MORPHO-ANATOMICAL AND ECOLOGICAL FEATURES OF THE SPECIES OF THE GENUS JUGLANS L. IN THE CONDITIONS OF BELGOROD REGION

Abstract: For the first time, the study of morphology and biology of six species of the genus Juglans L.: J. regia L., J. mandshurica Maxim., J. sieboldiana Maxim., J.cinerea L., J. nigra L., J. rupestris Engelm. was conducted in the conditions of the Belgorod region. Rhythm of seasonal development, drought tolerance and yields were identified. Leaf trichomes of six species of the genus Juglans L. were described. A preparation method of leaf epidermis of the genus Juglans L was modified. New data on quantitative and qualitative indicators of fruits was observed including: morpho-structural components, productivity and tolerance to unfavorable conditions in the Belgorod region. Morpho-anatomical structure of the leaves was studied by using the SEM Quanta 200 3D, the Carl Zeiss microscope.

Key words: genus Juglans L, leaf, trichomes, stomata, drought tolerance.

Language: English

Citation: Sorokopudov VN, Kuznetsova TA, Shlapakova SN, Nguyen TC (2015) MORPHO-ANATOMICAL AND ECOLOGICAL FEATURES OF THE SPECIES OF THE GENUS JUGLANS L. IN THE CONDITIONS OF BELGOROD REGION. ISJ Theoretical & Applied Science 03 (23): 72-82.

Soi: http://s-o-i.org/1.1/TAS*03(23)15 Doi: http://dx.doi.org/10.15863/TAS.2015.03.23.15

Introduction

Breeding tolerant and high-yielding species with high quality fruits of the genus Juglans L. walnut are topical issues [2, p.60-62; 15, p.179-180; 16, p.444-448]. Walnut plantations and tree improvement are parts of measurement systems to increase food production. Walnut trees are valuable, due to their content of biologically active substances such as fats, proteins, carbohydrates, vitamins and minerals. Additionally, the fruits are ideal for use in a healthy balanced diet. They also have technologically important features. Walnut oil is highly valued in the food and confectionery industries. Wood of the species of the genus Juglans L. is unsurpassed in beauty and quality, used for production of high-grade furniture, decoration of office space, and the airplanes’ cabin, yachts, parquet [5, 15, p.179-180].

To increase the diversity of food production, especially in years with abnormal weather conditions, the introduction of plants was held in the Belgorod region. In the Belgorod region, there are no walnut plantations; walnuts are mainly found in private households, and occasionally used in landscaping streets. The purpose of this study is to identify morpho-anatomical and ecological characteristics of some species of the genus Juglans L. in the conditions of Belgorod oblast.

Materials and methods

Experimental studies were carried out in the Belgorod State University in the period 2009-2013. Field and pot experiments were carried out in the botanical garden of Belgorod State University. The study of the leaf anatomy was conducted in the nanocenter “BSU”.

Vladimir Nikolaevich Sorokopudov
Doctor of Agricultural Sciences, professor, All-Russian Breeding and Technological Institute of Horticulture and Nursery, Moscow, Russia
Sorokopudov2015@yandex.ru

Tatyana Alekseevna Kuznetsova
Doctor of biological sciences, assistant, St. Petersburg State University of Trade and Economics, St. Petersburg, Russia
Tano_lovely@mail.ru

Svetlana Nikolayeva Shlapakova
Doctor of biological sciences, associate professor, Faculty of Forestry, Bryansk State Academy of Engineering and Technology, Bryansk, Russia
Shla-svetlana@yandex.ru

Thi Chuc Nguyen
PhD, Faculty of Forestry, Bryansk State Academy of Engineering and Technology, Bryansk, Russia
Chucnt1987@gmail.com

ISPC The Best of European Innovations, Gothenburg, Sweden
The objects of study were six species of the genus *Juglans* L, growing in the botanical garden NSU "BSU": *J. regia* L., *J. manshurica* Maxim, *J. sieboldiana* Maxim, *J. cinerea* L., *J. nigra* L., *J. rupestris* Engelm. Species names are given in accordance with the nomenclature «GRIN Taxonomy for Plants». Morphological measurements were made, according to the "Method for studying age-related changes in plants by morphological signs"[10-14].

The basis of anatomical studies is a technique of collecting material and anatomical research methods, a plan describing the structure of the leaf and data processing method. A study of leaf structures was conducted by using a light microscope Biola Lomo D11U11, Micromed-5, binocular IAS 10; morphometric measurements were made using a micrometer screw MOB-1-16. Morphological and anatomical description of trichomes was performed using CM "Biola C 13" and SEM Quanta 200 3D in the center of collective use “BSU”.

