A general pattern of the species abundance distribution

Qiang Su Corresp. 1

1 College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China

Corresponding Author: Qiang Su
Email address: sqiang@ucas.ac.cn

Since the 1970s, species abundance distributions (SADs) have been one of the most fundamental issues in ecology and have frequently been investigated and reviewed. However, there was surprisingly little consensus. This study focuses on three essential questions. (1) Is there a general pattern of SAD that no community can violate it? (2) If it exists, what does it look like? (3) Why is it like this? The frequency distributions of 19,833 SADs from eight datasets (including eleven taxonomic groups from terrestrial, aquatic, and marine ecosystems) suggest that a general pattern of SAD might exist. According to two hypotheses (the finiteness of the total energy and the causality from the entropy to the diversity), this study assumes that the general pattern of SAD is approximately consistent with Zipf’s law, which means that Zipf’s law might be more easily to observe when one investigates any SAD. In the further, this conjecture not only needs to be tested (or supported) by more and more datasets, but also depends on how well it is explained from different angles of theories.
A general pattern of the species abundance distribution

Qiang Su*,a

a, College of Earth and Planetary Sciences (CEPS), University of Chinese Academy of Sciences (UCAS), No.19A Yuquan Road, Beijing, 100049, China

sqiang@ucas.ac.cn

+86 10 88256997

Running Head: Diversity and Zipf's law.

Corresponding author: Dr. Qiang Su

Words in the Abstract: 176

Words in main body: 3114

References: 29

Table: 2

Figures: 1
ABSTRACT

Since the 1970s, species abundance distributions (SADs) have been one of the most fundamental issues in ecology and have frequently been investigated and reviewed. However, there was surprisingly little consensus. This study focuses on three essential questions. (1) Is there a general pattern of SAD that no community can violate it? (2) If it exists, what does it look like? (3) Why is it like this? The frequency distributions of 19,833 SADs from eight datasets (including eleven taxonomic groups from terrestrial, aquatic, and marine ecosystems) suggest that a general pattern of SAD might exist. According to two hypotheses (the finiteness of the total energy and the causality from the entropy to the diversity), this study assumes that the general pattern of SAD is approximately consistent with Zipf’s law, which means that Zipf’s law might be more easily to observe when one investigates any SAD. In the further, this conjecture not only needs to be tested (or supported) by more and more datasets, but also depends on how well it is explained from different angles of theories.
INTRODUCTION

Species abundance distributions (SADs) describe the distribution of commonness and rarity in a community (McGill et al. 2007, Baldridge et al. 2016). McGill et al. (2007) stated that “understanding SAD is a major stepping stone to understanding communities in general”. SADs play a central role in ecology because the determinants of diversity also depend on how well SADs are explained (May 1975, Magurran 1988, Tokeshi 1993, McGill et al. 2007, Baldridge et al. 2016).

Since the 1970s, numerous SAD models have been proposed on various theoretical grounds, and they were observed in real situations (May 1975, Frontier 1987, Magurran 1988, Tokeshi 1993, Mouillot et al. 2000, McGill et al. 2007, Baldridge et al. 2016, Su 2016). However, it is difficult to draw general conclusions about which models provide the best fit to SADs (Baldridge et al. 2016). Although many ecologists hoped that distinguishing subtle variations in these models would provide a decisive test, this had not worked well (McGill et al. 2007).

Baldridge et al. (2016) pointed out that the log-series model provided a slightly better fit to the abundance distributions of over 16,000 community samples. Connolly et al. (2014) suggested the Poisson lognormal model as an appropriate description of 1,185 SADs from 14 marine ecosystems. A similar study according
to 558 samples indicated that lognormal type SADs fitted much better than log-series model or the Zipf model (Ulrich et al. 2010). In brief, SAD models predicted very similar shapes and their distinction became problematic (May 1975, Magurran 1988, Tokeshi 1993, McGill et al. 2007, Ulrich et al. 2010, Connolly et al. 2014, Baldridge et al. 2016).

