Cesàro Summability of Taylor Series in Weighted Dirichlet Spaces

Javad Mashreghi · Pierre-Olivier Parisé · Thomas Ransford

Received: 24 September 2020 / Accepted: 5 November 2020 / Published online: 18 November 2020
© Springer Nature Switzerland AG 2020

Abstract
We show that, in every weighted Dirichlet space on the unit disk with superharmonic weight, the Taylor series of a function in the space is \((C, \alpha)\)-summable to the function in the norm of the space, provided that \(\alpha > 1/2\). We further show that the constant \(1/2\) is sharp, in marked contrast with the classical case of the disk algebra.

Keywords Weighted Dirichlet space · Cesàro mean · Riesz mean · Hadamard multiplication

Mathematics Subject Classification 40G05 · 40J05 · 41A10 · 46E20

1 Introduction
Let \(f(z)\) be a formal power series, say \(f(z) = \sum_{k=0}^\infty a_k z^k\). Many holomorphic function spaces on the unit disk \(\mathbb{D}\) have the property that, if \(f\) belongs to the space, then its Taylor partial sums...
\[s_n[f](z) := \sum_{k=0}^{n} a_k z^k \]

converge to \(f \) in the norm of the space. This is the case, for example, if the space in question is the Hardy space \(H^2 \), the Dirichlet space \(\mathcal{D} \) or the Bergman space \(\mathcal{A}^2 \). It is also true in all the Hardy spaces \(H^p \) for \(1 < p < \infty \), even though the proof is not as straightforward as in the other cases.

There are also spaces in which convergence may fail. For instance, a classic example of du Bois-Reymond shows that there exists \(f \) in the disk algebra \(A(\mathbb{D}) \) such that \(s_n[f] \) does not converge to \(f \) in the norm of \(A(\mathbb{D}) \). The same phenomenon can occur in the Hardy space \(H^1 \). In both of these cases, however, Fejér’s theorem shows that the Cesàro sums

\[
\sigma_n[f](z) := \frac{1}{n+1} \sum_{k=0}^{n} s_k[f](z) = \sum_{k=0}^{n} \left(1 - \frac{k}{n+1} \right) a_k z^k
\]

do converge to \(f \) in the norm of the space.

In the case of the disk algebra, there is a refinement of Fejér’s theorem due to M. Riesz [6], who showed that the generalized Cesàro means

\[
\sigma_n^\alpha[f](z) := \frac{(n+\alpha)^{-1}}{\alpha} \sum_{k=0}^{n} \binom{n-k+\alpha}{\alpha} a_k z^k \tag{1}
\]

converge to \(f \) in the norm of \(A(\mathbb{D}) \) for each \(\alpha > 0 \). Here, the binomial coefficients should be interpreted as

\[
\binom{n+\alpha}{\alpha} := \frac{\Gamma(n+\alpha+1)}{\Gamma(\alpha+1)\Gamma(n+1)},
\]

where \(\Gamma \) denotes the gamma function. An analogous refinement holds in \(H^1 \).

The fact that \(\sigma_n^\alpha[f] \) converges to \(f \) in the space is often described by saying that the Taylor series of \(f \) is \((C, \alpha)\)-summable to \(f \) in the space. It is well known that \((C, \alpha)\)-summability implies \((C, \beta)\)-summability if \(\alpha < \beta \). Thus the \((C, \alpha)\)-summability of \(f \) for \(\alpha > 0 \) improves Fejér’s result on the convergence of \(\sigma_n[f] \) (namely \((C, 1)\)-summability) almost to the point of establishing the convergence of \(s_n[f] \) itself (namely \((C, 0)\)-summability). For background on summability methods, we refer to Hardy’s book [2].

