Merging the A- and Q-spectral theories for digraphs

Weige Xi\(^1\), Wasin So\(^2\), Ligong Wang\(^{1,\dagger}\)

\(^1\) Department of Applied Mathematics, School of Science, Northwestern Polytechnical University, Xian, Shaanxi 710072, China.
\(^2\) Department of Mathematics and Statistics, San Jose State University, San Jose, CA 95192-0103, USA.
E-mail: xiyanxwg@163.com, lgwangmath@163.com, wasin.so@sjsu.edu

Abstract

Let \(G\) be a digraph and \(A(G)\) be the adjacency matrix of \(G\). Let \(D(G)\) be the diagonal matrix with outdegrees of vertices of \(G\). For any real \(\alpha \in [0, 1]\), Liu et al. \(^{19}\) defined the matrix \(A_\alpha(G)\) as

\[A_\alpha(G) = \alpha D(G) + (1 - \alpha)A(G).\]

The largest modulus of the eigenvalues of \(A_\alpha(G)\) is called the \(A_\alpha\) spectral radius of \(G\). In this paper, we determine the digraphs which attain the maximum (or minimum) \(A_\alpha\) spectral radius among all strongly connected digraphs with given parameters such as girth, clique number, vertex connectivity or arc connectivity. We also discuss a number of open problems.

Key Words: Strongly connected digraphs, Spectral extremal problems, Adjacency matrix, Signless Laplacian matrix, \(A_\alpha\) spectral radius.

AMS Subject Classification (2000): 05C50,15A18

1 Introduction

Let \(G = (V(G), E(G))\) be a digraph with vertex set \(V(G) = \{v_1, v_2, \ldots, v_n\}\) and arc set \(E(G)\). A digraph is simple if it has no loops and multiple arcs. A digraph is strongly connected if for every pair of vertices \(v_i, v_j \in V(G)\), there exists a directed path from \(v_i\) to \(v_j\). Throughout this paper, we only consider simple strongly connected digraphs.

Let \(\overrightarrow{P_n}\) and \(\overrightarrow{C_n}\) denote the directed path and the directed cycle on \(n\) vertices, respectively. Let \(\overrightarrow{K_n}\) denote the complete digraph on \(n\) vertices in which for two arbitrary distinct vertices \(v_i, v_j \in V(\overrightarrow{K_n})\), there are arcs \((v_i, v_j)\) and \((v_j, v_i)\) \(\in E(\overrightarrow{K_n})\). Suppose \(\overrightarrow{P_k} = v_1 v_2 \ldots v_k\), we call \(v_1\) the initial vertex of the directed path \(\overrightarrow{P_k}\), and \(v_k\) the terminal vertex of the directed path \(\overrightarrow{P_k}\).

\(^{\ast}\)Supported by the National Natural Science Foundation of China (No. 11871398), the Natural Science Basic Research Plan in Shaanxi Province of China (Program No. 2018JM1032) and China Scholarship Council (No. 201706290182).

\(^{\dagger}\)Corresponding author.
Let G be a digraph. If $S \subseteq V(G)$, then we use $G[S]$ to denote the subdigraph of G induced by S. Let $G - v$ be a digraph obtained from G by deleting the vertex v and all arcs incident to v. We use $G \pm e$ to denote the digraph obtained from G by adding/deleting the arc $e \notin E(G)$. Let G_1 and G_2 be two disjoint digraphs. The digraph $G_1 \cup G_2$ is the digraph with vertex set $V(G_1) \cup V(G_2)$ and arc set $E(G_1) \cup E(G_2)$. We denote by $G_1 \lor G_2$ the join of G_1 and G_2, which is the digraph such that $V(G_1 \lor G_2) = V(G_1) \cup V(G_2)$ and $E(G_1 \lor G_2) = E(G_1) \cup E(G_2) \cup \{(u, v), (v, u) : u \in V(G_1) \text{ and } v \in V(G_2)\}$.

Let H be a subdigraph of G. If $G[V(H)]$ is a complete subdigraph of G, then H is called a clique of G. The clique number of a digraph G, denoted by $\omega(G)$, is the maximum value of the numbers of the vertices of the cliques in G. The girth of G is the length of the shortest directed cycle of G. For a strongly connected digraph $G = (V(G), E(G))$, the vertex connectivity of G, denoted by $\kappa(G)$, is the minimum number of vertices whose deletion yields the resulting digraph non-strongly connected. A set of arcs $S \subseteq E(G)$ is an arc cut set if $G - S$ is not strongly connected. The arc connectivity of G, denoted by $\kappa'(G)$, is the minimum number of arcs whose deletion yields the resulting digraph not-strongly connected.

For a digraph G, if there is an arc from v_i to v_j, we indicate this by writing (v_i, v_j), call v_j the head of (v_i, v_j), and v_i the tail of (v_i, v_j), respectively, and (v_i, v_j) is said to be out-incident to v_i and in-incident to v_j; v_i is said to be out-adjacent to v_j and v_j is said to be in-adjacent to v_i. A tournament is a directed graph obtained by assigning a direction for each edge in an undirected complete graph. A transitive tournament is a tournament G satisfying the following: if $(u, v) \in E(G)$ and $(v, w) \in E(G)$, then $(u, w) \in E(G)$.

For any vertex v_i, let $N^+_i = N^+_{v_i} = \{v_j \in V(G) : (v_i, v_j) \in E(G)\}$ and $N^-_i = N^-_{v_i} = \{v_j \in V(G) : (v_j, v_i) \in E(G)\}$ denote the out-neighbors and in-neighbors of v_i, respectively. Let $d^+_i = d^+_{v_i} = |N^+_i|$ denote the outdegree of the vertex v_i, and $d^-_i = d^-_{v_i} = |N^-_i|$ denote the indegree of the vertex v_i in the digraph G. The minimum outdegree is denoted by δ^+ and the minimum indegree by δ^-. A digraph is r-regular if all vertices have outdegree r and indegree r.

For a digraph G, let $A(G) = (a_{ij})_{n \times n}$ be the adjacency matrix of G, where $a_{ij} = 1$ if $(v_i, v_j) \in E(G)$ and $a_{ij} = 0$ otherwise. Let $D(G)$ be the diagonal matrix with outdegrees of vertices of a digraph G. In this paper we study hybrids of $A(G)$ and $D(G)$ similar to the signless Laplacian matrix $Q(G) = D(G) + A(G)$, which has been extensively studied since then. For detailed coverage of this research see [9, 10, 11, 17, 23, 24], and their references. The study of $Q(G)$ has shown that it is a remarkable matrix, and unique in many respects. Yet, $Q(G)$ is just the sum of $A(G)$ and $D(G)$. To understand to what extent each of the summands $A(G)$ and $D(G)$ determines the properties of $Q(G)$, Liu et al. [19] defined the matrix $A_\alpha(G)$ as

$$A_{\alpha}(G) = \alpha D(G) + (1 - \alpha) A(G), \quad 0 \leq \alpha \leq 1.$$

Many facts suggest that the study of the family $A_\alpha(G)$ is long due. Our inspiration comes from the paper of Nikiforov [20]. First, we note that

$$A(G) = A_0(G), \quad D(G) = A_1(G), \quad \text{and} \quad Q(G) = 2A_{\frac{1}{2}}(G).$$

Since $A_{\frac{1}{2}}(G)$ is essentially equivalent to $Q(G)$, in this paper we take $A_{\frac{1}{2}}(G)$ as an exact substitute for $Q(G)$. With this caveat, one sees that $A_\alpha(G)$ seamlessly joins $A(G)$ with $Q(G)$, and we may study the adjacency spectral properties and signless Laplacian spectral properties of a digraph in a unified way. The spectral radius of $A_\alpha(G)$ i.e., the largest modulus of the
eigenvalues of $A_\alpha(G)$, is called the A_α spectral radius of G, denoted by $\lambda_\alpha(G)$. The A_α spectral radius of undirected graphs has been studied in the literature, see \[7, 14, 18, 20, 21, 22, 26\]. Recently, Liu et al. \[19\] characterized the extremal digraph which attains the maximum A_α spectral radius among all strongly connected digraphs with given dichromatic number. We are interested in the A_α spectral radius of digraphs with given other parameters.

