ABSTRACT Conversion of a visible face image into a thermal face image (V2T), or one thermal face image into another one given a different target temperature (T2T), is required in applications such as thermography, human body thermal pattern analysis, and surveillance using cross-spectral imaging. In this work, we propose to use conditional generative adversarial networks (cGAN) with cGAN loss, perceptual loss and temperature loss to solve the conversion tasks. In our experiment, we used Carl and SpeakingFaces Databases. Fréchet Inception Distance (FID) is used to evaluate the generated images. As well, face recognition was applied to assess the performance of our models. For the V2T task, the FID of the generated thermal images reached quite low value of 57.3. For the T2T task, we achieved a rank-1 face recognition rate of 91.0% which indicates that the generated thermal images preserves the majority of the identity information.

INDEX TERMS Generative adversarial networks, image-to-image translation, thermal pattern generation, face recognition, biometrics

I. INTRODUCTION

Both visible and thermal spectra provide useful biometric information on human subjects. Most biometric tasks, such as face detection and recognition, focus on the visible spectrum. Thermal cameras, unlike visible spectrum ones, allow for capturing the low-light scene. However, in most cases, thermal images cannot be used for face recognition given that legacy databases of faces contain only visible spectra images. In thermography for healthcare applications, the opposite image-to-image translation may be needed.

This paper focuses on two tasks. The first is dedicated to answering the question: How to convert a face image taken under visible spectrum into another face image taken under thermal spectrum? The second task poses the question: How to convert a thermal face image taken at a certain measured body temperature into a thermal image given a different temperature?

In this paper, we set up a deep learning model to solve these two image-to-image translation tasks. We use a conditional generative adversarial network (cGAN) [1], conditioned on input visible or thermal images, to generate the output thermal images. Our cGAN consists of a ‘U-Net’ generator (G) and a PatchGAN discriminator (D). We use the Carl Database [2] and the SpeakingFaces Database [3] containing paired visible and thermal images to train our model. For converting a visible face image into a thermal face image (V2T), we use the SpeakingFaces Database which contains aligned visible face images and thermal images to train our model, with a cGAN and Mean Absolute Error (MAE) loss. For the second task, converting a thermal face image into another thermal face image with the target temperature (T2T), we modify our model to include temperature information. We use the Carl Database containing thermal faces with different temperatures to train our model, and train it using a cGAN, perceptual [4] and temperature loss. We extend our previous work [5], by applying the Fréchet Inception Distance (FID) [6] and face recognition techniques to measure the performance of the proposed cGAN. Applying face recognition techniques on the resulting generated thermal images shows an acceptable performance.

The main contributions of our work are listed below:

1) We propose to use cGAN to solve two cross-spectrum image-to-image translation tasks, V2T and T2T. To solve these tasks, we modified the structure of cGAN as
cGAN_{V2T} and cGAN_{T2T}. To the best of our knowledge, it is the first time that the T2T task is approached this way.

2) Two different databases are used to train cGAN_{V2T} and cGAN_{T2T}, with different loss function combinations.

3) We evaluate the performance of our two cGAN models using FID and face recognition techniques.

The paper is organized as follows: Section II provides a literature review related to GAN and image-to-image translation tasks. Section III describes the architecture of the proposed cGAN. Section IV provides information on the databases used for training, and describes the pre-processing steps applied to the images. Section V summarizes the results of the proposed cGAN application. Section VI concludes the paper.

II. RELATED WORK

A. GENERATIVE ADVERSARIAL NETWORKS

GANs were proposed in 2014 [7], followed by multiple successful applications in various fields [8]. A GAN is comprised of a generator (G) and a discriminator (D). D is trained on real samples from collected database and fake samples generated by G, and is responsible for classifying samples as real or fake. G is to generate fake samples that are real enough to fool D. The adversarial process is formulated as a minimax game [7]:

\[
\min_G \max_D \mathbb{E}_{x \sim p_{data}} [\log D(x)] + \mathbb{E}_{z \sim p_z} [\log (1 - D(G(z)))]
\]

(1)

where the distribution of the real samples x is denoted by \(p_{data} \), \(p_z \) represents the distribution of the noise input z, and \(\mathbb{E} \) is to calculate the expectation of the following expression. By training G and D together, they compete with each other, then reach an equilibrium where G can implicitly learn the distribution of the collected samples.

However, GANs suffer from adversarial training instability and mode collapse problem [9], [10]. An improved architecture called DCGANwas proposed in [9] to resolve the training instability problem, by using the CNN and batch normalization [11]. Most recently, Wasserstein GAN [12] [13] and LSGAN [14] were proposed to improve the adversarial training stability and alleviate the mode collapse problem.

