Effect of dietary zearalenone on the performance, reproduction tract and serum biochemistry in young rats

Muzaffer Denli¹, Juan Carlos Blandón², Silvia Salado³, Maria Elena Guynot⁴ and Jose Francisco Pérez⁵

¹Department of Animal Science, Dicle University, Diyarbakir, Turkey; ²Department of Animal Science, Politécnico Colombiano JIC University, Medellín, Colombia; ³Adiverter, S. L. Pol. Ind. Agro-Reus, Tarragona, Spain; ⁴Department of Animal and Food Science, Universitat Autònoma de Barcelona, Barcelona, Spain

ABSTRACT
The present study was conducted to determine the toxic dose response of a chronic dietary Zearalenone (ZEA) in weaned young rats. Sixty, 21-day-old, Sprague Dawley female rats were randomly allocated to five groups of four replicate cages containing three rats. Rats were fed diets with increasing amounts of ZEA (0, 0.5, 0.9, 1.8 and 3.6 mg/kg) for 4 weeks. Daily feed intake was reduced (P < .05) by feeding the ZEA diets with 0.9 and 3.6 mg ZEA/kg feed. Rats fed the diet containing 1.8 mg ZEA/kg increased (P < .05) the body weight gain (BWG) and reduced (P < .05) feed conversion rate (FCR) as compared to the control group. The two highest levels of dietary ZEA also increased (P < .05) the weight of the uterus. However, ovaries' weight, timing of vaginal opening and the inter-ovestrous interval were not affected by increasing the doses of dietary ZEA (P > .05). Similarly, serum concentrations of total protein, follicle-stimulating hormone and alanine aminotransferase, aspartate aminotransferase and alkaline phosphate activities were not altered by the ZEA treatments. In conclusion, our results indicated that a chronic dietary consumption of ZEA at concentrations of 1.8 mg ZEA/kg increases the BWG and the uterus weight of weaning female rats.

1. Introduction
Zearalenone (ZEA) is a non-steroidal estrogenic fusariotoxin which is produced by Fusarium graminearum and Fusarium culmorum in grains, mainly corn and wheat (Kuiper-Goodman et al. 1987). It is considered a public concern associated with morum in grains, mainly corn and wheat (Kuiper-Goodman et al. 1987). It is hypothesized that the clinical signs will depend on factors such as type and concentration of ZEA and the duration of exposure. The aim of this study was to investigate the deleterious dose response of dietary ZEA on growth, reproductive tract and behaviour, internal organs' weight and serum biochemistry in weaning rats as an animal model.

2. Material and methods
2.1. Chemicals and feed contamination
Pure crystalline ZEA (Sigma-Aldrich Chimie S.A.R.L France) was incorporated into the diets by dissolving ZEA in absolute ethanol (w/vol) followed by mixing the solution with appropriate quantities of ground commercial feed. The contaminated feed was left overnight at room temperature for the solvent to evaporate and was then mixed into basal diet to provide the desired levels of mg ZEA/kg feed. The diet containing ZEA was analysed by high-performance liquid chromatography to ensure the ZEA concentrations in the experimentally contaminated diets.

2.2. Animals and treatments
The experiment was performed at the Animal Facility Research Centre of the Universitat Autònoma de Barcelona (UAB) and it
was conducted according to the guidelines for animal experimentation of UAB and approved by the Ethical Committee. Sixty weaning (21 day old) Sprague Dawley female rats (60 ± 1.3 g, initial body weight) were randomly allocated to five groups of four replicate cages containing three rats. Rats were fed diets with different doses of ZEA (0, 0.5, 0.9, 1.8 and 3.6 mg ZEA/kg feed). Rats were housed in wire cages with filter tops at 24°C, 55–60% of humidity and a 12 h light/12 h dark cycle. Standard Certified Rodent Chow diets (SAFE-Scientific Animal Food Engineering – France) and water were offered ad libitum.

