Meat Intake and the Dose of Vitamin B3 – Nicotinamide: Cause of the Causes of Disease Transitions, Health Divides, and Health Futures?

Lisa J Hill1 and Adrian C Williams2

1Neuroscience and Ophthalmology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK. 2Department of Neurology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.

ABSTRACT: Meat and vitamin B3 – nicotinamide – intake was high during hunter-gatherer times. Intake then fell and variances increased during and after the Neolithic agricultural revolution. Health, height, and IQ deteriorated. Low dietary doses are buffered by ‘welcoming’ gut symbionts and tuberculosis that can supply nicotinamide, but this co-evolved homeostatic metagenomic strategy risks dysbioses and impaired resistance to pathogens. Vitamin B3 deficiency may now be common among the poor billions on a low-meat diet. Disease transitions to non-communicable inflammatory disorders (but longer lives) may be driven by positive ‘meat transitions’. High doses of nicotinamide lead to reduced regulatory T cells and immune intolerance. Loss of no longer needed symbiotic ‘old friends’ compounds immunological over-reactivity to cause allergic and auto-immune diseases. Inhibition of nicotinamide adenine dinucleotide consumers and loss of methyl groups or production of toxins may cause cancers, metabolic toxicity, or neurodegeneration. An optimal dosage of vitamin B3 could lead to better health, but such a preventive approach needs more equitable meat distribution. Some people may require personalised doses depending on genetic make-up or, temporarily, when under stress.

KEYWORDS: Diet, hyper-vitaminosis B3, nicotinamide, tryptophan, disease transitions, health inequality, hygiene hypothesis, environmental enteropathy, Parkinson, metabolic syndrome, cancer, allergies, pellagra

Introduction

Meat transitions have been a feature of human history. Ever since the evolution of agriculture, there have been marked variances of meat intake between rich and poor nations and individuals within social classes, and therefore, oscillations of key components such as nicotinamide that when severely deficient causes pellagra.1–5 Nicotinamide and its derivatives nicotinamide adenine dinucleotide (NAD) and reduced nicotinamide adenine dinucleotide (NAD(H)) are intrinsic to mitochondrial function, and levels can be high, optimal, or low: these can involve manageable change through homeostasis or use of symbionts (or when short-lived, can be a beneficial hormetic shock). However, if nicotinamide supplies are very low, this can lead to energy decline with loss of high-energy molecules and disease often through protein modifications – as is seen with pellagra and similar to those seen with some mitochondrial and other mutations.6,7 Nicotinamide adenine dinucleotide is an important ‘food signal’ to all organisms and, often mediated by serotonin, has defining effects on development, circadian rhythms, gene regulation through chromatin remodelling, and reproductive and other behaviour.8,9 NADH as a cofactor performs more than 500 key dehydrogenase and other reactions, excluding NAD reactions that are important to metabolism, (stem-cell) development, repair, and longevity, but then is consumed – so it requires constant replenishment ultimately from dietary precursors.10

Much has been written about modern maladaptations relative to our long hunter-gatherer days. These mismatches usually concentrate on loss of fibre or excessive sugar or fructose or gluten in recent affluent diets.5,11–23 We argue that a high risk of too little nicotinamide may be the most important difference between diets in the past 10 000 years and those in the Palaeolithic. During that long time, as we (co)evolved much of our nutrientome, microbiome, and ‘meat cultures’, variances were usually ‘feasts or famines’ (or fatal as meat then provided most of the calories) rather than chronic shortages over lifetimes. The first Neolithic agricultural revolution and the second ‘Green revolution’ 50 years ago may have, as an unintended consequence, reduced meat and micronutrients for those in poverty. Both revolutions increased cereal availability reducing hunger but not the ‘hidden hunger’ of micronutrient deficiency in something of a ‘Faustian’ bargain.24

Nicotinamide’s approximate concentrations in foods are shown in Table 1.25,26 Milk contains average amounts of...
nicotinamide but high amounts of the potent nicotinamide riboside. Culturally acquired cooking methods 'nixtamalisation' can improve availability of nicotinamide from the bound form niacytin: the microbiome can contribute as many bacterial symbionts can synthesise nicotinamide, though, whether they share all this with other bacteria that cannot, or, with the host is unclear in man, though, must happen in ruminants. The synthetic pathway from tryptophan is inefficient but can supply 1 mg of niacin for 60 mg of tryptophan depending on other synthetic pathways.43–46 We will discuss how a biochemical switch away from the need to produce nicotinamide 'in house' from tryptophan, and the related reduced metabolic need for gut symbionts or tuberculosis (TB) on a better diet so that they are no longer welcomed by the immune system is a more plausible explanation for the loss of microbial 'old friends'. This switch of microbiomes reduces tolerogenic instruction to the immune system further encouraging it to over-react to otherwise irrelevant foreign proteins or self-proteins.47

Biochemical Background
We summarise NAD metabolism in a diagrammatic form (Figures 2 to 4). Nicotinamide adenine dinucleotide has 3 related precursor vitamins – nicotinamide, nicotinic acid, and

Table 1. Main sources of nicotinamide are animal products.
Red meat
Chicken
Fish
Peanuts
Coffee
Beans
Barley
Wheat
Rice
Potato
Sorghum
Soybean
Maize
Vegetables
Fruits
Brewer’s yeast

Approximate nicotinamide in foods (mg/100 g). Supplementation is statutory in many developed countries. Manufacturers add considerably more to cereals and other foodstuffs such as 'high-energy' drinks. Note that all cereals have low content, maize being the worst; processing and cooking can decrease content markedly with the exception of alkali preparation that increases availability. Daily recommended allowance is 15 mg/day – that can be corrected depending on estimated tryptophan intake.

Hypotheses
We will argue that nobody ever systematically checked that pellagra was eliminated globally (dietary supplementation mainly happened in rich countries). Pellagra may be common and misdiagnosed masquerading as ‘environmental enteropathy’, poor cognition, eczema, or general ill health and a lack of well-being or poor homeostasis when under environmental stress with shortened lives.38,39

We also argue that environmental insults from trauma, hypoxia, toxins, stress, or mutations (such as in mitochondrial DNA-repair genes) may require either lifetime or temporary higher doses than normally recommended (15 mg/d).

Controversially, we suggest that many people in rich countries may be on too high a dose. A hyper-vitaminosis B₃ state may be common and, like pellagra, have a wide phenotype that includes the metabolic syndrome, several cancers, and some degenerative or neuro-behavioural disorders.40

Furthermore, we propose that the transition from diseases of poverty to diseases of affluence is due to switching the dose of meat/nicotinamide too fast and too far.41,42 The most recent version of the ‘hygiene hypothesis’ concentrates on reductions in symbiotic/commensal biome diversity acquired early in development, not cleanliness during childhood and common pathogens.43-46 We will discuss how a biochemical switch away from the need to produce nicotinamide 'in house' from tryptophan, and the related reduced metabolic need for gut symbionts or tuberculosis (TB) on a better diet so that they are no longer welcomed by the immune system is a more plausible explanation for the loss of microbial ‘old friends’. This switch of microbiomes reduces tolerogenic instruction to the immune system further encouraging it to over-react to otherwise irrelevant foreign proteins or self-proteins.47
nicotinamide riboside — that have highly efficient synthetic and recycling ‘salvage’ pathways and one ‘detoxification’ pathway using nicotinamide N-methyltransferase (NNMT).48–54 There is an important backup nicotinamide/NAD ‘de novo’ ‘immune tolerance’ pathway. Symbionts, whether in gut or TB, are a backup source as is ‘autocarnivory’. Salvage pathways are extensive and efficient to conserve NAD/nicotinamide as NAD consumers mean that there is a continuous need for replenishment. Many are involved in repair and disease processes and ageing. Excess nicotinamide can be excreted after a methylation reaction by NNMT. NNMT, indicates nicotinamide

acceptor forming NADH with concomitant oxidation of metabolites derived from carbohydrates, amino acids, and fats. Gluconeogenesis, oxidative phosphorylation, ketogenesis, detoxification, and lipogenesis require reduced cofactors NADH and reduced nicotinamide adenine dinucleotide phosphate (NADPH). Nicotinamide adenine dinucleotide is the consumed substrate of poly(ADP-ribose) polymerases (PARPs), sirtuins (SIRTs), and cyclic adenosine diphosphate (ADP) synthetases. Nicotinamide adenine dinucleotide and

Figure 1. Pellagra has a very wide phenotype. The parallel with diseases of ageing are striking. NAD/NADH/nicotinamide imbalances may be the treatable underlying common factor to many common diseases whether from dietary deficiency or excess or varying needs from genetic mutation, toxic, anoxic, or other external stresses. NAD indicates nicotinamide adenine dinucleotide.

