LightGuider: Guiding Interactive Lighting Design using Suggestions, Provenance, and Quality Visualization

Andreas Walch, Michael Schwärzler, Christian Luksch, Elmar Eisemann, and Theresia Gschwandtner

Fig. 1. The components of LightGuider: (a) a 3D modeling view to place and modify luminaires, augmented with (b) a provenance tree, depicting several sequential modeling steps and parallel modeling branches, integrating information on the quality of the individual solutions, and providing guidance by pre-simulating and suggesting possible next steps to improve the design. A film-strip-like visualization (c) of screenshots helps to depict the evolution up to the currently selected state. A quality view (d) informs about the fulfillment level of the illumination constraints that need to be met, using bullet charts. Changing the weights of these constraints (e), and therefore, the lighting designer’s focus, triggers an update of the provenance tree node visualizations (reflecting the weights of the constraints in the distribution of the treemap space). Moreover, the defined weights are also considered in the generation of new suggestions, which are tailored towards satisfying constraints with higher weights.

Abstract—LightGuider is a novel guidance-based approach to interactive lighting design, which typically consists of interleaved 3D modeling operations and light transport simulations. Rather than having designers use a trial-and-error approach to match their illumination constraints and aesthetic goals, LightGuider supports the process by simulating potential next modeling steps that can deliver the most significant improvements. LightGuider takes predefined quality criteria and the current focus of the designer into account to visualize suggestions for lighting-design improvements via a specialized provenance tree. This provenance tree integrates snapshot visualizations of how well a design meets the given quality criteria weighted by the designer’s preferences. This integration facilitates the analysis of quality improvements over the course of a modeling workflow as well as the comparison of alternative design solutions. We evaluate our approach with three lighting designers to illustrate its usefulness.

Index Terms—guidance, 3D modeling, lighting design, provenance, global illumination

1 INTRODUCTION

Lighting design is the process of placing luminaires in a 3D environment in such a way that the emitting light fulfills both technical and aesthetic requirements. Industry norms or customer wishes define the amount of light with a specific distribution (e.g., uniformity is often a key requirement) to illuminate a certain area (e.g., desktops). Simultaneously, it is important for lighting designers to pay attention to architectural considerations.

In contrast to standard CAD modeling, in which each manipulation typically leads to immediate visual feedback, the process for lighting design is usually decoupled and indirect. Simulating lighting in a new scene configuration is costly, because light propagates through a scene by reflecting off many surfaces. Light characteristics, geometry, and surface material properties (that influence the scattering of the light) all affect the outcome, which makes it impossible to predict an exact appearance without an accurate simulation. Consequently, the result of a modeling step is tough to predict, even for experienced designers.

When relying on interactive workflows that approximate the result by relying on recent advances in terms of hardware and algorithms, lighting design takes a trial-and-error-based approach. A designer tries to converge to a solution in which all constraints are fulfilled as good as possible. The process is tiresome and the outcome is usually a single local optimum, while all potential alternatives remain undiscovered. Today’s workflows do not support multiple solutions simultaneously, which further reinforces this problem. Furthermore, it is hard to quantify and compare the potential of different solutions during the modeling process.
Approaches to improve the efficiency of lighting design through automation have so far not found their way into today’s workflows. One reason is that the parameter space for the possible designs is extremely large. To solve this multi-objective optimization problem, an algorithm has to consider all (theoretically infinitely many) spatial configurations of light sources in terms of position and orientation, as well as the possibility to switch or dim them, increase or decrease their number, or to replace them by a different model. These decisions of a lighting designer are input parameters of a complex lighting simulation that needs to fulfill given constraints (e.g., all desktops need to be sufficiently illuminated without glaring persons). Furthermore, it is difficult to integrate aesthetic considerations, in non-interactive, simulation-based approaches. This places our work in the field of visual parameter space analysis according to Sedlmair et al. [36]. Moreover, the process of lighting design involves a stepwise improvement of the design while constantly evaluating if and how an individual decision improved the design and what constraints are affected in which way, as well as the creation and comparison of multiple alternative designs with subsequent fine-tuning of design decisions. Efficiently supporting this process requires an interactive visualization of provenance information including quality criteria for alternative branches of designs.

To support interactive lighting design, we propose to structure the workflow using a Visual Analytics (VA) approach. It combines a 3D simulation of the lighting design with an enhanced provenance tree. The tree not only allows lighting designers to keep track of and assess modeling actions, illumination states, and alternative designs, but it also acts as a guidance tool for suggestion-based modeling. The graphical user interface elements of our prototypical system can be seen in Fig. 1.

Specifically, our contributions are:

- The first interactive modeling system with automatically-generated design suggestions, while at the same time preserving artistic freedom to enable lighting designers to account for architectural and aesthetic considerations.
- A guidance mechanism, which takes the current illumination state and the lighting designer’s preferences into account to suggest promising design improvements by simulating multiple alternative next steps.
- A visually-enhanced provenance tree to immediately assess the quality of different lighting designs, monitoring the progress of the design process, and comparing alternative solutions.

2 Related Work

We structure works related to our novel VA lighting-design solution with respect to different scientific fields.

2.1 Lighting Design

Lighting design using commercial tools [11, 19, 30] is mainly a 3D modeling task (a designer selects, places, and orients light sources), followed by a global illumination simulation. Accurate simulations, with multiple light bounces take at least several seconds (using GPU-based approaches), but sometimes minutes or even hours to complete. This shows the difficulty of trial-and-error-based methods, whose success for finding a local optimum that fulfills the constraints (such as industry norms) depends strongly on skill and experience of the designer. None of the commercially available tools provide means for comparing solutions, modeling suggestions, or anything more than a linear undo/redo queue. Their big advantage is the complete artistic freedom in terms of parameter selection—an aspect that seems to have a big impact on whether designers choose a certain system.

In the scientific domain, several approaches automate or simplify light-source placement and orientation—either with procedural methods as suggested by Schwarz and Wonka [35], or by “painting” the parts of a scene for illumination [20, 25-27, 32, 34, 37]. While these methods deliver solutions to certain aspects, they ignore the iterative, interactive workflow of lighting designers, in which a large variety of considerations (that may not all be quantifiable) play an important role.

