ORIGINAL ARTICLE

Carfilzomib alters the HLA-presented peptidome of myeloma cells and impairs presentation of peptides with aromatic C-termini

DJ Kowalewski1,2, S Walz1,2,8, L Backert1,3, H Schuster1, O Kohlbacher3,4,5, K Weisel2, SM Rittig2, L Kanz2, HR Salih2,6, H-G Rammensee1,7, S Stevanović1,7 and JS Stickel2

Recent studies suggest that multiple myeloma is an immunogenic disease, which might be effectively targeted by antigen-specific T-cell immunotherapy. As standard of care in myeloma includes proteasome inhibitor therapy, it is of great importance to characterize the effects of this treatment on HLA-restricted antigen presentation and implement only robustly presented targets for immunotherapeutic intervention. Here, we present a study that longitudinally and semi-quantitatively maps the effects of the proteasome inhibitor carfilzomib on HLA-restricted antigen presentation. The relative presentation levels of 4780 different HLA ligands were quantified in an in vitro model employing carfilzomib treatment of MM.15 and U266 myeloma cells, which revealed significant modulation of a substantial fraction of the HLA-presented peptidome. Strikingly, we detected selective down-modulation of HLA ligands with aromatic C-terminal anchor amino acids. This particularly manifested as a marked reduction in the presentation of HLA ligands through the HLA allotypes A*23:01 and A*24:02 on MM.15 cells. These findings implicate that carfilzomib mediates a direct, peptide motif-specific inhibitory effect on HLA ligand processing and presentation. As a substantial proportion of HLA allotypes present peptides with aromatic C-termini, our results may have broad implications for the implementation of antigen-specific treatment approaches in patients undergoing carfilzomib treatment.

INTRODUCTION

Proteasome inhibitors have become a cornerstone in the management of multiple myeloma (MM), effectively helping to increase disease-free and overall survival of MM patients over the past decade.1 Carfilzomib, a second-generation proteasome inhibitor, has been approved for patients with relapsed or refractory disease who have received at least two prior therapies and is currently under investigation as a first-line therapeutic option.2-4 By specifically and irreversibly binding to the β5-subunit, carfilzomib blocks the chymotrypsin-like specificity of the proteasome resulting in the activation of pro-apoptotic and anti-proliferative pathways5,6 and the induction of a terminal unfolded protein response.7 As the proteasome has a central role in the generation of MHC-presented peptides8-10 it has long been established that proteasome inhibition can directly impact antigen presentation by MHC molecules and thereby impair specific T-cell responses.11-15 In MM, the presence of clonally expanded CD8 + T cells has been associated with improved patient survival, pointing to their involvement in tumor surveillance.14,15 Furthermore, the clinical efficacy of the immune modulatory drug lenalidomide,16 which has pleiotropic effects including improved cytotoxic T-cell activation,17 indicates the potentially central role of myeloma-specific T cells in disease control. In a recent study, we investigated the underlying specificities of anti-myeloma T-cell responses by analyzing the antigenic landscape of MM by mass spectrometry and identified a set of antigens characterized by exquisite myeloma specificity.18 As MM remains a largely incurable disease despite the aforementioned advances,19,20 the aim of our previous study was to define a panel of broadly presented targets for antigen-specific immunotherapy of MM. Since standard of care in MM comprises proteasome inhibitor therapy, it is of great importance to thoroughly characterize the effects of this treatment on the antigenic landscape of myeloma cells to allow for implementation of robustly presented targets for concomitant or subsequent immunotherapy. In the present study, we comprehensively and semi-quantitatively mapped the impact of proteasome inhibition on HLA-restricted antigen presentation using an in vitro model of carfilzomib treatment in myeloma. Quantitation of the presentation levels of 72 previously defined myeloma antigens under treatment identified robustly presented targets. Importantly, peptidome-wide analysis delineated clusters of HLA ligands characterized by substantial and sustained down-modulation upon proteasome inhibition. Closer investigation of these clusters revealed distinct peptide motif-specific inhibitory effects of carfilzomib on HLA-restricted antigen presentation, which manifested as the marked reduction in the presentation of antigens with aromatic C-termini.

1Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany; 2Department of Hematology and Oncology, University of Tübingen, Tübingen, Germany; 3Applied Bioinformatics, Department of Computer Science, Center for Bioinformatics, University of Tübingen, Tübingen, Germany; 4Quantitative Biology Center, University of Tübingen, Tübingen, Germany; 5Max Planck Institute for Developmental Biology, Tübingen, Germany; 6Clinical Cooperation Unit Translational Immunology, German Cancer Consortium (DKTK), DKFZ Partner Site, Tübingen, Germany and 7German Cancer Consortium (DKTK), DKFZ Partner Site, Tübingen, Germany. Correspondence: Dr JS Stickel, Department of Hematology and Oncology, University of Tübingen, Offenbach-Müller Strasse 10, Tübingen 72076, Germany. E-mail: juliane.stickel@med.uni-tuebingen.de

© These authors contributed equally to this work.

Received 27 January 2016; accepted 2 February 2016
MATERIALS AND METHODS

Patients and bone marrow samples
Bone marrow mononuclear cells from MM patients at the time of diagnosis or at relapse were before therapy were isolated by density gradient centrifugation (Biocoll, Biochrom GmbH, Berlin, Germany) and erythrocyte lysis (El buffer, Qiagen, Venlo, Netherlands). Informed consent was obtained in accordance with the Declaration of Helsinki protocol. The study was performed according to the guidelines of the local ethics committee (142/2013BO2). Patient characteristics are provided in Supplementary Table 1.

Myeloma cell lines
For HLA quantification and HLA ligandome analysis, the myeloma cell lines (MCLs MM.1S, U266, RPMI8226, and JNJ3) were cultured in the recommended cell media (RPMI-1640; Gibco, Carlsbad, CA, USA and IMDM; Lonza, Basel, Switzerland) supplemented with fetal calf serum, 100 IU/l penicillin, 100 mg/l streptomycin and 2 mmol/l glucose at 37 °C and 5% CO2.

In vitro treatment of MCL and primary MM samples
Cultured MCLs (MM.1S and U266) and primary myeloma samples were incubated with carfilzomib (100 nM) for 1 h-period, followed by three washes in PBS (Gibco) and recultured for additional 24 or 48 h. Controls were incubated with vehicle control (glucose 5%) for 1 h, followed by identical washing and incubation for 24 or 48 h. Experiments were conducted in three biological replicates where indicated. Please note that one data set (Carfilzomib #2 t24h) did not pass quality control for label-free quantitation (LFQ) analysis and had to be replaced by Carfilzomib #1 t24h. All analyses based on LFQ data therefore implement Carfilzomib #1 compared with Mock #2 as the data set for carfilzomib-induced modulation at t24h.

Quantification of HLA surface expression
HLA surface expression on CD38+CD138+ myeloma cells of patients and MCLs was analyzed using the QIFIKIT bead-based quantitative flow-cytometric assay (Dako, Glostrup, Denmark) according to the manufacturer’s instructions as described before.21 In brief, samples were stained with the pan-HLA class I-specific monoclonal antibody (mAb) W6/32 (produced in-house) or IgG isotype control (BioLegend, San Diego, CA, USA), respectively. Surface marker staining for primary samples was carried out with directly labeled CD138, anti-κ, anti-λ, CD19, CD20 (BioLegend) and CD38, CD3 and CD44 (BD, Franklin Lakes, NJ, USA) antibodies. 7-AAD (BioLegend) was added as a viability marker immediately before flow-cytometric analysis on an LSR Fortessa (BD).

Isolation of HLA ligands from MCLs
HLA class I molecules were isolated using standard immunoaffinity purification as described before,22 using the pan-HLA class I-specific mAb W6/32 (produced in-house) to extract HLA ligands from the fixed sample volume of 2.0 ml cell pellet per condition and biological replicate.

Analysis of HLA ligands by LC-MS/MS
HLA ligand extracts were analyzed in five technical replicates as described previously.23 In brief, peptide samples were separated by nanoflow HPLC (RSLCnano, Thermo Fisher, Waltham, MA, USA) using a 50 μm × 2.5 cm PepMap100 C18 column (Thermo Fisher) and a gradient ranging from 2.4 to 32.0% acetonitrile over the course of 90 min. Eluting peptides were analyzed in an online coupled LTQ Orbitrap XL mass spectrometer (Thermo Fisher) using a top five CID (collision-induced dissociation) fragmentation method.

