Appendix to:

EFSA (European Food Safety Authority), 2019. Conclusion on the peer review of the pesticide risk assessment of the active substance pydiflumetofen. EFSA Journal 2019;17(10):5821, 92 pp. doi:10.2903/j.efsa.2019.5821

© European Food Safety Authority, 2019

Appendix A – List of end points for the active substance and the representative formulation

Identity, Physical and Chemical Properties, Details of Uses, Further Information (Regulation (EU) N° 283/2013, Annex Part A, points 1.3 and 3.2)

Active substance (ISO Common Name)	Pydiflumetofen
Function (e.g. fungicide)	Fungicide
Rapporteur Member State	France
Co-rapporteur Member State	Austria

Identity (Regulation (EU) N° 283/2013, Annex Part A, point 1)

Chemical name (IUPAC)	3-(difluoromethyl)-N-methoxy-1-methyl-N-[(RS)-1-methyl-2-(2,4,6-trichlorophenyl)ethyl]-1\texttextsubscript{H}-pyrazole-4-carboxamide
Chemical name (CA)	3-(difluoromethyl)-N-methoxy-1-methyl-N-[1-methyl-2-(2,4,6-trichlorophenyl)ethyl]-1\texttextsubscript{H}-pyrazole-4-carboxamide
CIPAC No	999
CAS No	1228284-64-7
EC No (EINECS or ELINCS)	Not available
FAO Specification (including year of publication)	Not available
Minimum purity of the active substance as manufactured	980 g/kg
Identity of relevant impurities (of toxicological, ecotoxicological and/or environmental concern) in the active substance as manufactured	Open
Molecular formula	C\textsubscript{16}H\textsubscript{16}O\textsubscript{2}N\textsubscript{3}Cl\textsubscript{3}F\textsubscript{2}
Molar mass	426.7 g/mol
Structural formula	Pydiflumetofen consists of two enantiomers as a racemate (50:50) SYN546968 3-(difluoromethyl)-N-methoxy-1-methyl-N-[\texttextsubscript{S}]-1-methyl-2-(2,4,6-trichlorophenyl)ethyl]-1\texttextsubscript{H}-pyrazole-4-
carboxamide

SYN546969
3-(difluoromethyl)-N-methoxy-1-methyl-N-[(R)-1-methyl-2-(2,4,6-trichlorophenyl)ethyl]-1H-pyrazole-4-carboxamide
Physical and chemical properties (Regulation (EU) N° 283/2013, Annex Part A, point 2)	
Melting point (state purity)	112.7 °C
Boiling point (state purity)	NA (decomposed before boiling)
Temperature of decomposition (state purity)	283 °C
Appearance (state purity)	White powder
Vapour pressure (state temperature, state purity)	1.84.10⁻⁷ Pa at 20 °C
	5.30.10⁻⁷ Pa at 25°C
Henry’s law constant (state temperature)	1.05x10⁻⁴ Pa m³ mol⁻¹
Solubility in water (state temperature, state purity and pH)	1.5 mg/L at 25°C (pH 6.5)
Solubility in organic solvents (state temperature, state purity)	At 25°C: acetone 220 g/l, dichloromethane >500 g/l, ethyl acetate 130 g/l, hexane 0.270 g/l, methanol 26 g/l, octanol 7.2 g/l, toluene 67 g/l
Surface tension (state concentration and temperature, state purity)	71.5 mN/m at 21.5°C (90 % saturated solution)
Partition coefficient (state temperature, pH and purity)	log P_{OW} = 3.8 at 25°C
Dissociation constant (state purity)	There is no pKa value within the range 2.0 to 12.0
UV/VIS absorption (max.) incl. ε (state purity, pH)	In acidic solution: λ_{max} (230nm): ε = 18267 (L mol⁻¹ cm⁻¹)
	at λ > 290 nm: 295 nm
	or ε at 295 nm: 59.5 L mol⁻¹ cm⁻¹
Flammability (state purity)	Not classified as a flammable substance.
Explosive properties (state purity)	Not classified as an explosive substance.
Oxidising properties (state purity)	Not classified as an oxidising substance.
Summary of representative uses evaluated, for which all risk assessments needed to be completed (pydiflumetofen) (Regulation (EU) No 284/2013, Annex Part A, points 3, 4)

Tradename: A19649B
Active Substances: SYN545974 200 g/L SC formulation

Crop and/or situation (a)	Membe State or Countr y	Product name	FG or I (b)	Pests or Group of pests controlled (c)	Preparation	Application	Application rate per treatment	PHI (days) (m)	Remarks				
Pome fruit (apple, pear)	EU A19649B F	Powdery mildew (Podosphaera leucotricha) + scab (Venturia inaequalis) scab (Venturia pyrina)	SC 200 g/L Foliar spray BBC H 56-79	3	7	400-150 0	50 65	0.14L/Ha LWA in 18000m² LWA/ha = 0.25 l/ha (17ml/hl)					
Grapes (wine & table)	EU A19649B F	Grey mould (Botrytis cinerea)	SC 200 g/L Foliar spray BBC H 67-89	2	14	500-140 0	200 21						
Grapes (wine & table)	EU A19649B F	Powdery mildew (Uncinula necator)	SC 200 g/L Foliar spray BBC H 13-77	2	10	150-100 0	40 21						
Potato	EU A19649B F	Early blight (Alternaria solani)	SC 200 g/L Foliar spray BBC H 31-89	3	14	200-500	40 7						
Fruiting vegetables (tomato)	EU A19649B F	Early blight (Alternaria solani)	SC 200 g/L Foliar spray BBC H 51-89	2	7	300-100 0	70 1						
Edible cucurbit, (cucumber,	EU A19649B F	Powdery mildew (Sphaerotheca fuliginea)	SC 200 g/L Foliar spray BBC H 20-89	2	7	300-100 50 1	Equivalent to 25						
Crop and/or situation (a)	Membe r State or Countr y	Product name	Pests or Group of pests controlled (c)	Preparation	Application	Application rate per treatment	Remarks						
--------------------------	--------------------------	--------------	--------------------------------------	-------------	------------	--------------------------------	---------						
				Type (d-f)	Conc. a.s. (i)	method kind (f-h)	range of growth stages & season (j)	number min-max (k)	Interval between application (min)	Water L/ha min-max	g a.s./ha min-max (l)	PHI (days) (m)	
courgette)				SC	200 g/L	Foliar spray	BBC H 20-89	2	7	300-100 0	50	1	Equivalen t to 25 mL/hL
Inedible cucurbit (melon, watermelon)	EU	A19649B	F	Powdery mildew (Sphaerotheca fuliginea) and Erysiphe sp)	SC	200 g/L	Foliar spray	BBC H 21-49	2	14	200-600	70	14
Flowering brassica (broccoli,cauliflower), leafy brassica (kale), head brassica (cabbage)	EU	A19649B	F	Alternaria sp and Mycosphaerella sp.	SC	200 g/L	Foliar spray	BBC H 21-49	2	14	200-600	70	14
Head brassica (Brussels sprout), kohlrabi	NEU	A19649B	F	Alternaria sp and Mycosphaerella sp.	SC	200 g/L	Foliar spray	BBC H 21-49	2	14	200-600	70	14
													Uses sought in Northern EU only
Summary of additional intended uses for which MRL applications have been made, that in addition to the uses above, have also been considered in the consumer risk assessment (pydiflumetofen) Regulation (EC) N° 1107/2009 Article 8.1(g))

Important note: efficacy, environmental risk and risk to humans by exposure other than via their diet have not been assessed for these uses

Crop and/or situation (a)	Member State or Country	Product name	F G or I (b)	Pests or Group of pests controlled (c)	Preparatio n (d-f)	Application (g)	Application rate per treatment (h)	PHI (days) (i)	Remarks			
Potatoes / Sweet Potatoes/ Yams	EU	NEU/SE U	Early blight (Alternaria solani)	SC	Foliar spray	BBC H 31-89	3	14	-	200-500	40	7
Tomatoes (protected)	EU	G	Leveillula taurica, Oidium lycopersici	SC	Foliar spray	BBC H 51-89	2	7	-	300-1000	70	1
Tomatoes (protected)	EU	G	Botrytis cinerea	SC	Foliar spray	BBC H 51-89	2	7	-	300-1000	200	1
Peppers (protected)	EU	G	Leveillula taurica	SC	Foliar spray	BBC H 51-89	2	7	-	300-1000	70	3

MRL Application (according to Article 8.1(g) of Regulation (EC) No 1107/2009)

- 0.14l/Ha LWA in 18000m²
- LWA/ha = 0.25 l/ha (17ml/l)
| Crop and/or situation (a) | Member State or Country | Product name (b) | Pests or Group of pests controlled (c) | Preparatio n Type (d-f) | Conc .a.s. (i) | method kind (f-h) | range of growth stages & season (j) | numbe r min-max (k) | Interval between application (min) | Application rate per treatment kg a.s./hL min-max (l) | Water L/ha min-max (m) | PHI (days) (n) | Remarks | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Peppers/ Sweet peppers/ Bell peppers (field) | EU | NEU/SE U | Leveillula taurica | SC | 200 g/L | Foliar spray | BBC H 51-89 | 2 | 7 | - | 300-1000 | 70 | 3 |
| Aubergine/Eggplants (field) | EU | NEU/SE U | Early blight (Alternaria solani) | SC | 200 g/L | Foliar spray | BBC H 51-89 | 2 | 7 | - | 300-1000 | 70 | 1 |
| Aubergine Eggplants (protected) | EU | G | Powdery mildew (Leveillula taurica, Oidium lycopersici) | SC | 200 g/L | Foliar spray | BBC H 51-89 | 2 | 7 | - | 300-1000 | 70 | 1 |
| Aubergine Eggplants (protected) | EU | G | Botrytis cinerea | SC | 200 g/L | Foliar spray | BBC H 51-89 | 2 | 7 | - | 300-1000 | 200 | 1 |
| Okra (protected) | EU | G | Leveillula taurica | SC | 200 g/L | Foliar spray | BBC H 51-89 | 2 | 7 | - | 300-1000 | 70 | 3 |
| Okra (field) | EU | NEU/SE U | Leveillula taurica | SC | 200 g/L | Foliar spray | BBC H 51-89 | 2 | 7 | - | 300-1000 | 70 | 3 |
| Cucurbit Edible peel : | EU | NEU/SE U | Powdery mildew (Sphaerotheca | SC | 200 g/L | Foliar spray | BBC H 20-89 | 2 | 7 | - | 300-1000 | 50 | 1 | Equivalent to 25 mL/hL |
| Crop and/or situation (a) | Member State or Country | Product name | FG or I (b) | Pests or Group of pests controlled (c) | Preparations Type (d-f) | Conc. a.s. (i) | Method kind (f-h) | Range of growth stages & season (j) | Number min-max (k) | Interval between application (min) | Application rate per treatment kg a.s./hL min-max (l) | Water L/ha min-max (l) | PHI (days) (m) | Remarks |
|--------------------------|-------------------------|--------------|-------------|--|------------------------|--------------|----------------|-----------------------------------|-------------------|--------------------------------|--------------------------------------|---------------------|--------|---------|
| cucumber, courgette/ zucchini, Gherkins and others (field) | | | | | | | | | | | | | | |
| Cucurbits Edible peel (protected) | EU | | G | Sphaerotheca fuliginea | SC | 200 g/L | Foliar spray | BBC H 20-89 | 2 | 7 | - | 300-1000 | 50 | 1 |
| Cucurbits Inedible peel: melon, watermelon Pumpkin and others (field) | EU | NEU/SEU | | Powdery mildew (Sphaerotheca fuliginea and Erysiphe sp) | SC | 200 g/L | Foliar spray | BBC H 20-89 | 2 | 7 | - | 300-1000 | 50 | 1 | Equivalent to 25 mL/hL |
| Cucurbits Inedible peel (protected) | EU | | G | Sphaerotheca fuliginea | SC | 200 g/L | Foliar spray | BBC H 20-89 | 2 | 7 | - | 300-1000 | 50 | 1 |
| Kale/chinese cabbage/pe-tsai | EU | NEU/SEU | | Alternaria sp. and Mycosphaerella sp. | SC | 200 g/L | Foliar spray | BBC H 21-49 | 7 | 2 | 14 | - | 200-600 | 70 | 14 |
| Crop and/or situation (a) | Member State or Country | Product name | F or I (b) | Pests or Group of pests controlled (c) | Preparation (d-f) | Application (g) | Application rate per treatment | Remarks |
|--------------------------|-------------------------|--------------|------------|--|-------------------|----------------|---------------------------------|---------|
| Soya bean | import tolerance Argentina | G | Septoriaglycines Cercospora sojina, Cercospora kikuchii | SC | Foliar spray | 45 DBH | 2 | - | 100-400 | 160* | 30 |

(a) For crops, the EU and Codex classifications (both) should be taken into account; where relevant, the use situation should be described (e.g. fumigation of a structure).
(b) Outdoor or field use (F), greenhouse application (G) or indoor application (I).
(c) e.g. biting and sucking insects, soil born insects, foliar fungi, weeds.
(d) e.g. wettable powder (WP), emulsifiable concentrate (EC), granule (GR).
(e) CropLife International Technical Monograph no 2, 6th Edition. Revised May 2008. Catalogue of pesticide.
(f) All abbreviations used must be explained.
(g) Method, e.g. high volume spraying, low volume spraying, spreading, dusting, drench.
(h) Kind, e.g. overall, broadcast, aerial spraying, row, individual plant, between the plant- type of equipment used must be indicated.

(i) g/kg or g/L. Normally the rate should be given for the active substance (according to ISO) and not for the variant in order to compare the rate for same active substances used in different variants (e.g. fluoroxypyr). In certain cases, where only one variant is synthesised, it is more appropriate to give the rate for the variant (e.g. benthiavalicarb-isopropyl).
(j) Growth stage range from first to last treatment (BBCH Monograph, Growth Stages of Plants, 1997, Blackwell, ISBN 3-8263-3152-4), including where relevant, information on season at time of application.
(k) Indicate the minimum and maximum number of applications possible under practical conditions of use.
(l) The values should be given in g or kg whatever gives the more manageable number (e.g. 200 kg/ha instead of 200 000 g/ha or 12.5 g/ha instead of 0.0125 kg/ha).
(m) PHI - minimum pre-harvest interval.

*160 g/ha - 60 g a.s./ha for pydiflumetofen and 100 g a.s./ha for difenoconazole.
Further information, Efficacy

Effectiveness (Regulation (EU) N° 284/2013, Annex Part A, point 6.2)

| Results of field trials demonstrate that A19649B, containing 200 g/l pydiflumetofen as a suspension concentrate, has a good efficacy on a broad range of crops against a broad range of diseases which are all representative across Europe. |

Adverse effects on field crops (Regulation (EU) N° 284/2013, Annex Part A, point 6.4)

| Taking into account the results of the trials, A19649B, containing 200 g/L pydiflumetofen, is a safe product for all these representative crops, even after multiple applications. |

Observations on other undesirable or unintended side-effects (Regulation (EU) N° 284/2013, Annex Part A, point 6.5)

| Considering the activity of pydiflumetofen (as fungicide) and the results of crop safety trials, no negative effect is intended on succeeding crops, adjacent crops and beneficials. |

Groundwater metabolites: Screening for biological activity (SANCO/221/2000-rev.10-final Step 3 a Stage 1)

| Activity against target organism | Not applicable (no groundwater metabolites) |
Methods of Analysis

Analytical methods for the active substance (Regulation (EU) N° 283/2013, Annex Part A, point 4.1 and Regulation (EU) N° 284/2013, Annex Part A, point 5.2)

Technical a.s. (analytical technique)	HPLC-UV (230 nm)
Impurities in technical a.s. (analytical technique)	There is no relevant impurity
Plant protection product (analytical technique)	HPLC-UV (230 nm)

Analytical methods for residues (Regulation (EU) N° 283/2013, Annex Part A, point 4.2 & point 7.4.2)

Residue definitions for monitoring purposes

Category	Residue Definition
Food of plant origin	Pydflumetofen
Food of animal origin	Pydflumetofen
Soil	Pydflumetofen
Sediment	Pydflumetofen
Water surface	Pydflumetofen
Drinking/ground	Pydflumetofen
Air	Pydflumetofen
Body fluids and tissues	Pydflumetofen and its metabolite 2,4,6-TCP (2,4,6-trichlorophenol) (free and conjugated)

Monitoring/Enforcement methods

Category	Analytical Technique and LOQ for Methods for Monitoring Purposes
Food/feed of plant origin (analytical technique and LOQ for methods for monitoring purposes)	HPLC/MS/MS (QuEChERS) pydflumetofen LOQ = 0.01 mg/kg Data gap: extraction efficiency
Food/feed of animal origin (analytical technique and LOQ for methods for monitoring purposes)	HPLC-MS/MS (QuEChERS) LOQ = 0.01 mg/kg Data gap: validation data for muscle HPLC/MS/MS 2,4,6-trichlorophenol LOQ = 0.01 mg/kg
Soil (analytical technique and LOQ)	HPLC-MS/MS LOQ = 0.5 µg/kg
Water (analytical technique and LOQ)	HPLC-MS/MS LOQ = 0.05 µg/L
Air (analytical technique and LOQ)	HPLC-MS/MS LOQ = 30 µg/m³
Body fluids and tissues (analytical technique and LOQ)	HPLC-MS/MS (QuEChERS) pydflumetofen LOQ = 0.01 mg/kg HPLC-MS/MS 2,4,6-trichlorophenol LOQ = 0.01 mg/kg
Classification and labelling with regard to physical and chemical data (Regulation (EU) No 283/2013, Annex Part A, point 10)

Substance	pydiflumetofen
Harmonised classification according to Regulation (EC) No 1272/2008 and its Adaptations to Technical Process [Table 3.1 of Annex VI of Regulation (EC) No 1272/2008 as amended]¹:	-
Peer review proposal ² for harmonised classification according to Regulation (EC) No 1272/2008:	-

¹ Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006. OJ L 353, 31.12.2008, 1-1355.

² It should be noted that harmonised classification and labelling is formally proposed and decided in accordance with Regulation (EC) No 1272/2008.
Impact on Human and Animal Health

Absorption, distribution, metabolism and excretion (toxicokinetcis) (Regulation (EU) N° 283/2013, Annex Part A, point 5.1)

Rate and extent of oral absorption/systemic bioavailability

85-90% of oral dose systemically available in male and females rats (based on urinary (6-13%) and biliary (67-81%) excretion within 72 h, single oral gavage dose at 5 mg/kg bw)

Oral absorption was reduced to 50-55% at 100 mg/kg bw and 19-24% at 300 mg/kg bw

Based on > 85% oral availability at the low dose tested, no correction for the AOEL or AAOEL is required

Toxicokinetics

T_{1/2} < 2 h following iv administration of 1 mg/kg bw.

Systemic exposure (AUC(0-t)) was non-linear from 300 mg/kg bw in male rat and 100 mg/kg in female rat.

Following a single oral administration, C_{max} 0.5-2 hours (5 mg/kg bw) and 8 hours (≥100 mg/kg bw). AUC(0-t) increased sub proportionally between 5 mg/kg bw and higher doses.

	5 mg/kg bw	1000 mg/kg bw		
	male	female	male	female
C_{max} (ng equiv/g)	562	715	11200	10100
t_{max} (hours)	1	1	24	24
t_{1/2} (hours)	46	43	22	20
AUC(0-t) (ng equiv.h/g)	8520	12800	449000	353000
AUC(0-inf) (ng equiv.h/g)	11900	18100	562000	401000

Distribution

Widely distributed, with highest concentrations of radioactivity observed in the liver and kidney

Potential for bioaccumulation

No evidence for accumulation

Rate and extent of excretion

Following a single oral gavage dose, ca. 91% was excreted within 48 h with excretion complete by 168 h; predominantly in faeces via biliary excretion. The remainder of the dose was recovered from urine, with <0.1% of dose recovered in expired air or in the carcass.

Metabolism in animals

Extensively metabolised (> 95%); in rat, unchanged parent in urine accounted for less than 3.9% of the 5 mg/kg bw oral dose.

The primary metabolic routes included demethoxylation, N-dealkylation, single and dihydroxylation, O-demethylation and oxidative and reductive dechlorination. The majority of these metabolites were also mono and di-hydroxylated and in many cases conjugated with glucuronide or glutathione.

Metabolic profile very similar in mouse, goat and hen.

