Chai J, Jamal MM. S100A4 in esophageal cancer: Is this the one to blame? World J Gastroenterol 2012; 18(30): 3931-3935 Available from: URL: http://www.wjgnet.com/1007-9327/full/v18/i30/3931.htm DOI: http://dx.doi.org/10.3748/wjg.v18.i30.3931

INVITED COMMENTARY ON HOT ARTICLES

Cancer is the second leading cause of death in the world (18%), after heart disease (21%). Among about 18 million new cases of cancers diagnosed each year, about one third is skin cancer. However, 95% of skin cancer is either basal cell carcinoma or squamous cell carcinoma, which has a mortality of less than 0.5%. The majority of cancer-related deaths are actually caused by malignancies derived from the digestive system, including esophagus, stomach, small intestine, colon, rectum, anus, liver, gallbladder and pancreas[1]. The main feature that makes these cancers deadly is metastasis, a process that cancer cells break off from their original location and invade other parts of the organ. The majority of skin cancers do not have this capacity; therefore, they can be easily treated before becoming life threatening. Esophageal cancer, on the other hand, is highly metastatic. Therefore, understanding the molecular mechanisms behind its metastasis is of great values for developing better treatment strategies. A study by Chen et al[2] published in the World J Gastroenterol 18(9): 915-922, 2012 examined the role of S100A4, one of the well-known cancer metastatic markers, in esophageal squamous cell carcinoma (ESCC) in vitro and in vivo, in animal models as well as in clinical human specimens, and clearly demonstrated a reliance of the invasiveness of esophageal cancer on this small calcium-binding protein[2].

A little biography of S100A4: Short but hot
S100A4 was discovered in the mid 1980s by several laboratories independently. One of these laboratories be-
longed to Daniel Nathans, MD (10/30/1928-11/16/1999) (Figure 1), the Nobel Prize winner in Physiology/Medicine 1978 for his landmark discovery of restriction enzymes. In 1983, one of his post-doctoral fellows, Daniel I Linzer, PhD, was constructing a cDNA library from serum-stimulated mouse 3T3 fibroblasts and found that a clone named 18A2 was highly up-regulated by serum exposure. There seemed to be many laboratories in the late 70s and early 80s of the 20th century which were interested in the effect of serum on gene expression. That was also how and when serum response factor (SRF) was discovered. In the following year, Linzer took a job at Northwestern University in Illinois (now he is the Provost of this school) and continued his study on 18A2. He determined that 18A2 coded for a calcium binding protein of 101 amino acids, much similar to the members of S100 family, a group of small peptides that are known to be 100% soluble in saturated ammonia sulfate. He also compared the sequence of 18A2 with 2A9, a human clone that was published a year earlier, and found a 57% nucleotide and 62% amino acid homology between them. It might be due to the difference of species origin, Linzer was pretty sure that these two sequences represented different genes. Around that time and shortly thereafter, several other laboratories also published similar sequences and each of which was given a different name, including p9Ka from rat mammary cells, 42A from rat neuronal cells, pEL98 from mouse fibroblasts, CAPL from Aplysia neurons, mts1 from metastatic tumor cells, and FSP1 from mouse fibroblasts. Despite the individuality of each of these studies, there were some common features shared among their discoveries: (1) serum inducibility; (2) around 100 amino acids; and (3) similarity to S100 calcium binding proteins. Although all of these sequences eventually turned out to be for a single molecule - S100A4, each of these studies made unique contributions to our knowledge today about S100A4. The last two studies warrant an extra attention, because one established the connection between S100A4 and cancer metastasis and the other associated it to fibroblast phenotype. Now we know that S100A4 is a prognostic marker for metastatic cancers as well as a marker for epithelial-mesenchymal transition. However, both of these studies went a little bit too far by calling this molecule metastatic-

Functions of S100A4: Motivation to move

Up to date, S100 family includes 25 members with common characteristics such as low molecular weight, two calcium binding sites of the helix-loop-helix (“EF-hand type”) conformation, and complete solubility in ammonium sulfate at pH 7. They have been implicated in regulation of protein phosphorylation, transcription factor activation, calcium homeostasis, cytoskeleton reorganization, cell migration, cell growth and death.

