THE ACUTE EFFECTS OF SMALL-SIDED GAMES ON HAMSTRING STRENGTH IN YOUNG SOCCER PLAYERS

Italo Sannicandro12ABD, Giacomo Cofano12BC and Gaetano Raiola3AC

1University of Foggia
2Professional soccer strength and conditioning coach
3University of Salerno

Authors’ Contribution: A – Study design; B – Data collection; C – Statistical analysis; D – Manuscript Preparation; E – Funds Collection

Corresponding Author: Italo Sannicandro, E-mail: italo.sannicandro@unifg.it

Accepted for Publication: February 9, 2022
Published: March 25, 2022

DOI: 10.17309/tmfv.2022.1.11

Abstract

The study purpose. The Small-side games (SSG) are high intensity drills very popular in soccer training. The knowledge of the acute effects of the exercises that make up the training session is very relevant especially to reduce youth soccer injury risk. This study aim to assessment the acute effects of SSG on hamstring eccentric strength and to know the lower limb strength asymmetries (LLSA) in young soccer players.

Materials and methods. The sample is composed of male young soccer players Under 17 (n = 24, 16.6 ± 0.5 years, 168.8 ± 4.6 cm, 58.2 ± 3.5 kg). Before and after SSG (4vs4, 3×4 min, 3min recovery, no goalkeepers) the hamstring eccentric strength and the lower limb eccentric strength asymmetry were evaluated used a specific dynamometer (N3 Easytech, Italy) and relative software. Every young soccer player performed a single repetition of the Nordic hamstring exercise with dynamometer; after about 2 minutes, instead, they performed 5 repetitions of the same exercise, without interruption. For both assessments, were detected the eccentric strength and the LLSA.

Results. The hamstring eccentric strength assessment show substantial and statistically significant differences in the assessment in comparison pre-post values. A significant reduction was observed for eccentric strength peak (p < 0.018 and p < 0.014 for right/left limb), for eccentric average strength (p < 0.017 and p < 0.006 for right/left limb). The eccentric peak strength asymmetry value and the average strength asymmetry value revealed a significant increase (p < 0.0001).

Conclusions. The reduction of strength after SSG requires careful consideration of the exercises order in the training session. The practitioners can plan training sessions and apply SSGs more effectively, with more attention to the effects on hamstrings.

Keywords: hamstring, prevention, young soccer player, small-sided games.

Introduction

Today research tends to always bring new knowledge to the young player training (Esposito et al., 2019; Raiola & Altavilla, 2020; Ceruso et al., 2019). These contributions concern both general defined training (Fischetti et al., 2019; Barbalho et al., 2018; D’Isanto et al., 2019) and the one defined as specific (Köklü et al., 2015; Sanchez-Sanchez et al., 2019; Sannicandro et al., 2019a).

Within the exercises mainly used in sport-specific training there are the so-called Small-Sided Games (SSG) (Halouani et al., 2017; Castillo et al., 2021).

The SSG are high intensity drills very popular in soccer training (Kunz et al., 2019; Selmi et al., 2018; Zurutuza et al., 2020). These exercises are used to achieve technical, tactical and conditioning goals, both with adult soccer players and with young players: today, in fact, the staff are continuously looking for exercises that can increase the soccer player performance effectiveness in all competitive levels (Miranda et al., 2021; Sannicandro et al., 2020, 2021b; Köklü et al., 2020).

The literature on the SSG topic is very wide and today allows us to know in an analytical way the internal and external load of many formats, from 1v1 to 10vs10 (Coutinho et al., 2018; Sanchez-Sanchez et al., 2019), with reference to the field different dimensions (Clemente et al., 2019; Goto & King, 2019) or to its spatial configuration (Coutinho et al., 2018; Sanchez-Sanchez et al., 2019; Sannicandro, 2019).
The relationship between the type of exercise chosen, motor load and soccer injury risk is a very topical research issue (Sannicandro et al., 2021b; Castillo et al., 2019): in fact, despite having a large number of knowledge on injury risk factors, numerous prevention exercises and greater knowledge on muscle, epidemiological studies describe that indirect trauma is on the rise in both men (Diemer et al., 2021; Ribeiro-Alvares et al., 2020; Vicens-Bordas et al., 2020) and female (Larruskain et al., 2018).

