Tailoring Nitrogen Terminals on MXene Enables Fast Charging and Stable Cycling Na-Ion Batteries at Low Temperature

Yang Xia1, Lanfang Que2*, Fuda Yu2, Liang Deng1, Zhenjin Liang3, Yunshan Jiang1, Meiyan Sun1, Lei Zhao1*, Zhenbo Wang1,4*

HIGHLIGHTS

• An interlayer confined strategy to realize the substitution of nitrogen terminals between Ti3C2 MXene layers is proposed.
• The targeted Ti3C2-Nfunct anode exhibits fast-charging ability and great superiority in cycle life at −25 °C.
• Ti3C2-Nfunct not only possesses a lower Na-ion diffusion energy barrier and charge transfer activation energy, but also exhibits Na+-solvent co-intercalation behavior at low temperature.

ABSTRACT Sodium-ion batteries stand a chance of enabling fast charging ability and long lifespan while operating at low temperature (low-T). However, sluggish kinetics and aggravated dendrites present two major challenges for anodes to achieve the goal at low-T. Herein, we propose an interlayer confined strategy for tailoring nitrogen terminals on Ti3C2 MXene (Ti3C2-Nfunct) to address these issues. The introduction of nitrogen terminals endows Ti3C2-Nfunct with large interlayer space and charge redistribution, improved conductivity and sufficient adsorption sites for Na+, which improves the possibility of Ti3C2 for accommodating more Na atoms, further enhancing the Na+ storage capability of Ti3C2. As revealed, Ti3C2-Nfunct not only possesses a lower Na-ion diffusion energy barrier and charge transfer activation energy, but also exhibits Na+-solvent co-intercalation behavior to circumvent a high de-solvation energy barrier at low-T. Besides, the solid electrolyte interface dominated by inorganic compounds is more beneficial for the Na+ transfer at the electrode/electrolyte interface. Compared with the unmodified sample, Ti3C2-Nfunct exhibits a twofold capacity (201 mAh g−1), fast-charging ability (18 min at 80% capacity retention), and great superiority in cycle life (80.9%@5000 cycles) at −25 °C. When coupling with Na3V2(PO4)2 F3 cathode, the Ti3C2-Nfunct//NVPF exhibits high energy density and cycle stability at −25 °C.

KEYWORDS Tailoring nitrogen terminals; Na+-solvent co-intercalation; Interfacial kinetics; Fast charging; Low-temperature SIBs
1 Introduction

The ever-increasing demand such as space exploration, military defence, and electric vehicles impels researchers to focus on developing high-performance energy storage devices at low temperature (low-T) [1–3]. Although great efforts have been made to improve the low-T performance, lithium-ion batteries (LIBs) cannot be charged at high currents at low-T and are accompanied by safety risks due to serious dendrite problems [4]. And these issues will be more prominent if commercial graphite is used as the anode. In this regard, researchers turn their attention to sodium-ion batteries (SIBs) owing to the low cost and superior temperature tolerance compared to LIBs [5]. In addition, the de-solvation energy of Na+ is about 25–30% smaller than Li+, meaning a lower activation barrier of Na (de) insertion [6], which is promising to achieve faster charging and higher battery performance at low-T according to the Arrhenius formula [7]. However, their low-T performance is still limited due to the subzero-temperature induced sluggish ionic transport in electrodes, decreased ions conductivity in electrolytes, and increased impedance between electrode and electrolyte [8, 9].

To solve these issues, external warming devices and self-heating systems are applied successively (Scheme 1a), which realize the low-T operation with minimal battery performance loss [10]. However, an extra high current is required for initial activation. Besides, the self-heating devices need to change the structure of the battery and lead to uneven heat distribution; thus there are certain safety risks [11]. Electrolytes are considered as a key reason for battery performance loss, due to the increased viscosity and poor ionic transport at low-T. Great efforts, such as employing low-melting-point solvents, high ions conductive electrolytes, novel salt additives and designing the solvation structure of electrolytes, are made to develop electrolytes applicable to low-T conditions [12–14]. Though several electrolytes (e.g., the mixture of PC and EC, ether-based electrolytes) have been found suitable for low-T operation, low-T batteries are still hindered by the slow charging process (Scheme 1b), if carbon-based anodes are employed [15, 16]. Serious polarization at high current density under low-T leads to the fast arrival of cut-off voltages, resulting in minimal accessible capacity and notorious dendrites formation. As proposed by the Sand time model, the time (τ) of the appearance of dendrites is inversely proportional to the square of the current density (J) and directly proportional to ionic diffusion (D) [17–19].

\[
\tau = \frac{\pi e^2 D (1 + \mu_c / \mu_a)^2 C_0^2}{4 J^2}
\]

in which \(\mu_c\) and \(\mu_a\) are the mobilities of cation and anion, and \(C_0\) is the initial concentration of the electrolyte. Therefore, it is vital to develop novel anode materials that possess fast interfacial kinetics to conquer these challenges at low-T.

\(\text{Ti}_3\text{C}_2\), a typical member of the MXenes family, possessing high conductivity, large interlayer spacing, low Na+ diffusion barrier, high theoretical capacity and appropriate operation voltage, is prospective anode material of SIBs at low-T [20, 21]. However, the surface terminations, such as –OH and –F, highly affect the electronic conductivity and adsorb ability of cations [22, 23]. Restacking of nanosheets causes poor electrolyte wettability and ion accessibility, leading to sluggish ion diffusion and limited reversible capacity [24, 25].

In general, the performance of MXenes has been improved at low-T by constructing 3D architectures to enhance ionic conductivity in order to achieve fast charging and cycle stability at low temperature.
accessibility, interlayer pillaring and surficial groups regulation [9, 26–31]. Tailoring surficial terminals on MXenes is a method to improve the charge transfer process by directly regulating electronic structure [23, 32]. On the other hand, surficial terminals would promote interfacial chemical bonding between ions and substrates to suppress the formation of dendrites [33]. However, compared to the conventional gas doping methods, it is still a great challenge to find a facile and efficient strategy to tailor terminals between Ti$_3$C$_2$ MXene layers. Moreover, the ions storage mechanism of MXenes under low temperature is still rarely reported.

