Study of the anisotropic magnetic order of the Eu sublattice in single crystals of EuFe$_{2-x}$Co$_x$As$_2$ ($x=0, 0.2$) by means of magnetization and magnetic torque

Z. Guguchia, S. Bosma, and S. Weyeneth
Physik-Institut der Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland

A. Shengelaya
Department of Physics, Tbilisi State University, Chavchavadze 3, GE-0128 Tbilisi, Georgia

R. Puzniak
Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, PL-02-668 Warsaw, Poland

Z. Bukowski and J. Karpinski
Laboratory for Solid State Physics, ETH Zürich, CH-8093 Zürich, Switzerland

H. Keller
Physik-Institut der Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland

Here, we present a combination of magnetization and magnetic torque experiments to investigate the magnetic orders in undoped EuFe$_2$As$_2$ and Co doped EuFe$_{1.8}$Co$_{0.2}$As$_2$ single crystals. Although at low temperatures typical results for an antiferromagnetic (AFM) state in EuFe$_2$As$_2$ were found, our data strongly indicate the occurrence of a canted antiferromagnetic (C-AFM) order of the Eu$^{2+}$ moments between 17 K and 19 K, observed even in the lowest studied magnetic fields. However, unlike in the parent compound, no low-field and low-temperature AFM state of the Eu$^{2+}$ moments was observed in the doped EuFe$_{1.8}$Co$_{0.2}$As$_2$. Only a C-AFM phase is present at low fields and low temperatures, with a reduced magnetic anisotropy as compared to the undoped system. We present and discuss for both, EuFe$_2$As$_2$ and EuFe$_{1.8}$Co$_{0.2}$As$_2$, the experimentally deduced magnetic phase diagrams of the magnetic ordering of the Eu$^{2+}$ sublattice with respect to the temperature, the applied magnetic field, and its orientation to the crystallographic axes. It is likely that the magnetic coupling of the Eu and the Fe sublattice is strongly depending on Co doping, having detrimental influence on the magnetic phase diagrams as determined in this work. Their impact on the occurrence of superconductivity with higher Co doping is discussed.

PACS numbers: 74.70.Xa, 75.30.Gw, 75.30.Kz, 75.50.Ee

I. INTRODUCTION

The discovery of superconductivity in the iron-based pnictides provided a new class of compounds to the high temperature superconductor (HTS) family. Three main groups of these iron-based superconductors are intensively studied: the RFeAsO compounds with R = La-Gd ('1111'), the ternary arsenides AFe$_2$As$_2$ with A = Ba, Sr, Ca, Eu ('122'), and the binary chalcogenides such as FeSe$_{1-x}$ (‘11’). Similar to the cuprate HTS’s, the undoped iron-pnictides are not superconducting (SC) at ambient pressure and undergo a spin-density wave (SDW) transition at high temperatures. The SC state in iron-based compounds can be achieved either under pressure (chemical and hydrostatic) or by appropriate charge carrier doping of the parent compounds, both accompanied by a suppression of the SDW state.

Here, we focus on EuFe$_2$As$_2$ which is a particularly interesting member of the ternary system AFe$_2$As$_2$, since the A site is occupied by a rare earth Eu$^{2+}$ S-state (orbital moment $L = 0$) ion with a $4f^7$ electronic configuration. Eu$^{2+}$ has a total electron spin $S = 7/2$, corresponding to a theoretical effective magnetic moment of 7.94 μ_B. It is the only known member of the ’122’ family containing 4f electrons. In addition to the SDW ordering of the Fe moments at $T_{SDW} \approx 190$ K, an antiferromagnetic (AFM) order of the Eu$^{2+}$ spins at $T_{AFM} \approx 19$ K was reported by Mössbauer and susceptibility measurements. Recently, neutron diffraction measurements were performed on EuFe$_2$As$_2$ and the magnetic structure illustrated in Fig. 1 was established. This material exhibits an A-type AFM order of the Eu$^{2+}$ moments, e.g., the Eu$^{2+}$ spins align ferromagnetically in the planes, while the planes are coupled antiferromagnetically. It was demonstrated that by applying a high enough magnetic field, the Eu$^{2+}$ moments can be realigned ferromagnetically in both the parent compound EuFe$_2$As$_2$ as well as in the Co-doped system EuFe$_{2-x}$Co$_x$As$_2$ ($x = 0.22$). In addition, neutron diffraction measurements suggested a canted AFM (C-AFM) structure of the Eu$^{2+}$ moments in EuFe$_2$As$_2$ at intermediate magnetic fields.

Co-substitution may induce superconductivity in EuFe$_{2-x}$Co$_x$As$_2$ with a reentrant behavior of resistivity due to the AFM ordering of the Eu$^{2+}$ spins. Reentrant superconducting behavior was also observed...
in resistivity experiments on EuFe$_2$As$_2$ under an applied pressure up to 2.5 GPa. However, only above 2.8 GPa, where a valence change of the Eu ions from a divalent magnetic state ($4f^7$, $J = 7/2$) to a trivalent nonmagnetic state ($4f^6$, $J = 0$) was suggested to occur, a sharp transition to a zero-resistivity state was observed. Bulk superconductivity was also achieved in EuFe$_{2-x}$Co$_x$As$_2$ where isovalent P-substitution of the As-site includes chemical pressure in EuFe$_2$As$_2$. No superconductivity was detected in EuFe$_{2-x}$Ni$_x$As$_2$ while superconductivity with a maximum $T_c \approx 20$ K was reported for BaFe$_{2-x}$Ni$_x$As$_2$. It was suggested in various reports that there is a strong coupling between the localized Eu$^{2+}$ spins and the conduction electrons of the Fe$_2$As$_2$ layers. Recently, the hyperfine coupling constant A_{Eu} between the 75As nuclei and the Eu $4f$ states in EuFe$_1.9$Co$_{0.1}$As$_2$ was quantitatively determined from 75As NMR to be $A_{\text{Eu}} = -1.9 \times 10^7$ A/mμ_B. This large value of A_{Eu} indicates a strong coupling between the Eu$^{2+}$ localized moments and the charge carriers in the Fe$_2$As$_2$ layers and points to a strong correlation between the ordering of the localized magnetic moments and superconductivity in EuFe$_{2-x}$Co$_x$As$_2$.

