Isolation, characterization and in vitro anti-salmonellal activity of compounds from stem bark extract of *Canarium schweinfurthii*

Jean Baptiste SOKOUDJOU 1,2, Olubunmi ATOLANI 2,3, Guy Sedar Singor NJATENG 1, Afsar KHAN 2, Cyrille Ngoufack TAGOUSOP 4, André Nehemie BITOMBO 2,5, Norbert KODJIO 1 and Donatien GATSING 1 *

Abstract

Background: Bacteria belonging to the *Salmonella* genus are major concern for health, as they are widely reported in many cases of food poisoning. The use of antibiotics remains a main stream control strategy for avian salmonellosis as well as typhoid and paratyphoid fevers in humans. Due to the growing awareness about drug resistance and toxicities, the use of antibiotics is being discouraged in many countries whilst advocating potent benign alternatives such as phyto-based medicine. The objective of this work was to isolate, characterise the bioactive compounds of *Canarium schweinfurthii*; and evaluate their anti-salmonellal activity.

Methods: The hydro-ethanolic extract of *Canarium schweinfurthii* was fractionated and tested for their anti-salmonellal activity. The most active fractions (i.e. chloroform and ethyl acetate partition fractions) were then explored for their phytochemical constituents. Fractionation on normal phase silica gel column chromatography and size exclusion chromatography on Sephadex LH-20 led to the isolation of four compounds (maniladiol, scopoletin, ethyl gallate and gallic acid) reported for the first time in *Canarium schweinfurthii*.

Results: Result indicated that scopoletin and gallic acid had greater activity than the crude extracts and partition fractions. Among the isolated compounds, scopoletin showed the highest inhibitory activity with a MIC of 16 μg/ml against *Salmonella Typhimurium* and *Salmonella Enteritidis*.

Conclusions: The overall results of this study indicates that the hydro-ethanolic extract as well as some of isolated compounds have interesting anti-salmonellal activities that could be further explored for the development of potent therapy for salmonellosis. Furthermore, the study adds credence to the folkloric applications of the plant.

Keywords: Ethnomedicine, Salmonellosis, *Canarium schweinfurthii*, Natural substances
Background

Salmonella is a major source of food-borne illness in humans and a major cause of morbidity, mortality and economic loss both in the poultry and human health sectors. The disease caused by bacteria belonging to Salmonella genus is often called salmonellosis. This pathology remains one of the limiting factors in the development of poultry farming especially in developing countries of Asia and Africa [1] because it causes huge direct and indirect losses [2]. The genus Salmonella is very diverse and today it is composed of more than 2500 serotypes, many of which cause enteric diseases in humans and animals. Many serotypes of Salmonella can infect chickens and some serotypes are well adapted although, Salmonella Gallinarum and Salmonella Pullorum cannot be transmitted to human. However, some serotypes can infect both poultry and human and among these serotypes Salmonella Enteritidis and Salmonella Typhimurium are more prevalent in chickens and notable in human disease outbreaks. These serotypes are most commonly implicated in the human Salmonella infections [3, 4]. The poultry is considered one of the main sources of Salmonella human infection usually through poorly cooked foods [5–9] and foodstuffs of avian origin [10]. Salmonella infection represents a considerable burden in both developing and developed countries. Ubiquitous non-typhoidal Salmonella (NTS) which includes Salmonella Enteritidis and Salmonella Typhimurium annually cause more than 93.8 million illnesses and 155,000 deaths each year [11]. Salmonella Enteritidis and Salmonella Typhimurium, both NTS are the most frequently occurring serotypes from poultry causing infection in human [3]. Similarly, each year worldwide, typhoidal serotypes among which Salmonella Typhi and Salmonella Paratyphi, cause approximately 22 million cases of typhoid and 216,500 deaths [12].

