Inferring the astrophysics of reionization and cosmic dawn from galaxy luminosity functions and the 21-cm signal

Jaehong Park, Andrei Mesinger, Bradley Greig, and Nicolas Gillet

1 Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
2 ARC Centre of Excellence for All-Sky Astrophysics in 3 Dimensions (ASTRO 3D), University of Melbourne, VIC 3010, Australia
3 School of Physics, The University of Melbourne, Parkville, VIC 3010, Australia

Accepted XXX. Received YYY; in original form ZZZ

ABSTRACT

The properties of the first galaxies, expected to drive the Cosmic Dawn (CD) and the Epoch of Reionization (EoR), are encoded in the 3D structure of the cosmic 21-cm signal. Parameter inference from upcoming 21-cm observations promises to revolutionize our understanding of these unseen galaxies. However, prior inference was done using models with several simplifying assumptions. Here we introduce a flexible, physically-motivated parametrization for high-z galaxy properties, implementing it in the public code 21cmfast. In particular, we allow their star formation rates and ionizing escape fraction to scale with the masses of their host dark matter halos, and directly compute inhomogeneous, sub-grid recombinations in the intergalactic medium. Combining current Hubble observations of the rest-frame UV luminosity function (UV LFs) at high-z with a mock 1000h 21-cm observation using the Hydrogen Epoch of Reionization Arrays (HERA), we constrain the parameters of our model using a Monte Carlo Markov Chain sampler of 3D simulations, 21ccmmc. We show that the amplitude and scaling of the stellar mass with halo mass is strongly constrained by LF observations, while the remaining galaxy properties are constrained mainly by 21-cm observations. The two data sets compliment each other quite well, mitigating degeneracies intrinsic to each observation. All eight of our astrophysical parameters are able to be constrained at the level of ~ 10% or better. The updated versions of 21cmfast and 21ccmmc used in this work are publicly available.

Key words: cosmology: theory – dark ages, reionization, first stars – diffuse radiation – early Universe – galaxies: high-redshift – intergalactic medium

1 INTRODUCTION

The birth of the first luminous sources in our Universe heralded the end of the cosmic Dark Ages. This so-called Cosmic Dawn (CD) culminated in the final phase transition of hydrogen in the intergalactic medium (IGM): the Epoch of Reionization (EoR). Understanding these cosmic epochs is key to understanding the properties of the first structures of our Universe. Unfortunately, it is likely that the bulk of the first galaxies are too faint to be observed directly, even with upcoming space-based telescope such as James Webb Space Telescope (JWST; Gardner et al. 2006). Luckily, these unseen objects can be studied indirectly through their imprint in the IGM, using the redshifted 21-cm line. The 21-cm line from neutral hydrogen can map the ionization and thermal state of the IGM well into the infancy of the CD, making it a revolutionary probe of the early Universe (e.g. Hogan & Rees 1979; Scott & Rees 1990; Gnedin & Ostriker 1997; Madau et al. 1997; Shaver et al. 1999; Tozzi et al. 2000; Gnedin & Shaver 2004; Furlanetto et al. 2006; Morales & Wyithe 2010; Pritchard & Loeb 2012).

For the past decade extensive efforts to detect the 21-cm signal have been made. These include global (average) signal experiments such as the Experiment to Detect the Global EoR Signature (EDGES1; Bowman & Rogers 2010), the Shaped Antenna measurement of the background RAdio Spectrum (SARAS2; Patra et al. 2013), Sonda Cosmológica de las Islas para la Detección de Hidrógeno Neutro (SCIHI; Voytek et al. 2014), the Large-aperture Experiment to detect the Dark Age (LEDA3; Price et al. 2018) and Broad-

1 http://loco.lab.asu.edu/edges
2 https://www.haystack.mit.edu/ast/arrays/Edges
3 http://www.rrr.res.in/DISTORTION/saras.html

© 2018 The Authors
Motivated by observations of high-redshift galaxy LFs, here we generalize the astrophysical parameterization used in the 21-cm modelling code 21cmmc9. We allow both the stellar mass and the escape fraction to have a power-law scaling with the mass of the host dark matter halo. Moreover, we directly compute sub-grid, inhomogeneous recombinations, following the approach of Sobacchi & Mesinger (2014), removing the often-used yet ad-hoc ionizing photon horizon parameter, m_{fpl}. The resulting 8-parameter astrophysical model is both physically-motivated and flexible enough to accommodate a large variety of galaxy formation scenarios.

We show how current LF observations strongly inform the scaling of star formation rate (SFR) with halo mass; however, they leave most of the remaining galaxy parameters unconstrained even with the addition of reionization observables from the CMB and QSO spectra. Using a Monte Carlo Markov Chain sampler of 3D simulations, 21cmmc10, we present parameter forecasts for HERA as an upcoming 21-cm interferometer in combination with current LF observations. We show how the strong synergy between the two observations can result in most of the astrophysical parameters being constrained to the level of $\sim 10\%$, or better.

The outline of this paper is as follows. We begin in Section 2 by describing the astrophysical model including our new empirical parametrization of the galaxy properties. In Section 3 we present the UV LFs resulting from our model. In Section 4 we compute a mock 21-cm observation for a fiducial parameter choice. We briefly summarize our MCMC sampler of 3D simulations, 21cmmc10 in Section 5. In Section 6 we show the resulting constraints on our astrophysical parameters, using the observed UV LFs and the mock 21-cm signal, both individually and combining the data sets. Finally, we summarize our results in Section 7. We assume a standard ΛCDM cosmology based on Planck 2016 result (Planck Collaboration et al. 2016a): $(h, \Omega_m, \Omega_b, \Omega_\Lambda, \sigma_8, n_s)=(0.678, 0.308, 0.0484, 0.692, 0.815, 0.968)$. Unless stated otherwise, we quote all quantities in comoving units.

2 ASTROPHYSICAL MODEL

In this section we introduce a new parametrization for the star formation rate, ionizing escape fraction and their scaling with the mass of the host dark matter halos. We stress that our simple model does not directly follow individual galaxy evolution, making it only applicable for an ensemble average of the galaxy population, residing in halos of a given mass. We note that only $\gtrsim 10$ Mpc 21-cm structures (i.e. ionized and heated regions) are large enough to be detected even with SKA; these structures likely form with the combined effort of $\sim 100 - 1000$ sources. Therefore, the implicit ensemble averaging below is reasonably well justified.

2.1 Galaxy UV properties

We start with the common assumption that the stellar mass of a galaxy, M_*, can be related to the mass of the host halo, M_{h} (Kuhlen & Faucher-Giguère 2012; Dayal et al. 2014; Sun & Furlanetto 2016) based on observations of luminosity functions (LFs) as well as hydrodynamic simulations (e.g. Gnedin & Kaurov 2014; Paardekooper et al. 2015; Ocvirk et al. 2016; Xu et al. 2016; Kimm et al. 2017; Katz et al. 2018), suggest that both of these quantities have a more complex dependence on the halo properties. Prior studies also made simplifying assumptions about the role of IGM recombinations and how feedback suppresses star formation in small mass halos.

4 https://www.haystack.mit.edu/ast/arrays/mwa/
5 http://www.lofar.org
6 http://eor.berkeley.edu
7 http://reionization.org
8 https://astronomers.skatelescope.org
9 https://github.com/andreimesinger/21cmFAST
10 https://github.com/BradGreig/21CMMC
Bebrooz & Silk 2015; Mitra et al. 2015; Sun & Furlanetto 2016; Mutch et al. 2016; Yue et al. 2016)

\[
M_\star(M_h) = f_{\alpha} \left(\frac{\Omega_b}{\Omega_m} \right) M_h,
\]

where \(f_{\alpha}\) is the fraction of galactic gas in stars. Consistent with observations of the faint galaxy population (e.g. see Behroozi & Silk 2015), we take \(f_{\alpha}\) to have a power-law dependence on the dark matter halo mass\(^{11}\):

\[
f_{\alpha}(M_h) = f_{\alpha,10} \left(\frac{M_h}{10^{10} M_\odot} \right)^{\alpha_{\alpha}},
\]

where \(f_{\alpha,10}\) is the fraction of galactic gas in stars normalized to the value in halos of mass \(10^{10} M_\odot\) and \(\alpha_{\alpha}\) is the power-law index. We impose a physical upper limit of \(f_{\alpha} \leq 1\).

