A global dataset for crop production under conventional tillage and no tillage systems

Yang Su1✉, Benoit Gabrielle1 & David Makowski2,3

No tillage (NT) is often presented as a means to grow crops with positive environmental externalities, such as enhanced carbon sequestration, improved soil quality, reduced soil erosion, and increased biodiversity. However, whether NT systems are as productive as those relying on conventional tillage (CT) is a controversial issue, fraught by a high variability over time and space. Here, we expand existing datasets to include the results of the most recent field experiments, and we produce a global dataset comparing the crop yields obtained under CT and NT systems. In addition to crop yield, our dataset also reports information on crop growing season, management practices, soil characteristics and key climate parameters throughout the experimental year. The final dataset contains 4403 paired yield observations between 1980 and 2017 for eight major staple crops in 50 countries. This dataset can help to gain insight into the main drivers explaining the variability of the productivity of NT and the consequence of its adoption on crop yields.

Background & Summary

Often featured among promising climate change mitigation measures, NT systems, including conservation agriculture (CA), contribute to environmental preservation and sustainable agricultural production1,2. NT is expected to mitigate soil degradation, improve soil structure and water retention properties3–5. Several studies indicate that this cropping system can provide a large range of positive environmental externalities such as increased biodiversity, enhanced carbon sequestration and improved soil quality through an increase in soil organic matter6–10. However, the productivity of NT systems compared to conventional cropping systems is still controversial. Since the productivity of NT depends on several interacting factors such as climatic conditions11, soil characteristics1,12, and other agricultural management activities13–19, the potential of NT to increase agricultural productivity remains highly uncertain.

Several studies1,12,20–22 have been conducted to synthetize the current evidence on the productivity in NT systems. Some of these studies relied on global datasets including results of field experiments comparing NT and CT cropping systems over a large range of soil and climate conditions. However, these datasets do not include the most recent published experiments, and provide no or limited information on soil characteristics, climate variables, and management practices. In particular, information on fertilizer inputs, weed and pest control, and intra- and inter-annual climatic variability are frequently missing. Other studies comparing NT and CT rely on a limited number of experiments, are only conducted at a regional scale, or did not make their data fully available23–25. Thus, a global dataset reporting findings from the most recent field experiments and including information about a wide range of climatic parameters, soil characteristics and agricultural management practices is still lacking.

To address this gap, we present an updated and extended dataset comparing CT and NT productivity including the most recently published experimental studies, and a detailed description of their environmental characteristics and management practices. Our dataset contains 4403 paired (NT vs. CT) yield observations collected between 1980 and 2017 for eight major staple crops in 50 countries. For each experiment, we provide information on soil texture, pH, the year and month of crop planting and harvesting, the location of the experiment, fertilization, weed and pest control practices, crop type, crop rotation, crop residue management, and crop irrigation. Besides soil characteristics and information on management practices, we also report a large range of climate variables derived from several external databases. These include precipitation, potential evapotranspiration, average

1UMR ECOSYS, INRAE AgroParisTech, Université Paris-Saclay, 78850, Thiverval-Grignon, France. 2UMR Agronomie, INRAE AgroParisTech, Université Paris-Saclay, 78850, Thiverval-Grignon, France. 3Applied mathematics and computer science (MIA 518), INRAE AgroParisTech, Université Paris-Saclay, 75005, Paris, France. ✉e-mail: yang.su@inrae.fr
temperature, maximum temperature, and minimum temperature during the crop growing season. This dataset can prove useful to disentangle the effects of soil, climate and agronomic drivers of crop yields when comparing NT with CT systems.

Methods

Data collection. The literature search was done in February 2020 using the following keywords ‘Conservation agriculture/No-till/No tillage/Zero tillage’ & ‘Yield/Yield change’ in the websites ‘ScienceDirect,’ ‘Science Citation Index (web of science)’. A total of 1012 potentially relevant papers were identified by reviewing the title and abstract, and these papers were then screened according to the procedure summarized in Fig. 1. Papers not reporting yield data for CT and NT systems were excluded, as well as papers reporting experiments on reduced tillage (RT) systems. Papers reporting only mean yield data across different years or sites were also excluded. We then checked whether information on fertilization, weed and pest control, crop irrigation, crop rotation and crop residue management were reported for both CT and NT practices. After these screening and selection steps, all relevant data were manually extracted from the selected papers, including general information about the paper, location and year of the experiment, the number of years under NT when the crop was sown, soil characteristics, crop growing season, crop type, crop management practices and crop yield of CT and NT. However, due to a large number of missing data, the crop growing season, climatic variables and soil characteristics were finally collected through several external databases (Online-only Table 1). The growing season information was generated from a crop calendar database\(^{26,27}\) based on the crop type and the locations of the experiments reported in the papers. The precipitation, average temperature in the growing season were extracted from the UDel_AirT_Precip data provided by NOAA/OAR/ESRL PSL\(^{28}\). The maximum and minimum air temperature during the growing season were generated from CPC Global Temperature data provided by NOAA/OAR/ESRL PSL\(^{29}\) and the potential evapotranspiration data over the growing season were extracted from GLEAM database\(^{30,31}\). Soil textures were collected from the HWSD database\(^{32}\) using the locations of the experimental sites reported in the selected papers.

![Flow chart of paper collection and selection.](https://www.nature.com/scientificdata/)

Fig. 1 Flow chart of paper collection and selection.
The experiments for which it was not possible to obtain the requested information from the external databases were excluded. The final dataset includes the results extracted from 413 papers (published between 1983 to 2020), 4403 paired yield observations from NT and CT for 8 major crop species, including 370 observations for barley (232 observations for spring barley and 138 for winter barley), 94 observations for cotton, 1690 observations for maize, 195 observation for rice, 160 observations for sorghum, 583 observations for soybean, 61 observations for sunflower, 1250 observations for wheat (1041 observations for winter wheat and 209 observations for spring wheat) in 50 countries from 1980 to 2017 (Fig. 2).

Data records. All data are available on the figshare repository, which can be accessed through the link: https://doi.org/10.6084/m9.figshare.1215553. Four files are provided:

1. “Database.csv” includes the data.
2. “Summary of the database.docx”, includes the summary of dataset which explains the definition or assumption for each column in the dataset.
3. “List of references.docx” reports the references of the studies from which data were extracted.
4. “Code.zip”, includes all the codes used in this study.

Online-only Table 1 shows the metadata of our dataset. Six main categories of data are provided: Category I covers authors, publishing journal and the publishing year. Category II reports general information about the experiments, including country, location (villages or cities), latitude, longitude of experiment site, soil type and pH at experimental sites, number of replicates, crop types, the initial year of NT practice, crop planting/harvesting month/year, and the period since the initial year of NT practice.

Category III covers information about agricultural management activities under both NT and CT systems (data availabilities of those activities were shown in Fig. 3):

- Crop rotation with at least 3 crops involved (based on the crop rotation principle of CA defined by FAO): “Yes”, “No”, “Not reported”. The details of crop sequence are also provided.
- Soil cover: “Yes”, “No”, “Mixed”, “Not reported”. Details of residue management for the previous crops are also provided.
- Weed and pest control: “Yes”, “No”, “Mixed”, “Not reported”.
- Field fertilization: “Yes”, “No”, “Mixed”, “Not reported”. The details of N input and other fertilizer input are also provided.
- Crop irrigation: “Yes”, “No”, “Mixed”, “Not reported”. The details of the amount of water applied are also provided.

Category IV contains detailed information about the experiment site, experiment setting, management activities, depending on the papers, it may also include the type and quantity used of fertilizer, herbicide, or pesticide.

Category V corresponds to data related to crop yield. It includes the paired crop yields under CT (Yield_{CT}) and NT (Yield_{NT}) systems. The relative yield change is defined as \(\frac{Yield_{NT} - Yield_{CT}}{Yield_{CT}} \). The column “Yield increase with NT”
reports whether the differences between Y_{CT} and Y_{NT} are positive or negative (“Yes” indicates that crop yield is increased with NT practice, while “No” indicates that yield is not increased).

Category VI includes data extracted from the external databases, including crop growing season, climate variables (including precipitation, potential evapotranspiration, minimum/average/maximum temperature) during the growing season, and soil texture.

Crop growing season is defined by a start month and end month, which were extracted from the external crop calendar databases of spring barley, winter barley, cotton, maize, rice, sorghum, soybean, sunflower, spring wheat and winter wheat based on the crop type and study sites. Data on the crop calendar corresponds to averaged data and does not change intra-annually, thus the growing season extracted may be different from the actual growing season.

The climatic variables from the external databases are:

- Accumulated precipitation (P) during the growing season (sum of monthly precipitations during the growing season),
- Accumulated potential evapotranspiration (E) (sum of monthly evapotranspiration rates during the growing season),
- Precipitation balance (PB), defined as $PB = P - E$,
- Average air temperature (T_{ave}) during the growing season,
- Maximum air temperature (T_{max}): the maximum value among the daily temperatures in the growing season,
- Minimum air temperature (T_{min}): the minimum value among the daily temperatures in the growing season.

Soil texture was extracted from an external database based on the experiments’ locations. In total seven texture classes were included: sandy loam, loam, silt loam, sandy clay loam, clay loam, sandy clay and clay.

Technical Validation

To ensure the reliability of the information collected from the papers, we carefully checked and compared all the collected data with the original paper several times. Quality control of the database was conducted based on outlier detection. For each crop, the outliers of crop yield in CT system and NT system were identified based on the Interquartile Rule outlier detection method. For each crop species, an interquartile range (IQR) is defined as the difference between the first and third quartile of crop yield, and a threshold is calculated by adding 1.5 IQR to the third quartile. Any yield data beyond this threshold is flagged as an outlier for the crop species considered. The ratio of crop yield in NT and CT systems ($\frac{Y_{\text{NT}}}{Y_{\text{CT}}}$) were also calculated. All outliers and all the observations with a ratio higher than 2 were checked and compared with the values reported in the original papers one more time.

The crop yield values reported in our dataset are consistent with results of previous published studies. Comparing crop yield data of NT and CT, the adoption of NT practice overall leads to a yield decrease (Fig. 4a). A similar trend of crop production decrease with NT was reported in previous studies. We also find that the combination of NT with crop rotation and soil cover (known as CA) trends to increase crop yield compared to...
NT practice without rotation and soil cover (Fig. 4a), which is also in line with previous studies1,16,37. Further analysis conducted on each crop confirms that NT tends to decrease the yield of maize1, rice21, and wheat1 (Fig. 4b). The productivity of NT is found higher under dry conditions compared with wetter conditions (Fig. 4c), and similar trends were reported in previous studies1,12.

Usage notes. Our dataset can be used to analyze the factors influencing the productivity of NT (or CA) vs. CT. It is possible to train machine learning models to predict the probability of yield increase with NT (or CA) system (e.g. Supplementary Figs. 1 and 2) or the range of yield changes resulting based on the soil type, climate and agronomic inputs provided by this dataset. Global maps of probability of yield increase with NT (or CA) or the range of yield changes can be generated based on the outputs of machine learning models trained with our dataset, and enable policy-makers or agricultural advisors to identify the most promising regions for CA implementation. Details of how to train machine leaning models with our dataset are provided in Supplementary Materials38–45.

The crop yield data for 2018 and later can be extracted from the identified papers, but since some key climatic variables are missing in the external database for this time period (in particular, evapotranspiration), those data are not listed in the dataset provided. We will update the dataset once we have the latest data access to the missing climate variables.

Importantly, our dataset could be easily updated using data produced by new experiments. We welcome anyone interested to share data or papers not included in this meta-database to send them to the corresponding author (YS, yang.su@inrae.fr). We will maintain and add the new observations in the future to expand our dataset with the latest experimental data.

Code availability

Scripts using the R and MATLAB programming language are provided to produce figures and extract data from external databases. Additional code and related files are available from the corresponding author upon request.

Received: 21 April 2020; Accepted: 16 December 2020;
Published online: 28 January 2021

Fig. 4 Comparison of crop yield between NT and CT systems. The boxplots indicate the distributions (min, 1st quartile, median, 3rd quartile, max) of the log yield ratio of NT to CT. The mean log yield ratios of NT to CT were calculated based on a linear mixed effect model and marked as the red diamonds in the boxplots. Statistical tests were conducted to test the significance of the estimated values, **indicates P-value < 0.001, *indicates P-value < 0.01, *indicates P-value < 0.05, indicates P-value < 0.1. Plot (a) shows the mean log ratios for different types of NT systems vs. CT systems. NT\textsubscript{overall} represents all the experiments involving NT systems in the dataset, NT\textsubscript{R,SC} represents the NT systems without crop rotation and without soil cover, NT\textsubscript{R+SC} represents the CA systems or NT systems with both crop rotation and soil cover, and CT is the corresponding control in the experiments. Plot (b) shows the mean log ratios for different crop species. S. indicates spring, while W. indicates winter. Plot (c) shows the mean log ratios for different levels of PBs, corresponding to different level of water stress.
References

1. Pittelkow, C. M. et al. When does no-till yield more? A global meta-analysis. *Field Crops Research* **183**, 156–168 (2015).