It is well established that the SDW state of the Fe moments is suppressed as a result of Co doping. However, at present there is no clear picture how the ordering of the Eu spins develops with increasing Co concentration. Generally, it was assumed that in the '122' systems the direction of the sublattice magnetization of the Eu spins develops with increasing Co concentration in single crystals of EuFe$_2$As$_2$. Magnetic susceptibility, the magnetization and the magnetic torque are described in Sec. II. The results of the magnetic susceptibility and magnetization investigations provide information on the magnetic structure of a single-crystal sample in magnetic fields applied along the principal axes. In addition, the evolution of the magnetic structure as a function of the tilting angle of the magnetic field and the crystallographic axis can be studied by magnetic torque. This paper is organized as follows: Experimental details are described in Sec. II. The results of the magnetic susceptibility, the magnetization and the magnetic torque measurements are presented and discussed in Sec. III. In Sec. IV the magnetic phase diagrams of the Eu$^{2+}$ sublattice ordering with respect to magnetic field and temperature in single crystals of EuFe$_{2-x}$Co$_x$As$_2$ ($x = 0$, 0.2) are discussed. The conclusions follow in Sec. V.

II. EXPERIMENTAL DETAILS

Single crystals of EuFe$_{2-x}$Co$_x$As$_2$ ($x = 0$, 0.2) were grown out of Sn flux. The magnetization measurements of the EuFe$_{2-x}$Co$_x$As$_2$ ($x = 0$, 0.2) samples were performed with a commercial SQUID magnetometer (Quantum Design MPMS-XL) with the magnetic field H applied parallel ($H \parallel c$) or perpendicular ($H \perp c$) to the crystallographic c-axis. The magnetic torque measurements were carried out using a home-made torque sensor. The sample is mounted on a platform hanging on piezoresistive legs. A magnetic field \vec{H} applied to the sample having magnetic moment \vec{m} results in a mechanical torque $\vec{\tau} = \mu_0 \vec{m} \times \vec{H}$. This torque bends the legs, and thus creates a measurable electric signal proportional to the torque amplitude. The temperature is controlled by an Oxford flow cryostat, and the magnetic field is provided by a rotatable resistive Bruker magnet with a maximum magnetic field of 1.4 T.

III. RESULTS

A. Magnetization measurements

1. Temperature dependence

The temperature dependence of the magnetic susceptibility $\chi = M/H$ (here M is the magnetization determined as magnetic moment per mol) for the crystal of
EuFe$_2$As$_2$ in a field of $\mu_0 H = 0.01$ T for $H \perp c$ and for $H \parallel c$ is shown in Fig. 2a. In agreement with previous reports, the magnetic susceptibility for $H \perp c$ (χ_\perp) and for $H \parallel c$ (χ_\parallel), determined in the temperature range from 30 to 190 K (i.e., far above $T_{\text{AFM}} \approx 19$ K of the Eu moments up to $T_{\text{SDW}} \approx 190$ K of the Fe moments) is well described by the Curie-Weiss law:

$$\chi(T) = \frac{C}{T - \theta_{\text{CW}}}. \quad (1)$$

Here, C denotes the Curie constant and θ_{CW} the Curie-Weiss temperature. Analyzing the data in Fig. 2a with Eq. (1) yields: $C = 1853(15) \times 10^{-7}$ m3 K/mol, $\theta_{\text{CW}} = 19.74(8)$ K for $H \parallel c$ and $C = 2127(23) \times 10^{-7}$ m3 K/mol, $\theta_{\text{CW}} = 20.69(4)$ K for $H \perp c$. The calculated effective magnetic moment is $\mu_{\text{eff}} \approx 7.6 \mu_B$ for $H \parallel c$ and $\mu_{\text{eff}} \approx 8.3 \mu_B$ for $H \perp c$. These estimates of μ_{eff} are close to the theoretical value of the magnetic moment of a free Eu$^{2+}$ ion ($\mu_{\text{Eu}^{2+}} = 7.94 \mu_B$). The positive value of θ_{CW} for both $H \parallel c$ and $H \perp c$ is consistent with previous magnetization measurements indicating that the direct interaction between the Eu$^{2+}$ moments is ferromagnetic (FM). This is in agreement with the magnetic structure of EuFe$_2$As$_2$ suggested by zero field neutron diffraction measurements, revealing that the intralayer arrangement of the Eu$^{2+}$ spins is FM. The sharp increase of χ with decreasing temperature below 30 K also indicates a FM...
coupling between the Eu$^{2+}$ moments. The Eu moments align with respect to the Fe moments along the a axis as illustrated in Fig. 1.

