A Novel Truncating LMNA Mutation in Patients with Cardiac Conduction Disorders and Dilated Cardiomyopathy

Hiroshi Kawakami,1 MD, Akiyoshi Ogimoto,1 MD, Naohito Tokunaga,1 PhD, Kazuhisa Nishimura,1 MD, Hideo Kawakami,2 MD, Haruhiko Higashi,1 MD, Chiharu Oio,3 MD, Tamami Kono,1 MD, Jun Aono,4 MD, Teruyoshi Uetani,1 MD, Takayuki Nagai,3 MD, Katsuki Inoue,4 MD, Jun Suzuki,1 MD, Shuntaro Ikeda,5 MD, Takafumi Okura,3 MD, Yasumasa Ohyagi,3 MD, Yasuharu Tabara,6 PhD and Jitsuo Higaki,1 MD

Summary

The cardiac phenotype of laminopathies is characterized by cardiac conduction disorders (CCDs) and dilated cardiomyopathy (DCM). Although laminopathies have been considered monogenic, they exhibit a remarkable degree of clinical variability. This case series aimed to detect the causal mutation and to investigate the causes of clinical variability in a Japanese family with inherited CCD and DCM. Of the five family members investigated, four had either CCD/DCM or CCD alone, while one subject had no cardiovascular disease and acted as a normal control. We performed targeted resequencing of 174 inherited cardiovascular disease-associated genes in this family and pathological mutations were confirmed using Sanger sequencing. The degree of clinical severity and variability were also evaluated using long-term medical records. We discovered a novel heterozygous truncating lamin A/C (LMNA) mutation (c.774delG) in all four subjects with CCD. Because this mutation was predicted to cause a frameshift mutation and premature termination (p.Gln258HisfsTer222) in LMNA, we believe that this LMNA mutation was the causal mutation in this family with CCD and laminopathies. In addition, gender-specific intra-familiar clinical variability was observed in this Japanese family where affected males exhibited an earlier onset of CCD and more severe DCM compared to affected females. Using targeted resequencing, we discovered a novel truncating LMNA mutation associated with CCD and DCM in this family characterized by gender differences in clinical severity in LMNA carriers. Our results suggest that in patients with laminopathy, clinical severity may be the result of multiple factors.

Key words: Lamin A/C, Laminopathy, Targeted resequencing, Gender difference, Cardiovascular disease-associated gene, Truncating mutation

Lamins A and C, encoded by the lamin A/C gene (LMNA), are nuclear intermediate filament proteins that form one of the major structural components of the lamina network, which underlies and mechanially supports the nuclear envelope.1,2 LMNA mutations cause a variety of inherited diseases referred to as laminopathies and include skeletal muscle disease, premature aging, metabolic disorders, and cardiac abnormalities.3,4 The cardiac phenotype of laminopathies is characterized by cardiac conduction disorders (CCD), atrial fibrillation, ventricular arrhythmias, sudden cardiac death, and dilated cardiomyopathy (DCM).3,4

In the past few years, technical advances and cost reductions in next-generation sequencing (NGS) has made comprehensive genetic testing possible for all known genes of cardiovascular disease.5 As well as its versatile applications towards improved detection of genetic changes in patients with cardiovascular disease and exploration of novel genotype-phenotype correlations,6-17 NGS will enable the prediction of clinical outcomes and the development of individualized treatments (personalized medicine) by revealing the interactions of multiple gene mutations in patients with inherited cardiovascular disease.

In the present study, we performed targeted resequencing of 174 inherited cardiovascular disease-associated genes to screen for culprit genes and to investigate the causes of clinical variability in a Japanese family with inherited CCD and DCM. We discovered a novel truncating LMNA mutation associated with CCD and DCM in four affected individuals from a single family,
which exhibited gender differences in clinical severity in LMNA carriers.

Methods

Subjects and clinical evaluation: A Japanese family with inherited CCD and DCM was identified, and five family members were investigated (Figure 1). CCD was characterized by early-onset sick sinus syndrome and/or atrioventricular block (AVB). Three subjects (II-1, II-2, and the proband III-1) had pacemakers until late middle age, and one (III-2) had first-degree AVB at the age of 30 years. DCM was defined according to international criteria, including left ventricular enlargement with systolic dysfunction after the exclusion of other detectable causes of DCM. Three subjects (II-1, II-2, and III-1) were diagnosed with DCM. The father (II-3) of the proband had no cardiovascular disease and was used as a normal control. Clinical evaluation consisted of a medical history, a family history, physical examination, 12-lead electrocardiography (ECG), and transthoracic echocardiography. Clinical evaluations were made by investigators without knowledge of the genetic status of the subjects.

This study was performed in accordance with the Helsinki Declaration. The study protocol was approved by the Ethics Committee of the Ehime University School of Medicine (Approval No. 13-1), and written informed consent was obtained from each subject, including their consent for their DNA to be used in genetic analyses.

