1. Introduction

It is well-known that the action of a hyperbolic element ("cat map") of the modular group $SL(2, \mathbb{Z})$ on the torus $T = \mathbb{R}^2/\mathbb{Z}^2$ has strong chaotic dynamical properties such as mixing and exponential decay of correlations. In this note we study stability of this behavior with respect to a class of perturbations called "kicked systems" introduced in [PR]: Let $h \in SL(2, \mathbb{Z})$ be hyperbolic, and assume that the system $\{h^n\}, n \in \mathbb{N}$ is influenced by a sequence of kicks $\Phi = \{\phi_1, \phi_2, \ldots\} \subset SL(2, \mathbb{Z})$ which arrive periodically with period $t \in \mathbb{N}$. The evolution of the kicked system is given by the sequence of maps

\begin{equation}
 f^{(n)}(t) = \phi_nh^t \ldots \phi_2h^t\phi_1h^t.
\end{equation}

We shall always assume that the sequence $\text{trace}(\phi_i)$ is bounded.

The kicked system defined in (1), is a particular case of the more general notion of a sequential dynamical system. Any sequence of maps $f^{(n)}$ gives rise to dynamics on the torus, the integer n playing the role of discrete time, and the evolution of an observed quantity, that is a function $F \in L^2(T)$ is given by $F \circ f^{(n)}$. Given two observables $F_1, F_2 \in L^2(T)$, the time correlation function is

\begin{equation}
 C(F_1, F_2; f^{(n)}) = \int_T F_1(f^{(n)}(x))F_2(x)dx - \int_T F_1(x)dx \int_T F_2(x)dx.
\end{equation}

The system is mixing if $C(F_1, F_2; f^{(n)}) \to 0$ as $n \to \infty$ for all $F_1, F_2 \in L^2(T)$. For instance, the sequence $\{h^n\}, n \in \mathbb{N}$ is mixing if and only if h is hyperbolic.

Definition 1. An element $h \in SL(2, \mathbb{Z})$ is stably mixing if for every sequence of kicks $\Phi = \{\phi_i\}$ with bounded traces there exists $t_0 = t_0(\Phi)$ so
that for every $t > t_0$, the sequential system $f^{(n)}(t) = \phi_n h^t \ldots \phi_2 h^t \phi_1 h^t$ is mixing.

As it was noticed in \[PR\] if h is conjugate to its inverse in $SL(2, \mathbb{Z})$, it is not stably mixing, since if $ghg^{-1} = h^{-1}$ and we take as the sequence of kicks $g^{-1}, g, g^{-1}, g, \ldots$ then the evolution of the kicked system $f^{(n)}(t)$ is 2-periodic: $f^{(n)}(t)$ is either $g^{-1}h^t$ or 1 depending if n is odd or even.

In this paper we give a complete characterization for stable mixing for the 2-torus:

Theorem 2. A hyperbolic element $h \in SL(2, \mathbb{Z})$ is stably mixing if and only if it is not conjugate to its inverse in $SL(2, \mathbb{Z})$.

Moreover we give a quantitative measure of mixing by showing (Theorem 5 below) that the correlations decay exponentially for Hölder observables, as well as establish mixing for a more general class of perturbations (see §4). In the last section we study “Lyapunov exponents” of kicked systems.

The proof of Theorem 2 is a combination of basic harmonic analysis and geometric group theory. The essential notion that we need is that of a quasi-morphism (see e.g. \[BG\]): Given a group G, and a function $r : G \to \mathbb{R}$, we say that r is a quasi-morphism if its derivative $dr : G \times G \to \mathbb{R}$ defined by

$$dr(g_1, g_2) = r(g_1 g_2) - r(g_1) - r(g_2)$$

is a bounded function. A homogeneous quasi-morphism also satisfies $r(g^n) = nr(g)$ for all $n \in \mathbb{Z}$.

In our previous work \[PR\ 1.5.D\] (see also \[EF\], \[BF\]), we showed that given a hyperbolic element h of $SL(2, \mathbb{Z})$, not conjugate to its inverse, there is a homogeneous quasi-morphism of $SL(2, \mathbb{Z})$ which does not vanish on h. Crucial to our purpose is the following refinement of that result:

Proposition 3. Let $h \in SL(2, \mathbb{Z})$ be hyperbolic, not conjugate to its inverse. Then there exists a homogeneous quasi-morphism r of $SL(2, \mathbb{Z})$ such that $r(h) = 1$ and which vanishes on all parabolic elements.