S100A4 is naturally expressed in various cell types including both cancer and normal cells, and its elevation is usually associated with cell motility. It appears that whenever cell migration is required, such as wound healing, angiogenesis and cancer metastasis, S100A4 is activated. Like other members of S100 family, S100A4 works like a calcium sensor. Upon calcium binding, S100A4 goes through a series of conformational changes, which allow the molecule to interact with its targets, such as nonmuscle myosin heavy chain (MHC II A) and liprin β1, to facilitate cell migration and cancer metastasis. However, both of these studies went a little bit too far by calling this molecule metastatic-transitional. Nonetheless, its association with transcription factors like p53 might explain some of its roles in the nucleus. It has been postulated that S100A4 binding to the tetramerization domain of p53 favors p53 oligomerization and thereby facilitates p53 nuclear translocation. On the other hand, extracellular S100A4 has been demonstrated to stimulate MMP-13 expression in chondrocytes in a receptor for advanced glycation end products (RAGE)-dependent manner, while its inductivity on neuron growth was found to be RAGE irrelevant. More complicatedly, S100A4 has been found in association with cell death in a conflict way, it inhibits apoptosis in pancreatic cancer but promotes it in osteosarcoma cells.

S100A4 in cancers: A facilitator, not a generator

Elevation of S100A4 has been found in almost every metastatic cancer known, including breast, prostate, urinary bladder, lung, esophageal, gastric, colon, pancreatic, liver, gallbladder and
thyroid carcinomas[39]. More direct evidence for the essential role of S100A4 in cancer metastasis perhaps comes from \textit{in vitro} studies and animal models, which have shown that overexpression of S100A4 in non-metastatic tumor cells confers a metastatic phenotype, just as demonstrated in the study by Chen et al[2] as well as several others[17,42,43]; whereas, knockdown of S100A4 in metastatic tumor cells curtails their invasive capability2,42,43].

It should be pointed out though that S100A4 is not an oncogene product. As shown by transgenic studies[18,44], mice carrying extra copies of \textit{S100A4} gene develop normally as wild-type and have no increased risk of cancer. However, when these mice mated with cancer mice, their offspring showed increased number of tumors distant from their primary location[44]. Therefore, S100A4 is not a cancer generator but a metastatic facilitator.

S100A4 has been studied extensively in other cancers, especially in breast cancer. In esophageal cancer, there are about a dozen of publications so far, mostly focusing on squamous cell carcinoma. The earliest study that can be found was done by a Japanese group[33], showing an elevated expression of \textit{S100A4} protein in surgically resected ESCC, and a possible association with esophageal cancer progression. However, a later study reported an opposite result, showing that 11 out of 16 S100 family members examined, including \textit{S100A4}, were down-regulated at transcriptional level in tumors compared with adjacent normal tissues[36]. In 2010, a Chinese research team used RNA interference technology to knock down S100A4 in metastatic esophageal tumor cells and grafted them in nude mice[46]. They noticed that tumor growth was significantly inhibited by S100A4 deficiency, and E-cadherin expression was reciprocal to the level of S100A4. Unfortunately, the study had little impact because it was published in a local journal in Chinese. However, the idea of xenografting has recently advanced to a new cancer treatment strategy - the “avatar” mice. Principally, it is to take tumor tissue from a patient and graft it in nude mice to create a personalized colony of mice carrying exact that patient’s cancer, and then test every potential treatment combinations in mice before selecting the best one to treat that patient. Manuel Hidalgo, the Director of the Spanish National Cancer Research Center in Madrid, has been practicing this approach for pancreatic cancer patients over years and showed a clear advantage in drug responses[46,61], and now more and more researchers believe that this idea holds a great promise in cancer treatment in the future.

In the study by Chen et al[2], the research team cleverly used two ESCC cell lines, EC109 (highly invasive) and TE13 (non-invasive), and successfully made these cells switch characters by down-regulation of S100A4 in EC109 and up-regulation of S100A4 in TE13. They provided \textit{in vitro} and \textit{in vivo} evidence that the level of S100A4 determines the metastatic status of the cancer.

There are two main subtypes of esophageal cancer: ESCC and esophageal adenocarcinoma (EAC). Although nearly 95% of esophageal cancer is ESCC, EAC has been rising by 6-fold annually in Americans and now its increase rate exceeds the rate for any other type of cancers. Overexpression of S100A4 was also reported in EAC and its correlation with lymph node metastasis was found significant[40,41]

Although the exact molecular mechanisms how S100A4 promotes cancer metastasis still need to be further examined, based on various studies, one possible explanation could be that S100A4 binding to liprin \beta1 inhibits its phosphorylation[47], and thereby prevents its interaction with liprin \alpha1. As a result, liprin \alpha1 fails to recruit leukocyte common antigen-related (LAR) protein[51], a phosphatase, to focal adhesions. Without LAR to dephosphorylate \beta-catenin[52], \beta-catenin becomes activated to leave E-cadherin and results in the collapse of adherens junctions, allowing cells to migrate. As found in our study, the dissociation of \beta-catenin from E-cadherin causes E-cadherin ubiquitination and degradation[53], which might at least in part explains why S100A4 elevation is often found in association of E-cadherin loss, as shown in the study by Chen et al[2].

