General Solution of Functional Equations Defined by Generic Linear-fractional Mappings $F_1 : \mathbb{C}^N \to \mathbb{C}^N$ and by Generic Maps birationally equivalent to F_1.

Konstantin V. Rerikh*

Bogoliubov Laboratory of Theoretical Physics, JINR, 141980, Dubna, The Moscow Region, Russian Federation

Keywords: birational mappings, discrete dynamical systems, functional equations, finite difference equations; MSC: 14E05, 14E07, 37F10, 39A99, 39B99.

Abstract

We consider a system of birational functional equations (BFEs) (or finite-difference equations at $w = m \in \mathbb{Z}$) for functions $y(w)$ of the form

$$y(w + 1) = F_n(y(w)), \quad y(w) : \mathbb{C} \to \mathbb{C}^N, \quad n \overset{\text{def}}{=} \deg F_n(y), \quad F_n \in \text{Bir}(\mathbb{C}^N),$$

where the map F_n is a given birational one of the group of all automorphisms of $\mathbb{C}^N \to \mathbb{C}^N$. The relation of the BFEs with ordinary differential equations is discussed. We present a general solution of the above BFEs for $n = 1$, $\forall N$ and of the ones with the map F_n birationally equivalent to $F_1 : F_n \equiv V \circ F_1 \circ V^{-1}$, $\forall V \in \text{Bir}(\mathbb{C}^N)$.

1 Introduction. Set of the Problem.

By this paper we start a discussion of a general problem of integrability of birational functional equations for functions $y(w) : \mathbb{C} \to \mathbb{C}^N$ in one complex variable w of the form

$$y(w + 1) = F_n(y(w)), \quad y(w) : \mathbb{C} \to \mathbb{C}^N, \quad w \in \mathbb{C}, \quad F_n \in \text{Bir}(\mathbb{C}^N). \quad (1)$$

For $w = m \in \mathbb{Z}$ the above BFEs are a dynamical system with a discrete time or cascade. Here the map $F_n : y \mapsto y' = F_n(y) = \frac{f_i(y)}{f_{i+1}(y)}, i = 1, 2, \ldots, N$, $f_i(y)$ for $\forall i$ are polynomials in y, $\deg F_n(y) = \max_{i=1}^{N+1} \{\deg(f_i(y))\} = n$, is a given birational one of the group of all automorphisms of $\mathbb{C}^N \to \mathbb{C}^N$ with coefficients from \mathbb{C}. By the way, the all said above is valid and for the coefficients from any algebraically closed field K. This fact considerably extends the frames of possible applications and using of BFEs (1).

The BFEs (1) are equivalent to BFEs of more general form with a change $(w + 1) \to \psi(w)$ where the map ψ is a given one from the linear-fractional group $\text{Aut}(\mathbb{C})$. Actually, the change $w \mapsto \tau(w) = \ln((w-w_1)/(w-w_2))/\ln(\lambda_1/\lambda_2)$, where the terms $w_i, \lambda_i, i = 1, 2$ are the fixed points and the eigenvalues of the map $\psi(w)$ at these points transform the map ψ into: $\psi(\tau) : \tau \mapsto \tau' = \tau + 1$.

Note also that discretization of a standard autonomous differential equation corresponding to a vector field (\overset{\text{def}}{=} dx/d\tau, \tau \in \mathbb{C})

$$\dot{x} = v(x), \quad x \in U \subset V,$$

according to $\dot{x} \mapsto \frac{x(\tau+h)-x(\tau)}{h}$ and $\tau \mapsto hw$, $x(hw) \mapsto y_h(w)$ gives us a functional equation for $y(w)$:

$$y_h(w + 1) = F_n(y_h(w)), \quad \text{where} \quad F_n(y_h(w)) \overset{\text{def}}{=} y_h(w) + hv(y_h(w)).$$

*rerikh@thsun1.jinr.ru
Thus, if we limit ourselves to the vector field $v(y) \overset{\text{def}}{=} \frac{F_n(y) - y}{n}$ where $F_n(y) \in \text{Bir}(C^N)$, then we derive the BFEs (1). (Of course, there are and other views of discretization.)

The dynamical systems with a discrete time (at $w = m \in Z$) and BFEs of the type (1) are an object of many investigations of problem of their integrability both algebraic (see (2)-(12) and others) and non-algebraic (see (13)-(17)).

The algebraic integrability of BFEs (1) and dynamical systems of this type at $N = 2$ and for $\forall n \geq 2$ will be a subject of another paper.

The problem of integrability of the BFEs (1) for $n = 1$ and for any N is fully solved by the following theorem.

2 Main Result

Let us perform a transition from the mapping F_n in C^N to the mapping Φ_n in $\mathbb{C}P^N$.

