Approximately 600,000 patients in the United States have end-stage kidney disease, 460,000 of whom are receiving dialysis annually. The overwhelming majority (92%) are started on in-center hemodialysis (HD), of which 80% do so via a central venous catheter (CVC). Moreover, in patients with unplanned dialysis initiation, HD with a CVC is the default method. CVC use has been shown to be associated with increased infectious complications, mortality, and modality retention in patients who initiated urgent start PD.

Results: Occurrence of major complications was less than 5%. Catheter malfunction occurred in 6% of cases; of those, catheter patency could be established in 80%. Infectious complications occurred in 20% of patients who initiated PD and included peritonitis and exit site infections. At 365 days after initiation, the cumulative incidence of all-cause mortality was 9.7% (95% CI, 4.7%-19.4%). PD retention rates were 98.8%, 91.3%, and 80.0% at 30 days, 90 days, and 1 year, respectively.

Conclusions: At 1 year after initiation, patients who initiated urgent start PD had high survival and modality retention rates. In unplanned initiation of dialysis, urgent start PD is a viable and sustainable option and should be considered in selected patients to optimize care.
The traditional practice of starting people in urgent need of dialysis on hemodialysis via central venous catheter is associated with increased risk of infection, mortality, and hospitalization. Increasingly, peritoneal dialysis (PD) is being used in patients requiring urgent start of dialysis. We studied patients who underwent urgent start PD in a large, integrated, racially and ethnically diverse health care system and assessed retention, complications, and mortality during the first year after the initiation of the modality. Our results showed that there was a high retention rate of the PD modality at the end of 1 year, as well as a high survival rate. These results help validate that PD is a safe and sustainable treatment option for patients requiring prompt and unplanned dialysis.

Prior kidney care was ascertained from the number of clinical encounters linked to nephrology clinics or providers between 1 and 6 months before the initiation of urgent start dialysis. Chart review was conducted by the study’s investigators to confirm urgent start PD status. This was defined as the need to initiate dialysis urgently, secondarily to late referral or unexpected deterioration in kidney function, in patients without a pre-existing arteriovenous fistula or arteriovenous graft. Patients who were initiated on PD within 2 weeks after the placement of the intraperitoneal catheter also met criteria for urgent start PD.

Study Outcomes and Definitions

For all valid urgent dialysis patients, the investigators collected data on complications and outcomes that occurred during the 1-year period after the initiation of dialysis using a structured data collection tool. Complications were broadly categorized as noninfectious or infectious. The noninfectious complications were classified further as major (hernia, hydrocele, and catheter injury) and minor (bleeding managed conservatively, pericatheter leak, and catheter malfunction). The infectious complications included peritonitis and exit site infection. The outcomes of interest were death (secondary to any cause), cessation of dialysis modality, kidney transplant, and recovery of kidney function.

Statistical Analysis

For the final cohort, the cumulative incidence of all-cause mortality at 12 months was estimated using the Kaplan-Meier method. Associated pointwise 95% confidence intervals for the survivor function were computed using a log-log transformation. Retention rates for PD at 1, 3, and 12 months were computed using binomial proportions with exact 95% confidence intervals.

The follow-up began at study entry (initiation of urgent start dialysis); for analyses that examined mortality risk, the follow-up ended with death, loss to follow-up because...
of disenrollment from the health plan, or 1 year after study entry, whichever occurred first. To calculate PD retention rates, the follow-up ended with the first occurrence of initial dialysis modality cessation, death, kidney transplant, recovery of kidney function, loss to follow-up, or 1 year after study entry, whichever occurred first. At each time point examined, patients whose follow-up ended for reasons other than not tolerating PD (medical or psychosocial reasons) before the end point were excluded from the denominator. All analyses were performed using SAS version 9.3 (SAS Institute).