This is a special case of the following “separation theorem”:

Theorem 4. Let G be a discrete subgroup of $PSL(2, \mathbb{R})$ and $h \in G$ a primitive element of infinite order, not conjugate to its inverse in G. Then given any finite set of elements $g_1, \ldots, g_M \in G$, not conjugate to a power of h, there is a homogeneous quasi-morphism r so that $r(h) \neq 0$, while $r(g_1) = \cdots = r(g_M) = 0$.
The existence of such a rich set of quasi-morphisms is a remarkable property of discrete groups. For instance, \(\mathbb{Z}^n \) fails to satisfy it for \(n \geq 2 \) (all homogeneous quasi-morphisms are homomorphisms in that case). Moreover, for \(SL(n, \mathbb{Z}) \), \(n \geq 3 \) there are no nontrivial quasi-morphisms! This is a consequence of the bounded generation property - every matrix in \(SL(n, \mathbb{Z}) \) is a product of a bounded number of elementary matrices \(^1\) if \(n \geq 3 \) [CK1 CK2] and for \(n \geq 3 \) elementary matrices are commutators. See [BM1 BM2] for a generalization to lattices in higher-rank groups. It is for this reason that we work in dimension 2. It would be interesting to explore stable mixing in higher dimensions.

We will prove Theorem 4 with the use of elementary hyperbolic geometry. It seems to be likely that the separation property stated in the theorem can be extended to general hyperbolic groups – the proof could be probably extracted from a recent work by Bestvina and Fujiwara [BF].

Dima Burago and David Kazhdan pointed out to us that if we restrict the class of kicks to sequences \(\Phi \) taking a finite number of values, then it is possible to show that the kicked system \(^1\) is mixing for \(t \gg 1 \) under a more general condition then in Theorem 2. One need only assume that the kicks do not exchange the stable and unstable subspaces of the hyperbolic matrix \(h \). Their argument is of a dynamical nature, and does not use quasi-morphisms. No such argument is known to us in the more general case of kicks with bounded traces as in Theorem 2. In fact, stable mixing is sensitive to the size of the kicks. For instance, stability disappears when one allows certain unbounded sequence of kicks (see Section 1.2 of [PR]). It would be interesting to determine the critical size of perturbations for which mixing persists. We refer to §4 for further discussion on this issue in terms of a special geometry on \(SL(2, \mathbb{Z}) \).

Acknowledgments: We thank Dima Burago, David Kazhdan and Misha Sodin for several useful discussions.

2. The separation theorem

2.1. Background on quasi-morphisms. Let \(G \) be a group. Starting with any quasi-morphism \(r' \) on \(G \), we get a homogeneous one \(r \) by setting

\[
r(g) = \lim_{n \to \infty} \frac{r'(g^n)}{n}
\]

\(^1\)An elementary matrix has 1’s on the diagonal, while all but one off-diagonal entries vanish.
(the limit exists because $|r'(g^n)|$ is a subadditive sequence). A homogeneous quasi-morphism is automatically invariant under conjugation since for all n

$$r(ghg^{-1}) = \frac{r((ghg^{-1})^n)}{n} = \frac{r(gh^n g^{-1})}{n} = \frac{r(g) + nr(h) - r(g)}{n} + O(1)$$

and taking $n \to \infty$ we get $r(ghg^{-1}) = r(h)$.

2.2. Quasi-morphisms for discrete subgroups of $PSL(2, \mathbb{R})$. Consider the action of a discrete group $G \subset PSL(2, \mathbb{R})$ on the upper half-plane \mathbb{H}. To construct quasi-morphisms of G, start with a smooth G-invariant one-form α, such that $|d\alpha/\Omega| \leq C$ for some $C > 0$, where $\Omega = y^{-2}dx \wedge dy$ is the hyperbolic area form. Given such α and a base-point $z \in \mathbb{H}$, set $r_z(g) = \int_{\ell(z,gz)} \alpha$ where $\ell(z,w)$ denotes the geodesic segment between two points $z,w \in \mathbb{H}$. As is well known, r_z is a quasi-morphism of G (the reason that dr_z is bounded has to do with the fact that the area of a hyperbolic triangle is bounded - see e.g. [PR, Lemma 3.2.B.]). The quasi-morphism r_z depends on z only up to a bounded quantity. Thus its homogenization

$$r(g) := \lim_n r_z(g^n)/n$$

is independent of the choice of base-point z.