We assume the SFR can be expressed on average as the total stellar mass divided by a characteristic time-scale:

\[
M_\star(M_h, z) = \frac{M_\star}{t_H(z)^{-1}},
\]

where \(H(z)^{-1}\) is the Hubble time and the star formation time-scale, \(t_\star\), is a free parameter which we allow to vary between zero and unity\(^{12}\).

Similarly, we allow the escape fraction, \(f_{esc}\), to scale with halo mass according to:

\[
f_{esc}(M_h) = f_{esc,10} \left(\frac{M_h}{10^{10} M_\odot} \right)^{\alpha_{esc}},
\]

where \(f_{esc,10}\) is the normalization of the ionizing UV escape fraction and \(\alpha_{esc}\) is the power-law scaling of \(f_{esc}\) with halo mass. \(\alpha_{esc}\) is likely to be negative, as SNe can more easily evacuate low column density channels from shallower DM potentials; the escape of ionizing photons is thought to be determined by the covering fraction of these low column density channels (e.g. Paardekooper et al. 2015; Xu et al. 2016; Katz et al. 2018). As for the stellar fraction, we impose a physical upper limit of \(f_{esc} \leq 1\).

Star formation in small galaxies is expected to be quenched due to SNe feedback, photo-heating feedback, or inefficient gas accretion (e.g. Shapiro et al. 1994; Giroux et al. 1997; Barkana & Loeb 2001; Springel & Hernquist 2000; Okamoto et al. 2008; Mesinger & Dijkstra 2008; Sobacchi & Mesinger 2013a,b). We account for this suppression with a redshift-independent duty cycle.

\[
f_{duty}(M_h) = \exp \left(-\frac{M_{\text{min}}}{M_h} \right).
\]

The number of actively star-forming halos of a given mass is proportional to \(f_{duty}(M_h)\). This functional form is smoother than the commonly used sharp cut-off below some critical virial temperature of halo mass. We find that this functional form is a good fit to hydrodynamic simulations of galaxy evolution (Gillet et al., in prep, see Appendix A).

2.2 Galaxy X-ray properties

By heating the IGM prior to the bulk of reionization, X-rays are expected to play a dominant role during the CD (e.g. Pritchard & Furlanetto 2007; McQuinn & O’Leary 2012; Mesinger et al. 2013). For each simulation cell at a given spatial position \(x\), and redshift \(z\), 21CMFAST computes the angle-averaged specific X-ray intensity (in units of \(\text{erg s}^{-1} \text{keV}^{-1} \text{cm}^{-2} \text{sr}^{-1}\)), by integrating the comoving X-ray emissivity, \(\epsilon_X(x, E, z)\), back along the light-cone:

\[
J(x, E, z) = \frac{(1 + z)^3}{4\pi} \int_{z}^{\infty} dZ \frac{dE}{d\Omega} \epsilon_X E^{-\epsilon_X},
\]

where \(\epsilon_X^{-1}\) accounts for attenuation by hydrogen and helium in the IGM (see equation 16 of Mesinger et al. 2011). The comoving specific emissivity is calculated in the emitted frame, \(E_x = E(1 + \epsilon_X')(1 + z)\), and is given by

\[
\epsilon_X(x, E_x, z') = \frac{L_X}{\text{SFR}} \left(\frac{1 + \epsilon_X'}{1 + \epsilon_X} \right) \int_{0}^{\epsilon_X'} \frac{dE_{x'}}{d\epsilon_X} \epsilon_X E_{x'}^{-\epsilon_X'},
\]

where \(\epsilon_X\) is the mean, non-linear overdensity of the shell around \((x, z)\), and the term inside square brackets corresponds to the star formation rate density along the light-cone. The conditional halo mass function (HMF), \(\frac{dn}{dM_h} (M_h, z') (R, \mathbf{R})\), is obtained by normalizing the conditional Press-Schechter HMF (Lacey & Cole 1993; Somerville & Kollatt 1999) so as to have the mean of the Sheth-Tormen HMF (Sheth & Tormen 1999, 2002), as discussed in Mesinger et al. (2011) (see also Barkana & Loeb 2004, 2008). Here the galaxy duty cycle, \(f_{duty}(M_h)\) (see equation 5) accounts for inefficient star formation inside small mass halos, and the SFR, \(M_\star(M_h, z)\), depends on halo mass and redshift as specified in equation (3).

The term, \(L_X / \text{SFR}\), is the specific X-ray luminosity per unit star formation escaping the host galaxies in units of \(\text{erg s}^{-1} \text{keV}^{-1} M_\odot^{-1} \text{yr}^{-1}\). We assume the specific luminosity follows a power-law in photon energy, i.e. \(L_X \propto E^{-\alpha_X}\), and adopt \(\alpha_X = 1\), consistent with models and observations of local high-mass X-ray binaries (HMXBs) over the relevant energy range (e.g. Fragos et al. 2013). We normalize the specific X-ray luminosity using the integrated soft-band (< 2keV) luminosity per SFR (in units of \(\text{erg s}^{-1} M_\odot^{-1} \text{yr}^{-1}\)),

\[
L_{X<2\text{keV}} / \text{SFR} = \int_{E_0}^{2\text{keV}} dE_x L_X / \text{SFR},
\]

where \(E_0\) is the X-ray energy threshold below which photons are absorbed inside the host galaxies. This X-ray energy threshold depends on the density of the interstellar medium (ISM) and metallicity (Das et al. 2017). The upper limit of the integral is motivated by the fact that the mean free path of ~ 2 keV photons is roughly the Hubble length at these redshifts; thus harder photons do not contribute to IGM heating during the CD (e.g. McQuinn 2012).

The soft-band luminosity from eq. (8) is kept as a free parameter, while we fix the spectral index, \(\alpha_X\), to unity. Keeping the spectral index constant is motivated by the fact...

\(^{11}\) For the purposes of modeling reionization, we do not care about the massive halos which host AGN bright enough to quench star formation. These halos are far too rare at high redshifts to contribute to reionization (see e.g. Bouwens et al. 2015b).

\(^{12}\) Note that this is the only redshift dependence of our model. All other parameters are assumed to be functions of only the halo mass. We note that having the star formation scale with the Hubble time is analogous to having it scale with the dynamical time of DM halos, \(t_{200} - 1/\sqrt{3} \sim 1/\sqrt{3 \Omega_m h^2 \Omega_\Lambda} \), where \(-180\) is the mean overdensity of a halo in the spherical collapse model and \(\rho(z)\) is the background density. Since at high-z the Universe is matter dominated, we have \(\bar{\rho} / \rho_{\text{crit}} = 3H(z)^2 / 8\pi G\), thus \(t_{200} \propto H(z)^{-1}\).
that the 21-cm power spectra (PS) are very insensitive to the spectral index when using this parametrization (e.g. see figure 1 in Greig & Mesinger 2017b).

2.3 Inhomogeneous IGM recombinations

Recombinations can impact the progress and topology of reionization via the interplay of ionizing sources and dense IGM structures (so-called Lyman limit systems). If reionization is “photon-starved” as suggested by emissivity estimates from the Lyman alpha forest, recombinations would “stall” the growth of large H II regions (e.g. Miralda-Escudé et al. 2000; Ciardi et al. 2006; McQuinn et al. 2007; Finlator et al. 2012; Kauvar & Gnedin 2014; Sobacchi & Mesinger 2014). In semi-numerical simulations, this effect is usually crudely accounted for with a maximum horizon for ionizing photons (commonly denoted \(R_{\text{mfp}} \)) which is usually taken to be redshift independent and homogeneous (e.g. Mesinger et al. 2011; Alvarez & Abel 2012; Greig & Mesinger 2017a).

Here we directly compute the local, sub-grid recombinations, according to Sobacchi & Mesinger (2014) (see also Hutter 2018). Specifically, each simulation cell at a spatial location \(\mathbf{x} \) and redshift, \(z \), keeps track of its hydrogen recombination rate according to:

\[
\frac{dn_{\text{rec}}}{dt}(\mathbf{x}, z) = \tilde{n}_H \alpha_B \Delta^{-1} \int_0^{180} (1 - \chi_{\text{HI}})^2 P_V \Delta^3 d\Delta,
\]

where \(\Delta_{\text{cell}} \equiv 1 + \delta_B \) is the overdensity on the size of the simulation cell, \(\Delta = \bar{n}/n_0 \) is the sub-grid overdensity, \(P_V(\Delta, \Delta_{\text{cell}}; z) \) is the volume-averaged PDF of \(\Delta \) (with the functional form specified by Miralda-Escudé et al. 2000 and adjusted for the cell’s overdensity according to Sobacchi & Mesinger 2014), \(\alpha_B \) is the case-B recombination coefficient evaluated at a temperature of \(10^4 \text{ K} \), and \(x_{\text{HI}}(\Delta, \Gamma, z) \) is the neutral fraction at the overdensity \(\Delta \) with the attenuation of the local, inhomogeneous ionizing background \(\Gamma \) accounted for using the analytic expression from Rahmati et al. (2013). The upper limit of the integral is motivated by the mean density of halos in the spherical collapse model, since by definition recombinations inside galaxies are accounted for in the source terms. However in practice this limit is unimportant at the redshifts of interest as gas already starts to self-shield at much lower densities for realistic models of \(\Gamma \); thus large densities do not contribute to IGM recombinations.

