Analytical coupled-channels treatment of two-body scattering in the presence of three-dimensional isotropic spin-orbit coupling

Q. Guan1 and D. Blume1

1Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164-2814, USA

(Dated: October 8, 2018)

It is shown that the single-particle spin-orbit coupling terms, which—in the cold atom context—are associated with synthetic gauge fields, can significantly and non-trivially modify the phase accumulation at small interparticle distances even if the length scale $(k_{so})^{-1}$ associated with the spin-orbit coupling term is significantly larger than the van der Waals length r_{vdW} that characterizes the two-body interaction potential. A theoretical framework, which utilizes a generalized local frame transformation and accounts for the phase accumulation analytically, is developed. Comparison with numerical coupled-channels calculations demonstrates that the phase accumulation can, to a very good approximation, be described over a wide range of energies by the free-space scattering phase shifts—evaluated at a scattering energy that depends on k_{so}—and the spin-orbit coupling strength k_{so}.

PACS numbers:

The tunability of low-energy scattering parameters such as the s-wave scattering length a_s and p-wave scattering volume V_p by means of application of an external magnetic field in the vicinity of a Feshbach resonance [1] has transformed the field of ultracold atom physics, providing experimentalists with a knob to “dial in” the desired Hamiltonian. This tunability has afforded the investigation of a host of new phenomena including the BEC-BCS crossover [2, 3]. Most theoretical treatments of these phenomena are formulated in terms of a few scattering quantities such as a_s and V_p, which properly describe the low-energy behavior of the two-body system.

The recent realization of spin-orbit coupled cold atom systems [4] is considered another milestone, opening the door for the observation of topological properties and providing a new platform with which to study scenarios typically encountered in condensed matter systems with unprecedented control [5–7]. An assumption that underlies most theoretical treatments of cold atom systems with synthetic gauge fields is that the spin-orbit coupling term, i.e., the Raman laser that couples the different internal states or the shaking of the lattice that couples different bands, leaves the atom-atom interactions “untouched”. More specifically, mean-field treatments “simply” add the single-particle spin-orbit coupling term to the mean-field Hamiltonian and parameterize the atom-atom interactions via contact potentials with coupling strengths that are calculated for the two-body van der Waals potential without the spin-orbit coupling terms [4–8].

Consistent with such mean-field approaches, most two-body scattering studies derive observables based on the assumption that the two-body Bethe-Peierls boundary condition, derived in the absence of single-particle spin-orbit coupling terms, remains unaffected by the spin-orbit coupling terms, provided an appropriate “basis transformation” is accounted for [9–11]. The underlying premise of these two-body and mean-field treatments is rooted in scale separation, which suggests that the free-space scattering length a_s and scattering volume V_p remain good quantities provided $(k_{so})^{-1}$ is larger than the two-body van der Waals length r_{vdW}. Indeed, model calculations for a square-well potential in the presence of three-dimensional isotropic spin-orbit coupling suggest that the above reasoning holds, provided $1/a_s$ and V_p are small [17].

This work revisits the question of how to obtain and parameterize two-body scattering observables in the presence of three-dimensional isotropic spin-orbit coupling. Contrary to what has been reported in the literature, our calculations for Lennard-Jones and square-well potentials show that the three-dimensional isotropic spin-orbit coupling terms can impact the phase accumulation in the small interparticle distance region where the two-body interaction potential cannot be neglected even if $(k_{so})^{-1}$ is notably larger than r_{vdW}. We observe non-perturbative changes of the scattering observables when k_{so} changes by a small amount. An analytical treatment, which reproduces the full coupled-channels results such as the energy-dependent two-body cross sections for the finite-range potentials with high accuracy, is developed. Our analytical treatment relies, as do previous treatments [9–13, 12–17], on separating the short- and large-distance regions. The short-distance Hamiltonian is treated by applying a gauge transformation, followed by a rotation, that “replaces” the p-dependent spin-orbit coupling term by an r- and p-independent diagonal matrix (r and p denote the relative position and momentum vectors, respectively). The diagonal terms, which can be interpreted as shifting the scattering energy in each channel, can introduce non-perturbative changes in the scattering observables for small changes in k_{so}, especially when V_p is large. We note that our derivation of the short-distance Hamiltonian, although similar in spirit, differs in subtle but important ways from what is presented in Ref. [10, 12].

