DERIVATIONS OF QUANTIZATIONS IN CHARACTERISTIC p

AKAKI TIKARADZE

Abstract. Let k be an algebraically closed field of odd characteristic. We describe derivations of a large class of quantizations of affine normal Poisson varieties over k.

Let k be an algebraically closed field of characteristic $p > 2$. Let A be an associative k-algebra and let Z be its center. Then we have the natural restriction map $HH^1(A) \to \text{Der}_k(Z, Z)$ from the first Hochschild cohomology of A over k to k-derivations of Z. In this note we show that this map is injective for a large class of quantizations of Poisson algebras (Theorem 1) and is an isomorphism for central quotients of the enveloping algebras of semi-simple Lie algebras (Corollary 1). It is well-known that this map is an isomorphism if A is an Azumaya algebra over Z. In fact in this case all corresponding Hochschild cohomology groups are isomorphic $HH^*(A) \cong HH^*(Z)$.

Throughout given an element $x \in A$, by $\text{ad}(x)$ we will denote the commutator bracket $[x, -] : A \to A$ as it is customary. Thus we have an injective homomorphism of Z-modules $A/Z \xrightarrow{\text{ad}} \text{Der}_k(A, A)$. We have a short exact sequence of Z-modules

$$0 \to A/Z \xrightarrow{\text{ad}} \text{Der}_k(A, A) \to HH^1(A) \to 0.$$

We will be interested in determining whether this sequence splits. We will start by recalling how a deformation of A over $W_2(k)$ gives rise to a Poisson bracket on Z, where $W_2(k)$ denotes the ring of Witt vectors of length 2 over k. Hence $W_2(k)$ is a free Z/p^2Z-module and $W_2(k)/pW_2(k) = k$.

Let A_2 be a lift of A over $W_2(k)$. Thus A_2 is an associative $W_2(k)$-algebra which is free as a $W_2(k)$-module and $A_2/pA_2 = A$. Then we have a derivation $i : Z \to HH^1(A)$ defined as follows. For $z \in Z$, let $\tilde{z} \in A_2$ be a lift of z. Then $\text{ad}(\tilde{z})(A_2) \subseteq pA_2$. Hence

$$i(z) = \left(\frac{1}{p}\text{ad}(\tilde{z})\right) \mod p : A \to A$$

is a derivation which is independent of a lift of $z \mod$ inner derivations. The map i restricted on Z gives rise to the Poisson bracket $\{,\} : Z \times Z \to Z$, which we will refer to as the deformation Poisson bracket on Z.

Then we have the following

Date: Saturday 30th December, 2017.
Lemma 1. Let A be an associative k-algebra, and let A_2 be its lift over $W_2(k)$. Let Z be the center of A. Assume that Z admits a lift as a subalgebra of A_2. Assume that SpecZ is a normal variety such that the deformation Poisson bracket on Z is symplectic on the smooth locus of SpecZ, and A is a finitely generated Cohen-Macaulay Z-module such that Ann$_Z A = 0$. Then the restriction map Der$_k(A, A) \to$ Der$_k(Z, Z)$ admits a Z-module splitting.

