Application of Finite Groups to Neutrino Mass Matrices

Ernest Ma

Physics and Astronomy Department
University of California, Riverside
Riverside, California 92521, USA

Abstract

Recent progress in the application of finite groups to neutrino mass matrices is reviewed, with special emphasis on the tetrahedral symmetry A_4.

Talk at VI-Silafae, Puerto Vallarta, November 2006.
1 Introduction

Using present data from neutrino oscillations, the 3×3 neutrino mixing matrix is largely determined, together with the two mass-squared differences \[.\] In the Standard Model of particle interactions, there are 3 lepton families. The charged-lepton mass matrix linking left-handed (e, μ, τ) to their right-handed counterparts is in general arbitrary, but may always be diagonalized by 2 unitary transformations:

\[M_L = U_L^T \begin{pmatrix} m_e & 0 & 0 \\ 0 & m_\mu & 0 \\ 0 & 0 & m_\tau \end{pmatrix} (U_R^L)^\dagger. \] (1)

Similarly, the neutrino mass matrix may also be diagonalized by 2 unitary transformations if it is Dirac:

\[M_\nu^D = U_\nu^L \begin{pmatrix} m_1 & 0 & 0 \\ 0 & m_2 & 0 \\ 0 & 0 & m_3 \end{pmatrix} (U_R^\nu)^\dagger, \] (2)

or by just 1 unitary transformation if it is Majorana:

\[M_\nu^M = U_\nu^L \begin{pmatrix} m_1 & 0 & 0 \\ 0 & m_2 & 0 \\ 0 & 0 & m_3 \end{pmatrix} (U_L^\nu)^T. \] (3)

Notice that whereas the charged leptons have individual names, the neutrinos are only labeled as 1, 2, 3, waiting to be named. The observed neutrino mixing matrix is the mismatch between U_L^l and U_L^ν, i.e.

\[U_\nu = (U_L^l)^\dagger U_L^\nu \simeq \begin{pmatrix} 0.83 & 0.56 & <0.2 \\ -0.39 & 0.59 & -0.71 \\ -0.39 & 0.59 & 0.71 \end{pmatrix} \simeq \begin{pmatrix} \sqrt{2/3} & 1/\sqrt{3} & 0 \\ -1/\sqrt{6} & 1/\sqrt{3} & -1/\sqrt{2} \\ -1/\sqrt{6} & 1/\sqrt{3} & 1/\sqrt{2} \end{pmatrix}. \] (4)

This approximate pattern has been dubbed tribimaximal by Harrison, Perkins, and Scott \[2\]. Notice that the 3 vertical columns are evocative of the mesons (η_8, η_1, π^0) in their $SU(3)$ decompositions.
Historically, once the third lepton \(\tau \) was established, it was speculated by Cabibbo [3] and Wolfenstein [4] that

\[
U_{\ell\nu}^{CW} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 1 & 1 \\ 1 & \omega & \omega^2 \\ 1 & \omega^2 & \omega \end{pmatrix},
\]

(5)

where \(\omega = \exp(2\pi i/3) = -1/2 + i\sqrt{3}/2 \). Note now

\[
U_{\ell\nu}^{HPS} = (U_{\ell\nu}^{CW})^\dagger \begin{pmatrix} 1 & 0 & 0 \\ 1 & \sqrt{2}/1/\sqrt{2} & -1/\sqrt{2} \\ 0 & 1/\sqrt{2} & 1/\sqrt{2} \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & i \end{pmatrix}.
\]

(6)

Comparing this to Eq. (4), it tells us that if \(U_L \) is in fact \(U_{\ell\nu}^{CW} \), then \(U_{\ell\nu}^{HPS} \) can be obtained if maximal mixing occurs in the \(2 \rightarrow 3 \) submatrix of \(M_\nu \).

