Small-RNA-mediated transgenerational silencing of histone genes impairs fertility in piRNA mutants

Giorgia Barucci1,2,7, Eric Cornes1,7, Meetali Singh3,17, Blaise Li3, Martino Ugolini4, Aleksei Samolygo1,5, Celine Didier1, Florent Dingli6, Damarys Loew6, Piergiuseppe Quarato1,2 and Germano Cecere1,*

PIWI-interacting RNAs (piRNAs) promote fertility in many animals. However, whether this is due to their conserved role in repressing repetitive elements (REs) remains unclear. Here, we show that the progressive loss of fertility in Caenorhabditis elegans lacking piRNAs is not caused by derepression of REs or other piRNA targets but, rather, is mediated by epigenetic silencing of all of the replicative histone genes. In the absence of piRNAs, downstream components of the piRNA pathway relocalize from germ granules and piRNA targets to histone mRNAs to synthesize antisense small RNAs (sRNAs) and induce transgenerational silencing. Removal of the downstream components of the piRNA pathway restores histone mRNA expression and fertility in piRNA mutants, and the inheritance of histone sRNAs in wild-type worms adversely affects their fertility for multiple generations. We conclude that sRNA-mediated silencing of histone genes impairs the fertility of piRNA mutants and may serve to maintain piRNAs across evolution.

Among the different classes of endogenous sRNAs in animals, PIWI-interacting RNAs (piRNAs) play a conserved role in repressing transposons and other repetitive elements (REs); in several animal species, the loss of piRNAs causes sterility. Owing to the role of piRNAs in transposon silencing, the sterility phenotype observed in animals lacking piRNAs is commonly thought to be caused by derepression of REs and, consequently, DNA damage. However, non-transposon-derived piRNAs promote fertility in mice, and a piRNA-dependent function of one of the PIWI proteins, MIWI, has been implicated in male fertility. The requirement of piRNAs and PIWI for animal fertility can therefore be uncoupled from their role in transposon silencing and might be due to additional piRNA regulatory functions. In C. elegans, mutations in components of the piRNA pathway show progressive loss of fertility across generations, ultimately leading to a sterile population of worms. This transgenerational phenotype is often temperature dependent and reversible; animals of this phenotype gradually become sterile at increased temperature and recover their fertility when grown at a lower temperature. Thus, whether the role of piRNAs in promoting fertility depends on silencing REs or other epigenetic mechanisms remains a matter of debate.

The majority of C. elegans piRNAs are independently transcribed in the germline from thousands of genomic loci and do not have sequence complementarity to REs. However, these piRNAs regulate their targets by imperfect complementarity. Thus, any REs or other germline-expressed RNA sequences, including protein-coding transcripts, are potential targets and their regulation can also contribute to promoting fertility. C. elegans piRNAs do not directly silence the expression of their targets, but trigger the accumulation of small single-stranded antisense 22G-RNAs, which are loaded into protein-coding piRNA mediators. These constitute the downstream effector factors of the piRNA-induced silencing pathway and silence the complementary targets at the transcriptional and the post-transcriptional levels. PIWI and its downstream effectors localize to specific perinuclear compartments called germ granules, and some of the structural components of germ granules also participate in heritable RNA interference (RNAi).

Here, we investigate the mechanisms that underlie the transgenerational loss of fertility in C. elegans lacking piRNAs that lacks piRNAs. We show that the removal of piRNAs is not sufficient to derepress protein coding and RE transcripts targeted by the piRNA pathway. Instead, we found that, in the absence of piRNAs, the downstream effectors of piRNA-induced silencing complex relocalize from piRNA targets to histone mRNAs. This process leads to the accumulation of 22G-RNAs antisense to all of the replicative histone genes and to the transgenerational silencing of histone mRNAs, ultimately leading to sterile animals.

Results

piRNA targets are not desilenced in piwi-mutant worms. To understand the reduced fertility and transgenerational sterility observed in piRNA mutants, we identified transcripts that are directly regulated by piRNAs. We combined sRNA sequencing (sRNA-seq) with strand-specific RNA-seq and compared C. elegans with a mutation in the PIWI protein PRG-1 with wild-type worms, using populations of synchronized young adult worms carrying the null allele prg-1(n4357);, which are almost sterile at 20°C (Extended Data Fig. 1a). To identify piRNA-dependent 22G-RNA protein-coding targets, we selected 1,017 protein-coding genes from which substantially reduced levels of
22G-RNAs were produced (less than fourfold) in the prg-1(n4357) mutant compared with wild-type worms. Only 6% (67 genes) of these mRNA transcripts became upregulated (more than twofold; adjusted P < 0.05; Fig. 1a). Analysis of 958 RE families revealed that 154 REs had reduced levels of 22G-RNAs (less than twofold) in prg-1(n4357) compared with wild-type worms, yet only three families of REs were significantly upregulated (more than twofold; adjusted P < 0.05; Fig. 1b). We also used uniquely mapped reads to analyse the expression of approximately 60,000 discrete REs and found that less than 100 individual REs were significantly upregulated (by at least twofold; adjusted P < 0.05) in piwi-mutant compared with wild-type worms (Extended Data Fig. 1b,d). The decrease in 22G-RNAs antisense to protein-coding genes or REs was therefore not sufficient to derepress these genes, and they were probably kept repressed by nuclear RNAi and/or chromatin factors. Indeed, RNA-seq analysis and quantitative PCR with reverse transcription (RT-qPCR) of individual REs in the mutant of the nuclear argonaute HRDE-1—a downstream effector of the piRNA pathway that acts at the transcriptional level—resulted in a larger number of upregulated REs compared with the prg-1(n4357) mutant (Extended Data Fig. 1b,d). Nonetheless, the hrde-1(tm1200) mutant that we analysed was not sterile and showed only a mild reduction in fertility compared with wild-type worms (Extended Data Fig. 1a), suggesting that the derepression of REs might not be correlated with the piRNA-mutant phenotype. These results also suggest that piRNAs might be required to only initiate, and not to maintain, the silencing of their targets as proposed by previous research.

Histone mRNA silencing correlates with transgenerational sterility in piwi-mutant worms. The RNA-seq and sRNA-seq analyses also revealed that several protein-coding genes showed a reduction in mRNA levels and increased levels of 22G-RNAs in prg-1(n4357) compared with wild-type worms (Fig. 1a), suggesting that they had been silenced by sRNAs. The majority of these transcripts corresponded with the replicative histone mRNAs (Fig. 1a), and most of the histone gene clusters acquired a substantial number of 22G-RNAs, causing substantial downregulation in their complementary mRNAs (Fig. 1c). Using RT-qPCR, we also analysed mRNA levels in worms carrying a mutation in the piRNA biogenesis factor PRDE-1 (ref. 30), and observed a substantial depletion of histone mRNAs (Extended Data Fig. 1c). Mutations in the nuclear argonaute HRDE-1 did not silence histone mRNAs (Extended Data Fig. 1c,e), and nascent RNA-seq (RNA-seq) revealed only a mild downregulation of some histone genes in prg-1(n4357) worms compared with the wild type (Extended Data Fig. 1f,g), indicating that the downregulation of the histone genes occurred at the posttranscriptional level in piRNA mutants. In C. elegans, histone mRNA silencing using RNA interference (RNAi) is sufficient to cause sterility16,22. We therefore tested whether histone mRNA silencing correlated with piRNA mutant transgenerational loss of fertility. We generated a CRISPR–Cas9 null allele of the PIWI protein PRG-1, selected two independently edited CRISPR–Cas9 lines and propagated isogenic populations of homozygote piwi-mutant and wild-type worms (Fig. 1f). We maintained these lines for ten generations until the piwi mutant became almost completely sterile (Fig. 1d), sampling the populations using RNA-seq and sRNA-seq. Mutant worms that were propagated for two generations after homogenization (F1) showed no phenotypic differences compared to the wild-type worms (Fig. 1d), and RNA-seq analysis showed that there were very few gene expression changes (Extended Data Fig. 2a). At later generations, individuals from the piwi-mutant isogenic population started to display defects in fertility, including full sterility in some individuals, until the population became almost completely sterile after ten generations (Fig. 1d). These results correlated with substantial changes in gene expression across generations (Extended Data Fig. 2a–c). The progressive loss of fertility was accompanied by a gradual reduction of histone mRNA transcripts and a gain of 22G-RNAs antisense to histone mRNAs (Fig. 1e, Extended Data Fig. 2d). The modest desilencing of piRNA-dependent 22G-RNA protein-coding and RE targets did not correlate with the progressive loss of fertility (Extended Data Fig. 2d–f). To evaluate the impact of histone-mRNA silencing on histone protein levels in germ cells, we generated a CRISPR–Cas9 null allele of PIWI in a transgenic strain expressing a single-copy of histone H2B::mCherry in the germline. Live imaging of wild-type worms confirmed that the H2B–mCherry was normally expressed in the germline and incorporated into chromosomes (Fig. 1g, Extended Data Fig. 2h). However, piwi mutants showed significantly reduced levels of H2B–mCherry in germline nuclei of animals with reduced fertility (Fig. 1g, Extended Data Fig. 2g). Western blotting analysis confirmed the reduced levels of H2B–mCherry in populations of piwi mutant worms (Fig. 1i), and chromatin immunoprecipitation (ChIP) experiments revealed a reduction in incorporation of H2B–mCherry into the chromatin of piwi-mutant animals (Fig. 1j). These results are in accordance with the observed defect in chromosome compaction in pachytene nuclei of sterile piwi-mutant animals (Extended Data Fig. 2h), which can be a consequence of a lack of histone incorporation into chromatin. Together, these results suggest that the transgenerational silencing of histone mRNAs, and not the desilencing of piRNA targets, correlates with the progressive loss of fertility observed in piwi-mutant worms.

The downstream component of the PIWI pathway, WAGO-1, targets histone mRNAs for silencing. To identify RNAI factors that are involved in histone mRNA silencing, we investigated
whether argonaute proteins downstream of PIWI in the piRNA-induced silencing pathway ectopically load sRNAs derived from histone mRNA transcripts. We identified several argonaute proteins that interact with PIWI using mass spectrometry (MS), among which many are known to participate in piRNA-induced silencing. The most highly enriched PIWI-interacting argonaute protein was WAGO-1, which has a role in the post-transcriptional silencing of piRNA targets. We generated a Flag-tagged version of WAGO-1 and confirmed the interaction between WAGO-1 and PIWI using MS and co-immunoprecipitation (co-IP) experiments. We next immunoprecipitated WAGO-1-associated mRNAs.
22G-RNAs in wild-type and piwi-mutant backgrounds. In the wild-type background, WAGO-1 was loaded with 22G-RNAs derived from piRNA-dependent protein-coding targets (Fig. 2d), and was not enriched in 22G-RNAs from histone mRNAs (Fig. 2d). In the piwi-mutant worms, WAGO-1 was instead enriched in histone 22G-RNAs, and the loading of 22G-RNAs derived from piRNA-dependent 22G-RNA targets was significantly decreased (Fig. 2d). Furthermore, in piwi-mutant worms, WAGO-1 decreases its interaction with mRNAs from piRNA-dependent 22G-RNA targets and instead binds to histone mRNAs (Extended Data Fig. 3a). These results indicate that WAGO-1 relocalized from piRNA-dependent targets to histone mRNAs in a 22G-RNA-dependent manner, suggesting that WAGO-1 is one of the argonaute proteins that promotes histone mRNA silencing in piRNA-mutant worms.