Proof. Let $\tilde{Z} \subset \tilde{A}$ be an algebra lift of Z over $W_2(k)$. Thus \tilde{Z} is a subalgebra of \tilde{A} free over $W_2(k)$ such that $\tilde{Z}/p\tilde{Z} = Z$. Then we have a map $(\frac{1}{p} \text{ad}) \mod p : \tilde{Z} \to \text{Der}_k(A, A)$. This map clearly factors through a derivation $\tilde{Z}/p\tilde{Z} = Z \to \text{Der}_k(A, A)$ and is a lift of the map $i : Z \to HH^1(A)$ described above. Let U be the smooth locus of SpecZ. Thus by the assumption the deformation Poisson bracket of SpecZ is symplectic on U. We have the map of coherent sheaves $\tilde{\theta}|_U : \Omega^1_U \to \text{Der}_k(A, A)|_U$, and composing it with the identification by the symplectic form between tangent and cotangent bundles $T^1_U \to \Omega^1_U$, we get a map of coherent sheaves on U, $\tau : T^1_U \to \text{Der}(A, A)|_U$. Since codim$(\text{Spec} Z \setminus U) \geq 2$ and SpecZ is a normal variety, then $\Gamma(U, T^1_U) = \text{Der}_k(Z, Z)$. Also $\Gamma(U, A_{1U}) = A$ since A is a Cohen-Macaulay Z-module of dimension dim Z. Thus we get a map of Z-modules $\tau : \text{Der}_k(Z, Z) \to \text{Der}_k(A, A)$ which is a section of the restriction map Der$_k(A, A) \to$ Der$_k(Z, Z)$.

Next we have the following

Lemma 2. Let A be an associative k-algebra which is a finite over its center Z. Assume that Z is a normal k-domain such that A/Z is a Cohen-Macaulay module over Z, and Ann$_Z (A/Z) = 0$. Assume moreover that the Azumaya locus of A has a compliment of codimension ≥ 2 in SpecZ. Then the restriction map HH$^1(A) \to$ Der$_k(Z, Z)$ is injective.

Proof. Let $D : A \to A$ be a k-derivation such that $D(Z) = 0$. Let U be the Azumaya locus of A. Put $Y = \text{Spec} Z \setminus U$. Since $A|_U$ is Azumaya algebra, it follows that there exists $x \in \Gamma(U, A/Z)$ such that $D|_U$ is equal to ad(x). Since A/Z is Cohen-Macaulay module over Z and Ann$_Z (A/Z) = 0$, it follows that depth$_Y (A/Z) \geq 2$. Thus the standard argument using local cohomology groups [H] implies that $\Gamma(U, A/Z) = A/Z$. It follows that there exists $x \in A$ such that $D - \text{ad}(x)x$ vanishes on U. Since Z is normal, it follows that depth$_Y A \geq 2$. Hence $\Gamma(U, A) = A$. Therefore $D - \text{ad}(x) = 0$, hence $D = \text{ad}(x)$ is an inner derivation. We conclude that HH$^1(A) \to$ Der$_k(Z, Z)$ is injective as desired.

Let an associative k-algebra A be equipped with an algebra filtration $1 \in A_0 \subset A_1 \subset \cdots$ such that the associated graded algebra gr$A = \bigoplus_n A_n/A_{n-1}$ is commutative. Then recall that there is a graded Poisson bracket on grA defined as follows. Given $x \in A_n/A_{n-1}$, $y \in A_m/A_{m-1}$, then their Poisson bracket $\{x, y\}$ is defined to be $[\tilde{x}, \tilde{y}] \in A_{n+m-1}/A_{n+m-2}$, where $\tilde{x} \in A_n$, $\tilde{y} \in A_m$ are lifts of x, y. In this setting we say that a filtered algebra A as a quantization of a graded
Poisson algebra $\text{gr} A$. This is closely related to deformation quantizations: By taking \tilde{A} to be $(\hbar$-completion of) the Rees algebra of $A : R(A) = \bigoplus_n A_n \otimes \hbar^n$, then $\tilde{A}/\hbar\tilde{A} = \text{gr} A$.

We will need the following computation which relates the deformation Poisson bracket on Z to the Poisson bracket on $\text{gr} A$. This computation is similar and motivated by a result of Kanel-Belov and Kontsevich \[KK\], where the the Poisson bracket on Z was computed when A is the Weyl algebra.

Lemma 3. Let A be a filtered $W_2(\mathbb{k})$-algebra, such that $\text{gr} A = B$ is commutative and free over $W_2(\mathbb{k})$. Put $\overline{A} = A/pA, \overline{B} = B/pB$. Let \overline{Z} denote the center of \overline{A}. Assume that $\text{gr}(\overline{Z}) = \overline{B}^p$. Then the top degree part of the deformation Poisson bracket on \overline{Z} is equal to -1 times the Poisson bracket of \overline{B}.

