Anthelmintic Activity of Wormwood (Artemisia absinthium L.) and Mallow (Malva sylvestris L.) against Haemonchus contortus in Sheep

Dominika Mravčáková 1, Michaela Komáromyová 2, Michal Babják 2, Michaela Urda Dolinská 2, Alžbeta Königová 2, Daniel Petrič 1, Klaudia Čobanová 1, Sylwester Ślusarczyk 3,*
Adam Cieslak 4, Marián Váray 2,4, and Zora Várayová 1,*

1 Institute of Animal Physiology, Centre of Biosciences of Slovak Academy of Sciences, 040 01 Košice, Slovakia; mravckakova@saske.sk (D.M.); petric@saske.sk (D.P.); boldik@saske.sk (K.C.)
2 Institute of Parasitology of Slovak Academy of Sciences, 040 01 Košice, Slovakia; komaromyova@saske.sk (M.K.); babjak@saske.sk (M.B.); dolinska@saske.sk (M.U.D.); konig@saske.sk (A.K.)
3 Department of Pharmaceutical Biology with Botanical Garden of Medicinal Plants, Medical University of Wroclaw, 50-556 Wroclaw, Poland; sylwester.slusarczyk@umed.wroc.pl
4 Department of Animal Nutrition, Poznan University of Life Sciences, 60-637 Poznan, Poland; adam.cieslak@up.poznan.pl
* Correspondence: varady@saske.sk (M.V.); varadyz@saske.sk (Z.V.); Tel.: +421-55-633-1411-13 (M.V.);
+421-55-792-2972 (Z.V.)

Received: 8 December 2019; Accepted: 26 January 2020; Published: 29 January 2020

Simple Summary: The gastrointestinal parasitic nematode Haemonchus contortus of small ruminants is an important target for chemoprophylaxis. Repeated use of anthelmintics in the form of synthetic drugs increases the risk of residues in food products and the development of anthelmintic resistance. However, the use of combinations of dry traditional medicinal plants as nutraceuticals is an alternative to chemotherapy for controlling haemonchosis in ruminants. Therefore, the aim of this study is to determine the effect of dietary supplementation with wormwood, mallow and their mix on parasitological status and inflammatory response in lambs experimentally infected with H. contortus. Simultaneously, the present study evaluated by the egg hatch test the in vitro anthelminthic effects of different concentrations (50–1.563 mg/mL) of the aqueous extracts of these plants. Our results revealed that the strong anthelmintic effect of both medicinal plants observed in vitro was not fully confirmed in vivo. This knowledge builds on our previously published findings and highlights that the effect of dry medicinal plants depends on the variety and synergy of plant polyphenols and the combination of bioactive compounds that together have an effect and contribute to a certain pharmacological efficacy.

Abstract: The objective of this study is to evaluate the effect of dry wormwood and mallow on the gastrointestinal parasite of small ruminants Haemonchus contortus. Twenty-four experimentally infected lambs were randomly divided into four groups of six animals each: unsupplemented lambs, lambs supplemented with wormwood, lambs supplemented with mallow and animals supplemented with a mix of both plants. Faecal samples from the lambs were collected on day 23, 29, 36, 43, 50, 57, 64 and 75 post-infection for quantification of the number of eggs per gram (EPG). The mix of both plants contained phenolic acids (10.7 g/kg DM) and flavonoids (5.51 g/kg DM). The nematode eggs were collected and in vitro egg hatch test was performed. The aqueous extracts of both plants exhibited strong ovicidal effect on H. contortus, with ED50 and ED99 values of 1.40 and 3.76 mg/mL and 2.17 and 5.89 mg/mL, respectively, in the in vitro tests. Despite the great individual differences between the treated lambs in eggs reduction, the mean EPG of the untreated and treated groups did not differ (p > 0.05). Our results indicate that using wormwood and mallow as dietary supplements do not have a sufficient effect on lambs infected with H. contortus.
Keywords: dietary treatments; plant bioactive compounds; egg counts; UHRMS; Haemonchus contortus

1. Introduction

The gastrointestinal nematode (GIN) infection haemonchosis is a prevalent parasitic disease associated with economic losses, lowered productivity, morbidity and mortality. Haemonchus contortus is highly prevalent in sheep and goats worldwide and is mainly controlled by chemoprophylaxis through the repeated application of chemotherapy with the risk of development of anthelmintic resistance [1].

The screening of traditional medicinal plants containing promising contents of bioactive compounds with anthelmintic activity has great potential as an alternative source of natural anthelmintics and antioxidants that may be sustainable and environmentally acceptable. Various bioactive compounds (i.e., polyphenols, flavonoids, condensed tannins) that possess an anthelmintic effect [2,3] and antibacterial and antioxidant activities have been isolated from wormwood (Artemisia absinthium L.) [4,5]. Many authors have reported the antioxidant and antimicrobial properties of wormwood essential oils [6,7] and the anthelmintic activity of the flavonoids quercetin and apigenin [3]. Diets containing dried wormwood as a 5%–10% replacement for rice straw also provide better quality roughage with a considerable content of crude protein [8–10]. The high pharmacological activity of the medicinal plant mallow (Malva sylvestris L.), due to the presence of amino acids, flavonoids, mucilages, terpenoids, phenol derivatives, enzymes, coumarins and sterols, is known [11,12]. Mallow has antimicrobial, antifungal and anti-inflammatory properties [13,14].

In traditional medicine, whole plants or mixtures of plants are used rather than isolated compounds, and therefore more research is needed on all types of interaction between plant constituents. The ultra-high-resolution mass spectrometry (UHRMS) analyses of dry medicinal plants or plant mixtures in our recent studies with H. contortus [15–17] identified a wide range of bioactive compounds with important pharmacological activities, mainly flavonoids, phenolic acids, diterpenes, and alkaloids. These experiments, which combined chromatographic analyses with the determination of antioxidant capacity, are helpful in identifying plants with consistent concentrations of anthelmintic and antioxidant compounds for in vitro and in vivo studies. Our previous studies showed that medicinal plant mixtures are multicomponent mixes that possess effects via a multitarget additive and synergistic mode [16–18].

