SIMILARITY, CODEPTH TWO BICOMODULES AND QF BIMODULES

F. CASTAÑO IGLESIAS AND LARS KADISON

ABSTRACT. For any k-coalgebra C it is shown that similar quasi-finite C-comodules have strongly equivalent coendomorphism coalgebras; (the converse is in general not true). As an application we give a general result about codepth two coalgebra homomorphisms. Also a notion of codepth two bicomodule is introduced. The last section applies similarity to an endomorphism ring theorem for quasi-Frobenius (QF) bimodules and then to finite depth ring extensions. For QF extensions, we establish that left and right depth two are equivalent notions as well as a converse endomorphism theorem, and characterize depth three in terms of separability and depth two.

INTRODUCTION

For a ring R, two right R-modules M and N are similar [1] (H-equivalent in sense of Hirata) if M is a direct summand of $N^{(n)}$ and N is a direct summand of $M^{(m)}$ for some $m, n \in \mathbb{N}$. For example, M is similar to R if and only if M is a finitely generated projective generator. Hirata showed in [4] that similar R-modules $M \sim N$ have Morita equivalent endomorphism rings E_M and E_N; whence isomorphic centers, $\text{End}_{E_M} M_R \cong \text{End}_{E_N} N_R$. (The converse is not true in general.) By taking R to be the enveloping ring of two rings, we extend this to a notion of similar bimodules.

For a k-coalgebra C, the notion of ingenerator comodule is introduced by Lin in [9] to characterize strong equivalences between comodule categories. A right C-comodule M is said to be an ingenerator if there are $m, n \in \mathbb{N}$ and $P, Q \in \mathcal{M}^C$ such that $M \oplus P \cong C^{(m)}$ and $C \oplus Q \cong M^{(n)}$. More generally, two right C-comodules M_C and N_C are called similar if there are $m, n \in \mathbb{N}$ and $P, Q \in \mathcal{M}^C$ such that $M \oplus P \cong N^{(m)}$ and $N \oplus Q \cong M^{(n)}$. Our first result in this note is to extend the result of Hirata to coalgebras. More precisely, if two quasi-finite C-comodules are similar, then their coendomorphism coalgebras are strongly equivalent in sense of Lin [9]. Using the notion of codepth two coalgebra homomorphism, introduced by the second author in [5], it is proved in Section 2, as an application, that any codepth two coalgebra homomorphisms $\varphi : C \rightarrow D$, such that C_D and $(C \square_D C)_D$ are

Research partially supported by Spanish Project (MTM2005–03227) from MCT.
quasi-finite comodules, have strongly equivalent coendomorphism coalgebras $e_{-D}(C)$ and $e_{-D}(C\square_D C)$. Also in Section 2 a notion of codepth two bicomodule is introduced, where it is noted that $\varphi : C \to D$ is a codepth two coalgebra homomorphism if and only if the $D C_C$ is a codepth two bicomodule.

In the last section, using similar bimodules, we establish for QF bimodules an endomorphism ring theorem. In case of a QF ring extension, the tensor-square is similar with its endomorphism rings. This is applied to depth two and depth three QF extensions, showing that several results in [7] generalize from Frobenius to QF extensions.

1. Definitions and some results

Throughout this paper k is a field and \mathcal{M}_k stands for the category of k-vector spaces. A basic reference for theory of coalgebras is, for example, [13]. A coalgebra over k is a k-space C together with two k-linear maps $\Delta : C \to C \otimes C$ (the unadorned tensor product is understood to be over k) and $\epsilon : C \to k$ such that $(1_C \otimes \Delta)\Delta = (\Delta \otimes 1_C)\Delta$ and $(1_C \otimes \epsilon)\Delta = 1_C$.

A right C-comodule is a k-space M with a k-map $\rho : M \to M \otimes C$ such that $(\rho \otimes 1_C)\rho = (1_M \otimes \Delta)\rho$ and $(1 \otimes \epsilon)\rho = 1_M$. If M and N are C-comodules, a comodule map from M to N is a k-map $f : M \to N$ such that $(f \otimes 1)\rho = 1_M \otimes \rho f$. The k-space of all comodule maps from M to N is denoted by $\text{Com}_C(M, N)$ and \mathcal{M}^C denotes the category of right C-comodules. In the same way we can construct the category of left C-comodules $\mathcal{C}^C \mathcal{M}$.

