Analiza czynników predysponujących do zmian zwyrodnieniowych stawu biodrowego na podstawie badań przeprowadzonych u chorych z oddziału ortopedycznego

Analysis of factors predisposing to degenerative hip joint lesions based on orthopaedic ward patients

Paulina A. Orczyk1, Zbigniew Gąsior2, Józefa Dąbek2, Damian Kusz3

1Studenckie Koło Naukowe przy Katedrze i Klinice Kardiologii, Wydział Nauk o Zdrowiu w Katowicach, Śląski Uniwersytet Medyczny w Katowicach
2Katedra i Klinika Kardiologii, Wydział Nauk o Zdrowiu w Katowicach, Śląski Uniwersytet Medyczny w Katowicach
3Katedra i Klinika Ortopedii i Traumatologii Narządu Ruchu, Wydział Nauk Medycznych w Katowicach, Śląski Uniwersytet Medyczny w Katowicach

STRESZCZENIE

WSTĘP: Chorobę zwyrodnieniową stawu biodrowego (ChZSB), zwaną koksartrozą, uznawano za występującą głównie u ludzi w podeszłym wieku, niemniej jednak coraz częściej dotyka osób młodszych, przyczyniając się do ich inwalidztwa i absencji w pracy.

MATERIAŁ I METODY: Badania przeprowadzono u 100 pacjentów z ChZSB, przyjmowanych kolejno na oddziałach ortopedycznych szpitali rejonowych. Analizy dokonano dla dwóch grup, uwzględniających dwa przedziały wiekowe: osoby młodsze (n = 30) – poniżej 60 roku życia (r.z.), i osoby starsze (n = 70) – w wieku ≥ 60 lat.

WYNIKI: W młodszej grupie chorych najczęstszymi czynnikami predysponującymi do rozwoju koksartrozy były: otyłość brzuszna – 27 (90%), wady postawy – 20 (67%), praca na siedząco ≥ 8h/dobę przy braku regularnej aktywności fizycznej po pracy – 19 (63%), nadwaga – 15 (50%), ciężka praca fizyczna – 14 (47%), praca na stojąco ≥ 8h/dobę – 14 (47%); w starszej grupie chorych były to: otyłość brzuszna – 67 (96%), praca na siedząco ≥ 8h/dobę przy braku regularnej aktywności fizycznej po pracy – 43 (61%), wady postawy – 38 (54%), ciężka praca fizyczna – 37 (53%), nadwaga – 36 (51%), zespół metaboliczny – 33 (47%).

WNIOSKI: U chorych z badanej grupy występowały liczne czynniki predysponujące do rozwoju ChZSB, najczęstsze zaś były otyłość brzuszna i praca na siedząco; obciążenie rodzinne w kierunku zmian zwyrodnieniowych występowało rzadziej.

SŁOWA KLUCZOWE
koksartroza, otyłość brzuszna, czynniki predysponujące
Sprawozdanie

Introdukcja

Osteoarthrosis, a degenerative joint disease, is one of the most common causes of malfunctioning of the musculoskeletal system. It is also the most common chronic joint disease. Osteoarthrosis was considered by the World Health Organization as one of the threats to modern society [1,2]. Any joint can be affected by degeneration. Based on the number of affected joints, three forms of osteoarthrosis can be distinguished: single-joint, polyarticular and multiple-joint [1,3]. Osteoarthrosis of the hip joint – coxarthrosis – is defined as the process of gradual destruction of cartilage, the subchondral layer of the bone, the joint capsule and other tissues that make up the joint, with the formation of bone spurs on the surface of the femoral head, reducing mobility of the joint [1]. Coxarthrosis was recognised as a disease of the elderly; nevertheless, the presence of this condition in working-age individuals is increasingly more frequent, which leads to the prevalence of disability in the community [2].

The prevalence of osteoarthrosis among the entire population was estimated at 2–15%. In Polish society, this number ranges 15–20% [1]. In the case of coxarthrosis, its incidence ranges 3–6% – the result refers to highly developed countries and around 8% for the Polish society. According to American sources, the percentage of patients with coxarthrosis aged over 45 is approximately 9% of the population [4].

Osteoarthrosis, including coxarthrosis, is a condition of unknown cause. The division of coxarthrosis was created, according to which primary and secondary forms of the said disease entity are distinguished.

Materiał i metody

The study was conducted among 100 patients with coxarthrosis subsequently admitted to orthopaedic wards in regional hospitals. The results were obtained via an interview conducted with the patients as well as by means of an original survey questionnaire. The analysis was conducted for two groups, taking into account two age groups: the younger one (n = 30) – people below 60 years old and the older ones (n = 70) – people aged ≥ 60 years old.

Wyniki

The following factors predisposing to the development of coxarthrosis were the most observable in the younger group of patients: abdominal obesity – 27 (90%), faulty postures – 20 (67%), sedentary work ≥ 8 h/day in the absence of regular physical activity after work – 19 (63%), overweight – 15 (50%), hard physical work – 14 (47%), and standing work ≥ 8 h/day – 14 (47%). The following factors predisposing to the development of coxarthrosis were the most observable in the older group of patients: abdominal obesity – 67 (96%), sedentary work ≥ 8 h/day in the absence of regular physical activity after work – 43 (61%), faulty postures – 38 (54%), hard physical work – 37 (53%), overweight – 36 (51%), and metabolic syndrome – 33 (47%).

Wstęp

Jedną z najczęstszych przyczyn nieprawidłowego funkcjonowania narządu ruchu jest choroba zwyrodnieniowa stawów, zwana osteoarthrozą, będąca równocześnie najczęstszą chronicznym schorzeniem stawów. Osteoarthrozoro została przyjęta przez Światową Organizację Zdrowia jako jedno z zagrożeń zdrowotnych współczesnego społeczeństwa [1,2]. Choroba zwyrodnieniowa stawu biodrowego (ChZSB), zwana koksartrozą, to proces stopniowego niszczenia chrząstki, warstwy podchrzęstnej kości, torebki stawowej i tkanki tworzącej staw, z tworzeniem się pierwotnej, torebki stawowej i wielostawowej [1,3]. Choroba zwyrodnieniowa stawu biodrowego wyrośli kostnych tkankach wokół stawu, z tworzeniem się pierwotnej oraz wtórnej ChZSB. Choć niektóre źródła amerykańskie podają, że odsetek osób z ChZSB, w państwach wysoko rozwojowych, sięga w granicach 3–6% [1], wynosi około 9% populacji [4]. Osteoarthrosis, including coxarthrosis, is a condition of unknown cause. The division of coxarthrosis was created, according to which primary and secondary forms of the said disease entity are distinguished.