Resistance of Salmonella to commonly used antimicrobial agents is increasing both in the veterinary and public health sectors and has emerged as a global health challenge. Several Salmonella serotypes are multidrug resistant, and there is evidence of the spread of these strains from animals to humans. Antimicrobial resistance in NTS is considered one of the major public health threats related with food-animal production, as well as the poultry production chain and poultry meat, which is an additional concern in the management of salmonellosis [13]. Many authors [14–17] have reported that several strains of Salmonella isolated from chicken have shown resistance to many antibiotics commonly used in human medicine and some of these strains have been found in humans [14]. Moreover, antibiotic residues in poultry products intended for consumption may lead to hypersensitivity or poisoning in consumers. Due to the growing awareness of resistance issues, the use of antibiotics is strongly discouraged in many countries whilst encouraging the use of plants as a better alternative due to their diverse nature of bioactive principles [18–20]. The large majority of salmonellosis in humans is carried by foodstuffs; mainly those of avian origin [10, 20, 21], therefore controlling avian salmonellosis by using plant could significantly reduce the prevalence of human gastroenteritis [20]. Several studies have focused on medicinal plants as new control strategies for human salmonellosis [22, 23] or avian salmonellosis [24–28]. But, to our knowledge, no phytomedicine has yet been formulated to control avian salmonellosis. Canarium schweinfurthii Engl. (Burseraceae), is a tree with a cylindrical bole, native to tropical West Africa and grows to about 50 m high [29]. This plant is mainly found in equatorial forest regions from Cameroon, Central African Republic, Gabon to Congo [30] and is used in folk medicine for the treatment of various diseases including malaria, diarrhea and Typhoid fever [31, 32]. Previous studies of Sokoudjou et al. [20, 28] showed that the hydroethanolic extracts of Canarium schweinfurthii were active both in vitro and in vivo against several serotypes of Salmonella. The objective of this work was to isolate, characterise the bioactive compounds of Canarium schweinfurthii; and evaluate their anti-salmonellal activity.

Methods

General experiment
Reagents which include ammonium cerium sulphate, were of analytical grade. Solvents were distilled before being used (St Louis, MO, USA). Thin Layer Chromatography (TLC) was performed on pre-coated silica gel with thickness 0.20 mm 60 F254 plates (MerckKGaA, Germany) and viewed under the UV light (254 and 365 nm). NMR analyses which included 1H NMR, 13CNMR, DEPT 90, DEPT 135, 2D NMR (COSY, HSQC), NOESY and ROESY were performed using deuterated solvents (Acétonâ–d6, CD3OD and/or CDCl3) on 400 MHz NMR (Ascend™ 400, Bruker) with TMS as internal reference. ESI-MS spectra of the compounds were recorded on a Bruker-Ion Trap MS (MicroTOF-Q mass spectrometer, Bruker) using the positive mode.

Plant collection, identification and extraction
Canarium schweinfurthii stem bark was harvested in West region of Cameroon and identified at the National Herbarium at Yaoundé-Cameroon, where a voucher specimen was deposited under the reference Number 16929/SRF/Cam. The air-dried plant material (3 Kg) was powdered and macerated at room temperature with 12 L of ethanol-water system (50/50, v/v). After 48 h, the mixture was filtrated using Whatman Nº1 filter paper. The filtrate was evaporated using a Rotary evaporator (Büchi...
R200) at reduced pressure to afford the crude extract (265 g, 8.8%).

We needed no permission to collect the sample since Canarium schweinfurthii is not a protected species in Cameroon.

Fractionation and isolation of bioactive compounds of Canarium schweinfurthii

The profiling of the hydro-ethanolic extract of Canarium schweinfurthii on TLC plates with several solvent systems showed no promising separation. In order to facilitate isolation, 260 g of extract was dissolved in distilled water (700 mL) and successively extracted with hexane (500 mL × 2), chloroform (500 mL × 2), ethyl acetate (500 mL × 2) and n-butanol (500 mL × 2) yielding respectively 5.56 g, 25.97 g, 25.92 g and 90.89 g of fractions after evaporation to dryness. These partition fractions were explored for their antibacterial activity and only the most active fractions were selected for the isolation of bioactive principles. Figure 1 below shows the protocol for isolating the bioactive principles of Canarium schweinfurthii.

Part of Chloroform fraction (23 g) was subjected to silica gel column chromatography using n-hexane-EtOAc (85:15 → 00:100) and MeOH, gradient elution. 40 sub-fractions of 100 mL each were collected and combined on the basis of their TLC profiles to give 5 fractions: A (1–3), B (4–12), C (13–22), D (23–25) and E (25–40). Sub-fraction A (4.5 g) was purified on silica gel column chromatography eluted with n-hexane-EtOAc (95:5 → 80:20) to give compound 1 (42 mg). The purification of sub-fraction D (4 g) on silica gel column chromatography using n-hexane-EtOAc (70:30 → 20:80) afforded compound 2 (57 mg) which was recrystallized in EtOAc-MeOH (20:80).

