CURIOS CONGRUENCES ON CYCLOTOMIC POLYNOMIALS

SHIGEKI AKIYAMA AND HAJIME KANEKO

Abstract. Let \(\Phi_n^{(k)}(x) \) be the \(k \)-th derivative of \(n \)-th cyclotomic polynomial. Extending a work of D. H. Lehmer [4], we show some curious congruences:
\[
2\Phi_n^{(3)}(1) \text{ is divisible by } \phi(n) - 2 \text{ and } \Phi_n^{(2k+1)}(1) \text{ is divisible by } \phi(n) - 2k \text{ for } k \geq 2.
\]

1. Introduction

The \(n \)-th cyclotomic polynomial
\[
\Phi_n(x) = \prod_{0 < d < n, (d,n) = 1} \left(x - \exp \left(\frac{2\pi d\sqrt{-1}}{n} \right) \right)
\]
is the minimum polynomial of the \(n \)-th primitive roots of unity over \(\mathbb{Q} \). It is an irreducible polynomial in \(\mathbb{Z}[x] \) of degree \(\phi(n) \) where \(\phi \) is the Euler totient function. From the trivial relation \(x^n - 1 = \prod_{d|n} \Phi_d(x) \), the well known formula
\[
\Phi_n(x) = \prod_{d|n} (x^d - 1)^{\mu(n/d)}
\]
is derived by Möbius inversion. Here \(\mu \) is the Möbius function. In [5] [6], it is surmised that \(\Phi_n(x) \) is an increasing function for \(x > 1 \). We start with a simple proof of this fact.

Theorem 1.

\[
\Phi_n^{(j)}(1) > 0
\]
for \(j = 1, \ldots, \phi(n) \). In particular, \(\Phi_n^{(k)}(x) \) is strictly increasing for \(x \geq 1 \) and \(k = 0, 1, \ldots, \phi(n) - 1 \).

Proof. Since \(\Phi_1(x) = x - 1 \) and \(\Phi_2(x) = x + 1 \) are increasing, we may assume that \(n \geq 3 \). Then we have
\[
\Phi_n(x) = \prod_{0 < d < n/2, (d,n) = 1} \left(x - \exp \left(\frac{2\pi d\sqrt{-1}}{n} \right) \right) \left(x - \exp \left(\frac{2\pi (n-d)\sqrt{-1}}{n} \right) \right)
\]
\[
= \prod_{0 < d < n/2, (d,n) = 1} \left(x^2 - 2 \cos \left(\frac{2\pi d}{n} \right) x + 1 \right)
\]
Since all coefficients of
\[
(x + 1)^2 + b(x + 1) + 1 = x^2 + (b + 2)x + b + 2
\]
Key words and phrases. Cyclotomic polynomials, Jordan totient function.
with \(b \in (-2, 2) \) are positive, the expansion \(\Phi_n(x + 1) = \sum_{i=0}^{d} c_i x^i \) at \(x = 0 \) have positive coefficients \(c_i \) for \(i \leq d = \phi(n) \). This proves the theorem. \(\square \)

We give several remarks. First: the inequality \(x \geq 1 \) in Theorem 1 is sharp. If \(p \) is an odd prime, then

\[
\Phi_{2p}(x) = \frac{1 - (-x)^p}{1 + x}.
\]

It is easy to confirm

\[
\Phi'_{2p} \left(1 - \frac{1}{\sqrt{p}} \right) = \frac{\left(2p - \sqrt{p} + \frac{1}{\sqrt{p}} - 1 \right) \left(1 - \frac{1}{\sqrt{p}} \right)^{p-1} - 1}{\left(2 - \frac{1}{\sqrt{p}} \right)^2} < 0. \tag{3}
\]

Thus there exists no \(\varepsilon > 0 \) that \(\Phi_n(x) \) is increasing on \([1 - \varepsilon, \infty) \) for any \(n \geq 1 \).

