Risk factors for new-onset diabetes mellitus after kidney transplantation: A systematic review and meta-analysis

Mancheng Xia¹, Haosen Yang², Xunan Tong², Hongjie Xie¹, Fan Cui¹, Weibing Shuang³*,

¹First Clinical Medical College, Shanxi Medical University, Taiyuan, China, ²Kidney Transplantation Center, Shanxi Second People's Hospital, Taiyuan, China, and ³Department of Urology, The First Hospital of Shanxi Medical University, Taiyuan, China

Keywords
Meta-analysis, New-onset diabetes mellitus after kidney transplantation, Risk factors

*Correspondence
Weibing Shuang
Tel: +86-139-9421-8693
Fax: +86-188-3513-7010
E-mail address: shuangweibing@126.com

J Diabetes Investig 2021; 12: 109–122
doi: 10.1111/jdi.13317

ABSTRACT
Aims/Introduction: To systematically review the risk factors for new-onset diabetes mellitus after kidney transplantation, and to provide a theoretical basis for the prevention and management of new-onset diabetes mellitus after kidney transplantation.

Materials and Methods: We searched PubMed, Web of Science, Embase, the Cochrane Library databases and other databases for case–control studies related to risk factors for new-onset diabetes mellitus after kidney transplantation published between January 2005 and July 2019. A meta-analysis of data on risk factors for new-onset diabetes mellitus after kidney transplantation from the included studies was carried out. A narrative review of risk factors for new-onset diabetes mellitus after kidney transplantation was also carried out.

Results: A total of 24 case–control studies were included in the meta-analysis, with a total of 7,140 patients. There were 1,598 patients with new-onset diabetes mellitus after kidney transplantation, and 5,542 patients without new-onset diabetes mellitus after kidney transplantation. The meta-analysis results showed that age, polycystic kidney disease, family history of diabetes, body mass index, acute rejection, tacrolimus use, hepatitis B virus infection, hepatitis C virus infection and hypertension were associated with new-onset diabetes mellitus after kidney transplantation, whereas sex, sirolimus use, cyclosporin A use, steroid use and cytomegalovirus infection were not associated with new-onset diabetes mellitus after kidney transplantation.

Conclusions: Older age, body mass index, family history of diabetes, tacrolimus use, history of hypertension, polycystic kidney disease, acute rejection, hepatitis B virus infection and hepatitis C virus infection are risk factors for new-onset diabetes mellitus after kidney transplantation. Therefore, the clinical implications of these factors warrant attention.

INTRODUCTION
New-onset diabetes mellitus after transplantation (NODAT) refers to the detection of diabetes after a successful organ transplantation in patients who had not previously shown abnormal blood glucose levels before surgery. With the continuous developments and improvements in the field of organ transplantation, kidney transplantation has been carried out in an increasing number of patients; however, NODAT often occurs after kidney transplantation, with an incidence rate of 2–50%1–3. NODAT can lead to related complications, such as kidney transplant failure, cardiovascular disease and infection4, seriously endangering the quality of life and prognosis of patients with a kidney transplant, and increasing their economic burden. Some studies have shown that the occurrence and development of NODAT after renal transplantation are affected by age, body mass index (BMI), hepatitis C virus (HCV) infection, cytomegalovirus (CMV) infection, use of immunosuppressive drugs, polycystic kidney disease, acute rejection, family history of diabetes mellitus and other risk factors5–11; however, there are still controversies. Therefore, a comprehensive and accurate understanding of NODAT-related risk factors after renal transplantation is necessary to prevent and clinically manage NODAT in renal transplant recipients.
METHODS
All analyses were based on previously published studies; therefore, ethical approval and patient consent were not required.

Inclusion and exclusion criteria
The inclusion criteria were as follows: (i) type of study: case–control study; (ii) participants: patients aged >18 years and undergoing kidney transplantation for the first time; (iii) exposure factors: risk factors for NODAT in kidney transplant recipients; and (iv) outcome indicators: NODAT after kidney transplantation, diagnosed according to the diagnostic criteria of the World Health Organization or the American Diabetes Association.

The exclusion criteria were as follows: (i) repeated publications; (ii) too few risk factors or too few cases; and (iii) unavailable full text, incomplete data, unconvertible data or no control group.

Search strategy
PubMed, Web of Science, Embase, the Cochrane Library databases and other databases were searched by computer to collect case–control studies on the risk factors for NODAT after kidney transplantation. The retrieval period was from the establishment of the database through July 2019. In addition, references cited in the articles were traced to supplement the relevant literature. For retrieval, a combination of subject words and free words were used. The search terms included “kidney transplantation,” “renal transplantation,” “renal transplants,” “kidney grafting,” “kidney transplantations,” “diabetes mellitus,” “diabetes insipidus,” “prediabetic state,” “scroderma adulterum,” “glucose tolerance” and ‘gastroparesis.’

Literature selection and data extraction
Two researchers independently screened, extracted and cross-checked the literature. Any differences were resolved through discussion and consultation with a third researcher. When selecting documents, the titles were read first. After excluding obviously irrelevant documents, the abstract and full text were read to determine their eligibility for inclusion. If necessary, the authors of the original study were contacted by email or phone to obtain any uncertain, but essential information for the present study. The following data were extracted: (i) basic information including title, author, publication date, study type, publication area and follow-up time; (ii) baseline characteristics of the study participants, such as sample content and basic information, as well as exposure of risk factors in the case group and control group; (iii) number of cases and controls, and exposure and non-exposure in each study; (iv) key elements of bias risk assessment; and (v) outcome indicators and outcome measurement data.

