Evidence of the Berezinskii-Kosterlitz-Thouless phase in a frustrated magnet

Ze Hu1,13, Zhen Ma2,3,13, Yuan-Da Liao4,5,13, Han Li6,13, Chunsheng Ma1, Yi Cui1, Yanyan Shangguan2, Zhentao Huang2, Yang Qi7,8,9, Wei Li6,10,13, Zi Yang Meng4,11,12, Jinsheng Wen2,9 & Weiqiang Yu1,13

The Berezinskii-Kosterlitz-Thouless (BKT) mechanism, building upon proliferation of topological defects in 2D systems, is the first example of phase transition beyond the Landau-Ginzburg paradigm of symmetry breaking. Such a topological phase transition has long been sought yet undiscovered directly in magnetic materials. Here, we pin down two transitions that bound a BKT phase in an ideal 2D frustrated magnet TmMgGaO₄, via nuclear magnetic resonance under in-plane magnetic fields, which do not disturb the low-energy electronic states and allow BKT fluctuations to be detected sensitively. Moreover, by applying out-of-plane fields, we find a critical scaling behavior of the magnetic susceptibility expected for the BKT transition. The experimental findings can be explained by quantum Monte Carlo simulations applied on an accurate triangular-lattice Ising model of the compound which hosts a BKT phase. These results provide a concrete example for the BKT phase and offer an ideal platform for future investigations on the BKT physics in magnetic materials.
Topology plays an increasingly important role in understanding different phases and phase transitions in correlated quantum matters and materials. One prominent example is the Berezinskii–Kosterlitz–Thouless (BKT) mechanism in two-dimensional (2D) systems1,2,3, which is associated with the binding and unbinding of topological defects. The BKT transition cannot be characterized by conventional order parameters and constitutes the earliest example of phase transition beyond the Landau–Ginzburg paradigm of spontaneous symmetry breaking. Historically, the BKT mechanism was introduced in the XY spin model and long predicted to occur in magnetic thin films4–13. In experiments, signatures of the BKT transition have been observed in superfluid helium films6, as well as in 2D superconducting films7,8 and arrays9. Regarding the original proposal in layered XY-type magnets, despite intensive efforts10–15, direct and unambiguous observation of the BKT transition is still lacking. One major obstacle is the three-dimensional (3D) couplings in the magnets, although weak, will inevitably enhance the configurational energy probe, to detect the BKT phase. We applied a moderate in-plane field $H = 3\, \text{T}$, which is adequate to collect the 69Ga NMR spectra (see Fig. 2c for details). The BKT phase between T_U and T_L is illustrated by the solid vertical line, while the AFM regime is indicated by the arrow. The contour background depicts the magnetic field in between the PM, BKT, and AFM phases. The T^* denotes the temperature at a specific field where a peak is found in the differential susceptibility dM/dH, shown in Fig. 3b. The Curie–Weiss temperature θ_{CW} is obtained from the $1/T_1T$ (see Supplementary Fig. 1). Remarkably, T^*, T^*_U, T^*_L, and θ_{CW} all collapse to the same phase boundary between the BKT-like regime and AFM phase. A magnetically ordered phase is supposed to lie below the dome-like boundary. Errors represent 1 SD throughout the paper.

Results

NMR probe of the BKT phase. The obtained NMR spectra with an in-plane magnetic field $\mu_0H = 3\, \text{T}$ are shown in Fig. 2a at representative temperatures. To better resolve the magnetic transition, the hyperfine shifts $^{69}K_0$ of the spectra were analyzed and plotted in Fig. 2b as a function of temperature. Upon cooling, $^{69}K_0$ peaks at about 0.8–0.95 K and then starts to drop at lower temperatures. Therefore, the ordering temperature is determined to be $T_L \approx 0.9\, \text{K}$, consistent with neutron scattering experiments16,18. In addition, both the second moments (width of the spectra) C_m/T and the third moments (asymmetry of the spectra) θ_{CW} all collapse to the same phase boundary between the BKT-like regime and AFM phase. A magnetically ordered phase is supposed to lie below the dome-like boundary. Errors represent 1 SD throughout the paper.

As shown in Fig. 1, from our NMR measurements of the spin-lattice relaxation rate $1/T_1$, we identify $T_U \approx 1.9\, \text{K}$ and $T_L \approx 0.9\, \text{K}$, which represent the upper- and lower-BKT transitions, where a critical BKT phase resides at zero magnetic field in between the high-T paramagnetic and low-T antiferromagnetic phases. This finding is further substantiated by our scaling analysis of the measured susceptibility data near T_U, as well as the simulated NMR and susceptibility data using large-scale quantum Monte Carlo (QMC) calculations.

