Local electronic structure and magnetic properties of LaMn$_{0.5}$Co$_{0.5}$O$_3$ studied by x-ray absorption and magnetic circular dichroism spectroscopy

T. Burnus,1 Z. Hu,1 H. H. Hsieh,2 V. L. J. Joly,3 P. A. Joy,3 M. W. Haverkort,1 Hua Wu,1 A. Tanaka,4 H.-J. Lin,5 C. T. Chen,5 and L. H. Tjeng1

1II. Physikalisches Institut, Universität zu Köln, Zülpicher Straße 77, 50937 Köln, Germany
2Chung Cheng Institute of Technology, National Defense University, Taoyuan 335, Taiwan
3Physical and Materials Chemistry Division, National Chemical Laboratory, Pune 411008, India
4Department of Quantum Matter, ADSM, Hiroshima University, Higashi-Hiroshima 739-8530, Japan
5National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu 30076, Taiwan

(Dated: March 17, 2008)

We have studied the local electronic structure of LaMn$_{0.5}$Co$_{0.5}$O$_3$ using soft-x-ray absorption spectroscopy at the Co-L_3 and Mn-L_3 edges. We found a high-spin Co$^{2+}$-Mn$^{4+}$ valence state for samples with the optimal Curie temperature. We discovered that samples with lower Curie temperatures contain low-spin nonmagnetic Co$^{3+}$ ions. Using soft-x-ray magnetic circular dichroism spectroscopy we established that the Co$^{2+}$ and Mn$^{4+}$ ions are ferromagnetically aligned. We revealed also that the Co$^{3+}$ ions have a large orbital moment: $m_{orb}/m_{spin} \approx 0.47$. Together with model calculations, this suggests the presence of a large magnetocrystalline anisotropy in the material and predicts a nontrivial temperature dependence for the magnetic susceptibility.

PACS numbers: 71.27.+a, 78.70.Dm, 71.70.-d, 75.25.+z

The manganites continue to attract considerable attention from the solid state physics and chemistry community over the last five decades because of their spectacular properties.1,2,3,4 The parent compound LaMnO$_3$ is an A-type antiferromagnetic insulator with orthorhombic perovskite crystal structure. Replacing La by Sr, Ca or Ba results in multiferroic electronic and magnetic properties including the transformation into a ferromagnetic state accompanied by a metal-insulator transition and the occurrence of colossal magnetoresistance.5,6,7 Substitution of the magnetic Mn ions by Co also yields ferromagnetism in the LaMn$_{1-x}$Co$_x$O$_3$ series. The Curie temperature reaches a maximum for $x = 0.5$ ($T_C = 220–240$ K).7,8,9,10,11 This should be contrasted with the end member of this series, namely the rhombohedral LaCoO$_3$, which is a nonmagnetic insulator at low temperatures, showing yet the well-known spin-state transition at higher temperatures which by itself is subject of five decades of intensive study.7,9,12

Explaining the appearance of ferromagnetism in the manganites by Co substitution is, however, not a trivial issue. Assuming that ordering of the Co and Mn ions had not been achieved for the $x = 0.5$ composition, Goodenough et al. concluded early on that the ferromagnetism is generated by Mn$^{3+}$–O–Mn$^{3+}$ superexchange interactions.13 On the other hand, later magnetic susceptibility and Mn NMR studies suggested that it is the exchange interaction involving the ordering of Co$^{2+}$–Mn$^{4+}$ transition-metal ions which causes the ferromagnetism in LaMn$_{0.5}$Co$_{0.5}$O$_3$.8,9,13,14,15,16,17

Only few high-energy spectroscopic studies are reported for the Co substituted manganites. Using soft-x-ray absorption spectroscopy (XAS), Park et al. found in their low Co compositions that the Co ions are divalent, favoring a Mn$^{3+}$–Mn$^{4+}$ double-exchange mechanism for the ferromagnetism.23 Extrapolating this Co divalent result to the $x = 0.5$ composition would provide support to the suggestion that the ferromagnetism therein is caused by the Co$^{2+}$–Mn$^{4+}$ exchange interaction. However, no XAS data have been reported so far for this $x = 0.5$ composition. Using K-edge XAS, Toulemonde et al. revealed that the Co ion is also divalent in their hole doped and Co substituted manganite.24 Yet, these results for the low Co limit have been questioned by van Elp, who claimed that the Co ions should be in the intermediate-spin trivalent state rather than in the high-spin divalent state.20

