The narrow and moving HeII lines in nova KT Eri
(Research Note)

U. Munari1, E. Mason2 and P. Valisa3

1 INAF Osservatorio Astronomico di Padova, 36012 Asiago (VI), Italy
2 INAF Osservatorio Astronomico di Trieste, 34143 Trieste, Italy
3 ANS Collaboration, c/o Osservatorio Astronomico, 36012 Asiago (VI), Italy

Received YYY ZZ, XXXX; accepted YYY ZZ, XXXX

ABSTRACT

We present outburst and quiescence spectra of the classical nova KT Eri and discuss the appearance of a sharp HeII 4686 Å emission line, whose origin is a matter of discussion for those novae that showed a similar component. We suggest that the sharp HeII line, when it first appeared toward the end of the outburst optically thick phase, comes from the wrist of the dumbbell structure characterizing the ejecta as modeled by Ribeiro et al. (2013). When the ejecta turned optically thin, the already sharp HeII line became two times narrower and originated from the exposed central binary. During the optically thin phase, the HeII line displayed a large change in radial velocity that had no counterpart in the Balmer lines (both their narrow cores and the broad pedestals). The large variability in radial velocity of the HeII line continued well into quiescence, and it remains the strongest emission line observed over the whole optical range.

Key words. (stars:) novae, cataclysmic variables; (individual): KT Eri

1. Introduction

Nova Eri 2009, later named KT Eri, was discovered by K. Itagaki on 2009 November 25.5 UT (see CBET 2050), well past its optical maximum. Using data obtained by SMEI (Solar Mass Ejection Imager) on board the Coriolis satellite, Hounsell et al. (2011) were able to reconstruct the pre-discovery outburst light curve, which highlights a rapid rise in magnitude after the first detection on 2009 November 13.12 UT, a sharp maximum reached on 2009 November 14.67 UT, after which the nova immediately entered the rapid decline characterized by $t_2=6.6$ days. Preliminary reports on the early spectroscopic and photometric evolution were provided by Ragan et al. (2009), Rudy et al. (2009), Bode et al. (2010), Imamura and Tanabe (2012), and Hung, Chen, & Walter (2012). Radio observations were obtained by O’Brien et al. (2010) and X-ray observations by Bode et al. (2010), Beardmore et al. (2010), and Ness et al. (2010). Raj, Banerjee & Ashok (2013) discussed early infrared photometric and spectroscopic evolution, while the line profiles and their temporal evolution were modeled in detail by Ribeiro et al. (2013). Jurdana-Šepić et al. (2012) searched the Harvard plate archive and measured the progenitor of the nova on 1012 plates dating from 1888 to 1962. No previous outburst was found. The photometric evolution of KT Eri after it returned to quiescence and its persistent P=752 day periodicity have been discussed by Munari and Dallaporta (2014).

Here we present KT Eri spectra taken from outburst maximum to subsequent quiescence and focus on the appearance and evolution of a narrow HeII 4686 Å emission line. Sharp emission lines superimposed to much broader emission components, have been observed in a few other recent novae: YY Dor, nova LMC 2009, U Sco, DE Cir, and V2672 Oph (see, e.g., the Stony Brooks SMARTS Atlas1). Complex line profiles have always been modeled with axisymmetric ejecta geometries consisting of bipolar lobes, polar caps, and equatorial rings (starting with Payne-Gaposchkin in 1957). Using a similar approach, the sharp and strong narrow emission in V2672 Oph could be successfully modeled as coming from an equatorial ring whereas the broader pedestal originates from polar cups (Munari et al. 2011). However, because of their sharpness, profile, and width it has been also suggested that the narrow components in the above systems might arise from the accretion disk of the underlying binary (Walter & Battisti 2011, but see also Mason & Walter 2013), once the ejecta becomes sufficiently transparent. In the case of U Sco, the observation of radial velocity motion of the narrow HeII

1 www.astro.sunysb.edu/fwalter/SMARTS/NovaAtlas/atlas.html

Send offprint requests to: ulisse.munari@oapd.inaf.it
Fig. 1. Sample spectra from our monitoring to highlight the spectroscopic evolution of KT Eri during the 2009/10 nova outburst and the subsequent return to quiescence.

emission has been interpreted as restored accretion shortly after the nova 2010 outburst (Mason et al. 2012). Whether a narrow emission component, and in particular the appearance of the sharp HeII λ4686 line, always originates in the central binary and recovered accretion from the secondary star has to be established.

