The role of glycoprotein H of equine herpesviruses 1 and 4 (EHV-1 and EHV-4) in cellular host range and integrin binding

Walid Azab1,2*, Lara Zajic1† and Nikolaus Osterrieder1

Abstract
Equine herpesvirus type 1 and 4 (EHV-1 and EHV-4) glycoprotein H (gH) has been hypothesized to play a role in direct fusion of the virus envelope with cellular membranes. To investigate gH’s role in infection, an EHV-1 mutant lacking gH was created and the gH genes were exchanged between EHV-1 and EHV-4 to determine if gH affects cellular entry and/or host range. In addition, a serine-aspartic acid-isoleucine (SDI) integrin-binding motif present in EHV-1 gH was mutated as it was presumed important in cell entry mediated by binding to α4β1 or α4β7 integrins. We here document that gH is essential for EHV-1 replication, plays a role in cell-to-cell spread and significantly affects plaque size and growth kinetics. Moreover, we could show that α4β1 and α4β7 integrins are not essential for viral entry of EHV-1 and EHV-4, and that viral entry is not affected in equine cells when the integrins are inaccessible.

Introduction
Equine herpesviruses 1 and 4 (EHV-1 and EHV-4) contain a linear, double-stranded DNA genome and belong to the subfamily Alphaherpesvirinae in the Herpesviridae family. Within the genus Varicellovirus, 17 distinct virus species can be identified [1], among them EHV-1 and EHV-4 which are antigenically and genetically closely related [2]. Comparison of the complete DNA sequence of EHV-4 and EHV-1 showed a high degree of similarity that results in a 55 to 96% amino acid identity between proteins of the two viruses. EHV-1 and EHV-4 gH share an amino acid identity of 85% [3]. Despite the similarities with respect to genetic makeup and overall biology, EHV-1 and EHV-4 cause strikingly different pathogenesis beyond the respiratory tract and the observed general malaise following infection.

Initially, EHV-1 infection occurs in epithelial cells of the upper respiratory tract, then the virus spreads to local lymphatic tissues and infects mononuclear cells, which enter the bloodstream and cause productive leukocyte-associated viremia [4-6]. From infected peripheral blood mononuclear cells (PBMC), EHV-1 can initiate viral replication in endothelial cells (EC) lining the small blood vessels of either the nervous system or uterus causing neurological disorders or abortion, respectively [2,7]. EHV-4, on the other hand, generally remains confined to the upper respiratory tract, although the virus has been studied in much less detail than EHV-1. EHV-4 is not commonly associated with leukocyte-associated viremia, infection of PBMC, abortions, or paresis [2,7]. The reduced pathogenic potential of EHV-4 has been attributed to differences in cellular tropism between EHV-1 and EHV-4, since EHV-4 can only infect respiratory epithelial cells and not vascular EC in vivo [7]. Under experimental conditions, EHV-1, but not EHV-4, can infect a broad range of host cells [8]. However, it was recently shown that there was no significant difference in the ability of EHV-1 and EHV-4 to infect equine EC in vitro [7,9].

As with other alphaherpesviruses, EHV-1 entry into cells is presumed to require five viral envelope glycoproteins (gC, gB, gD and the heterodimer gH/gL) and is mediated through different cell surface receptors [9-13]. Depending on the type of cell infected, entry of EHV-1 can occur via endocytosis or fusion at the plasma membrane [6,14,15]. Among herpesviral glycoproteins gB, gH, and gL are conserved across all herpesviruses and, consequently, essential for virus entry and cell fusion. Several studies suggested that gH/gL itself has fusogenic properties.
[16,17]; however, the recently determined crystal structures of herpes simplex virus type 2 (HSV-2) gH/gL, Epstein-Barr virus (EBV) gH/gL, and pseudorabies virus (PRV) gH revealed that gH/gL does not resemble any known fusion protein. Instead, it may act as a fusion regulator [18-21]. The structural studies showed that gH has three distinct domains with the N-terminal domain (domain H1) shown to bind to gl. [20]. It has long been known that, in the case of EBV and HSV, gl. is required for correct folding, trafficking, and function of gH [19,22]. How gB and gH/gL function and interact during alphaherpesviral fusion is still not fully understood. Recent studies suggest that fusion is a stepwise process starting with gD binding to its cognate receptors, followed by activation of gH/gL to prime gB for fusion [23,24].

Integrins are heterodimeric cell adhesion receptors that mediate cellular interactions with the extracellular matrix and surrounding cells, which serve as receptors for many viruses [25,26]. An integrin-binding motif present in gD of EHV-1, arginine-serine-aspartic acid (RSD), was shown to facilitate endocytosis through interactions with α5β1 integrins in fibronectin, and the related motif, leucine-aspartate-isoleucine (LDI), has been shown to bind α5 integrins as well [27,28]. The most remarkable feature of α4 integrin binding sites is the presence of an aspartate residue next to a hydrophobic residue on the amino- or carboxy-terminal side of asparagine [29]. Therefore the serine-aspartate-isoleucine (SDI) sequence found at amino acid residues 457–459 in EHV-1 possibly represents an α4 binding motif. EHV-4, on the other hand, has a single nucleotide substitution at position 447 relative to EHV-1, which changes this motif to alanine-aspartate-isoleucine (ADI). Interestingly, α4 integrins are dominantly and highly expressed on B and T lymphocytes as well as on monocytes [30].

We here investigated the role of EHV-1 and EHV-4 gH in infection, cellular entry and/or host range and integrin binding. To this end, the gH genes were exchanged between EHV-1 and EHV-4 via two-step Red-mediated recombination of infectious clones of either virus [31]. In addition, the putative SDI integrin-binding motif within EHV-1gH was mutated as it was hypothesized to be important in cell entry through binding to α4β1 or α4β7 integrins.

Materials and methods
Viruses
EHV-1 strain L11Δgp2 and recombinant WA79 derived from an infectious EHV-4 BAC clone were generated and used as described before [32,33].