WAGO-1 gradually loses interaction with germ-granule components after piwi mutation. The quantification of PIWI-interacting proteins using MS revealed, in addition to enrichment of argonaute proteins and 22G-RNA biogenesis factors, enrichment of specific germ-granule components, which are also known to participate in heritable RNAi21–23 (Fig. 2a–c, Supplementary Table 1a). WAGO-1 also interacts with some germ-granule factors, and preferentially with DEPS-1 (Fig. 2b,c, Extended Fig. 4a, Supplementary Table 1b), which is a germ-granule component that is known to participate in RNAi24. Many of these factors act downstream of the piRNAs to

Fig. 2 | Loading histone 22G-RNAs into WAGO-1 after disruption of the piRNA-induced silencing complex. a, Enrichment values and corresponding significance levels for proteins that co-purified with PIWI (Supplementary Table 1a). Argonaute proteins, germ-granule components and 22G-RNA biogenesis factors are labelled with different colours. The size of the dots is proportional to the number of peptides used for quantification. The linear model was used to compute the protein quantification ratio and the red horizontal line indicates two-tailed $P = 0.05$; $n = 4$ biologically independent experiments. b, Co-IP experiments showing DEPS-1 interactions between PIWI and WAGO-1, as well as interaction between PGL-1 and PIWI, but not with WAGO-1. The presence (+) or absence (−) of the tagged proteins is indicated. IP was performed using anti-Flag antibodies, and the blots were probed with anti-PGL-1, anti-DEPS-1 or anti-Flag antibodies. The red asterisk indicates that the lower band signal corresponds to a non-specific protein. The experiment was repeated twice. c, The log$_2$-transformed fold change and corresponding significance levels of proteins that co-purified with WAGO-1 in wild-type worm lysate as in a (Supplementary Table 1b). Argonaute proteins, germ-granule components and 22G-RNA biogenesis factors are labelled with different colours. The size of the dots is proportional to the number of peptides used for quantification. The linear model was used to compute protein quantification ratio and the red horizontal line indicates two-tailed $P = 0.05$; $n = 4$ biologically independent experiments. d, The log$_2$-transformed fold change of the ratio between piRNA-dependent 22G-RNA and histone-22G-RNA-normalized reads from WAGO-1 IP and total RNA (input) in wild-type and piwi mutant backgrounds. The line indicates the median value, the box indicates the first and third quartiles, and the whiskers indicate the 5th and 95th percentiles. Statistical analysis was performed using two-tailed Mann–Whitney–Wilcoxon tests; $n = 1,017$ genes for piRNA-dependent targets and $n = 61$ genes for histone genes. Source data are available online.
Fig. 3 | WAGO-1 loses interactions with germ-granule components across generations of piwi-mutant worms and remains cytoplasmic.

a, The log$_2$-transformed fold change and corresponding significance levels of proteins co-purifying with WAGO-1 in piwi-mutant compared with wild-type lines. Significantly decreased or increased interactions with WAGO-1-interacting germ-granule components, argonaute proteins or RNAi factors are shown in red and blue, respectively. The size of the dots is proportional to the number of peptides that were used for quantification. The linear model was used to compute protein quantification ratio and the red horizontal line indicates two-tailed $P = 0.05$; $n = 4$ biologically independent experiments.

b, Heat map of the log$_2$-transformed fold change of proteins co-purifying with WAGO-1 in piwi-mutant worms at different generations compared with wild-type worms. Decreased or increased interactions with WAGO-1-interacting germ-granule components, argonaute proteins or RNAi factor are shown in red and blue, respectively; $n = 4$ biologically independent experiments.

c, Live confocal images of WAGO-1–GFP, PGL-1–mCherry and CSR-1–mCherry showing the loss of WAGO-1 germ-granule localization in affected piwi-mutant germlines compared with the wild type. Scale bars, 10 µm. The experiment was repeated independently three times with similar results. Source data are available online.
Articles

Nature Cell Biology

promote RNA silencing across generations. PIWI and piRNAs might therefore help to initiate the formation of the piRNA-induced silencing complex in germ granules. To study whether the interactions between the downstream components of the piRNA-induced silencing complex are perturbed after removal of PIWI proteins, we quantified WAGO-1-interacting proteins using MS in wild-type worms compared with three progressive generations of piwi-mutant worms. Our analysis revealed that the interactions between WAGO-1 and germ-granule components gradually diminished across generations in the absence of the PIWI protein (Fig. 3a,b). Instead, WAGO-1 interaction with some argonaute proteins, such as PPW-1 and the WAGO-1-interacting 22G-RNA biogenesis factor RDE-12 (ref. 35), was maintained even in late generations of piwi-mutant worms (Fig. 3a,b).

Fig. 4 The CSR-1 pathway triggers the biogenesis of histone 22G-RNAs in piwi mutant worms. a, Network interactome map showing the overlap between CSR-1-, PIWI- and WAGO-1-interacting proteins using MS. Only a selection of interacting proteins is shown, corresponding to known germ-granule components, RNAi factors and argonaute proteins. Proteins interacting with CSR-1, PIWI and CSR-1 are shown in yellow. Proteins interacting with only PIWI and WAGO are shown in blue. Proteins interacting with only CSR-1 and PIWI are shown in light violet. The numbers correspond to enrichment values in IPs, and proteins for which the peptides were detected exclusively in the IP but not in the control are indicated with an infinity symbol. b, Co-IP experiments in the wild-type (top) and piwi-mutant (bottom) lines, showing WAGO-1 interactions with CSR-1. The presence (+) or absence (−) of the tagged proteins is indicated. IP was performed using anti-Flag antibodies, and the blots were probed with anti-CSR-1 or anti-Flag antibodies. The amount of protein extract for IP was normalized to the total level of CSR-1 protein as mutant animals have less germline tissue (Extended Data Fig. 4e). The experiment was repeated independently twice with similar results. c, Metaprofile analysis showing the distribution of normalized 22G-RNA reads (RPM) 200 nucleotides upstream and 200 nucleotides downstream of the stem-loop sequence of histone mRNAs. The experiment was repeated independently twice with similar results. nt, nucleotides. d, Metaprofile analysis showing the distribution of normalized 22G-RNA reads (RPM) across histone genes in the piwi-mutant background with (yellow line) or without (red line) a mutation in the catalytic domain of CSR-1. TSS, transcriptional start site; TES, transcriptional end site. The experiment was repeated independently twice with similar results. Source data are available online.

Fig. 4 | The CSR-1 pathway triggers the biogenesis of histone 22G-RNAs in piwi mutant worms. a, Network interactome map showing the overlap between CSR-1-, PIWI- and WAGO-1-interacting proteins using MS. Only a selection of interacting proteins is shown, corresponding to known germ-granule components, RNAi factors and argonaute proteins. Proteins interacting with CSR-1, PIWI and CSR-1 are shown in yellow. Proteins interacting with only PIWI and WAGO are shown in blue. Proteins interacting with only CSR-1 and PIWI are shown in light violet. The numbers correspond to enrichment values in IPs, and proteins for which the peptides were detected exclusively in the IP but not in the control are indicated with an infinity symbol. b, Co-IP experiments in the wild-type (top) and piwi-mutant (bottom) lines, showing WAGO-1 interactions with CSR-1. The presence (+) or absence (−) of the tagged proteins is indicated. IP was performed using anti-Flag antibodies, and the blots were probed with anti-CSR-1 or anti-Flag antibodies. The amount of protein extract for IP was normalized to the total level of CSR-1 protein as mutant animals have less germline tissue (Extended Data Fig. 4e). The experiment was repeated independently twice with similar results. c, Metaprofile analysis showing the distribution of normalized 22G-RNA reads (RPM) 200 nucleotides upstream and 200 nucleotides downstream of the stem-loop sequence of histone mRNAs. The experiment was repeated independently twice with similar results. nt, nucleotides. d, Metaprofile analysis showing the distribution of normalized 22G-RNA reads (RPM) across histone genes in the piwi-mutant background with (yellow line) or without (red line) a mutation in the catalytic domain of CSR-1. TSS, transcriptional start site; TES, transcriptional end site. The experiment was repeated independently twice with similar results. Source data are available online.
suggest that the loss of interaction between WAGO-1 and germ-granule components might affect the localization of WAGO-1. To test this hypothesis, we performed live imaging of WAGO-1 and the germ-granule component PGL-1 in wild-type and piwi-mutant worms. Live imaging of a CRISPR–Cas9 strain expressing WAGO-1–GFP in wild-type worms confirmed its predominant perinuclear germ-granule localization (Fig. 3c), as previously observed. However, in late generations of piwi mutant worms, WAGO-1 lost its germ-granule localization and remained mainly cytoplasmic (Fig. 3c). We confirmed these results with immunostaining experiments using a CRISPR–Cas9 WAGO-1–Flag strain in wild-type and piwi-mutant worms (Extended Data Fig. 3b). Live imaging of the germ-granule component PGL-1 in piwi-mutant worms showed that the loss of WAGO-1 germ-granule localization was not caused by the disruption of germ-granule assembly (Fig. 3c), as PGL-1 granules were still formed even in sterile animals (Extended Data Fig. 3c). Furthermore, live imaging of the argonaute protein CSR-1, which does not belong to the piRNA pathway, showed germ-granule and cytoplasmic localization in wild-type and piwi-mutant worms, indicating that the loss of germ-granule localization in piwi-mutant lines is specific to the WAGO-1 argonaute (Fig. 3c, Extended Data Fig. 3c).

The CSR-1 pathway triggers the biogenesis of histone 22G-RNAs. The data presented so far suggest that, in the absence of PIWI, another RNAi pathway is responsible for triggering the biogenesis and loading of histone 22G-RNAs into WAGOs. The proteomic analysis of PIWI-interacting proteins revealed the interactions with the argonaute CSR-1 (Fig. 2a, Supplementary Table 1a), which is known to counteract piRNA-silencing on mRNAs and promote histone biogenesis. We confirmed this interaction using co-IP experiments with a Flag-tagged CRISPR–Cas9 strain of CSR-1 (Extended Data Fig. 4a). We also analysed CSR-1-interacting proteins using MS and found, in addition to known components of the CSR-1 pathway, interactions with PIWI and WAGO-1 and many of their RNAi- and germ-granule-interacting proteins (Fig. 4a, Supplementary Table 1c). However, some germ-granule components, such as DEPS-1, appear to specifically interact with only PIWI and WAGO-1 (Fig. 4a, Extended Data Fig. 4a,b). Nonetheless, the piRNA and the CSR-1 pathways shared many interactors (Fig. 4a), including WAGO-1, and—in the absence of PIWI—WAGO-1 might preferentially interact with CSR-1 in the cytoplasm. To confirm this hypothesis, using co-IP experiments, we found that WAGO-1 interacts with CSR-1 in piwi-mutant worms (Fig. 4b, Extended Data Fig. 4e), even though these mutant animals have lost WAGO-1 germ-granule localization and have reduced germline tissue and decreased levels of WAGO-1 compared with wild-type worms (Fig. 3c, Extended Data Fig. 4c,e). CSR-1 is known to bind to histone mRNAs and is thought to participate in the cleavage of the 3′ end of histone mRNAs together with its interacting stem-loop binding protein CDL-1 (ref. 15; Fig. 4a, Extended Data Fig. 4d). Metaproteome analysis of histone 22G-RNAs in piwi-mutant worms showed a strong bias towards the end of the histone genes (Extended Data Fig. 4f), immediately upstream of the location of the stem-loop structure bound by CDL-1 (Fig. 4c). Thus, in the absence of PIWI, the cleavage of the 3′ end of histone mRNA by CSR-1 and CDL-1 may trigger the production of histone 22G-RNAs loaded into WAGO-1. To test this hypothesis, we mutated the catalytic domain of CSR-1 using CRISPR–Cas9 and crossed this strain with the piwi-mutant strain. We observed a substantial reduction of histone 22G-RNAs in piwi-mutant animals, in which the catalytic activity of CSR-1 was zygotically abolished (Fig. 4d). Similar results were obtained by targeting csr-1 with RNAi treatment in the piwi-mutant worms (Extended Data Fig. 4g). Moreover, RNAi treatment of cdl-1 resulted in a slight reduction of 22G-RNAs corresponding to the location of the stem-loop structure, and a spreading of 22G-RNAs along the coding region towards the 5′ end (Extended Data Fig. 4h). These results suggest that the interactions between CSR-1 and CDL-1 help to focus the cleavage activity of CSR-1 in proximity of the stem loop structure, and this triggers the synthesis and loading of histone 22G-RNAs into the WAGO pathway in the absence of PIWI.

