Genomic data resource of type strains of genus *Pseudoxanthomonas*

Kanika Bansal¹, Sanjeet Kumar¹, Prashant P. Patil, Shikha Sharma, Prabhu B. Patil

Bacterial Genomics and Evolution Laboratory, CSIR-Institute of Microbial Technology, Sector-39A, Chandigarh 160036, India

Article Info

Article history:
Received 22 October 2021
Revised 28 March 2022
Accepted 29 March 2022
Available online 15 April 2022

Dataset link: Genomic data resource of type strains of genus *Pseudoxanthomonas* (Original data)

Keywords:
Pseudoxanthomonas
Type strains
Phylogenomics
OrthoANI
Whole genome sequencing
Illumina MiSeq

Abstract

Genus *Pseudoxanthomonas* represents a relatively newly characterized group of gamma-proteobacterium of environmental origin. Species of the genus have very similar morphology to strains belonging to *Xanthomonas*, *Xylella* and *Stenotrophomonas*. However, the genome resource of this genus was largely unexplored. The species belonging to the genus are from a wide range of environmental sites including hydrocarbon polluted fields. Here, we have provided the whole genome sequence of all available type strains of the genus of *Pseudoxanthomonas*. In order to deduce the differences with closely related genera, we have employed the whole genome-based investigation of the type species of genus *Pseudoxanthomonas*. © 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

DOI of original article: 10.1016/j.jgeno.2021.09.021

¹ These authors contributed equally to this work.

E-mail address: pbpatil@imtech.res.in (P.B. Patil).

Social media: @Kanikabansal91 (K. Bansal), @LifeInfoATGC (S. Kumar)
Specifications Table

Subject	Biological sciences
Specific subject area	Microbiology: Bacteriology
Type of data	Whole genome sequence assembled genome with gene annotation and phylogeny of genus *Pseudoxanthomonas* and its related genera.
How the data were acquired	Whole genome sequencing (WGS) library was prepared for Illumina MiSeq sequencing platform. Assembly of the raw reads were performed using SPAdes v3.10.
Data format	Raw
Parameters for data collection	Sequencing library for all the available type strains were prepared for Illumina MiSeq following manufacturer's instructions. Sequencing was performed with 2’250 bp paired end sequencing kit.
Description of data collection	WGS data obtained from the sequencer was quality trimmed by control software of Illumina MiSeq. Raw reads were *de novo* assembled into high quality draft genome was performed using SPAdes v3.10 and quality checked using CheckM v1.1.0
Data source	Institution: CSIR-Institute of Microbial Technology, Chandigarh
location	City/Town/Region: Chandigarh
Country	INDIA
Data accessibility	NCBI: MWIP00000000: https://www.ncbi.nlm.nih.gov/nuccore/MWIP00000000
	NCBI: PDWO00000000: https://www.ncbi.nlm.nih.gov/nuccore/PDWO00000000
	NCBI: PDWN00000000: https://www.ncbi.nlm.nih.gov/nuccore/PDWN00000000
	NCBI: PDWT00000000: https://www.ncbi.nlm.nih.gov/nuccore/PDWT00000000
	NCBI: PDWS00000000: https://www.ncbi.nlm.nih.gov/nuccore/PDWS00000000
	NCBI: PDWW00000000: https://www.ncbi.nlm.nih.gov/nuccore/PDWW00000000
	NCBI: PDWU00000000: https://www.ncbi.nlm.nih.gov/nuccore/PDWU00000000
	NCBI: PDWR00000000: https://www.ncbi.nlm.nih.gov/nuccore/PDWR00000000
	NCBI: PDWL00000000: https://www.ncbi.nlm.nih.gov/nuccore/PDWL00000000
	NCBI: PDWQ00000000: https://www.ncbi.nlm.nih.gov/nuccore/PDWQ00000000
	NCBI: PDWM00000000: https://www.ncbi.nlm.nih.gov/nuccore/PDWM00000000
	NCBI: PDWP00000000: https://www.ncbi.nlm.nih.gov/nuccore/PDWP00000000
	NCBI: PDWV00000000: https://www.ncbi.nlm.nih.gov/nuccore/PDWV00000000
	NCBI: PDWK00000000: https://www.ncbi.nlm.nih.gov/nuccore/PDWK00000000
	NCBI: QOVG00000000: https://www.ncbi.nlm.nih.gov/nuccore/QOVG00000000
Related research article	Bansal, K., Kumar, S., Kaur, A., Singh, A. & Patil, P. B. (2021) Deep phylo-taxonomic genomics reveals *Xylella* as a variant lineage of plant associated *Xanthomonas* and supports their taxonomic reunification along with *Stenotrophomonas* and *Pseudoxanthomonas*. https://doi.org/10.1016/j.ygeno.2021.09.021 [1].

