The four horsemen of a viral Apocalypse: The pathogenesis of SARS-CoV-2 infection (COVID-19)

Pere Domingoa,*a, Isabel Mura, Virginia Pomara, Héctor Corominasb, Jordi Casademontc, Natividad de Benitoa

aInfectious Diseases Unit, Hospital de la Santa Creu i Sant Pau, Institut de Recerca del Hospital de la Santa Creu i Sant Pau, Av. Sant Antoni M\textregistered Claret, 167, 08025 Barcelona, Spain
bDepartments of Rheumatology, Hospital de la Santa Creu i Sant Pau, Institut de Recerca del Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
cInternal Medicine, Hospital de la Santa Creu i Sant Pau, Institut de Recerca del Hospital de la Santa Creu i Sant Pau, Barcelona, Spain

SUMMARY

The pathogenesis of coronavirus disease 2019 (COVID-19) may be envisaged as the dynamic interaction between four vicious feedback loops chained or happening at once. These are the viral loop, the hyperinflammatory loop, the non-canonical renin-angiotensin system (RAS) axis loop, and the hypercoagulation loop. Severe acute respiratory syndrome (SARS)-coronavirus (CoV)-2 lights the wick by infecting alveolar epithelial cells (AECs) and downregulating the angiotensin converting enzyme-2 (ACE2)/angiotensin (Ang-1–7)/Mas1R axis. The viral feedback loop includes evading the host’s innate response, uncontrolled viral replication, and turning on a hyperactive adaptive immune response. The inflammatory loop is composed of the exuberant inflammatory response feeding back until exploding in an actual cytokine storm. Downregulation of the ACE2/Ang-(1–7)/Mas1R axis leaves the lung without a critical defense mechanism and turns the scale to the inflammatory side of the RAS. The coagulation loop is a hypercoagulable state caused by the interplay between inflammation and coagulation in an endless feedback loop. The result is a hyperinflammatory and hypercoagulable state producing acute immune-mediated lung injury and eventually, adult respiratory distress syndrome.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license. (http://creativecommons.org/licenses/by-nc-nd/4.0/)

“Effects vary with the conditions which bring them to pass, but laws do not vary. Physiological and pathological states are ruled by the same forces; they differ only because of the special conditions under which the vital laws manifest themselves”

Claude Bernard
(1813–1878)

1. Introduction

In December 2019, a new epidemic disease appeared in the Huanan Seafood Wholesale Market, Wuhan, Hubei Province, China. It was characterized by an upper respiratory tract infection rapidly evolving to bilateral pneumonia and eventually respiratory failure [1]. The etiologic agent was a new coronavirus which was named SARS-CoV-2, whereas the disease was called COVID-19 [2]. The disease quickly expanded from its original nucleus in Hubei and by March 11, 2020 the WHO declared it as a pandemic. As of June 23, 2020, COVID-19 has affected 188 countries around the world, with 9,131,445 confirmed cases worldwide and a death toll of 472,856 [3].

Early in the course of the pandemic, clinicians and researchers realized that full-blown COVID-19 evolved in at least three phases: the first phase with cough, fever, wheezing, fatigue, headache, diarrhea, and dyspnea, reminiscent of an upper tract respiratory infection. The second phase, with the rapid appearance of bilateral pneumonia, infiltrates with variable degrees of hypoxemia, and Omit in the third phase in which some patients developed respiratory failure leading to death [4]. Around 80% of people have SARS-CoV-2 infection asymptomatic or with mild to moderate illness, mostly restricted to the upper and conducting Airways. The other 20% will develop symptomatic infection needing hospital admission, and 5% will require ventilatory support in the Intensive Care Unit (ICU) [5]. The clinical phases of the infection reflect the pathogenic events starting with the virus gaining access to the lungs. The clinical manifestations and pathogenic events of any infectious disease, and COVID-19 in particular, should be viewed in the light of the damage-response framework in which several factors and forces may tip the scales to the host or pathogen side [6]. Therefore, sometimes the
The survival of SARS-CoV in host cells is eased by strategies to evade the immune response. The evolutionarily conserved microbial pathogen could be a mere initiator more than an actual perpetrator and it is the host’s forces unchained by the pathogen’s presence those which are to cause tissue and organ damage.

Herein, we will review the current knowledge about COVID-19 pathogenesis, and how SARS-CoV-2 infection and the host response depict the different scenarios of COVID-19. We foresee four interplaying vicious loops, namely a viral loop, a defective non-canonical RAS loop, an inflammatory loop, and a coagulation loop (Fig. 1).

With β-coronaviruses sharing most of their genome and structure, it seems quite logical that they can also share mechanisms of pathogenicity and that the host responses to these shared elements will be somewhat comparable. Therefore, in some aspects of the present review, we refer to other zoonotic coronaviruses to explain pathogenic events that can take place in COVID-19.

2. The first horseman: a sneaky virus

SARS-CoV-2 is a previously unknown β-coronavirus which shows 88% identity to the sequences of two bat-derived SARS-like coronaviruses, 79.5% identity to SARS-CoV, and about 50% identity to Middle East Respiratory Syndrome (MERS)-CoV [2]. The genome of SARS-CoV-2 is a positive-sense, single-stranded RNA with a size of 29.9 kb, containing at least ten open reading frames (ORFs) [7]. Recently, non-canonical ORFs and at least 41 RNA modifications with an unknown function, were identified [7]. The first ORFs represent two-thirds of the viral RNA. They are translated into two large polyproteins, which are later processed into 16 non-structural proteins (nsps1 to nsps16) that form the viral complex replicase-transcriptase [7]. These nsps rearrange endoplasmic reticulum into double-membrane vesicles, where viral replication and transcription take place [8,9]. The other third of the genome encodes four main structural proteins; spike (S), envelope (E), nucleocapsid (N), and membrane (M) proteins, and several accessory proteins whose functions are currently unknown but unrelated to viral replication [10].

SARS-CoV-2, like SARS-CoV, requires the ACE2 as a receptor to enter the cells [11,12]. Coronavirus S protein is a determinant of virus infectivity [11]. After the virus entry, the RNA genome is released into the cytoplasm and translated into two polyproteins and structural proteins [7].

The survival of SARS-CoV in host cells is eased by strategies to evade the immune response. The evolutionarily conserved microbial structures called pathogen-associated molecular patterns (PAMPs) are recognized by pattern recognition receptors (PRRs) such as toll-like receptor (TLRs), retinoic acid-inducible gene-1 (RIG-1)-like receptors, nucleotide-binding oligomerization domain (NOD)-like receptors, and C-type lectin-like receptors [17]. SARS-CoV induces the
production of double-membrane vesicles that lack PRRs and can then replicate in these vesicles [18]. Furthermore, several structural and nsps encoded by SARS-CoV and MERS-CoV antagonize antiviral innate immune response. Interferon (IFN) and interferon-stimulated genes (ISGs) responses are counteracted by nsp1, nsp3 macrodomain, nsps-deubiquitinase, and ORF3b, ORF6, and ORF9, thus overthrowing antiviral response [19-24]. nsp1 inhibits IFN responses by three mechanisms, inactivation of host translational machinery, degradation of host mRNAs, and inhibiting signal transducer and activator of transcription 1 (STAT1) phosphorylation [25,26]. Part of the nsp3 is a papain-like protease that antagonizes IFN and cytokine production by blocking phosphorylation of IFN regulation factor 3 (IRF3) and disrupting NF-KB signaling [24]. Nsp7 and nsp15 are also IFN antagonists by an unknown mechanism [24]. ORF3b exerts IFN antagonism through inhibition of IFNβ induction by transcription factors IRF3 and NF-KB, whereas ORF6 antagonizes IFN by inhibiting signaling through the JAK-STAT pathway [24]. M and N proteins flatten IFN signaling by inhibiting TANK-binding kinase 1 (TBK1)/IKK kinase ε (IKKE), and the negative regulation of TRAF3/6-TBK1-IRF3/NF-KB/ AP1 signals [25,26].

