Activation calculation for the dismantling and decommissioning of a light water reactor using MCNP™ with ADVANTG and ORIGEN-S

Dr. L. Schlömer¹), Prof. Dr. P.-W. Phlippen¹), B. Lukas²)

¹) WTI Wissenschaftlich-Technische Ingenieurberatung GmbH, 52428 Jülich, Germany
²) EnBW Kernkraft GmbH, 76661 Philippsburg, Germany

ANS Annual Meeting
June 11-15, 2017, San Francisco
Content

- Company profiles
- Situation & objective
- Calculation procedure & model
- Validation
- Results
- Decommissioning & packaging concepts
- Conclusion & lessons learned
WTI - The Engineering Company of the GNS-Group

- 75 employees
- 60 scientists and engineers
- Sales 2016: 8.8 Mio. EUR

Engineering Services for:

- Planning and construction of plants
- Decommissioning planning
- Safety analysis & Licensing procedures
- Nuclear waste management (waste disposal, development of packages)
- Calculations (shielding, criticality, thermodynamic, mechanical)
- Research & development for industrial applications
WTI - Calculations

- Nuclear analyses
 - Criticality safety analyses
 - Determination of radioactive inventories
 - Activation from neutron irradiation
 - Shielding for casks and storage buildings
 - Planning for optimised cask loadings

- Thermodynamic and flow analyses
 - Transport and storage of spent fuel casks
 - Thermal load of buildings
 - Coolant distribution in storage buildings

- Mechanical analyses
 - Static and dynamic analyses
 - Stability and fracture mechanics analyses

- Validation of software tools and methods
EnBW Energie Baden-Württemberg AG is an European utility with solid shareholders

Introduction and company profile

Overview

› Germany's third largest utility; in Europe within TOP 10
› Business activities in several European countries (GER, CZ, TR, CH, A, HU)
› Four business units: Generation & Trading, Renewable Energies, Grids, Sales
› Approximately 20,000 employees
› In 2015 annual revenue 21 billion Euro and Adj. EBITDA 2.1 billion Euro
› Two strong main shareholders (state of BaWü and a group of municipalities)
› Clear strategy: Energiewende. Safe. Hands on.
Wide balanced portfolio is the corporate backbone
Introduction and company profile

Sales	**Grids**
Adjusted EBITDA 2015: €255 million	Adjusted EBITDA 2015: €886 million
Employees: 3,300	Employees: 8,086
Task/products: Sale of electricity, gas and other products; providing of energy-related services; advisory service; “Sustainable City” project development; support for local authorities; collaboration with public utilities	**Task/products:** Transport and distribution of electricity and gas, providing of grid-related services, operating grids for third parties and water supply services

Renewable Energies	**Generation and Trading**
Adjusted EBITDA 2015: €287 million	Adjusted EBITDA 2015: €777 million
Employees: 815	Employees: 5,167
Tasks/products: Project development and management, construction and operation of power plants generating power from renewable energies from hydropower, onshore and offshore wind energy, photovoltaics and bioenergy	**Tasks/products:** Advisory service, construction, operation and decommissioning of thermal generation plants; electricity trading; risk management; development of gas midstream business, district heating; waste management/ environmental services
Nuclear Business in Transformation – from Operation to Decommissioning
EnBW Kernkraft GmbH – Nuclear Power Plants

EnBW Kernkraft GmbH – nuclear power plants

Obrigheim (KWO)
- Pressurized water reactor
- Power rating: 357 MW
- Start of operation: 1969
- End of operation: 2005

Philippsburg (KKP)
- KKP 1
 - Boiling water reactor
 - Power rating: 926 MW
 - Start of operation: 1979
 - End of operation: 2011
- KKP 2
 - Pressurized water reactor
 - Power rating: 1.468 MW
 - Start of operation: 1984
 - End of operation: 2019P

Neckarwestheim (GKN)
- GKN I
 - Pressurised water reactor
 - Power rating: 840 MW
 - Start of operation: 1976
 - End of operation: 2011
- GKN II
 - Pressurized water reactor
 - Power rating: 1.400 MW
 - Start of operation: 1989
 - End of operation: 2022P

Employees: ~1.600
- In decommissioning
- In post-operation
- In operation
Situation & objective (1/2)

- **Situation:**
 After shut-down nuclear power plants have to be decommissioned

- **The knowledge of radioactivity levels in activated components is required for:***
 - Decommissioning licensing procedure,
 - Planning of segmentation and packaging,
 - Definition of probing regions and number of samples,
 - Prediction of decommissioning costs.

