Research Article

Live and Heat-Killed *Lactobacillus rhamnosus* ATCC 7469 May Induce Modulatory Cytokines Profiles on Macrophages RAW 264.7

Adeline Lacerda Jorjão, 1 Felipe Eduardo de Oliveira, 1 Mariella Vieira Pereira Leão, 2 Cláudio Antonio Talge Carvalho, 3 Antonio Olavo Cardoso Jorge, 1 and Luciane Dias de Oliveira 1

1Department of Biosciences and Oral Diagnosis, Laboratory of Microbiology and Immunology, Institute of Science and Technology, Universidade Estadual Paulista (UNESP), Avenue Engenheiro Francisco José Longo, 777 Jardim São Dimas, 12245-000 São José dos Campos, SP, Brazil
2Bioscience Basic Institute, University of Taubaté, Street Expedicionário Ernesto Pereira 3, 12020-130 Taubaté, SP, Brazil
3Department of Restorative Dentistry, Institute of Science and Technology, Universidade Estadual Paulista (UNESP), Avenue Engenheiro Francisco José Longo, 777 Jardim São Dimas, 12245-000 São José dos Campos, SP, Brazil

Correspondence should be addressed to Adeline Lacerda Jorjão; adelj@ig.com.br

Received 3 August 2015; Revised 20 October 2015; Accepted 26 October 2015

Academic Editor: Guillermo Tellez

Copyright © 2015 Adeline Lacerda Jorjão et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This study aimed to evaluate the capacity of *Lactobacillus rhamnosus* and/or its products to induce the synthesis of cytokines (TNF-α, IL-1β, IL-4, IL-6, IL-10, and IL-12) by mouse macrophages (RAW 264.7). Three microorganism preparations were used: live *L. rhamnosus* (LLR) suspension, heat-killed *L. rhamnosus* (HKLR) suspension, and the supernatant of a heat-killed *L. rhamnosus* (SHKLR)suspension, which were cultured with macrophages (37°C, 5%CO₂) for 2h and 30 min. After that, cells were cultured for 16 h. The supernatants were used for the quantitation of cytokines, by ELISA. The results were compared with the synthesis induced by lipopolysaccharide (LPS) and analysed, using ANOVA and Tukey test, 5%. LLR and HKLR groups were able to significantly increase the production of TNF-α, IL-6, and IL-10 (\(P<0.05\)). SHKLR also significantly increased the production of TNF-α and IL-10 (\(P<0.05\)) but not IL-6 (\(P>0.05\)). All the *L. rhamnosus* suspensions were not able to produce detectable levels of IL-1β or significant levels of IL-4 and IL-12 (\(P>0.05\)). In conclusion, live and heat-killed *L. rhamnosus* suspensions were able to induce the synthesis of different cytokines with proinflammatory (TNF-α and IL-6) or regulatory (IL-10) functions, suggesting the role of strain *L. rhamnosus* ATCC 7469 in the modulation or in the stimulation of immune responses.

1. Introduction

According to WHO [1], probiotics are “live organisms which when administered in adequate amounts confer health benefits to the host.” Probiotics such as lactic acid bacteria are known to have antimutagenic [2], anticarcinogenic [3], and antidiarrheal [4] properties besides stimulating the immune system [5, 6] and improving infectious disease resistance [7] and inflammatory gastrointestinal [8]. They help in maintenance of balanced microbiota, improving lactose metabolism [9], and reducing blood pressure and cholesterol [10, 11].

Nevertheless, scientific evidence indicating that inactivated microbes positively affect human health can also be found in the literature [12]. Accordingly, products intentionally containing nonviable microbial cells are already present in the market (e.g., Lactéol Fort from PUMC Pharmaceutical Co., Ltd., and Fermenti Lattici Tindalizzati from Frau, AF United S.p.a.) [13].