In vitro metabolism

No notable difference of pydiflumetofen metabolism in a comparative in vitro study with rat and human liver
Toxicologically relevant compounds (animals and plants)
- Pydiflumetofen and 2,4,6-Trichlorophenol

Toxicologically relevant compounds (environment)
- Pydiflumetofen

Acute toxicity (Regulation (EU) N° 283/2013, Annex Part A, point 5.2)

Toxicity	Value
Rat LD$_{50}$ oral	> 5000 mg/kg bw
Rat LD$_{50}$ dermal	> 5000 mg/kg bw
Rat LC$_{50}$ inhalation	> 5.11 mg/L air /4h (nose only)
Skin irritation	Non-irritant
Eye irritation	Non-irritant
Skin sensitisation	Non-sensitiser (LLNA)
Phototoxicity	Not-phototoxic (*in vitro* 3T3 NRU assay)

Short-term toxicity (Regulation (EU) N° 283/2013, Annex Part A, point 5.3)

Target organ / critical effect	Description
Body weight reduction (dog)	Liver: increased liver weight, blood clinical chemistry parameters changes, hepatocellular hypertrophy (rat, mouse, dog) Thyroid: hypertrophy of thyroid follicular epithelium (rat)

Relevant oral NOAEL	90-day, rat: 18.6 mg/kg bw per day 90-day, mouse: 17.5 mg/kg bw per day 90-day, dog: 30 mg/kg bw per day
Relevant dermal NOAEL	28-day, rat: 1000 mg/kg bw per day
Relevant inhalation NOAEL	No data - not required

Genotoxicity (Regulation (EU) N° 283/2013, Annex Part A, point 5.4)

Study type	Description
In vitro studies	Not genotoxic (*negative Ames and MLA assays, negative response for clastogenicity (CA))
In vivo studies	Not genotoxic (*negative mouse bone marrow micronucleus and rat chromosome aberration assays*)
Photomutagenicity	Not required
Potential for genotoxicity	Pydiflumetofen is unlikely to be genotoxic
Long-term toxicity and carcinogenicity (Regulation (EU) N°283/2013, Annex Part A, point 5.5)

Long-term effects (target organ/critical effect)	Rat & mouse: Lower bodyweight and increased liver weight with associated histopathology changes
Relevant long-term NOAEL	2-year, rat: 9.9 mg/kg bw per day 18-month, mouse: 9.2 mg/kg bw per day
Carcinogenicity (target organ, tumour type)	Rat: no increased incidence of tumours over controls Mouse: liver tumours in the male mouse only. Additional work supports the tumour mode of action is not relevant to humans. Pydiflumetofen is unlikely to pose a hazard to humans. Assessment considered inconclusive regarding the potential adversity related to SDHI in human (data gap)
Relevant NOAEL for carcinogenicity	2-year, rat: 102 mg/kg bw per day (highest dose tested) 18-month, mouse: 9.2 mg/kg bw per day

Reproductive toxicity (Regulation (EU) N° 283/2013, Annex Part A, point 5.6)

Reproduction toxicity

Reproduction target / critical effect	Parental toxicity: Liver changes (increased liver weight (>15%) and hepatocellular hypertrophy). In males only, lower bodyweight and hypertrophy of thyroid follicular epithelium. Reproductive toxicity: no adverse effect observed in rat 2-generation study Offspring’s toxicity: delayed sexual maturation in F1 (no subsequent effect on oestrus cycling, mating performance, fertility or on anogenital distance) and decrease bw in both males and females in F1 generation.
Relevant parental NOAEL	36 mg/kg bw per day
Relevant reproductive NOAEL	116 mg/kg bw per day (highest dose tested)
Relevant offspring NOAEL	36 mg/kg bw per day

Developmental toxicity

| Developmental target / critical effect | Rat: Maternal toxicity: reduced bodyweight gain and food consumption at highest dose (100 mg/kg bw per day) gestation days 6-10 only. Developmental toxicity: No treatment related effects. Rabbit: Maternal toxicity: No treatment related effects |
Developmental toxicity: increased incidence of one skeletal variant (rib costal cartilage interrupted)

Relevant maternal NOAEL	Rat: 30 mg/kg bw per day
Rabbit: 500 mg/kg bw per day	

Relevant developmental NOAEL	Rat: 100 mg/kg bw per day
Rabbit: 10 mg/kg bw per day	

Neurotoxicity (Regulation (EU) N° 283/2013, Annex Part A, point 5.7)

Acute neurotoxicity	No effects in male rats at 2000 mg/kg bw per day. In female rats, clinical signs and effect on body temperature and locomotor activity at ≥ 300 mg/kg bw. All signs of toxicity resolved by day 2.

Repeated neurotoxicity	Study not required

Additional studies (e.g. delayed neurotoxicity, developmental neurotoxicity)	No additional studies

Other toxicological studies (Regulation (EU) N° 283/2013, Annex Part A, point 5.8)

Supplementary studies on the active substance	Mechanistic study performed in the male mouse to investigate mode of action (MoA) for liver tumours. Using a WHO/IPCS MoA Framework, the key events of constitutive androstane receptor (CAR) activation and proliferation were demonstrated in the mouse and/or in vitro hepatocytes, however in vitro human hepatocytes exposed to pydiflumetofen did not elicit a proliferative response. Therefore, the MoA for liver tumours in the male mouse is considered of low relevance to humans. Pydiflumetofen is considered an inducer of hepatic microsomal UDGPT in male rats. Pydiflumetofen was not an inhibitor of rat thyroid peroxidase in vitro. No sign indicative of immunotoxicity seen in the overall data package.

Endocrine disrupting properties	The Thyroid (T) modality was sufficiently investigated and no adversity was observed. The Oestrogen, Androgen and Steroidogenesis (EAS) modalities were sufficiently investigated and no adversity was observed. It is concluded that pydiflumetofen is not an ED in humans according to point 3.6.5 of Annex II to Regulation (EC) No 1107/2009, as amended by Commission Regulation (EU) 2018/605.

| Studies performed on metabolites or impurities | |
|---| |
Substance Code	Description
CSAA798670 (CA4312; NOA449410; M700F001)	Rat acute oral LD$_{50}$ > 2000 mg/kg bw
Non-genotoxic (negative Ames, MLA and CA assays \textit{in vitro})	
28/90-day, rat NOAEL: 1000 mg/kg bw per day (highest dose tested)	
Developmental toxicity in rabbit: maternal and developmental NOAELs: 250 mg/kg bw per day (highest dose tested)	
ADI: 0.25 mg/kg bw per day (rabbit developmental toxicity study, UF 1000)	
No ARfD needed.	
SYN508272 (M700F007)	Rat acute oral LD$_{50}$ > 500 < 2000 mg/kg bw
Non-genotoxic (Negative in Ames, MLA and \textit{in vivo} rat micronucleus assay; positive \textit{in vitro} CA)	
28-day, rat NOAEL: 37.4 mg/kg bw per day (based on lower body weight, body weight gain and food consumption)	
ADI and ARfD: 0.04 mg/kg bw per day (28-day, rat; UF 1000)	
SYN545547	Non-genotoxic (negative Ames, MN and MLA assays \textit{in vitro})
Database for general toxicity considered insufficient to set toxicological reference values	
SYN548263	Non-genotoxic (negative Ames, MN and MLA assays \textit{in vitro})
Database for general toxicity considered insufficient to set toxicological reference values	
SYN547897	Non-genotoxic (QSAR and read-across analysis)
Database for general toxicity considered insufficient to set toxicological reference values	
2,4,6-TCP	Carcinogenic in mouse and rat
Genotoxicity database inconclusive	
Data gap for a complete genotoxicity data package (including \textit{in vivo} COMET assay)	
SYN547891	Data gap to clarify the genotoxic potential of the metabolite

Medical data (Regulation (EU) N° 283/2013, Annex Part A, point 5.9)

Limited; new active substance, no detrimental effects on health in manufacturing personnel
Summary3 (Regulation (EU) Nº 1107/2009, Annex II, point 3.1 and 3.6)

Parameter	Value (mg/kg bw (per day))	Study	Uncertainty factor
Acceptable Daily Intake (ADI)	0.09	Mouse, 18-month study	100
Acute Reference Dose (ARfD)	0.3	Rat, developmental toxicity study	100
Acceptable Operator Exposure Level (AOEL)	0.1	Rabbit, developmental toxicity study	100*
Acute Acceptable Operator Exposure Level (AAOEL)	0.3	Rat, developmental toxicity study	100*

*No correction required for oral absorption (>80%)

CSAA798670 (CA4312; NOA449410; M700F001)

Parameter	Value (mg/kg bw (per day))	Study	Uncertainty factor
ADI	0.25	Rabbit developmental toxicity study	1000
ARfD	Not needed		

SYN508272 (M700F007)

Parameter	Value (mg/kg bw (per day))	Study	Uncertainty factor
ADI	0.04	Rat, 28-day study	1000
ARfD	0.04	Rat, 28-day study	1000

Dermal absorption (Regulation (EU) Nº 284/2013, Annex Part A, point 7.3)

Representative formulation (A19649B, SC formulation containing 200 g/L pydiflumetofen)

Concentrate: 0.2 %*	Spray dilution (2 g/L): 0.5%	Spray dilution (0.25 g/L): 1.5%	Spray dilution (0.05 g/L): 7.5%	Spray dilution (0.04 g/L): 9%
Worst case in-use spray dilution (0.033 g/L, pome fruit): 11% (pro-rata correction)*	Dermal absorption data derived from a triple pack (rat in vivo and rat/human in vitro studies)			

*used in the exposure risk assessment below

Exposure scenarios (Regulation (EU) Nº 284/2013, Annex Part A, point 7.2)

Operators

Use: High crops, tractor mounted equipment (upwards),

3 If available include also reference values for metabolites
application rate 200 g a.s./ha

Exposure estimates	% AOEL	% AAOEL
EFSA calculator		
Without PPE:	15.1	18

Use: Low crops, tractor mounted equipment (downwards), application rate 70 g a.s./ha

Exposure estimates	% AOEL	% AAOEL
EFSA calculator		
Without PPE:	1.5	4.3

Workers

Use: grapes, 2 applications, 200 g as/ha, measured DFR = 1.534µg/cm²/g a.s./ha

Exposure estimates (EFSA calculator):	% AOEL
No PPE (workwear, arms and legs covered)	45.4

Use: pome fruit, 3 applications, 50 g as/ha

Exposure estimates (EFSA calculator):	% AOEL
No PPE (workwear, arms and legs covered)	25.5

Use: all low crops, 2 applications, 70 g as/ha

Exposure estimates (EFSA calculator):	% AOEL
No PPE (workwear, arms and legs covered)	14.2

Bystanders and residents

Use: Grape, tractor mounted equipment (upwards), application rate 200 g a.s./ha

Exposure estimates (EFSA calculator):	% AAOEL
Bystander (worst case exposure pathway)	
Child	4.7
Adult	2.6

Exposure estimates (EFSA calculator):	% AOEL
Resident (sum all exposure pathways)	
Child	10.6
Adult	5.4

Classification with regard to toxicological data (Regulation (EU) No 283/2013, Annex Part A, Section 10)

Substance:

Pydiflumetofen
No current harmonised classification
According to the ECHA RAC opinion (ECHA, 2019):
Carc. 2, H351, ‘suspected of causing cancer’
Repro 2, H361f, ‘suspected of damaging fertility’

4 Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006. OJ L 353, 31.12.2008, 1-1355.
Peer review proposal for harmonised classification according to Regulation (EC) No 1272/2008:

None

It should be noted that harmonised classification and labelling is formally proposed and decided in accordance with Regulation (EC) No 1272/2008.
Residues in or on treated products food and feed

Metabolism in plants (Regulation (EU) N° 283/2013, Annex Part A, points 6.2.1, 6.5.1, 6.6.1 and 6.7.1)

Primary crops	Crop groups	Crop(s)	Application(s)	DAT (days)
(Plant groups covered)	Fruit crops	Tomato	2 x 200 g as/ha, BBCH 83 and 86, foliar spray 1 x 20 mg as/plant, transplanting stage, soil application	1 and 14 days (fruits only) 103 days (fruit only)
OECD Guideline 501	Cereals/grass crops	Wheat	2 x 125 g as/ha, BBCH 32-34 and 58	Forage: 10d after application 1 Hay: 29d after application 2 Straw and grain: 50d after application 2
	Pulses/Oilseeds	Oilseed rape	1 x 150 g as/ha, BBCH 65	62 days (seed and trash)

According to the results of metabolism in primary crops, reduction of the parent molecule and demethylation of the pyrazole represent the principle metabolic transformations observed in all three crops with additional metabolism into multiple polar low residue components detected at levels at which identification was not required.

Rotational crops	Crop groups	Crop(s)	PBI (days)	Comments
(metabolic pattern)	Root/tuber crops	Turnip	30, 120, 270	Confined studies were conducted with both labelled pydiflumetofen at max rate of 408g/ha. However, pydiflumetofen is a very highly persistent compound with DT50=8540 days (See Section 4), therefore the studies are underdosed.
OECD Guideline 502	Leafy crops	Lettuce	30, 120, 270	
	Cereal (small grain)	Wheat	30, 120, 270	
	Other	-	-	

Rotational crop and primary crop metabolism similar?

Metabolism pathway for pydiflumetofen-in primary crop and rotational crops is similar.

Besides parent compound found up to 75% of TRRs, SYN547891 was also found in wheat forage and immature lettuce only (12% TRR).

Processed commodities	Conditions	pyrazole-5-14[14C]- pydiflumetofen			
(standard hydrolysis study)		SYN545547	SYN547891	Unidentified	
OECD Guideline 507	20 min, 90°C, pH 4	96.15-97.47 %	0.26-0.63%	0.20-0.51 %	0.78-1.09 %
	60 min, 100°C, pH 5	95.97-96.48 %	0.35-0.62 %	0.37-0.51 %	0.97-1.33 %
	20 min, 120°C, pH 6	95.54-95.74 %	0.64-0.78 %	0.08-0.28 %	1.66-1.74 %
No hydrolysis of pydiflumetofen was observed under any of the processing conditions. Pydiflumetofen is therefore considered to be hydrolytically stable under conditions representative of pasteurisation, baking, brewing, boiling and sterilisation.

Metabolism in livestock (Regulation (EU) No 283/2013, Annex Part A, points 6.2.2, 6.2.3, 6.2.4, 6.2.5, 6.7.1)

OECD Guideline 503 and SANCO/11187/2013 rev. 3 (fish)	Animal	Dose (mg/kg bw/d)	Duration (days)	N rate/comment
Animals covered	Laying hen	3.3 - 3.6	14	792 N compared to layer hen dietary burden intake
	Goat/Cow	4.6	7	43 N compared to dairy cattle dietary burden intake

Time needed to reach a plateau concentration in milk and eggs (days)	Eggs: 6 days (phenyl) and 7 days (pyrazole) Milk: 2 days (phenyl) and 5 days (pyrazole)
Animal residue definition for monitoring (RD-Mo) OECD Guidance, series on pesticides No 31	Pydiflumetofen
Animal residue definition for risk assessment (RD-RA)	All matrices: pydiflumetofen and 2,4,6-trichlorophenol (free and conjugated). The expression is pending on the submission of toxicological data on 2,4,6-TCP
Conversion factor (monitoring to risk assessment)	Pending on the outcome of the toxicological evaluation of 2,4,6-TCP, derivation of CF might be possible.
Metabolism in rat and ruminant similar (Yes/No)	Yes
Fat soluble residues (Yes/No) (FAO, 2009)	Yes
Residues in succeeding crops (Regulation (EU) N° 283/2013, Annex Part A, point 6.6.2)

Confined rotational crop study	Based on the studies conducted at the application rate of 408 g/ha no residue above 0.01 mg/kg was found in wheat grain, mature lettuce and turnip tubers and foliage at all Plant Back Intervals (PBI) tested. Nevertheless, significant residues of pydiflumetofen are expected in wheat forage and immature lettuce with a PBI of 30 days and in wheat hay and straw for all PBI. Moreover, the application rate from the study doesn’t cover the max. PEC soil (see section 4), therefore residues in succeeded crops (food and feed) cannot be excluded.
(Quantitative aspect)	
OECD Guideline 502	
Field rotational crop study	Six field trials conducted at max 600 g/ha application rate, were available in the crops representative for rotations leafy (spinach), root (carrots and radish), cereals (barley and maize). In two of the trials, other crops (kale, tomatoes, strawberries, soyabean and beans) were also investigated. At the first PBI residues pydiflumetofen were found in spinach, radish roots and tops (up to 0.04 mg/kg). In barley straw residues were found at first and second PBI up to 0.09 mg/kg, while in roots carrots (0.02 mg/kg) and in spinach (up 0.05 mg/kg) residues were found at all PBI. No residues of pydiflumetofen in barley grain, were below the LOQ at all plant-back intervals. No residues above LOQ were detected in kale, tomato, fresh beans and strawberry at PBI of 30, 120, 270 and 330 days. Since the available studies were underdosed when compared with the max PEC soil and considering also the high persistence of pydiflumetofen in the soil, the settings of MRL in rotational crops might become necessary.
OECD Guideline 504	
Stability of residues (Regulation (EU) No 283/2013, Annex Part A, point 6.1)
OECD Guideline 506

Plant products (Category)	Commodity	T (°C)	Stability (Month)
High water content	Lettuce head	-18°C	23
High oil content	Rape seed	-18°C	23
High protein content	Adzuki bean	-18°C	23
High starch content	Wheat grain	-18°C	23
High acid content	Potato tuber	-18°C	23
	Orange fruit	-18°C	23

The stability of pydiflumetofen residues was demonstrated in one of each commodities for all categories (high water, high oil, high protein, high starch and high acid content); thus, pydiflumetofen residues could be considered stable during storage for 23 months in all crops plant, when stored at -18°C.

Animal	Animal commodity	T (°C)	Stability (Month)				
			pydiflumetofen	SYN5082	SYN5482	SYN5478	SYN548
				72	64	97	263
Bovine	Muscle	-18°C	12	-	-	-	-
Bovine	Liver	-18°C	12	-	-	6	-
Bovine	Kidney	-18°C	12	-	-	12	12
Bovine	Milk	-18°C	12	12	12	-	-
Chicken	Egg	-18°C	12	-	-	-	-
Summary of residues data from the supervised residue trials (Regulation (EU) N° 283/2013, Annex Part A, point 6.3) OECD Guideline 509, OECD Guidance, series on pesticides No 66 and OECD MRL calculator

Crop	Region/Indoor (a)	Residue levels (mg/kg) observed in the supervised residue trials relevant to the supported GAPs (b)	Recommendations/comments (OECD calculations)	MRL proposals (mg/kg)	HR (mg/kg) (c)	STMR (mg/kg) (d)	
Apple	NEU	<0.01, 4x0.02, 0.03, 0.05, 0.14	According to the Student test, 5% and Mann-Whitney U-test (α=5%), residue levels in southern trials are not different from the northern ones. MRL, HR and STMR derived from the merged dataset.	0.2	0.14	0.02	
	SEU	<0.01, 3x0.01, 2x0.02, 2x0.04, 0.08					
Grape	NEU	2x0.1, 0.17, 0.21, 0.26, 0.28, 0.48, 1.19	According to the Student test, 5% and Mann-Whitney U-test (α=5%), residue levels in southern trials are not different from the northern ones. MRL, HR and STMR derived from the merged dataset.	2	1.19	0.265	
	SEU	0.15, 0.19, 0.23, 0.27, 2x0.28, 0.40, 1.17					
Potato	NEU	4x<0.01	Limited number of residue trials for each EU zones are acceptable since the residue levels were all below 0.01mg/kg.		0.01*	0.01	
	SEU	4x<0.01					
Tomato	NEU	0.01, 0.02, 0.03, 2x0.04, 2x0.05, 0.06, 0.07	According to the Student test, 5% and Mann-Whitney U-test (α=5%), residue levels in southern trials are not different from the northern ones. MRL, HR and STMR derived from the merged dataset.	0.15	0.07	0.04	
	SEU	2x0.03, 3x0.04, 3x0.05					
Cucumber	NEU	3x0.01, 2x0.02, 0.03, 2x0.04, 0.05	According to the Mann-Whitney U-test (α=5%), residue levels in southern trials are not different from the northern ones. MRL, HR and STMR derived from the merged dataset.	0.15	0.07	0.03	
	SEU	2x0.02, 0.03, 0.04, 0.05, 2x0.06, 0.07					
Courgette	N+SEU	3x0.01, 4x0.02, 2x 0.03, 3x0.04, 2x 0.05, 2x0.06, 0.07	Extrapolation from cucumbers residue dataset (see the comment above)	0.15	0.07	0.03	
Melon	NEU	3x0.02, 2x0.03, 2x0.04, 2x0.06	According to the Student test, 5% and Mann-Whitney U-test (α=5%), residue levels in southern trials are not different from the northern ones. MRL, HR and STMR derived from the merged dataset.	0.1	0.06	0.03	
Crop	Region/Indoor (a)	Residue levels (mg/kg) observed in the supervised residue trials relevant to the supported GAPs (b)	Recommendations/comments (OECD calculations)	MRL proposals (mg/kg)	HR (mg/kg) (c)	STMR (mg/kg) (d)	
--------------	-------------------	--	---	----------------------	----------------	-----------------	
Watermelon	SEU	0.01, 3x0.02, 2x0.03, 2x0.04	levels in southern trials are not different from the northern ones. MRL, HR and STMR derived from the merged dataset.		0.1	0.06	0.03
Broccoli	N+SEU	0.01, 6x0.02, 4x0.03, 4x0.04, 2x0.06	Extrapolation from cucumbers residue dataset (see the comment above)	0.15	0.12	0.02	
	SEU (8)	<0.01, 0.01, 3x0.02, 2x0.03, 0.07	According to the Student test, 5% and Mann-Withney U-test (α=5%), residue levels in southern trials are not different from the northern ones. MRL, HR and STMR derived from the merged dataset.		0.15	0.12	0.02
	SEU (8)	3x<0.01, 0.01, 2x0.03, 0.07, 0.12			0.07	0.04	0.02
Cauliflower	NEU	3x<0.01, 3x0.02, 0.03, 0.04	According to the Student test, 5% and Mann-Withney U-test (α=5%), residue levels in southern trials are different from the northern ones. MRL, HR and STMR derived from each dataset.		0.07	0.04	0.02
	SEU	7x<0.01, 0.01			0.07	0.04	0.02
Kale	NEU	0.16, 0.24, 0.72, 0.90, 1.22, 1.51, 1.87, 2.05	According to the Student test, 5% and Mann-Withney U-test (α=5%), residue levels in southern trials are not different from the northern ones. MRL proposal, HR and STMR are based on NEU use.		4	2.05	1.06
	SEU	0.1, 0.11, 0.13, 0.18, 2x0.22, 0.26, 0.32			0.6	0.32	0.2
Brussels sprouts	NEU	0.05, 0.10, 0.12, 0.13	No residue trials to support SEU representative gap were available (data gap). The residue dataset supports only the representative use in NEU		0.3	0.13	0.11
Head cabbage	NEU	7x<0.01, 0.16	According to the Student test, 5% and Mann-Withney U-test (α=5%), residue levels in southern trials are not different from the northern ones. MRL, HR and STMR derived from the merged dataset.		0.2	0.16	0.01
	SEU	3x<0.01, 0.04			0.2	0.16	0.01
Crop Residue Data

