Finite frequency model reduction for 2-D fuzzy systems in FM model

Rachid Naoual1,*, Abderrahim El-Amrani2,**, and Ismail BOUMHIDI2,***
1Department of Engineering, Higher Institute of Engineering and Business (ISGA), Fez, Morocco.
2LISAC Laboratory, FSDM, Sidi Mohamed Ben Abdellah University, Fes, Morocco.

Abstract. This paper deals with the problem of H_{∞} model reduction for two-dimensional (2D) discrete Takagi-Sugeno (T-S) fuzzy systems described by Fornasini-Marchesini local state-space (FM LSS) models, over finite frequency (FF) domain. New design conditions guaranteeing the FF H_{∞} model reduction are established in terms of Linear Matrix Inequalities (LMIs). To highlight the effectiveness of the proposed H_{∞} model reduction design, a numerical example is given.

1 Introduction

During the past decades, much progress has been made for 2D systems in the literature [1, 2], many important results based on LMI approach have already been reported. Among these results, stability analysis and stabilization design for 2D systems have been studied in [3], H_{∞} filtering problem can be found in [14], model reduction problem in [6].

The H_{∞} model reduction aims to find a low-order model for a given model such that the H_{∞} norm of the error between these two models is minimized or satisfies the specific performance. Many results on H_{∞} model reduction have been reported in the literature [6, 9–11].

The point of interest in aforementioned literature is that all performance indices are defined in the entire frequency (EF) domain. However, in major real applications, that all performance indices are defined in the entire frequency (EF) domain. However, in major real applications, the standard design approaches for the whole frequency domain may bring conservativeness [15, 18], [17] [12, 13, 16].

In this paper, we consider the H_{∞} model reduction for 2D T-S fuzzy Fornasini-Marchesini Models. Sufficient conditions for the existence of solutions are parameterized in LMI form. An explicit parameterization of the desired reduced-order models is given. Finally, a numerical example is provided to prove the effectiveness of FF propose method.

Notations. Superscript ”T” stands for matrix transposition. In symmetric block matrices or long matrix expressions, we use an asterisk ”*” to represent a term that is induced by symmetry. Notation $P > 0$ means that matrix P is positive. I denotes an identity matrix with appropriate dimension. Generally, $\text{sym}[A] = A + A^T$, $\text{diag}[\ldots]$ stands for block diagonal matrix. The l_2 norm for a 2D signal $u(i, j)$ is given by

$$\|u\|_2 = \sqrt{\sum_{i=0}^{\infty} \sum_{j=0}^{\infty} u^2(i, j)w(i, j)}$$

where $u(i, j)$ is said to be in the space $l_2([0, \infty), [0, \infty])$ or l_2, for simplicity, if $\|u\|_2 < \infty$. A 2D signal $u(i, j)$ in the l_2 space is an energy-bounded signal.

2 Problem description and preliminaries

2.1 Problem description

In this paper, we consider a class of 2D nonlinear discrete-time systems described by the following T-S FMLSS fuzzy model

Plant Rule i: IF $\theta_i(k)$ is \tilde{N}_i^j, $\theta_j(k)$ is \tilde{N}_j^l, ..., and $\theta_p(k)$ is \tilde{N}_p^m, then

$$x_{i+1,j+1} = A_i x_{i+1,j} + A_2 x_{i+1,j} + B_1 u_{i+1,j} + B_2 u_{i+1,j},$$

$$y_{i,j} = C x_{i,j}$$

where $(\tilde{N}_i^j, \ldots, \tilde{N}_j^l)$ are the fuzzy sets; l is the number of IF-THEN rules $(l = 1, 2, \ldots, i); \theta_i(k) = \{\theta_i(k), \theta_2(k), \ldots, \theta_p(k)\}$ are the premise variables; $k = (l, i + 1, j + 1)$; $x(i, j) \in \mathbb{R}^n$ is the state vector; $y(i, j) \in \mathbb{R}^m$ is the measured output; $u(i, j) \in \mathbb{R}^r$ is the noise input (that belongs to $l_2([0, \infty), [0, \infty])$); (A_1, B_1, A_2, B_2, C) are known real matrices with appropriate dimensions. The frequency spectrum of the exogenous noise $u(i, j)$ is assumed to belong to a known rectangular region Ω, where

$$\Omega \equiv \{(\mu_1, \mu_2) \in \mathbb{R}^2 | \mu_1 \leq \mu_2; \mu_1 \leq \mu_2; \mu_1, \mu_2 \in [-\pi, \pi]\}$$

where μ_1, μ_2 are known scalars. A more compact presentation of the Takagi-Sugeno 2D discrete-time fuzzy model systems is given by

$$x_{i+1,j+1} = A_1 x_{i+1,j} + A_2 x_{i+1,j} + B_1 u_{i+1,j} + B_2 u_{i+1,j},$$

$$y_{i,j} = C x_{i+j}$$

where $x(0,0) = x_0, x(0,0) = x_0, i, j \geq 0$.

