STAT3 expression is correlated with pathological stage in luminal subtypes of breast carcinoma

Eroglu M¹, Kokenek-Unal TD², Akin-Bali DF³, Kirimlioglu SH⁴

Nigde Omer Halisdemir University, Faculty of Medicine, Department of Pathology, Nigde, Turkey. dilarafatmaakin@gmail.com

ABSTRACT

AIM: STATs and HIFs in human solid tumors play an important role in mechanisms of tumor growth. The aim of this study was to determine the prognostic role of STATs and HIFs in breast cancers.

METHODS: Twenty-four breast carcinoma cases who underwent mastectomy and axillary dissection were included into the study. The presence of STATs and HIFs in 24 breast cancer cases was evaluated immunohistochemically. We evaluated the differences in tumor grade, diameter, limits, intratumor desmoplasia, inflammatory infiltration, necrosis, axillary lymph node involvement, estrogen, progesterone and CerbB2 staining.

RESULTS: In this study, the presence of STATs and HIFs expressions in breast tumors is shown. In our study, no statistically significant correlation was found between tumor grade, diameter, limits, intratumor desmoplasia, inflammatory infiltration, necrosis, axillary lymph node involvement, CerbB2 staining status and STATs and HIFs expressions. However, STAT5a and estrogen staining and HIF2α and progesterone staining were found statistically significant. In addition, STAT3 expression was found to have significantly higher correlation with luminal breast cancer.

CONCLUSIONS: The findings suggest that STATs and HIFs may play a role in the development of invasive ductal carcinomas; concerning their future use as treatment options due to their association with hormone receptors, new studies are required (Tab. 6, Fig. 7, Ref. 65). Text in PDF wwww.elis.sk.

KEYWORDS: Breast carcinoma, prognostic characteristics, HIF1α, HIF2α, STAT1, STAT2, STAT3, STAT5a, STAT5b.

Introduction

Breast carcinomas are the most common malignant tumors in women, and more than 1,000,000 women worldwide each year are diagnosed with breast carcinoma. It is also the most common cause of death from carcinomas in women (1). Literature mentions the importance of numerous genetic and histologic parameters, especially patient age and early diagnosis in breast cancer prognosis. The most important prognostic factors are the histologic grade and stage of the tumor. However, there is also a need for new parameters for identifying new treatment strategies, preventing cancer development in people at high risk of cancer, as well as for predicting the prognosis. Cancer cells can survive and proliferate in unusual microenvironment. Intratumoral hypoxia plays an important role especially in the development of fast growing solid tumors. The adaptation to hypoxic environment for the survival and development of tumor cells is mainly determined by the HIF (hypoxia inducing factor)-dependent transcription program (2). It is stated that high levels of HIFs in human tumors play an important role in tumor growth by regulating the anaerobic energy metabolism, angiogenesis, continuity of cells and target genes that play a role in drug resistance (2–7). HIF1α and HIF2α are important proteins that induce tumor cell response to hypoxia and are responsible for carcinogenesis and clinical behavior of tumors (7). Signal transducer and activator of transcription (STAT) proteins are transcription factors that regulate the growth and differentiation of cells, and they are activated in response to cytokines and growth factors, particularly to cytokines in the JAK / STAT signaling pathway (8–12). As a result of the studies, STAT types have been found to have special functions (13). It has been reported that a large number of tumors are associated with increased activation levels of STATs, in particular with STAT3 and STAT5 (14–17). In studies conducted on breast carcinomas, STAT activation has been shown to be associated with invasive breast carcinoma, not with benign and in situ carcinoma (18). The aim of this study was to offer an immunohistochemical evaluation of the expressions of HIF1α and HIF2α proteins associated with vascularization and hypoxia in invasive ductal carcinomas as well as that of expressions of the STAT family (STAT1, STAT2, STAT3, STAT5a, STAT5b)
in relation to cell growth and differentiation. In this study, we aimed at a comparative evaluation of the potential relationship of STATs and HIFs with numerous significant parameters involved in the prognosis of breast cancer such as the presence of lymph node metastasis, inflammatory cell infiltration, presence of desmoplastic stromal reaction, presence of necrosis, histologic grade, tumor size, hormone receptor status, CerbB2 expression and pathological stage.

Materials and methods

In this study, upon the approval of the local ethics committee (Decision no: 2008/15), 24 cases who underwent mastectomy and axillary dissection at the Department of General Surgery at Inonu University Faculty of Medicine, and were diagnosed with invasive ductal carcinoma at the Department of Medical Pathology between 2002 and 2008, were examined through retrospective archival research. With a scan of glass slides of all the cases, histopathological parameters such as tumor size, tumor nuclear grade, presence of desmoplasia, presence and degree of concomitant inflammation, presence of necrosis, tumor growth pattern, ER, PR and cerbB2 positivity, presence of lymph node metastasis and pathological stage were evaluated. For the study, blocks containing tumoral and non-tumoral areas were identified. Sections transferred from the selected blocks to polylysine-coated glass slides were stained immunohistochemically with STAT1, STAT2, STAT3, STAT5a, STAT5b, HIF1α, HIF2α antibodies in accordance with the protocols of the

Tab. 1. STAT 1 immunohistochemical expression and histopathological parameters.

