Overexpression of P70 S6 kinase protein is associated with increased risk of locoregional recurrence in node-negative premenopausal early breast cancer patients

JA van der Hage1,2,3, LJCM van den Broek2, C Legrand1, PC Clahsen2, CJA Bosch4, EC Robanus-Maandag4, CJH van de Velde1 and MJ van de Vijver5,4

1Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2300 RC Leiden, The Netherlands; 2Department of Pathology, Leiden University Medical Center, Albinusdreef 2, 2300 RC Leiden, The Netherlands; 3EORTC Data Center, Avenue E. Mounier B3 b11, 1200 Brussels, Belgium; 4Department of Pathology and Division of Experimental Therapy, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands

The RPS6KB1 gene is located at 17q23 and amplified in approximately 10% of breast carcinomas and has been found associated with poor prognosis. We studied the prognostic significance of P70 S6 kinase protein (PS6K) overexpression in a series of 452 node-negative premenopausal early-stage breast cancer patients (median follow-up: 10.8 years). Immunohistochemistry was used to assess PS6K expression in the primary tumour, which had previously been analysed for a panel of established prognostic factors in breast cancer. In a univariate analysis, PS6K overexpression was associated with worse distant disease-free survival as well as impaired locoregional control (HR 1.80, P 0.006, respectively). In a multivariate analysis including other prognostic factors, PS6K overexpression remained an independent predictor for poor locoregional control (RR 2.67, P 0.003). To our knowledge, P70 S6 kinase protein is the first oncogenic marker that has prognostic impact on locoregional control and therefore may have clinical implications in determining the local treatment strategy in early-stage breast cancer patients.

British Journal of Cancer (2004) 90, 1543 – 1550. doi:10.1038/sj.bjc.6601741 www.bjcancer.com
Published online 30 March 2004
© 2004 Cancer Research UK

Keywords: node-negative; premenopausal; early-stage breast cancer; P70 S6 kinase protein; locoregional recurrence

The treatment of breast cancer is guided by risk factors. Approximately 70% of all node-negative breast cancer patients can be cured by locoregional therapy alone. This automatically implies that the remaining 30% of these patients will develop a recurrence despite adequate locoregional therapy. Currently, treatment strategy in breast cancer is based upon tumour stage, grade, and hormone receptor status. Additional prognostic factors are greatly needed, first to select those patients who might benefit from adjuvant systemic therapy and second to optimise locoregional therapy in order to avoid locoregional recurrences.

The prognostic significance of a considerable number of tumour markers has already been investigated but to date, none of these factors can be used to guide the treatment of primary breast cancer.

A recent study by Barlund et al (2000a) demonstrated that amplification of a putative tumour marker called P70 S6 kinase protein (PS6K) might be associated with poor outcome in breast cancer. In addition, the authors reported that RPS6KB1 gene amplification and PS6K overexpression are significantly correlated.

The RPS6KB1 gene is located at 17q23 and amplified in approximately 10% of all primary breast cancer cases. PS6K is a ribosomal protein that is involved in the progression from the G1 to S phase of the cell cycle. It is rapidly activated in response to mitogenic stimuli, for example, growth factors, cytokines, and oncogene products (Grove et al, 1991; Lane et al, 1993; Chou et al, 1995; Grammer et al, 1996; Thomas et al, 1997; Couch et al, 1999; Barlund et al, 2000b; Wu et al, 2000; Latham et al, 2001; Monni et al, 2001; Andersen et al, 2002; Li et al, 2002; Sinclair et al, 2002; Sinclair et al, 2003).

To study the significance of P70 S6 kinase protein compared with other established prognostic factors in breast cancer, we have tested the prognostic significance of PS6K overexpression in a subset of node-negative premenopausal early breast cancer patients. In this series, we have shown previously that premenopausal node-negative breast cancer patients whose tumours show p53 accumulation have a poor response to one cycle of adjuvant chemotherapy, whereas patients whose tumours have no accumulation of p53 benefit from adjuvant chemotherapy. In addition, we showed Ki-67 overexpression, negative ER status, and young age (<43 years) to be associated with worse prognosis (Clahsen et al, 1998).