DNA sample preparation: DNA was extracted from peripheral blood samples of all five subjects using a QIAamp DNA Blood Mini Kit (Qiagen, Hilden, Germany) in accordance with the manufacturer’s protocol.

Targeted resequencing and data analysis: Targeted resequencing was performed using a TruSight Cardio Sequencing Kit with a MiSeq (Illumina, San Diego, CA, USA), which allowed the enrichment and final analysis of a 174-gene panel including all known genes related to inherited cardiovascular disease. The gene list is shown in Table I. The cumulative target region size was 0.572 Mb including all exons and exon-intron boundaries in the 174 genes comprising the panel.

Library preparation and sequencing was performed according to the manufacturer’s protocol. Briefly, an indexed pooled library was prepared from 50 ng genomic DNA. Targeted regions of the 174 genes were then captured using biotin-labeled TruSight Cardio oligonucleotides (Illumina) and the resulting biotinylated target DNA fragments were purified with streptavidin-coated magnetic beads to obtain enriched libraries. Quantification and validation of the libraries were performed using a Qubit 2.0 Fluorometer system (Life Technologies, Carlsbad, CA, USA) and a 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). Sequencing of the enriched libraries was performed using a MiSeq system by 150 bp paired-end analysis.

Alignment and variant calling was automatically performed by the on-instrument software, MiSeq Reporter, and variant calling data were exported as VCF files. The variants reported in the VCF files were evaluated and visualized via VariantStudio Variant Analysis Software (Illumina). We filtered the data to remove variants with a minor allele frequency > 1% in the Asian population using the April 2012 phase 1 call set from the 1000 Genomes Project (v3 update), and we used Sorting Intolerant From Tolerant (SIFT; available at http://sift.jcvi.org/) and Polymorphism Phenotyping (PolyPhen-2; available at http://genetics.bwh.harvard.edu/pph2/) to predict mutational changes to protein function.

Sanger sequencing: Mutations identified as pathological
Table 1. List of Genes Selected to Perform a Targeted Resequencing

Gene	Gene ID	Gene description	Chromosome
ABCC9	10060	ATP binding cassette subfamily C member 9	12p12.1
ABCG5	64240	ATP binding cassette subfamily G member 5	2p21
ABCG8	64241	ATP binding cassette subfamily G member 8	2p21
ACTA1	58	actin, alpha 1, skeletal muscle	1q42.13
ACTA2	59	actin, alpha 2, smooth muscle, aorta	10q23.3
ACTC1	70	actin, alpha, cardiac muscle 1	15q14
ACTN2	88	actinin alpha 2	1q42-q43
AKAP9	10142	A-kinase anchoring protein 9	7q21-q22
ALMS1	7840	ALMS1, centrosome and basal body associated protein	2p13
ANK2	287	ankyrin 2, neuronal	4q25-q27
ANKRD1	27063	ankyrin repeat domain 1	10q23.31
APOA4	337	apolipoprotein A4	11q23
APOA5	116519	apolipoprotein A5	11q23
APOB	338	apolipoprotein B	2p24-p23
APOC2	344	apolipoprotein C2	19q13.2
APOE	348	apolipoprotein E	19q13.2
BAG3	9531	BCL2 associated athanogene 5	10q25.2-q26.2
BRAF	673	B-Raf proto-oncogene, serine/threonine kinase	7q34
CACNA1C	775	calcium voltage-gated channel subunit alpha1 C	12p13.3
CACNA2D1	781	calcium voltage-gated channel auxiliary subunit alpha2delta 1	7q21-q22
CACNB2	1284	calcium voltage-gated channel auxiliary subunit beta 2	10p12
CALM1	801	calmodulin 1 (phosphorylase kinase, delta)	14q32.11
CALR3	125972	calreticulin 3	19p13.11
CASQ2	845	calsequastin 2	1p13.1
CAV3	859	caveolin 3	3p25
CBL	867	Cbl proto-oncogene	11q23.3
CBS	875	cystathionine-beta-synthase	21q22.3
CETP	1071	cholesteryl ester transfer protein	16q21
COL3A1	1281	collagen type III alpha 1	2q31
COL5A2	1290	collagen type V alpha 2	9q34.2-q34.3
COX15	1355	COX15 cytochrome c oxidase assembly homolog	10q24
CREBL3	84699	cAMP responsive element binding protein 3-like 3	19p13.3
CRELD1	78987	cysteine rich with EGF like domains 1	3p25.3
CRYAB	1410	crystallin alpha B	11q23.3
CSRP3	8048	cysteine and glycine rich protein 3	11p15.1
CTF1	1489	cardioprophlin 1	16p11.2
DES	1674	desmin	2q35
DMD	1756	dystrophin	Xp21.2
DNAJC19	131118	DnaJ heat shock protein family (Hsp40) member C19	3q26.33
DOLK	22845	dolichol kinase	9q34.11
DPP6	1804	dipeptidyl peptidase like 6	7q36.2
DSC2	1824	desmocollin 2	18q12.1
DSG2	1829	desmoglein 2	18q12.1
DSP	1832	desmoplakin	6p24
DTNA	1837	dystrobrevin alpha	18q12
EEFMP2	30008	EGF containing fibulin-like extracellular matrix protein 2	11q13.1
ELN	2006	elastin	7q11.23
EMD	2010	emerin	Xq28
EYA4	2070	EYA transcriptional coactivator and phosphatase 4	6q23
FBNI	2200	fibrillin 1	15q21.1
FBN2	2201	fibrillin 2	5q23.3
FHL1	2273	four and a half LIM domains 1	Xq26
FHL2	2274	four and a half LIM domains 2	2q12.2
FKRP	79147	fukutin related protein	19q13.32
FKTN	2218	fukutin	9q31.2
FXN	2395	frataxin	9q21.11
GAA	2548	glucosidase alpha, acid	17q25.2-q25.3
GATAD1	57798	GATA zinc finger domain containing 1	7q21-q22
GCCKR	2646	glucokinase (hexokinase 4) regulator	2p23
GJA5	2702	gap junction protein alpha 5	1q21.1
GLA	2717	galactosidase alpha	Xq22
Table 1. List of Genes Selected to Perform a Targeted Resequencing

