Curved Koszul Duality for Algebras over Unital Operads

Najib Idrissi∗

May 4, 2018

We develop a curved Koszul duality theory for algebras presented by quadratic-linear-constant relations over binary unital operads. As an application, we study Poisson n-algebras given by polynomial functions on a standard shifted symplectic space. We compute explicit resolutions of these algebras using curved Koszul duality. We use these resolutions to compute derived enveloping algebras and factorization homology on parallelized simply connected closed manifolds of these Poisson n-algebras.

Contents

Introduction 1

1 Conventions, background, and recollections 4

2 Curved coalgebras, semi-augmented algebras, bar-cobar adjunction 10

3 Koszul duality of unitary algebras 15

4 Application: symplectic Poisson n-algebras 18

Introduction

Koszul duality was initially developed by Priddy [Pri70] for associative algebras. Given an augmented associative algebra A, there is a “Koszul dual” algebra $A^!$, and there is an equivalence (subject to some conditions) between parts of the derived categories of A and $A^!$. The Koszul dual $A^!$ is actually the linear dual of a certain coalgebra $A^!$. If the algebra A satisfies a certain condition called “being Koszul”, then the cobar construction

∗Department of Mathematics, ETH Zurich, Rämistrasse 101, 8092 Zurich, Switzerland. Email: najib.idrissi@math.ethz.ch.
of A^i is a quasi-free resolution of the algebra A. In this sense, Koszul duality is a tool to produce resolutions of algebras.

An operad is a kind of combinatorial object which governs categories of “algebras” in a wide sense, for example associative algebras, commutative algebras, Lie algebras... After insights of Kontsevich [Kon93], Koszul duality was generalized with great success to binary quadratic operads by Ginzburg–Kapranov [GK94] (see also Getzler–Jones [GJ94]), and then to quadratic operads by Getzler [Get95] (see also [Fre04; Mar96]). For example, it was realized that the operad governing commutative algebras and the operad governing Lie algebras are Koszul dual to each other. This duality explains the links between the two approaches of Sullivan [Sul77] and Quillen [Qui69] of rational homotopy theory, which rely respectively on differential graded (dg) commutative algebras and dg-Lie algebras.

Koszul duality of quadratic operads works roughly as follows. Given an augmented quadratic operad P, there is a Koszul dual cooperad $P^!$. If P satisfies the condition of “being Koszul”, then the operadic cobar construction of $P^!$ is a quasi-free resolution of the operad P. In this sense, operadic Koszul duality provides a tool to produce resolutions of augmented quadratic operads. This is useful when dealing with the homotopy category of algebras over a given operad, which can then be studied as the category of algebras over the Koszul resolution of the operad in question. For example, studying associative algebras up to homotopy is equivalent to studying A_∞-algebras and A_∞-morphisms up to homotopy, and this latter category possesses some interesting properties (e.g. weak equivalences are homotopy equivalences).

Operadic Koszul duality was then generalized to several different settings (see the quick tour in Section 1.1). Two of them will interest us. The first, due to Hirsh–Millès [HM12], is curved Koszul duality applied to (pr)operads with quadratic-linear-constant relations (by analogy with curved Koszul duality for associative algebras [Pos93; PP05]). The other, due to Millès [Mil12], is Koszul duality for monogenic algebras over quadratic operads, a generalization of quadratic algebras over binary operads.

Our motivation is the following. If P is a Koszul operad, then there is a functorial way of obtaining resolutions of P-algebras by considering the bar-cobar construction. However, this resolution is somewhat big, and explicit computations are not always easy. On the other hand, the theory of Millès [Mil12] provides resolutions for Koszul monogenic algebras over Koszul quadratic operads which are much smaller when they exist (see e.g. Remark 4.7). But the construction is unavailable when the operad is not quadratic and/or when the algebra is not monogenic.

Our aim will thus be to combine, in some sense, the approaches of Millès [Mil12] and Hirsh–Millès [HM12] in order to develop a curved Koszul duality theory for algebras with quadratic-linear-constant relations over unitary binary quadratic operads. Our main theorem is the following:

Theorem A (Theorem 3.7). Let P be a binary quadratic operad and let uP be a unital version of P (Def. 1.8). Let A be a uP-algebra with quadratic-linear-constant relations (Def. 3.1). Let qA be the P-algebra given by the quadratic reduction of A (Def. 3.3). Finally let $A^i = (qA^i, d_{A^i}, \theta_{A^i})$ be the curved P^i-coalgebra given by the Koszul dual of A
If the P-algebra qA is Koszul in the sense of [Mil12], then the canonical morphism $\Omega_\kappa A^! \sim \to A$ is a quasi-isomorphism of uP-algebras.

By applying this theory to different kinds of operads, we recover some already existing notions of “curved algebras” and “Koszul duality of curved algebras”. For example, when applied to associative algebras, we recover the notion of a curved coalgebra from Lyubashenko [Lyu17]. When applied to Lie algebras, we recover (the dual of) curved Lie algebras [CLM16; Mau17].

As an example of application, we study unital Poisson n-algebra given by polynomials on a shifted standard symplectic space. For $n \in \mathbb{Z}$ and $D \geq 0$, we have a Poisson n-algebra given by $A_{n;D} = (\mathbb{R}[x_1, \ldots, x_D, \xi_1, \ldots, \xi_D], \{\})$, where $\deg x_i = 0$, $\deg \xi_j = 1 - n$, and the shifted Lie bracket is given by $\{x_i, \xi_j\} = \delta_{ij}$. We may view x_i as a coordinate function on \mathbb{R}^D, ξ_j as the vector field $\partial/\partial x_j$, and $A_{n;D} = \text{Poly}(T^*\mathbb{R}^D[1 - n])$.

This algebra is presented by generators and quadratic-linear-constant relations over the operad $u\text{Pois}_n$ governing unital Poisson n-algebra. It is Koszul, hence the cobar construction $\Omega_\kappa A^!$ provides an explicit cofibrant replacement of A. We explicitly describe this cofibrant replacement.

We use $\Omega_\kappa A^!$ to compute the derived enveloping algebra of $A_{n;D}$, which we prove is quasi-isomorphic to the underlying enveloping algebra of A. We also compute the factorization homology $\int_M A_{n;D}$ of a simply connected parallelized closed manifold M with coefficients in $A_{n;D}$. We prove that the homology of $\int_M A_{n;D}$ is one-dimensional for such manifolds (Proposition 4.17). This fits in with the physical intuition that the expected value of a quantum observable, which should be a single number, lives in $\int_M A$, see e.g. [CG17] for a broad reference. A computation for a similar object was performed by Markarian [Mar17], and we learned that Döppenschmitt computed the factorization homology of a twisted version of $A_{n;D}$ using physical methods (unpublished), see Remark 4.19.

Outline In Section 1, we lay out our conventions and notations, as well as background for the rest of the paper. This section does not contain any original result. We give a quick tour of Koszul duality (Section 1.1), recall the definition of “unital version” of a quadratic operad (Section 1.2), and give some background on factorization homology (Section 1.3). In Section 2, we define the objects with which we will be working: curved coalgebras and semi-augmented algebras. We also give the definitions of the bar and cobar constructions, and we prove that they are adjoint to each other. In Section 3, we prove our main theorem. We define algebras with QLC relations and the Koszul dual curved coalgebra of such an algebra. We prove that if the quadratic reduction of the algebra is Koszul, then the cobar construction on the Koszul dual of the algebra is a cofibrant replacement of the algebra. In Section 4, we apply the theory to the symplectic Poisson n-algebras. We explicitly describe the cofibrant replacement obtained by Koszul duality. We use it compute their derived enveloping algebras and factorization homology.

Acknowledgments The author is thankful to Julien Ducoulombier, Benoit Fresse, and Thomas Willwacher for helpful discussions and comments about a preliminary version.
of this paper. The author is supported by ERC StG 678156-GRAPHCPX.

1 Conventions, background, and recollections

We work with nonnegatively graded chain complexes over some base field k of characteristic zero, which we call “dg-modules”. Given a dg-module V, its suspension ΣV is given by $(\Sigma V)_n = V_{n-1}$ with a signed differential.

We work extensively with (co)operads and (co)algebras over (co)operads. We refer to e.g. [LV12] or [Fre17, Part I(a)] for a detailed treatment. Briefly, a (symmetric, one-colored) operad P is a collection $\{P(n)\}_{n \geq 0}$ of dg-modules, with each $P(n)$ equipped with an action of the symmetric group Σ_n, a unit $\eta \in P(1)$, and composition maps $\circ_i : P(k) \otimes P(l) \to P(k+l-1)$ for $1 \leq i \leq k$ satisfying the usual equivariance, unit, and associativity axioms. For such an operad P and a dg-module V, we define $\mathcal{P}(V) = \bigoplus_{n \geq 0} P(n) \otimes_{\Sigma_n} V^\otimes n$. A P-algebra is a dg-module A equipped with a structure map $\gamma_A : \mathcal{P}(A) \to A$ satisfying the usual axioms. In particular, for a dg-module V, the algebra $\mathcal{P}(V)$ is the free P-algebra on V. (Conilpotent) cooperads and coalgebras are defined dually.

Example 1.1. Some examples of operads will appear several times: (i) the operad Ass governing associative algebras; (ii) the operad Com, governing commutative algebras; (iii) the operad Lie, governing Lie algebra; (iv) the operad Pois_n governing Poisson n-algebras, i.e. algebras with a commutative product and a Lie bracket of degree $n-1$ which is a biderivation with respect to the product.

If $E = \{E(n)\}_{n \geq 0}$ is a symmetric sequence, then we will write $\text{Free}(E)$ for the free operad generated by E. It can be described in terms of rooted trees with internal vertices decorated by elements of E, operadic composition being given by grafting of trees. Moreover if $S \subset P$ is a subsequence of an operad, then we write $P/(S)$ for the quotient of the operad P by the operadic ideal generated by S.

We will need at some point the (de)suspension of an operad or a coalgebra. Given an operad P, the suspended operad $\mathcal{S}P$ is defined such that a $\mathcal{S}P$-algebra structure on ΣA is the same thing as a P-algebra structure on A. It is also sometimes denoted $A^{-1}P$. The suspended cooperad $\mathcal{S}C$ is defined similiarly. On (co)free (co)algebras, we have $\mathcal{S}P(\Sigma V) = \Sigma P(V)$, respectively $\mathcal{S}C(\Sigma V) = \Sigma C(V)$.

Example 1.2. As a symmetric sequence, the operad Pois_n is given by the composition product $\text{Pois}_n = \text{Com} \circ \mathcal{S}^{-1-n}\text{Lie}$. The operad structure map is induced by the structure maps of Com and Lie, as well as a distributive law stating that the bracket is a biderivation.

1.1 Koszul duality for...

We now give a quick tour of some of the various existing incarnations of Koszul duality. We will reuse some of the ideas and notations from these sections.
1.1.1 associative algebras

Koszul duality was initially developed for quadratic associative algebras [Pri70], i.e. associative algebras presented by generators and quadratic relations. To a quadratic associative algebra A, there is an associated "Koszul dual" $A^!$, an associative algebra itself. The algebra A is said to be "Koszul" if $A^!$ is generated by its weight 1 elements. In this case, it can be used to compute the Tor and Ext groups over A.

This can be reformulated as follows. There is an associated Koszul dual coalgebra $A^!$ to A, and $A^!$ is the linear dual of $A^!$. It can be used to define a "Koszul complex" $A \otimes \kappa A^!$, which is acyclic iff $A^!$ is Koszul. This coalgebra $A^!$ is a subcoalgebra of the bar construction BA, and is isomorphic to the zeroth cohomology group $H^0(BA)$ (with respect to a certain grading of BA). There is a canonical morphism from the cobar construction $\Omega A^!$ to A, the algebra A is Koszul iff this canonical morphism is a quasi-isomorphism, iff the inclusion $A^! \to BA$ is a quasi-isomorphism. Since the cobar construction $\Omega A^!$ is quasi-free as an associative algebra, this allows to produce an explicit, small, quasi-free resolution of any Koszul algebra.

Example 1.3. Let $A = \mathbb{R}[x_1, \ldots, x_k]$ be a free commutative algebra on k variables of degrees zero. Then the Koszul dual $A^! = \Lambda^c(dx_1, \ldots, dx_k)$ is the exterior coalgebra on k variables of (homological) degree -1. The complex $(A \otimes A^!, d_\kappa)$ is what was initially called the Koszul complex, with a differential similar to the de Rham differential. It is acyclic, hence A is Koszul.

1.1.2 quadratic operads

After insights of Kontsevich [Kon93], Koszul duality was generalized to binary quadratic operads by Ginzburg–Kapranov [GK94] (see also [GJ94]) and then to quadratic operads by Getzler [Get95] (see also [Fre04; Mar96]). We refer to [LV12] for a detailed treatment.

Let $P = \text{Free}(E)/\langle R \rangle$ be an operad presented by generators $E = \{E(n)\}_{n \geq 0}$ and relations $R \subset \text{Free}(E)$. The presentation is said to be quadratic if the relations R are quadratic, i.e. if they form a subsequence of the weight 2 component $\text{Free}(E)^{(2)}$ of the free operad $\text{Free}(E)$. A quadratic operad is an operad equipped with a presentation with quadratic relations (not unique in general). To this quadratic operad, there is an associated Koszul dual cooperad $P^!$, obtained by the cofree cooperad on "cogenerators" ΣE subject to the "corelations" Σ^2R. One can also define the Koszul dual operad $P^!$ as the shifted linear dual of $P^!$.