What happens in other spaces? In this article, we consider the family of weighted Dirichlet spaces with superharmonic weights. Dirichlet spaces with harmonic weights were introduced by Richter [4] and further studied by Richter and Sundberg [5]. The generalization to superharmonic weights was treated by Aleman [1].
Let us recall the definition. Given a positive superharmonic function \(\omega \) on \(\mathbb{D} \) and a holomorphic function \(f \) on \(\mathbb{D} \), we define

\[
\mathcal{D}_\omega(f) := \int_{\mathbb{D}} |f'(z)|^2 \omega(z) \, dA(z),
\]

where \(dA \) denotes normalized area measure on \(\mathbb{D} \). The weighted Dirichlet space \(\mathcal{D}_\omega \) is the set of holomorphic \(f \) on \(\mathbb{D} \) with \(\mathcal{D}_\omega(f) < \infty \). Defining

\[
\|f\|^2_{\mathcal{D}_\omega} := |f(0)|^2 + \mathcal{D}_\omega(f) \quad (f \in \mathcal{D}_\omega),
\]

makes \(\mathcal{D}_\omega \) into a Hilbert space containing the polynomials.

It is known that, if \(\omega \) is a superharmonic weight and if \(f \in \mathcal{D}_\omega \), then \(\sigma_n[f] \to f \) in \(\mathcal{D}_\omega \). In particular, polynomials are dense in \(\mathcal{D}_\omega \). On the other hand, there exist a superharmonic weight \(\omega \) and a function \(f \in \mathcal{D}_\omega \) such that \(\sigma_n[f] \not\to f \) in \(\mathcal{D}_\omega \). For proofs of these facts, see [3, Theorem 1.6].

Thus \(\mathcal{D}_\omega \) behaves a bit like the spaces \(A(\mathbb{D}) \) and \(H^1 \). By analogy with what happens in these spaces, we might therefore expect Taylor series to be \((C, \alpha)\)-summable in \(\mathcal{D}_\omega \) for all \(\alpha > 0 \). This turns out not to be the case. We shall establish the following results.

Theorem 1.1 If \(\omega \) is a superharmonic weight on \(\mathbb{D} \), if \(f \in \mathcal{D}_\omega \) and if \(\alpha > 1/2 \), then \(\sigma_n^{\alpha}[f] \to f \) in \(\mathcal{D}_\omega \).

Theorem 1.2 Let \(\omega_1 \) be the harmonic weight on \(\mathbb{D} \) defined by the formula \(\omega_1(z) := (1 - |z|^2)/|1 - z|^2 \). Then there exists \(f \in \mathcal{D}_{\omega_1} \) such that \(\sigma_n^{1/2}[f] \not\to f \) in \(\mathcal{D}_{\omega_1} \).

In the terminology of [5], the space \(\mathcal{D}_{\omega_1} \) is a local Dirichlet space. Theorem 1.2 shows that, even though \(\mathcal{D}_{\omega_1} \) is a Hilbert space, Taylor series in the space actually have worse summability behaviour than in \(A(\mathbb{D}) \) or \(H^1 \).

The proofs of Theorems 1.1 and 1.2 make use of the theory of Hadamard multiplication operators of \(\mathcal{D}_\omega \) as developed in [3]. In Sect. 2 we briefly review this theory, before passing to the proofs of the theorems themselves in Sect. 3.

2 Hadamard Multiplication Operators

Given formal power series \(h(z) := \sum_{k=0}^{\infty} c_k z^k \) and \(f(z) := \sum_{k=0}^{\infty} a_k z^k \), we define their Hadamard product to be the formal power series given by the formula

\[
(h \ast f)(z) := \sum_{k=0}^{\infty} c_k a_k z^k.
\]

Obviously, if \(h \) is a polynomial, then \(h \ast f \) is a polynomial too. In this case, for each superharmonic weight \(\omega \) on \(\mathbb{D} \), the map \(M_h : f \mapsto h \ast f \) is a bounded linear map from \(\mathcal{D}_\omega \) to itself, sometimes called a Hadamard multiplication operator. We are interested in estimating its operator norm, \(\|M_h : \mathcal{D}_\omega \to \mathcal{D}_\omega\| \).
To state our results, we need a little extra notation. Given a sequence of complex numbers \((c_k)_{k \geq 1}\), we write \(T_c\) for the infinite matrix

\[
T_c := \begin{pmatrix}
 c_1 & c_2 - c_1 & c_3 - c_2 & c_4 - c_3 & \ldots \\
 0 & c_2 - c_1 & c_3 - c_2 & c_4 - c_3 & \ldots \\
 0 & 0 & c_3 - c_2 & c_4 - c_3 & \ldots \\
 \vdots & \vdots & \vdots & \vdots & \ddots \\
 0 & 0 & 0 & c_4 & \ldots \\
 \vdots & \vdots & \vdots & \vdots & \ddots \\
\end{pmatrix}.
\] (2)

