Synthesis and crystal structure of a new coordination polymer based on lanthanum and 1,4-phenylenediacetate ligands
Magatte Camara, Insa Badiane, Mamoudou Diallo, Carole Daiguebonne, Olivier Guillou

To cite this version:
Magatte Camara, Insa Badiane, Mamoudou Diallo, Carole Daiguebonne, Olivier Guillou. Synthesis and crystal structure of a new coordination polymer based on lanthanum and 1,4-phenylenediacetate ligands. Acta crystallographica. Section E, Crystallographic communications, International Union of Crystallography, 2019, 75 (3), pp.378-+. 10.1107/S2056989019002378. hal-02086461

HAL Id: hal-02086461
https://hal-univ-rennes1.archives-ouvertes.fr/hal-02086461
Submitted on 27 Apr 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Synthesis and crystal structure of a new coordination polymer based on lanthanum and 1,4-phenylenediacetate ligands

Magatte Camara,* Insa Badiane, Mamoudou Diallo, Carole Daiguebonne and Olivier Guillou

*Université Assane Seck de Ziguinchor, LCPM-Groupe Matériaux Chimie Douce et Cristallographie, BP 523 Ziguinchor, Senegal, and *Université de Rennes, INSA Rennes, CNRS UMR 6226, Institut des Sciences Chimiques de Rennes, F-35708 Rennes, France. *Correspondence e-mail: magatte.camara@univ-zig.sn

Reaction in gel between the sodium salt of 1,4-phenylenediacetic acid (Na₂C₁₀O₄H₈–Na₂⁺-pda) and lanthanum chloride yields single crystals of the three-dimensional coordination polymer poly[tetraaquatris(1,4-phenylenediacetato)dilanthanum(III)] octahydrate, [La₂(C₁₀H₈O₄)₃(H₂O)₄]C₈H₂O. The La³⁺ coordination polyhedron can be described as a slightly distorted monocapped square antiprism. One of the two p-pda²⁻ ligands is bound to four La³⁺ ions and the other to two La³⁺ ions. Each La³⁺ atom is coordinated by five ligands, thereby generating a metal–organic framework with potential porosity properties.

1. Chemical context

In recent years, one of the most important fields of research in coordination chemistry and crystal engineering has been the design of metal–organic frameworks (MOFs), because of their intriguing network topologies and possible applications in gas storage (Eddaoudi et al., 2002; Reneike et al., 1999; Luo et al., 2011a,b; Kustaryono et al., 2010), catalysis (Lee et al., 2009), separation (Hamon et al., 2009), luminescence (Cui et al., 2012; Daiguebonne et al., 2008; Binnemans, 2009) and molecular magnetism (Calvez et al., 2008; Sessoli et al., 2009). Our group has been involved in this field for more than a decade (Freslon et al., 2014; Fan et al., 2014; Luo et al., 2011a,b; Badiane et al., 2017a,b). The search for new ligands that can lead to new structural networks and/or new physical properties is a continuous concern (Qiu et al., 2007; Fan et al., 2015).

For the synthesis of MOFs, usually two complementary molecular precursors, a cation with vacant coordination sites and a bridging anion, are used to form the coordination polymer. This procedure offers the prospect of rationally designing extended solids with interesting properties. Most of the organic ligands used in MOF chemistry are rigid aromatic carboxylates (Luo et al., 2007; Huang et al., 2009). Compared to the rigid ligands, using flexible ligands such as 1,2- (Xin et al., 2011), 1,3- (Wang et al., 2012) or 1,4-phenylenediacetate (Fabelo et al., 2009a,b) to construct coordination polymers seems to be more difficult, and developing synthetic methodologies is still a challenge. However, flexibility of the ligand can promote structural and functional diversity.

Numerous coordination polymers have been reported so far that involve d-block metal ions such as Cu¹¹ (Singh & Barua, 2009; Fabelo et al., 2009a,b; Chen et al., 2010a,b,c), Zn¹¹ (Singh
Barua, 2009), CdII (Chen et al., 2010a,b,c; Singh & Barua, 2009; Li et al., 2009), MnII (Singh & Barua, 2009; Chen et al., 2010a,b,c; Uebler & LaDuca, 2012; Li et al., 2009) and NiII (Chen et al., 2010a,b,c; Uebler & LaDuca, 2012; Li et al., 2009). Lanthanide(III) ions have higher and variable coordination numbers (generally between 7 and 12) and incorporate, apart from the main ligands, ancillary ligands such as water molecules into the lanthanide coordination sphere. A large number of studies have been reported on lanthanide coordination polymers based on 1,4-phenylenediacetic acid (Singh & Barua, 2009; Fabelo et al., 2009a,b; Chen et al., 2010a,b,c; Uebler & LaDuca, 2012; Li et al., 2009; Rusinek et al., 2013) as well as on other isomers of this acid such as 1,2- (Badiane et al., 2017a,b; Xin et al., 2011) and 1,3-phenylenediacetic acid (Wang et al., 2012), and most of them tend to make porous materials through solvothermal synthesis.

Isomers of phenylenediacetic acid are flexible ligands and can therefore adopt different conformations in the crystal structure. 1,4-Phenylenediacetic acid is used as a readily available ligand that can coordinate two or more metal ions in bridging-mode, forming extended molecular networks (Pan et al., 2003; Chen et al., 2010a,b,c). The different coordination modes (Chen et al., 2010a,b,c; Rusinek et al., 2013; Ren et al., 2011; Pan et al., 2003; Singha et al., 2014; Singha et al., 2015) of the ligand with lanthanide ions that have been reported to date are shown in Fig. 1.