Baldridge et al. (2016) suggested that the SAD usually did not contain sufficient information to distinguish among different models and a more promising way was to evaluate each model’s ability to simultaneously explain multiple macroecological patterns. In fact, when one investigates any community, it is ubiquitously observed that many species are rare and just a few are common (May 1975, Frontier 1987, Magurran 1988, Tokeshi 1993, Mouillot et al. 2000, McGill et al. 2007, Baldridge et al. 2016, Su 2016). Although there is a great variability in the observed SAD, such consistent pattern appears to be very universal (May 1975, Magurran 1988, Tokeshi 1993, McGill et al. 2007, Ulrich et al. 2010, Connolly et al. 2014, Baldridge et al. 2016).

The purpose of this study is no longer the comparison of SAD models. The main questions are that (1) is there (or is there not) a general pattern of SAD that no community (from the marine benthos to the Amazonian rainforest) can violate it? (2) if such pattern exists, what does it look like? (3) why is a community generally organized in such pattern? To this end, the frequency distributions of 19,833 SADs
from eight datasets (including eleven taxonomic groups from terrestrial, aquatic, and marine ecosystems) are evaluated.

METHODS

Since SAD models all can describe the pattern that many species are rare and just a few are common, a new fractal model of SAD (Su 2016) is selected for three reasons. (1) Its hypothesis is easy to fit (Frontier 1987, Mouillot et al. 2000); (2) the frequency of SADs is easy to obtain as there is only one parameter in this model (Su 2016); (3) The extension of this model into a larger ecological context and its ability to explain multiple ecological patterns have not been fully understood.

The theoretical bases of this model have been given by Frontier (Frontier 1985, Frontier 1987, 1994). In ecology, its interpretation led to two different but non-contradictory interpretations (Zipf 1949, Mandelbrot 1953, Frontier 1987, 1994, Mouillot et al. 2000, Su 2016). One was the “cost of a species”, which was linked with the amount of assimilated energy that it required. For example, it is costlier in terms of energy for an ecosystem to produce and maintain a carnivore than a primary producer, because of the loss of energy at each trophic level (Frontier 1987, 1994). The other referred to the existence of previous conditions allowing the presence of a species (Frontier 1987, 1994, Su 2016). For example, some of these conditions may be the occurrences of some previous species in the ecological
succession since any species modifies the biological and physical environment, permitting or hindering another species to appear (Frontier 1985, Frontier 1987, 1994).

According to the original hypothesis (when K more species appear at each step of the accumulation process, their abundance are k times less abundant and $K=k^d$), where $d (>0)$ is a fractal dimension (Mouillot et al. 2000), SAD in a community is

$$\frac{A_r}{A_1} = r^{-p} \quad (1)$$

where $r (=1, 2, 3, \ldots S)$ is the rank of species sorted down by species abundance; A_1 and A_r are the abundance of dominant and the r-th species; $p (=1/d)$ is the fractal parameter, which determines the pattern of the SAD (Su 2016). For example, when $p=1$ and $S=6$, SAD (A_r/A_1) is

1, 1/2, 1/3, 1/4, 1/5, 1/6

Let $F_r = \ln(A_r/A_1)$ and $D_r=\ln(r)$. By minimizing the sum of squared errors ($\Sigma_{r=1}^{S} (-pD_r - F_r)^2$), p is estimated as follows

$$p = \frac{-\Sigma_{r=1}^{S} D_r F_r}{\Sigma_{r=1}^{S} D_r^2} \quad (2)$$

Similarly, if SAD (A_r/A_1) in a community is 1, 1/2, 1/3, 1/4, 1/5, 1/6, the fractal p is 1 according to Eq. (2).

The sum of Eq. (1) is

$$\frac{A_r}{A_1} = \Sigma_{r=1}^{S} r^{-p} \quad (3)$$
where A_T is the total abundance.

According to Hill’s notation that is related to Rényi’s definition of a generalized entropy, A_T/A_1 is an effective number of species with the order $a=\infty$ (Rényi 1961, Hill 1973). When $p=1$, the difference between A_T/A_1 and $\ln(S)$ in mathematic converges to the Euler-Mascheroni constant.