Figure 2. Diet supplies nicotinamide, nicotinic acid, and nicotinamide riboside as well as the essential amino acid tryptophan. Tryptophan can be degraded to synthesise nicotinamide when there is dietary stress by the kynurenine ‘de novo’ ‘immune tolerance’ pathway. Symbionts, whether in gut or TB, are a backup source as is ‘autocarnivory’. Salvage pathways are extensive and efficient to conserve NAD/nicotinamide as NAD consumers mean that there is a continuous need for replenishment. Many are involved in repair and disease processes and ageing. Excess nicotinamide can be excreted after a methylation reaction by NNMT. NNMT, indicates nicotinamide N-methyltransferase; TB, tuberculosis.
NAD/NADH ratios have been described as a master controller of many physiological and repair activities and are themselves under circadian control with much cross-talk with multiple nutrient pathways, whether carbon, nitrogen, or...
phosphate sensing. Despite extensive recycling, cell stresses that include ageing, toxins, and over-nutrition activate NAD consumption and alongside growth requirements mean that there is a continuous need for a dietary or microbiomic source of NAD precursors.56–58

The close relationship between man and meat/milk-providing animals is not surprising. Nicotinamide adenine dinucleotide metabolism is also integral to plant primary energy acquisition from the sun on which all animals depend. Plants also use NAD-dependent oxidative bursts to ward off microbial attack.59 Other deterrents from herbivore attack involve nicotinamide-nicotine metabolism; this is interesting as both nicotine and other stress compounds, such as salicylate and resveratrol, affect our NAD metabolism in both a medicinal and hormetic sense (Figure 5).

Some hindgut symbionts produce nicotinic acid (that they share) as does TB60–62 (Figure 6).63–65 We have argued that when meat sources are good and shortages short-lived, TB acts as a symbiont farmed for its nicotinamide. The relationship with classic pathogens is different. Many have evolved to be consumers of host NAD, and many of their toxins directly affect NAD consumer pathways66–74 (Figure 7). If the host is moderately deficient in nicotinamide/NAD in the first place, they will be less resilient – if severe, the pathogen may not have enough to survive perhaps explaining the paradoxical relationship between nutrition and infection when very poor nutrition can be protective.75

Nicotinamide adenine dinucleotide pathways have been heavily implicated in ageing and many diseases from the neurological to retinal disease to cancer and can restore stem cells.73,76–103 Recent evidence fits with the very wide phenotype of disease seen with pellagra. The cellular response to NAD deficiency (and excesses) across cell lines is heterogeneous and may explain these broad phenotypes suggesting that NAD/NADH upsets might be a common underlying cause of many diseases.104

Figure 5. Plant and human metabolisms have active and overlapping reactions involving nicotine and nicotinamide. Stress molecules such as nicotine, salicylate, and resveratrol have medicinal and hormetic actions in man.

TB is a NAD auxotroph uses a "de novo" pathway

Aspartate \rightarrow NAD

\rightarrow NADH \rightarrow NAD

\rightarrow Nicotinic Acid

TB can also manufacture tryptophan $\&$ methyl donors allowing survival in a host on a poor diet

Excretion to host

Figure 6. A designer symbiont. TB produces nicotinic acid but cannot recycle it to NAD so excretes it to a ‘welcoming’ host that ‘farms’ the organism at some risk of dysbiosis if the dietary dose of nicotinamide is too low. Nicotinamide is a natural and its analogues are some of the artificial anti-tuberculous agents. NAD indicates nicotinamide adenine dinucleotide; TB, tuberculosis.

Pathways – Over- and Under-Nutrition

Over- and under-nutrition are bad for health as demonstrated by ‘Waaler’ curves for height, weight, and mortality.105 We propose that they share pathways that intersect with symbionts buffering poor diet and both relate to nicotinamide metabolism (Figure 8). Butyrate (and nicotinic acid) are generated by gut symbionts that include Lactobacillus or Bifidobacteria or Clostridia sp that ferment fibre and other otherwise indigestible complex carbohydrates and are in high concentration in the colon,90,106–110 Butyrate is an endogenous ligand active on the G protein–coupled GPR109A nicotinic acid receptor (expressed on macrophages, dendritic and epithelial cells, and adipocytes); this sends non-redundant signals via interleukins that affect T-cell differentiation favouring Tregs over helper T cells when the diet is poor as does nicotinamide from the diet when it is rich.90,111–118 This signal from the ‘niacin receptor’ reduces inflammation and carcinogenesis and has independently been proposed as a factor in mediating and perhaps moderating diet and disease transitions.91,119
There is much supportive evidence of differences between the microbiome on rich, poor, and traditional hunter-gatherer diets and that the tryptophan pathway is involved in states of malnutrition (or rare but illustrative genetic defects that affect nutrition). Reliance on the microbiome could mean that those on a poor diet are at risk of broad-spectrum antibiotics temporarily eliminating symbionts and triggering clinical nicotinamide deficiency – pellagra (as can happen with antituberculous therapy). Although many factors have been shown to alter traffic in the ‘de novo’ pathway, particularly infectious diseases, it is important to remember that its primary purpose is the production of nicotinamide/NAD from tryptophan when the diet is inadequate (Figure 9). The consequences are immune tolerance to some useful symbionts. Immune tolerance is mediated by an effect on the balance between Tregs and T17 helper cells – also the target for steroids and many modern immune therapies or artificial infection with helminths. Kynurenine-derived toxins drive auto-carnivory that also releases NAD and tryptophan at the longer term cost of organ damage. The host will be more prone to pathogens, so there will be other severe downsides for the individual. On a high-nicotinamide diet,
the opposite may be occurring with immune intolerance to normally harmless antigens.131–135 Although induction of indoleamine 2,3-dioxygenase (IDO) has been described paradoxically (on our theory) in some of these inflammatory or cancerous conditions, there is a difference between a predisposing endo-phenotype and one that is being influenced as the disease develops; we would argue that IDO induction can be compensatory (Figure 10).136–151

We will now look at some data from the United Kingdom, 1850 to 1950, and across the contemporary world comparing states of under- and over-nutrition and diseases and health markers that are likely to be related to nicotinamide dose, as many are components of pellagra.

Methods

All meat data were collected from ‘Eating meat: evolution, patterns, and consequences’ by Smil152 and \textit{The Atlas of Food Who Eats What, Where, and Why} by Millstone and Lang.153 IQ and literacy data were from ‘Some British pioneers of social medicine’ by Greenwood154 and ‘National IQs predict differences in scholastic achievement in 67 countries’ Lynn et al.155 Tuberculosis data were collected from McKeown156 and the Institute for Health Metrics and Evaluation’s Global Burden of Disease (GBD) (2013).157 The Parkinson disease (PD) data were taken from Duvoisin and Schweitzer158 and the Institute for Health Metrics and Evaluation GBD (2013) (http://www.healthdata.org/gbd). All disease data had been corrected for age structure of populations. Cancer data were derived from ‘Mortality in England and Wales from 1848 to 1947’ by Logan159 and the Institute for Health Metrics and Evaluation’s GBD (2013). Diabetes data were taken from \textit{The Health of Adult Britain 1841–1994} by Charlton and Murphey160 and from the Institute for Health Metrics and Evaluation’s GBD (2013). Life expectancy data were from ‘Ecological public health: the 21st century’s big idea?’ by Rayner and Lang161 and \textit{The Atlas of Health: Mapping the Challenges and Causes of Disease} by O’Donovan.162 Height data sets were from Galton’s midparent height revisited by Cole.163

Statistics

Exploratory analysis was conducted on these data to identify relationships between meat consumption and other variables by conducting scatterplots. The correlation between meat consumption and other variables was analysed using the Pearson correlation coefficient. All statistics were conducted using SPSS (version 21).
Results

In summary, and in round terms in the United Kingdom between 1850 and 1900, death rates per million with both sexes combined are as follows: for TB (before any treatment) halved from 7000 to 3500, for dysentery fell by 9/10ths from 150 to 15, whereas cancer (before much effect from smoking, at least in women) increased by 2.5-fold from 700 to 1700, and diabetes increased 4-fold from 50 to 200. The incidence of Parkinson’s disease rose markedly having only been described in 1817. During this period, meat intake almost doubled. Measures of cognitive and physical health such as literacy rates increased as did height. Contemporary data comparing these conditions with average meat intake across countries support these correlations.