Parameters	Immunohistochemical expression of STAT 1 antibody.			
	Negative	Positive	Correlation	p
Age				
<40	0	4	0.123	0.327
>40	4	16		
Histological grade				
Grade I	1/7 (14.3 %)	6/7 (85.7 %)	0.009	0.273
Grade II	0/8	8/8 (100 %)		
Grade III	3/9 (33. 3 %)	6/9 (66.7 %)		
Tumor diameter				
<2	2/9 (22.2 %)	7/9 (77.8 %)	-0.030	0.627
2–5	1/11 (9.1 %)	10/11 (90.9 %)		
>5	1/4 (25 %)	3/4 (75 %)		
Necrosis				
Present	2/7 (28.6 %)	5/7 (71.4 %)	0.192	0.552
absent	2/17 (11.8 %)	15/17 (88.2 %)		
Inflammation				
Present	4/21 (19 %)	17/21 (81 %)	-0.167	1.000
absent	0/3	3/3 (100 %)		
Tumor growth pattern at borders				
Infiltrative	3/21 (14.3 %)	18/21 (85.7 %)	-0.056	0.437
expansile	1/3 (39.3 %)	2/3 (66.7 %)		
cerbB2 status				
Negative	4/17 (33.5 %)	13/17 (76.5 %)	0.103	0.744
uncertain	0/3	3/3 (100 %)		
ER status				
Negative	1/7 (14.3 %)	3/17 (17.6 %)	-0.038	1.000
positive	6/7 (85.7 %)	14/17 (82.4 %)		
PR status				
Negative	0/3	4/21 (19 %)	-0.167	1.000
positive	3/3 (100 %)	17/21 (81 %)		
Hormone receptor status				
Positive	4/21 (19 %)	17/21 (81 %)	-0.167	1.000
Negative	0/3	3/3 (100 %)		
LN metastasis				
Present	2/12 (16.7 %)	10/12 (83.3 %)	0.000	1.000
absent	2/12 (16.7 %)	10/12 (83.3 %)		
Pathological stage				
Ib	1/11 (9.1 %)	10/11 (90.9 %)	-0.157	0.317
IIA	3/10 (30 %)	7/10 (70 %)		
IIB	0/3	3/3 (100 %)		

Fig. 1. No staining was detected with STAT1 in 4/24 of tumor cases (G0) (a), G1 (b) expression in 4 cases, G2 (c) in 11 cases, G3 (d) STAT1 expression in 5 cases were detected.
producer. The stained slides were examined, and the presence of tumor cells exhibiting cytoplasmic staining for HIF2α, and nuclear staining for others was considered as positive staining. Cytoplasmic staining patterns were also noted. The staining of epithelial and mesenchymal cells and lymphocytes in tumor cells and non-tumor tissues was also evaluated separately. The evaluation was first done by two pathologists independent of each other, and later was repeated by them together. The staining was graded in consideration of the percentage of cells stained positively in 10 different areas under the light microscope.

Grades 0, 1, 2 and 3, refer to staining in less than 10 %, 10-50 %, 51-75 % and over 75 % of cells, respectively. In the final analysis, Grade 0 was considered as negative, while Grades 1, 2 and 3 were assessed as positive results. In addition to staining results and demographic data, the pathological stages of patients were compared with histopathological parameters such as the histological grade of tumor, tumor size, limit of tumor growth, presence of desmoplasia, necrosis concomitant inflammation, and lymph node metastasis, as well as ER, PR and cerbB2 status of tumor.

Statistical analysis

The results were statistically analyzed in IBM SPSS for Windows Version 22.0 package program. Numerical variables were summarized with mean ± standard deviation, and qualitative variables with numbers and percentages. The Kappa coefficient was

Parameters	Immunohistochemical expression of STAT 2 antibody.	p	
Age	Negative - 0	Positive 4	
<40	2	18	0.038 0.509
>40	8	7 (100 %)	0.033 0.178
Histological grade	Grade I 0/8	Grade II 2/8 (25 %)	Grade III 0/9
Grade I	7 (100 %)	9 (100 %)	0.048 0.641
Grade II	6 (75 %)	4/4 (100 %)	0.033 0.178
Grade III	9 (100 %)	9/11 (81.4 %)	0.048 0.641
Tumor diameter	<2 0/9	2–5 2/11 (18.6 %)	>5 0/4
<2	9/9 (100 %)	9/11 (81.4 %)	0.048 0.641
2–5	4/4 (100 %)	4/4 (100 %)	0.033 0.178
>5	0/4	0/4 (100 %)	0.033 0.178
necrosis	Present 0/7	absent 2/17 (11.8 %)	
Present	7 (100 %)	15 (88.2 %)	0.149 1.000
absent	0/4	0/4 (100 %)	0.048 0.641
Inflammation	Present 0/7	absent 2/17 (11.8 %)	
Present	7 (100 %)	15 (88.2 %)	0.149 1.000
absent	0/4	0/4 (100 %)	0.048 0.641
Tumor growth pattern at borders	Infiltratif 2/21 (9.5 %)	expansile 0/3	
infiltratif	19 (90.5 %)	3 (100 %)	0.026 1.000
expansile	0/3	0/3 (100 %)	0.026 1.000
cerbB2 status	Negative 2/17 (11.8 %)	uncertain 0/4	
positive	15/17 (88.2 %)	4/4(100 %)	0.048 1.000
uncertain	0/3	0/3 (100 %)	0.048 1.000
ER status	Negative 1/7 (14.3 %)	positive 6/7 (85.7 %)	
positive	1/17 (5.9 %)	16/17 (94.1 %)	0.106 0.507
PR status	Negative 1/3 (33.3 %)	positive 2/3 (66.7 %)	
positive	1/21 (4.8 %)	20/21 (95.2 %)	0.333 0.239
Hormon receptor status	Positive 1/21 (4.8 %)	Negative 1/3 (33.3 %)	
Positive	20/21 (95.2 %)	2/3 (66.7 %)	0.333 0.239
Negative	1/12 (8.3 %)	11/12 (91.7 %)	0.000 1.000
LN metastasis	Present 1/12 (8.3 %)	absent 1/12 (8.3 %)	
Present	11/12 (91.7 %)	11/12 (91.7 %)	0.000 1.000
absent	1/12 (8.3 %)	1/12 (8.3 %)	0.000 1.000
Pathological stage	Ib 1/11 (9.1 %)	IIa 1/10 (10 %)	
Ib	10/11 (90.9 %)	9/10 (90 %)	–0.006 1.000
IIa	0/3	3/3 (100 %)	0.000 1.000

Fig. 2. STAT2 stained glandular epithelium in non-tumor tissue, but no myoepithelial staining (a). G1 (b), G2 (c), G3 (d) STAT2 expression is nuclear but occasionally accompanied by pale cytoplasmic staining.
between 0.61 and 0.80 good concordance, and > 0.80 perfect concordance. Chi-square or Fisher’s exact test was utilized to check if there was any difference between the staining groups in terms of other factors. Mann–Whitney U test was used to determine if there was any difference in age between the staining groups. p < 0.05 was set as the significance level.

