Research Article

Epidemiology of Sexually Transmitted Infections among Human Immunodeficiency Virus Positive United States Military Personnel

Jeff S. Tzeng, 1 Leslie L. Clark, 2 Eric C. Garges, 1 and Jean Lin Otto 2,3

1 Division of Preventive Medicine, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
2 Armed Forces Health Surveillance Center, 11800 Tech Road, Suite 220, Silver Spring, MD 20904, USA
3 Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA

Correspondence should be addressed to Jeff S. Tzeng; jeff.tzeng@us.army.mil

Received 5 September 2012; Revised 27 February 2013; Accepted 11 March 2013

Academic Editor: Bernardo Galvao-Castro

Copyright © 2013 Jeff S. Tzeng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Background. Minimal data exist that describe the epidemiology of sexually transmitted infections (STI) in human immunodeficiency virus (HIV) positive populations across the pre- and post-diagnosis periods for HIV. Purpose. The purpose of this study was to identify and describe the epidemiology of gonorrhea, chlamydia, syphilis, herpes simplex virus, and human papillomavirus in an HIV-positive population. Methods. All 1,961 HIV seropositive United States active duty military personnel from 2000–2010 were identified. STI diagnoses relative to HIV diagnosis from 1995, which was the earliest electronic medical record available, to 2010 were examined. Results. The incidence diagnosis rates of STI generally increased during the period leading up to eventual HIV diagnosis. The rates of STI during the post-HIV diagnosis period fluctuated, but remained elevated compared to pre-HIV diagnosis period. Approximately 45%–69% with an STI in the HIV seropositive military population were diagnosed with their first STI greater than one year after their HIV diagnosis. Of those who were diagnosed with an STI in the post-HIV diagnosis period, 70.6% had one STI diagnosis, 23.5% had two STI diagnoses, and 5.8% had three or more STI diagnoses. Conclusions. Despite aggressive counseling, high-risk sexual behavior continues to occur in the HIV-positive military population.

1. Introduction

In the United States (US), an estimated 56,300 new human immunodeficiency virus (HIV) infections were diagnosed in 2006, with an incidence rate of 22.8 infections per 100,000 people [1]. During that same year, there were 196 new HIV-1 diagnoses in the active duty US military with an incidence rate of 18.3 per 100,000 tested [2].

Increasing numbers of lifetime sexual partners, decreased condom usage, and prior sexually transmitted infections (STI) have all been reported to increase the risk of HIV transmission [3–5]. With the advent of effective antiretroviral medications, there has been a reduced risk of HIV transmission to HIV-negative partners in some situations (i.e., pre-exposure prophylaxis) [6]. Increased unsafe behavioral risk factors have been noted in some HIV-positive populations, with approximately 32–39% of HIV-positive people engaging in unprotected intercourse [7]. This not only increases the risk of transmitting HIV to an HIV-negative sexual partner, but also places the HIV-positive partner at risk of acquiring an STI.

In 1985, the US military began conducting mandatory routine screening for HIV-1 antibodies and at least biennially (once every 2 years) since 2004. The epidemiology has been well described [2, 8], but routine STI screening is limited to laboratory-based screening for cervical human papillomavirus (HPV), gonorrhea, and chlamydia during required routine women’s health encounters and can differ based on age and risk factors. Screening in some populations with perceived higher risk of STI acquisition is often performed at the discretion of the health care provider [8].

There are very few studies that describe the distribution of STI in the HIV-positive military population [9–11]. The epidemiology of STIs in an HIV-positive population
is important to understand, not only to evaluate risk of
new infections, but also to explore the impact of high risk
sexual practices in this population. To study the relationship
between STIs and HIV, a retrospective study of HIV-positive
active duty US military personnel was performed to describe
the distribution of chlamydia, gonorrhea, syphilis, HPV, and
herpes simplex virus (HSV) incident diagnosis during the
pre- and post-HIV diagnosis periods.

2. Methods

2.1. Study Population and Data Sources. The surveillance
population included all active duty military personnel of
the US Army, US Navy, US Air Force, US Marine Corps,
and US Coast Guard who were HIV-1 antibody seropositive
from January 1, 2000, to December 31, 2010. HIV-1 positivity
was defined as one positive serological screening test such
as enzyme-linked immunosorbent assay and another from
a confirmatory test such as western blot. The date of the
earliest positive serological test was utilized as the reference
date for HIV-1 positivity for that individual.