Conclusions: The patients from the study group were burdened with numerous factors predisposing to the development of coxarthrosis, out of which the most frequent ones were: abdominal obesity and sedentary work, while a family history of degenerative changes occurred most rarely.

Słowa kluczowe

coxarthrosis, abdominal obesity, predisposing factors

Can be translated to English as:

ABSTRACT

INTRODUCTION: Coxarthrosis has been considered a disease affecting the elderly; nonetheless, it is increasingly affecting younger people, resulting in their disability and absence from work.

MATERIAL AND METHODS: The study was conducted among 100 patients with coxarthrosis subsequently admitted to orthopaedic wards in regional hospitals. The results were obtained via an interview conducted with the patients as well as by means of an original survey questionnaire. The analysis was conducted for two groups, taking into account two age groups: the younger one (n = 30) – people below 60 years old and the older ones (n = 70) – people aged ≥ 60 years old.

RESULTS: The following factors predisposing to the development of coxarthrosis were the most observable in the younger group of patients: abdominal obesity – 27 (90%), faulty postures – 20 (67%), sedentary work ≥ 8 h/day in the absence of regular physical activity after work – 19 (63%), overweight – 15 (50%), hard physical work – 14 (47%), and standing work ≥ 8 h/day – 14 (47%). The following factors predisposing to the development of coxarthrosis were the most observable in the older group of patients: abdominal obesity – 67 (96%), sedentary work ≥ 8 h/day in the absence of regular physical activity after work – 43 (61%), faulty postures – 38 (54%), hard physical work – 37 (53%), overweight – 36 (51%), and metabolic syndrome – 33 (47%).

CONCLUSIONS: The patients from the study group were burdened with numerous factors predisposing to the development of coxarthrosis, out of which the most frequent ones were: abdominal obesity and sedentary work, while a family history of degenerative changes occurred most rarely.

KEY WORDS

coxarthrosis, abdominal obesity, predisposing factors
wotnej nie jest znana (schorzenie idiopatyczne) [1,5], sugeruje się wpływ czynników genetycznych oraz środowiskowych. Główną rolę odgrywają: podwyższone stężenie estrogenów, zmniejszenie siły mięśniowej stawu, a także mechanizm FAI (femoroacetabular impingement – konflikt udowo-panewkoowy) [1,3,6,7]. Udowodniono, że kości są poddane toksycznemu działaniu metali ciężkich (m.in. ołowiu, kadmu, rtęci) oraz palenia tytoniu (jako jednemu ze źródeł kadmii w organizmie). Wykazano dodatkowe związek statystyczny niektórych czynników środowiskowych ze stężeniem wymienionych pierwiastków w ustroju człowieka [8].

W przypadku wtórnych zmian degeneracyjnych znaczenie mają czynniki: wrodzone/rozwojowe, nabyte, choreby metaboliczne (alkaptonuria, hemochromatoza, choroby Wilsona i Gauchera), choreby endokrynologiczne (nadczynność/niedoczynność tarczycy, otymłość, cukrzyca, akromegalii) oraz neuropatie (staw Charcota) [4,6,9]. Czynnikami wrodzonymi/rozwojowymi ChZSB są takie choreby jak: dysplazja stawów biodrowych, wrodzone biodro społowe, wady postawy, choroba Perthesa, zespół nadmiernej ruchomości w stawie, a także złuszczenie głowy kości udowej [6,10]. Główne nabyte czynniki to urazy (śródstawowe i ligamentowe), złamania, zakażenia (septyczne zapalenie stawu), a także złuszczenie głowy kości udowej [4,11,12].

Zmniejszenie prawdopodobieństwa wystąpienia bólu w stawie, a także maladzie głowy kostnej udowej [6,10]. Główne nabyte czynniki to urazy (śródstawowe i ligamentowe), złamania, zakażenia (septyczne zapalenie stawu), a także złuszczenie głowy kości udowej [4,11,12].

Częstym źródłem potencjalnych czynników genetycznych jest rodzina. Poziom jakości życia ulega obniżeniu w wyniku pozgłębiających się wraz z rozwijaniem zwyrodnienia do-

The primary cause of the degenerative change is not known (idiopathic condition) [1,5]. Both genetic and environmental factors have been suggested to affect this type of degeneration. The main role of possible factors predisposing to the primary type of the disease is played by old age, female sex, mutations in genes (COL2A1 gene), obesity, deep sensation disorder (proprioceptors), a decrease in oestrogen levels, decreased joint muscle strength, and the FAI mechanism (femoroacetabular impingement) [1,3,6,7]. Bones have been confirmed to be subject to the toxic effects of heavy metals (among others lead, cadmium, mercury) and smoking (as one of sources of cadmium in the body). A positive statistical relationship was demonstrated between some environmental factors and the concentration of the above-mentioned elements in the human body [8]. The second type is secondary degenerative changes, in which the adopted predisposing factors are congenital/developmental factors, acquired factors, metabolic diseases (alkaptonuria, hemochromatosis, Wilson’s and Gaucher’s diseases), endocrine diseases (hyperthyroidism/hypothyroidism, obesity, diabetes, acromegaly), and neuropathies (Charcot joint) [4,6,9]. The congenital/developmental factors for coxarthrosis are such diseases as hip dysplasia, congenital coxa vara, postural defects, Perthes disease, joint hypermobility syndrome, and slipped capital femoral epiphysis [6,10]. The main acquired factors include injuries (intra-articular or ligamentous), fractures, infections (septic arthritis, rheumatoid arthritis, crystallopathies, and Puget disease [3,4,6,10,11]. The risk factors for coxarthrosis also include reduced physical activity, playing competitive sports, and performing heavy physical work [4]. In recent years, growing interest in osteoarthritis concerns the occurrence of metabolic syndrome. Meta-analyses carried out in China confirmed that metabolic syndrome increases the risk of osteoarthritis of the knee joint, and that metabolic factors contribute significantly to the pathogenesis of osteoarthritis [12].

To correctly diagnose coxarthrosis, thus excluding the presence of other joint disorders, it is necessary to perform an anamnesis, physical examination and clinical (laboratory, X-ray) examination [4,6,11]. The American College of Rheumatology defined the criteria for diagnosis of the said condition. Those criteria include almost daily pain in the hip joint over the past month; bone spurs of the femoral head or acetabulum (osteophytes) on X-rays; ESR values less than 20 mm/h; and joint space narrowing. Based on the aforementioned criteria, a diagnosis of coxarthrosis is made if there is simultaneous presence of: pain and osteophytes or pain and a decrease in ESR values (as defined in the criteria) [6]. Increasing pain, accompanied by progression of the degeneration, and a reduced range of motion in the
znaj bólowych i redukcji zakresu ruchów w stawie; akceptacja choroby i poczucie kontroli nad zdrowiem podnoszą jakość życia [2,13]. Istotne jest, aby w każdym wieku dbać o aktywność fizyczną. Niewielka, ale regularna gimnastyka zapobiega spadkowi siły mięśniowej i spowalnia tempo ubytku masy kostnej. Utrzymanie odpowiedniej masy ciała także jest zachowaniem prozdrowotnym, ponieważ nadwaga i otyłość znacznie wpływają na obciążenie stawów, a chorzy z tej grupy są bardziej narażeni na rozwój ChZSB [14,15].