Our analytical framework also paves the way for designing energy-dependent zero-range or δ-shell pseudo-
potentials applicable to systems with spin-orbit coupling. While energy-dependent pseudo-potentials have proven useful in describing systems without spin-orbit coupling [18, 19], generalizations to systems with spin-orbit coupling are non-trivial due to the more intricate nature of the dispersion curves. Our results suggest a paradigm shift in thinking about spin-orbit coupled systems with non-vanishing two-body interactions. While the usual approach is to assume that the short-distance behavior or the effective coupling strengths are not impacted by the spin-orbit coupling terms, our results suggest that they can be for specific parameter combinations. Even though our analysis is carried out for the case of three-dimensional isotropic spin-orbit coupling, our results point toward a more general conclusion, namely that spin-orbit coupling terms may, in general, notably modify the phase accumulation in the short-distance region.

We consider two particles with position vectors \(r_1 \) and masses \(m_j \) \((j = 1 \text{ and } 2)\) interacting through a spherically symmetric two-body potential \(V_{\text{int}}(r) = |r_1 - r_2| \). Both particles feel the isotropic spin-orbit coupling term with strength \(k_{so} \), \(V_{so}^{(j)} = h k_{so} \sigma_j \cdot \mathbf{r}/m_j \), where \(\sigma_j \) denotes the canonical momentum operator of the \(j \)-th particle and \(\mathbf{r} \) the vector that contains the three Pauli matrices \(\sigma_x^{(j)}, \sigma_y^{(j)} \) and \(\sigma_z^{(j)} \) for the \(j \)-th particle. Throughout, we assume that the expectation value of the total momentum operator \(\mathbf{P} \) of the two-body system vanishes. In this case, the total angular momentum operator \(\mathbf{J} = \mathbf{I} + \mathbf{S} \), of the two-particle system commutes with the system Hamiltonian and the scattering solutions can be labeled by the quantum numbers \(J \) and \(M_J \); \(M_J \) denotes the projection quantum number, \(\mathbf{I} \) is the relative orbital angular momentum operator, and \(\mathbf{S} = \hbar (\sigma_1 + \sigma_2)/2 \).

Separating off the center of masses degrees of freedom, the relative Hamiltonian \(\tilde{H} = \mathbf{H} + V_{so} \), \(\mathbf{H} = \mathbf{H}_{fs} + V_{so} \), where \(\mathbf{H}_{fs} = \left[\frac{\mathbf{P}^2}{2\mu} + V_{\text{int}}(r) \right] \mathbf{I}_1 \otimes \mathbf{I}_2 \) (1)

and \(V_{so} = \hbar k_{so} \Sigma \cdot \mathbf{p}/\mu \) with \(\Sigma = (m_2 \sigma^{(1)} \otimes \mathbf{I}_2 - m_1 \mathbf{I}_1 \otimes \sigma^{(2)})/M \). Here, \(\mathbf{I}_1 \) denotes the 2 \times 2 identity matrix that spans the spin degrees of freedom of the \(j \)-th particle and \(M \) the total mass, \(M = m_1 + m_2 \). For each \((J, M_J) \) channel, the \(r \)-dependent eigensolutions \(\tilde{\Psi}^{(J, M_J)}(r) \) are expanded as [13, 14, 16]

\[
\tilde{\Psi}^{(J, M_J)}(r) = \sum_{l,S} r^{-1} u^{(J)}_{l,S}(k, r) |J, M_J; l, S>,
\]