It is well known that \mathcal{M}^C is an abelian category. In fact, \mathcal{M}^C is a locally finite Grothendieck category (generated by finite dimensional comodules). The fundamental properties of the categories of comodules can be found in several places, see e.g. [14, 3]. Let C be an arbitrary coalgebra, M a right C-comodule and N a left C-comodule, the cotensor product $M \square_C N$ is the kernel of the k-map $\rho_M \otimes 1 - 1 \otimes \rho_N : M \otimes N \to M \otimes C \otimes N$. Following [3], the cotensor product is a left exact functor $\mathcal{M}^C \times^C \mathcal{M} \to \mathcal{M}_k$. Moreover, the mapping $m \otimes c \mapsto \epsilon(c)m$ and $c \otimes n \mapsto \epsilon(c)n$ yield a natural isomorphism $M \square^C C N \cong M$ and $C \square^C N \cong N$. If C and D are two coalgebras, M is a (C, D)-bicomodule if $(1_C \otimes \rho^+)\rho^- = (\rho^- \otimes 1_D)\rho^+$ where $\rho^- : M \to C \otimes M$ and $\rho^+ : M \to M \otimes D$ are the structure maps of M. Moreover, if X is a right C-comodule, then the map $1_X \otimes \rho^+ : X \otimes M \to X \otimes M \otimes D$ define over $X \otimes M$ a structure of right D-comodule. In this case, $X \square^C C M$ is a D-subcomodule of $X \otimes M$. This defines a left exact functor $-\square^C C M : \mathcal{M}^C \to \mathcal{M}^D$ that preserves direct sums (see [14]).
Recall from [14] that a right C-comodule M is called quasi-finite if $\text{Com}_C(Y, M)$ is finite dimensional for every finite dimensional comodule $Y \in \mathcal{M}^C$. This is equivalent to the existence of a left adjoint $h_{-C}(M, -)$, called co-hom functor, to $- \otimes M$. If M is a (D, C)-bicomodule, the functor $h_{-C}(M, -) : \mathcal{M}^C \rightarrow \mathcal{M}^D$ becomes a left adjoint to the cotensor product functor $- \square_D M : \mathcal{M}^D \rightarrow \mathcal{M}^C$. If we assume that M_C is a quasi-finite comodule, then $e_{-C}(M) = h_{-C}(M, M)$ is a coalgebra, called co-endomorphism coalgebra of M. Furthermore, M is a $(e_{-C}(M), C)$-bicomodule via $\theta_M : M \rightarrow e_{-C}(M) \otimes M$, where $\theta : 1_{MC} \rightarrow h_{-C}(M, -) \square_D M$ denotes the unit of the adjunction.

Consider now two quasi-finite right C-comodules M_C and N_C. If we denote by $D_M = e_{-C}(M)$ and $D_N = e_{-C}(N)$ their coendomorphism coalgebras, then we can consider the diagram

$$
\begin{array}{ccc}
\mathcal{M}^D_M & \xleftarrow{h_{-C}(M, -)} & \mathcal{M}^C \\
\downarrow \circlearrowright_{\square_D M} & & \downarrow \circlearrowright_{\square_D N} \\
\mathcal{M}^D_N & \xrightarrow{h_{-C}(N, -)} & \mathcal{M}^D \\
\end{array}
$$

The composition of functors yield a pair of functors between the comodules categories over the coendomorphism coalgebras:

$$
F = h_{-C}(N, - \square_D M) : \mathcal{M}^D_M \cong \mathcal{M}^D_N : h_{-C}(M, - \square_D N) = G,
$$

where $F(D_M) \cong h_{-C}(N, M)$ and $G(D_N) \cong h_{-C}(M, N)$.