Database search and HLA annotation
Data processing was performed as described previously.23 In brief, the Mascot search engine (Mascot 2.2.04; Matrix Science, London, UK) was used to search the human proteome as comprised in the Swiss-Prot database (20.279 reviewed protein sequences; 27 September 2013) without enzymatic restriction. Oxidized methionine was allowed as a dynamic modification. The false discovery rate was estimated using the Percolator algorithm24 and set to 5%. Peptide lengths were limited to 8–12 amino acids for HLA class I. Protein inference was disabled, allowing for multiple protein annotations of peptides. HLA annotation was performed using NetMHC25 (v3.4), annotating peptides with IC50 scores below 500 nM as ligands of the corresponding HLA allele. In cases of multiple possible annotations, the HLA allele type yielding the lowest IC50 score was selected.

LFQ of HLA ligand presentation
For LFQ of the relative HLA ligand abundances over the course of carfilzomib treatment, the total injected peptide amounts of all samples were normalized and LC-MS/MS analysis was performed in five technical replicates for each sample. For normalization, the relative amounts of substance in the different samples/conditions were calculated from the summed areas under the curve of all peptide identifications detected in dose-finding mass spectrometry runs and the samples were adjusted accordingly by dilution. Relative quantitation of HLA ligands was performed by calculating the area under the curve of the corresponding precursor extracted ion chromatograms (XIC) using ProteomeDiscoverer 1.4 (Thermo Fisher). For Volcano plots, the ratios of the mean areas of the individual peptides in the five LFQ-MS runs of each sample were calculated and two-tailed t-tests implementing Benjamini–Hochberg correction were performed using an in-house R script (v3.2).

RESULTS
The impact of carfilzomib treatment on HLA surface expression of myeloma cells is heterogeneous and transient
To assess the impact of proteasome inhibition on HLA surface expression, we performed longitudinal quantification of surface HLA class I molecule counts on MCLs and primary myeloma cells treated with carfilzomib. First, we analyzed the cytotoxicity of treatment with carfilzomib on MCLs and detected a steep decline in viability of MM.1S cells as early as 24 h after treatment (t24h, ~87.3%) followed by a stabilization of the surviving population at t48h (Figure 1a). To account for effects of sample handling on HLA surface expression, we directly compared carfilzomib-treated samples with mock-treated controls (Figure 1b). Comparing the normalized HLA class I expression kinetics of four MCLs (U266, MM.1S, JNJ3 and RPMI8226), we observed heterogeneous effects on surface HLA expression with changes in molecule counts ranging from virtually no regulation (~1.9%, JNJ3) to threefold increases (MM.1S, +201.8%) at t24h. At t48h, the effects of treatment ranged from +6.6% (JNJ3) to +39.8% (MM.1S) increase in surface HLA class I (Figure 1c). Investigating the impact of in vitro treatment on primary myeloma cells we generally observed down-modulation of surface HLA class I with 5/7 samples showing decreases ranging from ~14.9% to ~44.3% at t24h. For 2/7 samples, we detected increased surface HLA expression of 5.5 and 59.1%, respectively. These effects were found to decline at t48h, with HLA levels compared baseline before treatment decreased by ~5.0 to ~39.1% (Figure 1d). To investigate the physiological effects of proteasome inhibitor therapy more closely, we analyzed HLA expression ex vivo on bone marrow-derived myeloma cells of two MM patients before therapy and after 4 weeks of carfilzomib treatment. In the patient showing higher levels of HLA class I at baseline (UPN8, 660 000 molecules/cell), we detected a slight down-modulation (~9.1%) after therapy. A second patient, who presented with 245 000 HLA class I molecules per cell at baseline, showed considerable up-modulation (UPN3, +96.2%) after treatment (Figure 1e). Taken together, we observed a high degree of plasticity and patient/cell line individuality in HLA surface expression upon carfilzomib treatment. Importantly, we did not observe loss of HLA class II.
expression, with the lowest detected surface molecule counts after treatment ranging at 190,000 molecules/cell (UPN2, t24h).