2. Food and Agriculture Organization of the United Nations (FAO). Save and grow: A policymaker’s guide to the sustainable intensification of smallholder crop production. http://www.fao.org/3/a-i2215e.pdf (2011).

3. Farooq, M. & Kadambot H. M. Siddique. CONSERVATION AGRICULTURE (Springer, 2015).

4. Holland, J. M. The environmental consequences of adopting conservation tillage in Europe: Reviewing the evidence. *Agriculture, Ecosystems and Environment* **103**, 1–25 (2004).

5. Govaerts, B. et al. Infiltration, soil moisture, root rot and nematode populations after 12 years of different tillage, residue and crop rotation managements. *Soil and Tillage Research* **94**, 209–219 (2007).

6. Michler, J. D., Baylis, K., Arends-Kuening, M. & Mazvimavi, K. Conservation agriculture and climate resilience. *Journal of Environmental Economics and Management* **93**, 148–169 (2019).

7. Brouder, S. M. & Gomez-Macpherson, H. The impact of conservation agriculture on smallholder agricultural yields: A scoping review of the evidence. *Agriculture, Ecosystems & Environment* **187**, 11–32 (2014).

8. Smith, P. & Powlsion, D. S. Glendining, M. J. & Smith, Jo. U. Preliminary estimates of the potential for carbon mitigation in European soils through no-till farming. *Global Change Biology* **4**, 679–685 (1998).

9. Lal, R. & Stewart, B. A. Food security and soil quality (CRC Press, 2010).

10. Liu, E. X. et al. Effects of no-tillage management on soil biochemical characteristics in northern China. *The Journal of Agricultural Science* **148**, 217–223 (2010).

11. Jat, S. L. et al. Differential response from nitrogen sources with and without residue management under conservation agriculture on crop yields, water-use and economics in maize-based rotations. *Field Crops Research* **236**, 96–110 (2019).

12. Stewart, P. R. et al. The adaptive capacity of maize-based conservation agriculture systems to climate stress in tropical and subtropical environments: A meta-regression of yields. *Agriculture, Ecosystems and Environment* **251**, 194–202 (2018).

13. Nichols, V., Verhulst, N., Cox, R. & Govaerts, B. Weed dynamics and conservation agriculture principles: A review. *Field Crops Research* **183**, 56–68 (2015).

14. Sepat, S. et al. Effects of weed control strategy on weed dynamics, soybean productivity and profitability under conservation agriculture in India. *Field Crops Research* **210**, 61–70 (2017).

15. Boomsma, C. R. et al. Maize grain yield responses to plant height variability resulting from crop rotation and tillage system in a long-term experiment. *Soil and Tillage Research* **106**, 227–240 (2010).

16. Scopel, E. et al. Conservation agriculture cropping systems in temperate and tropical conditions, performances and impacts. A review. *Agronomy for Sustainable Development* **33**, 113–130 (2013).

17. Corbeels, M., Cardinale, R., Naudin, K., Guibert, H. & Torquebiau, E. The 4 per 1000 goal and soil carbon storage under agroforestry and conservation agriculture systems in sub-Saharan Africa. *Soil and Tillage Research* **188**, 16–26 (2019).

18. Corbeels, M., Sakyi, R. K., Kühne, R. F. & Whitbread, A. 2014. Meta-analysis of crop responses to conservation agriculture in sub-Saharan Africa. CCAFS Report No. 12. Copenhagen: CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS). www.ccafs.cgiar.org (2020).

19. Zheng, C. et al. The impacts of conservation agriculture on crop yield in China depend on specific practices, crops and cropping regions. *The Crop Journal* **2**, 289–296 (2014).

20. Laborte, J. P., Wortmann, C. S., Blanco-Canqui, H., Baigoria, G. A. & Lindquist, J. L. Identifying the drivers and predicting the outcome of conservation agriculture globally. *Agricultural Systems* **177**, 102692 (2020).

21. Knapp, S. & van der Heijden, M. G. A. A global meta-analysis of yield stability in organic and conservation agriculture. *Nature Communications* **9**, 1–9 (2018).

22. Pittelkow, C. M. et al. Productivity limits and potentials of the principles of conservation agriculture. *Nature* **517**, 365–368 (2015).

23. van den Putte, A., Govers, G., Diels, J., Gillijns, K. & Demuuzere, M. Assessing the effect of soil tillage on crop growth: A meta-regression analysis on European crop yields under conservation agriculture. *European Journal of Agronomy* **33**, 231–241 (2010).

24. Brouder, S. M. & Gomez-Macpherson, H. The impact of conservation agriculture on smallholder agricultural yields: A scoping review of the evidence. *Agriculture, Ecosystems and Environment* **187**, 11–32 (2014).

25. Farooq, M., Flower, K. C., Jabran, K., Wahid, A. & Siddique, K. H. M. Crop yield and weed management in rainfed conservation agriculture systems in sub-Saharan Africa. *Agricultural Systems* **117**, 172–183 (2011).

26. University of Wisconsin-Madison. Crop Calendar Dataset: netCDF 5 min | SAGE, UW-Madison. https://nelson.wisc.edu/sage/data-and-models/crop-calendar-dataset/netCDF0-5degree.php (2020).

27. Sacks, W. J., Deryng, D., Foley, J. A. & Ramankutty, N. Crop planting dates: an analysis of global patterns. Global Ecology and Biogeography (2010).

28. NOAA/OAR/ESRL PSL. University of Delaware Air Temperature & Precipitation. https://www.esrl.noaa.gov/psd/data/gridded/data.UDel_Air_T_Precip.html (2020).

29. NOAA/OAR/ESRL PSL. CPC Global Daily Temperature. https://www.esrl.noaa.gov/psd/data/gridded/data.cpc.globaltemp.html (2020).

30. Martens, B. et al. GLEAM v3: satellite-based land evaporation and root-zone soil moisture. Geoscientific Model. *Development* **10**, 1903–1925 (2017).

31. Miralles, D. G. et al. Global land-surface evaporation estimated from satellite-based observations. *Hydrology and Earth System Sciences* **15**, 453–469 (2011).

32. University of Tokyo. Soil Texture Map. http://hydro.iis.u-tokyo.ac.jp/~sujan/research/gswp3/soil-texture-map.html (2020).

33. Su, Y., Gabrielle, B. & Makowski, D. A global dataset for crop production under conventional tillage and no tillage systems. figshare https://doi.org/10.6084/m9.figshare.12155553 (2020).

34. Food and Agriculture Organization of the United Nations (FAO). Conservation Agriculture. http://www.fao.org/conservation-agriculture/en/ (2020).

35. Rudolf J., F, William, J. Wilson & Donna L. Mohr. STATISTICAL METHODS. (Elsevier, 2010).

36. Lee, H. et al. The impact of conservation farming practices on Mediterranean agro-ecosystem services provisioning—a meta-analysis. *Regional Environmental Change* **19**, 2187–2202 (2019).

37. Muata, T. A. Food, in *Field Guide to Appropriate Technology* 277–480 (Elsevier, 2003).

38. Aase, J. K., Schaefer, G. M. & Pikul, J. L. Hayland conversion to wheat production in semiarid eastern Montana: Tillage, yield and hay production comparisons. *Soil and Tillage Research* **44**, 225–234 (1997).

39. Acharya, B. S. et al. Winter cover crops effect on soil moisture and soybean growth and yield under different tillage systems. *Soil and Tillage Research* **195**, 104430 (2019).

40. Adimassu, Z., Alemu, G. & Tamene, L. Effects of tillage and crop residue management on runoff, soil loss and crop yield in the Humid Highlands of Ethiopia. *Agricultural Systems* **168**, 11–18 (2019).

41. Ahmed, W. et al. Tillage practices improve rice yield and soil phosphorus fractions in two typical paddy soils. *Journal of Soils and Sediments* **20**, 850–861 (2020).

42. Abrens, W. H. & Endres, G. J. Triﬂuralin and ethalfluralin granules in conservation-tillage soybeans (Glycine max). *Canadian Journal of Plant Science* **76**, 891–897 (1996).

43. Alam, M. K. et al. Banding of fertilizer improves phosphorus acquisition and yield of zero tillage maize by concentrating phosphorus in surface soil. *Sustainability (Switzerland)* **10**(2018).
44. Ali, S. A., Tedone, L., Verdini, L., Cazzato, E. & De Mastro, G. Wheat response to no-tillage and nitrogen fertilization in a long-term faba bean-based rotation. *Agronomy* **9** (2019).
45. Almarz J. J. et al. Carbon Dioxide and Nitrous Oxide Fluxes in Corn Grown Under Two Tillage Systems in Southwestern Quebec. *Soil Science Society of America Journal* **73**, 113–119 (2009).
46. Almarz J. J. et al. Greenhouse gas fluxes associated with soybean production under two tillage systems in southwestern Quebec. *Soil and Tillage Research* **104**, 134–139 (2009).
47. Anapalli, S. S. et al. Effectiveness of RZWQM for simulating alternative great plains cropping systems. *Agronomy Journal* **97**, 1183–1193 (2005).
48. Andales, A. A., Batchelor, W. D., Anderson, C. E., Farnham, D. E. & Whigham, D. K. Incorporating tillage effects into a soybean model. *Agricultural Systems* **66**, 69–98 (2000).
49. Anderson, R. L. A 2-Year Small Grain Interval Reduces Need for Herbicides in No-Till Soybean. *Weed Technology* **23**, 398–403 (2009).
50. Angás, P., Lampurlanés, J. & Cantero-Medina, C. Tillage and N fertilization: Effects on N dynamics and Barley yield under semi-arid Mediterranean conditions. *Soil and Tillage Research* **87**, 59–71 (2006).
51. Armstrong, R. D., Millar, G., Halpin, N. V., Reid, D. J. & Standley, J. Using zero tillage, fertilisers and legume rotations to maintain productivity and soil fertility in opportunity cropping systems on a shallow Vertisol. *Australian Journal of Experimental Agriculture* **43**, 141–153 (2003).
52. Arora, V. K., Sidhu, A. S., Sandhu, K. S. & Thind, S. S. Effects of tillage intensity, planting time and nitrogen rate on wheat yield following rice. *Experimental Agriculture* **46**, 267–275 (2010).
53. Arshad, M. A. & Gill, K. S. Barley, canola and wheat production under different tillage-fallow-green manure combinations on a clay soil in a cold, semi-arid climate. *Soil and Tillage Research* **43**, 263–275 (1997).
54. Arshad, M. A., Gill, K. S. & Coy, G. R. Wheat yield and weed population as influenced by three tillage systems on a clay soil in temperate continental climate. *Soil and Tillage Research* **28**, 227–238 (1994).
55. Arshad, M. A., Gill, K. S. & Izaurrealde, R. C. Wheat Production, Weed Population and Soil Properties Subsequent to 20 Years of Sod as Affected by Crop Rotation and Tillage. *Journal of Sustainable Agriculture* **12**, 131–154 (1998).
56. Arvidsson, J. Energy use efficiency in different tillage systems for winter wheat on a clay and silt loam in Sweden. *European Journal of Agronomy* **33**, 250–256 (2010).
57. Aulakh, M. S. et al. Crop production and nutrient use efficiency of conservation agriculture for soybean-wheat rotation in the Indo-Gangetic Plains of Northwestern India. *Soil and Tillage Research* **120**, 50–60 (2012).
58. Azooz, R. H. & Arshad, M. A. Effect of tillage and residue management on barley and canola growth and water use efficiency. *Canadian Journal of Soil Science* **78**, 649–656 (1998).
59. Baan, C. D., Grevers, M. C. J. & Schoenau, J. J. Effects of a single cycle of tillage on long-term no-till prairie soils. *Canadian Journal of Soil Science* **89**, 521–530 (2009).
60. Baggs, E. M. et al. Nitrous oxide emissions following application of residues and fertiliser under zero and conventional tillage. *Plant and Soil* **254**, 361–370 (2003).
61. Baghdadi, A., Halim, R. A., Majidian, M., Wan Dauf, W. N. & Ahmad, I. Forage corn yield and physiological indices under different plant densities and tillage systems. *Journal of Food, Agriculture and Environment* **10**, 707–712 (2012).
62. Bailey, K. L., Johnston, A. M., Kucher, H. R., Gossen, B. D. & Morrall, R. A. A. Managing crop losses from foliar diseases with fungicides, rotation, and tillage in the Saskatchewan Parkland. *Canadian Journal of Plant Science* **80**, 169–175 (2000).
63. Baijai, R. K. & Tripathi, R. P. Evaluation of non-puddling under shallow water tables and alternative tillage methods on soil and crop parameters in a rice–wheat system in Uttar Pradesh. *Soil and Tillage Research* **55**, 99–106 (2000).
64. Balkcom, K. S., Reeves, D. W., Kemble, J. M., Dawkins, R. A. & Raper, R. L. Tillage requirements of sweet corn, field pea, and watermelon following stocker cattle grazing. *Journal of Sustainable Agriculture* **34**, 169–182 (2010).
65. Balkcom, K. S. et al. Row spacing, tillage system, and herbicide technology affects cotton plant growth and yield. *Field Crops Research* **117**, 219–225 (2010).
66. Ball, B. C., O’Sullivan, M. F. & Lang, R. W. Cultivation and nitrogen requirement for winter barley as assessed from a reduced-tillage experiment on a brown forest soil. *Soil and Tillage Research* **6**, 95–109 (1985).
67. Barber, R. G., Orelana, M., Navarro, F., Diaz, O. & Soruco, M. A. Effects of conservation and conventional tillage systems after land clearing on soil properties and crop yield in Santa Cruz, Bolivia. *Soil and Tillage Research* **38**, 133–152 (1996).
68. Barrios, M. B., Bozzo, A. A., Debelis, S. P., Pereyra, A. M. & Buayan, A. S. Physical properties and root activity in a soybean second crop/maize rotation under direct sowing and conventional tillage. *Agronomy Journal* **94**, 355–362 (2006).
69. Baumhardt, R. L. & Jones, O. R. Residue management and tillage effects on water storage and grain yield of dryland wheat and sorghum for a clay loam in Texas. *Soil and Tillage Research* **68**, 71–82 (1993).
70. Baumhardt, R. L., Wendt, C. W. & Keeling, J. W. Tillage and furrow diking effects on water balance and yields of sorghum and cotton. *Soil Science Society of America Journal* **57**, 1077–1083 (1993).
71. Behnke, G. D., Zuber, S. M., Plettlow, C. M., Nafziger, E. D. & Villamil, M. B. Long-term crop rotation and tillage effects on soil greenhouse gas emissions and crop production in Illinois, USA. *Agriculture, Ecosystems & Environment* **261**, 62–70 (2018).
72. Bermudez, M. & Mallarino, A. P. Corn response to starter fertilizer and tillage across and within fields having no-till management histories. *Agronomy Journal* **96**, 776–785 (1994).
73. Bernstein, E. R., Posner, J. L., Stoltenberg, D. E. & Hedtcke, J. L. Organically managed no-tillage ryo-soybean systems: agronomic, economic and environmental assessment. *Agronomy Journal* **103**, 1169–1179 (2011).
74. Beyea, R. P., Schott, J. W. & White, P. H. Tillage effects on corn production in a coarse-textured soil in Southern Ontario. *Agronomy Journal* **94**, 767–774 (2002).
75. Bisen, P. K. & Singh, R. Effect of tillage and weed control practices on weed growth and yield of wheat (Triticum aestivum) in rice (Oryza sativa) - Wheat system. *Indian Journal of Agricultural Sciences* **78**, 347–350 (2008).
76. Blackshaw, R. E., Semach, G., Li, X., O’Donovan, T. J. & Barker, K. N. Tillage, fertiliser and glyphosate timing effects on foxtail barley (Hordeum jubatum) management in wheat. *Canadian Journal of Plant Science* **80**, 655–660 (2000).
77. Bocianowski, J. J., Stuk, P. & Nowosad, K. Soil tillage methods by years interaction for dry matter yield of maize (Zea mays L.) using additive main effects and multiplicative interaction model. *Journal of Integrative Agriculture* **17**, 2836–2839 (2018).
78. Boeckx, P. & Van Nieuland, K. V. & Van Cleemput, O. Short-term effect of tillage intensity on N₂O and CO₂ emissions. *Agronomy for Sustainable Development* **31**, 453–461 (2011).
79. Bochmel, C., Lewandowski, I. & Clauser, W. Comparing annual and perennial energy cropping systems with different management intensities. *Agricultural Systems* **96**, 224–236 (2008).
80. Bogunovic, I., Pereira, P., Kusic, L., Sajo, K. & Sraka, M. Tillage management impacts on soil compaction, erosion and crop yield in Stagnosols (Croatia). *CATENA* **160**, 376–384 (2018).
81. Bono, A., Alvarez, R., Buschiazzo, D. E. & Cantet, R. J. C. Tillage effects on soil carbon balance in a semiarid agroecosystem. *Soil Science Society of America Journal* **72**, 1140–1149 (2008).
82. Bordovsky, J. P., Iyle, W. M. & Keeling, J. W. Crop rotation and tillage effects on soil water and cotton yield. *Agronomy Journal* **86**, 1–9 (1994).
83. Botta, G. F., Tolon-Becerra, A., Lastra-Bravo, X. & Tourn, M. Tillage and traffic effects (planters and tractors) on soil compaction and soybean (Glycine max L.) yields in Argentinean pampas. *Soil and Tillage Research* **110**, 167–174 (2010).
84. Brandt, S. A. Zero vs. conventional tillage and their effects on crop yield and soil moisture. Canadian Journal of Plant Science 72, 679–688 (1992).