Other approaches focus on interactivity, and try to decrease the feedback cycles between modeling and simulation. Both Luksch et al. [21] and Krösl et al. [13] rely on fast, GPU-based simulations. Despite being efficient, they do not offer guided modeling proposals or methods to explore and compare parallel modeling tracks.

Sorger et al. [40] tackle the problem of comparing different light configurations by linking the simulation results and a spatial view with non-spatial ranking and comparison visualizations. Their idea of setting the importance of certain criteria to compute the overall score (i.e., giving more weight to certain illumination requirements, to certain scene objects, or to global factors like maintenance costs) during the decision process, has influenced our work. Nevertheless, their approach does not take the modeling process itself into account and presumes the availability of a high number of valid, pre-simulated lighting configurations. This assumption rarely holds in real-world scenarios (due to the trial-and-error-based methodology converging to a single valid solution), raising the need for novel methods that produce multiple solutions in parallel. Other solutions, such as proposed by Simons et al. [39], record light rays and offer visual-analytics tools to explore, evaluate, and compare light interactions, potentially involving several scenes. Nevertheless, they do not offer suggestions for scene manipulations to fulfill given constraints.

2.2 Visual Parameter Space Analysis

The modeling interactions of LightGuider, such as placement of luminaires or rearrangement of the scene, are the input parameters of a complex lighting simulation, in which lighting designers try to generate output values, such as glare or direct illumination, that adhere to certain constraints. Many solutions rely on an exhaustive sampling of the parameter space, such as Bruckner and Möller [5] who pre-compute particle simulations and then cluster visually similar results. For our use case it is not possible to conduct a sufficiently dense sampling in reasonable time, therefore, approaches relying on pre-computation are not applicable. Coffey et al. [10] propose a tool for the simulation-driven design of biopsy needles. Mechanical engineers pick a specific design and evolve variations from that by dragging interactions. Although they still rely on pre-computed design results, their workflow is similar to LightGuider’s. Flood management and barricade design typically deals with a large number of input and environmental parameters. The decision support system Visdom [31, 46] employs a tree visualization that allows domain experts to evaluate the quality of barricading plans, however, quality in this context can be quantified in damages and water levels, while LightGuider needs to convey the fulfillment of complex design constraints and aesthetic properties to light designers. Mark et al.’s Design Galleries approach [22] uses thumbnails of images or animations computed in a preprocessing step by sampling a broad range of input parameters. Based thereon, Pfister et al. [28] apply this technique for the selection of transfer functions in volume rendering.

In accordance with Sedlmair et al. [36], we classify LightGuider as follows: Utilizing an interactive lighting simulation, lighting designers start out with a single sample and generate new samples on-the-fly supported by guidance mechanisms (see Sect. 2.4) suggesting alternatives in the parameter space. Immediate feedback of the simulation results provides them with local-to-global navigation. As lighting designers need to evaluate qualitative as well as quantitative aspects of the simulation output, the domain goals of LightGuider present a mixture of design and engineering domain goals, which are reached through the optimization of both. As a secondary analysis objective we identify partitioning in the elaboration of alternative designs to illustrate different trade-offs.

2.3 Provenance Visualization

When it comes to provenance information in visualization, Ragan et al. [29] give a comprehensive overview of the different types of provenance information (e.g., the history of data editing, the history of graphical views and visualization types, or the history of interactions) and different purposes of using them in the context of visualization (e.g., recall different states of the analysis, action recovery, or collaboration). However, there are varying approaches to visualize this information.
The most common choice is presenting the provenance tree as a node-link diagram that shows the sequence of states and alternative branches of a workflow as described by Simmhan et al. [39].

Sitz et al. [43] focus on the scalability of node-link diagrams for encoding a history of analysis workflows. They use filtering, node aggregation, as well as a user-interest driven expansion of nodes (i.e., a degree-of-interest function) to make the tree more comprehensible. In a different work, Stitz et al. [42] use a provenance tree for visualizing automatically recorded user interactions and visualizations. Again, they focus on the efficient retrieval of analysis states by offering different possibilities for querying the data (e.g., query by user-generated examples). These works offer sophisticated solutions to scalability problems of provenance trees in the form of node-link diagrams, as well as solutions for efficient interaction with large trees. However, they do not focus on integrating visual representations of additional information for each tree node. Our application scenario requires a quick visual comparison of multiple numerical variables (i.e., illumination constraints) for each state to enable the assessment of changes of quality for each lighting design action as well as trends of the lighting design process and of alternative workflows.

Bors et al. [1] visualize provenance information for data quality management. They visualize the history of data editing actions in a node-link diagram augmented with visual information of how many data records have been deleted or added at each step. Furthermore, they combine this node-link diagram with a visualization that shows how the data quality changes over time, giving details of the amount of data records that violate different specified data quality metrics. While they pair the provenance tree with an additional visualization (i.e., a stacked bar chart) of multiple numerical variables, this can only be done for one branch of the tree at a time, and thus, the comparison of multiple alternative workflows is not supported.

Besides node-link diagrams, there are examples of other visualization types used to show provenance information. Viegas et al. [45], for instance, visualize the history of the editing that was applied to a Wikipedia (wikipedia.org) page in a flow-like visualization. This visualization is specifically designed to represent one page with text running from top to bottom, but the only interactions it supports (indirectly) are “adding text” and “removing text”. Thus, it does not lend itself to our problem scenario. Another approach by Su et al. [44] shows the editing history of illustrations. They provide a superimposed visualization of two illustration states with “before” states rendered semi-transparent. Moreover, the illustration is augmented with arrows, icons, and color. Arrows and icons indicate spatial transformations of (parts of) the illustration, while color indicates user changes. This is a specialized design for the problem at hand and cannot be transferred to our application scenario.

2.4 Guidance

Guidance in visualization as defined by Ceneda at al. [6] can be found in various forms and application scenarios. However, only a few approaches relate to our problem at hand. Bouali et al. [3] present a guidance approach to automatically generate a set of information-visualization designs appropriate for the given data and tasks. A selection of the most useful visualization mappings is input to the guidance mechanism, and influences future suggestions. O’Donovan et al. [24] present a similar approach that helps in creating graphic design layouts. The system interactively suggests changes in the position, scale, and alignment of elements that are placed on a page. Both systems present guidance approaches to optimize a design.

