COVARIANT LIE DERIVATIVES AND FRÖLICHER-NIJENHUIS BRACKET ON LIE ALGEBROIDS

ANTONIO DE NICOLA AND IVAN YUDIN

ABSTRACT: We define covariant Lie derivatives acting on vector-valued forms on Lie algebroids and study their properties. This allows us to obtain a concise formula for the Frölicher-Nijenhuis bracket on Lie algebroids.

AMS Subject Classification (2000): Primary 53C25, 53D35.

1. Introduction

The Frölicher-Nijenhuis calculus was developed in the seminal article [2] and extended to Lie algebroids in [10]. It has proven to be an indispensable tool of Differential Geometry. Indeed, different kinds of curvatures and obstructions to integrability are computed by the Frölicher-Nijenhuis bracket. For example, if \(J : TM \to TM \) is an almost-complex structure, then \(J \) is complex structure if and only if the Nijenhuis tensor \(N_J = \frac{1}{2} [J, J]_{FN} \) vanishes (this is the celebrated Newlander-Nirenberg theorem [9]). If \(F : TM \to TM \) is a fibrewise diagonalizable endomorphism with real eigenvalues and of constant multiplicity, then the eigenspaces of \(F \) are integrable if and only if \([F, F]_{FN} = 0 \) (see [4]). Further, if \(P : TE \to TE \) is a projection operator on the tangent spaces of a fibre bundle \(E \to B \), then \([P, P]_{FN} \) is a version of the Riemann curvature (see [5], page 78). Finally, given a Lie algebroid \(\mathcal{A} \) and \(N \in \Gamma(\mathcal{A}^* \otimes \mathcal{A}) \) such that \([N, N]_{FN} = 0 \), one can construct a new (deformed) Lie algebroid \(\mathcal{A}_N \) (cf. [3, 6]). Moreover, Frölicher-Nijenhuis calculus is useful in geometric mechanics where it allows to give an intrinsic formulation of Euler-Lagrange equations. In this field, Lie algebroids have also been shown to be a useful tool to deal with systems with some kinds of symmetries.

In [8], P. Michor obtained a short expression for the Frölicher-Nijenhuis bracket on manifolds in terms of the covariant Lie derivatives. A formula for the Frölicher-Nijenhuis bracket on Lie algebroids in supergeometric language was obtained by P. Antunes in [1]. In this paper we define some operators relevant for Frölicher-Nijenhuis calculus in the setting of Lie algebroids, including the covariant Lie derivative, and study their properties. In this way
we are able to extend Michor’s formula for Frölicher-Nijenhuis bracket to Lie algebroids.

2. Covariant Lie derivative on Lie algebroids

Let $(\mathcal{A}, [\cdot , \cdot], \rho)$ be a Lie algebroid over a manifold M, and E a vector bundle over M. We write $\Omega^k(\mathcal{A}, E) = \Gamma(\wedge^k \mathcal{A}^* \otimes E)$ for the space of skew-symmetric E-valued k-forms on \mathcal{A}. If $E = M \times \mathbb{R}$ is the trivial line bundle over M, we denote $\Omega^k(\mathcal{A}, E)$ by $\Omega^k(\mathcal{A})$.

We write Σ_m for the permutation group on $\{1, \ldots, m\}$. For k and s such that $k + s = m$, we denote by $\text{Sh}_{k,s}$ the subset of (k, s)-shuffles in Σ_m. Thus $\sigma \in \text{Sh}_{k,s}$ if and only if

$$\sigma(1) < \sigma(2) < \cdots < \sigma(k), \quad \sigma(k + 1) < \cdots < \sigma(k + s).$$

Similarly, for a triple (k, l, s), such that $k + l + s = m$, we denote by $\text{Sh}_{k,l,s}$ the subset of (k, l, s)-shuffles in Σ_m, that is the set of permutations σ, such that

$$\sigma(1) < \sigma(2) < \cdots < \sigma(k), \quad \sigma(k + 1) < \cdots < \sigma(k + l),$$

$$\sigma(k + l + 1) < \cdots < \sigma(k + l + s).$$

For a k-form $\omega \in \Omega^k(\mathcal{A})$ and $\phi \in \Omega^p(\mathcal{A}, E)$, we define the form $\omega \wedge \phi \in \Omega^{k+p}(\mathcal{A}, E)$ by

$$(\omega \wedge \phi)(Z_1, \ldots, Z_{p+k}) = \sum_{\sigma \in \text{Sh}_{k,p}} (-1)^{\sigma} \omega(Z_{\sigma(1)}, \ldots, Z_{\sigma(k)}) \phi(Z_{\sigma(k+1)}, \ldots, Z_{\sigma(k+p)}).$$

