A family of quantum protocols

Igor Devetak,1 Aram W. Harrow,2 and Andreas Winter3

1IBM T. J. Watson Research Center, PO Box 218, Yorktown Heights, NY 10598, USA
2MIT Physics Dept., 77 Massachusetts Avenue, Cambridge, MA 02139, USA
3Department of Mathematics, University of Bristol, University Walk, Bristol BS8 1TW, UK

We introduce three new quantum protocols involving noisy quantum channels and entangled states, and relate them operationally and conceptually with four well-known old protocols. Two of the new protocols (the “mother” and “father”) can generate the other five “child” protocols by direct application of teleportation and super-dense coding, and can be derived in turn by making the old protocols “coherent.” This gives very simple proofs for two famous old protocols (the hashing inequality and quantum channel capacity) and provides the basis for optimal tradeoff curves in several quantum information processing tasks.

Introduction. The central task of quantum information theory is to determine the rates at which the quantum state of any physical object can be transmitted from one location to another. So far quantum information theory incorporates a number of basic coding theorems, including quantum compression [1], and expressions for classical [2] and quantum [3, 4, 5] capacities of quantum channels. In [6], these results were formulated in terms of asymptotic inter-conversion between information processing resources, such as uses of a quantum channel, shared entanglement and so on. For instance, channel coding may be viewed as converting a noisy channel into a noiseless one on a smaller input space. A particularly important class of problems in quantum information theory involves converting a noisy quantum channel or shared noisy entanglement between two spatially separated parties (conventionally denoted by Alice and Bob), into a noiseless one, via local operations possibly assisted by limited use of an auxiliary noiseless resource such as a perfect qubit channel, shared ebits or one-way classical communication. Previously, this class of problems had only been addressed as a collection of special cases, each requiring its own complicated proof techniques to address. In this Letter we consider basic protocols for each member of this class, three of which are new, and observe that they are naturally organized into two mutually dual hierarchies. This result significantly simplifies the quantum information processing landscape, revealing connections between scenarios previously thought independent. Some of our connections give constructive methods for turning one protocol into another, so that a coding scheme for one protocol yields codes for a whole class of other protocols. Moreover, these basic protocols will provide the crucial ingredient for constructing optimal protocols and two dimensional trade-offs.

The family of resource inequalities. The following notation for information processing resource states was proposed in [6]. A noiseless qubit channel, noiseless classical bit channel and pure ebit (EPR pair) were denoted by \(q \to q \), \(c \to c \) and \(q|q \), respectively, reflecting their classical/quantum and dynamic/static nature. A noisy bipartite state \(\rho^{AE} \) is denoted by \(\{q \to q\} \), and a general quantum channel \(N : \mathcal{H}_A \to \mathcal{H}_B \) is denoted by \(\{ q \to q \} \). In either case one may define a class of pure states \(\{ \psi \}^{AB} \). In the former, it consists of the purifications of \(\rho^{AB} \), i.e., \(\rho^{AB} = \text{Tr}_E \psi^{AB} \). In the latter, it corresponds to the outcome of sending half of some \(\phi^{AA'} \) through the channel\’s Stinespring extension \(U_N : \mathcal{H}_A \to \mathcal{H}_B \otimes \mathcal{H}_E \langle N \rangle \), mapping states on \(A' \) to states on \(B \), is obtained as the isometry \(U_N \) followed by the partial trace over \(E \). One may define the usual entropic quantities with respect to the state \(\{ \psi \}^{AB} \). Recall the definition of the von Neumann entropy \(H(A) = H(\psi^A) = -\text{Tr}(\psi^A \log \psi^A) \), where \(\psi^A = \text{Tr}_E \psi^{AB} \). Further define the quantum mutual information \(I(A;B) = H(A) + H(B) - H(AB) \) and the coherent information \(I_c(A;B) = H(AB) - H(A) - H(B) \); the latter notation is from [10]. Relative to the pure state \(\{ \psi \}^{AB} \), \(H(AB) = H(E) \) and \(H(AE) = H(B) \), so

\[
\frac{1}{2} I(A;B) + \frac{1}{2} I(A;E) = H(A),
\]

\[
\frac{1}{2} I(A;B) - \frac{1}{2} I(A;E) = I_c(A;B).
\]

It is possible to give meaning to inequalities between the various resources with entropic quantities as coefficients. Consider, for instance, the “mother” resource inequality (RI):

\[
\frac{1}{2} I(A;E) \{ q \to q \} + \{ q \} \geq \frac{1}{2} I(A;B) \{ q \}. \tag{9}
\]

It embodies an achievable statement: for any \(\epsilon, \delta > 0 \), for sufficiently large \(n \) there exists a protocol that uses \(n \) instances of a noisy bipartite state \(\rho^{AB} \) and \(\leq n (I(A;E)/2 + \delta) \) instances of a noiseless qubit channel, to produce a state within trace distance \(\epsilon \) of \(n (I(A;B) - \delta)/2 \) ebits. The entropic quantities implicitly refer to any \(\{ \psi \}^{AB} \) associated with the noisy resource \(\rho^{AB} \). The resources on the left (right) hand side are called input (output) resources, respectively. We defer the construction of such a protocol to the next section.

