Percutaneous Treatment of the Spinal Metastases

A. Zachos*, P. Tranquilli Leali and C. Doria
Orthopaedic Department, University of Sassari, Italy

Abstract

Background: The spinal column is the most frequent site of bone metastases, and between 30% and 70% of patients with cancer will have evidence of spinal metastasis at autopsy [1,2]. The majority of metastasis occurs in the thoracic spine (70%) followed by the lumbar (20%) and cervical region (10%), [2-4]. The surgical treatment of the vertebral metastases remains a real challenge in spine surgeons. Recent advancements in surgical techniques allow a less aggressive approach of the patient with better results in terms of decreasing pain, improvement of the quality of life. We must avoid the overtreatment of terminally ill patients; some patients may survive for several years and benefit from surgery.

Materials and methods: The surgical techniques that we used from August 2006 to October 2011 were the coagulation (Figures 2a,2b) associated with vertebroplasty (Figures 3a,3b) and percutaneous osteosynthesis (Figures 4-6). Very important were the operating room set up and the surgical technique. In our clinic, in the last 5 years, were treated 115 patients. With vertebroplasty (Figures 3a,3b) and ablation (Figures 2a,2b) 76 patients (94 vertebrae). We used the percutaneous osteosynthesis (Figures 4-6) in 39 patients aged between 42 and 88 years (mean 65 years).

Results: In both types of treatment, the postoperative elapsed were regular with early mobilization and regression of pain.

Conclusion: The diagnosis and treatment of spinal metastases require multidisciplinary review. The optimal treatment depends from a balance between the morbidity of the surgical procedure, the estimated survival time, and the overall quality of life. We believe that these minimally invasive techniques are certainly a viable alternative to “open” traditional spine surgery and can help in order to reduce the pain and to restore the stability.

Background

The spinal column is the most frequent site of bone metastases and between 30% and 70% of patients with cancer will have evidence of spinal metastasis at autopsy [1,2]. The majority of metastasis occurs in the thoracic spine (70%) followed by the lumbar (20%) and cervical region (10%), [2-4]. The surgical treatment of the vertebral metastases remains a real challenge in spine surgeons. Recent advancements in surgical techniques allow a less aggressive approach of the patient with better results in terms of decreasing pain, improvement of the quality of life. Treatment must be individually tailored for each patient in consideration of multiple factors including bony stability, the compression of neural structures, tumor radio sensitivity, pain, and, not least, the patient’s overall prognosis. There are minimally invasive surgical procedures that may provide immediate pain relief and improve fracture-related spinal deformity.

Epidemiology

The increase in survival in many types of cancer has increased the incidence of symptomatic spinal metastases. The spinal column is the most frequent site of bone metastases, and between 30% and 70% of patients with cancer will have evidence of spinal metastasis at autopsy [1,2]. The majority of metastasis occurs in the thoracic spine (70%) followed by the lumbar (20%) and cervical region (10%), [3-5]. The thoracic spine is most commonly involved in metastatic disease, possibly because it contains the greatest volume of bone marrow for receiving metastatic deposits [6]. The vertebral column is the third site most affected after lungs and liver [7]. The most common primary malignancy is prostate cancer for men, followed by lung and colon cancer. For women the first cause for vertebral metastases is the breast cancer, followed by lung and colon cancer. Vertebral metastases occur in all age groups, with the highest incidence between age 40 and 65 years [8].

There are two types of treatment, conservative and surgical:

Conservative and pharmacological treatment of the spinal metastases: Include hormonal therapy, chemotherapy (antitumor drugs and drugs that prevent the effects of tumor), analgesic medication and radiation therapy. Chemotherapy can be divided into antitumor drugs and drugs that prevent or ameliorate the effects of tumor. Antitumor chemotherapy currently plays a relatively limited role in the treatment of spinal metastases. Radiation therapy remains the mainstay of therapy for metastatic spinal tumor is well known that radiation
therapy is first-line for most patients who present spinal metastasis may be used as adjunct for residual radiographic tumor. Also the therapy with bisphosphonates has a big importance. Bisphosphonates are potent inhibitors of the osteoclastic bone resorption that is associated with skeletal metastases. If the patient cannot be subjected to surgery, an external contention can help him for the pain relief.

Surgical treatment of the spinal metastases: It’s very important the surgical staging and the preoperative prognostic score in order to choose the best surgical treatment. There are many surgical staging system like [9, figure 1,10] (Table 1).

Also, it’s well known the existence of two types of surgery, the “open surgery” and “percutaneous” surgery. Both types of surgery may be useful in the treatment of the vertebral metastasis. Recent advancements in surgical techniques allow a less aggressive approach (percutaneous surgery) of the patient with better results in terms of decreasing pain, improvement of the quality of life.

