Subcortical connectivity correlates selectively with attention’s effects on spatial choice bias

Varsha Sreenivasan and Devarajan Sridharan

Centre for Neuroscience, Indian Institute of Science, 560012 Bangalore, India

Edited by Michael E. Goldberg, Columbia University, New York, NY, and approved August 1, 2019 (received for review February 16, 2019)

Neural mechanisms of attention are extensively studied in the neocortex; comparatively little is known about how subcortical regions contribute to attention. The superior colliculus (SC) is an evolutionarily conserved, subcortical (midbrain) structure that has been implicated in controlling visuospatial attention. Yet how the SC contributes mechanistically to attention remains unknown. We investigated the role of the SC in attention, combining model-based psychophysics, diffusion imaging, and tractography in human participants. Specifically, we asked whether the SC contributes to enhancing sensitivity (d') to attended information, or whether it contributes to biasing choices (criteria) in favor of attended information. We tested human participants on a multialternative change detection task, with endogenous spatial cueing, and quantified sensitivity and bias with a recently developed multidimensional signal detection model (m-ADC model). At baseline, sensitivity and bias exhibited complementary patterns of asymmetries across the visual hemifields: While sensitivity was consistently higher for detecting changes in the left hemifield, bias was higher for reporting changes in the right hemifield. Remarkably, white matter connectivity of the SC with the neocortex mirrored this pattern of asymmetries. Specifically, the asymmetry in SC-cortex connectivity correlated with the asymmetry in choice bias, but not in sensitivity. In addition, SC-cortex connectivity strength could predict cueing-induced modulation of bias, but not of sensitivity, across individuals. In summary, the SC may be a key node in an evolutionarily conserved network for controlling choice bias during visuospatial attention.

Attention is an evolutionarily conserved cognitive capacity that enables the selection of behaviorally relevant information for prioritized sensory processing and decision-making (1, 2). While previous studies have extensively investigated the role of cortical brain regions in attention (3), comparatively little is known of subcortical contributions. Here, we investigate the role of the superior colliculus (SC), an evolutionarily conserved subcortical structure known to be important for directing eye movements (4) that has also been shown to play a role in controlling attention (5–13). Specifically, we investigate the role of the SC in controlling 1 of 2 key components of attention: perceptual sensitivity—enhanced sensory processing of the attended stimulus and choice bias, or selective gating of sensory information from the attended location for guiding behavioral decisions (14, 15).

Whether distinct cortical and subcortical regions mediate sensitivity and bias enhancement during attention is a topic of active research (14–16). Few studies have investigated this question in the neocortex: Two recent studies suggested that, while visual cortex (area V4) neurons selectively encode sensitivity modulation, the prefrontal cortex contains mixed neural populations that encode both sensitivity and bias modulations (14, 16). Similarly, other studies have suggested a role for the lateral intraparietal area in controlling bias in an overt attention task (3). In contrast, few studies have directly investigated the role of the subcortical SC in controlling sensitivity versus bias during attention tasks.

Manipulation of SC activity, either with focal microstimulation or with focal inactivation, produces systematic behavioral effects in attention tasks (17–20). For instance, 2 seminal studies (19, 21) showed that focal microstimulation of the SC produced attention-like shifts toward the receptive field location encoded by the stimulated SC neurons, whereas SC inactivation produced spatial attention deficits, as evidenced by an inability to detect changes in target features, particularly in the presence of foil (distractor) stimuli (18, 20). Using a model-based approach to reexamine these experimental data, a recent study (15) concluded that the behavioral effects of these SC manipulations were consistent with a selective role of the SC in controlling choice bias. This finding has been supported (22–24), as well as challenged (18, 25), by recent studies. The role of the SC in controlling sensitivity versus bias thus remains a topic of active debate.

Here, we addressed this question by investigating the neuroanatomical correlates of sensitivity and bias in the human SC with a combination of model-based psychophysics, diffusion MRI, and tractography of the SC. Sensitivity and bias were quantified using a multidimensional signal detection model (m-ADC model; refs. 15 and 26), with behavioral data from an endogenous attention task. These behavioral parameters were then correlated with participants’ SC connectivity profiles. The results provide converging evidence for a selective role of the human SC in controlling choice bias during endogenous visuospatial attention.

Results

We employed 2 parallel approaches to test the link among SC connectivity, sensitivity, and bias. First, we quantified hemifield

Significance

Forebrain mechanisms of visuospatial attention have been widely studied. Yet, how the midbrain contributes to attention remains comparatively unknown. Here, we examined the role of the superior colliculus (SC), a vertebrate midbrain structure, in attention. Does the SC control sensitivity to attended information, or enable biasing choices toward attended information, or both? We mapped structural connections of the human SC with neocortical regions and found that the strengths of these connections correlated with, and were strongly predictive of, individuals’ choice bias, but not sensitivity. Taken together with previous animal studies, our results suggest that the human SC may play an evolutionarily conserved role in controlling choice bias during visual attention.

