On modeling of three-layered thin bodies

Mikhail Nikabadze¹,², Armine Ulukhanyan², Andrey Khizhenkov²
¹ Department of Mechanics and Mathematics, Lomonosov MSU
² Department of Basic Science, Bauman MSTU
E-mail: munikabadze@yandex.ru, armine_msu@mail.ru, a.hizhenkov@gmail.com

Abstract. Some questions about the new parameterization of three-dimensional thin body with one small size are given. The vector parametric equations of the multilayered thin body are given. The geometric characteristics are considered. The representations of several differential operators, the equations of motion, the boundary conditions and the constitutive relations (CR) of classic and micropolar theories of elasticity are given. Some interlayer contact conditions are obtained. The definition of the k-order moment of any quantity with respect to the system of Legendre polynomials is given. The problems of the classic and micropolar theories of one-, two- and three-layered prismatic elastic thin bodies in moments of displacement and rotation vectors with respect to the system of Legendre polynomials are formulated. The problem of one-layered two-dimensional rectangular plate with two pinched edges under the distributed load are solved.

Keywords: new parametrization, micropolar theory, thin body, theory of thin bodies, prismatic body, Legendre polynomials.

1. Introduction

Many authors, for example, [1–10], as well as one of the authors of this work [11–19] used an analytical method by applying systems of orthogonal polynomials (Legendre and Chebyshev) to construct single-layer and multilayer theories of thin bodies. In addition, Nikabadze used this method to construct a theory of thin bodies with two small sizes [20,21].

In this work, we construct the micropolar theory of multilayer thin bodies using the systems of orthogonal polynomials. Note that any problem of the thin body theory can be considered in a three-dimensional statement, which is more accurate than the two-dimensional one. However, it is not always possible to implement this approach in practice because of the high complexity of solving three-dimensional problems and a large variety of statements of problems being practically necessary. Due to the wide use of thin bodies (single-layer, two and more layer structures) in mechanical engineering, aircraft engineering, and rocket production, it becomes necessary to create new theories of the thin bodies within the framework of the classical as well as the micropolar theories and to improve the methods for their calculation. Therefore, the construction of complex theories of thin bodies and the development of effective methods for calculating them are important and relevant problems.

2. Parametrization of the multilayered thin body

We consider multilayered thin domain consists of at most countable set of layers. The layers are numbered in ascending order. There are two base regular surfaces on each layer. \(S_{\alpha}^{(-)} \) and \(S_{\alpha}^{(+)} \) is
an inner and outer base surfaces of layer α. Thus surfaces S_α^- and S_α^+ are the same.

For each layer α we introduce the new parametrization of thin body with one small size. Thus, for each layer α three vectors $(\tilde{r}_1^\alpha, \tilde{r}_2^\alpha, \tilde{r}_3^\alpha)$ defined in the considered points $M \in S_\alpha$ form three-dimensional (spatial) covariant bases, where $\sim \in \{-,0,+,\}$. It is well known that based on these bases [21–23], one can construct the corresponding contravariant bases $(r_1^\alpha, r_2^\alpha, r_3^\alpha)$. By the relation obtained for a new parametrization [21,23] we can obtain relation for each layer α by the next simple rule: if the quantity is belong to the layer α quantity. For example, the vector parametric equation of the layer α follows

$$r_\alpha^\alpha(x^1, x^2) = r_\alpha^- + x^3 h_\alpha(x^1, x^2) = (1 - x^3)(r_\alpha^-) + x^3(\tilde{r}_\alpha^\alpha)x^2, \forall x^3 \in [0, 1].$$

The vector $h_\alpha(x^1, x^2) = (\tilde{r}_\alpha^\alpha - r_\alpha^-)$ performing topological mapping of the inner base S on the surface S_α, in general is not perpendicular to the base surface. The end point of each vector $h_\alpha(x^1, x^2)$ is the start point of the vector $h_{\alpha+1}(x^1, x^2)$, $\forall \alpha$. So we have

$$h_{\alpha+\delta} = h_\alpha + \sum_{\nu=\alpha}^{\alpha+\delta} h_\nu, \forall \alpha, \delta.$$

