Exosomal miR-224 contributes to hemolymph microbiota homeostasis during bacterial infection in crustacean

Yi Gong¹,²,³, Xiaoyuan Wei¹,³, Wanwei Sun¹,³, Xin Ren¹,³, Jiao Chen¹,³, Jude Juventus Aweya¹,²,³, Hongyu Ma¹,²,³, Kok-Gan Chan³,⁴, Yueling Zhang¹,²,³*, Shengkang Li¹,²,³*

¹Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China
²Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
³Institute of Marine Sciences, Shantou University, Shantou 515063, China
⁴Division of Genetics and Molecular Biology, Institute of Biological Science, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia

* Corresponding author: Yueling Zhang; Shengkang Li
Tel: +86-754-86502485
Fax: +86-754-86503473
Email: lisk@stu.edu.cn
Abstract

The modulation of hemolymph microbiota homeostasis is vital for the marine invertebrate innate immunity, while growing evidence shows that exosomes could serve as anti-bacterial immune factors, however, the relationship between exosomes and hemolymph microbiota homeostasis during pathogenic bacteria infection has not been addressed. Here, we determined that exosomes released from *Vibrio parahaemolyticus*-infected *Scylla paramamosain* (mud crabs) could reduce the mortality of the host during the infection by maintaining the homeostasis of hemolymph microbiota. We further confirmed that miR-224 was densely packaged in these exosomes and targeting to HSP70, which resulted in disruption of the HSP70-TRAF6 complex to release TRAF6 that allows it to interact with Ecsit. The interaction of TRAF6 with Ecsit regulates the production of mitochondrial ROS (mROS) and Anti-lipopolysaccharide factors (ALFs) expression in recipient hemocytes, which affects homeostasis of hemolymph microbiota in response to the pathogenic bacteria infection in mud crab. To the best of our knowledge, this is the first document that reports the role of exosome in the homeostasis of hemolymph microbiota during pathogen infection and a novel regulatory mechanism and crosstalk between exosomal miRNAs and innate immune response in crustaceans.

Keywords: *Scylla paramamosain*; *Vibrio parahaemolyticus*; hemolymph microbiota; exosomal miR-224; HSP70; TRAF6-Ecsit complex
Author summary

Exosomes are small membrane vesicles of endocytic origin which are widely involved in the regulation of a variety of pathological processes in mammals. Yet, although the antibacterial function of exosomes has been discovered for many years, the relationship between exosomes and hemolymph microbiota homeostasis remains unknown. In the present study, we identified the miRNAs packaged by exosomes that were possibly involved in *Vibrio parahaemolyticus* infection by modulating hemolymph microbiota homeostasis in crustacean mud crab *Scylla paramamosain*. Moreover, it was found that miR-224 was densely packaged in exosomes after *Vibrio parahaemolyticus* challenge, resulting in the suppression of HSP70 and disruption of the HSP70-TRAF6 complex in recipient hemocytes, then the released TRAF6 was further interacted with Ecsit to regulate ROS and ALFs levels, which eventually affected hemolymph microbiota homeostasis to cope with pathogenic bacteria infection. Our finding is the first to reveal the relationship between exosomes and hemolymph microbiota homeostasis in animals, which shows a novel molecular mechanism of invertebrate resistance to pathogenic microbial infection.
Introduction

Exosomes are microvesicles (measuring 30-120 nm in diameter) formed in multivesicular bodies and released into the extracellular environment under physiological and pathological conditions (Colombo et al., 2014; Tkach and Théry, 2016). Specific proteins highly enriched in exosomes such as TSG101, CD63 CD81 and flotillin 1, are usually served as markers for the identification of exosomes (Bobrie et al., 2012). Exosomes can be secreted by various donor cells and transferred to target cells by fusing with cytOMEMBRANES, which serve as mediators during intercellular communications via transporting bio-cargoes, such as nucleic acids, proteins and lipids (Milane et al., 2015; Valadi et al., 2007). Given their role as a form of intercellular vesicular transport, numerous studies have pointed out the importance of exosomes during pathogen infection and immune response (Marta and Maria, 2015; Wang et al., 2014b). It is believed that pathogen-infected cells are capable of secreting exosomes that contain pathogens or host genetic elements to neighboring cells to help modulate host immune response, which has huge impact on the fate of the infection process (Hammond et al., 2000; Marisa and Chioma, 2015). However, very little is known about how exosomes regulate host immune response and impact on pathogen infection, especially in crustaceans.

MicroRNAs (miRNAs), a class of small non-coding RNAs with 18-25 nucleotides in length, can interact with the complementary sequences on the 3’ untranslated region (3’UTR) of target mRNA to either arrest translation or degrade the mRNA of the target genes (Ambros, 2004; Schroeder, 2007). Apart from their endogenous functions, miRNAs can be packaged into exosomes to modulate the expression of specific target genes in recipient cells (Bang et al., 2014; Fong et al., 2015). Furthermore, recent studies have revealed that loading of miRNAs into exosomes is a selective process and
can reflect the dysregulated miRNA composition in donor cells (Mario et al., 2014). It has been demonstrated that alteration of exosomal miRNA composition has great influence on the biological activities of exosomes that have been taken-up during pathogens infection (Gurwitz, 2015; Zhang et al., 2015). Importantly, RNA sequencing analysis reveals that miRNAs are the most abundant RNA species in exosomes, accounting for more than 40% (Boorn et al., 2013). It is thought that exosome-mediated intercellular transfer of miRNAs can regulate pathogens spread and immune defense in recipient cells, which suggest that exosomal miRNAs could play potential role as novel tools for intercellular communication.

Crustaceans have an open circulatory system, where hemocytes, oxygen, hormones and nutrients circulate together in the hemolymph (Söderhäll, 2016). Symbiotic microorganisms are indispensable inhabitants in the host (Douglas, 2018), with growing evidence showing the presence of diverse microorganisms in the hemolymph of aquatic invertebrates including shrimp (Wang and Wang, 2015), scallop (Lokmer and Mathias, 2015) and crab (Tubiash et al., 1975). Generally, the proliferation of microbiota in the nutrient rich hemolymph environment is tightly controlled by host immune factors such as agglutination, phagocytosis, production of antimicrobial peptides and reactive oxygen species (ROS) (Sun et al., 2017; Wang and Wang, 2015). For instance, it has been shown that a shrimp C-type lectin, MjHeCL, maintains hemolymph microbiota homeostasis by modulating the expression of antimicrobial peptides (Wang et al., 2014a). Hemolymph symbiotic microbiota in hemolymph are believed to be engaged in multiple functions in the host, including competing with invading pathogens or stimulating the host to mount an immune response during pathogens infection (Florie et al., 2014; Paulina et al., 2012). Unfortunately, uncontrol proliferation of hemolymph microbiota could result in host
diseases such as “Milky Disease” or “Early Mortality” (Li et al., 2012; Zhang et al., 2018), which highlights the importance of hemolymph microbiota in host immune system and disease prevention.

