INTRODUCTION

Continuous glycaemic monitoring (CGM) has given rise to several new glycaemic metrics as valuable alternatives to haemoglobin A1c. The time in range (TIR) of glucose values is strongly correlated with mean glucose and HbA1c, but TIR also reflects diurnal glucose variation and is independent of individual physiological factors influencing the rate of glycation. Another advantage of TIR is that the effect of intervention can be evaluated after a few weeks, while only minor changes in HbA1c can be expected. It is common clinical practice to present TIR and other glycaemic indices in a one-page condensed ambulatory glucose profile based on 14 days of CGM.

INTERMITTENTLY SCANNED CONTINUOUS GLUCOSE MONITORING (ISCGM) is the most widespread form of CGM. The aim of the present study was to describe variation in TIR in type 1 diabetes using ISCGM.
2 | MATERIAL AND METHODS

We had unrestricted access to isCGM (Freestyle Libre, Abbott) in the diabetes outpatient clinic for adults with type 1 diabetes in Regional Hospital Silkeborg, Denmark. Glucose data were evaluated from all available downloads to the Diasend platform in the period February to November 2019. The study population comprises 169 non-pregnant individuals with type 1 diabetes of whom 61 had two downloads with an interval of more than 3 months. Glycaemic metrics from this cohort have previously been described in detail.8

Glycaemic metrics were evaluated for periods of 2 weeks for the last 8 weeks before download. Period 1 was weeks one and two before download and period 4 was weeks seven and eight before download. For persons with two downloads, glycaemic metrics for the last 14 days from the first and second downloads were compared.

Mean glucose was calculated as the mean of glucose values (scanned and imported) for each 15 min. Period. Active CGM time was estimated as Hodges–Lehmann median difference. TBR has a markedly skewed distribution. Log transformation of raw data was not possible because the tail of the distribution included approx. 3% with the value zero. To obtain a normal distribution, TBR was log transformed after omitting values below the 10 percentile level (corresponding to 0.61%) for pooled data from all four periods. Several other possible transformations of TBR data were considered including adding a constant 0.12% to zero values or omitting zero values. The different methods had no substantial influence on calculation of the within-person SD. The statistical packages SPSS ver. 20.0 and R ver. 3.4.1 were used.

3 | RESULTS

Three of the 169 persons were excluded due to missing glucose values for one or two 14 days periods within the 8 weeks prior to download. Thus, data from 166 persons are presented. The mean age was 51.8 ± 14.2 years, mean diabetes duration 25.4 ± 14.3 years, and 93 (56%) were males. The majority (140 (84%)) used multiple daily injection (MDI), and the remaining 26 persons (16%) used continuous insulin infusion (CSI). Mean haemoglobin A1c was 7.6 ± 1.0% (59 ± 10 mmol/mol). The median number of scans for 30 days was 11 (CI: 9, 14.5) and for 90 days 11 (n = 161). Glycaemic metrics for each of the four periods of 14 days are shown in Table 1. No statistically significant difference between the four periods was noted. The difference between two TIR values (TIR period 1 - TIR period 4) separated by 1 month was 1.5% (95% CI: −0.1–3.1), p = .07, SD of the difference 10.4%. (Figure 1). The interval between two downloads for 61 persons was median 140 days (IQR 109, 203) and the difference in TIR (last–first measurement) was 1.7% (95% CI: −1.6–4.9) p = .31, SD of the difference 12.6% (Table 2).

Within-subject SD for TIR was 6.34%. It follows that the 95% prediction limit of TIR from 2 weeks is ± 17.6% (=6.34 x 1.96 x √2). The risk that the difference between two TIR values by chance is larger than 10 percentage point is 26.4%, and the risk for a difference larger than 5% is 57.7%. If TIR is calculated from weeks 1-4 and weeks 5-8, the 95% prediction limits are ± 13.1% (data not shown). The 95% prediction limits for mean glucose from 2 weeks are ± 36 mg/dl (2.0 mmol/L) and ± 0.9% (9.4 mmol/mol) for GMI (Table 1).

With the precautions needed due to winsorizing at the 10th percentile level of TBR, our results indicate that the limit of agreement for the ratio between two TBR values is between 3.86 and 0.26 (=1/3.86).