Let the multilayer body consists of K layers. Thus we have following relations

$$(+)^\alpha = (-)^\alpha + \sum_{\nu=\alpha}^{\alpha+K} (-)^\nu, h = \sum_{\nu=1}^{K} (+)^\nu - (-)^\nu.$$

3. Basic relations of the theory of thin elastic bodies

As is known, motion equations of micropolar deformable rigid body are represented in the following form [24–26]

$$\nabla \cdot \mathbf{P} + \rho \mathbf{F} = \rho \partial_t^2 \mathbf{u}, \quad \nabla \cdot \mathbf{\mu} + \mathbf{C} \otimes \mathbf{P} + \rho \mathbf{m} = \mathbf{J} \cdot \partial_t^2 \mathbf{\varphi}, \quad (1)$$

where \mathbf{P}, $\mathbf{\mu}$ are stress and moment stress tensors, \mathbf{C} – discriminant tensor, \mathbf{u} – displacement vector, $\mathbf{\varphi}$ – rotation vector, \mathbf{J} – moment of inertia (inner property of the medium), \mathbf{F} – mass force density, \mathbf{m} – mass momentum density, ρ – density of the medium, ∇ – Hamilton nabla operator, $\partial_t = \partial / \partial t$, t – time, \otimes – inner 2-product [21–23]. In the case of thin bodies theory with the new parametrization one can write these equations (1) in the following form [21]

$$g_P^P N_P \mathbf{P} + \partial_3 \mathbf{\tilde{P}} + \rho \mathbf{F} = \rho \partial_t^2 \mathbf{u}, \quad g_P^\mu \mathbf{\mu} + \partial_3 \mathbf{\tilde{\mu}} + \mathbf{C} \otimes \mathbf{P} + \rho \mathbf{m} = \mathbf{J} \cdot \partial_t^2 \mathbf{\varphi}, \quad (2)$$

where $\mathbf{P}^M = r^m \cdot \mathbf{P}$, $\mathbf{\mu}^M = r^m \cdot \mathbf{\mu}$, $N_P = \partial P - g_\alpha^3 \partial_3$. As is known [21], for thin bodies $g_P^P = \sum_{s=0}^{\alpha} A_s^P (x^3)^s$. We consider only the first series term (the 0th order approximation)

$$g_P^P = \sum_{s=0}^{\alpha} A_s^P (x^3)^s = \delta_M^M. \quad (2)$$

Thus for each layer α from (2) for the 0th order approximation we have the equilibrium equations in the following form
\[N_1 \bar{P}^I + \partial_3 \bar{P}^I + \mu F = 0, \quad N_1 \bar{\mu}_I^+ + \partial_3 \bar{\mu}^+ + C \otimes P + I m = 0. \]

(3)

CR of micropolar linear elasticity theory for materials without a center of symmetry have a look [21, 26]

\[\mathbf{P} = \mathbf{A} \otimes \gamma + \mathbf{B} \otimes \kappa, \quad \mathbf{\mu} = \mathbf{C} \otimes \gamma + \mathbf{D} \otimes \kappa, \]

where \(\gamma = \nabla \mathbf{u} - \mathbf{C} \cdot \varphi \) is the strain tensor, \(\kappa = \nabla \varphi \) is the torsion-bending tensor, \(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D} \) – the fourth rank material tensors. If the material has a center of symmetry, then \(\mathbf{B} = 0 \), \(\mathbf{C} = 0 \). Using denotion \(\tilde{\alpha} = \alpha \otimes \tilde{r} \tilde{r} \) similarly to (3) from (4) for each layer \(\alpha \) with a center of simmetry, one has

\[\tilde{\mathbf{P}} = \mathbf{A} \tilde{M} \tilde{N}_l - \tilde{\mu}_l - \mathbf{A}^{-1} \tilde{q} \tilde{C} \tilde{q}^{-1} \tilde{\varphi}, \quad \tilde{\mu} = \mathbf{D} \tilde{M} \tilde{N}_l - \tilde{\mu}_l. \]

