvAe Proposal—Delete Authorizations Conducted by Factory Mechanics (Supporting Processes): Proposed after considering OSI, the concept of Operator Self-Authorization (OSA) has been identified by AvAe leadership as a potential inverse to OSI. Here, Factory Mechanics would self-authorize themselves to perform the uninstallation, which would therefore eliminate the need for Step 2 Authorization Requesting (where the Factory Mechanic requests authority from the Quality Assurance Inspector to uninstall the part or assembly), Step 3 Uninstall Authorizing (where the Quality Assurance Inspector authorizes the request), Step 5 Authorization Requesting (where the Factory Mechanic requests authority from the Quality Assurance Inspector to reinstall the part or assembly), and Step 6 Reinstall Authorizing (where the Factory Mechanic requests authorization to reinstall the part or assembly). OSA would therefore result in three nonvalue-adding steps removed from the process. Similar to OSI, the perspective of the process architect will determine how the targeted improvement is classified.

Optimization 3: Current AvAe Proposal—Combined or Automated Data Systems (Supporting Objects): Another improvement being considered is not specific to a process entity. Rather, it is attributed to simplification of object entities. AvAe uses two different data systems to manage manufacturing and requirement data, Manufacturing Data System and Requirements Data System, respectively. These systems both require manual input each time that information is accessed. While these systems are important, they are classified as nonvalue-added because the systems can be deleted without disrupting process function; though an alternative for accessing data to accomplish value-adding steps needs to be addressed.

AvAe is currently studying its requirements for a next generation data system. The OPM-BPI method presents a visual platform for which AvAe can model what types of requirements would also improve process simplification. Here, following the OPI-BPM method of finding a solution-neutral optimization, both systems could be (ii) combined into a single data system to reduce the architecture even further. Depending on preferences of the process architect, this could take the form of (ii) combination, or (i) deletion of one data system and (vi) upgrade of the other for the same requirements. In addition, other opportunities could exist for automating sub-processes to moderate inputs-outputs of the data system to increase efficiency further and eliminate waiting on manual inputs.

Optimization 4: Proposal by this Article’s Authors—Combining Order into Record (Primary Operand): Opening and closing both an Order and a Record are currently performed for two different purposes. Order signals work to be performed, while Record maintains configuration control, as required by regulations and standards. Though practical use varies, the conceptual usage of both these informatical objects is redundant when displayed through OPM. Therefore using the OPM-BPI method, we have identified a solution-neutral (ii) combination of the Order and Record to eliminate this redundancy. A solution-specific manner of performing this (ii) combination can now be explored by AvAe experts for the feasibility and specific means of implementation.
Optimization 5: Proposal by this Article —Simplifying Order and Record Initiating into Record Initiating (Value Process): One effect of Optimization 4 above is that another optimization occurs: (iv) reducing/simplifying the Step 1 Order and Record Initiating from initiating both the Order and the Record to initiating only the Record.

Depending on the choices to be selected by AvAe’s senior management, OPM-BPI has identified or validated that up to five nonvalue-added process steps could be eliminated, four value-added and nonvalue-added objects could be combined into as little as two, and one value-added process could be simplified. These are identified in Figure 6 by the absence of the pink entities that were present in Figure 5 and highlighting yellow entities that consume the combined or simplified objects. OPM-BPI has identified that these solution-neutral improvements have an optimization effect on the process as a system, without disrupting the value-added function performed by the business process. Therefore, identification and validation of new options has indeed occurred. The next steps are for these solution-neutral opportunities to be explored by AvAe, its process management team, and technical experts to find solution-specific means to implement these solutions that are consistent with process function, resources, and other synergies throughout the company.

4.7 OPM-BPI results in AvAe practical example

Thanks to OPM’s minimal ontology, we were able to represent the entire process using things (objects or processes) and links between them. This OPM property makes it easier to capture the essence of the underlying process even for practitioners who do not have a background in model-based systems engineering in general and using OPM in particular. Furthermore, even for complex processes that are composed of a large number of steps, OPM has the ability to overcome such complexity by its built-in refinement-abstraction mechanisms, namely in-zooming or unfolding, which allow creating another, lower-level diagram that contains the details of the refined thing and has a live connection with its ancestor diagram. For example, Figure 2 can be an abstraction of the detailed model in Figure 4 Partial abstraction is also reasonable when just specific parts of the model are complex.