Part of EtOAc fraction (23 g) was also subjected to silica gel column chromatography eluted with a gradient of n-hexane-EtOAc (70:30 → 00:100) and chloroform-MeOH (92:5 → 75:25) to afford 60 sub-fractions of 20 mL which were combined to four sub-fractions: F (1–4), G (5–15) H (16–24), I (25–60) on the basis of their TLC profile. Sub-fraction G (3.5 g) was purified on silica gel column chromatography using n-hexane-EtOAc (50:50 → 00:100) to yield compound 3 (21 mg) while purification of sub-fraction H (2.6 g) on sephadex LH-20 column eluted with chloroform-methanol (50:50) afforded compound 4 (60 mg). The structures of the isolated compounds were elucidated by combining various techniques comprising 1D Nuclear Magnetic Resonance (NMR): 1H NMR, 13C-NMR, DEPT 90, DEPT 135 and 2D NMR (COSY, HSQC), NOESY and ROESY as well as Mass Spectrometry analysis (TOF-ESI-MS). The data of the established structures were compared with those existing in literature.

Anti-salmonellal assay

Chemicals for anti-salmonellal assay

Ciprofloxacin (BDH Chemicals, England) and oxytetracyclin (BDH Chemicals, England) were used as reference antibiotics. P-iodonitrotetrazolium chloride (Sigma-Aldrich, Germany) was used as microbial growth indicator.
Test bacteria and culture media

Three clinical isolates (*Salmonella Typhi, Salmonella Enteritidis* and *Salmonella Typhimurium* from Pasteur Center, Yaoundé-Cameroon) and one bacterial strain (*Salmonella Typhi* ATCC6539 from American Type Culture Collection) were used for antimicrobial evaluation. The culture media used were Salmonella-Shigella Agar (SSA from HiMedia Laboratories, India) and Mueller Hinton Broth (MHB from HiMedia Laboratories, India).

Determination of minimal inhibitory concentrations (MICs) and minimal bactericidal concentrations (MBCs)

The MIC values of the fractions obtained from partition and compounds from *Canarium schweinfurthii* were determined in 96-wells microplates using rapid INT colorimetric assay [33, 34]. Briefly, each sample was dissolved in 5% Dimethyl-sulfoxide (DMSO)/MHB. The obtained solution was then added to 100 µL of MHB, and followed by two-fold serial dilution. Then 100 µL of inoculum (1.5 × 10⁶ CFU/mL) prepared in MHB were added to each well except the negative control wells. The plates were covered with a sterile plate sealer and incubated at 37 °C for 18 h. The wells containing either MHB or MHB and 100 µL of inoculum served as control. After the incubation, 40 µL of INT (0.2 mg/mL) was added to each well and plates were re-incubated at 37 °C for 30 min, and the MIC of each sample was recorded. MIC was defined as the lowest concentration of the sample that prevented change in colour and exhibited complete inhibition of microbial growth. The MBC was determined by adding 50 µL aliquots of the preparations, which did not show any growth after incubation during MIC assays, to 150 µL of MHB. These preparations were then incubated at 37 °C for 48 h. The MBC was recorded as the lowest concentration of test sample which did not produce a colour change after addition of INT as previously described. The tests were performed in triplicates.

Results

The yield and physical appearance of each partition fraction of *Canarium schweinfurthii* extract are as shown below (Table 1).

Characterization of isolated compounds

The four compounds isolated and characterized from the stem bark extract of *Canarium schweinfurthii* are as depicted in Fig. 2.

- **Compound 1:** Maniladiol (42 mg) white solid, soluble in methanol, with molecular weight 442 calculated for C₃₀H₅₀O₂ (ESI-MS: m/z 465.1 [M + Na]).
- **Compound 2:** Scopoletin (57 mg) yellowish crystals, soluble in acetone, with molecular weight 192 calculated for C₁₀H₈O₄ (ESI-MS: m/z 214.9 [M + Na]).
- **Compound 3:** Ethyl gallate (21 mg) white solid, soluble in methanol, with molecular weight 198 calculated for C₉H₁₀O₅ (ESI-MS: m/z 221.0 [M + Na]).
- **Compound 4:** Gallic acid (60 mg) white solid, soluble in methanol, with molecular weight 170 calculated for C₇H₆O₅ (ESI-MS: m/z 193.1 [M + Na]).

The ¹H-NMR and ¹³C-NMR data of isolated compounds are presented in the Tables 2, 3, 4 and 5.

