Effect of foliar spray and fertilizer levels on growth and yield of vegetable cowpea [Vigna unguiculata (L.) Walp.]

M.P. Kavitha*, R. Balakumbahan and G. Prabukumar
Department of Vegetable Crops, Horticultural College and Research Institute, Periyakulam-625 506, Tamil Nadu, India.
Received: 07-07-2018 Accepted: 30-05-2019 DOI: 10.18805/IJARe.A-5074

ABSTRACT
Field experiments were conducted to study the effect of foliar spray and fertilizer levels on growth and yield of vegetable cowpea (PKM 1) during kharif season of the years 2015 and 2016 at Western block, Horticultural College and Research Institute, Periyakulam. Results revealed that in general vegetable cowpea responded well to the increased dose of fertilizers along with foliar spraying of 2 % DAP and pulse wonder during flowering and pod formation stages. Application of 125 % RDF along with 2 % DAP spray at flowering and pod formation stages recorded significantly higher plant height (59.3 cm), more number of branches per plant (10.8), increased root biomass per plant (0.85 g) and shoot biomass per plant (7.8 g) and more number of flowers per plant (58) resulted in increased green pod yield of 17.40 t/ha as compared to 100 % RDF. Lowest yield and economics was recorded with 75 % RDF. Application of 125 % RDF along with 2 % DAP spray at flowering and pod formation stages recorded higher net returns and BC ratio of Rs.117120/- and 3.06 respectively followed by 125 % RDF + Pulse wonder @ 5 kg ha⁻¹ at flowering. The available nutrient status of the post harvest soil sample viz., N (287 kg/ha), P (10.6 kg/ha) and K (217 kg/ha) also increased significantly with the application of 125 % RDF along with 2 % DAP spray at flowering and pod formation stages.

Key words: DAP, Foliar spray, Fertilizer, Pod yield, Pulse wonder.

INTRODUCTION
Pulses play an important role in Indian Agriculture as they restore soil fertility by fixing atmospheric nitrogen through their nodules. These are drought resistant and prevent soil erosion due to their deep root system and good ground coverage. Cowpea [Vigna unguiculata (L.) Walp.] is one of the important kharif pulses grown in India. It is a warm season crop, well adapted to many areas of the humid tropics and sub tropical zones. It is grown throughout India for its long, green vegetable pods, seeds and foliage for fodder. Tender pods used as vegetable and dry beans as pulse. Due to its nutritive value and soil improving properties, it is also used as fodder, green manure and cover crop. Being a legume crop, cowpea fits well in inter-cropping system. The crop is an integral part of sustainable agriculture. 100 g of green tender pods contain 4.3 g of protein, 2.0 fibre, 8.0 g carbohydrates, 74 mg phosphorus, 2.5 mg iron, 13.0 vitamin C, 0.9 mg minerals, etc. In India, vegetable cowpea is cultivated in an area of 0.5 m ha. Though it has high nutritive values and has the potential to cultivate as an intercrop and main crop, the area under cultivation is very low. Vegetable cowpea is indeterminate in flowering and it continues flowering up to the harvest. All the recommended fertilizers are applied as basal and it governs the nutrient requirement for first formed flowers. To obtain genetic yield potential of the crop, the second formed fleshes also have to be nourished. Nutrients play a pivotal role in increasing the seed yield in pulses (Chandrasekhar and Bangarusamy, 2003). Foliar application is credited with the advantage of quick and efficient utilization of nutrients, elimination of losses through leaching and fixation and helps in regulating the uptake of nutrient by plants (Manonmani and Srimathi, 2009). Taking this point in to consideration foliar spraying of 2 % DAP and TNAU Pulse wonder which are recommended for pulses grain production have tried in this experiment along with the reduced and increased level of fertilizer recommendation.

MATERIALS AND METHODS
Field experiments were conducted during consecutive kharif season of the years 2016 and 2017 at Western block of Horticultural College and Research Institute, Periyakulam, Tamil Nadu located at 10.13° N, 77.59° E and at an altitude of 289 m above mean sea level with average rainfall 791.1 mm. The soil was sandy loam having pH 7.1, organic carbon (0.25%), medium in available nitrogen (290 kg/ha), low in available P₂O₅ (10.5 kg/ha) and medium in available potash (215 kg/ha). The field experiment was carried out in randomized block design with three replications. The experiment consists of 12 treatments viz:
Indian Journal of Agricultural Research

Effect of nutrient management practices on growth parameters of vegetable cowpea PKM 1 (Pooled data of two years).