The property of abstraction can help also in the optimization step. In particular, the parts of the model that are candidates for removal can be abstracted before the actual removal. This can help the modeler to see how the system will look like after actual removal and make sure that removal will not break logical relations between components.

5 RELATED WORK

A diverse set of methodologies has been developed for business process improvement. Some of these works gained success, while others face difficulties. Other works have borrowed ideas to provide better process improvement methods from other domains, such as Agile from software engineering, natural processing techniques, and Big Data.

Six-Sigma is a methodology that aims to determine and remove causes of errors, defects, and failures by focusing on critical outputs. This methodology also uses statistical methods to eliminate defects. Conversely, OPM is a conceptual modeling language and methodology, therefore, OPM-BPI uses qualitative analysis, rather than quantitative, to improve the business processes.

Lean Thinking was originated in Toyota. Its five principles are based on the assumption that organizations are made up of processes. Processes are one of the only two building blocks of OPM. OPM provides ways not only to model processes, but also to manage their inherent complexity. According to Radnor (2010), the first principle is the key element in Lean Thinking. It focuses on specifying the value desired by the customer, identifying the real customer, and understanding their requirements better. This is exactly what OPM as a methodology requires as a first step in building conceptual models. Complementarily, OPM provides a language to cope with the inherent complexity of systems.

Lean Thinking aims at reducing waste to improve business performance by improving workflow. This is achieved by eliminating all activities that do not produce value. Lean Thinking is argued to be a philosophy or a life style.

A combination of more than one method might have the potential to better meet some firms’ requirements. Lean Six Sigma has been presented as a combination of Lean Thinking and Six Sigma. Anderson et al. suggested that Lean deals with process flow, while Six Sigma addresses variation and design.

An agile-oriented approach called Business Process and Practice Alignment Methodology (BPPAM) is a hybrid approach that is adapted to the agile philosophy. Agile BPPAM provides a mechanism that instantly reacts to changes in business processes. In particular, the big cycles in the traditional BPPAM were replaced by smaller cycles and shorter iterations length. Therefore, the change in the Business Process Management System (BPMS) is made iteratively and follows the principles of the agile manifesto.

Iren et al. introduced an NLP-based approach that facilitates BPI. Specifically, their approach enables the business analysts to resolve conflicts in the elicited requirements, analyze impacted entities, and provide an actionable BPI plan. To cope with conflicting requirements, the requirements are categorized based on commonalities. The suggested approach uses NLP techniques to find similarities between requirements to process models, and then on the basis of these similarities the requirements are categorized.

A work by Vera-Baquero et al. describes a methodology and framework that leverages Big Data and Analytics to deliver a Decision Support System to support BPI. The suggested method aims at assisting business users in sustaining a comprehensive process improvement programs by means of DSS that is built on Big Data. In another work, Wang et al. conducted an empirical study that uses cloud-based big data techniques to improve business processes.

The aforementioned approaches are in the same line with a recent work by Johannsen et al. who argue that the traditional approaches have become overly complex and resource-consuming. Instead, a BPI roadmap was hence proposed to help perform BPI projects, especially
in the light of rapid changes in customer requirements in contemporary systems. Furthermore, they proposed a domain-specific conceptual modeling method (DSMM) to codify, document, and share results of a BPI project. At some stage a metamodel of the BPI roadmap is designed. This metamodel is represented by a UML class diagram. The authors note that this metamodel lacks many details and that not all the information in it can be checked for consistency due to the semi-formal nature of UML. At a later stage, the metamodel is formalized and prepared for the implementation phase. At this stage, information on algorithms and the modeling procedure are added.

Above shortcomings that partially stem could be mitigated if a formal conceptual modeling language, OPM, was used. OPM has the ability to represent the static and dynamic aspects of a system in a single kind of diagram. This property is likely to cope much better with building metamodels.