In this paper we report the synthesis and the crystal structure of a new coordination polymer with chemical formula \( [\text{La}_2(p\text{-pda})_3(H_2O)_4\cdot 8\text{H}_2\text{O}]_{\infty} \).

2. Structural commentary

The crystallographically independent La\(^{3+}\) ion is nona-coordinated by seven oxygen atoms (O1, O2, O3, O4, O5, O6, O3’) from five \( p\text{-pda}^2^- \) ligands and two oxygen atoms (O8 and O7) from the coordinating water molecules (Fig. 2). The coordination polyhedron can be described as a monocapped distorted square antiprism with atom O3\(^0\) capping the polyhedron \([\text{symmetry code: (0 0 1/2)}]\). The two square sides of the antiprism are formed by atoms O7, O6, O2, O5 and O8, O3, O1, O4, respectively. The dihedral angle between the two faces is 5.21 (9)°. There are three independent ligands: L1, L2 and L3 (Fig. 3). The twisted ligand L3 exhibits a coordination mode that has never previously been

Figure 1
Bonding modes in lanthanide-containing coordination polymers with 1,4-phenylenediacetate ligands (\( p\text{-pda}^2^- \)) reported in the literature to date.

Figure 2
Coordination environment of La\(^{3+}\) in \( [\text{La}_2(p\text{-pda})_3(H_2O)_4\cdot 8\text{H}_2\text{O}]_{\infty} \). Symmetry code: (0 −x, 1 −y, 1 −z). Hydrogen atoms of the water molecules have been omitted for clarity.

Figure 3
Coordination modes of ligand L1 (\( \mu\)-4 bis-bidentate mode: (\( \eta^1\cdot\eta^2\cdot\mu_3\)-\( \eta^1\cdot\eta^2\cdot\mu_3\)-\( \eta^1\cdot\eta^2\cdot\mu_3\)-\( \eta^1\cdot\eta^2\cdot\mu_3\)), L2 (\( \mu\)-4 bis-tridentate bridging and chelating mode: (\( \eta^1\cdot\eta^1\cdot\mu_4\)-\( \eta^1\cdot\eta^2\cdot\mu_3\)-(\( \eta^1\cdot\eta^2\cdot\mu_3\)-\( \eta^1\cdot\eta^2\cdot\mu_3\)) and L3 (\( \mu\)-2 bis-bidentate-chelating mode: (\( \eta^1\cdot\eta^1\cdot\mu_2\)-\( \eta^1\cdot\eta^2\cdot\mu_2\))

Camara et al. \( [\text{La}_2(C_{10}H_{18}O_4)_4(H_2O)_4\cdot 8\text{H}_2\text{O}]_{\infty} \) 379
observed in lanthanide-based coordination polymers involving the \( p \)-pda\(^{2-} \) ligand.

The monocapped square antiprisms are connected to each other by alternating \( \text{L}_1 \) bridging carboxylate oxygen atoms (O5 and O6) and edge-sharing polyhedra through \( \text{L}_2 \) oxygen atoms (O3), forming molecular chains along the \( a \)-axis direction (Fig. 4). These chains are connected to each other through ligands \( \text{L}_1 \) and \( \text{L}_2 \), which play the role of spacers, forming molecular layers that extend parallel to the \( ab \) plane (Fig. 4).

### Table 1
Hydrogen-bond geometry (Å, °).

| \( D-H \cdots A \)   | \( D-H \) | \( H \cdots A \) | \( D \cdots A \) | \( D-H \cdots A \) |
|---------------------|----------|-----------------|-----------------|-----------------|
| OW1 – HW1A \cdots OW1\(^{\text{iii}} \) | 0.87 (9) | 2.40 (11) | 3.067 (13) | 133 (9) |
| OW1 – HW1B \cdots OW4\(^{\text{v}} \) | 0.89 (9) | 2.54 (10) | 3.298 (11) | 145 (7) |
| OW2 – HW2A \cdots O4\(^{\prime} \) | 0.82 (6) | 2.10 (6) | 2.895 (5) | 164 (6) |
| OW2 – HW2B \cdots OW4\(^{\prime} \) | 0.82 (6) | 2.20 (5) | 2.855 (8) | 137 (5) |
| OW3 – HW3A \cdots O6\(^{\prime} \) | 0.82 (8) | 2.02 (6) | 2.780 (8) | 154 (7) |
| OW3 – HW3B \cdots OW1\(^{\text{iii}} \) | 0.81 (7) | 2.40 (6) | 3.162 (11) | 156 (8) |
| OW4 – HW4A \cdots OW2\(^{\text{iii}} \) | 0.81 (10) | 2.49 (9) | 2.855 (8) | 109 (9) |
| OW4 – HW4B \cdots OW3\(^{\text{iii}} \) | 0.84 (9) | 2.11 (10) | 2.824 (11) | 143 (8) |
| O8 – H8A \cdots OW3\(^{\prime} \) | 0.82 (4) | 2.38 (4) | 3.175 (8) | 165 (4) |
| O8 – H8B \cdots O1\(^{\prime} \) | 0.83 (4) | 1.92 (4) | 2.725 (5) | 163 (5) |
| C7 – H7D \cdots O4\(^{\text{ii}} \) | 0.97 | 2.54 | 3.442 (6) | 154 |
| C12 – H12B \cdots O6\(^{\text{ii}} \) | 0.97 | 2.51 | 3.406 (6) | 154 |

Symmetry codes: (i) \(-x+1, -y+1, -z+1\); (ii) \(-x+2, -y+1, -z+1\); (iii) \(-x+1, -y, -z+1\); (iv) \(x, y-1, z\); (v) \(x, y, z+1\); (vi) \(x, y, z-1\); (vii) \(x+1, y+1, z\).
These layers are further connected through the twisted ligand $\text{L}_3$, leading to a three-dimensional molecular framework (Fig. 5). Ligand $\text{L}_3$ acts as a spacer between the different polymeric layers because of its anti–anti conformation.