Results

The age of the 24 patients included in the study was in range of 29–80 years (mean age 58.42). Twenty-three of the cases were female and 1 of them was male. The M / F ratio was found to be 1/23. The largest tumor diameter was 9 cm, and the smallest was 1.5 cm (mean diameter 3.47 cm). According to the Modified Bloom-Richardson grading system, 7 of the tumors were of grade I, 8 were of grade II and 9 were of grade III. Out of 12 cases without lymph node metastasis, 3 were of grade I, 4 of grade II, and 5 of grade III. Out of 12 cases with lymph node metastasis, 4 were of grade I, 4 of grade II, and 4 of grade III. When the cases were divided into subtypes according to their molecular features, the majority of them were employed to present the concordance between staining results and other factors. Kappa coefficient < 0.40 was accepted to indicate weak concordance, between 0.41 and 0.60 moderate concordance, between 0.61 and 0.80 good concordance, and > 0.80 perfect concordance. Chi-square or Fisher’s exact test was utilized to check if there was any difference between the staining groups in terms of other factors. Mann–Whitney U test was used to determine if there was any difference in age between the staining groups. p < 0.05 was set as the significance level.

Tab. 3. STAT3 immunohistochemical expression and histopathological parameters.

Parameters	Immunohistochemical expression of STAT3 antibody.			
	Negative	Positive	Correlation	p
Age				
<40	2	2	–0.026	0.855
>40	9	11		
Histological grade				
Grade I	3/7 (42.9 %)	4/7 (57.1 %)	0.100	0.522
Grade II	5/8 (62.5 %)	3/8 (37.5 %)		
Grade III	3/9 (33.3 %)	6/9 (66.7 %)		
Tumor diameter				
<2	4/9 (44.4 %)	5/9 (55.6 %)	0.007	1.000
2–5	2/4 (50 %)	2/4 (50 %)		
>5	6/11 (54.5 %)			
Necrosis				
Present	8/17 (37.1 %)	9 (52.9 %)	–0.036	1.000
Absent	4/7 (32.9 %)	4 (57.1 %)		
Inflammation				
Present	9/21 (42.9 %)	12/21 (57.1 %)	0.111	0.576
Absent	2/3 (66.7 %)	1/3 (33.3 %)		
Tumor growth pattern at borders				
Infiltrative	10/21 (47.6 %)	11/21 (52.4 %)	0.059	1.000
Expansile	1/3 (33.3 %)	2/3 (66.7 %)		
cerbB2 status				
Negative	8/17 (47.1 %)	9/17 (52.9 %)	0.145	0.031
Uncertain	0/4	4/4 (100 %)		
ER status				
Negative	3/7 (42.9 %)	10/17 (58.8 %)	0.137	0.659
Positive	4/7 (57.1 %)	7/17 (41.2 %)		
PR status				
Negative	2/3 (66.7 %)	12/21 (57.1 %)	0.111	0.576
Positive	1/3 (33.3 %)	9/21 (42.9 %)		
Hormon receptor status				
Positive	9/21 (42.9 %)	12/21 (57.1 %)	0.111	0.576
Negative	2/3 (66.7 %)	1/3 (33.3 %)		
LN metastasis				
Present	3/12 (25 %)	9/12 (75 %)	0.417	0.100
Absent	8/12 (66.7 %)	4/12 (33.3 %)		
Pathological stage				
Ib	8/11 (72.7 %)	3/11 (27.3 %)	0.483	0.007
IIa	1/10 (10 %)	9/10 (90 %)		
IIb	2/3 (66.7 %)	1/3 (33.3 %)		

Fig. 3. G0 STAT3 expression was detected in 11 of the tumor cases (a), G1 STAT3 expression was detected in 2 of the tumor cases (b), G2 STAT3 expression was detected in 7 of the tumor cases (c) G3 STAT3 expression was detected in 4 of tumor cases (d). STAT3 positivity was detected in vascular endothelium (thin arrow) and fibroblasts (thick arrow) in stroma.
found to be of luminal type of breast cancer (n = 21, 87.5%). In immunohistochemical staining performed with STAT1, 16.6 % (n = 4) of the cases with tumors were negative, while in 16.6 % (n = 4), 45.8 % (n = 11), and 20.8 % (n = 5), staining grades 1, 2 and 3 were observed, respectively (Fig. 1). STAT1 expression was not observed in non-tumoral epithelial and myoepithelial cells. There was no statistically significant correlation between STAT1 antibody expression in tumor cells and the histological grade, diameter and growth limits of the tumor, presence of intratumoral desmoplasia, presence of inflammation, presence of necrosis, axillary lymph node involvement, estrogen, progesterone, and cerb-B2 staining status (p > 0.05) (Tab. 1). When STAT2 expression was examined, 8.33 % (n = 2) of the cases were negative, while in 20.8 % (n = 5), 37.5 % (n = 9) and 33.3 % (n = 8), staining grades 1, 2 and 3 were observed, respectively (Fig. 2). No significant results could be found between the STAT2 antibody expression in tumor cells and analyzed histological parameters (Tab. 2).

