Quantum chaos with non-periodic, complex orbits in the Resonant Tunneling Diode

D. S. Saraga and T. S. Monteiro
Dept. of Physics and Astronomy, University College, University of London, Gower St, London WC1E 6BT, U.K.
(March 21, 2022)

We show that a special type of orbits, which are non-periodic and complex, 'Saddle Orbits' (SOs) describe accurately the quantal and experimental current oscillations in the Resonant Tunneling Diode in tilted fields. This is the first demonstration that one needs to abandon the periodic orbits (POs) paradigm in favour of this new and peculiar type of orbit. The SOs solve the puzzle of broad regions of experimental oscillations where we find no real or complex PO that can explain the data. The SOs succeeds in regimes involving several non-isolated POs, where PO formulas fail.

03.65.Sq,05.45+b,73.20.Dx

The Resonant Tunneling Diode (RTD) in tilted fields has recently been intensively investigated as an experimental probe of 'quantum chaos' [1-3]. It is widely considered to be a paradigm of Periodic Orbit (PO) Theory in a real system, yet to date no PO formula has been shown to provide a full and quantitative description of the current. Several approaches were presented recently [7-9], expressing the tunneling current in terms of periodic orbits. We demonstrated previously [10] that they could reproduce qualitatively the voltage range of experimental features like period doubling of the current. However, they only yielded reasonable agreement for the amplitudes of current oscillations in specific regimes, namely the stable (torus-quantization) region and its opposite extreme, the isolated unstable periodic orbit regions. They failed in an intermediate regime spanning a broad range of field values. There one finds regions where there is no real PO or alternatively competing non-isolated POs. As we argue below, it is not simply a question of improving the PO theory with uniform approximations. In the regions where there is no real PO, even complex 'ghosts' [11] POs cannot explain the experimental oscillations (for convenience we continue nevertheless to refer to these regions as 'ghost regions').

The main difficulty in establishing a semiclassical theory stems from the initial state ψ_0 describing the electrons prior to tunneling: one cannot simply exclude it from stationary phase considerations imposed on the rapidly varying function $e^{iS(z,z')/\hbar}$ of the classical action S of a trajectory. We show here that the correct stationary phase condition arising from the theory proposed in [8] yields orbits of a new type - which we call 'Saddle Orbits' (SOs). The SOs are non-periodic and complex, and describe the current accurately even in regimes where the previous semiclassical PO theories failed. They also show good agreement with the experimental amplitudes obtained from Bell Lab data [2]. The SOs are quite distinct from the real closed orbits identified in atomic photoabsorption from localized ground states [12]. As for ghosts, the imaginary component of the action provides a damping term. We show that for SOs a further weighting term due to ϕ_0 can partially cancel this damping. This yields contributions which can decay slowly with decreasing \hbar, also solving the puzzle of oscillations which persist far into the ghost regions.

We recall briefly the RTD model [1]. An electric field F (along x) and a magnetic field B in the $x-z$ plane (at tilt angle θ to the x axis) are applied to a double barrier quantum well of width $L = 1200\text{Å}$. Electrons in a 2DEG accumulate at the first barrier and tunnel through both barriers giving rise to a tunneling current I. In the process they probe the classical dynamics - regular or chaotic - within the well. The current oscillates as a function of applied voltage V. After rescaling [1] with respect to B, the dynamics at given θ and ratio of injection energy to voltage ($R = E/V \sim 0.15$ for the Bell Lab experiments) depends only on the parameter $\varepsilon = V/LB^2$.

The theoretical scaled current used for our quantal calculation and the starting point of the semiclassical theory is expressed as a density of states weighted by a tunneling matrix element: $I(B) = \sum_i W_i \delta(B - B_i)$. We used the Bardeen matrix element [13] form for W_i, which is an overlap between ψ_0 and the wave function ψ_i in the quantum well. In the experiments, incoherent processes such as phonon emission damp the current by $e^{-T/\tau}$, where T is the period of the motion of an electron in the well and $\tau \sim 0.11$ ps. Details of the experimental data reduction and quantum calculations were given in [14]. We can obtain reliable experimental amplitudes in regimes where the current is dominated by a single frequency (pure period-one or period-two).