The reionization field in 21CFAST is then computed by comparing the cumulative number of ionizing photons in a given region of scale \(R \) to the corresponding number of baryons plus the average, cumulative number of recombinations inside that region:

\[
\bar{n}_{\text{rec}}(\mathbf{x}, z, R) = \left(\int_{z_{\text{ion}}}^{z} \frac{dn_{\text{rec}}}{dt} \frac{dt}{dz} \right)_R
\]

where \(z_{\text{ion}}(\mathbf{x}) \) is the redshift at which a given cell was first ionized. For more details, see section 3 in Sobacchi & Mesinger (2014).

2.4 Summary of the free parameters in our model

Our new model has eight free parameters. Here we summarize these parameters, also listing them in Table 1, together with the fiducial values and allowed ranges for the MCMC. We stress that the fiducial values are only used when we generate a mock 21-cm observation (see §6.2); for the MCMC using UV luminosity functions (§6.1) we take currently-available observations.

(i) \(f_{\text{s,10}} \): the normalization of the fraction of galactic gas in stars at high-z, \(f_s \), evaluated for halos of mass \(10^{10} \text{M}_\odot \). Our fiducial value used to generate a mock 21-cm signal is \(f_{\text{s,10}} = 0.05 \) and we allow the parameter to vary in range of \(\log_{10}(f_{\text{s,10}}) = [-3.0] \).

(ii) \(\alpha_c \): the power-law scaling of \(f_s \) with halo mass. When making a mock 21-cm observation, we take a fiducial value of \(\alpha_c = 0.5 \) (e.g. Behroozi & Silk 2015; Ocvirk et al. 2016; Mirocha et al. 2017) and we allow the parameter to vary in range of \(\alpha_c = [-0.5, 1] \) in our MCMCs.

(iii) \(f_{\text{esc},10} \): the normalization of the ionizing UV escape fraction of high-z galaxies, \(f_{\text{esc}} \), evaluated for halos of mass \(10^{10} \text{M}_\odot \). When making a mock 21-cm observation, we take a fiducial value of \(f_{\text{esc},10} = 0.1 \) and for our MCMCs we allow the parameter to vary in range of \(\log_{10}(f_{\text{esc},10}) = [-1, 3.0] \).

(iv) \(\alpha_{\text{esc}} \): the power law scaling of \(f_{\text{esc}} \) with halo mass. We take a fiducial value of \(\alpha_{\text{esc}} = -0.5 \). As mentioned earlier, we expect \(\alpha_{\text{esc}} \) to be negative as SNe can more easily evacuate low column density channels from shallower potential wells (e.g. Razoumov & Sommer-Larsen 2010; Yajima et al. 2011; Ferrara & Loeb 2013; Paardekooper et al. 2015; Xu et al. 2016; Kimm et al. 2017; Katz et al. 2018). We allow the parameter to vary in range of \(\alpha_{\text{esc}} = [-1, 0.5] \).

(v) \(t_{\star} \): the star formation time-scale taken as a fraction of the Hubble time, \(H^{-1}(z) \). We take a fiducial value of \(t_{\star} = 0.5 \) and we allow the parameter to vary in range of \(t_{\star} = (0, 1] \).

(vi) \(M_{\text{turn}} \): the turnover halo mass below which the abundance of active star forming galaxies is exponentially suppressed according to a duty cycle of \(\exp(-M_{\text{turn}}/M_h) \). When making a mock 21-cm observation, we take a fiducial value of \(M_{\text{turn}} = 5 \times 10^9 \text{M}_\odot \) and in the MCMCs we allow the parameter to vary in range of \(\log_{10}(M_{\text{turn}}) = [8, 10] \). Here the lower limit is motivated by the atomic cooling threshold, while the upper limit is motivated by the faint end of current UV LFs (see Fig. 3).

(vii) \(E_0 \): the minimum X-ray photon energy capable of escaping the galaxy; softer photons are absorbed by the ISM of high-z galaxies. Motivated by the hydrodynamic simulations used in Das et al. (2017), we take a fiducial value of \(E_0 = 0.5 \text{keV} \) and we allow the parameter to vary in range of \(E_0 = [0.1, 1.5] \). Analogously, this corresponds to \(\log_{10}(N_{\text{HI}}/\text{cm}^2) = [19, 3, 23.0] \).

(viii) \(L_{\text{X,2-keV}}/\text{SFR} \): the normalization of the soft-band X-ray luminosity per unit star formation, computed over the band \(E - 2 \text{ keV} \). When making a mock 21-cm observation, we assume the X-ray binary composite SED of Fragos et al. (2013), with the ISM attenuation from Das et al. (2017), resulting in a fiducial value of \(L_{\text{X,2-keV}}/\text{SFR} = 10^{40.5} \text{erg s}^{-1} \text{M}_\odot^{-1} \text{yr}^{-1} \). In our MCMCs, we allow the parameter to vary in the range \(\log_{10}(L_{\text{X,2-keV}}/\text{SFR}) = [38, 42] \).

13 The conversion to column densities is computed assuming a unity optical depth for a metal-free column of neutral ISM.
3 CORRESPONDING UV LUMINOSITY FUNCTIONS

We can write the non-ionizing UV luminosity functions (LF) from our model as:

\[
\phi(M_{\text{UV}}) = \int f_{\text{duty}} \frac{dN}{dM} \frac{dM}{dM_{\text{UV}}},
\]

where as previously noted, the term in brackets is the number density of active, star-forming galaxies. The final term on the RHS encodes the conversion of halo mass to UV magnitude. We evaluate this assuming that the SFR is proportional to the observed LFs down to minimum magnitudes of \(M_{\text{UV}} = -17, -15, -13\) and \(-10\), truncating them sharply beyond those values. The SFR corresponding to our fiducial choice of \(M_{\text{min}} = 5 \times 10^{10} M_\odot\) is roughly comparable to the mean cut-off mass of Bouwens et al. (2015b) for \(M_{\text{UV}} \leq -10\) - 13.

4 CORRESPONDING 21-CM SIGNAL

4.1 Computing the signal

The 21-cm signal is commonly expressed as the offset of the 21-cm brightness temperature, \(\delta T_b(v)\), relative to the temperature of the cosmic microwave background (CMB), \(T_{\text{CMB}}\) (e.g. Furlanetto 2006):

\[
\delta T_b \approx 27\pi H_0 \left(1 + \frac{\delta_{\text{ion}}}{\delta_{\text{b}}^2} \right) \frac{H(z)}{dH(z)/dv} \left(1 - \frac{T_{\text{CMB}}}{T_\text{S}} \right) \left(1 + \frac{z}{10} \right)^{1/2} \left(\frac{\Omega_b h^2}{0.023} \right),
\]

where \(\delta_{\text{ion}} / \delta_{\text{b}}^2 = \rho / \bar{\rho} - 1\) is the gas overdensity, \(\delta_{\text{b}}^2\) is the gas spin temperature, \(H(z) = H(z)/dH(z)/dv\) is the gradient of the line-of-sight comoving peculiar velocity, \(\Omega_b h^2\) is the density of baryons in the local universe, and \(\rho / \bar{\rho}\) is the gas overdensity, \(\delta_{\text{ion}} / \delta_{\text{b}}^2\) is the gas spin temperature, \(H(z) = H(z)/dH(z)/dv\) is the gradient of the line-of-sight comoving peculiar velocity, \(\Omega_b h^2\) is the density of baryons in the local universe, and \(\rho / \bar{\rho}\) is the gas overdensity.
parameter is largely degenerate with f_i. Note that in our new formulation, the commonly used “ionizing efficiency” parameter, $f = f_{\text{esc}}N_{\odot}/\rho$, is broken-up into its constituent parts, with $f_{\text{esc}}(M_{\odot})$ and $f_{\text{esc}}(M_{\odot})$ now both being functions of halo mass (as discussed in § 2.1). The final term on the RHS of eq. (15) is a small correction factor for pre-ionization by X-rays, discussed below; in practice, this term is negligible for realistic models (see Mesinger et al. 2013).