Vegetable cowpea variety PKM 1 was used for this study. Seeds were sown with the spacing of 45 X 20 cm. 75 %, 100 % and 125 % of recommended dose of fertilizers were calculated and were applied as basal. 2 % DAP solution was prepared and sprayed during flowering and pod formation stages. TNAU Pulse wonder @ 5 kg ha⁻¹ was sprayed during flowering stage. Observations on growth, yield attributes and yield were recorded and analysed statistically. Economics were calculated based on the prevailing market price of the vegetable cowpea and labour wages / man day.

RESULTS AND DISCUSSION

Growth attributes: Plant height, number of branches per plant, shoot bio mass/plant, root biomass per plant and number of flowers per plant were significantly influenced by fertilizer levels and foliar spraying of pulse wonder and 2 % DAP. Application of 100 % and 125 % recommended dose of fertilizers either alone or in combination with the foliar spray increased all the growth parameters. This was mainly due to the increased nutrient supply and reduced nutrient losses at critical stages of crop growth.

Application of 125 % RDF along with 2 % DAP spray at flowering and pod formation stages recorded increased plant height (59.3 cm), more number of branches per plant (10.8), increased root bio mass per plant (0.85 g) and shoot bio mass per plant (7.8 g) and more number of flowers per plant (58). (Table 1) This might be due to positive response of growth parameters leads to more number of flowers per plant during both the years of study. Due to application of 125 % RDF along with 2 % DAP spray at flowering and pod formation stages, there was a two days advancement of 50 % flowering than the recommended dose of fertilizers. Application of 125 % of RDF along with spraying of 2 per cent DAP helped in quick absorption of nitrogen and phosphorous, at the time of reproductive stage where the nutrient demand is at the peak due to indeterminate growth habit of the crop. Hence, it reduced the flower drop and ultimately enhanced the pod setting. The results are corroborating with the findings of Shashikumar et al. (2013) in blackgram and Choudhary and Yadav (2011) in cowpea.

Yield attributes and green pod yield: Application of 125 % RDF along with 2 % DAP spray at flowering and pod formation stages recorded more no.of pods per plant (24) than the rest of the treatments. There was number significant difference between the treatments for other yield attributing characters viz., pod length and pod weight. Pod setting per centage was found to be increased by the foliar application of either 2 % DAP or pulse wonder along with increased dose of fertilizers. This might be due to foliar spray during flowering and pod formation stages supplied required nutrients for enhanced pod setting and reduced the ill filled pods.

Table 1: Effect of nutrient management practices on growth parameters of vegetable cowpea PKM 1 (Pooled data of two years).

Treatments	Plant height (cm)	No. of branches/plant	Shoot biomass/Plant(g)	Root biomass/Plant(g)	No. of days to 50% flowering	No. of flowers/plant
T₁ - 75 % RDF	48.3	7.1	4.2	0.41	47	30
T₂ - 100 % RDF	50.3	8.2	5.2	0.63	47	36
T₃ - 125 % RDF	58.6	10.3	7.1	0.84	45	43
T₄ - 75 % RDF + 2 % DAP spray at flowering	47.4	7.3	4.3	0.43	47	37
T₅ - 100 % RDF + 2 % DAP spray at flowering	50.6	8.4	5.4	0.65	46	36
T₆ - 125 % RDF + 2 % DAP spray at flowering	59.1	10.5	7.4	0.83	45	50
T₇ - 75 % RDF + 2 % DAP spray at flowering and pod formation	48.5	7.8	4.9	0.48	47	38
T₈ - 100 % RDF + 2 % DAP spray at flowering and pod formation	50.8	8.6	6.1	0.68	47	45
T₉ - 125 % RDF + 2 % DAP spray at flowering and pod formation	59.3	10.8	7.8	0.85	46	58
T₁₀ - 75 % RDF + Pulse wonder @ 5 kg ha⁻¹	48.8	7.5	4.5	0.45	48	39
T₁₁ - 100 % RDF + Pulse wonder @ 5 kg ha⁻¹	50.4	8.8	5.9	0.71	46	44
T₁₂ - 125 % RDF + Pulse wonder @ 5 kg ha⁻¹	58.8	10.5	7.5	0.89	46.0	52
SEd	2.54	0.43	0.29	0.03	2.26	NS
CD (P= 0.05)	5.27	0.89	0.60	0.07	NS	
Table 2: Effect of nutrient management practices on yield parameters and green pod yield of vegetable cowpea PKM 1 (Pooled data of two years).