Plasmids
Transfer plasmids encoding either EHV-1 or EHV-4 gH with a kanamycin-resistance (kanR) gene were constructed. All primers used are listed in Table 1. EHV-1 or EHV-4 gH genes were amplified by polymerase chain reaction (PCR) using primers P1, P2, P3, and P4 (Table 1), respectively. PCR products were digested with restriction enzymes and inserted into the pcDNA3 vector (Invitrogen, Darmstadt, Germany), resulting in recombinant plasmids pcDNAgH1 and pcDNAgH4. To construct pcDNAgH1-Kan and 4-Kan, the kanR gene was amplified from the pEPkan-S plasmid [31] using primers P5, P6, P7 and P8 (Table 1). PCR products were digested and inserted into pcDNAgH1 or pcDNAgH4. Correct amplification and insertion were confirmed by nucleotide sequencing (Starseq, Mainz, Germany).

Cells
Fetal horse kidney (FHK) cells, kindly provided by Dr V. Svansson, University of Iceland, human embryonic kidney (293), RK13, and Vero cells were propagated in Dulbecco’s modified Eagle’s medium (DMEM, Biochrom, Berlin, Germany) supplemented with 10% fetal bovine serum (FBS, Biochrom). Equine dermal (NBL-6) and CHO-K1 cells were grown in Iscove’s modified Dulbecco’s medium (IMDM, Invitrogen) supplemented with 10% fetal bovine serum (FBS, Biochrom). Equine dermal (NBL-6) and CHO-K1 cells were grown in Iscove’s modified Dulbecco’s medium (IMDM, Invitrogen) supplemented with 10% FBS. CHO-A, CHO-B, and CHO-C were generously provided by Dr P. Spear, Northwestern University, Chicago, IL, and express the HVEM, nectin-2 and nectin-1 receptors, respectively. They were grown in IMDM supplemented with 10% FBS and 500 μg/mL G418 (Invitrogen). PBMC were isolated from heparinized blood collected from healthy horses as described before [9]. After two washing steps, cells were resuspended in RPMI 1640 (Biochrom) supplemented with 10% FBS. For generation of RK13 cells, which constitutively express EHV-1 gH (RK/gH1), RK13 cells were transfected with the recombinant pcDNAgH1 plasmid using Lipofectamine 2000 (Invitrogen) and colonies resistant to G418 (800 μg/mL) were selected and analyzed by western blotting for expression of EHV-1 gH. As controls, cells were transfected with the pcDNA3 vector (RK/vector) and were also maintained in medium containing G418.
Antibodies
The anti-mouse DATK32 monoclonal antibody (MAb), an \(\alpha_4\beta_7\) integrin antagonist, and MAb P4C2, an \(\alpha_4\beta_1\) integrin antagonist, were obtained from Biolegend (Fell, Germany) and Abcam (Cambridge, UK), respectively. Isotype-matched mouse immunoglobulin G (IgG) was used as a control (Cell Signaling Technologies, Frankfurt am Main, Germany). EHV-1 polyclonal anti-gH antibodies were kindly provided by Dr Antonie Neubauer-Juric, Bavarian Health and Food Safety Authority, Germany.

BAC Mutagenesis
EHV-1 strain RacL11 cloned as a BAC (pL11) [32] and EHV-4 BAC clone pYO03 [33] were described earlier. pL11 and pYO03 BACs were maintained in *Escherichia coli* (E. coli) GS1783 cells (a kind gift from Dr Greg Smith, Northwestern University, Chicago, IL, USA). Deletion of gH1 and gH4 was done via two-step Red recombination as previously described [31]. Briefly, PCR primers, P9, P10, P11, and P12 (Table 1), were selected such that the 50 nucleotide (nt) recombination arms enabled the substitution of the gH gene by the *kanR* gene at nt 1 to 2546 or 1 to 2567 in EHV-1 or EHV-4, respectively. PCR products were digested with DpnI in order to remove residual template DNA. Transfer fragments were then electroporated into GS1783 containing the BACs. Kanamycin-resistant colonies were purified and screened by PCR and RFLP to detect *E. coli* harboring mutant clones. Positive clones were subjected to a second round of Red recombination to obtain the final

### Table 1 Oligonucleotide primers used in this study

| Primer | Product | Sequence |
|--------|---------|----------|
| P1     | EHV-1gH | tat ggtacctctgatctcctacgtgaa\^a |
| P2     |         | atagggcccctctctactgtaacaaca\^a |
| P3     | EHV-4gH | tataggtacctctgatctcctacgtgaa\^a |
| P4     |         | atagggcccctctctactgtaacaaca\^a |
| P5     | Kan-1   | ggg ggggccgtccgctgatgtctctctcctaccagcagcagtactgtaacaaca\^ab |
| P6     |         | cccgccgccccgcctccagcagcagtactgtaacaaca\^ab |
| P7     | Kan-4   | taatctcagagagctggtccaacacttaccagcagcagtactgtaacaaca\^ab |
| P8     |         | ctctctactgtaacaacaactacagcagcagtactgtaacaaca\^ab |
| P9     | gH1-deletion | ggtgccatgtctctctcctaccagcagcagtactgtaacaaca\^ab |
| P10    |         | attgctaatgctctctcctaccagcagcagtactgtaacaaca\^ab |
| P11    | gH4-deletion | atccgagtctctctcctaccagcagcagtactgtaacaaca\^ab |
| P12    |         | ctctctactgtaacaacaactacagcagcagtactgtaacaaca\^ab |
| P13    | gH4-Kan | aagatacatcgtctctctcctaccagcagcagtactgtaacaaca\^ab |
| P14    |         | tcgcctctctcctaccagcagcagtactgtaacaaca\^ab |
| P15    | gH1-Kan | taatctcagagagctggtccaacacttaccagcagcagtactgtaacaaca\^ab |
| P16    |         | taatctcagagagctggtccaacacttaccagcagcagtactgtaacaaca\^ab |
| P17    | gH440A  | ccagctctctctcctaccagcagcagtactgtaacaaca\^abc |
| P18    |         | aagatacatcgtctctctcctaccagcagcagtactgtaacaaca\^abc |
| P19    |         | atctctctcctaccagcagcagtactgtaacaaca\^abc |
| P20    |         | taatctcagagagctggtccaacacttaccagcagcagtactgtaacaaca\^abc |
| P21    |         | taatctcagagagctggtccaacacttaccagcagcagtactgtaacaaca\^abc |
| P22    |         | taatctcagagagctggtccaacacttaccagcagcagtactgtaacaaca\^abc |
| P23    |         | taatctcagagagctggtccaacacttaccagcagcagtactgtaacaaca\^abc |
| P24    |         | taatctcagagagctggtccaacacttaccagcagcagtactgtaacaaca\^abc |
| P25    |         | taatctcagagagctggtccaacacttaccagcagcagtactgtaacaaca\^abc |
| P26    |         | taatctcagagagctggtccaacacttaccagcagcagtactgtaacaaca\^abc |
| P27    |         | taatctcagagagctggtccaacacttaccagcagcagtactgtaacaaca\^abc |
| P28    |         | taatctcagagagctggtccaacacttaccagcagcagtactgtaacaaca\^abc |
| P29    |         | taatctcagagagctggtccaacacttaccagcagcagtactgtaacaaca\^abc |