Second: there is an alternative proof only works for \(k = 0 \), giving a starting point of this paper. Since \(\Phi_1(x) = x - 1 \), we may assume that \(n \geq 2 \). From (2), we see

\[
\Phi_n(1) = \prod_{d|n} d^{\mu(n/d)} \geq 1.
\]

This is rewritten as \(\Phi_n(1) = \exp(\Lambda(n)) \) with the von Mangoldt function

\[
\Lambda(n) := \begin{cases}
\log p & n = p^e \ (p \text{ prime}) \\
1 & \text{otherwise},
\end{cases}
\]

which plays a crucial role in analytic number theory. The fact above was proved by Lebesque [3]. We also have

\[
\log \Phi_n(x) = \sum_{d|n} \mu \left(\frac{n}{d} \right) \log \left(\frac{x^d - 1}{x - 1} \right)
\]

\[
\frac{\Phi_n'(x)}{\Phi_n(x)} = \sum_{d|n} \mu \left(\frac{n}{d} \right) \left(\frac{(d-1)x^{d-2} + (d-2)x^{d-3} + \cdots + 1}{x^{d-1} + x^{d-2} \cdots + 1} \right). \tag{4}
\]

Letting \(x \to 1 \), we obtain

\[
\frac{\Phi_n'(1)}{\Phi_n(1)} = \sum_{d|n} \mu \left(\frac{n}{d} \right) \frac{d - 1}{2} = \frac{1}{2} \sum_{d|n} \mu \left(\frac{n}{d} \right) d = \frac{\phi(n)}{2}
\]

Thus we see that

\[
\Phi_n'(1) = \frac{1}{2} \phi(n) \Phi_n(1) \geq 1 > 0, \tag{5}
\]

which was proved by Hölder [2]. Now we consider \(\Phi_n(z) \) as a polynomial of complex variable \(z \in \mathbb{C} \). Recalling Gauss-Lucas theorem, any root of \(\Phi_n'(z) \) lies in the convex hull of the roots of \(\Phi_n(z) \) in the complex plane. Therefore from (1) and \(n \geq 2 \), the real function \(\Phi_n'(x) \) has no root in \(x \geq 1 \). This implies \(\Phi_n'(x) > 0 \) for \(x \geq 1 \) since \(\Phi_n'(x) \) is continuous.

Third: let \(p \) be an odd prime again. (3) and (5) imply that there exists a real root of \(\Phi_{2p}'(x) \) in the interval \((1 - 1/\sqrt{p}, 1)\).
Proof. Applying Leibniz formula to (4),

\[J_k(n) = n^k \prod_{p \mid n} \left(1 - \frac{1}{p^k}\right) \]

where \(p \) runs over prime divisors of \(n \). Clearly \(J_k(n) \) is a generalization of the Euler totient function \(\phi(n) = J_1(n) \). The name came from C. Jordan who studied linear groups over \(\mathbb{Z}/n\mathbb{Z} \) and deduced, e.g.,

\[\text{Card}(GL_k(\mathbb{Z}/n\mathbb{Z})) = n \sum_{j=1}^{k} J_j(n). \]

As we observed in the second remark, the special values \(\Phi_n^{(k)}(1) \) give important arithmetic functions such as von Mangoldt function and Euler totient function. Lehmer [4] gave an explicit formula of \(\Phi_n^{(k)}(1)/\Phi_n(1) \) as a polynomial of \(\phi(n) \) and \(J_{2i}(n) \) over \(\mathbb{Q} \), using Stirling numbers and Bernoulli numbers, see [1] for further developments. Here we give a quick proof of this fact but without its explicit form.

Theorem 2. For \(n \geq 2 \), \(\Phi_n^{(\ell)}(1)/\Phi_n(1) \) is expressed as a polynomial of \(\phi(n) \) and \(J_{2i}(n) (1 \leq i \leq (\ell + 1)/2) \) over \(\mathbb{Q} \), and its value is a positive integer \(\Phi_n^{(\ell)}(1)/\Phi_n(1) \) for \(\phi(n) \geq \ell \).

Proof. Applying Leibniz formula to [4],

\[\frac{\Phi_n^{(k)}}{\Phi_n(x)} = \sum_{\ell=0}^{k} \binom{k}{\ell} \frac{\Phi_n^{(\ell)}(x)}{\Phi_n(x)} \sum_{d \mid n} \mu \left(\frac{n}{d}\right) \left(1 - dx^{d-1} + dx^d - x^d\right) \frac{(x-1)(x^d-1)}{(x-1)(x^d-1)}^{(k-\ell)}. \]

Substituting \(x \) by \(1 + t \), we get the Taylor expansion at \(t = 0 \):

\[\frac{((d-1)t-1)(t+1)^{d-1} + 1}{t((t+1)^d-1)} = \frac{d-1}{2} + \frac{d^2 - 6d + 5}{12} t + \frac{-d^2 + 4d - 3}{8} t^2 + O(t^3). \]

