Crystalline equivalent boundary-bulk correspondence of two-dimensional topological phases

Jian-Hao Zhang* and Shang-Qiang Ning†
Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China

The boundary of topological phases of matter can manifest its topology nature, which leads to the so-called boundary-bulk correspondence (BBC) of topological phases. In this Letter, we construct a one-to-one correspondence between the boundary theories of fermionic SPT (fSPT) phases protected by crystalline symmetry and on-site symmetry in 2D fermionic systems, which follow the so-called crystalline equivalence principle. We dub such correspondence crystalline equivalent BBC.

We illustrate this correspondence by two simple examples and as an application, we discover the topological boundary theory of 2D fSPT phase with spin-1/2 fermions, protected by a non-Abelian group $\mathbb{Z}_4 \times \mathbb{Z}_2^T$ with $A^4 = T^2 = P_T$ where A is the generator of \mathbb{Z}_4, from its crystalline equivalent partner—2D higher-order fSPT phase with spinless fermions, protected by D_4 symmetry.

Introduction – The interplay between symmetry and topology plays a central role in the topological phases of quantum matter in recent years. In particular, symmetry protected topological (SPT) phases has been systematically constructed and classified by group cohomology (for bosonic), group supercohomology (for fermionic), spin cobordism or by gauging the corresponding global symmetry [1–21], which are beyond Landau symmetry-breaking paradigm. The best known example of SPT phases is topological insulator, which is protected by time-reversal and charge-conservation symmetry [22, 23].

Recently, SPT phases with crystalline symmetry have been intensively studied [24–49] because of not only the conceptual interests, but also providing great opportunities for experimental realization [50–53]. In particular, a one-to-one correspondence between SPT phases with crystalline symmetry and on-site symmetry which is called “crystalline equivalence principle” was proved rigorously in Refs. [29, 37], and justified in 2D interacting fermionic systems with a twist of spin of fermions where spinless (spin-1/2) fermions should be mapped into spin-1/2 (spinless) fermions, by an explicit lower-dimensional block-state constructions of 2D crystalline fSPT phases, which is called topological crystals [48, 54].

One competing phenomenon of the SPT phases is the boundary-bulk correspondence (BBC), namely the boundary of SPT phase must carry the corresponding symmetry anomaly, which manifests the nontrivial topology of the bulk phase. Usually the boundary of 2D SPT can either admit conformal field theory on its boundary with certain ’t Hooft anomaly [6, 55]. The crystalline or higher-order SPT phases can also have the BBC. Different from SPT with on-site symmetry, the boundaries of 2D crystalline SPT are usually gapped but with protected corner zero modes [56–61]. At first glance, there is no direct relation of these two kinds of boundaries, even though their bulks obey the crystalline equivalence principle. However, we will show that the boundaries of the crystalline equivalent bulk topological phases can also follow crystalline equivalence principle. One key observation is that the boundary of SPT can spontaneously break symmetry, whose domain wall however can trap nontrivial zero modes that also manifest the nontrivial topology of the bulk. In light of the fact that their bulk are crystalline equivalent, the zero modes on the domain wall and the corner zero modes should be equivalent in some sense, which leads us to propose the so-called crystalline equivalent BBC.

In this Letter, we will demonstrate the crystalline equivalent BBC by constructing a one-to-one correspondence between the boundaries of 2D fSPT phases protected by on-site symmetry and 2D higher-order fSPT phases with point group symmetry. The correspondence can be established by treating the corner modes of 2D higher-order fSPT phases as “crystalline symmetric” domain walls of 1D modes. For illustrating examples, we build the correspondence between reflection-symmetric topological superconductor (TSC) and the time reversal symmetric TSC with $T^2 = \pm 1$, and also between C_2-symmetric TSC and TSC protected by unitary on-site \mathbb{Z}_2 [15, 62–65], whose bulks follow the crystalline equivalence principle. Furthermore, as an application of the crystalline equivalent BBC, we construct the boundary theory of one intrinsically interacting fSPT protected by non-Abelian $\mathbb{Z}_4 \times \mathbb{Z}_2^T$ symmetry through its crystalline partner D_4-symmetric TSC. The crystalline equivalent BBC we propose in this Letter would be extremely powerful for investigating the topological edge theory of fSPT phases with non-Abelian/antiunitary symmetry/mixed on-site and spatial symmetry.

Spinless fermion with reflection symmetry – Firstly we study the simplest case of spinless fermions with reflection symmetry. From topological crystals and explicit model construction, we know that for a 2D reflection-symmetric system with spinless fermions, there is a nontrivial higher-order topological phase with two Majorana corner modes ξ_1 and ξ_2, see Fig. 1.

We provide an alternative comprehension of these Majorana corner modes: For ξ_1, consider two branches of itinerating Majorana modes $\gamma_+ \uparrow$ and $\gamma_\downarrow \downarrow$ are vir-
But the mass term breaks indices: the term is symmetric under conjugate operator. It is easy to verify that the kinetic metric in reflection quantum number.

In other words, the domain wall is carrying neutral re-

ical phase in 2D reflection-symmetric system with spin-

ical indices) on the boundary that move oppositely, with a mass term $m(x)$:

$$H = \int dx \cdot \gamma^T [i\sigma^3 \partial_x + m(x)\sigma^2] \gamma$$

(1)

where $\gamma(x) = (\gamma_\uparrow(x), \gamma_\downarrow(x))^T$. The reflection symmetry M is defined as:

$$M : \gamma_\uparrow(x) \leftrightarrow \gamma_\downarrow(-x)$$

(2)

It is easy to verify that H is invariant under M if $m(-x) = -m(x)$, which means the mass $m(x)$ has a domain-wall structure. For simplicity, take $m(x) \sim x$, then the Hamiltonian H reduces to:

$$H = \int dx \cdot \gamma^T \mathcal{H}(x) \gamma, \quad \mathcal{H}(x) = i\sigma^3 \partial_x + x\sigma^2$$

(3)

There is a Majorana zero mode localized at $x = 0$ as a Gaussian wavepacket:

$$|0\rangle = \mathcal{A} e^{-x^2/2} (1, 1)^T$$

(4)

where \mathcal{A} is a normalization factor. Equivalently, the Majorana corner modes of nontrivial higher-order topological phase in 2D reflection-symmetric system with spinless fermions can be treated as a domain-wall at the corner of the system. In particular, this domain wall is reflection symmetric. To see this, denote $H_m(x) = 2im(x)\gamma_\uparrow(x)\gamma_\downarrow(x)$, under M, $H_m(x)$ maps to $H_m(-x)$. The whole domain wall is symmetric under reflection.