2.3. Proof of the separation theorem. We will construct α so that for our fixed element h and some point $z_0 \in \mathbb{H}$, $r_{z_0}(h^n) = n$. Hence for the homogenization r one has $r(h) = 1$. Further, we make the support of α sufficiently small so that for each of the elements g_j, $j \geq 1$, there is a base-point $z_j \in \mathbb{H}$ such that every geodesic segment $\ell(z_j,g^n_j z_j)$ is disjoint from the support of α. In that case $r_{z_j}(g_j^n) = \int_{\ell(z_j,g^n_j z_j)} \alpha = 0$ and thus $r(g_j) = 0$. This will conclude the proof of the Theorem.

We may assume that none of the elements g_j are elliptic, since these are annihilated by any homogeneous quasi-morphism. Thus we take g_1, \ldots, g_a to be hyperbolic, and g_{a+1}, \ldots, g_M parabolic. Let L_1, \ldots, L_a be the invariant geodesics of the hyperbolic elements g_1, \ldots, g_a. Let $p_{a+1}, \ldots, p_M \in \mathbb{R} \cup \infty$ be the cusps (fixed points) of the parabolic elements g_{a+1}, \ldots, g_M.

Case 1: h primitive parabolic. In this case h is not conjugate to its inverse already in $PSL(2, \mathbb{R})$. After conjugating the group G, we may assume that $h(z) = z + 1$. Since G is discrete, ∞ is not a fixed point of any hyperbolic element of G. Therefore if $R > 1$ is sufficiently large, the horoball $B = \{z = x + iy : y > R\}$ is disjoint from γB.
when $\gamma \in G$ is not a power of h. Moreover, if $R > 1$ is sufficiently large then B contains none of the G-translates of the geodesics L_j, $1 \leq j \leq a$. Furthermore, since the parabolic elements g_{a+1}, \ldots, g_M are not conjugate to a power of the primitive element h, their fixed points p_j are not G-translates of ∞. Thus (further increasing R if necessary) there exist small horoballs $B_j \subset H$ tangent to R at p_j which are disjoint from all G-translates of the horoball B.

We take a smooth cutoff function $u(y)$ which vanishes for $y < R$ and is identically 1 for $y > R+1$, and set $\alpha' = u(y)dx$. Clearly $|d\alpha'/\Omega| \leq C$. Take α to be the G-periodization of α', that is

$$\alpha = \sum_{\gamma \in \langle h \rangle \backslash G} \gamma^* \alpha'.$$

This is a smooth one-form, supported in the union of G-translates of the horoball B. Thus its support is disjoint from the geodesics L_j and the horoballs B_j. For $j = 1, \ldots, M$ pick a point z_j which lies on L_j for $j \leq a$ and inside B_j for $j > a$. Thus $r_{z_j}(g_j) = 0$ for all $1 \leq j \leq M$. To compute $r(h)$, take a point z_0 with $\text{Im}(z_0) = R+1$. Then $h^n z_0 = z_0 + n$ and $\int_{\ell(z_0, h^n z_0)} \alpha = n$, and so $r_{z_0}(h^n) = n$. This proves the claim for parabolic h.

Case 2: h primitive hyperbolic. Let L be the invariant geodesic of h. Since g_1, \ldots, g_a are not conjugate to a power of the primitive element h, their invariant geodesics L_j are not G-equivalent to L. Let D be a locally finite fundamental domain for G (e.g. the Dirichlet fundamental domain) whose intersection with L contains a geodesic segment, say I. There are only finitely many G-translates of L_j which meet D [Be Theorem 9.2.8(iii)], and so the intersection of $L \cap D$ with the G-translates of the L_j’s is a finite set of points. Shrinking I, we can assume that I does not meet any of these intersection points, and moreover that a small neighborhood U of I is disjoint from the G-images of L_j. Shrinking further I and U if necessary we can achieve the following. First, $\gamma U \cap U = \emptyset$ if $1 \neq \gamma \in G$. Further, since h is not conjugate to h^{-1} in G, this implies that if $\gamma \in G$, $\gamma \neq h^k$ for some $k \in \mathbb{Z}$ then γU is bounded away from L [PR Lemma 3.2.D]. Finally, we can choose small horoballs B_j around the cusps p_j which are disjoint from $\cup_{\gamma \in G} \gamma U$.