Fig. 1 Phase diagram of TmMgGaO$_4$ under out-of-plane magnetic fields. Under zero field, there are paramagnetic (PM), BKT, and antiferromagnetic (AFM) phases. The T_U (T_L) is the upper (lower) BKT transition temperature, determined from the plateau structure in the NMR spin-lattice relaxation rate $1/T_1T$ (see Fig. 2c for details). The BKT phase between T_U and T_L is illustrated by the solid vertical line, while the AFM regime is indicated by the arrow. The contour background depicts the magnetic field in between the PM, BKT, and AFM phases. The T^* denotes the temperature at a specific field where a peak is found in the differential susceptibility dM/dH, shown in Fig. 3b. The Curie–Weiss temperature θ_{CW} is obtained from the $1/T_1T$ (see Supplementary Fig. 1). Remarkably, T^*, T^*_U, T^*_L, and θ_{CW} all collapse to the same phase boundary between the BKT-like regime and AFM phase. A magnetically ordered phase is supposed to lie below the dome-like boundary. Errors represent 1 SD throughout the paper.
transition. In Fig. 2c, we show the $1/69T_1$ obtained under in-plane fields $\mu_0 H = 3$ T and 1 T, which reflects intrinsic spin fluctuations with zero out-of-plane field. At 3 T, $1/69T_1$ first decreases upon cooling from 10 K then suddenly increases below $T_{U} \approx 1.9$ K, indicating the onset of strong low-energy spin fluctuations. The data at 1 T show similar behaviors. Below $T_{1} \approx 0.9$ K, $1/69T_1$ drops sharply, consistent with the onset of the magnetic ordering as also inferred from the hyperfine shift. Here, $1/69T_1$ is dominated by the gapped long wavelength excitations in the ordered state. At the magnetic phase transition, a peaked feature in $1/T_1$ develops, caused by the gapless low-energy spin fluctuations with diverging correlation length. Remarkably, at temperatures between $T_{U} \approx 1.9$ K and $T_{1} \approx 0.9$ K, $1/69T_1$ exhibits a plateau-like structure, indicating the emergence of a highly fluctuating phase with diverging spin correlations yet no true long-range order, which is the hallmark of a BKT phase. Therefore, it is for the first time that such a phase is unambiguously observed in a magnetic crystalline material.

Our unbiased QMC simulations on the TLI model of the material (see “Methods”), with accurate coupling parameters determined in ref. 19, quantitatively justifies the existence of the BKT phase between T_{L} and T_{U}. We computed $1/T_1$ and compared with the experiment below. Figure 2d shows the calculated $1/T_1$ by including fluctuations from all momentum points in the Brillouin zone (cf. Supplementary Fig. 2) and from K' point in the vicinity of the K point (right scale), through large-scale QMC simulations (see “Methods”).
Fig. 3 Uniform magnetic susceptibility of TmMgGaO₄ and scaling analysis. a dc susceptibility χ as functions of temperatures under small out-of-plane (H//c) and in-plane (H//ab) fields. The latter is multiplied by a factor of 20 for visualizing purpose. The deviation of data below 2 K indicates the entry to the BKT phase and the field-suppression of magnetic correlations. b The differential susceptibility dM/dH under out-of-plane fields at different temperatures. The kinks at low fields, as denoted by the down arrows, suggest the transition from the BKT-like phase to the ordered phase (under the dome in Fig. 1) with increasing fields. The peaked features at high fields suggests a quantum phase transition to the polarized phase. c Fits of dM/dH to the power-law scaling function dM/dH ∼ H⁻α with α = 2/3 for the 0.4 and 0.8 K data, and α = 0.123 for 2.1 K data in the log-log scale. The 3 K data follow the α = 0 line in the paramagnetic phase. d dM/dH by the QMC calculations in the same field and temperature range as in c, and fits to the power-law function with exponents α, which give consistent results as experiments.

doublet, the interlayer couplings not included in our model calculations, and the lack of knowledge on the precise local hyperfine coupling constant, etc., may explain the difference remaining between Fig. 2c, d.

Universal magnetic susceptibility scaling. Magnetic susceptibility measurements were also performed to strengthen the finding of the BKT phase. In Fig. 3a, we show the overall temperature dependence of χ at different out-of-plane fields. For T < 2 K, χ increases monotonically upon cooling and barely changes with fields. However, for T > 2 K, approximately the upper BKT transition T_U as obtained from the 1/69T_J measurements, χ increases as the field decreases, suggesting the onset of peculiar magnetic correlations. With further cooling, the susceptibility gets flattened with temperature. The magnetization M(H) was further measured at selected temperatures (data shown in Supplementary Fig. 6), and for the sake of clarity, the differential susceptibility dM/dH is plotted in Fig. 3b. At around 2.5 T, a pronounced peak can be observed at low temperature, indicating the existence of a quantum phase transition, and the phase at lower fields should be a magnetically ordered phase, although its precise nature remains to be uncovered. Besides the high-field feature, for temperatures at 0.8 K and above, a kinked feature is clearly resolved on each dM/dH curve at low fields, whereas at 0.4 K, the low-field kink disappears, which poses a question of whether there is a quantum transition or merely a crossover from the zero-field AFM phase to the finite-field ordered phase under the dome in Fig. 1. The temperature and field values indicated by the down arrows in Fig. 3 are denoted as T' and T'' in the phase diagram (Fig. 1).