Crop	Region/Indoor (a)	Residue levels (mg/kg) observed in the supervised residue trials relevant to the supported GAPs (b)	Recommendations/comments (OECD calculations)	MRL proposals (mg/kg)	HR (mg/kg)	STMR (mg/kg)
Kohlrabi	NEU	0.02, 0.05, 2x0.08	No residue trials to support SEU representative gap were available (data gap). The residue dataset supports only the representative use in NEU.	0.2	0.08	0.065
MRL application						
Apples	NEU	<0.01, 4x0.02, 0.03, 0.05, 0.14	According to the Student test, 5% and Mann-Whitney U-test (α=5%), residue levels in southern trials are not different from the northern ones. MRL, HR and STMR derived from the merged dataset.	0.2	0.14	0.02
	SEU	<0.01, 3x0.01, 2x0.02, 2x0.04, 0.08				
Pears	N+SEU	2x<0.01, 3x0.01, 6x0.02, 0.03, 2x0.04, 0.05, 0.08, 0.14	Extrapolation from apples residue dataset (see the comment above)	0.2	0.14	0.02
Quinces	N+SEU	2x<0.01, 3x0.01, 6x0.02, 0.03, 2x0.04, 0.05, 0.08, 0.14	Extrapolation from apples residue dataset (see the comment above)	0.2	0.14	0.02
Medlars	N+SEU	2x<0.01, 3x0.01, 6x0.02, 0.03, 2x0.04, 0.05, 0.08, 0.14	Extrapolation from apples residue dataset (see the comment above)	0.2	0.14	0.02
Loquats/Japanese medlars	N+SEU	2x<0.01, 3x0.01, 6x0.02, 0.03, 2x0.04, 0.05, 0.08, 0.14	Extrapolation from apples residue dataset (see the comment above)	0.2	0.14	0.02
Potato	NEU	4x<0.01	Limited number of residue trials for each EU zone are acceptable since the residue levels were all below 0.01mg/kg.	0.01*	0.01	0.01
	SEU	4x<0.01				
Sweet potatoes	N+SEU	8x<0.01	Extrapolation from potatoes residue dataset	0.01*	0.01	0.01
Yams	N+SEU	8x<0.01	Extrapolation from potatoes residue dataset	0.01*	0.01	0.01
Pepper	NEU	2x<0.01, 2x0.01, 2x0.02, 2x0.03	According to the Student test, 5% and	0.06	0.03	0.015

Notes:
- NEU = Northern Europe Union
- SEU = Southern Europe Union
- MRL = Maximum Residue Level
- HR = Hazard Quotient
- STMR = Statistical Total Maximum Residue
- Student test (5%)
- Mann-Whitney U-test (α=5%)
- Extrapolation from datasets
| Crop | Region/Indoor (a) | Residue levels (mg/kg) observed in the supervised residue trials relevant to the supported GAPs (b) | Recommendations/comments (OECD calculations) | MRL proposals (mg/kg) | HR (mg/kg) (c) | STMR (mg/kg) (d) |
|------------|-------------------|--|---|-----------------------|----------------|-----------------|
| Okra | SEU | 2x0.03, 4x0.04, 0.09, 0.18 | Mann-Whitney U-test ($\alpha=5\%$), residue levels in southern trials are different from the northern ones. MRL, HR and STMR derived from each dataset (SEU uses is more critical). | 0.3 | 0.18 | 0.04 |
| Okra | N+SEU | NEU: 2x<0.01, 2x0.01, 2x0.02, 2x0.03
 SEU: 2x0.03 4x0.04, 0.09, 0.18 | Extrapolation from pepper residues dataset SEU use, since it results in more critical residue situations and the population is different according to the statistical tests (see the comment on peppers). | 0.3 | 0.18 | 0.04 |
| Pepper | Indoor | 0.02, 0.03, 0.05, 0.06, 0.10, 0.11, 0.14, 0.31 | The MRL proposal is based on the indoor uses since it results in a more critical residue situation | 0.5 | 0.31 | 0.08 |
| Okra | Indoor | 0.02, 0.03, 0.05, 0.06, 0.10, 0.11, 0.14, 0.31 | Extrapolation from pepper residues dataset. | 0.5 | 0.31 | 0.08 |
| Tomatoes | Indoor | Standard tomatoes: 2x0.02, 0.03, 2x0.04, 3x0.05
 Cherry tomatoes: 0.06, 2x0.07, 0.09, 0.11, 2x0.12, 0.16 | The dataset refers to the GAP defined with 2x70g a.s/ha application rate. | 0.15 | 0.05 | 0.04 |
| | | | Etrapolation from standard tomatoes dataset conducted with 2x70g a.s/ha application rate. It is noted however that the residue dataset on tomatoes from outdoor use, results in more critical residue situation, and therefore that dataset will be extrapolated to aubergines use. | 0.3 | 0.16 | 0.1 |
| Aubergine | Indoor | Standard tomatoes: 2x0.02, 0.03, 2x0.04, 3x0.05 | | 0.15 | 0.05 | 0.04 |
| Tomato | Indoor | Standard tomato: 0.09, 0.11, 0.16, 0.20 | The dataset refers to the GAP defined | 0.9 | 0.45 | 0.22 |
Crop	Region/Indoor (a)	Residue levels (mg/kg) observed in the supervised residue trials relevant to the supported GAPs (b)	Recommendations/comments (OECD calculations)	MRL proposals (mg/kg) (c)	HR (mg/kg) (d)	STMR (mg/kg) (d)
Cherry tomato	Indoor	0.16, 0.24, 0.32, 0.34, 0.35, 0.37, 0.45	with 2x200g a.s/ha application rate. The MRL proposal, HR and STMR is derived based on residue dataset in cherry tomatoes since it results in more critical residues situation. Therefore, extrapolation of residue dataset from cherry tomatoes to aubergine is not supported for this GAP.	-	0.2	0.14
Indoor	Standard tomato	0.09, 0.11, 0.16, 0.20	The extrapolation from standard tomatoes dataset conducted with 2x200g a.s/ha application rate is not possible since only 4 residue trials are available which is not sufficient for a major crop.	0.15	0.07	0.04
Indoor	NEU	0.01, 0.02, 0.03, 2x0.04, 2x0.05, 0.06, 0.07	According to the Student test, 5% and Mann-Whitney U-test (α=5%), residue levels in southern trials are not different from the northern ones. MRL, HR and STMR derived from the merged dataset.	0.15	0.07	0.04
Indoor	SEU	2x0.03, 3x0.04, 3x0.05				
Indoor	N+SEU	0.01, 0.02, 3x0.03, 5x0.04, 5x0.05, 0.06, 0.07	Extrapolation from tomatoes residues dataset (outdoor use)	0.15	0.07	0.04
Indoor	Courgette	4x0.03, 3x0.06, 0.09	Although the MRLs resulting from outdoor and indoor GAPs are similar, the input values for risk assessment (HR, STMRs) are more critical for indoor use.	0.15	0.09	0.045
Indoor	Gerkins	4x0.03, 3x0.06, 0.09	Extrapolation from the cucumbers residue dataset (indoor use)	0.15	0.09	0.045
Crop	Region/Indoor	Residue levels (mg/kg) observed in the supervised residue trials relevant to the supported GAPs	Recommendations/comments (OECD calculations)	MRL proposals (mg/kg)	HR (mg/kg)	STMR (mg/kg)
------------------------------	---------------	---	---	----------------------	------------	--------------
Other cucurbits with edible peel	Indoor	4x0.03, 3x0.06, 0.09	Extrapolation from the cucumbers residue dataset (indoor use)	0.15	0.09	0.045
Cucumber	NEU	3x0.01, 2x0.02, 0.03, 2x0.04, 0.05	According to the Mann-Whitney U-test (α=5%), residue levels in southern trials are not different from the northern ones. MRL, HR and STMR derived from the merged dataset.	0.15	0.07	0.03
	SEU	2x0.02, 0.03, 0.04, 0.05, 2x0.06, 0.07				
Courgette	N-SEU	3x0.01, 4x0.02, 2x0.03, 3x0.04, 2x0.052x0.06, 0.07	Extrapolation from the cucumbers residue dataset (outdoor use)	0.15	0.07	0.03
Gerkins	N-SEU	3x0.01, 4x0.02, 2x0.03, 3x0.04, 2x0.052x0.06, 0.07	Extrapolation from the cucumbers residue dataset (outdoor use)	0.15	0.07	0.03
Other cucurbits with edible peel	N-SEU	3x0.01, 4x0.02, 2x0.03, 3x0.04, 2x0.052x0.06, 0.07	Extrapolation from the cucumbers residue dataset (outdoor use)	0.15	0.07	0.03
Melon	Indoor	3x0.02, 0.04, 0.05, 3x0.07	The residue trials are sufficient to derive MRL and inputs values for the risk assessment (HR and STMR)	0.15	0.07	0.045
Watermelon	Indoor	3x0.02, 0.04, 0.05, 3x0.07	Extrapolation from melon residue dataset (indoor use)	0.15	0.07	0.045
Pumpkin	Indoor	3x0.02, 0.04, 0.05, 3x0.07	Extrapolation from melon residue dataset (indoor use)	0.15	0.07	0.045
Other cucurbits with inedible peel	Indoor	3x0.02, 0.04, 0.05, 3x0.07	Extrapolation from melon residue dataset (indoor use)	0.15	0.07	0.045
Melon	NEU	3x0.02, 2x0.03, 2x0.04, 2x0.06	According to the Student test, 5% and Mann-Whitney U-test (α=5%), residue levels in southern trials are not different from the northern ones. MRL, HR and STMR derived from the merged dataset.	0.1	0.06	0.03
	SEU	0.01, 3x0.02, 2x0.03, 2x0.04				
Watermelon	N-SEU	0.01, 6x0.02, 4x0.03, 4x0.04, 2x0.06	Extrapolation from the melon residue dataset (outdoor use)	0.1	0.06	0.03
Pumpkin	N-SEU	0.01, 6x0.02, 4x0.03, 4x0.04, 2x0.06	Extrapolation from the melon residue dataset (outdoor use)	0.1	0.06	0.03
Summary of the data on formulation equivalence OECD Guideline 509

Crop	Region/Indoor (a)	Residue levels (mg/kg) observed in the supervised residue trials relevant to the supported GAPs (b)	Recommendations/comments (OECD calculations)	MRL proposals (mg/kg) (c)	HR (mg/kg) (c)	STMR (mg/kg) (d)
Other cucurbits with inedible peel	N-SEU	0.01, 6x0.02, 4x0.03, 4x0.04, 2x0.06	Extrapolation from the melon residue dataset (outdoor use)	0.1	0.06	0.03
Kale	NEU	0.16, 0.24, 0.72, 0.90, 1.22, 1.51, 1.87, 2.05	According to the Student test, 5% and Mann-Whitney U-test (α=5%), residue levels in SEU trials are different from the NEU. The MRL proposal, HR and STMR are derived from NEU residue dataset.	4	2.05	1.06
	SEU	0.1, 0.11, 0.13, 0.18, 2x0.22, 0.26, 0.32		0.6	0.32	0.2
Chinese cabbages	N+SEU	0.16, 0.24, 0.72, 0.90, 1.22, 1.51, 1.87, 2.05	Extrapolation from kale residues dataset. Sufficient residue trials were available to cover N+SEU intended uses. However, the MRL proposal, HR and the STMR is based on NEU residue dataset since it results in more critical residue situation.	4	2.05	1.06
Soybean	Argentina	9x<0.005	The submitted data are sufficient to derive an import tolerance (Argentina GAP).	0.01*	<0.005	<0.005

Summary of data on residues in pollen and bee products (Regulation (EU) No 283/2013, Annex Part A, point 6.10.1)

Product(s)	Region	Residue data (mg/kg)	Recommendations/comments
Winter oilseed rape	Indoor	Honey: 3x<0.01	Three residue trials were submitted to support the MRL proposal in honey. According to SANTE/1156/2016(e), at least four trials should be available instead of three.

| **In honey:** | 0.01* | <0.01 | <0.01 |

(a): NEU or SEU for northern or southern outdoor trials in EU member states (N+SEU if both zones), Indoor for glasshouse/protected crops, Country if non-EU location.

(b): Residue levels in trials conducted according to GAP reported in ascending order (e.g. 3x <0.01, 0.01, 6x 0.02, 0.04, 0.08, 3x 0.10, 2x 0.15, 0.17). When residue definition for monitoring and risk assessment differs, use Mo/RA to differentiate data expressed according to the residue definition for Monitoring and Risk Assessment.

(c): HR: Highest residue. When residue definition for monitoring and risk assessment differs, HR according to residue definition for monitoring reported in brackets (HRMo).

(e): At least four trials should be available instead of three.
(d): **STMR**: Supervised Trials Median Residue. When residue definition for monitoring and risk assessment differs, STMR according to definition for monitoring reported in brackets (STMR_{Mo}).

(e): Technical guidelines for determining the magnitude of pesticide residues in honey and setting Maximum Residue Level in honey.
Inputs for animal burden calculations

Commodity	Median dietary burden	Maximum dietary burden		
	Input value (mg/kg)	Comment	Input value (mg/kg)	Comment
Risk assessment residue definition: pydiflumetofen				
EU representative uses				
Apple pomace	0.07 (0.02x 3.38)	STMRp (STMRxPF)	0.07 (0.02x 3.38)	STMRp (STMRxPF)
Potato culls	0.01	STMR	0.01	HR
Potato, process waste¹	0.01	STMR	0.01	STMR
Potato, dried pulp¹	0.01	STMR	0.01	STMR
Cabbage leaves	0.01	STMR	0.16	HR
Kale	1.06	STMR	2.05	HR
Cereal straw²	0.225	HR from field rotational crops	0.225	HR from field rotational crops
Soyabean¹	≤ 0.01*	STMR	0.01*	HR

¹ No default processing factor was used for these potato by-products since residue level in the raw product was below the LOQ.
² Since significant residue levels cannot be excluded in barley straw from field rotational crops, highest residue levels from barley straw was taken into account in the dietary burden calculation. Extrapolation was made to all cereal straw (except rice) as a worst case. Considering that the field rotational crop study is underdosed (0.4 N), residue level on straw has been upscaled.
Residues from livestock feeding studies (Regulation (EU) No 283/2013, Annex Part A, points 6.4.1, 6.4.2, 6.4.3 and 6.4.4)

OECD Guideline 505 and OECD Guidance, series on pesticides No 73

MRL calculations

Highest expected intake (mg/kg bw/d)	Ruminant	Pig/Swine	Poultry	Fish
Beef cattle	0.067			
Dairy cattle	0.107			
Ram/Ewe	0.047			
Lamb	0.059			

| Intake >0.004 mg/kg bw | Yes | Yes | No | Yes |
| Feeding study submitted | Yes | Yes | No | Yes |

| Representative feeding level (mg/kg bw/d, mg/kg DM for fish) and N rates |
|-----------------------------|----------------|----------------|---------|---------|
| Level 0.4 mg/kg bw/d | Level 0.4 mg/kg bw/d | Level 0.4 mg/kg bw/d | Level 0.4 mg/kg bw/d | Level 0.4 mg/kg bw/d |
| Beef: 6N Dairy: 4 N | Lamb: 6.8 N Ewe: 8.5N | Breed: 12 N Finish: 40 N | Breed: 12 N Finish: 40 N | B or T: 168.6 N Layer: 38.4 N |

Estimated HR at 1N (a)	MRL proposals	Estimated HR at 1N (a)	MRL proposals	Estimated HR at 1N (a)	MRL proposals	Estimated HR at 1N (a)	MRL proposals
Muscle	0.01	0.01*	0.01	0.01	0.01	0.01	
Fat	0.01	0.01*	0.01	0.01	0.01	0.01	
Meat (b)	0.01	0.01	0.01*	0.01	0.01*	0.01	
Liver							
Kidney	0.01	0.01*	0.01*	0.01	0.01*	0.01	
Milk (a)	0.01	0.01*	0.01*	0.01	0.01*		0.01
Eggs	0.01	0.01					0.01

(a): Estimated HR calculated at 1N level (estimated mean level for milk).

(b): HR in meat calculated for mammalian on the basis of 20% fat + 80% muscle and 10% fat + 90% muscle for poultry.

(c): The OECD guidance document on residues in livestock (series on pesticides 73) recommends three different approaches to derive MRLs for animal products; by applying a transfer factor (Tf), by intrapolation (It) or by linear regression (Ln). Fill in method(s) considered to derive the MRL proposals.
Conversion Factors (CF) for monitoring to risk assessment

Pending on the expression of the risk assessment residue definition for animal commodities, conversion factors might be needed.

Processing factors (Regulation (EU) N° 283/2013, Annex Part A, points 6.5.2 and 6.5.3)
OECD Guideline 508 and OECD Guidance, series on testing and assessment No 96

Crop (RAC)/Edible part or Crop (RAC)/Processed product	Number of studies\(^{(a)}\)	Processing Factor (PF)	Conversion Factor (CF\(_P\)) for RA\(^{(b)}\)
	Individual values	Median PF	
Representative uses			
Grape, pasteurized juice	1	0.02, 0.02, 0.05, 0.07	0.035 /
Grape, white aged wine	1	0.08, 0.11, 0.52, 0.60	0.32 /
Grape, red wine	1	0.10, 0.17, 0.20, 0.24	0.19 /
Grape, raisin	1	1.71, 2.37, 2.48, 4.75	2.43 /
Grape, refined seed oil	1	0.71, 1.02, 1.08, 1.12	1.05 /
Tomato, paste	1	0.55, 0.82	0.69 /
Tomato, puree	1	0.26, 0.41	0.33 /
Tomato, washed and peel	1	<0.05, <0.08	n.a.\(^{(1)}\) /
Tomato, canned	1	<0.05, <0.08	n.a.\(^{(1)}\) /
Tomato, sun-dried	1	9.9, 10.7	10 /
Tomato, juice	1	<0.05, <0.08	n.a.\(^{(1)}\) /
Apple/pear, canned	1	0.03 (apple), 0.09 (pear)	0.06 /
Apple/pear, wet pomace	1	2.99 (pear), 3.77 (apple)	3.38 /
Apple/pear, Juice	1	0.06 (apple), 0.11 (pear)	0.09 /
Apple, sauce	1	0.06	0.06 (single value) /
Apple/pear, dried	1	0.41 (apple), 0.62 (pear)	0.52 /
Kale, washed	1	1.08, 1.18, 1.58, 1.60	1.38 /
Kale, cooked	1	1.2, 1.21, 1.27, 1.73	1.24 /
MRL application			
\(^{(a)}\): Studies with residues in the RAC at or close to the LOQ should be disregarded (unless concentration)
\(^{(b)}\): When the residue definition for risk assessment differs from the residue definition for monitoring

1 Results which were calculated from the LOQ value are not taken into account in the median transfer factor calculation due to high uncertainty.

Consumer risk assessment (Regulation (EU) N° 283/2013, Annex Part A, point 6.9)

NOTE: Consumer risk assessment performed for pydiflumetofen only. Since for animal commodities, 2,4,6-TCP is also included in the RA-RD, the consumer risk assessment for these crops is not finalised.

Including all uses (representative uses and uses related to an MRL application).

ADI 0.09 mg/kg bw per day

TMDI according to EFSA PRIMo

| Highest TMDI: 10 % ADI | (wine grapes, FR all population) |

NTMDI, according to (to be specified)

Not provided, not required
IEDI (% ADI), according to EFSA PRIMo

Highest IEDI: 2% ADI (WHO Cluster diet B)	Not provided, not required

NEDI (% ADI), according to (to be specified)

Highest IESTI: 46% ARfD (kale, NL diet)	Not provided, not required

Factors included in the calculations

ARfD

0.3 mg/kg bw	

IESTI (% ARfD), according to EFSA PRIMo

Highest IESTI: 46% ARfD (kale, NL diet)	Not provided, not required

NESTI (% ARfD, according to (to be specified)

Not provided, not required	

Factors included in IESTI and NESTI

Consumer risk assessment limited to the representative uses

TMDI (% ADI), according to EFSA PRIMo

Highest TMDI: 9% ADI (wine grapes, FR all population)	Not provided, not required

NTMDI (% ADI), according to (to be specified)

Not provided, not required	

IEDI (% ADI), according to EFSA PRIMo

Highest IEDI: 2% ADI (tomatoes, WHO Cluster diet B)	Not provided, not required

NEDI (% ADI), according to (to be specified)

Not provided, not required	

Factors included in the calculations

IESTI (% ARfD, according to EFSA PRIMo)

Highest IESTI: 46% ARfD (Kale, NL diet)	Not provided, not required

NESTI (% ARfD, according to (to be specified)

Not provided, not required	

Factors included in IESTI and NESTI

Additional contribution to the consumer intakes through drinking water resulting from groundwater metabolite(s) expected to be present above 0.75 µg/L.