Fig. 1. The four hurtful feedback loops in the pathophysiology of COVID-19.

Schema representing the most remarkable pathophysiological events involved in each of the four vicious feedback loops and the complex interactions established between them. Intersections between circles represent interaction between loops. The central circle colored in red means the final events of the physiopathologic cascade. The vicious viral loop is depicted in green, the hyperinflammatory loop is colored in orange, the ACE2/Ang-(1–7) loop is colored in yellow, and the hypercoagulation loop is colored in purple.

IFN = interferon; PAMPs = Pathogen-associated molecular patterns; DAMPs = Damage-associated molecular patterns; SARS-CoV-2 = Severe acute respiratory syndrome Coronavirus 2; AECs = Alveolar epithelial cells; ECs = Endothelial cells; ACE2 = Angiotensin-converting enzyme 2; Ang-(1–7) = Angiotensin 1–7; ACE = Angiotensin-converting enzyme; Ang II = Angiotensin II; NO = Nitric oxide; PG12 = Prostacyclin; MΦ = Macrophages; PMNs = Polymorphonuclear neutrophils; DAD = Diffuse alveolar damage; ALI = Acute lung injury; ARDS = Adult respiratory distress syndrome; EOD = End-organ disease.
Antagonism of IFN responses further promotes free virus replication resulting in increased viral PAMPs and DAMPs that additionally dampen IFN signaling and stimulate PRRs to induce an aberrant inflammatory response. The replicative capacity of SARS-CoV-2 is 3.20 folds more than that of SARS CoV in infected human lung tissue without significantly inducing types I, II, and III IFNs [27]. Since innate immunity is the frontline defense against SARS-CoV-2, a slow and poorly coordinated response may result in higher viral replication. This sequence of events, namely AECs infection, IFN signaling inhibition, and free viral replication depicts the viral vicious loop (Fig. 1).

3. The second horseman: a gathering storm

SARS-CoV-2 infects primarily airway and alveolar AECs, especially type II pneumocytes, the cells that produce alveolar surfactant and are predecessors of type I pneumocytes. However, it can infect any cell expressing the receptor ACE2, such as endothelial cells, pericytes, vascular smooth muscle cells, macrophages, fibroblasts, T-cells, cardiomycocytes, enterocytes, basal cell epidermal cells, and epithelial tubular distal cells [28-30]. SARS-CoV-2, in the face of unchecked replication because of dampened innate immunity, can replicate in high titres early after the infection [28,31,32].

High viral replication in AECs induces cytopathic effects, as shown by the necropsy findings of multinucleated cells (syncytia), cytoplasmic viral inclusions, and apoptosis, an ultimate cellular response to stop virus replication [33,34]. These events are followed by the production of increased levels of proinflammatory cytokines and chemokines by AECs [35,36]. Moreover, SARS-CoV nucleocapsid activates interleukin-6 (IL-6) expression in lung epithelial cells via cellular transportation of nuclear factor kappa B (NF-KB) [37]. Massive infiltration of inflammatory cells into the lungs is, in turn, mounted by these cytokines and chemokines [32] (Fig. 2). Although tissue-resident macrophages of the lungs localize to the airspace within alveoli, they do not seem to be the predominant subset in this response [38]. Accumulation of inflammatory monocyte-macrophages and neutrophils in the lungs following SARS-CoV-2 infection promotes the additional release of cytokines and chemokines [32] (Fig. 2). Besides, the SARS-CoV spike promotes the upregulation of IL-6 and tumor necrosis alpha (TNF-α) in macrophages [39].

Cytokines spill over from local inflammation to the systemic circulation. COVID-19 patients have high serum levels of inflammatory cytokines, including interleukin (IL)-2, IL-7, IL-10, granulocyte-colony stimulating factor (G-CSF), interferon gamma-induced protein (IP)-10, monocyte chemoattractant protein (MCP)-1, macrophage inhibitory protein 1A (MIP-1A), interleukin-6 (IL-6), interleukin-1 beta (IL-1β), monocyte chemoattractant protein 1 (MCP-1), and nuclear factor kappa B (NF-KB).

Fig. 2. Physiopathology of acute lung injury in SARS-CoV-2 infection (COVID-19).

SARS-CoV-2 infects primarily type II pneumocytes through binding to the ACE2 receptor. The infected and surrounding pneumocytes secrete cytokine and chemokines, which attract monocyte-macrophages and neutrophils to the alveolar space, which secrete additional cytokines and chemokines. Ultimately, the pneumocytes suffer apoptosis/pyroptosis releasing large amounts of proinflammatory factors. Endothelial cells are infected, overexpress adhesion molecules, and release chemokines and cytokines. Endothelial cells undergo apoptosis, which, together with alveolar cell apoptosis, increases vascular leakage and breaks the alveolar-capillary barrier. The hyperinflammatory milieu and endothelial dysfunction activate coagulation cascades through tissue factor expression, platelet activation, and NETosis all of them promoting microcirculatory thrombi formation. The break of endothelial-alveolar barrier further promotes vascular leakage resulting in interstitial and alveolar space flooding. Downregulation of the ACE2/Ang-(1-7)/Mas1R axis contributes to increasing vasoconstriction, inflammatory signals, endothelial dysfunction, vascular leakage, and prothrombotic state.
inflammatory protein (MIP)-1α, and TNF-α. These cytokine/chemokine levels correlate with disease severity [40,41]. COVID-19 patients with severe disease have increased levels of IL-6 more often than those with the mild or moderate disease [42]. Although viremia is not a prominent feature in COVID-19 and is usually short-lived, the degree and duration of SARS-CoV-2 viremia relates to the severity of disease and the serum levels of IL-6 [43].

Endothelial cells (ECs) are infected very early in the course of infection. Because of speedy viral replication and exuberant proinflammatory cytokine/chemokine response they may suffer apoptosis [32,33]. This apoptotic phenomenon takes place via Fas/FasL or TRAIL-DR-5-dependent mechanisms [44]. Besides, inflammatory monocyte-macrophages release TNF-α which also promotes apoptosis of both lung ECs and AECs [35]. ECs and AECs apoptosis compromise lung microvascular bed and alveolar capillary barrier integrity, thereby resulting in vascular leakage and alveolar edema [35] (Fig. 2). Pericytes play an essential role in maintaining endothelial cell function in capillary vessels and are among the cells with the highest ACE2 expression. Their infection by SARS-CoV-2 may add to endothelial cell dysfunction leading to microcirculation disorders [29].

A striking feature of full-blown COVID-19 is severe lung parenchymia. CoV-specific T-cells are decisive for viral clearance and limitation of additional damage to host tissues since they can dampen hyperreactive innate immune response [45,46]. However, when exuberant inflammatory response induced by SARS-CoV-2 takes place, T-cell response is decreased because of TNF-α-mediated cell apoptosis, thus resulting in uncontrolled inflammatory responses [35] (Fig. 1). Besides, normal T-cell activation can be suppressed by IL-6, further contributing to lymphopenia [47]. In severe COVID-19 patients with lymphocyte subsets examined, there is intense CD4 and particularly CD8 lymphopenia [42], both negatively correlating with TNF-α and IL-6 serum levels [41]. CD4 cells promote the production of virus-specific antibodies by activating T-dependent B cells, whereas CD8 cells are cytotoxic and can kill virus-infected cells. Since CD8 cells account for about 80% of the total inflammatory lung interstitial infiltrate, highly cytotoxic CD8 lymphocytes can arbitrate immune-mediated tissue damage [34]. Also, in COVID-19 patients, these cells exhibit markers of functionally exhausted T-cells such as programmed cell death protein 141.