\(^a\)Restriction enzyme sites are given in lower case bold letters; sequences in italics indicate additional bases which are not present in the EHV-1 or -4 sequence.

\(^b\)Underlined sequences indicate the template binding region of the primers for PCR amplification with pEPkan-S.

\(^c\)Upper case bold letters indicate the nucleotides that were mutated.
constructs, pL11ΔgH1 and pYOΔgH4, after excision of the kan<sup>6</sup> gene.

The transfer constructs gH4Kan and gH1Kan were amplified by PCR using pcDNAgH4Kan or pcDNAgH1-Kan templates and primers P13, P14, P15, and P16 (Table 1). PCR products were electropropagated into GS1783 harboring pL11 or pYO03. After selection on LB agar plates containing 25 μg/mL chloramphenicol and kanamycin, resistant colonies were purified and screened by PCR and RFLP to detect E. coli harboring recombinant pL11gH4Kan and pYOgH1Kan. Positive clones were subjected to a second round of Red recombination to obtain the final constructs pL11gH4 and pYOgH1.

A point mutation targeting the SDI motif present in EHV-1 gH was engineered by converting nucleotide 1318 of gH from a thymidine to a guanine, changing the serine into alanine (gH<sup>5440A</sup>), by employing two-step Red-mediated recombination. Primers, P17 and P18, used for mutant generation are listed in Table 1. The respective genotypes of all the mutants and revertants were confirmed by PCR, RFLP, and nucleotide sequencing using primers P19-P29 (Table 1).

**Generation of recombinant viruses**

EHV-1gH4 and EHV-1gH<sup>5440A</sup> were reconstituted after transfection of purified BAC DNA into RK13 cells [32]. For EHV-4gH1, the virus was reconstituted by transfection of purified DNA into 293 cells as described earlier [33,34]. After three days, the supernatant and cells were harvested at the indicated times post-infection (pi) and nucleotide sequencing using primers P19-P29 (Table 1).

**Western blot analysis**

For western blot analyses, pellets of infected FHK cells or RK/gH1 were resuspended in radioimmunoprecipitation assay buffer with a protease inhibitor cocktail (Roche, Mannheim, Germany). Sample buffer (1M Tris/HCl, pH 6.8; 0.8% sodium dodecyl sulfate (SDS); 0.4% glycerol; 0.15% β-mercaptoethanol; 0.004% bromophenol blue) was added, the mixture was heated at 95°C for 5 min and proteins were separated by 10% SDS-polyacrylamide gel electrophoresis (PAGE) exactly as previously described [35]. Expression of gH was detected using EHV-1 polyclonal anti-gH antibodies and goat anti-rabbit IgG coupled to peroxidase (Southern Biotech, Eching, Germany) as secondary antibodies. A Rabbit anti-β-actin antibody (Cell signaling Technologies) was included as a loading control. Reactive bands were visualized by enhanced chemiluminescence (ECL plus, Amersham, Freiburg, Germany).

**Virus growth assays**

To determine viral replication, single-step growth kinetics and plaque diameter assays were performed as described before [35,36]. Briefly, confluent NBL-6 cells were infected at a multiplicity of infection (MOI) of 1 or 0.01 for 1 h at 37°C. Cells were then washed and overlaid with DMEM with 10% FBS. Infected cultures were harvested at the indicated times post-infection (pi) and viral titers were determined by plating onto NBL-6 cells. Plaques were counted and growth kinetics were determined in three independent experiments. For plaque size measurements, NBL-6 cells were infected with viruses (MOI of 0.001) and overlaid at 1 h pi with DMEM containing 0.5% methylcellulose (Sigma, Hamburg, Germany). At 3 days pi, 50 fluorescent plaques were photographed for each virus and average plaque diameters were calculated using ImageJ software vl.32 [37]. Values were compared to plaque areas induced by parental viruses, which were set to 100%. Three independent experiments were used to calculate average plaque sizes and standard deviations.

**Virus infection assay**

For measuring infectivity (efficiency of plating) of recombinant viruses, cell monolayers were inoculated with different viruses (MOI 0.1). After 1 h of adsorption, cells were washed and overlaid with DMEM containing 10% FBS and infection was allowed to proceed for 48 h. Cells infected with each virus were monitored and photographed with an Axioacam CCD camera (Zeiss, Berlin, Germany).

**Flow cytometry**

To evaluate integrin expression, NBL-6, FHK, and PBMC cells were incubated with 2 μg/mL of the anti-integrin MAb targeting α4β1 (DATK32) or α4β7 (P4C2) or an isotype control mouse IgG for 1 h at RT. After washing twice with PBS, cells were incubated with Alexa fluor 488-labeled goat anti-mouse IgG (1/500 dilution) for 1 h at RT. After a final wash, 10 000 cells were analyzed using a FACS caliber flow cytometer (BD Biosciences, Heidelberg, Germany), and the intensity of fluorescence was analyzed using FlowJo software (Treestar, Olten, Switzerland).