The consumer risk assessment from the consumption of drinking water is also not finalised considering the lack of appropriate information to address the effect of water treatment processes on the nature of residues of pydiflumetofen and its possible metabolites, potentially present in surface water, when surface water is abstracted for drinking water (see Section 4).

Proposed MRLs (Regulation (EU) No 283/2013, Annex Part A, points 6.7.2 and 6.7.3)

Code(a)	Commodity/Group	MRL/Import tolerance(b) (mg/kg) and Comments
Plant commodities		
Representative uses		
0130010	Apple	0.2
0130020	Pear	0.2
0151010	Table grape	2
0151020	Wine grape	2
0211000	Potatoes	0.01
0231010	Tomato	0.15
0232010	Cucumber	0.15
0232030	Courgette	0.15
0233010	Melon	0.1
0233030	Watermelon	0.1

The MRL proposal is based on combined residues dataset from N-SEU.
MRL application (additional uses and import tolerance)

Code	Commodity	MRL (mg/kg)	Notes
0130030	Quinces	0.2	
0130040	Medlar	0.2	
0130050	Loquat	0.2	
0130990	Others	0.2	
0212020	Sweet Potatoes	0.01*	Extrapolation from potato
0212030	Yams	0.01*	
0231010	Tomato	0.8	The MRL proposal is based on the most critical GAP on indoor use.
0231020	Peppers	0.5	The MRL proposal is based on indoor use.
0231040	Okra (Ladies fingers)	0.5	Extrapolation from pepper (indoor use)
0231030	Aubergines	0.15	Extrapolation from tomato outdoor (NEU and SEU), residue dataset since result in most critical residue situation.
0232010	Cucumber	0.15	The MRL proposal is based on indoor use.
0232020	Gherkins	0.15	Extrapolation of the residue dataset on cucumbers (indoor use)
0232030	Courgette	0.15	Extrapolation of the residue dataset on cucumbers (indoor use)
0232990	Others	0.15	Extrapolation of the residue dataset on cucumbers (indoor use)
0233010	Melon	0.15	The MRL proposal is based on indoor use GAP
0233030	Watermelon	0.15	Extrapolation of the residue dataset on melon (indoor use)
0231040	Pumpkin	0.15	Extrapolation of the residue dataset on melon (indoor use)
0243010	Chinese cabbages/pe-tsai	4	Extrapolation from kale (NEU use GAP)
0401070	Soy bean*	0.01*	Import tolerance (Argentina GAP)

Animal commodities

Code	Commodity	MRL (mg/kg)	Notes
	Ruminant (c) muscle	0.01*	
	Ruminant (c) fat	0.01*	
	Ruminant (c) liver	0.01*	
	Ruminant (c) kidney	0.01*	
1020000	Milk	0.01*	
1011010	Swine muscle	0.01*	
1011020	Swine fat	0.01*	

Pydiflumetofen residues in the animal commodities at 1 N rate feeding levels were <0.01*mg/kg. Therefore a default MRL of 0.01 mg/kg will be proposed.
Commodity Code	Commodity	MRL
1011030	Swine liver	0.01*
1011040	Swine kidney	0.01*
1016010	Poultry muscle	0.01*
1016020	Poultry fat	0.01*
1016030	Poultry liver	0.01*
1016040	Poultry kidney	0.01*
1030000	Eggs	0.01*
1040000	Honey	0.01*

(a): Commodity code number, as listed in Annex I of Regulation (EC) No 396/2005
(b): MRLs proposed at the LOQ, should be annotated by an asterisk (*) after the figure.
(c): covers all ruminants animal categories (bovine, sheep, goats, equine)
Environmental fate and behaviour

Route of degradation (aerobic) in soil (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.1.1)

Environmental Fate	Description	Mineralisation after 120 days	Non-extractable residues after 120 days	Metabolites requiring further consideration - name and/or code, % of applied (range and maximum)
Mineralisation after 120 days	3.2% after 120 d (14.5% after 365 d), [14C-pyrazole]-label (n=1)	8.1% after 120 d (17.3% after 365 d), [14C-pyrazole]-label (n=1)	No metabolite ≥ 5%	
Non-extractable residues after 120 days	0.2-5.3% after 120 d (0.2-16.5% after 365 d), [14C-phenyl]-label (n=5)	7.4-33.4% after 120 d (12.3-46.2% after 365 d), [14C-phenyl]-label (n=5)		

Route of degradation (anaerobic) in soil (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.1.2)

Environmental Fate	Description	Mineralisation after 120 days	Non-extractable residues after 120 days	Metabolites that may require further consideration for risk assessment - name and/or code, % of applied (range and maximum)
Mineralisation after 120 days	0.1% after 120 d, [14C-pyrazole]-label (n=1)	8.3% after 120 d, [14C-pyrazole]-label (n=1)	No metabolite ≥ 5%	
Non-extractable residues after 120 days	0.1-0.4% after 120 d, [14C-phenyl]-label (n=4)	7.8-32.6% after 120 d, [14C-phenyl]-label (n=4)		

Route of degradation (photolysis) on soil (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.1.3)

Environmental Fate	Description	Mineralisation at study end	Non-extractable residues at study end
Mineralisation at study end	0.2% after 29 d in dry soil, 0.2% after 30 d in moist soil, [14C-pyrazole]-label (n=1)	1.4% after 29 d in dry soil, 2.6% after 30 d in moist soil, [14C-pyrazole]-label (n=1)	
Non-extractable residues at study end	1.5% after 31 d in dry soil, 0.4% after 30 d in moist soil, [14C-phenyl]-label (n=1)	1.7% after 31 d in dry soil, 3.2% after 30 d in moist soil, [14C-phenyl]-label (n=1)	

n corresponds to the number of soils.
Rate of degradation in soil (aerobic) laboratory studies active substance (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.2.1.1 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.1.1)

Parent	Dark aerobic conditions – Trigger endpoints	Kinetic parameters	St. \((\chi^2)\)	Method of calculation	
Soil type	pH\(^b\)	t. °C / % MWHC	DT\(_{50}\) /DT\(_{90}\) \[d\]		
Gartenacker (loam)	6.9	20°C / pF2	398/1320	-	1.34 SFO
18 Acres (sandy clay loam)	5.5	20°C / pF2	2380/7640	k\(_1\)=0.03734	0.41 DFOP
				k\(_2\)= 0.000264	
				g=0.06232	
Sarpy (silt loam)	6.2	20°C / pF2	567/2970	k\(_3\)=0.04405	3.15 DFOP
				k\(_2\)= 0.000669	
				g=0.2693	
East Anglia (sandy loam)	7.1	20°C / pF2	1300/4870	k\(_1\)=0.09243	0.96 DFOP
				k\(_2\)= 0.000452	
				g=0.1005	
Capay (clay loam)	7.6	20°C / pF2	410/2540	k\(_1\)=0.05022	2.54 DFOP
				k\(_2\)= 0.000756	
				g=0.3183	
Maximum			2380		DFOP

\(^{a)}\) Measured in calcium chloride solution

Parent	Dark aerobic conditions – Modelling endpoints	DT\(_{50}\) (d)	DT\(_{90}\) (d)	St. \((\chi^2)\)	Method of calculation
Soil type	pH\(^b\)	t. °C / % MWHC	DT\(_{50}\) /DT\(_{90}\) \[d\]		
Gartenacker (loam)	6.9	20°C / pF2	398/1320	398	1.34 SFO
18 Acres (sandy clay loam)	5.5	20°C / pF2	1690/5600	1690	1.42 SFO
Sarpy (silt loam)	6.2	20°C / pF2	567/2970	1036\(^c\)	3.15 DFOP
East Anglia (sandy loam)	7.1	20°C / pF2	1090/3620	1090	2.62 SFO
Capay (clay loam)	7.6	20°C / pF2	410/2540	917\(^c\)	2.54 DFOP
Geometric mean (if not pH dependent)			**930**		DFOP

\(^{a)}\) Measured in calcium chloride solution

\(^{b)}\) Normalised using a Q10 of 2.58 and Walker equation coefficient of 0.7

\(^{c)}\) Calculated from DFOP k\(_2\) parameter \((\ln(2)/k_2)\)
Rate of degradation field soil dissipation studies (Regulation (EU) No 283/2013, Annex Part A, point 7.1.2.1.1 and Regulation (EU) No 284/2013, Annex Part A, point 9.1.1.2.1)

Parent	Aerobic conditions – Trigger endpoints								
Soil type (indicate if bare or cropped soil was used).	Location (country or USA state).	pH^a	Depth (cm)	DT₅₀ (d) actual	DT₉₀ (d) actual	St. (χ²)	Kinetic parameters	Method of calculation	
Sandy loam (bare soil)	Germany	5.68	0-20	8540	>10000	6.5	k₁=0.05381 k₂= 0.000043 g=0.2484	DFOP	
Clay loam (bare soil)	Italy	7.40	0-100	1110	3680	11.6	-	-	SFO
Silty clay loam (bare soil)	Northern France	7.52	0-100	4030	>10000	9.7	-	-	SFO
Sandy loam (bare soil)	Southern France	7.48	0-50	29	1820	13.3	k₁=0.08239 k₂= 0.000842 g=0.5381	DFOP	
Sandy loam (bare soil)	Spain	7.27	0.-30	No reliable fit could be obtained					
Loam (bare soil)	UK	6.84	0-30	2810	9350	11.2	-	-	SFO
Maximum		8540	>10000						

^a Measured in calcium chloride solution

Parent	Aerobic conditions – Modelling endpoints						
Soil type (indicate if bare or cropped soil was used).	Location (country or USA state).	pH^a	Depth (cm)	DT₅₀ (d) Norm^b.	Kinetic parameters	St. (χ²)	Method of calculation
Sandy loam (bare soil)	Germany	5.68	0-20	997	-	8.8	SFO
Clay loam (bare soil)	Italy	7.40	0-100	1110	-	11.4	SFO
Silty clay loam (bare soil)	Northern France	7.52	0-100	3210	-	9.8	SFO
Sandy loam (bare soil)	Southern France	7.48	0-50	654^c	k₁=0.04618 k₂= 0.00106 g=0.502	12.5	DFOP
Sandy loam (bare soil)	Spain	7.27	0.-30	No reliable fit could be obtained			
Loam (bare soil)	UK	6.84	0-30	1820	11.3	SFO	
Geometric mean (if not pH dependent)		1334					

^a Measured in calcium chloride solution

^b Normalised using a Q10 of 2.58 and Walker equation coefficient of 0.7, values are DegT50matrix

^c Calculated from DFOP k2 parameter (ln(2)/k2)

pH dependence | No
Combined laboratory and field kinetic endpoints for modelling (when not from different populations)

Rate of degradation in soil active substance, normalised geometric mean (if not pH dependent)

Factor	Value
Not relevant according to EFSA guidance since laboratory geometric DT50 > 240 days	

Soil accumulation (Regulation (EU) No 283/2013, Annex Part A, point 7.1.2.2.2 and Regulation (EU) No 284/2013, Annex Part A, point 9.1.1.2.2)

Soil accumulation and plateau concentration

Factor	Value
Please refer to PECaccu reported under PECsoil calculations	

Rate of degradation in soil (anaerobic) laboratory studies active substance (Regulation (EU) No 283/2013, Annex Part A, point 7.1.2.1.3 and Regulation (EU) No 284/2013, Annex Part A, point 9.1.1.1)

Parent	Soil type	pH^a	t. °C / % MWHC	DT₅₀ / DT₉₀ (d)	DT₅₀ (d) 20 °C^b	St. (χ²)	Method of calculation
Gartenacker (loam)	7.5	20°C / flooded					
18 Acres (sandy clay loam)	6.1	20°C / flooded					No significant degradation observed
Sarpy (silt loam)	6.7	20°C / flooded					
Capay (clay loam)	6.7	20°C / flooded					

^a Measured in calcium chloride solution

^b Normalised using a Q10 of 2.58

Rate of degradation on soil (photolysis) laboratory active substance (Regulation (EU) No 283/2013, Annex Part A, point 7.1.1.3)

Parent	Soil type	pH^a	t. °C / % MWHC	DT₅₀ / DT₉₀ (d) calculated at summer sunlight 30-50°N	St. (χ²)	Method of calculation
18 Acres (sandy clay loam)	6.1	20°C / dry soil	154/507	1.7	SFO	
		20°C / pF2	361/1198	1.0	SFO	

^a Measured in calcium chloride solution
Soil adsorption active substance (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.3.1.1 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.2.1)

Soil Type	OC %	Soil pH\(^{a)}\)	\(K_d\) (mL/g)	\(K_{doc}\) (mL/g)	\(K_F\) (mL/g)	\(K_{Foc}\) (mL/g)	\(1/n\)
Sandy clay loam	2.2	6.0	-	-	36.10	1641	0.8794
Loam	1.8	7.2	-	-	20.97	1165	0.8733
Silt loam	1.7	6.5	-	-	30.40	1788	0.8367
Clay loam	1.0	6.7	-	-	16.68	1668	0.8983
Loamy sand	0.6	5.2	-	-	11.76	1960	0.8876
Clay loam	1.6	7.6	-	-	35.30	2206	0.8820

Geometric mean (if not pH dependent)

23.3 **1706**

Arithmetic mean (if not pH dependent)

0.876

\(^{a)}\) Measured in calcium chloride solution

Soil adsorption transformation products (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.3.1.2 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.2.1)

Soil Type	OC %	Soil pH\(^{a)}\)	\(K_d\) (mL/g)	\(K_{doc}\) (mL/g)	\(K_F\) (mL/g)	\(K_{Foc}\) (mL/g)	\(1/n\)
SYN545547 Sand	0.8	5.3	-	-	5.727	759.4	0.8413
Sandy clay loam	2.2	5.8	-	-	15.35	715.3	0.8955
Silt loam	1.7	6.5	-	-	12.94	743.8	0.8435
Loam	2.7	7.0	-	-	8.792	322.5	0.8686
Clay	1.8	7.5	-	-	11.45	637	0.8615

Geometric mean (if not pH dependent)

10.3 **607.9**

Arithmetic mean (if not pH dependent)

0.862

\(^{a)}\) Measured in calcium chloride solution

NOA449410

Soil Type	OC %	Soil pH\(^{a)}\)	\(K_d\) (mL/g)	\(K_{doc}\) (mL/g)	\(K_F\) (mL/g)	\(K_{Foc}\) (mL/g)	\(1/n\)
NOA449410 Sand	0.8	5.3	-	-	5.727	759.4	0.8413
Sandy clay loam	2.2	5.8	-	-	15.35	715.3	0.8955
Silt loam	1.7	6.5	-	-	12.94	743.8	0.8435
Loam	2.7	7.0	-	-	8.792	322.5	0.8686
Clay	1.8	7.5	-	-	11.45	637	0.8615

Geometric mean (if not pH dependent)

10.3 **607.9**

Arithmetic mean (if not pH dependent)

0.862

\(^{a)}\) Measured in calcium chloride solution
soil type	Kd [L/kg]	pH	log Kd	Tc [h]	EC50 [μM]		
Loam	2.1	6.1	-	-	0.04	2.1	0.94
Sandy clay loam	2.5	7.2	-	-	0.07	2.7	0.85
Silty clay	0.7	7.6	-	-	0.02	3.6	1.02
Sandy loam	3.9	6.8	-	-	0.01	0.3	0.78
Loamy sand	0.4	6.8	-	-	0.02	6.1	0.93
Geometric mean (if not pH dependent)	0.03	2.1					
Arithmetic mean (if not pH dependent)	0.90						

Mobility in soil column leaching active substance (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.4.1.1 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.2.1)

| Column leaching | No data, not required |

Mobility in soil column leaching transformation products (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.4.1.2 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.2.1)

| Column leaching | No data, not required |

Lysimeter / field leaching studies (Regulation (EU) N° 283/2013, Annex Part A, points 7.1.4.2 / 7.1.4.3 and Regulation (EU) N° 284/2013, Annex Part A, points 9.1.2.2 / 9.1.2.3)

| Lysimeter/ field leaching studies | No data, not required |

a) Measured in calcium chloride solution
Hydrolytic degradation (Regulation (EU) N° 283/2013, Annex Part A, point 7.2.1.1)

Description	Value
Hydrolytic degradation of the active substance and metabolites > 10 %	Stable at pH 4, 7 and 9 at 50°C

Aqueous photochemical degradation (Regulation (EU) N° 283/2013, Annex Part A, points 7.2.1.2 / 7.2.1.3)

Description	Value
Photolytic degradation of active substance and metabolites above 10 %	pH 7 buffer:
	DT_{50}: 89 days
	Estimated DT_{50} at summer sunlight 30-50°N: 93 days
	No metabolite \geq 5%
	Sterilised natural water:
	DT_{50}: 33 days
	Estimated DT_{50} at summer sunlight 30-50°N: 35 days
	SYN548261: 7.3 % AR (21 d) (minor non transient)
	NOA449410: 5.4 % (30 days) (\geq 5% at the end of the study)

| Quantum yield of direct phototransformation in water at $\Sigma > 290 \text{ nm}$ | 0.0105 molecules degraded/photon |

‘Ready biodegradability’ (Regulation (EU) N° 283/2013, Annex Part A, point 7.2.2.1)

Description	Value
Readily biodegradable (yes/no)	No
Aerobic mineralisation in surface water (Regulation (EU) N° 283/2013, Annex Part A, point 7.2.2.2 and Regulation (EU) N° 284/2013, Annex Part A, point 9.2.1)

Parent	System identifier (indicate fresh, estuarine or marine)	pH	pH phase	t. \(^{\circ}\)C \(^{(b)}\)	DT\(_{50}\) /DT\(_{90}\) whole sys. (suspended sediment test)	St. (\(\chi^2\))	DT\(_{50}\) /DT\(_{90}\) Water (pelagic test)	St. (\(\chi^2\))	Method of calculation
	Fresh water, 10 µg/L, dark	8.0	7.1	20	>1000/>1000	-	-	-	SFO
	Fresh water, 95 µg/L, dark	8.0	7.1	20	637/>1000	-	-	-	SFO
	Fresh water, 10 µg/L, light/dark	8.2	6.8	20	402/>1000	1.55	-	-	SFO
	Fresh water, 95 µg/L, light/dark	8.2	6.8	20	662/>1000	1.01	-	-	SFO

\(^{(a)}\) Measured in usually calcium chloride solution

\(^{(b)}\) Temperature of incubation=std temperature of 20°C

\(^{(c)}\) Normalised using a Q10 of 2.58 to the temperature of the environmental media at the point of sampling. (note temp of x should be stated).

Metabolite SYN545547	Max in total system 7.3 % after 60 days (light/dark incubation, low dose 10 µg a.s./L)

Mineralisation and non extractable residues (for parent dosed experiments)

System identifier (indicate fresh, estuarine or marine)	pH	pH phase	Mineralisation x % after n d. (end of the study).	Non-extractable residues. max x % after n d (suspended sediment test)	Non-extractable residues. max x % after n d (end of the study) (suspended sediment test)
Fresh water, 10 µg/L, dark	8.0	7.1	≤0.1% after 58 d	-	-
Fresh water, 95 µg/L, dark	8.0	7.1	≤0.1% after 58 d	-	-
Fresh water, 10 µg/L, light/dark	8.2	6.8	≤0.8 after 58 d	-	-
Fresh water, 95 µg/L, light/dark	8.2	6.8	≤0.5 after 58 d	-	-
Water / sediment study (Regulation (EU) N° 283/2013, Annex Part A, point 7.2.2.3 and Regulation (EU) N° 284/2013, Annex Part A, point 9.2.2)

Water/sediment system – Aerobic conditions

	Distribution (Max in water 80.5-86.4% after 0 d. Max. sed 62.1-79.0 % after 100-30 d)

Trigger endpoints

Water / sediment system	pH	pH	t. °C	DT₅₀ / DT₉₀ whole sys.	St. (χ²)	Method of calculation	DissT₅₀ / DissT₉₀ water	St. (χ²)	Method of calculation
Calwich Abbey	8.4	7.6	20	270/976	2.1	HS	0.74/33.1	9.0	DFOPO
Swiss Lake	7.9	5.1	20	299/1100	0.9	HS	8.03/86.9	4.7	HS

Modelling endpoints

Water / sediment system	pH	pH	t. °C	DT₅₀ whole sys.	St. (χ²)	Method of calculation	DissT₅₀ water	St. (χ²)	Method of calculation
Calwich Abbey	8.4	7.6	20	244	2.8	SFO	10(b)	9.0	DFOPO
Swiss Lake	7.9	5.1	20	252	2.3	SFO	26.2(b)	4.7	HS

	Geometric mean at 20°C	248	16.2

Metabolite SYN545547 (trigger & modelling)

- Distribution (max in water 2.3% after 45 d. Max. sed 12.3 % after 100 d). Max in total system 12.8 % after 100 days.
- kinetic formation fraction (kₙ/kₚ): from parent pydilumetofen

Water / sediment system	pH	pH	t. °C	DT₅₀ / DT₉₀ whole sys.	St. (χ²)	Formation fraction	Method of calculation
Calwich Abbey	8.4	7.6	20	455/1510	10.4	0.60	SFO
Swiss Lake	7.9	5.1	20	18.6/61.9	12.8	0.96	SFO

	Geometric mean at 20°C(b)	92.0	-
Arithmetic mean		0.78	

- Measured in calcium chloride solution
- Calculated from DT90 / 3.32

[Regulation (EU) N° 283/2013, Annex Part A, point 7.2.2.3](http://www.efsa.europa.eu/efsajournal)

[Regulation (EU) N° 284/2013, Annex Part A, point 9.2.2](http://www.efsa.europa.eu/efsajournal)
Mineralisation and non extractable residues (from parent dosed experiments)

Water / sediment system	pH water phase	pH sed	Mineralisation x % after n d. (end of the study)	Non-extractable residues in sed. max x % after n d	Non-extractable residues in sed. max x % after n d (end of the study)
Calwich Abbey	8.4	7.6	≤0.8% after 100 d	10.1-10.2% after 100 d	10.1-10.2% after 100 d
Swiss Lake	7.9	5.1	≤0.9% after 100 d	14.7-16.2% after 100 d	14.7-16.2% after 100 d

Water/sediment system – Anaerobic conditions

Parent	Distribution (Max in water 82.9-86.2% after 0 d. Max. sed 43.9-51.7% after 61-100 d)	Water / sediment system	pH water phase	pH sed	t. ºC	DT₅₀ whole sys.	St. (χ²)	Method of calculation	Diss/T₅₀ water	St. (χ²)	Method of calculation
		Calwich Abbey	7.5	7.6	20	152	1.8	SFO	33.2	2.6	SFO
		Swiss Lake	7.8	5.1	20	163	1.0	SFO	41.9	3.1	SFO
		Geometric mean at 20ºC	157						37.3		

a) Measured in calcium chloride solution

Metabolite SYN545547 Distribution (max in water 10.8% after 100 d. Max. sed 26.5 % after 100 d). Max in total system 32.4 % after 100 days.

