Effect of Acerola Cherry Extract on Cell Proliferation and Activation of Ras Signal Pathway at the Promotion Stage of Lung Tumorigenesis in Mice

Isao Nagamine1, Tsutomu Akiyama1, Motoomi Kainuma1, Hitomi Kumaga1, Haruna Sato2, Kazuhiko Yamada2, Tomohiro Yano2,* and Hidetoshi Sakurai1

1 Department of Agriculture and Biological Chemistry, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa 252-8510, Japan
2 Department of Food Science Research for Health, National Institute of Health and Nutrition, Shinjuku-ku, Tokyo 162-8636, Japan

(Received September 5, 2001)

Summary The present study was undertaken to estimate the effect of acerola cherry extract (ACE) pretreatment on cell proliferation and the activation of Ras signal pathway at a promotion stage of lung tumorigenesis in mice treated with 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). Pretreatment with ACE (dose, 70mg/kg body weight and 700mg/kg body weight) inhibited increases in the levels of proliferating nuclear antigen and ornithine decarboxylase at the promotion stage. This treatment of ACE also suppressed the activation of Ras signal pathway at the same stage. These results suggest that ACE regulates abnormal cell growth at the promotion stage of lung tumorigenesis in mice treated with NNK as a result of suppression of the initiation stage.

Key Words acerola, cell proliferation, Ras signal pathway, lung tumorigenesis, mice

4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a potent carcinogen formed from nicotin during tobacco processing and cigarette smoking (1). The activation of NNK mainly occurs via α-hydroxylation, leading to the formation of promutagenic adduct, O6-methylguanine (O6MG), and the formation of O6MG is critical in the NNK-induced lung tumorigenesis of mice (2, 3). Furthermore, we have demonstrated that the mutational activation of K-ras oncogene caused by the formation of O6MG occurs at an early promotion stage of the NNK-induced lung tumorigenesis and that the constitutive activation of Ras signal pathway based on the ras gene mutation is required for abnormal cell proliferation at the promotion stage and the development of lung tumors (4, 5). These reports mean that the attenuation of NNK-induced events during the initiation stage of the lung tumorigenic process of mice treated with NNK.

Acerola cherry is considered to be one of the richest sources of vitamin C (10) and has shown in human trials to be a better source of bioavailable vitamin C (11). Besides vitamin C, ACE contains several food factors such as carotenoids useful for lung cancer prevention (unpublished data). Taken together, it seems that ACE has anticarcinogenic activity against lung cancer based on the additive and/or synergistic effects of vitamin C and other food factors in ACE. In this context, the present study was carried out to determine if ACE really inhibited cell proliferation and the activation of the Ras signal pathway at the promotion stage of the lung tumorigenesis as a result of the suppression of the initiation stage.

Materials and Methods

Animals, diets, and feeding. Six-week-old female, specific pathogen-free A/J mice (CLEA Japan, Tokyo, Japan) were used. The mice were fed a CE-2 diet and sterilized water ad libitum. Dry powder was prepared from acerola cherry produced in Okinawa, the powder was suspended in sterilized saline, and the suspension was used as ACE. Each group (one group, n=8) was administered ACE (70 mg/kg body weight and 700 mg/kg body weight) or saline by gavage for 5 d. One sample was prepared from the lungs of two mice, and a total of 4 samples in one group were used for cell proliferation.

*To whom correspondence should be addressed.
E-mail: yano@nih.go.jp
and tumor promotion marker, the activation of Ras, the activation of Mek and extracellular signal-regulated kinase (Erk), and the level of O6MG. This dose was determined because of the recommended dietary allowance for vitamin C in Japan and the content of vitamin C in ACE (2%). All the mice were given NNK solution (100 mg/kg body weight) or saline by a single i.p. injection 4 h after the final gavage. Since our previous report showed that day 30 after NNK injection was the best point to estimate the markers of tumor promotion in lung (12), we selected the day to determine the parameters. There was no difference in body weight change during this experiment among all groups (data not shown). All animal experiments were performed in strict accordance with the institution’s criteria for the care and use of laboratory animals as approved by an institutional governing committee.

The assay of cell proliferation and tumor promotion marker. Samples were prepared from lungs according to our previous report (6). The extracts were incubated overnight at 4°C with P13Suc1-agarose (UBI, NY, USA). The pellets were washed and resuspended in Laemmli’s sample buffer. Electrophoresis and immunoblotting against antiproliferating nuclear cell antigen (PCNA) antibody (Dako Japan, Tokyo, Japan) were performed as previously described (13, 14). The blots were developed by the use of the ECL system (Amersham, NJ, USA). Since PCNA-P13 complex was useful as a sensitive marker of cell proliferation during tumorigenesis (13), we used the complex as the marker. We also used the ornithine decarboxylase (ODC) protein level as a marker of tumor promotion. The protein level was analyzed by electrophoresis and immunoblotting with an anti-ODC antibody (Sigma, MS, USA) (15). The detection of each band was accomplished by the use of an ECL system (Amersham) and a cooled camera-linked Cool Saver system (Atto, Tokyo, Japan). A two-dimensional densitometric evaluation of each band was performed with an ATTo Image Analysis Soft (Atto). Protein content was determined with a Bradford reagent (Bio-Rad, CA, USA), and molecular sizing was done with a Rainbow molecular weight marker (Amersham).