RESULTS

The final analytic cohort consisted of 84 urgent start PD cases. As presented in Table 1, 54 (64.3%) cases were men, and roughly one-third comprised each of the 3 groups shown for age at dialysis initiation. Asians/Pacific Islanders were the largest racial/ethnic group with 29 (34.5%) patients, followed by 20 (23.8%) non-Hispanic Whites, 16 (19.1%) African Americans, and 16 (19.1%) Hispanics. Progressive stage 5 chronic kidney disease was the major reason for the initiation of urgent start PD in 53
The complications incurred up to 1 year after the initiation of urgent start PD were summarized in Table 2. Major noninfectious complications were rare, occurring in 4 (4.8%) patients, and included right inguinal hernia, hydrocele, and catheter injury. Among minor noninfectious complications, catheter malfunction occurred in 5 (6.0%), bleeding that was managed conservatively occurred in 2 (2.4%), and pericatheter leaks occurred in 6 (7.1%). Catheter patency was re-established conservatively in 2 (2.4%), and pericatheter leaks occurred in 5 (6.0%). Catheter patency was re-established conservatively in 2 (2.4%), and pericatheter leaks occurred in 5 (6.0%). Catheter patency was re-established conservatively in 2 (2.4%), and pericatheter leaks occurred in 5 (6.0%) patients, medical for 5 (35.7%) patients, peritonitis for 2 (14.3%) patients, and catheter malfunction for 1 (7.1%) patient.

Acute inpatient hospitalizations during follow-up are summarized in Table 3. In the first year after the initiation of dialysis, 43 (51.2%) patients who underwent urgent start PD were hospitalized; the median length of stay was 3.0 days. In total, there were 96 unique inpatient factors. Among the 17 patients with noninfectious complications, we observed that 1 had a major complication (right inguinal hernia) and 9 had minor complications (4 had catheter malfunctions, 3 pericatheter leaks, and 2 bleeding managed conservatively) that occurred less than 3 weeks after the initiation of urgent start PD and thus were potentially attributable to the procedure. For the remaining 7 patients with noninfectious complications, 3 had major complications (right inguinal hernia, hydrocele, and catheter injury) and 4 minor (1 had a catheter malfunction and 3 pericatheter leaks) that occurred 3 or more weeks after the initiation of urgent start PD and were less likely to be attributed to the procedure itself. All 17 cases of noninfectious complications occurred more than 21 days after initiation of urgent start PD.

The PD retention rates were calculated at 3 end points: 30 days, 90 days, and 1 year after the initiation of urgent start dialysis (Fig 2). The retention rate was 98.8% at 30 days after study entry, with 83 patients remaining on PD; 1 patient switched to HD after 9 days for psychosocial reasons. By 90 days, the follow-up ended for 4 patients because of kidney transplant (n = 2), recovery of kidney function (n = 1), or death (n = 1). Among the remaining 80 patients, 73 still received PD (91.3% retention rate) and 7 stopped for medical (n = 3, 42.9%) or psychosocial (n = 4, 57.1%) reasons. Within 1 year after PD initiation, the follow-up ended for 14 patients secondary to kidney transplant (n = 4, 28.6%), death (n = 5, 35.7%), recovery of kidney function (n = 1, 7.1%), or health plan disenrollment (n = 4, 28.6%). The retention rate was 80% at 1 year, with 70 patients remaining under observation and, among these, 56 still receiving PD. Of the 14 patients no longer receiving PD, 12 (86%) switched to HD. The reasons for discontinuing PD were psychosocial for 6 (42.9%) patients, medical for 5 (35.7%) patients, peritonitis for 2 (14.3%) patients, and catheter malfunction for 1 (7.1%) patient.

Table 1. Characteristics of the 84 Urgent Start Peritoneal Dialysis Cases

Characteristica	n (%)
Sex	
Female	30 (35.7%)
Male	54 (64.3%)
Age (y), median (IQR)	
18-49	28 (33.3%)
50-64	27 (32.1%)
≥65	29 (34.5%)
Race/ethnicity	
Non-Hispanic White	20 (23.8%)
African American	16 (19.1%)
Asian/Pacific Islander	29 (34.5%)
Hispanic	16 (19.1%)
Otherb	3 (3.6%)
BMI (kg/m²), median (IQR)	
<25.0	30 (35.7%)
25.0-29.9	28 (33.3%)
≥30.0	26 (31.0%)
Charlson Comorbidity Indexc	
Median (IQR)	4.0 (3.0, 5.0)
0-2	18 (21.4%)
3-4	29 (34.5%)
5+	37 (44.1%)
Prior renal cared	
55 (65.5%)	
Reason urgent start dialysis initiated	
AKI associated with infection	3 (3.6%)
AKI not associated with infection	28 (33.3%)
Progressive CKD5	58 (63.1%)
Backup HD	23 (27.4%)

Abbreviations: BMI, body mass index; HD, hemodialysis; IQR, interquartile range; AKI, acute kidney injury; CKD5, chronic kidney disease stage 5.

aComplications were not necessarily mutually exclusive, as participants could have incurred ≥1 complication during the follow-up.
bRight inguinal hernia, hydrocele, or catheter injury.
cFirst occurrence.
dIncludes 8 with peritonitis, 6 with exit site infection, and 3 with both.

