Rapid Validation of Mascot Search Results via Stable Isotope Labeling, Pair Picking, and Deconvolution of Fragmentation Patterns

Samuel L. Volchenboum‡,§, Kolbrun Kristjansdottir¶, ||, Donald Wolfgeher||, and Stephen J. Kron¶, ||

‡Department of Pediatrics, §Computation Institute, ¶Department of Molecular Genetics and Cell Biology, and ||Ludwig Center for Metastasis Research, The University of Chicago, Chicago, Illinois 60637

Samuel L. Volchenboum
University of Chicago Computation Institute and the Department of Pediatrics
5640 S. Ellis, RI405
Chicago, IL 60637

Stephen J. Kron, Kolbrun Kristjansdottir, Donald Wolfgeher
Ludwig Center for Metastasis Research
University of Chicago
924 E. 57th Street, JFK R322
Chicago, IL 60637

Correspondence: Samuel L. Volchenboum, 5640 S. Ellis RI405, Chicago, IL 60637, 773-702-4303 (O), 773-834-1329 (F), slv@uchicago.edu

Running title: Rapid Validation of Mascot Search Results

Copyright 2009 by The American Society for Biochemistry and Molecular Biology, Inc.
Abbreviations

FDR False discovery rate
ROC Receiver operating characteristic
Summary

Conventional LC-MS/MS data analysis matches each precursor ion and fragmentation pattern to their best fit within databases of theoretical spectra, yielding a peptide identification. Confidence is estimated by a score, but can be validated by statistics, false discovery rates, and/or manual validation. A weakness is that each ion is evaluated independently, discarding potentially useful cross-correlations. In a classical approach to de novo sequence analysis, mixtures of peptides differing only in a C-terminal isotopic label yield fragmentation spectra with single, unlabeled b-type ions but pairs of isotope-labeled y-type ions, facilitating confident assignments. To apply this principle to identification by fragmentation pattern matching, we developed Validator, software that recognizes isotopic peptide pairs and compares their identifications and fragmentation patterns. Testing Validator 1 on a Mascot results file from FT-ICR LC-MS/MS of 16O/18O-labeled yeast cell lysate peptides yielded 2,775 peptide pairs sharing a common identification but differing in C-terminal label. Comparing observed b and y-ions with the predicted fragmentation pattern improved the threshold Mascot score for 5% false discovery from 36 to 22, significantly increasing both sensitivity and specificity. Validator 2, which identifies pairs by precursor mass difference alone before comparing observed fragmentation to that predicted by Mascot, found 2,021 isotopic pairs, similarly achieving improved sensitivity and specificity. Finally, Validator 3, which finds pairs based on mass difference alone and then deconvolutes fragmentation patterns independent of Mascot, found 964 predicted peptides. Validator 3
allowed raw mass spectrometry data to be mined not only to validate Mascot results but also to discover peptides missed by Mascot. Using standard desktop hardware, the Validator 1-3 software processed the 11,536 spectra in the 93 Mb Mascot .DAT file in less than six minutes (32 spectra/second), revealing high-confidence peptide identifications without regard to Mascot score, far faster than manual or other independent validation methods.
Introduction

Tandem mass spectrometry (MS/MS) combined with informatics analysis is now a uniquely powerful approach for identifying the components of complex protein samples (1-3). Nonetheless, while new technologies have dramatically enhanced the speed, sensitivity and precision of LC-MS/MS instrumentation (4), data analysis has neither kept pace with, nor taken full advantage of these advances. Determining peptide sequences from fragment ion spectra remains a difficult problem, and three main strategies have matured (5). In de novo sequencing, the peptide sequence is inferred directly from the fragment ion spectra, and many algorithms have been developed to automate this process, including Lutefisk (6), PepNovo (7), NovoHMM (8), PILOT (9), and others (10-13). Incomplete fragmentation patterns and low signal to noise (10) make this method difficult to implement as an exclusive means of peptide identification.

The most commonly used method involves comparing experimental MS/MS spectra to theoretical peptide fragmentation patterns derived from protein sequence databases (4) and reporting the best peptide match, which is then propagated forward through the process of determining likely protein components. Several programs are commonly used, including SEQUEST (14, 15), Mascot (16), and X! Tandem (17, 18). What these algorithms share is the determination of a score for a spectrum-peptide match and subsequently a protein identification, and it is the way in which these scores are assigned and interpreted that distinguishes them (19).

The third method for spectrum-peptide matching is a hybrid of de novo
and database searching (5) in which small lengths of sequence are generated
directly from the fragment ion spectra, and these “sequence tags” (20) are used
to corroborate spectrum-database matches. Popular implementations of this
strategy include DirecTag (21), GutenTag (22), and MultiTag (23). The limitations
to this method include the requirement for consecutive fragmentation ions and
the reliance on de novo algorithms to identify sequence tags.

Database search is highly susceptible to both overreporting false positives
(low specificity) and underreporting true positives (low sensitivity). The search
engines provide different scoring systems that cannot be directly compared, as
the rankings of spectral quality are often based on arbitrary cut-off values.
Recent research has focused less on the sequence matching algorithms
themselves but more on the statistics used to evaluate the resulting match
scores (24). PeptideProphet was one of the first algorithms developed to
evaluate match scores and assign probabilities by evaluating each match with
respect to all other peptide assignments. By employing machine learning
techniques (an expectation-maximization algorithm), PeptideProphet was shown
to have high discriminating power for database search results (25). Initially
developed for SEQUEST search results, PeptideProphet has been subsequently
adapted for use with database search results from Mascot and X! Tandem.
These components are combined in Scaffold, a commercial software suite
developed by Proteome Software (http://www.proteomesoftware.com). An
alternative approach is to filter the primary data to exclude poor quality MS/MS
scans prior to database search (26), thereby enhancing the likely significance of
Using a false-discovery rate instead of false-positive rate is now the standard statistical measure for reporting error rates in data sets with large numbers of features (e.g., proteomic or genomic data) (5, 27). Target-decoy searching as an estimate of FDR involves first constructing a database of decoy peptides (28, 29), and this strategy is being incorporated into PeptideProphet (30, 31). For each peptide-spectrum match, the target spectrum is queried against a second (decoy) database with similar characteristics to the first (e.g., a database of reversed or random peptides). Matches to the decoy database are considered false discoveries, and the number of matches above a particular cutoff-score threshold is reported. The target-decoy search option is now available in the newest version (Version 2.2) of the database search engine Mascot (Matrix Science).

Despite these advances in mass spectrometry, database search, and statistical approaches to validating matches, the process of analyzing mass spectrometry data remains time-consuming and computer-processor intensive, often requiring several steps and various data transformations (19). To overcome these limitations, we developed a fast and efficient method for peptide identification validation that minimizes the false-discovery rate. Our algorithm relies on data from stable isotopic labeling, which is a standard method for quantifying relative protein abundance in complex mixtures (See (32) and references therein). Carboxyl-terminal labeling methods, including trypsin catalyzed 18O exchange (33), result in a mixture of pairs of chemically identical...
but isotopically distinct peptides. The "light" and "heavy" peptides co-elute from HPLC but are readily distinguished by precursor mass (Figure 1A). Each peptide also has an isotopic envelope comprised of isotopologues, molecules that are identical in composition except they can contain any number of isotopes. In the case of trypsin catalyzed 18O exchange, two 18O atoms are substituted for the two carboxy-terminal 16O atoms. Comparison of collision induced dissociation (CID) fragmentation patterns of carboxyl terminal-labeled "light" and "heavy" precursors (or isotopologues) distinguishes b-type and y-type ions (34, 35). The C-terminal fragments (y-ions) appear as light (16O) and heavy (18O substituted) forms but the N-terminal fragments (b-ions) display a single shared mass (Figure 1B-D).

The technique of using isotopic pairs to enhance peptide identification is not new, and several authors have recognized that isotopic labeling could be used to differentiate C-terminal from N-terminal peptide fragments to facilitate peptide sequence analysis (2, 33, 35-38). This method has been productively applied to de novo analysis (12, 39-45), and peptide mass fingerprinting (46). In addition, analogous techniques have been applied to the analysis of mixtures of modified and unmodified peptides by probing for peptide mass differences that match known post-translational modifications (47), while other groups have used MS/MS spectra information to corroborate these matches and remove noise (48, 49). Finally, isotopic labeling with 18O has been used for manual validation of peptide identifications by observing the predicted mass shift of y-ions (50). Nevertheless, this strategy has yet to be harnessed as a means for automated
data analysis and peptide search validation.