Mineralisation and non extractable residues (from parent dosed experiments)

Water / sediment system	pH water phase	pH sed	Mineralisation x % after n d. (end of the study)	Non-extractable residues in sed. max x % after n d	Non-extractable residues in sed. max x % after n d (end of the study)
Calwich Abbey	7.5	7.6	≤0.3% after 100 d	6.9-7.5% after 100 d	6.9-7.5% after 100 d
Swiss Lake	7.8	5.1	≤0.2% after 100 d	7.1-9.5% after 100 d	7.1-9.5% after 100 d

Fate and behaviour in air (Regulation (EU) N° 283/2013, Annex Part A, point 7.3.1)

Direct photolysis in air Not studied - no data requested

Photochemical oxidative degradation in air DT₅₀ of 5.85 hours derived by the Atkinson model (AOP version 1.91). OH (12h) concentration assumed = 1.5x10⁶ radicals/cm³

Volatile No data, not required.

Metabolites No data, not required.

Residues requiring further assessment (Regulation (EU) N° 283/2013, Annex Part A, point 7.4.1)

Environmental occurring residues requiring further assessment by other disciplines (toxicology and ecotoxicology) and or requiring consideration for groundwater exposure

Soil: pydiflumetofen
Surface water: pydiflumetofen, SYN548261, NOA449410
Sediment: pydiflumetofen, SYN545547
Ground water: pydiflumetofen

www.efsa.europa.eu/efsajournal 48 EFSA Journal 2019;17(10):5821
Definition of the residue for monitoring (Regulation (EU) N° 283/2013, Annex Part A, point 7.4.2)

See section 5, Ecotoxicology

Monitoring data, if available (Regulation (EU) N° 283/2013, Annex Part A, point 7.5)

Environment	Data Available
Soil (indicate location and type of study)	No data available
Surface water (indicate location and type of study)	No data available
Ground water (indicate location and type of study)	No data available
Air (indicate location and type of study)	No data available

PEC soil (Regulation (EU) N° 284/2013, Annex Part A, points 9.1.3 / 9.3.1)

Parent
Method of calculation

DT_{50} (d): 8540 days (kinetic parameters used:
 k_1=0.05381, k_2=0.000043, g=0.2484)

Kinetics: DFOP
Field or Lab: representative worst case from field studies.

Application data

Crop: grapes, pome fruits, cucurbits, tomatoes, potatoes, brassicas
Application schemes & Crop interception: see table below
Depth of soil layer: 5 cm for initial PECsoil, 5 or 20 cm for background concentration (plateau)
Soil bulk density: 1.5 g/cm^3

Use (Crop, dose, interval)	Crop interception (%)	Initial PECsoil in 5 cm (mg/kg)	Background concentration after 100 years (mg/kg)	PECaccu after 100 years (mg/kg)
Grapes, 2 x 200 g/ha, 14 d	60	0.1993	8.062 (5 cm)	8.2613
Grapes, 2 x 40 g/ha, 10 d	50	0.0506	2.015 (5 cm)	2.0656
Pome fruits, 3 x 50 g/ha, 7 d	60	0.0744	3.023 (5 cm)	3.0974
Cucurbits, 2 x 50 g/ha, 7 d	70	0.0384	0.3778 (20 cm)	0.4162
Tomatoes, 2 x 70 g/ha, 7 d	80	0.0359	0.3527 (20 cm)	0.3886
Potatoes, 3 x 40 g/ha, 14 d	60	0.0570	0.6049 (20 cm)	0.6619
Brassicas, 2 x 70 g/ha, 14 d	40	0.1046	1.058 (20 cm)	1.1626
* plateau still not reached

PEC ground water (Regulation (EU) N° 284/2013, Annex Part A, point 9.2.4.1)

Method of calculation and type of study (e.g. modelling, field leaching, lysimeter)	Modelling using FOCUS models, with appropriate FOCUSgw scenarios, according to FOCUS guidance. Models used: PEARL 4.4.4, PELMO 5.5.3, MACRO 5.5.4
pydiflumetofen:	Molecular weight: 426.7 g/mol Water solubility: 1.5 mg/L at 20°C Vapour pressure: 0 Pa at 20°C (no volatilization as worst-case) Geometric mean parent DT50 field 1334 d (normalisation to pH2, 20 °C with Q10 of 2.58 and Walker equation coefficient 0.7) KOC: 1706 mL/g (geometric mean) 1/n: = 0.876 (arithmetic mean) Crop uptake factor: 0

Application rate	Crop: Grapes (FOCUS: Vines) Gross application rate: 200 g/ha. No. of applications: 2 Interval between applications: 14 days Crop growth stage: BBCH 67-89 Canopy interception %: 60 (1st app), 75 (2nd app) Application rate net of interception: 80 g/ha (1st app), 50 g/ha (2nd app). Time of application (determined according to AppDate SE (2015)): 1st app. at BBCH 67
Crop: Grapes (FOCUS: Vines) Gross application rate: 40 g/ha. No. of applications: 2 Interval between applications: 10 days Crop growth stage: BBCH 13-77 Canopy interception %: Early: 50 (1st app), 60 (2nd app) Late: 60 (1st app), 75 (2nd app) Application rate net of interception: Early: 20 g/ha (1st app), 16 g/ha (2nd app) Late: 16 g/ha (1st app), 10 g/ha (2nd app) Time of application (determined according to AppDate SE (2015)): Early: 1st app. at BBCH 13 Late: 2nd app. at BBCH 77	
Crop: pome fruits (FOCUS: Apples) Gross application rate: 50 g/ha. No. of applications: 3 Interval between applications: 7 days	
Crop growth stage: BBCH 56-79
Canopy interception %:
 Early: 60 (1st, 2nd & 3rd app)
 Late: 65 (1st, 2nd & 3rd app)
Application rate net of interception:
 Early: 20 g/ha (1st, 2nd & 3rd app)
 Late: 17.5 g/ha (1st, 2nd & 3rd app)
Time of application (determined according to AppDate SE (2015)):
 Early: 1st app. at BBCH 56
 Late: 3rd app. at BBCH 797

Crop: Cucurbits (FOCUS: Tomatoes)
Gross application rate: 50 g/ha.
No. of applications: 2
Interval between applications: 7 days
Crop growth stage: BBCH 20-89
Canopy interception %:
 Early: 70 (1st & 2nd app)
 Late: 80 (1st & 2nd app)
Application rate net of interception:
 Early: 15 g/ha (1st & 2nd app)
 Late: 10 g/ha (1st & 2nd app)
Time of application (determined according to AppDate SE (2015)):
 Early: 1st app. at BBCH 20
 Late: 2nd app. at BBCH 89

Crop: Tomatoes (FOCUS: Tomatoes)
Gross application rate: 70 g/ha.
No. of applications: 2
Interval between applications: 7 days
Crop growth stage: BBCH 51-89
Canopy interception %: 80 (for early and late, 1st & 2nd app)
Application rate net of interception: 14 g/ha (for early and late, 1st & 2nd app)
Time of application (determined according to AppDate SE (2015)):
 Early: 1st app. at BBCH 51
 Late: 2nd app. at BBCH 89

Crop: Potatoes (FOCUS: Potatoes)
Gross application rate: 40 g/ha.
No. of applications: 3
Interval between applications: 14 days
Crop growth stage: BBCH 31-89
Canopy interception %:
 Early: 60 (1st app), 85 (2nd & 3rd app)
 Late: 85 (1st, 2nd & 3rd app)
Application rate net of interception:

7 Except when this resulted in a date beyond the date of the beginning of the pre harvest interval of 65 days. In this case the last application date was set to 65 days before harvest.
Early: 16 g/ha (1st app), 6 g/ha (2nd & 3rd app)
Late: 6 g/ha (1st, 2nd & 3rd app)

Time of application (determined according to AppDate SE (2015)):
 Early: 1st app. at BBCH 30
 Late: 3rd app. at BBCH 898

Crop: Brassicas (FOCUS: Cabbage)
Gross application rate: 70 g/ha.
No. of applications: 2 (2 per crop cycle, equivalent to 4 applications/year for scenarios with 2 crop cycles)
Interval between applications: 14 days
Crop growth stage: BBCH 21-49
Canopy interception %:
 Early: 25 (1st & 2nd app)
 Late: 70 (1st & 2nd app)
Application rate net of interception:
 Early: 52.5 g/ha (1st & 2nd app)
 Late: 21 g/ha (1st & 2nd app)

Time of application (determined according to AppDate SE (2015)):
 Early: 1st app. at BBCH 19
 Late: 2nd app. at BBCH 49

PEC(gw) - FOCUS modelling results (80th percentile annual average concentration at 1m)
Results are the same for early and late application periods unless otherwise indicated

Use	Scenario	PEC\textsubscript{gw} at 1 m soil depth [µg/L]		
		FOCUS-PEARL 4.4.4	FOCUS-PELMO 5.5.3	FOCUS-MACRO 5.5.4
Grapes, 2 x 200 g/ha BBCH 67-89	Châteaudun	< 0.001	< 0.001	< 0.001
	Hamburg	< 0.001	< 0.001	N/A
	Kremsmünster	< 0.001	< 0.001	N/A
	Piacenza	0.026	0.056	N/A
	Porto	< 0.001	0.001	N/A
	Sevilla	0.003	< 0.001	N/A
	Thiva	< 0.001	< 0.001	N/A

Use	Scenario	PEC\textsubscript{gw} at 1 m soil depth [µg/L]		
		FOCUS-PEARL 4.4.4	FOCUS-PELMO 5.5.3	FOCUS-MACRO 5.5.4
Grapes, 2 x 40 g/ha BBCH 13-77	Châteaudun	< 0.001	< 0.001	< 0.001
	Hamburg	< 0.001	< 0.001	N/A
	Kremsmünster	< 0.001	< 0.001	N/A
	Piacenza	< 0.001	Early: 0.002	N/A
			Late: 0.001	
	Porto	< 0.001	< 0.001	N/A
	Sevilla	< 0.001	< 0.001	N/A
	Thiva	< 0.001	< 0.001	N/A

8 Except when this resulted in a date beyond the date of the beginning of the pre harvest interval of 7 days. In this case, the last application date was set to 7 days before harvest.
Use	Scenario	PEC_{GW} at 1 m soil depth [µg/L]		
		FOCUS-PEARL 4.4.4	FOCUS-PELMO 5.5.3	FOCUS-MACRO 5.5.4
Pome fruits,	Châteaudun	< 0.001	< 0.001	< 0.001
3 x 50 g/ha	Hamburg	< 0.001	< 0.001	N/A
BBCH 56-79	Jokioinen	< 0.001	< 0.001	N/A
	Kremsmünster	< 0.001	< 0.001	N/A
	Okehampton	< 0.001	< 0.001	N/A
	Piacenza	Early: 0.003	Early: 0.017	N/A
		Late: 0.002	Late: 0.010	N/A
	Porto	< 0.001	< 0.001	N/A
	Sevilla	Early: 0.002	< 0.001	N/A
		Late: < 0.001		N/A
	Thiva	< 0.001	< 0.001	N/A
Cucurbits,	Châteaudun	< 0.001	< 0.001	< 0.001
2 x 50 g/ha,	Piacenza	< 0.001	< 0.001	N/A
BBCH 51-89	Porto	< 0.001	< 0.001	N/A
	Sevilla	< 0.001	< 0.001	N/A
	Thiva	< 0.001	< 0.001	N/A
Tomatoes,	Châteaudun	< 0.001	< 0.001	< 0.001
2 x 70 g/ha,	Piacenza	< 0.001	< 0.001	N/A
BBCH 51-89	Porto	< 0.001	< 0.001	N/A
	Sevilla	< 0.001	< 0.001	N/A
	Thiva	< 0.001	< 0.001	N/A
Potatoes,	Châteaudun	< 0.001	< 0.001	< 0.001
3 x 40 g/ha	Hamburg	< 0.001	< 0.001	N/A
BBCH 31-89	Jokioinen	< 0.001	< 0.001	N/A
	Kremsmünster	< 0.001	< 0.001	N/A
	Okehampton	< 0.001	< 0.001	N/A
	Piacenza	< 0.001	< 0.001	N/A
	Porto	< 0.001	< 0.001	N/A
	Sevilla	< 0.001	< 0.001	N/A
	Thiva	< 0.001	< 0.001	N/A
Brassicas,	Châteaudun	< 0.001	< 0.001	< 0.001
2 x 70 g/ha	Hamburg	< 0.001	< 0.001	N/A
Additional PECgw calculations

The standard 20-year FOCUS calculations resulted to be not sufficient to cover the groundwater risk assessment for a highly persistent substance such as pydiflumetofen, since even the simulations over a period of 60 or 93 years were not able to depict the plateau phase of pydiflumetofen for all representative uses and shown increasing trends.

Therefore, the additional simulations performed considering annual applications of pydiflumetofen during 60 years were used in order to assess the long-term groundwater exposure for pydiflumetofen. Although these calculations were not performed using the standard FOCUS shells of the groundwater models, it was agreed that they are necessary to illustrate that due to the persistence of pydiflumetofen, groundwater exposure from the active substance for the representative uses is likely to occur in the long-term.

The PECgw presented are the maximum from early and late season application simulations where relevant.

Use	Scenario	PECgw at 1 m soil depth [µg/L]		
BBCH 21-49		FOCUS-PEARL 4.4.4	FOCUS-PELMO 5.5.3	FOCUS-MACRO 5.5.4
Jokioinen	< 0.001	< 0.001	N/A	
Kremsmünster	< 0.001	< 0.001	N/A	
Porto	< 0.001 Early: 0.002 Late: < 0.001	N/A		
Sevilla	< 0.001	< 0.001	N/A	
Thiva	< 0.001	< 0.001	N/A	

Calculations do not come from using FOCUS shells of the groundwater tools
Use	Scenario	PEC_{GW} at 1 m soil depth [µg/L]	Following annual applications during 60 years*
		PEARL 4.4.4	PELMO 5.5.3
		0.1943	0.0370
		0.4978	0.2737
		0.6180	0.0924
		0.2397	0.0973
		0.7368	< 0.001
		2.6740	< 0.001

* Calculations do not come from using FOCUS shells of the groundwater tools

Use	Scenario	PEC_{GW} at 1 m soil depth [µg/L]	Following annual applications during 60 years*
		PEARL 4.4.4	PELMO 5.5.3
		0.0046	< 0.001
		0.0933	0.0261
		0.0287	0.0261
		< 0.001	< 0.001
		0.0024	< 0.001

* Calculations do not come from using FOCUS shells of the groundwater tools

Use	Scenario	PEC_{GW} at 1 m soil depth [µg/L]	Following annual applications during 60 years*
		PEARL 4.4.4	PELMO 5.5.3
		0.0036	< 0.001
		0.0853	0.0238
		0.0253	0.0237
		< 0.001	< 0.001
		0.0019	< 0.001

* Calculations do not come from using FOCUS shells of the groundwater tools

Use	Scenario	PEC_{GW} at 1 m soil depth [µg/L]	Following annual applications during 60 years*
		PEARL 4.4.4	PELMO 5.5.3
		0.0010	< 0.001
		0.0435	0.0114
		< 0.001	< 0.001
		0.0199	0.0054
		0.0843	0.0774
		0.0712	0.0227
		0.0212	0.0227
		< 0.001	< 0.001
		< 0.001	< 0.001

* Calculations do not come from using FOCUS shells of the groundwater tools

Use	Scenario	PEC_{GW} at 1 m soil depth [µg/L]	Following annual applications during 60 years*
		PEARL 4.4.4	PELMO 5.5.3
		0.0345	0.0091

* Calculations do not come from using FOCUS shells of the groundwater tools
Peer review of the pesticide risk assessment of the active substance pydiflumetofen

PEC surface water and PEC sediment (Regulation (EU) N° 284/2013, Annex Part A, points 9.2.5 / 9.3.1)

Parent
- **Parameters used in FOCUSsw step 1 and 2**
 - Version control no. of FOCUS calculator: 3.2
 - Molecular weight (g/mol): 426.7
 - \(K_{OC}\) (mL/g): 1706 (geomean)
 - \(DT_{50}\) soil (d): 1334 days, geomean from field
 - \(DT_{50}\) water/sediment system (d): 248 d (geomean from sediment water studies)
 - \(DT_{50}\) water (d): 248
 - \(DT_{50}\) sediment (d): 248

Parameters used in FOCUSsw step 3 (if performed)
- Version control no.’s of FOCUS software: SWASH 5.3, MACRO 5.5.4, PRZM 4.3.1, TOXSWA 4.4
- Water solubility (mg/L): 1.5 (25°C)
- Vapour pressure: \(1.84 \times 10^{-7}\) Pa at 20°C
- \(DT_{50}\) soil (d): 1334 days
- \(K_{oc}\) (mL/g): 1706 (geomean)
- \(1/n\): 0.876 (arithmetic mean)
- \(DT_{50}\) water (d): 1000 (FOCUS default)
- \(DT_{50}\) sediment (d): 248 (geomean from total system)
- \(Q10=2.58\), Walker equation coefficient 0.7
- Crop uptake factor: 0

Application rate
- Crop and growth stage: grapes (FOCUS: Vines late), BBCH 67-89
- Number of applications: 2
- Interval (d): 14
- Application rate(s): 200 g a.s./ha
- Crop interception (Step 2): Full canopy (60%)
- Application window:
 - Step 2: June-September
 - Step 3: beginning at BBCH 67 (determined according to AppDate SE 2015)\(^9\)

- Crop and growth stage: grapes (FOCUS: Vines early for Step 1-2\(^9\), Vines early & late for Step 3), BBCH 13-77

\(^9\) Except when this resulted in the end of the window beyond the date of the beginning of the pre harvest interval. In this case, the end of application window was set to PHI.
Crop and growth stage: pome fruits (FOCUS: Pome/stone fruits early for Step 1-2, Pome/stone fruits early & late for Step 3), BBCH 56-79
Number of applications: 3
Interval (d): 7
Application rate(s): 50 g a.s./ha
Crop interception (Step 2): Average crop cover (40%)
Application window:
Step 2: June-September
Step 3, early: beginning at BBCH 56 (determined according to AppDate SE 2015)
Step 3, late: ending at BBCH 79 (determined according to AppDate SE 2015)

Crop and growth stage: cucurbits (FOCUS: Fruiting vegetables), BBCH 20-89
Number of applications: 2
Interval (d): 7
Application rate(s): 50 g a.s./ha
Crop interception (Step 2): Minimal (25%)
Application window:
Step 2: March-May
Step 3, early: beginning at BBCH 20 (determined according to AppDate SE 2015)
Step 3, late: ending at BBCH 89 (determined according to AppDate SE 2015)

Crop and growth stage: tomatoes (FOCUS: Fruiting vegetables), BBCH 51-89
Number of applications: 2
Interval (d): 7
Application rate(s): 70 g a.s./ha
Crop interception (Step 2): Full canopy (70%)
Application window:
Step 2: June-September
Step 3, early: beginning at BBCH 51 (determined according to AppDate SE 2015)
Step 3, late: ending at BBCH 89 (determined according to AppDate SE 2015)

10 This is not conservative for late applications. However late applications can be considered covered by calculations performed for grapes 2x200 g/ha
Crop and growth stage: potatoes (FOCUS: Potatoes), BBCH 31-89
Number of applications: 3
Interval (d): 14
Application rate(s): 40 g a.s./ha
Crop interception (Step 2): Average crop cover (50%)
Application window:
Step 2: June-September
Step 3, early: beginning at BBCH 31 (determined according to AppDate SE 2015)
Step 3, late: ending at BBCH 89 (determined according to AppDate SE 2015)