where the sum goes over \((l, S) = (0, 0) \) and \((1, 1) \) for \((J, M_J) = (0, 0) \) and over \((l, S) = (J, 0), (J, 1), (J - 1, 1) \), and \((J + 1, 1) \) for \(J > 0 \). In the \(|J, M_J; l, S> \) basis (using the order of the states just given), the scaled radial set of differential equations for fixed \(J \) and \(M_J \) reads \(\hbar^{(J)} u^{(J)} = E^{(J)} u^{(J)} \), where \(\hbar^{(J)} \) denotes the scaled radial Hamiltonian for a given \(J \) (note that the Hamiltonian is independent of the \(M_J \) quantum number). For \(r > r_{\text{max}} \), the interaction potential \(V_{\text{int}} \) can be neglected and \(\tilde{u}^{(J)}(J) \) is matched to the analytic asymptotic \(\tilde{V}_{\text{int}} = 0 \)

\[
\tilde{u}^{(J)} \xrightarrow{r > r_{\text{max}}} \mathcal{K}^{(J)}(J) \left(\mathcal{G}^{(J)}(J) - \mathcal{A}^{(J)}(J) \right),
\]

where \(\mathcal{G}^{(J)}(J) \) and \(\mathcal{A}^{(J)}(J) \) are matrices that contain the regular and irregular solutions for finite \(k_{so} \) (for \(J = 0 \) and 1, explicit expressions are given in Ref. [16]). Defining the logarithmic derivative matrix \(\mathcal{L}^{(J)}(J) \) through \((\tilde{u}^{(J)})'(J)(\tilde{u}^{(J)})^{-1} \), where the prime denotes the partial derivative with respect to \(r \), the K-matrix is given by

\[
\mathcal{K}^{(J)}(J) = \left[(r \mathcal{G}^{(J)}(J))' - \mathcal{L}^{(J)}(J) \left(r \mathcal{G}^{(J)}(J) \right) \right] \times
\]

\[
\left[(r \mathcal{G}^{(J)}(J))' - \mathcal{L}^{(J)}(J) \left(r \mathcal{G}^{(J)}(J) \right) \right] \bigg|_{r = r_{\text{max}}},
\]

the S-matrix by \(S^{(J)}(J) = (I + i \mathcal{K}^{(J)}(J))/(I - i \mathcal{K}^{(J)}(J))^{-1} \), where \(I \) denotes the identity matrix, and the cross sections by \(\sigma_{\alpha\beta} = 2\pi |S^{(J)}_{\alpha\beta} - \delta_{\alpha\beta}|^2/k_{so}^2 \), with \(\alpha \) and \(\beta \) each take the values 1, 2, \ldots .

In general, the K-matrix has to be determined numerically via coupled-channels calculations. In what follows, we address the question whether \(\mathcal{K} \) can, at least approximatively, be described in terms of the logarithmic derivative matrix of the free-space Hamiltonian \(\tilde{H}_{fs} \). If the spin-orbit coupling term \(V_{so} \) vanished in the small \(r \) limit, one could straightforwardly apply a projection or frame transformation approach [21–24] that would project the inner small \(r \) solution, calculated assuming that \(V_{so} \) vanishes in the inner region, onto the outer large \(r \) solution, calculated assuming that \(V_{\text{int}} \) vanishes in the outer region [25]. The fact that \(V_{so} \) does not vanish in the small \(r \) limit requires, as we shall show below, a generalization of the frame transformation approach.

We start with the Hamiltonian \(\tilde{H} \) and define a new Hamiltonian \(\tilde{H} \) through \(T^{-1} \tilde{H} T \), where \(T \) is an operator to be determined. The solution \(\tilde{\Psi} \) of the new Hamiltonian is related to the solution \(\Psi \) of \(\tilde{H} \) through \(\tilde{\Psi} = T^{-1} \Psi \); here and in what follows we drop the superscripts "\((J, M_J) \)" and "\((J) \)" for notational convenience. The operator \(T \) reads \(RU \), where \(R = \exp(-it_{so} \Sigma \cdot \mathbf{r}) \); the form of \(U \) is introduced later. To calculate \(H_R = R^{-1} \tilde{H} R \), we use