Risk assessment of the included studies
Two researchers independently evaluated the risk of bias in the study according to the Newcastle–Ottawa Scale (NOS). In the case of disagreement, a third reviewer made the final decision.

Statistical analysis
Revman 5.3 software (Cochrane Collaboration, Oxford, UK) was used for meta-analysis. The mean difference was used as the effect index in measurement data and the odds ratio (OR) was used as the effect index in counting data. The point estimates and 95% confidence intervals (CIs) were calculated for each effect quantity. The heterogeneity among the results was analyzed using the χ^2-test (test level $\alpha = 0.1$), and the degree of heterogeneity was determined by the I2 statistic. If there was no statistical heterogeneity between the results of each study, the fixed effects model was used for meta-analysis; however, if there was statistical heterogeneity between the results of each study, the source of heterogeneity was further analyzed. After excluding the influence of obvious clinical heterogeneity, the random effects model was used for meta-analysis. The inspection level of the meta-analysis was set as $\alpha = 0.05$. Obvious clinical heterogeneities were subjected to subgroup analysis or sensitivity analysis, or only descriptive analysis. Funnel plot analysis was used to assess publication bias.

RESULTS

Risk assessment of the included studies
Two researchers independently evaluated the risk of bias in the study according to the Newcastle–Ottawa Scale (NOS). In the case of disagreement, a third reviewer made the final decision.

Statistical analysis
Revman 5.3 software (Cochrane Collaboration, Oxford, UK) was used for meta-analysis. The mean difference was used as the effect index in measurement data and the odds ratio (OR) was used as the effect index in counting data. The point estimates and 95% confidence intervals (CIs) were calculated for each effect quantity. The heterogeneity among the results was analyzed using the χ^2-test (test level $\alpha = 0.1$), and the degree of heterogeneity was determined by the I2 statistic. If there was no statistical heterogeneity between the results of each study, the fixed effects model was used for meta-analysis; however, if there was statistical heterogeneity between the results of each study, the source of heterogeneity was further analyzed. After excluding the influence of obvious clinical heterogeneity, the random effects model was used for meta-analysis. The inspection level of the meta-analysis was set as $\alpha = 0.05$. Obvious clinical heterogeneities were subjected to subgroup analysis or sensitivity analysis, or only descriptive analysis. Funnel plot analysis was used to assess publication bias.

RESULTS

Literature screening process and results
A total of 1,054 related articles were collected in the initial examination. After the layer-by-layer screening, 24 articles were finally included1–3,6,9–28. The 24 studies involved 7,140 patients, including 1,598 with NODAT after kidney transplantation and 5,542 without NODAT after kidney transplantation. The process and results of the literature screening are shown in Figure 1.

Basic characteristics of the included studies and results of bias risk assessment
Table 1 shows the basic characteristics of the included studies and the results of bias risk assessment according to the NOS. Tables 2 and 3 summarize relevant information on meta-analysis of modifiable risk factors and non-modifiable risk factors, respectively.

Meta-analysis results

Non-modifiable factors
1. Age: 17 studies19,20,21,24,25,27,28 were included, with 1,105 patients in the NODAT group and 3,530 patients in the non-NODAT group. After the heterogeneity test ($P < 0.00001, I^2 = 78\%$), the random effects model was used, and the results showed that age was a risk factor for NODAT after kidney transplantation (mean difference $= 6.05, 95\% \text{CI} 4.33–7.78, P < 0.00001$; Figure 2).
2. Sex: 21 studies$^{1–3,6,9–15,17–22,24,25,27,28}$ were included, with 1,512 patients in the NODAT group and 5,537 patients in the non-NODAT group. After the heterogeneity test ($P = 0.42, I^2 = 3\%$), the fixed effects model was used, and the results showed that sex was not a risk factor for NODAT after kidney transplantation (OR $1.00, 95\% \text{CI} 0.88–1.13, P = 0.97$; Figure 3).
3. Polycystic kidney disease: 10 studies\(^1,9,13,14,17,18,20,23,26,27\) were included, with 638 patients in the NODAT group and 1,824 patients in the non-NODAT group. After the heterogeneity test \((P = 0.17, I^2 = 30\%)\), the fixed effects model was used, and the results showed that polycystic kidney disease was a risk factor for NODAT after kidney transplantation \((OR 1.69, 95\% CI 1.22–2.34, P = 0.002; Figure 4)\).

4. Family history of diabetes mellitus: 14 studies\(^1,3,9–13,15,17,22,23,25–27\) were included, with 829 patients in the NODAT group and 3,113 patients in the non-NODAT group. According to the heterogeneity test \((P < 0.00001, I^2 = 83\%)\) and the random-effect model, family history of diabetes was a risk factor for NODAT after kidney transplantation \((OR 3.14, 95\% CI 1.87–5.27, P < 0.0001; Figure 5)\).

Modifiable risk factors

1. BMI: 14 studies\(^1,6,9,11,13–18,20,25–27\) were included, with 990 patients in the NODAT group and 2,466 patients in the non-NODAT group. After the heterogeneity test \((P = 0.0006, I^2 = 64\%)\), the random effects model was used, and BMI was found to be a risk factor for NODAT after kidney transplantation \((OR 1.82, 95\% CI 1.35–2.30, P < 0.00001; Figure 6)\).

