Gelfand pairs admit an Iwasawa decomposition

Nicolas Monod

Received: 13 August 2019 / Revised: 8 June 2020 / Published online: 3 August 2020
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract

Every Gelfand pair \((G, K)\) admits a decomposition \(G = KP\), where \(P \triangleleft G\) is an amenable subgroup. In particular, the Furstenberg boundary of \(G\) is homogeneous. Applications include the complete classification of non-positively curved Gelfand pairs, relying on earlier joint work with Caprace, as well as a canonical family of pure spherical functions in the sense of Gelfand–Godement for general Gelfand pairs.

Let \(G\) be a locally compact group. The space \(\mathcal{M}^b(G)\) of bounded measures on \(G\) is an algebra for convolution, which is simply the push-forward of the multiplication map \(G \times G \rightarrow G\).

Definition

Let \(K \triangleleft G\) be a compact subgroup. The pair \((G, K)\) is a Gelfand pair if the algebra \(\mathcal{M}^b(G)^{K,K}\) of bi-\(K\)-invariant measures is commutative.

This definition, rooted in Gelfand’s 1950 work [14], is often given in terms of algebras of functions [12]. This is equivalent, by an approximation argument in the narrow topology, but has the inelegance of requiring the choice (and existence) of a Haar measure on \(G\).

Examples of Gelfand pairs include notably all connected semi-simple Lie groups \(G\) with finite center, where \(K\) is a maximal compact subgroup. Other examples are provided by their analogues over local fields [18], and non-linear examples include automorphism groups of trees [2,23].

All these “classical” examples also have in common another very useful property: they admit a co-compact amenable subgroup \(P \triangleleft G\). In the semi-simple case, \(P\) is a minimal parabolic subgroup. Moreover, the Iwasawa decomposition implies that \(G\) can be written as \(G = KP\). This note shows that this situation is not a coincidence:
Theorem Let (G, K) be a Gelfand pair. Then G admits a co-compact amenable subgroup $P < G$ such that $G = KP$.

The mere existence of P has a number of strong consequences discussed below. Most immediate is that G belongs to the exclusive club whose members boast a homogeneous Furstenberg boundary:

Corollary 1 Choose a maximal subgroup $P < G$ as in the Theorem.

Then the Furstenberg boundary of G is the homogeneous space $\partial G = G/P \cong K/(K \cap P)$.

In particular, P is unique up to conjugacy.

Another general consequence is that G is exact in the sense of C*-algebras [20, Sect. 7.1].

Remark The proof of the Theorem is easy. What surprises us (besides the fact that it went unnoticed during decades of harmonic analysis on Gelfand pairs) is that the unique group P of Corollary 1 is obtained by purely existential methods. Indeed, the author is unaware of a constructive proof—or even of a heuristic based on the classical Iwasawa decomposition, explaining $(G, K) \mapsto P$.

We next derive a more geometric illustration of how consequential the existence of P is. The above classical examples of Gelfand pairs are all CAT(0) groups in the sense that they occur as cocompact isometry groups of non-positively curved spaces: either Riemannian symmetric spaces or Euclidean buildings. General CAT(0) groups constitute a much more cosmopolitan category populated by all sorts of exotic spaces hailing from combinatorial group theory, Kac–Moody theory, etc. Using the “indiscrete Bieberbach theorem” established with Caprace [9], the Theorem of this note leads to a complete classification of CAT(0) Gelfand pairs:

Corollary 2 Let (G, K) be a Gelfand pair and assume that $G < \text{Isom}(X)$ acts cocompactly on a geodesically complete locally compact CAT(0) space X.

Then X is a product of Euclidean spaces, Riemannian symmetric spaces of non-compact type, Bruhat–Tits buildings and biregular trees.

In particular, G lies in a product of Gelfand pairs belonging to the classical sets of examples above.

This statement contains for instance a result by Caprace–Ciobotaru [5], namely: let X be an irreducible locally finite thick Euclidean building. If $G = \text{Aut}(X)$ (or any co-compact subgroup $G < \text{Isom}(X)$) is a Gelfand pair for some compact $K < G$, then X is Bruhat–Tits.