If S is infinite, Eq. (3) is

$$\frac{A_T}{A_1} = \sum_{r=1}^{\infty} r^{-p}$$

Eq. (4) is consistent with the generalization of the harmonic series. It converges for all $p>1$ and diverges for $p\leq 1$. When $p=1$, Eq. (4) is the observed Zipf’s law (or Zipf distribution) (Zipf 1949, Seuront 2009).

In brief, Eq. (1) is based on the fractal hypothesis of diversity (Frontier 1987) to create a mathematic link between the Rényi’s entropy (Rényi 1961, Hill 1973) and an empirical distribution (Zipf’s law) (Zipf 1949).

Datasets

Eight datasets (named “fish”, “diatom”, “nabc”, “mcdb”, “gentry”, “fia”, “cbc” and “bbs”) from two sources (Baldridge et al. 2016, Passy 2016a) were used for four reasons. (1) These datasets are under different environments with broad representations; (2) They are relatively reliable as they have been used in SAD studies (Baldridge et al. 2016, Passy 2016a); (3) The frequency distributions of p
for these datasets are unclear; (4) Published datasets are easy to recheck. The detail information of these datasets can be found in appendixes of Passy (2016a, b) and Baldridge et al. (2016, 2016, November 15). Briefly, 19,833 quantitative samples from eleven taxonomic groups (representing over 3 billion individual terrestrial, aquatic, and marine organisms) were collected to explore the frequency of empirical SADs.

Results

According to Eq. (2), the fractal p for the entire dataset (Baldridge et al. 2016, Passy 2016a, b, Baldridge et al. 2016, November 15) is from 0.235 to 5.825 (Table 1). The quality of fits is measured by R^2 (Table 2), which denotes the goodness of fit on the log-transformed variables ($\log r$ and $\log A_r/A_1$, please see Code 1 in Supplemental Files). The average and median value of p are 1.108±0.003 and 1.034, respectively. The highest value of the mean p (1.702±0.019) is in the “fish” group (Passy 2016b, a). The lowest one is in “fia” group (0.931±0.003) (Baldridge et al. 2016, 2016, November 15). The median p is from 0.827 to 1.592. In short, although the range of the fractal p for the entire dataset is over one order of magnitude, the average and median value of p for eight groups are similar (close to 1) (Table 1).

The frequency distributions of the fractal p for eight groups are presented in
Figure 1. The “diatom” and “nabc” groups show similar frequency distributions, noting that the fractal p centrally occurs in the range from 1 to 1.33 (Figure 1 A and H); For the “bbs”, “fia” and “gentry” groups, p is near to 1 (from 0.67 to 1, Figure 1 C, E and F); The frequency distributions of the fractal p for the “fish”, “cbc” and “mcdb” groups skew to the higher value that p is from 1.33 to 1.67 (Figure 1 B, D and G). The consensus of the p distributions for every group is clear that p mostly appears close to 1. It is rare that the fractal p is far greater than 1 or very near 0 (Figure 1).

Briefly, the patterns of p frequencies (Figure 1) and the average and median value of p (Table 1) are consistent, which both suggest that p closer to 1 does seem to be happening more frequently in real situations. The mechanisms underlying the frequency distributions of p might warrant further investigations.

Discussion

“We are all blind men (and women) trying to describe a monstrous elephant of ecological and evolutionary diversity” (Nanney 2004, Chao et al. 2010). No matter how diversity is defined, there is unimaginable variation in the diversity of entire living systems (Pielou 1975, Huston 1994). The general consensus is that an informative way to summarize the characteristics of diversity is not a statistic index (e.g. Shannon’s index or Simpson’s index) but the species abundance distributions (SADs) (Pielou 1975, Frontier 1987, Magurran 1988, Tokeshi 1993).
Countless investigations and comparisons of the SAD models have been explored from different angles of theories (May 1975, Frontier 1987, Magurran 1988, Tokeshi 1993, Mouillot et al. 2000, McGill et al. 2007, Baldridge et al. 2016, Su 2016). Unfortunately, it hardly worked (McGill et al. 2007, Baldridge et al. 2016). Thus, as noted before, the main purposes of this study shift to three fundamental questions. (1) Is there a consistent general pattern of SADs? (2) If it exists, what does it look like? (3) Why is it like this?