As we shall see, there exists a dual “father” RI, related to the mother by replacing dynamic resources with static

\[

\]
ones and vice versa:

\[
\frac{1}{2} I(A; E) [q \rightarrow q] + \{q \rightarrow q\} \geq \frac{1}{2} I(A; B) [q \rightarrow q].
\] \(\sigma\)

Again, it means that for sufficiently large \(n\) there exists a protocol which uses \(n\) copies of \(\mathcal{N}\) assisted by \(\approx n I(A; E)/2\) ebits of entanglement to simulate arbitrarily faithfully the effect of \(\approx n I(A; B)/2\) noiseless qubit channels. The entropic quantities implicitly refer to any \(|\psi\rangle_{ABE}\) associated with the noisy resource \(\mathcal{N}\).

Note that in the noiseless case (pure ebit or perfect communication" was recognized \[16\]: a rather wasteful version of (5).

They may be applied to a parent RI by either prepending (the output of TP/SD is used as an input to a protocol implementing the parent RI) or appending (the output of the parent is used as an input to TP/SD). In addition to (TP) and (SD), we shall also make use of a third noiseless RI given by

\[[q \rightarrow q] + \{q \rightarrow q\} \geq 2[c \rightarrow c], \] \(\sigma\)

to generate their offspring. Here we use "\(\geq\)" to denote exact achievability (as opposed to the asymptotic "\(\approx\)").

The father doesn’t quite make it to three children: he has only two. Appending (SD) to him gives the coding for entanglement-assisted classical information transmission \[13\]:

\[H(A) [q \rightarrow q] + \{q \rightarrow q\} \geq I(A; B) [c \rightarrow c]. \] \(\sigma\)

Note that it is dual to \[23\], at least as far as the quantum parts are concerned.

There’s one more thing we can do: append (QE) to to a fraction of the output of (\(\sigma\)) to recover the famous quantum channel capacity result \[3, 4, 5\]

\[\{q \rightarrow q\} \geq I_c(A; B) [q \rightarrow q]. \] \(\sigma\)

This one is almost dual to \[23\], and can be made formally dual by wasting \(I(A; E) [c \rightarrow c]\).

The reason that the mother-father duality does not propagate perfectly down the family tree lies in the lack of duality between (TP) and (QE). While (SD) is self-dual under the interchange of \([q q]\) and \([q \rightarrow q]\), (TP) and (QE) become mutually dual only by wastefully adding \(2[c \rightarrow c]\) to the left hand side of (QE). In this light, even \[23\] has a dual RI: a rather wasteful version of \[26\].

Coherent communication. Having demonstrated the power of the parent resource inequalities, we now address the question of constructing protocols implementing them. Recently, the importance of "coherent communication" was recognized \[10\]: a coherent bit channel is defined as the isometric mapping

\[|x\rangle^A \mapsto |x\rangle^A |x\rangle^B \] \(\sigma\)

for a basis \(\{|x\rangle : x \in \{0, 1\}\}\) of the qubit system \(A\). Note that this transformation implements a noiseless transmission of the classical index \(x\), but may also be used to create entanglement by applying it to superpositions of \(|0\rangle\) and \(|1\rangle\). Viewed as a resource we shall denote it by \(|q \rightarrow q q\rangle\). In what follows it shall often be used in lieu of the classical bit channel \([c \rightarrow c]\).
In [16] it is shown that (SD) can be made “coherent” to yield two coherent bits

\[|q \rightarrow q| + |q q| \geq 2 |q \rightarrow q q| . \]

On the other hand, using coherent bits for teleportation has the virtue of creating entanglement as a by-product

\[2 |q \rightarrow q q| + |q q| \geq |q \rightarrow q| + 2 |q q| . \]

Hence we have the equivalence, modulo catalytic entanglement (symbolized by the superscript \(c \)),

\[2|q \rightarrow q q| \equiv |q \rightarrow q| + |q q| , \]

which gives us the asymptotic equivalence [16],

\[|q \rightarrow q q| = \frac{1}{2} (|q \rightarrow q| + |q q|) . \] (7)

Note that in the previous section we have already made use of the fact that recycling allows us to convert catalytic formulas (i.e., cancellation of equal terms left and right) into asymptotic ones, when deriving (1) and (2) from the mother.