4. Boundary conditions and interlayer contact conditions

Let the multilayered body consists of \(K \) layers and \(\mathbf{P}_1^{(-)} = \mathbf{P}_1^{(-)} |_{x^3 = 0}, \quad \mathbf{P}_K^{(-)} = \mathbf{P}_K^{(-)} |_{x^3 = 0}, \quad \mathbf{\mu}^{(+)} = \mathbf{\mu}^{(+)} |_{x^3 = 1}. \) Than static boundary conditions on the inner and outer surfaces of a multilayered body are [21]

\[\tilde{\mathbf{P}}_1^{(-)} = \tilde{\mathbf{P}}_1^{(-)} \tilde{\mathbf{P}}_K^{(-)} = \tilde{\mathbf{P}}_K^{(-)} \tilde{\mathbf{P}}_1^{(-)}, \quad \tilde{\mu}_1^{(-)} = \tilde{\mu}_1^{(-)} \tilde{\mu}_K^{(+)} = \tilde{\mu}_K^{(+)} \tilde{\mu}_1^{(-)}. \]

Interlayer contact conditions for a full contact take the form

\[\tilde{\mathbf{P}}_\alpha^{(+)} = - \tilde{\mathbf{P}}_\alpha^{(-)} \tilde{\mu}_\alpha^{(+)} = - \tilde{\mu}_\alpha^{(-)} \tilde{u}_\alpha^{(+)} = - \tilde{u}_\alpha^{(-)} \tilde{\varphi}_\alpha^{(+)} = \tilde{\varphi}_\alpha^{(-)} \alpha = 1, \ldots, K - 1. \]

5. Equations and CR in moments with respect to the Legendre polynomials

We expand all unknown functions in a series

\[P_{ij}(x^1, x^2, x^3) = \sum_{k=0}^{\infty} \binom{k}{k} P_{ij}(x^1, x^2, x^3), \quad \mu_{ij}(x^1, x^2, x^3) = \sum_{k=0}^{\infty} \binom{k}{k} \mu_{ij}(x^1, x^2, x^3), \quad u_i(x^1, x^2, x^3) = \sum_{k=0}^{\infty} \binom{k}{k} u_i(x^1, x^2, x^3), \quad \varphi_i(x^1, x^2, x^3) = \sum_{k=0}^{\infty} \binom{k}{k} \varphi_i(x^1, x^2, x^3), \]

where \(P_k \) are the Legendre polynomials with transformed argument orthogonal on segment \([0, 1] \). Here, if we consider only the first \(N + 1 \) terms of these series we say that we deal with \((0, N) \) order approximation [21].

Using the motion equations in the form (3), the definition of the \(k \)th-order moment of tensor quantity with respect to the system of Legendre polynomials, recurrence relations for Legendre polynomials, one can obtain motion equations of the micropolar body in moments of unknown functions with respect to the system of Legendre polynomials. Similarly, one can obtain CR in moments with respect to the system of Legendre polynomials [21].
6. The problem of one-layered two-dimensional rectangular isotropic plate with two pinched edges

Formulation of the problem of the classic theory of elasticity for one-layered two-dimensional rectangular plate with two pinched edges (Figure 1.) of $(0, N)$ order approximation in moments of displacement and rotation vectors with respect to the Legendre polynomials consists of:

1) the motion equations of $(0, N)$ order approximation of the classic theory of elasticity

\[
\frac{\partial}{\partial t} P_{I1} + \frac{2k + 1}{h} (P_{I2} - (-1)^k P_{I2}) - \frac{2k + 1}{h} \sum_{p=0}^{k} (1 - (-1)^{k+p}) P_{I2} = 0, \quad I = 1, 2, \quad k = 0, N, \tag{5}
\]