There is upregulation of apoptosis, autophagy, and p53 pathways in PBMC of COVID-19 patients [48]. MERS-CoV can induce T-cell apoptosis through activation of the intrinsic and extrinsic apoptosis pathways [49], and SARS-CoV E protein can also promote T-cell apoptosis mediated by Cbl-XL binding [50]. Although SARS-CoV-2 can non-productively infect T lymphocytes, whether this infection induces T-cell apoptosis is not yet clear [51]. Alternatively, pyroptosis has been suggested as a cause of lymphopenia since COVID-19 patients have increased serum IL1-β levels, which is the downstream indicator of cell pyroptosis [52]. In SARS-CoV infection, viroporin 3a triggers the activation of NOD-like receptor protein 3 (NLRP3) inflammasome and the secretion of IL-1-β by macrophages [53]. Pyroptosis can release large amounts of proinflammatory factors [54]. Whatever the cause, during the late stages of infection, depletion of T-cells may promote viral survival and, consequently, may prolong the infection.

Essential to control the persistent phase of SARS-CoV-2 infection is the appearance of humoral immunity, in which antiviral neutralizing antibodies play a significant role. However, in animal models, anti-S protein-neutralizing antibodies (anti-S-IgG) may cause severe lung injury by altering inflammatory responses [55]. In SARS-CoV infection, the development of acute respiratory disease coincides with antiviral IgG seroconversion in 80% of patients [56] and patients who died developed anti-S-neutralizing antibodies faster [57]. The presence of anti-S-IgG promotes proinflammatory monocyte-macrophage lung accumulation and the production of MCP-1 and IL-8. Such proinflammatory cytokine release would be mediated through the binding of the virus-anti-S-IgG complex to the monocytes-macrophages FcyRIIA receptor since its blockade reduces the production of IFN-γ, TNF-α, IL-1, and IL-6 [55]. It would also be possible that such complexes activate the classical pathway of the complement system or induce antibody-dependent cell-mediated cytotoxicity, thus leading to cellular damage. Therefore, a possible underlying mechanism would be antibody-dependent enhancement (ADE) of viral infection that occurs in some patients with early, sub-optimal antibody activity that cannot completely clear the virus, leading to persistent viral replication and inflammation [58].

Uncontrolled viral replication, because of a delayed innate immunity response, will cause cellular damage leading to an overexuberant and dysregulated immune kickback. This hyper reaction affecting the innate and adaptive immune responses will pave the way for immune-mediated damage of tissues and organs. This sequence of events conforms the inflammatory hurtful feedback loop (Fig. 1).

4. The third horsemann: a helpless lung

The RAS plays a critical role in the control of cardiovascular and renal functions by maintaining blood pressure homeostasis and hydro-electrolyte balance [59]. Initially, the RAS was conceived as a linear hormonal system in which angiotensinogen synthesized in the liver is converted into the active peptide angiotensin I (Ang I) through the action of renin [60]. Afterward, Ang I is cleaved by the ACE generating Ang II [61]. Two G protein-coupled receptors (GPCR) mediate the actions of Ang II, angiotensin II receptor type 1 (AT1R), and type 2 (AT2R) [62]. The primary role of this canonical or classical RAS pathway (ACE/Ang II/AT1R) is to increase the sympathetic nervous system tension, to cause vasoconstriction, increase blood pressure, and promote inflammation, fibrosis and myocardial hypertrophy [63].

The RAS also possesses a non-canonical, counter-regulatory branch composed of ACE2/Ang-(1–7)/Mas1R. The activity of this system will depend on the balance between the two branches. ACE2 is the main synthesizer of Ang-(1–7) by removing a single residue from Ang I to generate Ang-(1–9) and by cleaving a single residue from Ang II to generate Ang-(1–7) [64,65]. The functional receptor for Ang-(1–7) is the GPCR Mas1R [66]. The conformation of the negative or counter-regulatory axis is relevant not only because it downgrades the vasoconstrictive/proliferative peptide Ang II to form the vasodilator heptapeptide Ang-(1–7), but also because it degrades Ang I to Ang-(1–9), thereby limiting the availability of the substrate for ACE. Ang-(1–7) binds to Mas1R, inducing vasodilation, inhibition of cell growth, anti-thrombotic, and anti-arrhythmic effects [67]. ACE2 activity is controlled by a disintegrin and metalloproteinase domain-containing protein 17 (ADAM-17, also called TNF-α-converting enzyme, TACE). ADAM-17 proteolytically cleaves ACE2 causing the shedding of ACE2 into the interstitium, which leads to decreased ACE2 activity in the tissue and elevates circulating ACE2 activity [68] (Fig. 3). Since blood and urine measurement of ACE2 levels is feasible, they could potentially be used as a prognostic biomarker in COVID-19 [69].

RAS plays an essential role in the pathogenesis of inflammatory diseases in which most of the proinflammatory actions are caused by Ang II [67]. Ang II activates several cellular functions and molecular signaling pathways related to tissue injury, inflammation, and fibrosis. They involve calcium mobilization, free radical generation, activation of protein kinases and nuclear transcription factors, recruitment of inflammatory cells, adhesion of monocyte and neutrophils to endothelial and mesangial cells, upregulation of adhesion molecules and stimulation of expression, synthesis, and release of cytokines and chemokines [68]. AT1R mediates most of these actions [70]. The
counterregulatory ACE2/Ang-(1–7)/Mas1R axis negatively modulates leukocyte migration, cytokine expression and release, and fibrogenesis pathways. Hence, ACE2 deficiency increases vascular inflammation by increasing the gene expression of vascular adhesion molecules, cytokines, chemokines, and matrix metalloproteases [71]. The loss of ACE2 results in higher increases in Ang II-induced expression of inflammatory factors, enhanced vascular permeability, increased lung edema, and neutrophil accumulation [72]. The ACE2/Ang-(1–7)/Mas1R axis also plays an essential role in haemostasis, since it stimulates prostacyclin (PGI2) production and nitric oxide (NO) release by ECs and modulates platelet activity which is less adherent having, thus anti-thrombotic activity [73] (Fig. 1).

RAS exhibits high activity in lung tissue, which is the leading site of Ang II synthesis. ACE2 is a zinc metalloproteinase, type I integral membrane glycoprotein orientated with the N-terminal, and the catalytic site facing the extracellular space [74]. The union of ACE2 with SARS viral spike protein triggers enzyme internalization downregulating activity from the cell surface. Once SARS-CoV binds to its receptor, the abundance on the cell surface, mRNA expression, and the enzymatic activity of ACE2 are significantly reduced [75]. Proteolytic shedding of its extracellular domain is a second mechanism for downregulating ACE2 at the cell surface. S protein of SARS, once it binds to ACE2, induces shedding by activating ADAM17 (TACE) as do bacterial endotoxin and lipopolysaccharide (LPS) [76] (Fig. 3). Releasing ACE2 from the cell membrane is a critical step in catalyzing substrates and implies that attenuation of ACE2 activity might contribute to disease pathogenesis. The recently described induction of ACE2 expression by type I IFN in human nasal epithelial cells, thus behaving as an ISG, highlight an additional mechanism of ACE2 downregulation by SARS-CoV-2 [30]. Since IFN-induced ISGs are crucial for host antiviral response, the absence of ACE2 induction due to hampered IFN responses will further cause tissue unprotected. Therefore, in COVID-19, ACE2 plays a pivotal role because of its multifaceted task as a facilitator of entry into AECs and its potential role in the pathogenesis of acute lung injury (ALI) [75]. In the mouse model of SARS, downregulation of ACE2 protein expression resulted in worse pneumonia, increased Ang II levels, increased vascular permeability, enhanced lung edema, neutrophil infiltration, and further worsened lung function [72,77]. Catalytically active ACE2 protein alleviated the symptoms, and active protein improved the outcome of respiratory failure [72]. In COVID-19 patients, plasma concentrations of Ang II were significantly higher than in healthy individuals and Ang II levels correlated with viral load and lung injury [78].

Owing to the widespread expression of ACE2, COVID-19 is a disseminated infection. ACE2 is highly expressed in the gut and SARS-CoV-2 can productively infect enterocytes [28,79]. Despite ACE2

Fig. 3. Implication of angiotensin-converting enzyme 2 (ACE2)/Angiotensin (Ang-1–7)/Mas1R in the pathogenesis of coronavirus disease 2019.