Following [14], a Morita-Takeuchi context $\Omega = (C, D; C M_D, D N_C; f, g)$ consists of coalgebras C and D, bicomodules $C M_D$ and $D N_C$ and bicolinear maps $f : C \rightarrow M \square_D N$ and $g : D \rightarrow N \square_C M$ satisfying the following commutative diagrams:

\[
\begin{array}{ccc}
M & \xrightarrow{\cong} & M \square_D D \\
\downarrow \cong & & \downarrow \cong \\
C \square_C M & \xrightarrow{f \square I} & M \square_D N \square_C M \\
\end{array}
\quad
\begin{array}{ccc}
N & \xrightarrow{\cong} & N \square_C C \\
\downarrow \cong & & \downarrow \cong \\
D \square_D N & \xrightarrow{g \square I} & N \square_C M \square_D N \\
\end{array}
\]

The context is said to be strict if f and g are bicolinear isomorphisms. In this case, the categories \mathcal{M}^C and \mathcal{M}^D are equivalent and we say that C is Morita-Takeuchi equivalent to D. The strict condition of the context is equivalent to say that the bicomodules M and N are injective cogenerated finitely cogenerated [14 Theorem 2.5].

For any quasi-finite right C-comodules M_C and N_C, it was proved in [8] that

$$
(2) \quad \Gamma_{M,N}^C = (D_M, D_N; h_{-C}(N, M), h_{-C}(M, N); f, g)
$$

is a Morita-Takeuchi context with bicolinear maps $f : D_M \rightarrow h_{-C}(N, M) \square_D h_{-C}(M, N)$.
and
\[g : D_N \rightarrow h_{-C}(M, N) \square_D M h_{-C}(N, M) \]
defined, respectively, by
\[(f \otimes 1) \theta_M = (1 \otimes \theta_N) \overline{\theta}_M \]
\[(g \otimes 1) \overline{\theta}_N = (1 \otimes \theta_M) \theta_N \]
where \(\theta \) and \(\overline{\theta} \) are the units of the adjoint pair
\[(h_{-C}(M, -), - \square_D M) \]
and
\[(h_{-C}(N, -), - \square_D N) \],
respectively.

2. Similar comodules and a strong equivalence

In this section we consider the definition of similar comodules and we prove that similar quasi-finite comodules have strongly equivalent coendomorphism coalgebras.

2.1. Definition. Let \(C \) be a \(k \)-coalgebra. Two right \(C \)-comodules \(M \) and \(N \) are similar, abbreviated \(M \sim N \), if there are \(m, n \in N \) and \(C \)-comodules \(P \) and \(Q \) such that \(M \oplus P \sim N(m) \) and \(N \oplus Q \sim M(n) \).

It is easy see that \(\sim \) defines an equivalence relation on the class \(\mathcal{M}^C \) of right \(C \)-comodules. Notice that if \(M_C \) is quasi-finite, the functor \(h_{-C}(M, -) \) preserves comodules similar to \(M \), as does the functor \(- \square_D M \), where \(D_M = e_{-C}(M) \) is the coendomorphism coalgebra of \(M \). This comes from the fact that the co-hom and cotensor functors preserve direct sums. One obtains from \([9]\) that a right \(C \)-comodule \(M \) is an ingenerator of \(\mathcal{M}^C \) if and only if \(M \) is similar to \(C \) as comodules. By transitivity of \(\sim \), we note that if there are several ingenerators in \(\mathcal{M}^C \), then all are similar. Therefore we can state a first result concerning similarity properties of comodules.

2.2. Lemma. Assume that \(M \) and \(N \) are quasi-finite right \(C \)-comodules. If \(M_C \sim N_C \), then \(h_{-C}(M, N) \) and \(h_{-C}(N, M) \) are ingenerators in \(\mathcal{M}_D^M \) and \(\mathcal{M}_N^D \), respectively.

Proof. Suppose that \(M_C \sim N_C \). Since the functor \(h_{-C}(M, -) \) (respectively, \(h_{-C}(N, -) \)) preserve similar comodules to \(M \) (respectively, to \(N \)), we deduce that \(D_M = h_{-C}(M, M) \sim h_{-C}(M, N) \) and \(D_N = h_{-C}(N, N) \sim h_{-C}(N, M) \), hence we obtain the lemma. \(\square \)

Let \(C \) and \(D \) be two \(k \)-coalgebras. Recall from \([9]\) that \(C \) is strongly equivalent to \(D \) if the category \(\mathcal{M}^C \) is equivalent to the category \(\mathcal{M}^D \) via inverse equivalences
\[F : \mathcal{M}^C \cong \mathcal{M}^D : G, \]
such that $F(C)$ is an ingenerator of M^D and $G(D)$ is an ingenerator of M^C.

