The fiber orientation in the coronary arterial wall at physiological loading evaluated with a two-fiber constitutive model

Citation for published version (APA):
Horst, van der, A., Broek, van den, C. N., Vosse, van de, F. N., & Rutten, M. C. M. (2012). The fiber orientation in the coronary arterial wall at physiological loading evaluated with a two-fiber constitutive model. Biomechanics and Modeling in Mechanobiology, 11(3-4), 533-542. https://doi.org/10.1007/s10237-011-0331-1

DOI:
10.1007/s10237-011-0331-1

Document status and date:
Published: 01/01/2012

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023
The fiber orientation in the coronary arterial wall at physiological loading evaluated with a two-fiber constitutive model

Arjen van der Horst · Chantal N. van den Broek · Frans N. van de Vosse · Marcel C. M. Rutten

Received: 14 March 2011 / Accepted: 25 June 2011 / Published online: 13 July 2011 © The Author(s) 2011. This article is published with open access at Springerlink.com

Abstract A patient-specific mechanical description of the coronary arterial wall is indispensable for individualized diagnosis and treatment of coronary artery disease. A way to determine the artery’s mechanical properties is to fit the parameters of a constitutive model to patient-specific experimental data. Clinical data, however, essentially lack information about the stress-free geometry of an artery, which is necessary for constitutive modeling. In previous research, it has been shown that a way to circumvent this problem is to impose extra modeling constraints on the parameter estimation procedure. In this study, we propose a new modeling constraint concerning the in-situ fiber orientation (β_{phys}). β_{phys}, which is a major contributor to the arterial stress–strain behavior, was determined for porcine and human coronary arteries using a mixed numerical–experimental method. The in-situ situation was mimicked using in-vitro experiments at a physiological axial pre-stretch, in which pressure–radius and pressure–axial force were measured. A single-layered, hyperelastic, thick-walled, two-fiber material model was accurately fitted to the experimental data, enabling the computation of stress, strain, and fiber orientation. β_{phys} was found to be almost equal for all vessels measured (36.4 ± 0.3)°, which theoretically can be explained using netting analysis. In further research, this finding can be used as an extra modeling constraint in parameter estimation from clinical data.

Keywords Collagen fiber orientation · Parameter estimation · Coronary arteries · Netting analysis

1 Introduction

Insight into the mechanical properties of the coronary arterial wall can give valuable information concerning the genesis and progress of atherosclerosis, wall remodeling, and the prediction of the effects of medical intervention, e.g., balloon angioplasty (Holzapfel et al. 2000; Humphrey et al. 2009). A widely used approach to characterize the mechanical properties of arteries is based on a mixed experimental–numerical method, in which parameters of a constitutive model are fitted to experimental stress–strain data. In a previous study, it was shown that using a generic material parameter set, with average morphologic parameters, the mechanical behavior of different porcine coronary arteries could accurately be described (van den Broek et al. 2011). The only information needed then is a radius measurement at physiological loading and the corresponding pressure. This generic approach can be very useful, e.g., in the development of PTCA catheters, intended to be used in a patient population, from which the specific arterial properties are unknown a priori. However, for individualized diagnosis and treatment, this approach may not be applicable, since large variations in the material behavior are expected due to aging or disease. Other studies adopted a patient-specific modeling approach to assess the elastic modulus or distensibility from a clinically obtained pressure–radius relation (Hansen et al. 1995; Vavuranakis et al. 1999). More recently, constitutive models, which take the microstructure into account, were fitted to patient data (Masson et al. 2008; Stålhand 2009; Danpinid et al. 2010). This had the advantage that pathologies could be related to the parameters associated with different tissue components. An obvious challenge in the parameter estimation based on clinical data is the limited amount of information in the measured signals. For example, they do not provide any information regarding the axial strain, the radial deformations in the low
pressure range, and the stress-free geometry. Including all these extra unknown parameters in the estimation procedure can easily result in over-parameterization. To overcome this problem, extra optimization constraints can be incorporated into the fitting protocol.

From in-vitro studies, it is well known that at physiological axial strain, the external axial force is independent of the internal pressure (van Loon 1977; Weizsäcker et al. 1983). Several studies used this pressure–invariant axial force constraint to fit models to clinical data. Stålhand and Klarbring (2005) incorporated it as a loose constraint into the estimation procedure in combination with a thick-walled, Fung type, material model and successfully validated it on data from a human aorta obtained in-vivo. Furthermore, making use of a methodology that was first proposed and successfully applied by Schulze-Bauer and Holzapfel (2003), Stålhand (2009) was even able to fit a more microstructurally based, thin-walled, two-fiber constitutive model (Holzapfel et al. 2000), to clinical data from human aortas. Besides the pressure–invariant axial force constraint, this methodology comprises a second constraint, which prescribes the ratio of axial to circumferential stress at a certain characteristic pressure. The combination of the two constraints avoided over-parameterization, thus rendering a unique set of parameters. A drawback of this approach is that the value of the stress-ratio constraint was adopted from in-vitro animal experiments (Fung et al. 1979), which may not directly apply to (pathological) human arteries. Since a thin-walled approach was used, residual stresses were not taken into account. Furthermore, in the studies mentioned, no validation with respect to the axial force and radius in the low pressure range was reported.