In other words, the domain wall is carrying neutral reflection quantum number.

Subsequently, we define an effective “time-reversal symmetry” T in γ-basis and treat \uparrow and \downarrow as effective “spin indices”: $T = i\sigma^2 K$, $T^2 = -1$, where K is the complex conjugate operator. It is easy to verify that the kinetic term is symmetric under T:

$$T^{-1}(i\sigma^3 \partial_x)T = i\sigma^3 \partial_x$$

(5)

But the mass term breaks T:

$$T^{-1} [m(x)\sigma^2] T = -m(x)\sigma^2$$

(6)

i.e., the domain wall structure is time reversal broken.

Furthermore, we investigate the symmetry properties of zero mode (4) under reflection symmetry and “time-reversal symmetry”. According to Eq. (2), it is easy to see that this zero mode is reflection symmetric. On the other hand, under T, the zero mode (4) transforms as:

$$T|0\rangle = (i\sigma^2 K)|0\rangle = \mathcal{A} e^{-x^2/2} (-1, 1)^T$$

(7)

i.e., this zero mode breaks T. However, this zero mode carries $T^2 = -1$.

To arrive at the helical edge theory of 2D time-reversal-invariant TSC [62], there are two ways: one can turn off the time reversal broken domain wall, leaving only the kinetic term which is “time-reversal-invariant” [cf. Eq. (5)], or proliferate this domain wall that traps Majorana zero mode [67]. One can also go from the helical edge theory of 2D time-reversal-invariant TSC to obtain the Majorana corner zero modes of reflection symmetric TSC by adding the the reflection symmetric domain wall as in (1) and realizing reflection on helical majorana fermions as (2). This just establishes the “crystalline equivalence principle” of BBC between time reversal and reflection symmetric TSC.

Spin-1/2 fermion with C_2 symmetry – Repeatedly from topological crystals and explicit model construction, we know that for a 2-fold rotational-invariant 2D system with spin-1/2 fermions, there is a nontrivial higher-order topological phase with two Majorana corner modes ξ_1 and ξ_2 on the boundary of the system, see Fig. 2. We introduce polar coordinates $(x, y) = r(\cos \theta, \sin \theta)$ to describe the Majorana corner modes at the north/south poles. Under the 2-fold rotation, the two zero modes ξ_1 and ξ_2 exchange.

Consider two branches of itinerating Majorana modes γ_A and γ_B that move oppositively, with a mass term $m(\theta) \sim \cos \theta$:

$$H = \int d\theta \cdot \gamma^T (-i\sigma^3 \partial_\theta + \cos \theta \cdot \sigma^2) \gamma$$

(8)

where $\gamma = (\gamma_A^\uparrow, \gamma_B^\downarrow)^T$, and the C_2 property of γ is $(\text{sgn}(x) = 1$ for $x > 0$, $\text{sgn}(x) = -1$ for $x < 0$):

$$R : \gamma(\theta) \mapsto \text{sgn}(\theta - \pi) (\gamma_A(\theta + \pi), \gamma_B(\theta + \pi))^T$$

(9)
It is easy to verify that H is C_2-symmetric. The mass term $\cos(\theta)$ has a domain wall structure, which is C_2-symmetric. Near northpole/southpole, the total Hamiltonian can be approximately expressed as:

$$H^N = \int dx \cdot \gamma^T H^N \gamma, \quad H^N = i\sigma^3 \partial_x + x\sigma^2$$
$$H^S = \int dx \cdot \gamma^T H^S \gamma, \quad H^S = -i\sigma^3 \partial_x - x\sigma^2$$

(10)

We concentrate on the physics near northpole, and the physics near southpole can be obtained from northpole by a 2-fold rotation. The Hamiltonian H^N has a zero mode [66]:

$$|0\rangle = \mathcal{A} e^{-x^2/2} (1, 1)^T$$

(11)

Equivalently, the Majorana corner mode ξ_1 of nontrivial higher-order fSPT phase in 2D C_2-symmetric system with spin-1/2 fermions can be treated as a domain-wall at the northpole of a spherical geometry as illustrated in Fig. 2. Similar for ξ_2 at the southpole. The C_2 symmetric domain wall structure promises that ξ_1 and ξ_2 exchange under R.

Subsequently, we define an effective “\mathbb{Z}_2 on-site symmetry” O in γ-basis: $O = \sigma^3$, the kinetic term is symmetric under O:

$$O^{-1}(-i\sigma^3 \partial_x)O = -i\sigma^3 \partial_x$$

(12)

But the mass term breaks this “\mathbb{Z}_2 symmetry”:

$$O^{-1}(\cos \theta \cdot \sigma^2)O = -\cos \theta \cdot \sigma^2$$

(13)

Furthermore, under O, the zero mode (9) transforms as:

$$O|0\rangle = \sigma^3|0\rangle = \mathcal{A} e^{-x^2/2} (1, -1)^T$$

(14)

i.e., this zero mode breaks O, however it has $O^2 = 1$.

Similarly to time reversal TSC, we have two ways to obtain the gapless majorana edge modes of \mathbb{Z}_2 TSC: turn off the \mathbb{Z}_2-broken mass term $\cos(\theta)$ [15, 63–65], or proliferate the domain wall that traps majorana zero modes [67]. One can also begin with gapless majorana edge theory of \mathbb{Z}_2 TSC to construct the boundary corner modes of C_2-symmetric TSC by adding mass term as in (8) and realizing the C_2 symmetry R as (9). Then the crystalline equivalent BBC between unitary \mathbb{Z}_2 TSC and C_2 symmetric TSC is just established.