The recent widespread use of lactic acid bacteria and bifidobacteria as probiotics can be attributed to scientific evidence that describes their beneficial effects on human health through the modulation of immune system activity [14],...
although the mechanisms involved in this immune modula-
tion are not yet fully understood. Some of these mechanisms
could include altering the balance of cytokines and inter-
acting with cells of the immune system such as phagocytic
mononuclear cells (monocytes and macrophages), polymor-
phonuclear leukocytes (neutrophils), and NK cells, as well as
B and T lymphocytes [15].

Maassen et al. [16] showed that the synthesis of cytokines
by the intestinal mucosa depends on the strain of Lactobacil-
lus present. They emphasised the need to perform a careful
selection of probiotic strain candidates. The benefits, effects,
and mechanisms of action of probiotics in a host are yet to be
fully elucidated.

Some known probiotic species, such as Lactobacillus
rhamnosus, L. acidophilus, and L. plantarum, are used in
researches that aim to clarify their benefits to the host [17–21].
Among these species, Lactobacillus rhamnosus is one of the
most commonly used therapeutic probiotics. In some recent
findings, L. rhamnosus GG showed significant reduction of
the incidence of respiratory infections and the duration of
diarrhea and improved the symptoms of atopic dermatitis
[22]. Besides, L. rhamnosus GG inhibited the toxic effects
of Staphylococcus aureus on epidermal keratinocytes [23].
L. rhamnosus M21 activated humoral as well as cellular
immune responses, conferring increased resistance to the
host against a viral infection [24] and strain of L. rhamnosus
ATCC 7469 ameliorated the enterotoxigenic Escherichia coli-
induced diarrhea in piglets [25]. L. rhamnosus L34 may pro-
duce factors capable of modulating inflammation stimulated
by Clostridium difficile [26].

However, many of these beneficial effects are difficult to
explain without first understanding the mechanisms respon-
sible for the interaction between Lactobacillus, their secreted
products, and host cells. Taking it into consideration, this
research aimed to verify the capacity of the probiotic bacteria
L. rhamnosus and their products to induce the synthesis of
different cytokines by macrophages in vitro.

2. Materials and Methods

2.1. Preparation of Lactobacillus Suspensions. A standard
strain of L. rhamnosus (ATCC 7469) was grown in Man-
Rogosa-Sharpe (MRS, Oxoid, Basingstoke, Hampshire, Eng-
land) agar and incubated at 37°C with 5% CO₂ for 24 h,
followed by incubation in MRS broth under the same conditions
for 24 h. Three different suspensions of L. rhamnosus were
then prepared:

1. Live L. rhamnosus (LLR) suspension: the culture was
centrifuged for 10 min at 5000 rpm, the supernatants
were discharged, and the pellet was suspended in
sterile saline. This procedure was repeated two more
times. During the last centrifugation, the pellet was
suspended in apyrogenic sterile saline at a concentra-
tion of 5 x 10⁷ UFC/mL [27].

2. Heat-killed L. rhamnosus (HKLR) suspension: the
live L. rhamnosus (LLR) suspension was autoclaved
at 121°C for 15 min and centrifuged for 10 min at
5000 rpm, and the supernatant was removed and
stored. The pellet was suspended in apyrogenic sterile
saline.

3. Supernatant of heat-killed L. rhamnosus (SHKLR)
suspension: supernatant was removed and stored of
heat-killed L. rhamnosus (HKLR).

2.2. Cell Culture. The RAW 264.7 cell line (APABCAM,
Rio de Janeiro, Brazil) was cultured in Dulbecco’s modi-
fied Eagle’s complete medium (DMEM, LGC Biotechnology,
 Cotia, Brazil), supplemented with 10% fetal bovine serum
(FBS, Invitrogen, NY, USA) and 20 μg/mL gentamicin,
and incubated for 7 days, with medium culture exchange every 2
days, in a humidified atmosphere at 37°C with 5% CO₂. The
cells were grown to confluence in 75 cm² tissue culture flasks
prior to harvesting by scraping using a rubber spatula [27].
Viable cell counts were performed using the method of exclu-
sion with trypan blue (0.5%, Sigma-Aldrich, St. Louis, MO,
USA), 10⁶ cells were distributed onto 24-well microplates,
and the medium volume was adjusted to 1 mL. The plates
were incubated for 18 h (37°C/5% CO₂) to permit cellular
adherence prior to experimentation [27]. The supernatant
was removed, and the adhered cells were washed twice with
apyrogenic sterile saline (NaCl 0.85%). Afterward, 500 μL of
dem Died DMEM supplemented with 10% fetal bovine serum was
added without antibiotics for the culture with live bacteria
and with antibiotics (20 μg/mL gentamicin) for the other
cultures [27].