The theorem below answers our first aim in the affirmative.

2.3. **Theorem.** Let C be a k-coalgebra and M_C and N_C be quasi-finite C-comodules. If M_C is similar to N_C, then D_M is strongly equivalent to D_N.

Proof. Assume $M_C \sim N_C$. It follows from Lemma 2.2 that $h_{-C}(M, N)$ and $h_{-C}(N, M)$ are ingenerators of M^D_M and M^D_N, respectively. By [14, Theorem 2.5], the context $\Gamma_{M,N}^C$ in (2) is strict. So, D_M is Morita-Takeuchi equivalent to D_N. From diagram (1) the equivalence of categories is induced by the composition functors F and G. Moreover $F(D_M) \sim D_N$ and $G(D_N) \sim D_M$, which shows that the equivalence $F : M^D_M \rightleftarrows M^D_N : G$ is strong in sense of [9]. Hence the coendomorphism coalgebras are strongly equivalent. \[\square \]

2.4. **Remark.** The converse fails in general since if k is an algebraically closed field and we consider two non isomorphic simple comodules S and S' of M^C, then $h_{-C}(S, S) = \text{Com}_C(S, S)^* = k^* \cong k$ and $h_{-C}(S', S') \cong k$. Thus D_S and $D_{S'}$ are strongly equivalent but S and S' cannot be similar.

2.5. **Application to codepth two coalgebra homomorphisms.** Let $\varphi : C \to D$ be a homomorphism of coalgebras over a field. Then C has an induced (D, D)-bicomodule structure and any C-comodule becomes a D-comodule via the corestriction functor $(-)_\varphi : M^C \to M^D$ (see [13]). A well-known result in the theory of coalgebras is that the corestriction functor has the coinduction functor $-\Box_D C : M^D \to M^C$ as right adjoint. Thus we have the adjoint couple of functors

$$
\begin{align*}
\text{M}^D & \rightleftarrows (-)_{\varphi} \\
\text{M}^C &
\end{align*}
$$

A coalgebra homomorphism $\varphi : C \to D$ is called left codepth two [5, Definition 6.1] if the cotensor product $C\Box_D C$ is isomorphic to a direct summand of a finite direct sum of C as (D, C)-bicomodules.

Since C is in general isomorphic to a direct summand of $C\Box_D C$ as (D, C)-bicomodules, we note that φ is a left codepth two coalgebra homomorphism if $C\Box_D C$ and C are similar as (D, C)-bicomodules.

Right codepth two coalgebra homomorphisms are similarly defined. Applying Theorem 2.3 to codepth two coalgebra homomorphism, we obtain:

Theorem. Let $\varphi : C \to D$ be a codepth two coalgebra homomorphism. If C_D and $(C\Box_D C)_D$ are quasi-finite right D-comodules, then the coendomorphism coalgebras $e_D(C)$ and $e_D(C\Box_D C)$ are strongly equivalent.
Consider now a \((D, C)\)-bicomodule \(M\) with \(MC\) quasi-finite. We have the adjoint pair
\[
(h_{-C}(M, -), -\Box DM).
\]
A notion of codepth two bicomodule is the following.

Definition. A \((D, C)\)-bicomodule \(M\) where \(MC\) is quasi-finite is said to be **codepth two bicomodule** if \(h_{-C}(M, e_{-C}(M) \Box DM) \sim e_{-C}(M)\) as \((C, D)\)-bicomodules.

Note that \(\varphi : C \to D\) is a codepth two coalgebra homomorphism if and only if \(DC\) is a codepth two bicomodule.

3. Applications of similarity to QF bimodules and Finite Depth Extensions

In this section, we recall some known notions and provide several new results concerning quasi-Frobenius bimodules and depth two extensions. For instance, we give the endomorphism ring theorem for QF-bimodules and several characterizations of finite projective depth two extensions in terms of similar bimodules.