\textbf{S100A4 in normal situation: An innocent bystander}

As discussed above, S100A4 is expressed wherever cell migration is required, regardless normal or pathological situation. However, most of S100A4 studies focus on its bad side, such as cancer metastasis and organ fibrosis. Its good side has been continually overlooked. If we go back to the story that S100A4 was discovered in an experiment of serum stimulated fibroblasts, we know that S100A4 is innocent. Cells, including fibroblasts, in our body normally do not come into a direct contact with serum unless there is an injury. Therefore, when cells are suddenly exposed to serum, as the experiment done in Nathans’ lab, they naturally interpret it as a signal of a wound. Therefore, a transcriptional program for wound healing gets activated immediately to battle against injury: S100A4 is just one of the players in this battle. So is SRF, and so are many SRF-regulated genes (e.g., C-FOS, EGR-1, CCN1, CTGF, FGF10, etc)[39]. All these genes contain a common regulatory element \textit{CArG} box, which SRF recognizes to bind. \textit{S100A4} gene also contains such element in its promoter region[53], suggesting a possible regulation by SRF. \textit{In vivo}, S100A4 activation has been found in various wound healings, and its contributions to tissue repair and modification are indisputable[16,56].

\textbf{REFERENCES}

1 Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. \textit{CA Cancer J Clin} 2011; 61: 69-90
2 Chen D, Zheng XF, Yang ZY, Liu DX, Zhang GY, Jiao XL, Zhao H. S100A4 silencing blocks invasive ability of esophageal squamous cell carcinoma cells. \textit{World J Gastroenterol} 2012; 18: 915-922
3 Linzer DI, Nathans D. Growth-related changes in specific mRNAs of cultured mouse cells. \textit{Proc Natl Acad Sci USA} 1983; 80: 4271-4275
4 Treisman R. Identification of a protein-binding site that mediates transcriptional response of the c-fos gene to serum factors. \textit{Cell} 1986; 46: 567-574
5 Treisman R. Journey to the surface of the cell: Fos regulation
Chai J et al. S100A4

