Scientific paper

Cyclometalated Iridium(III) Complexes Containing 2-Phenylbenzo[d]oxazole Ligand: Synthesis, X-ray Crystal Structures, Properties and DFT Calculations

Xiao-Han Yang,1 Qian Zhang,1 Hui Peng,1 Zi-Cen Zuo,1 Ding Yuan,1 Yan Chen,1 Qin Chen,1 Guang-Ying Chen,2 Zhi-Gang Niu1,2 and Gao-Nan Li1,*

1 Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, PR China
2 Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education, Hainan Normal University, Haikou 571158, PR China

* Corresponding author: E-mail: ligaonan2008@163.com

Received: 11-25-2018

1. Introduction

Neutral mononuclear cyclometalated iridium complexes have been found to be suitable for use in organic light emitting diodes (OLEDs).1–3 The privileged use is due to their interesting luminescence properties,4–5 such as high quantum yields, long excited-state lifetimes, and tunable emission color over the entire visible spectrum.6–7 Most often, the variation of their emission color was largely governed by the cyclometalated and/or ancillary ligands structures.

2-phenylbenzo[d]oxazole (bo) is one typical ligand framework for constructing Ir(III) complexes, and can be used to fine-tune the emission color of complexes by judicious modification.8–10 For example, in 2015, we reported Ir(bo)2(acac) derivatives with substituents on the benzoxazole ring and their emissions covered a narrow range from 560 to 566 nm.11 The color adjusting by the change of cyclometalated ligands structures were not very satisfactory, although the quantum yield was up to 53.5%. Afterward, we designed a series of bo-based iridium(III) complexes with different N^O ancillary ligands. They exhibited a wide range of emission wavelengths (λmax = 531–598 nm) with high quantum yields (19%–94%).12 The research findings showed that the structures of ancillary ligands have obvious effect on tuning the emission color of bo-based iridium(III) complexes. Therefore, we wanted to further investigate other types of ancillary ligands. In this paper, we design two N^N ancillary ligands (a and b) and synthesize two bo-based iridium(III) complexes (2a and 2b) (Scheme 1). The photophysical and electrochemical properties of these complexes were investigated, and the lowest energy electronic transitions were analyzed based on density functional theory (DFT) and time-dependent DFT (TDDFT).

2. Experimental

2.1. Materials and Instrumentations

2-aminophenol and benzaldehyde were obtained from Hebei Guanlang Biotechnology Co., Ltd.. 2-(prop-1-
en-2-yl)pyridine, 2-(prop-1-en-2-yl)pyridine and 1,1-dimethoxy-N,N-dimethylmethanamine were obtained from Dayang Chemicals Co., Ltd., SAGECHEM LIMITED and Sigma-Aldrich, respectively. IrCl₃ · 3H₂O was industrial products. The target ligands 2-phenylbenzo[d]oxazole (1), 2-(1H-pyrazol-3-yl)pyridine (a) and 2-(1H-pyrazol-3-yl)pyrazine (b) were prepared according to the literature method. All commercial chemicals were used without further purification unless otherwise stated. Solvents were dried and degassed following standard procedures. ¹H NMR spectra were recorded on a Bruker AM 400 MHz instrument. Chemical shifts were reported in ppm relative to Me₄Si as internal standard. UV-Vis spectra were recorded on a Hitachi U3900/3900H spectrophotometer. Fluorescence spectra were carried out on a Hitachi F-7000 spectrophotometer. The FTIR spectra were taken on a Nicolet 6700 FTIR spectrometer (400-4000 cm⁻¹) with KBr pellets.

