Pinned Distances in Modules over Finite Valuation Rings

Esen Aksoy Yazici

August 24, 2020

Abstract

Let R be a finite valuation ring of order q^r where q is odd and A be a subset of R. In the present paper, we prove that there exists a point u in the Cartesian product set $A \times A \subset R^2$ such that the size of the pinned distance set at u satisfies

$$|\Delta_u(A \times A)| \gg \min\left\{ q^r, \frac{|A|^2}{q^{2r-1}} \right\}.$$

This implies that if $|A| \geq q^{r-\frac{1}{2}}$, then the set $A \times A$ determines a positive proportion of all possible distances.

1 Introduction

Erdős-Falconer type problems in discrete geometry ask for a threshold on the size of a set so that the set determines the given geometric configurations. These problems have been studied by many authors both in continuous and discrete setting.

In [9], Erdős observed that $\sqrt{n} \times \sqrt{n}$ integer grid determines $C\left(\frac{n}{\sqrt{\log n}}\right)$ distances and he conjectured that the minimum number of distances determined by a n-point set in the plane is indeed $C\left(\frac{n}{\sqrt{\log n}}\right)$, where C is an absolute constant. Despite many works and progress, the Erdős distance problem was open until recently. In 2010, Guth and Katz [10] employed a polynomial partitioning technique based on Elekes-Sharir framework to prove that n points in the plane determine at least $C\frac{n}{\log n}$ distances. This result solved the Erdős distance problem up to a $\sqrt{\log}$ factor.

The distance problem in finite field plane was first studied by Bourgain, Katz and Tao in [5]. The result in [5] was later generalized by various authors to higher dimensional vector spaces. It was also extended to many other geometric configurations in finite field geometry, see for instance [2–4, 6, 7, 11, 13, 14, 16] and references therein. In particular, in [16], Petridis proved the following pinned distance result for Cartesian product subsets of vector spaces over prime fields.
Theorem 1.1. [16, Theorem 1.1] Let p be an odd prime and $A \subset \mathbb{F}_p$. There exist $a, b \in A$ such that
\[|\Delta_{(a,b)}(A \times A)| = \Omega(\min\{p, |A|^{3/2}\}). \]

Similar geometric problems in modules over finite cyclic rings were studied by Covert, Iosevich and Pakianathan in [8]. Using a Fourier analytic approach, the authors of [8] proved the following.

Theorem 1.2. [8, Theorem 1.3] Let $E \subset \mathbb{Z}_q^d$, where $q = p^l$. Suppose
\[|E| \gg l(l + 1)q^{(2l-1)/d + \frac{1}{2l}}. \]

Then the distance set $\Delta(E)$ determined by the points of E satisfies
\[\Delta(E) \supset \mathbb{Z}_q^d \cup \{0\}. \]

Later in [12], Hieu and Vinh proved the following distance result in the context of finite cyclic rings.

Theorem 1.3. [12, Theorem 2.7] Let $A \subset \mathbb{Z}_q$ be of cardinality $|A| \gg q^{1 - \frac{1}{2l}}$. Then, the size of the distance set determined by A^n satisfies
\[|\Delta_{\mathbb{Z}_q}(A^n)| \gg \min\left\{ q, \frac{|A|^{2n-1}}{(rq^{2/l-1})^{n-1}} \right\}. \]

Now, let R denote a finite valuation ring. In this paper, we study a variant of distance problem, namely pinned distance problem, for Cartesian product subsets $A \times A$ of R^2.

Note that, the method we use to prove the main result of this paper is analogous to the one given by Petridis in [16, Theorem 1.1]. More precisely, we first see pinned distances at a fixed point in R^2 as a point-plane incidence in R^3. Then we employ the point-plane incidence bound for multisets in R^3 which is recently given by Van The et al. in [17, Theorem 2.3]. This yields the lower bound for the size of the specified pinned distance set in R^2 in Theorem 1.4.

We should mention that the distance result we obtain in Theorem 1.4 recovers the pinned distance result in [16] in the finite field setting. Also, in the setting of modules over finite cyclic rings \mathbb{Z}_q, it is an improvement on the distance results given in [8, 12] for the Cartesian product sets $A \times A \subset \mathbb{Z}_q^2$.

Before stating the main theorem, let us recall some necessary definitions.
1.1 Notation.