Further discussion is also raised by the work of Joy and coworkers, who have synthesized two different single phases of LaMn$_{0.5}$Co$_{0.5}$O$_3$ and inferred from a combination of magnetic susceptibility and x-ray photoelectron spectroscopy measurements that the phase with the higher T_C contains high-spin Mn$^{3+}$ and low-spin Co$^{3+}$ ions, while the lower T_C phase has Co$^{2+}$ and Mn$^{4+}$. Very recently, however, long-range charge ordering has been observed in neutron diffraction experiments by Bull et al.21 and Troyanchuk et al.22 on the high-T_C phase, pointing towards the Co$^{2+}$–Mn$^{4+}$ scenario. Also, the most recent magnetic susceptibility and K-edge XAS data by Kyönen et al. favor the presence of essentially Co$^{2+}$–Mn$^{4+}$ at low temperatures.23 The issue of Mn/Co ordering including the possible coexistence of ordered and disordered regions remains one of the important topics.24,25,26,27

Interesting is that the magnetization of polycrystalline samples of LaCo$_{0.5}$Mn$_{0.5}$O$_3$ does not saturate in magnetic fields up to 7 T28 and that there are indications for a large magnetic anisotropy.24

On the theoretical side, not much work has been carried out so far. A relatively early band-structure study by Yang et al. on the LaMn$_{0.5}$Co$_{0.5}$O$_3$ system predicted a half-metallic behavior with a magnetic moment of $3.01 \mu_B$ for Mn and $0.54 \mu_B$ for Co ions, suggesting Mn$^{3+}$–Co$^{3+}$
valence states. This study, however, was performed before the existence of the charge-ordered crystal structure was reported.

Here, we present our experimental study of the local electronic structure of LaMnO$_3$ by x-ray magnetic circular dichroism (XMCD) at the Co-L$_2,3$ and Mn-L$_2,3$ edges, i.e., transitions from the 2p core to the 3d valence orbitals. Our objective is not only to establish the valence and spin states of the Co and Mn ions but also to investigate the possible presence of an orbital moment associated with a Co$^{2+}$ ion, in which case the material should have a large magnetocrystalline anisotropy and a nontrivial temperature dependence of its magnetic susceptibility.

In XAS and XMCD we make use of the fact that the Coulomb interaction of the 2p core hole with the 3d electrons is much larger than the 3d band width, so that the absorption process is strongly excitonic and therefore well understood in terms of atomic-like transitions to multiplet-split final states. Unique to soft-x-ray absorption is that the dipole selection rules are very effective in determining which of the $2p^23d^{n-1}$ final states can be reached and with what intensity, starting from a particular $2p^23d^n$ initial state ($n = 7$ for Co$^{2+}$, $n = 6$ for Co$^{3+}$, $n = 4$ for Mn$^{3+}$, and $n = 3$ for Mn$^{4+}$). This makes the technique an extremely sensitive local probe, ideal to study the valence and spin of the ground or initial state.

The two single-phase LaMn$_{0.5}$Co$_{0.5}$O$_3$ polycrystalline samples were synthesized as described previously and the single phase nature of the two phases (low-T_C phase and high-T_C phase) were confirmed by temperature dependent magnetization measurements. These measurements showed a single sharp magnetic transition at $T_C = 225$ K (called high-T_C phase) for the sample synthesized at 700 °C and a sharp transition at $T_C = 150$ K (called low-T_C phase) for the sample synthesized at 1300 °C. On the other hand, more than one magnetic transition or broad magnetic transitions were observed for samples synthesized at other temperatures indicating their mixed phase behavior, as described in Ref. 42. The magnetization at 5 K in a field of 5 T is 50.4 emu/g for the high-T_C phase and 42.4 emu/g for the low-T_C phase. The Co- and Mn-L$_2,3$ XAS and XMCD spectra were recorded at the Dragon beamline of the National Synchrotron Radiation Research Center (NSRRC) in Taiwan with an energy resolution of 0.25 eV. The sharp peak at 777.8 eV of the Co-L$_3$ edge of single crystalline CoO and at 640 eV of the Mn-L$_3$ edge of single crystalline MnO were used for energy calibration. The isotropic XAS spectra were measured at room temperature, whereas the XMCD spectra at both the Co-L$_2,3$ and the Mn-L$_2,3$ edges were measured at 135 K in a 1 T magnetic field with approximately 80% circularly polarized light. The magnetic field makes an angle of 30° with respect to the Poynting vector of the soft x-rays. The spectra were recorded using the total electron yield method (by measuring the sample drain current) in a chamber with a base pressure of 2×10^{-10} mbar. Clean sample areas were obtained by cleaving the polycrystals in situ.

Figure 1 shows the Co-L$_{2,3}$ XAS spectra of (a) LaCoO$_3$ as a Co$^{3+}$ reference, of the LaMn$_{0.5}$Co$_{0.5}$O$_3$ samples with (b) $T_C = 150$ K and (c) $T_C = 225$ K, and (d) of CoO as a Co$^{2+}$ reference.