The lung, and other organs, lose the protection of the non-canonical RAS system as a result ACE2 downregulation after SARS-CoV-2-induced endocytosis. Consequently, the canonical ACE/Ang II/AT1R becomes dominant, levels of Ang II increase with the subsequent promotion of fibrosis, myocardial hypertrophy, increased ROS, vasoconstriction, inflammation, and endothelial dysfunction. AT1R mediates most of these actions. Endocytosed SARS-CoV-2 spike proteins mediates ADAM 17-mediated proteolytic cleavage of ACE2. ADAM-17 activity is enhanced through the activated AT1R by increased levels of Ang II. TNF-α is the primary substrate of ADAM17. ADAM17 cleaves TNF-α releasing soluble TNF-α extracellularly where it has autocrine and paracrine functionalities. Activation of TNF-α receptor by TNF-α also enhances ADAM17 activity.

ACE2 = Angiotensin-converting enzyme 2; SARS-CoV-2 = Severe acute respiratory syndrome coronavirus 2; Ang II = Angiotensin II; ROS = Reactive oxygen species; AT1R = Angiotensin 1 receptor; ADAM17 = A disintegrin and metalloproteinase domain 17; TNF-α = Tumor necrosis factor alpha; TMPRSS2 = transmembrane protease serine 2.
expression in gut being higher than in the lung, only about 10–12% of patients with COVID-19 experience gastrointestinal symptoms [79]. The contribution of the digestive system to the pathogenesis of COVID-19 through impairment of mucous membrane barrier and increased inflammatory cytokine production has not been determined yet. Similar to MERS-CoV and owing to ACE2 expression in the brush borders of the proximal tubules and in podocytes, kidney injury in COVID-19 is characterized by diffuse proximal tubule damage with virus-like particles in tubular epithelial cells and podocytes which is indicative of direct SARS-CoV-2 infection [80]. These findings translate clinically into acute kidney injury and proteinuria which affect from 0.9% to 29% of COVID-19 patients [80].

The consequence of impaired ACE2 activity in the lung because of SARS-CoV-2 infection is a reduction of Ang-(1–7) production. Ang-(1–7) binding Mas1R promotes an array of biological responses to counteract Ang II-mediated processes such as apoptosis, angiogenesis, vasoconstriction, and inflammation in the lung [81,82]. Consequently, the attenuation of ACE2 catalytic function perturbs the pulmonary RAS balance, resulting in enhanced inflammation and vascular permeability, leaving the lung defenceless in the face of the forthcoming raging cytokine storm. Besides, infection of type II pneumocytes will reduce the production of alveolar surfactant subsequently reducing pulmonary elasticity. Moreover, the loss of type II pneumocytes decreases restoration of type I pneumocytes which ultimately impacts on gas exchange and fibrosis [83]. The above event sequence depicts the RAS vicious feedback loop (Fig. 1).

5. The fourth horseman: an epidemic within the pandemic

The association between COVID-19 and coagulation disorders was beheld early during the pandemic when Chinese physicians noticed that patients treated mainly with low-molecular-weight heparin had a decreased 28-day mortality [84]. This mortality improvement was in patients with a sepsis score higher than four or a markedly elevated D-dimer [84]. COVID-19 is associated with coagulation disorders that include increases in procoagulant factors such as fibrinogen and D-Dimers, both associated with poor prognosis [85,86]. Patients admitted to the ICU had an increased incidence of venous thromboembolic events ranging from 25% to 36% [87-89]. Moreover, standard prophylaxis for venous thromboembolism failed in 7.7% of the patients [90]. Some found that most thrombotic complications were venous and primarily isolated pulmonary embolism, which suggests that they may be primary pulmonary thrombosis instead of embolic phenomena [89,91]. In line with that, microcirculatory thrombosis is a constant finding in lung pathologic studies [33,34] (Fig. 2).

Infection of ECs, together with the derangements caused by cellular infiltration and high exposure to cytokines/chemokines, eventually leads to ECs dysfunction and apoptosis [33]. All of them contribute to microvascular prothrombotic effects [92]. There is an intense interplay between haemostasis and innate immunity, called thrombo-inflammation [93]. Both the intrinsic and extrinsic coagulation pathways can activate during infection. ECs and macrophages activate the extrinsic pathway through expression of tissue factor [94]. The intrinsic pathway can be activated by neutrophil extracellular traps (NETs) released by polymorphonuclear neutrophils (PMN) in a process called NETosis. NETs activate ECs, platelets, and the complement system and release proteases that activate endogenous anticoagulants [95]. However, the role of NETs in COVID-19 is still a matter of discussion [96].

Platelets play a dual role. First, a proinflammatory role by secreting alpha granules that recruit PMN and macrophages, which are an essential source of IL-1β [97]. Besides, platelets stimulate PMN to undergo NETosis which in turn activates platelets, creating a feedback loop. The second role of platelets is to activate the coagulation pathway by assembling enzyme-cofactor-substrate complexes on their exposed surface [98] (Fig. 1).

Complement activation, which has been seen in the mouse model of SARS, contributes to immune-mediated pathology [99]. Activation of C3 and C5 promotes mast cell degranulation and recruitment of PMN and macrophages [100]. The prothrombotic effects of activated C3 and C5 include platelet and ECs activation, together with increasing tissue factor and von Willebrand factor expression [95]. To close the loop, thrombin, and other components of the coagulation cascade can, in turn, activate C3 and C5 [95].

The primary function of thrombin is to promote clot formation by activating platelets and by converting fibrinogen into fibrin [101]. However, thrombin is a pleiotropic molecule and can increase inflammation via a proteinase-activated receptor (PAR), principally PAR-1 [101] (Fig. 1). The generation of thrombin is controlled by negative feedback loops and physiological anticoagulants such as antithrombin III, tissue factor pathway inhibitor and the protein C system [101]. IL-1β, IL-6, and TNF-α promote the release of ultra-large von Willebrand multimers, and the production of tissue factor and factor VII activated factor VII, leading to increased thrombin generation while decreasing the levels of endogenous anticoagulants [101].

The ACE2/Ang-(1–7)/Mas1R axis exerts antithrombotic effects through activation of Mas1R in platelets, which then release NO and PGI2 and by protecting from endothelial dysfunction [102,103]. Since this branch of the RAS is not working properly in COVID-19, this protective mechanism is lost (Figs. 1 and 3).

In severe COVID-19, similar to other acute viral infections, a high prevalence od antiphospholipid antibodies was found, although the role of these antibodies in the thrombotic state of SAR-CoV-2-infected patients is still a matter of debate [104].

The progression of thrombo-inflammation may result in widespread thrombosis, which may be further enhanced by hypoxemia, hyperthermia, and hypovolemia [105]. Hypoxemia triggers increased expression of hypoxia-inducible factors, which may promote additional inflammation and may activate platelets and coagulation factors. They increase tissue factor expression, increase plasminogen activating inhibitor-1, and inhibit the endogenous anticoagulant protein S [106]. In the setting of a hyperinflammatory state and endothelial injury, activation of coagulation occurs whereas the counter-regulatory force ACE2/Ang-(1–7)/Mas1R axis is inactive, leaving the field to the full expression of a hypercoagulable state. This state may clinically translate into pulmonary thrombosis, venous thromboembolism, or other thrombotic events. If these events affect microvascular lung bed, they may further promote ALI and impair gas exchange. Whatever the location of the thrombotic event is, it worsens the patient’s prognosis.

Hyperinflammatory state and defective ACE2/Ang-(1–7)/Mas1R functioning activate the fourth hurtful feedback loop. Hyperinflammation induces hypercoagulation and vice versa, while ACE2/Ang-(1–7)/Mas1R axis avoidance maximizes both (Fig. 1).