Here and everywhere in this paper Z_1, \ldots, Z_{p+k} denote arbitrary sections of the Lie algebroid \mathcal{A}. If $E = M \times \mathbb{R}$ is the trivial line bundle over M, we denote \wedge by \wedge, and $\Omega^*(\mathcal{A})$ becomes a commutative graded algebra with the multiplication given by \wedge. Further, note that $\Omega^*(\mathcal{A}, E)$ is an $\Omega^*(\mathcal{A})$-module with the action given by \wedge. For any $\omega \in \Omega^k(\mathcal{A})$ we define the operator ϵ_ω on $\Omega^*(\mathcal{A}, E)$ by

$$\epsilon_\omega : \Omega^*(\mathcal{A}, E) \rightarrow \Omega^{*+k}(\mathcal{A}, E)$$

$$\phi \mapsto \omega \wedge \phi$$

Sometimes, given a operator A we will use $\omega \wedge A$ as an alternative notation for $\epsilon_\omega A$.
Let $\phi \in \Omega^p(\mathcal{A}, \mathcal{A})$. For any vector bundle E over M, we define the operator i_ϕ on $\Omega^*(\mathcal{A}, E)$ by

$$(i_\phi \psi) (Z_1, \ldots, Z_{p+k}) = \sum_{\sigma \in \text{Sh}_{p,k}} (-1)^\sigma \psi \left(\phi(Z_{\sigma(1)}, \ldots, Z_{\sigma(p)}), Z_{\sigma(p+1)}, \ldots, Z_{\sigma(p+k)} \right)$$

where $\psi \in \Omega^{k+1}(\mathcal{A}, E)$.

We say that $\nabla : \Gamma(\mathcal{A}) \times \Gamma(E) \to \Gamma(E)$ is an \mathcal{A}-connection on E (see [7]) if

1) ∇_X is an \mathbb{R}-linear endomorphism of $\Gamma(E)$;
2) ∇s is a $\mathcal{C}^\infty(M)$-linear map from $\Gamma(\mathcal{A})$ to $\Gamma(E)$;
3) $\nabla_X(fs) = (\rho(X)f)s + f\nabla_X s$ for any $f \in \mathcal{C}^\infty(M)$, $X \in \Gamma(\mathcal{A})$, and $s \in \Gamma(E)$.

The curvature of an \mathcal{A}-connection ∇ is defined by

$$R(X, Y)s := \nabla_X \nabla_Y s - \nabla_Y \nabla_X s - \nabla_{[X, Y]}s.$$

It is easy to check that R is tensorial and skew-symmetric in the first two arguments, thus we can consider R as an element of $\Omega^2(\mathcal{A}, \text{End}(E))$, where $\text{End}(E)$ is the endomorphism bundle of E.

Given an \mathcal{A}-connection on a vector bundle E, we define the covariant exterior derivative on $\Omega^*(\mathcal{A}, E)$ by

$$(d^\nabla \phi)(Z_1, \ldots, Z_{p+1}) = \sum_{\sigma \in \text{Sh}_{1,p}} (-1)^\sigma \nabla^E_{Z_{\sigma(1)}} \left(\phi(Z_{\sigma(2)}, \ldots, Z_{\sigma(p+1)}) \right)$$

$$- \sum_{\sigma \in \text{Sh}_{2,p-1}} (-1)^\sigma \phi \left([Z_{\sigma(1)}, Z_{\sigma(2)}], Z_{\sigma(3)}, \ldots, Z_{\sigma(p+1)} \right).$$

Note that d^∇ is related to the curvature R of ∇^E by the formula

$$((d^\nabla)^2 \phi)(Z_1, \ldots, Z_{p+2}) = \sum_{\sigma \in \text{Sh}_{2,p}} (-1)^\sigma R(Z_{\sigma(1)}, Z_{\sigma(2)}) \left(\phi(Z_{\sigma(3)}, \ldots, Z_{\sigma(p+2)}) \right).$$