Results and discussions

Morpho-anatomical features of leaves of the species of the genus *Juglans* L.

Characteristics of leaf mesophyll: Leaf of plants of the genus *Juglans* has dorsoventral structure. The degree of differentiation of palisade mesophyll; the ratio of palisade and spongy mesophylls differ, depending on the plant species and habitat features. Xeromorphic leaves tend to have more highly developed palisade tissue than mesomorphic leaves do. The walnuts *Juglans regia* and *Juglans rupestris* have the greatest thickness of the leaf blades. For this reason, they have the greatest thickness of palisade and spongy mesophylls, comparing with that of other species (Table-1). Mesophyll of the all walnuts including: *J. regia, J.rupestris, J. manshurica, J. sieboldiana, J.cinerea, J. nigra* – multilayer. Coefficients of palisade mesophylls of the walnuts *Juglans regia* and *Juglans rupestris* are significantly smaller than the other species’ coefficient. Volumes of columnar mesophyll cells of the walnuts *J. regia, J. cinerea, J. nigra* are the significantly smallest one. However, the shape of the palisade mesophyll cells has more important significance. The more elongate cell shape, the larger area per unit cell volume occurs. The columnar cells of the walnut *Juglans regia* have more elongate shapes than cells of other species have (Table-2).

Table 1

Specie	Leaf thickness, μm	Number of the palisade tissue layers	Number of the spongy tissue layers	Thickness of palisade mesophyll, μm	Thickness of spongy mesophyll, μm	Coefficient of palisade mesophyll,%
J. manshurica	102.64±1.94 **	2.0±0*	3.43±0.053**	50.80±0.627 **	28.86±0.583 **	92.38±2.74 **
J. sieboldiana	109.04±1.27 **	2.35±0.050	4.0±0.058**	63.63±0.851 **	35.84±0.773 **	92.37±2.97 **
J. regia	149.13±2.05	2.45±0.067	4.8±0.092	83.55±1.41	63.92±1.78	56.88±0.683
J. rupestris	151.19±1.39	2.1±0.026*	4.05±0.045**	71.34±1.62 **	61.17±0.979	58.77±1.32
J. cinerea	96.83±0.540 **	2.0±0*	3.6±0.04**	57.70±0.514 **	35.06±0.341	83.33±1.17
J. nigra	86.83±0.977 **	2.0±0.05*	4.0±0.047**	55.73±0.757 **	34.29±0.461	84.04±2.21

* – significant differences at a probability level 0.95;
** – significant differences at a probability level 0.99, in comparison with *J. regia*.

Table 2

Specie	Diameter of palisade mesophyll cell, μm	Height of palisade mesophyll cell, μm	Volume of palisade mesophyll cell, μm³
J. manshurica	35.15±6.34**	25.40±1.18**	12162.7±3900.35**
J. sieboldiana	40.15±3.88**	27.64±1.45**	17421.3±2696.34**
Impact Factor ISRA (India) = 1.344
Impact Factor ISI (Dubai, UAE) = 0.829
Impact Factor GIF (Australia) = 0.356
Impact Factor JIF (USA) = 1.500
Impact Factor SIS (USA) = 0.438
Impact Factor РИНЦ (Russia) = 0.179

Impact Factor ISRA (India) = 1.344
Impact Factor ISI (Dubai, UAE) = 0.829
Impact Factor GIF (Australia) = 0.356
Impact Factor JIF (USA) = 1.500
Impact Factor SIS (USA) = 0.438
Impact Factor РИНЦ (Russia) = 0.179

J. regia	11.13±1.29	35.46±1.0	4672.4±1187.79
J. rupestris	36.04±5.62**	34.13±1.97	25665.8±6468.32**
J. cinerea	42.15±7.30**	28.85±1.41**	9508.93±2870.77
J. nigra	57.84±3.34**	22.77±1.38**	9014.59±2136.07

* – significant differences at a probability level 0.95;
** – significant differences at a probability level 0.99, in comparison with J. regia.

