Stevens-Johnson syndrome (SJS) is a rare life-threatening condition. To the Editor, T-cell activation in two cases of Stevens-Johnson syndrome after receiving amoxicillin-clavulanic acid

Our study was conducted in a single centre, which could be considered as a selection bias. However, the repartition of proven food allergy in our patients was close to other French data.14 Because our sample was rather small (126 patients), the risk factor assessment was limited and some risk factors found in other studies were not confirmed in our cohort. Another limitation of our study concerns the diagnosis of bronchospasm during OFC. In 10 cases (6.8%), spirometry was not performed during the OFC, the reaction needing to be treated in emergency. The diagnosis of bronchospasm was then made based on the symptoms presented by the patients. Finally, it should be underlined that we evaluated the appearance of bronchospasm during OFC, which is different from what people experience in “real life,” when consumed doses and cofactors could change the thresholds, symptoms, and the conditions of reactivity.

In conclusion, we found that almost one-third of our food-allergic patients develop food-induced bronchospasm, with a high risk of peanut allergy. These results should be confirmed by other studies, but suggest that the management of food-allergic patients must take into account the risk of bronchospasm, even in non-asthmatic patients, especially if suffering from peanut allergy.

T-cell activation in two cases of Stevens-Johnson syndrome after receiving amoxicillin-clavulanic acid

To the Editor,

Stevens-Johnson syndrome (SJS) is a rare life-threatening condition attributed almost exclusively to drug exposure.1 The main etiologic factor for SJS is treatment with drugs, primarily sulfonamides and anticonvulsants, followed by penicillins and non-steroidal anti-inflammatory drugs.1 Among penicillins, amoxicillin/clavulanic acid (AMX/CLV), despite generally being a well-tolerated antimicrobial, has been reported as a risk factor for SJS in adults and children in several publications.2,3 The pathomechanisms of SJS are not fully understood, but immunologic mechanisms, reactive drug metabolites, and/or interactions between these two have been described in several reviews.4,5

In this study, two children with SJS due to AMX/CLV treatment were investigated using in vitro testing by studying the expansion of T lymphocytes. The first case (patient #1) is a child treated with AMX/CLV during EBV infection, and the second case (patient #2) is a child treated with AMX/CLV where other possible diseases were ruled out.