85. Brown, V., Barbosa, F. T., Bertol, I., Mafra, Â. I. & Muzeka, L. M. Effects on soil and crops after 20 years of conventional and zero tillage. Revista Brasileira de Ciencias Agrarias 13, 1–7 (2018).

86. Büchi, L., Wendling, M., Amossé, C., Necpalova, M. & Charles, R. Importance of cover crops in alleviating negative effects of reduced soil tillage and promoting soil fertility in a winter wheat cropping system. Agriculture, Ecosystems & Environment 256, 92–104 (2018).

87. Busscher, W. J., Khalilian, A. & Jones, M. A. Tillage Management for Cotton in Southeastern Coastal Soils during Dry Years. Communications in Soil Science and Plant Analysis 43, 2564–2574 (2012).

88. Cahoon, J. E. et al. Corn Yield Response to Tillage with Furrow Irrigation. Journal of Production Agriculture 12, 269–275 (1999).

89. Calzarano, E. et al. Durum Wheat Quality, Yield and Sanitary Status under Conservation Agriculture. Agriculture 8, 140 (2018).

90. Carefoot, J. M., Nyborg, M. & Lindwall, C. W. Tillage-induced soil changes and related grain yield in a semi-arid region. Canadian Journal of Soil Science 70, 203–214 (1990).

91. Carignano, M., Staggenborg, S. A. & Shroyer, J. P. Management practices to minimize tap root in a continuous wheat rotation. Agronomy Journal 100, 145–153 (2008).

92. Campbell, D. J., Dickson, J. W., Ball, B. C. & Hunter, R. Controlled seedbed traffic after ploughing or direct drilling under winter barley in Scotland. Soil and Tillage Research 8, 3–28 (1986).

93. Cannell, R. Q., Christian, D. G. & Henderson, F. K. G. A study of mole drainage with simplified cultivation for autumn-sown crops on a clay soil. 4. A comparison of direct drilling and mouldboard ploughing on drained and undrained land on root and shoot growth, nutrient uptake and yield. Soil and Tillage Research 7, 251–272 (1986).

94. Cantero-Martínez, C., Angás, P. & Lamprináles, J. Long-term yield and water use efficiency under various tillage systems in Mediterranean rainfall conditions. Annals of Applied Biology 150, 253–305 (2007).

95. Carefoot, J. M., Nyborg, M. & Lindwall, C. W. Tillage-induced soil changes and related grain yield in a semi-arid region. Canadian Journal of Soil Science 70, 203–214 (1990).

96. Carignano, M., Staggenborg, S. A. & Shroyer, J. P. Management practices to minimize tap root in a continuous wheat rotation. Agronomy Journal 100, 145–153 (2008).

97. Carignano, M., Staggenborg, S. A. & Shroyer, J. P. Management practices to minimize tap root in a continuous wheat rotation. Agronomy Journal 100, 145–153 (2008).

98. Carignano, M., Staggenborg, S. A. & Shroyer, J. P. Management practices to minimize tap root in a continuous wheat rotation. Agronomy Journal 100, 145–153 (2008).

99. Carignano, M., Staggenborg, S. A. & Shroyer, J. P. Management practices to minimize tap root in a continuous wheat rotation. Agronomy Journal 100, 145–153 (2008).

100. Carignano, M., Staggenborg, S. A. & Shroyer, J. P. Management practices to minimize tap root in a continuous wheat rotation. Agronomy Journal 100, 145–153 (2008).

101. Chatskikh, D. & Olesen, J. E. Soil tillage enhanced CO₂ and N₂O emissions from loamy sand soil under spring barley. Soil and Tillage Research 101, 104334 (2019).
126. Dixit, A. K. et al. Soil properties, crop productivity and energetics under different tillage practices in fodder sorghum + cowpea–wheat cropping system. Archives of Agronomy and Soil Science 65, 492–506 (2019).
127. Domínguez, G. F., Diovissalvi, N. V., Studdert, G. A. & Monterubbiani, M. G. Soil organic C and N fractions under continuous cropping with contrasting tillage systems on mullisol of the southeastern Pampas. Soil and Tillage Research 102, 93–100 (2009).
128. Donald, P. A., Tyler, D. D. & Boykin, D. L. Short- and long-term tillage effects on Heterodera glycines reproduction in soybean monoculture in west Tennessee. Soil and Tillage Research 104, 126–133 (2009).
129. Drinkwater, L. E., Jankie, R. R. & Rossouri-Longoecker, L. Effects of tillage intensity on nitrogen dynamics and productivity in no-tillage based grain systems. Plant and Soil 227, 99–113 (2000).
130. Drury, C. F. et al. Emissions of nitrous oxide and carbon dioxide: influence of tillage type and nitrogen placement depth. Soil Science Society of America Journal 70, 570–581 (2006).
131. Drury, C. F. et al. Impacts of zone tillage and red clover on corn performance and soil physical quality. Soil Science Society of America Journal 67, 867–872 (2003).
132. Drury, C. F. et al. Nitrogen Source, Application Time, and Tillage Effects on Soil Nitrous Oxide Emissions and Corn Grain Yields. Soil Science Society of America Journal 76, 1268–1279 (2012).
133. Duiker, S. W. & Curran, W. S. Rye cover crop management for corn production in the Northern Mid-Atlantic region. Agronomy Journal 97, 1413–1418 (2005).
134. Edwards, I. H., Thurlow, D. L. & Eason, J. T. Influence of tillage and crop rotation on yields of corn, soybean, and wheat. Agronomy Journal 80, 76 (1988).
135. Eghball, B. & Power, J. F. Composted and noncomposted manure application to conventional and no-till systems: corn yield and nitrogen uptake. Agronomy Journal 91, 819–825 (1999).
136. Ellington, A. Effects of deep ripping, direct drilling, gypsum and lime on soils, wheat growth and yield. Soil and Tillage Research 8, 29–49 (1986).
137. Endale, D. M. et al. Impact of conservation tillage and nutrient management on soil water and yield of cotton fertilized with poultry litter or ammonium nitrate in the Georgia Piedmont. Soil and Tillage Research 66, 55–68 (2002).
138. Endale, D. M. et al. No-till corn productivity in a southeastern United States ultisol amended with poultry litter. Agronomy Journal 100, 1401–1408 (2008).
139. Ermanni, P. R., Bayer, C. & Maestri, L. Corn yield as affected by liming and tillage system on an acid Brazilian Oxisol. Agronomy Journal 94, 305–309 (2002).
140. Fecáč, P., Šaričková, D. & Černý, I. Influence of tillage system and starting N fertilization on seed yield and quality of soybean Glycine max (L.) Merril. Plant, Soil and Environment 56, 105–110 (2010).
141. Feng, F. X., Huang, G. B., Chai, Q. & Yu, A. Z. Tillage and straw management impacts on soil properties, root growth, and grain yield of winter wheat in northwestern China. Crop Science 50, 1465–1473 (2010).
142. Fengyun, Z., Pute, W. L., Xining, Z., Enhe, Z. & Xuefeng, C. Effects of conservation tillage on soil water regimes and water use efficiency in farmland of Heihe River Basin in Northwest China. African Journal of Agricultural Research 6, 5959–5966 (2011).
143. Filipovic, D., Husnjak, S., Kosutic, S. & Gospodaric, Z. Effects of tillage systems on compaction and crop yield of Albic Luvisol in Croatia. Journal of Terramechanics 43, 177–189 (2006).
144. Fiorini, A., Maris, S. C., Abalos, D., Amaducci, S. & Tabaglio, V. Combining no-till with rye (Secale cereale L.) cover crop mitigates nitrous oxide emissions without decreasing yield. Soil and Tillage Research 196, 104442 (2020).
145. Fischer, R. A., Santiveri, F. & Vidal, I. R. Crop rotation, tillage and crop residue management for wheat and maize in the sub-humid tropical highlands I. Wheat and legume performance. Field Crops Research 79, 107–122 (2002).
146. Fischer, R. A., Santiveri, F. & Vidal, I. R. Crop rotation, tillage and crop residue management for wheat and maize in the sub-humid tropical highlands II. Maize and system performance. Field Crops Research 79, 123–137 (2002).
147. Flowers, M. D. & Lal, R. Axle load and tillage effects on soil physical properties and soybean grain yield on a molic oorqualf in northwestern Ohio. Soil and Tillage Research 48, 21–35 (1998).
148. Franchini, J. C. et al. Evolution of crop yields in different tillage and cropping systems over two decades in southern Brazil. Field Crops Research 137, 178–185 (2012).
149. Franzleubbers, A. J. & Stuedemann, J. A. Crop and cattle responses to tillage systems for integrated corn–livestock production in the Southern Piedmont, USA. Renewable Agriculture and Food Systems 22, 168–180 (2007).
150. Gajri, P. R., Arora, V. K. & Prihar, S. S. Tillage management for efficient water and nitrogen use in wheat following rice. Soil and Tillage Research 104, 177–184 (2011).
151. Galvez, L., Douds, D. D. & Wagoner, J. P. Effect of tillage and farm system upon VAM fungus populations and mycorrhizas and nutrient uptake of maize. Plant and Soil 220, 299–308 (2000).
152. Galvez, L., Douds, D. D. & Wagoner, P. Tillage and farm system affect AM fungus populations, mycorrhizal formation, and nutrient uptake by winter wheat in a high-P soil. American Journal of Agricultural and Alternative Agriculture 16, 152–160 (2001).
153. Gangwar, K. S., Singh, K. K. & Sharma, S. K. Effect of tillage on growth, yield and nutrient uptake in wheat after rice in the Indo-Gangetic Plains of India. The Journal of Agricultural Science 142, 453–459 (2004).
154. Gao, J., Hao, X., Thelen, K. D. & Robertson, G. P. Agronomic management system and precipitation effects on soybean oil and fatty acid profiles. Crop Science 49, 1049–1057 (2009).
155. Gathala, M. K. et al. Effect of tillage and crop establishment methods on physical properties of a medium-textured soil under a seven-year wheat–wheat–maize–wheat–wheat–wheat–wheat–wheat rotation. Soil Science Society of America Journal 75, 1851–1862 (2011).
156. Ghuman, B. Tillage and residue management effects on soil properties and yields of rainfed maize and wheat in a subhumid tropical climate. Soil and Tillage Research 58, 1–10 (2001).
157. Giannitsopoulos, M. L., Burgess, P. J. & Rickson, R. J. Effects of conservation tillage systems on soil physical changes and crop yields in a wheat–oilseseed rape rotation. Journal of Soil and Water Conservation 74, 247–258 (2019).
158. Gracia-Romero, A. et al. Phenotyping conservation agriculture management effects on ground and aerial remote sensing assessments of maize hybrids performance in Zimbabwe. Remote Sensing 10, 5959–5966 (2018).
159. Grageda-Cabrera, O. A. et al. Fertilizer dynamics in different tillage and crop rotation systems in a Vertisol in Central Mexico. Nutrient Cycling in Agroecosystems 89, 125–134 (2011).
160. Grady, A. S., Robertson, G. P. & Thelen, K. D. Do productivity and environmental trade-offs justify periodically cultivating no-till cropping systems? Agronomy Journal 98, 1377–1383 (2006).
161. Grant, C. A. & Bailey, L. D. The effect of KCI, KNO 3, and CaCl 2 fertilization under conventional- and zero-till systems on common root rot, dry matter yield and grain yield of Heartland barley. Canadian Journal of Plant Science 74, 1–6 (1994).
162. Griffith, D. R., Kladivko, E. J., Mannering, J. V., West, T. D. & Parsons, S. D. Long-Term Tillage and Rotation Effects on Corn Growth and Yield on High and Low Organic Matter, Poorly Drained Soils. Agronomy Journal 80, 599–605 (1988).
163. Grigoras, M. A., Popescu, A., Pamfil, D., Has, I. & Gidea, M. Influence of no-tillage agriculture system and fertilization on wheat yield and grain protein and gluten contents. Journal of Food, Agriculture and Environment 10, 532–539 (2012).
164. Gruber, S., Pekrun, C., Mörhing, J. & Clauepine, W. Long-term yield and weed response to conservation and stubble tillage in SW Germany. Soil and Tillage Research 121, 49–56 (2012).
Izaurralde, R. C., Choudhary, M., Juma, N. G., McGill, W. B. & Haderlein, L. Crop and nitrogen yield in legume-based rotations.