Adaptive features of leaf structure.
Classification of trichomes: Non-glandular unicellular trichomes (Fig. 1) are found on the adaxial and abaxial leaf epidermis of the walnut J. cinerea. They are sickle-shaped with length 319.23 ± 44.13 μm. (Fig.2, a). The unicellular trichomes of the walnut J. sieboldiana are rarely found on the abaxial and adaxial epidermis, but only found on the veins (length: 327.39 ± 25.84 μm). Trichomes of the walnut J. mandshurica evenly arrange on the abaxial and adaxial epidermis (length 373.88 ± 44.32μm). Unicellular conical–shaped trichomes of J. nigra are rarely found on the abaxial epidermis (length: 91.19 ± 10.11 μm).

Unicellular conical–shaped trichomes of J. nigra are rarely found on the abaxial epidermis (length: 91.19 ± 10.11 μm).

Figure 1 - The shape of non-glandular unicellular trichomes of the species of the genus Juglans L.

Sophisticated single-row unbranched conical hairs are found on the adaxial and abaxial epidermis of the walnut Juglans sieboldiana (Fig. 1, 2) (length 122-200 μm). They are uniformly distributed on adaxial epidermis. They are mostly found on the veins of the abaxial epidermis. Multicellular single-row trichomes of the Juglans rupestris are only found on the abaxial epidermis. They are straight, evenly distributed (length 150.56±15.5 μm). Non-glandular sophisticated tufted trichomes have the length of branches varying from 125 to 560 μm, the diameter of the multicellular base is 47.24 ± 2.50 μm. (Fig.2d). Number of branches of the sophisticated tufted trichomes is 2-8, those of branched trichomes- 8-15 (Fig 2.c). Tufted trichomes are found on the abaxial epidermis of the walnuts J. cinerea, J. sieboldiana, J. mandshurica. Branched trichomes are found on the vein of the adaxial and abaxial surfaces of the walnut Juglans sieboldiana. Highly significant linear correlation between the length and the number of branches (r = 0,833) was identified. We observed only sessile tufted trichomes for all species. Basic epidermal cells adjacent to the base of trichomes exhibit more different shape and size than the remaining cells of the epidermis. They have a trapezoidal shape. The cells at the base of hair covered with cuticle, outwardly resembling "cushion". According to the SEM, the surface of the hair does not form folds; however it well detected microrelief helically oriented relative to the vertical axis of the cell (Fig. 3).
Class

Non glandular

Type	Subtype
Unbranched	Simple (unicellular) conical curved a (×2240)
	Simple (unicellular) conical straight b (×1120)
	Sophisticated single-row unbranched conical (×800)
Tufted	Branched c (×800)
	Sophisticated tufted d (×1000)
	Sophisticated tufted d (×1600)

Glandular

Type	Subtype
Capitate Unbranched Hairs	Stalk consists of 2 the conical cells, Head – of 2-4 cells G1 (×2100)
	Stalk consists of 5 the conical cells, Head – of 8-9 cells G2 (×2100)
	Stalk consists of 8-9 the conical cells, Head – of 4-6 cells G3 (×1000)
Peltate	4-cellular F1 (×2000)
	6-8-cellular F2 (×2000)
	multicellular F3 (×1600)

Figure 2 - Morphological classification of trichomes of the genus *Juglans* L.

Impact Factor ISRA (India) = 1.344

Impact Factor ISI (Dubai, UAE) = 0.829

Impact Factor GIF (Australia) = 0.356

Impact Factor JIF = 1.500

Impact Factor SIS (USA) = 0.438

Impact Factor РИНЦ (Russia) = 0.179

Based on International Citation Report (ICR)
Capitate trichomes are found on the adaxial and abaxial epidermis of all species of nuts, except *J. regia*. Capitate trichomes are on short stalk (Fig. 2, G1). Small capitate trichomes of the walnut *J. cinerea* consisting of 2-cellular stalk and 2-4 cellular head, are found on adaxial and abaxial leaf surface. The capitate trichomes of the walnut *J. sieboldiana* on the two-cell stalk are found on the veins of abaxial epidermis. Their heads contain of 6 to 12 cells; a large part thereof is damaged. Capitate trichomes of the walnut *J. cinerea* (Fig. 2, G2) on the long 5-cellular stalk (length of 120.42 ± 15.70 μm), 3-4 cell head (diameter 93.1 ± 3.17 μm) are located on the abaxial and adaxial epidermis. They are found only in the veins of the abaxial epidermis.

Glandular trichomes of the walnut *J. sieboldiana* are found on the veins of abaxial epidermis (the length of the stalks 54.37 ± 3.14 μm, diameter of the head 77.10 ± 5.58 μm). Capitate trichomes of the walnut *J. nigra* characterized by the 6-cellular stalk (length 115.17 ± 20.15 μm), 7-8 cellular head (diameter of 57.48 ± 5.87 μm) on the adaxial epidermis (only in veins) and abaxial epidermis (evenly spaced) (Fig. 2, G3).