REFERENCES

1. Caffarelli C, Gurrubba M, Greco C, Mastrorilli C, Povesi Dascola C. Asthma and food allergy in children: is there a connection or interaction? Front Pediatr. 2016;4:34.
2. Muraro A, Werfel T, Hoffmann-Sommergruber K, et al. EAACI food allergy and anaphylaxis guidelines: diagnosis and management of food allergy. Allergy. 2014;69:1008-1025.
3. CDC - asthma - data and surveillance - asthma surveillance data. http://www.cdc.gov/asthma/asthmadata.htm. Accessed January 4, 2017.
4. Keil T, McBride D, Grimshaw K, et al. The multinational birth cohort of EuroPrevall: background, aims and methods. Allergy. 2010;65:482-490.
5. Just J, Amat F. Allergie alimentaire et asthme exacerbateur. Rev Fr Allergol. 2016;56:106-108.
6. James JM. Respiratory manifestations of food allergy. Pediatrics. 2003;111:1625-1630.
7. Bindslev-Jensen C, Ballmer-Weber BK, Bengtsson U, et al. Standardization of food challenges in patients with immediate reactions to foods - position paper from the European Academy of Allergology and Clinical Immunology. Allergy. 2004;59:690-697.
8. Sampson HA, Muñoz-Furlong A, Bock SA, et al. Symposium on the definition and management of anaphylaxis: summary report. J Allergy Clin Immunol. 2005;115:584-591.
9. Bousquet J, Schünemann HJ, Samolinski B, et al. Allergic Rhinitis and its Impact on Asthma (ARIA): achievements in 10 years and future needs. J Allergy Clin Immunol. 2012;130:1049-1062.
10. Yazicioglu M, Baspinar I, Ones U, Pala O, Kıziler U. Egg and milk allergy in asthmatic children: assessment by immulite allergy food panel, skin prick tests and double-blind placebo-controlled food challenges. Allergol Immunopathol (Madr). 1999;27:287-293.
11. Bock SA. Respiratory reactions induced by food challenges in children with pulmonary disease. Pediatr Allergy Immunol. 1992;3:188-194.
12. Krogulska A, Dynowski J, Wasowska-Królikowska K. Bronchial reactivity in schoolchildren allergic to food. Ann Allergy Asthma Immunol. 2010;105:31-38.
13. Krogulska A, Dynowski J, Jędrzejczyk M, Sardecka I, Małachowska B, Wąsowska-Królikowska K. The impact of food allergens on airway responsiveness in schoolchildren with asthma: a DBPCFC study. Pediatr Pulmonol. 2016;51:787-795.
14. CICBAA-http://www.cicbba.com/pages_fr/allergovigilance/index.html. Accessed January 4, 2017.
Patient #1 is a Caucasian boy who had already used oral AMX/CLV to treat common upper airway infectious diseases. At 3 years of age, he was treated with oral AMX/CLV syrup for an acute febrile pharyngitis (39.8°C) and lymphadenopathy that was later diagnosed as EBV infection by serological tests. On the third day, he was evaluated at the emergency department of Anna Meyer Children’s Hospital, where he appeared in poor general condition with fever (38.5°C), malaise, generalized maculopapular exanthema (MPE) with purpuric lesions covering the entire body surface plus both plantar and palmar regions, redness of the eyes, oral erosions of the lips, throat hyperemia, and cervical lymphadenopathy. According to these clinical symptoms, he was diagnosed as being affected by SJS due to the treatment with AMX/CLV during EBV infection. The drug was stopped and he received supportive therapies, including a short course of corticosteroids, fluid replacement with electrolyte solution and analgesic therapy, and recovered within 10 days. Six months later, he was referred to the Allergy Unit of Anna Meyer Children’s Hospital for an allergologic work-up.

According to the European Network for Drug Allergy (ENDA) diagnostic algorithm for in vivo allergologic evaluation of non-immediate reaction to β-lactams, patch tests and skin intradermal tests (ID) with AMX/CLV were consecutively performed. Patch tests at 5% and 20% in petrolatum were tested, with negative readings 15 minutes after removal of the strips and 24-48 hours later. Intradermal testing with AMX/CLV at 2-20 mg/mL concentrations was also negative (including delayed readings at 24, 48, and 72 hours). Positive and negative controls for SPT and ID were obtained using histamine (ALK-Abellò, Milan, Italy; 10 and 1 mg/mL) and normal saline. A positive patch test was defined as when an infiltrate was detected. Skin testing was considered positive either when the ID was greater than 3 mm from the initial wheal or when an increase in the diameter of the initial wheal was associated with a flare, alongside a negative saline control result, within 15 minutes at 24, 48, and 72 hours. Despite the negative results of in vivo testing, we advised his parents to absolutely avoid AMX/CLV. One year and a half later, he came to our Allergy Unit for a follow-up visit. At that time, we were able to perform the lymphocyte transformation tests (LTT) and the induction of hapten-specific short-term T-cell lines (TCLs).

PBMCs were isolated using a Lymphoprep (Sentinel Diagnostic, Milan, Italy) density gradient followed by two washings with PBS at pH 7.2. Groups of 2×10^5 cells were cultured in triplicate in round-bottomed 96-well plates in complete medium plus 5% heat-inactivated autologous serum in a final volume of 0.2 mL for 5 days in the presence of four increasing doses of each β-lactam antibiotic (PEN 2.5-0.25-0.025 mg/mL, AMP 2.5-0.5-0.1-0.02 mg/mL, AMX 1-0.5-0.1-0.02 mg/mL, AMX/CLV 0.5-0.25-0.025-0.004 mg/mL), or medium alone as a negative control at 37°C in a 5% CO2 humidified atmosphere. As positive controls, 2500 UI/mL recall antigen streptokinase (SK) and 1% vol/vol polyclonal activator phytohemagglutinin (PHA) were used. After 16-hours pulsing with 0.5 μCi[^3]HtdR per well (PerkinElmer, Waltham, MA, USA), cultures were harvested, and radioactive uptake was measured by scintillation counting. The stimulation index (SI) was calculated as the ratio between the radioactivity from stimulated cultures and that from unstimulated cultures. A SI ≥ 3 was considered to be positive. TCLs were generated as previously described by culturing 1×10^6 BMCs in the presence of single drugs (PEN 0.5 mg/mL, AMP 0.5 mg/mL, AMX 0.5 mg/mL, and AMX/CLV 0.1 mg/mL) for 6 days. Activated T cells were then expanded for further 8 days by the addition of rIL-2 (25 U/mL) every three days. At the end of the culture period, T-cell blasts were recovered, washed, counted, adjusted to 1×10^6/mL, and assessed for specificity by thymidine incorporation in the presence of the respective drug (PEN, AMP, and AMX 0.5 mg/mL, AMX/CLV 0.1 mg/mL) and autologous irradiated PBMC (1:1 ratio) for 3 days. An SI ≥ 3 was considered to be positive.

