Survey and Evaluation of Public Acceptance of Environmental Risk Based on Cloud Model——Take the heavy chemical PX project as an example

Mingxin Cui¹, a, Kexin Li²,*

¹Institute of petroleum economics, Northeast Petroleum University, Daqing, China
²School of Economics and Management, Northeast Petroleum University, Daqing, China

*Corresponding author e-mail: likexin.0331@163.com, a dqcmx@126.com

Abstract. This paper takes the heavy chemical PX project as the research object, and builds an evaluation system based on environmental values, risk communication, system trust and risk perception. Use questionnaires to obtain real and extensive data, and use cloud models for case analysis. The results show that the public's acceptance of environmental risks in heavy chemical projects is at a medium level, indicating that there are insufficient environmental risk communication and public participation methods and channels in heavy chemical projects. The government should improve the communication mechanism of public participation in the decision-making of major projects and reduce the occurrence of environmental risk group incidents.

1. Introduction

According to statistics, in 2017, the national SO2 emissions were 8.754 million tons, the waste water discharge was 69.966 billion tons, and the number of environmental incidents was 302, including one major environmental accident [1]. With the continuous advancement of industrialization and the increasing awareness of public participation in environmental protection, risk-type group events related to environmental pollution in heavy chemical industry are increasing at a rate of more than 30% per year. It is characterized by public concern that the project operation or safety accidents will cause environmental pollution, and the implementation of the project will be resisted or continued when the environmental pollution phenomenon has not occurred [2].

Any project has certain environmental risks during the construction or operation stage. Foreign scholar Sverker (2017) analyzes the relationship between political trust, policy instruments and public acceptance of environmental policies [3]; Huang (2017) adopted the entropy cloud method obtains objective environmental risk influencing factors [4]. Compared with foreign countries, the research on environmental risks of heavy chemical projects in China has been deepening in recent years. Wang (2018) found that environmental knowledge, environmental pollution perception, social interaction, political participation, interpersonal trust and institutional trust have a significant impact on public environmental behavior [5]; Gong (2017) from the perspective of environmental risk technology, found risk perception, environment Values, system trust and risk communication mainly affect the public's acceptance of PX projects [6].
This paper uses Cloud Model to evaluate the transfer coupling mechanism that affects the public acceptance of environmental risk in heavy chemical projects. In this way, the factors affecting the public acceptance of heavy chemical projects can be grasped, and the level of public acceptance can be visually seen through cloud model map, which indicates the direction for national environmental risk group event and promotes the green and healthy development of heavy chemical industry.

2. Research Design

2.1. Research objects and data sources
"PX" is an abbreviation for Para-Xylene, which is commonly used in the production of plastics, poly-fibers and films. As of August 2018, China has built a total of 18 PX projects, forming a total of 14.83 million tons / year PX capacity, will form a total of 39.83 million tons / year PX capacity around 2021 [7]. The environmental pollution risk of the PX project originates from the treatment of industrial "three wastes". The waste water is produced in small quantities as oily waste water, which can be discharged through the system. The exhaust gas uses clean fuel gas to gradually reduce emissions; solid waste is entrusted with qualification. The unit is filled.

This questionnaire survey uses on-site paper questionnaires and online e-question questionnaires. In order to ensure the authenticity and extensiveness of the survey, respondents should cover different occupations and age groups. (Table 1). A total of 400 copies were distributed in this survey, and 356 were recovered. The effective recovery rate was 89.0%.

Sample description (N=356)	Percentage (%)	Sample description (N=356)	Percentage (%)
Gender		Career	
Male	64.3	Farmer	0.5
Female	35.7	Unemployed	1.2
18 or less	1.3	Freelancers	0.7
18-25	31.6	Self-employed households	26.4
26-35	24.8	Corporate employee	31.6
36-45	37.7	Government staff	38.3
46-60	3.9	other	1.3
60 and above	0.7		

2.2. Indicator selection and data processing
Public acceptance refers to the extent to which the public accepts and recognizes certain matters. It is the key to whether a certain matter can meet the public’s needs and meet public expectations. According to the principle of objectivity and feasibility, in the introduction decision stage, the influencing factors affecting the public acceptance of the environmental risks of heavy chemical projects are selected to construct the public acceptance index system for environmental risks of heavy chemical projects (Table 2).