When is it possible to make use of this equivalence, or in other words: when can classical communication be made coherent? The lessons learned in [16] regarding making protocols coherent and the observations of [16] lead us to two general rules. In what follows we shall work in the “extended Hilbert space” picture: all quantum operations and generalized measurements are implemented by adding ancillas (initially in pure states), performing unitary operations and performing von Neumann measurements on the ancillas. No subsystems are allowed to be discarded, so the overall quantum system is always in a pure state. In particular this means that the environment \(E \) is always included in our description.

Note, however, that without loss of generality a subsystem may be discarded after a von Neumann measurement has been performed on it; this is because it may always be reset to a standard pure state via a unitary operation depending on the measurement outcome.

Rule I. If \([c \rightarrow c]\) is featured in the input of a resource inequality, it may be replaced by \(\frac{1}{2} (|q \rightarrow q| − |q q|) \) if there exists a protocol implementing the RI in which the classical message is almost uniformly distributed and almost decoupled from the overall quantum system at the end of the protocol.

Rule O. If \([c \rightarrow c]\) is featured in the output of a resource inequality with quantum inputs, it may be replaced by \(\frac{1}{2} (|q \rightarrow q| + |q q|) \) if there exists a protocol implementing the RI in which the classical message is almost decoupled from the overall quantum system at the end of the protocol. In particular, being decoupled from \(E \) implies privacy.

In the above, a distribution \(\{p_x\} \) is “almost uniform” when close in trace distance to the uniform distribution. A classical message \(x \) is “almost independent” of a quantum system \(|\theta_x\rangle \) if there exists some \(|\theta\rangle \) with \(|\theta_x\rangle \approx |\theta\rangle \) for all \(x \). Throughout we write \(\approx \) to denote a trace distance of \(\leq \epsilon_n \) where \(\epsilon_n \to 0 \) as \(n \to \infty \) for asymptotic resource inequalities (we need not consider single-shot resource inequalities here, but the rules apply to this case trivially with \(\epsilon_n = 0 \)).

Proof of Rule I. Whenever the resource inequality features \([c \rightarrow c]\) in the input this means that Alice performs a von Neumann measurement on some subsystem \(A_1 \), the outcome of which she sends to Bob, who then performs an unitary operation depending on the received information. Before Alice’s von Neumann measurement, the joint state of \(A_1 \) and the remaining quantum system \(Q \) is

\[\sum_x \sqrt{p_x} |x\rangle^{A_1} |\phi_x\rangle^Q , \]

where \(p \) is an almost uniform distribution. Upon learning the measurement outcome \(x \), Bob performs some unitary \(U_x \) on \(Q \), almost decoupling it from \(x \):

\[U_x |\phi_x\rangle^Q = |\theta_x\rangle^Q \approx |\theta\rangle^Q , \]

for some fixed state \(|\theta\rangle \).

If Alice refrains from the measurement and instead sends \(A_1 \) through a coherent channel [6], the resulting state is

\[\sum_x \sqrt{p_x} |x\rangle^{A_1} |\phi_x\rangle^B_1 |\phi_x\rangle^Q . \]

Bob now performs the controlled unitary

\[\sum_x |x\rangle \langle x|^{B_1} \otimes U_x , \]

giving rise to

\[\approx \left(\sum_x \sqrt{p_x} |x\rangle^{A_1} |x\rangle^{B_1} \right) \otimes |\theta\rangle^Q . \]

Thus, in addition to the state \(|\theta\rangle^Q \), an almost maximally entangled state has been generated. Counting resources, \([c \rightarrow c]\) has been replaced by

\[|q \rightarrow q q| − |q q| = \frac{1}{2} (|q \rightarrow q| − |q q|) . \]

It can be shown that the uniformity condition on \(p \) may be relaxed, requiring only \(n^{-1} \log p_x \approx \text{const.} \) for all \(x \).

Proof of Rule O. Now the roles of Alice and Bob are somewhat interchanged. Alice performs a unitary operation depending on the classical message to be sent and Bob performs a von Neumann measurement on some subsystem \(B_1 \) which almost always succeeds in reproducing the message. Thus, before his measurement, the state of \(B_1 \) and the remaining quantum system \(Q \) is

\[\approx |x\rangle^{B_1} |\phi_x\rangle^Q . \]
Based on the outcome x of his measurement, Bob performs some unitary U_x on Q:

$$U_x|\phi_x\rangle^Q = |\theta_x\rangle^Q \approx |\theta\rangle^Q,$$

leaving the state of Q almost decoupled from x.

Instead, Alice may perform coherent communication. Given a subsystem A_1 in the state $|x\rangle^{A_1}$ she encodes via controlled unitary implementation, yielding

$$\approx |x\rangle^{A_1}|x\rangle^{B_1} \otimes U_x \otimes |\theta\rangle^Q.$$

Bob refrains from measuring B_1 and instead performs the controlled unitary $\sum_x |x\rangle \langle x|^{B_1} \otimes U_x$, giving rise to

$$\approx |x\rangle^{A_1}|x\rangle^{B_1} \otimes |\theta\rangle^Q.$$

By the conditions of rule O, there were no other measurements made in the original protocol, so that the implementation of the new coherent version is completely unitary. Rule O follows from eq. (11).

