Microbiota and Neurological Disorders: A Gut Feeling

Walter H. Moos1,*, Douglas V. Faller2,3 David N. Harpp4 Iphigenia Kanara5,6 Julie Pernokas7 Whitney R. Powers8,9 and Kosta Steliou3,10,*

Abstract

In the past century, noncommunicable diseases have surpassed infectious diseases as the principal cause of sickness and death, worldwide. Trillions of commensal microbes live in and on our body, and constitute the human microbiome. The vast majority of these microorganisms are maternally derived and live in the gut, where they perform functions essential to our health and survival, including: digesting food, activating certain drugs, producing short-chain fatty acids (which help to modulate gene expression by inhibiting the deacetylation of histone proteins), generating anti-inflammatory substances, and playing a fundamental role in the induction, training, and function of our immune system. Among the many roles the microbiome ultimately plays, it mitigates against untoward effects from our exposure to the environment by forming a biotic shield between us and the outside world. The importance of physical activity coupled with a balanced and healthy diet in the maintenance of our well-being has been recognized since antiquity. However, it is only recently that characterization of the host–microbiome intermetabolic and crosstalk pathways has come to the forefront in studying therapeutic design. As reviewed in this report, synthetic biology shows potential in developing microorganisms for correcting pathogenic dysbiosis (gut microbiota–host maladaptation), although this has yet to be proven. However, the development and use of small molecule drugs have a long and successful history in the clinic, with small molecule histone deacetylase inhibitors representing one relevant example already approved to treat cancer and other disorders. Moreover, preclinical research suggests that epigenetic treatment of neurological conditions holds significant promise. With the mouth being an extension of the digestive tract, it presents a readily accessible diagnostic site for the early detection of potential unhealthy pathogens resident in the gut. Taken together, the data outlined herein provide an encouraging roadmap toward important new medicines and companion diagnostic platforms in a wide range of therapeutic indications.

Key words: a-lipoic acid; autism; dementia; dysbiosis; epigenetic; exercise; fatty acids; histone deacetylase; immune system; microbiota; mitochondria; neurodegenerative; probiotics; schizophrenia; synthetic biology

1Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, California.
2Department of Medicine, Boston University School of Medicine, Boston, Massachusetts.
3Cancer Research Center, Boston University School of Medicine, Boston, Massachusetts.
4Department of Chemistry, McGill University, Montreal, Canada.
5Weatherhead Center for International Affairs, Harvard University, Cambridge, Massachusetts.
6Consulate General of Greece in Boston, Boston, Massachusetts.
7Advanced Dental Associates of New England, Woburn, Massachusetts.
8Department of Health Sciences, Boston University, Boston, Massachusetts.
9Department of Anatomy, Boston University School of Medicine, Boston, Massachusetts.
10PhenoMatrix, Inc., Boston, Massachusetts.

*Address correspondence to: Walter H. Moos, PhD, Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, 600 16th Street, Mail Code 2280, Genentech Hall S512D, Mission Bay Campus, San Francisco, CA 94158, E-mail: walter.moos@ucsf.edu, moosw@cal.berkeley.edu; or Kosta Steliou, PhD, PhenoMatrix, Inc., 9 Hawthorne Place Suite 4R, Boston, MA 02114, E-mail: steliou@bu.edu, ksteliou@partners.org

© Walter H. Moos et al. 2016; Published by Mary Ann Liebert, Inc. This Open Access article is distributed under the terms of the Creative Commons License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.
Introduction

In less than 100 years, noncommunicable diseases have surpassed infectious diseases as the principal cause of sickness and death, worldwide.\(^1\) One hundred trillion commensal microbes (including the fungal community referred to as the mycobiome)\(^2\) that live in and on our body constitute the human microbiome,\(^3\) although a recent study\(^4\) estimates the overall figure to be much lower. Regardless of the absolute number, the vast majority of these microorganisms live in the gut (microbiota),\(^5\) where they perform functions that are essential to our health and survival. They help us digest food;\(^6\) participate in the activation of certain drugs;\(^7\) produce short-chain fatty acids (SCFAs) that help modulate gene expression by inhibiting deacetylation of histone proteins;\(^8\)–\(^10\) generate molecules that reduce inflammation;\(^11\) and play a fundamental role in the induction, basic development, training, and function of our immune system.\(^12\)–\(^14\) Thus, as a whole, the microbiome becomes an integral part of our immune makeup, and is largely inherited from the mother with significant differences consequent to cesarean versus vaginal deliveries.\(^15\)–\(^20\) Among the many roles the microbiome may ultimately play in health and disease, it mitigates against the untoward effects from our exposure to the environment by residing as a biotic barrier between us and the world around us.\(^1,21\)–\(^25\)