Similarly, the statement contains some cases of results by Abramenko–Parkinson–Van Maldeghem [1] and Lécureux [21, Sect. 7], [22] establishing the non-commutativity of Hecke algebras associated to certain Coxeter groups. Namely, when Kac–Moody theory associates to them a locally finite thick building, Corollary 2 implies that the Hecke algebra can only be commutative in the affine case.

The “Iwasawa decomposition” $G = KP$ is stronger yet than the existence of P. For instance, it is a key ingredient for results of Furman [13, Thm. 10] and it could
shed some light on the spherical dual of G, see below. It should also impose further restrictions on the centraliser lattice in case G is a compactly generated simple group, see [10]. Already the existence of P implies that this lattice is at most countable: see [10, pp. 11–12] and use that G/P is metrisable in this setting.

We now contemplate some of the analytic legacy that the decomposition $G = KP$ bestows upon a general Gelfand pair (G, K). Following Gelfand and Godement [17], the fundamental building block of non-commutative Fourier–Plancherel theory is given by positive definite spherical functions on Gelfand pairs, namely continuous $\varphi: G \to \mathbb{C}$ satisfying

$$\varphi(x) \varphi(y) = \int_K \varphi(xky) \, dk \quad \forall x, y \in G$$

where the integration is with respect to the unique Haar probability measure on K; see also [11] and [26]. This is the abstract generalisation of addition formulas for special functions such as Legendre functions [25].

Here is how P enters the picture:

Let ∇_P be the modular function of P, which is non-trivial unless G itself is amenable and $G = P$. Then $\varphi(kp) = \nabla_P(p)$ gives a well-defined continuous function $\varphi: G \to \mathbb{R}_{>0}$ when $k \in K$, $p \in P$ because ∇_P is identically one on $K \cap P$. For every parameter $s \in \mathbb{C}$, define

$$\varphi_s(g) = \int_K \varphi(g^{-1}k)^{\frac{1}{2} + is} \, dk.$$

In view of Corollary 1, φ_s is actually canonically attached to the pair (G, K) up to conjugation. On the other hand, we claim that φ_s is the matrix coefficient of the (projectively) unique K-fixed vector in a parabolically induced representation from P. In particular, φ_s is a pure positive definite spherical function on G for each real s.

This claim is a classical fact for semi-simple groups, where φ_s above is the Harish-Chandra formula. The Theorem makes it available for general Gelfand pairs, as desired by Godement [16, Sect. 16]. Of course this only gives a principal series and suggests to investigate fully the characters of P.

To justify our claim, recall that Weil’s integration formula [3, VII Sect. 2.5] implies that the push-forward to G/P of the Haar measure of K has a Radon–Nikodým cocycle given at (g, xP) by $\varphi(g^{-1}x)/\varphi(x)$.

This formula uses the fact that G is unimodular in any Gelfand pair [24, 24.8.1]. Therefore, the unitary induction π_s of the character ∇^{is}_P is given on various spaces of functions f on G/P by

$$(\pi_s(g)f)(xP) = f(g^{-1}xP) \left(\frac{\varphi(g^{-1}x)}{\varphi(x)} \right)^{\frac{1}{2} + is}.$$

The only K-invariant vectors v are constant functions on G/P and hence the associated matrix coefficient $\varphi_s(g) = \langle \pi_s(g)v, v \rangle$ is uniquely defined once v has unit norm. The fact that φ_s is pure and spherical (for $s \in \mathbb{R}$) now follows from the general theory of Gelfand pairs, specifically I.II.6 and I.III.2 in [12].
Proof of the Theorem and of Corollary 1 We recall that an affine G-flow is a non-empty compact convex set C in some locally convex topological vector space over \mathbb{R}, endowed with a jointly continuous G-action preserving the affine structure of C. An affine flow is called irreducible if it does not contain any proper affine subflow. An argument due to Furstenberg implies that G admits an irreducible flow ΔG which is universal in the sense that it maps onto every irreducible flow. Moreover, ΔG is unique up to unique isomorphisms. It turns out that ΔG is the simplex of probability measures $\mathcal{P}(\partial G)$ over the Furstenberg boundary ∂G of G, and that this is actually one of the possible definitions of ∂G. For all this, we refer to [15].