Anti-salmonellal activity of partition fractions and isolated compounds from stem barks extract of *Canarium schweinfurthii*

Table 6 shows the inhibition parameters (MIC, MBC, MBC/MIC ratio) of the crude extract, partition fractions and isolated compounds of *Canarium schweinfurthii* against pathogenic *Salmonella*. The isolated compounds have variable activity (16 ≤ MIC≤1024 µg/mL) on the tested *Salmonella* serotypes. It appears that the activity of isolated compounds is greater than those of the crude extract and partitions. Among the partition fractions, chloroform and ethyl acetate fractions showed the best anti-salmonellal activity while among the isolated compounds, scopoletin showed the highest inhibitory activity with a MIC of 16 µg/mL against *Salmonella Typhimurium* and *Salmonella Enteritidis*. MIC values of other compounds and extract ranged between 128 and 1024 µg/mL, while hexane and residual fractions are the less active substances with MICs of 512 or 1024 µg/mL.

Discussion

The antimicrobial effects of some plants and their extracts are well known today [39, 40]; the diversity of plant species is a valuable source for the search for new classes of antibiotics. These plants may proffer valuable alternative to address certain human and veterinary health challenges. It is in this perspective that the hydro-ethanolic extract of *Canarium schweinfurthii* has been explored for its anti-salmonellal activity and its bioactive compounds. Several plants are traditionally used against human salmonellosis [41–46] and avian salmonellosis [24–26, 47]. Plants with...
high anti-salmonellal potential that show promise for the control of avian salmonellosis include *Aloe secundiflora* [47], *Thymus vulgaris* [48], *Curcuma longa* and *Scutellaria baicalensis* [25] and *Erica mannii* [27]. Plant extracts as well as traditionally improved drugs are one of the promising ways to combat human salmonellosis [23, 47, 49]. Several authors [22, 23, 28, 50–53] have shown that plant extracts depending on their concentrations are active both in vitro and in vivo against several *Salmonella* serotypes. Most of these extracts treat salmonellosis in the same range of time as conventional medicines. These findings corroborate our results which showed that the hydroethanolic extract of *Canarium schweinfurthii* is active against *Salmonella* serotypes with MIC range from 64 to 128 μg/ml, moreover this extract have previously demonstrated an in vivo anti-salmonellal activity [20], curing avian salmonellosis on day 9 and with the doses 19 and 75 mg/kg bw of the extract. In addition to the therapeutic efficacy of the hydroethanolic extract of *Canarium schweinfurthii* found in this study and its therapeutic efficacy [20] can be linked to a combined action of its secondary metabolites. Indeed, at the molecular level, compounds such as gallic acid and scopoletin found in plants belonging to *Canarium* genus [54] could act synergistically and could be partly responsible for the anti-infectious activity of *Canarium schweinfurthii*. In order to verify this possibility and to have a clear idea on the active principles of this plant, the fractionation of its stem bark extract was performed.

Gallic acid, ethyl gallate, scopoletin and maniladiol were isolated from the *Canarium schweinfurthii* stem bark extract, these compounds were reported for the first time in this medicinal plant species and belong to the classes of polyphenols, triperpenes and coumarins. From the previous reports [54], only gallic acid and scopoletin have been isolated from other plants belonging to the same genus as *Canarium schweinfurthii* and these compounds were reported to have antibacterial and antioxidant properties. The isolated compounds have variable activities (16 ≤ MIC≤1024 μg/mL) against the tested *Salmonella* serotypes. Among the pure isolated compounds, scopoletin showed the highest inhibitory activity with a MIC of 16 μg/mL against *Salmonella Typhimurium* and *Salmonella Enteritidis*. The activity of most of the isolated compounds was less than those of...
oxyphylline B (10 μg/mL) isolated from *Zizyphus oxyphylla* Edgew against *Salmonella Typhi* [55] and lespedin (12.25 μg/mL) isolated from *Brillanta isialamium* against *Salmonella Typhi* [56]. However the anti-salmonellal activity of gallic acid and scopoletin against *Salmonella Typhi* (32 μg/mL) was better than those of Bafoudiosbulbins A and Bafoudiosbulbins B isolated from *Dioscorea bulbifera* L. var. sativa [57]. These results corroborate the finding of Lunga et al. [44] who showed that the anti-salmonellal activity of isolated compounds from *Paullinia pinnata* Linn ranged from 0.781 to 100 μg/mL. According to the Kuete’s classification scale [39], the antibacterial activity of a compound is significant when the MIC< 10 μg/mL; moderate when 10<
MIC ≤ 100 μg/mL and low when MIC > 100 μg/mL. With regard to this scale, the anti-salmonellal activities of the isolated compound from *Canarium schweinfurthii* are moderate (10 < MIC ≤ 100 μg/mL). Scopoletin and gallic acid are significantly active against *Salmonella Typhi*, *Salmonella Typhi ATCC6539* and *Salmonella Typhimurium*. These results corroborate those of Okoli et al. [58] who showed that 3β-hydroxylolean-12,18-diene isolated from *Canarium schweinfurthii* was active on *Salmonella* with a MIC of 12.5 μg/ml against *Salmonella Typhi*. It has been shown that in addition to its immunomodulatory effect [59], scopoletin reduces the intracellular survival of *Salmonella Typhi* within U937 human macrophage cell line [60]. Gallic acid has in addition to its in vitro and in vivo antibacterial effect against *Salmonella Typhimurium* [61, 62], an antioxidant activity. These compounds related properties corroborate the findings of Sokoudjou et al. [20] who reported that the ability of the extract of *Canarium schweinfurthii* to cure salmonellosis in broilers could be explained by its ability to directly kill *Salmonella* and/or boost the immune system of the host. The dosage of the compounds isolated from this plant can be used to normalize the extract during the phytotherapy evaluation and preparation.