Inactivation of downstream components of the piRNA pathway restores histone expression and fertility in piwi-mutant worms. To determine whether the histone 22G-RNAs cause the transgenerational loss of fertility in piRNA mutant worms, we set out to rescue the fertility defects by inactivating the downstream piRNA factors that are responsible for producing 22G-RNAs. MUT-16 is one of the biogenesis factors that promotes the synthesis of 22G-RNAs loaded into WAGO and interacts with PIWI (Fig. 2a). RNAi depletion of MUT-16 (Fig. 5a) over two generations restored the fertility of piwi-mutant worms (Fig. 5b), and piwi-mutant worms that were treated continuously with mut-16 RNAi did not become sterile (Extended Data Fig. 5a,b). Furthermore, mut-16 RNAi treatment in sterile piwi-mutant worms was sufficient to restore their fertility. RNAi depletion of WAGO-1 also restored the fertility of sterile piwi-mutant worms (Fig. 5g). However, after RNAi depletion of WAGO-1, the restored fertility was lower compared with the mut-16 RNAi treatment, suggesting that other argonaute proteins might participate in histone mRNA silencing in piwi-mutant animals (Fig. 5g).

Inheritance of piwi-mutant phenotype and histone 22G-RNAs in wild-type worms. To test whether the inheritance of histone 22G-RNAs is sufficient to transmit a piwi-like phenotype in wild-type worms, we outcrossed sprg-1(n4357) hermaphrodites with wild-type males (Fig. 6a). We used worms from later generations of the piwi mutants, which were almost completely sterile, to select individuals expressing high levels of histone 22G-RNAs (Fig. 6b). In 2 out of 5 crosses, we selected three heterozygote (+/−) F1 lines in each, and propagated two F1 homozygote (−/−) sprg-1(n4357) mutants and one wild-type (+/+) animal from each line and analysed the brood of the F1 progeny (Fig. 6b, Extended Data Fig. 6a–d). The homozygote sprg-1(n4357) mutants remained almost completely sterile after the cross (Fig. 6b, Extended Data Fig. 6a,c). The homozygote wild-type
Fig. 5 | Removal of histone 22G-RNAs rescues piwi mutant transgenerational sterility. a, Schematic of the RNAi experiment using CRISPR–Cas9 piwi-mutant worms, grown for ten generations, on plates seeded with Escherichia coli OP50 and then shifted for two generations onto plates seeded with mut-16 or control RNAi food. b, Results from a brood size assay of the experiment described in a. Each dot corresponds to the number of living larvae from individual worms. Data are mean ± s.d. Statistical analysis was performed using two-tailed Mann–Whitney–Wilcoxon tests; n = 25 worms. c, Genomic view, similar to that shown in Fig. 1c, of one histone cluster in piwi-mutant F12 worms (top) or piwi-mutant F12 worms treated with mut-16 RNAi (bottom). d, Comparison between mRNA and 22G-RNA log2-transformed fold changes in piwi-mutant F12 worms treated with mut-16 RNAi versus untreated piwi-mutant F12 worms. The dashed lines indicate twofold changes, and the number in parentheses indicates the portion of misregulated genes (twofold changes, adjusted P < 0.05, Wald test) belonging to the histone genes (red). The average from two biologically independent replicates is shown. e, The same comparison as shown in d, except that families of REs were analysed. The purple dots indicate significantly misregulated RE families by RNA-seq (adjusted P < 0.05, Wald test). The average from two biologically independent replicates is shown. f, Live confocal images of WAGO-1–GFP and PGL-1–mCherry showing lack of WAGO-1 germ-granule localization in fertile piwi-mutant lines after mut-16 RNAi treatment compared with the wild type. Scale bars, 10 µm. The experiment was repeated independently three times. g, Results from a brood size assay similar to the experiment described in a, except that sterile piwi-mutant worms were used for the assay. Each dot corresponds to the total number of living larvae from an individual worm. Data are mean ± s.d. Statistical analysis was performed using two-tailed Mann–Whitney–Wilcoxon tests; n = 10 worms. Source data are available online.
Fig. 6 | Histone 22G-RNAs facilitate the epigenetic inheritance of a piwi-like phenotype in wild-type worms. a, Schematic of a cross between wild-type males (+/+) and almost-sterile hermaphrodite piwi-mutant (prg-1(4357) or CRISPR–Cas9; −/−) worms. b, A brood size assay of the cross experiment described in a. Each dot corresponds to the number of living larvae from individual worms. Data are mean ± s.d. Statistical analysis was performed using two-tailed Mann–Whitney–Wilcoxon tests; n = 15 worms. c, Brood size assay as described in b, showing the brood of all of the individual F4 +/+ animals (red bars) derived from the same F3 +/+ parental worm (shown in b as a red dot). d, Brood size assay, as described in b, of the cross experiment described in a, using five selected F2 wild-type crossed lines (+/+). Data are mean ± s.d.; the sample size n (worms) is indicated in parentheses. Statistical analysis was performed using two-tailed Mann–Whitney–Wilcoxon tests. e, The log2-transformed fold change of sRNA in F6 +/+ crossed line 1 (red), line 2 (pink) and line 3 (yellow) compared with the parental P0 +/+. 22G-RNAs antisense to histone mRNAs, piRNA-dependent mRNA targets and piRNAs are shown. The line indicates the median value, the box indicates the first and third quartiles, and the whiskers indicate the 5th and 95th percentiles. The number of genes in each category is indicated in parentheses. f, Schematic of a cross between wild-type males (+/+) and hermaphrodite heterozygote piwi-mutant worms (+/−) (purple) or self-progeny (red). After the cross, wild-type (+/+) lines or self-crossed wild-type (+/+) and piwi-mutant (−/−) lines were selected. Wild-type (+/+) lines were propagated for two generations (F3–F4). g, A brood size assay, as described in b, of the cross experiment described in f. Data are mean ± s.d. Statistical analysis was performed using two-tailed Mann–Whitney–Wilcoxon tests; sample size n (worms) is indicated in parentheses. Source data are available online.
(+/-) animals displayed a piwi-like phenotype, showing reduced fertility compared with the parental P0 wild-type worms (Fig. 6b, Extended Data Fig. 6a,c). To determine whether this reduced fertility was caused by inherited DNA mutations, we performed a broad size assay on all of the progeny from one of the most affected F3 worms. All of the resulting F3 animals showed increased fertility compared with the parental F3 animal (Fig. 6c), indicating that DNA mutation was not responsible for the observed phenotype in the outcrossed wild-type worms. To further exclude possible genetic effects of the parental prg-1(n4357) mutant allele, we repeated the outcross experiment (Fig. 6a) using one of the piwi-mutant alleles generated by CRISPR–Cas9, and observed the same results (Fig. 6d, Extended Data Fig. 6e). Furthermore, we propagated the selected outcrossed homozygote wild-type lines for three subsequent generations and observed a gradual recovery of fertility (Fig. 6d), even though some wild-type lines did not completely recover the parental level of fertility. Sequencing 22G-RNAs from three of the outcrossed homozygote wild-type lines after six generations revealed that histone 22G-RNAs were inherited (Fig. 6c). We also crossed heterozygote hermaphrodite animals with wild-type males, and we observed a similar inherited phenotype in wild-type worms (Fig. 6f,g, Extended Data Fig. 6f). On the basis of these results, we propose that the maternal transmission of a pool of histone 22G-RNAs into wild-type worms can epigenetically affect their fertility.

Discussion

Here we have revealed the epigenetic mechanism that underlies the transgenerational loss of fertility in C. elegans piRNA mutants. We have shown that the piwi phenotype is not related to the role of piRNAs in repressing REs, but results from the inheritance of a pool of 22G-RNAs that are antisense to histone mRNAs, leading to the post-transcriptional silencing of all of the replicative histone genes. Previous reports have proposed that the sterility of piwi mutants is a consequence of ‘heritable stress’ caused by the derepression of REs, which leads to a form of adult diapause in late generations of piwi-mutant worms41. Our RNA-seq analysis of almost 60,000 individual REs has shown that less than 100 REs are upregulated in piwi-mutant lines across generations, and their upregulation does not correlate with the sterility phenotype. Instead, we have documented the transgenerational silencing of histone mRNAs by 22G-RNAs, which causes a reduction in the pool of histone proteins and lack of incorporation of histones into the chromatin. The lack of histone incorporation into chromatin and defects in chromosome compaction can explain the reported cell death and germ cell atrophy in sterile piwi-mutant animals41. Thus, we propose that the inheritance of histone 22G-RNAs underlies the heritable stress that ultimately leads to sterile animals.

Our results show that the silencing of histone genes is caused by redirecting the WAGO pathway away from piRNA-dependent 22G-RNA targets to histone mRNAs. This process requires several worm generations, possibly because the WAGO pathway can still be recruited to piRNA-dependent 22G-RNA targets in the absence of PIWI for several generations. We speculate that the germ-granule localization of WAGO–1—as well as its interaction with specific germ-granule components, such as DEPS-1—helps to maintain the piRNA-induced WAGO-1 silencing complex on piRNA targets, even in the absence of PIWI for certain generations. However, the interaction between WAGO-1 and DEPS-1 might not be stable without PIWI, and WAGO-1 interaction with CSR-1 might be favoured in the cytoplasm allowing the WAGO-1 silencing complex to localize on histone mRNAs. In support of this hypothesis, we have shown that the interaction of WAGO–1 with germ-granule components is gradually decreased across generations of piwi-mutant animals, even though it is still capable of interacting in the cytoplasm with the 22G-RNA biogenesis factor RDE-12 and the argonaute CSR-1. In addition to WAGO-1, other downstream argonautes of the piRNA pathway might reclocalize to histone mRNAs in the absence of PIWI. We have shown that two of these argonautes—PPW-1 and PPW-2, which also interact with CSR-1 in wild-type worms—are required for histone mRNA silencing in piwi-mutant worms, suggesting that they might also relocalize on histone mRNAs, similar to WAGO-1.

Our results suggest that the cleavage of histone pre-mRNAs by CSR-1 is required to facilitate the synthesis and loading of histone 22G-RNAs by the WAGO pathway in the absence of PIWI. CSR-1 may also cleave other germline mRNA targets42. However, we did not observe silencing of CSR-1 mRNA targets by the WAGO pathway in prg-1-mutant lines. One possibility is that the amount of cleavage product from CSR-1 mRNA targets is much lower than the cleaved histone mRNAs. Alternatively, other factors, such as mRNA-specific nucleotide sequences43,44, may prevent germline mRNAs from becoming targets of the WAGO pathway in the absence of piRNAs.