Definition 1. A derivation of degree k on $\Omega^*(\mathcal{A}, E)$ is a linear map $D : \Omega^*(\mathcal{A}, E) \to \Omega^{*-1+k}(\mathcal{A}, E)$ such that

$$D(\omega \wedge \phi) = \overline{D}(\omega) \wedge \phi + (-1)^kp \omega \wedge D(\phi)$$

for all $\omega \in \Omega^p(\mathcal{A})$ and $\phi \in \Omega^*(\mathcal{A}, E)$, where $\overline{D} : \Omega^*(\mathcal{A}) \to \Omega^*(\mathcal{A})$ is some map.
For any derivation D on $\Omega^*(\mathcal{A}, E)$ and $\alpha \in \Omega^*(\mathcal{A})$, we have

$$[D, \epsilon_\alpha] = \epsilon_{D\alpha}.$$

In particular, the map D is unique for a given derivation D on $\Omega^*(\mathcal{A}, E)$. Let $\omega_1 \in \Omega^{p_1}(\mathcal{A}), \omega_2 \in \Omega^{p_2}(\mathcal{A})$. From the following computation

$$D((\omega_1 \wedge \omega_2) \triangledown \phi) = D(\omega_1 \wedge \omega_2) \triangledown \phi + (-1)^{k(p_1+p_2)} \omega_1 \wedge \omega_2 \triangledown D(\phi)$$

$$D(\omega_1 \triangledown (\omega_2 \triangledown \phi)) = D(\omega_1) \wedge \omega_2 \triangledown \phi + (-1)^{k_1} \omega_1 \triangledown D(\omega_2 \triangledown \phi)$$

one can see that $\triangledown D$ is a derivation on $\Omega^*(\mathcal{A})$.

It is easy to check that for any given $\phi \in \Omega^k(\mathcal{A}, \mathcal{A})$, i_ϕ is a derivation of degree $k - 1$, and d^\triangledown is a derivation of degree 1 on $\Omega^*(\mathcal{A}, E)$. The **covariant Lie derivative** $\mathcal{L}_\phi^\triangledown$ is defined as the **graded commutator** $[i_\phi, d^\triangledown] = i_\phi d^\triangledown + (-1)^k d^\triangledown i_\phi$. The graded commutator of two derivations of degree k and l is a derivation of degree $k + l$. In particular, $\mathcal{L}_\phi^\triangledown$ is a derivation of degree k for any $\phi \in \Omega^k(\mathcal{A}, \mathcal{A})$.

Suppose we have an \mathcal{A}-connection \triangledown on \mathcal{A}. We will say that \triangledown is torsion-free if $\triangledown_X Y - \triangledown_Y X = [X, Y]$ for all $X, Y \in \Gamma(\mathcal{A})$. On every algebroid $(\mathcal{A}, \{\, , \, \}, \rho)$, there exists a torsion-free \mathcal{A}-connection. Namely, one can take an arbitrary bundle metric on \mathcal{A} and the associated Levi-Civita connection on \mathcal{A}. Given \mathcal{A}-connections $\triangledown^\mathcal{A}$ on \mathcal{A} and \triangledown^E on E, we define $\triangledown_X s \in \Omega^p(\mathcal{A}, E)$ for every $s \in \Omega^p(\mathcal{A}, E)$ by

$$(\triangledown_X s)(Z_1, \ldots, Z_p) := \triangledown^E_X(s(Z_1, \ldots, Z_p)) - \sum_{i=1}^p s(Z_1, \ldots, \triangledown^A_X Z_i, \ldots, Z_p).$$

It is easy to check that for any $s \in \Omega^k(\mathcal{A}, E)$, $X \in \Gamma(\mathcal{A})$, and a torsion-free \mathcal{A}-connection on \mathcal{A}, we have $\mathcal{L}_X^\mathcal{A} s = \triangledown_X s + i_{\triangledown_X s}$ and $\triangledown X = d^\triangledown X$. In other words $\triangledown_X = \mathcal{L}_X^\mathcal{A} - i_{d^\triangledown X}$. Motivated by this relation, we define for $\phi \in \Omega^p(\mathcal{A}, \mathcal{A})$ an operator \triangledown_ϕ on $\Omega^*(\mathcal{A}, E)$ by

$$\triangledown_\phi := \mathcal{L}_\phi^\mathcal{A} - (-1)^p i_{d^\triangledown \phi}. \quad (2)$$