\[
R^{-1} \tilde{H} R = H_{fs} - V_{so} - E_{so} \left[\Sigma \cdot \mathbf{r}, \Sigma \cdot \nabla \right] + \mathcal{O}(r)
\]

and

\[
R^{-1} V_{so} R = V_{so} + 2 \left[\Sigma \cdot \mathbf{r}, \Sigma \cdot \nabla \right] + \mathcal{O}(r),
\]

where \(-ih \nabla = \mathbf{p} \) and \(E_{so} = \hbar^2 k_{so}^2/(2\mu) \) and where the notation \(\mathcal{O}(r) \) indicates that terms of order \(r \) and higher are neglected (\(r \) "counts" as being of order \(r \) and \(\mathbf{p} \) as being of order \(r^{-1} \)). Adding Eqs. [15] and [16] and neglecting the \(\mathcal{O}(r) \) terms, we find that the spin-orbit coupling
term V_{so} is replaced by a commutator that arises from the fact that the operator $\Sigma \cdot \mathbf{p}$ does not commute with the exponent of R,

$$H^s_R = H_{fs} + E_{so} [\Sigma \cdot \mathbf{r}, \Sigma \cdot \nabla].$$ (7)

Here, the superscript “sr” indicates that this Hamiltonian is only valid for small r.

Our goal is now to evaluate the second term on the right-hand side of Eq. (7). Defining the scaled short-distance Hamiltonian h^s_R through $rH^s_Rr^{-1}$ and expressing h^s_R in the $|J, M_J; l, S \rangle$ basis, we find

$$h^s_R = \left(\frac{-\hbar^2}{2\mu} \frac{\partial^2}{\partial r^2} + V_{int}(r) \right) I_1 \otimes I_2 + \mathbf{\mathcal{L}} + \mathbf{\mathcal{U}},$$ (8)

where $\mathbf{\mathcal{L}}$ is a diagonal matrix with diagonal elements $-3E_{so}$ and E_{so}. For $J > 0$, in contrast, the 11 and 22 elements are, in general, coupled:

$$\mathbf{\mathcal{L}} = E_{so} \begin{pmatrix} -3 & c/M^2 & 0 & 0 \\ c/M^2 & -(\Delta M/M)^2 & 0 & 0 \\ 0 & 0 & d_1/M^2 & 0 \\ 0 & 0 & 0 & d_2/M^2 \end{pmatrix},$$ (9)

where $\Delta M = m_1 - m_2$, $c = 2\sqrt{J(J+1)(m_2^2 - m_1^2)}$, $d_1 = -JM^2 - (J + 1)\Delta M^2$, and $d_2 = 4m_1m_2 - d_1$. Since the r-dependent 11 and 22 elements of $\mathbf{\mathcal{L}}$ are identical (recall $l = J$ for these two elements), the matrix $\mathbf{\mathcal{U}}$, which is defined such that $\mathbf{\mathcal{U}}^{-1} \mathbf{\mathcal{L}} \mathbf{\mathcal{U}}$ is diagonal, also diagonalizes h^s_R, i.e., the short-range Hamiltonian $h^s_R = \mathbf{\mathcal{U}}^{-1} h^s_R \mathbf{\mathcal{U}}$ is diagonal. This implies that the scaled radial short-distance Schrödinger equation $h^s_R \mathbf{\mathcal{L}} = E \mathbf{\mathcal{L}}$ can be solved using standard propagation schemes such as the Johnson algorithm [26]. This Schrödinger equation differs from the “normal” free-space Schrödinger equation by channel-specific energy shifts. These shifts introduce a non-trivial modification of the phase accumulation in the short-distance region and—if a zero-range or δ-shell pseudo-potential description was used—of the boundary condition. While the energy shifts do, in many cases, have a negligible effect, our analysis below shows that they can introduce non-perturbative corrections in experimentally relevant parameter regimes. The channel-specific energy shifts are not taken into account in Ref. [12].