LTT was negative for both AMX and AMX/CLV, whereas penicillin (PEN)-specific T-cell lines could be obtained (data not shown). Six months later (2 years since the SJS episode), LTT, induction of hapten-specific TCLs, and intracellular fluorescent labeling with carboxyfluorescein diacetate succinimidyl ester (CFDA-SE) to track proliferating T cells were performed. First, 10×10^6/mL PBMCs were labeled for 4 minutes with 5 μmol L−1 CFDA-SE (Invitrogen, Carlsbad, CA, USA) in PBS; then, the cells were extensively washed, and 2×10^5 labeled cells were cultured in quadruplicate in round-bottomed 96-well plates in the presence of three scalar doses of each β-lactam (PEN 2.5-0.25-0.025 mg/mL, AMP 2.5-0.25-0.025 mg/mL, AMX 1-0.25-0.025 mg/mL, AMX/CLV 0.25-0.025-0.0025 mg/mL) at 37°C. Medium was used as a negative control. SK and PHA were used as positive controls, as described above. On day 7, total rabbit IgG were added to each tube to saturate non-specific binding sites, and the cultures were then incubated with specific (PB anti-CD3, APC-Cy7 anti-CD8, APC anti-CD4) or isotype control mAbs BD Biosciences (Mountain View, CA) for 20 minutes at 4°C. Cells were analyzed using a FACSCalibur cytofluorimeter BD Biosciences (Mountain View, CA) and gated as CD3+CD4+ acquire a total of 10^4 events for each sample. The results are expressed as the stimulation index, calculated as the ratio of the geometric mean fluorescence intensity of proliferating cells between stimulated and unstimulated cultures. LTT remained negative, and TCL induction confirmed the previous results (Figure. 1A). CFDA-SE--assay toward PEN, AMP, AMX, and AMX/CLV was positive on day 7 of incubation, with proliferation of specific T cells of the CD4+ (Figure. 1B) and CD8+ (data not shown) phenotype. Clinical history and positive in vitro tests, together with positive serologic testing for EBV, indicated that our patient had experienced SJS due to AMX/CLV and EBV infection.

Patient #2 is a 16-year-old Moroccan boy admitted to Anna Meyer Children’s Hospital because of SJS.

Two days after finishing a six-day treatment with oral AMX/CLV, he developed bullous lesions on the upper arms, hard palate, gingivae, and lips without fever. Itchy scabs and flaccid blisters filled with serous liquid were located on genital mucosa (Figure. 2). Multiple bilateral lymphadenopathies (<1 cm diameter) were detected in the neck. Laboratory investigation showed the following: an increased white blood cell count (13.5×10^9/L; normal range 4-10×10^9/L) without eosinophilia; increased erythrocyte sedimentation rate (ESR) (53 mm/h), CRP (6.09 mg/dL), and fibrinogen (683 mg/dL; normal range: 200-400 mg/dL); elevated liver aspartate aminotransferase (98 IU/L; normal range 3-40 IU/L); and normal prothrombin time and renal function.
LETTER S TO THE EDITOR