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).
holds for all solutions of (8) with $u_{i,j} \in L_2([0, \infty), [0, \infty))$ such the following hold

\[
e^{\psi_{i,j}^k} \sum_{i=0}^{\infty} (e_{i+1,j} - e_{i,j}) < 0 \quad \text{(12)}
\]

where $\mu_i^k = \frac{\mu_i - \mu_j^k}{2}$, $\mu_j^k = \frac{\mu_j + \mu_i}{2}$.

2.2 Preliminaries

We introduce the following technical lemmas that are useful for deriving our results.

Lemma 1 ([21]) From (13), we can obtain (14)

\[
T + MU + U^T M^T * -M^T + GU \quad V - G - G^T < 0 \quad (13)
\]

\[
T + U^T V U < 0 \quad (14)
\]

Lemma 2 ([113]) Let $\gamma > 0$ be a given scalar and a rectangular FF domain (2). For error system (8) is asymptotically stable, H_∞ performance (11) is satisfied, if there exist Hermitian P, Q_1, Q_2, $0 < Q_1$, $0 < Q_2 \in \mathbb{H}_{2n}$, such that

\[
\begin{bmatrix}
\mathcal{A}(h) & \mathcal{B}(h) \\
I & 0
\end{bmatrix}^T
\begin{bmatrix}
P & \Lambda Q \\
Q & -R
\end{bmatrix}
\begin{bmatrix}
\mathcal{A}(h) & \mathcal{B}(h) \\
I & 0
\end{bmatrix} +
\begin{bmatrix}
C(h)^T C(h) & 0 \\
0 & -\gamma^2 I
\end{bmatrix} < 0 \quad (15)
\]

where

\[
\begin{align*}
\mathcal{A}(h) &= \begin{bmatrix}
\tilde{A}_1(h) & \tilde{A}_2(h) \\
0 & \tilde{A}_2(h)
\end{bmatrix} ;
\mathcal{B}(h) = \begin{bmatrix}
\tilde{B}_1(h) \\
\tilde{B}_2(h)
\end{bmatrix} ; \\
C(h) &= \begin{bmatrix}
\tilde{C}(h) \\
-C(h)
\end{bmatrix} ; \\
\Lambda &= \begin{bmatrix}
\mu_{1}^k & \mu_{2}^k \\
\mu_{2}^k & \mu_{1}^k
\end{bmatrix} ; \\
\mathcal{R} &= \begin{bmatrix}
P_1 + 2 \cos(\mu_i^k) Q_1 & 0 \\
0 & P_2 + 2 \cos(\mu_j^k) Q_2
\end{bmatrix} ;
\end{align*}
\]

\[
\begin{align*}
\mu_{i,j}^k &= \frac{\mu_{i}^k + \mu_{j}^k}{2}, \\
\mu_{i,j}^k &= \frac{\mu_{i}^k - \mu_{j}^k}{2}.
\end{align*}
\]

3 Main Results

3.1 H_∞ Model Reduction Analysis

On the basis of Lemmas 1 and 2, we give the following theorem, which can guarantee the asymptotical stability and the H_∞ performance of error system (8) in the FF domain of input noise.

The problem addressed in this work can be formulated as follows: Given TS fuzzy FM system (3). The objective is to design a suitable TS FM reduced-order model in the form of (6) such that the following two requirements are satisfied:

- Error system (8) is asymptotically stable when $u(i, j) \equiv 0$.
- Letting $\gamma > 0$, be a given constant, under the zero–initial condition, equation

\[
\sup_{0 \leq t \leq 2} \left| e_{i,j}(t) \right| \leq \gamma \| u_{i,j} \|_2
\]

3.1 H_∞ Model Reduction Analysis

On the basis of Lemmas 1 and 2, we give the following theorem, which can guarantee the asymptotical stability and the H_∞ performance of error system (8) in the FF domain of input noise.