2. Tacrolimus use: 12 studies \(^6,9–11,13,14,19,20,23,25,27,28\) were included, with 1,011 patients in the NODAT group and 3,398 patients in the non-NODAT group. After the heterogeneity test \((P = 0.017, I^2 = 30\%)\), the fixed effects model was used, and the results showed that tacrolimus use was a risk factor for NODAT after kidney transplantation \((OR 1.20, 95\% CI 1.02–1.41, P = 0.03; Figure 7)\).

3. Sirolimus use: five studies \(^10,11,14,19,28\) were included, with 558 patients in the NODAT group and 1,814 patients in the non-NODAT group. After the heterogeneity test \((P < 0.00001, I^2 = 86\%)\) and the random-effect model, sirolimus use was not a risk factor for NODAT after kidney transplantation \((OR 2.21, 95\% CI 0.96–5.09, P = 0.06; Figure 8)\).

4. Cyclosporin A use: seven studies \(^3,6,9,13,14,19,28\) were included, with 659 patients in the NODAT group and 2,268 patients in the non-NODAT group. After the heterogeneity test \((P = 0.003, I^2 = 70\%)\), the random effects model was used, and the results showed that cyclosporin A use was not a risk factor for NODAT after kidney transplantation \((OR 0.91, 95\% CI 0.63–1.31, P = 0.61; Figure 9)\).

5. Steroid use: eight studies \(^3,6,9,12–14,17,18\) were included, with 630 patients in the NODAT group and 1,750 patients in the non-NODAT group. After the heterogeneity test \((P = 0.82, I^2 = 0\%)\), the fixed effects model was used, and the results showed that steroid use was not a risk factor for NODAT after kidney transplantation \((OR 1.42, 95\% CI 0.97–2.08, P = 0.07; Figure 10)\).
| Author | Year | Study type | NOS | Country | NODAT (n) | Sample (n) | Period | Risk factors |
|--------------------|------|------------------|-----|------------|-----------|------------|-----------------|---|
| Choudhury et al. | 2019 | Case-control study | 7 | India | 43 | 133 | NA | Age, BMI, Sex, HCV, CMV, tacrolimus, cyclosporine A, hypertension, steroid |
| Jahromi et al. | 2019 | Case-control study | 7 | Kuwait | 154 | 309 | 2015–2016 | Sex, CMV, hypertension, Polycystic kidney, HCV, CMV, tacrolimus, family history of diabetes mellitus, sex, BMI age |
| Lima et al. | 2018 | Case-control study | 6 | Brazil | 80 | 258 | 2015.7–2015.12 | HCV, CMV, polycystic kidney, HCV, CMV, tacrolimus, family history of diabetes mellitus, age, BMI sex |
| Xu et al. | 2018 | Case-control study | 7 | China | 110 | 358 | 2010.1–2014.12 | Polycystic kidney, acute rejection, family history of diabetes mellitus, age, BMI, sex |
| Sinangil et al. | 2017 | Case-control study | 6 | Turkey | 70 | 420 | 2005.2–2014.2 | Sirolimus, HCV, HBV, tacrolimus, acute rejection, family history of diabetes mellitus, age, BMI, sex |
| Yang et al. | 2017 | Case-control study | 8 | China | 71 | 365 | 2004.12–2014.12 | Polycystic kidney, acute rejection, family history of diabetes mellitus, age, BMI, sex |
| Yu et al. | 2016 | Case-control study | 6 | South Korea | 85 | 418 | 2009.1–2012.4 | Polycystic kidney, acute rejection, family history of diabetes mellitus, age, BMI, sex |
| Xie et al. | 2016 | Case-control study | 7 | China | 37 | 397 | 2007.1–2010.5 | Polycystic kidney, acute rejection, family history of diabetes mellitus, age, BMI, sex |
| Dedinská et al. | 2015 | Case-control study | 7 | Slovak Republic | 64 | 167 | 2003–2012 | Polycystic kidney, HCV, CMV, family history of diabetes mellitus, age, BMI, sex |
| Augusto et al. | 2014 | Case-control study | 7 | France | 28 | 154 | 2005–2010 | Polycystic kidney, acute rejection, family history of diabetes mellitus, age, BMI, sex |
| Buarque et al. | 2014 | Case-control study | 7 | Brazil | 61 | 307 | 2006.1–2010.12 | Polycystic kidney, HCV, CMV, acute rejection, family history of diabetes mellitus, age, BMI, sex |
| Cotovio et al. | 2013 | Case-control study | 7 | Portugal | 47 | 94 | 2005–2009 | Polycystic kidney, HCV, CMV, acute rejection, family history of diabetes mellitus, age, BMI, sex |
| Chen et al. | 2012 | Case-control study | 6 | Spain | 162 | 319 | NA | Polycystic kidney, acute rejection, family history of diabetes mellitus, age, BMI, sex |
| Kurzawski et al. | 2012 | Case-control study | 7 | Poland | 67 | 235 | 2000–2009 | Polycystic kidney, HCV, CMV, acute rejection, family history of diabetes mellitus, age, BMI, sex |
| Prakash et al. | 2012 | Case-control study | 6 | India | 13 | 68 | 1998.1–2012.4 | Polycystic kidney, HCV, acute rejection, family history of diabetes mellitus, age, BMI, sex |
| Santos et al. | 2012 | Case-control study | 6 | Spain | 37 | 303 | NA | Polycystic kidney, HCV, tacrolimus, acute rejection, family history of diabetes mellitus, age, BMI, sex |
| Yang et al. | 2011 | Case-control study | 6 | Spain | 133 | 303 | NA | Polycystic kidney, HCV, tacrolimus, acute rejection, family history of diabetes mellitus, age, BMI, sex |
| Razeghi et al. | 2010 | Case-control study | 6 | Iran | 30 | 90 | 2003.6–2004.5 | Polycystic kidney, HCV, tacrolimus, acute rejection, family history of diabetes mellitus, age, BMI, sex |
| Ghisdal et al. | 2009 | Case-control study | 7 | France | 118 | 1076 | NA | Polycystic kidney, HCV, tacrolimus, acute rejection, family history of diabetes mellitus, age, BMI, sex |
| Laecke et al. | 2009 | Case-control study | 6 | Belgium | 75 | 254 | 2002–2008 | Polycystic kidney, HCV, tacrolimus, acute rejection, family history of diabetes mellitus, age, BMI, sex |
| Chakkera et al. | 2009 | Case-control study | 6 | America | 22 | 91 | 2003–2006 | Polycystic kidney, HCV, tacrolimus, acute rejection, family history of diabetes mellitus, age, BMI, sex |
| Hamer et al. | 2007 | Case-control study | 8 | England | 28 | 429 | 1990–2004 | Polycystic kidney, HCV, tacrolimus, acute rejection, family history of diabetes mellitus, age, BMI, sex |
| Andrade-Sierra et al. | 2006 | Case-control study | 7 | Mexico | 53 | 522 | 1994.1–2002.12 | Polycystic kidney, HCV, acute rejection, family history of diabetes mellitus, age, BMI, sex |
| Numakura et al. | 2005 | Case-control study | 6 | Japan | 10 | 70 | 1998.2–2004.3 | Polycystic kidney, HCV, acute rejection, family history of diabetes mellitus, age, BMI, sex |

