Spin-photon interface and spin-controlled photon switching in a nanobeam waveguide

Javadi, Alisa; Ding, Dapeng; Appel, Martin Hayhurst; Mahmoodian, Sahand; Löbl, Matthias C.; Söllner, Immo; Schott, Rüdiger; Papon, Camille; Pregolato, Tommaso; Stobbe, Søren; Midolo, Leonardo; Schröder, Tim; Wieck, Andreas D.; Ludwig, Arne; Warburton, Richard J.; Lodahl, Peter

Published in:
Nature Nanotechnology

DOI:
10.1038/s41565-018-0091-5

Publication date:
2018

Document version
Peer reviewed version

Citation for published version (APA):
Javadi, A., Ding, D., Appel, M. H., Mahmoodian, S., Löbl, M. C., Söllner, I., Schott, R., Papon, C., Pregolato, T., Stobbe, S., Midolo, L., Schröder, T., Wieck, A. D., Ludwig, A., Warburton, R. J., & Lodahl, P. (2018). Spin-photon interface and spin-controlled photon switching in a nanobeam waveguide. Nature Nanotechnology, 13(5), 398-403. https://doi.org/10.1038/s41565-018-0091-5

Download date: 15. sep., 2024
Spin-photon interface and spin-controlled photon switching in a nanobeam waveguide

Alisa Javadi,1,∗,1 Dasheng Ding,1 Martin Hayhurst Appel,1 Sahand Mahmoodian,1 Matthias Christian Löbl,2 Immo Söllner,2 Rüdiger Schott,3 Camille Papon,1 Tommaso Pregolato,1 Soren Stobbe,1 Leonardo Midolo,1 Tim Schröder,1 Andreas Dirk Wieck,3 Arne Ludwig,3 Richard John Warburton,2 and Peter Lodahl1,*†

1 Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen, Denmark
2 Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
3 Lehrstuhl für Angewandte Festkörperphysik, Ruhr-Universität Bochum, Universitätsstrasse 150, D-44780 Bochum, Germany

(Dated: February 4, 2018)

The Spin of an electron is a promising memory state and qubit. Connecting spin states that are spatially far apart will enable quantum nodes and quantum networks based on the electron spin. Towards this goal, an integrated spin-photon interface would be a major leap forward since it combines the memory capability of a single spin with efficient transfer of information by photons. Here we demonstrate such an efficient and optically programmable interface between the spin of an electron in a quantum dot and photons in a nanophotonic waveguide. The Spin can be deterministically prepared in the ground state with a fidelity of up to 96%. Subsequently the system is used to implement a single-spin photonic switch, where the spin state of the electron directs the flow of photons through the waveguide. The spin-photon interface may enable on-chip photon-photon gates, single-photon transistors, and efficient photonic cluster-state generation.

I. INTRODUCTION

Access to the electron spin is at the heart of many protocols for integrated and distributed quantum-information processing [1–3]. For instance, interfacing the spin-state of an electron and a photon can be utilized to perform quantum gates between photons [2, 4] or to entangle remote spin states [5–8]. Ultimately, a quantum network of entangled spins constitutes a new paradigm in quantum optics [1].

Solid-state quantum emitters embedded in planar nanostructures offer a scalable route to integrated light-matter interfaces [7, 9]. Among these emitters, InGaAs quantum dots are arguably the most developed platform. Quantum dots have been integrated in various nanostructures with near-unity coupling efficiencies [10–12]. Such a high coupling efficiency has enabled near deterministic and indistinguishable single-photon sources [13, 14], as well as single-photon level nonlinearities [15, 16]. Furthermore, chiral light-matter interaction leading to directional photon emission and scattering [17–19] has opened new prospects for integrated quantum-information processing [20].

Significant progress has been made on coherent control of the spin state of electrons and holes in quantum dots [21–25], spin-photon entanglement, and spin-spin entanglement [5]. Transferring the performance to highly efficient photon-emitter interfaces implemented in photonic nanostructures is not a trivial task, and pioneering experiments have considered primarily narrow-linewidth cavities [26–29] and external in-plane magnetic fields, which do not require a long spin lifetime [30]. In comparison, the waveguide geometry offers broadband operation [9] whereby two stable ground-state spins can simultaneously be well-coupled to a single optical mode. This allows combining a long-lived spin memory with the efficient photon-emitter interface. Moreover, access to chiral interaction between the optical mode and the spin state enables a number of promising features such as nonreciprocal devices [17, 18].