2. 2. Synthesis of (bo)₂Ir(pzpy) (2a)

A mixture of IrCl₃ · 3H₂O (306 mg) and 2-phenylbenzo[d]oxazole (500 mg) in 15 mL of 2-ethoxyethanol and H₂O (v:v = 2:1) was heated at 120 °C for 12 hours under N₂. After cooling to room temperature, the yellow precipitate was collected by filtration and washed with cooled ether and MeOH. After drying, the crude product of chlorine bridged dimer complex [(bo)₂Ir(μ-Cl)]₂ can be used in the next step without further purification. This was followed by crude chlorine bridged dimer (207 mg), 2-(1H-pyrazol-3-yl)pyridine (54 mg, 2.2 eq) and Na₂CO₃ (88 mg, 5.0 eq). In 2-ethoxyethanol (10 ml), the mixture was heated at 120 °C under N₂ for 12 hours. After removing the solvent, the mixture was poured into water, extracted three times with CH₂Cl₂, and then evaporated. The residue was purified by flash column chromatography (DCM: MeOH = 50: 1) to obtain iridium complex 2a as a yellow solid (76 mg, yield: 64.6%). ¹H NMR (400 MHz, CDCl₃) δ 7.93 (s, 1H), 7.80–7.67 (m, 4H), 7.56 (dd, J = 17.5, 9.0 Hz, 2H), 7.31 (d, J = 6.9 Hz, 2H), 7.14 (s, 2H), 6.96 (dd, J = 44.3, 7.6 Hz, 6H), 6.71 (s, 2H), 6.65 (s, 1H), 5.97 (dd, J = 16.8, 7.8 Hz, 2H). MS (ESI): m/z = 726.0 [M⁺]. IR (KBr, cm⁻¹): 2856(w), 1649(w), 1592(vs), 1520(m), 1448(vs), 1387(s), 1252(w), 1188(w), 1130(s), 1084(s) 1045(w), 816(w), 742(m), 474(m). Calcd for C₃₃H₂₁IrN₅O₂ (%): C 56.34, H 3.06, N 9.66; Found: C 55.67, H 3.22, N 9.37.

2. 3. Synthesis of (bo)₂Ir(pzpyz) (2b)

The complex 2b (70 mg, yield: 59.4%) was obtained using 2-(1H-pyrazol-3-yl)pyrazine instead of 2-(1H-pyrazol-3-yl)pyridine by a method similar to that of preparing 2a. ¹H NMR (400 MHz, CDCl₃) δ 9.04 (s, 1H), 8.22 (d, J = 2.3 Hz, 1H), 7.92 (s, 1H), 7.82 (dd, J = 16.8, 9.6 Hz, 3H), 7.69–7.56 (m, 2H), 7.42–7.33 (m, 2H), 7.19 (t, J = 7.8 Hz, 1H), 7.14–6.91 (m, 5H), 6.88 (s, 1H), 6.74 (d, J = 7.5 Hz, 1H), 6.65 (d, J = 7.6 Hz, 1H), 6.01 (dd, J = 26.9, 8.0 Hz, 2H). MS (ESI): m/z = 727.0 [M⁺]. IR (KBr, cm⁻¹): 2962(m), 2920(m), 2963(m), 1595(m), 1520(m), 1452(m), 1387(m), 1335(w), 1259(s), 1092(vs), 1030(vs), 804(vs), 742(m), 476(w). Calcd for C₃₃H₂₁IrN₆O₂ (%): C 54.61, H 2.92, N 11.58; Found: C 54.95, H 3.08, N 11.04.

2. 4. Crystallographic Studies

X-ray diffraction data were collected with an Agilent Technologies Gemini A Ultra diffractometer equipped...
with graphite-monochromated Mo Kα radiation (λ = 0.71073 Å) at room temperature. Data collection and reduction were processed with CrystalsPro software. The structure was solved and refined using Full-matrix least-squares based on \(F^2 \) with program SHELXS-97 and SHELXL-97 within Olex2. All non-hydrogen atoms were found in alternating difference Fourier syntheses and least-squares refinement cycles and, during the final cycles, refined anisotropically. Hydrogen atoms were placed in calculated positions and refined as riding atoms with a uniform value of \(U_{iso} \).

2.5. Computational Method

The geometry of complexes 2a–2b was optimized starting from the X-ray data by the DFT (density functional theory) method with B3LYP (Becke three-parameter Lee-Yang-Parr) hybrid density functional theory and the 6-31G* basis set. All calculations were carried out with Gaussian 09 software package.

3. Results and Discussion

3.1. Description of Crystal Structure

The single crystal structures of 2a–2b were obtained by X-ray diffraction studies, and ORTEP diagrams are shown in Fig. 1. The crystallographic data and structural details are given in Table 1. The selected bond lengths and bond angles are collected in Table S1.