The goal of this study is to develop a set of software tools designed to provide rapid and automatic validation of peptide assignments by Mascot and to determine the relative benefit of reducing false discovery and the magnitude of loss of bona fide identifications. We hypothesized that the characteristic shifting of y-type ions between fragmentation spectra of "light" and "heavy" precursors might provide a robust check for validity of peptide assignment by database search. Here, we demonstrate the feasibility of quickly and efficiently analyzing searched mass spectrometry data, determining within minutes, which peptide and protein assignments are likely valid. Using our approach in its simplest form, Validator 1, to identify isotopic pairs in a Mascot results file improved the 5% FDR cut-off from a Mascot score of 36 to 22, thereby capturing many true identifications that would otherwise have been discarded. A more advanced algorithm, Validator 3, that considers only precursor ion mass, charge, and fragmentation spectral data to identify isotopic pairs, independent of any peptide identifications, not only rapidly validated the Mascot results but also discovered peptides that Mascot had failed to match. Our software suite, Validator 1-3, provides new and robust tools for rapid validation of searched LC-MS/MS data obtained in stable isotope experiments, offering improved sensitivity and specificity over database searching alone.

Experimental Procedures

Standardized and normalized data sets
To provide normalized data for our analysis, we prepared a complex soluble protein sample from budding yeast cell lysate. The sample was subjected to proteolysis by trypsin. In detail, the proteins were mixed with 6 µl Rapigest (Waters, MA) and 10 mM TCEP (Tris(2-carboxyethyl)phosphine HCl), denatured at 37 °C for 30 min, alkylated with 10 µl of 50mM iodoacetamide at room temperature, in the dark for 40 min, and digested with 1:50 w:w trypsin in 50 mM ammonium bicarbonate pH 8.9 at 37 °C overnight. The Rapigest was removed by adding 5 µl of 1% TFA. The sample was split and was exchanged in 100% 18O water or 100% 16O water using the 18O Proteome Profiler Kit (Sigma-Aldrich, MO). MALDI-TOF analysis was used to follow the reaction. Finally, this sample was mixed in equal amounts to create a 1:1 16O:18O reference sample. The resulting peptide mix was then subjected to reverse phase nanoelectrospray ionization tandem mass spectrometry (LC-MS/MS) on the LTQ-FT (Thermo) using a standard gradient (Zorbax 300SB-C18 column 150 mm x 75 µm on, 0.1% formic acid/water with 5-60% acetonitrile, 0.5% per minute gradient). The LTQ-FT was run in positive ion mode at 50,000 ppm resolution MS in the ICR. Parent ions were selected for fragmentation by data-dependent analysis using a cycle of 1 MS scan in ICR (m/z 400–2000) and up to 5 MS/MS scans in LTQ (m/z 50–2000) of the most abundant ions using 120 s dynamic exclusion. A normalized collision energy of 35 is used for low energy CID MS/MS of peptide ions. Under these conditions, a high fraction of the most abundant peptides have both the 16O and 18O monoisotopic species subjected to CID, based on our preliminary data. The data set was analyzed by Mascot (version 2.2, Matrix Science) and X!
Tandem (version 2007.01.01.1, http://www.thegpm.org) to identify peptides and proteins from the MS/MS spectra. Mascot has been set up to search the NCBInr_20060910 database (selected for *S. cerevisiae*, 11,101 entries) assuming the digestion enzyme trypsin and a fragment ion mass tolerance of 1.0 Da and a parent ion tolerance of 0.2 Da. Double 18O modification of carboxyl terminal lysine or arginine, oxidation of methionine, N-formylation of the amino terminus, and iodoacetic acid derivative of cysteine were specified as variable modifications. X! Tandem was set to search the scd.fasta.pro database (selected for *S. cerevisiae*, 6,794 entries) also assuming trypsin with a fragment ion mass tolerance of 0.60 Da and a parent ion tolerance of 10.0 PPM. Iodoacetamide derivative of cysteine was specified as a fixed modification. Double 18O modification, deamidation of asparagine and glutamine, oxidation of methionine and tryptophan, sulphone of methionine, tryptophan oxidation to formyl and acetylation of lysine and the amino terminus were specified as variable modifications. Scaffold (version Scaffold-01_06_00, Proteome Software) was used to validate MS/MS-based peptide and protein identifications. Peptide identifications are accepted if they can be established at greater than 90.0% probability as specified by the PeptideProphet algorithm (51). Protein identifications are accepted at greater than 95.0% probability and contain at least one identified peptide, with probabilities assigned by the ProteinProphet algorithm. Proteins that contain similar peptides and cannot be differentiated based on MS/MS analysis alone are grouped to satisfy the principles of parsimony.
Software Development

All software analysis was performed on searched Mascot data (e.g. ".DAT files"). Custom software was written in Python 2.6 (http://www.python.org). Statistical analysis was performed using both Python scripting as well as Microsoft Excel. Charts and graphs were generated using both Python's Matplotlib library (http://matplotlib.sourceforge.net/) and GraphPad Prism (http://www.graphpad.com/prism). Software was run on standard desktop and laptop computers running both Windows XP (service pack 3) and Macintosh OS 10.5. Details about software development and implementation are included in the Results section.

Results

The aim of this study is to describe a fast and efficient means for validating peptide identifications obtained by searching 18O labeled MS/MS data with Mascot. Our approach is to mine the Mascot .DAT file to extract information not utilized by Mascot but potentially useful for automated validation. For the purposes of this paper, we refer to a "query" as any precursor ion and its associated fragmentation ions, regardless of whether Mascot assigned a match, and to a "peptide" as any query to which Mascot assigned a match, regardless of Mascot score and without external validation. For each query, up to ten possible peptides are assigned by Mascot, each with a probability score. For this study, we examined all query-peptide identifications, as well as only the top-scoring
match suggested by Mascot. Using a $^{16}\text{O}/^{18}\text{O}$-labeled data set from yeast cell lysate, analysis of the Mascot .DAT file revealed 20,759 queries and 17,200 peptide identifications, corresponding to 13,158 unique peptides and 5,962 unique proteins, using only the top suggested Mascot peptide identification (Table 1). The false discovery rate (FDR) of 5% was achieved at a threshold Mascot peptide score of 36 and 2% at a cutoff score of 42.

The majority of peptides have low Mascot scores (Figure 2A). As expected, peptides with the highest Mascot scores tend to have a low precursor mass error (PME) (Figure 3A). In fact, the search results represent two populations – peptides with high Mascot score/low PME and peptides with low Mascot score/high PME. A plot of the Mascot score versus the variance of the PME for all peptide matches above that score illustrates a steep fall in the variance, plateauing close to a Mascot score of 35 (Supplemental figure 1), providing an approximate cutoff threshold separating the two populations. Of the 17,200 peptides identified by Mascot, 2,308 have scores greater than 35. The width of precursor mass error range that encompasses 95% of these peptides with high Mascot scores is 0.048 Da, while the interval that covers 95% of all peptides is 0.386 Da (Figure 3).

Validator 1

As a proof-of-concept, we first sought to find all $^{16}\text{O}/^{18}\text{O}$ pairs in the Mascot summary file (".DAT file"). Here, a $^{16}\text{O}/^{18}\text{O}$ pair refers to a peptide sequence identified in two distinct isotopic forms in the same Mascot file, as an
unlabeled ^{16}O peptide and as a peptide containing two ^{18}O’s. The ^{18}O form of each peptide is 4.008491 Da heavier than its unlabeled ^{16}O form (http://www.unimod.org/modifications_view.php?editid1=193). Our first program, Validator 1, is designed to utilize the peptide identifications made by Mascot. Validator 1 first iterates through all queries looking for identical top scoring peptides found in both ^{16}O and ^{18}O forms (an “$^{16}\text{O}/^{18}\text{O}$ pair”). As the ^{16}O and ^{18}O forms are expected to co-elute from reversed-phase columns, we added a constraint that the MS/MS scans of the two peptides must occur within 200 scan units (~2.25 min) of each other. With these criteria, Validator 1 identified 2,775 pairs representing 2,345 unique matched queries with peptides. These peptides represented 398 unique peptides and 125 unique proteins (Table 1). This analysis required ~10 seconds of calculation on a laptop computer. The precursor mass range width that encloses 95% of the peptides with Mascot scores greater than 35 was 0.034 Da, while the width of the range that encompasses 95% of all peptides decreased by 89% compared to Mascot alone to 0.044 Da (Figure 3A vs. 3B).