Choose now a one-form α' in H, supported in U so that $\int_I \alpha' = 1$. Then $|d\alpha'/\Omega|$ is bounded. Let $\alpha = \sum_{\gamma \in G} \gamma^* \alpha'$ be its G-periodization. Then the support of α lies in the union of G-translates of U, and so is disjoint from the geodesics L_j as well as from the horoballs B_j. For $j = 1, \ldots, M$ pick a point z_j which lies on L_j when $j \leq a$ and inside B_j for $j > a$. Pick a point z_0 on L. Clearly, $r_{z_j}(g_j) = 0$ for $j \geq 1$. Finally
note that \(\int_{t(z_0, h^n z_0)} \alpha = n \int t \alpha = n \) and so \(r_{z_0}(h^n) = n \). This concludes the claim for the hyperbolic case. \(\square \)

2.4. **Proof of Proposition 3**. Let \(\pi : SL(2, \mathbb{Z}) \to PSL(2, \mathbb{Z}) \) be the projection. Assume \(h \in SL(2, \mathbb{Z}) \) is hyperbolic and not conjugate to its inverse in \(SL(2, \mathbb{Z}) \). Note that \(h \) is not conjugate to \(-h^{-1}\) since \(\text{trace}(h) \neq 0 \). Let \(\tilde{r} \) be a homogeneous quasi-morphism of \(PSL(2, \mathbb{Z}) \) which is 1 on \(\pi(h) \) and zero on \(\pi(\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}) \) whose existence is guaranteed by Theorem 4, and let \(r = \tilde{r} \circ \pi \). Since all primitive parabolic elements are conjugate in \(SL(2, \mathbb{Z}) \) to either \(\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \) or its inverse, it follows that \(r \) vanishes on all parabolic elements of \(SL(2, \mathbb{Z}) \). \(\square \)

2.5. **When a matrix is conjugate to its inverse?** Every symmetric matrix from \(SL(2, \mathbb{Z}) \) is conjugate to its inverse by an element \(\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \). Further, one can prove the following statement, which is left as an exercise: For a hyperbolic matrix \(h \), consider the prime decomposition of \((\text{trace}(h))^2 - 4 \). If this decomposition contains a prime which equals 3 modulo 4 and enters in an odd power then \(h \) is not conjugate to \(h^{-1} \). For instance,

\[
 h = \begin{pmatrix} 4 & 9 \\ 7 & 16 \end{pmatrix}
\]

is not conjugate to its inverse (see also \cite{BR}) and thus is stably mixing. There is an algorithm, based on the theory of Pell’s equation, which establishes when a given matrix from \(SL(2, \mathbb{Z}) \) is conjugate to its inverse, see \cite{G, L}.

3. **Mixing and exponential decay of correlations**

3.1. **Decay of correlations.** In this section we prove Theorem 2 as well as a quantitative version giving an exponential rate of decay of the correlations functions \(C(F_1, F_2; f^{(n)}) \) given by (2). Mixing means that the correlation functions decay as \(n \to \infty \) for \(L^2 \) observables. To get a rate of decay, we have to restrict the observables. A function \(F \) on the torus satisfies \(\text{Hölder’s condition} \) if for some \(\gamma > 0 \) there is a positive constant \(c > 0 \) so that for all \(x, y \in T \) we have

\[
 |F(x) - F(y)| \leq c \| x - y \|^\gamma .
\]

We will show that our kicked systems have exponential decay of correlations for Hölder observables.
Theorem 5. If \(h \in SL(2, \mathbb{Z}) \) is a hyperbolic and not conjugate to its inverse, there is some \(t_0 \) so that for all \(t > t_0 \) and for all Hölder functions \(F_1, F_2 \) on \(T \) the correlations \(C(F_1, F_2; f^{(n)}(t)) \) decay exponentially:

\[
|C(F_1, F_2; f^{(n)}(t))| \leq ce^{-\gamma n}
\]

for some \(c, \gamma > 0 \).

In order to prove theorem 5, we start with a general observation:

Proposition 6. Let \(f^{(n)} \in SL(2, \mathbb{Z}) \) be a sequential system. If there are \(\alpha > 0, \beta > 1 \) such that for every integer vector \(0 \neq v \in \mathbb{Z}^2 \) and every \(n \geq 1 \) we have

\[
\|vf^{(n)}\| \geq \alpha \beta^n \|v\|
\]

then the system is mixing and moreover we have exponential decay of correlations for all Hölder observables.