![ORTEP view of 2a (up) and 2b (down) with the thermal elipsoids drawn at the 50% probability level.](image)

Table 1. Crystallographic data for complexes 2a–2b.

	2a	2b	
Empirical formula	C\(_{34}\)H\(_{22}\)IrN\(_{5}\)O\(_{2}\)	C\(_{33}\)H\(_{21}\)IrN\(_{6}\)O\(_{2}\)·H\(_{2}\)O	
\(M_r \)	724.76	743.77	
Crystal system	Monoclinic	Monoclinic	
Space group	P2\(_1\)/c	P2\(_1\)/c	
Wavelength / Å	0.7107	0.7107	
X-radiation	Mo-Kα	Mo-Kα	
(graphitemonochromator)			
\(T \)/K	293(2)	293(2)	
\(a \)/Å	11.9035(5)	11.951(3)	
\(b \)/Å	17.9960(9)	18.130(6)	
\(c \)/Å	13.7103(4)	13.742(4)	
\(\alpha \) (°)	90	90	
\(\delta \) (°)	96.654(4)	98.00(2)	
\(\gamma \) (°)	90	90	
\(V \)/(Å\(^3\))	2917.2(2)	2948.4(15)	
\(Z \)	4	4	
\(D_{calc} \)/(Mg/m\(^3\))	1.650	1.676	
\(F(000) \)	1416	1456	
Absorption coefficient (mm\(^{-1}\))	4.616	4.573	
Index ranges	\(-14 \leq h \leq 11\)	\(-14 \leq h \leq 14\)	
	\(-21 \leq k \leq 22\)	\(-22 \leq k \leq 21\)	
	\(-15 \leq l \leq 17\)	\(-17 \leq l \leq 17\)	
	\(R_{int} \)	0.0484	0.1096
	GOF \((\sum F^2)\)	1.037	1.028
	\(R_1, wR_2 \) (all data)	0.0634, 0.1601, 0.0694, 0.1676	0.1146, 0.2001, 0.0252, 0.2336

3.2. Electronic Absorption Spectra

The UV-Vis absorption spectra of 2a–2b were recorded at room temperature in CH\(_2\)Cl\(_2\) solutions, as shown in Fig. 2, and the data are summarized in Table 2. All of the
complexes exhibit intense absorption bands in the ultraviolet region at wavelengths below 310 nm, which are assigned to the spin-allowed \(\pi-\pi^* \) transitions on the C\(^{\text{N}} \)N main ligands and the N'N ancillary ligands. The weaker absorption bands in the range 350–450 nm are likely attributed to metal-to-ligand charge-transfer transitions (1MLCT and 3MLCT).\(^{21-22}\) Compared with complex 2a, complex 2b has a red-shifted, which may be caused by the ancillary ligand. This speculation will be confirmed by electrochemical analysis and DFT calculations.

3.3. Emission Properties

The photoluminescence emission spectra of iridium complexes 2a–2b in degassed CH\(_2\)Cl\(_2\) solution at room temperature and corresponding data are described in Fig. 3 and Table 2, respectively. Complex 2a exhibits green phosphorescence with the broad emission maxima peak at 518 nm and a shoulder peak at 547 nm, whereas 2b is yellow emissive with the broad emission maxima peak at 529–552 nm. For their emission, the excited state of 2a is attributed to the mixing of 3MLCT and 3LC,\(^{23}\) while that of 2b is mainly attributed to 3MLCT.\(^{24}\) As expected, the emission band of 2b has red-shifted with respect to 2a due to different ancillary ligands, which is consistent with absorption analysis. In addition, the quantum yields of 2a and 2b in solution at room temperature were measured to be 35.2% and 46.1% with reference to fac-Ir(ppy)\(_3\) (\(\Phi = 0.40 \)).\(^{25}\)

3.4. Theoretical Calculations

Density functional theory (DFT) and time-dependent DFT (TD DFT) calculations have been performed on the complexes 2a–2b to obtain an insight into the lowest energy electron transition. The most representative molecular front orbital diagram of these complexes is shown in Fig. 4. The calculated spin-allowed electron transitions are provided in Table 3 and compared with the experimental absorption spectra data. The electron density distribution data are summarized in Table S2.