ZAŁOŻENIA I CEL PRACY

U osób młodszych obserwuje się inne czynniki predisponujące do choroby zwyrodnieniowej stawu biodrowego niż u osób w starszym wieku. Głównym celem było zbadać czynników mogących predisponować do występowania zmian zwyrodnieniowych stawu biodrowego, ze szczególnym uwzględnieniem chorych w młodszym wieku.

MATERIAŁ I METODY

Badania przeprowadzono u 100 pacjentów (49 kobiet i 51 mężczyzn), przyjmowanych kolejno na oddziały ortopedyczne szpitali rejonowych, u których rozpoznano lekarskim pochodzącym z indywidualnej historii choroby pacjenta była choroba zwyrodnieniowa stawu biodrowego. Na przeprowadzenie badań uzyskano zgody dyrekcji szpitali. Badania trwały od września 2016 r. do stycznia 2017 r. Średnia wieku badanych wynosiła 65 lat (± 11.5 roku; ryc. 1). Wyniki otrzymano na podstawie autorskiego kwestionariusza ankiety, obejmującego wywiad z chorym, informacje z dokumentacji medycznej i pomiaru obwodu talii (obwód talii jako połowa odległości między dolnym brzegiem łuku żebrowego a górnym grzebiением kości biodrowej; do pomiaru użyto taśmy antropometrycznej). Z dokumentacji medycznej pochodziło rozpoznanie lekarskie, dane dotyczące masy ciała i wzrostu pacjenta oraz dane o występowaniu lub braku u respondentów następujących jednostek chorobowych: cukrzycę typu 2, leczone nadciśnienie tętnicze, dyslipidemia. Pozostałe dane pochodziły z wywiadu z chorym, jako opinia pacjenta. Kwestionariusz ankiety zawierał 41 pytań (zamknięte, półotwarte i otwarte) oraz metryczkę. Kwestie ujęte w ankiecie dotyczyły głównie aktywności fizycznej, charakteru pracy zawodowej i stylu życia oraz wywiadu rodzinnego. Przeprowadzono badanie pilotażowe, na podstawie którego dokonano walidacji autorowego kwestionariusza ankiety.

The study involved 100 patients (49 women and 51 men) consecutively admitted to orthopaedic wards of regional hospitals. The patients were diagnosed with coxarthrosis based on the patient's individual medical history. The consent necessary to conduct the study was obtained from the Hospital Management. Duration of the study: from September 2016 to January 2017. The mean age was 65 (± 11.5) years (Fig. 1). The results were obtained by using a proprietary questionnaire, interviewing the patients about their medical histories, collecting information from their medical records, and measuring their waist circumference (waist circumference as half of the distance between the bottom edge of the costal arch and the upper iliac crest; an anthropometric tape was used for the measurement). The medical diagnosis and patient's weight and height values were obtained from the medical records. The same applied to the data concerning the presence or absence of the following disease entities in the respondents: type 2 diabetes, treated hypertension, and dyslipidaemia. The remaining data were obtained from the interview with the patients as a form of the patient's opinion. The survey questionnaire consisted of 41 questions and demographics. The questions were multiple-choice, semi-open, and open-ended. The questions included in the questionnaire were mainly focused on physical activity, the nature of professional work and lifestyle, as

AIM AND ASSUMPTIONS OF THE STUDY

The people in the younger age group are characterized by different factors predisposing to coxarthrosis than the elderly. The main aim of the study was to investigate the factors that may predispose to the occurrence of degenerative lesions of the hip joint, with particular emphasis on patients in the younger age range.

MATERIAL AND METHODS
Kryteria rozpoznania zespołu metabolicznego (ZM) ujednolicone przez grupę ekspertów z Międzynarodowej Federacji Cukrzycy pochodzące z 2005 r.: stwierdzenie przede wszystkim otyłości brzusznej (ocena przez pomiar obwodu talii według kryteriów etnicznych – u mężczyzn ≥ 94 cm, u kobiet ≥ 80 cm) oraz stwierdzenie dodatkowo współwystępowania co najmniej dwóch wymienionych poniżej:

- stężenie trójglicerydów ≥ 150 mg/dl lub leczenie dyslipidemi
- tężenie cholesterolu HDL wynoszące:
 - < 40 mg/dl u mężczyzn
 - < 50 mg/dl u kobiet lub leczenie dyslipidemi
- ciśnienie tętnicze ≥ 130/85 mmHg lub leczone nadciśnienie tętnicze
- glikemia na czczo ≥ 100 mg/dl lub leczenie cukrzyce typu 2° [16].

Na podstawie wymienionych kryteriów w badaniach własnych obecność ZM stwierdzono w przypadku jednoczesnego występowania otyłości brzusznej i dwóch spośród następujących chorób: cukrzycy typu 2, leczone nadciśnienie tętnicze i dyslipidemia. Zespół metaboliczny złożony z czterech składowych to jednoczesne występowanie otyłości brzusznej, cukrzycy typu 2, leczonego nadciśnienia tętniczego i dyslipidemii. Za istotne urazy przyjęto upadek z wysokości lub wypadek komunikacyjny. Nadwagę i stopień otyłości określono za pomocą wskaźnika masy ciała (body mass index – BMI; BMI = masa ciała [kg]/wzrost [m]^2). Uwzględniono zakresy BMI: nadwaga (25,0–29,99 kg/m^2), I stopień otyłości (30,0–34,99 kg/m^2), II stopień otyłości (35,0–39,99 kg/m^2), III stopień otyłości (≥40 kg/m^2) [17]. Wady postawy to wszelkie odchylenia od prawidłowej postawy ciała. W wywiadzie z pacjentem uwzględniono pytanie dotyczące posiadanej dokumentacji medycznej, potwierdzającej obecność wad podstawowych. Uwzględniono skolizję (skrzywienie boczne kręgosłupa), nierówność kończyn dolnych (różnica w długości kończyn dolnych), płaskostopie oraz inne wady podawane przez pacjentów. Za regularną aktywność fizyczną przyjęto czynność fizyczną wykonywaną z częstotliwością ≥ 150 min/tydzień, well as family history. A pilot study was conducted to validate the proprietary survey questionnaire. The criteria for diagnosing metabolic syndrome (MS), unified by a group of experts from the International Diabetes Federation from 2005: mainly abdominal obesity (assessment by measuring the waist circumference according to ethnic criteria – ≥ 94 cm in men, ≥ 80 cm in women) and an additional diagnosis of the co-occurrence of at least two abnormalities listed below:

- triglyceride levels ≥ 150 mg/dl or treatment of dyslipidaemia
- HDL cholesterol levels:
 - < 40 mg/dl in men
 - < 50 mg/dl in women or treatment of dyslipidaemia
- blood pressure ≥ 130/85 mmHg or treated hypertension
- fasting blood glucose ≥ 100 mg/dl or treatment of type 2 diabetes” [16].