Our unpublished study revealed that during infection of *Scylla paramamosain* (mud crab) with *V. parahaemolyticus*, there was a significant change in the diversity and abundance of hemolymph microbiota, which are vital indicators of health status. It would therefore be important to explore the relevant molecular mechanisms involved in the modulation of host hemolymph microbiota homeostasis during infection by pathogens. The open circulatory system of crustaceans makes it an ideal carrier for exosomes to perform immune-related functions. However, the role of exosomes in maintaining hemolymph microbiota homeostasis remains unclear. In the light of this, the current study explored the relationship between exosomes and hemolymph microbiota in mud crab. Exosomes released from *Vibrio parahaemolyticus*-infected mud crabs could reduce crab mortality due to *V. parahaemolyticus* infection by maintaining the homeostasis of hemolymph microbiota. Moreover, miR-224 was found to accumulate in exosomes after *V. parahaemolyticus* infection, which resulted in suppression of HSP70 (Heat shock protein 70) and disruption of the HSP70-TRAF6 (TNF receptor associated factor 6) complex. The released TRAF6 then interacted with Ecsit (Evolutionarily conserved signaling intermediate in Toll pathways) to regulate mROS (mitochondrial ROS) production and the expression of ALFs (Anti-lipopolysaccharide factors) in the recipient hemocytes, which eventually affected hemolymph microbiota homeostasis in response to the infection.

Results

The involvement of exosomes in anti-bacterial response in mud crab
To explore the involvement of exosomes from mud crab in bacterial infection, exosomes isolated from the hemolymph of *V. parahaemolyticus*-challenged mud crabs (i.e., exosome-Vp) and PBS (Phosphate buffer saline)-injected control crabs (i.e., exosome-PBS). The typical cup-shaped structures of isolated exosomes were observed under an electron microscope (Fig. 1A) and their sizes measured by Nanosight particle tracking analysis (Fig. 1B). The isolated particles were further ascertained as exosomes by determining the exosomal protein markers Flotillin-1, TSG101 and the cytoplasmic marker Calnexin using Western blot analysis (Fig. 1C). These results indicate successful isolation of exosomes from mud crabs challenged with *V. parahaemolyticus* and PBS.

Next, the ability of the isolated exosomes to be internalized by mud crab hemocytes was analyzed by labeling the isolated exosomes with DiO (green) before being injected into mud crabs. When hemocytes from the injected crabs were collected and labeled with Dil (red) before being examined with a confocal laser scanning microscope, the results showed that the isolated exosomes could be internalized in hemocytes (Fig. 1D). To explore the involvement of exosomes in mud crab during pathogenic bacteria infection, the isolated exosomes (exosome-Vp and exosome-PBS) were mixed with *V. parahaemolyticus* or PBS (control) before being injected into mud crabs to determine the mortality rate. As shown in Fig. 1E, there was significant reduction in the mortality rate of mud crabs injected with exosome-Vp mixed with *V. parahaemolyticus* compared with mud crabs injected with exosome-PBS mixed with *V. parahaemolyticus*, which suggest that exosomes isolated from *V. parahaemolyticus*-challenged mud crabs have an effect on pathogenic bacteria infection and therefore affecting the mud crab mortality rate. Moreover, when the relative abundance of hemolymph bacteria in mud crabs was determined, the results revealed that exosome-
Vp was able to inhibit the rapid increase in hemolymph bacteria during infection (Fig. 1F). Taken together, these results suggest that exosomes secreted by *V. parahaemolyticus*-challenged mud crabs play a role in anti-bacterial response in mud crabs, probably by helping to maintain homeostasis of hemolymph microbiota.

Exosomes modulate hemolymph microbiota homeostasis

To ascertain the regulatory function of exosomes in modulating the mud crab hemolymph microbiota homeostasis, we determined the expression of antimicrobial peptides (AMPs) and ROS level, which are essential in regulating hemolymph microbiota homeostasis (Sun et al., 2017; Wang and Wang, 2015). The results revealed that exosome-Vp treatment could significantly increase ROS levels in mud crabs during pathogenic bacteria infection compared with the exosome-PBS (Figs. 2A and 2B). Similarly, transcript levels of ALF1, ALF4 and ALF5 were significantly increased in mud crabs treated with exosome-Vp (Fig. 2C). Next, the bacteria species and composition of hemolymph microbiota were analyzed using 16S rDNA sequencing. As shown in Fig. 2D, the diversity of hemolymph microbiota in mud crabs decreased significantly during *V. parahaemolyticus* infection. However, hemolymph microbiota diversity was maintained during the infection following treatment of mud crabs with exosome-Vp as compared with exosome-PBS. When the composition of hemolymph microbiota was analyzed at the phylum level, the proportion of *Proteobacteria*, *Tenericutes* and *Firmicutes* increased during *V. parahaemolyticus* infection, while the proportion of *Acidobacteria*, *Actinobacteria* and *Chloroflexi* decreased. On the contrary, when mud crabs were treated with exosome-Vp, microbiota homeostasis was maintained in mud crabs during the infection (Fig. 2E). A similar trend was observed when the top 35 genera of hemolymph microbiota was analyzed (Fig. 2F), which is in agreement with our data found in *V. parahaemolyticus*-resistant crabs collected from
the field (unpublished results). All these results suggest that during pathogenic bacteria infections in mud crabs, exosomes modulate pathways that maintain the homeostasis of hemolymph microbiota by regulating the levels of mROS and ALFs.

Functional miRNA screening in exosomes

To determine the functional exosomal miRNAs that are crucial in modulating hemolymph microbiota homeostasis, miRNA microarray analysis was carried out using exosome-Vp and exosome-PBS treated mud crab samples. Among the differentially expressed miRNAs, the top 6 miRNAs (Fig. 3A) which include miR-291, miR-343, miR-224, miR-189, miR-60 and miR-156 were selected to investigate their role in *V. parahaemolyticus* infection in mud crabs. The miRNA mimics and anti-miRNA oligonucleotides (AMOs) of these miRNAs were synthesized and co-injected with *V. parahaemolyticus* into mud crabs followed by qPCR analysis of ALF1 expression. The results revealed that injection of mud crabs with miR-224 mimics increased the expression of ALF1, while injection with AMO-miR-224 decreased the ALF1 expression (Figs. 3B and 3C).

To ascertain whether exosome-Vp was involved in regulating hemolymph microbiota homeostasis via miR-224, the relative expression level of miR-224 was determined in exosome-Vp and exosome-PBS injected mud crabs. The results revealed significant upregulation in the expression of miR-224 in the exosome-Vp injected mud crabs compared with exosome-PBS (Fig. 3D). Next, the involvement of miR-224 in the exosome-mediated regulatory process was examined by co-injecting *V. parahaemolyticus* with exosome-PBS, exosome-Vp or exosome-Vp and AMO-miR-224 into the mud crabs. The level of ROS in the exosome-Vp and AMO-miR-224 co-injected mud crabs was significantly lower compared with the other mud crabs (Fig. 3E and 3F). A similarly trend was observed in the expression levels of ALF1, ALF4 and
ALF5 for these mud crab samples (Fig. 3G). In addition, 16S rDNA sequencing analysis revealed a disruption in the exosome-Vp-mediated hemolymph microbiota homeostasis upon miR-224 silencing (Fig. 3H and 3I). These results suggest that miR-224 is controlled by *V. parahaemolyticus*-derived exosomes to maintain hemolymph microbiota homeostasis in mud crabs.

Interactions between miR-224 and its target gene

To explore the pathways mediated by miR-224 in mud crab, the target genes controlled by miR-224 were predicted by Targetscan and miRanda software. The prediction revealed that HSP70 was the potential target gene regulated by miR-224 (Fig. 4A). To ascertain this prediction, synthetic miR-224 and EGFP-HSP70-3’UTR or the mutant EGFP-ΔHSP70-3’UTR were co-transfected into *Drosophila* S2 cells (Fig. 4B).