In our work, we adopt cGAN [1], with G aiming to generate thermal face images, conditioned on input visible or thermal images. Many image-to-image translation tasks, such as converting semantic labels to real city photos or converting architectural labels to real structural images, were approached using the cGAN to generate target images [15]. For the V2T task considered in our paper, the condition includes both the input visible image and a thermal image, and the proposed cGAN is built to generate a corresponding thermal image. This task is similar to the one described in [16] and [17]. K. Lai et al. [16] used cycleGAN to convert images between visible and thermal domains. K. Landry et al. [17] uses GAN to convert images from thermal spectrum into visible. In our experiment, we focus on converting images from visible spectrum into thermal. For the T2T task, the condition includes both the input thermal image and a target temperature, and the proposed cGAN is constructed to generate a thermal image given a target temperature.

B. FACIAL ATTRIBUTE EDITING

Facial attribute editing task tries to manipulate one or more attributes of a given face image, while preserving its identity details [18]. In contrast, our approach to T2T aims to manipulate the temperature attribute for a given thermal face. Many methods have been proposed recently to solve the facial attribute editing problem, and most of them have only been applied to visible face images. Li et al. [19] trained a deep learning-based identity-preserved attribute transfer model to add or remove a single attribute to or from a face. To do so, they incorporated an adversarial attribute loss and an identity-preserved loss. Shen and Liu [20] adopted the dual residual learning method to simultaneously train two models by adding or removing a specific attribute. StarGAN [21] performed the facial attribute editing task based on the attribute labels by employing an attribute classification loss [22] and a cycle consistency loss [23], which can perform multi-attribute editing simultaneously with only a single model.

Wang et al. [24] proposed an IPCGAN with a cGAN module, an identity-preserved module and an age classification module, to address the face aging problem by editing the age attribute on a given face. Unlike this approach, in our paper, the facial attribute editing is applied to the thermal spectrum, i.e., manipulating the temperature attribute of thermal face images. In our T2T task, we use thermal images from the Carl Database [2] to train our cGAN, with a cGAN, perceptual and temperature loss function.

III. PROPOSED METHOD

In our work, we use cGAN to solve both of the image-to-image translation tasks. Our implementation of cGAN consists of a generator (G) and a discriminator (D). The minor differences in the structures of the G and D for V2T and T2T will be described in detail in Subsection III-A. For V2T conversion, the input of \(G_{V2T} \) is a visible image, and the output indicates whether the input thermal image is the real paired image of the input visible image. For T2T conversion, the input of \(G_{T2T} \) is a thermal image and a target temperature, and the output is another image with a thermal pattern corresponding to the target temperature, and preserving the identity. The input of \(D_{T2T} \) is a thermal image, and the output indicates whether the input thermal image is real or generated. By training each G and D together, they should reach an equilibrium such that G generates a thermal image that is real enough to fool D.
FIGURE 1: cGAN network for V2T conversion. The generator (G_{V2T}) converts visible images into thermal images. G_{V2T} consists of an input unit (the left-most green cuboid), 7 encoding units (the following 7 green cuboids), a bottleneck unit (the left-most yellow cuboid), 7 decoding units (the following 7 yellow cuboids) and an output unit (the right-most yellow cuboid). There is a direct skip (blue curve arrow) connecting each encoding-decoding pair. The Discriminator (D_{V2T}) is to determine whether the input visible and thermal images are paired. The structure of D_{V2T} is similar to the D_{T2T} presented in Fig. 2, and the minor difference will be described in Section III-A.

A. PROPOSED FRAMEWORKS

The following is an overview of the cGAN used, similar to the cGAN described in [15], with a discussion of necessary changes. We use ‘U-Net’ [25] as our generator (G) and a 6-layer PatchGAN as our discriminator (D) for both conversions. Both possess the convolution-BatchNorm-LeakyRelu [9] units.

Fig. 1 shows the model details of G_{V2T}. Similar to our previous design [26], G_{V2T} has an input unit, 7 encoding units, a bottleneck unit, 7 decoding units, and an output unit. Each encoding unit down-samples the previous unit by $1/4$ (1/2 of length and 1/2 of width) with $strides = 2$, and each decoding unit up-samples the previous unit by 4 (2 × of length and 2 × of width) times. For the i^{th} decoding unit, we stack it with the last i^{th} encoding unit in the channel dimension, before applying the LeakyRelu function. The filter size is set to $4 × 4$ for all units. For encoding unit, the filter number is set as 64 first, and doubles for each of the next unit, until it reaches 512; after that, it remains at 512. The filter number for each decoding unit is the same as the encoding unit connected to it. For the bottleneck, the filter number is set to be 512, and the activation function is set to be ReLU. For the output unit, the filter number is set to 1, and the activation function is Sigmoid.

Fig. 2 shows the PatchGAN architecture of D_{T2T}. It is a 6-layer CNN, with the number of filters set to 64, 128, 256, 512, 512, and 1, respectively. For the first 4 layers, the stride is set to 2, and the for the last 2 layers, the stride is set to 1. The output is a $16 × 16$ matrix, with each value mapping to a $70 × 70$ receptive field in input images as ground-truth or generated.