More specifically, the reduction in deaths from diarrhoea between 1850 and 1950 in the United Kingdom trended with the rise in meat intake \((P = .085)\) (Figure 11). Across the world today, deaths from diarrhoeal diseases correlate strongly with meat consumption \(P > .0001\) (Figure 12).

Literacy rates in the United Kingdom between 1850 and 1900 correlated with the rise in meat consumption \(P > .001\) (Figure 13). In the contemporary world across nations, literacy rates correlate strongly with meat consumption \(P > .001\) (Figure 14). Measured IQ correlates with meat consumption currently across countries \(P > .001\) (Figure 15).

Between 1870 and 1970, boys height increased and correlates with meat intake \(P > .001\) as does height across nations currently \(P > .001\) (Figures 16 and 17).

Between 1850 and 1970, also between 1850 and 1950 (before any drug treatment), TB rates fell dramatically and this correlates...
with increased meat intake ($P < .001$). The decline in TB did not happen at the same time even within Europe and was also delayed in other industrial nations such as Japan where improvements in diet particularly of meat were also delayed.164 Reverses are well described under famine conditions165,166 (Figure 18).

This correlation is true across countries today where meat consumption correlates strongly with deaths from TB ($P > .0001$) (Figure 19).

Diabetes deaths rose between 1850 and 1950 and correlate with meat intake ($P > .05$) as they do across the world today ($P > .001$) (Figures 20 and 21).

Cancer rates were increasing in both sexes in the United Kingdom from 1850 to 1900 before there was much effect from smoking (and none in women) and correlate with meat intake ($P > .0001$) as they do across the contemporary world ($P > .0001$) (Figures 22 and 23).

Rates for the Parkinson disease were increasing between 1850 and 1960 ($P > .001$) and correlate with meat intake as they do across the world today ($P > .001$) (Figures 24 and 25).

The Allergy Epidemic, 1870-Till Now

The recent rise and exact timing of the rise in hay fever and allergic/auto-immune disease are less well-documented.
numerically – although the facts are not in dispute and average meat intake has also doubled again between 1960 and now, so if they were strong correlations would be obtained. Apart from a very few references in ancient literature, allergy first in the form of hay fever was first described in the mid-19th century exactly at the time the TB epidemic was abating in both the United Kingdom and in the United States. Observers at the time described these conditions and noted that they were on the increase, to begin with among the fashionable wealthy. Allergic disease had been unknown in previous generations (much as they are still unknown in poor African villages today). Increases are being recorded in countries that are getting richer or have had the economic benefits of European re-unification. Proximate triggers such as grass and ragweed pollen were noted early on, but they do not contain new antigens even if some became more prevalent. Rather paradoxically avoiding the allergen can make matters worse, as recently demonstrated for peanut allergy, so treating the proximate allergen as the actual or preventable cause is problematic.
The ultimate cause of the epidemic has been linked by others to the decline of TB using evidence from BCG vaccination and inverse associations with tuberculin responses or other infections. Current maps of the incidence of infections such as helminths and TB are diametrically opposed to incidences of allergic and auto-immune diseases (Figure 26). Reduction in helminth infection, as with TB, is also associated with relief from poverty and poor diet with limited overall impact of antibiotics at least at a population level: as animal parasites, their interaction with host nicotinamide status and biochemistry could be either positive or negative but has not been studied.

A reasonable proposition as to timing of the allergy epidemic in the northwest is shown (Figure 27). Not only numbers but also diversity of auto-immune disease continues to radiate. Links with NAD metabolism through CD38 and allergen/pollen NADPH oxidases have been made; the latter links in to oxidative stress and T-cell imbalances that could cause allergic disease but only if Tregs were unbalanced in the first place, prior to exposure to the immediate extrinsic signal. High tryptophan levels and low IDO activity have also been recorded in allergic disease whether asthma or food allergies. In addition, the modern outbreak of depression appears, despite cross-cultural issues to be a feature of diseases of affluence, and may influence many of the others and can clearly be related to disturbed tryptophan and serotonin pathways. The commonest cause of infertility – polycystic ovary syndrome – is also far commoner in developed economies and has been related to the metabolic syndrome and auto-immune disease; this is relevant to the argument we make in our companion article about increasing infertility in high-meat economies.

Questions

We now ask a series of questions to further explore and try and convince readers that the dose of vitamin B₃ is a significant health issue and that deficiencies and perhaps excesses are commoner than is usually supposed.

Question 1a: was pellagra conquered or is it still endemic in some poor meat areas?

The short answer is that nobody has checked systematically at a clinical or biochemical level. The few studies done in high-risk populations such as refugees in war-torn Africa suggest that it may be common but rarely diagnosed. Pellagra may be treated inadvertently in alcoholics while restoring thiamine levels with multivitamins for Wernicke encephalopathy. Indeed, it may genuinely be difficult to separate nicotinamide deficiency from deficits of other micronutrients as seen with tropical neuropathies; even when there are putative (cyanogenic or amino acid) toxins involved, nicotinamide deficiency could play a part in degenerative diseases when on poor monophagic plant diets such as those described on Guam as well as Lathyrism and Konzo. Some of these conditions including pellagra, like scurvy in the past, can get considered to be ‘badges of dishonour’ (even though captains Columbus and Cook were probably affected) or willful self-neglect rather than due to chronic food shortages obfuscating calls to action.

Pellagra happens to those on a very low-meat/milk and maize diet, so many in Africa and Asia must be at risk. The rash is photosensitive, so may not be present as often in those with pigmented skin – earlier epidemics were mainly in poor whites. Diarrhoea and poor mental development are endemic. Kwashiorkor, when first described, was felt by some to be a form of pellagra, but the argument was initially lost to the proponents of calorie or protein deficiency. The renamed ‘environmental enteropathy’ with gut dysbioses, cognitive impairment, and later ‘epigenetic’ metabolic syndromes may have a closer relationship with a ‘new version’ of pellagra than is generally appreciated. Pellagra may be masquerading as general ill health and shortened lives with lower than expected IQ and exacerbate both TB and human immunodeficiency virus.

Question 1b: was pellagra sine pellagra conquered or is it still a common cause of poor intellectual development or premature ageing including dementia?

Before the biochemistry and treatment of pellagra were sorted out in the 1940s, it was pointed out that lack of meat in diet had profound effects on health and height, and the clinical manifestations went outside the classic pellagra phenotype. This view was criticised by vegetarian groups (including Gandhi). We now realise that there is a world of difference between an economically driven poor monophagic vegetarian diet and a voluntary vegetarian diet of good quality that often includes some animal products and supplements – so the latter has few dangers and some advantages.

During the American and earlier European epidemics of pellagra, often in families with other members diagnosed, there were many with poor physical and mental development. Indeed, a high proportion of both blacks and ‘white trash’ in...
the Southern states may have been affected. The average IQ of Confederate recruits was in the ‘moron’ category and that was not true for the richer Union recruits. The correlations we now see between IQ/literacy and meat intake may represent nicotinamide deficiency. The dramatic changes in IQ known as the ‘Flynn effect’ as countries become more prosperous may reflect increased nicotinamide intake and a better brain in the first place more capable of learning from a better educational system and less prone to dementia. Indeed, there is already considerable evidence that nicotinamide could prevent or benefit Alzheimer’s disease and has a role in serious neuropsychiatric disease such as schizophrenia and post-traumatic dementia. Increased longevity could also represent improving nicotinamide dosage. This is supported by pellagra causing premature ageing and dementia and evidence that NAD levels fall with age given that NAD consumers, whether SIRTs or PARPs, are largely responsible for ageing and repair mechanisms. It has been known for a long time that the dose needs to be increased in patients with the carcinoid or Hartnup syndrome who shunt tryptophan to increased serotonin synthesis or have a tryptophan transport defect. If there is genotoxic stress such as that from chemicals or drugs, sunlight, or even emotional stress, it would be expected that the extra NAD consumption would be easier to support if the dietary dosage was high. There is emerging evidence that nicotinamide dosage can be (neuro)protective under a wide range of environmental insults whether traumatic, anoxic, or toxic suggesting that prophylactic boosting of the dosage or treating soon after the insult may reduce cell damage in a number of organs,

Question 2: is there a strict recommended dose of nicotinamide or do some people with some genetic mutations require a personalised dosage and do some others temporarily need a boost in their dosage when under stress?