The diffusion of sport-specific exercises rather than general ones (which are easier to control in terms of intensity and volume) could lead to an overload on some muscle groups that are most frequently engaged in soccer ability (Madison et al., 2019; Wilmes et al., 2021; Ekstrand et al., 2016).

Infact, today there are few studies that have attempted to know whether SSGs and the most widespread sport-specific exercises in football player training can determine fatigue conditions on specific muscle groups (Greig, 2019; Rhodes et al., 2019; Greig and Siegler, 2009) and on hamstrings in particular (Madison et al., 2019; Wilmes et al., 2021; Small et al., 2010).

Whether for elite soccer players or for the healthy adult population there is research in the literature that allows us to understand how neuromuscular structures respond to high-intensity sport-specific exercises (Diemer et al., 2021; Ribeiro-Alvares et al., 2020; Lovell et al., 2016) or following real or simulated matches (Matthews et al., 2017; Marshall et al., 2014; Madison et al., 2019), for youth soccer the studies carried out are numerically lower (Perroni et al., 2018; Köklü et al., 2020).

Similarly, modest attention has been paid to assessing the hamstring strength for injury prevention in youth soccer (Sannicandro et al., 2019), although it is known, the relationship between values of hamstring eccentric strength and injury risk in sports where high running speeds are required (Lee et al., 2018; Beato et al., 2021; Opar et al., 2021).

The purpose of this study was to determine the effects of SSG variations on hamstring strength and in strength asymmetry values in elite young soccer players.

Materials and methods

Study participants

The sample is composed of male young soccer players Under 17 (n = 24) belonging to a professional team, whose age, height, weight and Body Mass Index were respectively (mean ± ds) 16,6 ± 0,5 years, 168,8 ± 4,6 cm, 58,2 ± 3,5 kg e 20,7 ± 1,1 kg/m². The young soccer players who had an hamstring injury in the previous 12 months were excluded from the assessment.

The evaluation tool was routinely employed by staff, however, the evaluation was carried out after receiving the parent informed consent and with the presence of the team's medical staff. Moreover, all participants were informed about the aim of the study and the relevance of the assessment. Additionally, the research design and procedures complied with the standards set out in the Declaration of Helsinki and was approved by the regional soccer ethics committee.

Study organization

To assess the hamstring eccentric strength and the lower limb eccentric strength asymmetry have been used a specific dynamometer (N3, Easytech, Italy) with specific software. This tool detects the strength expressed during the Nordic Hamstring exercise (Fig.1). The tool and the software allow to measure the peak force and the average force if you perform a number of repetitions higher than one.

The study participants became familiar with the used dynamometer in the two sessions before the evaluation. The evaluation was carried out in the field at a temperature of 23 °C.

Before the evaluation all the participants followed a warm-up phase that was the same for everyone and included a low intensity running period (10 minute at 60% HRmax), exercises for dynamic stretching and mobility for the lower limbs, for a total duration of about 15 minutes.

The assessment session organization had two phases: in the first, every young soccer player performed a single repetition of the Nordic hamstring exercise with constraint to the N3 dynamometer; after about 2’ minutes, instead, they performed 5 repetitions of the same exercise, without interruption. All values were acquired using N3 software: for both assessments, were detected the eccentric strength and the lower limbs strength asymmetry. The asymmetry calculation was obtained through the formula already used in the literature (Ceroni et al., 2012).

