Jost, Jürgen; Keßler, Enno; Wu, Ruijun; Zhu, Miaomiao

Geometric analysis of the Yang-Mills-Higgs-Dirac model. (English) Zbl 07603380
J. Geom. Phys. 182, Article ID 104669, 24 p. (2022)

Summary: The harmonic sections of the Kaluza-Klein model can be seen as a variant of harmonic maps with additional gauge symmetry. Geometrically, they are realized as sections of a fiber bundle associated to a principal bundle with a connection. In this paper, we investigate geometric and analytic aspects of a model that combines the Kaluza-Klein model with the Yang-Mills action and a Dirac action for twisted spinors. In dimension two we show that weak solutions of the Euler-Lagrange system are smooth. For a sequence of approximate solutions on surfaces with uniformly bounded energies we obtain compactness modulo bubbles, namely, energy identities and the no-neck property hold.

MSC: 35Q41 Time-dependent Schrödinger equations and Dirac equations 35Q40 PDEs in connection with quantum mechanics 35B65 Smoothness and regularity of solutions to PDEs 35B44 Blow-up in context of PDEs 35D30 Weak solutions to PDEs 53C43 Differential geometric aspects of harmonic maps 58E15 Variational problems concerning extremal problems in several variables; Yang-Mills functionals 81T13 Yang-Mills and other gauge theories in quantum field theory

Keywords: super Yang-Mills; Kaluza-Klein geometry; harmonic sections; regularity; energy identity

Full Text: DOI arXiv

References:
[1] Ai, Wanjun; Song, Chong; Zhu, Miaomiao, The boundary value problem for Yang-Mills-Higgs fields, Calc. Var. Partial Differ. Equ., 58, 157 (2019)
[2] Atiyah, Michael; Bott, Raoul, The Yang-Mills equations over Riemann surfaces, Philos. Trans. R. Soc. Lond. Ser. A, Math. Phys. Sci., 308, 1505, 523-615 (1983) · Zbl 0509.14014
[3] Betounes, David, The geometry of gauge-particle field interaction: a generalization of Utiyama’s theorem, J. Geom. Phys., 6, 107-125 (1989) · Zbl 0694.53080
[4] Betounes, David, Kaluza-Klein geometry, Differ. Geom. Appl., 1, 77-88 (1991) · Zbl 0784.53047
[5] Betounes, David, Mathematical aspects of Kaluza-Klein gravity, J. Geom. Phys., 51, 139-165 (2004) · Zbl 1077.53022
[6] Branding, Volker, Some aspects of Dirac-harmonic maps with curvature term, Differ. Geom. Appl., 40, 1-13 (2015) · Zbl 1319.53044
[7] Branding, Volker, Dirac-harmonic maps with torsion, Commun. Contemp. Math., 18, 4, Article 1550064 pp. (2016) · Zbl 1406.53053
[8] Chen, Qun; Jost, Jürgen; Li, Jiayu; Wang, Guofang, Dirac-harmonic maps, Math. Z., 254, 2, 409-432 (2006)
[9] Deligne, Pierre; Freed, Daniel S., Supersolutions, (Deligne, P.; et al., Quantum Fields and Strings: A Course for Mathematicians, vol. 1 (1999), American Mathematical Society: American Mathematical Society Providence), 227-356 · Zbl 1170.81431
[10] Ding, Weiyue; Tian, Gang, Energy identity for a class of approximate harmonic maps from surfaces, Commun. Anal. Geom., 3, 4, 543-554 (1995) · Zbl 0855.58016
[11] Duzar, Frank; Kuwert, Ernst, Minimization of conformally invariant energies in homotopy classes, Calc. Var. Partial Differ. Equ., 6, 285-313 (1998) · Zbl 0909.49008
[12] Fang, Yi; Hong, Minchun, Heat flow for Yang-Mills-Higgs fields. I, Chin. Ann. Math., Ser. B, 21, 4, 453-472 (2000) · Zbl 0966.58017
[13] Ginoux, Nicolas, The Dirac Spectrum (2009), Springer: Springer Berlin
[14] Grotoewski, Joseph F.; Kronz, Manfred, Minimizing conformal energies in homotopy classes, Forum Math., 16, 841-864 (2004) · Zbl 1082.53015
Jost, Jürgen; Wu, Ruijun; Zhu, Miaomiao, Energy quantization for a nonlinear sigma model with critical gravitinos, Trans. Am. Math. Soc., 365, 4, 1517-1596 (2013) · Zbl 1287.53002

Rivière, Tristan, Conservation laws for conformally invariant variational problems, Invent. Math., 168, 1, 1-22 (2007) · Zbl 1117.58013

Isobe, Takeshi, Regularity and energy quantization for the Yang-Mills-Dirac equations on 4-manifolds, Differ. Geom. Appl., 28, 359-375 (2010) · Zbl 1225.53007