Herein, to lower the charge transfer barrier and boost ions diffusion kinetics, an interlayer confined strategy for tailoring nitrogen terminals on Ti$_3$C$_2$ has been proposed, which realizes the fast charging ability at − 25 °C (Scheme 1c). The pre-intercalated cetyltrimethylammonium bromide (CTAB) not only introduces nitrogen source into Ti$_3$C$_2$ MXene layers for designing nitrogen terminals (Ti$_3$C$_2$-N$_{\text{func}}$), but also supports the layer structure during the annealing process. The corresponding structural transformation and formation mechanism are demonstrated by variable temperature in situ X-ray diffraction (XRD). As revealed by density functional theory (DFT) calculations, tailoring nitrogen terminals would lead to charge redistribution on Ti$_3$C$_2$ layer, narrowing the bandgap, endowing the sodiophilicity, and reducing the diffusion energy barrier. The comprehensive X-ray photoelectron spectroscopy (XPS) analyses indicate that the solid electrolyte interface (SEI) formed on Ti$_3$C$_2$ and Ti$_3$C$_2$-N$_{\text{func}}$ electrode shows different composition changes with more inorganic compounds in the interior when formed on Ti$_3$C$_2$-N$_{\text{func}}$ electrode, which is essential for the Na$^+$ transfer at the electrode/electrolyte interface. Temperature is a crucial factor that strongly influence the formation of surface terminations on MXenes. To determine the optimal tailoring temperature, in situ high-temperature XRD and thermogravimetric analysis (TGA) were performed to track the thermal structural transformation of Ti$_3$C$_2$-CT$_{\text{confined}}$ as demonstrated in Figs. 1b and S3. When the temperature rises from 25 to 200 °C, the (002) peak of Ti$_3$C$_2$-CT$_{\text{confined}}$ become wider and shift to a lower angle compared to Ti$_3$C$_2$ (Fig. S2). This is completely different from the simple overlaying of (002) peak and CTAB peak observed in Ti$_3$C$_2$-CT$_{\text{mix}}$ (Ti$_3$C$_2$ physically mixed with CTAB powders), further verifying that CTAB has successfully intercalated in the layers of Ti$_3$C$_2$. Such a phenomenon is consistent with high-resolution transmission electron microscopy (HRTEM) images, wherein the interlayer spacing of Ti$_3$C$_2$ enlarges to 1.45 nm from 1.13 nm after CTAB pre-intercalation (Fig. 1e, f). Second, the interlayered confined CTAB will decompose and part of the released N atoms will be captured by Ti$_3$C$_2$ to form nitrogen terminals during the annealing process. Temperature is a crucial factor that strongly influence the formation of surface terminations on MXenes. To determine the optimal tailoring temperature, in situ high-temperature XRD and thermogravimetric analysis (TGA) were performed to track the thermal structural transformation of Ti$_3$C$_2$-CT$_{\text{confined}}$ as demonstrated in Figs. 1b and S3. When the temperature rises from 25 to 200 °C, the (002) peak of Ti$_3$C$_2$-CT$_{\text{confined}}$ slightly shifts to a higher angle, and a weight loss of 2.2% is observed both in Ti$_3$C$_2$ and Ti$_3$C$_2$-CT$_{\text{confined}}$, which could...
be ascribed to the loss of water adsorbed in the layers of Ti$_3$C$_2$ [39]. The salient deviation of TGA curves from 200 to 250 °C between Ti$_3$C$_2$ and Ti$_3$C$_2$-CT$_{\text{confined}}$ can be attributed to the decomposition of CTAB, in which N atoms are released from CTAB (Fig. S3). With the temperature increasing above 300 °C, the removal of surficial terminals will take place as in previous reports [29, 40]. When the temperature rises to 350 °C, there is an obvious drop in the TGA curves of Ti$_3$C$_2$-CT$_{\text{confined}}$ compared to Ti$_3$C$_2$ and pure CTAB powder. Such a phenomenon could be attributed to the low carbonization ratio of CTAB and the confined effect of MXene on CTAB. A new peak is gradually formed at 25.2° (Fig. 1b), which belongs to anatase TiO$_2$ (JCPDS No. 71-1166) [41]. However, the (002) and (110) peaks belonging to Ti$_3$C$_2$ are still maintained, implying the layer structure could be kept at 350 °C. When temperature keeps rising, the intensity of (002) peak decreases and more characteristic peaks of anatase TiO$_2$ appear, confirming that Ti$_3$C$_2$ would inevitably transform to anatase TiO$_2$ at a higher temperature. To confirm the tailoring temperature, the electrochemical performance of Ti$_3$C$_2$-CT$_{\text{confined}}$ annealing between 300 and 400 °C were compared, as shown in Fig. S4. Due to the low tailoring efficiency under 300 °C and serious oxidation of Ti$_3$C$_2$ under 400 °C, 350 °C is considered as an appropriate temperature for tailoring nitrogen terminals on Ti$_3$C$_2$.

Fig. 1 a FTIR spectra of CTAB powder, Ti$_3$C$_2$ and Ti$_3$C$_2$-CT$_{\text{confined}}$. b In situ high-temperature XRD patterns, enlarged view within 5°–8° of Ti$_3$C$_2$-CT$_{\text{confined}}$ within 25–600 °C, and enlarged view of XRD pattern at 350 °C. c XRD patterns of Ti$_3$C$_2$, Ti$_3$C$_2$-350, Ti$_3$C$_2$-N$_{\text{max}}$ and Ti$_3$C$_2$-N$_{\text{confined}}$. d Illustration of Ti$_3$C$_2$ during the tailoring process. HRTEM images of e Ti$_3$C$_2$, f Ti$_3$C$_2$-CT$_{\text{confined}}$ and g Ti$_3$C$_2$-N$_{\text{funct}}$. h Ti, O, N, and C elements mappings of Ti$_3$C$_2$-N$_{\text{funct}}$.
To illustrate the important role of CTAB pre-intercalation in the preparation of Ti$_3$C$_2$-N$_{\text{funct}}$, XRD patterns of Ti$_3$C$_2$-N$_{\text{mix}}$, Ti$_3$C$_2$-N$_{\text{fuct}}$, and Ti$_3$C$_2$-CT$_{\text{mix}}$ (product of Ti$_3$C$_2$-CT$_{\text{mix}}$ after annealing at 350 °C), Ti$_3$C$_2$-350 (Ti$_3$C$_2$ powder after annealing at 350 °C), and Ti$_3$C$_2$ are compared (Fig. 1c). The main diffraction peaks of Ti$_3$C$_2$-N$_{\text{mix}}$ are similar to that of Ti$_3$C$_2$ and the peak of anatase TiO$_2$ is also observed in Ti$_3$C$_2$-N$_{\text{fuct}}$, indicating well-layered structure with a large lateral dimension. Thermal treatment can achieve uniform N doping and make Ti$_3$C$_2$-N$_{\text{fuct}}$ maintain uniform N doping and make Ti$_3$C$_2$-N$_{\text{fuct}}$ maintain well-layered structure with a large lateral dimension. Thermal treatment can achieve uniform N doping and make Ti$_3$C$_2$-N$_{\text{fuct}}$ maintain uniformly. Moreover, a thick carbon layer on Ti$_3$C$_2$-N$_{\text{mix}}$ also indicated that CTAB decomposed outside of Ti$_3$C$_2$ layers (Fig. S5). Since the introduction of CTAB, more TiO$_2$ peaks are observed in Ti$_3$C$_2$-N$_{\text{fuct}}$ than in other samples. The split-up of (002) peak in Ti$_3$C$_2$-N$_{\text{fuct}}$ further indicates that Ti$_3$C$_2$-N$_{\text{fuct}}$ still keeps large interlayer spacing after the decomposition of pillared CTAB. This is consistent well with the TEM images shown in Fig. 1e–g, wherein Ti$_3$C$_2$ shows a layer distance of 1.13 nm and expands to 1.45 nm after the CTAB intercalation, then reduces to 1.35 nm after thermal treatment. Figure 1d illustrates the structure evolution of Ti$_3$C$_2$ during the preparation of Ti$_3$C$_2$-N$_{\text{fuct}}$, and the phenomenon of (002) peak splitting. Moreover, the N element is distributed uniformly on Ti$_3$C$_2$-N$_{\text{fuct}}$ (Fig. 1h). The crinkled nanosheets remain after thermal treatment (Fig. S6), ensuring electrolyte wettability and ion accessibility. These results demonstrate that CTAB pre-intercalation and thermal treatment can achieve uniform N doping and make Ti$_3$C$_2$-N$_{\text{fuct}}$ maintain well-layered structure with a large lateral distance, while the physical mixing of CTAB cannot achieve this effect.

2.2 Electronic Structure Analysis

XPS was applied to record the difference of the valence states of Ti/O elements and the existence of N between Ti$_3$C$_2$-CT$_{\text{confined}}$ and Ti$_3$C$_2$-N$_{\text{fuct}}$. The Ti 2p spectra of Ti$_3$C$_2$-CT$_{\text{confined}}$, Ti$_3$C$_2$-N$_{\text{fuct}}$, and Ti$_3$C$_2$ are provided in Figs. 2a and S7a, a new peak appears at 456.5 eV, which is attributed to Ti-N in Ti$_3$C$_2$-N$_{\text{fuct}}$, indicating that N atoms bond with Ti atoms on Ti$_3$C$_2$ [42–44]. Moreover, the O 1s spectra reflect the change of surficial composition on Ti$_3$C$_2$ (Fig. 2b) [45, 46]. The peak at 533.8 eV, corresponding to O-N derived from the electrostatic interaction between N atoms and Ti atoms in CTAB and surficial O-terminals of Ti$_3$C$_2$, disappears in Ti$_3$C$_2$-N$_{\text{fuct}}$. In addition, the C-Ti peak of Ti$_3$C$_2$, Ti$_3$C$_2$-CT$_{\text{confined}}$, and Ti$_3$C$_2$-N$_{\text{fuct}}$ also reflect the electrostatic interaction between CTAB and Ti$_3$C$_2$ (Fig. S7).