The \(\ell \)-th Taylor coefficient is a polynomial of \(d \) whose degree does not exceed \(\ell + 1 \). Using these Taylor coefficients, we recursively obtain the explicit formula for \(\Phi_n^{(\ell)}(1)/\Phi_n(1) \). Thus \(\Phi_n^{(\ell)}(1)/\Phi_n(1) \) is a polynomial on \(J_1(n), J_2(n), \ldots, J_{\ell+1}(n) \) over \(\mathbb{Q} \). Moreover since

\[\frac{((d-1)t-1)(t+1)^{d-1} + 1}{t((t+1)^d-1)} = \frac{d}{2(t+1)} (t+1)^d + 1 \]

is an even function on \(d \), the terms \(d^{2k+1} \) with \(k = 1, 2, \ldots \) do not show, i.e., \(J_{2k+1}(n) (k = 1, 2, \ldots) \) never appear. By Theorem [4] \(\Phi_n^{(\ell)}(1)/\Phi_n(1) > 0 \) for \(\phi(n) \geq \ell \). Since

\[\Phi_n(1) = \exp(\Lambda(n)) = \begin{cases} p & n = p^e \ (p \text{ prime}) \\ 1 & \text{otherwise}, \end{cases} \]

it suffices to show \(\Phi_n^{(\ell)}(1) \equiv 0 \ (\text{mod} \ p) \). By

\[\Phi_n^{(\ell)}(x) = \frac{x^{p^\ell} - 1}{x^{p^\ell-1} - 1} = \Phi_p(x^{p^\ell-1}), \]

\[\Phi_n^{(\ell)}(x) = 0 \text{ for } \phi(n) < \ell. \]
the case $e > 1$ is plain and the case $e = 1$ remains. Indeed we have,

$$
\Phi_p^{(1)}(1) = \frac{\prod_{i=0}^{p-1} i(i-1) \cdots (i-\ell + 1)}{\ell + 1} = \frac{p(p-1) \cdots (p-\ell)}{\ell + 1} \equiv 0 \pmod{p}.
$$

□

For example, we have

Corollary 1.

\[
\begin{align*}
\frac{\Phi_n^{(2)}(1)}{\Phi_n(1)} &= \frac{J_2(n)}{12} + \frac{\phi(n)^2}{4} - \frac{\phi(n)}{2}, \\
\frac{\Phi_n^{(3)}(1)}{\Phi_n(1)} &= \frac{(\phi(n) - 2)(J_2(n) + \phi(n)(\phi(n) - 4))}{8}, \\
\frac{\Phi_n^{(4)}(1)}{\Phi_n(1)} &= \frac{1}{240} \left(30J_2(n)\phi(n)^2 - 180J_2(n)\phi(n) + 5J_2(n)^2 + 220J_2(n) - 2J_4(n) + 15\phi(n)^4 - 180\phi(n)^3 + 660\phi(n)^2 - 720\phi(n) \right), \\
\frac{\Phi_n^{(5)}(1)}{\Phi_n(1)(\phi(n) - 4)} &= \frac{1}{96} \left(3\phi(n)^4 - 48\phi(n)^3 + 10J_2(n)\phi(n)^2 + 228\phi(n)^2 - 80J_2(n)\phi(n) - 288\phi(n) + 5J_2(n)^2 + 100J_2(n) - 2J_4(n) \right).
\end{align*}
\]

Let

$$
\Phi_n(x + 1) = \sum_{h=0}^{\phi(n)} c_n(h)x^h \quad \text{with} \quad c_n(h) = \frac{1}{h!}\Phi_n^{(h)}(1) \in \mathbb{Z}.
$$

Lehmer [4] further stated an interesting observation on the coefficients $c_n(h)$. For a real R, set $R^{[\ell]} := R(R - 1) \cdots (R - \ell + 1)$. For a positive integer r, let $t_r := J_r(n)/(2r)$. We define Bernoulli numbers B_m ($m \geq 0$) by

$$
t_r = \frac{te^t}{e^t - 1} = \sum_{n=0}^{\infty} B_n \frac{t^n}{n!}.
$$

Under the setting above, he claimed that

$$
c_n(h) = \frac{\phi(n)}{\Phi_n(1)} = t_1^{[h]} + 2 \sum_{\ell=1}^{\infty} B_{2\ell} \left(\frac{h}{2\ell} \right) (t_1 - \ell)^{[h-2\ell]} \Omega_{\ell},
$$

but the general form of Ω_{ℓ} is not given. He only wrote the first few terms:

\[
\begin{align*}
\Omega_1 &= t_2, \\
\Omega_2 &= t_4 - 5t_2^{[2]}, \\
\Omega_3 &= t_6 - 7t_4(t_2 - 1) + \frac{35}{3}t_2^{[3]} + \frac{14}{3}t_2, \\
\Omega_4 &= t_8 - \frac{20}{3}t_6(t_2 - 1) - \frac{7}{3}t_4^{[2]} + \frac{70}{3}t_4(t_2 - 1)^{[2]} \\
&\quad - \frac{175}{9}t_2^{[4]} + \frac{10}{3}t_6 - \frac{280}{9}t_2^{[2]} + \frac{290}{9}t_2.
\end{align*}
\]