To relate the logarithmic derivative matrix $\mathbf{\mathcal{L}}^s_R(r)$ to the logarithmic derivative matrix $\mathbf{\mathcal{L}}(r)$, the “T-operation” needs to be “undone”. Assuming that the short-distance Hamiltonian provides a faithful description, i.e., assuming that the higher-order correction terms can, indeed, be neglected for $r < r_{max}$, we obtain

$$\mathbf{\mathcal{L}}(r_{max}) \approx \left\{ T^s_R \mathbf{\mathcal{L}}^s_R(r)^{-1} - T^{-1} \right\} \bigg|_{r=r_{max}}.$$ (10)

To illustrate the results, we focus on the $J = 0$ subspace. Denoting the usual free-space phase shifts at scattering energy $\hbar^2k^2/(2\mu)$ for the interaction potential V_{int} for the s-wave and p-wave channels by $\delta_s(k)$ and $\delta_p(k)$, respectively, the short-range K-matrix K^s for the Hamiltonian h^s_R has the diagonal elements $\tan(\delta_s(k_s))$ and $\tan(\delta_p(k_p))$, where $\hbar^2k^2_s/(2\mu) = E + 3E_{so}$ and $\hbar^2k^2_p/(2\mu) = E - E_{so}$. If we now, motivated by the concept of scale separation, make the assumption that the phase shifts $\tan(\delta_s(k_s))$ and $\tan(\delta_p(k_p))$ are accumulated at $r = 0$ and correspondingly take the $r_{max} \to 0$ limit of Eq. (10) with $\mathbf{\mathcal{L}}^{(J)}$ given by the right-hand side of Eq. (4), we obtain the following zero-range K-matrix,

$$K_s^s = \frac{-a_s(k_s)}{k_+ - k_-} \begin{bmatrix} k^2_+ & k_+k_- & k^2_- \\ k_+k_- & k_+ - k_- & k^2_- \\ k^2_- & k_-k_+ & k^2_+ \end{bmatrix} - \frac{V_p(k_p)}{k_+ - k_-} \begin{bmatrix} k^2_+ & (k_+ - k_so)^2 & k_+k_- - k_so(k_+ - k_-) \\ (k_+ - k_so)^2 & k_-k_+ & k^2_- - k_so^2 \\ k_+k_- - k_so(k_+ - k_-) & k_-k_+ & k^2_- - k_so^2 \end{bmatrix},$$ (11)

where $\hbar k_{\perp} = \pm \sqrt{2\mu(E + E_{so}) - \hbar k_{so}}$.

To validate our analytical results, we perform numerical coupled-channels calculations. Since the wave function in the $J = 0$ subspace is anti-symmetric under the simultaneous exchange of the spatial and spin degrees of freedom of the two particles, the solutions apply to two identical fermions. The Schrödinger equation for the Lennard-Jones potential $V_{LJ}(r) = C_{12}/r^{12} - C_6/r^6$, with C_6 and C_{12} denoting positive coefficients, is solved numerically [27]. The solid lines in Figs. 1 and 2 show the partial cross section σ_{22} and the K-matrix element K_{22} as a function of k_{so} for vanishing scattering energy E for a two-body potential with large $a_s(0)$ and large $V_p(0)$, respectively. The dashed lines show the results predicted by our zero-range model that accounts for the spin-orbit coupling induced energy shifts. This model provides an excellent description of the numerical results for the Lennard-Jones potential, provided the length $(k_{so})^{-1}$ associated with the spin-orbit coupling term is not too small compared to the van der Waals length r_{vdW}, where r_{vdW} is given by $(2\mu C_6/\hbar^2)^{1/4}$ (in Figs. 1 and 2, the largest $k_{so}r_{vdW}$ considered corresponds to 0.4913 and 0.4171, respectively).