2.3. Exposure of Cultures with L. rhamnosus Suspensions. Was
added to the wells of the microplates with macrophages
500 μL of each L. rhamnosus suspension, bringing the volume
of each well to a total of 1 mL. The cells were incubated for
2.5 h at 37°C with 5% CO₂ [27]. The supernatant was then
removed, and the cells were washed twice with apyrogenic
sterile saline (NaCl 0.85%). Following this, 1 mL of fresh
DMEM supplemented with 10% fetal bovine serum with
antibiotic was added, and the cells were incubated for 16 h
at 37°C (5% CO₂) [25]. The supernatants were then frozen
and stored at –80°C for approximately 3-4 weeks) prior to
subsequent cytokine (TNF-α, IL-1β, IL-4, IL-6, IL-10, and IL-
12), as described below.

The tests were performed in triplicate, 4 repetitions per
group, for a total of 12 samples of each group (groups: LLR;
HKLR; SHKLR; LPS; and negative control). The levels
of cytokines generated by exposure of RAW 264.7 cells
to L. rhamnosus were compared with those observed in
RAW 264.7 cells that were cultured for the same duration
with apyrogenic sterile saline (negative control) or LPS of
Escherichia coli (10 EU/mL, positive control).

2.4. Quantification of Cytokine Levels. Cytokine levels (TNF-
α, IL-1β, IL-4, IL-6, IL-10, and IL-12) were quantified using an
enzyme-linked immunosorbent assay (ELISA). The DuoSet
ELISA detection kit (R&D Systems, Minneapolis, MN, USA)
was used according to the manufacturer's instructions.
In all cases, detection antibody binding was visualized using
the streptavidin-horseradish peroxidase conjugate and TMB
(trimethylbenzidine) substrate system at an OD of 450 nm.
3. Results

The suspensions containing live *L. rhamnosus* (LLR) or heat-killed *L. rhamnosus* (HKLR) were able to induce significant production of TNF-α in the same amounts as LPS (*P* > 0.05). The suspensions with only the products of the microorganism (SHKLR) also significantly induced the production of this cytokine when compared with the negative control, although at a lower level than the other groups (LLR, HKLR, and LPS) (*P* < 0.05) (Figure 1(a)).

Stimulation with LPS (positive control) induces higher IL-6 production compared to the other groups (*P* < 0.05). The suspensions containing live *L. rhamnosus* (LLR) or heat-killed *L. rhamnosus* (HKLR) induced statistically similar IL-6 and this induced significantly higher production to SHKLR groups and negative control group (*P* < 0.05) (Figure 1(b)).

The secretion of IL-1β was not detected after the addition of any of the *L. rhamnosus* suspensions. Only stimulation with LPS produced detectable levels (Figure 1(c)).

Regarding IL-12, production was almost statistically similar in all groups evaluated (LLR, SHKLR, LPS, and negative control) (*P* > 0.05). The group stimulated with heat-killed *Lactobacillus rhamnosus* (HKLR) was the one who differed, with IL-12 levels being statistically lower than the other groups (*P* < 0.05) (Figure 1(d)).

The stimulation of IL-10 production with LPS induced greater production of the cytokines, and this amount was significantly different from the other groups (*P* < 0.05). The cultures stimulated with LLR, HKLR, and SHKLR also produced significant levels of IL-10 compared with the negative control group (*P* < 0.05). The HKLR and SHKLR groups were similar to each other (*P* > 0.05) and different from the LLR group (*P* < 0.05) (Figure 1(e)).

