CASE REPORT

A Japanese SPG4 Patient with a Confirmed De Novo Mutation of the SPAST Gene

Haitian Nan¹, Kensho Okamoto², Lihua Gao¹, Yuto Morishima¹, Yuta Ichinose¹, Kishin Koh¹, Masaki Hashiyada³, Noboru Adachi⁴ and Yoshihisa Takiyama¹

Abstract:
Spastic paraplegia type 4 (SPG4) is caused by mutations of the SPAST gene and is the most common form of autosomal-dominantly inherited pure hereditary spastic paraplegia (HSP). We herein report a Japanese patient with SPG4 with a confirmed de novo mutation of SPAST. On exome sequencing and Sanger sequencing, we identified the heterozygous missense mutation p.R460L in the SPAST gene. This mutation was absent in the parents, and the paternity and maternity of the parents were both confirmed. The patient showed a pure SPG4 phenotype with an infantile onset. This study may expand the clinical and genetic findings for SPG4.

Key words: hereditary spastic paraplegia, SPG4, SPAST, de novo mutation, Japanese

(Intern Med 59: 2311-2315, 2020) (DOI: 10.2169/internalmedicine.4599-20)

Introduction

Hereditary spastic paraplegias (HSPs) are clinically and genetically heterogeneous neurodegenerative disorders characterized by progressive weakness and spasticity in the lower limbs due to pyramidal tract dysfunction (1). Spastic paraplegia type 4 (SPG4) is due to heterozygous mutations of the SPAST gene and is the most frequent cause of both familial and sporadic HSP (2). However, sporadic SPG4 patients are generally attributed to common mechanisms like incomplete penetrance, somatic mosaicism, non-paternity, and inadequate clinical assessment of the parents (3). True de novo occurrence of a SPAST mutation, where both parents of the patient are proven not to have the mutation in lymphocytes, appears to be rare. Thus far, true de novo SPAST mutations have been reported in American, Brazilian, Canadian, Czech, Dutch, French, German, Greek, Italian, and Polish SPG4 families (3-13). However, the paternity and maternity of the parents have rarely been assessed to confirm the de novo occurrence.

We herein report a Japanese patient with a clinically pure phenotype of SPG4 with a de novo mutation of SPAST.

Case Report

A 23-year-old woman (Figure A, II-2) was the second of two siblings born to healthy, unrelated parents. Her 26-year-old brother was unaffected. She was born by vaginal delivery after an uneventful pregnancy. Her parents initially became concerned when she had not begun to walk by 12 months of age. She began to walk independently at two years old, and her gait became increasingly slow and spastic over time. However, the symptoms progressed slowly during the first two decades of her life, and she was able to run until graduation from high school. At age 20, however, she developed gait unsteadiness with frequent falling and difficulty climbing stairs.

On a neurological examination, she presented with increased muscle reflexes of the lower limbs, a positive Babinski’s sign, contractures of the joints, and slight paresis of the extensors in the lower limbs. She was intellectually normal, and no cerebellar, sensory, or autonomic dysfunction was detected. Metabolic and routine blood investigations were unremarkable. Magnetic resonance imaging (MRI) of the brain and spine were normal.

¹Department of Neurology, Graduate School of Medical Sciences, University of Yamanashi, Japan, ²Department of Neurology, Ehime Prefectural Central Hospital, Japan, ³Department of Legal Medicine, Kansai Medical University, Japan and ⁴Department of Legal Medicine, Graduate School of Medical Sciences, University of Yamanashi, Japan
Received: February 3, 2020; Accepted: April 21, 2020; Advance Publication by J-STAGE: June 9, 2020
Correspondence to Dr. Yoshihisa Takiyama, ytakiyama@yamanashi.ac.jp
SureSelect Human All Exon peripheral blood. Exome capture was performed with a DNA from the patient. Genomic DNA was extracted from USA) using a HiSeq SBS Kit was carried out on a HiSeq2500 (Illumina, San Diego, Technologies, Santa Clara, USA). Paired-end sequencing was also extracted from peripheral blood. On Sanger sequencing, we reconfirmed the p.R460L mutation in exon 11 of SPAST in the patient's father. The green arrow indicates the position of the c.1379 nucleotide.

Table 1. Genes Known to Be Responsible for HSP.