When the EGFP fluorescence activity of these transfectants was observed under a fluorescence microscopy and a microplate reader, a significant decrease in fluorescence intensity was observed in cells co-transfected with EGFP-HSP70-3’UTR compared with control (Figs. 4C and 4D), which indicates that miR-224 potentially interacts with HSP70 to modulate its expression.

To investigate the interaction between miR-224 and HSP70 in mud crabs, miR-224 was silenced or overexpressed followed by HSP70 detection. The results revealed significant increase in both mRNA and protein levels of HSP70 after AMO-miR-224 treatment (Figs. 4E and 4F). On the contrary, the mRNA and protein levels of HSP70 decreased upon miR-224 overexpression (Fig. 4G and 4H). Furthermore, fluorescence *in situ* hybridization (FISH) analysis was carried out to determine the subcellular location of miR-224 and HSP70 in mud crabs hemocytes. When miR-224 and HSP70 mRNA were labeled with fluorescent probes before being observed under a fluorescence microscope, both miR-224 and HSP70 mRNA were found to co-localize.
in hemocytes of the mud crabs (Fig. 4I). All these results suggest that HSP70 is the
direct target gene of miR-224 in the mud crabs.

Effect of HSP70 on the modulation of hemolymph microbiota homeostasis

To ascertain whether HSP70 is involved in the modulation of miR-224-mediated
hemolymph microbiota homeostasis, miR-224-depleted mud crabs were injected with
HSP70-siRNA before being infected with *V. parahaemolyticus* and the levels of ALFs
and ROS were detected in hemocytes. The results revealed significant increase in the
expression of ALF1, ALF4 and ALF5 in the HSP70-siRNA treated group compared
with controls (Fig. 5A). Similar results were obtained for ROS levels (Figs. 5B and 5C).
Moreover, the expression of HSP70 was significantly decreased in exosome-Vp treated
mud crabs as compared with control (Fig. 5D), which indicates that HSP70 participates
in exosome-mediated regulatory process. Besides, in HSP70-depleted mud crabs co-
injected with *V. parahaemolyticus* and exosome-PBS, there were lower hemolymph
bacteria numbers but higher hemolymph bacteria diversity (Figs. 5E and 5F), which
suggest that exosome-PBS could also maintain hemolymph microbiota homeostasis
when the expression of HSP70 is suppressed. These results suggest that exosomal miR-
224 contributes to hemolymph microbiota homeostasis by targeting HSP70 in mud
crabs.

Formation of the TRAF6-Ecsit complex in the exosomal regulatory pathway

Based on the observation that HSP70 was relevant in the modulation of
hemolymph microbiota homeostasis, pull-down analysis was carried out followed by
SDS-PAGE and Western blot analyses. The results showed that HSP70 could bind to
TRAF6 (Figs. 6A and 6B). The role of TRAF6 in exosomal miR-224-mediated
regulatory process was investigated by silencing the expression of TRAF6 in mud crabs
and the expression of ALFs detected by qPCR analysis. As shown in Fig. 6C, the
expression levels of ALF1, ALF4 and ALF5 were significantly decreased. Similarly, there was significant decrease in ROS level in hemocytes of TRAF6-silenced mud crabs compared with control (Figs. 6D and 6E). Intriguingly, these data are in contrary to the known function of HSP70 and indicate that HSP70-TRAF6 complex is not the final effector for exosome-mediated hemolymph microbiota homeostasis. Therefore, we performed pull-down analysis based on TRAF6, it was found that TRAF6 could bind with Ecsit (Figs. 6F and 6G). Given that HSP70 could bind to TRAF6, while TRAF6 also binds to Ecsit, we went on to use co-immunoprecipitation analysis to determine whether HSP70 could also directly bind to Ecsit. The results showed that HSP70 could not bind to Ecsit (Fig. 6H), which suggests that TRAF6 formed separate complexes with HSP70 and Ecsit. Furthermore, we found that exosome-Vp treatment in the mud crabs suppressed the binding of TRAF6 to HSP70, but enhanced the interaction between TRAF6 and Ecsit compared with exosome-PBS treatment (Fig. 6I). All the above results in this section suggest that during the exosome-mediated regulatory process, interaction between HSP70 and TRAF6 is suppressed, so that the released TRAF6 could form a complex with Ecsit.

Role of the TRAF6-Ecsit complex in modulation of hemolymph microbiota homeostasis

The TRAF6-Ecsit complex is required for mitochondrial recruitment to phagosomes and is also involved in ROS production during anti-bacterial response (Geng et al., 2015). Thus, when the expression of TRAF6 in the mitochondria of mud crabs treated with exosome-Vp was determined, an increased level of TRAF6 was observed (Fig. 7A). Moreover, mROS level was also significantly increased in hemocytes of exosome-Vp treated mud crabs compared with controls (Figs. 7B and 7C). These results indicate that released TRAF6 translocate to the mitochondria to form a
complex with Ecsit, which then mediates mROS production. Ecsit is not only found in
the mitochondria, but also in cytoplasm (Qu et al., 2015). Thus, because TRAF6 also
serves as an E3 ubiquitin ligase (Zhang et al., 2016), whether the binding of TRAF6 to
Ecsit results in the ubiquitination of Ecsit requires further investigation. Based on this,
the effect of TRAF6 silencing on Ecsit ubiquitination was determined. As shown in Fig.
7D, TRAF6 knockdown resulted in significant decrease in the ubiquitination of Ecsit
inhibit, which suggest that TRAF6 was the ubiquitin ligase of Ecsit. Besides, it was
found that the ubiquitination of Ecsit was significantly increased when the mud crabs
were treated with exosome-Vp (Fig. 7E). It has been reported that ubiquitination is a
signal for nuclear translocation (Geetha et al., 2005). For this reason, when the nuclear
translocation of Ecsit was determined using Western blot analysis, the results revealed
an increased in the protein level of Ecsit in nuclear extracts of hemocytes from mud
crabs injected with exosome-Vp (Fig. 7F). Furthermore, the localization of Ecsit was
confirmed by immunofluorescence microscopy technique using mouse anti-Ecsit
antibody. The results indicated co-staining of Ecsit with DAPI in hemocytes nuclei (Fig.
7G).

To explore the effect of Ecsit translocation to the nucleus, dual-luciferase reporter
assay was carried out in S2 cells. The results showed that the overexpression of Ecsit
resulted in significant activation of ALF1, ALF4 and ALF5 transcription (Fig. 7H). The
role of the TRAF6-Ecsit complex in the modulation of hemolymph microbiota
homeostasis in mud crabs was then explored using 16S rDNA sequencing after
knockdown of TRAF6 and Ecsit, respectively. The results revealed that the mediation
of hemolymph microbiota homeostasis by exosome-Vp was disrupted upon silencing
of TRAF6 or Ecsit (Figs. 7I and 7J), which indicates that the TRAF6-Ecsit complex is
required for exosome-mediated hemolymph microbiota homeostasis.
Taken together, the findings in this study indicate that during *V. parahaemolyticus* infection, there is more packaging of miR-224 in the mud crab exosomes. This increased uptake of exosomal miR-224 resulted in HSP70 suppression, which causes disruption of the HSP70-TRAF6 complex in recipient hemocytes, thereby releasing TRAF6 to interact with Ecsit in mitochondria to regulate mROS production. TRAF6 also mediates Ecsit ubiquitination and nuclear translocation to facilitate the transcription of ALFs, which affect hemolymph microbiota homeostasis in response to pathogens infection (Fig. 8).