Mass spectrometry enables semi-quantitative analysis of HLA class I restricted peptide presentation on MCLs under proteasome inhibitor therapy

To assess changes in HLA ligandome composition, our study employed a discovery and validation set design, utilizing MM.1S to define effects of carfilzomib and U266 to validate these findings in an independent set of samples. Direct mass spectrometric analysis of HLA ligand extracts was performed for biological triplicates of MM.1S cells before treatment and at t24h and t48h, as well as for the corresponding mock-treated controls. Using the summed peptide intensities of all HLA ligand identifications in each condition as an indirect measure of total peptide abundance, we detected an 84.6% decrease in total HLA ligand presentation on treated cells (t24h and t48h combined) compared with levels before treatment or mock-treated controls (Figure 2a). To adjust the amount of peptide injected per LC-MS run across all samples, HLA ligand extracts of each condition were diluted according to their ratios of summed peptide intensities to the lowest yielding sample and LFQ was conducted in five technical replicates, yielding comparable numbers of peptide identifications (Figure 2b). In total, 2575 different HLA class I peptides were identified. Of these, 1908 (74.1%) peptides were computationally assigned to be binders of one of the MM.1S HLA allotypes (A*23:01, A*24:02, B*18:01, B*42:01, C*12:03, (C*17:01)), as defined by NetMHC scores of IC50 < 500 nM. As no NetMHC predictors were available for HLA-C*17:01, peptides restricted by this allotype had to be excluded from further analyses. Longitudinal quantification of HLA ligand presentation across all conditions and time points could be performed for a subset of 1068 HLA ligands. Importantly, 31 of the HLA ligands monitored on MM.1S cells were found to be highly specific myeloma-associated peptides identified in an earlier study.

Figure 1. Effects of carfilzomib on myeloma cell viability and HLA class I surface expression. Quantification of HLA surface expression was performed using a bead-based flow-cytometric assay using the pan-HLA class I-specific monoclonal antibody W6/32. (a) Viability of MM.1S cells before in vitro treatment and 24 h/48 h after a 1-h pulse with 100 nM carfilzomib (Carfilzomib) or 5% glucose (MOCK). Cell viability was determined using the trypan blue exclusion test. (b) Absolute counts of HLA class I surface molecules on MM.1S cells under in vitro treatment. (c) Longitudinal analysis of relative, mock-normalized changes in HLA class I surface expression on four different MCLs under in vitro treatment. (d) Longitudinal analysis of relative, mock-normalized changes in HLA class I surface expression on primary CD38+CD138+ myeloma cells from seven different patients (UPN1-7) under in vitro treatment. (e) Absolute counts of HLA class I surface molecules on primary CD38+CD138+ myeloma cells from bone marrow aspirate of two different patients before commencement of therapy and after 4 weeks of treatment with carfilzomib.
Carfilzomib induces substantial qualitative and quantitative alterations in HLA class I peptide presentation

Overlap analysis revealed considerable qualitative differences in the HLA ligand composition of untreated versus carfilzomib-treated MM.1S cells. Comparison of the nine untreated samples (three biological replicates each of MM.1S cells before treatment, and at t24h and t48h of mock treatment) with the six treated samples revealed 31.7% (604 HLA ligands) of the total MM.1S HLA ligandome to be exclusively presented on untreated cells, whereas 17.5% (333 HLA ligands) were only detectable after treatment with carfilzomib (Figure 3a). To control for the technical variability of LC-MS based peptide analysis, we plotted the rates of peptide detection in the two different conditions and calculated the significance thresholds for treatment-associated presentation of HLA ligands based on random permutation analysis as described previously (Supplementary Figure 1).23 Out of the 333 HLA ligands exclusively presented on treated MM.1S cells, 64 different HLA class I ligands (3.4% of the total MM.1S HLA ligandome, 67 source proteins) were found to be significantly associated with carfilzomib treatment (P < 0.05, Figure 3b). Functional annotation clustering of the corresponding source proteins using the online bioinformatics resource DAVID26 for KEGG pathway analysis identified a single, small cluster (6/67 source proteins) of ribosomal proteins to be significantly enriched (11.7-fold enrichment, P < 0.01, data not shown). No unifying characteristics were identified for the other 61 proteins using KEGG pathway or gene ontology analysis for biological processes (GO term BP FAT analysis).