Firstly, according to following three reasons, this study suggests that a general pattern of SADs might exist. (1) The number of community samples in this study is relatively adequate. Nearly 20,000 quantitative samples are used to explore the frequency distributions of SADs. (2) The sources of datasets are extensive, including terrestrial, aquatic, and marine ecosystems (Baldridge et al. 2016, Passy 2016a, b, Baldridge et al. 2016, November 15). The above two points indicate that the datasets used in this paper have broad representation and the frequency distributions of SADs based on such datasets are reliable. (3) If the general pattern of SADs does not exist, the frequency distributions of the fractal p will be discrete and irregular, or it will be quite different for eight groups. However, p distributions for different taxonomic categories and groups show a consistent pattern. It is very rare that the fractal p is far greater than 1 or very near 0, and p closer to 1 is the most common case (Figure 1).
Secondly, it might be very hard to draw a definite conclusion about which pattern is the general SAD. On one hand, for the entire dataset, the average and median value of p (1.108±0.003 and 1.034) are both slightly higher than 1 (Table 1). The fractal p of every group occurs frequently in a similar range (close to 1) (Figure 1). On the other hand, the peaks of p distributions for eight groups are not exactly the same. It could be from 0.67 to 1 (Figure 1 C, E and F), or from 1.33 to 1.67 (Figure 1 B, D and G). Accordingly, this study assumes that the general pattern of SAD is that the fractal p exceeds and approaches 1. This conjecture not only needs to be supported by further investigations and additional datasets, but also depends on how well it is explained in theory.

Finally, if the general pattern is that p exceeds and approaches 1, how is it understood by current theories? In fact, such distribution ($p≈1$, see Eq. (1)) is approximately consistent with Zipf’s law (or Zipf distribution) (Zipf 1949, Mandelbrot 1953, Frontier 1987, Seuront 2009). In communication systems, Zipf’s law holds for almost all languages’ letters and words (Seuront 2009). Zipf stated that this empirical distribution attributed to the “Principle of Least Effort”, representing a balance between the repetition desired by the listener and the diversity desired by the transmitter (Zipf 1949, Seuront 2009). If a repertoire is too repetitive, a communication is sent by a few signals, and less message is conveyed. Alternatively, if a repertoire is too diverse, the same message can be
overrepresented by a multitude of signals, and less communication is conveyed.

These opposite forces result in a balance between unification and diversification (Zipf 1949, Seuront 2009).

However, this principle seems hard to explain the general pattern of SAD from the perspective of ecology (Mandelbrot 1953, Frontier 1987). Later, Zipf’s law was modified by Mandelbrot as \(f_r = f_0 (r + \beta)^{-\sigma} \) (Mandelbrot 1953, Frontier 1987, Seuront 2009). In ecology, \(f_r \) was the frequency of the \(r \)-th species after ranking the species in decreasing order. \(f_0 \) is chosen such that the sum of all \(f_r \) values predicted by the model is 1 (Frontier 1987). The \(\alpha \) and \(\beta \) are conditioning the species diversity and the evenness of a given community (Frontier 1987, Seuront 2009).

Unfortunately, the Mandelbrot model might be unable to fully explain the underlying mechanisms of the general SAD (Mandelbrot 1953, Frontier 1987, Seuront 2009, Su 2016).