Crop and growth stage: brassicas (FOCUS: Leafy vegetables), BBCH 21-49
Number of applications: 2
Interval (d): 14
Application rate(s): 70 g a.s./ha
Crop interception (Step 2): Minimal (25%)
Application window:
Step 2: March-May
Step 3, early: beginning at BBCH 19 (determined according to AppDate SE 2015)
Step 3, late (only for D4 1st, D6 1st, R2 2nd): ending at BBCH 49 (determined according to AppDate SE 2015)

Use	FOCUS STEP 1	FOCUS STEP 2				
	Actual PEC_{SW} (µg/L)	Actual PEC_{SED} (µg/kg)	PEC_{SED ACCU} (µg/kg)	Actual PEC_{SW} (µg/L)	Actual PEC_{SED} (µg/kg)	PEC_{SED ACCU} (µg/kg)
Grapes, 2 x 200 g/ha	51.4	748	1217	8.52	130	213
Grapes, 2 x 40 g/ha**	8.86	142	231	2.20	36.5	59.4
Pome fruit, 3 x 50 g/ha	29.9	336	525	7.36	107	167.3
Cucurbits, 2 x 50 g/ha	11.1	178	290	3.36	55.9	91.1
Tomatoes, 2 x 70 g/ha	15.5	249	405	1.72	27.5	44.9
Potatoes, 3 x 40 g/ha	13.3	214	348	2.12	34.9	54.7
Brassicas, 2 x 70 g/ha	15.5	249	405	4.70	78.2	127

* Calculations are reported for multiple applications only (worst-case compared to single application) and for Southern Europe only (worst-case compared to Northern Europe)
** Calculations cover early applications. Late applications can be considered covered by calculations performed for grapes 2x200 g/ha

FOCUS Step 3
Application rate and timing

Scenario	Water body	PEC_{SW} [µg/L][*]	PEC_{SED} [µg/kg][*]	Main route of entry to water body for max. PEC_{SW}
D6	Ditch	3.42	11.6	Drift
R1	Pond	0.18	1.68	Drift
R1	Stream	2.44	0.429	Drift
R2	Stream	3.37	1.41	Drift
R3	Stream	3.54	4.52	Drift
R4	Stream	2.51	1.87	Drift

[*] PEC values are the maximum of single and multiple application simulations (i.e. each value in the table is the maximum of two values)

Application rate and timing

Scenario	Water body	PEC_{SW} [µg/L][*]	PEC_{SED} [µg/kg][*]	Main route of entry to water body for max. PEC_{SW}
D6	Ditch	0.761	2.54	Drainage
R1	Pond	0.036	0.364	Drift
R1	Stream	0.502	0.202	Drift
R2	Stream	0.673	0.312	Drift
R3	Stream	0.708	0.783	Drift
R4	Stream	0.502	0.584	Drift

[*] PEC values are the maximum of multiple simulations of early and late application timings, single and multiple applications (i.e. each value in the table is the maximum of four values)

Application rate and timing

Scenario	Water body	PEC_{SW} [µg/L][*]	PEC_{SED} [µg/kg][*]	Main route of entry to water body for max. PEC_{SW}
D3	Ditch	3.89	5.74	Drift
D4	Pond	0.501	5.11	Drift
D4	Stream	4.12	1.25	Drift
D5	Pond	0.514	5.52	Drift
D5	Stream	4.45	1.76	Drift
R1	Pond	0.450	4.01	Drift
R1	Stream	3.16	0.736	Drift
R2	Stream	4.23	0.654	Drift
R3	Stream	4.45	1.48	Drift
R4	Stream	3.08	0.826	Drift

[*] PEC values are the maximum of multiple simulations of single and multiple applications (i.e. each value in the table is the maximum of two values)

Application rate and timing

Scenario	Water body	PEC_{SW} [µg/L][*]	PEC_{SED} [µg/kg][*]	Main route of entry to water body for max. PEC_{SW}
D3	Ditch	1.84	3.30	Drift
D4	Pond	0.192	2.37	Drainage
D4	Stream	1.84	0.689	Drift
D5	Pond	0.174	2.68	Drainage
D5	Stream	1.98	0.717	Drift
R1	Pond	0.132	1.34	Drift
R1	Stream	1.38	0.228	Drift
R2	Stream	1.89	0.622	Drift
R3	Stream	1.98	0.883	Drift
R4	Stream	1.41	0.751	Drift

[*] PEC values are the maximum of multiple simulations of single and multiple applications (i.e. each value in the table is the maximum of two values)
Application rate and timing [g a.s./ha]

Scenario	Water body	PEC_{SW} [µg/L][*]	PEC_{SED} [µg/kg][*]	Main route of entry to water body for max. PEC_{SW}	
Step 3, Cucurbita 2 × 50 g a.s./ha BBCH 20-89	D6	Ditch	1.34	2.41	Drainage
	R2	Stream	0.280	18.9	Drift
	R3	Stream	0.350	3.47	Runoff
	R4	Stream	0.479	1.30	Runoff

* PEC values are the maximum of multiple simulations of early and late application timings, single and multiple applications (i.e. each value in the table is the maximum of four values)

Application rate and timing [g a.s./ha]

Scenario	Water body	PEC_{SW} [µg/L][*]	PEC_{SED} [µg/kg][*]	Main route of entry to water body for max. PEC_{SW}	
Step 3, Tomatoes 2 × 70 g a.s./ha BBCH 51-89	D6	Ditch	1.93	3.12	Drainage
	R2	Stream	0.392	25.1	Drift
	R3	Stream	0.466	4.61	Runoff
	R4	Stream	0.718	1.73	Runoff

* PEC values are the maximum of multiple simulations of early and late application timings, single and multiple applications (i.e. each value in the table is the maximum of four values)

Application rate and timing [g a.s./ha]

Scenario	Water body	PEC_{SW} [µg/L][*]	PEC_{SED} [µg/kg][*]	Main route of entry to water body for max. PEC_{SW}	
Step 3, Potatoes 3 × 40 g a.s./ha BBCH 31-89	D3	Ditch	0.209	0.172	Drift
	D4	Pond	0.282	3.16	Drainage
	D4	Stream	0.614	1.19	Drainage
	D6	Ditch	1.40	2.78	Drainage
	R1	Pond	0.133	1.97	Runoff
	R1	Stream	0.328	1.74	Runoff
	R2	Stream	0.192	7.31	Drift
	R3	Stream	0.372	4.21	Runoff

* PEC values are the maximum of multiple simulations of early and late application timings, single and multiple applications (i.e. each value in the table is the maximum of four values)

Application rate and timing [g a.s./ha]

Scenario	Water body	PEC_{SW} [µg/L][*]	PEC_{SED} [µg/kg][*]	Main route of entry to water body for max. PEC_{SW}	
Step 3, Brassicas 2 × 70 g a.s./ha BBCH 21-49	D3 (1st crop)	Ditch	0.443	0.382	Drift
	D3 (2nd crop)	Ditch	0.440	0.292	Drift
	D4 (1st crop)	Pond	0.278	3.18	Drainage
	D4 (1st crop)	Stream	0.581	1.18	Drainage
	D6 (1st crop)	Ditch	2.22	3.03	Drainage
	R1 (1st crop)	Pond	0.253	4.05	Runoff
	R1 (2nd crop)	Pond	0.199	3.23	Runoff
	R1 (1st crop)	Stream	0.407	15.2	Runoff
	R2 (1st crop)	Stream	0.375	3.56	Runoff
	R2 (2nd crop)	Stream	0.392	14.5	Drift
	R3 (1st crop)	Stream	0.412	12.1	Drift
	R3 (2nd crop)	Stream	0.411	7.36	Drift
	R4 (1st crop)	Stream	0.653	2.17	Runoff
	R4 (2nd crop)	Stream	0.640	2.60	Runoff

* PEC values are the maximum of multiple simulations of early and late application timings, single and multiple applications (i.e. each value in the table is the maximum of four values)
FOCUS Step 4 – 10 m non-sprayed buffer zone

Application rate and timing [g a.s./ha]	Scenario	Water body	PECsw [µg/L]*	Main route of entry to water body for max. PECsw
Step 4, 10 m NSB				
Grapes, late				
2 × 200 g a.s./ha				
BBCH 67-89				
	D6	Ditch	3.38	Drainage
	R1	Pond	0.116	Drift
	R1	Stream	0.644	Drift
	R2	Stream	0.888	Drift
	R3	Stream	1.13	Runoff
	R4	Stream	1.39	Runoff

* PEC values are the maximum of single and multiple application simulations (i.e. each value in the table is the maximum of two values)

Application rate and timing [g a.s./ha]	Scenario	Water body	PECsw [µg/L]*	Main route of entry to water body for max. PECsw
Step 4, 10 m NSB				
Pome fruits, early				
3 × 50 g a.s./ha				
BBCH 56-69				
	D3	Ditch	1.88	Drift
	D4	Pond	0.318	Drift
	D4	Stream	2.17	Drift
	D5	Pond	0.331	Drift
	D5	Stream	2.35	Drift
	R1	Pond	0.289	Drift
	R1	Stream	1.66	Drift
	R2	Stream	2.23	Drift
	R3	Stream	2.35	Drift
	R4	Stream	1.63	Drift

* PEC values are the maximum of multiple simulations of single and multiple applications (i.e. each value in the table is the maximum of two values)

Application rate and timing [g a.s./ha]	Scenario	Water body	PECsw [µg/L]*	Main route of entry to water body for max. PECsw
Step 4, 10 m NSB				
Pome fruits, late				
3 × 50 g a.s./ha				
BBCH 70-79				
	D3	Ditch	0.553	Drift
	D4	Pond	0.174	Drainage
	D4	Stream	0.641	Drift
	D5	Pond	0.162	Drainage
	D5	Stream	0.692	Drift
	R1	Pond	0.083	Drift
	R1	Stream	0.481	Drift
	R2	Stream	0.658	Drift
	R3	Stream	0.691	Drift
	R4	Stream	0.490	Drift

* PEC values are the maximum of multiple simulations of single and multiple applications (i.e. each value in the table is the maximum of two values)
Metabolite SYN548261

Parameters used in FOCUSsw step 1 and 2

	FOCUS STEP 1’	FOCUS STEP 2’		
	Actual PEC_{SW} (µg/L)	Actual PEC_{SED} (µg/kg)	Actual PEC_{SW} (µg/L)	Actual PEC_{SED} (µg/kg)
Grapes, 2 x 200 g/ha	8.45	58.9	1.49	10.4
Grapes, 2 x 40 g/ha	1.61	11.2	0.412	2.88
Pome fruit, 3 x 50 g/ha	3.79	26.4	1.22	8.52
Cucurbits, 2 x 50 g/ha	2.01	14.0	0.632	4.41
Tomatoes, 2 x 70 g/ha	2.81	19.6	0.312	2.17
Potatoes, 3 x 40 g/ha	2.41	16.8	0.279	1.95
Brassicas, 2 x 70 g/ha	2.81	19.6	0.884	6.17

*Calculations are reported for multiple applications only (worst-case compared to single application) and for Southern Europe only (worst-case compared to Northern Europe)

Application rate

Same as for parent substance

Metabolite NOA449410

Parameters used in FOCUSsw step 1 and 2

	FOCUS STEP 1’	FOCUS STEP 2’		
	Actual PEC_{SW} (µg/L)	Actual PEC_{SED} (µg/kg)	Actual PEC_{SW} (µg/L)	Actual PEC_{SED} (µg/kg)
Grapes, 2 x 200 g/ha	3.44	0.072	0.605	0.013
Grapes, 2 x 40 g/ha	0.653	0.014	0.168	0.004

Application rate

Same as for parent substance

Molecular weight: 291 g/mol
Soil or water metabolite: water
K_{oc} (mL/g): 0 / 10000 (worst-case for PEC_{SW} / PEC_{SED})
DT₅₀ soil (d): 1000 days (default worst-case)
DT₅₀ water/sediment system (d): 1000 d (default worst-case)
DT₅₀ water (d): 1000 d (default worst-case)
DT₅₀ sediment (d): 1000 d (default worst-case)
Maximum occurrence observed (% molar basis with respect to the parent)
Total Water and Sediment: 8.6
Soil: 0

Molecular weight: 176 g/mol
Soil or water metabolite: water
K_{oc} (mL/g): 2.1 (geomean)
DT₅₀ soil (d): 1000 days (default worst-case)
DT₅₀ water/sediment system (d): 1000 d (default worst-case)
DT₅₀ water (d): 1000 d (default worst-case)
DT₅₀ sediment (d): 1000 d (default worst-case)
Maximum occurrence observed (% molar basis with respect to the parent)
Total Water and Sediment: 5.8
Soil: 0

Application rate

Same as for parent substance
Use

Use	FOCUS STEP 1*	FOCUS STEP 2*		
	Actual PEC_{SW} (µg/L)	Actual PEC_{SED} (µg/kg)	Actual PEC_{SW} (µg/L)	Actual PEC_{SED} (µg/kg)
Pome fruit, 3 x 50 g/ha	1.53	0.032	0.497	0.010
Cucurbits, 2 x 50 g/ha	0.817	0.017	0.257	0.005
Tomatoes, 2 x 70 g/ha	1.14	0.024	0.127	0.003
Potatoes, 3 x 40 g/ha	0.981	0.02	0.161	0.003
Brassicas, 2 x 70 g/ha	1.14	0.024	0.360	0.008

* Calculations are reported for multiple applications only (worst-case compared to single application) and for Southern Europe only (worst-case compared to Northern Europe)

Metabolite SYN545547

- **Parameters used in FOCUS_{sw} step 1 and 2**
 - Molecular weight: 396 g/mol
 - Soil or water metabolite: water
 - K_{oc} (mL/g): 608 (geomean)
 - DT₅₀ soil (d): 1000 days (default worst-case)
 - DT₅₀ water/sediment system (d): 92 d (geomean from water/sediment studies)
 - DT₅₀ water (d): 92 d (geomean from water/sediment studies)
 - DT₅₀ sediment (d): 92 d (geomean from water/sediment studies)
 - Maximum occurrence observed (% molar basis with respect to the parent)
 - Total Water and Sediment: 33.7
 - Soil: 2.3

Application rate

- Same as for parent substance

Use

Use	FOCUS STEP 1*	FOCUS STEP 2*		
	Actual PEC_{SW} (µg/L)	Actual PEC_{SED} (µg/kg)	Actual PEC_{SW} (µg/L)	Actual PEC_{SED} (µg/kg)
Grapes, 2 x 200 g/ha	28.0	160	4.71	26.8
Grapes, 2 x 40 g/ha	5.15	30.4	1.30	7.74
Pome fruit, 3 x 50 g/ha	13.8	70.9	3.89	21.5
Cucurbits, 2 x 50 g/ha	6.44	38.1	1.99	11.9
Tomatoes, 2 x 70 g/ha	9.01	53.3	0.994	5.78
Potatoes, 3 x 40 g/ha	7.73	45.7	1.24	7.36
Brassicas, 2 x 70 g/ha	9.01	53.3	2.79	16.6

* Calculations are reported for multiple applications only (worst-case compared to single application) and for Southern Europe only (worst-case compared to Northern Europe)

Estimation of concentrations from other routes of exposure (Regulation (EU) N° 284/2013, Annex Part A, point 9.4)

- **Method of calculation**
 - No data, not required
PEC

Maximum concentration	No data, not required
Ecotoxicology

Effects on birds and other terrestrial vertebrates (Regulation (EU) N° 283/2013, Annex Part A, point 8.1 and Regulation (EU) N° 284/2013, Annex Part A, point 10.1)

Species	Test substance	Time scale	End point	Toxicity (mg/kg bw per day)
Birds				
Bobwhite quail *(Colinus virginianus)*	pydiflumetofen	Acute	LD₅₀	3776^a
Canary *(Serinus canaria)*	pydiflumetofen	Acute	LD₅₀	3776^a
Bobwhite quail *(Colinus virginianus)*	pydiflumetofen	Short-term dietary	LC₅₀	>1 258
Mallard duck *(Anas platyrhynchos)*	pydiflumetofen	Short-term dietary	LC₅₀	>2 437
Bobwhite quail *(Colinus virginianus)*	pydiflumetofen	Long-term	NOEC	90.1
Mallard duck *(Anas platyrhynchos)*	pydiflumetofen	Long-term	NOEC	141
Bobwhite quail *(Colinus virginianus)*	A19649B	Acute	LD₅₀	>2 000 (equivalent to >372 mg a.s./kg bw)
Mammals				
Rat	pydiflumetofen	Acute	LD₅₀	>5000
Rat	A19649B	Acute	LD₅₀	2 958 (equivalent to 550 mg a.s./kg bw)
Rat	pydiflumetofen	Long-term (28 d dietary)	NOAEL	40
Mouse	pydiflumetofen	Long-term (28 d dietary)	NOAEL	76
Rat	pydiflumetofen	Long-term (90 d dietary)	NOAEL	18.6
Mouse	pydiflumetofen	Long-term (90 d dietary)	NOAEL	17.5
Rat	pydiflumetofen	Long-term (developmental)	NOAEL	100
Rabbit	pydiflumetofen	Long-term (developmental)	NOAEL	10
Rat	pydiflumetofen	Long-term (2 generations)	NOAEL	36
Endocrine disrupting properties (Annex Part A, points 8.1.5)
With regard to the assessment of endocrine disruption potential according to ECHA/EFSA Guidance (2018), as reported in Section 2, pydiflumetofen is not an endocrine disruptor for humans and this conclusion also applies to mammals as non-target organisms.

For non-target organisms other than mammals, the available evidence was not considered sufficient to draw a conclusion on endocrine disrupting properties (data gap).

* Based on the LD50 >2000 with extrapolation factor of 1.888

Toxicity/exposure ratios for terrestrial vertebrates (Regulation (EU) No 284/2013, Part A, Annex point 10.1)

Grapes at 200 g a.s./ha x 2

Growth stage	Indicator or focal species	Time scale	DDD (mg/kg bw per day)	TER	Trigger
Screening Step (Birds)					
All	Small omnivorous bird	Acute	22.87	170	10
All	Small omnivorous bird	Long-term	5.77	16	5
Screening Step (Mammals)					
All	Small herbivorous mammal	Acute	32.74	150	10
All	Small herbivorous mammal	Long-term	10.73	3.36	5
Tier 1 (Mammals)					
Vineyard Application crop directed BBCH ≥ 40	Small herbivorous mammal "vole Grass + cereals 100% grass"	Long-term	3.22	11.18	5
	Small omnivorous mammal "mouse" Combination (invertebrates without interception) 25% weeds 50% weed seeds 25% ground arthropods	Long-term	0.34	106	5

Risk from bioaccumulation and food chain behaviour

Indicator or focal species	Time scale	DDD (mg/kg bw per day)	TER	Trigger
Earthworm-eating birds	Long-term	5	8.1	5
Earthworm-eating mammals	Long-term	6.08	2.66	5
Fish-eating birds(pydiflumetofen)	Long-term	0.0086^a	10000	5
Fish-eating birds(SYN545547)	Long-term	0.023^b	390.0	5
Fish-eating mammals (SYN545974)	Long-term	0.0076^a	4737	5
Fish-eating mammals (SYN545547)	Long-term	0.021^b	171^c	5

^a FOCUS Step 3 21 day TWA PECsw
^bMaximum Step 2 PEC_{csw}
^c Default correction assuming the metabolite is 10 time more toxic
Higher tier: none

Risk from consumption of contaminated water

Scenarios	Indicator or focal species	Time scale	PEC_{sw}xDWR	TER	Trigger
Leaf scenario	Birds	acute	21.62	170	5

Puddle scenario, Screening step

1) Application rate (g a.s./ha)/relevant endpoint <3000 (koc≥500 L/kg), TER calculation not needed
Grapes at 40 g a.s./ha x 2

Growth stage	Indicator or focal species	Time scale	DDD (mg/kg bw per day)	TER	Trigger
Screening Step (Birds)	All Small omnivorous bird	Acute	4.96	762	10
	All Small omnivorous bird	Long-term	1.24	72.8	5
Screening Step (Mammals)	All Small herbivorous mammal	Acute	7.09	705	10
	All Small herbivorous mammal	Long-term	2.30	15.66	5

Risk from bioaccumulation and food chain behaviour

Indicator or focal species	Time scale	DDD (mg/kg bw per day)	TER	Trigger
Earthworm-eating birds				
Earthworm-eating mammals				
Fish-eating birds				
Fish-eating mammals				
Higher tier : none				

Risk from consumption of contaminated water

Scenarios	Indicator or focal species	Time scale	PEC_{dw}xDWR	TER	Trigger
Leaf scenario	Birds	acute	21.62	170	5
Puddle scenario	Screening step				

1) Application rate (g a.s./ha)/relevant endpoint <3000 (koc≥500 L/kg), TER calculation not needed

Pome fruits at 50 g a.s./ha x 3

Growth stage	Indicator or focal species	Time scale	DDD (mg/kg bw per day)	TER	Trigger
Screening Step (Birds)	All Small insectivorous bird	Acute	3.74	1000	10
	All Small insectivorous bird	Long-term	0.96	94	5
Screening Step (Mammals)	All Small herbivorous mammal	Acute	10.91	460	10
	All Small herbivorous mammal	Long-term	3.83	9.4	5

Risk from bioaccumulation and food chain behaviour

Indicator or focal species	Time scale	DDD (mg/kg bw per day)	TER	Trigger
Earthworm-eating birds				
Earthworm-eating mammals				
Fish-eating birds(pydiflumetofen)				
Fish-eating birds(SYN545547)				
Fish-eating mammals (pydiflumetofen)				
Fish-eating mammals (SYN545547)				
Higher tier : none				

Risk from consumption of contaminated water

Scenarios	Indicator or focal species	Time scale	PEC_{dw}xDWR	TER	Trigger
Leaf scenario	Birds	acute	21.62	170	5
Puddle scenario, Screening step

1) Application rate (g a.s./ha)/relevant endpoint <3000 (koc≥500 L/kg), TER calculation not needed

Tomatoes at 70 g a.s./ha x 2

Growth stage	Indicator or focal species	Time scale	DDD (mg/kg bw per day)	TER	Trigger
Screening Step (Birds)	All Small omnivorous bird	Acute	15.56	240	10
	All Small omnivorous bird	Long-term	3.85	23	5
Screening Step (Mammals)	All Small herbivorous mammal	Acute	13.37	370	10
	All Small herbivorous mammal	Long-term	4.29	8.4	5

Risk from bioaccumulation and food chain behaviour

Indicator or focal species	Time scale	DDD (mg/kg bw per day)	TER	Trigger
Earthworm-eating birds	Covered by use on Grapes at 200 g a.s./ha x 2			
Earthworm-eating mammals	Covered by use on Pome fruits at 50 g a.s./ha x 3			
Fish-eating birds	Covered by use on Grapes at 200 g a.s./ha x 2			
Fish-eating mammals	Covered by use on Grapes at 200 g a.s./ha x 2			

Higher tier: none

Risk from consumption of contaminated water

Scenarios	Indicator or focal species	Time scale	PEC_{dw}xDWR	TER	Trigger
Leaf scenario Birds acute	21.62	170	5		

Puddle scenario, Screening step

1) Application rate (g a.s./ha)/relevant endpoint <3000 (koc≥500 L/kg), TER calculation not needed

Cucurbits at 50 g a.s./ha x 2

Growth stage	Indicator or focal species	Time scale	DDD (mg/kg bw per day)	TER	Trigger
Screening Step (Birds)	Small omnivorous bird	Acute	11.12	340	10
	Small omnivorous bird	Long-term	2.75	33	5
Screening Step (Mammals)	All Small herbivorous mammal	Acute	9.55	520	10
	All Small herbivorous mammal	Long-term	3.07	11.7	5

Risk from bioaccumulation and food chain behaviour

Indicator or focal species	Time scale	DDD (mg/kg bw per day)	TER	Trigger	
Earthworm-eating birds	Covered by use on Grapes at 200 g a.s./ha x 2				
Earthworm-eating mammals	Covered by use on Pome fruits at 50 g a.s./ha x 3				
Fish-eating birds	Covered by use on Grapes at 200 g a.s./ha x 2				
Fish-eating mammals	Covered by use on Grapes at 200 g a.s./ha x 2				
Growth stage	Indicator or focal species	Time scale	DDD (mg/kg bw per day)	TER	Trigger
--------------	---------------------------	------------	------------------------	-----	---------
Higher tier	none				

Risk from consumption of contaminated water

Scenarios	Indicator or focal species	Time scale	PEC_{dw}xDWR	TER	Trigger
Leaf scenario	Birds	acute	21.62	170	5

Puddle scenario, Screening step

1) Application rate (g a.s./ha)/relevant endpoint <3000 (koc≥500 L/kg), TER calculation not needed.