Neuropsychiatric disorders\(^26\) are on the increase globally and, of the noncommunicable diseases, stand out as a leading cause of disability.\(^3,8,27,28\) Accruing evidence strongly links gut dysbiosis (gut microbiota–host maladaptation) as a risk factor in a wide range of mental illnesses that include neuropsychiatric conditions,\(^3,29\)–\(^38\) such as autism spectrum disorder (ASD)\(^39\)–\(^46\) and schizophrenia\(^39\)\(^,\)\(^40\)\(^,\)\(^46\)–\(^49\) among them. There are currently no drugs approved that treat the core symptoms of ASD.\(^50\) The pathogenic mechanisms underlying schizophrenia, a debilitating mental disorder, are unknown\(^51\) and drug therapies used to treat the associated psychotic symptoms have advanced little since the introduction of clozapine in 1960.\(^52\)\(^,\)\(^53\)

The reported association of mental illness with digestive disturbances dates back to Hippocrates and stands as the single consistently linked comorbidity described in the medical literature from ancient times to the present.\(^49\) Although the genesis of our microbiome is predominantly our mother’s,\(^18\)\(^,\)\(^54\) eventually our microbiome transforms into our own unique signature.\(^55\) Changes in the gut microbial composition and function constantly adapt to our diet,\(^56\)\(^,\)\(^57\) and the mechanistic relationships between the gut microbiota in the development of the enteric nervous system\(^58\) and the preservation of our metabolic health\(^59,60\) are only now beginning to be elucidated.

Microbiota-Induced Epigenetics

Advances in genetic editing technologies may help clarify whether it is our genetics that control our epigenome or epigenetics that control the genome—or, more likely, the relationship between the two is mutual.\(^61\) There is supporting evidence to suggest that our microbiome plays a fundamental role in this relationship.\(^14\)\(^,\)\(^62\)\(^,\)\(^63\) Numerous studies\(^64\)\(^,\)\(^65\) show microbe-generated metabolites are intertwined with host cell biochemistry and physiology, and SCFA-mediated cell signaling is a key pathway that gut microbes use to communicate with the host.\(^9\)\(^,\)\(^44\)\(^,\)\(^66\)–\(^68\) Acetate, propionate (propionic acid is also commonly referred to as PPA), butyrate, and pentanoate, having respectively, 2, 3, 4, and 5 carbon atoms are SCFAs (Table 1), largely produced by microbial fermentation of complex polysaccharides (starches and fibers) in the colon (longer chain aliphatic acids with 6 to 12 carbons are considered to be medium-chain fatty acids [MCFAs]). SCFAs are absorbed into the colonic epithelium where, primarily, butyrate is consumed as a preferred fuel source by colonocytes.\(^69\)–\(^73\) Microbiota-produced SCFAs enter the bloodstream through the portal circulation of the host and/or the distal colon and are transported to recipient tissues where they are taken up and used in a variety of cellular responses, including the regulation of gene expression.\(^9\)\(^,\)\(^47\)\(^,\)\(^74\)\(^,\)\(^75\)

Many brain disorders are associated with imbalances in protein acetylation levels and transcriptional dys-function.\(^76\) Histone deacetylase (HDAC) inhibitors represent a promising therapeutic option to correct these deficiencies, and numerous studies using butyrate, the most potent of the SCFA HDAC inhibitors,\(^9\)\(^,\)\(^77\)

R	Fatty acid	No of carbon atoms
H	Acetic	2
CH3	Propionic	3
CH2CH2	Butyric	4
CH2CH2CH3	Pentanoic	5
CH2CH2CH2CH3	Hexanoic	6
CH3CH2CH2CH2CH3	Heptanoic	7
CH2CH2CH2CH2CH2CH3	Octanoic	8
demonstrate the medicinal potential of butyrate in the intervention of neurodegenerative diseases and psychiatric disorders.26,64,76,78–85

α-Lipoic acid [(R)-5-(1,2-dithiolan-3-yl)pentanoic acid] (ALA, Fig. 1) is a naturally occurring 5-membered ring disulfide-substituted SCFA HDAC inhibitor86,87 with strong antioxidant activity.88 It is an essential cofactor in aerobic metabolism and is the central component forming the pyruvate dehydrogenase complex,89,90 which functionally links glycolysis in the cytoplasm to oxidative phosphorylation (OXPHOS) in mitochondria.91 ALA plays a role in microbial metabolism too.92 Although ALA is present in almost all food types that we eat,93 and is readily digested, absorbed, and transported to tissues, including brain,94–96 the amounts available from diet are low.93 Although the acquisition and use of ALA vary in different microbes, yeast, and animal cells,97,98 its functions are, nonetheless, essential to the organism, and in most prokaryotic and eukaryotic microorganisms, plant and animal mitochondria, and plant plastids, ALA is enzymatically synthesized endogenously from the MCFA, octanoate.97–99