and the SRE. EMBO J 1995; 14: 4905-4913
6 Jackson-Grusby LL, Swiergiel J, Linzer DI. A growth-related mRNA in cultured mouse cells encodes a placental calcium binding protein. Nucleic Acids Res 1987; 15: 6677-6690
7 Calabretta B, Battini R, Kaczmarek L, de Riel JK, Baserga R. Molecular cloning of the cDNA for a growth factor-inducible gene with strong homology to S-100, a calcium-binding protein. J Biol Chem 1986; 261: 12628-12632
8 Barraclough R, Savin J, Dubé SK, Rudland PS. Molecular cloning and sequence of the gene for p9Ka. A cultured myoepithelial cell protein with strong homology to S-100, a calcium-binding protein. J Mol Biol 1987; 198: 13-20
9 Masiakowski P, Shooter EM. Nerve growth factor induces the genes for two proteins related to a family of calcium-binding proteins in PC12 cells. Proc Natl Acad Sci USA 1988; 85: 1277-1281
10 Goto K, Endo H, Fujiyoshi T. Cloning of the sequences expressed abundantly in established cell lines: identification of a cDNA clone highly homologous to S-100, a calcium binding protein. J Biochem 1988; 103: 48-53
11 Beus hausen S, Bergold P, Sturner S, Elste A, Røytenberg V, Schwartz JH, Bayley H. Two catalytic subunits of cAMP-dependent protein kinase generated by alternative RNA splicing are expressed in Aplysia neurons. Neuron 1988; 1: 853-864
12 Ebralidze A, Tulchinsky E, Grigorian M, Afanasyeva A, Senin V, Revazova E, Lukandin E. Isolation and characterization of a gene specifically expressed in different metastatic cells and whose deduced gene product has a high degree of homology to a Ca2+-binding protein family. Genes Dev 1989; 3: 1086-1093
13 Strutz F, Okada H, Lo CW, Danoff T, Carone RL, Tomaszewski JE, Neilson EG. Identification and characterization of a fibroblast marker: FSP1. J Cell Biol 1995; 130: 393-405
14 Chai JY, Modak C, Mouazzen W, Narvaez R, Pham J. Epithelial or mesenchymal: Where to draw the line? Bisci Trends 2010; 14: 130-142
15 Lukandin E, Steeman JP. Building the niche: the role of the S100 proteins in metastatic growth. Semin Cancer Biol 2012; 22: 216-225
16 Schneider M, Kostin S, Strom CC, Aplin M, Lyngbaek S, Theilade J, Grigorjan M, Andersen CB, Lukandin E, Lerche Hansen J, Sheikh SP. S100A4 is upregulated in injured myocardium and promotes growth and survival of cardiac myocytes. Cardiovasc Res 2007; 75: 40-50
17 Ambartsoumian N, Klingelhöfer J, Grigorjan M, Christensen A, Krajjevska M, Tulchinsky E, Georgiev G, Berezin V, Bock E, Rygaard J, Cao R, Cao Y, Lukanidin E. The metastasis-associated protein S100A4 (Mts1/S100A4) gene with strong homology to S-100, a calcium-binding protein. J Biol Chem 1987; 262: 20148-20154
18 Boye K, Maelandsmo GM, S100A4 and metastasis: a small actor playing many roles. Am J Pathol 2010; 176: 528-535
19 Krajjevska M, Fischer-Larsen M, Moertz E, Vorm O, Tulchinsky E, Grigorjan M, Ambartsoumian N, Lukandin E. Liprin beta 1, a member of the family of LAR transmembrane tyrosine phosphatase-interacting proteins, is a new target for the metastasis-associated protein S100A4 (Mts1). J Biol Chem 2002; 277: 5229-5235
20 Badyal SK, Basran J, Bhanji N, Kim JH, Chavda AP, Jung HS, Craig R, Elliott PR, Irvine AF, Barsukov IL, Kriajevska M, Bagshaw CR. Mechanism of the Ca2+-dependent interaction between S100A4 and tail fragments of nonmuscle myosin heavy chain IA. J Mol Biol 2011; 405: 1004-1026
21 El Naamn C, Grum-Schwensen B, Mansouri A, Grigorjan M, Santoni-Kuplu E, Hansen T, Krajjevska M, Schafer BW, Heizmann CW, Lukandin E, Ambartsoumian N. Cancer predisposition in mice deficient for the metastasis-associated Mts1(S100A4) gene. Oncogene 2004; 23: 3670-3680