There were 223 unique peptides with Mascot scores over 35 that Validator 1 failed to discover as a member of an $^{16}\text{O}/^{18}\text{O}$ pair. Manual examination of the raw spectra for ten of the highest scoring of these peptides revealed three scenarios. For six peptides, the ^{16}O form was fragmented and yielded a high Mascot score, but the ^{18}O form was not selected for MS/MS. In one case, the ^{18}O form subjected to MS/MS was an isotopologue not accounted for by the Mascot search, and thus was not correctly identified. In three cases, a candidate pair
was flagged by Validator 1, but the data turned out to correspond to two peaks within the isotopic envelope of a single peptide.

On the other hand, Validator 1 did not reject all low scoring peptides, particularly where the Mascot identifications yielded low precursor mass errors. As seen in Figure 3B, these peptides represent a “comet tail” in the data, stretching all the way down to Mascot scores as low as ten. A closer inspection of these peptides (data not shown) reveals that most were also found in other queries with high Mascot scores. Nevertheless, of the low-scoring peptides found by Validator 1, there were 21 proteins represented that would not be identified if only high Mascot-scoring peptides were being retained.

Therefore, Validator 1 was able to rapidly identify $^{16}\text{O}/^{18}\text{O}$ pairs within searched Mascot data. Using $^{16}\text{O}/^{18}\text{O}$ pairs as a criterion rather than a simple Mascot threshold retained most high-scoring peptides, rejected most low scoring peptides, but also rescued several low-scoring but likely correct identifications.

Validator 2

Validator 1 relies on Mascot to identify both the ^{16}O and ^{18}O labeled peptides. We reasoned that additional $^{16}\text{O}/^{18}\text{O}$ pairs might be found in the Mascot .DAT file by searching for pairs of queries where the precursor masses were separated by a difference of 4.008491 Da, without regard to any features of the MS/MS data or whether Mascot had assigned the same, different or even any identifications. Thus, the Validator program was modified to start with a query identified as a ^{16}O or ^{18}O peptide and search the Mascot .DAT file for queries
within a range of 200 scan units (2.25 minutes) with a precursor mass difference of 4.008491 Da, and with a mass error limit of three ppm. Using these criteria, Validator 2 found 3,209 pairs representing 1,564 unique peptides, and 1,150 unique proteins.

The most significant distinction between Validator 1 and 2 was the retention of considerably more low-scoring peptides. Notably, of the 3,177 peptides retained by Validator 2, 1,696 had Mascot scores below 35, and many also displayed a high mass error, suggesting a low likelihood of correct identification. These results raised the question of whether using additional criteria based on the MS/MS data embedded in the Mascot data file might help reveal potentially correct peptide matches with low Mascot peptide scores while filtering out incorrect identifications.

Validator 2e

Given that fragmentation spectra are available for each member of a candidate 16O/18O peptide pair identified by Validator 1 or 2, we hypothesized that these data could be mined to distinguish false identifications. As noted above, comparing the MS/MS fragmentation of the light and heavy forms will reveal identical sets of b-ions but distinct y-ions, with pairs of fragments shifted by 4.008491 Da, reflecting the exchange of two 18O for 16O at the carboxyl terminus (Figure 1). We therefore extended our program, dubbed Validator 2e, to take advantage of the embedded carboxyl-terminal labeling information to distinguish the b-type and y-type ions, facilitating peptide validation.
As a first step, we confirmed that the MS/MS ions in each query correspond with a theoretical fragmentation table based on the sequence of the peptide match provided by Mascot. For each peptide identification in the Mascot data file, we calculated the fragmentation table and counted the number of observed ions that fell within a window of 2000 ppm from a predicted b or y-ion. As expected, there is a positive correlation between the number of b and y-ion matches and Mascot peptide score ($r = 0.596$, $p < 0.0001$, Supplemental Figure 2A). In order to validate Mascot identifications for $^{16}\text{O}/^{18}\text{O}$ pairs, we tested whether the following held true: When pairs of ions matched predicted b-type ions, they should be identical (non-shifting) while those matching y-ions should differ by 4.008491 Da (shifting). The number of matching pairs of non-shifting b-ions and shifting y-ions were thus tallied to generate a "fragment ion tally". We hypothesized that a high fragment ion tally would characterize a correct peptide identification for a query member of an $^{16}\text{O}/^{18}\text{O}$ pair.

For each pair identified by Validator 2, we calculated the fragment ion tally for each query member based on comparison to predicted fragmentation tables for the highest scoring peptide match provided by Mascot. Fragment ion tally correlates with a high Mascot peptide score ($r = 0.639$, $p < 0.0001$, Supplemental Figure 2B), with a fragment ion tally of ten corresponding to a Mascot score of 35. We therefore filtered the list generated by Validator 2 to retain only pairs that yielded a fragment ion tally of at least ten with at least two matching shifting (y-type) ions. The requirement of two y-ion (shifting) matches will reject pairs of ions derived from the same isotopic envelope, which are predicted to yield many
matching \(b\)-ions but no matching \(y\)-ions. Calculating fragment ion tallies for the 3,209 pairs of queries found by Validator 2 yielded 1,782 queries with counts greater than or equal to ten (Table 1). These queries represent 481 unique peptides, and 234 proteins. Notably, of the query-peptide matches with fragment ion tallies of ten or greater, only 442 (24.8%) had Mascot scores less than 35. Compared to Validator 2, Validator 2e eliminates many of the low-scoring/high-mass error peptides but retains most of the high-scoring/low-mass error peptides (Figure 2C). Limiting the plot to peptides evaluated with Validator 2e that yield a fragment ion tally of ten or greater, 95% of high scoring peptides fell within a precursor mass error range of 0.022 Da versus a range of 0.084 Da for all peptides (Figure 3C). Compared to Validator 1, Validator 2e found 219 queries, 163 peptides, and 135 proteins not found by Validator 1 (Supplemental Table 1).

Validator 3/3e

As a next logical step, we sought to find candidate pairs based solely on their mass difference and ion lists from raw data, without regard to any peptide sequence information provided by Mascot in the .DAT file. Validator 3 identifies pairs much like Validator 2, except for not requiring that one member of the pair be a \(^{16}\)O or \(^{18}\)O peptide identified by Mascot. The program iterates through all queries and searches for another query with the predicted 4.008491 Da mass difference, allowing an error of 3 ppm. From the reference data set, the program identified 3,779 pairs, representing 3,615 unique queries, of which 3,545 have Mascot-assigned peptide identifications. Examination of the data revealed that
some Validator 1 pairs remained unidentified, as their difference in precursor mass lies outside the three ppm tolerance limit imposed by Validator 3 (data not shown). Validator 3 found 1,875 queries, 1,540 peptides, and 1,279 proteins not found by Validator 1 (Supplemental Table 1).

As with Validator 2e, we extended Validator 3 to 3e, by utilizing the expectation of non-shifting \(b \)-ions and shifting \(y \)-ions to perform an internal validation of the proposed pairs, but without relying on the peptide identification(s) provided by Mascot. Therefore Validator 3 was modified to find pairs of shifting and non-shifting fragment ions for each pair, based on comparing the two lists of MS/MS ions and finding non-shifting \(b \)-ions and shifting \(y \)-ions, within a mass tolerance of 2000 ppm. To decrease the influence of noise, only fragment ions with a peak height of at least 0.5% of the intensity of the strongest ion were evaluated. To be considered a shifting or non-shifting pair, the difference in intensity between the candidate’s heavy and light forms could be no more than 25%. Again, a fragment ion tally was determined from the number of pairs of candidate \(b \) (non-shifting) and \(y \) (shifting) ions, while requiring at least two \(y \)-ions. To validate the scoring scheme, the fragment ion tally and Mascot peptide scores were compared, and as with Validator 2e, we found a significant positive correlation (\(r = 0.395, p < 0.0001 \), Supplemental Figure 2C).