Note that \triangledown_ϕ depends on two connections: an \mathcal{A}-connection on E and a torsion-free \mathcal{A}-connection on \mathcal{A}. Since \triangledown_ϕ is a linear combination of two derivations of degree p, we see that \triangledown_ϕ is a derivation of degree p. The following proposition shows that for $s \in \Omega^*(\mathcal{A}, E)$ the map $\triangledown s : \Omega^*(\mathcal{A}, \mathcal{A}) \to \Omega^* (\mathcal{A}, E)$ is a homomorphism of $\Omega^*(\mathcal{A})$-modules.
Proposition 2. For any $\omega \in \Omega^p(A), \phi \in \Omega^k(A,A)$, and $s \in \Omega^*(A,E)$, we have

$$\nabla_{\omega \wedge \phi} s = (\omega \wedge \nabla \phi) s = \epsilon_\omega \nabla \phi s = \omega \nabla(\nabla \phi s).$$

Proof: The equation

$$L_{\omega \wedge \phi} = \nabla_{\omega \wedge \phi} s = (\omega \wedge \nabla \phi) s = \epsilon_\omega \nabla \phi s = \omega \wedge (\nabla \phi s)$$

implies that $\omega \wedge L_{\nabla \phi} = L_{\omega \wedge \phi} - (\nabla - 1)^{k+p} \omega \wedge \nabla \phi$. Now we have

$$\omega \wedge (\nabla \phi) = \omega \wedge L_{\nabla \phi} - (\nabla - 1)^{p+k} \omega \wedge \nabla \phi$$

Thus $[\nabla \phi, i_\psi] = i_{\nabla \phi \psi} - (\nabla - 1)^{k(l-1)} \nabla i_{\phi \psi}$. (3)

Theorem 3. Let ∇ be a torsion-free A-connection on A and ∇^E be an A-connection on a vector bundle E. For $\phi \in \Omega^k(A,A)$ and $\psi \in \Omega^l(A,A)$ we have on $\Omega^*(A,E)$

$$[\nabla \phi, i_\psi] = i_{\nabla \phi \psi} - (\nabla - 1)^{k(l-1)} \nabla i_{\phi \psi}.$$ (4)

Proof: First we check the claim for $\phi = X \in \Gamma(A)$ and $\psi = Y \in \Gamma(A)$. Let $s \in \Omega^{p+1}(A,E)$. We get

$$(\nabla_X i_Y s)(Z_1, \ldots, Z_p) = \nabla^E_X (s(Y, Z_1, \ldots, Z_p)) - \sum_{t=1}^p s(Y, Z_1, \ldots, \nabla_X Z_t, \ldots, Z_p)$$

$$= (\nabla_X s)(Y, Z_1, \ldots, Z_p) + \epsilon s(\nabla_X Y, Z_1, \ldots, Z_p)$$

$$= (i_Y \nabla_X s)(Z_1, \ldots, Z_p) + (i_{\nabla_X Y} s)(Z_1, \ldots, Z_p).$$

Thus $[\nabla_X, i_Y] = i_{\nabla_X Y}$. Since (4) is additive in ϕ and ψ, it is enough to prove it for $\phi = \alpha A, \psi = \beta A$, where $\alpha \in \Omega^k(A)$, $\beta \in \Omega^l(A)$, and $X, Y \in \Gamma(A)$.
Repeatedly using Proposition 2 and \([\nabla_X, i_Y] = i_Y \nabla_X\), we get
\[
[\nabla_{\alpha \pi X}, i_{\beta \pi Y}] = [\alpha \wedge \nabla_X, \beta \wedge i_Y] = [\epsilon_\alpha, \beta \wedge i_Y] \nabla_X + \epsilon_\alpha [\nabla_X, \beta \wedge i_Y] \\
= (-1)^{kl} \epsilon_\beta [\epsilon_\alpha, i_Y] \nabla_X + \epsilon_\alpha [\nabla_X, \epsilon_\beta] i_Y + \epsilon_\alpha \epsilon_\beta [\nabla_X, i_Y] \\
= (-1)^{kl-1} \epsilon_\beta \epsilon_\alpha i_Y \nabla_X + \epsilon_\alpha \epsilon_\beta \nabla_X i_Y + \epsilon_\alpha \epsilon_\beta i_Y \nabla_X \\
= i_\alpha \nabla_X \beta \pi Y + \alpha \wedge \beta \pi_X \nabla_X Y + (-1)^{(k-1)l} \nabla_{\beta \wedge i_Y \alpha \pi X} \\
= i_\alpha \nabla_X (\beta \pi Y) + (-1)^{(k-1)l} \nabla_{\beta \wedge i_Y \alpha \pi X} \\
= i_\alpha \nabla_X (\beta \pi Y) + (-1)^{(k-1)l} \nabla_{i_\beta \pi Y \alpha \pi X}.
\]