Proof. We will verify that given central elements $\bar{x}, \bar{y} \in \overline{Z}$ such that $\text{gr}(\bar{x}) = \bar{a}^p, \text{gr}(\bar{y}) = \bar{b}^p, \bar{a}, \bar{b} \in \overline{B}$, then $\text{gr}([x, y]) = p\{\bar{a}, \bar{b}\}$. Here $x, y \in A$ are lifts of \bar{x}, \bar{y} respectively.

It will be more convenient to work in the deformation quantization setting. Thus we will assume that $A = B[[h]]$ as a a free $W_2[k][[h]]$-module such that

$$A/hA = B, [a, b] = h\{a, b\} \mod h^2, a, b \in B.$$

Then by our assumption $\overline{Z} = \{a^p - h^{p-1}a_{[p]}, a \in \overline{B}\}$. Thus $\text{ad}_p(a)^p = \text{ad}_p(a_{[p]})$, here $\text{ad}_p(x)$ denotes the Poisson bracket $\{x, -\}, x \in B$. We will compute the Poisson bracket on \overline{Z} mod h^{p+1}. Thus without loss of generality we will put $h^{p+1} = 0$. Let $x = a^p - h^{p-1}a_{[p]}, y = b^p - h^{p-1}b_{[p]}$. We want to compute $[x, y]$. We have

$$[a^p, y] = \text{ad}(a)^p(y) - \sum_{i=1}^{p-1} (-1)^i \binom{p}{i} a^i y a^{p-i}.$$

Since $\binom{p}{i} y$ is in the center of A, we have that

$$\sum_{i=1}^{p-1} (-1)^i \binom{p}{i} a^i y a^{p-i} = \left(\sum_{i=1}^{p-1} (-1)^i \binom{p}{i} \right) a^p y = 0.$$

So $[a^p, y] = \text{ad}(a)^p(y)$. We have

$$\text{ad}(a)^p(y) = \text{ad}(a)^p(b^p) - h^{p-1}\text{ad}(a)^p(b_{[p]}).$$

But $\text{ad}(a)^p(a) \subset h^p A$ thus $h^{p-1}\text{ad}(a)(A) = 0$. So $\text{ad}(a)^p(y) = \text{ad}(a)^p(b^p)$. On the other hand

$$[h^{p-1}a_{[p]}, y] = h^{p-1}[a_{[p]}, b^p].$$

Now since

$$\text{ad}(a)^p(b^p) = ph^p\text{ad}_p(a)(b^{p-1}\{a, b\}), \quad h^{p-1}[a_{[p]}, b^p] = ph^p\{a_{[p]}, b\}b^{p-1},$$

we obtain that

$$[x, y] = ph^p \left(\text{ad}_p(a)^{p-1}(b^{p-1}\{a, b\}) - \{a_{[p]}, b\}b^{p-1} \right) = (p - 1)!\{a, b\}^p.$$
Here we used the following identity. Let \(D : B \to B \) be a derivation, then
\[
D^{p-1}(b^{p-1}D(b)) = (p - 1)!D(b)^p + b^{p-1}D^p(b), \quad b \in B.
\]

Recall that a reduced commutative \(k \)-algebra \(B \) is said to be Frobenius split if the quotient map \(B \to B/B^p \) splits as a \(B^p \)-module homomorphism.

Theorem 1. Let \(\text{Spec} B \) be a normal Frobenius split Cohen-Macaulay Poisson variety over \(k \) such that the Poisson bracket on the smooth locus of \(\text{Spec} B \) is symplectic. Let \(A \) be a quantization of \(B \) such that \(\text{gr} Z = B^p \), where \(Z \) is the center of \(A \). Moreover, assume that \(A \) admits a lift to \(W_2(k) \). Let \(U \) denote the smooth locus of \(\text{Spec} Z \).