Immunohistochemical staining with STAT3 revealed staining of the vascular endothelium, nontumoral duct epithelia, lymphocytes, vascular smooth muscle and fibroblasts as well as nuclear staining in the tumor epithelium. In our study, we identified positive staining with STAT3 in 54.1 % of our cases. While 45.8 % (n = 11) of the cases with tumors were negative; 83.3 % (n = 2),
29.2 % (n = 7) and 16.6 % (n = 4) exhibited grades 1; 2 and 3 of nuclear staining (Fig. 3). A statistically significant relationship of STAT3 expression with the pathological stage of tumor and cerbB2 expression of tumor was found (p values 0.007 and 0.031, respectively) (Tab. 3).

When only the cases with the luminal type of breast carcinomas were evaluated statistically, it was seen that the concordance of STAT3 expression with the pathological stage became more prominent (p 0.004). Similarly, there was a significant relationship between the expressions of cerbB2 and STAT3 only when luminal types were evaluated (p = 0.043). However, no correlation was found between other histopathological parameters and STAT3 expression (Tab. 3).

When STAT5a staining of cases with tumor was evaluated, 41.6 % (n = 10) of them were found to be negative, while 29.1 % (n = 7), 16.6 % (n = 4) and 12.5 % (n = 3) exhibited grades 1, 2, and 3 of staining, respectively. While nontumoral breast ductus epithelium exhibited strong staining with STAT5a, myoepithelial cells were not stained. Diffuse STAT5a positivity was observed in vascular endothelium and lymphocytes (Fig. 4). The expressions of STAT 5a and estrogen receptor status of the tumor were found to be statistically significant (p < 0.05). However, no significant correlation was found between STAT5 staining and other parameters (p > 0.05) (Tab. 4).

Tab 5. HIF-1α immunohistochemical expression and histopathological parameters.

Parameters	Immunohistochemical expression of HIF1α antibody.				
	Negative	Positive	Correlation	p	
Age	<40	2	2	0.39	0.05
	≥40	18	2		
Histological grade	Grade I	5/7 (71.4 %)	2/7 (28.6 %)	0.036	0.644
	Grade II	7/8 (87.5 %)	1/8 (12.5 %)		
	Grade III	8/9 (89.9 %)	1/9 (11.1 %)		
Tumor diameter	<2	8/9 (88.9 %)	1/9 (11.1 %)	-0.022	0.394
	2–5	9/11 (81.8 %)	2/11 (18.2 %)		
	>5	3/4 (75 %)	1/4 (25 %)		
Necrosis	Present	14/17 (82.4 %)	3/17 (17.6 %)	0.022	1.000
	absent	6/7 (85.7 %)	1/7 (14.3 %)		
Inflammation	Present	18/21 (95.7 %)	3/21 (14.3 %)	-0.056	0.437
	absent	2/3 (66.7 %)	1/3 (33.3 %)		
Tumor growth pattern at borders	Infiltrative	17/21 (81 %)	4/21 (19 %)	-0.167	1.000
	expansive	3/4 (75 %)	1/4 (25 %)		
cerbB2 status	Negative	14/17 (82.4 %)	3/17 (17.6 %)	0.018	1.000
	uncertain	3/4 (75 %)	1/4 (25 %)		
	positive	–	13/17 (76.5 %)	0.152	0.283
ER status	Negative	–	4/17 (23.5 %)		
	positive	–	17/21 (81 %)	0.056	1.000
PR status	Negative	–	4/21 (19 %)		
	positive	–	4/21 (19 %)	0.056	1.000
Hormone receptor status	Positive	17/21 (81 %)	4/21 (19 %)	–	
	Negative	–	–	–	
LN metastasis	Present	8/12 (66.7 %)	4/12 (33.3 %)	0.333	0.093
	absent	–	–	–	
Pathological stage	Ib	11/11 (100 %)	–	0.241	0.146
	IIa	7/10 (70 %)	3/10 (30 %)		
	IIb	2/3 (66.7 %)	1/3 (33.3 %)		

Fig. 5. 23/24 of tumor cases in G3 (a) and 1/24 showed G2 (b) STAT5b expression.

Fig. 6. HIF-1α was stained in the epithelial, intraductal and infiltrative atypical epithelium in non-tumor breast tissue. No staining of lymphocytes in the non-tumor area / No tumor epithelium staining was detected with HIF 1 alpha (grade 0).
Nuclear and cytoplasmic staining was detected in tumor cells with STAT5b. All of the cases with tumor were stained with STAT5b, while in 4.16% of cases (n = 1), and 95.83% of cases (n = 23), grades 2, and 3 of staining were observed, respectively (Fig. 5). Due to the fact that STAT 5b was expressed in all cases, no statistical analysis could be conducted. No correlation was found between the parameters related to the degree of staining (p > 0.05). In our study, the staining with STAT2, STAT3, and STAT5a was positive also in nontumoral breast ductus epithelium. While 84% (n = 20) of the cases were negative after staining with HIF1α; 8% (n = 2), 4% (n = 1) and 4% (n = 1) exhibited grades 1, 2, and 3 of staining, respectively. While the staining with HIF1α was present in non-tumorous breast tissue epithelium, intraductal and infiltrative atypical epithelium, and myoepithelial cells were not HIF1α positive. No lymphocytes were stained in the non-tumor area. There was also nuclear staining of lymphocytes in the lymphoid response to the tumor (Fig. 6). No significant correlation of HIF1α expression in tumors with lymphocytes and evaluated parameters was found (p > 0.05) (Tab. 5).