Author contributions: D.S. designed research; V.S. performed research; V.S. analyzed data; and V.S. and D.S. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

This open access article is distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

Data deposition: The data reported in this paper, the code for analyses, and a high-quality version of Fig. 3 have been deposited in Figshare (DOI: 10.6084/m9.figshare.8602245).

To whom correspondence may be addressed. Email: varshas@iisc.ac.in or sridhar@iisc.ac.in.

This article contains supporting information online at www.pnas.org/cgi/doi/10.1073/pnas.1902704116/DCSupplemental.

First published September 6, 2019.

www.pnas.org/cgi/doi/10.1073/pnas.1902704116

PNAS | September 24, 2019 | vol. 116 | no. 39 | 19711–19716
asymmetries in behavioral sensitivity and bias at baseline, and estimated the correlation with asymmetry in the SC’s anatomical connectivity with the cortex and subcortex. Second, we quantified the modulation of sensitivity and bias by endogenous cueing and, again, measured their respective SC connectivity correlates.

Systematically Higher Bias for Right Visual Hemifield Choices. We quantified hemifield asymmetries in sensitivity and bias by acquiring behavioral data from 22 participants (group 1; SI Appendix, SI Methods); these participants performed a 2-alternative orientation change detection or 2-ADC task (Fig. 1A and SI Appendix, SI Methods). Briefly, participants detected and localized a change in orientation in 1 of 2 gratings that appeared in opposite visual hemifields. Participants indicated whether the change occurred in the left hemifield grating, in the right hemifield grating, or in neither grating (no change), using 3 distinct button-press responses (SI Appendix, SI Methods and Fig. S1A). Attention was directed to 1 of these 2 locations endogenously, with a spatial cue (75% cue validity; spatial axis) versus right (trials. Thick gray lines: decision boundaries that divide the decision space into 3 decision zones: change at cued location (red shading), uncued trials. Dashed line: line of equality.

By specifying the choice criterion at each location, we can estimate the correlation with asymmetry in the SC’s anatomical connectivity with the cortex and subcortex.

First, we confirmed established results of endogenous cueing on behavioral metrics: On average, cueing increased hit rates and decreased reaction times, indicating that subjects reliably employed the spatial cue to direct their attention (SI Appendix, Fig. S1C; hit rate [HR]: cues = 71.1 ± 1.7%, uncues = 41.1 ± 3.6% [P < 0.001]; reaction time [RT]: cues = 651 ± 38 ms, uncues = 815 ± 37 ms, mean ± standard error of mean [SEM] [P < 0.001]). Similarly, cueing enhanced both sensitivity and bias at the cued location (Fig. 1C; d’; cue: = 1.48 ± 0.10, uncues = 0.77 ± 0.13 [P < 0.001]; bcc: cue = -0.24 ± 0.07, uncues = 0.46 ± 10, mean ± SEM [P < 0.001] Wilcoxon signed rank test), in line with previous findings (28). Goodness-of-fit testing indicated that the m-ADC model fit individual participants’ data well (randomization test; median P value = 0.795; range = 0.478 to 0.988; SI Appendix, Fig. S1B).

Nevertheless, we observed striking asymmetries in the average values of sensitivity and bias across the visual hemifields (average (Fig. 1A, black circle). Change detection sensitivity at each location (d’C or d’UC) was measured as the difference between the signal and noise distribution means along the corresponding axis. A decision surface, comprising 3 intersecting lines (Fig. 1B, thick gray lines) divided the 2-dimensional decision space into 3 non-overlapping decision zones. The decision surface was parametrized by 2 criteria (cc and cUC), one for each location. In the SI Appendix (SI Appendix, SI Methods), we describe how sensitivity (d’) and criteria at each location are related to and can be estimated from response proportions in the contingency table. We employed the choice criterion (bcc = c’d’/2) as a measure of choice bias toward each location (27). Note that a lower choice criterion signifies a higher bias for reporting changes at that location.

Responses were provided through distinct types of button-press configurations across subjects to avoid the confounding effects of oculomotor or manual response biases (SI Appendix, Fig. S1A and SI Methods).