Then the restriction map \(H^1_{k}(A) \to \text{Der}_k(Z, Z) \) is injective and its cokernel is a quotient of \(\Omega^1(U)/\Omega^1_Z \) as a \(Z \)-module.

Proof. It was shown in [T] that the Azumaya locus of \(A \) in \(\text{Spec} Z \) has the compliment of codimension \(\geq 2 \). Normality of \(B \) implies that \(\text{Ann}_{B^p}(B/B^p) = 0 \). Since \(B/B^p \) is a direct summand of \(B \), and \(B \) is a Cohen-Macaulay \(B^p \)-module, it follows that \(B/B^p \) is a Cohen-Macaulay \(B^p \)-module of dimension \(\text{dim}B^p \). Since \(\text{gr}(A/Z) = B/B^p \) and \(\text{gr} Z = B^p \), it follows that \(A/Z \) is a Cohen-Macaulay \(Z \)-module and \(\text{Ann}_Z(A/Z) = 0 \). Now Lemma 3 implies that the Poisson bracket on \(Z \) coming from a lift of \(A \) over \(W_2(k) \) is a deformation of the Poisson bracket on \(B \), hence it is symplectic on an open subset of \(\text{Spec} Z \) whose compliment has codimension \(\geq 2 \). Thus all assumptions of Lemma 2 are satisfied.

Denote by \(P \) the \(Z \)-span of derivations of the form \(a\{b, -\}, a, b \in Z \). Clearly \(P \) is in the image of the restriction \(H^1_{k}(A) \to \text{Der}_k(Z, Z) \). Then we have a \(Z \)-module map \(\Omega^1_Z \to P \subset \text{Der}_k(Z, Z) \) corresponding to the Poisson bracket, and \(\text{Der}_k(Z, Z) \) can be identified with \(\Gamma(U, \Omega) \) via the symplectic pairing. Hence \(\Omega^1(U)/\Omega^1_Z \) maps onto the cokernel of the restriction map \(H^1_{k}(A) \to \text{Der}_k(Z, Z) \).

This result applies to a large class of algebras including symplectic reflection algebra. Our next result shows that the restriction map from Theorem 1 is an isomorphism for the case of central quotients of enveloping algebras of semi-simple Lie algebras. Let us recall their definition and fix the appropriate notations first.

Let \(g \) be a Lie algebra of a connected semi-simple simply connected algebraic group \(G \) over \(k \), assume that \(p \) is large enough relative to \(g \) (for example \(p \) is very good for \(G \).) Let \(Z_0 \subset Z(\mathfrak{u}g) \) denote \(G \)-invariants of the enveloping algebra \(\mathfrak{u}g \) under the adjoint action of \(G \). Let \(\chi : Z_0 \to k \) be a character. Put \(\mathfrak{u}g = \mathfrak{u}g/\text{Ker}(\chi)\mathfrak{u}g \).
Corollary 1. Let A be a quotient enveloping algebra $\mathfrak{U}_k \mathfrak{g}$. Let Z be the center of A. Then we have an isomorphism of Z-modules $\text{Der}_k(A, A) \cong A/Z \oplus \text{Der}_k(Z, Z)$.

Proof. Let $\tilde{\mathfrak{g}}$ be a Lie algebra lift of \mathfrak{g} over $W_2(\mathbb{k})$. Let t_1, \ldots, t_n be generators of $\ker(\chi)$ and $\tilde{t}_1, \ldots, \tilde{t}_n$ be their lift in $Z(\mathfrak{U}\tilde{\mathfrak{g}})$. Thus $Z(\mathfrak{U}\tilde{\mathfrak{g}})$ is generated by t_1, \ldots, t_n over $Z_p = \{g^p - g[p], g \in \mathfrak{g}\}$. Also, Z is the quotient of Z_p. Let $A_2 = \mathfrak{U}\tilde{\mathfrak{g}}/(\tilde{t}_1, \ldots, \tilde{t}_n)$. So A_2 is a lift of A over $W_2(\mathbb{k})$. We will show that Z admits an algebra lift in A_2. Let $[p] : \tilde{\mathfrak{g}} \to \tilde{\mathfrak{g}}$ be a lift of the restricted structure map $[p] : \mathfrak{g} \to \mathfrak{g}$. Then if follows from computation in Lemma 3 that

