Shot peening intensity effect on bending fatigue strength of S235, S355 and P460 structural steels

W Macek¹,², M Szala³, M Kowalski⁴, J Gargasas⁵, A Rehmus-Forc⁶ and A Deptula⁷

¹ Energopiast sp. z o.o., Polna 12, 55-011 Siechnice, Poland
² Wrocław School of Information Technology, ul. Ks. M. Lutra 4, 54-239 Wrocław, Poland
³ Lublin University of Technology, Faculty of Mechanical Engineering, Department of Materials Engineering, 36 Nadbystrzycka Street, 20-618 Lublin, Poland
⁴ Opole University of Technology, Faculty of Mechanical Engineering, Mikołajczyka 5, 45-271 Opole, Poland
⁵ Vilnius Gediminas Technical University, Faculty of Mechanics, Department of Mechanical and Material Engineering, Saulėtekio al. 11, LT-10223 Vilnius, Lithuania
⁶ State University of Applied Sciences in Elbląg, ul. Wojska Polskiego 1, 82-300 Elbląg, Poland
⁷ Opole University of Technology, Faculty of Production Engineering and Logistics, Street Sosnkowskiego 31, 45-272 Opole, Poland

wojciech.macek@yahoo.com

Abstract. In this study, the effect of shot peening intensity of the structural steel specimens on the bending fatigue strength was investigated. Three structural steels S235JRG2, S355J2+N, P460NH were shot-peened with three levels of intensity. The results of fatigue tests were compared with non-peening processed samples. S-N curves in fatigue were determined in cyclic bending fatigue. The novel attempt to evaluate the bending fatigue, which relies on the 3D optical profiler measurement of the side-area of fractures, was proposed. All investigated steels present ferritic-pearlitic structure. Moreover, due to the peening process, refinement of the grains size was observed. Also, fractures were analysed with the 3D profiler. In the presented results of research, the highest level of peening gave the greater increase in fatigue life. For all types of investigated steels, shot-peening gave superior results of fatigue bending performance compared with unpeened specimens.

1. Introduction
Systematically increasing performance standards impose also more stringent safety standards for machine systems. This fact leads not only to the need to look for a new type of materials, but also to use material treatments to increase strength and durability of existing materials [1–9]. Many deterioration processes such as corrosion, abrasion, sliding, erosion, fatigue wear or even inaccurate maintenance of technological systems, shorten the operation time of industry components [10–18]. Commonly used in the industry are various processing methods for surface layer treatment. Apart from the conventional processes such as heat treatment, carburising or nitriding, the literature reports special treatment processes as laser surfacing [19], ion implantation [20], shot peening [21], thermal spraying [22], physical vapor deposition [23] and many more treatments that increase the operation lifetime of...
components. Despite the variety of treatments listed above, the shot peening technology seems the most cost-effective and promising for implementation into industry conditions. Scholtes and Vöhringer [24] characterises the shot peening process as a method that involves the mechanical interaction of hard particles of shot having sufficient kinetic energy with the surface of a workpiece of given geometry, defined chemical composition, and certain mechanical properties. Shot peening is usually carried out by the wheel method (shot is propelled by a motor-driven bladed wheel) or the air blast method (shot is introduced by an air blast machine, either by gravity or by direct pressure). The attainable near-surface changes in the material are dependent on the shot used, its parameters and type, and the condition of the workpiece [24].

The peening parameters have an influence on the surface layer performance. The metallic materials cause inhomogeneous plastic deformation of near-surface layers which finally result in compressive residual stresses, work-hardening and/or work-softening, or surface roughness development [24]. Shot peening with not accurate process parameters induces roughness on the surface that is linearly proportional to the velocity/intensity of the shot [25]. Thus, intensity of the peening on the operation properties is systematically investigated in the literature e.g. [21,26,27].