The above procedure is used to compute the inhomogeneous topology of reionization, consisting of (almost) fully ionized and neutral regions. However, due to their long mean free paths, X-ray and soft UV photons are able to penetrate even the neutral cosmic patches distant from galaxies. These radiation fields help determine the spin temperature. To calculate T_S, 21CFAST follows the evolution of the ionized fraction inside the neutral IGM, x_e, the kinetic temperature, T_K, and the incident Lyman α background. The ionization fraction and the kinetic temperature in each voxel are solved following

\[
\frac{dx_e(x, z)}{dz'} = \frac{d}{dz'} \left[\frac{\Gamma_{\text{ion}, X} - \alpha_C x_e n_b f_H}{1 + x_e} \right],
\]

\[
\frac{dT_K(x, z)}{dz'} = \frac{2}{3k_B(1 + x_e)} \frac{d}{dz'} \sum_{p} Q_p \left(\frac{T_K}{1 + x_e} \right) \frac{dx_e}{dz'},
\]

where n_b is the total (H + He) baryonic number density at (x, z'), f_H is the heating rate per baryon for process p in erg s$^{-1}$, α_C is the case-A recombination coefficient, C is the clumping factor on the scale of the simulation cell, k_B is the Boltzmann constant, f_H is the hydrogen number fraction, $\Gamma_{\text{ion}, X}$ is the ionizing background from X-rays, and Q_p is the heating rate per baryon associated with process p; we include Compton heating and X-ray heating.

The heating and ionization rates per baryon inside the mostly neutral IGM are calculated with (see also, e.g. Baek & Ferrara 2013; Madan & Fragos 2017; Eide et al. 2018)

\[
Q_X(x, z) = \int_{\text{Max}[x_{\odot}, T_{\odot}]}^{\infty} \frac{d\nu}{\hbar^2} \int \left(h\nu - E_{i} \right)^{\text{th}} f_{i} x_{i} \sigma_{i},
\]

and

\[
\Gamma_{\text{ion}, X}(x, z) = \int_{\text{Max}[x_{\odot}, T_{\odot}]}^{\infty} \frac{d\nu}{\hbar^2} \sum_{i} f_{i} x_{i} \sigma_{i},
\]

\[
F_i = (h\nu - E_{i}) \left(\frac{f_{\text{ion}, \text{H}i}}{E_{\text{H}i}} + \frac{f_{\text{ion}, \text{He}i}}{E_{\text{He}i}} + \frac{f_{\text{ion}, \text{He}II}}{E_{\text{He}II}} \right) + 1,
\]

where $i = \text{H}i, \text{He}i, \text{He}II$ denotes the atomic species, f_i is the corresponding number fraction, x_i is the ionization fraction of the cell’s species, σ_i is the ionization cross-section, E_{i}^{th} is the ionization threshold energy of species i, and f_{heat} and f_{esc} are the fraction of the primary electron’s energy going into heating and secondary ionizations of species j, respectively. The angle-averaged specific X-ray intensity $J(x, E, z)$ is computed from equations (6) and (7).
With the gas kinetic temperature calculated according to the above equations, the spin temperature can be approximated as a weighted average of the CMB and gas temperatures. Specifically, we have

\[T^S = \frac{T^{-1}_{\text{CMB}} + x_T T^{-1}_a + x_c T^{-1}_K}{1 + x_T + x_c}. \]

(21)

Here \(T_a \) is the color temperature which is closely rated to the gas temperature through multiple Lyman \(\alpha \) scatterings (Field 1959). For \(T^S \) not to be equal to the CMB temperature (and hence for us to obtain a signal), either the collisional coupling coefficient, \(x_c \), or the Wouthuysen-Field (Wouthuysen 1952; Field 1958; WF) coupling coefficient, \(x_T \), need to be non-negligible. The former is only efficient in the IGM at \(z \gtrsim 30 \) while the latter is set by the Lyman \(\alpha \) background. 21cmmc computes the Lyman series background from both X-ray excitation of HI and from direct stellar emission of photons in the Lyman bands, using the composite stellar spectra of Barkana & Loeb (2005). For more details on the calculations, interested readers are encouraged to consult Mesinger & Furlanetto (2007); Mesinger et al. (2011).

4.2 Mock 21-cm observation

Using the fiducial parameters listed in Table 1, we generate a mock realization of the 21-cm signal. Our simulation box is 500 Mpc on a side, computed on a 256\(^3\) grid, down-sampled from 1024\(^3\) initial conditions. When performing the MCMC, we create 3D simulations on-the-fly, whose dimensions are 250 Mpc on a side on a 128\(^3\) grid. As in previous works, we use a different random seed (and corresponding density realization) for the mock observation than we do for the MCMC inference below. Power spectra are generated from light-cones, using the approach from Greig & Mesinger (2018). More details, including the power spectra of our simulations can be found in Appendix B.

Figure 3 shows a 2D light-cone slice of the 21-cm signal which corresponds to our fiducial model parameters. A 2D slice through the light cone is shown in the top panel, the average brightness temperature is shown in the second panel, and the PS at \(k = 0.1 \text{Mpc}^{-1} \) is shown in the third panel. The corresponding LFs and scalings of the stellar mass per halo mass and the escape fraction are shown in the bottom panels.

For these parameter choices, we obtain an end to reionization which is consistent with current observations (e.g. McGreer et al. 2015); however, the EoH and epoch of WF coupling are delayed compared with our previous works (e.g. Mesinger et al. 2016; Greig & Mesinger 2018). Our new fiducial model has the star-formation efficiency, \(f_* \), increase with the halo mass, rather than remain constant as we had done previously. The ionizing escape fraction, \(f_{\mathrm{esc}} \), increases with \(f_* \) has a decreasing halo mass coupled to the gas kinetic temperature. Similarly, the peak in the power spectrum associated with the EoH is reduced, as the cross-terms from the coupling coefficient and gas temperature have a negative contribution to the power amplitude (see the discussion in Pritchard & Furlanetto 2007 and Mesinger et al. 2016).

5 SAMPLING ASTROPHYSICAL PARAMETER SPACE WITH 21CMMC

In this section we provide a summary of 21CMMC (Greig & Mesinger 2015) used to constrain the astrophysical parameters described in section 2.4. For further details, interested readers are referred to Greig & Mesinger (2015, 2017b); Greig & Mesinger (2018).

21CMMC is an MCMC sampler of 3D reionization simulations. To explore the astrophysical parameter space of cosmic dawn and reionization, 21CMMC adopts a massively parallel MCMC sampler COSMOHAMMER (Akeret et al. 2013) that uses the EMCEE PYTHON module (Foreman-Mackey et al. 2013) based on the affine invariant ensemble sampler (Goodman & Weare 2010). At each proposed MCMC step, 21CMMC calculates an independent 3D light-cone realization \(f_{\text{esc}} \). This is motivated by the emerging physical picture in which the ionizing escape fraction is determined by the covering fraction of low-column density sightlines in early galaxies resulting from feedback events. This low value tail of the column density distribution (determining \(f_{\text{esc}} \)) is not sensitive to the mean of the distribution (determining \(E_0 \)) (e.g. Verhamme et al. 2015; Xu et al. 2016; Das et al. 2017; Pallottini et al. 2017).

Note that in our model, the minimum X-ray energy escaping the ISM is set by the average HI column density of early galaxies, which we take to be independent from the UV escape fraction, small mass galaxies increases with redshift, the new scaling of \(f_*(M_\text{h}) \) results in a delayed EoH compared to previous \(f_* = \text{const} \). We note that Mirocha et al. (2017) reached a similar conclusion for the global 21-cm signal, using a similar parametrization to the one we use here.

The other notable difference between Figure 3 and previous results is that the EoH and WF coupling epochs are less separated in time. This is due to two factors: (i) the decreasing star formation efficiency with halo mass, discussed above, resulting in a delayed and subsequently more rapid CD (an effect similar to having the dominant population of star forming galaxies sitting in more massive halos whose fractional abundance evolves more rapidly); and (ii) our fiducial value of \(L_{\text{X-ray}}/\text{SFR} \) is larger than in most previous studies. Our new value is motivated by the theoretical HMXB models of Fragos et al. (2013), whereas previously we used the empirical scalings of Mineo et al. (2012) obtained from local star forming galaxies. Due to its dependence on metallicity (Basu-Zych et al. 2013; Lehmer et al. 2016; Brorby et al. 2016), the X-ray luminosity to SFR for the first galaxies is expected to be roughly an order of magnitude larger than for local ones.

