SUPPLEMENTARY MATERIALS

Genomic profiling of primary and recurrent adult granulosa cell tumors of the ovary

Da Cruz Paula et al.

Supplementary Figures S1 – S2

Supplementary Tables S1 – S4
Supplementary Figure S1. **Cancer cell fractions of mutations identified in primary and recurrent adult-type granulosa cell tumors of the ovary.** Cancer cell fractions and clonality of non-synonymous somatic mutations identified in primary adult-type granulosa cell tumors (aGCTs), including primary non-recurrent aGCTs (n=7, left), primary aGCTs that developed recurrences (n=9, middle) and aGCT recurrences (n=19, right). Cancer cell fractions are color-coded according to the legend. Clonal mutations are depicted by a yellow box.
Supplementary Figure S2. Clonal composition of additional primary and recurrent adult granulosa cell tumors of the ovary. Representative hematoxylin and eosin micrographs (magnification, 200x) and clonal frequency heatmaps of the matched primary and recurrent adult-type granulosa cell tumors (A) aGCT18, (B) aGCT43, (C) aGCT76 and (D) aGCT81. Cancer cell fractions are color-coded according to the legend. Scale bars, 200 μM. Clonal mutations are depicted by a yellow box.
Supplementary Table S1. Clinico-pathologic features of primary and recurrent adult-type granulosa cell tumors of the ovary, sequencing methods employed and TERT promoter mutation status.

Sample type	Case ID	Sample ID	Case description	Sample Description	Sequencing method	FOXL2 status	TERT promoter status	Age at diagnosis (yrs)	Stage at diagnosis	Tumor size (cm)	Menopausal status	Adjuvant chemotherapy
Primary non-recurrent	aGCT6	aGCT6-P	Primary tumor	Primary Non-Recurrent-aGCT	IMPACT	C134W	C250T	46	IA	14.0	N/A	N
	aGCT7	aGCT7-P	Primary tumor	Primary Non-Recurrent-aGCT	IMPACT	C134W	C228T	66	IA	1.7	Post	N
	aGCT8	aGCT8-P	Primary tumor	Primary Non-Recurrent-aGCT	IMPACT	C134W	WT	68	IC	2.6	Post	N
	aGCT9	aGCT9-P	Primary tumor	Primary Non-Recurrent-aGCT	IMPACT	C134W	WT	49	IA	9.0	Post	N
	aGCT10	aGCT10-P	Primary tumor	Primary Non-Recurrent-aGCT	IMPACT	C134W	WT	56	IA	5.5	Post	N
	aGCT11	aGCT11-P	Primary tumor	Primary Non-Recurrent-aGCT	IMPACT	C134W	WT	34	IA	6.5	Pre	N
	aGCT12	aGCT12-P	Primary tumor	Primary Non-Recurrent-aGCT	IMPACT	C134W	WT	43	IA	11.5	Pre	N
	aGCT13	aGCT13-P	Primary tumor	Primary Non-Recurrent-aGCT	Sanger	C134W	WT	57	IA	3.7	Post	N
	aGCT14	aGCT14-P	Primary tumor	Primary Non-Recurrent-aGCT	Sanger	C134W	WT	87	IC	12.2	Post	N
	aGCT15	aGCT15-P	Primary tumor	Primary Non-Recurrent-aGCT	IMPACT	C134W	WT	41	IA	5.5	N/A	N
	aGCT16	aGCT16-P	Primary tumor	Primary Non-Recurrent-aGCT	IMPACT	C134W	C250T	41	I	N/A	Pre	N
	aGCT17	aGCT17-P	Primary tumor	Primary Non-Recurrent-aGCT	IMPACT	C134W	C228T	65	IB	18.0	Post	Y
	aGCT18	aGCT18-P	Primary tumor	Primary Non-Recurrent-aGCT	IMPACT	C134W	WT	62	IB	18.0	Pre	N
	aGCT19	aGCT19-P	Primary tumor	Primary Non-Recurrent-aGCT	IMPACT	C134W	WT	83	IA	10.0	Post	N
	aGCT20	aGCT20-P	Primary tumor	Primary Non-Recurrent-aGCT	IMPACT	C134W	C250T	42	I	29.0	Pre	N
	aGCT21	aGCT21-P	Primary tumor	Primary Non-Recurrent-aGCT	IMPACT	C134W	WT	50	N/A	3.3	Post	N
	aGCT22	aGCT22-P	Primary tumor	Primary Non-Recurrent-aGCT	IMPACT	C134W	WT	36	N/A	1.5	Pre	Y
	aGCT23	aGCT23-P	Primary tumor	Primary Non-Recurrent-aGCT	IMPACT	C134W	WT	40	N/A	1.5	Pre	N
	aGCT24	aGCT24-P	Primary tumor	Primary Non-Recurrent-aGCT	IMPACT	C134W	WT	56	N/A	0.7	Post	N
	aGCT25	aGCT25-P	Primary tumor	Primary Non-Recurrent-aGCT	IMPACT	C134W	WT	45	N/A	8.0	Pre	N
	aGCT26	aGCT26-P	Primary tumor	Primary Non-Recurrent-aGCT	IMPACT	C134W	WT	57	N/A	6.5	Post	N
	aGCT27	aGCT27-P	Primary tumor	Primary Non-Recurrent-aGCT	IMPACT	C134W	WT	34	N/A	4.0	Pre	Y