Field-theoretical analysis of the TLI model has predicted that upon applying a small out-of-plane field, the differential susceptibility dM/dH shall exhibit a divergent power-law behavior as dM/dH ∼ H⁻α in proximity to the BKT phase. At T_L, α has the value of 2/3, which corresponds to a critical exponent η = 1/9 at the lower-BKT transition and is originated from the sixfold symmetry breaking. The exponent α gradually decreases as temperature increases, and above an intermediate temperature between T_L and T_U, α = 0 due to non-universal contributions. This is exactly what we observe in Fig. 3c. We fit the dM/dH with the power-law function at different temperatures, with the fitting regime chosen between 0.6–0.9 T. At 0.8 K, α is very close to the expected value of 2/3 (and thus η ≈ 1/9) at T_L, which constitutes a remarkable fingerprint evidence for the BKT transition. At lower temperatures such as 0.4 K, the exponent is also close to 2/3, because the susceptibility saturates with temperature, as shown in Fig. 3a. At high temperatures, α drops rapidly to a small value 0.12 at 2.1 K and becomes effectively zero at 3.0 K.

Therefore, the susceptibility scaling gives the lower-BKT transition at about 0.8 K and upper transition probably between 2.1 and 3 K, in good agreement with the T_L and T_U estimated from NMR. These results are also fully consistent with our QMC calculations on the susceptibility shown in Fig. 3d. At T_L or lower, α is 2/3, then decreases to a very small exponent 0.086 at 2.67 K, and above 3 K, becomes zero within numerical uncertainty. Such a power-law behavior in dM/dH again signifies the finite-temperature window of the BKT phase with diverging magnetic correlations, which gives rise to the universal power-law scaling of magnetic susceptibility.

Discussion
We believe the findings in this work are of various fundamental values. Since the original proposal of a BKT phase in magnetic films, which also triggered the currently thriving research field of topology in quantum materials, tremendous efforts have been devoted to finding the BKT phase in magnetic crystalline materials, yet hindered by the obstacle outlined in the Introduction. Here, benefiting from NMR as a sensitive low-energy probe, and the nearly zero planar gyromagnetic factor in a TLI magnet TmMgGaO₄, we are able to reveal two BKT transitions and a critical BKT phase with an emergent XY symmetry. Together with the power-law behavior of the susceptibility and excellent agreement between our QMC simulation and experiment data, we unambiguously identify the long-sought BKT phase in a magnetic crystalline material.

Many intriguing questions are stimulated, based on the phase diagram in Fig. 1 obtained here. First, what is the nature of the ordered phase under finite fields, are there further exotic phases and transitions in the phase diagram, and will there be a field-induced quantum phase transition at the high-field side of the dome—these are all of great interests to be addressed in future studies. Second, it should be noted that the dynamical properties obtained by QMC calculations in Fig. 2 are computed on a large, while finite-size, 36 × 36 lattice, which already produces 1/Tₙ data in very good agreement with the experimental measurements.
Such a great agreement is surprising, given the possible existence of randomness from Ga/Ge site mixing in the material TmMgGaO₄, and also the lattice disorder revealed by the large high-temperature second moment of the NMR spectra (Supplementary Note 4). Although the random distribution in intrinsic transverse fields and spin couplings does not seem to alter the low-temperature spin-ordered phase and the sharp spin excitation line shapes, its intriguing effects on the finite-temperature phase diagram of TLI and also the compound TmMgGaO₄ call for further studies.

Third, in the study of BKT transition in superfluid systems, it has been observed experimentally and understood theoretically that additional dissipations also appear above the transition temperature due to fluctuations of vortices. Hence, the plateau of 1/Γₜ at 1.2 K, we did not find any change of 1/Γ₂, with two different radio frequency excitation levels (14 mT and 24 mT), and with different frequencies across the NMR line, within the error bar.

\[
\beta_{\text{Kosterlitz-Thouless}} = \frac{1}{\Lambda} \ln \left(\frac{\Lambda}{\sqrt{\pi}} \right)
\]

Reference 9. Kosterlitz, J. M. & Thouless, D. J. Ordering, metastability and phase transitions in two-dimensional systems having a continuous symmetry group I. classical two-dimensional systems possessing a continuous symmetry group II. quantum systems. JETP 34, 610 (1972).

Data availability

All numerical codes in this paper are available upon request to the corresponding authors.