DFT calculation was conducted to figure out the effect of tailoring N-terminals on the electronic structure of Ti$_3$C$_2$. A 3×2×1 supercell of Ti$_3$C$_2$O$_2$ is constructed as the initial structure as demonstrated in Fig. S8a. An oxygen atom is substituted by a nitrogen atom in the supercell to approximate the N atoms concentration in Ti$_3$C$_2$-N$_{\text{fuct}}$ (Fig. S8b), corresponding to a chemical stoichiometry of Ti$_3$C$_2$O$_{1.83}$N$_{0.17}$. Charge accumulation around N atoms and depletion near Ti atoms are verified by electron density difference (EDD) in Fig. 2d. Based on Eq. 2, the plane-averaged EDD Δρ and the charge transfer ΔQ are delivered to quantitatively compare the charge discrepancy after N substitution (Fig. 2d right) [8]. It could be observed that more charge will transfer from N atoms to Ti atoms compared to that of O atoms. The Mulliken charge distribution demonstrates that Ti atoms bond with N atoms and inner Ti atoms obtain more electrons with a reduced charge (Fig. 2d). These results are consistent with Ti 2p XPS spectra in Fig. 2a, in which the peaks of Ti-C and Ti$^{2+}$-C slightly shift to low binding energy due to more electrons provided by N atoms. The above observations suggest that the N-terminals could induce a charge redistribution, leading to the formation of more active sites of redox reactions [44].

\[\Delta Q(z) = \int \Delta \rho(z') \, dz' \]

(2)

The density of states (DOS) of Ti$_3$C$_2$O$_2$ and Ti$_3$C$_2$O$_{1.83}$N$_{0.17}$ are shown in Fig. 2e. As observed, the conduction band (CB) of Ti$_3$C$_2$O$_2$ and Ti$_3$C$_2$O$_{1.83}$N$_{0.17}$ is mainly contributed by Ti 3d, while the valence band (VB) originates from the hybridization of Ti 3d, C 2p and O 2p [32]. The bandgap is reduced from 0.15 to 0.13 eV after N atom substitution, manifesting that electrons could easily migrate from VB to CB, implying the enhanced electronic conductivity of Ti$_3$C$_2$O$_{1.83}$N$_{0.17}$. The DOS shape of Ti$_3$C$_2$O$_{1.83}$N$_{0.17}$...
below the Fermi level is sharper, indicating that the substitution of N atoms makes electrons more localized [47], which is beneficial for the chemical bonding with Na⁺ to increase the driving force for nucleation to inhibit the formation of metallic Na nuclei [33]. Such improvement is particularly important at low temperatures and can effectively inhibit the formation of sodium dendrites to achieve fast charging ability. This speculation will be confirmed in the next part.

Furthermore, the adsorption energy of Na atom on Ti₃C₂O₂ and Ti₃C₂O₁.₈₃N₀.₁₇ is investigated to demonstrate the sodiophilicity of N-groups on Ti₃C₂. The optimized geometric structures of a Na atom on monolayer Ti₃C₂O₂ and Ti₃C₂O₁.₈₃N₀.₁₇ are exhibited in Figs. S9 and S10. As exhibited in Fig. S11, after tailoring N-terminals on Ti₃C₂, the adsorption energy becomes more negative, confirming the adsorption stability of Na. It is worthy to notice that the adsorption sites near the N atoms possess the lowest adsorption energy, suggesting that the surficial N-terminals would induce Na⁺ to form a Na–N–Ti interaction to keep the lowest energy state. Such a phenomenon indicates that the existence of N-terminal on Ti₃C₂ could regulate the Na deposition behavior. Moreover,
the optimized structures of a Na atom intercalating in double layers of Ti$_3$C$_2$O$_2$ and Ti$_3$C$_2$O$_{1.83}$N$_{0.17}$ are exhibited in Fig. S12, wherein the Ti$_3$C$_2$O$_{1.83}$N$_{0.17}$ possesses larger interlayer spacing, in accordance with HRTEM results (Fig. 1 g). The negative formation energy suggests that Na$^+$ prefers to intercalate into the layers of Ti$_3$C$_2$. The result suggests that the surficial nitrogen terminals regulation could effectively improve the electronic conductivity, enhancing the sodiophilicity of Ti$_3$C$_2$, and improve the possibility of Ti$_3$C$_2$ for accommodating more Na atoms, further enhancing the Na$^+$ storage capability of Ti$_3$C$_2$.

2.3 Electrochemical Performance at -25 °C

Based on the well-tailored Ti$_3$C$_2$-N$_{\text{func}}$ anode, half-cells are assembled with metallic Na to evaluate the electrochemical performance at -25 °C. Ti$_3$C$_2$-N$_{\text{func}}$ delivers a much higher capacity, which is nearly 2 times that of Ti$_3$C$_2$ at 25 and -25 °C (Fig. 3a). Besides, the capacity loss caused by the temperature drop is greatly reduced, and the reversible capacity of Ti$_3$C$_2$-N$_{\text{func}}$ at -25 °C is about 77% of room temperature. The first charging/discharging curves of Ti$_3$C$_2$ and Ti$_3$C$_2$-N$_{\text{func}}$ demonstrate that SEI forms in the first discharge process, which leads to the unpleasant initial Coulombic efficiency (Fig. S13). Figure 3b is the rate capability of the two anodes at -25 °C, the specific capacities of Ti$_3$C$_2$-N$_{\text{func}}$ are 201, 182, 172, 160, 143, 126, and 90 mAh g$^{-1}$ at 0.05, 0.1, 0.2, 0.5, 1.0, 2.0, and 5.0 A g$^{-1}$, while about half of the capacity is obtained in Ti$_3$C$_2$. The Ti$_3$C$_2$-N$_{\text{func}}$ anode delivers fast-charging/discharging ability at low-T, which could recharge to 80% capacity (160 mAh g$^{-1}$) within 18 min and 72% capacity (144 mAh g$^{-1}$) in 8 min (Fig. S14). After 5000 cycles at 1.0 A g$^{-1}$ at -25 °C, the Ti$_3$C$_2$-N$_{\text{func}}$ electrode maintains capacity retention of 80.9% (Fig. 3d), superior to most reported low-T batteries as shown in Table S2 and Fig. 3c [48–50].

In addition, Na$_3$V$_2$(PO$_4$)$_2$F$_3$ cathode, due to its high capacity retention and reversibility of Na$^+$ at low-T [51], was selected as the basis of eventual full-cell construction (Fig. 3g). The electrochemical performance of Na$_3$V$_2$(PO$_4$)$_2$F$_3$ cathodes are shown in Fig. S15. The

![Fig. 3](https://example.com/fig3.png)

Fig. 3 Electrochemical performance of Ti$_3$C$_2$ and Ti$_3$C$_2$-N$_{\text{func}}$ anodes in Na-ion half-cells and Ti$_3$C$_2$-N$_{\text{func}}$/NVPF full-cell. **a** The second charge/discharge curves of Ti$_3$C$_2$ and Ti$_3$C$_2$-N$_{\text{func}}$ anodes in Na-ion half-cells at 0.05 A g$^{-1}$ under 25 and -25 °C. **b** Rate capabilities of half-cells at -25 °C. **c** Comparison of low-T cycle performance of Ti$_3$C$_2$-N$_{\text{func}}$ vs. other reported LIBs and SIBs. **d** Cycle performance of half cell at -25 °C. **e** Rate performance (1C represents 0.128 mA g$^{-1}$) and **f** cycling stability at 0.5C of Ti$_3$C$_2$-N$_{\text{func}}$/NVPF full-cell. **g** Illustration of Ti$_3$C$_2$-N$_{\text{func}}$/NVPF full-cell.
reversible capacities of 118 mAh g⁻¹ (based on the mass of cathode material) at 0.2C have been achieved (1C represents 0.128 mA g⁻¹), which keeps high capacity retention (95%) compared to room temperature (Figs. 3e and S16). The designed Ti₃C₂-Nₕunct/NVPF SIB displays excellent cycle stability at −25 °C (Fig. 3f), which keeps capacity retention of 88.1% after 200 cycles at 0.5C. Moreover, as shown in Fig. S17, the Ti₃C₂-Nₕunct//NVPF full cell achieves a maximum energy density and power density of 414.14 Wh kg⁻¹ and 763.98 W kg⁻¹ at −25 °C, respectively (based on the cathode material). Hence, the interlayer confined strategy for tailoring N-terminals on Ti₃C₂ is effective for improving the Na⁺ storage performance at low-T of MXenes including temperature adaptability, fast-charging ability, and ultra-long lifespan.