Since two complete sets of MS/MS ions are being compared without regard to a predicted fragmentation pattern, we expected to identify more pairs with higher fragment ion tallies. Nonetheless, to facilitate comparison to Validator 2e, we filtered based on a fragment ion tally cut-off of ten, yielding 2,310 queries.
(Table 1). These correspond to 964 peptides and 696 proteins identified. As expected, Validator 3e was less selective than 2e in rejecting low-scoring peptides (Figure 2D) and retained a higher proportion of high mass error peptides (Figure 3D). The precursor mass error range containing 95% of peptides with scores greater than 35 was quite similar to Validator 2e, 0.026 vs. 0.022 Da but considerably wider for all peptides, 0.258 Da vs. 0.084 Da. These data show that a strategy agnostic to Mascot-specific peptide information can be used to identify peptides highly likely to represent bona fide $^{16}\text{O}/^{18}\text{O}$ pairs, providing independent validation for Mascot identifications.

Comparison to Scaffold

The commercial proteomics software suite, Scaffold (Proteome Software) uses the PeptideProphet algorithm (25) in order to generate lists of peptides and proteins with an associated probability. Many groups use Scaffold for downstream data analysis, and we feel that it is important to compare the performance of our software to this commonly used analysis tool. Using the same Mascot .DAT file, the data was analyzed in Scaffold using probability cutoffs for peptides and proteins of 90% and 95%, respectively. The list of proteins meeting these criteria, along with the constituent peptides was compared to the peptide and protein lists generated by Validator versions 1 - 3e (Table 2). Using the top scoring Mascot peptide identifications only, Validator 1 found 69.5% of the peptides and 91.9% of the proteins found by Scaffold. The performance of Validator 2e was similar, identifying 62.6% and 84.9% of the
peptides and proteins, respectively. Validator 3e found 59.1% of the peptides and 88.4% of the proteins found by Scaffold. The seven proteins identified by Scaffold but not identified by Validator 1 were examined. Four proteins had peptide pairs with the MS mass difference outside of the Validator 3e tolerance of three ppm. One protein had a fragment ion tally below the cutoff limit of ten. Two proteins were identified solely from ^{16}O peptides with no ^{18}O partner and would thus not be identified by any form of the Validator software.

Corroboration of Validator 1-Identified Peptide Pairs

Returning to the $^{16}\text{O}/^{18}\text{O}$ pairs identified by Validator 1, we sought to corroborate the pairs by analysis of shifting and non-shifting fragment ions. Validator 3e program was extended to analyze all Validator 1-identified pairs, first by finding all shifting and non-shifting ions between the two MS/MS ion lists. Then the list of matches was compared to the predicted fragmentation table for the Mascot-identified peptide to calculate a fragment ion tally. In order to determine the significance of each potential match, the following algorithm was used: for each potential peptide pair, we randomly permuted the peptide sequence thirty times, each time computing the fragmentation table for the random peptide and determining a fragment ion tally. Based on the distribution of fragment ion tallies for the randomly permuted peptides, a 95% confidence interval was determined. Using a criterion that the fragment ion tally for the Mascot identified peptide must fall outside this range, the fragment ion tallies for 2626 (94.6%) of the 2,775 Validator 1-identified peptides were found to be
significant. In other words, using internal pair validation based on matching shifting and non-shifting MS/MS ions, we were able to corroborate almost every $^{16}\text{O}/^{18}\text{O}$ pair found by Validator 1. This is highly significant, as it both demonstrates the strength of using $^{16}\text{O}/^{18}\text{O}$ pair finding as a route to high-confidence peptides as well as validates our method of peptide validation by matching MS/MS ions.

Statistical Analyses

We next sought to analyze our results by applying a conventional validation method of false-discovery rate determination and receiver operating characteristic (ROC) curve plotting. Whenever a protein sequence from the target database is tested, a random sequence of equal length and similar amino composition is generated and tested (described in http://www.matrixscience.com/help/decoy_help.html and (29, 52)). Any matches to the decoy database are assumed to be false-positives, and this approach assumes that matches to the decoy peptides have the same distribution as false-positive matches to the original target data (5). For calculation of FDR at a given threshold score, we used the method described by Käll, by dividing the number of decoy peptides identified (with scores over the threshold) by the number of target peptides identified (with scores over the threshold score) (27, 29). In general, the identified decoy peptides have low Mascot peptide scores and high precursor mass errors (Supplemental Figure 3). Searching the data set with Mascot against the reference proteomes of 17,200 target peptides and 17,687...
decoy peptides yielded a FDR of 5% at a Mascot peptide score of 36 (Figure 4A). At this cutoff score, Mascot retains 2,250 target peptides and 106 decoy peptides. We were interested in comparing the features of decoy peptides as an independent means of estimating Validator's ability to decrease FDR. We therefore applied this test to analyze the filtering ability of Validator versions 1-3 (Table 1). As an example, recall that Validator 2e identifies pairs by first finding a pair member which Mascot has identified as having either a C-terminal ^{16}O or ^{18}O and then finding the other pair member by searching for a peptide with the appropriate difference in m/z. Using this Mascot-identified peptide for each pair member, the program identifies the b and y-ions from the list of MS/MS ions. This list is searched against the list of MS/MS ions from the isotopic partner to determine the number of non-shifting (b-type) and shifting (y-type) ions, and the sum of these is the fragment ion tally. Peptide-spectrum matches with a fragment ion tally of ten or greater are retained. Validator 2e retains 1,782 target but only 650 decoy peptides. The majority of decoy peptides have a low Mascot score, so that an FDR of 5% is achieved at a cutoff score of 29 (Figure 4B). At that score, the algorithm retains 1,457 target peptides and 62 decoy peptides.

Receiver operating characteristic curves are a useful way to visualize the relationship between the sensitivity and specificity of a test. We have used ROC analysis to probe the relationship between sensitivity and specificity for Mascot peptide scores over all data, pre-filtered data, and Validator-filtered data. For a typical mass spectrometry experiment, a true ROC curve cannot be plotted, since the true-positive rate is unknown. Typically, the search results from the target
and decoy data sets are used to approximate the sensitivity and specificity of the search engine filter (described in http://www.matrixscience.com/help/decoy_help.html). Sensitivity is approximated by the ratio of the number of queries with peptide scores above a given value to the total number of queries. Likewise, specificity is approximated by the ratio of the number of decoy queries with assigned peptides above a given score to the total number of decoy peptides. ROC analysis of the full set of Mascot-searched data demonstrates poor sensitivity and specificity throughout most of the range of score thresholds (Figure 5A, stars). It is only at a very low threshold score that the sensitivity approaches 100% (capturing all correct identifications) while the specificity is close to zero (capturing all incorrect identifications). As expected, restricting the ROC analysis to peptides with Mascot scores above 10 or above 35 (Figure 5A, solid and open squares) improves sensitivity and specificity. When the Validator 1 filtering algorithm is applied to the data (Figure 5A, triangles), the ROC curve demonstrates a stronger relationship between sensitivity and specificity, with a sensitivity of 80% and specificity of 89% at a threshold score of 35 (Figure 5A, arrow). The performance of Validator versions 2, 2e, and 3e are similarly compared in Figure 5B. Note that Validator 2e has the best ROC curve, with a sensitivity of 80% and a specificity of 94% at a Mascot peptide score threshold of 32 (Figure 5B, arrow).

Corroboration of Validator 3-Identified Peptide Pairs

A schema for corroboration of Validator 3 identified peptide pairs is shown
in Figure 6. For the pairs identified by Validator 3e, we utilized the Mascot information, where available, to determine the significance of the match. If the Mascot identification was the same for both members of the pair, we determined the significance of the match using the corroboration strategy of determining fragment ion tallies after randomization of the candidate peptide. Of the 1,270 pairs where the peptide identifications were the same, the score was found significant in 1,258 pairs. For the 741 cases where the Mascot identifications were to different sequences or only one member of a pair had an identification, the same technique was applied to determine the significance. In 621 cases, the corroboration score was significant for at least one matched peptide. For the 130 pairs where there was no corroboration or where neither peptide had a Mascot identification, 31 could be identified using X! Tandem. Of these, we were able to corroborate 19 using the randomization strategy. This left only 133 pairs that passed the fragment ion tally threshold of 10 but lacked any peptide identification to validate. Overall, we were able to corroborate 1,898 of 2021 Validator 3e pairs (93.9%).

