A calibration of the relation between the abundance of close galaxy pairs and the rate of galaxy mergers

M. G. Kitzbichler* and S. D. M. White
Max-Planck Institut für Astrophysik, Karl-Schwarzschild-Straße 1, D-85748 Garching b. München, Germany

Accepted 2008 August 21. Received 2008 August 10; in original form 2008 April 12

ABSTRACT
Estimates of galaxy merger rates based on counts of close pairs typically assume that most of the observed systems will merge within a few hundred Myr (for projected pair separations ≤ 25 \(h^{-1} \) kpc). Here we investigate these assumptions using virtual galaxy catalogues derived from the Millennium Simulation, a very large \(N \)-body simulation of structure formation in the concordance \(\Lambda \) cold dark matter (\(\Lambda \)CDM) cosmology. These catalogues have been shown to be at least roughly consistent with a wide range of properties of the observed galaxy population at both low and high redshift. Here we show that they also predict close pair abundances at low redshift which agree with those observed. They thus embed a realistic and realistically evolving galaxy population within the standard structure formation paradigm, and so are well suited to calibrate the relation between close galaxy pairs and mergers. We show that observational methods, when applied to our mock galaxy surveys, do indeed identify pairs which are physically close and due to merge. The sample-averaged merging time depends only weakly on the stellar mass and redshift of the pair. At \(z \leq 2 \) this time-scale is \(T \approx T_0 r_{25}^3 M^* \), where \(r_{25} \) is the maximum projected separation of the pair sample in units of 25 \(h^{-1} \) kpc, \(M^* \) is the typical stellar mass of the pairs in units of 3 \(\times 10^{10} \) \(h^{-1} \) \(M_\odot \) and the coefficient \(T_0 \) is 1.1 Gyr for samples selected to have line-of-sight velocity difference smaller than 300 km s\(^{-1}\) and 1.6 Gyr for samples where this velocity difference is effectively unconstrained. These time-scales increase slightly with redshift and are longer than assumed in most observational studies, implying that merger rates have typically been overestimated.

Key words: galaxies: evolution – galaxies: formation – galaxies: general – galaxies: interactions – galaxies: statistics.

1 INTRODUCTION
Ever since the pioneering work of Holmberg (1937) the study of close pairs has been considered an important tool for understanding galaxies. Early work was primarily directed towards comparing properties such as luminosity, colour and morphology with those of isolated systems, but also recognized that the dynamics of close pairs can be used to estimate their masses (e.g. Page 1952). Close pairs seemed a natural key to understanding the initially speculative idea that galaxies might frequently merge. This was first championed by Toomre & Toomre (1972) in their famous study of the dynamics of interacting spiral galaxies, and as it was gradually accepted, mergers came to be seen as an important factor shaping the observed galaxy population, in particular, producing elliptical galaxies (e.g. Fall 1979). In its cold dark matter (CDM) incarnation, the hierarchical picture of structure growth gained ascen-

*E-mail: mgk@mpa-garching.mpg.de

© 2008 The Authors. Journal compilation © 2008 RAS

Downloaded from https://academic.oup.com/mnras/article-abstract/391/4/1489/1079181
by guest on 29 July 2018
A different technique which has become popular more recently is the identification of mergers a posteriori through the disturbed morphology of the merger remnants. An apparent advantage is that one doesn’t have to make any assumption about whether and when a merger will occur. Instead the merger can be taken as a fact. On the other hand, one must adopt a time-scale over which the disturbed morphology remains visible, and this time-scale is likely to depend on redshift, on observing conditions and on the detailed properties of the merging systems. In practice it is highly uncertain. In addition, this method requires high resolution, high signal-to-noise imaging, and has therefore become possible for the distant Universe only in the last decade with the advent of efficient space-borne imagers.

The most recent attempts to estimate merger rates with each of these methods (Lin et al. 2004; Bell et al. 2006; Lotz et al. 2008) have indicated that evolution with redshift is much weaker than found in earlier observational analyses (e.g. Patton et al. 2002; Conselice et al. 2003; Bundy et al. 2004) and inferred from theoretical treatments of the merging of dark matter haloes (e.g. Lacey & Cole 1993; Khochfar & Burkert 2001). Berrier et al. (2006) gave a possible explanation for this discrepancy based on halo occupation distribution (HOD) modelling of galaxy clustering. They concluded that the galaxy merger rate does not mirror the halo merger rate because it is strongly affected by the additional processes which govern the merging of galaxies within a common halo. This was demonstrated explicitly by Guo & White (2008) using the Millennium Simulation galaxy catalogues we analyse below. They found that whereas specific merger rates for dark haloes depend weakly on mass and strongly on redshift, the opposite is true for galaxies, at least for the particular galaxy formation model they analysed.

In the current paper, our focus is not on understanding these theoretical issues, but rather on checking the assumptions which are made when estimating galaxy merger rates from counts of close pairs. In particular, we calibrate the relevant time-scales as a function of pair properties and of redshift. We identify close pairs in virtual galaxy catalogues following standard observational criteria, and we study whether and when these pairs merge. The simulated galaxies are embedded in a dynamically consistent way within a realization of the concordance ΛCDM cosmology. Furthermore, their properties and their small-scale clustering are a reasonably good match to observation. Thus, we believe that the relation between close pairs and mergers in the simulation should be similar to that in the real Universe.

Our paper is organized as follows. In Section 2 we summarize the properties of the Millennium Simulation (Springel et al. 2005) and the associated galaxy catalogues that we analyse here. The latter are based on the fiducial model of Croton et al. (2006) as modified by De Lucia & Blaizot (2007) and extended by Kitzbichler & White (2007). We describe the treatment of galaxy mergers in this model and the connection between close galaxy pairs and mergers. We also contrast the behaviour of galaxy and halo merger rates. Section 3 then explains the techniques we use to identify close pairs and to correct for contamination by random projections. In Section 4 we calibrate the time-scale which relates pair counts to merger rates. Finally, the results are discussed and summarized in Section 5.