We employed the choice criterion (bcc = c’d’/2) as a measure of choice bias toward each location (27). Note that a lower choice criterion signifies a higher bias for reporting changes at that location. Sensitivity and bias at each location were related to and can be estimated from response proportions in the contingency table. We employed the choice criterion (bcc = c’d’/2) as a measure of choice bias toward each location (27).
across cued and uncued trials; SI Appendix, SI Methods). Sensitivity for detecting changes was higher on the left compared with the right visual hemifield (Fig. 1D; \(d' \) left: \(1.28 \pm 0.11 \); right: \(0.99 \pm 0.05 \); \(P = 0.008 \), Wilcoxon signed rank test). In contrast, choice bias was lower for reporting changes on the right compared with the left hemifield (Fig. 1D; \(b_{cL} \) left: \(0.27 \pm 0.07 \); right: \(-0.0006 \pm 0.07 \); \(P < 0.001 \)). Nevertheless, despite these robust field asymmetries in average parameter values, the magnitudes of both sensitivity and bias modulation by endogenous cueing were not significantly different across hemifields (Fig. 1D; \(\Delta d' \) cued–uncued: left: \(0.76 \pm 0.17 \); right: \(0.73 \pm 0.15 \); \(\Delta b_{c} \) cued–uncued: left: \(-0.80 \pm 0.15 \); right: \(-0.70 \pm 0.16 \). In other words, both \(\Delta d' \) and \(\Delta b_{c} \) were significantly different from zero in both hemifields (\(P < 0.001 \), signed rank test), but both \(\Delta d' \) and \(\Delta b_{c} \) magnitudes were not significantly different across hemifields (\(P > 0.05 \)).

We performed 3 control experiments and analyses to confirm the validity of these findings. First, we replicated these results in another group of \(n = 34 \) participants (group 3) performing a variant of the same task (SI Appendix, SI Methods, SI Results, and Fig. S1D). Second, we verify that response biases resulting from dominant hand use did not contribute to these results, we conducted a control experiment with \(n = 10 \) participants (group 4; SI Appendix, SI Methods) who performed the same attention task, but responded with their non-dominant hand; we obtained the same results (SI Appendix, SI Methods, SI Results, and Fig. S8 A and B). Third, we fit a similarity choice model (29) to the participants’ behavioral responses, and again observed robust field asymmetries in sensitivity and choice bias (SI Appendix, SI Results, Comparison of the m-ADC model with the similarity choice model and SI Appendix, Fig. S5 A–C).

Taken together, these results reveal a robust dissociation between asymmetries in behavioral components of attention (sensitivity and bias) at baseline. The asymmetry in sensitivity is consistent with previous reports of a selective left-hemifield advantage during visuospatial attention (30–32).

Stronger SC Connectivity with Left Hemispheric Cortex. We asked whether the observed hemifield asymmetries in sensitivity and bias would have an underlying basis in neuroanatomical connectivity of the SC. As a first step, we quantified hemispheric asymmetries in the connectivity of the SC with various cortical and subcortical brain regions.

We analyzed diffusion MRI data from \(n = 82 \) participants, 22 of whom comprised the behavioral group described here (group 1). Fifty additional participants’ data were drawn from the Human Connectome Project database (group 2; SI Appendix, SI Methods) (33). For each participant, we tracked streamlines between the SC (SI Appendix, Fig. S6B) and 34 cortical regions of interest (ROIs), with the Desikan-Killiany atlas (SI Appendix, Table S1 and Fig. S6d; ref. 34). The strength of connectivity for each streamline was quantified, using an established filtering algorithm (SIFT2; SI Appendix, SI Methods) (35). We also validated SC-cortex connection weights estimated using our approach (SI Appendix, Fig. S2 A and B) with previous reports (36–38; SI Appendix, SI Results, Validating SC-cortex connectivity asymmetries).

SC-cortex connectivity with the cortex exhibited clear laterality, both voxelwise (Fig. 2A) and region-wise (Fig. 2B). Average connection weights with cortical regions in the left hemisphere were systematically higher than those with the corresponding regions in the right hemisphere in a majority of the ROIs (Fig. 2 B, Top; \(P < 0.001 \), \(n = 22 \); group 1). These asymmetries were also apparent when examining SC connection weights to individual cortical ROIs (e.g., superior temporal ROI; Fig. 2 C, Top; \(P < 0.001 \)), but did not occur in all regions (SI Appendix, Fig. S2 D and E). We replicated these findings again in dMRI scans from a second group of subjects (\(n = 60 \); group 2-HCP database). Again, we observed significant hemispheric asymmetries in SC connection weights with a majority of the cortical regions (Fig. 2 B, Bottom; \(P < 0.001 \)), as well as significant hemispheric asymmetries in specific cortical regions (Fig. 2 C, Bottom; superior temporal ROI; \(P = 0.003 \)).

![Fig. 2](https://example.com/fig2.png)