Both Corollary [4] and this observation suggest a
The goal of this paper is to prove intimately related divisibility:

\[\Phi_n^{(2k+1)}(1)/\Phi_n(1) \text{ is divisible by } \phi(n) - 2k \text{ in } \mathbb{Z}, \]

for \(k \geq 1 \), see Theorem[3] and Corollary[2]. (The dividend should be doubled for the case \(k = 1 \).) We did not find yet a special meaning of this divisibility. For a fixed \(n \), such divisibility is confirmed using Theorem[2]. Before closing this section, we give a property of the Jordan totient function, which is used to show this divisibility for a fixed \(n \). This property is not used in the later sections but of independent interest.

Let \(\mathbb{E}(m) \) be the exponent of \((\mathbb{Z}/m\mathbb{Z})^* \), the unit group of the ring \(\mathbb{Z}/m\mathbb{Z} \). For an odd prime \(p \), \(\mathbb{E}(p^e) = \phi(p^e) \) holds since \((\mathbb{Z}/p^e\mathbb{Z})^* \) is cyclic. From

\[(\mathbb{Z}/2^e\mathbb{Z})^* \cong \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2^{e-2}\mathbb{Z} \]

for \(e \geq 2 \), we have

\[\mathbb{E}(2^e) = \begin{cases} 1 & e = 1 \\ 2 & e = 2 \\ 2^{e-2} & e \geq 3. \end{cases} \]

For a prime \(p \) and a positive integer \(e \), we write \(\mathbb{E}(p^e) \parallel k \) if both \(\mathbb{E}(p^e) \mid k \) and \(\mathbb{E}(p^{e+1}) \nmid k \) hold.

Proposition 1 (Trivial congruence). For \(k \geq 3 \), we have

\[J_k(n) \equiv 0 \pmod{\prod_{\mathbb{E}(p^e)\parallel k} p^e} \]

for \(n \geq k + 2 \). For \(M > \prod_{\mathbb{E}(p^e)\parallel k} p^e \) and any \(n_0 \in \mathbb{N} \), there exists \(n \geq n_0 \) such that \(J_k(n) \not\equiv 0 \pmod{M} \).

Proof: Clearly there are only finitely many prime \(p \) such that \(\mathbb{E}(p^e) \mid k \). For a prime factor \(q \) of \(n \), \(q^k - 1 \) is a factor of \(J_k(n) \). The condition \(\mathbb{E}(p^e) \mid k \) implies \(q^k - 1 \equiv 0 \pmod{p^e} \) for all \(q \) which is coprime with \(p \). Assume that

\[n > \max\{ p : \mathbb{E}(p^e) \mid k \}. \]

(6)

If \(n \) has two distinct prime factors \(p_1 \) and \(p_2 \), then \(J_k(n) \) is divisible by \((p_1^k - 1)(p_2^k - 1)\). We see \(p_1^k - 1 \) is divisible by \(p_2^e \) with \(p \neq p_i \) if \(\mathbb{E}(p^e) \mid k \). This implies that \((p_1^k - 1)(p_2^k - 1)\) is divisible by \(\prod_{\mathbb{E}(p^e)\parallel k} p^e \). Thus we may assume that \(n \) is a power of a prime \(q \) and \(\mathbb{E}(q^e) \mid k \), i.e., \(n = q^\ell \) and \(\ell \geq 2 \). In this case, \(J_k(n) \) is divisible by \(q^{\ell k} - q^{(\ell-1)k} = q^{(\ell-1)k}(q^k - 1) \). We see

\[\prod_{\mathbb{E}(p^e)\parallel k} p^e \mid q^k - 1. \]