Definition 1 Birational maps Φ_n, Φ_n^{-1} are the images of the maps F_n, F_n^{-1} in $\mathbb{C}P^N$ $y \mapsto z : y_i = z_i/z_{N+1}, i \in (1, 2, \cdots, N)$ and are defined below:

\[
\Phi_n : \quad z \mapsto z', \quad z'_1 : \cdots : z'_{N+1} = \phi_1(z) : \cdots : \phi_{N+1}(z), \quad z, z' \in \mathbb{C}P^N,
\]

\[
\phi_i(z) = z_i^{n_i}f_i(z_i/z_{N+1}), \quad i \in (1, 2, \cdots, N+1), \quad l \in (1, 2, \cdots, N),
\]

and $\phi_i(z)$ are homogeneous polynomials in z without any common factors. The map $\Phi_n^{-1} : z' \mapsto z \sim \phi^{(-1)}(z')$ is defined analogously.

Theorem 1 The system of BFEs (1) at $n = \deg F(y) = 1, \quad \phi(z) = Az$, where A is a complex matrix $(N+1) \times (N+1)$, has a general solution rationally depending on w and linear-fractionally on N periodic arbitrary functions $I_j(w), \quad j \in (1, \cdots, N)$ of w. We assume that the matrix $A, \det(A) \neq 0$, is preliminary reduced to the normal Jordan form (see (18)):

\[
D = UAU^{-1}, \quad D = \text{diag}(D^{(1)}, \cdots, D^{(r)}), \quad r \geq 1, \quad \text{dim}(D^{(i)}) = k_i,
\]

\[
D^{(i)}_{s,t} = \lambda_i\delta_{s,t} + \delta_{s,t-1}, \quad s, t \in (1, \cdots, k_i), \quad \sum_{i=1}^{r} k_i = (N+1).
\]

Then this solution has the form:

\[
y_i(w) = \frac{\sum_{l=1}^{N+1} U_{i,l}^{-1}Y_i(w)}{\sum_{l=1}^{N+1} U_{N+1,l}^{-1}Y_i(w)}, \quad i \in (1, \cdots, N),
\]

\[
Y(w) = \{Y_1^{(1)}(w), \cdots, Y_{k_1}^{(1)}(w), \cdots, Y_1^{(r)}(w), \cdots, Y_{k_r}^{(r)}(w)\},
\]

\[
Y_i^{(i)}(w) = \left(\frac{\lambda_i}{\lambda_r}\right)^w \sum_{m=1}^{k_i} C_{l,m}^{(i)}(w)Y_m^{(i)}(w), \quad \text{where}
\]

\[
I_l^{(i)}(w+1) = I_l^{(i)}(w), \quad l \in (1, \cdots, k_i),
\]

\[
C_{l,m}^{(i)} = \frac{\Gamma(w+1)\lambda_l^{-m-l}}{\Gamma(w+1-m-l+1)}, \quad \text{where}
\]

\[
C_{m,m}^{(i)} = 1, \quad C_{l,m}^{(i)} = 0 \text{ for } l > m.
\]

In (7)-(9) the functions $Y_k^{(i)}(w), I_k^{(i)}(w)$ are identically equal to 1.

Proof: Let us consider the equation for $z(w), \quad z(w) : C \rightarrow C\mathbb{P}^N$,

\[
z(w+1) \sim U^{-1} \circ D \circ U z(w).
\]
Then supposing \(Y(w) = Y^1(w), Y^2(w), \ldots, Y^r(w) = Uz(w) \) we have equations for the function \(Y(w) : C \hookrightarrow \mathbb{C}P^N \) and the function \(Y^i(w) : C \hookrightarrow \mathbb{C}P^{k_i} \):

\[
Y(w + 1) \sim DY(w), \quad Y^i(w + 1) \sim D^iY^i(w).
\] (11)

Remark that the symbol \(\sim \) means a projective similarity of vectors \(z(w + 1), Y(w + 1), Y^i(w + 1) \) to vectors in the right-hand side of equations (10), (11). Then the substitution \(Y^{(i)}(w) \) from (8) transforms equation (11) into identity. The functions \(Y_{k_i}^{(r)}(w) \) and \(I_{k_i}^{(r)}(w) \) are normalized to 1 due to a homogeneous dependence of the numerator and the denominator of expression for \(y_i(w) \) (7) from the functions \(Y(w) \).

We can easily generalize this result. Let us introduce the following definition.

Definition 2 Let call birational mapping \(F_n \) birationally equivalent to another birational map \(F_{n'} \) if there exists such a birational mapping \(V \) such that the following equality holds:

\[
F_n = V \circ F_{n'} \circ V^{-1}.
\] (12)

The following theorem is valid.