Therefore, in the present study, we hypothesize that some medicinal plants from these mixtures are by themselves multicomponent mixes and can elicit effects via pharmacological activity on H. contortus infected lambs. The medicinal plants, wormwood and mallow, were chosen based on their previously described best phytotherapeutic properties and anthelmintic activity in vitro [15]. The goal is to determine the effect of dietary supplementation with wormwood and mallow on parasitological status and inflammatory parameters of lambs experimentally infected with H. contortus.

2. Material and Methods

2.1. Ethics Statement

All procedures and animals were cared for under European Community guidelines (EU Directive 2010/63/EU). The experimental protocol was approved by the Ethical Committee of the Institute of Parasitology of the Slovak Academy of Sciences, in accordance with national legislation in Slovakia.
2.2. Analysis of Bioactive Compounds

Wormwood and mallow were ground to a fine powder, and 100 mg were extracted three times in 80% MeOH for 30 min at 40 °C. The extracts were evaporated to dryness, dissolved in 2 mL of Milli-Q water (acidified with 0.2% formic acid) and purified by Solid Phase Extraction (SPE) using Oasis HLB 3cc Vac Cartridge (60 mg, Waters Corp., Milford, MA, USA). The cartridges were washed with 0.5% methanol to remove carbohydrates and then washed with 80% methanol to elute phenolics. The phenolic fraction was re-evaporated and dissolved in 1 mL of 80% methanol (acidified with 0.1% formic acid). The sample was then centrifuged (23,000×g, 5 min) before spectrometric analysis. All analyses were performed in triplicate for three independent samples and stored in a freezer at −20 °C before analysis.

The phenolic acids and flavonoids of the plant materials were analysed by a ultra-high-resolution mass spectrometry (Dionex UltiMate 3000RS, Thermo Scientific, Darmstadt, Germany) system with a charged aerosol detector interfaced with a high-resolution quadrupole time-of-flight mass spectrometer (HR/Q-TOF/MS, Compact, Bruker Daltonik GmbH, Bremen, Germany). The metabolomes of the samples were chromatographically separated, as was described [19]. The flow rate, spectra, operating parameters, collision energy, data calibration and spectra processing were previously described [20]. The amount of the particular phenolic acids in the samples was calculated as the chlorogenic acid (CAS 327-97-9, 3-Caffeoylquinic acid) equivalent, and hyperoside (CAS 482-36-0, quercetin 3-galactoside) was used for calculating the amount of identified flavonoids. Stock solutions of hyperoside and chlorogenic acids were prepared in MeOH, as was described previously [16].

2.3. In Vitro Test

The in vitro egg hatch test (EHT) was performed in order to assess the ovicidal effect of aqueous extracts of wormwood and mallow and compared with the chemotherapeutic effect of thiabendazole anthelmintic drug. The nematode eggs for in vitro EHT were obtained from the untreated UNS group. The concentrations of aqueous extracts used and EHT has been previously described [15].

Chemical tests for the screening of main constituents in the medicinal plants under study were carried out in the aqueous extracts using standard procedures [21,22]. Qualitative phytochemical screening revealed the active compounds mainly tannins, flavonoids, glycosides, saponins, alkaloids, and terpenoids (Table 1).

Plant Species	Tannins	Flavonoids	Glycosides	Saponins	Alkaloids	Terpenoids
A. absinthium	+			+	-	+
M. sylvestris	+	+	+	-	+	+

(+) the presence of phytochemicals; (-) the absence of phytochemicals.

2.4. Experiment In Vivo

The experiment was conducted on 24 3–4-month-old female lambs (Improved Valachian) with initial body weights of 18.67 ± 0.55 kg. The lambs were housed in common stalls on a sheep farm (Hodkovce, Slovak Republic) with free access to water. After a period of adaptation, all parasite-free lambs were infected by L3 larvae of H. contortus MHCo1 strain [16]. The diet of each animal consisted of oats (500 g DM/d) and meadow hay (ad libitum). Four groups of six animals based on their live-weight were established: unsupplemented lambs (UNS), lambs supplemented with stem of A. absinthium (ART, 1 g DM/d/lamb), lambs supplemented with flower of M. sylvestris (MAL, 15 g DM/d/lamb) and animals supplemented with mix of A. absinthium and M. sylvestris (ARTMAL, 16 g DM/d/lamb). The doses of plant supplements were based on the plant proportions used in our previous study [18]. The dry plants from commercial sources (AGROKARPATY, Plavnica, Slovak Republic) were mixed daily with the oats during the experimental period (75 days, D). The lambs were weighed on D0, D15, D30, D45 and D70. Faecal samples from the rectum of lambs were collected on D23, D29, D36, D43, D50, D57,
D64 and D75 post-infection for quantification of the eggs per gram (EPG). The detection of strongylid eggs was performed by McMaster technique, as was previously described [23]. The blood sera samples of each animal were obtained from D15, D30, D45 and D70 [18]. Helminthological autopsies were done after 75 days of infection [16].

2.5. Blood Sera Analysis

Sheep immunoglobulin G (IgG), sheep immunoglobulin A (IgA) and sheep eosinophil peroxidase (EPX) were measured by ELISA kits (MyBioSource Ltd., San Diego, CA, USA). The sensitivity of the IgG, IgA and EPX kits were 0.938 ng/mL, 1.875 ng/mL and 1.0 ng/mL, respectively.

2.6. Statistical Analysis

Statistical analysis was performed using analysis variance (GraphPad Prism 8, GraphPad Software, Inc., San Diego, CA, USA) as repeated-measures mixed models representing the four animal groups (UNS, ART, MAL, ARTMAL) and sampling days. Differences between the animal groups were analysed by a two-way ANOVA with a Bonferroni post hoc test. Differences between the arithmetic EPG means between groups and between worm counts at dissection were analysed by Student’s t-tests. A logistic regression model was used to determine the ED$_{50}$ and ED$_{99}$ [24].

