DESMID FLORA IN THE LAKES OF THE KHREBTOVYI NATURE RESERVE IN THE POLAR URAL (RUSSIA)

Rima Briškaitė¹*, Elena Patova², Sigitas Juzėnas¹

¹Vilnius University, Life Sciences Centre, Institute of Biosciences, Saulėtekio Av. 7, Vilnius LT-10257, Lithuania
²Institute of Biology, Komi Scientific Centre, Ural Division, Russian Academy of Sciences, Kommunističeskaja Str. 28, Syktyvkar RU-167982, Komi Republic, Russia

*Corresponding author. E-mail: rima.briskaite@gf.vu.lt

Abstract

Briškaitė R., Patova E., Juzėnas S., 2016: Desmid flora in the lakes of the Khrebtovyi Nature Reserve in the Polar Urals (Russia) [Dvyniečių flora Chrebtovyj draustinio ežeruose Šiaurės Urale (Rusija)]. – Bot. Lith., 22(2): 113–122.

Fourteen thermokarst lakes and one mountain lake were explored in the study period. A total of 116 species of desmids belonging to 22 genera were identified. The genera Cosmarium (29), Staurastrum (18) and Closterium (13) were most abundant. The highest number of species (88) was recorded in the habitats with Sphagnum and brown mosses. Twenty-seven species and one variety of desmids were observed for the first time in the Polar Urals.

Keywords: algae, benthos, Desmidiales, Polar Ural Mountains, Russia.

INTRODUCTION

Desmids are one of the most diverse groups of algae in the mountain-tundra water bodies. They play an important role in the formation of algocenoses in water bodies and especially are typical in phyto-benthos and periphyton (Getzen, 1985). Desmids belong to one of the groups that can inhabit water bodies with low concentration of organic materials. To date, the Arctic regions experience increasing anthropogenic impact on natural landscapes, accelerating processes of global climate change, and degradation of the natural complexes. Mainly because of remoteness and limited accessibility of the territory, the diversity and distribution of desmids are not sufficiently explored in the Polar Urals. The aim of this paper was to review the diversity and distribution of species in the explored water bodies in the territory of the Khrebtovyi Nature Reserve.

STUDY AREA

The Urals are the mountain range that stretches in the north-south direction in Russia, making border between Asian and European continents. The total area of the mountains is about 25 000 km. The Polar Ural covers the northern end of the overall structure of the Ural Mountains – starts from the origins of the Khulga River in the southern part and stretches almost for 550 km, up to the Konstantynov Kamen’ Mountains in the north. In 1989, in the part of this territory, the Khrebtovyi Nature Reserve was established, the aim of which is to preserve typical and rare landscape of the Polar Urals (Fig. 1).

In the area of the Reserve, different types of vegetation are also under protection, including rare larch forests, crooked birch forests, willow forests, palsas, lichen mountain tundra, rocky tundra, brushwood moss lichen tundra and barrens. The list of protected objects consists of thermokarst and mountain...
lakes, river valleys with rare plant and bird species recorded in the Red Data Book of Komi Republic (Taškaev, 2009). The area of the Reserve covers 4000 hectares of the southeast slope of the Enganepe Ridge within the Polar Urals.

The climate of the Polar Ural is distinctly continental. The Polar Ural belongs to the Eastern region of the Atlantic climate area. The average annual temperature is below zero, and in different regions it varies from –6°C to –9°C (the average temperature in January is –20°C). Period without frosts lasts from 21 June to 21 August (the average temperature in July varies from 8°C to 11°C). The average temperature of growing season is above 10°C. In the Polar Ural, the amount of precipitation during the year is 1000–1500 mm. Permanent snow cover comes on the 20th of October and remains until the 10th of March. The depth of snow cover reaches 80–90 cm (Kemmerix, 1966; Švareva, 1962).

A detailed description of the natural resources at the nature complex named the Khrebtovyi Nature Reserve is provided in the monograph “The biological diversity of protected areas in Komi Republic” (Degteva, 2010).

MATERIALS AND METHODS

The research of desmids was conducted in the Khrebtovyi Nature Reserve in the Polar Ural in 14 thermokarst and one mountain lakes in July 2008 (Fig. 2).