Theorem 2 Let BFE (1) be given by the mapping \(F_n \) birationally equivalent to the mapping \(F_1 \) from Theorem 1: \(F_n = V \circ F_1 \circ V^{-1} \). Then the general solution of (1) for the function \(\tilde{y}(w) \) is equal to \(\tilde{y}(w) = V(y(w)) \), where \(y(w) \) is given by formulae (7)-(9).

The proof is obvious.

Remark 1 Let \(F_n^k = F_n \circ \cdots \circ F_n \) be a \(k \)-iteration of the map \(F_n \) and \(m = \deg V \) be a degree of the map \(V \) from Theorem 2. Then it is obvious that a boundedness of \(\deg F_n^k \) is a necessary condition for a birational equivalence of the map \(F_n \) to the map \(F_1 \) since \(F_n^k = V \circ F_1^k \circ V^{-1} \), \(\deg F_1^k = 1 \), i.e. \(\deg F_n^k \leq m^2 \).

3 **Acknowledgements**

The author is grateful to R.I. Bogdanov, V.A. Iskovskikh, V.V. Kozlov, V.S. Kulikov, A.N. Parshin, A.G. Sergeev, I.R. Shafarevich, D.V. Treschev, I.V. Volovich and V.S. Vladimirov for useful discussions and interest in the paper.
References

[1] V.I. Arnold, Yu.S. Il'yashenko, Ordinary Differential Equations, in Dynamical Systems, Vol. 1, eds. D.V. Anosov and V.I. Arnold (Encyclopaedia Math. Sciences, Vol. 1, Springer, Berlin, 1988).

[2] A.P. Veselov, Cremona group and dynamical systems, Mat. zametki 45, (3) (1989) 118-120.

[3] A.P. Veselov, Integrable mappings, Russian Math. Surveys 46, no. 5 (1991) 1–51.

[4] A.P. Veselov, Growth and Integrability in the Dynamics of Mappings, Commun. Math. Phys. 145 (1992) 181–193.

[5] G.R.W. Quispel, J.A.G. Roberts and C.J. Thompson, Integrable mappings and soliton equations II, Physica D 34 (1989) 183–192.

[6] G. Falqui and C.-M. Viallet, Singularity, Complexity, and Quasi-Integrability of Rational Mappings, Comm. Math. Phys. 154 (1993) 111-125.

[7] A. Ramani, B. Grammaticos and J. Hietarinta, Discrete versions of the Painleve equations. Phys. Rev. Lett. 67 (1991), 1829-1832.

[8] A. Ramani, B. Grammaticos, J.-M. Maillard, and G. Rollet, Integrable mappings from matrix transformations and their singularity properties, J. Phys. A27, (1994), p.7597-7613.

[9] B. Grammaticos, F.W. Nijhoff and A. Ramani, Discrete Painleve Equations, in ”The Painleve property, one century later”, CRM Series in Mathematical Physics, Springer, Berlin (1998).

[10] J. Hietarinta and C.-M. Viallet, Singularity confinement and haos in discrete systems, Phys. Rev. Lett. 81, 325-328, (1998).

[11] K.V. Rerikh, Algebraic-geometry approach to integrability of birational plane mappings. Integrable birational quadratic reversible mappings. I, J. of Geometry and Physics 24 (1998) 265-290.

[12] K.V. Rerikh, General approach to integration of reversible dynamical systems, defined by mappings from Cremona group $Cr(P^n)$ of birational transformations, ”Mathematical Notes”, v. 68 (2000), 594-601.

[13] K.V. Rerikh, Cremona transformation and general solution of one dynamical system of the static model, Physica D 57 (1992) 337–354.

[14] K.V. Rerikh, Non-algebraic integrability of one reversible Cremona dynamical system. The Poincare (1.1) resonance and the Birkhoff-Moser analytical invariants. In: Proc. of Inter. Workshop ”Finite dimensional integrable systems”, JINR, Dubna (1995), 171-180.

[15] K.V. Rerikh, Non-algebraic integrability of the Chew-Low reversible dynamical system of the Cremona type and the relation with the 7th Hilbert problem” (non-resonant case) Physica D 82 (1995) 60-78.

[16] K.V. Rerikh, Algebraic addition concerning the Siegel theorem on the linearization of a holomorphic mapping, Mathematische Zeitschrift 224 (1997) 445-448.

[17] K.V. Rerikh, Non-algebraic integrability of one reversible dynamical system of the Cremona type, J. of Math. Phys. 39 (1998) 2821-2832.

[18] F.R. Gantmacher, 1959, The Theory of Matrices, Chelsea, New York, 1959, (Nauka, Moscow, 1988, in Russian).