The walnut *J. rupestris* has the subtype of glandular trichomes on the abaxial and adaxial epidermis. The number of stalk cells in a range from 3 to 7 (length 56.35 ± 8.24 microns), most heads destroyed. Capitate trichomes of the walnut *J. mandshurica* having a long stalk on the adaxial and abaxial epidermis are located at the veins. The length of the stalks 44.69 ± 5.45 μm, diameter of the head 64.49 ± 11.11 μm.

Peltate trichomes are characteristics of plants of the family *Juglandaceae*. They are 4, 8-cellular, as well as multicellular trichomes. 4-cellular trichomes are rarely found on the adaxial epidermis, but they are evenly arranged on the abaxial epidermis. Small peltate glands of *J. sieboldiana* are rarely observed on the adaxial epidermis, but found on the abaxial epidermis - 4-8 cellular (Table-3). Small peltate glands of the walnut *J. nigra* are found on the abaxial and adaxial epidermis with the diameter 400.74 ± 39.20 μm. For the walnut *J. mandshurica*, small peltate glands are rarely located on the adaxial and abaxial epidermis. Multicellular peltate trichomes are observed in all the studied species of the genus *Juglans* L. The largest areas of multicellular peltate trichomes are observed in the walnut *J. mandshurica, J. sieboldiana, J.cinerea* and the smallest areas - the walnut *J. regia* and *J. rupestris*. Peltate trichomes of the walnuts *J.regia* and *J. sieboldiana* have the most rounded shape, which corresponds to a greater fullness of their secret.

Figure 3 - The surface microrelief of non-glandular trichomes of the genus *Juglans* L.

Capitate trichomes are shown in the images for *J. cinerea* (×8000), *J. sieboldiana* (×8000), and *J. nigra* (×8000).
Table 3

Specie	Area of a peltate gland ×10³ μm²	Area of a subcuticular cavity of peltate gland. μm²	Coefficient of eccentricity of peltate gland	Coefficient of eccentricity of subcuticular cavity of peltate gland
J. cinerea	9.845±0.321	5.5095±0.244	0.495±0.027*	0.505±0.032**
J. sieboldiana	10.045±0.203 *)	4.259±0.290	0.325±0.030	0.420±0.035
J. mandshurica	11.876±0.131 **)	3.592±0.129	0.424±0.017	0.227±0.016
J. rupestris	3.363±0.410 **)	1.112±0.133	0.560±0.039**)	0.558±0.046
J. regia	1.858±1.338	0.162±0.117	0.389±0.032	0.494±0.047

Cuticular layer on the surface of peltate trichomes is thicker, it forms a special relief. Multicellular peltate trichomes often have radial folds along the anticlinal walls (J. cinerea, J. sieboldiana). However, cuticle of the walnut J. nigra is thinner, waxy film on the surface of the epidermis is not expressed. Cuticle largely subsides around subcuticular cavity (Fig. 4 B).

Stomata: The regulation of water metabolism of plants is due to change in stomatal conductance [5-9]. Guard cells dominated the principal cells of the epidermis are found on the epidermis of the walnut J. mandshurica, J. sieboldiana, J. cinerea. Stomata of the walnut Juglans regia, Juglans nigra are located in the same level with the main cells of the epidermis (Fig. 5).
Impact Factor ISRA (India) = 1.344
Impact Factor ISI (Dubai, UAE) = 0.829
based on International Citation Report (ICR)
Impact Factor GIF (Australia) = 0.356
Impact Factor JIF = 1.500
Impact Factor SIS (USA) = 0.438
Impact Factor РИНЦ (Russia) = 0.179

ISPC The Best of European Innovations,
Gothenburg, Sweden

While xeromorphic leaves increase, number of stomata per unit area decreases. The highest concentrations of stomata are observed on the lower leaf surface of the walnut J. mandshurica, J. sieboldiana, J. rupestris, and the smallest concentrations of stomata – the walnuts J. regia, J. cinerea. Increasing xerophyte structure of the leaf blade is marked reduction in the size of the stomata. In our experiment, no significant direct relationship was obtained between the size of the stomata and drought tolerance parameters. The smallest areas of stomata are observed in the walnut J. nigra, J. sieboldiana, J. regia and J. mandshurica. The decrease in stomatal resistance is associated with an increase in the rate of photosynthesis. The lowest capacities stomata are observed in the walnut J. regia, J. nigra and J. rupestris (Table 4). The greatest degrees of openness of the stomata are observed in the walnut J. mandshurica and J. sieboldiana, which have high transpiration rate and moisture loss during a six-hour wilting.