PATIENTS AND METHODS

Patients

All patients were drawn from EORTC trial 10854 (1986–1991, median follow up 10.8 years). This trial, which randomised 2795 patients, studied whether one course of peri-operative chemother-
apy given directly after surgery yields better results in terms of treatment outcome than surgery alone. Peri-operative chemotherapy consisted of one single course of doxorubicin 50 mg m\(^{-2}\), 5-fluorouracil 600 mg m\(^{-2}\), and cyclophosphamide 600 mg m\(^{-2}\) (FAC), administered intravenously within 36h after surgery. Axillary lymph node-positive premenopausal patients in the peri-operative chemotherapy group were recommended to receive five additional cycles of cyclophosphamide, methotrexate, and 5-fluorouracil (CMF) postoperatively. Node-positive patients, younger than 50 years, who did not receive peri-operative chemotherapy, were advised to be treated with one conventional course of FAC followed by five cycles of CMF after surgery. At randomisation, patients were stratified for institution, age (<50 years or >50 years), and surgical procedure (breast conserving therapy and modified radical mastectomy). Prolonged adjuvant systemic treatment was left to the discretion of the local investigator (van der Hage et al., 2001).

In total, 676 node-negative premenopausal patients were enrolled in this trial and representative tumour material was collected for 452 patients. Tumour material consisted of formalin-fixed, paraffin-embedded tumour blocks. Tumours were histologically typed and graded (Elston et al., 1991) centrally by one pathologist; immunohistochemistry to assess the expression of various proteins has been performed. Results of these studies have been reported previously (Clahsen et al., 1998). For the present study, assays were reviewed simultaneously by two investigators (MJ Van de Vijver, JA Van der Hage) who had to come to an agreement in case of any uncertainties. During the evaluation of the results, the investigators were blinded for the clinical outcome of the patients.

p70 S6 kinase protein expression

A standard indirect immunoperoxidase protocol with a 3,3'-diaminobenzidine/imidazole solution as a chromogen was used. Before incubation with the primary antibody, antigen retrieval was done by boiling the sections in 10 mM citrate buffer for 10 min using a microwave oven. PS6K expression was determined using a polyclonal anti-p70 s6k antibody (sc-230 Santa Cruz Biotechnology, Santa Cruz, USA) (1:1000 dilution in PBS containing 1% bovine serum albumin). PS6K staining was evaluated in tumour cells and in normal ductal epithelial cells. PS6K staining was scored categorical as: 0 = no staining; 1 = weak cytoplasmic staining; 2 = moderate cytoplasmic staining; 3 = strong cytoplasmic staining. In all cases analysed, the staining was homogeneously distributed in the normal cells and also in the tumour cells. If the difference in staining score between the tumour cells and the normal epithelial ducts was greater or equal than two, tumours were deemed PS6K positive.

RPS6KB1 gene amplification

Two-colour FISH of tumor interphase nuclei was performed according to the ERBB2 short protocol of Ventana Medical Systems, Inc. (Tucson, AZ, USA). The Spectrum Orange-labelled chromosome 17 centromeric probe was purchased from Vysis, Inc. (Downers Grove, IL, USA), the unlabelled bacterial artificial chromosome (BAC) clones for PS6K was isolated from a BAC library (RPCI-13 BAC library, Research Genetics, Inc.). Fluorescent signals were counted in 2 × 20 non-overlapping nuclei per component. Mapping of the PS6K BAC was verified by FISH on metaphase chromosomes.