Figure 1: Cytokines secreted by macrophages after exposure to different suspensions: LPS (positive control); negative control (saline solution); LLR: live *L. rhamnosus*; HKLR: heat-killed *L. rhamnosus*; and SHKLR: supernatant of heat-killed *L. rhamnosus*. Mean values (pg/mL) ± standard deviation of (a) TNF-α, (b) IL-6, (c) IL-1β, (d) IL-12, (e) IL-10, and (f) IL-4.
The production of IL-4 was detected in only some of the samples of LPS, LLR, and HKLR; however these values were not statistically significant so that all groups (LPS, LLR, HKLR, SHKLR, and negative control) were similar ($P > 0.05$) (Figure 1(f)).

4. Discussion

There are many bacteria with probiotic properties that can present different mechanisms of action, thus inducing different biological and clinical effects on the host [28]. It is always important to highlight the genus, species, and strain to precisely prescribe a probiotic product. In the present study, the standard strain ATCC 7469 of Lactobacillus rhamnosus was used because this strain has been frequently studied for its potential abilities to prevent and treat diseases such as herpes virus type 1, asthma, rheumatoid arthritis, dermatitis, and diarrhea [25, 29–32]. The Lactobacillus genus has also been observed to have important immunomodulatory effects against different pathogens [9, 33]; however, the exact mechanism of action and the best conditions to promote these benefits are not yet defined.

In the present research, macrophages were challenged with L. rhamnosus, and different results in cytokine production were observed. Living or dead L. rhamnosus, as well as their products alone, were able to induce the synthesis of TNF-α, and the suspensions containing live and dead cells of the microorganism generated the same amount of TNF-α as LPS. Other studies have found similar results in macrophage cultures using different probiotic strains [27, 34–36]. Khani et al. [30] also observed that live L. rhamnosus induced higher levels of TNF-α, suggesting that the entire bacteria promoted phagocytosis and consequently increased macrophage activation.

Live or dead L. rhamnosus generated significant levels of IL-6, but these levels were lower than with LPS. Habil et al. [37] observed that L. rhamnosus, Lactobacillus fermentum, Lactobacillus plantarum, Lactobacillus salivarius, and Bifidobacterium breve suppressed the production of IL-6 by macrophages that were primarily stimulated with LPS, showing that probiotics can activate or inhibit cytokine production depending on the conditions. It appears likely that probiotics can moderately stimulate the synthesis of proinflammatory cytokines in the instance of absence of inflammatory response and suppress it in situations of excessive response, which is a remarkable point in this study, once the macrophages had no stimuli with any pathogen.

The supernatant of L. rhamnosus did not induce IL-6 synthesis, thus suggesting the necessity of cell wall components for this event. According to Habil et al. [37], the manner in which the probiotic is introduced to the macrophage can affect cytokine production, that is, whether the products are associated with the wall (contact signal) or released as a soluble product (no contact signals).

In the present study, none of the L. rhamnosus suspensions induced detectable levels of IL-1β. Bleau et al. [38] also reported low levels of IL-1β in macrophages that were stimulated with different extracts of Lactobacillus in cultures and that LPS and live and heat-killed probiotics showed almost the same cytokine level production. Dong et al. [34, 39] observed an increase of this cytokine, however their study focused on mononuclear peripheral blood cells, and they stimulated these cells with different proportions of different probiotic bacteria for longer periods.