The input layer of G_{T2T} and D_{T2T} are slightly different from G_{V2T} and D_{V2T}. For G_{T2T}, we add one more channel to incorporate the target temperature information so that the input layer has 4 channels, while for G_{V2T} it has 3 channels. For D_{T2T}, we only input the thermal images into the networks so that the input unit has 3 channels, while for D_{V2T} in has 6 channels with concatenated visible and thermal images as input.
B. OBJECTIVE FUNCTION FOR V2T

The objective function of cGAN_{V2T} is defined as follows:

$$
\mathcal{L}_{G_{V2T}}^{cGAN}(G_{V2T}, D_{V2T}) = \mathbb{E}_{(x)} \log(1 - D_{V2T}(x, G_{V2T}(x))) + \mathbb{E}_{(x,y)} \log D_{V2T}(x, y) - \mathbb{E}_{(x)} \log(1 - D_{V2T}(x, G_{V2T}(x)))
$$

$$
\mathcal{L}_{D_{V2T}}^{cGAN}(G_{V2T}, D_{V2T}) = -\mathbb{E}_{(x,y)} \log D_{V2T}(x, y) - \mathbb{E}_{(x)} \log(1 - D_{V2T}(x, G_{V2T}(x)))
$$

(2)

where x and y are paired visible-thermal images, G_{V2T} tries to minimize $\mathcal{L}_{G_{V2T}}$, and D_{V2T} aims to minimize $\mathcal{L}_{D_{V2T}}$.

Additionally, we appended the Mean Absolute Error (MAE) loss to help the generator converge faster, and also preserve the identity information of the ground-truth thermal images in the pixel-order. The MAE loss can be calculated by averaging the absolute difference between the pixel values of the same coordinate:

$$
\mathcal{L}_{MAE}^{cGAN}(G_{V2T}) = \mathbb{E}_{(x,y)} \frac{1}{V} \sum_{i=1}^{V} |y_{i} - G_{V2T}(x)|
$$

(3)

where V stands for the number of pixels in the input or output images. Combining both losses together, our final loss function can be expressed as follows:

$$
\mathcal{L}_{G_{V2T}}^{cGAN} = \mathcal{L}_{G_{V2T}} + \alpha \mathcal{L}_{MAE}^{cGAN}
$$

$$
\mathcal{L}_{D_{V2T}}^{cGAN} = \mathcal{L}_{D_{V2T}}
$$

(4)

where α indicated the weight of \mathcal{L}_{MAE}^{cGAN} with respect to $\mathcal{L}_{G_{V2T}}$. Here, we set $\alpha = 100$, determined by the criterion of the best visual effect of generated thermal images on the training set.

C. OBJECTIVE FUNCTION FOR T2T

The objective function of cGAN_{T2T} conversion can be written as follows:

$$
\mathcal{L}_{G_{T2T}}^{cGAN}(G_{T2T}, D_{T2T}) = \mathbb{E}_{(x)} \log(1 - D_{T2T}(G_{T2T}(x, t)))
$$

$$
\mathcal{L}_{D_{T2T}}^{cGAN}(G_{T2T}, D_{T2T}) = -\mathbb{E}_{(x)} \log D_{T2T}(x) - \mathbb{E}_{(x)} \log(1 - D_{T2T}(G_{T2T}(x, t)))
$$

(5)

where x is the input thermal image and t is the target temperature. Additionally, we use the perceptual loss \mathcal{L}_{prp} as proposed by Johnson et al. [4]. It is formed using the features extracted from selected layers of the pre-trained VGG network [27] given by:

$$
\mathcal{L}_{prp}^{cGAN}(G_{T2T}) = \mathbb{E}_{(x)} \sum_{i=1}^{N} \frac{1}{V_{i}} \sum_{i=1}^{V_{i}} |F^{(i)}(x) - F^{(i)}(G_{T2T}(x, t))|
$$

(6)

where $F^{(i)}$ represents the i^{th} layer with V_{i} activations of the VGG network, and N is the number of selected layers in the VGG model. In our work, we selected 4 layers of VGG network as F, to calculate \mathcal{L}_{prp}. With \mathcal{L}_{prp}, we preserve the similarity of the high-level features of input and output thermal images.

In addition, we use a temperature prediction loss to enforce the generated thermal image correspond to the target temperature. To get the thermal pattern corresponding to the target temperature, we pre-train a temperature predictor. We label each thermal image by the value of temperature, based on the temperature information provided by [2]. Our temperature predictor has the same architecture as Alexnet [28], except that the last fully-connected layer has only one unit with $tanh$ activation. The temperature loss is defined as follows:

$$
\mathcal{L}_{temp}^{cGAN}(G_{T2T}) = \mathbb{E}_{(x)} \sigma (TP(G_{T2T}(x, t), t)
$$

(7)

In the above equation, $\sigma()$ corresponds to an MAE loss, and $TP()$ is our trained temperature predictor. During backpropagation, \mathcal{L}_{temp} guides the parameters of G_{T2T} to change and generate thermal faces that represent the target temperature. With all losses, our final loss function can be expressed as follows:

$$
\mathcal{L}_{G_{T2T}} = \mathcal{L}_{G_{T2T}}^{cGAN} + \alpha \mathcal{L}_{prp} + \beta \mathcal{L}_{temp}
$$

$$
\mathcal{L}_{D_{T2T}} = \mathcal{L}_{D_{T2T}}^{cGAN}
$$

(8)

where α and β are set at 100 and 500, determined by the criterion of the best visual effect of the generated thermal images from training set.