Based on the above-mentioned criteria, the presence of MS was confirmed in the present study when patients simultaneously suffered from abdominal obesity and two of the following diseases: type 2 diabetes, treated hypertension, and dyslipidaemia. Metabolic syndrome composed of four components means the co-existence of abdominal obesity, type 2 diabetes, treated hypertension, and dyslipidaemia. A fall from a height and a traffic accident were considered significant injuries. Overweight and the obesity class were determined using body mass index (BMI = body weight [kg]/height [m]^2). The following BMI ranges were included: overweight (25.0–29.99 kg/m^2), class I obesity (30.0–34.99 kg/m^2), class II obesity (35.0–39.99 kg/m^2), and class III obesity (≥40 kg/m^2) [17]. Postural defects are all deviations from correct body posture. The question related to the possessed medical documentation, confirming the presence of bad posture was included in the patient’s interview. Scoliosis (a lateral curvature of the spine), lower limb length inequality (a difference in the length of the lower limbs), flat feet, and other patient-reported defects
Praca na siedząco oznaczała wykonywanie pracy w pozycji siedzącej w liczbie ≥ 8 h/dobę, przy braku regularnej aktywności fizycznej po pracy, natomiast praca na stojąco określała pracę wykonywaną w pozycji stojącej w liczbie ≥ 8 h/dobę. Na podstawie opinii pacjenta przeanalizowano również występowanie: ChZSB w bliskiej rodzinie (u rodziców chorego), bezpośredniego kontaktu z metalami ciężkimi (ołów/kadm/rtęć), chorób zapalnych stawów (przy najmniej jednej z następujących: reumatoidalne zapalenie stawów, zapalenia stawów związane z infekcją, dna moczanowa, toczeń rumieniowaty układowy, zezyskujące zapalenie stawów kręgosłupa, łuszczycowe zapalenie stawów, młodzieńcze idiopatyczne zapalenie stawów). Analizy dokonano dla dwóch grup, uwzględniających dwa przedziały wiekowe: osoby młodsze (grupa młodsza – A; n = 30) – poniżej 60 roku życia (r.z.), i osoby starsze (grupa starsza – B; n = 70) – w wieku ≥ 60 lat. Otrzymane wyniki opracowano statystycznie za pomocą programu Statistica 12 PL. Sformułowano także, czy istotna zależność między wybranymi danymi; w tym celu zebrano dane individualne, posługując się tabelami wielodzielczymi (kontyngencji), które stanowiły podstawę do obliczeń. Uwzględniono również stałe statystyczne określające siłę związku. Wykorzystano test chi² Pearsona – za istotny statystycznie przyjęto współczynnik istotności statystycznej p < 0,05. Siłę zależności oceniano za pomocą współczynnika R-Spearmana. Symbolem „n” oznacza- no liczbę respondentów.

WYNIKI

Na podstawie przeprowadzonych badań dokonano analizy porównawczej uzyskanych odpowiedzi między młodszą i starszą grupą wiekową. Prawie u wszystkich respondentów z grupy A (n = 27; 90%) i z grupy B (n = 67; 96%) wykazano otyłość typu brzusznego. Analizując występowanie ZM, stwierdzono, że w młodszej grupie wiekowej nie występuje ZM złożony z czterech składowych. Więcej niż połowa chorych z ośrodka są zbyt wysokie do podobieństwa. Więcej niż połowa chorych z ośrodka pracowa- wała na siedząco, co stanowiło blisko 17% więcej w porównaniu z pracującymi na stojąco. Na podstawie opinii pacjentów wady postawy (jako stwierdzone przez lekarza) obserwowano u 13% częściej u osób z grupy A. W grupie młodszej przebycie istotnych urazów okolicy stawu biodrowego (tj. upadku z wysokości kilku metrów lub wypadku komunikacyjnego m.in. z udziałem samochodu/roweru) było 2-krotnie częściej niż w grupie starszej (tab. I). Średnia wartość BMI nie różniła się znacząco między grupami: A – 28,19 (± 4,59) kg/m², B – 29,79 (± 5,86) kg/m². Wykazano istotny związek statystyczny (p < 0,05) między rodzinnym obciążeniem ChZSB a ZM złożo- nym z czterech składowych (p = 0,01397) – siła zwią- were included. Regular physical activity was defined as physical exercise performed ≥ 150 min/week. Sedentary work was defined as work performed in a sitting position for ≥ 8 h/day with no regular physical activity after work. Standing work meant work performed in a standing position for ≥ 8 h/day. Based on the patients’ opinion, the following were also analysed: coxarthrosis in the immediate family as the presence of the above-mentioned disorder in the patient's parents, direct contact with heavy metals (lead/cadmium/mERCURY), a history of past inflammatory joint diseases (at least one of the following diseases: rheumatoid arthritis, infection-related arthritis, gout, systemic lupus erythematous, ankylosing spondylitis, psoriatic arthritis, or juvenile idiopathic arthritis). The analysis was performed for two groups, considering two age ranges: younger (younger group = group A; n = 30) – respondents aged under 60 years, and older (older group = group B; n = 70) – respondents aged ≥ 60 years. The obtained results were statistically analysed using Statistica 12 PL. It was also examined whether there was a relationship between the selected data – for this purpose, individual data were collected using multivariate (contingency) tables, which formed the basis for calculating other statistics determining the strength of the relationship. Pearson's chi-squared test was used – the coefficient of statistical significance of p < 0.05 was considered statistically significant. The strength of the relationship was assessed using the Spearman rank-order correlation coefficient. The "n" symbol denotes the number of respondents.

