LIFTING CURVES SIMPLY

JONAH GASTER

Abstract. We provide linear lower bounds for $f_\rho(L)$, the smallest integer so that every curve on a fixed hyperbolic surface (S, ρ) of length at most L lifts to a simple curve on a cover of degree at most $f_\rho(L)$. This bound is independent of hyperbolic structure ρ, and improves on a recent bound of Gupta-Kapovich [GK]. When (S, ρ) is without punctures, using [Pat] we conclude asymptotically linear growth of f_ρ. When (S, ρ) has a puncture, we obtain exponential lower bounds for f_ρ.

1. Introduction

Let S be a topological surface of finite type and negative Euler characteristic, and let ρ be a complete hyperbolic metric on S. Let $\mathcal{C}(S)$ indicate the set of closed curves on S, i.e. the set of free homotopy classes of the image of immersions of S^1 into S. For $\gamma \in \mathcal{C}(S)$, let $\ell_\rho(\gamma)$ indicate the length of the ρ-geodesic representative of γ on S, and let $\iota(\gamma, \gamma)$ indicate the geometric self-intersection number of γ. A closed curve $\gamma \in \mathcal{C}(S)$ is simple when its self-intersection $\iota(\gamma, \gamma)$ is equal to zero.

It is a corollary of a celebrated theorem of Scott [Sco] that each closed curve $\gamma \in \mathcal{C}(S)$ lifts to a simple closed curve in some finite-sheeted cover (i.e. γ "lifts simply"). Recent work has focused on making Scott’s result effective [Pat]. As such, for $\gamma \in \mathcal{C}(S)$, let $\deg(\gamma)$ indicate the minimum degree of a cover to which γ lifts simply.

We focus on two functions f_ρ and f_S. Let the integer $f_S(n)$ be the minimum d so that every curve γ of self-intersection number $\iota(\gamma, \gamma)$ at most n has degree $\deg(\gamma)$ at most d, and let the integer $f_\rho(L)$ be the minimum d so that every curve γ of ρ-length $\ell_\rho(\gamma)$ at most L has degree $\deg(\gamma)$ at most d. Gupta-Kapovich have recently shown:

Theorem 1. [GK, Thm. C, Cor. 1.1] There are constants $C_1 = C_1(\rho)$ and $C_2 = C_2(S)$ so that

$$f_\rho(L) \geq C_1 \cdot (\log L)^{1/3} \quad \text{and} \quad f_S(n) \geq C_2 \cdot (\log n)^{1/3}.$$

Their work analyzed the ‘primitivity index’ of a ‘random’ word in the free group, exploiting the many free subgroups of $\pi_1 S$ (e.g. subgroups corresponding to incompressible three-holed spheres, or pairs of pants) to obtain the above result. We also exploit the existence of free subgroups of $\pi_1 S$, but instead of following in their delicate analysis of random walks in the free group.
group, we analyze explicit curves on S. The chosen curves are sufficiently uncomplicated to allow a straightforward analysis of the degree of any cover to which the curves lift simply. As a consequence, we provide the improved lower bounds:

Theorem 2. We have $f_S(n) \geq n + 1$. Moreover, let $B = B(S)$ be a Bers constant for (S, ρ), and let $\epsilon > 0$. Then there is an $L_0 = L_0(\rho, \epsilon)$ so that, for any $L \geq L_0$,

$$f_\rho(L) \geq \frac{L}{B + \epsilon}.$$

Recall the theorem of Bers [Ber]: There is a constant $B = B(S)$ so that, for every hyperbolic metric ρ on S, there is a maximal collection of disjoint simple curves on S with each curve of ρ-length at most B. Such a constant B is called a **Bers constant**, and such a collection of curves is called a **Bers pants decomposition** for (S, ρ). It is interesting to note that the constant in the lower bound for f_ρ in Theorem 2 is independent of the metric ρ.