The recommended daily dose of nicotinamide of around 15 mg/day was a reasonable informed ‘guesstimate’ designed to avoid or treat pellagra. However, there are examples of increased needs under some mutational circumstances, such as those causing muscular dystrophy or optic atrophy. Indeed, there is already considerable evidence that nicotinamide could prevent or benefit Alzheimer’s disease and has a role in serious neuropsychiatric disease such as schizophrenia and post-traumatic dementia. Increased longevity could also represent improving nicotinamide dosage. This is supported by pellagra causing premature ageing and dementia and evidence that NAD levels fall with age given that NAD consumers, whether SIRTs or PARPs, are largely responsible for ageing and repair mechanisms. It has been known for a long time that the dose needs to be increased in patients with the carcinoid or Hartnup syndrome who shunt tryptophan to increased serotonin synthesis or have a tryptophan transport defect. If there is genotoxic stress such as that from chemicals or drugs, sunlight, or even emotional stress, it would be expected that the extra NAD consumption would be easier to support if the dietary dosage was high. There is emerging evidence that nicotinamide dosage can be (neuro)protective under a wide range of environmental insults whether traumatic, anoxic, or toxic suggesting that prophylactic boosting of the dosage or treating soon after the insult may reduce cell damage in a number of organs,
including the brain. Many diseases where the environmental trigger is not known may have an NAD-deficient endo-phenotype. This is suggested by the extraordinarily varied phenotype of pellagra where a wide range of dementias and neuropsychiatric conditions was described including mimics of Creutzfeldt-Jakob disease, PD, motor neuron disease, multiple sclerosis (MS), and cerebellar syndromes alongside migraine and epilepsy. Evidence for such a deficit is already strong for some, such as prion diseases, where there is phenotypic overlap with pellagra.

Question 3: was the change in dosage of nicotinamide the transition factor converting diseases of poverty to diseases of affluence? Did this lead to the loss of ‘old friends’ such as TB allowing a poorly educated immune system to become overactive?

Nicotinamide adenine dinucleotide status is probably crucial to the poor resistance to pathogens seen in poor countries. Many pathogens or their toxins target the host’s NAD system by disrupting NAD consumer pathways, or by secreting NAD glycohydrolase, break down the host’s NAD levels. We have also argued that TB and some gut symbionts originally co-evolved to supply nicotinic acid. Such symbionts become dysbiotic and behave as pathogens when the diet is low in meat for protracted periods of time, or if driven to mutate using antibiotics. Nicotinamide was the first anti-tuberculous antibiotic discovered. The largely spontaneous disappearance of TB as countries and diets become richer becomes less of a mystery and is less likely to be related to better hygiene. There are, indeed, good examples of improving sanitation improving water-borne infection such as cholera but having little impact on other infections, until diet and particularly meat intake is addressed. In one famous example, improved sanitation caused an increase in mortality as the increased rents led to a decline in food quality. A famous other example was rebuilding barracks to no effect on TB rates until the meat intake was increased, and of course, TB becomes rampant during many famines.

It is notable that TB sanatoria were not closed but were transformed into sanatoria for allergies that first became a problem for the rich on rich diets. A ‘nicotinamide switch’ towards the evolutionary norm of a high-meat diet could be responsible for the switch from TB and other chronic infections, now co-evolved to affect the development of the immune system, to a poorly educated overactive immune system responding to normally innocuous antigens. The biochemical nature of this switch was outlined earlier (Figure 9). The speed at which the switch is turned could be important, with the highest risk within a lifetime or a generation or two for disease of affluence – thereafter, immune adaptations and a different starting point of the microbiome may occur compatible with little evidence that hunter-gatherers had autoimmune/allergic disease (trauma leading to shorter lifespans may have spared them later onset diseases).

The spread and origin of the obesity epidemic is interesting regarding this as modern maps of the epidemic and obesity, diabetes, and stroke ‘belts’ are strikingly similar to maps of pellagra a century ago suggesting that the switch can manifest over several generation raising future discussion over ‘thrifty’ (and in other contexts ‘non-thrifty’) nicotinamide-related genotypes and phenotypes and developmental plasticity having effects on later disease compatible with the known involvement...
of nicotinamide, butyrate, and methyl groups in epigenetic modifications.311–316 (Figure 29).

Question 4: over and above a rash of immune diseases has the dose of nicotinamide become so high that there is an unrecognised hyper-—vitaminosis B₃ syndrome?

Nicotinamide is widely viewed as having little serious toxicity at least in the short term.317,318 We suggested nicotinamide toxicity as a causative factor for the Parkinson’s disease, the metabolic syndrome, and some cancers based on direct or indirect measure of high levels of NNMT.319–333 Too low a dose and nicotinamide can be protective for cancers and Parkinson’s, so we are proposing a double-edged dosage effect.333 As an inducible enzyme, a logical culprit for NNMT overexpression is the dose of nicotinamide — even if other factors such as caloric restriction, stress, and exercise play their part.334,335 Background genetic variation in levels may reflect exposure in earlier generations — certainly, this is true of species as the enzyme is not expressed in herbivores.336 Our original hypothesis for PD was that N-methylnicotinamide resembled the dopaminergic toxin MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) and so may be toxic at high levels even though beneficial at lower levels. Part of the jigsaw may be that the nicotinamide dose upsets the microbiome that in turn contributes to the proteotoxicity and affects the nicotinic acid receptor.337 Other metabolites may be nephrotoxic.338

Several other plausible mechanisms for nicotinamide toxicity exist whether from excessive inhibition of NAD consumers such as SIRTs or PARPs or consumption of valuable methyl groups depleting the methylome and the epigenome (Figure 30). Recent evidence shows that nicotinamide promotes adipogenesis probably via SIRT inhibition and adipogenic proteins (eg, peroxisome proliferator–activated receptor gamma and FABP4 [fatty acid–binding protein 4]) and is associated with neonatal adiposity — with surprisingly little need for excessive calories or fats.339–342

Conclusions

Hypo- (subclinical/misdiagnosed pellagra) and hyper-vitaminosis B₃ (nicotinamide overload) may both be far commoner than has been supposed and have equally wide phenotypes transcending many conventional clinically convenient disease categories. The transition from populations of low to high intake may explain the extraordinary shifts within single generations from Rowntree’s ‘stunted life’ with chronic diarrhoeal infections and TB and disproportionately high death rates from pathogens — to non-communicable diseases. Non-communicable diseases include multiple and expanding allergic, inflammatory, and auto-immune diseases along with the metabolic syndrome, many cancers and neuropsychiatric disease, but in the context of longer lives. Geography per se has little to do with these phenomena as they track much more closely with poverty and affluence and therefore meat intake.343–346 Even the term ‘tropical diseases’ is a misnomer as many of these infections were common in Victorian England and the pellagra-prone southeastern American states a century ago.

Much current effort in rich countries is for personalised precision and genetic medicine usually for people who already have contracted often rare diseases. Understanding these disease transitions may be less eye-catching but offers more potential for low-tech population-based preventive approaches. Personalised NAD-related medicine can be nutritional, rather than glitzy genetic manipulation, as several genetic diseases may be due to genes that originally evolved at times of nicotinamide luxury or thrift.

