Geometric quantization of relativistic Hamiltonian mechanics

Gennadi Sardanashvily

Department of Theoretical Physics, Physics Faculty, Moscow State University, 117234 Moscow, Russia

Abstract. A relativistic Hamiltonian mechanical system is seen as a conservative Dirac constraint system on the cotangent bundle of a pseudo-Riemannian manifold. We provide geometric quantization of this cotangent bundle where the quantum constraint serves as a relativistic quantum equation.

We are based on the fact that both relativistic and non-relativistic mechanical systems on a configuration space Q can be seen as conservative Dirac constraint systems on the cotangent bundle T^*Q of Q, but occupy its different subbundles. Therefore, one can follow suit of geometric quantization of non-relativistic time-dependent mechanics in order to quantize relativistic mechanics.

Recall that, given a symplectic manifold (Z, Ω) and a Hamiltonian H on Z, a Dirac constraint system on a closed imbedded submanifold $i_N : N \to Z$ of Z is defined as a Hamiltonian system on N provided with the pull-back presymplectic form $\Omega_N = i_N^*\Omega$ and the pull-back Hamiltonian i_N^*H. Its solution is a vector field γ on N which fulfils the equation

$$\gamma]|\Omega_N + i_N^*dH = 0.$$

Let N be coisotropic. Then a solution exists if the Poisson bracket $\{H, f\}$ vanishes on N whenever f is a function vanishing on N. It is the Hamiltonian vector field of H on Z restricted to N.

A configuration space of non-relativistic time-dependent mechanics (henceforth NRM) of m degrees of freedom is an $(m + 1)$-dimensional smooth fibre bundle $Q \to \mathbb{R}$ over the time axis \mathbb{R}.

It is coordinated by $(q^\lambda) = (q^0, q^i)$, where q^0 is the standard Cartesian coordinate on \mathbb{R}. Let T^*Q be the cotangent bundle of Q equipped with the induced coordinates $(q^\lambda, p_\lambda = \dot{q}_\lambda)$ with respect to the holonomic coframes $\{dq^\lambda\}$. Provided with the canonical symplectic form

$$\Omega = dp_\lambda \wedge dq^\lambda,$$

(1)

E-mail address: sard@grav.phys.msu.su; URL: [http://webcenter.ru/~sardan]
the cotangent bundle \(T^*Q \) plays the role of a homogeneous momentum phase space of NRM. Its momentum phase space is the vertical cotangent bundle \(V^*Q \) of \(Q \to \mathbb{R} \) coordinated by \((q^\lambda, q^i)\). A Hamiltonian \(\mathcal{H} \) of NRM is defined as a section \(p_0 = -\mathcal{H} \) of the fibre bundle \(T^*Q \to V^*Q \). Then the momentum phase space of NRM can be identified with the image \(N \) of \(\mathcal{H} \) in \(T^*Q \) which is the one-codimensional (consequently, coisotropic) imbedded submanifold given by the constraint

\[
\mathcal{H}_T = p_0 + \mathcal{H}(q^\lambda, p_k) = 0.
\]

Furthermore, a solution of a non-relativistic Hamiltonian system with a Hamiltonian \(\mathcal{H} \) is the restriction \(\gamma \to N \cong V^*Q \) of the Hamiltonian vector field of \(\mathcal{H}_T \) on \(T^*Q \). It obeys the equation \(\gamma_\mathcal{H} \Omega_N = 0 \) \([4, 11]\). Moreover, one can show that geometric quantization of \(V^*Q \) is equivalent to geometric quantization of the cotangent bundle \(T^*Q \) where the quantum constraint \(\hat{\mathcal{H}}_T \psi = 0 \) on sections \(\psi \) of the quantum bundle serves as the Schrödinger equation \([3, 4]\). This quantization is a variant of quantization of presymplectic manifolds via coisotropic imbeddings \([3]\).