Table 4

Specie	Stomatal area. μm²	DOS	Stomatal number per unit leaf area 1 mm²
J. mandshurica	265.82±8.64	10.47±1.35	150.0±13.50
J. sieboldiana	278.50±17.29	15.35±3.30*	155.5±33.0
J. regia	274.55±17.25	6.17±1.65	81.3±33.0
J. rupestris	375.57±13.43**	8.74±0.466	120.3±4.66
J. cinerea	357.54±16.89**	7.91±1.27	83.33±12.7
J. nigra	250.62±11.27	8.12±0.958	101.5±9.58

* – significant differences at a probability level 0.95;
** – significant differences at a probability level 0.99, in comparison with J. regia;
DOS — the degree of openness of the stomata.
Features of cuticle layer: The leaves of J. regia, J. nigra, J. rupestris are covered with a thick layer of cuticle, which thickens on the epidermal cells adjoining to the guard cells of stomata. Longitudinally oriented microfibrils of the walnut J. manshurica, J. cinerea, J. sieboldiana were detected in the study of the ultrastructure of the guard cell walls. Their diameters are in the range 430.37-677.26 nm. Microfibrils of the walnut J. rupestris, J. nigra on the surface of guard cells are hardly distinguishable due to the thick cuticle layer (Fig. 3). Cuticle forms radial folding from the base of trichomes and around large stomata. Cuticle on the adaxial leaf surface is thicker than one on the abaxial (Fig. 4). It is mostly observed in the walnut J. regia, J. rupestris, J. nigra, J. sieboldiana. The waxy coating is unevenly distributed on the leaf surface of the walnut J. nigra. However, it is evenly distributed on the leaf surface of the walnut J. regia and J. sieboldiana.

Stomata form differs in various species of the genus Juglans L: the walnut J. manshurica has almost circular shape of stomata; the walnut J. cinerea, J. nigra and J. sieboldiana – oval shape; the walnut J. regia - elongated oval shape.

Ecological features of some species of the genus Juglans L. introducing in conditions of Belgorod oblast.

Phenology of the species of the genus Juglans L. In 2011, the vegetation period of the walnuts J. rupestris, J. nigra, J. cinerea, J. regia, J. manshurica began in early May, and J. sieboldiana - in the third decade of April (Table 5). Phenological observations revealed the plant with only staminate, pistillate flowers or with bisexual flowers. 8% of the test plants J. manshurica had only pistillate flowers, 83% - the staminate flowers, 8% - did not have flowers. The walnuts J. rupestris had only staminate flowers, J.nigra - pistillate flowers. 10% of the walnut J. sieboldiana had only staminate flowers, 33% - only pistillate flowers, 44% - did not bloom this year. 25% of the walnut J. regia did not bloom, 23% - had only pistillate flowers, 3% had only staminate flowers, 49% plants had both pistillate and staminate flowers.

Budding phase in most species began in early first or second decade of May, flowering in early second or third decade of May. Staminate flowers bloomed earlier than pistillate flowers did (Tab-5).

Species	Breaking leaf buds	First leaf	Third leaf	Budding	Flowering	Fruits	Ripe fruits	Defoliation	
	beginning	beginning	beginning	beginning	beginning	ending	beginning	beginning	
J. manshurica	1.05-5.05	2.05-7.05	3.05-4.05	♂ 7.05-	10.05-19.05	19.05-24.05	24.05-29.05	15.09	21.07
				♀ 17.05	20.05	29.05			
J. rupestris	3.05	1.05-4.05	11.05	♂ 12.05	15.05-25.05	2.06	15.09	7.10	
J. nigra	2.05	3.05		♂ 21.05	25.05-13.06	13.06	-	1.10	
J. cinerea	1.05-4.05	3.05	4.05	♂ 5.05-	10.05-14.05	16.05-19.05	28.05-2.06	25.09	23.09
				♀ 16.05-17.05	16.05-17.05	28.05-3.06			
J. sieboldiana	28.04	28.04-1.05	1.05-2.05	♂ 6.05	8.05	29.05	28.05-30.05	15.09	23.09
				♀ 17.05	19.05	28.05-30.05			
J. regia	2.05-6.05	2.05-9.05	4.05-11.05	♂ 1.05-13.05	7.05-15.05	15.05-30.05	20.05-5.06	7.10	10.10
				♀ 13.05-20.05	16.05-22.05	20.05-5.06			