NA, not available; NODAT, new-onset diabetes mellitus after transplantation; NOS, Newcastle–Ottawa Scale.
Table 2 | Summary of meta-analysis results of non-modifiable factors for new-onset diabetes mellitus after renal transplantation

Factors	No. study	Sample (n)	Heterogeneity test	Effects model	OR/MD (95% CI)	P-value
Age	17	4,635	<0.00001	Random effects model	6.05 (4.33–7.78)	<0.00001
Sex	21	6,849	0.42	Fixed effects model	1.00 (0.88–1.13)	0.97
Polycystic kidney disease	10	2,462	0.17	Fixed effects model	1.69 (1.22–2.34)	0.002
Family history of diabetes mellitus	14	3,942	<0.00001	Random effects model	3.14 (1.87–5.27)	<0.0001

CI, confidence interval; MD, mean difference; NODAT, new-onset diabetes mellitus after transplantation; OR, odds ratio.

Table 3 | Summary of meta-analysis results of modifiable factors for new-onset diabetes mellitus after renal transplantation

Factors	No. study	Sample (n)	Heterogeneity test	Effects model	OR/MD (95% CI)	P-value
BMI	14	3,456	0.0006	Random effects model	1.82 (1.35, 2.30)	<0.00001
Tacrolimus use	12	4,409	0.009	Fixed effects model	1.2 (1.02, 1.41)	0.03
Sirolimus use	5	2,372	<0.00001	Random effects model	2.21 (0.96, 5.09)	0.06
Cyclosporin A use	7	2,927	0.003	Random effects model	0.91 (0.63, 1.31)	0.61
Steroid use	8	2,380	0.82	Fixed effects model	1.42 (0.97, 2.08)	0.07
Acute rejection	13	4,921	0.05	Fixed effects model	1.97 (1.61, 2.41)	<0.00001
HBV	3	1,020	0.05	Random effects model	3.53 (1.12, 11.13)	0.03
HCV	12	3,177	0.4	Fixed effects model	1.51 (1.01, 2.24)	0.04
CMV	8	2,069	0.21	Fixed effects model	1.11 (0.81, 1.53)	0.51
Hypertension	11	2,841	0.4	Fixed effects model	1.48 (1.19, 1.85)	0.0004

CI, confidence interval; MD, mean difference; NODAT, new-onset diabetes mellitus after transplantation; OR, odds ratio.

Figure 2 | Forest plots (random effects model) of meta-analysis on the association between age and the risk of new-onset diabetes mellitus after renal transplantation.

© 2020 The Authors. Journal of Diabetes Investigation published by AASD and John Wiley & Sons Australia, Ltd
6. Acute rejection: 13 studies1,9–14,19–22,24,25 were included, with 923 patients in the NODAT group and 3,998 patients in the non-NODAT group. After the heterogeneity test ($P = 0.05$, $I^2 = 42\%$), the fixed effects model was used, and the results showed that acute rejection was a risk factor for NODAT after kidney transplantation [OR 1.97, 95% CI 1.61–2.41, $P < 0.00001$; Figure 11].