In addition to its role in the metabolic pathways, ALA is reported in many research studies to be a potent activator of the nuclear factor (erythroid-derived 2)-like 2 (Nrf2) antioxidant response element signaling pathway that regulates the expression of genes whose protein products are involved in the detoxification and elimination of reactive oxygen species and electrophilic agents.26,96,100–102 Oxidative stress has been implicated in the pathogenesis of various neurodegenerative and neuropsychiatric disorders, including depression.103,104 Vasconcelos et al.105 showed that ALA (100 mg/kg) alone or combined with clozapine reversed schizophrenia-like alterations induced by ketamine. Ketamine is a known glutamatergic N-methyl-d-aspartate receptor antagonist that can induce psychotomimetic, perceptual, cognitive, and neuroendocrine responses in humans and in rodent models of schizophrenia.106,107 ALA also inhibits nuclear factor kappa-B (NF-κB) activation independent of its antioxidant function. NF-κB belongs to an important group of transcription factors regulated by a kinase-mediated signaling pathway that transduces signals from the cell surface to changes in gene expression.108,109

Fatty acids represent one of the body’s long-term storage reservoirs and sources of fuel energy—the heart being a primary consumer.110 In the presence of respiratory oxygen, fatty acids are shuttled through the mitochondrial OXPHOS complex system, where they are degraded by two carbon units at a time to shorter-chain fatty acids (and ultimately to acetyl coenzyme A), with concomitant release of water, CO2, and ATP in the process. The cellular availability of SCFAs for use in epigenetic chromatin remodeling through their ability to inhibit HDAC activity, therefore, is closely tied to mitochondrial energy production and metabolism. Since both prokaryote and eukaryote cells share common pathways for energy production, for example, the citric acid cycle,75 it comes as no surprise that gut microbiota inexorably affect host-cell bioenergetics, which in turn fuels gene expression in the mitochondrial and nuclear genomes.75,111 Over a billion years of evolutionary history have allowed our mitochondrial DNA (mtDNA) and nuclear DNA to co-evolve with a high degree of genetic compatibility.112,113 Interestingly, our microbiome and our mitogenome (mtDNA), as well as portions of our epigenome—for example, maternal silencing,114 are uniquely passed to each of us from our mother.

Gut microbiota have a profound influence on the host immune system.13 Maternal immune activation is a shared environmental risk factor for a plethora of neuropsychiatric and neurodegenerative disorders that may or may not develop into clinical symptoms in offspring.13 Evidence from an in-depth study115 of data extracted from the Danish health registry of more than 1 million children born between 1980 and 2005, focusing on cases where the mother had a viral infection with fever requiring hospitalization during the first trimester, strongly links maternal immune dysregulation with suppressed neurodevelopment and cognitive function (ASD) in their offspring.116 In other epidemiological studies,117 prenatal exposure to infection visibly stands out as a risk factor in schizophrenia and other neurodevelopmental abnormalities. The possibility that prenatal Zika virus infection from a mosquito reservoir is responsible for the current outbreak in Brazil of children born with microcephaly is a disturbing and frightening example.118–121

![Chemical structure of R-(+)-lipoic acid.](http://online.liebertpub.com/doi/10.1089/biores.2016.0010)
Synthetic Biology
With a capacity to act either naturally or by manipulation, the gut microbial ecosystem is an indispensable and constituent player in the maintenance of our wellbeing. 7 Thus, in treating disease, adjusting the functional composition of the gut microbiome may help facilitate and even alter the outcome of therapeutic interventions. 122,123 Dietary sources of probiotics such as, for example, in traditional Greek yogurt, have been used since antiquity in the Mediterranean region (Mediterranean diet) 124,125 to maintain a state of wellness. However, once pathogenic dysbiosis sets in, probiotics have not proven to be remedial 123,126,127 and other interventional methods are being investigated. In this effort, independent work from several groups suggests that (engineered) bacteria have potential to be an effective means for delivering, enhancing, or themselves acting as therapeutic agents (“living pills”) 128 to treat certain diseases, 22,129–132 including psychiatric disorders, 43,48,133–136 and significant investments are being made to adapt a variety of commensal microbial species for remodeling the gut microbiota (ecobiotics) in disease-treating indications. 133,137–139 A similar approach aims to utilize engineered viruses to seek and selectively destroy pathogenic bacteria. 140–142 Drawing conclusions from a study of 11 children affected by ASD that showed improvement in communication and behavioral tests after being treated with vancomycin for 8 weeks, Mangiola et al. 46 speculate that modulation of gut microbiota through antibiotic treatment may influence the symptoms and expression of psychiatric disorders in general. Devkota143 takes this further by underscoring a comprehensive need for more investigations into drug–microbiome interactions and the mechanisms that are involved therein.