6. A broad scale of damage

The clinical spectrum of COVID-19 is broad. Not everyone who acquires SARS-CoV-2 becomes sick and the state that emerges after infection can vary among patients or within the same patient over time. Consequently, it is envisaged that virus-dependent, host dependent, and environment-dependent factors may modify the virus-host interaction explaining not only the individual susceptibility to infection but also the broad scale of damage seen in clinical disease.

The initial viral titre in the airways could explain the different evolving patterns of COVID-19, since this will condition the intensity of cytopathic changes, which in turn will shape the strength of immune responses [35]. SARS-CoV-2 replicates in high numbers very early after infection, and in turn, the magnitude of viral replication will impact on the extent of antiviral response [27]. In humans, there
is a strong correlation between SARS-CoV and MERS-CoV titres and disease severity [35].

In animal models, the disease behaves differently if the virus infects airway epithelial cells or both airway and AECs (type I and type II pneumocytes) predominantly. The viral antigen is mainly located in airway epithelial cells in mice models permissible to infection, but which do not develop clinical disease. In contrast, in highly susceptible mice, the antigen is detected in both airways and alveolar type I and II pneumocytes [35]. Consequently, infection of AECs seems critical for both host susceptibility and the development of lung pathology. An aspect that influences SARS-CoV-2 infection is the state of differentiation of human airway epithelia, which, in turn, correlates positively with the expression level of ACE2 in these cells [107,108]. It is noteworthy that ACE2 nasal gene expression is lower in children [109]. This fact is connected to the striking age distribution of COVID-19 in which children are often spared, affecting adults with enhanced severity and mortality as age increases [5,47]. However, the increasingly poor outcome with advancing age is influenced by the presence of common comorbidities, such as hypertension, cardiovascular disease, and diabetes, which bear a poor prognosis by themselves [47]. Besides, these comorbidities relate to a decreased activity of ACE2 in elderly patients, a deficit further exacerbated by SARS-CoV-2 infection [110]. ADE is a potentially harmful, pro-inflammatory mechanism which occurs when suboptimal titres of neutralizing antibodies against SARS-CoV-2 are present. They are unable to control infection but instead facilitate viral entry into macrophages by a Trojan horse mechanism. ADE tends to happen when the time interval between coronavirus infections is long enough for antibody fall, which could be a possible mechanism for severe COVID-19 in the aged [58].

Females with COVID-19 usually present with milder disease than males. Females exhibit higher IFN and IFN regulator factor and IL-10 [121,122]. HLA genes present extreme allelic polymorphism. Since response 88 (MDY88) may be altered by TLR polymorphisms to COVID-19. Responses triggered by PAMPs recognition and its inherent feature of immune pathways and thus functional resultant polydownstream signaling [119,120]. High interconnection is a prominent feature of immune pathways and thus functional resultant polymorphisms may cause unevenness in antigen binding and presentation, and consequently in immune response. HLA-B*46:01 has been associated to the development and increased severity of SARS-CoV [123], and it has the fewest predicted binding affinity of SARS-CoV-2 peptides [124]. IL-6 plays a central role in the hyperactive immune response in COVID-19 patients. Since there are functional polymorphisms in the IL-6 gene that modify its protein level expression, they may affect the severity of the disease [125]. The role of RAS in the pathogenesis of COVID-19 is essential. Single nucleotide polymorphisms and haplotypes in ACE genes, such as polymorphism A/D in the ACE1 gene, have been associated with circulating and tissue concentrations of ACE levels and reduced expression of ACE2 [126,127]. Interestingly, the prevalence of COVID-19 in Europe correlates inversely with ACE D allele frequency [127]. A genetic variant of the IFN-induced transmembrane protein-3 gene is associated with COVID-19 severity. IFN-induced transmembrane protein-3 is an immune effector protein that acts restricting membrane fusion [128]. Recently, a genomewide association study in COVID-19 patients with respiratory failure identified an association signal at locus 3p21.31, which includes the genes SLC6A20, LZTFL1, CCR9, FFC01, CXC6 and XCR1, while there was no association signals at the HLA complex [129].

Lately, there has been a contention about the beneficial or detrimental role of ACE inhibitors (ACEi) and angiotensin receptor blockers (ARB) in the outcome of patients with COVID-19. Currently, there is no evidence to support an advantageous or harmful effect of concomitant therapy with ACEi or ARB in COVID-19 patients [130].

7. Pathogenetically-based therapeutic insights

COVID-19 is a systemic infection since it may impact any tissue or organ expressing ACE2. However, the most dreadful, often life-threatening conditions, are ALI and ARDS. Therefore, the main challenge is to avoid their development to prevent ICU admission and mechanical ventilatory support. We could envisage COVID-19 as a tree in which AECs viral infection and ACE2 downregulation represent the roots. The tree trunk would be the hyperinflammatory and hypercoagulable state. The branches would be an end-organ disease, such as ALI, myocarditis, neurological disease, liver injury, gastrointestinal involvement, and skin disease.

Since the chain of events triggered by SARS-CoV-2 infection evolves quickly, any planned intervention must come as early as possible. Besides, since the pathogenesis of COVID-19 involves non-viral mechanisms, any intervention planned must also address the correction or modulation of these disbalances. Hence, any therapeutic intervention must be early and combine antiviral and adjuvant therapies. However, the moment of diagnosis and eventual hospital admission will mark the timeframe of interventions.

To tackle the roots of the disease, potential therapeutic interventions for COVID-19 should first address the viral entry into AECs. The entry of SARS-CoV-2 into AECs takes place after binding of the spike to the receptor ACE2. Specifically, the binding takes place in the receptor-binding domain of the S protein. Thus, developing neutralizing monoclonal antibodies for this domain is a rational strategy to prevent the viral union and subsequent events [131]. Another possible way of targeting the interaction between ACE2 and S protein may be the use of soluble recombinant ACE2, which may prevent the binding of the viral particle to the surface-bound, full-length ACE2 [132]. In the Vero-E6 monkey cell line, a soluble form of ACE2 blocks SARS-CoV replication and reduced SARS-CoV-2 recovery by a factor of 1000–5000 [132,133]. Besides, since SARS-CoV-2 downregulates the ACE2/Ang-(1–7)/Mas1R axis, recombinant human ACE2 (rhACE2) could prevent the development of ALI in COVID-19. rhACE2 attenuated arterial hypoxemia in a piglet model of LPS-induced ALI [134]. In phase II, open-label trial in humans with ARDS rhACE2 was well tolerated, Ang II levels decreased, whereas Ang (1–7) and surfactant
protein D increased [135]. However, the study was not powered to
detect changes in acute physiological or clinical outcomes [135].
There is a randomized controlled trial to assess rACE2 in patients
with severe COVID-19 (NCT 04287686). Apart from ACE2, SARS-CoV-
2 entry involves TMPRSS2, whose inhibitor, camostat mesylate, sig-
nificantly reduced lung cell line infection with SARS-CoV-2 [136].

Endocytosis is a crucial step in SARS-CoV-2 infection. AP-2-associ-
ated protein kinase (AAK1) regulates this process [137]. Baricitinib, a
Janus-kinase inhibitor, has been claimed as a candidate drug for
COVID-19 since it inhibits AAK1 [138]. Arbidol inhibits viral entry by
inhibiting the fusion between viral and cellular membranes [139].
However, in a small retrospective study, arbidol did not meet non-
inferiority versus the combination of arbidol and lopinavir/ritonavir
(LPV/r) [140]. Chloroquine and its safer derivative hydroxychloro-
quine are effective against SARS-CoV-2 in vitro [141]. However,
recent news from the large Recovery trial showed that there is no
beneficial effect of hydroxychloroquine in patients hospitalised with
COVID-19; therefore, that arm of the study was stopped [142]. Other
planned large trials, such as Solidarity, stopped enrolling patients to
the hydroxychloroquine arm, and the National Institutes of Health-
sponsored ORCHID study was also stopped [143,144].