The reason that we use \mathcal{L}_{prp} rather than \mathcal{L}_{MAE} for T2T task is that increasing or decreasing the temperature of the input thermal face image inevitably changes the pixel values of it, thus causing a large \mathcal{L}_{MAE}. To some extent, \mathcal{L}_{MAE} and \mathcal{L}_{temp} are contradictory in the T2T task. However, one of our goals for the T2T task is to keep the subject identity information, so we use \mathcal{L}_{prp} to preserve the high-level features of the input thermal faces.

IV. EXPERIMENT SETUP

A. DATABASES

In this paper, we use two databases. The first is the Carl Database [2], in which visible and single channel grayscale thermal images, containing one human face per image, are collected simultaneously, using a TESTO 880-3. The database contains 41 subjects, with 32 males and 9 females. For each of them, four image recording sessions were performed within two months, each under three different lighting settings (natural, infrared and artificial lights), and five sequential image acquisitions for each setting. This generates $41 \times 4 \times 3 \times 5 = 2,460$ visible-thermal image pairs. However, the visible-thermal image pairs are not aligned, and, thus, cannot be used to train the cGAN_{V2T} directly. We will provide details of our alignment process in Section IV-B. In addition, this database contains the temperature matrix corresponding to the thermal images, which provides the possibility to generate a thermal image with a different target temperature. In our work, to keep it consistent with another database, we used the Testo software [29] to convert the raw data into thermal images using an ‘iron’ palette. We used these images instead of the provided gray-scale thermal images, to train and test the proposed model.

The second data set is the SpeakingFaces Database [3], which provides much more well-aligned visible-thermal face image pairs, compared to the Carl Database. In the SpeakingFaces Database, subjects are required to read sentences,
and their voice, thermal faces and visible faces were recorded by microphones, FLIR TS540 thermal camera, and Logitech C920 Pro HD web-camera simultaneously. The database contains 142 subjects. In our work, images of subjects 1 – 21 are not used due to the incompleteness of these samples. For each subject, the image acquisition is conducted using two trials, each trial involves 8,100 frames. To record the images, the cameras are placed in 9 different positions in order to acquire the face images from 9 different angles, and 900 frames each. In our work, only the face images taken in the front angle from SpeakingFaces Database are used. Due to the high-volume of the database and the high-similarity between the images taken subsequently, we sampled only 5% of the frontal face images. Altogether, we use 122 * 2 * 900/20 = 10,980 thermal-visible image pairs. The thermal images and visible images are aligned. However, unlike the Carl Database, the temperature information of the thermal images was not available in this database.

B. ALIGNMENT, FACE EXTRACTION AND RESIZING

The following is an overview of our approach to pre-processing of the two databases. The pre-processing step is same as our previous work [5]. We consider the resolution of 256 * 256 of the face images used to train our two cGAN models. In the Carl Database, the visible and thermal images were not aligned and, thus, could not be used for training or testing directly. We used the facial landmarks annotated manually by Alperen [30], and coordinated the mapping to extract the faces from visible and thermal images. We then resized the extracted faces to achieve the resolution of 256 * 256. Fig. 3 shows an example of an original visible-thermal face image pair, and the same pair and after the alignment and resizing. Based on the 6 facial-landmark-position pairs (blue points) provided by Alperen, we learn the coordinate mapping between the visible image and the thermal image. Details of the coordinate mapping will be described in the next paragraph. Next, we applied the pre-trained face detector tool dlib [31] to extract the face from the visible image and expand it by a factor of 1.3, in order for the whole face (solid green box) to be extracted. The learned coordinate mapping is used to map the solid green box within visible image into the thermal image; this results in extracting the thermal face (dashed green box). At last, we resize the two extracted faces to achieve a resolution of 256 * 256 and get the aligned visible-thermal face image pair.