3.1. On QF bimodules

For a unital bimodule \(BM_A\) over two unital rings \(B\) and \(A\), we let \((BM)^*\) denote its left \(B\)-dual and \((MA)^*\) its right \(A\)-dual. A unital ring homomorphism \(\varphi : B \to A\) is referred to as a **ring extension** (of \(A\) over \(B\), or \(A/B\)). We say \((B, A)\)-bimodules \(M\) **divides** \(N\), or \(M \mid N\), if and only if \(M \oplus P \cong N^{(n)}\) for some complementary \((B, A)\)-bimodule \(P\) and direct sum power of \(N\). Of course, \(N \sim M\) if \(M \mid N\) and \(N \mid M\). Since the notion of division of modules may be formulated in terms of split exact sequences of the form \(0 \to M \to N^{(n)} \to X \to 0\), similarity is clearly an equivalence relation, which is preserved by functors with the property of preserving finite direct sums.

Recall from [11] that \(\varphi\) is a left QF-extension if \(BA\) is finitely generated projective and \(A \mid (BA)^*\) as \((A, B)\)-bimodules. Similarly, \(\varphi\) is a right QF-extension if \(AB\) is finitely generated projective and \(A \mid (BA)^*\) as \((B, A)\)-bimodules. We easily conclude that \(\varphi\) is a QF-extension (left and right extension) if and only if \(BA\) is finitely generated projective and \(A \sim (BA)^*\) as \((A, B)\)-bimodules.

Recall also from [2] that a \((B, A)\)-bimodule \(M\) is called **quasi-Frobenius bimodule**, or QF bimodule, if both \(BM\) and \(MA\) are finitely generated projective and \((BM)^* \sim (MA)^*\) as \((A, B)\)-bimodules. It is easy to see that \(\varphi\) is a QF extension if and only if the natural bimodule \(AB\) is a QF-bimodule. In more detail, \(\Leftarrow\) is seen from \(A \sim (BA)^*\) as \((A, B)\)-bimodules, so \(BA\) is finitely generated projective and \(A \mid (BA)^*\), so \(\varphi\) is by definition right QF. It follows that \(AB\) is finitely generated projective. To the last similarity, we apply the functor \((B-)^*\) to obtain
\((BA)^* \sim A\) as \((A, B)\)-bimodules, so \(A \mid (AB)^*\) and by definition \(\varphi\) is left QF.

Remark. In [2] the notion of QF Frobenius extension was extended to functors. In particular, \(\varphi\) is a QF extension if and only if the restriction of scalars functor \(\varphi_*\) is a QF functor. More generally, the bimodule \(BM_A\) is a QF bimodule if and only if the functor \(M \otimes_A -\) is a QF functor [2, Proposition 3.5].

The calculus of similar bimodules lends itself to easy proofs of several results, e.g. of an endomorphism ring theorem for the QF property. For instance, if \(BM_A\) is a bimodule and \(\lambda : B \to E = \text{End}_A\) the left regular representation given by \(\lambda_b(m) = bm\), then the endomorphism ring theorem for QF bimodules is stated as follows.

Proposition. If \(BM_A\) is a QF bimodule, then \(\lambda : B \to E\) is a QF extension.

Proof. Since \(BM\) is finite projective, so is \((BM)^*\), and \((MA)^*\) from the hypothesis that \((MA)^* \mid (BM)^*\) as right \(B\)-modules. Since \(MA\) is finite projective and \(E \cong M \otimes_A (MA)^*\) (also as \((E, B)\)-bimodules), it follows that \(EB\) is finite projective.

It remains to show that \((EB)^* \sim E\) as natural \((B, E)\)-bimodules. We compute with the natural \((B, E)\)-bimodule structures:

\[
(EB)^* \cong \text{Hom}_B(M \otimes_A (MA)^*, B) \\
\cong \text{Hom}_A(M, \text{Hom}_B((MA)^*, B)) \\
\sim \text{Hom}_A(M, \text{Hom}_B((BM)^*, B)) \\
\cong E
\]

since \((BM)^*\) follows for the reflexive module \(BM\). \qed

3.2. On depth two extensions. Recall that a ring extension \(B \to A\) is right depth two, or right D2, if the natural \((A, B)\)-bimodules \(A \otimes_B A\) and \(A\) itself are similar. A left depth two extension is defined oppositely: \(A/B\) is left D2 if \(A^{op}/B^{op}\) is right D2. Also dual theorems for left D2 extensions may be deduced in this way.