This study proposes two hypotheses to elucidate the general pattern of SAD (\(p \) exceeds and approaches 1). (1) The total abundance (\(A_T \), see Eq. (4)) is equivalent to the total assimilated energy of the community, which is finite for a given condition. (2) The abundance of each species is linked with the energy transformation from the total energy, which increases the community entropy that determines the diversity. On one hand, the theoretical bases of two hypotheses actually derive from the first interpretation of the fractal model (see the second
paragraph of Methods), noting that a species is linked with the amount of
assimilated energy (Zipf 1949, Mandelbrot 1953, Frontier 1987, 1994, Mouillot et
al. 2000, Su 2016). The noticeable differences between the first interpretation and
two hypotheses are the finiteness of the total energy and the causality from the
community entropy to the diversity. On the other hand, quantifying diversity
according to the entropy (e.g. Shannon’s entropy and Rényi’s entropy) is not new
(Rényi 1961, Hill 1973, Magurran 1988, Tuomisto 2012). Therefore, two
hypotheses are not contradictory with current fractal and diversity theories
(Mandelbrot 1953, Rényi 1961, Hill 1973, Frontier 1987, Magurran 1988).

According to the first hypothesis, A_T is finite. Thus, A_T/A_1 is also finite as A_1 is
the abundance of dominant (see Eq. (1)). The finiteness of A_T/A_1 determines that
the fractal p should be higher than 1 because A_T/A_1 converges for all $p > 1$ (see Eq.
(4)). According to the second hypothesis, the diversity generally presents a trend of
increasing because the energy conversion among species increases the community
entropy. If the community entropy can be expressed as Hill’s unifying notation and
Rényi’s entropy (Rényi 1961, Hill 1973, Jost 2006, Chao et al. 2010, Jost 2010,
Chao et al. 2014, Chao and Jost 2015), A_T/A_1 tends to increase with the entropy and
diversity because A_T/A_1 is an effective number of species (Rényi 1961, Hill 1973).
An increasing trend of A_T/A_1 means a decreasing trend of p because the fractal p is
negative with A_T/A_1 (see Eq. (4)). Therefore, the balance between two forces (the
fractal p is higher than 1 and tends to decline) eventually leads to the general pattern of SADs that p exceeds and approaches 1.
CONCLUSIONS

When one investigates any SAD, previous studies suggested that it was ubiquitous observed that many species were rare and just a few were common (May 1975, Frontier 1987, Magurran 1988, Tokeshi 1993, Mouillot et al. 2000, McGill et al. 2007, Baldridge et al. 2016, Su 2016). However, this study indicates that it is more easily to observe that the fractal p (Su 2016) exceeds and approaches 1. This is the biggest difference between previous studies and this paper.

It might be a surprise that the fractal model has been around for some time but it is not widely used by ecologists (Zipf 1949, Mandelbrot 1953, Frontier 1987, 1994, Mouillot et al. 2000, Su 2016). There were five families with over 40 SAD models, and it might be normal that some of them were not well known (McGill et al. 2007). Tokeshi (1993) commented that the fractal model was no more biological than others. However, such views were lack of empirical investigations (Tokeshi 1993). In fact, there was a good fit of the fractal SAD to raw data (Frontier 1987, 1994, Mouillot et al. 2000, Seuront 2009, Su 2016), and its theoretical bases had been elaborated (Frontier 1985, Frontier 1987, 1994, Mouillot et al. 2000). In the future, a more promising way is likely to evaluate the performance of the fractal model and increase the understanding of mechanisms that lead to the general pattern of SAD.
276 ACKNOWLEDGMENTS

277 My deepest gratitude goes to Marcio Pie (editor), Juan Pablo Gomez (reviewer)
278 and an anonymous reviewer for their careful work and thoughtful suggestions that
279 have helped improve this paper substantially.

280
REFERENCES

1. Baldridge, E., D. J. Harris, X. Xiao, and E. P. White. 2016. An extensive comparison of species-abundance distribution models. Peerj 4.

2. Baldridge, E., D. J. Harris, X. Xiao, and E. P. White. 2016, November 15. weecology/sad-comparison: First revision for PeerJ (Version peerj.2). Zenodo.

3. Chao, A., C.-H. Chiu, and L. Jost. 2010. Phylogenetic diversity measures based on Hill numbers. Philosophical Transactions of the Royal Society of London B: Biological Sciences 365:3599-3609.