Other tumour markers

Previously, tumour sections had been stained and analysed for oestrogen and progesterone receptor status, Ki-67 positivity, PI3

Table I Patient characteristics

	N = 452		
Age (year)	Median (range) 44 (24–63)		
Local treatment (N (%))	Breast-conserving therapy 368 (81)	Mastectomy 84 (19)	
Tumour diameter (N (%))	≤2 cm 278 (62)	>2 cm 148 (33)	
Histologic tumour type (N (%))	Infiltrating ductal 316 (70)	Infiltrating lobular 34 (8)	
Histologic tumour grade (N (%))	I 155 (34)	II 144 (32)	III 131 (21)
ER status (N (%))	Positive 390 (86)	Negative 46 (10)	Unknown 16 (4)
PgR status (N (%))	Positive 329 (73)	Negative 106 (23)	Unknown 17 (4)
HER2 overexpression (N (%))	Negative 380 (84)	Positive 60 (13)	Unknown 12 (3)
p53 expression (N (%))	Negative 359 (79)	Positive 81 (18)	Unknown 12 (3)
Ki-67 (N (%))	Negative 217 (48)	Positive 215 (48)	Unknown 20 (4)
PS6K	Negative 391 (87)	Positive 39 (9)	Unknown 22 (5)

Statistical methods

This analysis was based on locoregional control, distant-disease free survival, and overall survival. Locoregional recurrence was defined as the time to locoregional recurrence as a first event. Locoregional recurrences occurring simultaneously or after the diagnosis of distant metastasis or contralateral breast cancer or a secondary primary tumour were censored. Distant disease-free survival was defined as the time to distant metastasis or death, whichever of the events happened first. All variables were first analysed for their prognostic importance in a univariate analysis.
Eight potential prognostic variables were considered: PS6K (negative vs positive), ER status (negative vs positive), PgR status (negative vs positive), HER2 overexpression (negative vs positive), Ki67 (negative, i.e. ≤ 20% of positive tumour cells, vs positive, > 20% positive tumour cells), histologic tumour grade (grade I vs grade II vs grade III), tumour diameter (T ≤ 2 cm vs T > 2 cm), and p53 (negative vs positive).

To test the independent prognostic significance of PS6K overexpression, we included PS6K together with the previously tested markers into a multivariate Cox regression analysis for overall survival, progression-free survival, distant disease-free survival, and locoregional control. Only markers that were significant predictors in the univariate analysis were included in the multivariate analysis.

A Cox proportional hazards model was used for the univariate and multivariate analyses (Cox, 1972). For factors with only two levels the second one was compared to the first one, while for factors with more than two levels dummy variables were used to compare each level to the first one. Patients who had missing information for any of the variables in the analysis were excluded when this variable was included in the model. All tests were two-sided with a 5% alpha level.

RESULTS

Patient characteristics are listed in Table 1. At the time of the analysis, the median follow-up period was 10.8 years, 80 (18%) of