Interestingly, during long stays in space, the configuration of the gut microbiome of astronauts is often significantly transformed relative to the one they had on Earth. 144–146 The ongoing NASA Twins Study, with Scott Kelly having recently returned from a historic 340-day mission aboard the International Space Station, may shine additional light on this subject. 147 Gut microbial dysregulation can alter one’s immune status and cause aberrant social and cognitive behavior. 35,148,149 This may result in catastrophic consequences during long space flights, as for example, to Mars, if an astronaut’s ability to carry out demanding tasks at a high performance and optimal level becomes severely compromised. 150 History shows that addressing the technological challenges space exploration presents has a constructive rippling effect on the technological advances made for a wide range of applications here on Earth. Synthetic biology 151 has potential to deliver robust and reliable organisms that can assist on long-duration astronaut missions. 152 It is anticipated that the techniques required to be developed may also be applied to engineer phage and bacteria to explore and to therapeutically modify the gut microbiome as needed. 153

Brain Development and Neurological Disorders
Aging is a leading risk factor (Fig. 2) 154 in progressing to dementia. 155–159 Although the latest studies suggest that the prevalence of dementia may be leveling off and even decreasing in some subsets of the population, 160 for the foreseeable future, dementia will continue to be a major challenge for the healthcare establishment. 161

The gut’s evolving capacity to adapt and maintain normal microbiota, which begins at birth and continues throughout one’s life, is necessary to support the metabolic activities of the brain. 59,162 “This is especially so in the early childhood years through adulthood. 59 Studies have shown that some of the typical behavioral and physiological abnormalities associated with neurodevelopmental disorders, including autism 43–45,163–165 and schizophrenia, 40,47–49 can be modulated by reconfiguring the gut microbiome composition. 122,166 Acetate, propionate, and butyrate comprise the majority of SCFAs produced in the gut by microbial fermentation. 21,69 Propionate and butyrate can modulate brain function, principally appetite and energy homeostasis, through regulation of neuropeptide production. 167 Butyrate is mostly absorbed by the colonic epithelium, whereas acetate and propionate are passed into the portal circulation. 168–170 In gut dysbiosis, the constitutional spectrum of SCFAs varies substantially from the host’s natural healthy balance, 3,32,39,60,171 and higher than normal levels of PPA have been linked to deleterious effects on brain function 43,75,78,172–179 in autistic children. 24,174 Given these findings, and the fact that PPA is widely used as a food preservative, 180 there may be cause for some concern.

Idiopathic late-onset dementia (ILOD) is characterized by a series of declining daily functional competences, most often involving memory, reasoning, and sociobehavioral abilities, in the elderly. 157,161 Dementia encompasses a myriad of clinical symptoms typically associated with discrete neurological disorders such as Alzheimer and Parkinson diseases, hippocampal sclerosis of aging, and Lewy body and frontotemporal dementias
being the more notable ones, but not collectively manifested by any one of them. Cellular processes depend on the energy supplied by their mitochondria, and dysfunctional mitochondria can lead to an unsustainable cellular bioenergetics deficit that is detrimental to the cell’s function and survival. 181 In brain cells, even a small energy deficit, which is a common occurrence during the aging process, can reduce synaptic neurotransmitter release and adversely affect synaptic function. 26,101 Maintaining a healthy gut microbiota state is necessary to support the metabolic activities of the brain, 59,162 and Mattson 157 and Bourassa et al. 85 posit that some of the common pathologies leading to ILOD and other brain disorders may be amenable to therapeutic modification by diet and lifestyle changes. For example, exercise, yoga, and meditation are lifestyle activities known to improve brain blood flow—which, presumably, can enhance perfusion of the brain with micronutrients absorbed by the gut 182—and are increasingly being incorporated in treatments for depression and other mental disturbances. 36,127,183–185

At the other end of the age spectrum, the correlation between impaired intellectual development and a prolonged state of malnutrition in infants and young children is inescapable. 186–189 Recent studies have demonstrated that the normal pattern of gut microbiota assembly is disrupted in malnourished children. 162,187 To maximize the therapeutic benefit of diet and dietary supplements, preclinical evidence suggests that a healthy microbiome in these children may need to be configured as well. 190,191

Concluding Remarks

The importance of physical activity coupled with a balanced and healthy diet in the maintenance of our well-being has been recognized since antiquity. However, it is only recently that characterization of the host–microbiome intermetabolic and crosstalk pathways has come to the forefront for study in therapeutic design and treatments. 68,192 As reviewed in this report, synthetic biology has potential to develop microorganisms for correcting pathogenic dysbiosis, but this has yet to be proven. (For additional examples of the latest approaches to manipulating the microbiota, including illustrative figures, see Ash and Mueller, 193 and articles cited therein.) In contrast, the development and use of small molecule drugs have a long and successful history in the clinical treatment of diseases. Small molecule HDAC inhibitors are already used in the clinic to treat cancer and hematological disorders, 77 and preclinical research with SCFA HDAC inhibitors demonstrates significant potential in epigenetic treatment of neurological conditions. 26,101 Epigenetic regulation of host–microbiota interactions by utilizing epigenomic-targeting drugs has been suggested by Alenghat and Artis. 74