3. Results

3.1. Bioactive Compounds

The _A. absinthium_ contained 6.48 g/kg DM of phenolic acids and 0.35 g/kg DM of flavonoids with greater concentrations of chlorogenic acid (3.42 g/kg DM) and 1,5-dicaffeoylquinic acid (2.12 g/kg DM) (Table 2). The _M. sylvestris_ contained 0.65 g/kg DM of phenolic acids and 6.48 g/kg DM of flavonoids with higher concentrations of delphinidin-5-glucoside 3-lathyroside (1.64 g/kg DM), kaempferol-3-O-rutinoside (0.82 g/kg DM), apigenin-o-hex (1.56 g/kg DM) and coumarinic acid (0.47 g/kg DM). The mix of both plants contained 10.7 g/kg DM phenolic acids and 5.51 g/kg DM of flavonoids with greater concentrations of methyl-4-O-beta-d-glucopyranosylcafeeate (2.23 g/kg DM), 1,5-dicaffeoylquinic acid (1.64 g/kg DM), kaempferol-O-Hex (1.40 g/kg DM), apigenin-O-Hex (1.29 g/kg DM) and luteolin-O-Hex (0.70 g/kg DM).
Table 2. Contents of the flavonoids and phenolic acids (g/kg DM) identified in the plants and mix.

No.	RT (min)	\(\lambda_{\text{max}} \) (nm)	\(m/z \) [M-H]\(^+\)	MS\(^2\)	MS\(^2\) Fragments	Formula	Compound	Flavonoids	Phenolic Acids

Artemisia absinthium

1. 2.80 215.325 189.0759 127/0759 171/145/115 \(\text{C}_8\text{H}_{14}\text{O}_5 \) L-(-)Malic acid diethyl ester 0.22
2. 4.10 215.325 353.0877 191/0567 179/161/135 \(\text{C}_{16}\text{H}_{18}\text{O}_9 \) Chlorogenic acid 3.42
3. 7.80 281.1023 191/0567 173 \(\text{C}_{14}\text{H}_{18}\text{O}_6 \) ND 0.01
4. 8.00 367.1031 511.2698 511 \(\text{C}_{17}\text{H}_20\text{O}_9 \) 3-O-Feruloylquinic acid 0.08
5. 8.90 279.1223 511.2698 511 \(\text{C}_{15}\text{H}_20\text{O}_9 \) Artabsinolide 0.03
6. 9.10 325.1283 163 279/235 \(\text{C}_{16}\text{H}_22\text{O}_7 \) ND 0.03
7. 9.20 327.1440 163 279/235 \(\text{C}_{16}\text{H}_22\text{O}_7 \) ND 0.03
8. 10.00 289.000 263.1282 201/1271 245/219/149/161/177 \(\text{C}_{13}\text{H}_20\text{O}_4 \) Tanacetin 2.12
9. 10.20 281.1386 191/0567 173 \(\text{C}_{18}\text{H}_22\text{O}_7 \) Artabsinolide D 0.24
10. 11.00 515.1193 353/0867 191/179/135 \(\text{C}_{28}\text{H}_22\text{O}_{12} \) 1,5-Dicaffeoylquinic acid 0.10
11. 11.20 653.1719 345/0595 330/302 \(\text{C}_{29}\text{H}_32\text{O}_{17} \) Spinacetin 3-rutinoside 0.24
12. 11.40 477.1032 314/0415 357 \(\text{C}_{22}\text{H}_22\text{O}_{12} \) Isorhamnetin 7-glucoside 0.61
13. 11.70 515.1192 353/0869 173/191/155 \(\text{C}_{28}\text{H}_24\text{O}_{12} \) 4,5-Dicaffeoylquinic acid 0.10
14. 14.90 507.1502 413/1246 101/324/259 \(\text{C}_{24}\text{H}_22\text{O}_{12} \) Hedycoyrside B 0.35
15. 15.00 511.2698 467/2775 457 \(\text{C}_{30}\text{H}_40\text{O}_7 \) Anabsin 0.28
16. 15.50 345.1344 301/1433 257/213/187 \(\text{C}_{19}\text{H}_22\text{O}_6 \) Diosbulbin E 0.18
17. 15.60 511.2698 245/1175 263/201 \(\text{C}_{30}\text{H}_40\text{O}_7 \) Anabsin 0.03
18. 16.50 329.2323 211/1324 229/171/183/139 \(\text{C}_{18}\text{H}_34\text{O}_5 \) Pinic acid 0.40

Malus sylvestris

1. 1.60 250.320 517.1195 355/0667 193 \(\text{C}_{21}\text{H}_22\text{O}_{15} \) Ferulo-O-Hex-O-Hex 0.17
2. 1.80 250.301 206.0443 144/0437 \(\text{C}_{10}\text{H}_6\text{NO}_7 \) ND 0.17
3. 7.00 523 757.1846 347/0761 329/261/509 \(\text{C}_{32}\text{H}_32\text{O}_{21} \) Delphinidin 5-glucoside 3-lathyroside 0.47
4. 7.90 308 163.0381 119/0502 \(\text{C}_6\text{H}_4\text{O}_3 \) Coulmaric acid 1.64
5. 8.00 288 465.1046 303/0505 285/275/177 \(\text{C}_{21}\text{H}_22\text{O}_{12} \) Xeractinol 0.17
6. 8.20 520 449.1094 287/0555 259/243 \(\text{C}_{21}\text{H}_22\text{O}_{11} \) Cyanidin-O-Hex 0.28
7. 8.50 518 593.1645 431/0982 269/0460 \(\text{C}_{22}\text{H}_31\text{O}_{15} \) Pelargonidin-O-Hex-O-Hex 0.14
8. 8.70 283 687.1784 507/1142 345/0629/165 \(\text{C}_{27}\text{H}_31\text{O}_{16} \) Quercetin-3-O-rutinoside 0.18
9. 9.00 283 525.1246 345/0815 165/197/139 \(\text{C}_{23}\text{H}_32\text{O}_{14} \) ND 0.07
10. 9.20 287 303.0498 153/0169 125/217 \(\text{C}_{15}\text{H}_22\text{O}_{7} \) ND 0.03
11. 9.50 283 773.1781 507/1124 345/165 \(\text{C}_{32}\text{H}_38\text{O}_{22} \) ND 0.22
12. 10.00 609.1458 301/0330 \(\text{C}_{27}\text{H}_31\text{O}_{16} \) Quercetin-3-O-rutinoside 0.40