We note that a detailed definition of finite valuation ring can be found in [15]. In order to make the statements precise and self contained, we will review the definition and provide some key examples in this note. A finite valuation ring is a finite principal ideal domain which is local. Given a finite valuation ring \(R \), we associate two parameters \(q \) and \(r \) to \(R \) as follows. Let the maximal ideal \(M \) of \(R \) be of the form \(M = (\pi) \), where \(\pi \) is the uniformizer of \(R \), i.e. a non unit defined up to a unit of \(R \). Let \(r \) be the nilpotency degree of \(\pi \), that is the smallest positive integer with the property that \(\pi^r = 0 \) and \(q \) be the size of the residue field \(F = R/(\pi) \). Therefore, \(R \) has the filtration

\[
R \supset (\pi) \supset (\pi^2) \cdots \supset (\pi^r) = 0,
\]

where \(|R| = q^r \). Some examples of finite valuation rings are as follows.

1. Finite fields \(\mathbb{F}_q \), where \(q = p^k \) is a prime power.
2. Finite cyclic rings \(\mathbb{Z}_{p^k} \), where \(p \) is a prime.
3. Function fields \(F[x]/(f^k) \), where \(F \) is a finite field and \(f \) is an irreducible polynomial in \(F[x] \).
4. \(\mathcal{O}/(p^k) \), where \(\mathcal{O} \) is the ring of integers in a number field and \(p \) is a prime in \(\mathcal{O} \).

Let us also write some of the examples above with parameters \(q \) and \(r \) as stated in the definition. Note that for the finite field \(R = \mathbb{F}_{p^k} \), \(p \) is a prime, we have \(q = p^k \) and \(r = 1 \). And for the finite cyclic ring \(\mathbb{Z}_{p^k} \) we have the filtration

\[
\mathbb{Z}_{p^k} \supset (p) \supset (p^2) \cdots \supset (p^k) = 0.
\]

Hence \(r = k \) and \(q = |\mathbb{Z}_{p^k}/(p)| = p \) in this case.

Next we recall the notion of distance in this context. For two points \(u = (u_1, \ldots, u_d) \) and \(v = (v_1, \ldots, v_d) \) in \(R^d \), the distance between them is given by

\[
||u - v|| = (u_1 - v_1)^2 + \cdots + (u_d - v_d)^2.
\]

For a subset \(E \subset R^d \), the distance set determined by \(E \) is

\[
\Delta(E) = \{ ||u - v|| : u, v \in E \},
\]

and the distance set pinned at a fixed point \(u \) of \(E \) is defined by

\[
\Delta_u(E) = \{ ||u - v|| : v \in E \}.
\]

Throughout \(R \) will denote a finite valuation of order \(q^r \), where \(q \) is an odd prime power. \(X \gg Y \) means that there exists an absolute constant \(c \) such that \(X \geq cY \), and “\(\ll \)” is defined similarly.
1.2 Statement of Main Result

Our main result is the following theorem.

Theorem 1.4. Let R be a finite valuation ring of order q^r, q is an odd prime power, and $A \subset R$. There exists a point $u \in A \times A \subset R^2$ such that

$$|\Delta_u(A \times A)| \gg \min\left\{q^r, \frac{|A|^3}{q^{2r-1}}\right\}.$$

In particular, if $|A| \geq q^r - \frac{q}{2}$, then $\Delta_u(A \times A) \gg q^r$ for some $u \in A \times A$ and hence $A \times A$ determines a positive proportion of all possible distances.

Remark 1.5. Let $R = \mathbb{F}_p$, where p is an odd prime. Note that in this case we can take $q = p$ and $r = 1$ in Theorem 1.4 and conclude that if $A \subset \mathbb{F}_p$, then there exists $u \in A \times A \subset \mathbb{F}_p^2$ such that

$$|\Delta_u(A \times A)| \gg \min\left\{p, \frac{|A|^3}{p}\right\}.$$

In particular, if $|A| > p^2$, then $|\Delta_u(A \times A)| \gg p$ for some $u \in A \times A$. This result matches with the result of Petridis given in [16, Theorem 1.1] in the context of prime fields and generalize it to the broader context of finite valuation rings.