$$[x^p - x[p], y^p - y[p]] = -p([x, y]^p - [x, y][p]) \quad x, y \in \tilde{\mathfrak{g}}.$$

Let $\tilde{\mathfrak{g}}_1$ be a $W_2(\mathbb{k})$-Lie algebra such that $\tilde{\mathfrak{g}}_1 = \mathfrak{g}$ as $W_2(\mathbb{k})$-module and the Lie bracket $[x, y]_{\tilde{\mathfrak{g}}_1}$ is defined as $-p[x, y]_{\mathfrak{g}}$. Thus we have an algebra map $i : \mathfrak{U}\tilde{\mathfrak{g}}_1 \to \mathfrak{U}\tilde{\mathfrak{g}}$ where $i(x) = x^p - x[p], x \in \tilde{\mathfrak{g}}$. Denote the image of i by S. Thus S is an algebra lift of Z_p in $\mathfrak{U}\tilde{\mathfrak{g}}$. Let S_1 denote the image of S under the quotient map $\mathfrak{U}\tilde{\mathfrak{g}} \to \mathfrak{U}\tilde{\mathfrak{g}}/(\tilde{t}_1, \ldots, \tilde{t}_n) = A_2$. Therefore S' is an algebra lift of Z in A_2.

Using the usual PBW filtration of A we have $\text{gr}(A) = k[N]$, where N is the nilpotent cone of \mathfrak{g}. Now since N is a Frobenius split normal Cohen-Macaulay variety [BK], and the Poisson bracket on the regular locus of N is symplectic, Theorem 1 and Lemma 1 imply the desired result.

Remark 1. It is known that in characteristic 0 Hochschild cohomology of symplectic reflection algebras H is concentrated in even dimensions [GK], so it has no outer derivations. The same is true for the enveloping algebras $\mathfrak{U}\mathfrak{g}$ and its quotients.

Acknowledgement: I am very grateful to Marton Hablicsek for pointing out a serious mistake in the earlier version of the paper.

REFERENCES

[KK] A. Belov-Kanel, M. Kontsevich, Automorphisms of the Weyl algebra, Lett. Math. Phys. 74 (2005), 181–199.
[BFG] R. Bezrukavnikov, M. Finkelberg, V. Ginzburg, Cherednik algebras and Hilbert schemes in characteristic p, With an Appendix by P. Etingof, Represent. Theory 10 (2006), 254–298.
[BK] M. Brion, S. Kumar, Frobenius splitting methods in geometry and representation theory, Progress in Mathematics, 231. Birkhauser Boston, Inc., Boston, MA, 2005.
[EG] P. Etingof, V. Ginzburg, Symplectic reflection algebras, Calogero-Moser space, and deformed Harish-Chandra homomorphism, Invent. Math. 147 (2002), no. 2, 243–348.
[GK] V. Ginzburg, D. Kaledin, Poisson deformations of symplectic quotient singularities, adv. Math. 186 (2004), 1–57
[H] R. Hartshorne, Local cohomology, Lecture notes in Mathematics, volume 41, 1967
[T] A. Tikaradze, On the Azumaya locus of almost commutative algebras, Proc. Amer. Math. Soc. 139 (2011), no. 6, 1955–1960.

E-mail address: tikar06@gmail.com

UNIVERSITY OF TOLEDO, DEPARTMENT OF MATHEMATICS & STATISTICS, TOLEDO, OH 43606, USA