The framework has channels along the $a$-axis direction in which the water molecules of crystallization are located. They are bound to the molecular skeleton via a hydrogen-bonded network (Table 1). As can be seen from Fig. 6, the three-dimensional crystal structure could potentially present some porosity properties. Indeed, removal of the water molecules of crystallization could create empty channels, as has been reported previously (Kustaryono et al., 2010; Kerbellec et al., 2008). For the coordination polymer in this study, the potential porosity is calculated to be 750 (20) m$^2$ g$^{-1}$ for N$_2$ with a kinetic radius of 1.83 Å. The calculation was performed using a method described elsewhere (Kustaryono et al., 2010; Kerbellec et al., 2008).

Other crystal structures of lanthanide coordination polymers with the $p$-pda$^{2-}$ ligand have been reported previously. This series of compounds, first described by Pan et al. (2003) has been widely studied because of potential applications in various fields such as explosives detection (Singha et al., 2014, 2015), gas sorption (Pan et al., 2003) or catalysis (Ren et al., 2011). These compounds, with general chemical formula \([\text{Ln}_2(p$-$pda)_3(H_2O)_8] \cdot 8\text{H}_2\text{O}\) with \(\text{Ln} = \text{La–Ho} \) have been obtained by hydrothermal synthesis and therefore present a lower hydration rate and a higher density than \([\text{La}_2(p$-$pda)$_3(H_2O)_8] \cdot 8\text{H}_2\text{O}\)\(\infty\). Their three-dimensional crystal structures can be described on the basis of helicoidal molecular chains linked by $p$-pda$^{2-}$ ligands.

The luminescent and porosity properties of these compounds are interesting, which suggests that the physical properties of compounds isostructural to \([\text{La}_2(p$-$pda)$_3(H_2O)_8] \cdot 8\text{H}_2\text{O}\)\(\infty\) and involving other lanthanide ions (lanthanum is a diamagnetic non-luminescent ion) would be worth studying. Unfortunately, despite great synthetic efforts, no such compound has been obtained to date.

The compound reported here was obtained by crystallization in a gel (see next section; Luo et al., 2013), and as such is the first result from our group related to lanthanide-based coordination polymers with 1,4-phenylenediacetate ligands.

3. Synthesis and crystallization

Lanthanum oxide (La$_2$O$_3$) was suspended in a small quantity of water. The suspension was then brought to about 323 K and concentrated hydrochloric acid was added dropwise under magnetic stirring, until a clear solution was obtained. The solution was then evaporated to dryness and the resulting solid was dissolved in absolute ethanol for removal of the residual hydrochloric acid. Crystallization of the salt was then obtained by adding diethyl ether (Et$_2$O). The obtained microcrystalline solid was filtered and dried in the open air. The product LaCl$_3$·7H$_2$O was obtained in close to 100% yield.

1,4-Phenylenediacetic acid, H$_2$(p-pda), was purchased from Sigma–Aldrich and used without further purification. Its disodium salt was prepared by addition of two equivalents of sodium hydroxide to a suspension of the acid in de-ionized water. The obtained clear solution was evaporated to dryness and then refluxed in ethanol for one h. Addition of diethyl ether provoked precipitation of Na$_2$-p-pda in 90% yield. UV–vis absorption spectrum of a 4.3 × 10$^{-4}$ mol L$^{-1}$ aqueous solution of the disodium salt of H$_2$(p-pda) was measured with a Perkin–Elmer Lambda 650 spectrometer equipped with a 60 mm integrating sphere. It showed a maximum absorption at 225 nm. This short absorption wavelength, compared to other ligands in the literature (Badiane et al., 2017a,b; Freslon et al., 2016; Fan et al., 2015; Badiane et al., 2018), can be related to the –CH$_2$– groups that cut conjugation.

Single crystals of the coordination polymer were obtained by slow diffusion of dilute aqueous solutions of lanthanum chloride (0.25 mmol in 10 mL) and of the sodium salt of para-phenylenediacetate (0.25 mmol in 10 mL) through an agar-agar gel in a U-shaped tube. The gel was purchased from Acros Organics and jellified according to established procedures (Henisch, 1988; Daiguebonne et al., 2003). After several weeks, prismatic single crystals were obtained.

4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. Hydrogen atoms bound to the organic ligands were placed at idealized positions (C–H = 0.93–0.97 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C)$.
The water hydrogen atoms were localized and constrained. The thermal agitation of the two water molecules of crystallization was constrained. In order to stabilize the refinement several restraints (DANG, DFIX) were used for the hydrogen atoms bound to water oxygens.

Acknowledgements

The French Cooperation Agency in Senegal is acknowledged for financial support.