FIG. 1: Co-L$_{2,3}$ XAS spectra of (a) LaCoO$_3$ as a Co$^{3+}$ reference, of the LaMn$_{0.5}$Co$_{0.5}$O$_3$ samples with (b) $T_C = 150$ K and (c) $T_C = 225$ K, and (d) of CoO as a Co$^{2+}$ reference.
the valence state: an increase of the valence state of the metal ion by one causes a shift of the XAS $L_{2,3}$ spectra by one or more eV toward higher energies.21,22 This shift is due to a final state effect in the x-ray absorption process. The energy difference between a $3d^n$ ($3d^7$ for Co$^{2+}$) and a $3d^{n-1}$ ($3d^6$ for Co$^{3+}$) configuration is $\Delta E = E(2p^6 3d^{n-1} - 2p^5 3d^n) - E(2p^6 3d^{n-2}p^5 3d^{n+1}) \approx U_{\text{dd}} - U_{\text{pd}} \approx 1-2$ eV, where U_{dd} is the Coulomb repulsion energy between two $3d$ electrons and U_{pd} the one between a $3d$ electron and the $2p$ core hole. In Fig.1 we see a shift of the “center of gravity” of the L_3 white line to higher photon energies by approximately 1.5 eV in going from CoO to LaCoO$_3$. The energy position and the spectral shape of the high-T_C phase of LaMn$_{0.5}$Co$_{0.5}$O$_3$ is very similar to that of CoO, indicating an essentially divalent state of the Co ions.

While the spectral features of the low-T_C phase of LaMn$_{0.5}$Co$_{0.5}$O$_3$ are also very similar to those of CoO and the high-T_C phase as far as the low-energy side of the L_3 white line is concerned, this is no longer true for the high-energy side. The spectral weight at about 780 eV is increased when one compares the high-T_C with the low-T_C phase, and this increase is revealed more clearly by curves (a) of Fig.2 It is natural to associate this increase with the presence of Co$^{3+}$ species since the LaCoO$_3$ spectrum has its main peak also at 780 eV. In order to verify this in a more quantitative manner, we rescaled the spectrum of the high-T_C phase with respect to that of the low-T_C phase and calculate their difference. We find that a rescaling factor of about 0.8 results in a difference spectrum (dotted blue curve of Fig.2) which resembles very much the spectrum of LaCoO$_3$. This in turn may be taken as an indication that the low-T_C phase has about 20% of its Co ions in the low-spin trivalent state. This result contradicts the reports in Refs.21 and22 which suggested that it was the high-T_C sample which contained trivalent Co ions. The different result coming from the x-ray photoemission (XPS) study22 could be due to the following reason: Unlike XAS in which the multiplet structure of the Co-$L_{2,3}$ spectra is very characteristic for the Co valence, the XPS yields rather broad and featureless Co $2p$ core-level spectra with very little distinction between Co$^{2+}$ and Co$^{3+}$. To use XPS core-level shifts to determine the valence state of insulating materials is also not so straightforward due to the fact that the chemical potential with respect to the valence or conduction band edges is not well defined. The present finding of the presence of low-spin Co$^{3+}$ species naturally explains why the low-T_C sample has less than the optimal T_C: the nonmagnetic ions suppress strongly the spin-spin coupling between neighboring metal ions.

![FIG. 2: (Color online) Co-$L_{2,3}$ XAS spectra of (a) the LaMn$_{0.5}$Co$_{0.5}$O$_3$ samples with $T_C = 225$ K (solid black curve) and $T_C = 150$ K (dashed red curve), their difference (dotted blue curve), and (b) of LaCoO$_3$ as Co$^{3+}$ reference.](image)

![FIG. 3: Mn-$L_{2,3}$ XAS spectra of the LaMn$_{0.5}$Co$_{0.5}$O$_3$ sample with (a) $T_C = 150$ K and (b) $T_C = 225$ K together with (c) SrMnO$_3$ (Mn$^{4+}$, taken from Ref.43), (d) LaMnO$_3$ (Mn$^{3+}$) and (e) MnO (Mn$^{2+}$) for comparison.](image)
as a divalent Mn reference [curve (d)]. Again we see a gradual shift of the center of gravity of the L_3 white line to higher energies from MnO to LaMnO$_3$ and further to SrMnO$_3$, reflecting the increase of the Mn valence state from 2+ via 3+ to 4+. The Mn-$L_{2,3}$ spectrum of the high-T_C LaMn$_{0.5}$Co$_{0.5}$O$_3$ samples is similar to that of SrMnO$_3$ and LaMn$_{0.5}$Ni$_{0.5}$O$_3$, in which a Ni$^{2+}$/Mn$^{4+}$ valence state was found. The Mn-$L_{2,3}$ XAS spectrum thus reveals an essentially Mn$^{4+}$ state in the high-T_C LaMn$_{0.5}$Co$_{0.5}$O$_3$, consistent with the observation of the Co$^{2+}$ valence in the Co-$L_{2,3}$ XAS spectra above, i.e. fulfilling the charge balance requirement.