As an example, an H-separable extension \(A/B\) is (left and right) D2, since its defining condition is that \(A\) and \(A \otimes_B A\) be similar as natural \((A, A)\)-bimodules [4]. Other examples are Hopf-Galois extensions, pseudo-Galois extensions, and faithfully flat projective algebras (The definition of depth two is sometimes extended in a straightforward way to include examples of infinite index subalgebras such as Hopf-Galois extensions with infinite dimensional Hopf algebra). A Hopf subalgebra of a semisimple Hopf \(C\)-algebra is depth two precisely when it is normal. Just when a one-sided depth two ring extension is automatically two-sided is an interesting question of chirality [5] known to be the case also for Frobenius extensions: below we show that more generally QF extensions satisfy this property.
We give first a proposition with several characterizations of finite projective right D2 extensions in terms of similar bimodules.

3.3. **Proposition.** Suppose A/B is a ring extension such that the natural modules B_A and A_B are finite projective. Then the following are equivalent and characterize right D2 extension:

(a) $A \sim A \otimes_B A$ as (A, B)-bimodules;
(b) $A \sim \text{End}_BA$ as (B, A)-bimodules;
(c) $(A_B)^* \sim (A_B)^* \otimes_B (A_B)^*$ as (B, A)-bimodules.

Proof. Conditions (a) \iff (b) follow from [6, Proposition 3.8], which makes only use of B_A finite projective in proving (b) \Rightarrow (a) (Note that any ring extension will satisfy $A \mid \text{End}_BA$ as (B, A)-bimodules since right multiplication $\rho : A \rightarrow \text{End}_BA$ is a split monic of (B, A)-bimodules, split by $f \mapsto f(1)$. The natural (A, A)-bimodule structure on End_BA is given by $x \cdot f \cdot y = \rho y \circ f \circ \rho x$ for $x, y \in A$).

Condition (a) \Rightarrow (c) using A_B is finite projective: we note the isomorphism of natural (B, A)-bimodules,

\[(A_B)^* \otimes_B (A_B)^* \cong (A \otimes_B A_B)^* \]

via $\alpha \otimes_B \beta \mapsto (x \otimes_B y \mapsto \alpha(\beta(x)y))$, which follows from applications of [1, 20.11] and its dual. In this case, condition (c) follows from applying to (a) the functor $(\cdot)^*$ from the category of (A, B)-bimodules into the category of (B, A)-bimodules.

The reverse implication, conditions (c) \Rightarrow (a) follows from the isomorphism (1), together with noting that A_B and therefore $A \otimes_B A_B$ are finite projective, and applying the functor $(B\cdot)^*$ to condition (c). \square

3.4. **Remark.** The significance of the proposition is that the notion of depth two may be extended to functors as follows. Suppose $F : \mathcal{C} \rightarrow \mathcal{D}$ is a functor between abelian categories with left or right adjoint $G : \mathcal{D} \rightarrow \mathcal{C}$. Say that F is depth two if $FGF \sim F$, where similarity of functors is defined in a straightforward generalization of the two notions of similarity used above. If F is one of the three functors of restriction, induction or coinduction between module categories over rings B or A, then by the proposition any choice of F recovers the notion of depth two for (finite projective) ring extensions. For example, coinduction is tensoring by the dual in case the ring extension is finite projective.

We next show that QF extensions are two-sided depth two if one-sided. We first establish a lemma about QF extensions, which is well-known for Frobenius extensions (where isomorphism replaces similarity in the conclusion).

3.5. **Lemma.** Let A/B be a QF ring extension. Then the natural (A, A)-bimodules End_BA, $A \otimes_B A$ and $\text{End}A_B$ are similar. Moreover, $A \otimes_B A \sim E$ as natural (E, A)-bimodules where $E = \text{End}A_B$.
Proof. Assume that \(A \mid B \) is a QF ring extension. Then \(A \sim (A_B)^* \) as \((B, A)\)-bimodules. Apply to this the functor \(A \otimes_B - \) into the category of \((E, A)\)-bimodules, obtaining \(A \otimes_B A \sim \text{End}_{A_B} \), since it follows from \(A_B \) finite projective that \(\text{End}_{A_B} \cong A \otimes_B (A_B)^* \). The rest of the proof is in the same vein. \(\square \)

3.6. Proposition. Let \(A/B \) be a QF ring extension. Then \(A/B \) is left \(D_2 \) \iff \(\text{extension } A/B \) is right \(D_2 \).