Implementing LFQ data, we then quantitatively assessed HLA class I ligand presentation during proteasome inhibitor therapy. We observed considerable plasticity of the HLA class I ligandome after treatment with carfilzomib with 17.9 ± 1.1% of MM.1S ligands and 11.2 ± 0.7% of U266 ligands (mean of three biological replicates ± s.d.) showing significant modulation (fold-change ≥ 4, P < 0.01 after Benjamini–Hochberg correction) at t24h compared with mock-treated controls (Figure 3c, Supplementary Figure 2a). At t48h, similar proportions of modulation were observed with 17.1 ± 5.0% (MM.1S) and 14.0 ± 2.6% (U266) of HLA ligands significantly altered in their abundance (Figure 3d, Supplementary Figure 2b). Plotting HLA ligand presentation of mock-treated MM.1S controls at t24h and t48h compared with the levels of untreated cells before therapy yielded virtually no modulated ligands, which strongly indicates that the observed plasticity is a carfilzomib-induced effect (Figures 3e and f).

Notably, for MM.1S 14/31 (45%) of the previously established...
myeloma-associated peptides were subject to carfilzomib-induced modulation in at least one biological replicate, with the majority showing up-modulation (10/14) compared with only 4/14 down-modulated ligands (Supplementary Table 2). For U266, we detected modulation for 13/51 (26%) of myeloma-associated peptides, with comparable fractions showing up- or down-modulation for 13/51 (26%) of myeloma-associated ligands (Supplementary Table 3).

To investigate the kinetics and duration of these carfilzomib-induced effects in greater detail, we used the MM.1S model to longitudinally track the abundances of the 14/31 myeloma peptides for which quantitative information was available across all time points and conditions. For the majority of these targets (10/14, 71.4%), we observed a peak in modulation at 24 h and percentages of these significantly modulated ligands are specified in the corresponding quadrants. (c, d) Volcano plots comparing HLA ligand abundances on carfilzomib versus mock-treated cells at t24h and t48h, respectively. (e, f) Control volcano plots comparing HLA ligand abundances on mock-treated cells at t24h and t48h to baseline levels before therapy.

Carfilzomib alters HLA class I ligand presentation in an HLA allotype-specific manner

To systematically investigate the impact of carfilzomib treatment on antigen presentation through specific HLA allotypes, we first analyzed the overall frequencies of HLA allotype restrictions of ligands on treated versus untreated myeloma cells. For MM.1S,
this comparison based on qualitative data (Figure 3a) confirmed an overall decrease in the frequencies of HLA ligand identifications annotated with HLA-A*23:01 (−5.3%) and A*24:02 (−7.4%) on treated MM.1S cells (Figure 5a). This effect was accompanied by a substantial increase for HLA-B*42:01 (+10.8%), a small increase for B*18:01 (+2.9%) and virtually no change in the HLA ligand identification rate for C*12:03 (+0.9%). For U266 slight alterations in the frequencies of peptides restricted by HLA-A*02:01 (+2.1%) and A*03:01 (−2.0%) were detected (Supplementary Figure 3a). As mass spectrometry enables peptide identification across a large dynamic range of abundance, we abandoned HLA restriction analysis based on qualitative data in favor of a quantitative approach: by analyzing the restriction patterns of HLA ligands showing significant quantitative modulation upon treatment (Figures 3c and d, Supplementary Figures 2A and B), we detected substantial and very distinct distortions in the HLA allotype distribution of MM.1S: at t24h 47.0 ± 3.8% and 29.3 ± 3.0% of down-modulated HLA ligands were restricted by HLA-A*23:01 and A*24:02, respectively, together accounting for the vast majority (76.3%) of down-modulated ligands (Figure 5c). Concomitantly, the majority of up-modulated HLA ligands was restricted by HLA-B*42:01 (46.4 ± 2.4%). These distortive effects persisted at t48h, albeit with considerably larger deviations between the biological replicates. For U266, we observed only slightly distortive effects of treatment, resulting mainly in a moderate enrichment of peptides restricted by HLA-B*07:02 among down-modulated ligands at t24h (37.3 ± 2.0% compared with 32.4 ± 0.1% among all ligands, Supplementary Figure 3C).