For infection experiments, 2 × 10<sup>5</sup> cells were prepared in 24 well plates as monolayers (NBL-6 and FHK) or as suspensions (PBMCs). Before adding the antibodies, media was removed and cells were washed with PBS containing 2% FBS. Cells were incubated with integrin antibodies (20 μg/mL) at 4°C for 1 h [6,9]. Cells were washed and infected with viruses at an MOI of 2 or 5. NBL-6 and FHK cells were trypsinized at 24 h pi and washed twice, while PBMC were washed twice at 48 h pi. After centrifugation, cells were resuspended in PBS containing 10 μg/mL propidium iodide (PI; Invetrogen) and the intensity of fluorescence of 10 000 cells was analyzed to determine the percentage of infected cells.
Statistical analysis
Using Microsoft Excel, Student’s t test for paired data was used to test for significance. Data given are as mean values, and bars show standard deviations.

Results
Generation and genotypic characterization of mutant viruses
Two-step Red-mediated recombination was used to exchange the gH-encoding sequences between EHV-1 and EHV-4. The newly generated viruses included an EHV-1 mutant harboring (gH4) in place of gH1, and a corresponding EHV-4 carrying gH1. Furthermore, EHV-1 with a point mutation in the SDI motif present in gH was engineered by changing the serine into alanine (gH(S440A)). PCR analysis showed that all constructs harbored the desired genetic modifications (data not shown) and further analysis of the mutant clones was done using nucleotide sequencing (data not shown). gH1 is located within a 15.1 kbp SalI fragment, which disappeared and was replaced by two bands of 8.3 kbp and 6.8 kbp in size in the case of EHV-1gH4 due to the presence of a SalI site in the gH4 gene. The presence of the kanR gene, in EHV-1gH4Kan added 1 kbp to the larger band, and a fragment of around 9.3 kbp in size, which is difficult to identify as it comigrated with another, slightly larger fragment (Figure 1a). On the other hand, the gH4 gene is located in a 10-kbp SacII fragment. Replacement of gH4 with gH1 resulted in two bands of 6.2 kbp and 3.5 kbp in size as the gH1 sequence contains two SacII sites. The 6.2 kbp comigrates with several bands around 6 kbp in the SacII restriction digest of EHV-4. However, the presence of kanR gene resulted in a higher band of around 7.2 kbp in size in the EHV-4gH1Kan (Figure 1a).

To determine whether gH1 and gH4 were expressed properly by the mutant viruses, FHK cells were infected with the respective viruses and infected-cell lysates were analyzed by western blotting. Our results showed that

![Figure 1](http://example.com/figure1.png)

**Figure 1** Identification of recombinant viruses by RFLP and Western blotting. (a) Purified DNA from EHV-1, EHV-1gH4, EHV-1gH4Kan and EHV-1gH(S440A) (left panel) as well as EHV-4, EHV-4gH1Kan and EHV-4gH1 (right panel) were digested with SalI and SacI. Fragments in the mutants that appeared as a consequence of the deletion or insertion of gH sequence are marked by arrows. (b) Amino acid sequence alignment of EHV-1 and EHV-4 gH N-terminal part. The alignment begins with aa49 to aa 327 (H1 domain homologue, that binds gL, in HSV-2) [20]. (c) Parental and mutant viruses as well as complementing RK13/gH1 cells express gH at similar levels. Cell lysates were prepared either from infected FHK cells or from RK13/gH1 and proteins were separated by SDS-10% PAGE. The blots were incubated with EHV-1 polyclonal anti-gH antibody and detected with anti-rabbit IgG peroxidase conjugate. For RK13/gH1 cells (left panel), EHV-1 and related mutants (middle panel), and EHV-4 and related mutants (right panel), two bands of approximately 125 and 115 kD were detected that are not present in mock-infected cells. β-actin was used as a loading control.
gH, approximately 125-kD in size, was expressed by all viruses including the mutants (Figure 1c).

**Virus growth analyses**

Three independent growth kinetic experiments and plaque size measurements were performed using equine NBL-6 cells. Compared to parental EHV-1, EHV-1gH4 had a significantly reduced growth rate over the 30 h time course (Figure 2a). In contrast, the growth rate of EHV-1gHS440A was not significantly different from that of the parental virus control (Figure 2a). With regard to the EHV-4-based recombinant, both viruses grew to almost identical titers in NBL-6 cells (Figure 2b). In addition, the EHV-1 mutant harboring gH4 produced plaques significantly smaller in size when compared to plaques formed by EHV-1 parental virus and reached only 69% of the plaque diameters relative to those induced by EHV-1 (Figure 2c). However, plaques formed by EHV-1gHS440A, on average, reached 98.4% of the size of parental virus plaques, a reduction that was not significant relative to parental virus. We concluded from the experiments that there was no significant difference in plaque size due to the mutation of the putative integrin-binding motif SDI (Figure 2c). In contrast, insertion of gH1 in place of the authentic glycoprotein gH4 in EHV-4 led to an increase in the average plaque diameter of the mutant virus, which was 114.3% relative to that of EHV-4 parental virus (Figure 2d), indicating that gH may also have a role in cell-to-cell spread.

**EHV-1 gH is essential for virus replication**

When DNA of EHV-1ΔgH was transfected into RK13, virus replication remained restricted to a small number of cells that did not increase over time. Only single infected cells were detected, and there was no development of plaques after 96 h (Figure 3a). In contrast,
transfection of RK13 cells with DNA of parental EHV-1 typically resulted in extensive plaque formation after only 24 h (Figure 3b). Next, DNA of EHV-1ΔgH was transfected into RK13/gH1 cells (c). Recovered virus was collected from RK13/gH1 cells and used to infect naïve RK13 cells (d). Infected cells appear green as all viruses express EGFP. Cells were inspected with a fluorescent microscope (Zeiss Axiovert) and images were taken with a CCD camera (Zeiss AxioCam). The bar represents 100 μm.