The evaluations were carried out after the warm up (pre test) and after the SSG session (post test). The SSGs session consisted of 4 vs 4 (3×4 minutes, 3 minutes recovery) in a 24x36m field with ball possession mode and without limitation of consecutive touches.

20 balls were distributed around the perimeter of the pitch and introduced by 4 assistants to avoid moments of pause. At the end of the post-SSG evaluation, the participants returned the perceived exertion assessed by the CR10 Borg scale (Borg, 1982).
Statistical Analysis

Descriptive statistics (M ± SD) were calculated for all assessed variables; Student's paired t-test was used to verify the existence of statistically significant differences between the average values obtained. The significance was set at p < 0.05.

Results

The hamstring eccentric strength assessment show substantial and statistically significant differences in the Nordic exercise test with reference to pre-post exercise values.

In particular, the strength peak of right limb in the comparison between pre and post test showed a reduction of about 27.1N (259.1 ± 62.7N vs 232.1 ± 30.4N, p < 0.018); the strength peak of left limb in the comparison between pre and post test showed a reduction of about 35.6N (256.3 ± 62.1N vs 220.7 ± 40.2N, p < 0.041). The peak strength asymmetry value revealed an increase of about 10.9% (4.45 ± 3.1 vs 15.4 ± 5.6%, p < 0.0001).

The average strength of right limb in the comparison between pre and post test showed a reduction of about 26N (237.4 ± 41.8N vs 211.3 ± 30.1N, p < 0.017). The average strength of left limb in the comparison between pre and post test showed a reduction of about 33 N (236.2 ± 42.6N vs 203.2 ± 34.9N, p < 0.006). The average strength asymmetry value revealed an increase of about 16.9% (3.9 ± 2.4 vs 20.1 ± 5.2%, p < 0.0001). The results are summarized in Table 1.

The average value of Borg scale was equal to 7.8±0.7.

Discussion

This study aimed to describe the acute effects deriving from the SSG practice on the hamstring eccentric strength values and on the strength asymmetry values in elite young soccer players.

In the literature, as available, this is the first study that evaluates the hamstring eccentric strength and investigates the lower limb asymmetries in young soccer players after SSG session.

As is the first study that uses a specific dynamometer for the strength hamstring with this type of sample and this type of exercise with young soccer players of elite team.

The care of player preventive factors can not start when the athlete reaches high levels of performance, but must characterize the entire sports training process both for functional and cultural reasons (Sannicandro et al., 2019; Ros et al., 2013).

The attention towards hamstring muscles in the field of soccer strength and conditioning must be even more assertive when looking at the data on the muscle trauma increase related to hamstring in the last 10-15 years (Edouard et al., 2016; Jones et al., 2019; Smpokos et al., 2018). And this incidence is also relevant in youth sport (Valle et al., 2018).

The peak strength values for right and left limb showed a significant percentage decrease respectively of about 10.5% and 13.9%. This decrease is consistent with the results observed in elite soccer players after SSG session on large field (Madison et al., 2019).

Table 1. Peak strength values, average strength values and asymmetry values referred to the Nordic Hamstring assessment

Hamstring strength parameters	Media ± ds	Δ (media ± ds)	p value
Strength peak (N) pre right limb	259.10 ± 62.7	27.1 ± 40.7	0.018
Strength peak (N) post left limb	232.10 ± 30.4		
Strength peak (N) pre right limb	256.30 ± 62.1	35.6 ± 66.1	0.041
Strength peak (N) post left limb	220.70 ± 40.2		
Peak strength asymmetry value pre (%)	4.45 ± 3.1	10.9 ± 6.1	0.0001
Peak strength asymmetry value post (%)	15.40 ± 5.6		
Average strength 5 rep (N) pre right limb	237.40 ± 41.8	26.1 ± 23.4	0.017
Average strength 5 rep (N) post right limb	211.30 ± 30.1		
Average strength 5 rep (N) pre left limb	236.20 ± 42.6	33.1 ± 41.2	0.006
Average strength 5 rep (N) post left limb	203.20 ± 34.9		
Average strength asymmetry value pre (%)	3.90 ± 2.4	16.1 ± 5.5	0.0001
Average strength asymmetry value post (%)	20.10 ± 5.2		
The average strength values for right and left limb showed a significant percentage decrease respectively of about 11% and 14%. No studies have been found in the literature that have monitored the trend of the hamstring strength values following multiple repetitions with Nordic hamstring exercise.