22 Grigorjan M, Andre sen S, Tulchinsky E, Krajjevska M, Carlberg C, Kruse C, Cohn M, Ambartsoumian N, Christensen A, Selivanova G, Lukandin E. Tumor suppressor p53 protein is a new target for the metastasis-associated Mts1/S100A4 protein: functional consequences of their interaction. J Biol Chem 2001; 276: 22699-22708
23 Fernandez-Fernandez MR, Veprintsev DB, Fersht AR. Proteins of the S100 family regulate the oligomerization of p53 tumor suppressor. Proc Natl Acad Sci USA 2005; 102: 14735-14740
24 Yammani RR, Carlson CS, Bresnick AR, Loeser RF. Increase in production of matrix metalloproteinase 13 by human ar ticular chondrocytes due to stimulation with S100A4: Role of the receptor for advanced glycation end products. Arthritis Rheum 2006; 54: 2901-2911
25 Kiyoshkzu D, Novitskaya V, Soroka V, Klingelhöfer J, Lukandin E, Berezin V, Bock E. Molecular mechanisms of Ca(2+)-signaling in neurons induced by the S100A4 protein. Mol Cell Biol 2006; 26: 3625-3638
26 Mahon PC, Baril P, Bhakta V, Chelala C, Caulee K, Harada T, Lemoine NR. S100A4 contributes to the suppression of BNIP3 expression, chemoresistance, and inhibition of apoptosis in pancreatic cancer. Cancer Res 2007; 67: 6786-6795
27 Pedersen KB, Andersen K, Fodstad Ø, Maelandsmo GM. Sensitization of interferon-gamma induced apoptosis in hu man osteosarcoma cells by extracellular S100A4. BMC Cancer 2010; 4: 52
28 Rudland PS, Platt-Higgins A, Renshaw C, West CR, Winstanley JH, Robertson L, Barraclough R. Prognostic significance of the metastasis-inducing protein S100A4 (p9Ka) in human breast cancer. Cancer Res 2000; 60: 1955-1963
29 Kikuchi N, Horiuchi A, Osada R, Imai T, Wang C, Chen X, Komishis N. Nuclear expression of S100A4 is associated with aggressive behavior of ovarian carcinoma: an important autocrine/paracrine factor in tumor progression. Cancer Sci 2006; 97: 1061-1069
30 Saleem M, Kweon MH, Johnson JJ, Adhami VM, Elcheiva I, Khan N, Bin Hafeez B, Bhat KM, Sarfaraz S, Reagan-Shaw S, Spiegelman VS, Selalari V, Mukhtar H. S100A4 accelerates tumorogenesis and invasion of human prostate cancer through the transcriptional regulation of matrix metalloprote inase 9. Proc Natl Acad Sci USA 2006; 103: 14825-14830
31 Davies BR, O’Donnell M, Durkan GC, Rudland PS, Barraclough R, Neal DE, Mellon JK. Expression of S100A4 protein is associated with metastasis and reduced survival in human bladder cancer. J Pathol 2002; 196: 292-299
32 Grum-Schwensen B, Klingelhöfer J, Grigorjan M, Almholt K, Nielsen BS, Lukandin E, Ambartsoumian N. Lung metastasis fails in MMV-PyMT oncomice lacking S100A4 due to a T-cell deficiency in primary tumors. Cancer Res 2010; 70: 936-947
33 Nimomiya I, Ohta T, Fushida S, Endo Y, Hashimoto T, Yagi M, Fujimura T, Nishimura G, Tani T, Shimizu K, Yonemura Y, Heizmann CW, Schäfer BW, Sasaki T, Miwa K. Increased expression of S100A4 and its prognostic significance in esopha geal squamous cell carcinoma. Int J Oncol 2001; 18: 715-720
34 Cho YG, Nam SW, Kim TY, Kim YS, Kim CJ, Park JY, Lee JH, Kim HS, Lee JW, Park CH, Song YH, Lee SH, Yoo NJ, Lee JY, Park WS. Overexpression of S100A4 is closely related to the aggressiveness of gastric cancer. APMIS 2003; 111: 539-545
35 Takenaga K, Nakashima H, Wada K, Suzuki M, Matsuaksi O, Matsuura A, Endo H. Increased expression of S100A4, a metastasis-associated gene, in human colorectal adenocarcinomas. Clin Cancer Res 1997; 3: 2309-2316
36 Ai KX, Lu LY, Huang XY, Chen W, Zhang HZ. Prognostic significance of S100A4 and vascular endothelial growth factor expression in pancreatic cancer. World J Gastroenterol 2008; 14: 1931-1935
37 Komatsu K, Murata K, Kameyama M, Ayaki M, Mukai M, Ishiguro S, Miyoshi J, Tatsuta M, Inoue M, Nakamura H. Expression of S100A6 and S100A4 in matched samples of hu-
man colorectal mucosa, primary colorectal adenocarcinomas and liver metastases. *Oncology* 2002; 63: 192-200