Shot peened steel is used for manufacturing the wide variety of components starting from simple structures, casings, machine components, and further for heavy industry and energetics industry. Shot peening is a process specifically designed to enhance fatigue strength of components which are subjected to high alternating stress [28]. The main advantage of the shot peening treatment is the possibility of imparting into the material compressive residual stresses useful from the fatigue life point of view [29–33]. Despite the wide range of research presented in the literature, materials after the treatment of shot peening sharps hard have not yet been adequately tested for fatigue phenomena depending on the process parameters. The type of work based on fatigue bending is especially rare but also needed [14,15,34].

Moreover, many methods for bending fatigue are employed in the industry. Most of them needs time-consuming tests. Therefore, Macek [35] proposed fractal analysis for bending-torsion samples or in the other work [36], presents the idea of fracture surfaces analysis. Thus, in a current paper an original method for evaluation of bending fatigue results is signalised. This method will be suitable for not-fractured samples and especially promising for fatigue samples tested with the failure criterion which is based on exceeding the critical amplitude of lever dislocation.

This study was subjected to untreated and shot-peened specimens made of three steel grades labelled S235JRG2, S355J2+N, P460NH. The main parameter which is guided during the research is the multiplicity of the re-process (process intensity) [27,37]. The material is subjected to a single, double, and threefold shot peening process of the surface.

The main aim of the study was to investigate the effect of shot peening intensity of S235, S355 and P460 steels on bending fatigue strength. Moreover, the new method for evaluation of bending fatigue strength with usage of computer methods that basis on an optical profiler results analysis, is presented.

2. Materials and methods

2.1. Materials

The materials used in this study were 12mm sheet metals made of three steel grades labelled as S235JRG2, S355J2+N, P460NH according to EN10028 and EN10025-1 standards [38]. In the following part of the work, in order to simplify the recording, the following designations were adopted: S235, S355 and P460. The mechanical properties of investigated materials are shown in Table 1 and the structure of the steel was observed on metallographic samples and quantitatively analysed with usage of Matlab software [38–40].
Table 1. Mechanical properties according to the manufacturers’ certificates.

Material	Yield stress, Re (MPa)	Ultimate stress, Rm (MPa)	Young modulus, E (GPa)	Elongation, A (%)	Re/Rm	Hardness, HV
S235	291.0	424.5	210	30.0	0.69	132
S355	391.0	516.0	213	33.0	0.76	160
P460	616.5	717.0	205	24.6	0.86	212

2.2. Shot peening process and structure characterisation

The main parameter which is guided during the research is the multiplicity of the re-process (i.e. the process intensity). The material was subjected to a single, double, and threefold shot peening process. The steel-ball shot stream was propelled at 0.7 MPa. The peening process lasted about 4 minutes, shot granulation was 0.75-0.85 mm. The process was carried out under industrial conditions with comparable to the literature parameters [40–42]. The specimens were treated from four sides of the working part. The samples were subjected to a single, double, and threefold shot peening process of the surface. The surface quality of the peened samples was examined using optical microscope and optical profiler. The microstructure of the processed surface layer was observed on metallographic cross-sections with the usage of a light optical microscope.

2.3. Cyclic bending test

The fatigue research was carried out on the MZGS-100 fatigue test stand [39,43,44]. The tests were carried out under loading with the controlled force and loading frequency 28.8 Hz. The fatigue tests were performed under the stress ratio R = -1. The object of the study consisted of specimens with geometry and dimensions shown in Figure 1. Samples were cut from sheets 12 mm plate in thickness according to the rolling direction. 15 specimens of each material were prepared. Investigated specimens were subjected to different values of bending moment (cyclic bending test) [16,45,46]. The failure criterion was based on exceeding the critical amplitude of lever dislocation [47–49]. Statistical analysis of Stress-Life (S-N) fatigue data was performed according to ASTM standard [50].