Next, we longitudinally plotted the abundances of peptides grouped by HLA restriction in order to determine and quantify the kinetics of allotype-specific effects of carfilzomib. On MM.1S, we detected maximum down-modulation of peptides restricted by HLA-A*23:01 and A*24:02 at t24h with peptide abundances reduced by −62.5 ± 1.8% and −57.0 ± 0.6%, respectively, followed by a very limited and slow recovery of peptide levels at t48h (−54.7 ± 9.0 and −49.2 ± 7.0%, Figure Sb). This reduction was compensated by increased levels of HLA-B*42:01 (t24h: +147.1 ± 11.5%, t48h: +163.4 ± 103.6%) and B*18:01 (t24h: +60.5 ± 17.1%, t48h: +42.2 ± 31.6%). No substantial modulation was detected for HLA-C*12:03 ligands.

Of note, for U266 no allotype specificity of modulatory effects became evident (Supplementary Figure 3B), thus indicating that the underlying mechanisms of HLA ligand modulation may not be due to direct and differential regulation of HLA class I allotype expression. As proteasomal cleavage is thought to have the defining role in the generation of HLA ligand C-termini, we next...
investigated whether the observed allotype-specific modulation of HLA ligands could be explained by altered C-terminal amino-acid distribution. As carfilzomib selectively inhibits the chymotrypsin-like specificity of the β5-proteasomal subunit which mainly generates peptides with aromatic C-termini we dichotomized HLA ligands into two groups characterized by aromatic (F/Y/W) or aliphatic (I/L/M/V/T/A) C-terminal anchor amino acids. Strikingly, analysis of the presentation kinetics of these peptide groups indeed revealed a distinct reduction in the relative abundance of HLA ligands with aromatic C-termini after treatment, which was independently observed in both MCL model systems. In MM.1S, we detected a reduction of the aromatic group (t24h: −42.7 ± 2.7%, t48h: −39.9 ± 2.7%), which was offset by an increase in ‘aliphatic’ HLA ligands (t24h: +35.5 ± 5.6%, t48h: 35.4 ± 29.4%; Figure 5d). In U266, similar kinetics were observed with aromatic peptides reduced by −46.0 ± 7.0% and −52.4 ± 27.5% at t24h and t48h, respectively. Together, these findings point toward an underlying peptide motif-specific effect of carfilzomib, which selectively impairs antigen presentation of peptide ligands with aromatic C-terminal amino acids.

DISCUSSION

Despite the central role of proteasome inhibitor therapy in the management of MM, systematic investigations regarding the impact of this treatment on antigen presentation have been scarce. The — to our knowledge — only previous mass spectrometry-based study systematically investigated the impact of first-generation proteasome inhibitors on protein turnover and antigen presentation in breast cancer cell lines and found evidence of complex mechanistic underpinnings, which prevented generalized conclusions and called for further investigation. With the breakthrough success of immune checkpoint blockade eliciting long-term disease control in solid tumor patients, the identification and characterization of antigens targeted by anti-cancer T-cell responses has re-entered the spotlight. Despite the — so far — underwhelming efficacy of checkpoint blocking antibodies in MM, the effectiveness of another class of immune modulators and the association of clonally expanded CD8+ T cells with improved clinical outcome indicates the relevance of immune
surveillance in MM. Previous studies of our group which mapped the HLA-presented antigenic landscape of hematologic malignancies indicated that a mass spectrometry-based approach is highly efficient in identifying the physiological targets of such anti-cancer T-cell responses in leukemia patients.23,44 In MM, this strategy enabled us to delineate a panel of highly specific myeloma-associated antigens, which may be implemented for antigen-specific immunotherapy.4 With carfilzomib being a frontrunner for the future first-line therapy of MM,2–4 the present study was designed to quantify the impact of this proteasome inhibitor on the HLA-presented antigenic landscape thereby allowing to pinpoint robustly presented targets for antigen-specific T-cell immunotherapy.