Spinless fermion with D_4 symmetry – Topological crystals and explicit model construction [54, 68] show that for a 2D D_4-symmetric system with spinless fermions (D_4 is 4-fold dihedral symmetry $D_4 = C_4 \times \mathbb{Z}_2^2$ with two generators $R \in C_4$ as a 4-fold rotation and $M_1 \in \mathbb{Z}_2^2$ as a reflection), there is a nontrivial higher-order fSPT phase, with 8 localized Majorana corner modes ξ_j and ξ'_j ($j = 1, 2, 3, 4$), see Fig. 3 [68]. Similar to the C_2-symmetric case, we introduce polar coordinates $(x, y) = r(\cos \theta, \sin \theta)$ to describe the Majorana corner modes at poles (northpole, southpole, westpole and eastpole).

We introduce 4 branches of iterating Majorana modes $\gamma = (\gamma_1^\uparrow, \gamma_1^\downarrow, \gamma_2^\uparrow, \gamma_2^\downarrow)^T$ on the boundary, where the Majorana modes with \uparrow and \downarrow indices move in opposite directions:

$$H_0 = \int d\theta \cdot \gamma^T [i(\tau^3 \otimes \sigma^3) \partial_\theta] \gamma$$

(15)

where $\tau^{1,2,3}$ are Pauli matrices characterizing the pseudo-spin indices. These Majorana modes have the following symmetry properties:

$$M_1 : \begin{cases} \theta \mapsto 2\pi - \theta \\ (\gamma_1^\uparrow, \gamma_1^\downarrow, \gamma_2^\uparrow, \gamma_2^\downarrow) \mapsto (\gamma_2^\uparrow, \gamma_2^\downarrow, \gamma_1^\uparrow, \gamma_1^\downarrow) \end{cases}$$

(16)

$$R : \begin{cases} \theta \mapsto \theta + \pi/2 \\ (\gamma_1^\uparrow, \gamma_1^\downarrow, \gamma_2^\uparrow, \gamma_2^\downarrow) \mapsto (\gamma_1^\downarrow, \gamma_1^\uparrow, \gamma_2^\downarrow, \gamma_2^\uparrow) \end{cases}$$

That satisfy $R^4 = M_1^2 = 1$. It is easy to verify that H_0 is invariant under D_4 generators (16). We further consider a D_4-symmetric “mass term” with a spatial-dependent mass $m_j(\theta)$:

$$H_m = \int d\theta \cdot \gamma^T [\sin(2\theta) \cdot (\tau^3 \otimes \sigma^3)] \gamma$$

(17)

And we can straightforwardly confirm that H_m is invariant under D_4 generators (16). After investigating the symmetry properties of the total Hamiltonian $H = H_0 + H_m$, we can concentrate on the Hamiltonian near each pole (intersection between the boundary of system and reflection axes along the vertical/horizontal directions, see right panel of Fig. 3). Near eastpole, from $\theta \sim 0$ we obtain $\sin(2\theta) \sim 0$, the low-energy physics near the eastpole can be described by the following Hamiltonians:

$$H^E = \int dy \cdot \gamma^T [i(\tau^3 \otimes \sigma^3) \partial_y + y(\tau^3 \otimes \sigma^3)] \gamma$$

(18)
The Hamiltonian H^E has two zero modes ($x = r$):

$$
|0\rangle_1 = A e^{-y^2/2} (1, 1, 0, 0)^T
$$

$$
|0\rangle_1' = A e^{-y^2/2} (0, 0, 1, 1)^T
$$

Equivalently, the Majorana corner modes γ_1 and γ_1' of nontrivial higher-order topological phase in 2D D_4-symmetric systems with spinless fermions can be treated as two domain walls near the eastpole of the spherical geometry in Fig. 3. Similar for Majorana corner modes at other poles with $\theta \sim \pi/2, \pi, 3\pi/2$ at which $\sin(2\theta) \sim 0$. Near westpole ($x = -r$):

$$
|0\rangle_3 = A e^{-y^2/2} (1, 1, 0, 0)^T
$$

$$
|0\rangle_3' = A e^{-y^2/2} (0, 0, 1, 1)^T
$$

Near north and south poles ($y = \pm r$):

$$
|0\rangle_{2,4} = A e^{-x^2/2} (1, 1, 0, 0)^T
$$

$$
|0\rangle_{2',4'} = A e^{-x^2/2} (0, 0, 1, 1)^T
$$

Subsequently we define an effective “Z_4 on-site symmetry” A (with $A^4 = -1$):

$$
A = \frac{1}{\sqrt{2}} \begin{pmatrix} \mathbb{1}_{2 \times 2} & -i \sigma^2 \\ -i \sigma^2 & \mathbb{1}_{2 \times 2} \end{pmatrix}
$$

H_0 is symmetric under A, mass term H_m breaks A:

$$
A^{-1} i (\tau^3 \otimes \sigma^3) A = i (\tau^3 \otimes \sigma^3)
$$

$$
A^{-1} (\tau^3 \otimes \sigma^2) A \neq \tau^3 \otimes \sigma^2
$$

Then we define an effective “time-reversal symmetry” T:

$$
T = i (\tau^2 \otimes \mathbb{1}_{2 \times 2}) K, \quad T^2 = -1
$$

It is easy to verify that H_0 and H_m preserve T:

$$
T^{-1} (\tau^3 \otimes \sigma^3) T = i (\tau^3 \otimes \sigma^3)
$$

$$
T^{-1} (\tau^3 \otimes \sigma^2) T = \tau^3 \otimes \sigma^2
$$

All zero modes [cf. Eqs. (19)-(21)] are symmetric under D_4 and also T symmetry, but not symmetric under A [66].