With decreasing temperature from 19 K to 17 K, the susceptibility χ_\perp of single-crystal EuFe$_2$As$_2$ decreases rapidly and below 17 K the decrease of χ_\perp is less pronounced. On the other hand, χ_\parallel decreases with decreasing temperature from 19 K to 17 K and remains constant below 17 K. Moreover, the values of χ_\perp and χ_\parallel at 19 K are substantially different ($\chi_\perp/\chi_\parallel \approx 1.33$), already in a rather low magnetic field $\mu_0 H = 0.01$ T (see Fig. 2a). Note that within the classical picture of an ideal antiferromagnet, the magnetic susceptibility χ in a magnetic field perpendicular to the easy axis is constant, and χ in a field parallel to the easy plane decreases linearly with decreasing temperature. In addition, for an antiferromagnet the values of χ at the antiferromagnetic (AFM) transition temperature are the same for both $H \perp c$ and $H \parallel c$. The inset of Fig. 2a illustrates the temperature dependence of the difference between both susceptibilities $\chi_d = \chi_\perp - \chi_\parallel$. Note that below 19 K the quantity χ_d decreases with decreasing temperature and reaches zero at around 17 K. This behavior of $\chi_d(T)$ can be explained by invoking a transition from the high-temperature paramagnetic state to a FM state or to a C-AFM state at about 17 K. The transition from a FM or a C-AFM to an AFM state of the Eu$^{2+}$ spins occurs only below 17 K. The pronounced increase of χ_\parallel above 17 K indicates the appearance of a magnetic moment along the c-axis. Since χ_\parallel is smaller than χ_\perp in the FM/C-AFM state, it is suggested that the ab-plane is the easy plane of this ordered state. In Fig. 2b the temperature dependences of χ_\perp and χ_\parallel of single-crystal EuFe$_2$As$_2$ in a magnetic field of 0.3 T and 0.5 T (inset) are shown. Obviously, the AFM transition temperatures for $H \perp c$ (crossing point of χ_\perp and χ_\parallel) and for $H \parallel c$ (temperature at which χ_\parallel starts to increase) are shifted to lower temperature with higher magnetic field (see Fig. 2a for comparison). However, at $\mu_0 H = 0.5$ T the curves χ_\perp and χ_\parallel do not cross in the investigated temperature range, indicating that the AFM state of the Eu$^{2+}$ ions is suppressed in EuFe$_2$As$_2$ in magnetic fields $H \perp c$ exceeding $\mu_0 H \approx 0.5$ T. For $H \parallel c$ the suppression of the AFM state occurs in fields higher than $\mu_0 H \approx 1.2$ T, since above this field the susceptibility for $H \parallel c$ is temperature dependent even at temperature as low as 2 K (see Fig. 3b). Importantly, the magnetic field at which the magnetic moments of the Eu sublattice saturates (i.e., the field at which the FM state is reached) is much higher than the field of suppression of the AFM state. This implies that a FM state appears in a magnetic field higher than the field of suppression of antiferromagnetism and that those two transitions are distinguishable. The peak in the magnetic susceptibility at about 19 K in low fields (see Fig. 2) can be associated with the transition from a PM to a C-AFM state. This peak is shifted to lower temperature with applied magnetic field above $\mu_0 H \approx 0.3$ T for $H \perp c$ and above $\mu_0 H \approx 0.5$ T for $H \parallel c$ (see Figs. 2b and 3b). Finally, we may conclude that a field-induced magnetic phase transition from an AFM via a C-AFM configuration to a FM state takes place below 17 K. Such a transition is visible even at the lowest temperature of 2 K reached in our experiment.

The magnetization $M(T)$ in the FM state in the vicinity of the Curie temperature T_C can be described by the power law:

$$M(T) = M_0 \left(1 - \frac{T}{T_C}\right)^\beta.$$ (2)

Here β and M_0 are empirical constants. Analyzing the data at 1.5 T with Eq. (2) yields: $T_C = 27.2(1)$ K and $\beta = 0.39(1)$ for both directions of the magnetic field (solid lines in the insets of Fig. 3a and 3b). It was found that T_C increases gradually with increasing applied magnetic field for $H \perp c$ and $H \parallel c$. By extrapolating $T_C(H)$ to low fields the zero-field value of T_C was found to be ≈ 19 K. The present values of $T_C(H)$ are in agreement with those reported by Xiao et al.

The temperature dependence of the magnetic susceptibility for the Co doped crystal EuFe$_{1.8}$Co$_{0.2}$As$_2$ in an applied field of $\mu_0 H = 0.01$ T for $H \perp c$ and $H \parallel c$ is presented in Fig. 4. In the inset the temperature dependence of the susceptibility for the two field configurations $\chi_d = \chi_\perp - \chi_\parallel$ is shown. Analyzing the susceptibility data above 30 K with Eq. (2) yields: $C = 2108(32) \times 10^{-7}$ m3/mol, $\theta_{CW} = 21.86(6)$ K for $H \perp c$ and $C = 1915(34) \times 10^{-7}$ m3/mol, $\theta_{CW} = 20.67(7)$ K for $H \parallel c$. Again θ_{CW} turns out to be positive. Like in...
FIG. 5: (Color online) Temperature dependence of the ZFC magnetic susceptibility measured at various fixed magnetic fields of single-crystal EuFe$_{1.8}$Co$_{0.2}$As$_2$ for $H \perp c$ (a) and $H \parallel c$ (b). The arrows mark the canted antiferromagnetic ordering temperature $T_{C-\text{AFM}}$ of the Eu$^{2+}$ moments in low magnetic fields. $T_{C-\text{AFM}, \perp}$ and $T_{C-\text{AFM}, \parallel}$ refer to the C-AFM ordering temperatures for $H \perp c$ and $H \parallel c$, respectively. In the inset of (a) $\chi_\perp(T)$ for FC and ZFC in an applied field of $\mu_0 H = 0.001$ T is plotted. The inset of (b) shows the approximation of $M(T)$ in $\mu_0 H = 0.8$ T by the power law (solid curve) given in Eq. (3).

The susceptibility investigations of the previous section clearly demonstrate that the system EuFe$_{2-x}$Co$_x$As$_2$ ($x = 0, 0.2$) shows a rich variety of magnetic phases. In order to explore in detail the various magnetic-field-induced phases, magnetization experiments were also performed and χ_\parallel is observed (inset of Fig. 4), in contrast to the parent compound EuFe$_2$As$_2$ (see Fig. 2). Furthermore, χ_\perp is temperature dependent even at the lowest applied magnetic field. This is inconsistent with an AFM state with an easy c-axis. Hence, we suggest that for all temperatures below 17 K the ground state of the coupled Eu$^{2+}$ spins in EuFe$_{1.8}$Co$_{0.2}$As$_2$ is a C-AFM state with a FM component in the ab-plane. This implies that the magnetic configuration of the Eu moments is strongly influenced by the magnetization of the Fe-sublattice. This is consistent with previous NMR studies, revealing a strong coupling between the Eu and Fe$_{2-x}$Co$_x$As$_2$ layers.