- **Completed WTI-projects for EnBW***
 - Boiling water reactor: KKP1 (✓)
 - Pressurized water reactors: GKN I (✓), GKN II (✓) and KKP2 (✓)

- **Ongoing WTI-project for RWE***
 - Pressurized water reactor: Emsland (KKE)

- **Acquisition WTI-projects for PreussenElektra GmbH***
 - Pressurized water reactors: Unterweser (KKU), Grafenrheinfeld (KKG), Brokdorf (KBR), Grohnde (KWG) and Ohu (KKI 2)
Solution

- Use of state-of-the-art Monte-Carlo-codes (MCNP™) coupled with modern variance reduction techniques (ADVANTG)
- Detailed calculation of activation and decay (ORIGEN-S)

Main targets

- Radiological characterization of all relevant components of a light water reactor
- Reduction of samples and related costs
- Cost-efficient and optimized decommissioning concepts
Calculation procedure & model (1/5)

- MCNP™ – modelling of BWR (or PWR) as 3D-geometry
 - Core → Merging of fuel assemblies (density & burnup)
 - Core-near and core-far components (e.g., bioshield)

- Analysis of the reactor-life-cycle as basis for the local neutron source distribution → **Representative phases**
 - Neutron source distribution in the core
 - Water density distribution in the core region and in the RPV

- Segmentation
 - Material compositions & neutron flux spectra/flux distributions

- Activation calculation with ORIGEN-S
 - Input → Neutron spectra and flux densities from MCNP™
 - Alloying and trace elements to be activated
 - Nuclear data based on ENDF/B-VII- and JEFF 3.0-data
 - Validation of computational model and source term

Example: BWR
Calculation procedure & model (2/5)

- Technical drawing - BWR
- Detailed MCNP™-model
Detailed MCNP™-model (PWR)
Calculation procedure & model (4/5)

- Full MCNP™-model (PWR)

- Reactor pressure vessel
Control rods and guide tubes
Validation (1/9)

- **Basis of validation:**
 - Samples
 - Small samples (e.g. cuttings)
 - bore holes, probing of internals
 - Activation detectors (core-near and core-far)
 - Gamma dose rate measurements after shut-down
 - Neutron dose rate measurements during operation
 - Neutron flux density measurements during operation

Main objectives:
Validated integral neutron flux, neutron spectra and activation results in
- Core-near and
- Core-far regions
Validation - Samples (2/9)

- Samples are only taken from components outside the RPV
 - Drilling chips

- Results shown as relation calculation(C)/measurement(M) for concrete (B) and steel (S) structures
 (Example: BWR, PWR similar)

 Results show good agreement for Co-60 and Cs-134

 Traces of europium in concrete are strongly varying

sample	Co-60	Cs-134	Eu-152
S1	1.3	*	*
S2	1.6	*	*
S3	1.5	*	*
B1	4.8	2.6	8.0
B2	3.7	2.2	7.0
B3	-	-	-

*: Not measured, -: Measured activity below detection limit
Validation - Samples (3/9)

- Bore hole samples contain
 - Concrete and armed concrete structure (biological shield)
 - Small samples of the RPV

- Typical results shown as relation C/M

- H-3 overestimated → Escapes partly during operation

- Generally slight overestimation

- Results behave similar for BWR and PWR

Table: Validation - Samples (3/9)

bore hole sample position	nuclide	concrete of biological shield	steel sample of RPV		
		towards RPV	in the middle	towards annulus	
4 m above the active zone (streaming dominates)	H-3	2.2	-	-	*
	C-14	*	*	*	2.3
	Mn-54	*	*	*	1.2
	Co-60	0.9	5.6	-	*
	Cs-134	1.4	3.8	-	*
	Eu-152	4.1	3	-	*
	Eu-154	4.1	2.6	-	*

mid level of the active zone (direct radiation dominates)	H-3	19	2.9	2.8	*
C-14	2.2	0.1	0.0	*	
Mn-54	*	*	*	6.8	
Co-60	0.9	-	4.6	1.8	
Cs-134	2	-	-	*	
Eu-152	5.7	-	2	*	
Eu-154	5.1	-	-	*	

*: Not measured, -: Measured activity below detection limit

This document may not be cited, reproduced in whole or in part, or made available to third parties without prior written consent of WTI Wissenschaftlich-Technische Ingenieurberatung GmbH, Jülich and EnBW Kernkraft GmbH, Philippsburg. All rights reserved by WTI.
Analyses of samples

Measurement of reaction rates and derivation of fast neutron fluence

Detectors
- Fe-54 (n, p) Mn-54 → short half-life: $T_{1/2}(\text{Mn-54}) = 312 \text{ d}$
- Nb-93 (n, n') Nb-93m → longer half-life: $T_{1/2}(\text{Nb-93m}) \approx 16 \text{ a}$

Two ways to calculate the reaction rates
- Directly with MCNP™
- With ORIGEN-S using MCNP™-results → WTI method

Deviation:
C/M from (1.0 ± 0.1) to (1.9 ± 0.2) for both ways and reactor types
Validation - Measurement of gamma dose rates (5/9)

- Dose rate measurements between RPV and biological shield after decontamination of the primary circuit (BWR)
 → Main contribution: Activation products

- Calculated activities are used to estimate the dose rates in the post-operational phase