Proof. It clearly suffices to deal with the case where \(F_1 = F_2 \) and both have mean zero. Let

\[
N \leq \sqrt{\alpha \beta^n}.
\]

Take a function in \(L^2(T) \), of mean zero, and consider its Fourier expansion

\[
F(x) = \sum_{0 \neq v \in \mathbb{Z}^2} a(v)e^{2\pi i (v,x)} = F_N(x) + R_N(x)
\]

where \(F_N(x) = \sum_{\|v\| < N} a(v)e^{2\pi i (v,x)} \) is the partial sum over all frequencies of norm less than \(N \). Then the correlation function \(C(F, F; f^{(n)}) \) is a sum of terms

\[
C(F, F; f^{(n)}) = \int_T F_N(f^{(n)}x)F_N(x)dx
\]

\[
+ \int_T F_N(f^{(n)}x)R_N(x)dx + \int_T R_N(f^{(n)}x)F(x)dx.
\]

By Cauchy-Schwartz, the second and third terms above are bounded respectively by

\[
\|F_N \circ f^{(n)}\|_2\|R_N\|_2 = \|F_N\|_2\|R_N\|_2 \leq \|F\|_2\|R_N\|_2
\]

and by

\[
\|R_N \circ f^{(n)}\|_2\|F\|_2 = \|R_N\|_2\|F\|_2,
\]

where \(\|F\|_2 \) stands for the \(L^2 \)-norm. The first term equals

\[
\int_T F_N \circ f^{(n)}(x)F_N(x)dx = \sum_{\|vf^{(n)}\| < N} a(-vf^{(n)})a(v).
\]
We claim that this is an empty sum, hence vanishes, for our choice of \(N\): Indeed, by our condition if \(0 < \|v\| < N\) we have

\[
\|v f^{(n)}\| \geq \frac{\alpha \beta^n}{\|v\|} > \frac{\alpha \beta^n}{N} \geq N
\]

since \(N \leq \sqrt{\alpha \beta^n}\). Thus we find that for \(N\) as above that

\[
|C(F, F; f^{(n)})| \leq 2\|F\|_2\|R_N\|_2.
\]

Since we can choose \(N \to \infty\) as \(n \to \infty\) (subject to (4)) we get \(\|R_N\|_2 \to 0\) and hence we have mixing.

To prove exponential decay of correlations for Hölder observables \(F\), recall that if \(F\) satisfies the Hölder condition (3) of order \(\gamma > 0\) then for some constant \(c_F > 0\)

\[
\|R_N\|_2 \leq c_F N^{-\gamma}
\]

(see e.g. [Z, Vol. I, Chapter II.4] for the proof in the case of functions of one variable) and hence taking \(N\) to be the smallest integer less than \(\sqrt{\alpha \beta^n}\) gives \(\|R_N\|_2 \leq \text{const} \beta^{-n\gamma/2}\) as required.

\[\square\]

3.2. Using quasi-morphisms. For a quasi-morphism \(r\) put

\[
\|dr\| := \sup_{g_1, g_2 \in G} \left| r(g_1g_2) - r(g_1) - r(g_2) \right|.
\]

To show that our kicked systems satisfy the condition of Proposition 6, we use

Proposition 7. Let \(r\) be a homogeneous quasi-morphism of \(SL(2, \mathbb{Z})\) which vanishes on all parabolic elements. Then there is \(\alpha > 0\) such that for every integer vector \(0 \neq v \in \mathbb{Z}^2\) and every \(f \in SL(2, \mathbb{Z})\), we have

\[
\|v A\| \geq \alpha \frac{e^{v r(A)}/\|dr\|}{\|v\|}
\]

Proof: A vector \(v \in \mathbb{Z}^2\) is primitive if it is not a nontrivial multiple of another integer vector. It clearly suffices to prove the result for primitive vectors.