The fact that the epoch of WF coupling and EoH are more coincident in time is evidenced by the smaller separation between the corresponding peaks of the large-scale power, driven by spatial fluctuations in the Lyα coupling coefficient and gas temperature, respectively (e.g. Pritchard & Furlanetto 2007). Moreover, the global absorption signal has a reduced minimum, as the heating commences before all of the IGM has its spin temperature coupled to the gas kinetic temperature. Similarly, the peak in the power spectrum associated with the EoH is reduced, as the cross-terms from the coupling coefficient and gas temperature have a negative contribution to the power amplitude (see the discussion in Pritchard & Furlanetto 2007 and Mesinger et al. 2016).

Note that in our model, the minimum X-ray energy escaping the ISM is set by the average HI column density of early galaxies, which we take to be independent from the UV escape fraction,
Figure 3. The 21-cm signal together with the UV LFs corresponding to our fiducial model parameters. The top three panels show a ∼ 1 Mpc slice through the 3D light-cone of 21-cm signal, the average brightness temperature offset and the PS at $k = 0.1$ Mpc$^{-1}$, respectively. The left four panels in the middle show corresponding LFs with observations from Bouwens et al. (2016) for $z \sim 6$, Bouwens et al. (2015a) for $z \sim 7$−8 and Oesch et al. (2017) for $z \sim 10$, respectively. The rightmost panel in the middle shows the stellar mass per halo mass (left axis) and the escape fraction (right axis) as functions of halo mass. Toggles on the bottom represent the fiducial parameter values. For movies showing how these observables change with changes in the astrophysical parameters, see http://homepage.sns.it/mesinger/Videos/parameter_variation.mp4.

\[\delta T_{\text{b}}(x, z) = \frac{k^2}{2\pi^2\nu^2} \delta \bar{T}_{\text{b}}(z) \left(\delta \bar{T}_{\text{b}}(k, z) \right)^2, \]

where $\delta \bar{T}_{\text{b}}(k, z) = \delta \bar{T}_{\text{b}}(x, z)/\delta \bar{T}_{\text{b}}(z) - 1$. Note that we limit the k space range from 0.1 to 1.0, corresponding roughly to limits on the foreground noise and the shot noise, respectively.

As in previous works, we adopt a modeling uncertainty, accounting for inaccuracies in our semi-numerical models. We take a constant uncertainty of 20 per cent on the sampled 21-cm PS, motivated by comparisons to RT simulations (Zahn et al. 2011; Ghara et al. 2015; Hutter 2018). We note that with further comparisons, these modeling uncertainties can be better characterized and accounted for. Moreover, we include Poisson uncertainties on the sampled 21-cm PS, roughly consistent with cosmic variance for these scales (Mondal et al. 2015). These two uncertainties are added in quadrature with the total noise PS in equation 25.

We account for redshift space distortions along the line of sight using the relation

\[s = x + \frac{(1 + z)}{H(z)} \nu_l(x), \]

where s and x are the redshift and real space signal, respectively. For details of this implementation, see Greig & Mesinger (2018) (see also Mao et al. 2012; Jensen et al. 2013).

5.1 Telescope noise

We calculate noise on the mock 21-cm observation using the python module 21CMSENSE (Pober et al. 2013, 2014). First, we generate the thermal noise PS at each uv cell according to (e.g. Morales 2005; McQuinn et al. 2006; Pober et al. 2014):

\[\Delta_n^2(k) = X^2 Y^3 \frac{k^3}{2\pi^2} \frac{\Omega'}{2T_{\text{sys}}}, \]

where XY^2 is a scalar factor converting observed bandwidths and solid angles to comoving distance, Ω' is a beam-dependent factor derived in Parsons et al. (2014), t is the integration time within a particular k-mode, T_{sys} is the system temperature. Then, the total noise power at a given
The LFs from our model depend on four free parameters:

\[\delta \Delta_{PS}(k) = \left(\sum_i \frac{1}{[\Delta_s^2(k, N_i) + \Delta_s^2(k, P_i)]^2} \right)^{-\frac{1}{2}}, \tag{25} \]

where \(\Delta_s^2(k) \) is the 21-cm PS from the mock observation.

For our fiducial instrument, we take the HERA design described in Beardsley et al. (2015): a core consisting of 331 dishes. We assume a 1000 h observation, spread across 180 nights at 6 hours per night, and an observing bandwidth coverage of 50 – 250 MHz. We note that previous studies using a reduced parameter set have shown comparable constraints with SKA when using the PS statistic (e.g. Greig & Mesinger 2017b). However, these claims might need to be re-evaluated for our expanded parametrization. We postpone this to future work, as this paper is mainly a proof-of-concept for the benefit of combining observables.

6 RESULTS: RECOVERY OF ASTROPHYSICAL PARAMETERS

We now quantify how current and upcoming observations are able to constrain our model parameters. We use two main observations: (i) current high-z UV LFs; and (ii) 21-cm power spectra from a mock 21-cm observation described in § 4.2. We first quantify the utility of each in turn, before combining them. We also include current EoR constraints, but as we show below, these do not improve parameter constraints beyond what is available with (i) and (ii). Our results are summarized in Table 2, where we list recovered median values for our model parameters together with 68 per cent confidence regions for each data set used in the MCMC.

6.1 Using only galaxy luminosity functions

The LFs from our model depend on four free parameters: \(f_{s,10}, a_s, M_{\text{EoR}}, \) and \(t_s \). We begin by quantifying how current observations can constrain these parameters. To compute the likelihood in our MCMC, we use the \(z \sim 6 \) LFs from Bouwens et al. (2016), \(z \sim 7 – 8 \) LFs from Bouwens et al. (2015a) and \(z \sim 10 \) LFs from Oesch et al. (2017). Using these data points and corresponding error bars, we compute the \(\chi^2 \) likelihood at each of the four redshifts, and multiply them together when calculating the posterior. We only use data points at \(M_{\text{UV}} > -20 \), as our model does not account for AGN feedback or dust extinction in bright galaxies since these are far too rare to be relevant for reionization and cosmic dawn.

We stress that we are not trying to rigorously quantify constraints available with current UV LF observations. In order to do this properly, one should account for systematic uncertainties, combining the various estimates from different groups, some of which are shown in Fig. 1. We postpone such an investigation for future work. By using observations from a single group, we are somewhat overestimating the current constraining power of UV LFs, illustrating their future potential when/if systematics can be better understood and we can have “concordance” LFs.

The constraints on our four model parameters that determine LFs are denoted with the solid green curves in the triangle plot of figure 4, and are summarized in the first row of table 2. Given the allowed range of parameter space, the most robust constraints we obtain are on \(a_s = 0.50^{+0.07}_{-0.06} \). This parameter most strongly affects the slope of the LFs, which are very well determined by current observations.

By contrast, current LFs only set an upper limit for \(M_{\text{EoR}} \), ruling out \(M_{\text{EoR}} \lesssim 9.5 \) due to the presence of faint galaxies. The marginalized 1D PDF below this value is relatively flat, due to the large uncertainties at the faint end, and also to the lack of an identifiable turn over in the observational data sets we use.

Our remaining two galaxy model parameters are only constrained as a ratio, as is evidenced by the strong degeneracy of the green curve in the \(f_{s,10} - t_s \) panel of the triangle plot. This is understandable as the LF in our model is determined only by the SFR, which scales as \(f_{s,t} \).

6.1.1 Do current constraints on the reionization history improve parameter inference and allow us to constrain the escape fraction?

The 1500 Å UV LFs do not tell us anything about the ionizing escape fraction of these galaxies. Fortunately, we have additional probes of the first billion years, which directly measure the timing of the EoR. If high-redshift galaxies are responsible for driving the EoR, as seems highly likely, perhaps combining LF observations with EoR observations will allow us to constrain \(f_{\text{esc}} \). Indeed similar approaches combining LFs and EoR measurements have been used by several studies to constrain the escape fraction and its redshift evolution (e.g. Haardt & Madau 2012; Kuhlen & Faucher-Giguère 2012; Mirta et al. 2013; Robertson et al. 2013; Price et al. 2016).