2) the system of CR of $(0, N)$ order approximation of the classic theory of elasticity

\[
P_{1I}^{(k)} = (\lambda + 2\mu) \frac{\partial}{\partial x} P_{1I}^{(k)} + \frac{2(2k+1)\lambda}{h} \sum_{p=0}^{N} \frac{(k+2p+1)}{u_2} \quad \text{and} \quad P_{12}^{(k)} = \mu \frac{\partial}{\partial x} P_{12}^{(k)} + \frac{2(2k+1)\mu}{h} \sum_{p=0}^{N} \frac{(k+2p+1)}{u_1},
\]

\[
P_{2I}^{(k)} = \lambda \frac{\partial}{\partial x} P_{2I}^{(k)} + \frac{2(2k+1)(\lambda + 2\mu)}{h} \sum_{p=0}^{N} \frac{(k+2p+1)}{u_2}, \quad k = 0, N, \tag{6}
\]

3) the system of boundary conditions on the base surfaces S and S

\[
P_{12}^{(k)} = 0, \quad P_{22}^{(k)} = 0, \quad P_{12}^{(k)} = 0, \quad P_{22}^{(k)} = -q, \tag{7}
\]

4) the systems of boundary conditions of $(0, N)$ order approximation on the side surface

\[
u_{I1}^{(k)} |_{x_1 = 0} = 0, \quad \nu_{I1}^{(k)} |_{x_1 = L} = 0, \quad k = 0, N. \tag{8}
\]

7. The problem of three-layered two-dimensional rectangular isotropic plate with two pinched edges

Formulation of the problem of the classic theory of elasticity for three-layered two-dimensional rectangular plate with two pinched edges of $(0, N)$ order approximation in moments of displacement and rotation vectors with respect to the Legendre polynomials consists of:

1) the systems of motion equations of $(0, N)$ order approximation of the classic theory of elasticity for each layer

\[
\frac{\partial}{\partial t} P_{11}^{(k)} + \frac{2k + 1}{h} (P_{12}^{(k)} - (-1)^k P_{12}^{(k)}) - \frac{2k + 1}{h} \sum_{p=0}^{k} (1 - (-1)^{k+p}) P_{12}^{(k)} = 0, \quad I = 1, 2, \quad \alpha = 1, 2, 3, \quad k = 0, N, \tag{9}
\]

2) the systems of CR of $(0, N)$ order approximation of the classic theory for each layer

\[
P_{11}^{(k)} = (\lambda_{\alpha} + 2\mu_{\alpha}) \frac{\partial}{\partial x} P_{11}^{(k)} + \frac{2(2k+1)\lambda_{\alpha}}{h} \sum_{p=0}^{N} \frac{(k+2p+1)}{u_2^{(k)}} \quad \text{and} \quad P_{12}^{(k)} = \mu_{\alpha} \frac{\partial}{\partial x} P_{12}^{(k)} + \frac{2(2k+1)\mu_{\alpha}}{h} \sum_{p=0}^{N} \frac{(k+2p+1)}{u_1^{(k)}},
\]

\[
P_{22}^{(k)} = \lambda_{\alpha} \frac{\partial}{\partial x} P_{22}^{(k)} + \frac{2(2k+1)(\lambda_{\alpha} + 2\mu_{\alpha})}{h} \sum_{p=0}^{N} \frac{(k+2p+1)}{u_2^{(k)}}, \quad k = 0, N, \tag{10}
\]

3) the system of boundary conditions on the base surfaces S and S

\[
P_{12}^{(k)} = 0, \quad P_{22}^{(k)} = 0, \quad P_{12}^{(k)} = 0, \quad P_{22}^{(k)} = -q, \tag{11}
\]
Figure 1. Rectangular plate with two pinched edges under the distributed load

4) the systems of boundary conditions of \((0, N)\) order approximation on the side surface

\[
\frac{\partial}{\partial x_1} \mathbf{u}_I |_{x_1=0} = 0, \quad \frac{\partial}{\partial x_1} \mathbf{u}_I |_{x_1=L} = 0, \quad \alpha = 1, 2, 3, \quad k = 0, N,
\]