(63.1%) patients, and 55 (65.5%) patients had nephrology clinic encounters before the initiation of dialysis.

The complications incurred up to 1 year after the initiation of urgent start dialysis are summarized in Table 3. Infectious complications occurred more than 21 days after initiation of urgent start PD were hospitalized; the median length of stay was 3.0 days. In total, there were 96 unique inpatient
encounters; the reasons for hospitalization (based on principal discharge ICD-9 diagnosis codes) were cardiovascular complications for 35 (36.5%) encounters, dialysis related for 4 (4.2%), kidney, excluding dialysis, for 2 (2.1%), infection for 23 (24.0%), and other for 32 (33.3%).

The outcomes by 1 year after the initiation of urgent start PD are shown in Table 4. Seven of the 84 patients died during the follow-up period; the cumulative incidence of all-cause mortality was 9.7% (95% CI, 4.7%-19.4%). For the survival analysis, the mean (± standard deviation) follow-up time was 302 ± 155 days and ranged from 9-365 days. The underlying cause of death (ascertained from the patient’s state death certificate record) included complications related to cardiovascular disease in 1 (14.3%), diabetes-related complications in 3 (42.9%), infection in 1 (14.3%), malignancy in 1 (14.3%), and kidney disease in 1 (14.3%).

DISCUSSION

Within a large integrated health care system comprised of a diverse population, we have observed that urgent start PD is a feasible and sustainable modality, with high retention and low catheter malfunction rates and an overall survival rate of 90.3% at 1 year after initiation. This study demonstrates that urgent start PD is a viable alternative to traditional urgent start HD with a CVC.

Based on historical precedent, the default treatment of patients with acute kidney injury is in-center HD via CVC. A recent position paper from the Renal Physicians Association has called for the reassessment of this paradigm. Patients starting dialysis with a CVC have higher rates of infection, hospitalization, and mortality.
compared with patients starting HD with a mature arteriovenous fistula or arteriovenous graft.2-7 PD is greatly underutilized, despite patients starting PD having lower mortality in the first 2 years than patients starting HD.1,16-19 After the 2011 Medicare prospective payment system reform, PD prevalence only increased from 9.4% to 12.6%.20 The reasons for this are multifactorial and include less emphasis on PD education in nephrology training programs.31 Even fewer programs offer urgent start PD in the United States.

KPNC provides health care to 4.5 million members in the region, and The Permanente Medical Group is the largest multispecialty group therein, encompassing 21 medical centers. KPNC and The Permanente Medical Group have increased PD incidence from 15% to 33% over the past 10 years through a multidisciplinary system-wide approach.32

In this study, complications incurred by PD urgent starts, including infectious complications, were not associated with increased morbidity or mortality, in contrast to bacteremia often seen with CVC in HD urgent starts. The longer-term outcome of urgent start PD was excellent, with a notably high retention rate. There were 14 events of modality failure among urgent start PD cases (16.7%) attributable to the following: psychosocial reasons in 6 (42.9%); catheter malfunction in 1 (7.1%); peritonitis in 2 (14.2%); medical causes in 5 (35.7%: 2 calciphylaxis; 1 malignancy; 1 hydrothorax; 1 hydrocele). Most of these occurred after 90 days.

Our study results are consistent with other reports from the literature. Masseur et al14 followed 81 patients who started PD urgently and had a 92.6% retention rate at 90 days. Lobbedez et al23 compared outcomes between 34 PD urgent starts and 26 HD urgent starts with a CVC. They reported similar survival, unaffected by dialysis modality. The actuarial technique survival was 90% at 6 months and 88% at 1 year in the patients who underwent urgent start PD.23

Koch et al10 noted no difference in survival between HD and PD groups at 6 months in their study. Patients who underwent HD had a higher overall and infectious mortality risk.25 Similarly, Iversen and Povlsen10 reported 3-month technique survival of 75% in 52 patients who underwent urgent start PD. Xu et al24 investigated the prevalence of mechanical complications related to the PD catheter and abdominal wall in 922 patients started on urgent PD. Abdominal wall complications developed in 4.8% (hernia 55%; hydrothorax 25%; hydrocele 14%; leak 7%), whereas catheter complications were seen in 9.5%. The overall technique survival was 92%, and peritonitis rate was low.24

Urgent start PD has been shown to be more cost effective than urgent start HD via CVC. Liu et al11 assessed the costs associated with urgent start PD, urgent start HD, or dual approach over the first 90 days. The estimated per patient cost was $16,398 for urgent PD, $19,352 for urgent HD, and $19,400 for HD and PD.33 Given the small number of patients in this study, we did not perform cost analysis.