2.4 Analysis of Kinetics of Ti₃C₂-Nₕunct Anode at Low Temperature

Given a deeper insight into the effects of tailoring N-terminals on Ti₃C₂, DFT calculations and various experimental analyses were delivered to investigate the kinetics of Ti₃C₂ and Ti₃C₂-Nₕunct. To clarify the fast diffusion process of Na⁺ in Ti₃C₂-Nₕunct, DFT calculations of energy barrier of possible Na⁺ diffusion paths in bilayer framework for Ti₃C₂O₂ and Ti₃C₂O₁.₈₃N₀.₁₇ were carried out. As previous results in Fig. S11, the site on top of C atoms is preferred Na adsorption sites. Therefore, two possible pathways of Na⁺ between the two nearest neighboring C sites in the bilayer of Ti₃C₂O₂ are explored (Fig. 4a). For O-PathC-C, the Na⁺ is hopping directly to the nearest C site in a one-step path; for O-PathC-Ti-C, the Na⁺ is migrating along the pathway from the top of C atoms to the top of Ti atoms and then to the nearest C atoms [22, 52]. The calculated energy barrier of two paths are 288.7 and 132.2 meV, indicating that Na⁺ tends to migrate along the pathC-Ti-C. When an oxygen atom is substituted by a nitrogen atom in Ti₃C₂O₁.₈₃N₀.₁₇, C atoms with different chemical environment are emerging, labelled as CA, CB, CC, and CD. Therefore, three diffusion directions of Na⁺ in the bilayer of Ti₃C₂O₁.₈₃N₀.₁₇ are explored as shown in Figs. 4b, c and S18–S19. It is noteworthy that the diffusion energy barrier of pathC-Ti-C in Ti₃C₂O₁.₈₃N₀.₁₇ is lower than that of Ti₃C₂O₂ and the energy barrier for Na⁺ hopping over the Ti-N bonds is lower than that of Ti-O bonds, demonstrating that tailoring N-terminals on Ti₃C₂ is efficient to facilitate Na⁺ diffusion. Especially, the N-PathC-Ti-C energy barrier for Na⁺ migration is presented in Fig. 4b, with a calculated energy barrier as low as 69.9 meV, which is much lower than that of typical Na-ion insertion materials as previous reported, such as TiO₂ (2.20 eV), TiS₂ (1.20 eV), and TiSe₂ (0.5 eV), confirming the fast kinetics of Ti₃C₂-Nₕunct [53–55].

The Na⁺ storage behavior of Ti₃C₂-Nₕunct electrodes at −25 °C is verified by the cyclic voltammetry (CV) curves at various scan rates from 0.2 to 2.0 mV s⁻¹ (Fig. S20a). According to Eq. 3:

\[i = a v^b \]

in which the Na⁺ storage mechanisms can be defined as faradic ion intercalation (b = 0.5) or capacitive response (b = 1.0) [56]. The calculated b values for peak C₁, C₂, A₁, and A₂ are 0.89, 0.95, 0.88, and 0.94, respectively, demonstrating that the Ti₃C₂-Nₕunct electrodes possess fast kinetics at −25 °C (Fig. S20b). The Na⁺ diffusion coefficients and polarization of Ti₃C₂ and Ti₃C₂-Nₕunct electrodes at −25 °C were identified by the galvanostatic intermittent titration technique (GITT) (Fig. 4d, details in Fig. S21). The Ti₃C₂-Nₕunct delivers much lower polarization during the charge/discharge process than that of Ti₃C₂ at −25 °C, which might suppress the nucleation rate of Na dendrites as shown in Fig. 4e [18]. The calculated Na⁺ diffusion coefficients of Ti₃C₂ and Ti₃C₂-Nₕunct electrodes at 25 and −25 °C are demonstrated in Fig. 4f. At room temperature, the Na⁺ diffusion coefficients of Ti₃C₂ and Ti₃C₂-Nₕunct are very close. However, while transferred to −25 °C, Ti₃C₂-Nₕunct could nearly maintain the same Na⁺ diffusion coefficients at room temperature, which is much higher than that of Ti₃C₂, indicating the better adaptability of Ti₃C₂-Nₕunct at low-T. This discrepancy is significant, as proposed by the Sand time model [17], the nearly 5.6 times difference in Na⁺ diffusion coefficients is expected to prolong the time (τ) of dendrites appearing, which could guarantee the cycle stability at low-T. Therefore, beneficial from the interfacial chemical bonding of Na⁺ and the low nucleation rate of Na dendrites, the Ti₃C₂-Nₕunct delivers excellent cycle stability.

The interfacial charge transfer dominates battery performance at low-T as previous studies reported, the activation energy (E_a) holds the key to determining the interfacial kinetics [7]. Based on the Butler–Volmer equation and Arrhenius equation, the relationship between charge transfer resistance (Rct) and E_a is generalized as:

\[T/R_{ct} = A \exp \left(-E_a/RT\right) \]
in which \(A \) is a constant, \(R \) is the gas constant, \(T \) is the temperature. As shown in Fig. 4g-h, the temperature-dependent EIS was performed to measure the value of \(R_{ct} \) from \(-25\) to \(25 \) °C for \(\text{Ti}_3\text{C}_2 \) and \(\text{Ti}_3\text{C}_2\text{-N}_{\text{funct}} \) electrodes. The equivalent circuit model of \(\text{Ti}_3\text{C}_2 \) and \(\text{Ti}_3\text{C}_2\text{-N}_{\text{funct}} \) electrodes is exhibited in Fig. S22. The fitted \(R_{ct} \) values of \(\text{Ti}_3\text{C}_2 \) and \(\text{Ti}_3\text{C}_2\text{-N}_{\text{funct}} \) electrodes at various temperatures are exhibited in Table S3. It is noteworthy that the \(R_{ct} \) values of two electrodes are low, indicating the fast charge transfer process at \(-25\) °C. Based on Eq. 4, the calculated values of \(E_a \) for \(\text{Ti}_3\text{C}_2 \) and \(\text{Ti}_3\text{C}_2\text{-N}_{\text{funct}} \) electrodes are 200.8 and 182.2 meV (Fig. 4i), respectively. This result demonstrates that \(\text{Ti}_3\text{C}_2\text{-N}_{\text{funct}} \) could serve a nearly 10% reduction in activation energy during the interfacial charge transfer process than that of \(\text{Ti}_3\text{C}_2 \). All these observations further confirm that tailoring N-terminals on \(\text{Ti}_3\text{C}_2 \) not only accelerate interfacial kinetics and \(\text{Na}^+ \) diffusion but also lower the charge transfer energy barrier, which is essential for achieving fast-charging ability at low-\(T \).
2.5 Analysis of Electrode/Electrolyte Interface

SEI is a crucial composition on electrode surface to affect the ion transport, which determines the electrochemical performance at low-T. To get deep insight of the SEI composition, high-resolution XPS of C 1s, O 1s, F 1s, and Na 1s spectra were collected from the electrode surface and in-depth of 10 nm with Ar+ sputtering for both Ti3C2 and Ti3C2-Nfunt anodes (after discharging to 0.01 V at −25 °C), as shown in Figs. 5a–c and S23. The C 1s spectra are fitted using peaks with binding energies of 284.2 (C–Ti), 284.8 (C–C), 285.6 (C–O), 286.3 (CH2–CF2), 287.4 (C=O), 288.3 (RCH2–F), 289.5 (O–C=O), and 290.8 (–CF2–) eV, which are consistent with Ti3C2, the main reduction products of diglyme solvent, Na2CO3 and PVDF [57]. These are also corresponding to the peaks located at 530.6 (C–Ti–Ox), 531.0 (Na2CO3), 531.7 (C–Ti–(OH)x), 532.6 (R–O–Na), and 533.8 (C=O) eV (Fig. 5b). Due to the reduction of TiO2, the peak at 529.6 eV (Na–O–Ti) belonging to NaxTiO2 could be observed in O 1s spectra of Ti3C2-Nfunt [58]. The peak located at 685.0 eV in F 1s spectra representing Na-F bond and the Na 1s spectra shows a peak at 1072.2 eV (Na–F and Na–O), demonstrating the existence of sodium compounds (Figs. 5c and S23) [51, 59]. Note that, the peak at 686.0 eV in F 1s spectra is belonging to the complex fluorosulfate, which is decomposed from NaCF3SO3 salt. Such a phenomenon could also be observed in the S 2p spectra (Figs. 5d and S24). Therefore, it can be inferred that the SEI layers formed on Ti3C2 and Ti3C2-Nfunt anodes are composed of both organic compounds (RCH2ONa and ROCO2Na) and inorganic compounds (NaF and Na2CO3). The complex fluorosulfate is distributed near the surface of Ti3C2 electrode. It is noteworthy that there is a difference between SEI formed on the two electrodes, where the organic compounds are the main components in the SEI of Ti3C2 electrode and the inorganic compounds are dominated in the SEI of Ti3C2-Nfunt electrode.