Our results, together with previous reports41–43, suggest that piRNAs might be required to only initiate, and not to maintain, the silencing of REs. Nonetheless, continuous synthesis of piRNAs is required in each generation to repress potential RE invasions. We speculate that the piRNA-driven production of WAGO-bound 22G-RNAs, which we observed against more than a thousand of protein-coding genes, functions to maintain the piRNA-induced silencing complex in readiness to silence foreign RNAs. However, it is unclear how the piRNA pathway can be evolutionary retained if it is only waiting for a potential invasion. Previous studies have shown the physiological function of PIWI in regulating some germline mRNA targets43,45. On the basis of our results, we propose a model in which the coupling between the lack of piRNAs and the consequent silencing of histone genes, initiated by CSR-1 and CDL-1, acts as an evolutionary force that maintains a functional piRNA-induced silencing pathway (Extended Data Fig. 7). Thus, the processing of histone mRNAs by CSR-1 and the co-evolution and co-existence of both the piRNA and the CSR-1 pathways could be an important evolutionary force in retaining the piRNA pathway in some nematode lineages. Indeed, nematode clades that have lost the piRNA pathway also lack CSR-1 (ref. 45), except for clade III nematodes46, which is clade CSR-1. We speculate that clade III nematodes escaped the sterility phenotype because they have polyadenylated histone mRNAs45, which probably do not require CSR-1 and CDL-1 for processing.

We have observed the transmission of a piwi-like phenotype in wild-type worms through sRNAs. These results implicate sRNAs as molecules that are capable of transmitting epigenetic information to the genome, and therefore to other generations, over and above the information encoded in their genomes.

Online content

Any methods, additional references, Nature Research reporting summaries, source data, extended data, supplementary information, acknowledgements, peer review information; details of author contributions and competing interests; and statements of data and code availability are available at https://doi.org/10.1038/s41556-029-0462-7.

Received: 9 April 2019; Accepted: 5 January 2020; Published online: 3 February 2020

References

1. Ozata, D. M., Gainetdinov, I., Zoch, A., O’Carroll, D. & Zamore, P. D. PIWI-interacting RNAs: small RNAs with big functions. Nat. Rev. Genet. 20, 89–108 (2019).
2. Thomson, T. & Lin, H. The biogenesis and function of PIWI proteins and piRNAs: progress and prospect. Annu. Rev. Cell Dev. Biol. 25, 333–376 (2009).
3. Tóth, K. F., Pezic, D., Stuwe, E. & Webster, A. The piRNA pathway guards the germline genome against transposable elements. Adv. Exp. Med. Biol. 886, 51–77 (2016).

244 NATURE CELL BIOLOGY | VOL 22 | FEBRUARY 2020 | 235–245 | www.nature.com/naturecellbiology
4. Wu, P.-H. et al. An evolutionarily conserved piRNA-producing locus required for male mouse fertility. Preprint at bioRxiv https://doi.org/10.1101/386201 (2018).
5. Gou, L. T. et al. Ubiquitination-deficient mutations in human Piwi cause male infertility by impairing histone-to-protamine exchange during spermiogenesis. Cell 169, 1090–1104 (2017).
6. Simon, M. et al. Reduced insulin/IGF-1 signaling restores germ cell immortality to Caenorhabditis elegans Piwi mutants. Cell Rep. 7, 762–773 (2014).
7. Katz, D. J., Edwards, T. M., Reinke, V. & Kelly-W. G. A. C. elegans LSD1 demethylase contributes to germline immortality by reprogramming epigenetic memory. Cell 137, 308–320 (2009).
8. Buckley, B. A. et al. A nuclear argonaute promotes multigenerational epigenetic inheritance and germline immortality. Nature 489, 447–451 (2012).
9. Frézal, L., Demoinet, E., Braendle, C., Miska, E. & Félix, M.-A. Natural genetic variation in a multigenerational phenotype in C. elegans. Curr. Biol. 25, 2588–2596 (2018).
10. Spracklin, G. et al. The RNAi inheritance machinery of Caenorhabditis elegans. Genetics 206, 1403–1416 (2017).
11. Perez, M. F. & Lehner, B. Intergenerational and transgenerational epigenetic inheritance in C. elegans. Nat. Cell Biol. 21, 143–157 (2019).
12. Batista, P. J. et al. PRG-1 and 21U-RNAs interact to form the piRNA complex required for fertility in C. elegans. Mol. Cell 31, 67–78 (2008).
13. Ruby, J. G. et al. Large-scale sequencing reveals 21U-RNAs and additional microRNAs and endogenous siRNAs in C. elegans. Cell 127, 1193–1207 (2006).
14. Das, P. P. et al. Piwi and piRNAs act upstream of an endogenous siRNA pathway to suppress Tc3 transposon mobility in the Caenorhabditis elegans germline. Mol. Cell 31, 79–90 (2008).
15. Cecere, G., Zheng, G. X. Y., Mansisidor, A. R., Klymko, K. E. & Grishok, A. Promoters recognized by forkhead proteins exist for individual 21U-RNAs. Mol. Cell 47, 734–745 (2012).
16. Gu, W. et al. CapSeq and CTP-TAP identify Pol II start sites and reveal capped small RNAs as C. elegans piRNA precursors. Cell 151, 1488–1500 (2012).
17. Shen, E. Z. et al. Identification of piRNA binding sites reveals the argonaute regulatory landscape of the C. elegans germline. Cell 172, 937–951 (2018).
18. Zhang, D. et al. The piRNA targeting rules and the resistance to piRNA silencing in endogenous genes. Science 359, 587–592 (2018).
19. Lee, H. C. et al. C. elegans piRNAs mediate the genome-wide surveillance of germline transcripts. Cell 150, 78–87 (2012).
20. Bagijn, M. P. et al. Function, targets, and evolution of Caenorhabditis elegans piRNAs. Science 337, 574–578 (2012).
21. Houri-Ze’evi, L. et al. A tunable mechanism determines the duration of the transgenerational small RNA inheritance in C. elegans. Cell 165, 88–99 (2016).
22. Spracklin, G. et al. The RNAi inheritance machinery of Caenorhabditis elegans. Genetics 206, 1403–1416 (2017).
23. Pan, G. et al. Spatiotemporal regulation of liquid-like condensates in epigenetic inheritance. Nature 557, 679–683 (2018).
24. Zeller, P. et al. Histone H3K9 methylation is dispensable for Caenorhabditis elegans development but suppresses RNA:DNA hybrid-associated repeat instability. Nat. Genet. 48, 1385–1395 (2016).
25. McMurchy, A. N. et al. A team of heterochromatin factors collaborates with small RNA pathways to combat repetitive elements and germline stress. eLife 6, e21666 (2017).
26. Ni, J. Z., Chen, E. & Gu, S. G. Complex coding of endogenous siRNA, transcriptional silencing and H3K9 methylation on native targets of germline nuclear RNA in C. elegans. BMC Genom. 15, 1157 (2014).
27. Shirayama, M. et al. piRNAs initiate an epigenetic memory of nonself RNA in the C. elegans germline. Cell 150, 65–77 (2012).
28. de Albuquerque, B. E. F., Placentino, M. & Ketting, R. F. Maternal piRNAs are essential for germline development following de novo establishment of endo-siRNAs in Caenorhabditis elegans. Dev. Cell 34, 448–456 (2015).
29. Phillips, C. M., Brown, K. C., Montgomery, B. E., Ruvkun, G. & Montgomery, T. A. piRNAs and piRNA-dependent siRNAs protect conserved and essential C. elegans genes from misrouting into the RNAi pathway. Dev. Cell 34, 137–148 (2015).
30. Weick, E. M. et al. PRDE-1 is a nuclear factor essential for the biogenesis of ruby motif-dependent piRNAs in C. elegans. Genes Dev. 28, 783–796 (2014).
31. Pettijohn, J., Croombie, C., Schümperli, D. & Müller, B. The Caenorhabditis elegans histone hairpin-binding protein is required for core histone gene expression and is essential for embryonic and postembryonic cell division. J. Cell Sci. 115, 857–866 (2002).
32. Kodama, Y., Rothman, J. H., Sugimoto, A. & Yamamoto, M. The stem-loop binding protein CDL-1 is required for chromosome condensation, progression of cell death and morphogenesis in Caenorhabditis elegans. Development 129, 187–196 (2002).
33. Gu, W. et al. Distinct argonaute-mediated 22G-RNA pathways direct genome surveillance in the C. elegans germline. Mol. Cell 36, 231–244 (2009).
34. Spike, C. A., Bader, J., Reinke, V. & Strome, S. DEPS-1 promotes P-granule assembly and RNA interference in C. elegans germ cells. Development 135, 983–993 (2008).
35. Shirayama, M., Stannen, W., Gu, W., Seth, M. & Melo, C. C. The vasa homolog RDE-12 engages target mRNA and multiple argonaute proteins to promote RNAi in C. elegans. Curr. Biol. 24, 845–851 (2014).
36. Wedeles, C. J., Wu, M. Z. & Claycomb, J. M. Protection of germline gene expression by the C. elegans argonaute CSR-1. Dev. Cell 27, 664–671 (2013).
37. Seth, M. et al. The C. elegans CSR-1 pathway counteracts epigenetic silencing to promote germline gene expression. Dev. Cell 27, 656–663 (2013).
38. Avgousti, D. C., Palani, S., Sherman, Y. & Grishok, A. CSR-1 RNAi pathway positively regulates histone expression in C. elegans. EMBO J. 31, 3821–3832 (2012).
39. Keall, R., Whitelaw, S., Pettitt, J. & Müller, B. Histone gene expression and histone mRNA 3′ end structure in Caenorhabditis elegans. BMC Mol. Biol. 8, 51 (2007).
40. Zhang, C. et al. mut-16 and other mutator class genes modulate 22G and 26G siRNA pathways in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 108, 1201–1208 (2011).
41. Heestand, B., Simon, M., Frenk, S., Titov, D. & Ahmed, S. Transgenerational sterility of Piwi mutants represents a dynamic form of adult reproductive diapause. Cell Rep. 23, 156–171 (2018).
42. Gerson-Gurwitz, A. et al. A small RNA-catalytic argonaute pathway tunes germline transcript levels to ensure embryonic divisions. Cell 165, 396–409 (2016).
43. Seth, M. et al. The coding regions of germline mRNAs confer sensitivity to argonaute regulation in C. elegans. Cell Rep. 22, 2254–2264 (2018).
44. Tang, W. et al. A sex chromosome piRNA promotes robust dosage compensation and sex determination in C. elegans. Dev. Cell 44, 762–770 (2018).
45. Barberis-Soler, S. et al. Co-option of the piRNA pathway for germline-specific alternative splicing of C. elegans TOR. Cell Rep. 8, 1609–1616 (2014).
46. Sarkies, P. et al. Ancient and novel small RNA pathways compensate for the loss of piRNAs in multiple independent nematode lineages. PLoS Biol. 13, e1002061 (2015).
47. Tu, S. et al. Comparative functional characterization of the CSR-1 22G-RNA pathway in Caenorhabditis nematodes. Nucleic Acids Res. 43, 208–224 (2015).
48. Wyler-Duda, P., Bernard, V., Stadler, M., Suter, D. & Schümperli, D. Histone H4 mRNA from the nematode Ascaris lumbricoides is cis-spliced and polyadenylated. Biochim. Biophys. Acta 1350, 259–261 (1997).
Methods

Strains of *C. elegans*. Strains were maintained at 20°C using standard methods. The wild-type reference strain used was Bristol N2. A complete list of the strains used in this study is provided in Supplementary Table 2.