If the \((c_k)\) are the coefficients of a formal power series \(h(z) = \sum_{k=0}^{\infty} c_k z^k\), then we also write \(T_h\) in place of \(T_c\). Note that, in this situation, the coefficient \(c_0\) plays no role.

Theorem 2.1 Let \(h\) be a polynomial.

(i) For each superharmonic weight \(\omega\) on \(\mathbb{D}\), we have

\[
\| M_h : \mathcal{D}_\omega \to \mathcal{D}_\omega \| \leq \| T_h : \ell^2 \to \ell^2 \|.
\]

(ii) If \(\omega_1\) is the harmonic weight on \(\mathbb{D}\) given by \(\omega_1(z) := (1 - |z|^2)/|1 - z|^2\), then

\[
\| M_h : \mathcal{D}_{\omega_1} \to \mathcal{D}_{\omega_1} \| = \| T_h : \ell^2 \to \ell^2 \|.
\]

Proof Part (i) is a special case of [3, Theorem 1.1]. Part (ii) is established in the course of the proof of the same result, see [3, p.52]. \(\square\)

To apply Theorem 2.1, it is helpful to have at our disposal some explicit estimates for \(\| T_c : \ell^2 \to \ell^2 \|\).

Theorem 2.2 Let \(c := (c_k)_{k \geq 1}\) be a sequence of complex numbers that is eventually zero, and let \(T_c\) be defined by (2).

(i) If \(n\) is an integer such that \(c_k = 0\) for all \(k > n\), then

\[
\| T_c : \ell^2 \to \ell^2 \|^2 \leq (n + 1) \sum_{k=1}^{n} |c_{k+1} - c_k|^2.
\]

(ii) For all integers \(m, n\) with \(1 \leq m \leq n\), we have

\[
\| T_c : \ell^2 \to \ell^2 \|^2 \geq m \sum_{k=m}^{n} |c_{k+1} - c_k|^2.
\]

Proof Part (i) was already established in [3, Theorem 1.2(ii)]. For part (ii), we remark that the operator norm of \(T_c\) is bounded below by the norm of any submatrix, in particular that of the \(m \times (n - m + 1)\) submatrix

\[
A := \begin{pmatrix}
 c_{m+1} - c_m & \ldots & c_{n+1} - c_n \\
 \vdots & \ddots & \vdots \\
 c_{m+1} - c_m & \ldots & c_{n+1} - c_n
\end{pmatrix}.
\]
Now AA^* is an $m \times m$ matrix, all of whose entries have the same value, namely $\sum_{k=m}^{n} |c_{k+1} - c_k|^2$. It follows that

$$\|T_c\|^2 \geq \|A\|^2 = \|AA^*\| = m \sum_{k=m}^{n} |c_{k+1} - c_k|^2.$$

\[\square\]

3 Proofs of Theorems 1.1 and 1.2

Instead of using the Cesàro means σ^n_α, defined in (1), we prefer to work with the so-called discrete Riesz means, defined as follows. Given a formal power series $f(z) := \sum_{k=0}^{\infty} a_k z^k$ and $\alpha > 0$, we let

$$\rho^n_\alpha[f](z) := \sum_{k=0}^{n} \left(1 - \frac{k}{n+1}\right)^\alpha a_k z^k.$$

The following result allows to us pass between Cesàro means and Riesz means, at least when $0 < \alpha < 1$.