Ideally, all patients with chronic kidney disease should start dialysis optimally, that is, either on HD with a mature access or on PD as a planned elective start. However, many patients continue to be started in an unplanned way on HD using a CVC, despite the associated increased risk of complications and reduced survival. Urgent start PD has the potential to reduce the use of CVC and increase the utilization of PD.

The Advance America Kidney Health initiative has provided an impetus to increase home dialysis and preemptive transplant, with a goal of reaching an 80% incidence of either or both by 2025. To achieve this goal, the nephrology community must take bold steps to change the current approach of providing suboptimal kidney replacement therapy for incident dialysis patients. This study demonstrates that urgent start PD is safe and feasible and can increase home dialysis in accordance with the Advance America Kidney Health initiative.

Since the COVID-19 pandemic began, preliminary data have shown that patients receiving PD have lower risk of infection for COVID-19 than those receiving in-center HD,34 underscoring the need to provide the option of urgent start PD. During the pandemic, many medical centers have considered arteriovenous fistula/arteriovenous graft placement surgery as nonurgent, leading to delayed access creation. In our experience, patients delayed laboratory surveillance of kidney function because of the fear of coming to medical facilities, with resultant acute kidney injury or occult chronic kidney disease progression in some, necessitating urgent dialysis. Urgent start PD is a good alternative in this setting.

A major strength of our study is that it derived from a large, contemporary, diverse population in an integrated health care system in Northern California.26 Furthermore, we had a wealth of electronic clinical data that supported our analysis. Our study did have limitations. We were unable to identify a comparable (well-matched) group of patients requiring urgent start HD; thus, our study was limited to reporting outcomes and complications among patients requiring urgent start PD only. Furthermore, our cohort comprised a small number of patients within a single integrated health care system, in which health care delivery is well coordinated. It is unclear whether our results are generalizable to other health care systems, where the delivery of care historically has been more fragmented. Ideally, a prospective, multicenter randomized study should be conducted to confirm the results.

In conclusion, within an integrated health care system, urgent start PD was shown to be a safe, viable, and sustainable treatment option. Given the recent executive order for increasing home dialysis incidence, urgent start PD should be more widely used for patients needing prompt and unplanned dialysis initiation.
SUPPLEMENTARY MATERIAL

Supplementary File 1 (PDF)

Table	Description
S1	ICD-9 Diagnosis Codes for Chronic Kidney Disease (CKD)
S2	ICD-9 Diagnosis Codes for Acute Kidney Injury (AKI) and Acute Kidney Failure (AKF)
S3	ICD-9 and CPT-4 Procedure codes for Peritoneal Dialysis (PD) Access

ARTICLE INFORMATION

Authors’ Full Names and Academic Degrees: Neelam M. Bhalla, MD, Neiha Arora, MD, Jeanne A. Darbinian, MS, MPH, and Sijie Zheng, MD, PhD

Authors’ Affiliations: Division of Nephrology, Kaiser Permanente Medical Center, Hayward, CA (NMB); Division of Nephrology, Kaiser Permanente Medical Center, Fremont, CA (NA); Division of Research, Kaiser Permanente Northern California, Oakland, CA (JAD); and Division of Nephrology, Kaiser Permanente Medical Center, Oakland, CA (SZ).

Address for Correspondence: Sijie Zheng, MD, PhD, Division of Nephrology, Kaiser Permanente Medical Center, 3600 Broadway, Oakland, CA 94611-5730. Email: Sijie.X.Zheng@kp.org

Authors’ Contributions: Research idea and study design: NMB, SZ, JAD; data acquisition: JAD, NMB, NA, SZ; data analysis/interpretation: NMB, NA, JAD, SZ; statistical analysis: JAD; supervision or mentorship: NMB, SZ. Each author contributed important intellectual content during manuscript drafting or revision and accepts accountability for the overall work by ensuring that questions pertaining to the accuracy or integrity of any portion of the work are appropriately investigated and resolved.