Treatments	No. of Pods/plant	Pod setting (%)	Pod length (cm)	Pod weight (g/pod)	Pod Yield (g/plant)	Pod yield (t/ha)
T₁ 75 % RDF	12	40	21.1	11.4	137	7.65
T₂ 100 % RDF	15	42	21.7	11.7	176	10.54
T₃ 125 % RDF	19	44	22.6	12.4	236	14.98
T₄ 75 % RDF + 2 % DAP spray at flowering	12	32	21.3	12.0	144	8.17
T₅ 100 % RDF + 2 % DAP spray at flowering	16	37	22.1	12.3	197	12.09
T₆ 125 % RDF + 2 % DAP spray at flowering	20	40	22.7	12.6	252	16.17
T₇ 125 % RDF + 2 % DAP spray at flowering and pod formation	13	34	21.4	12.1	159	9.28
T₈ 75 % RDF + 2 % DAP spray at flowering	12	34	21.4	12.1	159	9.28
T₉ 100 % RDF + 2 % DAP spray at flowering	17	38	22.2	12.3	209	12.98
T₁₀ 125 % RDF + 2 % DAP spray at flowering	24	41	23.0	12.8	307	17.40
T₁₁ 75 % RDF + Pulse wonder @ 5 kg ha¹ at flowering	13	31	21.4	12.1	152	8.76
T₁₂ 100 % RDF + Pulse wonder @ 5 kg ha¹ at flowering	16	36	22.1	12.4	198	12.17
T₁₃ 125 % RDF + Pulse wonder @ 5 kg ha¹ at flowering	20	38	23.0	12.7	254	16.31

SED 1.07 0.59 9.93 0.60

CD (P= 0.05) NS NS 20.6 1.26

Table 3: Effect of nutrient management practices on available N, P and K (kg/ha) in post harvest soil sample.

Treatments	N	P	K
T₁ 75 % RDF	248	8.4	178
T₂ 100 % RDF	268	9.4	191
T₃ 125 % RDF	281	10.3	213
T₄ 75 % RDF + 2 % DAP spray at flowering	256	8.7	181
T₅ 100 % RDF + 2 % DAP spray at flowering	270	9.3	194
T₆ 125 % RDF + 2 % DAP spray at flowering	285	10.1	215
T₇ 75 % RDF + 2 % DAP spray at flowering and pod formation	248	8.4	187
T₈ 100 % RDF + 2 % DAP spray at flowering and pod formation	275	9.4	193
T₉ 125 % RDF + 2 % DAP spray at flowering and pod formation	287	10.6	217
T₁₀ 75 % RDF + Pulse wonder @ 5 kg ha¹ at flowering	245	8.4	182
T₁₁ 100 % RDF + Pulse wonder @ 5 kg ha¹ at flowering	272	9.1	191
T₁₂ 125 % RDF + Pulse wonder @ 5 kg ha¹ at flowering	290	10.1	220

SED 13.1 0.45 9.6

CD (P= 0.05) 27.1 0.93 19.9

Table 4: Effect of nutrient management practices on green pod yield and economics of vegetable cowpea PKM 1 (Pooled data of two years).

Treatments	Pod yield (t/ha)	Gross return (Rs./ha)	cost of cultivation (Rs./ha)	Net return (Rs./ha)	B:C ratio
T₁ 75 % RDF	7.65	76481	53486	22995	1.43
T₂ 100 % RDF	10.54	105370	54448	50922	1.94
T₃ 125 % RDF	14.98	149815	55380	94435	2.71
T₄ 75 % RDF + 2 % DAP spray at flowering	8.17	81667	54236	27431	1.51
T₅ 100 % RDF + 2 % DAP spray at flowering	12.09	120926	55198	65728	2.19
T₆ 125 % RDF + 2 % DAP spray at flowering	16.17	161667	56130	105536	2.88
T₇ 75 % RDF + 2 % DAP spray at flowering and pod formation	9.28	92778	54986	37792	1.69
T₈ 100 % RDF + 2 % DAP spray at flowering and pod formation	12.98	129815	55948	73867	2.32
T₉ 125 % RDF + 2 % DAP spray at flowering and pod formation	17.40	174000	56880	117120	3.06
T₁₀ 75 % RDF + Pulse wonder @ 5 kg ha¹ at flowering	8.76	87592	54486	33106	1.61
T₁₁ 100 % RDF + Pulse wonder @ 5 kg ha¹ at flowering	12.17	121667	55448	66219	2.19
T₁₂ 125 % RDF + Pulse wonder @ 5 kg ha¹ at flowering	16.31	163148	56380	106768	2.89

