Rationale and study-design of a randomized, placebo-controlled, double-blind phase 2b trial to Evaluate Efficacy, Safety and Tolerability of an oral glutaminy cyclase inhibitor Varoglutamstat (PQ912) in Study participants With MCI and Mild AD - VIVIAD

E.G.B. Vijverberg
Brain Research Center

T.M. Axelsen
Sanos Clinic

A.R. Bihlet
NBCD

K. Henriksen
University of Copenhagen: Kobenhavns Universitet

F. Weber
Vivoryon Therapeutics

K. Fuchs
Vivoryon Therapeutics

J.E. Harrison
Amsterdam UMC - Locatie VUMC: Amsterdam UMC Locatie VUmc

K. Kühn-Wache
Vivoryon Therapeutics

P. Alexandersen
SANOS clinic

N.D. Prins
Brain Research Center

Philip Scheltens (✉ p.scheltens@amsterdamumc.nl)
Amsterdam Universitair Medische Centra https://orcid.org/0000-0002-1046-6408

Research Article

Keywords: Alzheimer, clinical trials; small molecules; puroglutamate, abeta, placebo, amyloid
Abstract

Background: Varoglutamstat (formerly PQ912) is a small molecule that inhibits the activity of the glutaminyl cyclase to reduce the level of pyroglutamate-A-beta (pGluAB42). Recent studies confirm that pGluAB42 is a particular amyloid form that is highly synaptotoxic and plays a significant role in the development of AD.

Methods: This paper describes the design and methodology behind the VIVIAD-trial. The aim of this study is to evaluate varoglutamstat in a state-of-the-art phase 2b, placebo-controlled, double-blind, randomized clinical trial on safety and tolerability, efficacy on cognition, brain activity and AD biomarkers. In addition to its main purpose, the trial will explore potential associations between novel and established biomarkers and their individual and composite relation to disease characteristics.

Results: to be expected early 2023

Conclusion: This state of the art phase 2b study will yield important results for the field and the treatment of AD with a small molecule directed against pyroglutamate-A-beta.

Introduction

Alzheimer’s disease (AD) affects approximately 47 million people worldwide and the prevalence will triple by 2050 (1). No disease modifying therapy for AD has, so far, been approved. The failure of previous trials to show the desired efficacy has led to questions regarding the validity of amyloid hypothesis and whether the mechanism of action of the therapies and/or the study designs have been appropriate. Due to the rising demand for effective treatment, the scientific field is highly invested in the development of new therapeutic targets associated with amyloid beta aggregation in the brain as well as other possible disease modifying targets (2).

In recent years, it has become clear that the concentration of soluble β-amyloid (AB)-oligomers is more closely associated with clinical symptoms than amyloid plaque burden itself (3–5), by causing more synaptotoxicity, neuroinflammation and neurodegeneration. Pyroglutamate-AB42 (pGluAB42), a particular AB form, has been found to be extremely toxic, resistant to degradation, more hydrophobic leading to easy aggregation, and seeding the formation of additional neurotoxic oligomers (6–11). pGluAB42 is generated from full-length AB by various peptidases (eg. neprilysin (NEP) (12) and insulin degrading enzyme (IDE) (13) as part of the normal AB-degradation pathway and are then further modified by the enzyme glutaminyl cyclase (QC) (14). In human autopsy studies on AD-patients, pGluAB42 was found to constitute 10–50% of the total amyloid burden, suggesting a significant role in the development of AD (15–16). Consequently, making the processes involved with pGluAB42 an interesting therapeutic target, highlighted by the recent encouraging news regarding donanemab, a monoclonal antibody also targeting pGluAB42 (17).
The small molecule QC-inhibitor varoglutamstat inhibits the activity of QC and reduces the level of pGluAB42. This was established in a large phase 1 program evaluating up to 14 days of treatment in healthy young and aging individuals being treated with up to 1800mg of varoglutamstat twice daily (BID). The study found varoglutamstat to be well tolerated with few and mild adverse events (AE), and demonstrated clear pharmacodynamic effects in terms of QC-inhibition in plasma and CSF (18).