N, no; N/A, not available; WT, wild-type; Y, yes.
Supplementary Table S2. Sequencing statistics of the adult-type granulosa cell tumors of the ovary subjected to MSK-IMPACT sequencing.

Sample ID	Tissue type	Total Reads	Mean Target Coverage (X)	Target Bases 2X	Target Bases 50X	Target Bases 100X								
aGCT6-P	Primary tumor	67545102	760	99.0%	98.1%	97.8%								
aGCT6-N	Normal	18141499	244	99.0%	96.9%	89.7%								
aGCT35-P	Primary tumor	76593776	931	99.3%	98.7%	98.2%								
aGCT38-P	Primary tumor	114407263	1223	99.4%	98.9%	98.5%								
aGCT30-P	Primary tumor	48729140	396	99.0%	97.9%	96.7%								
aGCT30-N	Normal	33891814	366	98.9%	97.4%	92.6%								
aGCT32-P	Primary tumor	6223237	238	98.9%	97.3%	92.8%								
aGCT16-P	Primary tumor	58939726	549	99.0%	98.0%	96.8%								
aGCT16-N	Normal	14522831	199	98.9%	93.6%	74.5%								
aGCT17-P	Primary tumor	18861672	510	99.1%	98.1%	96.8%								
aGCT18-P	Primary tumor	28101497	440	99.3%	96.8%	90.1%								
aGCT18-R	Recurrence	33508372	713	99.3%	98.3%	97.2%								
aGCT43-P	Primary tumor	41997488	820	99.5%	98.1%	95.2%								
aGCT43-R	Recurrence	48973084	923	99.4%	98.8%	98.2%								
aGCT43-N	Normal	15746115	438	99.4%	98.0%	94.3%								
aGCT76-P	Primary tumor	20780770	242	98.8%	89.0%	70.9%								
aGCT76-R	Matched Recurrence	25981138	291	98.9%	95.0%	84.8%								
aGCT77-P	Primary tumor	12488514	193	98.6%	91.7%	76.5%								
aGCT77-R	Matched Recurrence	32279005	696	99.3%	98.3%	97.2%								
aGCT78-P	Primary tumor	21932811	309	99.1%	96.9%	90.4%								
aGCT79-R	Matched Recurrence	14641112	246	98.7%	95.9%	87.4%								
aGCT79-N	Normal	10911225	152	99.2%	91.8%	69.1%								
aGCT79-P	Primary tumor	45111281	423	99.3%	97.8%	93.7%								
aGCT79-R	Matched Recurrence	39151357	361	99.3%	97.6%	93.6%								
aGCT79-N	Normal	18615212	404	99.3%	97.5%	93.0%								
aGCT80-P	Primary tumor	11933495	121	96.6%	87.1%	56.9%								
aGCT80-R	Matched Recurrence	42168428	1033	99.4%	98.9%	98.5%								
aGCT80-N	Normal	3523541	48	98.1%	37.9%	8.3%								
aGCT81-P	Primary tumor	22799785	280	99.1%	96.8%	89.1%								
aGCT81-R	Matched Recurrence	29886363	550	99.2%	98.1%	96.9%								
aGCT81-N	Normal	10761336	117	99.0%	70.6%	35.8%								
aGCT82-P	Primary tumor	21778878	518	99.2%	98.0%	95.4%								
aGCT82-R	Matched Recurrence	45114749	1012	99.5%	98.9%	98.5%								
aGCT82-N	Normal	13377769	367	99.4%	97.9%	93.5%								
aGCT83-P	Recurrence	24949134	379	99.3%	97.1%	88.3%								
aGCT83-N	Normal	13663124	250	99.2%	96.7%	86.3%								
aGCT58-R	Recurrence	30097844	532	99.4%	98.3%	95.7%								
aGCT59-N	Normal	19279986	397	99.4%	97.9%	93.5%								
aGCT100-R	Recurrence	34194042	611	99.4%	98.4%	96.8%								
aGCT100-N	Normal	32130500	510	99.3%	98.0%	95.6%								
aGCT111-R	Recurrence	20899010	467	99.4%	98.3%	95.1%								
aGCT111-N	Normal	12330450	310	99.3%	97.5%	90.7%								