Izumi, Y., Uchida, K. & Iijima, M. Crop production in successive wheat-soybean rotation with no-tillage practice in relation to the

Jat, M. L.

Jat, R. K.

Ismail, I., Blevins, R. L. & Frye, W. W. Long-Term No-tillage Effects on Soil Properties and Continuous Corn Yields.

Iqbal, M., Anwar-ul-Hassan & Ibrahim, M. Effects of tillage systems and mulch on soil physical quality parameters and maize (Zea

Iragavarapu, T. K. & Randall, G. W. Yield and nitrogen uptake of monocropped maize from a long-term tillage experiment on a

Huynh, H. T., Hufnagel, J., Wurbs, A. & Bellingrath-Kimura, S. D. Influences of soil tillage, irrigation and crop rotation on maize

Hussein, M. A.

Houria, C.

Hamblin, A. P. The effect of tillage on soil surface properties and the water balance of a xeralfic alfisol.

Halvorson, A. D., Black, A. L., Krupinsky, J. M., Merrill, S. D. & Tanaka, D. L. Sunflower response to tillage and nitrogen fertilization under intensive cropping in a wheat rotation. Agronomy Journal 91, 637–642 (1999).

Halvorson, A. D., Black, A. L., Krupinsky, J. M. & Merrill, S. D. Dryland winter wheat response to tillage and nitrogen within an annual cropping system. Agronomy Journal 91, 702–709 (1999).

Halvorson, A. D., Mosier, A. R., Reule, C. A. & Bausch, W. C. Nitrogen and tillage effects on irrigated continuous corn yields. Agronomy Journal 98, 65–71 (2006).

Halwani, M., Reckling, M., Schuler, J., Bloch, R. & Bachinger, J. Soybean in no-till cover-crop systems. Agronomy 9, 883 (2019).

Hamblin, A. P. The effect of tillage on soil surface properties and the water balance of a xeralfic alfisol. Soil and Tillage Research 4, 543–559 (1984).

He, W. et al. Estimating the impacts of climate change on crop yields and N2O emissions for conventional and no-tillage in Southwestern Ontario, Canada. Agricultural Systems 159, 187–198 (2018).

Hemmat, A. & Eskandari, I. Dryland winter wheat response to conservation tillage in a continuous cropping system in northwestern Iran. Soil and Tillage Research 86, 99–109 (2006).

Hemmat, A. & Eskandari, I. Tillage system effects upon productivity of a dryland winter wheat–chickpea rotation in the northwest region of Iran. Soil and Tillage Research 78, 69–81 (2004).

Hendrix, B. J., Young, B. G. & Chong, S. K. Weed management in strip tillage corn. Agronomy Journal 96, 229–235 (2004).

Holanda, F. S. R. et al. Contribution of tillage systems on the organic matter of Gley soil and the productivity of corn and soybean. Semina Ciencias Agrarias 32, 983–994 (2011).

Hou, X. et al. Effects of rotational tillage practices on soil properties, winter wheat yields and water-use efficiency in semi-arid areas of north-west China. Field Crops Research 129, 7–13 (2012).

Houria, C. et al. Tillage and residue management effect on durum wheat [Triticum turgidum (L.) thell. sp. turgidum conv. durum (Desf.) mackey] growth and yield under semi arid climate. Advances in Environmental Biology 5, 3231–3240 (2011).

Houšť, M., Procházková, B. & Hledík, P. Effect of different tillage intensity on yields and yieldforming factors in winter wheat. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis 60, 89–96 (2012).

Howard, D. D., Gwathmey, C. O., Roberts, R. K. & Lessman, G. M. Potassium fertilization of cotton on two high testing soils under two tillage systems. Journal of Plant Nutrition 20, 1645–1656 (1997).

Hu, W. et al. Effects of tillage, compaction and nitrogen inputs on crop production and nitrogen losses following simulated forage crop grazing. Agriculture, Ecosystems and Environment 289, 102469 (2020).

Huang, G. B. et al. Productivity and sustainability of a spring wheat–field pea rotation in a semi-arid environment under conventional and conservation tillage systems. Field Crops Research 107, 43–55 (2008).

Huang, M., Jiang, P., Zhou, X. & Zou, Y. No-tillage increases nitrogen scavenging by fallow weeds in a double-season rice cropping system in China. Weed Biology and Management 18, 105–109 (2018).

Huang, M. et al. No-tillage and direct seeding for super hybrid rice production in rice-oilsed rape cropping system. European Journal of Agronomy 34, 278–286 (2011).

Huang, M. et al. Effect of tillage on soil and crop properties of wet-seeded flooded rice. Field Crops Research 129, 28–38 (2012).

Huang, X., Wang, L., Yang, L. & Kravchenko, A. N. Management effects on relationships of crop yields with topography represented by wetness index and precipitation. Agronomy Journal 100, 1463–1471 (2008).

Hunt, P. G., Bauer, P. J., Matheny, T. A. & Busscher, W. J. Crop yield and nitrogen accumulation response to tillage of a coastal plain soil. Crop Science 44, 1673–1681 (2004).

Hussein, M. A. et al. Deep Tillage Improves Degraded Soils in the (Sub) Humid Ethiopian Highlands. Land 8, 159 (2019).

Huynh, H. T., Hufnagel, J., Wurbs, A. & Bellingrath-Kimura, S. D. Influences of soil tillage, irrigation and crop rotation on maize biomass yield in a 9-year field study in Müncheberg, Germany. Field Crops Research 241, 107565 (2019).

Iijima, M., Asai, T., Zegada-Lizaru, W., Nakajima, Y. & Hamada, Y. Productivity and water source of intercropped wheat and rice in a direct-in-seed sequential cropping system: the effects of no-tillage and drought. Plant Production Science 8, 368–374 (2005).

Iqbal, M., Ansar-ul-Hassan & Ibrahim, M. Effects of tillage systems and mulch on soil physical quality parameters and maize (Zea mays L.) yield in semi-arid Pakistan. Biological Agriculture & Horticulture 25, 311–325 (2008).

Iragavarapu, T. K. & Randall, G. W. Yield and nitrogen uptake of monocropped maize from a long-term tillage experiment on a poorly drained soil. Soil and Tillage Research 34, 145–156 (1995).

Irmak, S., Kukal, M. S., Mohammed, A. T. & Djamal, K. Disk-till vs. no-till maize evapotranspiration, microclimate, grain yield, production functions and water productivity. Agricultural Water Management 216, 177–195 (2019).

Ishaque, W. et al. Short-term effects of tillage and residue management practices on dry matter yield and fate of 15N-urea in a continuous maize cropping system under subtropical conditions. Soil and Tillage Research 182, 78–85 (2018).

Ishaq, J., Blevins, R. L. & Frye, W. W. Long-Term No-tillage Effects on Soil Properties and Continuous Corn Yields. Soil Science Society of America Journal 58, 193–198 (1994).

Issaka, F. et al. Zero tillage improves soil properties, reduces nitrogen loss and increases productivity in a rice farmland in Ghana. Agronomy 9, 641 (2019).

Izarralde, R. C., Choudhary, M., Juma, N. G., McGill, W. B. & Haderlein, L. Crop and nitrogen yield in legume-based rotations practiced with zero tillage and low-input methods. Agronomy Journal 87, 958–964 (1995).

Izumi, Y., Uchida, K. & Iijima, M. Crop production in successive wheat-soybean rotation with no-tillage practice in relation to the root system development. Plant Production Science 7, 329–336 (2004).

Jat, M. L. et al. Evaluation of precision land leveling and double zero-till systems in the rice–wheat rotation: Water use, productivity, profitability and soil physical properties. Soil and Tillage Research 105, 112–121 (2009).

Jat, R. K. et al. Ten years of conservation agriculture in a rice–maize rotation in the eastern Gangetic Plains of India: Yield trends, water productivity and economic profitability. Field Crops Research 232, 1–10 (2019).

Jones, M. J. Comparison of conservation tillage systems in barley-based cropping systems in Northern Syria. Experimental Agriculture 36, 15–26 (2000).

Jones, O. R. & Popham, T. W. Cropping and tillage systems for dryland grain production in the southern high plains. Agronomy Journal 89, 222–232 (1997).

Jug, D. et al. Effect of conservation tillage on crop productivity and nitrogen use efficiency. Soil and Tillage Research 194, 104327 (2019).
207. Kabanza, A. K. & Rwehumbiza, F. B. R. Assessment of the contribution of tied ridge and farmyard manure application to sorghum production in semi-arid areas of Tanzania. in Advances in Integrated Soil Fertility Management in sub-Saharan Africa: Challenges and Opportunities 723–730 (Springer Netherlands, 2007).

208. Kabir, Z., O’Halloran, I. P., Fyles, J. W. & Hamel, C. Seasonal changes of arbuscular mycorrhizal fungi as affected by tillage practices and fertilization: Hyphal density and mycorrhizal root colonization. Plant and Soil 192, 285–293 (1997).

209. Kalesu, N. et al. Comparative fertilization effects on maize productivity under conventional and conventional tillage on sandy soils of smallholder cropping system in Zimbabwe. Field Crops Research 218, 106–114 (2018).

210. Kandel, T. P., Gowda, P. H., Northup, B. K. & Rocatelli, A. C. Impacts of tillage systems, nitrogen fertilizer rates and a legume green manure on light interception and yield of winter wheat. Cogent Food & Agriculture 5, 1–13 (2019).

211. Kanwar, R. S., Baker, J. L. & Baker, D. G. Tillage and split N-fertilization effects on subsurface drainage water quality and crop yields. Transactions of the ASAE 31, 0453–0461 (1988).