RESULTS

Based on the conducted research, a comparative analysis of the obtained responses was made between the younger and older age groups. Almost all the group A respondents (n = 27; 90%) and group B respondents (n = 67; 96%) showed abdominal obesity. When analysing the presence of MS, it was found that the younger age group did not have MS composed of four components. In both age groups, more than half of the patients worked in a sitting position, which was nearly 17% more compared to the ones working in a standing position. Based on the patients’ opinions postural defects (as diagnosed by a doctor) was observed 13% more frequently in group A respondents. In the younger group, significant injuries to the hip joint region (i.e., due to a fall from a height of several meters or a traffic accident involving a car/bicycle) were twice as frequent as in the older group (Table I). The mean BMI values did not differ significantly between group A – 28.19 (± 4.59) kg/m² and group B – 29.79 (± 5.86) kg/m².
Table I: Characteristics of studied group in terms of type of factors predisposing to coxarthrosis

Rodzaj czynnika predysponującego do ChZSB/Type of factors predisposing to coxarthrosis	Cała grupa/Entire group (n = 100)	Grupa A/Group A (n = 30)	Grupa B/Group B (n = 70)	Wartości statystyczne określające siłę związku czynnika predysponującego do ChZSB między grupami A i B/Statistical values determining strength of relationship of factors predisposing to coxarthrosis between group A and B							
	n	%	n	%	n	%	p – chi^2 Pearsona/ p – Pearson's chi-square	R_{spearman}	p_{spearman}	R_{spearman}	p_{spearman}
Otyłość brzuszna/Abdominal obesity	94	94	27	90	67	96	0.27019	-0.110264	0.27479		
I stopień otyłości/Class I obesity/	23	23	6	20	17	24	0.64073	0.0466685	0.64475		
II stopień otyłości/Class II obesity/	5	5	1	3	4	6	0.61663	-0.050063	0.62085		
III stopień otyłości/Class III obesity/	5	5	1	3	4	6	0.61663	-0.050063	0.62085		
Cukrzyca typu 2/Type 2 diabetes	25	25	1	3	24	34	0.01050	-0.327569	0.00088		
Zespół metaboliczny/Metabolic syndrome	34	34	1	3	33	47	0.00002	-0.423806	0.00001		
Zespół metaboliczny złożony z czterech składowych/Metabolic syndrome composed of four components	11	11	0	0	11	16	0.02136	-0.230151	0.02125		
Praca na siedząco/Sedentary work	62	62	19	63	43	61	0.85729	0.0179830	0.85905		
Wady postawy/Postural defects	58	58	20	67	38	54	0.25033	0.1149543	0.25476		
Ciężka praca fizyczna/Heavy physical work	51	51	14	47	37	53	0.44176	-0.028439	0.77881		
Praca na stojąco/Standing work	45	45	14	47	31	44	0.62640	0.0219317	0.82853		
Istotne urazy/Significant injuries	27	27	12	40	15	21	0.05524	0.1916954	0.05605		
ChZSB występująca w bliskiej rodzinie/Coxarthrosis in immediate family	32	32	7	23	25	36	0.46355	-0.122143	0.22604		
Przebyte choroby zapalne stawów/History of inflammatory joint diseases	32	32	6	20	26	38	0.07604	-0.179218	0.07744		
Metale ciężkie (łódź/kadm/rtęć – bezpośredni kontakt)/Heavy metals (lead/cadmium/mercury – direct contact)	19	19	3	10	16	23	0.13313	-0.150188	0.13584		
ku była bardzo słaba, ponieważ $R < 0.3$. W grupie młodszej wykazano istotną zależność między rodzinnym obciążeniem ChZSB a otyłością brzuszną wraz z dyslipidemią ($p = 0.03106$), która zachodziła na średnim poziomie: $R = 0.4430079$; p(Spearman) = 0.01422 (tab. II).

Na podstawie opinii pacjentów najczęstsze wady postawy – w obydwu grupach wiekowych – to skolioza i nierówność kończyn dolnych. W grupach A i B nierówność kończyn dolnych występowała u porównywalnej liczby osób, natomiast skoliozę obserwowano częściej u respondentów z grupy A (tab. III).

Respondenci zarówno z młodszej, jak i starszej grupy wiekowej pytani o podejmowaną dotychczas jakąkolwiek aktywność fizyczną najczęściej wskazywali odpowiedzi A i C, czyli jazdę na rowerze oraz dodatkowo inne rodzaj aktywności fizycznej, niezwiązane z samośrodowiną gimnastyką (ryc. 2; tab. IV).

Jedynie 10% badanych z grupy A i 20% z grupy B oświadczyło podejmowanie regularnej aktywności fizycznej, niezwiązanej z samodzielnie wykonywaną gimnastyką (ryc. 2; tab. IV). Jedynie 10% badanych z grupy A i 20% z grupy B potwierdziło podejmowanie regularnej aktywności fizycznej. W obydwu grupach wiekowych dla 70% respondentów dotyczyło to okresu lat młodzieżowych. Wśród badanych z grupy młodszej była jedna osoba grająca zawodowo w piłkę nożną (tab. V).

There was a significant statistical relationship ($p < 0.05$) between a family history of coxarthrosis and MS composed of four components ($p = 0.01397$) – the strength of the relationship was very weak as R was < 0.3. In the younger group, a significant relationship was demonstrated between a family history of coxarthrosis and abdominal obesity along with dyslipidaemia ($p = 0.03106$), which occurred at an average level: $R = 0.4430079$; (Spearman's) $p = 0.01422$ (Table II).

Based on the patients’ opinions the most frequent postural defects – in both age groups – were scoliosis and lower limb length inequality. In groups A and B, lower limb length inequality was present in a comparable proportion of the respondents, while scoliosis was observed more frequently in group A respondents (Table III).

The respondents from the younger and older group, when asked about the kind of physical activity they did in their lives, more frequently chose the answers A and C, i.e. cycling and, additionally, other types of physical activity that did not involve self-guided exercises (Fig. 2; Table IV).

Tabela II. Analizy istotne statystycznie	Rodzinne występowanie ChZSB w grupie B/Family history of coxarthrosis in group B		
Rodzaj zmiennej/Type of variable	**Rodzinne występowanie ChZSB w grupie B/Family history of coxarthrosis in group B**		
	p – chi2 Pearsona/ p – Pearson’s chi-square	**Współczynnik R rang Spearmana/Spearman’s rank coefficient (R)**	**p – Spearmana/ p – Spearman’s p**
Cukrzycy typu 2/Type 2 diabetes	0,04928	0,1402571	0,24683
Zespół metaboliczny złożony z czterech składowych/Metabolic syndrome composed of four components	0,01397	0,1607575	0,18370
Otyłość brzuszna wraz z cukrzycą typu 2/Abdominal obesity with type 2 diabetes	0,04928	0,1402571	0,24683

Tabela III. Charakterystyka badanej grupy z uwzględnieniem wad postawy	Wady postawy ciała/Postural defects		
Grupa A/Group A (n = 30)	**Grupa B/Group B (n = 70)**		
Wady postawy ciała/Postural defects	**Wady postawy ciała/Postural defects**		
Skolioza/Scoliosis	10	17	24.29
Nierówność kończyn dolnych/Lower limb length inequality	10	20	28.57
Plaskostopie/Pes planus	2	3	4.29
Dysplazja biodra/zwinięcie stawu biodrowego/Hip joint dysplasia/hip dislocation	3	1	1.43
Koślawość stóp/Pes valgus	1	1	1.43
Nadmierna lordozy lędźwiowa/Lordosis	1	0	0
Nadmierna kifoza piersiowa/Kyphosis	0	1	1.43
Ryc. 2. Charakterystyka badanej grupy z uwzględnieniem podejmowanej aktywności fizycznej; A – jazda na rowerze, B – samodzielna gimnastyka, C – inny rodzaj aktywności fizycznej, D – brak aktywności fizycznej.