2.3. Experimental procedures

Body weight gain (BWG), feed intake (FI) and feed conversion rate (FCR) per cage were recorded weekly. FCR was calculated as FI (g) per weight gained. Timing of vaginal opening was monitored daily from the day of vaginal opening to the end of the experiment by examination of vaginal smears to determine the time of the oestrus cycle. Electric impedance of the vaginal mucous membrane was measured following the method described by Bartas (1977). Animals were killed for taking blood samples by an overdose of sodium pentobarbital after 2 days of oestrus in the interval of 43–50 days of age to exclude the effects of oestrus on the weight of reproductive organs including uterus and ovaries and the concentration of the follicle-stimulating hormone (FSH). After ketamina-xilacina (80 mg/kg) anaesthesia, the blood samples were collected from eight animals from each treatment via heart for haematological and serum biochemical determination. Blood samples were placed on ice during collection. Within 1 h, the serum was obtained by centrifugation (2500×g for 15 min) and stored at −80°C until further analysis. Liver, kidneys, spleen, gastrointestinal tract, small intestine and urinary bladder and the reproductive tract, including the uterus (cervix and corpus uteri) and the ovaries, were dissected and weighed.

2.4. Biochemical analysis

Serum biochemical parameters were measured by using Olympus System Reagents (Olympus, Clare, Ireland) and an automatic clinical chemistry analyser (Olympus AU 400, Hamburg, Germany). The concentration of total protein (TP) was measured by following the Biuret method; uric acid (UA) by following the uricase method; the enzymatic activities of alkaline phosphatase (ALP), γ-glutamyltransferase by using the recommended International Federation of Clinical Chemistry and Laboratory Medicine reference methods. The FSH concentration was studied by RIA.

2.5. Statistical analysis

Statistical analyses were performed with SPSS for Windows, version 18.0 (SPSS Inc., Chicago, IL, USA). Results of the parameters were analyzed by ANOVA with the GLM procedure of SPSS by using the following model: $Y_{ij} = \mu + \alpha_{i} + \delta_{j} + \epsilon_{ij}$, where μ is the overall mean, α ($j = 1, 5$) is the effect of ZEA in the diet, and ϵ is the unexplained random error. Means are separated by Tukey’s multiple range tests when ANOVA was significant ($P < .05$), data are resented as means and SEM. Polynomial contrasts (linear, quadratic and cubic) were used to test the effect of ZEA levels on the various parameters measured.

Table 1. Effects of dietary ZEA on growth parameters in young rats.

Measurements	ZEA Treatment (mg/kg)	SEM	P	Effects	
	(Control) 0	0.9	1.8	3.6	
Age (d)	48.4 3.70	48.2	48.4	48.7	0.364
Feed intake (g/d)	15.23a	14.47b	14.99b	14.82b	0.051
Body weight gain (g/d)	3.70b	3.79b	4.00b	3.75b	0.012
Feed gain ratio	4.11a	3.98b	3.89b	3.74b	0.033

Note: *Means within the line with different superscripts differ significantly ($P < .05$). *Linear, Cubatic effect ($P < .05$).