Generation of CRISPR-Cas9 lines. CRISPR-Cas9 alleles were generated by microinjecting Cas9-guide RNA (gRNA) ribonucleoprotein complexes into hermaphrodite gonads as described previously.

gRNA in *vitro* transcription, repair templates and microinjection. Unique and specific gRNA sequences were selected using the off-target prediction CRISPR design tool at https://crispr.mit.edu/. Gene-specific gRNA sequences were included in a 60-nucleotide forward oligo, which contained a 22-nucleotide T7 promoter sequence followed by the 20-nucleotide gene-specific gRNA sequence and a 18-nucleotide sequence with homology to the 5’ tracrRNA scaffold sequence included in the AP0905 plasmid (provided by the laboratory of G. Seydoux). This forward oligo was used in combination with a reverse oligo homologous to the 3’ sequence of the tracrRNA to amplify, using PCR from the AP0905 plasmid, a double-stranded DNA template for gRNA in *vitro* transcription. PCR reactions were performed using High-Fidelity Phusion DNA Polymerase (Thermo Fisher Scientific) and the PCR products were purified using the DNA clean and concentrator kit (Zymo Research). For single-nucleotide modifications or small tag edits, we used single-stranded oligonucleotides containing homology arms of approximately 33 bp as repair templates, ordered from IDT, as standard 4×N ultramer oligos. In the case of larger edits, such as fluorescent protein tag sequences, we generated double-stranded DNA repair templates by amplifying eGFP or mCherry from PIRJ82 and PIRJ83 plasmids (provided by the laboratory of M. Boxem) by PCR using specific oligos containing homology arms of approximately 33 bp. Silent mutations were included where necessary in the repair templates to modify either the PAM sequence or the gRNA seed region to prevent Cas9 from cleaving the repair template. To improve screening efficiency, a gRNA targeting dpy-10 was used as a co-CRISPR marker as described previously.

Injection mixes were prepared as described previously.

In brief, 10×10 μM Cs9-NLS protein (Institut Pasteur core facility), 300 ng · μl−1 in *vitro* transcribed dpy-10 gRNA, 1 μg · μl−1 in *vitro* transcribed target-gene gRNA, 0.44 pmol · μl−1 of dpy-10 single-stranded oligodeoxynucleotide (ssODN) repair template and 0.8 pmol · μl−1 of target-gene ssODN repair template or 300 ng · μl−1 target-gene double-stranded DNA repair template.

Screening and validation of CRISPR-Cas9 alleles. Modified target loci were screened by PCR using target-gene-specific oligos. To generate the piwi mutant, we introduced a STOP codon (UAG) followed by a Nhel restriction site after the 5th coding codon of piwi. We selected this region because it contained a PAM sequence that enabled us to specifically target piwi and not piwi-2, which is a gene with high sequence homology to piwi-1. Primers specific to piwi-2 were used to amplify the genomic region spanning the edited locus, and a restriction enzyme digestion product was performed on the PCR amplicon. After digestion with Nhel, the wild-type allele produces an additional nucleotide modification whereas the edited fragment produces two bands (616 nucleotides + 275 nucleotides). We used the same gRNA to introduce a 3×Flag:2×HA epitope tag after the 6th codon of piwi-1. Similarly, we used a csr-1-specific gRNA to introduce a 3×Flag:1×HA epitope tag after the first codon of the short isoform of CSR-1 to tag both the long and the short isoforms of the protein. We used the 3×Flag:HA:CSR-1 strain as an entry strain to introduce mCherry to create a fluorescently tagged mCherry:3×Flag:HA:CSR-1 strain. We also introduced a 3×Flag:OLLAS tag immediately after the start codon of wago-1. Owing to the high sequence homology between wago-1 and wago-2 we were unable to find a completely specific wago-1 gRNA close to the start codon. We used a gRNA that targets both wago-1 and wago-2 and designed gene-specific primers to screen for worms in which only wago-1 was edited. To control for unwanted modifications at the wago-2 locus, we sequenced the wago-2-targeted region and confirmed the absence of any type of edit. Similar to the mCherry-tagged version of CSR-1, we used the 3×Flag:OLLAS::WAGO-1 strain as an entry strain to introduce eGFP into the 3×Flag:OLLAS region to obtain a fluorescently tagged 3×Flag:GFP::OLLAS::WAGO-1 strain. To generate a catalytically dead mutant of csr-1, we substituted a conserved aspartic acid residue with an alanine residue (D769A), a modification that was previously shown to be sufficient to abolish the catalytic activity of CSR-1 in vitro.

The nucleotide changes introduced to modify the codon in addition to the silent changes added to the repair removed a Maell restriction site in our csr-1(D769A) edited locus. We used our edited csr-1 strain products on the basis of resistance to resistance to Maell. All of the loci edited in this study were verified by sequencing locus-specific PCR products. A detailed list of gRNAs, single-stranded DNA and double-stranded DNA repair templates and primers used for genotyping is provided in Supplementary Table 3.

Balancers and genetics. csr-1(D769A) mutants were balanced into n1(qIs51), a reciprocal transfection between chromosomes IV and V containing a recessive lethal marker that causes embryonic lethality of homozygous balanced worms. Furthermore, the n1(qIs51) carries a balancer-associated dominant uncontrolled gfp transgene and GFP transgenes that enable the visual identification of heterozygous animals.

We used a COPAS Biosorter (Union Biometrica) to set up a fluorescence-based sorting approach that enabled us to obtain large synchronized homozygous csr-1(D769A) populations for genome-wide analysis of RNAi.

The csr-1(D769A) (IV;n1(qIs51)) strain was obtained after a three-step cross strategy summarized here as follows. First, wild-type males were mated with a single early-generation piwi mutant hermaphrodite. Second, the resulting F1, piwi/+ (I) males were mated with csr-1(D769A) (IV)/n1(qIs51) balanced worms. The non-GFP males resulting from the crossing progeny of this second cross are csr-1(D769A)+/+ (IV) and, in 50% of the cases, are piwi+ (I). Third, we pooled at least five of these male worms with csr-1(D769A) (IV)/n1(qIs51) balanced worms to introduce the piwi allele in heterozygosis in the progeny. We screened for GFP positive (n1(qIs51)) balanced F1 worms from this cross carrying either csr-1 wild type or the csr-1(D769A) allele and the piwi+ mutation. From these two different lines, we singled out GFP balanced progeny individuals to finally obtain the csr-1(D769A) (IV);n1(qIs51) (IV);piwi/piwi (I) and their corresponding control +/+;n1(qIs51) (IV);piwi/piwi (I) animals.

Genotyping. For genotyping, single worms were manually picked in 20 μl of worm lysation buffer (30 mM Tris · HCl pH 8.0, 100 mM NaCl, 0.1% NP-40, 10 μg · μl−1 DNAse I, 500 μg · μl−1 Tween 20) containing 100 μg · ml−1 RNase-H proteinase K. The solution was incubated at 65°C for 1 h, then the proteinase K was inactivated at 95°C for 15 min. A fraction of the lysate (5 μl) was used as template for a PCR reaction using gene-specific oligos. The sequences of primers used for genotyping are provided in Supplementary Table 3.

Crossing/mating experiments using piwi-mutant worms. Crossing experiments were performed on Petri dishes (2.5 cm) seeded with OP50 *E. coli* food using one hermaphrodite piwi-mutant worm at young adult stage together with around five wild-type males. The efficiency of the cross was assessed by the percentage of F1 males that were present in the progeny. For each experiment, at least five crosses were set up, and the best three were selected on the basis of male incidence criteria. For each cross, five *E. coli* hermaphrodite L4 larvae were transferred onto individual plates and genotyped after egg laying to screen for heterozygous piwi+ animals. F1 larvae from piwi heterozygote F0 animals were individually grown and genotyped to obtain wild-type and piwi-homologous mutant lines.

Brood size assays. Manually picked L1 larvae were grown individually on Petri dishes (2.5 cm) seeded with OP50 *E. coli* food until adulthood, and were then transferred onto a new plate every 24 h for a total of 3 d. The brood size of each worm was scored by counting the total number of larvae laid on the three plates. For each brood size experiment, at least 15 worms were scored for each strain.

RNAi experiments. RNAi clones used in this study were obtained from theahringer library. An empty vector (L4440) was used as a control in all of our RNAi experiments. RNAi experiments for brood size assays were performed using manually picked L1 larvae grown on Petri dishes (2.5 cm) seeded with bacteria-controlled double-stranded RNA complementary to the gene of interest or control empty vector. RNAi experiments for RNAi extraction were performed using Petri dishes (15 cm) seeded with concentrated RNAi food.

RNA extraction. Synchronous populations of worms were grown at 20°C on nematode growth medium plates seeded with OP50 *E. coli* concentrated food at a density of maximum 40,000 animals per Petri dish (15 cm) and collected at young adult stage 4 h after hatching. The collected animals were washed three times with M9 buffer, and 40 μl of worm pellet was frozen in dry ice with TRI Reagent (MRC). After five repetitions of freeze and thaw, total RNA was isolated according to the TRI Reagent protocol. Then, 10 μg RNA was treated with 2 μl Turbo DNase (Ambion) at 37°C for 30 min in the presence of phenol extraction and inpropanol precipitation. An Agilent 2200 TapeStation System was used to evaluate the RIN indexes of all of the RNA preps, and only samples with RNA integrity number (RIN) > 8 were used for downstream applications. For the preparation of total RNA extracted from generation F1, of wild-type and piwi-mutant worms, ten manually picked worms were used.

Strand-specific RNA-seq library preparation. RNAi-treated total RNA with RIN > 8 was used to prepare strand-specific RNA libraries. We developed an RNAi-H-based method to degrade *C. elegans* and mitochondrial ribosomal RNAs using 50-nucleotide oligos complementary to *C. elegans* rRNA and mitochondrial RNA. The sequences used in our edit in PCR products on the basis of resistance to restriction to *C. elegans*.

Table 4. DNase-treated total RNA (1 μg) was mixed with 1 μg of rRNA at equimolar concentration and 1 μl probe hybridization buffer (200 mM NaCl, 10 mM Tris pH 7.5) and incubated in a thermocycler using the following parameters: 2 min at 95°C followed by 1°C · s−1 to 95–45°C, and then held for 2 min at 45°C. Next, 2 μl of Thermostable RNase H (epicentre) was added to the reactions together with
after hatching and suspended in the extraction buffer (50 mM HEPES pH 7.5, described previously except that biotin-UTP was used to label nascent RNAs. GRO-seq. Output Reagent Kit 75 cycles (FC-420-1001). dsDNA assay kit (Thermo Fisher Scientific, Q32851) and sequenced with either a purified libraries were quantified using the Qubit Fluorometer High Sensitivity dsDNA assay kit (Thermo Fisher Scientific, Q32851) and sequenced with either a NextSeq 500 Illumina platform using the NextSeq 500/550 High Output v2 kit 75 cycles (FC-404-2005) or an Illumina MiniSeq platform using the MiniSeq High Output Reagent Kit 75 cycles (FC-420-1001).

GRO-seq. Global run-on sequencing (GRO-seq) experiments were performed as described previously, except that biotin-UTP was used to label nascent RNAs. Two biological replicates were generated using synchronous 40,000 wild-type and prg-1(n4537)-mutant worms collected 48 h after hatching. IP for the co-IP or MS experiments. A synchronous population of 120,000 (for CSR-1, PRG-1 IPs) or 40,000 (for WAGO-1 IPs for MS) worms was collected 48 h after hatching and suspended in the extraction buffer (50 mM HEPES pH 7.5, 300 mM NaCl, 5 mM MgCl2, 10% glycerol, 0.25% NP-40, protease inhibitor cocktails (Fermentas)) followed by 30 strokes using a metal dounce on ice. Protein extraction was centrifuged at 12,000 r.p.m. at 4 °C for 10 min. Protein concentration was quantified using the Bradford assay, and 2 mg of protein extract was incubated with 15 µl of packed anti-Flag M2 magnetic agrose beads (Sigma M8823) for 1 h at 4 °C. After four washes with the extraction buffer, the beads were resuspended with 2× NuPAGE LDS sample buffer (Thermo Fisher Scientific) for co-IP experiments or washed twice with 100 µl of 25 mM NH4HCO3 for MS. For the co-IP experiments shown in Fig. 4b and Extended Data Fig. 4e, the total-protein extract from piwi-mutant and control strains were normalized to the level of CSR-1 protein to avoid differences in the total germline proteins due to the reduced germline tissue in piwi-mutant strains.