In this section we expand our model parameter space to include \(f_{\text{esc},10} \) and \(a_{\text{esc}} \), and include two additional observational data sets in our MCMC. We use the EoR constraints which are the least model dependent: (i) the electron scattering optical depth to the cosmic microwave background (CMB) (Planck Collaboration et al. 2016b); and (ii) the dark fraction of pixels in QSO spectra (McGreer et al. 2015).\(^{16}\) For (i) we use the latest estimate of the optical depth \(\tau_e = 0.058 \pm 0.012 \) from Planck Collaboration et al. (2016b). For (ii) we use the upper limit from McGreer et al. (2015) \(\chi_{11} < 0.06 + 0.05(1\sigma) \) at \(z = 5.9 \). The reionization history from each sample in the chain is compared against these observations, and the corresponding \(\chi^2 \) likelihoods are multiplied together with the LF likelihoods.

The resulting parameter constraints are shown with the blue dashed curves in the triangle plot of Fig. 4, and summarized in the second row of table 2. The additional EoR observations do not improve constraints on the four star formation model parameters studied in the previous section; these are determined almost entirely by LF observations. The escape

\(^{16}\) In Appendix C we also consider measurements of the ionizing emissivity at lower redshifts. These can be used as upper limits for the galaxy ionizing emission, since at those redshifts \(z \leq 5 \), the contribution from AGN could dominate. We show that current measurements do not add much constraining power.
fraction in our model is only modestly constrained. From the marginalized 1D PDFs, the normalization parameter, $f_{\text{esc},10}$ is determined to be $0.12^{+0.20}_{-0.07}$ (1σ). It shows a mild degeneracy with the star formation parameters, $f_{\alpha,10}$ and τ_*, which are mostly constrained with LF observations. The scaling of the escape fraction with halo mass, α_{esc}, is entirely unconstrained, as evidenced by the flat PDFs, which are very similar to our flat priors.

6.2 Using only 21-cm signal

We now turn to the constraining power of the 21-cm signal. In Greig & Mesinger (2017b); Greig & Mesinger (2018) we showed that mock 21-cm power spectra alone could constrain a simpler parametrization of galaxy properties, Our model here is more sophisticated/flexible with more free parameters, and so we expect constraints to be weaker.

Unlike in the previous section, here we have no current observations to use for our MCMC. We therefore use a mock 1000h 21-cm observation, generated from different cosmological initial conditions, as described in §4.2. This mock observation is created using the fiducial parameters shown in Table 1, and denoted with the vertical and horizontal dotted lines in our corner plot. Although these fiducial choices are consistent at 1σ with those recovered from actual LF observations, they do not correspond to the ML values. As such, the LF data and 21-cm data do not converge to a single set of parameters, and thus we slightly underestimate the potential of combining the two measurements, quantified in the following section. This is a reasonably conservative assumption, as there could be unknown systematics presented in either observation which could pull the posterior toward different values.

In Fig. 4 (pink solid lines) we show the 95 percentiles for each of the eight free parameters along with the 1D marginalized PDFs. In the top right of the figure, we show the recovered median values of the IGM neutral fraction, δ_{H_1}, with 95 percent confidence levels. It is clear that we recover the parameters used in the mock observation. Specifically, the recovered 68% confidence intervals are $[\log_{10}(f_{\alpha,10}), \log_{10}(f_{\text{esc},10}), \log_{10}(M_{\text{turn}}), \tau_*]$. From eq. (16), the EoR signal more strongly depends on the cumulative SFR (i.e. the stellar mass), since the average IGM recombination timescale is longer than the duration of the EoR; thus once a cosmic IGM patch is ionized, it generally stays ionized. Nevertheless, since the comoving specific emissivity, which is used for the EoH and WF coupling epochs [equation (7)] is

Parameters	Fiducial values	LF only	LF + τ_* + the dark fraction	21-cm only	21-cm + LF
$\log_{10}(f_{\alpha,10})$	-1.30	$-1.21^{+0.18}_{-0.30}$	$-1.29^{+0.14}_{-0.21}$	$-1.20^{+0.14}_{-0.14}$	$-1.10^{+0.16}_{-0.18}$
α_*	0.50	$0.50^{+0.07}_{-0.06}$	$0.38^{+0.23}_{-0.31}$	$0.47^{+0.06}_{-0.06}$	$1.10^{+0.16}_{-0.18}$
$\log_{10}(f_{\text{esc},10})$	-1.00	$-0.91^{+0.42}_{-0.35}$	$-0.99^{+0.24}_{-0.21}$	$-0.48^{+0.14}_{-0.18}$	$-0.48^{+0.14}_{-0.18}$
$\log_{10}(M_{\text{turn}})$	-0.50	$-1.34^{+0.44}_{-0.35}$	$-0.32^{+0.26}_{-0.27}$	$-0.32^{+0.26}_{-0.27}$	$-0.32^{+0.26}_{-0.27}$
τ_*	0.5	$0.55^{+0.28}_{-0.41}$	$0.46^{+0.17}_{-0.27}$	$0.46^{+0.17}_{-0.27}$	$0.46^{+0.17}_{-0.27}$
$\log_{10}(L_{X<2\text{keV}}/\text{SFR})$	40.50	$8.65^{+0.44}_{-0.41}$	$8.80^{+0.27}_{-0.26}$	$8.76^{+0.19}_{-0.23}$	$8.76^{+0.19}_{-0.23}$
E_0	0.50	$0.14^{+0.50}_{-0.50}$	$0.17^{+0.50}_{-0.50}$	$0.17^{+0.50}_{-0.50}$	$0.17^{+0.50}_{-0.50}$

Table 2. Summary of the median recovered values and 1σ errors for the eight-parameter astrophysical model, obtained from our MCMC procedure for each combination of data sets listed below. The LF observations are from Bouwens et al. (2016, 2015a); Oesch et al. (2017), the τ_* constraints are from Planck Collaboration et al. (2016b), the dark fraction constraints are from McGreer et al. (2015), while the 21-cm data corresponds to power spectra extracted from a mock 1000h observation with HERA331.
still proportional to $f_{\alpha 10}/\tau_\alpha$, the degeneracy is not completely broken.

Finally, we note that the X-ray properties of the first galaxies, inaccessible with UV LFs, are very strongly constrained with the 21-cm signal. In particular, the soft-band X-ray luminosity per unit SFR can be constrained at the level of ~0.1 percent while the minimum X-ray energy escaping the galaxies (which is related to the typical ISM column density) can be constrained at ~1–10 percent, as seen from the 1D marginalized PDFs.\footnote{This statement is true for our fiducial parameter set used to calculate the mock observation. As quantified by Gillet et al. (2018), if the ISM attenuation of early galaxies is much larger than we expect, such that only hard X-rays escape to heat the IGM (see also Mesinger et al. 2013; Fialkov & Barkana 2014), E_0 will not be recovered. This is due to the strong dependence of the absorption cross section to photon energy, making the EoH insensitive to hard X-rays.}

6.3 Using both LFs and the 21-cm signal

Finally, we show parameter constraints if both the LF observations and the mock 21 cm observations are used when computing the likelihood. The resulting marginalized distributions are shown as shaded regions in the triangle plot of Fig. 4, and the corresponding 2σ constraints on the EoR history are shown with the gray lines in the inset of the figure.

As expected, all of the constraints are either similar...
to or improved when combining both data sets. As noted earlier, these results are conservative in that the ML values for the LF only MCMC are not used to create the mock 21-cm signal; thus the two data sets pull the posterior towards slightly different values (c.f. the $f_{*,10}$ ID PDFs), crudely mimicking the impact on unknown systematics.

In general, the two data sets are fairly complementary, with 21-cm providing the bulk of the constraining power. $M_{\text{hun}}, t_*, f_{esc,10}, \alpha_{\text{esc}}, L_X<2\text{keV}/\text{SFR}$, and E_0 are determined almost entirely by the 21-cm signal. α_* is determined almost entirely by the LF-s, while $f_{*,10}$ is constrained by both data sets to a comparable degree. Moreover, the $f_{*,10}-t_*$ degeneracy is significantly mitigated by combining the data sets.

From the inset, we see that the EoR history is entirely constrained by 21-cm. Although knowing the EoR history is less remarkable than knowing various galaxy properties in the triangle plot, it enables 21-cm observations to tightly constrain τ_{21}: an important systematic for CMB studies (e.g. Liu et al. 2016).