We believe KT Eri offers an interesting bridge between these two alternative views. We will show how when first seen in emission in the spectra of KT Eri, during the optically thick phase, the sharp HeII 4686 Å line was coming from the inner and slower regions of the ejecta, and how, at later times when the ejecta turned optically thin, the HeII line became two times sharper and variable in radial velocity, indicating it was coming directly from the central binary. Thus, the presence and the origin of sharp HeII emission lines seems to depend on the geometry of the ejecta, their viewing angle, and on the evolutionary phase of the nova.

2. Observations

Absolute spectroscopy of KT Eri was obtained during the outburst as part of the long-term ANS Collaboration monitoring of novae in eruption (see Munari et al. 2012).
We used the Varese 0.61m telescope equipped with the mark.II Multi Mode Spectrograph (Munari and Valisa 2014), that allows rapid switching between low-dispersion, medium-dispersion and Echelle high-resolution modes. A 2 arcsec wide slit, aligned along the parallactic angle was used in all observations. Echelle spectra were calibrated with a thorium lamp exposed before and after the science spectra, and similarly with a FeHeAr lamp for the medium- and low-dispersion spectra. Flux calibration was achieved via observation of the nearby spectrophotometric standard HR 1784 observed with the identical instrumental setup both immediately before and soon after the nova. All data reduction was carried out in IRAF, following standard extraction procedures involving correction for bias, dark, and flat and sky background subtraction.

Low-resolution absolute spectroscopy of KT Eri, after it returned to quiescence brightness long after the end of the outburst, was obtained with the Asiago 1.22m telescope and B&C single dispersion spectrograph. Also in this case we adopted a 2 arcsec wide slit, aligned along the parallactic angle, the same spectrophotometric standard star and the same extraction/calibration procedures as for the observations obtained with the 0.61m telescope during the outburst phase.

Table 1 provides a logbook of the spectroscopic observations of KT Eri. Resolving power is listed for the Echelle high-resolution observations, dispersion for the medium- and low-resolution spectra. \(\Delta t \) is the time past the optical maximum as fixed by SMEI observations (2009 November 14.67 UT or HJD=2455150.17; Houssell et al. 2011).