aGCT122-R	Recurrence	28086816	481	99.4%	97.8%	93.3%								
aGCT148-R	Recurrence	39630138	465	99.4%	98.3%	96.1%								
aGCT148-N	Normal	16247196	384	99.3%	97.4%	89.2%								
aGCT199-R	Recurrence	22005986	519	99.4%	98.2%	95.0%								
aGCT199-N	Normal	17133311	421	99.4%	98.0%	93.0%								
aGCT200-R	Recurrence	78768625	953	99.5%	98.9%	96.3%								
aGCT211-R	Recurrence	50487662	855	99.4%	96.8%	97.9%								
aGCT75-R2	Recurrence	23813248	649	99.2%	98.6%	98.1%								
Sample ID	Gene symbol	Amino acid change	Chromosome	Genomic position	Reference allele	Alternate allele	Type of mutation	Depth at mutational hotspots	Hotspot mutation	Loss of heterozygosity (LOH)	Cancer Cell Fraction (ABSOLUTE)	Closal Status	Pathogenicity	Cancer driver genes (Baby et al)
-----------	-------------	------------------	------------	-----------------	----------------	----------------	----------------	-----------------------------	----------------	-----------------------------	-----------------------------	--------------	--------------	-------------------------------
AGCT2-F	FBXW7	p.R484X	9	123622947	G	A	Missense_Mutation	56% Clonal, likely pathogenic	FALSE	TRUE	100% Clonal, likely pathogenic	FALSE	TRUE	Clonal, likely pathogenic
AGCT2-F	FBXW7	p.R484X	9	123622947	G	A	Missense_Mutation	56% Clonal, likely pathogenic	FALSE	TRUE	100% Clonal, likely pathogenic	FALSE	TRUE	Clonal, likely pathogenic
AGCT2-F	FBXW7	p.R484X	9	123622947	G	A	Missense_Mutation	56% Clonal, likely pathogenic	FALSE	TRUE	100% Clonal, likely pathogenic	FALSE	TRUE	Clonal, likely pathogenic
AGCT2-F	FBXW7	p.R484X	9	123622947	G	A	Missense_Mutation	56% Clonal, likely pathogenic	FALSE	TRUE	100% Clonal, likely pathogenic	FALSE	TRUE	Clonal, likely pathogenic
AGCT2-F	FBXW7	p.R484X	9	123622947	G	A	Missense_Mutation	56% Clonal, likely pathogenic	FALSE	TRUE	100% Clonal, likely pathogenic	FALSE	TRUE	Clonal, likely pathogenic
AGCT2-F	FBXW7	p.R484X	9	123622947	G	A	Missense_Mutation	56% Clonal, likely pathogenic	FALSE	TRUE	100% Clonal, likely pathogenic	FALSE	TRUE	Clonal, likely pathogenic
AGCT2-F	FBXW7	p.R484X	9	123622947	G	A	Missense_Mutation	56% Clonal, likely pathogenic	FALSE	TRUE	100% Clonal, likely pathogenic	FALSE	TRUE	Clonal, likely pathogenic
AGCT2-F	FBXW7	p.R484X	9	123622947	G	A	Missense_Mutation	56% Clonal, likely pathogenic	FALSE	TRUE	100% Clonal, likely pathogenic	FALSE	TRUE	Clonal, likely pathogenic
AGCT2-F	FBXW7	p.R484X	9	123622947	G	A	Missense_Mutation	56% Clonal, likely pathogenic	FALSE	TRUE	100% Clonal, likely pathogenic	FALSE	TRUE	Clonal, likely pathogenic
AGCT2-F	FBXW7	p.R484X	9	123622947	G	A	Missense_Mutation	56% Clonal, likely pathogenic	FALSE	TRUE	100% Clonal, likely pathogenic	FALSE	TRUE	Clonal, likely pathogenic
Supplementary Table S4. Pathway analysis using MsigDB and DAVID in recurrent adult granulosa cell tumors of the ovary.