Support: This work was supported by Kaiser Permanente Northern California Community Health (RNG200435). The funders of this work had no role in study design; collection, analysis, and interpretation of the data; writing the report; or the decision to submit the report for publication.

Financial Disclosure: The authors declare that they have no financial interests.

Acknowledgements: The authors would like to thank Alan Go, MD, for his thoughtful and insightful review of the manuscript and suggested revisions.

Peer Review: Received July 14, 2021. Evaluated by 2 external peer reviewers, with direct editorial input by a Statistical Editor and the Editor-in-Chief. Accepted in revised form November 28, 2021.

REFERENCES

1. 2013 USRDS annual data report: atlas of chronic kidney disease and end-stage renal disease in the United States. United States Renal Data System. National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases. Accessed February 5, 2022. https://render.usrds.org/atlas.aspx
2. Xue H, Ix JH, Wang W, et al. Hemodialysis access usage patterns in the incident dialysis year and associated catheter-related complications. *Am J Kidney Dis.* 2013;61(1):123-130.
3. Perl J, Wald R, McFarlane P, et al. Hemodialysis vascular access modifies the association between dialysis modality and survival. *J Am Soc Nephrol.* 2011;22(6):1113-1121.
4. Bradbury BD, Fissell RB, Albert JM, et al. Predictors of early mortality among incident US hemodialysis patients in the Dialysis Outcomes and Practice Patterns Study (DOPPS). *Clin J Am Soc Nephrol.* 2007;2(1):89-99.
5. Collins AJ, Foley RN, Gilbertson DT, Chen SC. The state of chronic kidney disease, ESRD, and morbidity and mortality in the first year of dialysis. *Clin J Am Soc Nephrol.* 2009;4(suppl 1):S5-S11.
6. Allon M. Dialysis catheter-related bacteremia: treatment and prophylaxis. *Am J Kidney Dis.* 2004;44(5):779-791.
7. Lee T, Barker J, Allon M. Tunneled catheters in hemodialysis patients: reasons and subsequent outcomes. *Am J Kidney Dis.* 2005;46(3):501-508.
8. Moist LM, Trpeshi L, Na Y, Lok CE. Increased hemodialysis catheter use in Canada and associated mortality risk: data from the Canadian Organ Replacement Registry 2001-2004. *Clin J Am Soc Nephrol.* 2008;3(6):1726-1732.
9. Neumann ME. Urgent-start PD: moving the therapy forward. *Nephrol News Issues.* 2014;28(7):20-22.
10. Ivarsen P, Povlsen JV. Can peritoneal dialysis be applied for unplanned initiation of chronic dialysis? *Nephrol Dial Transplant.* 2014;29(12):2201-2206.
11. Ghaffari A. Urgent-start peritoneal dialysis: a quality improvement report. *Am J Kidney Dis.* 2012;59(3):400-408.
12. Casaretto A, Rosario R, Kotzker WR, Pagan-Rosario Y, Groenhoff C, Guest S. Urgent-start peritoneal dialysis: report from a U.S. private nephrology practice. *Adv Perit Dial.* 2012;28:102-105.
13. Mahnensmith RL. Urgent-start peritoneal dialysis: what are the problems and their solutions? *Semin Dial.* 2014;27(3):291-294.
14. Masseur A, Guest S, Kumar V. Early technique success after initiation of treatment with urgent-start peritoneal dialysis. *Adv Perit Dial.* 2014;30:36-39.
15. Arramreddy R, Zheng S, Saxena AB, Liebman SE, Wong L. Urgent-start peritoneal dialysis: a chance for a new beginning. *Am J Kidney Dis.* 2014;63(3):390-395.
16. Ghaffari A, Kalantar-Zadeh K, Lee J, Maddux F, Moran J, Nissenson A. PD First: peritoneal dialysis as the default transition to dialysis therapy. *Semin Dial.* 2013;26(6):706-713.
17. Chaudhary K, Sangha H, Khanna R. Peritoneal dialysis first: rationale. *Clin J Am Soc Nephrol.* 2011;6(2):447-456.
18. Sinnakirouchenan R, Holley JL. Peritoneal dialysis versus hemodialysis: risks, benefits, and access issues. *Adv Chronic Kidney Dis.* 2011;18(6):428-432.
19. Vonesh EF, Snyder JJ, Foley RN, Collins AJ. Mortality studies comparing peritoneal dialysis and hemodialysis: what do they tell us? *Kidney Int Suppl.* 2006;(103):S3-S11.
20. Cross J, Davenport A. Changing the paradigm from contraction of peritoneal dialysis programs to increasing prevalent peritoneal dialysis numbers. *Adv Perit Dial.* 2013;29:50-54.
21. Kao TW, Chang YY, Chen PC, et al. Lifetime costs for peritoneal dialysis and hemodialysis in patients in Taiwan. *Perit Dial Int.* 2013;33(6):671-678.
22. Marants R, Qiirazi E, Grant CJ, Lee TF, Mchtyre CW. Renal perfusion during hemodialysis: intradialytic blood flow decline and effects of dialysate cooling. *J Am Soc Nephrol.* 2019;30(6):1086-1095.
23. Lobbedez T, Lecouf A, Ficheux M, Henri P, Hurault de Ligny B, Ryckelynck JP. Is rapid initiation of peritoneal dialysis feasible in unplanned dialysis patients? A single-centre experience. *Nephrol Dial Transplant.* 2008;23(10):3290-3294.
24. Xu D, Liu T, Dong J. Urgent-start peritoneal dialysis complications: prevalence and risk factors. *Am J Kidney Dis.* 2017;70(1):102-110.
25. Koch M, Kohnle M, Trapp R, Haastert B, Rump LC, Aker S. Comparable outcome of acute unplanned peritoneal dialysis and haemodialysis. *Nephrol Dial Transplant*. 2012;27(1):375-380.