We examined all electronic medical record data for
this HIV-1 positive cohort available in the Defense Medical
Surveillance System (DMSS) retrospectively from December
31, 2010, to January 1, 1995 (this is the earliest date for
availability of the electronic medical records used for this
analysis). The DMSS is a database managed by the Armed
Forces Health Surveillance Center containing records doc-
umenting all ambulatory encounters and hospitalizations of
active component members of the US military and other
historical and current information on medical events (e.g.,
reportable diseases, HIV tests, immunizations, and other
health risk appraisals). These records include all medical care
provided in fixed military facilities and medical care provided
in civilian facilities that is reimbursed through the Military
Health System.

2.2. Case Definitions. The DMSS was used to identify all
medical encounters occurring in a military treatment facility
or reimbursed through the Military Health System within
the HIV-positive population that contained diagnostic codes
(ICD-9-CM) for chlamydia (099.41, 099.5), gonorrhea (98),
syphilis (091–097), HSV (54), and HPV (078.1, 079.4, 795.05,
795.09, 795.15, 796.75, and 796.79). A positive STI case was
defined as one inpatient or one outpatient visit with the
specified ICD-9 CM code in the first or second diagnostic
position. An individual was eligible to be an incident case
once per 30-day period for chlamydia and gonorrhea, once
per 13-month period for syphilis, and once per lifetime for
HSV and HPV.

For each unique HIV-positive individual, we determined
incident STI case date(s), HIV seropositive reference date,
time elapsed from incident STI date to HIV reference date,
time elapsed from HIV reference date to first and subsequent
incident STI date, time elapsed from entrance into active duty
service to HIV reference date, and time from HIV reference
date to the end of US active duty military service or December
31, 2010, whichever occurred earliest.

2.3. Data Analysis. Incidence rates were calculated by sum-
mom incident STI cases occurring before the HIV reference
date and dividing by the total number of person-years prior
to the HIV reference date. This pre-HIV diagnostic window of
observation was limited by time in the military prior
active duty and was censored by the earliest available
electronic medical record on file in DMSS (January 1, 1995).
This was repeated similarly to calculate incident STI cases
occurring after HIV reference date. The post-HIV diagnostic
person time was limited by time of military separation or
December 31, 2010, whichever occurred first. The time from
HIV reference date to the first and subsequent incident STI
case(s) was placed into one of seven groups: 0–7 days, 8–
30 days, 31–60 days, 61–90 days, 91–180 days, 181–365 days,
and >365 days. Proportions were calculated by summing the
frequency of first STI diagnosis post-HIV within each date
category and dividing by the total frequency of first time
incident cases for the specific STI.

3. Results

3.1. Study Population. We identified a total of 1,961 HIV-
1 positive active duty military personnel during the period
from 2000 to 2010 (Table 1). The majority of HIV-1 positive
cases were male (96.8%), Black non-Hispanic, (52.5%), with
a high school education only (66.9%) and single at the time
of HIV-1 diagnosis (66%). The 20–24-year-old age group
comprised nearly 38% of HIV-1 positive cases and had the
highest incidence rate (14.3 per 100,000 person-years).

3.2. STI before and after HIV Diagnosis. During the surveil-
ance period, 988 (50%) of the HIV-positive military pop-
ulation were diagnosed with any STI: 321 with only STI
before HIV, 465 with only STI after HIV, and 202 with any
STI both before and after HIV diagnosis (Figure 1). Of the
HIV-positive population who had any STIs before their HIV
diagnosis, there were 182 incident diagnoses of gonorrhea
from 144 unique individuals, representing an incidence rate
of 1,721.5 cases per 100,000 pre-HIV person-years. There were
97 unique individuals who accounted for 119 incident diag-
nosis of chlamydia, representing an incidence rate of 1,125.6
cases per 100,000 pre-HIV person-years. HSV represented
the smallest number of incident cases and unique individuals
with 58 (548.6 cases per 100,000 pre-HIV person-years),
while HPV represented the largest number with 158 incident
cases and unique individuals (1,495.5 cases per 100,000 pre-
HIV person-years). Black non-Hispanics represented the
highest incidence rates of chlamydia, gonorrhea, and syphilis
among those who had an STI before their eventual HIV
diagnosis. Being single, 17–19-year-old age group or lack of a
college education consistently showed the highest incidence
rates for all STIs evaluated among those who had an STI
before their eventual HIV diagnosis.