Gene	Gene ID	Gene description	Chromosome
GP1D1L	23174	glycerol-3-phosphate dehydrogenase 1-like	3p22.3
GPHBP1	338328	glycosylphosphatidylinositol anchored high density lipoprotein binding protein 1	8q24.3
HADHA	3030	hydroxyacyl-CoA dehydrogenase/G-3-ketoacyl-CoA thiolase/enoyl-CoA hydratase	2p23
		(trifunctional protein), alpha subunit	
HCN4	10021	hyperpolarization activated cyclic nucleotide gated potassium channel 4	15q24.1
HFE	3077	hemochromatosis	6p21.3
HRAS	3265	Harvey rat sarcoma viral oncogene homolog	11p15.5
HSPB8	26353	heat shock protein family B (small) member 8	12q24.23
ILK	3611	integrin linked kinase	11p15.4
JAG1	182	jagged 1	20q12.1-p11.23
JPH2	57158	junctophilin 2	20q13.12
JUP	3728	junction plakoglobin	17q21
KCNA5	3741	potassium voltage-gated channel subfamily A member 5	12p13
KCND3	3752	potassium voltage-gated channel subfamily D member 3	1p13.3
KCNE1	3753	potassium voltage-gated channel subfamily E regulatory subunit 1	21q22.12
KCNE2	9992	potassium voltage-gated channel subfamily E regulatory subunit 2	21q22.12
KCNE3	10008	potassium voltage-gated channel subfamily E regulatory subunit 3	11q13.4
KCNH2	3757	potassium voltage-gated channel subfamily H member 2	7q36.1
KCNJ2	3759	potassium voltage-gated channel subfamily J member 2	17q24.3
KCNJ5	3762	potassium voltage-gated channel subfamily J member 5	11q24
KCNJ8	3764	potassium voltage-gated channel subfamily J member 8	12p11.23
KCNQ1	3784	potassium voltage-gated channel subfamily Q member 1	11p15.5
KLF10	7071	Kruppel-like factor 10	8q22.2
KRAS	3845	Kirsten rat sarcoma viral oncogene homolog	12p12.1
LAMA2	3908	laminin subunit alpha 2	6q22-q23
LAMA4	3910	laminin subunit alpha 4	6q21
LAMF2	3920	lysosomal associated membrane protein 2	Xq24
LDB3	11155	LIM domain binding 3	10q22.3-q23.2
LDLR	3949	low density lipoprotein receptor	19p13.2
LDLRAP1	26119	low density lipoprotein receptor adaptor protein 1	1p36.11
LMF1	64788	lipase maturation factor 1	16p13.3
LMNA	4000	lamin A/C	1q22
LPL	4023	lipoprotein lipase	8p22
LTPB2	4053	latent transforming growth factor beta binding protein 2	14q24
MAP2K1	5604	mitogen-activated protein kinase kinase 1	15q22.1-q22.33
MAP2K2	5605	mitogen-activated protein kinase kinase 2	19p13.3
MIB1	57534	mindbomb E3 ubiquitin protein ligase 1	18q11.2
MURC	347273	muscle related coiled-coil protein	9q31.1
MYBPC3	4607	myosin binding protein C, cardiac	11p11.2
MYH11	4629	myosin, heavy chain 11, smooth muscle	16p13.11
MYH6	4624	myosin, heavy chain 6, cardiac muscle, alpha	14q12
MYH7	4625	myosin, heavy chain 7, cardiac muscle, beta	14q12
MYL2	4633	myosin light chain 2	12q24.11
MYL3	4634	myosin light chain 3	3p21.3-p21.2
MYLK	4638	myosin light chain kinase	3q21
MYLK2	85366	myosin light chain kinase 2	20q13.31
MYO6	4646	myosin VI	6q13
MYOZ2	51778	myozin 2	4q26-q27
MYPN	84665	myopalladin	10q21.3
NEXN	91624	nexilin F-actin binding protein	1p31.1
NKX2-5	1482	NK2 homeobox 5	5q34
NODAL	4838	nodal growth differentiation factor	10q22.1
NOTCH1	4851	notch 1	9q34.3
NPPA	4878	natriuretic peptide A	1p36.21
NRAS	4893	neuroblastoma RAS viral oncogene homolog	1p13.2
PCSK9	255738	proprotein convertase subtilisin/kexin type 9	1p32.3
PDLIM3	27295	PDZ and LIM domain 3	4q35
PKP2	5318	plakophilin 2	12p11
PLN	5350	phospholamban	6q22.1
PRDM16	63976	PR domain 16	1p36.32
PRKAG2	51422	protein kinase AMP-activated non-catalytic subunit gamma 2	7q36.1
PRKAR1A	5573	protein kinase cAMP-dependent type I regulatory subunit alpha	17q24.2
were validated using Sanger sequencing with the BigDye® Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems, Foster City, CA, USA) following the standard protocol.