Below we explain the coordinate mapping process. The Cartesian coordinates of the six points in the visible image are annotated as follows: \(\{x_{vn}, y_{vn}\}, 1 \leq n \leq 6 \). The same coordinates in the thermal image are denoted as \(\{x_{tn}, y_{tn}\}, 1 \leq n \leq 6 \). We map the points in the visible images into the points in the thermal images through the linear transformation as described below:

\[
\begin{align*}
 a_x \times x_{vn} + b_x &= x_{tn} \\
 a_y \times y_{vn} + b_y &= y_{tn}
\end{align*}
\]

where \(a_x, b_x, a_y, b_y \) are the coefficients to control the linear mapping. We calculate the coefficients by minimizing the squared error:

\[
\begin{align*}
 a_x, b_x &= \arg \min_{a_x, b_x} \sum_{n=1}^{6} (a_x \times x_{vn} + b_x - x_{tn})^2 \\
 a_y, b_y &= \arg \min_{a_y, b_y} \sum_{n=1}^{6} (a_y \times y_{vn} + b_y - y_{tn})^2
\end{align*}
\]

C. TRAINING AND TESTING FOR V2T

To train our V2T model, we use the visible-thermal image pairs of subjects 21 – 142 from the SpeakingFaces Database. We use images collected from subjects 41 – 142, all together 102 * 2 * 45 = 9,180 image pairs, to train the model. Images collected from subjects 21 – 40, provide 20 * 2 * 45 = 1, 800 images pairs, to test the model. The FID metric [6] is applied in our case to evaluate the similarity between the generated thermal images and the ground-truth thermal images. The FID is computed by passing the generated and real images into the pre-trained InceptionV3 model [32] and using the difference from the last polling layer:

\[
FID = ||\mu_r - \mu_g||^2 + tr(\Sigma_r + \Sigma_g - 2\sqrt{\Sigma_r \Sigma_g})
\]

where \(\mu \) represents the mean for the real (r) and generated (g) images, \(\Sigma \) represents the covariance for the real (r) and generated (g) images, and \(tr \) is the trace linear function. The lower FID score means that the quality of images generated by the generator is similar to the real ones; for example, the FID of 0 indicates that the generated and the ground-truth images are identical. Note that FID can vary between 0 and 600 in some cases.
D. TRAINING AND TESTING FOR T2T

In our experiment, we use images collected from subjects 1 – 30, all together 30 * 4 * 3 = 1,800 images, to train the model. The images collected from subjects 31 – 41, totally 660 images, are used to test the model. The temperature of the centre of the subject’s forehead on the thermal face image is considered to be the ground truth temperature. The temperature distribution of thermal images in different range are given in Table 1, which indicates that this is an unbalanced database. We used 80% of the images to train our temperature predictor, and use the remaining 20% to test the predictor. We linearly scale the temperature into [-1, 1] so that it falls into the range of tanh output. We use MAE to evaluate our temperature predictor. Note that the MAE is 0.27 °C in the testing database.

Temperature Range (℃)	# images (percent)
≤ 32.5	140 (5.8 %)
32.5 – 33.0	186 (7.8 %)
33.0 – 33.5	483 (20.2 %)
33.5 – 34.0	784 (32.7 %)
34.0 – 34.5	577 (20.1 %)
≥ 34.5	226 (9.4 %)

E. FACE RECOGNITION IN THERMAL SPECTRUM

In order to verify the similarity of the original and the generated face in both T2T and V2T, we apply the face recognition in both thermal and visible spectra. The following methodology [16] was used to evaluate the performance of such face recognition.

Face recognition is applied in this work to find the real identity of a test sample among all subjects in the database. We apply transfer learning [33] on three pre-trained models: InceptionV3 [32], Xception [34], and MobileNet [35].

The face recognition in T2T was performed using a four-fold cross-validation, with each fold representing a different acquisition session. For V2T conversion, we use a two-fold cross-validation. The number of folds is determined by the session numbers available of each database.

We train each CNN model with the images from three (for T2T) or one (for V2T) session(s), and validate it with the images from the remaining session. After fine-tuning the optimal parameters for the particular validation set, we test the final performance of the CNN with the synthesized thermal images. We compare the performance of the real and generated thermal images. We also perform the face recognition in visible spectrum for comparison.

Our approach employs Transfer Learning. It involves loading the pre-trained weights optimized for the ImageNet challenge first. The last fully-connected layer and classification layer from each model are removed, and an average pooling layer, two fully-connected layers with 512 units, and a classification layer are added to each model. Two training processes are applied sequentially. Initially, the model is trained with the other layers frozen, allowing only the newly added layers to update, with a higher learning rate for 50 epochs. Next, the entire model is trained with a lower learning rate for 50 epochs with a fine-tuning purpose. We calculate the high-volume of the SpeakingFaces Database, for the face recognition in V2T task, we resize the images to achieve the 128 * 128 resolution. For T2T task, we keep the resolution of 256 * 256.

V. RESULTS

A. V2T GENERATED IMAGES

For V2T conversion, we use three instances of visible images: ground-truth thermal images using the ‘iron’ palette, generated ‘iron’ palette thermal images, and the corresponding FID values, as shown in Fig. 4. The generated thermal images reach satisfactory visual effects. For some parts of the generated images, our model does not perform well, such as a thermal image in the first column that seems to have an artifact in the hair part. For the second subject, the generated thermal image cannot reproduce the curly hair in the forehead. We use FID to measure the similarity between the generated thermal images and the ground-truth thermal images. The FID of all images in the test set achieved the maximum FID values that can reach 600 or higher.