Remark. The proof of Theorem 2 follows from an analysis of an explicit sequence of curves $\{\gamma_n\}$. These curves are also analyzed by Basmajian [Bas], where it is shown that they are in some sense the 'shortest' curves of a given intersection number: The infimum of the length function $\ell(\gamma_n)$ on the Teichmüller space of S is asymptotically the minimum possible among curves with self-intersection $\iota(\gamma_n, \gamma_n)$ [Bas, Cor. 1.4].

Combined with work of Patel [Pat, Thm. 1.1] (see the comment of [GK, p. 1]), in many cases Theorem 2 implies a determination of the order of growth of f_ρ. We have:

Corollary 3 (Linear growth of f_ρ). Suppose (S, ρ) is without punctures. There exist constants $C_1 = C_1(S), C_2 = C_2(\rho)$, and $L_0 = L_0(\rho)$ so that, for any $L \geq L_0$,

$$C_1 \cdot L \leq f_\rho(L) \leq C_2 \cdot L.$$

Recall that, when S has boundary, we say that (S, ρ) has a **puncture** if the closed curve homotopic to a boundary component has no geodesic representative. When (S, ρ) does have a puncture, we are not aware of upper bounds for f_ρ. In fact, the hypothesis above is essential. We show:

Theorem 4. Suppose (S, ρ) is a hyperbolic surface with a puncture. For any $\epsilon > 0$, there is $L_0 = L_0(\rho, \epsilon)$ so that, for any $L \geq L_0$,

$$f_\rho(L) \geq e^{L/\epsilon^2}.$$

This theorem indicates at least that Patel's upper bounds cannot hold in the punctured setting: If (S, ρ) is a hyperbolic surface with a puncture, the minimal degree of a cover to which a given curve γ lifts to a simple curve cannot be bounded linearly in the curve’s length $\ell_\rho(\gamma)$.

There are other avenues for further investigation. It would be natural to seek upper bounds for $f_S(n)$ (cf. [Riv, p. 15]), since no such bound follows
from [Pat]. One might also investigate whether the constant C_2 in the upper bound in Corollary 3 can be made independent of ρ, as with the lower bound. Finally, one could explore the set of curves of self-intersection number exactly n. For instance: Among the finitely many mapping class group orbits of curves γ with self-intersection n, which maximize $\deg(\gamma)$?

Outline of the paper. In §2 we introduce a sequence of curves $\{\gamma_n\}$ on a pair of pants and analyze the degrees $\deg(\gamma_n)$, and in §3 we deduce Theorem 2 and Theorem 4 as straightforward consequences.

Acknowledgements. The author gratefully acknowledges inspiration from Neha Gupta, inspiration and comments from Ilya Kapovich, and helpful comments from, and conversations with, Tarik Aougab, Ian Biringer, Martin Bridgeman, David Dumas, Peter Feller, Brice Loustau, and Priyam Patel.

2. Analysis of a Certain Curve Family

Let P_0 be a pair of pants. Identify $\pi_1(P_0, p)$ with a rank-2 free group F, with generators a and b as pictured in Figure 1. Let γ_n indicate the closed curve given by the equivalence class of $a \cdot b^n$.

![Figure 1. The pair of pants P_0, with generators a and b.](image)

The following lemma is neither new (see [Bas, Prop. 4.2]) nor surprising (see Figure 2), but we include a sketch of a proof for completeness:

Lemma 5. For $n \geq 0$, the curve γ_n has $\iota(\gamma_n, \gamma_n) = n$.

Proof sketch. It is not hard to pick a representative of γ_n that has self-intersection n, so that $\iota(\gamma_n, \gamma_n) \leq n$ (see Figure 2 for $n = 4$). On the other hand, it is also not hard to check that there are no immersed bigons for this chosen representative of γ_n: For every pair of intersection points, the concatenation of any pair of arcs of γ_n that connect the two points forms an essential curve. The ‘bigon criterion’ of [FM, §1.2.4] can be altered straightforwardly to an ‘immersed bigon criterion’ in the setting of curves with self-intersections, and so the lack of immersed bigons guarantees that the chosen representative of γ_n is in minimal position. □
We use Lemma 5 to estimate $\deg(\gamma_n)$, a calculation reminiscent of [GK, Lemma 3.10]. The following proposition is the main tool in our analysis.