Example 1.4. The operad governing associative algebras Ass is auto-dual: $\text{Ass}^! = \text{Ass}$. The operads Com (commutative algebras) and Lie (Lie algebras) are Koszul dual to each other: $\text{Com}^! = \text{Lie}$ and $\text{Lie}^! = \text{Com}$. The operad $\text{Pois}_n = \text{Com} \circ \mathcal{S}^{1-n}\text{Lie}$ governing Poisson n-algebras is auto-dual up to suspension: $\text{Pois}_n^! = \mathcal{S}^{n-1}\text{Pois}_n$.

Just like for algebras, $P^!$ is a suboperad of BP, the operadic bar construction of P. This implies that there is a canonical "twisting morphism" κ of degree -1:

$$\kappa : P^! \to \Sigma E \xrightarrow{\Sigma^{-1}} E \hookrightarrow P,$$

(1.1)
This is an element that satisfies the Maurer–Cartan equation $\partial \kappa + \kappa \star \kappa$, where \star is the preLie convolution product on $\text{Hom}(P^i, P)$. It thus induces a canonical morphism from the operadic cobar construction ΩP^i to P. The operad is said to be Koszul if this canonical morphism is a quasi-isomorphism. Just like for associative algebras, this is equivalent to the inclusion $P^i \to BP$ being a quasi-isomorphism, and it’s also equivalent to a certain “Koszul complex” $(P^i \circ_\kappa P)$ being acyclic.

The operads Ass, Com, Lie, and Pois_n are all Koszul. This allows to define small, explicit quasi-free resolutions of these operads, for example the A_∞, C_∞, or L_∞ operads.

This also allows to produce functorial resolutions of algebras over these operads, using the bar/cobar constructions. Indeed, the twisting morphism $\kappa : P^i \to P$ induces an adjunction $\Omega_\kappa \dashv B_{\kappa}$ between the categories of P^i-coalgebras and P-algebras, and if P is Koszul, then $\Omega_\kappa B_{\kappa}(-)$ is a functorial cofibrant replacement functor. For example, for the operad Ass, this gives the usual bar-cobar resolution of an algebra. For the operad Com, the resolution obtained is (up to degree shifts) the free commutative algebra on the Harrison complex of the initial commutative algebras, together with some differential.

1.1.3 . . .monogenic algebras over operads

Millès [Mil12] extended Koszul duality to “monogenic” algebras over quadratic operads, a notion which generalizes quadratic associative algebras. Given a quadratic operad $P = \text{Free}(E)/(R)$, a monogenic P-algebra A is an algebra equipped with a presentation $A = P(V)/(S)$, where V is some set of generators, and $S \subset E(V)$ is a set of relations. The differential of A is zero.

To this monogenic algebra $A = P(V)/(S)$, there is an associated Koszul dual P^i-coalgebra $A^i = \Sigma P^i(V, \Sigma S)$, i.e. it is the suspension of the cofree P^i-coalgebra on V subject to the corelations ΣS. There is a canonical “algebra-twisting morphism” \varkappa of degree -1,

$$\varkappa : A^i \to \Sigma V \xrightarrow{\Sigma^{-1}} V \hookrightarrow A,$$

Let $\kappa : P^i \to P$ be the operad-twisting morphism introduced in Equation (1.1). The κ-star product $\ast_\kappa(\varkappa)$ is given by the composition:

$$\ast_\kappa(\varkappa) : \Sigma A^i \xrightarrow{\Delta_{A^i}} \Sigma P^i(A^i) \xrightarrow{\kappa \circ \varkappa} P(A) \xrightarrow{\gamma} A. \quad (1.3)$$

The element \varkappa satisfies the Maurer–Cartan equation $\ast_\kappa(\varkappa) = 0$ (the differential vanishes). It thus naturally defines a morphism of P-algebras $f_\varkappa : \Omega_\kappa A^i \to A$.

The algebra A is said to be Koszul if this morphism f_\varkappa is a quasi-isomorphism. Millès [Mil12] proves that this is equivalent to a certain Koszul complex being acyclic, and also equivalent to the adjunct canonical morphism $A^i \to BA$ being a quasi-isomorphism. In this case, the algebra $\Omega_\kappa A^i$ is an explicit, small resolution of A. For example, if $P = \text{Ass}$, this recovers the usual Koszul duality/resolution of associative algebras.

Our goal in this paper is to generalize these ideas to unital algebras, using the ideas presented in the next subsection.
1.1.4 . . . operads with QLC relations (curved Koszul duality)

Curved Koszul duality is a generalization of Koszul duality for unital associative algebras [Pos93; PP05]. This was generalized by Hirsh–Millès [HM12] for (pr)operads with quadratic-linear-constant (QLC) relations (see also Lyubashenko [Lyu11] for the case of the unital associative operad). Examples include the operads governing unital associative algebras, unital commutative algebras, and Lie algebras equipped with a central element. (See also [GTV12] for operads with quadratic-linear relations.)

For simplicity, let us just deal with operads (and not properads). Let I be the unit operad, i.e. $I(1) = k$ and $I(n) = 0$ for $n \neq 1$. A QLC presentation of an operad is a presentation $P = \text{Free}(E)/(R)$, where E is some module of generators and $R \subset I \oplus E \oplus \text{Free}(E)^{(2)}$ is some module of relation with constant (i.e. multiple of id$_P$), linear, and quadratic terms.

Example 1.5. The operad uAss governing unital associative algebras has a QLC presentation. It is generated by the unit $1 \in \text{uAss}(0)$ and the product $\mu \in \text{uAss}(2)$ a binary generator. The relations are $\mu \circ_1 \mu = \mu \circ_2 \mu$ (quadratic) and $\mu \circ_1 1 = \text{id} = \mu \circ_2 1$ (quadratic-constant).

The quadratic reduction qP is the quadratic operad $\text{Free}(E)/(qR)$, where qR is the projection of R onto $\text{Free}(E)^{(2)}$. Hirsh and Millès impose some conditions on this presentation: the space of generators is minimal, i.e. $R \cap I \oplus E = 0$, and the space of relations is maximal, i.e. $R = (R) \cap I \oplus E \oplus \text{Free}(E)^{(2)}$. Therefore R is the graph of some map $\varphi = (\varphi_0 + \varphi_1) : qR \to I \oplus E$, i.e. $R = \{X + \varphi(X) \mid X \in qR\}$.

From this data they define the Koszul dual cooperad Π, which is a curved cooperad. This curved cooperad is a triplet $(qP^i, d_\Pi, \theta_\Pi)$, where:

- qP^i is the Koszul dual cooperad of the quadratic cooperad qP (Section 1.1.2);
- the predifferential d_Π is the unique degree -1 coderivation of qP^i whose corestriction (composition with the projection) onto ΣE is given by $qP^i \to \Sigma^2 qR \xrightarrow{\Sigma \varphi_1} \Sigma E$;
- the curvature θ_Π is the map of degree -2 obtained by $qP^i \to \Sigma^2 qR \xrightarrow{\Sigma \varphi_0} I$.

This data satisfies some axioms. These axioms imply that the cobar construction $\Omega(qP^i) = (\text{coFree}(qP^i), d_\Pi)$ is equipped with an extra differential $d_0 + d_1$, defined respectively from θ_Π and d_Π. The canonical morphism $\Omega(qP^i) \to qP$ extends to a canonical morphism $\Omega qP^i := (\Omega(qP^i), d_0 + d_1) \to P$.

[HM12, Theorem 4.3.1] implies that if the quadratic operad qP is Koszul, then the canonical morphism $\Omega qP^i \to P$ is a quasi-isomorphism. This justifies the definition: the operad P is said to be Koszul if the quadratic operad qP is Koszul in the usual sense.

Our aim, in this paper, is to reuse these ideas to define a curved Koszul duality theory for “unital” algebras (in some sense) over “unital” operads. The general philosophy is as follows: operads are monoids in the category of symmetric sequence. Hence, the results of Hirsh–Millès above are in some sense results about the associative operad and its Koszul dual, which is itself This explains why the Koszul dual of an operad is a cooperad, i.e. a comonoid; Koszul duality is “hidden” is the implicit identification of
the weight 2 part of the free operad on some generators with the weight two part of
the cofree cooperad on these generators. With this point of view, we reuse the ideas of
Milès in Section 1.1.3 to define curved Koszul duality for algebras over any operad.

Remark 1.6. Le Grignou [LeG17] defined a model category structure on the category of
curved cooperads, which is Quillen equivalent to the model category of operads using
the bar/cobar adjunction.

1.2 Unital versions of operads

In what follows, we will only work with algebras over special kinds of operads, namely
unital versions of binary quadratic operads. Let \(P = \text{Free}(E)/(R) \) be an operad
presented by binary generators \(E = \{0,0,E(2),0,\ldots\} \) and (homogeneous) quadratic
relations \(R \subset (E(2)^{\otimes 2})_{\Sigma_2} \). Moreover we assume that the differential of \(P \)
is zero.

Remark 1.7. While most of this paper could be carried out without the assumption that
\(P \) is binary, we need this assumption to be able to show Proposition 3.4.

Definition 1.8 (Adapted from [HM12, Definition 6.5.4]). A unital version \(uP \) of \(P \) is an
operad equipped with a presentation of the form \(uP = \text{Free}(E \oplus 1)/(R + R') \), where \(1 \)
is a generator of arity 0 and degree 0, and such that (i) the inclusion \(E \subset E \oplus 1 \) induces
an injective morphism of operads \(P \to uP \); (ii) we have an isomorphism \(1 \oplus P \cong quP \)
induced by the inclusions \(P \subset uP \) and \(1 \subset uP \); (iii) the QLC relations in \(R' \) have no
linear terms, only quadratic-constant.

Example 1.9. Examples include the operads (i) \(u\text{Ass} \) encoding unital associative algebras;
(ii) \(u\text{Com} \) encoding unital commutative algebras; (iii) \(c\text{Lie} \) encoding Lie algebras
equipped with a central element; (iv) \(u\text{Pois}_n \) encoding Poisson \(n \)-algebras equipped with
an element which is a unit for the product and a central element for the shifted Lie
bracket.

1.3 Factorization homology

Factorization homology [AF15], also known as topological chiral homology [BD04], is
an invariant of manifolds with coefficients in a homotopy commutative algebra, just like
standard homology is an invariant of topological spaces with coefficients in a commuta
tive ring. One possible definition of factorization homology is the following [Fra13],
which we give for parallelized manifold for simplicity (but a similar definition exists for
unparallelized manifold).

Fix some integer \(n \geq 0 \). There is an operad \(\text{Disk}^f_n \), obtained as the operad of endomorphisms of \(\mathbb{R}^n \) in the category of parallelized manifolds and embeddings preserving the parallelizations. In each arity, we have \(\text{Disk}^f_n(k) := \text{Emb}^f((\mathbb{R}^n)^{\otimes k},\mathbb{R}^n) \), and operadic composition is given by composition of embeddings. This operad is weakly equivalent to the usual little \(n \)-disks operad, i.e. it is an \(E_n \)-operad. In particular, its homology \(H_*(\text{Disk}_n) \) is the unital associative operad \(u\text{Ass} \) for \(n = 1 \), and the unital \(n \)-Poisson
operad \(u\text{Pois}_n \) for \(n \geq 2 \).
Moreover, given a parallelized \(n \)-manifold \(M \), there is a right \(\text{Disk}^{fr}_{n} \)-module given by \(\text{Disk}_{M}^{fr}(k) := \text{Emb}^{fr}((\mathbb{R}^{n})^{\times k}, M) \). For a \(\text{Disk}^{fr}_{n} \)-algebra \(A \) (i.e. an \(E_{n} \)-algebra), the factorization homology of \(M \) with coefficients in \(A \), denoted by \(\int_{M} A \), is given by the derived composition product:

\[
\int_{M} A := \text{Disk}_{M}^{fr} \circ_{\text{Disk}_{n}^{fr}}^{L} A = \text{hcoeq}(\text{Disk}_{M}^{fr} \circ \text{Disk}_{n}^{fr} \circ A \Rightarrow \text{Disk}_{M}^{fr} \circ A).
\]

This definition also makes sense in the category of chain complexes, replacing \(\text{Disk}_{n}^{fr} \) and \(\text{Disk}_{M}^{fr} \) by their respective chain complexes. The operad \(\text{Disk}_{n}^{fr} \) is formal over the rationals [Kon99; Tam03; LV14; Pet14; FW15], hence up to homotopy we may replace \(C_{*}(\text{Disk}_{n}^{fr}; \mathbb{Q}) \) by \(H_{*}(\text{Disk}_{n}^{fr}; \mathbb{Q}) \), which is \(u\text{Pois}_{n} \) for \(n \geq 2 \).

In [Idr16], given a simply connected closed smooth manifold \(M \) with \(\dim M \geq 4 \), we provide an explicit model for \(C_{*}(\text{Disk}^{fr}_{n}; \mathbb{R}) \). Our model is a right module over the operad \(H_{*}(\text{Disk}_{n}^{fr}) = u\text{Pois}_{n} \), and the action is compatible with the action of \(\text{Disk}^{fr}_{n} \) on \(\text{Disk}^{fr}_{M} \) in an appropriate sense. We called it the Lambrechts–Stanley model as it had been conjectured in [LS08a] (without mention of operads). This allows us to compute factorization homology of such manifolds by replacing \(C_{*}(\text{Disk}_{M}^{fr}) \) with our model.