Yang et al. [47] present a guidance approach that helps to discover interesting data and patterns based on the system user’s interests. They provide a system to extract, combine, refine, and visualize such findings of interest. They distinguish between user-driven and data-driven findings. In our work we combine user-driven (i.e., the user chooses which areas and which illumination constraints are more important than others) with data-driven (i.e., optimizing the current design with respect to specified illumination constraints) steering of the guidance suggestions.

3 BACKGROUND

In this section we define important concepts in the context of lighting design.

3.1 Generating Illumination Data

Global light transport simulations give an estimation of the propagation of light from the sources via several bounces off scene surfaces to each point in the scene. A realistic visualization of the light distribution in a 3D space helps to get an aesthetic impression of the result, while the quality of a lighting design is typically illustrated using a false color coding. Lighting designers face many regulations and constraints given by industry norms and customers, such as specific regions that have to be illuminated with a minimum amount of light and a uniform distribution, or certain critical positions for which no blinding should occur (e.g., a person sitting at a desk). For this reason, designers rely on measuring surfaces (measuring incoming light in this area) and glare probes (simulating a person’s field of view from a certain point and direction) that are placed in the scene (see Fig. 2). They are typically linked to scene objects that have a certain semantic meaning (e.g., a desk) with specific norm-based target values assigned to them (see Sect. 3.2). In our approach, the light transport simulation is performed using a GPU-based many-light approach similar to Luksch et al. [21], and the incoming light is stored in the texels of a light map that covers all surface geometry.

Fig. 2. A measuring surface on the desktop, and glare probes (simulating a person’s field of view while working on this desk) used to gather illumination information, such as the average illuminance and the uniformity on an area, or if a person is likely to be blinded. Depending on the semantics, the target values of the measurement objects are set according to industry norms. Only designs in which all of these target values are reached are considered valid. To fully support linking and brushing in case of occlusions, outline-based highlighting enhancements and semi-transparent area overlays are rendered without depth-testing.

Input Parameters. Similar to Sorger et al. [40] and according to the classification by Sedlmair et al. [36], we distinguish between control parameters (the lights in the scene, including their position and orientation), model parameters (defining the accuracy of the simulation, e.g., the resolution of the light maps, or the number of bounces) and environmental parameters (the scene with its materials, additional illumination by sunshine / weather, etc.) as inputs for our simulation. In our work we focus solely on the modification of the control parameters. As a simulation run is always coupled to a certain configuration of light sources modeled by the designer or proposed by our guidance system, we refer to them together as modeling state or illumination state in this paper.

3.2 Illumination Constraints

Apart from aesthetic considerations, we use the following quantifiable, industry-established metrics (e.g., as described in Zumtobel’s Lighting Handbook [48]) to rate the quality of a solution:

Local indicators. The semantics of objects or regions in the scene, e.g., a desktop, are linked with local indicators. By assigning measuring surfaces, statistical aggregations of the individual measurements (i.e.,
of all the texels of the measuring surface) can be generated to define the illumination quality. We focus on the industrially most widely used indicators, namely Average Illuminance (AVG), Uniformity G1 (= min/avg), and Uniformity G2 (= min/max).

Person-oriented indicators. Contrary to Sorger et al. [40], we also take a view-dependent criterion into account—the Unified Glare Rating (UGR) defined by the CIE [9], giving an estimation of whether a person will be blinded by the lights in the scene. The optimal placement and configuration of the glare probes (simulating a person’s field of view) is not as well-defined as for measuring surfaces, because of the theoretical possibility of infinitely many probes. The designer chooses a feasible number at relevant spots.

Global indicators. We use the meta data of the luminaires to derive global indicators, which are not measured in the simulation, nor linked to certain objects. We consider Color Temperature in Kelvin (K) by computing the weighted average (per Lumen) of all light sources in a group, and the Colour Rendering Index (CRI), for which we take the minimum value of the corresponding lights.

According to the DIN Standard EN 12464-1 [12] or customer requirements, the target values for these indicators are set per measuring surface, glare probe, or the whole scene, and are referred to as illumination constraints. We consider a solution valid if all of these illumination constraints are reached. Note that subjective opinions (such as aesthetics) could still disqualify a valid solution.

3.3 Interactions and Tasks in Lighting Design

The actions that a lighting designer traditionally performs to find a suitable solution fulfilling the illumination constraints after setting up the scene and defining the target values can coarsely be described by the following workflow:

1. Selection, placement, and alignment of luminaires, followed by a simulation run
2. Verification of all illumination constraints followed by the designer’s choice of which requirement to improve
3. Selection of a modeling action (e.g., change the height of a light) that is likely to improve the selected illumination requirement and maintains the aesthetic goals, followed by a new simulation run
4. Repetition of the two previous steps until all illumination constraints are fulfilled and the aesthetic expectations are met

This iterative approach typically leads to the evaluation of only “one path to a valid solution”. Only in cases in which the customer is not satisfied, further, alternative solutions are generated. Moreover, it should be noted that since the different illumination constraints are connected, a modeling action would usually not only improve the targeted constraint, but might also have negative effects on other constraints (e.g., lowering a light would improve the Avg. Illuminance on a desktop but also enhance Glare).

4 LightGuider Design Requirements

We designed LightGuider to address the trial-and-error work-flow of lighting design, by automatically generating new solutions and visually guiding the lighting designer to find an optimal solution. Moreover, we preserve the creative procedure of lighting design by enabling the designer to try and to compare different directions and consider aesthetic aspects in addition to numerically defined illumination constraints.

In the course of more than ten years of tight collaboration with lighting designers, we identified the following aspects required to improve the lighting-design process:

R1 Lighting design should be interactive to account for artistic preferences.

R2 A 3D simulation of current and previous lighting designs are important to evaluate aesthetic considerations.

R3 The trial-and-error-based methodology should be superseded by a good visual overview of the history of modeling operations, parallel design branches, and intuitive restoration of modeling states.

R4 A fast visual summary of the quality of each state (i.e., how well it meets the illumination constraints) is required to evaluate the impact of certain modeling operations, the tendency of improvement within a modeling workflow, different intermediate solutions, as well as parallel design branches.

R5 Visual means for a fast comparison of these states and solutions should be provided.

R6 The multi-objective optimization problem of finding promising light configurations within a huge parameter space should be guided by automatic means.