The problem addressed in this work can be formulated as follows: Given TS fuzzy FM system (3). The objective is to design a suitable TS FM reduced-order model in the form of (6) such that the following two requirements are satisfied:

- Error system (8) is asymptotically stable when $u(i, j) \equiv 0$.
- Letting $\gamma > 0$, be a given constant, under the zero–initial condition, equation

\[
\sup_{0 \leq t \leq 2} \left| e_{i,j}(t) \right| \leq \gamma \| u_{i,j} \|_2
\]
Theorem 1 Let $\gamma > 0$ be a given scalar and a rectangular FF domain (2), a reduced-order model of form (6) exists such that the error system in (8) is asymptotically stable and H_∞ performance (11) is satisfied, if and only if there exist Hermitian matrices $P = P_1 + P_2$, $Q = [Q_1 \; Q_2]$, symmetric matrices W_1, W_2 and matrices M_1, M_2, G_1, G_2, F_1 and H satisfying $Q_1 > 0$, $Q_2 > 0$, $W_1 > 0$, $W_2 > 0$ and

$$
\Phi = \begin{bmatrix}
\Phi_{11} & \Phi_{12} & \Phi_{13} & \Phi_{14} & \Phi_{15} & \Phi_{16} \\
* & \Phi_{22} & \Phi_{23} & \Phi_{24} & \Phi_{25} & \Phi_{26} \\
* & * & \Phi_{33} & \Phi_{34} & \Phi_{35} & \Phi_{36} \\
* & * & * & \Phi_{44} & \Phi_{45} & \Phi_{46} \\
* & * & * & * & \Phi_{55} & \Phi_{56} \\
* & * & * & * & * & \Phi_{66}
\end{bmatrix} < 0
$$

(17)

$$
\Psi = \begin{bmatrix}
\Psi_{11} & \Psi_{12} & \Psi_{13} & \Psi_{14} & \Psi_{15} & \Psi_{16} \\
* & \Psi_{22} & \Psi_{23} & \Psi_{24} & \Psi_{25} & \Psi_{26} \\
* & * & \Psi_{33} & \Psi_{34} & \Psi_{35} & \Psi_{36} \\
* & * & * & \Psi_{44} & \Psi_{45} & \Psi_{46} \\
* & * & * & * & \Psi_{55} & \Psi_{56} \\
* & * & * & * & * & \Psi_{66}
\end{bmatrix} < 0
$$

(27)

Proof 1 First, we prove that (15) is equivalent to (17). Condition (15) can be rewritten as

$$
T + U^T V U < 0
$$

(19)

Where

$$
U = \begin{bmatrix}
\Phi & \Psi \\
\Psi & \Phi
\end{bmatrix}, \quad V = \begin{bmatrix}
P & \Lambda \Omega \\
\Omega \Lambda & -\bar{R}
\end{bmatrix},
$$

(20)

At this stand, by using Lemma 2, (19) is equivalent to

$$
T + MU + U^T M^T - M^T + GU - G^T V - G^T = -M + GU < 0
$$

(21)

We chose M and G are expressed as the following structures:

$$
M = \begin{bmatrix}
M_1 & 0 \\
M_2 & 0
\end{bmatrix}, \quad G = \begin{bmatrix}
G_1 & 0 \\
G_2 & 0
\end{bmatrix}
$$

(22)

which, using Schur complement, leads to given (17). Second step, let us construct a Lyapunov function inequality, $\tilde{A}_1(h)$ and $\tilde{A}_2(h)$ is stable if and only if there exist symmetric matrices $W_1 > 0$, $W_2 > 0$ such that

$$
\begin{bmatrix}
\tilde{A}_1(h) & \tilde{A}_2(h) \\
W_1 & W_2
\end{bmatrix}^T (W_1 + W_2) \begin{bmatrix}
\tilde{A}_1(h) & \tilde{A}_2(h)
\end{bmatrix} < 0
$$

(23)

which is rewritten in the form

$$
\tilde{T} + \tilde{U}^T \tilde{V} \tilde{U} < 0
$$

(24)

Where

$$
\tilde{T} = \begin{bmatrix}
-W_1 & 0 \\
0 & -W_2
\end{bmatrix}, \quad \tilde{V} = W_1 + W_2;
$$

$$
\tilde{U} = \begin{bmatrix}
\tilde{A}_1(h) & \tilde{A}_2(h)
\end{bmatrix};
$$

(25)

We chose F follows:

$$
F = \begin{bmatrix}
F_1 & 0
\end{bmatrix}^T
$$

(26)

Using Lemma 1, (24-25) are equivalent to (18).