References

Badiane, A.-M., Freslon, S., Daiguebonne, C., Bernot, K., Calvez, G., Costuas, K., Camara, M. & Guillou, O. (2018). Inorg. Chem. 57, 3399–3410.
Badiane, I., Freslon, S., Suffren, Y., Daiguebonne, C., Calvez, G., Bernot, K., Camara, M. & Guillou, O. (2017a). Cryst. Growth Des. 17, 1224–1234.
Badiane, I., Freslon, S., Suffren, Y., Daiguebonne, C., Calvez, G., Bernot, K., Camara, M. & Guillou, O. (2017b). Inorg. Chim. Acta, 461, 136–144.
Binnemans, K. (2009). Chem. Rev. 109, 4283–4374.
Brandenburg, K. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Calvez, G., Bernot, K., Guillou, O., Daiguebonne, C., Caneschi, A. & Mahé, N. (2008). Inorg. Chim. Acta. 361, 3997–4003.
Chen, Z., Xiong, W., Zhang, Z. & Liang, F. (2010a). Z. Anorg. Allg. Chem. 636, 1392–1398.
Chen, Z., Xiong, W., Zhang, Z., Liang, F. & Luo, B. C. (2010b). Transition Met. Chem. 35, 991–997.
Chen, Z., Zhao, Q., Xiong, W., Zhang, Z. & Liang, F. (2010c). Z. Anorg. Allg. Chem. 636, 2691–2697.
Cui, Y., Yue, Y., Qian, G. & Chen, B. (2012). Chem. Rev. 112, 1126–1162.
Daiguebonne, C., Deluzet, A., Camara, M., Boubekre, K., Audebrand, N., Gérault, Y., Baux, C. & Guillou, O. (2003). Cryst. Growth Des. 3, 1015–1020.
Daiguebonne, C., Kerbellec, N., Guillou, O., Bünzli, J. C., Gumy, F., Catala, L., Mallah, T., Audebrand, N., Gérault, Y., Bernot, K. & Calvez, G. (2008). Inorg. Chem. 47, 3700–3708.
Eddaoudi, M., Kim, J., Rosi, N., Vodak, D., Wachter, J., O’Keeffe, M. & Yaghi, O. M. (2002). Science, 295, 469–472.
Fabelo, O., Cañadillas-Delgado, L., Pasán, J., Delgado, F. S., Lloret, F., Cano, J., Julve, M. & Ruiz-Pérez, C. (2009a). Inorg. Chem. 48, 11342–11351.
Fabelo, O., Pasán, J., Cañadillas-Delgado, L., Delgado, F. S., Lloret, F., Julve, M. & Ruiz-Pérez, C. (2009b). Inorg. Chem. 48, 6086–6095.
Fan, X., Freslon, S., Daiguebonne, C., Calvez, G., Le Pollès, L., Bernot, K. & Guillou, O. (2014). J. Mater. Chem. C. 2, 5510–5525.
Fan, X., Freslon, S., Daiguebonne, C., Pollès, L. L., Calvez, G., Bernot, K., Yi, X., Huang, G. & Guillou, O. (2015). Inorg. Chem. 54, 5534–5546.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
Freslon, S., Luo, Y., Calvez, G., Daiguebonne, C., Guillou, O., Bernot, K., Michel, V. & Fan, X. (2014). Inorg. Chem. 53, 1217–1228.
Freslon, S., Luo, Y., Daiguebonne, C., Calvez, G., Bernot, K. & Guillou, O. (2016). Inorg. Chem. 55, 794–802.
Hamon, L., Llewellyn, P. L., Devey, T., Ghoulé, A., Clet, G., Guillerme, V., Piringruber, G. D., Maurin, G., Serre, C., Driver, G., van Beek, W., Jolimaître, E., Vimont, A., Daturi, M. & Férey, G. (2009). J. Am. Chem. Soc. 131, 17490–17499.
Henisch, H. K. (1988). Crystals in Gels and Liesegang Rings; Cambridge University Press: Cambridge.
Huang, Y. G., Jiang, F. L., Yuan, D. Q., Wu, M. Y., Gao, Q., Wei, W. & Hong, M. C. (2009). J. Solid State Chem. 182, 215–222.
Kerbellec, N., Daiguebonne, C., Bernot, K., Guillou, O. & Le Guillou, X. (2008). J. Alloys Compd. 451, 377–383.
Kustaryono, D., Kerbellec, N., Calvez, G., Freslon, S., Daiguebonne, C. & Guillou, O. (2010). Cryst. Growth Des. 10, 775–781.
Lee, J., Farha, O. K., Roberts, J., Scheidt, K. A., Nguyen, S., inh, T. & Hupp, J. T. (2009). Chem. Soc. Rev. 38, 1450–1459.
Li, D. S., Zhang, M. L., Zhao, J., Wang, D. J., Zhang, P., Wang, N. & Wang, Y. Y. (2009). Inorg. Chem. Commun. 12, 1027–1030.
Luo, F., Batten, S. R., Che, Y. & Zheng, J. M. (2007). Chem. Eur. J. 13, 4948–4955.
Luo, Y., Bernot, K., Calvez, G., Freslon, S., Daiguebonne, C., O., Kerbellec, N. & Roisnel, T. (2013). CrystEngComm, 15, 1882–1896.
Luo, Y., Calvez, G., Freslon, S., Bernot, K., Daiguebonne, C. & Guillou, O. (2011a). Eur. J. Inorg. Chem. 3705–3716.
Luo, Y., Calvez, G., Freslon, S., Daiguebonne, C., Roisnel, T. & Guillou, O. (2011b). Inorg. Chim. Acta, 368, 170–178.
Otwinski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part a, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
Pan, L., Adams, K. M., Hernandez, H. E., Wang, X., Zheng, Ch., Hattori, Y. & Kaneko, K. (2003). J. Am. Chem. Soc. 125, 3062–3067.
Qiu, Y., Daiguebonne, C., Liu, J., Zeng, R., Kerbellec, N., Deng, H. & Guillou, O. (2007). Inorg. Chim. Acta. 360, 3265–3271.
Reineke, T. M., Eddaoudi, M., O’Keeffe, M. & Yaghi, O. M. (1999). Angew. Chem. Int. Ed. 38, 2590–2594.
Ren, Y.-W., Liang, J.-X., Lu, J.-X., Cai, B.-W., Shi, D.-B., Qi, C.-R., Jiang, H.-F., Chen, J. & Zheng, D. (2011). Eur. J. Inorg. Chem. pp. 4369–4376.
Rusinek, I., Sienkiewicz-Gromiuk, J., Mazur, L. & Rzączyńska, Z. (2013). J. Inorg. Organomet. Polym. 23, 1068–1077.
Sessoli, R. & Powell, A. K. (2009). Coord. Chem. Rev. 253, 2328–2341.
Sheidrick, G. M. (2015a). Acta Cryst. A71, 3–8.
Sheidrick, G. M. (2015b). Acta Cryst. C71, 3–8.
Singha, D.-K., Bhattacharya, S., Majee, P., Mondal, S.-K., Kumar, M. & Mahata, P. (2014). J. Mater. Chem. A, 2, 20908–20915.
Singha, D.-K., Majee, P., Mondal, S. K. & Mahata, P. (2015). Eur. J. Inorg. Chem. pp. 1390–1397.
Singh, W. M. & Baruah, J. B. (2009). Inorg. Chim. Acta, 362, 4268–4271.
Uebler, J. W. & LaDuca, R. L. (2012). Inorg. Chem. Commun. 19, 31–35.
Wang, L., Song, T., Li, C., Xia, J., Wang, S., Wang, L. & Xu, J. (2012). J. Solid State Chem. 190, 208–215.
Xin, L. Y., Liu, G. Z. & Wang, L. Y. (2011). J. Solid State Chem. 184, 1387–1392.
Synthesis and crystal structure of a new coordination polymer based on lanthanum and 1,4-phenylenediacetate ligands