Detectable and apparently high levels of IL-12 were observed in all groups, including the negative control group that had the highest mean value, similar to groups stimulated with LPS and live Lactobacillus and supernatant of Lactobacillus. The group stimulated with dead Lactobacillus was the only one to show IL-12 lower levels. Other studies also reported high levels of IL-12 produced by macrophages or mononuclear blood cells that were challenged with probiotic strains [27, 34, 36]. However it appears that IL-12 production can be inhibited by other Gram-positive bacteria, as well as cell compounds such as peptidoglycan. A suspension with dead L. rhamnosus induced lower IL-12 production likely because of higher concentrations of cell wall compounds due to bacteria lysis from autoclaving. Therefore, probiotic bacteria can modulate macrophage function and suppress or increase IL-12 release [37, 40–42] and some cellular components can revert the cytokine profile induced by Lactobacillus, changing, for example, a profile of predominant IL-12 production to a profile of predominant IL-10 production, considered a suppressive cytokine IL-12.

Only a few samples in the study produced detectable levels of IL-4, making it difficult to discuss the effects of probiotics on the secretion of this cytokine. The literature has also reported controversial effects. Amital et al. [43] reported that lots of Lactobacillus strains show inhibitory effect on the release of IL-4 but, on the other hand, they are potent stimulators of IFN-γ, IL-12, and TNF-α, corroborating our results. However, Drago et al. [44] observed that the strains of L. salivarius (LDR0723 and CRL1528) promoted a significant increase in IL-12 and IFN-γ and a reduction of IL-4 and IL-5, while the strains BNL1059 and RGS1746 increased the Th2 response. Drago and coworkers concluded that the modulation response by L. salivarius was strain dependent, meaning that different strains of the same species can produce different cytokines.

The current study shows that L. rhamnosus, as well as their products alone, were able to induce the synthesis of proinflammatory cytokines and possibly a response profile of Th1 type, which is important in the defense against intracellular pathogens most and contrary to hypersensitivity frames, which are usually caused by imbalance in Th2 anti-inflammatory response. Lactobacillus were also able to induce IL-10 production, which has the regulatory functions and can inhibit Th1 response and when excessive can lead to tissue damage. Therefore there must be a balance between these responses (Th1/Th2), and these bacteria, L. rhamnosus, seem to have potential role in the modulation as well as the maintenance of the immune system balance. Rajput et al. [45] also showed that the administration of the probiotic strains of Saccharomyces boulardii and Bacillus subtilis B10 was able to increase the production of IL-10 in chickens.

However, it is important to note that this is an in vitro study. We used only one lineage of resting cells, because they had not been subjected to any treatment or early stimulation.

The Scientific World Journal
Our experimental conditions were different from in vivo conditions, where many cells are present. Most importantly, our experiment did not take into consideration the effects of lymphocytes, which are the primary cells in cytokine production and in the organization of adaptive responses. In vivo situations present a more complex system in which other stimuli such as pathogens act and interact.

Live and heat-killed _L. rhamnosus_ suspensions were able to induce the synthesis of different cytokines with proinflammatory (TNF-α and IL-6) or regulatory (IL-10) functions, suggesting that _L. rhamnosus_ ATCC 7469 is capable of exerting immunoregulatory effect on macrophages.

Conflict of Interests

The authors declare that they have no conflict of interests.

References

[1] WHO-World Health Organization, "Food and agriculture organization of the United Nations. Evaluation of health and nutritional properties of probiotics in food including powder milk with live lactic and bacteria," Cordoba, 2001, http://www.who.int/foodsafety/publications/fs_management/probiotics/en/index.html.

[2] A. M. LeBlanc, C. Matar, N. LeBlanc, and G. Perdigón, "Effects of milk fermented by _Lactobacillus helveticus_ R389 on a murine breast cancer model," Breast Cancer Research, vol. 7, no. 4, pp. R477–R486, 2005.

[3] I. Wollowski, G. Rechkemmer, and B. L. Pool-Zobel, "Protective role of probiotics and prebiotics in colon cancer," The American Journal of Clinical Nutrition, vol. 73, no. 2, supplement, pp. 45S–455S, 2001.

[4] R. Clancy, "Immunobiotics and the probiotic evolution," FEMS Immunology and Medical Microbiology, vol. 38, no. 1, pp. 9–12, 2003.