Fig. 2. Stronger superior colliculus (SC) connectivity with left hemispheric cortex. (A, Top) Thresholded surface maps (averaged across subjects) showing the voxelwise distribution across the cortex of connection weights with the SC. (Left and Right) Left and right hemispheres, respectively. (Top and Bottom): Lateral and medial views, respectively. Red: group 1 (\(n = 22 \)); blue: group 2 (\(n = 60 \)). Color scale is binary (SI Appendix, SI Methods). White voxels indicate regions of overlap between the 2 subject groups. (Bottom) 3D glass brain view showing white matter tracts between the SC and the inferior parietal cortex in the left (blue) and right (brown) hemispheres, for a representative subject. (Left, Middle, and Right) show coronal, sagittal and axial views, respectively. Black dashed line (Inset) 3D rendering of the SC ROI. (B) Subject-averaged connection weights of the SC with each of the 34 cortical regions (filled circles) in the left (x axis) versus right (y axis) hemispheres. (Top) Group 1 data; (Bottom) group 2 data. Error bars: SEM across subjects. Some error bars are smaller than the sizes of the respective symbols. Dashed line: line of equality. (Inset) Distribution of the difference in SC connection weights between left and right hemispheric ROIs (\(\Delta c \)). (C) Connection weights of the SC with an exemplar region (superior temporal ROI) in the left (x axis) versus right (y axis) hemispheres, for individual subjects (open circles). (Top) Group 1 data (\(n = 22 \)); (Bottom) group 2 data (\(n = 60 \)). Other conventions are as in B. (D) Same as in C, Top, but for connection weights of the SC with the basal ganglia ROI comprising the subthalamic nucleus, the substantia nigra, and the caudate nucleus. Other conventions are as in C. ***\(P < 0.01 \), **\(P < 0.001 \).
To further ensure that these robust asymmetries were not a consequence of systematic biases in either our acquisition or analyses of the dMRI data, we tested for hemispheric asymmetries in a control region (V1, delineated with FreeSurfer; SI Appendix, SI Methods). Unlike the SC, the V1 exhibited mixed patterns of asymmetry in connectivity with other cortical regions (SI Appendix, Fig. S2 E, Bottom, and SI Appendix, S2 F and G and SI Results, Validating SC-cortex connectivity asymmetries). Moreover, we sought to replicate previous findings regarding asymmetries in fronto-parietal connections of 3 different subdivisions of the superior longitudinal fasciculus (SLF) (30). Our analyses reliably replicated previous reports of SLF connection asymmetries, thereby precluding systematic acquisition and analysis biases (SI Appendix, Fig. S7 A and B and SI Results, Validating SC-cortex connectivity asymmetries).

Finally, we asked whether connectivity asymmetries were confined to SC–cortex connections or were also apparent in the SC’s connections to other subcortical structures. In particular, the SC is known to exhibit strong connections to several nuclei in the basal ganglia, comprising the subthalamic nucleus (STN), the substantia nigra (SN), and the caudate nucleus (39). We combined the STN and SN into one region, the STN + SN. We analyzed the strength of SC connections to these basal ganglia nuclei. As with cortical connectivity, we also observed a strong leftward asymmetry in SC–basal ganglia connections (Fig. 2D; P = 0.001). For both the left and right hemispheres, correlation coefficients of the SC with cortical regions, as well as with the basal ganglia, were strikingly asymmetric, exhibiting stronger connectivity with left-hemispheric compared with right-hemispheric regions. The leftward asymmetry was characteristic of several, but not all, SC–cortex connections, and was not observed in V1–cortex or the fronto-parietal (SLF) connections. Would these robust hemispheric asymmetries in SC connectivity correlate with hemifield asymmetries in behavioral metrics (sensitivity and bias)? We addressed this question next.

Asymmetry in SC Connectivity Correlates with Choice Bias Asymmetry. Before testing for the relationship of sensitivity and bias asymmetries with asymmetry in SC connectivity across participants, we first asked whether these metrics would themselves be stable and reliably quantified in individual participants over the course of several days. A test-retest reliability analysis revealed significant correlations in sensitivity and bias values across several days (SI Appendix, Fig. S1E, SI Methods, and SI Results, Evaluating the stability of sensitivity and bias over time). Next, we combined the 34 ROIs in each hemisphere into 11 major aggregate ROIs (aROIs) on the basis of their anatomical proximity (Table S1 and Fig. S2C); we also combined the basal-ganglia regions into a 12th aROI (SI Appendix, Table S1 and Fig. S2C). The aggregate ROI definition was agnostic to subsequent results and limited the need for stringent multiple comparisons correction (SI Appendix, SI Methods).

We next asked whether these hemifield asymmetries in sensitivity and bias were correlated with hemispheric asymmetries in SC–cortex structural connectivity. To test this, we analyzed data from group 1 (n = 22) participants for whom both attention task data and dMRI data were available. We first quantified hemispheric asymmetries in sensitivity and bias as the difference in the value of these parameters across the left and right hemispheres (δL,R; SI Appendix, SI Methods). Similarly, we quantified hemispheric asymmetry in structural connectivity as a ratio of difference in the value of regional connectivity weights across the left and right hemispheres to their sum (MI_{L,R}; SI Appendix, SI Methods). We then proceeded to test the link between these behavioral and brain metrics in 2 stages.

First, we examined correlations between the asymmetries in behavioral metrics and connectivity (δL,R and MI_{L,R}). After multiple comparisons correction, we identified a strong, positive correlation between asymmetry in the SC–Cingulate aROI connection weights and asymmetry in choice bias (Fig. 3 A, Bottom; δb_{c;L,R}; r = 0.625; P = 0.002; Benjamini-Hochberg correction; SI Appendix, SI Methods). In contrast, connectivity asymmetries in none of the aROIs showed significant correlations with sensitivity asymmetries (Fig. 3 A, Middle; δs; r = −0.355, P = 0.105).