Method	Database/ gene set ID	Description Term	Number of genes in gene set	Number of in overlap	P value
MsigDB	KEGG_PATHWAYS_IN_CANCER	Pathways in cancer	328	11	9.16 e-13
	KEGG_PROSTATE_CANCER	Prostate cancer	89	7	4.07 e-11
	KEGG_CELL_CYCLE	Cell cycle	128	7	5.35 e-10
	BIOCARTA_G1_PATHWAY	Cell Cycle: G1/S Check Point	28	6	1.91 e-12
	BIOCARTA_CTCF_PATHWAY	CTCF: First Multivalent Nuclear Factor	23	5	1.36 e-10
	BIOCARTA_ARF_PATHWAY	Tumor Suppressor Arf Inhibits Ribosomal Biogenesis	17	4	7.53 e-9
	BIOCARTA_ATM_PATHWAY	ATM Signaling Pathway	20	4	1.53 e-8
	KEGG_PATHWAY_hsa05203	Viral carcinogenesis	205	36	1.11E-16
	KEGG_PATHWAY_hsa04622	RIG-I-like receptor signaling pathway	70	18	3.91E-11
	KEGG_PATHWAY_hsa04140	Regulation of autophagy	39	14	1.06E-10
	KEGG_PATHWAY_hsa04623	Cytosolic DNA-sensing pathway	64	15	9.55E-09
	KEGG_PATHWAY_hsa05202	Transcriptional misregulation in cancer	168	23	1.53E-08
	KEGG_PATHWAY_hsa05320	Autoimmune thyroid disease	82	13	5.98E-08
	KEGG_PATHWAY_hsa04620	Toll-like receptor signaling pathway	106	17	2.13E-07
	KEGG_PATHWAY_hsa04060	Cytokine-cytokine receptor interaction	230	25	2.78E-07
	KEGG_PATHWAY_hsa04650	Natural killer cell mediated cytotoxicity	122	17	1.50E-06
	KEGG_PATHWAY_hsa04630	Jak-STAT signaling pathway	145	18	3.42E-06
	KEGG_PATHWAY_hsa04191	PI3K-Akt signaling pathway	345	27	3.87E-05
	KEGG_PATHWAY_hsa04110	Cell cycle	124	10	0.018011772
	KEGG_PATHWAY_hsa04919	Thyroid hormone signaling pathway	114	9	0.029906665
	BIOCARTA_h_arfPathway	Tumor Suppressor Arf Inhibits Ribosomal Biogenesis	18	6	1.29E-04
	BIOCARTA_h_g1Pathway	Cell Cycle: G1/S Check Point	30	7	1.89E-04
	BIOCARTA_h_ctcfPathway	CTCF: First Multivalent Nuclear Factor	25	6	6.83E-04
	BIOCARTA_h_i11rPathway	Signal transduction through IL1R	33	6	0.00254416
	BIOCARTA_h_cellcyclePathway	Cyclins and Cell Cycle Regulation	25	5	0.005790756
	BIOCARTA_h_sggf1mrPathway	Skeletal muscle hypertrophy is regulated via AKT/mTOR pathway	20	4	0.020476084
	BIOCARTA_h_ifnaPathway	IFN alpha signaling pathway	9	3	0.028015574
	BIOCARTA_h_mtorPathway	mTOR Signaling Pathway	26	4	0.041158217