For the semiclassics, one can re-express the Bardeen matrix element in terms of energy Green’s functions and use their semiclassical expansion over classical paths to get the following expression for the tunneling current [8]:

$$I(B) \propto \Re e \int dz \int dz' \sum_{cl} m_{12}^{-1/2} e^{i(S(z,z') - B \cos \theta (z^2 + z'^2)/2}$$

where $m_{12} = \frac{\partial^2}{\partial \nu_{ij}}$ is an element of the monodromy matrix $m_{i,j}$, for a trajectory $(x, z) \rightarrow (x', 0, z')$ which must connect both walls of the well. We consider here that the initial state is in the lowest Landau state:
\(\phi_0(z) = \sqrt{B \cos \theta} \exp(-B \cos \theta z^2 / 2) \). The stationary phase condition applied to Eq. (1) gives \(i \partial \frac{\partial \phi}{\partial z} - B \cos \theta z = 0 \), \(i \partial \frac{\partial \phi}{\partial z} - B \cos \theta z' \). The contributing trajectories \((z, p_z) \rightarrow (z', p_z')\) will therefore satisfy the condition:

\[
p_z = iB \cos \theta z, \quad p_z' = -iB \cos \theta z'
\]

(2)

One sees clearly that these trajectories, which we call 'Saddle Orbits' (SOs), will invariably be complex and non-periodic. It follows that we cannot consider the repetitions of a given SO - as one does for POs when investigating period-doubled oscillations. Instead, one finds other SOs of quite different shapes with longer periods. We found that all the SOs which give a substantial contribution to the current have \(z = z' \). They retrace themselves once because of an intermediate bounce normal to a wall or a 'soft' bounce on the energy surface.

In Fig. 1 the \(B \cos \theta \) term in Eq. (1) was neglected in order to get a formula in terms of POs with null momentum \(p_z = 0 = p_z' \). One can establish a link between a self-retracing SO and its PO counterpart by expressing the SO in terms of an expansion around the PO. Making a Taylor expansion of the action and neglecting \(\partial^2 S / \partial z^2 \) for \(n > 2 \), one finds:

\[
z_{SO} = \frac{z_{PO}}{1 - \delta}
\]

(3)

where \(\delta = i \cos \theta \frac{m_0}{m_{-1}} \) and \(m_0 \) is the scaled monodromy matrix of the PO. We found that non-self-retracing SOs, which correspond to segments of POs, are not relevant to these experiments.

We plot some of these trajectories in Fig. 1a)-d), together with their corresponding PO counterpart. The link between SOs and POs is evident in Fig. 1a), which shows a regime where the SO and PO are very similar. In this case the \(x - z \) path of the SO is not very complex (the imaginary part is an order of magnitude smaller than the real part). The connection between SO and PO is generally not so apparent though. Fig. 1b) shows the stable PO \(t_0 \), its related 'primitive' SO \(t_0 - SO \) as well as another SO, which seems completely unrelated to them. This SO \((2t_0 - SO) \) plays, in fact, the role of the second repetition of the 'primitive' SO: its complex action and the real part of its period are twice (within 1%) those of \(t_0 - SO \). Despite the obvious difference in their path, some of the properties of the (SO-PO) pair such as their monodromy matrix or action can be very similar.

Perhaps the most interesting situation is seen in Fig. 1c), where the SO 'interpolates' between the ghost PO and the real PO. This fact is illustrated in Fig. 1e), where we plotted the evolution of the starting position \(z \) (at \(x = 0 \)) against \(\epsilon \). One sees that a single SO is linked to a large number of POs. The latter are the basic traversing 2-bounce POs \((t_0, t_0', ...)\) to which have been attributed (in previous work) the period-one oscillations of the current. Their complicated dynamics has been well studied [54x-1153].

They undergo an infinite cascade of tangent bifurcations, where they disappear leaving a ghost. Subsequently at some lower \(\epsilon \) a similar PO reappears from the opposite edge of the Surface of Section. Over some \(\epsilon \) interval this re-entrant PO coexists with the ghost of the old PO.
bounce’ on the emitter wall because of the voltage drop.