To investigate whether the presence of Co$^{3+}$ species in the low-T_C LaMn$_{0.5}$Co$_{0.5}$O$_3$ is also accompanied by the occurrence of Mn$^{3+}$ ions as charge compensation, we have carried out a similar analysis as for the Co spectra. Figure 4 shows the low-T_C spectrum (red dashed curve) and the high-T_C one (black solid curve) rescaled to 80% of low T_C. Their difference spectrum is shown as the dotted blue curve. We find that the line shape resembles very much that of the high-T_C sample itself, suggesting that most of the Mn in the low-T_C sample are also tetravalent. This in turn would imply that the low-T_C sample has to have excess of oxygen to account for the presence of the Co$^{3+}$ species. Nevertheless, a closer look reveals that the energy position of the difference spectrum lies between that of the Mn$^{4+}$ and the Mn$^{3+}$ spectra, and that the valley at 641–642 eV, at which energy a typical Mn$^{3+}$ system like LaMnO$_3$ has its maximum, is not so deep. This suggests that in the low-T_C sample, there are also some Mn$^{3+}$ ions or strongly hybridized Mn$^{3+}$ and Mn$^{4+}$ ions. Such a charge compensation for the Co$^{3+}$ could indicate that the ordering of the Mn and Co ions is less than perfect, so that the dislocated Co ions in the Mn$^{4+}$ positions would have smaller metal-oxygen distances, leading to the stabilization of the low-spin trivalent state of the Co.

Having established the valences of the Co and Mn ions, we now focus our attention on their magnetic properties. In the top panel (a) of Fig. 5 we present the XMCD spectra at the Co-$L_{2,3}$ edges of the high-T_C LaMn$_{0.5}$Co$_{0.5}$O$_3$ taken at 135 K. The spectra μ^+ (black solid curve) and μ^- (red dashed curve) stand, respectively, for parallel and antiparallel alignments between the photon spin and the magnetic field. One can clearly observe large differences between the two spectra with the different alignments. The difference spectrum, $\Delta \mu = \mu^+ - \mu^-$, i.e. the XMCD spectrum, is also shown (blue dotted curve). In the bottom panel (b) of Fig. 5 we show the XMCD spectra at the Mn-$L_{2,3}$ edges. Also here we can observe a large XMCD signal. It is important to note that the XMCD is largely negative at both the Co and the Mn L_3 edges, indicating that the Co$^{2+}$ and Mn$^{4+}$ ions are aligned ferromagnetically

Very interesting about the XMCD at the Co-$L_{2,3}$ edges is that it is almost zero at the L_2 while it is largely negative at the L_3. This is a direct indication that the orbital contribution (L_z, m_{orb}) to the Co magnetic moment must be large. In making this statement, we effectively used the XMCD sum rule derived by Thole et al. in which the ratio between the energy-integrated XMCD signal and the energy-integrated isotropic spectra gives a direct value for L_z. Nevertheless, for a quantitative analysis it is preferred to extract experimentally the L_z/S_z ratio by making use of an approximate XMCD sum rule developed by Carra et al. for the spin contribution ($2S_z$, m_{spin}) to the magnetic moment. This is more reliable than extracting the individual values for L_z and S_z since one no longer needs to make corrections for an incomplete magnetization, due to, for example, possible strong magnetocrystalline anisotropy in a polycrystalline material. The sum rules of Thole et al. and Carra et al. give for the m_{orb}/m_{spin} or $L_z/2S_z$,

$$ \frac{m_{orb}}{m_{spin}} = \frac{L_z}{2S_z + 7T_z} = \frac{2}{3} \frac{\int L_z \Delta \mu(E) dE + \int E \Delta \mu(E) dE}{\int L_z \Delta \mu(E) dE - 2 \int L_z \Delta \mu(E) dE}, $$

where T_z denotes the magnetic dipole moment. This T_z for ions in octahedral symmetry is a small number and negligible compared to S_z. Using this equation, we extract $m_{orb}/m_{spin} = 0.47$ out of our Co-$L_{2,3}$ XMCD spectrum. This is a large value and is in fact close to the value of 0.57 for CoO, a compound well known for the important role of the spin-orbit interaction for its magnetic and structural properties.

![Figure 4](image_url)
The unquenched orbital moment is closely related to the open t_{2g} shell of the 3d^7 configuration. Applying the sum rules for the Mn-$L_{2,3}$ XMCD spectra, we obtain $m_{\text{orb}}/m_{\text{spin}} = 0.09$. This means that the orbital moment for the Mn$^{4+}$ ions is nearly quenched. Indeed, for the 3d^3 configuration in the Mn$^{4+}$ compounds, the majority t_{2g} shell is fully occupied and thus a practically quenched orbital moment is to be expected.