4 | DISCUSSION

In clinical practice, a strong need exists to evaluate glycaemic interventions by assessing other metrics than HbA1c and to perform evaluation more frequently than can be expected to give rise to a change in HbA1c. The question is what order of magnitude of clinically relevant individual changes in TIR, mean glucose, and other glycaemic metrics can be considered within the range of normal variation. In our study, a change in TIR calculated from 2 weeks of ±17.6% is within the 95% limit of agreement. This vast variation should warn clinicians against over-interpreting changes in TIR since it is difficult to draw firm conclusions by comparing a single pair of TIR values. Even if calculated from a four-week
| Table 1 Glycaemic metric from 166 subjects calculated from four consecutive periods of 2 weeks |
|--|---|---|---|---|---|---|---|---|---|
| | Period 4 (weeks 7+8) | Period 3 (weeks 5+6) | Period 2 (weeks 3+4) | Period 1 (weeks 1+2) | Multivariate test | Between-subjects SD | Within-subject SD | 95% limits of agreement for the difference between two measurements |
| TIR (%) | 52.2 ± 17.1 | 53.1 ± 16.0 | 52.3 ± 15.7 | 53.7 ± 16.4 | p = .11 | 15.02 | 6.34 | ± 17.6 |
| TAR (%) | 42.5 ± 19.0 | 41.3 ± 17.9 | 42.2 ± 17.6 | 40.8 ± 18.3 | p = .11 | 16.79 | 7.05 | ± 19.6 |
| TBR (%) | 3.7 (1.6–7.4) | 3.9 (2.0–7.7) | 4.0 (1.8–7.6) | 4.1 (1.8–7.3) | p = .94 (Friedmann) |
| log(TBR) (%) | 1.405 ± 0.865 (n = 150) | 1.473 ± 0.849 (n = 152) | 1.488 ± 0.847 (n = 148) | 1.478 ± 0.869 (n = 148) | p = .51 | 0.677 | 0.487 | ± 1.349 |
| e(log(TBR)) x/÷ tolerance factor | 4.076 x/÷2.375 | 4.364 x/÷2.338 | 4.430 x/÷2.333 | 4.385 x/÷2.385 | x/÷ 1.968 | x/÷1.627 | x/÷3.855 |
| Glucose (mg/dl) | 176 ± 35 | 174 ± 34 | 175 ± 34 | 174 ± 34 | p = .31 | 32 | 13 | ± 36 |
| (mmol/l) | 9.8 ± 2.0 | 9.7 ± 1.9 | 9.7 ± 1.9 | 9.6 ± 1.9 | 1.8 | 0.7 | ± 2.0 |
| GMI (%) | 7.5 ± 0.8 | 7.5 ± 0.8 | 7.5 ± 0.8 | 7.5 ± 0.8 | p = .31 | 0.8 | 0.3 | ± 0.9 |
| (mmol/mol) | 58.7 ± 9.3 | 58.2 ± 8.9 | 58.5 ± 8.8 | 58.1 ± 9.0 | 8.3 | 3.4 | ± 9.4 |
| CV glucose (%) | 38.2 ± 7.0 | 38.8 ± 7.0 | 38.5 ± 7.2 | 38.6 ± 6.6 | p = .40 | 6.10 | 3.36 | ± 9.3 |
| Active CGM time (%) | 96.9 (94.1–98.5) | 97.1 (93.1–98.2) | 96.4 (93.2–98.2) | 97.2 (94.1–98.5) | p = .07 | (Friedmann) |

Note: Data are mean ± SD or median (IQR). TBR is log transformed data after winsorizing TBR < 0.6% (corresponding to the 10th percentile level for all four periods) and presented both as mean ± SD and geometric mean +/− tolerance factor.
period, the 95% prediction limit is high (±13.1%). The international consensus statement for interpretation of CGM data recognize that even a small (5%) increase in TIR is associated with a glycemic benefit.1 A change in TIR of 10 percent point is considered clinically relevant for changes in retinopathy or albuminuria.14,15 However, in the present study, a random change of more than 10 percentage point between two measurements of TIR is expected in more than 26.6% of the cases. In pregnancy, even a 5% change in TIR is clinically important.16

This study has some limitations. First, the result of iscGM was not blinded and TIR results cannot be considered truly spontaneous. The patients were expected to correct excursions in glucose and

Table 2 Glycaemic metrics for 61 persons calculated from 2 weeks with an interval of more than 3 months