Nevertheless, if we “release” the Majorana corner modes ξ_j and ξ_j' (by removing the domain walls, $j = 1, 2, 3, 4$), the Hamiltonian H reduces to H_0 which is “Z_4-symmetric” [cf. Eq. (22)] and “time-reversal symmetric” [cf. Eq. (24)]. Hence the Hamiltonian H_0 describes the edge theory of 2D ($Z_4 \times Z_2^j$)-symmetric systems with spin-1/2 fermions. Furthermore, we study if these edge modes can not be gapped in a symmetric way. We bosonize the edge theory H_0 in terms of $\gamma_{\sigma}^{1,2}$ ($\sigma = \uparrow, \downarrow$):

$$
\epsilon^{i \phi_1} = \gamma_1^\uparrow + i \gamma_2^\uparrow, \quad \epsilon^{i \phi_2} = \gamma_1^\downarrow + i \gamma_2^\downarrow
$$

And the topological edge theory H_0 can be rephrased in terms of bosonic fields $\Phi = (\phi_1, \phi_2)^T$:

$$
L_{\text{edge}} = \frac{K_{1j}}{4\pi} (\partial_x \Phi^I) (\partial_t \Phi^J) + \frac{V_{1j}}{8\pi} (\partial_x \Phi^I) (\partial_t \Phi^J)
$$

where $K = \sigma^2$ as the K-characterizing the topological phase of L_{edge}. Under A and T, the field of edge modes Φ transforms as [55]:

$$
A : \Phi \mapsto W A \Phi + \delta \Phi^A,\quad T : \Phi \mapsto W^T \Phi + \delta \Phi^T
$$

We now try to construct interaction terms that gap out the edge without breaking the A and T symmetries, either explicitly or spontaneously. Consider the backscattering terms of the form:

$$
U = \sum_j U(A_j) = \sum_j U(x) \cos [\Lambda_j^T K \Phi - \alpha(x)]
$$

The backscattering term (30) can gap out the edge as long as the vectors $\{\Lambda_j\}$ satisfy the “null-vector” conditions [69] for all i, j:

$$
\Lambda_i^T K \Lambda_j = 0
$$

The simplest term is $\Lambda_1 = (1, 1)$ or $\Lambda_2 = (1, -1)$. However, Λ_1 breaks T symmetry and Λ_2 break A symmetry. We turn to the next simplest term $\Lambda_3 = (2, 2)$ or $\Lambda_4 = (2, -2)$. Λ_3 preserve all the symmetry but leads to spontaneously symmetry breaking, i.e., $\langle \phi_\pm \rangle$ where $\phi_\pm := \phi_1 - \phi_2$, has two energy vacca: 0 and π (take $\alpha(x) = 0$ for simplicity) which transform into each other by A^2. Similar analysis show Λ_4 would spontaneously break T. So it seems to be no way to symmetrically gap out the edge fields. One may guess it is possible to stack trivial edge fields to gap them out together symmetrically. We argue that in fact it is impossible by gauging the fermion parity symmetry. It turns out that the fermion parity flux carries projective representation of $Z_4 \times Z_2^j$ [66]. Equivalently, H_0 or L_{edge} with (29) characterizes the nontrivial topological edge theory for 2D ($Z_4 \times Z_2^j$)-symmetric fSPT phase with spin-1/2 fermions.

Conclusion and discussion — Crystalline equivalence principle and boundary-bulk correspondence (BBC) are two celebrated aspects in topological phases of matter. In the Letter, we build a bridge between these two phenomena, by proposing the so-called crystalline equivalent BBC. We demonstrate the idea of crystalline equivalent BBC by studying some familiar examples: 2D time reversal vs reflection TSC, and 2D unitary Z_2 vs C_2 rotational TSC, which are both crystalline equivalent. As a nontrivial application, we construct the edge theory of the interacting fSPT protected by $Z_4 \times Z_2^j$ with $A^4 = T = T_f$
from its crystalline partners D_4 higher order TSC. Generally speaking, the single majorana zero modes on the domain wall/ the projective representation of fermion parity flux are related to the n_1/n_2 data in the algebraic description of SPT. Constructing the boundary of SPT phase from translational topological phase (a special crystalline topological phases) is discussed in Refs. [70–72]. However, the translational topological phases and the corresponding SPT are not crystalline equivalent. Moreover, the way that we treat the corner modes as crystalline “domain wall” is fundamentally different from the way by utilizing the translational symmetry as in [70–72]. The proposed crystalline equivalent BBC may shed light on the preparing the SPT states by quantum circuit in quantum simulator or quantum processor. It would be very important in studying the BBC of interacting SPT, especially for non-Abelian/antiunitary symmetry group, and furthermore can be generalized to bosonic systems, 3D systems and the SPT systems jointly protected by crystalline symmetry SG and on-site symmetry G_0, which are left for future study.

Acknowledgements – We thank Z.C Gu, Z. Bi and Z.X Liu for enlightening discussions. This work is supported by Direct Grant No. 4053409 from The Chinese University of Hong Kong and funding from Hong Kong’s Research Grants Council (GRF No.14306918, ANR/RGC Joint Research Scheme No. A-CUHK402/18).