![Figure 1. Dimensions of the specimen used for cyclic bending.](image)

2.4. Characterisation of surface of peened samples with computer methods

Metallographic examinations of shot peened samples were made using the optical microscope [51,52]. The surface morphology surface analysis was performed using an optical 3D test stand Alicona G4 facilitating the acquisition of data sets at a high depth of focus according to the procedure described in [53]. The morphology of each steel peened with different peening intensity were comparatively analysed. The surface roughness parameters Sa, Sq, Ssk, Sku, Sp, Sv and Sz, calculated according to the ISO standard were compared on the basis of measurements done in specific areas of damage surfaces. Moreover, the failure analysis of the samples was conducted with usage of the optical profiler and special software which allows to conduct the analysis relating to surface morphology development.
3. Results and discussion

3.1. The effect of shot peening on structure and surface morphology

Three investigated types of structural steel, namely: S235, S355, and P460, presented ferritic-pearlitic structure however the microstructure of each steel differed in size of initial grain size visible in the core area in cross-sections of shot-peened in Figure 2. Also, quantitative metallographic results given in [39], confirmed decreasing volume content of ferrite (15.7%, 29.6% and 37.9%) and decreasing ferrite grains size (22.96%, 6.97% and 4.54%) for samples S235, S355 and P460, respectively. Analysis conducted after shot-peening process confirmed that the surface layer was deformed due to peening process, Figure 2., and refinement of the grains size was observed. The comparative analysis of the morphology of the shot peened surfaces indicated the influence of intensity on the surface layer structure Figure 3.

![Figure 2](image2.png)

Figure 2. Metallographic cross-sections of specimens after shot peening a) S235, b) S355, c) P460.

![Figure 3](image3.png)

Figure 3. Characterisation of the surface plastic deformation due to intensity of the shot peening process of S235 steel. a) 1-single, b) 2-double c) 3-trefold peening d) comparison of surface morphology for various process parameters.
3.2. Fatigue tests results
Statistical analysis results of Stress-Life (S-N) fatigue data performed according to ASTM E739 standard, are presented in Figure 4. Thus, the plots compared peening intensity on the fatigue resistance.

General conclusion is that the S235 steel shot peening process increased the bending fatigue life of tested steel S235, S355 and P460 samples in reference to unpeened steel, Figure 4. However, due to the spread of the fatigue test results, it is difficult to clearly state the effect of peening process intensity on the bending fatigue. In the case of S355 steel, shot peening process increased the fatigue life of the material. In the case of two-times, there was a decrease in fatigue life compared to one and three-times. The reason for reduction of the fatigue characteristics after two-times peening may be the spread of results. Accuracy of constructed characteristics can improve the testing of more samples. The metallographic analysis of the material after two-times shot peening indicated occurrence of numerous microcracks caused by the selection of incorrect parameters of the process, which could have also affected the fatigue life of the specimens. Failure of shot peened steels under fatigue may be caused by crack propagation starting at locations where surface structural non-uniformities occurred, which were observed at the samples cross-sections. P460 steels showed a slight increase in fatigue life after the one-time process. After two and three-time shot peening, an increase in durability was observed, however, the indication of differences between durability for individual multiples of the process is difficult due to the dispersion of experimental studies.
Figure 4. Fatigue characteristics of the untreated and shot peening processed steels S235, S355 and P460 with different process intensity.
3.3. Fractographic investigation with usage of an optical profilometer

After a series of fatigue tests, it was observed that the shot peening process improved the fatigue properties of the specimens. During fatigue tests, the materials cracked in narrow places, which allowed observation of cracks. All materials, both S235 and S355 as well as P460, after subsequent shot peening, cracked identically, i.e. the initiation of fatigue cracking occurred in the upper or lower part of the cross-section, which is presented in Figure 5. However, in the case of Steel P460 after a three-fold process shot peening in the range of a small number of cycles, i.e. 60-70 thousand samples were bursting analogously to those described earlier. But in the case of samples whose service life exceeded considerably one million cycles, the material cracked in the upper and lower part of surface of the tested specimen. It was a characteristic feature only for this material.

![Figure 5. Surface fatigue-cracks (marked by arrows) after triple shot peening, S235, S355 and P460.](image)

The 3D surface investigation allows to identify the crack and complete the crack analysis. In Figure 6 the exemplary sample side scan, see Figure 1, is presented. Surface topography measurement was made after bending test on the radius-side of the sample, see Figure 6. The profilometer technique clearly visualise cracks and area of the fatigue deformation. In Figure 7 the exemplary comparison of fracture areas is presented. The comparison of the centre area with the near crack area provides important information about the fracture mechanism and fracture resistance. The aim of this paper is to just signalise the idea and methodology of the investigation, thus it can be deduced from Figure 7 that the elaborated idea works and provides interceding information for fracture result interpretation especially for propagation mechanism. This quite unique attempt for bending fracture results analysis invented by Macek [35,36] is now being developed and will be published in our future work.

