Supporting Information

Effects of Oxygen: Experimental and VTST/DFT Studies on Cumene Autoxidation with Air under an Atmosphere Pressure

Yufeng Wu*, Jingnan Zhao, Qingwei Meng*, Mingshu Bi, Cunfei Ma, and Zongyi Yu

School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China

Table of contents

1 Saturated solubility of oxygen calculated by Hayduk’s semiempirical method and gas-liquid equilibrium theory ... S2
2 Effects of K₂CO₃ on cumene autoxidation .. S4
3 Calculation results for [ROO•]/ g(T) at 70-120 °C .. S5
4. The conversion of cumene (x) over t .. S5
5 Linear regression of ln(1-x) with t ... S5
6 Curves of conversion and selectivity with time at 80, 100 and 120 °C S6
7 Reaction Rate for R· + O₂ calculated by VTST coupled with DFT calculations S7
8 DFT Calculations Results for the main processes for cumene autoxidation S7
1 Saturated solubility of oxygen calculated by Hayduk’s semiempirical method and gas-liquid equilibrium theory

Here, a model for calculating the saturated solubility of oxygen was established based on the gas-liquid equilibrium theory. The gas-liquid equilibrium equations of oxygen, nitrogen and cumene were written as Equations S1 – S3. The sum of the molar fractions of the components in the gas phase was equal to 1, thus Equation S4 was given.

\[p\varphi_1^vY_1 = H_1X_1y_1^* \]
\[p\varphi_2^vY_2 = H_2X_2y_2^* \]
\[p\varphi_3^vY_3 = P_3^Sx_3\gamma_3 \]
\[Y_1 + Y_2 + Y_3 = 1 \]

Where, \(p \) is the pressure of gas phase; \(H_1 \) and \(H_2 \) are Henry's coefficients of oxygen and nitrogen, respectively; \(\varphi_1^v \), \(\varphi_2^v \) and \(\varphi_3^v \) are fugacity coefficients of oxygen, nitrogen and cumene, respectively; \(\gamma_1^* \), \(\gamma_2^* \) and \(\gamma_3 \) are activity coefficients of oxygen, nitrogen and cumene, respectively; \(p_3^S \) is the saturated vapor pressure of cumene; \(Y_1 \), \(Y_2 \) and \(Y_3 \) are mole fractions of oxygen, nitrogen and cumene in the gas phase, respectively; \(X_1 \), \(X_2 \) and \(X_3 \) are mole fractions of oxygen, nitrogen and cumene in the liquid phase, respectively.

The reaction was carried out at a pressure of 1.0 bar and thus the gas was approximated as an ideal gas, therefore \(\varphi_1^v = \varphi_2^v = \varphi_3^v = 1 \). Cumene was the main component of the liquid phase, and the content of oxygen and nitrogen were very low. Thus, \(X_1 \rightarrow 0 \), \(X_2 \rightarrow 0 \), and \(X_3 \rightarrow 1 \) were obtained. Since \(X_1 \rightarrow 0 \) and \(X_2 \rightarrow 0 \), \(\gamma_3 \rightarrow 1 \) could be used.

As air was used as the oxidant in cumene autoxidation, dry air was feed into the gas phase continuously to eliminate the effects brought by the consumption of oxygen and to ensure the stability of the gas phase. To simplify the model, assumptions 1 and 2 were as follows.

Assumption 1: the reaction liquor had no weight loss caused by the flow air.

Assumption 2: changes in the compositions of the reaction liquor caused by cumene autoxidation had no effects on oxygen solubility.

As a result, when the ratio of nitrogen and oxygen in the reaction liquor was the same as that in the gas phase (\(\mu = Y_2/Y_1 \)), \(Y_1 = H_1X_1y_1^*/p \), \(Y_2 = \mu H_1X_1y_1^*/p \) and \(Y_3 = P_3^S/p \) were obtained. Equation S5 was then deduced to calculate the mole fraction of oxygen \((X_1)\) according to Equation
\[X_1 = \frac{p - p_S}{(1 + \mu) \gamma_H^1} \]

(S5)

The saturated vapor pressure of cumene at different temperature was calculated by Antoine equation (Equation S6) reported by Fu.