We shall be more interested in the convex subset $\mathcal{P}(G)$ of $\mathcal{M}^b(G)$ consisting of the probability measures, as well as in the corresponding subset $\mathcal{P}(G)^K.K$. We note the following straightforward facts:

- $\mathcal{P}(G)$ is closed under the multiplication given by convolution.
- The monoid $\mathcal{P}(G)$ contains G via the identification of points with Dirac masses.
- The normalised Haar measure κ of K is an idempotent belonging to $\mathcal{P}(G)^K.K$.
- $\mathcal{P}(G)^K.K = \kappa \mathcal{P}(G)\kappa$; it is a monoid with κ as identity.

By generalised vector-valued integration [4, IV Sect. 7.1], any affine G-flow C is endowed with an action of the monoid $\mathcal{P}(G)$ which is affine in both variables. It will be crucial below that this action is moreover continuous for the variable in G. One way to see this is to check first that any $\mu \in \mathcal{P}(G)$ induces a continuous map $C \to \mathcal{P}(C)$ by push-forward on orbits, using that the G-action on C is equicontinuous over compact subsets of G. Then observe that the action of μ is obtained by composing this map $C \to \mathcal{P}(C)$ with the continuous barycenter map $\mathcal{P}(C) \to C$.

Since K is compact, it has a non-empty fixed-point set C^K; better yet, the idempotent κ provides a continuous projection $\kappa : C \to C^K$. In particular, the monoid $\mathcal{A} = \kappa \mathcal{P}(G)\kappa$ preserves the convex compact set C^K.

Only now do we use the assumption that we have a Gelfand pair: the monoid \mathcal{A} is commutative. Since \mathcal{A} acts by continuous operators, the Markov–Kakutani theorem therefore implies that \mathcal{A} fixes a point p in C^K. From now on, we assume that C is irreducible. The convex set $\mathcal{P}(G)p$ is G-invariant and hence must be dense. It follows that $\kappa \mathcal{P}(G)p$ is dense in C^K, but $\kappa \mathcal{P}(G)p$ is $\mathcal{A}p$ which is reduced to p. In conclusion, we have shown that K has a unique fixed point in C.

We now apply this to the case where $C = \Delta G$ is the simplex of probability measures on ∂G and deduce that K fixes a unique such measure on ∂G. Since K is compact, every K-orbit supports an invariant measure: the push-forward of κ. This implies that K has a single orbit in ∂G. In particular, $\partial G = G/P$ for some co-compact subgroup $P < G$ and moreover $G = KP$.

Next, we observe that P is relatively amenable in G, which means by definition that every affine G-flow has a P-fixed point. Indeed, this property characterises the subgroups that fix a point in ΔG: this follows from the universal property of ΔG. This characterisation also implies that this P is already maximal relatively amenable. Indeed, if $P' < G$ is relatively amenable and contains P, it also fixes a point in ΔG; this induces an affine G-map $\mathcal{P}(G/P') \to \mathcal{P}(G/P)$, which must be the identity by universality of $\mathcal{P}(G/P) = \Delta G$.

S Springer
We recall that relative amenability is equivalent to amenability in a wide class of ambient locally compact groups \(G \) including all exact groups, but it is only \textit{a posteriori} that the Theorem implies that \(G \) is exact, see [20, Sect. 7.1]. In the locally compact setting, it is still an open question to exhibit an example where the weaker relative notion does not coincide with amenability [8]. In the co-compact case, however, we can settle the question with the Proposition below and conclude that \(P \) is amenable. Thus the Proposition will complete the proof.