Total flavonoids and phenolic acids: 0.35 6.48
No.	RT (min)	λ_{max} (nm)	m/z	M^2	M^2 Fragments	Formula	Compound	Flavonoids	Phenolic Acids
13	10.20	268.343	447.0928	285/0386	C_{11}H_{12}O_{10}’	Kaempferol-3-O-rutinoside	0.82		
14	10.50	346	505.0981	343/0442	C_{23}H_{22}O_{13}	Quercetin 3’-glucoside-7-acetate	0.03		
15	10.90	266.343	593.1504	285/0395	C_{25}H_{23}O_{15}	Kaempferol-3-O-rutinoside	0.82		
16	11.10	291.346	433.1124	271/0599	C_{21}H_{22}O_{10}’	Naringenin-O-Hex	0.13		
17	11.25	291	287.0580	259/0596	C_{13}H_{15}O_{6}	Tetrahydroxylavone	0.30		
18	11.40	268.336	431.0978	269/0435	C_{21}H_{22}O_{10}’	Apigenin-O-Hex	1.56		
19	15.00	285.340	271.0595	151/0012	C_{13}H_{12}O_{3}	Naringenin	0.01		
20	15.40	327.2169			C_{18}H_{24}O_{5}	(E)-10-(8-Hydroxyoctanoyloxy)-enoic acid			
21	15.70	215.334	269.0443	151/0016	C_{13}H_{10}O_{5}	Trihydroxylavone	0.02		

Table 2. Cont.

Mix of *A. absinthium* and *M. sylvestris*

No.	RT (min)	λ_{max} (nm)	m/z	M^2	M^2 Fragments	Formula	Compound	Flavonoids	Phenolic Acids
1	4.00	215.325	353.0883	191/0561	C_{16}H_{18}O_{9}	4-O-Caffeoylquinic acid	0.61		
2	4.10	215.325	353.0883	191/0561	C_{16}H_{18}O_{9}	3-O-Caffeoylquinic acid	0.74		
3	5.90	215.287	355.1035	193/0498	C_{16}H_{20}O_{9}	1-O-2’-Hydroxy-4’-methoxycinnamoyl-β-D-glucose	0.38		
4	6.10	215.302	355.1038	149/0598	C_{16}H_{20}O_{9}	1-O-Feruloylglucose	0.70		
5	7.90	161.0225	133/0282	179/073	C_{16}H_{18}O_{9}	Umbeliferone	0.40		
6	8.00	323.0760	161/0221		C_{16}H_{18}O_{9}	Mahaleboside	0.02		
7	8.10	225.287	465.1033	303/177	C_{16}H_{18}O_{9}	Xeractinol	0.04		
8	8.30	520.000	449.1094	287/0555	C_{16}H_{18}O_{9}	Cyanidin-O-Hex	0.03		
9	8.50	367.1025	173/0433	193/155/134	C_{16}H_{20}O_{9}	Feruloylquinic acid	0.25		
10	9.00	233.294.318	355.1034	193/0507	C_{16}H_{20}O_{9}	Methyl-4-O-beta-D-glucopyranosylcaffeate	2.23		
11	9.80	255.354	463.0882	301/0337	C_{21}H_{22}O_{12}	Quercetin-O-Hex	0.44		
12	9.90	252.351	609.1472	301/0331	C_{21}H_{22}O_{12}	Isoquercitrin-O-Dhex	0.42		
13	10.30	257.4	447.0920	285/0386	C_{21}H_{22}O_{12}	Kaempferol-O-Hex	1.40		
14	10.70	217.291.325	515.1189	353/0877	C_{21}H_{22}O_{12}	3,5-Dicaffeoylquinic acid	0.80		
15	10.80	187.0958	125/0968	169	C_{19}H_{18}O_{4}	ND			
16	10.90	221.329	593.1520	285/0397	C_{21}H_{22}O_{12}	Kaempferol-3-O-rutinoside	0.37		
17	11.10	217.291.325	515.1197	353/0869	C_{21}H_{22}O_{12}	1,5-Dicaffeoylquinic acid	1.64		
18	11.15	217.346	433.1124	271/0599	C_{21}H_{22}O_{10}	Naringenin-O-Hex	0.19		
Table 2. Cont.

No.	RT (min)	λ_{max} (nm)	m/z [M-H]⁺	MS² Fragments	Formula	Compound	Flavonoids	Phenolic Acids
19	11.40	266.3	431.0976	269/0434	C₂₁H₂₀O₁₀	Apigenin O-Hex	0.56	
20	11.50	268.343	447.0928	285/0386	C₂₁H₂₀O₁₀	Luteolin O-Hex	0.70	
21	11.60	266.3	431.0976	269/0434	C₂₁H₂₀O₁₀	Apigenin O-Hex	0.73	
22	11.70	215.290.325	515.119	353/0868	C₂₅H₂₀O₁₂	4.5-Dicaffeoylquinic acid	0.68	
23	12.40	325.0	517.1342	355/1022	C₂₅H₂₀O₁₂	3-cafeoyl-4-dihydrocaffeoyl quinic acid	0.35	
24	12.90	268.320	639.3176	519/2604	C₂₅H₂₄N₄O₆	Tris-trans-p-coumaroylspermine	0.50	
25	13.10	218.268.339	473.1083	269/0426	C₂₃H₂₂O₁₁	Apigenin -O-(Hex-Ac)	0.12	
26	13.70	325.0	517.1330	323/0759	C₂₅H₂₆O₁₂	4-cafeoyl-3-dihydrocaffeoyl quinic acid	0.07	
27	14.20	218.268.339	473.1083	269/0426	C₂₃H₂₂O₁₁	Apigenin -O-(Hex-Ac)	0.22	
28	14.40	266.336	515.1187	269/0444	C₂₅H₂₄O₁₂	7-O-glucoside-6''-malonate	0.22	
29	15.00	285.340	271.0595	151/0012	C₁₅H₁₂O₅	Naringenin	0.07	
30	15.40	327.2169			(E)-10-(8-Hydroxyoctanoyloxy)dec-2-enoic acid	0.03		
31	15.70	215.334	269.0443	151/0016	C₁₅H₁₈O₆	Trihydroxyflavone	0.03	
32	17.10	222.309	785.3554	545/2397	C₁₆H₂₀N₄O₈	Tetra-trans-p-coumaroylspermine	0.47	
33	19.00	373.0914	358.0681	343/329/315	C₁₀H₁₃O₆	Dihydroxy—tetramethoxyflavone	0.03	
34	20.30	267.334	559.1069	269/0443	C₂₆H₂₁O₁₄	Apigenin 7-(2''-acetyl-6''-maloylglycosyl)	0.13	0.65

Total flavonoids and phenolic acids: 5.51 10.7

No: peak numbers from UV chromatograms; RT: retention time; λ_{max}: wavelengths of maximum absorption in the visible region; MS²: main ion; ND: not determined.
3.2. In Vitro Test (EHT)

The dose-response relationships of aqueous extracts of *A. absinthium* or *M. sylvestris*, respectively, against *H. contortus* in the egg hatch test (EHT) are shown in Figure 1a,b. Both aqueous plant extracts exhibited a strong ovicidal effect on *H. contortus* in in vitro EHT. The ED\textsubscript{50} and ED\textsubscript{99} values were 1.40 and 3.76 mg/mL in *A. absinthium* (Figure 1a) and 2.17 and 5.89 mg/mL in *M. sylvestris* (Figure 1b), respectively. Thiabendazole at a concentration of 1.0 µg/mL has a 100% ovicidal effect.