NS, not significant; L, linear; Q, quadratic; C, cubic effects; SEM, standard error of the mean.
reduction. The control rats exhibited a regular inter-oestrus interval of 3.6 days, while ZEA-treated groups showed inter-oestrus intervals of 4.2, 5.9, 3.7 and 4.7 days for 0.5, 0.9, 1.8 and 3.6 mg ZEA/kg, respectively. Timing of vaginal opening is an external signal of sexual development in female rats and has been used as a biomarker of pubertal onset (Marty et al. 1999). Nikaido et al. (2004) referred to an earlier vaginal opening and persistent oestrus simultaneous to structural changes in the ovary in neonatal prepuce rodents fed on dietary ZEA. In our study, supplementation with increasing amounts of ZEA up to 3.6 mg ZEA/kg feed for 4 weeks did not promote changes in the vaginal opening but enlarged the time of the oestrus cycle (P > .05). In mice experiments, the effects of ZEA on the vaginal opening were dependent on the age and way of administration (Ito & Ohtsubo 1994). When ZEA (30 µg/animal) was administered to neonatal (1–5 days) animals in daily pulse doses a tendency to a delayed vaginal opening was observed, but a pulse dose at 10 days of age promoted an earlier opening. The reason could be related with the fate and kinetics of the toxin in the animals, and the competitive binding to the reproductive receptors (Powell-Jones et al. 1981). The way, time and the administrated dose of ZEA may be also reasons for such a discrepancy (El-Makawy et al. 2001). The weights of liver, kidney, spleen, uterus, ovaries and intestinal tract are shown in Table 2. Weights of liver, kidney, spleen and ovaries were not affected by treatments (P > .05). On the other hand, uterus weight was higher (P < .001) in rats fed the highest doses of ZEA in diet (1.8 and 3.6 mg ZEA/kg) than rats fed the Control diet. Our results of the present paper confirm the effects of ZEA on the reproductive organs of weaning rats, especially by promoting an estrogenic response (Kissing 1982; Ito & Ohtsubo 1994; Perez-Martinez et al. 1996; Yuri et al. 2004). In rats, the reproductive consequences of ZEA exposure include decreased fertility, resorption or deformities of foetuses, and abortion at high dietary concentrations (Kuiper-Goodman et al. 1987). ZEA has been mainly characterized by its estrogenic properties in a number of species (Etienne & Dourmand 1994; Doll et al. 2005). Most of the effects have been observed on peripheral reproductive organs especially uterus and ovaries (Fitzpatrick et al. 1989). It is known that ZEA is mostly metabolized in liver and intestinal mucosa to α- and β-zearenalol and zearalanol (Olsen 1989). ZEA metabolites have been referred limited or no-binding to carrier proteins, allowing their easier access to oestrogen target sites and a higher oestrogen activity (Leffers et al., 2001). The effect of ZEA most worth mentioning in the present study was the increase on the uterus weight, as previously described (Ito & Ohtsubo 1994, Yamini et al. 1997). The fact that the low level of ZEA increased also uterus weight suggests that this organ may be more sensitive to the toxicity of ZEA than other organs including brain, liver and kidney (Turcotte et al. 2005). The intestinal tract weight was also higher (P < .05) in the group fed with 3.6 mg ZEA/kg feed than rats fed the Control diet. Serum biochemical parameters are given in Table 3. All ZEA levels in diet increased (P < .05) the serum bilirubin concentration. In addition, serum UA concentration was lower (P < .05) in rats fed the highest level of ZEA (3.6 mg ZEA/kg feed) as compared to rats fed the Control diet. Decreased serum UA concentrations may be associated with the amino acid utilization, changes in enzyme systems (Kubena et al. 1988) and amino acids for energy utilization, leading to excess UA synthesis (Swamy et al. 2002). However, serum ALP, ALT and AST activities, TP and FSH concentrations were not affected by dietary treatments (P > .05). Results from our experiment indicate that the concentration of bilirubin was increased by all levels of dietary ZEA, but no changes were observed on the ALP, ALT or AST activities. Increases of the bilirubin concentration in the blood may indicate a certain degree of liver toxicity caused by dietary ZEA. Maaroufi et al. (1996) reported a significant increase in the activities of blood markers such as bilirubin, ALT, AST and ALP which are rather in favour of direct toxic effects on the liver leading to

Table 2. Effects of dietary ZEA on the weight of the reproductive tract and other internal organs in young rats.

Measurements	ZEA treatment (mg/kg)	Effects								
	(Control) 0	0.5	0.9	1.8	3.6	SEM1	P	L	Q	C
Uterus weight	0.147^a	0.182^b	0.183^b	0.204^{a,b}	0.208^a	0.006	.001	*	NS	NS
Ovaries weight	0.063	0.068	0.066	0.070	0.072	0.001	.767	*	NS	NS
Intestinal weight	7.63^b	7.87^b	8.22^b	8.64^{a,b}	8.81^a	0.137	.028	*	NS	NS
Liver weight	4.36	4.47	4.69	4.75	4.73	0.089	.645	NS	NS	NS
Kidney weight	0.89	0.98	0.87	0.87	0.87	0.025	.583	NS	NS	NS
Spleen weight	0.272	0.300	0.291	0.270	0.284	0.004	.0004	NS	NS	NS

Note: ^{a,b}Means within the line with different superscripts differ significantly (P < .05). *Linear, Quadratic, Cubic effect (P < .05). NS, not significant; L, linear; Q, quadratic; C, cubic effects; SEM, standard error of the mean.

Table 3. Effects of dietary ZEA on serum biochemistry in young rats.