5 LightGuider Visualization Design & Interactions

To make informed decisions about our visualization and interaction design we analyzed (1) the data we need to communicate, (2) the intended users of the approach, as well as (3) the tasks they have to solve (as described by Miksch and Aigner [23]). The data consists of multiple aspects: the scene for which a lighting design should be found together with placed light sources, the outcome of light transport simulations (see Sect. 3.1), the illumination constraints that should be met (see Sect. 3.2), as well as the history of modeling operations. Our VA approach is specifically developed for lighting designers, who are our expected user group. These lighting designers need to choose a set of multiple lighting-design modeling parameters to find a lighting solution that fulfills not only their aesthetic requirements but also a number of illumination constraints.

5.1 System Overview

LightGuider is an enhancement to a lighting design prototype focused on interactive editing of a 3D scene (R1) coupled with a fast light simulation (see Fig. 1). It consists of a spatial 3D editing, simulation and visualization view (see Sect. 5.2), which is partly and transparently overlaid by the core component of our novel system—a graph-based 2D visualization that is used to depict the modeling progress and to guide lighting designers to reach their goals (see Sect. 5.3). Integrated into the existing user interface of the software, additional panels give detailed information on a modeling state (see Sect. 5.3) and allow for adjusting the importance of illumination constraints and measuring surfaces (see Sect. 5.6). All of these components are connected with regards to linking and brushing.

We tightly integrated our LightGuider approach into an established and well-evaluated lighting design tool by Luksch et al. [21], which supports placing of light sources, setting their parameters, and evaluating light transport simulations in a 3D scene, and thus, avoiding the need for the designers to learn a new environment. This also allowed us to evaluate whether our novel attempt to guide the workflow was accepted by the domain experts, or whether they would rather prefer their traditional methods while solving the given tasks (see Sect. 8).

5.2 3D View

The freely navigable 3D view (see Fig. 1 (a)) is a combined visualization, editing, and simulation interface. It displays the illuminated 3D scene using the simulation information stored in the light maps in real-time. Using typical manipulation tools known from CAD tools, light sources (i.e., the simulation’s control parameters) can be arbitrarily placed, moved, rotated, removed, exchanged, dimmed, and grouped. After each modification, the simulation is immediately restarted asynchronously, continuously converging to a new result while the designer continues to freely interact with the scene. Furthermore, measuring surfaces and glare probes can be placed and configured according to the requirements. The visualization of measuring surfaces within their real 3D spatial context, i.e., rooms with arbitrary layout containing furniture, such as desks and plants, go along with cumbersome navigation and occlusion impeding visual tasks as classified by Elmqvist
5.3 Quality View

For the currently active modeling state displayed in the 3D view, we provide a bullet chart for each illumination constraint that needs to be met (see Fig. 1 (d) and Fig. 3 (b)). Each constraint is associated with a unique color. Dark and saturated colors mean that the current design is far from meeting this constraint, while light colors mean that the solution is close. Thus, highly visible colors suggest the need for further fine-tuning of the design, while the absence of color does not attract attention and thus signals that there is no need for further action.

Color Coding. In our application scenario we have six illumination constraints that measure the quality of the lighting design (see Sect. 3.2). Mapping the sequential scales of these metrics to color poses different challenges: it requires (1) six well distinguishable color hues, (2) six sequential color scales of these hues (i.e., from white to dark color), and (3) scales with equal brightness values on all levels (i.e., a 30% quality issue of Glare should be perceived equally strong as a 30% quality issue of Color Temperature). To this end, we selected six color scales from ColorBrewer [4] and adapted brightness values where necessary. Considering that two of the six illumination constraints, i.e., Uniformity G1 and Uniformity G2, both describe the uniformity of the light on a measuring surface, we chose similar color hues for those two metrics (see Fig. 3).

5.4 Provenance View

To support the designers in keeping track of their actions and lighting states, we provide a provenance tree as an overlay of the 3D view (see Fig. 1 (b)), which enables them to try different alternative designs, jump back and forth between design states, and analyze which actions have which impact on the quality of the design (R3). Each node of the provenance tree represents a fully simulated illumination state. The different actions of a modeling workflow are indicated by letters: manual (M), add light-source (A), remove light-source (R), dim (d), height move (H), and change light-source (C). While manual (M) stands for any change done by the lighting designer, the other actions indicate changes that have been created by our automatic suggestion system.

5.5 Quality View

When hovering the link, a description of the applied action together with its parameters are shown as details on demand. Selecting a node shows the path to this design state highlighted in red. When adding nodes to the graph, we use smooth transitions to ensure object constancy, which allows the lighting designer to understand how the graph changes. Re-arranging the graph without animations would lead to confusion. Moreover, we enhanced the provenance tree with summary visualizations for each state of the lighting design, as described in the following section.

We opted for a slightly opaque gray overlay for the provenance view to avoid the occlusion of large parts of the 3D scene, while at the same time guaranteeing the continuous readability of the provenance tree while navigating through the 3D scene with changing brightness levels.

5.4.1 Quality Visualization of Modeling States

To visualize the fulfillment of the illumination constraints for each step in the design process, a treemap visualization (see Fig. 3 (a)) is integrated into each node of the provenance tree. Each constraint is associated with a distinct color. The color value and saturation describe how good a state fulfills the targeted constraints (R4). This links the treemap visualization to the bullet charts in the quality view (see Fig. 3 (b)), which also serve as a color legend.

The illumination constraints are hierarchically clustered (see Fig. 4), because some apply for the whole room and others need to be met for each important measuring surface that was defined beforehand, such as a desktop. Thus, some kind of tree visualization is a natural choice to preserve this hierarchical structure. We chose a treemap visualization because alternative visualizations of hierarchical data with an aspect ratio suited to integrate them into the nodes of the provenance tree, such as a sunburst tree visualization as explained by Stasko et al. [41], would have dedicated too much space to non-leaf elements such as the grouping of defined measuring surfaces or the whole room. This would result in less space for leaf nodes, which is especially detrimental as the treemaps need to be quite small to be integrated into the provenance tree and it is these leaf nodes that encode the important information by color (i.e., how well a specific constraint is met). While it can be difficult to read the exact hierarchical nesting from a treemap, we disregard this aspect because information such as hierarchical depths are not important in our scenario. The spatial grouping of semantically similar objects (e.g., all desktops), however, is relevant because the area taken by a group represents its importance (see Sect. 5.6).