Second, we tested whether the asymmetries in SC connectivity in individual participants could predict their (respective) hemifield asymmetries in sensitivity or bias. We performed a leave-one-out regression analysis based on support-vector-machines, using SC connectivity asymmetries (MI_{L,R}) to 34 cortical regions, the STN + SN, and caudate nucleus (36 ROIs total) as features and predicted individual subjects’ sensitivity and bias asymmetries (δb_{c}; Fig. S8B and SI Appendix, SI Methods). SC connection asymmetries robustly predicted individual behavioral asymmetries in bias (Fig. 3 C, Left Bottom; r = 0.743; P < 0.001), but not in sensitivity (Fig. 3 C, Left Top; r = −0.104; P = 0.645). We quantified the contribution of each region to the linear prediction, using the magnitude of their regression weights (β), and found that SC connections with frontal and cingulate cortex (Fig. 3 C, Right), contributed strongly to the predictions (SI Appendix, SI Methods).

Finally, a control analysis revealed that V1 asymmetries neither correlated nor were predictive of sensitivity and bias asymmetries (SI Appendix, SI Results and Fig. S3A). Other control analyses, based on reaction times (SI Appendix, SI Results and Fig. S9B), based on SLF connectivity (SI Appendix, SI Results and Fig. S7C), and based on the similarity choice model (SI Appendix, SI Results and Fig. S5D), are described in the SI Appendix.

Asymmetry in SC Connectivity Correlates with Choice Bias Asymmetry. To test this, we analyzed data and dMRI data were available. We first quantified hemispheric asymmetries in sensitivity and bias as the difference in the value of these parameters across the left and right hemispheres (δL,R; SI Appendix, SI Methods). Similarly, we quantified hemispheric asymmetry in structural connectivity as a ratio of difference in the value of regional connectivity weights across the left and right hemispheres to their sum (MI_{L,R}; SI Appendix, SI Methods). We then proceeded to test the link between these behavioral and brain metrics in 2 stages.

First, we examined correlations between the asymmetries in behavioral metrics and connectivity (δL,R and MI_{L,R}). After multiple comparisons correction, we identified a strong, positive correlation between asymmetry in the SC–Cingulate aROI connection weights and asymmetry in choice bias (Fig. 3 A, Bottom; δb_{c;L,R}; r = 0.625; P = 0.002; Benjamini-Hochberg correction; SI Appendix, SI Methods). In contrast, connectivity asymmetries in none of the aROIs showed significant correlations with sensitivity asymmetries (Fig. 3 A, Middle; δs; r = −0.355, P = 0.105).

Second, we tested whether the asymmetries in SC connectivity in individual participants could predict their (respective) hemifield asymmetries in sensitivity or bias. We performed a leave-one-out regression analysis based on support-vector-machines, using SC connectivity asymmetries (MI_{L,R}) to 34 cortical regions, the STN + SN, and caudate nucleus (36 ROIs total) as features and predicted individual subjects’ sensitivity and bias asymmetries (δb_{c}; Fig. 3 B and SI Appendix, SI Methods). SC connection asymmetries robustly predicted individual behavioral asymmetries in bias (Fig. 3 C, Left Bottom; r = 0.743; P < 0.001), but not in sensitivity (Fig. 3 C, Left Top; r = −0.104; P = 0.645). We quantified the contribution of each region to the linear prediction, using the magnitude of their regression weights (β), and found that SC connections with frontal and cingulate cortex (Fig. 3 C, Right), contributed strongly to the predictions (SI Appendix, SI Methods).

Finally, a control analysis revealed that V1 asymmetries neither correlated nor were predictive of sensitivity and bias asymmetries (SI Appendix, SI Results and Fig. S3A). Other control analyses, based on reaction times (SI Appendix, SI Results and Fig. S9B), based on SLF connectivity (SI Appendix, SI Results and Fig. S7C), and based on the similarity choice model (SI Appendix, SI Results and Fig. S5D), are described in the SI Appendix.

Average SC Connectivity Correlates with Choice Bias Modulation by Cueing. Whereas SC connectivity asymmetry and bias asymmetry were correlated at baseline, we tested whether SC connectivity also correlated with the modulation of bias by endogenous cueing across individual subjects. As before, we tested this hypothesis with a 2-stage approach.

First, we computed the modulation of sensitivity and bias (Δδ′, Δb_{c;L,R}; SI Appendix, SI Methods) by endogenous cueing and correlated these quantities with average SC connection weights to each aROI (weights averaged across hemispheres). Several SC–cortex and SC–basal ganglia connections showed strong, significant correlations. In particular, SC–parietal, Δb_{c;L,R}; r = −0.519; P = 0.013 (Fig. 3 D, Bottom); note that these correlations are negative because a more negative Δb_{c} value indicates a stronger modulation of bias by endogenous cueing. In contrast, SC–cortex connectivity weights did not show significant correlations with sensitivity modulation (Fig. 3 D, Top). Interestingly, the strength of SC–cortex connectivity did not correlate with average values of bias (or sensitivity) across subjects (b_{c;L,R}; r = −0.159 [P = 0.479]; d_{c}; r = −0.058 [P = 0.797]), indicating that these correlations were not due to interindividual differences in the overall values of sensitivity and bias parameters.