A total of twenty-three samples of phytobenthos algae were collected by squeezing water from plant material of two different types: roots and rhizomes of vascular plants taken in the helophyte zone dominated by Carex aquatilis Wahlenb. (habitat a) and Sphagnum spp. and/or other mosses taken on the edges of lakes or floating mats (habitat b) (Table 1).

Table 1 provides the data on lake geographical
To identify desmid algae taxa, we used the research data of the following authors: COESEL & MEESTERS (2007), DILLARD (1990, 1991, 1993), KRIEGER (1933, 1935, 1937), KRIEGER & GERLOFF (1962, 1969), LIND & BROOK (1980), LEMENWEGER (1996), PALAMAR-MORDVINCEVA (1982a), PALAMAR-MORDVINCEVA & PETL’OVANYJ (2009), RŮŽIČKA (1977, 1981), WEST & WEST (1904, 1905, 1908, 1912), WEST et al. (1923). Distribution of desmids was determined after PALAMAR-MORDVINCEVA (1982b). The nomenclature of desmid species were checked in the “AlgaeBase” (GURY & GURY, 2016), macrophyte species – in THE PLANT LIST (2013). Standardized names of authors were given after THE INTERNATIONAL PLANT NAME INDEX (2012).
Two-dimensional non-metric multidimensional scaling (NMDS) and the Jaccard similarity index for the presence/absence data were applied to compare algal species compositions in different study sites and habitats (LEGENDRE & LEGENDRE, 1998). The complete algal species richness was predicted using non-parametric estimator Chao 2, which is well suited for incidence based data (GOTTELLI & COLWELL, 2010). Statistical data analysis was performed using the computer programme PAST version 3.14 (HAMMER et al., 2001).

RESULTS AND DISCUSSION

Physicochemical characteristics of the lakes

The analysis of water parameters of the investigated thermokarst and mountain lakes showed that they belong to slightly acidic or neutral type, pH varied from (4.5)5.7 to 7.0, conductivity – from 2 to 73 μS/cm, and temperature – from (6.3)16.0°C to 20.3°C.

Desmid community composition

From the samples collected in the Kherbtovyi Nature Reserve, we identified 116 species of desmids belonging to five families: Desmidiales, Closteriaceae, Mesotaeniaceae, Peniaceae and Gonatozygaceae (Table 2).

In the Kherbtovyi Nature Reserve, we found only 22% of desmid species compared to the northern territories of Russia (LUKNITSKAYA, 2006). In the investigated territory of the Polar Ural, the families Desmidiaceae and Closteriaceae are predominant groups, this is consistent with the conclusions of other authors (STERLYGOVA, 2008; STEPANKOVIĆ et al., 2008; ŠOVRAN et al., 2013) that these families are most diverse in the northern mountainous areas. These families comprised 91.4% of all algae species found. However, the lowest number of desmid species were from such families as Gonatozygaceae and Peniaceae (2.6% of all desmid species found). The highest diversity of species was observed in Cosmarium, Staurodesmus, Euastrum and Closterium. These four genera united 62.9% of all identified species. Such taxonomic composition is typical to the northern European and Russian regions (LUKNITSKAYA, 2006; STEPANKOVIĆ et al., 2008) Even though the genera Cylindrocystis, Pleurotaenium, Teilingia had the lowest number of species; they are still typi-cal genera of the northern mountainous regions (COESEL, 1996; GETZEN et al., 1994; JARUSHINA, 2004).

Table 2. Taxonomic composition of desmids in the habitats of the Kherbtovyi Nature Reserve

Taxa	Species number	% of total species
Mesotaeniaceae	7	6.0
Cylindrocystis	2	1.7
Nettia	3	2.6
Planotaenium	1	0.9
Spirotaenia	1	0.9
Gonatozygaceae	1	0.9
Gonatozygon	1	0.9
Peniaceae	2	1.7
Penium	2	1.7
Closteriaceae	13	11.2
Closterium	13	11.2
Desmidiaceae	93	80.2
Actinotaenium	5	4.3
Bambussina	1	0.9
Cosmarium	29	25.0
Desmidium	1	0.9
Euastrum	13	11.2
Hylatotheca	1	0.9
Microasterias	4	3.4
Pleurotaenium	3	2.6
Sphaeroderma	1	0.9
Spondylosum	3	2.6
Staurodesmus	9	7.8
Teilingia	1	0.9
Tettemorus	2	1.7
Xanthidium	2	1.7
Total	116	100
Table 3. Taxonomic list of desmids, their cell measurements, habitats and species distribution in the water bodies of the Khrebtovyi Nature Reserve