date	UT	HJD	\(\Delta t \) (days)	res. pow. (A/pix)	disp (A)	range (Å)	expt (sec)	tel
2009 Dec 01	20:54	5167.376	17.21	17.000	3950-8650	4 x 300	0.61m	
2009 Dec 01	22:09	5167.428	17.26	2.12	3950-8610	2 x 300	0.61m	
2009 Dec 05	20:22	5171.353	21.18	2.12	3700-8000	3 x 300	0.61m	
2009 Dec 05	19:58	5171.337	21.17	2.12	3950-8550	3 x 300	0.61m	
2009 Dec 09	20:10	5175.345	25.17	17.000	3950-8650	4 x 300	0.61m	
2009 Dec 15	19:28	5181.316	31.15	2.12	3950-8600	2 x 300	0.61m	
2009 Dec 17	21:17	5183.391	33.22	2.12	3950-8600	3 x 300	0.61m	
2010 Jan 06	19:27	5203.266	43.10	2.12	3950-8600	2 x 300	0.61m	
2010 Jan 18	21:06	5215.382	61.25	2.12	3950-8550	3 x 300	0.61m	
2010 Jan 24	18:43	5221.283	71.11	2.12	3950-8440	3 x 300	0.61m	
2010 Jan 24	21:45	5221.409	71.24	0.71	3930-5700	4 x 100	0.61m	
2010 Jan 28	19:23	5225.310	75.14	2.12	3950-8445	4 x 300	0.61m	
2010 Feb 02	19:22	5230.309	80.19	0.71	5500-7000	4 x 300	0.61m	
2010 Feb 06	20:27	5234.354	84.18	4.24	3730-8370	3 x 300	0.61m	
2010 Feb 13	21:24	5241.393	91.22	4.24	3725-8360	7 x 300	0.61m	
2010 Feb 19	20:48	5249.326	98.16	4.24	3740-8340	8 x 300	0.61m	
2010 Mar 16	19:27	5272.309	122.14	4.24	3800-8315	2 x 300	0.61m	
2013 Jan 05	21:36	6298.404	1148.23	2.31	3350-8050	3 x 1200	1.22m	
2013 Jan 06	21:00	6299.379	1149.21	2.31	3350-8050	4 x 1800	1.22m	
2013 Jan 26	19:59	6319.335	1169.16	2.31	3350-8050	3 x 1200	1.22m	
2013 Mar 02	18:04	6354.252	1204.08	2.31	3350-8050	1 x 1500	1.22m	
2013 Mar 04	18:12	6356.258	1206.09	2.31	3350-8050	1 x 1500	1.22m	
2013 Dec 13	21:05	6640.379	1490.21	2.31	3400-7950	3 x 1200	1.22m	
2014 Feb 09	19:31	6698.313	1548.14	2.31	3400-7950	6 x 1200	1.22m	
2014 Feb 12	18:43	6701.280	1551.11	2.31	3400-7950	6 x 1200	1.22m	

3. Spectral evolution and HeII lines

The spectral evolution of KT Eri during the 2009 outburst and the subsequent return to quiescence is presented in Figure 1. The average pre-outburst mean B magnitude of KT Eri was around 15.4 mag (from Jurdana-Šepić et al. 2012, and the recalibration of their historical Harvard photographic data as performed by Munari and Dallaporta 2014). The average B-band magnitude of KT Eri during 2013 and 2014 is 15.3, which confirms that the object was back to quiescence level when we observed it in 2013 and 2014.

The spectrum for 2009 December 01 (day +17) is representative of those obtained immediately following the discovery of the nova (that happened +11 days past optical maximum). It is characterized by broad emission lines. The average FWHM of hydrogen Balmer and OI...
Fig. 2. Evolution of the integrated flux of HeII 4686 Å emission line of KT Eri compared to its V-band light curve (from Hounsell et al. 2010, AAVSO database, Munari & Dallaporta 2014, and unpublished recent data). To facilitate the comparison, the integrated line flux is transformed in magnitudes and offset by the quantity given in Eq. (1). The arrow marks the upper limit to HeII integrated flux on day +35 spectra. Top panel: the hardness ratio (defined as the ratio between the count rates in the 1-10 keV and 0.3-1 keV bands) of the Swift X-ray observations (adapted from public data available on the Swift web site).

Fig. 3. Comparison between the line profiles of Hα and HeII 4686 Å for day +53 (ejecta still optically thick) and day +80 (ejecta now optically thin).

The flux evolution of the HeII 4686 Å emission line is compared to the V-band light curve of KT Eri in Figure 2. To transform the flux of HeII 4686 Å into a magnitude scale for an easier comparison with the nova evolution in the V-band, we computed its magnitude as

\[\text{mag(HeII)} = -2.5 \times \log \left(\frac{\text{flux}}{5.9 \times 10^{-8}} \right), \]