![FIG. 2. Meta analyzed estimates of dementia prevalence in the United States.](http://online.liebertpub.com/doi/10.1089/biores.2016.0010)
The mouth, being an extension of the digestive tract, presents a readily accessible diagnostic site for the early detection of potential unhealthy pathogens resident in the gut. Salivanomics is a rapidly emerging tool in the arsenal of salivary diagnostics.\(^6\) Collecting saliva or swabbing the inside cheek of the mouth is noninterventional, making it a highly attractive diagnostic procedure, particularly for infants and young children. It is not unlikely that regular visits to your dentist may soon be as important to your gut as it is to your oral hygiene, white teeth, and a nice smile.

Acknowledgments
We thank the MitoCure Foundation for their generous financial support, and Drs. Carl A. Pinkert (The University of Alabama, Tuscaloosa, AL), Michael H. Irwin (Auburn University, Auburn, AL), Robert J. Zamboni (McGill University, Montreal, QC, Canada), and Susan P. Perrine (Boston University School of Medicine) for their invaluable advice and helpful discussions in the preparation of this article.

Authors’ Contributions
The article was written through contributions of all authors. All authors have given approval to the final version of the article.

Author Disclosure Statement
K.S. owns shares in PhenoMatriX. W.H.M. and K.S. have collaborated in the past on cancer projects as part of a formal agreement between SRI International and PhenoMatriX. No competing financial interests exist.