![Figure 1a: Dose-response relationship of *Artemisia absinthium*](image1a)

![Figure 1b: Dose-response relationship of *Malva sylvestris*](image1b)

Figure 1. (a,b) Dose-response relationship of plant aqueous extracts against *Haemonchus contortus* in the egg hatch test (EHT) after 24 h of incubation at 26 °C.

3.3. Parasitological Status

The patterns of egg shedding for UNS, ART, MAL and ARTMAL are shown in Figure 2. Data from D36 were statistically compared and used to determine the reduction in egg output for ART, MAL and ARTMAL relative to UNS. Mean faecal eggs per gram (EPGs) were influenced by time from
infection \((p < 0.05)\), and for all groups, EPGs increased until D50 or D57, respectively. The EPGs in the lambs treated with MAL, ART and ARTMAL compared with UNS group did not differ \((p > 0.05)\). The necropsy on D75 found a numerical decrease \((p > 0.05)\) in the abomasal worm counts for the ARTMAL groups compared to the other groups (Figure 3).

Figure 2. Mean faecal egg counts for the groups of lambs infected with *Haemonchus contortus* (Treatment: \(p > 0.05\); time: \(p < 0.001\); treatment \(\times\) time: \(p > 0.05\)). UNS: unsupplemented; ART: *A. absinthium*; MAL: *M. sylvestris*; ARTMAL: ART plus MAL.

Figure 3. Abomasal worm counts of *Haemonchus contortus* in the lambs of each treatment at the end of the experiment \((p > 0.05)\). UNS: unsupplemented; ART: *A. absinthium*; MAL: *M. sylvestris*; ARTMAL: ART plus MAL.

3.4. Inflammatory Response

Table 3 shows the inflammatory IgG, IgA and EPX response. Serum IgG and IgA values were not influenced by treatment, time and treatment \(\times\) time \((p > 0.05)\). Mean serum EPX values ranged in
the treated groups from 24.1 to 73.4 ng/mL, and the values were influenced by treatment and time ($p < 0.05$).

Table 3. Inflammatory responses of the experimental groups ($n = 6$).

Item	Day	UNS	ART	MAL	ARTMAL	SD	Significance of Effects	Treatment (T)	Time	$T \times$ Time
	15	0.627	2.15	2.31	2.23	2.54	**NS**			
IgG (ng/mL)	30	1.03	0.780	0.986	1.61	1.61	**NS**			
	45	1.33	0.639	0.378	1.04	1.07	**NS**			
	70	1.16	0.689	3.53	1.39	1.66	**NS**			
IgA (ng/mL)	15	0.434	1.28	0.811	0.767	0.522	**NS**	NS		
	30	0.825	0.666	0.519	0.589	0.245	**NS**	NS		
	45	0.529	0.438	0.787	0.485	0.233	**NS**	NS		
	70	0.813	0.696	0.726	0.626	0.195	**NS**	NS		
EPX (ng/mL)	15	37.5	66.6	52.2	50.0	17.9	**NS**			
	30	44.0	36.9	29.4	44.8	13.9	**NS**			
	45	31.4	38.6	24.1	51.4	17.5	**NS**	**NS**		
	70	49.2	33.4	37.8	73.4	21.1	**NS**			

UNS: unsupplemented; ART: *A. absinthium*; MAL: *M. sylvestris*; ARTMAL: ART plus MAL; EPX: eosinophil peroxidase; NS: not significant; SD: standard deviation. * $p < 0.05$.

4. Discussion

In the present study, phenolic compounds, flavonoids and phenolic acids among them, were detected in wormwood, mallow and a mix of both plants. Phenolic acids, including chlorogenic acid, caffeoylquinic acid derivatives, coumaric acid and methyl 4-O-beta-D-glucopyranosylcaffeate, were identified in a range from 0.65 to 10.7 g/kg DM. Chlorogenic acid and 1,5- and 4,5-dicaffeoylquinic acid possess well-known antibacterial, anthelmintic, anti-inflammatory, and antioxidant biological activities in vitro and in vivo [25,26]. Similarly, coumaric acid in *Senegalia gaumeri* leaf extract compounds has shown potential anthelmintic effects against *H. contortus* larvae [27]. The phenolic acid contents for wormwood and the mix (but not for mallow) were within the range of 3.6 to 57.3 g/kg DM, as was reported for plant mixtures used previously in infected lambs [16,17]. In relation to flavonoids with antioxidant properties, we identified mainly flavones (apigenin and luteolin), flavonols (kaempferol and quercetin) and flavanones (naringenin) [28], which may also have anthelmintic activity [3,29]. However, the total content of flavonoids in wormwood in the present study was lower (0.35 g/kg DM) versus mallow or the mix (6.48 or 5.51 g/kg DM, respectively) or compared to previous studies (9.96 and 29.5 or 41.5 g/kg DM, respectively) [16,17].

