Puree from apple and carrot refuse, boiled with starch syrup, in marshmallow technology

O V Perfilova, O M Blinnikova, T N Suhareva, E I Popova and K V Bryksina
Michurinsk State Agrarian University, 101, International st., Michurinsk, 393760, Russia
E-mail: Perfolgav@mail.ru

Abstract. For modern society, diseases associated with malnutrition are increasingly common. There is an urgent task of saturating the consumer market with products for a healthy diet, which are balanced in nutritional substances and contain essential nutrients, including confectionery. The article proves that in the production of marshmallows for solving this problem, it is possible to successfully use a puree from apple and carrot refuse, boiled with starch syrup. This technological solution improves organoleptic quality indicators and increases the content of flavonoids, beta-carotene and dietary fiber in the finished product.

1. Introduction
To maintain health and reduce the risk of a number of nutritionally dependent diseases, minor components are vital to a person. This fact is reflected in many scientific works of scientists in the field of nutritional science. Minor substances include various groups of flavonoids: flavanols and their glycosides, flavones, flavonones, catechins, proanthocyanidins, etc. Their physiological effects on the human body are different and are important for the prevention of diseases [1-7].

One of the most important tasks of food manufacturers is to create products that meet modern requirements for complete and balanced nutrition, quality and safety with using deep, comprehensive and resource-saving technologies. It is important to expand the assortment line of products for various purposes, namely: children’s, functional, therapeutic and prophylactic, personalized and etc. [8-11].

Marshmallow is a confectionery product with a high sugar content. One of the directions in the production of healthy food products is to increase their nutritional value along with a decrease in calorie content [12-14]. Since marshmallow belongs to mass consumption products, the development of marshmallows for a healthy diet with a low energy value using semi-finished products from apple and carrot refuse is relevant and expedient.

2. Materials and methods
When developing the technology of new types of marshmallows, the «Vanilny» marshmallow recipe was used as a control, in which the apple puree was replaced with puree from apple and carrot refuse, boiled with starch syrup, in terms of dry matter [15].

An additive based on apple and carrot refuse was added to the test samples of marshmallows at dosages of 5, 15, 25 and 35%, partially replacing sugar in terms of dry matter and completely apple puree.
The marshmallow mass and the finished marshmallow were examined for organoleptic and physicochemical quality indicators.

3. The study of the effect of a puree from apple and carrot refuse, boiled with starch syrup, on the marshmallows quality

One of the physical and chemical indicators of the confectionery quality is density. For marshmallows, the density value should not exceed 0.6 g/cm³. The density values of the control and experimental samples of marshmallow masses are presented in figures 1 and 2.

Figure 1. Values of density of marshmallow masses using additive from apple refuse: 1 - control; 2 - sample 1; 3 - sample 2; 4 - sample 3; 5 - sample 4.

From figure 1 it follows that for sample 1, where the dosage of apple additive is 5%, the density of the marshmallow mass in comparison with the control is slightly reduced. In samples 2-4, with an increase in the dosage of the apple additive to 15-35%, the density of the marshmallow mass increases in comparison with the control by 16.7-52.4%, respectively.

Figure 2. Indicators of the density of the marshmallow mass using carrot additive: 1 - control; 2 - sample 1; 3 - sample 2; 4 - sample 3; 5 - sample 4.

The diagram shown in figure 2 shows that with an increase of the carrot additive content in the recipe of marshmallow from 5 to 35% (samples 1-4), the density of the marshmallow mass increases in comparison with the control by 2.4-61.9%, respectively.

An increase in the density of marshmallow masses in the test samples can be explained by an increase in their viscosity due to the introduction of apple or carrot additive into the recipe, which in turn complicates the whipping process.

We also studied the change in the plastic strength of the control and test samples of marshmallow masses during its storage at a temperature of 18-20 °C, which is presented in the form of graphs in
figures 3 and 4. The measurement of the plastic strength of the marshmallow masses was carried out
every 30 minutes until the index reaches its maximum value.

As can be seen from figures 3 and 4, the values of the plastic strength of the test samples under
number 1 with the addition of 5% additive from apple and carrot refuse are close to the control.

![Graph 3](image3.png)

Figure 3. Change in the plastic strength of the marshmallow mass at various dosages of apple
additive: 1 - control; 2 - sample 1; 3 - sample 2; 4 - sample 3; 5 - sample 4.

![Graph 4](image4.png)

Figure 4. Change in the plastic strength of the marshmallow mass at various dosages of carrot additive:
1 - control; 2 - sample 1; 3 - sample 2; 4 - sample 3; 5 - sample 4.