Stålhand et al. (2004) also used the two-fiber model but in combination with a thick-walled approach and without the extra constraints. The parameters of the model, including residual stresses, were successfully estimated from in-vivo human aortic data. However, to avoid over-parameterization, the parameter that accounts for the orientation of the collagen fibers in the stress-free configuration had to be prescribed. Since collagen is the main load-bearing structure in arteries at physiological load levels, it is evident that prescribing this parameter will highly influence the estimation results. There are several stress- or strain-based hypotheses that could explain the fiber organization in fibrous tissues (Baaijens et al. 2010). These hypotheses, however, do not provide a clear and unambiguous procedure how to tackle over-parameterization.

This study therefore aims to gain more insight into the fiber orientation at physiological loading conditions and to describe this with a relatively simple two-fiber constitutive model.

Hereto, in-vitro measurements were performed on porcine and human coronary arteries, at physiological axial prestretch. The inner radius and reduced axial force were measured, while the artery was loaded with a dynamic pressure. Taking into account that the results should be applicable to clinical data, a constitutive model with a limited number of parameters is preferable. Therefore, a thick-walled, 1D, single-layered, fiber-reinforced model, of which the constitutive equations were developed by Holzapfel et al. (2000) and used for parameter estimation from clinical data (Stålhand et al. 2004; Stålhand 2009), was used in this study. Residual stresses were incorporated into the model by minimizing the circumferential stress gradients at physiological pressure by introducing a stress-free geometry with an opening angle (Chuong and Fung 1986; Takamizawa and Hayashi 1987). An estimation procedure was employed to fit the parameters of the model to the experimental data over the entire pressure range. The model was then used to compute the stress, strain, and global morphological parameters at physiological loading.

2 Material and methods

2.1 Experimental procedure

Since the experimental set-up has already been described in detail in van den Broek et al. (2011), only a short summary of the experimental procedure is presented here. Porcine hearts (n = 7) were obtained from a local slaughterhouse. Human coronary artery segments (n = 2) were obtained from explanted hearts from patients with heart failure receiving a donor heart at the Herz- and Diabetzentrum Nordrhein-Westfalen (HDZ-NRW, Bad Oeynhausen, Germany). The study was approved by the local medical ethics committee. Patient details can be found in Table 1.

A proximal segment of the left anterior descending coronary artery (LAD) was excised from the heart, and canulae were sutured to the proximal and distal ends of the segment. The length between the sutures was measured, representing the unstretched length (l0). Side branches, about 5–6 per arterial segment, were closed using small stainless steel arterial clips (Ligaclip® Extra, Ethicon Endo-Surgery Inc., Cincinnati, OH). The vessel was placed in an organ bath (Fig. 1), containing a Kreb’s solution, which was kept at a temperature of 37 and 38°C for the human and porcine arteries, respectively. The vessel was mounted to the set-up by

| Table 1 Patient data, and the measured λz,phys. m, male; dTGA, dextro-Transposition of the great arteries; ITGA, levo-Transposition of the great arteries; Minor IT, Minor intimal thickening |
|-------------|-----------|---------------|--------------|-----------------|
Sex	Age (years)	Heart disease	Status LAD	λz,phys	
1	m	26	dTGA	Minor IT	1.3
2	m	41	ITGA	Minor IT	1.15
The axial force (Germany), which was connected to the proximal cannula.

discussed with a pressure transducer (P10EZ, BD, USA). The length of the vessel could be controlled with a linear actuator and controller (235.5 DG and C843, Physik Instrumente, Germany), which was connected to the proximal cannula. The axial force (F_z) was measured with a force transducer (J&M Instruments, The Netherlands), which was connected to the distal cannula. An ultrasonic scanner with a linear probe (8 MHz, Esaote Europe, The Netherlands), combined with an arterial analyzer (Art.Lab, Esaote Europe, The Netherlands), operated at 32 lines cm$^{-1}$ in B-mode (30 frames s$^{-1}$), was used to measure the inner diameter ($D_i = 2r_i$, with r_i the inner radius), which was recorded simultaneously with the pressure. The linear actuator, the pressure–axial force acquisition, and the valve controlling the pressure were controlled using Labview software (National Instruments, USA).

2.1.1 Test protocol

The arterial segments were kept in the Kreb’s solution for 30 min, after which papaverine (10^{-4} M) was added to induce vasorelaxation. After 15 min, the vessel was loaded with a cyclic pressure and stretched axially at a strain rate of 0.01 s$^{-1}$ until the amplitude of the measured axial force signal was minimal. Several studies (van Loon 1977; Weizsäcker et al. 1983) have shown that this axial stretch (λ_z) is equal to the physiological axial pre-stretch ($\lambda_{z,\text{phys}}$) for the large elastic arteries. We assume a similar behavior for coronary arteries. At this $\lambda_{z,\text{phys}}$, the vessel was pressurized with a sinusoidal function with a mean and amplitude of 8 kPa. After reproducible signals were measured, the $P-r_i$ and $P-F_z$ signals were recorded for one pressure cycle. The change in axial force during a pressure cycle (ΔF_z) was obtained by subtracting the axial force at $P = 0$. As some hysteresis was present, the $P-r_i$ and $P-\Delta F_z$ relations at increasing pressure load were averaged with the corresponding relations at decreasing pressure load. The resulting $P-r_i$ and $P-\Delta F_z$ relations were used in the estimation procedure described in Sect. 2.3. After the mechanical testing, a small ring was cut from the middle of the arterial segment and fixed in a 10% formalin solution in PBS. By measuring the inner and outer circumference of a stained ring section, the cross-sectional area of the unloaded segment (A_0) was determined. Previous research has shown that obtaining the unloaded inner and outer diameter from histology has a measuring inaccuracy of about 5–6% (Choy et al. 2005). While modeling the arteries, these possible inaccuracies were considered negligible.