Results

Clinical characteristics and severity of cardiovascular disease: The clinical characteristics and phenotypes of all subjects are summarized in Table II. The proband (III-1) of this family was diagnosed with sick sinus syndrome and first-degree AVB at the age of 30 years. He has a strong family history of CCD; his grandfather, mother, and uncle all had pacemakers. Implantation of a pacemaker was recommended by his family physician that he originally rejected; however, he experienced syncope due to third-degree AVB at the age of 33 years (Figure 2A), and so a pacemaker was implanted. At the time, transasto-

Table I. List of Genes Selected to Perform a Targeted Resequencing

Gene	Gene ID	Gene description	Chromosome
PTPN11	5781	protein tyrosine phosphatase, non-receptor type 11	12q24
RARF	5894	Raf-1 proto-oncogene, serine/threonine kinase	3p25
RANGRF	29098	RAN guanine nucleotide release factor	17p1
RBM20	282969	RNA binding motif protein 20	10q25.2
RYR1	6261	ryanodine receptor 1	19q13.2
RYR2	6262	ryanodine receptor 2	1q43
SALL4	57167	spalt-like transcription factor 4	20q13.2
SCN1B	6324	sodium voltage-gated channel beta subunit 1	19q13.1
SCN2B	6327	sodium voltage-gated channel beta subunit 2	11q23
SCN3B	55800	sodium voltage-gated channel beta subunit 3	11q23.3
SCN4B	6330	sodium voltage-gated channel beta subunit 4	11q23.3
SCN5A	6331	sodium voltage-gated channel alpha subunit 5	3p21
SC02	9997	SC02 cytochrome c oxidase assembly protein	22q13.33
SDHA	6389	succinate dehydrogenase complex flavoprotein subunit A	5p15
SEPN1	57190	selenoprotein N, 1	1p36.13
SGCB	6443	sarcoglycan beta	4q12
SGCD	6444	sarcoglycan delta	5q33.3
SGCG	6445	sarcoglycan gamma	13q12
SHOC2	8036	SHOC2 leucine-rich repeat scaffold protein	10q25
SLC25A4	291	solute carrier family 25 member 4	4q35
SLC2A10	81031	solute carrier family 2 member 10	20q13.1
SMAD3	4088	SMAD family member 3	15q22.33
SMAD4	4089	SMAD family member 4	18q21.1
SNTA1	6640	syntrophin alpha 1	20q11.2
SOS1	6654	SOS Ras/Rac guanine nucleotide exchange factor 1	2p21
SREBF2	6721	sterol regulatory element binding transcription factor 2	22q13
TAZ	6901	Tafazzin	Xq28
TBX20	57057	T-box 20	7p14.3
TBX3	6926	T-box 3	12q24.21
TBX5	6910	T-box 5	12q24.1
TCAP	8557	titin-cap	17q12
TGFBR2	7042	transforming growth factor beta 2	1q41
TGFBR3	7043	transforming growth factor beta 3	1q42
TGFBR1	7046	transforming growth factor beta receptor 1	9q22
TGFBR2	7048	transforming growth factor beta receptor 2	3p22
TMEM43	79188	transmembrane protein 43	3p25.1
TMPO	7112	thymopoietin	12q22
TNN1	7134	troponin C1, slow skeletal and cardiac type	3p21.1
TNN3	7137	troponin I3, cardiac type	19q13.4
TNNT2	7139	troponin T2, cardiac type	1q32
TPM1	7168	tropomyosin 1 (alpha)	15q22.1
TRDN	10345	triadin	6q22.31
TRIM63	84676	tripartite motif containing 63	1p34-p33
TRPM4	54795	transient receptor potential cation channel subfamily M member 4	19q13.33
TTN	7273	titin	2q31
TTR	7276	transthyretin	18q12.1
TXNRD2	10587	thioroxygen reductase 2	22q11.21
VCL	7414	vinculin	10q22.2
ZBTB17	7709	zinc finger and BTB domain containing 17	1p36.13
ZHX3	23051	zinc fingers and homeoboxes 3	20q12
ZIC3	7547	Zic family member 3	Xq26.2
Figure 2. Evidence of severe cardiac conduction disease and dilated cardiomyopathy in the proband (III-1). A: Results of a 12-lead electrocardiogram (ECG) showing third-degree atrioventricular block at 33 years of age. B: Results of a 12-lead ECG during ventricular tachycardia (VT) at 42 years of age. VT was suppressed by a combination therapy of antiarrhythmic drugs (200 mg amiodarone and 5 mg bisoprolol). C: Chest radiography showed cardiomegaly and congestive heart failure. A pacemaker was implanted in the left chest wall. D: Echocardiographic apical 4-chamber view at end diastole (left panel) and end systole (right panel) showing severe left ventricular cavity dilatation with reduced ejection fraction, and left atrial dilatation.