The staining with HIF2α resulted in the staining of intratumor lymphocytes as well as tumor cells (Fig. 7). In addition, myoepithelial cells and smooth muscle cells of the vascular wall were also stained. The staining with HIF2α resulted in 41.66% of cases (n = 10) being negative, while 16.6% (n = 4) and 41.66% (n = 10) displayed grades 1 and 2 of staining, respectively. In the statistical research, no statistically significant correlation was found.
Discussions

While our study on patients with invasive ductal carcinoma, the STAT3 expression was concordant with the pathological stage and CerbB2 positivity, no correlation was found between STAT3 expression and other parameters. Besides, there was a significant correlation between STAT5a expression of tumor cells and estrogen receptor positivity whereas no significant correlation was found between STAT5a expression and other parameters. No significant correlation was found between the tumor expression of other immunohistochemical markers of STAT1, STAT2, STAT5b, HIF1α, HIF2α and the pathological stage of tumor, nuclear grade of tumor, desmoplasia in tumor, presence of necrosis and inflammation, and ER, PR and CERB-B2 status of tumor. Breast carcinoma is the most common malignant tumor in women, while more than 1,000,000 women are diagnosed with breast carcinoma annually (1). It is also the most common cause of death from carcinomas in women. Although breast cancer is seen in any age group, it rarely occurs under 25 years of age. In our study, the age of the patients ranged between 29 and 80 years. Breast cancer is molecularly classified into five main subtypes: luminal A, luminal B, Her2 (+), triple-negative and normal-like (19). In accordance with literature, most of the cases in our study were of the luminal subtypes (n = 21).

STAT3, the major element of the STAT family, plays an important role in cell differentiation and proliferation (9, 20). In addition, the studies on breast and hematopoietic cells have shown that STAT3 also plays a role as an oncogenic protein and it has been suggested that it may be related also to chemotherapy resistance (21, 22). It is stated that STAT3 is especially activated in breast cancer and it contributes to cancer progression by stimulating cell proliferation, increasing angiogenesis, influencing escape from the immune system and providing resistance to apoptosis (23–26). Although it has been shown in the conducted studies that STAT3 is expressed to a certain extent in all breast cancer subtypes, the information on its prognostic significance is contradictory (27). While in some publications it was reported that nuclear STAT3 expression was associated with better survival, in some others no correlation was found with the prognosis or ER expression (28, 29). In a recent study, activated STAT3 has been reported to be an indicator of good prognosis in luminal breast cancers (30). In our study, STAT3 expression was concordant with the pathological stage, and it was found to have significantly higher correlation with luminal breast cancer (p = 0.004). Moreover, in accordance with the results found by Diaz et al. (31), in our study, a statistically significant relationship was found between cerbB2 positivity and STAT3 expression (p = 0.041). However, there was no significant relationship between STAT3 expression and other parameters included in our study. STAT5a, another important member of the STAT family, is required for the growth, proliferation and differentiation of cells in the breast epithelium (32–35). In accordance with literature, in our study, it was observed that STAT5a was also stained in nontumoral breast tissue, lymphocytes and fibroblasts (36). In a study, it was stated that there was a decrease in STAT5a activation in metastatic tumors, and it was an independent factor for good prognosis in human breast cancer (37). STAT5a protein expression was shown not to be statistically significant although it differed slightly. In our study, we observed that the loss in STAT5a expression was higher in lymph node positive cases, but no statistically significant result was obtained. In another study evaluating the STAT5a protein expression in breast cancer, a significant correlation was found between nuclear staining of STAT5a and increased histological grade (38). In our study, we observed diffuse STAT5a expression in the nontumoral staining of STAT5a and increased histological grade (38). In our study, we observed diffuse STAT5a expression in breast cancer (37). STAT5a protein expression was shown not to be statistically significant although it differed slightly. In our study, we observed that the loss in STAT5a expression was higher in lymph node positive cases, but no statistically significant result was obtained. In another study evaluating the STAT5a protein expression in breast cancer, a significant correlation was found between nuclear staining of STAT5a and increased histological grade (38). In our study, we observed diffuse STAT5a expression in the nontumoral staining of STAT5a and increased histological grade (38). In our study, we observed diffuse STAT5a expression in breast cancer (37). STAT5a protein expression was shown not to be statistically significant although it differed slightly. In our study, we observed that the loss in STAT5a expression was higher in lymph node positive cases, but no statistically significant result was obtained. In another study evaluating the STAT5a protein expression in breast cancer, a significant correlation was found between nuclear staining of STAT5a and increased histological grade (38). In our study, we observed diffuse STAT5a expression in the nontumoral staining of STAT5a and increased histological grade (38). In our study, we observed diffuse STAT5a expression in breast cancer (37).
The adaptation to the hypoxic environment for the survival and development of tumor cells is mainly determined by the HIF (hypoxia inducing factor)-dependent transcription program. HIF1α and HIF2α are important proteins that initiate tumor cell responses to hypoxia (45). HIFs mainly increase the angiogenesis, and cause the progression of the tumor in an aggressive course (46, 48). The literature has revealed a significant association between low surveillance and high HIF1α levels in patients with bladder, breast, endometrial, cervical, oropharyngeal and esophageal carcinomas (45, 48–61). In addition, HIF1α has been reported to be associated with poor prognosis in pancreatic tumors (62). In various studies on breast carcinomas, high HIF1α levels have been reported to be associated with a shorter life span (45, 60, 63). Also in our study, there was no HIF1α expression observed in cases without lymph node metastasis. In addition, we found that all of the cases stained positive for HIF1α had lymph node metastasis with infiltrative tumor boundaries. Nevertheless, our findings were not statistically significant. Despite the lack of a thorough comparison of life span, our results are consistent with findings in literature, and the presence of correlation between HIF1α expression and lymph node positivity, an important parameter in determining tumor stage, supports the negative correlation between patient prognosis and HIF1α. Besides, its correlation with infiltrative tumor boundary may be associated with the development and spread potential of the tumor. The increase in HIF1α is associated with breast carcinogenesis and has been reported in the literature to exist especially in cases with low differentiation (64). In our study, however, there was no significant correlation between HIF1α expression and tumor differentiation. Hypoxia has been reported to trigger cell differentiation and cancer progression with the down-regulation of ER expression. It is suggested in literature that ER increases the hypoxic response caused by HIF and thus leads to a more malignant phenotype (45, 65). In our study, all cases stained with HIF1α were identified to be ER positive but no statistically significant result was obtained. In a previous study on HIF2α, the HIF2α expression was detected in 36 % of ductal carcinomas of the breast. In our study though, we found HIF2α expression in 58 % of our cases. While in the aforementioned study, there was no correlation between hormone receptors, Cerb-B2 and HIF2α expression, there was a significant correlation with the presence of lymph node metastasis. In our study, on the other hand, there was an increased expression of HIF2α in PR receptor positive cases, and no statistically significant correlation was observed between PR and HIF2α. No significant correlation was found with the presence of lymph node metastasis, which may be due to the low number of cases with lymph node metastasis in our study. In literature, no significant correlation consistent with present findings was found between HIF2α and Cerb-B2 expression and other prognostic parameters.