This explicit model \(G_{P}^{\fr} \) depends on a Poincaré duality model \(P \) of \(M \). This is a (upper-graded) commutative differential graded algebra equipped with a linear form \(\varepsilon : P^{n} \to \mathbb{Q} \) satisfying \(\varepsilon \circ d = 0 \) and inducing a non-degenerate pairing \(P^{k} \otimes P^{n-k} \to \mathbb{Q}, x \otimes y \mapsto \varepsilon(xy) \) for all \(k \in \mathbb{Z} \). It is moreover a rational model for \(M \) in the sense of Sullivan rational homotopy theory. These exist for all simply connected closed manifold [LS08b].

We will not give the original definition of our explicit model for \(C_{*}(\text{Disk}_{M}^{fr}; \mathbb{R}) \). Instead we give an alternative description as explained in [Idr16, Section 5]. Recall the operad \(\text{Lie} \) governing Lie algebras, and let \(\text{Lie}_{n} = \mathbb{S}^{1-n}\text{Lie} \) be its suspension governing shifted Lie algebras. For convenience, define a Lie algebra in the category of \(\text{Lie}_{n} \)-right modules by \(L_{n}(k) := \Sigma^{n-1}\text{Lie}_{n}(k) \), satisfying \(L_{n} \circ V = \text{Lie} \circ (\Sigma^{n-1}V) \).

Given a Lie algebra \(\mathfrak{g} \), its Chevalley–Eilenberg chain complex (with trivial coefficients) is \(C_{*}^{CE}(\mathfrak{g}) := (S^{c}(\Sigma \mathfrak{g}), d_{CE}) \), with differential defined by \(d_{CE}(x_{1} \ldots x_{k}) = \sum_{i<j} \pm x_{i} \ldots [x_{i}, x_{j}] \ldots x_{k} \).

Then, as a right \(\text{Lie}_{n} \)-module, our model is given by \(G_{P}^{\fr} \simeq_{\text{Lie}_{n}-\text{RMod}} C_{*}^{CE}(P^{-s} \otimes L_{n}) \), where \(P^{-s} \) is \(P \) with grading reversed [Idr16, Lemma 5.2]. The right \(u\text{Com} \)-module structure is described in Section 4.4.

Finally, using theorems about preservations of weak equivalences by the relative operadic composition product, we find that given a \(u\text{Pois}_{n} \)-algebra \(A \), the factorization homology of \(M \) with coefficients in \(A \) over \(\mathbb{R} \) is quasi-isomorphic to \(G_{P}^{\fr} \circ_{u\text{Pois}_{n}} A \) (under the hypotheses stated above).

As an explicit example, if \(A = S(\Sigma^{1-n}\mathfrak{g}) \) is the “universal enveloping \(n \)-algebra” of \(\mathfrak{g} \), we recovered a theorem of Knudsen [Knu16]: \(\int_{M} S(\Sigma^{1-n}\mathfrak{g}) \simeq C_{*}^{CE}(P^{n-s} \otimes \mathfrak{g}) \).
2 Curved coalgebras, semi-augmented algebras, bar-cobar adjunction

From now on, we fix a binary, homogeneous quadratic operad $P = \text{Free}(E)/(R)$ and a unital version $uP = \text{Free}(I \oplus E)/(R + R')$ as in Section 1.2, with the same notations. Note that the operad P is automatically augmented.

2.1 Definitions

Let C be a coaugmented conilpotent cooperad, with zero differential. Let $\varphi : C \to P$ be a twisting morphism \cite[Section 6.4.3]{LV12}, i.e. a map satisfying the Maurer–Cartan equation

$$\varphi \star \varphi = 0,$$

(2.1)

where \star is the convolution product (and the differential of φ vanishes because dC and dP do). Suppose moreover that $\text{im } \varphi \subset E = P(2)$, the space of binary generators of P. This twisting morphism φ induces a twisting morphism

$$\bar{\varphi} : 1 \star C \to uP,$$

(2.2)

where $1 \star C$ is the free product of C with the cooperad on one generator 1 of arity 0.

Given a C-coalgebra C and a map $\theta : C \to k1$, we denote by

$$\Theta : C \xrightarrow{\theta} k1 \hookrightarrow uP(C)$$

(2.3)

the composition, where $uP(C)$ is the free uP-algebra on C.

Definition 2.1. The $\bar{\varphi}$-star product of θ is the composition:

$$\star_{\bar{\varphi}}(\theta) : C \xrightarrow{\Delta_C} C \otimes C \xrightarrow{\bar{\varphi} \otimes 1} uP(uP(C)) \xrightarrow{\gamma_{uP(C)}} uP(C).$$

(2.4)

Thanks to our hypotheses that $\text{im } \varphi \subset P(2)$ and that the inhomogeneous relations of uP have no linear terms (see Section 1.2), we then check that the image of $\star_{\bar{\varphi}}(\theta)$ is included in $C \subset uP(C)$.

Example 2.2. Let $uP = uAss$ be the operad governing unital associative operads and $\kappa : Ass1 \to Ass$ the Koszul twisting morphism. Then, given a coalgebra C and a map $\theta : C \to k$, the κ-star product of θ is given by:

$$\star_{\kappa}(\theta) = (\theta \otimes \text{id} \mp \text{id} \otimes \theta)\Delta_C : C \to C.$$

(2.5)

We then have the following definition, inspired by the definition of a curved coproperad in \cite[Section 3.2.1]{HM12} (where implicitly the twisting morphism is the Koszul morphism from the colored operad of operads to its Koszul dual):

Definition 2.3. A φ-curved C-coalgebra is a triple (C, d_C, θ_C) where:

- C is a C-coalgebra (with no differential);
• $d_C : C \to C$ is a degree -1 coderivation (the “predifferential”);
• $\theta_C : C \to kI$ is a degree -2 linear map (the “curvature”);

satisfying:

\[d^2_C = *_\varphi(\theta_C), \quad \theta_C d_C = 0. \tag{2.6} \]

Remark 2.4. This notion looks similar to the notion of coalgebra over a curved cooperad from [HM12, Section 5.2.1]. A coalgebra over a curved cooperad (C, d_C, θ_C) is a pair (C, d_C) where C is a C-coalgebra, d_C is a coderivation of C, and $d_C^2 = (\theta_C \circ \text{id}_C) \Delta_C$. In our setting, the curvature is part of the data of the coalgebra, rather than the cooperad itself, and we have an extra condition $\theta_C d_C = 0$. Moreover our notion of curved coalgebra depends on the data of a twisting morphism $\varphi : C \to P$, whereas in the other setting this is extra data required to define a bar/cobar adjunction. Le Grignou [LeG16] endowed the category of coalgebras over a curved cooperad with a model category structure, such that the bar/cobar adjunction defines a Quillen equivalence with the category of unital algebras.

Example 2.5. Consider the case $uP = u\text{Ass}$ is the operad governing unital associative algebras, $C = \text{Ass}^\ast$ is the Koszul dual of Ass (the suspension of its linear dual), and $\varphi = \kappa$ is the twisting morphism of Koszul duality. Then a κ-curved Ass^\ast-coalgebra is a (shifted) coassociative coalgebra C, together with a predifferential d_C and a “curvature” $\theta_C : C \to k$, such that $\theta_C d_C = 0$ and d_C^2 is the cocommutator of θ:

\[d^2_C = *_\kappa(\theta) : C \overset{\Delta}{\to} C \otimes C \overset{\theta \otimes \text{id} \pm \text{id} \otimes \theta}{\longrightarrow} C. \tag{2.7} \]

This recovers the notion of curved homotopy coalgebra from Lyubashenko [Lyu17].

Example 2.6. For Lie algebras and the Koszul twisting morphism $\varphi = \kappa : \text{Lie}^\ast \to \text{Lie}$, this definition recovers (the dual of) the notion of “curved Lie algebra” [CLM16; Mau17]. A curved Lie algebra is a Lie algebra g equipped with a derivation d of degree -1 and an element ω of degree -2 such that $d^2 = [\omega, -]$.

We also define the notion of a “semi-augmented” algebra over uP (the terminology is adapted from [HM12]). This is necessary because, in general, the bar construction of an algebra is not a curved coalgebra.

Definition 2.7. A semi-augmented uP-algebra is a dg-uP-algebra A equipped with a linear map $\varepsilon_A : A \to k$ (not necessarily compatible with the dg-algebra structure), such that $\varepsilon_A(1) = 1$. Given such a semi-augmented uP-algebra, we let \bar{A} be the kernel of ε_A.

Given a semi-augmented uP-algebra (A, ε_A), the exact sequence $0 \to \bar{A} \to A \overset{\varepsilon_A}{\to} kI \to 0$ defines an isomorphism of graded modules $A \cong \bar{A} \oplus kI$. This isomorphism is not compatible with the differential or the algebra structure in general. This allows to define a “composition” $\tilde{\varepsilon}_A : uP(\bar{A}) \to \bar{A}$ (which is generally not associative or a chain map) and a “differential” $\bar{d}_A : \bar{A} \to \bar{A}$ (which does not square to zero in general), by using the inclusion and projection $\bar{A} \to A \oplus kI \cong A \to \bar{A}$.

11
2.2 Cobar construction

Let \(\varphi : \mathcal{C} \to \mathcal{P} \) be a twisting morphism, i.e. an element satisfying the Maurer–Cartan equation \(\varphi \star \varphi = 0 \). Let \(\mathcal{C} = (C, d_C, \theta_C) \) be a \(\varphi \)-curved \(\mathcal{C} \)-coalgebra as in Definition 2.3. We adapt the definition of [HM12, Section 5.2.5].

Definition 2.8. The cobar construction of \(\mathcal{C} \) with respect to \(\varphi \) is given by:

\[
\Omega_{\varphi}(\mathcal{C}) := (u\mathcal{P}(\Sigma^{-1}C), d_\Omega = -d_0 + d_1 - d_2),
\]

where each \(d_i \) is a derivation of degree \(-1\) defined on generators by:

\[
d_0|_{\Sigma^{-1}C} : \Sigma^{-1}C \xrightarrow{\Sigma d_C} \Sigma^{-1}C \xrightarrow{\varphi} u\mathcal{P}(\Sigma^{-1}C)
\]

\[
d_1|_{\Sigma^{-1}C} : \Sigma^{-1}C \xrightarrow{d_C} \Sigma^{-1}C \xrightarrow{\theta_C} u\mathcal{P}(\Sigma^{-1}C)
\]

\[
d_2|_{\Sigma^{-1}C} : \Sigma^{-1}C \xrightarrow{\Delta} \mathcal{C}(\Sigma^{-1}C) \xrightarrow{\bar{\varphi}(\text{id})} u\mathcal{P}(\Sigma^{-1}C)
\]

It is equipped with the semi-augmentation \(\varepsilon_\Omega : \Omega_{\varphi}(\mathcal{C}) \to \mathcal{k} \) given by the projection \(u\mathcal{P} \to 1 \).

The only thing we need to check is:

Proposition 2.9. The derivation \(d_\Omega \) squares to zero: \(d_\Omega^2 = 0 \).

Proof. There is a weight decomposition (denoted \(\omega \)) of \(u\mathcal{P}(\Sigma^{-1}C) \) obtained by assigning \(\Sigma^{-1}C \) the weight 1. For example, \(d_0 \) is of weight \(-2\), \(d_1 \) is of weight \(-1\), and \(d_2 \) is of weight 0. We may then decompose \(d_\Omega^2 \) in terms of this weight:

\[
d_\Omega^2 = \begin{aligned}
&d_0^2 \\
&\omega = -2
\end{aligned}
- \begin{aligned}
d_0d_1 - d_1d_0 + d_0^2 + d_2d_0 + d_2d_0 - (d_1d_2 + d_2d_1)
&\omega = -1
\end{aligned}
- \begin{aligned}
&d_2^2
&\omega = 0
\end{aligned}
\]

and it suffices to check that each summand vanishes. Each summand is itself a derivation (because \(d_\Omega^2 = \frac{1}{2}[d_\Omega, d_\Omega] \) is a derivation thus so are its weight components), so it even suffices to check that they vanish on generators.

- \(d_0^2 = 0 \): the image of \(d_0 \) is included in \(k1 \), and every derivation vanishes on \(1 \);
- \(d_1d_0 + d_0d_1 = 0 \):
 - \(d_1d_0 = 0 \) because \(d_1(1) = 0 \);
 - \(d_0d_1 = 0 \) because \(\theta_C d_C = 0 \);
- \(d_1^2 + d_0d_2 + d_2d_0 = 0 \):
 - \(d_2d_0 = 0 \), again because \(d_2(1) = 0 \);
 - \(d_1^2 + d_0d_2 = 0 \), comes from \(d_C^2 = \star \varphi(\theta_C) \) and the Koszul rule of signs;
- \(d_1d_2 + d_2d_1 = 0 \) comes from the fact that \(d_C \) is a derivation (the \(\bar{\varphi} \) appearing in \(d_1d_2 \) stays on the outside).
• $d_2 = 0$ comes from the Maurer–Cartan equation $\bar{\phi} \star \bar{\phi} = 0$ and the commutativity of the following diagram:

\[
\begin{array}{ccc}
C & \xrightarrow{\Delta_C} & C(C) \\
\downarrow{\Delta_C} & & \downarrow{\bar{\phi} \circ \text{id}} \\
C(C) & \xrightarrow{\Delta(id \circ \bar{\phi} \circ \text{id})} & C(C; C(C)) \xrightarrow{\bar{\phi} \circ \text{id}} uP(C)
\end{array}
\]

Corollary 2.10. Given a φ-curved C-coalgebra $C = (C, d_C, \theta_C)$, the cobar construction $\Omega_{\varphi}(C)$ is a well-defined semi-augmented uP-algebra.