3.2 Finite Frequency H_∞ Model Reduction design

The main objective is to determine the reduced-order matrices such that the error system in (8) is asymptotically stable and guarantees an H_∞ disturbance attenuation level γ and satisfies the FF in (11).

Theorem 2 Let $\gamma > 0$ be a given scalar and a rectangular FF domain (2), a reduced-order model of form (6) exists such that the error system in (8) is asymptotically stable and H_∞ performance (11) is satisfied, if and only if there exist matrices $\hat{A}_1, \hat{B}_1, \hat{B}_2, \hat{C}_1, \hat{D}_1, M_1, G_1, M_2, G_2, H_1, H_2, V, u, \nu, \mu, l, s = 1, 2, 3, 4, t = 1, 2, P_1, Q_1 > 0, W_1 > 0, P_2$, $Q_2 > 0, W_2 > 0, s = 1, 2, 3, 4$, satisfying

$$
\Psi = \begin{bmatrix}
\Psi_{11} & \Psi_{12} & \Psi_{13} & \Psi_{14} & \Psi_{15} & \Psi_{16} \\
* & \Psi_{22} & \Psi_{23} & \Psi_{24} & \Psi_{25} & \Psi_{26} \\
* & * & \Psi_{33} & \Psi_{34} & \Psi_{35} & \Psi_{36} \\
* & * & * & \Psi_{44} & \Psi_{45} & \Psi_{46} \\
* & * & * & * & \Psi_{55} & \Psi_{56} \\
* & * & * & * & * & \Psi_{66}
\end{bmatrix} < 0
$$

(27)
Proof 2 Parameterize slack matrices M_1, M_2, G_1, G_2, F_1 and H in Theorem 1 as

\[
M_1 = \begin{bmatrix} M_{11} & EV \\ M_{12} & V \\ M_{13} & 0 \\ M_{14} & EV \\ M_{15} & 0 \end{bmatrix}; \quad G_2 = \begin{bmatrix} G_{21} & EV \\ G_{22} & V \\ G_{23} & 0 \\ G_{24} & EV \\ G_{25} & 0 \end{bmatrix}; \quad F_1 = \begin{bmatrix} F_{11} & EV \\ F_{12} & V \end{bmatrix}; \quad H = \begin{bmatrix} H_{11} & EV \\ H_{12} & V \end{bmatrix}.
\]

Moreover, for matrix variables $P_1, Q_1 > 0, P_2, Q_2 > 0, W_1 > 0, W_2 > 0$ in Theorem 1, we define:

\[
P_1 = \begin{bmatrix} P_{11} & * & P_{12} \\ * & P_{13} & * \end{bmatrix}; \quad P_2 = \begin{bmatrix} P_{21} & * & P_{22} \\ * & P_{23} & * \end{bmatrix}; \quad Q_1 = \begin{bmatrix} Q_{11} & Q_{12} \\ * & Q_{13} \end{bmatrix}; \quad Q_2 = \begin{bmatrix} Q_{21} & Q_{22} \\ * & Q_{23} \end{bmatrix}; \quad W_1 = \begin{bmatrix} W_{11} & W_{12} \\ * & W_{13} \end{bmatrix}; \quad W_2 = \begin{bmatrix} W_{21} & W_{22} \\ * & W_{23} \end{bmatrix}.
\]

In addition, by replacing (9), (16) and into (17) and (18), and combining (30), (32), we obtain Theorem 1, where

\[
\hat{A}_1(h) = \hat{V}_1(h), \hat{A}_1(h) = \hat{V}_2(h), \hat{B}_1(h) = \hat{V}_3(h), \hat{B}_2(h) = \hat{V}_4(h).
\]

Remark 1 If we take $Q_s = \text{diag}(Q_{sb}, Q_{se}) = 0, s = 1, 2, 3$, we can use Theorem 2 to solve the H_{∞} model reduction problem in the entire frequency (EF) domain of two-dimensional (2D) T-S fuzzy discrete systems described by FMLSS model.