A total of 667 unique individuals were diagnosed with an
STI after their HIV diagnosis. Of those who were diagnosed
with any STIs in the post-HIV diagnosis period, 70.6% had
one STI diagnosed, 23.5% had two STIs diagnosed, and
5.8% had three or more STIs diagnosed (Table 2). In this
Year	Total Rate (per 100,000 p-yrs)	Male Rate (per 100,000 p-yrs)	Female Rate (per 100,000 p-yrs)	Age Group	Race	Hispanic	Other	Unknown	Rank	Education	Marital status	Service
2000	100,000	142	8	17-19	White	16	91	1	1	Junior enlisted	2	2
		11.9	4.0		Black non-Hispanic	83	30.4	1	1	Non-commissioned officer	59	10.8
		13.9	4.9		Hispanic	16	12.4	1	1	Warrant officer	1	6.1
		13.0	8.8		Other	9	10.9	1	1	Commissioned officer	4	1.9
2001		166	10	20-24	White	41	4.6	5	1	Junior enlisted	86	13.7
		13.5	5.7		Black non-Hispanic	83	30.4	1	1	Non-commissioned officer	59	10.8
		12.7	12.2		Hispanic	16	12.4	1	1	Warrant officer	1	6.1
		12.3	6.4		Other	9	10.9	1	1	Commissioned officer	4	1.9
2002		157	10	25-29	White	83	30.4	1	1	Junior enlisted	86	13.7
		13.0	6.4		Black non-Hispanic	83	30.4	1	1	Non-commissioned officer	59	10.8
		12.7	12.2		Hispanic	16	12.4	1	1	Warrant officer	1	6.1
		12.3	6.4		Other	9	10.9	1	1	Commissioned officer	4	1.9
2003		163	10	30-34	White	83	30.4	1	1	Junior enlisted	86	13.7
		13.2	6.4		Black non-Hispanic	83	30.4	1	1	Non-commissioned officer	59	10.8
		12.3	12.2		Hispanic	16	12.4	1	1	Warrant officer	1	6.1
		12.3	6.4		Other	9	10.9	1	1	Commissioned officer	4	1.9
2004		162	10	35-39	White	83	30.4	1	1	Junior enlisted	86	13.7
		13.0	6.4		Black non-Hispanic	83	30.4	1	1	Non-commissioned officer	59	10.8
		12.3	12.2		Hispanic	16	12.4	1	1	Warrant officer	1	6.1
		12.3	6.4		Other	9	10.9	1	1	Commissioned officer	4	1.9
2005		157	10	40-44	White	83	30.4	1	1	Junior enlisted	86	13.7
		13.1	6.4		Black non-Hispanic	83	30.4	1	1	Non-commissioned officer	59	10.8
		12.3	12.2		Hispanic	16	12.4	1	1	Warrant officer	1	6.1
		12.3	6.4		Other	9	10.9	1	1	Commissioned officer	4	1.9
2006		163	10	50+	White	83	30.4	1	1	Junior enlisted	86	13.7
		13.2	6.4		Black non-Hispanic	83	30.4	1	1	Non-commissioned officer	59	10.8
		12.3	12.2		Hispanic	16	12.4	1	1	Warrant officer	1	6.1
		12.3	6.4		Other	9	10.9	1	1	Commissioned officer	4	1.9

Note: The table provides data on human immunodeficiency virus-1 seropositive United States active duty military personnel, 2000-2010. The data includes rates by sex, race, Hispanic status, other status, unknown status, rank, educational level, marital status, and service.
population, the proportion was highest among non-Hispanic Black, single people, enlisted rank, the 20–24-year-old age group and high school only educated personnel.