[5] N. Van Hai, N. Buller, and R. Fotedar, "The use of customised probiotics in the cultivation of western king prawns (Penaeus latissimus Kishinouye, 1896)," Fish and Shellfish Immunology, vol. 27, no. 2, pp. 100–104, 2009.

[6] K. Wickens, P. N. Black, T. V. Stanley et al., "A differential effect of 2 probiotics in the prevention of eczema and atopy: a double-blind, randomized, placebo-controlled trial," Journal of Allergy and Clinical Immunology, vol. 122, no. 4, pp. 788–794, 2008.

[7] J. Li, B. Tan, K. Mai et al., "Immune responses and resistance against _Vibrio parahaemolyticus_ induced by probiotic bacteria _Arthrobacter_ XE-7 in Pacific white shrimp, _Litopenaeus vannamei_," Journal of the World Aquaculture Society, vol. 39, no. 4, pp. 477–489, 2008.

[8] K. A. Ryan, A. M. O’Hara, J.-P. Van Pijkeren, F. P. Douillard, and P. W. O’Toole, "Lactobacillus salivarius modulates cytokine induction and virulence factor gene expression in _Helicobacter pylori_," Journal of Medical Microbiology, vol. 58, no. 8, pp. 996–1005, 2009.

[9] Y. Ohashi and K. Ushida, "Health-beneficial effects of probiotics: its mode of action," Animal Science Journal, vol. 80, no. 4, pp. 361–371, 2009.

[10] P. Hlivák, J. Odraska, M. Ferencik, L. Ebringer, E. Jahnova, and Z. Mikes, "One-year application of probiotic strain _Enterococcus faecium_ M-74 decreases serum cholesterol levels," Bratislavské Lekárske Listy, vol. 106, no. 2, pp. 67–72, 2005.

[11] M.-J. Shieh, H.-F. Shang, E.-H. Liao, J.-S. Zhu, and Y.-W. Chien, " _Lactobacillus fermentum_ improved intestinal bacteria flora by reducing _Clostridium perfringens_," e-SPEN, the European e-Journal of Clinical Nutrition and Metabolism, vol. 6, no. 2, pp. e59–e63, 2011.

[12] J. Kataria, N. Li, J. L. Wynn, and J. Neu, "Probiotic microbes: do they need to be alive to be beneficial?" _Nutrition Reviews_, vol. 67, no. 9, pp. 546–550, 2009.

[13] V. Tavarniti and S. Guglielmetti, "The immunomodulatory properties of probiotic microorganisms beyond their viability (ghost probiotics: proposal of paraprobiotic concept)," _Genes and Nutrition_, vol. 6, no. 3, pp. 261–274, 2011.

[14] E. Yasuda, M. Serata, and T. Sako, "Suppressive effect on activation of macrophages by _Lactobacillus casei_ strain shirata genes determining the synthesis of cell wall-associated polysaccharides," _Applied and Environmental Microbiology_, vol. 74, no. 15, pp. 4746–4755, 2008.

[15] S. K. Nayak, "Probiotics and immunity: a fish perspective," _Fish & Shellfish Immunology_, vol. 29, no. 1, pp. 2–14, 2010.

[16] C. B. M. Maassen, C. van Holten-Neelen, F. Balk et al., "Strain-dependent induction of cytokine profiles in the gut by orally administered _Lactobacillus_ strains," Vaccine, vol. 18, no. 23, pp. 2613–2623, 2000.

[17] C.-F. Liu, K.-C. Tseng, S.-S. Chiang, B.-H. Lee, W.-H. Hsu, and T.-M. Pan, "Immunomodulatory and antioxidant potential of _Lactobacillus_ exopolysaccharides," _Journal of the Science of Food and Agriculture_, vol. 91, no. 12, pp. 2284–2291, 2011.

[18] V. H. Matsubara, E. G. Silva, C. R. Paula, K. H. Ishikawa, and A. E. M. Nakamae, "Treatment with probiotics in experimental oral colonization by _Candida albicans_ in murine model (DBA/2)," _Oral Diseases_, vol. 18, no. 3, pp. 260–264, 2012.