Taxa	Measurements of the cells (length × width), of isthmus and apex, μm	Lake number and habitat type abbreviations	Frequency category
DESMIDIALES			
Mesoteniacae			
Cylindrocystis brebissonii Menegh.	28.2–77 × 12.4–33	2a, 6b, 8b, 12b, 13b	Common
Cylindrocystis crassa de Bary	15 × 55	1a	Single
Netrium digitus (Bréb. ex Ralfs) Itzigs. et Rothe	26–214.5 × 22–121.4	1a, 2a–b, 3a, 4a–b, 6b, 10a, 11b, 12a–b	Common
* Netrium naegelii (Bréb. ex W.Archer) West	110–115.5 × 22–33	10a	Single
Netrium oblongum (de Bary) Lütkem.	95.14 × 22.3	13b	Single
Planotaenium interruptum (Bréb. ex Ralfs) Petlovany et Palamar-Mordvintseva	143 × 38.5	3b	Single
* Spirotaenia condensata Bréb.	214.5 × 33	4b	Single
Gonatozygaceae			
Gonatozygon brebissonii de Bary	115 × 8	4b	Single
Peniaceae			
Penium polymorphum Perty (Perty)	60 × 25		
Closteriaceae			
Closterium baillyanum (Bréb. ex Ralfs) Bréb.	385 × 44; I. 16.5	6b	Single
Closterium costatum Corda ex Ralfs	240.1 × 25.8; Ap. 7.1	8b	Single
Closterium dianae Ehrenb. ex Ralfs	196.7 × 18.2	1a, 2a–b	Rare
Closterium ehenbergii Menegh. ex Ralfs	172.5–225.5 × 34.5–46; Ap. 6.8–12.3	1a, 3a, 8b	Rare
* Closterium kuizingii Bréb.	368 × 23	7a	Single
Closterium lineatum Ehrenb. ex Ralfs	308 × 27.5; Ap. 11	2b, 3a, 4b, 7a, 8b	Rare
Closterium moniliferum Ehrenb. ex Ralfs	203.3–214.5 × 38.5–45.4; Ap. 11	3b, 8a–b	Rare
*Closterium porrectum Nordst.	232.6–311 × 16.1–26.5	2a, 3a	Rare
Closterium pronum Bréb.	198.3 × 8.6	5a	Single
Closterium ralfsii Bréb. ex Ralfs	247.5–264 × 27.5; Ap. 5.5–11	2a, 7a	Rare
Closterium tumidum L.N. Jonhson	170.5 × 33	3b	Single
*Closterium turgidum Ehrenb. ex Ralfs	467.5 × 49.5; Ap. 22	2b	Single
Closterium venus Kütz. ex Ralfs	59.2–95.7 × 17.4–15.7	1a, 2b	Rare
Desmidaceae			
*Actinotaenium crassiusculum (de Bary) Teiling	56 × 15.7	13b	Single
Actinotaenium cucurbita (Bréb. ex Ralfs) Teiling	22–49.5 × 12–22	6b, 13b	Rare
Actinotaenium cucurbitum (Bisset) Teiling	49.5–60.5 × 22 × 27.5	12b	Single
*Actinotaenium diplosporum (P.Lundell) Teiling	29.4 × 15.6; I. 8.9	6b, 14b	Rare
Actinotaenium rufescens (Cleve) Teiling	44–60.5 × 22–27.5	6b, 12b, 13b	Rare
Bambusina borreri (Ralfs) Cleve	20–33 × 16.5–27.5	6b,11b, 12a–b	Rare
Cosmarium abbreviatum Racib.	23.2 × 27.5	4b	Single
Cosmarium amoenum Bréb. ex Ralfs	49.5–60.5 × 23–27.5; I. 8.9–15.7	2b	Single
Cosmarium angulosum Bréb.	12.6 × 12.1; I. 3.1	1a, 2b, 4b, 8a, 10a–b	Common
Cosmarium biretum Bréb. ex Ralfs	104.5 × 44; I. 27.5	1a, 2a, 11a	Common
Cosmarium blytii Wille	23.2 × 23.2; I. 20.3	1a, 3a, 7a, 8b, 10a, 13b	Common
Cosmarium botrytis Menegh. ex Ralfs	31.7–104.5 × 22–72.5; I. 10.3–38.5	1a, 2a–b, 3a–b, 4a–b, 6b, 7a, 8a–b, 9a, 10a–b, 11a–b, 12a, 13b, 14b	Common
Cosmarium botrytis var. subtumidum Wittr.	44–55 × 44–55; I. 22–33	6b	Single
Cosmarium circulare Reinsch	55 × 49.5; I. 14.5	1a	Single
Cosmarium constrictum Delponti	33 × 27.5; I. 16.5	7b	Single
Cosmarium contractum Kirchn.	27.5–43.5 × 26.6–33; I. 5.8–11	1a, 2b, 4a–b	Rare
Cosmarium depressum (Nägeli) P.Lundell	37.8–42.3 × 35.7–36.8; I. 10.8–13.4	1a	Single
Cosmarium difficile Lütkem.	27.5 × 33	2a	Single
Taxa	Measurements of the cells (length × width), of isthmus and apex, μm	Lake number and habitat type abbreviations	Frequency category