The assay of Ras signal pathway. The activation of Ras was determined by the use of an established method (16). To detect the active form of Ras (Ras-GTP), we used GST-B-Raf RBD protein precoupled to glutathione-sepharose beads. After the incubation of lung extract with the beads at 4°C for 2 h and a subsequent washing step, the beads were analyzed by electrophoresis and immunoblotting by the use of an anti-Ras antibody (Transduction Labs, KY, USA) (17). The residual lung extract was used to detect total Ras level by immunoblot analysis. The activation of Mek and Erk was estimated by electrophoresis and subsequent immunoblot analysis with antiphosphorylated Mek and Erk antibodies (New England Biolabs, MA, USA) (17). We determined the level of total Mek and Erk by the same method as that to determine activation, using anti-Mek and Erk antibodies (New England Biolabs) (17). Each protein band was detected and analyzed as mentioned above.

Results and Discussion

As shown in Fig. 1, the levels of ODC as well as PCNA at the promotion stage of NNK-induced lung tumorigenesis increased, and by ACE pretreatment they returned to a level similar to control before NNK injection. This result indicates that the inhibition of the initiation stage by ACE contributes to a reduction of abnormal cell proliferation at the promotion stage. To further confirm this inhibitory effect of ACE, we investigated the effect of ACE pretreatment on the activation of the Ras signal pathway related to an enhancement of cell proliferation at the promotion stage. As shown in Fig. 2, members of the Ras signal pathway (Ras, Mek, and Erk) were activated by NNK injection as previously reported (5), and the ACE treatment reduced the NNK-elevated level to that of control. These results support the above notion from the result in Fig. 1.

During the initiation stage of carcinogenesis, the fixation of DNA damage induced by carcinogen exposure occurs (the appearance of the initiated cells); then the initiated cells begin to proliferate in response to various

![Fig. 1. Level of PCNA precipitated with P13Suc1-agarose and ODC.](attachment:image)

(A) Immunoblot analyses. C, control; N, NNK-treated group; A1, NNK+ACE (70 mg/kg)-treated group; A2, NNK+ACE (700 mg/kg)-treated group. This result is representative one of three independent experiments. (B) Densitometric analyses. Densitometric analysis was performed as mentioned in Materials and Methods, and each intensity was shown as the mean of three independent experiments. Each value was expressed as a relative ratio against group N (NNK-treated group), and the value in group N was shown as 100.
Fig. 2. Effect of ACE pretreatment on the activation of Ras (A), Mek (B), Erk (C), and their densitometric analyses (D). The activation of Ras was examined by determining the level of the active form of Ras precipitated with GST-B-Raf RBD protein to the level of total Ras. We carried out the activation of Mek and Erk by estimating the level of the phosphorylated form of each protein to that of each total protein. C, control; N, NNK-treated group; A1, NNK+ACE (70mg/kg)-treated group; A2, NNK+ACE (700mg/kg)-treated group. This result is representative one of three independent experiments. Densitometric analysis was performed as mentioned in Fig. 1.

An epidemiological study shows that the risks of tobacco-induced lung cancer are lower among persons in the highest dietary intake of vitamin C (20); vitamin C may therefore contribute to a part of ACE-dependent inhibition of the initiation stage. However, the inhibitory effect by ACE reached a plateau at its low dose (70mg/kg), suggesting that food factors other than vitamin C in ACE also played important roles in suppressing the initiation stage. Of food factors in ACE, carotenoids have been known to inhibit the initiation stage of tumorigenic process (21). Thus carotenoids may also act as inhibitory factors against NNK-induced lung tumorigenesis through the suppression of the initiation stage. Overall, it seems that acerola cherry is a promising food for lung cancer prevention.

Acknowledgments
We thank Dr. Herrmann for providing vectors encoding B-Raf RBD.