How can \(U_{\ell\nu}^{HPS} \) be derived from a symmetry? The difficulty comes from the fact that any symmetry defined in the basis \((\nu_e, \nu_\mu, \nu_\tau) \) is automatically applicable to \((e, \mu, \tau) \) in the complete Lagrangian. To do so, usually one assumes the canonical seesaw mechanism and studies the Majorana neutrino mass matrix

\[
M_\nu = -M_\nu^D M_N^{-1}(M_\nu^D)^T
\]

(7)

in the basis where \(M_\ell \) is diagonal; but the symmetry apparent in \(M_\nu \) (such as \(\nu_\mu - \nu_\tau \) interchange) is often incompatible with a diagonal \(M_\ell \) with 3 very different eigenvalues. Obviously a more sophisticated approach is needed. To obtain \(U_{\ell\nu}^{HPS} \), the non-Abelian discrete symmetry \(A_4 \) turns out to be very useful. In this talk, I will focus mainly on this approach, but first I will discuss \(S_3 \) which is the smallest non-Abelian finite group. I will also mention \(S_4 \) and \(\Delta(27) \) at the end.

2 Permutation Symmetry \(S_3 \)

\(S_3 \) is the permutation group of 3 objects, which is also the symmetry group of the equilateral triangle. It has 6 elements divided into 3 equivalence classes, with the irreducible represen-
tations $1, 1'$, and 2, and the multiplication rule $2 \times 2 + 1 + 1' + 2$. Its character table is given below.

class	n	h	χ_1	χ_1'	χ_2
C_1	1	1	1	1	2
C_2	2	3	1	1	-1
C_3	3	2	1	-1	0

Let me discuss briefly 4 recent S_3 models.

- **Kubo, Mondragon, Mondragon, and Rodriguez-Jauregui** [5] (recently updated by Felix, Mondragon, Mondragon, and Peinado [6]): The symmetry used is actually $S_3 \times Z_2$, with the assignments

$$(\nu, l), \ l^c, \ N, \ (\phi^+, \phi^0) \sim 1 + 2, \quad (8)$$

and $v_1 = v_2$. The Z_2 symmetry serves to eliminate 4 Yukawa couplings otherwise allowed by S_3, resulting in an inverted ordering of neutrino masses with

$$\theta_{23} \simeq \frac{\pi}{4}, \quad \theta_{13} \simeq 0.0034, \quad m_{ee} \simeq 0.05 \text{ eV}, \quad (9)$$

where m_{ee} is the effective Majorana neutrino mass measured in neutrinoless double beta decay. This model relates θ_{13} to the ratio m_e/m_μ.

- **Chen, Frigerio, and Ma** [7]: The symmetry here is S_3 only, with the assignments

$$(\nu, l) \sim 1 + 2, \quad l^c \sim 1 + 1 + 1', \quad (\phi^+, \phi^0) \sim 1 + 2, \quad (\xi^{++}, \xi^+, \xi^0) \sim 2, \quad (10)$$

and $v_1 = v_2$ but $u_1 \neq u_2$. This results in a normal ordering of neutrino masses with

$$\theta_{23} \simeq \frac{\pi}{4}, \quad 0.008 < \theta_{13} < 0.032, \quad m_{ee} < 0.01 \text{ eV}. \quad (11)$$

This model relates θ_{13} to θ_{12} and the ratio $\Delta m^2_{\text{sol}}/\Delta m^2_{\text{atm}}$.
• Grimus and Lavoura [8]: The symmetry is $S_3 \times Z_2$, with the assignments

\[
\begin{align*}
(\nu, l) &\sim (1, +) + (2, +), \quad l^c \sim (1, -) + (2, +), \quad N \sim (1, -) + (2, -), \\
(\phi^+, \phi^0) &\sim (1, -) + (1', +), \quad (\chi, \chi^*) \sim (2, +),
\end{align*}
\]

and $\langle \chi \rangle^3 = \text{real}$, resulting in a diagonal M_ℓ and a $\mu - \tau$ symmetric M_ν, i.e. $\theta_{23} = \pi/4$ and $\theta_{13} = 0$, whereas m_{ee} is not predicted.