\[\ln p_S^2 = 16.3170 - \frac{3605.723}{-53.131 + T} \]

(S6)

Liang has reported that the Henry coefficient of oxygen in toluene was not a constant. Therefore, it may be inaccurate to calculate the oxygen solubility by the simple Henry’s Law, where Henry coefficient was a constant independent of temperature. To obtain the accurate solubility data of oxygen in cumene, the mole fraction of oxygen \(X_T \) in cumene under an oxygen partial pressure of 1.0 bar was calculated according to the semiempirical method (Equation S7) provided by Hayduk and his co-workers. The mole fraction of oxygen \(X_0 \) at the critical temperature \(T_C \) and the Hildebrand solubility parameter \(^2\delta \) were calculated by Equations S8 and S9, respectively.

\[\log(10^4 X_0) = 2.265 - 0.0655 \left(^2\delta / \text{MPa}^{1/2} \right) \]

(S8)

\[^2\delta = ^2\delta_0 + mT \]

(S9)

Where, \(X_T \) is the mole fraction of oxygen dissolved in cumene at temperature \(T \) under an oxygen partial pressure of 1.0 bar; \(^2\delta_0\) is the Hildebrand solubility parameter of cumene, \(^2\delta_0 = 23.3 \) MPa\(^{1/2}\); \(m \) is a constant, \(m = -19.8 \times 10^{-3} \); \(T_C \) is the critical temperature of cumene, \(T_C = 631.05 \) K.

The saturated solubility of oxygen in cumene \(([O_2]_T) = 2.23 \times 10^{-4} \text{g/(L•atm)} \) at 298.15 K under an oxygen partial pressure of 1.0 bar was obtained from Low’s report. This is to say, \(X_{298.15K} = 9.7675 \times 10^{-4} \). Subsequently, the mole fraction of oxygen \(X_T \) dissolved in cumene was calculated by Equation S10 and the results were listed in Table S1, showing a slight upward trend as the temperature increases.

\[X_T = X_{298.15K} \times 10^{0.9242 \times \log\left(\frac{T}{298.15} \right)} \]

(S10)

When \(\mu = 0 \), Equation 12 was derived from Equation 6. When air was used as the oxidant \((\mu = 3.7619)\), \(X_1 = X_T / (1 + \mu) \) could be given based on Equations S5 and S11. The mole concentration of oxygen \(([O_2]_T) \) at a temperature of \(T \) was calculated by Equation S12.
\[X_T = \frac{p - p^S}{y^2 N_1} \]

(S11)

\[[O_2]^p_T = X_T \times 10^3 \]

(S12)

Where, \(V \) is the molecular volume of cumene, \(V = \Delta^\theta U/(\alpha^2 \delta)^2. \) \(\Delta^\theta U \) is the vaporization heat of cumene, which is equal to 45.171 \times 10^3 \text{ J/mol}.

The calculations results were listed in Table S1.

Entry	\(T \) (°C)	\(X_T \times 10^4 \)	\(P^i_3 \) (Pa)	\(P_{\text{oxygen}} \) (Pa)	\([O_2]^p_T \times 10^3 \) (mol/L)
1	70	10.83	6483.77	19916.66	12.84
2	80	10.86	9812.91	19217.54	12.13
3	90	10.89	14459.67	18241.72	11.27
4	100	10.92	20796.80	16910.92	10.22
5	110	10.96	29259.68	15133.72	8.94
6	120	10.99	40347.91	12805.19	7.40

2 Effects of \(\text{K}_2\text{CO}_3 \) on cumene autoxidation

![Graph showing conversion over time at 100 and 120 °C. General conditions: \(\text{K}_2\text{CO}_3 \) (0.5 mmol, 1.25 equiv.), CM (3 mL), air atmosphere.]