Figure 3 Infection of RK13 cells with EHV-1ΔgH. RK13 cells were transfected with either EHV-1ΔgH DNA (a) or EHV-1 parental DNA (b). EHV-1ΔgH was also transfected into RK13/gH1 cells (c). Recovered virus was collected from RK13/gH1 cells and used to infect naïve RK13 cells (d). Infected cells appear green as all viruses express EGFP.

Type-specific gH has no effect on host range of EHV-1 or EHV-4 in vitro

EHV-1 can be readily propagated in many cell lines including primary equine cells or cell lines derived from other species [8]. In contrast, EHV-4 appears to be restricted mainly to cells derived from horses and replicates poorly in very few other cell lines such as Vero cells [38]. To test the hypothesis that gH might be a determinant of EHV-1 and EHV-4 host range, gH mutant viruses were used to examine the ability of the viruses to infect different cell lines in vitro. Our results showed that gH has no role in determining the host range of either EHV-1 or EHV-4. EHV-1 parental and mutant viruses were still able to infect all cell lines that are permissive for EHV-1 and resistant to EHV-4, such as RK13 and CHO-K1 (Figure 4). However, viral spread was clearly affected by gH on RK13 cells, as was the case on NBL-6 cells (Figure 5a). Infection of Vero cells, which are permissive for EHV-4 but not EHV-1, showed that EHV-4 and EHV-1ΔgH1 can infect these cells efficiently, while EHV-1 and EHV-1gH4 only poorly infected these cells (Figure 4). Finally, we found that HeLa, MDBK, PBMC, EC and 293 cells can be infected with parental and mutant viruses with similar efficiencies and that viral infection was independent of gH1 or gH4, respectively (data not shown).

Integrins are not involved in EHV-1 or EHV-4 entry into PBMC or equine fibroblast cells

PBMC are highly relevant to EHV-1 pathogenesis as outlined above, whereas EHV-4 infection of leukocytes is reported to be a rare event. It was postulated that the SDI integrin motif, present in EHV-1 gH but not EHV-4 gH, might be an important determinant for efficient infection of PBMC in vitro [6]. In order to address the hypothesis that gH1 and/or gH4 can affect viral infection of PBMC, we first infected PBMC with EHV-1 and EHV-4 strains and analyzed the percentages of infected cells by flow cytometry. Surprisingly, the percentage of infected PBMC after inoculation with EHV-1 or EHV-4 was nearly identical, ranging from approximately 3% (MOI = 1) to 9% (MOI = 6) (Figure 5a). In a second round of experiments, we included all of our mutants in the PBMC infection experiments. As with our previous results, the rate of infection was similar for all viruses used (Figure 5b). Furthermore, we used anti-integrin α4β1 (P4C2) or α4β7 (DATK32) MAb to investigate the role of integrins during entry into PBMC. First, the proper expression of α4β1 or α4β7 on PBMC using the function-blocking MAb P4C2 or DATK32 was confirmed (Figure 6a). Both α4β1 and α4β7 integrins were highly expressed on PBMCs, with 77.5% and 54.8%, respectively, of cells reactive with the antibodies. α4β1 integrins were also expressed on NBL-6 (40%) and FHK (30%) cells (Figure 6b and c), although there was no significant expression of α4β1 in either Vero or CHO-K1 cells (data not shown). The expression of the α4β7 integrin was minimal in NBL-6, FHK (Figure 6b and c), Vero or CHO-K1 cells (data not shown), and the mean fluorescence intensities not significantly different from that observed with mouse IgG control antibodies. Pre-incubation of PBMC with either α4β1 or α4β7 integrin-blocking antibodies did not lower the rate of viral infection in PBMCs for any of the parental or mutant viruses tested. Controls without antibodies for each virus were normalized to 100% and the percentage of infection after the use of antibodies was compared to this value. After using the α4β1 blocking antibody, infection rates of EHV-1 and related mutants were actually increased compared to controls without antibodies (Figure 6d), but...
this increase did not reach statistical significance for any of the viruses. In the case of EHV-4 there was a slight decrease in the percentage of infected cells, which was not significantly different from the average percentage of infection of the untreated virus. After treating cells with the α4β7 antibody, all viruses showed no significantly increased infection rates of PBMCs compared to untreated controls. Therefore, the integrin-blocking antibody does not have any significant adverse effect either on viral entry or on viral infection when added to cells prior to infection.

To further elucidate the role of integrins in virus entry, we either blocked α4β1 integrins on the surface of NBL-6 and FHK cells or incubated the viruses with soluble α4β1 integrin (15 µg/mL, R&D Systems, Minneapolis, USA) [39] before infection. Again, this treatment had no significant effect on the entry of parental or mutant viruses (data not shown). We concluded from our data that PBMC can be infected with similar efficiencies by both EHV-1 and EHV-4 in vitro. Furthermore, integrins may serve as a receptor and/or co-receptor for viral entry and their blockade may not have a measurable effect on virus infection, especially, if alternative receptors exist.

**Discussion**

Alphaherpesviruses are successful at spreading directly from cell-to-cell in epithelial cells and neurons, thus avoiding the extracellular space and exposure to host defenses such as neutralizing antibodies. It is clear that the gE/gI heterodimer plays a major role in cell-to-cell spread, but gH also facilitates the movement of virus from infected to uninfected cells [40-42]. However, despite the fact that gH is involved in the process of cell-to-cell spread in a number of alphaherpesviruses [43], the actual role of gH in membrane fusion processes has yet to be elucidated. Here we show that EHV-1ΔgH
replicates poorly in RK13 cells and does not form plaques, demonstrating the essentiality of EHV-1 gH in viral infection. The fact that the number of infected cells does not increase over time suggests that EHV-1 infection. The fact that the number of infected cells does not increase over time suggests that EHV-1 infection. The fact that the number of infected cells does not increase over time suggests that EHV-1 infection.

Figure 5 Infection of equine PBMC with recombinant viruses. PBMC were incubated with EHV-1 or EHV-4 at an MOI of 1 or 6 (a) for 1 h at 37°C. After 48 h, the percentage of infected cells was determined by flow cytometry. In another experiment, PBMC were infected with the engineered mutant viruses (b). The data represent the mean ± SD of at least three independent experiments.