• Mohapatra, Nasri, and Yu [9]: The symmetry S_3 is extended to include 3 Z_3 transformations which do not commute with S_3, so it is not really S_3. For M_ν, the assignments are

\[
(\nu, l) \sim 1 + 2, \quad N \sim 1' + 2, \quad (\phi^+, \phi^0) \sim 1, \quad (\xi^{++}, \xi^+, \xi^l) \sim 1,
\]

but the extended S_3 is grossly broken by M_N in a very special way, resulting then in the tribimaximal form of M_ν. This is not what I would consider a bona fide derivation of $U^{HPS}_{\ell \nu}$.

3 Tetrahedral Symmetry A_4

For 3 families, we should look for a group with a 3 representation, the simplest of which is A_4, the group of the even permutation of 4 objects, which is also the symmetry group of the tetrahedron. The tetrahedron is one of five perfect geometric solids known to the ancient Greeks. In order to match them to the 4 elements (fire, air, earth, and water) already known, Plato invented a fifth (quintessence) as that which pervades the cosmos and presumably holds it together. In terms of symmetry, since a cube (hexahedron) may be embedded inside an octahedron and vice versa, the two must have the same group structure and are thus dual to each other. The same holds for the icosahedron and dodecahedron. The tetrahedron is self-dual. For amusement, compare this first theory of everything to today's contender, i.e.
Table 2: Perfect geometric solids in 3 dimensions.

solid	faces	vertices	Plato	group
tetrahedron	4	4	fire	A_4
octahedron	8	6	air	S_4
cube	6	8	earth	S_4
icosahedron	20	12	water	A_5
dodecahedron	12	20	quintessence	A_5

string theory. (A) There are 5 consistent string theories in 10 dimensions. (B) Type I is dual to Heterotic $SO(32)$, Type IIA is dual to Heterotic $E_8 \times E_8$, and Type IIB is self-dual.

A_4 has 12 elements divided into 4 equivalence classes, with the irreducible representations $1, 1', 1'', \text{ and } 3$, and the fundamental multiplication rule

$$3 \times 3 = 1(11 + 22 + 33) + 1'(11 + \omega^2 22 + \omega 33) + 1''(11 + \omega 22 + \omega^2 33) + 3(23, 31, 12) + 3(32, 13, 21).$$

(14)

Its character table is given below, where $\omega = \exp(2\pi i/3) = -1/2 + i\sqrt{3}/2$ is exactly what we saw before in Eq. (5). Note that $3 \times 3 \times 3 = 1$ is possible in A_4, i.e. $a_1b_2c_3+$ permutations, and $2 \times 2 \times 2 = 1$ is possible in S_3, i.e. $a_1b_1c_1 + a_2b_2c_2$.

class	n	h	χ_1	$\chi_{1'}$	$\chi_{1''}$	χ_3
C_1	1	1	1	1	1	3
C_2	4	3	1	ω	ω^2	0
C_3	4	3	1	ω^2	ω	0
C_4	3	2	1	1	1	-1

Other useful sets of finite groups are subgroups of $SU(3)$. The series $\Delta(3n^2)$ has $\Delta(3) \equiv Z_3$, $\Delta(12) \equiv A_4$, $\Delta(27)$, etc. The series $\Delta(3n^2 - 3)$ has $\Delta(9) \equiv Z_3 \times Z_3$, $\Delta(24) \equiv S_4$, etc.

Using A_4, there are two ways to obtain U_{ν}^{CW} as the unitary matrix which diagonalizes M_ν: (I) the original proposal of Ma and Rajasekaran [10] and (II) the recent one by Ma [11].
Table 4: Representations of SU(3) and its subgroups.