Fig. 2. Characteristics of studied group, in terms of physical activity; A – cycling, B – self-guided exercises, C – other physical activity, D – no physical activity.

Tabela IV. Charakterystyka badanej grupy z uwzględnieniem innych rodzajów podejmowanej aktywności fizycznej

Table IV. Characteristics of studied group in terms of other kinds of sport

Inne rodzaje aktywności fizycznej podejmowanej przez respondentów kilka razy w tygodniu/Other types of physical activity done by respondents several times a week	Grupa A/Group A (n = 30)	Grupa B/Group B (n = 70)		
	n	%	n	%
Piłka nożna/Football	8	26.67	10	14.29
Siatkówka/Volleyball	2	6.67	6	8.57
Turystyka górna/Mountain tourism	1	3.33	5	7.14
Inne, np. hokej, łyżwiarstwo, lekkoatletyka, boks, narciarstwo, bieg, podnoszenie sztang, pływanie/Dhers, e.g., hockey, skating, athletics, boxing, skiing, running, weight lifting, swimming	13	43.33	20	28.57

Tabela V. Charakterystyka badanej grupy uwzględniająca podejmowanie regularnej aktywności fizycznej

Table V. Characteristics of studied group in terms of regular physical activity

Rodzaj regularnej aktywności fizycznej/Type of regular physical activity	Grupa A/Group A	Grupa B/Group B						
	tak/yes	okres czasu/period of time	n	%	tak/yes	okres czasu/period of time	n	%
1	2	3	4	5	6	7	8	9
Samodzielna gimnastyka/Self-guided exercises	X	T	2	6.66	X	T	2	2.86
Piłka nożna/Football	X	T	1	3.33	X	M	1	1.43
Siatkówka/Volleyball	X	M	1	3.33				
Jazda na rowerze/Cycling	X	M	1	3.33	X	M	5	7.14
Hokej, piłka nożna/Hockey, football	X	M	1	3.33				
Akrobatyka/Acroatics	–	–	–	–	X	M	2	2.86
Przeprowadzone badania pokazały, że ChZSB dotyczy coraz młodszych osób. Według Koczego [1] szczyt zachorowania na koksartrozę przypadł między 70 a 79 r.ż. W badaniach własnych zaobserwowano, że największa liczba osób zgłaszających się na oddziały ortopedyczne, aby wykonać endoprotezoplastykę z powodu ChZSB, jest w wieku 65–70 r.ż.

Przeanalizowano styl życia pacjentów z koksartrozą. Biorąc pod uwagę pracę na siedząco i pracę na stojąco, w obydwu grupach wiekowych uzyskano przewagę w kierunku pierwszej z nich (63% – grupa młodsza, 61% – grupa starsza). Wyniki te mogą świadczyć o negatywnym wpływie braku ruchu w stawie biodrowym, co wiąże się ze słabszą cyrkulacją płynu stawowego i gorszym odżywieniem chrząstki stawowej. Według Koczego [1] praca siedząca nie wpływa negatywnie na chrząstkę stawową, a praca stojąca obejmuje zwiększone ryzyko powstania przykurczu w obrębie mięśnia biodrowo{lędźwiowego oraz otyłości). Brak u większości badanych regularnej aktywności fizycznej lub wykonywanie takiego rodzaju czynności fizycznych, które obciążały staw biodrowy, mogły w znacznjej mierze niekorzystnie wpływać na chrząstkę stawową. Podobnie wnosił Klimiuk [4], który uwzględniał uprawianie sportów wyczynowych jako czynnik ryzyka ChZSB. Obciążenia stawów wynikające z ciężkiej pracy fizycznej także są istotne (blisko połowa respondentów z grup A i B pracowała ciężko fizycznie). Do ciężkiej pracy fizycznej jako ryzyka ChZSB podobnie odnosi się Koczy [1], który podaje, że ciężka praca fizyczna jako czynnik ryzyka występuje u 40% chorych. Według Dudki i wsp. [19] obciążenia stawu biodrowego spowodowane ciężką pracą fizyczną wpływały na rozwoj ChZSB.

W badaniach własnych – na podstawie opinii pacjentów – wady postawy były o 13% częstsze u osób z grupy A; w grupie B osoby z wadami i bez wad postawy

1	2	3	4	5	6	7	8	9
Bieg, skoki, piłka nożna/Running, jumping, football	–	–	–	–	X	M	1	1,43
Podnoszenie sztang, piłka nożna, siatkówka, zapasy/Weight lifting, football, volleyball, wrestling	–	–	–	–	X	M	3	4,29
Narciarstwo, tenis/Skiting, tennis	–	–	–	–	X	T	1	1,43
Lekkoatletyka, piłka nożna/Athletics, football	–	–	–	–	X	M	1	1,43
Szemierka/Fencing	–	–	–	–	X	M	1	1,43
Nordic walking	–	–	–	–	X	T	1	1,43
Pływanie/Swimming	–	–	–	–	X	M	1	1,43

X – podejmowanie regularnej aktywności fizycznej/performing regular physical activity; T – okres 20 lat przed endoprotezoplastyką stawu biodrowego; goń a period of 20 years before hip endoprosthetics; M – okres młodzieńczy/adolescence

When asking the respondents about doing regular physical activity, only 10% of group A respondents and 20% of group B respondents answered they did such activity. For 70% of the respondents from both age groups, regular physical activity was related to the period of their adolescence. In the younger group of respondents, there was one person who had played football professionally (Table V).
stanowiły porównywalny odsetek (blisko 50%). Można sądzić, iż w wyniku zaistniałych nieprawidłowości w postawie ciała na rozwój ChZSB u tych pacjentów mógł mieć wpływ nierównomierny rozkład sił oddziałujących na staw biodrowy. Podobnie jak w konflikcie udowo-panewkowym, gdzie ma miejsce mechanizm nieprawidłowego przenoszenia obciążeń [1], u osób obciążonych wadami postawy może dochodzić do rozwoju zwrotnika w wyniku nieprawidłowego przenoszenia obciążen, w tym własnej masy ciała – siła ciężkości (jako skutek przesunięcia środka ciężkości ciała). W badaniach Mortki i wsp. [20] dysfunkcję stawu krzyżowo-biodrowego odnotowano u 54% pacjentów ze skoliozą. Truszczyńska i wsp. [21] zaobserwowali, że kąt pochylenia tułowia w płaszczyźnie strzałkowej, kąt kifozy piersiowej i kąt nachylenia miednicy w płaszczyźnie czołowej były większe w grupie osób z koksartrozą.