Defoliation of the species of the walnut Juglans L. varied considerably. We observed that the leaves of the walnut J. manshurica early started yellowing and falling, due to its low drought tolerance. Defoliation of the walnuts J. cinerea, J. sieboldiana were observed in the second, third decades of

Table 5

Phenology of the species of the genus Juglans L.	Impact Factor ISRA (India) = 1.344	Impact Factor ISI (Dubai, UAE) = 0.829	Impact Factor JIF = 1.500	Impact Factor SIS (USA) = 0.438	Impact Factor РИНЦ (Russia) = 0.179	
Species	Impact Factor GIF (Australia) = 0.356	Impact Factor ISRA (India) = 1.344	Impact Factor ISI (Dubai, UAE) = 0.829	Impact Factor JIF = 1.500	Impact Factor SIS (USA) = 0.438	Impact Factor РИНЦ (Russia) = 0.179
Species	Impact Factor GIF (Australia) = 0.356	Impact Factor ISRA (India) = 1.344	Impact Factor ISI (Dubai, UAE) = 0.829	Impact Factor JIF = 1.500	Impact Factor SIS (USA) = 0.438	Impact Factor РИНЦ (Russia) = 0.179
Species	Impact Factor GIF (Australia) = 0.356	Impact Factor ISRA (India) = 1.344	Impact Factor ISI (Dubai, UAE) = 0.829	Impact Factor JIF = 1.500	Impact Factor SIS (USA) = 0.438	Impact Factor РИНЦ (Russia) = 0.179
Species	Impact Factor GIF (Australia) = 0.356	Impact Factor ISRA (India) = 1.344	Impact Factor ISI (Dubai, UAE) = 0.829	Impact Factor JIF = 1.500	Impact Factor SIS (USA) = 0.438	Impact Factor РИНЦ (Russia) = 0.179
Species	Impact Factor GIF (Australia) = 0.356	Impact Factor ISRA (India) = 1.344	Impact Factor ISI (Dubai, UAE) = 0.829	Impact Factor JIF = 1.500	Impact Factor SIS (USA) = 0.438	Impact Factor РИНЦ (Russia) = 0.179
Species	Impact Factor GIF (Australia) = 0.356	Impact Factor ISRA (India) = 1.344	Impact Factor ISI (Dubai, UAE) = 0.829	Impact Factor JIF = 1.500	Impact Factor SIS (USA) = 0.438	Impact Factor РИНЦ (Russia) = 0.179
Species	Impact Factor GIF (Australia) = 0.356	Impact Factor ISRA (India) = 1.344	Impact Factor ISI (Dubai, UAE) = 0.829	Impact Factor JIF = 1.500	Impact Factor SIS (USA) = 0.438	Impact Factor РИНЦ (Russia) = 0.179
Species	Impact Factor GIF (Australia) = 0.356	Impact Factor ISRA (India) = 1.344	Impact Factor ISI (Dubai, UAE) = 0.829	Impact Factor JIF = 1.500	Impact Factor SIS (USA) = 0.438	Impact Factor РИНЦ (Russia) = 0.179

ISPC The Best of European Innovations, Gothenburg, Sweden 79
September and *J. regia, J. nigra, J. rupestris* — in early October.

Abiotic factors: Drought tolerance is the ability of a plant body as little as possible to modify the metabolism in inadequate water supply [1-4]. As can be seen from (Table-6) that water content of leaves of the species *J. regia*, *J. nigra* exceeds 70%, which is typical for plants with a high degree of drought tolerance. Loss of water of leaves from wilting after six hours of the walnut *J. regia* does not exceed 30%, which corresponds to plants with high drought resistance; the walnut *J. nigra, J. rupestris* (not exceed 40%) - an average degree of drought tolerance. One of the key indicators in assessing the degree of drought tolerance is the degree of leaf damage after a six-hour wilting. The smallest degree of leaf damage is observed in the walnuts *J. regia, J. nigra, J. rupestris*.