SU(3)	A_4	S_4	$\Delta(27)$
1	1	1	1
3	3	3'	3
3	3	3'	3
6	1 + 1' + 1'' + 3	1 + 2 + 3	$\bar{3} + \bar{3}'$
8	1' + 1'' + 3 + 3	2 + 3 + 3'	$\sum_{i=2,9} \text{1}_i$
10	1 + 3 + 3 + 3	1' + 3' + 3' + 3'	$1_1 + \sum_{i=1,9} \text{1}_i$

(I) Let $(\nu_i, l_i) \sim 3, l_i^c \sim \frac{1}{3}, 1', 1''$, then with $(\phi_i^0, \phi_i^-) \sim \bar{3}$.

\[M_l = \begin{pmatrix} h_1 v_1 & h_2 v_1 & h_3 v_1 \\ h_1 v_2 & h_2 v_2 \omega & h_3 v_2 \omega^2 \\ h_1 v_3 & h_2 v_3 \omega^2 & h_3 v_3 \omega \end{pmatrix} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 1 & 1 \\ 1 & \omega & \omega^2 \\ 1 & \omega^2 & \omega \end{pmatrix} \begin{pmatrix} h_1 & 0 & 0 \\ 0 & h_2 & 0 \\ 0 & 0 & h_3 \end{pmatrix} \sqrt{3} v, \quad (15) \]

for $v_1 = v_2 = v_3 = v$.

(II) Let $(\nu_i, l_i) \sim 3, l_i^c \sim 3$, then with $(\phi_i^0, \phi_i^-) \sim \frac{1}{3}, \bar{3}$.

\[M_l = \begin{pmatrix} h_0 v_0 & h_1 v_3 & h_2 v_2 \\ h_2 v_3 & h_0 v_0 & h_1 v_1 \\ h_1 v_2 & h_2 v_1 & h_0 v_0 \end{pmatrix} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 1 & 1 \\ 1 & \omega & \omega^2 \\ 1 & \omega^2 & \omega \end{pmatrix} \begin{pmatrix} m_e & 0 & 0 \\ 0 & m_\mu & 0 \\ 0 & 0 & m_\tau \end{pmatrix} \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 1 & 1 \\ 1 & \omega^2 & \omega \\ 1 & \omega & \omega^2 \end{pmatrix}, \quad (16) \]

for $v_1 = v_2 = v_3$ with $m_e = h_0 v_0 + (h_1 + h_2) v$, $m_\mu = h_0 v_0 + (h_1 \omega + h_2 \omega^2) v$, and $m_\tau = h_0 v_0 + (h_1 \omega^2 + h_2 \omega) v$.

In either case, $U_{\nu_i}^{CW}$ has been derived. Each allows arbitrary values of the charged-lepton.
masses, and yet retains a symmetry for us to consider M_ν. Let

$$M_\nu = \begin{pmatrix} a + b + c & f & e \\ f & a + b\omega + c\omega^2 & d \\ e & d & a + b\omega^2 + c\omega \end{pmatrix}$$

be the Majorana neutrino mass matrix in question. Under A_4, a comes from 1, b from $1'$, c from $1''$, and (d, e, f) from 3. Since there are 6 free parameters, this is the most general symmetric mass matrix. To proceed further, these 6 parameters must be restricted.

4 Selected A_4 Models

Using (I), the first two proposed A_4 models start with only $a \neq 0$, yielding thus 3 degenerate neutrino masses. In Ma and Rajasekaran [10], the degeneracy is broken softly by N_iN_j terms, allowing b, c, d, e, f to be nonzero. In Babu, Ma, and Valle [12], the degeneracy is broken radiatively through flavor-changing supersymmetric scalar lepton mass terms. In both cases, $\theta_{23} \approx \pi/4$ is predicted. In the latter, maximal CP violation in $U_{\ell\nu}$ is also predicted. Consider the case $b = c$ and $e = f = 0$ [13], then

$$M_\nu = \begin{pmatrix} a + 2b & 0 & 0 \\ 0 & a - b & d \\ 0 & d & a - b \end{pmatrix}$$

which is diagonalized by

$$\begin{pmatrix} 1 & 0 & 0 \\ 1 & 1/\sqrt{2} & -1/\sqrt{2} \\ 0 & 1/\sqrt{2} & 1/\sqrt{2} \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & i \end{pmatrix},$$