2 MODEL

2.1 The Millennium N-body simulation

We make use of the Millennium Simulation, a very large simulation which follows the hierarchical growth of dark matter (DM) structures from redshift $z = 127$ to the present. The simulation assumes the concordance ΛCDM cosmology and follows the trajectories of 2160$^3 \times 10^{10}$ particles in a periodic box 500 h^{-1} Mpc on a side, using a special reduced-memory version of the gadget-2 code (Springel, Yoshida & White 2001b; Springel 2005). A full description is given by Springel et al. (2005); here we summarize the main characteristics of the simulation.

The adopted cosmological parameter values are consistent with a combined analysis of the 2dF Galaxy Redshift Survey (2dFGRS; Colless et al. 2001) and the first-year Wilkinson Microwave Anisotropy Probe (WMAP) data (Spergel et al. 2003; Seljak et al. 2005). Specifically, the simulation takes $\Omega_m = \Omega_{dm} + \Omega_b = 0.25$, $\Omega_b = 0.045$, $h = 0.73$, $\Omega_{\Lambda} = 0.75$, $n = 1$ and $\sigma_8 = 0.9$, where all parameters are defined in the standard way. The adopted particle number and simulation volume imply a particle mass of $8.6 \times 10^8 \ h^{-1} M_{\odot}$. This mass resolution is sufficient to represent haloes hosting galaxies as faint as 0.1 L_s with at least ~100 particles. The short-range gravitational force law is softened on a comoving scale of $5 \ h^{-1} $ kpc which may be taken as the spatial resolution limit of the calculation. The effective dynamic range is thus 10^7 in spatial scale. Data from the simulation were stored at 63 epochs spaced approximately logarithmically in time at early times and approximately linearly in time at late times (with $\Delta t \sim 300$ Myr). Post-processing software identified all resolved dark haloes and their subhaloes in each of these outputs and then linked them together between neighbouring outputs to construct a detailed formation tree for every halo (and its substructure) present at the final time. The formation and evolution of the galaxy population is then simulated in post-processing using this stored halo merger tree, as described in the following subsection.

2.2 The semi-analytic model

Our semi-analytic model is that of Croton et al. (2006) as updated by De Lucia & Blaizot (2007) and made public on the Millennium Simulation data download site. These models include the physical processes and modelling techniques originally introduced by White & Frenk (1991), Kauffmann et al. (1993, 1999), Kauffmann & Charlot (1998), Kauffmann & Haehnelt (2000), Springel et al. (2001a) and De Lucia, Kauffmann & White (2004), principally gas cooling, star formation, chemical and hydrodynamic feedback from supernovae, stellar population synthesis modelling of photometric evolution and growth of supermassive black holes by accretion and merging. They also include a treatment (based on that of Kravtsov, Gnedin & Klypin 2004) of the suppression of infall on to dwarf galaxies as consequence of re-ionization heating. More importantly, they include an entirely new treatment of ‘radio mode’ feedback from galaxies at the centres of groups and clusters containing a static hot gas atmosphere. The equations specifying the various aspects of the model and the specific parameter choices made are listed in Croton et al. (2006) and De Lucia & Blaizot (2007). The only change made here in the dust model as described in Kitzbichler & White (2007). Similar models but with different detailed treatments of various aspects of the baryonic physics have proposed by Cole et al. (1994, 2000), Somerville & Primack (1999), Hatton et al. (2003), Kang et al. (2005) among others.

We note that most of the assumptions made for the semi-analytic model only affect our merger rate study in an indirect way by
influencing how merging systems are identified with observed
galaxies. The dynamics of the underlying distribution of DM haloes and
subhaloes is not changed in any way by the galaxy formation
modelling. Only when the subhalo which hosts a galaxy is tidally
disrupted near the centre of a more massive halo does the galaxy
become eligible to merge with the central galaxy of that halo. The
merger does not occur immediately, but rather after a ‘dynamical
friction time’ estimated, following Binney & Tremaine (1987),
from the relative orbit of the two objects at the moment of subhalo
disruption:
\[t_{\text{fric}} = 1.17 \frac{V_{\text{cir}} r_{\text{sat}}^2}{Gm_{\text{sat}} \ln \Lambda}, \]
where \(m_{\text{sat}} \) and \(r_{\text{sat}} \) are the satellite subhalo mass and halocentric
distance, respectively, the Coulomb logarithm is approximated by
\(\ln \Lambda = \ln (1 + M_{\text{vir}}/m_{\text{sat}}) \) and \(f_{\text{fric}} \) is an adjustable efficiency factor.
This difference between the merger trees of galaxies and those of
haloes (which are assumed to merge at the instant of subhalo
disruption) is necessary since (sub)haloes can be identified only
down to a certain mass threshold. Depending on the masses of the
host and satellite subhaloes, the subhalo finder typically loses track
of a subhalo when tidal stripping has reduced its mass and
dynamical friction has shrunk its orbit to the point where it can
no longer be distinguished as a self-bound overdensity within the
larger system. It is then considered to be disrupted. This typically
occurs at radius \(R \geq 1/10 R_{\text{vir}} \), even for initially massive satellites.
This is substantially greater than the separations from which the final
galaxy merger is expected to occur. Thus, once the subhalo disrupts,
the galaxy evolution model waits for a time \(t_{\text{fric}} \) before merging its
associated galaxy into the central galaxy of the main halo. During
this period the satellite galaxy has no associated subhalo and it is
assumed to remain attached to the particle which was most strongly
bound within its last identified subhalo. The model of De Lucia &
Blaziot (2007) which we are using took \(f_{\text{fric}} = 2 \) for the efficiency factor
in equation (1) in order to improve the fit of the model to the
luminosities of massive central galaxies in clusters. This also
brings the implied merging timescales into better agreement with
the recent simulation results of Boylan-Kolchin, Ma & Quataert
(2008).

We can demonstrate that this treatment is required to obtain a
realistic population of close pairs by comparing the two-point corre-
lations of our simulated galaxies to those measured for real galaxies
on scales \(r_p < 100 \, h^{-1} \) kpc. Such a test is presented in Fig. 1, which
compares the projected two-point correlation function \(w_p(r_p) \) at
\(z = 0 \) to those derived from the Sloan Digital Sky Survey (SDSS)
survey by Li et al. (2006) for five disjoint ranges of stellar mass.
The solid black lines denote results from the simulation includ-
ing the conversion from pair counts to merger rates. Note that the
integral
\[n_{\text{pairs}}(r_p) = 2\pi n^2 \int_0^{r_1} w_p(r_p) r_1 \, dr_p, \]
where \(n \) is the overall mean density of galaxies of the type included
in the pair sample and \(r_1 \) is the limiting projected separation for
which pairs are counted.