Evaluation index	Assignment criteria	%	Score
Environmental values P1	l=very important;2=important;3=not important;4=unrelated	20.29	771.45
The importance of the environment to life	1=5000m or more;2=3000-5000m; 3=1000-	10.44	396.94

Table 1. Survey sample data.

Table 2. Evaluation index and its evaluation criteria.
projects to water sources	3000m; 4=1000m		
The choice between environmental protection and economic development	1 = environmental protection; 2 = equally important; 3 = economic development; 4 = unrelated	18.44	700.96
Impact of the EIA report on the acceptance of the project	1=qualified, accept the project;2=qualified, do not accept the project;3=qualified, against the project;4=unrelated	17.43	662.52
Attitude towards environmental pollution	1=timely stop;2=use media rendering; 3=let development; 4=unrelated	22.51	855.82

Risk communication P2
Ways for environmental protection departments to disclose project environmental assessment information
The way the government discloses project location information
Public access to project poll information
Public channel for raising opinions/questions
Government's efficiency in handling public opinions
Environmental accident emergency measures
Media reports on environmental risk information

System trust P3
Government's supervision of environmental pollution issues
Government's ability to handle environmental opinions
Government's punishment mechanism for environmental pollution
Use of environmental protection equipment by operators
Operator's ability to handle pollutants
Operators should respond to sudden environmental risk mechanisms
Operator's awareness of environmental responsibility
The credibility of new media propaganda
The credibility of traditional media propaganda
The media reveals the ability to violate the rules
EIA professional qualifications
EIA expert qualification / ability
3. Model establishment and result analysis

3.1. Entropy weight cloud model

Table 3. Evaluation index digital characteristics and grades.

Indicators	I	II	III	IV	Score	Grade
-water pollution	6.72	513.35				
Air Pollution	6.14	469.56				
Soil pollution	10.16	776.44				
sound pollution	10.25	783.21				
Solid waste treatment	9.85	752.58				
Liquid waste treatment	7.60	580.64				
Explosion/fire	10.10	771.81				
Public health hazard	9.27	708.04				
Employee health and safety threats	5.87	448.24				
Unusual migration of population	10.94	835.89				
Depreciation of surrounding industries	13.11	1002.41				

Indicator threshold	1= no effect; 2= not serious; 3= unclear; 4= more serious; 5= very serious					
P1 (2136,356 0)						
	(3560,5340)					
	(5340,6764)					
	(6764,8544)					
	3802.08	II				
	0.0021					
	0.252					
	0.256					
	0.257					
P2 (2492,356 0)						
	(3560,4984)					
	(4984,6052)					
	(6052,7476)					
	3927.03	II				
	0.0002					
	0.257					
	0.257					
	0.257					
P3 (4272,747 6)						
	(7476,1068 0)					
	(10680,1388 4)					
	(13884,1708 8)					
	11381.3	III				
	0.0011					
	0.245					
	0.245					
	0.345					
P4 (3916,783 2)						
	(7832,1174 8)					
	(11748,1566 4)					
	(15664,1958 0)					
	7641.89	I				
	0.0001					
	0.246					
	0.246					
	0.246					

Firstly, the public acceptance is divided into I difference, II medium, III good and IV excellent. Through the data obtained from the questionnaire, the thresholds of environmental values, risk perception, risk communication and system trust are calculated, and the grade of the evaluation index is determined according to the actual score. Then use the forward cloud algorithm to program the weight ω and membership r of the indicator (Table 3).

Finally, the fuzzy evaluation method is used for evaluation. According to the principle of maximum membership degree, the public acceptance of the environmental risk of heavy chemical projects is medium (II) (Table 4).

Table 4. Public acceptance evaluation results based on entropy weight cloud model.

Grade	I	II	III	IV	
	Public acceptance	0.000005458	0.00051467	0.0000433	0.00002707

3.2. Comprehensive evaluation cloud model

Calculate the standard and actual cloud digital characteristics of each level of indicators (Table 5). The comprehensive evaluation cloud model diagram (Fig. 1) drawn by MATLAB 7.0 can visually find that the public acceptance of environmental risks in heavy chemical projects is at level II. Therefore, the public's acceptance of environmental risks in heavy chemical projects is at a medium level.
Table 5. Indicator cloud digital feature.