2.3 Bar construction

We now define the twin of the cobar construction: the bar construction (see [HM12, Section 3.3.2] for the (pr)operadic case). Let $\varphi : C \to P$ be a twisting morphism and let A be a semi-augmented dg-uP-algebra (see Definition 2.7), with augmentation ideal \bar{A}. Again, to avoid signs, we will actually define the bar construction of the $\mathcal{S}^{-1}uP$-algebra $\Sigma^{-1}A$. Recall that $\varepsilon_A : A \to k$ is the semi-augmentation and $\bar{A} = \ker \varepsilon_A$. There is a “composition map” $\bar{\gamma}_A : uP(\bar{A}) \to \bar{A}$ and a “differential” $d_{\bar{A}}$ (which do not satisfy any good property).

We want to define the φ-curved C-algebra (see the analogous definition in [HM12, Section 5.2.3])

\[B_{\varphi}A := (C(\Sigma \bar{A}), d_B, \theta_B).\]

The underlying C-coalgebra of $B_{\varphi}(A)$ is merely the cofree coalgebra $C(\Sigma \bar{A})$. The predifferential d_B is the sum $d_1 + d_2$, where

• d_2 is the unique coderivation of $C(\Sigma \bar{A})$ whose corestriction onto $\Sigma \bar{A}$ is:

\[d_2|_{\Sigma \bar{A}} : C(\Sigma \bar{A}) \xrightarrow{\varphi \circ \text{id}} P(\Sigma \bar{A}) \xrightarrow{\bar{\gamma}_A} \Sigma \bar{A};\]

• d_1 is the unique coderivation whose corestriction is:

\[d_1|_{\Sigma \bar{A}} : C(\Sigma \bar{A}) \to \Sigma \bar{A} \xrightarrow{d_{\bar{A}}} \Sigma \bar{A}.\]

Let $\varepsilon_C : C \to I$ be the counit of the cooperad C. The curvature $\theta_B : C(A) \to k$ is the map of degree -2 given by:

\[C(\Sigma \bar{A}) \xrightarrow{(\varepsilon_C \circ \varphi)(\text{id} \circ \bar{A})} \Sigma \bar{A} \oplus uP(\Sigma \bar{A}) \xrightarrow{d_{\bar{A}} + \gamma_A} \Sigma A \xrightarrow{\varepsilon_A} k.\]

Proposition 2.11. The predifferential d_B and the curvature θ_B satisfy the equations defining a φ-curved coalgebra structure on $B_{\varphi}A$.

13
Sketch of proof. We need to check that $d_B^2 = \star \varphi(\theta_B)$ and $\theta_B d_B = 0$. It is enough to check these equalities when projected on cogenerators, as the three maps are coderivations. This then follows from the definitions, the Maurer–Cartan equation $\varphi \star \varphi$, the fact that d_A is a derivation, the associativity of the uP-algebra structure maps on A, and the compatibility of d_A with these structures maps. We refer to [HM12, Lemma 3.3.3] for the case of operads, roughly speaking the case $P = \text{Ass}$. □

Corollary 2.12. The data $B \varphi A = (C(Sigma A), d_B, \theta_B)$ defines a φ-curved coalgebra from the semi-augmented uP-algebra A.

2.4 Adjunction

Definition 2.13. Let $\varphi : C \to P$ be a twisting morphism, $C = (C, d_C, \theta_C)$ be a φ-curved C-coalgebra, and A be a semi-augmented uP-algebra. The set of φ-twisting morphisms from C to A is:

$$\text{Tw}_\varphi(C, A) := \{ \beta : C \to A \mid \partial(\beta) + \hat{\varphi}(\beta) = \Theta^A \},$$

where $\hat{\varphi}(\beta)$ and Θ^A are given by:

$$\hat{\varphi}(\beta) : C \xrightarrow{\Delta_C} C \circ C \xrightarrow{\varphi \circ} uP \circ A \xrightarrow{\gamma_A},$$

$$\Theta^A : C \xrightarrow{\theta_C} \mathbb{K}1 \to A.$$

We then have the following “Rosetta stone”, to reuse the terminology of [LV12]:

Proposition 2.14. Let C be a φ-curved C-coalgebra and A be a semi-augmented uP-algebra. Then there are natural bijections (in particular, Ω_φ and B_φ are adjoint):

$$\text{Hom}_{\text{sem.aug.uP-alg}}(\Omega^\varphi C, A) \cong \text{Tw}_\varphi(C, A) \cong \text{Hom}_{\text{\varphi-curved c-coalg}}(C, B_\varphi A).$$

Proof. Let us first prove the existence of the first bijection. Given $\beta \in \text{Tw}_\varphi(C, A)$, we let $f_\beta : uP(\Sigma^{-1} C) \to A$ be the uP-algebra morphism given on generators by β. We must check that $f_\beta d_1 = d_A f_\beta$. As we are working with derivations and morphisms, it is enough to check this on $\Sigma^{-1} C$. The restrictions of the maps involved are:

- $f_\beta d_0|_{\Sigma^{-1} C} = \Theta^A$;
- $f_\beta d_1|_{\Sigma^{-1} C} = \beta d_C$;
- $f_\beta d_2|_{\Sigma^{-1} C} = (\Sigma^{-1} C \xrightarrow{\Delta_C} C \circ C \xrightarrow{\varphi \circ} uP \circ A \xrightarrow{\gamma_A} A) = \hat{\varphi}(\beta)$;
- $d_A f_\beta|_{\Sigma^{-1} C} = \theta_C \beta$.

The Maurer–Cartan equation $\partial(\beta) + \hat{\varphi}(\beta) = \Theta^A$ then implies $f_\beta d_1 = d_A f_\beta$.

Conversely, given $f : \Omega^\varphi C \to A$, then we can define $\beta := f|_{\Sigma^{-1} C}$. The same proof as above but in the reverse direction shows that the compatibility of f with the differentials imply the Maurer–Cartan equation. Moreover, the two constructions are inverse to each other and we are done.

Checking the existence of the second bijection is extremely similar (see also the proof of [HM12, Theorem 3.4.1] for the case of (co)operads). Checking that the two bijections are natural in terms of C and A is also a simple exercise in commutative diagrams. □

14
3 Koszul duality of unitary algebras

3.1 Algebras with quadratic-linear-constant relations

We now define the type of algebras for which we will developed a Koszul duality theory, namely algebras with “quadratic-linear-constant” (QLC) relations. For this we adapt the notion of a “monogenic algebra” from [Mil12, Section 4.1] (see Section 1.1.3). We still assume that we are given a unital version \(uP = \text{Free}(1 \oplus E)/(R + R') \) of a binary quadratic operad \(P = \text{Free}(E)/(R) \) as in Section 1.2.

Definition 3.1. An \(uP \)-algebra with QLC relations is a \(uP \)-algebra \(A \) with \(d_A = 0 \), equipped with a presentation by generators and relations:

\[
A = uP(V)/I, \tag{3.1}
\]

with \(d_A = 0 \), satisfying the two conditions:

1. the ideal \(I \) is generated by \(S := I \cap (1 \oplus V \oplus E(V)) \) (where \(E(V) = E \otimes_{\Sigma_2} V^\otimes 2 \)),
2. the relations in \(S \) are least quadratic, \(S \cap (1 \oplus V) = 0 \).

Remark 3.2. Such an algebra is automatically semi-augmented (Definition 2.7).

Definition 3.3. Given a \(uP \)-algebra \(A \) with QLC relations as above, let \(qS \) be the projection of \(S \) onto \(E(V) \). Then the quadratic reduction \(qA \) of \(A \) is the monogenic \(P \)-algebra obtained by:

\[
qA := P(V)/(qS). \tag{3.2}
\]

The second condition in Definition 3.1 implies that \(S \) is the graph of some map

\[
\alpha = (\alpha_0 \oplus \alpha_1) : qS \to k1 \oplus V, \tag{3.3}
\]

i.e. \(S = \{x + \alpha(x) | x \in qS\} \).

Until the end of this section, \(A \) will be a \(uP \)-algebra with QLC relations, using the same notations.

3.2 Koszul dual coalgebra

Let \(P^i \) be the Koszul dual cooperad of \(P \), with an operad-twisting morphism \(\kappa : P^i \to P \) (see Section 1.1.2). The theory of [Mil12] (see Section 1.1.3) defines a Koszul dual \(\mathcal{L}^i P^i \)-coalgebra \(qA^i \) from the quadratic reduction \(qA \):

\[
qA^i := \Sigma P^i(V, \Sigma qS). \tag{3.4}
\]

Using the map \(\alpha \) from Equation (3.3), we may define \(d_{Ai} : qA^i \to \Sigma P^i(V) \) to be the unique coderivation whose corestriction is given by:

\[
d_{Ai}|^{\Sigma V} : qA^i \to \Sigma^2 qS \xrightarrow{\Sigma^{-1} \alpha_1} \Sigma V. \tag{3.5}
\]
Moreover, define \(\theta_A \) by:

\[
\theta_A : qA^1 \to \Sigma^2qS^\Sigma^{-2} \alpha_0 \otimes 1.
\]

(3.6)

We now define the Koszul dual coalgebra of \(A \) by adapting [HM12, Section 4.2]:

Proposition 3.4. The following data defines a \(\kappa \)-curved \(P \)-coalgebra, called the Koszul dual curved coalgebra of \(A \):

\[
A^1 := (qA^1, d_A^1, \theta_A^1).
\]

(3.7)

Proof. We must show that \(d_A^1(qA^1) \subseteq qA^1 \), that \(\star_{\kappa}(\theta_A^1) = d_A^2 \), and that \(\theta_A^1 d_A^1 = 0 \).

Because we assume that the operad \(P \) is binary, it is sufficient to show all three facts about elements of \(qA^1 \) of weight 3 in terms of number of generators. The proof is heavily inspired from [HM12, Lemma 4.1.1].

Let \(Y \in (qA^1)^{(3)} \) be an element of weight 3. The coproduct \(\Delta(Y) \in P^1(qA^1) \) must belong, by definition of \(qA^1 \) as a cofree coalgebra with corelations, to the subspace

\[
\Delta(Y) \in E \otimes (\Sigma V \otimes \Sigma^2 qS) \cap E \otimes (\Sigma^2 qS \otimes \Sigma V).
\]

(3.8)

In other words, we must have two decompositions

\[
\Delta(Y) = \sum_i \rho_i(\Sigma v_i, \Sigma^2 X_i) = \sum_j \rho'_j(\Sigma^2 X'_j, \Sigma v'_j),
\]

(3.9)

where \(\rho_i, \rho'_j \in E, v_i, v'_j \in V, \) and \(X_i, X'_j \in qS \). Then the rule of signs shows that:

\[
d_A^1(Y) = -\sum_i \rho_i(\Sigma v_i, (\Sigma^{-1} \alpha_1)(\Sigma^2 X_i)) + \sum_j \rho'_j((\Sigma^{-1} \alpha_1)(\Sigma^2 X'_j), \Sigma v'_j)
\]

\[
= -\sum_i \rho_i(\Sigma v_i, (\Sigma \alpha_1(X_i)) + \sum_j \rho'_j((\Sigma \alpha_1(X'_j), \Sigma v'_j) \in E(\Sigma V).
\]

(3.10)

And similarly:

\[
\star_{\kappa}(\theta_A^1)(Y) = \sum_i \rho_i(v_i, \alpha_0(X_i)) + \sum_j \rho'_j(\alpha_0(X'_j), v'_j) \in V.
\]

(3.11)

Recall that \(S \) is the graph of \(\alpha \) from Equation (3.3): for \(X \in qS \), we have that \(f(X) := (\text{id} + \alpha_0 + \alpha_1)(X) \in S \). Therefore, if we apply the map

\[
g := \gamma \circ (\text{id}_E \otimes (\text{id}_\Sigma V \otimes \Sigma^{-1} f))
\]

(3.12)

to an element in \(E \otimes (\Sigma V \otimes \Sigma^2 qS) \), then the result must belong to \((S) \subset A \). The same holds if we apply

\[
g' := \gamma \circ (\text{id}_E \otimes (\Sigma^{-1} f \otimes \text{id}_\Sigma V))
\]

(3.13)

to an element of \(E \otimes (\Sigma^2 qS \otimes \Sigma V) \).
We know that $\Delta(Y)$ belongs to these two spaces, thus $g(\Delta(Y))$ and $g'(\Delta(Y))$ must belong to (S). Hence so does $(g + g')(\Delta(Y))$. Signs cancel out in $(g + g')(\Delta(Y))$, and therefore:

$$(g + g')(\Delta(Y)) = d_{A!}(Y) + *_{\kappa}(\theta_{A!})(Y) \in \Sigma^2S. \tag{3.14}$$

We know that S is the graph of α, hence the expression of Equation (3.14) is of the form $x + \alpha_1(x) + \alpha_0(x)$ for some $x \in qS$. The element $d_{A!}$ is of weight 2, while $*_{\kappa}(\theta_{A!})(Y)$ is of weight 1. Thus by identifying each weight component:

- $d_{A!}(Y)$ belongs to $\Sigma^2qS = (qA!)^{(2)}$;
- the element $d_{A!}^2(Y)$ is equal to to $(\Sigma^{-1}\alpha_1)(d_{A!}(Y))$, which we know from Equation (3.14) is equal to $*_{\kappa}(\theta_{A!})(Y)$;
- similarly, $\theta_{A!}d_{A!}(Y)$ is equal to $\Sigma^{-2}\alpha_0(d_{A!}(Y))$, which vanishes because there is no element of weight 0 in Equation (3.14).