There were 157 unique individuals who generated 186 incident cases of gonorrhea after their HIV diagnosis. Among those who had an STI after their HIV diagnosis, the 25–29-year-old age group showed the highest incidence rates for chlamydia, HSV, and gonorrhea. Individuals with syphilis had the lowest incidence rate of STI examined before their HIV diagnosis, but had the highest incidence rate in the period after their HIV diagnosis (Figure 2). The incidence rate of gonorrhea

| Table 2: Characteristics of unique United States military personnel with \(\geq 1 \) sexually transmitted infection (STI) diagnosis after human immunodeficiency virus-1 diagnosis. |
|---------------------------------|-----------------|-----------------|-----------------|
| | 1 STI diagnosis | 2 STI diagnoses | \(\geq 3 \) STI diagnoses |
| | No. | Percent | No. | Percent | No. | Percent |
| Total | 471 | 100.0 | 157 | 100.0 | 39 | 100.0 |
| Sex | | | | | | |
| Male | 459 | 97.5 | 155 | 98.7 | 38 | 97.4 |
| Female | 12 | 2.5 | 2 | 1.3 | 1 | 2.6 |
| Age group | | | | | | |
| 17–19 | 10 | 2.1 | 2 | 1.3 | 2 | 5.1 |
| 20–24 | 152 | 32.3 | 59 | 37.6 | 19 | 48.7 |
| 25–29 | 129 | 27.4 | 54 | 34.4 | 9 | 23.1 |
| 30–34 | 71 | 15.1 | 23 | 14.6 | 6 | 15.4 |
| 35–39 | 66 | 14.0 | 13 | 8.3 | 3 | 7.7 |
| 40–44 | 35 | 7.4 | 6 | 3.8 | 0 | 0.0 |
| 45–49 | 5 | 1.1 | 0 | 0.0 | 0 | 0.0 |
| 50+ | 3 | 0.6 | 0 | 0.0 | 0 | 0.0 |
| Race | | | | | | |
| White, non-Hispanic | 134 | 28.5 | 33 | 21.0 | 4 | 10.3 |
| Black, non-Hispanic | 255 | 54.1 | 94 | 59.9 | 29 | 74.4 |
| Hispanic | 53 | 11.3 | 19 | 12.1 | 3 | 7.7 |
| Other | 24 | 5.1 | 8 | 5.1 | 3 | 7.7 |
| Unknown | 5 | 1.1 | 3 | 1.9 | 0 | 0.0 |
| Rank | | | | | | |
| Enlisted | 440 | 46.7 | 147 | 46.8 | 39 | 50.0 |
| Junior enlisted | 196 | 41.6 | 66 | 42.0 | 22 | 56.4 |
| Noncommissioned officer | 244 | 51.8 | 81 | 51.6 | 17 | 43.6 |
| Warrant officer | 3 | 0.6 | 1 | 0.6 | 0 | 0.0 |
| Commissioned officer | 28 | 5.9 | 9 | 5.7 | 0 | 0.0 |
| Education level | | | | | | |
| No high school | 5 | 1.1 | 2 | 1.3 | 0 | 0.0 |
| High school | 390 | 82.8 | 133 | 84.7 | 35 | 89.7 |
| Some college or more | 69 | 14.6 | 22 | 14.0 | 4 | 10.3 |
| Unknown | 7 | 1.5 | 0 | 0.0 | 0 | 0.0 |
| Marital status | | | | | | |
| Married | 143 | 30.4 | 39 | 24.8 | 10 | 25.6 |
| Single | 314 | 66.7 | 112 | 71.3 | 28 | 71.8 |
| Other | 14 | 3.0 | 6 | 3.8 | 1 | 2.6 |
| Service | | | | | | |
| Army | 172 | 36.5 | 69 | 43.9 | 15 | 38.5 |
| Navy | 233 | 49.5 | 65 | 41.4 | 18 | 46.2 |
| Air Force | 17 | 3.6 | 6 | 3.8 | 0 | 0.0 |
| Marine Corps | 40 | 8.5 | 15 | 9.6 | 5 | 12.8 |
| Coast Guard | 9 | 1.9 | 2 | 1.3 | 1 | 2.6 |
generally increased during the 10-year period leading up to HIV diagnosis, but consistently decreased in the 10-year period after the HIV diagnosis.