Table 2 Event rates	Number of events			
	N = 452			
Local treatment (N (%))	Overall survival	Locoregional recurrence (first event)	Distant disease-free survival	
Breast-conserving therapy	368 (81)	65 (18)	58 (16)	102 (28)
Mastectomy	84 (19)	15 (18)	9 (11)	24 (29)
Tumour diameter (N (%))				
≤ 2 cm	278 (62)	34 (12)	41 (15)	68 (24)
> 2 cm	148 (33)	40 (27)	21 (14)	51 (34)
Unknown	26 (6)	6 (23)	5 (19)	7 (27)
Histologic tumour type (N (%))				
Infiltrating ductal	316 (70)	60 (19)	48 (15)	91 (29)
Infiltrating lobular	34 (8)	4 (12)	9 (26)	7 (21)
Other	91 (20)	14 (15)	8 (9)	25 (27)
Unknown	11 (2)	2 (18)	2 (18)	3 (27)
Histologic tumour grade (N (%))				
I	155 (34)	10 (6)	23 (15)	30 (19)
II	144 (32)	30 (21)	27 (19)	45 (31)
III	131 (21)	36 (27)	14 (11)	47 (36)
Unknown	22 (5)	4 (18)	3 (14)	4 (18)
ER status (N (%))				
Positive	390 (86)	64 (16)	60 (15)	104 (27)
Negative	46 (10)	13 (28)	4 (9)	18 (39)
Unknown	16 (4)	3 (19)	3 (19)	4 (25)
PgR status (N (%))				
Positive	329 (73)	5 (16)	53 (16)	90 (27)
Negative	106 (23)	27 (25)	12 (11)	33 (31)
Unknown	17 (4)	2 (12)	2 (12)	3 (18)
HER2 overexpression (N (%))				
Negative	380 (84)	66 (17)	52 (14)	107 (28)
Positive	60 (13)	12 (20)	13 (22)	16 (27)
Unknown	12 (3)	2 (17)	2 (17)	3 (25)
P53 expression (N (%))				
Negative	359 (79)	59 (16)	47 (13)	99 (28)
Positive	81 (18)	19 (23)	18 (22)	24 (30)
Unknown	12 (3)	2 (17)	2 (17)	3 (25)
Ki-67 (N (%))				
Negative	217 (48)	19 (9)	36 (17)	43 (20)
Positive	215 (48)	59 (27)	27 (13)	78 (36)
Unknown	20 (4)	2 (10)	4 (20)	5 (25)
PS6K				
Negative	391 (87)	66 (17)	52 (13)	102 (26)
Positive	39 (9)	8 (21)	11 (28)	17 (44)
Unknown	22 (5)	6 (27)	4 (18)	7 (32)
the 452 patients had died, 126 (29%) patients had experienced distant metastases or death, and 67 (15%) patients experienced a locoregional recurrence as first event (see Table 2). PS6K expression levels could be assessed in 430 tumours. In all, 39 tumours (9%) showed PS6K overexpression (Table 1). Examples of PS6K overexpression are shown in Figure 1A & B.

Univariate analyses

In the univariate analyses, we could not confirm a significant association between PS6K overexpression and overall survival (Table 3). However, PS6K overexpression was a significant predictor for increased risk of locoregional recurrence (HR 2.50, 95% CI 1.30–4.81, \(P = 0.006\)) and of developing distant metastases (HR 1.80, 95% CI 1.08–3.01, \(P = 0.025\)).

Multivariate analyses

Apart from PS6K, p53 was the only significant risk factor for locoregional recurrence in the univariate analysis. When including these two factors in a multivariate model, PS6K appears as the only independent prognostic factor for locoregional control predicting a poor control rate in PS6K overexpressing cases (HR 2.67, 95% CI 1.39–5.14, \(P = 0.003\), Table 4).

Variables significantly associated with distant disease-free survival in the univariate analysis were PS6K, ER status, Ki-67, grade, and tumour diameter. In a multivariate model including all these factors, Ki-67 overexpression was the only independent prognostic factor associated with poor distant disease-free survival (HR 1.79, 95% CI 1.11–2.91, \(P = 0.018\), Table 4). PS6K as a prognostic factor did not remain significant in the multivariate analysis. In addition, Ki-67

Figure 1 (A & B) Two cases of PS6K overexpressing breast cancer tumours.
Table 3 Univariate analyses all patients (N = 430)

Marker	Hazard ratio	95% CI	P-value
PS6K+	2.50	1.30–4.81	0.006
ER+	1.38	0.50–3.79	0.536
PgR+	1.31	0.70–2.45	0.403
HER2+	1.64	0.89–3.01	0.111
Ki 67+	0.96	0.58–1.58	0.856

Table 4 Multivariate analyses all patients (N = 430)

Marker	Hazard ratio	95% CI	P-value
PS6K+	2.67	1.39–5.14	0.003
p53 positivity	1.67	0.95–2.96	0.076

Correlation between HER2 and PS6K

As the PS6K gene and the HER2 gene are both located on chromosome 17, and amplification has been reported to occur in both genes simultaneously, we studied the correlation of PS6K expression and HER2 expression and between PS6K expression and Ki67 expression, respectively. Based on available data, we found a significant association between PS6K and HER2 expression (Fisher’s exact test (two sided) P = 0.01), whereas no significant association was found between PS6K positivity and Ki67 positivity (Fisher’s exact test (two sided) P = 0.24).