Tests. All infectious screening tests, including viruses (HSV 1 and 2, HCV, HIV, adenovirus, enterovirus, EBV, CMV), bacteria (Streptococcus pyogenes, Salmonella typhi and paratyphi, Brucella, Staphylococcus aureus, Syphilis) and other pathogens (including Strongyloides spp., Toxocara canis, Mycobacterium tuberculosis, Fusobacterium necrophorum and Mycoplasma pneumonia) were negative. Blood cultures were also negative. Therefore, AMX/CLV-induced SJS was suspected. Intravenous corticosteroids and skin care were started with a favorable outcome. In 1 week, lesions had progressively improved, and the patient was discharged with advice to avoid AMX/CLV. Six months later, he was referred to the Allergy Unit of Anna Meyer Children's Hospital where he was investigated for AMX/CLV hypersensitivity. In vivo tests were performed according to the European Network for Drug Allergy recommendations in the following sequence: patch tests with AMX/CLV at 5% and 20% in petrolatum and intradermal (ID) testing with 1/100 and 1/10 dilutions of the full-strength (200 mg/mL) AMX/CLV concentration at 20- to 30-minute intervals. ID tests were also read after 24, 48, and 72 hours for delayed T cell-mediated reactions. In vivo test results were all negative. In vitro studies including LTT, induction of hapten-specific short-term TCLs and CFDA-SE assay were subsequently performed. The LTT results were negative (data not shown), AMP-specific TCLs proliferated against PEN (Figure 1A) and, of note, CFDA-SE assay results were positive for AMX in CD4+ cells exclusively (Figure 1B).

SJS frequently requires hospitalization in childhood and is due to a type IV hypersensitivity reaction toward drugs. The role of pathogens in SJS is still undefined. The clinical diagnosis of severe, delayed drug-hypersensitivity reactions is challenging, and the diagnostic value of current allergologic tests is not well defined. In our patients, according to ENDA patch tests were used as part of the first line investigation. These are reported as safer than intradermal (ID) tests that can be avoided in cases of positive results. Patch tests are, however,
less sensitive (albeit more specific) than delayed-reading ID tests, especially when performed alone. Sensitivity is reported as ranging between 10.8% and 37.5%, depending on the publication, and this variability depends on the type of eruption, and the involved drug. It has been reported that the negative predictive value of drug skin testing is approximately 90%. Our results stand in contrast with the literature, as in vivo testing was of no clinical utility for the diagnosis of SJS to AMX/CLV. Provocation tests, the gold standard of a negative allergologic work-up, are contraindicated in SJS/TEN because re-exposure can elicit a new episode with increased severity. However, there are currently no reliable laboratory tests to determine the offending drug in these cases. In this paper, we show that the extension of the in vitro work-up to less conventional tests was extraordinarily useful for identifying the etiology of the severe reaction. AMX/CLV was the suspected drug for SJS in both patients, but the lymphocyte transformation test was negative even though all β-lactams were screened. It has been reported that the range of sensitivity for LTT is highly variable, but in particular, it is less than 30% in SJS/TEN. In our hands, the induction of short-term T-cell lines (TCLs), and particularly cytofluorometric assessment of lymphocyte proliferation by CFDA-SE assay, resulted in the demonstration of circulating β-lactam-specific T lymphocytes (Figure 1) with a specific response to the combination of AMX and CLV in patient #1. Unfortunately, the role of CLV in the sensitization cannot be exploited as CLV was not individually tested. Although skin biopsies were not performed, clinical manifestations were highly suggestive for SJS (Figure 2). The role played by concurrent infections was unclear. In patient #1, cellular-mediated hypersensitivity toward AMX/CLV persisted 2 years after the reaction, and we suggest that EBV may have additionally contributed to the development of SJS. The hypothesis describing facilitation of drug sensitization by EBV is still controversial. However, the hypothesis that medications and pathogens such as EBV could contribute to drug reactions remains very popular, particularly given the high frequency of skin rashes resulting from aminopenicillin treatment during infectious mononucleosis. This hypothesis has never been supported by clear evidence in SJS/TEN, where a complete screening for infections, in particular for primary EBV infection, should be performed in all SJS cases without any imputable medication. Our results suggest that clinicians should be aware of the risk of AMX/CLV-induced SJS in children and that identification of the culprit drug may be aided by in vitro tests. These latter tests may be of importance for the growing patient to avoid recurrence, particularly given the concrete risk of a fatal outcome.

