A differential diagnosis between neurosarcoïdosis and neurosyphilis is particularly problematic in patients with a positive serologic result for syphilis. We report here a patient with a solitary cavernous sinus sarcoïdosis who had a history of syphilis and showed rapidly progressing cavernous sinus syndrome. A transsphenoidal biopsy was performed and a histopathologic examination revealed a non-caseating granuloma with an asteroid body. His facial pain disappeared after steroid therapy. He received oral prednisolone for one year. A follow-up magnetic resonance imaging of the brain revealed resolution of the mass over the cavernous sinus. Particularly in patients with a history of syphilis, neurosyphilis should be included in a differential diagnosis of neurosarcoïdosis.

Key Words : Neurosarcoïdosis · Neurosyphilis · Sarcoïdosis · Cavernous sinus.
Resident treponemal antibody absorption test were reactive. The serum angiotension-converting enzyme (ACE) level was 12.5 IU/L (normal range: 8.3–21.4 IU/L) and the HIV test was negative. The cerebrospinal fluid (CSF) examination revealed a normal opening pressure at lumbar puncture, 20 white blood cells (80% lymphocytes), no red blood cells, protein level of 41 mg%, and glucose level of 79 mg%. The CSF VDRL test was negative.

Brain MRI demonstrated a lobulated mass predominantly involving the right cavernous sinus (Fig. 1A). The mass extended toward the middle fossa laterally and to the sphenoid sinus anteriorly. This tumor also extended to the cerebellopontine angle posteriorly with a compression of the brain stem. The lesion appeared isointense on T1-weighted images and slightly hyperintense on the T2-weighted images. Moreover, the T2-weighted images revealed hyperintense signal changes in the pontine area. The mass showed strong enhancement after gadolinium administration. On the other hand, malignancy and inflammatory disorders were included in the differential diagnosis considering the rapid enlargement of mass and serological markers.

A biopsy was performed via the transsphenoidal approach to make a precise diagnosis. The surgical approach was chosen based on the protrusion of pathology in the sphenoidal sinus and minimal invasive technique. A histopathological examination revealed a non-caseating granuloma with an asteroid body (Fig. 2). Special stains including periodic acid-Schiff, Ziehl-Neelsen stain for acid-fast bacilli and Gomori’s methenamine silver stain for fungal organisms were negative. Chest and abdomen computed tomography were performed to exclude systemic sarcoidosis, but unremarkable.

After administration of corticosteroid, the headache and facial paresthesia was improved but the diplopia has remained. The pathologic findings were consistent with a diagnosis of sarcoidosis, but the neurosyphilis could not be ruled out in the differential diagnosis due to the positive serologic result for syphilis. The patient received the treatment with intravenous penicillin G for 2 weeks and the steroid was tapered and discontinued. After 4 days of penicillin administration, the right side facial pain and paresthesia became aggravated. Therefore, we were confident in a diagnosis of neurosarcoidosis and resumed the steroid treatment. The facial pain disappeared again after steroid therapy. The steroid dose was tapered down and shifted to oral prednisolone in the third week. He was discharged with isolated right abducens nerve palsy. He received oral prednisolone at the outpatient department for one year and the abducens nerve palsy was improved. A follow-up MRI of the brain revealed resolution of the mass over the cavernous sinus region (Fig. 1B).

DISCUSSION

Sarcoidosis is an idiopathic system disorder with an unknown origin that can affect almost every organ in the body, including the CNS. The lung and reticuloendothelial system are typically involved, but any organs can be affected. Sarcoidosis involving the CNS is relatively uncommon, occurring in about 5–15% of patients with sarcoidosis.

The laboratory findings of neurosarcoidosis are generally non-specific and are not present in all patients. CSF examination in neurosarcoidosis reveals a lymphocytic pleocytosis, low glucose, and high protein concentrations, high opening pressure or evidence of intrathecal immunoglobulin synthesis in some patients. In addition, the CSF ACE levels are relatively specific (94-95%), but insensitive (24-55%).

The imaging procedure of choice for neurosarcoidosis is MRI without and with gadolinium. The range of abnormalities included white matter lesions, hydrocephalus, mass lesions in the brain parenchyma, meningeal enhancement, enhancement of parenchymal lesions and lesions of the optic nerves and spinal cord, with or without enlargement of these structures. Because of the leptomeningeal involving nature of sarcoidosis, leptomeningeal enhancement with parenchymal periarterial enhancement is common and distinguishing abnormality in neurosarcoidosis.

The histopathology of sarcoidosis is characteristic. A pathology specimen normally reveals the presence of non-caseating
granulomas observed in the absence of a foreign body reaction or tuberculous infection, giant multinucleated (epitheloid) cells and macrophages surrounded by an inflammatory reaction\(^{1,2}\). In addition, an asteroid body can be observed, particularly in sarcoidosis\(^1\).

Minimally aggressive biopsy is desirable, because neurosurgical resection of intracranial granulomas is only indicated in life-threatening situation or when medical treatment is insufficient. The optimal treatment for all sarcoidosis is the chronic administration of corticosteroids. In spite of significant side-effect, corticosteroids are mostly effective in neurosarcoidosis\(^{2,3}\).

The diagnosis of neurosyphilis is also difficult because of the lack of a perfect gold standard. The non-treponemal CSF VDRL test is a mainstay for diagnosis of neurosyphilis\(^{4,10}\). Although the estimated specificity of the test is high, the sensitivity is lower, which is a major limitation of this test\(^{2,10}\). Furthermore, the CSF VDRL test is negative in 50% of neurosyphilis cases. Moreover, a negative CSF treponemal-specific antibody test may not exclude a diagnosis of neurosyphilis in cases where the clinical suspicion is high\(^{10}\).

