Adversary for Social Good: Protecting Familial Privacy through Joint Adversarial Attacks

Chetan Kumar, Riazat Ryan, Ming Shao

Department of Computer and Information Science, University of Massachusetts, Dartmouth
Data Leakage:

- Limited time to read Terms & Conditions
- Limited knowledge (especially children) to understand
- Unintentional leakage
Already developed Advanced Algorithms to analyze users’ personal data and identity:

- Shopping Habits
- Movie Preferences
- Reading Interests
- etc.
Motivation:

- Generally, people have no willing to disclose personal data

- Image recognition has achieved significant process in the past decade

- Visual kinship understanding drawing more attention
Motivation:

- **Graph Neural Network (GNN)**
 - GNN provides a new perspective for learning with Graph
 - It may promote familial feature learning and understanding

- **Social Media**
 - Social Media is mainly featured by sharing photos and social connections (friend, relative, etc.)
 - Learning models with social media data can be developed towards various goals
 - Unfortunately, it may lead to information leakage and expose privacy w/ or w/o intention
 - You can imagine how furious a celebrity will be when their family members photos are exposed without their permission
Privacy Leakage over Social Media:

Photo Clicked by a Person
Privacy Leakage over Social Media:

Photo Clicked by a Person ➔ Family Information Searched over the Web
Family Data is Found

Photo Clicked by a Person

Family Information Searched over the Web

Family Data is Found

Privacy Leakage over Social Media:
Family Recognition on the Graph:

- $G = (V, E)$ an attributed and undirected graph

- The adjacency matrix $A \in \{0, 1\}^{N \times N}$

 $$A_{ij} = \begin{cases}
 1 & \text{if edge from vertex } i \text{ to } j \\
 0 & \text{otherwise}
 \end{cases}$$

- $X \in \mathbb{R}^{N \times D}$ represents node features

- $X_L \in \mathbb{R}^{D \times NL}$ and $X_U \in \mathbb{R}^{D \times NU}$ be the labeled and unlabeled image features

- $y_L \in \mathbb{R}^{NL}$ is the label vector

- Goal is to find the mapping:

 $$f_G: ([X_L, X_U]) \rightarrow ([y_L, y_U])$$
Graph Construction:

- IDs (Identities)
- Kin (Family Relation)
- NN (Nearest Neighbor)

Family 1

Multiple Face Photos (Identities) of Same Person

Family 2

Multiple Face Photos (Identities) of Same Person

Original Features + Graph
Model Learning:

\[H^{(l)} = \sigma \left(D'^{-\frac{1}{2}} A' D'^{-\frac{1}{2}} H^{(l-1)} W^{(l-1)} \right) \]

Where,
- \(A' = (A + I) \) to add self-loops
- \(D' \) is the Degree Matrix of \(A' \) to normalize large degree nodes
- \(H^0 = X \)
Model Framework:

- Privacy at Risk
 - Social media data may expose sensitive personal information
 - This can be leveraged and lead to information leakage without user's attention

Sneak Photo

Original Feature + Graph
Model Framework:

- Adversarial Attack:
 - Added Noise to Node Features by calculating sign of the Gradient
 - Added/Removed edges (relationships) between nodes

Sneak Photo

Original Features + Graph

Adversarial Labeled Adversarial Image

Adversarial Features + Graph
Model Framework:

- **Model Compromised:**
 - By using Noisy Features and Noisy Graph
Algorithm:

1. **Clean Data**

2. **Train/Re-train GNN model**

3. **if below Budget?**
 - **Yes**
 - **Perturb Node Features**
 - **Perturb Graph Structure**
 - **Feature loss = Calculate Model Loss**
 - **Graph loss = Calculate Model Loss**
 - **Feature loss > Graph Loss?**
 - **Yes**
 - **Update Node Features only**
 - **No**
 - **Update Graph only**
 - **No**
 - **Test on Clean Data**
The proposed joint attack model can be formulated as:

$$\max_{\{X', A'\}} \mathcal{L}_{AD}(X', A') \triangleq \max_{\{X', A'\}} \ln Z^*_{pert} - \ln Z^*_{clean},$$

subject to:

$$\lambda \| A - A' \|_0 + (1 - \lambda) \| X - X' \|_F \leq \theta$$

Here,

- L_{AD} is the loss function of the joint attack
- $\|.\|_F$ is the matrix Frobenius norm
- λ is the balancing parameter
- Z^*_{pert} is the softmax output of the perturbed labeled data
- Z^*_{clean} is based on clean features and graph
Families in the Wild (FIW)

Datasets:

- Father-Daughter
- Father-Son
- Mother-Daughter
- Mother-Son
- Grandfather-Granddaughter
- Grandfather-Grandson
- Grandmother-Granddaughter
- Grandmother-Grandson
- Brother-Brother
- Sister-Sister
- Siblings
Datasets:

- **Pre-processing**
 - Extracting image features using pre-trained SphereNet
 - Constructed the social graph (IDs, Kin, k-NN)
 - Created two social networks
 - **Family-100**
 - Contains 502 subjects
 - 2758 facial images
 - 502/2758 nodes for training
 - 2256 for validation and testing
 - **Family-300**
 - Contains 1712 subjects
 - 10255 facial images
 - 1712/10255 for training
 - 8543 for validation and testing
Results:

- Impacts of graph parameters
 - Best value for $k = 2$
 - Best value for ID and $\text{Kin} = 5$
Results:

Joint Feature and Graph Adversarial Samples

\[
Total-Budget = \lambda \times Edge-Flipping-Ratio + (1-\lambda) \times 100 \times \epsilon
\]

Family-100

- **Single Attack**
 - Feature only and graph only attacks are implemented
 - But excessive use of any particular attack compromises the *data* largely, i.e., perceivable visual change
- **Joint Attack**
 - We propose a joint attack which proves more cost-efficiency
Results:

Joint Feature and Graph Adversarial Samples

Family-300
- Single Attack
- Joint Attack
Results:

Loss and Accuracy on Family-100

- Run the **Joint Attack Algorithm** for 13 iterations
- Average result for 5 trials
- **Accuracy** decreased with more iterations
- And **Model Loss** is increasing
Qualitative Evaluation:

Impacts of ϵ on image and node features

- High-dimensional raw image data require weak noise to fool the model
- Low-dimensional visual features require relatively strong noise to fool the model
Conclusion:

- Demonstrated the family information was at risk on social network through plain graph neural networks
- Proposed a joint adversarial attack modeling on both features and graph structure for family privacy protection
- Qualitatively showed the effectiveness of our framework on networked visual family datasets

Future extension: Adapt our modeling to different types of data and other privacy related issues
We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan X Pascal GPU used for this research.
References:

1. https://techcrunch.com/2014/05/19/netflix-neil-hunt-internet-week/
2. https://www.business2community.com/marketing/multiple-benefits-retargeting-ads-01561396
3. https://blog.ladder.io/retargeting-ads/
4. https://reelgood.com/movie/terms-and-conditions-may-apply-2013
5. https://clclt.com/charlotte/cucalorus-report-part-3/Content?oid=3263928
6. https://www.capitalxtra.com/terms-conditions/general/
7. https://paperswithcode.com/sota/image-classification-on-imagenet
Q & A

Thank you

www.chetan-kumar.com
http://www.cis.umassd.edu/~rryan2/