3.3 Main theorem

Let us now define $\varkappa : qA! \to A$ of degree -1 by:

$$\varkappa : qA! \to \Sigma V \xrightarrow{\Sigma^{-1}} V \hookrightarrow A. \tag{3.15}$$

Proposition 3.5. The morphism \varkappa satisfies the curved Maurer–Cartan equation, i.e. it is an element of $\text{Tw}_{\varkappa}(qA!, A)$ from Proposition 2.14:

$$\partial(\varkappa) + \hat{\varkappa}(\varkappa) = \Theta^A. \tag{3.16}$$

Proof. We can rewrite the equation as:

$$- \varkappa d_{A!} + \gamma_A(\hat{\varkappa} \circ \varkappa)\Delta_{qA!} = \Theta^A. \tag{3.17}$$

Moreover, by checking the definitions, we see that:

- $\varkappa d_{A!}$ is obtained as $qA! \to \Sigma^2qS \xrightarrow{\Sigma^{-1}\alpha_1} \Sigma V \xrightarrow{\Sigma^{-1}} V \hookrightarrow A$;
- Θ^A is obtained as $qA! \to \Sigma^2qS \xrightarrow{\Sigma^{-2}\alpha_0} k! \hookrightarrow A$;
- $\hat{\varkappa}(\varkappa)$ vanishes everywhere except on $(qA!)^{(2)} = \Sigma^2qS$, where it is equal to $\gamma_A \circ \Sigma^{-2}\Delta_{qA!}$.

Checking signs carefully, we see that the image of $\hat{\varkappa}(\varkappa) - \varkappa d_{A!} - \Theta^A$ is included in the image of the graph of α under γ_A. But this graph is S, and $\gamma_A(S) = 0$ because these are part of the relations of A. \qed

Definition 3.6. The uP-algebra A is said to be Koszul if the P-algebra qA is Koszul in the sense of [Mil12].
Using the Rosetta stone (Proposition 2.14), we then obtain that κ defines two morphisms $f_\kappa : \Omega_\kappa A^i \to A$ and $g_\kappa : A^i \to B_\kappa A$. Recall that qA is Koszul if and only if the induced morphisms $\Omega_\kappa(qA^i) \to qA$ and $qA^i \to B(qA)$ are quasi-isomorphisms see [Mil12, Theorem 4.9]. Our definition is justified by the following theorem:

Theorem 3.7. If qA is Koszul, then $f_\kappa : \Omega_\kappa A^i \to A$ is a cofibrant resolution of A in the semi-model category of uP-algebras defined in [Fre09, Theorem 12.3.A]. Moreover $g_\kappa : A^i \to B_\kappa A$ is a quasi-isomorphism of κ-curved \mathcal{S}_cP^i-coalgebras.

Proof. Let us filter A and $\Omega_\kappa A^i$ by the weight in terms of V. It is clear that f_κ is compatible with this filtration. The summands d_0 and d_1 of d_Ω strictly lower this filtration, while d_2 preserves it. Thus, on the first pages of the associated spectral sequences, be obtain the morphism:

$$\Omega_\kappa(qA^i) \oplus k1 \to qA \oplus k1. \quad (3.18)$$

Our hypothesis on qA and [Mil12, Theorem 4.9] implies that this is a quasi-isomorphism, i.e. we have an isomorphism on the second pages of the spectral sequences. The filtration is exhaustive and bounded below, therefore usual theorems about spectral sequences show that f_κ itself is a quasi-isomorphism. We can filter A^i and $B_\kappa A$ in a similar manner to obtain that g_κ is a quasi-isomorphism too using [Mil12, Theorem 4.9].

It remains to check that $\Omega_\kappa A^i$ is cofibrant in the semi-model category from [Fre09, Theorem 12.3.A]. Note that we are working over a field of characteristic zero, uP is automatically Σ^\ast-cofibrant so [Fre09, Theorem 12.3.A] applies. The cobar construction is quasi-free, i.e. free as an algebra if we forget the differential. It is moreover equipped with a filtration by weight in terms of A^i, and the filtration satisfies the hypotheses of [Fre09, Proposition 12.3.8]. It follows that $\Omega_\kappa A^i$ is cofibrant. \hfill \Box

4 Application: symplectic Poisson n-algebras

4.1 Definition

In this section, with deal with Poisson n-algebras for some integer n. We will abbreviate as \Lie_n the operad of Lie algebras shifted by $n - 1$, i.e. $\Lie_n : = S_{n-1}\Lie$. Then the n-Poisson operad is given by:

$$\Pois_n : = \text{Com} \circ \Lie_n = \text{Free}(E)/(R). \quad (4.1)$$

Here, $E = k\mu \oplus k\lambda$ is the space of (binary) generators: μ, the product of degree 0, and λ, the Lie bracket of degree $n - 1$. The ideal of relations is generated by the relations of Com, the relations of \Lie_n, and the Leibniz relation stating that λ is a biderivation with respect to μ. Note that \Pois_n is Koszul (see e.g. [LV12, Section 13.3.16]). Its Koszul dual is given by its linear dual up to suspension: $\Pois_n^! = (\mathcal{S}_c)^n\Pois_n^\vee$.

We also consider the unital version $u\Pois_n$, where the unit satisfies $\mu(1, -) = \text{id}$ and $\lambda(1, -) = 0$, i.e. it is a unit for the product and a central element for the Lie bracket.
Remark 4.1. For $n \geq 2$, this operad is isomorphic to the homology of the little n-disks operad D_n. For $n = 1$, the homology of D_1 is given by the associative operad Ass, and $Pois_1$ is isomorphic to the graded operad associated to a certain filtration of Ass (this is essentially the Poincaré–Birkhoff–Witt theorem).

Definition 4.2. The Dth symplectic Poisson n-algebra is defined by:

$$A_{n;D} := (k[x_1, \ldots, x_D, \xi_1, \ldots, \xi_D], \{, \})$$

where the generators x_i have degree 0 and the ξ_i have degree $1 - n$. The algebra $A_{n;D}$ is free a unital commutative algebra, and the Lie bracket is defined on generators by:

$$\{x_i, x_j\} = 0 \quad \{\xi_i, \xi_j\} = 0 \quad \{x_i, \xi_j\} = \delta_{ij}.$$ (4.3)

The algebra $A_{n;D} = uPois_n(V_{n;D})/(S_{n;D})$ is equipped with a QLC presentation. The space of generators is $V_{n;D} := \mathbb{R}\langle x_1, \ldots, x_D, \xi_1, \ldots, \xi_D \rangle$, a graded vector space of dimension $2D$. We check that the ideal of relations $I_{n;D}$ is generated by the set S given by the three sets of relations fixing the Lie brackets of the generators, namely

$$S_{n;D} = \mathbb{R}\langle \{x_i, x_j\}, \{\xi_i, \xi_j\}, \{x_i, \xi_j\} - \delta_{ij} \rangle.$$ (4.4)

Remark 4.3. We may view $A_{n;D}$ as the Poisson n-algebra of polynomial functions on the standard shifted symplectic space $T^*\mathbb{R}^D[1-n]$. The element x_i is a polynomial function on the coordinate space \mathbb{R}^D, and the element ξ_j can be viewed as the vector field $\partial/\partial x_j$, which is a function on $T^*\mathbb{R}^D[1-n]$.

We will drop the indices n and D from the notation in what follows.

4.2 Koszulity and explicit resolution

In this section, we prove:

Proposition 4.4. The $uPois_n$-algebra A is Koszul.

Lemma 4.5. The quadratic reduction qA of A is a free symmetric algebra with trivial Lie bracket.

Proof. Let $V = \mathbb{R}\langle x_1, \ldots, x_D, \xi_1, \ldots, \xi_D \rangle$ be the generators of A. We check that $qS = \lambda(V) = \lambda \otimes \Sigma_2 V^\otimes 2$, i.e. in the quadratic reduction, all Lie brackets vanish. Therefore, $qA = Pois_n(V)/(qS) = Pois_n(V)/(\lambda(V)) = \text{Com}(V)$ is a free symmetric algebra, and the Lie bracket vanishes. \square

Let Com^c be the cooperad governing cocommutative coalgebras. Up to a suspension, it is the Koszul dual of the Lie operad. Since we are working over a field of characteristic zero, we can identify the cofree coalgebra $\text{Com}^c(X)$ to

$$\tilde{S}^c(X) := \bigoplus_{i \geq 1} (X^\otimes i) \Sigma_i$$ (4.5)

with a coproduct given by shuffles. For a shorter notation we will also write $L(X)$ for the free Lie algebra on X, $S(X)$ for the free unital symmetric algebra, and $\tilde{S}(X)$ for the free symmetric algebra without unit.
Lemma 4.6. The Koszul dual coalgebra of qA is given by:

$$qA^! = \Sigma^{1-n} \bar{S}^c(\Sigma^n V). \quad (4.6)$$

Proof. This follows from the general fact that if $P = Q_1 \circ Q_2$ is obtained by a distributive law and $A = Q_1(V)$ then $A^! = \Sigma Q_2(V)$. Thus we obtain that the Koszul dual of $qA = \text{Com}(V)$ is $qA^! = \Sigma(\text{Lie}_n)^!(V)$. Thanks to the Koszul duality between Com and Lie, this is identified with $\Sigma^{1-n} \text{Com}^c(\Sigma^n V)$, and the claim follows.

Proof of Proposition 4.4. Let $\kappa : \text{Pois}_n^! \to \text{Pois}_n$ be the twisting morphism of Koszul duality. Then the cobar construction of $qA^!$ is given by:

$$\Omega_{\kappa}(qA^!) = (\bar{S}(\Sigma^{1-n} L(\Sigma^{n-1} \Sigma^{1-n} \bar{S}^c(\Sigma^n V))), d^2), \quad (4.7)$$

where d^2 is the derivation of Pois_n-algebras whose restriction on $\Sigma^{-n} \bar{S}^c(\Sigma^n V)$ is given by:

$$d^2|_{\Sigma^{-1} qA^!}(u) = \sum (u) \frac{1}{2} [u(1), u(2)]. \quad (4.8)$$

This $1/2$-factor is due to the identification of Com^c, which is initially defined using invariants under the symmetric group action, with $\bar{S}^c(X)$, which is defined using coinvariants.

The twisting morphism $\kappa \in \text{Tw}_{\kappa}(qA^!, qA)$ is given by $\kappa(\Sigma x_i) = x_i$ and $\kappa(\Sigma \xi_i) = \xi_i$ on terms of weight 1, and it vanishes on terms of weight ≥ 2. This twisting induces a morphism $\Omega_{\kappa}(qA^!) \to qA$. We easily see that this morphism is the image under \bar{S}^c of the bar/cobar resolution of the abelian Lie$_n$ algebra V:

$$(\Sigma^{1-n} L(\Sigma^{1-n} \bar{S}^c(\Sigma^n V)), d^2) \xrightarrow{\sim} V, \quad (4.9)$$

which is indeed a quasi-isomorphism thanks to classical Koszul duality of operads. The functor \bar{S}^c preserves quasi-isomorphisms as we are working over a field, by the Künneth theorem. Therefore we obtain that $\Omega_{\kappa}(qA^!) \to qA$ is a quasi-isomorphism, therefore qA is Koszul, and therefore by definition A is Koszul.

We then obtain a small resolution of the $u\text{Pois}_n$-algebra A using the cobar construction of its Koszul dual coalgebra. Let us now describe it. The map $\alpha : qS \to k1 \oplus V$ from Equation (3.3) is given by $\alpha_1 = 0$ and $\alpha_0(\{x_i, \xi_i\}) = -1$, and $\alpha_0 = 0$ on everything else. Therefore the Koszul dual $A^! = (qA^!, d_{A^!}, \theta_{A^!})$ is such that $d_{A^!} = 0$, and

$$\theta : \Sigma^{1-n} \bar{S}^c(\Sigma^n V) \to k1$$

$x_i \vee \xi_i \mapsto -1$,

everything else $\mapsto 0$.

Here, as a shorthand, we write

$$v_1 \vee \ldots \vee v_k := \frac{1}{k!} \sum_{\sigma \in \Sigma_k} v_{\sigma(1)} \otimes \ldots \otimes v_{\sigma(k)} \in \Sigma^{1-n} \bar{S}^c(\Sigma^n V). \quad (4.10)$$
We then obtain
\[
\Omega \kappa A^i = (S(\Sigma^{1-n} L(\Sigma^{-1} \bar{S}^c(\Sigma^n V))), d_0 + d_2) \xrightarrow{\sim} A, \tag{4.11}
\]
where (by abuse of notation) we still denote by \(d_2\) the Chevalley–Eilenberg differential from before, satisfying \(d_2(1) = 0\). The derivation \(d_0\) is the one whose restriction to \(\Sigma^{-1} A^i\) is given by \(\Sigma \theta\):
\[
d_0|_{\Sigma^{-1} q A^i} : \Sigma^{-n} \bar{S}^c(\Sigma^n V) \xrightarrow{\Sigma \theta} \kappa 1 \hookrightarrow u \text{Pois}_n(\Sigma^{-1} q A^i). \tag{4.12}
\]

Remark 4.7. Let us compare \(\Omega \kappa A^i\) the resolution that would be obtained if one applied curved Koszul duality at the level of operads (see Section 1.1.4) with the bar/cobar resolution from the theory of [HM12]. Without the suspensions, our resolution is just \(SL \bar{S}^c(V)\), i.e. it is the free symmetric algebra on the free Lie algebra on the cofree symmetric coalgebra on \(V\).