Działanie siły powstałej w wyniku zaistniałego urazu także mogło predysponować do rozwoju ChZSB. Nadmierne oddziaływanie tej siły, jak też siły ciężkości na daną część stawu biodrowego (czy to chrząstki, pod-chrzanie czy same kości), mogłyby spowodować mikrouszkodzenie, które w toku dalszej egzystencji mogłoby rozwiązywać się w różnym tempie. Dudko i wsp. [19] w podobny sposób przedstawili teorię biomechaniczną (inkongruencji) jako jeden z możliwych mechanizmów w patogenezie koksartrozy. Wspomniane tempo rozwoju dalszych zmian zwyrodnieniowych mogłoby zależeć od liczby towarzyszących innych czynników predysponujących do rozwoju ChZSB.

Biorąc pod uwagę obciążenie stawów biodrowych, na uwagę zasługiwała podwyższone masa ciała. W badaniach własnych nadwagę obserwowano aż u 50% pacjentów ze skoliozą. Truszczyńska i wsp. [21] obserwowali, że kąt pochylenia tułowia w płaszczyźnie czołowej były większe w grupie osób z koksartrozą.

Zmiany, które w związku z nadwagą stwierdzili u 28,3% pacjentów, w postaci otyłości, 2% z drugim i trzecim stopniem. McLawhorn et al. [22] nadwagę stwierdzili u 21% respondentów. Class II obesity and class III obesity occurred in comparable numbers: 3% of group A respondents and 6% of group B respondents. According to Majda et al. [2] the results were similar: 21% of patients had class I obesity and 2% of patients suffered from class II obesity or class III obesity. According to Mortka et al. [20] sacroiliac joint dysfunction was reported in 54% of patients with scoliosis. Truszczyńska et al. [21] observed that the trunk tilt angle in the sagittal plane, the thoracic kyphosis angle and pelvic tilt angle in the frontal plane were greater in the group of patients with coxarthrosis.

The action of the force occurred because of the injury could also predispose to the development of coxarthrosis. The excessive impact of this force, as well as gravitational force given to a part of the hip joint (or cartilage, subchondral bone, or the very bone), could cause a micro injury, which due to its further existence could develop at different rates. Dudko et al. [19] similarly presented the biomechanical theory (incongruity) as one of the possible mechanisms in the pathogenesis of coxarthrosis. The above-mentioned rate of development of further degenerative lesions could depend on the number of other concomitant factors predisposing to the development of coxarthrosis.

Considering the strain on the hip joints, increased body weight deserved special attention. In the presented study, overweight was observed in as many as half of the participants. Class I obesity was present in 20% of group A respondents and in 24% of group B respondents. Class II obesity and class III obesity occurred in comparable numbers: 3% of group A patients and 6% of group B patients. According to Majda et al. [2] the results were similar: 21% of patients had class I obesity and 2% of patients suffered from class II obesity or class III obesity. According to McLawhorn et al. [22] 28.3% of patients were overweight, 19.4% of patients had class I obesity, 6.8% of patients were had class II obesity, and 2.7% suffered from class III obesity.

Abdominal obesity, as determined on the basis of ethnic criteria, was a significant issue. As a result of the presented study, abdominal obesity was present in as
i TGF-β (transformujący czynnik wzrostu β) w zdegenerowanej chrząstce stawowej. Długotrwała ekspozycja chrząstki na działanie TGF-β mogła prowadzić do nasilenia zmian degeneracyjnych.

Zespół metaboliczny występuje u około 20% ludności polskiej [23]. Na podstawie badań własnych wykazano, że ZM występował głównie u osób w wieku ≥ 60 lat (47%). Biorąc pod uwagę całą grupę badaną (średnia wieku ≈ 65 lat), ZM występował w 34% pacjentów. W badaniach Rutkowskiej i wsp. [23] na 105 przypadkowych mieszkańców Warszawy (średnia wieku 55 lat) ZM stwierdzono u blisko 30,68% osób. W badaniach własnych wykazano istotny związek statystyczny (p < 0,05) między rodzinnym obciążeniem ChZSB a ZM złożonym z czterech składowych w grupie starszej oraz otyłością brzusną wraz z dyslipidemią u osób z grupy młodszej. Wpływ ZM oraz jego składowych na rozwój ChZSB można by się dopatrywać nie tylko w niezależnym wpływie na unacznienie (mniejsza travałość kości, gorsze odżywienie chrząstki stawowej), ale również w działaniu aterogennym (niekorzystny wpływ przez utlenienie lipoprotein LDL – większa możliwość wytwarzania wolnych rodników, które mogłyby uszkadzać chrząstkę stawową). Podobnie o niezależnym wpływie wolnych rodników (występowanie stresu oksydacyjnego) w patogenezie ZM piszą Godala i wsp. [24].

WNIOSKI

1. U chorych z badanej grupy występowały liczne czynniki predysponujące do rozwoju ChZSB, najczęstsze zaś były otyłość brzusna i praca na siedząco; obciążenie rodzinne w kierunku zmian zwyrodnieniowych występowało rzadziej.
2. W badanie grup chorych regularna aktywność fizyczna była na bardzo niskim poziomie, dotyczyła głównie okresu młodzieżego respondentów i polegała przede wszystkim na wykonywaniu czynności obciążających staw biodrowy.
3. U ponad połowy chorych z badanej grupy występowały wady postawy (głównie skolioza i nierówność kończyn dolnych) oraz otyłość brzusna.
4. Czynniki predysponujące do rozwoju ChZSB różni się w zależności od wieku chorych, tj. istotne urazy występują częściej u osób poniżej 60 r.ż., a cukrzycy typu 2 i zespół metaboliczny w grupie osób ≥ 60 lat.
5. Konieczne są szeroko zakrojone działania mające na celu szerzenie wiedzy na temat roli i znaczenia czynników ryzyka rozwoju ChZSB, a w konsekwencji ich eliminację i niedopuszczenie do rozwoju choroby.