Potatoes at 40 g a.s./ha x 3

Growth stage	Indicator or focal species	Time scale	DDD (mg/kg bw per day)	TER	Trigger
Screening Step (Birds)					
All	Small omnivorous bird	Acute	8.26	460	10
	Small omnivorous bird	Long-term	2.06	44	5

Screening Step (Mammals)					
All	Small herbivorous mammal	Acute	6.16	810	10
	Small herbivorous mammal	Long-term	1.54	23.4	5

Risk from bioaccumulation and food chain behaviour

Indicator or focal species	Time scale	DDD (mg/kg bw per day)	TER	Trigger
Earthworm-eating birds		Covered by use on Grapes at 200 g a.s./ha x 2		
Earthworm-eating mammals		Covered by use on Pome fruits at 50 g a.s./ha x 3		
Fish-eating birds		Covered by use on Grapes at 200 g a.s./ha x 2		
Fish-eating mammals		Covered by use on Grapes at 200 g a.s./ha x 2		
Higher tier : none				

Risk from consumption of contaminated water

Scenarios	Indicator or focal species	Time scale	PEC_{dw}xDWR	TER	Trigger
Leaf scenario	Birds	acute	21.62	170	5

Puddle scenario, Screening step

1) Application rate (g a.s./ha)/relevant endpoint <3000 (koc≥500 L/kg), TER calculation not needed.

Brassicas at 70 g a.s./ha x 2

Growth stage	Indicator or focal species	Time scale	DDD (mg/kg bw per day)	TER	Trigger

Screening Step (Birds)					
All	Small omnivorous bird	Acute	13.34	280	10
	Small omnivorous bird	Long-term	3.37	27	5

Screening Step (Mammals)					
All	Small herbivorous mammal	Acute	11.46	440	10
	Small herbivorous mammal	Long-term	3.76	9.57	5
Growth stage	Indicator or focal species	Time scale	DDD (mg/kg bw per day)	TER	Trigger
Risk from bioaccumulation and food chain behaviour					
Indicator or focal species	Time scale	DDD (mg/kg bw per day)	TER	Trigger	
Earthworm-eating birds	Covered by use on Grapes at 200 g a.s./ha x 2				
Earthworm-eating mammals	Covered by use on Pome fruits at 50 g a.s./ha x 3				
Fish-eating birds	Covered by use on Grapes at 200 g a.s./ha x 2				
Fish-eating mammals	Covered by use on Grapes at 200 g a.s./ha x 2				
Higher tier: none					
Risk from consumption of contaminated water					
Scenarios	Indicator or focal species	Time scale	PEC_{dw} x DWR	TER	Trigger
Leaf scenario	Birds	acute	21.62	170	5
Puddle scenario, Screening step					
1) Application rate (g a.s./ha)/relevant endpoint <3000 (koc ≥ 500 L/kg), TER calculation not needed					

Toxicity data for all aquatic tested species (Regulation (EU) N° 283/2013, Annex Part A, points 8.2 and Regulation (EU) N° 284/2013 Annex Part A, point 10.2)

Group	Test substance	Time-scale (Test type)	End point	Toxicity¹
Laboratory tests				
Group	Test substance	Time-scale (Test type)	End point	Toxicity¹
--------------------	----------------	-----------------------	--------------------	-----------
Fish				
Oncorhynchus mykiss (Rainbow trout)	pydiflumetofen	Acute 96 hr (flow-through)	Mortality, LC₅₀	0.18 mg a.s./L (mm)
Pimephales promelas (Fathead minnow)	pydiflumetofen	Acute 96 hr (flow-through)	Mortality, LC₅₀	0.35 mg a.s./L (mm)
Cyprinus carpio (Common carp)	pydiflumetofen	Acute 96 hr (flow-through)	Mortality, LC₅₀	0.33 mg a.s./L (mm)
Cyprinodon variegatus (Sheepshead minnow)	pydiflumetofen	Acute 96 hr (flow-through)	Mortality, LC₅₀	0.66 mg a.s./L (mm)
Lepomis macrochirus (Bluegill sunfish)	pydiflumetofen	Acute 96 hr (flow-through)	Mortality, LC₅₀	0.48 mg a.s./L (mm)
Oncorhynchus mykiss (Rainbow trout)	A19649B	Acute 96 hr (static)	Mortality, LC₅₀	1.23 (mm) (equivalent to 0.23 mg a.s./L)
Cyprinus carpio (Common carp)	A19649B	Acute 96 hr (static)	Mortality, LC₅₀	1.16 (mm) (equivalent to 0.21 mg a.s./L)
Oncorhynchus mykiss (Rainbow trout)	SYN545547	96 hr (static)	Mortality, LC₅₀	1.4 (mm)
Oncorhynchus mykiss (Rainbow trout)	SYN548261	96 hr (static)	Mortality, LC₅₀	>100 (nom)
Oncorhynchus mykiss (Rainbow trout)	NOA449410	96 hr (static)	Mortality, LC₅₀	>100 (nom)
Pimephales promelas (Fathead minnow)	pydiflumetofen	Early Life Stage (ELS) (flow-through)	32 d NOEC	0.025 (mm)
Cyprinodon variegatus (Sheepshead minnow)	pydiflumetofen	Early Life Stage (ELS) (flow-through)	34 d NOEC	0.17 (mm)

¹ Toxicity values are given in mg a.s./L (mm) unless otherwise specified.
Group	Test substance	Time-scale (Test type)	End point	Toxicity¹
Aquatic invertebrates				
Daphnia magna (Water flea)	pydiflumetofen	48 h (static)	Mortality, EC₅₀	0.42 mg a.s./L (mm)
Americamysis bahia (Mysid shrimp)	pydiflumetofen	48 h (static)	Mortality, EC₅₀	0.16 mg a.s./L (mm)
Asellus aquaticus (Water louse)	pydiflumetofen	48 h (static)	Mortality, EC₅₀	4.21 mg a.s./L (mm)
Chaoborus crystallinus (Phantom midge)	pydiflumetofen	48 h (static)	Mortality, EC₅₀	2.49 mg a.s./L (mm)
Chironomus riparius (Non-biting midge / Harlequin fly)	pydiflumetofen	48 h (static)	Mortality, EC₅₀	0.69 mg a.s./L (nom)
Cloeon dipterum (Mayfly)	pydiflumetofen	48 h (static)	Mortality, EC₅₀	>5.01 mg a.s./L (mm)
Crangonx pseudogracilis (Freshwater amphipod)	pydiflumetofen	48 h (static)	Mortality, EC₅₀	1.23 mg a.s./L (mm)
Crassostrea virginica (Eastern oyster)	pydiflumetofen	48 h (flow-through)	Mortality, EC₅₀	0.31 mg a.s./L (mm)
Cyclops agilis speratus (Copepod)	pydiflumetofen	48 h (static)	Mortality, EC₅₀	4.17 mg a.s./L (mm)
Hyalella Azteca (Freshwater amphipod)	pydiflumetofen	48 h (static)	Mortality, EC₅₀	0.12 mg a.s./L (mm)
Lumbriculus variegatus (Blackworm)	pydiflumetofen	48 h (static)	Mortality, EC₅₀	4.65 mg a.s./L (mm)
Lymnaea stagnalis (Great pond snail)	pydiflumetofen	48 h (static)	Mortality, EC₅₀	>7.30 mg a.s./L (mm)
Daphnia magna (Water flea)	A19649B	48 h (static)	Mortality, EC₅₀	2.1 mg prep./L (0.39 mg a.s./L (nom))
Daphnia magna (Water flea)	SYN545547	48 h (static)	Mortality, EC₅₀	7.3 mg a.s/L (nom)
Daphnia magna (Water flea)	SYN548261	48 h (static)	Mortality, EC₅₀	>100 mg a.s/L (nom)
Daphnia magna (Water flea)	NOA449410	48 h (static)	Mortality, EC₅₀	>100 mg a.s/L (nom)
Daphnia magna (Water flea)	pydiflumetofen	21 d (semi-static)	Reproduction NOEC	0.042 mg a.s./L (mm)
				0.085 mg a.s./L (mm)
Americamysis bahia (Mysid shrimp)	pydiflumetofen	28 d (flow-through)	NOEC	0.076 mg a.s./L (mm)
Sediment-dwelling organisms				
Leptocheirus plumulosus (Amphipod)	pydiflumetofen	10 d (spiked sediment)	LC₅₀	>92 mg a.s./kg dry sediment (mm)
Group	Test substance	Time-scale (Test type)	End point	Toxicity¹
------------------------------	----------------	------------------------	-----------	--------------------
Chironomus dilutus	pydiflumetofen	59 d (spiked sediment)	NOEC	15 mg a.s./kg dry sediment (mm)
(Dipteran midge)				
Hyalella azteca	pydiflumetofen	42 d (spiked sediment)	NOEC	36 mg a.s./kg dry sediment (mm)
(Amphipod)				
Chironomus riparius	SYN545547	28 d (static)	NOEC	7.2 mg a.s./kg dry sediment (mm)

¹ Toxicity values are given in mg a.s./kg dry sediment (mm)
Group	Test substance	Time-scale (Test type)	End point	Toxicity1
Algae				
Pseudokirchneriella	pydiflumetofen	72 h (static)	Growth rate: E$_{C_{50}}$ (EC$_{10}$) >5.9 mg a.s./L (mm)	
subcapitata (Green alga)			Biomass: E$_{b_{C_{50}}}$ (EC$_{10}$) 2.3 mg a.s./L (mm)	
			Yield: E$_{y_{C_{50}}}$ (EC$_{10}$) 4.3 mg a.s./L (mm)	
Anabaena flos-aquae	pydiflumetofen	72 h (static)	Growth rate: E$_{C_{50}}$ (EC$_{10}$) 3.6 mg a.s./L (mm)	
(Blue-green alga)			Biomass: E$_{b_{C_{50}}}$ (EC$_{10}$) 2.8 mg a.s./L (mm)	
			Yield: E$_{y_{C_{50}}}$ (EC$_{10}$) 3.5 mg a.s./L (mm)	
Navicula pelliculosa	pydiflumetofen	72 h (static)	Growth rate: E$_{C_{50}}$ (EC$_{10}$) 1.6 mg a.s./L (mm)	
(Diatom)			Biomass: E$_{b_{C_{50}}}$ (EC$_{10}$) 0.97 mg a.s./L (mm)	
			Yield: E$_{y_{C_{50}}}$ (EC$_{10}$) 1.5 mg a.s./L (mm)	
Skeletonema costatum	pydiflumetofen	72 h (static)	Growth rate: E$_{C_{50}}$ (EC$_{10}$) 2.7 mg a.s./L (mm)	
(Diatom)			Biomass: E$_{b_{C_{50}}}$ (EC$_{10}$) 2.5 mg a.s./L (mm)	
			Yield: E$_{y_{C_{50}}}$ (EC$_{10}$) 2.5 mg a.s./L (mm)	
Pseudokirchneriella	A19649B	72 h (static)	Growth rate: E$_{C_{50}}$ (EC$_{10}$) >57 mg prep./L (mm)	
subcapitata (Green alga)			Biomass: E$_{b_{C_{50}}}$ (EC$_{10}$) 10 mg prep./L (mm)	
			Yield: E$_{y_{C_{50}}}$ (EC$_{10}$) 17.6 mg prep./L (mm)	

1 Toxicity values are expressed as mg a.s./L (mm) or mg prep./L (mm).
Group	Test substance	Time-scale (Test type)	End point	Toxicity¹
Pseudokirchneriella subcapitata (Green alga)	SYN545547	72 h (static)	Growth rate: $E_{c_{50}}$ (EC₁₀)	4.1 mg a.s./L (mm)
			Biomass: $E_{b_{50}}$ (EC₁₀)	3.0 mg a.s./L (mm)
			Yield: $E_{y_{50}}$ (EC₁₀)	2.9 mg a.s./L (mm)
	SYN548261	72 h (static)	Growth rate: $E_{c_{50}}$ (EC₁₀)	>100 mg a.s./L (mm)
			Biomass: $E_{b_{50}}$ (EC₁₀)	
			Yield: $E_{y_{50}}$ (EC₁₀)	
	NOA449410	72 h (static)	Growth rate: $E_{c_{50}}$ (EC₁₀)	36.31 mg a.s./L (mm)
			Fronds number, EC₅₀ (NOEC)	20.60 mg a.s./L (mm)
			Frond dry weight, $E_{c_{50}}$ (NOEC)	26.42 mg a.s./L (mm)
				19.43 mg a.s./L (mm)
Higher plant	*Lemna gibba* (Duckweed)	7 d EC₅₀ / NOEC (Semi-Static)	Fronds number, EC₅₀ (NOEC)	>6.3 mg a.s./L (mm)
			Frond dry weight, $E_{c_{50}}$ (NOEC)	>6.3 mg a.s./L (mm)

Further testing on aquatic organisms

A SSD is proposed for the acute toxicity for invertebrates with 9 species (excluding taxa with toxicity value “greater than”) with an HC₅ = 92 µg a.s./L and an AF = 4 leading to an SSD RAC = 23 µg a.s./L. A SSD is proposed for the acute toxicity fish with 5 species (excluding taxa with toxicity value “greater than”) with an HC₅ = 154.74 µg a.s./L and an AF =9 leading to an SSD RAC = 17.19 µg a.s./L. The chronic NOEC of pelagic invertebrates are summarised as NOEC Geomean = 0.056 mg a.s./L leading to a Geomean RAC = 5.6 µg a.s./L.

Potential endocrine disrupting properties (Annex Part A, point 8.2.3)

With regard to the assessment of endocrine disruption potential according to ECHA/EFSA Guidance (2018), as reported in Section 2, pydiflumetofen is not an endocrine disruptor for humans and this conclusion also applies to mammals as non-target organisms.

For non-target organisms other than mammals, the available evidence was not considered sufficient to draw a conclusion on endocrine disrupting properties (data gap).

¹ (nom) nominal concentration; (mm) mean measured concentration; prep.: preparation; a.s.: active substance
*EC₁₀ “dry weight” cover the EC₁₀ “live, normal larvae at hatch”
Bioconcentration in fish (Annex Part A, point 8.2.2.3)

Parameter	Value
Active substance	
logP_{O/W}	3.8 at 25°C (pH)
Steady-state bioconcentration factor (BCF)	31.1*
(total wet weight/normalised to 5% lipid content)	
Uptake/depuration kinetics BCF	189
(total wet weight/normalised to 5% lipid content)	
Annex VI Trigger for the bioconcentration factor	
Clearance time (days) (CT₅₀)	0.41
(CT₉₀)	Not determined
Level and nature of residues (%) in organisms after the 14 day depuration phase	7 day : 95 % (whole body) 14 day : not determined

* based on total ¹⁴C
Toxicity/exposure ratios for the most sensitive aquatic organisms (Regulation (EU) N° 284/2013, Annex Part A, point 10.2)

Only the South STEP 2 PEC\textsubscript{sw} are worst-case value and cover the STEP 2 PEC\textsubscript{sw} North.

FOCUS\textsubscript{sw} step 1-3 - RACs for Pydiflumetofen – Grapes at 200 g a.s./ha x 2 applications

Scenario	PEC\textsubscript{sw} (µg L)	fish acute	fish chronic	Aquatic invertebrates	Aquatic invertebrates prolonged	Algae	Higher plant	PEC sediment (µg/kg)	Sed. dweller prolonged		
	Odyssey	Oncorhynchus mykiss	Pimephales promelas	Hyalella azteca	Navicula pelliculosa	Lemma gibba	Chironomus dilutus				
		LC\textsubscript{50}	SSD	EC\textsubscript{10}	EC\textsubscript{50}	HC\textsubscript{5}	NOEC	Geomean	EC\textsubscript{50}	EC\textsubscript{50}	NOEC
		180 µg/L	154.74 µg/L	130 µg/L	120 µg/L	92 µg/L	42 µg/L	56 µg/L	1600 µg/L	>6300 µg/L	15000 µg/L
	RAC	1.8 µg/L	17.19 µg/L	13 µg/L	1.2 µg/L	23 µg/L	4.2 µg/L	5.6 µg/L	160 µg/L	>6300 µg/L	1500 µg/L
FOCUS Step 1		51.4	No	No	No	No	No	Yes	Yes	1394	No
FOCUS Step 2	North Europe	8.54	No	Yes	Yes	No	10.8	No	No	242	Yes
FOCUS Step 3	South Europe	3.83	No	No	No	No	Yes	Yes	Yes		
R1 / pond	0.180	Yes	Yes	Yes	Yes	Yes					
R1 / stream	2.44	No	Yes	Yes	Yes	Yes					
R2 / stream	3.37	No	No	Yes	Yes	Yes					
R3 / stream	3.54	No	No	Yes	Yes	Yes					
R4 / stream	2.51	No	No	Yes	Yes	Yes					
FOCUS_{sw} step 1-2 - RACs for Metabolite SYN545547 – Grapes at 200 g a.s./ha x 2 applications as worst case

Scenario	PEC_{sw} (µg L)	fish acute	Aquatic invertebrates	Algae	PEC sediment (µg/kg)	Sed. dweller prolonged
		Oncorhynchus mykiss	Hyalella azteca	Navicula pelliculosa	Chironomus riparius	
		LC₅₀	EC₅₀	EC₅₀	NOEC	
RAC	14 µg/L, 73 µg/L	400 µg/L	7200 µg/kg			

FOCUS Step 1

| 28 | No | Yes | Yes | 160 | Yes |

FOCUS Step 2

| North Europe | 4.72 | Yes |
| South Europe | | |

FOCUS_{sw} step 1 - RACs for Metabolite SYN548261 – Grapes at 200 g a.s./ha x 2 applications as worst case

Scenario	PEC_{sw} (µg L)	fish acute	Aquatic invertebrates	Algae
		Oncorhynchus mykiss	Daphnia magna	Pseudokirchneriella subcapitata
		LC₅₀	EC₅₀	EC₅₀
RAC	>100 000 µg/L	>100 000 µg/L	>100 000 µg/L	

FOCUS Step 1

| 8.45 | Yes | Yes | Yes |
FOCUS_{sw} step 1 - RACs for Metabolite NOA449410 – Grapes at 200 g a.s./ha x 2 applications as worst case