Materials and Methods

We opted for the percutaneous treatment; the reasons were the high age, comorbidities (Table 2), multiple metastases in bone and visceral sites. The surgical techniques that we used were a) coablation (Figures 2a,2b) associated with vertebroplasty (Figures 3a,3b) and b) Percutaneous osteosynthesis (Figures 4-6). In our clinic, in the last 5 years (August 2006 to October 2011), were treated 115 patients; 56 males and 59 females (Table 3), aged between 42 and 88 years (mean 65 years). With vertebroplasty and ablation (Figures 2.3) 76 patients (66.08%), (94 vertebrae). We used the Percutaneous osteosynthesis (Figures 4-6) in 39 patients (33.92%).

In both types of percutaneous surgery are very important the operating room set up and the surgical technique.

Operating room set up and surgical technique

The patient undergoes general anesthesia. Is positioned, then, lying prone on the bed radiolucent. With a wire kirschner and the help of the image intensifier will highlight the vertebrae to be treated is drawn (Figures 2a,2b) stabilizes the vertebrae and provides immediate pain relief. It has been postulated that the analgesia provided by vertebroplasty may derive from stabilization of microfractures, reduction of mechanical forces, and/or destruction of the nerve terminals by the cytotoxicity of PMMA in the cement due to vascular, chemical, and thermal forces [12-15].

The contraindications of the combined procedure consist of osteoblastic tumors, fractures with retropropulsion of the fragments within neural foramen, spread of tumor within the epidural space, local infection (osteomyelitis, discitis or epidural abscess), coagulative disorders, pain not related to vertebral collapse, steady asymptomatic fractures, and tumor involvement or missing integrity of pedicles or joint facets [16-19].

Percutaneous osteosynthesis: The percutaneous osteosynthesis (Figures 4-6) is an alternative for the stabilization of the vertebral metastatic lesions in which it is expected a good response to a future

Scoring System	Prognostic Factors	Point
Primary Tumor	Visceral mets.*	1
Visceral mets.*	Bone mets **	2
Solitary or	3	
Isolated		
Moderate Growth (Kidney, Uterus, etc.)	4	
Treatable	5	
Multiple	6	
Rapid Growth (Lung, Stomach etc.)	7	
Ungradable	8	
10		

* No visceral mets.= 0 point ** Bone mets. Including spinal mets

Table 1. Tomita preoperative prognostic score [10].
chemotherapy or radiotherapy. The decision for surgery was made after discussion with the oncological team in all cases. We have considered such as correct surgical indications the vertebral lesions with high risk of pathologic fracture, the correction of kyphotic or scoliotic curves secondary to pathological vertebral collapse. Also all lesions protruding from the vertebral body in any direction, so the spinal osteosynthesis acts like an internal fixation. Allow the patient to prevent bedsores required for long periods of time. Many times we associate the percutaneous osteosynthesis (Figures 4-6) with a mini decompressive laminectomy in order to give better pain control and allow patient’s mobilization. To emphasize the use of coablation (Figures 2a,2b) and vertebroplasty with the transpeduncular osteosynthesis in cases that we considered appropriate like the small painful lesions with pathologic fracture risk, lesions that involved the vertebral body.

Results

In both types of treatment, the postoperative elapsed were regular with early mobilization and regression of pain. The median duration of the operation of the patients who treated with coablation (Figures 2a,2b) and vertebroplasty (Figures 3a,3b) was 30 minutes and the median blood loss was 15 milliliters. Postoperatively, all patients were
Comorbidities	Number Patients
Chronic heart failure | 7
Diabetes (type I and II) | 29
Systemic Lupus Eritematous | 1
Rheumatoid Arthritis | 2
Hypertension | 89
Stroke | 6
Mediterranean Anemia | 8
Hypothyroidism | 5
H. I. V | 2
Chronic hepatitis | 12
Crohn’s disease | 1
Chronic renal failure | 7
Chronic obstructive pulmonary disease | 11

Table 2: Comorbidities of the patients who were treated with percutaneous mode.

Primary Cancer	Males	Females
Breast	0	18
Colon	11	8
Kidney and Renal pelvis	4	2
Lung and Bronchus	14	9
Liver	11	7
Urinary Bladder	3	5
Thyroid	1	4
Prostate	12	0
Endometrium (Uterus)	0	6

Table 3: The primary sites of cancer and the incidence to both sexes.

allowed to walk without the use of braces. The median duration of hospitalization was two days. Most of the patients were discharged to an oncology unit for additional treatment and rehabilitation. There were no perioperative or immediate postoperative deaths. Forty one patients (35.65%) had at least one reoperation: Twenty nine (25.21%) because of progression of the primary disease. Twelve patients (10.43%) had epidural compression at a spinal level. In the patients who treated with percutaneous osteosynthesis (Figures 4-6), the median duration of the operation was 74 minutes and the median blood loss was 108 milliliters. The median duration of hospitalization was seven days. Most of the patients were discharged to an oncology unit for additional treatment and rehabilitation. No patients were admitted to the intensive care unit.