[19] J. Villena, E. Chiba, Y. Tomasada et al., "Orally administered _Lactobacillus rhamnosus_ modulates the respiratory immune response triggered by the viral pathogen-associated molecular pattern poly(I:C)," _BMC Immunology_, vol. 13, article 52, 2012.

[20] H.-J. Yang, T. K. Min, H. W. Lee, and B. Y. Pyun, "Efficacy of probiotic therapy on atopic dermatitis in children: a randomized, double-blind, placebo-controlled trial," _Allergy, Asthma and Immunology Research_, vol. 6, no. 3, pp. 208–215, 2014.

[21] B. Yun, S. Oh, and M. W. Griffiths, " _Lactobacillus acidophilus_ modulates the virulence of _Clostridium difficile_," _Journal of Dairy Science_, vol. 97, no. 8, pp. 4745–4758, 2014.

[22] M. Ciszek-Lenda, B. Nowak, M. Srótek, A. Gamian, and J. Marcinkiewicz, "Immunoregulatory potential of exopolysaccharide from _Lactobacillus rhamnosus_ KL37: effects on the production of inflammatory mediators by mouse macrophages," _International Journal of Experimental Pathology_, vol. 92, no. 6, pp. 382–391, 2011.

[23] W. Mohammedsaed, A. J. McBain, S. M. Cruickshank, and C. A. O’Neill, " _Lactobacillus rhamnosus_ GG inhibits the toxic effects of _Staphylococcus aureus_ on epidermal keratinocytes," _Applied and Environmental Microbiology_, vol. 80, no. 18, pp. 5773–5781, 2014.

[24] J. A. Song, H. J. Kim, S. K. Hong et al., "Oral intake of _Lactobacillus rhamnosus_ M21 enhances the survival rate of mice lethally infected with influenza virus," _Journal of Microbiology, Immunology and Infection_, 2014.

[25] X.-Q. Li, Y.-H. Zhu, H.-F. Zhang et al., "Risks associated with high-dose _lactobacillus rhamnosus_ in an _Escherichia coli_ model of piglet diarrhea: intestinal microbiota and immune imbalances," _PLoS ONE_, vol. 7, no. 7, Article ID e40666, 2012.
B. Foligne, S. Nutten, C. Grangette et al., "Correlation between Th1/Th2 modulation of Th1/Th2 cytokine induction by gram-positive and gram-negative probiotic bacteria," *FEMS Immunology and Medical Microbiology*, vol. 42, no. 2, pp. 173–180, 2004.

R. Francavilla, C. Fontana, and F. Cristofori, "Letter: identification of probiotics by specific strain name," *Alimentary Pharmacology & Therapeutics*, vol. 35, no. 7, pp. 859–860, 2012.

S.-O. Jang, H.-J. Kim, Y.-J. Kim et al., "Asthma prevention by *Lactobacillus rhamnosus* in a mouse model is associated with CD4^+^CD25^+^Foxp3^+^T cells," *Allergy, Asthma and Immunology Research*, vol. 4, no. 3, pp. 150–156, 2012.

S. Khani, M. Motamedifar, H. Golmoghaddam, H. M. Hosseini, and Z. Hashemizadeh, "In vitro study of the effect of a probiotic bacterium *Lactobacillus rhamnosus* against herpes simplex virus type 1," *Brazilian Journal of Infectious Diseases*, vol. 16, no. 2, pp. 129–135, 2012.

R. Marsella, D. Santoro, and K. Ahrens, "Early exposure to probiotics in a canine model of atopic dermatitis has long-term clinical and immunological effects," *Veterinary Immunology and Immunopathology*, vol. 146, no. 2, pp. 185–189, 2012.

B. Nowak, M. Ciszek-Lenda, M. Srótek et al., "*Lactobacillus rhamnosus* exopolysaccharide ameliorates arthritis induced by the systemic injection of collagen and lipopolysaccharide in DBA/1 mice," *Archivum Immunologiae et Therapiae Experimetalis*, vol. 60, no. 3, pp. 211–220, 2012.