CONCLUSIONS

1. The patients of the study group were burdened with numerous factors predisposing to the development of coxarthrosis. Abdominal obesity and sedentary work were the most common, while a family history of degenerative lesions was less frequent.
2. In the studied group of patients, regular physical activity was at a very low level and mainly concerned the period of adolescence of the respondents. It was also mainly associated with activities loading the hip joint.
PIŚMIENICTWO/REFERENCES

1. Koczy B. Endoprotezoplastyka w skojarzeniu z terapią fizykalną w leczni-
niu choroby zwyrodnieniowej stawu biodrowego u mężczyzn. Rozprawa ha-
bilitacyjna Nr 12/2013. Śląski Uniwersytet Medyczny w Katowicach. Katow-
cice 2013.
2. Majda A., Walas K., Gawełek A. Jakość życia pacjentów z chorobą
zwyrodnieniową stawów biodrowych. Probl. Pier. 2013; 21(1): 29–37.
3. Przekłasz-Muszyńska A. Choroba zwyrodnieniowa stawów. Prakt. Lek.
2016; 130: 19–20.
4. Klimek P.A. Choroba zwyrodnieniowa stawów – od patogenezy do ga-
binetu lekarza rodzinnego. Przew. Lek. 2012; 15(1): 125–130.
5. Jasiuk A., Talalaj M. Otyłość a choroba zwyrodnieniowa stawów. Post.
Nauk Med. 2013; 26(5B): 14–18.
6. Nalazek A., Kamińska E., Kuzmicz U., Trela E. Leczenie, diagnostyka
 i profilaktyka stawu biodrowego w chorobie zwyrodnieniowej. J. Health
Sci. 2014; 4(1): 333–338.
7. Borowicz A., Józwiak A., Kostka T., Wieczorewicz-Tobis K.,
Zasadzka E. Choroba zwyrodnieniowa stawów. W: Jedlińska J., Nowosielska-
–Tyuryn A., Piotrowski (red.) Fizjoterapia w geriatrii. Wydawnictwo Le-
karskie PZWL. Warszawa 2011, s. 139–153.
8. Lanocha N., Kalisinska E., Kosik-Bogacka D.I., Budis H., Sokolowski
S., Bohatyrewicz A., Lanocha A. The effect of environmental factors on con-
centration of trace elements in hip joint bones of patients after hip replacement
surgery. Ann. Agric. Environ. Med. 2013; 20(3): 487–493.
9. Taylor A.M., Husef M.F., Ranganath L.R., Gallagher J.A., Dillon
J.P., Hoebner J.L. et al. Cartilage biomarkers in the osteoarthropathy of alkap-
tonuria reveal low turnover and accelerated ageing. Rheumatology 2017; 56(1):
156–164. doi: 10.1093/rheumatology/kew355.
10. Guzik T. Sz. Zmiany zwyrodnieniowe stawów, choroba zwyrodnie-
niowa, zniekształcające zapalenie stawów. W: Guzik T Sz., [red.] Ortopedia
 i traumatologia. T. 2 Wyd 3. Wydawnictwo Lekarskie PZWL. Warszawa
2010, s. 473–485.
11. Krzyżanowicz M. Choroba zwyrodnieniowa stawów. Lek. Rodz. 2013;
18(1): 18–20.
12. Wang H., Cheng Y., Shao D., Chen J., Sang Y., Gui T., Luo S. et al. Meta-
bolic Syndrome Increases the Risk for Knee Osteoarthritis: A Meta-
Analysis. Evid. Based Complement. Alternat. Med. 2016; 2016: 7242478.
doi: 10.1155/2016/7242478.
13. Denys K., Denys P., Macander M., Zbolarski K. Jakość życia, akceptacja
choroby i poczucie kontroli zdrowia u pacjentów z przewlekłymi schorzeniami
narządu ruchu podczas procesu rehabilitacji. Pol. Merk. Lek. 2015; 38(225):
155–158.
14. Turzińska K., Klapeć W., Jabłoński M. Osteoarthroza – rola chrząstki,
możliwości modyfikacji przebiegu choroby. Reumatologia 2013; 51(1): 68–72.
15. Stańczyk M. Dieta na zdrowe kości i mocne stawy. Kości, Stawy, Mięśnie 2014;
1: 39–41.
16. Michalski B., Kasprzak J.D. Zespół metaboliczny. Narastający problem
medyczny we współczesnym świecie. Lek. Rodz. 2013; 18(5): 326, 328–330,
332–333.
17. Wąpolski M., Walitka M., Marciniowska-Suchowsiaka E. Otyłość –
definicja, epidemiologia, patogeneza. Post. Nauk Med. 2013; 26(4): 301–306.
18. Żabińska M. Co łączy chorobę zwyrodnieniową stawów biodrowych z
chorobą zwyrodnieniową odcinka lędźwiowego kręgosłupa. Prakt. Fizjoter. Rehabil. 2011; 15: 36–38.
19. Dukko S., Kusz D., Cholewiński J., Pierzchała A. Patogeneza koksartroz.
Ann. Acad. Med. Siles. 2002; supl 35: 29–42.
20. Morita K., Otsuki W., Kinel E., Krzyżowski I., Kotwicki T. Dysfunkcje
stawów krzyżowo-biodrowych u pacjentów ze skoliozą i ich związek z unat-
waniem miednicy. Issues Rehabil. Orthop. Neurophysiol. Sport Promot. 2012;
1: 13–24.
21. Trziszczynska A., Dzral-Grabiec J., Rapala K., Tarnowski A., Górnik K.,
Bielski J. Charakterystyka wybranych parametrów postawy ciała u pacjentów z
chorobą zwyrodnieniową stawów biodrowych. Ortop. Traumatol. Rehabil. 2014; 16(3): 351–360. doi:
10.1016/j.arth.2016.06.043.
22. McLawhorn A.S., Steinhaus M.E., Southren D.L., Lee Y.Y., Dodwell
E.R., Figgie M.P. Body Mass Index Class Is Independently Associated With
Injuries among Individuals Aged under 60 years of age. Medicine & Science in
Sports & Exercise. 2016; 48(12): 2152–2160.
23. Rutkowski A., Wiktorowicz M., Zyczkowska K., Wardyn K.A., Stańczyk A.,
Tomkiewicz T., Tiersch-Ouchch A. Częstość występowania zespołu metabolicznego
ego skoliosis and abdominal obesity. Post. Nauk Med. 2013; 26(4): 301–306.
24. Godala M., Mateńek-Kusimierzewska I., Mocznuki D., Rutkowski M.,
Szafer F., Gaszyńska E., Kowalski J. Ocena stężenia witamin A, C i E w oso-
cu chorych z objawami zespołu metabolicznego. Pol. Merk. Lek. 2014;
36(215): 320–323.