As shown in Fig. 4, the HOMOs of these complexes are mainly located on the metal center and C\(^{\text{N}}\)N ligands. Meanwhile, the LUMO of 2a is mostly dominated on C\(^{\text{N}}\)N ligands, while LUMO of 2b is mainly located on the whole ancillary ligands. In addition, the LUMO+1s of these complexes are primarily centered on the C\(^{\text{N}}\)N main ligands, while HOMO-1s are delocalized over the metal center, C\(^{\text{N}}\)N ligands and ancillary ligands. The theoretical calculation of DFT shows that the lowest energy spin-allowed transitions of 2a–2b come from HOMO→LUMO/LUMO+1 and HOMO→LUMO+1/HOMO→LUMO transitions (Table 3), and therefore attributed to metal-to-ligand charge transfer transition and ligand-to-ligand \(\pi-\pi^* \) transition. These calculations support the photophysical properties discussed above.

Table 2. Photophysical and electrochemical data of complexes 2a–2b.

Complex	Absorption\(^{\text{a}}\) \(\lambda_{\text{abs}} \) (nm)	Emission\(^{\text{a}}\) \(\lambda_{\text{em}} \) (nm)	\(\Phi_{\text{em}} \)\(^{\text{b}}\) (%)	\(E_{\text{ox}} \)\(^{\text{c}}\) (V)	HOMO\(^{\text{c}}\) (eV)	HOMO\(^{\text{d}}\) (eV)
2a	229, 240, 295	518, 547(sh)	35.2	1.57	–6.37	–5.44
2b	228, 295, 308(sh)	529, 552	46.1	1.62	–6.42	–5.54

\(^{\text{a}}\)Data were collected from degassed CH\(_2\)Cl\(_2\) solutions at room temperature. \(^{\text{b}}\)fac-Ir(ppy)\(_3\) as referenced standard (0.4).\(^{25}\) \(^{\text{c}}\)HOMO energies are deduced from the equation HOMO = – (\(E_{\text{ox}} + 4.8 \) eV). \(^{\text{d}}\)Obtained from theoretical calculations.
3.5. Electrochemical Properties

The electrochemical properties of 2a–2b were studied by cyclic voltammetry and shown in Fig. 5. The corresponding electrochemical data and estimated HOMO energy levels are summarized in Table 2. The complexes 2a–2b exhibit quasi-reversible oxidation peaks at 1.57 V and 1.62 V, respectively. From DFT calculations (Table S2), HOMO is mainly located on Ir ions (47.77% for 2a and 46.90% for 2b) and C^N ligands (40.97% for 2a and 44.91% for 2b). Thus, their oxidation processes are assigned to Ir (III) to Ir (IV) and some contributions of the C^N ligands. Based on the oxidation potential, the HOMO energy is derived from the equation $E_{\text{HOMO}} = - (E_{\text{ox}} + 4.8 \, \text{eV})$, and the trend is consistent with the theoretical calculations (Table 2). From these results, it can be seen that because of the different number of nitrogen atoms in the ancillary ligands, the HOMO level of 2b is more stable than that of the analogue 2a, and the oxidation process of 2b is more difficult than that of 2a.

4. Conclusions

In summary, the syntheses, characterization, as well as electrochemical, spectroscopic and photophysical prop-

Table 3. Main experimental and calculated optical transitions for 2a–2b.