Remark 1.6. We note that the result in [8, Theorem 1.3] in the special case $d = 2$ implies that if $E \subset \mathbb{Z}_q^2$, where $q = p^l$, and $|E| \gg l(l+1)q^{2-\frac{1}{2}}$, then

$$\Delta(E) \supset \mathbb{Z}_q^*.$$

On the other hand, Theorem 1.4 implies that if $E = A \times A \subset \mathbb{Z}_q^2$, where $q = p^l$, and $|E| = |A \times A| \geq q^{2-\frac{1}{2}}$, then $|\Delta(E)| = |\Delta(A \times A)| \gg q$.

Therefore, in terms of getting a positive proportion of all possible distances, Theorem 1.4 improves the result in [8, Theorem 1.3] for Cartesian product sets of the form $A \times A \subset \mathbb{Z}_q^2$.

Remark 1.7. In [12, Theorem 2.7], for $n = 2$, the following result was obtained for subsets of finite cyclic rings. Let $A \subset \mathbb{Z}_q$ be of cardinality $|A| \gtrsim q^{1-1/2r}$, where $q = p^r$. Then the number of distances determined by $A \times A$ satisfies

$$|\Delta_{\mathbb{Z}_q}(A \times A)| \gtrsim \min\left\{q, \frac{|A|^3}{rq^{2-1/r}}\right\}.$$

Theorem 1.4 can be seen as a generalization of this result to finite valuation rings and a slight improvement in the context of finite cyclic rings.
2 Proof of Theorem 1.4

For the proof of Theorem 1.4, we will need the following lemma from [16]. We note here that though Petridis stated Lemma 2.1 for subsets of finite fields \(\mathbb{F}_q \), it can be readily checked that the same proof applies for subsets of any finite valuation ring.

Lemma 2.1. Let \(E \subset \mathbb{R}^2 \) and \(N \) be the number of solutions to
\[
2u \cdot (v - w) + \|w\| - \|v\| = 0, \tag{2.1}
\]
where \(u, v, w \in E \). Then there exists \(u \in E \) such that \(|\Delta_u(E)| \geq \frac{|E|^3}{N} \).

We will also use the following point-plane incidence bound in \(\mathbb{R}^3 \) from [17].

Theorem 2.2. [17, Theorem 2.3] Let \(Q, \Pi \) be weighted set of points and planes in \(\mathbb{R}^3 \) with the weighted integer function \(w \), both total weight \(W \). Suppose that maximum weights are bounded by \(w_0 \geq 1 \). Let the number of weighted incidences be
\[
I_w = \sum_{q \in Q, \pi \in \Pi} w(q)w(\pi)\delta_{q\pi},
\]
where
\[
\delta_{q\pi} = \begin{cases} 1 & \text{if } q \in \pi, \\ 0 & \text{if } q \notin \pi. \end{cases}
\]
Then the number \(I_w \) of weighted incidences is bounded as follows:
\[
I_w = \sum_{q \in Q, \pi \in \Pi} w(q)w(\pi) \ll \frac{1}{q^6}W^2 + q^{2r-1}W.
\]

Proof of Theorem 1.4. We first note that if we write \(u = (u_1, u_2) \), \(v = (v_1, v_2) \) and \(w = (w_1, w_2) \), where \(u_i, v_i, w_i \in A \), then the equation (2.1) can be written as
\[
2u_1(v_1 - w_1) + 2u_2(v_2 - w_2) + (w_2^2 - v_2^2) = v_1^2 - w_1^2
\]
which can be restated as
\[
(2u_1, v_2 - w_2, w_2^2 - v_2^2) \cdot (v_1 - w_1, 2u_2, 1) = v_1^2 - w_1^2. \tag{2.2}
\]
Next we define a set of points \(Q \) and a set of planes \(\Pi \) in \(\mathbb{R}^3 \) as follows:
\[
Q = \{(2u_1, v_2 - w_2, w_2^2 - v_2^2) : u_1, v_2, w_2 \in A\}
\]
and
\[
\Pi = \{x \in \mathbb{R}^3 : x \cdot (v_1 - w_1, 2u_2, 1) = v_1^2 - w_1^2 : v_1, w_1, u_2 \in A\}
\]
Then it follows that the number of incidences $|I(Q, \Pi)|$ between Q and Π is equal to the number of solutions of the equation (2.2) which is N in Lemma 2.1.