Discussion

Exosomes are small bioactive membrane-enclosed vesicles derived from the fusion of multivesicular bodies (MVBs) with the plasma membrane that promote intercellular communication (Schorey and Bhatnagar, 2010). There is growing evidence that exosomes are involved in the regulation of pathogen infection and immune response of the host (Sergeeva and VanDerGoot, 2015). For instance, exosomes released from *Mycobacterium avium* (*M. avium*)-infected macrophages contain GPLs (the major cell wall constituent of *M. avium*) that are transferred to uninfected macrophages to stimulate a proinflammatory response dependent on Toll like receptor (TLR) 2, TLR4, and MyD88 (Bhatnagar and Schorey, 2007). Similarly, it has been reported that exosomes released from macrophages infected with *Mycobacterium tuberculosis, Salmonella typhimurium* and *Mycobacterium bovis* could stimulate TNF-α and IL-12 production in mice (Bhatnagar et al., 2007). Currently, studies on exosome-bacterial interaction during infections have mainly been carried out in higher organisms. However, the role of exosomes in anti-bacterial immunity in invertebrates has largely not been explored. Moreover, most of these studies are related
to inflammation regulation (Smith et al., 2017), while the involvement of exosomes in
anti-bacterial immunity has never been addressed from the perspective of hemolymph
microbiota homeostasis particularly in crustacean. In the current study, we found that
exosomes released from *V. parahaemolyticus* -infected mud crabs could reduce crab
mortality due to bacterial infection by maintaining hemolymph microbiota homeostasis.
This is the first time it has been demonstrated that exosomes play a role during anti-
bacterial immunity of invertebrates, and also shows the involvement of exosomes
mediation in hemolymph microbiota homeostasis during response to pathogens
infection.

One of the typical features of exosomes is the packaging of large numbers of
nucleic acids, including miRNA, mRNA, mtDNA, piRNA, lncRNA, tRNA, snRNA
and tRNA (Boorn et al., 2013). Given that miRNAs are the most abundant RNA species
in exosomes, it has been reported that the molecular composition of the miRNA cargo
carried by exosomes can be affected by external signals such as oxidative stress and
pathogens infection, which reflects the physiological or pathological state of donor cells
(Eldh et al., 2010). Our previous study revealed that miR-137 and miR-7847 were less
packaged in mud crab exosomes after WSSV challenge, which resulted in the activation
of AIF (apoptosis induce factor) and eventually the induction of apoptosis and
suppression of viral infection in recipient mud crab hemocytes (Gong et al., 2020).
Besides, miR-145, miR-199a, miR-221 and Let-7f that are assembled in exosomes can
directly bind to the genomic RNA of HCV (Hepatitis C virus) to inhibit viral replication
in umbilical cord mesenchymal stem cells (Qian et al., 2016). In addition, exosomal
miR-21 and miR-29a regulate gene expression in HEK293 cells as well as function as
ligands that bind with TLRs to activate relevant immune pathways in recipient cells
(Fabbri et al., 2012). Due to their diverse regulatory roles, exosomal miRNAs have been
shown in most studies to be crucial regulators of host-pathogen interactions, mainly studies involving viral infections (Nahand et al., 2020). Thus far, the role of exosomal miRNAs in bacterial infections still remain unexplored, especially in invertebrates. The current study reveals that during *V. parahaemolyticus* infection in mud crabs, miR-224 was more packaged in exosomes, which resulted in the suppression of HSP70, and eventually affected hemolymph microbiota homeostasis by regulating the levels of ROS and ALFs expression to help clear the infection. This observation reveals a novel regulatory mechanism that shows the role of exosomal miRNAs during innate immune response in invertebrates.

Most of the miR-224-associated studies have been conducted in human cancer cells, with miR-224 reported to promote the expression of tumor invasion-associated proteins p-PAK4 and MMP-9 by directly targeting HOXD10 (Li et al., 2014). It has also been shown that miR-224 can be packaged into exosomes released by hepatocellular carcinoma to regulate cell proliferation and invasion by targeting glycine N-methyltransferase (Cui et al., 2019). While the role of miR-224 in invertebrates had remained elusive, results from this current study reveals that miR-224 could target HSP70 to disrupt the HSP70-TRAF6 complex or its formation. As an evolutionarily conserved protein, HSP70 plays an essential role during the regulation of cell growth, senescence and apoptosis (Mayer and Bukau, 2005). Studies have shown that HSP70 could inhibit LPS-induced NF-κB activation by interacting with TRAF6 to prevent its ubiquitination, which eventually suppresses the production of mediators of inflammation (Chen et al., 2006). Similarly, our current data show that HSP70 could bind with TRAF6 to affect its function in mud crab hemocytes, while the release of TRAF6 from disruption of the HSP70-TRAF6 complex allows TRAF6 to complex with Ecsit. The TRAF6-Ecsit complex is required for mitochondrial recruitment to
phagosomes, hence, disruption of the TRAF6-Ecsit complex would severely dampen
ROS production and therefore increase susceptibility to bacterial infection (Geng et al.,
2015). Both TRAF6 and Ecsit have also been reported to regulate the expression of
AMPs during bacterial infection in marine crustaceans (Ding et al., 2014; Wei et al.,
2018). In the present study, it was observed that TRAF6 cooperates with Ecsit to
regulate mROS and the expression of ALFs in mitochondria and nuclei, respectively,
which further affects hemolymph microbiota homeostasis in response to bacterial
infection in mud crabs. The present study therefore provides novel insights into how
invertebrates mount resistance to pathogenic microbial infections.

Materials and Methods

Ethics statement

The mud crabs used in this study were purchased from a local crab farm
(Niutianyang, Shantou, Guangdong, China), and processed according to the
Regulations for the Administration of Affairs Concerning Experimental Animals
established by the Guangdong Provincial Department of Science and Technology on
the Use and Care of Animals. The relevant studies did not involve endangered or
protected species and therefore no specific permits were required for the described field
studies.

Mud crab culture and Vibrio parahaemolyticus challenge

Healthy mud crabs, approximately 50 g each, were acclimated to laboratory
conditions in water with 8‰ salinity at 25 °C for a week before further processed. For
pathogen challenge, 200 µL V. parahaemolyticus (1×10^7 cfu/mL) was injected into the
base of the fourth leg of each crab, 10 mM PBS (PH=7.4) was used as control. At
different time post-infection, hemolymph was collected from three randomly chosen
crabs per group for further investigation (Zhang et al., 2018).

Isolation and analysis of exosomes

For exosomes isolation, 50 mL hemolymph from mud crabs were separated, after centrifuged at 300 × g for 5 min, to collect the supernatant. Next, supernatants were subjected to ultracentrifugation, followed by sucrose density-gradient centrifugation and filtrated through filters (pore size of 0.22 μm). The obtained exosomes were observed by Philips CM120 BioTwin transmission electron microscope (FEI Company, USA), while the quantity and size of the exosomes were measured by Nano-Sight NS300 (Malvern Instruments Ltd, UK).