Lemma 8. Every primitive vector \(v \in \mathbb{Z}^2\) can be written as

\[
v = (0, 1) \begin{pmatrix} 1 & k_N \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & k_{N-1} \\ k_{N-1} & 1 \end{pmatrix} \cdots \begin{pmatrix} 1 & k_2 \\ k_2 & 1 \end{pmatrix} \begin{pmatrix} 1 & k_1 \\ k_1 & 1 \end{pmatrix}
\]

with \(N \leq \log_2 \|v\| + 10\).
Proof. This is the well known Euclidean algorithm: Assume that \(v = (p, q) \) with \(|q| \geq |p| \). Primitivity is equivalent to \(p, q \) being co-prime. Then find an integer \(k_1 \) so that \(q = k_1 p + r_1 \) with \(|r_1| \leq |p|/2 \). We then arrive at a new vector \(v_2 := (p, r_1) = (p, q) \left(1 - k_1 \right) \). Now find an integer \(k_2 \) so that \(p = k_2 r_1 + r_2 \) with \(|r_2| \leq |r_1|/2 \) to get another vector \(v_3 := (r_2, r_1) = (p, r_1) \left(1 - k_2 \right) \) and so on. This proceeds until we get to the point that we have computed the greatest common divisor of \(p \) and \(q \) (which in our case equals 1) with at most \(\log_2 |p| + 1 \leq \log_2 \|v\| + 1 \) steps. This gives us either the vector \((0, 1)\), in which case we are done, or the vector \((1, 0)\). In the latter case just note that \((0, 1) = (1, 0) \left(1 1 \right) \left(1 - 1 1 \right) \). □

By lemma 8 every primitive vector is of the form \(w = (0, 1) h \) with \(h \) a product of at most \(\log_2 \|w\| + 10 \) elementary matrices. The quasi-morphism \(r \) vanishes on these matrices and so we have

\[
|r(h)| \leq (\log_2 \|w\| + 10) \|dr\|.
\]

Apply this reasoning to the vectors \(v = (0, 1) h_1 \) and \(v f(n) = (0, 1) h_2 \). Then \(|r(h_1)| \leq (\log_2 \|v\| + 10) \|dr\| \) and \(|r(h_2)| \leq (\log_2 \|v f(n)\| + 10) \|dr\| \). The matrix \(h_3 := h_1 f h_2^{-1} \) is parabolic, since it fixes \((0, 1)\) and so

\[
|r(f)| = |r(h_1^{-1} h_2 h_3)| \leq |r(h_1)| + |r(h_2)| + 2 \|dr\| \leq (\log_2 \|v\| + \log_2 \|v f\| + 22) \|dr\|
\]

Therefore

\[
\|v f\| \geq 2^{−22 \frac{2|r(f)|/\|dr\|}{\|v\|}}
\]

as required. □

3.3. Proof of Theorem 5. By Proposition 3 if \(h \) is not conjugate to its inverse then there is a homogeneous quasi-morphism \(r \) of \(SL(2, \mathbb{Z}) \) which vanishes on parabolic elements and for which \(r(h) = 1 \). We claim that for any sequence of kicks \(\phi_i \in G \) with bounded traces one has \(|r(\phi_i)| \leq c \) for some \(c > 0 \). Indeed, \(r \) vanishes on elliptic and parabolic elements, while hyperbolic elements whose traces are bounded represent a finite number of conjugacy classes in \(G \). The claim follows.

Further,

\[
r(f(n))(t) = r(\prod_{i=1}^{n} h^{t} \phi_i) = \sum_{i=1}^{n} r(h^{t}) + r(\phi_i) + O_r(1) = nt + O_{r, \Phi}(n)
\]
and so if \(t \) is big enough we have \(|r(f^{(n)}(t))| \geq n\). By proposition \(\square \) it follows that for all nonzero integer vectors \(v \) we have
\[
\|vf^{(n)}(t)\| \geq \alpha \beta^n \|v\|
\]
for some \(\beta > 1, \alpha > 0 \) and thus Proposition \(\square \) concludes the proof. \(\square \)

4. Stable mixing from the geometric viewpoint

In this section we present a generalization of the stable mixing phenomenon described above. Define a biinvariant metric \(\rho \) on the group \(G = SL(2, \mathbb{Z}) \) as follows. Every element \(g \in G \) can be decomposed as \(g = a_1 \ldots a_d \), where every \(a_i \) is either elliptic, or parabolic, or a simple commutator of the form \(aba^{-1}b^{-1} \), \(a, b \in G \). Put \(\rho(1, g) = \inf d \), where the infimum is taken over all such presentations, and set \(\rho(f, g) = \rho(1, fg^{-1}) \) for all \(f, g \in G \).