The compositions of SEI layer vary during the charge–discharge process. Figures 5e, f and S25 demonstrate the elemental compositions of SEI at different states of charge (SOC) and depths of Ti3C2 and Ti3C2-Nfunt anodes. For both electrodes, the C and F concentrations decrease during the discharge process and increase when charging back to 2.5 V, while the trends of the O and Na concentrations are opposite. It could be ascribed to the formation and reconstruction of SEI layer during the discharge and charge process. Moreover, there is a difference between Ti3C2 and Ti3C2-Nfunt electrodes when discharging to 0.01 V. For the Ti3C2-Nfunt electrode, the C concentration decreases sharply with sputtering depths increasing, while the Na concentration increases and the O concentration decreases slightly. This phenomenon indicates that there is a thin organic compound layer distributed near the surface and the inorganic compounds dominate the interior of the SEI. In contrast, there is no obvious change of the C and Na concentrations in the SEI of the Ti3C2 electrode. This means the organic compounds are distributed homogeneously in the SEI on the Ti3C2 electrode. Beneficial from the low charge transfer resistance of inorganic compounds as reported [58], the Ti3C2-Nfunt electrode delivers lower activation energy during the interfacial charge transfer process as illustrated in Fig. 5g, which is consistent with the above dynamic analysis. Moreover, the Ti 2p spectra of Ti3C2 and Ti3C2-Nfunt at different SOC after Ar+ etching to a depth of 10 nm are shown in Fig. 5d. The Ti 2p spectra of Ti3C2-Nfunt have greatly changed after discharged to 0.01 V, wherein the ratio of Ti2+-C increases and the peaks of Ti2+-C, Ti3+-C, and Ti-N shift to the lower binding energy, indicating the reduced valence of Ti and the formation of Ti–O–Na and Na–N–Ti interaction [60]. After the extraction of Na+, the partial Ti2+ is oxidized to Ti3+ when charged back to 2.5 V, demonstrating the reversible redox reactions of the Ti3+/Ti2+ couple. However, as for the Ti3C2 electrode, the ratio of Ti2+-C and Ti3+-C in Ti 2p spectra nearly maintained during the discharging and charging process. Such a phenomenon demonstrates that tailoring N-terminals on Ti3C2 provides more active sites for the redox reaction and induces more charge transfer during the surface/discharge process, leading to higher capacity. Overall, due to the inorganic component of SEI layer and more active sites for redox reaction, it is easy to understand the reason why Ti3C2-Nfunt delivers better sodium storage performance than that of Ti3C2 as shown in Fig. 3.

2.6 Na+ Storage Mechanism of Ti3C2-Nfunt at Low Temperature

How do Ti3C2-Nfunt Participate in the electrochemical reactions at low-T? Cycling performance is used to compare the Na+ storage capability of Ti3C2-Nfunt at different conditions (Fig. 6c). Interestingly, Ti3C2-Nfunt electrode delivers stable
cycling performance at −25 °C than that at room temperature. To facilitate a deep understanding of the sodiation behavior of Ti$_3$C$_2$-N$_{func}$, in situ and ex situ XRD measurements were made to demonstrate the structure reversibility during the charging–discharging process under different conditions. In situ XRD patterns with 2θ ranging from 6.0° to 9.0° and 22.5°–27.5° of Ti$_3$C$_2$-N$_{func}$ operating at room temperature are displayed in Fig. 6a. According to the discharge curve, the sodiation process can be divided into surficial adsorption and intercalation. Although the (002) peak belonging to Ti$_3$C$_2$ fixes at 8.3° during the continuous discharging–charging process, the (002') peak shifts to a higher angle during discharging, and then could not return when get the fully charged state. Moreover, the (008') peak disappears during discharging and reemerges at the charged state, which could be attributed to the intercalation of Na$^+$. These intercalated Na$^+$ will attract the MXene layers to each other, leading to a reduced interlayer space [61, 62].
obvious variation for the layer structure of Ti$_3$C$_2$-N$_{func}$ during the charging–discharging process would lead to unstable cycling performance at room temperature. The reflections located between 22.5° and 27.5° are attributed to the sodiation process of TiO$_2$, in which TiO$_2$ is transformed to sodium titanates (JCPDS No. 78-1590), titanium suboxide (JCPDS No. 72-2101) [58]. However, the TiO$_2$ particles forming during the tailoring process didn’t contribute to the increased capacity of Ti$_3$C$_2$-N$_{func}$ as shown in Fig. S26. In addition, TiO$_2$-N$_{mix}$ (deriving from the annealing product of TiO$_2$ mixed with CTAB powders) exhibits an unpleasant performance than pure TiO$_2$, further proving that the improved performance of Ti$_3$C$_2$-N$_{func}$ exactly stemmed from tailoring surficial N-terminals rather than the contribution of TiO$_2$ (Fig. S27).

To explore the Na$^+$ storage mechanism at low-T, ex situ XRD patterns of Ti$_3$C$_2$-N$_{func}$ electrodes operating at −25°C were recorded (Fig. 6b). Interestingly, after aging for 1 h in Na-ion half-cell at −25°C, the potential of Ti$_3$C$_2$-N$_{func}$ reduced 0.05 V (Fig. S28a). It could be attributed to the chemical pre-sodiation of Ti$_3$C$_2$-N$_{func}$ during the aging process, leading to the broaden of (002) peak, the shift of (004) peak of Ti$_3$C$_2$-N$_{func}$, and the disappearance of peaks of anatase TiO$_2$ (Fig. S28b). It has been reported that the anatase TiO$_2$ would transform into amorphous structure when sodiated at low temperature [63]. The widened (002) peak shifts to a lower angle when firstly discharged to 0.8 V, and then it returns to the higher angle at the fully discharged state. Two new lattice peaks are detected at 28.5° and 31.4°, corresponding to Na$_2$CO$_3$ and NaO$_2$. Different from operating at room temperature, the interlayer spacing of Ti$_3$C$_2$-N$_{func}$ is enlarged before discharging to 0.8 V, and then it shrinks during subsequent discharging process at low-T. Such phenomenon could be correlated to the intercalation of the solvent molecules [61, 64]. Moreover, the slight variation of (002) peak indicates the stable structure of

![Fig. 6](https://image-url.com/fig6.png)

Fig. 6 a In situ XRD patterns of Ti$_3$C$_2$-N$_{func}$ operating at room temperature with 2θ ranging from 6.0° to 9.0° and 22.5°–27.5°, the first two charge/discharge curves corresponding to the in situ XRD patterns. b Ex situ XRD patterns of Ti$_3$C$_2$-N$_{func}$ electrodes operating at −25°C. c Comparison of cycling performance for Ti$_3$C$_2$-N$_{func}$ operating at room temperature and −25°C. d Ex situ FTIR spectra of Ti$_3$C$_2$-N$_{func}$ electrodes. e Illustration of Na$^+$-solvent co-intercalation behavior in Ti$_3$C$_2$-N$_{func}$ at low-T
Ti₃C₂-Nₐₖₑₜ, leading to outstanding cycling performance at low-T. The elemental mapping of Ti₃C₂-Nₐₖₑₜ at a deep-discharged state is exhibited in Fig. S29 further prove the Na⁺ intercalation at low-T.