Value of the Data

- Species of genus *Pseudoxanthomonas* are from contaminated sites such as: heavy metal, oil, hydrocarbons etc. Genome resource of strains from such extreme environmental conditions will aid in identification of genomic signatures underlying their bioremediation potential.
- These assembled genomes can be used as a reference by the taxonomist and microbiologist in order to distinguish any putative species of the genera *Pseudoxanthomonas*.
- Present genome resource of type strains will be valuable in addressing the taxonomic ambiguities of the family *Lysobacteraceae* and order *Lysobacterales*.

1. Data Description

Here, we have performed whole-genome sequencing of the 15 type strains of genus *Pseudoxanthomonas* comprising of 14 valid species and one non-valid type strain of *P. Jiangsensis* DSM 22398T based on LPSN latest classification v2.0. Whole genome data of *P. dokdonensis* DSM 21858T, *P. indica* P15T and *P. spadix* BD-a59 were obtained from the public repository of NCBI (*Table 1*). *P. helianthi* NRBC 110414T [2] and *P. putridarboris* LMG 25968T [3] could not be retrieved and thus whole genome sequence information is not included in the study. 16S rRNA
Strain name	Genome size (bps)	Fold	# Contigs	N50 (bps)	% GC	Completeness/ Contamination	# CDS	tRNA + rRNA	# Putative Plasmids	Accession number	Refs.
P. broegberensis DSM 12573^T	3,547,767	267x	157	175,278	70.6	99.66/1.74	3024	54 + 3	6	MWIP000000000	Current study
P. koohsiungensis DSM 17583^T	3,774,556	269x	100	199,653	69.68	99.66/1.42	3420	52 + 3	6	PDWO000000000	Current study
P. daejeonensis DSM 17801^T	3,563,566	131x	38	227,294	68.89	99.66/0.11	3143	58 + 3	3	PDWN000000000	Current study
P. yeongjuensis DSM 19373^T	4,036,514	101x	44	165,077	64.3	100/0.91	3582	50 + 3	1	PDWS000000000	Current study
P. jansunsuensis DSM 22398^T	3,289,016	91x	76	105,206	64.8	99.95/1.11	2908	50 + 3	3	PDWR000000000	Current study
P. kalamensis DSM 18571^T	3,790,571	171x	154	121,587	70.35	99.31/1.03	3389	50 + 3	10	PDWL000000000	Current study
P. suwonensis DSM 28345^T	3,034,522	239x	162	478,688	65.88	99.84/1.50	2697	48 + 3	-	PDWQ000000000	Current study
P. indica P15^T	3,960,920	-	3	-	64.48	99.59/0.41	3153	50 + 2	NA	LDJL01000000	[4]
P. dokdonesis DSM21858^T	3,553,658	170x	34	-	64.48	99.89/0.41	3593	49 + 6	NA	FUZV01000000	DOE-Joint Genome Institute
P. spadix BD-a59	3,452,554	-	1	-	67.65	97.1/1.3	3153	50 + 3	NA	CP003093	[22]

Table 1

Genome assembly statistics of the species of genus *Pseudoxanthomas*.
Fig. 1. Phylogenetic tree construction with maximum-likelihood method based on the 16S rRNA gene sequence of different species of genus Pseudoxanthomonas. Pseudomonas aeruginosa DSM 50071T was used as outgroup. Genomes sequenced in the present study are in black and genomes from public repository are in green color. Bootstrap values are shown at the node of each cluster in blue color as percentage of 1000 replicates.

based phylogeny of all the twenty species of the genus Pseudoxanthomonas is depicted in Fig. 1. Whole genome sequence of the type strains of the genus Pseudoxanthomonas can be a valuable resource in taxonogenomics study of family Lysobacteraceae and its close relatives such as Xanthomonas and Stenotrophomonas [4,5]. Extreme environmental isolates such as P. taianensis [6] could be one of the key biotechnologically important species to explore the heat stress mechanism. Genome resource of species of P. broegberensis, P. indica, P. kalamenis, P. kaohsiungensis, P. sacheonensis, P. spadix and P. jiangsuensis [7–13] could be used for studying the stress tolerant genomics determinants.

