 UNCERTAINTIES

Which is the best model to assess risk for venous thromboembolism in hospitalised patients?

Daniel Horner, 1 , 2 , 3 Steve Goodacre, 3 Sarah Davis, 3 Neil Burton, 4 Beverley J Hunt 5

What you need to know

• Venous thromboembolism in hospitalised patients can be potentially prevented through patient education and pharmacological thromboprophylaxis

• Risk assessment models (RAMs) help clinicians decide who should be offered pharmacological thromboprophylaxis, but variation exists in their composition of risk factors and thresholds for high and low risk

• Uncertainty exists over which RAM is optimal for hospitalised patients and whether any complex RAM outperforms simple criteria or subjective clinical opinion

Venous thromboembolism (VTE), which includes deep vein thrombosis (DVT) and pulmonary embolism (PE), is a major global health burden. North American data report a 30 day case fatality rate of 10.6% following VTE. Between 30% and 50% of survivors go on to have long term complications. 1,2 About half of VTE episodes occur during hospitalisation for surgery or acute medical illness, or within 90 days from discharge. These events are classified as hospital acquired thrombosis (HAT). 3

HAT events are potentially preventable through patient education and pharmacological thromboprophylaxis. A meta-analysis (seven trials, 15 095 hospitalised patients) showed greater than 50% risk reduction for VTE with heparins compared with control. 4 In many elective surgical settings, thromboprophylaxis has become established practice. 5,6

However, pharmacological thromboprophylaxis is not suitable for all patients admitted to hospital in an emergency. It can increase the baseline risk of major bleeding by approximately 0.4%. 6-10 When given inappropriately, the consequences can be potentially harmful, notably for patients with occult bleeding on admission or those undergoing emergency procedures.

VTE risk assessment models (RAMs) aim to minimise unnecessary pharmacological thromboprophylaxis and reduce the associated harm and costs. They can also potentially provide individualised and reproducible evaluation of VTE risk, independent of seniority, expertise or bias of the assessing clinician. Fifteen published RAMs were identified in a recent overview of systematic reviews. 11 RAMs overlap on individual risk factors but vary in composition and threshold for high VTE risk. For example, application of different RAMs to a similar cohort of patients could result in recommendations for pharmacological thromboprophylaxis ranging from 32% to 90% of patients (fig 1). 12

This is one of a series of occasional articles that highlight areas of practice where management lacks convincing supporting evidence. The series adviser is Nai Ming Lai, clinical editor. You can read more about how to prepare and submit an Education article on our Instructions for Authors pages: https://www.bmj.com/about-bmj/resources-authors/article-types
International guidance currently allows substantial variation in practice regarding VTE risk assessment. The National Institute for Health and Care Excellence (NICE) recommends the use of any RAM published by a national body, professional network, or in a peer reviewed journal. American and Australasian guidelines...
acknowledge the limited evidence to support use of any particular RAM.13-16

Uncertainty exists regarding the optimal method of risk assessment and whether any RAM outperforms subjective clinical assessment. It is also unclear whether a validated RAM in one healthcare system will be of use in others owing to international variability in models.

What is the evidence of uncertainty?

Use of RAMs has been shown to discriminate between patients at high risk for VTE who may be suitable for thromboprophylaxis, and patients at low risk who do not require thromboprophylaxis. Studies of individual RAMs also show improved rates of appropriate pharmacological thromboprophylaxis prescribing, compared with historical care.12,17-20 Systematic reviews, however, note a lack of generalisability and adequate validation of available RAMs for hospitalised emergency medical and surgical patients.6,12,21 Variability in methods and outcome measurement preclude pooled estimates of effectiveness in predicting VTE or bleeding risk. NICE guidelines concluded that “none of the tools demonstrated sufficiently accurate performance for predicting VTE or bleeding risk.” Table 1 lists comparative characteristics of five widely evaluated models11 and the Department of Health RAM (in common use in the UK).
Table 1 | Comparative RAM characteristics, thresholds, variables, and attempted validation