(1)

where the arbitrary constant 5.9 \times 10^{-8} erg cm^{-2} s^{-1} is chosen so to cancel the shift in Figure 2 between the V-band and the HeII light curves. Figures 2 aims to highlight two basic facts: (a) the HeII line appeared when the nova had declined by about 3.5/4.0 mag below maximum brightness, i.e., a characteristic time in the evolution of typical novae when the ejecta begin turning optically thin allowing direct vision of the central star (e.g., McLaughlin 1960, Munari 2012). The fact that the ejecta were becoming optically thin at that time is confirmed by the simultaneous huge increase in the soft component of the X-ray emission. The X-ray hardness ratio from Swift observations is plotted in the top panel of Figure 2 that shows how the nova entered the so-called super-soft-source phase (SSS, Krautter 2008) around day +50, simultaneously with the appearance of HeII in the optical spectra; (b) after an initial surge in the intensity of the HeII line, by day +70 its integrated flux declined in pace with the decline of the nova in V-band. The proportionality of HeII flux and V-band brightness continued well into the quiescence phase.

The transition around day +70 in the flux evolution of HeII 4686 Å also marked a conspicuous change in its profile, which is well illustrated in Figure 3. Day +70 also marks the time when the X-ray emission was reaching its maximum and initiating the SSS-plateau phase characterized by the lowest value of the hardness ratio (see top panel of Figure 2).

Before day +70 (left panel in Figure 3), HeII 4686 Å was similar to the narrow component of the Balmer lines. Both were double peaked and of similar width: 900 km s^{-1} for HeII 4686 Å and 1150 km s^{-1} for the Balmer lines. The width of the broad pedestal of the Balmer lines was 4500 km s^{-1}.
Fig. 4. Overplot of HeII 4686 Å, Hβ, and Hα lines from individual spectra obtained on 2010 February 2 and 6 (rebinned to the same, coarser wavelength scale of the later date). It is quite obvious how the large radial velocity change displayed by HeII between the two dates does not have a counterpart in the Balmer lines, neither the broad pedestal nor the narrower core.

Table 3. Heliocentric radial velocity (RV⊙) of HeII 4686 Å emission line measured on our individual spectra of KT Eri. HJD = heliocentric JD - 2450000.

date	HJD	RV⊙ (km s⁻¹)	date	HJD	RV⊙ (km s⁻¹)
2010 Jan 06	5203.264	-202	2010 Feb 20	5248.332	-54
2010 Jan 18	5215.374	-101	2010 Feb 20	5248.365	-84
2010 Jan 21	5215.382	-78	2010 Feb 20	5248.389	-106
2010 Jan 24	5215.391	-70	2010 Mar 16	5272.303	-71
2010 Jan 28	5221.273	-89	2013 Jan 05	6299.346	-245
2010 Jan 28	5221.283	-112	2013 Jan 06	6299.368	-220
2010 Jan 28	5221.291	-97	2013 Jan 06	6299.389	-245
2010 Jan 28	5221.391	-90	2013 Jan 06	6299.413	-237
2010 Jan 28	5221.403	-84	2013 Jan 06	6299.436	-220
2010 Jan 28	5221.415	-85	2013 Jan 06	6299.436	-220
2010 Jan 28	5221.428	-81	2013 Jan 06	6299.436	-220
2010 Jan 28	5222.293	-86	2013 Jan 06	6299.436	-220
2010 Jan 28	5225.305	-91	2013 Jan 26	6319.319	-155
2010 Jan 28	5225.316	-64	2013 Jan 26	6319.335	-177
2010 Jan 28	5225.327	-69	2013 Jan 26	6319.351	-182
2010 Jan 28	5225.909	-78	2013 Jan 26	6319.352	-182
2010 Jan 28	5225.910	-79	2013 Jan 26	6319.352	-182
2010 Jan 28	5225.911	-80	2013 Jan 26	6319.352	-182
2010 Jan 28	5225.912	-81	2013 Jan 26	6319.352	-182

After day +70 (right panel in Figure 3), the FWHM of HeI 4686 Å suddenly dropped by a factor of two, down to 460 km s⁻¹, while that of the Balmer lines remained around 1000 km s⁻¹ for the narrow component and 4600 km s⁻¹ for the pedestal.