In a phase 2a, randomized, double-blind, placebo-controlled, proof of concept trial in biomarker confirmed AD-patients (n = 120), study participants were treated with varoglutamstat in doses of 800 mg for 12 weeks to further evaluate safety and effects on biomarkers (19). Varoglutamstat showed an acceptable safety and tolerability profile in lower doses and with slower titration. The varoglutamstat-treatment group were also found to have a significant improvement of working memory, reduction of synaptotoxicity measured by less theta-wave activity on EEG and reduced neurogranin-levels as well as improvements on various other experimental biomarkers (19). Post-hoc results further supported the concept of enhance synaptoplasticity with the treatment of varoglutamstat in a network analysis.

The trials with varoglutamstat indicated a beneficial safety and tolerability-profile resulting in favourable benefit-risk ratio, biological effect on QC inhibition, reduced synaptic toxicity, data suggestive of a clinical effect and provided the rationale to design a state-of-the-art phase 2b trial with endpoints in cognitive function, biomarkers, and long-term safety and tolerability. In the following we describe the study design of the VIVIAD trial, a study to evaluate safety and tolerability of different doses and efficacy of varoglutamstat in study participants with MCI and Mild AD.

Methods

Study setting and design

This multinational, double-blind, randomized, placebo-controlled study is evaluating the disease modifying effects of PQ912 and serves as a dose finding study on the drug in patients suffering from MCI or mild dementia due to AD. The study aims to enroll 250 patients and is currently enrolling study participants in all participating centers.

The trial consists of an initial dose-finding phase. All participants enrolled will be randomized in a 1:1:1 fashion between 600mg BID varoglutamstat, 300mg BID varoglutamstat or placebo BID. When the 90th subject has completed the evaluation at week 24, an interim analysis will be conducted in order to establish the lowest effective dose of varoglutamstat. Hereafter, all participants receiving varoglutamstat will be changed to the highest well-tolerated dose and all further randomization will be done 1:1 between the chosen dose of varoglutamstat and placebo. Study participants recruited early into the study will be kept on treatment for up to 96 weeks or until the last subject recruited will have completed visit (V) 8 (48 weeks of treatment), whichever comes first, (see Fig. 1 for graphic overview of the study design). The trial is registered at clinicaltrials.gov: NCT04498650

Study population
The study's inclusion criteria are study participants, male or female, from ≥ 50 to ≤ 80 years with a diagnosis of MCI or mild dementia due to AD as per the 2018 NIAA research framework (20) (30), with a Mini Mental State Examination (MMSE) score of ≥ 20, a Wechsler Adult Intelligence Scale (WAIS) IV Coding Test score (21) (31) ≤ 0.5 standard deviations below the reference score adjusted for age. Our purpose in selecting the Coding Test requirement was to include only study participants likely to have a resolvable cognitive deficit. Also, the participants must be able to have a study partner accompany them at study visits, as well as be in a stable state regarding both AD and potential AD-medication.

Exclusion criteria include exclusion of conditions which may affect cognition, including vascular dementia or other cerebral lesions as evaluated by magnetic resonance imaging. No major psychiatric conditions are allowed, there should be no known presence of insufficiently treated vitamin-B, folate-deficiency or hypothyroidism. There should be no signs of severe hepatic or renal failure, neither should the participants have suffered stroke or have evidence of other forms of dementia including atypical presentations of AD (e.g. posterior cortical atrophy, frontal or language types of AD) or previous seizures. Patients having had cancer (besides from non-metastatic basal cell cancer or non-metastatic squamous cell cancer) within 2 years, myocardial infarction within the past 6 months or signs of addiction disorder, are also excluded (see table 1).

Results

Study procedures

As a means of evaluating activities of daily living in this cognitively impaired patient population, the Amsterdam Instrumental of Activities of Daily Living questionnaire (A-IADL-Q) (22) (32) will be employed. This instrument is completed by the study partner, hence study participants are required to have a study partner able to accompany them on visits to clinic. The screening for the trial consists of several elements in order to ensure adherence to the inclusion and exclusion criteria (see table 1). A medical history, physical and neurological examination, vital signs, ECG, and cognitive measures including the WAIS-IV Coding test, to test executive function and working memory, the MMSE and a Neuropsychological Test Battery (NTB) (23–25)(33–35) composed of CogState tests of episodic verbal memory (the International Shopping List Test), episodic visual memory (the One Card Learning test), working memory (the One Back test) and two measures of attention (‘Detection’ and ‘Identification’). A composite score of performance on these latter three tests is the primary efficacy measure for this study.