Performance

All versions of Validator are written in Python Version 2.6 (www.python.org), running on desktop and laptop hardware. Versions were tested both in Windows XP and Mac OS X environments. Our reference Mascot .DAT data file is 92.8 Mb and 1.24 million lines, consisting of 11,536 scans, 20,759 queries and their analysis. On standard hardware (e.g. Intel Core-2 Duo
processors with 2-4 GB RAM), Validator versions 1-3 run in sequence in less than six minutes (~32 spectra/s), including a complete parsing of the .DAT file, pair finding and corroboration, and full FDR analysis. Validator 1 by itself runs from start to finish in 70 s. Most of this time is spent building the query dictionaries, and once loaded, Validator 1 is able to find all $^{16}\text{O}/^{18}\text{O}$ pairs in about 10 s, including decoy search and false-discovery rate determination. This corresponds to processing >1000 spectra/s. Once optimized and compiled, it is expected that Validator should be able to run several times faster. To facilitate further development, software will be available freely, both as stand-alone code as well as a web-based tool.

Discussion

We have developed Validator, a novel proteomics database search validation software that provides a direct and independent means to validate peptide identifications provided by Mascot analysis of tandem mass spectrometry data. Our algorithm is based on LC-MS/MS analysis of a mixture of C-terminal stable isotope-labeled and non-labeled peptides, a common sample in quantitative mass spectrometry (32, 53-57). We exploit the characteristic fragmentation of isotopically labeled peptides to enhance their identification, a well-established principle that goes back to the period preceding the modern era of ESI and LC-MS/MS (36, 37) and has since been applied effectively by a number of investigators (e.g. 2, 5, 12, 14, 33, 35, 38-48, 50). Where both the light (unlabeled) and heavy (labeled) forms of a peptide are selected for
fragmentation, the resulting spectra can be compared, thereby distinguishing pairs of non-shifting b-ions from pairs of y-ions that display a shift determined by the isotopic label. These data are then used to test the validity of Mascot peptide identifications, comparing observed to predicted fragmentation patterns. We found that this approach allows rapid and efficient automated filtering of Mascot analysis of LC-MS/MS data to improve both the sensitivity and specificity of peptide identification while salvaging potentially useful low-scoring peptides not captured by conventional validation strategies.

Our naive, first approach was to rapidly identify all Mascot-derived 16O/18O pairs from a Mascot .DAT file where both peptides received the same identification. Our data show that a majority of the highest-scoring peptides are validated by this simple strategy, and this method was not only able to find 91% of the proteins identified by the commercial analysis package Scaffold, but also to capture peptides where the Mascot scores would have fallen below any standard significance threshold. This analysis takes less than ten seconds and results in a list of very-high confidence peptide and protein identifications. The surprising performance of this simple approach probably reflects the high bar required for Mascot to independently match each of the fragmentation spectra to the 16O and 18O forms of the same peptide, even when the resulting scores fall below normal significance thresholds. In turn, this single criterion efficiently rejects most false identifications, as from decoy data.

Validator 2 relaxes the requirement for Mascot to make the same identification for both spectra in a pair, and simply seeks a partner for each 16O or
\(^{18}\text{O}\)-labeled peptide based on the expected difference in precursor mass. We have shown that this is also a fast and reliable way of identifying pairs, and we found many \(^{16}\text{O}/^{18}\text{O}\)-labeled potential matches not identified by Validator 1. With Validator 2, we extracted the \(b\)-type (non-shifting) and \(y\)-type (shifting) fragment ions from the MS/MS spectra of each pair and then compared these data with theoretical peptide fragmentation table calculated from the Mascot peptide identifications. Validator 2 confirmed both low and high scoring Mascot identifications, but also rejected many others, including nearly all high-scoring matches to the decoy database. Thus, Validator 2 was able to achieve a FDR of 5\% at a score of 29 versus 36 for Mascot alone. These data suggest that for any arbitrary level of significance, running Validator can significantly increase confidence in peptide identifications independent of Mascot score.

To develop a validation scheme agnostic to Mascot-derived information, we reasoned that peptide pairs could be found based only on the difference in precursor mass. Validator 3 was able to quickly find all Validator 2-identified pairs as well as many others. Here, even though in many pairs, neither the light nor heavy forms were matched by Mascot, we again wanted to corroborate the peptides by matching shifting and non-shifting ions. By comparing the two MS/MS ion series directly, shifting and non-shifting ions were rapidly identified by Validator 3, and we were able to confirm the majority of high-Mascot scoring peptides by tallying the number of shifting and non-shifting ions and again efficiently reject Mascot decoy matches. In addition, Validator 3 validated many pairs that had received low Mascot scores, and even determined fragmentation
patterns for pairs of queries for which Mascot had made no assignments at all.

Using this fragment ion-matching scheme, we were able to corroborate most of the 2,775 pairs found by Validator 1. To study Validator 3-identified peptides, we applied a more complicated but systematic approach, and corroborated 94% of peptide pairs by combining multiple analysis methods including X! Tandem and manual validation. These results demonstrate that we can quickly (<5 minutes) parse a Mascot results file, returning a list of high-confidence peptide pairs, many of which would be missed using conventional score cutoff techniques.

As our software is designed to analyze data from samples that are a mixture of peptides labeled at the C-terminus with either 16O or 18O, there is some concern that MS analysis of the mixture will result in fewer protein identifications than for an unlabeled sample, due to an increase in fragmentation of "redundant" isotopologues at the expense of other peptides. Indeed, when we analyzed 16O and 18O samples separately, we found that Mascot identified about 30% more peptides in either singly labeled sample than when the MS was performed on the 1:1 mixture. Thus, we modified Validator to allow for separate 16O and 18O fractions to be combined and analyzed as a single dataset, and as expected, analysis of the combined fractions rescues the lost identifications (data not shown). Whether analyzed separately, requiring more MS time, or together, and potentially losing some protein identifications, Validator can accommodate the data analysis.

We intend to provide Validator versions 1-3 both as a downloadable,
open-source program and as a web-based tool for parsing and analyzing searched Mascot data. In addition, this approach is readily applied to other labeling schemes used for quantitative analysis, such as SILAC or ICAT. Thus, we intend to adapt the software to accommodate other stable isotope tags. Analysis will also be extended to other search platforms such as SEQUEST or X! Tandem.

This study raises the possibility of implementing a new approach to proteomic data acquisition and analysis to speed up and enhance protein identification, based on identifying peptides "on the fly" during the LC-MS/MS run. Our data suggest peptides might be readily identified, even in a complex sample, based on detecting pairs of precursor ions with a characteristic mass difference. Then, MS/MS could be performed on both the "heavy" and "light" forms followed by comparison to detect shifting and non-shifting fragment ions. The lists of precursor ion masses and b and y-ions determined from such a match could be used to generate sequence tags after Mann and Wilm (20) to directly identify each peptide and thus the protein. With such a strategy, protein identification in real-time during the LC-MS/MS run is entirely feasible from a computational perspective. Toward these ends, we anticipate pursuing rapid recognition of $^{16}\text{O}/^{18}\text{O}$ pairs in raw LC-MS/MS data and interrogating pairs of fragmentation patterns to search for matching shifting and non-shifting ions.

In its current incarnation, our Validator software offers a simple and powerful tool to filter searched tandem mass spectrometry proteomic data. By applying the techniques outlined above, a list of high-confidence peptide and
protein identifications can be obtained within minutes, thus reducing the complexity of downstream proteomic analyses.