REFERENCES
1) Hecht SS. 1997. Approaches to cancer prevention based on an understanding of N-nitrosamine carcinogenesis. Proc Soc Exp Biol Med 216: 181–191.
2) Hecht SS. 1996. Recent studies on mechanisms of bioactivation and detoxification of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), a tobacco-specific lung carcinogen. Crit Rev Toxicol 26: 163–181.
3) Peterson LA, Hecht SS. 1991. O6-methylguanine is a critical determinant of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone tumorigenesis in A/J mouse lung. Cancer Res 51: 5557–5564.
4) Yano T, Yuasa M, Murakami A, Ichikawa T, Hagiwara K. 1997. The detection of chemically initiated cells having the mutation of K-ras gene at an early stage of lung carcinogenesis in mice. Anal Biochem 244: 187–189.
5) Yano T, Yano Y, Nagashima Y, Yuasa M, Yajima S, Horikawa S, Hagiwara K, Kishimoto M, Ichikawa T, Otani S. 1998. Activation of extracellular signal-regulated kinase in lung tissues of mice treated with carcinogen. Life Sci 64: 229–236.
6) Yano T, Yajima S, Nakamura T, Kishimoto M, Ichikawa...
T. 1998. The inhibitory effect of vitamin E on 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced DNA injury and the fixation of the DNA injury in mouse lungs. *NS Arch Pharmacol* **358**: 275–278.

7) Yano T, Yajima S, Virgona N, Yano Y, Otani S, Kumagai H, Sakurai H, Kishimoto M, Ichikawa T. 2000. The effect of 6-methylthiohexyl isothiocyanate isolated from *Wasabi japonica* (wasabi) on 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced lung tumorigenesis in mice. *Cancer Lett* **155**: 115–120.

8) More MA, Eklind KI, Toussaint M, Amin SG, Chuang FL. 1990. Characterization of a glucuronide metabolite of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and its dose-dependent excretion in urine of mice and rats. *Carcinogenesis* **11**: 1819–1823.

9) Leung YK, Ho JW. 1999. Modulation of reduction of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone by vitamin C-palmitate. *Comp Biochem Physiol B Biochem Mol Biol* **124**: 451–456.

10) Clein NM. 1957. Acerola juice—the richest known source of vitamin C. *C J Pediatr* **48**: 140–145.

11) Hwang J, Hodis HN, Sevanian A. 2001. Soy and alfalfa phytoestrogen extracts become potent low-density lipoprotein antioxidants in the presence of acerola cherry extract. *J Agric Food Chem* **49**: 308–314.

12) Yano Y, Yano T, Uchida M, Murakami A, Ogita M, Ichikawa T, Otani S, Hagiwara K. 1997. The inhibitory effect of vitamin E on pulmonary polyamine biosynthesis, cell proliferation and carcinogenesis in mice. *Biochim Biophys Acta* **136**: 35–42.

13) Said TK, Medina D. 1995. Cell cyclins and cyclin-dependent kinase activities in mouse mammary tumor development. *Carcinogenesis* **16**: 823–830.

14) Kishimoto M, Yano Y, Yajima S, Otani S, Ichikawa T, Yano T. 1998. The inhibitory effect of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced lung tumorogenesis in mice based on the regulation of polyamine metabolism. *Cancer Lett* **126**: 173–178.

15) Yano T, Yano Y, Horikawa S, Sutoh H, Hagiwara K, Ichikawa T, Otani S. 2001. Inhibition of expression of ornithine decarboxylase by c-myc antisense oligonucleotide at the promotion stage of lung tumorigenesis in mice. *Jpn J Pharmacol* **87**: 90–92.

16) Herrmann C, Martin GA, Wittinghofer A. 1995. Quantitative analysis of the complex between p21 ras and the Ras-binding domain of the human Raf-1 protein kinase. *J Biol Chem* **270**: 2901–2905.

17) Yano T, Yajima S, Hagiwara K, Kumadaki K, Yano Y, Otani S, Uchida M, Ichikawa T. 2000. Vitamin E inhibits cell proliferation and the activation of extracellular-regulated kinase during the promotion phase of lung tumorigenesis irrespective of antioxidative effect. *Carcinogenesis* **21**: 2129–2133.

18) Kumar R, Kumar S, Barbadic M. 1990. Activation of ras oncogenes preceding the onset of neoplasia. *Science* **248**: 1100–1102.

19) Yano T, Uchida M, Yuasa M, Murakami A, Hagiwara K, Ichikawa T. 1997. The inhibitory effect of vitamin E on K-ras mutation at an early stage of lung carcinogenesis in mice. *Eur J Pharmacol* **323**: 99–102.

20) Chow WH, Schuman LM, McLaughlin JK, Bjelke E, Gridley G, Wacholder S, Chien HT, Blot WJ. 1992. A cohort study of tobacco use, diet, occupation, and lung cancer mortality. *Cancer Causes Control* **3**: 247–254.

21) Bishayee A, Sarkar A, Chatterjee M. 2000. Further evidence for chemopreventive potential of β-carotene against experimental carcinogenesis: diethylnitrosamine-initiated and phenobarbital-promoted hepatocarcinogenesis is prevented more effectively by β-carotene than by retinoic acid. *Nutr Cancer* **37**: 89–98.