The following statement is a very basic case of much more general results by Andy Zucker [27, Thm. 7.5]; the elementary proof below is inspired by reading his preprint.

\begin{prop}
Let \(G \) be a Hausdorff topological group and \(P < G \) a closed subgroup such that \(\partial G = G/P \). Then \(P \) is amenable.
\end{prop}

\begin{warning}
A subgroup of \(G \) fixing a point in \(\partial G \) is not necessarily amenable. However, in the locally compact case and assuming \(\partial G \) homogeneous, this follows from the Proposition because amenability of locally compact groups passes to subgroups.
\end{warning}

\begin{proof}[Proof of the Proposition]
We know that \(P \) is co-compact and relatively amenable. The latter is equivalent to the existence of a \(P \)-invariant mean \(\mu \) on the space \(C^b_{ru}(G) \) of right uniformly continuous bounded functions (cf. Thm. 5 in [8]). It suffices to show that \(\mu \) descends to \(C^b_{ru}(P) \), viewed as a quotient of \(C^b_{ru}(G) \) under restriction (by Katetov extension [19]). Let thus \(f \in C^b_{ru}(G) \) be any map vanishing on \(P \); we need to show \(\mu(f) = 0 \) and can assume \(f \geq 0 \). Given \(\epsilon > 0 \) there is an identity neighbourhood \(U \) in \(G \) such that \(f \leq \epsilon \) on \(UP \). By Urysohn’s lemma in \(G/P \), there is \(h \in C(G/P) \) vanishing on a neighbourhood of \(P \) but taking constant value \(\|f\|_\infty \) outside \(UP \). Viewing \(h \) as an element of \(C^b_{ru}(G) \), we thus have \(f \leq \epsilon 1_G + h \). We now claim \(\mu(h) = 0 \), which finishes the proof since \(\epsilon \) is arbitrary. The claim follows from the fact that \(\mu \) is mapped to a \(P \)-invariant probability measure on \(G/P \) under the inclusion of \(C(G/P) \) in \(C^b_{ru}(G) \). Indeed, the only \(P \)-invariant probability measure on \(G/P \cong \partial G \) is the Dirac mass at \(P \) by strong proximality of \(P \) on \(\partial G \), see [15, II.3.1].
\end{proof}

\begin{proof}[Proof of Corollary 2]
Consider \(G < \text{Isom}(X) \) as in the statement. We first recall that \(X \) is \textit{minimal} in the sense that it does not contain a closed convex \(G \)-invariant proper subset, see [6, 3.13]. Next, we recall that general splitting results (1.9 together with 1.5(iii) in [6]) allow us to reduce to the case where \(X \) has no Euclidean factor. In any Gelfand pair, \(G \) is unimodular [24, 24.8.1]; this, together with the elements collected thus far, allows us to apply Theorem M in [7]. That result states that \(G \) has no fixed point at infinity. On the other hand, our Theorem above provides a subgroup \(P < \text{Isom}(X) \) acting co-compactly on \(X \). We are now in position to apply the indiscrete Bieberbach theorem [9, Thm. B], which identifies \(X \) with a product of classical spaces as desired.
\end{proof}

\begin{remark}
A part of the proof of the Theorem is reminiscent of the fact that any irreducible \textit{unitary} representation of \(G \) has at most a one-dimensional subspace of \(K \)-fixed vectors, a fact that actually characterises Gelfand pairs. We recall that the corresponding statement fails for \textit{real} Hilbert spaces, whereas our affine flows are always over the reals.
\end{remark}
Acknowledgements I am grateful to Andy Zucker for sending me his preprint and to Pierre-Emmanuel Caprace for several insightful comments on a preliminary version.

References

Selberg ne fait aucune espèce d’allusion à l’existence possible d’une littérature mathématique.,

Godement [17], 1957.