To assess AD-specific speech changes the Winterlight speech assessment (WLA) will be employed regularly to assess any change from baseline in the study participants (36). Also, blood will be drawn for hematology, blood biochemistry and assessment of blood biomarkers. Also, a lumbar puncture will be performed to assess inclusion criteria in the form of AB42 and p-Tau-levels, and have an extra matrix to assess longitudinal pharmacodynamic effects of varoglutamstat by means of investigational biomarkers. A cerebral MRI will be performed to rule out relevant cerebral vascular disease, or other pathological changes.
Upon passing screening, the first 90 participants will be randomized 1:1:1 by a computerized allocation system to receive either PQ912 300mg BID, 600mg BID or placebo BID following a 12-week escalation period. Escalation occurs in up to five steps; weeks 1–2: 50 mg/placebo once daily, weeks 3–4: 50 mg/placebo BID, weeks 5–8: 150 mg/placebo BID, weeks 9–12: 300 mg/placebo BID, weeks 13–24: 300 mg/placebo or 600 mg/placebo BID, in order to minimize possible side-effects. At the baseline visit, study participants will be assessed again on the NTB, WAIS-IV coding test and the WLA. A full physical examination will also be performed, as well as en EEG and blood draws for hematology, biochemistry and apolipoprotein E (ApoE), Human Leukocyte Antigen (HLA) and CYP2c19 genotyping.

As illustrated in Fig. 1, the participants will be seen in the clinics 4 weeks after baseline and assessed for AE's, drug accountability and vital signs. In addition, blood will be sampled for hematology and biochemistry and a physical exam will be conducted. At week 12, the above procedures will be repeated as well as the NTB, WLA and WAIS-IV Coding test. These procedures will be repeated every 12 weeks.

The participants attend clinic visits once every 12 weeks until study termination, where several key measurements are made at timepoints, including physical and neurological examination, WAIS-IV Coding test, WLA, NTB, Amsterdam IADL-Q. Every 24 weeks blood will be analyzed for biomarkers. Blood levels of PQ912 will be measured at week 12, 24 and 48 as well as at EOT, for study participants enrolled early in the trial. In addition, an EEG will be performed at week 24 and 48 and an additional cerebral MRI will be performed at EOT. CSF will be collected for biomarker measurement at week 48.

Should the patients experience significant intolerable side effects (starting from a maximal dose of 300 mg BID/placebo or above), the investigators may decrease drug dosage by 50% for a period or temporarily suspend treatment with IMP. Should treatment-naïve study participants progress significantly in their symptoms during the study, initiation of standard AD medication is allowed.

Endpoints

The safety analysis will be based on significant changes on i) physical and neurological examinations, ii) significant changes on blood samples, iii) amyloid-related imaging abnormalities (ARIA) and iv) reported adverse events.

The primary efficacy analysis consists of the pooled Z-score of the CogState ‘Detection’, ‘One Back’ and ‘Identification’ tests (see ‘Statistical Evaluation’ for method of evaluation).

In addition to the primary analysis of efficacy and safety evaluation, several secondary and exploratory endpoints have been defined for this study. Secondary endpoints have been defined as linear change in overall cognition based on the complete NTB and in the CogState battery by itself, using the same statistical model as the primary efficacy analysis. At week 48, changes in global relative theta power (4–8 Hz) in the EEG-data as well as changes from baseline score of A-IADL-Q will also be analyzed.

As an exploratory endpoint neuronal activity will be evaluated in the same manner as described by Briels et al. 2020 (26) (36), Poil et al. 2013 (27) and Scheltens et al. 2018 (19) in regards to global relative power
in the delta (0.5–4 Hz), alpha (8–13 Hz) and beta (13–30 Hz) frequency bands, looking into global posterior dominant peak frequency, Amplitude Envelope Correlation (AEC) in the 4–13 Hz band and functional network topology measures such as centrality, modularity, minimum spanning tree in an attempt to acquire new EEG AD-specific biomarkers in this modality.