---	---	---	--------------------
Cosmarium galeritum var. subtumidum Borge	49.5 × 44; I. 16.5	1a	Single
Cosmarium humile Nordst. ex De Toni	27.5–33 × 16.5–27.5; I. 5.9–11	5a	Single
Cosmarium isthmium West	33–38.5 × 22 × 27.5; I. 11	10a	Single
Cosmarium laeve Rabenh.	8.5 × 33; I. 11	3b	Single
Cosmarium meneghinii Bréb. ex Ralfs	18 × 14	2a	Single
Cosmarium moniliforme Ralfs	21 × 11.2; I. 5.9	2b, 3b	Rare
Cosmarium nasutum Nordst.	35 × 49.5; I. 16.5	13b	Single
Cosmarium phaseolus Bréb. ex Ralfs	35 × 28; I. 11.2	2b	Single
Cosmarium polygonatum Halász	15–16.5 × 14; I. 5.5	1a, 5a	Rare
Cosmarium pseudopyramidatum P. Lundell	38.5–44 × 27.5; I. 11	8b	Single
Cosmarium punctulatum Bréb.	27.5–34.5 × 22; I. 6.3–9.3	2b	Single
Cosmarium pyramidalum Bréb. ex Ralfs	38.5–60.5 × 22–55; I. 9.6–16.5	4b, 9a, 11a, 13b	Rare
Cosmarium quadratum Ralfs ex Ralfs	60.5 × 38.5; I. 16.5	13b	Single
Cosmarium regnellii Wille	12.5–15.5 × 12.9–13; I. 3	1a, 2a–b, 4b, 12b	Rare
Cosmarium subcostatum Nordst.	22–27.5 × 19.1–23.2	1a	Single
Cosmarium subprotopodium Nordst.	23.2–37.7 × 20.3–29; I. 8.7–9.5	1a, 4b	Rare
Cosmarium subtruncatum Nordst.	27.5 × 22; I. 16.5	3b	Single
Cosmarium undulatum Corda ex Ralfs	29 × 20.2; I. 8.7	1a	Single
Desmidium schwartzi C.Agardh ex Ralfs	11–16.5 × 33	1a, 12a–b	Rare
Euastrum anseratum Ehrenb. ex Ralfs	44–121 × 23.2–55; I. 11–22; Ap. 16.5–22	4a–b, 9a, 10a–b, 14b	Common
Euastrum bidensiatum Nägeli	38.5–55 × 27.5–38.5; I. 5.5–22	4b, 6b, 8a–b, 9a, 10a	Common
Euastrum binale Ehrenb. ex Ralfs	12.9–27.5 × 12.9–22; I. 4.6–7.9; Ap. 12.5–13.2	1a, 2b, 4b, 7a, 8b, 10a, 12a, 14b	Common
Euastrum denticulatum F. Gay	26.1–27.5 × 21.7–22	1a, 2b, 8b, 10a	Rare
Euastrum elegans Ralfs	17.4–38.5 × 14.5–38.9; I. 2.9–13.6	2a–b, 7a–b, 10a, 12a, 15b	Common
Euastrum gemmatum Ralfs	55–60.5 × 44–46; I. 14.5	4a–b, 9a	Rare
Euastrum insulare (Wittr.) J.Roy	19.1–27.5 × 14.5–22; I. 5	1a, 4a–b	Rare
Euastrum intermedium Cleve	66 × 38.5; I. 133	4b	Single
Euastrum oblongum Ralfs	157 × 77; I. 22	4a	Single
Euastrum polchellum Bréb.	27.5–55 × 16.5–38.5; I. 5.5–16.5	2b, 3a, 7a–b, 8b, 10a, 12a, 15b	Common
Euastrum subalpinum Messik.	16.5–22 × 11–16.5	4a, 10a, 14b	Rare
Euastrum turneri West	34.8–37.7 × 26.1; I. 8.7–14.5	2a–b	Rare
Euastrum verrucosum Ehrenb. ex Ralfs	92.5–121 × 80–110; I. 22–27.5	1a, 2a–b, 9a	Rare
Halyotheca dissilens Bréb. ex Ralfs	13.8–19.8 × 18.6–21.7	1a, 2a, 7a–b	Rare
Micrasterias crux-mellitensis Ralfs	137.5–143 × 115–126.5; I. 34.5–55	4b, 10b, 11b	Rare
Micrasterias furcata C.Agardh ex Ralfs	176 × 115.5; I. 22	4b	Single
Micrasterias papilifera var. glabra Nordst.	121 × 137.5; I. 16.5	2b	Single
Micrasterias radiosa Ralfs	137.5–143 × 115.5–132; I. 16.5	2b	Single
Pleurotaenium maximum (Reinsch) P.Lundell	495 × 38.5	11b	Single
Pleurotaenium trabecula Nägeli	291.5–506 × 27.5–46; I. 27.5; Ap. 16.5	7a, 11a–b, 12a, 15b	Rare
Pleurotaenium trabecula var. crassum Wittr.	319 × 27.5	10b	Single
Pleurotaenium truncatum Bréb. ex Ralfs	360.8–363 × 57.3–60.5; I. 38.5–39.5; Ap. 22.1–27.5	2a, 4a	Rare
Sphaerozomas aubertianum West	15 × 22.1; I. 5.9	2b, 12b	Rare
Spongiosolus ellipticum West et G.S.West	20.3 × 20.3; I. 5.3	10b	Single