![Figure 6. 3D view presenting the crack propagation after bend testing.](image)
4. Conclusions

In the presented work, the effect of shot peening intensity of S235, S355 and P460 steels on bending fatigue strength was examined.

All examined steel grades an increase in fatigue life with respect to the reference (unpeened) material was noted. Shot peening for all tested steel grades had a positive effect in the case of low-cycle fatigue (LCF) and for single shot peening process.

In LCF range the highest level of peening gave the greater increase in fatigue life. In fatigue the intermediate level of peening gave results similar to those of the high level peening. These results are explained in terms of observed the surface damage.

The new method for evaluation of the bending fatigue strength with usage of the computer methods, that basis on the optical profilometer results analysis, was suggested.

5. References

[1] Wojciechowski S, Maruda R W, Barrans S, Nieslony P and Krołczyk G M 2017 Optimisation of machining parameters during ball end milling of hardened steel with various surface inclinations *Measurement* **111** 18–28
[2] Kovacı H, Hacısalihoğlu, Yetim A F and Çelik A 2019 Effects of shot peening pre-treatment and plasma nitriding parameters on the structural, mechanical and tribological properties of AISI 4140 low-alloy steel Surface and Coatings Technology

[3] Szala M, Dudek A, Maruszczzyk A, Walczak M, Chmiel J and Kowal M 2019 Effect of atmospheric plasma sprayed TiO2-10% NiAl cermet coating thickness on cavitation erosion, sliding and abrasive wear resistance Acta Phys. Pol. A 136 335–41

[4] Sanjurjo P, Rodríguez C, Peñuelas I, García T E and Belzunce F J 2014 Influence of the target material constitutive model on the numerical simulation of a shot peening process Surface and Coatings Technology 258 822–31

[5] Deptuła A, Kunderman D, Osiński P, Radziwanowska U and Włostowski R 2016 Acoustic Diagnostics Applications in the Study of Technical Condition of Combustion Engine Archives of Acoustics 345–350

[6] Myoung S-W, Lee S-S, Kim H-S, Kim M-S, Jung Y-G, Jung S-I, Woo T-K and Paik U 2013 Effect of post heat treatment on thermal durability of thermal barrier coatings in thermal fatigue tests Surface and Coatings Technology 215 46–51

[7] Gargasas J, Valuliis A, Gedzevičius I and Pokhmurska H 2015 The Research of Thermal Arc Sprayed Coatings Tribological Properties by Using Rubber Wheel Test Solid State Phenomena 220–221 693–7

[8] GARGASAS J, Valuliis A, GEDZEVIČIUS I, Mikaliunas S, Nagurnas S and Pokhmurska H 2016 Optimization of the Arc Spraying Process Parameters of the Fe–Base Mn-Si-Cr-Mo-Ni Coatings for the Best Wear Performance Materials Science 22

[9] Deptuła A, Osiński P and Partyka M 2017 Identification of influence of part tolerances of 3PWR-SE pump on its total efficiency taking into consideration multi-valued logic trees Polish Maritime Research nr 1

[10] Szala M and Łukasik D 2018 Pitting Corrosion of the Resistance Welding Joints of Stainless Steel Ventilation Grille Operated in Swimming Pool Environment International Journal of Corrosion 2018

[11] Hejwowski T, Marczewska-Boczkowska K and Kobayashi A 2013 A comparative study of electrochemical properties of metallic glasses and weld overlay coatings Vacuum 88 118–23

[12] Fydrych D, Świerczyńska A, Rogalski G and Łabanowski J 2016 Temper Bead Welding of S420G2+M Steel in Water Environment Advances in Materials Science 16 5–16