7. Hepatitis B virus (HBV) infection: three studies were included1,11,21, with 208 patients in the NODAT group and 812 patients in the non-NODAT group. After the

Table 1

Study or Subgroup	NODAT	Non-NODAT	Weight	Odds Ratio M-H, Fixed	95% CI	
Andrade-Sierra J 2006	34	53	300	469	4.4%	1.01 [0.56, 1.82]
Augusto JF 2014	22	28	83	126	1.3%	1.90 [0.72, 5.04]
Chakkera HA 2009	9	22	37	69	2.1%	0.60 [0.23, 1.58]
Chen Y 2012	90	162	83	157	7.5%	1.11 [0.72, 1.73]
Cotovio P 2013	36	47	31	47	1.5%	1.69 [0.68, 4.18]
Dedinská I 2015	38	64	64	103	4.0%	0.89 [0.47, 1.69]
Ghiysal L 2009	68	118	603	958	11.2%	0.80 [0.54, 1.18]
Hamer RA 2007	9	28	154	401	2.7%	0.76 [0.34, 1.72]
Jahromi M 2019	107	154	112	155	6.8%	0.87 [0.53, 1.43]
Jin Yang 2017	45	71	185	294	5.3%	1.02 [0.60, 1.75]
Kurzawski M 2012	30	67	78	168	4.9%	0.94 [0.53, 1.65]
Lima C 2018	50	80	94	178	4.4%	1.49 [0.87, 2.56]
Numakura K 2005	6	10	31	60	0.7%	1.40 [0.36, 5.48]
Finneiro Buarque MN 2014	35	51	139	246	4.7%	1.04 [0.59, 1.83]
Santos L 2012	26	37	173	266	2.5%	1.27 [0.60, 2.69]
Sinagil A 2017	34	70	234	350	8.0%	0.47 [0.28, 0.79]
Van Laecke S 2009	46	75	106	179	4.9%	1.09 [0.63, 1.90]
Xie L 2016	26	37	273	360	3.0%	0.75 [0.36, 1.59]
Xu J 2018	61	110	132	248	7.2%	1.09 [0.70, 1.72]
Yang J 2011	58	133	74	170	7.3%	1.00 [0.63, 1.59]
Yu H 2016	53	85	176	333	5.4%	1.48 [0.91, 2.41]

Figure 3 | Forest plots (fixed effects model) of meta-analysis on the association between sex and the risk of new-onset diabetes mellitus after renal transplantation.
heterogeneity test \((P = 0.05, I^2 = 67\%)\), the random effects model was used, and the results showed that HBV infection was a risk factor for NODAT after kidney transplantation (OR 3.53, 95% CI 1.12–11.13, \(P = 0.03\); Figure 12).

8. HCV infection: 12 studies\(^{6,10–12,15,17,18,21–23,25,27}\) were included, with 831 patients in the NODAT group and 2,346 patients in the non-NODAT group. After the heterogeneity test \((P = 0.40, I^2 = 5\%)\), the fixed effects model was used, and the results showed that HCV infection was a risk factor for NODAT after kidney transplantation (OR 1.11, 95% CI 1.01–2.24, \(P = 0.04\); Figure 13).

9. CMV infection: eight studies\(^{1,2,6,17,21,22,24,27}\) were included, with 617 patients in the NODAT group and 1,452 patients in the non-NODAT group. After the heterogeneity test \((P = 0.21, I^2 = 27\%)\), the fixed effects model was used, and the results showed that CMV infection was not a risk factor for NODAT after kidney transplantation (OR 1.11, 95% CI 0.81–1.53, \(P = 0.51\); Figure 14).

10. Hypertension: 11 studies\(^{1–3,6,9,10,13,17,18,22,26}\) were included, with 805 patients in the NODAT group and 2,036 patients in the non-NODAT group. After the heterogeneity test \((P = 0.40, I^2 = 4\%)\), the fixed effects model was used, and the results showed that hypertension was a risk factor for NODAT after kidney transplantation (OR 1.48, 95% CI 1.19–1.85, \(P = 0.0004\); Figure 15).

Results of publication bias assessment

Two funnel plots were drawn based on age and HCV infection. The scatter plots were roughly symmetrical, suggesting a low likelihood of publication bias (Figures 16,17).

DISCUSSION

The occurrence and development of NODAT after renal transplantation are affected by many factors, including non-modifiable and modifiable factors. The non-modifiable factors include age, family history of diabetes, polycystic kidney disease, race and gene polymorphism\(^{5,9,11}\), whereas the modifiable factors include BMI, acute rejection, immunosuppressant use, HBV infection, HCV infection, CMV infection, hypertension and dipeptidyl peptidase-4 inhibitor use\(^{1,6,8,10,11}\). In the present study, age, sex, family history of diabetes, hypertension, polycystic kidney disease, BMI, acute rejection, tacrolimus use, sirolimus use, cyclosporin A use, steroid use, HBV infection, HCV infection, CMV infection were included in the meta-analysis.

A number of studies have shown that age can affect the occurrence of NODAT\(^{13–15}\). The present study also found that age is a risk factor for the occurrence of NODAT after kidney transplantation, which might be related to the progressive decline of islet \(\beta\)-cell function with increasing age.