When \(q \neq 2 \), since \(e \leq \mathbb{E}(q^e) \leq k \), we see \(q^e \) divides \(q^{(\ell-1)k} \) and the required congruence holds. For \(q = 2 \) we only have \(e - 1 \leq \mathbb{E}(2^e) \leq k \) and hence \(e \leq 2k \). So additionally if \(\ell > 2 \), then \(q^e \mid q^{(\ell-1)k} \) holds. Therefore our discussion fails only when \(n = 2^{2k}, \mathbb{E}(2^e) \mid k \) and \(e > k \). This happens when \(2^{k-1} < k \), that is, \(k \leq 2 \). Summing up if \(k \geq 3 \), (6) implies our congruence. Moreover (6) holds if \(n > k + 1 \), because the worst case happens when \(k + 1 \) is an odd prime.
Take $M > \prod \Xi(p^e)k^e$ and any $n_0 \in \mathbb{N}$. There exists a prime power factor p^{e+1} of M that $\Xi(p^{e+1})$ does not divide k. From the definition of the exponent, there exists $t \in \mathbb{N}$ which is coprime to p that $t^k \not\equiv 1 \mod p^{e+1}$. By Dirichlet’s theorem, there exists a prime $q \geq n_0$ that $q \equiv t \mod p^{e+1}$.

Then $J_k(q) = q^k - 1 \not\equiv 0 \mod M$. □

Here is a table of the first several values of Prop 1.

k	odd	2	4	6	8	10	12	14	16	18	20
$\prod \Xi(p^e)k^e$	2	24	240	480	264	65520	24	16320	28728	13200	

2. Main results

Throughout this section, let n be an integer greater than 2. In particular, $\phi(n)$ is even. In this section we introduce a new relation for $c_n(h)$. We denote the primitive n-th root of one by $\zeta_1, \zeta_2, \ldots, \zeta_{\phi(n)}$. We may assume that $\zeta_{j+\phi(n)/2} = \overline{\zeta_j}$ for $j = 1, \ldots, \phi(n)/2$. Then we have

$$\sum_{h=0}^{\phi(n)} c_n(h)x^h = \prod_{j=1}^{\phi(n)/2} (x + 1 - \zeta_j). \quad (7)$$

Let

$$\prod_{j=1}^{\phi(n)/2} (x + 2 - \zeta_j - \overline{\zeta_j}) =: \sum_{\ell=0}^{\phi(n)/2} a_n(\ell)x^\ell. \quad (8)$$

Our key is a special equality between $c_n(h)$ and $a_n(\ell)$, which does not appear to be reduced to a simple relation of generating functions.

Theorem 3. For any h with $0 \leq h \leq \phi(n)$, we have

$$c_n(h) = \sum_{\ell=\max(0,h-\phi(n)/2)}^{\lfloor h/2 \rfloor} \binom{\phi(n)/2 - \ell}{h - 2\ell} a_n(\ell). \quad (9)$$

Theorem 3 leads to our curious congruences.

Corollary 2. (i) $2\Phi''_n(1)$ is divisible by $\phi(n) - 2$.

(ii) Suppose that $k \geq 2$. Then $\Phi_n(2k+1)(1)$ is divisible by $\phi(n) - 2k$.

Proof. For the proof of (i), we may assume that $\phi(n) \geq 3$. Since $2\Phi_n''(1) = 12c_n(3)$, (i) follows from (9) and

$$12\left(\frac{\phi(n)/2}{3}\right) = (\phi(n) - 2) \cdot \frac{\phi(n)}{2} \cdot \frac{\phi(n) - 4}{2}.$$

For the proof of (ii), we may assume that $\phi(n) \geq 2k + 1$. Then (ii) follows from $\Phi_n(2k+1)(1) = (2k + 1)!c_n(2k + 1)$ and (9). In fact, Set

$$\overline{c(\ell)} := (2k + 1)!\left(\frac{\phi(n)/2 - \ell}{2k + 1 - 2\ell}\right).$$
Note that \((\phi(n) - 4k + 2)/2 \cdot (\phi(n) - 4k)/2\) is even. If \(\ell = 0\), then we see by \(k \geq 2\) that
\[
\overline{c(0)} = \frac{\phi(n)}{2} \cdot \frac{\phi(n) - 2}{2} \cdot \frac{\phi(n) - 2k}{2} \cdots \frac{\phi(n) - 4k + 2}{2} \cdot \frac{\phi(n) - 4k}{2}
\]
is divisible by \(\phi(n) - 2k\). Moreover, if \(1 \leq \ell \leq k\), then
\[
\overline{c(\ell)} = \frac{(2k + 1)!}{(2k + 1 - 2\ell)!} \cdot \frac{\phi(n) - 2\ell}{2} \cdot \frac{\phi(n) - 2k}{2} \cdots \frac{\phi(n) - 4k + 2\ell}{2}
\]
is divisible by \(\phi(n) - 2k\) because \((2k + 1)!/(2k + 1 - 2\ell)!\) is even. \(\Box\)