If $\alpha = 1$, $A_1(G) = D(G)$ the diagonal matrix with outdegrees of vertices of G which is not interesting. So we only consider the cases $0 \leq \alpha < 1$ for the rest of this paper. If G is a strongly connected digraph, then it follows from the Perron Frobenius Theorem \[8\] that $\lambda_\alpha(G)$ is an eigenvalue of $A_\alpha(G)$, and there is a unique positive unit eigenvector corresponding to $\lambda_\alpha(G)$. The positive unit eigenvector corresponding to $\lambda_\alpha(G)$ is called the Perron vector of $A_\alpha(G)$. See more details on the Perron vector of $A_\alpha(G)$ in Section 2.

One of the central issues in extremal spectra graph theory is: for a graph matrix, determine the maximum or minimum spectral radius over various families of graphs. For example, among all strongly connected digraphs on n vertices, \overrightarrow{C}_n is the unique digraph with the minimum A_0 spectral radius and $A_\frac{1}{2}$ spectral radius, and \overrightarrow{K}_n is the unique digraph with the maximum A_0 spectral radius and $A_\frac{1}{2}$ spectral radius. The same result is also true for the A_α spectral radius of G, see Corollary \[2.7\]. The main goal of this paper is to extend some results on maximum or minimum A_0 spectral radius and $A_\frac{1}{2}$ spectral radius for all $\alpha \in [0, 1)$.

The rest of the paper is structured as follows. In the next section we introduce some lemmas and give basic facts about the A_α spectral radius of G. In Section 3, we characterize the extremal digraph which achieves the minimum A_α spectral radius among all strongly connected digraphs with given girth. In Section 4, we determine the extremal digraph which attains the minimum A_α spectral radius among all strongly connected digraphs with given clique number. In Section 5, we characterize the extremal digraphs which achieve the maximum A_α spectral radius among all strongly connected digraphs with given vertex connectivity. In Section 6, we characterize the extremal digraphs which achieve the maximum A_α spectral radius among all strongly connected digraphs with given arc connectivity.

2 Preliminaries

In this section, we give some lemmas which will be used in the following sections.

Let $\sigma(\cdot)$ denote the spectrum of a square matrix including algebraic multiplicity. Let $\rho(\cdot)$ denote the spectral radius of a square matrix.

Lemma 2.1. \((8)\) Let $M = (m_{ij})$ be an $n \times n$ nonnegative matrix, $R_i(M)$ be the i-th row sum of M, i.e., $R_i(M) = \sum_{j=1}^{n} m_{ij}$ ($1 \leq i \leq n$). Then

$$\min\{R_i(M) : 1 \leq i \leq n\} \leq \rho(M) \leq \max\{R_i(M) : 1 \leq i \leq n\}.$$

Moreover, if M is irreducible, then either one equality holds if and only if $R_1(M) = R_2(M) = \ldots = R_n(M)$.

Definition 2.2. \((12)\) Let M be a real matrix of order n described in the following block
Furthermore, if Lemma 2.8. Let \(M = (m_{ij})_{n \times n} \) be defined as above, and for any \(i, j \in \{1, 2, \ldots, t\} \), the row sum of each block \(M_{ij} \) be constant. Let \(B = (b_{ij}) \) be the equitable quotient matrix of \(M \). Then \(\sigma(B) \subset \sigma(M) \). Moreover, if \(M = (m_{ij})_{n \times n} \) is a nonnegative matrix, then \(\rho(B) = \rho(M) \).

Definition 2.4. Let \(A = (a_{ij}) \) and \(B = (b_{ij}) \) be \(n \times m \) matrices. If \(a_{ij} \leq b_{ij} \) for all \(i \) and \(j \), then \(A \leq B \). If \(A \leq B \) and \(A \neq B \), then \(A < B \). If \(a_{ij} < b_{ij} \) for all \(i \) and \(j \), then \(A \ll B \).

Lemma 2.5. Let \(A \) and \(B \) be nonnegative matrices. If \(0 \leq A \leq B \), then \(\rho(A) \leq \rho(B) \). Furthermore, if \(B \) is irreducible and \(0 \leq A < B \), then \(\rho(A) < \rho(B) \).

By Lemma 2.5 we have the following results in terms of \(A_\alpha \) spectral radius of digraphs.

Corollary 2.6. Let \(G \) be a digraph and \(H \) be a spanning subdigraph of \(G \). Then
(i) \(\lambda_\alpha(G) \geq \lambda_\alpha(H) \).
(ii) If \(G \) is strongly connected, and \(H \) is a proper subdigraph of \(G \), then \(\lambda_\alpha(G) > \lambda_\alpha(H) \).

From Lemma 2.4 and Corollary 2.6 we can easily get the following corollary.

Corollary 2.7. Let \(G \) be a strongly connected digraph. Then \(1 \leq \lambda_\alpha(G) \leq n - 1 \), \(\lambda_\alpha(G) = n - 1 \) if and only if \(G \cong K_n \), and \(\lambda_\alpha(G) = 1 \) if and only if \(G \cong \overrightarrow{C_n} \).

Lemma 2.8. (B) Let \(B \) be nonnegative matrices and \(X = (x_1, x_2, \ldots, x_n)^T \) be any nonzero nonnegative vector. If \(\beta \geq 0 \) such that \(BX \geq \beta X \), then \(\rho(B) \geq \beta \). Furthermore, if \(B \) is irreducible and \(BX > \beta X \), then \(\rho(B) > \beta \).

By Lemma 2.8 we have the following results in terms of \(A_\alpha \) spectral radius of digraphs.

Corollary 2.9. Let \(G \) be a strongly connected digraph. Then \(\lambda_\alpha(G) > \alpha \Delta^+ \).

\textit{Proof.} Without loss of generality, let \(d_u^+ = \Delta^+ \). Taking \(X = (0, 0, \ldots, 0, 1, 0 \ldots, 0)^T \), that is, all the entries of \(X \) are 0 except \(x_u = 1 \), where \(x_u \) corresponding to the vertex \(u \). Since \(G \) is strongly connected, then \(d_u^- \geq 1 \) and \(A_\alpha(G) \) is nonnegative irreducible. Hence \(A_\alpha(G)X > \alpha \Delta^+ X \). Therefore, by Lemma 2.8 we have \(\lambda_\alpha(G) > \alpha \Delta^+ \).

In the rest of this section, let \(X = (x_1, x_2, \ldots, x_n)^T \) be the unique positive unit eigenvector corresponding to the \(A_\alpha \) spectral radius \(\lambda_\alpha(G) \), where \(x_i \) corresponds to the vertex \(v_i \).
Lemma 2.10. Let \(G = (V(G), E(G)) \) be a strongly connected digraph on \(n \) vertices, \(v_p, v_q \) be two distinct vertices of \(V(G) \). Suppose that \(v_1, v_2, \ldots, v_t \in N_{v_p}^{-} \setminus \{N_{v_q}^{-} \cup \{v_q\}\} \), where \(1 \leq t \leq d_{v_p}^{-} \). Let \(H = G - \{(v_i, v_p) : i = 1, 2, \ldots, t\} + \{(v_i, v_q) : i = 1, 2, \ldots, t\} \). If \(x_{v_q} \geq x_{v_p} \), then \(\lambda_{\alpha}(H) \geq \lambda_{\alpha}(G) \). Furthermore, if \(H \) is strongly connected and \(x_{v_q} > x_{v_p} \), then \(\lambda_{\alpha}(H) > \lambda_{\alpha}(G) \).