It is believed that the desolvation process is the rate-determining step at low-T due to the high desolvation energy barrier [65, 66]. As previous studies have indicated that there is an ion–solvent co-intercalation behavior in graphitic structure when operated in the ether-based electrolytes with high solvation energy [67, 68], we speculate that the graphite-like MXenes possessing larger interlayer spacing might deliver the similar ion–solvent co-intercalation behavior to circumvent the desolvation process to achieve fast kinetics at low-T. To confirm the hypothesis, the ex situ FTIR spectra of Ti₃C₂-Nₐₖₑₜ electrodes during sodiation and desodiation are collected. The FTIR spectra of the electrolyte (1 M NaCF₃SO₃ in diglyme) and pure solvent (diglyme) are compared in Fig. S30, demonstrating that the peak at 858 cm⁻¹ belonging to the solvated Na⁺ [69]. The characteristic peaks of the solvated Na⁺ appear at the full discharged state and disappear when charged back to 2.5 V in the ex situ FTIR spectra of Ti₃C₂-Nₐₖₑₜ and Ti₃C₂ (Figs. 6d and S31). Our previous work shows that if the solvent is simply adsorbed on the surface of the material, its signal is independent of the state of charge and could be detected during the whole charging–discharging process [70]. In Ti₃C₂-Nₐₖₑₜ, the characteristic peaks of diglyme solvent are strongly associated with SOC, suggesting that Na⁺ and solvent might possess similar migration behavior. Therefore, integrating these evidences into account, we deduced that Ti₃C₂-Nₐₖₑₜ possesses Na⁺-solvent co-intercalation behavior during the charge transfer process as illustrated in Fig. 6e, which could avoid the high desolvation energy barrier to realize the fast-charging ability at low-T.

3 Conclusions

In summary, we propose and demonstrate that tailoring nitrogen terminals on Ti₃C₂ through the interlayer confined strategy is crucial to enable high-performance SIBs at low temperature. N atoms derived from the decomposition of confined CTAB molecules directly substitute the surface terminals, which tailor the in-plane structure of Ti₃C₂. The interfacial kinetics and energy storage mechanism at −25 °C of Ti₃C₂-Nₐₖₑₜ are investigated. It is found that tailoring nitrogen terminals could boost Na⁺ diffusion kinetics and lower charge transfer barrier by the synergistic effects of large interlayer spacing, charge redistribution, and strong adsorption, empowering Ti₃C₂-Nₐₖₑₜ with higher Na⁺ diffusion coefficient and a 10% reduction in activation energy at low-T. The inorganic compounds in the SEI on Ti₃C₂-Nₐₖₑₜ are beneficial for Na⁺ transfer. Moreover, the ion–solvent co-intercalation behavior endows Ti₃C₂-Nₐₖₑₜ with fast-charging ability at low-T. As expected, the Ti₃C₂-Nₐₖₑₜ anodes deliver high capacity retention, fast-charging ability (charging 80% capacity within 18 min), and ultra-long lifespan (5000 cycles with a capacity retention of 80.9%) at −25 °C, far exceeding that of pristine Ti₃C₂. The assembled Ti₃C₂-Nₐₖₑₜ//NVPF full cells also deliver high energy density and cycling stability at −25 °C. This work opens avenues for the development of other 2D materials in constructing high-energy storage systems at low temperatures.

Acknowledgements We acknowledge the National Natural Science Foundation of China (Grant Nos. 21673064, 51902072 and 22109033), Heilongjiang Touyan Team (Grant No. HITTY-20190033), Fundamental Research Funds for the Central Universities (Grant Nos. HIT. NSRIF. 2019040 and 2019041), State Key Laboratory of Urban Water Resource and Environment (Harbin Institute of Technology) (Grant No. 2020 DX11). We acknowledge the support of the High-Performance Computing Center (HPCC) at Harbin Institute of Technology on first-principles calculations.

Funding Open access funding provided by Shanghai Jiao Tong University.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s40820-022-00885-7.
References

1. A. Gupta, A. Manthiram, Designing advanced lithium-based batteries for low-temperature conditions. Adv. Energy Mater. 10(38), 2001972 (2020). https://doi.org/10.1002/aenm.202001972

2. X. Dong, Z.W. Guo, Z.Y. Guo, Y. Wang, Y. Xia, Organic batteries operated at −70°C. Joule 2(5), 902–913 (2018). https://doi.org/10.1016/j.joule.2018.01.017

3. Y. Liu, Y. Zhu, Y. Cui, Challenges and opportunities towards fast-charging battery materials. Nat. Energy 4(7), 540–550 (2019). https://doi.org/10.1038/s41560-019-0405-3

4. M.J. Lee, K. Lee, J. Lim, M. Li, S. Noda et al., Outstanding low-temperature performance of structure-controlled graphene anode based on surface-controlled charge storage mechanism. Adv. Funct. Mater. 31(14), 2009397 (2021). https://doi.org/10.1002/adfm.202009397

5. J. Deng, W.B. Luo, S.L. Chou, H.K. Liu, S.X. Dou, Sodium-ion batteries: from academic research to practical commercialization. Adv. Energy Mater. 8(4), 1701428 (2018). https://doi.org/10.1002/aenm.201701428

6. T. Hosaka, K. Kubota, A.S. Hameed, S. Komaba, Research development on K-ion batteries. Chem. Rev. 120(14), 6358–6466 (2020). https://doi.org/10.1021/acs.chemrev.9b00463

7. W. Zhang, X. Sun, Y. Tang, H. Xia, Y. Zeng et al., Lowering charge transfer barrier of LiMnO4 via nickel surface doping to enhance Li+ intercalation kinetics at subzero temperatures. J. Am. Chem. Soc. 141(36), 14038–14042 (2019). https://doi.org/10.1021/jacs.9b05531

8. L.F. Que, F.D. Yu, Y. Xia, L. Deng, K. Goh et al., Enhancing Na-ion storage at subzero temperature via interlayer confinement of Sn2+. ACS Nano 14(10), 13765–13774 (2020). https://doi.org/10.1021/acsnano.0c05925

9. X. Gao, X. Du, T.S. Mathis, M.M. Zhang, X.H. Wang et al., Maximizing ion accessibility in MXene-knotted carbon nanotube composite electrodes for high-rate electrochemical energy storage. Nat. Commun. 11, 6160 (2020). https://doi.org/10.1038/s41467-020-19992-3

10. C.Y. Wang, G.S. Zhang, S.H. Ge, T. Xu, Y. Ji et al., Lithium-ion battery structure that self-heats at low temperatures. Nature 529(7587), 515–518 (2016). https://doi.org/10.1038/nature16502

11. X.S. Hu, Y.S. Zheng, D.A. Howey, H. Perez, A. Foley et al., Battery warm-up methodologies at subzero temperatures for automotive applications: recent advances and perspectives. Prog. Energy Combust. Sci. 77, 100806 (2020). https://doi.org/10.1016/j.pecs.2019.100806

12. J. Holoubek, H.D. Liu, Z.H. Wu, Y.J. Yin, X. Xing et al., Tailoring electrolyte solvation for Li metal batteries cycled at ultra-low temperature. Nat. Energy 6, 303–313 (2021). https://doi.org/10.1038/s41560-021-00783-z

13. B. Liao, H.Y. Li, M.Q. Xu, L.D. Xing, Y.H. Liao et al., Designing low impedance interface films simultaneously on anode and cathode for high energy batteries. Adv. Energy Mater. 8(22), 1800802 (2018). https://doi.org/10.1002/aenm.201800802

14. M.C. Smart, B.L. Lucht, S. Dalavi, F.C. Krause, B.V. Ratnakumar, The effect of additives upon the performance of MCMB/LiNi0.5Co0.2Mn0.3O2 Li-ion cells containing methyl butyrate-based wide operating temperature range electrolytes. J. Electrochem. Soc. 159(6), A739–A751 (2012). https://doi.org/10.1149/2.058206jes