Y.-H. Zhu, X.-Q. Li, W. Zhang, D. Zhou, H.-Y. Liu, and J.-F. Wang, "Dose-dependent effects of *Lactobacillus rhamnosus* on serum interleukin-17 production and intestinal T-cell responses in pigs challenged with *Escherichia coli*," *Applied and Environmental Microbiology*, vol. 80, no. 5, pp. 1787–1798, 2014.

H. Dong, I. Rowland, K. M. Tuohy, L. V. Thomas, and P. Yaqoob, "Selective effects of *Lactobacillus casei* Shirota on T cell activation, natural killer cell activity and cytokine production," *Clinical and Experimental Immunology*, vol. 161, no. 2, pp. 378–388, 2010.

G. Perdigon, C. M. Galeano, J. C. Valdez, and M. Medici, "Interaction of lactic acid bacteria with the gut immune system," *European Journal of Clinical Nutrition*, vol. 56, supplement 4, pp. S21–S26, 2002.

T. J. Won, B. Kim, D. S. Song et al., "Modulation of Th1/Th2 balance by *Lactobacillus* strains isolated from Kimchi via stimulation of macrophage cell line J774A.1 in vitro," *Journal of Food Science*, vol. 76, no. 2, pp. H155–H161, 2011.

N. Habil, W. Al-Murrani, J. Beal, and A. D. Foey, "Probiotic bacterial strains differentially modulate macrophage cytokine production in a strain-dependent and cell subset-specific manner," *Beneficial Microbes*, vol. 2, no. 4, pp. 283–293, 2011.

C. Bleau, R. Savard, and L. Lamontagne, "Murine immunomodulation of IL-10 and IL-12 induced by new isolates from avian type 2 *Lactobacillus acidophilus*," *Canadian Journal of Microbiology*, vol. 53, no. 8, pp. 944–956, 2007.

H. Dong, I. Rowland, and P. Yaqoob, "Comparative effects of six probiotic strains on immune function in vitro," *British Journal of Nutrition*, vol. 108, no. 3, pp. 459–470, 2012.

B. Foligne, S. Nutten, C. Grangette et al., "Correlation between in vitro and in vivo immunomodulatory properties of lactic acid bacteria," *World Journal of Gastroenterology*, vol. 13, no. 2, pp. 236–243, 2007.

S. Ichikawa, R. Fujii, D. Fujiwara et al., "MyD88 but not TLR2, 4 or 9 is essential for IL-12 induction by lactic acid bacteria," *Bioscience, Biotechnology and Biochemistry*, vol. 71, no. 12, pp. 3026–3032, 2007.

K. Shida, T. Suzuki, J. Kiyoshima-Shibata, S.-I. Shimada, and M. Nanno, "Essential roles of monocytes in stimulating human peripheral blood mononuclear cells with *Lactobacillus casei* to produce cytokines and augment natural killer cell activity," *Clinical and Vaccine Immunology*, vol. 13, no. 9, pp. 997–1003, 2006.

H. Amital, B. Gilburd, and Y. Shoenfeld, "Probiotic supplementation with *Lactobacillus casei* (Actimel) induces a Th1 response in an animal model of antiphospholipid syndrome," *Annals of the New York Academy of Sciences*, vol. 1110, pp. 661–669, 2007.

L. Drago, L. Nicola, E. Iemoli, G. Banfi, and E. De Vecchi, "Strain-dependent release of cytokines modulated by *Lactobacillus salivarius* human isolates in an in vitro model," *BMC Research Notes*, vol. 3, article 44, 2010.

I. R. Raijput, L. Y. Li, X. Xin et al., "Effect of *Saccharomyces boulardii* and *Bacillus subtilis* B10 on intestinal ultrastructure modulation and mucosal immunity development mechanism in broiler chickens," *Poultry Science*, vol. 92, no. 4, pp. 956–965, 2013.