Furthermore, we provide a summary-view and a detail-view treemap layout (see Fig. 4). The summary-view layout shows just the worst illumination values of a group. In the summary-view layout, we use smooth transitions to ensure object constancy, which allows the lighting designer to understand how the graph changes. Re-arranging the graph without animations would lead to confusion. Moreover, we enhanced the provenance tree with summary visualizations for each state of the lighting design, as described in the following section.

We opted for a slightly opaque gray overlay for the provenance view to avoid the occlusion of large parts of the 3D scene, while at the same time guaranteeing the continuous readability of the provenance tree while navigating through the 3D scene with changing brightness levels.

5.4.1 Quality Visualization of Modeling States

To visualize the fulfillment of the illumination constraints for each step in the design process, a treemap visualization (see Fig. 3 (a)) is integrated into each node of the provenance tree. Each constraint is associated with a distinct color. The color value and saturation describe how good a state fulfills the targeted constraints (R4). This links the treemap visualization to the bullet charts in the quality view (see Fig. 3 (b)), which also serve as a color legend.

The illumination constraints are hierarchically clustered (see Fig. 4), because some apply for the whole room and others need to be met for each important measuring surface that was defined beforehand, such as a desktop. Thus, some kind of tree visualization is a natural choice to preserve this hierarchical structure. We chose a treemap visualization because alternative visualizations of hierarchical data with an aspect ratio suited to integrate them into the nodes of the provenance tree, such as a sunburst tree visualization as explained by Stasko et al. [41], would have dedicated too much space to non-leaf elements such as the grouping of defined measuring surfaces or the whole room. This would result in less space for leaf nodes, which is especially detrimental as the treemaps need to be quite small to be integrated into the provenance tree and it is these leaf nodes that encode the important information by color (i.e., how well a specific constraint is met). While it can be difficult to read the exact hierarchical nesting from a treemap, we disregard this aspect because information such as hierarchical depths are not important in our scenario. The spatial grouping of semantically similar objects (e.g., all desktops), however, is relevant because the area taken by a group represents its importance (see Sect. 5.6).

Furthermore, we provide a summary-view and a detail-view treemap layout (see Fig. 4). The summary-view layout shows just the worst illumination values of a group. In the summary-view layout, we use smooth transitions to ensure object constancy, which allows the lighting designer to understand how the graph changes. Re-arranging the graph without animations would lead to confusion. Moreover, we enhanced the provenance tree with summary visualizations for each state of the lighting design, as described in the following section.

We opted for a slightly opaque gray overlay for the provenance view to avoid the occlusion of large parts of the 3D scene, while at the same time guaranteeing the continuous readability of the provenance tree while navigating through the 3D scene with changing brightness levels.

5.4.1 Quality Visualization of Modeling States

To visualize the fulfillment of the illumination constraints for each step in the design process, a treemap visualization (see Fig. 3 (a)) is integrated into each node of the provenance tree. Each constraint is associated with a distinct color. The color value and saturation describe how good a state fulfills the targeted constraints (R4). This links the treemap visualization to the bullet charts in the quality view (see Fig. 3 (b)), which also serve as a color legend.

The illumination constraints are hierarchically clustered (see Fig. 4), because some apply for the whole room and others need to be met for each important measuring surface that was defined beforehand, such as a desktop. Thus, some kind of tree visualization is a natural choice to preserve this hierarchical structure. We chose a treemap visualization because alternative visualizations of hierarchical data with an aspect ratio suited to integrate them into the nodes of the provenance tree, such as a sunburst tree visualization as explained by Stasko et al. [41], would have dedicated too much space to non-leaf elements such as the grouping of defined measuring surfaces or the whole room. This would result in less space for leaf nodes, which is especially detrimental as the treemaps need to be quite small to be integrated into the provenance tree and it is these leaf nodes that encode the important information by color (i.e., how well a specific constraint is met). While it can be difficult to read the exact hierarchical nesting from a treemap, we disregard this aspect because information such as hierarchical depths are not important in our scenario. The spatial grouping of semantically similar objects (e.g., all desktops), however, is relevant because the area taken by a group represents its importance (see Sect. 5.6).

Furthermore, we provide a summary-view and a detail-view treemap layout (see Fig. 4). The summary-view layout shows just the worst illumination values of a group. In the summary-view layout, we use smooth transitions to ensure object constancy, which allows the lighting designer to understand how the graph changes. Re-arranging the graph without animations would lead to confusion. Moreover, we enhanced the provenance tree with summary visualizations for each state of the lighting design, as described in the following section.

We opted for a slightly opaque gray overlay for the provenance view to avoid the occlusion of large parts of the 3D scene, while at the same time guaranteeing the continuous readability of the provenance tree while navigating through the 3D scene with changing brightness levels.
We decided against a diverging color scheme, because the original (e.g., Avg. Illuminance), this sixth is further distributed over these groups (e.g., one twelfth for the desktop group and one twelfth for the floor group).

The detail-view layout shows all glare probe values and all values for each measuring surface within a group (in contrast to showing only the worst value in the summary-view layout; see Fig. 4 right). The detail-view can be activated for each group separately. In subsequent analysis, the space distribution of the treemap visualizations resemble the weights that are interactively assigned to illumination constraints by the lighting designers (see Sect. 5.6).

5.4.2 Comparing Modeling States
To visually support the comparison of different modeling states (RS), the designer can switch the provenance tree visualization to a global comparison mode. This alters the color scheme of the treemaps that are integrated into the nodes of the provenance tree to grayscale (see Fig. 5). The selected node acts as the reference, and all other nodes encode the difference to it. If illumination constraints are fulfilled better/worse, the respective treemap cell is lighter/darker than in the reference node. We decided against a diverging color scheme, because the original color scale of the treemaps trains the lighting designers to interpret lighter/darker colors as better/worse fulfillment of the illumination constraints. By using a grayscale, we preserve this mental model but at the same time avoid confusion with the general color scheme of illumination constraints. This comparison mode can also be activated for individual comparison of two modeling states by selecting one node and hovering another node (local comparison mode), while the remaining provenance tree preserves the general color scheme.

5.5 Screenshot Thumbnails View
Based on the currently selected modeling state in the provenance tree, and the highlighted “path” that was taken through the tree to get there, a film-strip-like arrangement of screenshot thumbnails of the individual modeling steps leading to this state is visualized below the tree (see Fig. 1 right). The screenshots are taken from the designer’s perspective after a change in the scene, when all direct light and some indirect light has been distributed by the simulation (R2).