Proof. We will show \((A_{\alpha}(H)X)_i \geq (A_{\alpha}(G)X)_i \) for any \(v_i \in V(G) \).

Case 1. \(v_i \notin N_{v_p}^{-} \setminus \{N_{v_q}^{-} \cup \{v_q\}\} \).

Then \((A_{\alpha}(H)X)_i = \alpha d_{i}^{+}(G)x_i + (1 - \alpha) \sum_{(v_i, v_j) \in E(G)} x_j = (A_{\alpha}(G)X)_i \).

Case 2. \(v_i \in N_{v_p}^{-} \setminus \{N_{v_q}^{-} \cup \{v_q\}\} \).

Then \((A_{\alpha}(H)X)_i - (A_{\alpha}(G)X)_i = (1 - \alpha)(x_{v_q} - x_{v_p}) \geq 0 \).

Thus \(A_{\alpha}(H)X \succeq A_{\alpha}(G)X = \lambda_{\alpha}(G)X \). By Lemma 2.10, \(\lambda_{\alpha}(H) \geq \lambda_{\alpha}(G) \).

Moreover, if \(H \) is strongly connected and \(x_{v_q} > x_{v_p} \), then by Lemma 2.10 we have \(\lambda_{\alpha}(H) > \lambda_{\alpha}(G) \). \(\Box \)

Lemma 2.11. Let \(G \neq \overrightarrow{C_n} \) be a strongly connected digraph with \(V(G) = \{v_1, v_2, \ldots, v_n\} \). Suppose that \(\overrightarrow{F_k} = v_1v_2 \ldots v_k \) \((k \geq 3)\) be a directed path of \(G \) with \(d_i^{+} = 1 \) for \((i = 2, 3, \ldots, k - 1)\). Then we have \(x_2 < x_3 < \ldots < x_{k-1} < x_k \).

Proof. Since \(G \) is a strongly connected digraph and \(G \neq \overrightarrow{C_n} \), then \(D \) contains a directed cycle denoted by \(\overrightarrow{C_g} \) \((g \geq 2)\), as a proper subdigraph of \(G \). Thus \(\lambda_{\alpha}(G) > \lambda_{\alpha}(\overrightarrow{C_g}) = 1 \) by Corollary 2.6.

Therefore, for any \(i \in \{2, 3, \ldots, k - 1\} \), we have

\[
-x_i < \lambda_{\alpha}(G)x_i = \alpha x_i + (1 - \alpha)x_{i+1}.
\]

Then \(x_i < x_{i+1} \) and thus \(x_2 < x_3 < \ldots < x_{k-1} < x_k \). \(\Box \)

Lemma 2.12. \((3)\) Let \(B \) be nonnegative matrices, then \(B \) is reducible if and only if \(\rho(B) \) is the spectral radius of some proper principal submatrix of \(B \).

Lemma 2.13. Let \(G \neq \overrightarrow{C_n} \) be a strongly connected digraph with \(V(G) = \{v_1, v_2, \ldots, v_n\} \), \((v_i, v_j) \in E(G) \) and \(w \notin V(G) \), \(G^w = (V(G^w), E(G^w)) \) with \(V(G^w) = V(G) \cup \{w\} \), \(E(G^w) = E(G) - \{(v_i, v_j)\} + \{(v_i, w), (w, v_j)\} \). Then \(\lambda_{\alpha}(G^w) \geq \lambda_{\alpha}(G^w) \).

Proof. Since \(G \) is strongly connected digraph, then \(G^w \) is also strongly connected digraph.

Suppose \(X = (x_1, \ldots, x_n, x_w)^T \) is the Perron vector corresponding to \(\lambda_{\alpha}(G^w) \), where \(x_w \) correspond to \(w \), and \(x_i \) correspond to \(v_i \) for \(i = 1, 2, \ldots, n \). Since \(G \neq \overrightarrow{C_n} \), then \(G^w \neq \overrightarrow{C_{n+1}} \).

By Lemma 2.1 we have \(\lambda_{\alpha}(G^w) > 1 \). Clearly, \(d_w^{+}(G^w) = 1 \). Thus \(x_w < \lambda_{\alpha}(G^w)x_w = \alpha x_w + (1 - \alpha)x_j \). Then \(x_j > x_w \). Let \(H = G^w - \{(v_i, v_j)\} + \{(v_i, w), (w, v_j)\} \), then by \(d_w^{+}(G^w) = 1 \), \(H \) is not strongly connected which has exactly two strongly connected components, one is isolated vertex \(w \), the other is \(G \). Thus \(A_{\alpha}(H) \) is nonnegative reducible, then by Lemma 2.12 we have \(\lambda_{\alpha}(H) = \lambda_{\alpha}(G) \). On the other hand, by Lemma 2.10 \(\lambda_{\alpha}(H) \geq \lambda_{\alpha}(G^w) > 1 \). Thus \(\lambda_{\alpha}(G) = \lambda_{\alpha}(H) \geq \lambda_{\alpha}(G^w) \). \(\Box \)
3 The minimum A_α spectral radius of strongly connected digraphs with given girth

Let $g \geq 2$ and $\mathcal{G}_{n,g}$ denote the set of strongly connected digraph on n vertices with girth g. If $g = n$, then $\mathcal{G}_{n,g} = \{\overrightarrow{C}_n\}$ and $\lambda_\alpha(\overrightarrow{C}_n) = 1$. Thus we only need to consider the cases $2 \leq g \leq n - 1$.

Let $2 \leq g \leq n - 1$ and $C_{n,g}$ be a digraph obtained by adding a directed path $\overrightarrow{P}_{n-g+2} = v_gv_{g+1} \ldots v_nv_1$ on the directed cycle $\overrightarrow{C}_g = v_1v_2 \ldots v_gv_1$ such that $V(\overrightarrow{C}_g) \cap V(\overrightarrow{P}_{n-g+2}) = \{v_g, v_1\}$ (as shown in Figure 1), where $V(C_{n,g}) = \{v_1, v_2, \ldots, v_n\}$. Clearly, $C_{n,g} \in \mathcal{G}_{n,g}$.

![Figure 1: The digraph $C_{n,g}$](image)

In [16], Lin and Shu et al. proved that $C_{n,g}$ attains the minimum A_0 spectral radius among all strongly connected digraphs with given girth. In [9], Hong and You proved that $C_{n,g}$ also attains the minimum A_2 spectral radius among all strongly connected digraphs with given girth. We generalize their results to $0 \leq \alpha < 1$. In the rest of this section, we will show that $C_{n,g}$ achieves the minimum A_α spectral radius among all digraphs in $\mathcal{G}_{n,g}$.

Lemma 3.1. Let $2 \leq g \leq n - 1$ and $C'_{n,g} = C_{n,g} - \{(v_n, v_1)\} - \{(v_n, v_g)\}$. Then $\lambda_\alpha(C'_{n,g}) > \lambda_\alpha(C_{n,g})$.

Proof. Suppose $X = (x_1, x_2, \ldots, x_n)^T$ is the Perron vector corresponding to $\lambda_\alpha(C_{n,g})$, where x_i correspond to v_i for $i = 1, 2, \ldots, n$. Since $\overrightarrow{D} = v_{g+1}v_{g+2} \ldots v_nv_1$ and $\overrightarrow{R} = v_gv_{g+1}v_{g+2}$ are the directed paths of $C_{n,g}$ with $d_i^+ = 1$ for $i \in \{1, 2, \ldots, g-1, g+1, g+2, \ldots, n\}$, then by Lemma 2.1, we have $x_{g+2} < x_{g+3} < \ldots < x_n < x_1 < x_2 < \ldots < x_{g-1} < x_g$ and $x_{g+1} < x_{g+2} < x_{g+3} < \ldots < x_n < x_1 < x_2 < \ldots < x_{g-1} < x_g$.