2.2 Constitutive model

Considering the applicability to clinical data, a relatively simple constitutive model with a limited amount of parameters is used in this study. We therefore chose not to include smooth muscle activity (Zulliger et al. 2004b; Valentin et al. 2009; Kroon 2010), a layered structure (Wang et al. 2006), and more realistic fiber distributions (Gasser et al. 2006). Following Holzapfel et al. (2000), the artery is modeled as an incompressible, thick-walled, fiber-reinforced cylinder. The collagen fibers are modeled one-dimensionally, exerting only stress in the fiber direction (τ_{if}). The Cauchy stress σ is defined as:

$$\sigma = -pI + \hat{\tau} + \sum_{i=1}^{2} \tau_{if} \varepsilon_{if} \varepsilon_{if}^{e},$$

with p the hydrostatic pressure, I the unity tensor, $\hat{\tau}$ the isotropic matrix stress, and τ_{if} the fiber stress of fiber i. τ_{if} represents the contribution of all fibrous material and ε_{if} of all other (isotropic) tissue components. The isotropic matrix is described as a neo-Hookean material by

$$\hat{\tau} = G(B - I),$$

with G the shear modulus and B the Finger tensor. B is defined as $B = F \cdot F^T$, with F the deformation gradient tensor (see (9)). The fiber stress is defined as:

$$\tau_{if} = k_1 \lambda_f^2 (\lambda_f^2 - 1) e_k^2 (\lambda_f^2 - 1)^2 \quad \text{if} \quad \lambda_f \geq 1$$

$$\tau_{if} = 0 \quad \text{if} \quad \lambda_f < 1.$$

Here, k_1 and k_2 are constants determining the stress–strain relation of the collagen fibers, and λ_f is the fiber stretch. The fibers can only exert force in tension. The fiber stretch can be calculated from the right Cauchy–Green tensor ($C = F^T \cdot F$)
and the undeformed fiber direction \(\mathbf{e}_f_0 \):

\[
\lambda_f = \sqrt{\mathbf{e}_f_0 \cdot \mathbf{C} \cdot \mathbf{e}_f_0},
\]

\(\mathbf{e}_f_0 \) of fiber \(i (i = 1, 2) \) can be described in matrix notation:

\[
\mathbf{e}_f^i = \begin{bmatrix} \cos(\beta_0) & -1 \end{bmatrix} \begin{bmatrix} \sin(\beta_0) \end{bmatrix}^T, \tag{5}
\]

with \(\beta_0 \) the angle of the fiber relative to the circumferential direction.

To take the residual stresses in the unloaded configuration \(\Omega_0 \) into account, we assume an open configuration \(\Omega_r \) as the stress-free reference configuration (Fig. 2). In cylindrical coordinates \((R, \Theta, Z)\), the geometry of \(\Omega_0 \) is then defined by

\[
R_i \leq R \leq R_o, \quad 0 \leq \Theta \leq (2\pi - \alpha), \quad 0 \leq Z \leq l_0, \tag{6}
\]

with \(R_i \) and \(R_o \), the inner and outer radius, respectively, \(\alpha \) the opening angle, and \(l_0 \) the length of the undeformed tube.

The geometry of the deformed configuration \(\Omega \) is defined in cylindrical coordinates \((r, \Theta, Z)\) by

\[
r_i \leq r \leq r_o, \quad 0 \leq \Theta \leq 2\pi, \quad 0 \leq Z \leq l. \tag{7}
\]

Here, \(r_i, r_o, \) and \(l \) represent the inner and outer radius and the length of the deformed tube, respectively.

When assuming isochoric deformation without torsion, the cylindrical coordinates \((r, \Theta, Z)\) can be written as:

\[
r = \sqrt{R^2 - R_o^2} \sin(\beta_0), \quad \Theta = k \Theta, \quad Z = \lambda_z Z, \tag{8}
\]

with \(k = 2\pi/(2\pi - \alpha) \). The deformation gradient \(\mathbf{F} \) can be written as:

\[
\mathbf{F} = \lambda_r \mathbf{e}_r + \lambda_\Theta \mathbf{e}_\Theta + \lambda_z \mathbf{e}_z, \tag{9}
\]

with \(\mathbf{e}_r, \mathbf{e}_\Theta, \mathbf{e}_z \) the unit base vectors of \((R, \Theta, Z)\), and the following stretch ratios:

\[
\lambda_r = \frac{\partial r}{\partial R} = \frac{R}{rk\lambda_z}, \quad \lambda_\Theta = \frac{r}{R} \frac{\partial \Theta}{\partial \Theta} = \frac{k r}{R}, \quad \lambda_z = \frac{l}{l_0}. \tag{10}
\]

2.2.1 Balance equations

Neglecting body forces, inertia, and viscoelastic behavior, the conservation of momentum equation reads

\[
\nabla \cdot \mathbf{\sigma} = \mathbf{0}. \tag{11}
\]

Assuming axisymmetry and neglecting edge effects, only the radial component of (11) is relevant:

\[
\frac{\partial \sigma_{rr}}{\partial r} + \frac{\sigma_{rr} - \sigma_{r\theta}}{r} = 0. \tag{12}
\]