The dash-dotted lines in Figs. 1 and 2 show σ_{22} and K_{22} for the zero-range model when we set the spin-orbit coupling induced energy shifts artificially to zero. In this
case, the divergence in the K_{22} matrix element at finite k_{so} is not reproduced. For large $a_s(0)$ [see Fig. 1(a)], the model without energy shifts introduces deviations at the few percent level in the cross section σ_{22}. For large $V_p(0)$ [see Fig. 2(a)], in contrast, the model without the energy shifts provides a quantitatively and qualitatively poor description of the cross section σ_{22} even for relatively small k_{so} ($k_{so}a_s(0) \gtrsim 0.05$). Figures 1(c) and 2(c) demonstrate that the divergence of the K_{22} matrix element occurs when the free-space scattering length $a_s(k_s)$, calculated at energy $3E_{so}$, or the free-space scattering volume $V_p(k_p)$, calculated at energy $-E_{so}$, diverge. We find that this occurs roughly when $a_s(0)k_{so} \approx 10$ and $(V_p(0))^{1/3}k_{so} \approx 0.21$; we checked that this holds quite generally, i.e., not only for the parameters considered in the figures. In Figs. 1(c) and 2(c), the “critical” k_{so} values correspond to $k_{so}r_{vdW} = 0.1423$ and $k_{so}r_{vdW} = 0.1462$, respectively. For comparison, using the k_{so} value for the one-dimensional realization of Ref. 4 and assuming $r_{vdW} = 100a_0$, one finds $k_{so}r_{vdW} \approx 0.03$. This suggests that the phenomena discussed in the context of Figs. 1 and 2 should be relevant to future realizations of three-dimensional isotropic spin-orbit coupling experiments.

To further explore the two-particle scattering properties in the presence of spin-orbit coupling for short-range potentials with large free-space scattering volume $V_p(0)$, Figs. 3(a) and 3(b) show the partial cross section σ_{22} as a function of the scattering energy $-E_{so} \leq E \leq 0$ and $0 \leq E \leq 400E_{so}$, respectively, for $a_s(0)/V_p(0) = 0.3213$ and $a_s(0)k_{so} = 0.07673$. The results for the Lennard-Jones potential (dashed line) and square-well potential (solid line) are essentially indistinguishable on the scale shown. To assess the accuracy of our zero-range model, we focus on the Lennard-Jones potential and compare the numerically determined partial cross section $(\sigma_{22})^{\text{exact}}$ with the partial cross section $(\sigma_{22})^{\text{tr}}$ predicted using Eq. (11). Solid lines in Figs. 3(c) and 3(d) show the normalized difference Δ, defined through $\Delta = |(\sigma_{22})^{\text{tr}} - (\sigma_{22})^{\text{exact}}|/(\sigma_{22})^{\text{exact}}$. The deviations are smaller than 1.3% for the scattering energies considered. Neglecting the spin-orbit coupling induced energy shifts in our zero-range model and calculating the normalized difference, we obtain the dashed lines in Figs. 3(c) and 3(d). Clearly, the zero-range model provides a faith-

FIG. 1: (Color online) Large $a_s(0)$ case. The black solid line shows (a) the scaled partial cross section $\sigma_{22}(k_{so})^2/(2\pi)$ and (b) the K-matrix element K_{22} for $E = 0$ as a function of $k_{so}a_s(0)$ for the Lennard-Jones potential with $a_s(0)/r_{vdW} = 24.42$ and $V_p(0)/(r_{vdW})^3 = -0.2380$ (this potential supports two s-wave bound states in free space). The red dashed line shows the result for the zero-range model developed in this work [see Eq. (11)]; the numerical results for the Lennard-Jones potential and the model are indistinguishable on the scale shown. To illustrate the importance of the energy shifts, the blue dash-dotted line shows the results for the zero-range model that artificially neglects the energy shifts. The solid line in (c) shows the scaled energy-dependent s-wave scattering length $a_s(k_s)/a_s(0)$, where $\hbar^2k_s^2 = 6\mu E_{so}$.