We utilized an extended model of treatment applying a 1-h pulse of carfilzomib in vitro, which mimics the pharmacokinetics of this drug, in vivo41 and was previously reported to result in 80% reduction of the chymotrypsin-like activity of the proteasome.42 This treatment resulted in heterogenic effects on the HLA surface expression of MCLs, which correlate with their reported sensitivity to proteasome inhibition.20,21 LQF by mass spectrometry revealed that treatment-induced modulation of HLA ligand presentation on MCL cells upon proteasome inhibition was substantial, affecting an approximately sixfold greater proportion of the HLA ligandome than observed in similar experiments treating primary cells of chronic lymphocytic leukemia with the immunomodulatory drug lenalidomide (Nelde et al., manuscript in preparation). In general, the effects of carfilzomib on HLA surface expression and HLA ligand presentation were transient with peak modulation typically detected 24 h after treatment followed by a total or gradual reversion to baseline levels after 48 h, which is in accordance with the recovery rate of proteasome activity described previously.42 Notably, the observed shift in HLA ligandome composition did not appear to be driven by the differential presentation of source proteins from specific pathways but rather seems to be the result of direct distortive effects of carfilzomib on HLA ligand generation. As these effects particularly manifested on MM.1 S cells as a marked reduction of HLA ligands restricted by HLA-A*23:01 and A*24:02, which are characterized by a virtually identical binding motif,27 we hypothesized that the observed down-modulation rather is a direct consequence of the inhibition of the chymotrypsin-like activity of the proteasome leading to the generation of peptides with altered C-terminal anchors.43 Dichotomization of MM.1 S peptides according to their C-terminal residues indeed indicated the validity of this concept, but had to be interpreted with caution due to the interdependency of HLA restriction and the structure of the C-terminal anchor amino acid.44 However, the reproduction of these effects on U266 cells, which are characterized by a completely non-overlapping HLA type, further lends support to this hypothesis. Together, our findings suggest that carfilzomib can induce substantial qualitative and quantitative alterations in HLA ligandome composition on myeloma cells and selectively impairs the presentation of HLA ligands with aromatic C-termini. Further studies into the functional impact of these alterations on T cell-mediated immune recognition are needed to clarify the implications of these findings for cancer immunosurveillance in patients undergoing proteasome inhibitor therapy and may help to identify optimal regimens for antigen-specific immunotherapy for MM.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

ACKNOWLEDGEMENTS

We thank Claudia Falkenburger, Patricia Hrstic, Nicole Zuschke, Katharina Graf and Beate Pömmel for excellent technical support. This work was supported by the German Cancer Consortium (DKTK) and the Deutsche Forschungsgemeinschaft (DFG STI 704/1–1, SFB 685).