The resolution that would be obtained from [HM12] would be much bigger (although it can be made explicit). Indeed, the quadratic reduction of \(u \text{Pois}_n\) is not just \(\text{Pois}_n\), it is in fact the direct sum \(\text{Pois}_n \oplus 1\). It follows from [HM12, Proposition 6.1.4] that \((qu \text{Pois}_n)^i(r)\) is spanned by elements of the type \(\bar{\alpha}_S\), where \(\alpha \in \text{Pois}_n(k), S \subset \{1, \ldots, k\}\) and \(r = k - \# S\). Roughly speaking, \(S\) represents inputs of \(\alpha\) that have been “plugged” by the counit \(1\). The bar construction of \(A\) is then the cofree \((qu \text{Pois}_n)^i\)-coalgebra on \(A = S(V)\) (plus some differential and we forget about suspensions). Then the bar-cobar resolution of \(A\) is the free \(u \text{Pois}_n\)-algebra on this bar construction. It contains as a subspace \(SL \bar{S}^c L^c(A) = SL \bar{S}^c L^c S(V)\), which is already quite bigger than \(\Omega \kappa A^i\), and then we also need to add all operations where inputs have been plugged in by the unit.

The difference can roughly speaking be explained as follows. The bar-cobar resolution of [HM12] knows nothing about the specifics of the algebra \(A\), thus it must resolve everything in \(A\): the Lie bracket, the symmetric product, and the relations involving the unit. This has the advantage of being a general procedure that is independent of \(A\) (and functorial). But with our specific \(A\), we may find a smaller resolution: we know that the product of \(A\) has no relations, and the unit is not involved in nontrivial relations (a consequence of the QLC condition), hence they do not need to be resolved.

4.3 Derived enveloping algebras

4.3.1 General constructions

Given an operad \(P\) and a \(P\)-algebra \(A\), the enveloping algebra \(U_P(A)\) is a unital associative algebra such that the left modules of \(U_P(A)\) are precisely the operadic left modules of \(A\) (see e.g. [Fre09, Section 4.3]). Let \(P[1]\) be the operadic right \(P\)-module given by \(P[1] = \{P(n + 1)\}_{n \geq 0}\). Then the enveloping algebra \(U(A)\) can obtained by the relative composition product:
\[
U_P(A) \cong P[1] \circ_P A = \text{coeq}(P[1] \circ_P A \xrightarrow{\sim} P[1] \circ A). \tag{4.13}
\]

We will need the following examples later.
Example 4.8. The enveloping algebra $U_{\text{Lie}}(g)$ of a Lie algebra g is the usual universal enveloping algebra $U(g)$ of g. We view it as a free associative algebra on symbols X_f, for $f \in g$, subject to the relations $X_{[f,g]} = X_f X_g - X_g X_f$. The universal enveloping algebra $U_{\text{Lie}}(g)$ of a Lie algebra equipped with a central element $1 \in g$ is the quotient $U(g)/(X_1)$.

Example 4.9. The enveloping algebra $U_{\text{Com}}(B)$ of a commutative algebra B is $B + k1 \oplus B$, where 1 is an extra unit. The enveloping algebra $U_{u\text{Com}}(B)$ of a unital commutative algebra B is B itself (strictly speaking, the quotient of $k1 \oplus B$ by the relation $1 - 1B$).

Suppose now that P is any operad (potentially unital, e.g. we could take $P = u\text{Pois}_n$) and let A be a P-algebra. Let $P_\infty \hookrightarrow P$ be a cofibrant resolution of P. The given morphism $P_\infty \hookrightarrow P$ induces a Quillen equivalence between the semi-model categories of P- and P_∞-algebras. In particular, the right adjoint ("forgetful functor") allows us to view A as a P_∞-algebra.

Proposition 4.10. Let $R_\infty \hookrightarrow A$ be a cofibrant resolution of A as a P_∞-algebra, and let $R := P \circ P_\infty R_\infty$. Then there is an equivalence

$$U_{P_\infty}(A) \simeq U_P(R).$$

The slogan is as follows: from the derived point of view, we can either resolve the operad or resolve the algebra. In what follows, we will choose to resolve the algebra using the cobar construction.

Proof. The proposition follows from the following diagram:

$$U_{P_\infty}(A) \cong \begin{array}{c} \cong \end{array} P_\infty[1] \circ P_\infty A \leftarrow \begin{array}{c} \sim \end{array} P_\infty[1] \circ P_\infty R_\infty \downarrow \sim \begin{array}{c} \cong \end{array} \begin{array}{c} \cong \end{array} \begin{array}{c} \cong \end{array} P[1] \circ P_\infty R_\infty \sim \begin{array}{c} \cong \end{array}.$$

The upper horizontal equivalence follows from [Fre09, Theorem 17.4.B(b)], and the right vertical one one follows from [Fre09, Theorem 17.4.A(a)]. Finally, the bottom horizontal isomorphism follows from the cancellation rule $X \circ (P \circ Q Y) \cong X \circ Q Y$ from [Fre09, Theorem 7.2.2].

4.3.2 Poisson case

We now consider the symplectic $u\text{Pois}_n$-algebra $A = (\mathbb{R}[x_i, \xi_j], \{\})$ from before. From Proposition 4.10, it follows that the derived enveloping algebra $U_{(u\text{Pois}_n)_\infty}(A)$ is quasi-isomorphic to $U(\Omega^\infty A^1)$, where $\Omega^\infty A^1$ is the cobar construction described in Section 4.2.

We see that both A and $\Omega^\infty A^1$ are obtained by considering the relative composition product

$$S(\Sigma^1 A) := u\text{Pois}_n \circ_{c\text{Lie}_n} \Sigma^1 A,$$

where g is some $c\text{Lie}$-algebra, i.e. a Lie algebra equipped with a central element, and we consider the embedding $c\text{Lie}_n \hookrightarrow u\text{Pois}_n$. In other words, A and $\Omega^\infty A^1$ are free as
symmetric algebras on a given Lie algebra, with a central element identified with the unit of the symmetric algebra. The differential and the bracket are both extended from the differential and bracket of \(g \) as \((bi)\)derivations. Recall from Examples 4.8 and 4.9 the descriptions of the enveloping algebras of Lie algebras and commutative algebras.

Proposition 4.11 (Explicit description found in [Fre06, Section 1.1.4]). Let \(g \) be a \(\mathfrak{g} \)-Lie-algebra and \(B = S(\Sigma^{1-n} g) \) the induced \(u\text{Pois}_n \)-algebra. Then there is an isomorphism of graded modules:

\[
\mathcal{U}_{u\text{Pois}_n}(B) \cong B \otimes \mathcal{U}_{\text{cLie}_n}(\Sigma^{1-n} g).
\] (4.17)

The algebra \(\mathcal{U}_{\text{cLie}_n}(\Sigma^{1-n} g) \) is generated by symbols \(X_f \) for \(f \in g \), with relations \((f, g \in g)\):

\[
\begin{align*}
X_f &= 0, & X_{fg} &= f \cdot X_g + \pm g \cdot X_f, \\
X_f \cdot g &= \{f, g\} + \pm g \cdot X_f, & X_{\{f, g\}} &= X_f X_g - \pm X_g X_f.
\end{align*}
\]

In particular, elements of \(B \) and \(\mathcal{U}(\Sigma^{1-n} g) \) do not necessarily commute. The differential is the sum of the differential of \(B \) and the differential given by \(dX_f := X_{df} \), where \(df \in B = S(\Sigma^{1-n} g) \) and we use the relations to get back to \(B \otimes \mathcal{U}(\Sigma^{1-n} g) \).

Proof. The extension of the result from [Fre06, Section 1.1.4] to the unital case is immediate.

Proposition 4.12. Let \(A = A_{n,D} \) be the symplectic Poisson \(n \)-algebra. The derived enveloping algebra \(\mathcal{U}(u\text{Pois}_n)_\infty (A) \) is quasi-isomorphic to the underlying one \(\mathcal{U}_{u\text{Pois}_n}(A) \).

Proof. We use the cobar resolution \(\Omega(A) \) and the result of Proposition 4.10 to obtain that this derived enveloping algebra is quasi-isomorphic to \(\mathcal{U}_{u\text{Pois}_n}(\mathcal{U}(\Omega(A))) \). From the description of Proposition 4.11, as a dg-module, this is isomorphic to

\[
\mathcal{U}_{u\text{Pois}_n}(\mathcal{U}(\Omega(A))) \cong (\Omega(A) \otimes \mathcal{U}_{\text{cLie}_n}(\Sigma^{-1}\bar{S}^{\text{c}}(\Sigma^n V)), d),
\] (4.18)

where \(V = \mathbb{R}\langle x_i, \xi_j \rangle \) is the graded module of generators, the differential \(d' \) is explicit, and the product is defined by some explicit relations. By a spectral sequence argument and the fact that \(\Omega(A) \to A \) is a quasi-isomorphism, we obtain

\[
\mathcal{U}_{u\text{Pois}_n}(\Omega(A)) \xrightarrow{\sim} (A \otimes \mathcal{U}_{\text{cLie}_n}(\Sigma^{-1}\bar{S}^{\text{c}}(\Sigma^n V)), d)
\] (4.19)

We now want to explicitly describe this differential. Let \(X_f \) be a generator of the universal enveloping algebra, for some \(f \in \bar{S}^{\text{c}}(\Sigma^n V) \). Then \(dX_f = X_{df} = X_{d_0 f} + X_{d_2 f} \), where \(d_0 \) and \(d_2 \) were explicitly described in Section 4.2.

Since \(d_0 f \) is a multiple of the unit and \(X_1 = \{1, -\} = 0 \), we obtain that \(X_{d_0 f} = 0 \). On the other hand,

\[
X_{d_2 f} = \frac{1}{2} \sum_{\langle f \rangle} (X_{f(1)} X_{f(2)} - \pm X_{f(2)} X_{f(1)}),
\] (4.20)

where we use the shuffle coproduct of \(\bar{S}^{\text{c}}(X) \). Thus we see that the differential stays inside the universal enveloping algebra, and is precisely the one of the bar/cobar resolution.
of the abelian $c\text{Lie}_n$ algebra $V_+ = V \oplus \mathbb{R}1$. Thanks to Lemma 4.13 below, we know that $\mathcal{U}_{c\text{Lie}_n}$ preserves quasi-isomorphisms (the unit is freely adjoined and hence is not a boundary), and the universal enveloping algebra of an abelian Lie algebra is just a symmetric algebra, hence:

$$\mathcal{U}_{c\text{Pois}_n}(\Omega^\ast A) \sim A \otimes \mathcal{U}_{c\text{Lie}_n}(V_+)^{\ast} \cong A \otimes S(\Sigma^{n-1} V).$$

(4.21)

This last algebra is simply $\mathcal{U}_{c\text{Pois}_n}(A)$, as claimed.

We now state the missing lemma in the previous proof. For simplicity we state it for unshifted Lie algebra; the $c\text{Lie}_n$ case is identical. The functor $\mathcal{U}_{c\text{Lie}} = \mathcal{U}$ preserves quasi-isomorphisms (we can filter it by tensor powers and apply Künneth’s theorem as we are working over a field). However, in general, the functor $\mathcal{U}_{c\text{Lie}}(-) = \mathcal{U}_{\text{Lie}}(-)/(X_1)$ does not preserve quasi-isomorphisms, because of the quotient.

Lemma 4.13. Let $f : g \to h$ be a quasi-isomorphisms of $c\text{Lie}$-algebras. Suppose that the central elements 1_g, 1_h are not boundaries. Then the induced morphism $\mathcal{U}_{c\text{Lie}}(g) \to \mathcal{U}_{c\text{Lie}}(h)$ is a quasi-isomorphism.

Proof. The associative algebra $\mathcal{U}_{c\text{Lie}}(g)$ is given by the presentation:

$$\mathcal{U}_{c\text{Lie}}(g) = T(g)/(x \otimes y - \pm y \otimes x = [x, y], 1 = 0),$$

(4.22)

where $T(-)$ is the tensor algebra. Let us filter $\mathcal{U}_{c\text{Lie}}(g)$, $\mathcal{U}_{c\text{Lie}}(h)$ by tensor powers (increasingly). Then on the first pages of the associated spectral sequences we have the diagram:

$$\begin{array}{ccc}
S(g)/1 & \longrightarrow & S(h)/1 \\
\downarrow \cong & & \downarrow \cong \\
S(g/1) & \longrightarrow & S(h/1).
\end{array}$$

(4.23)

By Künneth’s theorem it is thus enough to show that $g/1 \to h/1$ is a quasi-isomorphism. For an element x of g (resp. h), we let \bar{x} be the class in the quotient $g/1$ (resp. $h/1$), and we denote homology classes with brackets.

- **Surjective on homology:** let $\bar{y} \in h/1$ be a cycle for some $y \in h$, i.e. $dy \propto 1$. But by hypothesis, 1 is not a boundary, hence $dy = 0$ on the nose. Since $f : g \to h$ is a quasi-isomorphism, there exists $x \in g$ and $z \in h$ such that $dx = 0$ and $f(x) = y + dz$. Then $f(\bar{x}) = \bar{y} + d\bar{z}$ in the quotient and finally $f_\ast[\bar{x}] = [\bar{y}]$.

- **Injective on homology:** let $\bar{x} \in g/1$ be a cycle (for some $x \in g$) such that $f_\ast[\bar{x}] = 0$, i.e. $f(\bar{x}) \equiv dy \pmod{1}$. In other words, $dx \propto 1_g$ and $f(x) = dy + \lambda 1_h$ for some $\lambda \in k$. But 1_g is not a boundary; hence we have $dx = 0$ on the nose. Thus, in $H_\ast(h)$, we get $f_\ast[x] = \lambda [1_h]$, or in other words, $f_\ast[x - \lambda 1_g] = 0$. Because f is a quasi-isomorphism, it follows that $x = \lambda 1_g + dz$ for some z. Hence $\bar{x} = d\bar{z}$ in $g/1_g$ and finally $[\bar{x}] = 0$.