An unrealistic aspect of the treatment of orphan galaxies in this
model is the fact that their orbits are represented by those of indi-
vidual simulation particles and so do not decay correctly through
dynamical friction between the time they are orphaned and the final
merger. As a consequence, just before merging the orphans will typ-
ically be significantly farther from their central galaxies than they
should be. This is likely to lead to an undercount of very close pairs
and a compensating overcount of somewhat more distant pairs. One
of us has carried out a test of the expected size of these effects with
another student (Guo & White, in preparation). The semi-analytic
modelling code keeps track of when each galaxy was orphaned and
when it is supposed to merge with its central galaxy. Thus, we
always know what fraction of its lifetime as an orphan remains.
For a simple model of a circular orbit decaying through dynamical
friction in an isothermal sphere, the shrinking of the orbit from its
unaffected (initial) size is proportional to the square root of the frac-
tion \(F \) of its orphan lifetime that still remains. The test consisted in
shrinking the three-dimensional (3D) distance between each orphan
and its central galaxy by this \(\sqrt{F} \) factor and then repeating the
calculation of the correlation functions to compare with SDSS data
as in Fig. 1. This increases the correlations slightly on scales of 30 to
50 kpc and suppresses them very slightly on scales around 100 kpc,
but the effects are so small that they can be neglected. (They are
smaller than the 1σ error on the observations.) This is because many
of the orphans have long dynamical friction lifetimes (cf. Fig. 4)
and because the \(\sqrt{F} \) dependence means that orphans spend most
of their time near their initial orbit.

Fig. 1 is a direct and detailed comparison of the close pair counts
predicted by our model with real data for the nearby Universe
on the scales where such counts are usually made when estimating merger rates. However, much recent work has concentrated on using much fainter observational samples to make such estimates at higher redshift in order to study the evolution of merger rates. Before using our simulation to calibrate such estimates it would clearly be wise, to check that it reproduces observed high-redshift pair counts reasonably well on the relevant scales. Such counts are much more uncertain, of course, than those from SDSS, because of the much smaller volumes surveyed, the greater difficulty to obtain redshifts and reliable photometry and the greater importance of projection effects in deeper samples. Kitzbichler & White (2007) showed that available data on optical counts of faint galaxies and on the evolution of the galaxy mass and luminosity functions to high redshift are quite well reproduced by the lightcone data we use here. In addition, McCracken et al. (2007) show that the same model can fit the small-scale angular correlations measured for faint galaxies down to i \sim 24. Together these results show that the model reproduces observed pair counts at separations of a few arcsec to these magnitudes. Ongoing work has also shown it to fit the abundance and clustering (on somewhat larger scales) of colour-selected star-forming galaxies at $z \sim$ 2 and 3 (Guo & White, in preparation). Thus we believe that our model is adequate for calibrating the relation between close pair counts and merger rates. Note that such a calibration does not require a perfect match to the real world – a moderately good fit should be sufficient to estimate the relevant time-scales.

2.3 Merger rates and pair counts

Clearly a realistic treatment of galaxy merging is crucial for our study since we assume that the relation between simulated close pairs and projected mergers is a good representation of the real relation. On the other hand, it is important to realize that the overall merger rates in the simulation reflect the hierarchical growth of dark haloes as represented by the halo/subhalo merger trees built from the Millennium Simulation. This determines which galaxy pairs arrive when on the tightly bound orbits from which mergers take place. The semi-analytic treatment of the final stages merely determines how long each orphan–central galaxy pair ‘waits’ on its tightly bound orbit before merging. For massive pairs of the kind relevant to most observational studies of merger rate evolution, these waiting times are often short compared to the age of the Universe at the relevant redshifts. Thus, writing the merging rate of orphan–central pairs of any particular type as a convolution of the rate at which they are created through subhalo disruption with the distribution of merging times (equation 1),

$$N_{\text{merge}}(t) = \int_0^\infty N_{\text{orphan}}(t - t_{\text{fric}}) P(t_{\text{fric}}) dt_{\text{fric}},$$

we see that if $P(t_{\text{fric}})$, the distribution of dynamical friction timescales, is confined to values smaller than the time-scales on which N_{orphan} varies, then $N_{\text{merge}} \approx N_{\text{orphan}}$ and the semi-analytic treatment has no significant effect on the merging rate. If, on the other hand, $P(t_{\text{fric}})$ has a significant tail out to and beyond the age of the Universe, the two rates can differ significantly. Since subhaloes can survive for a substantial time before they are tidally disrupted by their host, N_{orphan} differs in a similar way from the rate at which satellite–central pairs are created through halo merging. It is this latter rate which is often taken as a surrogate for the galaxy merger rate.

We illustrate these differences in Fig. 2 which focuses on pairs of galaxies with individual stellar masses differing by less than a factor of 4 and lying above the lower limits given as labels in each panel. The red curves show the rates at which satellite–central pairs are created by merging of their parent friends-of-friends (FOF) haloes. The green curves show the rate at which corresponding orphan–central galaxy pairs are created as subhaloes disrupt, while the black curve shows the actual merger rate of these galaxy pairs. Clearly, the delays are significant. The orphan creation rate is a factor of 2 or more below the satellite creation rate at all redshifts and for all galaxy masses, while the galaxy merging rate is smaller again except near $z = 0$. The first difference shows that many new satellites retain their DM (sub)haloes for a long time. The second shows that substantial numbers of orphan galaxies are born with relatively large t_{fric}. Note also that while the creation rates of satellite and orphan pairs both scale approximately as $(1 + z)^{1.5}$ at low redshift, delay effects cause the low-z galaxy merger rate to be almost independent of redshift (see below).

