On the Complexity of the Singly Connected Vertex Deletion.

Avinandan Das1 Lawqueen Kanesh1 Jayakrishnan Madathil1 Komal Muluk1 Nidhi Purohit2 Saket Saurabh1,2

1The Institute of Mathematical Sciences, HBNI, Chennai, India

2Department of Informatics, University of Bergen, Bergen

June 10, 2020
Singly Connected Vertex Deletion problem
Singly Connected Vertex Deletion problem

Singly Connected Digraphs

- Singly Connected Digraphs: For every pair u and v of digraph D, at most one (directed) path from u to v.
Singly Connected Vertex Deletion problem

Singly Connected Digraphs

- Singly Connected Digraphs: For every pair \(u \) and \(v \) of digraph \(D \), at most one (directed) path from \(u \) to \(v \).

Figure: Examples of Singly Connected Digraphs.
Lemma 1

Digraph D is not singly connected $\iff \exists$ two vertices u, v with two internally vertex disjoint paths from u to v.
Lemma 1

Digraph D is not singly connected $\iff \exists$ two vertices u, v with two internally vertex disjoint paths from u to v.

Figure: Obstruction of SCVD
Singly Connected Vertex Deletion problem

Problem statement

- **Input**

 - digraph D
 - positive integer k

 Does there exist $S \subseteq V(D)$ such that $|S| \leq k$ and $D \setminus S$ is singly connected?
Singly Connected Vertex Deletion problem

Problem statement

▶ Input
 ▶ digraph D
 ▶ positive integer k
Singly Connected Vertex Deletion problem

Problem statement

- **Input**
 - digraph D
 - positive integer k

- **Problem**
 - Does there exist $S \subseteq V(D)$ such that $|S| \leq k$ and $D \setminus S$ is singly connected?
Main Results

- SCVD in α-bounded digraphs
Main Results

- SCVD in α-bounded digraphs
- SCVD in DAG local tournaments
Main Results

- SCVD in α-bounded digraphs
- SCVD in DAG local tournaments
- SCVD in in-tournaments
Main Results

- SCVD in α-bounded digraphs
- SCVD in DAG local tournaments
- SCVD in in-tournaments
- Linear kernel for SCVD in local tournaments
Main Results

- **SCVD in α-bounded digraphs**
- SCVD in DAG local tournaments
- SCVD in in-tournaments
- Linear kernel for SCVD in local tournaments
Motivation
Motivation

- Singly connectivity in undirected graphs means forests
Motivation

- Singly connectivity in undirected graphs means forests
- 2 versions of FVS in undirected graphs:
Motivation

- Singly connectivity in undirected graphs means forests
- 2 versions of FVS in undirected graphs:
 - Deletion to cycle free graphs
Motivation

- Singly connectivity in undirected graphs means forests
- 2 versions of FVS in undirected graphs:
 - Deletion to cycle free graphs
 - Deletion to singly connected graphs
Motivation

- Singly connectivity in undirected graphs means forests
- 2 versions of FVS in undirected graphs:
 - Deletion to cycle free graphs: DFVS
 - Deletion to singly connected graphs: SCVD
Motivation

- Similar Obstruction Structure.
Motivation

- Similar Obstruction Structure.

(a) Obstruction of SCVD

(b) Obstruction of DFVS
Singly Connected Vertex Deletion problem

Related Work
Singly Connected Vertex Deletion problem

Related Work

- Recognition of Singly Connected digraphs: $O(s.t + m)$ (Dietzfelbinger and Jaberi).
Singly Connected Vertex Deletion problem

Related Work

- Recognition of Singly Connected digraphs: $O(s.t + m)$ (Dietzfelbinger and Jaberi).
- NP Completeness of SCVD in digraphs: Dietzfelbinger and Jaberi.
SCVD in α-bounded digraphs
α-bounded digraphs

α-bounded digraphs are digraphs whose maximum independent set size is bounded by α.