Predicted tidal waves of dementia may be preventable (too little nicotinamide) as may some neuropsychiatric disease, diabetes and the metabolic syndrome, some cancers, and Parkinson’s disease (too much).346 Nicotinamide overload may not work alone but with other hyper-vitaminosis or deficiency states. One example might be high nicotinamide but low vitamin D in MS.
compatible with the known epidemiology and genetics implicating little sun but a lot of meat and known involvement of the 'de novo' pathway. It will have been partly iatrogenic if increasing the dose of nicotinamide with supplements also affects caloric hunger and obesity levels and other diseases where NNMT induction has been demonstrated.

Phenotypic diversity may be explained by individual variation whether genetic or from previous environmental exposure and in differential sensitivity of cell types to NAD upsets. Homeostatic responses that fail or have a longer term price whether auto-carnivory, use of symbionts, or inflammatory or cancerous tissue that over-express NNMT or NAD consumer enzymes or induction of IDO, may also be responsible for clinical heterogeneity. New phenotypes may be occurring. Predicted Armageddon as antibiotics rapidly become ineffective from multi-drug resistance may be due to not dealing with the fundamental nutritional cause. Antibiotics are a strategy that encourages mutations and emergent pathogens. Better NAD status will reduce the need for broad-spectrum antibiotics by reducing virulence. Reliance on symbionts (including TB) also means that antibiotic use could trigger pellagra that will probably not be recognised or treated. When symbionts are relied on too heavily, 'blooming' in the gut can lead to dysbiosis and pathogen evolution relevant to 'environmental enteropathy' that may be 'new version' pellagra (Figure 31).

All our questions could be answered definitively. The variances in environmental exposure could be analysed in more detail epidemiologically and not just using meat intake as a surrogate. Clinical assessments sensitive to the possibility of pellagra in at-risk groups could be made. Joint clinical and biochemical assessments are the likely way forward closely followed by interventional studies. Biochemical measures have been available for a long time measuring tryptophan levels, or urinary N-methylnicotinamide excretion or NNMT levels are enough to confirm pellagra (or nicotinamide overload) but have rarely been used in the field. Metabolomics could make this more practical. Direct measurement of NAD/NADH or NAD/NADP (nicotinamide adenine dinucleotide phosphate) (known as the 'niacin number') ratios could be further developed. Laboratory studies could explore nicotinamide overload further as it has been assumed that NNMT or high N-methylnicotinamide levels are a marker or reaction rather than directly involved in causation. The long lifetime nature of this toxicity with doses only 2 to 4 times the upper recommended range would need to be recognised in the experimental design (Figure 32).

Moderating the dose of nicotinamide to begin with would be easier than most dietary manipulations as supplementation is happening where it is least needed in rich countries. Supplementation should be targeted at some 2 billion who are already known to be micronutrient deficient (iron, zinc, iodine, vitamin A, and folate) including the one-fifth of children who are physically or cognitively stunted. The cost has been shown to be low relative to the benefits (16-fold) either at an individual level where many are robbed of future earnings or by population – malnutrition loses 10% of gross domestic product.

Figure 31. An optimal dose of nicotinamide is suggested with trouble at the extremes. Transgenerational effects may be marked. Dysbioses that begin under these circumstances could put the affluent at risk. Within generation effects may be mismatches between early and late life exposure with poor nicotinamide in early life predisposing to the metabolic syndrome later if the dose increases. TB indicates tuberculosis; PD, Parkinson disease.

Figure 32. Nicotinamide overdosage is unlikely to be working alone. It may act in concert with other excess dietary factors known to be involved with ageing and pathological pathways and may take many years to express toxicity.
in many parts of Africa and Asia.362–367 Meat subsidies or vouchers or conditional cash transfer systems as part of a meat ‘entitlement’ reducing meat insecurity would make sense as nicotinamide is unlikely to be the only fortification factor. Adding nicotinamide to diet without methyl groups could be problematic as they would be lost as excesses of nicotinamide are excreted.361 At first glance, there is a big and sometimes this means more meat not less and should be avoided the trap of the Western diet with lack of exercise and being overweight preparing for famines (thrifty genotypes and phenotype) but to overcome a fear of exercise as it was previously linked to danger from predators (Figure 34).369–371

Acknowledgements
A.C.W. would like to thank Mike Hammond and the Richardson family for their support.

Author Contributions
ACW and LJH analysed the data, agree with manuscript results and conclusions, made critical revisions and approved final version. ACW wrote the first draft of the manuscript. LJH contributed to the writing of the manuscript. All authors reviewed and approved the final manuscript.

REFERENCES

1. Popkin BM, Adair LS, Ng SW. Global nutrition transition and the pandemic of obesity in developing countries. Nutr Rev. 2012;70:3–21.
2. Popkin BM, Gordon-Larsen P. The nutrition transition: worldwide obesity dynamics and their determinants. Int J Obes Relat Metab Disord. 2004;28:52–59.
3. Popkin BM, Slavin J. New dynamics in global obesity facing low- and middle-income countries. Obes Rev. 2013;14:11–20.
4. Omran AR. The epidemiologic transition theory. A preliminary update. J Trop Pediatr. 1983;29:305–316.
5. Lindberg S. Food and Western Disease: Health and Nutrition from an Evolutionary Perspective. Hoboken, NJ: Wiley; 2009.
6. Williams A, Ramsden D. Hydrogen symbioses in evolution and disease. JFM. 2007;100:451–459.
7. Wallace DC. Mitochondrial DNA variation in human radiation and disease. Q. Rev. 2015;163:33–38.
8. Berger SL, Sassone-Corsi P. Metabolic signaling to chromatin. Cell. 2016;163:33–38.
9. Perlmutt K, Lobberg K. Grain Brain: The Surprising Truth about Wheat, Carbs, and Sugar – Your Brain’s Silent Killers. Boston, MA: Little, Brown and Company; 2013.
10. Mylenko M, Boland S, Penkov S, et al. NAD+ is a food component that promotes exit from dauer diapause in Caenorhabditis elegans. PLoS ONE. 2016;11:e0167208.
11. Eaton SB, Konner M, Shostak M. Stone agers in the fast lane: chronic degenerative diseases in evolutionary perspective. Am J Med. 1988;84:739–749.
12. Trowell HC, Burkitt DP. Western Diseases, Their Emergence and Prevention. London, England: Edward Arnold; 1981.
47. Andoh A. Physiological role of gut microbiota for maintaining human health. J Nutr Biochem. 2016;39:40–47.
48. Yang Y, Sauve AA. NAD+ metabolism: bioenergetics, signaling and manipulation for therapy. Biochim Biophys Acta. 2016;1864:1787–1800.
49. Petiaca P, Ton J, Patrizi O, Tcherez G, Gakire B. NAD acts as an integral regulator of multiple defense layers. Plant Physiol. 2016;172:1465–1479.
50. Guarente L. CELL METABOLISM. The resurgence of NAD(+)... Science. 2016;352:1396–1397.
51. Pretay N, Leo O. Reassessing the role of NAD as a prosurvival factor. Mol Cell Oncol. 2016;3:e01629.19.
52. Trammell SA, Schmidt MS, Weidemann BJ, et al. Nicotinamide riboside is uniquely and orally bioavailable in mice and humans. Nat Commun. 2016;7:12948.
53. Kennedy BE, Sharif T, Martell E, et al. NAD+ salvage pathway in cancer metabolism and the therapeutic window. 2016.
54. Majewski M, Kozlowska A, Thoene M, Lepiarczyk E, Grzegorzek WJ. Overview of the role of vitamins and minerals on the kyurenine pathway in health and disease. J Nutr Biochem. 2016;67:3–19.
55. Min SW, Sohn PD, Cho SH, Swanson RA, Gian L. Sirtuins in neurodegenerative diseases: an update on potential mechanisms. Front Aging Neurosci. 2013;5:53.
56. Fu L, Doreswamy V, Prakash R. The biochemical pathways of central nervous system neural degeneration in niacin deficiency. Neural Regen Res. 2014;9:1509.
57. Wyness L. The role of red meat in the diet: nutrition and health benefits. Proc Nutr Soc. 2016;75:227–232.
58. Petiaca P, de Bont L, Tcherez G, Gakire B. NAD: not just a pawn on the board of plant-pathogen interactions. Plant Signal Behav. 2013;8:e22477.
59. Blackford LF, Levy RE, Sonenberg JB, Peterson DA, Gordon JJ. Host-bacterial mutualism in the human intestine. Science. 2005;307:1915–1920.
60. Honda K, Littman DR. The microbiome in infectious disease and inflammation. Annu Rev Immunol. 2012;30:757.
61. Nicholson JK, Holmes E, Kinross J, et al. Host-gut microbiota metabolic interactions. Science. 2012;336:1262–1267.
62. Streh M, Elamin AA, Singh M. Pyrazinamide: the importance of uncovering the mechanisms of action in mycobacteria. Expert Rev Anti Infect Ther. 2015;13:593–603.
63. Seiner DR, Schuch R, Fernandez RE, Maurelli AT. Understanding the bases of function and modulation of B-vitamin biosynthesis suggests co-operation among gut microbes. Front Genet. 2015;6:148.
64. McNamara JM, Houston AJ, Higginson AD. Costs of foraging predispose animals to obesity-related mortality when food is constantly abundant. PLoS ONE. 2011;6:e26355.
65. Aguilar-Ayala DA, Palomino JC, Vandamme P, Martin A, Gonzalez YMJA. Genetic regulation of Mycobacterium tuberculosis. Biochemistry. 2010;49:9613–9619.
66. Stehr M, Elamin AA, Singh M. Pyrazinamide: the importance of uncovering the mechanisms of action in mycobacteria. Expert Rev Anti Infect Ther. 2015;13:593–603.
67. Prussin A, Lisch M, Fernandez RE, Maurelli AT. Genetic structure of the nadB and nadH antivirulence loci in Shigella spp. J Bacteriol. 2005;187:4410–4420.
68. Edwards RL, Bryan A, Jules M, Harada K, Buchrieser C, Swanson MS. Genetic regulation of Mycobacterium tuberculosis in a lipid-rich environment [published online ahead of print October 19, 2016]. Infect Genet Evol. doi:10.1016/j.meegid.2016.10.015.
69. Corradi J, Bouzat C. Understanding the bases of function and modulation of B-vitamin biosynthesis suggests co-operation among gut microbes. Front Genet. 2015;6:148.
70. Bhat Y, O’hara JK, Kerwin LJ, Cobbold SA, et al. Targeting NAD+ metabolism in host-pathogen interactions. Cell Mol Life Sci. 2007;64:2681–2691.
71. Qureshi MM, Raghunath H, Patel SN, Cook LE, Parthasarathy R. Vitamin B3 and its relationship with host defense mechanisms against pathogen interactions. Cell Mol Life Sci. 2007;64:2681–2691.
butyrate-producing, clostridial scavenger from metagenomic sequence data. Front Microbiol. 2016;7:783.