As we already saw in Fig. 1, at projected separations of a few tens of kpc, counts of galaxy pairs in the Millennium Simulation are dominated by orphan–central pairs. Thus we can approximate the abundance of observed close pairs of any particular type as

$$N_{\text{close pair}}(t) \approx \langle F t_{\text{fric}} \rangle N_{\text{orphan}}(t),$$

where F is a geometric factor specifying the fraction of the time (averaged over the orphan’s life) that a particular orphan–central pair satisfies the observational definition of a close pair when viewed from a random direction, the angle brackets specify an average over all newly created pairs of the specified type, and we assume that contributions to the average from pairs with large t_{fric} can be neglected. Thus we can write

$$N_{\text{merge}}(t) \approx T^{-1} N_{\text{close pair}}(t),$$

where the mean time-scale T is defined by

$$T = \frac{f(P_{\text{fric}})}{N_{\text{orphan}}},$$

with

$$f \equiv \frac{N_{\text{orphan}}}{N_{\text{merge}}}.$$

According to Fig. 2, the ratio f increases from 1 to about 3 as z increases from 0 to 2. Equation (5) is the standard form used to
convert close pair counts to a merger rate in observational studies. Equation (6) shows how the appropriate time-scale T should be estimated in the Millennium Simulation. In practice, we obtain it directly from the simulation data by comparing the number of ‘observed’ close pairs with the merging rate. Equation (5) also shows how the dynamical friction time-scales assumed by our semi-analytic model (equation 1) are reflected in its predictions for close pair abundances. The good agreement with observation in Fig. 1 thus confirms that our assumptions are realistic. Observational studies often assume $T \sim 500 \text{ Myr}$ for pair samples with projected separations below $30 h^{-1} \text{kpc}$. As we will see in Section 4.1, this is an underestimate, so the resulting merger rates are overestimates.

2.4 Merger rates for DM haloes and galaxies

Here we digress slightly to discuss further the halo and galaxy merger rates plotted in Fig. 2. It is immediately apparent that all rates peak at higher redshift for smaller objects. This is because more massive objects assemble later in hierarchical models of the kind simulated here, and merger rates scale as the square of the abundance of the merging population. The analytic treatment of halo mergers by Lacey & Cole (1993), based on the excursion set formalism (see Press & Schechter 1974; Bond et al. 1991), shows this behaviour clearly and agrees moderately well with rates as a function of halo mass and redshift in the Millennium Simulation; however, galaxy merger rates in the simulation depend on stellar mass and redshift in quite a different way. For major mergers with $M_\star \gtrsim 10^{10} \, h^{-1} M_\odot$, the galaxy merger rate depends strongly on stellar mass but only weakly on redshift out to $z = 1$, whereas the opposite is true for dark haloes (see also Guo & White 2008).

Recent observational results for galaxy mergers by Lin et al. (2004) and Lotz et al. (2008) found a weak dependence on redshift, and these authors noted the contradiction with theoretical predictions based on DM halo merger rates. The contradiction was further explored by Berrier et al. (2006), who investigated it using HOD modelling. They inferred that the observed evolution in merger rates requires lower halo occupation numbers at higher redshift. This agrees with our more detailed semi-analytic treatment where it is a consequence of the accumulation of satellite galaxies in massive host haloes as a result their extended disruption and merging time distributions. As is obvious from Fig. 1, a realistic treatment of the accumulation requires not only the resolution of DM subhaloes and their associated galaxies within groups and clusters, but also a proper treatment of orphan galaxies after their associated subhaloes is disrupted.

Berrier et al. (2006) conclude that measuring galaxy merger rates is an important tool to understand the formation and evolution of galaxies, but is a poor probe of the cosmological aspects of structure formation; the connection to theoretically predicted halo merger rates is subject to too many uncertainties. The discrepancies seen in Fig. 2 support this view. On the other hand, with the advent of the concordance cosmology most cosmological parameters appear well determined, and exploring the details of galaxy formation is perhaps a more urgent cause. The calibration of the galaxy merging time-scale presented below accounts realistically for differences between halo and galaxy behaviour, as judged by the fact that the Millennium Simulation reproduces the observed clustering of galaxies down to small scales. Nevertheless, further improvements of several aspects of our modelling of the underlying physical processes are needed before our calibration can be considered definitive.

2.5 The mock lightcone

The fundamental question we are addressing in this paper is how well the merger rate of galaxies can be recovered as a function of galaxy properties from the abundance of close pairs of galaxies on the sky. The most direct way to assess this is to create ‘mock catalogues’ from our simulation which correspond as closely as possible to real survey catalogues, and then to mimic observational procedures. To this end we place a virtual observer at the origin of our simulation box and calculate which galaxies fall on to his backward lightcone. For the nearby Universe these galaxies will lie in the $z = 0$ snapshot of the simulation, but as we go out along the line-of-sight we must populate the field-of-view with galaxies from progressively earlier snapshots. We must also interpolate redshifts, and most importantly luminosities through various observer-frame filters, between snapshots in order to get the appropriate values for ‘observed’ properties. A more detailed account of the methods we use to produce mock observations from the Millennium Run semi-analytic galaxy catalogues may be found in Kitzbichler & White (2007).

For the study presented in this paper we chose a field of view of $10 \times 1.4 \, \text{deg}^2$ which we found to be a good compromise between ensuring a sufficiently large sample for robust statistics at all redshifts of interest and maintaining computational efficiency. We adopt a limiting apparent magnitude of $B_{AB} \leq 26$, close to the current effective limit for photometric surveys of moderately large areas, and well beyond the current limit for reliable multi-object spectroscopy. Note that because of the limited resolution of the Millennium Simulation, our model galaxy catalogues become incomplete at absolute magnitudes fainter than about $M_B < -16$, and as a result our lightcone will miss intrinsically faint galaxies at all but the highest redshifts. This will not affect our later analysis which is restricted to bright and massive systems.

Our final mock catalogue contains 3 236 337 galaxies. In Fig. 3 we depict their spatial distribution out to $z = 1$ in order to illustrate the structure in this mock lightcone. The filaments and voids emerge vividly in this plot, where we encode projected galaxy density as intensity and satellite galaxy fraction as colour. Clearly many galaxies in the most clustered regions are satellites, whereas in the filaments and the sparsely populated regions, most galaxies are the central systems of their haloes.