Numerous antivirals agents are being tested in clinical trials. LPV/r
could not demonstrate enough efficacy when compared with placebo
[145]. The combination of IFN, LPV/r, and ribavirin showed a shorter
time to neutralize nasopharyngeal swabs and superiority versus LPV/
r in alleviating symptoms [146]. In two double-blind, placebo-con-
trolled trials, remdesivir was not associated with statistically signifi-
cant clinical benefits in one, whereas in the other shortened the time
to recovery in hospitalized adults [147,148]. As of now, there is no antivi-
ral drug with proven efficacy for treating patients with COVID-
19.

Another strategy tries to modulate the exuberant inflammatory
response in COVID-19. The use of corticosteroids is controversial and
not supported by previous experience in SARS and MERS [149]. How-
ever, in the Recovery trial, dexamethasone reduced deaths by one
third in patients receiving invasive mechanical ventilation and by one
fifth in patients receiving oxygen without invasive mechanical
ventilation [150]. Tocilizumab, a specific IL-6 receptor antagonist, is
promoted to treat the hyperinflammatory state of COVID-19 because
of the pathogenic role IL-6 plays. Two observational studies have
shown a clinical benefit of therapy with tocilizumab in COVID-19
pneumonia with hyperinflammatory syndrome [151,152]. Anakinra,
a recombinant IL-1 receptor antagonist, has proven useful in a small
retrospective study of COVID-19 patients with ARDS and hyper
inflammation [153]. There are additional trials in progress with tocili-
zumab, anakinra, and sarilumab. However, when trying to modify the
cytokine response by targeting a single molecule or receptor, it
should be recalled that the cytokine network is an intricate complex
with a high degree of overlap, redundancy, and alternate pathways.
This may explain therapy escape and eventually lack of response.
Therapeutic interventions for the consequences of hyperinflam-
matory and hypercoagulable states associated with COVID-19, such as
ALL, ARDS or thromboembolic events, are beyond this review’s
scope.

8. Conclusions

Knowledge of pathophysiology is the first step to address the
management of a disease appropriately. It is familiar with the mecha-
nism that the virus uses to evade host immune defense mechanisms
or those that uses to harm will permit the design of appropriate strat-
egies to neutralize the dysfunctions or disbalances generated either
by the virus or by the consequences of the infection. From the knowl-
dge gathered, it seems that most organ damage in severe COVID-19
is done through an immune-mediated mechanism, although SARS-
CoV-2 is the necessary initiator. The spectrum of disease is

9. Outstanding questions

While engrossed amid the pandemic, there was progress on the
physiopathology of COVID-19. However, gaps regarding viral, envi-
ronmental, and transmissibility aspects remain—the dynamic inter-
play between the host and the virus and how to modify it to improve
disease prognosis not being the lesser.

There is a big difference in transmissibility, which is highest for
SARS-CoV-2, among β-coronaviruses despite similar structure and
functioning. Asymptomatic viral shedding is the main factor. How-
ever, the role of newly described ORFs and RNA modifications and
their functional correlations are not evident yet. Although TMPRSS2
is involved in viral entry into the host cell, the involvement of other
host proteins is still under discussion.
The role of the different epithelial cells along the bronchial tree
and the alveolar space needs to be ascertained. The virus’s mecha-
nisms to invade other organs beyond the lung are already poorly
known.

Clinical disease progression is somewhat unpredictable. There-
fore, the identification of prognostic clinical and biological markers
would optimize patients’ care and resource consumption, which may
be of utmost importance in pandemic times. This effort must include
which role comorbidities and gender play. The definition and timing of
the optimal therapeutic approach to COVID-19 will represent a
colossal effort, which can be accomplished only by randomized clini-
trial performance. These should include concerted actions and a
combination of diverse disciplines, resources, expertise, and techni-
quies to contribute to advances in prevention, diagnosis, and therapy.
This set makes up an almost flawless meaning of translational medi-
cine defined by the European Society for Translational Medicine
(EUSTM) as “an interdisciplinary branch of the biomedical field sup-
ported by three main pillars: benchside, bedside, and community.”

10. Search strategy and selection criteria

For this Review, our search strategy involved the review of origi-
nal records, either journals or books, mainly from European and
American sources, from1984 to 2020. From these sources, we hand
searched reference lists of identified additional articles to retrieve
additional studies. Preference was given to most relevant research,
but we were also keen to highlight the breadth of the topic and hence
selected some publications that showcase particular areas of interest.
We have searched PubMed and Google Scholar from database
inception to May 21, 2020, for records, journals, and books for the
terms “SARS-CoV-2”, “COVID-19”, “Coronavirus”, “RAAS system”,
“angiotensin-converting enzyme”, “angiotensin-converting enzyme
2”, “cytokine storm”, “cytokine”, “chemokine”, “acute lung injury”,
“adult respiratory distress syndrome”, “interferon”, “interleukin”,

“Middle East respiratory syndrome”, and “Severe acute respiratory syndrome”. References were examined in English.

Declaration of Competing Interest
We declare no competing interests.

Contributors
The concept of the manuscript was devised by PD who also performed the overall literature searches. IM, VP, HC, and JC designed the search strategy with inputs from PD and NdB. IM, VP, HC, and JC carried out the literature searches and screening, and any discrepancies were discussed with PD and NdB. PD wrote the first draft of the review with inputs from all the authors.

Funding
This work was partially supported by grant COVID20/00070. Instituto de Salud Carlos III, Madrid, Spain. The funding source was not involved in the design of the study or in writing the report. All authors had access to the data used in the analyses, and the lead author reviewed the full report. The full study data were available to all authors. PD, NdB made the decision to submit the paper for publication.

Acknowledgments
We are indebted to Jordi Mancebo and Mª Antonia Mangues for critical reading of the manuscript, and to Richard Pike for reviewing its writing.

References
[1] WHO. Novel coronavirus – China. Jan 12, 2020. http://www.who.int/csr/don/12-january-2020-novel-coronavirus-china/en/ [accessed May 20, 2020].

[2] Lu R, Zhao X, Li J, et al. Genomic characterization and epidemiology of 2019 novel coronavirus: implications for virus origin and receptor binding. Lancet 2020;395:565–74.

[3] Johns Hopkins. https://coronavirus.jhu.edu/map.html

[4] Masters PS. The molecular biology of coronaviruses. Adv Virus Res 2006;66:193–212.

[5] He L, Ding Y, Zhang Q, et al. Expression of elevated levels of pro-inflammatory cytokines in SARS-CoV-2 infected cells in SARS patients: relation to the acute lung injury and pathogenesis of SARS. J Pathol 2006;206:288–97.

[6] Zhang X, Wu K, Wang D, et al. Nucleocapsid protein of SARS-CoV-2 activates interleukin-6 expression through cellular transcription factor NF-kappa B. Virology 2007;365:324–35.

[7] Liao M, Liu Y, Yuan J, et al. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nat Med 2020;26:842–4.

[8] Wang W, Y L, Ye L, et al. Up-regulation of IL-6 and TNF-alpha induced by SARS-coronavirus spike protein in murine macrophages via NF-kappa B pathway. Virus Res 2007;128:1–8.

[9] Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020;395:496–507.

[10] Dao B, Wang C, Tan Y, et al. Reduction and functional exhaustion of T cells in patients with coronavirus disease 2019 (COVID-19). Front Immunol 2020 [Online ahead of print]; doi:10.3389/fimmu.2020.00827.

[11] Rodriguez-Gervais IC, Labbé K, Davidsen M, et al. Cellular inhibitor of apoptosis protein claf2 protects against pulmonary tissue necrosis during influenza virus infection to promote host survival. Cell Host Microbe 2014;15:23–35.

[12] Belouzard S, Chu VC, Whittaker GR. Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites. Proc Natl Acad Sci USA 2003;100:4571–6.

[13] Perlman S, Netland J. Coronaviruses post-SARS: update on replication and pathogenesis. Nat Rev Microbiol 2009;7:439–50.

[14] Li C, Fan Y, Lai Y, et al. Coronavirus infections and immune responses. J Med Virol 2020;92:424–32.