DISCUSSION

We have found that P70 S6 kinase protein overexpression in breast cancer is associated with increased risk of locoregional recurrence. To our knowledge, no other oncogenic markers as predictors of locoregional recurrence have been identified previously. At present, the common risk factors for local control after breast-conserving treatment are: patient age, margin status, and the presence of an extensive intraductal component (De la Rochefordiere et al, 1993; Elkhuizen et al, 1998; Voogd et al, 1999, 2001). The addition of new predictive markers for locoregional recurrence may help in guiding the optimal type of local therapy. This is of particular importance since local therapy does not only have an impact on locoregional control but also on survival (Shukla et al, 1999; Early Breast Cancer Trialists’ Collaborative Group (EBCTCG), 2000).

P70 S6 kinase protein overexpression was associated with an increased risk of locoregional recurrence when all patients were analysed. The majority of the patients (N = 368) underwent breast-conserving treatment. When these patients were analysed separately, PS6K remained an independent predictor of locoregional recurrence. In the univariate analysis, p53 overexpression was also associated with an increased risk of locoregional recurrence (HR 1.85, P = 0.027); however, this was not the case for the subset of patients who underwent breast-conserving therapy (data not shown). In addition, 5-year follow-up results concerning the impact of p53 and PS6K status on locoregional control
Table 5 Pts who underwent breast-conserving therapy

Patient characteristics	N = 368	Overall survival	Locoregional recurrence (first event)	Distant disease-free survival
		Number of events		
Tumour diameter (N (%))				
≥2 cm	249 (68)	32 (13)	38 (15)	59 (24)
>2 cm	100 (27)	27 (27)	15 (15)	36 (36)
Unknown	19 (5)	6 (32)	5 (26)	7 (37)
Histologic tumour type (N (%))				
Infiltrating ductal	260 (71)	48 (18)	41 (16)	73 (28)
Infiltrating lobular	22 (6)	2 (9)	7 (32)	3 (14)
Other	79 (21)	13 (16)	8 (10)	23 (29)
Unknown	7 (2)	2 (29)	2 (29)	3 (43)
Histologic tumour grade (N (%))				
I	124 (34)	6 (2)	19 (15)	21 (17)
II	121 (33)	18 (21)	25 (21)	40 (33)
III	107 (29)	30 (28)	11 (10)	37 (35)
Unknown	16 (4)	3 (19)	3 (19)	4 (25)
ER status (N (%))				
Positive	319 (87)	52 (16)	51 (16)	85 (27)
Negative	38 (10)	10 (26)	4 (11)	13 (34)
Unknown	11 (3)	3 (27)	3 (27)	4 (37)
PgR status (N (%))				
Positive	268 (73)	45 (17)	45 (17)	77 (29)
Negative	87 (24)	19 (21)	11 (13)	22 (25)
Unknown	13 (4)	2 (15)	2 (15)	3 (23)
HER2 overexpression (N (%))				
Positive	312 (85)	54 (17)	44 (14)	87 (28)
Negative	48 (13)	9 (19)	12 (25)	12 (25)
Unknown	8 (2)	2 (25)	2 (25)	3 (36)
p53 expression (N (%))				
Positive	290 (79)	47 (16)	42 (14)	77 (27)
Negative	70 (19)	16 (23)	14 (20)	22 (31)
Unknown	8 (2)	2 (25)	2 (25)	3 (36)
Ki-67 (N (%))				
Negative	175 (48)	16 (9)	32 (18)	33 (19)
Positive	181 (49)	47 (26)	23 (13)	65 (36)
Unknown	12 (3)	2 (17)	3 (25)	4 (33)
PS6K				
Negative	322 (88)	54 (17)	45 (14)	83 (26)
Positive	8 (8)	7 (23)	10 (33)	13 (43)
Unknown	16 (4)	4 (25)	3 (19)	6 (38)

Table 6 Univariate analyses (Pts who received breast-conserving therapy n = 368)