The temperature dependences of χ_\perp and χ_\parallel at different magnetic fields of single-crystal EuFe$_{1.8}$Co$_{0.2}$As$_2$ are shown in Fig. 5. Zero field cooling (ZFC) and field cooling (FC) susceptibilities $\chi_\perp(T)$ measured in an applied field of $\mu_0 H = 0.001$ T are shown in the inset of Fig. 5a. Below 17 K the ZFC and FC curves deviate from each other, indicating the presence of a C-AFM state of the Eu$^{2+}$ moments. The data reveal a decrease of the C-AFM ordering temperature $T_{C-\text{AFM}}$ with increasing magnetic field for both field orientations, similar as for the parent compound EuFe$_2$As$_2$. However, the values for $T_{C-\text{AFM}}$ for EuFe$_{1.8}$Co$_{0.2}$As$_2$ are substantially smaller than those for EuFe$_2$As$_2$.

2. Field dependence

The susceptibility investigations of the previous section clearly demonstrate that the system EuFe$_{2-x}$Co$_x$As$_2$ ($x = 0, 0.2$) shows a rich variety of magnetic phases. In order to explore in detail the various magnetic-field-induced phases, magnetization experiments were also performed...
as a function of the applied magnetic field at different temperatures.

The field dependence of the magnetization of single-crystal EuFe$_2$As$_2$ at different temperatures for $H \perp c$ is shown in Fig. 6. In the inset the low field magnetization M_\perp at 5 K is shown. M_\perp increases almost linearly with increasing magnetic field up to $\mu_0 H \approx 0.45$ T where a sudden increase of M_\perp appears. Then M_\perp further increases with increasing H, and finally saturates for $\mu_0 H \geq 0.8$ T. The value of the saturation magnetization corresponds to an effective magnetic moment of 6.8 μ_B/f.u., which is close to $g\mu_B S = 7 \mu_B$/f.u. expected for Eu$^{2+}$ moments. This result suggests that there is a metamagnetic (MM) transition at $\mu_0 H_{MM} \approx 0.45$ T at 5 K in EuFe$_2$As$_2$, consistent with previous observations. Such a metamagnetic transition is characteristic for A-type antiferromagnetism in layered systems as, e.g., Na$_{0.85}$CoO$_2$ and La$_{2-x}$Sr$_{1+x}$Mn$_2$O$_{4}$. Figure 6 shows that the MM transition shifts towards lower fields with increasing temperature. The values of the magnetic field at which the MM transition occurs is in agreement with the results obtained from the susceptibility for the AFM to C-AFM transition. Thus, we propose that the MM transition corresponds to the onset of a spin-flop transition from an AFM to a C-AFM state in EuFe$_2$As$_2$. However, no MM transition for $H \perp c$ is detected in EuFe$_{1.8}$Co$_{0.2}$As$_2$ (Fig. 7a). Both M_\perp and M_\parallel first increase almost linearly with increasing H and then saturate at higher fields (Fig. 7). The absence of a MM transition in EuFe$_{1.8}$Co$_{0.2}$As$_2$ is consistent with the susceptibility measurements presented above, suggesting that the Eu$^{2+}$ moments exhibit a C-AFM ground state even at very low H. This conclusion is also supported by magnetic hysteresis measurements at 5 K performed in magnetic fields up to 0.5 T. As demonstrated in the inset of Fig. 7a the field dependence of M_\perp at 5 K shows a well developed hysteresis for EuFe$_{1.8}$Co$_{0.2}$As$_2$, in contrast to the parent compound EuFe$_2$As$_2$ where no hysteresis is observed.

Obviously, the presented susceptibility and magnetization measurements reveal a complex and rather sophisticated interplay of magnetic phases in the EuFe$_{2-x}$Co$_x$As$_2$ system. Additional information on the complex magnetic phases in EuFe$_{2-x}$Co$_x$As$_2$ is obtained from angular dependent magnetic torque studies presented in the next section.

B. Magnetic torque

In low magnetic fields the Eu$^{2+}$ magnetic moments prefer to order antiferromagnetically in EuFe$_2$As$_2$. High magnetic fields reorient the magnetic moments, leading to various magnetic field induced phases. Magnetic torque allows to investigate multiple aspects of magnetic order as a function of the magnetic field with respect to the principal axes. Whereas magnetization provides direct information on the magnetic moment oriented along the field, magnetic torque directly probes the anisotropy of the susceptibility in magnetic systems.

The angular dependence of the magnetic torque τ of single-crystal EuFe$_2$As$_2$ measured at 13 K in various magnetic fields is presented in Fig. 5. In Fig. 8 the same data are plotted in terms of $\tau/(\mu_0 H^2)$. The torque data below 0.3 T are of sinusoidal shape, following a simple angular dependence for a uniaxial antiferromagnet:

$$\tau(\theta) = -V \frac{\chi_\perp - \chi_\parallel}{2} \mu_0 H^2 \sin (2\theta). \quad (3)$$