Thus $x_{g+1} < x_{g+2} < x_{g+3} < \ldots < x_n < x_1 < x_2 < \ldots < x_{g-1} < x_g$. Note that $C'_{n,g}$ is strongly connected and $x_g > x_1$, then by Lemma 2.10, we have $\lambda_\alpha(C'_{n,g}) > \lambda_\alpha(C_{n,g})$. \qed

Theorem 3.2. Let $2 \leq g \leq n - 1$ and $G \in \mathcal{G}_{n,g}$. Then $\lambda_\alpha(G) \geq \lambda_\alpha(C_{n,g}) > 1$ with equality if and only if $G \cong C_{n,g}$.

Proof. Since \overrightarrow{C}_g is a proper subdigraph of G, $\lambda_\alpha(G) > \lambda_\alpha(\overrightarrow{C}_g) = 1$ by Corollary 2.6. Without loss of generality, we let $C_g = v_1v_2 \ldots v_gv_1$, where $2 \leq g \leq n - 1$. Since $G \in \mathcal{G}_{n,g}$ is strongly connected, it is possible to obtain a digraph G_1 from G by deleting vertices and arcs in such a way that $G_1 \cong H$, where $H = (V(H), E(H))$, $V(H) = \{v_1, v_2, \ldots, v_g, v_{g+1}, \ldots, v_{g+t-2}\}$, $E(H) = \{(v_i, v_{i+1}) | i \in \{1, 2, \ldots, g + l - 3\}\} \cup \{(v_g, v_1), (v_{g+t-2}, v_1)\}$ with $1 \leq t \leq g$ (see Figure 2).

By Corollary 2.6 we have $\lambda_\alpha(G) \geq \lambda_\alpha(G_1)$ with equality if and only if $G \cong G_1$. Since G_1 contains a directed path $P_l = v_gv_{g+1} \cdots v_{g+l-2}v_l$. Insert $n-g-l+2$ vertices to P_l such that the resulting digraph is denoted by H'. Clearly, H' is strongly connected. By using Lemma 2.13 by $n-g-l+2$ times, we have $\lambda_\alpha(H) \geq \lambda_\alpha(H')$ with equality if and only if $H \cong H'$. Then we consider the following three cases.

Case 1: $t = 1$.
In this case, $H' \cong C_{n,g}$, then $\lambda_\alpha(G) \geq \lambda_\alpha(G_1) = \lambda_\alpha(H) \geq \lambda_\alpha(H') = \lambda_\alpha(C_{n,g})$, with equality if and only if $G \cong C_{n,g}$.

Case 2: $t = g$.
In this case, $H' \cong C_{n,g}$, then $\lambda_\alpha(G) \geq \lambda_\alpha(G_1) = \lambda_\alpha(H) \geq \lambda_\alpha(H') = \lambda_\alpha(C_{n,g}) > \lambda_\alpha(C_{n,g})$ by Lemma 3.1.

Case 3: $2 \leq t \leq g - 1$.
$X = (x_1, x_2, \ldots, x_n)^T$ is the Perron vector corresponding to $\lambda_\alpha(C_{n,g})$, where x_i correspond to v_i for $i = 1, 2, \ldots, n$. Noting that $H' \cong C_{n,g} - \{(v_n, v_1)\} + \{(v_n, v_1)\}$, by the proof of Lemma 3.1 we have $x_1 < x_i$, then $\lambda_\alpha(H') > \lambda_\alpha(C_{n,g})$ by Lemma 2.10. Thus $\lambda_\alpha(G) \geq \lambda_\alpha(G_1) = \lambda_\alpha(H) \geq \lambda_\alpha(H') > \lambda_\alpha(C_{n,g})$.

In all cases, $\lambda_\alpha(G) \geq \lambda_\alpha(C_{n,g}) > 1$ with equality if and only if $G \cong C_{n,g}$.

4 The minimum A_α spectral radius of strongly connected digraphs with given clique number

Let $C_{n,d}$ denote the set of strongly connected digraphs on n vertices with clique number d. If $d = n$, then $C_{n,d} = \{\overrightarrow{K_n}\}$ and $\lambda_\alpha(\overrightarrow{K_n}) = n - 1$. If $d = 1$, then $\overrightarrow{C_n} \in C_{n,d}$ and $\lambda_\alpha(\overrightarrow{C_n}) = 1$. By Corollary 2.7 for any $G \in C_{n,d}$, $\lambda_\alpha(G) \geq 1 = \lambda_\alpha(\overrightarrow{C_n})$ with equality if and only if $G \cong \overrightarrow{C_n}$. Thus we only need to consider the cases $2 \leq d \leq n - 1$.

Let $2 \leq d \leq n - 1$, and $B_{n,d}$ be a digraph obtained by adding a directed path $\overrightarrow{P_{n-d+2}} = v_1v_2 \cdots v_{n-d+2}$ to a clique $\overrightarrow{K_d}$ such that $V(\overrightarrow{K_d}) \cap V(\overrightarrow{P_{n-d+2}}) = \{v_{n-d+2}, v_1\}$. Clearly, $B_{n,d} \in C_{n,d}$.

In [16], Lin and Shu et al. proved that $B_{n,d}$ attains the minimum A_0 spectral radius among
all strongly connected digraphs with given clique number. In [9], Hong and You determined that $B_{n,d}$ also attains the minimum A_α spectral radius among all strongly connected digraphs with given clique number. We generalize their results to $0 \leq \alpha < 1$. In the rest of this section, we will show that $B_{n,d}$ achieves the minimum A_α spectral radius among all digraphs in $\mathcal{C}_{n,d}$.

Lemma 4.1. Let $2 \leq d \leq n-1$ and $B'_{n,d} = B_{n,d} - \{(v_{n-d+1}, v_{n-d+2})\} + \{(v_{n-d+1}, v_1)\}$. Then $\lambda_\alpha(B'_{n,d}) > \lambda_\alpha(B_{n,d})$.

Proof. Suppose $X = (x_1, x_2, \ldots, x_n)^T$ is the Perron vector corresponding to $\lambda_\alpha(B_{n,d})$, where x_i correspond to v_i for $i = 1, 2, \ldots, n$. By Lemma 2.10, we only need to show that $x_{n-d+2} < x_1$.

Since K_d is a proper sundigraph of $\lambda_\alpha(B_{n,d})$, then $\lambda_\alpha(B_{n,d}) > d - 1$ by Corollary 2.6. Therefore, from $A_\alpha(B_{n,d})X = \lambda_\alpha(B_{n,d})X$, we have

$$\lambda_\alpha(B_{n,d})x_1 = \alpha dx_1 + (1-\alpha)x_2 + (1-\alpha)x_{n-d+2} + (1-\alpha) \sum_{v_i \in V_1} x_i,$$

$$\lambda_\alpha(B_{n,d})x_{n-d+2} = \alpha(d-1)x_{n-d+2} + (1-\alpha)x_1 + (1-\alpha) \sum_{v_i \in V_1} x_i,$$

where $V_1 = V(K_d) \setminus \{v_{n-d+2}, v_1\}$.

Then $(\lambda_\alpha(B_{n,d}) - \alpha d + 1 - \alpha)(x_1 - x_{n-d+2}) = \alpha x_{n-d+2} + (1-\alpha)x_2 > 0$. By Corollary 2.9, $\lambda_\alpha(B_{n,d}) > \alpha d$. Thus $x_1 > x_{n-d+2}$. \qed

Theorem 4.2. Let $2 \leq d \leq n-1$ and $G \in \mathcal{C}_{n,d}$. Then $\lambda_\alpha(G) \geq \lambda_\alpha(B_{n,d})$ with equality if and only if $G \cong B_{n,d}$.