To critically check our findings concerning the local electronic structure of the Co and Mn ions, we will explicitly simulate the experimental XMCD spectra using the configuration interaction cluster model. The method uses a CoO$_6$ and MnO$_6$ cluster, respectively, which includes the full atomic multiplet theory and the local effects of the solid. It accounts for the intra-atomic 3d-$3d$ and 2p-$3d$ Coulomb interactions, the atomic 2p and 3d spin-orbit couplings, the oxygen 2p-$3d$ hybridization, and local crystal field parameters. Parameters for the multipole part of the Coulomb interactions were given by the Hartree-Fock values, while the monopole parts (U_{dd}, U_{dd}) as well as the oxygen 2p-$3d$ charge transfer energies were determined from photoemission experiments on typical Co$^{2+}$ and Mn$^{4+}$ compounds. The one-electron parameters such as the oxygen 2p-$3d$ and oxygen 2p-oxygen 2p transfer integrals were extracted from band-structure calculations within the local-density approximation (LDA) using the low-temperature crystal structure of the high-T_c phase. The simulations have been carried out using the XTLS 8.3 program with the parameters given in Ref.

Important for the local electronic structure of the Co$^{2+}$ ion is its local t_{2g} crystal field scheme. This together with the spin-orbit interaction determines to a large extent its magnetic properties. To extract the crystal field parameters needed as input for the cluster model, we have performed constrained LDA+U calculations without the spin-orbit interaction. We find that the $zx+xy$ orbital lies lowest, while the yz is located 22 meV and the $zx-xy$ 27 meV higher. Here, we made use of local coordinates in which the z direction is along the long Co-O bond (2.078 Å), the y along the second-longest bond (2.026 Å), and the x along the short bond (1.997 Å). The cluster model finds the easy axis of the magnetization to lie in the yz plane with a single-ion anisotropy energy of about 0.5–1.5 meV, i.e., larger than can be achieved by the applied magnetic field. Since we are dealing with a polycrystalline sample, the sum of spectra taken with the light coming from all directions has to be calculated; we approximated this by summing two calculated spectra: one for light with the Poynting vector along the yz axis and one with the Poynting vector perpendicular to this. The exchange field direction is kept along the yz axis in both cases.

The results of the cluster model calculations are included in Fig. 5 in the top panel (a) for the Co $L_{2,3}$ edges and the bottom panel (b) for the Mn. One can see that the line shapes of the experimental Co and Mn spectra are well explained by the simulations: all the characteris-
The experimental spectra were in general about 30% smaller than the simulated XMCD tic features are reproduced. We would like to remark that \approx complete degree of circular polarization (\approx) is generally done (but which is not correct as shown above).

To demonstrate the consequences of the presence of such a set of low lying excited states, we calculated the magnetic susceptibility χ of the Co$^{2+}$ in cubic symmetry for an applied magnetic field of 0.01 T and without an exchange field. The results are presented in Fig. 7 where we depict also the (apparent) effective magnetic moment μ_{eff} [μ_{eff} is defined here as $3k_B$ divided by the temperature derivative of $1/\chi(T)$] and the (apparent) Weiss temperature Θ [Θ is defined here as the intercept of the tangent to the $1/\chi(T)$ curve with the abscissa]. One can clearly observe that $1/\chi(T)$ is not linear with temperature for temperatures between $T_C = 225$ K and roughly 800 K. Only for temperatures higher than 800 K, one can find a Curie-Weiss-like behavior, but then the (apparent) Weiss temperature has nothing to do with magnetic correlations since they were not included in this single ion calculations. Instead, the (apparent) Weiss temperature merely reflects the fact that the first excited states are thermally populated. This means in turn that one cannot directly extract the relevant ground state quantum numbers from the high temperature region.

In principle, one could hope to find a Curie-Weiss behavior by focusing on the very low temperature region only, e.g., below 50 K, but there one has to take into account that there is a very large Van Vleck contribution to the magnetic susceptibility due to the fact that the first excited states are lying very close, i.e., in the range of the spin-orbit splitting. The extrapolation to $T = 0$ K would then give the real value for μ_{eff} of the ground state. In the case of LaMn$_{0.5}$Co$_{0.5}$O$_3$, however, the presence of ferromagnetism, which already sets in at 225 K, will completely dominate the magnetic susceptibility and thus hinder the determination of μ_{eff} of the ground state using this procedure. Obviously, one can determine in principle the magnetic moments in a ferromagnet from the saturation magnetization, but apparently this is the issue for LaMn$_{0.5}$Co$_{0.5}$O$_3$ where one is debating about the importance of Mn/Co disorder and its relationship to reduced magnetizations and less than optimal Curie temperatures.