3 Pair selection methods

3.1 Finding pairs

A limitation of our mocks in comparison to real catalogues is that they include no record of recent close interactions which might be related to the morphological indicators accessible with high-quality deep imaging. Many authors, beginning with Toomre & Toomre (1972) and Larson & Tinsley (1978) have shown that close encounters between massive galaxies can produce both enhanced star formation and disturbed morphologies (e.g. Patton et al. 2005; Lin et al. 2007; Li et al. 2008, and references therein). Detection of such effects is a clear indicator that apparent proximity on the sky does
indeed correspond to physical interaction, and so greatly increases the level of confidence that a given close pair is likely to merge. On the other hand, the detectability of these effects depends strongly on the quality of the imaging, on the structure of the merging galaxies and on the time, viewing angle and redshift at which they are observed. As a result it is very difficult to estimate what fraction of close pre-merger pairs will be detected by any given set of morphological criteria. This makes it impossible to estimate merger rates reliably from such samples.

Until recently, observational studies of merging typically involved from a few dozen to a few hundred pairs. Every pair could be examined visually to assess whether it is interacting. Current and future surveys will produce much larger samples for analysis, necessitating automatic techniques to search for morphological signatures of interaction. The reliability of such classification techniques depends crucially on good signal-to-noise ratio and adequate resolution. When these conditions are met, measures of concentration, asymmetry and clumpiness can be combined with other indices such as the Gini and M_{20} coefficients of Lotz, Primack & Madau (2004) to produce very large samples of galaxies with a morphological classification (see e.g. Abraham, van den Bergh & Nair 2003; Prescott et al. 2004; Zamojski et al. 2006), of which 1–3 per cent typically show signatures of an ongoing interaction. For the reasons noted above, however, such samples are not suitable for estimating merger rates. For the rest of this paper we will therefore concentrate on pair samples selected purely by the proximity of the two galaxies.

3.1.1 Pair samples from imaging alone

The most straightforward way to find pairs of galaxies is simply to identify objects which are close together on the sky in a purely photometric survey. This technique was used for some of the earliest pair fraction studies (e.g. Zepf & Koo 1989) because it could be applied to any survey with a large enough galaxy catalogue (>1000 at that time). One must keep in mind that the close pair fraction is of order a few per cent, so to get acceptable statistics for the pair sample, the original catalogue must be much larger. The disadvantage of this purely photometric method is, of course, that one will inadvertently include many false pairs, i.e. chance projections that are not physically close. This ‘background noise’ becomes more problematic for higher mean galaxy densities on the sky, corresponding to deeper magnitude limits: early studies worked moderately well because of their shallow limits.

The fraction F of true companions in a sample of apparent pairs can be estimated from the angular correlation function $w(\theta)$ as

Figure 3. A lightcone with a field of view of 10×1.4 deg2 which we use for close pair and merger rate studies. The colour map encodes projected galaxy density as intensity and satellite galaxy fraction as colour (from blue to red). Only the region out to $z = 1$ is displayed, although the cone actually extends to $z \sim 5$.

\[F = w/(1 + w), \] Only for \(w(\theta) > 1 \) are the majority of apparent companions at angular distance \(\theta \) true physical companions. According to Limber’s equation (Limber 1953) the angular two-point correlation function depends on limiting flux density \(f = L/4\pi r^2 \) as \(w(\theta) \propto f^{\gamma/2} \) [assuming a power law \(\xi = \left(r_0/r\right)^\gamma \) for the spatial function with \(r_0 \) independent of distance]. For surveys as deep as we simulate here, \(w(\theta) \sim 1 \) corresponds to \(\theta \sim 0.1 \) arcsec so that observationally realistic samples of close pairs (typically limited to separations of a few arcseconds) are entirely dominated by chance projections. Although for large samples the fraction of ‘true’ close pairs can be determined statistically with high reliability, it is impossible to know which close pairs are interacting without additional information, for example from morphologies. Furthermore, without spectroscopy the separation distribution (in 3D) of the true pairs and its dependence on redshift cannot be derived from the observed angular separation distribution without making additional assumptions about the redshift distribution of the population and the evolution of its clustering.

3.1.2 Primary redshift catalogue with photometric companions

Many recent pair studies (e.g. Yee & Ellingson 1995) have been based on correlating a redshift survey with a deeper photometric catalogue. This allows the identification of all close apparent companions for a complete set of galaxies of known distance and brightness. For sufficiently large samples the projected correlation function \(w_p(r_p, \Delta) \) can be estimated, giving the abundance of true physical pairs as a function of projected separation \(r_p \). Assuming isotropy of orientation for the underlying population, this can be inverted to give the distribution of companions as a function of 3D separation, and thus the abundance of companions within some maximal separation (e.g. 30 kpc). Note that without morphological information one still has no indication of which apparent pairs are actually physically close. This problem is significant in deep surveys where the majority of apparent projections are chance superpositions of unrelated objects. The major advantage of starting with a redshift survey is that the dependences of the close pair distribution on physical separation and on redshift can be determined separately.

3.1.3 Photometric redshift pair identification

If photometric redshifts are available for all galaxies in a catalogue, this allows the definition of still purer samples of physical pairs. Here also one can define a physical (rather than angular) search radius around each galaxy, and additionally one can limit acceptable pairs to those whose redshifts are equal to within the accuracy of the photometric determinations. Some correction for random pairs is still required, however, since this accuracy is sufficiently poor that projected pairs with moderately large true redshift differences can still enter the sample. The number of ‘true’ pairs at any given apparent separation \(r_p \) and redshift \(\Delta z \) within some photometric redshift tolerance \(\Delta z_{\text{tol}} \) can be found by taking the number of such pairs counted in the real catalogue and subtracting the mean number found in a large number of artificial catalogues in which the photometric redshifts of the galaxies are retained but their angular positions within the survey area are randomized.