4 Numerical Example

Considering a 2D discrete-time T-S fuzzy system with two rules, whose matrices are given as [19] **Plant Rule 1**: If $\theta_1(k)$ is N_1; $\theta_2(k)$ is N_2,

\[
x_{i+1,j+1} = A_{1i}x_{i,j+1} + A_{2i}x_{i+1,j} + B_{1i}u_{i,j+1} + B_{2i}u_{i+1,j};
\]

\[
y_{i,j} = C_{1i}x_{i,j}.
\]

Plant Rule 2: If $\theta_1(k)$ is N_2; $\theta_2(k)$ is N_1,

\[
x_{i+1,j+1} = A_{1i}x_{i+1,j+1} + A_{2i}x_{i,j+1} + B_{1i}u_{i+1,j+1} + B_{2i}u_{i,j+1};
\]

\[
y_{i,j} = C_{2i}x_{i,j}.
\]
The reduced-order parameters are given by:

\[
\begin{align*}
A_{11} &= A_{12} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ -0.05 & 1.05 & 0 & 0 \\ 0 & 0.05 & 0 & 0.95 \end{bmatrix}, \\
A_{21} &= A_{22} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \\
B_{11} &= \begin{bmatrix} -0.43 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \\
B_{12} &= \begin{bmatrix} -0.04 \\ 0 \\ 0.01 \\ 0 \end{bmatrix}, \\
B_{21} &= \begin{bmatrix} 0 \\ 0.01 \\ 0.01 \end{bmatrix}, \\
B_{22} &= \begin{bmatrix} 0 \end{bmatrix}, \\
C_1 &= \begin{bmatrix} -0.03 & 0 & -0.02 & -0.03 \\ 0.02 & -0.04 & 0 & -0.04 \\ -0.04 & 0 & -0.01 & 0.02 \\ 0 & 0 & -0.02 & 0.02 \end{bmatrix}, \\
C_2 &= \begin{bmatrix} -0.02 & -0.04 & 0.02 & 0 \\ 0.01 & -0.03 & -0.05 & 0 \\ -0.02 & 0 & 0 & 0 \\ -0.05 & 0 & 0 & -0.03 \end{bmatrix}, \\
D_1 &= \begin{bmatrix} -0.03 \\ -0.02 \\ -0.05 \end{bmatrix}.
\end{align*}
\]

The normalized membership function: where

\[
h_i(\theta_{(i,j)}) = \frac{\sin^2(x_i(i,j))}{2 + \cos^2(x_i(i,j))}, \quad h_2(\theta_{(i,j)}) = 1 - \frac{\sin^2(x_i(i,j))}{2 + \cos^2(x_i(i,j))}
\]

To demonstrate the value of our proposed approach, we provide in Table 1 the \(H_\infty\) reduced order performance levels, which shows the conservativeness of the FF method.

Frequency	Methods	\(\gamma\)
\([0,\pi] \times [0,\pi]\)	Theorem 2 (Q = 0)	0.8245
\([\frac{\pi}{2}, \frac{\pi}{2}] \times [\frac{\pi}{2}, \frac{\pi}{2}]\)	Theorem 2	0.2845

Table 1: Comparison of reduced-order performance obtained in different ranges.

Assume that the reduced-order model in (8) has an order FM LSS model \(n = 2\), for FF domain \([\frac{\pi}{2}, \frac{\pi}{2}] \times [\frac{\pi}{2}, \frac{\pi}{2}]\), the reduced-order parameters are given as follows:

\[
\begin{align*}
\hat{A}_{11} &= \begin{bmatrix} -0.1921 & 0.0245 \\ -0.8514 & -0.8845 \end{bmatrix}, \\
\hat{A}_{12} &= \begin{bmatrix} -0.1605 & 0.0378 \\ -0.6405 & -0.8715 \end{bmatrix}, \\
\hat{A}_{21} &= \begin{bmatrix} -0.1527 & 0.7145 \\ 0.0305 & -0.2105 \end{bmatrix}, \\
\hat{B}_{11} &= \begin{bmatrix} -0.3219 \\ 0.0002 \end{bmatrix}, \\
\hat{B}_{12} &= \begin{bmatrix} -0.0923 \\ -0.1105 \end{bmatrix}, \\
\hat{B}_{21} &= \begin{bmatrix} -0.1504 \\ 0.0204 \end{bmatrix}, \\
\hat{C}_{1} &= \begin{bmatrix} 0.0978 & 0.0345 \\ 0.0374 & -0.0547 \\ 0.0125 & -0.2147 \\ -0.0248 & 0.2345 \\ -0.1106 & -0.1503 \end{bmatrix}, \\
\hat{C}_{2} &= \begin{bmatrix} 0.0748 & 0.1875 \\ 0.1100 & 0.0147 \\ 0.0101 & -0.2974 \end{bmatrix}, \\
\hat{C}_{3} &= \begin{bmatrix} -0.0101 & 0.8745 \\ 0.0174 & -0.0202 \end{bmatrix}.
\end{align*}
\]