With this heuristic, designers are able to immediately recall what their actions were, where they took place, and how the resulting illumination looked, making specific previous modeling operations easier to find. The usefulness for comparing modeling states, especially in parallel design branches, is limited though, because the changes in the viewing angle during the interactive modeling procedure lead to large variations. We therefore decided to only display the thumbnails for the linear path through the tree to the current modeling state, and propose other means for comparisons (see Sect. 5.4.2).

5.6 Focus Setting View
In the focus setting view, we provide sliders (see Region (e) in Fig. 1 and Fig. 6) to set different weights, not only for illumination constraints, but also for user-defined groups of measuring surfaces (e.g., all desktops). Thus, the lighting designer can individually define the importance of each constraint, or the importance of different measuring surface groups (e.g., desktops are more important than the floor). To support linking the sliders with the illumination constraints, we use their assigned colors. When giving more weight to a specific constraint or measuring surface group, the corresponding area in the treemap nodes is enlarged. Thus, this focus is reflected by a color scale of the treemaps that are integrated into the nodes of the provenance tree to grayscale (see Fig. 5). The global comparison visualization of the provenance tree (see Sect. 5.4.2) uses a grayscale color scheme to get an overview on the quality differences of different design states with respect to the currently selected node (in red). Its fulfillment levels of illumination constraints act as the reference, and are visualized in medium gray. Illumination constraints that are fulfilled better in other solutions are visualized lighter, and the ones that are fulfilled worse are displayed darker.

Additionally, we also add thumbnails as quick orientation help at all leaf nodes (i.e., at the current end of the parallel modeling branches). This is especially helpful for presenting modeling suggestions (see Sect. 6), for which we not only show their tree-map nodes, which communicate their quality according to the fulfillment of quantifiable illumination constraints, but also the corresponding screenshots taken from the same viewing angle as the screenshot of the previous step (see Fig. 6 right). This way, the designer also gets an impression on the aesthetic impacts of a suggestion and can accept it based thereon.
we briefly mentioned the basic actions as part of the link labels. In whenever a new modeling state is added to the provenance tree, or (to reduce simulation time). Secondly, the suggestions have to consider The purpose of our guidance system is to present the designer sugges-

ing actions, Table 1 rows) and each criterion Weighted-Sum Model (WSM) of each action for reaching a certain illumination constraint (see Ta-

require this. In case of bright lights within the field-of-view of a person-oriented in-

parameters: position, light-type Add light: inserts a light into the scene. Additional lights can be helpful if the local indicators AVG, or the uniformity indicators G1 and G2 are not satisfied. parameters: position, light-type

Remove light: deletes a light, chosen either by its ID, or randomly. In no case of bright lights within the field-of-view of a person-oriented indi-

Dim lights: reduces the power of all lights, which is a useful indica-
tor for the designer (and for a future decision algorithm) to reduce the number of lights or to switch to a less powerful (cheaper) version of the current light source model. parameter: dim factor (0% - 100%)

Change height: shifts one or all lights up or down. This action is only valid for pendant lights. Lowering the lights increases the average illumination but can impair the uniformity, and vice versa. parameters: shift vector, light-ID (optional)

Change light: replaces lights by another version (e.g., a stronger / weaker version of the light source), or by switching to another light source collection. A collection change has a drastic impact on the light-

design, and is usually only considered when the global indicators require this. parameters: collection-ID or light-ID

In collaboration with lighting designers, we defined the usefulness of each action for reaching a certain illumination constraint (see Table 1). We tackle this multi-criteria decision making problem by using a Weighted-Sum Model (WSM) [13]. For each alternative A_i (the modeling actions, Table 1 rows) and each criterion C_j (the illumination constraints, Table 1 columns) a performance value a_{ij} is set. The WSM-score for each action is then given by

$$A_i^{\text{WSM-Score}} = \sum_{j=1}^{n} w_j a_{ij}, \text{for } i = 1, 2, 3, ..., m,$$

where n is the number of modeling actions, m is the number of criteria and w_j is the importance of the criterion C_j assigned using the weight sliders in the focus setting view (see Fig. 6). We select the two highest ranked modeling actions to generate potential solutions. For each action, we simulate between three to five randomized parameterizations, resulting in up to 10 simulated lighting designs.

To only present the three highest-scoring solutions to the lighting design, we compute a progress score s for each simulated scenario, and pick the top three options to be displayed as suggestions. The remaining solutions are filtered out and are not used. s is a hierarchically calculated mean over fulfillment levels of the illumination constraints C over all measurement objects M. First, the mean fulfillment level of a measurement object f_M per criteria is formed by:

$$f_M = \frac{1}{p} \sum_{i=1}^{p} f_{M_i},$$

where p is the number of measurement objects. Second, using the lighting designers assigned group weights w_G (see Fig. 6), the weighted average fulfillment level of a criteria over all groups f_G is defined by:

$$f_G = \frac{\sum_{i=1}^{o} (w_G \times f_{M_i})}{\sum_{i=1}^{o} w_G},$$

where o is the number of groups. Finally, the score s is composed by the weighted means f_G:

$$s = \frac{1}{m} \sum_{j=1}^{m} (w_C \times f_G_j),$$

where m number of illumination constraints and w_C is the weight of the illumination constraint. For informative reasons, s is presented to the designer in the top right corner of the quality view (see Fig. 1(d)). A value of 1.0 indicates a complete fulfillment of the objectives for the current weighting. We observed that the randomized parameterization of the modeling tasks can lead to erroneous solutions (e.g., when a light moves through the ceiling during a height change), but they are filtered out automatically due to their low score.

Our guidance tool targets the simplification of the tasks described in Sect. 3.3 and helps to evaluate a broader spectrum of possible modeling steps automatically. This decreases the time to converge to the fulfillment of the illumination constraints, allows for intuitive exploration of alternative solutions, and still supports manual intervention and artistic freedom. The guidance tool is designed to support the modeling process but is not intended to be a complete replacement for manual modeling.

Table 1. The unweighted performance values a_{ij} describing the usefulness of modeling actions to improve a specific illumination constraint.