In the present work, we demonstrate an efficient interface between the spin state of an electron in a quantum dot and the optical mode of a nanobeam waveguide. Based on this system, we realize a proof-of-concept optically programmable photon switch, which is controlled by the spin state of the quantum dot. We achieve deterministic charging of the quantum dot, whereby high-fidelity optical spin-state preparation is obtained with an external magnetic field applied parallel to the quantum dot growth axis (Faraday geometry). We observe a spin lifetime of $T_1 \sim 4\mu$s and a diagonal decay rate (γ) that is two orders of magnitude smaller than the vertical decay rate (Γ), $\Gamma \approx 100\gamma$. See Fig. 1a for the level structure. Together with the long spin lifetime, $T_1 \approx 50\gamma^{-1}$, this is the favourable condition for realizing high-fidelity and long-lived spin-state preparation [23], as required for photon-photon gates and single-photon transistors [2, 31]. Indeed, we experimentally demonstrate a spin preparation fidelity approaching 96%. Finally, we show that the quantum dot spin controls transmission through the waveguide and the optical control of the spin enables turning the transmission on and off. Finally, we show that the spin-photon interaction is chiral, which may be used to implement nonreciprocal light transport [18], as a basis for novel quantum photonic devices such as on-chip single-photon circulators [32], integrated isolators, or building blocks for distributed quantum networks.
Level structure

Figure 1a shows the level structure of a negatively charged quantum dot under influence of a static magnetic field along the growth axis (B_z) [23]. In the ground state, the spin of the trapped electron is oriented parallel or anti-parallel to the growth axis, which are labeled as spin-up (|↑⟩) and spin-down states (|↓⟩), respectively. The two excited states are negatively-charged excitons (X^−), and consist of two spin-paired electrons and a single hole. The vertical transitions are circularly polarized (σ_+ and σ_-). The diagonal transitions are weakly allowed due to the in-plane Overhauser field and heavy-hole light-hole mixing in the valence band of the quantum dot, with the latter being the dominant mechanism at higher magnetic fields [34].

Sample design and characterization

Figure 1b shows a scanning electron micrograph (SEM) of a nanobeam waveguide, terminated with grating outcouplers at the two ends. A layer of InGaAs quantum dots is positioned in the centre of the membrane inside a P-I-N-I-N diode grown along the z-direction [35]. The design of the diode facilitates deterministic charging of the quantum dot as well as tuning of its energy levels by applying a bias voltage, see Section I and II of the Supplementary Information for details of the sample design and its electrical characteristics.

The plot in Fig. 1c shows emission from X^− under weak resonant excitation at B_z = 0 T as a function of the bias voltage. The laser is fixed at 1.3352 eV and the energy of the quantum dot transition is tuned by changing the bias voltage. The linewidth of the resonance is 7.4 µeV (∼9× the natural linewidth), where the broadening is attributed to charge noise from the environment of the quantum dot [36], although not a fundamental limitation in nanobeam waveguides where narrow linewidth quantum dots were recently observed [14]. Figure 1d shows a plateau map of the resonance fluorescence from the X^− transition as a function of excitation laser energy and the bias voltage. The relevant transition energy range is between 1.335696 eV and 1.335760 eV, where the quantum dot is charged with a single electron in the ground state. Below this plateau region the quantum dot is empty and above the quantum dot is charged with two electrons and hence the fluorescence from X^− vanishes [37]. In the centre of the plateau, the single-electron charged state of the quantum dot is a stable state, and the spin state of the electron is only influenced by second-order processes such as co-tunneling with the back contact [34, 38], or by Auger recombination [39].