The available studies concern young subjects over the age of 18 years (Daneshjoo et al., 2012, 2013; Śliwowski et al., 2015) or with young adults assessed using isokinetic dynamometer (Lehnert et al., 2018).

This value, however, is extremely important because the execution of more repetitions allows to better analyze the muscular behavior when the effects of fatigue begin to appear (Greig & Siegler, 2009).

The study requires further analysis in relation to the influence of fatigue resulting from more repetition of SSG exercises to try to understand if the sport-specific exercises volume can affect the lower limb asymmetry increase.

This study has some limitations: it did not monitor the performance differences between the preferred limb for kicking and the other, just as it did not investigate the effects on the strength decrease following SSG exercises carried out on fields of different sizes.

Subsequent studies will have to investigate this issue: a wider sample must be envisaged and eccentric strength and asymmetry must be monitored throughout the competitive season; it is necessary to understand if there are variations related to the session scheduling, to the exercises order structuring or to the competitive season phases.

Conflict of interest

The authors declare no conflict of interest.

References

Esposito, G., Ceruso, R., & D’Elia, F. (2019). The importance of a technical-coordinative work with psychokinetic elements in the youth sectors of soccer academies. *Journal of Physical Education and Sport, 19*, 1843-1851.

Raiola, G., & Altavilla, G. (2020). Testing motor skills, general and special coordinative, in young soccer. *Journal of Human Sport & Exercise, 15*, Supplementary Issue, 1Proc Winter event Costa Blanca: 206-212.

Ceruso, R., Esposito, G., & D’Elia, F. (2019). Coordination attached to the qualitative aspects of football. *Journal of Physical Education and Sport, 19*, 260, 1773-1776.

Fischetti, F., Cataldi, S., & Greco, G. (2019). A combined plyometric and resistance training program improves fitness performance in 12 to 14-years-old boys. *Sport Sciences for Health, 15*(3), 615-621. https://doi.org/10.1332-019-00560-2

Barbalho, M., Gentil, P., Raiol, R., Del Vecchio, F. B., Ramírez-Campillo, R., & Coswig, V. S. (2018). Non-Linear Resistance Training Program Induced Power and Strength but Not Linear Sprint Velocity and Agility Gains in Young Soccer Players. *Sports (Basel, Switzerland), 6*(2), 43. https://doi.org/10.3390/sports6020043

D’Isanto, T., D’Elia, F., Raiola, G., & Altavilla, G. (2019). Assessment of sport performance: Theoretical aspects and practical indications. *Sport Mont, 17*, 79-82.

Kökli, Y., Sert, Ö., Alemdaroğlu, U., & Arslan, Y. (2015). Comparison of the physiological responses and time-motion characteristics of young soccer players in small-sided games: the effect of goalkeeper. *Journal of strength and conditioning research, 29*(4), 964-971. https://doi.org/10.1519/JSC.0b013e3182a744a1

Sanchez-Sanchez, J., Sánchez García, M., Asián-Clemente, J.A., Nakamura, F.Y., & Ramírez-Campillo, R. (2019). Effects of the Directionality and the Order of Presentation Within the Session on the Physical Demands of Small-Sided Games in Youth Soccer. *Asian J Sports Med, 10*, 1-8.