5) interlayer contact conditions in case of full contact

\[
(+) P_{12} = (-) P_{12}, \quad (+) \mu_{12} = (-) \mu_{12}, \quad \sum_{p=0}^{N}(\mu_{p})_{I} = \sum_{p=0}^{N}(-1)^{p}(\mu_{p})_{I}, \quad \sum_{p=0}^{N}(\mu_{p})_{I} = \sum_{p=0}^{N}(-1)^{p}(\mu_{p})_{I}.
\]

8. The problem of one-layered two-dimensional rectangular micropolar isotropic plate with two pinched edges

Formulation of the problem of the micropolar theory of elasticity for one-layered two-dimensional rectangular plate with two pinched edges (Figure 1.) of \((0, N)\) order approximation in moments of displacement and rotation vectors with respect to the Legendre polynomials consists of:

1) The motion equations of \((0, N)\) order approximation of the micropolar theory of elasticity

\[
\partial_t (\varphi)_{I} + \frac{2k+1}{h} [P_{12} - (-)^k P_{12}] = - \frac{2k+1}{h} \sum_{p=0}^{k} [1 - (-)^k p]^2 \mathbf{u}_I, \quad I = 1, 2,
\]

\[
\partial_t \mu_{13} + \frac{2k+1}{h} \sum_{p=0}^{k} (\mu_{12} - (-)^k \mu_{12}) = - \frac{2k+1}{h} \sum_{p=0}^{k} [1 - (-)^k p] \mu_{23} + P_{21} - P_{12} = 0, \quad k = 0, N,
\]

2) The system of CR of \((0, N)\) order approximation of the micropolar theory of elasticity

\[
(\varphi)_{I} = (\lambda + 2\mu) \partial_t \mathbf{u}_I + \frac{2(2k+1)(\lambda - \alpha)}{h} \sum_{p=0}^{k} \mathbf{u}_I, \quad (\mu)_{22} = \lambda \partial_t \mathbf{u}_I + \frac{2(2k+1)(\lambda + 2\mu)}{h} \sum_{p=0}^{k} \mathbf{u}_I,
\]

\[
(\mu)_{12} = (\mu + \alpha) \partial_t \mathbf{u}_I + \frac{2(2k+1)(\mu - \alpha)}{h} \sum_{p=0}^{k} \mathbf{u}_I, \quad (\mu)_{23} = \frac{2(2k+1)(\delta + \beta)}{h} \sum_{p=0}^{k} \mathbf{u}_I, \quad k = 0, N,
\]

3) The system of boundary conditions on the base surfaces \((+), (-)\)

\[
P_{21} = 0, \quad P_{22} = 0, \quad \mu_{23} = 0, \quad P_{21} = 0, \quad P_{22} = -q, \quad \mu_{23} = 0,
\]

4) The systems of boundary conditions of \((0, N)\) order approximation on the side surface

\[
\mathbf{u}_I |_{x_1=0} = 0, \quad \mathbf{u}_I |_{x_1=L} = 0, \quad \varphi |_{x_1=0} = 0, \quad \varphi |_{x_1=L} = 0, \quad k = 0, N.
\]
Table 1

Method	(0,0) approx	(0,1) approx	(0,2) approx	(0,3) approx	(0,4) approx	(0,5) approx	(0,6) approx	(0,7) approx	(0,8) approx
FEM	-2.57	-0.77	-2.16	-2.44	-2.55	-2.56	-2.57	-2.57	-2.57

Table 2

Method	(0,0) approx	(0,1) approx	(0,2) approx	(0,3) approx	(0,4) approx	(0,5) approx
Classic theory	-0.01	-0.47	-0.74	-0.74	-0.75	-0.75
Micropolar theory	-0.01	-0.74	-0.30	-0.30	-0.30	-0.30

Figure 2. Numerical solution of the problem for (0,2) order approximation.