2. Experimental Design, Materials and Methods

2.1. Bacterial strains and culture conditions

Type strains of the genus Pseudoxanthomonas were procured from two culture collection of Korean Collection for Type Cultures (KCTC) and The Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures (Table 1). Ampoules containing respective bacterial cultures were processed in the recommended media and condition in accordance with the bacterial strains collection.

2.2. Genome sequencing, assembly and annotation

Bacterial genomic DNA was extracted using ZR Fungal/Bacterial DNA MiniPrep Kit (Zymo Research, Irvine, CA, USA) and quantified using Qubit 2.0 Fluorometer (Thermo Fisher Scientific, Waltham, MA, USA). 1 ng of DNA sample was used in the preparation of Illumina sequencing libraries using Nextera XT sample preparation kit with dual indexing following provider’s instructions. Sequencing libraries were pooled and sequenced in-house on Illumina MiSeq platform with 2*250 bp paired-end sequencing kit.

The raw sequencing reads were assembled into the high-quality draft genome using SPAdes v3.10 [14] which is a de Bruijn graph-based assembler for the bacterial genome. Quality of the assembled genome was accessed using QUAST v4.4 [15] and overall coverage of the assembled genome was calculated using BBMap [16]. Presence of putative plasmid in the assembled
genome was accessed using plasmidSPAdes [17] with a minimum cut-off of 1Kb length. The assembled genomes were annotated using the NCBI prokaryotic genome annotation pipeline [18]. Assembly information with the putative number of plasmids is summarized in Table 1.

2.3. Phylogenetic assessment

Phylogenetic analysis based on the traditional 16S rRNA gene sequence was performed, for which 16S rRNA gene sequence was fetched from the respective assembled genome using from a standalone academic version of RNAmmer v1.2 [19] except for the type strains for species P. spadix, P. helianthi and P. putridarboris. 16S rRNA for these 3 species were taken from LPSN of the respective species definition. Multiple sequence alignment of 16S rRNA gene sequences was performed using ClustalW [20]. Phylogenetic tree based on Maximum Likelihood method with 1000 bootstrap replication was generated using MEGA v7.0.18 [21].

Ethics Statement

There is no ethical concern involved in the study.

Author Contributions

SK, SS and PPP have carried out strain procurement from culture collection and strain revival. KB and SK have performed whole genome sequencing and submission of assembled genomes to NCBI. PBP has conceived the study and participated in the design. All the authors have read and approved the manuscript.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships which have or could be perceived to have influenced the work reported in this article.

Data Availability

Genomic data resource of type strains of genus Pseudoxanthomonas (Original data) (NCBI genome).

Acknowledgments

All the work in the present study was supported by “Mega-genomic insights into co-evolution of rice and its Microbiome” (MICRA/MLP0020) and “GEAR- Genomic Evolutionary and Big-Data Analytic Strategies to Address Antimicrobial Resistance” (MLP0016).

References

[1] K. Bansal, et al., Deep phylo-taxonomics reveals Xylella as a variant lineage of plant associated Xanthomonas and supports their taxonomic reunification along with Stenotrophomonas and Pseudoxanthomonas, Genomics 113 (6) (2021) 3989–4003.
[2] C. Kittiwongwattana, C. Thawai, Pseudoxanthomonas helianthi sp. nov., isolated from roots of Jerusalem artichoke (Helianthus tuberosus), Int. J. Syst. Evol. Microbiol. 66 (12) (2016) 5034–5038.
[3] J.K. Lee, et al., *Pseudoxanthomonas putridarboris* sp. nov. isolated from rotten tree, Int. J. Syst. Evol. Microbiol. 67 (6) (2017) 1807–1812.