15. Z.H. Lin, Q.B. Xia, W.L. Wang, W.S. Li, S.L. Chou, Recent research progresses in ether- and ester-based electrolytes for sodium-ion batteries. InfoMat 1(3), 376–389 (2019). https://doi.org/10.1002/adma.201808393

16. Y.X. Huang, L.Z. Zhao, L. Li, M. Xie, F. Wu et al., Electrolytes and electrolyte/electrode interfaces in sodium-ion batteries: from scientific research to practical application. Adv. Mater. 31(21), 1808393 (2019). https://doi.org/10.1002/adma.201808393

17. C. Brissot, M. Rosso, J.N. Chazalviel, P. Baudry, S. Lascaud, In-situ study of dendritic growth in lithium/PEO-salt/lithium cells. Electrochim. Acta 43, 1569–1574 (1998). https://doi.org/10.1016/S0013-4686(97)10055-X

18. B. Lee, E. Pack, D. Mitlin, S.W. Lee, Sodium metal anodes: emerging solutions to dendrite growth. Chem. Rev. 119(8), 5416–5460 (2019). https://doi.org/10.1021/acs.chemrev.8b00642

19. Y. Zhang, T.T. Zuo, J. Popovic, K. Lim, Y.X. Yin et al., Towards better Li metal anodes: challenges and strategies. Mater. Today 33, 56–74 (2020). https://doi.org/10.1016/j.mattod.2019.09.018

20. D. Er, J. Li, M. Naguib, Y. Gogotsi, V.B. Shenoy, Ti2C MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries. ACS Appl. Mater. Interfaces 6(14), 11173–11179 (2014). https://doi.org/10.1021/amt.401144q

21. P. Ma, D. Fang, Y. Liu, Y. Shang, Y. Shi et al., MXene-based materials for electrochemical sodium-ion storage. Adv. Sci. 8(11), 2003185 (2021). https://doi.org/10.1002/ads.202003185

22. Q. Tang, Z. Zhou, P. Shen, Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X (X = F, OH) monolayer. J. Am. Chem. Soc. 140(36), 14038–14042 (2018). https://doi.org/10.1021/jacs.9b10152b

23. Y. Xie, M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi et al., Role of surface structure on Li-ion energy storage capacity of two-dimensional transition-metal carbides. J. Am. Chem. Soc. 136(17), 6385–6394 (2014). https://doi.org/10.1021/ja501520b

24. M.Q. Zhao, X. Xie, C.E. Ren, T. Makaryan, B. Anasori et al., Hollow MXene spheres and 3D macroporous MXene frameworks for Na-ion storage. Adv. Mater. 29(37), 1702410 (2017). https://doi.org/10.1002/adma.201702410

25. F. Song, J. Hu, G. Li, J. Wang, S. Chen et al., Room-temperature assembled MXene-based aerogels for high mass-loading sodium-ion storage. Nano-Micro Lett. 14, 37 (2021). https://doi.org/10.1007/s40820-021-00781-6

26. N. Zhao, F. Zhang, F. Zhan, D. Yi, Y. Yang et al., Fe3+-stabilized Ti2C-T MXene enables ultrastable Li-ion...
storage at low temperature. J. Mater. Sci. Technol. 67, 156–164 (2021). https://doi.org/10.1016/j.msten.2020.06.037

27. X. Wang, J. Wang, J. Qin, X. Xie, R. Yang et al., Surface charge engineering for covalently assembling three-dimen-
sional MXene network for all-climate sodium ion batteries. ACS Appl. Mater. Interfaces 12(35), 39181–39194 (2020). https://doi.org/10.1021/acsami.0c10605

28. Y. Wu, P. Nie, L. Wu, H. Dou, X. Zhang, 2D MXene/SnS2 composites as high-performance anodes for sodium ion batteries. Chem. Eng. J. 334, 932–938 (2018). https://doi.org/10.1016/jcej.2017.10.007

29. Y. Wang, C. Ma, W. Ma, W. Fan, Y. Sun et al., Enhanced low-temperature Li-ion storage in MXene titanium carbide by surface oxygen termination. 2D Mater. 6(4), 045025 (2019). https://doi.org/10.1088/2053-1583/ab30f9

30. N. Sun, Z. Guan, Q. Zhu, B. Anasori, Y. Gogotsi et al., Enhanced ionic accessibility of flexible MXene electrodes produced by natural sedimentation. Nano-Micro Lett. 12, 89 (2020). https://doi.org/10.1007/s40820-020-00426-0

31. P. Zhang, R. Soomro, Z. Guan, N. Sun, B. Xu, 3D carbon-coated MXene architectures with high and ultrafast lithium/ sodium-ion storage. Energy Storage Mater. 29, 163–171 (2020). https://doi.org/10.1016/j.ensm.2020.04.016

32. C. Lu, L. Yang, B. Yan, L. Sun, P. Zhang et al., Nitrogen-doped Ti3C2 MXene: mechanism investigation and electrochemical analysis. Adv. Funct. Mater. 30(47), 2000852 (2020). https://doi.org/10.1002/adfm.202000852

33. J. Zheng, D.C. Bock, T. Tang, Q. Zhao, J. Yin et al., Regulating electrodeposition morphology in high-capacity aluminium and zinc battery anodes using interfacial metal-substrate bonding. Nat. Energy 6(4), 398–406 (2021). https://doi.org/10.1038/s41560-021-00797-7

34. J. Luo, W. Zhang, H. Yuan, C. Jin, L. Zhang et al., Pillared structure design of mxene with ultralarge interlayer spacing for high-performance lithium-ion capacitors. ACS Nano 11(3), 2459–2469 (2017). https://doi.org/10.1021/acsnano.6b07668

35. J. Luo, J. Zheng, J. Nai, C. Jin, H. Yuan et al., Atomic sulfur covalently engineered interlayers of Ti3C2 MXene for ultrafast sodium-ion storage by enhanced pseudocapacitance. Adv. Funct. Mater. 29(10), 1808107 (2019). https://doi.org/10.1002/adfm.201808107

36. J. Zhang, Q. Lei, Z. Ren, X. Zhu, J. Li et al., A superlattice-stabi-
zized layered CuS anode for high-performance aqueous zinc-ion batteries. ACS Nano 15, 17748–17756 (2021). https://doi.org/10.1021/acsnano.1c05725

37. F. Zhang, X. Guo, P. Xiong, J. Zhang, J. Song et al., Interface engineering of MXene composite separator for high-performance Li-Se and Na-Se batteries. Adv. Energy Mater. 10(20), 2000446 (2020). https://doi.org/10.1002/aenm.202000446

38. J. Luo, X. Lu, E. Matios, C. Wang, H. Wang et al., Tunable MXene-derived 1D/2D hybrid nanoarchitectures as a stable matrix for dendrite-free and ultrahigh capacity sodium metal anode. Nano Lett. 20(10), 7700–7708 (2020). https://doi.org/10.1021/acs.nanolett.0c03215

39. O. Mashitalal, M. Naguib, V.N. Mochalin, Y. Dall’Agnese, M. Heon et al., Intercalation and delamination of layered carbides and carbonitrides. Nat. Commun. 4, 1716 (2013). https://doi.org/10.1038/ncomms2664

40. J. Hart, K. Hantasarisakul, A. Lang, B. Anasori, D. Pinto et al., Control of MXenes’ electronic properties through termination and intercalation. Nat. Commun. 10, 522 (2019). https://doi.org/10.1038/s41467-018-08169-8

41. P. Wang, X. Lu, Y. Boyjoo, X. Wei, Y. Zhang et al., Pillar-
free TiO2/Ti3C2 composite with expanded interlayer spacing for high-capacity sodium ion batteries. J. Power Sources 451, 227756 (2020). https://doi.org/10.1016/j.jpowsour.2020.227756

42. W. Bao, L. Liu, C. Wang, S. Choi, D. Wang et al., Facile synthesis of crumpled nitrogen-doped MXene nanosheets as a new sulfur host for lithium-sulfur batteries. Adv. Energy Mater. 8(13), 1702485 (2018). https://doi.org/10.1002/aenm.201702485