References
1. Dietert J, Dietert R. The sum of our parts. Scientist. 2015;29:44–49.
2. Ghannoum M. The mycobiome. Scientist. 2016;30:32–37.
3. Fond G, Boukouaci W, Chevalier G, et al. The "psychomicrobiotic": targeting microbiota in major psychiatric disorders: a systematic review. Pathol Biol. 2015;63:35–42.
4. Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. BioRxiv. 2016 [Epub ahead of print]; DOI: http://dx.doi.org/10.1101/036103.
5. Blekhman R, Goodrich JK, Huang K, et al. Host genetic variation impacts microbiome composition across human body sites. Genome Biol. 2015;16:191.
6. Bohórquez DV, Liddle RA. The gut connectome: making sense of what you eat. J Clin Invest. 2015;125:888–890.
7. Koppel N, Baltuska EP. Exploring and understanding the biochemical diversity of the human microbiota. Cell Chem Biol. 2016;23:18–30.
8. Forsythe P, Sudo N, Dinan T, et al. Mood and gut feelings. Brain Behav Immun. 2010;24:9–16.
9. Natarajan N, Pluznick JL. From microbe to man: the role of microbial short chain fatty acid metabolites in host cell biology. Am J Physiol Cell Physiol. 2014;307:C979–C985.
10. Dietert R, Dietert J. The microbiome and sustainable healthcare. Healthcare. 2015;3:100–125.
11. Caesar R, Tremaroli V, Kovatcheva-Datchary P, et al. Crosstalk between gut microbiota and dietary lipids aggravates WAT inflammation throughTLR signaling. Cell Metab. 2015;22:1–11.
12. Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell. 2014;157:121–141.
13. Estes ML, McAllister AK. Immune mediators in the brain and peripheral tissues in autism spectrum disorder. Nat Rev Neurosci. 2015;16:469–486.
14. Grogan D. The microbe within. Nature. 2015;518:52.
15. Backhed F, Rosewall J, Peng Y, et al. Dynamics and stabilization of the human gut microbiota during the first year of life. Cell Host Microbe. 2015;17:790–793.
16. Debnath M, Venkatasubramanian G, Berk M. Fetal programming of schizophrenia: select mechanisms. Neurosci Biobehav Rev. 2015;49:90–104.
17. Dominguez-Bello MG, Blaser MJ. Asthma: undoing millions of years of coevolution in early life? Sci Transl Med. 2015;7:307fs39.
18. van Opstal EJ, Bordenstein SR. Rethinking heritability of the microbiome. Science. 2015;349:1172–1173.
19. Dominguez-Bello MG, De Jesus-Laboy KM, Shen N, et al. Partial restoration of the microbiota of cesarean-born infants via vaginal microbial transfer. Nat Med. 2016;22:1269–1275.
20. Gomez de Aguero M, Ganal-Vonarburg SC, Fuhrer T, et al. The maternal microbiota drives early postnatal innate immune development. Science. 2016;351:1296–1302.
21. Al-Ashmakh M, Hedin L. Microbiota and the control of blood-tissue barriers. Tissue Barriers. 2015;3:e10396.
22. McKenney PT, Parmer EG. 2015. From hype to hope: the gut microbiota in enteric infectious disease. Cell 163:1326–1332.
23. Scharschmidt TC, Vasquez KS, Truong H-A, et al. A wave of regulatory T cells into neonatal skin mediates tolerance to commensal microbes. Immunity. 2015;43:1011–1021.
24. Wang Z, Roberts AB, Buffa JA, et al. Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell. 2015;163:1585–1593.
25. Yang L, Corwin EJ, Brennan PA, et al. The infant microbiome. Implications for infant health and neurocognitive development. Nursing Res. 2016;65:76–88.
26. Moos WH, Maneta E, Pinkert CA, et al. Epigenetic treatment of neuro-psychiatric disorders: autism and schizophrenia. Drug Dev Res. 2016;77:53–72.
27. Shakir R. Neurodegenerative noncommunicable diseases (neurology NCDS): Where are we now? J Neurol Sci. 2015;356:1–2.
28. Silverberg D, Anand NP, Michels K, et al. Brain and other nervous system disorders across the lifespan—global challenges and opportunities. Nature. 2015;527:S151–S154.
29. Borre YE, O’Keeffe GW, Clarke G, et al. Microbiota and neurodevelopmental windows: implications for brain disorders. Trends Mol Med. 2014;20:509–518.
30. de Theije CGM, Bavelaar BM, da Silva SL, et al. Food allergy and food-based therapies in neurodevelopmental disorders. Pediatr Allergy Immunol. 2014;25:218–226.
31. Mayer EA, Knight R, Mazmanian SK, et al. Gut microbes and the brain: paradigm shift in neuroscience. J Neurosci. 2014;34:15490–15496.
32. Stilling RM, Dinan TG, Cryan JF. Microbial genes, brain & behaviour—epigenetic regulation of the gut–brain axis. Genes Brain Behav. 2014;13:69–86.
33. Bienenstock J, Kunze W, Forsythe P. Microbiota and the gut–brain axis. Nutr Rev. 2015;73(S1):28–31.
34. Dash SR. The microbiome and brain health: what’s the connection? Medscape, March 24, 2015. Accessed March 21, 2016, http://www.medscape.com/viewarticle/841748
35. Dinan TG, Stilling RM, Stanton C, et al. Collective unconscious: how gut microbes shape human behavior. J Psychiatr Res. 2015;63:1–9.
36. Kaplan BJ, Rucklidge JJ, Romijn A, et al. The emerging field of nutritional mental health: inflammation, the microbiome, oxidative stress, and mitochondrial function. Clin Psychol Sci. 2015;3:964–980.
37. Sherman MP, Zaghooani H, Niklas V. Gut microbiota, the immune system, and diet influence the neonatal gut–brain axis. Pediatr Res. 2015;77:127–133.
38. Donaldson GP, Lee SM, Mazmanian SK. Gut biogeography of the bacterial microbiota. Nat Rev Microbiol. 2016;14:20–32.
Moos, et al., BioResearch Open Access 2016, 5.1
http://online.liebertpub.com doi/10.1089/biores.2016.0010

39. Hsiao EY, McBride SW, Hsien S, et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell. 2013;155:1451–1463.

40. Knerveld AD, de Theije CGM, van Heesch F, et al. The neuro-immune axis: prospect for novel treatments for mental disorders. Basic Clin Pharmacol Toxicol. 2014;114:128–136.

41. Buie T. Potential etiologic factors of microbiome disruption in autism. Clin Ther. 2015;37:976–983.

42. Carding SR, Verbeke K, Vipond DT, et al. Dysbiosis of the gut microbiota in disease. Microb Ecol Health Dis. 2015;26:26191.

43. Frye RE, Rose S, Slattery J, et al. Gastrointestinal dysfunction in autism spectrum disorder: the role of the mitochondria and the enteric microbiome. Microb Ecol Health Dis. 2015;26:27458.

44. Liu X, Cao S, Zhang X. Modulation of gut microbiota–brain axis by probiotics, prebiotics, and diet. J Agric Food Chem. 2015;63:7885–7895.

45. Reddy BL, Saier MH. Autism and our intestinal microbiota. J Mol Microbiol Biotechnol. 2015;25:51–55.

46. Mangiola F, Iaino G, Franceschi F, et al. Gut microbiota in autism and mood disorders. World J Gastroenterol. 2016;22:361–368.

47. Dinan TG, Borre YE, Cryan JF. Genomics of schizophrenia: time to consider the gut microbiome? Mol Psychiatry. 2014;19:1252–1257.

48. Yeman C, Thelma A, McCormick B, et al. Schizophrenia and the gut–brain axis. Prog Neuropsychopharmacol Biol Psychiatry. 2015;56:155–160.