REFERENCES

1. Moreau P, Richardson PG, Cavo M, Orioloski RZ, San Miguel JF, Palumbo et al. Proteasome inhibitors in multiple myeloma: 10 years later. Blood 2012; 120: 947–959.
2. Siegel DS, Martin T, Wang M, Vij R, Jakubowiak AJ, Lonial S et al. A phase 2 study of single-agent carfilzomib (PX-171-003-A1) in patients with relapsed and refractory multiple myeloma. Blood 2012; 120: 2817–2825.
3. Korde N, Roschewski M, Zingone A, Kowok M, Manasanch EE, Bhuhan M et al. Treatment with carfilzomib-lenalidomide-dexamethasone with lenalidomide extension in patients with smoldering or newly diagnosed multiple myeloma. JAMA Oncol 2015; 1: 746–754.
4. Dyfild D, Jasielec J, Griffith KA, Lebovic D, Vesole DH, Jagannath S et al. Carfilzomib, lenalidomide, and low-dose dexamethasone in elderly patients with newly diagnosed multiple myeloma. Haematologica 2014; 99: e162–e164.
5. Kuhn DJ, Chen Q, Voorhees PM, Strader JS, Shenk KD, Sun CM et al. Potential activity of carfilzomib, a novel, irreversible inhibitor of the ubiquitin-proteasome pathway, against preclinical models of multiple myeloma. Blood 2007; 110: 3281–3290.
6. Parlati F, Lee SJ, Aujay M, Suzuki E, Levitsky K, Lorenz JB et al. Carfilzomib can induce tumor cell death through selective inhibition of the chymotrypsin-like activity of the proteasome. Blood 2009; 114: 3439–3447.
7. Obeng EA, Carlson LM, Gutman DM, Harrington Jr Wh, Lee KP, Boise LH. Proteasome inhibitors induce a terminal unfolded protein response in multiple myeloma cells. Blood 2006; 107: 4907–4916.
8. Benham AM, Neefjes JJ. Proteasome activity limits the assembly of MHC class I molecules after IFN-γ-stimulation. J Immunol 1997; 159: 5896–5904.
9. Yewdell JW, Reits E, Neefjes J. Making sense of mucus destruction: quantitating MHC class I antigen presentation. Nat Rev Immunol 2003; 3: 953–961.
10. Neefjes J, Jongma ML, Paul P, Bakke O. Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat Rev Immunol 2011; 11: 823–836.
11. Rock KL, Gramm C, Rothstein L, Clark K, Stein R, Dick L et al. Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell 1994; 78: 761–771.
12. Schwarz K, de Giuli R, Schmidtke G, Kostka S, van den Broek M, Kim KB et al. The selective proteasome inhibitors lactacytin and epoxomicin can be used to either up- or down-regulate antigen presentation at nontoxic doses. J Immunol 2000; 164: 6147–6157.
13. Harding CV, France J, Song R, Farah JM, Chatterjee S, Iqbal M et al. Novel peptide aldehydes are proteasome inhibitors and block the MHC-I antigen-processing pathway. J Immunol 1995; 155: 1767–1775.
14. Brown RD, Yuen E, Nelson M, Gibson J, Joshua D. The prognostic significance of T cell receptor beta gene rearrangements and idiotype-reactive T cells in multiple myeloma. Leukemia 1997; 11: 1312–1317.
15. Raitakari M, Brown RD, Sze D, Yuen E, Barlow L, Nelson M et al. T-cell expansions in patients with multiple myeloma have a phenotype of cytotoxic T cells. Br J Haematol 2000; 110: 203–209.
16. Dimopoulos M, Spencer A, Attal M, Prince HM, Harousseau JL, Dmoszynska et al. Lenalidomide plus dexamethasone for relapsed or refractory multiple myeloma. N Engl J Med 2007; 357: 2123–2132.
17. LeBlanc R, Hideshima T, Catley LP, Shringarpure R, Burger R, Mitsiades N et al. Immunomodulatory drug costimulates T cells via the B7-CD28 pathway. Blood 2004; 103: 1787–1790.
18. Walz S, Stiekel J, Kowalewski DJ, Schuster H, Weisel K, Backert L et al. The antigenic landscape of multiple myeloma: mass spectrometry (re-)defines targets for T-cell based immunotherapy. Blood 2015; 126: 1203–1213.
19. Rollig C, Knop S, Bornhauser M. Multiple myeloma. Lancet 2015; 385: 2197–2208.
20. Barlogie B, Tricot GJ, van Rhee F, Angtuaco E, Walker R, Epstein J et al. Long-term outcome results of the first tandem autotransplant trial for multiple myeloma. Br J Haematol 2006; 135: 158–164.
21. Berlin C, Kowalewski DJ, Schuster H, Mirza N, Walz S, Handel M et al. Mapping the HLA ligandome landscape of acute myeloid leukemia: a targeted approach toward peptide-based immunotherapy. Leukemia 2015; 29: 647–659.
22. Kowalewski DJ, Stevanovic S. Biochemical large-scale identification of MHC class I ligands. Methods Mol Biol 2013; 960: 145–157.
23. Kowalewski DJ, Schuster H, Backert L, Berlin C, Kahn S, Kanz L et al. HLA ligandome analysis identifies the underlying specificities of spontaneous antileukemia immune responses in chronic lymphocytic leukemia (CLL). Proc Natl Acad Sci USA 2015; 112: E166–E175.
24. Kall L, Canterbury JD, Weston J, Noble WS, MacCoss MJ. Semi-supervised learning for peptide identification from shotgun proteomics datasets. Nat Methods 2007; 4: 923–925.
25. Nielsen M, Lundegaard C, Worning P, Haubner C, Lund M et al. Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Protein Sci 2003; 12: 1007–1017.
Impact of carfilzomib on antigen presentation
DJ Kowalewski et al

Supplementary Information accompanies this paper on Blood Cancer Journal website (http://www.nature.com/bcj)