Supporting Information

Effective Protein Separation by Coupling Hydrophobic Interaction and Reverse Phase Chromatography for Top-down Proteomics

Lichen Xiua,1, Santosh G. Valejab,1, Andrew J. Alpertb,c, Song Jina and Ying Gea,b,d*

a Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA

b Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA

c PolyLC Inc., Columbia, Maryland, USA

d Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA

1 These two authors contributed equally to this work.

*To whom correspondence may be addressed: Ying Ge, Ph.D., 1300 University Ave., SMI 130, Madison, WI, 53706. E-mail: ge2@wisc.edu; Tel: 608-263-9212; Fax: 608-265-5512.
Supplemental Table

Table S-1. Protein identification from in *E. coli* lysate through HIC-RPC-MS/MS. Only HIC fraction 2 is shown demonstrating the proof-of-principle.

No.	No. of Matching Fragments	Molecular Weight (Da)	P Value	E Value	Accession No.	Protein Name
1	64	13472.1	5.4E-40	5.4E-40	YP_003001796	Hypothetical protein B21_04075
2	73	11772.9	1.9E-38	1.8E-38	YP_003001789	Cytochrome b562 (soluble) Transcriptional dual regulator HU-alpha (HU-2), subunit of HU transcriptional dual regulator
3	71	9529.1	2.2E-37	2.7E-37	YP_003001562	Protein
4	42	7145.6	3.6E-36	3.6E-36	YP_002998197	Protein
5	49	11855.8	2.2E-36	2.2E-36	YP_002999764	Transcriptional dual regulator HU-beta, NS1 (HU-1), subunit of HU transcriptional dual regulator
6	62	9219.9	4.3E-34	4.3E-34	YP_002998253	Hypothetical protein B21_01767
7	57	12354.3	4.5E-29	4.5E-29	YP_002999561	Superoxide dismutase (Mn) Superoxide dismutase precursor (Cu-Zn) Regulator of phosphatidyl-ethanolamine synthesis
8	47	17427.4	7.8E-29	5.7E-27	YP_003001476	Protein
9	60	15726.7	1.3E-26	1.3E-25	YP_002999407	Protein
10	39	6571.4	3.5E-25	3.5E-25	YP_002998836	Protein
11	29	7701.9	4.3E-25	7.3E-24	YP_002998149	Protein
12	22	10380.5	3.9E-17	7.9E-17	YP_003001699	Protein
13	25	10455.5	2.3E-19	1.8E-18	YP_002998539	Protein
14	15	6222.8	1.2E-12	5.8E-12	YP_003001781	Protein
15	28	12407.4	4.1E-14	7.7E-11	YP_002999974	Protein
16	14	8320.0	1.8E-10	1.8E-10	YP_003001605	Stress response protein
17	20	10722.8	3.9E-12	7.0E-10	YP_002999417	Superoxide dismutase (Fe) Hypothetical protein B21_03627
18	13	10455.5	2.3E-11	2.1E-08	YP_003001364	Superoxide dismutase (Mn) ytflQ, subunit of galactose ABC transporter
19	44	22932.5	5.5E-25	3.8E-20	YP_003001476	Superoxide dismutase (Mn) ytflQ, subunit of galactose ABC transporter
20	29	32083.5	4.7E-17	9.2E-14	YP_003001781	Stress response protein
Supplemental Figure

Figure S-1. Representative mass spectrum of myoglobin in HIC buffers, 1.8 M ammonium sulfate (a), 1.8 M ammonium tartrate (b), desalted by ultra-centrifugal device and RPC. RPC conditions, same as shown in Figure 4.