Conclusion

Consequently, our study reveals that among the immunohistochemical markers examined, only STAT3 expression correlates with an advanced pathological stage, and has a prognostic value.

References

1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018. GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68 (6): 394–424. doi: 10.3322/caac.21492.
2. Wang R, Zhou S, Li S. Cancer therapeutic agents targeting hypoxia-inducible factor-1. Curr Med Chem 2011; 18 (21): 3168–3189.
3. Li Y, Ye D. Cancer therapy by targeting hypoxia-inducible factor-1. Curr Cancer Drug Targets 2010; 10 (7): 782–796.
4. Maxwell PH. The HIF pathway in cancer. Semin Cell Dev Biol 2005; 16 (4–5): 523–530.
5. Xu R. P4HA1 is a new regulator of the HIF-1 pathway in breast cancer. Cell Stress 2019; 3 (1): 27–28.
6. Freeburg PB, Robert B, St John PL, Abrahamson DR. Podocyte egress of Hypoxia-inducible factor (HIF)-1 and HIF-2 during glomerular development. J Am Soc Nephrol 2003; 14 (4): 927–938.
7. Semenza GL. Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy. Trends Pharmacol Sci 2012; 33 (4): 207–214.
8. Haricharan S, Li Y. STAT signaling in mammary gland differentiation, cell survival and tumorigenesis. Mol Cell Endocrinol 2014; 382 (1): 560–569.
9. Clevenger CV. Roles and regulation of stat family transcription factors in human breast cancer. Am J Pathol 2004; 165 (5): 1449–1460.
10. Darnell JE Jr, Kerr IM, Stark GR. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 1994; 264 (5164): 1415–1421.
11. Porritt RA, Hertzog PJ. Dynamic control of type I IFN signalling by an integrated network of negative regulators. Trends Immunol 2015; 36 (3): 150–160.
12. Zhong Z, Wen Z, Darnell JE Jr. Stat3: a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6. Science 1994; 264 (5155): 95–98.
13. Kaplan MH, Sun YL, Hoey T, Grusby MJ. Impaired IL-12 responses and development of Th2 cells in Stat4 deficient mice. Nature 1996; 382: 174–177.
14. Bowman T, Garcia R, Turkson J, Jove R. STATs in oncogenesis, Oncogene 2000; (19): 2474–2488.
15. Loh CY, Arya A, Naema AF, Wong WF, Sethi G, Loy C. Signal Transducer and Activator of Transcription (STATs) Proteins in Cancer and Inflammation: Functions and Therapeutic Implication. Front Oncol 2019; 9: 48.
16. Audisi F, Cherubini F, Monteleone G, Stolfi C. STAT3 Interactors as Potential Therapeutic Targets for Cancer Treatment. Int J Mol Sci 2018; 19 (6): pii: E1787. doi: 10.3390/ijms19061787.
17. Wang S, Yu L, Shi W, Li X, Yu L. Prognostic roles of signal transducers and activators of transcription family in human breast cancer. Biosci Rep 2018; 38 (6): pii: BSR20171175.
18. Watson CJ, Miller WR. Elevated levels of members of the STAT family of transcription factors in breast cancer nuclear extracts. Br J Cancer 1995; 71 (4): 840–844.
19. Russnes HG, Lingjærde OC, Borresen-Dale AL, CALDAS C. Breast Cancer Molecular Stratification: From Intrinsic Subtypes to Integrative Clusters. Am J Pathol 2017; 187 (10): 2152–2162.
20. Buettner R, Mora LB, Jove R. Activated STAT signaling in human tumors provides novel molecular targets for therapeutic intervention. Clin Cancer Res 2002; 8 (4): 945–954.

21. Real PJ, Sierra A, De Juan A, Segovia JC, Lopez-Vega JM, Fernandez-Luna JL. Resistance to chemotherapy via Stat3-dependent over-expression of Bel-2 in metastatic breast cancer cells. Oncogene 2002; 21 (50): 7611–7618.

22. Dalton WS, Jove R. Drug resistance in multiple myeloma: approaches to circumvention. Semin Oncol 1999; 26 (5 Suppl 13): 23–27.

23. Wang T, Niu G, Kortylewski M, Burdelya L, Shain K, Zhang S, Bhattacharya R, Gabrilovich D, Heller R, Coppola D, Dalton W, Jove R, Pardali D, Yu H. Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells. Nat Med 2004; (10): 48–54.

24. Aoki Y, Feldman GM, Tosato G. Inhibition of STAT3 signaling induces apoptosis and decreases survivin expression in primary effusion lymphoma. Blood 2003; 101 (4): 1535–1542.

25. Wei LH, Kuo ML, Chen CA, Chou CH, Lai KB, Lee CN, Hsieh CY. Interleukin-6 promotes cervical tumor growth by VEFG-dependent angiogenesis via a Stat3 pathway. Oncogene 2003; 22 (10): 1517–1527.