Besides collection at screening and baseline, blood for biomarker measurement will be collected at week 24, 48 and the EOT-visit, whereas CSF will be collected at screening and at EOT. There will be a broad assessment of biomarkers with potential use for quantifying neuroinflammation, synaptic toxicity and neurodegeneration. The panel of biomarkers assessed will include levels of: YKL-40 (inflammatory marker), Neurogranin (synaptic marker), Beta secretase 1 protein [BACE-1], Tau and pTau, Protein fragments of Tau, GFAP and extracellular matrix (ECM) molecules (neurocan, brevican and Tenascin-R). In addition to the earlier mentioned well-established biomarkers, exploratory biomarkers in both plasma and CSF will be investigated e.g. Neurofilament light chain (NFL); protein fragments of Tau, GFAP and extracellular matrix (ECM) molecules (neurocan, brevican and Tenascin-R); pGlu-peptide substrates of QC (e.g. pGlu- and total C-C motif chemokine ligand 2 [CCL2], Orexin A) and Aβ peptides (including full length and truncated A peptides) will be assessed.

Statistical evaluation

The main statistical evaluation will be performed in the Full Analysis Set population, such that all participants who are randomized and received at least one dose of study medication will be included in the main statistical analysis.

An interim analysis is planned to be performed shortly following the 90th participant reach 24 weeks post-baseline. At this point a data safety monitoring board (DSMB) consisting of experts within relevant medical and scientific fields will conduct an unblinded safety analysis, in order to decide on study continuation and secondly which dose of investigational medicinal product (IMP) should be used for the remainder of the study.

As the study is planned to have differences in participation duration and dosage, a linear model of the primary efficacy parameter will be employed to assess effectiveness. The primary efficacy analysis will consist of the pooled Z-score based on the cognitive scores from the CogState ‘One Back’, ‘Identification’ and ‘Detection’ tests (see Fig. 2). The two different dose groups will be pooled and the slope coefficient of the Z-score over time will be compared to that of the placebo group. This approach enables incorporation of all data on participating individuals, irrespective of their follow-up time, thus ensuring a maximum amount of information obtained from study participants over the course of the trial.

Based on extrapolation of the results in the SAPHIR study, evaluation of other empirical data, and expert opinion, it was determined that at 48 weeks, an effect size of approximately 0.35 is a reasonable expectation. The effect size, Cohen's D, of 0.35 corresponds to an abolishment of the decline in the combined Z-score for cognition in the PQ912 treated study participants. Based on the assumptions
above, and an allocation ratio of 11:14 between active and placebo, by comparison via a two-sample T-test, a total sample size of around 250 should provide a power close to or exceeding 80%.

The sample size is not adjusted for the rate of drop-out as it is anticipated that all participating individuals will have at least two measurements of the combined Z-score, irrespective of their follow-up time, and therefore contribute to the analysis of the primary efficacy endpoint.

Discussion

The VIVIAD trial is a phase 2b dose-finding study further evaluating the safety and efficacy of varoglutamstat, as a potential disease-modifying treatment in AD. Varoglutamstat inhibits the QC activity and reduces the level of pGluAB42, which is expected to alleviate the acute and chronic neurotoxic effects of pGluAB42. In addition to its main purpose, the trial will explore potential associations between novel and established biomarkers and their individual and composite relation to disease characteristics.

Dose finding for the optimal benefit-risk ratio is an important part of the VIVIAD trial. The previous 2a study established 800 mg varoglutamstat BID to be the maximum tolerable dose. It is expected that a slower dose titration may improve safety and tolerability. The rationale behind a gradual titration is that most AEs from the SAPHIR trial was deemed of immunological origin (19), a titration period may allow a gradual habituation of the immune system to the drug. So, the current trial has a gradual dose escalation period, followed with an interim analysis in order to establish the most suitable dose of varoglutamstat while limiting the risk of potential negative consequences of QC-inhibition in the periphery for rest of the trial.

One of the primary efficacy endpoints is the evaluation of varoglutamstat on working memory and attention, and secondarily on cognition and activities of daily living, using the Cogstate Neuropsychological Test Battery and the A-IADL-Q, both of which have been validated for use as serial measurements (22–24). Exploratory measure include the WAIS-IV Coding test (21, 28), part of the WAIS-IV intelligence test and which has also been validated for exploring executive function and working memory as a stand-alone test and which is recognised by the EMA as a measure of ‘timed executive function’. The WAIS-IV Coding test serves in this study as an inclusion criteria with a specific cut-off in the screening process, selecting only participants with a certain degree of cognitive impairment. Using the WAIS-IV Coding test score as inclusion criterion and an exploratory endpoint (longitudinal evaluation) is a novel approach in AD research.

