INTRODUCTION

Excretory products of plant or animal origin do not have well-defined cellular structure. Gums, latex, and oils are the important excretory products of plant origin, which have been used as herbal recipes in ethnomedicine to cure different human as well as veterinary ailments. Gums are translucent and amorphous substances, non-starch polysaccharides, and soluble in water. The main source of gums is higher land plants, red and brown algae etc. In higher plants, gums are produced by different plant parts such as plant cell wall, stem bark, fruits, seeds, tubers, and roots. Depending on the source of availability, gums are three types, namely (i) plant-derived gums: Depending on the secretion part, plant gums are four types, i.e., stem gums: Produced by exudation from the stem of tree or by tapping method either by accidental or wounds caused by insects’ borers (e.g., gum arabic, gum ghatti, and gum karaya); seed gums: Isolated from the endosperm portion of some seeds (e.g., gum guar and locust bean gum): extracts such as pectin, tubers, and roots gums such as potato starch; (ii) animal origin gums: Example: Chitin and chitosan, chondroitin and hyaluronic acid; and (iii) algil/microbial gums: Gums isolated from marine algae or from microorganisms (e.g., xanthine and dextran) [Choudhary and Pawar, 2014] [1]. Majority of the gums are exuded from the plant stem, only few gums are obtained from roots, leaves, and other parts of the plant. The gum-yielding families are Leguminosae (Fabaceae), Sterculiaceae, Anacardiaceae, Combretaceae, Meliaceae, Rosaceae, and Rutaceae (Goswami and Naik, 2014) [2]. Plant-derived gums are good source of nutraceuticals, pharmaceuticals, as well as calcium, potassium, magnesium, sodium, and phosphorus (Upadhyay, 2017) [3].

Eastern Ghats are a long chain of broken hills and elevated plateaus, running about 1750 km with an average width of about 100 km between Mahanadi and Vaigai rivers along the Indian East coast through Odisha, Andhra Pradesh, Telangana, and Tamil Nadu (Narasimhan and Kumar, 2003) [4]. Eastern Ghats in the state are discontinuous range of hills situated between 12° 38’ and 22° 00’ N latitudes and 78° 50’-84° 46’ E longitudes (Legris and Homji, 1982) [5]. Ethnobotanically, Eastern Ghats of Andhra Pradesh were well explored by ethnobotanists such as Hemadri, 1981; Raju and Reddy, 1998; Nagalakshmi, 2001; Ram and Raju, 2001; and Reddy, 2008 [6-10], and majority of them were focused on different diseases such as women ailments (Ratnam and Raju, 2005) [11], bone fractures (Ratnam and Raju, 2008) [12], poisonous bites (Saturas et al., 2006) [13], epilepsy (Sandhya et al., 2017) [14], and respiratory disorders (Reddy et al., 2006) [15]. The review of literature on ethnobotany of the study area indicates that no specific report was published on ethnobotanical importance of gums. Hence, the present work is initiated to collect firsthand information on gums from local/rural people inhabiting in and around the forests of Eastern Ghats of Andhra Pradesh.

MATERIALS AND METHODS

Intensive plant exploration trips were conducted in the forest areas of Eastern Ghats to record firsthand information form the tribal people residing foreside villages. The information recorded based on the personal interviews with the tribal healers/local Vaidyas who are formulating or advocating the therapeutic uses of plant gums to the local people. The detailed information regarding scientific name, local name, family, part used, mode of preparation/administration, dosimetry, etc., were recorded and systematically analyzed. The plants shown by the tribal people collected and the information was recorded in the field notebook. The collected information was cross-checked with the information from neighboring herbalists and also with available literature. The specimens were identified with the help of local/regional floras (Gamale, 1935; Puliaith et al., 1995) [16,17] and confirmed by comparing with the authenticated specimens housed at Sri Krishnadevaraya University Herbarium, Anantapur, Madras Herbarium, Coimbatore and Central National Herbarium, Calcutta, Howrah.
The present study revealed the ethnomedical knowledge of gums used by the tribal people of Eastern Ghats of Andhra Pradesh. A total of 21 crude drugs belonging to 19 genera and 14 families were recorded from the study area. The species were enumerated in alphabetical order of scientific name followed by family name, local name, purpose of the use, and mode of administration. The collected crude drug information was cross-checked with available literature (Jain, 1991; Rao and Henry, 1996; and Kirtikar and Basu, 1935) [18-20]. The critical review of literature of the drugs revealed that the information on 13 crude drugs is hitherto not known to the science and the information was depicted in Tables 1 and 2. The family-wise analysis of drugs indicates that Anacardiaceae represented by 3 species followed by Fabaceae, Combretaceae, and Burseraceae by 2 species each while remaining 9 families represented by single species only.