* Portions of this work were supported by NIH R01 grants GM60443 and HG003864 to S.K., a DOD BCRP Multidisciplinary Postdoctoral Award to K.K., and a grant from the Cancer Research Foundation to S.V.
References

1. Aebersold, R., and Mann, M. (2003) Mass spectrometry-based proteomics. *Nature* 422, 198-207

2. Hunt, D. F., Yates, J. R., Shabanowitz, J., Winston, S., and Hauer, C. R. (1986) Protein sequencing by tandem mass spectrometry. *Proc. Natl. Acad. Sci. U.S.A.* 83, 6233-6237

3. Lin, D. (2003) Large-scale protein identification using mass spectrometry. *Biochimica et Biophysica Acta (BBA) - Proteins & Proteomics* 1646, 1-10

4. Liu, T., Belov, M. E., Jaitly, N., Qian, W. J., and Smith, R. D. (2007) Accurate mass measurements in proteomics. *Chem. Rev*

5. Nesvizhskii, A. I., Vitek, O., and Aebersold, R. (2007) Analysis and validation of proteomic data generated by tandem mass spectrometry. *Nat Meth* 4, 787-797

6. Taylor, J. A., and Johnson, R. S. (1997) Sequence database searches via de novo peptide sequencing by tandem mass spectrometry. *Rapid Commun Mass Spectrom* 11, 1067-1075

7. Frank, A., and Pevzner, P. (2005) PepNovo: de novo peptide sequencing via probabilistic network modeling. *Analytical chemistry* 77, 964-973

8. Fischer, B., Roth, V., Roos, F., Grossmann, J., Baginsky, S., Widmayer, P., Gruissem, W., and Buhmann, J. M. (2005) NovoHMM: a hidden Markov model for de novo peptide sequencing. *Analytical chemistry* 77,
9. DiMaggio, P. A., and Floudas, C. A. (2007) De novo peptide identification via tandem mass spectrometry and integer linear optimization. *Analytical Chemistry* 79, 1433-1446

10. Frank, A. M., Savitski, M. M., Nielsen, M. L., Zubarev, R. A., and Pevzner, P. A. (2007) De novo peptide sequencing and identification with precision mass spectrometry. *J Proteome Res* 6, 114-123

11. Gu, S., and Chen, X. (2005) Precise proteomic identification using mass spectrometry coupled with stable isotope labeling. *Analyst* 130, 1225

12. Shevchenko, A., Chernushevich, I., Ens, W., Standing, K. G., Thomson, B., Wilm, M., and Mann, M. (1997) Rapid 'de novo' peptide sequencing by a combination of nanoelectrospray, isotopic labeling and a quadrupole/time-of-flight mass spectrometer. *Rapid Commun Mass Spectrom* 11, 1015-1024

13. Tanner, S., Shu, H., Frank, A., Wang, L. C., Zandi, E., Mumby, M., Pevzner, P. A., and Bafna, V. (2005) InsPecT: identification of posttranslationally modified peptides from tandem mass spectra. *Analytical Chemistry* 77, 4626-4639

14. Eng, J. K., McCormack, A. L., and Yates, J. R. (1994) An Approach to Correlate Tandem Mass Spectral Data of Peptides with Amino Acid Sequences in a Protein Database *Journal of the American Society for Mass Spectrometry* 5, 976-989

15. Yates, J. R., Eng, J. K., McCormack, A. L., and Schieltz, D. (1995) Method
to correlate tandem mass spectra of modified peptides to amino acid sequences in the protein database. *Analytical chemistry* 67, 1426-1436

16. Perkins, D. N., Pappin, D. J., Creasy, D. M., and Cottrell, J. S. (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. *Electrophoresis* 20, 3551-3567

17. Craig, R. (2004) TANDEM: matching proteins with tandem mass spectra. *Bioinformatics* 20, 1466-1467

18. Craig, R., and Beavis, R. (2003) A method for reducing the time required to match protein sequences with tandem mass spectra. *Rapid Commun. Mass Spectrom.* 17, 2310-2316

19. Deutsch, E. W., Lam, H., and Aebersold, R. (2008) Data analysis and bioinformatics tools for tandem mass spectrometry in proteomics. *Physiol Genomics* 33, 18-25

20. Mann, M., and Wilm, M. (1994) Error-tolerant identification of peptides in sequence databases by peptide sequence tags. *Analytical chemistry* 66, 4390-4399

21. Tabb, D. L., Ma, Z. Q., Martin, D. B., Ham, A. J., and Chambers, M. C. (2008) DirecTag: Accurate Sequence Tags from Peptide MS/MS through Statistical Scoring. *J Proteome Res*

22. Tabb, D. L., Saraf, A., and Yates, J. R. (2003) GutenTag: high-throughput sequence tagging via an empirically derived fragmentation model. *Analytical chemistry* 75, 6415-6421

23. Sunyaev, S., Liska, A. J., Golod, A., Shevchenko, A., and Shevchenko, A.
(2003) MultiTag: multiple error-tolerant sequence tag search for the sequence-similarity identification of proteins by mass spectrometry. *Analytical chemistry* 75, 1307-1315

24. Tabb, D. L. (2008) What's driving false discovery rates? *J Proteome Res* 7, 45-46

25. Keller, A., Nesvizhskii, A. I., Kolker, E., and Aebersold, R. (2002) Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. *Analytical chemistry* 74, 5383-5392

26. Savitski, M. (2005) New Data Base-independent, Sequence Tag-based Scoring of Peptide MS/MS Data Validates Mowse Scores, Recovers Below Threshold Data, Singles Out Modified Peptides, and Assesses the Quality of MS/MS Techniques. *Molecular & Cellular Proteomics* 4, 1180-1188

27. Käll, L., Storey, J. D., MacCoss, M. J., and Noble, W. S. (2008) Posterior error probabilities and false discovery rates: two sides of the same coin. *J Proteome Res* 7, 40-44

28. Elias, J., and Gygi, S. (2007) Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. *Nat Meth* 4, 207-214

29. Käll, L., Storey, J. D., MacCoss, M. J., and Noble, W. S. (2008) Assigning significance to peptides identified by tandem mass spectrometry using decoy databases. *J Proteome Res* 7, 29-34

30. Choi, H., Ghosh, D., and Nesvizhskii, A. I. (2008) Statistical validation of
peptide identifications in large-scale proteomics using the target-decoy database search strategy and flexible mixture modeling. *J Proteome Res* 7, 286-292

31. Choi, H., and Nesvizhskii, A. I. (2008) Semisupervised model-based validation of peptide identifications in mass spectrometry-based proteomics. *J Proteome Res* 7, 254-265

32. Ong, S. E., and Mann, M. (2005) Mass spectrometry-based proteomics turns quantitative. *Nat Chem Biol* 1, 252-262

33. Schnölzer, M., Jedrzejewski, P., and Lehmann, W. D. (1996) Protease-catalyzed incorporation of 18O into peptide fragments and its application for protein sequencing by electrospray and matrix-assisted laser desorption/ionization mass spectrometry. *Electrophoresis* 17, 945-953

34. Scoble, H. A., and Martin, S. A. (1990) Characterization of recombinant proteins. *Meth Enzymol* 193, 519-536

35. Takao, T., Hori, H., Okamoto, K., Harada, A., Kamachi, M., and Shimonishi, Y. (1991) Facile assignment of sequence ions of a peptide labelled with 18O at the carboxyl terminus. *Rapid Commun Mass Spectrom* 5, 312-315

36. Gray, W., and Del Valle, U. (1970) Application of Mass Spectrometry to Protein Chemistry. I. Method for Amino-Terminal Sequence Analysis of Proteins. *Biochemistry* 9, 2134-2137

37. Gray, W. R., Wojcik, L. H., and Futrell, J. H. (1970) Application of mass spectrometry to protein chemistry. II. Chemical ionization studies on
acetylated permethylated peptides. *Biochemical and biophysical research communications* 41, 1111-1119

38. Rose, K., Simona, M. G., Offord, R. E., Prior, C. P., Otto, B., and Thatcher, D. R. (1983) A new mass-spectrometric C-terminal sequencing technique finds a similarity between gamma-interferon and alpha 2-interferon and identifies a proteolytically clipped gamma-interferon that retains full antiviral activity. *Biochem J* 215, 273-277

39. Cagney, G., and Emili, A. (2002) De novo peptide sequencing and quantitative profiling of complex protein mixtures using mass-coded abundance tagging. *Nat Biotechnol* 20, 163-170