Gene	Allele	Chromosome
ATL1	SLC16A2	WDR48
SPAST	Xp25	NTS2
NIPA1	HACE1	GBA2
KIAA0196	LYST	AMPD2
ALDH18A1	ALS2	ENTPD1
KIF5A	SAC5	TECPR2
RTN2	SPPRS	PGAP1
HSPD1	BICD2	FLRT1
BSCL2	CHS	RAB3GAP2
ATSV	IFIH1	MARS
REEP1	CCT5	ZFR
		DDHD2

We carried out whole-exome sequencing of genomic DNA from the patient. Genomic DNA was extracted from peripheral blood. Exome capture was performed with a SureSelect Human All Exon V6+UTR (89Mb) Kit (Agilent Technologies, Santa Clara, USA). Paired-end sequencing was carried out on a HiSeq2500 (Illumina, San Diego, USA) using a HiSeq SBS Kit V4 (Illumina), which generated 100-bp reads. The reference databases utilized included hg38 (GRCh38) (http://genome.ucsc.edu), The Human Gene Mutation Database (HGMD) (https://portal.biobase-international.com), Exome Aggregation Consortium (ExAC) (http://exac.broadinstitute.org), the Genome Aggregation Database (GnomAD) (http://gnomad.broadinstitute.org), and the Single Nucleotide Polymorphism Database (dbSNP) (https://www.ncbi.nlm.nih.gov/SNP). We examined variants of 86 genes known to be responsible for HSP (Table 1). Through this analysis, we identified a heterozygous missense mutation (c.1379G>T, p.Arg460Leu) in exon 11 of the SPAST gene in the patient and ruled out the possibility of other causative genes. We then examined exon 11 of the SPAST gene in the patient as well as the patient’s father (Figure A, I-1) and mother (Figure A, I-2) via polymerase chain reaction (PCR). The genomic DNA of the patient’s parents was also extracted from peripheral blood. On Sanger sequencing, we reconfirmed the p.R460L mutation in exon 11 of the SPAST gene, which was in a heterozygous state in the patient (Figure B). Arginine was replaced by leucine in an area evolutionarily conserved among the human, rhesus monkey, mouse, dog, elephant, chicken, western clawed frog, and zebrafish species. Bioinformatic analyses using the
Mutation Taster (http://www.mutationtaster.org), Polyphen2 (http://genetics.bwh.harvard.edu/ph2/), Protein Variation Effect Analyzer (PROVEAN), and SIFT (http://provean.jcvi.org/genome_submit_2.php) software programs predicted that this variant was disease-causing, probably damaging, deleterious and damaging, respectively. On the other hand, the patient’s parents did not exhibit the mutation on Sanger sequencing (Figure C, D). In this family, the patient harbored a mutation in the AAA ATPase cassette of spastin (from amino acid 342 to 616), which is crucial for microtubule-severing activity (16). This mutation is located as reported as a disease-causing mutation in a European family (14). The genotypes of all 21 loci except D19S433 showed the bio-statistical computations are shown in Table 2. The likelihood ratio (LR) of repeats in each STR marker in the family members and the bio-statistical computations strongly supported the maternity relationship. Therefore, the paternity and maternity of the parents were both confirmed in this case.

Table 2. Paternity and Maternity Testing by Analysis of Forensic Short Tandem Repeat (STR) Markers in the Family Members.

Father	Daughter	Mother	Probability of Paternity	Likelihood Ratio (LR)	Probability of Maternity	Likelihood Ratio (LR)				
D3S1358	15	18	17	12	17	0.552486187845304	1.234568	0.8855827134254	7.33993808	
vWA	16	18	18	18	16	0.73417665787349	2.237136	0.945008329360	2.237136465	
D16S539	10	11	11	12	9	12	0.800388145990311	1.451800	0.9788351386246	2.670941071
CSF1PO	9	11	11	12	12	12	0.826078806001666	1.184553	0.991148987954	2.421307506
TPOX	8	9	8	8	9	0.840105573791601	1.106195	0.991918451746	1.10619469	
D8S1179	12	14	12	14	12	0.914186190238607	2.027575	0.996609381719	9.910802775	
D21S11	31	31	29	31	29	0.91528808510909	1.014199	0.996609381719	9.910802775	
D18S51	16	19	16	19	16	0.953105141863687	1.881114	0.999757128685	13.66120219	
D2S441	11	14	11	14	11	0.985057307313079	3.243523	0.999889840496	2.253775073	
D8S1173	14	15	14	15	14	0.999961797049757	833.333333	0.999923845519	1.445613792	
FGA	21	22	21	24	24	0.99996723777069	3.152585	0.999987786832	3.849114704	
D22S1045	15	16	16	17	17	0.99998601050182	2.341920	0.99999322649	2.009646302	
D5S818	9	12	11	12	11	0.99999193924637	1.735509	0.999997198340	2.670941071	
D13S317	11	12	11	12	11	0.99999656429549	2.346173	0.999998820570	2.33728591	
D7S820	10	10	10	12	12	0.99999685976599	1.094092	0.99999729141	4.20866649	
SE33	18	31.2	18	25.2	16	25.2	0.999999923001444	4.078303	0.999999965005	7.73938308
D10S1248	13	13	13	15	15	0.99999959106875	1.882292	0.999999987087	1.82489521	
D13S456	13	18.3	14	18.3	14	0.99999986161766	2.955083	0.999999980189	6.89622481	
D12S391	18	18	18	21	21	0.99999999636215	4.516712	0.99999999494	3.93263335	
D21S118	19	20	19	20	19	0.999999999119441	3.479363	0.999999999838	3.107520199	
Amel.	X	Y	X	X	X	-	Total LR:	61666289424.4637		