Sannicandro, I, Traficante, P, & Cofano, G. (2019a). Hamstring injury prevention: the strength assessment in young soccer players. *MOJ Sports Med, 3*(2), 28-32. https://doi.org/10.15406/mojsm.2019.03.00075

Halouani, J., Chhourou, H., Della, A., Chaouachi, A., & Chamari, K. (2017). Soccer small-sided games in young players: rule modification to induce higher physiological responses. *Biology of sport, 34*(2), 163-168. https://doi.org/10.5114/biolsport.2017.64590

Castillo, D., Raya-Gonzalez, J., Sarmento, H., Clemente, F. M., & Yanci, I. (2021). Effects of including endurance and speed sessions within small-sided soccer games.
Sannicandro, I., Cofano, G., & Raiola, G. (2022). The acute effects of Small-sided games on hamstring strength in young soccer players.
Greig, M., & Siegler, J. C. (2009). Soccer-specific fatigue and eccentric hamstrings muscle strength. *Journal of athletic training, 44*(2), 180-184. https://doi.org/10.4085/1062-6050-44.2.180

Small, K., McNaughton, L., Greig, M., & Lovell, R. (2010). The effects of multidirectional soccer-specific fatigue on markers of hamstring injury risk. *Journal of science and medicine in sport, 13*(1), 120-125. https://doi.org/10.1016/j.jsams.2008.08.005

Lovell, R., Siegler, J. C., Knox, M., Brennan, S., & Marshall, P. W. (2016). Acute neuromuscular and performance responses to Nordic hamstring exercises completed before or after football training. *Journal of sports sciences, 34*(24), 2286-2294. https://doi.org/10.1080/02640414.2016.1191661

Matthews, M. J., Heron, K., Todd, S., Tomlinson, A., Jones, P., Delestrat, A., & Cohen, D. D. (2017). Strength and endurance training reduces the loss of eccentric hamstring torque observed after soccer specific fatigue. *Physical therapy in sport : official journal of the Association of Chartered Physiotherapists in Sports Medicine, 25*, 39-46. https://doi.org/10.1016/j.ptsp.2017.01.006

Marshall, P. W., Lovell, R., Jeppesen, G. K., Andersen, K., & Siegler, J. C. (2014). Hamstring muscle fatigue and central motor output during a simulated soccer match. *PloS one, 9*(7), e102753. https://doi.org/10.1371/journal.pone.0102753

Perroni, F., Pintus, A., Frandino, M., Guidetti, L., & Baldari, C. (2018). Relationship Among Repeated Sprint Ability, Chronological Age, and Puberty in Young Soccer Players. *Journal of Strength and Conditioning Research, 32*(2), 364-371.

Lee, J., Mok, K. M., Chan, H., Yung, P., & Chan, K. M. (2018). Eccentric hamstring strength deficit and poor hamstring-to-quadriceps ratio are risk factors for hamstring strain injury in football: A prospective study of 146 professional players. *Journal of science and medicine in sport, 21*(8), 789-793. https://doi.org/10.1016/j.jsams.2017.11.017

Beato, M., Young, D., Stiff, A., & Coratella, G. (2021). Lower-Limb Muscle Strength, Anterior-Posterior and Inter-Limb Asymmetry in Professional, Elite Academy and Amateur Soccer Players. *Journal of human kinetics, 77*, 135-146. https://doi.org/10.2478/hukin-2020-0058

Opar, D. A., Timmins, R. G., Behan, F. P., Hickey, J. T., van Dyk, N., Price, K., & Maniar, N. (2021). Is Pre-season Eccentric Strength Testing During the Nordic Hamstring Exercise Associated with Future Hamstring Strain Injury? A Systematic Review and Meta-analysis. *Sports medicine (Auckland, N.Z.).* Advance online publication. https://doi.org/10.1007/s40279-021-01474-1

Opar, D. A., Williams, M. D., Timmins, R. G., Hickey, J., Duhig, S. J., & Shield, A. J. (2015). Eccentric hamstring strength and hamstring injury risk in Australian footballers. *Medicine and science in sports and exercise, 47*(4), 857-865. https://doi.org/10.1249/MSS.0000000000000465

White, A. K., Klemetson, C. J., Farmer, B., Katsavelis, D., Bagwell, J. J., & Grindstaff, T. L. (2018). Comparison of clinical fatigue protocols to decrease single-leg forward hop performance in healthy individuals. *International journal of sports physical therapy, 13*(2), 143-151.