Magatte Camara, Insa Badiane, Mamoudou Diallo, Carole Daiguebonne and Olivier Guillou

Computing details
Data collection: COLLECT (Bruker, 2004); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012).

Poly[[tetraaquatris(µ-1,4-phenylenediacetato)dilanthanum(III)] octahydrate]

Crystal data
[La₂(C₁₀H₈O₄)₃(H₂O)₄]·8H₂O

Computing details
Data collection: COLLECT (Bruker, 2004); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012).

Poly[[tetraaquatris(µ-1,4-phenylenediacetato)dilanthanum(III)] octahydrate]
(Δ/σ)_{max} = 0.001
Δρ_{max} = 1.76 e Å^{-3}

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²)

|    | x       | y       | z       | U_{iso}/U_{eq} |
|----|---------|---------|---------|----------------|
| La1| 0.75090(2) | 0.52031(2) | 0.47969(2) | 0.02048(7)  |
| O5 | 0.4472(3)  | 0.3677(2)  | 0.4069(2)  | 0.0332(6)   |
| O3 | 1.0575(3)  | 0.5881(3)  | 0.6253(2)  | 0.0323(6)   |
| O1 | 0.7627(3)  | 0.3041(3)  | 0.5311(2)  | 0.0336(6)   |
| O6 | 0.8146(3)  | 0.7579(3)  | 0.6435(3)  | 0.0362(6)   |
| O2 | 0.7422(3)  | 0.4674(3)  | 0.6736(2)  | 0.0351(6)   |
| O4 | 0.6840(3)  | 0.3616(3)  | 0.2490(2)  | 0.0415(7)   |
| O7 | 0.5690(4)  | 0.5882(4)  | 0.3233(3)  | 0.0486(8)   |
| H7A| 0.468(3)   | 0.558(4)   | 0.307(5)   | 0.058*       |
| H7B| 0.591(5)   | 0.651(4)   | 0.302(5)   | 0.058*       |
| O8 | 0.9316(4)  | 0.7051(3)  | 0.4326(4)  | 0.0503(8)   |
| H8A| 0.947(6)   | 0.785(3)   | 0.470(4)   | 0.060*       |
| H8B| 1.026(4)   | 0.712(4)   | 0.435(5)   | 0.060*       |
| C6 | 0.6834(4)  | 0.7426(3)  | 0.6621(3)  | 0.0260(7)   |
| C11| 0.8165(4)  | 0.3436(3)  | 0.2659(3)  | 0.0261(7)   |
| C1 | 0.7640(4)  | 0.3589(4)  | 0.6405(4)  | 0.0315(8)   |
| C13| 0.6579(5)  | 0.1147(4)  | 0.0739(4)  | 0.0340(9)   |
| C12| 0.8247(5)  | 0.2382(4)  | 0.1565(4)  | 0.0390(9)   |
| H12A| 0.857342 | 0.281262  | 0.102898  | 0.058*       |
| H12B| 0.910563 | 0.207990  | 0.192279  | 0.058*       |
| C14| 0.6017(5)  | 0.0190(4)  | 0.1196(4)  | 0.0427(10)  |
| H14| 0.669560  | 0.030195  | 0.201149  | 0.051*       |
| C8 | 0.8472(5)  | 0.9325(4)  | 0.8881(4)  | 0.0340(9)   |
| C10| 0.9564(5)  | 1.0646(4)  | 0.9217(4)  | 0.0433(10)  |
| H10| 0.928413  | 1.109955  | 0.869797  | 0.052*       |
| C15| 0.5547(5)  | 0.0946(4)  | −0.0469(4) | 0.0412(10)  |
| H15| 0.589046  | 0.157191  | −0.080797 | 0.049*       |
| C7 | 0.6832(5)  | 0.8578(4)  | 0.7675(4)  | 0.0445(11)  |
| H7C| 0.660724  | 0.923722  | 0.734480  | 0.067*       |
| H7D| 0.592152  | 0.819798  | 0.789973  | 0.067*       |
| C9 | 0.8927(6)  | 0.8687(4)  | 0.9685(4)  | 0.0461(11)  |
| H9 | 0.820475  | 0.779508  | 0.948162  | 0.055*       |
| C3 | 0.8997(5)  | 0.3972(4)  | 0.8732(4)  | 0.0392(9)   |
| C4 | 1.0738(6)  | 0.4427(5)  | 0.9267(4)  | 0.0514(11)  |
| H4 | 1.125405  | 0.405378  | 0.878263  | 0.062*       |
| C5 | 0.8281(6)  | 0.4561(5)  | 0.9477(4)  | 0.0501(11)  |
| H5 | 0.711419  | 0.427472  | 0.913133  | 0.060*       |
### Table of Atomic Displacement Parameters (Å²)

