A Note on UV/IR for Noncommutative Complex Scalar Field

I. Ya. Aref’eva§, D. M. Belov† and A. S. Koshelev†

§ Steklov Mathematical Institute,
Gubkin st.8, Moscow, Russia, 117966
arefeva@genesis.mi.ras.ru

† Physical Department, Moscow State University,
Moscow, Russia, 119899
belov@orc.ru, kas@depni.npi.msu.su

Abstract

Noncommutative quantum field theory of a complex scalar field is considered. There is a two-coupling noncommutative analogue of $U(1)$-invariant quartic interaction $(\phi^* \phi)^2$, namely $A\phi^* \phi \star \phi^* \phi + B\phi^* \phi \star \phi \star \phi$. For arbitrary values of A and B the model is nonrenormalizable. However, it is one-loop renormalizable in two special cases: $B = 0$ and $A = B$. Furthermore, in the case $B = 0$ the model does not suffer from IR divergencies at least at one-loop insertions level.
1 Introduction

Recently, there is a renovation of the interest in noncommutative quantum field theories (or field theories on noncommutative space-time [1, 2]). As emphasized in [3], the important question is whether or not the noncommutative quantum field theory is well-defined. Note that one of earlier motivations to consider noncommutative field theories is a hope that it would be possible to avoid quantum field theory divergencies [4, 5, 2, 6, 7]. Now a commonly accepted belief is that a theory on a noncommutative space is renormalizable iff the corresponding commutative theory is renormalizable. Results on one-loop renormalizability of noncommutative gauge theory [8] and two-loop renormalizability of noncommutative scalar ϕ^4 theory [9] as well as general considerations [10, 11] support this belief. In this paper we show that for more complicated models this is not true.

Note that renormalizability does not guarantee that the theory is well-defined. There is a mixing of the UV and the IR divergencies [12]. In particular, multi one-loop insertions in ϕ^3 theory [12] and multi tadpole insertions in ϕ^4 theory [9] produce infrared divergencies. UV/IR mixing depends on the model. The $U(1)$ noncommutative gauge theory does not exhibit a mixing of the UV and the IR dynamics [13]. For further discussions see [14]-[18].

The IR behaviour of noncommutative theories is closely related with an existence of a commutative limit of a noncommutative quantum theory under consideration. In particular, the IR behaviour of noncommutative ϕ^4 theory makes an existence of the commutative limit impossible.

In this paper we consider noncommutative quantum field theories of complex scalar field [19] whose commutative analogue $(\phi^*\phi)^2$ is renormalizable in four-dimensional case. There is a two-coupling noncommutative analogue of $U(1)$-invariant quartic interaction $(\phi^*\phi)^2$, namely $A\phi^*\phi^*\phi^*\phi + B\phi^*\phi^*\phi^*\phi$. For arbitrary values of A and B the model is nonrenormalizable. However it is one-loop renormalizable in two special cases: $B = 0$ and $A = B$. Moreover, in the case $B = 0$ the model does not suffer from IR divergencies at least at one-loop insertions level.

2 The model

Consider complex scalar field. There are only two noncommutative structures that generalize a commutative quartic interaction $(\phi^*\phi)^2$:

(a) $\text{Tr} \phi^* \phi^* \phi^* \phi$,

(b) $\text{Tr} \phi^* \phi^* \phi^* \phi$,

where \ast is the Moyal product $(f \ast g)(x) = e^{i\xi \theta_{\mu\nu}\partial_{\mu} \otimes \partial_{\nu}} f(x) \otimes g(x)$, ξ is a deformation parameter, $\theta_{\mu\nu}$ is a nondegenerate skew-symmetric real constant matrix. In the commutative case the quartic interaction $(\phi^*\phi)^2$ is invariant under local $U(1)$-transformations. In the noncommutative theory we can consider a ”deformed” $U(1)$-symmetry ($U \ast U^* = 1$). One sees that only the structure (a) is invariant under these transformations. Using (a) and (b) we can construct an interaction $V[\phi^*, \phi] = A \text{Tr} \phi^* \phi^* \phi^* \phi + B \text{Tr} \phi^* \phi^* \phi^* \phi = (A - B) \text{Tr} \phi^* \phi^* \phi^* \phi + \frac{B}{2} \text{Tr}([\phi^*, \phi]_{AM} \ast [\phi^*, \phi]_{AM})$, (1)

where $[,]_{AM}$ is the Moyal antibracket $[f, g]_{AM} = f \ast g + g \ast f$. The action of the theory is $S = \int d^4x \left[\partial_{\mu} \phi^* \partial_{\mu} \phi + m^2 \phi^* \phi \right] + V[\phi^*, \phi]$. (2)
Let us rewrite the interaction term in the Fourier components and symmetrize it, i.e.