[15] Snijder EJ, van der Meer Y, Zevenhoven-Dobbe J, et al. Ultrastructure and origin of membrane vesicles associated with the severe acute respiratory syndrome coronavirus replication complex. J Virol 2006;80:5927–40.

[16] Frieman M, Yount B, Heise M, Kopecky-Bromberg SA, Palese P, Baric RS. Severe acute respiratory syndrome coronavirus ORF6 antagonizes STAT1 function by sequestering nuclear import factors on the rough endoplasmic reticulum/Golgi membrane. J Virol 2007;81:5912–24.

[17] Kindler E, Thiel V, Weber IF. Infection of SARS and MERS coronaviruses with the antiviral interferon response. Adv Virus Res 2016;96:219–43.

[18] Naranayan K, Huang C, Lokugamage K, et al. Severe acute respiratory syndrome coronavirus nsp1 suppresses host gene expression, including that of type I interferon, in infected cells. J Virol 2008;82:4471–9.

[19] Sun L, Xing Y, Chen X, et al. Coronavirus papain-like proteases non-regularly regulate antiviral innate immune response through disruption of STING-mediated signaling. PLoS One 2012;7:e40802.

[20] Thiel V, Weber IF. Interferon and cytokine responses to SARS-coronavirus infection. Cytokine Growth Factor Rev 2008;19:121–32.

[21] Totura AL, Baric RS. SARS coronavirus pathogenesis: host innate immune responses and viral antagonism of interferon. Curr Opin Infect Dis 2012;25:266–73.

[22] Furh A, Chandappanavar R, Jainkevicius G, et al. The conserved coronavirus macrodomain promotes virulence and suppresses the innate immune response during severe acute respiratory syndrome coronavirus infection. mBio 2016;7:e01721-16.

[23] Siu KL, Chan CP, Koh KH, Chiu-Yat Woon P, Jin DY. Suppression of innate antiviral response by severe acute respiratory syndrome coronavirus M protein is mediated through the transmembrane domain. Cell Mol Immunol 2014;11:141–9.

[24] Chu H, Chan JP, Wang Y, et al. Comparative replication and immune activation profiles of SARS-CoV-2 and SARS-CoV in human lungs: an ex vivo study with implications for the pathogenesis of COVID-19. Clin Infect Dis 2020 [Online ahead of print]; doi:10.1093/cid/ciaa410.

[25] Ackermann M, Verleden SE, Kuehnel M, et al. Pulmonary vascular endotheliitis and thrombosis, and angiogenesis in Covid-19. N Engl J Med 2020 [Online ahead of print]; doi:10.1056/NEJMoa2015432.

[26] He L, Ding Y, Zhang Q, et al. Expression of elevated levels of pro-inflammatory cytokines in SARS-CoV-2 infected ACE2+ cells in SARS patients: relation to the acute lung injury and pathogenesis of SARS. J Pathol 2006;210:288–97.

[27] Kim D, Lee JY, Yang JS, KIM JW, Kim VN, Chang H. The architecture of SARS-CoV-2 and potential for antiviral therapeutics. J Virol 2020;94:e01721-16.

[28] Rodriguez-Gervais IG, Labbé K, Davidsen M, et al. Cellular inhibitor of apoptosis protein claf2 protects against pulmonary tissue necrosis during influenza virus infection to promote host survival. Cell Host Microbe 2014;15:23–35.

[29] Kim KD, Zhao J, Auh S, et al. Adaptive immune cells temper initial innate responses. Nat Med 2007;13:1248–52.

[30] Guan WJ, NI ZY, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020;382:1708–20.

[31] Xiong Y, Liu Y, Cao L, et al. Transcriptional characteristics of bronchoalveolar lavage fluid and peripheral blood mononuclear cells in COVID-19 patients. Environ Microbes Infect 2020;9:761–70.
Santos RAS, Sampaio WO, Alzamora AC, et al. The ACE2/Angiotensin-(1-7)/Mas receptor axis in inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020;395:1841–4. 2020.11811.14468.

Jia HP, Look DC, Hickey M, et al. Infection of human airway epithelia by SARS-CoV-2 is associated with ACE2 expression and localization. Adv Exp Med Biol 2020;92. 2020.11111.11484.

Jackson SP, Darbouretts S, Schoenwaelder SM. Thromboinflammation: challenges of therapeutically targeting coagulation and other host defense mechanisms. Blood 2019;133:906–18.

Keragala CR, Drusler DP, McQuaid KM, Medical RL, Haemoanetis and innate immunity—a complementary relationship: a review of the intricate relationship between coagulation and complement pathways. Br J Haematol 2018;180:782–98.

Barnes BJ, Adrover JM, Baxter-Stottfus A, et al. Targeting potential drivers of COVID-19: neutrophil extracellular traps. J Exp Med 2019;217:e20200652.

Lips G, Plebani M, Henry BM. Thrombocytopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: a meta-analysis. Clin Chim Acta 2020;506:145–8.

Walsh PN. Platelet coagulation-protein interactions. Semin Thromb Hemost 2004;30:461–71.

Gralinski LE, Sheehan TP, Morrison TE, et al. Complement activation contributes to severe acute respiratory syndrome coronavirus pathogenesis. mBio 2018;9. 2019.11.1753. 2019.11.11.

Fogari R, Zoppini A, Mugelli A, Maffioli P, Lazzeri F, Derosa G. Role of angiotensin II in plasma PAI-1 changes induced by imidapril or candesartan in hypertensive patients with metabolic syndrome. Hypertens Res 2011;34:1321–6.

Jose RJ, Williams AF, Chantry D. Proteinase-activated receptors in fibroli-ferative lung disease. Thorax 2014;69:140–2.

Fang C, Stavrou E, Schmaier AA, et al. Angiotensin I–7 and Mas decrease thrombosis in B6D2F1 mice by increasing NO and prostacyclin and reducing platelet adhesion and glycoprotein VI activation. Blood 2013;121:3023–32.

Fraga-Silva RA, Pinheiro SV, Almeida A, et al. Targeting potential drivers of COVID-19: neutrophil extracellular traps. J Exp Med 2019;217:e20200652.

Lipsari P, Lazzari P, Derosa G. Role of angiotensin II in plasma PAI-1 changes induced by imidapril or candesartan in hypertensive patients with metabolic syndrome. Hypertens Res 2011;34:1321–6.

Fogari R, Zoppini A, Mugelli A, Maffioli P, Lazzeri F, Derosa G. Role of angiotensin II in plasma PAI-1 changes induced by imidapril or candesartan in hypertensive patients with metabolic syndrome. Hypertens Res 2011;34:1321–6.

Jose RJ, Williams AF, Chantry D. Proteinase-activated receptors in fibroli-ferative lung disease. Thorax 2014;69:140–2.

Fang C, Stavrou E, Schmaier AA, et al. Angiotensin I–7 and Mas decrease thrombosis in B6D2F1 mice by increasing NO and prostacyclin and reducing platelet adhesion and glycoprotein VI activation. Blood 2013;121:3023–32.

Fraga-Silva RA, Pinheiro SV, Conchas AC, Almeida A, Nader M, Santos RA. The role of angiotensin I(7) in inpatients with COVID-19 infection. Lancet Respir Med 2020;18:1421–4. 2020.11811.14468.

Jia HP, Look DC, Hickey M, et al. Infection of human airway epithelia by SARS-CoV-2 is associated with ACE2 expression and localization. Adv Exp Med Biol 2020;92. 2020.11111.11484.

Jackson SP, Darbouretts S, Schoenwaelder SM. Thromboinflammation: challenges of therapeutically targeting coagulation and other host defense mechanisms. Blood 2019;133:906–18.
Sullivan JC, Bhata T, Yamamoto T, Elmarakby AA. Angiotensin (1–7) receptor antagonist equalizes angiotensin II-induced hypertension in male and female spontaneously hypertensive rats. Hypertension 2010;56:638–66.