24
Therefore, we obtain an isomorphism on the second page of the associated spectral sequences for $\mathcal{U}_{\text{Lie}}(\mathfrak{g})$. Since the filtration is bounded below (the number of tensor powers is clearly nonnegative) and exhaustive, we obtain that the original morphism $\mathcal{U}_{\text{Lie}}(\mathfrak{g}) \to \mathcal{U}_{\text{Lie}}(\mathfrak{h})$ is a quasi-isomorphism.

4.4 Factorization homology

As another application, let us compute over \mathbb{R} the factorization homology of a parallelized, simply connected, closed manifold of dimension at least 4 with coefficients in A. Until the end of this paper, we let M be such a manifold.

4.4.1 Right $u\text{Com}$-module structure on G^P_P

Let P be Poincaré duality model of M. This is a (upper graded) commutative differential-graded algebra equipped with a linear form $\varepsilon : P^n \to \mathbb{R}$ satisfying $\varepsilon \circ d = 0$ and such that the induced pairing $P^k \otimes P^{n-k} \to \mathbb{R}$, $x \otimes y \mapsto \varepsilon(xy)$, is non-degenerate for all k. It moreover a model of M in the sense of rational homotopy theory. Recall that this means that P is quasi-isomorphic to the CDGA $A^*_P(M)$ of piecewise polynomial forms on M.

Recall from Section 1.3 (or [Idr16]) that we may use our explicit real model G^\vee_P in order to compute this factorization homology. The object G^\vee_P is a right $u\text{Pois}_n$-module. As a right Lie_n-module, we have an isomorphism:

$$G^\vee_P \cong_{\text{Lie}_n} C^*_P(C^E_{\Sigma^n-1}\text{Lie}_n),$$

(4.24)

where C^*_P is the Chevalley–Eilenberg chain complex, and $\Sigma^{n-1}\text{Lie}_n = \{\Sigma^{n-1}\text{Lie}_n(k)\}_{k \geq 0}$ is a Lie algebra in the category of right Lie_n-modules.

The right $u\text{Com}$-module structure is not described in [Idr16, Section 5], but it easily follows from the arguments there. Roughly speaking, one needs to use the distributive law $\text{Lie}_n \circ u\text{Com} \to u\text{Com} \circ \text{Lie}_n$, which states that the bracket is a biderivation with respect to the product, and that the unit is a central element for the bracket. Then we either need to use $\varepsilon : P^n \to \mathbb{R}$ for the unit of $u\text{Com}$, or the dual of the product of $u\text{Com}$ under Poincaré duality for the product of P under Poincaré duality for the product of $u\text{Com}$.

In more detail, given $k \geq 0$, we have an isomorphism of graded modules:

$$G^\vee_P(k) \cong_{\Sigma^r} \bigoplus_{r \geq 0} \bigoplus_{\pi \in \text{Part}_r(k)} (A^{n-k})^\otimes r \otimes \text{Lie}_n(\#\pi_1) \otimes \ldots \otimes \text{Lie}_n(\#\pi_r),$$

(4.25)

where the inner sum runs over all partitions $\pi = \{\pi_1, \ldots, \pi_r\}$ of $\{1, \ldots, k\}$. To describe the right $u\text{Com}$-module structure, we need to say what happens when we insert the two generators, the unit 1 and the product μ, at each index $1 \leq i \leq k$, for each summand of the decomposition.

Suppose we are given an element $X = (x_j)_{j=1}^r \otimes \lambda_1 \otimes \ldots \otimes \lambda_r$, where $a_j \in A$ and $\lambda_j \in \text{Lie}_n(\#\pi_j)$. Suppose that $i \in \pi_j$ in the partition. Then:

- $X \circ_i 1$ is obtained by inserting the unit in λ_j:
– if \(\lambda_j \) has at least one bracket then the result is zero;
– otherwise, if \(\lambda_j = \text{id} \), then the corresponding factor disappears \(\text{cLie}_n(0) = \mathbb{R} \) and we apply \(\varepsilon \) to \(x_j \);

\(X \circ \mu \) is obtained by inserting the product \(\mu \) in \(\lambda_j \). Using the distributive law for \(\text{Com} \) and \(\text{Lie}_n \), we obtain a sum of products of two elements from \(\text{Lie}_n \), splitting \(\pi_j \) in two subsets. We then apply the coproduct \(\Delta : P^{n-*} \to (P^{n-*})^\otimes 2 \), which is Poincaré dual to the product of \(P \), to \(x_j \) to obtain a tensor in \(A \otimes A \), which we assign to the two subsets of \(\pi_j \) in the corresponding summand.

Example 4.14. Given \(x \in P \), we can view \(x \otimes \text{id} \) as an element of \(G_P(1) = P^{n-*} \otimes \text{Lie}_n(1) \).

We then have the following relations:

\[
\begin{align*}
(x \otimes \text{id}) \circ_1 \lambda &= x \otimes \lambda & \in P^{n-*} \otimes \text{Lie}_n(2) \subset G_P^\vee(2); \\
(x \otimes \text{id}) \circ_1 \mu &= \Delta(x) \otimes \text{id} \otimes \text{id} & \in ((P^{n-*})^\otimes 2 \otimes \text{Lie}_n(1)^\otimes 2) \otimes 2 \subset G_P^\vee(2). \\
(x \otimes \text{id}) \circ_1 \text{id} &= \varepsilon(x) & \in \mathbb{R} = G_P^\vee(0).
\end{align*}
\]

4.4.2 Computation

Lemma 4.15. The underived relative composition product \(G_P^\vee \circ_{u\text{Pois}} A \) is given by the unital Chevalley–Eilenberg homology of the \(\text{cLie} \)-algebra \(P^{n-*} \otimes \Sigma^{n-1}V \).

This unital Chevalley–Eilenberg complex is given by

\[
G_P^\vee \circ_{u\text{Pois}} A = (S^c(P^{n-*} \otimes \Sigma^n V), d_{CE})
\]

Here the shifted Lie bracket of \(V \) (and hence the differential \(d_{CE} \)) can produce a unit. In this case, we apply \(\varepsilon : P \to \mathbb{R} \) to the corresponding factor, and we identify this unit is identified with the (co)unit of \(S^c(-) \), i.e. the empty tensor.

Proof. This is almost identical to the case of the universal enveloping algebra of a Lie algebra (with no central element) from [Idr16] (see Section 1.3). The Lie bracket cannot produce a product of two elements of \(V \), only a unit. Therefore we just need to verify what happens to the unit in the isomorphism of [Idr16, Lemma 5.2], which is part of Section 4.4.1.

Proposition 4.16. The factorization homology \(\int_M A \simeq G_P^\vee \circ_{u\text{Pois}} A \) of the symplectic Poisson \(n \)-algebra \(A \) is quasi-isomorphic to \(G_P^\vee \circ_{u\text{Pois}} A \).

Proof. As we are working with a derived composition product, we take a resolution of \(A \) as a \(u\text{Pois}_n \)-algebra. For this, we use the cobar construction of the Koszul dual algebra, \(\Omega_{\kappa} A^i \), described in Section 4.2. We then have:

\[
\int_M A \simeq G_P^\vee \circ_{u\text{Pois}} \Omega_{\kappa} A^i.
\]
The cobar construction $\Omega_{\kappa}A^i$ is a quasi-free $u\text{Pois}_{\kappa}$-algebra on the Koszul dual qA^i, with some differential. Therefore, by the cancellation rule for relative products over operad $(X \circ_P (P \circ Y) = X \circ Y)$, we obtain that, as a graded module,

$$G_P^\vee \circ_{u\text{Pois}_{\kappa}} \Omega_{\kappa}A^i \cong (G_P^\vee \circ qA^i, d_{\Omega})$$ \hspace{1cm} (4.31)

with a differential induced by the differential of the cobar construction.

Remember that we write $\bar{S}_{\text{c}}(-)$ for the cofree commutative coalgebra (without counit), $S_{\text{c}}(-)$ for the same but with a counit, and $L(-)$ for the free Lie algebra. The Koszul dual had the explicit form $qA^i = \Sigma_{1-n} \bar{S}_{\text{c}}(\Sigma^n V)$, where $V = \mathbb{R}\langle x_i, \xi_j \rangle$ is the graded vector space of generators. Using the explicit form of the right module G_P^\vee found in Section 4.4.1, we then find that:

$$\int_M A \cong (S_{\text{c}}(P^{-s} \otimes L\bar{S}_{\text{c}}(\Sigma^n V)), d_{\text{CE}} + d_0 + d_2).$$ \hspace{1cm} (4.32)

Let us now write down explicit formulas for the three summands of the differential. As there are two instances of the cofree cocommutative algebra appearing, we have to be careful with notations. We will write \wedge for the tensor of the outer coalgebra, and \vee for the tensor of the inner coalgebra. Strictly speaking, we need to consider only elements that are invariant under the symmetric group actions. We will consider all elements, and check that formulas are actually well-defined when passing to invariants. The three parts of the differentials are:

- Given $x_1, \ldots, x_k \in P$ and $Y_1, \ldots, Y_k \in L\bar{S}_{\text{c}}(\Sigma^n V)$, we have

 $$d_{\text{CE}}(x_1Y_1 \wedge \ldots \wedge x_kY_k) = \sum_{i<j} \pm x_1Y_1 \wedge \ldots \wedge x_i x_j [Y_i, Y_j] \wedge \ldots \wedge x_j Y_j \wedge \ldots \wedge x_k Y_k. \hspace{1cm} (4.33)$$

- The differential d_2 is defined on the inner $\bar{S}_{\text{c}}(\Sigma^n V)$, extended to a derivation of $L\bar{S}_{\text{c}}(V)$, which is itself extended to the full complex as a coderivation:

 $$d_2(v_1 \vee \ldots \vee v_k) = \frac{1}{2} \sum_{i+j+k=\mu, \nu} \sum_{i,j} \pm [v_{\mu(1)} \vee \ldots \vee v_{\mu(i)}, v_{\nu(1)} \vee \ldots \vee v_{\nu(j)}], \hspace{1cm} (4.34)$$

 where the inner sum is over all (i,j)-shuffles. (This is the differential of the bar/cobar resolution of the abelian Lie algebra $\Sigma^{n-1}V$).

- The differential d_0 is similarly defined on $\bar{S}_{\text{c}}(\Sigma^n V)$ and extended to the full complex by:

 $$d_0(X) = \begin{cases}
 -1, & \text{if } X = \Sigma^n x_i \vee \Sigma^n \xi_i \text{ for some } i; \\
 0, & \text{otherwise}. \end{cases} \hspace{1cm} (4.35)$$

Note that the unit is appearing here. If the unit is inside a Lie bracket, the result is zero (1 is central). Otherwise, we have to apply $\varepsilon : P \to \mathbb{R}$ to the corresponding element of P in the outer $S_{\text{c}}(-)$, and this factor disappears (it is replaced with a real coefficient).
We can project this complex to
\[G^\nu_{\text{Poisn}} A = \left(S^\nu(P^{-*} \otimes \Sigma^n V), d_{CE} \right), \] (4.36)
i.e. the Chevalley–Eilenberg complex (with constant coefficients) of the \(\mathfrak{c}\text{Lie} \) algebra
\(P^{-*} \otimes \Sigma^{n-1}V \). The projection from \(G^\nu_{\text{Poisn}} \Omega_\alpha A^i \) is compatible with the differential.

Let \(i \) be the number of Lie brackets in an element of the complex, and \(j \) be the number of inner tensors (\(\nu \)). We then observe that \(d_2 \) preserves the difference \(i - j \), while \(d_{CE} \) and \(d_0 \) increase them by 1. We can thus filter our first complex by this number to obtain what we will call the “first spectral sequence”. The second complex \((S^\nu(P^{-*} \otimes \Sigma^{n-1}V), d_{CE}) \) is also filtered, with the unit in filtration 0 and the rest in filtration 1. This yields a “second spectral sequence”. The projection is compatible with this filtration, hence we obtain a morphism from the first spectral sequence to the second one.

On the \(E^0 \) page of the first spectral sequence, only \(d_2 \) remains. Recall that \(d_2 \) is exactly the differential of the bar/cobar resolution \(\Sigma^{-1}L^S(\Sigma^n V) \xrightarrow{\sim} \Sigma^{n-1}V \) of the abelian Lie algebra \(\Sigma^{n-1}V \). Thus on the \(E^1 \) page of the spectral sequence, we obtain an isomorphism of graded modules from the first spectral sequence to the second. The differential \(d_{CE} \) of the first spectral sequence vanishes, and the differential \(d_0 \) precisely correspond to the “unital” Chevalley–Eilenberg of the second spectral sequence. Hence we find that the projection \(G^\nu_{\text{Poisn}} \Omega_\alpha A^i \to G^\nu_{\text{Poisn}} A \) is a quasi-isomorphism. \[\square \]

Proposition 4.17. Let \(A \) be a symplectic \(n \)-Poisson algebra (Definition 4.2) and let \(M \) be a simply connected smooth framed manifold of dimension at least 4. Then the homology of \(\int_M A \) is one-dimensional.