Table II. Clinical Characteristics and Phenotype of Family Members

Subject	Sex	Age at first evaluation (years/old)	Age at last evaluation (years/old)	Conduction defect	Arrhythmia	LVEF at last evaluation (%)	NYHA functional class	Age at death (years/old)	Manifestation
III-1 Proband	M	30	42	SSS	AF, VT	29	IV	-	CCD + DCM
III-2 Sister	F	30	36	1st-degree AVB	None	64	I	-	CCD
II-1 Uncle	M	40	52	SSS	AF, VT	26	IV	53	CCD + DCM
II-2 Mother	F	54	67	3rd-degree AVB	AF	49	II	-	CCD + DCM
II-3 Farther	M	-	68	SSS	None	None	-	-	Healthy

AF indicates atrial fibrillation; AVB, atrioventricular block; CCD, cardiac conduction disease; CRT-D, cardiac resynchronization therapy defibrillator; DCM, dilated cardiomyopathy; LVEF, left ventricular ejection fraction; SSS, sick sinus syndrome; and VT, ventricular tachycardia.

Racemic echocardiography showed mild left ventricular dilatation and a mild reduced left ventricular ejection fraction (LVEF) of 49%. During follow-up, he developed deterioration in systolic function and the onset of paroxysmal atrial fibrillation. At 42 years of age, he underwent his first emergency hospitalization for worsening heart failure with ventricular tachycardia (VT) (Figure 2B). Chest radiography showed cardiomegaly and congestive heart failure (Figure 2C) and transthoracic echocardiography revealed a decreased LVEF of 29% (Figure 2D). His dual-chamber (DDD) pacemaker was therefore upgraded to a cardiac resynchronization therapy defibrillator (CRT-D).

His younger sister (III-2) had only first-degree AVB and no cardiac event without medications. Her 12-lead ECG and echocardiography at the start and end of the 6-year follow-up are shown in Figure 3. The PQ interval in her 12-lead ECG was gradually prolonged without deterioration of LVEF during the follow-up period.

Two subjects in the parent generation of the proband have both CCD and DCM. His uncle (II-1) had CCD and severe DCM. Although bradycardia due to sick sinus syndrome and second-degree AVB were identified in a health
check at 41 years of age, the subject rejected detailed investigation and treatment. However, he was admitted to hospital because of worsening heart failure and third-degree AVB at the age of 49, and required a DDD pacemaker. At that time, his LVEF had decreased to 40%. Despite the pacemaker implantation and medication, he experienced recurrent events of worsening heart failure. His LVEF decreased to <30% within several months, and an upgrade to a CRT-D was performed at 52 years of age (Figure 4). Unfortunately, CRT did not result in amelioration of his condition and he passed away at the age of 53 years from multiple organ failure resulting from heart failure. This subject’s sister (II-2), the mother of the proband, required a DDD pacemaker because of third-degree AVB at 54 years of age, but her cardiac function condition was relatively mild. Although her LVEF gradually decreased during follow-up, she did not require emergency hospitalization for worsening heart failure.

Changes in LVEF in all four subjects with CCD are shown in Figure 5. Intra-familial clinical variability and gender differences were observed in this family. CCD onset was earlier in male subjects compared to female subjects, and the DCM phenotypes were notably more severe in affected males than those found in affected females (Figure 5).

Genetic analysis: After filtering and data analysis using VariantStudio, a single rare variant associated with inherited cardiovascular disease was detected in this family, a novel heterozygous truncating LMNA mutation (c.774delG) was identified in all four subjects (II-1, II-2, III-1, and III-2) with CCD, and confirmed by Sanger sequencing (Figure 6). Based on our *in silico* analysis, this mutation is predicted to cause a frameshift mutation resulting in premature termination (p.Gln258HisfsTer222) of LMNA. Because this mutation was found in an amino acid region that is highly conserved among species, and is localized within a functionally important domain, we therefore believe that this LMNA mutation was the causal mutation in this Japanese family with CCD and laminopathies.