Models	True Acceptance Rate	Rank-1
	@ 1% FAR	@ 0.1% FAR
InceptionV3	38.5 ± 0.9	31.1 ± 0.7
Xception	43.6 ± 0.2	35.6 ± 0.4
MobileNet	62.8 ± 2.1	52.0 ± 0.8
InceptionV3	55.0 ± 1.0	51.4 ± 1.1
Xception	62.2 ± 1.5	73.4 ± 1.6
MobileNet	85.0 ± 1.3	73.4 ± 1.6
InceptionV3	69.1 ± 0.9	64.8 ± 2.3
Xception	75.8 ± 2.5	76.2 ± 0.1
MobileNet	86.1 ± 0.2	76.2 ± 0.1

1) V2T Face Recognition

The performance of face recognition (using 1 : N comparison) is evaluated by the rank performance and the True Acceptance Rate (TAR) at the targeted 1% and 0.1% False Acceptance Rate (FAR). For each subject, we calculate $TAR = TP/(TP + FN)$, where TP and FN represent the number of true positive and false negative, respectively. The overall TAR was taken as the average TARs for each subject. For evaluation, the targeted 1% or 0.1% FAR corresponds to a specific acceptance threshold. The testing set was formed based on the synthesized thermal images using the $cGAN_{V2T}$, and the validation set was formed using original thermal images.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
performance in terms of TAR at the targeted FAR and rank-1, and the Xception model reports the worst result.

Fig. 5 shows the Cumulative Matching Characteristic (CMC) for the face recognition rate of the three network models when accepting identities at ranks between 1 to 30. All the models perform better on Valid compared to Test, which indicates the loss of identity information following the V2T conversion. MobileNet performs the best, while InceptionV3 performs the worst.

We used $cGAN_{V2T}$ to convert visible face images into thermal face images, and FID and face recognition techniques to evaluate the generated thermal images. These images keep similarity to the ground-truth thermal images, and the overall FID reached 57.3. The rank-1 face recognition rate of Test is lower than Valid (14.0% for InceptionV3 and 15.8% for Xception). MobileNet has a better performance than other two networks, with regard to TAR and rank-1 accuracy, on all of the sets.

Table 2 illustrates the performance for the validation set (Valid) and test set (Test) of the three different networks. Valid shows higher TAR because the validation images have the same spectrum as the training images. Test produces lower TAR since Test are formed from generated images. For testing, the MobileNet network demonstrates the best performance.

B. T2T GENERATED IMAGES

For T2T conversion, we list four instances of the input and generated thermal images with different target temperatures as shown in Fig. 7. The four input thermal images have four different original temperature, from lowest to highest. As seen in Fig. 7, from left to right, thermal images become redder due to their higher facial temperature. We also used the trained temperature predictor to estimate the temperatures of the generated thermal images, and list the MAE in Table 3.

C. T2T FACE RECOGNITION

Table 4 reports the performance for the Valid and Test, for the three network models. Valid shows higher performance because the validation images come from the remaining session of the database. The Test produces lower performance, due to the fact that the Test are generated by the $cGAN_{T2T}$.
TABLE 3: Performance summary on generated thermal images with different target temperatures

target T(°C)	True Acceptance Rate @ 1% FAR	True Acceptance Rate @ 0.1% FAR	Rank-1 MAE(°C)	
33.0	92.8 ± 3.3	79.5 ± 8.8	87.1 ± 4.9	0.15
33.5	96.9 ± 3.1	88.4 ± 9.0	91.7 ± 4.7	0.15
34.0	97.3 ± 2.5	89.4 ± 7.8	92.5 ± 3.5	0.18
34.5	97.3 ± 2.2	90.3 ± 8.0	92.4 ± 4.8	0.20

TABLE 4: Average performance (%) and standard deviation across four-fold cross-validation for T2T conversion

Models	True Acceptance Rate @ 1% FAR	True Acceptance Rate @ 0.1% FAR	Rank-1
MobileNet	96.5 ± 3.8	90.5 ± 7.2	93.0 ± 4.0
Xception	97.8 ± 3.5	90.8 ± 4.7	92.2 ± 3.3
InceptionV3	97.8 ± 3.0	90.8 ± 4.7	93.5 ± 4.6
MobileNet	99.2 ± 1.0	95.2 ± 5.0	96.0 ± 2.8

For testing, MobileNet and Xception show similar and good performance while InceptionV3 shows the worst.

Fig. 6 illustrates the performance of different network models when accepting identities from rank 1 to 10. For testing, the CMC curve shows that Xception and MobileNet models are similar in their performance, while the InceptionV3 model performs the worst. All the models perform slightly worse at the Test than Valid sets, which indicates that our cGAN model preserves most the identity information.