26. Niu G, Wright KL, Huang M, Song L, Haura E, Turkson J, Zhang S, Wang T, Sinibaldi D, Coppola D, Heller R, Ellis LM, Karras J, Bromberg J, Pardali D, Jove R, Yu H. Constitutive Stat3 activity up-regulates VEGF expression and tumor angiogenesis. Oncogene 2002; 21 (13): 2000–2008.

27. Furth PA. STAT Signaling in Different Breast Cancer Sub-types. Mol Cell Endocrinol 2014; 382 (1): 10.1016/j.mce.2013.03.023.

28. Dolfeld-Filhart M, Camp RL, Kowalski DP, Smith BL, Rimm DL. Tissue microarray analysis of signal transducers and activators of transcription 3 (Stat3) and phospho-Stat3 (Tyr705) in node-negative breast cancer shows nuclear localization is associated with a better prognosis. Clin Cancer Res 2003; 9 (2): 594–600.

29. Yeh YT, Ou-Yang F, Chen IF, Yang SF, Wang YY, Chuang HY, Su JH, Hou MF, Yuan SS. STAT3 ser727 phosphorylation and its association with negative estrogen receptor status in breast infiltrating ductal carcinoma. Int J Cancer 2006; 118 (12): 2943–2947.

30. Sonnenblick A, Salgado R, Brühée S, Zahavi T, Perez T, Van den Eynden G, Rous G, Salmon A, Francis PA, Di Leo A, Crown JPA, Viale G, Daly L, Javad B, Fujisawa S, De Azambuja E, Lieveke A, Piccart MJ, Bromberg JF, Sotiriou C. p-STAT3 in luminal breast cancer: Integrated RNA-protein pooled analysis and results from the BIG 2-98 chemical assays. Int J Cancer 2009; 124 (9): 2124–2134.

31. Diaz N, Minton S, Cox C, Bowman T, Gritsko T, Garcia R, Eweis I, Wloch M, Livingston S, Seijo E, Cantor A, Lee JH, Beam CA, Sulcer: Integrated RNA-protein pooled analysis and results from the BIG 2-98 Tissue microarray analysis of signal transducers and activators of transcription 3 (Stat3) and phospho-Stat3 (Tyr705) in node-negative breast cancer shows nuclear localization is associated with a better prognosis. Clin Cancer Res 2003; 8 (4): 594–600.

32. Liu X, Robinson GW, Wagner KU et al. Stat5a is mandatory for adult mammary gland development and lactogenesis. Genes Dev 1997; 11: 179–186.

33. Miyoshi K, Shillingford JM, Smith GH et al. Signal transducer and activator of transcription (stat)5 controls the proliferation and differentiation of mammary alveolar epithelium. J. Cell Biol 2001; 155: 531–542.

34. Bratthauer GL, Strauss BL, Tavassoli FA. STAT5a expression in various lesions of the breast 2006; 448: 165–171.

35. Leehy KA, Truong TH, Mauro LJ, Lange CA. Progesterone receptors (PR) mediate STAT actions: PR and prolactin receptor signaling crosstalk in breast cancer models. J Steroid Biochem Mol Biol 2018; 176: 88–93.

36. Nevalainen MT, Xie J, Torhost J, Bubendorf L, Haas P, Kononen J, Sauter G, Hallgeir R. Signal transducer and activator of transcription-5 activation and breast cancer prognosis. J Clin Oncol 2004; 22 (11): 2053–2060.

37. Cotarla I, Ren S et al. Stat5a is tyrosine phosphorylated and nuclear localized in a high proportion of human breast cancers. Int J Cancer 2004; 108 (5): 665–671.

38. Richer JK, Lange CA, Manning NG, Owen G, Powell R, Horwitz KB. Convergence of progesterone with growth factor and cytokine signaling in breast cancer. Progesterone receptors regulate signal transducers and activators of transcription expression and activity. J Biol Chem 1998; 273 (47): 31317–31326.

39. Canbay E, Norman M et al. Prolactin stimulates the JAK2 and focal adhesion kinase pathways in human breast carcinoma T47-D cells. Biochem J 1997; 324 (Pt 1): 231–236.

40. Sheen-Chen SM, Huang CC, Tang RP, Yang CH, Chou FF, Eng HL. Signal transducer and activator of transcription 1 in breast cancer: analysis with tissue microarray 2007; 27 (4B): 2481–2486.

41. Durbin JE, Hackenmiller R, Simon MC, Levy DE. Targeted disruption of the mouse 0Stat1 gene results in compromised innate immunity to viral disease. Cell 1996; 84 (3): 443–450.

42. Charpin C, Secq V, Giustiano S, Carpentier S, Andrac L, Lavaut MN, Allasia C, Bonnier P, Garcia S. A signature predictive of disease outcome in breast carcinomas, identified by quantitative immunocytochemical assays. Int J Cancer 2009; 124 (9): 2124–2134.

43. Uluer ET1, Aydemir I, Inan S, Ozbilgin K, Vatansever HS. Effects of 5-fluorouracil and gemcitabine on a breast cancer cell line (MCF-7) via the JAK/STAT pathway. Acta Histochem 2012; 114 (7): 641–646.

44. Meraz MA, White JM, Sheehan KC, Bach EA, Rodig SJ, Dighe AS, Kaplan DH, Riley JK, Greenlund AC, Campbell D, Carver-Moore K, DuBois RN, Clark R, Aguet M, Schreiber RD. Targeted disruption of the Stat1 gene in mice reveals unexpected physiologic specificity in the JAK-STAT signaling pathway. Cell 1996; 84 (3): 431–442.

45. Giatromanolaki A, Sivridis E, Fiska A, Koukourakis MI. Inhibition of the Stat1 gene in mice reveals unexpected physiologic specificity in the JAK-STAT signaling pathway. Cell 1996; 84 (3): 431–442.