Here, θ denotes the angle between the field H and the crystallographic c-axis, V is the volume of the sample, and χ_\perp and χ_\parallel are the magnetic susceptibilities for $H \perp c$ and for $H \parallel c$, respectively. Above 0.3 T the shape of the torque signal changes drastically (see Fig. 8). For θ
\(\simeq 90^\circ \) \((H\text{ almost parallel to the } ab\text{-plane})\) an additional torque signal appears, with an opposite sign relative to the AFM torque. Upon increasing the magnetic field this additional signal rises steeply and leads to a sign change of the torque signal for all angles \(\theta \). A similar behavior was observed in RbVBr12 and was interpreted as the appearance of a weak field-induced magnetic moment. This additional contribution to the torque signal observed here is substantially larger than the AFM torque signal. This is consistent with the magnetization data (see Sec. III(A)), from which the presence of a C-AFM phase was concluded above 0.3 T at 13 K. The sign change of the torque signal is in agreement with the sign change of the quantity \(\chi_\parallel - \chi_\perp \), which was interpreted as a signature of a transition to a C-AFM state of the Eu2+ magnetic moments. It was shown previously29 that EuFe\textsubscript{2}As\textsubscript{2} exhibits a weak in-plane anisotropy. Since

the in-plane anisotropy is much weaker than the out-of-plane anisotropy, this system can be treated approximately as a uniaxial anisotropic antiferromagnet. However, even a small in-plane anisotropy may lead to discrepancies between experimental results and theoretical predictions for a uniaxial anisotropic ferromagnet. Particularly, the torque signal of the AFM state shown in Fig. 8a is shifted by \(\Delta \theta \sim 10^\circ \) with respect to one of the C-AFM state (see Fig 8b). A similar phase shift \(\Delta \theta \) was observed in \(\lambda\text{-}(\text{BETS})_2\text{FeCl}_443 \) and interpreted as a change of the easy-axis. However, here the phase shift appears to indicate a crystallographic multi-domain state, due to a twinning of the crystal in the AFM state.

Figure 9a shows the measured magnetic torque for the same EuFe\textsubscript{2}As\textsubscript{2} single crystal at 20 K, where according to the magnetization results the AFM regime has disappeared. Consistently, no AFM torque signal is observed. Instead, the magnetic torque amplitude increases with

![Figure 8](color online) (a) Angular dependent magnetic torque \(\tau \) of single-crystal EuFe\textsubscript{2}As\textsubscript{2} at 13 K in various magnetic fields. For clarity not all measured data are shown. (b) Angular dependence of the quantity \(\tau/(\mu_0 H^2) \). The dashed arrows denote the direction of increasing magnetic field.

![Figure 9](color online) Magnetic torque \(\tau \) (a) and the quantity \(\tau/(\mu_0 H^2) \) (b) as a function of the angle \(\theta \) of single-crystal EuFe\textsubscript{2}As\textsubscript{2} in various magnetic fields at 20 K. The dashed arrows denote the direction of increasing magnetic field.
Fig. 10: (Color online) Color map of $\tau/(\mu_0 H^2)$ (in a.u.) for EuFe$_2$As$_2$ and EuFe$_{1.8}$Co$_{0.2}$As$_2$ as a function of angle θ and field H for $T = 13$ K, 17 K and 20 K. The dotted line in (a) is a fit according to Eq. (8). Panels (a), (b), and (c) are the data for EuFe$_2$As$_2$ at 13 K, 17 K, and 20 K, respectively, whereas (d), (e) and (f) are the data for EuFe$_{1.8}$Co$_{0.2}$As$_2$ at 13 K, 17 K, and 20 K, respectively.

H^2 and saturates at higher H. Such a behavior is characteristic for a paramagnet. Consistently, the quantity $\tau/(\mu_0 H^2)$ plotted in Fig. 9b decreases with increasing field.

In Fig. 10 the scaled magnetic torque $\tau/(\mu_0 H^2)$ for EuFe$_2$As$_2$ and EuFe$_{1.8}$Co$_{0.2}$As$_2$ is shown in a color map for the representative temperatures of 13 K, 17 K, and 20 K as a function of angle θ and field H. Note that $\tau/(\mu_0 H^2)$ is scaling according to the magnetic susceptibility. As seen in Fig. 10 in the low field regime of undoped EuFe$_2$As$_2$ at 13 K is dominated by the AFM state, whereas for higher fields, the C-AFM state ap-
pears abruptly along a clearly angular dependent boundary line (dotted line), demonstrating the anisotropy of this magnetically ordered system. At 17 K (Fig. 10b) the AFM phase is not present, consistent with the conclusions from the above susceptibility measurements. At 20 K (Fig. 10a) the signal is clearly sinusoidal, consistent with FM behavior. In order to induce a canting of a planar antiferromagnetically ordered subsystem, the in-plane component of the magnetic field \(H\) must surpass the in-plane magnetization \(M\) in one of the two magnetic sublattices:

\[
H \geq A \cdot M = A \cdot \sqrt{M^2 - M_{\|}^2},
\]

Here, \(M\) is the saturation magnetization of the magnetic sublattice, \(M_{\|}\) its out-of-plane component, and \(A\) is a constant. Taking into account

\[
H \parallel = H \sin(\theta),
\]

\[
M_{\|} = \frac{1}{2} \chi_{\|} H \cos(\theta),
\]

where \(\chi_{\|}\) is the susceptibility of the total Eu\(^{2+}\) magnetic sublattice, we obtain for the boundary condition:

\[
H^2 \sin^2(\theta) = A^2 \left(M^2 - \frac{1}{4} \chi_{\|} H^2 \cos^2(\theta) \right),
\]

Solving this equality for \(H\) yields the angle dependent canting field:

\[
H_{\text{cant}}(\theta) = \frac{A \cdot M}{\sin^2(\theta) + \frac{1}{4} \chi_{\|} A^2 \cos^2(\theta)}. \tag{7}
\]

Interestingly, the resulting \(H_{\text{cant}}(\theta)\) is analogous to the expression for the angular dependence of the upper critical field \(H_{\text{c2}}(\theta)\) in a type II superconductor.\(^{[6]}\) Hence, Eq. 7 can be simplified according to

\[
H_{\text{cant}}(\theta) = \frac{H_{\text{cant,\perp}}}{\sqrt{\sin^2(\theta) + \gamma_{\text{cant}}^2 \cos^2(\theta)}}, \tag{8}
\]

where \(H_{\text{cant,\perp}} = H_{\text{cant}}(90^\circ)\) is the in-plane canting field, \(\gamma_{\text{cant}} = H_{\text{cant,\parallel}} / H_{\text{cant,\perp}}\) its anisotropy parameter, and \(H_{\text{cant,\parallel}} = H_{\text{cant}}(0^\circ)\) the out-of-plane canting field. This shape of the angular dependence of the transition between the AFM and C-AFM phase in the \((H, \theta)\) diagram is represented by the dashed line in Fig. 10a. It describes the experimental torque data rather well, with the parameters \(H_{\text{cant,\perp}}(13 \text{ K}) \simeq 0.42(2) \text{ T}\) and \(\gamma_{\text{cant}} \simeq 2.0(2)\). This yields an estimate of the canting field parallel to the \(c\)-axis \(H_{\text{cant,\parallel}}(13 \text{ K}) \simeq 0.84(6) \text{ T}\).