Figure 3 represents the time elapsed from HIV diagnosis to the first STI diagnosis. Approximately 45%–69% with an STI in the HIV-positive military population were diagnosed with their first STI greater than a year after their HIV diagnosis. Conversely, 4%–12% were diagnosed with their first STI within 7 days of their HIV diagnosis.

4. Discussion

One of the most important findings of this study is the elapsed time from HIV diagnosis to first STI diagnosis. In our study population, approximately half of all initial STIs diagnosed among HIV-positive persons occurred one year or more after their HIV diagnosis. This appears to be consistent with some studies suggesting that while high-risk sexual behaviors decrease immediately after HIV diagnosis, there does not appear to be an elimination of these behaviors.

The probability of high-risk behaviors increases as individuals are further from the time of their HIV diagnosis [12–14]. While the continuation of high-risk sexual activity after HIV diagnosis can be inferred from the results of this study, it is difficult to assess the exact magnitude of risk (i.e., frequency, nature of behavior) due to a variety of limitations in the available data. The peak period of STI incidence rates immediately before and after the HIV reference date is likely due to concurrent testing and diagnosis of HIV and STI. This is supported by the finding that 70% of those with an STI in the post-HIV diagnosis period have only one STI diagnosis, while 30% have two or more STI diagnoses.

The Center for Disease Control and Prevention (CDC) recommends annual screening for curable STI in sexually active HIV-positive persons [15]. Despite this recommendation, routine testing for STI in the nonmilitary HIV-positive population, especially in asymptomatic patients, remains
Table 3: Characteristics of United States active duty military personnel with sexually transmitted infections after their human immunodeficiency virus-1 diagnosis.

Characteristic	Chlamydia	Gonorrhea	Syphilis	HSV	HPV
	Rate (per 100,000 HIV-p-yrs)				
Total	91	90	321	84	213
Sex					
Male	87	104	1,923.8	157	186
Female	4	6	2,949.7	0	0
Age group					
17–19	2	3	2,464.5	7	8
20–24	40	14	2,348.1	104	118
25–29	31	41	2,900.6	91	108
30–34	11	14	1,777.2	45	52
35–39	7	8	1,124.5	15	18
40–44	0	0	0.0	0	0
45–49	0	0	0.0	0	0
50+	0	0	0.0	0	0
Race					
White, non-Hispanic	11	15	910.1	57	64
Black, non-Hispanic	68	82	2,764.4	197	232
Hispanic	9	10	1,666.5	35	42
Other	3	3	1,084.2	19	22
Unknown	0	0	0.0	4	4
Rank					
Enlisted	90	109	2,125.5	298	347
Junior enlisted	43	50	2,120.2	128	142
Senior enlisted	47	59	2,129.9	170	205
Warrant officer	1	1	2,786.4	4	4
Commissioned officer	0	0	0.0	6	6
Educational level					
No high school	0	0	0.0	1	1
High school	84	100	2,200.8	258	299
College or more	7	10	1,189.1	48	57
Unknown	0	0	0.0	3	3
Marital status					
Single	25	76	2,017.7	93	250
Married	62	29	1,735.4	106	106
Other	4	5	2,981.8	7	471.5
Service					
Army	49	62	2,891.9	128	143
Air Force	28	32	1,868.4	138	169
Navy	4	6	3,650.4	12	12
Marines	9	9	1,832.5	29	32
Coast Guard	1	1	865.3	5	8

HSV: herpes simplex virus.
HPV: human papillomavirus.

aEach individual was only eligible to be an incident case once per 30-day period for chlamydia and gonorrhea, once per 13-month period for syphilis, and once per lifetime for HSV and HPV.
The counseling that occurs when an active duty military personnel is notified of HIV seropositivity is explicit and uniform among the different military branches. HIV-positive military personnel who wish to continue on active duty must agree to key elements: notification of present and future sexual partners of HIV status, use of Food Drug Administration approved barrier protective devices when engaging in sexual activities after receiving consent from their partner, and notification of their military medical providers of any changes to health [17–19]. Failure to comply with these orders can result in disciplinary actions under the Uniform Code of Military Justice and/or separation from the military, which could result in loss of all medical care and benefits. HIV-positive military personnel may interpret these orders as a mandate for compulsory reporting of all medical symptoms that arise. This could lead to increased medical testing in general and STI testing specifically, introducing an additional surveillance bias.