49. Severance EG, Prandovszky E, Castiglione J, et al. Gastroenterology issues in schizophrenia: why the gut matters. Curr Psychiatry Rep. 2015;17:27.

50. Chadman KK. Making progress in autism drug discovery. Expert Opin Drug Discov. 2014;9:1389–1391.

51. Sekar A, Bilas AR, de Rivera H, et al. Schizophrenia risk from complex variation of complement component 4. Nature. 2016;530:177–183.

52. Muir WJ, McKechanie AG. Can epigenetics help in the discovery of schizophrenia drug discovery: translating animal models to clinical reality. Expert Opin Pharmacother. 2015;16:2963–2975.

53. Bosia M, Pigoni A, Cavallaro R. Genomics and epigenomics in novel schizophrenia treatments. Adv Exp Med Biol. 2015;830:253–262.

54. Velasquez-Manoff M. Gut microbiome: the peacekeepers. Nature. 2015;518:3–5.

55. Raman M, Ambalam P, Doble M. Short-chain fatty acids. In: Probiotics and Bioactive Carbohydrates in Cancer Management. Springer: New Delhi, India; pp. 97–115; 2016.

56. Chiu CC, Leung YM, Marinova Z, et al. Multiple roles of HDAC inhibition in neurodegenerative conditions. Trends Neurosci. 2009;32:591–601.

57. Stirling J, Boosalis MS, Perine SP, et al. Butyrate histone deacetylase inhibitors. Biores Open Access. 2012;1:192–198.

58. Thomas EA. Focal nature of neurological disorders necessitates isotype-selective histone deacetylase (HDAC) inhibitors. Mol Neurobiol. 2009;40:33–45.

59. Grayson DR, Kundakovic M, Sharma RP. Is there a future for histone deacetylase inhibitors in the pharmacotherapy of psychiatric disorders? Mol Pharmacol. 2010;77:126–135.

60. Canani RB, Di Costanzo M, Leone L. The epigenetic effects of butyrate: potential therapeutic implications for clinical practice. Clin Epigenet. 2012;4:44.

61. Rosenstock TR. Lysine (K)-deacetylase inhibitors: the real next step to neuroregenerative and neurodegenerative disorders? Expert Opin Biol Ther. 2012;12:1471–1477.

62. O'Connor D, Sun D, Wu X, et al. The potential therapeutic value of HDAC inhibitors in neurodegenerative conditions. Trends Neurosci. 2012;35:219–228.

63. Volmar C-H, Wahlestedt C. Histone deacetylases (HDACs) and brain function. Neuroepigenetics. 2015;1:20–27.

64. Bourassa MW, Alam I, Bultman SJ, et al. Butyrate, neuroepigenetics and the gut microbiome: can a high fiber diet improve brain health? Neurosci Lett. 2013 [Epub ahead of print]; DOI: 10.1016/j.neulet.2012.06.009.

65. de Boer VCJ, Houten SM. A mitochondrial expatriate: nuclear pyruvate dehydrogenase complex is important for the generation of acetyl-CoA and histone acetylation. FEBS J. 2012;279:3449–3457.

66. Chao A, Spearman A, Ziegler D. Efficacy of alpha-lipoic acid in diabetic retinopathy. Microbiol Mol Biol Rev. 2010;74:200–228.

67. Rochette L, Ghibu S, Muresan A, et al. Alpha-lipoic acid: molecular mechanisms and therapeutic potential in diabetes. Biochem Pharmacol. 2015;93:1021–1027.

68. Spalding MD, Sean T, Prigge ST. Lipoic acid metabolism in microbial pathogens. Microbiol Mol Biol Rev. 2010;74:200–228.

69. Zhang H, Luo Q, Gao H, et al. A new regulatory mechanism for bacterial lipoic acid synthesis. Microbiologically. 2015;4:228–300.
111. Shenderov BA, Midtvedt T. Epigenomic programing: a future way to...

109. Buendia I, Michalska P, Navarro E, et al. Nrf2–ARE pathway: an emerging...

104. Silva MCC, de Sousa CNS, Gomes PXL, et al. Evidence for protective ef-

103. Lombard JH. Depression, psychological stress, vascular dysfunction, and

102. Prasad KN. Simultaneous activation of Nrf2 and elevation of dietary and

101. Irwin MH, Moos WH, Faller DV, et al. Epigenetic treatment of neurode-

99. Pashaj A, Xia M, Moreau R. α-Lipoic acid as a triglyceride-lowering

100. Dörsam B, Fahrer J. The disulfide compound α-lipoic acid and its deriv-

120. Babio N, Becerra-Tomás N, Martínez-González MA, et al. Consumption of

121. Victora CG, Schuler-Faccini L, Matijasevich A, et al. Microcephaly in Brazil:

122. Cryan JF, Dinan TG. Mind-altering microorganisms: the impact of

123. Zmora N, Zeeli D, Koren T, et al. Taking it personally: personalized utilization of the human microbiome in health and disease. Cell Host Microbe. 2016;19:12–20.