Control experiments with \(\text{K}_2\text{CO}_3 \) or without \(\text{K}_2\text{CO}_3 \) at 50, 100 and 120 °C were carried out and part of the results were depicted in Fig.S1. The reaction does not proceed at 50 °C no matter whether \(\text{K}_2\text{CO}_3 \) is added or not. Furthermore, it is unreasonable that the reaction of \(\text{CO}_3^2- \) with RH to form a tertiary carbon anion (\(\text{R}^- \)) with poor stability. The addition of \(\text{K}_2\text{CO}_3 \) at 120 °C has no apparent effect on the reaction rate as shown in Fig.S1. To be noted, the addition of \(\text{K}_2\text{CO}_3 \) at 100 °C promote the reaction rate, especially in 0 - 180 min, while has little promotion effects on the reaction rate in 180 - 420 min. Therefore, the addition of \(\text{K}_2\text{CO}_3 \) may promote the process in the radical initiation stage, but could not promote radical transfer process, which dominated the peroxidation rate. We deemed that \(\text{K}_2\text{CO}_2 \) was used to neutralize the organic acid to suppressing reaction such as \(\text{“H}^+ + \)
ROOH \rightarrow RO$^+$ + H$_2$O*, thus promoting the radical initiation process. The catalytic effect of K$_2$CO$_3$ needs to be further studied since no relevant evidence has been found so far.

3 Calculation results for $[\text{ROO}^*]/g(T)$ at 70-120 °C

Table S2: Calculation results for $[\text{ROO}^*]/g(T)$ at 70-120 °C

Entry	T (°C)	$[\text{ROO}^*]/g(T)$
1	70	0.999716
2	80	0.999491
3	90	0.999099
4	100	0.998409
5	110	0.997158
6	120	0.994764

4. The conversion of cumene (x) over t

Figure S2: The conversion of cumene (x) over t. The data at 70, 80, 90, and 100 °C were obtained from our previous article.

5 Linear regression of ln(1-x) with t

Figure S3: Linear regression analysis of ln(1-x) with t
Table S3: Linear regression equations of ln(1-x) with t

Temperature, °C	ln(1-x) = - K_1 t
70	ln(1-x) = -3.2157 \times 10^{-5} t - 0.00506
80	ln(1-x) = -5.4056 \times 10^{-5} t - 0.00289
90	ln(1-x) = -1.1691 \times 10^{-4} t + 0.00048
100	ln(1-x) = -1.7270 \times 10^{-4} t - 0.00125
110	ln(1-x) = -1.8613 \times 10^{-4} t - 0.0046
120	ln(1-x) = -2.1521 \times 10^{-4} t - 0.00026
120\[^a\]	ln(1-x) = -5.0566 \times 10^{-4} t + 0.0050

\[^a\] oxygen was used as the oxidant.

6 Curves of conversion and selectivity with time at 80, 100 and 120 °C

Figure S4: Curves of conversion and selectivity with time. (a) reacted at 80 °C with air as oxidant;
(b) reacted at 100 °C with air as oxidant; (c) reacted at 120 °C with air as oxidant; (d) reacted at 120 °C with oxygen as oxidant.

7 Reaction Rate for R· + O₂ calculated by VTST coupled with DFT calculations

Figure S5: Minimum energy path for the R· + O₂, calculated at B3LYP/6-311+G(d,p) level of theory.

Figure S6: The reaction rate for ROO → R· + O₂, calculated by VTST coupled with DFT calculations at 378.15K

8 DFT Calculations Results for the main processes for cumene autoxidation
Cartesian coordinates of optimized all stationary points together with their single-point (a.u.) in solution and the imaginary frequencies (cm⁻¹) of transition states.
Optimized structure for O_2, -150.366790

O	0.00000000	0.00000000	0.60280400
O	0.00000000	0.00000000	-0.60280400

Optimized structure for $R \cdot O_2$, -349.472878

C	0.06098200	9.88263200	0.10172600
C	0.81049400	10.81459200	0.87637000
C	0.42679700	12.14271900	0.98300400
C	-0.71698500	12.61085400	0.32779300
C	-1.47292800	11.71895400	-0.44011600
C	-1.09859000	10.38873900	-0.55377900
H	1.70111100	10.48450000	1.39606600
H	1.02240700	12.82351800	1.58189400
H	-1.01325600	13.64981600	0.41387500
H	-2.36232000	12.06847100	-0.95366800
H	-1.70554800	9.72452300	-1.15596900
C	0.45120600	8.51406400	-0.01174500
C	-0.35840200	7.55227500	-0.83563200
H	0.07772800	6.55266000	-0.81690700
H	-1.39149500	7.46835600	-0.47375000
H	-0.42424800	7.86394900	-1.88621300
C	1.67952600	8.00676500	0.69048600
H	1.83262500	6.94382900	0.49929700
H	2.58625700	8.53424000	0.36672200
H	1.61692200	8.14065800	1.77832200