43. Y. Wen, T.E. Rufford, X. Chen, N. Li, M. Lyu et al., Nitrogen-
doped Ti3C2 MXene electrodes for high-performance supercapacitors. Nano Energy 38, 368–376 (2017). https://doi.org/10.1016/j.nanoen.2017.06.009

44. N. Chen, Y. Zhou, S. Zhang, H. Huang, C. Zhang et al., Tai-
loring Ti3C2Tx MXene via an acid molecular scissor. Nano Energy 85, 106007 (2021). https://doi.org/10.1016/j.nanoen.2021.106007

45. J. Halim, K.M. Cook, M. Naguib, P. Eklund, Y. Gogotsi et al., X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes). Appl. Surf. Sci. 362, 406–417 (2016). https://doi.org/10.1016/j.apsusc.2015.11.089

46. Y. Tian, W. Que, Y. Luo, C. Yang, X. Yin et al., Surface nitrogen-
gen-modified 2D titanium carbide (MXene) with high energy density for aqueous supercapacitor applications. J. Mater. Chem. A 7(10), 5416–5425 (2019). https://doi.org/10.1039/c9ta00076c

47. Y. Zhou, F. Che, M. Liu, C. Zou, Z. Liang et al., Dopant-induced electron localization drives CO2 reduction to C2 hydrocarbons. Nat. Chem. 10(9), 974–980 (2018). https://doi.org/10.1038/s41557-018-0092-x

48. X. Rui, X. Zhang, S. Xu, H. Tan, Y. Jiang et al., A low-tem-
perature sodium-ion full battery: superb kinetics and cycling stability. Adv. Funct. Mater. 31(11), 2009458 (2020). https://doi.org/10.1002/adfm.202009458

49. Y.Y. Wang, B.H. Hou, J.Z. Guo, Q.L. Ning, W.L. Pang et al., An ultralong lifespan and low-temperature workable sodium-ion full battery for stationary energy storage. Adv. Energy Mater. 8(18), 1703252 (2018). https://doi.org/10.1002/aenm.201703252

50. C. Chen, Y. Yang, X. Tang, R. Qiu, S. Wang et al., Graphene-
capsulated FeS2 in carbon fibers as high reversible anodes for Na+/K+ batteries in a wide temperature range. Small 15(10), 1804740 (2019). https://doi.org/10.1002/smll.201804740

51. L. Deng, K. Goh, F.D. Yu, Y. Xia, Y.S. Jiang et al., Self-
optimizing weak solvation effects achieving faster low-temperature charge transfer kinetics for high-voltage Na2(PO3)3F3 cathode. Energy Storage Mater. 44, 82–92 (2022). https://doi.org/10.1016/j.ensm.2021.10.012
52. X. Wang, X. Shen, Y. Gao, Z. Wang, R. Yu et al., Atomic-scale recognition of surface structure and intercalation mechanism of Ti$_3$C$_2$X. J. Am. Chem. Soc. 137(7), 2715–2721 (2015). https://doi.org/10.1021/ja512820k

53. R. Zheng, H. Yu, X. Zhang, Y. Ding, M. Xia et al., A TiSe$_2$-graphite dual ion battery: fast Na-ion insertion and excellent stability. Angew. Chem. Int. Ed. 60(34), 18430–18437 (2021). https://doi.org/10.1002/anie.202105439

54. C. Chen, Y. Wen, X. Hu, X. Ji, M. Yan et al., Na$^+$ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling. Nat. Commun. 6, 6929 (2015). https://doi.org/10.1038/ncommns7929

55. T. Liu, X. Zhang, M. Xia, H. Yu, N. Peng et al., Functional cation defects engineering in TiS$_2$ for high-stability anode. Nano Energy 67, 104295 (2020). https://doi.org/10.1016/j.nanoen.2019.104295

56. L.F. Que, F.D. Yu, X.L. Sui, L. Zhao, J.G. Zhou et al., Thermal-induced interlayer defect engineering toward super high-performance sodium ion capacitors. Nano Energy 59, 17–25 (2020). https://doi.org/10.1016/j.nanoen.2019.02.030

57. N. Schulz, R. Hausbrand, C. Wittich, L. Dimesso, W. Jaegermann, XPS-surface analysis of SEI layers on Li-ion cathodes: part II. SEI-composition and formation inside composite electrodes. J. Electrochem. Soc. 165(5), A833–A846 (2018). https://doi.org/10.1149/2.0881803jes

58. K. Li, J. Zhang, D. Lin, D.W. Wang, B. Li et al., Evolution of the electrochemical interface in sodium ion batteries with ether electrolytes. Nat. Commun. 10, 725 (2019). https://doi.org/10.1038/s41467-019-08506-5

59. Z. Tang, H. Wang, P.F. Wu, S.Y. Zhou, Y.C. Huang et al., Electrode-electrolyte interfacial chemistry modulation for ultra-high rate sodium-ion battery. Angew. Chem. Int. Ed. 61(18), e202200475 (2022). https://doi.org/10.1002/anie.202200475

60. J. Luo, C. Fang, C. Jin, H. Yuan, O. Sheng et al., Tunable pseudocapacitance storage of MXene by cation pillaring for high performance sodium-ion capacitors. J. Mater. Chem. A 6(17), 7794–7806 (2018). https://doi.org/10.1039/c8ta02068j

61. X. Wang, T.S. Mathis, K. Li, Z. Lin, L. Vlcek et al., Influences from solvents on charge storage in titanium carbide MXenes. Nat. Energy 4(3), 241–248 (2019). https://doi.org/10.1038/s41560-019-0339-9

62. M. Okubo, A. Sugahara, S. Kajiyama, A. Yamada, MXene as a charge storage host. Acc. Chem. Res. 51(3), 591–599 (2018). https://doi.org/10.1021/acs.accounts.7b00481

63. D. Lin, K. Li, Q. Wang, L. Lyu, B. Li et al., Rate-independent and ultra-stable low-temperature sodium storage in pseudocapacitive TiO$_2$ nanowires. J. Mater. Chem. A 7(33), 19297–19304 (2019). https://doi.org/10.1039/c9ta05039f

64. S. Kajiyama, L. Szabova, K. Sodeyama, H. Inuma, R. Morita et al., Sodium-ion intercalation mechanism in MXene nanosheets. ACS Nano 10(3), 3334–3341 (2016). https://doi.org/10.1021/acsnano.5b06958

65. J. Holoubek, Y. Yin, M. Li, M. Yu, Y.S. Meng et al., Exploiting mechanistic solvation kinetics for dual-graphite batteries with high power output at extremely low temperature. Angew. Chem. Int. Ed. 58(52), 18892–18897 (2019). https://doi.org/10.1002/anie.201912167

66. J. Chen, Y. Peng, Y. Yin, Z. Fang, Y. Cao et al., A desolvation-free sodium-dual-ion chemistry for high power density and extremely low temperature. Angew. Chem. Int. Ed. 60(44), 23858–23862 (2021). https://doi.org/10.1002/anie.202110501

67. M. Liu, L. Xing, K. Xu, H. Zhou, J. Lan et al., Deciphering the paradox between the co-intercalation of sodium-solvent into graphite and its irreversible capacity. Energy Storage Mater. 26, 32–39 (2020). https://doi.org/10.1016/j.ensm.2019.12.026

68. M.L. Divya, Y.S. Lee, V. Aravindan, Solvent co-intercalation: an emerging mechanism in Li-, Na-, and K-ion capacitors. ACS Energy Lett. 6(12), 4228–4244 (2021). https://doi.org/10.1021/acsenergylett.1c01801

69. Z. Li, Y. Zhang, J. Zhang, Y. Cao, J. Chen et al., Sodium-ion battery with a wide operation-temperature range from -70 to 100°C. Angew. Chem. Int. Ed. 61, e202116930 (2022). https://doi.org/10.1002/anie.202116930

70. M.Y. Sun, F.D. Yu, Y. Xia, L. Deng, Y.S. Jiang et al., Trigger Na$^+$-solvent co-intercalation to achieve high-performance sodium-ion batteries at subzero temperature. Chem. Eng. J. 430, 132750 (2022). https://doi.org/10.1016/j.cej.2021.132750