Results from SAPHIR trial indicated beneficial effects of varoglutamstat on synaptic toxicity measured by different biomarkers. Therefore, the efficacy of varoglutamstat on brain activity will be assessed as a secondary objective. Based on the positive findings in the SAPHIR study (19, 26), resting-state brain activity will be evaluated by using EEG which has been found to be associated with synaptic activity enabling a macroscale assessment of neuronal circuit integrity (26, 29). Besides that, EEG is both cost-effective and widely available, making it very suitable for trials in AD due to the method's ability to detect early changes in oscillatory activity of the cortex (30). Another argument for including EEG-changes as an
In conclusion, the present VIVIAD trial is a state-of-the-art design in the field of AD and is a combined dose-finding, proof-of-concept efficacy and safety-analysis of varoglutamstat with a strong exploration
platform for development of new important biomarker-based diagnostics in one and the same trial.

Declarations

- Ethics approval and consent to participate: n/a
- Consent for publication: all authors have consented to publish
- Availability of data and material: n/a
- Competing interests: see below
- Funding: funding for the study (not this manuscript) is provided by Vivoryon
- Authors’ contributions: Vijverberg, Axelsen and Scheltens drafted the first version; all other authors contributed and Scheltens finalized the article and prepared it for submission.
- Acknowledgements: n/a
- gov Identifier: NCT04498650

Competing interests:

- Dr Scheltens has received consultancy fees (paid to the institution) from AC Immune, Alkermes, Alnylam, Alzheon, Anavex, Biogen, Brainstorm Cell, Cortexyme, Denali, EIP, ImmunoBrain Checkpoint, GemVax, Genentech, Green Valley, Novartis, Novo Nordisk, PeopleBio, Renew LLC, Roche. He is PI of studies with AC Immune, CogRx, FUJI-film/Toyama, IONIS, UCB, Vivoryon. He is a part-time employee of Life Sciences Partners Amsterdam. He serves on the board of the Brain Research Center.

- Dr Vijverberg has received consultancy fees (paid to the institution) from Biogen, Brainstorm Cell, ImmunoBrain Checkpoint, New Amsterdam Pharma and Treeway. He is PI of studies with AC Immune, CogRx, Green Valley, IONIS, Janssen, Roche, Rodin Therapeutics, Sanofi, UCB, and Vivoryon.

- Dr Harrison has received consultancy fees from 23andMe, Alkahest, AlzeCure, Aptinyx, Athira Pharma, Axon, Axovant, Bial, Biogen, BlackthornRx, Boehringer Ingelheim, Brands2Life, Cognition Therapeutics, Compass Pathways, Corlieve, Cronos, Curasen, DeNDRoN, Eisai, EIP Pharma, Eli Lilly, FSV7, G4X Discovery, GfHEU, Heptares, Imperial College, Johnson & Johnson, Kaasa Health, Ki-Elements, Lundbeck, Lysosome Therapeutics, Merck, Neurocentria, Neurocog, Neurodyn, Neurotrack, NHS, Novartis, Nutricia, Probiodrug, Regeneron, reMYND, Rodin Therapeutics, Roivant, Samumed, Sanofi, Signant Health, Syndesi Therapeutics, Takeda, Virusgenics, Vivoryon & WinterLight Labs.

- Dr. Axelsen has no conflicts of interest to declare.

- Dr Weber is a consultant to Vivoryon Therapeutics NV, Germany

- AR. Bihlet is a full-time employee of NBCD A/S, a clinical contract-research organization.

- K. Kuehn-Wache and K. Fuchs are a full-time employees of Vivoryon Therapeutics NV, Germany.
-Dr. Prins is consultant to Boehringer Ingelheim and Aribio. He is co-PI of studies with EIP Pharma and Fuji Film Toyama Chemical. He serves on the DSMB of Abbvie's M15-566 trial. He is CEO and co-owner of the Brain Research Center, The Netherlands.