Optical spin state preparation

To prepare two optically accessible spin ground states with an energy difference larger than the transition linewidth, we lift the degeneracy by inducing a Zeeman shift at B_z = 0.55 T. We probe the |↑⟩ and |↓⟩ states through resonance fluorescence from the X^− exciton. Figure 2a shows the plateau map of the X^− exciton. The emission plateau (regions A and B) originates from the high energy (blue) transition of the negatively-charged exciton, while region C corresponds to emission from the low energy (red) transition. We note that the blue transition is ∼4 times brighter than the red transition, which is due to chiral light-matter interaction [18–20], see Sec. III of the Supplementary Information for the detailed analysis. At the central part of the plateau, region B, optical spin-pumping takes place and the emission from X^− is suppressed due to spin-non-conserving diagonal transitions. At the edges of the plateaus, region A, the electron is strongly coupled to the Fermi-sea in the back contact and its spin is randomized over short time scales (∼10s of nano-seconds) [34, 38] which hinders spin-pumping. At these points, the fluorescence is ∼6–7 times brighter than in the centre, cf. line-cut data in Fig. 2c. By comparing the resonance fluorescence intensity at the edge of the plateau with the emission at the centre of the plateau, we extract a lower bound on the spin preparation fidelity ⟨↓|ρ|↓⟩ ∼ 96% for the data in Fig. 2a, where ρ is the density matrix of the prepared state, see Section IV of the Supplementary Information for details of the model and the related data analysis. Section VII of the Supplementary Information presents a detailed study of the spin preparation fidelity as a function of the laser power and the applied magnetic field. At higher magnetic fields and laser powers, we achieve fidelities up to ⟨↓|ρ|↓⟩ = 96%.

To confirm optical spin pumping, we perform a two-colour resonance fluorescence experiment [40], where one laser is fixed at the centre of the plateau of the red transition, while the frequency of the second laser is scanned. Figure 2b shows the two-colour plateau map of the X^− exciton. When the two lasers are on resonance with the blue and red transitions simultaneously, B', they cancel each others’ spin-pumping effect and the resonance fluorescence from the quantum dot is recovered. Figure 2d and 2e are the theoretical models of the data, see Section IV of Supplementary Information for details of the model. The experimental behavior is quantitatively described by the theory, for T_1 = 3.8 µs ± 1.2 µs. We also extract γ = 13 MHz ± 1 MHz using time resolved measurements, the details are described in Section V of the Supplementary Information. T_1 may also be extracted directly by pump-delay-probe experiments where we obtain T_1 = 4.3 µs ± 0.2 µs, see Section VI of the Supplementary Information for the details. These results are in very good agreement with the parameters extracted from modeling the data in Fig. 2a. A longer spin lifetime has been reported for quantum dots in a bulk medium [22].
Figure 1. Resonant spectroscopy of a negatively-charged quantum dot in a nanophotonic waveguide. (a) Level structure of a negatively-charged quantum dot. The $|\uparrow\rangle$ and $|\downarrow\rangle$ ground states correspond to spin quantum numbers $m_j = +\frac{1}{2}$ and $m_j = -\frac{1}{2}$. A magnetic field (B_z) along the growth axis (Faraday geometry) splits the two ground states. The diagonal transitions are inhibited due to optical selection rules, but weakly allowed due to heavy-hole light-hole mixing. γ is spontaneous decay rate through the diagonal transition, T_1 is the ground state lifetime, and σ_+ (σ_-) indicate a right- (left-) hand circularly polarized dipole transition. (b) Scanning electron micrograph of a nanobeam waveguide. The quantum dot is located close to the centre of the waveguide and an electric field is applied across the quantum dot using a diode structure. (c) Resonance fluorescence from X^- under resonant excitation at $B_z = 0$ T. The quantum dot is excited from the top of the waveguide with x-polarized light at an energy indicated by the white arrow. The emission is collected from the gratings and the quantum dot is tuned through the resonance by varying the bias voltage. The solid curve is a Gaussian fit with a line-width (FWHM) of $\Delta V = 18$ mV, corresponding to $\Delta E = 7.4$ µeV. (d) Plateau map at $B_z = 0$ T. Resonance fluorescence from the X^- exciton, which is plotted as a function of the laser energy and the applied bias voltage. The top axis shows the energy of the X^- transition.