In addition, a heterozygous RBM20 variant (c.224C>T, p. Ser75Leu) was identified in three of these subjects (II-1, II-2, and III-1). This variant affects an amino acid that is highly conserved among species and was localized within a functionally important domain, and PolyPhen and SIFT analyses suggested this variant was probably damaging or deleterious. However, the ClinVar archives (https://www.ncbi.nlm.nih.gov/clinvar/variation/202052) described too that this mutation was observed in 1.1% of Japanese ancestry in the 1000 genomes database, which indicates it
Figure 4. Evidence of severe cardiac conduction disease and dilated cardiomyopathy in the uncle (II-1) of the proband. A: Results of the 12-lead electrocardiogram (ECG) after implantation of a cardiac resynchronization therapy defibrillator (CRT-D). The ECG showed atrial fibrillation and all biventricular pacing; the QRS morphologies were wide and there was a QS pattern in leads V1-V6. B: Chest radiography showed significant cardiomegaly and congestive heart failure. A CRT-D was implanted in the left chest wall. C and D: Echocardiographic apical 4-chamber view at (C) end diastole and (D) end systole showing severe left ventricular cavity dilatation with reduced ejection fraction, and left atrial dilatation. E: Pulsed-wave Doppler ultrasonography showing a tall E wave (E = 112 cm/s). The A wave was not observed because of persistent atrial fibrillation. F: Tissue Doppler ultrasonography showing severely reduced early diastolic tissue Doppler velocity (e’ = 4.3 cm/s). E/e’ = 26.

Discussion

In the present study, we discovered from targeted re-sequencing of 174 genes a novel heterozygous truncating LMNA mutation (c.774delG) in a Japanese family with CCD and DCM. In addition, we found intra-familial clinical variability between the carriers of this LMNA mutation that was associated with gender differences in clinical severity.

LMNA is one of the most common causal genes of CCD and DCM.3,9,10,12,19-21 This newly discovered c.774 delG mutation causes a predicted frameshift mutation (p. Gln258HisfsTer222) resulting in a truncated protein. Laminopathies primarily result from missense mutations; it is less common for them to be because of nonsense or splice-site mutations or insertions/deletions (indels).21-24 In LMNA mutation carriers, non-missense mutations may result in more severe cardiac events such as malignant ventricular arrhythmias than from missense mutations.21,23 Van Rijsingen et al evaluated risk factors for malignant ventricular arrhythmias in a multicenter cohort of 269 LMNA mutation carriers and found that non-missense mutations (indels, truncating mutations, or mutations affecting splicing) were an independent risk factor for malignant ventricular arrhythmias.23 In the present study, we found that our subjects had a high risk of VT, with two subjects implanted with CRT-D pacemakers because of VT and heart failure with dyssynchrony. Although we did not find VT in two other female subjects in this family, it may subsequently develop as these conditions have a late age-of-onset. Anselme, et al evaluated a prophylactic strategy of implantable cardioverter-defibrillator (ICD) implantation in LMNA mutation carriers with significant CCD,25 and found that even when LVEF was preserved, malignant ventricular arrhythmias were common in these subjects. It may be a benign variant in Japanese people. Therefore, the clinical significance of this variant is uncertain in this Japanese family. From our genetic analysis, no other predicted or possibly disease modifying mutations including synonymous mutations were identified apart from these two variants.
Figure 5. Clinical course and changes in left ventricular ejection fraction in the affected members of this family. Note that gender may be associated with clinical severity of the cardiac conduction disorder and dilated cardiomyopathy found in affected individuals. Affected males (II-1 and III-1) experienced an earlier onset of CCD and more severe DCM compared to affected females (II-2 and III-2).

They concluded that ICD is an effective treatment and should be considered in LMNA mutation carriers with CCD. Therefore, regarding the family in the present study, we recommend that the mother and sister of the proband should be kept under careful observation.

During our investigation, we observed a gender difference in the family studied in which affected males experienced an earlier onset of CCD and a more severe DCM phenotype compared to affected females. Although laminopathies have been considered monogenic, they exhibit a remarkable degree of clinical variability in severity, penetrance, and age at onset. Clinical variability has

Gene	Description	Chromosome	Nucleotide change	Type	Effect of protein	Conserved sequence	Previously reported
LMNA	lamin A/C	1	c.774delG	Truncation	p.Gln258HisfsTer222	Yes	Novel mutation