Spongiosolus moniliforme var. compressum Grönblad	38.5–44 × 27.5; I. 11	2b	Single
Taxa	Measurements of the cells (length × width), of isthmus and apex, μm	Lake number and habitat type abbreviations	Frequency category
---	---	---	--------------------
Spondylosium planum (Wolle) West et G.S. West	10.1–16.5 × 11–16.5; I. 3.5–11	2b, 3a, 4a–b, 5a, 7a–b, 15b	Rare
Staurastrum anatimus Cooke et Wills	44 with processes × 55; I. 11	9a	Single
Staurastrum arctiscon (Ehrenb. ex Ralfs) P.Lundell	82.5–115.5 with processes × 82.5–99; I. 22–38.5	2a–b, 3b	Rare
Staurastrum boreale West et G.S. West	29 × 43; I. 7.5	8a	Single
Staurastrum brachiatum Ralfs ex Ralfs	15–27.5 × 27.5–38.5; I. 5.5	5a, 6b	Rare
Staurastrum cristatum (Nägeli) W.Archer	36 × 43.5; I. 17.4	1a	Single
Staurastrum furcigerum (Brév.) W.Archer	63.8 with processes × 43.5 × 72.5; I. 26.1	1a	Single
Staurastrum hexacerum Wittr.	27.5 with processes × 33; I. 11	10a	Single
Staurastrum hirsutum Ehrenb. ex Ralfs	34.5–38.5 × 29–31 with processes; I. 11	2b, 4b	Rare
Staurastrum manfelditii Delponte	38.5 × 55; I. 11	2b	Single
Staurastrum margaritaceum Menegh. ex Ralfs	22–27.5 with processes × 22–27.5; I. 5.5–11	7b	Single
Staurastrum paradoxum Meyen ex Ralfs	27.5 with processes × 44; I. 16.5	2b	Single
Staurastrum pelagicum West et G.S. West	32.7 × 34.5 × 51.9 with processes; I. 17.4	2b	Single
Staurastrum polytrichum Rabenh.	49.5 × 38.5; I. 16.5	12b	Single
Staurastrum proboscideum (Brév.) W.Archer	33 × 33; I. 11	7a	Single
Staurastrum sexcostatum Brév. ex Ralfs	66–99 with processes × 71.5–93.5; I. 17.4–27.5	2a-b	Rare
Staurastrum tohopekaligense Wolle	55–87 with processes × 33–66.7 × 44–92.4 with processes × 23.2–43.5; I. 16.5–20.3	2b	Single
Staurastrum vestitum Ralfs	23.2–43.5 × 60.5–66.7 with processes	10a	Single
Staurodesmus convergens (Ehrenb. ex Ralfs) S.Lill.	44–55.1 × 40.6–44 × 58–60.5 with processes × I.: 11.6–16.5	2a–b, 15b	Rare
Staurodesmus dejectus (Brév.) Teiling	44 × 38.5; I. 11	3a, 10a	Rare
Staurodesmus dickiei (Ralfs) S.Lill.	38.5 × 38.5–44 × 55–60.5 with processes, I. 16.5–27.5	2b, 9a	Rare
Staurodesmus glaber (Ralfs) Teiling	38.5–44 × 49.5–71.5 with processes; I. 16.5	2b, 4a–b	Rare
Staurodesmus incus (Hassal ex Ralfs) Teiling	11 × 16.4; I. 5	7b	Single
Staurodesmus octocornis (Ehrenb. ex Ralfs) Stastny, kalaud et Neustupa	16.4 × 23; 6; I. 5.7	2a–b	Rare
Staurodesmus patens (Nordst.) Croasdale	27.5–38.5 × 26.5–27.5; I. 5.5	7a, 8b	Rare
Staurodesmus spetsbergensis (Nordst.) Teiling	38.5 × 27.5–38.5; I. 16.5	9a	Single
Staurodesmus subpygmaeus (West) Croasdale	27.5–33 × 33; I. 11	3b	Single
Teilingia quadrispinata (Scott et Grönblad) Kurt Först.	7.5 –10.7 × 8.7–11.5; I. 4.1–5.7	2b, 4b, 12b	Rare
Tetmemorus brebissonii Ralfs	66–115.5 × 11.5–34.5	8b	Single
Tetmemorus laevis Ralfs ex Ralfs	71.5–76.8 × 16.5	13b	Single
Xanthidium antilopeum Kütz.	33–116.2 with processes × 27.5–94.5 × 33–86.9 with processes × 27.5–76.8; I. 11–34.2	1a, 2a–b, 6b, 7b, 11b, 15b	Common
Xanthidium cristatum Brév. ex Ralfs	60.5 with processes × 49.5 × 55 with processes × 38.5; I. 27.5	2a, 3a, 11b	Rare
trum ansatum, E. bidendatum, E. binale, E. elegants, E. pulchellum, Netrium digitus, Spondylosum plumum, Xanthidium antilopeum (Table 3).