Microarray analysis of exosomal miRNAs

Exosomal miRNA microarray analysis was performed at Biomarker Technologies (Beijing, China), using Agilent Human miRNA 8*60 K V21.0 microarray (Agilent Technologies, USA). The NCBI BioProject database accession number is PRJNA600674. Quantile normalization and data processing were carried out using Gene Spring Software 12.6 (Agilent Technologies), hierarchical clustering analysis of the differential expressed miRNAs was conducted by Cluster 3.0 and TreeView software.

Prediction of target genes

The target genes of miR-224 were predicted by a commercial company (BioMarker, Beijing, China) using Targetscan and miRanda software (http://www.targetscan.org; http://www.microrna.org/). The overlapped target genes predicted by the two algorithms were served as the candidate target gene.

Overexpression and silencing of miR-224 in mud crabs

The miRNA mimics and anti-microRNA oligonucleotides (AMOs) of miR-224 were injected at 30 μg/crab for 48 h to overexpress and knockdown miR-224 in mud crabs.
crab respectively. miR-224 mimic (5’-AGAGACAAGTGACAAACA-3’) and AMO-
miR-224 (5’-TGTTTGTCACTTGTCTCT-3’) were modified with 2’-O-methyl (OME)
(bold letters) and the remaining nucleotides phosphorothioated. All oligonucleotides
were synthesized by Sangon Biotech (Shanghai, China).

Cell culture, transfection, and fluorescence assays

The *Drosophila* Schneider 2 (S2) cells were cultured at 27 ºC with Express Five
serum-free medium (SFM) (Invitrogen, USA). The EGFP-HSP70-3’UTR or mutant
plasmids (100 ng/well) and the synthesized miR-224 (50 nM/well) were co-transfected
into S2 cells using Cellfectin II Reagent (Invitrogen, USA) according to the
manufacturer’s protocol. At 48 h post-transfection, the EGFP fluorescence in S2 cells
were observed under an inverted fluorescence microscope (Leica, Germany) and
measured by a Flex Station II microplate reader (Molecular Devices, USA) at 490/ 510
nm of excitation/emission (Ex/Em).

RNA interference assay

Based on the nucleotide sequence of HSP70, TRAF6 and Ecsit, the specific
siRNAs targeting these genes were designed, i.e., HSP70-siRNA (5’-
UCUUCAUAGCACUAGAGGU-3’), TRAF6-siRNA (5’-GCUUCUCCCA
GCUUGCAAUUU-3’) and Ecsit-siRNA (5’-CCCUGUACUCUUCACAAUU-3’).
The siRNAs were synthesized using *in vitro* Transcription T7 Kit (TaKaRa, Dalian,
China) according to the manufacturer’s instructions. Next, 50 μg of each siRNA was
injected into each mud crab. At different time points post injection, three mud crabs
were randomly selected for each treatment and stored for later use.

Quantitative real-time PCR

Quantitative real-time PCR was conducted to quantify the mRNA levels using
Premix Ex Taq (Takara, Japan). Total RNA was extracted from mud crab hemocytes,
followed by first-strand cDNA synthesis using PrimeScript™ RT Reagent Kit (Takara, Japan). Primers ALF1-F (5’-AACTCATCACGGAGAATAACGC-3’), ALF1-R (5’-CTTCCTCGTTTTCACCCCTC-3’); ALF2-F (5’-TGTCGCTCAGGGACTCATCAC-3’), ALF2-R (5’-GGAGATCACGGGAGAGTGAATG-3’); ALF3-F (5’-GAACGGACTCATCACACAGCAG-3’), ALF3-R (5’-CACTTCCTTGTTCTCTTCGCTCTC-3’); ALF4-F (5’-CAGTACTGTGTCTCTAGGCGGC-3’), ALF4-R (5’-GTCCTCGCCTTAATCCTTCTG-3’); ALF5-F (5’-CTTGAAGGGACGAGGTGATGAG-3’), ALF5-R (5’-TGACCAGCCTCGCTACAG-3’); ALF6-F (5’-ACAGGGCTATCGCAGACTTCG-3’), ALF6-R (5’-GCACCTCTTTGGCACACTATTTG-3’) were used to quantify transcripts levels of ALFs. Relative fold change were determined using the 2^(-∆∆Ct) algorithm (Arocho et al., 2006).

Hemolymph bacteria counting and sequencing

5 mL mud crab hemolymph were collected after specific treatments and then stained with SYBR® Green I solution (1:40 v/v SYBR® Green I in 1× Tris EDTA buffer). Next, the bacteria number were counted under 100× magnification using a fluorescence microscope (Axio Imager M2, Zeiss, Germany) (Zhang et al., 2018). For 16S rDNA genes sequencing, the total genome DNA of hemolymph microbiota was extracted using QIAamp® PowerFecal® DNA Kit (Qiagen, Germany). All samples were sequenced on Illumina Nova platform by a commercial company (Novogene, Beijing, China) by amplifying the V4 region of the 16S rDNA gene, the data were uploaded to NCBI BioProject database (accession number PRJNA669103).

Cellular and mitochondrial ROS measurement

5 mL hemolymph from three randomly chosen mud crabs per group were drawn into tubes containing ACD anticoagulant buffer, and then centrifuged immediately at 800 ×g for 20 min at 4 °C to isolate the hemocytes. Next, flow cytometry method was
used to measure cellular ROS level with a ROS Assay Kit (Beyotime Biotechnology, China). For mitochondrial ROS measurement, the ROS intensity was analyzed by MitoSOX Red Mitochondrial Superoxide Indicator (Invitrogen, USA). The fluorescence in hemocytes was observed using an inverted fluorescence microscope (Leica, Germany) and measured by a Flex Station II microplate reader (Molecular Devices, USA).

Statistical analysis

All data were subjected to one-way ANOVA analysis using Origin Pro8.0, with \(P < 0.01 \) considered as statistically significant. All experiments were carried out in triplicates and repeated for three biological replicates.
Acknowledgments

This study was financially supported by Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) (GML2019ZD0606), National Natural Science Foundation of China (31802341, 42076125, 41876152), Natural Science Foundation of Guangdong Province, China (2018A030307044) and Guangdong Provincial Special Fund for Modern Agriculture Industry Technology Innovation Teams (2019KJ141). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author contributions

YG, XYW, WWS, XR and JC performed the experiments, YG and SKL designed the experiments and analysed the data, HYM and YLZ provided technical supports, YG, JJA, KGC and SKL wrote the manuscript. All authors read and approved the contents of the manuscript and its publication.

Conflict of interest

The authors declare no conflicts of interest.
References

Ambros, V. (2004). The functions of animal microRNAs. Nature 431, 350-355.

Arocho, A., Chen, B.Y., Ladanyi, M., and Pan, Q.L. (2006). Validation of the 2(-Delta Delta Ct) calculation as an alternate method of data analysis for quantitative PCR of BCR-ABL P210 transcripts. Diagn Mol Pathol 15, 56-61.

Bang, C., Batkai, S., Dangwal, S., Gupta, S.K., Foinquinos, A., Holzmann, A., Just, A., Remke, J., Zimmer, K., and Zeug, A. (2014) Cardiac fibroblast–derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. J Clin Invest 124, 2136-2146.

Bhatnagar, S., and Schorey, J.S. (2007). Exosomes released from infected macrophages contain mycobacterium avium glycopeptidolipids and are proinflammatory. J Biol Chem 282, 25779-25789.