A configuration space of relativistic mechanics (henceforth RM) is an oriented pseudo-Riemannian manifold \((Q,g)\), coordinated by \((q^\lambda)\). Its momentum phase space is the cotangent bundle \(T^*Q \) provided with the symplectic form \(\Omega \) \((1)\). Note that one also considers another symplectic form \(\Omega + F \) where \(F \) is the strength of an electromagnetic field \([12]\). A relativistic Hamiltonian is defined as a smooth real function \(H \) on \(T^*Q \) \([7, 10, 11]\). Then a relativistic Hamiltonian system is described as a Dirac constraint system on the subspace \(N \) of \(T^*Q \) given by the equation

\[
H_T = g_{\mu\nu} \partial^\mu H \partial^\nu H - 1 = 0.
\]

Similarly to geometric quantization of NRM, we provide geometric quantization of the cotangent bundle \(T^*Q \) and characterize a quantum relativistic Hamiltonian system by the quantum constraint

\[
\hat{H}_T \psi = 0.
\]

We choose the vertical polarization on \(T^*Q \) spanned by the tangent vectors \(\partial^\lambda \). The corresponding quantum algebra \(\mathcal{A} \subset C^\infty(T^*Q) \) consists of affine functions of momenta

\[
f = a^\lambda(q^\mu)p_\lambda + b(q^\mu)
\]

on \(T^*Q \). They are represented by the Schrödinger operators

\[
\hat{f} = -ia^\lambda \partial_\lambda - i2 \partial_\lambda a^\lambda - i4 a^\lambda \partial_\lambda \ln(-g) + b, \quad g = \det(g_{\alpha\beta})
\]
in the space $\mathbb{C}^\infty(Q)$ of smooth complex functions on Q.

Note that the function H_T need not belong to the quantum algebra \mathcal{A}. Nevertheless, one can show that, if H_T is a polynomial of momenta of degree k, it can be represented as a finite composition

$$H_T = \sum_i f_{1i} \cdots f_{ki}$$

of products of affine functions (4), i.e., as an element of the enveloping algebra $\overline{\mathcal{A}}$ of the Lie algebra \mathcal{A} [3]. Then it is quantized

$$H_T \mapsto \hat{H}_T = \sum_i \hat{f}_{1i} \cdots \hat{f}_{ki}$$

as an element of $\overline{\mathcal{A}}$. However, the representation (6) and, consequently, the quantization (7) fail to be unique.

Let us provide the above mentioned formulation of classical RM as a constraint autonomous mechanics on a pseudo-Riemannian manifold (Q, g) [2, 7, 8]. Note that it need not be a space-time manifold.

The space of relativistic velocities of RM on Q is the the tangent bundle TQ of Q equipped with the induced coordinates $(q^\lambda, \dot{q}^\lambda)$ with respect to the holonomic frames $\{\partial_\lambda\}$. Relativistic motion is located in the subbundle W_g of hyperboloids

$$g_{\mu\nu}(q)\dot{q}^\mu \dot{q}^\nu - 1 = 0$$

of TQ. It is described by a second order dynamic equation

$$\ddot{q}^\lambda = \Xi^\lambda(q^\mu, \dot{q}^\mu)$$

on Q which preserves the subbundle (8), i.e.,

$$(\dot{q}^\lambda \partial_\lambda + \Xi^\lambda \partial_\lambda)(g_{\mu\nu}\dot{q}^\mu \dot{q}^\nu - 1) = 0, \quad \partial_\lambda = \partial/\partial \dot{q}^\lambda.$$

This condition holds if the right-hand side of the equation (9) takes the form

$$\Xi^\lambda = \{_{\mu}^\lambda_{\nu}\} \dot{q}^\mu \dot{q}^\nu + F^\lambda,$$

where $\{_{\mu}^\lambda_{\nu}\}$ are Cristoffel symbols of a metric g, while F^λ obey the relation $g_{\mu\nu}F^\mu \dot{q}^\nu = 0$. In particular, if the dynamic equation (4) is a geodesic equation

$$\ddot{q}^\lambda = K^\lambda_\mu \dot{q}^\mu$$

3
with respect to a (non-linear) connection

\[K = dq^\lambda \otimes (\partial_\lambda + K_\lambda^\mu \hat{\partial}_\mu) \]

on the tangent bundle \(TQ \to Q \), this connections splits into the sum

\[K_\mu^\lambda = \{ \mu^\lambda , \nu \} \dot{q}^\nu + F_\mu^\lambda \] (10)

of the Levi–Civita connection of \(g \) and a soldering form

\[F = g^{\lambda \nu} F_{\mu \nu} dq^\mu \otimes \dot{\partial}_\lambda, \quad F_{\mu \nu} = -F_{\nu \mu}. \]