By analyzing the present folklore information collected from tribes of Eastern Ghats, it was observed that people use different plant parts such as Lawsonia leaves, garlic, asafoetida, mustard seeds, pepper, ginger, and sesame oil and animal products such as honey and goat milk as ingredients along with gums to prepare herbal formulations. The local people use these formulations to cure 14 different human ailments prevailing in the study area. The disease-wise analysis of crude drugs indicates that contraceptive (5 species) is the most common disease in the area, followed by menorrhrea, dysentery, and ulcers (2 species) and remaining diseases represented by single species each only. The mode of drug administration by the local people revealed that there are 24 herbal formulations, commonly prepared by local people to cure 14 ailments, of which oral administration (13 formulations) is most common use of drugs, followed by external application (9 formulations). Some drugs used in different mode, for example, gum fumes of Boswellia ovalifoliolata used to cure postnatal complaints and Coccinia grandis gum applied as eye ointment for lacrimation.

Natural gums of plant origin have multifarious applications in pharmaceutical industry as drug delivery agents (Acacia), disintegrate in tablets (Sterculia), thickeners in oral liquids (Acacia and Mangifera), diluents, binders, gelling agents in gels (Butea, Neem, and Moringa), protective colloids in suspensions (Anogeissus), and bases in suppository (Choudhary and Pawar, 2014) [1] and mucilages as clarificants in local jiggery preparation (Chikkappaiah et al., 2017) [21]. The plant gums and latexes are good source of natural antioxidants (Tulasi et al., 2015) [22]. These natural materials have advantages over synthetic medicine as they are chemically inert, non-toxic, less expensive, biodegradable, and widely available. In view of the potential crude drugs with promising therapeutic properties used by the tribal people, there is an urgent need to take up them for the phytochemical and pharmacological investigations.

ACKNOWLEDGMENTS
Authors are thankful to the authorities of Andhra Pradesh forestry for permission and help during explorations.

AUTHORS’ CONTRIBUTION
1st and 2nd authors, Dr. K. Venkata Ratnam and Dr. G. Tirupati Reddy, collected folklore uses of gums from tribal pockets of Eastern Ghats during their doctoral work and prepared MS.

3rd Author and corresponding author: Prof. R.R. Venkata Raju, Research supervisor for both 1st and 2nd authors and helped in MS correction.

Table 1: Systematic enumeration of crude drugs hitherto not known to Science

S. No.	Plant name/family	Local name	Part used	Purpose	Mode of administration
1	Acacia nilotica/Mimosoideae	Nalia tamma	Gum	Contraceptive head	Gum applied on vaginal track to check conception
					Gum mixed with Lawsonia inermis leaves, ground, paste applied on forehead
2	Anogeissus latifolia/Combretaceae	Tirumanu	Gum	Menorrhoea	Gum dissolved in water and given orally for 3 days
3	Azadirachta indica/Meliaceae	Vepa	Gum/oil	Contraceptive	Genital tract is smeared with gum to check conception (or) one teaspoonful oil given orally once a day for a week
4	Bombax ceiba/Malvaceae	Buruga	Gum	Contraceptive	Gum mixed with honey in equal proportions and smearing the genital organ before conjugal union checks conception
5	Boswellia ovalifoliolata/Burseraceae	Kondasambrani	Gum	Postnatal complaints	Gum fired, smoke inhaled every day after 9 days of delivery
6	Buchanania axillaris/Anacardiaceae	China sarapappu	Gum	Rheumatism	Gum mixed with ash, garlic, asafoetida and made into paste with goat milk and applied externally
7	Butea monosperma/Fabaceae	Modaga	Gum	Contraceptive	Gum dissolved in warm water and given orally for 2-3 days
8	Chukrasia tabularis/Meliaceae	Adavivepa	Gum	Contraceptive	Gum smeared in the vagina to check conception
9	Coccinia grandis/Cucurbitaceae	Donda	Gum	Laximation	Fruit gum applied externally as eye ointment
10	Cochlospermum religiosum/Cochlospermacées	KondaGugu	Gum	Dysentery	Gum boiled in water and decoction given orally for 2 days
11	Ferula asafoetida/Apiceae	Ingava	Gum resin	Abortifacient	Gum resin along with equal parts of mustard seeds, ground, a teaspoonful of powder is given orally along with rice gruel for 3 days (3/4 months old pregnancy)
12	Mangifera indica/Anacardiaceae	Mamidi	Gum	Leucorrhoea	Gum along with pepper and ginger ground, boiled in water, extract given orally
13	Moringa oleifera/Moringaceae	Munaga	Gum	Ear pain	Gum heated with sesame oil, 3 to four drops poured into ears as ear drops
Table 2: Systematic enumeration of gum crude drugs