Test samples numbered 2-4 with the addition of 15-35% additive from apple or carrot refuse are
characterized by increased plastic strength, while the maximum value reaches an average of 32 kPa,
which is 33% higher compared to the control.

An increase in the plastic strength in the test samples is possible due to an increase in the content of
dietary fiber from carrot and apple additive, which have the property of absorbing water from the
solvation shells of agar substances. As a result, the time of gelation is reduced, and the gel is
characterized by greater strength.

As a result of the research, a dosage of 30% apple or carrot additive was chosen, which ensures the
enrichment of marshmallows with minor substances, and the molding method is extrusion.

In order to determine the consumer properties of the developed new types of marshmallows using
puree from apple and carrot refuse, boiled with starch syrup, in an optimal dosage of 30%, the following
indicators were determined in finished products: organoleptic and physicochemical quality indicators,
nutritional value. The results of the obtained studies of the finished marshmallow are presented in tables 1, 2.

Table 1. Indicators of the quality of marshmallow with using additive from apple and carrot refuse

Indicators	Marshmallow characteristic	«Nezhnost» (with apple additive)	«Legkost» (with carrot additive)
Taste and smell	Organoleptic quality indicators	Apple flavor and aroma, without foreign taste and smell	Carrot flavor and aroma, without foreign taste and smell
Colour	White	Light orange	
Structure	Characteristic of marshmallows, foamy, uniform	Various, no deformation	
Form	Physical and chemical quality indicators	Moisture content, % 24.2 23.5	Reducing substance, % 18.76 13.37
	Total acidity, deg.	2.4 2.3	
	Density of marshmallow mass, kg / m³, no more	530 550	

From table 1 it can be seen that new types of marshmallows, prepared using puree from apple and carrot refuse, boiled with starch syrup, in terms of organoleptic and physicochemical quality indicators, meet the requirements of the current regulatory and technical documentation. The taste, smell and color of the marshmallow depends on the type of additive used in the recipe.

A study of the nutritional value of marshmallows using additive from apple or carrot refuse showed that the developed products in terms of the content of such essential nutrients as dietary fiber and antioxidants can be recommended for a healthy diet (table 2).

The developed new types of marshmallows «Nezhnost» and «Legkost» are characterized by a reduced energy value (respectively, 93.7 kJ (22.4 kcal) and 78.6 kJ (18.8 kcal) lower than that of the marshmallow «Vanilny» 1303, 7 kJ (311.6 kcal).

From table 2 it follows that 100 g of marshmallow using additive from apple or carrot refuse contains dietary fiber in an amount of 2.2 and 2.0 g, respectively, which makes it possible to replenish the average daily human need for this functional ingredient by 11 and 10%.

The antioxidant value of marshmallows depends on the type of additive used in its recipe. It has been established that marshmallows using additive from apple refuse are a source of water-soluble antioxidants, such as flavonoids, which are contained in an amount of 12.6% of the daily intake, while marshmallows using additive from carrot refuse is a source of fat-soluble antioxidant beta-carotene, the content of which replenishes the daily intake of this antioxidant by 28%. The mineral composition of new types of marshmallows slightly differs from the control.
Table 2. Chemical composition of 100 g of marshmallow with using additive from apple and carrot refuse

Indicators	Average daily requirement	Nutrient content	The share of meeting the average daily need for nutrients, %				
		«Vanilny» (control sample)	«Nezhnost»	«Legkost»	«Vanilny» (control sample)	«Nezhnost»	«Legkost»
Proteins, g	80	0.8	1.0	1.1	1.0	1.3	1.4
Fats, g	70	0.1	0.1	0.1	0.1	0.1	0.1
Carbohydrates, g	400	76.9	71.1	71.9	19.2	17.8	18.0
Dietary fiber, g	20	1.0	2.2	2.0	6.0	11.0	10.0
Organic acids, g	2	0.9	1.0	0.9	45.0	50.0	45.0
Vitamins, mg:							
beta-carotene	5	-	-	1.4	-	-	28.0
ascorbic acid	90	-	6.5	-	7.2	-	
flavonoids	250	3.4	31.6	7.5	1.4	12.6	3.0
Ash, g	-	0.3	0.4	0.5	-	-	
Mineral substances, mg:							
K	2500	55.4	37.6	50.0	2.2	1.5	2.0
Ca	1000	12.6	29.1	37.9	1.3	2.9	3.8
Mg	400	9.9	17.8	27.6	2.5	4.5	6.9
P	800	11.4	25.1	46.4	1.4	3.1	5.8
Fe	10/18	0.60	1.20	0.9	6.0/3.3	12.0/6.7	9.0/5.0
Zn	12	0.07	0.08	0.09	0.6	0.7	0.8
Cu	1	0.02	0.03	0.02	2.0	3.0	2.0
Mn	2	0.04	0.05	0.06	2.0	2.5	3.0
Energy value, kJ (kcal)	11704 (2795)	1303.7 (311.6)	1210.0 (289.2)	1225.1 (292.8)	11.1	10.3	10.5