- Azimuthal varying heterogeneous activation was included

- Major contribution of the shroud to the dose rate along the core height

- Dose rates agree with C/M ≈ 2 to 3

- Same agreement as core-near activation detectors

receptor point	C/M
M0	1.2
M1	2
M2	2.7
M3	1.7
M4	2.3
M5	2.2
M6	2.1
M7	1.8
M8	3
M9	2.6
M10	2.9
M11	2
Validation - Measurement of gamma dose rates (6/9)

- Comparison of measured and calculated dose rates (PWR)
 - Measurement along control rod positions inside a water-free RPV

- Results with C/M ≈ 2 to 3 agree as in the case of a BWR

![Diagram showing dose rate comparison with measurements and calculations for different positions in a water-free environment.](image-url)
Validation - Measurement of neutron dose rates (7/9)

- Neutron dose rates measured in 2 m to 4 m distance from the entrance of the containment during operation → Neutron streaming
 - Neutron detector Berthold Lb6411 was used

- Detector-Characteristics applied in calculation

- $C/M \approx 1$ in about 3 m distance from the entrance
Validation - Flux measurements (8/9)

- Measurement of currents in neutron-ionization chambers during reactor operation
- Currents converted to local neutron flux densities in comparison to calculations
- Results show agreement with \(C/M = (2.7 \pm 0.6) \)
 - Same accuracy as for previously shown validation results
Validation - Summary (9/9)

- All methods of validation show similar results for both reactor types
 - Good agreement between measurements and calculated neutron flux density distributions, radioactivities and derived dose rates
 - Agreement between the computational codes is demonstrated (code-to-code comparison)

- The developed method reproduces the neutron flux density distribution and activities appropriately in
 - Core-near and
 - Core-far regions

The developed WTI-method to calculate neutron flux density distributions during full power operation for activation analyses is validated!
Results - Neutron flux density distributions (BWR)

- Neutron flux density distribution during full power operation, 1/(cm² s)
Results - Neutron flux density distributions (PWR)

- Streaming along primary coolant pipes

- Neutron flux density distribution at full power operation, 1/(cm² s)
Results - Representative phases

- Difference between grouped operation cycles
- Results show the need of creating representative cycle groups

![Graph showing neutron flux density and gap between RPV and concrete at 90°](image)

- Factor ~ 1.6
- Group 1 vs. Group 2
- AZ and OK BIO
Visualization of activity distributions

- Example: Distribution in concrete structures

- Fe-55 decay: 0 years after shutdown
- Co-60 decay: 0 years after shutdown
- Eu-152 decay: 0 years after shutdown
Decommissioning & packaging concepts (1/3)

- Further use of calculated radioactivities

Basic data:
- Radioactivities
- Mass
- Geometry and dimensions
- Product group

Choose of disposal method

- Release of radioactive material (§29 StrlSchV)
- Melting of steel components (use as e.g. shielding)
- Development of a packaging concept (transport & storage of radioactive material)

www.siempelkamp.com
Release of radioactive material

Detailed information of radioactivity distribution inside the containment required → Radioactive decay

Trace elements in unirradiated materials (basis composition) are important for a possible release

As function of the specific reference date optimized decommissioning strategies can be realized → Choose of disposal method

time	release of radioactive material	concrete structures without U & Th
reference date	3%	31%
+ 10 years	6%	40%
	82%	
Decommissioning & packaging concepts (3/3)

Packaging concept

- Basic data:
 - Radioactivities
 - Mass
 - Geometry and dimensions
 - Product group

- Selection of cask type and definition of a waste container class
 - Dimensions, conditioning treatment and mass of packaging

- Development of a packaging concept and definition of batches
 - Determination of masses and surfaces
 - Estimation of radioactive inventory
 - Calculation of expected dose rates

- Acceptability for disposal
 - Ensure criticality safety
 - Compliance with activity concentrations

- Compliance with dose rate limits?
 - Yes
 - Compliance with waste acceptance requirements?
 - Yes
 - Packaging concept
 - No
 - No

This document may not be cited, reproduced in whole or in part, or made available to third parties without prior written consent of WTI Wissenschaftlich-Technische Ingenieurberatung GmbH, Jülich and EnBW Kernkraft GmbH, Philippsburg. All rights reserved by WTI.
Conclusion and lessons learned

- Prediction of activities improved by application of the Monte-Carlo-Method and the developed procedure
- Applied method suitable and validated for the determination of radioactive inventory of a nuclear power plant from neutron activation
- Validation demonstrates similar C/M-values along all references
 - Strong confidence in the developed calculation method
 - Method can be used for the calculation of radioactive inventories of all nuclear facilities
- The developed and validated method
 - Reduces significantly the amount of samples
 - Can be used to create cost-effective and optimized packaging concepts
Activation calculation for the dismantling and decommissioning of a light water reactor using MCNP™ with ADVANTG and ORIGEN-S

Dr. L. Schlömer¹), Prof. Dr. P.-W. Phlippen¹), B. Lukas²)

¹) WTI Wissenschaftlich-Technische Ingenieurberatung GmbH, 52428 Jülich, Germany
²) EnBW Kernkraft GmbH, 76661 Philippsburg, Germany

ANS Annual Meeting
June 11-15, 2017, San Francisco