As was mentioned above, the momentum phase space of RM on \(Q \) is the cotangent bundle \(T^*Q \) provided with the symplectic form \(\Omega \) (11). Let \(H \) be a smooth real function on \(T^*Q \) such that the morphism

\[\tilde{H} : T^*Q \to TQ, \quad \dot{q}^\mu = \partial^\mu H \] (11)

is a bundle isomorphism. Then the inverse image \(N = \tilde{H}^{-1}(W_g) \) of the subbundle of hyperboloids \(W_g \) (8) is a one-codimensional (consequently, coisotropic) closed imbedded subbundle of \(T^*Q \) given by the constraint \(H_T = 0 \) (2). We say that \(H \) is a relativistic Hamiltonian if the Poisson bracket \(\{ H, H_T \} \) vanishes on \(N \). This means that the Hamiltonian vector field

\[\gamma = \partial^\lambda H \partial_\lambda - \partial_\lambda H \partial^\lambda \] (12)

of \(H \) preserves the constraint \(N \) and, restricted to \(N \), it obeys the Hamilton equation

\[\gamma \rvert \Omega_N + i^*_N dH = 0 \] (13)

of a Dirac constraint system on \(N \) with a Hamiltonian \(H \).

The morphism (11) sends the vector field \(\gamma \) (12) onto the vector field

\[\gamma_T = \dot{q}^\lambda \partial_\lambda + (\partial^\mu H \partial^\lambda \partial_\mu H - \partial_\mu H \partial^\lambda \partial^\mu H) \hat{\partial}_\lambda \]

on \(TQ \). This vector field defines the second order dynamic equation

\[\ddot{q}^\lambda = \partial^\mu H \partial^\lambda \partial_\mu H - \partial_\mu H \partial^\lambda \partial^\mu H \] (14)

on \(Q \) which preserves the subbundle of hyperboloids (8).
Example 1. The following is a basic example of relativistic Hamiltonian systems. Put

\[H = \frac{1}{2m} g^{\mu\nu} (p_\mu - b_\mu)(p_\nu - b_\nu), \]

where \(m \) is a constant and \(b_\mu dq^\mu \) is a covector field on \(Q \). Then \(H_T = 2m^{-1}H - 1 \) and \(\{H, H_T\} = 0 \). The constraint \(H_T = 0 \) defines a closed imbedded one-codimensional subbundle \(N \) of \(T^*Q \). The Hamilton equation \((13)\) takes the form \(\gamma | \Omega_N = 0 \). Its solution \((12)\) reads

\[\dot{q}^\alpha = \frac{1}{m} g^{\alpha\nu} (p_\nu - b_\nu), \]

\[\dot{p}_\alpha = -\frac{1}{2m} \partial_\alpha g^{\mu\nu} (p_\mu - b_\mu)(p_\nu - b_\nu) + \frac{1}{m} g^{\mu\nu} (p_\mu - b_\mu) \partial_\alpha b_\nu. \]

The corresponding second order dynamic equation \((14)\) on \(Q \) is

\[\ddot{q}^\lambda = \{\mu, \nu\} \dot{q}^\mu \dot{q}^\nu - \frac{1}{m} g^{\lambda\nu} F_{\mu\nu} \dot{q}^\mu, \]

\[\{\mu, \nu\} = -\frac{1}{2} g^{\lambda\beta} (\partial_\mu g_{\beta\nu} + \partial_\nu g_{\beta\mu} - \partial_\beta g_{\mu\nu}), \quad F_{\mu\nu} = \partial_\mu b_\nu - \partial_\nu b_\mu. \]

It is a geodesic equation with respect to the affine connection

\[K^\lambda_\mu = \{\mu, \nu\} \dot{q}^\nu - \frac{1}{m} g^{\lambda\nu} F_{\mu\nu} \]

of type \((11)\). For instance, let \(g \) be a metric gravitational field and let \(b_\mu = eA_\mu \), where \(A_\mu \) is an electromagnetic potential whose gauge holds fixed. Then the equation \((15)\) is the well-known equation of motion of a relativistic massive charge in the presence of these fields.