Marker	Locoregional control	Distant disease-free survival	Overall survival							
	Hazard ratio	95% CI	P-value	Hazard ratio	95% CI	P-value	Hazard ratio	95% CI	P-value	
PS6K+	2.83	1.42–5.62	0.003	1.80	1.00–3.23	0.049	1.44	0.66–3.18	0.360	
ER+	1.22	0.44–3.38	0.701	0.65	0.36–1.16	0.146	0.54	0.27–1.06	0.071	
PgR+	1.29	0.66–2.48	0.461	1.09	0.68–1.75	0.728	0.77	0.45–1.33	0.346	
HER2+	1.79	0.94–3.39	0.075	0.86	0.47–1.57	0.617	1.07	0.53–2.16	0.862	
Ki-67+	0.86	0.50–1.47	0.582	2.31	1.52–3.52	<0.0001	3.40	1.93–6.02	<0.0001	
Grade	I vs I	0.58	0.87–2.86	0.136	2.18	1.29–3.70	0.004	4.94	2.03–12.01	0.0004
	II vs II	0.86	0.41–1.80	0.683	2.52	1.47–4.30	0.0007	7.12	2.96–17.11	<0.0001
Diameter	R>2 cm	1.14	0.63–2.07	0.670	1.72	1.14–2.60	0.011	2.24	1.34–3.75	0.002
p53+	1.47	0.81–2.70	0.209	1.20	0.74–1.92	0.460	1.44	0.82–2.54	0.209	
Table 7 Multivariate analyses (Pts who received breast conserving therapy n = 368)

Marker	Risk ratio	95% CI	P-value
Locoregional recurrence	2.83	1.42–5.62	0.003
Distant disease-free survival			
PS6K+	1.54	0.83–2.88	0.174
Grade III vs I/I	1.17	0.83–1.64	0.369
Diameter > 2 cm	1.24	0.78–1.98	0.365
Overall survival			
K67+	2.01	0.96–4.22	0.066
Grade III vs I/I	1.63	1.04–2.53	0.032
Diameter > 2 cm	1.44	0.83–2.48	0.194

Several studies have examined the relationship between PS6K overexpression and local breast tumour recurrence. A case–control study of 66 women with local breast tumour relapse following lumpectomy and radiation therapy showed that PS6K overexpression was an independent predictive factor for ipsilateral breast tumour recurrence (IBTR) (Noguchi et al, 1997). Recent studies conducted by Turner et al (2000) and Zellars et al (2000) demonstrated predictive significance of PS6K overexpression for locoregional recurrence in patients who underwent breast-conserving therapy, as well as in patients who underwent mastectomy. Turner and colleagues showed in a matched case-control study comprising 47 cases and 47 controls that overexpression of PS6K had prognostic significance in respect to IBTR following lumpectomy and radiotherapy (P = 0.003). Zellars and co-workers demonstrated in 1530 mastectomy-treated breast cancer patients of whom 259 received adjuvant radiotherapy that PS6K overexpression was independently associated with a significantly increased local failure rate in patients treated with mastectomy, with (RR 2.5, 95% CI 1.1–5.7) or without (RR 1.7, 95% CI 1.2–2.4) radiotherapy. Although, in our series, PS6K lost its prognostic significance in the multivariate analysis, a trend still remained, suggesting worse locoregional recurrence rates in PS6K-overexpressing tumours (RR 1.67, 95% CI 0.95–2.96).

Barlund et al (2000a) analysed RPS6KB1 amplification using FISH in 668 informative primary breast tumours. In all, 9% of the tumours showed amplification of the RPS6KB1 gene. In their series, PS6K was significantly associated with poor survival (P = 0.0021). In addition, the authors analysed overexpression in a subset of 455 primary breast tumours. P70 S6 kinase protein staining of cytoplasm was subjectively scored into four groups: negative (no staining), weak, moderate, or strong staining. For statistical analyses, the data were combined into two groups: low expression (negative or weak staining) and high expression (moderate or strong staining). High expression was seen in 15.6%. There was a statistically significant association between RPS6KB1 amplification and high P70 S6 kinase protein expression (P = 0.0004), with 41% of the amplified tumours (FISH) exhibiting high PS6K expression, and overexpression of PS6K was associated with poor survival (P = 0.0083) as well. Our results suggest an even stronger association between amplification and expression, albeit with not enough data to make a sound statistical comparison. Moreover, the authors found that patients showing both PS6K and HER2 amplification had a significant worse prognosis in terms of breast cancer-specific survival than those with no amplification or amplification of only one of the genes.