The low field torque signal of EuFe\(_{1.8}\)Co\(_{0.2}\)As\(_2\) at 20 K (Fig. 10f) shows a shape typical for an anisotropic paramagnet. However, the anisotropy of the system is quite quickly suppressed with increasing magnetic field, which may indicate a transformation of the paramagnetic state to a short range ordered state at relatively low field. It might be caused by large fluctuations of the magnetic moments in the vicinity of the transition from a disordered PM state to an ordered one in EuFe\(_{1.8}\)Co\(_{0.2}\)As\(_2\). Furthermore, at low temperatures we do not observe any indication of a field induced transition from the AFM to the C-AFM state (Fig. 10d-e). Therefore, we conclude that for EuFe\(_{1.8}\)Co\(_{0.2}\)As\(_2\) even at the lowest magnetic field a transition from a PM to a C-AFM state takes place with decreasing temperature, in agreement with the above magnetization data.

IV. DISCUSSION

In Fig. 11 the results of the susceptibility, magnetization, and magnetic torque experiments are summarized. They are discussed in terms of the phase diagram of the Eu\(^{2+}\) magnetic sublattice of EuFe\(_{2}\)As\(_2\) and EuFe\(_{1.8}\)Co\(_{0.2}\)As\(_2\) for \(H \perp c\) and \(H \parallel c\).

A. EuFe\(_{2}\)As\(_2\)

For the parent compound EuFe\(_{2}\)As\(_2\) four different magnetic phases were identified (see Fig. 11a and b): a paramagnetic (PM), an antiferromagnetic (AFM), a canted antiferromagnetic (C-AFM), and a ferromagnetic (FM) phase. The determination of the corresponding transition temperatures and fields is described in Sec. III. The present experiments suggest a C-AFM order of the Eu\(^{2+}\) spins in EuFe\(_{2}\)As\(_2\) in the temperature range between 17 K and 19 K, while below 17 K an AFM structure is proposed. We suggest that at low temperatures the system can be well described with a uniaxial model with easy plane and A-type AFM order. By applying a magnetic field within the AFM phase, a transition from AFM order via a canted configuration to a FM structure is observed. The observed \(T_{\text{MM}}\) (AFM) at which the metamagnetic (MM) transition occurs (open symbols in Fig. 11a) is in agreement with the results obtained from the susceptibility for the AFM to C-AFM transition (black filled symbols in Fig. 11a). Thus, we propose that the MM transition corresponds to a spin-flop transition from an AFM to a C-AFM state in EuFe\(_{2}\)As\(_2\). The critical magnetic field \(H_{\text{c}}(T)\) at which the magnetic moment in the Eu sublattice saturates was determined at different temperatures. The values of \(H_{\text{c}}\) extrapolated to zero temperature were found to be \(H_{\text{c}}(0) \simeq 0.85 \text{ T}\) and \(H_{\text{c}}(13 \text{ K}) \simeq 1.5 \text{ T}\) for \(H \perp c\) and \(H \parallel c\), respectively. By analyzing the shape of the angular dependence of \(H_{\text{c}}(\theta)\) shown in Fig. 10a, we may conclude that the in-plane component of the magnetic field is responsible for the canting of the spins.

The magnetic ordering of the Eu\(^{2+}\) moments at low temperatures is consistent with the magnetic structure established by neutron diffraction at 2.5 K.\(^{[5]}\) Note that in previous reports a possible C-AFM state in the temperature range 17 K \(\leq T \leq 19\) K was not discussed. To our knowledge no neutron data for the magnetic co-
The critical magnetic field H_{cr} at which the Eu magnetic ordering is saturated was determined for different temperatures, and the extrapolated zero-temperature values were found to be: $\mu_0 H_{cr,\perp}(0) \approx 0.43$ T and $\mu_0 H_{cr,\parallel}(0) \approx 0.58$ T for $H \perp c$ and $H \parallel c$, respectively. These values of $\mu_0 H_{cr}$ are much smaller than those obtained for the parent compound. Moreover, the magnetic anisotropy $\gamma_{cr} = H_{cr,\parallel}(0)/H_{cr,\perp}(0) \approx 1.35$ of Co-doped EuFe$_{1.8}$Co$_{0.2}$As$_2$ is also smaller than $\gamma_{cr} \approx 1.76$ of the parent compound.

It was concluded from different experiments21,27,29,31 that there is a strong coupling between the localized Eu$^{2+}$ spins and the conduction electrons of the two-dimensional (2D) Fe$_2$As$_2$ layers. Recently, direct experimental evidence for a strong interlayer coupling was obtained by means of 75As NMR31, revealing a magnetic exchange interaction between the localized Eu 4f moments which is mediated by the itinerant Fe 3d electrons. How-
ever, the direct interaction of the Eu moments and the magnetic moments in Fe sublattice cannot be neglected. Only a combination of both interactions can further elucidate the C-AFM ground state observed in the parent compound EuFe$_2$As$_2$ as well as in the Co-doped system EuFe$_{1.8}$Co$_{0.2}$As$_2$ (see Fig. 11).