|  | $U^{11}$  | $U^{22}$  | $U^{33}$  | $U^{12}$  | $U^{13}$  | $U^{23}$  |
|---|-----------|-----------|-----------|-----------|-----------|-----------|
| La1 | 0.01729 (10) | 0.02001 (10) | 0.01850 (10) | 0.00633 (7) | 0.00482 (7) | 0.00498 (7) |
| O5 | 0.0242 (13) | 0.0258 (13) | 0.0312 (13) | 0.0032 (10) | 0.0034 (11) | 0.0040 (11) |
| O3 | 0.0227 (13) | 0.0340 (14) | 0.0229 (12) | 0.0074 (11) | 0.0027 (10) | 0.0011 (11) |
| O1 | 0.0352 (14) | 0.0353 (14) | 0.0339 (14) | 0.0161 (12) | 0.0168 (12) | 0.0155 (12) |
| O6 | 0.0247 (13) | 0.0283 (13) | 0.0415 (15) | 0.0089 (10) | 0.0129 (12) | −0.0005 (11) |
| O2 | 0.0403 (15) | 0.0427 (15) | 0.0332 (14) | 0.0254 (13) | 0.0173 (12) | 0.0200 (12) |
| O4 | 0.0267 (14) | 0.0515 (17) | 0.0253 (13) | 0.0175 (12) | 0.0040 (11) | −0.0052 (12) |
| O7 | 0.0425 (17) | 0.075 (2) | 0.067 (2) | 0.0390 (17) | 0.0345 (17) | 0.0532 (18) |
| O8 | 0.0456 (18) | 0.0523 (18) | 0.088 (2) | 0.0315 (16) | 0.0434 (18) | 0.0469 (19) |
| C6 | 0.0228 (17) | 0.0219 (17) | 0.0260 (17) | 0.0100 (14) | 0.0051 (14) | 0.0052 (14) |
| C11 | 0.0187 (16) | 0.0250 (17) | 0.0236 (16) | 0.0060 (13) | 0.0062 (14) | 0.0018 (14) |
| C1 | 0.0184 (17) | 0.041 (2) | 0.0332 (19) | 0.0099 (15) | 0.0083 (15) | 0.0177 (17) |
| C13 | 0.0261 (19) | 0.030 (2) | 0.0297 (19) | 0.0117 (16) | 0.0070 (16) | −0.0041 (16) |
| C12 | 0.0233 (18) | 0.040 (2) | 0.0318 (19) | 0.0098 (16) | 0.0074 (16) | −0.0057 (17) |
| C14 | 0.039 (2) | 0.044 (2) | 0.028 (2) | 0.0198 (19) | 0.0002 (18) | 0.0047 (18) |
| C8 | 0.031 (2) | 0.0293 (19) | 0.0290 (19) | 0.0102 (16) | 0.0138 (16) | −0.0032 (16) |
| C10 | 0.042 (2) | 0.033 (2) | 0.037 (2) | 0.0058 (18) | 0.0114 (19) | 0.0059 (18) |
| C15 | 0.043 (2) | 0.037 (2) | 0.031 (2) | 0.0133 (19) | 0.0076 (18) | 0.0078 (17) |
| C7 | 0.026 (2) | 0.040 (2) | 0.043 (2) | 0.0127 (17) | 0.0102 (18) | −0.0078 (19) |
| C9 | 0.042 (2) | 0.0225 (19) | 0.048 (2) | −0.0033 (17) | 0.016 (2) | 0.0006 (18) |
| C3 | 0.043 (2) | 0.044 (2) | 0.035 (2) | 0.0206 (19) | 0.0123 (18) | 0.0260 (18) |
| C4 | 0.051 (3) | 0.073 (3) | 0.041 (2) | 0.037 (2) | 0.022 (2) | 0.023 (2) |
| C5 | 0.032 (2) | 0.077 (3) | 0.042 (2) | 0.024 (2) | 0.0112 (19) | 0.027 (2) |
| C2 | 0.055 (3) | 0.040 (2) | 0.039 (2) | 0.017 (2) | 0.012 (2) | 0.0233 (19) |
| OW1 | 0.192 (4) | 0.069 (2) | 0.109 (3) | 0.009 (3) | 0.079 (3) | 0.028 (2) |
| OW2 | 0.063 (3) | 0.086 (3) | 0.074 (3) | 0.032 (2) | 0.020 (2) | 0.043 (2) |
| OW3 | 0.192 (4) | 0.069 (2) | 0.109 (3) | 0.009 (3) | 0.079 (3) | 0.028 (2) |
| OW4 | 0.158 (6) | 0.115 (4) | 0.103 (4) | −0.017 (4) | −0.019 (4) | 0.084 (4) |
### Geometric parameters (Å, °)