Family history of diabetes mellitus is an important risk factor for NODAT in transplant recipients\(^{23,26}\). It has been reported that the risk of NODAT in patients with a family history of type 2 diabetes is 6.4–8.6-fold higher than that in patients without a family history of type 2 diabetes\(^{1,17}\). The present study suggests that a family history of diabetes can increase the risk of NODAT in renal transplant recipients by up to 3.14-fold.

Whether polycystic kidney disease is a risk factor for NODAT after kidney transplantation remains controversial. Prakash et al.\(^{23}\) and other researchers reported that polycystic kidney disease is a risk factor for NODAT after kidney transplantation, whereas Cotovio et al.\(^{18}\) and other groups found that polycystic kidney disease is not a risk factor for NODAT.
after kidney transplantation. Through the analysis of ten case–control studies, the present study found that preoperative polycystic kidney disease increases the risk of NODAT after kidney transplantation by 1.69-fold, which might be related to insulin resistance and hyperinsulinemia in some polycystic kidney disease patients.

A number of studies have shown that BMI is a risk factor for NODAT after kidney transplantation. The mechanism of NODAT is related to the fact that obesity stimulates \(\beta \)-cells of islets of Langerhans to induce insulin resistance, thereby weakening the ability of blood glucose clearance. In the present study, the analysis of 14 case–control studies showed that BMI is a risk factor for NODAT after kidney transplantation, which is consistent with previous studies.

Acute rejection is a type of stress reaction that has been recognized as a risk factor for NODAT in kidney transplant recipients. The mechanism of NODAT after kidney transplantation might be related to glucocorticoid shock therapy...
after acute rejection, because high-dose glucocorticoid shock therapy could reduce the renal function of transplantation, and reduce the ability to clear insulin, which could lead to peripheral insulin resistance, and produce abnormal glucose metabolism1,32,33. In addition, acute rejection can increase the level of insulin antagonists, such as growth hormone,
NODAT after renal transplantation, but CMV infection is not. The infectious factors that affect NODAT include HBV, HCV and CMV infection. Its pathogenesis might be related to the direct damage to islet β-cells caused by infection, the increase of insulin resistance caused by insulin receptor deficiency, and the decrease of liver glucose uptake and glycogen production.31 The present study showed that HBV and HCV infections are risk factors for NODAT after renal transplantation, but CMV infection is not.

Catecholamine, glucagon and glucocorticoid, and then increase the level of blood glucose34,35. The combined analysis of 12 case–control studies in the present study showed that acute rejection increases the risk of NODAT after renal transplantation by 1.95-fold.

The previously reported immunosuppressants that can cause NODAT include corticosteroids, calcineurin inhibitors and rapamycin target protein inhibitors6,10,27. In the present study, the combined results showed that tacrolimus use is a risk factor for NODAT after renal transplantation. The possible mechanism of NODAT caused by tacrolimus is as follows: (i) tacrolimus has a direct damage effect on β-cells of islets, which are morphologically manifested as the expansion, vacuolation and reduction of dense-core secretory granules of β-cells of islets; and (ii) the synthesis of insulin is inhibited. Tacrolimus is an inhibitor of neurocalcin, which can not only inhibit calcineurin to exert its immunosuppressive effect, but also specifically and reversibly inhibit the transcription of the insulin gene, so as to reduce insulin synthesis.35,36 However, the use of sirolimus or cyclosporin A is not a risk factor for NODAT after renal transplantation in the present study, which might be related to the short observation time of NODAT and the low dose of cyclosporine A in some studies.12,13 In addition, our combined results showed that steroid use is not a risk factor for NODAT after renal transplantation, which might be related to the short use time or low dose of steroids in some studies.3,12,17

Figure 11 | Forest plots (fixed effects model) of meta-analysis on the association between acute rejection and the risk of new-onset diabetes mellitus after renal transplantation.

Study or Subgroup	NODAT Events	NODAT Total	Non-NODAT Events	Non-NODAT Total	Weight	Odds Ratio M-H, Fixed, 95% CI
Andrade-Sierra J 2006	27	53	124	469	10.1%	2.89 [1.62, 5.14]
Augusto JF 2014	4	28	17	126	4.3%	1.07 [0.33, 3.46]
Chen Y 2012	16	162	6	157	4.5%	2.76 [1.05, 7.24]
Ghideal L 2009	37	118	172	958	21.2%	2.09 [1.37, 3.18]
Hamer RA 2007	12	28	186	401	11.4%	0.87 [0.40, 1.88]
Jin Yang 2017	18	71	29	294	6.9%	3.10 [1.61, 5.99]
Kurzawski M 2012	9	67	10	168	4.0%	2.45 [0.95, 6.34]
Namakura K 2005	3	10	20	60	3.3%	0.86 [0.20, 3.67]
Pinheiro Buarque MN 2014	11	61	16	246	4.3%	3.16 [1.38, 7.23]
Santos L 2012	9	37	64	266	9.7%	1.01 [0.45, 2.26]
Sinangil A 2017	2	70	20	350	5.3%	0.49 [0.11, 2.13]
Yang J 2011	30	133	14	170	7.8%	3.25 [1.64, 6.42]
Yu H 2016	9	85	24	333	7.2%	1.52 [0.68, 3.41]
Total (95% CI)	923	3998	100.0%	1.97 [1.61, 2.41]		
Total events	1872	702				

Heterogeneity: χ² = 20.70, df = 12 (P = 0.00001); I² = 42%
Test for overall effect: Z = 6.53 (P < 0.00001)

Figure 12 | Forest plots (random effect model) of meta-analysis on the association between hepatitis B virus and the risk of new-onset diabetes mellitus after renal transplantation.