Another limitation of this study is the exclusive use of ICD-9 code diagnoses to determine STI cases. Rather than being based on laboratory confirmation, STI cases are based on healthcare provider-assigned diagnostic codes entered into the electronic medical record of military personnel. Ideally, when an STI is suspected, laboratory testing results. However, some health care providers may find a clinical diagnosis sufficient for treatment purposes and not utilize the laboratory. The addition of nucleic acid testing (NAAT) in the early 2000’s raised the baseline rate of chlamydia by increased screening in asymptomatic men because testing only required urine and not a urethral swab. It is not expected that this diagnostic bias would have much effect on the study data outside the additional diagnosis of chlamydia and to a lesser degree gonorrhea in males, due to the more symptomatic nature of gonorrhea. While the reliability of our ICD-9-based case definition in identifying actual cases of STIs is unknown, preliminary data demonstrate high correlation between ICD-9 code diagnoses and laboratory confirmation for gonorrhea, chlamydia, and syphilis. Analyses examine the percentage of STI reportable medical events that have a positive laboratory test: 80% for gonorrhea, 85% for Chlamydia, and 95% for syphilis (personal communication, Dr. Leslie Clark). Nonetheless, exclusive use of ICD-9 code diagnoses to determine STI cases likely results in an overestimation of STI cases in this study.

STI rates in this population may also be underestimated for several reasons. There are incentives for underreporting of STI-related symptoms due to disciplinary action that could be taken because of a perceived or real violation of these orders outlines previously. Additionally, HIV-positive military personnel may utilize resources that are not reimbursed through the military medical system, such as publically funded clinics or pay out of pocket for out of network medical care. This would not result in an STI diagnostic code that is captured by the DMSS database. Several studies have described additional barriers to reporting and seeking medical care for STIs that are equally applicable to this population, namely, stigma and perception of shame [21–23]. Another important reason pertains to the often asymptomatic nature of some viral STIs. These individuals would be unaware they have an STI and would likely not seek medical care.

As expected, the STI incidence rates of this study cohort in the pre-HIV diagnosis period were higher compared to the general active duty military population for chlamydia, gonorrhea, and syphilis. The rate of chlamydia in the general active duty military population (1,056.2 cases per 100,000 person-years) was similar to the rate of this cohort pre-HIV diagnosis (1,125.6 cases per 100,000 person-years) [8]. The incidence rate of gonorrhea in the pre-HIV diagnosis period (1,721.5 cases per 100,000 person-years) was over seven times higher compared to the general active duty military population (230.8 cases per 100,000 person-years). The incidence rate of syphilis was 18 times higher in the pre-HIV diagnosis period compared to the general active duty military population with 624.3 and 34.6 cases per 100,000 person years, respectively. The rates of HSV and HPV were lower in the general active duty military population compared to the pre-HIV diagnosis period. The association between syphilis and HIV is well described and was anticipated in this population, but the high gonorrhea incidence rate warrants further investigation [24, 25].

In conclusion, this study examined the relationship between STIs in a low HIV prevalence US military cohort before and after their HIV diagnosis. Overall, the remarkable finding that nearly half of the first STI diagnosis occurred greater than one year after HIV diagnosis warrants further investigation and indicates that high-risk sexual activity is continued to be practiced by this group of individuals.

Disclosure

The views expressed in this paper are those of the authors and are not intended to represent the official policy or position of the Walter Reed Army Institute of Research, the Armed Forces Health Surveillance Center, the Department of Defense, or any other United States governmental or military organization. The authors have no disclosures of potential conflict of interests.

Acknowledgment

We would like to thank Stephen Taubman, Ph.D. from the Armed Forces Health Surveillance Center for his assistance in data analyses.