The semiclassical current is given by the straightforward
Gaussian integration resulting from the stationary
phase approximation applied on (6). After normalizing
to the amplitude at \(\theta = 0^\circ \), the current due to one SO is
approximated by a simple analytical formula:

\[
I(B) = \Re e^{B(iS - \cos \theta z^2 + i\mu\pi/2)}
\]

\[
\sqrt{\cos \theta \hat{m}_{12} + \hat{m}_{21} / \cos \theta + 2i\mu_{11}}
\]

where \(\mu \) is a Maslov index, \(S \) and \(\bar{m}_{ij} \) are the scaled
action and element of the classical monodromy matrix of
the SO. One can also use the expansion in Eq.(3) to
approximate the SO current by the related PO. Expanding
the action \(S \) of the SO around the PO up to second order,
one finds:

\[
I(B) \simeq \Re e^{B(i\tilde{S} - \cos \theta z^2 + i\mu\pi/2)}
\]

\[
\sqrt{\cos \theta m_{12} + m_{21} / \cos \theta + 2i\mu_{11}}
\]

where \(\tilde{S} \) and \(\bar{z} \) are the scaled action and starting position
of the PO. This is exactly the PO formula presented in [8]
and tested in [10]. So we see that the PO formula will give
accurate results provided that the higher derivatives of
\(S \) are small and that the expansion of the SO around the
PO is justified. This latter point is the most relevant, as
it is the prime reason why the PO formula fails in certain
regions.

We show in Fig. 2 a comparison between quantal, ex-
perimental and semiclassical amplitudes for period one
and two currents. The corresponding comparison with
the PO formula was presented in [10].

Fig. 2 a) shows the period one amplitudes at \(\theta = 11^\circ \)
in the unstable and ‘ghost region’, while Fig. 2 b) shows
the stable torus regime. We found [10] that for the sta-
ble (\(\epsilon > 7000 \)) and the chaotic (\(\epsilon < 2500 \)) regions PO
theory (using \(t_0 \) and \(t_{0}' \)) gave good agreement. These
are regions where the SO and PO current are almost
equal, according to Eq. 3). But the intermediate region
(2500 < \(\epsilon < 7000 \)) was a puzzle: the PO formula
including the ghost failed to account for the quantal and
experimental oscillations, by a factor of 3. Fig. 2 a) shows
that the PO completely solves this problem, giv-
ing accurate results over the entire range from the torus
regime to the chaotic regime, including the ‘ghost region’.

The main reason why Eq. 2 fails in that region was
illustrated in Fig. 1 a): the SO cannot be approximated
by the ghost PO, as it is also related to the new \(t_{0}' \). In
this case it is not because the third derivative of \(S \) is
large.

The same happens for the \(S' \) ghost at 27° [Fig. 2 d)].
The SO describes very well the broad plateau of quantal
and experimental amplitudes, while POs failed. Once
again, this is because the SO interpolates between the
ghost (which appears at \(\epsilon = 7700 \)) and the new PO \(S'' \)
(which appears at \(\epsilon = 5500 \)), as illustrated in Fig. 1 d).

Therefore, the failure of the PO theory in these regions is
due to the sequence of tangent bifurcations, each followed
by a new re-entrant PO, [as illustrated in Fig. 1 f)], which
rules out a simple connection between one SO and one
PO.
The strength and persistence of the contribution of these complex orbits, even in the region where the SO formula does not reduce to the PO formula (such as in the ghost regions) is quite remarkable. Usually (e.g., in the density of states or the photoabsorption spectra of atoms \([1,3]\)), the contribution of complex ghost POs is extremely weak. They are exponentially damped away from the bifurcation (as \(\epsilon\) changes), since the imaginary part of the action increases as the ghost becomes more complex. However, in the RTD the tunneling amplitude includes an additional term due to the initial state:

\[
|I(B)| \propto e^{-B(\tilde{S}_I+\cos\theta(z^2_n-z^2_1))}
\]

where the subscripts \(I\) and \(R\) denote the real and imaginary parts. We see that the \textit{imaginary} part \(z_I\) of the starting position of a SO can compensate for the damping due to \(\tilde{S}_I\). This is the reason why even ‘very’ complex SOs can contribute. For instance, the \(S'\)-SO amplitude in the ghost region at \(\theta = 27^\circ\) shows a broad plateau, and no exponential damping away from the bifurcation (\(\epsilon < 7700\)).

Similarly, ghost POs are exponentially damped in the classical limit \(\hbar \to 0\) (which corresponds in our scaled model to \(B \to \infty\)). In Fig. 3 we investigate the \(\hbar \to 0\) behaviour of the SO current in the two ghost regions.

\[\text{FIG. 3. Semiclassical current } I(B) \text{ in two ghost regions showing the unusual } \hbar \text{ dependence. (a) } \theta = 11^\circ, \epsilon = 4000. \text{ The SO current is exponentially damped with } B (\text{i.e., in the classical limit}). (b) } \theta = 27^\circ, \epsilon = 7000. \text{ The current is only linearly damped with } B, \text{ showing a persistence in the classical limit never seen in ghost POs.} \]

In Fig. 3(a) \((\theta = 11^\circ, \epsilon = 4000)\) the amplitude of \(t_0\)-SO is exponentially damped with \(B\). This behaviour is seen in the experimental ghost region (see Fig. 5 of [3]): along curves of constant \(V/B^2\) the amplitudes decay rapidly with \(B\). Fig. 3(b) \((\theta = 27^\circ, \epsilon = 7000)\) shows a more surprising behaviour. Here the amplitude of \(S'\)-SO is not exponentially but \textit{linearly} damped. This very surprising feature is seen experimentally (see Fig. 6 of [3]). The explanation for the persistence of the complex SO in the classical limit is found again in [3].