1. Abramenko, P., Parkinson, J., Van Maldeghem, H.: A classification of commutative parabolic Hecke algebras. J. Algebra 385, 115–133 (2013)
2. Amann, O. É.: Groups of Tree-Automorphisms and their Unitary Representations. PhD thesis, ETHZ, Dissertation n° 15292 (2003)
3. Bourbaki, N.: Éléments de mathématique: Intégration. Chapitre 7 et 8. Actualités Scientifiques et Industrielles, No. 1306. Hermann, Paris, (1963)
4. Bourbaki, N.: Éléments de mathématique: Intégration. Chapitres 1, 2, 3 et 4. Deuxième édition revue et augmentée. Actualités Scientifiques et Industrielles, No. 1175. Hermann, Paris, (1965)
5. Caprace, P.-E., Ciobotaru, C.: Gelfand pairs and strong transitivity for Euclidean buildings. Ergodic Theory Dyn. Syst. 35(4), 1056–1078 (2015)
6. Caprace, P.-E., Monod, N.: Isometry groups of non-positively curved spaces: structure theory. J. Topol. 2(4), 661–700 (2009)
7. Caprace, P.-E., Monod, N.: Fixed points and amenability in non-posituve curvature. Math. Ann. 356(4), 1303–1337 (2013)
8. Caprace, P.-E., Monod, N.: Relative amenableability. Groups Geom. Dyn. 8(3), 747–774 (2014)
9. Caprace, P.-E., Monod, N.: An indiscrete Bieberbach theorem: from amenable CAT(0) groups to Tits buildings. J. Éc. polytech. 2, 333–383 (2015)
10. Caprace, P.-E., Reid, C.D., Willis, G.A.: Locally normal subgroups of totally disconnected groups. Part II: Compactly generated simple groups. Forum Math. Sigma 5(e12), 1–89 (2017)
11. Dieudonné, J.: Gelfand pairs and spherical functions. Internat. J. Math. Math. Sci. 2(2), 153–162 (1979)
12. Faraut, J.: Analyse harmonique sur les paires de Guelfand et les espaces hyperboliques. In: Analyse harmonique, Les Cours du C.I.M.P.A., pp. 315–446. Nice (1983)
13. Furman, A.: On minimal strongly proximal actions of locally compact groups. Israel J. Math. 136, 173–187 (2003)
14. Gelfand, I.M.: Spherical functions in symmetric Riemann spaces. Dokl. Akad. Nauk SSSR 70, 5–8 (1950)
15. Glasner, S.: Proximal flows. In: Lecture Notes in Mathematics, vol. 517. Springer-Verlag (1976)
16. Godement, R.: A theory of spherical functions. I. Trans. Am. Math. Soc. 73, 496–556 (1952)
17. Godement, R.: Introduction aux travaux de A. Selberg. In: exposés 137–168, volume 4 of Séminaire Bourbaki, pp. 95–110. Société mathématique de France (1957)
18. Gross, B.H.: Some applications of Gelfand pairs to number theory. Bull. Am. Math. Soc. (N.S.) 24(2), 277–301 (1991)
19. Katětov, M.: On real-valued functions in topological spaces. Fund. Math. 38, 85–91 (1951)
20. Kirchberg, E., Wassermann, S.: Permanence properties of C*-exact groups. Doc. Math. 4, 513–558 (1999)
21. Lécureux, J.: Automorphismes et compactifications d’immeubles: moyennabilité et action sur le bord. PhD thesis, Université de Lyon, No d’ordre: 261–2009 (2009)
22. Lécureux, J.: Hyperbolic configurations of roots and Hecke algebras. J. Algebra 323(5), 1454–1467 (2010)
23. Of’shanskii, G.I.: Classification of the irreducible representations of the automorphism groups of Bruhat–Tits trees. Funct. Anal. Appl. 11(1), 26–34 (1977)
24. Simonnet, M.: Measures and probabilities. Universitext. Springer, Berlin (1996)
25. Vilenkin, N.Y.: Special functions and the theory of group representations. In: Singh, V.N. (ed.) Translations Mathematical Monographs, vol. 22. American Mathematical Society, Providence, RI (1968)
26. Wolf, J.A.: Harmonic analysis on commutative spaces. In: Mathematical Surveys and Monographs, vol. 142. American Mathematical Society, Providence, RI (2007)
27. Zucker, A.: Maximally highly proximal flows. Preprint, arXiv:1812.00392v2, (2019)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.