Potentially, the influence of surface currents or dangling bonds at the surfaces may reduce the lifetime in photonic nanostructures. Importantly, we emphasize that the observed spin lifetime in this experiment exceeds the longest spin coherence time reported with quantum dots [41] even after implementing spin-echo techniques [24]. Consequently the reported T_1 is sufficiently long to enable quantum applications.

Spin-controlled photon switching

A quantum emitter coupled to a single optical mode can modify the light transmission properties significantly [15, 31]. For an efficient coupling this interaction can be sensitive at the single-photon level. The colour map in Fig. 3a shows the normalized transmission of a weak probe as a function of its energy and the bias voltage of the diode at $B_z = 0$ T. When the probe is on resonance with the X^- transition, the transmission of the probe is reduced due to the interaction with the transition [15],
Figure 2. Quantum dot spin preparation in a nanophotonic waveguide. (a) Plateau map of the X^{-} transitions at $B_z = 0.55\, T$. The plateau regions A and B correspond to fluorescence from the blue transition in Fig. 1a, while the region marked as C corresponds to emission from the red transition. The two plateaus have different intensities due to chiral light-matter interaction. The central part of the plateau is dim, due to optical spin-pumping from the $|\uparrow\rangle$ state to the $|\downarrow\rangle$ state and vice versa. At the edges of the plateau (region A), spin pumping is suppressed due to co-tunneling between the electron in the quantum dot and the Fermi-sea in the back contact. (b) Same as (a) with a second laser fixed at $-40\, \mu eV$, which corresponds to the centre of the $|\downarrow\rangle$ plateau. The bright spot in the centre (B') is caused by simultaneous excitation of the blue and red transitions, when the first laser is tuned to the centre of the plateau of the blue transition. The plotted range corresponds to the white box in (a). The resonance voltages are shifted by 50 mV due to charge screening effects induced by the second laser. (c) Line-cuts through the top plateau in part (a) and part (b), coloured as yellow and green, respectively. The solid curves are theoretical fits to the data. (d) and (e) Theoretical models of the plateau maps in (a) and (b). See Section IV of the Supplementary Information for details of the modeling. By modeling the data in part (a), we extract the spin life time $T_1 = 3.8\, \mu s \pm 1.2\, \mu s$.

where the quantum dot scatters one photon at a time. This is observed as a dip in the plateau map in Fig. 3a. We observe a maximum contrast of 15% in the transmission, which is mainly limited by the inhomogeneous broadening of the quantum dot transition.

To implement a spin-state dependent interaction between the quantum dot and the waveguide mode, we use optical spin pumping to deterministically prepare the spin state of the quantum dot. We use optical pulses for spin preparation and read out, since this is eventually required to turn the switch on and off. A strong laser pulse (pump) with a duration of 1 μs incident from the top of the waveguide prepares the spin state of the electron. Subsequently, a weak pulse (probe) with a duration of 200 ns, coupled in and out via the gratings, probes the single-photon transmission through the waveguide. Figure 3b shows the normalized transmission through the waveguide while the probe and pump pulses are on resonance. In the centre of the plateau, B', the pump pulse prepares the spin of the electron in $|\downarrow\rangle$ with a high fidelity. This state is off resonance with the probe and hence the transmission recovers to the level T_0, which is the level encountered when the probe is far from resonance of the quantum dot transition. At the edges of the plateau, A', the transmission of the probe is reduced due to inefficient spin state preparation. Figure 3c shows the transmission of the waveguide while the pump laser is detuned by $-40\, \mu eV$ from the probe. In this case, the
Figure 3. Spin-controlled resonant transmission through the nanophotonic waveguide. (a) Measurement of the transmission through the waveguide as a function of the probe pulse energy and the bias voltage at $B_z = 0 \text{T}$. A weak probe pulse is launched into the waveguide through the grating on the left hand side and the transmission is monitored. When the probe is on resonance with the quantum dot transition, the scattering from the quantum dot reduces the transmission of the probe. The probe power is set an order of magnitude below the saturation power of the quantum dot. (b) and (c) Pump–probe measurements at $B_z = 0.55 \text{T}$, while the probe is swept along the charge plateau of the blue transition. A resonant pump laser launched from the top of the waveguide prepares the spin state of the electron during the pump cycle. The detuning between the probe and pump is fixed to $0 \mu \text{eV}$ for (b), and $40 \mu \text{eV}$ for (c). In (b) the spin state of the electron is prepared in the $|\uparrow\rangle$ state during the pump cycle. As a result, the blue transition is turned off, and the transmission of the probe is maximized. A' indicates the edges of the charge plateau where co-tunneling is strong. In (c), the pump laser prepares the electron spin in $|\uparrow\rangle$ state, and the blue transition reduces the transmission of the probe. (d)-(f) Theoretical models of the experiments in (a)-(c). See Section IV of the Supplementary information for the details of the models.