It is clear that medicinal plants that have an anthelmintic effect in vitro are often not equally effective in vivo, because there is different bioavailability, pharmacology of host animals, metabolism of bioactive compounds by rumen microflora and experimental conditions [30]. In the present experiment, the aqueous plant extracts of both medicinal plants, *A. absinthium* and *M. sylvestris*, exhibited a strong ovicidal effect on *H. contortus* in vitro, similar to the extracts of the species *Artemisia* against sheep nematodes [31,32]. However, the mean egg outputs of the UNS group compared to ART, MAL and ARTMAL groups showed no significant differences in egg reduction in lambs. Egg production by *H. contortus* females remained high (i.e., thousands EPG) until D50 post-inoculation and then decreased similarly as during the patent period of *H. contortus* in sheep [33]. The rapid reduction in egg excretion after D50 (MAL and ARTMAL) or D57 (ART), respectively, was accompanied by a lower number (not statistically) of adult *H. contortus* worms in the ARTMAL group. No significant differences in egg excretion in the treated groups may have been due to the lower content of plant biologically active compounds, especially flavonoids, compared to our previous studies [16,17]. However, relatively high SD of the means of the treated groups in the present experiment point to a potentially different treatment effect between lambs. This suggests that these plant materials could have an indirect antiparasitic
effect and may promote a host’s resistance to parasitic infection in the longer term. However, the anthelmintic mechanism of action is unknown. It seems that flavonoids with antioxidant capacity, in particular, contribute to the indirect antiparasitic activity [34,35]. However, not only the content of flavonoids appears to play an important role in the anthelmintic activity of medicinal plants and their mixtures. Our results indicate that wormwood and mallow themselves are not responsible for egg and worm reduction in the lambs but probably acting in synergy with other medicinal plants and their bioactive compounds, as was done in previous mixes [17,18]. The effect of dry medicinal plants on the health of animals depends on the source of the multitarget complex bioactive compounds that work synergistically [36,37] and antagonistically [38]. An increase in the resistance of infected lambs to *H. contortus* infection was shown after the administration of mixtures of dry medicinal plants composed already of 9–13 species [16–18]. However, a generally great contribution to the discovery and development of new drugs is a widely applicable strategy for identifying the combinatory compounds responsible for a certain pharmacological activity of plant medicines followed by in vitro and in vivo validation [39].

Ruminal and intestinal fermentation parameters can be manipulated by supplementing a diet with medicinal plants [40]. No adverse effects of wormwood and mallow on the ruminal fermentation parameters (i.e., pH, ammonia N, methane, gas production, and volatile fatty acids) were found [18]. Mainly, pH and ammonia N can affect the release of phenolic compounds from plant materials and the growth of ruminal microbes for microbial protein synthesis [41,42]. Additionally, phenolic compounds, especially flavonoids, can improve body weight gain, growth and the quality of animal products [43]. In the present experiment, polyphenols as dietary supplements did not significantly affect the body weights or live-weight gains of the infected lambs. Dry medicinal plants in the diets of the infected lambs may [18] or may not have influenced the body weights or live-weight gains, which is consonant with a meta-analysis of gastro-intestinal nematode infection in sheep [44].

Our recent studies [16–18] of lambs infected with the gastrointestinal nematode *H. contortus* showed the potential value of medicinal plant mixtures to decrease egg output and worm numbers in parasitic infections of the digestive tract. However, this effect is probably not a consequence of a direct anthelmintic impact on the viability of nematodes, but an increase in the resistance of lambs to nematode infections. Additionally, a recent study also showed that a complementary vegetable mixture of plants belonging to the *Compositae*, *Cesalpinaceae*, *Liliaceae*, *Bromeliaceae* and *Labiatae* families used as feed at two different dosages was ineffective against gastrointestinal nematode infection [45]. It seems that mainly a combination of medicinal plants belonging to different botanical families with beneficial bioactive compounds probably contributes to slowing the dynamics of infection. In the present study, because of the low variety and synergy of plant polyphenols and the combination of bioactive compounds of wormwood and mallow, the reduction in parasitic infection intensity in the treated infected lambs was not sufficient during the 75 days of infection compared to previous studies [16–18]. However, it seems that mixtures of dry medicinal plants may affect the host over the longer term. Therefore, more research is needed on combinations of medicinal plants and interactions between compositions of plant mixtures for longer (90-120 days) experimental periods.

5. Conclusions

The data in the present study showed additional new knowledge on the anthelmintic effects of dry medicinal plants as dietary supplements. Our results indicate that using medicinal plants, even those with the best anthelmintic properties in vitro, may not have sufficient effects in vivo on *H. contortus* infected lamb.

Author Contributions: Conceptualization, Z.V., M.V.; Investigation, D.M., Z.V., M.V.; Supervision, M.V.; Formal analysis, D.M., M.K., K.C., M.B., M.U.D., A.K., D.P., S.S.; Data Curation, Z.V., M.V., A.C.; Draft Preparation, Z.V.; Writing-Review & Editing, Z.V., M.V. All authors have read and agreed to the published version of the manuscript.

