Rust Haustoria Possess a Specialised Metabolism

The primary disease-causing stage of the rust life cycle is the asexual stage. Dikaryotic uredospores germinate on the leaf surface and then colonize the leaf tissue to establish the biotropic interaction, which can be very long-lasting (Figure 1C). Ultimately, the infection gives rise to sporulating pustules that release vast numbers of new spores that can repeat the infection cycle through their respective host plants [5,6].

Rust Haustoria Produce and Deliver Effectors to the Host Cytoplasm

Seminal studies on the bean and flax rust pathogens provide support for the idea that haustoria of rust fungi are responsible for the production and secretion of effectors, with a number of these proteins targeted to the host cytoplasm where they are thought to promote the infection. Rust transferred protein 1 (RTPI) from Uf and its homologue from Uromyces striatus were the first such proteins proven to be expressed specifically in the haustorium and transferred to the host cytoplasm during a compatible biotrophic infection.

Citation: Garnica DP, Nemri A, Upadhyaya NM, Rathjen JP, Dodds PN (2014) The Ins and Outs of Rust Haustoria. PLoS Pathog 10(9): e1004329. doi:10.1371/journal.ppat.1004329

Editor: Joseph Heitman, Duke University Medical Center, United States of America

Published September 11, 2014

Copyright: © 2014 Garnica et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work has been supported by grants from the TwoBlades corporation and the Australian research council. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: peter.dodds@csiro.au
interaction [8,18]. RTP1 shares similarity with cysteine protease inhibitors and can inhibit proteolytic activity in yeast culture supernatants, so may act to inhibit host defence-associated proteases [19]. It can also form aggregates and filamentous-like structures inside the extrahaustorial matrix and the host cytoplasm, which may have a structural role in stabilizing the host cell allowing accommodation of the haustorium [20].

Emerging transcriptomic and genomic data from a range of rust fungi have identified RTP1 homologues in at least 13 rust species, suggesting that this protein could play an important role in the biotrophic lifestyle [19].

Four avirulence (Avr) genes, which encode effectors that are recognised by immune receptors encoded by host resistance (\(R\)) genes, have been identified in the flax rust \(M.\ lini\) [3,21,22].
encode small secreted proteins that are expressed in haustoria and are recognised in the host cytoplasm, implying that these proteins are delivered into the host cell during infection. This was confirmed by direct visualisation of the effector AvrM inside infected flax cells [23]. This study also found evidence that at least some effectors can be taken up into the host cytosol independently of a specialized pathogen delivery system, since secreted AvrM and AvrL567 expressed by tobacco cells accumulated in the cytosol despite being targeted efficiently to the plant secretory system. Structural and functional studies of AvrM revealed a dimeric protein with intrinsic membrane-binding properties, which possesses a conserved hydrophobic surface patch required for pathogen-independent internalization [23,24]. Although AvrM can bind negatively-charged phospholipids, this is not essential for its transport across the plant plasma membrane [24]. Overall, the mechanisms of effector delivery from rusts and other filamentous pathogens remain unknown and are the subject of much debate [5,6].

Rust Haustoria Express Many Effector Candidates

The characterisation of RTPI and Avr proteins implied the existence of a class of rust effectors delivered into host cells from haustoria, some of which could become targets of recognition by immune receptors. Over 30 Avr specificities have been described in flax rust, and around 50 in each of *Pgt*, *Psd*, and *Puccinia triticina*, suggesting large families of such effectors. Indeed, genomic and transcriptomic studies on rust fungi have revealed large sets (500 to 1,500) of potential effector genes. In contrast to effectors in some other filamentous plant pathogens, such as the RxLR and crinkler class effectors of oomycetes [5], no conserved amino acid motifs are widely present in these proteins [16,25]. In the absence of defined and conserved hallmarks in the sequences of effector genes, their prediction has been based on three main criteria: (1) presence of a secretion signal, (2) lack of transmembrane domains, and (3) expression in haustoria or infected tissue. For example, in the genomes of *Pgt*, *Psd*, *M. larici-populina*, and *M. lini* [13,15,17], about 0% of their predicted proteomes corresponds to candidate effectors that fulfil these criteria. Infection tissue-specific transcriptomes of these pathogens [11,13,26] and other rusts, including *Uf* [27], have identified large numbers of predicted effectors expressed in planta. More recently, haustoria-specific transcriptomic data detected expression of 70% of the predicted in planta effector complement in the haustorium of *Pst* [Jackson, et al. unpublished] and 58% in *Pgt* [14], lending additional support to the idea that the haustorium is the main source of effector proteins. Sperschneider, et al. (2014) [28] used an alternative, unbiased approach for effector prediction based on the comparison of 174 fungal genomes and the classification of genes into families associated with pathogenicity. This study revealed a cluster of proteins enriched in secretion signals, small amino acids and cysteine residues, confirming that these are useful criteria for effector prediction. The generation of lists of candidate effectors is an important first step that precedes functional assays to uncover their contributions to pathogenicity.

