encees between children with NF1 and controls were greater at younger than older ages. CONCLUSION: Microstructural differences were observed in WMTs in children with NF1 compared to controls. These differences were not correlated with the minimal volume and younger children with NF1 compared to controls. These findings have implications for understanding neurocognitive deficits and gliomagenesis observed in children with NF1.

NFB-12. TRAMETINIB THERAPY FOR PEDIATRIC PATIENTS WITH REFRACTORY LOW GRADE GLIOMA OR EXTENSIVE SYMPTOMATIC PLEXIFORM NEUROFIBROMA
Celine D. Houget1, Rebecca Ronse1, Sylvia Chen1, S. Rod Rasheed1, Walter J. Duncan1, Christopher Dunham1, Jane Gardiner1, Arvinder Gha1, Jeffrey P. Ludemann1, David Wensley1, Wingfield Rehmus2, Michael A. Sargent1, Naomi Evans1, Vesna Popovska1, and Juliette D'Hooge1
1Division of Hematology, University of British Columbia, Vancouver, BC, Canada, 2Division of Pediatric Hematology, Department of Oncology & Blood & Marrow Transplantation (BMT), Seattle Children's, Seattle, WA, USA

OBJECTIVE: Refractory symptomatic plexiform neurofibromas (PNF) and inoperable refractory low grade gliomas (LGG) pose a clinical challenge that may be life threatening. Phase 1 and 2 clinical trials of MEK inhibition with selumetinib in inoperable PNF and LGG have demonstrated promising results. We have now access to enrolment in a clinical trial. Phase 1 clinical trial for trametinib a MEK 1 and 2 inhibitor has been completed, publication is pending. Thus we have treated a series of children on a compassionate basis with extensive PN or LGG refractory disease with trametinib, as this is available in Canada. METHODS: We have treated children with trametinib on a compassionate basis in our province since 2017. Review of the clinical data regarding this therapy has been IRB approved. RESULTS: Two young patients were treated for indication of life threatening extensive PNF and have had tumor shrinkage and improvement of clinical signs. Treatment has been complicated by paronychial eczema exacerbation, chondrometaplasia nodularis heels, RSV and influenza B infection and CTCAE grade 2 pneumonia. In spite of the side effects these two patients remain on treatment due to clear benefit from therapy including improved hearing and dysphagia. We will present the data of additional patients treated with trametinib. CONCLUSION: Trametinib is an effective therapy for life threatening PNF by changing the natural history of tumor growth in young children. Further data is required in terms of tolerance, efficacy and durability of response in such patients in the setting of clinical trials.

NFB-13. TRAMETINIB FOR PLEXIFORM NEUROFIBROMA AND RECURRENT LOW-GRADE GLIOMA
Aimee Sato1, Nathan Millard1, Francisco Perez1, Nicholas Vitanza2, and Sarah Leary1
1Seattle Children's, Seattle, WA, USA

BACKGROUND: Based on early clinical efficacy data, Seattle Children's established a standard clinical practice for MEK inhibitor therapy for children with plexiform neurofibroma (PN) or recurrent low-grade glioma (LGG). METHODS: Data were collected under an IRB-approved retrospective chart review. Trametinib was prescribed off-label at 0.025 mg/kg daily for up to two years. Physical exam and laboratory monitoring were monthly for 3 months, then every 3 months. Retinal examination, ECHO/ ECHO-D, and.MRIs of head and spine were performed every 3 months for LGGs; imaging for PN was dependent on tumor location. RESULTS: 30 patients received trametinib; 17 LGG, 16 PN (3 both); 22 with Neurofibromatosis, Type-1 (NF1); 16 female/13 male; median age 11 (range 4.3–22.6). Most common tumor location was optic pathway (n=11) and face/neck (n=10). Most common adverse events (AE) were dermatologic and may lead to appropriate management of the tumoral progression. Screening in familial cases, because early recognition of the molecular defect will be presented. CONCLUSIONS: This real-world pediatric cohort supports efficacy and tolerability of MEK inhibitor therapy for short-term control of plexiform neurofibroma and low-grade glioma with and without NF1. Further studies are warranted to evaluate comparative efficacy, combination therapy and duration of therapy.