4. Conclusion
The developed new types of marshmallows with using of puree from apple and carrot refuse, boiled with starch syrup, in contrast to the traditional ones, are characterized by improved organoleptic properties, reduced energy value, increased content of dietary fiber and antioxidants such as flavonoids and beta-carotene. A technological feature of the marshmallow production technology is the use of the molding method is extrusion.

5. Acknowledgments
The work was carried out with using the scientific equipment of the Collective Use Center "Selection of agricultural crops and technologies of the production, storage and processing of functional and therapeutic-prophylactic products".

References
[1]Perfilova O V, Babushkin V A and Bryksina K V 2020 The effect of microwave heating of fruit and vegetable raw materials on the water-soluble antioxidants content Journal of Physics: Conference Series 1679(4) 042055
[2]Perfilova O V, Babushkin V A, Blinnikova O M and Bryksina K V 2020 Physical methods in innovative technological solutions of beet refuse processing Journal of Physics: Conference Series 1679(4) 042031
[3]Kulikov I and Minakov I 2018 A socio-economic study of the food sector: The supply side European Research Studies Journal 21(4) 174-185
[4]Minakov I A and Nikitin A V 2019 Agricultural market development: Trends and prospects International Journal of Innovative Technology and Exploring Engineering 9(1) 3842-3847
[5] Solomatin N M, Solomatina E, Sorokupudov V N, Myachikova N I, Georgescu C et al 2018 The use of the new apple hybrids fruits with red pulp in the food industry Scientific Study and Research: Chemistry and Chemical Engineering, Biotechnology, Food Industry 19(3) 345-351

[6] Krasnikova E S, Krasnikov A V and Babushkin V A 2020 The influence of composite flour mixtures on Saccharomyces cerevisiae biotechnological properties and bread quality IOP Conference Series: Earth and Environmental Science 421(2) 022008

[7] Krasnikova E S, Babushkin V A, Morgunova N L and Krasnikov A V 2020 The use of ultrasound for development of baker's yeast activation technology Journal of Physics: Conference Series 1679(2) 022002

[8] Blinnikova O M, Babushkin V A, Akindinov V V, Perfilova O V and Novikova I M 2020 Production technology and mathematical method for modeling the formulation of fruit and jelly candies enriched with collagen IOP Conference Series: Materials Science and Engineering 919(5) 052036

[9] Kirina I B, Belosokhov F G, Titova L V, Suraykina I A and Pulpitov V F 2020 Biochemical assessment of berry crops as a source of production of functional food products IOP Conference Series: Earth and Environmental Science 548(8) 082068

[10] Ivanova E S, Rodionovich Y V, Ivanova E P, Konovalov V V and Nikitin D V 2020 Research of methods of processing post-spirit drinking enterprises of the central-black-earth district IOP Conference Series: Earth and Environmental Science 422(1) 012112

[11] Suhareva T, Sergienko I, Kutsova A and Ratushny A 2019 Mathematical planning when choosing rational dosages of ingredients for adjusting the composition of bakery products International Journal of Engineering and Advanced Technology 8(6) 4562-4565

[12] Perfilova O V, Akishin D V, Vinnitskaya V F, Danilin S I and Olikainen O V 2020 Use of vegetable and fruit powder in the production technology of functional food snacks IOP Conference Series: Earth and Environmental Science 548(8) 082071

[13] Blinnikova O M, Babushkin V A, Eliseeva L G and Usova G S 2020 Modeling a formulation and assessment of the consumer properties of the special purpose starch drink Sarhad Journal of Agriculture 36(3) 939-948

[14] Suhareva T N and Sergienko I V 2020 Projecting of functional structure of fish product IOP Conference Series: Earth and Environmental Science 422(1) 012055

[15] Apet T K and Pashuk Z N 2004 Handbook of the technologist of confectionery production. In 2 volumes. Vol. 1. Technologies and recipes (St Petersburg: GIORD) 560 p