Proof. Suppose QF extension \(A/B \) is right \(D_2 \), so that \(A \sim \text{End}_{B_A} \) as \((B, A)\)-bimodules by Proposition 3.3. By Lemma 3.5, \(A \sim A \otimes_B A \) as \((B, A)\)-bimodules, whence \(A/B \) is left \(D_2 \). The converse follows from dualizing this argument. \(\square \)

With a bit more care, it may be shown that if a left QF extension is right \(D_2 \), then it is left \(D_2 \). Next we show a converse to the endomorphism ring theorem for the property \(D_2 \). Let \(E \) denote \(\text{End}_{A_B} \) of a ring extension \(A/B \).

3.7. Theorem. Let \(A/B \) be a QF ring extension and \(A \) is a generator as a right \(B \)-module. If \(A \xrightarrow{\lambda} E \) is \(D_2 \), then \(A/B \) is \(D_2 \).

Proof. Since \(A_B \) is a progenerator, the rings \(E \) and \(B \) are Morita equivalent, with context bimodules \(E_{A_B} \) and \((A_B)^*_{E_A} \). In particular, \((A_B)^* \otimes_{A_B} A \cong B \) as \((B, B)\)-bimodules. Given the right \(D_2 \) condition \(E \otimes_A E_A \sim E \), we make the substitution \(E \sim A \otimes_B A \) as \((E, A)\)-bimodules from the lemma. Thus, \(A \otimes_B A \otimes_B A \sim A \otimes_B A \) as \((E, A)\)-bimodules. Now apply the functor \((A_B)^* \otimes_{A_B} - \) to obtain \(A \otimes_B A \sim A \) as \((B, A)\)-bimodules; whence \(A/B \) is left \(D_2 \). From Proposition 3.6, \(A/B \) is also right \(D_2 \). \(\square \)

3.8. Depth three and more. From the point of view of finite depth and Galois correspondence, it is necessary to generalize depth two to a tower of three rings \(C \subseteq B \subseteq A \), or more generally \(C \rightarrow B \rightarrow A \) (denoting unital ring homomorphisms). Recall the tower \(A/B/C \) is right depth three, or right \(D_3 \), if \(A \otimes_B A \sim A \) as natural \((A, C)\)-bimodules. Thus, with \(B = C \), we recover the notion of right \(D_2 \) ring extension \(A/B \). As an example of right \(D_3 \) tower, let \(A/B/C \) be the group algebras of a tower of groups \(G > H > K \) over any commutative ground ring. Suppose the normal closure of \(K \) in \(G \) is contained in \(H \): \(K^G < H \). Then \(A/B/C \) is (left and right) \(D_3 \). (Similarly to Proposition 3.6, we may show that a QF tower of rings is two-sided \(D_3 \) if one-sided.)

Depth three and more is originally an analytic notion for subfactors using the basic construction. Recall then from [7] that a ring extension \(A/B \) is right depth three, or right \(D_3 \) extension, if the tower of rings \(E/A/B \) is right \(D_3 \), where \(E \) denotes \(\text{End}_{A_B} \) and the default mapping is as usual \(A \xrightarrow{\lambda} E \). For example, when \(B \) and \(A \) are the group algebras of a finite subgroup pair \(H < G \), the ring extension \(A/B \) is right \(D_3 \)
if H has a normal subgroup complement in G. As in subfactor theory, there is an embedding theorem for ring extensions that are depth three into ring extensions that are depth two; however, we provide a purely algebraic proof using only the QF property of ring extensions. Recall that a ring extension A/B is a separable extension if $A \otimes_B A$ contains a (separability) element $e = e^1 \otimes_B e^2$ (possibly suppressing a summation over simple tensors) such that $e^1 e^2 = 1_A$ and $ae = ea$ for all $a \in A$.

Theorem. Suppose A/B is a separable QF-extension and $E = \text{End} A_B$. Then A/B is D3 \iff the composite extension E/B is D2.