pump prepares the spin of the electron in the $|\uparrow\rangle$ state, which is in resonance with the probe. As a result, the probe pulse interacts with the blue transition of the X$^-$ exciton. At the centre of the plateau (B') the transmission of the waveguide is reduced to 0.87, similar to the value found without an external magnetic field.

The ability to prepare a spin deterministically and thereby control the waveguide transmission constitutes a proof-of-concept realization of a switch for single photons. The ON and OFF states of the switch correspond to the spin of the electron prepared in $|\downarrow\rangle$ and $|\uparrow\rangle$ states, respectively. The transmission can be switched by tuning the pump pulse to either the red or the blue transition of the quantum dot. The green curve in Fig. 4a shows transmission through the waveguide while the probe laser is fixed at the center of the blue plateau and the spin state of the electron is prepared in the $|\uparrow\rangle$ state, corresponding to the OFF state of the switch. The yellow data set corresponds to the case where the switch is initialized in the ON state. In the OFF state the quantum dot blocks $\sim 12\%$ of the probe light. Figure 4b shows the contrast of the transmission through the waveguide as a function of the energy detuning of the probe laser from the center of the blue plateau. The contrast is defined as the modulation of the transmission through the waveguide as a result of the interaction of the laser with the quantum dot transition, see Fig. 4a for a visual representation. We observe a switching ratio of more than a factor of 4 between ON and OFF states, which could be improved further by reducing spectral diffusion due to residual charge noise broadening. Ultimately the switch could be operated in a genuine quantum regime if the spin was initially prepared in a coherent superposition state. Such a quantum switch could create a photonic Schrödinger cat state when applied to a weak coherent state [31].
It is instructive to benchmark the reported performance of all-optical switching. The pump power on the sample for the data in Fig. 4 is around 40 nW for a duration of 1 μs, which corresponds to 40 femto joules per pump cycle. During each switching cycle the quantum dot scatters Γ/γ photons, which is about 100 photons for the measurements reported here [31]. This energy could be further reduced by up to two orders of magnitude by directly launching the pump pulse inside the waveguide. The switching time in the present work is slower than previous demonstrations based on the strong coupling of a quantum dot exciton transition to a cavity [42, 43]. However, once programmed, the switch retains its state for up to 4 μs. As a comparison, switches based on strong coupling decay after 50 ps [42, 43], and switches based on material nonlinearities operate on a similar time scale [44, 45]. In the present work, we demonstrate switching in a system that can simultaneously offer access to a long-lived quantum memory in the form of the ground state electron spin, which is a prerequisite for many quantum-information applications [46].

We have demonstrated all-optical control of a single electron spin in a quantum dot efficiently coupled to a nanophotonic waveguide. Based on this approach, a single spin controls the flow of photons through the waveguide. The work opens a range of new opportunities in quantum optics for exploiting deterministic photon-spin coupling, e.g., for generating long strings of photonic cluster states [47], a high-fidelity photon-photon gate [2] or single-photon transistors [31], where the spin state of the electron may be coherently controlled either with microwave pulses [48], or by utilizing the weak diagonal transitions [49]. Extending to the coupling of two quantum dots would enable to construct a fundamental building block for a distributed photonic quantum network [33]. For these potential applications it is favorable to work in the Faraday geometry (external magnetic field along the growth direction) as is the case here, since the operation fidelity scales as $\sim 1 - \gamma/\Gamma$ [31], where $\Gamma \gg \gamma$ was reported here. One challenge, however, is the coupling of the electron spin to the noisy nuclear bath leading to electron spin dephasing. Recent work has demonstrated how to significantly reduce the noise on the Overhauser field by feedback control of the nuclear ensemble [50, 51].
[9] Lodahl, P., Mahmoodian, S. & Stobbe, S. Interfacing single photons and single quantum dots with photonic nanostructures. Rev. Mod. Phys. 87, 347 (2015).