Complex	Orbital Excitations	Transition	Character	Oscillation Strength	Calcd Exptl	
2a	HOMO \rightarrow LUMO	MLCT/LLCT	$d\pi_{\text{Ir}} / \pi_{\text{bo}} \rightarrow \pi^*_{\text{bo}}$	0.0802	408	407
	HOMO \rightarrow LUMO+1	MLCT/LLCT	$d\pi_{\text{Ir}} / \pi_{\text{bo}} \rightarrow \pi^*_{\text{bo}}$	0.0401	393	
2b	HOMO \rightarrow LUMO+1	MLCT/LLCT	$d\pi_{\text{Ir}} / \pi_{\text{bo}} / \pi_{\text{pzpyz}} \rightarrow \pi^*_{\text{pzpyz}}$	0.0242	403	372
	HOMO–1\rightarrowLUMO	MLCT/LLCT	$d\pi_{\text{Ir}} / \pi_{\text{bo}} / \pi_{\text{pzpyz}} \rightarrow \pi^*_{\text{pzpyz}}$	0.0225	397	
erties of two new bo-based iridium(III) complexes are reported. The room-temperature phosphorescence of these complexes is tunable from green to yellow depending on the different ancillary ligands. It was also found that as the number of nitrogen atoms increased on the ancillary ligands, the quantum yields became larger and emission became brighter. The DFT calculated results are in good agreement with the actual absorption spectra, indicating that the lowest absorption is assigned to the MLCT/LLCT transition. These results will facilitate the design of new bo-based iridium(III) complexes for highly efficient OLEDs.

5. Acknowledgments

This work was supported by the Natural Science Foundation of Hainan Province (218QN236) and Program for Innovative Research Team in University (IRT-16R19).

6. Supplementary Material

The selected bonds and angles of complexes 2a–2b, the frontier orbital energy and electron density distributions of complexes 2a–2b, as well as the FTIR spectra of complexes 2a–2b. Crystallographic data for the structural analyses have been deposited in the Cambridge Crystallographic Data Centre, CCDC reference number 1881007 (2a) and 1881008 (2b). Copies of this information may be obtained free of charge from The Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: +44 1223 336033; e-mail: deposit@ccdc.cam.ac.uk).