Fig. 3. Distribution of species in the studied water bodies of the Khrebtovyi Nature Reserve

The most diverse group of desmids in the Khrebtovyi Nature Reserve consisted of algae species distributed worldwide – 33% of all desmid species found in the research area, 16.9% of species were distinctly characteristic of the northern algal flora. They belong to Boreal element, namely Actinotaenium crassiusculum, A. cucurbita, Cosmarium amoenum, Micrasterias radiosa. There also were a few species representing the boreal-alpine element (6.7%), namely Actinotaenium cucurbitinum, A. rufescens, Closterium costatum, Cosmarium biretum, Cosmarium galeritum, Euastrum bidendatum, Staurotrum arcticcon, Staurodesmus glaber, Tetmemorus brebissonii; and the boreal-arctic (2.5%), namely Penium polymorphum, Staurostrum spetsbergensis, Tetmemorus leavis (Kostkevičiene et al., 2003; Sterlyagova, 2008). These floral elements give evidence that algal flora in the bogs has been strongly affected by the glaciers (Coesel, 1996; Stamenkovic et al., 2008).

The composition of desmid species in the samples taken from different habitats was analysed by applying the Jaccard index and NMDS technique (Fig. 4). As it could be seen from Scatter plot, sample groups from “a” and “b” habitats were overlapping in 2D space. It can be concluded that complexes of desmid species in those habitats were similar. However, obviously lower diversity of desmid species was in the samples taken squeezing rhizomes and roots of Carex or Equisetum plants, where altogether 70 species were observed. In comparison, 88 species were identified in the samples taken from Sphagnum and other mosses. Differences in the species richness of desmid flora were even more evident when Chao2 estimator was applied: in the ”a” habitat, the number of species was 71.8 ± 20.1 and in “b” habitat – 94.9 ± 33.7. Thus, more favourable environment for desmid algae in the studied lakes were habitats with Sphagnum and brown mosses, where more rich algal complexes had formed, compared to habitats with rhizomes and roots of Carex or Equisetum plants. In the further studies on algal flora, it might be possible to find species from the Micrasterias, Staurodesmus and Xanthidium genera since the habitats with Sphagnum and brown mosses are suitable for the mentioned groups.