Conclusion

Gallic acid, ethyl gallate, scopoletin and maniladiol were isolated from the *Canarium schweinfurthii* stem bark extract. These compounds were reported for the first time in this plant species. The four isolated compounds showed in vitro anti-salmonellal activity against *Salmonella* serotypes and particularly scopoletin was the most active and highly selective against both non-typhoidal *Salmonella* and typhoidal *Salmonella* with MIC of 16 or 32 μg/mL. The anti-salmonellal activity of the compounds isolated from *Canarium schweinfurthii* justifies the use of this plant in traditional medicine and confirms the anti-salmonellal effect of the hydroethanolic extract thus adding credence to its use in the treatment

Table 3 1H-NMR and 13C-NMR of compound 2

Compound 2	Scopoletin, Mogana et al. [36]			
Positions	δC (acétone-d6, 100 MHz)	δH (mult; J) (acétone-d6, 400 MHz)	δC (CD3Cl, 100 MHz)	δH (mult; J) (CD3Cl, 400 MHz)
1	–	–	–	–
2	160.4	–	161.6	–
3	112.5	6.20 (1H; d; 9.5)	111.6	6.30 (1H; d; 9.5)
4	143.6	7.86 (1H; d; 9.5)	143.3	7.63 (1H; d; 9.5)
5	102.8	6.81 (1H; s)	103.2	6.87 (1H; s)
6	144.9	–	144.6	–
7	150.8	–	150.2	–
8	108.9	7.20 (1H; s)	107.4	6.95 (1H; s)
9	150.0	–	149.7	–
10	112.1	–	113.5	–
6-OCH3	55.9	3.92 (3H; s)	56.4	3.98 (3H; s)
7-OH	–	8.78 (1H; s)	–	–

Table 4 1H-NMR and 13C-NMR of compound 3

Compound 3	Ethyl gallate, Ooshiro et al. [37]			
Positions	δC (CD3OD, 100 MHz)	δH (mult; J) (CD3OD, 400 MHz)	δC (CD3OD, 150 MHz)	δH (mult; J) (CD3OD, 600 MHz)
1	168.8	–	168.5	–
2	121.7	–	121.7	–
3/7	110.0	7.07 (2H; s)	110.0	7.04 (2H; s)
4/6	146.2	–	146.4	–
5	139.6	–	139.7	–
1'	61.6	4.28 (2H; q; 7.1)	61.6	4.28 (2H; q; 7.3)
2'	14.7	1.35 (3H; t; 7.1)	14.6	1.33 (3H; t; 7.3)
Table 5 \(^1\text{H}-\text{NMR} \) and \(^{13}\text{C}-\text{NMR} \) of compound 4

Compound 4	Gallic acid, Chanwitheesuk et al. [38]			
Positions	\(\delta_c \) (CD\textsubscript{3}OD, 100 MHz)	\(\delta_c \) (acétone-d\textsubscript{6}, 100 MHz)	\(\delta_H \) (mult; \(J \))	\(\delta_H \) (mult; \(J \))
1	168.8 –	167.3 –	–	–
2	120.7 –	120.8 –	–	–
3/7	108.0 7.08 (2H; s)	109.1 7.15 (2H; s)	–	–
4/6	145.0 –	144.9 –	–	–
5	138.1 –	137.7 –	–	–

Table 6 Inhibition parameters (MIC, MBC) of partition fractions and isolated compounds from Canarium schweinfurthii against different test microorganisms