4. Chao, A., and L. Jost. 2015. Estimating diversity and entropy profiles via discovery rates of new species. Methods in Ecology and Evolution 6:873-882.

5. Chao, A. N., C. H. Chiu, and L. Jost. 2014. Unifying Species Diversity, Phylogenetic Diversity, Functional Diversity, and Related Similarity and Differentiation Measures Through Hill Numbers. Pages 297-324 in D. J. Futuyma, editor. Annual Review of Ecology, Evolution, and Systematics, Vol 45. Annual Reviews, Palo Alto.

6. Connolly, S. R., M. A. MacNeil, J. Caley, N. Knowlton, E. Cripps, M. Hisano, L. M. Thibaut, B. D. Bhattacharya, L. Benedetti-Cecchi, R. E. Brainard, A. Brandt, F. Bulleri, K. E. Ellingsen, S. Kaiser, I. Kroncke, K. Linse, E. Maggi, T. D. O'Hara, L. Plaisance, G. C. B. Poore, S. K. Sarkar, K. K. Satpathy, U. Schuckel, A. Williams, and R. S. Wilson. 2014. Commonness and rarity in
the marine biosphere. Proceedings of the National Academy of Sciences of the United States of America **111**:8524-8529.

7. Frontier, S. 1985. Diversity and structure in aquatic ecosystems. Oceanography and Marine Biology **23**:253-312.

8. Frontier, S. 1987. Applications of fractal theory to ecology. Pages 335-378 in Developments in Numerical Ecology. Springer.

9. Frontier, S. 1994. Species diversity as a fractal property of biomass. Pages 119-127 in In: Fractals in the Natural and Applied Sciences (ed. Novak, M.). North-Holland Publishing, Amsterdam.

10. Hill, M. O. 1973. Diversity and evenness - unifying notation and its consequences. Ecology **54**:427-432.

11. Huston, M. A. 1994. Biological diversity: the coexistence of species on changing landscapes. Cambridge University Press.

12. Jost, L. 2006. Entropy and diversity. Oikos **113**:363-375.

13. Jost, L. 2010. The relation between evenness and diversity. Diversity **2**:207-232.

14. Magurran, A. E. 1988. Ecological Diversity and Its Measurement. Princeton University Press, New Jersey.

15. Mandelbrot, B. 1953. An informational theory of the statistical structure of language. Communication theory **84**.
16. May, R. M. 1975. Patterns of species abundance and diversity. Belknap Press of Harvard University Press, Cambridge MA.

17. McGill, B. J., R. S. Etienne, J. S. Gray, D. Alonso, M. J. Anderson, H. K. Benecha, M. Dornelas, B. J. Enquist, J. L. Green, F. He, A. H. Hurlbert, A. E. Magurran, P. A. Marquet, B. A. Maurer, A. Ostling, C. U. Soykan, K. I. Ugland, and E. P. White. 2007. Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework. Ecology Letters 10:995-1015.

18. Mouillot, D., A. Lepretre, M. C. Andrei-Ruiz, and D. Viale. 2000. The Fractal Model: a new model to describe the species accumulation process and relative abundance distribution (RAD). Oikos 90:333-342.

19. Nanney, D. L. 2004. No trivial pursuit. Bioscience 54:720-721.

20. Passy, S. I. 2016a. Abundance Inequality in Freshwater Communities Has an Ecological Origin. The American Naturalist 187:502-516.

21. Passy, S. I. 2016b. Data from: Abundance inequality in freshwater communities has an ecological origin. Dryad Data Repository.

22. Pielou, E. 1975. Ecological diversity.

23. Rényi, A. 1961. On measures of entropy and information. Pages 547-561 in Fourth Berkeley symposium on mathematical statistics and probability.

24. Seuront, L. 2009. Fractals and multifractals in ecology and aquatic science.
25. Su, Q. 2016. Analyzing fractal property of species abundance distribution and diversity indexes. Journal of Theoretical Biology 392:107-112.