Optimized structure for $\{R \cdots O_2\}$, -499.839855

C	-0.71833000	-1.29385800	0.44193800
C	0.64826600	-1.26618600	0.14482000
C	1.23721000	-0.12331500	-0.37430700
C	0.47971600	1.05765100	-0.62308600
C	-0.90943500	0.99890100	-0.31124200
C	-1.48781400	-0.14945700	0.20764300
H	-1.17453800	-2.18937800	0.84760100
H	1.25684000	-2.14681000	0.32103800
H	2.29727800	-0.13535800	-0.59425000
H	-1.53320300	1.86738800	-0.48127000
H	-2.54897500	-0.15711900	0.43306000
C	1.07999900	2.23657000	-1.15964600
C	0.25448600	3.46464500	-1.42335900
H	-0.23373400	3.83616900	-0.51322900
H	0.86778300	4.27445500	-1.82072500
H	-0.54820500	3.27292900	-2.14762100
Optimized structure for vTS1, -499.841774, 91.82i

Element	X	Y	Z
C	-0.77301700	-1.41906200	0.34765000
C	0.61703200	-1.28972300	0.31630700
C	1.20308000	-0.07473500	-0.00734600
C	0.41631100	1.06476400	-0.30731700
C	-0.99050000	0.90856800	-0.26386000
C	-1.57044900	-0.31153800	0.05377400
H	-1.22849600	-2.37000100	0.59883200
H	1.24564300	-2.14228900	0.54806500
H	2.28267200	0.00073100	-0.01515200
H	-1.63372400	1.74916500	-0.48913700
H	-2.65087200	-0.40141900	0.07365400
C	1.03091200	2.33099100	-0.63087900
C	0.19191300	3.52812400	-0.96239700
H	-0.64923400	3.65085200	-0.27724500
H	0.79002300	4.43962700	-0.92735500
H	-0.22128600	3.44472000	-1.97831300
C	2.49472600	2.40123500	-0.91460800
H	3.07743300	2.28595200	0.01465500
H	2.82102400	1.60761100	-1.59438600
H	2.76896500	3.36275600	-1.35042000
O	1.30370700	3.07855700	1.66113800
O	2.44639000	2.87439400	2.07776200

Optimized structure for ROO-, -499.866292

Element	X	Y	Z
C	-0.80448200	-1.45879900	0.08196900
C	0.50545200	-1.30633900	0.53620800
C	1.13022000	-0.06449200	0.46820200
C	0.45418400	1.05217100	-0.04329000
C	-0.86058400	0.88934300	-0.48977300
C	-1.48352000	-0.35786900	-0.43281300
H	-1.29046500	-2.42657800	0.13117100
H	1.04249100	-2.15512000	0.94353500
H	2.14659100	0.03957700	0.82852600
H	-1.41177900	1.73119000	-0.88882600
H	-2.50245000	-0.46348600	-0.78785300
Optimized structure for RH, -350.103655

C 0.13742400 -0.19351600 -0.00594700
C -0.74995600 -1.27496100 -0.01866700
C -2.13152100 -1.07775400 -0.01367800
C -2.65272700 0.21398200 0.00431600
C -1.78090300 1.30332000 0.01712300
C -0.40249300 1.09982700 0.01204800
H -0.35435800 -2.28599300 -0.03280700
H -2.79786000 -1.93352400 -0.02392300
H -3.72542500 0.37191100 0.00815500
H -2.17542100 2.31362500 0.03105200
H 0.25750500 1.96094800 0.02230000
C 1.64174900 -0.42685700 -0.00980800
H 1.79327500 -1.51888200 -0.03588300
C 2.30801900 0.10056900 1.27428300
H 3.37581000 -0.13797900 1.27817500
H 2.20933000 1.18718800 1.35531400
H 1.85650400 -0.34381400 2.16503000
C 2.31339900 0.16235600 -1.26360400
H 3.38090400 -0.07795000 -1.27519200
H 1.86485700 -0.23681200 -2.17712200
H 2.21688700 1.25183900 -1.29149600