Bhatnagar, S., Shinagawa, K., Castellino, F.J., and Schorey, J.S. (2007). Exosomes released from macrophages infected with intracellular pathogens stimulate a proinflammatory response in vitro and in vivo. Blood 110, 3234-3244.

Bobrie, A., Colombo, M., Krumeich, S., Raposo, G.A., and Théry, C. (2012). Diverse subpopulations of vesicles secreted by different intracellular mechanisms are present in exosome preparations obtained by differential ultracentrifugation. J Extracell Vesicles 1, 18397.

Boorn, J.G.V.D., Daler, J., Coch, C., Schlee, M., and Hartmann, G. (2013). Exosomes as nucleic acid nanocarriers. Adv Drug Deliv Rev 65, 331-335.

Chen, H., Wu, Y., Zhang, Y., Jin, L., Luo, L., Xue, B., Lu, C., Zhang, X., and Yin, Z. (2006). Hsp70 inhibits lipopolysaccharide-induced NF-kappaB activation by interacting with TRAF6 and inhibiting its ubiquitination. FEBS Lett 580, 3145-3152.

Colombo, M., Raposo, G.A., and Théry, C. (2014). Biogenesis, secretion, and
intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 30, 255-289.

Cui, Y., Xu, H.F., Liu, M.Y., Xu, Y.J., He, J.C., Zhou, Y., and Cang, S.D. (2019). Mechanism of exosomal microRNA-224 in development of hepatocellular carcinoma and its diagnostic and prognostic value. World J Gastroenterol 25, 1890-1898.

Ding, D., Chen, X.W., Kang, L.H., Jiang, H.S., and Kang, C.J. (2014). Role of evolutionarily conserved signaling intermediate in Toll pathways (ECSIT) in the antibacterial immunity of Marsupenaeus japonicus. Dev Comp Immunol 46, 246-254.

Douglas, A.E. (2018). What will it take to understand the ecology of symbiotic microorganisms? Environ Microbiol 20, 1920-1924.

Eldh, M., Ekström, K., Valadi, H., Sjöstrand, M., Olsson, B., Jernås, M., and Lötvall, J. (2010). Exosomes communicate protective messages during oxidative stress; possible role of exosomal shuttle RNA. Plos One 5, e15353.

Fabbri, M., Paone, A., Calore, F., Galli, R., Gaudio, E., Santhanam, R., Lovat, F., Fadda, P., Mao, C., and Nuovo, G.J. (2012). MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. P Natl Acad Sci USA 109, 12278-12279.

Flore, D., Patrick, L.C., Benjamin, B., Ivan, L., Benoît, T., Christine, P., and Yannick, F. (2014). Exploring the hologenome concept in marine bivalvia: haemolymph microbiota as a pertinent source of probiotics for aquaculture. FEMS Microbiol Lett 350, 107-116.

Fong, M.Y., Zhou, W., Liu, L., Alontaga, A.Y., and Wang, S.E. (2015). Breast-cancer-secreted miR-122 reprograms glucose metabolism in premetastatic niche to promote metastasis. Nat Cell Biol 17, 183-194.

Geetha, T., Kenchappa, R.S., Wooten, M.W., and Carter, B.D. (2005). TRAF6-mediated ubiquitination regulates nuclear translocation of NRIF, the p75
receptor interactor. Embo J 24, 3859-3868.

Geng, J., Sun, X., Wang, P., Zhang, S., Wang, X., Wu, H., Hong, L., Xie, C., Li, X., and Zhao, H. (2015). The kinases Mst1 and Mst2 positively regulate phagocyte ROS induction and bactericidal activity. Nat Immunol 16, 1142-1152.

Gong, Y., Kong, T., Ren, X., Chen, J., and Li, S. (2020). Exosome-mediated apoptosis pathway during WSSV infection in crustacean mud crab. Plos Pathog 16, e1008366.

Gurwitz, D. (2015). Exosomal MicroRNAs in Tissue Crosstalk. Drug Dev Res 76, 259-262.

Hammond, S.M., Bernstein, E., Beach, D., and Hannon, G.J. (2000). An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404, 293.

Li, Q., Ding, C., Chen, C., Zhang, Z., Xiao, H., Xie, F., Lei, L., Chen, Y., Mao, B., and Jiang, M. (2014). miR-224 promotion of cell migration and invasion by targeting Homeobox D 10 gene in human hepatocellular carcinoma. J Gastroenterol Hepatol 29, 835-842.

Li, S., Sun, L., Wu, H., Hu, Z., Liu, W., Li, Y., and Wen, X. (2012). The intestinal microbial diversity in mud crab (Scylla paramamosain) as determined by PCR-DGGE and clone library analysis. J Appl Microbiol 113, 1341-1351.

Lokmer, A., and Mathias, W.K. (2015). Hemolymph microbiome of Pacific oysters in response to temperature, temperature stress and infection. ISME J 9, 670-682.

Mario, L.S., Caroline, B., Frédéric, B., Claudio, M., Gregor, D.G. Robert, L., Mark, I., and Michele, D.P. (2014). Endogenous RNAs modulate microRNA sorting to exosomes and transfer to acceptor cells. Cell Rep 8, 1432-1446.

Marisa, M., and Chioma, O. (2015). Exosomes: implications in HIV-1 pathogenesis.

Viruses 7, 4093-4118.
Marta, A., and Maria, A. (2015). Exosome biogenesis, regulation, and function in viral infection. Viruses 7, 5066-5083.

Mayer, M.P., and Bukau, B. (2005). Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci 62, 670-684.

Milane, L., Singh, A., Mattheolabakis, G., Suresh, M., and Amiji, M.M. (2015). Exosome mediated communication within the tumor microenvironment. J Control Release 219, 278-294.

Nahand, J.S., Mahjoubin-Tehran, M., Moghoofei, M., Pourhanifeh, M.H., and Hamblin, M.R. (2020). Exosomal miRNAs: novel players in viral infection. Epigenomics 12, 353-370.

Paulina, S., Diego, R.R., Marylise, D., Julien, D.L., Evelyne, B., and Delphine, D.G. (2012). The antimicrobial defense of the Pacific oyster, Crassostrea gigas. How diversity may compensate for scarcity in the regulation of resident/pathogenic microflora. Front Microbiol 3, 160.

Qian, X., Xu, C., Fang, S., Zhao, P., Wang, Y., Liu, H., Yuan, W., and Qi, Z. (2016). Exosomal microRNAs derived from umbilical mesenchymal stem cells inhibit hepatitis C virus infection. Stem Cell Transl Med 5, 1190-1203.

Qu, F.F., Xiang, Z.M., Wang, F.X., Zhang, Y., Li, J., Zhang, Y.H., Xiao, S., and Yu, Z.N. (2015). Identification and function of an evolutionarily conserved signaling intermediate in Toll pathways (ECSIT) from Crassostrea hongkongensis. Dev Comp Immunol 53, 244-252.

Schorey, J.S., and Bhatnagar, S. (2010). Exosome function: from tumor immunology to pathogen biology. Traffic 9, 871-881.

Schroeder, M.R. (2007). Molecular basis for target RNA recognition and cleavage by human RISC. Cell 130, 101-112.
Sergeeva, O.A., and VanDerGoot, F.G. (2015). Kicking out pathogens in exosomes. Cell 161, 1241-1242.

Smith, V.L., Cheng, Y., Bryant, B.R., and Schorey, J.S. (2017). Exosomes function in antigen presentation during an in vivo Mycobacterium tuberculosis infection. Sci Rep 7, 43578.