with eigenvalues $a - b + d, a + 2b, and -a + b + d$. Comparing this with Eq. (6), we see that tribimaximal mixing has been achieved. However, since $1'$ and $1''$ are unrelated in A_4, $b = c$ is rather ad hoc. A very clever solution by Altarelli and Feruglio [14, 15] is to eliminate both, then $b = c = 0$ naturally. This results in a normal ordering of neutrino masses with the prediction [16]

$$|m_{\nu e}|^2 \simeq |m_{ee}|^2 + \Delta m^2_{atm}/9.$$
A closely related model by Babu and He \cite{17} has \(e = f = 0, \ b = c, \) and \(d^2 = 3b(b - a) \). Here both normal and inverted ordering of neutrino masses are allowed. The technical challenge in this common approach is to break \(A_4 \) spontaneously along two incompatible directions: \((1,1,1)\) and \((1,0,0)\). One recent proposal \cite{18} is to add \(Z_3 \) in a supersymmetric model, with singlets carrying the \(A_4 \) symmetry at a high scale, and require the breaking of \(A_4 \) without breaking the supersymmetry.

As for possible deviations from tribimaximal mixing, although \(b \neq c \) would allow \(U_{e3} \) to be different from zero, the assumption \(e = f = 0 \) means that \(\nu_2 = (\nu_e + \nu_\mu + \nu_\tau)/\sqrt{3} \) remains an eigenstate. The experimental bound \(|U_{e3}| < 0.16 \) then implies \cite{13} \(0.5 < \tan^2 \theta_{12} < 0.52 \), whereas experimentally, \(\tan^2 \theta_{12} = 0.45 \pm 0.05 \).

\[\text{(III)}\] A third \(A_4 \) scenario \cite{19} is to have \((\nu_i, l_i) \sim 3, \ l_i^c \sim \bar{3}, \) but with \((\phi^0_i, \phi_i^-) \sim 1, 1', 1''\). The charged-lepton mass matrix is now diagonal and \(M_{\nu}^{(e,\mu,\tau)} = M_\nu \) already. Using again Eq. \((17)\) but with \(d = e = f \),

\[
M_\nu = \begin{pmatrix}
 a + b + c & d & d \\
 d & a + b\omega + c\omega^2 & d \\
 d & d & a + b\omega^2 + c\omega
\end{pmatrix}.
\]

(21)

Assume \(b = c \) and rotate to the basis \([\nu_e, (\nu_\mu + \nu_\tau)/\sqrt{2}, (-\nu_\mu + \nu_\tau)/\sqrt{2}]\), then

\[
M_\nu = \begin{pmatrix}
 a + 2b & \sqrt{2}d & 0 \\
 \sqrt{2}d & a - b + d & 0 \\
 0 & 0 & a - b - d
\end{pmatrix},
\]

(22)

i.e. maximal \(\nu_\mu - \nu_\tau \) mixing and \(U_{e3} = 0 \). The solar mixing angle is now given by \(\tan 2\theta_{12} = 2\sqrt{2}d/(d - 3b) \). For \(b << d \), \(\tan 2\theta_{12} \rightarrow 2\sqrt{2} \), i.e. \(\tan^2 \theta_{12} \rightarrow 1/2 \), but \(\Delta m^2_{sol} \ll \Delta m^2_{atm} \) implies \(2a + b + d \rightarrow 0 \), so that \(\Delta m^2_{atm} \rightarrow 6bd \rightarrow 0 \) as well. Therefore, \(b \neq 0 \) is required, and \(\tan^2 \theta_{12} \neq 1/2 \), but should be close to it, because \(b = 0 \) enhances the symmetry of \(M_\nu \) from \(Z_2 \) to \(S_3 \). Here \(\tan^2 \theta_{12} < 1/2 \) implies inverted ordering and \(\tan^2 \theta_{12} > 1/2 \) implies normal ordering.