Denote by \(G^\infty \) the set of all infinite sequences \(\{g^{(k)}\}, k \in \mathbb{N} \) of ”moderate growth”, that is of those which satisfy \(\sup_{k \in \mathbb{N}} \rho(1, g^{(k)})/k < \infty \). For instance, for every \(h \in G \) the cyclic semigroup \(\{h^k\}, k \in \mathbb{N} \) lies in \(G^\infty \). Define a metric on \(G^\infty \) by
\[
\bar{\rho}(\{f^{(k)}\}, \{g^{(k)}\}) = \sup_{k \in \mathbb{N}} \rho(f^{(k)}, g^{(k)}).
\]

Theorem 9. Let \(h \in G \) be a hyperbolic element which is not conjugate to its inverse in \(G \). Then there exists \(\epsilon > 0 \) such that the ball of radius \(\epsilon \) centered at \(\{h^k\} \in G^\infty \) consists of mixing sequences with exponential decay of correlations on Hölder observables.

Proof. One can easily check that homogeneous quasi-morphisms on \(G \) which vanish on parabolics are Lipschitz functions with respect to metric \(\rho \). Let \(r \) be such a quasi-morphism with \(r(h) = 1 \). Take \(\epsilon > 0 \) sufficiently small and consider any sequence \(f = \{f^{(k)}\} \in G^\infty \) with \(\bar{\rho}(\{f^{(k)}\}, \{h^k\}) < \epsilon \). It follows that \(|r(f^{(k)})| \geq c k \) for some \(c > 0 \) and all \(k \in \mathbb{N} \). Applying Propositions 7 and 6, we get that \(f \) is mixing with exponential decay of correlations on Hölder observables. \(\square \)

Remark. Throughout the paper we worked with hyperbolic elements \(h \) which are not conjugate to \(h^{-1} \) in \(G \). This assumption can be translated in the geometric language as follows. We say that a cyclic subgroup \(\{h^k\}, k \in \mathbb{Z} \) has linear growth if \(\rho(1, h^k) \geq c|k| \) for some \(c > 0 \). It follows from Proposition 3 that the linear growth is equivalent to the fact that \(h \) is a hyperbolic element which is not conjugate to its inverse in \(G \). Otherwise cyclic subgroup generated by \(h \) remains a bounded distance from the identity.
To include kicked systems into the geometric framework introduced above, we start with the following observation. Denote by \(\epsilon(h) \) the maximal value of \(\epsilon \) supplied by Theorem 9. Then for \(t \in \mathbb{N} \) one has \(\epsilon(h^t) \geq t \epsilon(h) \). Assume now that \(h \) is not conjugate to its inverse in \(G \), take a sequence of kicks \(\Phi = \{ \phi_i \} \) with bounded traces, and consider the kicked system \(f^n(t) = \phi_n h^t \ldots \phi_1 h^t \). Note that \(h^{nt} = f^n(t) \circ \prod_{j=1}^n h^{-t_j} \phi_j^{-1} h^{t_j} \).

Therefore there exists \(c > 0 \) which depends only on \(\Phi \) such that for every \(t \in \mathbb{N} \)

\[
\bar{\rho}(\{h^{nt}\}, \{f^n(t)\}) \leq c.
\]

Hence the kicked system \(f^n(t) \) is mixing provided \(c < t \epsilon(h) \leq \epsilon(h^t) \).

5. Positive Lyapunov exponent

We say that a sequential system \(\{f^n\} \) has positive Lyapunov exponent if the sequence \(\text{trace}(f^n) \) grows exponentially with \(n \). It turns out that kicked system (1) has positive Lyapunov exponent provided \(h \) is not conjugate to its inverse and \(t \) is large enough. Indeed, choose a homogeneous quasi-morphism \(r \) which satisfies \(r(h) = 1 \) and vanishes on parabolics, and apply the following estimate.

Theorem 10.

\[
|\text{trace}(f)| \geq (2\sqrt{5})^{\|r(f)\|/\|dr\|},
\]

for every hyperbolic \(f \in SL(2, \mathbb{Z}) \) and any homogeneous quasi-morphism \(r \) which vanishes on parabolics.

Proof. The proof is divided into 3 steps.