[10] Arcari, M. et al. Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide. Phys. Rev. Lett. 113, 093603 (2014).

[11] Claudon, J. et al. A highly efficient single-photon source based on a quantum dot in a photonic nanowire. Nat. Photonics 4, 174 (2010).

[12] Makhonin, M. et al. Waveguide coupled resonance fluorescence from on-chip quantum emitter. Nano lett. 14, 6997–7002 (2014).

[13] Ding, X. et al. On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar. Phys. Rev. Lett. 116, 020401 (2016).

[14] Kirianské, G. et al. Indistinguishable and efficient single photons from a quantum dot in a planar nanobeam waveguide. Phys. Rev. B 96, 165306 (2017).

[15] Javadi, A. et al. Single-photon non-linear optics with a quantum dot in a waveguide. Nat. Commun. 6, 8655 (2015).

[16] Bennett, A. et al. A semiconductor photon-sorter. Nat. Nanotechnol. 11, 857–860 (2016).

[17] Luxmoore, I. J. et al. Interfacing spins in an InGaAs quantum dot to a semiconductor waveguide circuit using emitted photons. Phys. Rev. Lett. 110, 037402 (2013).

[18] Stöllner, I. et al. Deterministic photon-emitter coupling in chiral photonic circuits. Nat. Nanotechnol. 10, 775–778 (2015).

[19] Coles, R. et al. Chirality of nonphotonic waveguide with embedded quantum emitter for unidirectional spin transfer. Nat. Commun. 7, 11183 (2016).

[20] Lodahl, P. et al. Chiral quantum optics. Nature 541, 473–480 (2017).

[21] Knoutvar, M. et al. Optically programmable electron spin memory using semiconductor quantum dots. Nature 432, 81 (2004).

[22] Atatüre, M. et al. Quantum-dot spin-state preparation with near-unity fidelity. Science 312, 551 (2006).

[23] Warburton, R. J. Single spins in self-assembled quantum dots. Nat. Mat. 12, 483–493 (2013).

[24] Press, D. et al. Ultrafast optical spin echo in a single quantum dot. Nat. Photonics 4, 367–370 (2010).

[25] Stockill, R. et al. Quantum dot spin coherence governed by a strained nuclear environment. Nat. Commun. 7, 12745 (2016).

[26] Pinotsi, D., Fallahi, P., Miguel.Sanchez, J. & Imamoğlu, A. Resonant spectroscopy on charge tunable quantum dots in photonic crystal structures. IEEE J. Quant Electron. 47, 1371 (2011).

[27] Carter, S. G. et al. Quantum control of a spin qubit coupled to a photonic crystal cavity. Nat. Photonics 7, 329 (2013).

[28] Sweeney, T. M. et al. Cavity-stimulated raman emission from a single quantum dot spin. Nat. Photonics 8, 442–447 (2014).

[29] Sun, S., Kim, H., Solomon, G. S. & Waks, E. A quantum phase switch between a single solid-state spin and a photon. Nat. Nanotechnol. 11, 539–544 (2016).

[30] Emary, C., Xu, X., Steel, D. G., Salkin, S. & Sham, L. J. Fast initialization of the spin state of an electron in a quantum dot in the voigt configuration. Phys. Rev. Lett. 98, 047401 (2007).

[31] Chang, D. E., Sorensen, A. S., Demler, E. A. & Lukin, M. D. A single-photon transistor using nanoscale surface plasmons. Nat. Phys. 3, 807 (2007).

[32] Scheucher, M., Hilico, A., Will, E., Volz, J. & Rauschenbeutel, A. Quantum optical circulator controlled by a single chirally coupled atom. Science 354, 1577–1580 (2016).

[33] Mahmoodian, S., Lodahl, P. & Sorensen, A. S. Quantum networks with chiral-light matter interaction in waveguides. Phys. Rev. Lett. 117, 240501 (2016).