To formulate the next result, we extend the definition of \(R\) by defining for any \(\phi \in \Omega^k(A, A)\) and \(\psi \in \Omega^l(A, A)\) the form \(R(\phi, \psi) \in \Omega^{k+l+1}(A, A)\) as follows
\[
R(\phi, \psi)(Y_1, \ldots, Y_{k+l+1}) = \\
= \sum_{\sigma \in \text{Sh}_{k,l,1}} R(\phi(Y_{\sigma(1)}, \ldots, Y_{\sigma(p)}), \psi(Y_{\sigma(p+1)}, \ldots, Y_{\sigma(p+q)})) Y_{\sigma(p+q+1)}.
\]

Theorem 4. Let \(\nabla\) be a torsion-free \(A\)-connection on \(A\) and \(\nabla^E\) a flat \(A\)-connection on a vector bundle \(E\) over \(M\) (i.e. \(\nabla^E\) is a representation of \(A\)). Then for any \(\phi \in \Omega^k(A, A), \psi \in \Omega^l(A, A)\), we have the following equality on \(\Omega^*(A, E)\)
\[
[\nabla_\phi, \nabla_\psi] = \nabla_{\nabla_\phi \psi} - (-1)^{kl} \nabla_{\psi \phi} - i_{R(\phi, \psi)}.
\]

Proof: First we prove (5) for \(\phi = X, \psi = Y \in \Gamma(A)\). For \(s \in \Omega^p(A)\), we get
\[
(\nabla_X \nabla_Y s)(Z_1, \ldots, Z_p) = \nabla_X^E(\nabla_Y^E s(Z_1, \ldots, Z_p)) - \sum_{s=1}^p \nabla_Y^E s(Z_1, \ldots, \nabla_X Z_s, \ldots, Z_p) \\
= \nabla_X^E \nabla_Y^E (s(Z_1, \ldots, Z_p)) - \sum_{s=1}^p \nabla_X^E (s(Z_1, \ldots, \nabla_Y Z_s, \ldots, Z_p)) \\
- \sum_{s=1}^p \nabla_Y^E (s(Z_1, \ldots, \nabla_X Z_s, \ldots, Z_p)) + \sum_{s=1}^p s(Z_1, \ldots, \nabla_Y \nabla_X Z_s, \ldots, Z_p) \\
+ \sum_{s \neq t} s(Z_1, \ldots, \nabla_Y Z_t, \ldots, \nabla_X Z_s, \ldots, Z_p).
\]
By anti-symmetrization of the above formula in \(X \) and \(Y \) and using that \(\nabla^E \) is flat, we get

\[
[\nabla_X, \nabla_Y] s(Z_1, \ldots, Z_p) = \nabla^E_{[X,Y]}(s(Z_1, \ldots, Z_p)) - \sum_{s=1}^{p} s(Z_1, \ldots, [\nabla_X, \nabla_Y] Z_s, \ldots, Z_p).
\]

Further

\[
(\nabla_{\nabla_X Y} - \nabla_{\nabla_Y X}) s(Z_1, \ldots, Z_p) = \nabla^E_{\nabla_X Y - \nabla_{\nabla_Y X}}(s(Z_1, \ldots, Z_p))
- \sum_{s=1}^{p} s(Z_1, \ldots, (\nabla_{\nabla_X Y} - \nabla_{\nabla_Y X}) Z_s, \ldots, Z_p).
\]

Taking the difference of the last two formulas and using the definition of \(R \) and that \(\nabla \) torsion-free, we have

\[
(([\nabla_X, \nabla_Y] - \nabla_{\nabla_X Y} + \nabla_{\nabla_Y X}) s)(Z_1, \ldots, Z_p) = (-iR(X,Y)s)(Z_1, \ldots, Z_p).
\]