Optimized structure for {ROO--RH}, -849.970077

C -1.49718600 0.93500200 0.44602900
C -1.39781900 2.18702300 1.05377300
C -0.75911500 3.23428900 0.39762100
C -0.21508600 3.05606800 -0.88203200
C -0.32627200 1.80020900 -1.48404200
C -0.95890700 0.74583800 -0.82331300
H -1.99268400 0.11752200 0.95730000
H -1.81904100 2.34845400 2.03966200
"Optimized structure for TS1, -849.946341, 1766.35/
C 5.39021100 0.48850600 -0.94119400
C 4.97875300 -0.71183200 -0.36179600
C 3.71629900 -0.81583900 0.21575700
C 2.83388700 0.27413800 0.21886000
C 3.25564300 1.47038100 -0.36951700
C 4.52457800 1.57885800 -0.94061500
H 6.37445700 0.57130600 -1.38837300
Atom	X	Y	Z
H	5.64225600	-1.56961000	-0.35879800
H	3.40631800	-1.75447600	0.65774300
H	2.60080900	2.33214500	-0.38705400
H	4.83132500	2.51789200	-1.38796800
C	1.46954600	0.13751900	0.89535800
C	0.47369100	1.23384400	0.52321700
H	0.37610000	1.33246800	-0.55946800
H	-0.50333800	0.99279300	0.94203800
H	0.78346700	2.19609800	0.93643600
C	1.62679200	0.03673000	2.41867100
C	2.28650800	-0.79408500	2.68467700
H	0.65483400	-0.12608600	2.88779700
H	2.05964700	0.95794300	2.80863700
O	0.98737500	-1.15597500	0.36990500
O	-0.20359800	-1.55648500	0.98253200
C	-2.93863800	-0.19802800	-0.37522600
C	-3.63713100	-0.05601200	0.84177000
C	-4.35847800	1.09577700	1.13268200
C	-4.40965300	2.14668100	0.21506200
C	-3.72452600	2.02931300	-0.99291200
C	-2.99489200	0.87850100	-1.28089400
H	-3.60361200	-0.85074600	1.57686800
H	-4.88158400	1.17558400	2.07924600
H	-4.97493700	3.04383100	0.44028500
H	-3.58535700	2.83598200	-1.71702900
H	-2.47767600	0.81426400	-2.22939000
C	-2.15532600	-1.43103200	-0.66494800
H	-1.13691000	-1.38704300	0.17352700
C	-1.45303000	-1.51353200	-2.00976800
H	-0.82240800	-0.64516500	-2.20848700
H	-0.81575900	-2.39923900	-2.04731900
H	-2.18198000	-1.59549200	-2.82712900
C	-2.80103600	-2.75122800	-0.25757900
H	-2.08965800	-3.57267800	-0.36484700
H	-3.15818200	-2.75189900	0.77297300
H	-3.66168500	-2.96223700	-0.90557200

Optimized structure for {ROOH–R'}, 849.967875
H -5.70897400 2.32861300 -0.87933100
H -4.28394200 2.69685900 1.12397500
H -2.54154100 1.06083600 1.72217000
H -3.61569000 -1.31925000 -1.68696100
H -5.35734000 0.30296500 -2.27335200
C -1.88094100 -1.26979800 0.49330300
C -1.52725000 -2.92095000 -0.58793100
H -1.25192400 -1.79955600 -1.52295800
H -0.68521000 -2.89602200 -0.24784200
H -2.36363800 -2.96783000 -0.77898300
C -2.29270900 -1.97306400 1.79550300
H -1.50851300 -2.65724500 2.12267300
H -2.47576200 -1.24511200 2.58758900
H -3.21049800 -2.54336600 1.63301200
O -0.73101200 -0.40063100 0.73845100
O 0.36202400 -1.18111200 1.30256900
C 3.20042100 0.66480100 -0.26869100
C 4.34033600 0.11027600 0.38211900
C 4.72651600 -1.20500080 0.17406800
C 4.00409400 -2.03620300 -0.68865300
C 2.88037500 -1.52059600 -1.34356300
C 2.48196200 -0.20570100 -1.14185800
H 4.92009900 0.72393900 1.05971500
H 5.59882500 -1.59175900 0.68997300
H 4.31035700 -3.06326400 -0.84828800
H 2.31342000 -2.15095700 -2.02048900
H 1.61590000 0.16693200 -1.67439200
C 2.79464800 2.01634500 -0.05788600
H 1.04184400 -1.05434500 0.61898100
C 1.56260200 2.55797000 -0.72613600
H 0.66893400 1.97596900 -0.46952500
H 1.37913600 3.59261100 -0.43385100
H 1.64612500 2.53523700 -1.82089900
C 3.57698800 2.91679400 0.85575400
H 3.18399700 3.93403600 0.83649400
H 3.54195400 2.57105700 1.89794200
H 4.63754100 2.96473600 0.58070400

