Supplemental Material

The Association between Residential Green Space in Childhood and Development of Attention Deficit Hyperactivity Disorder: A Population-Based Cohort Study

Malene Thygesen, Kristine Engemann, Gitte J. Holst, Birgitte Hansen, Camilla Geels, Jørgen Brandt, Carsten B. Pedersen, and Søren Dalsgaard

Table of Contents

Figure S1. Definition of study population.

Table S1. IRRs for ADHD by NDVI within the first five years of life and stratified by year of birth, sex, region, urbanicity, parental SES and neighborhood level SES (with interaction term).

Table S2. IRRs for ADHD by NDVI within different proximities around residential address.

Table S3. Incidence rate ratios (IRRs) for ADHD by NDVI at different ages within an exposure zone of 210 × 210 m.

Table S4. IRRs for ADHD by NDVI among firstborn children.
Figure S1. Definition of study population

Born in Denmark as singletons 1992-2007
Both parents born in Denmark

Mother was resident in Denmark 9 months before birth
N=824,778

The cohort member was alive and resident in Denmark on the 5th birthday
N=816,098

The cohort member did not have an ADHD diagnosis before the 5th birthday
N=814,834

Mother was not resident in Denmark 9 months before birth
N=3,223

The child had died or was not resident in Denmark on the 5th birthday
N=8,680

ADHD diagnosis before 5th birthday
N=1,264

Missing information about NDVI
N=145

FINAL COHORT
N=814,689
Table S1: IRRs for ADHD by NDVI within the first five years of life and stratified by year of birth, sex, region, urbanicity, parental SES and neighborhood level SES (with interaction term)

Birth year group	Base adjustment model* IRR (95% CI)	Adjusted model § IRR (95% CI)
1992-1996	1.58 (1.47, 1.70)	1.26 (1.17, 1.36)
1997-2001	1.35 (1.26, 1.43)	1.12 (1.05, 1.19)
2002-2007	1.37 (1.25, 1.49)	1.10 (1.01, 1.20)
P-value	(p = 0.00093)	(p=0.01820)

Sex		
Female	1.62 (1.52, 1.74)	1.34 (1.25, 1.44)
Male	1.28 (1.22, 1.34)	1.05 (1.00, 1.11)
P-value	(p=<0.00001)	(p=<0.00001)

Region		
North Denmark	1.68 (1.43, 1.98)	1.43 (1.21, 1.69)
Central Denmark	1.54 (1.43, 1.66)	1.30 (1.20, 1.40)
South Denmark	1.50 (1.37, 1.64)	1.26 (1.15, 1.38)
Capital Region	1.35 (1.25, 1.47)	1.01 (0.93, 1.10)
Zealand	1.14 (1.03, 1.27)	0.93 (0.83, 1.04)
P-value	(p=0.00002)	(p=<0.00001)

Mother’s level of education		
Primary school	1.29 (1.21, 1.38)	1.30 (1.21, 1.38)
Short education	1.27 (1.20, 1.35)	1.28 (1.20, 1.36)
Medium long education	1.20 (1.09, 1.33)	1.20 (1.08, 1.33)
Long education	0.97 (0.77, 1.22)	0.95 (0.76, 1.20)
P-value	(p =0.08654)	(p =0.05562)
Table S1 (Continued): IRRs for ADHD by NDVI within the first five years of life and stratified by year of birth, sex, region, urbanicity, parental SES and neighborhood level SES (with interaction term)

Father’s level of education	Base adjustment model* IRR (95% CI)	Adjusted model § IRR (95% CI)
Primary school	1.32 (1.24, 1.41)	1.32 (1.24, 1.41)
Short education	1.35 (1.27, 1.42)	1.35 (1.27, 1.43)
Medium long education	1.09 (0.94, 1.25)	1.09 (0.95, 1.26)
Long education	1.11 (0.91, 1.34)	1.11 (0.92, 1.35)
P-value	(p =0.01203)	(p =0.01640)