[4] P.P. Patil, et al., Genome sequence of type strains of genus *Stenotrophomonas*, Front. Microbiol. 7 (2016) 309.

[5] S. Kumar, et al., Phylogenomics insights into order and families of *Lysobacterales*, Access Microbiol. 1 (2) (2019) 1–9.

[6] M.Y. Chen, et al., *Pseudoxanthomonas taiwanensis* sp. nov., a novel thermophilic, N₂O-producing species isolated from hot springs, Int. J. Syst. Evol. Microbiol. 52 (6) (2002) 2155–2161.

[7] W. Finkmann, et al., Characterization of N₂O-producing *Xanthomonas*-like isolates from biofilters as *Stenotrophomonas nitritireducens* sp. nov., *Luteimonas mephitis* gen. nov., sp. nov. and *Pseudoxanthomonas broggerensis* gen. nov., sp. nov. Int. J. Syst. Evol. Microbiol. 50 (1) (2000) 273–282.

[8] K. Kumari, et al., *Pseudoxanthomonas indica* sp. nov., isolated from a hexachlorocyclohexane dumpsite, Int. J. Syst. Evol. Microbiol. 61 (9) (2011) 2107–2111.

[9] R.M. Harada, S. Campbell, Q.X. Li, *Pseudoxanthomonas kalamensis* sp. nov., a novel gammaproteobacterium isolated from Johnston Atoll, North Pacific Ocean, Int. J. Syst. Evol. Microbiol. 56 (5) (2006) 1103–1107.

[10] J.S. Chang, et al., *Pseudoxanthomonas kaohsiungensis*, sp. nov., a novel bacterium isolated from oil-polluted site produces extracellular surface activity, Syst. Appl. Microbiol. 28 (2) (2005) 137–144.

[11] D.S. Lee, et al., *Pseudoxanthomonas sacheonensis* sp. nov., isolated from BTEX-contaminated soil in Korea, transfer of *Stenotrophomonas dokdonensis* Yoon et al. (2006) to the genus *Pseudoxanthomonas* as *Pseudoxanthomonas* dokdonensis comb. nov. and emended description of the genus *Pseudoxanthomonas*, Int. J. Syst. Evol. Microbiol. 58 (9) (2008) 2235–2240.

[12] C.C. Young, et al., *Pseudoxanthomonas spadix* sp. nov., isolated from oil-contaminated soil, Int. J. Syst. Evol. Microbiol. 57 (8) (2007) 1823–1827.

[13] G.L. Wang, et al., *Pseudoxanthomonas jiangsuensis* sp. nov., a DDT-degrading bacterium isolated from a long-term DDT-polluted soil, Curr. Microbiol. 62 (6) (2011) 1760–1766.

[14] A. Bankevich, et al., SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing, J. Comput. Biol. 19 (5) (2012) 455–477.

[15] A. Gurevich, et al., QUAST: quality assessment tool for genome assemblies, Bioinformatics 29 (8) (2013) 1072–1075.

[16] Bushnell, B., BBMap: a fast, accurate, splice-aware aligner. (2014). (No. LBNL-7065E). Lawrence Berkeley National Lab.(LBNL), Berkeley, CA (United States) doi: https://www.osti.gov/servlets/purl/1241166.

[17] D. Antipov, et al., PlasmidSPAdes: assembling plasmids from whole genome sequencing data, Bioinformatics 32 (22) (2016) 3380–3387.

[18] T. Tatusova, et al., NCBI prokaryotic genome annotation pipeline, Nucleic Acids Res. 44 (14) (2016) 6614–6624.

[19] K. Lagesen, et al., RNAmmer: consistent and rapid annotation of ribosomal RNA genes, Nucleic Acids Res. 35 (9) (2007) 3100–3108.

[20] M.A. Larkin, et al., Clustal W and Clustal X version 2.0, Bioinformatics 23 (21) (2007) 2947–2948.

[21] S. Kumar, G. Stecher, K. Tamura, MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets, Mol. Biol. Evol. 33 (7) (2016) 1870–1874.

[22] S.H. Lee, et al., Complete genome sequence of the BTEX-degrading bacterium *Pseudoxanthomonas spadix* BD-a59, J. Bacteriol. 194 (2) (2012) 544.