References

[1] H. I. Hall, R. Song, P. Rhodes et al., “Estimation of HIV incidence in the United States,” JAMA, vol. 300, no. 5, pp. 520–529, 2008.
[2] Armed Forces Health Surveillance Center, “Updates: routine screening for antibodies to HIV-1, civilian applicants for U.S.,” Medical Surveillance Monthly Report, vol. 17, no. 9, pp. 7–18, 2010.

[3] J. J. Rodrigues, S. M. Mehande, M. E. Shepherd et al., “Risk factors for HIV infection in people attending clinics for sexually transmitted diseases in India,” British Medical Journal, vol. 311, no. 7000, pp. 283–286, 1995.

[4] R. C. Brunham, J. Kimani, J. Bwayo et al., “The epidemiology of Chlamydia trachomatis within a sexually transmitted diseases core group,” Journal of Infectious Diseases, vol. 173, no. 4, pp. 950–956, 1996.

[5] D. T. Fleming and J. N. Wasserheit, “From epidemiological synergy to public health policy and practice: the contribution of other sexually transmitted diseases to sexual transmission of HIV infection,” Sexually Transmitted Infections, vol. 75, no. 1, pp. 3–17, 1999.

[6] R. M. Grant, J. R. Lama, P. L. Anderson et al., “Preexposure chemoprophylaxis for HIV prevention in men who have sex with men,” The New England Journal of Medicine, vol. 363, no. 27, pp. 2587–2599, 2010.

[7] S. C. Kalichman, C. Cherry, D. White et al., “Sexual HIV transmission and antiretroviral therapy: a prospective cohort study of behavioral risk factors among men and women living with HIV/AIDS,” Annals of Behavioral Medicine, vol. 42, no. 1, pp. 111–119, 2011.

[8] Armed Forces Health Surveillance Center, “Sexually Transmitted Infections, U.S. Armed Forces, 2004–2009,” Medical Surveillance Monthly Report (MSMR), vol. 18, no. 8, pp. 2–10, 2010.

[9] A. B. Spaulding, A. R. Lifson, E. R. Iverson et al., “Gonorrhoea or chlamydia in a US military HIV-positive cohort,” Sexually Transmitted Infections, vol. 88, no. 4, pp. 266–271, 2012.

[10] P. O. Renzullo, J. G. McNeil, L. I. Gardner, and J. F. Brundage, “Inpatient morbidity among HIV-infected male soldiers prior to their diagnosis of HIV infection,” American Journal of Public Health, vol. 81, no. 10, pp. 1280–1284, 1991.

[11] S. Hakre, D. M. Brett-Major, D. E. Singer et al., “Medical encounter characteristics of HIV seroconverters in the US Army and Air Force, 2000–2004,” Journal of Acquired Immune Deficiency Syndromes, vol. 56, no. 4, pp. 372–380, 2011.

[12] S. L. Braunstein, M. M. Umulisa, N. J. Veldhuijzen et al., “HIV diagnosis, linkage to HIV Care, and HIV risk behaviors among newly diagnosed HIV-positive female sex workers in Kigali, Rwanda,” Journal of Acquired Immune Deficiency Syndromes, vol. 57, no. 4, pp. e70–e76, 2011.

[13] P. M. Gorbach, R. E. Weiss, R. Jeffries et al., “Behaviors of recently HIV-infected men who have sex with men in the year postdiagnosis: effects of drug use and partner types,” Journal of Acquired Immune Deficiency Syndromes, vol. 56, no. 2, pp. 176–182, 2011.

[14] Y. Nebi, N. Meda, V. Leroy et al., “Sexual and reproductive life of women informed of their HIV seropositivity: a prospective cohort study in Burkina Faso,” Journal of Acquired Immune Deficiency Syndromes, vol. 28, no. 4, pp. 367–372, 2001.

[15] K. A. Workowski and S. Berman, “Sexually transmitted diseases treatment guidelines, 2010,” Morbidity and Mortality Weekly Report, vol. 59, no. 12, pp. 1–110, 2010.

[16] K. W. Hoover, M. Butler, K. Workowski et al., “STD screening of HIV-infected MSM in HIV clinics,” Sexually Transmitted Diseases, vol. 37, no. 12, pp. 771–776, 2010.

[17] Human Immunodeficiency Virus Program: Secretary of the Air Force, 2010.