\[
V[\phi^*, \phi] = \frac{1}{(2\pi)^4} \int dp_1 \ldots dp_4 \delta(\sum p_i) \times \\
\Phi \left[A \cos(p_1 \wedge p_2 + p_3 \wedge p_4) + B \cos(p_1 \wedge p_3) \cos(p_2 \wedge p_4) \right] \\
\times \left[\phi^*(p_1)\phi(p_2)\phi^*(p_3)\phi(p_4) \right].
\]

(3)

3 One Loop

In this section we analyze counterterms to one loop Feynman graphs in the theory (2) and find conditions when this theory is renormalizable. All one-loop graphs are presented on Fig. 1:b,c,d. "In" arrows are the fields "\(\phi\)" and "out" arrows are the fields "\(\phi^*\)."

The following analytic expression corresponds to the graph on Fig. 1:b

\[
\Gamma_{1b} = \frac{N_b}{(2\pi)^d} \int d^4k \frac{\mathcal{P}_{1b}(p,k)}{(k^2 + m^2)((k + P)^2 + m^2)},
\]

(4)

where \(N_b\) is a number of graphs (\(N_b = 8\)), \(P = p_2 + p_4 = -p_1 - p_3\) and \(\mathcal{P}_{1b}(p,k)\) is the trigonometric polynomial

\[
\mathcal{P}_{1b}(p,k) = [A \cos(k \wedge p_2 + (-k - p_2) \wedge p_4) + B \cos(p_2 \wedge p_4) \cos(k \wedge P)] \\
\times [A \cos(p_1 \wedge (-k) + p_3 \wedge (k - p_1)) + B \cos(p_1 \wedge p_3) \cos(k \wedge P)].
\]

(5)

The terms containing \(\exp[(\ldots) \wedge k]\) give a finite contribution to (4). Divergencies come from the terms \(\Delta \mathcal{P}_{1b}\) of the polynomial \(\mathcal{P}_{1b}\),

\[
\Delta \mathcal{P}_{1b} = \frac{B^2}{2} \cos(p_1 \wedge p_3) \cos(p_2 \wedge p_4).
\]

(6)

The graphs Fig. 1:c and 1:d mutually differ by permutation of momenta \(1 \leftrightarrow 3\) only and the analytic expressions for these graphs coincide. For the graph Fig. 1:c we have

\[
\Gamma_{1c} = \frac{N_c}{(2\pi)^d} \int d^4k \frac{\mathcal{P}_{1c}(p,k)}{(k^2 + m^2)((k + P)^2 + m^2)},
\]

(7)

where \(N_c\) is a number of graphs (\(N_c = 16\)), \(P = p_1 + p_2 = -p_3 - p_4\) and \(\mathcal{P}_{1c}(p,k)\) is the trigonometric polynomial

\[
\mathcal{P}_{1c}(p,k) = [A \cos(p_1 \wedge p_2 + (-k - P) \wedge k) + B \cos(p_1 \wedge (k + P)) \cos(p_2 \wedge k)] \\
\times [A \cos(p_3 \wedge p_4 + (-k) \wedge (k + P)) + B \cos(p_3 \wedge k) \cos(4 \wedge (k + P))].
\]

(8)
The polynomial ΔP_1c that gives contribution to a divergent part of this graph is equal (after symmetrization $p_2 \leftrightarrow p_4$) to

$$\Delta P_1c = \cos(p_1 \wedge p_2 + p_3 \wedge p_4) \left[\frac{A^2}{2} + \frac{B^2}{8} \right] + \frac{AB}{2} \cos(p_1 \wedge p_3) \cos(p_2 \wedge p_4). \quad (9)$$

We obtain the same answer for the graph on Fig.1d, i.e.

$$N_d = N_c, \quad \Delta P_1d = \Delta P_1c.$$

It is easy to see that the following condition is equal to one-loop renormalizability of the theory

$$N_b \Delta P_1b + 2N_c \Delta P_1c = C \left[A \cos(p_1 \wedge p_2 + p_3 \wedge p_4) + B \cos(p_1 \wedge p_3) \cos(p_2 \wedge p_4) \right], \quad (10)$$

where C is a constant. The condition (10) yields two algebraic equations:

$$N_c \left[A^2 + \frac{B^2}{4} \right] = AC \quad (11)$$

$$N_b \frac{B^2}{2} + N_c AB = BC \quad (12)$$

This system is self consistent if

$$B(BN_c - 2AN_b) = 0.$$

The last equation has two solutions: $B = 0$ and $A = B$. Therefore, one-loop renormalizability takes place only in two cases

$$B = 0 \quad \text{and} \quad V[\phi^*, \phi] = A \text{Tr}(\phi^* \phi)^2, \quad (13)$$

$$A = B \quad \text{and} \quad V[\phi^*, \phi] = B \frac{1}{2} \text{Tr}([\phi^*, \phi]_{AM})^2. \quad (14)$$

Theories with a real scalar field have problems with infrared behaviour [12, 9] originated in multi one-loop insertions.