*aThe frequency of allele “null” was set as the lowest allele frequency, “0.0003”, in the database we used (14). Since realistically, the allele “null” has not been found in the database, its frequency is expected to be less than 0.0003. Therefore, both the probability of maternity and the likelihood ratio are expected to be greater than those calculated at the lowest frequency."

Discussion

The p.R460L mutation of the *SPAST* gene was first reported as a disease-causing mutation in a European family with autosomal dominant pure HSP. This mutation is located in the AAA ATPase cassette of spastin (from amino acid 342 to 616), which is crucial for microtubule-severing activity (16). This mutation was not present in the patients who were reported to have true *de novo* *SPAST* mutations in the literature (3-13). Since the causative mutation of the *SPG4*...
gene in Japanese was first confirmed in 2001 (17), true de novo SPAST mutations in cases of Japanese or Asian ethnicity have rarely been reported. After we obtained DNA samples from the patient’s father (54 years old) and mother (51 years old), who are both currently unaffected, we were able to establish that the p.R460L mutation was a de novo event, as both parents exhibited normal sequencing.

True de novo occurrence of SPAST mutations was the topic of focus for the first time in the report by Schieving et al. in 2019 (3). They reported that most of the SPAST mutations that occur de novo are also present in families with multiple generations with pure HSP. Furthermore, they suggested that the majority of patients (81%) with de novo mutations have an extremely early onset of the disease. This finding fits our patient. However, it is possible that this is because patients with early-onset disease simply tend to undergo a trio analysis. The relationship between the age of onset and the de novo occurrence of the mutation in SPAST may need further study.

It has been reported that 5.7% of SPG4 cases occur sporadically (16). However, it is very difficult to identify true de novo occurrence from incomplete penetrance or non-paternity because both parents need to be examined and genetically tested. Therefore, the frequency of de novo variants causing SPG4 is unknown. We reported a proven case of a de novo mutation in the SPAST gene in a Japanese patient. We were unable to rule out the possibility of gonadal mosaicism in either of the unaffected parents, even though it would still represent a de novo event. We suggest also including genes exhibiting an autosomal dominant mode of inheritance in patients with apparently sporadic HSP if a genetic analysis is performed. Of the previously reported 27 patients with a de novo SPAST mutation identified, 9 (33%) harbored the common c.1496G>A mutation (3-13). Although the low number of cases did not allow for any conclusions to be drawn, more clinical cases should be evaluated in order to determine if there are any mutational hot spots for the de novo occurrence of SPAST.

There are many kinds of mutations in SPAST, and all of them arose de novo at some point in the past. It has been suggested that some mutations in SPAST identified in certain populations had a founder effect (18), while some pathogenic variants of genetic disorders arose only once in human history (19). Our study indicates that a de novo mutation of SPAST can arise in an Asian population independently, thus contradicting the possibility of sharing a common ancestral origin with European populations.

In conclusion, we encountered a case of a pure SPG4 phenotype with an infantile onset caused by a de novo SPAST mutation in a Japanese patient. The paternity and maternity of the parents were both confirmed in this case. This study may expand the clinical and genetic findings for SPG4.

The present clinical and genetic study was approved by the institutional review board of Yamanashi University, and written informed consent was obtained from all participating individuals.