212. Karlen, D. L., Berry, E. C., Colvin, T. S. & Kanwar, R. S. Twelve-year tillage and crop rotation effects on yields and soil chemical properties in northeast Iowa. Communications in Soil Science and Plant Analysis 22, 1985–2003 (1991).

213. Karlen, D. L., Hunt, P. G. & Matheny, T. A. Fertilizer 15 nitrogen recovery by corn, wheat, and cotton grown with and without pre-plant tillage on norfolk loamy sand. Crop Science 36, 975–981 (1996).

214. Karlen, D. L., Kovař, J. L., Cambardella, C. A. & Colvin, T. S. Thirty-year tillage effects on crop yield and soil fertility indicators. Soil and Tillage Research 130, 24–41 (2013).

215. Karunatilake, U., van Es, H. M. & Schindelbeck, R. R. Soil and maize response to plow and no-tillage after alfalfa-to-maize conversion on a clay loam soil in New York. Soil and Tillage Research 55, 31–42 (2000).

216. Kennedy, C. W. & Hutchinson, R. L. Cotton growth and development under different tillage systems. Crop Science 41, 1162–1168 (2001).

217. Kilhara, J., Bationo, A., Mugendi, D. N., Martius, C. & Vlek, P. L. G. Conservation tillage, local organic resources and nitrogen fertilizer combinations affect maize productivity, soil structure and nutrient balances in semi-arid Kenya. Nutrient Cycling in Agroecosystems 90, 213–225 (2011).

218. Kisić, I., Bašić, F., Birkas, M., Jurišić, A. & Bicanić, V. Crop yield and plant density under different tillage systems. Agriculture, Ecosystems & Sustainability 75, 1–7 (2010).

219. Kitonyo, O. M., Sadras, V. O., Zhou, Y. & Denton, M. D. Nitrogen fertilization modifies maize yield response to tillage and stubble in a sub-humid tropical environment. Field Crops Research 223, 113–124 (2018).

220. Kladivko, E. J., Griffith, D. R. & Mannering, J. V. Conservation tillage effects on soil properties and yield of corn and soya beans in Indiana. Soil and Tillage Research 8, 277–287 (1986).

221. Knight, C. W. & Lewis, C. E. Conservation tillage in the Subartic. Soil and Tillage Research 7, 341–353 (1986).

222. Kobayashi, H., Miura, S. & Oyanagi, A. Effects of winter barley as a cover crop on the weed vegetation in a no-tillage soybean. Weed Biology and Management 4, 195–203 (2004).

223. Korucu, T. & Merdun, H. Effects of tillage systems on wheat yield and residue in Turkey. Journal of Animal and Veterinary Advances 8, 1973–1978 (2009).

224. Kumudini, S., Grabau, L., Van Sanford, D. & Omielan, J. Analysis of yield-formation processes under no-till and conventional tillage for soft red winter wheat in the south-central region. Agronomy Journal 100, 1026–1032 (2008).

225. Kladivko, E. J., Oplinger, E. S. & Mengistu, A. Tillage, crop sequence, and cultivar effects on sclerotinia stem rot incidence and tillage management. Soil and Tillage Research 124, 205–212 (2011).

226. Kisić, I., Bašić, F., Birkas, M., Jurišić, A. & Bićanić, V. Crop yield and plant density under different tillage systems. Agriculture, Ecosystems & Sustainability 75, 1–7 (2010).

227. Kurle, J. E., Grau, C. R., Oplinger, E. S. & Mengistu, A. Tillage, crop sequence, and cultivar effects on sclerotinia stem rot incidence and tillage management. Soil and Tillage Research 124, 205–212 (2011).

228. Kisić, I., Bašić, F., Birkas, M., Jurišić, A. & Bićanić, V. Crop yield and plant density under different tillage systems. Agriculture, Ecosystems & Sustainability 75, 1–7 (2010).

229. Kurle, J. E., Grau, C. R., Oplinger, E. S. & Mengistu, A. Tillage, crop sequence, and cultivar effects on sclerotinia stem rot incidence and tillage management. Soil and Tillage Research 124, 205–212 (2011).

230. Kisić, I., Bašić, F., Birkas, M., Jurišić, A. & Bićanić, V. Crop yield and plant density under different tillage systems. Agriculture, Ecosystems & Sustainability 75, 1–7 (2010).

231. Lal, R. Long-term tillage and maize monoculture effects on a tropical Alfisol in western Nigeria. I. Crop yield and soil physical properties. Soil and Tillage Research 83, 1–12 (2005).

232. Kafesu, N. et al. Impacts of tillage systems, nitrogen fertilizer rates and a legume green manure on light interception and yield of winter wheat. Cogent Food & Agriculture 5, 1–13 (2019).

233. Lal, R., Logan, T. J. & Fausey, N. R. Long-term tillage and wheel traffic effects on a poorly drained mollic ochraqualf in northwest Iowa. Communications in Soil Science and Plant Analysis 22, 1985–2003 (1991).

234. Lawrance, K. F., Prinsloo, C. A. & Dhima, K. V. Tillage effects on corn emergence, silage yield, and labor and fuel inputs in double cropping with wheat. Crop Science 45, 2523–2528 (2013).

235. Liu, J., Fan, Y., Ma, Y. & Li, Q. Response of photosynthetic active radiation interception, dry matter accumulation, and grain yield to tillage in two winter wheat genotypes. Archives of Agronomy and Soil Science 1–12 (2019).

236. Kisić, I., Bašić, F., Birkas, M., Jurišić, A. & Bićanić, V. Crop yield and plant density under different tillage systems. Agriculture, Ecosystems & Sustainability 75, 1–7 (2010).

237. Kladivko, E. J., Griffith, D. R. & Mannering, J. V. Conservation tillage effects on soil properties and yield of corn and soya beans in Indiana. Soil and Tillage Research 8, 277–287 (1986).

238. Kisić, I., Bašić, F., Birkas, M., Jurišić, A. & Bićanić, V. Crop yield and plant density under different tillage systems. Agriculture, Ecosystems & Sustainability 75, 1–7 (2010).

239. Kennedy, C. W. & Hutchinson, R. L. Cotton growth and development under different tillage systems. Crop Science 41, 1162–1168 (2001).

240. Li, Y. & Ming, H. Effects of tillage managements on soil rapidly available nutrient content and the yield of winter wheat in west Henan province, China. Procedia Environmental Sciences 8, 843–849 (2011).

241. Li, Z. et al. in search of long-term sustainable tillage and straw mulching practices for a maize-winter wheat-soybean rotation system in the Loess Plateau of China. Field Crops Research 217, 199–210 (2018).

242. Licht, M. A. & Al-Kaisi, M. Corn response, nitrogen uptake, and water use in strip-tillaged compared with no-tillage and chisel plow. Agronomy Journal 97, 705–710 (2005).

243. Linden, D. R., Clapp, C. E. & Dowdy, R. H. Long-term corn grain and stover yields as a function of tillage and residue removal in east central Minnesota. Soil and Tillage Research 56, 167–174 (2000).

244. Lathouridjis, A. S., Tsatsarelis, C. A. & Dhima, K. V. Tillage effects on corn emergence, silage yield, and labor and fuel inputs in double cropping with wheat. Crop Science 45, 2523–2528 (2013).

245. Liu, J., Fan, Y., Ma, Y. & Li, Q. Response of photosynthetic active radiation interception, dry matter accumulation, and grain yield to tillage in two winter wheat genotypes. Archives of Agronomy and Soil Science 1–12 (2019).
246. Liu, T., Huang, J., Chai, K., Cao, C. & Li, C. Effects of N fertilizer sources and tillage practices on NH3 volatilization, grain yield, and N use efficiency of rice fields in Central China. *Frontiers in Plant Science* **9**, 1–10 (2018).

247. Liu, Z. et al. Soil organic carbon increment sources and crop yields under long-term conservation tillage practices in wheat-maize systems. *Land Degradation & Development* (2020).

248. López, M. V. & Arrúe, J. L. Growth, yield and water use efficiency of winter barley in response to conservation tillage in a semi-arid region of Spain. *Soil and Tillage Research* **44**, 35–54 (1997).

249. López-Bellido, L., Fuentes, M., Castillo, J. E., López-Garrido, F. J. & Fernández, E. J. Long-term tillage, crop rotation, and nitrogen fertilizer effects on wheat yield under rainfall Mediterranean conditions. *Agronomy Journal* **88**, 783–791 (1996).

250. López-Bellido, L., López-Bellido, R., Castillo, J. & López-Bellido, F. Chickpea response to tillage and soil residual nitrogen in a continuous rotation with wheat. *Field Crops Research* **88**, 191–200 (2004).

251. López-Bellido, L. et al. Wheat response to nitrogen splitting applied to a Vertisol in different tillage systems and cropping rotations under typical Mediterranean climatic conditions. *European Journal of Agronomy* **43**, 24–32 (2015).

252. López-Vázquez, A., Cadena-Zapata, M., Campos-Magaña, S., Zermeño-Gonzalez, A. & Méndez-Dorado, M. Comparison of energy used and effects on bulk density and yield by tillage systems in a semi-arid condition of Mexico. *Agronomy* **9**, 189 (2019).

253. Lotjönen, T. & Isolahiti, M. Direct drilling of cereals after ley and slurry spreading. *Acta Agriculturae Scandinavica Section B: Soil and Plant Science* **60**, 307–319 (2010).

254. Lowery, B. Groundwater quality and crop-yield responses to tillage management on a Sparta soil. *Soil and Tillage Research* **48**, 225–237 (1998).

255. Lv, S. H. et al. An opportunity for regenerative rice production: Combining plastic film cover and plant biomass mulch with no-till soil management to build soil carbon, curb nitrogen pollution, and maintain high-stable yield. *Agronomy* **9**, 1–22 (2019).

256. Ma, Y. et al. Mitigation of nitrous oxide emissions from paddy soil under conventional and no-till practices using nitrification inhibitors during the winter wheat-growing season. *Biology and Fertility of Soils* **49**, 627–635 (2013).

257. Maali, S. H. & Agenbag, G. A. Effect of soil tillage, crop rotation and nitrogen application rates on grain yield of spring wheat (Triticum aestivum L.) in the Swartland wheat producing area of the Republic of South Africa. *South African Journal of Plant and Soil* **20**, 111–118 (2003).

258. Machado, S., Petrie, S., Rhinhart, K. & Qua, A. Long-term continuous cropping in the Pacific Northwest: Tillage and fertilizer effects on winter wheat, spring wheat, and spring barley production. *Soil and Tillage Research* **94**, 473–481 (2007).

259. Mahata, K. R., Sen, H. S., Pradhan, S. K. & Mandal, L. N. No-tillage and dry ploughing compared with puddling for wet-season rice on an alluvial sandy clay–loam in eastern India. *The Journal of Agricultural Science* **114**, 79–86 (1990).

260. Malecka, I., Blecharczyk, A., Sawinska, Z. & Dobrzecki, T. The effect of various long-term tillage systems on soil properties and spring barley yield. *Turkish Journal of Agriculture and Forestry* **36**, 217–226 (2012).

261. Malhi, S. S. & Lemke, R. Tillage, crop residue and N fertilizer effects on crop yield, nutrient uptake, soil quality and nitrous oxide gas emissions in a second 4-yr rotation cycle. *Soil and Tillage Research* **96**, 269–283 (2007).

262. Malhi, S. S., Lemke, R., Wang, Z. H. & Chhabra, B. S. Tillage, nitrogen and crop residue effects on crop yield, nutrient uptake, soil quality, and greenhouse gas emissions. *Soil and Tillage Research* **90**, 171–183 (2006).

263. Malhi, S. S., McAndrew, D. W. & Carter, M. R. Effect of tillage and N fertilization of a Solonetzic soil on barley production and some soil properties. *Soil and Tillage Research* **22**, 95–107 (1991).

264. Martínez, E., Fuentes, J.-P., Pino, V., Silva, P. & Acededo, E. Chemical and biological properties as affected by no-tillage and conventional tillage systems in an irrigated Haploxeroll of Central Chile. *Soil and Tillage Research* **126**, 238–245 (2013).

265. Martin-Rueda, I. et al. Tillage and crop rotation effects on barley yield and soil nutrients on a Calcic Haploxeralf. *Soil and Tillage Research* **92**, 1–9 (2007).

266. Maura, P. R. Effect of tillage and residue management of maize and wheat yield and on physical properties of an irrigated sandy loam soil in Northern Nigeria. *Soil and Tillage Research* **8**, 161–170 (1986).

267. McAndrew, D. W., Fuller, L. G. & Wetter, L. G. Grain and straw yields of barley under four tillage systems in northeastern Alberta. *Canadian Journal of Plant Science* **74**, 713–722 (1994).

268. McConkey, B. G., Campbell, C. A., Zentner, R. P., Dyck, F. R. & Selles, F. Long-term tillage effects on spring wheat production on three soil textures in the brown soil zone. *Canadian Journal of Plant Science* **76**, 747–756 (1996).

269. McConkey, B. G., Ulrich, D. J. & Dyck, F. B. Snow management and deep tillage for increasing crop yields on a rolling landscape. *Canadian Journal of Soil Science* **77**, 479–486 (1997).