References

1. Global, regional, and national burden of Alzheimer's disease and other dementias, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019 Jan;18(1):88–106.
2. Cummings J, Lee G, Ritter A, Sabbagh M, Zhong K. Alzheimer's disease drug development pipeline: 2020. Alzheimers Dement (N Y). 2020; July 1-29.
3. Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R, Liosatos M, et al. Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins. Proc Natl Acad Sci U S A. 1998 May;95(11):6448–53.
4. Selkoe DJ. Alzheimer's disease is a synaptic failure. Science. 2002 Oct;298(5594):789–91.
5. Shankar GM, Li S, Mehta TH, Garcia-Munoz A, Shepardson NE, Smith I, et al. Amyloid-beta protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory. Nat Med. 2008 Aug;14(8):837–42.
6. Matos JO, Goldblatt G, Jeon J, Chen B, Tatulian SA. Pyroglutamylated amyloid-β peptide reverses cross β-sheets by a prion-like mechanism. J Phys Chem B. 2014 May;118(21):5637–43.
7. Wirths O, Breyhan H, Cynis H, Schilling S, Demuth H-U, Bayer TA. Intraneuronal pyroglutamate-Abeta 3-42 triggers neurodegeneration and lethal neurological deficits in a transgenic mouse model. Acta Neuropathol. 2009 Oct;118(4):487–96.
8. Schilling S, Lauber T, Schaupp M, Manhart S, Scheel E, Böhm G, et al. On the seeding and oligomerization of pGlu-amyloid peptides (in vitro). Biochemistry. 2006 Oct;45(41):12393–9.
9. Schilling S, Appl T, Hoffmann T, Cynis H, Schulz K, Jagla W, et al. Inhibition of glutaminyl cyclase prevents pGlu-Abeta formation after intracortical/hippocampal microinjection in vivo/in situ. J Neurochem. 2008 Aug;106(3):1225–36.
10. Schlenzig D, Rönicke R, Cynis H, Ludwig H-H, Scheel E, Reymann K, et al. N-Terminal pyroglutamate formation of Aβ38 and Aβ40 enforces oligomer formation and potency to disrupt hippocampal long-term potentiation. J Neurochem. 2012 Jun;121(5):774–84.
11. Schlenzig D, Manhart S, Cinar Y, Kleinschmidt M, Hause G, Willbold D, et al. Pyroglutamate formation influences solubility and amyloidogenicity of amyloid peptides. Biochemistry. 2009 Jul;48(29):7072–8.
12. Nalivaeva NN, Zhuravin IA, Turner AJ. Neprilysin expression and functions in development, ageing and disease. Mech Ageing Dev. 2020 Dec;192:111363. 1
13. Fu H, Liu B, Li L, Lemere CA. Microglia Do Not Take Up Soluble Amyloid-beta Peptides, But Partially Degrade Them by Secreting Insulin-degrading Enzyme. Neuroscience. 2020 Sep;443:30–43.
14. Nussbaum JM, Schilling S, Cynis H, Silva A, Swanson E, Wangsanut T, et al. Prion-like behaviour and tau-dependent cytotoxicity of pyroglutamylated amyloid-β. Nature. 2012 May;485(7400):651–5.
15. Piccini, Alessandra et al. 2005. “β-Amyloid Is Different in Normal Aging and in Alzheimer Disease.” Journal of Biological Chemistry 280(40): 34186–92.
16. Wu, Guoxin et al. 2014. “Pyroglutamate-Modified Amyloid-β Protein Demonstrates Similar Properties in an Alzheimer’s Disease Familial Mutant Knock-in Mouse and Alzheimer’s Disease Brain.” Neurodegenerative Diseases 14(2): 53–66.
17. Alzforum. In phase 2, Donanemab curbs cognitive decline in early alzheimer’s. 12 Jan 2021. https://www.alzforum.org/news/research-news/phase-2-donanemab-curbs-cognitive-decline-early-alzheimers
18. Lues I, Weber F, Meyer A, Bühring U, Hoffmann T, Kühn-Wache K, et al. A phase 1 study to evaluate the safety and pharmacokinetics of PQ912, a glutaminyl cyclase inhibitor, in healthy study participants. Alzheimer’s Dement (New York, N Y). 2015 Nov;1(3):182–95.
19. Scheltens P, Hallikainen M, Grimmer T, Duning T, Gouw AA, Teunissen CE, et al. Safety, tolerability and efficacy of the glutaminyl cyclase inhibitor PQ912 in Alzheimer’s disease: results of a randomized, double-blind, placebo-controlled phase 2a study. Alzheimers Res Ther. 2018 Oct;10(1):107.
20. Jack CR, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, et al. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Vol. 14, Alzheimer’s and Dementia. Elsevier Inc.; 2018. p. 535–62.
21. Jaeger J. Digit Symbol Substitution Test: The Case for Sensitivity Over Specificity in Neuropsychological Testing. J Clin Psychopharmacol. 2018 Oct;38(5):513–9.
22. Sikkes SAM, de Lange-de Klerk ESM, Pijnenburg YAL, Gillissen F, Romkes R, Knol DL, et al. A new informant-based questionnaire for instrumental activities of daily living in dementia. Alzheimers Dement. 2012 Nov;8(6):536–43.
23. Maruff P, Lim YY, Darby D, Ellis KA, Pietrzak RH, Snyder PJ, et al. Clinical utility of the cogstate brief battery in identifying cognitive impairment in mild cognitive impairment and Alzheimer’s disease. BMC Psychol. 2013;1(1):30.
24. Lim YY, Ellis KA, Pietrzak RH, Ames D, Darby D, Harrington K, et al. Stronger effect of amyloid load than APOE genotype on cognitive decline in healthy older adults. Neurology. 2012 Oct;79(16):1645–52.
25. Fraser KC, Meltzer JA, Rudzicz F. Linguistic Features Identify Alzheimer’s Disease in Narrative Speech. J Alzheimers Dis. 2016;49(2):407–22.
26. Briels CT, Schoonhoven DN, Stam CJ, de Waal H, Scheltens P, Gouw AA. Reproducibility of EEG functional connectivity in Alzheimer’s disease. Alzheimers Res Ther. 2020 Jun;12(1):68.
27. Poil S-S, de Haan W, van der Flier WM, Mansvelder HD, Scheltens P, Linkenkaer-Hansen K. Integrative EEG biomarkers predict progression to Alzheimer’s disease at the MCI stage. Front Aging Neurosci. 2013;5:58.
28. Wechsler, D. Wechsler Adult Intelligence Scale–IV. San Antonio, TX: The Psychological Corporation, 2008.