Proposition 6. We have $\deg(\gamma_n) \geq n + 1$.

Proof. Towards contradiction, suppose there is a cover $P' \to P_0$ of degree $k \leq n$, so that γ_n lifts to a simple curve γ. Draw P_0 as a directed ribbon graph with one vertex p and the two edges labeled by a and b, and P' as a directed ribbon graph with vertices p_1, \ldots, p_k and $2k$ directed edges, k with a labels and k with b labels. Choose an orientation for γ so that γ consists of a directed a edge followed by n directed b edges. After relabeling, we may assume that the unique a edge of γ is followed by p_1.

Starting from p_1 and reading the vertices visited by γ in order, the vertex that immediately follows the n consecutive b edges of γ is p_l, where l is equivalent to $n + 1$ modulo k. Finally, γ follows an a edge from p_l to p_1. See Figure 3 for a schematic.

This implies that there is an incompressible embedded pair of pants P'' in P' that contains γ (see Figure 4 in the case that $k \nmid n$ – the other case is straightforwardly similar). After identifying P'' with P_0 appropriately, the closed curve γ is given by the equivalence class of $a \cdot b^s$, where $s = \left\lfloor \frac{n}{k} \right\rfloor \geq 1$. By Lemma 5 this curve is not simple, a contradiction. \square

Remark. In fact, one can show that $\deg(\gamma_n) = n + 1$, but the precise computation of $\deg(\gamma_n)$ is irrelevant.

3. **Proofs of Theorem 2 and Theorem 4**

Proof of Theorem 2. First suppose that P is any pair of pants on S, with any choice of identification of P with P_0, so that we may view $\{\gamma_n\}$ as a sequence of closed curves on S. Suppose that $\pi : S' \to S$ is a cover of S so that γ_n lifts to a simple curve γ'. Let P' be the component of $\pi^{-1}(P)$ containing γ'. We obtain a cover $\pi|_P : P' \to P$, so that the degree of $S' \to S$ is at least the degree of $P' \to P$. By Proposition 6, the degree of $P' \to P$
is at least $n + 1$. Thus $\deg(\gamma_n) \geq n + 1$, and the bound for $f_S(n)$ follows immediately from Lemma 5.

We turn to the bound for $f_\rho(L)$. Let P be a pair of pants with geodesic boundary in a Bers pants decomposition for the hyperbolic metric ρ. Let α and β be two cuffs of P, and let δ indicate the simple arc connecting α to β. Let the ρ-length of δ be given by $\ell_\rho(\delta) = D$. Identify P with P_0 so that α is in the conjugacy class of a and β is in the conjugacy class of b, and consider the closed curves $\{\gamma_n\}$ in P. Evidently,

$$\ell_\rho(\gamma_n) \leq \ell_\rho(\alpha) + n \cdot \ell_\rho(\beta) + 2\ell_\rho(\delta) \leq B(1 + n) + 2D.$$

Given $\epsilon > 0$, for large n the ρ-lengths satisfy $\ell_\rho(\gamma_n) \leq n \cdot (B + \epsilon)$. Let

$$n = n(L) = \left\lfloor \frac{L}{B + \epsilon} \right\rfloor,$$

Figure 3. A supposedly simple lift γ of γ_n to the cover $P' \to P_0$, where p_1 is the point above p that follows the unique a edge of γ.

LIFTING CURVES SIMPLY
so that $\ell_\rho(\gamma_n) \leq L$ for large enough L. Thus, for large enough L, we have

$$f_\rho(L) \geq \deg(\gamma_n) \geq n + 1 \geq \frac{L}{B + \epsilon}$$

as desired.