Second, we tested whether SC connectivity could predict interindividual differences in the modulation of sensitivity or bias by endogenous cueing. Here, we employed average SC–cortex and SC–basal ganglia connection strengths (36 ROIs) as features in a support-vector regression to predict Δδ′ and Δb_{c}. We found that SC connectivity robustly predicted variations in bias modulation (Δb_{c}; r = 0.605; P = 0.003; Fig. 3 E, Left Bottom). Connectivity with various regions in the frontal, parietal, cingulate, and temporal cortices contributed to these behavioral predictions (Fig. 3 E, Right). In contrast, the same analysis failed to accurately predict interindividual variation in sensitivity modulation by cueing (Δδ′; r = 0.162; P = 0.470; Fig. 3 E, Left Top).

Interestingly, a control analysis revealed that V1 connectivity correlated with modulation of sensitivity (Δδ′; r = 0.477; P = 0.025), but not with modulation of bias (Δb_{c}; r = 0.306; P = 0.167; Fig. S7C).

Fig. 3. Asymmetry in SC connectivity correlates selectively with choice bias asymmetry and average SC connectivity correlates selectively with choice bias modulation. (A, Top) Representative white matter tracts between the SC and the posterior cingulate cortex (PCC). (Bottom) Hemispheric asymmetry in the SC-Cingulate aROI connection weights (M_{cc}, SI Appendix, SI Methods; x axis), plotted against hemifield asymmetry in sensitivity (δd; Top, purple data) and bias (δb; Bottom, yellow data). Filled circles: individual subjects. Dashed line: line of best fit. (B) Schematic of the algorithm for predicting each subject’s hemispheric asymmetry in sensitivity (δd) or bias (δb), using SC connectivity asymmetry. The $n \times n$ ($m = 36$ ROIs; $n = 22$ subjects) feature matrix (M_{cc}; Top) was used to predict each subject’s hemispheric asymmetry in sensitivity (δd) or bias (δb), using support vector regression, with a leave-one-subject out approach (Bottom). (C) (Left) Observed (x axis) versus predicted (y axis) asymmetries for sensitivity (δd; Top, purple data) and bias (δb; Bottom, yellow data) across individual subjects. Dashed line: line of equality. r and p values indicate correlation between observed and predicted values. (Right) Normalized regression coefficients (β) for predicting bias asymmetries. Labels indicate connections with $|\beta| > 0.5$ (SI Appendix, Fig. S2C and SI Methods). (D, Top) Average SC-parietal cortex aROI connection weights (x axis) plotted against the average modulation of sensitivity (Δd; purple data; y axis) with endogenous cueing. Filled circles: individual subjects. Dashed line: line of best fit. (Bottom) Same as in the Top but for modulation of bias (Δb; yellow data). Other conventions are as in the Top. (E, Left) Same as in C, Left, but showing observed (x axis) versus predicted (y axis) modules of sensitivity (Δd; Top, purple data) and bias (Δb; Bottom, yellow data) by endogenous cueing. (Right) Same as in C, Right, but showing the normalized coefficients (β) assigned to individual connections (features) for predicting modulations of bias. Other conventions are as in C.

SI Appendix, Fig. S3B and SI Results, V1 connectivity: correlation with behavior.

Taken together, the results reveal that SC connectivity was strongly correlated with and predictive of interindividual variations in the modulation of choice bias, but not sensitivity. (SI Appendix, Fig. S4A) by endogenous cueing of attention. The results confirm a strong and specific link between SC connectivity and the choice bias component of endogenous attention.

Discussion

The neural mechanisms of attention are being actively investigated in a variety of species (1, 40). Yet most studies have largely focused on the cortex, and particularly the fronto-parietal network (41), and little is known about how evolutionarily conserved subcortical regions contribute to attention (15, 42). Recent studies suggest that the SC is a key node in a midbrain attention network (18–20, 42). However, the precise role of the SC in attention, in terms of controlling sensitivity versus bias, remains debated (22, 25). In this study, we performed a detailed neuroanatomical characterization of the human SC’s connectivity, with diffusion imaging and tractography, to show that the human SC exhibits patterns of anatomical connectivity with cortical and subcortical structures that are consistent with its role in selectively modulating choice bias during attention.