Proof. Since $G \in \mathcal{C}_{n,d}$, K_d is a proper subdigraph of G. Since G is strongly connected, it is possible to obtain a digraph G_1 from G by deleting vertices and arcs in such a way that either $G_1 \cong B_{d+l-2,d}$ ($l \geq 3$) or $G_1 \cong B'_{d+l-1,d}$ ($l \geq 2$). By Corollary 2.6, we have $\lambda_\alpha(G) \geq \lambda_\alpha(G_1)$ with equality if and only if $G \cong G_1$. Then we consider the following two cases.

Case 1: $G_1 \cong B_{d+l-2,d}$ ($l \geq 3$).

Insert $n-d-l+2$ vertices to $\overrightarrow{P_1}$ such that the resulting digraph is $B_{n,d}$. By using Lemma 2.13 by $n-d-l+2$ times, we have $\lambda_\alpha(G_1) \geq \lambda_\alpha(B_{n,d})$ with equality if and only if $G_1 \cong B_{n,d}$.

Case 2: $G_1 \cong B'_{d+l-1,d}$ ($l \geq 2$).

Insert $n-d-l+2$ vertices to $\overrightarrow{P_1}$ such that the resulting digraph is $B'_{n,d}$. By using Lemma 2.13 by $n-d-l+2$ times, we have $\lambda_\alpha(G_1) \geq \lambda_\alpha(B_{n,d})$ with equality if and only if $G_1 \cong B_{n,d}$.

But by Lemma 4.1, $\lambda_\alpha(B'_{n,d}) > \lambda_\alpha(B_{n,d})$. Thus $\lambda_\alpha(G) \geq \lambda_\alpha(G_1) \geq \lambda_\alpha(B'_{n,d}) > \lambda_\alpha(B_{n,d})$.

Combining the above arguments, $\lambda_\alpha(G) \geq \lambda_\alpha(B_{n,d})$ with equality if and only if $G \cong B_{n,d}$.

A tournament on n vertices that maximizes the spectral radius of its A_α matrix among all such tournaments is called extremal. For $\alpha = 0$, it has long been known that if n is odd, the extremal tournaments are precisely the ones that are regular, i.e. have indegree and outdegree $(n-1)/2$ at each vertex. For n even, the extremal tournaments are those which are isomorphic to the Bruhat-Li tournament. This was conjectured by Bruhat and Li [4] and proved by Drury [5]. For n and d fixed, let $l = \lfloor \frac{n}{2} \rfloor$ and $r = n - ld$. Let V_j, $j = 1, \ldots, d$ be disjoint vertex sets, where $|V_j| = l + 1$ for $j = 1, \ldots, r$ and $|V_j| = l$ for $j = r + 1, \ldots, d$. Let
G_0 be a digraph with vertex set $\bigcup_{j=1}^{d} V_j$ with all possible arcs between V_j and V_k for $j \neq k$ and the induced subdigraph $G_0[V_j]$ an extremal tournament for $j = 1, \ldots, d$.

It is natural to ask: which digraph achieves the maximum A_α spectral radius among all strongly connected digraphs with given clique number? If $\alpha = 0$, Drury and Lin [6] proved that G_0 attains maximum A_0 spectral radius among all strongly connected digraphs with given clique number d. Therefore, we propose the following problem.

Problem 4.3. Let $1 \leq d \leq n-1$. Among all digraphs in $C_{n,d}$, does G_0 attain maximum A_α spectral radius?

5 The maximum A_α spectral radius of strongly connected digraphs with given vertex connectivity

Let $D_{n,k}$ denote the set of strongly connected digraphs with order n and vertex connectivity $\kappa(G) = k \geq 1$. If $k = n - 1$, then $D_{n,k} = \{K_n\}$. So we only consider the cases $1 \leq k \leq n - 2$.

For $1 \leq m \leq n - k - 1$, $K(n,k,m)$ denote the digraph $\overrightarrow{K_k} \lor (\overrightarrow{K_{n-k-m}} \lor \overrightarrow{K_m}) + E$, where $E = \{(u,v) | u \in V(\overrightarrow{K_m}), v \in V(\overrightarrow{K_{n-k-m}})\}$ (see Figure 4). Let $\mathcal{K}(n,k) = \{K(n,k,m) : 1 \leq m \leq n - k - 1\}$. Clearly $\mathcal{K}(n,k) \subset D_{n,k}$.

In [16], Lin and Shu et al. proved that $K(n,k,n-k-1)$ or $K(n,k,1)$ attains the maximum A_0 spectral radius among all strongly connected digraphs with given vertex connectivity. In [9], Hong and You determined that $K(n,k,n-k-1)$ also attains the maximum $A_\frac{1}{2}$ spectral radius among all strongly connected digraphs with given vertex connectivity. We generalize their results to $0 \leq \alpha < 1$.

![Figure 4: The digraph $K(n,k,m)$](image)

Lemma 5.1. ([2]) Let G be a strongly connected digraph with $\kappa(G) = k$. Suppose that S is a k-vertex cut of G and G_1, G_2, \ldots, G_t are the strongly connected components of $G - S$. Then there exists an ordering of G_1, G_2, \ldots, G_t such that for $1 \leq i \leq t$ and any $v \in V(G_i)$, every tail of v is in $\bigcup_{j=1}^{i} G_j$.

Remark 5.2. By Lemma 5.1, we know that there exists a strongly connected component of $G - S$, say G_1 with $|V(G_1)| = m$ such that for any $i \in V(G_1)$, $|N_i^-| = 0$, where $N_i^- = \{j \in V(G - S - G_1) : (j, i) \in E(G)\}$. Let $G_2 = G - S - G_1$. We add arcs to G until both induced subdigraph of $V(G_1) \cup S$ and induced subdigraph of $V(G_2) \cup S$ attain to complete digraphs,
add arc \((u, v)\) for any \(u \in V(G_1)\) and any \(v \in V(G_2)\). Denote the resulting digraph by \(H\). Since \(G\) is \(k\)-strongly connected, then \(H = K(n, k, m) \in K(n, k) \subset D_{n,k}\). By Corollary 2.7, we have \(\lambda_\alpha(G) \leq \lambda_\alpha(H)\), with equality if and only if \(G \cong H\). Therefore, the digraph which achieves the maximum \(A_\alpha\) spectral radius among all digraphs in \(D_{n,k}\) must be some digraph in \(K(n, k)\).

Theorem 5.3. Let \(n, k, m\) be positive integers such that \(1 \leq k \leq n-2\) and \(1 \leq m \leq n-k-1\). Then

\[
\lambda_\alpha(K(n, k, m)) = \frac{n-2-\alpha m+\alpha n+\sqrt{(1-\alpha)^2n^2+(6\alpha-2\alpha^2-4)mn+(2-\alpha)^2m^2+4(1-\alpha)km}}{2}.
\]

Proof. Let \(G = K(n, k, m)\), and \(S\) be a \(k\)-vertex cut of \(G\). Suppose that \(G_1\) with \(|V(G_1)| = m\) and \(G_2\) with \(|V(G_2)| = n - k - m\) are two strongly connected components, i.e., two complete subdigraphs of \(G - S\) with arcs \(\{(u, v) : u \in V(G_1), v \in V(G_2)\}\). Then

\[
A_\alpha(G) = \begin{pmatrix}
(1-\alpha)I_n + (\alpha - 1)I_m & (1-\alpha)I_k & (1-\alpha)I_{m \times (n-k)} \\
(1-\alpha)I_{k \times m} & (1-\alpha)I_k + (\alpha - 1)I_k & (1-\alpha)I_{k \times (n-k)} \\
0 & (1-\alpha)J_{(n-k) \times m} & (1-\alpha)J_{n-k} + (\alpha(n-m) - 1)J_{n-k}\end{pmatrix},
\]

where \(I_p\) be the \(p \times p\) identity matrix and \(J_{p \times q}\) be the \(p \times q\) matrix in which every entry is 1, or simply \(J_p\) if \(p = q\), and \(0_{p \times p}\) denotes the \(p \times p\) zero matrix.