Proof. Thanks to Proposition 4.16, we only need to compute the homology of \(G^\nu_{\text{Poisn}} A \). Let us use the explicit description from Lemma 4.15 as the unital Chevalley–Eilenberg complex of the \(\mathfrak{c}\text{Lie} \)-algebra
\[\mathfrak{g}_{P,V} := P^{-*} \otimes \Sigma^{n-1}V. \] (4.37)
There is a pairing \(\langle -, - \rangle : \mathfrak{g}_{P,V}^{\otimes 2} \to \mathbb{R} \) given by \(xv \otimes x'v' \mapsto \varepsilon_P(xx') \cdot \{v, v'\} \). We have the following isomorphism of chain complexes:
\[G^\nu_{\text{Poisn}} A \cong \left(\bigoplus_{i \geq 0} (\Sigma \mathfrak{g}_{P,V})^{\otimes i} \Sigma^i, d_{CE} \right) \] (4.38)
where
\[d_{CE}(\alpha_1 \land \ldots \land \alpha_k) = \sum_{i < j} \pm \langle \alpha_i, \alpha_j \rangle \cdot \alpha_1 \land \ldots \land \hat{\alpha_i} \ldots \hat{\alpha_j} \ldots \land \alpha_k. \] (4.39)
Let \(\{x_1, \ldots, x_r\} \) be a basis of \(\Sigma \mathfrak{g}_{P,V} \). The non-degeneracy of the Poincaré pairing of \(P \) and the explicit description of the pairing of \(\Sigma^{n-1}V \) show that the pairing \(\langle -, - \rangle \) is non-degenerate. Hence we can find a dual basis \(\{x_1^*, \ldots, x_r^*\} \) with respect to \(\langle -, - \rangle \), i.e. \(\langle x_i, x_j^* \rangle = \delta_{ij} \). We can then identify \(G^\nu_{\text{Poisn}} A \) with the “algebraic de Rham complex”:
\[\Omega^\nu_{\text{adR}}(\mathbb{R}^r) = \left(S(x_1, \ldots, x_r) \otimes \Lambda(dx_1, \ldots, dx_r), d_{dR} = \sum_i \frac{\partial}{\partial x_i} \cdot dx_i \right). \] (4.40)
Note that if all the variables x_i had degree zero then this would be isomorphic to the algebra $A_{PL}(\Delta^r) \otimes \mathbb{R}$ of piecewise real polynomial forms on Δ^r. There is an isomorphism (up to a degree shift and reversal) given by:

\[
\left(\bigoplus_{i \geq 0} ((\Sigma g_P)^{\otimes i})_{\Sigma_i}, d_{CE} \right) \cong \Omega^*_{adR}(\mathbb{R}^r)
\]

\[
x_{i_1} \land \ldots \land x_{i_k} \land x^*_{j_1} \land \ldots \land x^*_{j_l} \mapsto x_{i_1} \ldots x_{i_k} \cdot \prod_{1 \leq j \leq r \atop j \notin \{j_1, \ldots, j_l\}} dx_j \quad (4.41)
\]

For example if $r = 3$, then the isomorphism sends $x_1 \land x^*_2$ to $x_1 dx_1 dx_3$.

The algebraic de Rham complex is a particular example of a Koszul complex and is therefore acyclic. There is an explicit homotopy given by $h(dx_i) = x_i$, $h(x_i) = 0$ and extended suitably as a derivation. In particular, a representative of the only homology class is the unit of the de Rham complex, which under our identification is $\wedge_{j=1}^r x_j^*$. \(\square\)

Remark 4.18. From a physical point of view, this result is satisfactory: when one wants to compute expected values of observables, one wants a number. The next best thing to a number is a closed element in a complex whose homology is one-dimensional. We thank T. Willwacher for this perspective.

Remark 4.19. This result appears similar to the computation of Markarian [Mar17] for the Weyl n-algebra $W^n(D)$, which is an algebra over the operad $C_*(\mathcal{FM}_n; \mathbb{R}[[h, h^{-1}]])$, where \mathcal{FM}_n is the Fulton–MacPherson operad. We do not know the precise relationship between $A_{n,D}$ and $W^n(D)$, though. Curved Koszul duality was conjectured to apply for this computation by Markarian [MT15]. Moreover, while writing this paper, we learned that Döppenschmitt obtained an analogous result (unpublished) for a twisted version of A, using a “physical” approach based on AKSZ theory / Chern–Simons invariants. Our approach is however different from these two approaches. It is also in some sense more general, as we should be able to compute the factorization homology of M with coefficients in any Koszul $u\text{Pois}_n$-algebra, e.g. an algebra of the type $S(\Sigma^{1-n} g)$ where g is a Koszul Lie-algebra.

Remark 4.20. Using the results from [CILW18], we hope to be able to compute factorization homology of compact manifolds with boundary with coefficients in A.

References

[AF15] David Ayala and John Francis. “Factorization homology of topological manifolds”. In: J. Topol. 8.4 (2015), pp. 1045–1084. issn: 1753-8416. doi: 10.1112/jtopol/jtv028. arXiv: 1206.5522.

[BD04] Alexander Beilinson and Vladimir Drinfeld. Chiral algebras. American Mathematical Society Colloquium Publications 51. Providence, RI: American Mathematical Society, 2004, pp. vi+375. isbn: 0-8218-3528-9.
[CILW18] Ricardo Campos, Najib Idrissi, Pascal Lambrechts, and Thomas Willwacher. *Configuration Spaces of Manifolds with Boundary*. Preprint. 2018. arXiv: 1802.00716.

[CLM16] Joseph Chuang, Andrey Lazarev, and W. H. Mannan. “Cocommutative coalgebras: homotopy theory and Koszul duality”. In: *Homology Homotopy Appl.* 18.2 (2016), pp. 303–336. ISSN: 1532-0073. DOI: 10.4310/HHA.2016.v18.n2.a17.

[CG17] Kevin Costello and Owen Gwilliam. *Factorization algebras in quantum field theory*. Vol. 1. New Mathematical Monographs 31. Cambridge: Cambridge University Press, 2017, pp. ix+387. ISBN: 978-1-107-16310-2. DOI: 10.1017/9781316678626.

[Fra13] John Francis. “The tangent complex and Hochschild cohomology of \(E_n \)-rings”. In: *Compos. Math.* 149.3 (2013), pp. 430–480. ISSN: 0010-437X. DOI: 10.1112/S0010437X12000140.

[Fre04] Benoit Fresse. “Koszul duality of operads and homology of partition posets”. In: *Homotopy theory: relations with algebraic geometry, group cohomology, and algebraic K-theory*. Vol. 346. Contemp. Math. Providence, RI: Amer. Math. Soc., 2004, pp. 115–215. DOI: 10.1090/conm/346/06287.

[Fre06] Benoit Fresse. “Théorie des opérades de Koszul et homologie des algèbres de Poisson”. In: *Ann. Math. Blaise Pascal* 13.2 (2006), pp. 237–312. ISSN: 1259-1734. DOI: 10.5802/ambp.219.

[Fre09] Benoit Fresse. *Modules over operads and functors*. Lecture Notes in Mathematics 1967. Berlin: Springer-Verlag, 2009, pp. x+308. ISBN: 978-3-540-89055-3. DOI: 10.1007/978-3-540-89056-0. arXiv: 0704.3090.

[Fre17] Benoit Fresse. *Homotopy of Operads and Grothendieck–Teichmüller Groups*. Vol. 1. Mathematical Surveys and Monographs 217. Providence, RI: Amer. Math. Soc., 2017, pp. xlvi+532. ISBN: 978-1-4704-3481-6. URL: http://math.univ-lille1.fr/~fresse/OperadHomotopyBoo k/.

[FW15] Benoit Fresse and Thomas Willwacher. *The intrinsic formality of \(E_n \)-operads*. Preprint. 2015. arXiv: 1503.08699.

[GTV12] Imma Gálvez-Carrillo, Andrew Tonks, and Bruno Vallette. “Homotopy Batalin–Vilkovisky algebras”. In: *J. Noncommut. Geom.* 6.3 (2012), pp. 539–602. ISSN: 1661-6952. DOI: 10.4171/JNCG/99. arXiv: 0907.2246.

[Get95] E. Getzler. “Operads and moduli spaces of genus 0 Riemann surfaces”. In: *The moduli space of curves (Texel Island, 1994)*. Progr. Math. 129. Birkhäuser Boston, Boston, MA, 1995, pp. 199–230. arXiv: alg-geom/9411004.

[GJ94] Ezra Getzler and J. D. S. Jones. *Operads, homotopy algebra and iterated integrals for double loop spaces*. Preprint. 1994. arXiv: hep-th/9403055.

[GK94] Victor Ginzburg and Mikhail Kapranov. “Koszul duality for operads”. In: *Duke Math. J.* 76.1 (1994), pp. 203–272. ISSN: 0012-7094. DOI: 10.1215/S0012-7094-94-07608-5.

[HM12] Joseph Hirsh and Joan Millès. “Curved Koszul duality theory”. In: *Math. Ann.* 354.4 (2012), pp. 1465–1520. ISSN: 0025-5831. DOI: 10.1007/s00208-011-0766-9. arXiv: 1008.5368.
[Idr16] Najib Idrissi. *The Lambrechts–Stanley Model of Configuration Spaces*. Preprint (submitted). 2016. arXiv: 1608.08054.

[Knu16] Ben Knudsen. *Higher enveloping algebras*. Preprint. 2016. arXiv: 1605.01391.

[Kon93] Maxim Kontsevich. “Formal (non)commutative symplectic geometry”. In: *The Gel’fand Mathematical Seminars, 1990–1992*. Boston, MA: Birkhäuser Boston, 1993, pp. 173–187. DOI: 10.1007/978-1-4612-0345-2_11.

[Kon99] Maxim Kontsevich. “Operads and motives in deformation quantization”. In: *Lett. Math. Phys.* 48.1 (1999), pp. 35–72. ISSN: 0377-9017. DOI: 10.1023/A:1007555725247. arXiv: math/9904055.

[LS08a] Pascal Lambrechts and Don Stanley. “A remarkable DGmodule model for configuration spaces”. In: *Algebr. Geom. Topol.* 8.2 (2008), pp. 1191–1222. ISSN: 1472-2747. DOI: 10.2140/agt.2008.8.1191. arXiv: 0707.2350.

[LV12] Jean-Louis Loday and Bruno Vallette. *Algebraic operads*. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 346. Heidelberg: Springer, 2012, pp. xxiv+634. ISBN: 978-3-642-30361-6. DOI: 10.1007/978-3-642-30362-3.

[Lyu11] Volodymyr Lyubashenko. “Homotopy unital A_∞-algebras”. In: *J. Algebra* 329 (2011), pp. 190–212. ISSN: 0021-8693. DOI: 10.1016/j.jalgebra.2010.02.009. arXiv: 1205.6058.

[Lyu17] Volodymyr Lyubashenko. “Curved homotopy coalgebras”. In: *Appl. Categ. Structures* 25.6 (2017), pp. 991–1036. ISSN: 0927-2852. DOI: 10.1007/s10485-016-9440-4. arXiv: 1402.0408.

[Mar17] Nikita Markarian. “Weyl n-algebras”. In: *Comm. Math. Phys.* 350.2 (2017), pp. 421–442. ISSN: 0010-3616. DOI: 10.1007/s00220-017-2835-8. arXiv: 1504.01931.

[MT15] Nikita Markarian and Hiro Lee Tanaka. “Factorization homology in 3-dimensional topology”. In: *Mathematical aspects of quantum field theories*. Math. Phys. Stud. Switzerland: Springer, 2015, pp. 213–231.

[Mar96] Martin Markl. “Distributive laws and Koszulness”. In: *Ann. Inst. Fourier (Grenoble)* 46.2 (1996), pp. 307–323. ISSN: 0373-0956. numdam: AIF_1996__46_2_307_0.
[Mau17] James Maundier. “Koszul duality and homotopy theory of curved Lie algebras”. In: *Homology Homotopy Appl.* 19.1 (2017), pp. 319–340. ISSN: 1532-0073. DOI: 10.4310/HHA.2017.v19.n1.a16. arXiv: 1512.01975.

[Mil12] Joan Millès. “The Koszul complex is the cotangent complex”. In: *Int. Math. Res. Not. IMRN* 3 (2012), pp. 607–650. ISSN: 1073-7928. arXiv: 1004.0096.

[Pet14] Dan Petersen. “Minimal models, GT-action and formality of the little disk operad”. In: *Selecta Math. (N.S.)* 20.3 (2014), pp. 817–822. ISSN: 1022-1824. DOI: 10.1007/s00029-013-0135-5. arXiv: 1303.1448.

[PP05] Alexander Polishchuk and Leonid Positsel’ski. *Quadratic algebras*. University Lecture Series 37. American Mathematical Society, Providence, RI, 2005, pp. xii+159. ISBN: 0-8218-3834-2.

[Pos93] Leonid E. Positsel’skii. “Nonhomogeneous quadratic duality and curvature”. In: *Funktsional. Anal. i Prilozhen.* 27.3 (1993), pp. 57–66, 96. ISSN: 0374-1990. DOI: 10.1007/BF01087537.

[Pri70] Stewart B. Priddy. “Koszul resolutions”. In: *Trans. Amer. Math. Soc.* 152 (1970), pp. 39–60. ISSN: 0002-9947. DOI: 10.1090/S0002-9947-1970-0265437-8.

[Qui69] Daniel Quillen. “Rational homotopy theory”. In: *Ann. of Math. (2)* 90 (1969), pp. 205–295. ISSN: 0003-486X. JSTOR: 1970725.

[Sul77] Dennis Sullivan. “Infinitesimal computations in topology”. In: *Inst. Hautes Études Sci. Publ. Math.* 47.47 (1977), 269–331 (1978). ISSN: 0073-8301. numdam: PMIHES_1977__47__269_0.

[Tam03] Dmitry E. Tamarkin. “Formality of chain operad of little discs”. In: *Lett. Math. Phys.* 66.1-2 (2003), pp. 65–72. ISSN: 0377-9017. DOI: 10.1023/B:MATH.0000017651.1270