Specie	Water content,%	Water deficit, %	Water lost after leaf wilting , % of water content	Degree of damage,%	Drought resistance, point	
	After 2 h.	After 4h.	After 6h.			
J. mandshurica	65.82± 1.78*	12.96± 2.44	40.33± 1.65**	66.59± 1.88**	90.33± 4.38**	4
J. sieboldiana	65.23± 1.42*	3.45± 0.99*	27.40± 3.29**	51.12± 4.32**	68.11± 4.08**	5
J. regia	70.59± 1.12	17.86± 6.19	9.10± 0.687*	17.23± 1.30	25.55± 1.86	8
J. rupestris	65.70± 0.521	8.95± 0.601	16.88± 1.82**	27.88± 2.98	39.60± 3.79**	6
J. cinerea	73.98± 3.69	25.45± 3.91	24.42± 0.947**	43.04± 1.46**	59.65± 1.79**	4
J. nigra	82.50± 5.98	28.93± 1.47	10.63± 0.81*	21.61± 1.61	31.57± 2.23	6

* – significant differences at a probability level 0.95;
** – significant differences at a probability level 0.99, in comparison with *J. regia*.

Leaves of the *J. mandshurica* had the greatest moisture loss, as a result, their leaf blades were damaged up to 90% of the total area. During the period of wilting, the walnuts *J. regia, J. nigra, J. rupestris* remained at the same level of water lost. The walnut *J. regia, J. nigra, J. rupestris* had significantly greater proportion of bound water than the other plant species (Fig. 6). The largest percentage of free water was observed in the leaves of *J. mandshurica*, which was characterized by the lowest water-holding capacity.
Drawings on a complex of indicators (method Nikitsky botanical garden), an average point of drought tolerance of various species were found. The highest degree of drought tolerance was observed in the walnut *J. regia*, *J. nigra*, and *J. rupestris*. Thus, *J. regia* had high water-holding capacity low transpiration rate and high water potential. The walnuts *J. sieboldiana*, *J. nigra* and *J. rupestris* characterized with an average degree of drought tolerance. The walnuts *J. Mandshurica*, *J. cinerea* had indicators of drought tolerance, relating them to the plants with a low degree of drought tolerance. In the conditions of Belgorod oblast, they need watering.

Harvest was observed in five species of the genus *Juglans L.*: *J. regia*, *J. mandshurica*, *J. sieboldiana*, *J. cinerea* and *J. rupestris*. All immature fruits of the *J. nigra* aborted. The walnut *J. regia* has rounded-cordate shape, while other walnuts such as *J. mandshurica*, *J. rupestris* and *J. cinerea* are oval-heart-shaped form. They differ both in size and shape of the fruit. The shapes of all studied species are not perfectly rounded, so we decided to use multiple measurements in different directions (Table-7). Size of walnut kernel and a small thickness of the shell have economic value. Nuts of the walnut *J. regia* have a small mass, but the kernel mass is significantly high, due to its light shell (Table-7). The thickest shells are observed in the *J. mandshurica*, and the kernel mass is low, a small mass of the walnut kernel was observed in walnut *J. cinerea*. The walnut *J. sieboldiana* differs in significantly high mass of the kernel and small thickness of the shell. The walnuts *J. rupestris* and *J. mandshurica* have single fruitlets with a small number of fruits (2-3). The walnut *J. sieboldiana* differs in the significantly highest number of fruits in the stems, compared with other species, while the walnut *J. regia* differs in a large number of fruits on the trees. The most productive forms are the walnut *J. regia* with harvest - 1.5-2.0 kg, the number of fruitlets on tree is 83-150. The walnut *J. sieboldiana* has fruitlets with 6-7 fully maturing nuts.

Specie	Fruit weight (g)	Height (cm)	Width (cm)	Thickness (cm)	Kernel weight (g)	Shell thickness (cm)
J. mandshurica	7.85±0.382	3.84±0.089**	2.65±0.037	2.67±0.040	1.32±0.271**	0.70±0.05**
J. rupestris	9.66±0.401**	3.59±0.054**	2.46±0.037*	2.48±0.033*	1.63±0.033**	0.23±0.01*
J. cinerea	9.10±0.144**	4.46±0.042**	2.66±0.023	2.61±0.019	1.21±0.042**	0.27±0.01**
J. sieboldiana	1.65±3.60	4.09±0.289**	2.99±0.414	3.31±0.495	3.20±1.79	0.25±0.01**
J. regia	7.78±0.348	3.21±0.054	2.70±0.077	2.68±0.065	2.98±0.172	0.20±0

* – significant differences at a probability level 0.95;
** – significant differences at a probability level 0.99, in comparison with *J. regia*

Conclusions

1. In the Belgorod region, the genus *Juglans L.* has full rhythm of seasonal development, allowing them to cultivate in the local conditions. Phenological observations revealed plants with staminate, pistillate and bisexual flowers. Budding phase in most species begins in early first - second of May, flowering in early second –third of May. Staminate flowers bloom earlier than pistillate flowers.