79. Jung TH, Jeon WM, Han KS. In vitro effects of dietary inulin on human fecal microbiota and butyrate production. J Microbiol Biotechnol. 2015;25:1555–1558.

80. Dingel-Kolka T, Choi CH, Tenas D, et al. Altered colonic bacterial fermentation as a potential pathophysiological factor in irritable bowel syndrome. Am J Gastroenterol. 2015;110:1339–1346.

81. Maslowski KM, Vieira AT, Ng A, et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature. 2009;461:1282–1286.

82. Alvarez-Curto E, Milligan G. Metabolism meets immunity: the role of free fatty acid receptors in the immune system. Biochem Pharmacol. 2016;114:3–13.

83. Ararashi K, Tanoue T, Shima T, et al. Induction of colonic regulatory T cells by indigenous clostridium species. Science. 2011;331:337–341.

84. Boland RL, Kucyi KR, Aranuché-Cárcamo CV, et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J Exp Med. 2007;204:1757–1764.

85. Corrêa-Oliveira R, Fachi JL, Vieira A, Sato FT, Vinhal MA. Regulation of immune cell function by short-chain fatty acids. Clin Transl Immunology. 2016;5:673.

86. Macia L, Tan J, Vieira AT, et al. Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fiber-induced gut homeostasis through regulation of the inflammatory response. Cell. 2015;162:657–674.

87. Mainz AE, McSorley HJ. Regulation of the host immune system by helminth parasites. Alzheimers Dement. 2016;138:666–675.

88. Stilling RM, van de Wouw M, Clarke G, Storton C, Dinan TG, Cryan JF. The neuropharmacology of butyrate: the benefit of the balanced microbiota. Neurogastroenterol Motil. 2014;26:971–972.

89. Tao J-H, Cheng M, Tang J-P, Liu Q, Fan F, Li F-P. Foxp3, regulatory T cells, and autoimmune diseases. Inflammation. 2016;40:328–339.

90. Singh N, Gurav A, Sivaprasakam S, et al. Activation of Gpr109a, receptor for niacin-like metabolite, suppresses colonic inflammation and carcinogenesis. Immunity. 2014;40:128–139.

91. Segata N. Gut microbiome: Westernization and the disappearance of intestinal diversity. Curr Biol. 2015;25:R611–R613.

92. Hashimoto T, Peretz T, Rehman A, et al. ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation. Nature. 2012;487:477–481.

93. Schnorr SL. The diverse microbiome of the hunter-gatherer. Nat Med. 2015;21:814–815.

94. Ishii N, Nishihara Y. Pellaella encephalophaga among tuberculous patients: its relation to ionization therapy. J Neurol Neurosurg Psychiatry. 1985;48:628–634.

95. Gupta Y, Shah I. Ethionamide-induced Pellaella. J Trop Pediatr. 2015;61:303–303.

96. Zelante T, Iannitti RG, Cunha C, et al. Tryptophan catabolites from microbial ecology and intestinal inflammation as potential pathophysiological factors in irritable bowel syndrome. Gastroenterol. 2016;112:389–398.

97. Nguyen NT, Kimura A, Nakahama T, et al. Aryl hydrocarbon receptor negatively regulates dendritic cell immunogenicity via a kynurenine-dependent mechanism. J Immunol. 2016;204:1757–1764.

98. Elkhal A, Rodriguez-Cetina Biefer H, Heinbockel T, et al. NAD(+) regulates T cell function and promotes allograft survival via a systemic IL-10 production that is CD4(-) CD25(+) Foxp3(+) T cells independent. Sci Rep. 2016;6:22325.

99. Bedoya SK, Lam B, Lui K, Larkin J, The T cell lineage in immunity and autoimmune disease. Curr Drug Targets. 2013;2013:986789.

100. Lippens C, Duraes FV, Dubrot J, et al. IDO-mediated crosstalk between pDCs and Tregs inhibits autoimmunity. J Autoimmun. 2016;75:39–49.

101. Takenaka MC, Quiñones FJ. Tolerogenic dendritic cells. Seminars in Immunopathology. 2015;6:113–120.

102. Li R, Li H, Sun Q, Liu L, Zhang C, Ren X. Indoleamine 2,3-dioxgenase regulates T cell activity through Vav1/Rac pathway. Mol Immunol. 2017;81:102–107.

103. de Araújo EF, Medina DH, da Lima Galdino NA, Condino-Neto A, Calich VLG, Loures FV. Tolerogenic plasmacytoid dendritic cells control Paracoccidioides brasiliensis infection by inducing regulatory T cells in an IDO-dependent manner. PLoS Pathog. 2016;12:e1006115.

104. Nguyen NT, Kimura A, Nakahama T, et al. Aryl hydrocarbon receptor negatively regulates dendritic cell immunogenicity via a kynurenine-dependent mechanism. Proc Natl Acad Sci U S A. 2010;107:19965–19966.

105. Lovelace MD, Varney B, Sundaram G, et al. Current evidence for a role of the kynurenine pathway of tryptophan metabolism in multiple sclerosis. Front Immunol. 2016;7:246.
...the kynurenine pathway of tryptophan... Byakwaga H, Boum Y, Huang Y, et al. The kynurenine pathway of tryptophan. J Infect Dis. 2010;203:838–841.

121. Lee KS, Kwon YJ, Yang H, et al. Induction of IDO-1 by imunostimulatory DNA limits severity of experimental colitis. J Immunol. 2010;185:3997–3991.