Leister, I., Mattiassich, G., Kindermann, H., Ortmaier, R., Barthofer, J., Vasvary, I., Katzensteiner, K., Stelzhammer, C., & Kulnik, S. T. (2018). Reference values for fatigued versus non-fatigued limb symmetry index measured by a newly designed single-leg hop test battery in healthy subjects: a pilot study. *Sport sciences for health, 14*(1), 105-113. https://doi.org/10.1007/s11332-017-0410-5

Valle, X., Malliaropoulos, N., Parraga Botero, J. D., Bikos, G., Pruna, R., Mónaco, M., & Maffulli, N. (2018). Hamstring and other thigh injuries in children and young athletes. *Scandinavian journal of medicine & science in sports, 28*(12), 2630-2637. https://doi.org/10.1111/sms.13282

Buckthorpe, M., Wright, S., Bruce-Low, S., Nanni, G., Sturdy, T., Gross, A. S., Bowen, L., Styles, B., Della Villa, S., Davison, M., & Gimpel, M. (2019). Recommendations for hamstring injury prevention in elite football: translating research into practice. *British journal of sports medicine, 53*(7), 449-456. https://doi.org/10.1136/bjsports-2018-099616

Crossley, K. M., Patterson, B. E., Culvenor, A. G., Bruder, A. M., Mosler, A. B., & Mentiplay, B. F. (2020). Making football safer for women: a systematic review and meta-analysis of injury prevention programmes in 11 773 female football (soccer) players. *British journal of sports medicine, 54*(18), 1089-1098. https://doi.org/10.1136/bjsports-2019-101587

Lu, D., McCall, A., Jones, M., Kovalchik, S., Steinweg, J., Gelis, L., & Duffield, R. (2020). Injury epidemiology in Australian male professional soccer. *Journal of science and medicine in sport, 23*(6), 574-579. https://doi.org/10.1016/j.jsams.2020.01.006

Daneshjoo, A., Mokhtar, A. H., Rahnama, N., & Yusof, A. (2012). The effects of injury preventive warm-up programs on knee strength ratio in young male professional soccer players. *PloS one, 7*(12), e50979. https://doi.org/10.1371/journal.pone.0050979

Daneshjoo, A., Rahnama, N., Mokhtar, A. H., & Yusof, A. (2013). Bilateral and unilateral asymmetries of isokinetic strength and flexibility in male young professional soccer players. *Journal of human kinetics, 36*, 45-53. https://doi.org/10.2478/hukin-2013-0005

Sliwowski, R., Jadczyk, Ł., Hejna, R., & Wieczorek, A. (2015). The Effects of Individualized Resistance Strength Programs on Knee Muscular Imbalances in Junior Elite Soccer Players. *PloS one, 10*(12), e0144021. https://doi.org/10.1371/journal.pone.0144021

Lehnert, M., Croix, M. S., Xaverova, Z., Botek, M., Varekova, R., Zaatar, A., Lastovicka, O., & Stastny, P. (2018). Changes in Injury Risk Mechanisms after Soccer-Specific Fatigue in Male Youth Soccer Players. *Journal of human kinetics, 62*, 33-42. https://doi.org/10.1515/hukin-2017-0157

Ceroni, D., Martin, X. E., Delhumeau, C., & Farpour-Lambert, N. J. (2012). Bilateral and gender differences during single-legged vertical jump performance in healthy teenagers. *Journal of strength and conditioning research, 26*(2), 452-457. https://doi.org/10.1519/JSC.0b013e31822600c9
Ros, A. G., Holm, S. E., Fridén, C., & Heijne, A. I. (2013). Responsiveness of the one-leg hop test and the square hop test to fatiguing intermittent aerobic work and subsequent recovery. *Journal of strength and conditioning research*, 27(4), 988-994.