Ribeiro et al. (2013) modeled the Hα profile during the early optically thick phase of KT Eri and found a good fit with dumbbell shaped expanding ejecta and no need for an equatorial ring. The dumbbell structure was characterized by a 1/r radial density profile, $V_{\text{exp}} = 2800 \pm 200$ km s⁻¹, a major to minor axis ratio of 4:1, and an inclination angle of $58^{\circ} \pm 7$ deg. The density profile $\rho \propto r^{-1}$ allowed Ribeiro et al. to fit the broad, square-like pedestal coming from the outer parts of the bipolar lobes and the narrow, double-peaked central component of the Hα profile coming from the slower and denser regions closer to the wrist, simultaneously.

When HeII 4686 Å was first weakly detected around day +48, and for the following period up to day +70, it came from the denser region of the ejecta closer to the wrist of the bipolar structure. This is the same region from where at earlier times the HeI lines came from. In fact, their FWHM (950 km s⁻¹) was very similar to that of HeII 4686 Å and the narrow component of the Balmer lines. The appearance of HeII 4686 Å (produced during the recombination of HeII to HeII) was obviously related to the increase in temperature of the pseudo-photosphere contracting through the inner regions of the ejecta closer to the central star. As this contraction proceeded and the optical thickness of the ejecta continued to decline as a consequence of the ongoing expansion, a larger fraction of the inner ejecta were reached by hard ionizing photons and the intensity of HeII 4686 Å surged until a maximum was attained around day +65. The ionization of HeII into HeIII never reached the outer lobes of the ejecta, because the HeII lines never developed the broad pedestal displayed by the Balmer line. Following this maximum, the intensity of HeII 4686 Å began to decline in parallel to the other emission lines and to the underlying continuum.

Day +70 also marks the time when the continuum emission from the ejecta, now completely transparent, fell below that coming directly from the central star. As shown

2 The apparent emission bump on the red side of the narrow HeII line in the left panel of Figure 4 should be identified with other transitions within the blend, as, otherwise, we should observe a symmetric component on the blue side of HeII
in Figure 2, by day +70 (a) the X-ray emission entered the SSS plateau where it remained stable until day \(\sim 250 \) which marks the end of the nuclear burning on the white dwarf, and (b) in parallel, the optical brightness of the KT Eri stopped declining because direct emission from the white dwarf and from the irradiated companion replaced that of fading ejecta; it rapidly dropped to the quiescence value only when the X-ray SSS phase ended. The broader HeII 4686 Å profile (FWHM 900 km s\(^{-1}\)) coming from the fading ejecta after day +70 is overwhelmed by the narrower profile originating directly from the central binary (FWHM 460 km s\(^{-1}\)). This will not happen for the Balmer lines until much later into the evolution, because (as shown by the quiescence spectrum from 2013 January 26, day +1169) the Balmer lines produced by the central star are quite weak and to emerge they need the emission from the ejecta to essentially vanish.

The sequences of spectra in Figure 4 show how - past day +70 - the HeII 4686 Å emission originated directly from the central binary while the Balmer lines continue to come from the ejecta for a long time. Here the profiles of H\(\alpha\), H\(\beta\), and HeII 4686 Å from many different spectra obtained on 2010 February 2 and 6 (days +80 and +84) are compared. The profile and radial velocity of the Balmer lines, both their broad pedestal and their narrow component, do not change from one night to the other. The \(\sim 200 \) km s\(^{-1}\) shift in radial velocity of HeII (from -53 to -249 km s\(^{-1}\), see Table 3) is instead outstanding. Such continuous and large change in radial velocity of HeII 4686 Å cannot be easily understood in terms of ballistic expansion of nova ejecta, while they can be naturally accounted for by the continuously changing viewing geometry of the central binary and the instabilities inherent to mass transfer.