As for modeling languages, the Business Process Modeling Notation (BPMN) was presented as a standard business process modeling language, and its BPMN 2.0 version was resealed by the Object Management Group (OMG) in 2011. BPMN has been evaluated both analytically and empirically, including its ontological analysis, semiotic evaluation, and evaluation of BPMN notation. These evaluations reveal some limitations in BPMN. A semiotic evaluation shows that the complexity of the advanced aspects of BPMN are unrealistic to grasp without extensive training. There is a mismatch in BPMN semiotic clarity, as the language contains 242 semantic concepts and 171 graphical structures. BPMN has four types of diagrams and the way complexity is managed is not effective. Many other deficiencies are mentioned in Ref. 25. In OPM the ontology is minimal and universal, with a limited number of constructs: two kinds of things—stateful objects and processes—and links connecting them. This makes capturing the essence of the language relatively easy and rapid. Furthermore, the bimodal representation of an OPM model enables modelers to read the graphical constructs they build in a natural language, and this helps to better comprehend the model, and to spot and correct errors as soon as they are made. OPM provides built-in refinement-abstraction mechanisms to cope with complexity without while providing a single type of diagram.

SUMMARY AND CONCLUSIONS

This article proposes OPM-BPI as a new method of conducting business process improvement by using ISO-19450:2015 Object-Process Methodology. Through using layered systems architecting principles to create improvement models, the value-added and nonvalue-added objects and processes within the models are clearly identified. Once identified, creativity-guiding principles are applied to the entities...
within the model to determine which ones can be deleted or simplified without detriment to intended process function, with the purpose of eliminating waste and complexity within the model. This results in solution-neutral business process improvement opportunities that can become the focus of solution-specific optimization efforts. A case study from an aviation manufacturing company illustrates the application of our OPM-BPI method and the optimized results that were obtained. The proposed method is applicable to BPI processes in various domains, not specifically aviation only. This is so because OPM is based on a universal minimal ontology of objects as things that exist and processes as things that transform objects by creating or consuming them, or changing their state. Indeed, OPM has been applied in many sociotechnical and science domains, and BPI is a natural extension to previous application.

Future work on the subject should evaluate quantifying the effects of optimization, since not all improvements have the same impact. In addition, there is potential to broaden the reach of the optimization modeling to account for a wider range of subprocesses that are often evaluated in many lean or kaizen process improvement workshops. Lastly, there is potential opportunity to apply Axiomatic Design principles to ensure that the requirements of the process to be performed are also optimized, thereby reducing the likelihood of sub-optimized functional requirements becoming the basis around which the design parameters of an individual process are formed.

ACKNOWLEDGMENTS

The authors would like to thank Aviator Aerospace, for access and perspective into its business process improvement activities, and the MIT System Design and Management master’s program for its support. The last author would also like to thank Gordon Center for Systems Engineering at the Technion for its support.