Note that the total weight of Q and Π are both $W = |A|^3$. Hence, Theorem 2.2 implies that

$$N = |I(Q, \Pi)|$$

$$\leq \frac{1}{q^r} W^2 + q^{2r-1} W$$

$$= \frac{1}{q^r} |A|^6 + q^{2r-1} |A|^3.$$

Therefore, by Lemma 2.1, there exists $u \in A \times A$ such that

$$|\Delta_u(A \times A)| \geq \frac{|A|^6}{N} \gg \min\left\{q^r, \frac{|A|^3}{q^{2r-1}}\right\}$$

which completes the proof of Theorem 1.4.

Acknowledgments. The author would like to thank Brendan Murphy for valuable comments.

References

[1] E. Aksoy Yazici, *Sum-product type estimates for subsets of finite valuation rings*, Acta Arith. 185 (2018), no. 1, 918.

[2] M. Bennett, D. Hart, A. Iosevich, J. Pakianathan, and M. Rudnev, *Group actions and geometric combinatorics in \mathbb{F}_q^d*, Forum Math. 29 (2017), no. 1, 91-110.

[3] M. Bennett, A. Iosevich and J. Pakianathan, *Three-point configurations determined by subsets of \mathbb{F}_q^2 via the Elekes-Sharir paradigm*, Combinatorica 34 (2014), no. 6, 689-706.

[4] P. Birklbauer, A. Iosevich, *A two-parameter finite field Erdős-Falconer distance problem*, Bull. Hellenic Math. Soc. 61 (2017), 2130.

[5] J. Bourgain, N. Katz and T. Tao, *A sum-product estimate in finite fields, and applications*, Geom. Funct. Anal. 14 (2004), no. 1, 27-57.

[6] J. Chapman, M. B. Erdogan, D. Hart, A. Iosevich and D. Koh, *Pinned distance sets, k-simplices , Wolf’s exponent in finite fields and sum-product estimates*, Mathematische Zeitschrift, Math. Z. 271(2012) no. 1-2, 63-93.
[7] D. Covert, D. Hart, A. Iosevich, S. Senger, I. Uriarte-Tuero, \textit{A Furstenberg-Katznelson-Weiss type theorem on $(d+1)$-point configurations in sets of positive density in finite field geometries}, Discrete Math. 311 (2011), no. 6, 423-430. 1

[8] D. Covert, A. Iosevich, J. Pakianathan, \textit{Geometric configurations in the ring of integers modulo p^l}, Indiana Univ. Math. J. 61 (2012), no. 5, 1949-1969. 2, 4

[9] P. Erdős, \textit{On sets of distances of n points}, Amer. Math. Montly 53(1946) 248-250. 1

[10] L. Guth, N. Katz, \textit{On the Erdős distinct distances problem in the plane}, Ann. of Math. (2) 181 (2015), no. 1, 155-190. 1

[11] D. Hart, A. Iosevich, D. Koh and M. Rudnev, \textit{Averages over hyperplanes, sum-product theory in finite fields, and the Erdős-Falconer distance conjecture}, Transaction of the AMS, 363 (2011) 3255-3275. 1

[12] D. D. Hieu, ; L. A. Vinh, \textit{On distance sets and product sets in vector spaces over finite rings}, Michigan Math. J. 62 (2013), no. 4, 779792. 2, 4

[13] A. Iosevich and M. Rudnev, \textit{Erdős distance problem in vector spaces over finite fields}, Trans. Amer. Math. Soc. 359 (2007) no. 12, 6127-6142. 1

[14] A. Iosevich, M. Rudnev, and Y. Zhai, \textit{Areas of triangles and Beck's theorem in planes over finite fields}, Combinatorica 35 (2015), no. 3, 295-308. 1

[15] B. Nica \textit{Unimodular graphs and Eisenstein sums}, J. Algebraic Combin. 45 (2017), no. 2, 423-454. 3

[16] G. Petridis, \textit{Pinned algebraic distances determined by Cartesian products in \mathbb{F}_p^2}, Proc. Amer. Math. Soc. 145 (2017), no. 11, 4639-4645. 1, 2, 4, 5

[17] N. Van The, P. D. Tran, L. Q. Ham, L. A. Vinh \textit{On three-variable expanders over finite valuation rings}, https://arxiv.org/pdf/2007.05251.pdf, 2020 2, 5