29. Palop, JJ, Mucke, L. Network abnormalities and interneuron dysfunction in Alzheimer disease. Nature Reviews Neuroscience. 2016; 17(12): 777-792.

30. van Straaten EC, Scheltens P, Gouw AA, Stam CJ. Eyes-closed task-free electroencephalography in clinical trials for Alzheimer’s disease: an emerging method based upon brain dynamics. Alzheim Res Ther. 2014; 6(9): 86-92

31. Musaeus CS, Engedal K, Høgh P, Jelic V, Mørup M, Naik M, et al. EEG Theta Power Is an Early Marker of Cognitive Decline in Dementia due to Alzheimer's Disease. J Alzheimers Dis. 2018;64(4):1359–71.

32. Goodman MS, Zomorrodi R, Kumar S, Barr MS, Daskalakis ZJ, Blumberger DM, et al. Changes in Theta but not Alpha Modulation Are Associated with Impairment in Working Memory in Alzheimer’s Disease and Mild Cognitive Impairment. J Alzheimers Dis. 2019;68(3):1085–94.

33. Faber-Langendoen K, Morris JC, Knesevich JW, LaBarge E, Miller JP, Berg L. Aphasia in senile dementia of the Alzheimer type. Ann Neurol. 1988 Apr;23(4):365–70.

34. Feldman HH, Woodward M. The staging and assessment of moderate to severe Alzheimer disease. Neurology [Internet]. 2005 Sep 27;65(6 suppl 3):S10 LP-S17. Available from: http://n.neurology.org/content/65/6_suppl_3/S10.abstract

35. Cummings JL, Benson F, Hill MA, Read S. Aphasia in dementia of the Alzheimer type. Neurology. 1985 Mar;35(3):394–7.

36. Robin J, Harrison JE, Kaufman LD, Rudzicz F, Simpson W, Yancheva M. Evaluation of speech-based digital biomarkers: Review and recommendations. Digit Biomark 2020; 4:99-108.