5 \(S_4 \) and \(\Delta(27) \)

In the above (III) application of \(A_4 \), approximate tribimaximal mixing involves the ad hoc assumption \(b = c \). This problem is overcome by using \(S_4 \) in a supersymmetric seesaw model \[20\], yielding the result

\[
M_\nu(S_4) = \begin{pmatrix}
 a + 2b & e & e \\
 e & a - b & d \\
 e & d & a - b
\end{pmatrix}.
\] (23)

Here \(b = 0 \) and \(d = e \) are related limits. A more recent proposal \[21\] uses \(\Delta(27) \), resulting in

\[
M_\nu(\Delta(27)) = \begin{pmatrix}
 fa & c & b \\
 c & fb & a \\
 b & a & fc
\end{pmatrix}.
\] (24)

The permutation group of 4 objects is \(S_4 \). It contains both \(S_3 \) and \(A_4 \). It is also the symmetry group of the hexahedron (cube) and the octahedron. It has 24 elements divided into 5 equivalence classes, with 5 irreducible representations \(1, 1', 2, 3, 3' \). The fundamental multiplication rules are

\[
\begin{align*}
\bar{3} \times \bar{3} & = (11 + 22 + 33) + 2(11 + \omega^2 22 + \omega 33, 11 + \omega 22 + \omega^2 33) \\
& + 3(23 + 32, 31 + 13, 12 + 21) + 3'(23 - 32, 31 - 13, 12 - 21), \\
\bar{3}' \times \bar{3}' & = 1 + 2 + 3_s + 3'_a, \\
\bar{3} \times \bar{3}' & = 1' + 2 + 3'_s + 3'_a.
\end{align*}
\] (25)

Note that both \(3 \times 3 = 1 \) and \(2 \times 2 = 1 \) are possible in \(S_4 \). Let \((\nu_i, l_i), l_i^c, N_i \sim 3 \) under \(S_4 \). Assume singlet superfields \(\sigma_{1,2,3} \sim 3 \) and \(\zeta_{1,2} \sim 2 \), then

\[
M_N = \begin{pmatrix}
 M_1 & h(\sigma_3) & h(\sigma_2) \\
 h(\sigma_3) & M_2 & h(\sigma_1) \\
 h(\sigma_2) & h(\sigma_1) & M_3
\end{pmatrix},
\] (27)

where \(M_1 = A + f(\langle \zeta_2 \rangle + \langle \zeta_1 \rangle), M_2 = A + f(\langle \zeta_2 \rangle \omega + \langle \zeta_1 \rangle \omega^2), \) and \(M_3 = A + f(\langle \zeta_2 \rangle \omega^2 + \langle \zeta_1 \rangle \omega) \).

The most general \(S_4 \)-invariant superpotential of \(\sigma \) and \(\zeta \) is given by

\[
W = M(\sigma_1 \sigma_1 + \sigma_2 \sigma_2 + \sigma_3 \sigma_3) + \lambda \sigma_1 \sigma_2 \sigma_3 + m \zeta_1 \zeta_2 + \rho (\zeta_1 \zeta_1 \zeta_1 + \zeta_2 \zeta_2 \zeta_2) \\
+ \kappa [(\sigma_1 \sigma_1 + \sigma_2 \sigma_2 \omega + \sigma_3 \sigma_3 \omega^2) \zeta_2 + (\sigma_1 \sigma_1 + \sigma_2 \sigma_2 \omega^2 + \sigma_3 \sigma_3 \omega) \zeta_1].
\] (28)
The resulting scalar potential has a minimum at $V = 0$ (thus preserving supersymmetry) only if $\langle \zeta_1 \rangle = \langle \zeta_2 \rangle$ and $\langle \sigma_2 \rangle = \langle \sigma_3 \rangle$, so that M_N is of the form given by Eq. (23). To obtain M_ν of the same form, M_l should be diagonal and $M_{\nu N}$ proportional to the identity. These are both possible with $\phi_{1,2,3}^I \sim 1 + 2$, $\phi_N^N \sim 1 + 2$, but with zero vacuum expectation value for $\phi_{2,3}^N$.