Using the boundary conditions, \(\sigma_{rr}(r = r_o) = 0 \) and \(\sigma_{rr}(r = r_i) = -P \), together with \(\mathbf{\tau} = \mathbf{\sigma} + p \mathbf{I} \), we obtain an expression for the internal pressure:

\[
P = \int_{r_i}^{r_o} (\tau_{r\theta} - \tau_{rr}) \frac{dr}{r} = 0. \tag{13}
\]

The deformation resulting from axial extension and an internal pressure is found by solving (13). Since, in general, (13) cannot be solved analytically, a numerical technique is used. We define the circumferential stretch at the inner surface as: \(\lambda_{\Theta} = \frac{k r}{R_o} \). For a given \(\alpha \) and \(\lambda_z \), the extra stress can be written as a function of \(\lambda_{\Theta} \) and \(r \). Equation (13) can then be written as:

\[
\int_{r_i}^{r_o} f(\lambda_{\Theta}, r) \frac{dr}{r} = P = 0, \tag{14}
\]

with \(f(\lambda_{\Theta}, r) = (\tau_{r\theta} - \tau_{rr}) \).

A Newton iteration scheme was employed to linearize (14) with respect to \(\lambda_{\Theta} \). The linearized equations were then solved by dividing the wall into 10 subdomains and performing piecewise quadratic Newton–Cotes integration. After solving (14), the reduced axial force could be computed using:

\[
F_{z} = 2\pi \int_{r_i}^{r_o} \sigma_{zz} r dr - P \pi r_i^2. \tag{15}
\]

2.3 Estimation procedure

The main idea of the estimation procedure is to minimize the difference between the experiments, consisting of the \(P-r_i \) and \(\Delta F_z \) data, and the same signals computed with the model, by optimizing the model parameters. Keeping the clinical applicability in mind, we assumed here that \(\Delta F_z \) is zero over the measured pressure range, since it is impossible to measure the axial force in-vivo.

First, to have an equal contribution over the pressure range, the data were re-sampled from time equidistant to pressure equidistant over the pressure range of 0–16 kPa with 25 samples. The difference between the experiment and
model was minimized by optimizing the four material parameters \((G, k_1, k_2, \beta_0)\) and one geometrical parameter, for which the inner radius in the unloaded configuration \((r_{i_{0\alpha}})\) was chosen. To quantify the difference between experiment and model, the objective function \(\psi\) is defined as:

\[
\psi(\Upsilon) = \frac{1}{N_s} \sum_{j=1}^{N_s} \left((r_{i,M}(j) - r_{i,E}(j))^2 + \varepsilon_F (\Delta F_c,M(j))^2 \right).
\]

(16)

Here, \(\Upsilon\) consists of the five parameters \(\Upsilon = \{G, k_1, k_2, \beta_0, r_{i_{0\alpha}}\}\), \(N_s = 25\) is the number of samples, \(\varepsilon_F = 0.01\) is a scaling parameter for \(\Delta F_c\), and \(M\) and \(E\) represent the model and experiment, respectively. To introduce residual stresses in the unloaded configuration, we make use of the general idea that the arterial wall is able to remodel its microstructure toward a preferred biomechanical state. More specifically, the hypothesis that the circumferential stress gradient is minimal at physiological pressure \((P = 13.3 \text{ kPa})\) and axial pre-stretch \((\text{Chuong and Fung 1986; Takamizawa and Hayashi 1987; Hayashi and Naiki 2009})\) is translated into a second objective function \(\vartheta(\alpha)\):

\[
\vartheta(\alpha) = \frac{1}{N_d} \sum_{m=1}^{N_d} (\Delta \sigma_{\theta\theta}(m))^2,
\]

(17)

with \(\Delta \sigma_{\theta\theta} = \sigma_{\theta\theta} - \sigma_{\theta\theta}(r_i)\), and \(N_d = 10\) the number of sub-domains that make up the wall. It is assumed that the stretches going from the stress-free to the unloaded configuration are small, which means that the fiber contribution is very small. It can therefore be considered as a simple homogeneous bending problem, which means that the mid-wall circumferential stretch does not change between the the stress-free and unloaded configuration. This, together with the incompressibility condition, means that the wall thickness does not change between the stress-free and the unloaded configuration \((\text{Taber and Eggers 1996})\). \(R_i\) and \(R_o\) can therefore be expressed in terms of \(r_{i_{0\alpha}}\) and the measured unloaded cross-sectional area \(A_0\):

\[
\begin{align*}
 h_{\Omega_c} &= \sqrt{\frac{A_0}{r_{i_{0\alpha}}} + \frac{A_0}{r_{i_{0\alpha}}} - r_{i_{0\alpha}}} = H, \\
 R_i &= k \left(r_{i_{0\alpha}} + \frac{h_{\Omega_c}}{2} \right) - \frac{H}{2} = kr_{i_{0\alpha}} + \frac{h_{\Omega_c}}{2} (k - 1), \\
 R_o &= R_i + H = kr_{i_{0\alpha}} + \frac{h_{\Omega_c}}{2} (k + 1).
\end{align*}
\]

\(H\) and \(h_{\Omega_c}\) are the wall thickness of the stress-free and unloaded configuration, respectively.