Digital features	P1	P2	P3	P4	P
Actual	3802.00,2721.0	3927.04,2116.3	11381.32,5442.0	7719.51,6651.38	9113.48,3950.06
Standard	5340.00,2721.0	4984.00,2116.3	10680.00,5442.0	11748.00,6651.3	10559.60,4256.2

Figure 1. Comprehensive evaluation of cloud model map.

3.3. Result analysis

Through research, it is found that the public's awareness of environmental values is strong, but it tends to be one-sided, mainly focusing on feelings that are important but not important. The awareness of environmental issues related to themselves is far greater than the concern for overall environmental protection. Therefore, the environmental values are at a medium level.

Through research, it is found that the communication channels between the public and the government and project operators are lacking, environmental risk information cannot be obtained in time, and the media does not release the project environmental risk information in time, which has a negative impact on the public acceptance of heavy chemical projects, so the risk communication is at a medium level.

Through research, it is found that the public's trust in the government and project operators is mainly concentrated on the two trust levels of trust and less trust, which is more biased than trust, and the media trust distribution is relatively average, so the system trust is at a good level.

Through research, it is found that the public believes that the pollution degree of heavy chemical waste to the environment is very serious. The environmental risk perception of heavy chemical projects is very high, causing the public to resist the heavy chemical projects, so the risk perception is at a poor level.

From the cloud model map, it can be intuitively found that the entropy and super-entropy of the cloud map are relatively small, indicating that the cloud model map has strong cohesiveness, that is, the opinions of the survey objects tend to be consistent, and the evaluation results are reliable.
4. Conclusion

According to the characteristics of heavy chemical projects, the public acceptance rating system for environmental risks of heavy chemical projects was constructed from the perspective of public acceptance. According to the results of the questionnaire survey, the public participation awareness in environmental values is mainly reflected in the attitude towards environmental issues. The disclosure of risk information in the media mainly affects the public acceptance of the project environmental risks, and the environmental trust institutions in system trust. The professional quality is the key content of public concern. The public perception of risk perception mainly focuses on whether heavy chemical projects affect the depreciation of surrounding industries.

The evaluation results of the entropy weight cloud model obtained through the cloudization process are consistent with the evaluation results of the comprehensive evaluation cloud model, that is, the public’s acceptance degree of environmental risks of heavy chemical projects is at a medium level, which indicates that the cloud model has good credibility and feasibility in the evaluation of environmental risks of heavy chemical projects.

5. Acknowledgement

This research was financially supported by Heilongjiang Provincial Philosophy and Social Science Fund (Approval No.15JYE10), Ministry of Education Humanities and Social Sciences Fund (Grant No. G2016002), Heilongjiang Education Department Open Fund Project of Education Research Fund (No.WKJD201605), Daqing Humanities and Social Science Fund (No. DSGB2018066), Key Project of Education Science Planning of Heilongjiang Province (GJB1319022).

6. References

[1] National Bureau of Statistics of the People's Republic of China, China Statistical Yearbook, China Statistics Press, Beijing, 2018.
[2] Xie Wei, Wu Zhipeng, Ma Weisheng, Yao Meng, Environmental Risk Analysis of PX Project, Production and Environment, 2014, 14(12)33-36.
[3] Sverker C. Jagers, Simon Matti, Andreas Nilsson, How exposure to policy tools transforms the mechanisms behind public acceptability and acceptance—The case of the Gothenburg congestion tax, International Journal of Sustainable Transportation, 2017 (2)109-119.
[4] Wencheng Huang, Bin Shuai, Lei Wang, Eric Antwi, Railway Container Station Reselection Approach and Application: Based on Entropy-Cloud Model, Mathematical Problems in Engineering, 2017(14)16-29.
[5] Wang Xiaonan, “Public” and “Private”: The Logic of Environmental Behavior of Chinese Urban Residents, Fujian Forum (Humanities and Social Sciences), 2018(06)141-150.
[6] GONG Wenjuan, FANG Qinhu, Environmental Risk Assessment and Public Risk Acceptance of Heavy Chemical Projects, Journal of China University of Geosciences, 2017, 17(1) 89-99.
[7] Asian Chemical Consulting. China PX Industry Survey and Investment Planning Analysis Report 2018-2023, Shanghai, 2018 (04).