122. Alroqi FJ, Chatila TA. T regulatory cell biology in health and disease. Annu Rev Med. 2011;62:375–395.

123. Hill and Williams. The Biology of Human Disease. Cambridge, MA: Harvard University Press; 1995.

124. Finkelman FD, Blount SL. The hygiene hypothesis and beyond. Curr Opin Allergy Clin Immunol. 2013;13:149–153.

125. Ciorba MA, Bettonville EE, McDonald KG, et al. Induction of IDO-1 by immunostimulatory DNA limits severity of experimental colitis. J Immunol. 2010;185:3997–3991.

126. Smil V. Eating meat: evolution, patterns, and consequences. London, England: Earthscan; 2008.

127. Johnston W. The Atlas of Health: Mapping the Challenges and Causes of Disease. London, England: Earthscan; 2008.

128. Popul Stud. 2002;28:599–639.

129. Campbell SJ, Nery SV, Doi SA, et al. Complexities and perplexities: a critical appraisal of the evidence for soil-transmitted helminth infection-related morbidity. PLoS Negl Trop Dis. 2016;10:e0004566.

130. Yu W, Ross AG, Olveda RM, et al. Risk of human helminthiases: geospatial distribution and targeted control. Int J Infect Dis. 2016;55:131–138.

131. Papier K, Williams GM, Luceres-Catubig R, et al. Childhood malnutrition and response to albendazole treatment. Am J Trop Med Hyg. 2016;95:131–138.

132. Bithas PI, Anagnostou D, Valetou M, et al. Clinical and epidemiological features of asthma among children and adolescents in Athens, Greece. Pediatr Allergy Immunol. 2012;23:466–472.

133. Ege M, Zheng Y, Wang CC, et al. Rhinitis is associated with atopy and asthma, but not with allergic rhinoconjunctivitis. J Allergy Clin Immunol. 2016;138:366–373.e1.

134. De Jongste JC, van Voorst Vader PC, van der Meché FLM, et al. The hygiene hypothesis: a review of the evidence. Clin Exp Allergy. 2001;31:1440–1450.

135. Du Toit G, Aalberse RC, van de Poll-Franse LV, et al. The hygiene hypothesis in the Netherlands: a nested case-control study. Clin Exp Allergy. 2001;31:1440–1450.

136. Papier K, Williams GM, Luceres-Catubig R, et al. Childhood malnutrition and response to albendazole treatment. Am J Trop Med Hyg. 2016;95:131–138.

137. Bykhwaga H, Boun Y, Huang Y, et al. The kynurenine pathway of tryptophan. Cancer Res. 2014;74:6715–6720.

138. Smith C, Chang MY, Parker KH, et al. IDO is a nodal pathogenic driver of lung cancer and metastasis development. Cancer Discov. 2012;2:722–735.

139. Alroqi FJ, Chatila TA. T regulatory cell biology in health and disease. Annu Rev Med. 2011;62:375–395.

140. Finkelman FD, Blount SL. The hygiene hypothesis and beyond. Curr Opin Allergy Clin Immunol. 2013;13:149–153.
217. Spencer PS, Palmer VS, Kisby GE. Seeking environmental causes of neurodegeneration. Nutr Rev. 2014;72:707–719.

218. McCarrison R. Pellagra: a non-eradicated old disease. Bull Food Nutr Sci. 2004;75:1093–1099.

219. Ordunez-Garcia PO, Nieto FJ, Espinosa-Brito AD, Caballero B. Cuban epidemiology of pellagra related to changes in dietary niacin among Mozambican refugees in Malawi. Int J Food Sci Nutr. 2015;2015:bcr2015209412.

220. Burdge GC, Lillycrop KA. Environment-physiology, diet quality and energy balance: the influence of early life nutrition on future energy balance. Physiol Behav. 2014;134:119–122.

221. Trowell H, Muwazi E. Severe and prolonged underfeeding in African children. J Inherit Metab Dis. 2015;2015:bcr2015209412.

222. Ezzati M, Lopez AD, Rodgers A, Vander Hoorn S, Murray CJ; Comparative Risk Assessment Collaboration Group. Comparative Risk Assessment: Global Burden of Disease 2010. 2013;2013:2013.

223. Grantham-McGregor S, Ani C. Cognition and undernutrition: evidence for a non-communicable disease of poverty. Forum Nutr. 2016;86:738–743.

224. Grantham-McGregor S, Baker-Henningham H. Review of the evidence linking early life nutrition and mental development. Eur Rev Med Pharmacol Sci. 2012;16:180–184.

225. Trowell H, Muwazi E. Severe and prolonged underfeeding in African children. Eur Rev Med Pharmacol Sci. 2016;20:1803–1807.

226. Perlot T, Penninger JM. ACE2—from the renin-angiotensin system to gut microbiota in health and disease. Microbiota Infect. 2013;15:866–873.

227. Favre D, Mold J, Hunt PW, et al. Trypanothione catalysis by indoleamine 2,3-dioxygenase 1 alters the balance of TH17 to regulatory T cells in HIV disease. Sci Transl Med. 2010;2:1–23.

228. Fox X, Lawson MA, Kelley KW, Dantzer R. HIV-1 Tat activates indoleamine 2,3-dioxygenase in murine organotypic hippocampal slice cultures in a p38 mitogen-activated protein kinase-dependent manner. J Neuroinflammation. 2011;8:88.

229. Bishop P, Levay PF, Viljoen M. The kynurenine pathway activities in a sub-Saharan HIV/AIDS population. BMC Infect Dis. 2015;15:146.

230. Burdge GC, Lillycrop KA. Environment-physiology, diet quality and energy balance: the influence of early life nutrition on future energy balance. Physiol Behav. 2014;134:119–122.

231. Bipat P, Levay PF, Viljoen M. The kynurenine pathway activities in a sub-Saharan HIV/AIDS population. BMC Infect Dis. 2015;15:146.

232. Melina V, Craig W, Levin S. Position of the academy of nutrition and dietetics: the relationship between niacin and health. J Acad Nutr Diet. 2016;2016;2016:bcr2015209412.

233. McCarrison R. Pellagra: a non-eradicated old disease. Bull Food Nutr Sci. 2004;75:1093–1099.

234. Baquet S, Wuislaume F, Van Egmond K, Ibanez F. Pellagra: an old disease in a new context. JAMA. 2016;29:1510–1511.

235. Lee SE. Guam dementia syndrome revisited in 2011. Neurosci Forum Nutr. 2016;2016:756–768.

236. Ezzati M, Sauerwald T, Richter A, et al. Enzymatic activities in kynurenine pathway in a sub-Saharan population. J Inherit Metab Dis. 2017;19:1347–1350.

237. Young GS, Kirkland JB. The role of dietary niacin intake and the adenosine 5′-diphosphate-ribose cyclase enzyme CD38 in spatial learning ability: is cyclic adenosine diphosphate-ribose the link between diet and behaviour? Nutr Rev. 2008;66:422–432.

238. Xu X, Jiang G. Niacin-respondent subset of schizophrenia – a therapeutic approach. Nutr Rev. 2002;60:303–309.

239. Tateishi K, Wakimoto H, Iafrate AJ, et al. Extreme vulnerability of IDH1 mutation in glioblastoma. Sci Transl Med. 2013;15:866–873.

240. Greenwald SH, Charette JR, Staniszewska M, et al. Mouse models of NAD decline and mitochondrial dysfunction through an SIRT3-dependent mechanism. Cell Metab. 2016;23:1127–1139.

241. Barnes JL, Tian M, Edens NK, Morris MC. Consideration of nutrient levels in studies of cognitive decline. Nutr Rev. 2014;72:707–719.

242. Morris MC, Tanguy CC. Diet and prevention of Alzheimer disease diet and prevention of Alzheimer disease. J Nutr. 2010;140:355–366.

243. Morris MC, Tangney CC. Diet and prevention of Alzheimer disease. J Nutr. 2010;140:355–366.

244. Morris MC, Evans DA, Bienias JL, et al. Dietary niacin and the risk of incident Alzheimer’s disease and of cognitive decline. J Neuroendocrinol Psychiatry. 2004;75:1093–1099.

245. Yao JK, Dougherty GG, Gautier CH, et al. Prevalence and specificity of the abnormal niacin response: a potential endophenotype marker in schizophrenia. Schizophr Bull. 2016;42:369–376.