Another often used “magnetic” technique to determine the moments in this ferromagnetic material is neutron scattering. Troyanchuk et al. found a mean value of $2.5\mu_B$ per formula unit (LaCo$^{0.5}$Mn$^{0.5}$O$_3$). The authors claimed that this is in good agreement with the Co$^{2+}$–Mn$^{4+}$ scenario. Indeed, assuming spin-only moments as is generally done (but which is not correct as shown above), one would already expect $3\mu_B$ for a Co$^{2+}$ ion and $3\mu_B$ for a Mn$^{4+}$ ion, totaling to $6\mu_B$, i.e. $3\mu_B$/f.u., which is somewhat larger than the experimental finding and which can be understood consistently if one assumes that the Co–Mn ordering in their sample is not perfect. It is important to note that the low-spin Co$^{3+}$–Mn$^{3+}$ scenario can be ruled out since this yields only $2\mu_B$/f.u.,

![Energy level diagram of the Co$^{2+}$ ion](image)
i.e., too low to explain the experiment. Nevertheless, a Co$^{3+}$–Mn$^{3+}$ scenario in which the Co$^{3+}$ ion is in the intermediate ($S = 1$) or high spin state ($S = 2$) cannot be excluded on the basis of the moments measured by the neutrons alone.12,13

Our cluster model calculations based on the XAS and XMCD spectra reveal that the Co$^{2+}$ ion has $m_{\text{spin}} = 2.12\mu_B$ and $m_{\text{orb}} = 0.99\mu_B$ and that the Mn$^{4+}$ has $m_{\text{spin}} = 2.84\mu_B$ and $m_{\text{orb}} = 0.02\mu_B$, totaling to $2.99\mu_B/f.u.$ This is not inconsistent with the magnetization results of Asai et al.16 if we make an extrapolation to higher magnetic fields as to estimate the saturated total moment. Our result is larger than the neutron results, but also not inconsistent if one is willing to accept that there is an appreciable amount of Co–Mn disorder in the neutron sample. Crucial is that our XAS and XMCD spectra rule out all the Co$^{3+}$–Mn$^{4+}$ scenarios: (1) our Co $L_{2,3}$ spectra give a positive match with those of Co$^{2+}$ compounds, while they do not fit those of low-spin Co$^{3+}$ and high-spin Co$^{3+}$ compounds.12,13 (2) our Mn $L_{2,3}$ spectra are very similar to those of Mn$^{4+}$ compounds, and very dissimilar to those of Mn$^{3+}$.

To summarize, we have utilized an element-specific spectroscopic technique, namely, soft-x-ray absorption and magnetic circular dichroism spectroscopy, to unravel the local electronic structure of LaMn$_{0.5}$Co$_{0.5}$O$_3$ system. We have firmly established the high-spin Co$^{2+}$–Mn$^{4+}$ scenario. We have found a very large orbital contribution to the Co magnetic moment, implying a nontrivial temperature dependence for the magnetic susceptibility. We also have revealed that samples with lower Curie temperatures contain low-spin nonmagnetic Co$^{3+}$ ions.

We would like to thank Daniel Khomskii for critical reading the paper and Lucie Hamdan for her skillful technical and organizational assistance in preparing the experiments. The research in Cologne is supported by the Deutsche Forschungsgemeinschaft through SFB 608.