In a recent study conducted in our lab it was shown that, as is the case for other alphaherpesviruses, efficient EHV-1 and EHV-4 entry is mainly dependent on gD, which can bind to several cell surface receptors and determines the host range of both EHV-1 and EHV-4 [9]. In the study presented here, we found that, in all cells tested, the exchange of gH did not have an effect on the entry of the viruses into cells, thus indicating that gH is probably not important in determining cellular host range or binding to cellular receptors.

It has been shown that HSV-1 gB and gHgL are involved in nuclear egress and fusion between the virion envelope and the outer nuclear membrane resulting in de-envelopment of primary enveloped viruses [46]. We, therefore, considered it likely that EHV-1 gH plays a role in viral egress, more specifically in the first envelopment step at nuclear membranes, secondary envelopment at cytoplasmic membranes, or the release of the virion into the extracellular space [47]. The fact that the exchange of gH had such a marked effect on virus cell-to-cell spread may indicate that there is little room to compensate for the loss of authentic gH in EHV-1 and/or that gH1 is much more efficient with respect to facilitating fusion.

Another point of consideration is the covalently linked heterodimer formed between gH and gL. The crystal structure of EHV gH has not been determined yet. However, on the basis of overall similarity, one may derive some information from other herpesviruses particularly HSV-2, PRV, and EBV. Biochemical data corroborated by crystal structure analyses revealed that it is the gL subunit and the N-terminal residues of gH that form the heterodimeric complex, which is essential for efficient membrane fusion and viral entry [19-22]. Furthermore, it has been established that gL is required for proper folding, intracellular transport, and full functionality of gH. The accumulated data and knowledge of the gHgL interaction that make it difficult to evaluate the role of one of these glycoproteins individually as one has to assume that they will not act independently of each other but have to be viewed as a functional unit [48-51]. The N-terminal region of EHV-1 and EHV-4 gH share approximately 82% amino acid identity (Figure 1b). Perhaps, authentic gL could compensate for the phenotypic changes induced by the exchange of the respective gHs. It will, therefore, be interesting to examine whether a double mutant, i.e. EHV-1 harboring gH4gL4 and vice versa, would lead to any improvement or possibly even further impairment of the viruses' ability to effectively replicate.

The amino acid motif LDV is the primary binding site for α4β1 integrins in fibronectin, and the related motifs LDI or SDI have been shown to bind α4 integrins with similar affinity and avidity [27-29]. To determine the role of integrins in viral entry into PBMCs, cells were incubated with antibodies directed against α4β1 or α4β7, and then infected with parental and mutant viruses. In PBMCs, none of the viruses were significantly affected by
the presence of integrin-blocking antibodies. In most cases, viral entry into the cells was actually increased compared to cells not treated with antibodies. The same result was also obtained after blocking \(\alpha_4\beta_1\) integrin on the surface of equine fibroblasts. Furthermore, incubating either EHV-1 or EHV-4 with soluble \(\alpha_4\beta_1\) integrin before infection did not affect the entry. One may argue that integrin antibodies or soluble integrins were unable to block or mask either the integrin receptors on cell surface or the integrin motif present in gH. However, our results showed that both blocking integrin receptors and masking the integrin motif directed the virus to a different entry pathway, indicating reactivity and functional consequences of the antibodies and the soluble integrins (Azab and Osterrieder, unpublished data). The results of two recent reports support the findings of our experiments [9,52]. In these studies, it was shown that the presence of \(\alpha V\beta 3\) or \(\alpha V\beta 5\) integrins is not a requirement for either gD or gH-gL binding to different cells.

In summary, we conclude from our experiments that gH or the gH/gL complex is essential for the formation of plaques by EHV-1 and that the exchange of gH's between EHV-1 and EHV-4 has a measurable impact on viral growth and plaque sizes. It remains unclear what this specific role of gH1 and gH4 in cell-to-cell spread entails, but similar results with related viruses suggest that the functions of gH and that of the heterodimeric gH-gL complex are at least partly conserved in the alphaherpesvirus subfamily. Lastly, our study has proven that integrins seem not to be essential for entry of EHV-1 or EHV-4 in any of the cell types analyzed.

**Figure 6** Integrins have no role in EHV-1 or EHV-4 entry into equine cells. PBMC (a) NBL-6 (b) or FHK (c) cells were incubated with anti-\(\alpha 4\beta 7\) MAb DATK32 or \(\alpha 4\beta 1\) MAb P4C2 for 1 h at RT, followed by incubation with Alexa fluor 488-labeled goat anti-mouse IgG for 1 h at RT. As controls, cells were incubated with irrelevant MAbs of the same IgG isotype. Integrin expression was determined by flow cytometry. (d) PBMC were preincubated with either \(\alpha 4\beta 7\) MAb DATK32 or \(\alpha 4\beta 1\) MAb P4C2 for 1 h at 4°C, followed by infection with recombinant viruses at an MOI of 5 for 2 h at 37°C. At 48 h pi, cells were washed and the percentage of infected cells was determined by flow cytometry. The rate of infection of parental viruses was set to 100%. All data represent the mean ± SD of three independent experiments.
References

1. King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ: Human Herpesviruses: Biology, Therapy, and Immunoprophylaxis. In Elsevier; 2012:114–115.

2. Patel JR, Heldens J: Entry of alphaherpesviruses into the cell. J Virol 1999, 179:1197–1203.

3. Telford SA, Watson MS, Perry J, Cullinan AA, Davison AJ: The DNA sequence of equine herpesvirus-4. J Gen Virol 2009, 132:450–461.

4. Van de Walle GR, Peters ST, VanderVen BC, Osterrieder N: Equine herpesvirus-1 entry via endocytosis is facilitated by alphaV integrins and an RSD motif in glycoprotein D. J Vet Intern Med 2009, 23:1–11.

5. Van de Walle GR, Peters ST, VanderVen BC, Osterrieder N: Equine herpesvirus-1 entry by endocytosis is facilitated by alphaV integrins and an RSD motif in glycoprotein D. J Vet Intern Med 2009, 23:1–11.