Turn now to quantization of RM. We follow the standard geometric quantization of the cotangent bundle \([1, 12, 13]\). Because the canonical symplectic form \(\Omega \) \((1)\) on \(T^*Q \) is exact, the prequantum bundle is defined as a trivial complex line bundle \(C \) over \(T^*Q \). Note that this bundle need no metaplectic correction since \(T^*X \) is endowed with canonical coordinates for the symplectic form \(\Omega \). Thus, \(C \) is a quantum bundle. Let its trivialization

\[C \cong T^*Q \times \mathbb{C} \]

hold fixed, and let \((q^\lambda, p_\lambda, c), c \in \mathbb{C}\), be the associated bundle coordinates. Then one can treat sections of \(C \) \((14)\) as smooth complex functions on \(T^*Q \). Note that another trivialization of \(C \) leads to an equivalent quantization of \(T^*Q \).
The Kostant–Souriau prequantization formula associates to each smooth real function $f \in C^\infty(T^*Q)$ on T^*Q the first order differential operator
\[
\hat{f} = -i\nabla_{\vartheta_f} + f
\]
(17)
on sections of C, where $\vartheta_f = \partial^\lambda f \partial_\lambda - \partial_\lambda f \partial^\lambda$ is the Hamiltonian vector field of f and ∇ is the covariant differential with respect to a suitable $U(1)$-principal connection A on C. This connection preserves the Hermitian metric $g(c, c') = cc'$ on C, and its curvature form obeys the prequantization condition $R = i\Omega$. For the sake of simplicity, let us assume that Q and, consequently, T^*Q is simply connected. Then the connection A up to gauge transformations is
\[
A = dp_\lambda \otimes \partial^\lambda + dq_\lambda \otimes (\partial_\lambda + icp_\lambda \partial_c),
\]
(18)and the prequantization operators (17) read
\[
\hat{f} = -i\vartheta_f + (f - p_\lambda \partial^\lambda f).
\]
(19)

Let us choose the vertical polarization on T^*Q. It is the vertical tangent bundle VT^*Q of the fibration $\pi : T^*Q \to Q$. As was mentioned above, the corresponding quantum algebra $\mathcal{A} \subset C^\infty(T^*Q)$ consists of affine functions f of momenta p_λ. Its representation by operators (19) is defined in the space E of sections ρ of the quantum bundle C of compact support which obey the condition $\nabla_{\vartheta} \rho = 0$ for any vertical Hamiltonian vector field ϑ on T^*Q. This condition takes the form
\[
\partial_\lambda f \partial^\lambda \rho = 0, \quad \forall f \in C^\infty(Q).
\]
It follows that elements of E are independent of momenta and, consequently, fail to be compactly supported, unless $\rho = 0$. This is the well-known problem of Schrödinger quantization which is solved as follows [1, 3].

Let $i_Q : Q \to T^*Q$ be the canonical zero section of the cotangent bundle T^*Q. Let $C_Q = i_Q C$ be the pull-back of the bundle C (16) over Q. It is a trivial complex line bundle $C_Q = Q \times \mathbb{C}$ provided with the pull-back Hermitian metric $g(c, c') = cc'$ and the pull-back
\[
A_Q = i_Q A = dq^\lambda \otimes (\partial_\lambda + icp_\lambda \partial_c)
\]
of the connection A (18) on C. Sections of C_Q are smooth complex functions on Q, but this bundle need metaplectic correction.
Let the cohomology group $H^2(Q;\mathbb{Z}_2)$ of Q be trivial. Then a metalinear bundle \mathcal{D} of complex half-forms on Q is defined. It admits the canonical lift of any vector field τ on Q such that the corresponding Lie derivative of its sections reads

$$L_\tau = \tau^\lambda \partial_\lambda + \frac{1}{2} \partial_\lambda \tau^\lambda.$$

Let us consider the tensor product $Y = C_Q \otimes \mathcal{D}$ over Q. Since the Hamiltonian vector fields

$$\vartheta_f = a^\lambda \partial_\lambda - (p_\mu \partial_\lambda a^\mu + \partial_\lambda b) \partial^\lambda$$

of functions f are projected onto Q, one can assign to each element f of the quantum algebra \mathcal{A} the first order differential operator

$$\hat{f} = (-i \nabla_{\pi \vartheta_f} + f) \otimes \text{Id} + \text{Id} \otimes \mathcal{L}_{\pi \vartheta_f} = -ia^\lambda \partial_\lambda - \frac{i}{2} \partial_\lambda a^\lambda + b$$