Proof. (\Rightarrow) This part of the proof does not require separability. We apply the bimodule similarity for the QF extension A/B, between its endomorphism ring and its tensor-square, $A E_A \sim A A \otimes_B A A$. Tensoring by $E E \otimes \sim E \otimes A \otimes E$ as natural (E, A)-bimodules. Now tensor by $E E \otimes \sim E \otimes A$, the right D3 condition $E \sim E \otimes_A E$ to obtain $E E \otimes_A E_B \sim E E \otimes_{E B}$ E_B. Again applying $E \sim E \otimes_A E$, we obtain $E E \otimes B E_B \sim E E_B$. Thus E/B is right D2. Since it is a QF extension as well by Proposition 3.6 it is also left D2.

(\Leftarrow) This part of the proof does not require A/B be a QF extension. Since A/B is a separable extension, the natural (E, E)-epimorphism $E \otimes_B E \rightarrow E \otimes_A E$ splits via a mapping $x \otimes_A y \mapsto x e^1 \otimes_B e^2 y$ where $e = e^1 \otimes_B e^2$ denotes a separability element. Thus $E \otimes A E$ divides $E \otimes B E$ which is similar to E as (E, B)-bimodules. It follows that $E \otimes A E$ divides E as (E, B)-bimodules, which is a sufficient condition for A/B to be right D3 extension (since E divides $E \otimes A E$ via multiplication).

Recall that higher depth is defined by iterating the endomorphism ring construction. Thus a QF extension A/B is depth n if $E_{n-2}/E_{n-3}/B$ is a D3 tower, where $E_1 = E$, $E_0 = A$, and $E_{-1} = B$, and E_m is the right endomorphism ring of the extension $E_{m-2} \rightarrow E_{m-1}$ defined inductively from $m \geq 2$. It is not hard to establish by similar means to those above that a depth n extension is also depth $n + 1$. From this and a tunneling lemma we may establish (by small modifications to the arguments in [7, section 8]) an embedding theorem for a depth n QF extension A/B; that E_m/B is D2 for a sufficiently large $m \geq n - 2$.

References

[1] F.W. Anderson and K.R. Fuller, *Rings and Categories of Modules*, GTM 13 Springer-Verlag, Berlin,1974.

[2] F. Castaño Iglesias and C. Năstăsescu, *Quasi-Frobenius functors. Applications*, preprint.

[3] Y. Doi. *Homological coalgebra*, J. Math. Soc. Japan 33 (1981), 31-50.

[4] K. Hirata, *Some types of separable extensions of rings*, Nagoya Math. J. 33 (1968), 107-115.

[5] L. Kadison, *Codepth two and related topics*, Appl. Categ. Struct. 14 (2006), 605-625.
[6] L. Kadison, *Centralizers and induction*, J. Algebra & Appl. **6** (2007), 505–527.

[7] L. Kadison, *Finite depth and Jacobson-Bourbaki correspondence*, J. Pure Appl. Algebra **212** (2008), 1822–1839.

[8] J.Q. Li, D.G. Wang, *Coalgebras and Morita-Takeuchi contexts*, Acta Math. Sinica **41** (3), 569-576 (1998).

[9] B. I-Peng Lin, *Morita’s Theorem for Coalgebras*, Comm. Algebra **1(4)** (1974), 311-344.

[10] K. Morita, *The endomorphism ring theorem for Frobenius extensions*, Math. Z. **102** (1967), 385–404.

[11] B. M"uller, *Quasi-Frobenius Erweiterungen I*, Math. Z. **85** (1964), 345–368. *Q.-F. E. II*, ibid. **88** (1965), 380–409.

[12] T. Nakayama, *On Frobenius algebras, I*, Ann. of Math. **40** (1939), 611-633.

[13] M. E. Sweedler. *Hopf Algebras*, Benjamin, New York, 1969.

[14] M. Takeuchi, *Morita theorems for categories of comodules*, J. Fac. Sci. Univ. Tokyo **24** (1977), 629–644.

Departamento de Estadística y Matemática Aplicada, Universidad de Almería, Spain

E-mail address: fci@ual.es

Department of Mathematics, University of Pennsylvania, Philadelphia, PA 19104 U.S.A.

E-mail address: lkadison@math.upenn.edu