Isobe, Takeshi, Existence results for solutions to nonlinear Dirac equations on compact spin manifolds, Manuscr. Math., 135, 329-360 (2011) · Zbl 1222.58012

Isobe, Takeshi, Nonlinear Dirac equations with critical nonlinearities on compact spin manifolds, J. Funct. Anal., 260, 253-307 (2011) · Zbl 1217.58013

Jost, Jürgen; Keßler, Enno; Tolksdorf, Jürgen; Wu, Ruijun; Zhu, Miaomiao, Regularity of solutions of the nonlinear sigma model with gravitino, Commun. Math. Phys., 358, 1, 171-197 (2018)

Jost, Jürgen; Liu, Lei; Zhu, Miaomiao, Blow-up analysis for approximate Dirac-harmonic maps in dimension 2 with applications to the Dirac-harmonic map heat flow, Calc. Var. Partial Differ. Equ., 56, 108 (2017)

Jost, Jürgen; Wu, Ruijun; Zhu, Miaomiao, Energy quantization for a nonlinear sigma model with critical gravitinos, Trans. Am. Math. Soc., Ser. B, 6, 215-244 (2019) · Zbl 1423.53078

Kekeler, Euno, Supergeometry, Super Riemann Surfaces and the Superconformal Action Functional, Lecture Notes in Mathematics, vol. 2230 (2019), Springer

Lawson, H. Blaine; Michelsohn, Marie-Louise, Spin Geometry (1989), Princeton University Press: Princeton University Press New Jersey

Lucas, Fanghua; Yang, Yisong, Gauged harmonic maps, Born-Infeld electromagnetism, and magnetic vortices, Commun. Pure Appl. Math., 56, 11, 1631-1665 (2003) · Zbl 1141.58030

Loubeau, Eric; Sá Earp, Henrique N., Harmonic flow of geometric structures

McDuff, Dusa; Salamon, Dietmar, J-holomorphic Curves and Symplectic Topology, Colloquium Publications, vol. 52 (2012), American Mathematical Society · Zbl 1272.53002

Parker, Thomas H., Gauge theories on four dimensional Riemannian manifolds, Commun. Math. Phys., 85, 563-602 (1982) · Zbl 0502.53022

Mundet i. Riera, I., Yang-Mills-Higgs theory for symplectic fibrations (1999), Universidad Autónoma de Madrid, Ph.D thesis

Mundet i. Riera, I.; Tian, Gang, A compactification of the moduli space of twisted holomorphic maps, Adv. Math., 222, 1117-1196 (2009) · Zbl 1177.32007

Rivière, Tristan, Conformally Invariant 2-dimensional Variational Problems. Cours joint de l’Institut Henri Poincaré, Paris (2010)

Rivière, Tristan; Struwe, Michael, Partial regularity for harmonic maps and related problems, Commun. Pure Appl. Math., 61, 4, 451-463 (2008)

Rudolph, Gerd; Schmidt, Matthias, Differential Geometry and Mathematical Physics (2017), Springer: Springer Berlin

Sacks, J.; Uhlenbeck, K., The existence of minimal immersion of 2-spheres, Ann. Math., second ser., 113, 1, 1-24 (1981)

Sharp, Ben; Topping, Peter, Decay estimates for Rivière’s equation, with applications to regularity and compactness, Trans. Am. Math. Soc., 365, 5, 2317-2339 (2013) · Zbl 1270.35152

Song, Chong, Critical points of Yang-Mills-Higgs functionals, Commun. Contemp. Math., 13, 3, 463-486 (2011) · Zbl 1220.58006

Song, Chong, Convergence of Yang-Mills-Higgs fields, Math. Ann., 366, 1-2, 167-217 (2016) · Zbl 1361.58008

Steenrod, Norman, The Topology of Fiber Bundles (1951), Princeton University Press: Princeton University Press Princeton

Uhlenbeck, Karen, Connections with \((L^p) \) bounds on curvature, Commun. Math. Phys., 83, 31-42 (1982)

Wang, Yue; Zhang, Xi, The coupled Yang-Mills-Higgs flow, J. Math. Anal. Appl., 339, 1, 153-174 (2008) · Zbl 1148.58006 · 1177.32007

Wehrheim, Katrin, Uhlenbeck Compactness, EMS Series of Lectures in Mathematics, vol. 1 (2004), European Mathematical Society: European Mathematical Society Zürich

Witten, Edward, Topological sigma models, Commun. Math. Phys., 118, 3, 411-449 (1988) · Zbl 0674.58047

Wood, Chris M., An existence theorem for harmonic section, Manuscr. Math., 68, 69-75 (1990)

Yang, Xu; Jin, Rongrong; Lu, Guangcun, Solutions of Dirac equations on compact spin manifolds via saddle point reduction, J. Fixed Point Theory Appl., 19, 215-229 (2017) · Zbl 1395.53011

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.