DNA isolation. Reduced germline tissue in piwi(−)/−-mutant and control strains were normalized to the level of CSR-1 protein to avoid differences in the total germline proteins due to the reduced germline tissue in piwi-mutant strains.

Western blotting. Protein extracts, prepared as described above, were resolved on precast NuPAGE Novex 4–12% Bis-Tris gels (Invitrogen, NP0321BOX). The proteins were transferred to a nylon membrane with the semidry transfer Pierce Power System (Thermo Fisher Scientific) using the preprogrammed method for high molecular mass protein. The primary antibodies used included anti-PRG-1 (ref. 1; a gift from the Mello laboratory), anti-CSR-1 (ref. 2; anti-DEPS-1 (ref. 3; a gift from the Strome laboratory), anti-Flag (F3165, Sigma), anti-GAPDH (Ab125247, Abcam), anti-mCherry (RF66, Chromotek) and anti-tubulin (Ab6160, Abcam) antibodies, and the secondary antibodies used included anti-rabbit (31460, Pierce), anti-mouse (31430, Pierce) and anti-rat (A9037, Sigma) HRP antibodies. The Supersignal West Pico PLUS Chemiluminescent Substrate was used to detect the signal using a ChemiDoc MP imaging system (Biorad).

Confocal live imaging. Transgenic worms were mounted on 2% agarose pads in the presence of 0.5% sodium azide. Confocal images were obtained using a ZEISS LSM 780 microscope with a ×40 objective or ×63 objective for the H2B-mCherry quantification. Images were obtained using the ZEISS ZEN microscope software and processed using ImageJ v2.0.0. The quantification of the histone H2B–mCherry was performed on a single confocal image taken at the surface of the distal region of the germline from 12 individual worms for each condition. The average intensity of H2B–mCherry fluorescence was measured in 15 nuclei using ImageJ. The incorporation of histone H2B–mCherry into the chromatin enables the visualization of chromosome compaction. Pachytene nuclei from wild-type and sterile piwi-mutant animals were scored for lack of visible signs of chromosome compaction. The scored piwi-mutant nuclei were still showing a diffused signal of histone H2B–mCherry in the nuclei. Nuclei with very low intensity H2B–mCherry were excluded from counting.

Immunostaining. Plates of adult worms were washed with PBS containing 0.1% Tween (PBST). Ten worms were placed on a polylysine-coated slide in the presence of 0.5% sodium azide, and the gonads of immobilized worms were dissected. The slide was fixed with 1% paraformaldehyde for 5 min, frozen in liquid nitrogen and then immersed for at least 1 min in methanol at −20 °C. The slides were then washed in PBST. Blocking was performed in PBST containing 0.5% BSA. Primary antibodies were diluted in PBST containing 0.5% BSA, and incubated overnight at room temperature. Slides were washed at least three times for 5 min in PBST with 0.5% BSA, and secondary antibodies were added and incubated for 2 h at room temperature. The slides were then washed at least twice in PBST with 0.5% BSA and were then counterstained with DAPI and mounted using Vectorshiel. The primary antibodies used were anti-Flag (Sigma, F1804) antibodies at a dilution of 1:500, and the secondary antibodies used were goat anti-mouse (Invitrogen, Alexa Fluor 488) antibodies at a dilution of 1:500.

RNA IP. A synchronous population of 40,000 worms was collected 48 h after hatching and suspended in extraction buffer (50 mM HEPES pH 7.5, 300 mM NaCl, 5 mM MgCl2, 10% glycerol, 0.25% NP-40, protease inhibitor cocktails (Fermentas)), and samples were treated by 30 strokes using a metal dounce on ice. Protein concentration was quantified using the Bradford assay, and 1 mg of protein extract was incubated with 15 µl of packed anti-Flag M2 magnetic agrose beads (Sigma M8823) for 1 h at 4 °C. After four washes with the extraction buffer, the beads were resuspended with 2× NuPAGE LDS sample buffer (Thermo Fisher Scientific) for co-IP experiments or washed twice with 100 µl of 25 mM NH4HCO3 for MS. The co-IP experiments shown in Fig. 4b and Extended Data Fig. 4e, the total-protein extract from piwi-mutant and control strains were normalized to the level of CSR-1 protein to avoid differences in the total germline proteins due to the reduced germline tissue in piwi-mutant strains.

RNA IP. A synchronous population of 40,000 worms was collected 48 h after hatching and suspended in extraction buffer (50 mM HEPES pH 7.5, 300 mM NaCl, 5 mM MgCl2, 10% glycerol, 0.25% NP-40, protease inhibitor cocktails (Fermentas)), and samples were treated by 30 strokes using a metal dounce on ice. Protein concentration was quantified using the Bradford assay, and 1 mg of protein extract was incubated with 15 µl of packed anti-Flag M2 magnetic agrose beads (Sigma M8823) for 1 h at 4 °C. After four washes with the extraction buffer, the IP protein was resuspended with 100 µl of 25 mM NH4HCO3 following a 30 min on ice. The eluate was next incubated with 750 µl of TRI reagent (MRC) to extract the immunoprecipitated RNAs. Then, 750 µl of TRI reagent (MRC) was also added to 10% of protein extract before the IP (input). The extracted RNA was then analysed using RT–qPCR to quantify mRNA or used to clone sRNAs.

RT–qPCR. DNase-treated total RNA (1 µg) was used as a template to generate cDNA, using random hexamer primers and M–MLV reverse transcriptase, and the qPCR reactions were performed using Applied Biosystems Power up SYBR Green PCR Master mix following the manufacturer’s instructions and using an Applied Biosystems QuantStudio 3 Real-Time PCR System. The primers used for the qPCR are provided in Supplementary Table 5.

ChIP. ChIP procedures were as described previously with the following modifications. We collected eggs by hypochlorite treatment, and synchronous populations of worms were grown for 48 h after hatching at 20 °C on OP-50 E. coli at a density of approximately 40,000 animals per Petri dish (15 cm). Approximately absolute deviation (MAD) normalization was applied to the total signal to correct the XICs for each biological replicate. To estimate the significance of the change in protein abundance, a linear model (adjusted for peptides and biological replicates) was performed using the Benjamini–Hochberg procedure with a control threshold set to 0.05. Cytoseek was used to generate the interactome network map.
Sequencing data analyses. RNA-seq. Multiplexed Illumina sequencing data were demultiplexed using Illumina bcl2fastq converter (v2.17.1.14). The read quality of all of the libraries was assessed using fastQC (v0.11.5). Fastq reads were aligned on the C. elegans genome (ce11, C. elegans Sequencing Consortium WBCel235) using HISAT2 (ref. 49) v2.0.4 with the default settings. After alignment to the C. elegans genome sequence, featureCounts20 v1.5.2 was used to count reads mapped to annotated genomic features, such as protein-coding genes, pseudogenes, RNA transposons, DNA transposons, simple repeats, satellites, tRNAs, transfer RNAs, small nuclear RNAs (snRNAs), small nucleolar RNAs (snoRNAs), antisense RNAs. Annotation was based on the ENSG genome database, with the exception of the repetitive sequences, which were obtained from the repeatMasker annotation file present in the UCSC genome annotation database for the February 2013 (WBCel235/ce11) assembly of the C. elegans genome. Counted reads for each genomic feature were used for differential-expression analysis using the R/Bioconductor package DESeq2 (ref. 19) v1.20.0. Uregulated and downregulated genes were detected on the basis of the differential expression criteria of adjusted P < 0.05 and at least a twofold increase or decrease in expression levels relative to the control sample.

sRNA-seq. Multiplexed Illumina sequencing data were demultiplexed using Illumina bcl2fastq converter (v2.17.1.14). The read quality of all of the libraries was assessed using fastQC. The 3′ adapter was trimmed from raw reads using Cutadapt17 v2.1.15 using the following parameter: -a TGGATATCTCGGTGTCAAGAG --discard-untrimmed. 5′ and 3′ end unique molecular identifiers (UMIs) were used to deduplicate the trimmed reads. Deduplicated reads were sorted by reads being the same as for RNA-seq analyses. Roughly, reads matching piRNA (allowing for up to 26 nucleotides to account for the possible presence of not completely matured piRNAs) or miRNA annotations were classified as such. 21–23-nucleotide reads were the same as for RNA-seq analyses, upregulated and downregulated genes were detected on the basis of the differential expression criteria of adjusted P < 0.05 and at least a twofold increase or decrease in expression levels relative to the control sample.

GRO-seq. Multiplexed Illumina sequencing data were demultiplexed using Illumina bcl2fastq converter (v2.17.1.14). The read quality of all of the libraries was assessed using fastQC. The 3′ adapter was trimmed from raw reads using Cutadapt option (-a TGGATATCTCGGTGTCAAGAG). Only reads with at least 24 nucleotides after trimming (but including 5′ and 3′ randomized tetramers) were retained (option -m 24). Reads in which the adapter was not found were also retained (option, –untrimmed-output). 5′ and 3′ end tetramers were removed using Cutadapt (options -u 4 and –u –4). The reads were aligned on the C. elegans genome (ce11, C. elegans Sequencing Consortium WBCel235) using Bowtie2 with the default parameters. After alignment to the C. elegans genome, read counting using featureCounts and differential expression analysis using DESeq2 were performed as described for the RNA-seq data, using the same criteria to detect upregulated and downregulated genes.

Comparison between RNA-seq or GRO-seq and sRNA-seq. To compare RNA-seq or GRO-seq and sRNA-seq data, plots were generated by plotting, in DESeq2, log-transformed fold changes of the RNA-seq (or GRO-seq) data against the RPM fold changes of the si_22G sRNA category using custom Python scripts.

Metaprofile. Metaprofiles were generated using R from sRNA-seq analysis by summarizing normalized coverage information (taken from bigwig files and averaged across replicates) along histone genes or 200 nucleotides upstream and downstream of the stem-loop structure of histone mRNAs using the deepTools2 package v3.1.2.

Gene lists. The gene lists used are provided in Supplementary Table 6.

Statistics and reproducibility. Almost all of the experiments shown in this study were performed independently at least twice and no inconsistent results were observed. All attempts at replication were successful. IP and MS experiments were conducted with four biological replicates. All of the RNA-seq experiments were performed using two biological replicates. For details of the particular statistical analyses used, precise P values, statistical significance and sample sizes for all of the graphs, see the figure legends and the Methods. The source data for Figs. 1–6 and Extended Data Figs. 1–6 are provided.

Reporting Summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability
All sequencing data (GRO-seq, RNA-seq and sRNA-seq from total lysate or IP experiments) are available at the Gene Expression Omnibus (GEO) under accession code GSE125601. The MS proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD012557. All other data supporting the findings of this study are available from the corresponding author on reasonable request. Source data are available online for Figs. 1–6 and Extended Data Figs. 1–6.

Code availability
The custom scripts generate for this study are available from the corresponding author on reasonable request.