Study or Subgroup	NODAT Events	NODAT Total	Non-NODAT Events	Non-NODAT Total	Weight	Odds Ratio M-H, Fixed, 95% CI
Jin Yang 2017	19	71	12	294	41.7%	8.59 [3.93, 18.75]
Kurzawski M 2012	2	67	3	168	22.6%	1.69 [0.28, 10.36]
Sinangil A 2017	5	70	13	350	35.7%	1.99 [0.69, 5.78]
Total (95% CI)	208	812	100.0%	3.53 [1.12, 11.13]		
Total events	26	28				

Heterogeneity: Tau² = 0.67; Chi² = 6.00, df = 2 (P = 0.05); I² = 67%
Test for overall effect: Z = 2.15 (P = 0.03)
At present, there is no single study showing that hypertension is a risk factor for NODAT after renal transplantation. We have included eleven articles and found that hypertension is also a risk factor for NODAT after renal transplantation. This might be related to the increased secretion of inflammatory factors caused by the increase of homocysteine in patients with hypertension, which could lead to the abnormal function of adipose tissue, and increased production and secretion of resistin, leading to the occurrence of inflammatory reaction and insulin resistance.

The present study had some limitations. The research quality of the included studies was roughly the same. Only Chinese and English studies were included. As one of the 24 included articles was written in Chinese and 23 of them were written in English, they could not fully reflect the differences in ethnicity, regions and other influencing factors. In the present study, the number of articles on some influencing factors was small. Therefore, it was difficult to determine the relationship between those factors and the occurrence of NODAT after kidney transplantation. Furthermore, the sample size of some of the included studies was small. Therefore, multicenter and large-sample epidemiological studies are required to further clarify the risk factors for NODAT after kidney transplantation.

To summarize, age, BMI, family history of diabetes, history of hypertension, polycystic kidney disease, acute rejection, HBV infection, HCV infection and tacrolimus use are risk factors for NODAT in kidney transplant recipients. Therefore, the clinical implications of these factors warrant attention. More studies with high demonstration intensity are required in the future.
ACKNOWLEDGMENTS
We declare that no funding was received for this work, and no honorarium, grant or other forms of payment were given to anyone to produce the manuscript.

DISCLOSURE
The authors declare no conflict of interest.

REFERENCES
1. Yang J, Fang F, Yang F. Risk factors for new-onset diabetes mellitus after kidney transplantation: a retrospective study. Chin J Tissue Eng Res 2017; 21: 3275–3280.
2. Lima C, Grden A, Skare T, et al. Risk factors for new-onset diabetes mellitus after kidney transplantation (NODAT): a Brazilian single center study. Arch Endocrinol Metab 2018; 62: 597–601.
3. Xie L, Tang W, Wang X, et al. Pretransplantation risk factors associated with new-onset diabetes after living-donor kidney transplantation. Transpl Proc 2016; 48: 3299–3302.
4. Szili-Torok T, Annema W, Anderson JLC, et al. HDL cholesterol efflux predicts incident new-onset diabetes after transplantation (NODAT) in renal transplant recipients independent of HDL cholesterol levels. Diabetes 2019; 68: 1915–1923.
5. Paek JH, Kang SS, Park WY, et al. Incidence of post-transplantation diabetes mellitus within 1 year after kidney transplantation and related factors in Korean cohort study. Transpl Proc 2019; 51: 2714–2717.
6. Jahromi M, Al-Otaibi T, Othman N, et al. Immunogenetics of new onset diabetes after transplantation in Kuwait. Diabetes Metab Syndr Obes 2019; 12: 731–742.

7. Santos AH, Chen C, Casey MJ, et al. New-onset diabetes after kidney transplantation: can the risk be modified by choosing immunosuppression regimen based on pretransplant viral serology?. Nephrol Dial Transplant 2018; 33: 177–184.

8. Roland M, Gatault P, Al-Najjar A, et al. Early pulse pressure and low-grade proteinuria as independent long-term risk factors for new-onset diabetes mellitus after kidney transplantation. Am J Transplant 2008; 8: 1719–1728.

9. Yu H, Kim H, Baek CH, et al. Risk factors for new-onset diabetes mellitus after living donor kidney transplantation in Korea – a retrospective single center study. BMC Nephrol 2016; 17: 106.

10. Yang J, Hutchinson II, Shah T, et al. Genetic and clinical risk factors of new-onset diabetes after transplantation in Hispanic kidney transplant recipients. Transplantation 2011; 91: 1114–1119.

11. Sinangil A, Celik V, Barlas S, et al. The incidence of new onset diabetes after transplantation and related factors: single center experience. Nefrologia 2017; 37: 181–188.

12. Andrade-Sierra J, Contreras AM, Monteeon FJ, et al. Risk factors and incidence of posttransplant diabetes mellitus in Mexican kidney recipients. Arch Med Res 2006; 37: 961–966.

13. Augusto JF, Subra JF, Duveau A, et al. Relation between pretransplant magnesemia and the risk of new onset diabetes after transplantation within the first year of kidney transplantation. Transplantation 2014; 97: 1155–1160.