40. Goodlett, D. (2003) Stable isotopic labeling and mass spectrometry as a means to determine differences in protein expression. *TrAC Trends in Analytical Chemistry* 22, 282-290

41. Goodlett, D., Keller, A., Watts, J., Newitt, R., Yi, E., Purvine, S., Eng, J., Haller, P., Aebersold, R., and Kolker, E. (2001) Differential stable isotope labeling of peptides for quantitation and de novo sequence derivation. *Rapid Commun. Mass Spectrom.* 15, 1214-1221

42. Gu, S., Pan, S., Bradbury, E. M., and Chen, X. (2003) Precise peptide sequencing and protein quantification in the human proteome through in vivo lysine-specific mass tagging. *Journal of the American Society for Mass Spectrometry* 14, 1-7

43. Lee, Y., Han, H., Chang, S., and Lee, S. (2004) Isotope-coded N-terminal sulfonation of peptides allows quantitative proteomic analysis with
increased de novo peptide sequencing capability. *Rapid Commun. Mass Spectrom.* 18, 3019-3027

44. Qin, J., Herring, C. J., and Zhang, X. (1998) De novo peptide sequencing in an ion trap mass spectrometer with 18O labeling. *Rapid Commun Mass Spectrom* 12, 209-216

45. Zhang, N., Aebersold, R., and Schwikowski, B. (2002) ProbiID: a probabilistic algorithm to identify peptides through sequence database searching using tandem mass spectral data. *Proteomics* 2, 1406-1412

46. Pratt, J. M., Robertson, D. H., Gaskell, S. J., Riba-Garcia, I., Hubbard, S. J., Sidhu, K., Oliver, S. G., Butler, P., Hayes, A., Petty, J., and Beynon, R. J. (2002) Stable isotope labelling in vivo as an aid to protein identification in peptide mass fingerprinting. *Proteomics* 2, 157-163

47. Potthast, F., Gerrits, B., Häkkinen, J., Rutishauser, D., Ahrens, C. H., Roschitzki, B., Baerenfaller, K., Munton, R. P., Walther, P., Gehrig, P., Seif, P., Seeberger, P. H., and Schlapbach, R. (2007) The Mass Distance Fingerprint: a statistical framework for de novo detection of predominant modifications using high-accuracy mass spectrometry. *J Chromatogr B Analyt Technol Biomed Life Sci* 854, 173-182

48. Bandeira, N., Tsur, D., Frank, A., and Pevzner, P. A. (2007) Protein identification by spectral networks analysis. *Proc. Natl. Acad. Sci. U.S.A.* 104, 6140-6145

49. Savitski, M. M., Nielsen, M. L., and Zubarev, R. A. (2006) ModifiComb, a new proteomic tool for mapping substoichiometric post-translational
modifications, finding novel types of modifications, and fingerprinting complex protein mixtures. *Mol Cell Proteomics* 5, 935-948

50. Heller, M. (2003) Trypsin catalyzed 16O-to-18O exchange for comparative proteomics: tandem mass spectrometry comparison using MALDI-TOF, ESI-QTOF, and ESI-ion trap mass spectrometers. *Journal of the American Society for Mass Spectrometry* 14, 704-718

51. Kolker, E., Hogan, J. M., Higdon, R., Kolker, N., Landorf, E., Yakunin, A. F., Collart, F. R., and van Belle, G. (2007) Development of BIATECH-54 standard mixtures for assessment of protein identification and relative expression. *Proteomics* 7, 3693-3698

52. Elias, J., Haas, W., Faherty, B. K., and Gygi, S. (2005) Comparative evaluation of mass spectrometry platforms used in large-scale proteomics investigations. *Nat Meth* 2, 667-675

53. Mirgorodskaya, O. A., Kozmin, Y. P., Titov, M. I., Körner, R., Sönksen, C. P., and Roepstorff, P. (2000) Quantitation of peptides and proteins by matrix-assisted laser desorption/ionization mass spectrometry using (18)O-labeled internal standards. *Rapid Commun Mass Spectrom* 14, 1226-1232

54. Peng, J., Elias, J., Thoreen, C., Licklider, L., and Gygi, S. (2003) Evaluation of Multidimensional Chromatography Coupled with Tandem Mass Spectrometry (LC/LC−MS/MS) for Large-Scale Protein Analysis: The Yeast Proteome. *J Proteome Res* 2, 43-50

55. Qian, W. (2005) Quantitative Proteome Analysis of Human Plasma
following in Vivo Lipopolysaccharide Administration Using 16O/18O Labeling and the Accurate Mass and Time Tag Approach. *Molecular & Cellular Proteomics* 4, 700-709

56. Sakai, J., Kojima, S., Yanagi, K., and Kanaoka, M. (2005) 18O-labeling quantitative proteomics using an ion trap mass spectrometer. *Proteomics* 5, 16-23

57. Yao, X., Freas, A., Ramirez, J., Demirev, P. A., and Fenselau, C. (2001) Proteolytic 18O labeling for comparative proteomics: model studies with two serotypes of adenovirus. *Analytical chemistry* 73, 2836-2842
Figure Legends

Fig 1 – **Peptide pair identification strategy.** A, Shown is an example of experimental spectra of a 16O/18O peptide pair. Each peptide has an isotopic envelope comprised of three to four different isotopologues containing zero to three molecules of 13C, 15N, or other naturally occurring stable isotopes. The 18O envelope is shifted by about 2.0 Da, reflecting the difference in mass due to the substitution of two 18O atoms. Note that the difference of 2.0 Da is due to the peptide having a 2^+ charge state. Peptide pairs with a 1^+ charge would be separated by about 4.0 Da. B, The b-type and y-type ions from the collision-induced dissociation of a peptide are shown. Any C-terminal substitution (as in 18O, indicated by ‘*’) will affect the y-ions exclusively. C, Idealized sample MS/MS spectra from the peptide and ions in B. The spectra from the 16O and 18O peptide forms have similar patterns, though the peak heights may be different. D (top), The two spectra from C are overlaid to demonstrate that the b-ions will have a nearly identical mass-to-charge ratio, while the y-ions will have a shift reflective of the stable isotope substitution. In the example given, peaks ‘a’ and ‘k’ from C are both b-ions and therefore overlap, while peaks ‘b’ and ‘l’ are y-ions with ‘l’ being shifted due to the substitution of two 18O atoms. Shifted ions are indicated with a horizontal bar below. By observing which ions overlap and which have shifted, the identities of the b and y-ions can be inferred (D, bottom).

Fig. 2 - **Distribution of Mascot scores.** A, The raw Mascot data file was parsed,
and the number of peptides in each score group was tallied. The vast majority of scores were less than 30. Note that the y-axis has a break at 2000. See inset for full-scale graph with identical x-axis but no break in the y-axis. B, Validator 1 finds $^{16}\text{O}/^{18}\text{O}$ pairs in the searched Mascot data file. The distribution of Validator 1-derived peptide scores (black) is seen against the raw distribution (gray) from A. Again, note the broken y-axis and the inset showing the full y-axis scale. At the low end of the scores, Validator 1 rejects most of the peptides while the program retains most of the high scoring peptides. C, The Validator 2e-identified peptides with fragment ion tallies greater than 10 (black) are shown compared to the Validator 2 results (gray). At low scores, Validator 2e rejects most low scoring peptides, while retaining most peptides with high Mascot scores. D, Validator 3e (black) performs similarly to Validator 2e (gray), despite not utilizing any Mascot search information.

Fig. 3 - **Precursor mass error vs. Mascot score.** Low Mascot peptide scores, as defined as a score less than 35, are shown in the shaded gray area. A, The raw data is separated into two distinct zones – the high Mascot score peptides, most with low precursor mass error, and the low Mascot score peptides, most with high precursor mass error. As the Mascot score increases from 0 to 35, the variance of the precursor mass errors of all peptide matches above this score falls dramatically (*see also Supplemental Figure 1*). We determined cut-offs for precursor mass error that would encompass 95% of all peptides (dashed lines) and 95% of peptides with Mascot peptide scores over 35 (solid lines). B,
Validator 1 successfully removes most of the peptides with low Mascot peptide scores. Note the more narrow 95% range for all peptides (dashed lines) compared to A, as well as the much tighter 95% interval for peptides with Mascot peptide scores greater than 35 (solid lines). C, Validator 2e-identified peptides with a fragment ion tally of 10 or more are shown. Note that while the interval encompassing 95% of the peptides (dashed lines) is wider than for Validator 1, it is much narrower than for the raw data. In addition, the 95% interval for peptides with Mascot peptide scores greater than 35 (solid lines) is narrower than for Validator 1-identified peptides. D, Validator 3e-identified peptides with a fragment ion tally of at least 10 are shown. Again, the intervals encompassing 95% of the peptides (dashed lines) and 95% of peptides with Mascot scores greater than 35 (solid lines) are shown.