246. Berger GE, Smeny S, Sacher MR, et al. Niacin skin sensitivity is increased in adolescents at risk for high risk for psychosis. PLoS ONE. 2016;11:e0148429.

247. Berger GE, Smeny S, Sacher MR, et al. Niacin skin sensitivity is increased in adolescents at risk for high risk for psychosis. PLoS ONE. 2016;11:e0148429.

248. Messamore E. Niacin subsensitivity is associated with functional impairment in schizophrenia. Schizophr Res. 2012;137:180–184.

249. Muramatsu R, Yokoyama K, Hata Y, et al. Niacin-respondent subset of schizophrenia—a therapeutic approach. J Neuroendocrinol Psychiatry. 2004;75:1093–1099.
313. Barker LE, Kirland KA, Gregg EW, Geiss LS, Thompson TJ. Geographic distribution of diagnosed diabetes in the US: a diabetes belt. Am J Prev Med. 2011;40:434–439.

314. Neel JV. Diabetes mellitus: a ‘thrifty’ genotype rendered detrimental by ‘progress’. Am J Hum Genet. 1962;14:353.

315. Hales CN, Barker DJ. The ‘thrifty’ phenotype hypothesis. Br Med Bull. 2001;60:5–20.

316. Gluckman PD, Hanson MA. The Fetal Matrix: Evolution, Development and Disease. Cambridge, UK: Cambridge University Press; 2004.

317. Al-Mohaisen M, Pun S, Frohlich J. Niacin: from mechanisms of action to therapeutic use. J Clin Med. 2010;10:204–217.

318. Alsheikh-Al-Ali AA, Karas RH. The safety of niacin in the US Food and Drug Administration event reporting database. Am J Cardiol. 2008;101:59–913.

319. Parsons RB, Smith M-L, Williams AC, Waring RH, Ramsden DB. Expression of nicotinamide N-methyltransferase (EC 2.1.1.1) in the Parkinsonian brain. J Neuropathol Exp Neurol. 2002;61:111–124.

320. Parsons RB, Smith SW, Waring RH, Williams AC, Ramsden DB. High expression of nicotinamide N-methyltransferase in patients with idiopathic Parkinson's disease. Neuroni Lett. 2005;342:13–16.

321. Brozberg A, Leree E, Udawela M, et al. Nicotinamide-N-methyltransferase (NNMT) in schizophrenia: genetic association and decreased frontal cortex mRNA levels. Int J Neuropsychopharmacol. 2012;15:727–737.

322. Chen C, Wang X, Huang X, et al. Nicotinamide N-methyltransferase: a potential biomarker for worse prognosis in gastric carcinoma. Am J Cancer Res. 2016;6:649.

323. Goldberg RB, Jacobson TA. Effects of niacin on glucose control in controlled trials. Mayo Clin Proc. 2008;83(4):470–478. doi: 10.4065/m3.4.470.

324. Golde C, Taylor AJ, Newby P, McCoy C, Zhoa X-Q, Preiss D. Niacin therapy and the risk of new-onset diabetes: a meta-analysis of randomised controlled trials. Heart. 2015;101:198–203.

325. Katz JB, Muller AJ, Prendergast GC. Indoleamine 2,3-dioxygenase in T-cell tolerance and tumoral immune escape. Immunol Rev. 2008;222:200–201.

326. Matte JJ, Corrent E, Simongiovanni A, Le Floc'h N. Tryptophan metabolism, drug-resistant tuberculosis: a threat to global control of tuberculosis. Lancet. 2010;375:1830–1843.

327. Trammell SA, Brenner C. NNMT: a bad actor in fat makes good in liver. Mol Sci. 2015;16:18270–18282.

328. Nimmagadda VK, Makar TK, Chandrasekaran K, et al. SIRT1 and NAD+ precursors: therapeutic targets in multiple sclerosis a review. J Neuroimmunol. 2016;304:29–34.

329. Swink RL, Duggan BB. Effect of low saturated fat diet in early and late cases of multiple sclerosis. Lancet. 1990;336:37–39.

330. Zhou S-S, Li D, Na-Na C, Zhou Y. Vitamin paradox in obesity: deficiency or excess? World J Diabet. 2015;6:1185.

331. Powell ML, Schulkin J. The Nature of Obesity. Baltimore, MD: Johns Hopkins University Press; 2013.

332. Ewald PW. Evolution of Infectious Disease. New York, NY: Oxford University Press; 1994.

333. Gandhi NR, Nunn P, Dheda K, et al. Multidrug-resistant and extensively drug-resistant tuberculosis: a threat to global control of tuberculosis. Lancet. 2016;378:1830–1843.

334. Goldberg DE, Siliciano RF, Jacobs WR Jr. Outwitting evolution: fighting drug-resistant TB, malaria, and HIV. Cell. 2012;148:1271–1283.

335. Amyes SGB. Magic Bullet, Lost Horizon: The Rise and Fall of Antibiotics. Abingdon, UK: Taylor & Francis; 2001.

336. Boni MF, Feldman MW. Evolution of antibiotic resistance by human and bacterial niter construction. Evolution. 2005;59:477–491.

337. Stecher B, Maier L, Hardt W-D. ‘Blooming’in the gut: how dysbiosis might contribute to pathogen evolution. Nat Rev Microbiology. 2011;11:277–284.

338. Akala G, Taffe S, Gunaratna NS, De Groote H. The effectiveness of quality protein maize in improving the nutritional status of young children in the Ethiopian highlands. Food Nutr Bull. 2010;31:418–430.

339. Bilan DS, Belousov VV. New tools for redox biology: from imaging to manipulation. Free Radic Biol Med. http://doi.org/10.1016/j.freeradbiomed.2016.12.004. In press.

340. Abdellatif M. Sirtuins and pyridine nucleotides. Cit Res. 2012;111:642–656.

341. Friel S, Labonte R, Sanders D. Measuring progress on diet-related NCDs: the need to address the causes of the causes. Lancet. 2013;381:903–904.

342. Nadleaker-Gonzalez O, Nestel P, Bouis H. Estimating the global costs of vitamin A capsule supplementation: a review of the literature. Food Nutr Bull. 2007;28:307–316.

343. Gross R, Gross U, Lechtig A, Lopez de Romana D. We know much about what to do but little about how to do it: experiences with a weekly multivitamin–nutrient supplementation campaign. Food Nutr Bull. 2006;27:S111–S114.

344. Fiedler JL, Sanghvi TG, Saunders MK. A review of the micronutrient intervention cost literature: program design and policy lessons. Int J Health Plann Manage. 2008;23:373–397.

345. Darnton-Hill I. Global burden and significance of multiple micronutrient deficiencies in pregnancy. Nestle Nutr Inst Workshop Ser. 2012;70:49–60.

346. Engel E. Zeitschrift des Statistischen Bureaus des Königl. Sächs. Ministerium des Innern. Leipzig, Germany: Hübner; 1855.

347. Dietzhofer K. 2015;58:799–808.

348. Kraus D, Yang Q, Kong D, et al. Nicotinamide N-methyltransferase knockdown protects against diet-induced obesity. Nature. 2014;508:258–262.

349. Rappou E, Jukarainen S, Rinnankoski-Tuikka R, et al. Weight loss is associated with increased NAD+/SIRT1 expression but reduced PARP activity in white adipose tissue. J Clin Endocrinol Metab. 2016;101:1263–1273.

350. Garrell AC, Elliott SJ. Geographies of Health: An Introduction. Hoboken, NJ: Wiley; 2014.

351. Giampietro M, Mayumi K, Sorman AH. The Metabolic Pattern of Societies: Where Economies Fall Short. Abingdon, UK: Taylor & Francis; 2011.

352. Glaze K, Sallus JE, Sachdev BE, Franks LD. Healthy nutrition environments: concepts and measures. Am J Health Promot. 2005;19:330–333.

353. Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 2006;3:e442.

354. Rajca D, Mahlich Z, Puklo D, Vecsei L. Kynurenines and multiple sclerosis: the dialogue between the immune system and the central nervous system. Int J Mol Sci. 2015;16:18270–18282.

355. Engel E. Zeitschrift des Statistischen Bureaus des Königl. Sächs. Ministerium des Innern. Leipzig, Germany: Hübner; 1855.