[1] Z.-C. Gu and X.-G. Wen, “Tensor-entanglement-filtering renormalization approach and symmetry-protected topological order,” Phys. Rev. B 80, 155131 (2009).
[2] X. Chen, Z.-C. Gu, and X.-G. Wen, “Classification of gapped symmetric phases in one-dimensional spin systems,” Phys. Rev. B 83, 035107 (2011).
[3] X. Chen, Z.-C. Gu, Z.-X. Liu, and X.-G. Wen, “Symmetry-protected topological orders in interacting bosonic systems,” Science 338, 1604–1606 (2012).
[4] X. Chen, Z.-C. Gu, Z.-X. Liu, and X.-G. Wen, “Symmetry protected topological orders and the group cohomology of their symmetry group,” Phys. Rev. B 87, 155114 (2013).
[5] E. Plamadeala, M. Mulligan, and C. Nayak, Phys. Rev. B 88, 045131 (2012).
[6] Yuan-Ming Lu and Ashvin Vishwanath, “Theory and classification of interacting integer topological phases in two dimensions: A chern-simons approach,” Phys. Rev. B 86, 125119 (2012).
[7] D. S. Freed, “Short-range entanglement and invertible field theories,” arXiv:1406.7278 [cond-mat.str-el].
[8] Daniel S. Freed and Michael J. Hopkins, “Reflection positivity and invertible topological phases,” arXiv e-prints (2016), arXiv:1604.06527.
[9] Z.-C. Gu and X.-G. Wen, “Symmetry-protected topological orders for interacting fermions: Fermionic topological nonlinear σ models and a special group supercohomology theory,” Phys. Rev. B 90, 115141 (2014).
[10] Q.-R. Wang and Z.-C. Gu, “Towards a complete classification of symmetry-protected topological phases for interacting fermions in three dimensions and a general group supercohomology theory,” Phys. Rev. X 8, 011055 (2018).
[11] Q.-R. Wang and Z.-C. Gu, “Construction and classification of symmetry-protected topological phases in interacting fermion systems,” Phys. Rev. X 10, 031055 (2020), arXiv:1811.00536 [cond-mat.str-el].
[12] A. Kapustin, “Symmetry protected topological phases, anomalies, and cobordisms: Beyond group cohomology,” arXiv:1403.1467 [cond-mat.str-el].
[13] Anton Kapustin, Ryan Thorngren, Alex Turzillo, and Zitao Wang, “Fermionic symmetry protected topological phases and cobordisms,” JHEP 1512, 052 (2015).
[14] Anton Kapustin and Ryan Thorngren, “Fermionic spt phases in higher dimensions and bosonization,” Journal of High Energy Physics 2017, 80 (2017).
[15] Z.-C. Gu and M. Levin, “Effect of interactions on two-dimensional fermionic symmetry-protected topological phases with z_2 symmetry,” Phys. Rev. B 89, 201113(R) (2014).
[16] M. Cheng and Z.-C. Gu, “Topological response theory of abelian symmetry-protected topological phases in two dimensions,” Phys. Rev. Lett. 112, 141602 (2014).
[17] M. Barkeshli, P. Bonderson, M. Cheng, and Z. Wang, “Symmetry fractionalization, defects, and gauging of topological phases,” Phys. Rev. B 100, 115147 (2019), arXiv:1410.4540 [cond-mat.str-el].
[18] N. Tantivasadakarn, “Dimensional reduction and topological invariants of symmetry-protected topological phases,” Phys. Rev. B 96, 195101 (2017).
[19] C. Wang, C.-H. Lin, and Z.-C. Gu, “Interacting fermionic symmetry-protected topological phases in two dimensions,” Phys. Rev. B 95, 195147 (2017).
[20] M. Cheng, Z. Bi, Y.-Z. You, and Z.-C. Gu, “Classification of symmetry-protected phases for interacting fermions in two dimensions,” Phys. Rev. B 97, 205109 (2018).
[21] M. Cheng, N. Tantivasadakarn, and C. Wang, “Loop braiding statistics and interacting fermionic symmetry-protected topological phases in three dimensions,” Phys. Rev. X 8, 011054 (2018).
[22] M. Z. Hasan and C. L. Kane, “Colloquium: Topological insulators,” Rev. Mod. Phys. 82, 3045–3087 (2010).
[23] X.-L. Qi and S.-C. Zhang, “Topological insulators and superconductors,” Rev. Mod. Phys. 83, 1057–1110 (2011).
[24] L. Fu, “Topological crystalline insulators,” Phys. Rev. Lett. 106, 106802 (2011).
[25] T. H. Hsieh, H. Lin, J. Liu, W. Duan, A. Bansil, and L. Fu, “Topological crystalline insulators in the snte material class,” Nat. Commun. 3, 982 (2012).
[26] H. Isobe and L. Fu, “Theory of interacting topological crystalline insulators,” Phys. Rev. B 92, 081304(R) (2015).
[27] H. Song, S.-J. Huang, L. Fu, and M. Hermele, “Topological phases protected by point group symmetry,” Phys. Rev. X 7, 011020 (2017).
[28] S.-J. Huang, H. Song, Y.-P. Huang, and M. Hermele, “Building crystalline topological phases from lower-dimensional states,” Phys. Rev. B 96, 205106 (2017).
[29] Ryan Thorngren and Dominic V. Else, “Gauging spatial symmetries and the classification of topological crystalline phases,” Phys. Rev. X 8, 011040 (2018).
[30] L. Zou, “Bulk characterization of topological crys-
ing topological phases and modular invariance,” Phys. Rev. B 85, 245132 (2012).

[64] Xiao-Liang Qi, “A new class of (2+1)-dimensional topological superconductors with \(Z_8\) topological classification,” New Journal of Physics 15, 065002 (2013), arXiv:1202.3983 [cond-mat.str-el].

[65] Hong Yao and Shinsei Ryu, “Interaction effect on topological classification of superconductors in two dimensions,” Phys. Rev. B 88, 064507 (2013).

[66] see Supplementary Materials for more details.

[67] Robert A. Jones and Max A. Metlitski, “1d lattice models for the boundary of 2d “Majorana” fermion SPTs: Kramers-Wannier duality as an exact \(Z_2\) symmetry,” arXiv e-prints, arXiv:1902.05957 (2019), arXiv:1902.05957 [cond-mat.str-el].

[68] Hao-Ran Zhang, Jian-Hao Zhang, Rui-Xing Zhang, Zheng-Cheng Gu, and Shuo Yang, (unpublished).

[69] F. D. M. Haldane, “Stability of chiral luttinger liquids and abelian quantum hall states,” Phys. Rev. Lett. 74, 2090 (1995).