The estimation procedure (Fig. 3) started with the input for the model: the axial pre-stretch \((\lambda_z, \text{phys})\), the unloaded cross-sectional area \((A_0)\), and the pressure \((P)\), obtained from the experiments, and an initial estimate of \(\Upsilon(\Upsilon^{(0)})\) and \(\alpha (\alpha^{(0)})\). Subsequently, \(\vartheta\) was minimized (using Levenberg–Marquardt), leading to a new estimate of \(\alpha\). This continued until \(\vartheta\) was minimized, resulting in an estimate of \(\alpha\) for a certain \(\Upsilon\). This procedure of minimizing \(\vartheta\) was repeated every time and one of the five parameters was changed, even while determining the Jacobian. The objective function \(\psi\) was minimized using the Levenberg–Marquardt algorithm, as implemented in the lsqnonlin-subroutine in Matlab (R2010a. The Mathworks, Natick (MA)). To prevent convergence issues in solving Eq. (14), the upper and lower bounds of \(\Upsilon\) were \([5 \text{ kPa}, 0.1 \text{ kPa}, 0.1, 10^\circ, 0.5 \text{ mm}]\) and \([500 \text{ kPa}, 50 \text{ kPa}, 100, 50^\circ, 2 \text{ mm}]\), respectively. This resulted in an \(\Upsilon\) and \(\alpha\), for which the model described the experimental data and which meets the uniform stress/strain hypothesis. To test whether a global minimum of \(\psi\) was found, the estimation procedure was repeated with three different initial parameter sets: \(\Upsilon_1^{(0)} = \{30 \text{ kPa}, 3 \text{ kPa}, 3, 30^\circ, 1 \text{ mm}\}\), \(\Upsilon_2^{(0)} = \{20 \text{ kPa}, 20 \text{ kPa}, 10, 20^\circ, 1.5 \text{ mm}\}\), \(\Upsilon_3^{(0)} = \{200 \text{ kPa}, 1 \text{ kPa}, 15, 45^\circ, 1.7 \text{ mm}\}\). Furthermore, the eigenvalues of the Hessian at the converged solution were computed to assess whether any over-parameterization existed.

This estimation procedure was also repeated without the optimization of the opening angle (\(\alpha = 0\)), to gain insight into the effect of estimating the opening angle based on the uniform stress/strain hypothesis.
2.4 Data analysis

The variation of the parameters \((R_i, \alpha, G, k_1, k_2, \beta_0) \) between the different LADs was analyzed by determining the mean and standard deviation of each parameter. For each LAD, the quality of the \(P-r_i \) relation obtained with the model was quantified by determining the mean relative difference between the model and the experiment:

\[
\delta_r = \frac{1}{N_s} \sum_{j=1}^{N_s} \left| \frac{r_i,M(j) - r_i,E(j)}{r_i,E(j)} \right|
\]

(19)

The deviation of \(\Delta F_z \) from zero was quantified according to:

\[
\delta_F = \frac{1}{N_s} \sum_{j=1}^{N_s} \left| \Delta F_{z,M}(j) \right|
\]

(20)

The effect of including the opening angle in the optimization scheme on the estimated material parameters is quantified for each LAD according to:

\[
\delta_{\alpha} = \frac{\gamma - \gamma_{\alpha=0}}{\gamma_{\alpha=0}}
\]

(21)

Since the anisotropic fiber part is very important in determining the stress–strain relations, especially in the high (physiological) pressure range, the mean fiber orientation, as well as the different stress components as a function of pressure, was determined for every artery.

3 Results

In Table 2, the geometric parameters obtained from the experiments (\(\lambda_{\alpha, \text{phys}} \) and \(A_0 \)) and the optimization procedure \((R_i, H, \text{and } \alpha) \) are shown for all 9 LADs. The two human LADs are represented by numbers 8 and 9. The unloaded arterial cross-sectional area \(A_0 \), obtained from histology, was \((3.0 \pm 0.7) \text{ mm}^2 \). The average physiological pre-stretch \(\lambda_{\alpha, \text{phys}} \) was \(1.35 \pm 0.09 \). The other three geometrical parameters, \(R_i \), \(H \), and \(\alpha \), were derived using the fitting procedure described in Eqs. (16)–(18) and are also shown in Table 2. The minimization of the stress gradients at \(P = 13.3 \text{ kPa} \), resulting in an estimate of \(\alpha \), was successful, as the circumferential stress gradient through the wall was close to zero at physiological pressure when residual strain was included (Fig. 4a). The resulting residual circumferential stretch in the unloaded configuration \(\Omega_0 \) was approximately \(\pm 5\% \) (Fig. 4b). A typical result, in this case of one of the human arteries, of the \(P-r_i \) and \(P-\Delta F_z \) relations from the experiment and the fitted model is shown in Fig. 5. For all measured porcine and human segments, the \(P-r_i \) and \(P-\Delta F_z \) relations could be fitted accurately. The average relative deviation of \(P-r_i \) (\(\delta_r \)) and the average deviation of \(\Delta F_z \) from zero (\(\delta_F \)) were therefore also very small: 0.6\% (or 10 \(\mu \)m) and 0.4 mN, respectively (Table 3).
Table 3 Mean and standard deviation (SD) of the fitted material parameter values and the deviations in r_i and $ΔF_z$, of LAD 1–9

Parameter	Mean	SD
G (kPa)	21	4
k_1 (kPa)	2	0.5
k_2 (–)	8	9
$β_0$ (°)	36	3
$δ_r$ ($×10^{-3}$)	6	3
$δ_F$ (mN)	0.4	0.1

Table 4 Mean and standard deviation (SD) of $δ_α$ of LAD 1–9; the relative difference between the material parameters found with and without including the opening angle in the estimation scheme

Parameter	Mean	SD
$ΔG$ (%)	−4	1
$Δk_1$ (%)	−0.4	1
$Δk_2$ (%)	8	1
$Δβ_0$ (%)	−1	0.3
$Δδ_r$ (%)	8	6
$Δδ_F$ (%)	−7	5

The fitted material properties of all measured arteries. Each marker represents one LAD, human LADs 8 and 9 are represented by ▽ and ♦. The errorbars represent the standard deviations of the parameters of all the LADs.