References
49. Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974).
50. Paix, A., Folkmann, A., Rosaloson, D. & Seydoux, G. High efficiency, homology-directed genome editing in Caenorhabditis elegans using CRISPR-Cas9 ribonucleoprotein complexes. Genetics 201, 47–54 (2015).
51. Arrabere, J. A. et al. Efficient marker-free recovery of custom genetic modifications with CRISPR/Cas9 in Caenorhabditis elegans. Genetics 198, 837–846 (2014).
52. Aoki, K., Moriguchi, H., Okawa, K. & Tabara, H. Biochemical genetic analyses of RdRP and Slicer activities related to RNAi in C. elegans. in International Worm Meeting (2007).
53. Edgley, M. L., Baille, D. L., Riddle, D. L. & Rose, A. M. in WormBook (The online review of Caenorhabditis elegans). 2006.
54. Kamath, R. S. & Ahringer, J. Genome-wide RNAi screening in Caenorhabditis elegans. Methods 30, 313–321 (2003).
55. Jayaprakash, A. D., Jalsad, O., Brown, B. D. & Sachidanandam, R. Identification and remediation of biases in the activity of RNA ligases in small-RNA deep sequencing. Nucleic Acids Res. 43, e41 (2011).
56. Cescere, G., Hoersch, S., O’Keefe, S., Sachidanandam, R. & Grishok, A. Global effects of the CSR-1 RNA interference pathway on the transcriptional landscape. Nat. Struct. Mol. Biol. 21, 358–365 (2014).
57. Poullot, P., Carpentier, S. & Barillot, E. myProMS, a web server for management and validation of mass spectrometry-based proteomic data. Proteomics 7, 2553–2556 (2007).
58. Valot, B., Langella, O., Nano, E. & Zivy, M. MassChroQ: a versatile tool for mass spectrometry quantification. Proteomics 11, 3572–3577 (2011).
59. Cline, M. S. et al. Integration of biological networks and gene expression data using Cytoscape. Nat. Protoc. 2, 2366–2382 (2007).
60. Vizcaíno, J. A. et al. 2016 update of the PRIDE database and its related tools. Nucleic Acids Res. 44, D447–D456 (2016).
61. Claycomb, J. M. et al. The argonaute CSR-1 and its 22G-RNA cofactors are required for holocentric chromosome segregation. Cell 139, 123–134 (2009).
62. Kawasaki, I. et al. The PGL family proteins associate with germ granules and function redundantly in Caenorhabditis elegans germline development. Genetics 167, 645–661 (2004).
63. Kim, D., Langmead, B. & Salzberg, S. L. HISAT2: a fast splice aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).
64. Liao, Y., Smyth, G. K. & Shi, W. FeatureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).
65. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. *Genome Biol.* **15**, 550 (2014).

66. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. *EMBO Rep.* **17**, 10–12 (2011).

67. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. *Nat. Methods* **9**, 357–359 (2012).

68. Quinlan, A. R. BEDTools: the Swiss-army tool for genome feature analysis. *Curr. Protoc. Bioinform.* **47**, 11.12.1–11.12.34 (2014).

69. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. *Nat. Methods* **9**, 357–359 (2012).

70. Ramirez, F. et al. deepTools2: a next generation web server for deep-sequencing data analysis. *Nucleic Acids Res.* **44**, W160–W165 (2016).

Acknowledgements

We thank the members of the Cecere laboratory, D. Canzio, N. Iovino, R. Sawarkar and P. Andersen for discussions of the manuscript; the Miska, the Mello, the Kennedy, the Seydoux, the Claycomb, the Strome and the Dumont laboratories for sharing strains and/or antibodies. Some strains were provided by the CGC, funded by NIH Office of Research Infrastructure Programs (P40 OD010440). This project has received funding from the Institut Pasteur, the CNRS and the European Research Council (ERC) under the EU Horizon 2020 research and innovation programme under grant agreement no. ERC-StG-679243. M.U. performed some RNA extractions and the RT–qPCR experiment. F.D. and D.L. performed the MS and analysed the data together with M.S. and G.C. B.L. performed the bioinformatics analysis of all sequencing data. M.U. performed some RNA extractions and the RT–qPCR experiment. A.S. performed the brood-size analysis of the RNAi experiments under the supervision of G.B. C.D. performed the brood-size analysis of some of the RNAi and crossing experiments together with G.C. P.Q. contributed to collecting some of the RNA samples that were used for the initial RNA-seq experiments. G.C. wrote the paper with contributions from G.B., E.C., M.S. and B.L.

Author contributions

G.C. identified and developed the core questions addressed in the project and analysed the results of all of the experiments. G.B. performed most of the experiments and helped to analyse the results. E.C. conceived and generated all of the CRISPR–Cas9 lines used in this study, designed and performed the experiment using a catalytic mutant of CSR-1 and performed all of the confocal live-imaging experiments. M.S. performed all of the co-IP and IP experiments for MS and co-IPs. F.D. and D.L. performed the MS and analysed the data together with M.S. and G.C. B.L. performed the bioinformatics analysis of all sequencing data. M.U. performed some RNA extractions and the RT–qPCR experiment. A.S. performed the brood-size analysis of the RNAi experiments under the supervision of G.B. C.D. performed the brood-size analysis of some of the RNAi and crossing experiments together with G.C. P.Q. performed the GRO-seq. E.C. and P.Q. contributed to collecting some of the RNA samples that were used for the initial RNA-seq experiments. G.C. wrote the paper with contributions from G.B., E.C., M.S. and B.L.

Competing interests

The authors declare no competing interests.

Additional information

Extended data is available for this paper at https://doi.org/10.1038/s41556-020-0462-7.

Supplementary information is available for this paper at https://doi.org/10.1038/s41556-020-0462-7.

Correspondence and requests for materials should be addressed to G.C.

Reprints and permissions information is available at www.nature.com/reprints.
Extended Data Fig. 1 | See next page for caption.
Extended Data Fig. 1 | Histone silencing occurs at the post-transcriptional level only in mutants of the piRNA biogenesis pathway. a, Brood size assay of wild-type, prg-1 (n4357) and hrde-1 (tm1200) mutant worms as in Fig. 1d. The black lines indicate the mean, the error bars the standard deviation, and the n (animals) is indicated above in parenthesis. b, Number of individual misregulated REs by RNA-seq (≥ 2-fold and padj < 0.05, Wald test) in piwi or hrde-1 mutants. Data shown represent average of two biologically independent replicates. c, RT-qPCR log2 fold change of histone mRNAs and piRNA-dependent 22G-RNA targets in prg-1 (n4357), prde-1 (mj207), and hrde-1 (tm1200) mutants compared to wild-type worms. The bars indicate the mean and error bars indicate the standard deviation. n = 3 biologically independent experiments. d, RT-qPCR showing log2 fold change of individual DNA or RNA transposons in mutant vs. wild-type. Up-regulated transposons by RNA-seq are labelled in red. The bars indicate the mean and the black dots individual data from two biologically independent experiments. e, mRNA log2 fold change (y axis) and 22G-RNA log2 fold change (x axis) in hrde-1(tm1200) mutant vs. wild-type worms for protein-coding genes as in Fig. 1a. Wald test was used to calculate the p value. Data shown represent average of two biologically independent replicates. f, nascent RNA (nRNA) log2 fold change (y axis) and 22G-RNA log2 fold change (x axis) in prg-1 (n4357) mutant vs. wild-type worms for protein-coding genes. Red dots indicate the replicative histone genes. Wald test was used to calculate the p value. Data shown represent average of two biologically independent replicates. g, Box plot showing transcriptional (GRO-seq) and post-transcriptional (RNA-seq) histone gene expression changes in prg-1 (n4357) mutant vs. wild-type worms. The median (line), first and third quartiles (box), and whiskers (5th and 95th percentile) are shown. Two-tailed p value calculated with the Mann-Whitney-Wilcoxon tests is shown, using the sample size n (number of genes) = 61. Source data are available in Source Data Extended Data Fig. 1.
Extended Data Fig. 2 | See next page for caption.
Extended Data Fig. 2 | Transgenerational gene expression changes of protein-coding genes and REs in piwi mutant. a–c, MA-plot showing mRNA log2 fold change between piwi mutant and wild-type lines at different generations. Red and blue dots correspond to significant log2 fold change (padj < 0.05, Wald test). The number in parenthesis indicates the number of misregulated genes ≥ 2-fold. The average from two biologically independent replicates is shown. d, Comparison between mRNA log2 fold change (y axis) by and 22G-RNA log2 fold change (x axis) as shown in Fig. 1a using piwi mutant and wild-type CRISPR-Cas9 lines at F9 (left) and F12 (right). e, Plot showing the number of individual up-regulated and down-regulated REs by RNA-seq (padj < 0.05, Wald test) in piwi mutant compared to wild-type CRISPR-Cas9 lines at F4, F9, and F12. Only uniquely mapped reads were considered for this analysis. Data shown represent average of two biologically independent replicates. f, Comparison between RNA log2 fold change (y axis) by and 22G-RNA log2 fold change (x axis) as shown in Fig. 1a using piwi mutant and wild-type CRISPR-Cas9 lines at F9 (left) and F12 (right). Significant misregulated RE families are indicated (padj < 0.05, Wald test). The average from two biologically independent replicates is shown. g, Average and standard deviation of H2B-mCherry quantification in 15 pachytene nuclei in each individual wild-type and piwi mutant worm. n = 15 animals. h, Visualization of chromosome compaction in pachytene nuclei using H2B-mCherry wild-type and piwi mutant worms. The arrow indicates an example of nucleus with defective chromosome compaction in sterile piwi mutant. The percentage of nuclei lacking chromosome compaction in piwi mutant is shown below the images and the number in parenthesis indicates the number of nuclei counted. The white bars indicate 20 µM size. The experiment was repeated twice with similar results. Statistical source data are available in Source Data Extended Data Fig. 2.
Extended Data Fig. 3 | WAGO-1 relocalize from piRNA targets to histone mRNAs. a, RNA immunoprecipitation (RIP) experiments followed by RT-qPCR showing the log₂ fold change of the WAGO-1-interacting mRNAs in piwi mutant vs. wild-type worms. The bars indicate the mean and error bars indicate the standard deviation. n = 4 biologically independent experiments. b, Co-IP experiments showing CSR-1 interactions with WAGO-1 in wild-type and piwi mutant worms. Presence (+) or absence (-) of the tagged proteins or piwi mutation are indicated. Immunoprecipitation was performed using α-FLAG antibody, and the blots were probed with α-CSR-1 or α-FLAG antibodies. c, Immunostaining with α-FLAG antibody showing WAGO-1-FLAG localization in wild-type and piwi mutant (green signal). DAPI signal is shown in blue. The white bars indicate 20 µM size. The experiment was repeated independently twice with similar results. d, Live confocal images of WAGO-1-GFP, PGL-1-mCherry, and CSR-1-mCherry in sterile piwi mutant germlines. The white bars indicate 10 µM size. The experiment was repeated independently three times with similar results. Source data are available in Source Data Extended Data Fig. 3.
Extended Data Fig. 4 | See next page for caption.
Extended Data Fig. 4 | CSR-1 and CDL-1 contribute to the biogenesis of histone 22G-RNAs in piRNA mutant. a, Co-IP experiments using α-FLAG antibody for IPs and α-PIWI, α-DEPS-1 or α-FLAG antibodies for blots. Presence (+) or absence (−) of the FLAG tagged proteins are indicated. The experiment was repeated independently twice with similar results. b, Co-IP experiments as in a, showing DEPS-1 interaction with PIWI and not with CSR-1. The blots were probed with α-DEPS-1 or α-FLAG antibodies. The experiment was repeated independently twice with similar results. c, Immunoblot showing CSR-1, PGL-1, DEPS-1, GAPDH from total protein lysate or FLAG immunoprecipitation in WT and piwi mutant worms. Blots for germline-enriched and ubiquitous proteins are shown in red and blue respectively. The experiment was repeated independently twice with similar results. d, Volcano plot showing enrichment values and corresponding significance levels for proteins co-purifying with CSR-1 (see also Supplementary Table 1c). Argonaute proteins, germ granule components, 22G-RNA and histone biogenesis factors are indicated. The size of the dots is proportional to the number of peptides used for the quantification. The linear model was used to compute protein quantification ratio and the red horizontal line indicates the two-tailed p value = 0.05. n = 4 biologically independent experiments. e, Co-IP experiments as in a, showing CSR-1 interaction with WAGO-1 in wild-type, piwi mutant and piwi mutant treated with mut-16 RNAi. The blots were probed with α-CSR-1 or α-FLAG antibodies. * The higher migration of this band is due by the GFP fused to WAGO-1-FLAG in this strain. The experiment was repeated independently twice with similar results. f-h, Metaprofile analysis showing the distribution of normalized 22G-RNA reads (RPM) across histone genes in wild-type (blue line), piwi mutant (red line), and piwi mutant animals treated with control RNAi (blue line), csr-1 RNAi (light blue line) or cdl-1 RNAi (yellow line). The experiment was repeated independently twice with similar results. Statistical source data and unprocessed blots are available in Source Data Extended Data Fig. 4.
Extended Data Fig. 5 | Depletion of MUT-16, PPW-1, PPW-2 and not HRDE-1 restores fertility in piwi mutant independently of REs silencing.