These results together with our data suggest that P70 S6 kinase protein overexpression may be an important predictor of not only worse survival but also of poor locoregional control.

REFERENCES

Andersen CL, Monni O, Wagner U, Kononen J, Barlund M, Bucher C, Haas P, Nocito A, Bissig H, Sauter G, Kallioniemi A (2002) High-throughput copy number analysis of 17q23 in 3520 tissue specimens by fluorescence in situ hybridization to tissue microarrays. Am J Pathol 161: 73–79
Barlund M, Forozan F, Monni O, Bubendorf L, Chen Y, Bittner ML, Torhorst J, Haas P, Bucher C, Sauter G, Kallioniemi O-P, Kallioniemi A (2000a) Detecting activation of ribosomal protein S6 kinase by complementary DNA and tissue microarray analysis. J Natl Cancer Inst 92: 1252–1259
Barlund M, Monni O, Kononen J, Cornelison R, Torhorst J, Sauter G, Kallioniemi O, Kallioniemi A (2000b) Multiple genes at 17q23 undergo amplification and overexpression in breast cancer. Cancer Res 60: 5340–5344
Chou MM, Blenis J (1995) The 70 kDa S6 kinase: regulation of a kinase with multiple roles in mitogenic signalling. Curr Opin Cell Biol 7: 806–814
Clalsen PC, van de Velde CJH, Duval C, Pallud C, Mandard A-M, Delobelle-Deroide A, van den Broeck L, Mahmoud TM, van de Vijver MJ (1998) P53 Protein accumulation and response to adjuvant chemotherapy in premenopausal women with node-negative early breast cancer. J Clin Oncol 16: 470–479
Couch FJ, Wang X-Y, Wu G-J, Qian J, Jenkins CD (1999) Localization of PS6K to chromosomal region 17q23 and determination of its amplification in breast cancer. Cancer Res 59: 1408–1411
Cox DR (1972) Regression models and life-tables. J R Stat Assoc B 34: 187–220
De la Rochefortdiere A, Asselain B, Campana F, Scholl SM, Fenton J, Vilcoq JR, Durand J-C, Pouillart P, Magdeleat H, Fourquet A (1993) Age as a prognostic factor in premenopausal breast carcinoma. Lancet 341: 1039–1043

Early Breast Cancer Trials’ Collaborative Group (2000) Favourable and unfavourable effects on long-term survival of radiotherapy for early breast cancer: an overview of the randomised trials. Lancet 355: 1757–1770
Elkhuizen PH, van de Vijver MJ, Hermans J, Zonderland HM, van de Velde CJH, Leer JW (1998) Local recurrence after breast-conserving therapy for invasive breast cancer: high incidence in young patients and association with poor survival. Int J Radiat Oncol Biol Phys 40: 859–867
Elston CW, Ellis IO (1991) Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology 19: 403–410
Grammer VC, Cheetham L, Chou MM, Blenis J (1996) The p70S6K signalling pathway: a mult signalling network involved in growth regulation. Cancer Surv 27: 271–292
Grove JR, Banerjee P, Balasubramanyam A, Coffer PJ, Price DJ, Avruch J, Woodgett JR (1991) Cloning and expression of two human p70 S6 kinase polypeptides differing only at their amino termini. Mol Cell Biol 11: 5541–5550
van der Hage JA, van De Velde CJH, Julien JP, Floiras JL, Delozier T, Vandervelden C, Duchateau L (2001) Improved survival after one course of perioperative chemotherapy in early breast cancer patients, long-term results from the European Organization for Research and Treatment of Cancer (EORTC) Trial 10854. Eur J Cancer 37: 2184–2193
Lane HA, Fernandez A, Lamb NJ, Thomas G (1993) p70S6K function is essential for G1 progression. Nature 363: 170–172
Latham C, Zhang A, Nalbantii A, Maner S, Zickert P, Blegen H, Zetterberg A (2001) Frequent co-amplification of two different regions on 17q in aneuploid breast carcinomas. Cancer Genet Cytogenet 127: 16–23
Li J, Yang Y, Peng Y, Austin RJ, van Eyndhoven G, Nguyen KCQ, Gabriele T, McCurrach ME, Marks JR, Hoey T, Lowe SW, Powers S (2002) Oncogenic properties of PPM1D located within a breast cancer amplification epicenter at 17q23. *Nat Genet* 31: 133–134