RAM characteristics	UK Department of Health VTE risk assessment tool	Caprini score for VTE	Padua prediction score	Improve predictive score	IMPROVE Associative	Geneva risk score	Kucher score
Author and year	NICE 2018²	Caprini 2005^{2,3}	Barbar 2010¹	Tapson 2007²	Spyropoulos 2011¹	Chopard 2006³	Kucher 2005³
Applicable cohort	Surgical and medical	Surgical and medical	Medical	Medical	Medical	Medical	Surgical and medical
Design	Dichotomous variables and threshold	Ordinal variables with cumulative score	Dichotomous variables with cumulative score				
Number of VTE risk variables	19	39	11	4	7	19	8
C-statistic (range)	0.66 (1 study)	0.53-0.87 (11 studies)	0.594-0.716 (4 studies)	0.57-0.65 (2 studies)	0.66-0.7731 (3 studies)	0.61 (1 study)	0.563-0.756 (4 studies)
When is pharmacological thromboprophylaxis recommended (high risk identified)?	Any thrombosis risk factor identified^A	Score ≥5	Score ≥4	Score ≥1	Score ≥3	Score ≥3	Score ≥4
What proportion of patients is likely to be classified as high risk?^{2,3}	80%	82%	48%	67%	32%	65%	NR

Clinical variables

Patient related

- **Active cancer**: Yes
- **Age**: Yes (<60)
- **Dehydration**: Yes (≥70)
- **Thrombophilia**: Yes (generic)
- **Obesity**: Yes (≥30 kg/m²)
- **Comorbidity**: Yes (one or more)

Prior VTE

- Yes (first degree relative)

Use of hormone replacement treatment

- Yes

Use of oestrogen containing contraceptive therapy

- Yes

Varicose veins

- Yes (with phlebitis)

Pregnancy or postpartum period

- Yes

Unexplained stillbirth or miscarriage

- No

Current swollen legs

- No

Current central venous access

- No

Recent major surgery

- No

Recent use of plaster cast immobilisation

- No

Lower limb paralysis

- No

Travel related

- No

Admission related

- Reduced mobility: Yes (≥3 days)

Arthroplasty surgery

- Yes

Hip fracture

- Yes

^A When is pharmacological thromboprophylaxis recommended (high risk identified)?

RAM characteristics	UK Department of Health VTE risk assessment tool	Caprini score for VTE	Padua prediction score	Improve predictive score	IMPROVE Associative	Geneva risk score	Kucher score
Author and year	NICE 2018²	Caprini 2005^{2,3}	Barbar 2010¹	Tapson 2007²	Spyropoulos 2011¹	Chopard 2006³	Kucher 2005³
Applicable cohort	Surgical and medical	Surgical and medical	Medical	Medical	Medical	Medical	Surgical and medical
Design	Dichotomous variables and threshold	Ordinal variables with cumulative score	Dichotomous variables with cumulative score				
Number of VTE risk variables	19	39	11	4	7	19	8
C-statistic (range)	0.66 (1 study)	0.53-0.87 (11 studies)	0.594-0.716 (4 studies)	0.57-0.65 (2 studies)	0.66-0.7731 (3 studies)	0.61 (1 study)	0.563-0.756 (4 studies)
When is pharmacological thromboprophylaxis recommended (high risk identified)?	Any thrombosis risk factor identified^A	Score ≥5	Score ≥4	Score ≥1	Score ≥3	Score ≥3	Score ≥4
What proportion of patients is likely to be classified as high risk?^{2,3}	80%	82%	48%	67%	32%	65%	NR

Clinical variables

Patient related

- **Active cancer**: Yes
- **Age**: Yes (<60)
- **Dehydration**: Yes (≥70)
- **Thrombophilia**: Yes (generic)
- **Obesity**: Yes (≥30 kg/m²)
- **Comorbidity**: Yes (one or more)