Conclusion

The diagnosis and treatment of spinal metastases require multidisciplinary review. The optimal treatment depends from a balance between the morbidity of the surgical procedure, the estimated survival time, and the overall quality of life. We believe that these minimally invasive techniques are certainly a viable alternative to “open” traditional spine surgery and can help in order to reduce the pain and to restore the stability. The benefits of “minimal invasive” surgery are reduced muscular trauma, smaller wound and by that less risk of wound complications, less bleeding and faster recovery which for this patient category could mean a longer time with improvement in quality of life compared to open surgery. Symptomatic patients deemed poor operative candidates for open surgery due to age, comorbidities (Table 2), metastatic burden or limited life expectancy may benefit from a percutaneous mini-invasive surgery. Minimally invasive techniques with quick pain relief can be an alternative option to conventional treatments [20].

References

1. Bach F, Larsen BH, Rohde K, Borgesen SE, Gjeris F, et al. (1990) Metastatic spinal cord compression. Occurrence, symptoms, clinical presentations and prognosis in 398 patients with spinal cord compression. Acta Neurochir (Wien) 107: 37-43.
2. Perrin RG (1992) Metastatic tumors of the axial spine. Curr Opin Oncol 4: 525-532.
3. Byrne TN (1992) Spinal cord compression from epidural metastases. N Engl J Med 327: 614-619.
4. Gerszten PC, Welch WC (2000) Current surgical management of metastatic spinal disease. Oncology (Williston Park) 14: 1013-1024.
5. Gilbert RW, Kim JH, Posner JB (1978) Epidural spinal cord compression from metastatic tumor: diagnosis and treatment. Ann Neurol 3: 40-51.
6. Taneichi H, Kaneda K, Takeda N, Abumi K, Sato S (1997) Risk factors and probability of vertebral body collapse in metastases of the thoracic and lumbar spine. Spine (Phi Pa 1976) 22: 239-245.
7. Harrington KD (1986) Metastatic disease of the spine. J Bone Joint Surg Am 68: 1110-1115.
8. Perrin RG, Laxton AW (2004) Metastatic spine disease: epidemiology, pathophysiology, and evaluation of patients. Neurosurg Clin N Am 15: 365-373.
9. Boriani S, Weinstein JN, Biagini R (1997) Primary bone tumors of the spine. Terminology and surgical staging. Spine (Phi Pa 1976) 22: 1036-1044.
10. Tomita K, Kawahara N, Kobayashi T, Yoshida A, Murakami H, et al. (2001) Surgical strategy for spinal metastases. Spine (Phi Pa 1976) 26: 298-306.
11. Schaefer O, Lohrmann C, Markmiller M, Uhmelser P, Langer M (2003) Technical innovation. Combined treatment of a spinal metastasis with radiofrequency heat ablation and vertebroplasty. AJR Am J Roentgenol 180: 1075-1077.
12. Well A, Chiras J, Simon JM, Rose M, Sola-Martinez T, et al. (1996) Spinal metastases: indications for and results of percutaneous injection of acrylic surgical cement. Radiology 199: 241-247.
13. Mathis JM, Barr JD, Belkoff SM, Barr MS, Jensen ME, et al. (2001) Percutaneous vertebroplasty: a developing standard of care for vertebral compression fractures. AJNR Am J Neuroradiol 22: 373-381.
14. Cotlen A, Dewatre F, Cortel B, Assaker R, Leblond D, et al. (1996) Percutaneous vertebroplasty for osteolytic metastases and myeloma: effects of the percentage of lesion filling and the leakage of methyl methacrylate at clinical follow-up. Radiology 200: 525-530.
15. Radin EL, Rubin CT, Thrasler EL, Lanyon LE, Crugnola AM, et al. (1982) Changes in the bone-cement interface after total hip replacement. An in vivo animal study. J Bone Joint Surg Am 64: 1185-1200.
16. Fournier DR, Schomer DF, Nader R, Chian-Fournery J, Suki D, et al. (2003) Percutaneous vertebroplasty and kyphoplasty for painful vertebral body fractures in cancer patients. J Neurosurg 98: 21-30.
17. Linville DA 2nd (2002) Vertebroplasty and kyphoplasty. South Med J 95: 583-587.
18. Ledlie JT, Renfro M (2003) Balloon kyphoplasty: one-year outcomes in vertebral body height restoration, chronic pain, and activity levels. J Neurosurg 98: 36-42.
19. Masala S, Fiori R, Massari F, Simonetti G (2003) Vertebroplasty and kyphoplasty: new equipment for malignant vertebral fractures treatment. J Exp Clin Cancer Res 22: 75-79.
20. Gangi A, Guth S, Impert JB, Marin H, Jeung MY, et al. (2003) Radiofrequency ablation of bone metastases. ECR Cum Laude.