Evolutionarily Diverged Effector Candidates May Control Host Specificity

Avirulence genes often exhibit high levels of polymorphism and display signatures of diversifying selection [3,22,29] as a result of antagonistic co-evolution with plant defences. For instance, positively selected polymorphic residues in AvrL567 are exposed on the protein surface and are responsible for differences in recognition specificity by host immune receptors [30], explaining the underlying molecular basis driving diversifying selection of this gene family to escape recognition. Likewise, AvrM is recognised by direct interaction with the corresponding M resistance protein, and differences in recognition are governed by surface-exposed polymorphic residues [24,31]. Effectors are probably also under selection to adapt to alterations in host proteins targeted by their virulence functions or to acquire new virulence targets. Comparison of effector complements from multiple rust species [17,25] reveals some families that are widely conserved and are enriched for proteins with signatures of enzyme activity that may play general roles in virulence, e.g., as cell wall-degrading enzymes. In contrast, many candidate effectors are not conserved across genus or species boundaries [16,17] and can be highly variable between isolates of the same species [14,32]. This class includes known Avr proteins from flax rust and is likely to be enriched for such determinants of host specificity.

Conclusion

The use of modern technologies to study the highly specialised dikaryotic haustorium of rust fungi has provided convincing support of the early idea that it comprises a feeding apparatus that allows the pathogen to parasitise the host. The intimate and long-lasting relationship between pathogen and plant also demands that the host immune system is dampened or disabled. Both of these functions are likely to be dependent upon the secretion of effector proteins that condition the host to accommodate the infection. Although the availability of genomes and transcriptomes of rust fungi have helped to uncover their effector coding potential, precise roles for effectors during infection is an unexplored frontier with great potential to define fascinating new aspects of biology. Thus, the development of systems to screen candidate effectors for their role in disease [33] will expand our understanding of these important proteins and increase the options to control rust pathogenic fungi.

References

1. Mendgen K, Struck C, Voegele RT, Hahn M (2000) Biotrophy and rust haustorium. Physiol Mol Plant Pathol 56: 141–145.
2. Voegele RT, Struck C, Hahn M, Mendgen K (2001) The role of haustoria in sugar supply during infection of broad bean by the rust fungus *Uromyces fabae*. Proc Natl Acad Sci U S A 98: 8113–8118.
3. Catanzariti AM, Dodds PN, Lawrence GJ, Ayliffe MA, Ellis JG (2006) Haustorially expressed secreted proteins from flax rust are highly enriched for avirulence effectors. Plant Cell 18: 243–256.
4. Voegele RT, Mendgen K (2003) Rust haustoria: nutrient uptake and beyond. New Physiol 158: 93–100.
5. Bokkart TO, Schornack S, Banfield MJ, Kamoun S (2012) Oomycetes, effectors, and all that jazz. Curr Opin Plant Biol 15: 483–492.
6. Rafiq M, Ellis JG, Ludowici VA, Hardham AR, Dodds PN (2012) Challenges and progress towards understanding the role of effectors in plant-fungal interactions. Curr Opin Plant Biol 15: 477–482.
7. Littlefield LJ, Heath MC (1979) Ultrastructure of rust fungi. New York: Academic Press.
8. Hahn M, Mendgen K (1997) Characterization of in planta induced rust genes isolated from a haustorium-specific cDNA library. Mol Plant Microbe Interact 10: 427–437.
9. Struck C, Ernst M, Hahn M (2002) Characterization of a developmentally regulated amino acid transporter (AAT1p) of the rust fungus *Uromyces fabae*. Mol Plant Pathol 3: 23–30.
10. Struck C, Mueller E, Martin H, Loaiza G (2004) The *U. fabae* UfAAT3 gene encodes a general amino acid permease that prefers uptake of in planta scarce amino acids. Mol Plant Pathol 5: 183–189.
11. Garnica DP, Upadhyaya NM, Dodds PN, Rathjen JP (2013) Strategies for Wheat Stripe Rust Pathogenicity Identified by Transcriptome Sequencing. Plos One 8: e67136.
12. Link TI, Lang P, Schellner BE, Duke MV, Graham MA, et al. (2013) The haustorial transcriptomes of *Uromyces appendiculatus* and *Phakopsora pachyrhizi* and their candidate effector families. Mol Plant Pathol 15: 579–593.
13. Duplessis S, Cuomo CA, Lin YC, Aerts A, Tisserant E, et al. (2011) Obligate biotrophy features unraveled by the genomic analysis of rust fungi. Proc Natl Acad Sci U S A 108: 9166–9171.

14. Upadhyaya NM, Garnica DP, Karaoglu H, Nemri A, Sperschneider J, et al. (2014) Comparative genomics of Australian stem rust (Puccinia graminis f. sp. tritici) isolates reveals extensive polymorphism in candidate effector genes. Front Plant Sci. In press.

15. Cantu D, Govindarajulu M, Kosuk A, Wang M, Chen X, et al. (2011) Next generation sequencing provides rapid access to the genome of Puccinia striiformis f. sp. tritici, the causal agent of wheat stripe rust. PLoS ONE 6: e24230.

16. Zheng W, Huang L, Huang J, Wang X, Chen X, et al. (2013) High genome heterozygosity and endemic genetic recombination in the wheat stripe rust fungus. Nat Commun 4: 2673.

17. Nemri A, Saunders DGO, Anderson C, Upadhyaya NM, Win J, et al. (2014) Comparative genomics of Australian stem rust (Puccinia graminis f. sp. tritici) isolates reveals extensive polymorphism in candidate effector genes. Front Plant Sci 5: 98.

18. Pretch K, Kemen A, Kemen E, Geiger M, Mendgen K, et al. (2013) The rust transferred proteins—a new family of effector proteins exhibiting protease inhibitor function. Mol Plant Pathol 14: 96–107.

19. Barrett LG, Thrall PH, Dodds PN, van der Merwe M, Linde CC, et al. (2009) Diversity and evolution of effector loci in natural populations of the plant pathogen Melampsora lini. Mol Biol Evol 26: 2499–2513.