Since (5) is additive in \(\phi \) and \(\psi \), it is enough to prove it for \(\phi = \alpha \wedge X \) and \(\psi = \beta \wedge Y \), where \(\alpha \in \Omega^k(A) \), \(\beta \in \Omega^l(A) \), and \(X, Y \in \Gamma(A) \). Using the already proved case and Proposition 2, we get

\[
[\nabla_{\alpha \wedge X}, \nabla_{\beta \wedge Y}] = [\alpha \wedge \nabla_X, \beta \wedge \nabla_Y] = [\epsilon_{\alpha}, \beta \wedge \nabla_Y] \nabla_X + \epsilon_{\alpha}[\nabla_X, \beta \wedge \nabla_Y]
= (-1)^{kl} \epsilon_{\beta}[\epsilon_{\alpha}, \nabla_Y] \nabla_X + \epsilon_{\alpha}[\nabla_X, \epsilon_{\beta}] \nabla_Y + \epsilon_{\alpha} \epsilon_{\beta}[\nabla_X, \nabla_Y]
= -(-1)^{kl} \epsilon_{\beta} \epsilon_{\nabla_Y} \alpha \wedge \nabla_X + \epsilon_{\alpha} \epsilon_{\nabla_X} \beta \wedge \nabla_Y + \epsilon_{\alpha} \epsilon_{\beta}(\nabla_{\nabla_X Y} - \nabla_{\nabla_Y X} - iR(X,Y)).
\]

Repeatedly using Proposition 2, we see that \([\nabla_{\alpha \wedge X}, \nabla_{\beta \wedge Y}]\) can be written as \(\nabla_{\theta} + i\tau \), where

\[
\theta = -(-1)^{kl} \beta \wedge \nabla_Y \alpha \wedge X + \alpha \wedge \nabla_X \beta \wedge Y + \alpha \wedge \beta \wedge \nabla_X Y - \alpha \wedge \beta \wedge \nabla_Y X
= \alpha \wedge \nabla_X (\beta \wedge Y) - (-1)^{kl} (\beta \wedge \nabla_Y (\alpha \wedge X)) = \nabla_{\phi} \psi - (-1)^{kl} \nabla_{\psi} \phi
\]
and

\[
\tau = -\alpha \wedge \beta \wedge R(X, Y) = -R(\alpha \wedge X, \beta \wedge Y) = -R(\phi, \psi).
\]

This finishes the proof. \(\blacksquare \)

Note that the connection \(\nabla^\rho_X f := \rho(X)f \) defined on the trivial line bundle \(M \times \mathbb{R} \to M \) is obviously flat. Thus (5) holds on \(\Omega^*(A) \), if \(\nabla \) is defined via \(\nabla^\rho \) and any torsion-free connection on \(A \).
3. The Frölicher-Nijenhuis bracket on Lie algebroids

In [10], Nijenhuis defined the Frölicher-Nijenhuis bracket on Lie algebroids of \(\phi \in \Omega^k(A, A) \) and \(\psi \in \Omega^l(A, A) \) by an equality of operators on \(\Omega^*(A) \) equivalent to

\[
[L^\nabla_{\phi}, i_\psi] = i_{[\phi, \psi]_{FN}} - (-1)^{k(l-1)}L^\nabla_{i_{\psi}\phi}.
\]

(6)

He also obtained a formula for computing \([\phi, \psi]_{FN} \). In the next theorem we give an alternative formula using the covariant Lie derivatives, which extends the one obtained in [8] to the Lie algebroids setting.

Theorem 5. Let \(\phi \in \Omega^k(A, A) \) and \(\psi \in \Omega^l(A, A) \). Suppose \(\nabla \) be a torsion-free \(A \)-connection on \(A \). Then

\[
[\phi, \psi]_{FN} = L^\nabla_{\phi} \psi - (-1)^{kl}L^\nabla_{\psi} \phi.
\]

Proof: By (2) we have

\[
[L^\nabla_{\phi}, i_\psi] = [\nabla_\phi + (-1)^k i_{d\nabla_\phi}, i_\psi] = [\nabla_\phi, i_\psi] + (-1)^k [i_{d\nabla_\phi}, i_\psi].
\]