9. Numerical solution of the problem of one-layered two-dimensional rectangular isotropic plate with two pinched edges

Solving the problem (5) – (8) for classic elastic steel plate (Young’s modulus $E = 21000 \text{ kg/mm}^2$, Poisson’s ratio $\nu = 0.3$) at thickness $h = 10\text{ mm}$, length $L = 100\text{ mm}$, pressure $q = 100 \text{ kg/mm}$ we obtained the solutions for $(0,0)\text{th} - (0,8)\text{th}$ approximations. The problem also was solved by finite element method. The maximum values of the deflection of a plate are presented in the Table 1. Solution of the problem for $(0,2)\text{th}$ approximation is presented at the Figure 2.

For the problem (9) – (12) for micropolar isotropic plate ($E = 300\text{ MPa}$, $\nu = 0.4$, $l_b = 0.33\text{ mm}$, $N^2 = 0.02$) [27] at thickness $h = 1\text{ mm}$, length $L = 100\text{ mm}$, pressure $q = -0.01 \text{ kg/cm}$ we obtained solution for $(0,0)\text{th} - (0,5)\text{th}$ approximations. Also we obtained solution for analogous isotropic classic plate ($E = 300\text{ MPa}$, $\nu = 0.4$). The maximum values of the deflection of a plate are in the Table 2.

Note also that of great interest are works on the thermomechanics of composite structures under high temperature [28–32], which can be used when considering problems of thermomechanics for thin structures using the method described above.

Acknowledgement: this work was supported by the Russian Foundation for Basic Research (project no. 18–29–10085–mk).