$\Delta(27)$ has 27 elements divided into 11 equivalence classes. There are 9 one-dimensional irreducible representations 1_ι and 2 three-dimensional ones $3, \bar{3}$, with the multiplication rules

$$3 \times 3 = \bar{3} + 3 + \bar{3}, \quad 3 \times \bar{3} = \sum_{i=1,9} 1_i.$$

(29)

For the product $3 \times 3 \times 3$, there are 3 invariants: $123 + 231 + 312 - 213 - 321 - 132$ which is invariant under $SU(3)$, $123 + 231 + 312 + 213 + 321 + 132$ which is also invariant under A_4, and $111 + 222 + 333$. Let $(\nu_i, l_i) \sim 3$, $l_i^c \sim \bar{3}$, $(\phi_i^0, \phi_i^-) \sim 1_{1,2,3}$, $(\xi_i^+, \xi_i^0, \xi_i^0) \sim 3$. then Eq. (24) is obtained. Again let $b = c$, then two solutions for example are $f = 1.1046$ and $f = -0.5248$, for both of which $\tan^2 \theta_{12} = 0.45$ and $m_{ee} = 0.05$ eV.

6 Conclusion

With the application of the non-Abelian discrete symmetry A_4, a plausible theoretical understanding of the tribimaximal form of the neutrino mixing matrix has been achieved. Other symmetries such as S_4 and $\Delta(27)$ are beginning to be studied. They share some of the properties of A_4 and may help to extend our understanding of possible discrete family symmetries, with eventual links to grand unification [22].
Acknowledgements

I thank Miguel Perez and the other organizers of VI-Silafae for their great hospitality and a stimulating symposium in Puerto Vallarta. This work was supported in part by the U. S. Department of Energy under Grant No. DE-FG03-94ER40837.

References

[1] See for example M. C. Gonzalez-Garcia, these proceedings.

[2] P. F. Harrison, D. H. Perkins, and W. G. Scott, Phys. Lett. B530, 167 (2002).

[3] N. Cabibbo, Phys. Lett. B72, 333 (1978).

[4] L. Wolfenstein, Phys. Rev. D18, 958 (1978).

[5] J. Kubo, A. Mondragon, M. Mondragon, and E. Rodriguez-Jauregui, Prog. Theor. Phys. 109, 795 (2003).

[6] O. Felix, A. Mondragon, M. Mondragon, and E. Peinado, hep-ph/0610061.

[7] S.-L. Chen, M. Frigerio, and E. Ma, Phys. Rev. D70, 073008 (2004).

[8] W. Grimus and L. Lavoura, JHEP 0508, 013 (2005).

[9] R. N. Mohapatra, S. Nasri, and H.-B. Yu, Phys. Lett. B639, 318 (2006).

[10] E. Ma and G. Rajasekaran, Phys. Rev. D64, 113012 (2001).

[11] E. Ma, hep-ph/0607190.

[12] K. S. Babu, E. Ma, and J. W. F. Valle, Phys. Lett. B552, 207 (2003).

[13] E. Ma, Phys. Rev. D70, 031901(R) (2004).
[14] G. Altarelli and F. Feruglio, Nucl. Phys. B720, 64 (2005).

[15] G. Altarelli and F. Feruglio, Nucl. Phys. B741, 215 (2006).

[16] E. Ma, Phys. Rev. D72, 037301 (2005).

[17] K. S. Babu and X.-G. He, hep-ph/0507217.

[18] E. Ma, hep-ph/0610342.

[19] M. Hirsch, E. Ma, A. Villanova del Moral, and J. W. F. Valle, Phys. Rev. D72, 091301(R) (2005); Erratum-ibid. D72, 119904 (2005).

[20] E. Ma, Phys. Lett. B632, 352 (2006).

[21] E. Ma, Mod. Phys. Lett. A21, 1917 (2006).

[22] C. Hagedorn, M. Lindner, and R. N. Mohapatra, JHEP 0606, 042 (2006); Y. Cai and H.-B. Yu, hep-ph/0608022. I. de Medeiros Varzielas, S. F. King, and G. G. Ross, hep-ph/0607054.