	First measurement	Second measurement	Second – first measurement	SD of the difference
TIR (%)	54.9 ± 15.1	56.5 ± 15.6	1.7 (p = .31)	12.6
TAR (%)	40.0 ± 16.0	38.3 ± 16.9	-1.6 (p = .34)	13.3
TBR (%)	3.9 (2.5–6.65)	2.8 (1.5–7.0)	-0.45 (p = .26)*	(-1.4, 0.45)†
log(TBR) (%)	1.477 ± 0.736	1.264 ± 0.941	-0.197 (p = .13)	0.922 (n = 52)
e(log(TBR)) (%)	4.380 +/−2.087	3.539 +/−2.562	0.821 (Second/first)	+/−1.022
Mean glucose (mg/dl)	170 ± 26	168 ± 29	2 (p = .51)	22
(mmol/l)	9.5 ± 1.5	9.4 ± 1.6	-0.1	1.2
CV %	37.6 ± 6.3	37.4 ± 7.7	-0.2 (p = .80)	5.9
GMI (mg/dl)	7.4 ± 0.6	7.3 ± 0.7	0 (p = .51)	0.5
(mmol/mol)	57.2 ± 6.9	56.7 ± 7.6	-0.5	5.7
HbA1c (%)	7.7 ± 1.0	7.5 ± 1.0	0.1 (p = .047)	0.5
(mmol/mol)	60.2 ± 10.5	58.9 ± 11.0	-1.3	5.0
Active CGM (%)	96.4 (94.1–98.7)	97.2 (94.8–98.3)	0.70 (p = .037)*	(0.05, 1.3)†

Note: Data are mean ± SD or median (IQR). TBR is log-transformed data after TBR values <0.6% are winsorized and presented both as mean ± SD and geometric mean +/− tolerance factor.

†Hodges–Lehman median difference and (95%CI).

*The active CGM time is statistical significant longer on the second measurement than in the first measurement.
increase TIR, but changes in TIR were small and statistically insignificant. Another limitation is the data sampling frequency of 15 min. It is unknown if the higher sampling frequency in rtCGM (every 5 min) reduces variation of TIR. The most important limitation is the nature of the study of individuals with isCGM without alarms and only a minor proportion of patients with CSII and none with hybrid closed loop insulin delivery. Our results cannot be extrapolated to type 1 diabetes with other treatment modalities or isCGM used in other types of diabetes. We expect that the variation in TIR is lower in patients with insulin pumps with closed loop systems but to our knowledge, such data have not yet been presented. The software handling of CGM data from some companies allows presentation of two sets of TIR values based on either 1, 2, or 4 weeks. It is obvious from our results that comparison of ambulatory glucose profile reports should be interpreted cautiously.

The dimensioning of clinical studies to compare different technologies’ impact on TIR depends on the SD of the difference between two measurements separated by a time period relevant for the study design. Previous studies have estimated a value of 12% with no specific references to the background data or referring to data on file. We found a comparable value of 12.6% for TIR calculated for 2 weeks with an interval of several months and a lower value of 10.4% when comparing TIR calculated from 2 weeks separated by 1 month.

The strength of the study is a sizeable number of subjects included the fact that variation in TIR was estimated from glucose data derived from a normal daily life clinical setting in contrast to persons involved in a study, and the documented high active CGM time.

In conclusion, we have demonstrated a high variation of TIR in individuals mainly on MDI which should be taken into consideration when counselling persons with type 1 diabetes based on changes in TIR. More information about variation in TIR in persons treated with hybrid or advanced closed-loop insulin delivery is needed.

AUTHOR CONTRIBUTIONS
Klaus Würgler Hansen: Conceptualization (lead); data curation (equal); formal analysis (equal); funding acquisition (lead); investigation (lead); methodology (equal); project administration (equal); resources (lead); software (equal); supervision (equal); validation (lead); writing – original draft (lead). Bo Martin Bibby: Conceptualization (supporting); data curation (equal); formal analysis (equal); funding acquisition (supporting); investigation (equal); methodology (equal); project administration (supporting); resources (supporting); software (equal); supervision (equal); validation (equal); visualization (equal); writing – original draft (supporting).

ACKNOWLEDGEMENTS
We thank statistician Aparna Udupi, Biostatistical Advisory Service, Faculty of Health, Aarhus University, Denmark, for data management.

FUNDING INFORMATION
The study was financially supported by the Rosa and Asta Jensen Foundation.

CONFLICT OF INTEREST
KWH has received honorarium as an advisory board member for Abbott Laboratories A/S, Denmark. BMB has no conflicts of interest.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.