6. Patel JR, Heldens J: Entry of alphaherpesviruses into the cell. J Virol 2009, 179:1197–1203.

7. Osterrieder N, Van de Walle GR: Pathogenic potential of equine herpesvirus type 1, glycoprotein D. J Viral 2008, 82:11859–11868.

8. Whalley JM, Ruitenberg KM, Sullivan K, Seshadri L, Hansen K, Birch D, Peters ST, VanderVen BC, Osterrieder N, Townsend HG: Cell integrins: commonly used receptors for herpesvirus type 1 glycoprotein D. J Virol 2008, 82:11859–11868.

9. Osterrieder N, Van de Walle GR: Pathogenic potential of equine alphaherpesviruses: the importance of the mononuclear cell compartment in disease outcome. Vet Microbiol 2010, 143:21–28.

10. Whalley JM, Ruitenbeek KM, Sullivan K, Seshadri L, Hansen K, Birch D, Gilkeren JR, Wellington JE: Host cell tropism of equine herpesviruses: glycoprotein D of EHV-1 enables EHV-4 to infect a non-permissive cell line. Arch Virol 2007, 152:717–725.

11. Asab W, Osterrieder N: Glycoproteins D of equine herpesvirus type 1 (EHV-1) and EHV-4 determine cellular tropism independently of integrins. J Viral 2012, 86:2031–2044.

12. Campadelli-Fiume G, Menotti L: Entry of alphaherpesviruses into the cell. In Human Herpesviruses: Biology, Therapy, and Immunoprophylaxis. Edited by Arvin A, Campadelli-Fiume G, Mocarski E, Moore PS, Roizman B, Whitley R, Yamanishi K. UK: Cambridge University Press, 2007:93–111.

13. Frampton AR Jr, Goins WF, Cohen JB, von Einem J, Osterrieder N, O’Callaghan DJ, Glorioso JC: Equine herpesvirus 1 utilizes a novel herpesvirus entry receptor. J Viral 2005, 79:3169–3173.

14. Frampton AR Jr, Stolt DB, Ughida H, Goins WF, Cohen JB, Glorioso JC: Equine herpesvirus 1 entry by endocytosis is facilitated by alphaV integrins and an RSD motif in glycoprotein D. J Viral 2009, 38:9007–9034.

15. Sasaki M, Hasebe R, Makino Y, Suzuki T, Fukushima H, Okamoto M, Matsuda K, Tanizawa H, Sawa H, Kimura T: Equine major histocompatibility complex class I molecules act as entry receptors that bind to equine herpesvirus-1 glycoprotein D. Genes Cells 2011, 16:343–357.

16. Galdiero S, Falanga A, Vitello M, Raola L, Fattorossi R, Browne H, Pedone C, Isenma C, Galdiero M: Analysis of a membrane interacting region of herpes simplex virus type 1 glycoprotein H. J Biol Chem 2008, 283:20993–30009.

17. Subramanian RP, Geragthy RJ: Herpes simplex virus type 1 mediates fusion through a hemifusion intermediate by sequential activity of glycoproteins D, H, L, and J. Proc Natl Acad Sci USA 2007, 104:2903–2908.

18. Atanasiu D, Whitbeck BC, de Leon MP, Lou H, Hannah NP, Cohen GH, Eisenberg RJ: Bimolecular complementation defines functional regions of Herpes simplex virus gB that are involved with gH/gL as a necessary step for cell fusion. J Virol 2010, 84:3825–3834.

19. Backovic M, Dubois RM, Cockburn JJ, Shaff SJ, Vaney MC, Granzow H, Klupp BS, Briegleb G, Mettenleiter TC, Rey FA: Structure of a core fragment of glycoprotein G from pseudorabies virus in complex with antibody. Proc Natl Acad Sci USA 2010, 107:22635–22640.

20. Chowdry TK, Cairns TM, Atanasiu D, Cohen GH, Eisenberg RJ, Heldwein EE: Crystal structure of the conserved herpesvirus fusion regulator complex gHgL. Nat Struct Mol Biol 2010, 17:882–888.

21. Matsuura H, Kirschner AR, Longnecker R, Jakubczyk TS: Crystal structure of the Epstein-Barr virus (EBV) glycoprotein H/glycoprotein L (gH/gL) complex. Proc Natl Acad Sci USA 2010, 107:22641–22646.

22. Fan Q, Lin E, Spear PG: Insertional mutations in herpes simplex virus type 1 glycoproteins B, C12 and D12 identify functional domains for association with gH and for membrane fusion. J Virol 2009, 83:11607–11615.

23. Atanasiu D, Whitbeck BC, Cairns TM, Reilly B, Cohen GH, Eisenberg RJ: Bimolecular complementation reveals that glycoproteins gB and gL of herpes simplex virus interact with each other during cell fusion. Proc Natl Acad Sci USA 2007, 104:18718–18723.

24. Avantabile E, Forgieri C, Campadelli-Fiume G: Complexes between herpes simplex virus glycoproteins gD, gB, and gH detected in cells by complementation of split enhanced green fluorescent protein. J Virol 2007, 81:11532–11537.

25. Clark EA, Brugge JS: Integrins and signal transduction pathways: the road taken. Science 1995, 268:239–240.

26. Stewes PL, Nemerow GR: Cell integrins: commonly used receptors for diverse viral pathogens. Trends Microbiol 2007, 15:509–507.

27. Komoriya A, Green LJ, Mervic M, Yamada SS, Yamada KM, Humphries MJ: The minimal essential sequence for a major cell type-specific adhesion site (C51) within the alternatively spliced type III domain connecting segment of fibronectin is leucine-aspartic acid-valine. J Biol Chem 1991, 266:15075–15079.

28. Davis GE, Thomas JS, Madden S: The alpha4beta1 integrin can mediate leukocyte adhesion to casein and denatured protein substrates. J Leukoc Biol 1997, 62:318–328.