1. G. H. Jonker and J. H. van Santen, Physica (Amsterdam) 16, 337 (1950).
2. J. Volger, Physica (Amsterdam) 20, 49 (1954).
3. A. P. Ramirez, J. Phys.: Condens. Matter 9, 8171 (1997).
4. M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998).
5. R. von Helmolt, J. Wecker, B. Holzapfel, L. Schultz, and K. Samwer, Phys. Rev. Lett. 71, 2331 (1993).
6. S. Jin, T. H. Tiefel, M. McCormack, R. A. Fastnacht, R. Ramesh, and L. H. Chen, Science 264, 413 (1994).
7. J. B. Goodenough, A. Wold, R. J. Arnott, and N. Menyuk, Phys. Rev. 124, 373 (1961).
8. G. Blasse, J. Phys. Chem. Solids 26, 1969 (1965).
9. G. H. Jonker, J. Appl. Phys. 37, 1424 (1966).
10. S. Hébert, C. Martin, A. Maigmann, R. Retoux, M. Hervieu, N. Nguyen, and B. Raveau, Phys. Rev. B 65, 104420 (2002).
11. I. R. Dass and J. B. Goodenough, Phys. Rev. B 67, 014401 (2003).
12. M. W. Haverkort, Z. Hu, J. C. Cezar, T. Burnus, H. Hartmann, M. Reuther, C. Zobel, T. Lorenz, A. Tanaka, N. B. Brookes, H. H. Hsieh, H.-J. Lin, C. T. Chen, and L. H. Tjeng, Phys. Rev. Lett. 97, 176405 (2006).
13. N. Nishimori, K. Asai, and M. Mizoguchi, J. Phys. Soc. Jpn. 64, 1326 (1995).
14. I. O. Troyanchuk, N. V. Samsonenko, N. V. Kasper, H. Szymczak, and A. Nabialek, J. Phys.: Condens. Matter 9, 8287 (1997).
15. I. O. Troyanchuk, N. V. Samsonenko, A. Nabialek, and H. Szymczak, J. Magn. Magn. Mater. 168, 309 (1997).
16. K. Asai, K. Fujicroshi, N. Nishimori, Y. Satoh, Y. Kobayashi, and M. Mizoguchi, J. Phys. Soc. Jpn. 67, 4218 (1998).
17. I. O. Troyanchuk, L. S. Lobanovsky, D. D. Khalyavin, S. N. Pastushonok, and H. Szymczak, J. Magn. Magn. Mater. 210, 63 (2000).
18. J.-H. Park, S.-W. Cheong, and C. T. Chen, Phys. Rev. B 55, 11072 (1997).
19. O. Toulemonde, F. Studer, A. Barnab, A. Maigmann, C. Martin, and B. Raveau, Eur. Phys. J.: Appl. Phys. 4, 159 (1998).
20. J. van Elp, Phys. Rev. B 60, 7649 (1999).
21. P. A. Joy, Y. B. Khollam, and S. K. Date, Phys. Rev. B 62, 8608 (2000).
22. V. L. Joseph Joly, P. A. Joy, S. K. Date, and C. S. Gopinath, J. Phys.: Condens. Matter 13, 649 (2001).
23. C. L. Bull, D. Gleeson, and K. S. Knight, J. Phys.: Condens. Matter 15, 4927 (2003).
24. I. O. Troyanchuk, A. P. Sazonov, H. Szymczak, D. M. Többens, and H. Gamali-Seale, J. Exp. Theor. Phys. 99,
363 (2004).
25 T. Kyömen, R. Yamazaki, and M. Itoh, Chem. Mater. 15, 4798 (2003).
26 T. Kyömen, R. Yamazaki, and M. Itoh, Chem. Mater. 16, 179 (2004).
27 C. Autret, K. K. z. J Hejtmanek, M. Marysko, Z. Jirák, M. Dlouhá, and S. Vratislav, J. Phys.: Condens. Matter 17, 1601 (2005).
28 Z. Yang, L. Ye, and X. Xie, Phys. Rev. B 59, 7051 (1999).
29 A. Tanaka and T. Jo, J. Phys. Soc. Jpn. 63, 2788 (2004).
30 F. M. F. de Groot, J. Electron Spectrosc. Rel. Phenom. 67, 529 (1994).
31 See the “Theo Thole Memorial Issue”, J. Electron Spectrosc. Rel. Phenom. 86, 1 (1997).
32 C. T. Chen and F. Sette, Phys. Scr. T31, 119 (1990).
33 C. Mitra, Z. Hu, P. Raychaudhuri, S. Wirth, S. I. Csíszar, H. H. Hsieh, H.-J. Lin, C. T. Chen, and L. H. Tjeng, Phys. Rev. B 67, 092404 (2003).
34 G. van der Laan and B. T. Thole, Phys. Rev. Lett. 60, 1977 (1988).
35 B. T. Thole and G. van der Laan, Phys. Rev. A 38, 1943 (1988).
36 C. Cartier dit Moulin, P. Rudolf, A. M. Flank, and C. T. Chen, J. Phys. Chem. 96, 6196 (1992).
37 H. F. Pen, L. H. Tjeng, E. Pellegrin, F. M. F. de Groot, G. A. Sawatzky, M. A. van Veenendaal, and C. T. Chen, Phys. Rev. B 55, 15500 (1997).