Söderhäll, I. (2016). Crustacean hematopoiesis. Dev Comp Immunol 58, 129-141.

Sun, W.W., Zhang, X.X., Wan, W.S., Wang, Q., Wen, X.B., Zheng, H.P., Zhang, Y.L., and Li, S.K. (2017). Tumor necrosis factor receptor-associated factor 6 (TRAF6) participates in anti-lipopolysaccharide factors (ALFs) gene expression in mud crab. Dev Comp Immunol 67, 361-376.

Tkach, M., and Théry, C. (2016). Communication by extracellular vesicles: where we are and where we need to go. Cell 164, 1226-1232.

Tubiash, H.S., Sizemore, R.K., and Colwell, R.R. (1975). Bacterial flora of the hemolymph of the Blue crab, Callinectes sapidus: most probable numbers. Appl Environ Microb 29, 388-392.

Valadi, H., Ekström, K., Bossios, A., Sjöstrand, M., Lee, J.J., and Lötvall, J.O. (2007). Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9, 654-659.

Wang, X.W., Xu, J.D., Zhao, X.F., Vasta, G., R., and Wang, J.X. (2014a). A shrimp C-type lectin inhibits proliferation of the hemolymph microbiota by maintaining the expression of antimicrobial peptides. J Biol Chem 289, 11779-11790.

Wang, J.J., Chen, C., Xie, P.F., Pan, Y., Tan, Y.H., and Tang, L.J. (2014b). Proteomic analysis and immune properties of exosomes released by macrophages infected with Mycobacterium avium. Microbes Infect 16, 283-291.

Wang, X.W., and Wang, J.X. (2015). Crustacean hemolymph microbiota: Endemic,
tightly controlled, and utilization expectable. Mol Immunol 68, 404-411.

Wei, Z.B., Sun, W.W., Tran, N.T., Gong, Y., Ma, H.Y., Zheng, H.P., Zhang, Y.L., and Li, S.K. (2018). Two novel serine proteases from Scylla paramamosain involved in the synthesis of anti-lipopolysaccharide factors and activation of prophenoloxidase system. Fish Shellfish Immun 84, 322-332.

Zhang, J., Li, S., Li, L., Li, M., Guo, C., Yao, J., and Mi, S. (2015). Exosome and exosomal microRNA: trafficking, sorting, and function. Genomics Proteomics Bioinformatics 13, 17-24.

Zhang, X., Li, C.F., Zhang, L., Wu, C.Y., Han, L., Jin, G., Rezaeian, A.H., Han, F., Liu, C., and Xu, C. (2016). TRAF6 restricts p53 mitochondrial translocation, apoptosis, and tumor Suppression. Mol Cell 64, 1-12.

Zhang, X.X., Zaiqiao, S., Zhang, X.S., Zhang, M., and Li, S.K. (2018). Hemolymph microbiomes of three aquatic invertebrates as revealed by a new cell extraction method. Appl Environ Microb 84, e02824-17.
Figure legends

Fig 1. Exosomes secreted from *Vibrio parahaemolyticus*-infected mud crab participate in anti-bacterial regulation. (A-B) Exosomes isolated from mud crabs injected with PBS and *V. parahaemolyticus* were detected by electron microscopy (A) and Nanosight particle tracking analysis (B). Scale bar, 200 nm. (C) Western blot analysis of exosomal protein markers (Flotillin-1 and TSG101) and cytoplasmic marker Calnexin in cell lysate and exosomes. (D) The delivery of exosomes to mud crab hemocytes. The indicated exosomes (Dio-labeled, green) were injected into mud crabs for 6 h, after which hemocytes (DiI-labeled, red) were isolated and analyzed by confocal microscopy. Scale bar, 20 μm. (E) Effects of exosomes on mud crab mortality. The specific treatments are shown on the top and the mortality was examined daily. (F) Effects of exosomes on bacteria number in mud crab hemolymph. Hemolymph bacteria number for the different treatments were counted using a fluorescence microscope at 100× magnification. (Vp means *V. parahaemolyticus*, exosome-Vp or exosome-PBS means exosomes isolated from the hemolymph of crabs challenged with *V. parahaemolyticus* or PBS). Significant statistical differences between treatments are indicated with asterisks (**, *p*<0.01).

Fig 2. Exosomes regulate hemolymph microbiota homeostasis through activation of ROS and ALFs. (A-B) The effects of the indicated exosomes on ROS production during *V. parahaemolyticus* infection in mud crabs. The level of ROS was measured by fluorescence microscopy, Scale bar, 100 μm (A) and microplate reader (B). (C) The effect of exosomes on the mRNA levels of ALF1-ALF6 and β-actin, used as internal reference. (D) The effects of the indicated exosomes on hemolymph microbiota diversity. Mud crabs were co-injected with exosomes and *V. parahaemolyticus* for 48 h, after which hemolymph was collected and subjected to 16S rDNA sequencing. (E-
The effects of the indicated exosomes on the composition of hemolymph microbiota at phylum (Top 10) (E) and genera (Top 35) (F) levels. Data represent mean ± s.d. of triplicate assays (*, p<0.05; **, p<0.01).

Fig 3. Exosomal miR-224 modulates hemolymph microbiota homeostasis in mud crabs. (A) miRNA microarray analysis for exosome-V.p and exosome-PBS is presented as a heatmap. The top three up- and downregulated miRNAs in the indicated exosomes are listed. (B-C) The effects of the indicated miRNAs on ALF1 expression in mud crabs. Mimics (B) or AMOs (C) of the indicated miRNAs were co-injected with *V. parahaemolyticus* into mud crabs for 48 h, followed by the analysis of ALF1 expression using qPCR. (D) The expression levels of miR-224 in mud crabs challenged with different exosomes. (E-F) The participation of miR-224 in exosome-mediated ROS production. The indicated exosomes, AMO-miR-224 and *V. parahaemolyticus* were co-injected into mud crabs, followed by the detection of ROS using fluorescence microscopy. Scale bar, 100 μm (E) and microplate reader (F). (G) The effect of miR-224 silencing on exosome-mediated ALFs regulation. (H-I) The involvement of miR-224 in exosome-mediated hemolymph microbiota homeostasis. Hemolymph was collected from mud crabs with the indicated treatments, following by determining the bacterial cell count (H) and species (I) analysis. Each experiment was performed in triplicate and data are presented as mean ± s.d. (*, p<0.05; **, p<0.01).

Fig 4. HSP70 is the direct downstream target for miR-224 in mud crab. (A) Target gene prediction of miR-224 using Targetscan and miRanda softwares. (B) Cloning of wild-type and mutated 3’UTRs of HSP70 into the pIZ-V5-EGFP plasmid. The sequences targeted by miR-224 are underlined. (C-D) The direct interactions between miR-224 and HSP70 in insect cells. *Drosophila* S2 cells were co-transfected with miR-224 and the indicated plasmids for 48 h, followed by analysis of the relative
fluorescence intensities. (E-F) The effect of miR-224 silencing on the expression level of HSP70 in mud crab post-injection with AMO-miR-224. The mRNA (E) and protein (F) levels were examined at 48 h post-injection. (G-H) The effect of miR-224 overexpression on the mRNA and protein levels of HSP70 in mud crabs. (I) The co-localization of miR-224 and HSP70 mRNA in mud crab hemocytes. The levels of miR-224 and HSP70 mRNA were determined with FAM-labeled miR-224 probe (green) and Cy3-labeled HSP70 mRNA probe (red). Experiments were performed in triplicates, with the data shown representing the mean ± s.d. (**, p<0.01).