3. Proof of Theorem 3

3.1. Preliminaries. Let \(n\) be an integer greater than 2. We use the same notation as Section 2. Set
\[
S := \{1, 2, \ldots, \phi(n)\}, \quad T := \{1, 2, \ldots, \phi(n)/2\}.
\]
For any \(I \subseteq S\), put
\[
f(I) := \prod_{j \in S \setminus I} (1 - \zeta_j).
\]
From (7), we have
\[
c_n(h) = \sum_{I \subseteq S \atop |I| = h} f(I), \quad (10)
\]
where \(|I|\) denotes the cardinality of \(I\). Similarly, for any \(A \subseteq T\), we set
\[
g(A) := \prod_{j \in T \setminus A} (2 - \zeta_j - \overline{\zeta_j}).
\]
Then (8) implies that
\[
a_n(\ell) = \sum_{A \subseteq T \atop |A| = \ell} g(A). \quad (11)
\]
The main idea in the proof of Theorem 3 is to find many same valued subsums in (10), by using the relation
\[
(x + 1 - \zeta_j)(x + 1 - \overline{\zeta_j}) = x^2 + (2 - \zeta_j - \overline{\zeta_j})x + (1 - \zeta_j)(1 - \overline{\zeta_j})
\]
\[
= x^2 + (2 - \zeta_j - \overline{\zeta_j})x + (2 - \zeta_j - \overline{\zeta_j}).
\]
See Lemma 1 for details. For any \(I \subseteq S\), let
\[
m(I) := \bigcup \left\{ j, j + \frac{\phi(n)}{2} \bigg| 1 \leq j \leq \frac{\phi(n)}{2}, \ j \in I \text{ and } j + \frac{\phi(n)}{2} \in I \right\},
\]
\[
s(I) := \bigcup \left\{ j, j + \frac{\phi(n)}{2} \bigg| 1 \leq j \leq \frac{\phi(n)}{2}, \ j \in I \text{ or } j + \frac{\phi(n)}{2} \in I \right\}
\]
It is easily seen that \(m(I) \subseteq s(I)\). Note that \(m(\emptyset) = \emptyset\) and \(s(\emptyset) = \emptyset\).

Example 1. Consider the case where \(n = 16\). Note that \(\phi(16) = 8\). Let \(I := \{1, 5, 2\}\). Then we have \(m(I) = \{1, 5\}\) and \(s(I) = \{1, 5, 2, 6\}\).
Lemma 1. Let I_0 be a subset of S. Then we have
\[
\sum_{\substack{I \subset S \ni \phi \ni (1, \ldots, n) \ni \bigcup \{1, \ldots, n\} \ni m(I) = m(I_0) \ni s(I) = s(I_0)}} f(I) = f(m(I_0)). \tag{12}
\]

We denote the left-hand side of (12) by $F(I_0)$.

Remark 1. Let I_0 be a fixed subset of S. If $I \subset S$ satisfies $m(I) = m(I_0)$ and $s(I) = s(I_0)$, then $|I| = |I_0|$.

Example 2. Before proving Lemma 4, we give an example of (12). Key idea is the equality
\[
(1 - \zeta_j)(1 - \zeta_j) = (1 - \zeta_j) + (1 - \zeta_j)
\]
for any $j \in S$. We consider the case where $n = 16$ and $I_0 = \{1, 5, 2\}$ (see also Example 7). We list $I \subset S$ satisfying $m(I) = m(I_0) = \{1, 5\}$ and $s(I) = s(I_0) = \{1, 5, 2, 6\}$ as follows: $I = \{1, 5, 2\}, \{1, 5, 6\}$. Thus, we see
\[
F(I_0) = (1 - \zeta_6)(1 - \zeta_6)(1 - \zeta_7)(1 - \zeta_7)(1 - \zeta_6)(1 - \zeta_6)
+ (1 - \zeta_2)(1 - \zeta_4)(1 - \zeta_4)(1 - \zeta_4)(1 - \zeta_4)
= (1 - \zeta_2)f(s(I_0)) + (1 - \zeta_2)f(s(I_0))
= (1 - \zeta_2)(1 - \zeta_2)f(s(I_0)) = f(m(I_0)).
\]