Hence, using (3) and (4) we get

\[
[L^\nabla_{\phi}, i_\psi] = i_{\nabla_\phi \psi} - (-1)^{k(l-1)}\nabla_{i_{\phi}\psi} + (-1)^k i_{d\nabla_\phi \psi} - (-1)^{kl} i_{i_{\psi}d\nabla_\phi}.
\]

Next, using (2) in the second summand we have

\[
[L^\nabla_{\phi}, i_\psi] = -(-1)^{k(l-1)} \left(L^\nabla_{i_{\phi}\psi} - (-1)^{k+l-1} i_{d\nabla_{i_{\phi}\psi}}\right) + i_{\nabla_{i_{\phi}} \psi} + (-1)^k i_{i_{d\nabla_\phi} \psi} - (-1)^{kl} i_{i_{\psi}d\nabla_\phi}.
\]

Notice that the subscripts of \(L^\nabla \) in (6) and in the above formula are the same. Hence, due to the injectivity of \(\phi \mapsto i_\phi \), we get by comparing the subscripts of \(i \) that

\[
[\phi, \psi]_{FN} = (-1)^{k(l-1)}(-1)^{k+l-1}d\nabla_{i_{\phi}\psi} + \nabla_{i_{\phi}} \psi + (-1)^k i_{d\nabla_\phi} \psi - (-1)^{kl} i_{\psi}d\nabla_\phi = \nabla_{i_{\phi}} \psi + (-1)^k i_{d\nabla_\phi} \psi - (-1)^{kl} (i_{\psi}d\nabla_\phi - (-1)^{l-1}d\nabla_{i_{\phi}} \psi)
\]

Finally, using the definitions of \(\nabla_{i_{\phi}} \) and of \(L^\nabla_{\psi} \) we get the claimed result. ■
Acknowledgments

Research partially supported by CMUC, funded by the European program COMPETE/FEDER, by FCT (Portugal) grants PEst-C/MAT/UI0324/2011 (A.D.N. and I.Y.), by MICINN (Spain) grants MTM2011-15725-E, MTM2012-34478 (A.D.N.), and exploratory research project in the frame of Programa Investigador FCT IF/00016/2013.

References

[1] P. Antunes. *Crochets de Poisson gradués et applications: structures compatibles et généralisations des structures hyperkählériennes*. PhD thesis, Ecole Polytechnique X, 2010.
[2] A. Frölicher and A. Nijenhuis. Theory of vector-valued differential forms. I. Derivations of the graded ring of differential forms. *Nederl. Akad. Wetensch. Proc. Ser. A.* 59 = *Indag. Math.*, 18:338–359, 1956.
[3] J. Grabowski and P. Urbański. Lie algebroids and Poisson-Nijenhuis structures. *Rep. Math. Phys.*, 40(2):195–208, 1997.
[4] J. Haantjes. On X_m-forming sets of eigenvectors. *Nederl. Akad. Wetensch. Proc. Ser. A.* 58 = *Indag. Math.*, 17:158–162, 1955.
[5] I. Kolár, P. W. Michor, and J. Slovák. *Natural operations in differential geometry*. Springer-Verlag, Berlin, 1993.
[6] Y. Kosmann-Schwarzbach and F. Magri. Poisson-Nijenhuis structures. *Ann. Inst. H. Poincaré Phys. Théor.*, 53(1):35–81, 1990.
[7] R. Loja Fernandes. Lie algebroids, holonomy and characteristic classes. *Adv. Math.*, 170(1):119–179, 2002.
[8] P. W. Michor. Remarks on the Frölicher-Nijenhuis bracket. In *Differential geometry and its applications (Brno, 1986)*, volume 27 of *Math. Appl.*, pages 197–220. Reidel, Dordrecht, 1987.
[9] A. Newlander and L. Nirenberg. Complex analytic coordinates in almost complex manifolds. *Ann. of Math.* (2), 65:391–404, 1957.
[10] A. Nijenhuis. Vector form brackets in Lie algebroids. *Arch. Math. (Brno)*, 32(4):317–323, 1996.

Antonio De Nicola
CMUC, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF COIMBRA, 3001-501 COIMBRA, PORTUGAL
E-mail address: antondenicola@gmail.com

Ivan Yudin
CMUC, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF COIMBRA, 3001-501 COIMBRA, PORTUGAL
E-mail address: yudin@mat.uc.pt