SCVD in α-bounded digraphs

α-bounded digraphs
SCVD in α-bounded digraphs

Tournaments

Lemma 2

Tournament on four or more vertices is not singly connected.
SCVD in α-bounded digraphs

Tournaments

Lemma 2

Tournament on four or more vertices is not singly connected.

- Algorithm for SCVD in tournaments is implied trivially by the lemma.
Lemma 2

* Tournament on four or more vertices is not singly connected. *

- Algorithm for SCVD in tournaments is implied trivially by the lemma.
- Check if $n - k \leq 3$, otherwise output no.
SCVD in \(\alpha \)-bounded digraphs

Tournaments

Lemma 2

Tournament on four or more vertices is not singly connected.

- Algorithm for SCVD in tournaments is implied trivially by the lemma.
- Check if \(n \leq k \leq 3 \), otherwise output no.
- Iterate over all three subset induced digraphs.

The runtime of the algorithm is \(O(n^3) \).
Lemma 2
Tournament on four or more vertices is not singly connected.

- Algorithm for SCVD in tournaments is implied trivially by the lemma.
- Check if \(n - k \leq 3 \), otherwise output no.
- Iterate over all three subset induced digraphs.

The runtime of the algorithm is \(O(n^3) \).
SCVD in α-bounded digraphs.

Definitions

Forward arcs. For a path $P = v_1 \ldots v_l$ in digraph D, (v_i, v_j) is a forward arc with respect to P if $j > i + 1$.
SCVD in \(\alpha \)-bounded digraphs.

Definitions

Forward arcs. For a path \(P = v_1 \ldots v_l \) in digraph \(D \), \((v_i, v_j)\) is a forward arc with respect to \(P \) if \(j > i + 1 \).

![Figure: Forward arcs in a path.](image-url)
SCVD in \(\alpha \)-bounded digraphs.

Definitions

Backward arcs. For a path \(P = v_1 \ldots v_l \) in digraph \(D \), \((v_i, v_j)\) is a backward arc with respect to \(P \) if \(j + 1 < i \).
SCVD in α-bounded digraphs.

Definitions

Backward arcs. For a path $P = v_1 \ldots v_l$ in digraph D, (v_i, v_j) is a backward arc with respect to P if $j + 1 < i$.

Figure: Backward arcs in a path.
Observations

Observation 1

If a digraph D has a path P such that there is a forward arc with respect to P, then D is not singly connected.
Observation 1

If a digraph D has a path P such that there is a forward arc with respect to P, then D is not singly connected.
Lemma 3

A tournament on four or more vertices is not singly connected.
SCVD in α-bounded digraphs

Tournaments

Lemma 3

A tournament on four or more vertices is not singly connected.
Lemma 3

A tournament on four or more vertices is not singly connected.
Lemma 3

A tournament on four or more vertices is not singly connected.
Lemma 3

A tournament on four or more vertices is not singly connected.
- Long paths and bounded independence number
- Long paths and bounded independence number
- FVS in tournaments: NP hard
SCVD in α-bounded digraphs

Algo Lemma

Lemma (Algo Lemma)

For every $\alpha \in \mathbb{N}$, every α-bounded digraph with at least $\alpha(2\alpha + 4)$ vertices is not singly connected.

▶ The algorithm for SCVD trivially follows from Algo Lemma. It is exactly like SCVD in tournaments.

▶ Runtime: $O((n^{\alpha(2\alpha + 4)} - 1))$.
SCVD in α-bounded digraphs

Algo Lemma

Lemma (Algo Lemma)

For every $\alpha \in \mathbb{N}$, every α-bounded digraph with at least $\alpha(2\alpha + 4)$ vertices is not singly connected.
Lemma (Algo Lemma)

For every $\alpha \in \mathbb{N}$, every α-bounded digraph with at least $\alpha(2\alpha + 4)$ vertices is not singly connected.