Proposition 3.1 Let ω be a superharmonic weight on \mathbb{D}, let $f \in \mathcal{D}_\omega$ and let $0 < \alpha < 1$. Then $\sigma^n_\alpha[f] \to f$ in \mathcal{D}_ω if and only if $\rho^n_\alpha[f] \to f$ in \mathcal{D}_ω.

To prove this proposition we use a theorem due to M. Riesz [7]. Riesz actually proved the result in the scalar case, but a careful reading of Riesz’s proof shows that the theorem easily extends to general Banach spaces.

Theorem 3.2 Let X be a Banach space, let $(x_k)_{k \geq 0}$ be a sequence in X and let y be an element of X. Then, for each $\alpha \in (0, 1)$,

$$\lim_{n \to \infty} \left(\frac{n + \alpha}{\alpha}\right)^{-1} \sum_{k=0}^{n} \left(1 - \frac{k}{n+1}\right)^\alpha x_k \equiv \lim_{n \to \infty} \sum_{k=0}^{n} \left(1 - \frac{k}{n+1}\right)^\alpha x_k = y.$$

Proof of Proposition 3.1 The result follows directly upon applying Theorem 3.2 with $X := \mathcal{D}_\omega$ and $y := f(z) = \sum_{k=0}^{\infty} a_k z^k$ and $x_k := a_k z^k$. \[\square\]

Proof of Theorem 1.1 Let ω be a superharmonic weight on \mathbb{D}. To show that Taylor series are (C, α)-summable in \mathcal{D}_ω for all $\alpha > 1/2$, it suffices to do so for $\alpha \in \left(1, \frac{1}{2}\right)$. Fix such an α.

By Proposition 3.1, it is enough to show that $\rho^n_\alpha[f] \to f$ in \mathcal{D}_ω for all $f \in \mathcal{D}_\omega$. It is obvious that $\rho^n_\alpha[f] \to f$ if f is a polynomial, and, as noted in the introduction, polynomials are dense in \mathcal{D}_ω. Therefore the result will follow if we can show that the operator norms of the linear maps $f \mapsto \rho^n_\alpha[f] : \mathcal{D}_\omega \to \mathcal{D}_\omega$ are bounded independently of n.

To do this, we identify these maps as a Hadamard multiplication operators. Indeed, we have $\rho_n^\alpha[f] = M_{h_n}(f)$, where

$$h_n(z) = \sum_{k=0}^{n} \left(1 - \frac{k}{n+1}\right)^\alpha z^k.$$

By Theorem 2.1(i), we have

$$\|M_{h_n} : D_\omega \to D_\omega\| \leq \|T_{h_n} : \ell^2 \to \ell^2\|,$$

and using Theorem 2.2(i), we obtain

$$\|T_{h_n} : \ell^2 \to \ell^2\|^2 \leq (n + 1) \sum_{k=1}^{n} \left(1 - \frac{k + 1}{n+1}\right)^\alpha - \left(1 - \frac{k}{n+1}\right)^\alpha \right|^2$$

$$= \frac{1}{(n + 1)^{2\alpha - 1}} \sum_{k=1}^{n} \left((n + 1 - k)^\alpha - (n - k)^\alpha\right)^2$$

$$= \frac{1}{(n + 1)^{2\alpha - 1}} \sum_{k=1}^{n} \left(\int_{n-k}^{n+1-k} \alpha t^{\alpha - 1} \, dt \right)^2$$

$$\leq \frac{1}{(n + 1)^{2\alpha - 1}} \sum_{k=1}^{n} \int_{n-k}^{n+1-k} \alpha^2 t^{2\alpha - 2} \, dt$$

$$= \frac{1}{(n + 1)^{2\alpha - 1}} \int_{0}^{n} \alpha^2 t^{2\alpha - 2} \, dt$$

$$\leq \frac{\alpha^2}{2\alpha - 1}.$$

Thus the operator norms of $f \mapsto \rho_n^\alpha[f] : D_\omega \to D_\omega$ are indeed bounded independently of n, and the proof is complete. \hfill \Box

Proof of Theorem 1.2 Let $\omega_1(z) := (1 - |z|^2)/|1 - z|^2$. By Proposition 3.1, to show that there exists $f \in D_{\omega_1}$ whose Taylor series is not $(C, \frac{1}{2})$-summable to f, it is enough to show that there exists f such that $\rho_n^{1/2}[f] \not\to f$ in D_{ω_1}.