The mother RI (q) is now obtained from the hashing inequality (2) by applying rule I. It can be checked that the protocol from (11) implementing (2) indeed satisfies the conditions of rule I. In this protocol the classical communication is used for sending a kind of “which quantum code” information from which the quantum information “encoded” is readily decoupled by “decoding”.

The mother (q) also follows from the noisy super-dense coding inequality (3), as implemented in (11), by applying rule O. Indeed, Eve only holds the static purification of ρ^{AB} which is unaffected by Alice’s encoding.

The father RI (s’) is similarly obtained, via rule O, from (11). The main observation is that the protocol from (11) implementing (1) in fact outputs a private classical channel as it is! More precisely, in (11) Alice and Bob share a maximally entangled state $|\Phi_+\rangle^{A'B'}$. Alice encodes her message x via a unitary U_x:

$$x \mapsto (U_x \otimes \mathbb{1})|\Phi_+\rangle^{A'B'} = (\mathbb{1} \otimes U_x^*)|\Phi_+\rangle^{A'B'}.$$

Applying the channel $U_N^{\otimes n}$ yields

$$(\mathbb{1} \otimes U_x^*)^n|\Psi\rangle^{BEB'} = (\mathbb{1} \otimes U_x^*)|\Phi_+\rangle^{A'B'}.$$

It is remarkable that comparatively simple protocols such as (3) and (11) can yield, via the mother and father protocols, the quantum channel capacity and hashing inequality, respectively, which were long standing problems until very recently. Of course, after two rounds of processing they become quite complicated.

Conclusion. We have introduced two purely quantum coding protocols, which we showed to be closely related to entanglement assisted coding tasks, quantum capacities and distillability: these once long sought-after protocols descend from the mother (q) and father (s’) by applying teleportation or super-dense coding. Furthermore, most of the children can be made coherent to regenerate their parents! What we have not shown here is that our protocols actually give rise to information theoretically optimal resource trade-offs; a detailed discussion of these will be given in a forthcoming paper.

Acknowledgments. We thank C. H. Bennett, G. Burkard, J. A. Smolin and A. Ndirango for useful discussions. ID is partially supported by the NSA under the ARO grant numbers DAAG55-98-C-0041 and DAAD19-01-1-06. The latter grant also supports AWH. AW was supported by the U.K. Engineering and Physical Sciences Research Council.

* Electronic address: devetak@us.ibm.com
† Electronic address: aram@mit.edu
‡ Electronic address: a.j.winter@bris.ac.uk

[1] B. Schumacher, Phys. Rev. A 51, 2738 (1995); R. Jozsa, B. Schumacher, J. Mod. Optics 41, 2343 (1994)
[2] A. S. Holevo, IEEE Trans. Inf. Theory 44, 269 (1998); B. Schumacher, M. D. Westmoreland, Phys. Rev. A 56, 131 (1997)
[3] S. Lloyd, Phys. Rev. A 55, 1613 (1997)
[4] P. W. Shor, unpublished (2002). Lecture notes and video (RealPlayer) available at http://www.msri.org/publications/ln/msri/2002/quantumcrypto/shor/1/
[5] I. Devetak, e-print quant-ph/0304127 (2003)
[6] I. Devetak, A. Winter, e-print quant-ph/0304196 (2003)
[7] W. F. Stinespring, Proc. Amer. Math. Soc. 6, 211 (1955)
[8] N. J. Cerf, C. Adami, Phys. Rev. Lett. 79, 5194 (1997)
[9] B. Schumacher, Phys. Rev. A, 54, 2614 (1996)
[10] I. Devetak, A. Winter, e-print quant-ph/0306078 (2003); I. Devetak, A. Winter, e-print quant-ph/0307053 (2003)
[11] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W. K. Wootters, Phys. Rev. Lett. 70, 1895 (1993)
[12] C. H. Bennett, S. Wiesner, Phys. Rev. Lett. 69, 2881 (1992)
[13] G. Burkard, private communication (2003)
[14] M. Horodecki, P. Horodecki, R. Horodecki, D. W. Leung, B. M. Terhal, Quant. Inf. Comp. 1, 70 (2001)
[15] C. H. Bennett, P. W. Shor, J. A. Smolin, A. Thapliyal. IEEE Trans. Inf. Theory 48, 2637 (2002)
[16] A. W. Harrow, Phys. Rev. Lett. 92, 097902 (2004)
[17] A. Winter, IEEE Trans. Inf. Theory 45, 2481 (1999)