38 Z. Hu, H. Wu, M. W. Haverkort, H. H. Hsieh, H. J. Lin, T. Lorenz, J. Baijer, A. Reichl, I. Bonn, C. Felser, A. Tanaka, C. T. Chen, and L. H. Tjeng, Phys. Rev. Lett. 92, 207402 (2004).
39 B. T. Thole, P. Carra, F. Sette, and G. van der Laan, Phys. Rev. Lett. 68, 1943 (1992).
40 C. T. Chen, Y. U. Idzerda, H.-J. Lin, N. V. Smith, G. Meigs, E. Chaban, G. H. Ho, E. Pellegrin, and F. Sette, Phys. Rev. Lett. 75, 152 (1995).
41 T. Burnus, Z. Hu, M. W. Haverkort, J. C. Cezar, D. Flahaut, V. Hardy, A. Maignan, N. B. Brookes, A. Tanaka, H.-H. Hsieh, H.-J. Lin, C. T. Chen, and L. H. Tjeng, Phys. Rev. B 74, 245111 (2006).
42 P. A. Joy, Y. B. Khollam, S. N. Patole, and S. K. Date, Mater. Lett. 46, 261 (2000).
43 R. K. Sahu, Z. Hu, M. L. Rao, S. S. Manoharan, T. Schmidt, B. Richter, M. Knupfer, M. Golden, J. Fink, and C. M. Schneider, Phys. Rev. B 66, 144415 (2002).
44 M. C. Sánchez, J. García, J. Blasco, G. Subías, and J. Perez-Cacho, Phys. Rev. B 65, 144409 (2002).
45 P. Carra, B. T. Thole, M. Altarelli, and X. Wang, Phys. Rev. Lett. 70, 694 (1993).
46 Y. Teramura, A. Tanaka, and T. Jo, J. Phys. Soc. Jpn. 65, 1053 (1996).
47 T_s needs not to be small at the surface [see Crocombette et al. (Ref. 48)]. With a probing depth of ≈ 40 Å, however, the contribution of the surface is a small fraction of that of the bulk, so that ignoring T_s in determining m_{orb}/m_{spin} leads to errors not larger a few percent.
48 J. P. Crocombette, B. T. Thole, and F. Jollet, J. Phys.: Condens. Matter 8, 4095 (1996).
49 G. Ghiringhelli, L. H. Tjeng, A. Tanaka, O. Tjernberg, T. Mizokawa, J. L. de Boer, and N. B. Brookes, Phys. Rev. B 66, 075101 (2002).
50 C. G. Shull, W. A. Strauser, and E. O. Wollan, Phys. Rev. 83, 333 (1951).
51 Y.-Y. Li, Phys. Rev. 100, 627 (1955).
52 W. L. Roth, Phys. Rev. 110, 1333 (1958).
53 B. van Laar, Phys. Rev. 138, A584 (1965).
54 D. C. Khan and R. A. Erickson, Phys. Rev. B 1, 2243 (1970).
55 M. D. Rechtin, S. C. Moss, and B. L. Averbach, Phys. Rev. Lett. 24, 1485 (1970).
56 W. Jauch, M. Reehuis, H. J. Bleif, F. Kubanek, and P. Patison, Phys. Rev. B 64, 052102 (2001).
57 J. Kanamori, Prog. Theor. Phys. 17, 177 (1957).
58 T. Nagamiya and K. Motizuki, Rev. Mod. Phys. 30, 89 (1958).
59 T. Shishidou and T. Jo, J. Phys. Soc. Jpn. 67, 2637 (1998).
60 C. J. Ballhausen, Introduction to Ligand Field Theory (McGraw-Hill, New York, 1962).
61 S. I. Csíszar, M. W. Haverkort, Z. Hu, A. Tanaka, H. H. Hsieh, H.-J. Lin, C. T. Chen, T. Hihna, and L. H. Tjeng, Phys. Rev. Lett. 95, 187205 (2005).
62 A. E. Bocquet, T. Mizokawa, K. Morikawa, A. Fujimori, S. R. Barman, K. Maitai, D. D. Sarma, Y. Tokura, and M. Onoda, Phys. Rev. B 53, 1161 (1996).
63 Hua Wu et al. (unpublished).
64 Parameters CoO₄ cluster: $U_{d_{3d}d} = 6.5$ eV, $U_{d_{3d}d'} = 8.2$ eV, $\Delta = 5.5$ eV, $T_{pp} = 0.7$ eV, $\Delta_{onic}^{C_F} = 450$ meV, $\Delta_{ionic}^{d_{2p}} = 24.5$ meV, $\Delta_{ionic}^{d_{3d}d'} = 5$ meV, $\Delta_{ionic}^{d_{3d}d} = 88$ meV, $V_{pp} = -1.24$ eV, $V_{pd} = 0.572$ eV, $H_{ex} = 6.5$ meV, and $B_{ext}^{eff} = \cos 30^\circ \times 1$ T. Hartree-Fock results have been used for the Slater integrals, which were reduced to (F_{d}^{2}) 90%, (F_{p}^{2}) 100%, and (F_{g}^{2}) 95%. Parameters MnO₆ cluster: $U_{d_{3d}d} = 5.0$ eV, $U_{d_{3d}d'} = 6.0$ eV; $\Delta = -3.0$ eV; $T_{pp} = 0.7$ eV; $\Delta_{onic}^{C_F} = 0.95$ eV; $V_{pd} = -1.6$ eV; $V_{pd} = 0.74$ eV; $H_{ex} = 6.5$ meV; $B_{ext}^{eff} = \cos 30^\circ \times 1$ T. The Slater integrals were reduced to 70%.