5 Conclusion

This paper has investigated the FF \(H_\infty\) reduced model design problem for two-dimensional (2D) discrete-time T-S fuzzy systems described by FMLSS model. By applying gKYP lemma for 2D discrete systems, we introduce many slack matrices to provide extra free dimensions in the solution space of the \(H_\infty\) optimization.
Figure 3. Error response of $e_{i,j}$.

References

[1] T. Kaczorek, Ed. Two-Dimensional Linear Systems. Lecture Notes in Control and Information Science, New York: Springer-Verlag, 68, 1985.

[2] C. Du and L. Xie. H_{∞} Control and Filtering of Two-dimensional Systems. Springer Verlag, 278, 2002.

[3] X. Li, J. Lam, H. Gao, Y. Gu, A frequency-partitioning approach to stability analysis of two-dimensional discrete systems. Multidimensional Systems and Signal Processing, 26(1):67-93, 2013.

[4] H. Gao, J. Lam, H. Gao, Z. Wang. New Design of Robust H_{∞} Filters for 2-D Systems. IEEE Signal Processing Letters, 15217-220, 2008.

[5] X. Li, H. Gao. Robust finite frequency image filtering for uncertain 2-D systems: The FM model case. Automatica, 29(8): 2446-2452, 2013.

[6] Z. Duan, J. Zhou, & P. Shi. H_{∞} Filtering for 2D T-S fuzzy systems with finite frequency disturbances. IET Control Theory and Applications, 13(13) : 1983-1994, 2019.

[7] Z. Duan, J. Zhou, & J. Shen. Filter design for discrete-time two-dimensional T-S fuzzy systems with finite frequency specification. International Journal of Systems Science, 50(3) : 599-613, 2019.

[8] H. Gao, X. Meng, T. Chen. Design of Robust H_{∞} Filters for 2-D Systems. IEEE Signal Processing Letters, 15217-220, 2008.

[9] X. Li, H. Gao. Robust finite frequency image filtering for uncertain 2-D systems: The FM model case. Automatica, 29(8) : 2446-2452, 2013.

[10] Z. Duan, J. Zhou, & J. Shen. Finite frequency filter design for nonlinear 2-D continuous systems in T-S form. Journal of the Franklin Institute, 354(18) : 8606-8625, 2017.

[11] X. Li, J. Lam, & K. C. Cheung. Generalized H_{∞} model reduction for stable two-dimensional discrete systems. Multidimensional Systems and Signal Processing, vol. 27(2) : 359-382, 2016.

[12] A. El-Amrani, B. Boukili, A. Hmamed, A. El Hajjaji & I. Boumhidi. Robust H_{∞} filtering for 2D continuous systems with finite frequency specifications. International Journal of Systems Science, 49(1) : 43-57, 2017.

[13] Luo, Y., Wang, Z., Wei, G., & Alsaadi, F. E. Robust H_{∞} Filtering for a Class of Two-Dimensional Uncertain Fuzzy Systems With Randomly Occurring Mixed Delays. IEEE Transactions on Fuzzy Systems, 25(1), 70-83, 2016.

[14] T. Hinamoto. Stability of 2-D discrete systems described by the Fornasini–Marchesini second model. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 44(3) : 254-257, 1997.

[15] D. Peaucelle. Unified Formulation for Robust Analysis and Synthesis with Parameter Dependent Lyapunov Functions. doctoral thesis of Toulouse III University, France, 2000.

[16] H. Tuan, P. Apkarian, T. Nguyen, T. Narikiyo, Robust mixed H_2 – H_{∞} filtering of 2D systems. IEEE Trans. Signal Process. 50(7), 1759-1771, 2002.

[17] Wu, L., Z. Wang, H. Gao, and C. Wang, H_{∞} and L_2 – L_{∞} filtering for two-dimensional linear parameter-varying systems. Int. J. Robust Nonlinear Control, Vol. 17(12), 1129-1154, 2007.

[18] X. Liu, and P. Shi. Robust H_{∞} filtering for 2-D systems with intermittent measurements Circuits, Systems and Signal Processing, Vol. 28(2), 283-303, 2009.