Optimized structure for ROOH, -500.470546
C -2.28417000 2.07782000 0.88060400
C -1.38665600 2.96946300 1.46809800
C -0.14276200 3.19771800 0.88638700
C 0.22716400 2.54737900 -0.29979900
C -0.68371900 1.66203800 -0.88385900

S13
	C	H	O
	-1.92689300	1.42434400	-0.29563500
H	-3.25177400	1.89652800	1.33489100
H	-1.65488500	3.48814500	2.38183600
H	0.54334100	3.89665200	1.34789300
H	-0.43426700	1.14496100	-1.80136100
H	-2.61565200	0.72962400	-0.76343000
C	1.61580100	2.80085600	-0.89306400
C	1.78842700	2.28264500	-2.32134300
H	1.01227100	2.67597100	-2.98139100
H	2.76352100	2.59007200	-2.70172200
H	1.75454400	1.19153900	-2.34976300
C	2.71004400	2.24254600	0.02835500
H	3.69900100	2.47217400	-0.37113100
H	2.62864200	2.66882700	1.02948000
H	2.60760000	1.15756600	0.10692500
O	1.66465200	4.26429700	-0.89617400
O	2.99009000	4.71372100	-1.30376700
H	2.77775200	5.16023200	-2.13562600

References

(1) Fu, J., Determination of saturation vapor pressures of isopropylbenzene. *Natural Gas Chemical Industry*. 1992, 17, 60-61.

(2) Li, A. R.; Tang, S. W.; Tan, P. H.; Liu, C. J.; Liang, B., Measurement and prediction of oxygen solubility in toluene at temperatures from 298.45 K to 393.15 K and pressures up to 1.0 MPa. *J Chem Eng Data*. 2007, 52, 2339-2344.

(3) Hayduk, W.; Buckley, W. D., Temperature coefficient of gas solubility for regular solutions. *The Canadian Journal of Chemical Engineering*. 1971, 49, 667-671.

(4) Hayduk, W.; Castaneda, R., Solubilities of the highly soluble gases, propane and butane, in normal paraffin and polar solvents. *The Canadian Journal of Chemical Engineering*. 1973, 51, 353-358.

(5) Barton, A., Chapter 11: Gases. In *CRC Hand Book of Solubility Parameters and Other Cohesion Parameters*, second ed.; Barton, A. F. M., Ed. CRC Press LLC: United States of America, 1991; pp 321-340.

(6) Barton, A., Effects of Physical conditions. In *CRC Hand Book of Solubility Parameters and Other Cohesion Parameters*, second ed.; Barton, A. F. M., Ed. CRC Press LLC: United States of America, 1991; pp 303-308.

(7) Low, D. I. R., The unsteady state absorption of oxygen in cumene. *The Canadian Journal of Chemical Engineering*. 1967, 45, 166-170.

(8) Barton, A., Chapter 2: Thermodynamics. In *CRC Hand Book of Solubility Parameters and Other Cohesion Parameters*, second ed.; Barton, A. F. M., Ed. CRC Press LLC: United States of America, 1991; pp 23-48.

(9) Wu, Y.; Tang, X.; Zhao, J.; Ma, C.; Yun, L.; Yu, Z.; Song, B.; Meng, Q., Sustainable and Practical Access to Epoxides: Metal-Free Aerobic Epoxidation of Olefins Mediated by Peroxy Radical
Generated In Situ. *Acs Sustain Chem Eng.* **2020**, *8*, 1178-1184.