Attention, typically, is not uniformly engaged across the visual field: A left hemifield advantage has been routinely measured in paradigms such as line bisection tasks (30). Our study indicates that this left hemifield advantage occurs for only the perceptual sensitivity component of attention. In contrast, choice bias for reporting changes exhibited a right hemifield advantage, suggesting dissociable neural mechanisms for each component. Paralleling these behavioral asymmetries, hemispheric differences in structural connectivity and their correlation with attention behaviors have also been documented (30). Our results indicate that hemispheric asymmetries in connectivity of the SC may underlie hemifield asymmetries in choice bias. Specifically, we observed strong correlation between asymmetry in cingulate-SC connectivity and hemifield asymmetry in choice bias (Fig. 3); stronger SC connectivity with the cingulate cortex in the right hemisphere correlated with a higher bias toward the right (ipsilateral) hemifield. This pattern is consistent with the hypothesis that the cingulate–SC connection is functionally inhibitory, such that greater right cingulate–SC connectivity would reduce bias toward the left (contralateral) visual field, thereby producing a higher bias toward the right (ipsilateral) visual field.

The connectivity of the SC has been extensively characterized using both tracer studies in nonhuman primates (36, 37) and diffusion imaging in humans (38, 39). Retrograde tracing in macaques has identified strong descending projections from the posterior parietal cortex to the SC (36, 43). These findings have been confirmed in human diffusion imaging studies, which have indicated that a specific subregion of the parietal cortex projects to the SC (38). In addition, stimulation studies indicate that parietal cortex neurons can be activated by antidromic stimulation at the SC (43). In our data, SC connections to the parietal cortex were among the strongest across 2 different groups of human participants (Fig. 2 and SI Appendix, Fig. S2); these connections likely reflect direct descending projections from the parietal cortex to the SC (44). Strong asymmetric descending projections to the SC are likely to asymmetrically activate SC neurons, leading to hemifield asymmetries in behavior. Specifically, our findings lead us to the testable hypothesis that inactivating the left SC would lead to stronger bias deficits in the right hemifield, rather than vice versa. Moreover, recent neuroimaging studies have indicated strong functional connectivity of the primary SC, both with the frontal lobe (45) as well as with the temporal lobe during a spatial attention task (42). Our findings suggest a neuroanatomical basis for these observations (Fig. 2).

The interindividual variability in SC connectivity with several cortical regions correlated with and was predictive of the interindividual differences in the modulation of choice bias by endogenous cueing of attention. The magnitude of this choice bias modulation reflects the subjects’ ability to flexibly adjust choice criteria across the cued and uncued locations based on

Sreenivasan and Sridharan
cortex connectivity may therefore index
45. Deposited 15 August 2019.
www.pnas.org/cgi/doi/10.1073/pnas.1902704116
24
Front. Neuroanat.
We thank John Duncan, Kendrick Kay, Sricharan
| 119
subcortex in mediating choice
102
Sreenivasan and Sridharan
–
Percept. Psychophys.
62
Cortex
structures that are modulated to
tivity and bias changes are mediated by overlapping brain
appendix
46). Moreover, our findings showed that the strength of the SC
correlation with the basal ganglia (caudate and STN + SN
differences in sensitivity modulation. Furthermore, we were not
nationalism of decisions on the SC with the cortex, and
connection weights between every pair of regions, and relevant code, have
been deposited into an online repository (47) for ready inspection and repli-
cation of the results.

ACKNOWLEDGMENTS. We thank John Duncan, Kendrick Kay, Sricharan
Sunder, and Priyanka Gupta for their feedback on an earlier version of this
manuscript, and Anikita Sengupta, Sanjna Banerjee, and Guruprasath Gurusamy
for help with data collection. We would also like to thank HealthCare Global
hospital for access to the MRI scanning facility. This research was funded by a
Wellcome Trust/Department of Biotechnology India Alliance Intermediate
fellowship [IA/I/15/2/50208], a Science and Engineering Research Board Early
Career award [ECR/2016/000403], a Pratiksha Trust Young Investigator award, a
Department of Biotechnology-Indian Institute of Science Departmental
Program grant, a Sonata Software grant, and a Tata Trusts grant (to D.S.).

Materials and Methods
All experiments were conducted in accordance with protocols approved by the
Institute Human Ethics Committee, Indian Institute of Science, Bangalore.
Informal written consent was obtained from each participant before the
study. Detailed Methods are presented in the SI Appendix. All data discussed in
the paper, including cortical and subcortical ROIs for each individual
subject, as well as tracts showing connections of the SC with the cortex, and
connection weights between every pair of regions, and relevant code, have
been deposited into an online repository (47) for ready inspection and repli-
cation of the results.

More generally, our findings on structure–behavior relationships
imply other key questions on white matter plasticity and its
consequences for attention. Can subjects learn to selectively
modulate one component of attention and not the other? Would
such learning generate structural changes in specific connections?
Can structural plasticity induced by neurostimulation, in turn, alter
only 1 of the 2 components of attention? Addressing these ques-
tions could provide deeper insights into key mechanisms of
selective attention in the brain.