Funding: This study was supported by funds from the Slovak Research and Development Agency (APVV 18-0131).
Acknowledgments: The authors are grateful to Valeria Venglovská, Silvia Spišáková, Peter Jerga and Gabriel Benkovský for laboratory and technical assistance.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Lamb, J.; Elliott, T.; Chambers, M.; Chick, B. Broad spectrum anthelmintic resistance of Haemonchus contortus in Northern NSW of Australia. Vet. Parasitol. 2017, 24, 48–51. [CrossRef]
2. Tariq, K.A.; Chishti, M.Z.; Ahmad, F.; Shawl, A.S. Anthelmintic activity of extracts of Artemisia absinthium against ovine nematodes. Vet. Parasitol. 2009, 160, 83–88. [CrossRef]
3. Akkari, H.; Ritibi, K.; B’chir, F.; Rekik, M.; Darghouth, M.A.; Gharbi, M. In vitro evidence that the pastoral Artemisia campestris species exerts an anthelmintic effect on Haemonchus contortus from sheep. Vet. Res. Commun. 2014, 38, 249–255. [CrossRef]
4. Kordali, S.; Kotan, R.; Mavi, A.; Cakir, A.; Ala, A.; Yildirim, A. Determination of the chemical composition and antioxidant activity of the essential oil of Artemisia dracunculus and of the antifungal and antibacterial activities of Turkish Artemisia absinthium, A. dracunculus, Artemisia santonicum and Artemisia spi¢gera essential oils. J. Agric. Food Chem. 2005, 53, 9452–9458.
5. Kharoubi, O.; Slimani, M.; Krouf, D.; Seddik, L.; Aoues, A. Role of wormwood (Artemisia absinthium) extract on oxidative stress in ameliorating lead induced haematotoxicity. Afr. J. Tradit. Complement. Altern. Med. 2008, 5, 263–270. [CrossRef]
6. Msaada, K.; Salem, N.; Bachrouch, O.; Bousselmi, S.; Tammar, S.; Alfaify, A.; Al Sane, K.; Ammar, W.B.; Azeiz, S.; Braham, A.H.; et al. Chemical Composition and Antioxidant and Antimicrobial Activities of Wormwood (Artemisia absinthium L.) Essential Oils and Phenolics. J. Chem. 2015, 804658. [CrossRef]
7. Nguyen, H.T.; Németh Zámboríné. É. Sources of variability of wormwood (Artemisia absinthium L.) essential oil. J. Appl. Res. Med. Aromat. Plants 2016, 3, 143–150. [CrossRef]
8. Kim, J.H.; Kim, C.H.; Ko, Y.D. Influence of dietary addition of dried wormwood (Artemisia sp.) on the performance and carcass characteristics of Hanwoo steers and the nutrient digestibility of sheep. Asian–Aust. J. Anim. Sci. 2002, 15, 390–395. [CrossRef]
9. Kim, Y.M.; Kim, J.H.; Kim, S.C.; Ha, H.M.; Ko, Y.D.; Kim, C.H. Influence of dietary addition of dried wormwood (Artemisia sp.) on the performance, carcass characteristics and fatty acid composition of muscle tissues of Hanwoo heifers. Asian–Aust. J. Anim. Sci. 2002, 15, 549–554. [CrossRef]
10. Ko, Y.D.; Kim, J.H.; Adesogan, A.T.; Ha, H.M.; Kim, S.C. The effect of replacing rice straw with dry wormwood (Artemisia sp.) on intake, digestibility, nitrogen balance and ruminal fermentation characteristics in sheep. Anim. Feed Sci. Technol. 2006, 125, 99–110. [CrossRef]
11. Cutillo, F.; D’Abrosca, B.; Dellagreca, M.; Fiorentino, A.; Zarrelli, A. Terpenoids and phenol derivatives from Malva silvestris. Phytochemistry 2006, 67, 481–485. [CrossRef] [PubMed]
12. Gasparetto, J.C.; Martins, C.A.; Hayashi, S.S.; Otuku, M.F.; Pontarolo, R. Ethnobotanical and scientific aspects of Malva sylvestris L.: A millennial herbal medicine. J. Pharm. Pharmacol. 2012, 64, 172–189. [CrossRef] [PubMed]
13. Zohra, S.F.; Meriem, B.; Samira, S. Some Extracts of Mallow Plant and its Role in Health. APCBEE Procedia 2013, 5, 546–550. [CrossRef]
14. Prudente, A.S.; Loddi, A.M.; Duarte, M.R.; Santos, A.R.; Pochapski, M.T.; Pizzolatti, M.G.; Hayashi, S.S.; Campos, F.R.; Pontarolo, R.; Santos, F.A.; et al. Pre-clinical anti-inflammatory aspects of a cuisine and medicinal millennial herb: Malva sylvestris L. Food Chem. Toxicol. 2013, 58, 324–331. [CrossRef]
15. Váradyová, Z.; Písaříková, J.; Babják, M.; Hodges, A.; Mravčáková, D.; Kišidayová, S.; Königová, A.; Vadlejch, J.; Várady, M. Ovicidal and larvicidal activity of extracts from medicinal-plants against Haemonchus contortus. Exp. Parasitol. 2018, 195, 71–77. [CrossRef]
16. Váradyová, Z.; Mravčáková, D.; Babják, M.; Bryszak, M.; Grešáková, L.; Čobanová, K.; Kišidayová, S.; Plachá, I.; Königová, A.; Cieslak, A.; et al. Effects of herbal nutraceuticals and/or zinc against Haemonchus contortus in lambs experimentally infected. BMC Vet. Res. 2018, 14, 78. [CrossRef]
17. Mravčáková, D.; Váradyová, Z.; Kopčáková, A.; Čobanová, K.; Grešáková, L.; Kišidayová, S.; Babják, M.; Urda Dolinská, M.; Dvorožňáková, E.; Königová, A.; et al. Natural chemotherapeutic alternatives for controlling of haemonchosis in sheep. BMC Vet. Res. 2019, 15, 302. [CrossRef]
Animals 2020, 10, 219

18. Váradyová, Z.; Kišidayová, S.; Čoboňová, K.; Grešáková, L.; Babják, M.; Königová, A.; Urda Dolinská, M.; Várady, M. The impact of a mixture of medicinal herbs on ruminal fermentation, parasitological status and hematological parameters of the lambs experimentally infected with Haemonchus contortus. Small Rumin. Res. 2017, 151, 124–132. [CrossRef]

19. Rodrigues, M.J.; Matkowski, A.; Ślusarczyk, S.; Magné, C.; Poleze, T.; Pereira, C.; Custódio, L. Sea knotgrass (Polygonum maritimum L.) as a potential source of innovative industrial products for skincare applications. Ind. Crop. Prod. 2019, 128, 391–398. [CrossRef]

20. Rodrigues, M.J.; Monteiro, I.; Placines, C.; Castañeda-Loaiza, V.; Ślusarczyk, S.; Matkowski, A.; Pereira, C.; Pousão-Ferreira, P.; Custódio, L. The irrigation salinity and harvesting affect the growth, chemical profile and biological activities of Polygonum maritimum L. Ind. Crop. Prod. 2019, 139, 111510. [CrossRef]

21. Yadav, R.N.S.; Agarwala, M. Phytochemical analysis of some medicinal plants. J. Phytol. 2011, 3, 10–14.

22. Jaradat, N.; Hussen, F.; Al Ali, A. Preliminary Phytochemical Screening, Quantitative Estimation of Total Flavonoids, Total Phenols and Antioxidant Activity of Ephedra alata Decne. J. Mater. Environ. Sci. 2015, 6, 1771–1778.