We have searched the epoch radial velocities in Table 3 looking for periodicities that could betray the orbital period of the nova. We have used the Fourier code implemented by Deeming (1975) for unequally spaced data. Extensive tests on the whole set of Table 3 data as well as on random selected subsamples failed to reveal any clear and strong periodicity. The situation is similar to that encountered in photometry (see Munari and Dallaporta 2014), where no other clear periodicity stands out in addition to the 752-day eclipse-like events that regularly marked the pre- and post-outburst optical photometry of KT Eri. The brightness of KT Eri varies similarly in all optical bands and by a large amplitude (on the order of one magnitude in B) with a timescale that is continuously changing, in an apparently chaotic manner. The same seems to occur with the radial velocity of the HeII emission line, which is seen to change by large margins, but in an apparently chaotic pattern. This could be the result of the beating of several different true periodicities simultaneously present, but to disentangle them it will be necessary to accumulate many additional observations, possibly at a higher dispersion than the spectra used for the present study. Additional data, regularly spaced over many consecutive observing seasons, will be necessary to investigate the presence of the 752-day period among the spectral data.

Acknowledgements. We would like to thank A. Milani and V. Luppi of ANS Collaboration for their assistance with the observations obtained with the Varese 0.61m telescope and Valerio A.R.M. Ribeiro for having promptly offered his higher quality spectrum for 6 Jan 2010. EM thanks Steven N. Shore for valuable discussions.

References

Beardmore A. P., et al., 2010, ATel, 2423
Bode M. F., et al., 2010, ATel, 2392
Deeming T. J., 1975, Ap&SS, 36, 137
Hounsell R., et al., 2010, ApJ, 724, 480
Hung L. W., Chen W. P., Walter F. M., 2011, ASPC, 451, 271
Imamura K., Tanabe K., 2012, PASJ, 64, 120
Jurdana-Šepić R., RibeiroV. A. R. M., Darnley M. J., Munari U., Bode M. F., 2012, A&A, 537, A34
Krautter, J. 2008, in Classical Novae 2nd Ed., M.F.Bode & A. Evans eds., Cambridge Univ. Press, pag. 232
Mason, E., Ederoclite, A., Williams, R. E., Della Valle, M., Setiawan, J., 2012, A&A, 544, 149
Mason, E., Walter, F. M., 2013, ASP Conference Series, “Stellar Novae: Future and past decades”, in press, arXiv 1303.2776
McLaughlin, D. B. 1960, in Stellar atmospheres, J. L. Greenstein ed., University of Chicago Press, p.585
Munari, U. 2012, JAAVSO 40, 582
Munari, U., Ribeiro, V. A. R. M., Bode, M. F., Saganer, T., 2011, MNRAS, 410, 525
Munari, U., et al., 2012, BaltA, 21, 13
Munari, U., Dallaporta, S., 2014, New Astronomy 27, 25
Munari, U., Valisa, P. 2014, in Observing Techniques, Instrumentation and Science for Metre-class Telescopes, T. Pribullia and V. Martin eds., CAOSP, in press
Ness J.-U., Drake J. J., Starrfield S., Bode M., Page K., Beardmore A., Osborne J. P., Schwarz G., 2010, ATel, 2418
O’Brien T. J., Muzkow T. W. B., Stevens J., Datta A., Roy N., Eyres S. P. S., Bode M. F., 2010, ATel, 2434
Gaposchkin C. H. P., 1957, The galactic novae, Amsterdam, North-Holland Pub. Co.
Ragan E., et al., 2009, ATel, 2327
Raj A., Banerjee D. P. K., Ashok N. M., 2013, MNRAS, 1601
Ribeiro V. A. R. M., 2011, PhD thesis, Liverpool John Moores University
Ribeiro, V. A. R. M., Bode, M. F., Darnley, M. J., Barnsley, R. M., Munari, U., Harman, D. J., 2013, MNRAS, 433, 1991
Rudy R. J., Prater T. R., Russell R. W., Puettter R. C., Perry R. B., 2009, CBET, 2055, 1
Walter, F. M., Battisti, A., 2011, AAS, 21733811