Prior VTE

- Yes (first degree relative)

Use of hormone replacement treatment

- Yes

Use of oestrogen containing contraceptive therapy

- Yes

Varicose veins

- Yes (with phlebitis)

Pregnancy or postpartum period

- Yes

Unexplained stillbirth or miscarriage

- No

Current swollen legs

- No

Current central venous access

- No

Recent major surgery

- No

Recent use of plaster cast immobilisation

- No

Lower limb paralysis

- No

Travel related

- No

Admission related

- Reduced mobility: Yes (≥3 days)

Arthroplasty surgery

- Yes

Hip fracture

- Yes
External validation studies show weak prognostic performance for all RAMs for symptomatic VTE at 3 month follow-up, and variable sensitivity, ie, proportion of VTE events accurately predicted by a “high risk” score at proposed threshold (supplementary table 1). Evidence of safety is limited; three validation studies report major bleeding rates, ranging from 0.7% to 3.4% (supplementary table 1). All validation studies have a high risk of bias. Observational studies commonly include patients who have received thromboprophylaxis at clinical discretion. This will likely reduce the incidence of VTE in the at-risk population and may lead to underestimation of RAM accuracy.

Complex RAMs appear to compare unfavourably with simple, reproducible criteria. A secondary analysis (14 910 patients) of the Prevenu study across 25 French hospitals compared the performance of age ≥70 as a single variable with the Padua, Caprini, and Improve RAMs for predicting VTE risk. No statistically significant difference was seen in performance between groups and overall weak prognostic performance was noted for all methods of risk assessment.

Recent studies have investigated the use of biomarkers to improve the accuracy of risk assessment. Evidence of moderate certainty shows a probable association between VTE risk in hospitalised medical patients and elevated C reactive protein, D dimer, and fibrinogen levels as per a systematic review and meta-analysis. In a retrospective analysis of a multicentre randomised trial, the addition of a raised D dimer (more than twice the upper limit of normal) to the Improve score identified a threefold higher VTE risk in a subgroup of hospitalised acutely ill medical patients. These findings have not yet been evaluated in prospective studies and the additive value of biomarkers remains uncertain.

Integration of risk assessment into electronic records has also been explored. A well conducted randomised controlled trial (2506 patients) showed that a computer alert program based on risk factors increased physicians’ use of prophylaxis and reduced the rates of DVT and PE at 90 days by 41% (hazard ratio, 0.59; 95% confidence interval, 0.43 to 0.81; P=0.001) amongst hospitalised patients at risk.

If ongoing research likely to provide relevant evidence?
We searched the EU Clinical Trials Register, ISRCTN Registry, and ClinicalTrials.gov and identified two ongoing randomised controlled trials comparing existing risk models, bleeding risk scores, and clinical judgement for VTE prevention (supplementary table 2). One of these will evaluate the use of an embedded risk assessment process within an electronic healthcare record. The UK National Institute for Health Research has commissioned a project assessing the cost effectiveness of VTE risk assessment tools for hospital inpatients (NIHR127454).

These studies will add to the evidence on clinical and cost effectiveness of using RAMs in practice, but are not likely to conclude on the optimal model to be used in hospitalised patients. External validation research on current RAMs remains challenging, given national VTE prevention programmes.

Derivation and validation of any new RAM through prospective research would necessitate withholding pharmacological prophylaxis from patients identified at risk of VTE, which would be unethical.

What should we do in light of the uncertainty?
Current evidence strongly supports the use of pharmacological thromboprophylaxis in hospitalised general medical and surgical patients identified as at risk of VTE. Patients identified at lower risk of VTE using a RAM should be individually counselled, and provided with supporting information throughout hospital stay and on discharge. Given the temporal changes in risk during hospitalisation (dependent on clinical progress), repeated risk assessment and patient education are crucial.