Tested samples	Strain/isolates			
	MIC (\(\mu \text{g/mL} \))	MBC (\(\mu \text{g/mL} \))	MBC/MIC	
HEE 50/50	256 128 64 128	512 128 256 512	2 4 4 –	
Hexane partition	1024 1024 512 > 1024	> 1024 > 1024 > 1024 > 1024	– – – –	
Chloroform partition	512 1024 256 1024	1024 > 1024 > 1024 > 1024	– – – –	
Ethyle acetate partition	256 256 128 32	1024 1024 128 128	– – – –	
n-butanol partition	> 1024 > 1024 > 1024 > 1024	> 1024 > 1024 > 1024 > 1024	– – – –	
Residual partition	> 1024 > 1024 > 1024 > 1024	> 1024 > 1024 > 1024 > 1024	– – – –	
Compound 1 Maniladiol	512 512 32 64	1024 1024 128 256	– – – –	
Compound 2 Scopoletin	32 32 16 16	64 128 32 64	– – – –	
Compound 3 Ethyl gallate	128 1024 64 1024	> 1024 > 1024 > 1024 > 1024	– – – –	
Compound 4 Gallic acid	32 32 64 128	32 32 128 256	– – – –	
Oxytetracycline	8 8 4 2	32 64 32 16	– – – –	
Ciprofloxacine	0.5 1 4 4	2 8 8 8	– – – –	

ST Salmonella Typhi, STs Salmonella Typhi ATCC6539, STM Salmonella Typhimurium, SE Salmonella Enteritidis, MIC Minimum inhibitory concentration, MBC Minimum bactericidal concentration.
of avian salmonellosis. Further studies will be necessary to verify the in vivo activity of these compounds and to elucidate their mechanisms of action.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.1186/s12966-020-03100-5.

Additional file 1.

Acknowledgements
Authors thank the researchers of the Natural Products Chemistry Laboratory of CUI, Abbottabad Campus, Pakistan for their useful suggestions.

Authors’ contributions
All the authors contributed to carry out this study. JBS was the principal investigator, OA and GSSN contributed to evaluate the anti-salmonellal activities. CNT, ANB and NK contributed to the fractionation purification and structural elucidation of isolated compounds. NK revised the manuscript, AK and DG co-supervised the work. All authors read and approved the final manuscript.

Funding
This research work was supported in part by The Academy of Sciences for the Developing World (TWAS) in collaboration with COMSATS University Islamabd (CUI) under grant FR number 3240299471 (TWAS-CUI Postgraduate fellowship). The obtained fund was used for compound isolation and characterization.

Availability of data and materials
They are available as Supporting information.

Ethics approval and consent to participate
Not applicable in this section.

Consent for publication
All authors read and approved the final manuscript.

Competing interests
Authors have declared that no competing interests exist.

Author details
1Research Unit of Microbiology and Antimicrobial substances, Faculty of Science, University of Ochanga, P.O. Box 67, Ochanga, Cameroon.
2Natural Products Chemistry Laboratory, Department of Chemistry, COMSATS University Islamabd, Abbottabad Campus-22060, Islamabd, Pakistan.
3Department of Chemistry, Faculty of Physical Sciences, University of Ipin, PMB, Ilorin 1515, Nigeria.
4Department of Basic Scientific Studies, University Institute of Technology, University of Ngaoundere, P.O.Box 455, Ngaoundere, Cameroon.
5Department of Organic Chemistry, Faculty of Science, University of Yaoundé I, P.O. Box B12, Yaoundé, Cameroon.

Received: 20 December 2019 Accepted: 29 September 2020
Published online: 19 October 2020