ORCID
Klaus Würgler Hansen https://orcid.org/0000-0002-7452-2747

REFERENCES
1. Battelino T, Danne T, Bergenstal RM, et al. Clinical targets for continuous glucose monitoring data interpretation: recommendations from the international consensus on time in range. Diabetes Care. 2019;42(8):1593-1603. doi:10.2337/dc19-0028
2. American Diabetes A. 6. Glycemic targets: standards of medical care in diabetes-2021. Diabetes Care. 2021;44(Suppl. 1):S57-S84. doi:10.2337/dc21-5006
3. Wilmot EG, Lumb A, Hammond P, et al. Time in range: a best practice guide for UK diabetes healthcare professionals in the context of the COVID-19 global pandemic. Diabet Med. 2021;38(1):e14433. doi:10.1111/dme.14433
4. Holt RIG, DeVries JH, Hess-Fischl A, et al. The management of type 1 diabetes in adults. a consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia. 2021;64(12):2609-2625. doi:10.1007/s00125-021-05568-3
5. Vigersky RA, McMahon C. The relationship of hemoglobin A1C to time-in-range in patients with diabetes. Diabetes Technol Ther. 2019;21(2):81-85. doi:10.1089/dia.2018.0310
6. Beck RW, Bergenstal RM, Cheng P, et al. The relationships between time in range, hyperglycemia metrics, and HbA1c. J Diabetes Sci Technol. 2019;13(4):614-626. doi:10.1177/1932296818822496
7. Hirsch IB, Welsh JB, Calhoun P, Puehr S, Walker TC, Price DA. Associations between HbA1c and continuous glucose monitoring-derived glycaemic variables. Diabet Med. 2019;36(12):1637-1642. doi:10.1111/dme.14065
8. Hansen KW, Bibby BM. Glycemic metrics derived from intermittently scanned continuous glucose monitoring. J Diabetes Sci Technol. 2020;16:113-119. doi:10.1177/1932296820975822
9. Beck RW, Connor CG, Mullen DM, Wesley DM, Bergenstal RM. The fallacy of average: how using HbA1c alone to assess glycemic control can be misleading. Diabetes Care. 2017;40(8):994-999. doi:10.2337/dc17-0636
10. Nayak AU, Singh BM, Dunmore SJ. Potential clinical error arising from use of HbA1c in diabetes: effects of the glycation gap. Endocr Rev. 2019;40(4):988-999. doi:10.1210/er.2018-00284
11. Riddlesworth TD, Beck RW, Gal RL, et al. Optimal sampling duration for continuous glucose monitoring to determine long-term glycemic control. Diabetes Technol Ther. 2018;20(4):314-316. doi:10.1089/dia.2017.0455
12. Hansen KW. Effects of unrestricted access to flash glucose monitoring in type 1 diabetes. Endocrinol Diabetes Metab. 2020;3(3):e00125. doi:10.1002/edm2.125
13. Bergenstal RM, Beck RW, Close KL, et al. Glucose management indicator (GMI): a new term for estimating A1C from continuous glucose monitoring. Diabetes Care. 2018;41(11):2275-2280. doi:10.2337/dc18-1581
14. Beck RW, Bergenstal RM, Riddlesworth TD, et al. Validation of time in range as an outcome measure for diabetes clinical trials. Diabetes Care. 2019;42(3):400-405. doi:10.2337/dc18-1444
15. Ranjan AG, Rosenlund SV, Hansen TW, Rossing P, Andersen S, Norgaard K. Improved time in range over 1 year is associated with reduced albuminuria in individuals with sensor-augmented insulin pump-treated type 1 diabetes. *Diabetes Care*. 2020;43(11):2882-2885. doi:10.2337/dc20-0909

16. Murphy HR. Continuous glucose monitoring targets in type 1 diabetes pregnancy: every 5% time in range matters. *Diabetologia*. 2019;62(7):1123-1128. doi:10.1007/s00125-019-4904-3

17. Brown SA, Kovatchev BP, Raghinaru D, et al. Six-month randomized, multicenter trial of closed-loop control in type 1 diabetes. *N Engl J Med*. 2019;381(18):1707-1717. doi:10.1056/NEJMoa1907863

18. Bergenstal RM, Nimri R, Beck RW, et al. A comparison of two hybrid closed-loop systems in adolescents and young adults with type 1 diabetes (FLAIR): a multicentre, randomised, crossover trial. *Lancet*. 2021;397(10270):208-219. doi:10.1016/S0140-6736(20)32514-9

19. Tauschmann M, Thabit H, Bally L, et al. Closed-loop insulin delivery in suboptimally controlled type 1 diabetes: a multicentre, 12-week randomised trial. *Lancet*. 2018;392(10155):1321-1329. doi:10.1016/S0140-6736(18)31947-0

20. Thabit H, Tauschmann M, Allen JM, et al. Home use of an artificial Beta cell in type 1 diabetes. *N Engl J Med*. 2015;373(22):2129-2140. doi:10.1056/NEJMoa1509351

21. Leelarathna L, Dellweg S, Mader JK, et al. Day and night home closed-loop insulin delivery in adults with type 1 diabetes: three-center randomized crossover study. *Diabetes Care*. 2014;37(7):1931-1937. doi:10.2337/dc13-2911

How to cite this article: Hansen KW, Bibby BM. Variation of glucose time in range in type 1 diabetes. *Endocrinol Diab Metab*. 2022;5:e379. doi: [10.1002/edm2.379](https://doi.org/10.1002/edm2.379)