ENDNOTE

* Downloadable from http://esml.iem.technion.ac.il/

ORCID

Ahmad Jbara https://orcid.org/0000-0002-6642-6499

Dov Dori https://orcid.org/0000-0002-2393-3124

REFERENCES

1. Harrington HJ. Business Process Improvement: The Breakthrough Strategy for Total Quality, Productivity, and Competitiveness. New York: McGraw-Hill; 1991.
2. Harmon P, Wolf C. The State of the BPM Market. 2014, BPTrends. [Online]. http://www.bptrends.com/bpt/wp-content/uploads/BPTrends_State-of-BPM-Survey-Report.pdf on June 20, 2018.
3. Rashid QA, Ahmad MN. Business process improvement methodologies: an overview. J Info Syst Res Innov. 2013;5:45-53.
4. Dori D. Object-Process Methodology—A Holistic Systems Paradigm. Berlin: Springer Verlag; 2002.
5. International Standards Organization. Automated systems and integration—object-process methodology. ISO/PAS 19450:2015. Web. Accessed: December 13, 2015.
6. Mordecai Y, Dori D. Agile modeling of an evolving ballistic missile defense system with object-process methodology. Proceedings of SysCon 2015, 9th Annual IEEE International Systems Conference, Vancouver, Canada. April 13-16, 2015:839-846. https://doi.org/10.1109/SYSCON.2015.7116855
7. Dori D, Reinhartz-Berger I, Sturm A. OPCAT—a bimodal CASE tool for object-process based system development. Proceedings of IEEE/ACM 5th International Conference on Enterprise Information Systems (ICEIS 2003), Angers, France, April 23-26, 2003:286-291.
8. Blekhman A, Dori D, Martin R. Model-based standards authoring. Proc. 21st INCOSE International Symposium, Denver, CO, USA. June 19-23, 2011:650–659.
9. Soderberg NR, Crawley EF, Dori D. System function and architecture: opm-based definitions and operational templates. Assoc Comput Mach—Commun ACM. 2003;46(10):67-72.
10. Blekhman A, Wachs JP, Dori D. Model-Based System Specification With Tesperanto: Readable Text From Formal Graphics. In: IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 45, no. 11, pp. 1448–1458, Nov. 2015.
11. Crawley E, Cameron B, Selva D. Systems Architecture: Strategy and Product Development for Complex Systems. Upper Saddle River, NJ, USA: Prentice Hall; 2015.
12. Cameron B. Functional architecture and operations. MIT Course ESD.411: Foundations of System Design and Management I. Lecture. September 23, 2014. Available: http://systemarchitect.mit.edu/courses.php. Accessed June 6, 2019.
13. United States Government Publishing Office (GPO) Quality system. 14 CFR Part 21.137; 2012. Available: https://www.govinfo.gov/app/details/CFR-2012-title14-vol1/CFR-2012-title14-vol1-sec21-137/context. Accessed June 6, 2019.
14. SAE Aerospace. Aerospace Standard AS9100C. 2009.
15. Page SB. Establishing a System of Policies and Procedures. BookMasters, Ashland, OH, 2002.
16. Whittingham PRB. Operator self inspection. Am Soc Qual. 1986;41:278-286.
17. Antony J. Some pros and cons of six sigma: an academic perspective. TQM Magaz. 2004;16(4):303-306.
18. Radnor ZJ. Review of business process improvement methodologies in public services. Advanced Institute of Management Research (AIM Research); 2010.
19. Anderson R, Eriksson H, Torstensson H. Similarities and difference between TQM, Six Sigma and Lean. TQM Magaz. 2006;18(3): 282-296.
20. Martins PV, Zacarias M. An agile business process improvement methodology. Procedia Comput Sci. 121;2017.
21. Beck K. Manifesto for Agile Software Development. 2001. http://www.agilemanifesto.org/principles.html.
22. Deniz I, Hajo AR. Leveraging business process improvement with natural language processing and organizational semantic knowledge. In Proceedings of the 2017 International Conference on Software and System Process (ICSSP 2017). ACM, New York, NY, USA. 2017:100-108. https://doi.org/10.1145/3084100.3084112
23. Vera-Baquero A, Colomo-Palacios R, Molloy O. Business process analytics using a Big Data approach. IT Profess. 2013;15(2013): 29-35.6.
24. Wang Z, Zhao H. Empirical study of using big data for business process improvement at private manufacturing firm in cloud computing. 2016 IEEE. 3rd International Conference on Cyber Security and Cloud Computing (CSCloud), Beijing. 2016:129-135. https://doi.org/10.1109/CSCloud.2016.11
25. Aagesen G, Krogsstie J. (2015) BPMN 2.0 for Modeling Business Processes. In: vom Brocke J, Rosemann M (eds). Handbook on Business Process Management I. International Handbooks on Information Systems. Berlin, Heidelberg: Springer.
JASON CASEBOLT is the director of quality at a leading South East Asian Aerospace Company. He received his BS in business finance from the Ohio State University in 2003, a JD Magna Cum Laude from the Seattle University School of Law in 2010, and a MS in engineering and management from the Massachusetts Institute of Technology in 2016, where he was a System Design & Management Fellow. Recently, Jason has earned Black Belt Certifications from the University of Michigan in both Design for Six Sigma and Lean Six Sigma, and is currently pursuing a Six Sigma Master Black Belt in Operational Excellence from the same institution.