Considering a tadpole Fig.1e in our case of complex scalar field we have

$$\Gamma(p) = \frac{1}{(2\pi)^d} \int d^dk \frac{A + B \cos^2(k \wedge p)}{k^2 + m^2} = \frac{A + \frac{B}{2}}{(2\pi)^d} \int d^dk \frac{1}{k^2 + m^2} + \frac{B}{2(2\pi)^d} \int d^dk \frac{\xi^{2k \wedge p}}{k^2 + m^2}. \quad (15)$$

Integrating this expression over momentum k we obtain

$$\Gamma(p) = \frac{m^{d-2}}{(4\pi)^{d/2}} (A + \frac{B}{2}) \Gamma(1 - d/2) + \frac{B}{(4\pi)^{d/2}} \left[\frac{m}{\xi |\theta p|} \right]^{d/2-1} K_{d/2-1}(2m|\theta p|). \quad (16)$$

If $d = 4$ the second term is singular when $p \to 0$. But in the case $B = 0$ this term disappears and hence there is no IR problem at all.

In conclusion, we have considered two-coupling noncommutative analogue of $U(1)$-invariant quartic interaction $(\phi^* \phi)^2$ of the complex scalar field and shown that renormalizability takes place only in two special cases, in one of this cases the theory is free of infrared divergencies.

Acknowledgments

We would like to thank B. Dragovich, P. B. Medvedev, O. A. Rytchkov and I. V. Volovich for useful discussions. This work was supported in part by RFFI grant 99-01-00166 and by grant for the leading scientific schools.
References

[1] A. Connes, *Noncommutative Geometry*, Academic Press, 1994.

[2] J. Madore, *An Introduction to Noncommutative Differential Geometry and its Physical Applications*, Cambridge Univ. Press, 1995.

[3] N. Seiberg and E. Witten, JHEP 9909 (1999) 032, hep-th/9908142.

[4] J. Wess, B. Zumino, Nucl. Phys. B (Proc. Suppl) 18 B (1990) 302

[5] I. Ya. Aref’eva and I. V. Volovich, Phys. Lett. B268 (1991) 179.

[6] T. Filk, Phys. Lett. B376 (1996) 53-58.

[7] A. Kempf, Phys. Rev. D55 (1997) 7909.

[8] C.P. Martin, D. Sanchez-Ruiz, Phys. Rev. Lett. 83 (1999) 476; M.M. Sheikh-Jabbari, J. High Energy Phys. 9906 (1999) 015; T. Krajewski and R. Wulkenhaar, *Perturbative quantum gauge fields on the noncommutative torus*, hep-th/9903187.

[9] I. Ya. Aref’eva, D. Belov and A. S. Koshelev, *Two-Loop Diagrams in Noncommutative \(\phi^4 \) theory*, hep-th/9912075.

[10] D. Bigatti and L. Susskind, *Magnetic fields, branes and noncommutative geometry*, hep-th/9908056.

[11] I. Chepelev and R. Roiban, *Renormalization of Quantum Field Theories on Noncommutative \(R^d \), I. Scalars*, hep-th/9911098.

[12] S. Minwalla, M. Raamsdonk and N. Seiberg, *Noncommutative Perturbative Dynamics*, hep-th/9912072.

[13] M. Hayakawa, *Perturbative analysis on infrared aspects of noncommutative QED on \(R^4 \)*, hep-th/9912094.

[14] G. Arcioni, M.A. Vazquez-Mozo, *Thermal effects in perturbative noncommutative gauge theories*, hep-th/9912140.

[15] Ch.-S. Chu, F. Zamora, *Manifest Supersymmetry in Non-Commutative Geometry*, hep-th/9912153.

[16] R. Marotta, F. Pezzella, *Two-Loop \(\phi^4 \)-Diagrams from String Theory*, hep-th/9912158.

[17] S. Iso, H. Kawai, Y. Kitazawa, *Bi-local Fields in Noncommutative Field Theory*, hep-th/0001027.

[18] H. Grosse, T. Krajewski, R. Wulkenhaar, *Renormalization of noncommutative Yang-Mills theories: A simple example*, hep-th/0001182.

[19] I. Ya. Aref’eva and I. V. Volovich, *Noncommutative Gauge Fields on Poisson Manifolds*, hep-th/9907114.