a, Schematic of the RNAi experiment using CRISPR-Cas9 piwi mutant worms grown immediately on plates seeded with *E. coli* expressing dsRNA targeting mut-16 or empty vector for 20 generations. **b**, Results from the experiments described in **a**. Each dot corresponds to the number of alive larvae from individual worms. The black lines indicate the mean and the error bars the standard deviation. Two-tailed p value calculated using the Mann-Whitney-Wilcoxon tests is shown. n = 15 animals. **c**, Schematic of the RNAi experiment using CRISPR-Cas9 piwi mutant worms grown for 10 generations on plates seeded with *E. coli* OP50 (standard maintenance food) and then shifted for two generations on plates seeded with *E. coli* expressing dsRNA targeting hrde-1, ppw-1, ppw-2, mut-16 or empty vector. **d**, Results from brood size assay of the experiment described in **c**. The brood size assay is performed as in **b**. hrde-1 RNAi and its own control has been performed independently from the other RNAi treatment. The black lines indicate the mean and the error bars the standard deviation. Two-tailed p value calculated using the Mann-Whitney-Wilcoxon tests is shown. n = 20 animals. **e**, Comparison similar to the one showed in Fig. 1a between mRNA log$_2$ fold change (y axis) and 22G-RNA log$_2$ fold change (x axis) in piwi mutant animals treated with mut-16 RNAi compared to control RNAi for protein-coding genes. Purple dots indicate the piRNA-dependent 22G-RNA targets. **f**, Plot showing the number of up-regulated and down-regulated individual REs by RNA-seq (padj < 0.05, Wald test) in piwi mutant animals treated with control or mut-16 RNAi. Only uniquely mapped reads were considered for this analysis. Data shown represent average of two biologically independent replicates. Source data available in Source Data Extended Data Fig. 5.
Extended Data Fig. 6 | See next page for caption.
Extended Data Fig. 6 | Decreased fertility in wild-type worms after crossing with piRNA mutants.

a, Brood size assay similar to the one showed in Fig. 6b of the outcross experiment described in Fig. 6a. One wild-type and two piwi mutants were selected from independent F2 heterozygote lines from cross number 4. The black lines indicate the mean, the error bars the standard deviation, and the n (animal number analyzed) is indicated in parenthesis.

b, Genotyping results by electrophoresis gel analysis of the F3 lines derived from self-crossed F2 heterozygote lines. Genomic DNA were extracted from individual animals after they released their progeny and a region spanning prg-1 mutation was amplified by PCR and digested with a restriction enzyme. The expected mutant and wild-type pattern of digestion is indicated by the black arrows compared to the marker (M). The selected wild-type and piwi mutant F3 lines are indicated by arrows with different colors corresponding to the colors used in the brood size assay shown in **a**. The experiment was repeated independently twice with similar results.

c, same analysis as in **a**, performed with the crossing experiment number 5. The black lines indicate the mean, the error bars the standard deviation, and the sample size (n) is indicated in parenthesis.

d, same analysis as in **b**, performed with the crossing experiment number 5. The experiment was repeated independently twice with similar results. White cross marks in the upper two panels indicate some of the selected lines used.

e, Genotyping results similar to the one described in **b** using F3 lines derived from the crossing experiment between CRISPR-Cas9 piwi mutant hermaphrodite and wild-type males. The experiment was repeated independently twice with similar results.

f, Genotyping results similar to the one described in **b**. The experiment was repeated independently twice with similar results. Statistical source data are available in Source Data Extended Data Fig. 6.
Extended Data Fig. 7 | Model illustrating the molecular consequences in animals losing piRNAs. a, PRDE-1 promotes the transcription of piRNAs from thousands of genomic loci. piRNAs are then loaded into PIWI, which triggers the biogenesis of WAGO-bound 22G-RNAs from thousands protein-coding genes and REs and keep the WAGO pathway in a paused state (left). In case of new genomic invasions, the piRNAs and WAGO machineries promptly silence new REs at the transcriptional and the post-transcriptional levels (right). REs can be kept silenced at the chromatin level by H3K9 methyl transferases in a piRNA-dependent or piRNA-independent manner. b, In early generations of piRNA mutants (left), the PIWI-induced silencing complex is still maintained on piRNA targets thanks to the interaction with germ granule components. In late generations (right), the piRNA-induced silencing complex is disrupted and some of its components, including WAGO-1, relocalize to the cytoplasm where it interacts with CSR-1 on histone mRNAs to synthesize antisense 22G-RNAs in a CSR-1-dependent manner (right). The PIWI, the WAGO and the CSR-1 pathways share interactions with many RNAi factors and germ granule components in wild-type worms, and in late generations of piwi mutants WAGO-1 and possibly PPW-1 and PPW-2 become preferentially loaded by CSR-1-dependent histone 22G-RNAs to silence histone mRNAs, which lead to sterility. We propose that the histone mRNA silencing acts as an evolutionary force to maintain a constant production of piRNAs ready to silence new genomic invasion.
Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

- The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
- A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
- The statistical test(s) used AND whether they are one- or two-sided
- Only common tests should be described solely by name; describe more complex techniques in the Methods section.
- A description of all covariates tested
- A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
- A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
- For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted. Give P values as exact values whenever suitable.
- For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
- For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
- Estimates of effect sizes (e.g. Cohen’s d, Pearson’s r), indicating how they were calculated

Software and code

Policy information about availability of computer code

Data collection

ChemIDocTM MP imaging system (Biorad) was used to detect chemiluminescent signal from immunoblot membranes.

Applied Biosystems™ QuantStudio™ 3 Real-Time PCR System was used for qPCR

Illumina NextSeq 500 or MiSeq platforms were used for sequencing

Confocal images were taken using ZEISS LSM 700 microscope with 40X objective or 63X objective for the H2B::mCherry quantification.

Images were obtained using ZEISS ZEN black 2.3 SP1.

Data analysis

RNA-seq analysis:
- Demultiplexing with Illumina bcl2fastq converter version 2.17.1.14
- Quality control with fastQC version v0.11.5
- Alignment with HISAT2 version 2.0.4
- Genomic features annotation with featureCounts version 1.5.2
- Differential gene expression analysis with DESeq2 version 1.20.0

Small RNA-seq and GRO-seq analyses:
- Demultiplexing with Illumina bcl2fastq converter version 2.17.1.14
- Quality control with fastQC version v0.11.5
- 3’ adaptor trimming with Cutadapt version 1.15
- Alignment with Bowtie2 version 2.3.4.1
- Metaprobe with deetools package version 3.1.2

Proteomics:
Caenorhabditis elegans (C. elegans) UP000001940 database using Sequest HT through proteome discoverer (version 2.1) was used to identify C. elegans peptide from mass spectrometry data. The resulting files were further processed using myProMS v3.6. The label free quantification was computed with MassChroQ version 2.2.2. Cytoscape (V 3.7.2) was used to generate the interactome network map. GraphPad Prism Version 8.3.0 and Microsoft Excel Version 16.16.16 were used for statistics.

CRISPR-Cas9:
Unique and specific guide RNA sequences were selected using the off target prediction CRISPR Design tool at http://crispr.mit.edu. Quantification of confocal images was performed using ImageJ software V2.0.0.

qPCR data were analyzed using QuantStudio™ Design and Analysis software V 2.2

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

☐ Life sciences ☐ Behavioural & social sciences ☐ Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size
For immunoprecipitation and mass spectrometry or Co-IP synchronous population of 120,000 (for CSR-1, PRG-1 IPs) or 40,000 (for WAGO-1 IPs for mass spectrometry) worms were used at the developmental time point of 48 hours post hatching. Lower number of worms for WAGO-1 IPs was used because of the lower number of piwi mutant worms available. The two sample sizes were experimentally optimized in our laboratory after several tests in collaboration with the mass spectrometry facility. In all the sequencing experiments 40,000 worms were used at the developmental time point of 48 hours post hatching. This sample size has been empirically evaluated to be sufficient to obtain large amount of RNAs, sufficient for multiple applications. For the preparation of total RNA extracted from generation F4 of wild-type and piwi mutant worms 10 manually picked worms were used because we couldn’t grow them in large amount at that short generation time. We have optimized our RNA-seq protocol using minimum 10 adult worms after several tests in our laboratory.

Sample size for the brood size experiments was determined according to our pre-tests in the lab using at least 10 worms for each strain.

Data exclusions
Dead worms were excluded from the counting in brood size experiments. Nuclei with very low histone H2B:mCherry in piwi mutant were excluded from the counting of chromosome compaction.

Replication
Almost all experiments shown in this study were performed independently at least two times and no inconsistent results were observed. All attempts at replication were successful.

Randomization
In brood size experiments different wild-type and mutant lines were assigned to the researcher using random letters.

Blinding
Investigators were blinded in scoring the brood size of wild-type and mutant worms.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
Materials & experimental systems

- Antibodies
- Eukaryotic cell lines
- Palaeontology
- Animals and other organisms
- Human research participants
- Clinical data

Methods

- Involved in the study
 - ChIP-seq
 - Flow cytometry
 - MRI-based neuroimaging

Antibodies

- Antibodies used:
 - α-PRG-1 antibody, a gift from the Craig Mello lab, dilution used 1:1000
 - α-CSR-1 antibody, a gift from the Claycomb lab, dilution used 1:3000
 - α-PGI-1 antibody, a gift from the Strome Lab, dilution used 1:1000
 - α-DEPS-1 antibody, a gift from the Strome Lab, dilution used 1:2000
 - α-FLAG (F3165, Sigma), dilution used 1:5000
 - α-GAPDH (Ab125247, Abcam), dilution used 1:2000
 - α-mCherry (RFP antibody [666], Chromotek), dilution used 1:2000
 - α-tubulin (Ab6160, Abcam), dilution used 1:2000

Validation

- α-PRG-1 antibody was validated in Batista, P. I. et al. Mol. Cell (2008). doi:10.1016/j.molcel.2008.06.002.
- α-CSR-1 antibody was validated in Claycomb, J. M. et al. Cell (2009). doi:10.1016/j.cell.2009.09.014.
- α-PGI-1 antibody was validated in Kawasaki, I. et al. Genetics (2004). doi:10.1534/genetics.103.023093
- α-DEPS-1 antibody was validated in Spike, C. A., et al. Development (2008). doi:10.1242/dev.015552
- α-GAPDH (Ab125247, Abcam) has been proven and validated on manufacturer website tested for Western Blot.
- α-mCherry (RFP antibody [666], Chromotek) has been proven and validated on manufacturer website tested for Western Blot.
- α-tubulin (Ab6160, Abcam) has been proven and validated on manufacturer website tested for Western Blot.
- α-FLAG (F3165, Sigma) has been proven and validated on manufacturer website tested for Western Blot.

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals

- All the data collected for this study derived from hermaphroditic Caenorhabditis elegans nematode culture at the developmental time point of 48 hours post hatching.

Wild animals

- No wild animals has been used in this study

Field-collected samples

- This study did not involve samples collected from the field.

Ethics oversight

- No ethical approval was required.

Note that full information on the approval of the study protocol must also be provided in the manuscript.