[70] Lukasz Fidkowski, Ashvin Vishwanath, and Max A. Metlitski, “Surface Topological Order and a new \(t\) Hooft Anomaly of Interaction Enabled 3+1D Fermion SPTs,” arXiv e-prints, arXiv:1804.08628 (2018), arXiv:1804.08628 [cond-mat.str-el].

[71] Meng Cheng, “Fermionic lieb-schultz-mattis theorems and weak symmetry-protected phases,” Phys. Rev. B 99, 075143 (2019).

[72] Joseph Sullivan and Meng Cheng, “Interacting edge states of fermionic symmetry-protected topological phases in two dimensions,” SciPost Physics 9, 016 (2020), arXiv:1904.08953 [cond-mat.str-el].
Supplemental Material

Majorana zero modes as a domain wall

In the main text, we have concluded that for a 2D higher-order ISPT phase protected by reflection symmetry M with spinless fermions, the “domain-wall” physics near $x = 0$ is described by the Hamiltonian:

$$ H = \int \, dx \cdot \gamma^T \mathcal{H}(x) \gamma $$

where $\gamma = (\gamma^\dagger, \gamma_1)^T$ and

$$ \mathcal{H}(x) = i\sigma^3 \partial_x + x\sigma^2 $$

To get the zero-energy solution, we define an alternative basis from a unitary transformation on γ:

$$ \chi = \begin{pmatrix} \chi_1 \\ \chi_2 \end{pmatrix} = \frac{1}{\sqrt{2}} (\gamma^\dagger + \gamma_1) $$

Under the basis χ, the Hamiltonian \mathcal{H} will be transformed to:

$$ \mathcal{H}' = \frac{1}{\sqrt{2}} (\sigma^1 + \sigma^3) \left[i\sigma^3 \partial_x + x\sigma^2 \right] \frac{1}{\sqrt{2}} (\sigma^1 + \sigma^3) $$

Define the effective creation/annihilation operators a and a^{\dagger} in terms of x and ∂_x:

$$ \begin{cases} a = \frac{1}{\sqrt{2}} (x + \sigma^3 \partial_x) \\ a^{\dagger} = \frac{1}{\sqrt{2}} (x - \sigma^3 \partial_x) \end{cases} $$

with commutation relation:

$$ [a, a^{\dagger}] = \frac{1}{2} [x + \sigma^3 \partial_x, x - \sigma^3 \partial_x] = \sigma^3 $$

Then we can rephrase the Hamiltonian \mathcal{H}'^2 in terms of a and a^{\dagger} defined above:

$$ \mathcal{H}'^2 = (i\sigma^3 \partial_x - x\sigma^2)^2 = -\partial_x^2 + x^2 + \sigma^3 = 2a^{\dagger}a $$

So if \mathcal{H}'^2 has a zero mode, so do \mathcal{H}'. Suppose $|0\rangle$ is a zero mode of \mathcal{H}'^2 that is proportional to $(1, 0)^T$ and satisfying $a|0\rangle = 0$ in χ-basis:

$$ a|0\rangle = (x + \partial_x)|0\rangle, \quad \Rightarrow \quad |0\rangle \propto e^{-x^2/2} \begin{pmatrix} 1 \\ 0 \end{pmatrix} $$

that is a Gaussian wavepacket localized near $x = 0$. As the consequence, \mathcal{H}'^2 (and thus \mathcal{H}') has zero mode $|0\rangle$ that is localized near $x = 0$. In γ-basis, this zero mode is expressed as:

$$ |0\rangle \propto e^{-x^2/2} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} $$

Symmetry properties of Majorana corner modes in D_4-symmetric case

In the main text, for 2D D_4-symmetric systems with spinless fermions, we have reformulated the Majorana corner modes of the corresponding higher-order ISPT phase in terms of the domain walls on the boundary. In particular, these domain walls can be expressed in terms of the following basis:

$$ \gamma = (\gamma^1, \gamma^1, \gamma^2, \gamma^2)^T $$

The Majorana corner modes at other poles can also be formulated in γ-basis:

$$ |0\rangle_{1, 3} = Ae^{-y^2/2} (1, 1, 0, 0)^T $$

$$ |0\rangle_{1', 3'} = Ae^{-y^2/2} (0, 0, 1, 1)^T $$

$$ |0\rangle_{2, 4} = Ae^{-x^2/2} (1, 1, 0, 0)^T $$

$$ |0\rangle_{2', 4'} = Ae^{-x^2/2} (0, 0, 1, 1)^T $$

Under 4-fold rotation $R \in C_4$ and reflection M_1, these zero modes transform as:

$$ R : \begin{pmatrix} |0\rangle_1, |0\rangle_{1'}, |0\rangle_2, |0\rangle_{2'}, |0\rangle_3, |0\rangle_{3'}, |0\rangle_4, |0\rangle_{4'} \end{pmatrix} \rightarrow \begin{pmatrix} |0\rangle_2, |0\rangle_{2'}, |0\rangle_3, |0\rangle_{3'}, |0\rangle_4, |0\rangle_{4'} \end{pmatrix} $$

and

$$ M_1 : \begin{pmatrix} |0\rangle_1, |0\rangle_{1'}, |0\rangle_2, |0\rangle_{2'}, |0\rangle_3, |0\rangle_{3'}, |0\rangle_4, |0\rangle_{4'} \end{pmatrix} \rightarrow \begin{pmatrix} |0\rangle_{1'}, |0\rangle_1, |0\rangle_{4'}, |0\rangle_4, |0\rangle_{3'}, |0\rangle_3, |0\rangle_{2'}, |0\rangle_2 \end{pmatrix} $$

i.e., all Majorana corner modes are D_4-invariant. Alternatively, we can phrase the D_4 symmetry properties in a more transparent way be redefine the Majorana zero modes:

$$ |z\rangle_{1, 3} = (|0\rangle_{1, 3} + |0\rangle_{1', 3'})/\sqrt{2} $$

$$ |z\rangle_{1', 3'} = (|0\rangle_{1, 3} - |0\rangle_{1', 3'})/\sqrt{2} $$

$$ |z\rangle_{2, 4} = (|0\rangle_{2, 4} + |0\rangle_{2', 4'})/\sqrt{2} $$

$$ |z\rangle_{2', 4'} = (|0\rangle_{2, 4} - |0\rangle_{2', 4'})/\sqrt{2} $$

Under 4-fold rotation $R \in C_4$ and reflection M_1, these zero modes transform as:

$$ R : \begin{pmatrix} |z\rangle_1, |z\rangle_{1'}, |z\rangle_2, |z\rangle_{2'}, |z\rangle_3, |z\rangle_{3'}, |z\rangle_4, |z\rangle_{4'} \end{pmatrix} \rightarrow \begin{pmatrix} |z\rangle_2, |z\rangle_{2'}, |z\rangle_3, |z\rangle_{3'}, |z\rangle_4, |z\rangle_{4'} \end{pmatrix} $$

and

$$ M_1 : \begin{pmatrix} |z\rangle_1, |z\rangle_{1'}, |z\rangle_2, |z\rangle_{2'}, |z\rangle_3, |z\rangle_{3'}, |z\rangle_4, |z\rangle_{4'} \end{pmatrix} \rightarrow \begin{pmatrix} |z\rangle_{1}, -|z\rangle_{1'}, |z\rangle_4, -|z\rangle_{4'}, |z\rangle_3, -|z\rangle_{3'}, |z\rangle_2, -|z\rangle_{2'} \end{pmatrix} $$

i.e., Majorana zero modes $\{|z\rangle_j\} j = 1, 2, 3, 4; 1', 2', 3', 4'$ carry charges of reflection generator M_1.

In the main text, we have defined an effective \(\mathbb{Z}_4 \) on-site symmetry \(A \) which satisfies \(A^4 = -1 \). Under \(A \), these Majorana corner modes will be transformed as:
\[
\begin{align*}
|0\rangle_{1,3} & \mapsto A e^{-\gamma^2/2} (1, 1, -1, -1)^T \\
|0\rangle_{1',3'} & \mapsto A e^{-\gamma^2/2} (1, 1, 1, 1)^T \\
|0\rangle_{2,4} & \mapsto A e^{-x^2/2} (1, 1, -1, -1)^T \\
|0\rangle_{2',4'} & \mapsto A e^{-x^2/2} (-1, 1, 1, 1)^T
\end{align*}
\]
(S15)
i.e., these Majorana corner modes are not invariant under \(A \) symmetry. We note that the symmetry \(A \) is on-site and does not transform zero at one position to another. Furthermore, we have defined another effective “time-reversal symmetry” \(T \) which satisfies \(T^2 = -1 \). Under \(T \), these Majorana corner modes will be transformed as:
\[
\begin{align*}
|0\rangle_{1,3} & \mapsto A e^{-\gamma^2/2} (0, 0, -1, -1)^T = -|0\rangle_{1',3'} \\
|0\rangle_{1',3'} & \mapsto A e^{-\gamma^2/2} (1, 1, 0, 0)^T = |0\rangle_{1,3} \\
|0\rangle_{2,4} & \mapsto A e^{-x^2/2} (0, 0, -1, -1)^T = -|0\rangle_{2',4'} \\
|0\rangle_{2',4'} & \mapsto A e^{-x^2/2} (1, 1, 0, 0)^T = |0\rangle_{2,4}
\end{align*}
\]
(S16)
i.e., there Majorana corner modes are invariant under \(T \) symmetry.

Projective representation of fermion parity flux in gauged \(\mathbb{Z}_4 \times \mathbb{Z}_2^T \) fermionic SPT

In the main text, the edge theory \(\mathbb{Z}_4 \times \mathbb{Z}_2^T \) fermionic SPT is given by \(K = \sigma_z \) together with the symmetry realization Eq.29 in the main text, i.e.,
\[
\begin{align*}
W^A & = \mathbb{I}_{2\times2} \\
W^T & = \sigma^x
\end{align*}
\]
(S17)
Especially, the fermion parity symmetry is realized as
\[
W^{P_f} = \mathbb{I}_{2\times2}, \quad \delta_0^{P_f} = (\pi, \pi)^T
\]
(S18)
Following the method in Ref. [1], we can gauge the fermion parity symmetry and the fermion parity flux are represented by the “fractionalized” vertex operators \(e^{i\phi/2} \) where \(\phi = \phi_1 + \phi_2 \). Now we study the symmetry properties of the remaining symmetry \(\mathbb{Z}_4 \times \mathbb{Z}_2^T \). In fact, under symmetry, the fermion parity flux form a doublet, which is represented by \((e^{i\phi/2}, e^{-i\phi/2})^T \). The components of the doublet differ by attaching local fermions. Under \(A \) and \(T \),
\[
\begin{align*}
A: \begin{pmatrix} e^{i\phi/2} \\ e^{-i\phi/2} \end{pmatrix} & \mapsto \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} e^{i\phi/2} \\ -e^{-i\phi/2} \end{pmatrix} \\
T: \begin{pmatrix} e^{i\phi/2} \\ e^{-i\phi/2} \end{pmatrix} & \mapsto \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix} \begin{pmatrix} e^{i\phi/2} \\ e^{-i\phi/2} \end{pmatrix}
\end{align*}
\]
(S19)
(S20)
Namely, acting on the fermion parity flux doublet, \(U_A = \mathbb{I}_{2\times2} \) and \(U_T = -\sigma_y K \). Recalling that the group relation \(T A T^{-1} = A^{-1} \), namely \(A \) and \(T \) do not commute, such a realization of \(A, T \) is indeed projective. One can compute the invariants for this projective representation, that is,
\[
\begin{align*}
I_1 & = n_2 (A^2 T, A^2 T) = -1 \\
I_2 & = n_4 (A^4 T, A^4 T) = -1
\end{align*}
\]
(S21)
where \(n_2 \) is the 2-cocycle corresponding to this projective representation [2]. We note that the corresponding 2-cocycle with such invariants are in fact nontrivial in \(\mathcal{H}^2 (\mathbb{Z}_4 \times \mathbb{Z}_2^T, U(1)) \) and hence nontrivial in \(\mathcal{H}^2 (\mathbb{Z}_4 \times \mathbb{Z}_2^T, \mathbb{Z}_2) \) which is the true symmetry fractionalization classification of fermion parity flux. In fact, the symmetry fractionalization class \((-1)^{w_2} \) of fermion parity flux corresponds to the complex fermion decoration in the super-cohomology theory for fermionic SPT [3]. In the classification of fermionic SPT, the complex fermion decoration with \(n_2 = w_2 \) is trivialized [4]. The meaning of \(w_2 \) is that it defines the extension that characterizes the fermionic symmetry group, see Eq. (S28) and (S29). Such projective representation \(U_A \) and \(U_T \), labeled by \(n_2 \), differs from the \(w_2 \) in Eq. (S28) since they have different invariants [see Eq. (S30)]. Therefore, the edge theory indeed corresponds to a nontrivial fermionic SPT.