FIG. 2: (Color online) Large $V_p(0)$ case. The black solid line shows (a) the scaled partial cross section $\sigma_{22}(k_{so})^2/(2\pi)$ and (b) the K-matrix element K_{22} for $E = 0$ as a function of $k_{so}a_s(0)$ for the Lennard-Jones potential with $a_s(0)/r_{vdW} = 0.9591$ and $V_p(0)/(r_{vdW})^3 = 26.61$, corresponding to $a_s(0)/(V_p(0))^{1/3} = 0.3213$ (this potential supports four s-wave bound states in free space). The red dashed line shows the result for the zero-range model developed in this work [see Eq. (11)]; the model reproduces the numerical results excellently for $k_{so}a_s(0) \lesssim 0.3$. The blue dash-dotted line shows the results for the zero-range model that artificially neglects the energy shifts. The solid line in (c) shows the scaled energy-dependent p-wave scattering volume $V_p(k_p)/V_p(0)$, where $\hbar^2k_p^2 = -2\mu E_{so}$. The green circles mark three of the four $k_{so}a_s(0)$ values considered in Fig. 3.
V Jones potential as that used in Figs. 2 and 3 for four different values of the energy for the same Lennard-Jones potential, respectively, as a function of the energy E.

For both potentials, we have $a_s(0)/(V_p(0))^{1/3} = 0.3213$ [for $V_p(0) > 0$] and $k_{so} a_s(0) = 0.07673$. The length scale associated with the spin-orbit coupling is notably larger than the range of the potential ($k_{so} r_{vdW} = 0.08$ for the Lennard-Jones potential and $k_{so} r_{vdW} = 0.07676$ for the square-well potential).

(c) and (d): The solid and dashed lines show the normalized difference Δ (see text) between the cross section for the Lennard-Jones potential and the zero-range model, obtained using Eq. (11), and between that for the Lennard-Jones potential and the zero-range model that neglects the spin-orbit coupling induced energy shifts, respectively. The zero-range model derived in this work (solid line) provides an excellent description (the deviations are smaller than 1.3% for the data shown) over the entire energy regime. Panels (a) and (c) cover negative E (linear scale) while panels (b) and (d) cover positive E (logarithmic scale).

Figure 4 demonstrates that the non-quadratic single-particle dispersion relations. Restricting ourselves to three-dimensional isotropic spin-orbit coupling terms and spin-independent central two-body interactions, we developed an analytical coupled-channels theory that connects the short- and large-distance eigenfunctions using a generalized frame transformation. A key, previously overlooked result of our treatment is that the gauge transformation that converts the short-distance Hamiltonian to the “usual form” (i.e., a form without linear momentum dependence) introduces channel-dependent energy shifts. These energy shifts were then shown to appreciably alter the low-energy scattering observables, especially in the regime where the free-space scattering volume is large. To illustrate this, the $(J, M_J) = (0, 0)$ channel was considered exemplarily. Our framework provides the first complete analytical description that consistently accounts for all partial wave channels. Moreover, the first numerical coupled-channels results for two-particle Hamiltonian with realistic Lennard-Jones potentials in the presence of spin-orbit coupling terms were presented. The influence of the revised zero-range formulation put forward in this paper on two- and few-body bound states and on mean-field and beyond mean-field studies will be the topic of future publications.