3.1.4 Complete spectroscopic redshift samples

Clearly the ideal sample for a pair study is one that includes accurate spectroscopic redshifts for all galaxies. This allows a search for ‘true’ physical companions in the space of projected physical separation and velocity difference. The result is an unbiased sample with minimal contamination by optical pairs. In principle, a correction for random pairs can be applied just as in the previous section, but in practice this correction is so small that it can be neglected. Additionally, one can estimate the fraction of the physical pair population which corresponds to truly close pairs, i.e. to pairs for which the 3D separation is also small.

3.2 Identifying candidate pairs for mergers

From our mock survey lightcone we construct several close pair samples as follows. For each galaxy we examine the 20 closest companions on the sky and apply various criteria to define pair subsets that we consider as merger candidates. These criteria include (i) projected physical separation \(r_p \), (ii) radial velocity difference \(\Delta v \) and (iii) redshift difference \(\Delta z \). We apply these cuts in different combinations to build different samples. In addition, we distinguish pairs by the stellar mass ratio of the two pair members.

For the rest of this paper we will concentrate on potential major mergers which we define to be pairs with stellar mass ratios of 4:1 or less. This restriction is applied for several reasons. First, observational studies usually concentrate on galaxy pairs with small magnitude differences, either because both galaxies are typically close to the apparent magnitude limit of the parent survey, or because a limit on apparent magnitude difference is applied explicitly. This is to prevent confusion between actual companions and morphological features in the outer regions of a bright galaxy. Restricting galaxy pairs to a narrow range of mass ratios also makes sense from a theoretical point of view, since it is the growth of galaxies through major mergers that dominates the morphological transformation of galaxies.

Using the criteria listed above we define a number of samples. For the projected physical (i.e. not comoving) distance \(r_p \) we choose maximal values of 30, 50 or 100 h\(^{-1}\) kpc. To mimic ‘spectroscopic’ samples, we assume infinitely accurate redshifts and select pairs with radial velocity differences \(\Delta v < 300 \text{ km s}^{-1} \). (Note that this excludes a number of true physical pairs with larger velocity separation, but most such pairs are within massive clusters and so rarely merge.) For ‘photo-\(z\)’ samples we require a redshift difference of \(\Delta z < 0.05 \). In the following sections we will use pair samples defined in this way to study the relation between close pairs of galaxies and mergers.

4 RESULTS

4.1 Distribution of merging times

In Fig. 4 we show distributions of merging times for close pairs of galaxies in our lightcone with \(r_p < 50 \text{ h}^{-1} \text{ kpc}, \Delta v < 300 \text{ km s}^{-1} \), individual apparent magnitudes \(B < 26 \) and individual stellar masses which exceed \(10^{10} \text{ h}^{-1} \text{ M}_\odot \) and differ by less than a factor of 4. The four panels show distributions for four disjoint redshift ranges as indicated. Merging times were determined either by following the later evolution of each pair until merging (or until \(z = 0 \); the green histograms) or by using the time-until-merger counter assigned to each orphan galaxy at the time it is orphaned (the dashed black histogram). The distributions are plotted as the fraction of all pairs in each histogram bin, and so do not normalize to unity in the green case. The fraction of pairs which do not merge by \(z = 0 \) is indicated in each panel by labels of the appropriate colour.
The most important results to note from this figure are that the merger time distributions vary little with redshift, that they extend to large values, and that they include the majority of pairs. Most close pairs eventually merge, even for \(r_p < 50 \text{ h}^{-1} \text{kpc} \). These results are best seen from the black histograms. These indicate a median merger time above 2 Gyr, much longer than the merging times typically adopted when estimating merger rates from observed pair counts. At lower redshifts, the directly estimated merger-time distributions do not extend to large times. This simply reflects the fact that there is insufficient time for many of the mergers to take place, as may be seen from the vertical grey lines which give the look-back time to the largest redshift used when constructing the distributions in each panel. The black histograms show how much longer one would have to wait for the other objects to merge. At merger times below this limit there is good agreement between the directly and indirectly estimated distributions (the black and the green histograms).

The distributions of merger times in the highest redshift panel appear to have fewer pairs with short merger times than those at lower redshift. This is because the imposed apparent magnitude limit at \(B > 26 \) excludes significant numbers of galaxies from the sample at these redshifts. The galaxies that are lost are primarily red systems close to our mass cut at \(10^{10} \text{ M}_\odot \). These are almost all satellite systems which have had substantial time to age and dim since their accretion; they are thus typically 'about' to merge. This effect is also responsible for the fact that the fraction of observed pairs which do not merge by \(z = 0 \) increases in the highest redshift panel, reversing the trend in the other panels. It seems that selection effects may, in some circumstances, bias observational samples against pre-merger pairs, although interaction-induced star formation (which is not included in our galaxy modelling) could well reduce or even reverse this bias.

4.2 Mean merging times

We have established that, for the separation and velocity difference cuts typically adopted, most close pairs of similar mass galaxies will, in fact, merge. We can therefore address the main issue of this paper, namely 'What time-scale should be used to convert counts of such close pairs into a merger rate?' As noted in equation (5), this time-scale is simply the ratio at each redshift of the abundance of pairs of a particular type to the merger rate of such pairs per unit volume,

\[
\langle T_{\text{merge}} \rangle = \frac{N_{\text{pairs}}}{N_{\text{merges}}}.
\]

Calculating this ratio as a function of redshift and mass cut for pairs with \(r_p < 50 \text{ h}^{-1} \text{kpc} \) and \(\Delta v < 300 \text{ km s}^{-1} \) yields the results presented in Fig. 5. Since the square root of the inverse of this dependency seems to be linear within the scatter for mass cuts below \(10^{10} \text{ M}_\odot \), we decided to apply a two-dimensional (2D) linear regression to \(\langle T_{\text{merge}} \rangle^{-1/2} \equiv T^{-1/2} \langle z, M_\star \rangle \) as a function of \(z \) and \(M_\star \), implying the relation

\[
\langle T_{\text{merge}} \rangle^{-1/2} = T_{0}^{-1/2} + f_1 z + f_2 (\log M_\star - 10).
\]

The value of \(T_0 \) as well as the coefficients \(f_1 \) and their uncertainties estimated from fits to all our numerical data are tabulated for samples with different pair identification criteria in Table 1.