Table 1 | Comparative RAM characteristics, thresholds, variables, and attempted validation (Continued)

UK Department of Health VTE risk assessment tool	Caprini score for VTE	Padua prediction score	Improve predictive score	IMPROVE Associative score	Geneva risk score	Kucher score
Pelvic or lower limb surgery	Yes (total anaesthetic and surgical time ≥60 mins)	Yes (arthroscopic)	No	No	No	No
Total anaesthetic and surgical time	Yes (≥90 mins)	Yes (≥45 mins)	No	No	No	No
Acute surgical admission	Yes (inflammatory or intra-abdominal condition)	No	No	No	No	No
Acute infection	Yes (within 7 days)	Yes	No	Yes	No	No
Acute rheumatological disorder	Yes (within 7 days)	No	Yes	Yes	Yes	No
Critical care admission	Yes	No	No	No	Yes	No
Surgery leading to reduced mobility	Yes	Yes	No	No	No	No
‘Other risk factors’	No	Yes	No	No	No	No

Search strategy
We searched five electronic databases including MEDLINE (with MEDLINE in-process and Epub ahead of print), EMBASE, and the Cochrane Library for relevant studies using terms relating to the condition (eg, VTE in medical inpatients) and risk prediction modelling. No language restrictions were used. Our search was limited by date from 2017 (last search date from earlier systematic reviews) to March 2021. We supplemented our search by searching the reference lists of all relevant studies (including existing systematic reviews), forward citation searching of included studies, contacting key experts in the field, and undertaking targeted searches using Google.
Multiple options for risk assessment should not necessarily lead to national variation in clinical practice or outcomes. For example, NHS England has used a single recommended risk assessment tool and supporting guidance to achieve a consistent reduction in HAT and overall mortality from VTE.\(^3\)\(^3\) These results undoubtedly owe as much to the use of a nationally endorsed RAM, coordinated metrics, local quality improvement practice, and contractual obligations as they do to original research.

The NHS results also likely arise from use of a RAM which has a low threshold for recommending pharmacological thromboprophylaxis. The recent pandemic has drawn further attention to this issue, with multiple national guideline documents recommending pharmacological thromboprophylaxis for all patients hospitalised with covid-19, without use of a RAM, unless contraindicated by bleeding risk.\(^3\)\(^3\)

Education into practice

- How do you perform a VTE risk assessment for patients you admit to hospital and why do you use that particular method?
- Think about the last time you talked to a patient about their VTE risk. How did you counsel them regarding the signs and symptoms of VTE, irrespective of risk? How might you alter your discussion next time?

What patients need to know

- Blood clots can be one of the most serious complications associated with an operation and/or hospital stay.
- Any hospital admission for more than 24 hours or major surgical procedure can increase your risk of developing a blood clot. This increased risk can persist for up to 90 days after hospital discharge.
- Having clear and accurate information, increasing your fluid intake, early mobilisation, and use of preventive therapies can reduce this risk of a blood clot.
- If you are admitted to hospital, your doctor will assess your risk for blood clots and offer blood thinning medication if appropriate. This risk assessment can be repeated when the clinical situation changes and at the point of hospital discharge. You will be informed about signs of blood clots, so you know when and how to seek help.

Recommendations for further research

Future research should determine whether any validated RAM provides additional clinical or cost effectiveness compared with a default option of pharmacological thromboprophylaxis for all hospitalised general medical and surgical patients, subject to contraindications. Future work should also consider the effectiveness and safety of increased prophylaxis dosing for hospitalised patients identified at very high risk of VTE, and withholding pharmacological thromboprophylaxis in those patients identified as very low risk. Such research could also compare the clinical and cost effectiveness of different RAMs to identify levels of risk. Outcomes for this research must identify symptomatic VTE events up to 90 days following hospital discharge, including objectively diagnosed VTE and/or fatality attributable to VTE. Safety outcomes should include major bleeding and clinically relevant non-major bleeding.