Proof of Lemma 7. We use induction on $|s(I_0) \ni m(I_0)|$. First, consider the case of $s(I_0) = m(I_0)$. Then we see $s(I_0) = m(I_0) = I_0$, and so
\[
F(I_0) = f(I_0) = f(m(I_0)),
\]
which implies (12). Next, we suppose that $|s(I_0) \ni m(I_0)| > 0$. Without loss of generality, we may assume that $1 + \phi(n)/2 \in s(I_0) \ni m(I_0)$. Put $I_0 := I_0 \cup \{1 + \phi(n)/2\}$. Note that $m(I_0) = m(I_0) \cup \{1, 1 + \phi(n)/2\}$ and $s(I_0) = s(I_0)$. We take $I \subset S$ with $m(I) = m(I_0)$ and $s(I) = s(I_0)$. Set $\tilde{I} := I \cup \{1, 1 + \phi(n)/2\}$. Note that $1 \in I$ or $1 + \phi(n)/2 \in \tilde{I}$. We get
\[
f(I) = \begin{cases}
(1 - \zeta_1)f(\tilde{I}) & \text{if } 1 \in I, \\
(1 - \zeta_1)f(\tilde{I}) & \text{if } 1 + \phi(n)/2 \in \tilde{I}.
\end{cases}
\]
Moreover, observe that $m(\tilde{I}) = m(I_0)$, $s(\tilde{I}) = s(I_0)$. Hence, we obtain
\[
F(I_0) = (1 - \zeta_1) \sum_{\substack{\tilde{I} \subset S \ni \phi \ni (1, \ldots, n) \ni (1 + \phi(n))/2 \ni m(\tilde{I}) = m(I_0) \ni s(\tilde{I}) = s(I_0)}} f(\tilde{I}) + (1 - \zeta_1) \sum_{\substack{\tilde{I} \subset S \ni \phi \ni (1, \ldots, n) \ni (1 + \phi(n))/2 \ni m(\tilde{I}) = m(I_0) \ni s(\tilde{I}) = s(I_0)}} f(\tilde{I})
= (1 - \zeta_1)F(I_0) + (1 - \zeta_1)F(I_0).
\]
Since $|s(I_0) \ni m(I_0)| = |s(I) \ni m(I)| - 2$, the inductive hypothesis implies that
\[
F(I_0) = (1 - \zeta_1)f(m(I_0)) + (1 - \zeta_1)f(m(I_0))
= (1 - \zeta_1)(1 - \zeta_1)f(m(I_0)) = f(m(I_0)),
\]
which implies (12).
3.2. Completion of the proof. In what follows, we apply Lemma 1 to (10). We now introduce some definition. Recall that \(S = \{1,2,\ldots,\phi(n)\} \) and \(T = \{1,2,\ldots,\phi(n)/2\} \).

Definition 1. Let \(J \subset S \).

- \(J \) is called full if \(J = \{x \mid x \in J\} \).
- \(\pi(J) := J \cap T \).

Remark 2. If \(J \subset S \) is full, then we have

\[
f(J) = \prod_{j \in S \setminus J} (1 - \zeta_j) = \prod_{j \in T \setminus \pi(J)} (1 - \zeta_j)(1 - \overline{\zeta_j}) = g(\pi(J)).
\]

Definition 2. Let \(h \) be an integer with \(0 \leq h \leq \phi(n) \).

- For \(J \subset S \), we write \(h \ni J \) if there exists \(I_0 \subset S \) such that \(|I_0| = h \) and \(m(I_0) = J \).
- Suppose that \(h \ni J \) and \(J' \subset S \). We write \(h \ni (J,J') \) if there exists \(I_0 \subset S \) such that \(|I_0| = h \), \(m(I_0) = J \), and \(s(I_0) = J' \).

Lemma 2. Let \(h \) be an integer with \(0 \leq h \leq \phi(n) \).

(i) Let \(J \subset S \). Then \(h \ni J \) if and only if \(J \) is full and

\[
2h - \phi(n) \leq |J| \leq h.
\]

(ii) Suppose that \(h \ni J \), \(|J| = 2\ell \) and \(J' \subset S \). Then \(h \ni (J,J') \) if and only if \(J' \) is full, \(J \subset J' \), and \(|\pi(J' - J)| = h - 2\ell \). In particular, the number of \(J' \) with \(h \ni (J,J') \) is

\[
\left(\frac{\phi(n)/2 - \ell}{h - 2\ell} \right).
\]