| Bond/Angle | Distance/Angle |
|------------|---------------|
| La1—O5     | 2.507 (2)     |
| La1—O5i    | 2.905 (3)     |
| La1—O3ii   | 2.781 (2)     |
| La1—O3     | 2.545 (2)     |
| La1—O1     | 2.673 (2)     |
| La1—O6     | 2.559 (2)     |
| La1—O2     | 2.569 (2)     |
| La1—O4     | 2.566 (2)     |
| La1—O7     | 2.543 (3)     |
| La1—O8     | 2.562 (3)     |
| La1—C11    | 3.066 (3)     |
| La1—C1     | 2.988 (4)     |
| O5—C6      | 1.255 (4)     |
| O3—C11     | 1.264 (4)     |
| O1—C1      | 1.264 (4)     |
| O6—C6      | 1.256 (4)     |
| O2—C1      | 1.248 (4)     |
| O4—C11     | 1.246 (4)     |
| O7—H7A     | 0.824 (19)    |
| O7—H7B     | 0.806 (18)    |
| O8—H8A     | 0.815 (19)    |
| O8—H8B     | 0.833 (19)    |
| C6—C7      | 1.512 (5)     |
| C11—C12    | 1.516 (5)     |
| C1—C2      | 1.514 (5)     |
| C13—C12    | 1.507 (5)     |
| C13—C14    | 1.376 (6)     |
| C13—C15    | 1.371 (5)     |
| C12—H12A   | 0.9700        |
| O5—La1—O5i| 61.48 (9)     |
| O5—La1—O3  | 146.45 (9)    |
| O5—La1—O3ii| 118.58 (7)    |
| O5—La1—O1  | 75.87 (8)     |
| O5—La1—O6  | 107.86 (8)    |
| O5—La1—O2  | 75.29 (8)     |
| O5—La1—O4  | 80.33 (8)     |
| O5—La1—O7  | 71.93 (9)     |
| O5—La1—O8  | 140.13 (9)    |
| O5—La1—C11 | 156.28 (8)    |
| O5—La1—C11 | 98.45 (8)     |
| O5—La1—C1  | 75.84 (9)     |
| O5—La1—C1  | 88.69 (9)     |
| O5—La1—C1  | 88.69 (9)     |
| O3—La1—O5i| 118.22 (7)    |
| O3—La1—O5i| 179.00 (7)    |
| O3—La1—O3ii| 61.11 (8)     |