46. Schindl M, Schoppmann SF, Samonigg H et al. Overexpression of hypoxia-inducible factor-1 alpha associated with an unfavorable prognosis in lymph node-positive breast cancer. Clin Cancer Res 2002; 8: 1831–1837.

47. He H, Wang X, Chen J, Sun L, Sun H, Xie K. High-Mobility Group Box 1 (HMG1) Promotes Angiogenesis and Tumor Migration by Regulating Hypoxia-Inducible Factor 1 (HIF-1alpha) Expression via the Phosphatidylinositol 3-Kinase (PI3K)/AKT Signaling Pathway in Breast Cancer Cells. Med Sci Monit 2019; 25: 2352–2360.

48. Theodoropoulus VE, Lazaris AC, Sofras F et al. Hypoxia-inducible factor-1alpha expression correlates with angiogenesis and unfavorable prognosis in bladder cancer. Eur Urol 2004; 46: 200–208.

49. Sivridis E, Giatromanolaki A, Gatter KC, Harris AL, Koukourakis MI. Tumor and Angiogenesis Research Group. Association of hypoxia-inducible factors 1alpha and 2alpha with activated angiogenic pathways and prognosis in patients with endometrial carcinoma. Cancer 2002; 95 (5): 1055–1063.
50. Burri P, Djonov V, Aebersold DM et al. Significant correlation of hypoxia-inducible factor-1α with treatment outcome in cervical cancer treated with radical radiotherapy. Int J Rad Oncol Biol Phys 2003; 56: 494–501.

51. Jacobsson H, Harrison H, Hughes É, Persson E, Rhost S, Fitzpatrick P, Gustafsson A, Andersson D, Gregersson P, Magnusson Y, Ståhlberg A, Landberg G. Hypoxia-induced secretion stimulates breast cancer stem cell regulatory signalling pathways. Mol Oncol 2019.

52. Birner P, Schindl M, Obermair A, Plank C, Breitenecker G, Oberhuber G. Overexpression of hypoxia-inducible factor-1α is a marker for an unfavorable prognosis in early-stage invasive cervical cancer. Cancer Res 2001; 61: 2911–2916.

53. Chakraborty C, Mitra S, Roychowdhury A, Samadder S, Dutta S, Roy A, Das P, Mandal RK, Sharp TV, Roychowdhury S, Panda CK. Deregulation of MLIMD1-VHL-HIF-1α-VEGF pathway is associated with different stages of cervical cancer. Biochem J 2018; 475 (10): 1793–1806.

54. Aebersold DM, Burri P, Beer KT et al. Expression of hypoxia-inducible factor-1α: a novel predictive and prognostic parameter in the radiotherapy of oropharyngeal cancer. Cancer Res 2001; 61: 2911–2916.

55. Gong L, Zhang W, Zhou J, Lu J, Xiong H, Shi X, Chen J. Prognostic value of HIFs expression in head and neck cancer: a systematic review. PLoS One 2013; 8 (9): e75094.

56. Xie W, Liu L, He H, Yang K. Prognostic value of hypoxia-inducible factor-1α in nasopharyngeal carcinoma: a meta-analysis. Int J Biol Markers 2018; 32 (4): 217–224.

57. Hui EP, Chan AT, Pezzella F et al. Coexpression of hypoxia-inducible factor-1α and 2α, carbonic anhydrase IX, and vascular endothelial growth factor in nasopharyngeal carcinoma and relationship to survival. Clin Cancer Res 2002; 8: 2595–2604.

58. Zhao X, Tang YP, Wang CY, Wu JX, Ye F. Prognostic values of STAT3 and HIF-1α in esophageal squamous cell carcinoma. Eur Rev Med Pharmacol Sci 2019; 23 (8): 3351–3357.

59. Matsuyama T, Nakanishi K, Hayashi T et al. Expression of hypoxia-inducible factor-1α in esophageal squamous cell carcinoma. Cancer Sci 2005; 96: 176–182.

60. Kurokawa T, Miyamoto M, Kato K et al. Overexpression of hypoxia-inducible factor-1α (HIF-1α) in esophageal squamous cell carcinoma correlates with lymph node metastasis and pathologic stage. Br J Cancer 2003; 89: 1042–1047.

61. Vleugel MM, Greijer AE, Shvarts A et al. Differential prognostic impact of hypoxia induced and diffuse HIF-1α expression in invasive breast cancer. J Clin Pathol 2005; 58: 172–177.

62. Miyake K, Yoshizumi T, Imura S, Sugimoto K, Batmunkh E, Kaneura H, Morine Y, Shimada M. Expression of hypoxia-inducible factor-1alpha, histone deacetylase 1, and metastasis-associated protein 1 in pancreatic carcinoma: correlation with poor prognosis with possible regulation. Pancreas 2008; 36 (3): e1–9.

63. Bos R, van der Groep P, Greijer AE, Shvarts A, Meijer S, Pinedo HM, Semenza GL, van Diest PJ, van der Wall E. Levels of hypoxia-inducible factor-1alpha independently predict prognosis in patients with lymph node negative breast carcinoma. Cancer 2003; 97 (6): 1573–1581.

64. Bos R, Zhong H, Hanrahan CF, Mommers EC, Semenza GL, Pinedo HM, Abdeloff MD Simons JW, Van Diest PJ, Van der Wall E: Levels of hypoxia-inducible factor-1α during breast carcinogenesis. J Natl Cancer Inst 2001, 93: 309–314.

65. Ao A, Wang H, Kamarajugadda S, Lu J. Involvement of estrogen-related receptors in transcriptional response to hypoxia and growth of solid tumors. Proc Natl Acad Sci USA 2008; 105 (22): 7821–7826.

Received July 8, 2019.
Accepted August 14, 2019.