In summary, the 1σ percentage errors on our parameters from the combined data sets are $[\log_{10}(f_{*,10}), \alpha_*, \log_{10}(f_{esc,10}), \alpha_{esc}, \log_{10}(M_{\text{hun}}), t_*, \log_{10}(L_X<2\text{keV}/\text{SFR}), E_0] = (12, 13, 15, 33, 2.4, 33, 0.14, 6)$ per cent.

7 CONCLUSION

In the near future we will detect the 3D structure of the cosmic 21-cm signal. This promise is to be a treasure trove of physics, informing us on the properties of the otherwise unseen population of galaxies driving the EoR and CD.

Here we develop an expanded, flexible model for galaxy formation, implementing it in the 21-cm modeling code 21cmFAST. In particular: (i) we allow both the stellar mass and the ionizing escape fraction to be a function of the mass of the host halo; (ii) we implement a duty cycle which suppresses star formation inside low mass halos; (iii) we directly incorporate sub-grid recombinations based on the local density and ionization history.

Using a Monte Carlo Markov Chain sampler of 3D simulations, 21CMMC, we constrain the eight free parameters of our galaxy model using: (i) current observations of high-z luminosity functions (LFs); (ii) mock 21-cm power spectra as measured by a 1000h integration with HERA; (iii) and a combination of (i) and (ii).

Using only UV LFs allows us to constrain the scaling of the star formation efficiency with halo mass, and the ratio of $f_{*,10}/t_*$. Folding-in EoR observations allows us to additionally weakly constrain the normalization of the ionizing escape fraction, $f_{esc,10}$, but not its dependence on the halo mass.

Including the mock 21-cm power spectra when performing inference allows us to mitigate these degeneracies, constraining even the ionizing escape fraction and two additional X-ray properties: (i) the soft band X-ray luminosity per unit star formation, and (ii) the minimum X-ray energy escaping the galaxies (analogous to the typical ISM column density). The halo mass scaling, and to a lesser extent the normalization, of the stellar mass is mostly constrained by the LFs. The remaining parameters are mostly constrained by the 21-cm power spectra. Combining the two parameter sets, we recover all of the parameters at the level of $\sim 10\%$ or better, with only mild degeneracies remaining.

Our flexible framework makes it easy to tie galaxy observations to the corresponding 21-cm signal. Moreover, 21-cm forecasts can be made from more detailed semi-analytic models of galaxy formation, by casting them into our framework. These improvements to our modeling and inference codes are made publicly available at 21CMFAST (https://github.com/andreimesinger/21cmFAST) and 21CMMC (https://github.com/BradGreig/21CMMC). Also, associated movies are available at http://homepage.sns.it/mesinger/21CMMC.htm

ACKNOWLEDGEMENTS

We thank R. Bouwens, S. Finkelstein and R. Livermore for their UV LF data, and associated insightful discussions. This work was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 638809 – AIDA – PI: Mesinger). Parts of this research were supported by the Australian Research Council Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), through project number CE170100013. The simulations shown in Appendix A were performed as part of the PRACE tier-0 grant GAFFER (project No 2016163945). We acknowledge PRACE for awarding us access to Curie at GENCI@CEA, France.

REFERENCES

Akeret J., Seehars S., Amara A., Refregier A., Csillaghy A., 2013, Astronomy and Computing, 2, 27
Alvarez M. A., Abel T., 2012, ApJ, 747, 126
Atek H., Richard J., Kneib J.-P., Schaerer D., 2018, preprint, (arXiv:1803.09747)
Aubert D., Deparis N., Ocvirk P., 2015, MNRAS, 454, 1012
Baek S., Ferrara A., 2013, MNRAS, 432, L6
Barbosa C., Li, 2005, Phys. Rev., 349, 125
Barkana R., Loeb A., 2001, Phys. Rep., 349, 125
Barkana R., Loeb A., 2004, ApJ, 609, 474
Barkana R., Loeb A., 2005, ApJ, 626, 1
Barkana R., Loeb A., 2008, MNRAS, 384, 1069
Bass-Zych A. R., et al., 2013, ApJ, 762, 45
Beardsey A. P., Morales M. F., Lidz A., Malloy M., Sutter P. M., 2015, ApJ, 800, 128
Becker G. D., Bolton J. S., Madau P., Pettini M., Ryan-Weber E. V., Venemans B. P., 2015, MNRAS, 447, 3402
Behroozi P. S., Silk J., 2015, Astrophysical Journal, 799
Bouwens R. J., et al., 2012, Astrophysical Journal, 754
Bouwens R. J., et al., 2015a, Astrophysical Journal, 803, 1
Bouwens R. J., Illingworth G. D., Oesch P. A., Carollo J., Holwerda B., Smit R., Wilkins S., 2015b, ApJ, 811, 140
Bouwens R. J., Oesch P. A., Illingworth G. D., Ellis R. S., Stefanon M., 2016, The Astrophysical Journal, 843, 129
Bowman J. D., Rogers A. E. E., 2010, Nature, 468, 796
Bowman J. D., et al., 2013, Publ. Astron. Soc. Australia, 30, e031
Bower R. J., van den Bosch F. C., 2010, MNRAS, 407, 1013
Bower M., Kauffmann G., 2015, ApJ, 204, 1401
Capak P. L., et al., 2015, Nature, 522, 455
Chardin J., Haehnelt M. G., Aubert D., Puchwein E., 2015, MNRAS, 453, 2943
Planck Collaboration et al., 2016b, A&A, 596, A108
Pober J. C., et al., 2013, AJ, 145, 65
Pober J. C., et al., 2014, ApJ, 782, 66
Price L. C., Trac H., Cen R., 2016, preprint, (arXiv:1605.03970)
Price D. C., et al., 2018, MNRAS, 478, 4193
Pritchard J. R., Furlanetto S. R., 2007, MNRAS, 376, 1680
Pritchard J. R., Loeb A., 2012, Reports on Progress in Physics, 75, 086901
Rahmati A., Pawlik A. H., Raicicv M., Schaye J., 2013, MNRAS, 430, 2427
Razoumov A. O., Sommer-Larsen J., 2010, ApJ, 710, 1239
Robertson B. E., et al., 2013, ApJ, 768, 71
Schmit C. J., Pritchard J. R., 2018, MNRAS, 475, 1213
Scoccimarro R., 1998, MNRAS, 299, 1097
Scott D., Rees M. J., 1990, MNRAS, 247, 510
Shapiro P. R., Giroux M. L., Babul A., 1994, ApJ, 427, 25
Shaver P. A., Windhorst R. A., Madau P., de Bruyn A. G., 1999, A&A, 345, 380
Sheth R. K., Tormen G., 1999, MNRAS, 308, 119
Sheth R. K., Tormen G., 2002, MNRAS, 329, 61
Shiabukuro H., Semelin B., 2017, MNRAS, 468, 3869
Sobacchi E., Mesinger A., 2013b, MNRAS, 432, L51
Sobacchi E., Mesinger A., 2013a, MNRAS, 432, 3340
Sobacchi E., Mesinger A., 2014, Monthly Notices of the Royal Astronomical Society, 440, 1662
Sokolowski M., et al., 2015, Publ. Astron. Soc. Australia, 32, e004
Somerville R. S., Kolatt T. S., 1999, MNRAS, 305, 1
Springel V., Hernquist L., 2003, MNRAS, 339, 312
Sun G., Furlanetto S. R., 2016, Monthly Notices of the Royal Astronomical Society, 461, 117
Tingay S. J., et al., 2013, Publ. Astron. Soc. Australia, 30, e007
Tozzi P., Madau P., Meiksin A., Rees M. J., 2000, ApJ, 528, 597
Verhamme A., Orlitová I., Schaerer D., Hayes M., 2015, A&A, 578, A7
Voytek T. C., Natarajan A., Jáuregui García J. M., Peterson J. B., López-Cruz O., 2014, ApJ, 782, L9
Worseck G., et al., 2014, MNRAS, 445, 1745
Xu H., Wise J. H., Norman M. L., Ahn K., O'Shea B. W., 2016, ApJ, 833, 84
Yajima H., Choi J.-H., Nagamine K., 2011, MNRAS, 412, 411
Yue B., Ferrara A., Xu Y., 2016, Monthly Notices of the Royal Astronomical Society, 463, 1968
Zahn O., Mesinger A., McQuinn M., Trac H., Cen R., Hernquist L. E., 2011, MNRAS, 414, 727
van Haarlem M. P., et al., 2013, A&A, 556, A2

APPENDIX A: FLEXIBILITY OF THE FUNCTIONAL FORM FOR LFS

Here we quantify further the claim that our analytical model, based on the HMF, is flexible enough to fit "reasonable" luminosity functions. To do so, we make use of several hydrodynamic cosmological simulations, which form part of the on-going PRACE tier-0 project Gaffer. The simulations were generated using the cosmological code, EMMA (Aubert et al. 2015), which includes a classical star formation recipe and supernova feedback [Deparis et al. (in prep)]. As part of Gaffer, we perform many simulations varying parameters such as star formation efficiency, star formation density threshold and supernova efficiency. The simulations have a box length of 10\,Mpc and resolve halo masses down to \(10^8\,M_\odot\). They will be presented in an upcoming work, Gillet et al. (in prep).