Monni O, Barlund M, Mousses S, Kononen J, Sauter G, Heiskanen M, Paavola P, Avela K, Chen Y, Bittner ML, Kallioniemi A (2001) Comprehensive copy number and gene expression profiling of the 17q23 amplicon in human breast cancer. *Proc Natl Acad Sci USA* 98: 5711–5716

Noguchi S, Koyama H, Kasugai T, Tsukuma H, Tsuji N, Tsuda H, Akiyama F, Motomura K, Inaji H (1997) A case–control study on risk factors for local recurrences or distant metastases in breast cancer patients treated with breast-conserving surgery. *Oncology* 54: 468–474

Shukla HS, Melhuish J, Mianiel RE, Hughes LE (1999) Does local therapy affect survival rates in breast cancer? *Ann Surg Oncol* 6: 455–460

Sinclair CS, Rowley M, Naderi A, Couch FJ (2003) The 17q23 amplicon and breast cancer. *Breast Cancer Res Treat* 78: 313–322

Sinclair CS, Adem C, Naderi A, Soderberg CL, Johnson M, Wu KJ, Wadum L, Couch VL, Sellers TA, Schaid D, Slezak J, Fredericksen Z, Ingle JN, Hartmann L, Jenkins RB, Couch FJ (2002) TBX2 is preferentially amplified in BRCA1- and BRCA2-related breast tumors. *Cancer Res* 62: 3587–3591

Thomas G, Hall MN (1997) TOR signalling and control of cell growth. *Curr Opin Cell Biol* 9: 782–787

Turner BC, Gumbs AA, Carbone CJ, Carter D, Glazer PM, Haffty BG (2000) Mutant p53 protein overexpression in women with ipsilateral breast tumour recurrence following lumpectomy and radiation therapy. *Cancer* 88: 1091–1098

Voogd AC, Peterse JL, Crommelin MA, Rutgers EJ, Botke G, Elkhuisen PH, van Geel AN, Hoekstra CJ, van Pel R, van de Vijver MJ, Goepbergh JW (1999) Histological determinants for different types of local recurrence after breast-conserving therapy of invasive breast cancer. Dutch Study Group on local Recurrence after Breast onservation (BORST). *Eur J Cancer* 35: 1828–1837

Voogd AC, Nielsen M, Peterse JL, Blichert-Toft M, Bartelink H, Overgaard M, van Tienhoven G, Andersen KW, Sylvester J, van Dongen JA (2001) Differences in risk factors for local and distant recurrence after breast-conserving therapy or mastectomy for stage I and II breast cancer: pooled results of two large European randomized trials. *J Clin Oncol* 19: 1688–1697

Wu GJ, Sinclair CS, Paape J, Ingle JN, Roche PC, James CD, Couch FJ (2000) 17q23 amplifications in breast cancer involve the PAT1, RAD51C, PS6K, and SIGma1B genes. *Cancer Res* 60: 5371–5375

Zellars RC, Hilsenbeck SG, Clark GM, Allred DC, Herman TS, Chamness GC, Elledge RM (2000) Prognostic value of p53 for local failure in mastectomy-treated breast cancer patients. *J Clin Oncol* 18: 1906–1913