We use cGAN to convert thermal images into thermal images with a given target temperature. Our generated thermal images show high structural similarity to the ground-truth thermal images. Similarly, the face recognition performance for each subject and each target temperature on Test with Valid sets indicates that our approach preserves the structure corresponding to the target temperature with high accuracy. The rank-1 accuracy of Test has a slight decline compared to Valid: 2.8% lower for Xception, 5.0% lower for MobileNet, and 7.1% lower for InceptionV3. This means that the generated thermal images almost completely retain the identity information.

VI. CONCLUSION

In this paper, we describe an approach to solution of two image-to-image translation tasks using cGAN: V2T and T2T. To convert visible to thermal images, we train our cGAN using the criteria such as cGAN loss and MAE loss. The FID of the generated thermal images reached 57.3. To convert thermal to thermal images with different target temperatures, we train our cGAN using the criteria of cGAN loss, perceptual loss and temperature loss.

We also used face recognition techniques to evaluate the generated images. For T2T conversion, we achieved a high face recognition rate, which means that the generated thermal images preserve the subjects’ identity. The main outcome of this paper is a proof of feasibility of the proposed technique to generate thermal images given a target temperature, once either visible or thermal images of the subject are provided.

The proposed solutions address multiple applications from various fields. For example, in healthcare and medical sciences, one may need to model the thermal pattern distribution on subjects’ faces given a target temperature. In surveillance, there might be a need to convert visible spectrum image stored in a legacy database to thermal, in order to compare with a probe image, acquired using thermal surveillance cameras, to determine identity of a person.

ACKNOWLEDGMENT

This research was partially supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) through the grant “Biometric-enabled Identity management and Risk Assessment for Smart Cities”, in collaboration with NTUST, Taiwan, and by the Mitacs Globalink Graduate Fellowship, Canada.

REFERENCES

[1] M. Mirza and S. Osindero, “Conditional generative adversarial nets,” arXiv preprint arXiv:1411.1784, 2014.
[2] V. Espinosa-Duró, M. Faundez-Zanuy, and J. Mekyska, “A new face database simultaneously acquired in visible, near-infrared and thermal spectrums,” Cognitive Computation, vol. 5, no. 1, pp. 119–135, 2013.
[3] M. Abdrakhmanova, A. Kuzdeuov, S. Jarju, Y. Khassanov, M. Lewis, and H. A. Varol, “Speakingfaces: A large-scale multimodal dataset of voice commands with visual and thermal video streams,” arXiv preprint arXiv:2012.02961, 2020.
[4] J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual losses for real-time style transfer and super-resolution,” in Proceedings of the European Conference on Computer Vision. Springer, 2016, pp. 694–711.
[5] X. Cao, K. Lai, S. Yanushkevich, and M. Smith, “Thermal face image generator,” in 2021 IEEE International Conference on Autonomous Systems (ICAS), 2021, pp. 1–5.
[6] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter, “GANs trained by a two time-scale update rule converge to a local nash equilibrium,” in Proceedings of the Advances in Neural Information Processing Systems, 2017, pp. 6626–6637.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3144308, IEEE Access
TABLE 5: Face recognition performance summary on generated thermal images for each subject

Subject	1	2	3	4	5	6	7	8	9	10	11	12	13	14
TAR @ 0.1% FAR (%)	98.8	95.4	86.7	97.9	100.0	75.0	77.5	87.1	85.8	89.6	95.0	75.0	90.8	99.2
TAR @ 0.5% FAR (%)	85.4	77.1	70.8	88.8	99.6	56.2	55.4	73.3	74.6	79.2	79.6	62.5	80.0	94.6
Rank-1 (%)	94.6	91.7	83.8	95.4	99.6	75.4	72.9	83.3	83.3	88.3	88.3	72.9	86.7	96.2
TAR @ 1% FAR (%)	100.0	100.0	88.3	93.3	100.0	90.0	98.3	95.0	100.0	96.7	98.3	96.7	96.7	100.0
TAR @ 0.1% FAR (%)	93.3	91.7	76.7	75.0	100.0	76.7	98.3	91.7	95.0	80.0	95.0	85.0	86.7	100.0
Rank-1 (%)	96.7	95.0	86.7	93.3	100.0	83.3	98.3	93.3	96.7	93.3	98.3	95.0	93.3	100.0

Subject	15	16	17	18	19	20	21	22	23	24	25	26	27	28
TAR @ 0.1% FAR (%)	97.9	98.8	95.0	100.0	98.8	84.6	92.9	100.0	97.3	87.9	100.0	99.2	97.1	100.0
TAR @ 0.5% FAR (%)	88.8	84.2	70.8	100.0	97.9	70.0	74.6	98.8	90.2	73.8	99.2	98.8	92.1	100.0
Rank-1 (%)	92.5	93.8	89.6	100.0	97.9	80.8	87.1	99.2	94.7	86.2	98.8	98.3	95.4	100.0
TAR @ 1% FAR (%)	100.0	96.7	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
TAR @ 0.1% FAR (%)	98.3	90.0	98.3	100.0	98.3	88.3	85.0	100.0	78.3	100.0	100.0	100.0	100.0	100.0
Rank-1 (%)	98.3	93.3	93.3	100.0	98.3	96.7	96.7	100.0	100.0	100.0	100.0	100.0	100.0	100.0