14. Chen Y, Sampaio MS, Yang JW, et al. Genetic polymorphisms of the transcription factor NFATc4 and development of new-onset diabetes after transplantation in Hispanic kidney transplant recipients. Transplantation 2012; 93: 325–330.

15. Chakkera HA, Hanson RL, Raza SM, et al. Pilot study: association of traditional and genetic risk factors and new-onset diabetes mellitus following kidney transplantation. Transpl Proc 2009; 41: 4172–4177.

16. Choudhury PS, Mukhopadhyay P, Roychowdhry A, et al. Prevalence and predictors of “new-onset diabetes after transplantation” (NODAT) in renal transplant recipients: an observational study. Indian J Endocrinol Metab 2019; 23: 273–277.

17. Dedinská I, Laca L, Miklušica M, et al. Twelve-month and five-year analyses of risk factors for new-onset diabetes after transplantation in a group of patients homogeneous for immunosuppression. Transpl Proc 2015; 47: 1831–1839.

18. Cotovio P, Neves M, Rodrigues L, et al. New-onset diabetes after transplantation: assessment of risk factors and clinical outcomes. Transpl Proc 2013; 45: 1079–1083.

19. Ghisdal L, Baron C, Le Meur Y, et al. TCF7L2 polymorphism associates with new-onset diabetes after transplantation. J Am Soc Nephrol 2009; 20: 2459–2467.

20. Hamer RA, Chow CL, Ong AC, et al. Polycystic kidney disease is a risk factor for new-onset diabetes after transplantation. Transplantation 2007; 83: 36–40.

21. Kurzawski M, Dziewanowski K, Łapczuk J, et al. Analysis of common type 2 diabetes mellitus genetic risk factors in new-onset diabetes after transplantation in kidney transplant patients medicated with tacrolimus. Eur J Clin Pharmacol 2012; 68: 1587–1594.

22. Pinheiro Buarque MN, de Francesco Daher E, de Matos Esmeraldo R, et al. Historical cohort with diabetes mellitus after kidney transplantation and associated factors of its development in adult patients of a transplantation reference center in the State of Ceará, Brazil. Transpl Proc 2014; 46: 1698–1704.

23. Prakash J, Rathore SS, Brojen ST, et al. New onset diabetes after transplantation (NODAT): analysis of pre-transplant risk factors in renal allograft recipients. Indian J Transplant 2012; 6: 77–82.

24. Numakura K, Satoh S, Tsuchiya N, et al. Clinical and genetic risk factors for posttransplant diabetes mellitus in adult renal transplant recipients treated with tacrolimus. Transplantation 2005; 80: 1419–1424.

25. Santos L, Rodrigo E, Piñera C, et al. New-onset diabetes after transplantation: drug-related risk factors. Transpl Proc 2012; 44: 2585–2587.

26. Razeghi E, Heydarian P, Amerian M, et al. The risk factors for diabetes mellitus after kidney transplantation. Saudi J Kidney Dis Transpl 2010; 21: 1038–1043.

27. Xu J, Xu L, Wei X, et al. Incidence and risk factors of posttransplantation diabetes mellitus in living donor kidney transplantation: a single-center retrospective study in China. Transpl Proc 2018; 50: 3381–3385.

28. Van Laecke S, Van Biesen W, Verbeke F, et al. Posttransplantation hypomagnesemia and its relation with immunosuppression as predictors of new-onset diabetes after transplantation. Am J Transplant 2009; 9: 2140–2149.

29. Vareesangthip K, Tong P, Wilkinson R, et al. Insulin resistance in adult polycystic kidney disease. Kidney Int 1997; 52: 503–508.

30. Marrero D, Hernandez D, Tamajón LP, et al. Pre-transplant weight but not weight gain is associated with new-onset diabetes after transplantation: the effect on glucose tolerance. Nephrol Dial Transplant 2001; 16: 829–835.

31. Maes BD, Kuypers D, Messiaen T, et al. Posttransplantation diabetes mellitus in FK-506-treated renal transplant recipients: analysis of incidence and risk factors. Transplantation 2001; 72: 1655–1661.
34. Wang Y, Di W, Sun Q, et al. Post-transplantation diabetes mellitus and the risk factors. *J Nephrol Dial Transplant* 2015; 24: 21–25.

35. Chen X, Yao B, Dong TT, et al. The characteristics and risk factors for post-transplantation diabetes mellitus. *Chin J Intern Med* 2009; 48: 547–551.

36. Redmon JB, Olson LK, Armstrong MB, et al. Effects of tacrolimus (FK506) on human insulin gene expression, insulin mRNA levels, and insulin secretion in HIT-T15 cells. *J Clin Investig* 1996; 98: 2786–2793.

37. Yang N, Yao Z, Miao L, et al. Novel clinical evidence of an association between homocysteine and insulin resistance in patients with hypothyroidism or subclinical hypothyroidism. *PLoS One* 2015; 10: e0125922.

38. Liu J, Xu Y, Zhang H, et al. Coronary flow velocity reserve is impaired in hypertensive patients with hyperhomocysteinemia. *J Hum Hypertens* 2014; 28: 743–747.

39. Li Y, Zhang H, Jiang C, et al. Hyperhomocysteinemia promotes insulin resistance by inducing endoplasmic reticulum stress in adipose tissue. *J Biol Chem* 2013; 288: 9583–9592.