*Acta Cryst. (2019). E75, 378-382*
| Bond | Distance (Å) | Bond | Distance (Å) |
|------|-------------|------|-------------|
| O3—La1—O1 | 73.20 (8) | O4—C11—O3a | 119.9 (3) |
| O3—La1—O6 | 80.93 (8) | O4—C11—C12 | 119.8 (3) |
| O3—La1—O2 | 74.87 (8) | C12—C11—La1 | 171.2 (2) |
| O3—La1—O4 | 108.82 (8) | O1—C1—La1 | 63.39 (19) |
| O3—La1—O8 | 73.39 (9) | O1—C1—C2 | 119.8 (3) |
| O3—La1—C11 | 24.36 (8) | O2—C1—La1 | 58.58 (18) |
| O3—La1—C1 | 85.47 (8) | O2—C1—O1 | 121.5 (3) |
| O3—La1—C1 | 70.64 (9) | O2—C1—C2 | 118.7 (3) |
| O3a—La1—C1 | 90.37 (9) | C2—C1—La1 | 172.4 (3) |
| O1—La1—O5i | 109.68 (7) | C14—C13—C12 | 120.5 (4) |
| O1—La1—O3ii | 69.49 (8) | C15—C13—C12 | 122.1 (4) |
| O1—La1—C11 | 74.29 (9) | C15—C13—C14 | 117.4 (4) |
| O1—La1—C1 | 25.01 (9) | C11—C12—H12A | 109.2 |
| O1—La1—O5i | 46.41 (7) | C11—C12—H12B | 109.2 |
| O6—La1—O3ii | 133.56 (8) | C13—C12—C11 | 112.0 (3) |
| O6—La1—O1 | 126.21 (9) | C13—C12—H12A | 109.2 |
| O6—La1—O2 | 78.86 (9) | C13—C12—H12B | 109.2 |
| O6—La1—O4 | 149.49 (10) | H12A—C12—H12B | 107.9 |
| O6—La1—O8 | 71.55 (10) | C13—C14—H14 | 119.1 |
| O6—La1—C11 | 149.62 (9) | C13—C14—C15ii | 121.8 (4) |
| O6—La1—C1 | 101.90 (10) | C15ii—C14—H14 | 119.1 |
| O2—La1—O5i | 66.57 (8) | C10—C8—C7 | 121.6 (4) |
| O2—La1—O3ii | 112.44 (8) | C10—C8—C9 | 117.8 (4) |
| O2—La1—O1 | 49.39 (8) | C9—C8—C7 | 120.6 (4) |
| O2—La1—C11 | 123.42 (9) | C8—C10—H10 | 119.5 |
| O2—La1—C1 | 24.50 (9) | C8—C10—C9v | 121.1 (4) |
| O4—La1—O5i | 132.95 (7) | C9v—C10—H10 | 119.5 |
| O4—La1—O3ii | 47.75 (7) | C13—C15—C14ii | 120.7 (4) |
| O4—La1—O1 | 84.13 (9) | C13—C15—H15 | 119.6 |
| O4—La1—O2 | 131.27 (9) | C14ii—C15—H15 | 119.6 |
| O4—La1—C11 | 23.49 (8) | C6—C7—H7C | 108.9 |
| O4—La1—C1 | 108.61 (10) | C6—C7—H7D | 108.9 |
| O7—La1—O5i | 70.81 (9) | C8—C7—C6 | 113.4 (3) |
| O7—La1—O3 | 141.53 (10) | C8—C7—H7C | 108.9 |
| O7—La1—O3ii | 110.19 (9) | C8—C7—H7D | 108.9 |
| O7—La1—O1 | 142.43 (10) | H7C—C7—H7D | 107.7 |
| O7—La1—O6 | 82.59 (10) | C8—C9—H9 | 119.4 |
| O7—La1—O2 | 134.87 (9) | C10v—C9—C8 | 121.1 (4) |
| O7—La1—O4 | 71.95 (10) | C10v—C9—H9 | 119.4 |
| O7—La1—O8 | 68.46 (10) | C4—C3—C2 | 120.7 (4) |
| O7—La1—C11 | 91.69 (10) | C5—C3—C4 | 118.0 (4) |
| O7—La1—C1 | 147.21 (10) | C5—C3—C2 | 121.2 (4) |
| O8—La1—O5i | 108.04 (8) | C3—C4—H4 | 119.8 |
| O8—La1—O3ii | 72.59 (9) | C3—C4—C5v | 120.4 (4) |
| O8—La1—O1 | 138.11 (8) | C5v—C4—H4 | 119.8 |
| O8—La1—O2 | 139.28 (10) | C3—C5—C4v | 121.6 (4) |
| O8—La1—O4 | 83.41 (11) | C3—C5—H5 | 119.2 |
| O8—La1—C11 | 78.57 (10) | C4v—C5—H5 | 119.2 |
| Bond               | Distance (Å) | Angle (°) |
|--------------------|--------------|-----------|
| O8—La1—C1         | 144.03 (10)  | C1—C2—H2A| 109.0 |
| C1—La1—C11        | 98.95 (10)   | C1—C2—H2B| 109.0 |
| La1—O5—La1i       | 118.52 (9)   | C3—C2—C1 | 112.8 (3) |
| C6i—O5—La1i       | 88.1 (2)     | C3—C2—H2A| 109.0 |
| C6i—O5—La1        | 153.4 (2)    | C3—C2—H2B| 109.0 |
| La1—O3—La1ii      | 118.89 (8)   | H2A—C2—H2B| 107.8 |
| C11ii—O3—La1ii    | 150.5 (2)    | HW1A—OW1—HW1B| 88 (7) |
| C11ii—O3—La1      | 90.56 (19)   | HW2A—OW2—HW2B| 121 (5) |
| C1—O1—La1         | 91.6 (2)     | HW3A—OW3—HW3B| 108 (4) |
| C6—O6—La1         | 104.8 (2)    | HW4A—OW4—HW4B| 107 (4) |
| C1—O2—La1         | 96.9 (2)     |            |        |

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+2, −y+1, −z+2; (iii) −x+1, −y, −z; (iv) −x+2, −y+2, −z+2; (v) −x+2, −y+1, −z+2.

**Hydrogen-bond geometry (Å, °)**

| D—H···A              | D—H | H···A | D···A  | D—H···A   |
|----------------------|-----|------|-------|-----------|
| OW1—HW1A···OW1vi     | 0.87 (9) | 2.40 (11) | 3.067 (13) | 133 (9)   |
| OW1—HW1B···OW4vi    | 0.89 (9) | 2.54 (10) | 3.298 (11) | 145 (7)   |
| OW2—HW2A···O4i      | 0.82 (6) | 2.10 (6) | 2.895 (5) | 164 (6)   |
| OW2—HW2B···OW4viii  | 0.82 (6) | 2.20 (5) | 2.855 (8) | 137 (5)   |
| OW3—HW3A···O6i      | 0.82 (8) | 2.02 (8) | 2.780 (8) | 154 (7)   |
| OW3—HW3B···OW1vi    | 0.81 (7) | 2.40 (8) | 3.162 (11) | 156 (8)   |
| OW4—HW4A···OW2vi    | 0.81 (10) | 2.49 (9) | 2.855 (8) | 109 (9)   |
| O7—H7A···O2i        | 0.82 (4) | 1.95 (4) | 2.741 (5) | 161 (5)   |
| O7—H7B···OW4        | 0.81 (5) | 2.03 (5) | 2.800 (9) | 160 (5)   |
| OW4—HW4B···OW3x     | 0.84 (9) | 2.11 (10) | 2.824 (11) | 143 (8)   |
| O8—H8A···OF3i       | 0.82 (4) | 2.38 (4) | 3.175 (8) | 165 (4)   |
| O8—H8B···O1ii       | 0.83 (4) | 1.92 (4) | 2.725 (5) | 163 (5)   |
| C7—H7D···O4i        | 0.97  | 2.54  | 3.442 (6) | 154       |
| C12—H12B···O6ii     | 0.97  | 2.51  | 3.406 (6) | 154       |

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+2, −y+1, −z+2; (iii) −x+1, −y, −z; (iv) −x+2, −y+2, −z+2; (v) −x+2, −y+1, −z+2; (vi) −x+1, −y+1, −z+2; (vii) x, y, z+1; (viii) x, y, z+1; (ix) x, y, z+1; (x) x+1, y+1, z.