How patients were involved in the creation of this article

A patient co-author of this article made suggestions to emphasise the importance of repeated patient education, advice on individualised risk reduction, and safety netting alongside routine clinical risk assessment. We are grateful for his input.

Contributorship: The authors were involved as follows: SG and DH (conception), all (execution, analysis, drafting manuscript and critical discussion, revision, and final approval of the manuscript). All authors had full access to all of the data (including statistical reports and tables) in the guideline and can take responsibility for the integrity of the data and the accuracy of the data analysis.

DH acts as guarantor. The corresponding author attests that all listed authors meet authorship criteria and that no others meeting the criteria have been omitted.

Competing interests: We have read and understood the BMJ policy on declaration of interests and declare that we have no competing interests. All authors have completed the ICMJE uniform disclosure form at www.icmje.org/coi_disclosure.pdf and declare no support from any organisation for the submitted work; no financial relationships with any organisations that might have an interest in the submitted work in the previous three years; no other relationships or activities that could appear to have influenced the submitted work.

Acknowledgments: We would like to acknowledge the wider project management group conducting the VTEAM project in England, including project manager Helen Shulver, data analyst Saleema Rex, literature expert Abdullah Dakin, and topic experts Mark Holland, Xavier Griffen, and Kermit de W. We would also like to acknowledge the valuable input from the patient and public representatives Robin Pierce-Williams, Chris Tweedy, Ben Langsdale, Debbie Smith (Thrombosis UK), Shan Bennett, and End Hirst (Sheffield Emergency Care Forum). Provenance and peer review: commissioned, externally peer reviewed.