Note that the matrix \(A_\alpha(G)\) has the following equitable quotient matrix \(B(G)\) with respect to the partition \(\{V(G_1), S, V(G_2)\}\) of \(V(G)\).

\[
B(G) = \begin{pmatrix}
\alpha(n-m) + m - 1 & (1-\alpha)k & (1-\alpha)(n-k) \\
(1-\alpha)m & \alpha(n-k) + k - 1 & (1-\alpha)(n-k) \\
0 & (1-\alpha)k & n-k - m - 1 + \alpha k
\end{pmatrix}.
\]

Then by Lemma 2.3, \(\lambda_\alpha(G)\) is also the spectral radius of \(B(G)\). Since \(A_\alpha(G)\) is nonnegative irreducible matrix, \(B(G)\) is also nonnegative irreducible matrix. By Corollary 2.9, we have \(\rho(B) = \lambda_\alpha(G) > \alpha(n-1) > \alpha n - 1\). Therefore, we can easily see that \(\lambda_\alpha(G)\) is the largest root of the quadratic equation \(x^2 - (\alpha n + \alpha m - 2)x + \alpha n^2 - \alpha n - 2\alpha nm - m^2 + \alpha km + \alpha m + \alpha m^2 - n + \alpha n + 1 - km = 0\), thus we have

\[
\lambda_\alpha(K(n, k, m)) = \frac{n-2-\alpha m+\alpha n+\sqrt{(1-\alpha)^2n^2+(6\alpha-2\alpha^2-4)mn+(2-\alpha)^2m^2+4(1-\alpha)km}}{2}.
\]

\(\square\)

Remark 5.4. Noting that \(\vec{K}_n\) is the unique digraph which achieves the maximum \(A_\alpha(G)\) spectral radius \(n - 1\) among all strongly connected digraphs, and \(K(n, n - 2, 1) = \vec{K}_n - \{(u, v)\}\) where \(u, v \in V(\vec{K}_n)\), by Lemma 2.3 and Theorem 5.3, we deduce that \(K(n, n - 2, 1)\) is the unique digraph which achieves the second maximum \(A_\alpha(G)\) spectral radius

\[
\frac{n + \alpha n - 2 - \alpha + \sqrt{(1-\alpha)^2n^2 + 2\alpha(1-\alpha)n + \alpha^2 + 4\alpha - 4}}{2}
\]

among all strongly connected digraphs.
Theorem 5.5. Let n, k be positive integers such that $1 \leq k \leq n - 2$, $G \in D_{n,k}$. Then

(i) for $\alpha = 0$, $\lambda_\alpha(G) \leq \frac{n - 2 + \sqrt{n^2 - 4n + 4k + 4}}{2}$ with equality if and only if $G \cong K(n,k,n-k-1)$ or $G \cong K(n,k,1)$.

(ii) For $0 < \alpha < 1$, $\lambda_\alpha(G) \leq \frac{n - 2 + \alpha + \alpha k + \sqrt{n^2 + (2\alpha - 4 - 2\alpha k)n + \alpha^2 + \alpha^2 k^2 - 4\alpha + 2\alpha^2 k - 4\alpha k + 4k + 4}}{2}$, with equality if and only if $G \cong K(n,k,n-k-1)$.

Proof. By Remark 5.2, $\lambda_\alpha(G) \leq K(n,k,m)$ for some m, where $1 \leq m \leq n - k - 1$. By Theorem 5.3 we have $\lambda_\alpha(K(n,k,m)) = \frac{n - 2 - \alpha m + \alpha n + \sqrt{(1 - \alpha)^2 n^2 + (6\alpha - 2\alpha^2 - 4)m + (2 - \alpha)^2 m^2 + 4(1 - \alpha)km}}{2}$.

Now we want to show that the maximum value of $\lambda_\alpha(K(n,k,m))$ must be taken at either $m = 1$ or at $m = n - k - 1$.

Let $f(n,k,m) = n - 2 - \alpha m + \alpha n + \sqrt{(1 - \alpha)^2 n^2 + (6\alpha - 2\alpha^2 - 4)m + (2 - \alpha)^2 m^2 + 4(1 - \alpha)km}$. Then

$$\frac{\partial f}{\partial m} = -\alpha + \frac{1}{2} \frac{16k^2(2\alpha - \alpha^2 - 1) + 16n(-5\alpha + 4\alpha^2 + 2 - \alpha^3)}{(1 - \alpha)^2 n^2 + (6\alpha - 2\alpha^2 - 4)m + (2 - \alpha)^2 m^2 + 4(1 - \alpha)km},$$

$$\frac{\partial^2 f}{\partial m^2} = \frac{1}{4} \frac{16k^2(2\alpha - \alpha^2 - 1) + 16n(-5\alpha + 4\alpha^2 + 2 - \alpha^3)}{(1 - \alpha)^2 n^2 + (6\alpha - 2\alpha^2 - 4)m + (2 - \alpha)^2 m^2 + 4(1 - \alpha)km}^2 + \frac{1}{4} \frac{-16k^2(\alpha - 1)^2 + 16n(2\alpha - \alpha)(\alpha - 1)^2}{(1 - \alpha)^2 n^2 + (6\alpha - 2\alpha^2 - 4)m + (2 - \alpha)^2 m^2 + 4(1 - \alpha)km}^2 \geq \frac{1}{4} \frac{-16k^2(\alpha - 1)^2 + 16(k + 2)k(2\alpha - \alpha)(\alpha - 1)^2}{(1 - \alpha)^2 n^2 + (6\alpha - 2\alpha^2 - 4)m + (2 - \alpha)^2 m^2 + 4(1 - \alpha)km}^2 \geq \frac{1}{4} \frac{16k^2(\alpha - 1)^2(1 - \alpha) + 32k(2\alpha - \alpha)(\alpha - 1)^2}{(1 - \alpha)^2 n^2 + (6\alpha - 2\alpha^2 - 4)m + (2 - \alpha)^2 m^2 + 4(1 - \alpha)km}^2 > 0.$$

Thus, for fixed n and k, the maximum value of f must be taken at either $m = 1$ or at $m = n - k - 1$.

In the following, we want to compare $\lambda_\alpha(K(n,k,1))$ and $\lambda_\alpha(K(n,k,n-k-1))$. Let $\beta = (\alpha^2 + 1 - 2\alpha)n^2 + (6\alpha - 2\alpha^2 - 4)n + 4 - 4\alpha + \alpha^2 - 4\alpha k + 4k$ and $\gamma = n^2 + (2\alpha - 4 - 2\alpha k)n + \alpha^2 + \alpha^2 k^2 - 4\alpha + 2\alpha^2 k - 4\alpha k + 4k + 4$. Then

$$f(n,k,n-k-1) - f(n,k,1) = 2\alpha + \alpha k - \alpha n + \sqrt{n} - \sqrt{n} = \alpha(n - k - 2)(-1 + \frac{2n - \alpha(k + n)}{\sqrt{n} + \sqrt{n}}).$$

For $\alpha = 0$, we have $f(n,k,n-k-1) - f(n,k,1) = 0$, that is $\lambda_\alpha(n,k,n-k-1) = \lambda_\alpha(n,k,1) = \frac{n - 2 + \sqrt{n^2 - 4n + 4k + 4}}{2}$. Therefore, $\lambda_\alpha(G) \leq \frac{n - 2 + \sqrt{n^2 - 4n + 4k + 4}}{2}$ with equality if and only if $G \cong K(n,k,n-k-1)$ or $G \cong K(n,k,1)$.