26. Gordon NP. Similarity of the adult Kaiser Permanente membership in Northern California to the insured and general population in Northern California: statistics from the 2011-12 California Health Interview Survey. Kaiser Permanente Division of Research. Accessed November 11, 2021. https://divisionofresearch.kaiserpermanente.org/projects/memberhealthsurvey/SiteCollectionDocuments/chis_non_kp_2011.pdf

27. Charlson M, Szatrowski TP, Peterson J, Gold J. Validation of a combined comorbidity index. *J Clin Epidemiol*. 1994;47(11):1245-1251.

28. Deyo RA, Cherkin DC, Chiol MA. Adapting a clinical comorbidity index for use with ICD-9-CM administrative databases. *J Clin Epidemiol*. 1992;45(6):613-619.

29. RPA position paper on peritoneal urgent starts. Renal Physicians Association. Accessed August 19, 2020. https://www.renalmd.org/store/viewproduct.aspx?id=16022862

30. Sloan CE, Coffman CJ, Sanders LL, et al. Trends in peritoneal dialysis use in the United States after Medicare Payment Reform. *Clin J Am Soc Nephrol*. 2019;14(12):1763-1772.

31. Rope RW, Pivert KA, Parker MG, Sozio SM, Merell SB. Education in nephrology fellowship: a survey-based needs assessment. *J Am Soc Nephrol*. 2017;28(7):1983-1990.

32. Pravoverov LV, Zheng S, Parikh R, et al. Trends associated with large-scale expansion of peritoneal dialysis within an integrated care delivery model. *JAMA Intern Med*. 2019;179(11):1537-1542.

33. Liu FX, Ghaffari A, Dhatt H, et al. Economic evaluation of urgent-start peritoneal dialysis versus urgent-start hemodialysis in the United States. *Medicine (Baltimore)*. 2014;93(28):e293.

34. Cozzolino M, Conte F, Zappulo F, Ciceri P, Galassi A, Capelli I, et al. COVID-19 pandemic era: is it time to promote home dialysis and peritoneal dialysis? *Clin Kidney J*. 2021;14(Suppl1):i6-i13.
Is urgent start peritoneal dialysis a safe and sustainable option?

Methods and cohort
- Single health care system
- Retrospective
- Urgent Start
- Peritoneal Dialysis (PD) N = 84

Outcomes
- Days: 30 60 365
- Retention rates: 98% 91% 80%
- Complications rates:
 - Non-Infectious Complications: 4.8%
 - Catheter malfunction: 6%
 - Infectious Complications: 20%
 - All-Cause Mortality at 1 year: 9.7%

Conclusion: At one year, urgent start PD patients had high survival and modality retention rates. Unplanned urgent start PD is a viable and sustainable option for patients with ESKD.

Reference: Bhalla N, Arora N, Darbinian JA, et al. Urgent start peritoneal dialysis: a population-based cohort study. *Kidney Medicine*, 2022.

Visual Abstract by Hector M. Madariaga, MD

@HecMadsMD