References
1. Rajagopal R, Mini M. Outbreaks of salmonellosis in three different poultry farms of Kerala, India. Asian Pac J Trop Biomed. 2013;3(6):496–500.
2. Awu DN, Achukwi MD. Livestock pathology in the central African region: some epidemiological considerations and control strategies. Anim Health Res Rev. 2010;11:235–44.
3. Ali MZ, Sultana S. Avian salmonellosis, Newcastle disease and aspergillosis. Tech Rep. 2012;25. https://doi.org/10.13140/RG.2.1.1981.0404.
4. Threefall DE, Wain J, Peters T, Lane C, De Pinna E, Little CL, et al. Egg-borne infections of humans with Salmonella not only an S. Enteritidis problem. Worlds Poult Sci J. 2014;70:15–26.
5. Carli KT, Ural CB, Caner V, Evigor A. Detection of Salmonella in chicken feces by a combination of tetrazolium broth enrichment, capillary PCR, and capillary gel electrophoresis. J Clin Microbiol. 2001;39:1871–6.
6. Crilly J, Power EP, Cowman HJ, Cryan B, Buckley JF. Epidemiology of Salmonella infection in the south of Ireland. I. J of Agri and Food Resea. 2001;40:215–26.
7. INFOSAN (Réseau international des autorités de sécurité sanitaire des aliments). Lutte contre les salmonelles à la source. Note d’information INFOSAN n° 02/2007– Salmonelles. 2007.
8. Dahan M, Hanotaux P, Durand F, Liefert B. Encadrement des pratiques commerciales pouvant influencer la prescription des antibiotiques vétérinaires. RAPPORT N°RM2013-078/PICG-R/2013-M-006-02/CAAGA N°13014, 119. 2013;123.
9. Sokoudjou JB, Fodoupo SPF, Ouedraogo FC, Kodjo N, Kana JR, Fowa AB, et al. Antisalmonellal and antioxidant potential of hydroethanolic extract of Curcuma longa and Scutellaria baicalensis. BMC Complement Med Ther. 2016;20:316.
10. Mercado M, Ávila J, Rey M, Montoya M, Gamboa A, Caracal AK, et al. Brote psorIIortalia spp., Staphylococcus aureus y Listeria monocytogenes asociados al consumo de pollo. Biomédica. 2012;32(3):375–85.
11. Majowicz SE, Mosto J, Scalbin E, Angulo FJ, Kira M, O’Brien SJ, et al. The global burden of non typhoidal Salmonella gastroenteritis. Clin Infect Dis. 2010;50:882–9.
12. WHO (World Health Organisation). Fèvre typhoïde et utilisation des Vaccins en Asie du Sud-Est et la région de l’ouest du pacifique occidental, 2009–2013. Relevé Épidémial Hebd 2014;89(40):429–440.
13. Antunes P, Mourão J, Campos J, Peixe L. Salmonellosis: the role of poultrymeat. Clin Microbiol Infect. 2016;22:10–11.
14. Goffin AM, Perrier JD, Aldara A, Tall F, Coudert C, Gueye IL, et al. Identification d’une nouvelle salmonelle multirésistante dans Une viande de poulet de char à Sénégal. Revue Elev Méd vét Pasp. 2000;53(15):8–37.
15. Ngoune TL, Tandjdeu KS, Mbofung CM. Impact de l’utilisation des antibiotiques Sur la sensibilité des bactéries pathogènes de poulets dans la ville de Ngaoundéré. Cameroon. J Exp Biol. 2009;25(2):52–61.
16. Chen MH, Wang WZ, Wang SW, Shih YC, Tsen HY. Pulsed field gel electrophoresis (PFGE) analysis for multidrug resistant SalmonellalentericaeserovarSchwarzengrund isolates collected in six years (2000–2005) from retail chicken meat in Taiwan. Food Microbiol. 2011;28(3):399–405.
17. Lamas A, Fernandez-No IC, Miranda JM, Vazquez B, Cepeda A, Franco CM. Prevalence, molecular characterization and antimicrobial resistance of Salmonello serovars isolated from northwestern Spanish broiler flocks (2011–2015). Poult Sci. 2016;95:2097–105.
18. Bada-Afambidi R, Cardinal E, Biagui C, Akalgo AI, Recherche de résidus de substances à activité antibactérienne dans la chair de poulet consommée dans la région de Dakar (Sénégal). Bull Acad Vet Fr. 2004;157(2):267–70.
19. Dahan M, Hanotaux P, Durand F, Liefert B. Encadrement des pratiques commerciales pouvant influencer la prescription des antibiotiques vétérinaires. RAPPORT N°RM2013-078/PICG-R/2013-M-006-02/CAAGA N°13014, 119. 2013;123.
20. Sokoudjou JB, Fodoupo SPF, Ouedraogo FC, Kodjo N, Kana JR, Fowa AB, et al. Antisalmonellal and antioxidant potential of hydroethanolic extract of Canarium schweinfurthi Engl. (Bursaceae) in Salmonella enterica serovar Typhimurium-infected chicks. Asian Pac J Trop Biomed. 2019;9(1):474–83.
21. Patrick ME, Adcock PM, Gomez TM, Aitkensue SF, Holland BH, Tauxe RV, et al. Salmonellal Enteritidis infections, United States, 1985–1999. Emerg Infect Dis. 2004;10:1–7.
22. Bada DS, Gatsing D, Fodsoupo SPF, Kounang C, Kenngi F, Djimeli MN. In vivo anti-salmonella activity of aqueous extract of Euphorbia prostrate Aiton. (Euphorbiaceae) and its toxicological evaluation. Asian Pac J Trop Biomed. 2015;5(4):310–8.
23. Kodjo N, Atsafack SS, Njateng GSS, Sokoudjou JB, Kuate JR, Gatsing D. Antioxidant effect of aqueous extract of Curcuma longa rhizomes (Zingiberaceae) in the typhoid fever induced in Wistar rats model. J Adv Pharm Sci. 2016;7(3):1–13.
24. Ayachi A, Alfou N, Benoune O, Yakhlef G, DaasAmour S, Bousid W, et al. Antibacterial activity of some fruits, berries and medicinal herb extracts against poultry strains of Salmonella American-Eurasian J Agric Environ Sci. 2009;6(1):12–5.
25. Varmuzova K, Matulova ME, Gerzova L, Cejkova D, Gardan-Salmon D, Panhéléux M, et al. Curcuma and Scutellaria plant extracts protect chickens against inflammation and Salmonellal Enteritidis infection. Poultry Sci. 2015;94(2049–58).
26. Abiala M, Olayiwola J, Babatunde O, Aiyelagbhe O, Akinremi. Evaluation of therapeutic potentials of plant extracts against poultry bacteria threatening public health. BMC Complement Altern Med. 2016;16(417):1–8.
27. Tchoua N. Evaluation des activités antisalomonelles et antioxydantes des extraits de *Erica manni* chez le poulet de chair. Thèse de Master, Université de Dschang. Faculté des sciences, école doctorale des Sciences Fondamentales et Technologiques. 2016/07.