270. Melero, S. et al. Long-term effect of tillage, rotation and nitrogen fertiliser on soil quality in a Mediterranean Vertisol. *Soil and Tillage Research* **114**, 97–107 (2011).

271. Mesiga, A. J. et al. Long-term impact of tillage practices and biennial P and N fertilization on maize and soybean yields and soil P status. *Field Crops Research* **133**, 10–22 (2012).

272. Mishra, J. S. & Singh, V. P. Tillage and weed control effects on productivity of a dry seeded rice-wheat system on a Vertisol in Central India. *Soil and Tillage Research* **123**, 11–20 (2012).

273. Mitra, B. et al. Nutrient management in wheat (Triticum aestivum) production system under conventional and zero tillage in eastern sub-Himalayan plains of India. *Indian Journal of Agricultural Sciences* **89**, 775–784 (2019).

274. Monnéveux, P., Quillérou, E., Sanchez, C. & Lopez-Cesati, J. Effect of zero tillage and residues conservation on continuous maize cropping in a subtropical environment (Mexico). *Plant and Soil* **279**, 95–105 (2006).

275. Morell, F. J., Lampurlanés, J., Álvaro-Fuentes, J. & Cantero-Martínez, C. Yield and water use efficiency of barley in a semi-arid Mediterranean agroecosystem: Long-term effects of tillage and N fertilization. *Soil and Tillage Research* **117**, 78–84 (2011).

276. Moret, D., Arrúe, J.-L., López, M. V. & Gracia, R. Winter barley performance under different cropping and tillage systems in semi-arid Aragon (NE Spain). *European Journal of Agronomy* **26**, 54–63 (2007).

277. Morrison, M. J. et al. Tillage and crop rotation effects on the yield of corn, soybean and wheat in eastern Canada. *Canadian Journal of Plant Science* **98**, 183–191 (2017).

278. Mosier, A. R., Halvorson, A. D., Reule, C. A. & Liu, X. J. Net global warming potential and greenhouse gas intensity in irrigated cropping systems in Northeastern Colorado. *Journal of Environmental Quality* **35**, 1584–1598 (2006).

279. Mrabet, R. Differential response of wheat to tillage management systems in a semiarid area of Morocco. *Field Crops Research* **66**, 165–174 (2000).

280. Mytobile, M., Muzangwa, L. & Mnkeni, P. N. S. Tillage and crop rotation effects on selected soil chemical properties and wheat yield in a sandy loam oolaf soil in the Eastern Cape, South Africa. *International Journal of Agriculture and Biology* **21**, 367–374 (2019).

281. Mulugueta, D. & Stoltenberg, D. E. Weed and seedbank management with integrated methods as influenced by tillage. *Weed Science* **45**, 706–715 (1997).

282. Mutsamba, E. F., Nyagumbo, I. & Mupangwa, W. Forage and maize yields in mixed crop-livestock farming systems: Enhancing forage and maize yields in mi

283. Nandan, R. et al. Crop establishment with conservation tillage and crop residue retention in rice-based cropping systems of Eastern India: yield advantage and economic benefit. *Paddy and Water Environment* **16**, 477–492 (2018).

284. Narayan, D., Tiwari, A. K., Lal, B. & Katiyar, V. S. Effect of tillage practices and cover management on soil and water conservation and yield of sorghum. *Annals of Arid Zone* **48**, 133–138 (2009).
285. Nazirah, L., Purba, E., Hanum, C. & Rauf, A. Effect of soil tillage and mycorrhiza application on growth and yields of upland rice in drought condition. *Asian Journal of Agriculture and Biology* **6**, 251–258 (2018).

286. Ndoli, A. *et al*. Conservation agriculture with trees amplifies negative effects of reduced tillage on maize performance in East Africa. *Field Crops Research* **221**, 238–244 (2018).

287. Newton, A. *et al*. Soil tillage effects on the efficacy of cultivars and their mixtures in winter barley. *Field Crops Research* **128**, 91–100 (2012).

288. Ngwira, A. R., Aune, J. B. & Mkwindu, S. On-farm evaluation of yield and economic benefit of short term maize legume intercropping systems under conservation agriculture in Malawi. *Field Crops Research* **132**, 149–157 (2012).

289. Ngwira, A. R., Kabambe, V., Simwaka, P., Makoko, K. & Kamoyo, K. Productivity and profitability of maize-legume cropping systems under conservation agriculture among smallholder farmers in Malawi. *Acta Agriculturae Scandinavica, Section B — Soil & Plant Science* **70**, 241–251 (2020).

290. Nielsen, D. C. *et al*. Cropping system influence on planting water content and yield of winter wheat. *Agronomy Journal* **94**, 962–967 (2002).

291. Noel, G. R. & Wax, L. M. Population dynamics of Heterodera glycines in conventional tillage and no-tillage soybean/corn cropping systems. *Journal of Nematology* **35**, 104–109 (2003).

292. Norwood, C. Profile water distribution and grain yield as affected by cropping system and tillage. *Agronomy Journal* **86**, 558–563 (1994).

293. Norwood, C. A. Water use and yield of dryland row crops as affected by tillage. *Agronomy Journal* **91**, 108–115 (1999).

294. Norwood, C. A. & Currie, R. S. Tillage, planting date, and plant population effects on dryland corn. *Journal of Production Agriculture* **9**, 119–122 (1996).

295. Nouri, A. *et al*. Soil physical properties and soybean yield as influenced by long-term tillage systems and cover cropping in the Midsouth USA. *Sustainability (Switzerland)* **10** (2018).

296. Nyamadzawo, G., Nyamugafata, P., Wuta, M. & Nyamangara, J. Maize yields under cropping and non-crop cropping fallows in a fallow–maize rotation system in central Zimbabwe. *Agroforestry Systems* **84**, 273–286 (2012).

297. Nyborg, M., Solberg, E. D., Izaurralde, R. C., Malhi, S. S. & Molina-Ayala, M. Influence of long-term tillage, straw and N fertilizer on barley yield, plant-N uptake and soil-N balance. *Soil and Tillage Research* **36**, 165–174 (1995).

298. Ogunremi, L. T., Lal, R. & Babalola, O. Effects of tillage and seeding methods on soil physical properties and yield of upland rice for an ultisol in southeast Nigeria. *Soil and Tillage Research* **6**, 305–324 (1986).

299. Ogunremi, L. T., Lal, R. & Babalola, O. Effects of tillage methods and water regimes on soil properties and yield of lowland rice from a sandy loam soil in Southwest Nigeria. *Soil and Tillage Research* **6**, 223–234 (1986).

300. Ojeniyi, S. O. Nutrient availability and maize yield under reduced tillage practices. *Soil and Tillage Research* **26**, 89–92 (1993).

301. Olson, K. R., Ebelhar, S. A. & Lang, J. M. Effects of 24 years of conservation tillage systems on soil organic carbon and soil productivity. *Applied and Environmental Soil Science 2013* (2013).

302. Opoku, G., Vyn, T. J. & Swanton, C. J. Modified no-till systems for corn following wheat on clay soils. *Agronomy Journal* **89**, 549–556 (1997).

303. Ostoji, G. E. Water storage, water use and maize yield for tillage systems on a tropical aflisol in Nigeria. *Soil and Tillage Research* **4**, 339–348 (1984).

304. Ouédraogo, E., Mando, A., Brussaard, L. & Stroosnijder, L. Tillage and fertility management effects on soil organic matter and sorghum yield in semi-arid West Africa. *Soil and Tillage Research* **94**, 64–74 (2007).

305. Pabiniak, L., Lipiec, J., Włodek, S. & Biskupski, A. Maize response to different straw management and tillage systems under cereal crop rotation. *International Agrophysics* **20**, 141–146 (2006).

306. Pagnini, G. *et al*. Soil tillage and crop sequence on grain yield and quality of durum wheat in Mediterranean areas. *Agronomy 9*, 488 (2019).

307. Pala, M., Harris, H. C., Ryan, J., Makboul, R. & Dozom, S. Tillage systems and stubble management in a Mediterranean-type environment in relation to crop yield and soil moisture. *Experimental Agriculture* **36**, 223–242 (2000).

308. Pareja-Sánchez, E., Plaza-Bonilla, D., Álvaro-Fuentes, J. & Cantero-Martínez, C. Is it feasible to reduce tillage and N use while improving maize yield in irrigated Mediterranean agroecosystems? *European Journal of Agronomy* **109**, 129–139 (2019).

309. Parihar, C. M. *et al*. Effects of precision conservation agriculture in a maize-wheat-mungbean rotation on crop yield, water-use and radiation conversion under a semiarid agro-ecosystem. *Agricultural Water Management* **192**, 306–319 (2017).

310. Parihar, C. M. *et al*. Soil water dynamics, water productivity and radiation use efficiency of maize under multi-year conservation agriculture during contrasting rainfall events. *Field Crops Research* **241**, 1077–1087 (2019).

311. Parihar, C. M. *et al*. Conservation agriculture in irrigated intensive maize-based cropping systems of north-western India: Effects on crop yields, water productivity and economic profitability. *Field Crops Research* **193**, 104–116 (2016).

312. Parihar, C. M. *et al*. Effect of different tillage and residue management practices on crop and water productivity and economics in maize (Zea mays) based operations. *Indian Journal of Agricultural Sciences* **89**, 360–366 (2019).

313. Parkin, T. B. & Kaspar, T. C. Nitrous Oxide Emissions from Corn-Soybean Systems in the Midwest. *Journal of Environmental Quality* **35**, 1496–1506 (2006).

314. Peachey, B. E., Williams, R. D. & Mallory-smith, C. Effect of spring tillage sequence on summer annual weeds in vegetable row crop rotations. *Weed Technology* **20**, 204–214 (2018).

315. Pearce, A. D., Dillon, C. R., Keisling, T. C. & Wilson, C. E. Economic and agronomic effects of four tillage practices on rice produced on saline soils. *Journal of Production Agriculture* **12**, 305–312 (1999).

316. Pelletier, D. E. *et al*. Nitrogen fertilization but not soil tillage affects nitrate emissions from a clay loam soil under a maize–soybean rotation. *Soil and Tillage Research* **115–116**, 16–26 (2011).

317. Peng, Z. *et al*. Conservation tillage increases water use efficiency of spring wheat by optimizing water transfer in a semi-arid environment. *Agronomy 9*, 583 (2019).

318. Perego, A. *et al*. Agro-environmental aspects of conservation agriculture compared to conventional systems: A 3-year experience on 20 farms in the Po valley (Northern Italy). *Agricultural Systems* **168**, 73–87 (2019).

319. Pettigrew, W. T. & Jones, M. A. Cotton growth under no-till production in the lower Mississippi river valley alluvial flood plain. *Agronomy Journal* **93**, 1398–1404 (2001).

320. Plaza-Bonilla, D. *et al*. No-tillage reduces long-term yield–scaled soil nitrous oxide emissions in rainfed Mediterranean agroecosystems: A field and modelling approach. *Agriculture, Ecosystems and Environment* **262**, 36–47 (2018).

321. Potter, K. N., Morrison, J. E. & Torbert, H. A. Tillage intensity effects on corn and grain sorghum growth and productivity on a vertisol. *Journal of Production Agriculture Research* **3**, 385–390 (1996).

322. Pradhan, P. *et al*. Tillage and crop residue management practices on crop productivity, phosphorus uptake and forms in wheat (Triticum aestivum)–based cropping systems. *Indian Journal of Agricultural Sciences* **81**, 1168–1173 (2011).

323. Qin, J. *et al*. The effect of mulching, tillage and rotation on yield in non-flooded compared with flooded rice production. *Journal of Agro- and Crop Science* **196**, 397–406 (2010).

324. Quincke, J. A. *et al*. One-time tillage of no-till systems: soil physical properties, phosphorus runoff, and crop yield. *Agronomy Journal* **99**, 1104–1110 (2007).

325. Radford, B. J. & Thornton, C. M. Effects of 27 years of reduced tillage practices on soil properties and crop performance in the semi-arid sub tropics of Australia. *The International Journal of Electrical Engineering & Education* **19**, 565 (2011).
326. Ram, H., Kler, D. S., Singh, Y. & Kumar, K. Productivity of maize (Zea mays) - wheat (Triticum aestivum) system under different tillage and crop establishment practices. *Indian Journal of Agronomy* **55**, 185–190 (2010).

327. Ram, H., Kumar, K., Kler, D. S. & Singh, Y. Effect of permanent bed planting and tillage options on microenvironment, crop productivity, water use efficiency, and soil properties under soybean (Glycine max L.) - wheat (Triticum aestivum L.) cropping system. *Ecology, Environment and Conservation* **16**, 593–599 (2010).

328. Ramos, M. C., Pareja-Sánchez, E., Plaza-Bonilla, D., Cantero-Martínez, C. & Lampuranlán, J. Soil sealing and soil water content under no-tillage and conventional tillage in irrigated corn: Effects on grain yield. *Hydrological Processes* **33**, 2095–2109 (2019).

329. Rao, S. C. & Dao, T. H. Nitrogen placement and tillage effects on dry matter and nitrogen accumulation and redistribution in winter wheat. *Agronomy Journal* **88**, 365–371 (1996).