Received: 1 May 2020; Accepted: 13 October 2020; Published online: 06 November 2020

References

1. Berezinskii, V. L. Destruction of long-range order in one-dimensional and two-dimensional systems having a continuous symmetry group I. classical systems. JETP 32, 493 (1971).
2. Kosterlitz, J. M. & Thouless, D. J. Long range order and metastability in two-dimensional solids and superfluids. (application of dislocation theory). J. Phys. C Solid State Phys. 5, L124–L126 (1972).
3. Kosterlitz, J. M. & Thouless, D. J. Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C Solid State Phys. 6, 1181–1203 (1973).
4. Heinrich, M., Krug von Nidda, H.-A., Loidl, A., Rogado, N. & Cava, R. J. Potential signature of a Kosterlitz-Thouless transition in BaNi₂V₂O₈. Phys. Rev. Lett. 91, 137601 (2003).
5. Cuccoli, A., Roscilde, T., Vaia, R. & Verrucchi, P. Detection of XY behavior in weakly anisotropic quantum antiferromagnets on the square lattice. Phys. Rev. Lett. 90, 167205 (2003).
6. Wawrzyniak, E. et al. Charge disproportionation and collinear magnetic order in the frustrated triangular antiferromagnet AgNiO₂. Phys. Rev. B 77, 094439 (2008).
7. Wheeler, E. M. et al. Spin dynamics of the frustrated easy-axis triangular antiferromagnet 2H–AgNiO₂ explored by inelastic neutron scattering. Phys. Rev. B 79, 104421 (2009).
8. Tutuc, U. et al. Evidence of a field-induced Berezinskii–Kosterlitz–Thouless scenario in a two-dimensional spin–dimer system. Nat. Commun. 5, 5169 (2014).
9. Kumar, R. et al. Structural, thermodynamic, and local probe investigations of the honeycomb material Ag₃LiMnO₆. Phys. Rev. B 99, 144429 (2019).
10. Li, Y. et al. Partial up-up-down-down order with the continuously distributed order parameter in the triangular antiferromagnet TmMgGaO₄. Phys. Rev. X 10, 011007 (2020).
11. Cevallos, F. A., Stolze, K., Kong, T. & Cava, R. J. Anisotropic magnetic properties of the triangular plane lattice material TmMgGaO₄. Mater. Res. Bull. 105, 154–158 (2018).
12. Shen, Y. et al. Intertwined dipolar and multipolar order in the triangular-lattice magnet TmMgGaO₄. Nat. Commun. 10, 4530 (2019).
13. Li, H. et al. Kosterlitz-Thouless melting of magnetic order in the triangular quantum Ising material TmMgGaO₄. Nat. Commun. 11, 1111 (2020).
14. Moessner, R. & Sindel, S. L. Ising models of quantum frustration. Phys. Rev. B 63, 224401 (2001).
Acknowledgements

We thank Changle Liu, Rong Yu, Nvsen Ma, and Anders Sandvik for stimulating discussions. We acknowledge the supports from the National Key Projects for Research and Development of China through Grant numbers 2016YFA0300502 and 2016YFA0300504, the National Natural Science Foundation of China through Grant numbers 11574359, 11674370, 11822405, 11674157, 11974036, 11834014, 11874115, and 51872328, RGC of Hong Kong SAR China through Grant number 17303019, Natural Science Foundation of Jiangsu Province with Grant number BK20180006, Fundamental Research Funds for the Central Universities with Grant number 202111016700, and the Research Funds of Renmin University of China. We thank the Center for Quantum Simulation Sciences in the Institute of Physics, Chinese Academy of Sciences, the Computational Initiative at the Faculty of Science and the Information Technology Services at the University of Hong Kong, the Platform for Data-Driven Computational Materials Discovery at the Songshan Lake Materials Laboratory, Guangdong, China, and the Tianhe-I, Tianhe-II, and Tianhe-III prototype platforms at the National Supercomputer Centers in Tianjin and Guangzhou for their technical support and generous allocation of CPU time.

Author contributions

W.Q.Y. and J.S.W. designed the experiments, with proposals from Y.Q., W.L., and Z.Y.M. Z.M. grew and characterized the single crystals and performed susceptibility measurements and analysis, with help from Y.Y.S.G., Z.T.H., Z.H., and H.L. Z.H., C.S.M., and T.C. performed NMR measurements and analysis. Y.D.L. and H.L. carried out the large-scale quantum many-body calculations, with the guidance from Y.Q., W.L., and Z.Y.M. W.Q.Y., J.S.W., W.L., Z.Y.M., and Y.Q. wrote the manuscript with comments from all coauthors.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information is available for this paper at https://doi.org/10.1038/s41467-020-19380-x.

Correspondence and requests for materials should be addressed to Y.Q., W.L., Z.Y.M., J.W. or W.Y.

Peer review information Nature Communications thanks the anonymous reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020