K	CRI	UGR	AVG	G1	G2
add	1	1	3	10	10
remove	1	1	10	1	5
dim	1	1	10	1	1
height incr.	1	1	10	4	6
height decr.	1	1	10	6	10
change collection	10	10	6	4	6
change version	10	10	1	1	6
7 IMPLEMENTATION

We implemented our proposed interactive visualization and guidance method in an existing lighting design software prototype with industry-standard modeling tools, a database with measured light sources, and an optimized, state-of-the-art GPU-based simulation kernel [21]. The software was extended by integrating web-based visualizations (primarily created with D3 [2]) using the Chromium browser libraries [15], and were linked to the 3D view via websockets. In our test scenes, a typical simulation run takes about 1 to 5 seconds to complete on our desktop workstation with an Intel i5-7660K CPU, 32GB RAM and a NVIDIA GTX 1080 graphics card at 1920x1080 resolution. The text size of the light map corresponds to a real-world area of 1x1cm, and we limited the number of light bounces to three. The user study (see Sect. 5) was conducted using the same system and settings.

8 EVALUATION

We conducted a qualitative user study with three lighting designers.

8.1 Study Design

We recruited three lighting designers as study participants to test our prototype. None of them was involved in the design process nor did they see our prototype before. We opted for a qualitative evaluation, which is effective when working with domain experts to better understand how they interact with the prototype, to observe which insights the experts can derive from the visualizations, to collect detailed feedback of the usefulness of the prototype, and how it fits to their workflow [16, 17]. We conducted individual testing sessions with one developer and the respective study participant.

The sessions started with a short interview to learn about the evaluators’ experience with visualizations and what tools they are currently using. We introduced LightGuider, its functionality, and explained the lighting scenario used for this session within 15 minutes. We encouraged the study participant to think aloud while performing the tasks mentioned below. The participants finished the tasks in approximately 20 minutes, without any further training. We then conducted a semi-structured interview to learn about their impressions of the prototype.

• Task 1: Identify needs for improvement. Manipulate the pre-placed lights manually and use the bullet charts and provenance tree to reason if the lighting design changed for the better or worse (i.e., which illumination constraints are satisfied and which aspects require further attention?).

• Task 2: Understand the provided guidance. Use the provided guidance to improve the current lighting design. Generate new solutions and reason which one to choose and why.

• Task 3: Set the focus to important design aspects. Manipulate the weights that reflect how important the different illumination constraints are for different measuring surfaces.

• Task 4: Compare lighting designs. Select one lighting design of interest and use the comparison view and reason which lighting designs are superior or inferior in which aspects.

Task 1 was designed to see if lighting designers can efficiently interpret the provenance tree and the visualization of illumination constraints. Task 2 was aimed at evaluating if the provided guidance is understood and useful to the lighting designers. In Task 3 the designers should learn how to fine-tune the provided guidance as well as the visualization of the quality of the lighting designs. Finally, with Task 4 we wanted to understand if the comparison view helps to derive further insights. We encouraged all study participants to freely explore the prototype while executing the tasks and articulate any thoughts.

Our study participants are familiar with interactive visualizations to analyze lighting designs, however, measured data is mostly presented in form of static numeric tables.

“Great overview! Only one glance is enough to see everything, especially due to the visual presentation of the data in contrast to numeric tables.” (P3)

While interacting with the prototype, we could observe a common strategy among study participants to use the latest provenance tree node, i.e., the integrated treemap as a starting point to gain a rough overview of the quality of the current light design. The lighting designers appreciated the color saturation-based quality encoding.

“After realizing that whitish areas represent fully satisfied requirements, it is really easy to interpret the current state.” (P2)

“This one is the worst solution—I can see this because it contains the darkest colors. This one, on the other hand, is the best solution because it is lighter than the others.” (P1)

They used the summary-view layout (worst-case summary) of the treemap to gain a fast overview, and they expanded the nodes to access the detail-view in case of dark-colored treemap nodes to better understand which measuring surface does not meet the illumination constraints.

“I think the treemap is intuitive and easy to understand.” (P2)

When trying to improve the lighting design, they solely focused on more saturated colors and consulted the linked bullet charts for details. One of the designers summarized the interaction with the bullet charts as follows:

“You only have to check for the indicators [note: the black line indicating the measured value for the respective illumination constraint] to be within the white area on the right side to know it is satisfied, that is consistent and allows to detect non-satisfied constraints efficiently.” (P3)

They also appreciated the weighting of constraints for enabling a fast change of focus and for allowing them to efficiently filter out constraints that are not important in the given task or scenario. Besides using the linking and brushing functionality, they also used the consistently-applied color scheme a lot to relate the constraint sliders, bullet charts, and treemap visualizations. Furthermore, the designers made use of the linked 3D view to inspect the scene setup in more detail and to identify the location of non-satisfied illumination constraints. The provenance tree motivated the designers to experiment with alternative lighting design strategies to improve the current design.

“I like the idea to go back to any state and to start a new branch.” (P2)

They could easily find the best design solution even in complex provenance trees after a long design session, and they really appreciated the visual means for comparing different solutions and aspects, which common tools do not provide in such an elegant way.

“With this tool the comparability is really good.” (P1)

Suggested Improvements. The lighting designers had a few improvement ideas, mostly related to usability, such as adding the possibility to remove nodes from the provenance tree to clean-up failed attempts, to have the screenshot-strip only on demand, or to hide the corresponding bullet charts (not only the treemap space) when assigning zero-weights to particular illumination constraints. However, they formulated interesting ideas for improving the guidance mechanism. The first version of our guidance system took the current fulfillment level of illumination constraints into account, i.e., when a constraint
was already satisfied the generated suggestions would not aim at fur-
ther improvement, even if this constraint had a high assigned weight.
However, our first study participant clearly rejected this solution. Thus,
we adapted the guidance generation for the other two study participants
so they could receive suggestions for further improving exactly the
illumination constraint they set the focus on, even if this constraint was
already met. Moreover, all participants expressed the wish to fine-tune
the suggestion generation, or as P2 phrased it: “...means to guide the
guidance”. While we did not yet include such a functionality, integrat-
ing mechanisms for designers to provide guidance themselves, and thus,
to reveal the whole potential of guidance as a mixed-initiative process
(as discussed by Ceneda et al. [7]), in which the guidance mechanism
dynamically adjusts the provided suggestions to the designer’s actions
and feedback is an interesting research challenge stated by Ceneda et
al. [8]. In particular, our study participants wanted to be able to set
restrictions to limit the parameter space for suggested modeling steps,
and thus, to steer the suggestions into a desired direction. For instance,
lighting designers might want to use a particular type of luminaires for
a given project, or luminaires should only be positioned at pre-defined
locations. Still, guidance would be needed to optimize the remaining
modeling parameters of these setups. Second, designers suggested to
make the guidance mechanism transparent to the designer, which is
related to the current research challenge of explainable AI (artificial
intelligence) presented by Samek et al. [33]. While they were excited
about the potential of receiving automatically generated suggestions
for design improvement, they still wanted to be better informed how the
system came up with these suggestions and why.