37. Shewan CM, Kertesz A. Reliability and validity characteristics of the Western Aphasia Battery (WAB). J Speech Hear Disord. 1980 Aug;45(3):308–24.

38. Asgari M, Kaye J, Dodge H. Predicting mild cognitive impairment from spontaneous spoken utterances. Alzheimer's Dement (New York, N Y). 2017 Jun;3(2):219–28.

39. Orimaye SO, Wong JS-M, Golden KJ, Wong CP, Soyiri IN. Predicting probable Alzheimer’s disease using linguistic deficits and biomarkers. BMC Bioinformatics. 2017 Jan;18(1):34

40. Olsson B, et al. CSF and blood biomarkers for the diagnosis of Alzheimer's disease: a systematic review and meta-analysis. Lancet Neurol. 2016;15:673–684. doi: 10.1016/S1474-4422(16)00070-3.

Tables

Table 1. In- and exclusion criteria

Principal inclusion criteria

- Male or female, aged ≥ 50 to ≤ 80 years
- A biomarker profile reflecting AD, according to the Alzheimer Association – National Institute on
• Aging (AA-NIA) Research Framework (Jenkins, Hardy, and McMurray 2002) (Jack et al. 2018) defined as follows:

 1) Screening CSF sample with an Aβ42 concentration of <1000 pg/ml AND p-tau >19 pg/ml, OR
 2) A ratio of p-tau/Aβ42 of ≥0.024 as assessed by central laboratory, (Elecsys assay), OR, in case of study participants in whom CSF sampling is not feasible due to medical or technical reasons.
 3) Existing Positive amyloid Positron-Emission Tomography (PET) evidence within six months of the screening visit

• Clinical syndrome of MCI or mild dementia according to the AA-NIA Research Framework (Jack et al. 2018)

• Signed and dated written informed consent obtained from the subject in accordance with local regulations

• A cognitive impairment in the digital symbol substitution test (DSST) of at least one standard deviation below the normative data

• Being in a stable condition with respect to the current AD condition: either without specific treatment, or in a stable dose of AD medication for the past 10 weeks

• Outpatient with study partner capable of accompanying the subject on screening visits, week 24, 48 weeks and at the end of treatment visit (EOT)

Principal exclusion criteria

• Significant neurological or psychiatric disorders other than AD, that may affect cognition

• Atypical prenstation of MCI due to AD or mild dementia due to AD (such as posterior cortical atrophy, frontal variant or language variant)

• Moderate and severe dementia with a MMSE below 20

• History of (maximally six months from screening) or screening visit brain MRI scan indicative of any other significant abnormality, including but not limited to severe white matter hyperintensities (Fazekas score 3), history or evidence of a single prior haemorrhage >1 cm3, multiple lacunar infarcts or evidence of a single prior infarct >1 cm³, evidence of a cerebral contusion encephalomalacia, aneurysms, vascular malformations, subdural hematoma, or space-occupying lesions (e.g. brain tumours)

• Current presence of a clinically important major psychiatric disorder (e.g. major depressive disorder) as defined by DSM-5 criteria, or symptom(s) (e.g. hallucinations) that could affect the
subject's ability to complete the study

- History of stroke or seizures
- Myocardial infarction within 6 months of screening
- History of cancer within the past two years prior to screening (except: non-metastatic basal cell carcinoma, and squamous cell carcinoma of the skin) OR no signs of residual cancer confirmed minimum 6 months before baseline
- History of uncontrolled hypertension within 6 months prior to baseline
- Haemoglobin level less than 11g/dL at screening
- Clinically important infections within 30 days prior to screening
- Insufficiently or untreated hypothyroidism, B12 or folate deficiency
- Severe hepatic failure (Child-Pugh C) or kidney failure (creatinine clearance (eGFR) ≤ 30mL/min/1.73m²) as estimated using the MDRD method, or serum creatinine above 1.5-fold of Upper Limit of Normal (ULN) or Asparagine-Amino Transferase (AST) or Alanine-Amino Transferase (ALT) above 3 fold of ULN at screening.