In the low-redshift regime \(z \lesssim 1 \) and for stellar masses above \(5
\times 10^8 \text{ M}_\odot \) an even simpler fitting formula works well:

\[
\langle T_{\text{merge}} \rangle = 2.2 \text{ Gyr} \frac{r_p}{50 \text{kpc}} \left(\frac{M_\star}{4 \times 10^{10} \text{ M}_\odot} \right)^{-0.3} \left(1 + \frac{z}{8} \right)
\]

for samples restricted to \(\Delta v < 300 \text{ km s}^{-1} \) and

\[
\langle T_{\text{merge}} \rangle = 3.2 \text{ Gyr} \frac{r_p}{50 \text{kpc}} \left(\frac{M_\star}{4 \times 10^{10} \text{ M}_\odot} \right)^{-0.3} \left(1 + \frac{z}{20} \right)
\]

for samples limited to \(\Delta v < 3000 \text{ km s}^{-1} \). These simplified fits give the results indicated by the dashed lines in Fig. 5. The difference in the normalization coefficient between the two cases reflects the fact that expanding the velocity cut admits about 50 per cent

![Figure 5](https://example.com/figure5.png)
Table 1. Coefficients for different pair identification criteria obtained from fits of \((T_{\text{merge}}) = T(z, M_\star)\) to our numerical data on \(N_{\text{pairs}} / N_{\text{merge}}\) according to equation (9).

Velocity	Projected distance	\(r_p\)		
\(r_p < 300 \text{ km s}^{-1}\)	\(0 < 50 \text{ kpc} h^{-1}\)	\(0 < 100 \text{ kpc} h^{-1}\)		
\(T_\theta(h^{-1}\text{ Myr})\)	2038	3310	6909	
\(10^5 f_1(h^{-1}\text{ Myr}^{-1/2})\)	\(-165 \pm 4.4\)	\(-105 \pm 3.3\)	\(-30.4 \pm 2.2\)	
\(10^5 f_2(h^{-1}\text{ Myr}^{-1/2})\)	\(690 \pm 10\)	\(668 \pm 7.7\)	\(571 \pm 5.2\)	
\(r_p < 3000 \text{ km s}^{-1}\)	\(T_\theta(h^{-1}\text{ Myr})\)	2806	4971	11412
\(10^5 f_1(h^{-1}\text{ Myr}^{-1/2})\)	\(-94.7 \pm 3.7\)	\(-38.6 \pm 2.7\)	\(18.0 \pm 1.7\)	
\(10^5 f_2(h^{-1}\text{ Myr}^{-1/2})\)	\(671 \pm 8.7\)	\(615 \pm 6.3\)	\(491 \pm 4.2\)	

Close galaxy pairs and merger rates

We have investigated major merger rates in our semi-analytic model based on the Millennium N-body simulation and compared them to the abundance of close galaxy pairs. In this way we have calibrated the relation used to estimate merger rates from deep galaxy surveys. In addition, we have shown that for the parameters typically adopted in observational studies, most close pairs do indeed merge, albeit on a substantially longer time-scale than is usually assumed. As a result, the characteristic time-scales we derive are indeed the typical times until pair members merge. The ideal parent catalogue for such studies would contain spectroscopic redshifts for all galaxies, but in practice reliable results can be obtained from any deep photometric catalogue, provided good photometric redshifts are available and care is taken to correct for chance line-of-sight projections. The main advantage of using photo-z is, of course, that they allow results to be obtained for much larger and deeper samples than could otherwise be used. Their main disadvantage is that one does not know which close pairs are ‘physical’ and which are random projections.

The main results of our study are as follows.

(i) The characteristic time-scale which converts background-corrected pair counts into merger rates (Fig. 5) depends on the pair identification criteria, on the stellar mass cut and weakly on the redshift. For stellar masses above \(5 \times 10^9 h^{-1} M_\odot\) it can be approximated by the simple relations

\[
\langle T_{\text{merge}} \rangle = 2.2 \text{ Gyr} \frac{r_p}{50 \text{ kpc}} \left(\frac{M_\star}{4 \times 10^9 h^{-1} M_\odot} \right)^{-0.3} \left(1 + \frac{z}{8} \right)
\]

for radial velocity differences \(\Delta v < 300 \text{ km s}^{-1}\) and

\[
\langle T_{\text{merge}} \rangle = 3.2 \text{ Gyr} \frac{r_p}{50 \text{ kpc}} \left(\frac{M_\star}{4 \times 10^9 h^{-1} M_\odot} \right)^{-0.3} \left(1 + \frac{z}{20} \right)
\]

for \(\Delta v > 3000 \text{ km s}^{-1}\). This latter relation should be used for pair counts derived from photometric redshift surveys. A more accurate fitting formula is given in equation (9); the corresponding coefficients \(T_\theta, f_1, f_2\) are listed in Table 1 for a range of pair selection criteria. Although these relations are derived for a particular galaxy formation model in a particular cosmology, they primarily reflect the orbital times of pairs as a function of projected separation and galaxy properties. Thus they should depend very little on cosmological parameters or on galaxy formation assumptions, provided these remain consistent with the observed relations between galaxies and the dynamical properties of their haloes.

(ii) The characteristic time-scales we find are larger (typically by a factor of at least 2) than is assumed in most published determinations of merger rates. These are therefore likely to be substantial overestimates of the true rates.

(iii) For masses \(M_\star > 3 \times 10^9 h^{-1} M_\odot\), the intrinsic galaxy merger rate evolution is quite flat at low redshift, \(N \sim (1 + z)^{\alpha}\), with \(\alpha < 0.5\) and decreasing towards higher mass. For large masses the exponent becomes negative. Overall, the distributions are quite flat out to redshift \(z \sim 2\) (see e.g. Fig. 2). Observational results lie in the range \(N_{\text{pair}} \sim (1 + z)^{2+2}\) where the large uncertainties are presumably due to small sample sizes and uncontrolled selection effects. In particular, effects due to the apparent magnitude limits of real surveys interact with the stellar populations of galaxies in ways which make it very difficult to define physically equivalent samples at different redshifts. We have presented most of our results for volume-limited samples in order to avoid confusion due to these complexities.