[34] Dreiser, J. et al. Optical investigations of quantum dot spin dynamics as a function of external electric and magnetic fields. Phys. Rev. B 77, 075317 (2008).

[35] Löbl, M. C. et al. Narrow optical linewidths and spin pumping on charge-tunable, close-to-surface self-assembled quantum dots in an ultra-thin diode. Phys. Rev. B 96, 165440 (2017).

[36] Kuhlmann, A. V. et al. Charge noise and spin noise in a semiconductor quantum device. Nat. Phys. 9, 570 (2013).

[37] Warburton, R. J. et al. Optical emission from a charge-tunable quantum ring. Nature 405, 926–929 (2000).

[38] Smith, J. M. et al. Voltage control of the spin dynamics of an exciton in a semiconductor quantum dot. Phys. Rev. Lett. 94, 197402 (2005).

[39] Kurzmann, A., Ludwig, A., Wieck, A. D., Lorke, A. & Geller, M. Auger recombination in self-assembled quantum dots: Quenching and broadening of the charged exciton transition. Nano lett. 16, 3367–3372 (2016).

[40] Kroner, M. et al. Resonant two-color high-resolution spectroscopy of a negatively charged exciton in a self-assembled quantum dot. Phys. Rev. B 78, 075429 (2008).

[41] Wüst, G. et al. Role of the electron spin in determining the coherence of the nuclear spins in a quantum dot. Nat. Nanotechnol. 11, 885–889 (2016).

[42] Fushman, I. et al. Controlled phase shifts with a single quantum dot. Science 320, 769–772 (2008).

[43] Volz, T. et al. Ultrafast all-optical switching by single photons. Nat. Photonics 6, 605 (2012).

[44] Nozaki, K. et al. Sub-femtojoule all-optical switching using a photonic-crystal nanocavity. Nat. Photonics 4, 477–483 (2010).

[45] Miller, D. A. Are optical transistors the logical next step? Nat. Photonics 4, 3–5 (2010).

[46] Lodahl, P. Quantum-dot based photonic quantum networks. Quantum Sci. Technol. 3, 013001 (2018).

[47] Lindner, N. H. & Rudolph, T. Proposal for pulsed on-demand sources of photonic cluster state strings. Phys. Rev. Lett. 103, 113602 (2009).

[48] Kroner, M. et al. Optical detection of single-electron spin resonance in a quantum dot. Phys. Rev. Lett. 100, 156803 (2008).

[49] Hansom, J. et al. Environment-assisted quantum control of a solid-state spin via coherent dark states. Nat. Phys. 10, 725–730 (2014).

[50] Xu, X. et al. Optically controlled locking of the nuclear field via coherent dark-state spectroscopy. Nature 459, 1105–1109 (2009).

[51] Êthier-Majcher, G. et al. Improving a solid-state qubit through an engineered mesoscopic environment. Phys. Rev. Lett. 119, 130503 (2017).
ACKNOWLEDGMENTS

We acknowledge N. J. Taba and C. L. Dreesen for help during the initial stages of the measurements. We gratefully acknowledge financial support from the European Research Council (ERC Advanced Grant “SCALE”), Innovation Fund Denmark (Quantum Innovation Center “Qubiz”), and the Danish Council for Independent Research. IS, MCL & RJW acknowledge support from SNF (project 200020_156637) and NCCR QSIT. A.L. and A.D.W. gratefully acknowledge support of BMBF - Q.com-H 16KIS0109 and the DFG - TRR 160. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 747866 (EPPIC) and No. 753067 (OPHOCS).

Contributions

A.J., D.D., M.H.A., and T.S. carried out the optical experiment with input from I.S., R.J.W., and P.L. A.J., M.H.A., and S.M. performed the theory. M.C.L., I.S., A.L., and R.J.W. designed the heterostructure. R.S., A.L., and A.D.W. grew the wafer. C.P., T.P., S.S., and L.M. designed and fabricated the sample. A.J. and P.L. wrote the manuscript with input from all authors.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

Additional information

Supplementary information is available in the online version of the paper. Reprints and permission information is available online at www.nature.com/reprints. Correspondence and requests for materials should be addressed to A.J. and P.L.

Competing financial interests

The authors declare no competing financial interests.