The estimated material parameters are shown in Table 3 and Fig. 6. The maximal relative difference between parameters obtained with the three initial parameter sets ($Y_{(0)}^{(1)}$) was less than 0.3%. This indicates that a global minimum of the objective function ($ψ$) was found. Furthermore, the eigenvalues of the Hessian of the converged solutions were all greater than zero, indicating that the Hessian is convex near the solution and no over-parameterization existed. The parameters of the human arteries (represented with ▽, ♦) were not very different from the porcine arteries, apart from k_2, which was much larger for LAD 8 (▽). While this might be an indication that the overall waviness of the collagen fibers of this vessel is less, we do not have an explanation for this feature.

The effect of including the opening angle on the parameters is shown in Table 4. The relative difference in the material parameters found was very small, indicating that the relative influence of the opening angle on the $P-r_i$ and $P-ΔF_z$ relations is small. Furthermore, the small relative difference in $δ_r$ and $δ_F$ shows that including the opening angle, via the homogeneous stress/strain hypothesis, does not have a negative impact on the quality of the fit.

The average fiber orientation $β$ as a function of P at $λ_{z,phys}$, as computed with the model. Solid lines represent the porcine LADs, solid lines with ▽, and ♦ represent human LADs 8 and 9, respectively.

Figure 7 clearly shows that the collagen fibers are the main load-bearing structure at physiological pressure. Compared to the matrix, the fiber contribution to the extra stress is approximately $5\times$ and $10\times$ higher in the axial and circumferential directions, respectively. Hence, when using a highly orthotropic model, the fiber orientation is very important in determining the stress–strain behavior. Figure 8 shows the fiber angle $β$ for all vessels as a function of P. While the variation between the vessels is high at $P = 0$ ($β = (48 ± 4)°$), at physiological pressure, $β$ is almost equal for all vessels; ($36.4 ± 0.3)°$ at $P = 13.3$ kPa.
4 Discussion

In this study, we used in-vitro inflation and extension experiments on porcine and human coronary arteries, to investigate the fiber orientation, as represented by a widely used two-fiber model (Holzapfel et al. 2000), at physiological loading conditions and was found to be very similar for all arteries measured. The experiments mimicked the in-vivo situation by stretching the arterial segments to measured. The experiments were performed in a physiological environment. The structural integrity of the arterial segment is maintained, and damage is prevented since the maximum pressure does not exceed physiological values. The measurements were performed at an approximation of the physiological axial pre-stretch. Since measurements were performed on the epicardial coronary arteries, we assumed that the extravascular pressure, due to the cardiac contraction, was negligible. This also means that caution should be exercised when applying the current results to coronary arteries closer to the endocardium.

The main advantage of the single-layered model used is that there are a limited number of material parameters to be estimated, while the microstructure of the arterial wall is globally taken into account. It is well known that the arterial wall consists of three layers, with different constituents and related material parameters. Furthermore, it has been shown that a model with a fiber distribution is better able to capture observations from in-vitro studies (Gasser et al. 2006). Although adopting a model with a more realistic morphology, i.e., more layers, constituents, and fiber distributions, will yield a more accurate description of the mechanics of the arterial wall, including all these extra parameters in the estimation procedure will result in over-parameterization of the objective function, especially with the limited amount of information available in clinical data.

By adopting a thick-walled model, residual stresses could be taken into account. We chose a relatively easy way to implement the residual stresses, via the opening angle parameter to fit both P-ri and P-ΔFz relations. The model was able to fit the measured P-ri and P-ΔFz relations accurately, represented by an average deviation of only 10 μm (δr = 0.006) and 0.4 mN (δFz) from the experimental data. Multiple initial parameter sets resulted in the same optimal parameter set Υ, indicating that a global minimum of the objective function (ψ) was found. An important parameter to fit both P-ri and P-ΔFz relations accurately is the scaling parameter εF. εF was chosen in such a way that the contribution of the radius and axial force to the objective function (Eq. 16) was approximately equal. By altering εF either the radius or axial force data will therefore start to dominate the objective function, and a different global minimum will be found. If εF is chosen very high, which means a very strict axial force constraint, the solution space is likely to be restricted so much that it is unlikely that the constitutive equations are able to describe the found P-ri relations.

The relative variation in Υ between the different vessels is quite large, especially for the parameter k2. The relative
variation in the parameter representing the global fiber orientation β_0 is quite small, but, since the main load is taken by the fibers (Fig. 7), the $P-r_i$ and $P-\Delta F_z$ relations are most sensitive to changes in β_0. The value of β_0 corresponds to the average fiber angle of the adventitia of the human aorta as found by Holzapfel et al. (2002). Besides the value of k_2 of LAD 8 (\V), the material parameters of the human arteries were consistent with those of the tested porcine arteries. A clear limitation of this study is that we were able to only include two human specimens. Therefore, further research is needed to confidently translate the obtained results to human coronary arteries. The two human specimens, however, do contribute to the findings regarding the fiber orientation at physiological loading, while their axial pre-stretch was significantly lower.