SED 0.60 - - -

CD (P= 0.05) 1.26 - - -
Application of 125% RDF along with 2% DAP spray at flowering and pod formation stages recorded increased green pod yield of 17.40 t/ha. This was followed by application of 125% RDF along with TNAU pulse wonder @5 kg/ha at flowering stage. (Table 2). The above result clearly indicates the importance of inorganic foliar nutrition in determination of yield potential in vegetable cowpea. The increased pod yield due to beneficial effect of nutrients applied at proper time and stage was also reported by Barik and Rout (1990), Yakadri and Thatikunta (2002) in blackgram and Parasuraman et al. (2001) in cowpea, where foliar application of nutrients at flowering and pod development stage might have been easily absorbed and better translocated in the plant and maintained constant requirement of N and P at the reproductive stage of the crop.

Available nutrient status and economics: The available nutrient status of the post harvest soil sample viz., N (287 kg/ha), P (10.6 kg/ha) and K (217 kg/ha) also increased significantly with the above treatment due to higher dose of fertilizer application than the rest of the treatments. (Table 3).

Application of 125% RDF along with 2% DAP spray at flowering and pod formation stages recorded higher net returns and BC ratio of Rs.117120/- and 3.06 respectively (Table 4). Though the cost of cultivation was more than the other treatments due to application of 2% DAP, increased green pod yield was recorded and there by increased net returns and BC ratio were obtained.

CONCLUSION

To nourish the second flush flowers and for better pod setting percentage in Vegetable cowpea along with the increased dose of fertilizers foliar spraying of 2% DAP and TNAU pulse wonder @5 kg/ha were tried at flowering and pod formation stages. All the growth and yield attributes were significantly influenced by the application of increased dose of fertilizers. Basal application of 125% RDF along with 2% DAP spray at flowering and pod formation stages recorded increased plant height, number of branches per plant, root bio mass per plant and shoot bio mass per plant and more number of flowers per plant, green pod yield and there by increased economic returns and benefit cost ratio. Hence, application of 125% RDF along with 2% DAP spray at flowering and pod formation stages is recommended to the vegetable growing farmers for getting higher green pod yield and economic returns in vegetable cowpea.

REFERENCES

Barik, T. and Rout, D., (1990). Effect of foliar spray of commercial micro-nutrient mixtures on growth, yield and quality of urdbean. *Legume Research.* 13(1): 50-52.

Chandrasekhar, C. N. and Bangarusamy, U. (2003). Maximizing the yield of mung bean by foliar application of growth regulating chemicals and nutrients. *Madras Agricultural Journal.* 90(1-3): 142-145.

Choudhary, G.L. and Yadav, L.R., (2011). Effect of fertility levels and foliar nutrition on cowpea productivity. *Journal of Food Legumes.* 24(1): 67-68.

Manonmani, V. and Srimathi, P. (2009). Influence of mother crop nutrition on seed and quality of blackgram. *Madras Agricultural Journal.* 96(16):125-128.

Purushotham, S., Narayanswamy, G. V., Siddaraju, R. and Girejesh, G. K., (2001). Production potential of fodder cowpea genotypes under rainfed conditions. *Karnataka Jounal of Agricultural Sciences.* 14 (2): 446-448

Shashikumar, Basavarajappa, R., Salakinkop, S. R., Manjunath Hebbar, Basavarajappa, M. P. and Patil, H. Y., (2013). Influence of foliar nutrition on performance of blackgram, nutrient uptake and economics under dryland ecosystem. *Legume Research.* 36(5): 422-428.

Yakadri, M. and Thatikunta, R., (2002). Effect of soil application of potassium and DAP spray in blackgram (*Vigna mungo* L.). *Madras Agricultural Journal.* 89 (1-3): 147-149.