7. References

1. M. C. Gather, A. Köhnen, K. Meerholz, Adv. Mater. 2011, 23, 233–248. DOI:10.1002/adma.201002636
2. C. Fan, C. Yang, Chem. Soc. Rev. 2014, 43, 6439–6469. DOI:10.1039/C4CS00110A
3. G. M. Farinola, R. Ragni, Chem. Soc. Rev. 2011, 40, 3467–3482. DOI:10.1039/c0cs00204f
4. L. Flamigni, A. Barbieri, C. Sabatini, B. Ventura, F. Barigelletti, Top. Curr. Chem. 2007, 281, 143–203. DOI:10.1007/128_2007_143
5. E. Baranoff, E. Orselli, L. Allouche, D. DiCenzo, R. Scopelliti, M. Grätzel, M. K. Nazeeruddin, Chem. Commun. 2011, 47, 2799–2801. DOI:10.1039/c0cc05029f
6. M. A. Baldo, M. E. Thompson, S. R. Forrest, Nature 2000, 403, 750–753. DOI:10.1038/3501541
7. E. Matteucci, A. Baschieri, A. Mazzanti, L. Sambri, J. Avila, A. Pertegas, H. J. Bolink, F. Monti, E. Leoni, N. Armaroli, Inorg. Chem. 2017, 56, 10584–10595. DOI:10.1021/acs.inorgchem.7b01544
8. X. Li, X. T. Yu, H. J. Chi, Y. Dong, G. Y. Xiao, P. Lei, D. Y. Zhang, Z. Cui, Spectrochim. Acta, Part A 2013, 116, 473–477. DOI:10.1016/j.saa.2013.07.075
9. X. Li, H. J. Chi, Y. Dong, G. Y. Xiao, P. Lei, D. Y. Zhang, Z. Cui, Opt. Mater. 2013, 36, 265–270. DOI:10.1016/j.optmat.2013.09.006
10. H. W. Hong, T. M. Chen, Mater. Chem. Phys. 2007, 101, 170–176. DOI:10.1016/j.matchemphys.2006.03.011
11. Z.-G. Niu, T. Zheng, Y.-H. Su, P.-J. Wang, X.-Y. Li, F. Cui, J. Liang, G.-N. Li, New. J. Chem., 2015, 39(8), 6025–6033. DOI:10.1039/C5NJ00975H
12. G.-N. Li, C.-W. Gao, H.-H. Chen, T.-T. Chen, H. Xie, S. Lin, W. Sun, G. Y. Chen, Z.-G. Niu, Inorg. Chem. Acta, 2016, 445, 22–27. DOI:10.1016/j.inca.2016.02.009
13. T. L. H. Doan, L. H. T. Nguyen, T. T. Nguyen, H. L. Nguyen, P. H. Tran, Catalysis Science & Technology, 2017, 7(19), 4346–4350. DOI:10.1039/C7CY01668A
14. X. Y. Yu, L. Deng, B. Zheng, B. R. Zeng, P. Yi, X. Xu, Dalton Trans, 2013, 43(4), 1524–1533. DOI:10.1039/C3DT51986D
15. C.-H. Cheng, U.S. Pat. Appl. Publ. 20080217606, 11 Sep 2008.
16. CrysalisPro Version 1.171.36.21; Agilent Technologies Inc., Santa Clara, CA, USA, 2012.
17. G. M. Sheldrick, Acta Cryst. 2008, A64 112–122. DOI:10.1107/S0108767767043930
18. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. J. Puschmann, Appl. Crystallogr. 2009, 42, 339–341. DOI:10.1002/s002188980042726
19. M. J. Frisch, G. W. Trucks, H. B. Schlegel, Gaussian 09, Revision A.01, Gaussian, Wallingford, Conn, USA, 2009.
20. C. D. Sunesh, K. Shanmugasundaram, M. S. Subeezh, R. K. Chitumalla, J. Jang, Y. Choe, ACS Applied Materials & Interfaces, 2015, 7(14), 7741–7751. DOI:10.1021/acsami.5b00875
21. G. J. Zhou, Q. Wang, C. L. Ho, W. Y. Wong, D. G. Ma, L. X. Wang, Z. Y. Lin, Chem. Asian J. 2008, 3, 1830–1841. DOI:10.1002/asia.200800074
22. N. M. Shavaleev, F. Monti, R. Scopelliti, A. Baschieri, L. Sambri, N. Armaroli, Organometallics, 2013, 32(2), 460–467. DOI:10.1021/om300894m
23. M. Y. Wong, G. Xie, C. Tourbillion, M. Sandroni, D. B. Codres, A. M. Z. Slawin, I. D. W. Samuel, E. Zysman-Colman, Dalton Trans. 2015, 44, 8419–8432. DOI:10.1039/C4DT03127J
24. V. Chandrasekhar, B. Mahanti, P. Bandipalli, K. Bhanuprakash, Inorg. Chem. 2012, 51, 10536–10547. DOI:10.1021/ic300694m
25. K. A. King, P. J. Spelanne, R. J. Watts, J. Am. Chem. Soc. 1985, 107, 1431–1432. DOI:10.1021/ja00291a064
26. G.-N. Li, S.-B. Dou, T. Zheng, X.-Q. Chen, X.-H. Yang, S. Wang, W. Sun, G.-Y. Chen, Z.-R. Mo, Z.-G. Niu, Organometallics, 2018, 37, 78–86. DOI:10.1021/acs.organomet.7b00740

Yang et al.: Cyclometalated Iridium(III) Complexes Containing ...
Povzetek

Sintetizirali in karakterizirali smo dve novi kompleksni spojini Ir(III): [(bo)₂Ir(pzpy)] (2a) in [(bo)₂Ir(pzpyz)] (2b) (bo = 2-fenilbenzo[d]oksazol, pzpy = 2-(1H-pyrazol-3-yl)piridin, pzpyz = 2-(1H-pirazol-3-yl)pirazine). Spojinama smo z rentgensko strukturno analizo monokristalov določili kristalni strukturi. DFT izračune smo uporabili za interpretacijo lastnosti spojin v povezavi z njunima strukturama. Kompleksa Ir(III) imata prehod iz vzbujenega stanja 3MLCT/3LLCT v zelenem in rumenem območju s kvantnima izkoristkoma v raztopini CH₂Cl₂ pri sobni temperaturi 35,2% in 46,1%. Rezultati teoretičnih izračunov in eksperimentalni podatki kažejo, da sta kompleksa Ir(III) (2a in 2b) obetajoča fosforescenčna materiala.