The authors state that they have no Conflict of Interest (COI).

Financial Support
This work was supported by Grants-in-Aid from the Research Committee for Ataxic Disease (Y.T.), the Ministry of Health, Labor and Welfare, Japan, and JSPS KAKENHI Grant Number JP 18K07495 (Y.T.) from the Ministry of Education, Culture, Sports, Science, and Technology, Japan.

Acknowledgement
We thank the patient and the parents for participating in this study.

References
1. Fink JK. Hereditary spastic paraplegia. Curr Neurol Neurosci Rep 6: 65-76, 2006.
2. Lo Giudice T, Lombardi F, Santorelli FM, Kawarai T, Orlacchio A. Hereditary spastic paraplegia: clinical-genetic characteristics and evolving molecular mechanisms. Exp Neurol 261: 518-539, 2014.
3. Schieving JH, de Bot ST, van de Pol LA, et al. De novo SPAST mutations may cause a complex SPG4 phenotype. Brain 142: e31, 2019.
4. Blair MA, Riddle ME, Wells JF, Breviu BA, Hedera P. Infantile onset of hereditary spastic paraplegia poorly predicts the genotype. Pediatr Neurol 36: 382-386, 2007.
5. Burguez D, Polese-Bonatto M, Scudeiro LAJ, et al. Clinical and molecular characterization of hereditary spastic paraplegias: a next-generation sequencing panel approach. J Neurol Sci 383: 18-25, 2017.
6. Gillespie MK, Humphreys P, McMillan HJ, Boycott KM. Association of early-onset spasticity and risk for cognitive impairment with Mutations at amino acid 499 in SPAST. J Child Neurol 33: 329-332, 2018.
7. Meszarosova AU, Putzova M, Cermakova M, et al. SPAST mutation spectrum and familial occurrence among Czech patients with pure hereditary spastic paraplegia. J Hum Genet 61: 845-850, 2016.
8. Depienne C, Fedirko E, Faucheux JM, et al. A de novo SPAST mutation leading to somatic mosaicism is associated with a later age at onset in HSP. Neurogenetics 8: 231-233, 2007.
9. Aulitzky A, Friedrich K, Glaser D, et al. A complex form of hereditary spastic paraplegia in three siblings due to somatic mosaicism for a novel SPAST mutation in the mother. J Neurol Sci 347: 352-355, 2014.
10. Polymeris AA, Tessa A, Anagnostopoulou K, et al. A series of Greek children with pure hereditary spastic paraplegia: clinical features and genetic findings. J Neurol 263: 1604-1611, 2016.
11. Battini R, Fogli A, Borghetti D, et al. Clinical and genetic findings in a series of Italian children with pure hereditary spastic paraplegia. Eur J Neurol 18: 150-157, 2011.
12. Crippa F, Panzeri C, Martinuzzi A, et al. Eight novel mutations in SPG4 in a large sample of patients with hereditary spastic paraplegia. Arch Neurol 63: 750-755, 2006.
13. Elert-Dobkowska E, Stepniak I, Krysa W, et al. Molecular spectrum of the SPAST, ATL1 and REEP1 gene mutations associated with the most common hereditary spastic paraplegias in a group of Polish patients. J Neurol Sci 359: 35-39, 2015.
15. Aoki Y, Hashiyada M, Morioka A, et al. Spreadsheets of a conventional application software for calculation of plausibility of paternity: application to parentage testing with highly polymorphic markers in deceased party. Nihon Hoigaku Zasshi 51: 196-204, 1997 (in Japanese, Abstract in English).

16. Parodi L, Fenu S, Barbier M, et al. Spastic paraplegia due to SPAST mutations is modified by the underlying mutation and sex. Brain 141: 3331-3342, 2018.

17. Namekawa M, Takiyama Y, Sakoe K, et al. A large Japanese SPG4 family with a novel insertion mutation of the SPG4 gene: a clinical and genetic study. J Neurol Sci 185: 63-68, 2001.

18. Meijer IA, Dupré N, Brais B, et al. SPG4 founder effect in French Canadians with hereditary spastic paraplegia. Can J Neurol Sci 34: 211-214, 2007.

19. Rafehi H, Szmulewicz DJ, Bennett MF, et al. Bioinformatics-based identification of expanded repeats: a non-reference intronic pentamer expansion in RFC1 causes CANVAS. Am J Hum Genet 105: 151-165, 2019.