REAGENTS

The medium used was VLE RPMI 1640 (Biochrom GmbH, Berlin, Germany) supplemented with 2 mmol L\(^{-1}\) endotoxin-free L-glutamine, 1% non-essential amino acids, 1% sodium pyruvate (Sigma-Aldrich, Saint Louis, MO, USA), and 2×10\(^{-5}\) M 2-ME (Merck, Darmstadt, Germany) (complete medium). Penicillin (PEN), ampicillin (AMP), and amoxicillin (AMX) were purchased from Sigma. Amoxicillin/clavulanic acid (AMX/CLV) was obtained from GSK (London, UK). rhIL-2 (Proleukin®) was purchased from Novartis (Basel, Switzerland). The polyclonal activator phytohemagglutinin (PHA) was from Biochrome AG, and the recall antigen streptokinase (SK) was from CSL Behring.

ACKNOWLEDGMENTS

This research was supported by funds from Ente Cassa di Risparmio di Firenze (fellowship to L. Fili).

Francesca Mori
Lucia Fili
Simona Barni
Lucrezia Sarti
Alessandra Montemaggi
Andrea Bassi
Cesare Filippeschi
Luisc Galli
Paola Parronchi
Elio Novembre

FIGURE 2 Patient #2 ‘target’ lesions and extensive mucous membrane involvement with flaccid blisters affecting the hands. [Colour figure can be viewed at wileyonlinelibrary.com]
To the Editor,

Asthma medicines (e.g., inhaled corticosteroids [ICS] and inhaled β-agonists) are the most commonly chronically used medication in children. In the Netherlands, asthma is treated according to a stepwise approach, which is mainly derived from the British Thoracic Society (BTS) guidelines. The guidelines advice to start treatment with short acting β-agonists (SABA) without concomitant ICS if the child is well controlled for a period of 3 months. Little is known about how well the stepwise approach in the guidelines is followed in clinical practice. Therefore, we studied patterns of asthma medication prescriptions in a large group of Dutch children and we focused on the patterns of step-up and step-down treatment.

We retrospectively analyzed all prescriptions (from birth to date of pharmacy data extraction) dispensed for the treatment of asthma of 3573 children who were regular users of asthma medication. Children were recruited through community pharmacies (PACMAN cohort study). Children were invited to participate in the PACMAN cohort if they had used ≥3 prescriptions of asthma medication in last 2 years and ≥1 prescription in last 6 months, and were between 4 and 12 years of age. Records of dispensed asthma medication between birth date and date of extraction were extracted from the computerized pharmacy dispensing systems. In the Netherlands, individuals are usually registered at one pharmacy, which provides a full record of a patients’ medication use. Each dispensing of asthma medications (defined as asthma medications dispensed on the same date) was categorized according to the Dutch clinical asthma guidelines: step 1: only short acting β-agonists (SABA) dispensed; step 2: monotherapy with low-dose inhaled corticosteroid (≤400 μg budesonide dipropionate [BDP] equivalent) or leukotriene modifier, with SABA if needed. Step 3: monotherapy with medium-dose inhaled corticosteroid (400-800 μg BDP equivalent) or combination therapy of low-dose inhaled corticosteroid (≤400 μg BDP equivalent) with a long-acting β-agonist or a leukotriene modifier and SABA if needed; step 4: monotherapy with high-dose inhaled corticosteroid (>800 μg BDP equivalent) or combination therapy of medium-dose inhaled corticosteroid (400-800 μg BDP equivalent) with a long-acting β-agonist or leukotriene modifier and SABA if needed; step 5: high-dose inhaled corticosteroid (>800 μg BDP equivalent) plus long-acting β-agonist with or without omalizumab and SABA if needed. Prescribing LABA without concomitant ICS is not recommended according to the guidelines. For a small part of the LABA prescriptions (2.65%), it was not clear whether single LABA prescriptions were added to existing medication or whether these were prescribed without other medication and therefore were...