Scenario	PEC_{sw} (µg L)	fish acute	Aquatic invertebrates	Algae
		Oncorhynchus mykiss	Daphnia magna	Pseudokirchneriella subcapitata
		LC₅₀	EC₅₀	EC₅₀
		>100 000 µg/L	>100 000 µg/L	36 310 µg/L
RAC		>1000 µg/L	>1000 µg/L	3631 µg/L
FOCUS Step 1	3.44	Yes	Yes	Yes
FOCUSsw step 1-3 - RACs for Pydiflumetofen – Pome fruits at 50 g a.s./ha x 3 applications

Scenario	PECsw (µg L)	fish acute	fish chronic	Aquatic invertebrates	Aquatic invertebrates prolonged	Algae	Higher plant	PEC sediment (µg/kg)	Sed. dweller prolonged
Oncorhynchus mykiss	SSD	Onthurus mykiss	SSD	Hyalella azteca	NOEC	Overall	Navicula pelliculosa	Overall	Chironomus dilutus
LC50	180 µg/L	154.74 µg/L	130 µg/L	120 µg/L	42 µg/L	56 µg/L	1600 µg/L	>6300 µg/L	15000 µg/L
HC5	17.19 µg/L	13 µg/L	1.2 µg/L	23 µg/L	4.2 µg/L	5.3 µg/L	160 µg/L	>630 µg/L	
EC10	1.8 µg/L	1.2 µg/L	23 µg/L	4.2 µg/L	5.3 µg/L	160 µg/L	>630 µg/L		
EC50	56 µg/L	42 µg/L	42 µg/L	4.2 µg/L	5.3 µg/L	160 µg/L	>630 µg/L		
NOEC	1600 µg/L	>6300 µg/L	15000 µg/L						

FOCUS Step 1

| 23.1 | No | Yes | Yes | 560 | Yes |
|-------|----|----|----|----|----|----|----|-----|-----|-----|-----|

FOCUS Step 2

North Europe	South Europe	3.72	No	Yes	Yes	No	Yes	No	Yes	560	Yes

FOCUS Step 3

D3	1.84	No	Yes	Yes	No	Yes	Yes
D4	0.207	Yes	Yes	Yes	Yes	Yes	
D4	1.84	No	Yes	No	Yes	Yes	
D5	0.211	Yes	Yes	Yes	Yes	Yes	
D5	1.98	No	Yes	No	Yes	Yes	
R1	0.145	Yes	Yes	Yes	Yes	Yes	
R1	1.41	Yes	Yes	No	Yes	Yes	
R2	1.89	No	Yes	No	Yes	Yes	
R2	1.98	No	Yes	No	Yes	Yes	
R4	1.41	Yes	Yes	No	Yes	Yes	
FOCUS$_{sw}$ step 1-3 - RACs for Pydiflumetofen – Tomatoes at 70 g a.s./ha x 2 applications

Scenario	PEC$_{sw}$ (µg L)$^{-1}$	fish acute	fish chronic	Aquatic invertebrates	Aquatic invertebrates prolonged	Algae	Higher plant	PEC sediment (µg/kg)	Sed. dweller prolonged			
		fish acute	fish chronic	Aquatic invertebrates	Aquatic invertebrates prolonged							
Oncorhynchus mykiss	SSD	LC$_{50}$	SSD	H$_{C_{5}}$	EC$_{10}$	EC$_{50}$	H$_{C_{5}}$	NOEC	Geomean	EC$_{50}$	EC$_{50}$	NOEC
		180 µg/L	154.74 µg/L	130 µg/L	120 µg/L	92 µg/L	42 µg/L	56 µg/L	1600 µg/L	>6300 µg/L	15000 µg/L	
RAC	1.8 µg/L	17.19 µg/L	13 µg/L	1.2 µg/L	23 µg/L	4.2 µg/L	5.6 µg/L	160 µg/L	>6300 µg/L	1500 µg/L		

FOCUS Step 1

	15.5	No	Yes	7.7	7.7	No	No	No	Yes	Yes	464	Yes

FOCUS Step 2

	North Europe	South Europe	1.72	Yes	Yes	No	Yes	Yes	Yes

FOCUS Step 3

	D6	2.17	No		No
R2	0.392	Yes		Yes	
R3	0.468	Yes		Yes	
R4	0.719	Yes		Yes	
FOCUS Sw step 1-3 - RACs for Pydiflometofen – Cucurbits at 50 g a.s./ha x 2 applications

Scenario	PEC$_{sw}$ (µg L)	fish acute	fish chronic	Aquatic invertebrates	Aquatic invertebrates prolonged	Algae	Higher plant	PEC sediment (µg/kg)	Sed. dweller prolonged		
		fish acute	fish chronic	Aquatic invertebrates	Aquatic invertebrates prolonged	Algae	Higher plant	PEC sediment (µg/kg)	Sed. dweller prolonged		
		Oncorhynchus mykiss	SSD	Pimephales promelas	Hyalella azteca	SSD	Daphnia magna	Overall	Navicula pelliculosa	Lemma gibba	Chironomus dilutus
		LC$_{50}$	HC$_{5}$	EC$_{10}$	EC$_{50}$	HC$_{5}$	NOEC	Geomean	EC$_{50}$	EC$_{50}$	NOEC
		180 µg/L	154.74 µg/L	130 µg/L	120 µg/L	92 µg/L	42 µg/L	56 µg/L	1600 µg/L	>6300 µg/L	15000 µg/L
		1.8 µg/L	17.19 µg/L	13 µg/L	1.2 µg/L	23 µg/L	4.2 µg/L	5.6 µg/L	160 µg/L	>630 µg/L	1500 µg/L

FOCUS Step 1

| | 11.1 | No | Yes | No | No | Yes | No | No | Yes | Yes | 332 | Yes |

FOCUS Step 2

| | No | Yes | No | No | Yes | Yes | Yes |

FOCUS Step 3

	1.51	Yes	Yes
	0.28	Yes	Yes
	0.353	Yes	Yes
	0.481	Yes	Yes
FOCUS_{SW} step 1-2 - RACs for Pydiflumetofen – Potatoes at 40 g a.s./ha x 3 applications

Scenario	PEC_{sw} (µg L)	fish acute	fish chronic	Aquatic invertebrates	Aquatic invertebrates prolonged	Algae	Higher plant	PEC sediment (µg/kg)	Sed. dweller prolonged	
Oncorhynchus mykiss	SSD	Pimephales promelas	Hyalella azteca	SSD	Overall	Navicula pelliculosa	Lemma gibba	Chironomus dilutus		
LC₅₀	HC_s	EC₁₀	EC₅₀	HC_s	NOEC	Geomean	EC₅₀	EC₅₀	NOEC	
180 µg/L	154.74 µg/L	130 µg/L	120 µg/L	92 µg/L	42 µg/L	56 µg/L	1600 µg/L	>6300 µg/L	15000 µg/L	
RAC	1.8 µg/L	17.19 µg/L	13 µg/L	1.2 µg/L	23 µg/L	4.2 µg/L	5.6 µg/L	160 µg/L	>630 µg/L	1500 µg/L

FOCUS Step 1

Scenario	Value	Decision								
FOCUS Step 1	13.3	No	Yes	No	No	Yes	No	No	Yes	Yes
FOCUS Step 2	1.4	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes
North Europe										
South Europe										
FOCUS Step 3										
D3	0.209	Yes	Yes							
D4	0.316	Yes	Yes							
D4	0.67	Yes	Yes							
D6	1.57	No	Yes							
D6	1.72	No	Yes							
R1	0.135	Yes	Yes							
R1	0.331	Yes	Yes							
R2	0.192	Yes	Yes							
R3	0.375	Yes	Yes							
D3	0.209	Yes	Yes							
FOCUSsw step 1-3 - RACs for Pydiflumetofen – Brassicas at 70 g a.s/ha x 2 applications

Scenario	PECsw (µg L)	fish acute	fish chronic	Aquatic invertebrate s	Aquatic invertebrate s-prolonged	Aquatic invertebrate s-prolonged	Algae	Higher plant	PEC sediment (µg/kg)	Sed. dweller prolonged
Oncorhynchus mykiss	SSD	Pimephales promelas	Hyalella azteca	SSD	Daphnia magna	Overall	Navicula pelliculosa	Lemma gibba	Chironomus dilutus	
LC₅₀	HC₅	EC₁₀	EC₅₀	HC₅	NOEC	Geomean	EC₅₀	EC₅₀	NOEC	
180 µg/L	154.74 µg/L	130 µg/L	120 µg/L	92 µg/L	42 µg/L	56 µg/L	1600 µg/L	>6300 µg/L	15000 µg/L	
1.8 µg/L	17.19 µg/L	13 µg/L	1.2 µg/L	23 µg/L	4.2 µg/L	5.6 µg/L	160 µg/L	>630 µg/L	1500 µg/L	
FOCUS Step 1										
15.5	No	Yes	No	No	No	No	No	Yes	464	Yes
FOCUS Step 2										
North Europe										
South Europe	4.7	No	Yes	Yes	No	Yes	No	No	No	
FOCUS Step 3										
Peer review of the pesticide risk assessment of the active substance pydiflumetofen

Season	Crop	Concentration	LC50	EC50	EC10	LC90
D3 (1st crop)	0.443	Yes	Yes	Yes	Yes	
D3 (2nd crop)	0.44	Yes	Yes	Yes	Yes	
D4 (1st crop)	0.312	Yes	Yes	Yes	Yes	
D4 (2nd crop)	0.633	Yes	Yes	Yes	Yes	
D6 (1st crop)	2.37	No	No	Yes	Yes	
R1 (1st crop)	0.256	Yes	Yes	Yes	Yes	
R1 (2nd crop)	0.2	Yes	Yes	Yes	Yes	
R2 (1st crop)	0.392	Yes	Yes	Yes	Yes	
R2 (2nd crop)	0.392	Yes	Yes	Yes	Yes	
R3 (1st crop)	0.414	Yes	Yes	Yes	Yes	
R3 (2nd crop)	0.411	Yes	Yes	Yes	Yes	
R4 (1st crop)	0.655	Yes	Yes	Yes	Yes	
R4 (2nd crop)	0.642	Yes	Yes	Yes	Yes	

*1st and 2nd crop correspond to the both annual period of sewing during a year (see details in Section 4)
Effects on bees (Regulation (EU) No 283/2013, Annex Part A, point 8.3.1 and Regulation (EU) No 284/2013 Annex Part A, point 10.3.1)*

* This section does reflect the new EFSA Guidance Document on bees which has not yet been noted by the Standing Committee on Plants, Animals, Food and Feed.

Species	Test substance	Time scale/type of endpoint	End point	toxicity
Apis melifera	pydiflumetofen	Acute	Oral toxicity (LD50)	>116 µg/bee
Apis melifera	pydiflumetofen	Acute	Contact toxicity (LD50)	>100 µg/bee
Apis melifera	A19649B	Acute	Oral toxicity (LD50)	>1 132 µg A19649B/bee (equivalent to >211 µg a.s./bee)
Apis melifera	A19649B	Acute	Contact toxicity (LD50)	>1 000 µg A19649B/bee (equivalent to >186 µg a.s./bee)
Apis melifera	A19649B	Chronic	10 d-LDD50	>138 µg/bee/day
Apis melifera	A19649B	Chronic Larvae 8-days	8 d-NOED	55 µg a.s./larva
				13.75 µg a.s./larva/day
Apis melifera	pydiflumetofen	Bee brood development	8 d-NOED	<0.014 µg a.s./larva
				<0.0035 µg a.s./larva/day
				<0.014 µg a.s./larva
				<0.0035 µg a.s./larva/day
Apis melifera	A19649B	Bee brood development	8 d-NOED	0.08 µg a.s./larva
				0.02 µg a.s./larva/day
				0.1 µg a.s./larva
				0.026 µg a.s./larva/day
				0.872 µg a.s./larva/day
				0.218 µg a.s./larva/day
				0.097 µg a.s./larva
				0.024 µg a.s./larva/day
				0.165 µg a.s./larva
				0.041 µg a.s./larva/day

Potential for accumulative toxicity: no

Semi-field test (Cage and tunnel test)

Three studies were performed to assess the effects of A19649B on the bee brood and larvae. No adverse effect have been demonstrated for application rate of 200 g a.s./ha.

Risk assessment for – Grapes at 200 g a.s./ha x 2 applications

Species	Test substance	Risk quotient	HQ	Trigger
Apis mellifera	pydiflumetofen	HQcontact	<2	50
In addition, semi-field studies have been conducted to support the larval component of the bee risk assessment for the registration of pydiflumetofen globally (*Gonsior, 2017; Kleinhenz, 2017; Schnurr, 2018*). The objective of these studies was to determine potential effects on honeybees from exposure to flowering *Phacelia tanacetifolia* treated once at the start of flowering during daily bee flight with A19649B under semi-field conditions. Test item treatment groups included 75, 125 and 200 g a.s./ha.

Honeybee colonies were placed in the tunnels at the start of flowering. The mortality, foraging activity, behaviour of the bees, development of the bee brood assessed in individually marked cells and condition of the colonies were examined prior to and post application. The colonies were monitored at a remote location for two further brood cycles following the initial detailed brood assessments (first brood cycle). The influence of pydiflumetofen was evaluated by comparing the assessment data of the three test item groups (75, 125 and 200 g a.s./ha) to the reference item group and the control group, and by comparing the pre-application data to the post-application data.

Samples of forager bees (for preparation of pollen and nectar), leaves, flowers and samples of soil were collected during the exposure phase. Samples of pollen and nectar (in-hive products), pollen (from pollen trap) and dead bees (from dead bee traps and from the hive bottoms) were collected during the monitoring phase of the study. Samples of pollen and nectar (prepared from forager bees), leaves, flowers, samples of in-hive products and pollen from pollen trap were analysed for residues of pydiflumetofen.

There were no detectable residues of pydiflumetofen in any of the samples taken in the control group throughout the study period or in the samples from the test item treatment groups (75, 125 and 200 g a.s./ha) taken prior to application. During the exposure phase in the tunnels, residues of pydiflumetofen were found in leaves, flowers and in pollen and nectar samples from forager bees after application at 0DAA in all treatment groups and decreased within 6 days after application.

In both trials, during the post-application period, no effect on honeybee mortality was observed in the test item treatment groups compared to the control. No test item related effects were observed regarding foraging activity. Slight, but not test item related behavioural changes were observed during the post-application period. The brood and compensation indices and termination rates for eggs, young larvae and old larvae were not statistically different from the control on any assessment date. The overall honeybee colony development in the test item treatment groups, measured as mean number of cells covered with the different types of brood (eggs, larvae and pupae) or food (nectar, pollen) per colony were not significantly different when compared to the control (except *Gonsior, 2017* mean amount of nectar, 75 g a.s./ha, DAA9).

Overall, there was no test item related effect on honeybee mortality, foraging activity, behaviour and brood development in both studies.
Effects on other arthropod species (Regulation (EU) N° 283/2013, Annex Part A, point 8.3.2 and Regulation (EU) N° 284/2013 Annex Part A, point 10.3.2)

Laboratory tests with standard sensitive species

Species	Test Substance	End point	Toxicity
Typhlodromus pyri	A19649B	Mortality, LR₅₀	>408 g/ha
		Reproduction, ER₅₀	>408 g/ha
Aphidius rhopalosiphi	A19649B	Mortality, LR₅₀	>408 g/ha
		Reproduction, ER₅₀	>408 g/ha

First tier risk assessment for – Grapes at 200 g a.s./ha x 2 applications (cover other representative uses)

Test substance	Species	Effect (LR₅₀ g/ha)	HQ in-field	HQ off-field¹	Trigger
A19649B	*Typhlodromus pyri*	>408	<0.83	<0.33	2
A19649B	*Aphidius rhopalosiphi*	>408	<0.83	<0.33	2

¹ 1 meter

Extended laboratory tests, aged residue tests

Species	Life stage	Test substance, substrate	Time scale	Dose (g/ha)¹²	End point	% effect³	ER₅₀
Aphidius rhopalosiphi	Adult	A19649B Barley seedling	14 d	800 g a.s./ha	Mortality reproduction	6.7-4.5	>800 g a.s./ha
Typhlodromus pyri	Adult	A19649B Leaf discs	14 d	800 g a.s./ha	Mortality reproduction	8 0.8	>800 g a.s./ha

¹ indicate whether initial or aged residues
² for preparations indicate whether dose is expressed in units of a.s. or preparation
³ indicate if positive percentages relate to adverse effects or not
Effects on non-target soil meso- and macro fauna; effects on soil nitrogen transformation (Regulation (EU) N° 283/2013, Annex Part A, points 8.4, 8.5, and Regulation (EU) N° 284/2013 Annex Part A, points 10.4, 10.5)

Test organism	Test substance	Application method of test a.s./OM\(^1\)	Time scale	End point	Toxicity
Earthworms					
Eisenia fetida	A19649B	Mixed to water to hydrate soil/5%	Acute	Mortality	14d EC\(_{50}\) >1000 mg a.s./kg d.w.soil
Eisenia fetida	A19649B	Mixed to water to hydrate soil/5% Corrected (factor 2 due to log Pow>2 and/or 10% peat)	Chronic	Reproduction	56d NOEC = 85.5 mg A19649B/kg soil (15.9 mg a.s./kg soil) 56d EC\(_{10}\) = 16.5 mg a.s./kg soil 56d EC\(_{20}\) = 25.11 mg a.s./kg soil
Other soil macroorganisms					
Folsomia candida	A19649B	Mixed to water to hydrate soil/5%	Chronic	Mortality, reproduction, behaviour	28d NOEC = 1 000 mg A19649B/kg soil (equivalent to 186.0 mg a.s./kg soil)
Hypoaspis aculeifer	A19649B	Mixed to water to hydrate soil/5%	Chronic	Mortality, growth, reproduction, behaviour	14d NOEC = 1 000 mg A19649B/kg soil (equivalent to 186.0 mg a.s./kg soil)

\(^1\)To indicate whether the test substance was oversprayed/to indicate the organic content of the test soil (e.g. 5% or 10%).

Nitrogen transformation pydiflumetofen +13.4 % effect at day 7 at 2.71 mg a.s./kg d.w.soil (mg a.s/ha)
Nitrogen transformation | pydiflumetofen | +17 % effect at day 7 at 13.5 mg a.s./kg d.w.soil (mg a.s/ha)

Toxicity/exposure ratios for soil organisms

Grapes at 200 g a.s./ha x 2 applications

Test organism	Test substance	Time scale	Soil PEC¹	TER	Trigger
Earthworms					
Eisenia fetida	A19649B	Chronic	8.2613	**1.9**	5
Other soil macroorganisms					
Folsomia candida	A19649B	Chronic	8.2613	22.5	5
Hypoaspis aculeifer	A19649B	Chronic	8.2613	22.5	5

¹PEC_{soil acc} from the active substance

Pome fruit at 50 g a.s./ha x 3 applications

Test organism	Test substance	Time scale	Soil PEC¹	TER	Trigger
Earthworms					
Eisenia fetida	A19649B	Chronic	3.0974	**5.1**	5
Other soil macroorganisms					
Folsomia candida	A19649B	Chronic	3.0974	60.1	5
Hypoaspis aculeifer	A19649B	Chronic	3.0974	60.1	5

¹PEC_{soil acc} from the active substance

Effects on terrestrial non target higher plants (Regulation (EU) Nº 283/2013, Annex Part A, point 8.6 and Regulation (EU) Nº 284/2013 Annex Part A, point 10.6)

Screening data

Not required for herbicides or plant growth regulators as ER₅₀ tests should be provided

Laboratory dose response tests

Species	Test substance	ER₅₀ (g a.s./ha)² vegetative vigour	ER₅₀ (g a.s./ha)² emergence	Exposure¹ (g a.s./ha)² (maximum requested application rate)	TER	Trigger
Monocotyledonae:						
Zea mays, *Allium cepa*,*Lolium perenne*, *Triticum aestivum*	A19649B (pydiflumetofen 200 SC)	>200	>200	200 (maximum requested application rate)	>12.47	5
Dicotyledonae:						
Brassica oleracea,						
Effects on biological methods for sewage treatment (Regulation (EU) No 283/2013, Annex Part A, point 8.8)

Test type/organism	end point
Activated sludge	3 h NOEC = 1000 mg a.s./L

Monitoring data (Regulation (EU) No 283/2013, Annex Part A, point 8.9 and Regulation (EU) No 284/2013, Annex Part A, point 10.8)

- Available monitoring data concerning adverse effect of the a.s.
 - None
- Available monitoring data concerning effect of the PPP.
 - None

Definition of the residue for monitoring (Regulation (EU) No 283/2013, Annex Part A, point 7.4.2)

Ecotoxically relevant compounds

Compartment	pydiflumetofen
soil	pydiflumetofen
water	pydiflumetofen, SYN548261, NOA449410
sediment	pydiflumetofen
groundwater	pydiflumetofen
Classification and labelling with regard to ecotoxicological data (Regulation (EU) No 283/2013, Annex Part A, Section 10)

Substance

Harmonised classification according to Regulation (EC) No 1272/2008 and its Adaptations to Technical Process [Table 3.1 of Annex VI of Regulation (EC) No 1272/2008 as amended][11]:

Peer review proposal[12] for harmonised classification according to Regulation (EC) No 1272/2008:

Pydiflumetofen
ECHA RAC Opinion (ECHA, 2019):
H400: Very toxic to aquatic life
H410: Very toxic to aquatic life with long lasting effects
–

[11] Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006. OJ L 353, 31.12.2008, 1-1355.

[12] It should be noted that harmonised classification and labelling is formally proposed and decided in accordance with Regulation (EC) No 1272/2008.