Mother’s level of income§
Below the 20th percentile
20th to the 40th percentile
40th to the 60th percentile
60th to the 80th percentile
Above the 80th percentile
P-value

Father’s level of income§
Below the 20th percentile
20th to the 40th percentile
40th to the 60th percentile
60th to the 80th percentile
Above the 80th percentile
P-value
Table S1 (Continued): IRRs for ADHD by NDVI within the first five years of life and stratified by year of birth, sex, region, urbanicity, parental SES and neighborhood level SES (with interaction term)

Neighborhood level of income in municipality	Base adjustment model \(^a\)	Adjusted model \(^b\)
Low income municipality	1.43 (1.33, 1.53)	1.18 (1.10, 1.27)
Medium income municipality	1.54 (1.43, 1.65)	1.27 (1.18, 1.36)
High income municipality	1.33 (1.24, 1.43)	1.05 (0.98, 1.13)
P-value	(p = 0.01060)	(p = 0.00062)

Neighborhood level of education	Base adjustment model \(^a\)	Adjusted model \(^b\)
Low education municipality	1.51 (1.42, 1.62)	1.28 (1.20, 1.38)
Medium education municipality	1.45 (1.34, 1.56)	1.15 (1.06, 1.24)
High education municipality	1.29 (1.19, 1.39)	1.02 (0.95, 1.11)
P-value	(p = 0.00462)	(p = 0.00006)

Neighborhood level of unemployment	Base adjustment model \(^a\)	Adjusted model \(^b\)
High unemployment municipality	1.54 (1.43, 1.65)	1.20 (1.12, 1.29)
Medium unemployment municipality	1.43 (1.34, 1.53)	1.18 (1.10, 1.26)
Low unemployment municipality	1.32 (1.23, 1.42)	1.10 (1.03, 1.19)
P-value	(p = 0.00986)	(p = 0.22444)
Table S1 (Continued): IRRs for ADHD by NDVI within the first five years of life and stratified by year of birth, sex, region, urbanicity, parental SES and neighborhood level SES (with interaction term)

Urbanicity	Base adjustment model*	Adjusted model*
	IRR (95% CI)	IRR (95% CI)
Capital	1.51 (1.32, 1.73)	1.07 (0.93, 1.23)
Capital suburb	1.31 (1.17, 1.47)	1.00 (0.89, 1.12)
Municipalities with a town with > 100,000 inhabitants	1.37 (1.20, 1.57)	1.19 (1.04, 1.36)
Municipalities with a town with 10,000 – 100,000 inhabitants	1.43 (1.32, 1.54)	1.14 (1.06, 1.24)
Other municipalities (largest town < 10,000 inhabitants)	1.46 (1.37, 1.57)	1.25 (1.17, 1.34)
P-value	(p =0.38813)	(p=0.01371)

Abbreviations: NDVI; Normalized Difference Vegetation Index. IRR; Incidence rate ratio.

*Multilevel modeling was used to estimate the association between NDVI in numeric deciles measured at 210 × 210 m around an individual’s residential address between age 0 to 5 years and the outcome of ADHD in a cohort of 814,689 individuals born in Denmark 1992 to 2007 and who were followed from 1997 until 2017 and adjusted for age, calendar year, sex

*Multilevel modeling was used to estimate the association between NDVI in numeric deciles measured at 210 × 210 m around an individual’s residential address between age 0 to 5 years and the outcome of ADHD in a cohort of 814,689 individuals born in Denmark 1992 to 2007 and who were followed from 1997 until 2017 and adjusted for age, calendar year, sex, mother’s and father’s level of education and income, urbanicity and proportion of low income, low education and unemployment at municipal level
Table S2: IRRs for ADHD by NDVI within different proximities around residential address