I. ACKNOWLEDGEMENT

Support by the National Science Foundation through grant number PHY-1509892 is gratefully acknowledged. The authors acknowledge hospitality of and support (National Science Foundation under Grant No. NSF PHY-1125915) by the KITP. We thank J. Jacob for providing us with a copy of his coupled-channels code.
[1] C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Feshbach resonances in ultracold gases, Rev. Mod. Phys. 82, 1225 (2010).
[2] I. Bloch, J. Dalibard, and W. Zwerger, Many-body physics with ultracold gases, Rev. Mod. Phys. 80, 885 (2008).
[3] Theory of ultracold atomic Fermi gases, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Rev. Mod. Phys. 80, 1215 (2008).
[4] Y.-J. Lin, K. Jiménez-García, and I. B. Spielman, Spin-orbit-coupled Bose-Einstein condensates, Nature (London) 471, 83 (2011).
[5] J. Dalibard, F. Gerbier, G. Juzeliūnas, and P. Öhberg, Colloquium: Artificial gauge potentials for neutral atoms, Rev. Mod. Phys. 83, 1523 (2011).
[6] V. Galitski and I. B. Spielman, Spin-orbit coupling in quantum gases, Nature 494, 49 (2013).
[7] H. Zhai, Degenerate quantum gases with spin-orbit coupling: a review, Rep. Prog. Phys. 78, 026001 (2015).
[8] H. Zhai, Spin-Orbit Coupled Quantum Gases, Int. J. Mod. Phys. B 26, 1230001 (2012).
[9] X. Cui, Mixed-partial-wave scattering with spin-orbit coupling and validity of pseudopotentials, Phys. Rev. A 85, 022705 (2012).
[10] P. Zhang, L. Zhang, and Y. Deng, Modified Bethe-Peierls boundary condition for ultracold atoms with spin-orbit coupling, Phys. Rev. A 86, 053608 (2012).
[11] Z. Yu, Short-range correlations in dilute atomic Fermi gases with spin-orbit coupling, Phys. Rev. A 85, 042711 (2012).
[12] L. Zhang, Y. Deng, and P. Zhang, Scattering and effective interactions of ultracold atoms with spin-orbit coupling, Phys. Rev. A 87, 053626 (2013).
[13] H. Duan, L. You, and B. Gao, Ultracold collisions in the presence of synthetic spin-orbit coupling, Phys. Rev. A 87, 052708 (2013).
[14] Y.-C. Zhang, S.-W. Song, W.-M. Liu, The confinement induced resonance in spin-orbit coupled cold atoms with Raman coupling, Sci. Rep. 4, 4992 (2014).
[15] S.-J. Wang and C. H. Greene, General formalism for ultracold scattering with isotropic spin-orbit coupling, Phys. Rev. A 91, 022706 (2015).
[16] Q. Guan and D. Blume, Scattering framework for two particles with isotropic spin-orbit coupling applicable to all energies, Phys. Rev. A 94, 022706 (2016).
[17] Y. Wu and Z. Yu, Short-range asymptotic behavior of the wave functions of interacting spin-1/2 fermionic atoms with spin-orbit coupling: A model study, Phys. Rev. A 87, 032703 (2013).
[18] D. Blume and C. H. Greene, Fermi pseudopotential approximation: Two particles under external confinement, Phys. Rev. A 65, 043613 (2002).
[19] E. L. Bolda, E. Tiesinga, and P. S. Julienne, Effective-scattering-length model of ultracold atomic collisions and Feshbach resonances in tight harmonic traps, Phys. Rev. A 66, 013403 (2002).
[20] Here and in what follows, underlined quantities are matrices.
[21] U. Fano, Stark effect of nonhydrogenic Rydberg spectra, Phys. Rev. A 24, 619(R), (1981).
[22] D. A. Harmin, Theory of the Nonhydrogenic Stark Effect, Phys. Rev. Lett. 49, 128 (1982).
[23] C. H. Greene, Negative-ion photodetachment in a weak magnetic field, Phys. Rev. A 36, 4236 (1987).
[24] B. E. Granger and D. Blume, Tuning the Interactions of Spin-Polarized Fermions Using Quasi-One-Dimensional Confinement, Phys. Rev. Lett. 92, 133202 (2004).
[25] S.-J. Wang, Ph.D thesis, Purdue University (2016).
[26] B. R. Johnson, The Multichannel Log-Derivative Method for Scattering Calculations, J. Comput. Phys. 13, 445 (1973).
[27] F. Mrugala and D. Secrest, The generalized log-derivative method for inelastic and reactive collisions, J. Chem. Phys. 78, 5954 (1983).