Proof. Let us show (i). It is clear that if \(h \ni J \), then \(J \) is full. When \(J \) is full, we derive a necessary and sufficient condition for \(h \ni J \) in terms of \(|J| \). Suppose that \(h \ni J \). There exists \(I_0 \subset S \) such that \(m(I_0) = J \) and \(h = |I_0| \). Let \(2\ell := |m(I_0)| \) and \(a := |I_0\setminus m(I_0)| \). Then we have \(2\ell \leq h \) and \(h = 2\ell + a \). Moreover, since

\[
|\pi(s(I_0))| = \ell + a \leq \frac{\phi(n)}{2},
\]

we get

\[
h \leq \ell + \frac{\phi(n)}{2},
\]

which implies (14). Conversely, if (13) holds for a full \(J \), then putting \(2\ell := |J| \), \(a := h - 2\ell \), we have \(0 \leq a \leq \phi(n)/2 - \ell \). Thus we can find an \(I_0 \subset S \) with \(m(I_0) = J \) and \(|I_0| = h \), i.e. \(h \ni J \).

Next we prove (ii). It is obvious that if \(h \ni (J,J') \), then \(J' \) is full and \(J \subset J' \). When \(J' \) is full and \(J \subset J' \), we deduce a necessary and sufficient condition for \(h \ni (J,J') \) in terms of \(|J'| \). Suppose that \(h \ni (J,J') \). There exists \(I_0 \subset S \) such that \(|I_0| = h \), \(m(I_0) = J \), and \(s(I_0) = J' \). Putting again \(a := |I_0\setminus m(I_0)| \), we see \(|\pi(J' - J)| = a = h - 2\ell \). Conversely, if \(a := |\pi(J' - J)| = h - 2\ell \), then \(h \ni (J,J') \) is similarly shown. Since we choose \(a \) elements in \(T \setminus \pi(J) \) of cardinality \(\phi(n)/2 - \ell \), the latter part of (ii) immediately follows. \(\square \)

Remark 3. Let \(0 \leq h \leq \phi(n) \). Let \(J \subset S \) with \(h \ni J \). Let \(J' \subset S \) with \(h \ni (J,J') \). Then Remark 4 implies that if \(I \subset S \) satisfies \(m(I) = J \) and \(s(I) = J' \), then \(|I| = h \).
Let h be an integer with $0 \leq h \leq \phi(n)$. Applying (10) and Lemma 1, we obtain
\[
c_n(h) = \sum_{I \subseteq S, |I| = h} f(I) = \sum_{J \subseteq S, h \gg J \gg (J,J')} \sum_{J' \subseteq S, h \gg J} f(J) \sum_{J' \subseteq S, h \gg (J,J')} f(J) \sum_{J' \subseteq S, h \gg (J,J')} 1.
\]
Lemma 2 (i) implies that
\[
c_n(h) = \sum_{\ell = \max\{0, h - \phi(n)/2\}}^{[h/2]} \sum_{J \subseteq S, J: \text{full}, |J| = 2\ell} f(J) \sum_{J' \subseteq S, h \gg (J,J')} 1.
\]
Hence, Lemma 2 (ii) implies that
\[
c_n(h) = \sum_{\ell = \max\{0, h - \phi(n)/2\}}^{[h/2]} \left(\frac{\phi(n)/2 - \ell}{h - 2\ell} \right) \sum_{J \subseteq S, J: \text{full}, |J| = 2\ell} g(A).
\]
Using Remark 2 and (11), we deduce that
\[
c_n(h) = \sum_{\ell = \max\{0, h - \phi(n)/2\}}^{[h/2]} \left(\frac{\phi(n)/2 - \ell}{h - 2\ell} \right) a_n(\ell),
\]
which completes the proof of Theorem 3.

REFERENCES
[1] A. Herrera-Poyatos, P. Moree, Coefficients and higher order derivatives of cyclotomic polynomials: Old and new. Expo. Math. 39 (2021), no. 3, 309–343.
[2] O. Hölder, Zur theorie der Kreisteilungsgleichung $k_m(x) = 0$, Prace Mat. Fiz 43 (1936), 13–23.
[3] V. A. Lebesque, Dimostrazione Dell’irreduuttibilità Dell’equazione formata con le radici primitive dell’unità, Ann. Mat. 2 (1859), 232–237.
[4] D. H. Lehmer, Some properties of the cyclotomic polynomial. J. Math. Anal. Appl. 15 (1966), 105–117.
[5] K. Motose, Ramanujan’s sums and cyclotomic polynomials. Math. J. Okayama Univ. 47 (2005), 65–74.
[6] K. Motose, On values of cyclotomic polynomials. VII. Bull. Fac. Sci. Technol. Hirosaki Univ. 7 (2004), no. 1, 1–8.