For $0 < \alpha < 1$. We assume that $n > k + 2$ since in case $n = k + 2$ there is only one value of m under consideration. Now suppose that $f(n,k,n-k-1) - f(n,k,1) \leq 0$. We deduce a contradiction. We have simultaneously

$$\sqrt{n} + \sqrt{\beta} \geq 2n - \alpha(k + n) \text{ and } -\sqrt{n} + \sqrt{\beta} \geq 2\alpha + \alpha k - \alpha n.$$

So $\sqrt{\beta} \geq n - \alpha n + \alpha$ and $\beta \geq (n - \alpha n + \alpha)^2$. However, $(n - \alpha n + \alpha)^2 - \beta = -4\alpha n + 4n - 4 + 4\alpha k + 4\alpha - 4k = 4(1 - \alpha)(n - k - 1) > 0$, that is $(n - \alpha n + \alpha)^2 > \beta$. Thus
\[f(n, k, n - k - 1) - f(n, k, 1) > 0. \] Therefore,
\[\lambda_\alpha(G) \leq \lambda_\alpha(n, k, n - k - 1) = \frac{n - 2 + \alpha + k + \sqrt{n^2 + (2a - 2 - 2ak)n + a^2 + a^2k^2 - 4a^2k^2 + 4a^2k + 4}}{2}, \]
with equality if and only if \(G \cong K(n, k, n - k - 1). \)

\[\square \]

6 \ The maximum \(A_\alpha \) spectral radius of strongly connected digraphs with given arc connectivity

Let \(\mathcal{L}_{n,k} \) denote the set of strongly connected digraphs with order \(n \) and arc connectivity \(\kappa'(G) = k \geq 1. \) If \(\kappa'(G) = k = n - 1 \), then \(\mathcal{L}_{n,k} = \{K_n\} \). So we only consider the cases \(1 \leq k \leq n - 2. \)

In [15], Lin and Drury proved that \(K(n, k, n - k - 1) \) or \(K(n, k, 1) \) attains the maximum \(A_0 \) spectral radius among all strongly connected digraphs with given arc connectivity. In [25], Xi and Wang determined that \(K(n, k, n - k - 1) \) also attains the maximum \(A_\frac{3}{2} \) spectral radius among all strongly connected digraphs with given arc connectivity. We generalize their results to \(0 \leq \alpha < 1. \)

Lemma 6.1. ([25]) Let \(G \) be a strongly connected digraph with order \(n \) and arc connectivity \(k \geq 1, \) and \(S \) be an arc cut set of \(G \) of size \(k \) such that \(G - S \) has exactly two strongly connected components, say \(G_1 \) and \(G_2 \) with \(|V(G_1)| = n_1 \) and \(|V(G_2)| = n_2, \) where \(n_1 + n_2 = n. \) If \(d_v^+ > k \) and \(d_v^- > k \) for each vertex \(v \in V(G), \) then \(n_1 \geq k + 2, n_2 \geq k + 2. \)

Lemma 6.2. Let \(G \in \mathcal{L}_{n,k} \) containing a vertex of outdegree \(k. \) Then \(\lambda_\alpha(G) \leq \lambda_\alpha(K(n, k, n - k - 1)). \)

Proof. Let \(w \) be a vertex of \(G \) such that \(d_w^+ = k. \) Then the arcs out-incident to \(w \) form an arc cut set of size \(k. \) Adding all possible arcs from \(G \setminus \{w\} \) to \(G \setminus \{w\} \cup \{w\}, \) we obtain a digraph \(H, \) which is isomorphic to \(K(n, k, n - k - 1), \) the arc connectivity of \(H \) remains equal to \(k. \) If \(G \neq K(n, k, n - k - 1), \) then \(\lambda_\alpha(G) < \lambda_\alpha(K(n, k, n - k - 1)) \) by Corollary 2.6. So the result follows.

Lemma 6.3. Let \(G \in \mathcal{L}_{n,k} \) containing a vertex of indegree \(k. \) Then \(\lambda_\alpha(G) \leq \lambda_\alpha(K(n, k, 1)). \)

Proof. Let \(w \) be a vertex of \(G \) such that \(d_w^- = k. \) Then the arcs in-incident to \(w \) form an arc cut set of size \(k. \) Adding all possible arcs from \(w \) to \(G \setminus \{w\}, \) and all possible arcs from \(G \setminus \{w\} \) to \(G \setminus \{w\}, \) we obtain a digraph \(H', \) which is isomorphic to \(K(n, k, 1), \) the arc connectivity of \(H' \) remains equal to \(k. \) If \(G \neq K(n, k, 1), \) then \(\lambda_\alpha(G) < \lambda_\alpha(K(n, k, 1)) \) by Corollary 2.6. So the result follows.

Let \(\delta^0(G) = \min\{\delta^+(G), \delta^-(G)\}. \) The following result characterize the digraphs maximizes the \(A_\alpha \) spectral radius in \(\mathcal{L}_{n,k} \) when \(\kappa'(G) = \delta^0(G) = k \geq 1. \)

Theorem 6.4. Let \(G \in \mathcal{L}_{n,k} \) with \(\delta^0(G) = k. \) Then (i) if \(\alpha = 0, \) \(\lambda_\alpha(G) \leq \lambda_\alpha(K(n, k, n - k - 1)) = \lambda_\alpha(K(n, k, n - k - 1)) \) with equality if and only if \(G \cong K(n, k, n - k - 1) \) or \(G \cong K(n, k, 1). \)

(ii) If \(0 < \alpha < 1, \) \(\lambda_\alpha(G) \leq \lambda_\alpha(K(n, k, n - k - 1)), \) with equality if and only if \(G \cong K(n, k, n - k - 1). \)
Proof. Let G be a digraph with arc connectivity k, and $\delta^0(G) = k$.

If $\delta^0(G) = \delta^+(G)$, then there exists a vertex of outdegree k. So by Lemma 6.2, $K(n, k, n - k - 1)$ maximizes the A_α spectral radius in $L_{n,k}$. If $\delta^0(G) = \delta^-(G)$, then there exists a vertex of indegree k. So by Lemma 6.3, $K(n, k, 1)$ maximizes the A_α spectral radius in $L_{n,k}$. Moreover, by the proof Theorem 5.5, we know that

(i) For $\alpha = 0$, $\lambda_\alpha(K(n, k, 1)) = \lambda_\alpha(K(n, k, n - k - 1))$. Therefore $\lambda_\alpha(G) \leq \lambda_\alpha(K(n, k, n - k - 1))$ with equality if and only if $G \cong K(n, k, n - k - 1)$ or $G \cong K(n, k, 1)$.

(ii) For $0 < \alpha < 1$, $\lambda_\alpha(K(n, k, n - k - 1)) > \lambda_\alpha(K(n, k, 1))$. Therefore $\lambda_\alpha(G) \leq \lambda_\alpha(K(n, k, n - k - 1))$ with equality if and only if $G \cong K(n, k, n - k - 1)$.

Theorem 6.5. Let $G \in L_{n,k}$. Then

(i) for $\alpha = 0$, $\lambda_\alpha(G) \leq \lambda_\alpha(K(n, k, 1)) = \lambda_\alpha(K(n, k, n - k - 1))$ with equality if and only if $G \cong K(n, k, n - k - 1)$ or $G \cong K(n, k, 1)$.

(ii) For $0 < \alpha < 1$, $\lambda_\alpha(G) \leq \lambda_\alpha(K(n, k, n - k - 1))$, with equality if and only if $G \cong K(n, k, n - k - 1)$.

Proof. Let G be a digraph in $L_{n,k}$. Note that each vertex in the digraph G has outdegree at least k and indegree at least k, otherwise $G \notin L_{n,k}$. Then, we consider the following two cases.

Case 1. If there exists a vertex u of G with $d_u^+ = k$ or $d_u^- = k$. The by Theorem 6.4 we get the result.