Measurements	ZEA treatment (mg/kg)	Effects								
	(Control) 0	0.5	0.9	1.8	3.6	SEM1	P	L	Q	C
AST (IU/L)	86.0	78.4	78.7	81.5	75.0	2.970	.142	NS	NS	NS
ALT (IU/L)	37.3	34.7	34.1	37.1	38.5	2.463	.644	NS	NS	NS
ALP (IU/L)	343.4	357.2	320.3	328.1	353.2	22.2	.721	NS	NS	NS
Total protein (g/dL)	6.08	5.92	5.99	6.21	5.91	0.084	.082	NS	NS	NS
Uric acid (mg/dL)	26.4^a	20.8^{a,b}	21.7^{a,b}	24.9^{a,b}	20.5^b	0.084	.082	NS	NS	NS
Bilirubin (mg/dL)	0.10^a	0.13^a	0.13^a	0.14^a	0.13^a	0.006	.001	*	NS	NS
FSH (ng/mL)	5.63	3.85	5.19	5.58	6.53	0.662	.108	*	*	NS
limited hepatolysis after a single i.p. administration by ZEA. Similarly Minervini et al. (2001) reported that a pulse dose of 1.5 and 6 mg ZEA/kg b.w. causes toxic effects on the reproductive tract and liver. In this respect, it is important to mention that ZEA is mainly metabolized in the liver, which appears to be one of the main targets. However, differences in the liver toxicity could be associated with the level of and the way ZEA is administered as well as the age of the animals.

4. Conclusion

In conclusion, our results indicated that dietary ZEA at concentrations above 1.8 mg ZEA/kg can induce toxic effects in weaning rats, which was mainly explained by significant increases of the uterus weight.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work, part of MONALISA EUREKA Project II 3025, was supported by 299 PROFIT FIT-0300-2003-335, CDTI 20050012, and Torres Quevedo PTQ2004-0869.

References

Agag BI. 2004. Mycotoxins in foods and feeds. 3-Zearalenone. Assiut Univ Bull Environ Res. 7:159–176.

Bartas L. 1977. Vaginal impedance measurement used for mating in the rat. Lab Anim. 11:53–55.

Collins TXF, Sprando RL, Black TN, Olejnik N, Eppley RM, Alam HZ, Rorie J, Ruggles DI. 2006. Effects of zearalenone on in utero development in rats. Food Chem Toxicol. 44:1455–1465.

Denli M, Blandon JC, Guynot ME, Salado S, Perez JF. 2015. Efficacy of activated diatomaceous clay in reducing the toxicity of zearalenone in rats and piglets. J Anim Sci, 93:637–645.

Diekmann MA, Long GG. 1986. Detrimental action of zearalenone on early-pregnancy in swine. J Toxicol Toxicin Rev. 5:261 (Abstr.).

Doll S, Gericke S, Danicke S, Ralla J, Ubberschar KH, Valenta H, Schnurrbusch U, Schweigt FJ, Flachowsky G. 2005. The efficacy of a modified aluminosilicate as a detoxifying agent in Fasuriam toxin contaminated maize containing diets for piglets. J Anim Physiol Anim Nutr. 89:342–358.

El-Makawy A, Hassanane MS, Abd-Alla ESA. 2001. Genotoxic evaluation for the estrogenic mycotoxin zearalenone. Reprod Nutr Dev. 41:79–89.

Etienne M, Dourmand JY. 1994. Effects of Zearalenone or glucosinolates in the diet on reproduction in sows: a review. Livestock Prod Sci. 40:99–113.

Fitzpatrick DW, Picken CA, Murphy LC, Buhr MM. 1989. Measurement of the relative binding affinity of zearalenol and b-zeaanol for uterine and oviduct estrogen receptors in swine, rats and chickens: an indicator of estrogenic potencies. Comp Biochem Physiol. 94:691–694.

Ito Y, Ohtsubo K. 1994. Effects of neonatal administration of zearalenone on the reproductive physiology of female mice. J Vet Med Sci. 56:1155–1159.

Kaliamurthy J, Geraldine P, Thomas PA. 1997. Effects of zearalenone on food consumption, growth rate, organ weight and serum testosterone level in male rats. J Environ Biol. 21:115–120.

Kiessling KH. 1982. The effect of zearalenon on growth-rate, organ weight and muscle-fiber composition in growing-rats. Acta Pharmacol Toxicol. 51:154–158.

Koraichi F, Videmanna B, Mazzalona M, Benahmed M, Prouillica C, Leceouerc S. 2012. Zearalenone exposure modulates the expression of ABC transporters and nuclear receptors in pregnant rats and fetal liver. Toxicol Lett. 211:246–256.

Kubena LF, Huff WE, Harvey RB, Corrier DE, Phillips TD, Cregor CR. 1988. Influence of ochratoxin A and deoxynivalenol on growing broiler chicks. Poult Sci. 67:253–260.