Note that the present results for EuFe$_{1.8}$Co$_{0.2}$As$_2$, exhibiting a SDW ground state below 60 K,30 reveal a C-AFM structure of the Eu spins with a FM component in the ab-plane. This finding confirms previous assumptions that for materials in which the Fe ions are in the SDW ground state (such as EuFe$_2$As$_2$) the direction of the Eu magnetic moments is in the ab-plane.32 On the other hand, in the case of non-magnetic Fe ground states, like in superconducting EuFe$_{2-x}$Co$_x$As$_2$ compounds, where the SDW magnetic state is totally suppressed, the direction of the Eu magnetic moments is parallel to the c-axis.$^{33, 35}$

V. CONCLUSIONS

The magnetic properties of single crystals of EuFe$_2$As$_2$ and EuFe$_{1.8}$Co$_{0.2}$As$_2$ were studied by means of susceptibility, magnetization, and magnetic torque investigations. The susceptibility and magnetization experiments performed for various temperatures and magnetic fields along the crystallographic axes provided information on the magnetic structure of the studied crystals. In addition, the evolution of the magnetic structure as a function of the tilting angle of the field and the crystallographic axes is studied by magnetic torque experiments. The phase diagrams for the ordering of the Eu$^{2+}$ magnetic sublattice with respect to temperature, magnetic field and the angle between the magnetic field and the crystallographic c-axis in EuFe$_{2-x}$Co$_x$As$_2$ are determined and discussed. The present investigations reveal a complex and sophisticated interplay of magnetic phases in EuFe$_{2-x}$Co$_x$As$_2$. The magnetic ordering temperature of the Eu$^{2+}$ moments remains nearly unchanged upon Co-doping. However, unlike the parent compound, in which the Eu$^{2+}$ moments order antiferromagnetically at low temperatures, the Co-doped system EuFe$_{1.8}$Co$_{0.2}$As$_2$ exhibits a C-AFM state with a FM component in the ab-plane. The magnetic anisotropy γ_{ct} becomes smaller as a result of Co-doping. This implies that the magnetic configuration of the Eu moments is strongly influenced by the magnetic moments of the Fe sublattice, where superconductivity takes place for a certain range of Co-doping. A detailed knowledge of the interplay between the Eu$^{2+}$ moments and magnetism of the Fe sublattice is important to understand the role of magnetism of the localized Eu$^{2+}$ moments for the occurrence of superconductivity in EuFe$_{2-x}$Co$_x$As$_2$.

VI. ACKNOWLEDGMENTS

This work was supported by the Swiss National Science Foundation, the SCOPES grant No. IZ73Z0_128242, the NCCR Project MaNEP, the EU Project CoMePhS, and the Georgian National Science Foundation grant GNSF/ST08/4-416.

* Electronic address: zurabgug@physik.uzh.ch

1. Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am. Chem. Soc. 130, 3296 (2008).

2. X.H. Chen, T. Wu, G. Wu, R.H. Liu, H. Chen, and D.F. Fang, Nature (London) 453, 761 (2008).

3. M. Rotter, M. Tegel, and D. Johrendt, Phys. Rev. Lett. 101, 107006 (2008).

4. F.-C. Hsu, J.-Y. Luo, K.-W. Yeh, T.-K. Chen, T.-W. Huang, P. M. Wu, Y.-C. Lee, Y.-L. Huang, Y.-Y. Chu, D.-C. Yan, and M.-K. Wu, Proc. Natl. Acad. Sci. USA 105, 14263 (2008).

5. Y. Xiao, Y. Su, M. Meven, R. Mittal, C.M.N. Kumar, T. Chatterji, S. Price, J. Persson, N. Kumar, S.K. Dhar, A. Thamizhavel, and Th. Brueckel, Phys. Rev. B 80, 174424 (2009).

6. M.S. Torikachvili, S.L. Bud’ko, N. Ni, and P.C. Canfield, Phys. Rev. Lett. 101, 057006 (2008).

7. Liling Sun, Jing Guo, Genfu Chen, Xianhui Chen, Xiaoli Dong, Wei Lu, Chao Zhang, Zheng Jiang, Yang Zou, Luo Zhang, Yuying Huang, Qi Wu, Xi Dai, Yuanchun Li, Jing Liu, and Zhongxian Zhao, Phys. Rev. B 82, 134509 (2010).

8. H. Lee, E. Park, T. Park, V.A. Sidorov, F. Ronning, E.D. Bauer, and J.D. Thompson, Phys. Rev. B 80, 024519 (2009).

9. P.L. Alireza, Y.T.C. Ko, J. Gillett, G.G. Lonzarich, and S.E. Sebastian, J. Phys.: Condens. Matter 21, 012209 (2009).

10. K. Igawa, H. Okada, H. Takahahsi, S. Matsuishi, Y. Kamihara, M. Hirano, H. Hosono, K. Matsuhasi, and Y. Uwatoko, J. Phys. Soc. Jpn. 78, 025001 (2009).

11. H. Fukazawa, N. Takeshita, T. Yamazaki, K. Kondo, K. Hirayama, Y. Kohori, K. Miyazawa, H. Kito, H. Eisaki, and A. Iyo, J. Phys. Soc. Jpn. 77, 105004 (2008).

12. W.J. Duncan, O.P. Welzel, C. Harrison, X.F. Wang, X.H. Chen, F.M. Grosche, and P.G. Niklowite, J. Phys.: Condens. Matter 22, 052201 (2010).

13. A. Mani, N. Ghosh, S. Pauraj, A. Bharathi, and C.S. Sundar, Europhys. Lett. 87, 17004 (2009).

14. T. Terasima, M. Kimata, H. Satsukawa, A. Harada, K. Hazama, S. Uji, H.S. Suzuki, T. Matsumoto, and K. Murata, J. Phys. Soc. Jpn. 78, 083701 (2009).

15. C.F. Miclea, M. Nicklas, H.S. Jeevan, D. Kasinathan, Z. Hossain, H. Rosner, P. Gegenwart, C. Geibel, and F. Steglich, Phys. Rev. B 79, 212509 (2009).

16. Z.A. Ren, W. Lu, J. Yang, W. Yi, X.L. Shen, Z.C. Li, G.C. Che, X.L. Dong, L.L. Sun, F. Zhou, and Z.X. Zhao, Chin. Phys. Lett. 25, 2215 (2008).