With the experimental set-up, only the changes in axial force (ΔF_z) could be measured accurately, while other studies (Zulliger et al. 2004a; Rezakhaniha and Stergiopulos 2008) reported problems with fitting both $P-r_i$ and $P-\Delta F_z$ relations with similar fiber-reinforced models. Rezakhaniha and Stergiopulos (2008) proposed a model that included anisotropic elastin, which increased the axial stress, enabling fitting of both the radius and absolute axial force data. It would be interesting to use a model, which incorporates anisotropic elastin in future studies. Adding anisotropic elastin to the constitutive model used in this study will influence the material parameters found. More specifically, since the elastin fiber angle in the model of Rezakhaniha and Stergiopulos (2008) is more axially oriented, the fibers representing the collagen fibers will be oriented more circumferentially compared with the fiber angle found here. It should be noted, however, that increasing the number of material parameters is likely to result in over-parameterization. Furthermore, since clinically obtained data lack absolute force information, it is unlikely that this anisotropic elastin parameter can be fitted and should therefore be prescribed.

As mentioned before, in the physiological pressure range, the fibers bear almost all the load (Fig. 7). The fiber orientation (β) is therefore the main determinant of the stress–strain behavior at those pressures, especially in this two-fiber model. Note that β is determined by the axial and circumferential strains and the value of β in the stress-free configuration (β_0). For all vessels measured, the fiber orientation at physiological loading β_{phys} was almost equal being $(36.4 \pm 0.3)^\circ$, as indicated by a standard deviation of only 1%. An explanation for this particular fiber orientation can be found by applying netting analysis. In filament-wound composite theory (Gay et al. 2003), netting analysis is often used to describe the behavior of fiber-reinforced composite materials. The main assumption in netting analysis is that all loads are supported by the fibers only. Since we model the arterial wall as a filament-wound tube, netting analysis can be used to approximate the fiber orientation in the high pressure range.

As described in several papers (Spencer et al. 1974; Wild and Vickers 1997; Xia et al. 2001), an optimal fiber angle exists for which the fibers take all the load due to the internal pressure. This optimal winding angle is approximately 35° relative to the circumferential direction. This behavior is exactly what we see in our results, for high pressures β approaches 35° (Fig. 8). The derived angle aligns with the largest principal stress directions, which is in agreement with the theory proposed by Hariton et al. (2007), which hypothesized that the collagen remodeling is modulated by principal stresses.

It must be stressed that the fiber orientation found must not be viewed as the actual fiber morphology in the arterial wall but just as the net result of all fibrous material as described with the two-fiber model. The findings in this study are therefore mainly of interest as extra modeling constraints or for reducing the number of parameters, with similar, highly orthotropic, models.

In conclusion, porcine and human coronary arteries were subjected to inflation/extension experiments at physiological axial conditions and a pressure range of 0–16 kPa. The main finding was that the fiber orientation at physiological loading, as described with the two-fiber model (Holzapfel et al. 2000), is almost equal for all arteries measured, which could be physically interpreted using netting analysis and which may result from arterial remodeling as it is structurally based. In future studies, which use similar, highly orthotropic, models to estimate material parameters from clinical data, this may prove to be useful in reducing the number of parameters or as an extra modeling constraint.

Acknowledgments This research was supported by the Dutch Technology Foundation STW: project: SmartSiP 10046, Philips Research, and St. Jude Medical. We thank Dr. Milting and Dr. Morshuis (HDZ-NRW, Bad Oeynhausen, Germany) for providing the human coronary arteries.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

References

Baaajens F, Bouten C, Driessen N (2010) Modeling collagen remodeling. J Biomech 43(1):166–175

Choy JS, Mathieu-Costello O, Kassab GS (2005) The effect of fixation and histological preparation on coronary artery dimensions. Ann Biomed Eng 33(8):1027–1033

Chuong CJ, Fung YC (1986) On residual stresses in arteries. J Biomech Eng 108(2):189–192

Danpinid A, Luo JW, Vappou J, Terdtoon P, Konofagou EE (2010) In vivo characterization of the aortic wall stress-strain relationship. Ultraso 50(7):654–665