2. Morphological characteristics of trichomes of some species complement the existing classification of structural formations of the epidermis of the genus *Juglans L.*

3. *J. regia* differs in high water-holding capacity, low transpiration rate and high water potential differs: the walnut *J. regia* is the nuts with a high degree of drought tolerance. Average degrees of drought tolerance are *J. sieboldiana*, *J. nigra* and *J. rupestris*. The walnuts *J. mandshurica*, *J. cinerea* belong to plants with a low degree of drought tolerance in conditions of Belgorod oblast.

4. The most promising for breeding are the walnuts *J. regia* and *J. sieboldiana* in the conditions of Belgorod region because *J. rupestris*, *J. mandshurica*, *J. cinerea* have fewer fruitlets on the trees with a small number of fruits.

Acknowledgement

The authors would like to thank Kolesnikov D.A from Center of Collective Use of Scientific Equipment of Belgorod State National Research University for his help in performing the experiments on the SEM Quanta 200 3D.
Impact Factor ISRA (India) = 1.344
Impact Factor ISI (Dubai, UAE) = 0.829
Impact Factor GIF (Australia) = 0.356
Impact Factor РИНЦ (Russia) = 0.179

References:

1. Goryshin TK (1989) Photosynthetic apparatus of plants and environmental conditions / TK Goryshin. - LA: LSU- 204p.
2. Ibragimov ZA (2009) Fruiting walnut in forest biocenosis / NAS of Azerbaijan. Baku. - № 5. pp. 60-62.
3. Ionova EV (2009) Criteria for assessing the level of drought tolerance of winter wheat / Agricultural science. - № 7. pp. 17-18.
4. Kouchnirenko MD (1991) Physiology of water exchange and drought tolerance / SN - Chisinau: "Shiintsa. - 307 p.
5. Kuznetsov MN, Golyshkin LV (2006) Adaptive response of stomatal apparatus of blackberry leaf on heavy metal pollution / Status and prospects of berry culture in Russia (Proceedings of Scientific and Technical Conf. June 19-22, 2006). - Eagle: Publishing VNLISPК. 344.
6. Nikolaev EA, Slavskii VA, Tishchenko VV (2007) Introduction and selection of walnut in Voronezhsoy region. Monograph .Voronezh state research:152.
7. Morgun VV, Kirizy DA, Shadchin TM (2010) Ecophysiological and genetic aspects of adaptation of crop plants to global climate change / Physiology and biochemistry of crop plants to global climate change. - V. 42, № 1. pp.3-21.
8. Pautov AA, Vasiliev VA (2010) The role of the main forms of epidermal cells in the leaf morphogenesis of representatives HAMAMELIDACEAE / Botanical Journal. - V. 95, № 3. pp.338-345.
9. Pautov AA, Sapach JJ (2003) Micrelief of the surface of the leaf epidermis of flowering plants /XI Congress of Russian Botanical Society. Botanical research. Barnoul. - №2. - 83 p.
10. Pautov AA, Yakovleva OV, Kolodyazhni SF (2002) Micrelief surface of leaves of the Populus (Salicaceae) / Botanical Journal. - V. 87, №1. pp.63-72.
11. Rezanova TA (2010) Morpho-anatomical and ecological features of Ribes amercianum Mill. introducing in the south of Upland. Saratov – 20p.
12. Rezanova TA, Sorokopudov VN (2008) Some features of anatomical and morphological structure of Ribes americanum Mill. / "Biologically active compounds of natural origin: herbal medicine, pharmaceutical marketing, pharmaceutical technology, botany," Proceedings of the international scientific-practical. Conf., - Belgorod: BSU. pp.133-135.
13. Shvedova OE, Shmatko IG (1992) Structural and functional position of stomata under water and temperature stress / Physiology and biochemistry of cultivated plants. - № 2, T. 24.pp.107-116.
14. Vasiliev BR (1988) Leaf structure of woody plants in different climatic zones / Ed. VM Schmidt. - L.: Publishing. Leningrad University. – 208p.
15. Vasilyev NP, Vasin EA (2003) Characteristics of introducing species of the genus Juglans L/ Biological Diversity. Plant introduction. Proceedings of the Third International Scientific Conference (23-25 September 2003, St. Petersburg). pp.179-180.
16. Vasin EA (2002) Promising forms of walnuts for the Tula region / Reports of TAA. - Vol. 274. pp.444-448.