29. Hynes RO: Integrins: bidirectional, allosteric signaling machines. Cell 2002, 109:673–687.

30. Tischer BK, von Einem J, Kaufer B, Osterrieder N: Two-step red-mediated recombination for versatile high-efficiency markerless DNA manipulation in Escherichia coli. Biotechniques 2004, 36:191–197.

31. Rudy J, O’Callaghan DJ, Osterrieder N: Cloning of the genomes of equine herpesvirus type 1 (EHV-1) strains KyA and rAcL11 as bacterial artificial chromosomes (BAC). J Vet Med B Infect Dis Vet Public Health 2002, 49:31–36.

32. Rudolph J, O’Callaghan DJ, Osterrieder N: Cloning of the genomes of equine herpesvirus type 1 (EHV-1) strains KyA and rAcL11 as bacterial artificial chromosomes (BAC). J Vet Med B Infect Dis Vet Public Health 2002, 49:31–36.

33. Azab W, Kato K, Arii J, Tsujimura Y, Yamane D, Tohya Y, Matsumura T, Akashi H: Cloning of the genome of equine herpesvirus 4 strain TH2Op as an infectious bacterial artificial chromosome. Arch Virol 2006, 151:833–842.

34. Azab W, Tsujimura K, Kato K, Arii J, Morimoto T, Kawauchi Y, Tohya Y, Matsumura T, Akashi H: Characterization of a thymidine kinase-deficient mutant of equine herpesvirus 4 and in vitro susceptibility of the virus to antiviral agents. Antiviral Res 2010, 85:389–395.

35. von Einem J, Smith PM, Van de Walle GR, O’Callaghan DJ, Osterrieder N: In vitro and in vivo characterization of equine herpesvirus type 1 (EHV-1) mutants devoid of the viral thymidine-binding glycoprotein G (gD). Virology 2007, 362:151–162.

36. Azab W, Tsujimura K, Maeda K, Kobayashi K, Mohamed YM, Kato K, Matsumura T, Akashi H: Glycoprotein C of equine herpesvirus 4 plays a role in viral binding to cell surface heparan sulfate. Virus Res 2010, 151:1–9.
37. Image Processing and Analysis in Java http://rsb.info.nih.gov/ij/.
38. Maeda K, Yasumoto S, Tsuruda A, Andoh K, Kai K, Otoi T, Matsumura T: Establishment of a novel equine cell line for isolation and propagation of equine herpesviruses. J Vet Med Sci 2007; 69:989–991.
39. Kerur N, Veettil MV, Sharma-Walla N, Sadagopan S, Bottero V, Paul AG, Chandran B: Characterization of entry and infection of monocytic THP-1 cells by Kaposi’s sarcoma associated herpesvirus (KSHV): role of heparan sulfate, DC-SIGN, integrins and signaling. Virology 2010, 406:103–116.
40. Wisner T, Brunetti C, Dingwell K, Johnson DC: The extracellular domain of herpes simplex virus gE is sufficient for accumulation at cell junctions but not for cell-to-cell spread. J Virol 2000, 74:2278–2287.
41. Gompels U, Minson A: The properties and sequence of glycoprotein H of herpes simplex virus type 1. Virology 1986, 153:230–247.
42. Peeters B, de Wind N, Broer R, Gielkens A, Moormann R: Glycoprotein H of pseudorabies virus is essential for entry and cell-to-cell spread of the virus. J Virol 1992, 66:3888–3892.
43. Browne HM: The role of glycoprotein H in herpesvirus membrane fusion. Protein Pept Lett 2000, 16:769–765.
44. Granzow H, Klupp BG, Fuchs W, Veits J, Ostneried N, Mettenleiter TC: Egress of alphaherpesviruses: comparative ultrastructural study. J Virol 2001, 75:3675–3684.
45. Schroder C, Kell GM: Bovine herpesvirus 1 requires glycoprotein H for infectivity and direct spreading and glycoproteins gH(W450) and gB for glycoprotein D-independent cell-to-cell spread. J Gen Virol 1999, 80:57–61.
46. Farnsworth A, Wisner TW, Webb M, Roller R, Cohen G, Eisenberg R, Johnson DC: Herpes simplex virus glycoproteins gB and gH function in fusion between the virion envelope and the outer nuclear membrane. Proc Natl Acad Sci USA 2007, 104:10187–10192.
47. Neubauer A, Osterrieder N: Equine herpesvirus type 1 (EHV-1) glycoprotein K is required for efficient cell-to-cell spread and virus egress. Virology 2004, 329:18–32.
48. Caams TM, Friedman LS, Lou H, Whitbeck JC, Shaner MS, Cohen GH, Eisenberg RJ: N-terminal mutants of herpes simplex virus type 2 gH are transported without gL but require gL for function. J Virol 2007, 81:5102–5111.
49. Dubin G, Jiang H: Expression of herpes simplex virus type 1 glycoprotein L (gL) in transfected mammalian cells: evidence that gL is not independently anchored to cell membranes. J Virol 1995, 69:4564–4568.
50. Hutchinson L, Browne H, Wargent V, Davis-Poynter N, Primorac S, Goldsmith K, Minson AC, Johnson DC: A novel herpes simplex virus glycoprotein, gL, forms a complex with glycoprotein H (gH) and affects normal folding and surface expression of gH. J Virol 1992, 66:2240–2250.
51. Roop C, Hutchinson L, Johnson DC: A mutant herpes simplex virus type 1 unable to express glycoprotein L cannot enter cells, and its particles lack glycoprotein H. J Virol 1993, 67:2285–2297.
52. Gianni T, Ceretani A, Dubois R, Salvoiri S, Bystone SS, Rey F, Campadelli-Fiume G: Herpes simplex virus glycoproteins H/L bind to cells independently of (alpha)1(beta)3 integrin and inhibit virus entry, and their constitutive expression restricts infection. J Virol 2010, 84:4013–4025.

doi:10.1186/1297-9716-43-61
Cite this article as: Azab et al: The role of glycoprotein H of equine herpesviruses 1 and 4 (EHV-1 and EHV-4) in cellular host range and integrin binding. Veterinary Research 2012 43:61.