- The algorithm for SCVD trivially follows from Algo Lemma. It is exactly like SCVD in tournaments.
Lemma (Algo Lemma)

For every $\alpha \in \mathbb{N}$, every α-bounded digraph with at least $\alpha(2\alpha + 4)$ vertices is not singly connected.

- The algorithm for SCVD trivially follows from Algo Lemma. It is exactly like SCVD in tournaments.
- Runtime: $O(n^{\alpha(2\alpha+4)-1})$.
SCVD in α-bounded digraphs.

Lemmas

Theorem 4 (Gallai Milgram)

Every directed graph D has a path cover \mathcal{P} and a maximal independent set $\{v_P | P \in \mathcal{P}\}$ such that $v_P \in P$ for every $P \in \mathcal{P}$.
SCVD in \(\alpha \)-bounded digraphs.

Lemmas

Theorem 4 (Gallai Milgram)

Every directed graph \(D \) has a path cover \(\mathcal{P} \) and a maximal independent set \(\{ v_P \mid P \in \mathcal{P} \} \) such that \(v_P \in P \) for every \(P \in \mathcal{P} \).
Observation 2

For a path P in a singly connected digraph D, $v_P \in V(P)$ can have at most two backward arcs incident on it.
Observation 2

For a path P in a singly connected digraph D, $v_P \in V(P)$ can have at most two backward arcs incident on it.

- Assume not. Let there be three backward arcs incident in v_P. There are four possibilities.
SCVD in α-bounded digraphs.

Observations

(a) Possibility 1
SCVD in α-bounded digraphs.

Observations

(a) Possibility 1

(b) Possibility 2
SCVD in α-bounded digraphs.

Observations

(a) Possibility 1

(b) Possibility 2

(c) Possibility 3
SCVD in α-bounded digraphs.

Observations

(a) Possibility 1

(b) Possibility 2

(c) Possibility 3

(d) Possibility 4
SCVD in α-bounded digraphs.

Observations

(a) 2 possible paths from v_j to v_P

(b) 2 possible paths from v_P to v_j

(c) 2 possible paths from v_j to v_P

(d) 2 possible paths from v_P to v_j
SCVD in α-bounded digraphs.

Observations

(a) 2 possible paths from v_j to v_P

(b) 2 possible paths from v_P to v_j

(c) 2 possible paths from v_j to v_P

(d) 2 possible paths from v_P to v_j
SCVD in α-bounded digraphs.

Observations

(a) 2 possible paths from v_j to v_P

(b) 2 possible paths from v_P to v_j

(c) 2 possible paths from v_j to v_P

(d) 2 possible paths from v_P to v_j
SCVD in α-bounded digraphs.

Observations

(a) 2 possible paths from v_j to v_P

(b) 2 possible paths from v_P to v_j

(c) 2 possible paths from v_j to v_P

(d) 2 possible paths from v_P to v_j
SCVD in α-bounded digraphs.

Observations

Figure: Only possible configuration for 2 backward arcs incident on v
Observation 3

For a vertex $v \notin V(P)$, there can be at most two edges between v and $V(P)$.
Observation 3

For a vertex $v \notin V(P)$, *there can be at most two edges between* v *and* $V(P)$.
Observation 3

For a vertex $v \not\in V(P)$, there can be at most two edges between v and $V(P)$.

![Diagram showing Observation 3](attachment:observation_3_diagram.png)
Observation 3

For a vertex $v \notin V(P)$, there can be at most two edges between v and $V(P)$.
Observation 3

For a vertex \(v \notin V(P) \), *there can be at most two edges between* \(v \) *and* \(V(P) \).*
Observation 3

For a vertex $v \notin V(P)$, there can be at most two edges between v and $V(P)$.
Lemma (Algo Lemma)

For every $\alpha \in \mathbb{N}$, every α-bounded digraph with at least $\alpha(2\alpha + 4)$ vertices is not singly connected.
Lemma (Algo Lemma)

For every $\alpha \in \mathbb{N}$, every α-bounded digraph with at least $\alpha(2\alpha + 4)$ vertices is not singly connected.