330. Rashid, M. H., Timsina, J., Islam, N. & Islam, S. Tillage and residue-management effects on productivity, profitability and soil properties in a rice-maize-mungbean system in the Eastern Gangetic Plains. *Journal of Crop Improvement* **33**, 683–710 (2019).

331. Rasmussen, P. E. & Douglas, C. L. The influence of tillage and cropping-intensity on cereal response to nitrogen, sulfur, and phosphorus. *Fertilizer Research* **31**, 15–19 (1992).

332. Rasse, D. P. & Smucker, A. J. M. Tillage effects on soils nitrogen and plant biomass in a corn-alfalfa rotation. *Journal of Environmental Quality* **28**, 873–880 (1999).

333. Reddy, C. K., Nyakatawa, E. Z. & Reeves, D. W. Tillage and poultry litter application effects on cotton growth and yield. *Agronomy Journal* **96**, 1641–1650 (2004).

334. Reddy, S. S. et al. Long-term effects of poultry litter and conservation tillage on crop yields and soil phosphorus in cotton—cotton—cotton—rotation. *Field Crops Research* **114**, 311–319 (2009).

335. Reddy, S. S., Nyakatawa, E. Z. & Reddy, C. K. Nitrogen uptake pattern by cotton in a long-term no-tillage system with poultry litter application. *International Journal of Agriculture and Biology* **14**, 29–37 (2012).

336. Rembon, F. S. & MacKenzie, A. F. Soybean nitrogen contribution to corn and residual nitrate under conventional tillage and no-till. *Canadian Journal of Soil Science* **77**, 543–551 (1997).

337. Ren, Y., Gao, C., Han, H. & Li, Q. Response of water use efficiency and carbon emission to no-tillage and winter wheat genotypes in the North China Plain. *Science of The Total Environment* **635**, 1102–1109 (2018).

338. Renner, K. A., Schabenberger, O. & Kells, J. J. Effect of tillage and application method on corn (Zea mays) response to imidazolinedione residues in soil. *Weed Technology* **12**, 281–285 (1998).

339. Ribera, L. A., Hons, F. M. & Richardson, J. W. An economic comparison between conventional and no-tillage farming systems in Burleson County, Texas. *Agronomy Journal* **96**, 415–424 (2004).

340. Rochette, P., Angers, D. A., Chantigny, M. H. & Bertrand, N. Nitrous oxide emissions respond differently to no-till in a loam and a heavy clay soil. *Soil Science Society of America Journal* **72**, 1363–1369 (2008).

341. Roper, M. M., Ward, P. R., Kruen, A. F. & Hill, J. R. Under no-tillage and stubble retention, soil water content and crop growth are poorly related to soil water repellency. *Soil and Tillage Research* **126**, 143–150 (2013).

342. Rozas, H. S., Echeverria, H. E., Studdert, G. A. & Dominguez, G. Evaluation of the presidedress soil nitrogen test for no-tillage maize fertilized at planting. *Agronomy Journal* **92**, 1176–1183 (2000).

343. Saha, S. et al. Effect of tillage and residue management on soil physical properties and crop productivity in maize (Zea mays)-Indian mustard (Brassica juncea) system. *Indian Journal of Agricultural Sciences* **80**, 679–685 (2010).

344. Saharanw, Y. S. et al. Evaluation of alternative tillage and crop establishment methods in a rice-wheat rotation in North Western IGP. *Field Crops Research* **116**, 260–267 (2010).

345. Sainju, U. M. & Singh, B. P. Tillage, cover crop, and kill-planting date effects on corn yield and soil nitrogen. *Agronomy Journal* **93**, 878–886 (2001).

346. Sainju, U. M., Whitehead, W. F., Singh, B. P. & Wang, S. Tillage, cover crops, and nitrogen fertilization effects on soil nitrogen and cotton and sorghum yields. *European Journal of Agronomy* **25**, 372–382 (2006).

347. Sainju, U. M., Lensen, A. W., Caesar-TonThat, T. & Evans, R. G. Dryland crop yields and soil organic matter as influenced by long-term tillage and cropping sequence. *Agronomy Journal* **101**, 243–251 (2009).

348. Schillinger, W. F., Cook, R. J. & Papendick, R. I. Increased dryland cropping intensity with no-till barley. *Agronomy Journal* **91**, 746–752 (1999).

349. Schlegel, A. J., Dhuyvetter, K. C., Thompson, C. R. & Havlin, J. L. Agronomic and economic impacts of tillage and rotation on wheat. *Journal of Production Agriculture* **12**, 629–636 (1999).

350. Schlegel, A. J., Assefa, Y., Haag, L. A., Thompson, C. R. & Stone, L. R. Long-term tillage on yield and winter use of grain sorghum and winter wheat. *Agronomy Journal* **110**, 269–280 (2018).

351. Schwebel, G. J., Whitney, D. A., Kilgore, G. L. & Sweeney, D. W. Tillage and phosphorus management effects on crop production in soils with phosphorus stratification. *Agronomy Journal* **98**, 430–435 (2006).

352. Selles, F., Conkey, B. G. & Campbell, C. A. Distribution and forms of P under cultivator- and zero-tillage for continuous- and fallow-wheat cropping systems in the semi-arid Canadian prairies. *Soil and Tillage Research* **51**, 47–59 (1999).

353. Sehat, I., Bana, S. A., Meena, S. L. & Rana, D. S. Assessment of conservation agriculture and intercropping practices for enhanced productivity and profitability in maize (Zea mays). *Indian Journal of Agricultural Sciences* **89**, 714–720 (2019).

354. Sesso, A., Alp, A. & Gursoy, S. Conservation and conventional tillage methods on selected soil physical properties and corn (Zea Mays L.) yield and quality under cropping system in Turkey. *Bulgarian Journal of Agricultural Science* **16**, 597–608 (2010).

355. Sesso, A., Sogut, T., Alp, A. & Esgici, R. Tillage effects on sunflower (helianthus annuus, L.) emergence, yield, quality, and fuel consumption in double cropping system. *Journal of Central European Agriculture* **9**, 697–710 (2008).

356. Siapris, C. A. et al. Tillage and management alternatives for returning conservation reserve program land to crops. *Agronomy Journal* **93**, 850–862 (2001).

357. Sharma, P. K., de Datta, S. K. & Redulla, C. A. Response of maize (Zea mays L.) and mungbean (Vigna radiata L.) to tillage in relation to water table depth in tropical lowland rice soils. *Soil and Tillage Research* **12**, 65–79 (1988).

358. Sharma, R. K., Babu, S., Chhokar, K. & Sharma, R. S. A. K. Effect of tillage on termites, weed incidence and productivity of spring wheat in rice-wheat system of North Western Indian plains. *Crop Protection* **23**, 1049–1054 (2004).

359. Sharratt, B. Barley yield and evapotranspiration governed by tillage practices in interior Alaska. *Soil and Tillage Research* **46**, 225–229 (1998).

360. Si, P. et al. Effect of no-tillage with straw mulch and conventional tillage on soil organic carbon pools in Northern China. *Archives of Agronomy and Soil Science* **64**, 398–408 (2018).

361. Siddhu, D. & Duiker, S. W. Soil compaction in conservation tillage: crop impacts. *Agronomy Journal* **98**, 1257–1264 (2006).

362. Silva, F. A. M., Naudin, K., Corbeels, M., Scopek, E. & Affholder, F. Impact of conservation agriculture on the agronomic and environmental performances of maize cropping under contrasting climatic conditions of the Brazilian Cerrado. *Field Crops Research* **230**, 72–83 (2019).

363. Silva, P., Garrido, M., Shertzer, G. & Acevedo, E. Amount of rain until third leaf explain differences in irrigated durum wheat yield between a conventional and no-tillage system in a long-term crop rotation system in Mediterranean environment. *International Journal of Plant Production* **13**, 339–346 (2019).

364. Simón, M. R. et al. Integrated foliar disease management to prevent yield loss in Argentinian wheat production. *Agronomy Journal* **103**, 1441–1451 (2011).
365. Singer, J. W. et al. Tillage and compost affect yield of corn, soybean, and wheat and soil fertility. *Agronomy Journal* **96**, 531–537 (2004).

366. Singer, J. W., Logsdon, S. D. & Meek, D. W. Soybean growth and seed yield response to tillage and compost. *Agronomy Journal* **100**, 1039–1046 (2008).

367. Singer, J. W., Logsdon, S. D. & Meek, D. W. Tillage and compost effects on crop growth, nutrient accumulation, and grain yield. *Agronomy Journal* **99**, 80–87 (2007).

368. Singh, V., Ram, S., Bhatnagar, A. & Savita, U. Effect of tillage methods on soil properties and productivity of quality protein maize (Zea mays)-wheat (Triticum aestivum) system. *Indian Journal of Agronomy* **56**, 83–87 (2011).

369. Singh, V. K. et al. Soil physical properties, yield trends and economics after five years of conservation agriculture based rice-maize system in north-western India. *Soil and Tillage Research* **155**, 133–148 (2016).

370. Sistani, K. R., Sikora, F. J. & Rasnake, M. Poultry litter and tillage influences on corn production and soil nutrients in a Kentucky silty loam soil. *Soil and Tillage Research* **98**, 130–139 (2008).

371. Sistani, K. R. et al. Nutrient source and tillage impact on corn grain yield and soil properties. *Soil Science* **175**, 593–600 (2010).

372. Sithole, N. J. & Magwaza, L. S. Long-term changes of soil chemical characteristics and maize yield in no-till conservation agriculture in a semi-arid environment of South Africa. *Soil and Tillage Research* **194**, 104317 (2019).

373. Smith, D. R., Hernandez-Raymirez, G., Armstrong, S. D., Bucholz, D. L. & Stott, D. E. Fertilizer and tillage management impacts on non-carbon-dioxide greenhouse gas emissions. *Soil Science Society of America Journal* **75**, 1070–1082 (2011).

374. So, H. B., Grabski, A. & Desborough, P. The impact of 14 years of conventional and no-till cultivation on the physical properties and crop yields of a loam soil at Grafton NSW, Australia. *Soil and Tillage Research* **104**, 180–184 (2009).

375. Soane, B. D. & Ball, B. C. Review of management and conduct of long-term tillage studies with special reference to a 25-year experiment on barley in Scotland. *Soil and Tillage Research* **45**, 17–37 (1998).

376. Song, K. et al. Effects of tillage and straw return on water-stable aggregates, carbon stabilization and crop yield in an estuarine alluvial soil. *Scientific Reports* **9**, 1–11 (2019).

377. Soon, Y. K. & Arshad, M. A. Tillage, crop residue and crop sequence effects on nitrogen availability in a legume-based cropping system. *Canadian Journal of Soil Science* **84**, 421–430 (2004).

378. Soon, Y. K., Malhi, S. S., Lemke, R. L., Lupwayi, N. Z. & Grant, C. A. Effect of polymer-coated urea and tillage on the dynamics of available N and nitrous oxide emission from Gray Luvisols. *Nutrient Cycling in Agroecosystems* **90**, 267–279 (2011).

379. Sow, A. A., Hossner, L. R., Unger, P. W. & Stewart, B. A. Tillage and residue effects on root growth and yields of grain sorghum following wheat. *Soil and Tillage Research* **44**, 121–129 (1997).

380. Spargo, J. T., Cavigelli, M. A., Mirskey, S. B., Mauil, J. E. & Meisinger, J. J. Mineralizable soil nitrogen and labile soil organic matter in diverse long-term cropping systems. *Nutrient Cycling in Agroecosystems* **90**, 253–266 (2011).

381. Stecker, J. A., Buchholz, D. J., Hanson, R. G., Wollenhaupt, N. C. & McVay, K. A. Tillage and rotation effects on corn yield response to fertilizer nitrogen on aquituff soils. *Agronomy Journal* **87**, 409–415 (1995).

382. Stewart, P. R., Thierfelder, C., Dougall, A. J. & Ligowe, I. Conservation agriculture enhances resistance of maize to climate stress in a Malawian medium-term trial. *Agriculture, Ecosystems and Environment* **277**, 95–104 (2019).

383. Stinner, B. R., Odum, E. P. & Crossley, D. A. Nutrient uptake by vegetation in relation to other ecosystem processes in conventional tillage, no-tillage and old-field systems. *Agriculture, Ecosystems and Environment* **10**, 1–13 (1983).

384. Su, Z. et al. Effects of conservation tillage practices on winter wheat water-use efficiency and crop yield on the Loess Plateau, China. *Agricultural Water Management* **87**, 307–314 (2007).

385. Sulek, A., Wyzinska, M. & Cacak-Pietrzak, G. Impact of tillage on yield and quality traits of grains of spring wheat cultivars. *Engineering for Rural Development* **18**, 600–606 (2019).

386. Tang, Y., Wu, D., Bol, R., Wu, W. & Meng, F. Conservation farming practices in winter wheat–summer maize cropping reduce GHG emissions and maintain high yields. *Agriculture, Ecosystems & Environment* **272**, 266–275 (2019).