Fig. 4. Non-metric multidimensional scaling (NMDS) technique and the Jaccard similarity index of species composition recorded in the samples from the research area based on the presence/absence data (abbreviations of the number of lakes and habitat types as in Table 1). Dotted line shows convex hulls – the smallest convex polygon containing all points in the group

In the samples taken from the Khrebtovyi Nature Reserve, the species richness was poor and algae were not frequent. However, a large number of desmid species were found for the first time in that territory. Formation of algal flora in the Khrebtovyi Nature Reserve is still poorly understood, mainly because of the remoteness of the area and difficult research conditions. Chao 2 estimated maximum possible species richness was nearly one and a half times higher in the lakes with Sphagnum and brown mosses mats on the shores. That presupposes a need of further expeditions and more numerous samples from lakes in the Khrebtovyi Nature Reserve.
ACKNOWLEDGEMENTS

This work is a part of the research project “Diversity, ecology and geography of Cyanophyta/Cyanoprokaryota European sector of the Russian Arctic”, which is financed by the Russian Foundation for Basic Research (RFBR), grant No. 07-04-00443-a.

REFERENCES

COESEL P.M., 1996: Biogeography of desmids. – Hydrobiologia, 336: 41–53.

COESEL P.M., MEESTERS K., 2007: Desmids of the lowlands – Amsterdam.

CVELEV N.N. (ed.), 2000: Krasnaja kniga prirody Leningradskoj oblasti. Rastenija i griby. 2. – Sankt-Petersburg.

DEGETVA S.V. (ed.), 2010: The Biological Diversity of Komí Republic protected Areas, 7. Natural complexes of “Khrebtovy” wildlife reserve. – Syktyvkar.

DILLARD G.E., 1990: Freshwater algae of the South-eastern United States. – Berlin.

DILLARD G.E., 1991: Freshwater algae of the South-eastern United States. – Berlin.

DILLARD G.E., 1993: Freshwater algae of the South-eastern United States. – Berlin.

GETZEN M.V., 1985: Vodorosli v ekosistemakh krainego severa. – Leningrad.

GETZEN M.V., STEFINA A.S. & PATOVA E.H., 1994: Al’goflora Bol’’ezemel’skoj tundry v uslovijax antropogennogo vozdejstviya. – Ekaterinburg.

GOTELLI N.J., COLWELL R.K., 2010: Estimating species richness. – In: MARGURAN A.E., MCGILL B.J. (eds), Biological Diversity. Frontiers in Measurement and Assessment: 39–54. – Oxford.

GUIRY M.D., GUIRY G.M., 2016: AlgaeBase. Worldwide electronic publication, National University of Ireland, Galway. – http://www.algaebase.org [Accessed 30 November 2016].

HAMMER O., HARPER D.A.T., RYAN P.D., 2001: PAST: Palaeontological Statistics Software Package for Education and Data Analysis. – Palaeontologia Electronica, 4(1): 9.

JARUSHINA M.I., 2004: Vodorosli. – In: Bioreasury vodnyx ekosistem Poljarnovo Urala. – Ekaterinburg.

KEMMERIX M.S., 1966: Gidrologija severnogo, pripoljarnogo i poljarnogo Urala. – Moskva.

KOSTKEVICIENE J., BRISKAITĖ R., BAKUNAITĖ J., JAKIMAVICIUTE I., 2003: Desmids (Chlorophyta, Desmidiales) from Lithuania. – Biologia (Bratislava), 58(4): 681–691.