(iv) The broad distribution of merging times, peaking well beyond 1 Gyr, results in merger rates for galaxies which evolve differently from those of DM haloes, even of haloes similar in mass to those that host galaxies. At low redshifts merger rates for DM

\[© 2008 The Authors. Journal compilation © 2008 RAS, MNRAS 391, 1489–1498\]
haloes scale as $\dot{N} \sim (1 + z)^{3/2}$ for all masses, a much more rapid evolution than we find for galaxies (Fig. 2). This discrepancy has already been described by other authors, and we agree with their conclusion that merger rate studies are less suitable for probing the overall growth of cosmic structure than originally thought. They can instead contribute substantially to our understanding of the formation and evolution of galaxies.

ACKNOWLEDGMENTS

MGK acknowledges a PhD fellowship from the International Max Planck Research School in Astrophysics, and support from a Marie Curie Host Fellowship for Early Stage Research Training.

REFERENCES

Abraham R. G., van den Bergh S., Nair P., 2003, ApJ, 588, 218
Bell E. F., Phleps S., Somerville R. S., Wolf C., Borch A., Meisenheimer K., 2006, ApJ, 652, 270
Berrier J. C., Bullock J. S., Barton E. J., Guenther H. D., Zentner A. R., Wechsler R. H., 2006, ApJ, 652, 56
Binney J., Tremaine S., 1987, Galactic Dynamics. Princeton Univ. Press, Princeton, NJ
Bond J. R., Cole S., Efstathiou G., Kaiser N., 1991, ApJ, 379, 440
Boylan-Kolchin M., Ma C.-P., Quataert E., 2008, MNRAS, 383, 93
Bundy K., Fukugita M., Ellis R. S., Kodama T., Conselice C. J., 2004, ApJ, 601, L123
Burkey J. M., Keel W. C., Windhorst R. A., Franklin B. E., 1994, ApJ, 429, L13
Cole S., Aragon-Salamanca A., Frenk C. S., Navarro J. F., Zepf S. E., 1994, MNRAS, 271, 781
Cole S., Lacey C. G., Baugh C. M., Frenk C. S., 2000, MNRAS, 319, 168
Colless M. et al., 2001, MNRAS, 328, 1039
Conselice C. J., Bershady M. A., Dickinson M., Papovich C., 2003, AJ, 126, 1183
Croton D. J. et al., 2006, MNRAS, 365, 11
De Lucia G., Blaizot J., 2007, MNRAS, 375, 2
De Lucia G., Kauffmann G., White S. D. M., 2004, MNRAS, 349, 1101
Fall S. M., 1979, Nat, 281, 200
Guo Q., White S. D. M., 2008, MNRAS, 384, 2
Hatton S., Devriendt J. E. G., Ninin S., Bouchet F. R., Guiderdoni B., Vibert D., 2003, MNRAS, 343, 75
Holmberg E., 1937, Ann. Obser. Lund, 6, 1
Kang X., Jing Y. P., Mo H. J., Börner G., 2005, ApJ, 631, 21
Kauffmann G., Charlot S., 1998, MNRAS, 294, 705
Kauffmann G., Haehnelt M., 2000, MNRAS, 311, 576
Kauffmann G., White S. D. M., Guiderdoni B., 1993, MNRAS, 264, 201
Kauffmann G., Colberg J. M., Diaferio A., White S. D. M., 1999, MNRAS, 303, 188
Kochfar S., Burkert A., 2001, ApJ, 561, 517
Kitzbichler M. G., White S. D. M., 2007, MNRAS, 376, 2
Kravtsov A. V., Gnedin O. Y., Klypin A. A., 2004, ApJ, 609, 482
Lacey C., Cole S., 1993, MNRAS, 262, 627
Larson R. B., Tinsley B. M., 1978, ApJ, 219, 46
Le Fèvre O. et al., 2000, MNRAS, 311, 565
Lemson G. et al., 2006, preprint (astro-ph/0608019)
Li C., Kauffmann G., Jing Y. P., White S. D. M., Börner G., Cheng F. Z., 2006, MNRAS, 368, 21
Li C., Kauffmann G., Heckman T. M., Jing Y. P., White S. D. M., 2008, MNRAS, 685, 1903
Limber D. N., 1953, ApJ, 117, 134
Lin L. et al., 2004, ApJ, 617, L9
Lin L. et al., 2007, ApJL, 660, L51
Lutz J. M., Primack J., Madau P., 2004, AJ, 128, 163
Lutz J. M. et al., 2008, ApJ, 672, 177
Page T., 1952, ApJ, 116, 63
Patton D. R., Pritchet C. J., Yee H. K. C., Ellingson E., Carlberg R. G., 1997, ApJ, 475, 29
Patton D. R. et al., 2002, ApJ, 565, 208
Patton D. R., Grant J. K., Simard L., Pritchet C. J., Carlberg R. G., Borne K. D., 2005, AJ, 130, 2043
Prescott M., Impey C., Scoville N., COSMOS Collaboration, 2004, BAAS, 36, 728
Press W. H., Schechter P., 1974, ApJ, 187, 425
Seljak U. et al., 2005, Phys. Rev. D, 71, 103515
Somerville R. S., Primack J. R., 1999, MNRAS, 310, 1087
Springel V., 2005, MNRAS, 364, 1105
Springel V., White S. D. M., Tornien G., Kauffmann G., 2001a, MNRAS, 328, 726
Springel V., Yoshida N., White S. D. M., 2001b, New Astron., 6, 79
Springel V. et al., 2005, Nat, 435, 629
Toomre A., Toomre J., 1972, ApJ, 178, 623
White S. D. M., Frenk C. S., 1991, ApJ, 379, 52
Woods D., Fahlman G. G., Richer H. B., 1995, ApJ, 454, 32
Yee H. K. C., Ellingson E., 1995, ApJ, 445, 37
Zamojski M. A., Schiminovich D., Rich M., Mobasher B., Koekemoer A. M., Capak P., GALEX Team, COSMOS Team, 2006, Am. Astron. Soc. Meeting Abstr., 209, 225.04
Zepf S. E., Koo D. C., 1989, ApJ, 337, 34

This paper has been typeset from a TeX/LaTeX file prepared by the author.