> Assume not. Let D be α-bounded singly connected digraph with $|V(D)| \geq \alpha(2\alpha + 4)$.
Lemma (Algo Lemma)

For every $\alpha \in \mathbb{N}$, every α-bounded digraph with at least $\alpha(2\alpha + 4)$ vertices is not singly connected.

- Assume not. Let D be α-bounded singly connected digraph with $|V(D)| \geq \alpha(2\alpha + 4)$.

- By Gallai Milgram, there is a path cover \mathcal{P}, and maximal independent set $I = \{v_P | P \in \mathcal{P}\}$.
SCVD in α-bounded digraphs

Proof Outline of algo lemma

Lemma (Algo Lemma)

For every $\alpha \in \mathbb{N}$, every α-bounded digraph with at least $\alpha(2\alpha + 4)$ vertices is not singly connected.

- Assume not. Let D be α-bounded singly connected digraph with $|V(D)| \geq \alpha(2\alpha + 4)$.
- By Gallai Milgram, there is a path cover \mathcal{P}, and maximal independent set $I = \{v_P | P \in \mathcal{P}\}$.
- By averaging argument, there is a path P such that $|V(P)| \geq 2\alpha + 4$.
SCVD in α-bounded digraphs

Proof Outline of algo lemma

V_P
SCVD in α-bounded digraphs

Proof Outline of algo lemma
SCVD in α-bounded digraphs

Proof Outline of algo lemma
SCVD in α-bounded digraphs

Proof Outline of algo lemma
SCVD in α-bounded digraphs

Proof Outline of algo lemma
SCVD in α-bounded digraphs

Proof Outline of algo lemma
SCVD in α-bounded digraphs

Proof Outline of algo lemma

▶ $|N[I] \cap V(P)| \leq 2(\alpha - 1) + 4 + 1 = 2\alpha + 3$ (in the underlying undirected graph).

▶ There exists a vertex $v \in V(P)$ which is not adjacent to I.

▶ This contradicts our assumption that I is a maximal independent set.
SCVD in α-bounded digraphs

Proof Outline of algo lemma

- $|N[I] \cap V(P)| \leq 2(\alpha - 1) + 4 + 1 = 2\alpha + 3$ (in the underlying undirected graph).
Proof Outline of algo lemma

- \(|N[I] \cap V(P)| \leq 2(\alpha - 1) + 4 + 1 = 2\alpha + 3 \) (in the underlying undirected graph).
- There exists a vertex \(v \in V(P) \) which is not adjacent to \(I \).
SCVD in α-bounded digraphs

Proof Outline of algo lemma

- $|N[I] \cap V(P)| \leq 2(\alpha - 1) + 4 + 1 = 2\alpha + 3$ (in the underlying undirected graph).
- There exists a vertex $v \in V(P)$ which is not adjacent to I.
- This contradicts our assumption that I is a maximal independent set.
Open Problems

▶ Is there a polynomial time algorithm for SCVD in local tournaments?

▶ Is there a $o(2^n)$ exact algorithm for SCVD in general digraphs?

▶ Is SCVD problem in general digraphs parameterized by the solution set size FPT?
Open Problems

- Is there a polynomial time algorithm for SCVD in local tournaments?

- Is there a $o(2^n)$ exact algorithm for SCVD in general digraphs?

- Is SCVD problem in general digraphs parameterized by the solution set size FPT?
Open Problems

- Is there a polynomial time algorithm for SCVD in local tournaments?
- Is there a $o(2^n)$ exact algorithm for SCVD in general digraphs?
Open Problems

- Is there a polynomial time algorithm for SCVD in local tournaments?
- Is there a $o(2^n)$ exact algorithm for SCVD in general digraphs?
- Is SCVD problem in general digraphs parameterized by the solution set size FPT?
Thank You.