Proof of Theorem 4. Assume first that (S, ρ) is not the three-punctured sphere. As before, we choose a Bers pants decomposition for (S, ρ), letting P be a pair of pants containing a puncture as a boundary component. Note that by assumption there is a pants curve of P with hyperbolic holonomy. Identify P with P_0 so that b is homotopic to a curve that winds once around the puncture, and a is homotopic to a pants curve with hyperbolic holonomy. Consider again the sequence of curves $\{\gamma_n\}$ on S.

We assume the upper half plane model for the hyperbolic plane \mathbb{H}^2. By conjugating the holonomy representation of ρ appropriately, we may arrange for the holonomy around the puncture to be the transformation $z \mapsto z + 1$,

\[\text{Figure 4. An incompressible pair of pants } P'' \subset P' \text{ contains } \gamma.\]
and so that there is a lift of a to the hyperbolic plane \mathbb{H}^2 that is contained in a Euclidean circle centered at 0, say $|z| = s$.

There is a lift of a curve freely homotopic to b^n that starts at is, travels vertically along the imaginary axis to iy, travels horizontally to $n + iy$, and vertically down to $n + is$. Let β_y' indicate the projection of this curve to P, and note that by construction its starting and ending point are in common, and on the geodesic cuff α. We may thus concatenate (a parametrization of) α with β_y', and the curve so obtained is homotopic to γ_n.

An elementary computation shows that
\[
\ell_\rho(\beta_y') = 2 \log\left(\frac{y}{s}\right) + \frac{n}{y}.
\]
Taking $y = n$ we find
\[
\ell_\rho(\gamma_n) \leq \ell_\rho(\alpha) + \ell_\rho(\beta_n') \leq B - 2 \log s + 1 + 2 \log n.
\]
Given $\epsilon > 0$, for large n the ρ-lengths satisfy $\ell_\rho(\gamma_n) \leq (2 + \epsilon) \log n$, and the result follows as in the proof of Theorem 2: Let
\[
n = n(L) = \left\lfloor e^{\frac{L}{2}} \right\rfloor,
\]
so that $\ell_\rho(\gamma_n) \leq L$ for large enough L. Thus, for large enough L, we have
\[
f_\rho(L) \geq \deg(\gamma_n) \geq n + 1 \geq e^{\frac{L}{2}},
\]
as desired.

If, on the other hand, (S, ρ) is the unique hyperbolic structure on the three-punctured sphere, then we identify P_0 with S arbitrarily. A straightforward calculation (see [Bas, eq. (29)]) shows that
\[
\ell_\rho(\gamma_n) = 2 \cosh^{-1}(1 + 2n).
\]
The latter is asymptotic to $2 \log n$ as n goes to infinity, and so, given $\epsilon > 0$, for large enough n we have $\ell_\rho(\gamma_n) \leq (2 + \epsilon) \log n$. The result follows. □

References

[Bas] Ara Basmajian. Universal length bounds for non-simple closed geodesics on hyperbolic surfaces. J. Topol. 6(2013), 513–524.

[Ber] Lipman Bers. An inequality for Riemann surfaces. In Differential geometry and complex analysis, pages 87–93. Springer, Berlin, 1985.

[FM] Benson Farb and Dan Margalit. A primer on mapping class groups, volume 49 of Princeton Mathematical Series. Princeton University Press, Princeton, NJ, 2012.

[GK] Neha Gupta and Ilya Kapovich. The primitivity index function for a free group, and untangling closed curves on hyperbolic surfaces. (11 2014). 1411.5523

[Pat] Priyam Patel. On a theorem of Peter Scott. Proc. Amer. Math. Soc. 142(2014), 2891–2906.

[Riv] Igor Rivin. Geodesics with one self-intersection, and other stories. Adv. Math. 231(2012), 2391–2412.

[Sco] Peter Scott. Subgroups of surface groups are almost geometric. J. London Math. Soc. (2) 17(1978), 555–565.