Edouard, P., Branco, P., & Alonso, J. M. (2016). Muscle injury is the principal injury type and hamstring muscle injury is the first injury diagnosis during top-level international athletics championships between 2007 and 2015. *British journal of sports medicine*, 50(10), 619-630. https://doi.org/10.1136/bjsports-2015-095559

Jones, A., Jones, G., Greig, N., Bower, P., Brown, J., Hind, K., & Francis, P. (2019). Epidemiology of injury in English Professional Football players: A cohort study. *Physical therapy in sport: official journal of the Association of Chartered Physiotherapists in Sports Medicine*, 35, 18-22. https://doi.org/10.1016/j.ptsp.2018.10.011

Smpokos, E., Mourikis, C., Theo, C., & Liaradakis, M. (2019). Injury prevalence and risk factors in a Greek team's professional football (soccer) players: a three consecutive seasons survey. *Research in sports medicine (Print)*, 27(4), 439-451. https://doi.org/10.1080/15438627.2018.1553779

Kalata, M., Maly, T., Hank, M., Michalek, J., Buinovsky, D., Kunzmann, E., & Zahalka, F. (2020). Unilateral and Bilateral Strength Asymmetry among Young Elite Athletes of Various Sports. *Medicina (Kaunas, Lithuania)*, 56(12), 683. https://doi.org/10.3390/medicina56120683

Maly, T., Zahalka, F., & Mala, L. (2016). Unilateral and ipsilateral strength asymmetries in elite youth soccer players with respect to muscle group and limb dominance. *Int. J. Morphol.*, 34, 1339-1344. https://doi.org/10.4067/S0717-95022016000400027

Hewitt, J., Cronin, J., & Hume, P. (2012). Multidirectional leg asymmetry assessment in sport. *Strength & Cond Journal*, 34, 82-86.

Fort-Vanmeerhaeghe, A., Bishop, C., Buscà, B., Aguilera-Castells, J., Vicens-Bordas, J., & Gonzalo-Skok, O. (2020). Inter-limb asymmetries are associated with decrements in physical performance in youth elite team sports athletes. *PloS one*, 15(3), e0229440. https://doi.org/10.1371/journal.pone.0229440

Marques, V. B., Medeiros, T. M., de Souza Stigger, E., Nakamura, F. Y., & Baroni, B. M. (2017). The Functional Movement Screen (FMS”) in elite young soccer players between 14 and 20 years: composite score, individual-test scores and asymmetries. *International journal of sports physical therapy*, 12(6), 977-985.

Atkins, S. J., Bentley, L., Hurst, H. T., Sinclair, J. K., & Hesketh, C. (2016). The Presence of Bilateral Imbalance of the Lower Limbs in Elite Youth Soccer Players of Different Ages. *Journal of strength and conditioning research*, 30(4), 1007-1013. https://doi.org/10.1519/JSC.0b013e3182987044

Maloney, S. J. (2019). The Relationship Between Asymmetry and Athletic Performance: A Critical Review. *Journal of strength and conditioning research*, 33(9), 2579-2593. https://doi.org/10.1519/JSC.0000000000002608

Rush, J. L., Norte, G. E., & Lepley, A. S. (2020). Limb differences in hamstring muscle function and morphology after anterior cruciate ligament reconstruction. *Physical therapy in sport: official journal of the Association of Chartered Physiotherapists in Sports Medicine*, 45, 168-175. https://doi.org/10.1016/j.ptsp.2020.06.012