Fig 5. Role of HSP70 in exosomal miR-224-mediated hemolymph microbiota homeostasis. (A) The participation of HSP70 in miR-224-mediated ALFs regulation in mud crabs. AMO-miR-224 was co-injected with HSP70-siRNA into *V. parahaemolyticus*-challenged mud crabs, followed by analysis of the expression levels of ALFs using qPCR. (B-C) The involvement of HSP70 in miR-224-mediated ROS production. The level of ROS in mud crab hemocytes was determined using fluorescence microscopy, Scale bar, 100 μm (B) and microplate reader (C). (D) The effect of the indicated exosomes on HSP70 expression. Isolated exosomes from mud crabs treated with PBS and *V. parahaemolyticus* were injected into mud crabs, followed by determination of HSP70 protein level using Western blot analysis. (E-F) The effect of HSP70 silencing on exosome-mediated hemolymph microbiota homeostasis. Hemolymph was collected from mud crabs with the indicated treatments, and the bacterial cell count (E) and species (F) analyzed. All the data are the average from at least three independent experiments, mean ± s.d. (*, p<0.05; **, p<0.01).

Fig 6. miR-224-mediated suppression of HSP70 results in disruption of the HSP70-TRAF6 complex and TRAF6-Ecsit complex formation. (A) Identification of proteins that bind to HSP70. Mud crab hemocytes lysates were subjected to Co-
immunoprecipitation (Co-IP) assay using anti-HSP70 IgG, followed by separation using SDS-PAGE and identification of the proteins by mass spectrometry. (B)

Interactions between HSP70 and TRAF6 in mud crab cell lysates analyzed using Co-IP with anti-HSP70 IgG followed by Western blot analysis. (C) The effect of TRAF6 silencing on ALFs regulation. Mud crabs were injected with TRAF6-siRNA or GFP-siRNA for 48 h, followed by analysis of ALFs expression using qPCR. (D-E) Effect of TRAF6 silencing on ROS production in mud crabs. The level of ROS in mud crab hemocytes was analyzed using fluorescence microscopy, Scale bar, 100 μm (D) and microplate reader (E). (F) Identification of proteins that bind to TRAF6. The identified proteins are indicated with an arrow. (G) The interaction between TRAF6 and Ecsit in mud crabs. (H) The interaction between HSP70 and Ecsit in mud crabs. Cell lysates were subjected to Co-IP analysis with anti-HSP70 IgG and anti-Ecsit IgG, followed by Western blot analysis using the indicated antibodies. (I) The interactions between HSP70 and TRAF6, TRAF6 and Ecsit in mud crabs after the indicated treatments. Data shown represent the mean ± s.d. for triplicate assays (**, p<0.01).

Fig 7. TRAF6-Ecsit complex mediates hemolymph microbiota homeostasis. (A) The effect of the indicated exosomes on the protein level of TRAF6 in mitochondria. (B-C) The effect of the indicated exosomes on mROS production. The mROS level in mud crab hemocytes was determined using fluorescence microscopy, Scale bar, 50 μm (B) and microplate reader (C). (D) The effect of TRAF6 silencing on the expression and ubiquitination levels of Ecsit. (E) The effect of the indicated exosomes on the expression and ubiquitination levels of Ecsit. (F) The protein level of Ecsit in mud crab hemocytes nuclei after treatment with the indicated exosomes was determined by Western blot analysis. Tubulin and Histone H3 were used to evaluate the purity of the isolated nuclei. (G) The localization of Ecsit in mud crab hemocytes after treated with
the indicated exosomes was determined using immunofluorescence assay with mouse anti-Ecsit antibody, Scale bar, 10 μm. (H) The effect of Ecsit overexpression on the transcription of ALFs. (I-J) The effects of TRAF6 or Ecsit silencing on exosome-mediated hemolymph microbiota homeostasis. Hemolymph was collected from mud crabs after the indicated treatments and was used to determine bacteria number (I) and species (J). Data shown represent that of three independent experiments (*, p<0.05; **, p<0.01).

Fig 8. Proposed schematic diagram for exosomal miR-224-mediated hemolymph microbiota homeostasis during V. parahaemolyticus infection in mud crabs.
Fig. 1

A. Exosome-PBS and Exosome-Vp

B. Size distribution of exosomes from Exosome-PBS and Exosome-Vp.

C. Western blot analysis of cell lysates and exosome samples. Flotillin-1, TSG101, and Calnexin expressions are shown.

D. Fluorescence image showing the localization of Dil and DiO in Exosome-PBS and Exosome-Vp.

E. Cumulative survival (%) over time post-injection for WT, Vp, Vp+Exosome-PBS, and Vp+Exosome-Vp.

F. Bacteria numbers in homogenate for WT, Vp, Vp+Exosome-PBS, and Vp+Exosome-Vp.
Fig. 3

A. Exosome-PBS vs Exosome-Vp

B. Top 3 up/down regulated miRNAs

C. Relative ALF1 mRNA levels

D. Relative miR-224 levels

E. Images showing expression levels

F. Relative RCS levels

G. Relative mRNA levels

H. Bacteria numbers in homologous

I. Bacteria species in homologous

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.17.423222; this version posted December 17, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.
Fig. 4

A

Target scan mirands

HSP70

5' → 3' UTR → 3'

GCCAGTGTCGTCTCAAGGCAC

3'-ACAAACAGTGACAGAGA-5'

miR-224

B

Sacl

piZ

Sacl

piZ

Sacl

Xbal

Xbal

CTTGTCCTCAAGG

EGFP-HSP70-3'UTR

EGFP-ΔHSP70-3'UTR

CGCAGCTCTAAAGG

C

[Images of fluorescence microscopy]

D

![Graph showing relative fluorescence intensity](image)

E

	WT	AMO-miR-224-scrambled	AMO-miR-224
Relative HSP70 mRNA levels	0.5 ± 0.2	1.5 ± 0.3	**3.0 ± 0.4**

F

	WT	AMO-miR-224-scrambled	AMO-miR-224
HSP70	[Image]	[Image]	[Image]
Tubulin	[Image]	[Image]	[Image]

G

	WT	miR-224 mimic-scrambled	miR-224 mimic
Relative HSP70 mRNA levels	0.5 ± 0.2	**1.5 ± 0.3**	**1.0 ± 0.2**

H

	WT	miR-224 mimic-scrambled	miR-224 mimic
HSP70	[Image]	[Image]	[Image]
Tubulin	[Image]	[Image]	[Image]

I

	HSP70 mRNA	miR-224	Merge
	10 μm	10 μm	10 μm

Note:

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.17.423222; this version posted December 17, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.
Fig. 5

A

![Bar chart showing relative mRNA levels for ALF1, ALF4, and ALF5 with different treatments.]

B

![Images of cells treated with different conditions showing HSP70 and Tubulin expression.]

C

![Graph showing relative ROS levels with different treatments.]

D

![Diagram showing HSP70 and Tubulin expression with exosome and Vp treatments.]

E

![Bar chart showing bacteria numbers in hemolymph with different treatments.]

F

![Graph showing bacteria species in hemolymph with different treatments.]

769