17. S. Matsuishi, Y. Inoue, T. Nomura, M. Hirano, and
H. Hosono, J. Phys. Soc. Jpn. 77, 113709 (2008).

18 J. Zhao, Q. Huang, C. de la Cruz, S. Li, J.W. Lynn, Y. Chen, M.A. Green, G.F. Chen, G. Li, Z. Li, J.L. Luo, N.L. Wang, and P. Dai, Nature Materials 7, 953 (2008).

19 H. Raffius, M. Mörsen, B.D. Mosel, W. Müller-Warmuth, W. Jeitschko, L. Terbuth, and T. Vomhof, J. Phys. Chem. Solids 54, 135 (1993).

20 Z. Ren, Z.W. Zhu, S. Jiang, X.F. Xu, Q. Tao, C. Wang, C.M. Feng, G.H. Cao, and Z.A. Xu, Phys. Rev. B 78, 052501 (2008).

21 S. Jiang, Y.K. Luo, Z. Ren, Z.W. Zhu, C. Wang, X.F. Xu, Q. Tao, G.H. Cao, and Z.A. Xu, New J. Phys. 11, 025007 (2009).

22 S. Blundell, Magnetism in Condensed Matter (New York: Oxford University Press, 2006).

23 Y. Xiao, Y. Su, W. Schmidt, K. Schmalzl, C.M.N. Kumar, S. Price, T. Chatterji, R. Mittal, L.J. Chang, S. Nandi, N. Kumar, S.K. Dhar, A. Thamizhavel, and Th. Brueckel, Phys. Rev. B 81, 220406 (2010).

24 Shuai Jiang, Hui Xing, Guofang Xuan, Zhi Ren, Cao Wang, Zhu-an Xu, and Guanghan Cao, Phys. Rev. B 80, 184514 (2009).

25 Y. He, T. Wu, G. Wu, Q.J. Zheng, Y.Z. Liu, H. Chen, J.J. Ying, R.H. Liu, X.F. Wang, Y.L. Xie, Y.J. Yan, J.K. Dong, S.Y. Li, and X.H. Chen, J. Phys.: Condens. Matter 22, 235701 (2010).

26 H.S. Jeevan, Deepa Kasinathan, H. Rosner, and P. Gegenwart, Phys. Rev. B 83, 054511 (2011).

27 Zhi Ren, Xiao Lin, Qian Tao, Shuai Jiang, Zengwei Zhu, Cao Wang, Guanghan Cao, and Zhu’an Xu, Phys. Rev. B 79, 094426 (2009).

28 L.J. Li, Y.K. Luo, Q.B. Wang, H. Chen, Z. Ren, Q. Tao, Y.K. Li, X. Lin, M. He, Z.W. Zhu, G.H. Cao, and Z.A. Xu, New J. Phys. 11, 025008 (2009).

29 E. Dengler, J. Deisenhofer, H.A. Krug von Nidda, So- unghyun Khim, J.S. Kim, Kee Hoon Kim, F. Casper, C. Felser, and A. Loidl, Phys. Rev. B 81, 024406 (2010).

30 J.J. Ying, T. Wu, Q.J. Zheng, Y. He, G. Wu, Q.J. Li, Y.J. Yan, Y.L. Xie, R.H. Liu, X.F. Wang, and X.H. Chen, Phys. Rev. B 81, 052503 (2010).

31 Z. Guguchia, J. Roos, A. Shengelaya, S. Katrych, Z. Bukowski, S. Weyeneth, F. Murányi, S. Strässle, A. Maisuradze, J. Karpinski, and H. Keller, Phys. Rev. B 83, 144516 (2011).

32 I. Nowik and I. Felner, Hyperfine Interact. 28, 959 (1986).

33 I. Nowik and I. Felner, Physica C 469, 485 (2009).

34 C. Feng, Z. Ren, S. Xu, S. Jiang, Z. Xu, G. Cao, I. Nowik, I. Felner, K. Matsubayashi, and Y. Uwatoko, Phys. Rev. B 82, 094426 (2010).

35 I. Nowik, I. Felner, Z. Ren, G.H. Cao, and Z.A. Xu, J. Phys.: Condens. Matter 23, 065701 (2011).

36 I. Nowik, I. Felner, Z. Ren, G.H. Cao, and Z.A. Xu, New J. Phys. 13, 023033 (2011).

37 S. Kohout, J. Roos, and H. Keller, Rev. Sci. Instrum. 78, 013903 (2007).

38 J.L. Luo, N.L. Wang, G.T. Liu, D. Wu, X.N. Jing, F. Hu, and T. Xiang, Phys. Rev. Lett. 93, 187203 (2004).

39 R.S. Perry, L.M. Galvin, S.A. Grigera, L. Capogna, A.J. Schofield, A.P. Mackenzie, M. Chiao, S.R. Julian, S.I. Ikeda, S. Nakatsuji, Y. Maeno, and C. Pfleiderer, Phys. Rev. Lett. 86, 2661 (2001).

40 T. Kimura and Y. Tokura, Ann. Rev. Mater. Sci. 30, 451 (2000).

41 S. Weyeneth, P.J.W. Moll, R. Puzniak, K. Ninios, F.F. Balakirev, R.D. McDonald, H.B. Chan, N.D. Zhigadlo, S. Katrych, Z. Bukowski, J. Karpinski, H. Keller, B. Batlogg, and L. Balicas, Phys. Rev. B 83, 134503 (2011).

42 H. Tanaka, T. Kato, K. Iio, and K. Nagata, J. Phys. Soc. Jap. 61, 3292 (1992).

43 T. Sasaki, H. Uozaki, S. Endo, and N. Toyota, Synth. Metals 120, 759 (2001).

44 V. L. Ginzburg and L. D. Landau, Zh. Eksp. Teor. Fiz. 20, 1064 (1950).