38 Nakamura T, Ajiki T, Murao S, Kamigaki T, Maeda S, Ku Y, Kuroda Y. Prognostic significance of S100A4 expression in gullbladder cancer. *Int J Oncol* 2002; 20: 937-941

39 Zou M, Famulski KS, Parhar RS, Baitei E, Al-Mohanna FA, Farid NR, Shi Y. Microarray analysis of metastasis-associated gene expression profiling in a murine model of thyroid carcinoma pulmonary metastasis: identification of S100A4 (Mst1) gene overexpression as a poor prognostic marker for thyroid carcinoma. *J Clin Endocrinol Metab* 2004; 89: 6146-6154

Davies BR, Davies MP, Gibbs FE, Barralough R, Rudland PS. Induction of the metastatic phenotype by transfection of a benign rat mammary epithelial cell line with the gene for p9Ka, a rat calcium-binding protein, but not with the oncogene EJ-ras-1. *Oncogene* 1993; 8: 999-1008

41 Grigorian M, Ambartsumian N, Lykkesfeldt AE, Bastholm L, Elling F, Georgiev G, Lukandin E. Effect of mts1 (S100A4) expression on the progression of human breast cancer cells. *Int J Cancer* 1996; 67: 831-841

42 Maelandsmo GM, Hovig E, Skrede M, Engebretsen O, Flaresnes VA, Myklebost O, Grigorian M, Lukandin E, Scanlon KJ, Fodstad O. Reversal of the in vivo metastatic phenotype of human tumor cells by an anti-CAPL (mts1) ribozyme. *Cancer Res* 1996; 56: 5490-5498

Takenna K, Nakamura Y, Sakiyama S. Expression of antisense RNA to S100A4 gene encoding an S100-related calcium-binding protein suppresses metastatic potential of high-metastatic Lewis lung carcinoma cells. *Oncogene* 1997; 14: 331-337

44 Davies MP, Rudland PS, Robertson L, Parry EW, Jalioceur P, Barralough R. Expression of the calcium-binding protein S100A4 (p9Ka) in MMTV-neu transgenic mice induces metastasis of mammary tumours. *Oncogene* 1996; 13: 1631-1637

Xue C, Plieh D, Venkov C, Xu C, Neilson EG. The gatekeeper effect of epithelial-mesenchymal transition regulates the frequency of breast cancer metastasis. *Cancer Res* 2003; 63: 3386-3394

46 Ji J, Zhao L, Wang X, Zhou C, Ding F, Su L, Zhang C, Mao X, Wu M, Liu Z. Differential expression of S100 gene family in human esophageal squamous cell carcinoma. *J Cancer Res Clin Oncol* 2004; 130: 480-486

47 Zhang HY, Zheng XZ, Xuan XY, Wang XH, Fang F, Li SS. [Inhibitory effect and molecular mechanism of silencing S100A4 gene on the growth of transplanted tumor of human esophageal carcinoma EC-1 cells in nude mice]. *Sichuan Da Xue Xue Bao Yi Xue Ban* 2010; 41: 755-759

Jimeno A, Feldmann C, Suárez-Gauthier A, Rasheed Z, Solomon A, Zou GM, Rubio-Viqueira B, García-Garcia E, López-Rios F, Matsui W, Maitra A, Hidalgo M. A direct pancreatic cancer xenograft model as a platform for cancer stem cell therapeutic development. *Mol Cancer Ther* 2009; 8: 310-314

49 Morelli MP, Calvo E, Ordoñez E, Wick MJ, Viqueira BR, Lopez-Casas PP, Bruckheimer E, Calles-Blanco A, Sirdransky D, Hidalgo M. Prioritizing phase I treatment options through preclinical testing on personalized tumorgraft. *J Clin Oncol* 2012; 30: e85-e88

Lee OJ, Hong SM, Razvi MH, Peng D, Powell SM, Smoklin M, Moskaluk CA, El-Rifai W. Expression of calcium-binding proteins S100A2 and S100A4 in Barrett’s adenocarcinomas. *Neoplasia* 2006; 8: 843-850

51 Serra-Pagés C, Kedersha NL, Fazikas L, Medley Q, Debant A, Streuli M. The LAR transmembrane protein tyrosine phosphatase and a coiled-coil LAR-interacting protein co-localize at focal adhesions. *EMBO J* 1995; 14: 2827-2838

52 Müller T, Choiadas A, Reichmann E, Ullrich A. Phosphorylation and free pool of beta-catenin are regulated by tyrosine kinases and tyrosine phosphatases during epithelial cell migration. *J Biol Chem* 1999; 274: 10173-10183

53 Chai J, Norrg M, Modak C, Reavis KM, Mouazzen W, Pham J. CCN1 induces a reversible epithelial-mesenchymal transition in gastric epithelial cells. *Lab Invest* 2010; 90: 1140-1151

54 Chai J, gastric ulcer healing - Role of serum response factor. In: Chai J, editor. Peptic Ulcer Disease. Rijeka, Croatia: InTech, 2011: 143-164

55 Venkov CD, Link AJ, Jennings JL, Plieh D, Inoue T, Nagai K, Xu C, Dimitrova YN, Rauscher FJ, Neilson EG. A proximal activator of transcription in epithelial-mesenchymal transition. *J Clin Invest* 2007; 117: 482-491

Ryan DG, Taliana L, Sun L, Wei ZG, Masur SK, Lavker RM. Involvement of S100A4 in stromal fibroblasts of the regenerating cornea. *Invest Ophthalmol Vis Sci* 2003; 44: 4255-4262

S-Editor Cheng JX L-Editor Ma JY E-Editor Xiong L