NDVI within quadrat size	IRR (95% CI)
210 X 210 m (7 X 7 cells)	1.16 (1.11, 1.22)
330 X 330 m (11 X 11 cells)	1.16 (1.11, 1.22)
570 X 570 m (19 X 19 cells)	1.15 (1.10, 1.21)
930 X 930 m (31 X 31 cells)	1.13 (1.08, 1.19)

Abbreviations: NDVI; Normalized Difference Vegetation Index. IRR; Incidence rate ratio. Quadrat size is the different exposure zones of green space around the residential address. Multilevel modeling was used to estimate the association between NDVI in numeric deciles and ADHD. All estimates were adjusted for age, calendar year, sex, mother’s and father’s level of education and income, urbanicity and proportion of low income, low education and unemployment at municipal level.
Table S3: Incidence rate ratios (IRRs) for ADHD by NDVI at different ages within an exposure zone of 210 × 210 m

NDVI deciles	Age 1 IRR (95% CI)	Age 2 IRR (95% CI)	Age 3 IRR (95% CI)	Age 4 IRR (95% CI)	Age 5 IRR (95% CI)
1	1.10 (1.04, 1.17)	1.08 (1.02, 1.15)	1.08 (1.02, 1.14)	1.10 (1.05, 1.17)	1.16 (1.09, 1.22)
2	1.09 (1.04, 1.16)	1.07 (1.01, 1.13)	1.09 (1.03, 1.15)	1.10 (1.05, 1.17)	1.14 (1.08, 1.20)
3	1.09 (1.04, 1.15)	1.09 (1.03, 1.15)	1.08 (1.02, 1.14)	1.08 (1.02, 1.14)	1.08 (1.03, 1.14)
4	1.05 (1.00, 1.11)	1.08 (1.02, 1.14)	1.07 (1.01, 1.13)	1.10 (1.05, 1.16)	1.12 (1.06, 1.18)
5	1.07 (1.01, 1.13)	1.09 (1.03, 1.15)	1.04 (0.98, 1.09)	1.03 (0.98, 1.09)	1.08 (1.02, 1.14)
6	1.03 (0.98, 1.09)	1.05 (1.00, 1.11)	1.02 (0.96, 1.07)	1.02 (0.97, 1.08)	1.05 (0.99, 1.11)
7	1.08 (1.02, 1.14)	0.98 (0.93, 1.04)	1.02 (0.97, 1.08)	1.02 (0.96, 1.07)	1.06 (1.01, 1.12)
8	1.06 (1.00, 1.12)	1.03 (0.98, 1.09)	1.01 (0.96, 1.07)	1.03 (0.98, 1.08)	1.12 (1.06, 1.18)
9	1.06 (1.01, 1.12)	1.05 (0.99, 1.10)	0.98 (0.93, 1.03)	1.04 (0.98, 1.09)	1.08 (1.03, 1.14)
10	1.00 (ref)				

Abbreviations: IRR; Incidence rate ratio. NDVI; Normalized Difference Vegetation Index.

Multilevel modeling was used to estimate the association between NDVI in deciles measured at 210 × 210 m around an individual’s residential address between age 0 to 5 years and the outcome of ADHD in a cohort of 814 689 individuals born in Denmark 1992 to 2007 and who were followed from 1997 until 2017.

All models were adjusted for age, calendar year, sex and mother’s and father’s level of education and income, urbanicity and proportion of low income, low education and unemployment at municipal level.

Table S4: IRRs for ADHD by NDVI among firstborn children

NDVI	IRR (95% CI)
High vs Low	1.10 (1.03, 1.17)

Abbreviations: NDVI; Normalized Difference Vegetation Index. IRR; Incidence rate ratio.

Multilevel modeling was used to estimate the association between NDVI in deciles measured at 210 × 210 m around an individual’s residential address between age 0 to 5 years and the outcome of ADHD in a cohort of 814 689 individuals born in Denmark 1992 to 2007 and who were followed from 1997 until 2017.