Figure 6. A: Electropherograms of direct sequencing showing (left panel) wild-type LMNA in a healthy control and (right panel) a novel heterozygous truncating LMNA mutation (c.774delG) leading to a predicted frameshift and premature stop codon (p.Gln258HisfsTer222). Arrows indicate the mutant nucleotide position. B: Detailed genetic information of the LMNA mutation.
been observed among family members with the same LMNA mutation; however, the cause of the intra-familial clinical variability has remained unclear. A recent study revealed significant gender differences in cardiac phenotypes such as higher mortality, and more severe cardiac dysfunction in males with DCM carrying an LMNA mutation. In addition, there have been several reports of adverse events occurring earlier and/or more frequently in male mutation carriers than in female carriers with inherited cardiomyopathy. Furthermore, Van Rijssingen, et al reported that male gender was an independent risk factor for severe ventricular arrhythmias in patients with laminopathies, whereas Herman, et al reported that males with DCM and mutations in titin (TTN) experienced adverse events at significantly earlier ages compared to that found in affected females. It has been suggested that gonadal hormones may explain the gender difference found in cardiac phenotypes. Results from in vitro and in vivo studies indicate that estrogen may play a pivotal role, in part because of its known protective effects, as evidenced by increased cardiovascular risk in women after menopause and by the cardiovascular benefits of estrogen replacement therapy. LVEF in the mother (II-2) of the proband gradually deteriorated after menopause, which would be consistent with a female hormone hypothesis. Indeed, nuclear accumulation of the androgen receptor has been associated with specific LMNA mutations that show a gender difference in the disease progression of DCM. The present study has a few limitations. First, the findings are from the analysis of a single family consisting of a small number of subjects with laminopathies. Further molecular and functional investigation is warranted to assess the predicted effects of rare variants associated with laminopathies. Second, the observed gender difference in this family remains tentative because the sister of the proband was young at the time of the investigation. Several reports have described DCM onset occurring after the age of 40 years. Therefore, long-term follow-up is needed to confirm whether there is a gender difference in this family. In addition, the influence of gender on the clinical severity of inherited cardiovascular disease caused by an autosomal monogenic mutation is still unclear and requires further investigation in a large cohort. Conclusion: We discovered using targeted resequencing a novel truncating LMNA mutation associated with CCD and DCM in a Japanese family. In addition, we observe there may be gender differences associated with disease onset and severity between the affected members of the family. Furthermore, we propose that at least some patients with laminopathy, clinical severity may be the result of multiple factors.

Acknowledgment
The authors thank Ms. Chinatsu Hiraoka (Ehime University) for technical assistance.

Disclosures
Conflicts of interest: J.H. received research grants from Takeda Pharmaceutical Company Limited, Mochida Pharmaceutical Co., Ltd., Novartis Pharma K.K., Pfizer Japan Inc., MSD K.K., Astellas Pharma Inc., Nippon Boeringer Ingelheim Ltd., Daiichi-Sankyo Co, Ltd., and Sumitomo Dainippon Pharma Co., Ltd. Additionaly, honoraria were received from Takeda Pharmaceutical Company Limited, Mochida Pharmaceutical Co., Ltd., Novartis Pharma K.K., Pfizer Japan Inc., MSD K.K., Astellas Pharma Inc., Nippon Boeringer Ingelheim Ltd., Daiichi-Sankyo Co, Ltd., Sumitomo Dainippon Pharma Co., Ltd., Inter-Science Co., Ltd., and Teijin Pharma Ltd. Other authors have no conflicts of interest to disclose.