1. Tagalakis V, Patenaude V, Kahn SR, Sissis S. Incidence of and mortality from venous thromboembolism in a real-world population: the V-Q VTE Study cohort. Am J Med 2013;126:832. doi: 10.1016/j.amjmed.2013.02.024. pmid: 23830539
2. Beckman MG, Hooper WC, Critchley SE, Ortel TL. Venous thromboembolism: a public health concern. Am J Prev Med 2010;38(Suppl):S499-501. pmid: 20331949
3. Het J, O’Fallon WM, Peterson TM, et al. Saliency effect of risk factors for deep vein thrombosis and pulmonary embolism: a population-based study. Arch Intern Med 2002;162:1244-5. doi: 10.1001/archinte.162.11.1245. pmid: 12038942
4. Mismetti P, Laporte-Simitsidis S, Tardy B, et al. Prevention of venous thromboembolism in internal medicine with unfractionated or low-molecular-weight heparin: a meta-analysis of randomised clinical trials. Thromb Haemost 2000;83:14-9. doi: 10.1055/s-0037-1613749. pmid: 10566917
5. Geerts WH, Pineo GF, Het J, et al. Prevention of venous thromboembolism: the Seventh ACCP Conference on Antithrombotic and Thrombolytic Therapy. Chest 2004;126(Suppl):398S-400S. doi: 10.1378/chest.126.3_suppl.338S. pmid: 15383408
6. National Institute for Health and Care Excellence. Venous thromboembolism in over 65s: reducing the risk of hospital-acquired deep vein thrombosis or pulmonary embolism. London. 2019. https://www.nice.org.uk/guidance/eg9
7. Alkhen R, Bedenis R, Cohen AT. Heparin for the prevention of venous thromboembolism in acutely ill medical patients (excluding stroke and myocardial infarction). Cochrane Database Syst Rev 2014;5:CD003374. doi: 10.1002/14651858.CD003374.pub6. pmid: 24804622
8. Dentali F, Douketis JD, Giannini M, Lim W, Crowther MA. Meta-analysis: anticoagulant prophylaxis to prevent symptomatic venous thromboembolism in hospitalized medical patients. Ann Intern Med 2007;146:278-88. doi: 10.7326/0003-4819-146-6-200702200-00007. pmid: 17310052
9. Lloyd NS, Douketis JD, Mormuddin I, Lim W, Crowther MA. Anticoagulant prophylaxis to prevent asymptomatic deep vein thrombosis in hospitalized medical patients: a systematic review and meta-analysis. J Thromb Haemost 2008;6:405-14. doi: 10.1111/j.1538-7836.2007.02087.x. pmid: 18031292
10. Munoz J, Scott DA, Lloyd W, Ager J, Egger M. Major bleeding rates after prophylaxis against venous thromboembolism: systematic review, meta-analysis, and cost implications. Int J Technol Assess Health Care 2004;20:405-14. doi: 10.1017/S026646230400128X. pmid: 15609788
11. Darzi AJ, Karam SG, Spencer FA, et al. Risk models for VTE and bleeding in medical inpatients: systematic identification and expert assessment. Blood Adv 2020;4:2557-66. doi: 10.1182/bloodadvances.2020009397. pmid: 32542391
12. Strick AK, Spalding D, Schautz J, Kucher N. Risk assessment models for venous thromboembolism in acutely ill medical patients. A systematic review. Thromb Haemost 2017;117:801-8. doi: 10.1600/IH16-08-0631. pmid: 28510858
13. Kahn SR, Lim W, Dunn AS, et al. Prevention of VTE in nonsurgical patients: antithrombotic therapy for management of venous thromboembolism: prophylaxis for hospitalized and nonhospitalized medical patients. Blood Adv 2018;2:398-225. doi: 10.1182/bloodadvances.2018022954. pmid: 30482763
14. Anderson DR, Morgan GP, Bennett C, et al. American Society of Hematology 2019 guidelines for management of venous thromboembolism prevention for venous thromboembolism in surgical hospitalized patients. Blood Adv 2019;3:3889-94A. doi: 10.1182/bloodadvances.2019030975. pmid: 31794602
15. Mismetti P, Laporte-Simitsidis S, Tardy B, et al. Prevention of venous thromboembolism in internal medicine with unfractionated or low-molecular-weight heparin: a meta-analysis of randomised clinical trials. Thromb Haemost 2000;83:14-9. doi: 10.1055/s-0037-1613749. pmid: 10566917
16. Healthcare AcSICoV. Venous thromboembolism prevention—clinical care standard. 2020. https://www.safetyandquality.gov.au/standards/clinical-care-standards/venous-thromboembolism-prevention-clinical-care-standard
17. Barber S, Noventa F, Rossetto V, et al. A risk assessment model for the identification of hospitalized medical patients at risk for venous thromboembolism: the Padua Prediction Score. J Thromb Haemost 2010;8:3640-7. doi: 10.1111/j.1538-7836.2010.04494.x. pmid: 20738765
18. Bardetti S, Munz K, Sonis J, et al. Electronic alerts for hospitalized high-VTE risk patients not receiving prophylaxis: a cohort study. J Thromb Thrombolysis 2008;25:146-50. doi: 10.1007/s11239-007-0081-1. pmid: 18026689
Kucher N, Koo S, Quez P, et al. Electronic alerts to prevent venous thromboembolism among hospitalized patients. *N Engl J Med* 2005;352:969-77. doi: 10.1056/NEJMoa041533 pmid: 15758807

Nendaz M, Spirk D, Kucher N, et al. Explicit Assessment of Thromboembolic Risk and Prophylaxis for Medical Patients in Switzerland (ESTIMATE). Multicentre validation of the Geneva Risk Score for hospitalised medical patients at risk of venous thromboembolism. *Explicit ASsessment of Thromboembolic RIsk and Prophylaxis for Medical PATients in SwitzErland (ESTIMATE).* *Thromb Haemost* 2014;111:531-8. doi: 10.1160/th13-05-0427 pmid: 24226596

Huang W, Anderson FA, Spencer FA, Gakis A, Goldberg R. Risk-assessment models for predicting venous thromboembolism among hospitalised non-surgical patients: a systematic review. *J Thromb Thrombolysis* 2014;38:74-85. doi: 10.1007/s11239-013-0780-0 pmid: 22826096