NFB-14. PSYCHOSOCIAL OUTCOMES IN CHILDREN WITH NEUROFIBROMATOSIS TYPE 1 AND PLEXIFORM NEUROFIBROMAS
Sandeshwara Damodharan1, Page Mission2, and Diane Puccetti1
1University of Wisconsin Hospital and Clinics, Madison, WI, USA

OBJECTIVE: This case series seeks to examine neurocognitive outcomes, social-emotional functioning, and family burden in young children diagnosed with Neurofibromatosis, type 1 (NF1) with early growing plexiform neurofibromas (PNFs). BACKGROUND: Neurofibromatosis, type 1 (NF1) is a common predisposing chronic disease arising in early childhood, with the need for careful and prompt diagnosis and multidisciplinary management. The NF1 neurocutaneous syndrome encompass a wide range of phenotypic variability, the primary feature of the disease is peripheral nerve sheath tumors called neurofibromas. Less is well known regarding the broader neurocognitive and social-emotional profile in pres- entations with more complex tumor growths, namely PNFs, which are present in at least half of the NF1-affected population. METHODS: Participants with NF1 and PNFs (n=2) aged 6-7 years completed comprehensive neuropsychological evaluations and parents completed measures of quality of life, child and parent functioning, family adaptability, and family cohesion. RESULTS: Outcomes suggest broad neurocognitive dysfunction (e.g., executive functioning deficits, attention problems, visual-motor delays, and poor motor coordination), social-emotional challenges (e.g., symptoms of anxiety and depression, and poor social skills), and familial distress. CONCLUSIONS: Findings indicate the value of early and frequent monitoring of children with PNFs in medical systems and multi-disciplinary teams, and the importance of early intervention for both children and families.

NFB-15. PSYCHOSOCIAL OUTCOMES IN CHILDREN WITH NEUROFIBROMATOSIS TYPE 1 AND PLEXIFORM NEUROFIBROMAS
Sandeshwara Damodharan1, Page Mission2, and Diane Puccetti1
1University of Wisconsin Hospital and Clinics, Madison, WI, USA

OBJECTIVE: This case series seeks to examine neurocognitive outcomes, social-emotional functioning, and family burden in young children diagnosed with Neurofibromatosis, type 1 (NF1) with early growing plexiform neurofibromas (PNFs). BACKGROUND: Neurofibromatosis, type 1 (NF1) is a common predisposing chronic disease arising in early childhood, with the need for careful and prompt diagnosis and multidisciplinary management. The NF1 neurocutaneous syndrome encompasses a wide range of phenotypic variability, the primary feature of the disease is peripheral nerve sheath tumors called neurofibromas. Less is well known regarding the broader neurocognitive and social-emotional profile in presentations with more complex tumor growths, namely PNFs, which are present in at least half of the NF1-affected population. METHODS: Participants with NF1 and PNFs (n=2) aged 6-7 years completed comprehensive neuropsychological evaluations and parents completed measures of quality of life, child and parent functioning, family adaptability, and family cohesion. RESULTS: Outcomes suggest broad neurocognitive dysfunction (e.g., executive functioning deficits, attention problems, visual-motor delays, and poor motor coordination), social-emotional challenges (e.g., symptoms of anxiety and depression, and poor social skills), and familial distress. CONCLUSIONS: Findings indicate the value of early and frequent monitoring of children with PNFs in medical systems and multi-disciplinary teams, and the importance of early intervention for both children and families.

mTOR controls several important aspects of cell function particularly in the nervous system. Its hyperactivation has been involved in tuberous sclerosis complex (TSC) and other mTORopathies as well as drug-resistant epilepsy. Mutations in TSC1 and TSC2 genes cause loss of normal inhibitory control of the mTORC1 complex, leading to cell overgrowth and disruption of synaptic communication. Many children and adults with TSC harbour neurologic defects especially subependymal giant cell astrocytomas (SEGAs) in the brain. Here, we have performed mutational analysis followed by a genetic counselling for a Tunisian family from Sfax town harboring epileptic seizures associated to a neurocutaneous disorder. Index cases were referred for renal angiolipomas (RAL) associated to seizures crisis and were diagnosed as having TSC. The first 26-year-old patient complained of epilepsy since the age of 22 with left temporal crisis related to cortical tubers near the Heschl's gyrus. His brother, a 36-year-old man presented more severe epileptic crisis (since 15 years-old), multiples RAL, subependymal nodules, and a rapid evolution of his mTORopathy with tumoral progression of his renal and central nerve lesions: renal cell carcinoma and SEGAs. TSC1 gene mutations screening showed heterogeneous two bp deletion at codons 213 and 214 of exon 5. SEGAs are rare, low-grade gliomeuronal brain tumors that occur almost exclusively in TSC patients but can lead to nervous complications. We showed through this report, the predictive value of germline TSC mutations screening in familial cases, because early recognition of the molecular defect may lead to appropriate management of the tumoral progression.