AHMAD Jbara received his PhD in computer science in 2016 from the Hebrew University, Jerusalem, Israel. For two years, he was a researcher and an adjunct lecturer at the Enterprise Systems Modeling Laboratory at the Faculty of Industrial Engineering and Management, Technion—Israel Institute of Technology. He was also a faculty member at the Computer Science School of the Netanya Academic College. Since August 2018, he has been at the Computer Science Department of the University of Connecticut, USA. His research interests are in the fields of program comprehension, code complexity metrics, code visualization, and conceptual modeling using Object-Process Methodology (OPM). During the course of his PhD studies he coined the term “code regularity” and modeled its effect on comprehension. Insights from his MSc thesis were adopted in an early version of Internet Explorer.

DOV DORI (F’17), Fellow IEEE, INCOSE, and IAPR, is professor of software and systems engineering and head of the Enterprise Systems Modeling Laboratory at the Technion, Israel Institute of Technology. He has intermittently been visiting professor at MIT, where he holds an adjunct position with the systems design and management graduate program. Since 1993, when Dr Dori invented Object-Process Methodology (OPM), he has been central to the field of model-based systems engineering. OPM is the first conceptual modeling language and methodology recognized as ISO 19450:2015. Prof Dori has authored over 380 highly cited publications. He has supervised over 50 graduate students in Israel and USA, of whom 13 are faculty members in several countries. Prof. Dori has chaired nine international conferences. He was associate editor of IEEE T-PAMI and systems engineering, and co-chair of the IEEE Society on SMC, TC on model-based systems engineering. His 2002 book on OPM has been cited over 600 times. His book on model-based systems engineering is the basis for edX MBSE101 MOOC. His research has been funded by public and industrial sponsors, including the EU, Whirlpool, and Airbus. He has received various research and innovation awards and is a member of Omega Alpha Association—International Honor Society for Systems Engineering.

How to cite this article: Casebolt JM, Jbara A, Dori D. Business process improvement using Object-Process Methodology. Systems Engineering. 2020;23:36–48. https://doi.org/10.1002/sys.21499
Appendix A

Visual Representation	Textual Form	Definition	Description
Object	Nouns; capitalized first letter in every word; if ending with “ing”, “Object” is placed as a suffix	**An object** is a thing that has the potential of stable, unconditional physical or mental existence.	Static things. Can be changed only by processes.
Process(ing)	Nouns in gerund form; capitalized first letter in every word; if not ending with “ing”, “Process” is placed as a suffix	**A process** is a pattern of transformation that an object undergoes.	Dynamic things. Are recognizable by the changes they cause to objects.
Object	Nouns, adjectives or adverbs; non-capitalized	**A state** is a situation an object can be at.	States describe objects. They are attributes of objects. Processes can change an object’s state.

FIGURE A1 The OPM entities (adapted from Ref. [4]). Objects are things that exist in some state. Processes are things that create objects, destroy them, or affect their states.

Shorthand Name	Aggregation	Exhibition	Generalization	Instantiation
Symbol	![symbol]	![symbol]	![symbol]	![symbol]
Meaning	Relates a whole to its parts	Relates an exhibitor to its attributes	Relates a general thing to its specializations	Relates a class of things to its instances

FIGURE A2 Structural relation symbols (adapted from Ref. [4]). Basically, structural links connect objects to object or processes to processes.

FIGURE A3 Procedural link (adapted from Ref. [4]). Basically, procedural links connect processes to objects or to their states.

Type	Name	Semantics	Symbol	Source	Destination
Transforming	**Consumption**	The process consumes the object.	![symbol]	Object	Process
	Result	The process generates the object.	![symbol]	Process	Object
	Input\(^a\)	The process changes from an input state.	![symbol]	state	Process
	Output\(^a\)	The process changes to an output state.	![symbol]	Process	state
	Effect	The process changes the object.	![symbol]	Object	Process
Enabling	**Agent**	The human agent enables the process.	![symbol]	Object	Process
	Instrument	The process requires the instrument.	![symbol]	Object	Process
FIGURE A4 Layered architecture (adapted from Refs. 11, 12)