Subject	29	30	31	32	33	34	35	36	37	38	39	40	41
TAR @ 0.1% FAR (%)	89.6	96.2	97.9	95.0	93.8	99.2	100.0	100.0	97.9	97.9	84.2	97.5	95.0
TAR @ 0.5% FAR (%)	77.9	85.0	95.0	86.7	82.5	95.4	93.3	97.9	93.3	92.1	72.1	92.1	81.7
Rank-1 (%)	87.9	93.8	96.2	89.2	88.8	95.0	94.6	97.5	94.6	96.7	81.7	94.2	91.7
TAR @ 1% FAR (%)	98.3	95.0	98.3	100.0	100.0	100.0	100.0	100.0	98.3	100.0	83.3	100.0	75.0
TAR @ 0.1% FAR (%)	81.7	88.3	96.7	98.3	88.3	96.7	95.0	95.0	96.7	100.0	90.0	95.0	58.3
Rank-1 (%)	93.3	95.0	96.7	98.3	96.7	96.7	98.3	96.7	96.7	100.0	96.7	96.7	80.0
FIGURE 7: Four instances of input thermal image (left-most column) with original temperatures and the corresponding thermal images (other four columns) generated given different target temperatures. The original temperatures of the input thermal images changes from low (top) to high (bottom), and the target temperature varies from low (left) to high (right).

[34] F. Chollet, “Xception: Deep learning with depthwise separable convolutions,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 1251–1258.

[35] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural networks for mobile vision applications,” arXiv preprint arXiv:1704.04861, 2017.

[36] S. Athira and O. R. Murthy, “Face authentication using thermal imaging,” in Computational Vision and Bio Inspired Computing. Springer, 2018, pp. 1006–1014.

[37] Z. Xie and Z. Wang, “Infrared face recognition based on personalized features selection of lbp,” in 2015 7th International Conference on Intelligent Human-Machine Systems and Cybernetics, vol. 2. IEEE, 2015, pp. 228–231.

[38] Y. Bai, L. Guo, L. Jin, and Q. Huang, “A novel feature extraction method using pyramid histogram of orientation gradients for smile recognition,” in 2009 16th IEEE International Conference on Image Processing (ICIP). IEEE, 2009, pp. 3305–3308.

[39] B. Ameur, S. Masmoudi, A. G. Derbel, and A. B. Hamida, “Fusing gabor and lbp feature sets for knn and src-based face recognition,” in 2016 2nd International Conference on Advanced Technologies for Signal and Image Processing (ATSIP). IEEE, 2016, pp. 453–458.

[40] J. A. Suykens and J. Vandewalle, “Recurrent least squares support vector machines,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 47, no. 7, pp. 1109–1114, 2000.
GEE-SERN (JISON) HSU (Senior Member, IEEE) received the dual M.S. degree in electrical and mechanical engineering and the Ph.D. degree in mechanical engineering from the University of Michigan, Ann Arbor, in 1993 and 1995, respectively. From 1995 to 1996, he was a Postdoctoral Fellow with the University of Michigan. From 1997 to 2000, he was a Senior Research Staff with the National University of Singapore, Singapore. In 2001, he joined Penpower Technology, where he led research on face recognition and intelligent video surveillance. In 2007, he joined the Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan. His research interests include computer vision and deep learning, particularly face recognition and license plate recognition. He received best/outstanding paper awards from ICMT 2011, CVGIP 2013, and CVPRW 2014. He and his team at Penpower Technology were recipients of the Best Innovation Award at the SecuTech Expo for three consecutive years, from 2005 to 2007. He is also a member of ACM, IAPR, and IEICE.

MICHAEL SMITH (Senior Member, IEEE) is a professor in Electrical and Software Engineering, Schulich School of Engineering, University of Calgary, Canada with research interests in software engineering and customized real-time digital signal processing algorithms in the context of mobile embedded systems and bio-medical instrumentation. He is a senior member of IEEE.

SVETLANA N. YANUSHKEVICH (Senior Member, IEEE) received the Dr.Sci. (Habilitation) degree from the Technical University of Warsaw, in 1999. She is currently a Professor with the Department of Electrical and Computer Engineering (ECE), Schulich School of Engineering, University of Calgary. She directs the Biometric Technologies Laboratory, University of Calgary, the only research facility dedicated to biometric system design in Canada. She was with the West-Pomeranian University of Technology, Szczecin, Poland, prior to joining the ECE Department, University of Calgary, in 2001. She contributed to the area of artificial intelligence for digital design and biometrics, since 1996. Most recently, she and her team have developed novel risk assessment strategies based on machine reasoning, with applications in biometric-enabled border control, forensics, and healthcare.