[13] Dybowski B, Szala M, Hejwowski T J and Kielbus A 2015 Microstructural phenomena occurring during early stages of cavitation erosion of Al-Si aluminium casting alloys Solid State Phenomena 227 255–8

[14] Lambert R D, Aylott C J and Shaw B A 2018 Evaluation of bending fatigue strength in automotive gear steel subjected to shot peening techniques. Procedia Structural Integrity 13 1855–60

[15] Bianchetti C, Delbergue D, Bocher P, Lévesque M and Brochu M 2019 Analytical fatigue life prediction of shot peened AA 7050-T7451 International Journal of Fatigue 118 271–81

[16] Owsiński R, Kamiński S, Niesłony A and Lagoda T 2015 Evaluation of fatigue life of steel using steel grain size: Evaluation der Ermüdung von Stahl in Abhängigkeit der Korngröße Materialwissenschaft und Werkstofftechnik

[17] Szala M, Szafran M, Macek W, Marchenko S and Hejwowski T 2019 Abrasion Resistance of S235, S355, C45, AISI 304 and Hardox 500 Steels with Usage of Garnet, Corundum and Carbordum Abrasives Adv. Sci. Technol. Res. J. 13

[18] Szala M, Beer-Lech K and Walczak M 2017 A study on the corrosion of stainless steel floor drains in an indoor swimming pool Engineering Failure Analysis 77 31–8

[19] Janicki D 2018 Microstructure and Sliding Wear Behaviour of In-Situ TiC-Reinforced Composite Surface Layers Fabricated on Ductile Cast Iron by Laser Alloying Materials 11 75

[20] Kamiński M, Budzyński P, Szala M and Turek M 2018 Tribological properties of the Stellite 6 cobalt alloy implanted with manganese ions IOP Conf. Ser.: Mater. Sci. Eng. 421 032012
[21] Żebrowski R and Walczak M 2019 Effect of the Shot Peening on Surface Properties and Tribological Performance of Ti-6Al-4V Alloy Produced by Means of DMLS Technology Archives of Metallurgy and Materials Vol. 64, iss. 1

[22] Łatka L, Niemiec A, Michalak M and Sokołowski P 2019 Tribological Properties of Al2O3 + TiO2 Coatings Manufactured by Plasma Spraying Tribologia nr 1

[23] Szala M, Walczak M, Pasierbiewicz K and Kamiński M 2019 Cavitation Erosion and Sliding Wear Mechanisms of AlTiN and TiAlN Films Deposited on Stainless Steel Substrate Coatings 9 340

[24] Scholtes B and Vöhringer O 2016 Mechanical Surface Treatment Reference Module in Materials Science and Materials Engineering (Elsevier)

[25] Ismail S, Ahsan Q and Haseeb A S M A 2017 2.7 Recent Advances in Mechanical Surface Treatment Comprehensive Materials Finishing ed M Hashmi (Oxford: Elsevier) pp 171–9

[26] Żebrowski R and Walczak M 2018 The effect of shot peening on the corrosion behaviour of Ti-6Al-4V alloy made by DMLS Advances in Materials Science 18 43–54

[27] Jamalian M and Field D P 2019 Effects of shot peening parameters on gradient microstructure and mechanical properties of TRC AZ31 Materials Characterization 148 9–16

[28] Anon What is Shot Peening? Shot Peening Equipment - Wheelabrator

[29] Zhuang W Z and Halford G R 2002 Investigation of residual stress relaxation under cyclic load International Journal of Fatigue

[30] Wu D, Yao C and Zhang D 2018 Surface characterization and fatigue evaluation in GH4169 superalloy : Comparing results after finish turning; shot peening and surface polishing treatments International Journal of Fatigue

[31] Kamiński S, Kowalski M, Owśniński R and Łagoda T 2016 Influence of technological parameters of shot peening sharps hard to own stress level Mechanik

[32] Mahmoudi A H, Ghasemi A, Farrahi G H and Sherafatnia K 2016 A comprehensive experimental and numerical study on redistribution of residual stresses by shot peening Materials & Design 90 478–87