We prove that the operator norms of the maps $f \mapsto \rho_n^{1/2}[f] : D_{\omega_1} \to D_{\omega_1}$ tend to infinity as $n \to \infty$. If so, then, by the Banach–Steinhaus theorem, there exists $f \in D_{\omega_1}$ such that the sequence $\rho_n^{1/2}[f]$ is unbounded in D_{ω_1}. In particular, $\rho_n^{1/2}[f] \not\to f$ in D_{ω_1}, as desired.

Once again, to estimate the norm of the map $f \mapsto \rho_n^{1/2}[f]$, we identify it as a Hadamard multiplication operator, namely $\rho_n^{1/2}[f] = M_{h_n}(f)$, where

$$h_n(z) = \sum_{k=0}^{n} \left(1 - \frac{k}{n+1}\right)^{1/2} z^k.$$
By Theorem 2.1(ii), we have

$$\|M_{h_n} : D_{\omega^1} \to D_{\omega^1}\| = \|T_{h_n} : \ell^2 \to \ell^2\|,$$

and, using Theorem 2.2(ii), for each m with $1 \leq m \leq n$, we have

$$\|T_{h_n} : \ell^2 \to \ell^2\|^2 \geq m \sum_{k=m}^{n} \left(1 - \frac{k + 1}{n + 1} \right)^{1/2} - \left(1 - \frac{k}{n} \right)^{1/2} \right)^2$$

$$= \frac{m}{n+1} \sum_{k=m}^{n} \left(n + 1 - k \right)^{1/2} - \left(n - k \right)^{1/2} \right)^2$$

$$= \frac{m}{n+1} \sum_{k=m}^{n} \frac{1}{(n + 1 - k)^{1/2} + (n - k)^{1/2}} \tag{2.2}$$

$$\geq \frac{m}{4(n+1)} \sum_{k=m}^{n} \frac{1}{n + 1 - k}$$

$$\geq \frac{m}{4(n+1)} \log(n + 2 - m).$$

In particular, taking $m := \lceil (n + 1)/2 \rceil$, we obtain

$$\|T_{h_n} : \ell^2 \to \ell^2\|^2 \geq \frac{1}{8} \log\left(\frac{n + 1}{2} \right),$$

which tends to infinity with n.

Thus the operator norms of $f \mapsto \rho_n^{1/2} [f] : D_{\omega} \to D_{\omega}$ tend to infinity with n, as claimed, and the proof is complete. \square

Funding JM supported by an NSERC Discovery Grant. POP supported by an NSERC Alexander-Graham-Bell Scholarship. TR supported by grants from NSERC and the Canada Research Chairs program.

Compliance with ethical standards

Conflict of interest None.

References

1. Aleman, A.: The Multiplication Operator on Hilbert Spaces of Analytic Functions. PhD thesis, Fern Universität, Hagen (1993)
2. Hardy, G.H.: Divergent Series. Oxford, at the Clarendon Press (1949)
3. Mashreghi, J., Ransford, T.: Hadamard multipliers on weighted Dirichlet spaces. Integral Equations Operator Theory, 91(6):Paper No. 52, 13, (2019)
4. Richter, S.: A representation theorem for cyclic analytic two-isometries. Trans. Amer. Math. Soc. 328(1), 325–349 (1991)
5. Richter, S., Sundberg, C.: A formula for the local Dirichlet integral. Michigan Math. J. 38(3), 355–379 (1991)

6. Riesz, M.: Sur les séries de Dirichlet et les séries entières. C.R. Acad. Sci. Paris, 149:309–312, (1911)

7. Riesz, M.: Sur l’équivalence de certaines méthodes de sommation. Proc. London Math. Soc. 22(2), 412–419 (1924)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.