Fig. 4 – **Analysis of false-discovery rates (FDR).** A. Number of Mascot peptide-spectrum matches for target (solid) and decoy data (dotted). The total number of matches with peptide scores over the given Mascot cutoff score is shown, and the score threshold for an FDR of 5% is indicated. B. Number of Validator 2e matches for target data (solid) and decoy data (dotted). Note the different y-axis scale compared to A. C/D. False-discovery rate for raw Masot and data filtered by Validator versions 1, 2e, and 3e. False-discovery rate is the number decoy peptides divided by the number of target peptides with scores exceeding a given threshold. In D, the black lines mark the Mascot peptide score cutoffs to achieve a FDR of 5% for Mascot (35.6) and Validator 1 (22), 2e (29)
and 3e (37).

Fig. 5 – **Receiver operating characteristic (ROC) curves.** For a given threshold Mascot peptide score, the sensitivity is the ratio of the number of identifications with scores greater than the cutoff score to the total number of queries, while the specificity is the ratio of the number of decoy peptide identifications over the cutoff score to the total number of decoy peptide identifications. **A,** ROC curves for Mascot-searched data and Validator 1-filtered peptides. Validator 1 (triangles) out-performs a simple score cut-off of 35 (open boxes). **B,** ROC curves for Validator versions 1-3. Both Validator 1 and 2e outperform using a simple Mascot score cut-off of 35 (open boxes).

Fig. 6 - **Schema for corroborating Validator 3e-identified peptide pairs.** The tallies reflect the results for the test data set. If the Mascot ID was the same, the shifting and non-shifting ions were matched against the fragmentation table. 1,258 of 1,270 pairs were corroborated this way. Of the remaining pairs, if at least one had a Mascot ID, the shifting and non-shifting ions were compared to the theoretical fragmentation table, and if one or both had a valid fragment ion tally, it was assumed correct. This was true for 621 pairs. Of the remaining pairs, a search was performed using X! Tandem, an alternate search engine, and if a peptide was identified, the corroboration was repeated. For 31 peptides, an ID was made using X! Tandem, and for 19 of these, the match was corroborated with the identified ions. For the remaining pairs (133, in this case), a manual
review will need to be performed to determine the identity of the peptide and the validity of the match.
Tables

Version	Raw	Raw>35	1	2	2e	3	3e
Pairs Identified	NA	NA	2775	3209	NA	3779	2021
Mascot Queries	20759	2308	2345	3185	1782	3615	2310
Queries with Peptides	17200	2308	2345	3177	1782	3545	2289
PME range (+/-) with 95% : all	0.193	0.024	0.022	0.134	0.042	0.142	0.129
PME range (+/-) with 95% : >35	0.024	0.024	0.017	0.011	0.011	0.011	0.013
Unique peptides	13158	580	398	1564	481	1881	964
Unique proteins	5962	186	125	1150	234	1391	696
Score at FDR 5%	36	36	22	36	29	37	37
Score at FDR 2%	42	42	32	41	34	43	43
% queries with Mascot score > 35	13.4	100	78.0	46.6	75.2	42.1	57.1

Table 1: **Validator Data.** For each version of Validator, the number of pairs, queries, and queries with peptides is shown. In addition, data is displayed after filtering the raw Mascot data for only those peptides with scores greater than 35. The precursor mass error range corresponds to the dotted (“all”) and solid (“>35”) lines in Figure 3. PME = precursor mass error, FDR = false-discovery rate

Version	Raw	Raw>35	1	2	2e	3	3e
Top Mascot query match							
% Scaffold peptides ID’d	99.6	99.4	69.5	66.1	62.6	67.1	59.1
% Scaffold proteins ID’d	100	100	91.9	93.0	84.9	94.2	88.4
% peptides ID’d not in Scaffold	96.4	18.8	18.6	80.4	39.7	83.4	71.7
% proteins ID’d not in Scaffold	97.5	56.8	47.6	90.2	64.8	91.6	84.7
All Mascot query matches							
% Scaffold peptides ID’d	100	99.8	71.1	68.9	64.4	69.9	67.1
% Scaffold proteins ID’d	100	100	97.7	98.8	95.3	98.8	96.5
% peptides ID’d not in Scaffold	99.5	96.7	95.9	98.5	97.4	98.6	98.1
% proteins ID’d not in Scaffold	98.2	97.6	97.9	97.5	97.9	97.9	97.7

Table 2: **Scaffold Comparison.** Results are shown comparing the performance of Validator versions 1-3 to the peptide and protein output from the commercial
software package Scaffold. In addition, data is displayed after filtering the raw Mascot data for only those peptides with scores greater than 35. The Scaffold filtering criteria were to include only peptides with a 90% confidence, proteins with a 95% confidence, and only those for which there were at least two unique peptides identified. For instance, using only the top peptide match from Mascot for each query, Validator 1 captured 69.5% of the peptides and 91.9% of the proteins as identified by Scaffold. Also shown are results when using all possible peptide and protein guesses by mascot. ID = identified
Figure 1

A

\[\text{m/z} \quad \text{Relative Abundance} \]

\[
\begin{array}{c}
\overset{16}{\text{O}} \\
\overset{18}{\text{O}} \\
\end{array}
\]

B

\[
\begin{array}{cccccccc}
H_2N-A^+ = b_1 & y_1 = +F-COOH \\
H_2N-AB^+ = b_2 & y_2 = +EF-COOH \\
H_2N-ABC^+ = b_3 & y_3 = +DEF-COOH \\
H_2N-ABCD^+ = b_4 & y_4 = +CDEF-COOH \\
H_2N-ABCDE^+ = b_5 & y_5 = +BCDEF-COOH \\
H_2N-ABCDEF^+ = b_6 & y_6 = +ABCDEF-COOH \\
\end{array}
\]

C

\[\text{m/z} \quad \text{Relative Abundance} \]

\[
\begin{array}{c}
\overset{16}{\text{O}} \\
\overset{18}{\text{O}} \\
\end{array}
\]

D

\[\text{m/z} \quad \text{Relative Abundance} \]

\[
\begin{array}{cccccccc}
a/k & b_1 & c/m & d & e/o & f & g/q & h & i/s & j & t \\
b_2 & y_2 & b_3 & y_3 & b_4 & y_4 & y_5 & b_6 & y_6 \\
\end{array}
\]
Figure 2

A. Number of peptides against Mascot peptide score for all peptides and Validator 1.

B. Number of peptides against Mascot peptide score for all peptides and Validator 2.

C. Number of peptides against Mascot peptide score for Validator 2 and Validator 2e.

D. Number of peptides against Mascot peptide score for Validator 2e and Validator 3e.
Figure 3

A.

B.

C.

D.

Mascot Peptide Score vs. Precursor Mass Error (Da) for different conditions.
Figure 5

A

Target (Sensitivity) vs Decoy (1 - specificity)

- Validator 1
- All queries > 35
- All queries > 10
- All queries

B

Target (Sensitivity) vs Decoy (1 - specificity)

- Validator 2e
- Validator 1
- All queries > 35
- Validator 3e
- Validator 2
- All queries > 10
Figure 6

All Pairs 2021

Mascot sequence same?

Yes 1270
No 751

Does at least one query have an ID?

Yes 741
No 10

Is fragment ion tally significant?

Yes 1258
No 12

Does fragment ion tally corroborate at least one ID?

Yes 621
No 130

X! Tandem ID?

Yes 31
No 111

Consider one or both ID's are correct.

Yes 19

Does fragment ion tally corroborate at least one ID?

Yes 19
No 12

Good ID

Manual Identification