We emphasize that this work is consistent with previous studies of ‘scarring’ in the RTD. It has been found that quantum states localized near some isolated or multiple POs can dominate the tunneling [3]. We have also investigated wavefunctions and Wigner distributions. We found that in the strong scarring regions, where the relevant scarring PO is only marginally unstable [4] (e.g. for \(\theta = 27^\circ, \epsilon = 10000\)), the real part of the SO is very close to the PO -within the ‘\(\hbar\)’ quantum uncertainty. This can also be the case with scars carried by ghost POs (e.g. \(\theta = 27^\circ, \epsilon = 7000\)). This is reasonable since after all it is the bundle of classical trajectories in the \textit{neighbourhood} of POs and SOs which scars or carries the electrons. Regions like the \(\theta = 11^\circ\) ghost region where the SO and PO are really different in shape do not show strong scarring by single states and the quantal current is carried by broad clusters of states.

We conclude that the SOs are a novel and successful way to approach semiclassical quantization of these types of chaotic systems. We recall that SOs arise solely from the inclusion of the initial state in the stationary phase condition. Hence one could expect SOs to be potentially relevant in the description of the expectation value of a quantal quantity (expressed as a density of states weighted by some matrix element [10]) if the observable in the matrix element is very localised and so varies as rapidly as \(e^{iS/\hbar}\).

We are greatly indebted to E. Bogomolny for providing us with invaluable help with his semiclassical formalism and to G. Boebinger for providing his experimental data. T. S. M. acknowledges funding from the EPSRC. D. S. S. acknowledges financial support from the EPSRC programme.

\begin{thebibliography}{10}
 \bibitem{1} T. M. Fromhold \textit{et al}, Phys. Rev. Lett. \textit{72}, 2608 (1994).
 \bibitem{2} G. Muller, G. S. Boebinger, H. Mathur, L. N. Pfeiffer and K. W. West, Phys. Rev. Lett. \textit{75}, 2875 (1995).
 \bibitem{3} D. L. Shepelyansky and A. D. Stone, Phys. Rev. Lett. \textit{74}, 2098 (1995).
 \bibitem{4} E. E. Narimanov and A. D. Stone, Phys. Rev. Lett. \textit{80}, 49 (1998).
 \bibitem{5} P. B. Wilkinson \textit{et al}, Nature \textit{380}, 608 (1996).
 \bibitem{6} T. S. Monteiro, D. Delande, A. J. Fisher and G. S. Boebinger, Phys. Rev. B \textit{56}, 3913 (1997).
 \bibitem{7} E. E. Narimanov, A. D. Stone and G. S. Boebinger, Phys. Rev. Lett. \textit{80}, 4024 (1998).
 \bibitem{8} E. B. Bogomolny and D. C. Rouben, Europhys. Lett. (accepted, 1998).
 \bibitem{9} D. S. Saraga and T. S. Monteiro, Phys. Rev. E \textit{57}, 5252 (1998).
 \bibitem{10} D. S. Saraga, T. S. Monteiro and D. C. Rouben, submitted to Phys. Rev. E (1998).
 \bibitem{11} M. Kus, F. Haake and D. Delande, Phys. Rev. Lett \textit{71}, 2167 (1993).
\end{thebibliography}
[12] M. L. Du and J. B. Delos, Phys. Rev. A 38, 1913 (1988).
[13] J. Bardeen, Phys. Rev. Lett. 6, 57 (1961).
[14] E. E. Narimanov and A. D. Stone, Phys. Rev. B. 57, 9807 (1998).
[15] P. A. Dando, T. S. Monteiro, D. Delande and K. T. Taylor, Phys. Rev. Lett. 74, 1099 (1995).
[16] B. Eckhardt, S. Fishman, K. Muller and D. Wintgen, Phys. Rev. A 45, 3531 (1992).