For our purposes here we take four simulation results which have among the best agreement with existing LF observations, but are different at the faint end and high redshifts at which we have little or no data. We can thus test the ability of our analytical framework to capture diverse, yet physically reasonable LFs.

We run an MCMC of our model parameters using the LFs from EMMA as a mock observation and find maximum likelihood parameters. We include Poisson errors for the numbers of both dark matter halos and star particles, adding them in quadrature. Fig. A1 shows LFs generated from the simulation and the corresponding LFs with our maximum likelihood parameters. We find that in all four examples, our model is sufficiently flexible to fit the simulated LFs reasonably well.

APPENDIX B: 21-CM POWER SPECTRA

The lightcone of the mock 21-cm observation is generated from 500\,Mpc side length co-evul cubes with a 256\(^3\) grid, smoothed down from a high-resolution density field of 1024\(^3\). To compute the mock 21-cm PS we follow the same approach as Greig & Mesinger (2018). We split the lightcone into equal comoving distance boxes and calculate the 21-cm PS (equation 22) for each separate box. For the MCMC samples we generate a lightcone from 250\,Mpc side length co-evul cubes with a 128\(^3\) grid, smoothed down from a 512\(^3\) density field, but using different initial conditions. The mock observation is split into equal comoving distance boxes equivalent to the box length of the sampled boxes (i.e. 250\,Mpc). Then, we compute the 21-cm PS from the same comoving scale for both the mock observation and the MCMC samples. Since the lightcones extend from \(z = 6\) (\(\sim 200\,\text{MHz}\)) to \(z = 26.8\) (\(\sim 50\,\text{MHz}\)), this generates a total of 12 independent 'chunks'.

Fig. B1 shows the 21-cm PS for the mock observation generated (solid lines) and a sample 21-cm PS generated from the 250\,Mpc box, using the same fiducial parameters but using a different initial seed. The shaded regions show the estimated noise corresponding to the mock 21-cm PS. We assume HERA for the noise estimate with a core design consisting of 331 dishes and a 1000 h observation. In each panel we denote the central redshift for each 'chunk' of the lightcone.

APPENDIX C: IONIZING EMISSIVITY

Another potentially important data set on the high-\(z\) source population is the ionizing emissivity as estimated from the Lyman \(\alpha\) forest. Here we study how this additional data set can further inform our models (c.f. Choudhury & Ferrara 2006;中秋 & Faucher-Giguère 2012; Mitra et al. 2013; Bouwens et al. 2015b).

The ionizing emissivity is estimated by using the opacity measured from high-\(z\) quasar spectra. Post reionization, the ionizing emissivity, \(\epsilon\), can then be estimated using the post-reionization relation \(\Gamma \propto N^2 \epsilon\), where \(N^2\) is the mean free

\[\tau_{\gamma y_{\alpha}} \propto T^{-0.16} N^2 / \Gamma,\]

where \(\Gamma\) is the gas temperature, \(N_{\alpha}\) is the gas density in units of the cosmic mean and \(\Gamma\) is the photoionization rate. The ionizing emissivity, \(\epsilon\), can then be estimated using the post-reionization relation \(\epsilon \propto N^2 \Gamma\).
Figure A1. LFs from hydrodynamic simulations are shown with points, together with our best-fit model fit model. The hydrodynamic simulations were chosen to have good agreement with observed LFs at the bright end, but different trends at the faint end / high-z. We note that our analytic model, based on the HMF, does not have any free parameters which regulate redshift evolution.

Figure B1. The 21-cm PS from the mock observation (solid lines), and corresponding 1σ errors assuming a 1000h observation with HERA331. Dashed lines represent the MCMC sample with the fiducial parameters, but from a different random seed. Hatched regions represent k modes outside of our fitting range of $k = 0.1 - 1 \text{Mpc}^{-1}$. z_C denotes the central redshift of each ‘chunk’ of the light-cone.
path of ionizing photons. This emissivity can then be directly compared to our model prediction from equation 16.

This procedure is non-trivial for several reasons. Firstly, the Lyman α forest is only sensitive enough at $z \lesssim 5$ to provide a reasonable estimate of the emissivity. The galaxies at these post-EoR redshifts could evolve beyond what is expected during the first billion years, due to feedback processes. Thus they are not the same population that we are modeling. More importantly, although galaxies are expected to dominate the EoR, it is likely that the contribution of AGN ramps up soon afterwards and thus cannot be ignored at these lower redshifts (e.g. Haardt & Madau 2012; Chardin et al. 2015; Mitra et al. 2018). We therefore take the emissivity estimates at $z \sim 5$ as upper limits to our galaxy emissivities.

Additionally, as explained above, we require knowledge of the IGM temperature, density and mean free path in order to estimate the emissivity from the forest. This can be tricky by $z \sim 5$, with the mean free path being especially difficult to constrain to high precision. Moreover, spatial fluctuations in these quantities can bias estimates.

Here we explore the utility of IGM emissivity upper limits for our parameter study, using the estimates from D’Aloisio et al. (2018b). These authors estimated the ionizing emissivity at $4.8 < z < 5.8$ based on the measurement of τ_{21} by Becker et al. (2015). They post-processed simulations to compute a spatially varying photoionization rate, Γ, and rescaled it to fit the observed τ_{21}, under the assumption $\lambda_{912}(x) \propto \Gamma^{-2/3}/\Delta(x)$, where $\Delta(x)$ is the local matter density and λ_{912} is the mean free path of ionizing photons. This rescaling provides the ionizing emissivity, ϵ_{912}, with the relation $\Gamma \propto \lambda_{912}^{-3} \epsilon_{912}$. They use three models for the mean free path, which they refer to as fiducial, intermediate and short. The fiducial one is consistent with the mean free path measurements of Worseck et al. (2014) which are at $z \lesssim 5.2$, though D’Aloisio et al. (2018b) argue this might be an overestimate due to a bias from including the proximity zone in the mean free path calculation.

The resulting estimates of the ionizing background in the fiducial and short mean free path models are shown as points with error bars in Figure C1. To convert the emissivity to number of photons per baryon per Gyr, we assume the specific emissivity provided by D’Aloisio et al. (2018b) follows a power-law, $L_\nu \propto \nu^{\alpha}$, and adopt $\alpha = -1.5$, consistent with Lusso et al. (2015) (see also e.g. McQuinn et al. 2011; D’Aloisio et al. 2018a). With the solid curve, we also show the emissivity from our fiducial parameter set, used to generate the mock 21-cm signal. This emissivity is roughly consistent with the fiducial mean free path model of D’Aloisio et al. (2018b).

The resulting constraints are shown in Figure C2. Even for the conservatively strong prior of using the fiducial emissivity estimates (as opposed to the higher ones provided by D’Aloisio et al. 2018b), the constraints are quite comparable to those already presented in Fig. 4. The relatively minor differences between the red and blue curves demonstrate that the ionizing emissivity currently has little additional constraining power for our model.

This paper has been typeset from a TeX/LaTeX file prepared by the author.

\begin{figure}
\includegraphics[width=\textwidth]{C1.png}
\caption{Redshift evolution of the ionizing emissivity. Solid line represents the prediction of our fiducial model. Squares and circles with error bars represent the measured emissivity by D’Aloisio et al. (2018b) with their fiducial mean free path and short mean free path, respectively. We note that to convert units we assume the ionizing specific luminosity follows a power-law, $L_\nu \propto \nu^{\alpha}$, and adopt $\alpha = -1.5$ which is similar quantity in Lusso et al. (2015).}
\end{figure}
Figure C2. Marginalized joint posterior distributions for UV galaxy properties with and without a prior on the emissivity. Solid (blue) and dashed (red) lines represent 95 per cent confidence levels for constraints using LF + τ_e + the dark fraction (same as in Fig. 4), and when additionally using the ionizing emissivity. The minor relative differences between these curves demonstrate that the ionizing emissivity currently has little additional constraining power for our model.