1) We claim that every hyperbolic matrix \(f = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is conjugate in \(SL(2, \mathbb{Z}) \) to a matrix \(g = \begin{pmatrix} a_1 & b_1 \\ c_1 & d_1 \end{pmatrix} \) with \(|c_1| \leq |\text{trace}(f)|/\sqrt{5} \). Indeed, assume that \(g = hfh^{-1} \), where \(h = \begin{pmatrix} z & t \\ x & y \end{pmatrix} \in SL(2, \mathbb{Z}) \). One calculates that \(c_1 = Q(x, y) \), where \(Q(x, y) = cx^2 + (a - d)xy - by^2 \). The discriminant \(\Delta \) of the quadratic form \(Q \) equals \(\text{trace}^2(f) - 4 \). Since \(f \) is hyperbolic, \(\sqrt{\Delta} \) is irrational. In this case (see [Ca]) there exists a primitive vector \((x, y) \in \mathbb{Z}^2 \) with \(|Q(x, y)| \leq \sqrt{\Delta}/\sqrt{5} \leq |\text{trace}(f)|/\sqrt{5} \). Hence we obtain \(h \in SL(2, \mathbb{Z}) \) as required.

2) As a consequence we get that every hyperbolic matrix \(f \in SL(2, \mathbb{Z}) \) decomposes as \(f = f'h \), where \(|\text{trace}(f')| \leq |\text{trace}(f)|/(2\sqrt{5}) \) and
is parabolic. Indeed, in view of step 1 we can assume without loss of generality that $f = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with $|c| \leq |\text{trace}(f)|/\sqrt{5}$. Write $f' = f \begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix}$, so $\text{trace}(f') = \text{trace}(f) + ck$. One can always choose $k \in \mathbb{Z}$ so that $|\text{trace}(f')| \leq |c|/2 \leq |\text{trace}(f)|/(2\sqrt{5})$.

3) For an integer $s \geq 3$ put $u(s) = \max |r(g)|$, where the maximum is taken over all hyperbolic matrices g whose trace lies in $[-s; s]$. Since a quasi-morphism is a class function on the group, and the number of hyperbolic conjugacy classes with given trace is finite, the function u is well defined. Step 2 yields inequality $u(s) \leq u([s/(2\sqrt{5})]) + ||dr||$ for all $s \geq 3$, where we set $u(s) = 0$ for $s \leq 2$, and brackets stand for the integral part of a real number. Arguing by induction we get that $u(s) \leq ||dr|| \log_{2\sqrt{5}} s$ for all $s \geq 3$. This completes the proof. □

REFERENCES

[Be] A.F. Beardon, The Geometry of Discrete Groups, Springer-Verlag, 1983.
[BF] M. Bestvina and K. Fujiwara, Bounded cohomology of mapping class groups, Preprint math.GT/0012115.
[BG] J. Barge and E. Ghys, Surfaces et cohomologie borner, Invent. Math. 92 (1988), 509-526.
[BR] M. Baake and J.A.G. Roberts, Reversing symmetry group of $GL(2, \mathbb{Z})$ and $PGL(2, \mathbb{Z})$ matrices with connection to cat maps and trace maps, J. Phys. A: Math. Gen. 30(1997), 1549-1573.
[BM1] M. Burger and N. Monod, Bounded cohomology of lattices in higher rank Lie groups, Journal of the European Math. Soc. 1 (1999), 199-235 and 338.
[BM2] M. Burger and N. Monod, Continuous bounded cohomology and its applications, preprint January 2000.
[CK1] D. Carter and G. Keller, Bounded elementary generation of $SL_n(\mathcal{O})$, Amer. J. Math. 105 (1983), no. 3, 673–687.
[CK2] D. Carter and G. Keller, Elementary expressions for unimodular matrices, Comm. Algebra 12 (1984), no. 3-4, 379–389.
[Ca] J.W.S. Cassels, An introduction to Diophantine approximation, Cambridge University Press, 1957.
[EF] D. Epstein and K. Fujiwara, The second bounded cohomology of word-hyperbolic groups, Topology 36 (1997), 1275-1289.
[G] I. Gottlieb, Connections between $SL_2(\mathbb{Z})$ matrices, binary quadratic forms, and ideals of orders of quadratic fields, M.Sc. Thesis, Tel Aviv University, 2002
[L] Y. Long, Criterion for $SL(2, \mathbb{Z})$-matrix to be conjugate to its inverse. Chinese Ann. Math. Ser. B 23 (2002), 455–460.
[PR] L. Polterovich and Z. Rudnick, Kick stability in groups and dynamical systems, Nonlinearity 14 (2001), 1331-1363.
[Z] A. Zygmund, Trigonometric series, Vol. I. 2nd ed. Cambridge University Press, New York 1959.
School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel (polterov@math.tau.ac.il)

School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel (rudnick@math.tau.ac.il)