Sherman, D. A., Rush, J. L., Glaviano, N. R., & Norte, G. E. (2021). Hamstrings Muscle Morphology After Anterior Cruciate Ligament Reconstruction: A Systematic Review and Meta-Analysis. *Sports medicine (Auckland, N.Z.)*, https://doi.org/10.1007/s40279-021-01431-y

Loturco, I., Nakamura, F. Y., Kobal, R., Gil, S., Pivetti, B., Pereira, L. A., & Roscel, H. (2016). Traditional Periodization versus Optimum Training Load Applied to Soccer Players: Effects on Neuromuscular Abilities. *International journal of sports medicine*, 37(13), 1051-1059. https://doi.org/10.1055/s-0042-107249

Owen A.L., Dunlop G., Rouissi M., Haddad M., Mendes B., & Chamari K. (2016). Analysis of positional training loads (ratings of perceived exertion) during various-sided games in European professional soccer players. *International Journal of Sports Science & Coaching*, 11(3), 374-381.

Mendiguchia, J., Alentorn-Geli, E., & Brughelli, M. (2012). Hamstring strain injuries: are we heading in the right direction? *British journal of sports medicine*, 46(2), 81-85. https://doi.org/10.1136/bjsm.2010.081695
ГОСТРІЙ ВПЛИВ МАЛОСТОРОННІХ ІГОР НА СИЛУ ПІДКОЛІННОГО СУХОЖИЛЛЯ У МОЛОДИХ ФУТБОЛІСТІВ

Італо Саннікандро1,2АВД, Джакомо Кофано1,2ВС, Гаетано Райола3АС

1Університет Фоджа
2Профеcійний футбольний тренер із силової і кондиційної підготовки
3Університет Салерно

Авторський вклад: A – дизайн дослідження; B – збір даних; C – статаналіз; D – підготовка рукопису; E – збір коштів

Мета дослідження. Малосторонні ігри (SSG) – це інтенсивні тренування, які дуже популярні у тренуванні з футболу. Знання гострих наслідків вправ, які складають тренування, є дуже важливими, особливо для зниження ризику травм у молодіжному футболі. Це дослідження спрямоване на оцінку гострого впливу SSG на ексцентричну силу підколінного сухожилля та на визначення асиметрії сили нижніх кінцівок (LLSA) у молодих футболістів.

Матеріали и методи. Вибірку склали молоді футболісти-чоловіки до 17 років (n = 24, 16,6 ± 0,5 років, 168,8 ± 4,6 см, 58,2 ± 3,5 кг). До і після SSG (4 на 4, 3×4 хв, відновлення 3 хв, без воротарів) ексцентричну силу підколінного сухожилля та асиметрію ексцентричної сили нижньої кінцівки оцінювали за допомогою спеціального динамометра (N3 Easytech, Італія) та відповідного програмного забезпечення. Кожен юний футболіст виконував одноразове повторення скандинавської вправи на підколінне сухожилля з динамометром; приблизно через 2 хвилини вони виконали 5 повторень однієї і тієї ж вправи без перерви. Для обох оцінок були виявлени ексцентрична міцність і LLSA.

Результати. Оцінка ексцентричної сили підколінного сухожилля показує суттєве та статистично значуще відмінності в оцінці в порівнянні з допостовими значеннями. Значне зниження спостерігалося для піку ексцентричної сили (р < 0,018 і р < 0,014 для правої/лівої кінцівки), для ексцентричної середньої сили (р < 0,017 і р < 0,006 для правої/лівої кінцівки). Значення ексцентричної пікової асиметрії сили та середнього значення асиметрії сили виявили значне збільшення (р < 0,0001).

Висновки. Зниження сили після SSG вимагає ретельного врахування порядку виконання вправ на тренуванні. Практикуючі тренери можуть планувати тренування та ефективніше застосовувати SSG з врахуванням впливу на підколінні сухожилля.

Ключові слова: підколінне сухожилля, профілактика, юний футболіст, малосторонні ігри.