Kuiper-Goodman T, Scott PM, Watanabe H. 1987. Risk assessment of the mycotoxin zearalenone. Regul Toxicol Pharmacol. 7:253–306.

Leffers H, Naesby M, Vendelbo B, Skakkebaek NE, Jorgensen M. 2001. Oestrogenic potencies of Zeranol, oestradiol, diethylstilboestrol, Bisphenol-A and genistene: implications for exposure assessment of potential endocrine disrupters. Hum Reprod. 16:1037–1045.

Maaroufi K, Chekir L, Creppy EE. 1996. Zearalenone induces modifications of haematological and biochemical parameters in rats. Toxicon. 34:535–540.

Marty MS, Crissman JW, Carney EW. 1999. Evaluation of the EDTSTAC female pubertal assay in CD rats using 17 beta-estradiol, steroid biosynthesis inhibitors, and a thyroid inhibitor. Toxicol Sci. 52:269–277.

Minervini F, Dell’Aquila ME, Maritato F, Minoia P, Visconti A. 2001. Toxic effects of the mycotoxin zearalenone and its derivatives on in vivo maturation of bovine oocytes and 17 beta-estradiol levels in mural granulosa cell cultures. Toxicol In Vitro. 15:489–495.

Mukherjee D, Royce SG, Alexander JA, Buckley B, Isukapalli SS, Bandera EV, Zarihi H, Georgopoulos PG. 2014. Physiologically-based toxicokinetic modeling of zearalenone and its metabolites: application to the jersey girl study. Plos One. 41:30.

Nikaido Y, Yoshizawa K, Danbara N, Tsujiya-Kyutoku M, Yuri T, Uehara N, Tsunbara A. 2004. Effects of maternal xenosterone exposure on development the reproductive tract and mammary gland in female CD-1 mouse offspring. Reprod Toxicol. 18:803–811.

Olsen M. 1989. Metabolism of zearalenone in farm animals. In: Chelkowski J, Editor. Fusarium: Mycotoxins, Taxonomy and Pathogenicity. Amsterdam, Elsevier; p. 167–177.

Perez-Martinez C, Garcia-Iglesias MJ, Ferreras-Estrada MC, Bravo-Moral AM, Espinosa-Alvarez J, Escudero-Diez A. 1996. Effects of in-utero exposure to zeranol or diethylstilboestrol on morphological development of the fetal testis in mice. J Comp Pathol. 114:407–418.

Powell-Jones W, Raeford S, Lucier GW. 1981. Binding properties of zearalenone a-zearalenol and b-zearalenol for estrogen receptors. Mol Pharmacol. 20:35–42.

Stadnik A, Borzecki A. 2009. Influence of the zearalenone on the activity of chosen liver enzymes in a rat. Ann Agric Environ Med. 16:31–35.

Swamy HV, Smith TK, Cotter PF, Boermans HJ, Sefton AE. 2002. Effects of feeding blends of grains naturally contaminated with Fusarium mycotoxins on production and metabolism in broilers. Poult Sci. 81:966–975.

Swamy HVLN, Smith TK, MacDonald EJ, Karrow NA, Woodward B, Boermans HJ. 2003. Effects of feeding a blend of grains naturally contaminated with Fusarium mycotoxins on growth and immunological measurements of starter pigs, and the efficacy of a polymeric glucosamannan mycotoxin adsorbent. J Anim Sci. 81:2792–2803.

Turscote JC, Hunt PJD, Blaustein JD. 2005. Estrogenic effects of zearalenone on the expression of progestin receptors and sexual behavior in female rats. Horm Behav. 47:178–184.

Yamini B, Bursian SJ, Aulerich RJ. 1997. Pathological effects of dietary zearalenone and/or tamoxifen on female min. Vet Hum Toxicol. 39:74–78.

Yuri T, Nikaido Y, Shikata N, Tsubura A. 2004. Effects of prepubertad zeranol exposure on estrogen target organs and N-Methyl-N-nitrosourea-induced mammary tumorigenesis in female Sprague-Dawley rats. In Vivo. 18:755–762.

Zielonka L, Grzegorz G, Kazimierz O, Magdalena G, Ewa J, Maciej G. 2009. Histopathology of selected organs of the reproductive tract of pigs supplied with feed containing zearalenone destructor. B Vet I Pulawy. 53:411–414.