Case 2. For any arc cut set of G containing k arcs, then $G - S$ consists of exactly two strongly connected components G_1, G_2, respectively, of orders a, b and $a + b = n$. Without loss of generality, we may assume that there are no arcs from G_1 to G_2 in $G - S$. By Lemma 6.1, $a \geq k + 2$, $b = n - a \geq k + 2$, then $k + 2 \leq a \leq n - k - 2$, $n \geq a + k + 2 \geq 2k + 4$. Next we create a new digraph \overrightarrow{P} by adding to G any possible arcs from G_2 to $G_1 \cup G_2$ or any possible arcs from G_1 to G_1 that were not present in G. Obviously, the arc connectivity of \overrightarrow{P} remains equal to k and all vertices of \overrightarrow{P} have outdegree greater than k and indegree still greater than k. By Corollary 2.6, the addition of any such arc will give $\lambda_\alpha(\overrightarrow{P}) > \lambda_\alpha(G)$. For $k + 2 \leq a \leq n - k - 2$, let $H'' = \overrightarrow{K_a} \cup \overrightarrow{K_{n-a}}$. $U = \{u_1, u_2, \cdots, u_k\}$ be a set of k vertices in $V(\overrightarrow{K_a})$ and $W = \{v_1, v_2, \cdots, v_k\}$ be a set of k vertices in $V(\overrightarrow{K_{n-a}})$. Let H_4 be a digraph obtained from H'' by adding all possible arcs from U to W, and adding all possible arcs from $\overrightarrow{K_{n-a}}$ to $\overrightarrow{K_a}$. Then \overrightarrow{P} is a spanning subdigraph of H_4. Therefore, by Corollary 2.4, $\lambda_\alpha(\overrightarrow{P}) \leq \lambda_\alpha(H_4)$. However, we can know that the vertex connectivity of H_4 is k and $H_4 \cong K(n, k, n - k - 1)$ and $H_4 \cong K(n, k, 1)$. Then by Theorem 5.5, if $\alpha = 0$, we have $\lambda_\alpha(H_4) < \lambda_\alpha(K(n, k, n - k - 1)) = \lambda_\alpha(K(n, k, 1))$; if $0 < \alpha < 1$, $\lambda_\alpha(H_4) < \lambda_\alpha(K(n, k, n - k - 1))$.

Therefore, combining the above two cases, we get the desired result. □

In sections 6 and 7, it is natural to ask: what are digraphs in $D_{n,k}$ and $L_{n,k}$ whose A_α spectral radius is minimum for each $1 \leq k \leq n - 2$, respectively?

By Lemma 2.1, for any strongly connected digraph H, $\delta^+ \leq \lambda_\alpha(H) \leq \Delta^+$, with either equality if and only if the outdegrees of all vertices in H are equal. If $G \in D_{n,k}$ or $G \in L_{n,k}$, then $\delta^+ \geq k$, $\delta^- \geq k$. So we have $\lambda_\alpha(G) \geq k$ with the equality if and only if the outdegrees of all vertices in G is k, and the indegree of all vertices in G is also k because $\delta^- \geq k$. That is $\lambda_\alpha(G) \geq k$ with the equality if and only if G is a k-regular digraph.
Theorem 6.6. For each $1 \leq k \leq n - 2$, a digraph with the minimum A_α spectral radius in $D_{n,k}$ or $L_{n,k}$ is k-regular, and

$$\min\{\lambda_\alpha(G) : G \in D_{n,k}\} = \min\{\lambda_\alpha(G) : G \in L_{n,k}\} = k.$$

References

[1] J. Bang-Jensen, G. Gutin, *Digraphs Theory, Algorithms and Applications*, Springer 2001.

[2] J.A. Bondy, U.S.R. Murty, *Graph Theory with Applications*, Macmillan, London, 1976.

[3] A. Berman, R. J. Plemmons, *Nonnegative Matrices in the Mathematical Sciences*, New York: Academic Press, 1979.

[4] R.A. Brualdi, Q. Li, Problem 31, *Discrete Math.*, 43 (1983), 329-330.

[5] S.W. Drury, Solution of the conjecture of Brualdi and Li, *Linear Algebra Appl.*, 436 (2012) 3392-3399.

[6] S.W. Drury, H.Q. Lin, Extremal digraphs with given clique number, *Linear Algebra Appl.*, 439 (2013), 328-345.

[7] H.Y. Guo, B. Zhou, On the α-spectral radius of graphs, [arXiv:1805.03456](https://arxiv.org/abs/1805.03456).

[8] R.A. Horn, C.R. Johnson, *Matrix Analysis*, Cambridge University Press, New York, 1985.

[9] W.X. Hong, L.H. You, Spectral radius and signless Laplacian spectral radius of strongly connected digraphs, *Linear Algebra Appl.*, 457 (2014), 93-113.

[10] W.W. Lang, L.G. Wang, Sharp bounds for the signless Laplacian spectral radius of digraphs, *Appl. Math. Comput.*, 238 (2014), 43-49.

[11] X.H. Li, L.G. Wang, S.Y Zhang, The signless Laplacian spectral radius of some strongly connected digraphs, *Indian J. Pure Appl. Math.*, 49 (2018), 113-127.

[12] Chia-an Liu, Chih-wen Weng, Spectral radius of bipartite graphs, *Linear Algebra Appl.*, 474 (2015), 30-43.

[13] H.Q. Lin, J.L. Shu, Spectral radius of digraphs with given dichromatic number, *Linear Algebra Appl.*, 434 (2011), 2462-2467.

[14] H.Q. Lin, X. Huang, J. Xue, A note on the A_α-spectral radius of graphs, *Linear Algebra Appl.*, 557 (2018), 430-437.

[15] H.Q. Lin, S.W. Drury, The maximum perron roots of digraphs with some given parameters, *Discrete Math.*, 313 (2013), 2607-2613.

[16] H.Q. Lin, J.L. Shu, Y.R. Wu, G.L. Yu, Spectral radius of strongly connected digraphs, *Discrete Math.*, 312 (2012), 3663-3669.

[17] D. Li, G.P. Wang, J.X. Meng, Some results on the distance and distance signless Laplacian spectral radius of graphs and digraphs, *Appl. Math. Comput.*, 293 (2017), 218-225.
[18] D. Li, Y.Y. Chen, J.X. Meng, The A_α-spectral radius of graphs with given degree sequence, [arXiv:1806.02603v1].

[19] J.P. Liu, X.Z. W, J.S. Chen, B.L. Liu, The A_α spectral radius characterization of some digraphs, *Linear Algebra Appl.*, 563 (2019), 63-74.

[20] V. Nikiforov, Merging the A- and Q-spectral theories, *Applicable Analysis and Discrete Math.*, 11 (2017), 81-107.

[21] V. Nikiforov, G. Pastén, O. Rojo, R.L. Soto, On the A_α-spectra of trees, *Linear Algebra Appl.*, 520 (2017), 286-305.

[22] V. Nikiforov, O. Rojo, On the α-index of graphs with pendent paths, *Linear Algebra Appl.*, 550 (2018), 87-104.

[23] W.G. Xi, L.G. Wang, Sharp upper bounds on the signless laplacian spectral radius of strongly connected digraphs, *Discuss. Math. Graph Theory*, 36 (2016), 977-988.

[24] W.G. Xi, L.G. Wang, The signless Laplacian and distance signless Laplacian spectral radius of digraphs with some given parameters, *Discrete Appl. Math.*, 227 (2017), 136-141.

[25] W.G. Xi, L.G. Wang, On the signless Laplacian spectral radius of digraphs with given arc connectivity, submitted to Linear Algebra Appl.

[26] J. Xue, H.Q. Lin, S.T. Liu, J.L. Shu, On the A_α-spectral radius of a graph, *Linear Algebra Appl.*, 550 (2018), 105-120.

[27] L.H You, M. Yang, W. So, W.G. Xi, On the spectrum of an equitable quotient matrix and its application, submitted to Linear Algebra Appl.

[28] G.L. Yu, Y.R. Wu, J.L. Shu, Signless Laplacian spectral radii of graphs with given chromatic number, *Linear Algebra Appl.*, 435 (2011), 1813-1822.