Bundalo MM, Zvikovic MD, Ronic S, et al. Fructose-rich diet induces gender-specific changes in expression of the renin-angiotensin system in rat heart and upregulates the ACE/AT1R axis in the male rat aorta. J Renin Angiotensin Aldosterone Syst 2016;17:1470320316642915.

Littlejohn NK, Keen HL, Weidemann BJ, et al. Suppression of restting metabolism by the angiotensin AT2 receptor. Cell Rep 2016;16:1548–60.

Intensive Care National Audit & Research Centre (ICNARC). Covid-19 report. https://www.icnarc.org/Our-Audit/Reports, Accessed May 7 2020.

Istituto Superiore di Sanità. Characteristics of COVID-19 patients dying in Italy report based on available data on April 2nd, 2020. https://www.epicentro.iss.it/en/coronavirus/bollettino/Report-COVID-19_2_april_2020.pdf, Accessed May 7 2020.

Malavazos AE, Corsi Romanelli M, Bandera F, Jacobellis G. Targeting the adipose tissue in COVID-19. Obes Silver Spring 2020 [Online ahead of print], doi: 10.1002/oby.22844.

Adebamowo SN, Adeyemo AA, ACCME Research Group as part of the H3Africa Consortium. Classical HLA alleles are associated with prevalent and persistent cervical high-risk HPV infection in African women. Hum Immunol 2019;80:723–30.

Falfán-Valencia R, Narayanankutty A, Reséndiz-Hernández JM, et al. An increased frequency in HLA class I alleles and haplotypes suggest genetic susceptibility to influenza A (H1N1) 2009 pandemic: a case-control study. J Immunol Res 2018;2018:371486.

Mortaz E, Adcock IM, Tabarsi P, et al. Pattern recognitions receptors in immuno-deficiency disorders. Eur J Pharmacol 2017;808:49–56.

Pattabiraman G, Panchal R, Medvedev AE. The R753Q polymorphism in Toll-like receptor 2 (TLR2) attenuates innate immune responses to mycobacteria and impair MyD88 adapter recruitment to TLR2. J Biol Chem 2017;292:10683–95.

Liu M, Tieng HK, Tieja JA, et al. Association of HLA class I with severe acute respiratory syndrome coronavirus infection. BMC Med Genet 2003;12:95.

Nguyen A, David JK, Maden SK, et al. Human leukocyte antigen susceptibility map for SARS-CoV-2. J Virol 2020;94:e00510–20.

Li B, Xiao Y, Xing D, Ma X, Liu J. Circulating interleukin-6 and rheumatoid arthritis: a Mendelian randomization meta-analysis. Med Baltim 2016;95:e3855.

Chen YY, Zhang P, Zhou XM, et al. Relationship between genetic variants of ACE2 gene and circulating levels of ACE2 and its metabolites. J Clin Pharm Ther 2018;43:189–95.

Delanghe JR, Speeckaert MM, De Buyzere ML. The host’s angiotensin-converting enzyme polymorphism may explain epidemiological findings in COVID-19 infections. Clin Chim Acta 2020;505:192–3.

Zhang Y, Qin L, Zhao Y, et al. Interferon-induced transmembrane protein-3 genetic variant rs12252-C is associated with disease severity in COVID-19. J Infect Dis 2020;222:34–40.

The Severe Covid-19 GWAS Group. Genome-wide Association study of severe Covid-19 with respiratory failure. N Engl J Med 2020 [Online ahead of print], doi: 10.1056/NEJMoa2003838.

de Abajo FJ, Rodriguez-Martín S, Lerma V, et al. Use of renin-angiotensin–aldosterone system inhibitors and risk of COVID-19 requiring admission to hospital: a case-population study. Lancet 2020;395:1705–14.

Zheng M, Song L. Novel antibody epitopes dominate the antigenicity of spike glycoprotein in SARS-CoV-2 compared to SARS-CoV. Cell Mol Immunol 2020;17:536–8.

Batlle D, Wysocki J, Satchell K. Soluble angiotensin-converting enzyme 2: a potential approach for coronavirus infection therapy? Clin Sci 2020;134:543–5.

Monteil V, Kwon H, Prado P, et al. Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. Cell 2020;181:905–13 e7.

Trembl R, Neu N, Kleinssasser A, et al. Recombinant angiotensin-converting enzyme 2 improves pulmonary blood flow and oxygenation in lipopolysaccharide-induced lung injury in piglets. Crit Care Med 2010;38:396–601.

Khan A, Benthin C, Zenno B, et al. A pilot clinical trial of recombinant human angiotensin-converting enzyme 2 in acute respiratory distress syndrome. Crit Care 2017;21:234.

Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020;181:271–80 e8.

Neveu G, Ziv-Av A, Barouch-Bentov R, et al. AP-2–associated protein kinase 1 and cyclic G–associated kinase regulate hepatitis C virus entry and are potential drug targets. J Virol 2015;89:4387–404.

Richardson P, Griffin I, Tucker C, et al. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet 2020;395:e30–1.

Blaising J, Polyak SJ, Pecheur EJ. Arbidol as a broad-spectrum antiviral: an update. Antiviral Res 2014;107:84–94 2014.

Deng L, Li C, Zeng Q, et al. Arbidol combined with LPV/r versus LPV/r alone against corona virus disease 2019: a retrospective cohort study. J Infect 2020;81:e1–5.

Wang M, Cao B, Zhang L, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res 2020;30:269–71.

Statement from the chief investigators of the randomised evaluation of COVID-19 treatment (RECOVERY) Trial on hydroxychloroquine. 5 June 2020. https://www.recoverytrial.net/results, Accessed June 22, 2020.

“Solidarity” clinical trial for COVID-19 treatments. Update on hydroxychloroquine. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/global-research-on-novel-coronavirus-2019-ncov/solidarity-clinical-trial-for-covid-19-treatments. Accessed June 22, 2020.

NIH halts clinical trial of hydroxychloroquine. Study shows treatment does no harm, but provides no benefit. https://www.nih.gov/news-events/news-releases/nih-halts-clinical-trial-hydroxychloroquine, Accessed June 22, 2020.

Cao B, Wang Y, Wen D, et al. A trial of lopinavir–ritonavir in adults hospitalized with severe Covid-19. N Engl J Med 2020;382:1787–99.

Hung IF, Lung KC, Tso EY, et al. Triple combination of interferon beta-1b, lopinavir–ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, phase 2 trial. Lancet 2020;395:1695–704.

Wang Y, Dingyu Zhang D, Guanhua Du G, et al. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet 2020;395:1569–78.

Beigel JH, Tomashek KM, Dodd LE, et al. Baricitinib as potential treatment for Covid-19– preliminary report. New Engl J Med 2020 [Online ahead of print], doi: 10.1056/NEJMoa2007764.

Russell CD, Millar JE, Baille JC. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. Lancet 2020;395:473–5.

Low-cost dexamethasone reduces death by up to one third in hospitalised patients with severe respiratory complications of COVID-19. https://www.recoverytrial.net/news/low-cost-dexamethasone-reduces-death-by-up-to-one-third-in-hospitalised-patients-with-severe-respiratory-complications-of-covid-19, Accessed, June 24, 2020.

Toniatti Piva S, Catalani M, et al. Tocilizumab for the treatment of severe COVID-19 pneumonia with hyperinflammatory syndrome and acute respiratory failure: A single center study of 100 patients in Brescia, Italy. Autoimmun Rev 2020;19:102568.

Sciascia S, Apra F, Baia F, et al. Pilot prospective open, single-arm multicentre study on off-label use of tocilizumab in patients with severe COVID-19. Clin Exp Rheumatol 2020;38:529–32.

Cavali C, De Luca G, Campochiaro C, et al. Interleukin-1 blockade with high-dose anal- luna in patients with COVID-19, acute respiratory distress syndrome, and hyperin- flammation: a retrospective cohort study. Lancet Rheumatol 2020;2:e325–31.