Representation of \(\mathbb{Z}_4 \times \mathbb{Z}_2^T \) in 2D system with spin-1/2 fermions

In this section, we demonstrate that 4 Majorana fermions \(\gamma^j (\sigma = \uparrow, \downarrow \text{ and } j = 1, 2) \) introduced in the main text, with the following symmetry properties:
\[
A = \frac{1}{\sqrt{2}} \begin{pmatrix} \mathbb{I}_{2\times2} & -i\sigma^2 \\ -i\sigma^2 & \mathbb{I}_{2\times2} \end{pmatrix}
\]
(S22)
and
\[
T = i(\tau^2 \otimes \mathbb{I}_{2\times2}) K
\]
(S23)
realize a representation of \(\mathbb{Z}_4 \times \mathbb{Z}_2^T \) group in 2D system with spin-1/2 fermions, where \(A \in \mathbb{Z}_4 \) and \(T \in \mathbb{Z}_2^T \) are two generators of the symmetry group \(\mathbb{Z}_4 \times \mathbb{Z}_2^T \). For a fermionic system, there is always a fermion parity symmetry \(\mathbb{Z}_2^f \) \(\{1, P_f = (-1)^F\} \), where \(F \) is the total number of fermions. The spin of fermions is characterized by the factor system \(\omega_2 \) of the following short exact sequence:
\[
0 \to \mathbb{Z}_2^f \to G_f \to \mathbb{Z}_4 \times \mathbb{Z}_2^T \to 0
\]
(S24)
where \(G_f \) depicts the total symmetry group of the system, as a group extension of \(\mathbb{Z}_4 \times \mathbb{Z}_2^T \) and fermion parity \(\mathbb{Z}_2^f \). \(\omega_2 \) is an element of the following group 2-cocohomology:
\[
\omega_2 \in \mathcal{H}^2 (\mathbb{Z}_4 \times \mathbb{Z}_2^T, \mathbb{Z}_2) = \mathbb{Z}_2^3
\]
(S25)
In particular, the spin-1/2 fermions corresponding to the 2-cocycle ω_2 satisfying the following conditions:

$$\begin{cases} A^4 = P_f \\ T^2 = P_f \\ TAT^{-1}A = 1 \end{cases}$$ \hspace{0.5cm} \text{(S26)}$$

To satisfy these conditions, we consider the 2-cocycle ω_2 as following. For $\forall a, b \in \mathbb{Z}_4 \rtimes \mathbb{Z}_2 T$ defined as:

$$\mathbb{Z}_4 \rtimes \mathbb{Z}_2 T = \{(a, g) = a \mid 0 \leq a \leq 3, 0 \leq g \leq 1\}$$ \hspace{0.5cm} \text{(S27)}$$

we choose

$$\omega_2(a, b) = \left\lfloor \frac{[(-1)^{g+h}a]_{2n} + [(-1)^{h}b]_{2n}}{2n} \right\rfloor + (1 - \delta_a)(a + 1)h + g \cdot h$$ \hspace{0.5cm} \text{(S28)}$$

where we define $[x]_n \equiv x \pmod{n}$ with $n = 2$, $[x]$ as the greatest integer less than or equal to x, and

$$\delta_a = \begin{cases} 1 & \text{if } a = 0 \\ 0 & \text{otherwise} \end{cases} \hspace{0.5cm} \text{(S29)}$$

It is straightforward to check that A and T satisfy condition (S26), hence A and T are generators of the symmetry group $\mathbb{Z}_4 \rtimes \mathbb{Z}_2 T$ for spin-1/2 fermions. One can also calculate that the two invariants defined above are given by

$$I_1 = (-1)^{\omega_2(A^2T, A^2T)} = 1$$

$$I_2 = (-1)^{\omega_2(A^3T, A^3T)} = -1. \hspace{0.5cm} \text{(S30)}$$

* jianhaozhang11@cuhk.edu.hk
† sqning91@gmail.com

[1] Shang-Qiang Ning, Chenjie Wang, Qing-Rui Wang, and Zheng-Cheng Gu, “Edge theories of two-dimensional fermionic symmetry protected topological phases protected by unitary abelian symmetries,” Phys. Rev. B 104, 075151 (2021).

[2] Jian Yang and Zheng-Xin Liu, “Irreducible projective representations and their physical applications,” Journal of Physics A: Mathematical and Theoretical 51, 025207 (2017).

[3] Joseph Sullivan and Meng Cheng, “Interacting edge states of fermionic symmetry-protected topological phases in two dimensions,” SciPost Physics 9, 016 (2020), arXiv:1904.08953 [cond-mat.str-el].

[4] Q.-R. Wang and Z.-C. Gu, “Construction and classification of symmetry-protected topological phases in interacting fermion systems,” Phys. Rev. X 10, 031055 (2020), arXiv:1811.00536 [cond-mat.str-el].