124. Katsiaridans K, Diamantaras A-A, Desypris N, et al. Cognitive Impairment and dietary habits among elders: the Velosteno study. J Med Food. 2013;16:433–330.
158. Quaglio G, Brand H, Dario C. Fighting dementia in Europe: the time to act is now. Lancet Neurol. 2016;15:452–454.

159. Satizabal CL, Beiser AS, Chouraki V, et al. Incidence of dementia over three decades in the Framingham Heart Study. N Engl J Med. 2016;374:523–532.

160. Wu Y-T, Fratiglioni L, Matthews FE, et al. Dementia in western Europe: epidemiological evidence and implications for policy making. Lancet Neurol. 2016;15:116–124.

161. Winblad B, Amouyel P, Andrieu S, et al. Defeating Alzheimer’s disease and other dementias: a priority for European science and society. Lancet Neurol. 2016;15:455–532.

162. Subramanian S, Blanton LV, Frese SA, et al. Cultivating healthy growth and nutrition through the gut microbiota. Cell. 2015;161:36–48.

163. Koufaris C, Sismani C. Modulation of the genome and epigenome of individuals susceptible to autism by environmental risk factors. Int J Mol Sci. 2015;16:8699–8718.

164. Sampson TR, Mazmanian SK. Control of brain development, function, and behavior by the microbiome. Cell Host Microbe. 2015;17:565–576.

165. Schmidt C. Mental health: thinking from the gut. Nature. 2015;518:512–515.

166. Millan MJ, Andrieux A, Bartzokis G, et al. Altering the course of schizophrenia, age-related and neurodegenerative. Nat Rev Drug Discov. 2016 [Epub ahead of print]; DOI: 10.1038/nrd.2016.28.

167. Oriach CS, Robertson RC, Stanton C, et al. Food for thought: the role of nutrition in the microbiota-gut-brain axis. Clin Nutr Exp. 2016;6:25–38.

168. Maslowski KM, Mackay CR. Diet, gut microbiota and immune responses. Nat Immunol. 2011;12:25–9.

169. Frye RE, Slattery J, MacFabe DF, et al. Approaches to studying and manipulating the enteric microbiome to improve autism symptoms. Microb Ecol Health Dis. 2015;25:954–956.

170. MacFabe DF, Cain DP, Rodriguez-Capote K, et al. Neurobiological effects of intraventricular propionic acid in rats: possible role of short chain fatty acids on the pathogenesis and characteristics of autism spectrum disorders. Behav Brain Res. 2007;176:149–169.

171. MacFabe DF. Short-chain fatty acid fermentation products of the gut microbiome: implications in autism spectrum disorders. Microb Ecol Health Dis. 2012;23:19260.

172. MacFabe D. Autism: metabolism, mitochondria, and the microbiome. Global Adv Health Med. 2013;2:526–262.

173. Galland L. The gut microbiome and the brain. J Med Food. 2014;17:1261–1272.

174. Goldani AAS, Downs SR, Widjaja F, et al. Biomarkers in autism. Front Psychiatry. 2014;5:1100.

175. Foley KA, MacFabe DF, Kavaliers M, et al. Sexually dimorphic effects of prenatal exposure to lipopolysaccharide, and prenatal and postnatal exposure to propionic acid, on acoustic startle response and prepulse inhibition in adolescent rats: relevance to autism spectrum disorders. Behav Brain Res. 2015;278:244–256.

176. Frye RE, Slattery J, MacFabe DF, et al. Approaches to studying and manipulating the enteric microbiome to improve autism symptoms. Microb Ecol Health Dis. 2015;25:26878.

177. Mezzelani A, Landini M, Facchiano F, et al. Environment, dysbiosis, immunity and sex-specific susceptibility: a translational hypothesis for regressive autism pathogenesis. Nutr Neurosci. 2015;18:145–161.

178. Shultz SR, Aziz NAB, Yang L, et al. Intracerebroventricular injection of propionic acid, an enteric metabolite implicated in autism, induces social abnormalities that do not differ between seizure-prone (FAST) and seizure-resistant (SLOW) rats. Behav Brain Res. 2015;278:542–548.

179. Oyarzabal A, Bravo-Alonso I, Sánchez-Aragó M, et al. Mitochondrial response to the BCKDK-deficiency: some clues to understand the positive dietary response in this form of autism. BBA-Mol Basis Dis. 2016;1862:592–600.

180. da Silva PGC, Domingues DD, de Carvalho LA, et al. Yoga as an intervention for patients with autism spectrum disorder: a review of the evidence and future directions. Autism Open Access. 2015;5:3.