23. Coles, G.C.; Bauer, C.; Borgsteede, F.H.M.; Geerts, S.; Klei, T.R.; Taylor, M.A.; Waller, P.J. World Association for the Advancement of Veterinary Parasitology (W.A.A.V.P) methods for the detection of anthelmintic resistance in nematodes of veterinary importance. Vet. Parasitol. 1992, 44, 35–44. [CrossRef]

24. Babják, M.; Königová, A.; Urda Dolinská, M.; Vadlejch, J.; Várady, M. Anthelmintic resistance in goat herds—In vivo versus in vitro detection methods. Vet. Parasitol. 2018, 139, 10–14. [CrossRef] [PubMed]

25. Sato, Y.; Itagaki, S.; Kurokawa, T.; Ogura, J.; Kobayashi, M.; Hirano, T.; Sugawara, M.; Iseki, K. In vitro and in vivo antioxidant properties of chlorogenic acid and caffic acid. Int. J. Pharm. 2011, 403, 136–138. [CrossRef] [PubMed]

26. Tajik, N.; Tajik, M.; Mack, I.; Enck, P. The potential effects of chlorogenic acid, the main phenolic components in coffee, on health: A comprehensive review of the literature. Eur. J. Nutr. 2017, 56, 2215–2244. [CrossRef] [PubMed]

27. Castañeda-Ramírez, G.S.; Torres-Acosta, J.F.; Sandoval-Castro, C.A.; Borges-Argáez, R.; Cáceres-Farfán, M.; Mancilla-Montelongo, G.; Mathieu, C. Bio-guided fractionation to identify Senega gaumeri leaf extract compounds with anthelmintic activity against Haemonchus contortus eggs and larvae. Vet. Parasitol. 2019, 270, 13–19. [CrossRef]

28. Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: An overview. Sci. World J. 2013, 162750. [CrossRef]

29. Kozan, E.; Anul, S.A.; Tatlı, İ.I. In vitro anthelmintic effect of Vicia pannonica var. purpurascens on trichostrongyllosis in sheep. Exp. Parasitol. 2013, 134, 299–303. [CrossRef]

30. Ferreira, L.E.; Castro, P.M.; Chagas, A.C.; França, S.C.; Belebón, R.O. In vitro anthelmintic activity of aqueous leaf extract of Annona muricata L. (Annonaceae) against Haemonchus contortus from sheep. Exp. Parasitol. 2013, 134, 327–332. [CrossRef]

31. Iqbal, Z.; Lateef, M.; Ashraf, M.; Jabbar, A. Anthelmintic activity of Artemisia brevifolia in sheep. J. Ethnopharmacol. 2004, 93, 265–268. [CrossRef] [PubMed]

32. Irum, S.; Ahmed, H.; Mirza, B.; Donskow-Lysoniewska, K.; Muhammad, A.; Qayyum, M.; Simsek, S. In vitro and in vivo anthelmintic activity of extracts from Artemisia parviflora and A. sieversiana. Helminthologia 2017, 54, 218–224. [CrossRef]

33. Borgsteede, H.M.; Couwenberg, T. Changes in LC50 in an in vitro egg development assay during the patent period of Haemonchus contortus in sheep. Res. Vet. Sci. 1987, 42, 413–414. [CrossRef]

34. Akkari, H.; B’chir, F.; Hajaji, S.; Rekik, M.; Sebai, E.; Hamza, H.; Darghouth, M.A.; Gharbi, M. Potential anthelmintic effect of Capparis spinosa (Capparidaceae) as related to its polyphenolic content and antioxidant activity. Vet. Med. Czech. 2016, 61, 308–316. [CrossRef]

35. Spiegl, V.; Liebau, E.; Hensel, A. Medicinal plant extracts and plant-derived polyphenols with anthelmintic activity against intestinal nematodes. Nat. Prod. Rep. 2017, 34, 627–643. [CrossRef] [PubMed]

36. Brusotti, G.; Cesari, I.; Dentamaro, A.; Caccialanza, G.; Massolini, G. Isolation and characterization of bioactive compounds from plant resources: The role of analysis in the ethnopharmacological approach. J. Pharm. Biomed. Anal. 2014, 87, 218–228. [CrossRef] [PubMed]
37. Klongsiriwet, C.; Quijada, J.; Williams, A.R.; Mueller-Harvey, I.; Williamson, E.M.; Hoste, H. Synergistic inhibition of *Haemonchus contortus* exsheathment by flavonoid monomers and condensed tannins. *Int. J. Parasitol. Drugs Drug Resist.* 2015, 5, 127–134. [CrossRef] [PubMed]

38. Xutian, S.; Zhang, J.; Louise, W. New exploration and understanding of traditional Chinese medicine. *Am. J. Chinese Med.* 2009, 37, 411–426.

39. Long, F.; Yang, H.; Xu, Y.; Hao, H.; Li, P. A strategy for the identification of combinatorial bioactive compounds contributing to the holistic effect of herbal medicines. *Sci. Rep.* 2015, 5, 12361. [CrossRef]

40. Váradyová, Z.; Mravčaková, D.; Holodová, M.; Grešíková, L.; Písarčíková, J.; Barszcz, M.; Taciak, M.; Tušnio, A.; Kišidayová, S.; Cobanová, K. Modulation of ruminal and intestinal fermentation by medicinal plants and zinc from different sources. *J. Anim. Physiol. Anim. Nutr. (Berl)* 2018, 102, 1131–1145.

41. Gaillard, B.D.; Richards, G.N. Presence of soluble lignin-carbohydrate complexes in the bovine rumen. *Carbohydr. Res.* 1975, 42, 135–145. [CrossRef]

42. Pisulewski, P.M.; Okorie, A.U.; Buttery, P.J.; Haresign, W.; Lewis, D. Ammonia concentration and protein synthesis in the rumen. *J. Sci. Food Agric.* 1981, 32, 759–766. [CrossRef] [PubMed]

43. Tufarelli, V.; Casalino, E.; D’Alessandro, A.G.; Laudadio, V. Dietary phenolic compounds: Biochemistry, metabolism and significance in animal and human health. *Curr. Drug Metab.* 2017, 18, 905–913. [CrossRef] [PubMed]

44. Mavrot, F.; Hertzberg, H.; Torgerson, P. Effect of gastro-intestinal nematode infection on sheep performance: A systematic review and meta-analysis. *Parasit. Vectors* 2015, 8, 557. [CrossRef]

45. Castagna, F.; Palma, E.; Cringoli, G.; Bosco, A.; Nistico, N.; Caligiuri, G.; Britti, D.; Musella, V. Use of complementary natural feed for gastrointestinal nematodes control in sheep: Effectiveness and benefits for animals. *Animals* 2019, 9, 1037. [CrossRef]