Neurosyphilis has similar histopathologic and etiologic features to neurosarcoidosis. Neurosyphilis include gummas, meningovascular inflammation, inflammation of the cerebral vessels, and general paresis (dementia paralytica)\(^{2}\). In particular, a gumma is a form of granuloma\(^{10}\). The presence of necrosis and plasma cells differentiates gummas from sarcoidosis\(^{2}\). But, tertiary syphilis containing few plasma cells and necrotizing sarcoid granulomas are occasionally reported\(^{4,10,21}\).

In the literature review, there are several reports of cases of secondary or tertiary syphilis mimicking sarcoidosis including non-intracranial lesion\(^{2,11,15}\). Although there are various diseases included in differential diagnosis of neurosarcoidosis, neurosyphilis should be included in a differential diagnosis of neurosarcoidosis, particularly in patients with a history of syphilis.

CONCLUSION

We report a case of isolated cavernous sinus neurosarcoidosis mimicking neurosyphilis with the review of literatures.

References

1. Cain H, Kraus B: Asteroid bodies: derivatives of the cytoplasm. An electron microscopic contribution to the pathology of the cytocentre. Virchows Arch B Cell Pathol 26: 119-132, 1977
2. Carlson JA, Dabiri G, Cribier B, Sell S: The immunopathobiology of syphilis: the manifestations and course of syphilis are determined by the level of delayed-type hypersensitivity. Am J Dermatopathol 33: 433-460, 2011
3. Edmonds LC, Stubbs SE, Ryu JH: Syphilis: a disease to exclude in diagnosing sarcoidosis. Mayo Clin Proc 67: 37-41, 1992
4. Elias WJ, Lanzino G, Reitmeyer M, Jane J: Solitary sarcoid granuloma of the cerebellar pontine angle: a case report. Surg Neurol 51: 185-190, 1999
5. Gascón-Bayarri J, Mahá J, Martínez-Yelamos S, Murillo O, Rehé R, Rubio F: Neurosarcoidosis: report of 30 cases and a literature survey. Eur J Intern Med 22: e125-e132, 2011
6. Harding AS, Ghanem KG: The performance of cerebrospinal fluid treponemal-specific antibody tests in neurosyphilis: a systematic review. Sex Transm Dis 39: 291-297, 2012
7. Hervier B, Wastiaux H, Freour T, Masseau A, Corvec S, Armingeat T, et al.: [Sarcoidosis-like granulomatosis revealing a tertiary syphilis]. Rev Med Interne 30: 806-808, 2009
8. Hoitsma E, Faber CG, Drent M, Sharma OP: Neurosarcoidosis: a clinical dilemma. Lancet Neurol 3: 397-407, 2004
9. Hoitsma E, Sharma OP: Neurosarcoidosis. Eur Respir Mon 32: 164-187, 2005
10. Khoury J, Wellik KE, Damerauch BL, Wingerdach DM: Cerebrospinal fluid angiotensin-converting enzyme for diagnosis of central nervous system sarcoidosis. Neurologist 15: 108-111, 2009
11. Kumar G, Kang CA, Giannini C: Neurosarcoidosis presenting as a cerebellar mass. J Gen Intern Med 22: 1373-1376, 2007
12. Marra CM, Tantalo LC, Maxwell CL, Ho EL, Sahi SK, Jones T: The rapid plasma reagin test cannot replace the venereal disease research laboratory test for neurosyphilis diagnosis. Sex Transm Dis 39: 453-457, 2012
13. Perry HO, Lofgren RK: Secondary and tertiary syphilis presenting as sarcoidal reactions of the skin. Cutis 34: 253-255, 257-258, 1984
14. Rolles DB, Weiss MA, Sanders MA: Necrotizing sarcoid granulomatosis with suppurative features. Am J Clin Pathol 82: 602-607, 1984
15. Singh R, Kaur D, Parameswaran M: Sarcoidal reaction of the skin in syphilis. Br J Vener Dis 47: 209-211, 1971
16. Spector WG, Hoesom N: The production of granuloma by antigen-antibody complexes. J Pathol 98: 31-39, 1969
17. Spencer TS, Campellone JV, Maldonado I, Huang N, Usmani Q, Reginato AJ: Clinical and magnetic resonance imaging manifestations of neurosarcoidosis. Semin Arthritis Rheum 34: 649-661, 2005
18. Stüben JP: Neurosarcoidosis presenting as a retroclival mass. Surg Neuro 43: 85-87; discussion 87-88, 1995
19. Tanabe JL, Huntley AC: Granulomatous tertiary syphilis. J Am Acad Dermatol 15 (2 Pt 2): 341-344, 1986
20. Terushkin V, Stern BJ, Judson MA, Hagiwara M, Pramanik B, Sanchez M, et al.: Neurosarcoidosis: presentations and management. Neurologist 16: 2-15, 2010
21. Tobias S, Prayson RA, Lee JH: Necrotizing neurosarcoidosis of the cranial base resembling an en plaque plasmoid wing meningioma: case report. Neurosurgery 51: 1290-1294; discussion 1294, 2002
22. Zajicek JP: Neurosarcoidosis. Curr Opin Neurol 13: 323-325, 2000
23. Zajicek JP, Scolding NJ, Foster O, Rowar M, Ewan J, Moseley IF, et al.: Central nervous system sarcoidosis—diagnosis and management. QJM 92: 103-117, 1999