Silverstein MD, Heit JA, Mohr DN, Petterson TM, O’Fallon WM, Melton LJ III. Trends in the incidence of deep vein thrombosis and pulmonary embolism: a 25-year population-based study. *Arch Intern Med* 1998;158:585-93. doi: 10.1001/archinte.158.6.585 pmid: 9521222

Mounesium T, Rouj J, Douillet D, et al. Validation of risk assessment models predicting venous thromboembolism in acutely ill medical inpatients: A cohort study. *J Thromb Haemost* 2020;18:1398-407. doi: 10.1111/jth.14796 pmid: 32168402

Darzi AJ, Karam SG, Chander R, et al. Prognostic factors for VTE and bleeding in hospitalized medical patients: a systematic review and meta-analysis. *Blood* 2020;135:1786-810. doi: 10.1182/blood.2019003603 pmid: 32092132

Spyropoulos AC, Lipardi C, Xu J, et al. Modified IMPROVE VTE risk score and elevated D-Dimer identify a high venous thromboembolism risk in acutely ill medical population for extended thromboprophylaxis. *TH Open* 2020;4:e59-65. doi: 10.1056/e-0040-1705137 pmid: 32990813

Baumgartner C, Mean M. Risk Stratification for Venous Thromboembolism in Hospitalized Medical Patients (RIS). 2020. https://clinicaltrials.gov/ct2/show/NCT04439383?term=risk&cond=Thrombosis+Embolism&draw=2&rank=8.

Dental F, Valerio A. Efficacy of the use of Risk Scores in Reducing Important Clinical Outcomes in Hospitalized Medical Ill Patients: the RICO cluster-randomized controlled trial. 2020. https://clinicaltrials.gov/ct2/show/NCT04267718?term=risk&cond=Thrombosis+Embolism&draw=6&rank=47.

Goodacre SG, Horner D, Hogg K, et al. The cost-effectiveness of venous thromboembolism risk assessment tools for hospital inpatients. *Al A and Health Res 2020. https://kundin-gawards.nhr.ac.uk/award/NIHR176254.

Hunt BJ. Preventing hospital associated venous thromboembolism. *BMJ* 2019;365:4239. doi: 10.1136/bmj.i4239 pmid: 31227478

Roberts LD, Durkin M, Aya R. Annotation: Developing a national programme for VTE prevention. *Br J Haematol* 2017;18:162-70. doi: 10.1111/bjh.14697 pmid: 28542789

Spyropoulos AC, Levy JH, Ageno W, et al. Scientific and standardization committee communication: clinical guidance on the diagnosis, prevention, and treatment of venous thromboembolism in hospitalized patients with covid-19. *J Thromb Haemost* 2020;18:14609. doi: 10.1111/jth.14609

National Institute for Health and Care Excellence. Covid-19 rapid guideline: managing covid-19. NG191. 2021. https://www.nice.org.uk/guidance/ng191/chapter/Recommendations

Schulman S, Angersdo U, Bergqvist D, Eriksson B, Lassen MR, Fisher WS. Subcommittee on Control of Anticoagulation of the Scientific and Standardization Committee of the International Society on Thrombosis and Haemostasis. Definition of major bleeding in clinical investigations of antithrombotic medicinal products in surgical patients. *J Thromb Haemost* 2010;8:202-4. doi: 10.1111/j.1538-7836.2009.02627.x pmid: 19876523

Schulman S, Kearon C. Subcommittee on Control of Anticoagulation of the Scientific and Standardization Committee of the International Society on Thrombosis and Haemostasis. Definition of major bleeding in clinical investigations of antithrombotic medicinal products in non-surgical patients. *J Thromb Haemost* 2005;3:692-4. doi: 10.1111/j.1538-7836.2005.01204.x pmid: 15842354