Fung YC, Fronek K, Patitucci P (1979) Pseudoelasticity of arteries and the choice of its mathematical expression. Am J Physiol-Heart Circ Phys 237(5):H620–H631
Gasser TC, Ogden RW, Holzapfel GA (2006) Hyperelastic modeling of arterial layers with distributed collagen fibre orientations. J Royal Soc Interface 3(6):15–35
Gay D, Hao SY, Tsai SW (2003) Composite materials: design and applications, 4th edn. CRC Press, Boca Raton
Guo X, Kassab GS (2004) Distribution of stress and strain along the porcine aorta and coronary arterial tree. Am J Physiol-Heart Circ Phys 286(6):H2361–H2368
Hansen F, Mangell P, Sonesson B, Lane T (1995) Diameter and compliance in the human common carotid-artery—variations with age and sex. Ultrasound Med Biol 21(1):1–9
Hariton I, Debotton G, Gasser TC, Holzapfel GA (2007) Stress-driven collagen fiber remodeling in arterial walls. biomech Model Mechanobiol 6(3):163–175
Hayashi K, Naiki T (2009) Adaptation and remodeling of vascular wall: biomechanical response to hypertension. J Mech Behavior Biomech Mat 2(1):3–19
Hoger A (1997) Virtual configurations and constitutive equations for residually stressed bodies with material symmetry. J Elast 48:125–144
Holzapfel GA, Gasser TC, Ogden RW (2000) A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elast 61(3):1–48
Holzapfel GA, Gasser TC, Studler M (2002) A structural model for the viscoelastic behavior of arterial walls: continuum formulation and finite element analysis. Europ J Mech A-Solids 21(3):441–463
Holzapfel GA, Sommer G, Auer M, Regitnig P, Ogden RW (2007) Layer-specific 3d residual deformations of human aortas with non-atherosclerotic intimal thickening. Ann Biomed Eng 35(4):530–545
Humphrey JD, Eberth JF, Dye WW, Gleason RL (2009) Fundamental role of axial stress in compensatory adaptations by arteries. J Biomech 42(1):1–8
Kroon M (2010) A constitutive model for smooth muscle including active tone and passive viscoelastic behaviour. Math Med Biol 27(2):129–155
Masson I, Boutouyrie P, Laurent S, Humphrey JD, Zidi M (2008) Characterization of arterial wall mechanical behavior and stresses from human clinical data. J Biomech 41(12):2618–2627
Olsson T, Stålhand J, Klarbring A (2006) Modeling initial strain distribution in soft tissues with application to arteries. Biomech Model Mechanobiol 5(1):27–38
Rachev A, Greenwald SE (2003) Residual strains in conduit arteries. J Biomech 36(5):661–670
Rezakhaniha R, Stergiopulos N (2008) A structural model of the venous wall considering elastin anisotropy. J Biomech Eng 130(3):031017
Schulze-Bauer CAJ, Holzapfel GA (2003) Determination of constitutive equations for human arteries from clinical data. J Biomech 36(2):165–169
Spencer AJM, Rogers TG, moss RL (1974) An optimal angle of winding for pressurized fibre-reinforced cylinders. Mech Res Comm 1:27–32
Stålhand J (2009) Determination of human arterial wall parameters from clinical data. Biomech Model Mechanobiol 8(2):141–148
Stålhand J, Klarbring A (2005) Aorta in vivo parameter identification using an axial force constraint. Biomech Model Mechanobiol 3(4):191–199
Stålhand J, Klarbring A, Karlsson M (2004) Towards in vivo arterial wall identification and stress estimation. Biomech Model Mechanobiol 2(3):169–186
Taber LA, Eggers DW (1996) Theoretical study of stress-modulated growth in the aorta. J Theor Biol 180(4):343–357
Tanakamizawa K, Hayashi K (1987) Strain energy density function and uniform strain hypothesis for arterial mechanics. J Biomech 20(1):7–17
van den Broek CN, van der Horst A, Rutten MCM, van de Vosse FN (2011) A generic constitutive model for the passive porcine coronary artery. Biomech Model Mechanobiol 10(2):249–258
van Loon P (1977) Length-force and volume-pressure relationships of arteries. Biorehology 14(4):181–201
van Oijen CHGA (2003) Mechanics and design of fiber-reinforced vascular prostheses. Thesis/dissertation, Eindhoven University of Technology
Valenta J, Svoboda J, Valerianova D, Vitek K (1999) Residual strain in human atherosclerotic coronary arteries and age related geometrical changes. Bio-Med Mat Eng 9(5-6):311–317
Valentin A, Cardamone L, Baek S, Humphrey JD (2009) Complementary vasoactivity and matrix remodelling in arterial adaptations to altered flow and pressure. J Royal Soc Interface 6(32):293–306
VanDyke TJ, Hoger A (2002) A new method for predicting the opening angle for soft tissues. J Biomech Eng 124(4):347–354
Vavuranakis M, Stefanadis C, Triandaphyllidi E, Toutouzas K, Toutouzas P (1999) Coronary artery distensibility in diabetic patients with simultaneous measurements of luminal area and intracoronary pressure: evidence of impaired reactivity to nitroglycerin. J Am Coll Cardiol 34(4):1075–1081
Wang C, Garcia M, Lu X, Lanir Y, Kassab GS (2006) Three-dimensional mechanical properties of porcine coronary arteries: a validated two-layer model. Am J Physiol-Heart Circ Phys 291(3):H1200–H1209
Wang RY, Gleason RL (2010) Experimental analysis of conduit arteries, 4th ed. CRC Press, Boca Raton
Weiszäcker HW, Lambert H, Pascale K (1983) Analysis of the passive mechanical properties of rat carotid arteries. J Biomech 16(9):703–715
Wild PM, Vickers GW (1997) Analysis of filament-wound cylindrical shells under combined centrifugal, pressure and axial loading. Compos Part A-Applic Sci Manu 28(1):47–55
Xia M, Kemmochi K, Takayanagi H (2001) Analysis of filament-wound fiber-reinforced sandwich pipe under combined internal pressure and thermomechanical loading. Compos Struct 51(3):273–283
Zulliger MA, Fridez P, Hayashi K, Stergiopulos N (2004) A strain energy function for arteries accounting for wall composition and structure. J Biomech 37(7):989–1000
Zulliger MA, Rachev A, Stergiopulos N (2004) A constitutive formulation of arterial mechanics including vascular smooth muscle tone. Am J Physiol-Heart Circ Phys 287(3):H1335–H1343