on sections ρ_Q of Y. For the sake of simplicity, let us choose a trivial metalinear bundle $\mathcal{D} \rightarrow Q$ associated to the orientation of Q. Its sections can be written in the form $\rho_Q = (-g)^{1/4} \psi$, where ψ are smooth complex functions on Q. Then the quantum algebra \mathcal{A} can be represented by the operators \hat{f} in the space $C^\infty(Q)$ of these functions. It is easily justified that these operators obey the Dirac condition

$$[\hat{f}, \hat{f}'] = -i \{\hat{f}, \hat{f}'\}. $$

Remark 2. One usually considers the subspace $E_Q \subset C^\infty(Q)$ of functions of compact support. It is a pre-Hilbert space with respect to the non-degenerate Hermitian form

$$\langle \psi | \psi' \rangle = \int_Q \overline{\psi} \psi' (-g)^{1/2} d^{m+1}q$$

It is readily observed that \hat{f} are symmetric operators $\hat{f} = \hat{f}^*$ in E_Q, i.e., $\langle \hat{f} \psi | \psi' \rangle = \langle \psi | \hat{f} \psi' \rangle$. In RM, the space E_Q however gets no physical meaning.

As was mentioned above, the function H_T need not belong to the quantum algebra \mathcal{A}, but a polynomial function H_T can be quantized as an element of the enveloping algebra $\overline{\mathcal{A}}$ by operators $\overline{H_T}$. Then the quantum constraint (3) serves as a relativistic quantum equation.
Example 3. Let us consider a massive relativistic charge in Example 1 whose relativistic Hamiltonian is

\[H = \frac{1}{2m} g^{\mu\nu} (p_\mu - eA_\mu)(p_\nu - eA_\nu). \]

It defines the constraint

\[H_T = \frac{1}{m^2} g^{\mu\nu} (p_\mu - eA_\mu)(p_\nu - eA_\nu) - 1 = 0. \tag{20} \]

Let us represent the function \(H_T \) as the symmetric product

\[H_T = \frac{(-g)^{-1/4}}{m} \cdot (p_\mu - eA_\mu) \cdot (-g)^{1/4} \cdot g^{\mu\nu} \cdot (-g)^{1/4} \cdot (p_\nu - eA_\nu) \cdot \frac{(-g)^{-1/4}}{m} - 1 \]

of affine functions of momenta. It is quantized by the rule \(\partial_\alpha \), where

\[(-g)^{1/4} \circ \partial_\alpha \circ (-g)^{-1/4} = -i\partial_\alpha. \]

Then the well-known relativistic quantum equation

\[(-g)^{-1/2}[(\partial_\mu - ieA_\mu)g^{\mu\nu}(-g)^{1/2}(\partial_\nu - ieA_\nu) + m^2]\psi = 0. \tag{21} \]

is reproduced up to the factor \((-g)^{-1/2}\).

References

[1] Blattner R 1983 Non-linear Partial Differential Operators and Quantization Procedure (Proceedings, Clausthall 1981) (New York: Springer-Verlag) 209-241

[2] Giachetta G, Mangiarotti L and Sardanashvily G 1999 Int. J. Theor. Phys. 38 2703

[3] Giachetta G, Mangiarotti L and Sardanashvily G 2002 J. Math. Phys. 43 56; E-print arXiv: quant-ph/0012036

[4] Giachetta G, Mangiarotti L and Sardanashvily G 2002 J. Math. Phys. 43 2882; E-print arXiv: quant-ph/0112011

[5] Gotay M, Nester J and Hinds G 1978 J. Math. Phys. 19 2388

[6] Gotay M and Śniatycki J 1981 Commun. Math. Phys. 82 237
[7] Mangiarotti L and Sardanashvily G 1998 *Gauge Mechanics* (Singapore: World Scientific)

[8] Mangiarotti L and Sardanashvily G 2000 *J. Math. Phys.* 41 835; E-print arXiv: math-ph/9906011

[9] Muñoz-Lecanda M 1989 *Int. J. Theor. Phys.* 28 1405

[10] Rovelli C 1991 *Phys. Rev.* D43 442

[11] Sardanashvily G 1998 *J. Math. Phys.* 39 2714; E-print arXiv: dg-ga/9710003

[12] Śniatycki J 1980 *Geometric Quantization and Quantum Mechanics* (Berlin: Springer-Verlag)

[13] Woodhouse N 1992 *Geometric Quantization* (Oxford: Clarendon Press)