S. No.	Plant name/family	Part used	Purpose	Mode of preparation/administration
1	Bombax ceiba/Malvaceae	Gum	Menorrhea	Gum dissolved in hot water given orally
2	Boswellia serrata/ Burseraceae	Gum	Skin eruptions	Fresh gum resin applied externally
3	Buchanania lanzan/Anacardiaceae	Gum	Ulcers	Gum dissolved in water and given orally
4	Butea monosperma/Fabaceae	Gum	Chest pain	Gum as external application
5	Diospyros montana/Ebenaceae	Gum	Tuberculosis	Gum dissolved in water; given orally
6	Gardenia gummosa/Rubiaceae	Gum	Constipation	Gum dissolved in warm water, given orally before bedtime
7	Pterocarpus marsupium/Fabaceae	Gum	Toothache	Gum as external application
8	Shoreatumbuggaia/Dipterocarpaceae	Gum	Ulcers	Gum dissolved in water, given orally
9	Sterculia urens/Sterculiaceae	Gum	Dysentery	Gum dissolved in warm water, given orally
10	Terminalia bellirica/Combretaceae	Gum	Urinary disorders	Gum dissolved in water, given orally

CONFLICTS OF INTERESTS

The authors do not have conflicts of interests

REFERENCES

1. Choudhary PD, Pawar HA. Recently investigated natural gums and mucilages as pharmaceutical excipients: An overview. J Pharm 2014;2014:1-9.
2. Narasimhan KR, Kumar RB. A note on plant and animal interaction from Eastern Ghats. EPTRI-ENVIS News Lett 2003;9:9-10.
3. Hemadri K. Rheumatism: Tribal medicine. Anc Sci Life 1981;1:117-20.
4. Reddy KN, Reddy CS, Trimurthulu G. Ethnobotanical survey on respiratory disorders in Eastern Ghats of Andhra Pradesh, India. Ethnobot Leaf 2006;10:139-48.
5. Jain SK. Dictionary of Indian Folk Medicine and Ethnobotany. New Delhi: Deep Publications; 1991.
6. Kirtikar KR, Basu BD. Indian Medicinal Plants. Vol. 4. New Delhi, India: Indian Council of Medical Research; 1935.
7. Rao NR, Henry N. The Ethnobotany of Eastern Ghats in Andhra Pradesh, India. Calcutta: Botanical Survey of India; 1996.
8. Nagalakshmi NV. Studies on Crude Drugs used for Abortion and Antifertility by the Tribals of Rayalaseema, Andhra Pradesh, India. Ph. D. Thesis. Anantapuramu: Sri Krishnavaraya University; 2001.
9. Ram AJ, Raju RR. Certain potential crude drugs used by tribals of Nallamalais, Andhra Pradesh for skin diseases. Ethnobotany 2001;13:110-5.
10. Legris VM, Honjji M. The Eastern Ghats: Vegetation and Biclimatic Aspects. Proceeding Seminar on Resources Development and Environment in Eastern Ghats. Waltair: Andhra University; 1982. p. 1-7.
11. Upadhyay RK. Nutritional, therapeutic and pharmaceutical potential of plant gums: A review. Int J Green Pharm 2017;11:30-6.
12. Goswami S, Naik S. Natural gums and its pharmaceutical application. J Sci Innov Res 2014;3:112-21.
13. Sandhya S, Hari BM, Suneetha J, Seetharami J, Reddy TV. Ethnomedicine for epilepsy by the tribes of Eastern Ghats, Andhra Pradesh. Med Plant Res 2017;7:19-25.
14. Ratnam KV, Raju RR. Traditional medicine used by the Adivasis of Eastern Ghats for bone fractures. Ethnobot Leaf 2008;12:9-22.
15. Saturas NA, Ratnam KV, Reddy GT, Raju RR. Taxanomeric validation of crude drugs used for poisonous bites by Adivasis of Rayalaseema region, Andhra Pradesh. Ethnobot Leaf 2008;12:934-7.
16. Gamble JS. Flora of Presidency of Madras. Vol. 1-3. Calcutta: Botanical Survey of India; 1935.
17. Bulliaiith T, Chennaiah E, Moula. A. Flora of Andhra Pradesh. Vol. 2, Jodhpur, India: Scientific Publishers; 1997.
18. Ratnam KV, Raju RR. Folk medicine used for common women ailments by Adivasis in Eastern Ghats of Andhra Pradesh. Ind J Tradit Knowl 2005;4:267-70.
19. Raju RR, Reddy RV. Ethnomedicinal Properties of Certain Rare and Interesting Plants from Cuddapah Hills, Andhra Pradesh, Golden Jubilee National Symposium on Spices, Medicinal and Aromatic Plants Biodiversity. Vol. 29. Calicut, India: Conservation and Utilization; 1998. p. 10-2.
20. Reddy KN. Ethnobotany of Andhra Pradesh: A review. Ethnobot Leaf 2008;12:305-10.
21. Chikkappaiah L, Nayaka MA, Mahadeviah, Kumar GM. Preparation of plant mucilage clarificants and their effect on jiggery processing of sugarcane variety Co 86032. Int J Pharm Pharm Sci 2017;9:32-6.
22. Tulasie CD, Rani AS, Manjula B. Screening of phyto-chemicals, TLC profiling, total flavonoid and phenolics content, anti-oxidant activity and anti-microbial activity of Ficus benghalensis Linn and Ficus religiosa Linn latex. Int J Pharm Pharm Sci 2015;7:480-5.