References
1. Mounkes LC, Burke B, Stewart CL. The A-type lamins: nuclear structural proteins as a focus for muscular dystrophy and cardiovascular diseases. Trends Cardiovasc Med 2001; 11: 280-5. (Review)
2. Mattout A, Dechat T, Adam SA, Goldman RD, Gruenbaum Y. Nuclear lamins, diseases and aging. Curr Opin Cell Biol 2006; 18: 335-41. (Review)
3. Rankin J, Ellard S. The laminopathies: a clinical review. Clin Genet 2006; 70: 261-74.
4. Worman HJ. Nuclear lamins and laminopathies. J Pathol 2012; 226: 316-25. (Review)
5. Fatkin D, MacRae C, Sasaki T, et al. Missense mutations in the rod domain of the lamin A/C gene as causes of dilated cardiomyopathy and conduction-system disease. N Engl J Med 1999; 341: 1715-24.
6. Bécane HM, Bonne G, Varnous S, et al. High incidence of sudden death with conduction system and myocardial disease due to lamins A and C gene mutation. Pacing Clin Electrophysiol 2000; 23: 1661-6.
7. Kärkkäinen S, Helio T, Miettinen R, et al. A novel mutation, Ser143Pro, in the lamin A/C gene is common in finnish patients with familial dilated cardiomyopathy. Eur Heart J 2004; 25: 885-93.
8. Sanna T, Dello Russo A, Toniolo D, et al. Cardiac features of Emery-Dreifuss muscular dystrophy caused by lamin A/C gene mutations. Eur Heart J 2003; 24: 2227-36.
9. Arbusini E, Pilotto A, Repetto A, et al. Autosomal dominant dilated cardiomyopathy with atrioventricular block: a lamin A/C defect-related disease. J Am Coll Cardiol 2002; 39: 981-90.
10. Taylor MR, Fain PR, Sinagra G, et al. Natural history of dilated cardiomyopathy due to lamin A/C gene mutations. J Am Coll Cardiol 2003; 41: 771-80.
11. van Berlo JH, de Voogt WG, van der Kooi AJ, et al. Meta-analysis of clinical characteristics of 299 carriers of LMNA gene mutations: do lamin A/C mutations portend a high risk of sudden death? J Mol Med (Berl) 2005; 83: 79-83.
12. van Tintelen JP, Hofstra RM, Katerberg H, et al. High yield of LMNA mutations in patients with dilated cardiomyopathy and/or conduction disease referred to cardiogenetics outpatient clinics. Am Heart J 2007; 154: 1130-9.
13. Mattout A, Dechat T, Adam SA, Goldman RD, Gruenbaum Y. Nuclear lamins, diseases and aging. Curr Opin Cell Biol 2006; 18: 335-41.
14. Perrot A, Hussein S, Ruppert V, et al. Identification of mutational hot spots in LMNA encoding lamin A/C in patients with familial dilated cardiomyopathy. Basic Res Cardiol 2009; 104: 90-9.
15. Gillissen C, Hoischen A, Brunner HG, Veltman JA. Disease gene identification strategies for exome sequencing. Eur J Hum Genet 2012; 20: 490-7.
16. Haas J, Katus HA, Meder B. Next-generation sequencing entering the clinical arena. Mol Cell Probes 2011; 25: 206-11.
17. MacRae CA, Vasan RS. Next-generation genome-wide associa-
tion studies: time to focus on phenotype? Circ Cardiovasc Genet 2011; 4: 334-6.
18. Mestroni L, Maisch B, McKenna WJ, et al. Guidelines for the study of familial dilated cardiomyopathies. Collaborative Research Group of the European Human and Capital Mobility Project on Familial Dilated Cardiomyopathy. Eur Heart J 1999; 20: 93-102.
19. Wolf CM, Berul CI. Inherited conduction system abnormalities—one group of diseases, many genes. J Cardiovasc Electrophysiol 2006; 17: 446-55.
20. Smits JP, Veldkamp MW, Wilde AA. Mechanisms of inherited cardiac conduction disease. Europace 2005; 7: 122-37.
21. Pasotti M, Klersy C, Pilotto A, et al. Long-term outcome and risk stratification in dilated cardiolaminopathies. J Am Coll Cardiol 2008; 52: 1250-60.
22. Parks SB, Kushner JD, Nauman D. Lamin A/C mutation analysis in a cohort of 324 unrelated patients with idiopathic or familial dilated cardiomyopathy. Am Heart J 2008; 156: 161-9.
23. van Rijsingen IA, Arbustini E, Elliott PM, et al. Risk factors for malignant ventricular arrhythmias in lamin a/c mutation carriers a European cohort study. J Am Coll Cardiol 2012; 59: 493-500.
24. Marsman RF, Bardai A, Postma AV, et al. A complex double deletion in LMNA underlies progressive cardiac conduction disease, atrial arrhythmias, and sudden death. Circ Cardiovasc Genet 2011; 4: 280-7.
25. Anselme F, Moubarak G, Savouré A, et al. Implantable cardioverter-defibrillators in lamin A/C mutation carriers with cardiac conduction disorders. Heart Rhythm 2013; 10: 1492-8.
26. van Rijsingen IA, Nannenberg EA, Arbustini E, et al. Gender-specific differences in major cardiac events and mortality in lamin A/C mutation carriers. Eur J Heart Fail 2013; 15: 376-84.
27. Herman DS, Lam L, Taylor MR, et al. Truncations of titin causing dilated cardiomyopathy. N Engl J Med 2012; 366: 619-28.
28. Du XJ. Gender modulates cardiac phenotype development in genetically modified mice. Cardiovasc Res 2004; 63: 510-9.
29. Babiker FA, De Windt LJ, van Eickels M, Grohe C, Meyer R, Doevendans PA. Estrogenic hormone action in the heart: regulatory network and function. Cardiovasc Res 2002; 53: 709-19.
30. Arimura T, Onoue K, Takahashi-Tanaka Y, et al. Nuclear accumulation of androgen receptor in gender difference of dilated cardiomyopathy due to lamin A/C mutations. Cardiovascular Res 2013; 99: 382-94.
31. Xie X, Li C, Zhou B, Dai X, Rao L. Associations between TIM1 polymorphisms and dilated cardiomyopathy in a Han Chinese population. Int Heart J 2016; 57: 742-6.
32. Xu JH, Gu JY, Guo YH, et al. Prevalence and spectrum of NKX2-5 mutations associated with sporadic adult-onset dilated cardiomyopathy. Int Heart J 2017; 58: 521-9.