387. Tarkalon, D. D., Hergert, G. W. & Casmann, K. G. Long-term effects of tillage on soil chemical properties and grain yields of a dryland winter wheat-sorghum/corn-fallow rotation in the great plains. *Agronomy Journal* **98**, 26–35 (2006).

388. Teal, R. K. et al. Effect of tillage and anhydrous ammonia application on nitrogen use efficiency of hard red winter wheat. *Journal of Sustainable Agriculture* **30**, 51–67 (2007).

389. Tessier, S., Peru, M., Dyck, E. B., Zentner, F. P. & Campbell, C. A. Conservation tillage for spring wheat production in semi-arid Saskatchewan. *Soil and Tillage Research* **18**, 73–89 (1990).

390. Therrien, M. C. & Grant, C. A. Effect of tillage management on yield performance in barley. *Canadian Journal of Plant Science* **78**, 301–303 (1998).

391. Third, H. S. & Sharma, S. Yadavinder Singh & Sidhu, H. S. Rice–wheat productivity and profitability with residue, tillage and green manure management. *Nutrient Cycling in Agroecosystems* **113**, 113–125 (2019).

392. Thomsen, I. K. & Sørensen, P. Tillage-induced N mineralization and N uptake in winter wheat on a coarse sandy loam. *Soil Science Society of America Journal* **75**, 1070–1082 (2011).

393. Tokon-Becerra, A., Tourn, M., Botta, G. F. & Lastra-Bravo, X. Effects of different tillage regimes on soil compaction, maize (Zea mays L.) seedling emergence and yields in the eastern Argentinian Pampas region. *Soil and Tillage Research* **117**, 184–190 (2011).

394. Torssen, K. S., Skuterud, R., Weiseth, L., Tandsæther, J. H. & Haugan Jonsen, S. Plant protection in spring cereal production with reduced tillage. I. Grain yield and weed development. *Crop Protection* **18**, 595–603 (1999).

395. Trefry, J. & Hill, R. L. Wheel traffic placement effects on corn response under no-tillage and conventional tillage. *Journal of Production Agriculture* **9**, 95–101 (1996).

396. Tsuji, H., Yamamoto, H., Matsu, K. & Usuki, K. The effects of long-term conservation tillage, crop residues and P fertilizer on soil conditions and responses of summer and winter crops on an Andosol in Japan. *Soil and Tillage Research* **89**, 167–176 (2006).

397. Tuceh, J. R. & Hauser, S. Maize (Zea mays L.) yield and soil physical properties as affected by the previous plantain cropping systems, tillage and nitrogen application. *Soil and Tillage Research* **115–116**, 88–93 (2011).

398. Unger, P. W. Tillage and residue effects on wheat, sorghum, and sunflower grown in rotation. *Soil Science Society of America Journal* **48**, 885–891 (1984).

399. Varner, B. T., Epplin, F. M. & Strickland, G. L. Economics of no-till versus tilled dryland cotton, grain sorghum, and wheat. *Agronomy Journal* **103**, 1329–1338 (2011).
406. Varsa, E. C., Chong, S. K., Abolaji, J. O., Faruqhar, D. A. & Olsen, F. J. Effect of deep tillage on soil physical characteristics and corn (Zea mays L.) root growth and production. *Soil and Tillage Research* 43, 219–228 (1997).

407. Vazquez, L., Myhre, D. L., Gallaher, R. N., Hanlon, E. A. & Portier, K. M. Soil compaction associated with tillage treatments for soybean. *Soil and Tillage Research* 13, 35–45 (1989).

408. Ventera, R. T., Maharjan, B. & Dolan, M. S. Fertilizer source and tillage effects on yield-scaled nitrous oxide emissions in a corn cropping system. *Journal of Environmental Quality* 40, 1521–1531 (2011).

409. Verch, G., Kächele, H., Höltl, K., Richter, C. & Fuchs, C. Comparing the profitability of tillage methods in Northeast Germany—A field trial from 2002 to 2005. *Soil and Tillage Research* 104, 16–21 (2009).

410. Verhulst, N. et al. Conservation agriculture for wheat-based cropping systems under gravity irrigation: Increasing resilience through improved soil quality. *Plant and Soil* 340, 467–479 (2011).

411. Verhulst, N. et al. The effect of tillage, crop rotation and residue management on maize and wheat growth and development evaluated with an optical sensor. *Field Crops Research* 120, 58–67 (2011).

412. Verhulst, N. et al. Soil water content, maize yield and its stability as affected by tillage and crop residue management in rainfed semi-arid highlands. *Plant and Soil* 344, 73–85 (2011).

413. Videnović, Ž., Simić, M., Srdić, J. & Dumanović, Z. Long term effects of different soil tillage systems on maize (Zea mays L.) yields. *Plant, Soil and Environment* 57, 186–192 (2011).

414. Vyn, T. J. & Raimbault, B. A. Evaluation of strip tillage systems for corn production in Ontario. *Soil and Tillage Research* 23, 163–176 (1992).

415. Vyn, T. J., Galic, D. M. & Janovicek, K. J. Corn response to potassium placement in conservation tillage. *Soil and Tillage Research* 67, 159–169 (2002).

416. Vyn, T. J. & Janovicek, K. J. Potassium placement and tillage system effects on corn response following long-term no till. *Agronomy Journal* 93, 487–495 (2001).

417. Waggoner, P. E. Crop and tillage rotations: grain yield, residue cover, and soil water. *Soil Science Society of America Journal* 56, 1233–1237 (1992).

418. Wang, H., Lemke, R., Goddard, T. & Sprout, C. Tillage and root heat stress in wheat in central Alberta. *Canadian Journal of Soil Science* 87, 3–10 (2007).

419. Wang, S. et al. The influence of rotational tillage on soil water storage, water use efficiency and maize yield in semi-arid areas under varied rainfall conditions. *Agricultural Water Management* 203, 376–384 (2018).

420. Wang, X. et al. Tillage time affects soil hydro-thermal properties, seedling growth and yield of maize (Zea mays L.). *Applied Ecology and Environmental Research* 16, 6007–6023 (2018).

421. Wang, X. et al. Tillage and crop residue effects on rainfed wheat and maize production in northern China. *Field Crops Research* 132, 106–116 (2012).

422. Watts, D. B. & Allen Torbert, H. Long-term tillage and poultry litter impacts on soybean and corn grain yield. *Agronomy Journal* 103, 1479–1486 (2011).

423. West, T. D., Griffith, D. R. & Steinhardt, G. C. Effect of paraplowing on crop yields with no-till planting. *Agronomy Journal* 90, 441–448 (1998).

424. West, T. D., Griffith, D. R. & Steinhardt, G. C. Effect of paraplowing on crop yields with no-till planting. *Agronomy Journal* 90, 441–448 (1998).

425. West, T. D., Griffith, D. R. & Steinhardt, G. C. Effect of paraplowing on crop yields with no-till planting. *Agronomy Journal* 90, 441–448 (1998).

426. West, T. D., Griffith, D. R. & Steinhardt, G. C. Effect of paraplowing on crop yields with no-till planting. *Agronomy Journal* 90, 441–448 (1998).

427. Whalen, J. K., Prasher, S. O. & Benslim, H. Monitoring corn and soybean agroecosystems after establishing no-tillage practices in Québec, Canada. *Canadian Journal of Plant Science* 87, 841–849 (2007).

428. Wighton, P. J., Wright, D. L. & Marois, J. J. The impact of tillage and residual nitrogen on wheat. *Soil and Tillage Research* 91, 150–156 (2006).

429. Wilhelm, W. W. et al. Dryland maize development and yield resulting from tillage and nitrogen fertilization practices. *Soil and Tillage Research* 109, 167–179 (2010).

430. Wilhelm, W. W. & Wortmann, C. S. Tillage and rotation interactions for corn and soybean grain yield as affected by precipitation and air temperature. *Agronomy Journal* 96, 425–432 (2004).

431. Winter, S. R. & Unger, P. W. Irrigated wheat grazing and tillage effects on subsequent dryland grain sorghum production. *Agronomy Journal* 93, 504–510 (2001).

432. Wolowsky, R. P. Row-placed fertilizer for maize grown with an in-row crop residue management system in southern Wisconsin. *Soil and Tillage Research* 54, 55–62 (2000).

433. Wortmann, C. S., Drijber, R. A. & Franti, T. G. One-time tillage of no-till crop land five years post-tillage. *Agronomy Journal* 102, 1302–1307 (2010).

434. Xu, J., Han, H., Ning, T., Li, Z. & Lal, R. Long-term effects of tillage and straw management on soil organic carbon, crop yield, and yield stability in a wheat-maize system. *Field Crops Research* 233, 34–40 (2019).

435. Xu, Y. et al. Agronomic performance of late-season rice under different tillage, straw, and nitrogen management. *Field Crops Research* 115, 79–84 (2010).

436. Xue, L. et al. Effects of tillage practices on water consumption and grain yield of dryland winter wheat under different precipitation distribution in the loess plateau of China. *Soil and Tillage Research* 191, 66–74 (2019).

437. Yadav, G. S. et al. Soil carbon dynamics and productivity of rice–rice system under conservation tillage in submerged and unsubmerged ecologies of Eastern Indian Himalaya. *Carbon Management & Sustainable Forests* 10, 51–62 (2019).

438. Yadav, G. S. et al. Impact of no-till and mulching on soil carbon sequestration under rice (Oryza sativa L.):-rapeseed (Brassica campestris L. var. rapeseed) cropping system in hilly agro-ecosystem of the Eastern Himalayas, India. *Agriculture, Ecosystems & Environment* 275, 81–92 (2019).

439. Yadav, G. S. et al. Conservation tillage and mulching effects on the adaptive capacity of direct-seeded upland rice (Oryza sativa L.) to alleviate weed and moisture stresses in the North Eastern Himalayan Region of India. *Archives of Agronomy and Soil Science* 64, 1254–1267 (2018).

440. Yadav, G. S. et al. Conservation tillage and nutrient management effects on productivity and soil carbon sequestration under double cropping of rice in north eastern region of India. *Ecological Indicators* 105, 303–315 (2019).

441. Yadav, G. S. et al. Effect of No-Till and Raised-Bed Planting on Soil Moisture Conservation and Productivity of Summer Maize (Zea mays) in Eastern Himalayas. *Agricultural Research 7*, 300–310 (2018).

442. Yadavinder-Singh et al. Nitrogen and residue management effects on agronomic productivity and nitrogen use efficiency in rice-wheat system in Indian Punjab. *Nutrient Cycling in Agroecosystems* 84, 141–154 (2009).

443. Yang, X. et al. Modelling the effects of conservation tillage on crop water productivity, soil water dynamics and evapotranspiration of a maize-winter wheat-soybean rotation system on the Loess Plateau of China using APSIM. *Agricultural Systems* 166, 111–123 (2018).

444. Yang, Y. et al. Effects of tillage and mulching measures on soil moisture and temperature, photosynthetic characteristics and yield of winter wheat. *Agricultural Water Management* 201, 299–308 (2018).

445. Yiridoe, E. K., Vyn, T. J., Weersink, A., Hooker, D. C. & Swanton, J. Farm-level profitability analysis of alternative tillage systems on clay soils. *Canadian Journal of Plant Science* 80, 65–73 (2000).

446. Yoo, K. H., Touchton, J. T. & Walker, R. H. Runoff, sediment and nutrient losses from various tillage systems of cotton. *Soil and Tillage Research* 12, 13–24 (1988).
445. Zhang, X. et al. Tillage and residue management for long-term wheat-maize cropping in the North China Plain: I. Crop yield and integrated soil fertility index. *Field Crops Research* 221, 157–165 (2018).
446. Zhang, Y. et al. Soil water use and crop yield increase under different long-term fertilization practices incorporated with two-year tillage rotations. *Agricultural Water Management* 221, 362–370 (2019).
447. Zhang, Y. et al. The effects of rotating conservation tillage with conventional tillage on soil properties and grain yields in winter wheat-spring maize rotations. *Agricultural and Forest Meteorology* 263, 107–117 (2018).
448. Zhang, Y. et al. Crop yield and soil properties of dryland winter wheat-spring maize rotation in response to 10-year fertilization and conservation tillage practices on the Loess Plateau. *Field Crops Research* 225, 170–179 (2018).
449. Zhao, C. et al. No-tillage reduces competition and enhances compensatory growth of maize (Zea mays L.) intercropped with pea (Pisum sativum L.). *Field Crops Research* 243, 107611 (2019).
450. Žugec, I. The effect of reduced soil tillage on maize (Zea mays L.) grain yield in Eastern Crota (Yugoslavia). *Soil and Tillage Research* 7, 19–28 (1986).

Acknowledgements
This work was supported by the ANR under the “Investissements d’avenir” program with the reference ANR-16-CONV-0003 (CLAND) and by the INRAE CIRAD meta-program “GloFoods”.

Author contributions
The three authors contributed equally to the project design and substantially review. Yang Su worked on the data collection, and all the authors worked together on data analysis and the drafting of the final version of the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41597-021-00817-x.

Correspondence and requests for materials should be addressed to Y.S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

The Creative Commons Public Domain Dedication waiver http://creativecommons.org/publicdomain/zero/1.0/ applies to the metadata files associated with this article.

© The Author(s) 2021