9 Discussion and Future Work

In this section we summarize gained insights as well as future plans.

Lessons Learned. While our qualitative user study showed that
LightGuider was very well received by lighting designers, we also
gained some interesting insights, in particular with respect to the pro-
vided guidance. Besides the two aspects we discussed in the previous
section [8], i.e., the aspects of steerable guidance and transparent
guidance, another interesting study result should be mentioned. Our
first study participant pointed out that it would be beneficial to receive
suggestions exactly for the illumination constraint he set the focus on,
even if it had already reached the minimum requirements—sometimes
just for checking out alternative solutions that might be aesthetically
more pleasing. He elucidated that while removing constraints makes
sense from a pure optimization-problem perspective, and would be the
right approach in pure mathematical/technical scenarios that do not
have any creative/aesthetic aspects to him, it does not meet the real
needs of light designers. This underlines the creative aspect of this
process. Again, this finding is related to steerable guidance. How-
ever, it also stresses the importance to understand the targeted users.
This is known for visualization design, but it is also true for designing
guidance. In our case, user-tailored guidance does not only need to
support the optimization problem at hand, but also the creative freedom
that is necessary for lighting design.

Generalizability. Our presented interactive visualizations would
very well lend itself to other application fields. The provenance tree
in combination with the bullet charts for setting the subjective “im-
portance” of a topic in combination with the automatically generated
suggestions is a concept that fits decision support systems, tasks, such
as data cleansing, or defining data quality metrics, or generally use
cases in which interactions with a large, multi-dimensional data space
can be recorded and guided. Our selected set of constraints, in the case
of lighting design the illumination constraints, can easily be exchanged
by any other measurement constraints.

Limitations. A shortcoming of our visualization approach in its
current form is scalability. The number of parallel and sequential
nodes in the provenance tree could pose a problem in longer modeling
sessions. This can be solved by integrating a strategy for merging
and folding of nodes (as demonstrated by Stitz et al. [34]). Also,
an increase of the number of illumination constraints would pose a
challenge, because the number of well-distinguishable colors for their
encoding is limited. We suggest to counter this problem by grouping
these constraints. For significantly larger scenes with multiple rooms
and measurement objects, the treemap leaves might get too small to be
perceivable, which could be tackled by introducing another level of
(semantic) hierarchy, and providing a provenance tree for each room.
In terms of guidance, our approach scales well to the provision of more
suggestions (e.g., computed in the cloud), as presenting only the best
solutions makes sure that the lighting designer is not overwhelmed.

Future Research. Our provenance tree shares similarities to visu-
alizations known from version control systems and we want to investi-
gate which known operations from these tools (e.g., merging, “cherry
picking”, removal of actions, etc.) are applicable. This would not only
enable a more sophisticated, non-sequential undo mechanism (as shown
for vector graphics editing by Su et al. [44]), but would also allow de-
signers to focus on solving local design problems that are then easily
combined into a global solution—ultimately, even in multi-user setups.
Besides, we believe that our approach could integrate lighting design
methodologies of related works, e.g., the hierarchy-based weighting
of objectives as well as the 3D comparisons proposed by Sorger et
al. [40]. In particular, the combination of their ranking approach with
LightGuider’s evaluation of parallel solutions could lead to a power-
ful, holistic lighting design approach. Using procedural light-source
placement as presented by Schwarz et al. [35] for the generation of
more advanced suggestion seems interesting as well, especially for
the alignment of light sources added to the scene (currently, lights are
added in the proximity of neighbors with a random offset). Finally,
our current suggestion generation strategy is a comparatively simple
heuristic based on typical actions from lighting designers to demon-
strate the capabilities of our visual guidance tool. One could couple
the generation of suggestions with the objects currently visible in the
3D view frustum, or improve the suggestions based on the tracked be-
havior of the designers (e.g., acceptance or rejection of suggestions, or
manual modeling) in a more advanced suggestion approach. Besides
improving guidance suggestions, it could be a possibility to “learn aesthetics”.
The capabilities of our system offer the possibility to collect the large
amounts of data needed for such learning approaches—maybe even
leading to style transfer in lighting design.

10 Conclusion

We presented LightGuider, a prototype combining VA, 3D modeling,
and simulation for enhancing interactive lighting design. One of our
novelties is the integration of provenance visualizations and quality
information as well as guidance to improve lighting design, while leav-
ing all artistic freedom to designers. Instead of a trial-and-error-based
workflow leading to a single solution, LightGuider provides means to
evaluate and explore different designs in a structured, comprehensible
way. The provision of automatically generated suggestions for further
improvement is essential to facilitate the laborious task of optimizing
design to fulfill the defined illumination constraints, and helps to
discover alternative solutions. The enhanced provenance and lighting
design quality visualizations enable the comparison of different design
approaches and allow for an informed reasoning about their suitability.
Our qualitative evaluation with three designers showed that the partici-
pants very well perceived these features. They especially praised the
great overview and visual comparison of modeling states and designs,
the interactive visual feedback, and its potential to considerably facili-
tate and speed up their task of lighting design. “This is a very valuable
approach to make lighting design optimization easy and fast” (P3).

Acknowledgments

We wish to thank Miriah Meyer, Thomas Höllt, and Thomas Ortner
for their insightful and valuable comments on this work, and the designers
from Zumtobel Lighting for sharing their expert knowledge. VRVs is
funded by BMVIT, BMDW, Styria, SFG and Vienna Business Agency
in the scope of COMET - Competence Centers for Excellent Technolo-
gies (854174) which is managed by FFG. This work is partly supported
by the VIDI NextView, funded by NWO Vernieuwingsimpuls.