1. M. P. Eckstein et al., Rethinking human visual attention: Spatial cueing effects and op-
timality of decisions by honeybees, monkeys and humans. Vision Res. 85, 5–19 (2013).
2. R. J. Kraulis, A. R. Bogadhi, J. P. Herman, A. Bollimunta, Selective attention without a
neocortex. Cortex 102, 161–175 (2018).
3. Z. Zuo, K. Miyawaki, F. C. Foster, C. J. Charpentier, J. W. Bisley, LP activity in the
interstimulus interval of a change detection task biases the behavioral response. J.
Neurophysiol. 114, 2637–2648 (2015).
4. A. K. Moschovakis, The superior colliculus and eye movement control. Curr. Opin.
Neurobiol. 28, 811–818 (2014).
5. R. H. Wurtz, M. E. Goldberg, The primary superior colliculus and the shift of visual
attention. Invest. Ophthalmol. 11, 441–450 (1972).
6. M. E. Goldberg, R. H. Wurtz, Activity of superior colliculus in behaving monkey. II.
Effect of attention on neuronal responses. J. Neurophysiol. 35, 560–574 (1972).
7. A. A. Kustov, D. L. Robinson, Shared neural control of attentional shifts and eye
movements. Nature 384, 74–77 (1996).
8. R. M. McPeek, E. L. Keller, Deficits in saccade target selection after inactivation of
superior colliculus. Nat. Neurosci. 3, 757–763 (2000).
9. G. D. Horvitz, W. T. Newsome, Separate signals for target selection and movement
specification in the superior colliculus. Science 284, 1158–1161 (1999).
10. R. J. Kraulis, D. Liston, C. D. Carello, Target selection and the superior colliculus:
Goals, choices and hypotheses. Vision Res. 44, 1445–1451 (2004).
11. J. Shires, J. Jelks, J. H. Maunsell, Shifting new light on the role of the basal ganglia-superior
colliculus pathway in eye movements. Curr. Opin. Neurobiol. 20, 717–725 (2010).
12. M. A. Basso, R. H. Wurtz, Modulation of neuronal activity in superior colliculus by
targets in competition. J. Neurosci. 29, 66–69 (1997).
13. T. Z. Luo, J. H. R. Maunsell, Neuronal modulations in visual cortex are associated with
only one of multiple components of attention. Neurom. 86, 1182–1188 (2015).
14. D. Sridharan, N. A. Steinmetz, T. Moore, E. I. Knudsen, Does the superior colliculus
control perceptual sensitivity or choice bias during attention? Evidence from a mul-
tilateral discriminative decision framework. J. Neurosci. 37, 480–511 (2017).
15. T. Z. Luo, J. H. R. Maunsell, Attentional changes in either criterion or sensitivity are
associated with robust modulations in lateral prefrontal cortex. Neuron 97, 1382–
1393.e7 (2018).
16. J. Cavanaugh, R. H. Wurtz, Subcortical modulation of attention counters change
blindness. J. Neurosci. 24, 11236–11243 (2004).
17. A. Zénon, R. J. Krauzlis, Attention deficits without cortical neuronal deficits. Nature
489, 434–437 (2012).
18. J. R. Müller, M. G. Philiastides, W. T. Newsome, Microstimulation of the superior
colliculus focuses attention without moving the eyes. Proc. Natl. Acad. Sci. U.S.A. 102,
2222–2227 (2005).
19. A. Zénon, R. J. Krauzlis, Attentional modulations without cortical neural deficits. Nature
489, 434–437 (2012).
20. J. R. Müller, M. G. Philiastides, W. T. Newsome, Microstimulation of the superior
colliculus fixes attention without moving the eyes. Proc. Natl. Acad. Sci. U.S.A. 102,
2222–2227 (2005).
21. L. P. Lovejoy, R. J. Kraulis, Inactivation of primate superior colliculus impairs covert
selection of signals for perceptual judgments. Nat. Neurosci. 13, 261–266 (2010).
22. R. H. Wurtz, J. E. Albano, Visual-motor function of the primate superior colliculus.
Ann. N.Y. Acad. Sci. 88, 138–226 (1990).
23. B. T. Crapse, H. Lau, M. A. Basso, A role for the superior colliculus in decision criteria.
Neuron 97, 181–194.e6 (2018).
24. P. Grimaldi, S. H. Cho, H. Lau, M. A. Basso, Superior colliculus signals decisions rather
than confidences in the outcome of single neurons. J. Neurophysiol. 120, 2614–2629 (2018).
25. B. Odegaard et al., Superior colliculus neuronal ensemble activity signals optimal rather
than subjective confidence. Proc. Natl. Acad. Sci. U.S.A. 115, E1588–E1597 (2018).
26. D. Sridharan, N. A. Steinmetz, T. Moore, E. I. Knudsen, Distinguishing bias from
sensitivity effects in multilatent decision tasks. J. Vis. 14, 16(2014).
27. J. D. Ingleby, Signal detection theory and psychophysics J. Sound Vib. 5, 519–521
(1967).