KRIEGER W., 1933: Die Desmidiaceen. – Leipzig.

KRIEGER W., 1935: Die Desmidiaceen. – Leipzig.

KRIEGER W., 1937: Die Desmidiaceen. – Leipzig.

KRIEGER W. & GERLOFF J., 1962: Die gattung Cosmarium. Verlag von J. – Cramer.

KRIEGER W. & GERLOFF J., 1969: Die gattung Cosmarium. Verlag von J. – Cramer.

LEGENDRE P., LEGENDRE L., 1998: Numerical Ecology. – Amsterdam.

LENZENWEGER R., 1996: Desmidiaceenflora von Osterrheich. – Berlin.

LIND E.M., BROOK A.J., 1980: Desmids from the English Lake District. – Ambleside.

LUKNITSKAJA A.F., 2006: Synopsis of conjugate flora (Streptophyta, Zygnematophyceae) of the North Russia. – In: Novosti sistematiiki niz’shix rastenij, 40: 49–83. – Moskva.

PALAMAR–MORDVINCEVA G.M., 1982a: Opredelitel presnovodnyx vodoroslej SSSR 11(2). – Leningrad.

PALAMAR–MORDVINCEVA G.M., 1982b: Desmidievye vodorosli Ukrainskoi SSR – Kiev.

PALAMAR–MORDVINCEVA G.M., PETL’OVANIJ O.A., 2009: Flora vodoroslej Ukrainy. 12(1) – Kyiv.

RŮŽIČKA J., 1977: Desmidiaceen Mitteleuropas. – Stuttgart.

RŮŽIČKA J., 1981: Desmidiaceen Mitteleuropas 1–2. – Stuttgart.

SOVRAN S., JOVANOVIĆ V., KRIZMANIĆ J. & CVUJAN M., 2013: Desmid flora from four peat bogs in Serbia. – Archives of Biological Sciences, 65(2): 721–732.

STAMENKOVIĆ M., CVUJAN M. & FUŽINATO S., 2008: A checklist of desmids (Conjugatophyceae, Chlorophyta) of Serbia. – Cryptogamie, 29(4): 325–347.

STERLYAGOVA I.N., 2008: Desmids in mountain lakes of the subpolar Urals. – Biologija, 63(6): 951–920.

ŠVAREVA J.N., 1962: Klimat pripoljarnogo i poljarnogo Urala. – Moskva.

TASKAEV A.I. (ed.), 2009: Krasnaja kniga respubliki Komí. – Syktyvkar.
The International Plant Names Index, 2012: Published on the Internet. – http://www.ipni.org [Accessed 30 November 2016].

The Plant List, 2013: Version 1.1. Published on the Internet. – http://www.theplantlist.org [Accessed 30 November 2016].

West W., & West G.S., 1904: A monograph of British Desmidiaceae – London.

West W., & West G.S., 1905: A monograph of British Desmidiaceae. – London.

West W., & West G.S., 1908: A monograph of British Desmidiaceae. – London.

West W., & West G.S., 1912: A monograph of British Desmidiaceae. – London.

West W., & West G.S., Carter N., 1923: A monograph of British Desmidiaceae. – London.

DVYNEČIŲ FLORA CHREBTOVYJ DRAUSTINIO EŽEUOSE ŠIAURĖS URALE (RUSIJA)

Rima Briškaite, Elena Patova, Sigitas Juzenas

Santrauka

Straipsnyje aptariama dvyniečių rūšių įvairovė, jų paplitimas Chrebtovij draustinio termokarstinio ir kalnų ežeruose (Šiaurės Uralas). Rasta 116 dvyniečių rūšių, kurios priklauso Closteriaceae (13 rūšių), Desmidiaceae (93), Gonatozygaceae (1), Mesotaniaceae (7), Peniaceae (2) šeimoms. Dvidešimt septynis rūšis buvo rastos pirmą kartą šiame regione. Šešiasdešimties rūšių, kurios sudarė 51,7 % visų rastų dvyniečių rūšių, radiniai buvo pavieniai, aptikti tik vienoje tirtoje augavietėje. Didžiausias dvyniečių rūšių skaičius (88 rūšys) rastas vandens mėginiuose, paimtuose iš ežerų pakraščių ištrauktų Sphagnum spp. ar kitas samanas.