References

[1] I. N. Vekua, Shell theory, general methods of construction. Pitman Advanced Pub. Program, 1985.
[2] A. E. Alekseev and B. D. Ansin, Equations of deformation of an elastic inhomogeneous laminated body of revolution // J. Appl. Mech. Techn. Phys. 2003. 44, No. 3. 432-437.
[3] Yu. M. Volchkov and L. A. Dergileva, Reducing three-dimensional elasticity problems to two-dimensional problems by approximating stresses and displacements by Legendre polynomials // J. Appl. Mech. Techn. Phys. 2007. 48, No. 3. 450–459.
[4] G. V. Ivanov, Theory of plates and shells. Novosibirsk State Univ., Novosibirsk, 1980 (in Russian).
[5] J. Fellers and A. Soler, Approximate solution of the finite cylinder problem using Legendre polynomials // AIAA J. 1970. 8, No. 11.
[6] Cicala Placido, Sulla teoria elastica della parete sottile // Giornale del Genio Civile. 1959. 97, No. 4, 6, 9
[7] R. D. Mindlin and M. A. Medick, Extensional vibrations of elastic plates // J. Appl. Mech. 1959. 26, No. 4. 561–569.
[8] T. V. Meunargiya, Development of the method of I. N. Vekua for problems of the three-dimensional moment elasticity. Tbilisi State Univ., Tbilisi, 1987 (in Russian).
[9] A. R. Ulukhanyan, Representation of Solutions to Equations of Hyperbolic Type// Moscow university mechanics bulletin. 2010, Vol. 65, No. 2. 47–50. DOI: 10.3103/S0027133010020056
[10] B. L. Pelekh, A. V. Maksimuk, and I. M. Korovaichuk, Contact problems for laminated elements of constructions and bodies with coating Naukova Dumka, Kiev, 1988 (in Russian).
[11] M. U. Nikabadze, A variant of the theory of multilayer structures // Mech. Solids. 2001. No. 1. 143–158.
[12] M. U. Nikabadze, Mathematical modeling of multilayer thin body deformation//Journal of mathematical sciences. V. 187, No. 3, 2012. P. 300-336.
[13] M. U. Nikabadze and A. R. Ulukhanyan, Statements of problems for a thin deformable three-dimensional body // Vestn. Mosk. Univ., Matem. Mekhan. 2005. No. 5. 43–49.
[14] M. U. Nikabadze, A variant of the system of equations of the theory of thin bodies // Vestn. Mosk. Univ., Matem. Mekhan. 2006. No. 1. 30–35.
[15] M. U. Nikabadze, Application of a system of Chebyshev polynomials to the theory of thin bodies // Vestn. Mosk. Univ., Matem. Mekhan. 2007. No. 5. 56–63.
[16] M. U. Nikabadze, Some issues concerning a version of the theory of thin solids based on expansions in a system of Chebyshev polynomials of the second kind // Mech. Solids. 2007. 42. No. 3. 391–421.
[17] M. U. Nikabadze, A. Ulukhanyan 2016 Analytical Solutions in the Theory of Thin Bodies. Advanced Structured Materials, Generalized Continua as Models for Classical and Advanced Materials, H. Altenbach and S. Forest. Vol. 42. pp. 319–361 DOI: 10.1007/978-3-319-31721-2
[18] M. Nikabadze, A. Ulukhanyan, T. Moseshvili, K. Tskhakaia, N. Mardaleishvili, Z. Arkania 2019 On the Modeling of Five-Layer Thin Prismatic Bodies. Mathematical and Computational Applications. Vol. 24, 3. pp. 1–16 DOI: 10.3390/mca24030069
[19] M. Nikabadze, A. Ulukhanyan, G. Sakhvadze 2019 To mathematical modeling of deformation of micropolar thin bodies with two small sizes. Journal of Physics: Conference Series. Vol. 1205, 1. pp. 1–8 DOI: 10.1088/1742-6596/1205/1/012040
[20] Kantor M M, Nikabadze M U, Ulukhanian A R 2013 Equations of Motion and Boundary Conditions of Physical Meaning of Micropolar Theory of Thin Bodies with Two Small Cuts. Mechanics of Solids. Vol. 48, 3. pp. 317–328 DOI: 10.3103/S0025654413030084
[21] Nikabadze M U 2014 Development of the Method of Orthogonal Polynomials in the Classical and Micropolar Mechanics of Elastic Thin Bodies (Moscow University Press), 515 p. (in Russian).
[22] Vekua I N 1978 Fundamentals of tensor analysis and covariant theory, (Nauka, Moscow) (in Russian)
[23] Nikabadze M U 2017 Topics on tensor calculus with applications to mechanics. Journal of Mathematical Sciences. Vol. 225, 1. 194 p. DOI: 10.1007/s10958-017-3467-4
[24] Nowacki W 1975 Theory of elasticity (Moscow, Mir) (in Russian).
[25] Kupradze V D, Gegelia T G, Basheleishvili M O and Burchuladze T V, 1976 Three-dimensional problems of the mathematical theory of elasticity and thermoelasticity. (Nauka, Moscow) (in Russian).
[26] Eringen A C 1999 Microcontinuum field theories. 1. Foundation and solids. (N.Y.: Springer- Verlag).
[27] Lakes R S 1995 Experimental methods for study of Cosserat elastic solids and other generalized continua Continuum models for materials with micro-structure, (ed. H. Muhlhaus, J. Wiley, N. Y. Ch. 1) p. 1-22.
[28] Dimitrienko Y, Yakovlev D 2015 The asymptotic theory of thermoelasticity of multilayer composite plates Composites-mechanics computations applications 6 1 pp. 13–51. DOI: 10.1615/CompMechComputApplIntJ.v6.i1.20
[29] Dimitrienko Y 2016 Thermomechanics of composite structures under high temperatures. Solid Mechanics and its Applications 224 DOI 10.1007/978-94-017-7494-9
[30] Dimitrienko Y 2016 Thermomechanics of composite structures under high temperatures. General equations of multiphase continuum mechanics for ablative composites Solid Mechanics and its Applications 224 pp. 31–59. DOI: 10.1007/978-94-017-7494-9-2
[31] Dimitrienko Y 2016 Thermomechanics of composite structures under high temperatures. Mathematical Model of Ablative Composites Solid Mechanics and its Applications 224 pp. 61–81. DOI: 10.1007/978-94-017-7494-9-3
[32] Dimitrienko Y, Dimitrienko I 2017 Modeling of thin composite laminates with general anisotropy under harmonic vibrations by the asymptotic homogenization method Int. journal for multiscale computational engineering 15 3 pp. 219-237. DOI: 10.1615/IntJMultCompEng.2017019518