26. Tokeshi, M. 1993. Species abundance patterns and community structure. Advances in ecological research 24:111-186.

27. Tuomisto, H. 2012. An updated consumer's guide to evenness and related indices. Oikos 121:1203-1218.

28. Ulrich, W., M. Ollik, and K. I. Ugland. 2010. A meta-analysis of species-abundance distributions. Oikos 119:1149-1155.

29. Zipf, G. K. 1949. Human behavior and the principle of least effort.
Table 1 (on next page)

The detailed information of the fractal p (Su 2016) for eight datasets (named “fish”, “diatom”, “nabc”, “mcdb”, “gentry”, “fia”, “cbc” and “bbs”) from two sources (Baldridge et al. 2016a, b, Passy 2016a, b).

The average and median value of p for the entire dataset are 1.108 ± 0.003 and 1.034, respectively. Although the range of the fractal p is over one order of magnitude (from 0.235 to 5.825), the average and median value of p for eight groups are consistent, noting that they are close to 1.
Table 1 The detailed information of the fractal p (Su 2016) for eight datasets (named “fish”, “diatom”, “nabc”, “mcdb”, “gentry”, “fia”, “cbc” and “bbs”) from two sources (Baldridge et al. 2016a, b, Passy 2016a, b). The average and median value of p for the entire dataset are 1.108 ± 0.003 and 1.034, respectively. Although the range of the fractal p is over one order of magnitude (from 0.235 to 5.825), the average and median value of p for eight groups are consistent, noting that they are close to 1.
Table 1

Fractal p	Maximum	Minimum	Median	Average	Sample numbers
diatom	5.825	0.335	1.272	1.343±0.008	3224
fish	4.563	0.756	1.592	1.702±0.019	761
bbs	2.375	0.548	0.938	0.984±0.004	2769
cbc	3.738	0.733	1.492	1.556±0.008	1999
fia	2.229	0.235	0.907	0.931±0.003	10355
gentry	1.851	0.352	0.827	0.872±0.019	222
mcdb	3.265	0.495	1.547	1.587±0.052	103
nabc	3.112	0.540	1.240	1.278±0.017	400
Total	5.825	0.235	1.034	1.108±0.003	19833
The goodness of fit (R^2) of the fractal model

The goodness of fit (R^2, please see Code 1 in Supplemental Files) of the fractal model (Su 2016) on each of 19,833 samples are shown in the following table (the range in the "Average" column is standard error). R^2 varies between 0 and 1, with larger numbers indicating better fits.

Table 2 (on next page)
1 TABLE LEGENDS

2 Table 2 The goodness of fit (R², please see Code 1 in Supplemental Files) of the

3 fractal model (Su 2016) on each of 19,833 samples are shown in the following

4 table (the range in the "Average" column is standard error). R² varies between 0

5 and 1, with larger numbers indicating better fits.

6
	R²	Maximum	Minimum	Median	Average	Sample numbers
diatom	1.000	0.460	0.917	0.901±0.001	3224	
fish	0.997	0.397	0.841	0.829±0.004	761	
bbs	0.982	0.555	0.792	0.791±0.001	2769	
cbc	0.990	0.474	0.787	0.785±0.002	1999	
fia	0.989	0.089	0.880	0.860±0.001	10355	
gentry	0.969	0.640	0.911	0.892±0.004	222	
mcdb	0.981	0.466	0.869	0.838±0.011	103	
nabc	0.986	0.639	0.884	0.872±0.004	400	
Total	1.000	0.089	0.867	0.849±0.001	19833	
The frequency distributions of the fractal p (Su 2016) for eight datasets (named “fish”, “diatom”, “nabc”, “mcdb”, “gentry”, “fia”, “cbc” and “bbs”) from two sources (Baldridge et al. 2016a, b, Passy 2016a, b).

The peaks of p frequencies for eight groups are not exactly the same. It could be from 0.67 to 1 (C, E and F), from 1 to 1.33 (A and H) and from 1.33 to 1.67 (B, D and G). However, the consensus of the p frequencies for every group is very clear. The fractal p mostly appears close to 1, and it is rare that p is far greater than 1 or very near 0.