[33] Zhou J, Sun Z, Kanouté P and Retraint D 2018 Reconstruction of residual stress and work hardening and their effects on the mechanical behaviour of a shot peened structure Mechanics of Materials 127 100–11

[34] Maleki E, Unal O and Reza Kashyzadeh K 2018 Fatigue behavior prediction and analysis of shot peened mild carbon steels International Journal of Fatigue 116 48–67

[35] Macek W 2019 Fractal analysis of the bending-torsion fatigue fracture of aluminium alloy Engineering Failure Analysis 99 97–107

[36] Macek W 2019 Post-failure fracture surface analysis of notched steel specimens after bending-torsion fatigue Engineering Failure Analysis 105 1154–71

[37] Chen M, Jiang C, Xu Z, Zhan K and Ji V 2019 Experimental study on macro- and microstress state, microstructural evolution of austenitic and ferritic steel processed by shot peening Surface and Coatings Technology 359 511–9

[38] Kamiński S, Szymaniec M and \Łagoda T 2015 The influence of the ferrite and pearlite grain size on the SN fatigue characteristics of steel Solid State Phenomena vol 224 (Trans Tech Publ) pp 3–8

[39] Owśniński R, Kamiński S, Szymaniec M, Niesłony A and Łagoda T 2015 Evaluation of fatigue life of steel using steel grain size Materialwissenschaft und Werkstofftechnik 46 1059–67

[40] Kamiński S 2017 Fatigue durability of steel elementssubjected to shot blasting (Opole, Poland: Opole University of Technology)

[41] Soyama H 2019 Comparison between the improvements made to the fatigue strength of stainless steel by cavitation peening, water jet peening, shot peening and laser peening Journal of Materials Processing Technology 269 65–78
[42] Segurado E, Belzunce F J and Pariente I F 2018 Effects of low intensity shot peening treatments applied with different types of shots on the fatigue performance of a high-strength steel *Surface and Coatings Technology* **340** 25–35

[43] Macek W and Macha E 2015 The Control System Based on FPGA Technology For Fatigue Test Stand MZGS-100 PL *Archive of Mechanical Engineering* **62**

[44] Macek W and Macha E 2010 Energy-Saving Mechatronic System for Fatigue Tests of Materials under Variable-Amplitude Proportional Bending and Torsion *Solid State Phenomena*

[45] Macek W and Mucha N 2017 Evaluation of Fatigue Life Calculation Algorithm of the Multiaxial Stress-Based Concept Applied to S355 Steel under Bending and Torsion *Mechanics and Mechanical Engineering* **21** 935–51

[46] Macek W, Łagoda T and Mucha N 2017 Energy-based fatigue failure characteristics of materials under random bending loading in elastic-plastic range *Fatigue and Fracture of Engineering Materials and Structures*

[47] Springer M and Pettermann H E 2018 Fatigue life predictions of metal structures based on a low-cycle, multiaxial fatigue damage model *International Journal of Fatigue* **116** 355–65

[48] Pawlczek R and Prażmowski M 2015 Study on material property changes of mild steel S355 caused by block loads with varying mean stress *International Journal of Fatigue*

[49] Marciniak Z, Rozumek D and Macha E 2008 Fatigue lives of 18G2A and 10HNAP steels under variable amplitude and random non-proportional bending with torsion loading *International Journal of Fatigue*

[50] ASTM International 2012 *E739, Standard Practice for Statistical Analysis of Linear or Linearized Stress-Life (S-N) and Strain-Life (e-N) Fatigue Data*

[51] Nasiłowska B, Bogdanowicz Z and Wojucki M 2015 Shot peening effect on 904 L welds corrosion resistance *Journal of Constructional Steel Research* **115** 276–82

[52] González J, Bagherifard S, Guagliano M and Fernández Pariente I 2017 Influence of different shot peening treatments on surface state and fatigue behaviour of Al 6063 alloy *Engineering Fracture Mechanics* **185** 72–81

[53] Macek W and Wólczański T 2017 Analysis of fracture roughness parameters of S355J2 steel and EN AW-2017A-T4 aluminium alloy *ITM Web Conf.* **15** 06002