28. Sokoudjou JB, Njateng GSS, Fodouop SP, Kodjio N, Atsafack SS, Fowa AB, et al. In vitro antimicrobial and antioxidant activities of *Canarium schweinfurthii* stem bark extracts. Acad J Med Plants. 2018;6(10):331–41.

29. Kamdem RS, Wofo O, Youssif S, Ali Z, Adhikaria A, Rasheed S, Khan IA. Canarene: a triterpenoid with a unique carbon skeleton from *Canarium schweinfurthii*. J. Afr. Fam. 2011;13:5492–5.

30. Coronel RH. Pili nut *Canarium ovatum* Engl. Promoting the conservation and use of underutilized and neglected crops. Inst. Plant. Genet. Crop Plant Res. Gaters/International Plant Genet. Resour. Institute, Rome, Italy. 1996.

31. Koudou J, Abena AA, Ngaissona P, Bessiere JM. Chemical composition and pharmacological activity of essential oil of *Canarium schweinfurthii*. Fitoterapia. 2005;76:700–3.

32. Youssif S, Kamdem RS, Wofo P, Ngadjui BT, HoangKuan F. A cocystall of 3α-hydroxy-tricarboxylic-8,24-dien-21-oic acid and 3β-fluoro-tricarboxylic-7,24-dien-21-oic acid. Acta Cryst. 2011;67:1015.

33. Ellof JN. A sensitive and quick microplate method to determine the minimal inhibitory concentration of plant extracts for bacteria. Planta Med. 1998;64:711–3.

34. Mativandeloa SP, Lall N, Meyer JJM. Antibacterial, antifungal and antitubercural activity of *Pelargonium reniforme* (CURT) and *Pelargonium sidosides* (DIC) (Geraniaceae) root extracts. S Afr J Bot. 2006;72:232–7.

35. Quijano L, Rios T, Froneck FR, Fischer NH. The molecular structure of maniladiol from *Baccharis salicina*. Phytochemistry. 1998;49(7):2065–8.

36. Mogana R, Teng-Jin K, Wiart C. Anti-inflammatory, anticholinesterase, and antisalmonellal and antioxidant activities of *Canarium ovatum* seed, *Harungana madagascariensis* root bark, and *Erica mannii* stem bark. Afr. J. Phytochem. 2011;5(12):2892–9.

37. Ooshiro A, Hiradate S, Kawano S, Takushi T, Fujii Y, Natsume M, et al. Identification and activity of ethyl gallate as an antimicrobial compound derived natural products. Frontiers in Pharmacol. 2010;1(123):1.

38. Kuete V. Potential of Cameroonian plants and derived products against typhoid fever in Bamboutos division, Western Cameroon. Ethnobotany Res Appl. 2013;11:163.

39. Teponno RB, Tapondjou AL, Gatsing D, Djoukeng JD, Abou-Mansour E. GC/MS analysis, antisalmonellal potential of methanol leaf extracts of *Paullinia pinnata* and compounds from the aerial part of *Canarium schweinfurthii*, Pharmacol Biochem Behav. 2011;97:1957–63.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.